Mechanical Control Systems (ME 4473)

Recitation - 3

GTA: Shishir Khanal, khanshis@isu.edu

Agend	da:					
Answer the following questions:						
0	What is a state?					
0	What is the meaning of state space description of the system?					
0	What is the matrix equation for the state space representation of a system?					
O	What is the matrix equation for the state space representation of a system:					
 How many state equations can a 5th order ODE be represented in terms of? 						
0	Which of the following techniques are used to linearize a system?					
	i. Taylor Series Representationii. Small Angle Approximation					
	iii. Jacobian Linearization					
	iv. All of the Above					
	v. None of the Above					

• Problems:

o For the simple pendulum, the nonlinear equations of motion are given by:

$$\Theta''(t) + \frac{g}{L}sin(\Theta) + \frac{k}{m}\Theta'(t) = 0$$

(Written against actual convention: dot notation for time derivative and prime notation for length derivative)

where g is gravity, L is the length of the pendulum, m is the mass attached at the end of the pendulum (we assume the rod is massless), and k is the coefficient of friction at the pivot point.

a. Linearize the equations of motion about the equilibrium condition $\Theta = 0^{\circ}$.

b. Obtain a state variable representation of the system.

C	Come up v	with paramete	ers for the	model of	a nendulum
U.	Come up i	with paramet		illouel oi	a penadiani

Now, let's change our system by providing an input such that our original ODE becomes:

$$\Theta''(t) + \frac{g}{L}sin(\Theta) + \frac{k}{m}\Theta'(t) = u(t)$$

(Written against actual convention: dot notation for time derivative and prime notation for length derivative)

d. Linearize the equations of motion about the equilibrium condition $\Theta = 0^{\circ}$.

e. Obtain a state variable representation of the system.

f. Evaluate a step response of this system using simulink.

@Simulink

Bibliography:

• Modern Control Systems, 13th edition, Chapter 3