

 STUDENT ID NO								

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2015/2016

EMG2016 – ELECTROMAGNETIC THEORY

(All Section / Groups)

7 OCTOBER 2015 2:30 P.M- 4:30 P.M. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 8 pages with 4 Questions only.
- 2. Attempt ALL FOUR questions. Each question carry equal marks and the distribution of the marks for each question are given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. In case Smith Chart is used, please tear it off, and attach the used one(s) with the answer script.

Question 1

(a) A telephone line operates at 10 MHz and has the following parameters:

 $R = 40 \Omega/m$, $G = 400 \mu S/m$, $L = 0.2 \mu H/m$, C = 0.5 nF/m

Calculate:

(i) The characteristic impedance.

[5 marks]

(ii) The phase velocity.

[5 marks]

- (b) A 50 Ω lossless line is 4.2 m long. At the operating frequency of 300 MHz, the input impedance at the middle of the line is 80-j60 Ω . Assuming u = 0.8c, Find:
 - (i) The input impedance at the generator.

[9 marks]

(ii) The voltage reflection coefficient at the load.

[6 marks]

Question 2

(a) A conducting rod of length l rotates about the z-axis with an angular velocity ω . If the magnetic field $B = B_o a_z$, calculate the voltage induced on the conducting rod.

[8 marks]

(b) A square loop of side a recedes with a uniform velocity $u_o a_y$ from an infinitely long filament carry current I along a_z as shown in Figure Q2. Assuming that $b = b_o$ at time t = 0, calculate the emf induced in the loop.

[10 marks]

(c) Proof that $\nabla \cdot \underline{\mathbf{J}} = -\frac{\partial \rho_{\nu}}{\partial t}$

[7 marks]

Figure Q2

Question 3

(a) A 100MHz uniform plane wave propagates into a polyethylene medium. The amplitude of the electric field intensity is $\widetilde{E}(z,t) = 30e^{-rz}\hat{x}$ V/m and the material is assumed to be lossy with $\varepsilon_r = 2.3\varepsilon_0$, $\mu_r = \mu_0$ and $\sigma = 0.2S/m$.

Calculate:

(i) Complex propagation constant, γ , attenuation constant, α and phase constant, β .

[4 marks]

(ii) Wavelength, λ of the propagating wave.

[2 marks]

(iii) Phase velocity, u_p .

[2 marks]

(iv) Intrinsic impedance, η of the medium.

[2 marks]

Hence, state whether the material is a low loss dielectric material or a good conductor.

[2 mark]

- (b) A 50 MHz right-hand circularly polarized plane wave with an electric field modulus of 30 V/m is normally incident in air upon a dielectric medium with $\varepsilon_r = 9$ and occupying the region defined by $z \ge 0$.
 - (i) Write an expression for the electric field phasor of the incident wave, given that the field is a positive maximum at z = 0 and t = 0.

[5 marks]

(ii) Calculate the reflection and transmission coefficients.

[4 marks]

(iii) Write expressions for the electric phase phasors of reflected wave and the transmitted wave in the region $z \le 0$.

[4 marks]

Question 4

- (a) Compare between transmission lines and waveguides characteristics in terms of:
 - (i) Structure.
 - (ii) Operating mode.
 - (iii) Cut-off frequency.

[6 marks]

(b) A 2.5 cm x 1 cm rectangular waveguide is operated at frequency below 15.1 GHz. The waveguide is filled with a medium that is characterized by $\sigma = 0$, $\varepsilon_r = 4\varepsilon_0$ and $\mu_r = 1$.

Determine:

(i) The cut off frequencies of the propagating TE and TM modes.

[8 marks]

(ii) TE and TM propagating modes. Provide at least three modes for each.

[3 marks]

- (c) A WR650 rectangular waveguide has an external dimension of 16.51 cm x 8.255 cm and wall thickness of 0.203 cm for wave operating at 1.5 GHz.

 Calculate:
 - (i) Cut-off wavelength, λ_{c}

[1.5 marks]

(ii) Guided wavelength, λ_g .

[1.5 marks]

(iii) Phase velocity, u_p

(iv) Guide velocity, vg.

[1.5 marks]

[1.5 marks]

If the operating frequency is reduces to 1.2 GHz, would it affect the guided wavelength? Justify your answer.

[2 marks]

Appendix A

Physical Constants and Units

Constant	Symbol	Value (mks units)		
Speed of light in vacuum	С	$3 \times 10^8 \mathrm{m/s}$		
Electron charge	q	$1.602 \times 10^{-19} \mathrm{C}$		
Boltzmann's constant	$\hat{k_B}$	$1.38 \times 10^{-23} \text{ J/K}$		
Permittivity of free space	Ξ ₀	$8.8542 \times 10^{-12} \text{ F/m}$		
Permeability of free space	μ_0	$4\pi \times 10^{-7} \text{ N/A}^2$		
Electron volt	eV	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$		
Planck's constant	h	$6.626 \times 10^{-34} \text{ J} \cdot \text{s}$		
Electron rest mass	m	$9.11 \times 10^{-31} \text{ kg}$		
Effective electron mass	m_e	0.068m		
Effective hole mass	m_h	0.56m		

Appendix B

The Complete Smith Chart Black Magic Design

The Complete Smith Chart

Black Magic Design

