

Sapienza Università di Roma Facoltà di Ing. dell'Informazione, Informatica e Statistica, Laurea in Informatica Insegnamento di Basi di Dati, Modulo 2 Prof. Toni Mancini Dipartimento di Informatica http://tmancini.di.uniroma1.it

Esame BD2. Esame. Risposte. ER – Modulo risposte prova scritta

Dati dello studente e dell'esame
Cognome e nome: Matricola:
Data:
Corso di laurea e canale di appartenenza:
☐ Laurea in Informatica, canale 1 (A-L, Prof. G. Perelli)
☐ Laurea in Informatica, canale 2 (M-Z, Prof.ssa M. De Marsico)
☐ Laurea in Informatica in Modalità Teledidattica Unitelma Sapienza
Firma di un membro della Commissione per avvenuta identificazione:
Rinuncia alla prova
Desidero rinunciare a questa prova d'esame. Firma:

1 Analisi concettuale

Domanda 1 (10 minuti) Raffinare la specifica dei requisiti eliminando inconsistenze, omissioni e ridondanze e producendo un elenco numerato di requisiti il meno ambiguo possibile. (La risposta a questa domanda non sarà valutata, ma si consiglia di svolgere accuratamente questo passo, in quanto può facilitare di molto le attività di progetto.)

Risposta

- 1. Utente
 1.1 nome
 1.2 coynome
 1.3 email
 1.4 citta di provenien 22
 1.5 data iscrizione
- 2. Vi 23310 2.1 home 2.2 creatore pe feedback (1..5) 2.3 min partecipanti 2.4 max partecipanti 2.5 partecipanti-→ 3. Altivita 2.6 attività -2.7 budget() 3.1 nome 3.2 istante inizio SOMMS Prezzi delle attivita 3.3 durate in minuti 2.5 inizio() 3.4 Prezzo 2.9 Finecy 3.5 info Lestuali 3.6 utente che vi partecipa (eventuale biglietto) 3.7 Luoyo 3.7.1 indrizzo 8.7.2 citta 3.7.3 regione 3.74 N22ione 38 istante_fine(): inizio+durata 3.4 Eipo speciale? [din] 3.9.2 Spostamento 4. Altivita composte 3.9.2.2 lugo arrivo 4.1 insieme di attivita 3.9.2.2 mezzo 4.2 prezzo_tot() 3.9.3 Prenottamento

Domanda 2 (45 minuti; 75 minuti al massimo) Proseguire la fase di Analisi Concettuale dei requisiti, producendo un diagramma ER concettuale per l'applicazione, il dizionario dei dati ed eventuali vincoli esterni.

Una risposta soddisfacente a questa domanda è condizione *necessaria* (ma non sufficiente) per superare la prova.

Diagramma ER

Produrre un diagramma ER concettuale per l'applicazione in termini di entità, relationship, attributi, relazioni is-a, generalizzazioni (disgiunte) complete e non.

Dizionario dei dati Per ogni entità e relationship del diagramma ER con attributi o vincoli:

- Definire il dominio e la molteplicità degli attributi (se diversa da (1,1))
- Definire eventuali vincoli esterni in logica del primo ordine estesa con teoria degli insiemi e semantica di mondo reale, usando il seguente alfabeto:
 - Un simbolo di predicato E/1 per ogni entità E. Semantica di E(x): x è una istanza di E.
 - Un simbolo di predicato D/1 per ogni dominio D. Semantica di D(x): x è un valore di D.
 - Un simbolo di predicato r/n (n>0) per ogni relationship n-aria r. Semantica di $r(x_1,\ldots,x_n)$: x_1,\ldots,x_n è una istanza di r.
 - Un simbolo di predicato a/2 per ogni attributo a di entità Semantica di a(x,v): uno dei valori dell'attributo a dell'istanza x è v.
 - Un simbolo di predicato a/(n+1) per ogni attributo a di relationship n-aria. Semantica di $a(x_1, \ldots, x_n, v)$: uno dei valori dell'attr. a dell'istanza (x_1, \ldots, x_n) della relat. è v.
 - Opportuni simboli di predicato (soggetti a semantica di mondo reale) per gestire confronti tra valori di domini numerici o comunque ordinati (tra cui </2, $\le/2$, >/2, $\ge/2$).
 - Il predicato di uguaglianza =/2 (la cui interpretazione è la relazione che lega ogni elemento del dominio di interpretazione solo con se stesso).
 - Opportuni simboli di costante (soggetti a semantica di mondo reale), tra cui adesso, interpretato come il valore del dominio DataOra che rappresenta l'istante corrente.

Risposta

1 Tipo: Entita Relationship (cerchiare) Nome: Utente	2 Tipo: Entita Relationship (cerchiare) Nome: Utente					
attributo dominio moltepl. (*)	attributo dominio moltepl. (*)					
(*) solo se diversa da $(1,1)$ Vincoli: [V.no-2_vizyi] Y u, v1, v2, i1, i2, f2, f2 [Utente(u) \wedge Vizyyio(v1) \wedge Vizyyio(v2) \wedge ute-via(u,v1) \wedge ute-via(u,v2) \wedge inizio(v1, i1) \wedge inizio(v2, i2) \wedge fine(v1, f1) \wedge fine(v2, f2) \rightarrow [f1 < i2 \ F2 < i2] [V.isoitto_por_vizyyia] Yu,v,c,n [Utente(u) \wedge Vizyyio(v) \wedge iscrizione(u,n) \wedge inizio(v.i)	(*) solo se diversa da (1,1) Vincoli: [V.no_auto_valutazioni] Vu,v [Utente(u) \(\chi\) crea(u,v)] \rightarrow [7]f feedback(u,v,f)] [V.partecipa_att_del_viayyio] * Vu,a [Utente(u) \(\chi\) te_att(2,u)] \rightarrow [3v \ Viayyio(v) ute_via(u,v) \(\chi\) [3 ac \(\ni\) = att \((\ni\), 2c) \(\chi\) att_com(2,20)]]					
Nute-via (u. N)] -> n < i						

3 Tipo: Entità | Relationship (cerchiare)

Nome: Viaggio.....

attributo

dominio moltepl. (*)

5 Tipo: Entita | Relationship (cerchiare)

Nome: Prenottamento

attributo dominio moltepl. (*)

(*) solo se diversa da (1,1)

Vincoli:

[V.inizio-poi-fine]

Yv.i,f[Viaggio(N) Ainizio(N.i) Afine(N.F)] - C<F

[V. mase_mayyore_min]

Yv, max, min [Vizygio (v) A maxPartecipanti (v, max) A

minPartecipanti (Nimin) -> Maxzmin

[V.limite-parte cipanti] *

Yu, m [Viayyio(V) / Max Partecipanti(v, m)] -

| { u | ute_via (u,v) } | ≤ m

(*) solo se diversa da (1,1)

Vincoli:

[V.no_stessa_data]

Yu, p1, p2, i1, i2, d1, d2

[p1+p2 Λ Utente(u) Λ Prenottamento(p1) Λ Prenottamento(p2) Λ Ute_att(u,p1) Λ Ute_att(u,p2) Λ inizio(p1,i1) Λ inizio(p2,i2) Λ

Data((1,d1) ∧ Data(12, d2) → d1 ≠ d2

4 Tipo: Entita Relationship (cerchiare)

Nome: Viaysio.....

attributo dominio

6 Tipo: Entita Relationship (cerchiare)

Nome: Att.Composta

attributo

dominio moltepl. (*)

(*) solo se diversa da (1,1)

Vincoli:

[V. altivita_dentro_tempi_nizyyio]

Yv, iv, fv, 2, i2, fa

[Vizyyio(N) \wedge inizio(N, in) \wedge Fine(N, in) \wedge Altivitz(2) \wedge inizio(2, is) \wedge Fine(2, f2) \wedge [Niz-2lt(N,2) \vee [32c \vee i2-2lt((N,2)) \wedge zlt-com(2, 2c)]] \rightarrow [i \vee i2 \wedge F \vee F2]

(*) solo se diversa da (1,1)

Vincoli:

moltepl. (*)

[V.inclusione_in_viryyio] *

Yz, acin

[Viaggio (v) A AttComposta (ZC) A via-alt C(v.ac) A ztt.com(ZC, Z)] -> via-att (v, 2) 7 Tipo: Entira | Relationship (cerchiare)

Nome: **\/i გაეა**.....

attributo dominio moltepl. (*)

9 Tipo: **Catità** | **Relationship** (cerchiare)

Nome: Biglielto

attributo dominio moltepl. (*)

(*) solo se diversa da (1,1)

Vincoli:

[V. no_intersezione_altivita]

₩, 24, 22, 61,62, F1, F2

[Viayyio(V) Altivita(21) AALtivita(22) A 21 + 22

 Λ inizio(24, i2) Λ inizio(22,i2) Λ fine(24, F1) Λ fine(22, F2)

→[F1< i2 VF2< i3]

(*) solo se diversa da (1,1)

Vincoli:

[V. biglietti_utenti]

Ya[|{u|ute_att(u,a)y3ec att.com(a,ac) / ute_attc(u,ac)}|

 $\neq 0$] $\rightarrow [|\{b| abb_0(a_1b)\}|=0$ \ $|\{b| abb_0(a_1b)\}|=$

| {u | vte_att (u, a) V3 ac att.com(a, ac) A vte_attc(u, ac) }]

8 Tipo: Entita | Relationship (cerchiare)

Nome: Biglietto....

attributo

dominio moltepl. (*)

10 Tipo: Entità | Relationship (cerchiare)

Nome:

attributo dominio

moltepl. (*)

(*) solo se diversa da (1,1)

Vincoli:

[V. biglietti_utenti2]

[[{u|ute_att(u,a)v]ac att.com(a,ac) / ute_attc(u,ac)}|=0]

→ [|{ b| alt-biy(a,b)}|=0\

|{b| alt_big(a,b)}|=

| {u | vte_att (u, 2) | 3 ac att.com(a, ac) A vte_attc(u, ac) }

(*) solo se diversa da (1,1)

Vincoli:

Matricola:

Ulteriori vincoli esterni, specifica di eventuali operazioni ausiliarie invocate da tali vincoli, e specifica dei domini concettuali non di tipo base

OPERAZIONI DI CLASSE

Att Composta

```
prezzo_tot(): Reale ≥ 0

• pre-cond: nessuna

• post-cond:

A = {(2,b)| att_com(2,this) \( \) prezzo(2,b)}

Result: \( \sum_{above} \) b
```

Attivita

```
Fine(): DateTime

•pre-cond: Nessuna

•post-cond: Siano:

i tale che inizio(this,i)

d tale che durataMinuti(this,d)

Result=i+d //somma DataOra+Minuti(intero) data dalla semantica del mondo reale
```

Viaygio

```
budyet(): Reale \geq 0

•pre-cond: nessure

•post-cond:

A = \left\{ (a,b,i) \middle| \begin{bmatrix} viz_{-}att(this,a) \end{bmatrix} V \begin{bmatrix} \exists & ac & att Composta(ac) \land & viz_{-}att(this,ac) \\ \land & att_{-}com(a,ac) \end{bmatrix} \land prezeo(a,b) \land inizio(a,i) \right\}

Result = \sum_{(a,b,i)\in A} b
```

Tipi di Dato

Risposta alla Domanda 2 (segue)

Utente

punti():Intero > 0

• pre_cond: 3 k, v, u2 crea(this N) A feedback (u2, N, K)

• post_cond:

 $V = \left\{ (u, \kappa, v) \mid crea(this, v) \wedge ute_{via}(u, v) \wedge feedback(u, v, \kappa) \right\}$ $med_{i,2} = \sum_{(u, v, v) \in V} \kappa \cdot \frac{1}{|V|}$

V'= { (u, κ, ν) ∈ V| κ≥4}

point = [|V'| · 0.1]

Result e' tale che:

media $\leq 3 \rightarrow \text{Result} = 0 \land \text{media} > 3 \rightarrow \text{Result} = \text{point}$

Domanda 3 (5 minuti; 10 minuti al massimo) Proseguire la fase di Analisi Concettuale dei requisiti, producendo un diagramma UML degli use-case che definisca ad alto livello tutte le funzionalità richieste al sistema.

Risposta

Domanda 4 (10 minuti) Proseguire la fase di Analisi Concettuale dei requisiti definendo le operazioni degli use-case.

In particolare, per ogni use-case definito nella risposta alla Domanda 3 definire la **segnatura** di tutte le operazioni che lo compongono, in termini di nome dell'operazione, nomi e dominio concettuale degli argomenti, dominio concettuale dell'eventuale valore di ritorno.

1 Specifica use-case: Jscrizione (nome use-case)

Operazioni dello use-case:

iscriviti (nome: Stringa, cognome: Stringa, m: Mail): Utente

2 Specifica use-case: Creazione Vianni (nome use-case)

Operazioni dello use-case:

Crea (n: Stringa, min: Intero >0, max: Intero >0, j: DataOra, f: DataOra, a: Altinita [0..+], ac: AttComposta [0..+]): Viayyio

zygiungi (v:Viaggio, z:Attivita[1..+])

Operazioni dello use-case:

Naluta (N: Viaggio, i:1..5)

Operazioni dello use-case:

partecipa-viaggio (N: Via ggio)

partecipe_attivita (N:Via syio, a:Attivita)

partecipa_attivitaCom(N:Via gyio, a:AttComposta)

Operazioni dello use-case:

Viay3i_per_citta (c:Citta): (1..12, |ntero≥0)[12]

6 Specifica use-case: Riserca. เมื่องว่า(nome use-case)

Operazioni dello use-case:

cerca-per_dest(1: luoyo, i:DataOra, f:DataOra): Viayyio[0..*]

citta_viayyi (i:DataOra, f:DataOra): Citta [0..+]

ricerca-regione (i:DataOra, f:DataOra, n:Nazione): (Regione, Intero > 0)[0.+]

cerca-budget-regioni (bm: Realezo, bH: Realezo, R: Regione [i..*], i:DataOra, F:DataOra, p: Intero >0): Viaggio [o...]

7 Specifica use-case:(nome use-case)

Operazioni dello use-case:

Domanda 5 (30 minuti; 60 minuti al massimo) Proseguire la fase di Analisi Concettuale dei requisiti producendo le specifiche concettuali per le operazioni di use-case, limitandosi a quelle necessarie a modellare i requisiti contrassegnati dalla barra laterale (come quella qui a sinistra). In particolare, per ogni operazione, definire segnatura, precondizioni e postcondizioni utilizzando il linguaggio della logica del primo ordine. Si assuma lo stesso vocabolario definito alla Domanda 2.

Una risposta soddisfacente a questa domanda è condizione *necessaria* (ma non sufficiente) per superare la prova.

Risposta

verranno considerati gli usecase degni di nota

Cerca_budget_regioni(bm:Realezo, bH:Realezo, R:Regione[i..*], i:DataOra, f:DataOra, p:Intero \geq 0): Viaggio[o..*]

•pre-cond: bm \(\text{b} \) \(\Lambda \) \(\text{c} \)

•post_cond:

\[
\begin{align*}
\text{Viaggio(v)} \text{\rightarrow} \\ \text{b} \\ \text{budget}(v,b) \text{\rightarrow} \\ \text{bm} \\ \text{\rightarrow} \\ \text{inizio(v,iv)} \text{\rightarrow} \\ \text{fine(v,fv)} \text{\rightarrow} \\ \text{iniz} \\ \text{au} \\ \text{crea}(u,v) \\ \text{\rightarrow} \

 $viay_3i_per_citta(c:Citta): (1..12, Intero \ge 0)[12]$ $\bullet pre_cond: nessuna$ $\bullet post_cond: V = \{ (m_1 n) | viay_3i_per_citta_mese(c_1 m_1 n) \land 1 \le m \le 12 \land Intero(m) \}$

Viaysi_per_citta_mese (c:Citta, m:1..12): Interozo

• pre_cond: nessuna

• post_cond: $V = \begin{cases}
V & \text{liaysio}(v) \land \exists i, \text{an,mes} & \text{inizio}(v, i) \land \text{Anno}(i, \text{an}) \\
\land \exists k \text{ Anno}(\text{ADESSO}, k) \land k = \text{an} \land \text{Mese}(i, \text{mes}) \land \\
\land \text{mes} = m \land \exists a, l \quad \text{Attivita}(a) \land \text{alt_lvo}(a, l) \land \text{Ivo_cit}(l, c) \\
\land [via_att(v, a) \lor [\exists ac \ via_attc(v, ac) \land att_com(a, ac)]]
\end{cases}$ Result = |V|

ADESSO è un simbolo di costante dato dalla semantica del mondo reale

Anno e Mese sono predicati dati dalla semantica del mondo reale

Matricola:

2 Progettazione della base dati e delle funzionalità

Domanda 6 (20 minuti; 30 minuti al massimo) Iniziare la fase di progettazione logica della base di dati decidendo il DBMS da utilizzare e ristrutturando lo schema ER concettuale, il dizionario dei dati e i vincoli esterni. In particolare:

- progettare una corrispondenza tra i domini concettuali ed opportuni domini SQL (domini base o utente, oppure realizzati mediante relazioni aggiuntive) supportati dal DBMS scelto
- eliminare attributi multivalore o composti
- eliminare relazioni is-a e generalizzazioni
- definire un identificatore primario per ogni entità
- valutare se e come aggiungere ridondanza in maniera controllata
- ristrutturare i vincoli esterni per renderli consistenti con la struttura del nuovo diagramma.

Descrivere brevemente le principali scelte effettuate.

Diagramma ER ristrutturato

Vincoli esterni introdotti o modificati durante la fase di ristrutturazione

(si omettano i vincoli esterni la cui formulazione è rimasta identica a seguito della ristrutturazione)

$$\forall \kappa, u, v \ [feedback(u, v, K)] \rightarrow [\exists f \ crea(u, v, f) \land f = 'False']$$

Domanda 7 (30 minuti; 60 minuti al massimo) Proseguire la fase di progettazione logica della base di dati producendo lo schema relazionale della base dati e i relativi vincoli a partire dallo schema ER ristrutturato.

Una risposta soddisfacente a questa domanda è condizione *necessaria* (ma non sufficiente) per superare la prova.

1 Relazione Nazione (nome)				Deriva	Derivante da: entita relationship (cerchiare)				
Attributi nome									
Domini Stvinga									

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

La relazione accorpa le relazioni che implementano le seguenti relationship:

2 Relazione Reside (nome)				Deriva	nte da: ඁ	ita relatio	nship (cerchia	re)
Attributi Nome	id	Nasione						
Domini Strings	serial	Strasa						\neg

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

FK nazione ref Nazione (nome);

unique (nome, nezione);

La relazione accorpa le relazioni che implementano le seguenti relationship: 164.483.....

3 RelazioneCitta (nome)				Derivar	nte da. ent	ita relatio	onship (cerchiare)
Attributi nome	id	regione					
Domini Stringa	Sevial	Nuteyer					

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

fx regione ref Regione (id);

Unique (nome, regione);

La relazione accorpa le relazioni che implementano le seguenti relationship: ... ele relazione

4 Relazione .Uten	Le (nome)	Derivante	da: entita	relationship (cerchiare)
Attributi nome	cognome email	iscrizione id	cilta	
Domini Stringa	Stringa Mail	DateTime serial	Integer	

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

Fr citta ref Citta (id);

La relazione accorpa le relazioni che implementano le seguenti relationship: ""Le -cit.

5 Relazione Vizy	Derivante	da: 🛭	entità	relationship (cerch	iare)		
Attributi nome	maxPart minPart	jni 2io	fine	i	ģ		
Domini Stringo	Int-GZ int-GZ	DabeTime	DateTime	, se	rvial		

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

check (minPort <= max Part); check (inizio < fine);

6 Relazione Vte_via (nome)	Derivante	da: entità	relationsh	ர் (cerchiare
Attributi utente Niaggio Feedback* cres				
Domini Integer Integer Noto bool				

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

check (feedback IS NOT NULL AND crea = 'False') OR (crea = 'True'));

La relazione accorpa le relazioni che implementano le seguenti relationship:

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

FK cilta ref Cilta(id);

La relazione accorpa le relazioni che implementano le seguenti relationship: المعاددة المعاد

8 Relazione Altivita..... (nome) Derivante da: **entita** | **relationship** (cerchiare) Attributi prezzo dur a ta Minuti inizio in Fo Niegyio nome lvogo Dabetime Domini | Stringa Int-GEZ | Real-GEZ | Stringa Serial Integer Integer

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

fk luoyo ref Luoyo(id);

fk vizyyio ref Vizyyio (id);

La relazione accorpa le relazioni che implementano le seguenti relationship: **ie-att, att luo .

9 Relazione Alt-Composta.... (nome)

Derivante da: entita | relationship (cerchiare)

Attributi | jd | viaggio | | | | | | | | |

Domini | Sevial | Integer | | | | | |

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

fk Nizygio ref Vieggio (id);

La relazione accorpa le relazioni che implementano le seguenti relationship: "wi.a.....

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

FK 24C ref AltComposta(id);

FK alt ref Altinite(id); V.inclusione Alt Composta (id) incluso in alt_com(altC);

33-29
2024-(
ersione
≥

<u>u</u>							
11 Relazione שלב שלוי(nome)	Derivante da: entità relationship (cerchiare)						
Attributi <u>vtente</u> <u>alt</u>							
Domini Integer Integer							
Gli attributi chiave primaria sono sottolineati, quelli i cui valori posson	o essere NULL sono contrassegnati con *						
Vincoli (foreign key, inclusione, altra chiave, di ennupla,	di dominio):						
Fk alt rec Attinita(id);							
fk Utente Nep Utente(id);							
La relazione accorpa le relazioni che implementano le seguenti relationship:							

12 Relazione vecale C(nome)	Derivante da	: entità	relations	ip (cerchiare)			
Attributi utente altC							
Domini Integer Integer							
Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono e	essere NULL sono	contrassegn	ati con *				
Vincoli (foreign key, inclusione, altra chiave, di ennupla, d	li dominio):						
fk utente ver Utente (id);							
FK altC vef AltComposta (id);							
La relazione accorpa le relazioni che implementano le seg	uenti relations	hip:					

13 Relazione Bislietto (nome)			Derivar	Derivante da: entita relationship (cerchiare)				
Attributi cod	id	zlt						
Domini String	a serial	Integer						
Gli attributi chiave prin	naria sono sottolir	neati, quelli i cu	ii valori po	ossono essere NUL	L sono contra	ssegnati con *		
Vincoli (foreign ke	y, inclusione, a	altra chiave,	di ennu	ıpla, di domini	o):			
Fr alt ref Altinita(id);								
Unique(alt, cod);								
La relazione accorpa le relazioni che implementano le seguenti relationship:								

14 Relazione Tipo Mezzo (nome)		Deriva	nte da: ent	relatio	nship (cerchiare
Attributi nome					
Domini Stringa					
Gli attributi chiave primaria sono sottolineati, quelli i	cui valori pos	ssono essere NUI	L sono contra	segnati con *	
Vincoli (foreign key, inclusione, altra chiav	∕e, di ennu∣	pla, di domin	io):		
La relazione accorpa le relazioni che imple	ementano l	e seguenti rel	ationship:		

15 Relazione Spostamento(nome)					Derivante da: entità relationship (cerchiare)				
Attributi id	luoyo	Me230	z.lt						
Domini Serial	Integer	Stringa	Integer						
Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *									

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

FK luoyo nef Luoyo (id);
FK mezzo nef TipoHezzo (nome); FK alt ref Altinita (id); Unique (alt);

La relazione accorpa le relazioni che implementano le seguenti relationship: alt-spo, spo-bip, spo-bip, spo-bip,

La relazione accorpa le relazioni che implementano le seguenti relationship:

19 Relazione(nome)				Derivante da: entità relationship (cerchiare)				
Attributi								
Domini								

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

La relazione accorpa le relazioni che implementano le seguenti relationship:

20 Relazione	 (nome)	Deriv	ante da: en t	tità relation	onship (cerchiare)
Attributi					
Domini					

Gli attributi chiave primaria sono sottolineati, quelli i cui valori possono essere NULL sono contrassegnati con *

Vincoli (foreign key, inclusione, altra chiave, di ennupla, di dominio):

La relazione accorpa le relazioni che implementano le seguenti relationship:

Ulteriori vincoli esterni

Per ogni ulteriore vincolo esterno (non ancora espresso perché non definibile mediante vincoli di chiave, foreign key, ennupla, dominio, inclusione), progettare un trigger che lo implementi, definendo: (a) gli eventi da intercettare (inserimento, modifica, eliminazione di ennuple); (b) quando intercettare tali eventi (appena prima o subito dopo l'evento intercettato); (c) la relativa funzione in pseudo-codice con SQL immerso che implementa il controllo del vincolo.

da fave i vincoli *

T. no-2_viaggi

Insert o Update ute_via

Evrov : EXISTS (SELECT *

if Evrov: rollback else: permetti op.

Risposta alla Domanda 7 (segue) ogni trigger

FROM uteria un. Viaggio 11, Viaggio 12

WHERE W. utente = new. utente

operazione

POST

zará controllato

```
AND N1 = UV. Vizayio
              AND 12 .= new. 4129910 AND 114712
              AND (Na.inizio, Na.fine ) INTERSECT (Na.inizio, Na. fine);
if Error: rollback
else: permetti op.
T. 15critto_poi_viagyia
Insert o Update utenia
 EVVOV = EXISTS (SELECT *
                 FROM Utente 4, viaggio 1
                 WHERE new. utente - Wid
                 AND New. 4 24410 = 4.id
                 AND N.inizio <= W.iscrizione);
if Error: rollback
else: permetti op.
T. no-intersezione altivita
insert & Update Altivita
EVVOY: EXISTS ( SELECT +
                 FROM ALLINITE & WHERE
                                               2.vizyyio=new.uieyyio
                 AND (2.inizio, fine-alt(a.id)) INTERSECT (new.inizio, fine-alt(new.id))),
if Error: rollback
else: permetti op.
T.no_stessa_data
Insert o Update ute_alt
Error = EXISTS ( SELECT *
                 FROM ute-alt 2t, Altivita 21, Prenoltamento p. Altivita 22, Prenoltamento p2
                 WHERE at <> new AND 22.id = new att AND p2.att = a2.id
                 AND at utente = new utente AND at alt = a1.id AND a1.id = p. alt
```

AND (21.inizio, fine_alt(21.id)) INTERSET (22.inizio, fine_alt(22.id)));

Matricola:

Versione 2024-03-29]

Domanda 8 (30 minuti; 45 minuti al massimo) Proseguire la fase di progettazione dell'applicazione producendo le specifiche realizzative delle operazioni di use-case definite per modellare i requisiti contrassegnati dalla barra laterale della specifica dei requisiti.

In particolare, per ogni operazione definire la segnatura, in termini di nome dell'operazione, nomi e dominio SQL degli argomenti, dominio SQL dell'eventuale valore di ritorno, e un algoritmo in pseudo-codice con SQL immerso che verifichi le precondizioni e garantisca il raggiungimento delle postcondizioni definite in fase di Analisi.

Una risposta soddisfacente a questa domanda è condizione *necessaria* (ma non sufficiente) per superare la prova.

```
Risposta
 cerca_budget_regioni (bm: Real_GEZ, bM: Real_GEZ, R:Insieme (< Integer>), i:DateTime, F:DateTime, p: Int. GEZ)
                                                                                               : Insieme (< Integer)
· pre-cond: bm <= bH AND i < F
              V= SELECT N.id
                 FROM Viaggio v. Altinita a, Luoyo l. Cita c. R, Ute-via
                 WHERE 2. Nizyyio = N.id AND 2. logo= l.id A l.cilta = c.id AND cilta. regione = R.id
                 AND 4.inizio >= ¿ AND 4.fine L= F
                 AND ute-via. viayjio = v.id AND ute-via. cvea = True
                 AND punti (ute_viz.utenbe) >= P
                 AND budget (N.id) >= bm AND budget (N.id) <= bMj
              result = V
Viagyi-per_citta (c: Integer)
        V = SELECT EXTRACT (MONTH FROM V.inizio), count (DISTINCT V.id)
            FROM Vizyyio N, Altivita 2, Luoyo l
            WHERE R.Nieggio=N.id AND Z.lvogo=l.id
            AND L. citta = C AND
            EXTRACT (YEAR FROM V.ini 210) = EXTRACT (YEAR FROM NOWC)
            GROUP BY EXTRACT (MONTH FROM N.inizio);
        Result = V
```

```
Risposta alla Domanda 8 (segue)
 create function
  Fine_alt ( at: Integer) : DateTime
        F= (SELECT inizio+ INTERVAL duratallinut:::Internal
           FROM Activita WHERE ideal.id);
        return f
Create function
budget (1: id): Real_GE2
        b = SELECT SUM (at. prezzo)
           FROM Altivita at
           WHERE at Nieggio=1;
        return b
Create function
punti (4: Integer): Int-GEZ
        media: WITH Q 25 (SELECT N.id
                            FROM Ute_vis JoIN Visyyio + on v.id = ute_vis. visyyio
                            AND crea='True' AND ute-ria.utente=u)
                 SELECT AV6 (feedback)
                 FROM ute_via Join a on a.v.id: ute_via_viaggio
                 AND CUEB='False' AND FEEDBECK IS NOT NULL;
         punti = WITH Q 25 (SELECT N.id
                            FROM ute_via JoIN Viaggio v on v.id = ute_via. viaggio
                            AND crea='True' AND ute-Niz utente=u)
                 SELECT
                           count (+)
                 FROM ute_via JoIN a on a.v.id: ute_via.viaggio
                AND crea='False' AND feedback > 3;
        if media 4=3:
             return o
        else
```

return Floor (punti. 0.1)

[Versione 2024-03-29]

Tempo totale stimato per svolgere questa prova: 180 minuti (tempo totale concesso: 300 minuti).

[Spazio per minute. Questa pagina non sarà valutata a meno che non sia puntata da pagine precedenti.]

[Spazio per minute. Questa pagina non sarà valutata a meno che non sia puntata da pagine precedenti.]

[Versione 2024-03-29]

[Spazio per minute. Questa pagina non sarà valutata a meno che non sia puntata da pagine precedenti.]

[Spazio per minute. Questa pagina non sarà valutata a meno che non sia puntata da pagine precedenti.]