NOIP 模拟题

laofu

2021年7月18日

题目名称	白云的方程	子序列	占领	天天爱跑步
英文名称	equation	sequence	game	running
输入文件名	equation.in	sequence.in	game.in	running.in
输出文件名	equation.out	sequence.out	game.out	running.out
数据组数	10	10	10	10
时间限制	1s	1s	1s	10s
空间限制	512MB	512MB	512MB	512MB

1 白云的方程

1.1 description

白云列出了一个方程

$$x^2 - 2Bx + C = 0$$

白兔给出了一个区间 [L,R], 要求参数 C 必须在这个区间内。 白云想知道,有多少组满足要求的正整数 (B,C) 使得这个方程有正数解

1.2 input

第一行数据组数 T 接下来 T 行每行两个数 L,R

1.3 output

每个询问输出答案

1.4 样例数据

1.4.1 样例输入一

2

1 5

2 10

1.4.2 样例输出一

4

7

1.4.3 样例解释

第一问, 合法的为 (1,1),(2,3),(2,4),(3,5)

第二问, 合法的为 (2,3),(2,4),(3,5),(4,7),(3,8),(3,9),(5,9)

1.5 数据范围

对于 30% 的数据, $R \le 1000$

对于 60% 的数据, $R \le 10^6$

对于 100% 的数据, $1 \leq L \leq R \leq 10^{12}, T \leq 10$

2 子序列

2.1 description

白云有一个长度为 n 的序列 $a_1 \cdots a_n$ 。

白兔想找到这个序列的一些非空子序列。因为这些子序列多达 2^n-1 个,所以它只需要字典序最小的 k 个。

两个序列的字典序的比较方式为:如果一个序列是另一个的前缀,则长度小的序列字典序小,否则找到两个序列从前往后第一个不同的元素,这个元素小的序列字典序小。

为了避免大量输出,对于每一个子序列你只需要输出它的哈希值。一个序列 $b_1 \cdots b_m$ 的哈希值为 $\sum_{i=1}^m b_i seed^{m-i} \bmod p$

2.2 input

第一行四个数 n,k,seed,p

第二行 n 个数表示这个序列。

2.3 output

输出 k 行,表示前 k 小的子序列的哈希值

2.4 样例文件

选手目录中下发共 3 个样例

2.5 数据范围

对于 20% 的数据满足: n < 15

对于 30% 的数据满足: $n \le 2000$

对于 40% 的数据满足: ≤ 10000

对于 60% 的数据满足: $1 \le a_i \le 30$

对于 100% 的数据满足:

 $1\leq n,k\leq 10^5,\,1\leq seed,p\leq 10^6$

$$1 \le a_i \le 10^5$$

$$k \le 2^n - 1$$

3 占领

3.1 description

白云和白兔想占领一棵树。 白云列举了游戏玩法:

- 首先, 白云任意选择一个结点 , 把这个结点占领, 其它结点都未本占领。
- 每一轮,白云可以选择若干个已经被占领的点,然后分别从每个点出发,找一条出 边,把到达的结点占领。
- 当所有结点都被占领时游戏结束。

白兔想知道,选择一个最优的 ,白云最少几轮可以完成游戏。 接下来白云和白兔想一起玩游戏,规则是这样:

- 一开始,白云选择了 号点,白兔选择了 号点,这两个结点都被占领,其它点都未被占领。
- 每一轮,白兔可以选择若干个已经被占领的点,然后分别从每个点出发,找任意一条出边,把到达的结点占领。
- 当所有结点都被占领时游戏结束。
- 白兔还想知道,最小多少轮可以占领所有结点?注意,这个游戏的 a 和 b 是固定的。

3.2 input

第一行三个数 n,a,b 接下来 n-1 行每行两个数表示这棵树

3.3 output

输出两行,第一行是第一个游戏的答案,第二行是第二个游戏的答案

3.4 样例数据

3.4.1 样例输入一

6 2 1

1 2

2 3

2 4

1 5

5 6

3.4.2 样例输出一

3

2

3.4.3 样例解释

第一问:

一开始选择点 1。

第一轮,从1出发,占领2。

第二轮,从2出发,占领3,从1出发,占领5。

第三轮,从2出发,占领4,从5出发,占领6。

第二问:

一开始 1, 2 两个点被占领。

第一轮,从1出发,占领5,从2出发,占领4。

第二轮,从5出发,占领6,从2出发,占领3。

3.5 样例文件

在选手目录内共下放 3 个样例

3.6 数据范围

对于 30% 的数据, $n \le 100$; 对于 100% 的数据, $n \le 10^5, a, b \in [1, n], a \ne b$;

3.7 评分方式

对于每一个测试点,回答第一问正确可以获得4分,回答第二问正确可以获得4分,如果两问都答对可以额外获得两分,即本测试点满分。

但是无论如何,对于每一个询问你的程序都必须恰好输出两个数,否则直接记0分

4 天天爱跑步

4.1 description

小 C 同学认为跑步非常有趣,于是决定制作一款叫做《天天爱跑步》的游戏。《天天爱跑步》需要玩家完成打卡任务。

这个游戏的地图可以看做一棵包含 n 个结点和 n-1 条边的树,每条边连接两个结点,且任意两个结点存在一条路径互相到达。树上结点的编号为从 1 到 n 的连续正整数。新的一天开始时,某个玩家在第 0 秒从自己的起点出发,以每秒跑一条边的速度,不间断地沿着最短路径向着自己的终点跑去,跑到终点后该玩家就算完成了打卡任务。(由于地图是一棵树,所以每个人的路径是唯一的)

小 C 想知道游戏的活跃度,所以在每个结点上都放置了一个观察员。在结点 j 的观察员会选择在第 W_j 秒观察玩家,一个玩家能被这个观察员观察到当且仅当该玩家在第 W_j 秒也正好到达了结点 j。小 C 想知道每个观察员会观察到多少人?

注意:我们认为一个玩家到达自己的终点后该玩家就会结束游戏,他不能等待一段时间后再被观察员观察到。即对于把结点 j 作为终点的玩家:若他在 W_j 秒之前到达终点,则在结点 j 的观察员不能观察到该玩家;若他正好在第 W_j 秒到达终点,则在结点 j 的观察员可以观察到这个玩家。

但是这个游戏是在是太难了,所以游戏还增加了氪金的功能,具体来说,某人使用了钞能力之后,可以对地图上的边进行修改,删除边 (a,b),并添加边 (c,d),同时,为了维持服务器正常运行,保证地图仍然是一棵树。随着树形态的变化,小 C 为了更全面地了解活跃度,决定在某些时刻修改某个 W_i 。

4.2 input

输入第一行包含两个正整数 n, m,其中 n 代表结点的数量,同时也是观察员的数量,m 代表事件的数量。

接下来 n-1 行,每行两个数 a,b,描述这棵树。

接下来一行 n 个数,表示 $1 \cdots n$ 每个观察员的初始 W 值。

接下来 m 行,每行描述一个事件,有三种形式:

1 a b: 表示新的一天开始了, 有一个玩家在时刻 0 从 a 沿最短路径跑到 b

2 a b c d: 表示某人投了币,把边 (a,b) 替换为了边 (c,d)。保证 (a,b) 边存在,并且

替换结束后仍然是一棵树。

 $3\,a\,b$: 表示小 C 决定把 a 号观察员的 W 修改为 b

4.3 output

输出仅包含 1 行 n 个数, 第 j 个整数表示结点 j 的观察员可以观察到多少人。

4.4 样例文件

在选手目录内共下放 3 个样例

4.5 数据范围

对于 20% 的数据无操作 2、3

对于另 20% 的数据无操作 2

对于另 20% 的数据无操作 3

对于另 20% 的数据所有玩家经过的路径总长 ≤ 108

对于 100% 的数据 $n \le 10^5 m \le 10^5$