Databázové systémy a metody zpracování dat

Návrh technické architektury a infrastruktury

8. přednáška

Architektura Dimenzionální model Projektový plárn a management Údržba a růst Vidržba a růst

Architektura

- Výstupy návrhu architektury
 - Plán technické architektury
 - Shrne požadavky uživatelů
 - Návrh budoucí architektury DW
 - Plán infrastruktury
 - Někdy součástí plánu technické architektury
 - Popisuje servery, desktopy, síť

Plán technické architektury

- Během interview získat požadavky na architektury
 - Její první návrh lze udělat už v průběhu interview nebo před a následně
- Spolupráce s vybranými pracovníky (IS) na oponentuře a tvorbě architektury
 - · Vypracovat draft plánu
 - · Nechat oponovat
- Vytvoření modelu architektury (grafického)
 - · Vhodný pro komunikaci
- Návrh postupu implementace architektury
 - Výběr prioritní oblasti
 - · Odhad času a zdrojů potřebných pro implementaci
- · Provedení revize dokumentu s managementem

Plán technické architektury

Dotazník pro interview – Dodatečné otázky na architekturu a infrastrukturu

A. IS business role

- Jak důležitá je analýza dat při podpoře rozhodování managementu ve Vaší firmě?
- Jakou roli hraje IS při podpoře rozhodování (analýzy dat)?
- Mění se toto? (Vlivem konkurenčního prostředí, organizační struktury, ...)

B. Technologické směrování

- Jaký je přístup Vaší firmy k IS/ICT v předchozích letech (striktně Klient/Server, web-base aplikace, ERP, ...)?
- Existuje plán, specifikace, která určuje požadavky na softwarovou infrastrukturu (DCOM, CORBA, objektová orientace, ...)?
- Jaké jsou Vaše plány pro nejbližší budoucnost?
- Jaké plány a záměry v oblasti infrastruktury budou mít dopad na přístup k datům (přesun dat, načasování úloh, jména serverů, bezpečnost, distribuce software, ...)
 Existuje specifická role pro metadata? Jak jsou řízené?
- Jaké jsou standardní firemní produkty dnes? Jaké platformy, OS SW, DBMS, klientský SW, utility. Bude to tak i v následujících letech?
- Jaké jsou nejužší místa a otázky v oblasti infrastruktury?
- Kdo odpovídá za architekturu? Existuje nějaká dokumentace?

- Kdo všechno je zahrnut do nákupu, instalace a podpoře nové infrastruktury (servery, Sw, připojení)? Kdo odpovídá za bezpečnostní architekturu?
- Existuje centrální správa uživatelů, dat, bezpečnosti v organizaci?

Plán technické architektury

- Plán nemusí být doveden na úroveň konkrétního produktu, ale měl by vycházet z potřeb uživatelů
 - Vize do budoucnosti
 - Vypsat typy uživatelů, jejich potřeby na přístup k informacím, požadavky na reporting, ...

Plán technické architektury

```
Business Understanding
Project Focus

METHODOLOGY
Business Requirements
High Level [PROJECT NAME] Architecture Development
PROJECT NAME] Standards & Products
Ongoing Relinament

BUSINESS REQUIREMENTS SUMMARY
Business Issues
Infoa Access
Infoa Access
Infoa Access
Infoa Business Issues
Infoa Business
Infoa Busi
```

Plán infrastruktury

- Tři základní oblasti
 - Server (HW a OS)
 - CPU, OS, Disk, Přírůstek dat, paměť
 - Síť
 - · Od OLTP do DW
 - Od DW k uživatelům
 - Zabezpečení, frekvence přenosu
 - Pracovní stanice
 - HW, OS, konektivitu (ODBC, OLE DB, ...)
- Plán je postupně upřesňován na základě vybraného SW podle plánu technické architektury

Výběr produktů

- Výběr na základě návrhu architektury, uživatelských požadavků
 - HW
 - DBMS
 - · ETL tool
 - Nástroje pro prezentaci a přístup k datům
- Vhodné je testovat vybrané HW a SW komponenty
 - Vytvořit prototyp DW a testovat produkty
 - · Nikdy je ale nelze otestovat na reálné zatížení
 - Vhodné je např. domluvit s dodavatelem 90 denní testovací období a potom teprve podepsat smlouvu

Výběr produktů

- Vytvořit Matici vyhodnocení produktů
 - · Nastavit priority (váhu) jednotlivým kritériím
 - Musí mít ... bylo by dobré
 - Spolupráce s výrobcem (objasnění potřebné informace)
- Provedení průzkumu trhu
 - · WWW stránky
 - · Publikace, časopisy
 - DW konference, fórum, portály
- Kritéria
 - Dle uživatelských potřeb pro daný typ nástroje
 - Výrobce
 - Podpora
 - Dokumentace
 - Školení
 - Konzultace
 - Externí podpora (nezávislé forum na webu o produktu, ...)
 - Spolupráce s výrobce (dobrá, nekomunikativní, ...)
 - Velikost, budoucnost
 - Reference

Výběr produktů

- Vybrat pro porovnání maximálně 5 produktů
- Uspořádat prezentaci výrobců
 - · Získat informace na vyplnění Matici vyhodnocení produktů
 - Ukázka práce produktu
 - Domluvit ukázku u stávajícího zákazníka s podobným řešením
- Není-li možné rozhodnout vytvoř prototyp (2 3 výrobci) a otestuj
 - Vhodné přenést na výrobce nebo s ním spolupracovat

Výběr produktů

- Otestovat produkty v plné šíři, ne jen omezeně
 - Jednoduché i komplexní funkce
 - · Málo i hodně dat
 - Jeden a více uživatelů
- Tvorba prototypu 4 až 6 týdnů
- Po 2 3 letech je vhodné výběr opakovat pro možný upgrade na nové technologie

Výběr produktů

- Při tvorbě prototypu:
 - Definovat rozsah prototypu
 - Rozsah by neměl být moc velký
 - Vzít rozumnou velikost dat
 - Načíst data v původním, originálním stavu (neztrácet čas čištěním)
 - V rámci tvorby prototypu získat co nejvíce poznatků o provozních systémech, problémech v datech, HW, SW
 - Získat názory uživatelů ukázat jim výstupy
 - Nenechat se zaslepit očekáváním

Výběr produktů

- Instalace závisí na výběru HW a SW
- Nutno dobře nainstalovat může dosti ovlivnit výkonnost řešení
 - Spolupracovat se specialisty, dodavatelem, výrobcem
- Nezapomenout na:
 - Příprava místa na HW (servery)
 - Školení administrátorů
 - Testování po instalaci

Výběr produktů

• Čas potřebný na vytvoření plánu architektury

Fyzický design	

Fyzický design - Agregace

- Agregace mohou významně zvýšit výkonnost
 - Někdy nahrazeno OLAP databází
- Uchování agregací vedle detailních dat v databázi DW
- Agregace obvyklé souhrny podle daných dimensí
- Je třeba vložit vrstvu, která dokáže rozpoznat, zda uspokojit uživatelský požadavek přímo z detailních dat nebo existuje agregace
 - Umí některé reportingové nástroje
 - Nebo je třeba vyvinout
 - Je to největší obtíž a výzva směrem k agregacím

Fyzický design - Agregace

- Přidat je rozumné agregace zvyšuje nároky na prostor na disku
- · Výběr dat pro agregaci
 - Dle potřeb uživatelů
 - Např. na základě existujících reportů
 - Vybrat atributy z dimenzí používané pro seskupení (region, kategorie produktu)
 - Určit jejich kombinace které atributy jsou používány společně
 - Dle statistické distribuce dat v DW
 - Např. produktu je 1 000 000
 - Kategorií 500 000 nemá moc smysl agregovat (stále mnoho řádků)
 - Kategorii 1 500 agregovat
 - Počítat frekvence výskytu řádků pro kombinace hodnot atributů dimenzí
 - Např. 12 měsíců x 256 produktů = XY možných řádků v faktové
 - V čase se mění interaktivní cyklus
 - Mažou nepoužívané, přidávají nové

Fyzický design - Agregace

- Všechny agregace v součtu by měly být optimálně asi stejně objemově velké jako původní tabulka
- Každá agregace má svoji faktovou tabulku
 - A zmenšené verze dimenzionálních tabulek (dle úrovně agregace)
 - Některá fakta musí být vypuštěna mohou dávat smysl pouze na detailní úrovni
- Agregace pak často umožňují přímé porovnání s uloženými daty plánu (plány jsou často na agregované úrovni)
 - · Lze uložit do jedné tabulky
- Agregované tabulky mohou být často rozšířeny o fakta typu min_prodej_kč, max_, count_

- Je ovlivněno:
 - · Logický datový model
 - Zvolený RDBMS
 - Objemem dat
 - Způsobem využití dat
 - Nástroji pro přístup k datům
- Je třeba:
 - Vytvořit plán fyzické implementace
 - Vytvořit a dodržovat standardy

- Vytvořit standardy
 - Jména databázových objektů
 - Jména a cesty k fyzickým souborům
- · Lze převzít (a případně modifikovat) již existující firemní standardy
- Příklad konvence jméno složené ze tří částí
 - Hlavní část co je to? (např. zákazník, produkt, účet)
 - Třída typ objektu (např. průměr, počet, datum, flag)
 - Vlastnost volitelný, popisuje předchozí dvě vlastnosti (např. počátek, konec, primární, sekundární)
 - Konvence: hlavni_vlastnost_třída
 - Ucet počateční datum
 - Prodeje_průměr
- Zvážit rozlišit logická a fyzická jména
 - Doporučeno stejné co nejvíce popisné

Fyzický design - standardy

- Dohodnout se na seznamu slov (Hlavních části) s uživateli
 - · Vytvořit seznam tříd a vlastností
- Vytvořit seznam používaných zkratek (např. desc = description)
- · Vytvořit standardy pro pojmenování pracovních tabulek pro ETL
- Zvážit poměr mezi popisností názvu a jeho délkou
 - my_company_billingDW_customer_ID
- Pozor zda databáze je case senzitive
 - Brát jako by byla i když není
 - Připraveno pro migraci na novou databázi, která by mohla být

Fyzický design - standardy

- Využít pro názvy tabulek synonyma
 Je pak jednoduší při změně struktury tabulky jenom změnit odkaz synonyma než měnit aplikace
- Alternativně lze využít view
 - · Nebo materializované view
 - Zvážit výkonnost view tvořené z více tabulek
- Vytvořit standardy (adresářovou strukturu a jmenné konvence) pro umístění souboru
 - Zdrojové kódy
 - Skripty
 - Binární soubory
 - Databázové soubory
 - Modely
 - Dokumentace

Fyzický design - standardy

DISK A RAID 1	
Adresáře	
RDBMS	Obsahuje databázi
ETL	Obsahuje ETL nástroj
LOG	Obsahuje log soubory
SCRIPT_PROD	Obsahuje produkční scripty
METADATA	Obsahuje skripty pro metadata
DIMENZE	Obsahuje scripty pro dimenze
ZAKAZNIK	Obsahuje scripty pro dimenzi zákazník
crt_zakaznik.sql	DDL - vytáří tabulku zákazník
crt_cust_stage.sql	DDL - vytáří data staging tabulky pro zákazníka
crx_customer.sql	DDL - indexy nad tabulkou zakazník
drx_customer.sql	DDL - drop indexy
customer_stage.sql	Script pro 0.vrstvu
upd_customer.sql	Script pro načtení do 1. vrstvy
readme	Popis obsahu adresáře
FAKTA	Obsahuje scripty pro faktové tabulky
SCRIPT_DEV	Obsahuje vývojové scripty

DRIVE B RAID 5	
DATABASE	Obsahuje databázové soubory (vlastní data)
DRIVE C NO RAID	
DATASTAGE	Obsahuje flat files
DATASTAGE	Obsariuje nat nies
TEMPDAT	Temp místo pro databázi
JOBLOGS	Logy z proběhlých úloh a scriptů

- Fyzický model vychází z logického
 - Některé změny vlivem zvoleného RDBMS
 - Přidány pomocné tabulky (většinou nejsou součástí logického modelu)
 - Detailní nastavení datových typů, partition, specifikace umístění tabulky, umístění na disku databáze (souborů)
- Vhodné využít modelovacího (case) nástroje
 - Většinou je možné i využít pro tvorbu dokumentace (např. technický popis z jakých zdrojů se plní daný atribut, jaký je typ, transformace, ...)
- Definovat entitní, doménovou a referenční integritu, null hodnoty
 - Někdy je výhodnější neimplementovat (když jsou čistá data) nezatěžuje RDBMS – ale pozor na konzistenci dat

- · Model by měl obsahovat i indexy
- Modifikovat model dle potřeb uživatelských nástrojů
 - Např. vyžadují snow-flake
- Provedení přibližného odhadu velikosti databáze
 - · Možno využít schopností modelovacího nástroje
 - "Ruční výpočet"
 - Délka (velikost) řádku
 - Počet řádek, počet řádek přírůstku pro jeden load
 - Pro indexy přidej stejně místa jak pro tabulku
 - Temp space pro budování indexu musí být dvojnásobný jak index
 - Pro třídění alespoň velký jak tabulka
 - · Započítat metadata tabulky
 - Připočítej agregační tabulky (obecně velikost v souhrnu jako base tabulka)
 - Obecně platí, že DW zabere v součtu 3 až 4 tolik místa jak atomická data
 - Potřeba zahrnout i místo pro testování, vývoj, ETL

- Nejvíce místa zabírají
 - · Faktové tabulky
 - · Indexy na nich
- Dimenze jsou v porovnání s faktovou tabulkou obecně zanedbatelné
 - Výjimka např. velké dimenze zákazníků

- Vytvořit počáteční plán indexace
 - Bude se měnit v průběhu využívání DW podle analýzy dotazů, doby odezvy, ...
- Potřeba porozumět jak zvolený RDBMS využívá indexy a jak tvoří plán provedení dotazu
- B-tree indexy
 - Pro atributy s velku kardinalitou (např. customer_ID)
 - Klastrované vs. Neklastrované
 - Na jednom nebo více sloupcích
- Bitmapové indexy
 - Pro atributy s nízkou kardinalitou (např. pohlaví)
- Některé RDBMS disponují speciálními indexy
- Některé mají zabudovanou podporu star schéma (násobné join)

- Faktová tabulka
 - Indexy na klíčích
 - Jeden pro jeden klíč RDBMS podporuje využití více indexů pro jeden dotaz
 - Několik složených indexů podle cesty dotazu
 - Lze v případě potřeby i indexy na faktech (když hodně dotazů typu prodej > 1000)
- Dimenzionální tabulka
 - Na primárním klíči
 - Bitmapové indexy na atributech dimenze
 - · Na atributech sloužících pro join, filtrování, group by

- Nastavit a zvážit indexy i pro efektivní ETL
- Při loadu dat
 - Zvětší-li se loadem tabulka o 10 až 20 procent je efektivnější smazat a znovu vytvořit index
- Kontroluj indexy a statistiky po loadu

- Instalace a nastavení databáze
 - Zdokumentovat nastavení databáze plus důvod
- DW je náročný na paměť
- Blocksize
 - · Záleží na potřebách
- Uložit scripty pro nastavení databáze
- Nastavit partition tabulek
 - Většinou podle atributu datum
- Nastavit umístění souborů na disku
 - Doporučuje se využít RAID disky (RAID 1 až 5)
 - Optimálně databáze a OS jeden disk, zdrojová data (flat soubory) druhý disk, tabulky a indexy další dva disky, transakční log další disk, temp další disk
 - Z hlediska dotazů je vhodné aby fakt na jednom disku a dimenze na jiném

- Potřeba vybudovat systém pro monitoring využití DW
 - Load dat
 - Dotazy
 - Běh procesů
 - Využití zdrojů
- Důvody pro monitoring:
 - Výkonnost
 - Ladění dotazů, indexy, agregace
 - Výběr testovacích dotazů
 - Podpora uživatelů
 - Sledovat vytíženost, logování uživatelů
 - Pro plánování školení
 - Proč se uživatel už dlouho nepřihlásil neví jak, nemůže se připojit k databázi
 - Marketing
 - Že DW je stále více využíván
 - Kdo z uživatelů využívá nejvíce konkurence mezi uživateli
 - Plánování
 - Další rozvoj DW dle vzrůstajícího počtu uživatelů, konkurenčních dotazů, času loadu, velikosti databáze,....