Circuits

Series and parallel equivalences

Spring 2022

Series connection

Definition

Series connection: when elements carry the same purrent

Parallel connection

Definition

Parallel connection: when elements have a common voltage across them

Voltage sources

Voltage sources connected in series

Series-connected voltage sources can be replaced by a **single equivalent voltage** source

The equivalent voltage is equal to the algebraic sum of individual sources

Example

Meds not have parallel connected whaye sources equivalent to

Examples

one textrique Hirst re need to detine the golarity Determine the current i in the circuit after first replacing the four sources with a single equibalent source.

equivalent whate Sturce.

contribute

lwk at witage that satisfies

the PSC.

dues it antribute to the 4+3-5-1=1 v hypothetical current

Current sources

Why don't we consider series current sources?

Current sources connected in parallel

Parallel-connected current sources can be replaced by a single equivalent current source

The equivalent current is equal to the algebraic sum of individual sources

Examples

When we are ambining ne only lost at

Determine the voltage ν in the circuit after first replacing the three sources with a single equibalent source.

independent sources

7/1+22= 10A

Resistors in series

Equivalence

Series-connected resistors can be replaced by a single resistor

The equivalent resistance is equal to the sum of individual resistances

doein4 hove

algebric

Formula

$$R_{eq} = R_1 + R_2 + R_3$$

Resistors in series

Demonstration

By applying KVL

$$v = v_1 + v_2 + v_3$$

$$= R_1 \cdot i + R_2 \cdot i + R_3 \cdot i$$

$$= (R_1 + R_2 + R_3) \cdot i$$

$$= R_{eq} \cdot i$$

$$\implies R_{eq} = R_1 + R_2 + R_3$$

Resistors in parallel

Equivalence

Parallel-connected resistors can be replaced by a single resistor

The equivalent inverse of the resistance is equal to the sum of inverse of individual resistances

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \Longrightarrow R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$$

Resistors in parallel

Demonstration

Examples

Determine the power and voltage of the dependent source.

$$\frac{\sqrt{x}}{3} + \frac{\sqrt{x}}{5} = 2 + 0.7i$$

Planar circuit

Planar circuit

It is possible to draw the diagram of a circuit on a plane surface that no branch passes over or under any other branch.

