Algebra

Serge Lang

August 6, 2021

Contents

1	Groups													
	1.1	1.1 Monoids												
	1.2	Groups	2											
	1.3	Normal Subgroups	2											
	1.4	Direct Sums and Free Abelian Groups	2											
2	Rings													
	2.1	Rings and Homomorphisms	5											
	2.2	Commutative Rings	11											
	2.3	Polynomials and Group Rings	15											
	2.4	Localization	19											
	2.5	Principal and Factorial Rings	20											
3	Modules													
	3.1	Basic Definitions	22											
	3.2	The Group of Homomorphisms	24											
	3.3	Direct Products and Sums of Modules	26											
	3.4	Free Modules	30											
	3.5	Vector Spaces	31											
4	Polynomials 3.													
	4.1	4.1 Basic Properties for Polynomials in One Variable												
	4.2	Polynomials Over a Factorial Ring	37											
5	Algebraic Extensions													
	5.1	Finite and Algebraic Extensions	37											
	5.2	Algebraic Closure	42											

6	Real	l Fields													42
	6.1	Ordered Fields.													42

1 Groups

- 1.1 Monoids
- 1.2 Groups

1.3 Normal Subgroups

Let $f: G \to G'$ be a group homomorphism, and let H be its kernel. If x is an element of G, then xH = Hx, because both are equal to $f^{-1}(f(x))$. We can also rewrite this relation as $xHx^{-1} = H$

Conversely, let G be a group and let H be a subgroup. Assume that for all elements $x \in G$, we have $xH \subset Hx$ (or equivalently, $xHx^{-1} \subset H$), which implies $H \subset xHx^{-1}$. Thus our condition is equivalent to the condition $xHx^{-1} = H$ for all $x \in G$. A subgroup H satisfying this condition will be called **normal**

Let G' be the set of cosets of H. (A left coset is equal to a right coset). If xH and yH are cosets, then their product

$$xHyH = xyHH = xyH$$

is also a coset. Hence G' is a group.

Let $f: G \to G'$ be the mapping s.t. f(x) is the coset xH. Then f is clearly a homomorphism and H is equal to the kernel.

The group of cosets of a normal subgroup H is denoted by G/H (which we read G modulo H, or G mod H). The map f of G onto G/H constructed above is called the **canonical map**, and G/H is called the **factor group** of G by H

1.4 Direct Sums and Free Abelian Groups

Let $\{A_i\}_{i\in I}$ be a family of abelian groups. We define their **direct sum**

$$A = \bigoplus_{i \in I} A_i$$

to be the subset of the direct product $\prod A_i$ consisting of all families $(x_i)_{i\in I}$ with $x_i\in A_i$ s.t. $x_i=0$ for all but a finite number of indices i. For each index $j\in I$, we map

$$\lambda_j:A_j\to A$$

by letting $\lambda_j(x)$ be the element whose *j*-th component is x, and having all other components equal to 0. Then λ_j is an injective homomorphism

Proposition 1.1. Let $\{f_i : A_i \to B\}$ be a family of homomorphisms into an abelian group B. Let $A = \bigoplus A_i$. There exists a unique homomorphism

$$f:A\to B$$

 $s.t. f \circ \lambda_j = f_j \text{ for all } j$

Proof. Define

$$f((x_i)_{i \in I}) = \sum_{i \in I} f_i(x_i)$$

The property in Proposition 1.1 is called the **universal property** of the direct sum.

Let *A* be an abelian group and *B*, *C* subgroups. If B + C = A and $B \cap C = \{0\}$ then the map

$$B \times C \rightarrow A$$

given by $(x,y) \mapsto x + y$ is an isomorphism. Instead of writing $A = B \times C$ we shall write $A = B \oplus C$ and say that A is the **direct sum** of B and C. We sue a similar notation for the direct sum of a finite number of subgroups B_1, \ldots, B_n s.t.

$$B_1 + \cdots + B_n = A$$

and

$$B_{i+1} \cap (B_1 + \dots + B_i) = 0$$

In that case, we write

$$A = B_1 \oplus B_2 \oplus \cdots \oplus B_n$$

Let A be an abelian group. Let $\{e_i\}_{i\in I}$ be a family of elements of A. We say that this family is a **basis** of A if the family is not empty, and if every element of A has a unique expression as a linear combination

$$x = \sum x_i e_i$$

with $x_i \in \mathbb{Z}$ and almost all $x_i = 0$. Thus the sum is actually a finite sum. An abelian group is **free** if it has a basis. If that is the case, then if we let $Z_i = \mathbb{Z}$ for all i, then A is isomorphic to the direct sum

$$A \cong \bigoplus_{i \in I} Z_i$$

Now let S be a set. Let $\mathbb{Z}\langle S\rangle$ be the set of all maps $\varphi:S\to\mathbb{Z}$ s.t. $\varphi(x)=0$ for almost all $x\in S$. Then $\mathbb{Z}\langle S\rangle$ is an abelian group. if k is an integer and $x\in S$, we denote by $k\cdot x$ the map φ s.t. $\varphi(x)=k$ and $\varphi(y)=0$ if $y\neq x$. Then every element φ of $\mathbb{Z}\langle S\rangle$ can be written in the form

$$\varphi = k_1 \cdot x_1 + \dots + k_n \cdot x_n$$

for $k_i \in \mathbb{Z}$ and $x_i \in S$, all the x_i being distinct. Furthermore, φ admits a unique such expression, because if we have

$$\varphi = \sum_{x \in S} k_x \cdot x = \sum_{x \in S} k_x' \cdot x$$

then

$$0 = \sum_{x \in S} (k_x - k_x') \cdot x$$

whence $k'_x = k_x$ for all $x \in S$

We map S into $\mathbb{Z}\langle S\rangle$ by the map $f_S=f$ s.t. $f(x)=1\cdot x$. f(S) generates $\mathbb{Z}\langle S\rangle$. If $g:S\to B$ is a mapping of S into some abelian group B, then we define a map

$$g_*: \mathbb{Z}\langle S \rangle \to B$$

s.t.

$$g_* \left(\sum_{x \in S} k_x \cdot x \right) = \sum_{x \in S} k_x g(x)$$

It's unique for any such homomorphism g_* must be s.t. $g_*(1 \cdot x) = g(x)$

Proposition 1.2. *if* $\lambda : S \to S'$ *is a mapping of sets, there is a unique homomorphism* $\bar{\lambda}$ *making the following diagram commutative*

$$S \xrightarrow{f_S} \mathbb{Z}\langle S \rangle$$

$$\downarrow^{\lambda} \qquad \qquad \downarrow_{\bar{\lambda}}$$

$$S' \xrightarrow{f_{S'}} \mathbb{Z}\langle S' \rangle$$

In fact, $\bar{\lambda}$ *is none other than* $(f_S \circ \lambda)_*$

We shall denote $\mathbb{Z}\langle S\rangle$ also $F_{ab}(S)$ and call $F_{ab}(S)$ the **free abelian group generated by** S. We call elements of S its **free generators**

2 Rings

2.1 Rings and Homomorphisms

A ring A is a set

- 1. w.r.t. addition, *A* is a commutative group
- 2. the multiplication is associative, and has a unit element
- 3. for all $x, y, z \in A$ we have

$$(x+y)z = xz + yz$$
 and $z(x+y) = zx + zy$

(called **distributivity**)

We denote the unit element for addition by 0, and the unit element for multiplication by 1. Observe that 0x = 0 for all $x \in A$. *Proof:* 0x + x = (0+1)x = x

For any $x, y \in A$ we have (-x)y = -(xy)

Let A be a ring, and let U be the set of elements of A which have both a right and left inverse. Then U is a multiplicative group. Indeed, if a has a right inverse b, so that ab=1, and a left inverse c, so that ca=1, then cab=b, whence c=b, and we see that c is a two-sided inverse, and that c itself has a two-sided inverse, namely a. Therefore U satisfies all the axioms of a multiplicative group, and is called the group of **units** of A. It is sometimes denoted by A^* , and is also called the group of **invertible** elements of A. A ring A s.t. $1 \neq 0$ and s.t. every non-zero element is invertible is called a **division ring**.

Example 2.1 (The Shift Operator). Let *E* be the set of all sequences

$$a = (a_1, a_2, a_3, ...')$$

of integers. One can define addition componentwise. Let R be the set of all mappings $f: E \to E$ of E into itself s.t. f(a+b) = f(a) + f(b). Then R is a ring. Let

$$T(a_1, a_2, a_3, \dots) = (0, a_1, a_2, a_3, \dots)$$

Verify that *T* is left invertible but not right invertible

A ring A is said to be **commutative** if xy = yx for all $x, y \in A$. A commutative division ring is called a **field**. By definition, a field contains at least two elements, namely 0 and 1.

A subset B of ring A is called a **subring** if it is an additive subgroup, if it contains the multiplicative unit, and if $x, y \in B$ implies $xy \in B$. If that is the case, then B is n itself a ring, the laws of operation in B being the same as the laws of operation in A

For example, the **center** of a ring A is the subset of A consisting of all elements $a \in A$ s.t. ax = xa for all $x \in A$. The center of A is a subring.

If x, y_1, \dots, y_n are elements of a ring, then by induction one sees that

$$x(y_1 + \dots + y_n) = xy_1 + \dots + xy_n$$

If $x_i (i = 1, ..., n)$ and $y_j (j = 1, ..., m)$ are elements of A, then it is also easily proved that

$$\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{j=1}^{m} y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i y_j$$

Furthermore, distributivity holds for subtraction, e.g.

$$x(y_1 - y_2) = xy_1 - xy_2$$

Example 2.2. Let *S* be a set and *A* a ring. Let Map(S, A) be the set of mappings of *S* into *A*. Then Map(S, A) is a ring if for $f, g \in Map(S, A)$ we define

$$(fg)(x) = f(x)g(x)$$
 and $(f+g)(x) = f(x) + g(x)$

for all $x \in S$.

Let M be an additive abelian group, and let A be the set $\operatorname{End}(M)$ of group-homomorphisms of M into itself. We define addition in A to be the addition of mappings, and we define multiplication to be **composition** of mappings

Example 2.3 (The convolution product). Let G be a group and let K be a field. Denote by K[G] the set of all formal linear combinations $\alpha = \sum a_x x$ with $x \in G$ and $a_x \in K$, s.t. all but finite number of a_x are equal to 0. If $\beta = \sum b_x x \in K[G]$, then one can define the product

$$\alpha\beta = \sum_{x \in G} \sum_{y \in G} a_x b_y xy = \sum_{z \in G} \left(\sum_{xy=z} a_x b_y \right) z$$

With this product, the **group ring** K[G] is a ring. K[G] is commutative iff G is commutative. The second sum on the right defines what is called a **convolution product**. If f,g are functions on a group G, we define their **convolution** f * g by

$$(f * g)(z) = \sum_{xy=z} f(x)g(y)$$

A **left ideal** $\mathfrak a$ in a ring A is a subset of A which is a subgroup of the additive group of A, s.t. $A\mathfrak a\subset\mathfrak a$ (and hence $A\mathfrak a=\mathfrak a$ since A contains 1). To define a right ideal, we quire $\mathfrak aA=\mathfrak a$, and a **two-sided ideal** is a subset which is both a left and right ideal. A two-sided ideal is called an **ideal** in this section.

If A is a ring and $a \in A$, then Aa is a left ideal, called **principal**. We say that a is a generator of \mathfrak{a} (over A). AaA is a principal two-sided ideal if $AaA = \{\sum x_i ay_i \mid x_i, y_i \in A\}$. More generally, let $a_1, \dots, a_n \in A$. We denote by (a_1, \dots, a_n) the set of elements of A which can be written in the form

$$x_1 a_1 + \dots + x_n a_n$$
 with $x_i \in A$

Then this set of elements is immediately verified to be a left ideal, and a_1, \ldots, a_n are called **generators** of the left ideal.

If $\{a_i\}_{i\in I}$ is a family of ideals, then their intersection

$$\bigcap_{i\in I} \mathfrak{a}_i$$

is also an ideal

A **commutative** ring s.t. every ideal is principal and s.t. $1 \neq 0$ is called a **principal** ring

Example 2.4. The integers \mathbb{Z} form a ring, which is commutative. Let \mathfrak{a} be an ideal $\neq \mathbb{Z}$ and $\neq 0$. If $n \in \mathfrak{a}$ then $-n \in \mathfrak{a}$. Let d be the smallest integer > 0 lying in \mathfrak{a} . If $n \in \mathfrak{a}$ then there exists integers q, r with $0 \leq r < d$ s.t.

$$n = dq + r$$

Since \mathfrak{a} is an ideal, it follows that r lies in \mathfrak{a} , hence r = 0. Hence \mathfrak{a} consists of all multiples qd of d, which $q \in \mathbb{Z}$, and \mathbb{Z} is a principal ring.

Let a, b be ideals of A. We define ab to be the set of all sums

$$x_1y_1 + \cdots + x_ny_n$$

with $x_i \in \mathfrak{a}$ and $y_i \in \mathfrak{b}$. \mathfrak{ab} is an ideal, and that the set of ideals forms a multiplicative monoid, the unit element being the ring itself. This unit element is called the **unit ideal** and is often written (1).

If \mathfrak{a} , \mathfrak{b} are left ideals of A, then $\mathfrak{a} + \mathfrak{b}$ (the sum being taken as additive subgroup of A) is obviously a left ideal. Thus ideals also form a monoid under addition. We also have distributivity: if $\mathfrak{a}_1, \dots, \mathfrak{a}_n, \mathfrak{b}$ are ideals of A, then

$$\mathfrak{b}(\mathfrak{a}_1+\cdots+\mathfrak{a}_n)=\mathfrak{b}\mathfrak{a}_1+\cdots+\mathfrak{b}\mathfrak{a}_n$$

Let \mathfrak{a} be a left ideal. Define $\mathfrak{a}A$ to be the set of all sums $a_1x_1 + \cdots + a_nx_n$ with $a_i \in \mathfrak{a}$ and $x_i \in A$. Then $\mathfrak{a}A$ is an ideal.

Suppose that A is commutative. Let $\mathfrak{a},\mathfrak{b}$ be ideals. Then trivially

$$\mathfrak{ab} \subset \mathfrak{a} \cap \mathfrak{b}$$

If $\mathfrak{a} + \mathfrak{b} = A$ then $\mathfrak{a}\mathfrak{b} = \mathfrak{a} \cap \mathfrak{b}$. Suppose $x \in \mathfrak{a} \cap \mathfrak{b}$ and $x = a_x + b_x$, where $a_x \in \mathfrak{a}$ and $b_x \in \mathfrak{b}$. Then $a_x \in \mathfrak{b}$ and $b_x \in \mathfrak{a}$. If $1 = a_1 + b_1$ then $x \cdot 1 = (a_x + b_x)(a_1 + b_1) \in \mathfrak{a}\mathfrak{b}$

By a **ring homomorphism** one means a mapping $f:A\to B$ where A,B are rings, and s.t. f is a monoid-homomorphism for the multiplicative structures on A and B, and also a monoid homomorphism for the additive structure. In other words

$$f(a + a') = f(a) + f(a')$$
 $f(aa') = f(a)f(a')$
 $f(1) = 1$ $f(0) = 0$

for all $a, a' \in A$.

The kernel of a ring homomorphism $f : A \rightarrow B$ is an ideal of A.

Conversely, let $\mathfrak a$ be an ideal of the ring A. We can construct the **factor ring** $A/\mathfrak a$ as follows. Viewing A and $\mathfrak a$ as additive groups, let $A/\mathfrak a$ be the factor group. If $x+\mathfrak a$ and $y+\mathfrak a$ are two cosets of $\mathfrak a$, we define $(x+\mathfrak a)(y+\mathfrak a)$ to be the coset $xy+\mathfrak a$. This coset is well-defined, for if x_1,y_1 are in the same coset as x,y respectively, then one verifies that x_1y_1 is in the same coset as xy. Unit element is $1+\mathfrak a$.

We therefore defined a ring structure on A/\mathfrak{a} and the caonical map

$$f: A \to A/\mathfrak{a}$$

is then clearly a ring homomorphism

Proposition 2.1. If $g:A\to A'$ is a ring homomorphism whose kernel contains \mathfrak{a} , then there exists a unique ring homomorphism $g_*:A/\mathfrak{a}\to A'$ making the following diagram commutative

Indeed, viewing f, g as group homomorphisms, there is a unique group homomorphism g_* making our diagram commutative

Proof. If $x \in A$ then $g(x) = g_*f(x)$. Hence for $x, y \in A$

$$g_*(f(x)f(y)) = g_*(f(xy)) = g(xy) = g(x)g(y)$$

= $g_*f(x)g_*f(y)$

Given $\xi, \eta \in A/\mathfrak{a}$, there exists $x,y \in A$ s.t. $f(x) = \xi$ and $f(y) = \eta$. Since f(1) = 1, we get $g_*f(1) = g(1) = 1$ and hence the two conditions that g_* be a multiplicative monoid-homomorphism are satisfied

Let A be a ring, and denote its unit element by e for the moment. The map

$$\lambda: \mathbb{Z} \to A$$

s.t. $\lambda(n)=ne$ is a ring homomorphism, and its kernel is an ideal (n), generated by an integer $n\geq 0$. We have a canonical injective homomorphism $\mathbb{Z}/n\mathbb{Z}\to A$ which is a (ring) isomorphism between $\mathbb{Z}/n\mathbb{Z}$ and a subring of A. If $n\mathbb{Z}$ is a prime ideal, then n=0 or n=p for some prime number p. In the first place, A contains as a subring a ring which is isomorphic to \mathbb{Z} , and which is often identified with \mathbb{Z} . In that case, we say that A has **characteristic** 0. if on the other hand n=p then we say that A has **characteristic** p, and A contains (an isomorphic image of) $\mathbb{Z}/p\mathbb{Z}$ as a subring. We abbreviate $\mathbb{Z}/p\mathbb{Z}$ by \mathbb{F}_p .

If K is a field, then K has characteristic 0 or p > 0. (if its characteristic is $a \cdot b$, then $a \cdot b \cdot 1 = 0$ but field is an integral domain). In the first case, K contains as a subfield an isomorphic image of the rational numbers, and in the second case, it contains an isomorphic image of \mathbb{F}_p . In either case, this subfield will be called the **prime field** (contained in K). Since this prime field is the smallest subfield of K containing 1 and has no automorphism except the identity, it is customary to identity it with \mathbb{Q} or \mathbb{F}_p as the case may be. By the **prime ring** (in K) we shall mean either the integers \mathbb{Z} if K has characteristic 0 or \mathbb{F}_p if K has characteristic p.

Let A be a subring of a ring B. Let S be a subset of B commuting with A. We denote by A[S] the set of all elements

$$\sum a_{i_1\dots i_n} s_1^{i_1} \dots s_n^{i_n}$$

the sum ranging over a finite number of n-tuples (i_1, \ldots, i_n) of integers \geq 0, and $a_{i_1, \ldots, i_n} \in A$, $s_1, \ldots, s_n \in S$. If B = A[S], we say that S is a set of **generators** (or **ring generators**) for B over A, or that B is **generated** by S over A. If S is finite, B is **finitely generated as a ring over** A. Note that S is not commutative.

Let *A* be a ring, a an ideal, and *S* a subset of *A*. We write

$$S \equiv 0 \mod \mathfrak{a}$$

if $S \subset \mathfrak{a}$. If $x, y \in A$ we write

$$x \equiv y \mod \mathfrak{a}$$

if $x - a \in \mathfrak{a}$. If \mathfrak{a} is principal, equal to (a), then we also write

$$x \equiv y \mod a$$

If $f: A \to A/\mathfrak{a}$ is the canonical homomorphism, then $x \equiv y \mod \mathfrak{a}$ means that f(x) = f(y)

The factor ring A/\mathfrak{a} is also called a **residue class ring**. Cosets of \mathfrak{a} in A are called **residue classes** modulo \mathfrak{a} , and if $x \in A$, then the coset $x + \mathfrak{a}$ is called the **residue class of** x **modulo** \mathfrak{a}

An injective ring homomorphism $f:A\to B$ establishes a ring isomorphism between A and its image. Such a homomorphism will be called an **embedding**

Let $f:A\to A'$ be a ring homomorphism, and let \mathfrak{a}' be an ideal of A'. Then $f^{-1}(a')$ is an ideal \mathfrak{a} in A, and we have an induced injective homomorphism

$$A/\mathfrak{a} \to A'/\mathfrak{a}'$$

Proposition 2.2. *Products exist in the category of rings*

Let A be a ring. Elements $x, y \in A$ are said to be **zero divisors** if $x \neq 0$, $y \neq 0$ and xy = 0. A ring A is **entire** if $1 \neq 0$, if A is commutative and if there are no zero divisors in the ring. (Entire rings are also called **integral domains**)

Let *m* be a positive integer $\neq 1$. The ring $\mathbb{Z}/m\mathbb{Z}$ has zero divisors iff *m* is not prime.

Proposition 2.3. Let A be an entire ring, and let a, b be non-zero elements of A. Then a, b generate the same ideal iff there exists a unit u of A s.t. b = au.

Proof. Assume Aa = Ab. Then a = bc and b = ad for some $c, d \in A$. Hence a = adc whence a(1 - dc) = 0 and therefore dc = 1. Hence c is a unit

2.2 Commutative Rings

Assume *A* is commutative

A **prime** ideal in A is an ideal $\mathfrak{p} \neq A$ s.t. A/\mathfrak{p} is entire. Equivalently, we could say that it is an ideal $\mathfrak{p} \neq A$ s.t. whenever $x, y \in A$ and $xy \in \mathfrak{p}$ then $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$. A prime ideal is often called simply a **prime**

Proposition 2.4. Every maximal ideal is prime

Proof. Let \mathfrak{m} be maximal and let $x, y \in A$ s.t. $xy \in \mathfrak{m}$. Suppose $x \notin \mathfrak{m}$, then $\mathfrak{m} + Ax$ is an ideal properly containing \mathfrak{m} , hence equal to A. Hence we can write

$$1 = u + ax$$

with $u \in \mathfrak{m}$ and $a \in A$. Multiplying by y we find

$$y = yu + axy$$

whence $y \in \mathfrak{m}$.

Proposition 2.5. Let \mathfrak{a} be an ideal $\neq A$. Then \mathfrak{a} is contained in some maximal ideal \mathfrak{m}

Proposition 2.6. The ideal $\{0\}$ is a prime ideal of A iff A is entire

The only ideals of a field are itself and the zero ideal

Proposition 2.7. *If* \mathfrak{m} *is a maximal ideal of* A, *then* A/\mathfrak{m} *is a field*

Proof. If $x \in A$, we denote by \bar{x} its residue class mod \mathfrak{m} . Since $\mathfrak{m} \neq A$ we note that A/\mathfrak{m} has a unit element $\neq 0$. Any non-zero element of A/\mathfrak{m} can be written as \bar{x} for some $x \in A$, $x \notin \mathfrak{m}$. To find its inverse, note that $\mathfrak{m} + Ax$ is an ideal of $A \neq \mathfrak{m}$ and hence equal to A. Hence we can write

$$1 = u + yx$$

with $u \in \mathfrak{m}$ and $y \in A$. This means that $\bar{y}\bar{x} = 1 = \bar{1}$ and hence that \bar{x} has an inverse.

Proposition 2.8. Let $f: A \to A'$ be a homomorphism of commutative rings. Let \mathfrak{p}' be a prime ideal of A' and let $\mathfrak{p} = f^{-1}\mathfrak{p}'$. Then \mathfrak{p} is prime

Example 2.5. Let \mathbb{Z} be the ring of integers. Since an ideal is also an additive subgroup of \mathbb{Z} , every ideal $\neq \{0\}$ is principal, of the form $n\mathbb{Z}$ for some integer n > 0. (proof)

Let $\mathfrak p$ be a prime ideal $\neq \{0\}$, $\mathfrak p = n\mathbb Z$. Then n must be a prime number. Conversely, if p is a prime number, then $p\mathbb Z$ is a prime ideal. Furthermore, $p\mathbb Z$ is a maximal ideal. Suppose $p\mathbb Z$ is contained in some ideal $n\mathbb Z$, then p = nm for some integer m, whence n = p or n = 1, thereby proving $p\mathbb Z$ maximal

if *n* is an integer, the factor ring $\mathbb{Z}/n\mathbb{Z}$ is called the ring of **integers modulo** *n*. We also denote

$$\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}(n)$$

If n is a prime number p, then the ring of integers modulo p is in fact a field, denoted by \mathbb{F}_p . In particular, the multiplicative group of \mathbb{F}_p is called the group of non-zero integers modulo p. From the elementary properties of groups, we get a standard fact of elementary number theory: if x is an integer $\neq 0 \mod p$, then $x^{p-1} \equiv 1 \mod p$ (Fermat's Theorem). Similarly given an integer n > 1, the units in the ring $\mathbb{Z}/n\mathbb{Z}$ consist of those residue class mod $n\mathbb{Z}$ which are represented by integers $m \neq 0$ and prime to n. The order of the group of units in $\mathbb{Z}/n\mathbb{Z}$ is called by definition $\varphi(n)$ (where φ is known as the **Euler phi-function**). Consequently, if x is an integer prime to n, then $x^{\varphi(n)} \equiv 1 \mod n$

Theorem 2.9 (Chinese Remainder Theorem). Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be ideals of A s.t. $\mathfrak{a}_i + \mathfrak{a}_j = A$ for all $i \neq j$. Given elements $x_1, \ldots, x_n \in A$, there exists $x \in A$ s.t. $x \equiv x_i \mod \mathfrak{a}_i$ for all i

Proof. For n = 2 we have an expression

$$1 = a_1 + a_2$$

for some $a_i \in \mathfrak{a}_i$, and we let $x = x_2a_1 + x_1a_2$ For each i > 2 we can find elements $a_i \in \mathfrak{a}_i$ as

For each $i \ge 2$ we can find elements $a_i \in \mathfrak{a}_1$ and $b_i \in \mathfrak{a}_i$ s.t.

$$a_i + b_i = 1, \quad i \ge 2$$

The products $\prod_{i=2}^{n} (a_i + b_i)$ is equal to 1, and lies in

$$\mathfrak{a}_1 + \prod_{i=2}^n \mathfrak{a}_i$$

Hence

$$\mathfrak{a}_1 + \prod_{i=2}^n \mathfrak{a}_i = A$$

By theorem for n = 2, we can find an element $y_1 \in A$ s.t.

$$y_1 \equiv 1 \mod \mathfrak{a}_1$$
 $y_1 \equiv 0 \mod \prod_{i=2}^n \mathfrak{a}_i$

We find similarly elements y_2, \dots, y_n s.t.

$$y_j \equiv 1 \mod \mathfrak{a}_j$$
 and $y_j \equiv 0 \mod \mathfrak{a}_i$ for $i \neq j$

Then $x = x_1y_1 + \dots + x_ny_n$ satisfies our requirements

In the same vein as above, we observe that if $\mathfrak{a}_1,\ldots,\mathfrak{a}_n$ are ideals of a ring A s.t.

$$\mathfrak{a}_1 + \dots + \mathfrak{a}_n = A$$

and if v_1, \dots, v_n are positive integers, then

$$\mathfrak{a}_1^{v_1} + \dots + \mathfrak{a}_n^{v_n} = A$$

Corollary 2.10. Let $\mathfrak{a}_1, \dots, \mathfrak{a}_n$ be ideals of A. Assume that $\mathfrak{a}_i + \mathfrak{a}_j = A$ for $i \neq j$. Let

$$f:A\to \prod_{i=1}^n A/\mathfrak{a}_i=(A/\mathfrak{a}_1)\times \cdots \times (A/\mathfrak{a}_n)$$

be the map of A into the product induced by the canonical map of A onto A/\mathfrak{a}_i for each factor. Then the kernel of f is $\bigcap_{i=1}^n \mathfrak{a}_i$ and f is surjective, thus giving an isomorphism

$$A/\bigcap \mathfrak{a}_i \cong \prod A/\mathfrak{a}_i$$

Proof. Surjectivity follows from the theorem

Let m be an integer > 1, and let

$$m = \prod_i p_i^{r_i}$$

be a factorization of m into primes, with exponents $r_i \ge 1$. Then we have a ring isomorphism

 $\mathbb{Z}/m\mathbb{Z}\cong\prod_{i}\mathbb{Z}/p_{i}^{r_{i}}\mathbb{Z}$

If A is a ring, we denote as usual by A^* the multiplicative group of invertible elements of A

Proposition 2.11. The preceding ring isomorphism of $\mathbb{Z}/m\mathbb{Z}$ onto the product induces a group isomorphism

$$(\mathbb{Z}/m\mathbb{Z})^* \cong \prod_i (\mathbb{Z}/p_i^{r_i}\mathbb{Z})^*$$

In view of our isomorphism, we have

$$\varphi(m) = \prod_{i} \varphi(p_i^{r_i})$$

If *p* is a prime number and *r* an integer ≥ 1 , then

$$\varphi(p^r) = (p-1)p^{r-1}$$

If r = 1, then $\mathbb{Z}/p\mathbb{Z}$ is a field, and the multiplicative group of that field has order p - 1. Let r be ≥ 1 , and consider the canonical ring homomorphism

$$\mathbb{Z}/p^{r+1}\mathbb{Z} \to \mathbb{Z}/p^r\mathbb{Z}$$

arising from the inclusion of ideals $(p^{r+1}) \subset (p^r)$. We get an induced group homomorphism

$$\lambda: (\mathbb{Z}/p^{r+1}\mathbb{Z})^* \to (\mathbb{Z}/p^r\mathbb{Z})^*$$

which is surjective because any integer a which represents an element of $\mathbb{Z}/p^r\mathbb{Z}$ and is prime to p will represent an element of $(\mathbb{Z}/p^{r+1}\mathbb{Z})^*$. Let a be an integer representing an element of $(\mathbb{Z}/p^{r+1}\mathbb{Z})^*$ s.t. $\lambda(a) = 1$. Then

$$a \equiv 1 \mod p^r \mathbb{Z}$$

P96

Application: The ring of endomorphisms of a cyclic group.

Theorem 2.12. Let A be a cyclic group of order n. For each $k \in \mathbb{Z}$ let $f_k : A \to A$ be the endomorphism $x \mapsto kx$ (writing A additively). Then $k \mapsto f_k$ induces a ring homomorphism $\mathbb{Z}/n\mathbb{Z} \cong \operatorname{End}(A)$, and a group isomorphism $(\mathbb{Z}/n\mathbb{Z})^* \cong \operatorname{Aut}(A)$

Proof. The fact that $k \mapsto f_k$ is ring homomorphism is a restatement of the formulas

$$1a = a$$
, $(k + k')a = ka + k'a$, $(kk')a = k(k'a)$

2.3 Polynomials and Group Rings

Consider an infinite cyclic group generated by an element X. We let S be the subset consisting of powers X^r with $r \geq 0$. Then S is a monoid. We define the set of **polynomials** A[X] to be the set of functions $S \rightarrow A$ which are equal to 0 except for a finite number of elements of S. For each element $a \in A$ we denote by aX^n the function which has the value a on X^n and the value 0 for all other elements of S. Then it is immediate that a polynomial can be written uniquely as a finite sum

$$a_0 X^0 + \dots + a_n X^n$$

for some integer $n \in \mathbb{N}$ and $a_i \in A$. Such a polynomial is denoted by f(X). The elements $a_i \in A$ are called the **coefficients** of f. We define the product according to the convolution rule. Thus, given polynomials

$$f(X) = \sum_{i=0}^{n} a_i X^i$$
 and $g(X) = \sum_{j=0}^{m} b_j X^j$

we define the product to be

$$f(X)g(X) = \sum_{k=0}^{m+n} \left(\sum_{i+j=k} a_i b_j\right) X^k$$

This product is associative and distributive. $1X^0$ is the unit element. There is also an embedding

$$A \to A[X]$$
$$a \mapsto aX^0$$

Let *A* be a subring of a commutative ring *B*. Let $x \in B$. If $f \in A[X]$ is a polynomial, we define the associated **polynomial function**

$$f_B: B \to B$$

by letting

$$f_B(x) = f(x) = a_0 + a_1 x + \dots + a_n x^n$$

Given an element $b \in B$, directly from the definition of multiplication of polynomials, we find

Proposition 2.13. *The association*

$$ev_b: f \mapsto f(b)$$

is a ring homomorphism of A[X] into B

This homomorphism is called the **evaluation homomorphism**, and is also said to be obtained by **substituting** b for X in the polynomial

Let $x \in B$. We see that the subring A[x] of B generated by x over A is a ring of all polynomial values f(x) for $f \in A[X]$. If the evaluation map $f \mapsto f(x)$ gives an isomorphism of A[X] with A[x], then we say that x is **transcendental** over A, or that x is a **variable** over A. In particular, X is a variable over A

Example 2.6. Let $\alpha = \sqrt{2}$. Then the set of all real numbers of the form $a + b\alpha$, with $a, b \in \mathbb{Z}$ is a subring of the real numbers, generated by $\sqrt{2}$. α is not transcendental over \mathbb{Z} , because the polynomial $X^2 - 2$ lies in the kernel of the evaluation map $f \mapsto f(\sqrt{2})$. On the other hand, it can be shown that e and π are transcendental over \mathbb{Q}

Example 2.7. Let p be a prime number and let $K = \mathbb{Z}/p\mathbb{Z}$. Then K is a field. Let $f(X) = X^p - X \in K[X]$. Then f is not the zero polynomials. But f_K is the zero function. Indeed, $f_K(0) = 0$. If $x \in K$, $x \neq 0$, then since the multiplicative group of K has order p-1. it follows that $x^{p-1} = 1$, whence $x^p = x$, so f(x). Thus a non-zero polynomial gives rise to the zero function on K

Let

$$\varphi: A \to B$$

be a homomorphism of commutative rings. Then there is an associated homomorphism of the polynomial rings $A[X] \to B[X]$ s.t.

$$f(X) = \sum a_i X^i \mapsto \sum \varphi(a_i) X^i = (\varphi f)(X)$$

We call $f \mapsto \varphi f$ the **reduction map**

Let $\mathfrak p$ be a prime ideal of A. Let $\varphi:A\to A'$ be the canonical homomorphism of A onto $A/\mathfrak p$. If f(X) is a polynomial in A[X], then φf will sometimes be called the **reduction of** f **modulo** $\mathfrak p$.

For example, taking $A = \mathbb{Z}$ and $\mathfrak{p} = (p)$ for some prime number p, we can speak of the polynomial $3X^4 - X + 2$ as a polynomial mod 5, viewing the coefficients as elements of $\mathbb{Z}/5\mathbb{Z}$

Proposition 2.14. *Let* $\varphi : A \to B$ *be a homomorphism of commutative rings. Let* $x \in B$. There is a unique homomorphism extending φ

$$A[X] \rightarrow B$$
 s.t. $X \mapsto x$

and for this homomorphism $\sum a_i X^i \mapsto \sum \varphi(a_i) x^i$

The homomorphism of the above statement may be views as the composite

$$A[X] \longrightarrow B[X] \xrightarrow{\operatorname{ev}_x} B$$

When writing a polynomial $f(X) = \sum_{i=1}^n a_i X^i$, if $a_n \neq 0$ then we define n to be the **degree** of f. Thus the degree of f is the smallest integer n s.t. $a_r = 0$ for r > n. If f = 0 (i.e. f is the zero polynomial), then by convention, we define the degree of f to be $-\infty$. We agree to the convention that

$$-\infty + -\infty = -\infty$$
, $-\infty + n = -\infty$, $-\infty < n$

for all $n \in \mathbb{Z}$, and no other operation with $-\infty$ is defined. A polynomial of degree 1 is also called a **linear** polynomial. If $f \neq 0$ and $\deg f = n$ then we call a_n the **leading coefficient** of f. We call a_0 its **constant term**

Let

$$g(X) = b_0 + \dots + b_m X^m$$

be a polynomial in A[X], of degree m, and assume $g \neq 0$. Then

$$f(X)g(X) = a_0b_0 + \dots + a_nb_mX^{m+n}$$

Therefore

Proposition 2.15. *If we assume that at least one of the leading coefficients* a_n *or* b_m *is not a divisor of 0 in A, then*

$$\deg(fg) = \deg f + \deg g$$

and the leading coefficient of fg is a_nb_m . This holds in particular when a_n or b_m is a unit in A, or when A is entire. Consequently, when A is entire, A[X] is also entire

If
$$f = 0$$
 or $g = 0$ we still have

$$\deg(fg) = \deg f + \deg g$$

if we agree that $-\infty + m = -\infty$ for any integer m

Let *A* be a subring of a commutative ring *B*. Let $x_1, \dots, x_n \in B$. For each *n*-tuple of integers $(v_1, \dots, v_n) = \mathbf{v} \in \mathbb{N}^n$, let $\mathbf{x} = (x_1, \dots, x_n)$, and

$$M_{\mathbf{v}}(\mathbf{x}) = x_1^{v_1} \dots x_n^{v_n}$$

The set of such elements forms a monoid under multiplication. Let $A[x] = A[x_1, \dots, x_n]$ be the subring of B generated by x_1, \dots, x_n over A. Then every element of A[x] can be written as a finite sum

$$\sum a_{\mathbf{v}} M_{\mathbf{v}}(\mathbf{x})$$
 and $a_{\mathbf{v}} \in A$

Using the construction of polynomials in one variable repeatedly, we may form the ring

$$A[X_1, \dots, X_n] = A[X_1][X_2] \dots [X_n]$$

selecting X_n to be variable over $A[X_1,\ldots,X_{n-1}]$. Then every element f of $A[X_1,\ldots,X_n]=A[X]$ has a *unique* expression as a finite sum

$$f = \sum_{j=0}^{d_n} f_j(X_1, \dots, X_{n-1}) X_n^j$$
 with $f_j \in A[X_1, \dots, X_{n-1}]$

Therefore by induction we can write f uniquely as a sum

$$\begin{split} f &= \sum_{v_n = 0}^{d_n} \left(\sum_{v_1, \dots, v_{n-1}} a_{v_1 \dots v_n} X_1^{v_1} \dots X_{n-1}^{v_{n-1}} \right) X_n^{v_n} \\ &= \sum a_{\mathbf{v}} M_{\mathbf{v}}(X) = \sum a_{\mathbf{v}} X_1^{v_1} \dots X_n^{v_n} \end{split}$$

with elements $a_{\mathbf{v} \in A}$, which are called the **coefficients** of f. The products

$$M_{\mathbf{v}}(X) = X_1^{v_1} \dots X_n^{v_n}$$

will be called **primitive monomials**. Elements of A[X] are called **polynomials** (in n variables). We call $a_{\mathbf{v}}$ its **coefficients**

GIven $\mathbf{x} = (x_1, \dots, x_n)$ and f, we define

$$f(x) = \sum a_{\mathbf{v}} M_{\mathbf{v}}(\mathbf{x}) = \sum a_{\mathbf{v}} x_1^{v_1} \dots x_n^{v_n}$$

Then the evaluation map

$$\operatorname{ev}_{\mathbf{x}}: A[X] \to B \quad \text{with} \quad f \mapsto f(x)$$

is a ring homomorphism

Elements $x_1, \dots, x_n \in B$ are called **algebraically independent** over A if the evaluation map

$$f \mapsto f(x)$$

is injective. Equivalently, we could say that if $f \in A[X]$ is a polynomial and f(x) = 0 then f = 0.; in other words, there are no non-trivial polynomial relations among x_1, \dots, x_n over A.

By the **degree** of a primitive monomial

$$M_{\mathbf{v}}(X) = X_1^{v_1} \dots X_n^{v_n}$$

we shall mean the integer $|v| = v_1 + \cdots + v_n$

A polynomial

$$aX_1^{v_1} \dots X_n^{v_n} \quad (a \in A)$$

will be called a monomial

If f(X) is a polynomial in A[X] written as

$$f(X) = \sum a_{\mathbf{v}} X_1^{v_1} \dots X_n^{v_n}$$

we define the **degree** of f to be the maximum of the degrees of the monomials $M_{\mathbf{v}}(X)$ s.t. $a_{\mathbf{v}} \neq 0$. (Such monomials are said to **occur** in the polynomial)

For each integer $d \ge 0$, given a polynomial f, let $f^{(d)}$ be the sum of all monomials occurring in f and having degree d. Then

$$f = \sum_{d} f^{(d)}$$

Suppose $f \neq 0$, we say that f is **homogeneous** of degree d if $f = f^{(d)}$ Algebraically independent elements will also be called **variables**

2.4 Localization

A a commutative ring

By a **multiplicative subset** of *A* we shall mean a submonoid of *A*

We shall now construct the **quotient ring of** A **by** S, also known as the **ring of fractions of** A **by** S

We consider pairs (a, s) with $a \in A$ and $s \in S$. We define a relation

$$(a,s) \sim (a',s')$$

if there exists $s_1 \in S$ s.t.

$$s_1(s'a - sa') = 0$$

The equivalence class containing a pair (a, s) is denoted by a/s. The set of equivalence classes is denoted by $S^{-1}A$

if $0 \in S$, then $S^{-1}A$ has precisely one element 0/1

$$(a/s)(a'/s') = aa'/ss'$$
$$\frac{a}{s} + \frac{a'}{s'} = \frac{s'a + sa'}{ss'}$$

Let $\varphi_S: A \to S^{-1}A$ be the s.t. $\varphi_S(a) = a/1$. Every element of $\varphi_S(S)$ is invertible in $S^{-1}(A)$ (the inverse of s/1 is 1/s)

Let $\mathcal C$ be the category whose objects are ring homomorphism

$$f:A\to B$$

s.t. for every $s \in S$ the elements f(s) is invertible in B. If $f: A \to B$ and

Proposition 2.16. *Let A be an entire ring, and let S be a multiplicative subset which does not contain* 0. *Then*

$$\varphi_S:A\to S^{-1}A$$

is injective

Let A be an entire ring, and let S be the set of non-zero elements of A. Then S is a multiplicative set, and $S^{-1}A$ is then a field, called the **quotient field** or the *field of fractions of A.

2.5 Principal and Factorial Rings

Let *A* be an entire ring. An element $a \neq 0$ is called **irreducible** if it is not a unit, and if whenever one can write a = bc with $b \in A$ and $c \in A$, then b or c is a unit

Let $a \neq 0$ be an element of A and assume that the principal ideal (a) is prime. Then (a) is irreducible. If we write a = bc., then b or c lies in (a), say b. Then we can write b = ad with some $d \in A$ and hence a = acd. Since A is entire, it follows that cd = 1, in other words, c is a unit.

The converse of the preceding assertion is not always true. We shall discuss under which conditions it is true. An element $a \in A$, $a \neq 0$ is said to have a **unique factorization into irreducible elements** if there exists a unit u and there exist irreducible elements p_i in A s.t.

$$a = u \prod_{i=1}^{r} p_i$$

and if given two factorization into irreducible elements

$$a = u \prod_{i=1}^{r} p_i = u' \prod_{j=1}^{s} q_j$$

we have r = s and after a permutation of the indices i, we have $p_i = u_i q_i$ for some unit $u_i \in A$

A ring is called **factorial** (or **unique factorization ring**) if it is entire and if every element $\neq 0$ has a unique factorization into irreducible elements.

Let A be an entire ring and $a, b \in A$, $ab \neq 0$. We say that a **divides** b and write $a \mid b$ if there exists $c \in A$ s.t. ac = b. We say that $d \in A$, $d \neq 0$ is a **greatest common divisor** (**g.c.d.**) of a and b if $d \mid a$ and $d \mid b$ and if any element e of $A \in e \neq 0$ which divides both a and b also divides d

Proposition 2.17. Let A be a principal entire ring and $a, b \in A$, $a, b \neq 0$. Let (a, b) = (c). Then c is a greatest common divisor of a and b

Theorem 2.18. Let A be a principal entire ring. Then A is factorial

Proof. We first prove that every non-zero element of A has a factorization into irreducible elements. Let S be the set of principal ideals $\neq 0$ whose generators do not have a factorization into irreducible elements, and suppose S is not empty. Let $(a_1) \in S$ be in S. Consider an ascending chain

$$(a_1) \subsetneq (a_2) \subsetneq \cdots \subsetneq (a_n) \subsetneq \dots$$

of ideals in S. We contend that such a chain cannot be infinite. Indeed, the union of such a chain is an ideal of A, which is principal, say equal to (a). The generator a must already lie in some element of the chain, say (a_n) , and then we see that $(a_n) \subset (a) \subset (a_n)$, whence the chain stops at (a_n) . Hence S is inductively ordered, and has a maximal element (a). Therefore any ideal of A containing (a) and $\neq (a)$ has a generator admitting a factorization.

We note that a_n cannot be irreducible and hence we can write a=bc with neither b nor c equal to a unit. But then $(b) \neq (a)$ and $(c) \neq (a)$ and hence both b and c admit factorizations into irreducible elements. The product of these factorizations is a factorization for a, contradicting the assumption that S is not empty

To prove uniqueness, we first remark that if p is an irreducible element of A and $a, b \in A$, $p \mid ab$, then $p \mid a$ or $p \mid b$. *Proof*: if $p \nmid a$, then the g.c.d. of p, a is 1 and hence we can write

$$1 = xp + ya$$

for some $x, y \in A$. Then b = bxp + yab and since $p \mid ab$ we conclude that $p \mid b$ Suppose that a has two factorizations

$$a = p_1 \dots p_r = q_1 \dots q_s$$

into irreducible elements. Since p_1 divides $q_1 \dots q_s$, p_1 divides one of the factors, which we may assume to be q_1 after renumbering these factors. Then there exists a unit u_1 s.t. $q_1 = u_1 p_1$. We can now cancel p_1 from both factorizations and get

$$p_2 \dots p_r = u_1 q_2 \dots q_s$$

We could call two elements $a, b \in A$ equivalent if there exists a unit u s.t. a = bu. let us select irreducible element p out of each equivalence class belonging to such an irreducible element, and let us denote by P the set

of such representatives. Let $a \in A, a \neq 0$. Then there exists a unit u and integers $v(p) \geq 0$, equal to 0 for almost all $p \in P$ s.t.

$$a = u \prod_{p \in P} p^{v(p)}$$

Furthermore, the unit u and the integers v(p) are uniquely determined by a. We call v(p) the **order** of a at p, also written as $\operatorname{ord}_p a$

If A is a factorial ring, then an irreducible element p generates a prime ideal (p). Thus in a factorial ring, an irreducible element will also be called a **prime element**, or simply **prime**

3 Modules

3.1 Basic Definitions

Let *A* be a ring. A **left module** over *A*, or a left *A*-module *M* is an abelian group, together with an operation of *A* on *M*, s.t. for all $a, b \in A$ and $x, y \in M$

$$(a+b)x = ax + bx$$
 and $a(x+y) = ax + ay$

Let *A* be an entire ring and let *M* be an *A*-module. We define the **torsion submodule** M_{tor} to be the subset of elements $x \in M$ s.t. there exist $a \in A$ s, $a \neq 0$ s.t. ax = 0.

By a **module homomorphism** we means a map

$$f: M \to M'$$

which is an additive group homomorphism and s.t.

$$f(ax) = af(x)$$

for all $a \in A$ and $x \in M$. If we wish to refer to the ring A, we also say that f is an A-homomorphism, or also that it is an A-linear map

For any module M and M', the map $\zeta: M \to M'$ s.t. $\zeta(x) = 0$ for all $x \in M$ is a homomorphism, called **zero**

Let $f: M \to M'$ be a homomorphism. By the **cokernel** of f we mean the factor module $M' / \operatorname{im} f = M' / f(M)$.

Like groups

Proposition 3.1. Let N, N' be two submodules of a module of M. Then N + N' is also a submodule, and we have an isomorphism

$$N/(N \cap N') \cong (N + N')/N'$$

If $M \supset M' \supset M''$ are modules, then

$$(M/M'')/(M'/M'') \cong M/M'$$

If $f: M \to M'$ is a module homomorphism, and N' is a submodule of M', then $f^{-1}(N')$ is a submodule of M and we have a canonical injective homomorphism

$$\bar{f}: M/f^{-1}(N') \to M'/N'$$

If f is surjective, then \bar{f} *is a module isomorphism*

A sequence of module homomorphisms

$$M' \xrightarrow{f} M \xrightarrow{g} M''$$

is **exact** if $\operatorname{im} f = \ker g$. If *N* is a submodule of *M*, then

$$0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0$$

If a homomorphism $u : N \to M$ is s.t.

$$0 \longrightarrow N \stackrel{u}{\longrightarrow} M$$

is exact, then we also say that u is a **monomorphism** or an **embedding**. Dually if

$$N \xrightarrow{u} M \longrightarrow 0$$

is exact, we say that u is an **epimorphism**

Let *A* be a commutative ring. Let *E*, *F* be modules. By a **bilinear map**

$$g: E \times E \rightarrow F$$

we mean a map s.t. given $x \in E$ the map $y \mapsto g(x,y)$ is A-linear and given $y \in E$, the map $x \mapsto g(x,y)$ is A-linear. By an A-algebra we mean a module together with a bilinear map $g: E \times E \to E$. We view such a map as a law of composition on E.

3.2 The Group of Homomorphisms

Let A be a ring, and let X, X' be A-modules. We denote by $\operatorname{Hom}_A(X', X)$ the set of A-homomorphisms of X' into X. Then $\operatorname{Hom}_A(X', X)$ is an abelian group, the law of addition being that of addition for mappings into an abelian group.

If *A* is *commutative* then we can make $\operatorname{Hom}_A(X',X)$ into an *A*-module by defining *af* for $a \in A$ and $f \in \operatorname{Hom}_A(X',X)$ to be the map s.t.

$$(af)(x) = af(x)$$

Let Y be an A-module, and let

$$X' \stackrel{f}{\longrightarrow} X$$

be an A-homomorphism. Then we get an induced homomorphism

$$\operatorname{Hom}_A(f, Y) : \operatorname{Hom}_A(X, Y) \to \operatorname{Hom}_A(X', Y)$$

given by $g\mapsto g\circ f$. The fact that $\operatorname{Hom}_A(f,Y)$ is a homomorphism is a rephrasing of the $(g_1+g_2)\circ f=g_1\circ f+g_2\circ f$

If we have a sequence of *A*-homomorphisms

$$X' \longrightarrow X \longrightarrow X''$$

then we get an induced sequence

$$\operatorname{Hom}_A(X',Y) \longleftarrow \operatorname{Hom}_A(X,Y) \longleftarrow \operatorname{Hom}_A(X'',Y)$$

Proposition 3.2. A sequence

$$X' \xrightarrow{\lambda} X \longrightarrow X'' \longrightarrow 0$$

is exact iff the sequence

$$\operatorname{Hom}_A(X',Y) \longleftarrow \operatorname{Hom}_A(X,Y) \longleftarrow \operatorname{Hom}_A(X'',Y) \longleftarrow 0$$

is exact for all Y

Proof. Suppose the first sequence is exact. If $g: X'' \to Y$ is an A-homomorphism, its image in $\operatorname{Hom}_A(X,Y)$ is obtained by composing g with the surjective map of X on X''. If this composition is 0, it follows that g=0. Consider a homomorphism $g: X \to Y$ s.t. the composition

$$X' \xrightarrow{\lambda} X \xrightarrow{g} Y$$

is 0. Then g vanishes on the image of λ . Hence we can factor g through the factor module

Since $X \to X''$ is surjective, we have an isomorphism

$$X/\operatorname{im}\lambda \cong X''$$

Hence we can factor g through X'', thereby showing that the kernel of

$$\operatorname{Hom}_{A}(X', Y) \longleftarrow \operatorname{Hom}_{A}(X, Y)$$

is contained in the image of

$$\operatorname{Hom}_A(X,Y) \longleftarrow \operatorname{Hom}_A(X'',Y)$$

similarly, we have

Proposition 3.3. A sequence

$$0 \longrightarrow Y' \longrightarrow Y \longrightarrow Y''$$

is exact iff

$$0 \longrightarrow \operatorname{Hom}_A(X, Y') \longrightarrow \operatorname{Hom}_A(X, Y) \longrightarrow \operatorname{Hom}_A(X, Y'')$$

is exact for all X

Let Mod(A) and Mod(B) be the categories of modules over rings A and B, and let $F : Mod(A) \to Mod(B)$ be a functor. One says that F is **exact** if F transforms exact sequences into exact sequences.

let *M* be an *A*-module. From the relations

$$(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$$

$$g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2$$

and the fact that there is an identity for composition, namely id_M , we conclude that $\operatorname{Hom}_A(M,M)$ is a ring. We call $\operatorname{End}_A(M)=\operatorname{Hom}_A(M,M)$ the ring of **endomorphisms**

3.3 Direct Products and Sums of Modules

Proposition 3.4. Let M be an A-module and n an integer ≥ 1 . For each i = 1, ..., n let $\varphi_i : M \to M$ be an A-homomorphism s.t.

$$\sum_{i=1}^{n} \varphi_i = \mathrm{id} \quad and \quad \varphi_i \circ \varphi_j = 0 \quad if \, i \neq j$$

Then $\varphi_i^2 = \varphi_i$ for all i. Let $M_i = \varphi_i(M)$, and let $\varphi: M \to \prod M_i$ be s.t.

$$\varphi(x) = (\varphi_1(x), \dots, \varphi_n(x))$$

Then φ is an A-isomorphism of M onto the direct product $\prod M_i$

Proof. for each *j*, we have

$$\varphi_j = \varphi_j \circ \mathrm{id} = \varphi_j \circ \sum_{i=1}^n \varphi_i = \varphi_j \circ \varphi_j = \varphi_j^2$$

thereby proving the first assertion. It is clear that φ is an A-homomorphism. Let $x \in \ker \varphi$. Since

$$x = \mathrm{id}(x) = \sum_{i=1}^{n} \varphi_i(x)$$

we conclude that x = 0, so φ is injective.

Let M be a module over a ring A and let S be a subset of M. By a **linear combination** of elements of S (with coefficients in A) one means a sum

$$\sum_{x \in S} a_x x$$

where $\{a_x\}$ is a set of elements of A, almost all of which are equal to 0. Let N be the set of all linear combinations of elements of S. Then N is a submodule of M, for if

$$\sum_{x \in S} a_x x \quad \text{and} \quad \sum_{x \in S} b_x x$$

are two linear combinations, then their sum is equal to

$$\sum_{x \in S} (a_x + b_x) x$$

and if $c \in A$, then

$$c\left(\sum_{x\in S}a_xx\right)=\sum_{x\in S}ca_xx$$

We shall call N the submodule **generated** by S, and we call S a set of **generators** for N. We sometimes write $N = A\langle S \rangle$. If S consists of one element x, the module generated by x is also written Ax, or simply (x), and sometimes we say that (x) is a **principal module**

A module *M* is said to be **finitely generated**, or of **finite type** or **finite** over *A*, if it has a finite number of generators

A subset *S* of a module *M* is said to be **linearly independent** (over *A*) if whenever we have a linear combination

$$\sum_{x \in S} a_x x$$

which is equal to 0, then $a_x = 0$ for all $x \in S$. If S is linearly independent and if two linear combinations

$$\sum a_x x$$
 and $\sum b_x x$

are equal, then $a_x = b_x$ for all $x \in S$.

Let M be an A-module, and let $\{M_i\}_{i\in I}$ be a family of submodules. Since we have inclusion-homomorphism

$$\lambda_i:M_i\to M$$

we have an induced homomorphism

$$\lambda_*: \bigoplus M_i \to M$$

which is s.t. for any family of elements $(x_i)_{i \in I}$ all but a finite number of which are 0, we have

$$\lambda_*((x_i)) = \sum_{i \in I} x_i$$

if λ_* is an isomorphism, then we say that $\{M_i\}_{i\in I}$ is a **direct sum decomposition** of M. This is equivalent to saying that every element of M has a unique expression as a sum

$$\sum x_i$$

with $x_i \in M$ and almost all $x_i = 0$. By abuse of notation, we also write

$$M = \bigoplus M_i$$

in this case

If M is a module and N, N' are two submodules s.t. N + N' = M and $N \cap N' = 0$, then we have a module isomorphism

$$M\cong N\oplus N'$$

Proposition 3.5. Let M, M', N be modules. Then we have an isomorphism of abelian groups

$$\operatorname{Hom}_A(M \oplus M', N) \cong \operatorname{Hom}_A(M, N) \times \operatorname{Hom}_A(M', N)$$

and

$$\operatorname{Hom}_A(N,M\times M')\cong\operatorname{Hom}_A(N,M)\times\operatorname{Hom}_A(N,M')$$

Proof. if $f:M\oplus M'\to N$ is a homomorphism, then f induces a homomorphism $f_1:M\to N$ and a homomorphism $f_2:M'\to N$ by composing injections

$$M \to M \oplus \{0\} \subset M \oplus M' \xrightarrow{f} N$$
$$M' \to \{0\} \oplus M' \subset M \oplus M' \xrightarrow{f} N$$

Then

$$f \mapsto (f_1, f_2)$$

is an isomorphism

Proposition 3.6. Let $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ be an exact sequence of modules. *The following are equivalent*

- 1. there exists a homomorphism $\varphi: M'' \to M \text{ s.t. } g \circ \varphi = id$
- 2. there exists a homomorphism $\psi: M \to M'$ s.t. $\psi \circ f = id$

if these conditions are satisfied, then we have isomorphisms

$$M = \operatorname{im} f \oplus \ker \psi, \qquad M = \ker g \oplus \operatorname{im} \varphi$$

 $M \cong M' \oplus M''$

Proof. Let $x \in M$, then $x - \varphi(g(x)) \in \ker g$, and hence $M = \ker g + \operatorname{im} \varphi$. If $x \in \ker g \cap \operatorname{im} \varphi$, then $x = \varphi(w)$ and $g(x) = g(\varphi(w)) = w = 0$, thus $\ker g \cap \operatorname{im} \varphi = \{0\}$

when these conditions are satisfied, the exact sequence is said to **split**. ψ **splits** f and φ **splits** g

Consider first a category $\mathfrak C$ s.t. Mor(E,F) is an abelian group for each pair of objects E,F of $\mathfrak C$, satisfying the following two conditions

- AB 1 The law of composition of morphisms is bilinear, and there exists a zero object 0, i.e., s.t. Mor(0, E) and Mor(E, 0) have precisely one element for each object E
- AB 2 Finite products and finite coproducts exists in the category

Then we say that \mathfrak{C} is an **additive category**

Given a morphism $E \xrightarrow{f} F$ in \mathfrak{C} , we define a **kernel** of f to be a morphism $E' \to E$ s.t. for all objects X in the category, the following sequence is exact

$$0 \longrightarrow Mor(X, E') \longrightarrow Mor(X, E) \longrightarrow Mor(X, F)$$

we define a **cokernel** for f to be a morphism $F \to F''$ s.t. for all objects X in the category, the following sequence is exact

$$0 \longrightarrow Mor(F'', X) \longrightarrow Mor(F, X) \longrightarrow Mor(E, X)$$

- AB 3 Kernels and cokernels exist
- AB 4 If $f: E \to F$ is a morphism whose kernel is 0, then f is the kernel of its cokernel. If $f: E \to F$ is a morphism whose cokernel is 0, then f is the cokernel of its kernel. A morphism whose kernel and cokernel are 0 is an isomorphism

A category ${\mathfrak C}$ satisfying the above four axioms is called an **abelian category**

In an abelian category, the group of morphisms is usually denote by Hom, so

$$Mor(E, F) = Hom(E, F)$$

The morphisms are usually called **homomorphisms**. Given an exact sequence

$$0 \longrightarrow M' \longrightarrow M$$

we say that M' is a **subobject** of M, or that the homomorphism of M' into M is a **monomorphism**. Dually, in an exact sequence

$$M \longrightarrow M'' \longrightarrow 0$$

we say that M'' is a **quotient object** of M, or that the homomorphism of M to M'' is an **epimorphism**

3.4 Free Modules

Let M be a module over a ring A and let S be a subset of M. S is a **basis** of M if S is not empty, if S generates M, and if S is linearly independent. If S is a basis of M, then in particular $M \neq \{0\}$ if $A \neq \{0\}$ and every element of M has a unique expression as a linear combination of elements of S

If *A* is a ring, then as a module over itself, *A* admits a basis, consisting of the unit element 1.

Let *I* be a non-empty set, and for each $i \in I$, let $A_i = A$, viewed as an *A*-module. Let

$$F = \bigoplus_{i \in I} A_i$$

then F admits a basis, which consists of the elements e_i of F whose i-th component is the unit element of A_i , and having all other components equal to 0

By a **free** module we mean a module which admits a basis, or the zero module

Theorem 3.7. Let A be a ring and M a module over A. Let I be a non-empty set, and let $\{x_i\}_{i\in I}$ be a basis of M. Let N be an A-module, and let $\{y_i\}_{i\in I}$ be a family of elements of N. Then there exists a unique homomorphism $f: M \to N$ s.t. $f(x_i) = y_i$ for all i.

Corollary 3.8. Let the notation be as in the theorem, and assume that $\{y_i\}_{i\in I}$ is a basis of N. Then the homomorphism f is an isomorphism

Corollary 3.9. Two modules having bases whose cadinalities are equal are isomorphic

Let M be a free module over A, with basis $\{x_i\}_{i\in I}$, so that

$$M = \bigoplus_{i \in I} Ax_i$$

Let \mathfrak{a} be a two sided ideal of A. Then $\mathfrak{a}M$ is a submodule of M. Each $\mathfrak{a}x_i$ is a submodule of Ax_i . We have an isomorphism

$$M/\mathfrak{a}M \cong \bigoplus_{i\in I} Ax_i/\mathfrak{a}x_i$$

A module M is called **principal** if there exists an element $x \in M$ s.t. M = Ax. The map

$$a \mapsto ax$$

is an A-module homomorphism of A onto M, whose kernel is a left ideal \mathfrak{a} .

3.5 Vector Spaces

A module over a field is called a **vector space**

Theorem 3.10. Let V be a vector space over a field K, and assume that $V \neq \{0\}$. Let Γ be a set of generators of V over K and let S be a subset of Γ which is linearly independent. Then there exists a basis \mathfrak{B} of V s.t. $S \subset \mathfrak{B} \subset \Gamma$.

Proof. Zorn's lemma

Theorem 3.11. Let V be a vector space over a field K. Then two bases of V over K have the same cardinality

Proof. First assume that there exists a basis of V with a finite number of elements, say $\{v_1,\ldots,v_m\}$, $m\geq 1$. It is suffice to prove: if w_1,\ldots,w_n are elements of V which are linearly independent over K, then $n\leq m$ (for then we can use symmetry). We proceed by induction. There exist elements c_1,\ldots,c_m of K s.t.

$$w_1 = c_1 v_1 + \dots + c_m v_m$$

and some c_i , say c_1 is not equal to 0. Then v_1 lies in the space generated by w_1, v_2, \ldots, v_m over K, and this space must therefore be equal to V itself. Furthermore, w_1, v_2, \ldots, v_m are linearly independent, for suppose b_1, \ldots, b_m are elements of K s.t.

$$b_1 w_1 + \dots + b_m v_m = 0$$

if $b_1 \neq 0$, divide by b_1 and express w_1 as a linear combination of v_2, \ldots, v_m , would yield a relation of linear dependence among the v_i . Hence $b_1 = 0$, and again we must have all $b_i = 0$

Suppose inductively that after a suitable renumbering of the v_i , we have found w_1, \dots, w_r (r < n) s.t.

$$\{w_1,\ldots,w_r,v_{r+1},\ldots,v_m\}$$

is a basis of *V*.

$$w_{r+1} = c_1 w_1 + \dots + c_r w_r + c_{r+1} w_{r+1} + \dots + c_m v_m$$

with $c_i \in K$. Similarly we still can replace v_{r+1} by w_{r+1} .

Theorem 3.12. Let V be a vector space over a field K, and let W be a subspace. Then

$$\dim_K V = \dim_K W + \dim_K V/W$$

If $f: V \to U$ *is a homomorphism of vector spaces over K, then*

$$\dim V = \dim \ker f + \dim \operatorname{im} f$$

Proof. The first statement is a special case of the second, taking for f the canonical map. Let $\{u_i\}_{i\in I}$ be a basis of $\inf f$ and $\{w_i\}_{i\in I}$ a basis of $\ker f$. Let $\{v_i\}_{i\in I}$ be a family of V s.t. $f(v_i)=u_i$ for each $i\in I$. We contend that

$$\{v_i, w_j\}_{i \in I, j \in J}$$

is a basis for *V*

Let $x \in V$. Then there exist elements $\{a_i\}_{i \in I}$ of K almost all of which are 0 s.t.

$$f(x) = \sum_{i \in I} a_i u_i$$

Hence $f(x - \sum a_i v_i) = 0$. Thus

$$x - \sum a_i v_i \in \ker f$$

thus there exists elements $\{b_i\}_{i\in I}$ of K almost all of which are 0 s.t.

$$x - \sum a_i v_i = \sum b_j w_j$$

From this we see that $x = \sum a_i v_i + \sum b_j w_j$, and that $\{v_i, w_j\}$ generated V. It remains to show that the family is linearly independent. Suppose that there exists elements c_i, d_i s.t.

$$0 = \sum c_i v_i + \sum d_j w_j$$

applying f yields

$$0 = \sum c_i f(v_i) = \sum c_i u_i$$

whence all $c_i = 0$. From this we conclude that all $d_i = 0$

Corollary 3.13. *Let V be a vector space and W a subspace. Then*

$$\dim W < \dim V$$

If V is finite dimensional and dim $W = \dim V$ then W = V

4 Polynomials

4.1 Basic Properties for Polynomials in One Variable

Theorem 4.1. Let A be a commutative ring, let $f, g \in A[X]$ be polynomials in one variable, of degree ≥ 0 , and assume that the leading coefficient of g is a unit in A. Then there exist unique polynomials $q, r \in A[X]$ s.t.

$$f = gq + r$$

and $\deg r < \deg g$

Proof. Write

$$f(X) = a_n X^n + \dots + a_0$$

$$g(X) = b_d X^d + \dots + b_0$$

where $n = \deg f$, $d = \deg g$ so that $a_n, b_d \neq 0$ and b_d is a unit in A. We use induction on n

if n=0 and $\deg g>\deg f$, we let q=0, r=f. If $\deg g=\deg f=0$, then let r=0 and $q=a_nb_d^{-1}$

Assume the theorem proved for polynomials of degree < n. We may assume $\deg g \le \deg f$ (otherwise take q = 0 and r = f). Then

$$f(X) = a_n b_d^{-1} X^{n-d} g(X) + f_1(X)$$

where $f_1(X)$ has degree < n. By induction, we can find q_1, r s.t.

$$f(X) = a_n b_d^{-1} X^{n-d} g(X) + q_1(X) g(X) + r(X)$$

and $\deg r < \deg g$. Then we let

$$q(X)=a_nb_d^{-1}X^{n-d}+q_1(X)$$

For uniqueness, suppose that

$$f = q_1 g + r_1 = q_2 g + r_2$$

with $\deg r_1 < \deg g$ and $\deg r_2 < \deg g$. Subtracting yields

$$(q_1 - q_2)g = r_2 - r_1$$

Since the leading coefficient of g is assumed to be a unit, we have

$$\deg(q_1 - q_2)g = \deg(q_1 - q_2) + \deg g$$

Since $\deg(r_2-r_1)<\deg g$, this relation can hold only if $q_1-q_2=0$. Hence $r_1=r_2$

Theorem 4.2. Let k be a field. Then the polynomial ring in one variable k[X] is principal

Proof. Let $\mathfrak a$ be an ideal of k[X] and assume $\mathfrak a \neq 0$. Let g be an element of $\mathfrak a$ of smallest degree ≥ 0 . Let f be an element of $\mathfrak a$ s.t. $f \neq 0$. By the Euclidean algorithm we can find $g, r \in k[X]$ s.t.

$$f = qg + r$$

and $\deg r < \deg g$. But r = f - qg whence $r \in \mathfrak{a}$. It follows that r = 0, hence that \mathfrak{a} consists of all polynomials qg.

A polynomial $f(X) \in k[X]$ is called **irreducible** if it has degree ≥ 1 , and if one cannot write f(X) as a product

$$f(X) = g(X)h(X)$$

with $g, h \in k[X]$ and both $g, h \notin k$. Elements of k are usually called **constant polynomials**. A polynomial is called **monic** if it has leading coefficient 1

Let *A* be a commutative ring and f(X) a polynomial in A[X]. Let *A* be a subring of *B*. An element $b \in B$ is called a **root** or a **zero** of f in B if f(b) = 0.

Theorem 4.3. Let k be a field and f a polynomial in one variable X in k[X] of degree $n \ge 0$. Then f has at most n roots in k and if a is a root of f in k, then X - a divides f(X)

Proof. Suppose f(a) = 0. Find q, r s.t.

$$f(X) = q(X)(X - a) + r(X)$$

and $\deg r < 1$. Then

$$0 = f(a) = r(a)$$

Since r = 0 or r is a non-zero constant, we must have r = 0, whence X - a divides f(X).

Corollary 4.4. *Let* k *be a field and* T *an infinite subset of* k. *Let* $f(X) \in k[X]$ *be a polynomial in one variable. If* f(a) = 0 *for all* $a \in T$, *then* f = 0

Corollary 4.5. Let k be a field, and let S_1, \ldots, S_n be infinite subsets of k. Let $f(X_1, \ldots, X_n)$ be a polynomial in n variables over k. If $f(a_1, \ldots, a_n) = 0$ for all $a_i \in S_i$ $(i = 1, \ldots, n)$, then f = 0

Proof. By induction. Let $n \ge 2$ and write

$$f(X_1, \dots, X_n) = \sum_{j} f_i(X_1, \dots, X_{n-1}) X_n^j$$

Corollary 4.6. Let k be an infinite field and f a polynomial in n variables over k. If f induces the zero function on $k^{(n)}$, then f=0

Let k be a finite field with q elements. Let $f(X_1, ..., X_n)$ be a polynomial in n variables over k. Write

$$f(X_1, \dots, X_n) = \sum a_{\bar{v}} X_1^{v_1} \dots X_n^{v_n}$$

If $a_{\bar{v}} \neq 0$ we recall that the monomial $M_{\bar{v}}(X)$ occurs in f. Suppose this is the case, and that in this monomial $M_{\bar{v}}(X)$ some variable X_i occurs with an exponent $v_i \geq q$. We can write

$$X_i^{v_i} = X_i^{q+\mu}$$

If we replace $X_i^{v_i}$ by $X_i^{\mu+1}$ in this monomial, then we obtain a new polynomial which gives rise to the same function as f. The degree of this new polynomial is at most equal to the degree of f

Performing the above operation a finite number of times, for all the monomials occuring in f and all the variables X_1, \ldots, X_n we obtain some polynomial f^* giving rise to the same function as f, but whose degree in each variable is < q

Let f be a polynomial in n variables over the finite field k. A polynomial g whose degree in each variable is < q will be said to be **reduced**. There exists a unique reduced polynomial f^* which gives the same function as f on k^n

Let k be a field. By a **multiplicative subgroup** of k we shall mean a subgroup of the group k^* (non-zero elements of k)

Theorem 4.8. Let k be a field and let U be a finite multiplicative subgroup of k. Then U is cyclic

Proof. **??** Write U as a product of subgroups U(p) for each prime p, where U(p) is a p-group.

Corollary 4.9. *If* k *is a finite field, then* k^* *is cyclic*

An element ζ in a field k s.t. there exists an integer $n \ge 1$ s.t. $\zeta^n = 1$ is called a **root of unity**, or n-th root of unity. Thus the set of n-th roots of unity is the set of roots of the polynomial $X^n - 1$. There are at most n such roots, and they form a group, which is cyclic by Theorem 4.8

The group of roots of unity is denoted by μ . The group of roots of unity in a field K is denoted by $\mu(K)$

A field k is said to be **algebraically closed** if every polynomial in k[X] of degree ≥ 1 has a root in k. If k is algebraically closed then the irreducible polynomials in k[X] are the polynomials of degree 1. In such a case, the unique factorization of a polynomial f of degree ≥ 0 can be written in the form

$$f(X) = c \prod_{i=1}^{r} (X - \alpha_i)^{m_i}$$

Let *A* be a commutative ring. We define a map

$$D:A[X]\to A[X]$$

if $f(X) = a_n X^n + \cdots + a_0$ with $a_i \in A$, we define the **derivative**

$$Df(X) = f'(X) = \sum_{v=1}^{n} va_{v}X^{v-1}$$

Let K be a field and f a non-zero polynomial in K[X]. Let a be a root of f in K. We can write

$$f(X) = (X - a)^m g(X)$$

with some polynomial g(X) relatively prime to X - a. We call m the **multi-plicity** of a in f, and say that a is a **multiple root** if m > 1

Proposition 4.10. *Let* K, f *be as above. The element a of* K *is a multiple root of* f *iff it is a root and* f'(a) = 0

Proposition 4.11. Let $f \in K[X]$. If K has characteristic 0, and f has degree ≥ 1 , then $f' \neq 0$. Let K have characteristic p > 0 and f have degree ≥ 1 . Then f' = 0 iff in the expression for f(X) given by

$$f(X) = \sum_{v=1}^{n} a_v X^v$$

p divides each integer v s.t. $a_v \neq 0$

Since the binomial coefficients $\binom{p}{v}$ are divisible by p for $1 \le v \le p-1$ we see that if K has characteristic p, then for $a,b \in K$ we have

$$(a+b)^p = a^p + b^p$$

Since obviously $(ab)^p = a^p b^p$ the map

$$x \mapsto x^p$$

is a homomorphism of K into itself, which has trivial kernel, hence is injective. Iterating, we conclude that for each integer $r \ge 1$, the map $x \mapsto x^{p^r}$ is an endomorphism of K, called the **Frobenius endomorphism**.

4.2 Polynomials Over a Factorial Ring

5 Algebraic Extensions

5.1 Finite and Algebraic Extensions

Let *F* be a field. If *F* is a subfield of a field *E*, then we also say that *E* is an **extension field** of *F*. We may view *E* as a vector space over *F*, and we say *E* is **finite** or **infinite** extension of *F* according as the dimension of this vector space is finite or infinite.

Let F be a subfield of a field E. An element α of E is said to be **algebraic** over F if there exists elements $a_0, \dots, a_n \in F$, not all equal to 0, s.t.

$$a_0 + a_1 \alpha + \dots + a_n \alpha^n = 0$$

If $\alpha \neq 0$, and α is algebraic, then we can always find elements a_i as above s.t. $a_0 \neq 0$

Let *X* be a variable over *F*. We can also say that α is algebraic over *F* if the homomorphism

$$F[X] \rightarrow E$$

which is the identity on F and maps X on α has a non-zero kernel. In that case the kernel is an ideal which is principal, generated by a single polynomial p(X), which we may assume has leading coefficient 1. We then have an isomorphism

$$F[X]/(p(X)) \cong F[\alpha]$$

and since $F[\alpha]$ is entire, it follows that p(X) is irreducible. Having normalized p(X) so that its leading coefficient is 1, we see that p(X) is uniquely determined by α and will be called the **irreducible polynomial of** α **over** F, denoted by $\operatorname{irr}(\alpha, F, X)$

An extension *E* of *F* is said to be **algebraic** if every element of *E* is algebraic over *F*

Proposition 5.1. *Let E be a finite extension of F*. *Then E is algebraic over F*

Proof. Let $\alpha \in E$, $\alpha \neq 0$. The powers of α

$$1, \alpha, \alpha^2, \dots, \alpha^n$$

cannot be linearly independent over F for all positive integers n, otherwise the dimension of E over F would be infinite. A linear relation between these powers shows that α is algebraic over F.

If *E* is an extension of *F*, we denote by

the dimension of *E* as a vector space over *F*.

Proposition 5.2. *Let* k *be a field and* $F \subset E$ *extension fields of* k*. Then*

$$[E:k] = [E:F][F:k]$$

if $\{x_i\}_{i\in I}$ is a basis for F over k and $\{y_j\}_{j\in J}$ is a basis for E over F, then $\{x_iy_j\}_{(i,j)\in I\times J}$ is a basis for E over k

Proof. Let $z \in E$. By hypothesis there exist elements $\alpha_j \in F$, almost all $\alpha_j = 0$, s.t.

$$z = \sum_{j \in J} \alpha_j y_j$$

For each $j \in J$ there exists elements $b_{ji} \in k$, almost all of which are equal to 0, s.t.

$$\alpha_j = \sum_{i \in I} b_{ji} x_i$$

and hence

$$z = \sum_{i} \sum_{i} b_{ji} x_i y_j$$

This shows that $\{x_iy_j\}$ is a family of generators for E over k. We must show that it is linearly independent. Let $\{c_{ij}\}$ be a family of elements of k, almost all of which are 0, s.t.

$$\sum_{i} \sum_{i} c_{ij} x_i y_j = 0$$

Then for each *j*

$$\sum_{i} c_{ij} x_i = 0$$

since the elements y_i are linearly independent over F. Hence $c_{ij} = 0$

Corollary 5.3. The extension E of k is finite iff E is finite over F and F is finite over k

A **tower** of fields is a sequence

$$F_1 \subset F_2 \subset \cdots \subset F_n$$

of extension fields. The tower is called **finite** iff each step is finite

Let k be a field, E an extension field, and $\alpha \in E$. We denote by $k(\alpha)$ the smallest subfield of E containing both k and α . It consists of all quotients $f(\alpha)/g(\alpha)$ where f,g are polynomials with coefficients in k and $g(\alpha) \neq 0$.

Proposition 5.4. *Let* α *be algebraic over* k. *Then* $k(\alpha) = k[\alpha]$, *and* $k(\alpha)$ *is finite over* k. *The degree* $[k(\alpha):k]$ *is equal to the degree of* $\operatorname{irr}(\alpha,k,X)$

Let E, F be extensions of a field k. If E and F are contained in some field L then we denote by EF the smallest subfield of L containing both E and F, and call it the **compositum** of E and F, in E.

Let *k* be a subfield of *E* and let $\alpha_1, \dots, \alpha_n \in E$. We denote by

$$k(\alpha_1,\ldots,\alpha_n)$$

the smallest subfield of *E* containing *k* and $\alpha_1, \dots, \alpha_n$. Its elements consist of all quotients

$$\frac{f(\alpha_1, \dots, f_n)}{g(\alpha_1, \dots, \alpha_n)}$$

where f, g are polynomials in n variables with coefficients in k, and

$$g(\alpha_1, \dots, \alpha_n) \neq 0$$

We observe that E is the union of all its subfields $k(\alpha_1, \ldots, \alpha_n)$ as $(\alpha_1, \ldots, \alpha_n)$ ranges over finite subfamilies of elements of E. We could define the **compositum of an arbitrary subfamily of subfields of a field** E as the smallest subfield containing all fields in the family. We say that E is **finitely generated** over E if there is a finite family of elements E is E if there is a finite family of elements E is E if E is E.

$$E = k(\alpha_1, \dots, \alpha_n)$$

Proposition 5.5. *Let E be a finite extension of k*. *Then E is finitely generated*

Proof. Let $\{\alpha_1, \dots, \alpha_n\}$ be a basis of *E* as vector space over *k*. Then certainly

$$E = k(\alpha_1, \dots, \alpha_n)$$

If $E = k(\alpha_1, ..., \alpha_n)$ is finitely generated, and F is an extension of k, both F, E contained in L, then

$$EF = F(\alpha_1, \dots, \alpha_n)$$

and EF is finitely generated over F

Lines slanting up indicate an inclusion relation between fields. We also call the extension EF of F the **translation** of E to F, or also the **lifting** of E to F

Let α be algebraic over the field k. Let F be an extension of k, and assume $k(\alpha)$, F both contained in some field L. Then α is algebraic over F. Consider the irreducible polynomial for α .

Suppose that we have a tower of fields

$$k \subset k(\alpha_1) \subset k(\alpha_1, \alpha_2) \subset \cdots \subset k(\alpha_1, \dots, \alpha_n)$$

each one generated from the preceding field by a single element. Assume that each α_i is algebraic over $k, i = 1, \ldots, n$. As a special case of our preceding remark, we note that α_{i+1} is algebraic over $k(\alpha_1, \ldots, \alpha_i)$. Hence each step of the tower is algebraic

Proposition 5.6. Let $E = k(\alpha_1, ..., \alpha_n)$ be a finitely genrated extension of a field k, and assume α_i algebraic over k for each i = 1, ..., n. Then E is finite algebraic over k

Proof. E is finite by Proposition 5.4 and Corollary 5.3. Algebraic by Proposition 5.1

Let C be a certain class of extension fields $F \subset E$. C is **distinguished** if it satisfies the following conditions

- 1. Let $k \subset F \subset E$ be a tower of fields. The extension $k \subset E$ is in C iff $k \subset F$ is in C and $F \subset E$ is in C
- 2. if $k \subset E$ is in C, if F is any extension of k, and E, F are both contained in some field, then $F \subset EF$ is in C
- 3. if $k \subset F$ and $k \subset E$ are in C and F, E are subfields of a common field, then $k \subset FE$ is in C

It is convenient to write E/F instead of $F \subset E$ to denote an extension

Proposition 5.7. *The class of algebraic extensions is distinguished, and so is the class of finite extensions*

Algebraic Closure

Let *E* be an extension of a field *F* and let

$$\sigma: F \to L$$

be an embedding (i.e. an injective homomorphism) of F into L. Then σ induces an isomorphism of F with its image σF , which is sometimes written F^{σ} . An embedding τ of E in L will be said to be **over** σ if the restriction of τ to *F* is equal to σ . We also say that τ **extends** σ . If σ is the identity then we say that τ is an embedding of E **over** F

Real Fields

Ordered Fields

Let *K* be a field. An **ordering** of *K* is a subset *P* of *K* having the following properties

ORD 1. Given $x \in K$, we have either $x \in P$,or x = 0 or $-x \in P$, and these three possibilities are mutually exclusive

ORD 2. If
$$x, y \in P$$
, then $x + y, xy \in P$

K is **ordered by** *P*, and we call *P* the set of **positive elements**

Suppose K is ordered by P. Since $1 \neq 0$ and $1 = 1^2 = (-1)^2$, we see that $1 \in P$. By **ORD 2**, it follows that $1 + \cdots + 1 \in P$, whence K has characteristic 0. If $x \in P$ and $x \neq 0$, then $xx^{-1} = 1 \in P$ implies that $x^{-1} \in P$

Let E be a field. Then a product of sums of squares in E is a sum of squares. If $a, b \in E$ are sum of squares and $b \neq 0$, then a/b is a sum of squares

Consider complex number:)

Let $x, y \in K$. We define x < y to mean that $y - x \in P$. If x < 0 we say that *x* is **negative**.

If *K* is ordered and $x \in K$, $x \neq 0$, then x^2 is positive

If *E* has characteristic $\neq 2$, and -1 is a sum of squares in *E*, then every element $a \in E$ is a sum of squares, because $4a = (1 + a)^2 - (1 - a)^2$

If *K* is a field with an ordering *P*, and *F* is a subfield, then obviously, $P \cap F$ defines an ordering of *F*, which is called the **induced** ordering

Let K be an ordered field and let F be a subfield with the induced ordering. We put |x| = x if x > 0 and |x| = -x if x < 0. An element $\alpha \in K$ is **infinitely large** over F if $|\alpha| \ge x$ for all $x \in F$. It is **infinitely small** over F if $0 \le |\alpha| \le |x|$ for all $x \in F$, $x \ne 0$. α is infinitely large if and only if α^{-1} is infinitely small. K is **archimedean** over F if K has no elements which are infinitely large over F. An intermediate field F_1 , $F_1 \supset F_2 = x$ is **maximal archimedean over** F in F if it is archimedean over F and no other intermediate field containing F is archimedean over F. We say that F is **maximal archimedean in** F if it is maximal archimedean over itself in F

Let K be an ordered field and F a subfield. Let K be an ordered field and F a subfield. Let $\mathfrak o$ be the set of elements of K which are not infinitely large over F. Then $\mathfrak o$ is a ring and that for any $\alpha \in K$, we have α or $\alpha^{-1} \in \mathfrak o$. Hence $\mathfrak o$ is what is called a valuation ring, containing F. Let $\mathfrak m$ be the ideal of all $\alpha \in K$ which are infinitely small over F. Then $\mathfrak m$ is the unique maximal ideal of $\mathfrak o$, because any element in $\mathfrak o$ which is not in $\mathfrak m$ has an inverse in $\mathfrak o$. We call $\mathfrak o$ the **valuation ring determined by the ordering of** K/F

Proposition 6.1. Let K be an ordered field and F a subfield. Let $\mathfrak o$ be the valuation ring determined by the ordering of K/F, and let $\mathfrak m$ be its maximal ideal. Then $\mathfrak o/\mathfrak m$ is a real field.

Proof. Otherwise, we could write

$$-1 = \sum \alpha_i^2 + a$$

with $\alpha_i \in \mathfrak{o}$ and $a \in \mathfrak{m}$. Since $\sum \alpha_i^2$ is positive and a is infinitely small, such a relation is clearly impossible