Data Science

Homework 07

- 1. 한동 honor code 에 맞게 과제를 진행하여 주세요.
- 2. 과제의 경우 팀당 1 개의 결과물을 제출하면 됩니다.
- 3. 과제 제출 기한은 ~5/9 23:59 입니다. (1 분당 0.1 감점)
- 4. 제출은 LMS>과제 및 평가>Homework07 로 하시면 됩니다. (팀 내 1 명이 제출)
- 5. LMS 제출이 안되는 경우는 TA 이메일로 제출하시기 바랍니다. (22200479@handong.ac.kr)
- 1. Please proceed with the assignment following the Handong honor code.
- 2. For assignments, one submission per team is sufficient.
- 3. The deadline for assignment submission is until 5/9, 23:59. (0.1 points deducted per minute late)
- 4. Submissions should be made to LMS>Assignments>Homework07. (One member of the team should submit)
- 5. If you cannot submit via LMS, please submit to the TA email. (22200479@handong.ac.kr)

모든 학생들은 아래의 링크에 접속하여, 본 과제물에 대한 Peer Evaluation을 진행하여 주시기 바랍니다. 제출시간 마감 이전에 응답하지 않으면 불이익이 있을 수 있습니다.

All students are requested to access the link below and conduct a Peer Evaluation for this assignment.

01분반(KOR) - https://forms.gle/mxHcGcGRrGNrrD5KA
2rd Class(ENG) - https://forms.gle/ZUgXrpCDCs4LNV7x8

Practice 7: Single Variable model for regression

Loading data into R

```
PRSA data <- read.csv("PRSA data.csv")
## Rows: 43,824
## Columns: 13
                          <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18...
## $ No
## $ year
                          <int> 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2...
## $ day
                          ## $ hour
                          <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,...
## $ DEWP <int> -21,
                                                  -21, -21, -21, -20,
                                                                                                      -19, -19, -19, -20, -19,
## $ TEMP <dbl> -11, -12,
                                                               -11, -14, -12,
                                                                                                      -10, -9, -9, -9, -8, -7, -5,
                                                                                                                                                                                    -5, -3,...
## $ PRES
                          <dbl> 1021, 1020, 1019, 1019, 1018, 1017, 1017, 1017, 1017, 1017, 1...
                          <chr> "NW", "
## $ cbwd
## $ Iws
                          <dbl> 1.79, 4.92, 6.71, 9.84, 12.97, 16.10, 19.23, 21.02, 24.15, 27...
## $ Is
                          ## $ Ir
```

PRSA dataset: 2010년 1월1일부터 2014년 12월 31일까지의 중국 베이징의 미세먼지 농도 및 날씨 정보 PRSA dataset: Fine dust concentration level and weather record of Beijing China from 2010 - Jan-01 ~ 2014-Dec-31

variable	description
No	Row Index
year	관측연도
month	관측월
day	관측일
hour	관측시간 0h~23h
pm2.5	미세먼지 농도 Fine dust concentration (ug/m^3)
DEWP	Dew Point (이슬점)
TEMP	Temperature (기온)
PRES	Air pressure (기압) hPa
cbwd	Wind Direction (풍향)
Iws	Cumulated wind speed (m/s) (누적 풍속)
Is	Snowfall per hour (시간당 누적 강설량)
Ir	precipitation per hour(시간당 누적 강수량)

Question 1

미세먼지 농도(pm2.5)를 예측하는 Single variable Regression 모델을 만들어보려고 한다. 가장 먼저 전체 데이터를 train과 test 용도로 분할한다.

- 2010년부터 2013년 데이터를 train 데이터로 하고, 2014년 데이터를 test 데이터로 분할하여라.
- 그리고 목적 변수인 pm2.5 값에 NA인 것이 있다면 삭제하고 필요한 전처리 과정이 있다면 수행하여라.
- train 데이터와 test 데이터의 sample 수는 어떻게 나누어졌으며 비율은 어떠한가?
- train 데이터의 pm2.5 값과 test 데이터의 pm2.5 값의 분포(평균, 분산)를 비교하여 보고 비슷한지 확인하여라.

We build a prediction model to predict the fine dust concentration(pm2.5) using single variable. First, we partition the dataset into two, one for training model and one for testing.

- Use the dataset from year of 2010 to 2013 for train, the rest of year 2014 for testing.
- If we have missing values in our target variable pm2.5, remove those NAs and perform any necessary data-preparation.
- · What are the ratio of the number of samples for training and testing?
- compare the distribution of variable pm2.5 in training and testing dataset in terms of mean and variance. do you find their distribution are almost identical?

distribution of pm2.5 in both datasets

var	Max.	3rd Qu.	Mean	Median	1st Qu.	Min.	##
8401.34863	994.00000	138.00000	98.84315	73.00000	29.00000	0.00000	##
var	Max.	3rd Qu.	Mean	Median	1st Qu.	Min.	##
8748.14674	671.00000	133.00000	97.73456	72.00000	28.00000	2.00000	##

*참고사진(필수X)

distribution of pm2.5 of train(black) and test(red) data

Question 2-1

month를 사용하여 pm2.5를 예측하는 단일 변수 모델(single variable model)을 만들어라. 예측한 pm2.5 값과 실제 값과의 차이를 error(residual)로 데이터에 추가하여라 Build a single variable model to predict pm2.5 using the variable month. add predicted pm2.5 and their error (residual = actual value - predicted value) to the dataset.

Sample Result

##	month	pm2.5	pred	error
## 1	1	129	114.1159	14.884053
## 2	2 1	148	114.1159	33.884053
## 3	3 1	159	114.1159	44.884053
## 4	1	181	114.1159	66.884053
## 5	5 1	138	114.1159	23.884053
## 6	5 1	109	114.1159	-5.115947
## 7	7 1	105	114.1159	-9.115947
## 8	3 1	124	114.1159	9.884053
## 9	1	120	114.1159	5.884053
## 1	10 1	132	114.1159	17.884053

Question 2-2

Question 2-1에서 구한 모델의 MSE와 RMSE 구하라

이 모델을 test data에도 적용하여 MSE와 RMSE를 구하라

Find the MSE and RMSE for the prediction model we found in Question 2-1.

Find the MSE and RMSE for the test dataset as well as the training dataset.

sample result

[1] "train data: (MSE 8254.242) (RMSE 90.853)" ## [1] "test data: (MSE 8397.312) (RMSE 91.637)"

Ouestion 2-3

Question 2-1에서 구한 모델을 적용하여 train data와 test data의 R^2 값을 구하고, 그것을 바탕으로 만들어진 단일변수 모델이 pm2.5의 변동을 얼마나 잘 설명하고 있는지 이야기해보자. Find the R^2 of model from from Question 2-1 for both train and test dataset. Explain how well your model predicts the variance Of pm2.5 using R^2 .

R^2 for train dataset and test dataset

[1] "R2 for train data: 0.017"
[1] "R2 for test data: 0.040"

Question 3

hour 변수를 사용해서 Question 2번의 과정을 반복하라.

hour를 어떤 구간으로 나누어서 모델을 만드는 것이 효과적인가?

Repeat the question $2-1 \sim 2-3$ using a variable of **hour**.

What would be the best way to categorize hour to train prediction model?

Question 4

동일한 과정을 DEWP 변수를 사용해서 수행하라.

Repeat the question 2-1 ~ 2-3 using variable of **DEWP**

Question 5

위에서 시도한 다양한 단일 변수 모델 중 어떤 모델이 가장 예측 성능이 뛰어난가? 예측 성능이 높은 이유가 무엇인지 생각해보자.

Among those attempts above, which model was the best to predict **pm2.5**? State your idea why the model outperforms others.