

线性代数第9讲

内容: 逆矩阵等

3/30/2022 8:41:14 AM

第9讲内容大概 Outline

- 1. 上次内容回顾;
- 2. 逆矩阵定义;
- 3. 伴随矩阵求逆矩阵;
- 4. 逆矩阵性质;
- 5. 例题练习;

主讲: 邱玉文

一、前次课程结论回顾

【作业讲解】。

答案:
$$-A = \begin{pmatrix} -12 & 6 & -9 \\ 8 & -4 & 6 \\ 20 & -10 & 15 \end{pmatrix}$$

矩阵乘法结合律的例子

Examples of Matrix Multiplication Combination Law

例: 已知
$$A = \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix}, B = (1, 2, 1),$$
 求 AB , BA , $(AB)^{50}$ 解: $AB = \begin{pmatrix} -2 & -4 & -2 \\ -1 & -2 & -1 \\ 3 & 6 & 3 \end{pmatrix}$, $BA = -1$,
$$(AB)^{50} = (AB)(AB)\cdots(AB) = A(BA)(BA)\cdots(BA)B$$
$$= A(BA)^{49}B = A(-1)B = -AB = \begin{pmatrix} 2 & 4 & 2 \\ 1 & 2 & 1 \\ -3 & -6 & -3 \end{pmatrix}$$

1. 设A为任意n阶方阵,矩阵B满足AB=BA,则B=_. kE

举例说明: 设B是对角矩阵,

$$AB = \begin{pmatrix} a & b & c \\ x & y & z \\ u & v & w \end{pmatrix} \begin{pmatrix} m & & \\ & n & \\ & & p \end{pmatrix} = \begin{pmatrix} ma & nb & pc \\ mx & ny & pz \\ mu & nv & pw \end{pmatrix}, \quad P$$

但是
$$BA = \begin{pmatrix} m & \\ & n \\ & p \end{pmatrix} \begin{pmatrix} a & b & c \\ x & y & z \\ u & v & w \end{pmatrix} = \begin{pmatrix} ma & mb & mc \\ nx & ny & nz \\ pu & pv & pw \end{pmatrix};$$

由 AB = BA 得: m = n = p = k, 即 B = kE;

1. 设矩阵
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$,

则
$$PAQ = ($$
). \downarrow

(A)
$$\begin{pmatrix} a_{21} + a_{23} & a_{22} & a_{23} \\ a_{11} + a_{13} & a_{12} & a_{13} \\ a_{31} + a_{33} & a_{32} & a_{33} \end{pmatrix}$$
; (B) $\begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} + a_{12} & a_{31} + a_{11} & a_{33} + a_{13} \end{pmatrix}$;

(C)
$$\begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{21} & a_{32} + a_{22} & a_{33} + a_{23} \end{pmatrix}$$
; (D) $\begin{pmatrix} a_{21} & a_{22} & a_{21} + a_{23} \\ a_{11} & a_{12} & a_{11} + a_{13} \\ a_{31} & a_{32} & a_{31} + a_{33} \end{pmatrix}$.

矩阵乘法应用的例子

Examples of Matrix Multiplication Applications

3) 用矩阵和向量描述方程组.

$$\begin{cases} 2x_1 + 3x_2 = 1 \\ -3x_1 + 2x_2 = 4 \end{cases}$$

可以写成
$$\begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
 $Ax = b$ 形式

也可以写成
$$x_1 \begin{pmatrix} 2 \\ -3 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
 向量组合形式

例 17 设
$$A$$
 , B 均为 3 阶方阵且 $|A| = \frac{1}{3}$, $|B| = 4$, $|A| + |A| + |B| + |A| + |B| + |A| + |B| + |B$

$$|A| = (-1)^3 |A| = (-1) \times \frac{1}{3} = -\frac{1}{3}$$

$$|2B^{T}A^{2}| = 2^{3} |B^{T}| |A|^{2} = 8 \times 4 \times \frac{1}{9} = \frac{32}{9}$$

【课堂练习】。

已知: A, B 是 3 阶方阵, |A| = -2, |B| = 3 ,则 $|-2A^TB^3| = ($)

1. 逆矩阵的例子: Examples of inverse matrices

定义 8 对于 n 阶矩阵 A ,若存在 n 阶矩阵 B ,使得 AB = BA = E ,则称 A 为可逆矩阵(invertible matrix),简称 A 可逆,称矩阵 B 为矩阵 A 的逆矩阵(inverse).

可逆矩阵的例子: (1)单位矩阵E可逆, 其逆矩阵是E

(2)零矩阵O不可逆

(3)
$$\begin{pmatrix} 2 & & \\ & 3 & \\ & & -4 \end{pmatrix}$$
可逆,其逆矩阵是
$$\begin{pmatrix} \frac{1}{2} & & \\ & \frac{1}{3} & \\ & & -\frac{1}{4} \end{pmatrix}$$

(4)
$$C=\begin{pmatrix} 1 & 3 \\ -2 & -6 \end{pmatrix}$$
 不可逆

2. 逆矩阵的唯一性 Uniqueness of Inverse Matrix (if Existed)

【定理】 如果矩阵 A 可逆, 那么 A 的逆矩阵是惟一的. -

【证明】 设A有两个逆矩阵B和C,据可逆矩阵的定义。

$$AB = BA = E$$
, $AC = CA = E$

$$\mathbf{B} = \mathbf{E}\mathbf{B} = (\mathbf{C}\mathbf{A})\mathbf{B} = \mathbf{C}(\mathbf{A}\mathbf{B}) = \mathbf{C}\mathbf{E} = \mathbf{C} .$$

以, A 的逆矩阵若存在,则是惟一的. -

将可逆矩阵 A 的逆矩阵记为 A-1.

3. 伴随矩阵 Adjoint matrix

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \cdots & \cdots & \cdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

称为方阵A的伴随矩阵,其中A_{ij}是|A|中元素a_{ij}的代数余子式

千万注意: |A|中第一行元素的代数余子式,在 A^* 中是在第一列;

伴随矩阵的例子 Examples of Adjoint Matrices

解 按定义9,因为

$$A_{11} = -3$$
, $A_{12} = -4$, $A_{13} = 5$, $A_{21} = 3$, $A_{22} = 0$
 $A_{23} = -1$, $A_{31} = 1$, $A_{32} = 4$, $A_{33} = -3$

$$A' = \begin{pmatrix} -3 & 3 & 1 \\ -4 & 0 & 4 \\ 5 & -1 & -3 \end{pmatrix}$$

伴随矩阵的例子 Examples of Adjoint Matrices

练习: 已知
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, 求 A^*

答案:
$$A^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

伴随矩阵的例子 Examples of Adjoint Matrices

练习: 已知
$$B = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}$$
, 求 B^*

答案:
$$B^* = \begin{pmatrix} 2 & 2 & 1 \\ -5 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$

伴随矩阵的结论 Conclusion of Adjoint Matrices

引理: 设 A^* 为n阶方阵A的伴随矩阵,则

$$AA^* = A^*A = |A| \cdot E$$

4. 矩阵可逆的充分必要条件

Necessary and Sufficient Conditions for reversibility of Matrix

由
$$AA^* = A^*A = |A| \cdot E$$
 推出的重要结论:

定理2:方阵A可逆的充分必要条件是 $A \neq 0$, 且当A可逆时,

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \mathbf{A}^*$$

另一个重要结论: A可逆时, $A^* = |A|A^{-1}$

求逆矩阵的例子 Examples of Solving Inverse Matrix

填空: 2阶矩阵
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 可逆的充分必要条件是

若A可逆,则
$$A^{-1}$$
=

求逆矩阵的例子 Examples of Solving Inverse Matrix

已知
$$B = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 2 & 3 \\ -1 & 0 & 2 \end{pmatrix}$$
, 判断 B 是 否可逆, 若 B 可逆, 求 B^{-1}

提醒: **B**是不是可逆,由|**B**|是否等于**0**来确定。计算结束后可以演算。

主要结果: $|B| = -4 \neq 0$ 所以B可逆;

矩阵可逆条件的简化 Simplification of Reversible Condition of Matrix

对n阶方阵A, B, 若AB = E(或BA = E),则A 可逆,且 $B = A^{-1}$.

证明 由AB = E 知, $|A||B| \neq 0$, 得 $|A| \neq 0$, 由定理 1 知 A 可逆, 其惟一逆阵为 $|A|^{-1}$,

有
$$\mathbf{B} = \mathbf{E}\mathbf{B} = (\mathbf{A}^{-1}\mathbf{A})\mathbf{B} = \mathbf{A}^{-1}(\mathbf{A}\mathbf{B}) = \mathbf{A}^{-1}\mathbf{E} = \mathbf{A}^{-1}$$

$$\mathbf{B} = \mathbf{A}^{-1} . \quad \mathbf{P}$$

这个结论的意义: 把可逆矩阵定义AB = BA = E 简化了

小结: brief summary

- 1. 矩 阵 A 可 逆 定 义AB = BA = E
- 2. 矩阵A如果可逆,其逆矩阵必然唯一,可以将其记为 A^{-1}
- 3. 如果两个方阵A,B满足AB=E,则 $B=A^{-1}$ 记第3条就行

定理2:方阵A可逆的充分必要条件是 $A \neq 0$,且当A可逆时,

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \mathbf{A}^*$$

会求逆矩阵

关于伴随矩阵 $AA^* = A^*A = |A| \cdot E$ 或者 $A^* = |A| A^{-1}$

天津中族应用技术大学 TianjinSino-German University of Applied Sciences

逆矩阵性质 Properties of Inverse Matrix

- (1) 若A可逆,则 A^{-1} 亦可逆,且 $(A^{-1})^{-1} = A$.
- (2) 若A可逆,数 $\lambda \neq 0$,则 λA 可逆,且 $(\lambda A)^{-1} = \frac{1}{\lambda}A^{-1}$.
- (3) 若A,B为同阶方阵且均可逆,则AB亦可逆,且 $(AB)^{-1} = B^{-1}A^{-1}$
- (4)若A可逆,则 A^{T} 亦可逆,且 $(A^{T})^{-1}=(A^{-1})^{T}$.
- (5) 若A可逆,有 $|A^{-1}| = |A|^{-1} = \frac{1}{|A|}$.

逆矩阵性质的例子 Examples of Properties of Inverse Matrix

设A是3阶方阵,
$$|A| = 10$$
, 求 $\left(\frac{1}{3}A\right)^{-1} - \frac{1}{2}A^*$.

$$\left| \frac{1}{3} A \right|^{-1} - \frac{1}{2} A^* \right| = \left| 3A^{-1} - \frac{1}{2} |A| A^{-1} \right|$$
$$= \left| -2A^{-1} \right| = (-2)^3 \frac{1}{|A|} = -\frac{4}{5}.$$

天津中族应用技术大学 TianjinSino-German University of Applied Sciences

练习:设A为一个三阶方阵,
$$|A| = \frac{1}{2}, A^* 为 A$$
 的

伴随矩阵,求 $|(3A)^{-1}-2A^*|$.

解
$$:: AA^{-1} = I$$
 及 $|A| = \frac{1}{2}$, $:: |A^{-1}| = 2$

曲
$$A^{-1} = \frac{A^*}{|A|}$$
,知 $A^* = |A|A^{-1} = \frac{1}{2}A^{-1}$

$$\left| (3A)^{-1} - 2A^* \right| = \left| \frac{1}{3} A^{-1} - A^{-1} \right| = \left| -\frac{2}{3} A^{-1} \right|$$
$$= \left(-\frac{2}{3} \right)^3 \left| A^{-1} \right| = -\frac{16}{27}.$$

先讲后练 Example first, then practice

例14
$$|A|=3$$
, A 为4阶方阵,求 $|A^*|$.

解: :
$$A^* = |A|A^{-1} = 3A^{-1}$$

$$\therefore |A^*| = |3A^{-1}| = 3^4 \cdot |A^{-1}| = 3^4 \cdot \frac{1}{3} = 3^3 = 27.$$

先讲后练 Example first, then practice

例题: 已知 $A^2-3A-E=0$, 证明: A-E可逆. 并写出逆矩阵

解: :
$$A^2 - 3A - E = O$$

$$A - E(A - E)(A - 2E) = A^2 - 3A + 2E = E + 2E = 3E$$

小结: 考虑(A-E)(?)=E?

提示:方阵AB=E,则A可逆

退一步考虑, (A-E)(?)=kE?

已知条件 $A^2 - 3A - E = 0$ 如何使用?

先讲后练 Example first, then practice

已知A满足 $A^2 + 2A - 5E = O$, 证明A-2E可逆, 并写出其逆矩阵

解:

$$\therefore A^2 + 2A - 5E = O$$

$$\therefore A^2 + 2A = 5E$$

$$\therefore A^2 + 2A = 5E$$

$$(A-2E)(A+4E) = A^2 + 2A - 8E$$

= $5E - 8E = -3E$

$$\therefore (A-2E)\left(-\frac{1}{3}(A+4E)\right) = E$$

所以,A-2E可逆,且 :
$$(A-2E)^{-1} = -\frac{1}{3}(A+4E)$$

逆矩阵的消去律Elimination law of inverse matrix

$$AB = AC$$
, A可逆 $\longrightarrow B = C$ $AB = AC$ $\longrightarrow A^{-1}AB = A^{-1}AC$ $\longrightarrow B = C$

$$AB = O$$
, A可逆 $\longrightarrow B = O$

- 结论: (1) A可逆时,AB=O是B=O的充分必要条件;
 - (2) A可逆时,AB=AC是B=C的充分必要条件

矩阵方程 Matrix equation

- 1. 当矩阵A可逆时,由AB=C,可得: $B=A^{-1}C$
- 2. 当矩阵A可逆时,由BA = C, 可得: $B = CA^{-1}$
- 3. 当矩阵A和B都可逆时,

曲
$$AXB = C$$
, 可 得: $X = A^{-1}CB^{-1}$

矩阵没有除法,靠两边同时同侧乘以A-1而消除A

$$AB = C \Rightarrow A^{-1}AB = A^{-1}C \Rightarrow (A^{-1}A)B = A^{-1}C \Rightarrow B = A^{-1}C$$

解矩阵方程
$$AXB = C$$
,其中 $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 3 & 1 \end{bmatrix}$.

解: $|A|\neq 0$, $|B|\neq 0$, 知A, B皆可逆,

$$X = A^{-1}AXBB^{-1} = A^{-1}CB^{-1}$$

其中
$$A^{-1} = \begin{bmatrix} 1 & 3 & -2 \\ -2/3 & -3 & 5/2 \\ 1 & 1 & -1 \end{bmatrix}$$
, $B^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$,

于是
$$X = \begin{bmatrix} 1 & 3 & -2 \\ -2/3 & -3 & 5/2 \\ 1 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 10 & -4 \\ -10 & 4 \end{bmatrix}$$

矩阵方程练习: Exercise of Matrix Equation

已知
$$B = \begin{pmatrix} 2 & -3 \\ -2 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, 求A, 使得 $AB = C$$$