```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report

from google.colab import files
uploaded = files.upload()

# Assuming the file is 'diabetic_data.csv'
df = pd.read_csv('diabetic_data.csv')
df.head()
```

Choose Files diabetic_data.csv

 diabetic_data.csv(text/csv) - 19159383 bytes, last modified: 4/10/2025 - 100% done Saving diabetic_data.csv to diabetic_data.csv

	encounter_id	patient_nbr	race	gender	age	weight	admission_type_id	discharge_disposition_id	admission_source_id
0	2278392	8222157	Caucasian	Female	[0- 10)	?	6	25	1
1	149190	55629189	Caucasian	Female	[10- 20)	?	1	1	7
2	64410	86047875	AfricanAmerican	Female	[20- 30)	?	1	1	7
3	500364	82442376	Caucasian	Male	[30- 40)	?	1	1	7
4	16680	42519267	Caucasian	Male	[40- 50)	?	1	1	7

5 rows × 50 columns

```
# Filter gender
df = df[df['gender'] != 'Unknown/Invalid']
# Binary encode the target: Readmitted <30 = 1, others = 0
df['readmitted_flag'] = df['readmitted'].apply(lambda x: 1 if x == '<30' else 0)</pre>
# Select a few useful features
selected_columns = ['age', 'time_in_hospital', 'num_lab_procedures', 'num_medications',
                     'number_inpatient', 'number_diagnoses', 'readmitted_flag']
df = df[selected columns]
# Convert 'age' to numeric (e.g. [60-70] -> 65)
df['age'] = df['age'].str.extract('(\d+)').astype(int) + 5
# Prepare features and target
X = df.drop('readmitted_flag', axis=1)
y = df['readmitted_flag']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Now define the model
model = DecisionTreeClassifier(max_depth=5, random_state=42)
model.fit(X_train, y_train)
# Predictions
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
Accuracy: 0.8885667960497224
                   precision
                               recall f1-score
                                                   support
                0
                        0.89
                                  1.00
                                            0.94
                                                     18084
                        0.52
                                  0.01
                                            0.01
                                                      2269
                                            0.89
                                                     20353
        accuracy
```

20353

0.48

0.70

macro avg

0.50

weighted avg 0.85 0.89 0.84 20353

```
importances = model.feature_importances_
features = X.columns

feat_imp = pd.Series(importances, index=features).sort_values(ascending=False)
feat_imp.plot(kind='bar', color='skyblue')
plt.title('Top Features Affecting Readmission')
plt.ylabel('Importance Score')
plt.show()
```


Readmission Distribution


```
plt.figure(figsize=(10,7))
sns.heatmap(X.corr(), annot=True, cmap='coolwarm')
plt.title('Feature Correlation Heatmap')
plt.show()
```

