

Logica

Dipartimento di Informatica – Università di Verona

Corso di Margherita Zorzi 03/10/2023 - 14/02/2024

Note a cura di: Imbriani Paolo

Logica Appunti 09.10.23

Principio di Induzione sull'insieme dei numeri naturali

Il *principio di induzione* (tecnica di dimostrazione) afferma che per dimostrare la veridicità di una proprietà nell'insieme dei numeri naturali è sufficiente verificare che:

- 1) essa sia vera in zero (caso base);
- 2) che si suppone essere vera per un numero arbitrario "n" allora essa è vera anche per il numero successivo "n+1".

Principio di Induzione sull'insieme PROP (di cui PROP è l'insieme delle proposizioni delle formule della logica proposizionale)

AT = Simboli Proposizionale + Assurdo

Il *principio di induzione* afferma che per dimostrare la veridicità di una proprietà dell'insieme prop è sufficiente verificare che

- 1) α gode della proprietà P ($\alpha \in P$), $\alpha \in AT$
- 2) sia α che ¬ α godono della proprietà P
- 3) se α e β godono della proprietà P, allora anche ($\alpha => \beta$), ($\alpha \& \beta$), ($\alpha \parallel \beta$), ($\alpha \ll \beta$)

QUINDI

$\forall \phi \in PROP, P[\phi]$

COSA è UNA FUNZIONE dati DUE PUNTI e UNA RELAZIONE

A, B (insiemi)

Relazione f contenuta nei due insiemi A (si chiama dominio) e B (codominio)

$$A \times B = \{ (a, b) | a \in A, b \in B \}$$

R² RxR -> Piano Cartesiano... due punti sul piano sono una coppia

f è una *funzione* quando *se e solo se* ∀**a∈A esiste unico b∈B | (a, b)** ∈ **f**

anche scritto nella forma:

$$f(a) = b$$

ESEMPIO CON LA PROPRIETÀ PI GRECO

Definizioni ricorsiva di funzioni sull'insieme delle formule PROP

 $\pi: PROP \rightarrow N$

Presa in input una formula restituisco un numero

- 1) se α è AT (atomica) allora ho 0 parentesi
- 2) EQUAZIONE GENERALE DI UNA FORMULA:

$$\pi[(\neg\alpha)]=\pi[(\alpha)]+2$$

3) Quando ho una formula PROP binaria, deve valere per le formula atomiche (+2) contando le parentesi per la formula composta

ESEMPIO

$$\pi[(P2 \rightarrow P1)] = \pi[P2] + \pi[P1] + 2 = 0 + 0 + 2 = 2$$

 $\pi[(P1 \lor (P2 \lor P1))] = \pi[p1] + \pi[p2 \lor p1] + 2 = 0 + (0 + 0 + 2) + 2 = 4$

Esercizio: 1

Ogni α dell'insieme delle formule PROP ha un numero pari di parentesi

Per ogni α appartenente a PROP P[α] <=> $\pi[\alpha]$ è pari

- 1) $P[\alpha]$, $\alpha \in at$ se $\alpha \in at \pi[\alpha] = 0$ quindi
- 2) $P[\alpha]$, $P[\gamma \alpha]$?

$$P[\alpha] <=> \pi[\alpha] \text{ pari}$$

$$\pi[(\gamma \alpha)] = \pi[\alpha] + 2$$

$$quindi P[\gamma \alpha]$$
3) suppongo $P(\alpha)$, $P(\beta)$ allora $\pi[\alpha] = n e \pi[\beta] = n$ PARI quindi se $\pi(\alpha \circ \beta) = \pi[\alpha] e \pi[\beta] + 2$

ho dimostrato per induzione che la proprietà P vale per qualsiasi formula $\rightarrow \forall \phi \in PROP, P[\phi]$

Definizione ricorsiva di rango e sottoformula

- Rango r di una proposizione (SIZE, Dimensione della formula)

r : PROP -> N

1)
$$r[\phi] = 0$$
 $\phi \in At$
2) $r[\gamma \phi] = 1 + r[\phi]$
3) $r[(\phi \circ \gamma)] = 1 + max\{r[\phi], r[\gamma]\}$

- Sottoformula sub di una proposizione

Preso in input una formula di proposizione mi restituisce un insieme

INSIEME DELLE PARTI

Dato un insieme A con $2^A -> P[A]$ si denota un insieme delle parti di A; $2^A = \{x \mid x \text{ contenuto in } A\}$

$$A = \{3, 5\}$$

$$2^A = \{ \emptyset, \{3\}, \{5\}, \{3, 5\} \}$$

sub[α]

$$\alpha = ((p_2 V p_1) -> p_0)$$

$$sub[\alpha] = {\alpha, p_2, p_1, p_0, (p_2 V p_1)}$$

Logica Appunti 10.10.23

Insieme delle sottoformule (definizione)

1)
$$sub[\phi] = {\phi} se \phi \in At$$

2)
$$sub[(\neg \phi)] = \{(\neg \phi)\} \cup sub[\phi]$$

3)
$$sub[(\phi \circ \gamma)] = \{(\phi \circ \gamma)\} \cup \{sub[\phi]\} \cup \{sub[\gamma]\}$$

Vogliamo dimostrare il seguento teorema:

Se $\alpha \in \text{sub}[\beta] \& \alpha \neq \beta$ (α sottoformula propria)

allora $r[\alpha] < r[\beta]$

Dimostro per induzione su β: (ragiono sulla sua "forma")

1) $\beta \in At$

 β non ha sottoformule proprie quindi la premessa è falsa e di conseguenza è **vero (Il falso implica il vero)**

- 2) Se $\beta = (\neg \beta_1)$: se $\alpha \in \text{sub}[\beta]$ e $\alpha \neq \beta$ allora $\alpha \in \text{sub}[\beta_1]$ e si dimostra $r[\alpha] \leq r[\beta_1]$
 - a) se α ∈ sub[β₁] e α ≠ β₁ per ipotesi induttiva r[α] < r[β₁]
 b) α = β₁ r[α] = r[β₁]

Quindi

(per definizione)

$$r[\neg \beta_1] = 1 + r[\beta_1] \ge 1 + r[\alpha] > r[\alpha]$$

$$-> r[\alpha] < r[\beta]$$

- 3) $\beta = (\beta_1 -> \beta_2)$ se α è sottoformula di β e $\alpha \neq \beta$ allora $\alpha \in sub[\beta_1]$ o $\in sub[\beta_2]$
- 1) se $\alpha \in sub[\beta_1]$
 - a) se $\alpha \neq \beta_1 = r[\alpha] < r[\beta_1]$ i.i su β_1

b) se
$$\alpha = \beta_1 = r[\alpha] = r[\beta_1]$$
 i.i su β_1

da a) e b)
$$r[\alpha] \le r[\beta_2]$$

2) se
$$\alpha \in \text{sub}[\beta_2]$$

a) se
$$\alpha \neq \beta_2 = r[\alpha] < r[\beta_2]$$
 i.i su β_2

b) se
$$\alpha = \beta_2 = r[\alpha] = r[\beta_2]$$
 i.i su β_2
da a) e b) $r[\alpha] \le r[\beta_2]$

$$r[(\beta_1 => \beta_2)] = 1 + \max\{r[\beta_1], \, r[\beta_2]\} \geq 1 + \, r[\alpha] > r[\alpha]$$

Definire questa funzione per ricorsione

Esercizio 1

#: "lunghezza delle formule proposizionali"

es.
$$\#[(p -> q)] = 5$$

INPUT = PROP OUTPUT = NUMERO

1)
$$\#[\phi] = 1, \#[\phi] \in At$$

2)
$$\#[(\neg \phi)] = \#[\phi] + 3$$

3) Se
$$\varphi = (\varphi \circ \gamma)$$
 allora $\#[\varphi] = \#[\varphi] + \#[\gamma] + 3$

Esercizio 2

Vogliamo dimostrare la seguente disuguaglianza.

$r[\phi] \le \#[\phi]$

Tradotta: Il rango di φ è minore o uguale alla lunghezza delle formule proposizionale di φ Dimostro per induzione su φ :

1)
$$\phi \in At$$

Per definizione: $\#[\phi] > r[\phi]$

2)
$$\varphi = (\neg \varphi_1)$$
 : se $r[\varphi_1] \le \#[\varphi_1]$ allora si dimostra $r[\varphi] \le \#[\varphi]$

$$\#[\neg \phi_1] = 3 + \#[\phi_1] \ge 3 + (1 + r[\phi]) > r[\phi]$$

3)
$$\varphi = (\varphi_1 \circ \varphi_2)$$
 : se $r[\varphi_1] \le \#[\varphi_1]$ o $r[\varphi_2] \le \#[\varphi_2]$ allora si dimostra $r[\varphi] \le \#[\varphi]$

$$\#[(\varphi_1 \circ \varphi_2)] = 3 + \#[\varphi_1] + \#[\varphi_2] \ge 3 + (1 + \max\{r[\varphi_1], r[\varphi_2]\}) > r[\varphi]$$

Logica 16.10.23 Appunti

Semantica delle formule proposizionali (F: Proposizionali)

α -> True (1) or False (0)

Valutazione delle formule logiche

V: PROP -> {0, 1}

 $V(p_1) = ? \rightarrow può essere o 0 o 1$

<mark>√(α) = √(¬α)</mark> Non va bene!

<mark>√(α) = 0/1 ∀α</mark>-Non va bene!

V: PROP -> {0,1} è una valutazione se

<=> = Se e solo se

1)
$$V(\alpha \& \beta) = 1 <=> V(\alpha) = 1 \& V(\beta) = 1$$

2)
$$V(\alpha \text{ OR } \beta) = 1 \iff V(\alpha) = 1 \text{ OR } V(\beta) = 1$$

3)
$$V(\neg \alpha) = 1 <=> V(\alpha) = 0$$

4)
$$V(\frac{1}{2}) = 0$$

5)
$$V(\alpha => \beta) = 1 <=> V(\alpha) = 0 \text{ OR } V(\beta) = 1$$

$$V(\alpha => \beta) = 0 <=> V(\alpha) = 1 \text{ AND } V(\beta) = 0$$

- Valutazione Atomica

v è detta atomica se v : At -> $\{0, 1\}$ e $V(\perp) = 0$

Th data una valutazione atomica v esiste ed è anche unica una valutazione

 $[|\cdot|]_v$ = parentesi denotazionali

$$[|\cdot|]_v$$
: PROP => $\{0, 1\}$ t.c $[|\alpha|]_v$ = $V(\alpha)$ per $\alpha \in At$

$$[|a \text{ OR } \beta|]_v = 1 \iff [|a|]_v = 1 \text{ OR } [|\beta|]_v = 1$$

```
α β | α OR β0 0 | 00 1 | 11 0 | 11 1 | 1
```

Il valore di verità di una formula è determinato (universalmente) dai valori dei suoi dati.

Ai valori atomici bisogna assegnare una variabile di vero o falso perché da soli non hanno valore

$$\begin{split} V & [|\alpha|]_{v1} & [|p2 -> p1|] = 1 <=> \neg p2 \text{ OR P1} \\ & [|[|p2 -> p1|] \text{ OR } p2|]_{v1} = 1 <=> [|p2 -> p1|] = 1 \text{ OR } [|p2|] = 1 \\ & [|\alpha|]_{v2} ? \\ & \underline{Th} \\ & \phi \in \mathsf{PROP} \text{ sia } \phi^{\mathsf{At}} = \{\mathsf{P} \mid \mathsf{P} \in \mathsf{At \& P \grave{e} in } \phi\} \\ & \mathsf{Siano} \ v_1 e \ v_2 \ valutazioni \ \mathsf{proprie} \\ & \mathsf{t.c} \ \forall \mathsf{p} \in \phi^{\mathsf{At}} \ v_1[\mathsf{p}] = v_2[\mathsf{p}] \\ & \mathsf{allora} \ [|\phi|]_{v1} = [|\phi|]_{v2} \end{split}$$

- Tautologia

Definizione [Tautologia] a ∈ PROP è detta tautologia se per ogni valutazione [|a|]_v = 1

Le istanze di a sono infinite!

Lezione Logica 17.10.23

Es1

```
|= a -> a

\forall v. [|a \rightarrow a|]_v = 1

(se e solo se)

[|a \rightarrow a|]_v = 1 <=> [|a|]_v = 0 \text{ OR } [|a|]_v = 1 \checkmark \text{ Di per sé è già dimostrato come definizione}
```

<u>Es2</u>

|= ((
$$\alpha$$
 AND β) -> α)
 $\forall v. [|(α AND β) -> $\alpha|]_v = 1$
<=> [|(α AND β)|]_v = 0 OR [| α |]_v = 1
<=> ([| α |]_v = 0 OR [| β |]_v = 0) OR [| α |]_v = 1$

<u>Es3</u>

|= ((
$$\alpha$$
 -> (β -> α))
 $\forall v. [|(\alpha -> (\beta -> \alpha))|]_v = 1$
<=> [| α |]_v = 0 OR [|(β -> α)|]_v = 1
<=> [| α |]_v = 0 OR ([| β |]_v = 0 OR [| α |]_v = 1)

Ho tutte le possibilità => Vero (Per a)

<u>Es4</u>

$$= ((a -> (\beta AND a)) NO TAUTOLOGIA$$

VERO solo se
$$|= (a -> (a AND a))$$

Bisogna trovare un'istanza di α e β e una valutazione v

Assumo che α sia P_0 e β sia P_1 Esiste (almeno) una valutazione t.c. $[|(P_0 \rightarrow (P_0 \text{ AND } P_1))|]_v = 0$

$$V[P_0] = 1 \quad V[P_1] = 0$$

Ho trovato un'istanza per la quale mi falsifica la tautologia.

CONTROMODELLO

$$[|(P_0 -> (P_0 \text{ AND } P_1))|]_v = 0$$

 $\forall v. [|(P_0 -> (P_0 \text{ AND } P_1))|]_v = 0$
 $<=> [|P_0|]_v = 1 \text{ AND } [|(P_0 \text{ AND } P_1)|]_v = 0$
 $<=> [|P_0|]_v = 1 \text{ OR } ([|P_0|]_v = 0 \text{ OR } [|P_1|]_v = 0)$

= Globalmente, è vero! (è vero che sia falso) □

TIP Se hai il dubbio, su quali valori dare a certi elementi nella formula, costruisci la tabella di verità

? $|= \phi$ -> Decidibile in Informatica

Soddisfacibilità

 $\alpha \in PROP$ è soddisfacibile se esiste v $[|\alpha|]_v = 1$

Sono una **tautologia** se ogni mia valutazione è sempre vera Sono **non soddisfacibile** se almeno una valutazione mi rende l'insieme falso

-> Non esiste v t.c. $[|a|]_v = 1$

Γ insieme di formule proposizionali Γ è soddisfacibile quando

Esiste una v t.c. $\forall \phi \in \Gamma [|\phi|]_v = 1$

Sono soddisfacibile se almeno una mia valutazione è vera

Conseguenza Logica

IPOTESI => TESI

 Γ , Σ , Δ insiemi arbitrari di formule α , β , γ ...

 $\Gamma \mid = a \rightarrow si può leggere in due modi$

- 1) da Γ segue semanticamente α
- 2) α è conseguenza logica/semantica di Γ

Definizione -> Γ |= α

 $\Gamma \mid = \alpha$ se e solo se **per ogni v** se (per ogni $\gamma \in \Gamma [|\gamma|]_{\nu} = 1$) allora $[|\alpha|] = 1$

$$([|\Gamma|]_{v} \neq 1) \neq ([|\Gamma|]_{v} = 0)$$

$$[|\Gamma|]_v \neq 1$$
 -> Se esiste $\alpha \in \Gamma$ t.c. $[|\alpha|]_v = 0$

Es5

a AND
$$\beta \mid = a$$

v generica
$$[|(\alpha AND \beta)|]_v = 1 \Rightarrow [|\alpha|]_v = 1$$

$$[|(\alpha \text{ AND } \beta)|]_v = 1$$

<=> $[|\alpha|]_v = 1 \text{ AND } [|\beta|]_v = 1$
=> $[|\alpha|]_v = 1$

Es6 VERIFICARE UNA TAUTOLOGIA POSSIBILE ESERCIZIO ALL'ESAME!

$$\begin{array}{c} (\alpha \mbox{-}\!\!> \beta), \ \alpha \mbox{\,|=\,}\beta \\ & \{\beta_1, \ \beta_2, \ ... \ \beta_n \ \} \\ & \beta_1, \ \beta_2, \ ... \ \beta_n \\ & \Gamma \mbox{\,\,U\,} \Delta \mbox{\,|=\,} \alpha \\ & \Gamma \mbox{\,\,,\,} \Delta \mbox{\,|=\,} \alpha \\ & \gamma \mbox{\,\,,\,} = congiunzione \\ \end{array}$$

data una v generica $[|(\alpha -> \beta), \alpha|]_v = 1 => [|\beta|]_v = 1$

$$[|(\alpha -> \beta), \alpha|]_v = 1$$

 $<=> [|(\alpha -> \beta)|]_v = 1 \text{ AND } [|\alpha|]_v = 1$
 $<=> ([|\alpha|]_v = 0 \text{ OR } [|\beta|]_v = 1) \text{ AND } [|\alpha|]_v = 1$

=> Globalmente è vero [|β|]_v = 1

Es7 A CASA

$$\Gamma, \ \alpha \mid= \beta => \Gamma \mid= \alpha -> \beta \qquad \qquad \Gamma = \{\beta_1, \dots \beta_n\} \\ \Gamma, \ \alpha \\ \beta_1, \ \beta_2, \dots \beta_n, \ \alpha$$

v.gen $[|\Gamma, \alpha|]_v = 1 => [|\beta|]_v = 1$

$$[|\Gamma, \alpha|]_v = 1$$

<=> $[|\Gamma|]_v = 1$ AND $([|\alpha|]_v = 1 => [|\beta|]_v = 1)$

(L'implica grande si può definire metalinguaggio) metalinguaggio viene usato per spiegare e definire il linguaggio

=
$$([|\Gamma|]_v \neq 1 \text{ OR } [|\alpha|]_v = 0) \text{ OR } [|\beta|]_v = 1$$

<=> $[|\Gamma|]_v \neq 1 \text{ OR } [|\alpha|]_v = 0 \text{ OR } [|\beta|]_v = 1$
<=> $[|\Gamma|]_v \neq 1 \text{ OR } [|\alpha -> \beta|]_v = 1$
<=> $[|\Gamma|]_v = 1 => [|\alpha -> \beta|]_v = 1$

Es 8

=> Globalmente è vero $[\alpha AND \beta]_v = 1$

Lezione 23.10.23 Logica Appunti

CONVENZIONI

1) Omettiamo quando possibile alcune parentesi

$$(a \rightarrow \beta) \sim a \rightarrow \beta$$

- 2) Precedenze tra connettivi
 - a) La negazione è quella che ha più precedenza
 - b) poi AND, OR α OR β AND γ (α OR β) AND $\gamma \neq \alpha$ OR (β AND γ)
 - c) poi -> , che associa a destra α_1 -> α_2 -> α_3 ~ α_1 -> $(\alpha_2$ -> $\alpha_3)$

$$a_1 -> a_2 -> a_3 -> a_1 -> (a_2 -> a_3)$$

$$\delta = (\gamma -> ((\neg \alpha) \text{ OR } \beta))$$

=> metaconnettivo

se allora
$$\Gamma, \alpha \models \beta \Rightarrow \Gamma \models \alpha \Rightarrow \beta$$

$$def$$

$$\Gamma, \alpha \models \beta \iff \forall v. [|\Gamma, \alpha|]_v = 1 \implies [|\beta|]_v = 1$$

$$\forall v. [|\Gamma, \alpha|] \neq 1 \text{ OR } [|\beta|]_v = 1 \iff \forall v. [|\Gamma|]_v \neq 1 \text{ OR } [|\alpha|]_v = 0 \text{ OR } [|\beta|]_v = 1 \iff \forall v. [|\Gamma|]_v \neq 1 \text{ OR } ([|\alpha|]_v = 0 \text{ OR } [|\beta|]_v = 1) \iff \forall v. [|\Gamma|]_v = 1 \implies [|\alpha \Rightarrow \beta|]_v = 1$$

$$\iff \Gamma \models \alpha \Rightarrow \beta$$

Definizione di sostituzione p

$$\begin{array}{ccc} \phi \in \mathsf{PROP} & \phi[\psi/p] & \psi \in \mathsf{PROP} \\ & p \text{ simbolo proposizionale} \\ & che \text{ occorre in PROP} \end{array}$$

$$\phi = ((P_1 -> (P_5 OR P_1)) AND P_3)$$

$$\phi[\psi/P_1] = ((\psi \rightarrow (P_5 \text{ OR } \psi)) \text{ AND } P_3)$$

DEFINIZIONE

•
$$\phi[\psi/p] = \bot$$
 se $\phi = \bot$

- $\phi[\psi/p] = \phi$ se $\phi \in At e \phi \neq p$
- $\phi[\psi/p] = \psi \phi = p$
- $(\neg \phi)[\psi/p] = \neg(\phi[\psi/p])$
- $(\phi_1 \circ \phi_2)[\psi/p] = (\phi_1[\psi/p] \circ \phi_2[\psi/p])$

SE E SOLO SE SINTATTICO

<->

$$\alpha < -> \beta = (\alpha -> \beta) \text{ AND } (\beta -> \alpha)$$

Th se |=
$$\phi_1 <-> \phi_2$$
 (|= ($\phi_1 -> \phi_2$) AND ($\phi_2 -> \phi_1$) allora |= $\psi[\phi_1/p] <-> \psi[|\phi_2/p|]$

$$|= a < -> \beta$$
 $\sim> a \approx \beta$

LEMMA (PER CASA)

$$[|\phi < -> \psi|]_v = 1$$

 $<=> [|\phi|]_v = [|\psi|]_v$
 $\forall v. [|\phi < -> \psi|] = 1$
 $<=> [|\phi -> \psi|]_v = 1 \text{ AND } [|\psi -> \phi|]_v = 1$
 $<=> ([|\phi|]_v = 0 \text{ OR } [|\psi|] = 1) \text{ AND } ([|\psi|]_v = 0 \text{ OR } [|\phi|] = 1)$

Non si potrà mai avverare se ψ ≠ φ

Lezione 24.10.23 Logica Appunti

Relazione di equivalenza

 $A \quad R \subseteq A \times A$

R è detta relazione di equivalenza sse (se e solo se) $(x,y) \in R$ x R y (x in relazione con y)

- 1. ∀a ∈ Aa R a riflessività
- 2. $\forall a, b, c \in A$ (a R b & b R c) => a R c transitività
- 3. $\forall a, b \in A$ a R b => b R a simmetria

$$\phi \approx \psi <=> |= \phi <-> \psi$$

<u>Th</u>

≈ è una relazione di equivalenza

1.
$$\forall \phi \in PROP \quad \phi \approx \phi$$

|=
$$\phi <-> \phi <=> \forall v. [|(\phi -> \phi) AND (\phi -> \phi)|]_v = 1$$

<=> $\forall v. [|\phi -> \phi|]_v = 1$
<=> $\forall v. ([|\phi|]_v = 0 OR [|\phi|]_v = 1)$

2. $\forall \phi, \psi \in PROP \ \phi \approx \psi \Rightarrow \psi \approx \phi$

v generica
$$[|\phi <-> \psi|]_v = 1$$
 <=> $[|(\phi -> \psi) \text{ AND } (\psi -> \phi)|]_v = 1$ <=> $[|(\phi -> \psi)]_v = 1 \text{ AND } [|\psi -> \phi|]_v = 1$ <=> $[|(\psi -> \phi) \text{ AND } (\phi -> \psi)|]_v = 1$ <=> $\phi \approx \psi$

3. $\forall \phi, \psi, \gamma \in PROP((\phi \approx \psi) \& (\psi \approx \gamma)) \Rightarrow (\phi \approx \gamma)$

$$v$$
 generica $[|φ <-> ψ|]_v = 1 & $[|ψ <-> γ|]_v = 1) => [|φ <-> γ|]_v = 1$$

Il risultato segue dal lemma

TAUTOLOGIE NOTEVOLI

- 1) $\mid = \neg(\phi \text{ AND } \psi) <-> (\neg \phi \text{ OR } \neg \psi)$ LEGGI DI DE MORGAN
- 2) $\mid = \neg(\phi \text{ OR } \psi) <-> (\neg\phi \text{ AND } \neg\psi)$
- 3) $|= \phi <-> \neg \neg \phi$ NEGAZIONE INVOLUTIVA
- 4) |= $(\phi \text{ AND } \psi) <-> (\phi \text{ OR } \psi)$ **COMMUTATIVITÀ**
- 5) $(\phi OR \psi) <-> (\phi AND \psi)$
- 6) |= ϕ AND (ϕ OR ψ) <-> ((ϕ AND ψ) OR (ϕ AND ψ)) **DISTRUTTIVITÀ**
- 7) $\models \varphi \text{ OR } (\varphi \text{ AND } \psi) \iff ((\varphi \text{ OR } \psi) \text{ AND } (\psi \text{ OR } \varphi))$
- 8) $|= \phi \text{ OR } (\psi \text{ OR } \psi) <-> (\phi \text{ OR } \psi) \text{ OR } \psi \text{ ASSOCIATIVITÀ}$
- 9) $\mid = \phi \text{ AND } (\psi \text{ AND } \psi) <-> (\phi \text{ AND } \psi) \text{ AND } \psi$

* ESERCIZIO (DE MORGAN)

$$\begin{split} |= \neg (\phi \ \mathsf{OR} \ \psi) \ -> \ (\neg \phi \ \mathsf{AND} \ \neg \psi) \\ \forall \mathsf{V} \ . \ \ [|\neg (\phi \ \mathsf{OR} \ \psi) \ -> \ (\neg \phi \ \mathsf{AND} \ \neg \psi)|]_{\mathsf{V}} = 1 \\ <=> \ [|\neg (\phi \ \mathsf{OR} \ \psi)|]_{\mathsf{V}} = 0 \ \mathsf{OR} \ [|\neg \phi \ \mathsf{AND} \ \neg \psi|] = 1 \\ <=> \ [|\phi \ \mathsf{OR} \ \psi|]_{\mathsf{V}} = 1 \ \mathsf{OR} \ [|\neg \phi|] = 1 \ \mathsf{AND} \ [|\neg \psi|] = 1)) \\ <=> \ [|\phi|]_{\mathsf{V}} = 1 \ \mathsf{OR} \ [|\psi|]_{\mathsf{V}} = 1 \ \mathsf{OR} \ ([|\phi|]_{\mathsf{V}} = 0 \ \mathsf{AND} \ [|\psi|]_{\mathsf{V}} = 0) \end{split}$$

Abbiamo coperto tutti i casi -> OK □

Ma con il Se e solo se...?

|= ¬(φ OR ψ) <-> (¬φ AND ¬ψ)

$$\forall$$
V . [|¬(φ OR ψ) <-> (¬φ AND ¬ψ)|]_v = 1
<=> [|φ OR ψ|] = 0
<=> [|φ|] = 0 AND [|ψ|] = 0
<=> [|¬φ|] = 1 AND [|¬ψ|] = 1
<=> [|¬φ AND ¬Ψ|]_v = 1

MODUS PONENS (Regola d'Inferenza)

Nella logica, il modus ponens (MP), accorciamento del latino modus ponendo ponens ("modo che afferma", lett. "modo che pone con l'aver posto")

Il Modus Ponens è un argomento di inferenza valido nella logica proposizionale. È una delle regole di inferenza più fondamentali e viene spesso utilizzato nelle dimostrazioni e nei ragionamenti logici. La forma generale del Modus Ponens è la seguente:

```
1. Se P è vero.2. Se P implica Q.
```

Allora possiamo concludere che Q è vero.

In simboli, se abbiamo $P \rightarrow Q$ (leggi: "P implica Q") e P è vero, allora possiamo affermare che Q è vero.

Γ , $\neg \alpha \mid = \bot = \Rightarrow \Gamma \mid = \alpha$ PRINCIPIO RAA (Reductio ad Absurdum)

$$\Delta \mid = \bot$$
 [| \bot |]_v = 0 (Falso Sintattico = Falso Semantico)

$$\forall v. [|\Delta|]_v = 1 => [|\bot|]_v = 1$$
 $<=> [|\Delta|]_v \neq 1 \text{ OR } [|\bot|]_v = 1 \text{ X}$

Essendo che Il falso non può essere il vero semantico, posso dire che esiste una formula gamma dentro delta tale che la sua valutazione semantica sia uguale a 0.

$$\forall v. \exists \gamma \in \Delta t.c. [|\gamma|]_v = 0 \quad \Delta |= \bot \Delta \hat{e} \text{ insoddisfacibile}$$

Se $\Gamma \cup \{ \neg \alpha \}$ insoddisfacibile allora Γ segue α

La dimostrazione per assurdo è una tecnica logica utilizzata per dimostrare la verità di un'affermazione dimostrando l'ipotesi contraria porta ad una contraddizione o ad un risultato impossibile. In altre parole, si assume temporaneamente che l'affermazione da dimostrare sia falsa e si cerca di dimostrare che questa assunzione porta ad una situazione impossibile o illogica.

Il procedimento della dimostrazione per assurdo segue generalmente questi passaggi:

- 1) Si assume che l'affermazione da dimostrare (chiamiamola P) sia falsa. Quindi si suppone ¬P.
- 2) Si utilizzano le regole della logica per eseguire passi logici e deduzioni basati sull'assunzione ¬P.
- 3) Si giunge ad una conclusione che è chiaramente contradditoria o impossibile.
- 4) **INFERENZA** Poiché l'assunzione contraria conduce ad una contraddizione, si conclude che l'affermazione originale P, sia vera.

ESEMPIO

Voglio dimostrare che rad(2) sia irrazionale.

Provo a dimostrare che rad(2) sia razionale, giungendo ad una conclusione impossibile o illogica. Pertanto, rad(2) è irrazionale.

Dire "Non Alpha" è come dire che alpha implica il falso.

$$\Gamma \models \neg \neg \alpha$$

 $\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\neg \neg \alpha|]_v = 1)$
 $\forall v. ([|\Gamma|]_v = 1 \Rightarrow [|\alpha|]_v = 1) = \Gamma \models \alpha$

LEZIONE LOGICA 30.10.23

DEDUZIONE

Come formalizzare dentro al sistema la nozione di "Deduzione"

Γ|-

Dedurre -> Riuscire a dimostrare qualcosa attraverso un insieme di ipotesi

Ipotesi : ciò che posso assumere essere vero

<u>Tesi</u>: ciò che voglio dimostrare a partire dalle <u>ipotesi</u>

<u>Sistema DEDUTTIVO</u> regole logiche che trasformano formule in altre formule seguendo un paradigma

SISTEMA di DEDUZIONE NATURALE

 $D(\pi) D_1 \dots D_1 \dots$

- D D
- α β <- fatti dimostrati
 - hp(D) l'insieme delle ipotesi usate nella dim. D
 - a (un'hp è anche tesi)
 - Per ciascuno obiettitivo -> una regola di eliminazione
 -> Introduzione

$$\begin{array}{ccc} D_1 & D_2 \\ \alpha & \alpha -> \beta \\ \hline & & \\ \beta & & \end{array} \label{eq:continuous} \ \, \text{(-> E) MODUS PONENS}$$

- a }D } tra le hp potrei avere aB }
 - [a]* ho utilizzato a
 - D α "scaricata"/discharged -> α non fa più parte delle ipotesi

$$hp(D) = hp(D) \setminus \{a\}$$

(quando scarico a devo scaricare tutte le sue occorrenze)

$$[|\beta|]_v = 1 \Rightarrow [|\alpha \rightarrow \beta|]_v = 1$$

 $[|\alpha|]_v = 0 \text{ OR } [|\beta|]_v = 1$

- α, β
- compongo D₁ ... D_k attraverso le regole le regole (->E, ->I)
- nient'altro è derivazione

ESERCIZIO 1

|- -> Derivabilità

|- α -> α (O elimino l'implica o l'introduco)

$$(*)[a]^1$$
----- -> I^1
 $a \to a$

(*) a è sia ipotesi che conclusione di D

$$\begin{array}{c} [\gamma]^* \\ \cdot \\ \beta \\ ----- -> I^* \text{ Introduzione dell'implica} \\ \gamma -> \beta \end{array}$$

ESERCIZIO 2

|-
$$\alpha$$
 -> (β -> α)
[α]¹
----- -> |
 β -> α (indebolimento)

$$a \rightarrow (\beta \rightarrow a)$$

Abbiamo introdotto due volte grazie alla regole dell'introduzione

Alla fine della derivazioni tutte le ipotesi devono essere scaricate.

MODUS PONENS

$$(\alpha \rightarrow \beta)$$
 α \rightarrow β

ESERCIZIO 3

$$|-\alpha -> (\beta -> \gamma)) -> ((\alpha -> \beta) -> (\alpha -> \gamma))$$

LOGICA APPUNTI 31.10.23

|- a (a è un teorema) se esiste una derivazione D t.c. hp(D) = 0 } ho cancellato ogni ipotesi nel processo deduttivo

CONNETTIVO AND (&) REGOLE!

$$\begin{array}{ccc} D_1 & D_2 \\ a & \beta \\ ----- & \&I \\ a & \& \beta \end{array}$$

ES.5 fatto da casa

 $(\phi -> \psi) -> \neg (\phi \& \neg \psi)$

Proviamo a svolgerlo dall'altra direzione...

+ dimostrazione per assurdo

RAA (Reductio ad Absurdum)

Voglio dimostrare P

- 1) Assumo che P sia falso
- 2) Se da 1) arrivo ad una contraddizione allora P è vera

$\{->, \&, \bot\}$ BASE COMPLETA a RAA equivale a OR ¬a PRINCIPIO DI TERZO ESCLUSO (Tertium Non Datur) (PEM [Excluded Middle]) **DISGIUNZIONE** a OR B а a OR B а β OR a ES a -> a OR β [a]¹ ----- OR I a OR B -------------------------|¹ $a \rightarrow a OR \beta$ **PER CASA** |- (α OR β) -> (α OR β) OR γ $[a OR \beta]^1$ ----- OR I (a OR β) OR γ $(a OR \beta) \rightarrow (a OR \beta) OR \gamma$ *.....* |- α AND β -> α OR β $[a \text{ AND } \beta]^1$ ----- &E ----- OR I

a OR β

a AND β -> a OR β

LOGICA APPUNTI 06.11.23

Regole OR Eliminazione

Verde: ragionamento aggiuntivo

RAGIONAMENTO PER CASI

Scritto con sintassi della conseguenza logica...

$$[|a OR \beta|]_v = 1$$

E' vero che

$$\langle = \rangle$$
 $\forall v. (v(P) = 1 OR v(P) = 0) SEMPRE VERO$

Ma se la spezzo...

$$|= P <=> \forall v. \ v(P) = 1 \ NO!$$

 $|= \neg P <=> \forall v. \ v(P) = 0 \ NO!$

Allora... ragionamento per casi...

caso 1 caso 2

D: α β
D₁ D₂
α OR β γ γ
------ OR E*
$$\gamma$$
(α OR β) -> γ

Per dimostrare α OR β -> γ devo trovare D_1 e D_2 scaricare le assunzioni

ESERCIZIO 1

$$|-a OR \beta -> \beta OR a$$

ESERCIZIO 2

$$|- \alpha OR \beta -> \alpha OR (\beta OR \gamma)$$

ESERCIZIO 3

NON POSSO APPLICARE LE REGOLE DELL'IMPLICA SULLO STESSO RAMO!!

$$\neg a$$
 OR $\neg \beta$ $\neg (a$ AND $\beta)$
 $\neg a$ OR $\neg \beta$ $\rightarrow \neg (a$ AND $\beta)$

|- a OR ¬a TND PEM (Terzo Escluso)

REMINDER RAA

[¬a]* --- RAA*

ESERCIZI DA FARE A CASA 07/11/2023

ESERCIZIO 1

$$|- (\neg \psi -> \neg \phi) -> (\phi -> \psi)$$

ESERCIZIO 2

$$|-(\phi \text{ AND } \neg \phi) -> \bot$$

LEZIONE LOGICA 07/11/2023

(Questa lezione recuperala anche sul quaderno)

Esercizio guidato

$$_{\alpha}$$
 |- (\$\phi\$ AND \$\psi\$) OR \$\sigma\$ -> (\$\phi\$ OR \$\sigma\$) AND (\$\psi\$ OR \$\sigma\$)

ALTRI ESERCIZI FATTI A CASA

ES₁

LOGICA 14.11.23

LEMMA1 (o anche Lemma di Soundness)

$$D \Rightarrow hp(D) = \varphi$$

LEMMA2

$$\Sigma \subseteq \Gamma$$
 $\Sigma \models \phi \Rightarrow \Gamma \vdash \phi$

TH.[SOUNDNESS]
$$\Gamma$$
 |- ϕ => Γ |= ϕ

Se io posso da Γ derivare ϕ allora ϕ è conseguenza logica di Γ

DIM

$$\begin{array}{c} \text{def} \\ \text{se } \Gamma \mid \text{-} \ \phi <=> \ \text{esiste D e hp(D)} \subseteq \Gamma \\ \phi \end{array}$$

=> LEMMA1 hp(D) |=
$$\phi$$

=> LEMMA2 Γ |= ϕ

$$\alpha \rightarrow \beta <=> \neg \beta \rightarrow \neg \alpha$$

$$\Gamma \mid -\alpha => \Gamma \mid =\alpha$$

$$\Gamma \models \alpha \Rightarrow \Gamma \models \alpha$$

$$|-a| = > |=a|$$

$$\vdash \alpha => \vdash \alpha$$

Contromodello => Prova di NON derivabilità

Trovare qualcosa di non derivabile è molto più difficile rispetto a trovare un contromodello (Per capire se una formula non è derivabile, dovrei trovare ogni singola formula, mentre nel contromodello basta presenterne una che valga)

COMPLETEZZA $\Gamma = \alpha = \Gamma - \alpha$

Prima di spiegare il concetto di completezza, dobbiamo fare due passi importanti:

INSIEME CONSISTENTE

- Si dice consistente (oppure coerente o non-contradditorio) Se Γ |- ⊥
- (dualmente) Γ è inconsistente Γ |- ⊥

MASSIMALE

Ordinamento parziale

insieme relazione $\langle A, R \rangle R \subseteq A \times A \text{ ord. Parziale}$

1) Riflessività

∀a∈A aRa

2) Transitività

$$\forall$$
 a,b,c \in A aRb & bRc => aRc

3) Antisimmetria

$$\forall$$
 a, b \in A aRb & bRa => a=b

<A, R> sia o.p (po = partial order) R -> qualsiasi tipo di relazione >, <, \in ...

- aRm 1) $m \in A$ è massimo se \forall a \in A
- 2) $m \in A$ è massimale se ∀a∈A mRA => m=a non esiste $a \in A$ t.c ($a \neq m$ e mRa)

$$x -> P(x) 2^x = \{y \mid y \subseteq x\}$$

$$x = \{7, 8, 9, 10\}$$

$$Na \subseteq P(N)$$

$$A = \{ \{4\}, \{2\}, \{4,2\} \}$$
 $a \subseteq M, b \subseteq M, M \subseteq M$

massimali

$$A = \{ \{4\}, \{2\} \}$$

non posso trovare nulla di più grande rispetto alla relazione

P= {
$$\{n\} \mid n \in N$$
 } P = { $\{0\}, \{1\}, \{2\} \dots$ } \subseteq > p.o. INFINITI MASSIMALI il massimale può NON essere unico

ora che abbiamo introdotto il concetto di insieme consistente e massimale:

$$A, \subseteq P$$
 (PROP)
 $\Gamma \mid - \stackrel{\perp}{\perp}$
 $\Gamma \downarrow \perp$

[TH0] sono equivalenti ->

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$$

[PROVA]

1)=>2) allora esiste D hp(D)
$$\subseteq \Gamma$$

$$D$$
 \bot
 $- \bot_i => \Gamma \mid -\phi$

$$(3) => (1)$$

def. di derivabilità

$$\Gamma \mid -\phi <=> \text{ esiste } D_2 \quad hp(D) \subseteq \Gamma \\ \neg \phi$$

[PROP1]

se sono inconsistente sono anche insoddisfacibile

$$\Gamma \mid -\phi \le \forall v.[|\Gamma|]_v \ne 1 \text{ (esiste } v.[|\Gamma|]_v = 1 \Longrightarrow \Gamma \mid -\bot \text{)}$$

PROVA

se
$$\Gamma \mid -\phi <=>$$
 esiste $D_1 \ hp(D) \subseteq \Gamma$ σ

(usiamo la soundnes poiché lega semantica logica e sintassi)

soundness

11111111111111

INSIEME MASSIMALE CONSISTENTE

 Δ è massimale e consistente

SE E SOLO SE

a)
$$\Delta \vdash \bot$$
 b) se $\Delta \subseteq \Sigma$, $\Sigma \vdash \bot$ => $\Delta = \Sigma$

Ci sono/esistono insiemi massimali consistenti?

Sì => dobbiamo dimostrarlo

$$C = \{ \Gamma \mid \Gamma \vdash \bot \} \qquad < C, \subseteq >$$

=> proviamo che ha massimali

[TH1] se $\Gamma \vdash \bot$ allora esiste Δ m.c t.c. $\Gamma \subseteq \Delta$

PROVA

2 parti \rightarrow <u>P1</u> costruisco una successione di insieme consistenti

$$\rightarrow$$
 P2 definiamo un insieme

Γ* massimale

PARTE 1 – Fissiamo un enumerazione di tutte le formule:

$$\phi_1, \, \phi_2, \, \ldots \, \phi_k \, \ldots$$

- definiamo la successione $(\Gamma_i)_{i \subseteq N}$ di insiemi consistenti di formule:

induzione

 $\Gamma_0 = \Gamma$ (consistente per costruzione per ipotesi)

passo induttivo

$$\Gamma_{i+1} = \{ \Gamma_i + \{\phi_i\} \text{ se } \Gamma_i, \phi_i \vdash \bot$$
 $\{ \Gamma_i \text{ altrimenti} \}$

vale che

- 1) $\forall_i \; \Gamma_i \subseteq \; \Gamma_{i+1}$ (non decrescente) per costruzione
- 2) $\forall_i \Gamma_i \vdash \bot$ si prova per induzione

induzione

$$\Gamma_0 = \Gamma$$
 $\Gamma_0 \vdash \bot$

passo

$$\begin{array}{l} \Gamma_{i+1} = \{ \text{ se } \Gamma_{i+1} = \Gamma_i \text{ allora } \Gamma_{i+1} \dotplus \bot \\ \{ \Gamma_{i+1} = \Gamma_i \ U \ \{\phi_i\} \qquad \Gamma_i \ U \ \{\phi_i\} \dotplus \bot \ \text{(costruzione)} \end{array}$$

unione infinita

PARTE 2

Si dimostra

2) Γ* è MC (non posso aggiungere niente di più grande)

1)
$$\Gamma^* \mid - \bot <=>$$
 esiste D hp(D) $\subseteq \Gamma^*$

$$hp(D) = \{\Psi_1 \dots \Psi_k\} \subseteq \Gamma^*$$
 finite

$$\forall_i \in [1, ... n] \ \Psi_i \in \Gamma_{i_n}$$

Consideriamo max = $\{i_1 ... i_n\}$ = massimo

$$\Gamma_{i1}\subseteq\Gamma_{m}\;...\;\Gamma_{in}\subseteq\Gamma_{im}\,quindi$$

$$\begin{array}{l} hp(D) \subseteq \Gamma_m \ quindi \ \Gamma_m \mid - \stackrel{\perp}{\bot} \end{array}$$

MA per costruzione e per induzione Γ è consistente

=> assurdo/impossibile => $\Gamma^* \vdash \bot$

2) Γ* è mc -> consistente già dimostrato quindi Γ* è massimale

supponiamo che esista un insieme più grande (per assurdo) supponiamo che esista $\Delta \neq \Gamma^*$ t.c. $\Delta + \bot$ e $\Gamma^* \subseteq \Delta$ devo trovare una formula $\phi_i \in \Gamma^*$ & $\phi_i \in \Delta$ avremo almeno una $\Psi \in \Delta / \Gamma^*$

Per l'enumerazione avrò un certo indice k t.c Ψ = ϕ_k esiste K t.c. Ψ = ϕ_k

per costruzione della successione di insiemi Γ_i

•
$$\phi_k \in \Gamma_{k+1} (\Gamma_k, \phi_k | - \bot)$$

e dato che $\Gamma_k \cup \{\phi_k\} \subseteq \Delta$ avremo

 $\Delta \mid - \perp =>$ impossibile poiché inconsistente

 $\varphi_k \in \Gamma^*$ => non posso aggiungere niente a Γ^*

-> Poiché Γ* = Δ

[TH2] Γ è mc e Γ |- α => $\alpha \in \Gamma$ (Chiusura per derivabilità)

mc = massimale consistente

se Γ è mc e Γ |- a <=> a \in Γ

PROVA

Supponiamo che $\alpha \notin \Gamma$ allora $\Gamma \cup \{\alpha\} \mid - \bot$ (Poiché diventerebbe inconsistente) D t.c hp(D) $\subseteq \Gamma \cup \{\alpha\}$ \bot

quindi Γ |- ¬α ma per hp Γ |- ¬α } per TH0 abbiamo che Γ |- ⊥

```
Assurdo => a \in \Gamma
```

[TH3] Γ è mc => $\forall \phi$. $\phi \in \Gamma$ oppure $\neg \phi \in \Gamma$

α -> β = ¬α OR β

 $\Gamma \ \grave{e} \ mc \Rightarrow \forall \phi \ . \ \underline{\phi} \in \Gamma \ oppure \ \neg \phi \in \Gamma \\ dim. \ Equiv. \ \phi \not\in \Gamma \Rightarrow \neg \phi \in \Gamma$

PROVA

se $\varphi \notin \Gamma => \Gamma$, $\varphi \mid - \bot => \Gamma \mid - \neg \varphi <=> per TH2 <math>\neg \varphi \in \Gamma$

[TH4] Γ mc => :

- a) $\phi \& \Psi \in \Gamma \iff (\phi \in \Gamma \& \Psi \in \Gamma)$
- b) $\phi \rightarrow \Psi \in \Gamma \iff (\phi \in \Gamma \implies \Psi \in \Gamma)$

PROVA

TH₂

$$(=>) A => B => C$$

A)
$$\phi \rightarrow \Psi \in \Gamma \implies \Gamma \mid -\phi \rightarrow \Psi$$
 per $(->E)$ $\Gamma \mid -\Psi <=> \frac{\Psi \in \Gamma}{}$ B) $\phi \in \Gamma \implies \Gamma \mid -\phi$ }

$$(<=) (B=>C) => A$$

due sottocasi

 $\underline{Caso~1}~\phi \in \Gamma~("B"~\grave{e}~vero)~\textbf{PER~CASA}$

Caso 2 $\phi \notin \Gamma$

$$\phi \not\in \Gamma \mathrel{<=>} \Gamma \text{ } | \neg \phi \text{ } (\phi \not\in \Gamma \mathrel{<=>} TH3 \text{ } \neg \phi \in \Gamma \mathrel{<=>} TH2 \text{ } \Gamma \text{ } | \neg \phi)$$

[TH5] Γ MC => esiste v.[$|\Gamma|$] $_{\vee}$ = 1

PROVA

sia v. t.c. $\mathbf{v}(\mathbf{p}) = 1 \le \mathbf{p} \in \Gamma$ (definizione di valutazione) è accettabile $\mathbf{v}(\neg \mathbf{p}) = 0$ quando $\neg \mathbf{p} \notin \Gamma$ (mc)

//

Dimostrazione per induzione sul rango di φ

$\underline{\mathsf{BASE}}\ \phi\ \grave{\mathsf{e}}\ \mathsf{atomica}$

->
$$\bot$$
 [| \bot |]_v = 1 <=> \bot ∈ Γ <=> [| \bot |]_v = 0 <=> \bot ∉ Γ -> s. Prop. Per costruzione

PER CASA

$$\varphi = \Psi AND \chi$$

φ=

COR1 se Γ | → allora è soddisfacibile

Uso TH5 e TH1

Se $\Gamma \vdash \bot$ allora esiste v. $[|\Gamma|]_v = 1$

PROVA

TH1
$$\Gamma \dotplus \bot => \text{ esiste } \Delta . \Gamma \subseteq \Delta, \Delta \text{ MC}$$
TH5
$$=> \text{ esiste v. } [|\Delta|]_v = 1 \Rightarrow \text{ esiste v. } [|\Gamma|]_v = 1$$

TH6 COMPLETEZZA $\Gamma = \varphi = \Gamma - \varphi$

ragionamento per contrapposizione $\alpha \rightarrow \beta = \neg \beta \rightarrow \neg \alpha$

$$\Gamma \vdash \phi => \Gamma \vdash \phi$$

COR1
$$\Gamma \vdash \phi => \Gamma, \neg \phi \vdash \bot => \text{ esiste v.} [|\Gamma|]_v = 1 \& [|\neg \phi|]_v = 1 <=> \text{ se } \Gamma, \neg \phi \vdash \bot => \Gamma \vdash \phi$$

$$\text{esiste v.} [|\Gamma|]_v = 1 \& [|\phi|]_v = 0 => \Gamma \vdash \phi$$

$$\Gamma \mid - \phi <=> \Gamma \mid = \phi$$

LOGICA APPUNTI 21.11.23

- $\Gamma \mid = \phi => \Gamma \mid -\phi$
- Si possono estendere i teoremi al sistema completo con OR

$$\perp$$
 (bottom) \perp (top) => \perp -> \perp

$$\begin{bmatrix} \bot \end{bmatrix}^{1}$$

$$\begin{bmatrix} \bot \end{bmatrix}^{1}$$

$$\begin{bmatrix} \bot \end{bmatrix}^{1}$$

$$\begin{bmatrix} \bot \end{bmatrix}^{1}$$

LOGICA DEL PRIMO ORDINE (dei Predicati)

∀n. (**Se** n è pari **allora** esiste m dispari t.c. m>n)

∀, ∃, => + esprimere proprietà e relazione + funzioni

x insieme

P ⊆ X proprietà

 $N, \geq, +, x ...$

Nozione di variabile

LINGUAGGIO DEL PRIMO ORDINE

- Connettivi OR, &, ->, [⊥] (¬)
- Quantificatori ∀, ∃
- variabili x, y, z ... Var (insieme delle variabili)
- R₀, R₁ ... relazioni (P, Q)

 $\forall n \in N \setminus \{0\}$ insieme R^n di rel. n_arie

∀n∈N \ {0} insieme R¹ di rel. 1_arie (quando coinvolge un solo elemento è una proprietà)

 $\forall n \in N \setminus \{0\}$ insieme R^2 di rel. bin_arie

- simboli ausiliari "(" ")" "," "."
- = relazione binaria che non è c he già inclusa nelle relazioni R² t = u ≠ φ ≡ ψ
- C costanti c₀, c₁ ...

$$R = U R^i$$
 $F = U F^i$ i

[Entità sintattiche]

- * ->Termini
- * ->Formule

TERMINI

L'insieme TERM dei termini è il più piccolo insieme x t.c.

- 1) Var ∈ X
- 2) C ∈ X
- 3) Se $t_1 ext{ } t_n \in X$ e f è un simbolo di funzione di arietà n $f(t_1 ext{ } t_n) \in X$ $+ \in F^2$

 $4 \in C \in X \Rightarrow F(4,5) \in X$

g di arietà 1

- 1) $c \in TERM$
- 2) x₁₀₀₀ ∈ TERM
- 3) $f(c, x_4) \in TERM$
- 4) $g(x_1) \in TERM$
- 5) $g(x_1, x_2) \notin TERM$
- 6) $f(g(x_2), g(c)) \in TERM$

FORMULE

---- RECUPERA DA MOODLE

SOTTOTERMINI

```
ST(e) = \{e\}

ST(x) = \{x\}

ST(f(t_1 ... t_n)) = ST(t_1) U ... U ST(t_n) U \{ f(t_1 ... t_n) \}
```

SOTTOFORMULE

$$\begin{array}{l} SF(\overset{\bot}{-}) = \{\,\overset{\bot}{-}\,\} \\ SF(t_1 = t_2) = \{t_1 = t_2\} \\ SF(P(t_1 \dots t_n)) = \{P(t_1 \dots t_n)\} \\ SF(\phi \circ \psi) = SF(\phi) \cup SF(\phi \circ \psi) \\ SF(\forall x. \ \phi) = SF(\phi) \cup \{\ \forall x. \ \phi\,\} \\ SF(\exists x. \ \phi) = SF(\phi) \cup \{\ \exists x. \ \phi\,\} \end{array}$$

 $t \in TERM$ si dice chiuso se FV(t) = 0 $\phi \in FORM$ si dice chiusa se FV(ϕ) = 0 } ENUNCIATO

ENUNCIATO = UNA FORMULA CHE NON HA VARIABILI LIBERE (SENT = Sentence = Enunciati)

111111

Due tipi di vincoli $\phi[t/x]$

- 1) Non posso sostituire variabili legate
- 2) Non tutti i termini vanno bene (non devo legare nuove variabili)

$$\phi = \forall x. \ R(x, y) \in FORM$$
 $t = f(x) \in TERM$ $\phi[f(x)/y] = \forall x. \ R(x, f(x))$ NON POSSIAMO ACCETTARLO, sto legando nuove occorrenze

termini liberi per una var in una formula

t libero per x in φ

(termine libero per una variabile in una formula)

se dopo la sostituzione $\phi[t/x]$ tutte le occorrenze delle variabili in t sono libere

φ[t/x] è corretta se dopo la sostituzione, tutte le occorrenze delle variabili in t sono libere.

x è libera per sè stessa? Sì (in φ)

ESEMPIO

$$\zeta = \forall x. (R(z, x)) [f(z)/z] \equiv \forall x. (R(f(z), x))$$

$$\forall x. (R(z, x)) [f(x)/z] \equiv \forall x. (R(f(x), x))$$

$$\forall x. (R(z, x)) [f(z)/x] \equiv \forall x. (R(z, f(z)) \equiv \zeta$$

LOGICA APPUNTI 04.12.23

//posso rimpiazzare solo le variabili libere

$$\exists x. (y < x) [x/y] = \exists x. (x < x) \times$$

<u>Definizione [sostituzione]</u> (tramite induzione) $\phi[t/x]$ con t libero per x in ϕ

termini

$$x[t/x] = t$$

 $y[t/x] = t$
 $c[t/x] = c$
 $f(t_1...t_n) [t/x] = f(t_1[t/x] ... t_n[t/x])$

formule

1)
$$\varphi$$
 atomica 1.1 \perp [t/x] = \perp
1.2 R(t₁...t_n) [t/x] = R(t₁[t/x]...t_n[t/x])
1.3 (t₁ = t₂) [t/x] = t₁[t/x] = t₂[t/x]

2)
$$(\phi \circ \psi)[t/x] = \phi[t/x] \circ \psi[t/x]$$

3) $\phi = Qy \cdot \psi$ $Q \in \{\exists, \forall\}$
 $\phi[t/x] = \{\phi \quad x = y \}$
 $\{Qy \cdot (\psi[t/x])$

Deduzione Naturale

A

Introduzione del per ogni

$$\begin{array}{c} D\\ \phi(x)\\ ----- \forall I \\ \forall x. \ \phi(x) \end{array} \qquad x \not\in FV(hp(D)) \ \} \ x \ \text{è generica}$$

$$\begin{array}{c} x = 0\\ ---- \forall I\\ \forall x. \ x = 0\\ ----- \forall I\\ \forall x. \ x = 0 \end{array}$$

PRIMO ESERCIZIO

Es1.

|- (
$$\forall x$$
. . $P(x)$) -> $P(x)$

Es2.

|-
$$\forall x. (\phi \rightarrow \psi) \rightarrow ((\forall x.\phi) \rightarrow (\forall x.\psi))$$

ELIMINAZIONE DEL PER OGNI

LOGICA APPUNTI 05.12.23

Quantificatore Esistenziale 3

INTRODUZIONE DEL QUANTIFICATORE ESISTENZIALE

$$\begin{array}{lll} \phi(t) & & & \\ & & \\ ----- \exists I & t \text{ libero per } x \text{ in } \phi & & \phi[t/x] \\ \exists x. \ \phi(x) & & & \\ & & \exists x. \ \phi \ \} \text{ se una "proprietà" vale per t,} \\ & & \text{allora esiste un valore per cui vale} \end{array}$$

Esempio

ELIMINAZIONE DEL QUANTIFICATORE ESISTENZIALE

$$\exists x . \phi(x) \equiv \phi$$
 proprietà su N

Dire "esiste" una è disgiunzione di tutto: $\phi(0)$ OR $\phi(1)$ OR ... $\phi(n)$ OR ... Dire "per ogni" è una congiunzione di tutto: $\phi(0)$ AND $\phi(1)$ AND ... $\phi(n)$ AND ...

VINCOLI

$$x \notin FV(\gamma)$$

 $x \notin FV(hp(D_1))$ a parte $\phi(x)$ stessa

ES₁

$$|-\exists x . (\phi(x) AND \psi(x)) -> \exists x . \phi(x)$$

VERSIONE SBAGLIATA -> X

NO $x \in FV(\gamma)$

ES₂

ES3

∀x. φ -> ¬∀x. ¬φ

 $\neg \forall x$. $\neg \phi$ = "Non è vero che per ogni valore di x, ϕ non vale" = $\exists x . \phi$ = "Esiste almeno un valore di x per cui ϕ vale"

ES4

ES5

ES6

|- (
$$\forall x$$
. α AND $\exists x$. $\neg \beta$) -> $\exists x$. (α AND $\neg \beta$)

ES7

$$\mid$$
- $\exists x. (\alpha -> \beta) -> \exists x. (\alpha -> \exists x. \beta)$

$$[\alpha -> \beta]^1 \quad [\alpha]^2 \\ ------ MP \\ \beta \\ ----- \exists I \\ \exists x. \beta \\ ------ > I^2 \\ \alpha -> \exists x. \beta \\ ----- \exists I \\ [\exists x. (\alpha -> \beta)]^3 \quad \exists x. (\alpha -> \exists x. \beta) \\ ----- \exists E^1 \\ \exists x. (\alpha -> \beta) -> \exists x. (\alpha -> \exists x. \beta)$$

PER CASA

- 1) |- $\exists x. \phi$ -> ϕ se x non appartiene a $FV(\phi)$
- 2) |- $\neg \forall x. \phi$ -> $\exists x. \neg \phi$ (Servono 2 RAA)
- 3) $\mid \forall x.(\phi(x)->\psi) \rightarrow (\exists x. \phi(x) \rightarrow \psi)$ se x non appartiene a FV(ψ)
- 4/5) |- $\exists x. (\phi OR \psi) <-> (\exists x. \phi) OR (\exists x. \Psi)$

3) |-
$$\forall x.(\phi(x)->\psi)$$
 -> $(\exists x. \phi(x) -> \psi)$

2)
$$|-\neg \forall x. \phi -> \exists x. \neg \phi$$

4) \mid - $\exists x. (\phi OR \psi) \rightarrow (\exists x. \psi) OR (\exists x. \psi)$

5) |- $(\exists x.\phi)$ OR $(\exists x.\Psi)$ -> $\exists x. (\phi OR \psi)$

STRUTTURA MATEMATICA

- 1) $A \neq \emptyset$ dominio (universo)
- 2) R insieme di relazioni su A
- 3) F insieme di funzioni su A
- 4) C ⊆ A constanti

Esempio: $< N, \le, (+, *, succ), (0, 1) >$

<u>DEF</u>

L Struttura <-> Associa struttura a un linguaggio primo ordine

$$U = \langle A, ()^{U} \rangle$$
:
 $A \neq \emptyset, ()^{U}$ FUNZIONE

- a) $\forall c \in C \rightarrow c^u \in A$
- b) $\forall f \in F^{(k)}, k > 0 -> f^u : A^k -> A \text{ in } F$
- c) $\forall R \in R^n \rightarrow R^u \subseteq A^n$ in R(insieme)

SINTASSI
$$\leftarrow$$
 f(c₁, c₂) = c₃
-> c₁ + c₂

$$c_1^{u} = 5$$
, $c_2^{u} = 2$ -> SEMANTICA

- · U Struttura Matematica
- ()^u c^u, f^u, r^u

DEF U-valutazione è una funzione

$$\begin{array}{ll} \rho_u: Var -> |U| \ (dominio \ di \ U \neq \varnothing) \\ \rho_u, \ x \in Var & a \in A \ (=|U|) \\ \rho_u[a/x] \ \dot{e} \ la \ U-valutazione \\ \rho_u[a/x](y) = \left\{ \begin{array}{ll} \rho_u(y) \ x \neq y \ ALTRIMENTI \ a \end{array} \right. \end{array}$$

<u>DEF</u> Interpretazione dei termini [| . |]^u ^u = dipende dalla struttura di base che abbiamo scelto

uso
$$(.)^u$$
 e ρ_u

1)
$$[|c|]^{u}_{\rho} = c^{u}$$

2)
$$[|x|]^u_{\rho} = \rho_u(x)$$
 (= a \in A)

3)
$$[|f(t_1...t_k)|]^u_{\rho} = f^u([|t_1|]^u_{\rho}...[|t_k|]^u_{\rho})$$

ESEMPIO

DEF [Relazione di soddisfacibilità]

- $\rho_u \models \bot$
- $\rho_u \mid = t_1 = t \le ([|t_1|]^u_{\rho} ... [|t_2|]^u_{\rho})$
- $\rho_u = f(t_1...t_k) \le u([|t_1|]^u_{\rho}...[|t_k|]^u_{\rho}) \in R^u$
- $\rho_u |= \alpha -> \beta <=> (\rho_u |= \alpha => \rho_u |= \beta)$

alternativa

$$\rho_u = \alpha OR \rho_u = \beta$$

- $\rho_u = \alpha \text{ AND } \beta \iff \rho_u = \alpha \text{ AND } \rho_u = \beta$
- $\rho_u = \alpha \text{ OR } \beta \iff \rho_u = \alpha \text{ OR } \rho_u = \beta$
- $\rho_u \mid = \forall x.\alpha \iff \forall a. \in |U|$. $\rho_u[a/x] \mid = \alpha$
- $\rho_u \models \exists x.\alpha \iff \exists a. \in |U| . \rho_u[a/x] \models \alpha$

SCRIVIAMO

modello - U |= α per ∀ρ_u ρ_u |= α e diciamo che U è un modello di α oppure è vera in U

- U |=
$$\Gamma$$
 <=> $\forall \sigma$ ∈ Γ , U |= σ

validità |= a valida sse ∀U. U |= a

conseguenza logica $\Gamma \models \alpha \iff \forall U \in \rho_u \cdot \rho_u \models \Gamma \implies \rho_u \models \alpha$

Es.

MODELLO
<=>
$$\forall$$
U. U |= σ^1 -> σ^2 sse $\forall \rho_u$. ρ_u |= σ^1 -> σ^2

Sia <u>U generica</u>

$$\forall \ \rho_u \ \rho_u \mid = \ \forall x. \ \phi <=> \ \forall a. \in |U| \ . \ \rho_u[a/x] \mid = \ \sigma^1$$

def

in particolare vale per un elemento => $\exists a. \in |U|$. $\phi[a/x] = \phi <=> \exists x. \phi$

Es.

<- a casa
|=
$$\forall x. (α AND β) \rightarrow (\forall x.α AND \forall x.β)$$

σ1 σ2

$$|= \sigma 1 \rightarrow \sigma 2 \iff \forall U. U = \sigma^1 \rightarrow \sigma^2$$
 sse $\forall \rho_u \cdot \rho_u = \sigma^1 \rightarrow \sigma^2$

Sia U generica

$$\forall \rho_u \mid \rho_u \mid = \forall x. (\alpha AND \beta) <=> \rho_u \mid = \alpha AND \rho_u \mid = \beta$$

$$\forall \rho_u \ \forall x. \ (\alpha \ AND \ \beta) <=> \ \forall a. \in |U| \ . \ \rho_u[a/x] |= \alpha \ AND \ \beta$$

$$\forall a. \in |U| . \ \rho_u[a/x] \mid= \alpha \ AND \ \forall a. \in |U| . \ \rho_u[b/x] \mid= b$$

$$\forall \rho_u. \ \forall x. \ \alpha \qquad \qquad \forall \rho_u. \ \forall x. \ \beta$$

$$<=> \rho_u \mid = \forall x.a \text{ AND } \forall x.\beta$$

$$|= (\forall x.a AND \forall x.β) -> \forall x. (a AND β)$$

$$|= \sigma 1 \rightarrow \sigma 2 \iff \forall U. \ U \mid = \sigma^1 \rightarrow \sigma^2 \text{ sse } \forall \rho_u. \ \rho_u \mid = \sigma^1 \rightarrow \sigma^2$$

Sia U generica

$$\forall \rho_{u}$$
, $\rho_{u} = (\forall x.\alpha \text{ AND } \forall x.\beta) <=> $\forall \rho_{u} \forall a. \in |U|$, $\rho_{u}[a/x] = \alpha \text{ AND } \forall a. \in |U|$, $\rho_{u}[a/x] = \beta$$

Di conseguenza, se devo soddisfare per ogni α e per ogni β che stanno nello stesso U, allora vale

$$def$$
 $\forall a. \in |U|$. $\rho_u[a/x] = \alpha AND \beta \Longleftrightarrow \forall \rho_u$. $\forall x. (α AND β)$

LOGICA APPUNTI 12.12.23

Nuovo esercizio

(1) -> se vale per tutti gli oggetti di |U| in particolare varrà per uno (*)

(1) =>
$$\exists a. \in |U|$$
 . $\rho_u[a/x]$ |= ϕ (ho declassato il \forall in un \exists) AND $\exists a. \in |U|$. $\rho_u[a/x]$ |= $\neg \Psi$

sia
$$z \in |U|$$
 to $\rho_u[z/x] = \neg \Psi$
per (1) deve valere che $\rho_u[z/x] = \varphi$ (valeva per tutti)

"raccolgo" l'esiste (si può fare solo i quantificatore sono uguali sia da una parte che dall'altra)

"
$$\exists z. \in |U|$$
 . $(\rho_u[z/x] = \phi \text{ AND } \rho_u[z/x] = \neg \Psi)$ " $\exists z. \in |U|$. $(\rho_u[z/x] = (\phi \text{ AND } \neg \Psi)) <=>$

$$<=> \rho_u \mid = \exists x. (\phi AND \neg \Psi)$$

$$\rho_u = \alpha < > \rho_u = \neg \alpha$$

$$|-\phi =>|=\phi$$
 principio di contrapposizione a -> b <=> ¬b -> ¬a $|=\phi =>|-\phi$

Esibire un contromodello ESAME!!!!

ES0

$$\vdash \phi(x) \rightarrow \forall x. \ \phi(x) \equiv a$$

$$<=> \exists \rho_u \cdot \rho_u \models a$$

 $U = \{a,b\}, P > P$ è una rel. Unaria e definita così: P(a) $a \in P$ (su b non vale)

$$U \models \alpha \iff \exists \rho_u \models \alpha$$

Osserviamo che

 ρ_u |= P ma ρ_u |= $\forall x.P$ infatti non è vero che $\forall \{a,b\}$. $\rho_u[u/x]$ |= P (infatti su b, P non è definita)

<u>ES1</u>

$$\vdash$$
 $\exists x. \phi(x) \rightarrow \forall x. \phi(x)$

$$\models$$
 $\exists x. \phi(x) \rightarrow \forall x. \phi(x)$

$$U = \{a, b\}, P > P(a)$$

U
$$\models$$
 σ1 -> σ2 sse $\exists \rho_u$. $\rho_u \models$ σ1 -> σ2 (1) (2)

Mostriamo che ρ_u |= $\sigma 1$ ma ρ_u |= $\sigma 2$

->a

- (1) $\rho_u = \exists x. P (si) \le \exists u \in \{a,b\} \text{ tc } \rho_u[u/x] = P$
- (2) $\rho_u \models \forall x$. P in effetti per nessuna $\rho_u <=> \forall u \in \{a,b\}$ to $\rho_u[u/x] \models P \times NO$

Per controprova si può fare anche così:

$$\begin{array}{ll} \rho_u \models \forall x. \ P <=> \rho_u \mid = \neg \forall x. \ P \\ <=> \exists u \in \{a,b\} \ . \ \rho_u[u/x] \mid = \neg P \end{array} \qquad \neg \forall x. \ a \equiv \exists x. \ \neg a \ O \ ANCHE \ \neg (\forall x. \ \exists y. \ a) \equiv \exists x. \forall y. \neg a \\ <=> \exists u \in \{a,b\} \ . \ \rho_u[u/x] \mid = \neg P \end{array}$$

ES₂

$$\mid$$
= $\forall x$. $\exists y$. $x < y$ $\equiv \sigma$

 $U=<\{1,2,3\}, \leq\}$ contromodello $\rho_u[3/x]$

 $\rho_u \models \forall x$. $\exists y$. (x < y) infatti nessuna valutazione ρ_u può sodd. σ altrimenti $\forall a \in \{1,2,3\}$. $\exists b \in \{1,2,3\}$. $\rho_u[a/x, b/y] \models x < y$

$$<=> \rho_u \mid = \neg \sigma <=> \rho_u \mid = \exists x. \forall y. \neg (x < y)$$

ES3 A CASA

$$|=\exists y. \forall x. \ x < y \equiv \sigma$$

Esiste y che è più grande di ogni x (uno più grande di tutti)

ES4

?|=
$$\exists x. \ \phi(x) \ AND \ \exists x. \ \Psi(x) \rightarrow \exists x. \ (\phi(x) \ AND \ \Psi(x))$$

$$U = <\{a, b\}, P, Q>$$

 $\phi = P, \Psi = Q$ $P(a) e Q(b)$

Mostriamo $\rho_u = \sigma 1$ ma $\rho_u = \sigma 2$

$$\rho_u = \exists x. P(x) AND \exists x. Q(x)$$
<=> $\exists u \in \{a,b\} . \rho_u[u/x] = P \& \exists w \in \{a,b\} . \rho_u[w/x] = Q$

(a)
$$\rho_u(x) = a$$
 (b)

 $\rho_u \models \exists x. (P(x) AND Q(x))$ infatti per nessuna valutazione

 $\rho_u \cdot \rho_u = \exists x. (P(x) AND Q(x)) (*) infatti vorrebbe dire$

$$\exists u \in \{a,b\}$$
. $(\rho_u[u/x] \models P AND \rho_u[u/x] \models Q) IMPOSSIBILE $\times$$

(*)
$$\rho_u \models \neg(\exists x.(P(x) AND Q(x)) <=> \rho_u \models \forall x. \neg(P(x) AND Q(x)) \neg P(x) OR \neg Q(x) <=>$$

$$\forall u \in \{a,b\}$$
. $(\rho_u[u/x] \models \neg P(x) \text{ OR } \neg Q(x))$

ES5 A CASA

$$\not \models \ \alpha \to \beta <=> \exists U \ . \ U \not \models \ \alpha \to \beta \ \exists \rho_u \ . \ \rho_u \not \models \ \alpha \to \beta$$

$$U = <\{a, b\}, P, Q> \\ \phi = P, \Psi = Q \\ P = (a) \phi \\ Q = (b) \Psi$$

Mostriamo $\rho_u \models \alpha$ ma $\rho_u \not\models \beta$

(1) $\rho_u \models a$

 $\rho_u \models \forall x. \ P(x) \rightarrow \forall x. \ Q(x)$

 $<=> \rho_u \not\models \forall x. P(x) OR \rho_u \models \forall x. Q(x) //trasformo l'implicazione in OR$

<=> ρ_u ⊨ ∃x. ¬P(x) OR ρ_u ⊨ ∀x. Q(x) //trasformo il NON SODDISFA \forall in esiste ¬

 $<=> \exists u \in \{a,b\} \;.\; \rho_u[u/x] \vDash \neg P \; OR \; \forall w \in \{a,b\} \;.\; \rho_u[w/x] \vDash Q \; \textit{//allargo}$

$$\exists u \in \{a,b\}$$
 . $\rho_u[u/x] \models \neg P$ Sì, per $u = b$ OR

$$\forall w \in \{a,b\}$$
 . $\rho_u[w/x] \models Q$ No, se $w = a$, Q non vale \times

(2) $\rho_u \neq \beta$

 $\rho_u \not\models \forall x. (P(x) \rightarrow Q(x))$ per nessuna valutazione vale:

$$\rho_u \colon \rho_u \vDash \, \forall x. \; (P(x) \to Q(x)) \; (^*)$$

infatti vorrebbe dire:

$$\forall u \in \{a,b\} \;.\; \rho_u[u/x] \not \models \; P \to Q$$

ES6 A CASA

(1) $\rho_u \models a$

$$\rho_u \vDash \forall x. \exists y. x \le y$$

<=> $\forall a \in N, \exists b \in N . \rho_u[a/x, b/y] \vDash x \le y VERO IN N$

(2) ρ_u ⊭ β

Possiamo facilmente verificare:

 $\rho_u \not\models \exists y. \forall x. \ x \leq y <=> \rho_u \models \neg (\exists y. \forall x. \ x \leq y) <=> \rho_u \models \forall y. \ \exists x. \ \neg (x \leq y) \ (Che \ va \ contro quello che abbiamo detto nel passo 1).$

LOGICA APPUNTI 18.12.23

Formalizzazione di una relazione

sia v_0, v_1 ... enumerazione variabili voglio formalizzare una relazione

RELAZIONE Sia
$$R \subseteq |U|^n$$

-> $|U| \times |U| \times ... |U| \} n$

Una formula ϕ_R in FORM formalizza R se

I)
$$FV(\phi_R) = \{v_0 \dots v_{n-1}\}$$

ii)
$$(a_0 \dots a_{n-1}) \in \mathbb{R} \iff U \models \phi_{\mathbb{R}}[a_0 \dots a_{n-1}] \iff Variabili libere$$

NOTAZIONE

$$\varphi[a_0 ... a_m] = FV(\varphi) = \{a_0 ... a_m\}$$

Struttura di Peano

"Sintassi"

 $R = \emptyset$, $F = \{S, F, x\}$ -> Successore, Somma e Prodotto, $C = \{0\}$, dominio N succ

"Semantica"

Nat = <N, succ, +, x, 0>

$$(S)^{Nat} = succ$$
 $(F)^{Nat} = +$ $(x)^{Nat} = x$ $(0)^{Nat} = 0$

$$1 = S(0)$$
 $2 = S(0)$ $n = S...(S(0))$

n è la codifica di n ∈ N

ESEMPI

1) Mi potrebbe servire un operatore di confronto

//L'operatore di uguaglianza (=) si può utilizzare liberamente

1)
$$\phi_{\leq}[v_0, v_1] = \exists v_2, v_0 + v_2 = v_1$$

2)
$$\phi_{<}[v_0, v_1] = (\exists v_2, v_0 + v_2 = v_1) \text{ AND } \neg (v_2 = v_1)$$

3)
$$\phi_{\geq}[v_0, v_1] = \exists v_2, v_1 + v_2 = v_0$$

4)
$$\phi_{<}[v_{0}, v_{1}] = (\exists v_{2}, v_{1} + v_{2} = v_{1}) AND \neg (v_{2} = v_{1})$$

5)
$$\phi_{\%}[v_0] = \exists v_1. (v_0 = v_1 + v_1)$$
?

6) $\phi_{\%2}[v_0] := \exists x. (v_0 = x + x) //Essere divisibile per due, la somma di un numero per sé stesso <math>\rightarrow x^*2$

7)
$$\phi_{\%2}[v_0] := \exists x. (v_0 = S(x+x)) //x*2+1$$

8) PRIMO
$$\subseteq$$
 N P(x) <=> n è primo $\phi_{\text{primo}}[v_0] := \neg(v_0 = 0)$ AND $\neg(v_0 = S(0))$ AND $\forall x. \forall y. (v_0 = x * y -> (x = succ(0)))$ OR x = v_0) (ALTRI MODI PER SCRIVERE LA SECONDA PARTE)

9) Ci sono infiniti numeri primi (enunciato)

```
\forall x. (\phi_{primo}[x] \rightarrow \exists y. (\phi_{primo}[y] AND \phi_{\leq}[x, y])
```

10) per ogni primo n, esiste m pari con m > n

$$\forall x. (\phi_{primo}[x] \rightarrow \exists y. (\phi_{pari}[y] AND \phi_{>}[x, y]))$$

11) L'insieme dei numeri primi ha un minimo ma non ha un massimo

Mia soluzione

$$\forall x. \ (\phi_{primo}[x] \rightarrow \exists y. \ (\phi_{primo}[y] \ AND \ \phi_{<}[x, \ y])) \ AND$$

$$\forall x. (\phi_{primo}[x] \rightarrow \exists y. (\phi_{primo}[y] AND \phi_{>}[x, y]))$$

Soluzione di un collega

$$\forall x. (\phi_{primo}[x] \rightarrow \exists y. (\phi_{primo}[y] AND \phi_{<}[x, y]) AND$$

$$\exists x. \ (\phi_{primo}[x] \rightarrow \forall y. \ (\phi_{primo}[y] \ AND \ \phi_{>}[x, \ y])$$

Soluzione del prof

$$\forall n. \ (\phi_{primo}[n] \rightarrow \exists x. \ (\phi_{primo}[x] \ AND \ \phi_{<}[n, x])) \ AND \ \exists y. \ (\phi_{primo}[y] \ AND \ \forall x. \ (\neg(x = y) \ AND \ \phi_{primo}[x]) \rightarrow \phi_{<}[y, x])$$

12) Ogni primo > 2 è successore di un numero pari

$$\forall n. (\phi_{primo}[n] AND \phi_{>}[n,s(s(0))]) \rightarrow \exists x. (\phi_{pari}(x) AND n = s(x))$$

- 1) $pos[x] => \phi_{pos}[v_0] := 0 < v_0...$
- 2) R è denso **A CASA** dati due numeri reali ne trovo sempre uno in mezzo

$$\forall x. \ \forall y. \ (\phi_{\leq}[x,\] \ \Rightarrow \exists z. \ (\phi_{<}[x,\ z] \ AND \ \phi_{<}[z,\ y])$$
 Chiedere alla prof

3) abs(p,q) := p valore assoluto di q A CASA

Interpretazione dei termini

se
$$[|t|]_{\rho u}^{u} = a \in |U|$$
 $[|u[t/x]|]_{\rho} = [|u|]_{\rho[a/x]}$

se t libero per x in
$$\varphi$$
 se $[|t|]_{\rho}$ = a allora

$$\rho_u \models \phi[t/x] \le \rho[a/x] \models \phi$$

- Per ogni coppia di numeri pari esiste un dispari intermedio

$$\forall x. \ \forall y. \ (\neg(\phi_{\text{pari}}[x] = \phi_{\text{pari}}[y]) \ -> \ \exists z. \ (\phi_{\text{dispari}}[z] \ AND \ \phi_{<}[x, \ z] \ AND \ \phi_{<}[z, \ y]))$$

o anche

$$\forall x. \forall y. (\neg(pari[x] = pari[y]) \rightarrow \exists z. (dispari[z] AND $\phi_{<}[x, z] AND \phi_{<}[z, y]))$$$

$$\neg (\phi_{pari}[x] = \phi_{pari}[y]) = \neg (x = y) \text{ AND } \phi_{pari}[x] \text{ AND } \phi_{pari}[y] \times \text{SBAGLIATO}$$

CASA e se...
$$y = x + 2$$
?

- N non è denso

$$\forall x. ((x = y + s(0)) -> \neg \exists z. (\phi_{<}[x, z] AND \phi_{<}[z, y])$$

LOGICA APPUNTI 19.12.23

Identità

 $R \subseteq A^2$ quando è uguaglianza?

- 1) è almeno di equivalenza
- 2) congruenza $x = y \Rightarrow f(x) = f(y)$ $x = y \Rightarrow P(x) \Rightarrow P(y) \subseteq R^{1 \text{ (rel unaria)}}$

$$t1 = t2$$
 $t1=t2$ $t2=t3$
----- rifl ----- sim ----- trs
 $t = t$ $t2 = t1$ $t1 = t3$

```
ES1
```

ES4 ESERCIZIO GUIDA

$$a$$
 $β$
|- $(φ → ∃x. Ψ(x)) → ∃x. $(φ → Ψ(x))$ $x ∉ FV(φ)$$

- 1) Tra le assunzioni avrò a
- 2) Potrei avere RAA per ottenere β (\perp RAA β) potrei assumere $\neg \beta$
- 3) Mi "disfo" a per ottenere $\Psi(x)$
- 4) $\exists E \rightarrow Potrei\ derivare\ \exists x.\ (\phi \rightarrow \Psi(x))$

LOGICA APPELLO X LAUREA TRIENNALE IN INFORMATICA

- 5 Domande
- 1 Domanda vale 7 punti
- 1) Esercizio di Teoria
- 2) Esercizio Semantica
- 3) Esercizio di Codifica
- 4) Deduzione

Esercizio 1:

Dato un insieme T di formule proposizionali, dare la definizione di T consistente. Dimostrare che se T consistente allora è soddisfacibile.

Esercizio 2:

Utilizzare metodi esclusivamente semantici e senza usare le tavole di verità mostrare che:

$$\vDash \neg(\phi \rightarrow \Psi) \leftarrow (\phi \land ND \neg \Psi)$$

Esercizio 3:

Utilizzare metodi esclusivamente semantici e senza usare le tavole di verità mostrare che:

$$\models (\forall x. \phi \ AND \ \forall x. \Psi) \rightarrow \forall x. (\phi \ AND \ \neg \Psi)$$

Esercizio 4:

Utilizzare metodi esclusivamente la deduzione naturale e senza usare le tavole di veritò mostrare che:

$$(\exists x. \phi AND \Psi(x)) \rightarrow \exists x. (\phi AND \Psi(x))$$

Esercizio 5:

Codificazione e struttura di Peano: Ogni numero primo di 2 è successore di un numero pari. Costruire ogni costrutto prima di scrivere l'enunciato.

Esercizio 1: ESPORRE IL CORROLARIO 1

Esercizio 2:

$$\models \neg(\phi \rightarrow \Psi) \leftarrow (\phi \land AND \neg \Psi)$$

sia v generica (a) -> primo verso

$$\models \neg(\phi \rightarrow \Psi) <=>$$
 $(\phi \rightarrow \Psi)_v = 0 <=>$
 $\forall v. \ \neg[|\phi|]_v = 0 \ OR \ [|\Psi|]_v = 1] <=>$
 $\forall v. \ [|\phi|]_v = 1 \ AND \ [|\Psi|]_v = 0] <=>$
 $\forall v. \ [|\phi|]_v = 1 \ AND \ [|\neg\Psi|]_v = 1] <=>$
 $[|\phi \ AND \ \neg\Psi|]_v = 1$

per v generica (a) -> secondo verso ...

$$\models (\phi \text{ AND } \neg \Psi) \rightarrow \neg (\phi \rightarrow \Psi)$$

 $\forall V.$ $\vDash (\phi \text{ AND } \neg \Psi) = 1 <=>$ $[|\phi|]_{v} = 1 \text{ AND } [|\neg \Psi|]_{v} = 1] <=>$ $[|\phi|]_{v} = 1 \text{ AND } [|\Psi|]_{v} = 0 <=>$ $\neg (\phi -> \Psi)$

Esercizio 3:

CONTROMODELLO

$$\not \vdash \sigma 1 \to \sigma 2 <=> \exists U \ . \ U \not \vdash \sigma 1 \to \sigma 2 \ <=> \exists \rho_u \ . \ \rho_u \not \vdash \sigma 1 \to \sigma 2$$

$$U = \{a,b\}, P, Q > P(a), Q(b) P = \phi, Q = \Psi$$

Mostriamo che

$$\begin{array}{l} (1) \; \rho_u \vDash \; \forall x. \phi(x) \; -> \; \forall x. \Psi(x) \; <=> \\ \rho_u \not \vDash \; \forall x. \phi(x) \; OR \; \rho_u \vDash \; \forall x. \; \Psi(x) \; <=> \\ \rho_u \vDash \; \exists x. \neg \phi(x) \; OR \; \rho_u \vDash \; \forall x. \; \Psi(x) \; <=> \; // instanzio \; in \; P \; e \; in \; Q \\ \rho_u \vDash \; \exists x. \neg \phi(x) \; OR \; \rho_u \vDash \; \forall x. \; \Psi(x) \; <=> \; (2) \\ \exists u \in \{a,b\} \; . \; \rho_u[u/x] \vDash \neg P \; OR \; \forall w \in \{a,b\} \; . \; \rho_u[w/x] \vDash Q \; Non \; \grave{e} \; vero \; che \; per \; ogni \\ elemento \; del \; dominio \; vale \; Q \; . \; infatti \; vale \; solo \; per \; b \\ \end{array}$$

elemento del dominio vale Q, infatti vale solo per b

$$\rho_u \models \sigma 1$$

$$\rho_u \not\models \sigma 2 \checkmark$$

Esercizio 4:

$$|- (∃x.φ AND Ψ(x)) -> ∃x. (φ AND Ψ(x))$$

ESERCIZI VACANZE DI NATALE

ES14

$$(1) \models \forall x. (\phi(x) \leftarrow \forall y. (x = y \rightarrow \phi(y)) \equiv y$$

$$\models \chi \equiv \models \forall x. (\sigma 1 \leftarrow \sigma 2) \leftarrow \forall U. U \models \chi \text{ sse } \forall \rho_u. \rho_u \models \forall x. (\sigma 1 \leftarrow \sigma 2)$$

Sia U generica

$$\forall \rho_u \cdot \rho_u \models \phi(x) \rightarrow \forall y. (x = y \rightarrow \phi(y))$$

- . $\rho_u \not\models \phi(x) \text{ OR } \rho_u \models \forall y. (x = y -> \phi(y))$
- . $\rho_u \not\models \phi(x) \text{ OR } \rho_u \models \forall y. (x = y -> \phi(y))$
- . $\rho_u \not\models \phi(x) \text{ OR } \rho_u \models \forall b \in |U| \text{ . } \rho_u[b/y] \models (x = y -> \phi(y))$
- . $\rho_u \not\models \phi(x) \ \mathsf{OR} \ \rho_u \models \forall b \in |U| \ . \ \rho_u[b/y] \models (x = y \ \mathsf{OR} \ \phi(y))$
- . $\forall a \in |U|$. $\rho_u[a/x] \models (\rho_u \not\models \phi(x))$ OR $(\rho_u \models \forall b \in |U|$. $\rho_u[b/y] \models (x = y -> \phi(y)))$ (1) se vale per ogni b ne vale anche in particolare per uno

$$. \ \forall a \in |U| \ . \ \rho_u[a/x] \vDash (\rho_u \nvDash \phi(x)) \ OR \ (\rho_u \vDash \exists b \in |U| \ . \ \rho_u[b/y] \vDash (x = y -> \phi(y)))$$

Questo è sempre vero per x e y

che si prenda nel dominio

Per ogni x che prendo nel dominio, esisterà una y che sarà uguale a x per cui vale φ.

Ho dimostrato sia per -> che per <- grazie all'OR

(2)
$$\models \forall x. (\phi(x) <-> \exists y. (x = y \& \phi(y))$$

Sia U generica

$$\forall \rho_u : \rho_u \models \phi(x) \rightarrow \exists y. (x = y \& \phi(y))$$

- . $\rho_u \not\models \phi(x) \text{ OR } \rho_u \models \exists y. (x = y \& \phi(y))$
- . $\rho_u \not\models \phi(x) \ OR \ \rho_u \models \exists b \in |U| \ . \ \rho_u[b/y] \models (x = y \ \& \ \phi(y))$
- . $\rho_u \not\models \phi(x) \ OR \ \rho_u \models \exists b \in |U| \ . \ \rho_u[b/y] \models (x = \rho_u \models y \ \& \ \rho_u \models \phi(y))$
- . $\forall a \in |U|$. $\rho_u[a/x] \models (\rho_u \not\models \phi(x)) \ OR \ (\rho_u \models \exists b \in |U| \ . \ \rho_u[b/y] \models (x = y \ \& \phi(y)))$

Essendo x un qualsiasi oggetto del dominio possiamo dire y=x

essendo $x = x \& \phi(x)$ (supponiamo che $\rho_u \models \phi(x)$)

x = x è sempre vero $\phi(x)$ può essere vero

quindi $\exists y. (x = y \& \phi(y)) \grave{e} \text{ vero sse } \rho_u \models \phi(x)$

ES15

$$\models \forall x. \exists y. (x=y) \equiv \gamma$$

$$\exists x. R(x,x) \rightarrow R(x,c)$$

$$\models \gamma \iff \forall U : U \models \gamma \text{ sse } \forall \rho_u : \rho_u \models \gamma$$

Sia U generica

$$\begin{array}{ll} \forall \rho_u \; , \; \rho_u \vDash \; \; \forall x. \; \exists y. \; (x=y) <=> \\ \forall a \in |U|, \; \exists b \in |U| \; , \; \rho_u[a/x, \; b/y] \vDash x = y \end{array}$$

declasso, se vale per ogni oggetto di |U| ne varrà in particolare per uno

$$\exists a \in |U|, \exists b \in |U| . \rho_u[a/x, b/y] \models x = y$$

Questo è vero sse y = x, per def di relazione di uguaglianza e assioma d'identità x = x

$$\exists x. R(x,x) \rightarrow \exists x. R(x,y)$$

ES1

$$\models$$
 ($\exists x. (\phi \rightarrow \psi)$) \rightarrow ($\exists x. (\phi \rightarrow \exists x. \psi)$)

$$\models \sigma^1 -> \sigma^2 <=> \forall U : U \models \sigma^1 -> \sigma^2 \text{ sse } \forall \rho_u : \rho_u \models \sigma^1 -> \sigma^2$$

Sia U generica

$$\forall \rho_u : \rho_u \models \sigma^1 \rightarrow \sigma^2 <=>$$

.
$$\models$$
 (∃x. (φ -> ψ)) <=>

.
$$\exists a. \in |U|$$
 . $\rho_u[a/x] \models \phi \rightarrow \psi <=>$

.
$$\exists a. \in |U|$$
 . $[\rho_u[a/x] \models \phi => \rho_u[a/x] \models \psi] <=>$ quindi in particolare

$$\rho_u {\,\vDash\,} \exists x. \psi$$

.
$$\exists a. \in |U|$$
 . $[\rho_u[a/x] \models \phi \Rightarrow \rho_u[a/x] \models \exists x.\psi] \iff$

ES₂

$$\sigma 1$$
 $\sigma 2$ $\forall x.P(x) \rightarrow \forall x. Q(x)) \rightarrow (\forall x. (P(x)\rightarrow Q(x)))$

CONTROMODELLO

$$\not \models \ \sigma 1 \to \sigma 2 <=> \ \exists U \ . \ U \not \models \ \sigma 1 \to \sigma 2 \qquad \qquad \exists \rho_u \ . \ \rho_u \not \models \ \sigma 1 \to \sigma 2$$

$$U = \{a,b\}, P, Q > P(a), Q(b)$$

Mostriamo che

$$\rho_u \vDash \sigma 1 \& \rho_u \nvDash \sigma 2$$
(1) (2)

(1)
$$\rho_u \models \sigma 1$$

 $\forall \rho_{u.}$

.
$$\vDash \forall x.P(x) \rightarrow \forall x. Q(x) <=>$$

.
$$\rho_u \nvDash \forall x.P(x) OR \rho_u \vDash \forall x. Q(x) <=>$$

.
$$\rho_u \models \neg \forall x. P(x) OR \rho_u \models \forall x. Q(x) <=>$$

.
$$\rho_u \models \exists x. \ \neg P(x) \ OR \ \rho_u \models \forall x. \ Q(x) <=>$$

.
$$\exists v \in \{a,b\} \ . \ \rho_u[v/x] \vDash \neg P(x) \ OR \ \forall w \in \{a,b\} \ . \ \rho_u[w/x] \vDash Q(x)$$

di conseguenza $\rho_u \models \sigma 1$ vale

(2)
$$\rho_u \not\models \sigma 2$$

```
\begin{array}{l} \forall \rho_u \\ . \not \vDash \ \forall x. \ (P(x) -> Q(x)) \\ . \vDash \ \neg \forall x. \ (P(x) -> Q(x)) \\ . \vDash \ \exists x. \ (\neg (P(x) -> Q(x)) \\ . \vDash \ \exists x. \ (P(x) \ AND \ \neg Q(x)) \\ . \vDash \ \exists x. \ (P(x) \ AND \ \neg Q(x)) \ \textbf{VERO per un elemento del dominio} \end{array}
```

Abbiamo confermato che σ 2 non vale.

Abbiamo trovato un modo per mostrare che l'enunciato non vale per tutte le strutture.

ES1 Parte 2

 $[\neg \phi]^3$

$$|-(\forall x. \phi AND \exists x. \neg \psi) -> \exists x.(\phi AND \neg \psi)$$

ES4 PARTE 2

$$\forall x \in AND \Rightarrow AND$$

NO TAUTOLOGIA

Prendendo una U dove P e Q sono unari e diciamo che P vale per a e Q vale per b, allora non è vero questo enunciato

ES7 PARTE 2

ES8 PARTE 2

ES9 PARTE 2

 $\forall y.(x=y \rightarrow \phi(y)) \rightarrow \phi(x)$

PARTE 3

STRUTTURA DI PEANO

 $\forall x. (\exists y.(x=y AND \phi(y) \rightarrow \phi(x))$

 $\forall x.(\forall y.(x=y \rightarrow \phi(y)) \rightarrow \phi(x))$

$$U = \langle N, +, x, S, 0 \rangle$$

dove S è la funzione successore, 0 è la costante

LE[V₀, V₁] :=
$$\exists x. [v_0 + x = v_1]$$

LT[v₀, v₁] := LE[v₀, v₁] AND $\neg (v_0 = v_1)$
GT[v₀, v₁] := LT[v₁, v₀]
GE[v₀, v₁] := LE[v₁, v₀]
PARI[v₀] := $\exists x. [v_0 = x+x]$
DISPARI[v₀] := $\exists x. [v_0 = (x+x) + S(0)]$

- Divisibilità

$$DIV[v_0, v_1] = \exists x. (v_0 * x = v_1 \& LE[S(0), x])$$

- Primo

$$PRIMO[v_0] = \neg(v_0 = 0) AND \neg(v_0 = 1) AND \forall x. \forall y. (v_0 = x^*y -> (x=1 OR x=v_0))$$

ES₁

Per ogni numero primo n, esiste numero pari m con m strettamente maggiore di n

$$\forall$$
n. (primo[n] \rightarrow \exists m. (pari[m] & gt[m, n]))

ES₂

Ogni numero primo maggiore di 2 è il successore di un numero pari

$$2 = s(s(0))$$

$$\forall x. (primo[x] \& gt[x, 2] \rightarrow \exists m. (pari[m] \& n = S(m))$$

ES3

L'insieme dei numeri primi non ha un massimo ed ha un minimo

 \forall n. (primo[n] -> \exists x. (primo[x] & lt[x, n]) & \exists y. (primo[y] & \forall x. (\neg (x = y) & primo[x] -> lt[y, x])) esiste una y prima per cui ogni x è maggiore

ES4

La relazione ternaria (i, j, k) vale sse sono tre numeri diversi

$$R[i,j,k] := (\neg(i = j) \& \neg(j = k) \& \neg(k = i)$$

La disuguaglianza non possiede transitività

ES4

---- sse $i \in [j, k]$ e j divide k se la i è contenuta tra j e k

$$R[i,j,k] = GE[i,j] \& LE[i,k] \& DIV[j,k]$$

ES₆

La proprietà unaria tale che P(n) sse n > 2 ed il predecessore di n è un numero primo

$$P[n] := GT[n,2] \& \exists x. [primo[x] \& n = S(x)]$$

PARTE 1

ES₂

$$\models (\forall x. \phi AND \exists x. \psi)) \rightarrow (\exists x. (\phi AND \psi))$$

$$\vDash \sigma 1 -> \sigma 2 \Longleftrightarrow \forall U : U \vDash \sigma \Longleftrightarrow \forall \rho_u : \rho_u \vDash \sigma$$

Consideriamo una U generica e una sua generica pu

$$\models (\forall x. \phi AND \exists x. \neg \psi) \leq >$$

$$\models (\rho_u \models \forall x. \phi \text{ AND } \rho_u \models \exists x. \neg \psi) <=>$$

 $\vdash (\forall a \in |U| \ . \ \rho_u[a/x] \vDash \phi \ AND \ \exists b \in |U| \ . \ \rho_u[b/x] \vDash \neg \psi) <=> \\ Se \ vale \ per \ ogni \ elemento \ ne \ vale \ in \ particolare \ uno$

 $\models (\exists a \in |U| \ . \ \rho_u[a/x] \models \phi \ AND \ \exists b \in |U| \ . \ \rho_u[b/x] \models \neg \psi) <=> \\ \text{raccolgo l'esiste creando una variabile fresh chiamata } z$

$$\exists z \in |U|$$
 . $\rho_u[z/x] \models \phi \text{ AND } \neg \psi <=> \exists x.(\phi \text{ AND } \neg \psi)$

ES4

$$\models (\exists x.(\phi \rightarrow \psi)) \rightarrow ((\exists x.\phi) \rightarrow (\exists x.\psi))$$

 $\models \sigma 1 -> \sigma 2 <=> \forall U \ . \ U \models \sigma <=> \forall \rho_u \ . \ \rho_u \models \sigma$ Consideriamo una U generica e prendiamo sempre una ρ_u generica

$$\begin{split} &\models \exists x. (\phi \mathrel{->} \psi) \mathrel{<=>} \\ &\models \exists a \in |U| \; . \; \rho_u[a/x] \vDash \phi \mathrel{->} \psi \mathrel{<=>} \\ &\models (\exists a \in |U| \; . \; \rho_u[a/x] \vDash \phi) \mathrel{=>} (\exists a \in |U| \; . \; \rho_u[a/x] \vDash \psi) \mathrel{<=>} \\ &\models (\exists x. \phi) \mathrel{->} (\exists x. \psi) \end{split}$$

eS4 PROVA

$$\label{eq:continuity} \begin{array}{l} \not\models \ (\exists x. (\phi \mathrel{->} \psi)) \mathrel{->} ((\exists x. \phi) \mathrel{->} (\exists x. \, \psi)) \\ \\ \not\models \ \alpha \mathrel{->} \beta \mathrel{=>} \ \exists U \ . \ U \not\models \alpha \mathrel{->} \beta \mathrel{=>} \exists \rho_u \ . \ \rho_u \not\models \alpha \mathrel{->} \beta \end{array}$$

CONTROMODELLO

Consideriamo questa struttura

ES₅

$$\models (\neg \forall x. \phi \rightarrow \exists x. \neg \phi)$$

$$\models \sigma 1 \rightarrow \sigma 2 <=> \forall U . U \models \sigma <=> \forall \rho_u . \rho_u \models \sigma$$
Consideriamo una U generica e prendiamo sempre una ρ_u generica
$$\models \neg \forall x. \phi <=>$$

$$\not\models \forall x. \phi <=>$$

$$\label{eq:pull_pull_pull} \begin{split} \not & \exists a. \in |U| \; . \; \rho_u[a/x] \vDash \phi <=> \\ & \vDash \exists a. \in |U| \; . \; \rho_u[a/x] \vDash \neg \phi \\ & \vDash \exists \textbf{x.} \neg \phi \end{split}$$

Esercizi Ripasso

$$\alpha \qquad \beta \\ \vDash (\exists x. \phi(x) \ \mathsf{AND} \ \exists x. \Psi(x)) \to \exists x. (\phi(x) \ \mathsf{AND} \ \Psi(x))$$

$$\not\models \alpha \mathrel{-\!\!\!>} \beta \mathrel{=\!\!\!>} \exists U \;.\; U \not\models \alpha \mathrel{-\!\!\!>} \beta \mathrel{=\!\!\!>} \exists \rho_u \;.\; \rho_u \not\models \alpha \mathrel{-\!\!\!>} \beta$$

CONTROMODELLO

Prendiamo questa struttura

$$U = \{a,b\}, P, Q >$$

 $\phi = P$ $P(a), Q(b)$
 $\psi = Q$

Dimostriamo $\not\models \alpha -> \beta$

$$\models$$
 a AND $\not\models$ β

⊨ a UNFOLDING

$$\models \exists x. \phi(x) \text{ AND } \exists x. \Psi(x) <=> \\ \rho_u \models \exists x. \phi(x) \text{ AND } \rho_u \models \exists x. \Psi(x)$$

$\exists \ \{a,b\} \in |U| \ . \ \rho_u[v/x] \vDash \phi(x) \ AND \ \exists \ \{a,b\} \in |U| \ . \ \rho_u[w/x] \vDash \psi(x)$

$$\begin{array}{l} \not \models \; \beta \\ \not \models \; \exists x. (\phi(x) \; \mathsf{AND} \; \Psi(x)) <=> \\ \models \; \neg (\exists x. ((\phi(x) \; \mathsf{AND} \; \Psi(x))) <=> \\ \mathsf{per} \; \mathsf{OGNI} \; \{a,b\} \in |U| \; . \; \rho_u[v/x] \; \models \; (\rho_u \not \models \; \phi(x) \; \mathsf{OR} \; \rho_u \not \models \; \Psi(x)) \end{array} \quad \Box$$

ESERCIZIO DATO DALLA ZORZI

$$\models \exists x. \exists y. (\neg(x=y) AND (y \le x)) \equiv y$$

$$\not\models \gamma \iff \exists U . U \not\models \gamma \text{ sse } \exists \rho_u . \rho_u \not\models \gamma$$

Consideriamo questa struttura

$$\begin{array}{l} \not \models \ \gamma \\ \not \models \ \exists x. \ \exists y. \ (\neg(x=y) \ AND \ (y<=x)) <=> \\ \models \ \neg(\exists x. \ \exists y. \ (\neg(x=y) \ AND \ (y<=x)) <=> \\ \models \ \forall x. \ \forall y. \ (x=y \ OR \ y>x) <=> \\ \models \ \forall a \in \{1\}, \ \forall b \in \{1\} \ . \ \rho_u[a/x, \ b/y] \models (\rho_u \models x=y \ OR \ \rho_u \models y>x) \end{array}$$

ESERCIZIO RANDOM

$$|-(\neg a \text{ OR } \beta) \rightarrow (a \rightarrow \beta)|$$

$$\begin{split} &\sigma 1 & \sigma 2 \\ &\vDash \forall x. \; (\phi(x) \; OR \; \psi) \; \text{->} \; \forall x. \; \phi(x) \; OR \; \psi \\ &\vDash \sigma 1 \; \text{->} \; \sigma 2 \; \text{<=>} \; \forall U \; . \; U \vDash \sigma^1 \; \text{->} \; \sigma^2 \, \text{sse} \; \forall \rho_u \; . \; \rho_u \vDash \sigma^1 \; \text{->} \; \sigma^2 \end{split}$$

Sia U generica

$$\begin{array}{l} \forall \boldsymbol{\rho}_{u} . \; \rho_{u} \vDash \; \forall x. \; (\phi(x) \; OR \; \psi) \; <=> \\ . \; \forall a \in |U| . \; \rho_{u}[a/x] \; \vDash (\rho_{u} \vDash \; \phi(x) \; OR \; \rho_{u} \vDash \; \psi) <=> \\ . \; \forall a \in |U| . \; \rho_{u}[a/x] \; \vDash \; \phi(x) \; OR \; \forall a \in |U| . \; \rho_{u}[a/x] \; \vDash \; \psi \\ . \; \rho_{u} \vDash \; \forall x. \; \phi(x) \; OR \; \rho_{u} \vDash \; \psi <=> \\ . \; \forall x. \; \phi(x) \; OR \; \psi \end{array}$$

 $\forall x. \ PRIMO[x] -> \frac{(\exists y. (PRIMO[y] \& (GT[y, x]))}{} \& \neg \exists z. (PRIMO[z] \& LT[z, x] \& LT[z, S(S(0)))$

 $\not\models \ \alpha \ \text{-->} \ \beta \ \text{<=>} \ \exists U \ . \ U \not\models \ \alpha \ \text{-->} \ \beta \ \text{sse} \ \exists \rho_u \ . \ \rho_u \not\models \ \alpha \ \text{-->} \ \beta$

CONTROMODELLO

<N, ≤>

1)

 $\not\models \exists x. \ \forall y. \ y \le x \times impossibile$

 $\models \neg (\exists x. \ \forall y. \ y \leq x) \iff$

 $\models \forall x. \exists y. \ y > x \quad \text{per ogni } x \text{ ne esiste una strettamente più grande. Sì. Allora è vero che si falso.}$

 \mid = $\forall x$. $\exists y$. x < y $\equiv \sigma$

|-- σ <=> ∃U. U |-- σ

 $U=<\{1,2,3\}, <\}$ contromodello $\rho_u[3/x]$

 $\begin{array}{l} \rho_u \nmid = - \forall x. \ \exists y. \ (x < y) \ infatti \ nessuna \ valutazione \ \rho_u \ può \ sodd. \ \sigma \ altrimenti \\ \forall a \in \{1,2,3\} \ . \ \exists b \in \{1,2,3\} \ . \ \rho_u[a/x, \, b/y] \mid = x < y \end{array}$

 $<=> \rho_u \mid = \neg \sigma <=> \rho_u \mid = \exists x. \forall y. \neg (x < y)$