

Aufgaben zur Algebra 1

Besprechungstermin: Do. 31. Oktober 2024

Aufgabe 1

Sei G eine Gruppe. Ein Automorphismus $\varphi \in \operatorname{Aut}(G)$ heißt innerer Automorphismus, falls ein $h \in G$ existiert mit

$$\varphi(g) = h^{-1}gh$$

für alle $g \in G$. Zeige Sie, dass die Menge $\mathrm{Inn}(G)$ aller inneren Automorphismen eine normale Untergruppe von $\mathrm{Aut}(G)$ ist. Finden Sie weiter einen Automorphismus einer Gruppe, der kein innerer Automorphismus ist.

Aufgabe 2

Sei G eine Gruppe, H < G eine Untergruppe, $N \triangleleft G$ eine normale Untergruppe, und es gelte $H \cap N = \{e\}$ sowie G = NH. Zeigen Sie:

- (i) Die Vorschrift $\theta \colon H \to \operatorname{Aut}(N); h \mapsto (n \mapsto hnh^{-1})$ ist ein Gruppenhomomorphismus.
- (ii) Das semidirekte Produkt $N \rtimes_{\theta} H$ (Aufgabe 4 vom letzten Blatt) ist isomorph zu G, mittels der Abbildung $(n,h) \mapsto nh$.

Aufgabe 3

- (i) Eine Gruppe G mit 35 Elementen operiere auf einer Menge X mit 18 Elementen. Zeigen Sie, dass es mindestens ein Element $x \in X$ geben muss mit $g \cdot x = x$ für alle $g \in G$ (ein solches Element heißt Fixpunkt der Operation).
- (ii) Finden Sie ein Beispiel für eine Gruppenoperation wie in (i), die genau einen Fixpunkt hat.

Aufgabe 4

Zeigen Sie, dass für $n \geqslant 3$ jede Permutation $\pi \in S_n$ mit $\operatorname{sgn}(\pi) = 1$ ein Produkt von Zykeln der Länge 3 ist.