Part 1

Exercise 19.2. Let A_{α} be a subspace of X_{α} for each $\alpha \in J$. Then ΠA_{α} is a subspace of ΠX_{α} if both products are given the box topology or if both products are given the product topology.

Proof. We wish to show that the box, product topologies on ΠA_{α} are the same as the subspace topologies that the subset ΠA_{α} inherits from the box, product topologies on ΠX_{α} . To do so we will use Lemmas 13.2 and 16.1.

Let \mathcal{B}_b denote the usual basis for the box topology on ΠA_{α} , \mathcal{C}_b denote the usual basis for the box topology on ΠX_{α} , and \mathcal{B}_s denote the usual basis for the subspace topology that ΠA_{α} inherits from the box topology on ΠX_{α} . Notice that

$$B \in \mathcal{B}_b \iff B = \prod_{\alpha \in J} U_\alpha \text{ where } U_\alpha \text{ is open in } A_\alpha$$

$$= \prod_{\alpha \in J} A_\alpha \cap V_\alpha \text{ where } V_\alpha \text{ is open in } X_\alpha$$

$$= \prod_{\alpha \in J} A_\alpha \bigcap_{\alpha \in J} V_\alpha$$

$$= \prod_{\alpha \in J} A_\alpha \bigcap_{\alpha \in J} C \text{ for some } C \in \mathcal{C}_b$$

$$\iff B \in \mathcal{B}_s$$

Thus, $\mathcal{B}_b = \mathcal{B}_s$ and they must generate the same topologies. We have shown that the box topology on ΠA_{α} is the same as its subspace topology inherited from the box topology on ΠX_{α} .

Let \mathcal{B}_p denote the usual basis for the product topology on ΠA_{α} , \mathcal{C}_p denote the usual basis for the product topology on ΠX_{α} , and \mathcal{B}_s denote the usual basis for the subspace

topology that ΠA_{α} inherits from the product topology on ΠX_{α} . Notice that

$$B \in \mathcal{B}_p \iff B = \prod_{\alpha \in J} U_\alpha \text{ where } U_\alpha \text{ is open in } A_\alpha, \text{ only finitely many } U_\alpha \neq A_\alpha$$

$$= \prod_{\alpha \in J} A_\alpha \cap V_\alpha \text{ where } V_\alpha \text{ is open in } X_\alpha, \text{ only finitely many } A_\alpha \cap V_\alpha \neq A_\alpha$$

$$= \prod_{\alpha \in J} A_\alpha \cap V_\alpha \text{ where } V_\alpha \text{ is open in } X_\alpha, \text{ only finitely many } V_\alpha \neq X_\alpha$$

$$= \prod_{\alpha \in J} A_\alpha \bigcap_{\alpha \in J} V_\alpha$$

$$= \prod_{\alpha \in J} A_\alpha \bigcap_{\alpha \in J} C \text{ for some } C \in \mathcal{C}_p$$

$$\iff B \in \mathcal{B}_s$$

Thus, $\mathcal{B}_b = \mathcal{B}_s$ and they must generate the same topologies. We have shown that the product topology on ΠA_{α} is the same as its subspace topology inherited from the product topology on ΠX_{α} .

(I also think it's worth elaborating on the implication that only finitely many α such that $A_{\alpha} \cap V_{\alpha} \neq A_{\alpha}$ leads to only finitely many α such that $V_{\alpha} \neq X_{\alpha}$. One might consider the case where we have chosen a basis element such that $A_{\alpha} \not\subset V_{\alpha}$ for only finitely many $\alpha \in J$, and otherwise $A_{\beta} \subset V_{\beta} \subsetneq X_{\beta}$. In this case, simply notice that such terms $A_{\beta} \cap V_{\beta}$ can be replaced with $A_{\beta} \cap X_{\beta}$ and the equality still holds.)

Exercise 19.6. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots$ be a sequence of the points of the product space ΠX_{α} . Show that this sequence converges to the point \mathbf{x} if and only if the sequence $\pi_{\alpha}(\mathbf{x}_1), \pi_{\alpha}(\mathbf{x}_2), \ldots$ converges to $\pi_{\alpha}(\mathbf{x})$ for each α . Is this fact true if one uses the box topology instead of the product topology?

Proof. First recall that Munkres defines convergence of a sequence $x_1, x_2, ...$ to x as the statement that for all neighborhoods U of x, there exists N such that for all n > N, $x_n \in U$. Clearly, the statement is equivalent when we replace neighborhood U with a basis element B.

 (\Longrightarrow) Suppose $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to \mathbf{x} in ΠX_{α} . Let $\beta \in J$ and U_{β} be an arbitrary open neighborhood of $\pi_{\beta}(\mathbf{x})$. We can choose the open set

$$B = \prod_{\alpha \in J} \begin{cases} U_{\beta} \text{ if } \alpha = \beta \\ X_{\alpha} \text{ if } \alpha \neq \beta \end{cases}$$

in X_{α} so that $\mathbf{x} \in B$, and now there exists N such that for all n > N, $\mathbf{x}_n \in B$, which also implies that $\pi_{\beta}(\mathbf{x}_n) \in U_{\beta}$. Therefore $\pi_{\beta}(\mathbf{x}_1), \pi_{\beta}(\mathbf{x}_2), \ldots$ converges to $\pi_{\beta}(\mathbf{x})$ in X_{β} . Since β was arbitrary, this holds for each $\beta \in J$.

 (\Leftarrow) The converse is similarly proven. Suppose that $\pi_{\beta}(\mathbf{x}_1), \pi_{\beta}(\mathbf{x}_2), \ldots$ converges to $\pi_{\beta}(\mathbf{x})$ in X_{β} for each $\beta \in J$. Then let B be a basis element with $\mathbf{x} \in B$. We know that

$$B = \prod_{\alpha \in J} U_{\alpha}$$

where each U_{α} is an open set in X_{α} and only finitely many $U_{\alpha} \neq X_{\alpha}$. But for each α there exists N_{α} such that for all $n > N_{\alpha}$, $\pi_{\alpha}(\mathbf{x}_n) \in U_{\alpha}$. So let

$$N = \max\{N_{\alpha} : \alpha \in J \text{ and } U_{\alpha} \neq X_{\alpha}\}$$

and notice that N exists because there are only finitely many such N_{α} 's. Furthermore, for every $\alpha \in J$, whenever n > N we have $\pi_{\alpha}(\mathbf{x}_n) \in U_{\alpha}$; this is trivial when $U_{\alpha} = X_{\alpha}$, otherwise this is by construction of N. Therefore for all n > N, $\mathbf{x}_n \in B$, so that $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to \mathbf{x} .

This statement does not hold for the box topology, however, because we are not guaranteed that we can construct the necessary N as above. If there are infinitely many N_{α} , they may be unbounded.

Exercise 19.7. Let \mathbb{R}^{∞} be the subset of \mathbb{R}^{ω} consisting of all sequences that are "eventually zero," that is, all sequences (x_1, x_2, \ldots) such that $x_i \neq 0$ for only finitely many values of i. What is the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} in the box and product topologies? Justify your answer.

Solution. In the box topology, $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\infty}$. To see why, consider the complement $\mathbb{R}^{\omega} - \mathbb{R}^{\infty}$ which consists of all sequences that are *not* eventually zero, in other words for any $i \in \mathbb{Z}_+$ there exists k > i such that $x_k \neq 0$. Let $(x_1, x_2, \ldots) \in \mathbb{R}^{\omega} - \mathbb{R}^{\infty}$. Then let

$$B = \prod_{n \in \mathbb{Z}_+} \begin{cases} (0, x_n + 1) & \text{if } x_n > 0\\ (x_n - 1, 0) & \text{if } x_n < 0\\ (x_n - 1, x_n + 1) & \text{if } x_n = 0 \end{cases}$$

Now B is a basis element of the box topology and $x \in B \subset \mathbb{R}^{\omega} - \mathbb{R}^{\infty}$. Thus \mathbb{R}^{∞} is closed. However, \mathbb{R}^{∞} is not closed in the product topology. Because there can only be finitely many proper subsets U_n in the basis element $B = \prod U_n$, there will exist an N such that $U_n = \mathbb{R}$ for all n > N. Of course, this makes it difficult to find such a B contained by $\mathbb{R}^{\omega} - \overline{\mathbb{R}^{\infty}}$. I conjecture that $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\omega}$. To this end, let $(x_1, x_2, \ldots) \in \mathbb{R}^{\omega}$ and $B = \prod U_n$ be a basis element with $x \in B$. As just mentioned, there exists N such that for all n > N, $U_n = \mathbb{R}$; hence, for all n > N we have $0 \in U_n$. Thus B contains sequences that are eventually zero, and therefore intersects \mathbb{R}^{∞} . By Thereom 17.5 we conclude that $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\omega}$.

Part 2

Let $\{0,1\}$ have the discrete topology, and let $\{0,1\}^{\omega}$ have the product topology. Define a function $f:\{0,1\}^{\omega}\to\mathbb{R}$ by

$$f(\mathbf{x}) = \begin{cases} \frac{1}{\min\{i|x_i=1\}} & \text{if } \mathbf{x} \neq \mathbf{0} \\ 0 & \text{if } \mathbf{x} = \mathbf{0} \end{cases}$$

Is f continuous? (Notation: $\mathbf{0} = (0, 0, 0, ...)$ and x_i is the i^{th} coordinate of the point $\mathbf{x} = (x_1, x_2, ...)$.)

Solution. Yes, f is continuous. Let U be an open set in \mathbb{R} and consider $f^{-1}(U)$. First, if $f^{-1}(U)$ is empty, then trivially it is open, so suppose otherwise and let $\mathbf{x} \in f^{-1}(U)$. We have two cases: $\mathbf{x} \neq \mathbf{0}$ or $\mathbf{x} = \mathbf{0}$.

If $\mathbf{x} \neq \mathbf{0}$, then $f(\mathbf{x}) = \frac{1}{n}$ for some $n \in \mathbb{Z}_+$, where n is the first nonzero coordinate of \mathbf{x} . Let B be the basis element of $\{0,1\}^{\omega}$ such that

$$\pi_k(B) = \begin{cases} \{0\} & \text{if } k < n \\ \{1\} & \text{if } k = n \\ \{0, 1\} & \text{if } k > n \end{cases}$$

Now $\mathbf{x} \in B = f^{-1}(\{f(\mathbf{x})\}) \subset f^{-1}(U)$.

If $\mathbf{x} = \mathbf{0}$, then $f(\mathbf{x}) = 0 \in U$. Let I be a basis interval such that $0 \in I \subset U$, and notice that there must be (infinitely many) $\frac{1}{n} \in I$. Choose the least such $n \in \mathbb{Z}_+$ and note that $\frac{1}{k} \in I$ for all $k \geq n$. Let B be the basis element of $\{0,1\}^{\omega}$ such that

$$\pi_k(B) = \begin{cases} \{0\} & \text{if } k < n \\ \{0, 1\} & \text{if } k \ge n \end{cases}$$

Now $\mathbf{x} \in B = f^{-1}(I) \subset f^{-1}(U)$.

We have shown in all cases that for any $\mathbf{x} \in f^{-1}(U)$ we can find a basis element B such that $\mathbf{x} \in B \subset f^{-1}(U)$. Therefore $f^{-1}(U)$ is open and f is continuous.

Part 3

Let X be a topological space. Let J and K be index sets.

(a) For $j \in J$, let $\pi_j : X^j \to X$ be the j^{th} projection function. For $k \in K$, let $\phi_k : (X^J)^K \to X^J$ be the kth projection function. Define $F : (X^J)^K \to X^{J \times K}$ to be $F(\mathbf{y}) = (\pi_j(\phi_k(\mathbf{y})))_{j \times k \in J \times K}$. Show that F is a homeomorphism.

Proof. First we show that F is a bijection. Suppose $\mathbf{x} \neq \mathbf{y}$. Then for some $k \in K$, $\phi_k(\mathbf{x}) \neq \phi_k(\mathbf{y})$. Thus in the kth coordinate there exists some $j \in J$ such that $\pi_j(\phi_k(\mathbf{x})) \neq \pi_j(\phi_k(\mathbf{y}))$. This means that $F(\mathbf{x})$ and $F(\mathbf{y})$ differ in the $j \times k$ coordinate. Hence F is injective.

To show F is surjective, let $\mathbf{x} \in X^{J \times K}$ and consider \mathbf{x} as the function $\mathbf{x} : J \times K \to X$. Now let $\mathbf{y} \in (X^J)^K$ be the function $\mathbf{y} : K \to X^J$ defined by $\mathbf{y}(k) : J \to X$ defined by

$$\mathbf{y}(k)(j) = \mathbf{x}(j \times k).$$

Then for all $j \times k \in J \times K$,

$$F(\mathbf{y})(j \times k) = \pi_j(\phi_k(\mathbf{y}))$$

$$= \pi_j(\mathbf{y}(k))$$

$$= \mathbf{y}(k)(j)$$

$$= \mathbf{x}(j \times k)$$

Hence $\mathbf{x} = F(\mathbf{y})$ and F is surjective.

Next we must show F is continuous. So let $\mathbf{x} \in (X^J)^K$ and V be a neighborhood of $f(\mathbf{x})$. We will find a neighborhood B of \mathbf{x} such that $f(B) \subset V$. Since V is open there exists a basis element $\prod U_{j\times k}$ where only finitely many $U_{j\times k} \neq X$ such that

$$f(\mathbf{x}) \in \prod_{j \times k \in J \times K} U_{j \times k} \subset V$$

Define the set $B \subset (X^J)^K$ such that

$$\phi_k(B) = V \subset X^J$$
 such that $\pi_i(V) = U_{i \times k}$

Notice that since there are only finitely many $j \times k$ such that $U_{j \times k} \neq X$, there are only finitely many j such that $\pi_j(V) \neq X$, and thus each V is open in X^J . Also, since there are only finitely many $j \times k$ such that $U_{j \times k} \neq X$, there are only finitely many k such that $\phi_k(B) \neq X^J$. Therefore B is open in $(X^J)^K$, and we know $\mathbf{x} \in B$ by construction (and the fact that f is injective). Also for any $\mathbf{y} \in B$,

$$F(\mathbf{y}) = \pi_i(\phi_k(\mathbf{y}))_{i \times k \in J \times K}$$

but for any $j \times k \in J \times K$ we have

$$\pi_j(\phi_k(\mathbf{y})) \in \pi_j(\phi_k(B)) = U_{j \times k}$$

and hence $F(\mathbf{y}) \in \prod U_{j \times k} \subset V$. This shows that $F(B) \subset V$, so we conclude that F is continuous.

Next we must show F^{-1} is continuous, so let $y \in X^{J \times K}$ and V be a neighborhood of $F^{-1}(\mathbf{y})$. Next we need to find a neighborhood U of \mathbf{y} such that $F^{-1}(U) \subset V$. Choose a basis element B such that $F^{-1}(\mathbf{y}) \in B \subset V$. Define U such that

$$U = \prod_{j \times k} \pi_j(\phi_k(B)).$$

Because B is a basis element, there are only finitely many k such that $\phi_k(B) \neq X^J$ and of these ks only finitely many j such that $\pi_j(\phi_k(B)) \neq X$, so there are only finitely many $j \times k$ such that $\pi_j(\phi_k(B)) \neq X$. So U is open, $\mathbf{y} \in U$, and for any $\mathbf{x} \in F^{-1}(U)$, we have $\mathbf{x} \in B$ by construction. Therefore F^{-1} is continuous.

We conclude that F is a homeomorphism.

(b) Suppose that there's a bijection between J and K. Show that X^J and X^K are homeomorphic.

Proof. Let $f: K \to J$ be a bijection. Simply define $g: X^J \to X^K$ by

$$g(\mathbf{x}) = \mathbf{y}$$
 such that $\pi_k(\mathbf{y}) = \pi_{f(k)}(\mathbf{x})$ for all $k \in K$.

Then q is routinely shown to be a homeomorphism.

Note we can also consider $x:J\to X$ mapped to $g(x):K\to X$ defined as the composition $g(x)=x\circ f$.

(c) Show that $(X^{\omega})^{\omega}$ is homeomorphic to X^{ω} .

Proof. Recall that $\omega = \mathbb{Z}_+$ and \mathbb{Z}_+ is isomorphic to $\mathbb{Z}_+ \times \mathbb{Z}_+$. By part (a) there exists a homeomorphism

$$f: (X^{\omega})^{\omega} \to X^{\omega \times \omega}$$

and by part (b) there exists a homeomorphism

$$a: X^{\omega \times \omega} \to X^{\omega}$$
.

Hence $g \circ f$ is a homeomorphism from $(X^{\omega})^{\omega}$ to X^{ω} .

(d) Show that if there is a continuous surjective function from X^{ω} to some space Z, then there's also a continuous surjective function from X^{ω} to Z^{ω} . (Hint: $X^{\omega} \to (X^{\omega})^{\omega} \to Z^{\omega}$)

Proof. Let $f: X^{\omega} \to Z$ be a continuous surjective function. Define $g: (X^{\omega})^{\omega} \to Z^{\omega}$ to map each projection according to f, that is, such that

$$\pi_n(g(\mathbf{x})) = f(\pi_n(\mathbf{x})) \text{ for all } n \in \mathbb{Z}_+$$

Next let $h: X^{\omega} \to (X^{\omega})^{\omega}$ be the homeomorphism guaranteed by part (c). Then $F: X^{\omega} \to Z^{\omega}$ defined by $F = q \circ h$ is a continuous surjection.

To prove this, we need only show that g is both continuous and surjective. First let $\mathbf{z} \in Z^{\omega}$. Then let $\mathbf{x} \in (X^{\omega})^{\omega}$ such that for each $n \in \mathbb{Z}_+$, $\pi_n(\mathbf{x})$ is such that $f(\pi_n(\mathbf{x})) = \pi_n(\mathbf{z})$, which exists because f is surjective. Then clearly $g(\mathbf{x}) = \mathbf{z}$, so g is surjective.

Next let $\mathbf{x} \in (X^{\omega})^{\omega}$ and V be a neighborhood of $g(\mathbf{x})$, and choose a basis element B such that $g(\mathbf{x}) \in B \subset V$. Then

$$B = \prod_{n \in \mathbb{Z}_+} U_n$$
 only finitely many $U_n \neq Z$

Next construct

$$C = \prod_{n \in \mathbb{Z}_+} f^{-1}(U_n).$$

Clearly only finitely many $f^{-1}(U_n) \neq X^{\omega}$, so C is open, $\mathbf{x} \in C$, and $g(C) \subset B \subset V$. Thus g is continuous.

Since g, h are both continuous and surjective, F is also continuous and surjective.