SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1. Out of the two compounds shown below, the vapour pressure of B at a particular temperature is expected to be

- (A) higher than that of A
- (B) lower than that of A
- (C) same as that of A
- (D) can be higher or lower depending upon the size of the vessel
- 2. The structure of IF₅ can be best described as :-

- 3. The correct order of the bond angles is :-
 - (A) $NH_3 > H_2O > PH_3 > H_2S$

(B) $NH_3 > PH_3 > H_2O > H_2S$

(C) $NH_3 > H_2S > PH_3 > H_2O$

- (D) $PH_3 > H_2S > NH_3 > H_2O$
- The correct increasing bond angle among $\mathrm{BF}_3,\ \mathrm{PF}_3$ and ClF_3 follows the order :-4.
- 5. How many sigma and pi bonds are present in tetracyanoethylene?
 - (A) nine σ and nine π
- (B) five π and nine σ
- (C) nine σ and seven π
- (D) eight σ and eight π

- 6. The types of bond present in N_2O_5 are :-
 - (A) only covalent
- (B) only ionic
- (C) ionic and covalent
- (D) covalent & coordinate
- How many bonded electron pairs are present in IF_7 molecule :-7.
 - (A) 6

(B) 7

- (D) 8
- 8. When 2s - 2s, 2p - 2p and 2p - 2s orbitals overlap, the bond strength decreases in the order :-
 - (A) p p > s s > p s

(B) p - p > p - s > s - s

(C) s - s > p - p > p - s

- (D) s s > p s > p p
- 9. The volatility of HF is low as compare to other Hydra acid of Halogen because of :-
 - (A) its low polarizability
 - (B) the weak dispersion interaction between the molecules
 - (C) its small molecular mass
 - (D) its strong hydrogen bonding
- 10. The shapes of PCl₄⁺, PCl₄⁻ and AsCl₅ are respectively :-
 - (A) square planar, tetrahedral and see-saw
 - (B) tetrahedral, see-saw and trigonal bipyramidal
 - (C) tetrahedral, square planar and pentagonal bipyramidal
 - (D) trigonal bipyramidal, tetrahedral and square pyramidal

11.	The experimental value of the dipole moment of HCl is 1.03 D. The length of the H - Cl bond is 1.275 Å. The percentage of ionic character in HCl is :-									
	(A) 43	(B) 21	(C) 17	(D) 7						
12.	The shapes of IF ₅ and		. ,	,						
		al and pentagonal bipyramid	lal							
	(B) octahedral and pyra									
		l and square antiprismatic								
		anar and distorted octahedra	1							
13.				and the least ionic character,						
	respectively are :-	2 * * 3 2,	3	,						
	(A) LiCl and RbCl	(B) RbCl and BeCl ₂	(C) RbCl and MgCl ₂	(D) MgCl ₂ and BeCl ₂						
14.	PCl ₅ , exists but NCl ₅ de	-	3 2							
	(A) Nitrogen has no va		(B) NCl ₅ is unstable							
	(C) Nitrogen atom is m		(D) Nitrogen is highly i	inert						
15.	_	CH - Cl (vinyl chloride) is st								
	(A) benzyl chloride	(B) ethyl chloride	(C) chlorobenzene	(D) allyl chloride						
16.	In ICl_4^{Θ} , the shape is s	quare planar. The number o	f bond pair-lone pair rep	oulsion at 90 are :-						
	(A) 6	(B) 8	(C) 12	(D) 4						
17.	The structure of dibora	ne (B ₂ H ₆) contains :-								
	(A) four $(2c - 2e^{-})$ bond	ls and two (2c - 3e ⁻) bonds	(B) two $(2c - 2e^{-})$ bond	ls and two (3c - 2e ⁻) bonds						
	(C) four $(2c - 2e^{-})$ bond	Is and four $(3c - 2e^{-})$ bonds	(D) none							
18.	Among the following sp	pecies, identify the isostructur	al pairs : NF_3 , NO_3^- , BF	$H_{3}, H_{3}O^{+}, HN_{3} :-$						
	(A) $[NF_3, NO_3^-]$ and $[BF_3]$	H_3O^+	(B) $[NF_3, HN_3]$ and $[NC]$	O_3^- , BF ₃]						
	(C) $[NF_3, H_3O^+]$ and $[Next]$	O_3^- , BF_3]	(D) $[NF_3, H_3O^+]$ and $[H_3O^+]$	IN_3 , BF_3]						
19.	Which of the following	exhibit/s H-bonding ?								
	(A) CH ₄	(B) H ₂ Se	(C) N_2H_4	(D) H ₂ S						
20.	Valency expresses gen	erally :								
	(A) total e ⁻ in an atom		(B) atomicity of an element							
	(C) oxidation number of		(D) combining capacity of an element							
21.		have valency equals to its gro		(7)						
0.0	(A) sodium	(B) aluminium	(C) oxygen	(D) carbon						
22.	Which condition favour		ong.							
		n and maximum potential er and minimum potential ene								
		energy and maximum attrac								
	(D) none of the above	37								
23.	Number of σ and π	bonds present in :								
	$CH_3 - CH = CH - C \equiv$									
	(A) 10σ , 3π	(B) 10σ , 2π	(C) 9σ, 2π	(D) 8σ, 3π						
24.	Which is not characteri	stic of π-bond:-								
	(A) π - bond is formed w	hen a sigma bond already for	rmed							
	(B) π - bond are formed									
	· · ·	med by the overlapping of p-o								
		lateral overlap of atomic orbi	itals							
25 .		rine reacts then energy is :-								
	(A) released and ionic b		(B) released and covale							
	(C) absorbed and ionic	bond is formed	(D) absorbed and cova	lent bond is formed						

- 26. The electron pair which forms a bond between two similar non-metallic atoms will be :-
 - (A) dissimilar shared between the two
- (B) by complete transfer from one atom to other

(C) in a similar spin condition

- (D) equally shared in between the two
- 27. In N_2 molecule, the atoms are bonded by :-
 - (A) 1 σ and 2 π bonds, 2 L.P.

(B) 1 σ and 1 π - bonds, 1 L.P.

(C) 2σ and 1π - bonds, No L.P.

- (D) 1 σ , 2 π & No L.P.
- 28. An atom of element A has three electrons in its outer shell and B has six electrons in its outermost shell. The formula of the compound formed between these two will be :-
 - $(A) A_6 B_6$
- (B) $A_{2}B_{3}$
- (C) A_3B_2
- (D) A₂B
- 29. Two element X and Y have following electronic configuration:

$$X 1s^2 ; 2s^2, 2p^6 ; 3s^2, 3p^6 ; 4s^2$$

$$Y 1s^2 ; 2s^2, 2p^6 ; 3s^2, 3p^5$$

The expected compound formed by combination of X and Y will be expressed as :

- (A) XY₂
- (B) X_5Y_2
- (C) X_2Y_5
- (D) XY₅

- 30. Polarisibility of halide ions increases in the order :-
 - (A) F⁻, I⁻, Br⁻, Cl⁻
- (B) Cl⁻, Br⁻, I⁻, F⁻
- (C) I⁻, Br⁻, Cl⁻, F⁻ (D) F⁻, Cl⁻, Br⁻, I⁻
- The correct order of the O-O bond length in O_2 , H_2O_2 and O_3 is :-31.
- (A) $O_2 > O_3 > H_2O_2$ (B) $O_3 > H_2O_2 > O_2$ (C) $H_2O_2 > O_3 > O_2$ (D) $H_2O_2 > O_2 > O_3$
- 32. In which of the following the central atom does not use sp3 hybrid orbitals in its bonding :-
 - (A) BeF₃
- (B) OH_3^+
- (C) NH_2^-
- (D) NF₃

- 33. According to Fajjan's rule, covalent bond is favoured by :-
 - (A) large cation and small anion

(B) large cation and large anion

(C) Small cation and large anion

- (D) Small cation and small anion
- 34. Resonance hybrid of nitrate ion is :-

- The correct order of bond angle (smallest first) in $\rm H_2S$, $\rm NH_3$, $\rm BF_3$ and $\rm SiH_4$ is :-35.
 - (A) $H_2S \le NH_3 \le BF_3 \le SiH_4$

(B) $NH_3 < H_2S < SiH_4 < BF_3$

(C) $H_2S < NH_3 < SiH_4 < BF_3$

(D) $H_2S < SiH_4 < NH_3 < BF_3$

CHEC	CHECK YOUR GRASP					A	NSV	VER	KE	Y						EXE	RCISE	-1		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	Α	C	Α	С	Α	D	В	В	D	В	С	Α	В	Α	С	В	D	С	С	D
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35					
Ans.	С	С	Α	В	Α	D	Α	В	Α	D	С	Α	С	С	С					

Which of the following does not have same shape :-

1.

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

	(A) SO_4^{-2}, S_5^{-2}	(B) $ICl_4^{\Theta}, l_5^{\Theta}$	(C) CO ₂ , SO ₂	(D) $NO_2^{\oplus}, NO_2^{\Theta}$				
2.	$B_3N_3H_6$ + solution of hyd	drochloric acid \longrightarrow ?						
	Select correct about above	e reaction :						
	(A) no reaction							
	(B) $B_3N_3H_6$ show substitut	tion reaction & produce B_3	N ₃ Cl ₆					
	(C) $B_3N_3H_6$ show addition	reaction and produce B_3N_3	$_{3}H_{9}Cl_{3}$ in which Cl is bonde	ed to boron				
	(D) $B_3N_3H_6$ show addition	reaction and produce B_3N_1	$_{3}H_{9}Cl_{3}$ in which Cl is bonde	ed to nitrogen				
3.	Nodal planes of π bonds is	in benzene are located in :						
	(A) all are in molecular pl	lane						
	(B) one in molecular plane	and two in plane perpendi	icular to molecular plane wh	nich contain C - C σ bonds.				
	(C) two in molecular plane and C - H σ bond	e and one in plane perpend	licular to molecular plane w	which contain $C - C \sigma$ bond				
	(D) perpendicular to mole	cular plane which bisect be	enzene ring in two equal h	alf				
4.	Which of the following ha	s fractional bond order :-						
	(A) O_2^{2+}	(B) O ₂ ²⁻	(C) F ₂ ²⁻	(D) H ₂ ⁻				
5.	Which is correct statemen	t?						
	As the s-character of a hy	ybrid orbital decreases						
	(I) The bond angle decre	ases	(II) The bond strength inc	creases				
	(III) The bond length incre	ases	(IV) Size of orbitals increa	ses				
	(A) (I), (III) and (IV)	(B) (II), (III) and (IV)	(C) (I) and (II)	(D) all are correct				
6.	Which of the following compounds have the same no. of lone pairs with their central atom :-							
	(I) XeF_5^-	(II) BrF ₃	(III) XeF ₂	(IV) Triple methylene				
	(A) (IV) and (V)	(B) (I) and (III)	(C) (I) and (II)	(D) (II), (IV) and (V)				
7.	Select pair of compounds	in which both have differen	ent hybridization but have s	same molecular geometry :-				
	(A) BF_3 , BrF_3	(B) ICl_2^{Θ} , $BeCl_2$	(C) BeCl ₃ , PCl ₃	(D) PCl ₃ , NCl ₃				
8.	The states of hybridization	n of boron and oxygen ator	ms in boric acid (H_3BO_3) as	re respectively.				
	(A) sp^3 and sp^2	(B) sp^2 and sp^3	(C) sp^2 and sp^2	(D) sp^3 and sp^3				
9.	Which of the following op	tion w.r.t. increasing bond	order is correct?					
	2 2	$c_{2}^{+}(B) C_{2} < NO < He_{2}^{+} < O_{2}^{-}$	•					
10.	(C) $He_2^+ < O_2^- < NO < C$ Which is most ionic :	$C_2(D) \text{ He}_2^+ < O_2^- < C_2^- < NO_2^-$)					
10.	(A) P_2O_5	(B) MnO	(C) CrO ₃	(D) Mn ₂ O ₇				
11.	The molecular orbital con		` ' 3	· / 2 /				
	(A) KK σ (2s) ² , σ^* (2s) ² , π		(B) KK σ (2s) ² , σ^* (2s) ² , σ	$(2p_{y})^{2}$, $\pi (2p_{y})^{1}$, $\pi (2p_{y})^{1}$				
	(C) KK σ (2s) ² , σ^* (2s) ² , σ	$(2p_{y})^{2}, \pi (2p_{y})^{2}, \pi (2p_{y})^{1}$	(D) KK σ (2s) ² , σ^* (2s) ² , σ	$(2p_{x})^{2}, \pi (2p_{y})^{2}, \pi (2p_{y})^{2}$				
12.		tal bonds, the angle is mini		2 - x · · · • y				
	(A) sp ³ bonds		(B) p_x and p_y orbitals					
	(C) H–O–H in water		(D) sp bonds					

13.	Molecule having dipole moment is :-								
	(A) 2, 2-dimethylpropa	nne	(B) trans-2-pentene						
	(C) neopentane		(D) 2,2.3,3-tetramethyl	butane.					
14.	The ${\sf AsF}_5$ molecule is t	rigonal bipyramidal. The hyb	orid orbitals used by the As	atoms for bonding are :-					
	(A) $dx^2 - y^2$, dz^2 , s, p_x ,	p_{v}	(B) dxy, s, p_x , p_y , p_z						
	(C) s, p_x , p_y , p_z , dz^2		(D) $dx^2 - y^2$, s, p_x , p_y						
15.	Polarisation is the disto	rtion of the shape of an ani	on by an adjacently placed	cation. Which of the following					
	statements is correct :-								
	(A) maximum polarisati	on is brought about by a ca	ition of high charge						
	(B) minimum polarisation	on is brought about by a cat	ion of low radius						
	(C) a large cation is lik	ely to bring about a large d	egree of polarisation						
	(D) polarising power of	a cation is less than that of	anion						
16.	Amongest NO_3^- , AsO_3^{3-} , CO_3^{2-} , ClO_3^- , SO_3^{2-} and BO_3^{3-} , the non-planar species are :-								
	(A) CO_3^{2-} , SO_3^{2-} and B		(B) AsO_3^{3-} , ClO_3^- and SO_3^-	O_3^{2-}					
	(C) NO_3^- , CO_3^{2-} and BO_3^{3-} (D) SO_3^{2-} , NO_3^- and BO_3^{3-}								
17.	The nature of π -bonds	in perchlorate ion is :-							
	(A) O (d π) – Cl (p π)	(B) O (p π) – Cl (d π)	(C) O (d π) – Cl (d π)	(D) O (p π) – Cl (p π)					
18.	CaO and NaCl have the same crystal structure and approximately the same ionic radii. If U is the lattice								
	energy of NaCl, the ap	oproximate lattice energy of	CaO is :-						
	(A) U/2	(B) U	(C) 2 U	(D) 4 U					
19.	The ease of hydrolysis	of trichlorides of group 15	elements decreases in the	order :-					
	(A) $NCl_3 > PCl_3 > AsC$	$l_3 > SbCl_3 > BiCl_3$	(B) $PCl_3 > NCl_3 > AsCl_3$	> SbCl ₃ > BiCl ₃					
	(C) $AsCl_3 > NCl_3 > PCl_3 > SbCl_3 > BiCl_3$ (D) $SbCl_3 > BiCl_3 > PCl_3 > NCl_3 > AsCl_3$								
20.	Which of the following	Which of the following solid sold have highest value of $K_{\scriptscriptstyle D}$ when heated in closed vessel :-							
	(A) Li ₂ CO ₃ (s)		(C) Na ₂ CO ₃ (s)	(D) BaCO ₃ (s)					
21.		n calcium and carbon in CaC	2 3	, , , , , , , , , , , , , , , , , , , ,					
	(Α) σ, π	(B) only σ	(C) only π	(D) ionic bond					
22.				te molecular weight. This is due					
<i>LL</i> .	to :-	ning point than dimethyl ethe	er mough mey have me sam	le moleculai weight. This is due					
	(A) resonance	(B) coordinate bonding	(C) hydrogen bonding	(D) ionic bonding					
23.		noment of following compo		(b) forme containing					
20.	write order or dipole i	noment of following compou							
	I a	l a	d I ~						
	(1)	(;;) (d	(:::)						
	(i) (i)	(ii) O	(iii)						
	I a		q q						
	a	а	а						
	Ţ	\downarrow							
	(iv)	(v)	(vi)						
	$\overline{\Diamond}$	\forall	$a \sim a$						
		Ġ							
	(A) (iii) > (ii) > (i) > (iv)	> (v) > (vi)	(B) (iii) $>$ (i) $>$ (ii) $=$ (vi) $>$	(iv) > (v)					

(C) (ii) > (i) = (iii) = (iv) > (v) = (vi) (D) (iii) > (i) > (iv) > (v) > (ii) > (vi)

0.4		1 . (V II E (CI)						
24.	The correct order of increasing X - O - X bond and							
	(A) $H_2O > Cl_2O > F_2O$	(B) $Cl_2O > H_2O > F_2O$						
	(C) $F_2O > Cl_2O > H_2O$	(D) $F_2O > H_2O > Cl_2O$						
25.	Out of given reaction which show change in hybrid							
	(A) $H_2\underline{B}O_3$ dissolve in water	(B) H ₂ SO ₄ dissolve in wa	ater					
	(C) $\underline{N}_2O_{5(g)} \longrightarrow N_2O_{5(s)}$	(D) $PBr_{5(g)} \longrightarrow PBr_{5(s)}$						
	(E) $C_2H_6 \xrightarrow{\text{Homolytic}} \xrightarrow{\text{bond cleavage of C-C bond}}$							
26.	In the cyclo- S_8 molecule of rhombic sulphur, all the respectively (give approximate values) :-	ne S-S bond lengths and a	ll the S-S-S bond angles are					
	(A) 204 pm and 105	(B) 102 pm and 120						
	(C) 204 pm and 180	(D) 102 pm and 60						
27.	The structure of the SO_3 molecule in the gaseous γ	phase contains :-						
	(A) only σ -bonds between sulphur and oxygen							
	(B) σ -bonds and a (p π -p π) bonds between sulphur and oxygen							
	(C) σ -bonds and a $(d\pi$ - $p\pi)$ bonds between sulphur and oxygen							
	(D) σ -bonds, and a (p π -p π) and a (p π -d π) bonds be							
28.	Which of the following allotropic forms of sulphur		namically :-					
	(A) Orthorhombic	(B) β-monoclinic	•					
	(C) γ-monoclinic	(D) Plastic sulphur						
29.	Which of the following acids is not a peroxo acid :-							
	(A) CF ₃ CO ₃ H (B) H ₂ S ₂ O ₈	(C) $H_2S_2O_7$	(D) H ₂ N ₂ O ₂					
30.	The hydrolysis of 1 mol of peroxodisulphuric acid	2 2 7	(2) 1121 12 2					
	(A) 2 mol of sulphuric acid	F						
	(B) 2 mol of peroxomonosulphuric acid							
	(C) 1 mol each of sulphuric acid and peroxomonos	sulphuric acid						
	(D) 1 mol each of sulphuric acid, peroxomonosulp		provida					
31.	Which of the following statements is correct:	nunc acia ana nyarogen pe	ei Oxide					
31.	•	(B) OF ₆ is d ² Sp ³ -hybridiz	vod					
	(A) SF_6 does not react with water (C) $S_2O_3^{2-}$ is a linear ion	(D) There is no π -bonding						
32.	2 0							
32.	In $\rm H_2O$, the bond angle H–O–H is 104 28' but in 190 . This suggests that :-	11 ₂ 5, 11 ₂ 5e and 11 ₂ 1e me of	ond angles are pretty close to					
	(A) oxygen uses sp ² -hybrid orbitals while S, Se and atoms	Te use sp ³ -hybrid orbitals f	or bonding with the hydrogen					
	(B) oxygen uses sp ³ -hybrid orbitals to bond with the p orbitals	oxygen uses sp^3 -hybrid orbitals to bond with the two hydrogen atoms while S, Se and Te use almost pure p orbitals						
	(C) oxygen uses sp ³ -hybrid orbitals while S, Se and	Te utilize d orbitals for bon	ding with the hydrogen atoms					
	(D) all the atoms use pure p orbitals to bond with t	the hydrogen atoms						
33.	Which of the following statements are correct for the	he SO_4^{2-} ion ?						
	(A) it is tetrahedral							
	(B) all the S-O bond length are equal, and shorter							
	(C) it contains four σ -bonds between the S and the		calized over the S and the four					
	O atoms, and all the S-O bonds have a bond o (D) Oxidation state of sulphur is +6 and all oxygen							
	ישן Oxidation state of sulphur is to and all oxygen	111 -2						

- 34. The colour of halogens progressively deepens from fluorine to iodine because :-
 - (A) halogens of higher atomic number absorb light of longer wavelength since the difference in energy between the ground state and excited state decreases as the atomic number increases.
 - (B) fluorescence and phosphorescence become more intense as the atomic numbers of halogen increases
 - (C) the standard electrode potential increases from I_2 to F_2
 - (D) halogens of higher atomic number absorb light of shorter wavelength since the difference in energy between the ground state and excited state increases as the atomic number increases.
- 35. Which of the following pairs of halogens have approximately identical bond energy?
 - (A) F_2 and Br_2
- (B) F_2 and I_2
- (C) F_2 and Cl_2
- (D) Cl₂ and I₃
- 36. Which of the following is arranged in order of increasing ionic character :-
 - (A) $PbCl_2 \leq SnCl_4 \leq KCl \leq MgCl_2$

(B) $SnCl_4 \leq PbCl_2 \leq KCl \leq MgCl_2$

(C) $SnCl_4 \leq PbCl_2 \leq MgCl_2 \leq KCl$

(D) $PbCl_2 \leq SnCl_4 \leq MgCl_2 \leq KCl$

- 37. $XeOF_4$ contains :-
 - (A) six electron pairs forming an octahedron with two positions occupied by lone pairs
 - (B) two π -bonds and the remaining six electron pairs, forming an octahedron
 - (C) three π -bonds and the remaining four electron pairs forming an tetrahedron
 - (D) one π -bonds and the remaining six electron pairs forming an octahedron with one position occupied by a lone pair
- **38.** The azide ion has :-
 - (A) 20 outer electrons and is isoelectronic with Br_2O (B) 18 outer electrons and is isoelectronic with NO_2
 - (C) 16 outer electrons and is isoelectronic with CO_2 (D) 14 outer electrons and is isoelectronic with H_2O_2
- 39. Which of the following pairs of ions do not represent cyclic and chain silicates?
 - (A) $Si_2O_7^{2-}$ and $(SiO_3)_n^{2n-}$

(B) $Si_3O_9^{6-}$ and $(Si_4O_{11})_n^{6n-}$

(C) $Si_2O_7^{2-}$ and $(Si_2O_5)_n^{2n-}$

- (D) $Si_2O_7^{7-}$ and $(SiO_3)_n^{2n-}$
- **40.** Which of the following statements is/are incorrect?
 - (A) B₂H₆ is not an electron-deficient molecule.
 - (B) the dipole moment of BF3 is zero
 - (C) $B(OH)_3$ partially reacts with water to form H_3O^+ and $[B(OH)_4]^-$, and behaves like a weak acid.
 - (D) BF3 and BrF3 molecules have different shapes.
- 41. Rotation around the bond (between the underlined atoms) is restricted in:
 - (A) $\underline{C}_{2}H_{4}$
- (B) H₂O₂
- (C) $\underline{C}_{2}H_{2}$
- (D) $C_{2}H_{6}$

- 42. The H bond in solid HF can be best represented as:
 - (A) H F ...H F ...H F

- **43.** Which of the following statements is/are correct?
 - (A) NH_2^+ shows sp^2 hybridisation whereas NH_2^- shows sp^3 hybridisation
 - (B) $Al(OH)_4^-$ has a regular tetrahedral geometry
 - (C) sp²-hybridized orbitals have equal s-and p-character
 - (D) usually hybridized orbitals form σ -bonds

- 44. Which of the following statements is/are true for BaO and MgO?
 - (A) BaO is more ionic than MgO

- (B) MgO is more ionic than BaO
- (C) BaO has a higher melting point than MgO
- (D) MgO has a higher melting point than BaO
- **45.** Select the correct statement (s) about the compound $NO[BF_a]$:
 - (A) it has 5σ and 2π bond
 - (B) nitrogen oxygen bond length is higher than nitric oxide (NO)
 - (C) it is a diamagnetic species
 - (D) B-F bond length in this compound is lower than in BF_3
- **46.** Silane is more reactive than CH_4 due to :
 - (A) larger size of Si compared to C which facilitate the attack by nucleophile
 - (B) polarity of Si-H bond is opposite to that of C H bond
 - (C) availability of vacant 3d orbitals in case of Si to form the reaction intermediate easily
 - (D) Si-H bond energy is lower than that of C-H bond
- **47.** Select correct statement (s) :
 - (A) acidic strength of HBr > HCl but reverse is true for their reducing property
 - (B) basic strength of PH3 > AsH3 but reverse is true for their bond angle
 - (C) dipole moment of $CH_3Cl > CH_3F$ but reverse is true for their $H\tilde{C}H$ bond angle
 - (D) K_{a_1} of fumaric acid is higher than maleic acid but reverse is true for their K_{a_2}
- **48.** Nodal planes of π -bonds (s) in $CH_2 = C = C = CH_2$ are located in :
 - (A) all are in molecular plane
 - (B) two in molecular plane and one in a plane perpendicular to molecular plane which contains C C σ -bond
 - (C) one in molecular plane and two in a plane perpendicular to molecular plane which contains C C σ -bonds
 - (D) two in molecular plane and one in a plane perpendicular to molecular plane which bisects C C σ -bonds at right angle
- **49.** BF_3 and NF_3 both molecules are covalent, but BF_3 is non-polar and NF_3 is polar. Its reason is :
 - (A) in uncombined state boron is metal and nitrogen is gas
 - (B) B-F bond has no dipole moment whereas N-F bond has dipole moment
 - (C) the size of boron atom is smaller than nitrogen
 - (D) BF_3 is planar whereas NF_3 is pyramidal
- 50. Which of the following has been arranged in order of decreasing bond length:
 - (A) P O > Cl O > S O

(B) P - O > S - O > Cl - O

(C) S - O > Cl - O > P - O

(D) Cl - O > S - O > P - O

- 51. Which of the following models best describes the bonding with in a layer of the graphite structure?
 - (A) metallic bonding

(B) ionic bonding

(C) non - metallic covalent bonding

(D) vander Waals forces

- **52.** Which of the following is tetrabasic acid?
 - (A) orthophosphoric acid

(B) hypophosphorus acid

(C) metaphosphoric acid

(D) pyrophosphoric acid

BRAIN						AN	ANSWER KEY				EXERCI	SE -2		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A,B,C,D	С	Α	D	Α	С	В	С	D	В	Α	В	В	С	Α
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
В	В	D	Α	В	D	С	С	В	A,C,D, E	Α	D	Α	C,D	С
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Α	В	A,B,C,D	Α	В	С	D	С	A,C,D	Α	A,B,C	С	A,B,D	A,D	A,C
46	47	48	49	50	51	52								
A,B,C,D	С	В	D	В	С	D								

TRUE OR FALSE:

- 1. The polarising power of a cation is directly proportional to its size.
- 2. The polarisability of an anion is directly proportional to its charge.
- 3. For a given cation, greater the polarisability of the anion, more the covalent character.
- 4. An element with low ionization potential is most likely to form a covalent bond with an other element having a high electron affinity.
- **5**. Ionic interactions are stronger than covalent bonds.
- **6.** Two non-metal atoms are likely to form covalent bonds on combination.
- 7. Ionic interactions are directional.
- 8. All molecules having polar bonds are polar.
- 9. The CH₂Cl₂ molecule may be polar or nonpolar depending on its geometry.
- 10. Two isomers of $C_2H_2Cl_2$ are polar.
- 11. The net dipole in the water molecules is the resultant of its bond dipoles.
- **12.** SO_2 is polar whereas CO_2 is non-polar.
- 13. If all bonds in a molecule are polar, the molecule as a whole must be polar.
- 14. The bond angle around B in BCl_3 and BF_3 is same.
- 15. NH₃ molecule involve sp³ hybridisation of N-atom.
- 16. The bond length decreases with increase in multiplicity of bonds between two atoms.
- 17. The geometry of NH₃ and BH₃ is same.
- 18. Dipole moment of NF_3 is less than that of NH_3 .
- 19. A non-polar molecule can have a polar bond in it.
- 20. In ionic bond formation octet is completed.
- **21.** π -bond is formed by the colateral overlapping of atomic orbitals.
- **22.** Normally the covalent bond is non-directional.
- 23. He, having no existence because its bond order is zero.
- **24.** O_2 , O_2^- and O_2^+ all are paramagnetic.
- 25. When bond order increases, bond length decreases.
- **26.** Bond order is the measurement of bond strength.
- 27. In hybridisation, only orbitals are involved not electrons.
- **28.** SF₆ molecule is octahedral.
- 29. Ethyne is a linear molecule.
- 30. CO₂ is a polar molecule but not have polar bond.
- **31.** C-C sigma bond in ethyne is $sp^2 sp^2$.
- 32. XeF_4 molecule is square planar in shape.
- **33.** Hybridised orbitals have identical shape.
- **34.** The bond angle in Cl_2O is equal to that of OF_2 .
- **35.** The density of water is more than ice.
- **36.** HCl is a gas while HF is high boiling point liquid because H-F bond is stronger.
- **37.** Liquid NH₃ does not contain H-bond.

- **38.** Dipole moment is completely based on ionic nature of bond.
- 39. BeF₂ containing dipole moment while H₂O having zero dipole moment.
- 40. In CO_2 molecule, C-O bond is polar but CO_2 molecule is non-polar because the vector sum of two C-O bond is zero.
- **41**. Odd electron molecule is paramagnetic.
- **42.** The reason for resonance, is delocalisation of π -electrons.
- 43. During the formation of covalent bond both shared electron having opposite spin.
- 44. The bond Hg-Cl is more ionic in HgCl, than Hg, Cl,
- 45. The solubility of ionic solids decreases when hydration energy of ions increases.
- **46.** Between layers of graphite, bond will be covalent.
- 47. The polarising power of Zn^{2+} is greater than Ca^{2+} ions.
- **48.** The colour of PbI_{2} is yellow. The reason for this is large size of Pb^{+2} ion.
- 49. The H N H bond angle in NH_3 is greater than H As H bond angle in AsH_3 .
- **50.** Linear overlap of atomic p-orbitals leads to a sigma bond.
- **51.** The dipole moment of CH₂F is greater than that of CH₂Cl.
- **52.** sp² hybrid orbitals have equal s- and p-character.
- **53.** All the Al Cl bonds in Al₂ Cl₆ are not equivalent.

FILL IN THE BLANKS:

- 1. Hydrogen bond energy is around

- 4. When N_2 goes to N_2^+ , then N-N bond distance and when O_2 goes to O_2^+ , then O-O bond distance

MATCH THE COLUMN:

1.	Column-I	Column-II
(A) O ₃	(p) covalent bond
(B	$H_2O_{(\ell)}$	(q) Co-ordinate bond
(C	The state of the s	(r) Hydrogen bond
(D	$(NH_4)_2SO_4$	(s) Ionic bond

2.	Column-l			Column-II			
	(A)	$B_3N_3H_6$	(p)	planar geometry			
	(B)	H_2O_2	(q)	non planar geometry			
	(C)	B_2H_6	(r)	no lone pair			
	(D)	I_2Cl_6	(s)	non polar molecule			

3.	Column-I			Column-II
	(A) $\underline{B}_2H_6 + 2NaH \longrightarrow$		(p)	no change in hybridisation of
				under line atom
	(B)	$H_3\underline{B}O_3$ + water \longrightarrow	(p)	$sp^2 \longrightarrow sp^3$ (change in hybridisation)
	(C)	$\underline{B}eH_2 \longrightarrow (BeH_2)_{(s)}$	(r)	breaking of 3C - 2e bond
	(D)	$BF_{\circ} + NaF \longrightarrow$	(s)	formation of 3C - 2e bond

4.	Column-I	Column-II				
(A)	$\mathrm{N_2^+}$ is stable than $\mathrm{N_2^-}$	(p)	due to one have higher electrons			
			in antibonding than other			
(B)	NO can easily loss its electron	(q)	one have B.O. 3 and other			
	than N_2		have 2.5			
(C)	NO have large bond length	(r)	both are paramagnetic with same			
	than NO^{+}		bond order			
(D)	He2 exist but less stable	(s)	one paramagnetic and other			
	than H_2^+		diamagnetic			

ASSERTION & REASON QUESTION:

These questions contains, Statement-I (assertion) and Statement-II (reason).

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False.
- (D) Statement-I is False, Statement-II is True.
- 1. Statement-I : Fel_3 cannot exist in an aqueous solution.

Because

Statement-II: Fe^{3+} oxidizes I^- to I_2 easily.

2. Statement-I: SF₆ exists but SH₆ does not.

Because

Statement-II: $d\pi$ - $p\pi$ bonding cannot take place in SH_6

3. Statement-I: The stability of peroxides and superoxides increases in passing from Li to Cs.

Because

Statement-II: The electropositive character of the elements in the periodic table increases on moving down a group.

4. Statement-I: Borazole is aromatic in nature.

Because

Statement-II: Nitrogen contributes π -electrons to the system.

5. Statement-I: The first ionization energy of Be is greater than that of B.

Because

Statement-II: The 2p orbital is lower in energy than the 2s.

6. Statement-I: Bond order of O2 and BN is same.

Because

Statement-II: O2 and BN are isoelectronic

7. Statement-I: CO, is non polar while SO, is polar molecule.

Because

Statement-II : S-O bonds are polar while C-O non polar.

8. Statement-I: CO₂ and SiO₂ has same physical state at room temp.

Because

Statement-II: Carbon has more electronegativity than silicon atom.

9. Statement-I: In NF₃ molecule lone pair resides in sp³ hybrid orbital.

Because

 $Statement-II: NF_3$ has pyramidal shape.

10. Statement-I : N_2O , $CO_2 \& I_3$ are isostructral.

Because

Statement-II: All three have same hybridise central atom.

11. Statement-I: Dipole moment of is similar as bromo benzene.

Because

Statement-II: Dipole moment of Cl - C bond is greater than Br- C bond.

12. Statement-I: PCl₃ on hydrolysis gives OH-P-OH and OH-P-OH.

Because

Statement-II :
$$H_3PO_3$$
 exists in two tautomeric forms : $HO-P-OH \Longrightarrow HO-P-OH$.

13. Statement-I: Super oxide ion is paramagnetic whereas peroxide ion is diamagnetic.

Because

Statement-II: Super oxide ion has one unpaired electron whereas per oxide ion has no unpaired electron.

14. Statement-I: Although PF₅, PCl₅ and PBr₅ are known, the penta halide of nitrogen have not been observed.

Because

Statement-II: Phosphorus has lower electronegativity than nitrogen.

15. Statement-I: Among alkali metal cations, Li⁺(aq.) has highest electrical conductance.

Because

Statement-II: Li[†](aq.) is largest alkali metal cation because of greater degree of hydration.

16. Statement-I: HNO₃ is a stronger acid than HNO₂.

Because

 $Statement-II: In HNO_3$, there are two N-O linkage whereas in HNO_2 there is only one.

17. Statement-I: Al(OH)₃ is amphoteric in nature.

Because

Statement-II: Al-O and O-H bonds can be broken with equal case in Al(OH)₃.

18. Statement-I: H_2SO_4 in more viscous than water.

Because

Statement-II: In H₂SO₄, S has highest oxidation state.

Statement-I: F_3^- ion is known, which has same geometry as X_3^- (X = Cl, Br, I)

Because

Statement-II: F is most electronegative element.

20. Statement-I: The p-isomer of dichlorobenzene has higher melting point than o-and m-isomer.

Because

Statement-II: p-isomer is symmetrical and thus shows more closely packed structure.

21. Statement-I: Boron does not show univalent nature but unipositive nature of thallium is quite stable.

Because

Statement-II: Inert pair effect predominates in thallium.

22. **Statement-I**: H₃BO₃ is monobasic acid in water.

Because

Statement-II: In water ionise as $H_3BO_3 \rightleftharpoons H_2BO_3^- + H^+$.

COMPREHENSION BASED QUESTIONS:

Comprehension # 1

In order to explain the shape and geometry of molecules. The valence bond theory was supplemented by the concept of Hybridization. This is a Hypothetical concept and has been introduced by Pauling and Slater. According to this concept any number of atomic orbitals of an atom which differ in energy slightly may mix with each other to form new orbitals called hybrid orbitals. The process of mixing or amalgamation of atomic orbitals of nearly same energy to produced a set of entirely new orbitals of equivalent energy is known as Hybridization.

(A)
$$sp^3 - sp^3$$

(B)
$$sp^2 - sp^3$$
 (C) $sp - sp^2$ (D) $sp^3 - sp$

(C)
$$sp - sp^2$$

(D)
$$sp^3 - sp$$

In $\mathrm{XeF}_{\mathrm{2}},~\mathrm{XeF}_{\mathrm{4}}$ and $\mathrm{XeF}_{\mathrm{6}}$ the number of lone pairs on Xe is respectively : 2.

Which of the following is the correct set : 3.

In NO_3^- ion, number of bond pair and lone pairs of electrons on nitrogen atom are : 4.

5. T-shape is exhibited by molecule:

Comprehension # 2

 $Na[BH_d]$ is ionic compound contain BH_d^{Θ} tetrahydrido borate ion and in solid state $NaBH_d$ has sodium chloride structure. Not all tetrahydridoborates are ionic. The beryllium, aluminium and transition metal borohydrides become increasingly covalent and volatile. In these type of tetrahydrido borate, the BH_4^{Θ} form covalent bond with metal ion. One or more H atoms in a BH_4^Θ act as a bridging and bond to metal, forming a three centre bond with two electrons shared by three atoms.

The BH $_4^{\Theta}$ is usually in that it may form one two or three such three centre bonds to the metal ion when forms covalent bond.

 $Be(BH_4)_2$ and $Al(BH_4)_3$ are covalent and structures are given below.

- 1. $\text{Li}[AlH_4]$ is used as a reducing agent in many reaction & it is prepared by excess LiH and AlCl_3 . Select incorrect statement about $\text{Li}[AlH_4]$.
 - (A) hybridisation of Al is same as B in Na[BH,]
- (B) geometry of around Al is same as $AlCl_4^{\Theta}$
- (C) AlH_4^Θ , BH_4^Θ , $AlCl_4^\Theta$ are iso-structral
- (D) AlH_4^{Θ} , $AlCl_4^{\Theta}$, BH_4^{Θ} are iso electronic.
- **2.** Select correct about $Al(BH_4)_3$:
 - (A) all three tetrahydride borate form two hydrogen bridges
 - (B) two BH_4^{Θ} form 2 hydrogen bridges and one form one hydrogen bridge.
 - (C) one BH_4^Θ form 2 hydrogen bridge and two form one hydrogen bridge
 - (D) B form only 2c-2e bond
- **3.** Total no. of $2c-2e^-$ bond and $3c-2e^-$ bond in $Al(BH_4)_3$ are respectively :
 - (A) 6, 12
- (B) 6, 6
- (C) 12, 12
- (D) 12, 6
- **4.** Total 2c-2e and 3c-2e bonds in $Be(BH_4)_2$ are respectively :
 - (A) 8, 4
- (B) 4. 8
- (C) 4, 4
- (D) 8, 8

Comprehension # 3

The molecular orbital with the lowest energy is filled first. Thus σ (1s) is filled first where as σ^* (2p) is filled in the last, also the maximum number of electron in bonding and antibonding molecular orbitals are according to Pauli and Hund's rule. As an electron in an antibonding molecular orbital cancels out the stability introduced by the electron in a bonding molecular orbital, it means that in order for bonding of atoms to occur there should be an excess of bonding electrons over antibonding electrons. In case where the number of bonding and antibonding electrons are equal, no bond will be formed between the atoms. With the help of above discussion, we can define easily bond order, relative bond length, relative stability and magnetic properties for a molecule.

Read the above paragraph carefully and give the answer of following questions :

1.		tibonding molecu his is called.	llar orbital, the	ere is a poin	t between the	two probability	contours of hydrogen				
	(A) antin	ode									
	(B) node										
	(C) a pla	ne where electro	on charge den	ısity is maxin	num						
	(D) A an	(D) A and C both are correct									
2.	According to MOT which statement is correct about Boron molecule?										
	(A) it is	diamagnetic in n	ature								
	(B) it is	(B) it is paramagnetic in nature having magnetic moment 2.8 B.M. by using spin only formula									
	(C) it is	paramagnetic bu	t having magi	netic moment	1.7 B.M.						
	(D) its bo	ond order is 2									
3.	Which of	f the following a	re paramagne	tic in nature	?						
	(A) B ₂ , N	${\sf N}_{\!\scriptscriptstyle 2}$ and ${\sf C}_{\!\scriptscriptstyle 2}$		((B) O_2 , B_2 , N_2^-	and O_2^-					
	(C) O ₂ -,	$N_{2}^{^{+}}$ and $$		(D) B_2 , C_2 and F_2							
MIS	SCELLANEOUS	TYPE QUESTIO	N	ANSWER	KEY		EXERCISE -5				
•	True / Fal.	se									
	1. F	2 . T	3 . T	4 . F	5. F	6. T	7 . F				
	8. F	9 . F	10 . T	11 . F	12 . T	13 . F	14 . T				
	15 . T	16 . T	17 . F	18 . T	19 . T	20 . T	21 . T				
	22 . F	23 . T	24 . T	25 . T	26 . T	27 .T	28. T				
	29 . T	30 . F	31 . F	32 . T	33 . T	34. F	35 . T				
	36 . F	37 . F	38 . F	39 . F	40 . T	41 . T	42 . T				
	43 . T	44 . F	45 . F	46 . F	47 . T	48. F	49 . T				
	50 . T	51 . F	52 . F	53 . T							

	1. F	2. T	3. T	4. F	5 . F	6. T	7. F		
	8. F	9 . F	10 . T	11 . F	12 . T	13 . F	14 . T		
	15 . T	16 . T	17 . F	18 . T	19 . T	20 . T	21 . T		
	22 . F	23 . T	24 . T	25 . T	26. T	27 .T	28. T		
	29 . T	30 . F	31 . F	32 . T	33 . T	34. F	35 . T		
	36 . F	37 . F	38 . F	39 . F	40. T	41 . T	42. T		
	43 . T	44 . F	45 . F	46 . F	47 . T	48. F	49 . T		
	50 . T	51 . F	52 . F	53 . T					
•	Fill in the Bl	lanks							
	1. 4.2 – 8.4 kJ	mol^{-1}		2. sp 3. sp ³					
	4. increases, de	creases		5. N_2O, I_3					
•	Match the Co	<u>olumn</u>							
	1. A - (p, q), B	- (p, r), C - (p, q,	r, s), D - (p, q,	2. A - (p, r, s), B - (q), C - (q, r, s), D - (p, s)					
	3. A - (p, r), B	- (q), C - (s), D - (q)	4. A - (p, r),	B - (p, q, s), C - (1	o, q, s), D - (p,	r)		
•	<u> Assertion - R</u>	<u>Reason Questi</u>	<u>ons</u>						
	1 .A	2. B	3. A	4. B	5. C	6. C	7. C		
	8. D	9 . A	10 .C	11 . D	12 . A	13 . A	14. B		
	15 . D	16 .C	17. C	18 .B	19 . D	20 . A	21 . A		
	22 . C								
•	<u>Comprehensio</u>	n Based Qu	<u>iestions</u>						
	Comprehension	n #1 : 1. (C)	2. (D)	3 . (A)	4 . (D)	5. (A)			
	Comprehension	n #2 : 1. (D)	2. (A)	3 . (B)	4 . (C)				
	Comprehension	n #3 : 1. (B)	2. (B)	3 . (B)					

SUBJECTIVE QUESTIONS:

- **1.** Give reasons for the following :
 - (a) KHF, is known whereas KHCl, is unknown.
 - (b) $(CH_3)_3 N$ is pyramidal but $(SiH_3)_3 N$ is trigonal planar.
 - (c) CO_2 is a gas but SiO_2 is a solid.
- 2. (a) The structures of $N_2 O_3$ and $P_2 O_3$ are different. Explain.
 - (b) Among H-I, H-Br and H-Cl bonds which is weakest?
- 3. Suppose that the stability of carbonates when heated depends on the ability of the metal cation to polarize the carbonate ion and remove an oxide ion from it, so releasing CO_{o} .
 - (a) Predict the order of thermal stability of the group 1 and 2 metal carbonates?
 - (b) Comment on the likely stability of aluminium carbonate?
- 4. (a) BF_3 has less lewis acidic property than BBr_3 . Why?
 - (b) $(CH_3)_3$ C-OH is less acid than $(CH_3)_3$ Si-OH. Why?
 - (c) Why in the presence of ethyne HF exhibit more acidic character.
 - (d) Why SF₄ can be hydrolysed easily but SF₆ can not ?
- 5. In what hybridization state is the beryllium atom in BeCl₂ molecule? How will the type of hybridization change when BeCl₂ transform to the solid state.
- **6.** Give a suitable reason for the high mobility of H^{\dagger} ions through the ice than through liquid water.
- 7. (a) Example the following:
 - (i) Boron trichloride has triangular planar geometry whereas aluminium trichloride has tetrahedral dimeric structure.
 - (ii) Barium sulphate is sparingly soluble in water whereas beryllium sulphate is freely soluble.
 - (iii) Dioxygen (O_2) molecule is stable whereas disulphur (S_2) is unstable at the room temperature.
- 8. Assuming Z-axis as molecular axis, lable the molecular orbitals formed by the following combination of atomic orbitals:
 - (i) 1s + 1s
 - (ii) $2p_{v} 2p_{v}$
 - (iii) $2p_z + 2p_z$
 - (iv) 2s + 2s
 - (v) $2p_x + 2p_x$
- 9. When a magnet is dipped in a jar of liquid O_2 , some O_2 clings to it. Why?
- 10. (a) What type of bonding holds the layer in graphite?
 Why will graphite conduct electricity well in a direction parallel to the planes of hexagons, but not at all well in a direction perpendicular to the planes?
 - (b) PCl_5 exists as solid in the form of $[PCl_4]^+$ $[PCl_5]^-$, yet it is a non conductor of electricity. Why?
- 11. A diatomic molecule has a dipole moment of 1.2 D. If the bond distance is 0.1 Å, what fraction of an electron charge, e exist on each atom?
- 12. Through the electronegativities of nitrogen and chlorine are same, NH_3 exists as liquid whereas HCl as gas. Why?

- **13.** The percent ionic character in HCl is 18.08. The observed dipole moment is 1.08 D. Find the internuclear distance in HCl.
- 14. HBr has dipole moment $2.6 10^{-30}$ CM. If the ionic character of the bond is 11.5 %, calculate the interatomic spacing.
- **15.** Dipole moment of LiF was experimentally determined and was found to be 6.32 D. Calculate percentage ionic character in LiF molecule Li F bond length is 0.156 nm.
- **16.** Based upon M.O. theory state reason for the paramagnetic character of CN, the diamagnetic character of CN^- , the stability of CN^- and calculate their respective bond orders.
- 17. Draw the structure of following compound
 - (i) S₈
 - (ii) N_2H_4
 - (iii) P₄H₁₀
 - (iv) POCl₃
 - (v) XeOF₄
 - (vi) C_3O_2
 - (vii) BrF₅

CONCEPTUAL SUBJECTIVE	EXERCISE	ANSWER	KEY	EXERCISE -4(A)
14 . 1.4 Å	15 . 84.35 %	16.	$2\frac{1}{2}$, 3	

SUBJECTIVE QUESTIONS:

- 1. Draw the structure of following compound
 - (i) $Na[B_3O_3(OH)_4]$
 - (ii) $Na[B_4O_5(OH)_4].8H_9O$
 - (iii) $Na_6P_6O_{18}$
 - (iv) $S_3O_6^{-2}$
 - (v) S_3O_9
 - (vi) (CN)₂
- 2. What is the increasing order of the bond angle for the following compounds?

- 3. How many S S linkage present in $H_2S_nO_6$
- 4. Draw the geometry of following three molecules and explain with proper reasoning :
 - (i) $N(CH_3)_3$
 - (ii) $N(SiH_3)_3$
 - (iii) $P(SiH_3)_3$
- 5. The dipole moment of LiH is $1.964 10^{-29}$ CM and the intermolecular distance between Li and H in this molecule is 1.596 Å. What is percent ionic character in molecule?
- 6. The dipole moment of KCl is $3.336 10^{-29}$ coulomb metre which indicates that it is a highly polar molecule. The interatomic distance between K^+ and Cl^- in this molecule is $2.6 10^{-10}$ m. Calculate the dipole moment of KCl molecule, if these were opposite charges of one fundamental unit located at each nucleus. Calculate percentage ionic charcter of KCl.
- Assuming covalent radii to be additive property; calculate the iodine iodine distance in o-, m-, p- di-iodobenzene. The benzene ring is regular hexagon and each C I bond lies on a line passing through the centre of hexagon. The C C bond length C_6H_6 are 1.40 Å and covalent radius of iodine and carbon atom are 1.33 Å and 0.77 Å. Also neglect different overlapping effect.
- 8. Assuming that all the four valency of carbon atom in propane pointing towards the corners of a regular tetrahedron. Calculate the distance between the terminal carbon atoms in propane. Given, C-C single bond length is 1.54~Å.

CONCEPTUAL SUBJECTIVE EXERCISI	ANSWER KEY	EXERCISE -4(B)
5. 76.82% 7. 3.50 Å, 6.06 Å, 7.0 Å	 6. 4.165 10⁻²⁹ coulomb metre. 8. 2.514 Å 	

EXERCISE-05[A]

PREVIOUS YEARS QUESTIONS

1.	In which of the following	species is the underlined ca	rbon having sp³ - hybridisati	ion ? [AIEEE 2002]			
	(1) CH ₃ - <u>C</u> OOH	(2) CH ₃ CH ₂ OH	(3) CH ₃ COCH ₃	(4) CH ₂ = <u>C</u> H-CH ₃			
2.	Which of the following sta	atements is true ?		[AIEEE 2002]			
	(1) HF is less polar than H	HBr					
	(2) Water does not contain	n any ions					
			s of attraction overcome the	e forces of repulsion			
		sfer of electrons takes place					
3.	A square planar complex	is formed by hybridisation	of which atomic orbital?	[AIEEE 2002]			
	$(1) s, p_x, p_y, d_{yz}$	(2) $s, p_x, p_y, d_{x^2-y^2}$	(3) s, p_x , p_y , d_{z^2}	$(4) s, p_x p_y, d_{xy}$			
4.	The reason for double he	lical structure of DNA is op	peration of :	[AIEEE 03]			
	(1) dipole-dipole interaction	on	(2) hydrogen bonding				
	(3) electrostatic attraction	s	(4) vander Walls' forces				
5.	Which one of the following	ng pairs of molecules will h	ave permanent dipole mome	ents for both members [AIEEE 03]			
	(1) NO_2 and CO_2	(2) NO_2 and O_3	(3) SiF_4 and CO_2	(4) SiF_4 and NO_2			
6.		g identical shapes for molec		[AIEEE 03]			
7.	(1) XeF ₂ , CO ₂		(3) PF_5 , IF_5 H_2S , NH_3 , BF_3 and SiH_4				
, .	(1) $H_2S < NH_3 < SiH_4$		(2) $NH_3 < H_2S < SiH_4$				
	(3) $H_2S < SiH_4 < NH_3$	_	(4) $H_2S < NH_3 < BF_3 <$				
8.		-	2 0	ratements is true for these two			
	species ?			[AIEEE-2004]			
	(1) Bond length in NO ⁺ is a	equal to that in NO	(2) Bond length in NO is g	reater than in NO+			
	(3) Bond length in NO ⁺	is greater than in NO	(4) Bond length is unpre	edictable			
9.	The states of hybridization	on of boron and oxygen a	toms in boric acid (H_3BO_3)) are respectively			
				[AIEEE-2004]			
	(1) sp^3 and sp^2	(2) sp^2 and sp^3	(3) sp^2 and sp^2	(4) sp ³ and sp ³			
10.	Which one of the follow	ing has the regular tetrah	edral structure ?	[AIEEE-2004]			
	(1) BF ₄ ⁻	(2) SF ₄	(3) XeF ₄	(4) [Ni(CN) ₄] ²⁻			
	(Atomic nos.: $B = 5$, S	= 16, Ni = 28, Xe = 54)				
11.	The maximum number of	of 90 angles between bon	d pair-bond pair of electro	ons is observed in :-			
				[AIEEE-2004]			
	(1) dsp^2 hybridization	(2) sp^3d hybridization	(3) dsp^3 hybridization	(4) sp ³ d ² hybridization			
12.	Beryllium and aluminium	exhibit many properties	which are similar. But, the	e two elements differ in			
	(1) Forming covalent hal	ides	(2) Forming polymeric h	ydrides [AIEEE-2004]			
	(3) Exhibiting maximum	covalency in compounds	(4) Exhibiting amphoteric nature in their oxides				

13.	Which one of the follow	ving species is diamagne	tic in nature ?		[AIEEE-2005]
	(1) He ₂ ⁺	(2) H ₂	(3) H ₂ ⁺	(4) H ₂ ⁻	
14.	lattice energy of an ion	ic compound depends u	pon		[AIEEE-2005]
	(1) charge on the ion or	nly	(2) size of the ion	only	
	(3) packing of the ion o	nly	(4) charge and siz	e of the ion	
15.	The molecular shapes o	f SF_4 , CF_4 and XeF_4 ar	e		
	(1) the same with $2, 0$	and 1 lone pair of elect	rons on the central atom,	, respecitvely	[AIEEE-2005]
	(2) the same with $1,\ 1$	and 1 lone pair of elect	rons on the central atoms	s, respectively	
	(3) different with $0,\ 1$ a	nd 2 lone pair of electr	ons on the central atoms	, respectively	
	(4) different with $1, 0$ a	and 2 lone pair of electr	ons on the central atoms	, respectively	
16.	Of the following sets wh	nich one does not contai	n isoelectronic species?		[AIEEE-2005]
	(1) PO ₄ ³⁻ , SO ₄ ²⁻ , ClO ₄ ⁻		(2) CN^- , N_2 , C_2^{2-}		
	(3) SO ₃ ²⁻ , CO ₃ ²⁻ , NO ₃		(4) BO_3^{3-} , CO_3^{2-} , 1	NO_3^-	
17.	Which of the following	molecules\ions does no	t contain unpaired electro	ons?	[AIEEE-2006]
	(1) N ₂ ⁺	(2) O ₂	(3) O_2^{2-}	(4) B ₂	
18.	Among the following m	ixtures, dipole-dipole as	the major interaction, is	present in	[AIEEE-2006]
	(1) KCl and water		(2) benzene and	carbon tetrachloride	
	(3) benzene and ethano	1	(4) acetonitrile an	d acetone	
19.	A metal, M forms chlorides is correct?	rides in its $+2$ and $+4$ c	oxidation states. Which o	f the following stateme	ents about these [AIEEE-2006]
	(1) MCl_2 is more ionic th	nan MCl ₄	(2) MCl ₂ is more	easily hydrolysed than	MCl ₄
	(3) MCl ₂ is more volatile	than MCl ₄	(4) MCl ₂ is more s	soluble in anhydrous et	hanol than MCl ₄
20.	In which of the followin	g molecules/ions are all	the bonds not equal?		[AIEEE-2006]
	(1) XeF ₄	(2) BF ₄	(3) SF ₄	(4) SiF ₄	
21.	The decreasing values of to	f bond angles from NH_3	(106) to SbH_3 (91) dow	n group-15 of the peri	odic table is due
	(1) decreasing lp - bp	repulsion	(2) increasing ele	ectronegativity	
	(3) increasing bp - bp	repulsion	(4) increasing p-o	orbital character in sp ³	;
22.	In which of the following changed	ng ionizion processes, t	he bond order has incre	eased and the magneti	c behaviour has
	(1) NO \rightarrow NO $^{\scriptscriptstyle +}$	$(2) O_2 \rightarrow O_2^+$	(3) $N_2 \rightarrow N_2^+$	$(4) C_2 \rightarrow C_2^+$	

23.	. Which of the following hydrogen bonds is the strongest							
	(1) F–HF	(2) O-HO	(3) O-HF	(4) O-HN				
24.	Which of the following spe	ecies exhibits the diamagne	tic behaviour		[AIEEE-2007]			
	(1) O ₂ ⁺	(2) O ₂	(3) NO	(4) O ₂ ²⁻				
25.	-	cation determines its polarizi e polarizing power of the c	= -		ences represents [AIEEE-2007]			
	(1) $Be^{+2} \le K^+ \le Ca^{+2} \le M$	Ig^{+2}	(2) $K^+ < Ca^{+2} < Mg^{+2} <$	Be^{+2}				
	(3) $Ca^{+2} \le Mg^{+2} \le Be^{+2} \le$	K^+	(4) $Mg^{+2} \le Be^{+2} \le K^+ \le C$	a ⁺²				
26.	Using MO theory predict	which of the following spe	cies has the shortest bond	length?	[AIEEE-2009]			
	(1) O ₂	(2) O_2^{2-}	(3) O_2^{2+}	(4) O_2^+				
27.	The hybridisation of orbit (1) sp, sp ³ , sp ²	tals of N atom in NO_3^- , NC (2) sp^2 , sp^3 , sp	0_2^+ and NH_4^+ are respective (3) sp, sp ² , sp ³	ly:- (4) sp ² , sp, s	[AIEEE-2011]			
28.	The structure of IF_7 is :- (1) octahedral		(2) pentagonal bipyramid		[AIEEE-2011]			
	(3) square pyramid		(4) trigonal bipyramid					
29.		maximum covalent charact			[AIEEE-2011]			
20	(1) AlCl ₃	(2) MgCl ₂	(3) FeCl ₂	(4) SnCl ₂	AIEEE 00111			
30.	which of the following had $(1) \text{ XeO}_3$	as maximum number of lo (2) XeF ₄	ne pairs associated with X (3) XeF ₆	e : (4)	AIEEE-2011]			
31.	=	bonds between two carbon	=		EEE-2005, 2011]			
		(2) One sigma, one pi						
32.	(1) Melting point of o-Nit		se of m- and p- isomers	se :- [AIEE	E-2005, 2012]			
33.	Iron exhibits $+2$ and $+3$ c	oxidation states. Which of	the following statements at	oout iron is inc	correct ? [AIEEE-2012]			
	(1) Ferrous compounds ar	re more easily hydrolysed t	han the corresponding ferr	ic compounds.				
	(2) Ferrous oxide is more	basic in nature than the fe	erric oxide.					
	(3) Ferrous compounds as	re relatively more ionic tha	n the corresponding ferric	compounds.				
	(4) Ferrous compounds ar	re less volatile than the cor	responding ferric compour	nds.				
34.	The molecule having sma	-	(2) A ₂ C1	(4) SbCl ₃	[AIEEE-2012]			
35.		(2) NCl_3 pairs the two species are r (2) CO_3^{2-} and NO_3^{-}	(3) AsCl ₃ not isostructural ? (3) PCl ₄ and SiCl ₄	(4) $90Cl_3$ (4) PF_5 and PF_5	[AIEEE-2012] BrF ₅			

PR	PREVIOUS YEAR QUESTIONS CHEMICAL BONDING EXERCISE-05(A)											5(A)					
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Α.	2	3	2	2	2	1	1	2	3	1	4	3	2	4	4	3	3
Q.	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Α.	4	1	3	4	1	1	4	2	3	4	2	1	4	1	3	1	4
Q.	35																
Α.	4																

Choose the correct alter-native (only one correct answer).

- The geometry & the type of hybrid orbitals present about the central atom in BF3 is: 1. [JEE '98]
 - (A) linear, sp
- (B) trigonal planar, sp² (C) tetrahedral, sp³
- (D) pyramidal, sp³
- The correct order of increasing C-O bond length of, CO, CO₃²⁻, CO₂ is 2.

[JEE '99]

- (A) $CO_3^{2-} < CO_2 < CO$ (B) $CO_2 < CO_3^{2-} < CO$ (C) $CO < CO_3^{2-} < CO_2$ (D) $CO < CO_2 < CO_3^{2-}$

3. In the dichromate anion [JEE '99]

- (A) 4Cr O bonds are equivalent
- (B) 6Cr O bonds are equivalent
- (C) all Cr O bonds are equivalent
- (D) all Cr O bonds are non equivalent
- The geometry of H₂S and its dipole moment are 4.

[JEE '99]

- (A) angular & non zero
- (B) angular & zero
- (C) linear & non zero
- (D) linear & zero
- 5. In compounds type ECl_3 , where E = B, P, As or Bi, the angles Cl - E - CI for different E are in the order [JEE '99]
- (A) $B > P = A_S = B_i$ (B) $B > P > A_S > B_i$ (C) $B < P = A_S = B_i$
- (D) B < P < As < Bi
- 6. The most likely representation of resonance structure of p-nitrophenoxide is:
- [JEE '99]

- 7. Amongst H_2O , H_2S , H_2Se and H_2Te , the one with the highest boiling point is
- [JEE 2000]

- (A) H₂O because of hydrogen bonding
- (B) H_aTe because of higher molecular weight
- (C) H₂S because of hydrogen bonding
- (D) H_oSe because of lower molecular weight

- 8.
- The hybridization of atomic orbitals of nitrogen in NO_2^+ , NO_3^- and NH_4^+ are [JEE 2000]
 - (A) sp², sp³ and sp² respectively

(B) sp, sp² and sp³ respectively

(C) sp², sp, and sp³ respectively

- (D) sp², sp³ and sp respectively
- The correct order of hybridization of the central atom in the following species NH₃, PtCl₄⁻², PCl₅ and BCl₃ 9. [JEE 2001]
 - (A) dsp², sp³d, sp² and sp³

(B) sp^3 , dsp^2 , sp^3d , sp^2

(C) dsp^2 , sp^2 , sp^3 , sp^3d

- (D) dsp^2 , sp^3 , sp^2 , sp^3d
- The common features among the species CN⁻, CO and NO⁺ are 10.

[JEE 2001]

- (A) Bond order three and isoelectronic
- (B) Bond other three and weak field ligands
- (C) Bond order two and π -acceptors
- (D) Isoelectronic and weak field ligands
- Specify hybridization of N and B atoms in a 1 : 1 complex of ${\rm BF_{_3}}$ and ${\rm NH_{_3}}$ 11. [JEE 2002]
 - (A) N: tetrahedral, sp³; B: tetrahedral, sp³
- (B) N: pyramidal, sp³; B: pyramidal, sp³
- (C) N: pyramidal, sp³; B: planar, sp²
- (D) N: pyramidal, sp³; B: tetrahedral, sp³

12.	The nodal plane in t	he π -bond of ethene is loca	ated in		[JEE	2002]			
	(A) the molecular pla	nne							
	(B) a plane parallel t	o the molecular plane							
	(C) a plane perpendicu	ılar to the molecular plane wh	nich bisects, the carbon-carb	on a bond at right	angle.				
	(D) a plane perpendi	cular to the molecular plan	ne which contains, the car	oon-carbon bond					
13.	Identify the least stab	ole ion amongst the following	ng:		[JEE	2002]			
	(A) Li	(B) Be ⁻	(C) B ⁻	(D) C ⁻					
14.	Which of the following	ng molecular species has ur	npaired electron(s) ?		[JEE	2002]			
	(A) N_2	(B) F ₂	(C) O ₂	(D) O_2^{2-}					
15.	Which of the following	ng are isoelectronic and iso	structural ?		[JEE	2003]			
		$\mathrm{NO_3^-}$. $\mathrm{CO_3^{2-}}$, $\mathrm{ClO_3^-}$, SO_3						
	(A) NO_3^- , CO_3^{2-}	(B) SO_3 , NO_3^-	(C) ClO_3^- , CO_3^{2-}	(D) CO ₃ ²⁻ ,	SO_3				
16.	According to molecular order is correct rega	ar orbital theory which of the rding O_2^+	ne following statement abou	t the magnetic ch		nd bond 2004]			
	(A) Paramagnetic and	d Bond order < O ₂	(B) Paramagnetic as	nd Bond order >	O_2				
	(C) Diamagnetic and	Bond order < O ₂	(D) Diamagnetic an	d Bond order >	O_2				
17.	Which species has th	ne maximum number of lon	ne pair of electrons on the	central atom?					
	(A) ClO ₃	(B) XeF ₄	(C) SF ₄	(D) I ₃	[JEE	2005]			
18.	The percentage of p	character in the orbitals fo	orming P–P bonds in P_4 is						
	(A) 25	(B) 33	(C) 50	(D) 75					
19.	Among the following	, the paramagnetic compo	und is		[JEE	2007]			
	(A) Na_2O_2	(B) O ₃	(C) N ₂ O	(D) KO ₂					
20.	The species having b	ond order different from th	nat in CO is		[JEE	2007]			
	(A) NO ⁻	(B) NO ⁺	(C) CN ⁻	(D) N ₂					
21.	The structure of XeC	O_3 is			[JEE	2007]			
	(A) linear	(B) planar	(C) pyramidal	(D) T-shap	oed				
22.	Statement-1: p-Hyd	roxybenzoic acid has a low	ver boiling point than o-hy	ndroxybenzoic aci	id.				
	and				[JEE	2007]			
	Statement-2 : o-Hyd	Statement-2: o-Hydroxybenzoic acid has intramolecular hydrogen bonding.							
	(A) Statement-1 is True	, Statement-2 is True; Statem	ent-2 is a correct explanation	ı for Statement-1.					
	(B) Statement-1 is True	, Statement-2 is True; Statem	ent-2 is NOT a correct explai	nation for Statemer	nt-1.				
	(C) Statement-1 is Tr	rue, Statement-2 is False.							
	(D) Statement-1 is Fa	alse, Statement-2 is True.							
23.	Statement-1 : In wat	ter, orthoboric acid behave	es as a weak monobasic a	cid.	[JEE	2007]			
	and								
	Statement-2 : In wat	er, orthoboric, acid acts a	s a proton donor.						
	(A) Statement-1 is True	(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.							
	(B) Statement-1 is True	, Statement-2 is True; Statem	ent-2 is NOT a correct expla	nation for Stateme	nt-1.				
	(C) Statement-1 is Tr	rue, Statement-2 is False.							
	(D) Statement-1 is False Statement-2 is True								

24.	Statement-1: Pb ⁺⁴ compo	unds are stror	nger oxi	dizing agents than $\mathrm{Sn}^{\scriptscriptstyle 4+}$ com	pounds	[JEE	2008]				
	and										
	Statement-2 : The higher oxidation states for the group 14 elements are more stable for the heavier members of the group due to 'inert pair effect'.										
	(A) Statement-1 is True, State	(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.									
	(B) Statement-1 is True, State	ment-2 is True;	Stateme	nt-2 is NOT a correct explanation	on for Statement	-1.					
	(C) Statement-1 is True, St	tatement-2 is I	False.								
	(D) Statement-1 is False, S	tatement-2 is	True.								
25.	Match each of the diatomic	molecules in	Column	I with its property / proper	ties in Column	II.					
						[JEE	2009]				
	Column I			Column II							
	(A) B ₂		(P)	Paramagnetic							
	(B) N ₂		(Q)	undergoes oxidation							
	(C) O ₂		(R)	Undergoes reduction							
	(D) O ₂		(S)	Bond order ≥ 2							
	-		(T)	Mixing of 's' and `p' orbitals							
26.	The nitrogen oxide(s) that	contain(s) N–N	bond(s)	is (are)		[JEE	2009]				
	(A) N ₂ O	(B) N_2O_3		(C) N_2O_4	(D) N ₂ O ₅						
27.	In the reaction					[JEE	2009]				
	$2X + B_2H_6 \longrightarrow [BH_2($	$(X)_{2}^{+} [BH_{4}^{-}]^{-}$									
	the amine(s) X is (are)										
	(A) NH ₃	(B) CH ₃ NH ₂		(C) (CH ₃) ₂ NH	(D) $(CH_3)_3N$						
28.	The species having pyrami	dal shape is				[JEE	2010]				
	(A) SO ₃	(B) BrF ₃		(C) SiO_3^{2-}	(D) OSF ₂						
29.	Assuming that Hund's rule	is violated, the	e bond	order and magnetic nature of	the diatomic r		e B ₂ is 2010]				
	(A) 1 and diamagnetic			(B) 0 and diamagnetic							
	(C) 1 and paramagnetic			(D) 0 and paramagnetic	С						
3 0	In allene (C_3H_4) , the type(s)	of hybridisation	on of th	e carbon atoms is (are)		[JEE	2012]				
	(A) sp and sp³(C) only sp²			(B) sp and sp^2 (D) sp^2 and sp^3							
3 1	Which ordering of compo	unds is accord	ling to t	the decreasing order of the	oxidation state	of nitr	rogen-				
	(A) HNO ₃ , NO, NH ₄ Cl, N	₂ (B) HNO ₃ , N	IO, N ₂ ,	NH ₄ Cl		[JEE	2012]				
	(C) HNO ₃ , NH ₄ Cl, NO, N ₂	(D) NO, HN	O ₃ , NH	₄ Cl, N ₂							
3 2	The shape of XeO_2F_2 mol	ecule is :				[JEE	2012]				
	(A) Trigonal bipyramidal	(B) Square p	olanar	(C) tetrahedral	(D) see-saw						
Explai	n the following.										
1.	Give reason carbon oxyger bonds in sodium formate h	_		nic acid are 1.23Å & 1.36 Å e. 1.27Å.	and both the		oxygen E '88]				
2.				nan that of boron atom where	eas the reverse		for the E '89]				

3.	The experimentally determined N-F bond length in NF ₃ is greater than the sum of single bond (N = F = 1).		
	of N & F. Explain.	[JEE '95	
4.	Explain the difference in the nature of bonding in LiF & LiI.	[JEE '96	•]
5.	Give reasons for the following in one or two sentences only.	[JEE '99	[י
	(a) $\mathrm{BeC1}_2$ can be easily hydrolyed		
Arran	ge as directed.		
1.	$N_2^{},\;O_2^{},\;F_2^{},\;Cl_2^{}$ in increasing order of bond dissociation energy.	[JEE '88	i]
2.	$\mathrm{CO_2},\ \mathrm{N_2O_5}\ \mathrm{SiO_2}$, $\mathrm{SO_3}$ is the increasing order of acidic character.	[JEE '88	;]
3.	$HOCl,\ HOClO_2,\ HOClO_3,\ HOClO$ in increasing order of thermal stability.	[JEE '88]
4.	The decreasing order of acid strength of ClOH, BrOH, IOH.	[JEE '97]
5.	Arrange in order of increasing radii , $\text{Li}^{\scriptscriptstyle +},\ \text{Mg}^{\scriptscriptstyle 2+},\ \text{K}^{\scriptscriptstyle +},\ \text{Al}^{\scriptscriptstyle 3+}$	[JEE '97]
6.	Arrange BeSO_4 , MgSO_4 , CaSO_4 , SrSO_4 in order of decreasing thermal stability.	[JEE '97]
7.	Decreasing order of the O-O bond length present in them	[JEE 2004	.]
	O_2 , KO_2 and O_2 [AsF ₄]		
Subje	ctive		
1.	The number of water molecule(s) directly bonded to the metal centre in $CuSO_4.5H_2O$ is	[JEE 2009	1
2.	Based on VSEPR theory, the number of 90 degree F-Br-F angles in BrF_5 is	[JEE 2010]
3.	The value of n in the molecular formula $\mathrm{Be_nAl_2Si_6O_{18}}$ is	[JEE 2010)]
4.	The total number of diprotic acids among the following is	[JEE 2010)]
	H_3PO_4 H_2SO_4 H_3PO_3 H_2CO_3 $H_2S_2O_7$		
	H_3BO_3 H_3PO_2 H $_2CrO_4$ H_2SO_3		
5.	Among the following, the number of elements showing only one non-zero oxidation state is	[JEE 2010	1
	O, Cl, F, N, P, Sn, Tl, Na, Ti	-	-
6.	The difference in the oxidation numbers of the two types of sulphur atoms in $Na_2S_4O_6$ is	s.[JEE 2011]

				ANGUER	7517			
PR	EVIOUS YEARS	s QUESTIONS		ANSWER I	KEY		EXERCISE-5 [B]	
	1 . (B)	2 . (D)	3. (B)	4. (A)	5 . (B)	6 . (A)	7 . (A)	
	8. (B)	9 . (B)	10 . (A)	11 . (A)	12 . (A)	13 . (B)	14 . (C)	
	15 . (A)	16 . (B)	17 . (D)	18 . (D)	19 . (D)	20 . (A)	21 . (C)	
	22 . (D)	23 . (C)	24 . (C)					
	25. (A) \rightarrow	P,Q,R,T ; B	\rightarrow Q,R,S,T	$(C) \rightarrow P,Q,R$	$;$ (D) \rightarrow P,Q,R	,S		
	26 . A,B,C	27 . B,C	28 . (D)	29 . (A)	30 . (B)	31 . (B)	32 . (D)	
	<u>Arrange a</u>	as directed	<u>:</u>					
	1. $F_2 \leq Cl_2$	$< O_2 < N_2$		2 . SiO ₂ < 0	2. $SiO_2 < CO_2 < N_2O_5 < SO_3$			
	3 . HOCl <	HClO ₂ < HC	$ClO_3 < HClO_2$	4. HOCl >				
	5. $Al^{3+} < Mg^{2+} < Li^{+} < K^{+}$			6 . SrSO ₄ >	$SO_4 > BeSO_4$			
	7 . KO ₂ > C	$O_2 > O_2 [AsF_4]$]	•	•	•		
•	<u>Subjective</u>	Questio	<u>ns</u>					

4. 6

5. 2

6. 5

1. 4

2. 0

3. 3