Design of control systems

Kjartan Halvorsen

September 23, 2022

Feedback control

Feedback control systems are ubiquitous

Feedback control systems

Controller design: Determine a feedback controller such that the controlled system performs according to given performance specifications.

The problem situation

- ► Mass 900 kg
- ► Six wheels, each with an electric motor
- ► Front- and rear-wheel steering
- ► Rocker-bogie suspension system

The problem situation

The problem situation

Block diagram algebra

Transfer function from r(t) to y(t):

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)}$$

Block diagram algebra

Activity Pair the block-diagram with the correct closed-loop transfer function!

Performance requirements

Performance requirements - time domain

Performance requirements - time domain

Activity Does the system satisfy the requirements?

Rise time < 1.5sOvershoot < 18%

Response of LTI systems to sinusoids

$$\xrightarrow{r(t)} G_c(s) \xrightarrow{y(t)}$$

Let $r(t) = \sin \omega_1 t$. Then, after transients have died out,

$$y(t) = |G_c(i\omega_1)| \sin (\omega_1 t + \arg G_c(i\omega_1)).$$

The Bode diagram shows the frequency properties of a dynamical system

$$y(t) = \underbrace{|G_c(i\omega_1)|}_{\text{amplification}} \sin\left(\omega_1 t + \underbrace{\arg G_c(i\omega_1)}_{\text{phase shift}}\right)$$

Activity What is the gain and phase shift at $\omega = 2 \text{ rad/s}$?

Activity Does the system satisfy the requirements?

Bandwidth >3 rad/s Resonance peak <9dB