Ej. 1	Ej. 2	Ej. 3	Ej. 4	Nota

Segundo Parcial - 04/07/2024

Métodos Computacionales 2024

Nombre: $\underline{\ }$			
Apellido:			
Cantidad	do hoise:		

Nota: Es indispensable contar con dos ejercicios marcados como B o B- para aprobar el parcial.

Ejercicio 1. Sea W un subespacio en \mathbb{R}^4 tal que la suma de las coordenadas de sus vectores es cero. Hallar una base para el complemento ortogonal a W.

Sugerencia: Buscar primero una base para W puede orientarlos en la búsqueda de W^{\perp} .

Ejercicio 2. Se realizan 4 observaciones (y_i) en el tiempo (t_i) :

- y = 2 cuando t = 1
- y = 3 cuando t = 2
- y = 5 cuando t = 3
- y = 4 cuando t = 4

El problema de ajustar un modelo de regresión lineal simple: $\hat{y}_i = b_0 + b_1 t_i$ es equivalente a encontrar la proyección ortogonal de \mathbf{y} en el espacio columna de la matriz A, siendo:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$

Encontrar el vector $\hat{\mathbf{y}}$, y los valores b_0 y b_1 usando la solución de mínimos cuadrados.

Ejercicio 3. Dada la siguiente forma cuadrática: $Q(\mathbf{x}) = 3x_1^2 + 4x_1x_2$, encontrar el máximo y el mínimo de $Q(\mathbf{x})$ sujeto a que $x_1^2 + x_2^2 = 1$, y los vectores en los que se alcanzan dichos valores.

Ejercicio 4. Una empresa de combustible para aviones tiene dos depósitos, **X** e **Y**, con capacidades de 7000 L y 4000 L, respectivamente. La empresa está distribuyendo combustible a tres estaciones de combustible para aviones, **D**, **E** y **F**, ubicadas en tres ciudades con demandas de 4500 L, 3000 L y 3500 L, respectivamente. En la siguiente tabla se presentan las distancias (en km) entre los depósitos y las estaciones de combustible:

Distancia (km)	Desde/Hacia	X	Y
	D	7	3
Distancia (kiii)	${f E}$	6	4
	F	3	2

El costo de transporte de 10 litros de combustible para aviones es de usd 1 por km, el objetivo del problema es planificar la distribución para mitigar el costo de transporte.

Figura 1: Tener en cuenta que los depósitos envían el total **exacto** de su combustible, y los aviones reciben **exactamente** la demanda solicitada. Por lo que hay sólo dos incógnitas (a y b en la figura).

Se pide:

- 1. Formular el problema de decidir cuantos litros de cada deposito va a ir a cada estación de servicio.
- 2. Plantear el problema de la forma canónica.
- 3. Resolver el problema con el método gráfico
- 4. Indicar el costo mínimo posible que cumpla con todas las restricciones.