

An Empirical Study on the Efficiency of Graphical vs. Textual Representations in Requirements Comprehension

Zohreh Sharafi, Alessandro Marchetto, Angelo Susi, Giuliano Antoniol and Yann-Gaël Guéhéneuc

ICPC'13

Outline

- Introduction
- Problem and Motivation
- Related Work
- Our Empirical Study
 - Design
 - Result and Analysis
 - Threats to Validity
- Conclusion

Introduction

Graphical Documentation is often only **Documentation** textual or graphical TheClient Client Lottery Lottery + void youWon() + void restart() +voidYouWon() + void restart() + MyTicket buySomeTickets(Lottery) + int addNewLottery() + Ticket BuyTciket(Lottery) + int newLottery() Comments + int* vTickets + bool running + int* vTokens Manual pages + Ticket freeTokens TicketLaw MyTicket Ticket Ticket Instance Online Book Store Database 1: Browse 1.1: Query Not always available 2: Book List Requirements Program comprehension relies heavily on documentation

Introduction

- Is there an impact (accuracy, time) of the kind of document representation on program comprehension?
 - Requirements
 - □ Structured text only
 - □ Graphical representation only
 - □ Mixed textual and graphical representation
- Is there a impact of the mother language, degree of study, or gender?

Requirement Representation

	Requirement		
	Textual	Graphical (TROPOS)	
Accuracy	Higher accuracy or		
	no difference?		
Time	More time spent on		
	textual or mo	textual or more on graphical?	
Effort	Visual effort ?		

Gender Preference

Does gender affects the preferred document representation?

Does gender and representation affect program comprehension?

Related Works

Ottensooser et al. [3]	Textual representations	Significant improvement in understanding of business processes when subjects work with textual representations
Somervell et al. [12]	Combination of graphical and textual representations were more efficient	Guidelines on the use of a combination of textual and graphical representations to improve subjects' efficiency
Razali et al. [13]	Graphical formal specification vs. a purely textual formal specification	Combination of semi-formal and formal notations improves the subjects' accuracy
Heijstek [2] et al.	Graphical and textual notations for software architecture	No difference in accuracy, more experienced subjects mostly preferred a textual representation

^[2] W. Heijstek, T. Kuhne, and M. R. V. Chaudron, "Experimental analysis of textual and graphical representations for software architecture design," in Proceedings of the International Symposium on Empirical Software Engineering and Measurement, IEEE Computer Society, 2011, pp. 167–176.

^[3] A. Ottensooser, A. Fekete, H. A. Reijers, J. Mendling, and C. Menictas, "Making sense of business process descriptions: An experimental comparison of graphical and textual notations," Journal of Systems and Software, vol. 85, no. 3, pp. 596–606, March 2012.

^[12] J. Somervell, C. M. Chewar, and D. S. Mccrickard, "Evaluating graphical vs. textual secondary displays for information notification," in Proceedings of the ACM Southeast Conference, ACM press, 2002, pp. 153–160

^[13] C. F. Snook and R. Harrison, "Experimental comparison of the comprehensibility of a UML-based formal specification versus a textual one," in Proceedings of 11th International Conference on Evaluation and Assessment in Software Engineering, ACM Press, 2007, pp. 955–971.

TROPOS

- TROPOS is a goal-oriented requirements modeling approach based on concepts such as:
 - Actor typically representing a domain stakeholder
 - Goal representing a state of affairs desired by the actor
 - Task- representing set of activities which operationalizes goals
 - Resource which is an element (such as information, device, database, ...) whose presence is needed to support the satisfaction of goals or the execution of a task
- And relationships such as:
 - ▶ AND/OR decomposition of goals and tasks into sub-goals and sub-tasks
 - Means-ends to describe the relationship between a goal and the task that fulfill it
- Each concept or relationship has a visual counterpart

TROPOS: goal diagrams

Our Empirical Study

Our Goal: Design and perform an experiment to investigate the impact of requirement representation on comprehension accuracy, time and strategy.

High Level Research Question: Does the document representation impact time or accuracy in program understanding tasks?

Perspective:

- Developers
- Researcher

Detailed Research Questions

- ▶ RQI: Does the type of requirement representations (graphical vs. textual) impact the developers' effort, time, and answer accuracy in requirements comprehension tasks?
- ▶ **RQ2**: Does the structure of the representations lead developers to use **specific task-solving strategies** (top-down vs. bottom-up) during requirements comprehension tasks?
- ▶ RQ3: Given a graphical and textual representation of a requirements comprehension task, is there any preferred representation by the subjects?

Detailed Research Questions

▶ RQ2: Does the structure of the representations lead developers to use specific task-solving strategies (top-down vs. bottom-up) during requirements comprehension tasks?

Detailed Research Questions

▶ **RQ3**: Given a graphical and textual representation of a requirements comprehension task, is there any preferred representation by the subjects?

Goal	Study the impact of requirement representation	
Independent variables	I. Document representationa) Graphical, b) Textual, c) Both;	
Dependent variables	 Accuracy Required time Effort - Visual Effort 	
Mitigating variables	 Study level English language proficiency Mother language Gender: male (M) or female (F) 	

Subjects' Demography				
Academic background		Gender		
Ph.D.	M.Sc.	B.Sc.	Male	Female
15	П	2	16	12

Subjects' Demography				
Academic background			Gender	
Ph.D.	M.Sc.	B.Sc.	Male	Female
15	11	2	16	12

- FaceLAB
 - Video-based
 - ▶ Two camera
 - One infrared

- Non-intrusive
 - No goggles
 - No wires
 - No sensing device

Result and Analysis: Visual Effort

- Visual effort
 - Calculated from eye-tracking data.
 - Calculated based on the amount of visual attention
 - ▶ less attention → less time → less effort
- Visual attention triggers the mental processes
- ▶ Two types of eye gaze data
 - Fixation
 - Saccade
- We use fixation to calculate effort

Result and Analysis: Visual Effort

- Convex hull: the smallest convex sets of fixations that contains all of a subject's fixations*
 - Measure Average Fixation Duration (AFD) via convex hull as effort proxy
 - ▶ Smaller convex hull → close fixations → less effort

Result and Analysis: Visual Effort

Actor: Nurse

MODEL

Goal: "emergency detection" is AND decomposed in the:

Goal: "patients escapes controlled" that is OR operationalised by

rask: monitor the social residence doors" using

Resource: "doors sensors"

Task: "monitor patients movements" using

Resource: "movement sensors"

Gal: "patients falls monitored" that is OR operationalised by

Task: "monitor patients movements" using

Resource: "movement sensors"

Task: "monitor the stairs of the residence" using

Resource: "falls sensors" and "cameras"

Task: "monitor the rooms of the residence" using

Resource: "falls sensors"

Goal: "health emergencies monitored" that is operationalised by

Task: "monitor history of the patient" via

Resource: "patient log books"

Task: "monitor health parameters"

Resource: "biological sensors"

Numbers of eve fixations

$$FC(Q) = \sum_{a \in \text{ tasks, all answers}} f(a)$$
 (1)

$$FR(correct) = \frac{\sum_{a \in \text{ correct answer } f(a)}}{\sum_{a \in \text{ correct answer } \cup \text{ distracters } f(a)}}$$
 (2)

$$FR(distracters) = \frac{\sum_{a \in \text{ distracters } f(a)}}{\sum_{a \in \text{ correct answer } \cup \text{ distracters } f(a)}}$$
(3)

Result and Analysis: RQI

	Accuracy %	
	Correct	Wrong
Graphical	97%	3%
Textual	98%	2%
Mixed	96%	4%

	No significant difference	
Accuracy		
	There is a significant difference	
Time		

Result and Analysis: RQ I

Different model imply different areas of focus

The percentage of time that our subjects spent on different AOIs for Graphical model.

The percentage of time that our subjects spent on different AOIs for Textual model.

Result and Analysis: RQ I

- There is a significant difference in visual effort though Cohen-d is from medium up
 - ▶ AFD(Q) -- Average Fixation Duration -- is borderline 0.07!

M: Model

Re: Relevant

Ir: Irrelevant

Q: Question

Result and Analysis: RQ2

Result and Analysis: RQ2

The structure of our document makes subject use a top-down (goals to resources) or bottom up (resources to goals)

strategy

Result and Analysis: RQ3

Subject Prefer Graphic Notation

Threats to validity

- Internal validity
 - Random ordering of stimuli
 - Provide comfortable environment
- External validity (generalisation of the results)
 - Students as subjects
 - "Only" 28 subjects

Conclusion

Requirement representation has an impact

- Language distance has no impact
 - Closer to English is "better"

- Graphical representation is preferred but requires greater effort
- Gender has not impact

Conclusion

- Design and perform an eye-tracking experiment
- Investigate the impact of document representation on program comprehension
- Examine accuracy, time, effort, and preference