trainEnglish (BGR)

Влакче-играчка

Арезу и Борзу са близнаци. За рожденния си ден те получили прекрасна играчка-влакче и решили да си построят железопътна мрежа с n гари, номерирани от 0 до n-1 и m еднопосочни линии. Всяка линия тръгва от една гара и достига до друга гара, не непременно различна от началната. От всяка гара излиза поне една линия.

На някои от станциите влакчето може ∂a се зареж ∂a , като зареждането винаги е пълно. Зареденото влакче може да премине точно през n последователни линии. Т.е., в момента в който, след зареждане, премине през n линии и тръгне по (n+1)-та, енергията му свършва и то спира.

На всяка гара има превключвател, с който влакчето може да се насочи по някоя от излизащите от гарата линии. Достигайки гара, влакчето може да я напусне само по линията, към която е насочен превключвателя.

Близнаците играят следната игра. Разделили са станциите помежду си — всяка станция е собственост или на Арезу или на Борозу. Влакчето е едно, заредено напълно и се намира на начална гара s. Собственикът на гарата избира с превключвателя една от излизащите от гарата линии и влакчето тръгва по нея. И това се повтаря на всяка гара, на която влакчето попадне. След като е избрана линията, по която влакчето да напусне гарата, превключването към друга линия е невъзможно и всеки път, когато то влезе отново в същата гара я напуска по същата линия.

Тъй като броят на гарите е краен, рано или късно влакчето влиза в $\mathit{цикъл}$ – редица от $\mathit{различни}$ гари $c[0], c[1], \cdots, c[k-1]$ такива, че след като напусне гарата c[i] (за $0 \le i < k-1$), то тръгва към гарата c[i+1], а когато напусне гарата c[k-1] тръгва към c[0]. Цикълът може да бъде съставен само от една гара (т.е. k=1), ако има линия която тръгва от гара c[0] и стига до същата гара.

Арезу печели играта, ако влакчето може да се движи безкрайно, а Борозу – ако влакчето спре. С други думи, ако в цикъла има поне една зареждаща гара – влакът ще може да зарежда при всяко преминаване през нея и да се движи вечно, затова ще спечели Арезу. В противен случай, то ще свърши горивото след няколко преминавания по цикъла и Борозу ще спечели играта.

Зададено е описание на железопътната мрежа. Арезу и Борозу играят n игри. В s-тата игра, за $0 \le s \le n-1$, влакчето в началото е на гарата s. Задачата е, за всяка игра да се определи, дали Арезу има стратегия, която да му гарантира, че печели играта, независимо как играе Борозу.

Детайли на реализацията

Напишете следната процедура:

```
int[] who_wins(int[] a, int[] r, int[] u, int[] v)
```

където

- a: масив с дължина n. Ако Арезу е собственик на гарата i, a[i]=1. Ако Арезу не е собственик на гарата i, тогава a[i]=0.
- ullet r: масив с дължина n. Ако гарата i е зареждаща, тогава r[i]=1. Иначе, r[i]=0.
- ullet и v: масиви с дължина m. За всяко $i,\ 0 \leq i \leq m-1$, в мрежата има еднопосочна линия от u[i] до v[i].
- Процедурата трябва да връща масив w с дължина n. За всяко $i,\ 0 \le i \le n-1,$ стойността на w[i] трябва да е 1, ако Арезу печели играта при започване от гарата i, независимо как играе Борозу. В противен случай, стойността на w[i] трябва да е 0.
- За означението int[] вижте първата таблица в Notice.

Пример

who_wins([0, 1], [1, 0], [0, 0, 1, 1], [0, 1, 0, 1])

- Мрежата е с 2 гари. Борозу е собственик на станция 0, която е зареждаща, а Арезу на гарата 1, която не е зареждаща.
- Мрежата има 4 лини (0,0),(0,1),(1,0) и (1,1), където (i,j) означава, че има еднопосочна линия от i до j.
- Нека в началота влакчето е на гара 0. Ако Борозу насочи влакчето към същата гара по линията (0,0), то ще влезе в цикъл със зареждаща гара и Арезу ще спечели. А ако го насочи към гара 1 по линията (0,1), тогава Арезу може да го върне обратно към станция 0 по линията (1,0), затваряйки цикъл, който преминава през двете станции, едната от които е зареждаща и Арезу печели отново. Значи Арезу ще спечели в този случай, независимо от играта на Борозу.
- Ако влакчето в началото е на гара 1, по аналогечен начин се установява, че Арезу печели играта, независимо какво играе Борозу. Затова процедурата връща [1,1].

Ограничения

- $1 \le n \le 5000$.
- $n \le m \le 20\,000$.
- Винаги има поне една зареждаща гара.
- От всяка гара излиза поне една линия.
- Може да има линия, която започва от и завършва в една и съща гара.
- ullet Всички линии са различни, т.е. няма две такива линии i и j ($0 \leq i < j \leq m-1$) , че u[i] = u[j] и v[i] = v[j].
- ullet $0 \leq u[i], v[i] \leq n-1$ (за всяко $i, 0 \leq i \leq m-1$).

Подзадачи

- 1. (5 точки) За всяко $i,\, 0 \leq i \leq m-1$, или v[i] = u[i] или v[i] = u[i] + 1.
- 2. (10 точки) $n \leq 15$.
- 3. (11 точки) Арезу притежава всички гари.
- 4. (11 points) Борзу притежава всички гари.
- 5. (12 точки) Зареждащата гара е точно една.
- 6. (51 точки) Без допълнителни ограничения.

Примерен грейдър

Примерният грейдър чете вход във формат:

- line 1: n m
- ullet line 2: a[0] a[1] \dots a[n-1]
- line 3: r[0] r[1] ... r[n-1]
- line 4+i (for $0 \le i \le m-1$): u[i] v[i]

Грейдерът печата върнатите от процедурата who_wins във формата:

• line 1: w[0] w[1] ... w[n-1]