Математическая логика

Функции алгебры логики

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
п/п	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизъюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
	предикатов	резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Логические переменные

Рассмотрим двухэлементное множество ${\bf \it B} = \{0,1\}$ и двоичные переменные, принимающие значения из ${\bf \it B}$.

Элементы 0 и 1 не являются числами в обычном смысле, хотя по некоторым свойствам и похожи на них.

Наиболее распространенная интерпретация двоичных переменных – логическая:

$$1 - \langle\langle да \rangle\rangle$$
, или $1 - \langle\langle истина \rangle\rangle$,

$$0 - \langle \langle \langle \rangle \rangle$$
, $0 - \langle \langle \langle \rangle \rangle \rangle$.

Алгебра логики (Булева алгебра)

Алгебра, образованная множеством $\mathbf{\textit{B}}$ вместе со всеми возможными операциями на нем, называется алгеброй логики.

Функцией алгебры логики от n переменных называется n -арная операция на ${\pmb B}$, т.е. $f:{\pmb B}^n \to {\pmb B}$, где ${\pmb B}^n = \big\{ \big(x_1,\dots,x_n\big) | x_1,\dots,x_n \in {\pmb B} \big\}$.

Алгебра логики (Булева алгебра)

Функция алгебры логики $f(x_1,...,x_n)$ — это функция, принимающая значения 0, 1, аргументы которой принимают значения 0, 1.

Множество всех логических функций обозначаются P_2 , множество всех логических функций n переменных — $P_2(n)$.

Как перейти из двоичной системы счисления в десятичную?

Двоичная система	Десятичная система
010101	?
1111	?

Как перейти из двоичной системы счисления в десятичную?

Если число b в десятичной системе счисления можно представить в виде

$$b = b_n 2^n + b_{n-1} 2^{n-1} + \ldots + b_1 2^1 + b_0 2^0,$$

где $b_i \in \mathbf{B}$, i = 0, ..., n, т.е. либо 0 либо 1, то двоичная запись числа b будет выглядеть следующим образом

 $b_n b_{n-1} \dots b_1 b_0$.

Двоичная система	Десятичная система
010101	21
1111	15

Как перейти из десятичной системы счисления в двоичную?

Если число b в десятичной системе счисления можно представить в виде

$$b = b_n 2^n + b_{n-1} 2^{n-1} + \ldots + b_1 2^1 + b_0 2^0$$
,

где $b_i \in \mathbf{B}$, i = 0, ..., n, т.е. либо 0 либо 1, то двоичная запись числа b будет выглядеть следующим образом $b_n b_{n-1} ... b_1 b_0$.

Пример

$$\begin{aligned} &0_{10} = 0 \times 2^{0} = 0_{2}; \\ &1_{10} = 1 \times 2^{0} = 1_{2}; \\ &2_{10} = 1 \times 2^{1} + 0 \times 2^{0} = 10_{2}; \\ &6_{10} = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = 110_{2}. \end{aligned}$$

Домашнее задание

Перевести числа от 0 до 15 из десятичной системы счисления в двоичную (необходимо для дальнейших семинаров). Записать в таблицу

a_{10}	b_2
0	0000
1	0001
2	0010
• • •	• • •

Представление функции через таблицу

\mathcal{X}_1	,,	X_{n-1} ,	\mathcal{X}_n	f(\mathcal{X}_1	,,	X_{n-1} ,	x_n)
0,	,,	0,	0	f(0,	,,	0,	0)
0,	,,	0,	1	f(0,	,,	0,	1)
0,	,,	1,	0	f(0,	,,	1,	0)
0,	,,	1,	1	f(0,	,,	1,	1)
	• • •					• • •		
1,	,,	1,	1	f(1,	,,	1,	1)

Аргументы

Значения функций на наборах (0 или 1)

Утверждение о количестве наборов для *п* переменных

Для n переменных существует 2^n возможных наборов переменных.

Доказательство по индукции.

1) При n=1 (одна переменная), то существует два набора переменных 0 и 1.

X	f(x)
0	
1	

Утверждение о количестве наборов для *п* переменных

2) Пусть при (n-1) переменной будет 2^{n-1} различных наборов. Докажем, что для n переменных будет 2^n наборов.

	x_1 ,,	X_{n-1} ,	f(\mathcal{X}_1	,,	x_{n-1})
	0, ,,	0,	f(0,	,,	0)
a^{n-1}	0, ,,	1,	f(0,	,,	1)
2^{n-1} набо	0, ,,	0,	f(0,	,,	0)
ров	0, ,,	1,	f(0,	,,	1)
РОВ	• • •				• • •	
	1, ,,	1,	f(1,	,,	1)

Утверждение о количестве наборов для *п* переменных

3) Добавим еще одну переменную, поставим ее вперед, перед всеми переменными.

Тогда таблица заполнится следующим образом: сначала ко всем наборам добавится 0 впереди, а затем к тем же наборам добавится 1, т.е. количество наборов УДВОИТСЯ.

$$2^{n-1} + 2^{n-1} = 2^{n-1} \times 2 = 2^n$$

T.е для n переменных существует 2^n возможных наборов переменных.

Утверждение о количестве логических функций для *п* переменных

Поскольку число различных наборов значений n аргументов равно 2^n , то число $\left| {\bf \textit{P}}_2 (n) \right|$ различных функций n переменных равно 2^{2^n} .

 2^{2^n} - число размещений с повторениями (из двух значений 0 и 1 мы выбираем 2^n раз).

Существенные и фиктивные переменные

Есть переменные, которые не влияют на значение функции, и являются фиктивными. Тогда возникает вопрос о количестве существенных переменных в функции.

Функция $f\left(x_{1},...,x_{i-1},x_{i},x_{i+1},...,x_{n}\right)$ из P_{2} зависит существенным образом от аргумента x_{i} , если существуют такие значения $\beta_{1},...,\beta_{i-1},\beta_{i},\beta_{i+1},...,\beta_{n}$ переменных $x_{1},...,x_{i-1},x_{i},x_{i+1},...,x_{n}$, что $f\left(\beta_{1},...,\beta_{i-1},0,\beta_{i+1},...,\beta_{n}\right)\neq f\left(\beta_{1},...,\beta_{i-1},1,\beta_{i+1},...,\beta_{n}\right)$. В этом случае переменная x_{i} называется **существенной**.

Если x_i не является существенной переменной, то она называется несущественной или фиктивной.

Существенные и фиктивные переменные

Если переменная x_i является фиктивной переменной, то функция $f\left(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n\right)$ по существу зависит лишь от $\left(n-1\right)$ переменной, т.е. представляет собой функцию $g\left(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n\right)$ от $\left(n-1\right)$ переменной.

Будем говорить, что функция g получена из функции f удалением фиктивной переменной, а функция f получена из функции g введением фиктивной переменной.

Функции f и g называются равными, если функцию g можно получить из функции f путем добавления или изъятия фиктивных переменных. В дальнейшем все функции мы будем рассматривать с точностью до фиктивных переменных.

Логические функции одной переменной

Логических функций одной переменной – четыре.

\mathcal{X}	f_0	f_1	f_2	f_3		
0	0	0	1	1		
1	0	1	0	1		

Функции f_0 и f_3 – константы 0 и 1 соответственно;

 f_1 – тождественная функция, $f_1(x) = x$;

 f_2 — отрицание x: $f_2(x) = \overline{x}$ (или $\neg x$, читается *«не х»*). Отметим, что значения функций f_0 и f_3 не зависят от значения переменной и, следовательно, переменная x — фиктивная.

Логические функции двух переменных

Логических функций двух переменных – 16.

X_1	\mathcal{X}_2	\int_{0}	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8
		0	$\&,\cdot$					\oplus	V	\downarrow
0	0	0	0	0	0	0	0	0	0	1
0	1	0	0	0	0	1	1	1	1	0
1	0	0	0	1	1	0	0	1	1	0
1	1	0	1	0	1	0	1	0	1	0

X_1	\mathcal{X}_2	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
		~,≡	$\overline{x_2}$		$\overline{x_1}$	\rightarrow		1
0	0	1	1	1	1	1	1	1
0	1	0	0	0	1	1	1	1
1	0	0	1	1	0	0	1	1
1	1	1	0	1	0	1	0	1

Логические функции двух переменных

Функции f_0 и f_{15} – константы 0 и 1.

Функция $f_1(x_1, x_2)$ - конъюнкция x_1 и x_2 , обозначается как $x_1 \& x_2$ или $x_1 \land x_2$, или $x_1 \cdot x_2$ (логическое умножение), $x_1 \& x_2 = min(x_1, x_2)$.

Функция $f_7(x_1,x_2)$ - дизъюнкция x_1 и x_2 , $x_1 \lor x_2$, $x_1 \lor x_2 = max(x_1,x_2)$.

Функция $f_6(x_1, x_2)$ – сложение по модулю 2, $x_1 \oplus x_2$.

Функция $f_9(x_1, x_2)$ - эквивалентность, $x_1 \sim x_2$, $x_1 \equiv x_2$. Она равна 1, когда значения ее аргументов равны.

 $f_{13}\left(x_1,x_2
ight)$ — импликация, $x_1 o x_2$ или $x_1 o x_2$ (читается «если x_1 , то x_2 »).

 $f_8(x_1,x_2)$ – стрелка Пирса, обозначение $x_1 \downarrow x_2$.

 $f_{14}(x_1, x_2)$ – штрих Шеффера, обозначение $x_1 | x_2$.

Тема следующей лекции:

«Свойства булевых операций. Двойственность».