Determinação de Curva Volt-Var Ótima por Busca Exaustiva

- Daniel Fonseca
- Byron Acuña

November 15, 2022

Motivation

- Voltage-related issues are among the most limiting issues regarding the integration of high penetration of distributed energy resources (DER).
- Smart inverter can also supply or absorb reactive power based on Volt-Var curve.
- Hence, Volt-Var curve:
 - Affects the voltage levels and reactive power (VAR).
 - Can be employed to improve voltage profiles for end-use customers and reduce power losses and voltage deviation.

Program

- Given this, an object-oriented program was developed to determine the best volt-var curve within various curves
- The code is generic enough to be used with any distribution grid containing all the common elements such as voltage regulators, capacitor banks, other DER, etc
- This solution can be used in connection studies to minimize the negative impact of PV generators
- The minimization of power/energy losses of entire circuit under normal voltage operation is the selection criteria that will be used.

Methodology

Case Study

- The IEEE 123-bus system in OpenDSS is used for perform this study.
- Nominal voltage of 4.16 kV.
- This circuit is characterized by overhead and underground lines, unbalanced loading with constant current, impedance, and power, four voltage regulators, shunt capacitor banks, and multiple switches.

Case Study

 The power consumption of the loads in the IEEE 123bus system was altered so that we could analyze the system throughout the day

Case Study

- For the case study a PV generator was positioned on the bus 51, far from the substation
- For the case study the power of the PV will gradually increase from 50 kW to 3000 kW

```
New PVSystem.PV phases = 3 bus1 = 51 Pmpp = 500 kV = 4.160
kVA = 500 conn = wye effcurve = Eff
P-TCurve = FatorPvsT %Pmpp = 100 irradiance = 1
daily = Irrad Tdaily = Temperature
```


Numerical Results

Numerical Results

Numerical Results

Discussion - Benefits of using the py-dss-interface

- Facility to control OpenDSS in a loop
- ► Ability to write a object oriented program, facilitating the manutence and aprimoration of the code
- Usage of consolidated libraries in Python, such as Pandas
- Possibility to use more modern IDE with better debuggers, such as PyCharm

- Thank,