```
In [16]: # Rakibul Islam
# 151-15-5131

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv("train.csv")
print(df)
x=df['x']
y=df['y']
```

|            | x     | V          |
|------------|-------|------------|
| 0          | 24.0  | 21.549452  |
| 1          | 50.0  | 47.464463  |
| 2          | 15.0  | 17.218656  |
| 3          | 38.0  | 36.586398  |
| 4          | 87.0  | 87.288984  |
| 5          | 36.0  | 32.463875  |
| 6          | 12.0  | 10.780897  |
| 7          | 81.0  | 80.763399  |
| 8          | 25.0  | 24.612151  |
| 9          | 5.0   | 6.963319   |
| 10         | 16.0  | 11.237573  |
| 11         | 16.0  | 13.532902  |
| 12         | 24.0  | 24.603239  |
| <b>1</b> 3 | 39.0  | 39.400500  |
| 14         | 54.0  | 48.437538  |
| <b>1</b> 5 | 60.0  | 61.699003  |
| 16         | 26.0  | 26.928324  |
| <b>1</b> 7 | 73.0  | 70.405206  |
| 18         | 29.0  | 29.340924  |
| 19         | 31.0  | 25.308952  |
| 20         | 68.0  | 69.029343  |
| 21         | 87.0  | 84.994847  |
| 22         | 58.0  | 57.043103  |
| 23         | 54.0  | 50.592199  |
| 24         | 84.0  | 83.027722  |
| 25         | 58.0  | 57.057527  |
| 26         | 49.0  | 47.958833  |
| 27         | 20.0  | 24.342264  |
| 28         | 90.0  | 94.684883  |
| 29         | 48.0  | 48.039707  |
|            |       | • • •      |
| 670        | 84.0  | 82.889358  |
| 671        | 64.0  | 63.613650  |
| 672        | 12.0  | 11.296272  |
| 673        | 61.0  | 60.022749  |
| 674        | 75.0  | 72.603393  |
| 675        | 15.0  | 11.879646  |
| 676        | 100.0 | 100.701274 |
| 677        | 43.0  | 45.124208  |
| 678        | 13.0  | 14.811068  |
| 679        | 48.0  | 48.093680  |
| 680        | 45.0  | 42.291457  |
| 681        | 52.0  | 52.733898  |
| 682        | 34.0  | 36.723970  |
| 683        | 30.0  | 28.645352  |
| 684        | 65.0  | 62.166753  |
| 685        | 100.0 | 95.584595  |
| 686        | 67.0  | 66.043253  |
| 687        | 99.0  | 99.956622  |
| 688        | 45.0  | 46.149420  |
| 689        | 87.0  | 89.137550  |
| 690        | 73.0  | 69.717878  |
| 691        | 9.0   | 12.317366  |
| 692        | 81.0  | 78.202963  |
| 693        | 72.0  | 71.309954  |
| 694        | 81.0  | 81.455447  |

```
695 58.0 58.595006
696 93.0 94.625094
697 82.0 88.603770
698 66.0 63.648685
699 97.0 94.975266
```

[700 rows x 2 columns]

```
In [17]:
    m_x = np.mean(x);
    m_y = np.mean(y);
    print(m_x)
    print(m_y)
    m_xy = np.mean(x*y)
    print(m_xy)
    m_xx = np.mean(x**2)
    print(m_xx)
    m_x2 = m_x**2
    print(m_x2)
    m_optimal = ((m_x*m_y)-m_xy)/(m_x2-m_xx)
    print(m_optimal)
    c_optimal = (m_y-(m_optimal*m_x))
    print(c_optimal)
```

54.98593909881429 49.93986917045776 3335.424584518539 21136.701501578937 3023.4534985785144 0.03254159494814826 48.1505390124606

## In [18]: plt.scatter(x,y) plt.show()



```
In [19]: y_final = m_optimal * x + c_optimal
x_final =((y_final - c_optimal)/m_optimal)
print(x_final)
```

| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29             | 24.0<br>50.0<br>15.0<br>38.0<br>87.0<br>36.0<br>12.0<br>81.0<br>25.0<br>16.0<br>24.0<br>39.0<br>54.0<br>60.0<br>26.0<br>73.0<br>29.0<br>31.0<br>68.0<br>87.0<br>58.0<br>54.0<br>49.0<br>90.0<br>48.0 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 670<br>671<br>672<br>673<br>674<br>675<br>676<br>677<br>678<br>679<br>680<br>681<br>682<br>683<br>684<br>685<br>686<br>687<br>688<br>689<br>690<br>691<br>692<br>693<br>694<br>695 | 84.0<br>64.0<br>12.0<br>61.0<br>75.0<br>15.0<br>100.0<br>43.0<br>45.0<br>30.0<br>65.0<br>100.0<br>67.0<br>99.0<br>45.0<br>87.0<br>73.0<br>9.0<br>81.0<br>72.0<br>81.0<br>58.0                        |

696 93.0 697 82.0 698 66.0 699 97.0

Name: x, dtype: float64

In [20]: plt.plot(x\_final,y\_final)
 plt.show()



In [ ]: