<u>Task 4:</u>

Mall Customers Using Python

Crafted By:

Vidhi Bhutia

```
# Importing necessary libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
```

```
# Load the dataset
file_url = 'https://drive.google.com/file/d/110bgdgfvTUwDUOC38XdVMtxEeMRt2ibK/view?usp=drive_link'
path = 'https://drive.google.com/uc?export=download&id='+file_url.split('/')[-2]
df = pd.read_csv(path)
```

```
# Display the first few rows to get an overview of the data
print("First few rows of the dataset:")
print(df.head())
```

Fi	First few rows of the dataset:						
	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)		
0	1	Male	19	15	39		
1	2	Male	21	15	81		
2	3	Female	20	16	6		
3	4	Female	23	16	77		
4	5	Female	31	17	40		

```
# How many rows and columns are there in the dataset?

print("\nNumber of rows and columns:")

print(df.shape) # Shape of the dataframe (rows, columns)
```

Number of rows and columns: (200, 5)

```
# What are the data types of the columns? Are there any missing values?
print("\nData types and missing values:")
print(df.info())

# Check for missing values
missing_values = df.isnull().sum() # Summarize missing values per column
print("Missing values per column:")
print(missing_values)

# Check if there are any missing values in the entire DataFrame
any_missing = df.isnull().any().any()
print("\nAre there any missing values in the DataFrame?", any_missing)
```

```
Data types and missing values:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):
# Column
                       Non-Null Count Dtype
0 CustomerID 200 non-null int64
1 Gender
                     200 non-null object
               200 non-null int64
3 Annual Income (k$) 200 non-null int64
4 Spending Score (1-100) 200 non-null int64
5 Cluster
                200 non-null int32
dtypes: int32(1), int64(4), object(1)
memory usage: 8.7+ KB
None
Missing values per column:
CustomerID
Gender
Age
Annual Income (k$)
Spending Score (1-100) 0
Cluster
dtype: int64
Are there any missing values in the DataFrame? False
```

```
# Explore the distribution of gender among the customers (Create a bar plot)
gender_counts = df['Gender'].value_counts()
plt.figure(figsize=(8, 6))
sns.barplot(x=gender_counts.index, y=gender_counts.values)
plt.title('Distribution of Gender')
plt.xlabel('Gender')
plt.ylabel('Count')
plt.ylabel('Count')
```



```
# Summary statistics for 'Annual Income' and 'Spending Score'
print("\nSummary statistics for 'Annual Income' and 'Spending Score':")
print(df[['Annual Income (k$)', 'Spending Score (1-100)']].describe())
```

Summary statistics for 'Annual Income' and 'Spending Score':							
	Annual Income (k\$)	Spending Score (1-100)					
count	200.000000	200.000000					
mean	60.560000	50.200000					
std	26.264721	25.823522					
min	15.000000	1.000000					
25%	41.500000	34.750000					
50%	61.500000	50.000000					
75%	78.000000	73.000000					
max	137.000000	99.000000					

```
# Histogram for the 'Age' column to visualize the age distribution of customers
plt.figure(figsize=(8, 6))
sns.histplot(df['Age'], bins=20, kde=True)
plt.title('Age Distribution of Customers')
plt.xlabel('Age')
plt.ylabel('Count')
plt.ylabel('Count')
```



```
# Scatter plot: 'Annual Income' vs 'Spending Score', colored by 'Gender'
plt.figure(figsize=(10, 8))
sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)', hue='Gender', data=df)
plt.title('Annual Income vs Spending Score (colored by Gender)')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()
```



```
# Correlation matrix for numerical columns
corr_matrix = df[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']].corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title('Correlation Matrix')
plt.show()
```



```
# Pairwise analysis of 'Age' and 'Annual Income' using a scatter plot matrix (pair plot)
sns.pairplot(df, vars=['Age', 'Annual Income (k$)'], hue='Gender')
plt.suptitle('Pair Plot: Age vs Annual Income (colored by Gender)')
plt.show()
```



```
# KMeans clustering to segment customers based on 'Spending Score' and 'Annual Income'
X = df[['Annual Income (k$)', 'Spending Score (1-100)']]
kmeans = KMeans(n_clusters=5, random_state=0) # Choosing 5 clusters arbitrarily
df['Cluster'] = kmeans.fit_predict(X)

# Visualizing the clusters
plt.figure(figsize=(10, 8))
sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)', hue='Cluster', data=df, palette='viridis')
plt.title('Clusters of Customers based on Annual Income vs Spending Score')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()
```


The segments in the scatter plot are quite distinct, each representing a unique group of customers categorized by their annual income and spending score. Here are the key observations:

- High Income, Low Spending: One cluster shows customers with high income but low spending scores.
- Moderate Income & Spending: Another cluster represents customers with moderate values for both income and spending.
- Low Income, Low Spending: A separate cluster indicates customers with low income and low spending scores.
- High Income, High Spending: There is also a cluster for customers with high income and high spending scores.
- Low Income, High Spending: Lastly, a cluster exists for customers with low income but high spending scores.