硅光电池

实验报告

卜一楠 PB22071444 PHYS1008A 教室:1428/1433 座位号:11

2023年6月11日

摘要

本次实验目的在于了解硅光电池工作原理,掌握硅光电池的工作特性:

- 1. 测量不同 L、 R_L 不同下硅电池的工作电压 U。
- 2. 测量不同光照下的短路电流 I_{SC} , 开路电压 U_{OC} .
- 3. 测量不同负载 R_L 的硅光电池输出电压 U 与光照 L 的关系。
- 4. 测量反向偏置下硅光电池输出电压 U 与光照 L 的关系。

实验背景

- 1. 硅光电池是根据光伏效应而制成的将光能转换成电能的一种器件,它的基本结构就是一个 P-N 结。
- 2. 制作: 光电池是在 N(P) 型硅基底上扩散 P(N) 型杂质并作为受光面,构成个 P-N 结后,再经过各种工艺处理,分别在基底和光敏面上制作输出电极,涂上二氧化硅作保护膜。
- 3. 性质: 硅光电池具有 P-N 结偏置特性和光伏效应。

中国科学技术大学物理实验报告 少年班学院 PB22071444 卜一楠 PHYS1008A 2023 年 6 月 11 日

Ħ	Ⅰ录	
1	实验目的	2
2	实验原理 2.1 P-N 结偏置特性	2 2 2 3
3	实验仪器	4
4	实验步骤	4
5	测量结果与分析 5.1 硅光电池输出特性测量	5 6 8 9
6	思考题	9
7	致谢	10
8	附录	10

1 实验目的

- 1. 了解硅光电池工作原理
- 2. 掌握硅光电池的工作特性

2 实验原理

硅光电池是根据光伏效应而制成的将光能转换成电能的一种器件,它的基本结构就是一个 P-N 结。硅光电池 P-N 结的制造,一般是在 P 型硅片上扩散磷形成 N 型薄层,是 N/P 型电池。也可在 N 型硅片上扩散硼形成 P 型薄层,形成 P/N 型电池。

2.1 P-N 结偏置特性

当 P 型和 N 型半导体材料结合时,由于 P 型材料空穴多电子少,而 N 型材料电子多空穴少,结果 P 型材料中的空穴向 N 型材料这边扩散,N 型材料中的电子向 P 型材料这边扩散,扩散的结果使得结合区两侧的 P 型区出现负电荷,N 型区带正电荷,形成一个势垒。由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在 PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当 PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当 PN 结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,使势垒削弱,使载流子扩散运动继续形成电流,这就是 PN 结的单向导电性,电流方向是从 P 指向 N。图 2 所示是半导体 PN 结在零偏、反偏、正偏下的耗尽区。

图 1: 硅光电池 PN 结在零偏,反偏和正偏下的耗尽区

2.2 光伏效应

当硅光电池 PN 结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,当有光照时,电池对光子的本征吸收和非本征吸收都产生光生载流子,但能引起光伏效应的只能是本征吸收所激发的少数载流子。入射光子将把处于价带中的束缚电子激发到导带,激发出的电子空穴对在内电场作用下分别飘移到 N 型区和 P 型区,当在 PN 结两端加负载时就有一光生电流流过负载。基于光伏效应,硅光电池的应用分为两类。一类是作为能源,如把太阳光的能量转换为电能,为太阳能电池,是利用太阳能的重要元件。另一类是作为光电信号转换器,可用于光探测器。

2.3 硅光电池的基本特性

1. 伏安特性

在一定光照下,在光电池两端加一个负载就会有电流流过,当负载很大时,电流较小而电压较大;当负载很小时,电流较大而电压较小。如图 3 所示,硅光电池的伏安特性曲线由二个部分组成:

- (1) 无偏压工作状态,光电流随负载变化很大。
- (2) 反偏压工作状态,光电流与偏压、负载几乎无关(很大的动态范围内)。

伏安特性曲线在横轴上的截距为开路电压,在纵轴上的截距为短路电流。

2. 照度特性

当没有光照时, 硅光电池等效于普通的二极管, 其伏安特性为:

$$I_d = I_0 \left[e^{\frac{qU}{K_B T}} - 1 \right] \tag{1}$$

I 为流过 PN 结的电流, I_0 为反向饱和电流,q 为电子电荷, K_B 为玻尔兹曼常数,T 为绝对温度,U 是加在 PN 结两端电压。对于外加正向电压,I 随 V 指数增长,称正向电流;当外加电压为反向时,在反向击穿电压之内,反向饱和电流基本是个常数。

当有光照时,入射光子把处于价带的束缚电子激发到导带,激发出的电子空穴对在内电场作用下分别飘逸到 N 型区和 P 型区,当在 PN 结两端加负载时就有光生电流流过负载,流过 PN 结两端的电流:

$$I = I_{ph} - I_0 \left[e^{\frac{qU}{K_B T} - 1} \right] \tag{2}$$

式中 I_{ph} 是与入射光的强度成正比的光生电流,其比例系数与负载电阻的大小及硅光电池的结构特性有关。

当硅光电池在短路状态时 (U=0), 短路电流为: $I=I_0$;

当硅光电池在开路状态时(I=0),开路电压为: $U_{OC}=\frac{K_BT}{q}\ln\left(\frac{I_{SC}}{I_0}+1\right)$ 短路电流 I_{SC} 和光照强度 L 成正比,开路电压 U_{OC} 与光照强度 L 的对数成正比。图 4 是在一定光照范围内 I_{SC} 和 U_{OC} 随 L 的变化关系。在线性测量中,光电池通常以电流形式使用,故 I_{SC} 与 L 呈线性关系,是光电池的重要光照特性。实际使用时都接有负载电阻 R_L ,输出电流 I_L 随 L 的增加而非线性缓慢地增加,并且随 R_L 的增大线性范围也越来越小。因此,在要求输出的 I_L 与 L 呈线性关系时, R_L 在条件许可的情况下越小越好,并限制在光照范围内使用。

3. 输出特性

硅光电池负载 R_L 上的电压降 U 和通过 R_L 的电流之积称为硅光电池的输出功率 P。在一定的照度下,不同 R_L 有不同的输出功率 P,输出功率达到最大值 P_m 时的负载电阻 R_m 称为最佳负载电阻。此时能量转换效率最高,且 R_m 随光强而变化。当 R_L = R_m 时: P_m = U_mI_m ,式中 U_m 和 I_m 分别是最佳工作电压和最佳工作电流, P_m 为最大输出功率。硅光电池的输出特性曲线如图 5 所示。

填充因子 FF, 其定义为:

$$FF \equiv \frac{P_m}{U_{OC}I_{SC}} = \frac{U_mI_m}{U_{OC}I_{SC}}$$

中国科学技术大学物理实验报告

FF 是表征硅光电池性能优劣的一个重要参数,越大则输出功率越高,说明硅光电池对光的利 用率越高。FF 取决于入射光强、材料禁带宽度、负载电阻等。

4. 光谱响应特性

少年班学院

硅光电池的光谱响应表征不同波长的光子产生电子-空穴对的能力。各种波长的单位辐射光能 或对应的光子入射到硅光电池上,将产生不同的短路电流,按波长的分布求得其对应的短路电 流变化曲线称为硅光电池的光谱响应曲线。通常把光谱响应的最大值取为 1, 其它值作归一化 处理,这样的曲线也叫相对灵敏度分布曲线。图 6 给出了典型的硅光电池光谱响应曲线。硅光 电池的光谱响应范围是 400 - 1100nm, 使用时必须注意与入射光的波长匹配, 获得较高的光 电子输出效率。实验中常通过测试硅光电池的相对灵敏度表征其光谱响应特性。硅光电池的灵 敏度 K_{λ} 为:

$$K_{\lambda} = \frac{P_{\lambda}}{\eta_{\lambda} T_{\lambda} \Delta \lambda}$$

 P_{λ} 为硅光电池测得光强,也可用短路电流表示; η_{λ} 为光源随波长的发射强度; T_{λ} 为滤光片的 峰值透过率, $\Delta\lambda$ 为滤光片的半宽度。

其相对灵敏度 $K_{r\lambda}$ 为:

$$K_{r\lambda} = \frac{K_{\lambda}}{K_m}$$

 K_m 为不同波长对于 K_{λ} 的最大值。

实验仪器 3

硅光电池、数字万用表、毫安表、电阻箱、溴钨灯、直流稳压电源、光学导轨及支座、开关、 导线。

实验步骤

- 1. 按实验要求, 预热溴钨灯, 连接好电路。
- 2. 硅光电池输出特性测量
 - (1) 不加偏压,用溴钨灯照射硅光电池,溴钨灯到硅光电池的距离 d 为 50cm 时,光照强度 L为 40lx; 电阻箱作为负载。
 - (2) 测量不同 L、不同 R_L 下硅光电池的工作电压 U, 并求出工作电流 I 和功率 P, 绘制 I-U、 $P-R_L$ 曲线。
- 3. 测量不同光照下硅光电池的开路电压 U_{OC} 、短路电流 I_{SC} 。
- 4. 测量不同负载 R_L 的硅光电池输出电压 U 与光照 L 的关系。
- 5. 测量反向偏置下硅光电池输出电压 U 与光照 L 的关系。
- 6. 结束实验,整理仪器。

5 测量结果与分析

5.1 硅光电池输出特性测量

为使测量更加精确,本实验中在测量不超出万用表直流电压 200mV 档量程的条件下均使用 200mV 档进行测量,其余均使用 2V 档。故实验数据中所有精确到十万位的数据均用 200mV 量程测得,所有精确到万位的数据均用 2V 量程测得。

		d=20cm			d=30cm			d=40cm			d=50cm	
R	U(V)	I(mA)	P(mW)									
100	0.03503	0.35030	0.012271	0.01545	0.15450	0.002387	0.00844	0.08440	0.000712	0.00536	0.05360	0.000287
300	0.10313	0.34377	0.035453	0.04627	0.15423	0.007136	0.02533	0.08443	0.002139	0.01603	0.05343	0.0008565
500	0.16476	0.32952	0.054292	0.07694	0.15388	0.01184	0.04218	0.08436	0.003558	0.02671	0.05342	0.001427
700	0.2143	0.3061	0.06561	0.10733	0.15333	0.016457	0.05898	0.08426	0.004969	0.03738	0.05340	0.001996
900	0.2507	0.2786	0.06983	0.13721	0.15246	0.020918	0.07577	0.08419	0.006379	0.04731	0.05257	0.002487
1000	0.2651	0.2651	0.07028	0.15188	0.15188	0.023068	0.08418	0.08418	0.007086	0.05254	0.05254	0.002760
3000	0.3597	0.1199	0.04313	0.3133	0.1044	0.03272	0.2355	0.0785	0.0185	0.15466	0.05155	0.007973
5000	0.3790	0.0758	0.0287	0.3448	0.0690	0.0238	0.3038	0.0608	0.0185	0.2389	0.0478	0.0114
7000	0.3872	0.0553	0.0214	0.3569	0.0510	0.0182	0.3259	0.0466	0.0152	0.2844	0.0406	0.0116
9000	0.3917	0.0435	0.0170	0.3634	0.0404	0.0147	0.3366	0.0374	0.0126	0.3051	0.0339	0.0103
10000	0.3932	0.0393	0.0155	0.3657	0.0366	0.0134	0.3403	0.0340	0.0116	0.3113	0.0311	0.00969

表 1: 硅光电池输出特性测量

使用 ORIGIN 对上表中数据进行拟合:

图 2: 硅光电池 I-U 曲线

图 3: 硅光电池 $P-R_L$ 曲线

分析图像以及数据,在一定光照下,在光电池两端加一个负载就会有电流流过。可以看到,硅 光电池的伏安特性曲线是非线性的: 当负载很小时,电流较大而电压较小,且电流随电压变化不 明显。当负载很大时,电流较小而电压较大,电流随电压变化趋势较为明显。此外,功率与负载 的关系为: 当负载较小时,功率随负载增加而增加。当到达峰值后,功率随负载增加而减小。

人 4. 取八制山	<u>力平,取日</u>	上火料,将	<u> </u>	开
距离 d/cm	20	30	40	50
光照强度 L/lx	250.0	111.1	62.5	40.0
最大输出功率 P/mW	0.0703	0.0327	0.0185	0.0116
最佳负载 R/Ω	1000	3000	5000	7000
U_{OC}/V	0.4057	0.3823	0.3641	0.3496
I_{SC}/mA	0.3532	0.1554	0.0840	0.0528
填充因子 FF	49.06%	55.04%	60.49%	62.84%

表 9. 最大输出功率、最佳负载、填充因子计算

可以看到,随光照强度减小,最大输出功率减小,最佳负载增大,填充因子增大。

5.2 硅光电池开路电压、短路电流与光照特性测量

测量不同光照强度下的开路电压和短路电流。其中短路电流 I 是用 50Ω 负载近似短路。

PB22071444 卜一楠 少年班学院 PHYS1008A 2023年6月11日

表 3:	硅光电池开路电压、	短路电流与光照特性测量

	** • · · · · · · · · · · · · · · · · · ·	0 0,0/12	<u> </u>	C 010	7/0/11/17		
d(cm)	20	25	30	35	40	45	50
$U_{OC}(V)$	0.4057	0.3930	0.3823	0.3728	0.3641	0.3566	0.3496
$I_{SC}(mA)$	0.3532	0.2260	0.1554	0.1110	0.0840	0.0658	0.0528

图 4: Uoc - L 曲线

图 5: I_{SC} - L 曲线

分析图像可知, U与 L近似成对数关系,而 I与 L近似成正比关系。在 ORIGIN 中选取合 适的函数进行拟合:

图 6: $U_{OC}-L$ 的拟合曲线

图 7: $I_{SC}-L$ 的拟合曲线

并且由 ORIGIN 给出的数据,有:

$$U_{OC} = 0.25376 + 0.02771 \ln(L - 8.37841)$$

$$I_{SC} = 0.00144L - 0.00507$$

这与硅光电池的照度特性基本一致,即:

- (1) 当硅光电池在短路状态时(U=0),短路电流为: $I_{SC} = I_{ph}$
- (2) 当硅光电池在开路状态时(I=0),开路电压为: $U_{OC} = \frac{K_BT}{q} \ln \left(\frac{I_{SC}}{Iph} + 1 \right)$

PHYS1008A 2023年6月11日

5.3 不同负载下硅光电池输出电压与光照特性测量

少年班学院

测量不同负载下硅光电池输出电压与光照强度 L 的关系,测得数据如下表。

PB22071444 卜一楠

为使测量更加精确,本实验中在测量不超出万用表直流电压 200mV 档量程的条件下均使用 200mV 档进行测量,其余均使用 2V 档。故实验数据中所有精确到十万位的数据均用 200mV 量 程测得, 所有精确到万位的数据均用 2V 量程测得。

_		12 4.		ス 1年/し	6.16年期日1	电压引儿照付住侧里心水				
R	,	100	Ω	100	1000Ω		5000Ω		10000Ω	
d(cı	m)	U(V)	I(mA)	U(V)	I(mA)	U(V)	I(mA)	U(V)	I(mA)	
20)	0.03506	0.3506	0.2637	0.2637	0.3769	0.07538	0.3910	0.03910	
25	5	0.02263	0.2263	0.2104	0.2104	0.3595	0.07190	0.3764	0.03764	
30)	0.01546	0.1546	0.1523	0.1523	0.3426	0.06852	0.3632	0.03632	
35	5	0.01124	0.1124	0.1112	0.1112	0.3240	0.06480	0.3503	0.03503	
40)	0.00849	0.0849	0.0842	0.0842	0.3021	0.06042	0.3378	0.03378	
45	<u> </u>	0.00661	0.0661	0.0656	0.0656	0.2737	0.05474	0.3241	0.03241	
50)	0.00528	0.0528	0.0526	0.0526	0.2387	0.04774	0.3096	0.03096	

表 4. 不同负载下硅光由池输出由压与光昭特性测量记录

使用 ORIGIN 分析数据:

图 8: 不同负载下的 U-L 曲线

分析图像:

- 1. 负载相同的情况下: 光照强度越大,输出电压越大;并且输出电压的增大趋势逐渐减小;
- 2. 光照强度相同的情况下: 负载越大, 硅光电池的输出电压越大。

5.4 测量反向偏置下硅光电池输出电压 U 与光照 L 的关系

在反向偏置(2.0V)的情况下,测量下硅光电池输出电压 U 与光照 L 的关系:

丰 [.	反向偏署"	下输出电压	II和水阳	T 的坐系
1× 0;	/X U] //III 目	1、棚田田田工		

距离 d(cm)	20	25	30	35	40	45	50
光照强度 L(lx)	250	160	111.1	81.6	62.5	49.4	40.0
电压 U(V)	0.4580	0.2958	0.2059	0.1531	0.1173	0.0935	0.0763

使用 ORIGIN 作图后有:

少年班学院

图 9: $U-L$ 的拟合图像	冬	9:	U $-$	L	的拟合图像
------------------	---	----	-------	---	-------

	A	В
1	方程	y = a + b*x
2	绘图	U(V)
3	权重	不加权
4	截距	0.00849 ± 0.00537
5	斜率	0.00183 ± 4.18745E-5
6	残差平方和	2. 95483E-4
7	Pearson's r	0. 99869
8	R平方(COD)	0. 99739
9	调整后R平方	0. 99687

图 10: U - L 的拟合结果

分析图像可以看到,在反向偏置的情况下,硅光电池的输出电压随光照强度的增加而增加。且 通过曲线可以看到,在反向偏置的情况下,输出电压与光照强度近似呈线性关系。

思考题 6

- 1. 光电池在工作时为什么要处于零偏或反偏?
 - (1) 零偏或反偏状态增强光电效应: 光电池在零偏或反偏状态下, 光电池的结构会形成电场, 这 个电场有助于分离光生电荷,并促使它们朝着电极移动,从而产生电流。因此,处于零偏 或反偏状态可以增强光电效应,提高光电池的转换效率。
 - (2) 提供适当的能量障垒:零偏或反偏状态下,光电池的 P-N 结构会形成能量障垒。这个能量 障垒有助于阻止热激发的电子和空穴的自由运动,从而减少非辐射复合。非辐射复合是指 电子和空穴在结构中重新组合而不产生光电流的过程。通过形成能量障垒,零偏或反偏状 态可以减少非辐射复合,提高光电池的效率。
 - (3) 控制载流子的流动方向: 在零偏或反偏状态下, 电场的作用可以帮助控制光生载流子的流 动方向。电场会使电子和空穴分别向着不同的电极移动,从而形成电流。这种有序的载流 子流动有助于提高光电池的效率和性能。

中国科学技术大学物理实验报告

- 2. 当增加光照强度, 硅光电池的哪些参数发生变化?
 - (1) 开路电压: 在其他条件相同的情况下,由表中数据比较可知开路电压 U 随光照强度的增加而增加。
 - (2) 短路电流:由表中数据可推知,光照强度的增加会导致更多的光生载流子产生,并加速它们的流动。因此,短路电流通常会随着光照强度的增加而增加。
 - (3) 最大输出功率: 在其他条件相同的情况下,由表中数据比较,得最大输出功率 P 随光照强度增加而减小。
 - (4) 最佳负载: 其他条件相同,由表中数据可知,最佳负载 R 随光照强度增加而减小。
 - (5) 填充因子: 光照强度的增加可以影响光电池中载流子的流动和复合速率,从而改变填充因子。实验数据显示,其他条件相同,填充因子 FF 随光照强度增加而增加。

7 致谢

感谢中国科学技术大学物理实验教学中心和代如成老师的指导!

8 附录

原始实验记录