第十章 排队论

- ▶排队论的基本概念
- ▶排队系统的生灭过程描述
- ▶典型模型与性态指标
- ▶优化举例

无处不在的排队(服务)现象

到达的顾客	要求的服务	服务机构
1.故障机器	维修	修理工
2.修理工	领取配件	管理员
3.病人	医疗	医生
4.打电话	通话	交换台
5.到港飞机	降落	跑道
6.进入敌机	击毁	战斗机、高射炮
7.困难家庭	计时服务	钟点工
8.网络客户	上网	网站服务器
9.进程	运行	操作系统
10.上游河水	通过水库	水闸

排队系统的整体结构

排队模型的Kendall分类记号

Kendall分类记号: X/Y/Z/A/B/C

X: 顾客到达时间间隔分布

Y: 服务时间分布

M: 负指数分布(Markov性)

D: 定长分布,确定型(Determinstic)

E_k: k阶Erlang型

GI: 一般相互独立随机分布(General Independent)

G: 一般随机分布 (General)

Z: 服务台个数

A: 系统容量,可容纳的最多顾客数

B: 顾客源的数目

C: 服务规则 (FCFS、LCFS、PS)

性态指标

- ■队长N:排队系统中的顾客数,均值为L
 - ■排队长N_q: 正在排队的顾客数,均值为L_q

队长 $N=排队长N_q+$ 正在被服务的顾客数

- ■逗留时间T: 一个顾客在系统中的停留时间,均值为W
- ■等待时间 T_q : 一个顾客在系统中的排队等待的时间,均值为 W_q

逗留时间T =等待时间 T_q +服务时间V

■忙期B: 顾客到达空闲服务机构起到服务机构再度空闲为止的时间长度

第十章 排队论

- ▶排队论的基本概念
- ▶排队系统的生灭过程描述
- ▶典型模型与性态指标
- ▶优化举例

随机过程

- ■随机过程:对任意一个实参数t,X(t) 是一个随机变量,则随机变量族 $\{X(t): t \in R\}$ 为一个随机过程
 - □ 连续参数随机过程: t 取连续实数, 例如时间。
 - □ 离散参数随机过程: t 取离散值,例如人数。 离散参数随机过程也称为随机序列。
- ■状态空间S: 随机变量 X(t) 的取值范围
 - □ 离散状态空间: S为离散集合,例如交通灯。
 - □ 连续状态空间: S为连续区间,例如旋转角度。

输入过程下的三个随机过程

- ➤ 顾客到达时间序列{t(n): n=1,2,...} 连续状态、离散参数随机过程
- ➤ 顾客到达时间间隔序列{τ(n): n=1,2,...} 连续状态、离散参数随机过程

➤ 排队系统中的顾客人数{N(t): t∈[0,+∞)} 可数无限状态、连续参数随机过程

输入过程图示

$$\tau(n)=t(n)-t(n-1)$$

到达时间间隔τ(n)

假设τ(n)为独立同分布序列,满足参数λ的负指数分布:

■ 概率分布函数:

$$F[\tau(n)] = P(\xi \le \tau(n)) = \begin{cases} 1 - e^{-\lambda \tau(n)} & \tau(n) \ge 0 \\ 0 & \tau(n) < 0 \end{cases}$$

■ 概率密度函数:

 $\lambda > 0$ 顾客到达率

$$f[\tau(n)] = \begin{cases} \lambda e^{-\lambda \tau(n)} & \tau(n) \ge 0 \\ 0 & \tau(n) < 0 \end{cases}$$

■ 数字特征:

$$E[\tau(n)] = \int_0^\infty \tau f[\tau(n)] d\tau(n) = \frac{1}{\lambda}$$

$$D[\tau(n)] = \int_0^\infty [\tau(n) - E[\tau(n)]]^2 f[\tau(n)] d\tau(n) = \frac{1}{\lambda^2}$$

负指数分布的特性

定理1: 负指数分布具有无记忆性(无后效性/Markov性)

$$P(\xi > t + \tau \mid \xi > t) = P(\xi > \tau) = e^{-\lambda \tau} \qquad \tau \ge 0$$

证明:

$$P(\xi > t + \tau \mid \xi > t) = \frac{P(\xi > t + \tau, \xi > t)}{P(\xi > \tau)}$$
$$= \frac{P(\xi > t + \tau)}{P(\xi > \tau)} = \frac{e^{-\lambda(t+\tau)}}{e^{-\lambda t}} = e^{-\lambda \tau}$$

连续随机分布中,只有负指数分布具有无记忆性

顾客到达时间t(n)

第n个顾客到达时刻t(n)的分布: n阶Erlang分布

■ 概率分布函数:

$$F[t(n)] = P[\zeta \le t(n)] = 1 - e^{-\lambda t(n)} \left(1 + \lambda t(n) + \dots + \frac{[\lambda t(n)]^{n-1}}{(n-1)!} \right) \quad t(n) \ge 0$$

■ 概率密度函数:

$$f[t(n)] = \frac{\lambda(\lambda t(n))^{n-1}}{(n-1)!} e^{-\lambda t(n)} \qquad \lambda > 0, \qquad t(n) \ge 0$$

■ 数字特征:

$$E[t(n)] = \int_0^\infty t(n)f[t(n)]dt(n) = \frac{n}{\lambda}$$

$$D[t(n)] = \int_0^\infty (t(n) - E[t(n)])^2 f[t(n)]dt(n) = \frac{n}{\lambda^2}$$

Erlang分布与负指数分布的关系

定理2: $\tau(1)$, $\tau(2)$,..., $\tau(n)$ 为服从参数为 λ 的负指数分布,则 $t(n)=\tau(1)+\tau(2)+...+\tau(n)$ 为服从参数为 λ 的 n阶Erlang分布。

证明: 归纳法

$$\mathbf{n=1}$$
, 显然成立 $f[t(1)] = \lambda e^{-\lambda t(1)}$

$$\mathbf{n}=\mathbf{k}$$
,假设成立 $f[t(k)] = \frac{\lambda[\lambda t(k)]^{k-1}}{(k-1)!}e^{-\lambda t(k)}$

n=k+1,可得

$$f[t(k+1)] = f[t(k) + \tau(k+1)] = \int_{-\infty}^{+\infty} f[t(k+1) - t(k)] f[t(k)] dt(k)$$

$$= \int_0^{t(k+1)} \lambda e^{-\lambda[t(k+1)-t(k)]} \frac{\lambda[\lambda t(k)]^{k-1}}{(k-1)!} e^{-\lambda t(k)} dt(k) = \frac{\lambda[\lambda t(k+1)]^k}{k!} e^{-\lambda t(k+1)}$$

Erlang分布性质

◆ 性质: λ越大,分布越对称,固定均值μ,则方差越小(随机性越小)。

$$P_{poisson}(\xi = n) = \frac{\lambda^n}{n!} e^{-\lambda}$$

到达顾客数N(t)

定理3: 当顾客到达时间间隔 $\tau(n)$ 为服从相互独立、参数为 λ 的负指数分布时,t时间内到达系统的顾客数 $\{N(t):t\in[0,+\infty)\}$ 为参数 λ 的Poisson过程。(充要条件)。

■ 概率分布函数:

$$P[N(t) = n] = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

参数是λt的Poisson分布

■ 数字特征:

$$E[N(t)] = \lambda t$$
 $D[N(t)] = \lambda t$

最简单流

假设到达顾客数N(t)是满足以下三个条件的最简单流:

- (1) 平稳性: $[t,t+\Delta t)$ 内事件数发生的概率为: $\lambda \Delta t + o(\Delta t)$ 。 (事件指顾客到达, λ 为单位时间到达的顾客平均数)
- (2) 独立性:任意不相交时间区间的事件发生情况相互独立(无后效性)。
- (3) 普通性: Δt 充分小时, [t,t+ Δt)内发生2个以上事件的概率是 $o(\Delta t)$ 。

在数学上即Poisson流/Poisson过程。

$$P[N(t) = n] = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

简单流即Poisson流

定理4: 当顾客到达人数 $\{N(t):t\in[0,+\infty)\}$ 为参数 λ 的简 单流时,则N(t)为n的概率为参数是λt的Poisson分布。

证明:
$$P_n(t) \triangleq P[N(t) = n]$$

$$P_0(t + \Delta t) = P_0(t)(1 - \lambda \Delta t) + o(\Delta t) \xrightarrow{\Delta t \to 0} \frac{dP_0(t)}{dt} = -\lambda P_0(t)$$

$$P_0(t + \Delta t) = P_0(t)(1 - \lambda \Delta t) + o(\Delta t) \xrightarrow{\Delta t \to 0} \frac{dP_0(t)}{dt} = -\lambda P_0(t)$$

$$P_0(t) = e^{-\lambda t}$$

$$P_{n}(t + \Delta t) = P_{n-1}(t)\lambda \Delta t + P_{n}(t)(1 - \lambda \Delta t) + o(\Delta t)$$

$$\frac{dP_{n}(t)}{dt} = -\lambda P_{n}(t) + \lambda P_{n-1}(t)$$

$$P_{n}(0) = 0$$

$$P_{n}(t) = \frac{(\lambda t)^{n}}{n!} e^{-\lambda t}$$

小结

✓ 顾客到达时间间隔τ(n)为参数λ的负指数分布

✓ 顾客到达时间t(n)为参数λ的n阶Erlang分布

✓ t时刻的顾客数N(t)为参数是λt的Poisson分布

λ为顾客到达率

输出过程图示

输出过程也可和输入过程一样建模,此时的参数为服务系统服务率,记为µ

输入、输出过程的复合结果

$$N(t)=N'(t)-N''(t)$$

排队系统的生灭过程描述

- ■生灭过程: 随机过程{N(t): $t \in [0,+\infty)$ }, 状态空间 $S=\{0,1,2,...\}$, 满足以下三个条件:
- (1) 设N(t)=n,则从t时刻起,到N(t)=n+1发生时刻的时间间隔 Δ t服从参数为 λ_n 的负指数分布(λ_n 为与排队人数n有关的顾客到达率);
- (2) 设N(t)=n,则从t时刻起,到N(t)=n-1发生时刻的时间间隔 Δ t服从参数为 μ _n的负指数分布(μ _n为与排队人数n有关的系统服务率);
- (3) Δ t 充分小时, [t,t+ Δ t) 内发生2个以上事件的概率 是 $o(\Delta t)$ 。(普通性)

Kolmogrov方程

$$P_{0}(t + \Delta t) = P_{0}(t)(1 - \lambda_{0}\Delta t) + P_{1}(t)\mu_{1}\Delta t + o(\Delta t)$$

$$P_{n}(t + \Delta t) = P_{n-1}(t)\lambda_{n-1}\Delta t + P_{n}(t)(1 - \lambda_{n}\Delta t)(1 - \mu_{n}\Delta t) + P_{n+1}(t)\mu_{n+1}\Delta t + o(\Delta t)$$

$$\Rightarrow P_n(t+\Delta t) = P_{n-1}(t)\lambda_{n-1}\Delta t + P_n(t)[1-\lambda_n\Delta t - \mu_n\Delta t] + P_{n+1}(t)\mu_{n+1}\Delta t + O(\Delta t)$$

$$\frac{dP_0(t)}{dt} = -\lambda_0 P_0(t) + \mu_1 P_1(t)$$

$$\frac{dP_n(t)}{dt} = \lambda_{n-1} P_{n-1}(t) - (\lambda_n + \mu_n) P_n(t) + \mu_{n+1} P_{n+1}(t)$$

n=1,2,...

队列顾客数的稳态概率分布

(统计)平衡状态: $P_n = \lim_{t \to \infty} P_n(t)$ $\lim_{t \to \infty} \dot{P}_n(t) = 0$

物理意义: 进入、离开状态n的平均速度相等

$$\lambda_0 P_0(t) = \mu_1 P_1(t)$$

$$\lambda_0 P_0(t) + \mu_2 P_2(t) = (\lambda_1 + \mu_1) P_1(t)$$

$$\lambda_{n-1}P_{n-1}(t) + \mu_{n+1}P_{n+1}(t) = (\lambda_n + \mu_n)P_n(t)$$

$$P_n = \frac{\lambda_{n-1}\lambda_{n-2}\cdots\lambda_0}{\mu_n\mu_{n-1}\cdots\mu_1}P_0$$

队列稳态空闲概率

$$C_{n} \triangleq \frac{\lambda_{n-1}\lambda_{n-2}\cdots\lambda_{0}}{\mu_{n}\mu_{n-1}\cdots\mu_{1}}$$

$$P_{n} = \frac{\lambda_{n-1}\lambda_{n-2}\cdots\lambda_{0}}{\mu_{n}\mu_{n-1}\cdots\mu_{1}}P_{0}$$

$$\sum_{n=0}^{\infty} P_{n} = 1$$

$$\sum_{n=1}^{\infty} P_{n} = 1$$

$$P_0 = \frac{1}{1 + \sum_{n=1}^{\infty} C_n}$$

收敛条件:
$$\sum_{n=1}^{\infty} C_n < \infty$$

第十章 排队论

- ▶排队论的基本概念
- ▶排队系统的生灭过程描述
- ▶典型模型与性态指标
- ▶优化举例

典型模型

- ➤M/M/s/∞等待制模型
 - □ 单服务台M/M/1/∞
 - □ 多服务台M/M/s/∞
- ▶M/M/s/K混合制模型
- >其他排队模型
 - □有限源排队模型
 - □ 服务率到达率状态依赖型排队模型
 - □非生灭过程模型举例

M/M/1/∞系统分析

▶ 稳态队列分布:

$$C_{n} = \frac{\lambda_{n-1}\lambda_{n-2}\cdots\lambda_{0}}{\mu_{n}\mu_{n-1}\cdots\mu_{1}} = \left(\frac{\lambda}{\mu}\right)^{n} = \rho^{n}$$

$$\rho \triangleq \frac{\lambda}{\mu}$$

$$\mathbb{R}$$

$$\mathbb{R}$$

$$\mathbb{R}$$

$$P_n = C_n P_0 = \rho^n P_0$$
 $n=1,2,3...$

$$P_{0} = \frac{1}{1 + \sum_{n=1}^{\infty} C_{n}} = \frac{1}{1 + \sum_{n=1}^{\infty} \rho^{n}} = \frac{1}{\sum_{n=0}^{\infty} \rho^{n}} = 1 - \rho$$

$$\rho < 1$$
「打可达到稳态

M/M/1/∞的平均队长

■ 平均队长: 平稳状态下的队长均值

$$L = \sum_{n=0}^{\infty} n P_n = 0 \cdot (1 - \rho) + \sum_{n=1}^{\infty} n \rho^n (1 - \rho) = \sum_{n=1}^{\infty} \rho^n = \frac{\rho}{1 - \rho} = \frac{\lambda}{\mu - \lambda}$$

■ 平均排队长

$$L_{q} = \sum_{n=1}^{\infty} (n-1)P_{n} = L - (1-P_{0}) = L - \rho = \frac{\rho^{2}}{1-\rho} = \frac{\lambda^{2}}{\mu(\mu - \lambda)}$$

M/M/1/∞的逗留时间

■ 平均逗留时间W: 平稳状态下的逗留时间T的平均值。 假定顾客到达时,队长N=n,则该顾客的逗留时间 T_n 为 每个顾客服务时间 V_i 之和:

$$T_n = V_1' + V_2 + ... + V_n + V_{n+1}$$

 V_i 服从参数为 μ 的负指数分布 V_1 服从参数为 μ 的负指数分布(无记忆性) T_n 为n+1阶Erlang分布:

$$f(T = t \mid N = n+1) = \frac{\mu(\mu t)^n}{n!} e^{-\mu t}$$

逗留时间T的分布(全概率公式求解)

$$f(T = t) = \sum_{n=0}^{\infty} P_n f(T = t \mid N = n+1)$$

$$= \sum_{n=0}^{\infty} (1-\rho) \rho^n \frac{\mu(\mu t)^n}{n!} e^{-\mu t} = (\mu - \lambda) e^{-(\mu - \lambda)t}$$
T服从参数为 μ - λ 的负指数分布

> 平均逗留时间:

$$W = E(T) = \frac{1}{\mu - \lambda} = \frac{L}{\lambda}$$

$$L = \frac{\lambda}{\mu - \lambda}$$

$$L = \frac{\lambda}{\mu - \lambda} \qquad L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$$

> 平均等待时间:

$$W_{q} = W - E(V_{n+1}) = \frac{1}{\mu - \lambda} - \frac{1}{\mu} = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{L_{q}}{\lambda}$$

Little公式的图解

平均队长L=单位时间进入系统的平均人数 $\lambda \times$ 平均逗留时间W

图解

平均顾客数:
$$\bar{N}(t) = \frac{1}{t} \int_{0}^{t} N(t) dt = \frac{1}{t} \sum_{i} T_{i} = \frac{1}{t} T^{s}(t)$$

T³(t)为所有顾客的总逗留时间

Little公式

(0,t]内某一时刻队列的平均顾客数:

$$\overline{N}(t) = \frac{T^{s}(t)}{t} = \frac{N^{s}(t)}{t} \frac{T^{s}(t)}{N^{s}(t)} = \overline{\lambda}(t)\overline{T}(t)$$

Ns(t)为(0,t]进入系统的总顾客数

$$\lim_{t\to\infty} \overline{\lambda}(t) = \lambda_e \qquad \lambda_e 为有效进入率$$

$$\lim_{t \to \infty} \overline{T}(t) = W \qquad \lim_{t \to \infty} \overline{N}(t) = L$$

所以,有: $L=\lambda_eW$

同理,有: $L_q = \lambda_e W_q$

Little公式具有普遍性

顾客到达时间间隔分布 服务时间分布 服务台数量

服务规则

无关!

M/M/1/∞的忙期与闲期

闲期I出现的概率: $P_0=1-\rho$ 没有顾客的概率

忙期B出现的概率: $1-P_0=\rho$ 至少有一个顾客的概率

忙期、闲期交替出现,两者平均长度之比为:

$$\frac{\overline{B}}{\overline{I}} = \frac{\rho}{1 - \rho}$$

闲期I的平均长度=第一个顾客到达的平均时间 $\overline{I} = \frac{1}{\lambda}$

$$\Rightarrow \quad \overline{B} = \frac{1}{\mu - \lambda} = W$$

顾客平均逗留时间=服务台平均忙期

M/M/s /∞系统

多队列-多服务台

单队列M/M/s /∞

s个服务台,彼此独立,

$$\lambda_n = \lambda$$
, $n=0,1,2...$ $\mu_n = \begin{cases} n\mu & s \ge n \ge 1 \\ s\mu & n \ge s \end{cases}$

$$C_{n} = \frac{\lambda_{n-1}\lambda_{n-2}\cdots\lambda_{0}}{\mu_{n}\mu_{n-1}\cdots\mu_{1}} = \begin{cases} \frac{\rho^{n}}{n!} & s \geq n \geq 1\\ \frac{\rho^{n}}{s!s^{n-s}} & n \geq s \end{cases}$$

$$P_0 = \left[1 + \sum_{n=1}^{\infty} C_n\right]^{-1} = \left[\sum_{n=0}^{s-1} \frac{\rho^n}{n!} + \sum_{n=s}^{\infty} \frac{\rho^n}{s! s^{n-s}}\right]^{-1}$$

$$= \left[\sum_{n=0}^{s-1} \frac{\rho^n}{n!} + \sum_{n=0}^{\infty} \frac{\rho^{n+s}}{s! s^n} \right]^{-1} = \left[\sum_{n=0}^{s-1} \frac{\rho^n}{n!} + \frac{\rho^s}{s!} \sum_{n=0}^{\infty} \left(\frac{\rho}{s} \right)^n \right]^{-1}$$

$$= \left[\sum_{n=0}^{s-1} \frac{\rho^n}{n!} + \frac{\rho^s}{s!(1-\rho_s)}\right]^{-1} \qquad \rho_s \triangleq \frac{\rho}{s} = \frac{\lambda}{s\mu} < 1$$

$$P_n = C_n P_0$$
 $n = 1, 2, 3 \dots$

$$P_n = \frac{\rho^n}{s! s^{n-s}} P_0 \quad n \ge s$$

M/M/s/∞的平均排队长

$$L_{q} = \sum_{n=s+1}^{\infty} (n-s)P_{n} = \frac{P_{0}\rho^{s}}{s!} \sum_{n=s}^{\infty} (n-s)\rho_{s}^{n-s} = \frac{P_{0}\rho^{s}}{s!} \sum_{k=0}^{\infty} k\rho_{s}^{k}$$

$$f(x) \triangleq \sum_{k=0}^{\infty} x^k \stackrel{|x|<1}{=} \frac{1}{1-x}$$
 $\implies \sum_{k=0}^{\infty} kx^k = xf'(x) = \frac{x}{(1-x)^2}$

$$\Rightarrow \sum_{k=0}^{\infty} k \rho_s^k = \frac{\rho_s}{(1 - \rho_s)^2}$$

$$\Rightarrow L_q = \frac{P_0 \rho^s \rho_s}{s!(1-\rho_s)^2}$$

M/M/s/∞的平均队长

■ 平均队长: L=L_q+正在 接受服务的顾客平均数

接受服务顾客的平均数=正在工作服务台的平均数

$$\overline{S} = \sum_{n=0}^{S-1} nP_n + S \sum_{n=S}^{\infty} P_n$$

$$= \rho P_0 \left[\sum_{n=0}^{s-1} \frac{\rho^n}{n!} + \frac{\rho^s}{s!(1-\rho_s)} \right]^{-1} = \rho \quad 与服务台个数无关!$$

$$L = L_q + \rho = L_q + \frac{\lambda}{\mu}$$

M/M/s/∞的逗留时间

根据Little公式,有: $W = L/\lambda$ $W_q = L_q/\lambda$

$$W = W_q + \frac{1}{\mu}$$

顾客需等待概率: Erlang等待公式:

$$c(s,\rho) = \sum_{n=s}^{\infty} P_n = \frac{\rho^s}{s!(1-\rho_s)} P_0$$

M/M/s/∞的顾客平均输出率

平均顾客输出率=顾客服务率均值

$$\overline{\mu} = \sum_{n=0}^{s-1} (n\mu) P_n + \sum_{n=s}^{\infty} (s\mu) P_n = \overline{s} \mu = \rho \mu = \lambda$$

平稳条件下: 平均顾客输出率=平均顾客输入率

单队列与多队列系统的比较

$$\lambda_n = \lambda$$
 $n=0,1,2...$

$$\mu_n = \begin{cases} n\mu & s \ge n \ge 1 \\ s\mu & n \ge s \end{cases}$$

$$\rho_s = \frac{\rho}{s} = \frac{\lambda}{s\mu} < 1$$

多队列-多服务台

$$\lambda_i = \lambda/s$$
 $i=0,1,2...,s$

$$\rho_i = \frac{\lambda}{s\mu} = \frac{\rho}{s} = \rho_s < 1$$

例1: 单队列与多队列系统的比较

M/M/s/∞系统: λ =0.9人/分种, μ =0.4人/分钟,s=3

	单队列	多队列
$空闲概率P_0$	0.0748	0.25(各子系统)
顾客必须等待概率	0.57	0.75 (各子系统)
平均队长L	3.95	9 (整个系统)
平均排队长Lq	1.70	2.25 (各子系统)
平均逗留时间W	4.39(min)	10 (min) (各子系统)
平均等待时间W _q	1.89(min)	7.5 (min) (各子系统)

一些共性结论

平均顾客服务率=平均顾客输入率: $\bar{\mu} = \lambda_e$

正被服务的平均顾客数 $\overline{s} = \frac{\lambda_e}{\mu}$

$$L = L_q + \overline{s} = L_q + \frac{\lambda_e}{\mu}$$

$$W = L / \lambda_e$$
 $W_q = L_q / \lambda_e$

Little公式

$$W = W_q + \frac{1}{\mu}$$

$$E(V) = \frac{1}{\mu}$$

第十章 排队论

- ▶排队论的基本概念
- ▶排队系统的生灭过程描述
- ▶典型模型与性态指标
- ▶优化举例

排队系统优化

服务水平指标: μ 、s、K、 ρ

$$L = \frac{\lambda}{\mu - \lambda}$$

例2

已知某 $M/M/1/\infty$ 系统单位时间单位顾客的 $服务费用为c_s$,单位时间单位顾客的<mark>逗留费用</mark>为 c_w ,试设计合适的服务率 μ ,使单位时间的服务和顾客逗留成本(总费用)最小。

$$z(\mu) = c_{s}\mu + c_{w}L = c_{s}\mu + c_{w}\frac{\lambda}{\mu - \lambda}$$

优化求解

系统总费用:

$$z(\mu) = c_s \mu + c_w L = c_s \mu + c_w \frac{\lambda}{\mu - \lambda}$$

$$\frac{dz}{d\mu} = c_s - c_w \frac{\lambda}{(u - \lambda)^2} = 0$$

$$\mu^* = \lambda + \sqrt{\frac{c_w}{c_s}} \lambda$$

M/M/s/∞优化举例

■ 目标:系统总费用最小

$$z(s) = c'_s s + c_w L(s)$$
 c'_s :单位时间开设服务台的服务费用

■ 边际分析法 离散量

$$z(s^*-1) \ge z(s^*) \le z(s^*+1)$$

$$z(s^*) \le z(s^*-1) \Rightarrow c'_s s^* + c_w L(s^*) \le c'_s (s^*-1) + c_w L(s^*-1)$$

$$z(s^*) \le z(s^*+1) \implies c'_s s^* + c_w L(s^*) \le c'_s (s^*+1) + c_w L(s^*+1)$$

s=1,2,3,...

例3

某检验中心为各工厂服务,需检验的次数分布服从 Poisson流,到达率为48次/天。因检验造成停工等损 失为6元/次,服务时间服从负指数分布,服务率为每 天25次。设设置一个检验员的服务成本为4元,问应 设置几个检验员使服务总费用的平均值最小?

$$z(s) = c'_{s} s + c_{w} L(s)$$

$$L(s) = \frac{P_{0} \rho^{s} \rho_{s}}{s! (1 - \rho_{s})^{2}} + \rho$$

 $\lambda = 48$ 次/天 $\mu = 25$ 次/天 $c'_s = 4$ 元/人 $c_w = 6$ 元/次

例3解

$$c'_{s}/c_{w} = 4/6 = 0.67$$

S	L(s)-L(s+1)	L(s-1)-L(s)
1		
2	21.485	8
3	0.582	21.845
4	0.111	0.582

随机模拟

利用计算机产生随机样本,模拟排队系统

属于Monte-Carlo法

用处:

- 1。应用于复杂的排队系统
- 2。检验理论研究的假设是否合理