

Département Electronique Electrotechnique Automatique

Equipe Automatique Traitement du Signal

Première année - UE STI - STI 1.2 Traitement du Signal

Préparation du TD 3 : Convolution et filtrage

Exercice : Transmission d'un signal par modulation d'amplitude (AM) / multiplexage fréquentiel

Soit un signal x de spectre X à support borné c'est-à-dire tel qu'il existe ν_{max} pour lequel $\forall \nu \in \mathbb{R} \setminus [-\nu_{max}, \nu_{max}], X(\nu) = 0$. Avec $\nu_m > 2\nu_{max}$, on définit le signal modulé x_m par :

$$\forall t \in \mathbb{R}, \quad x_m(t) = x(t).\cos(2\pi\nu_m t).$$

Le signal $\cos(2\pi\nu_m t)$ est appelé porteuse. Ce signal x_m est transmis par voie hertzienne et capté par un récepteur suivant le schéma représenté figure 1. On supposera que la transmission est

Figure 1: Schéma de principe de la modulation d'amplitude

parfaite, c'est-à-dire que le signal reçu est égal à celui qui est transmis. A la reception, le signal x_m est modulé pour obtenir un signal y_m , c'est-à-dire que :

$$\forall t \in \mathbb{R}, \quad y_m(t) = x_m(t) \cdot \cos(2\pi \nu_m t).$$

- 1. Calculer le spectre X_m du signal modulé x_m en fonction du spectre X du signal x. Pour le spectre X représenté figure 2, donner la représentation graphique de X_m .
- 2. Calculer le spectre Y_m du signal modulé y_m en fonction du spectre X du signal x. Pour le spectre X représenté figure 2, donner la représentation graphique de Y_m .
- 3. Montrer que l'utilisation d'un filtre passe-bas idéal permet d'obtenir le signal x à partir du signal modulé y_m . Indiquer comment doivent être choisies les caractéristiques du filtre : la fréquence de coupure de ce filtre, etc...

Figure 2: Exemple de spectre \boldsymbol{X}