Mining parliamentary data and news articles to find patterns of collaboration between politicians and third party actors.

Francisco Rodríguez Drumond

DAMA & LARCA - UPC

July 7,2014

- Nodes: Families of the political landscape of XV century Florence.
- Links: marriages between families (alliances).

Why?

Motivation

- Main challenge: source of information (nodes and relationships)
 - Co-sponsorship. [Fow06]
 - Speeches. [TPL06]
 - Strong and weak ties. [Kir11]
- Can we discover relationships involving third-party actors?
 - Third party discovery
 - Defining meaningful relationships.

An overview of our task

We want

Social Networks

Blogs and Forums

An overview of our task

3rd Party Actors

Motivation.

We have We want Parliamentary Data (Open data) Politicians News Articles ?

An overview of our task

Motivation.

We have We want Parliamentary Data (Open data) Politicians News Articles ? Social Networks 3rd Party Actors

Blogs and Forums

SOPA: A motivating example.

Motivation.

Policy Networks (PN): Social networks for political analysis.

An overview of the literature.

- Co-occurrence. [EESGGHAC14], [PSIO06].
- Enriching links with the strength and semantics of relations. [Tan07],[PSB07],[ZAR03].
- Beyond document co-occurrence. [NCSS06],[Bra06].
- A (very) related paper. [MID+13]

A (very) related paper.

Moschopoulos (2013) Toward the automatic extraction of policy networks using web links and documents

- Two pre-computed PNs: Ireland and Greece.
- Ground truth used for measuring correlations with similarity measures.
- Web based.
- Three types of similarity metrics:
 - Co-occurrence metrics (Set comparisons).
 - Text-based metrics.
 - Link-based metrics.

Generating bill based Policy Networks: the architecture.

Topic modeling:

extraction.

TF-IDF for keyword

- One bill one document.
- Whole set of bills as the corpus.
- 1,2,3-ngrams.
- Top 1000 keywords for each bill.

Querying news articles:

- Bills and news articles modeled as vectors
 - Cosine similarity for comparison.
- Rocchio's rule for improving queries.

Selecting relevant news articles.

Threshold: point that maximizes:

$$threshold = \operatorname*{argmax}_{p} |p - (p.b')b'|$$

Intuition: point at which there is no significant gain in score.

MITIE for entity extraction +

- Entity Normalization
 - 'The Univ. lumiere Lyon 2' → 'Univ Lumiere Lyon 2'
- Mapping organization initials to the whole name
 - 'The World Life Fund (WLF) has...'
 - \rightarrow 'World Life Fund' = 'WLF'
- 3 Mapping partial names with full names
 - 'George Harrison preferred Harrison also...'
 - → 'George Harrison' = 'Harrison'
- 4 Expanding names based on the news corpus
 - 'Politècnica de Catalunya'
 - → 'Universitat Politècnica de Catalunya'

Filtering relevant entities.

Problem: +3000 entities per bill

- Noise.
- Expensive comparisons.

Solution:

- Document co-occurrence + Latent Semantic Indexing (LSI) for fast similarity computation.
- Hierarchical Agglomerative Clustering (HAC) for grouping entities based on their similarity.
 - Politicians → seed entities.
- Silhoutte for detecting the best cluster containing seed entities.

- Entities represented as vectors of 1...3-grams occurring in paragraphs they are mentioned in.
 - TF-IDF with sublinear TF scaling (tf = 1 + log(frequency))
- Cosine similarity for comparing the vectors.
- Elbows for detecting relevant entities for each entity.
 - Two entities e1 and e2 are related iff they are in each others relevant entities list.

Results.

- Two bills:
 - BCN-World.
 - Law of Popular Non-referendary Consults.
- Look at:
 - \blacksquare Communities \rightarrow colors.
 - Influencers → node size.

BCN-World - Organizations.

BCN-World - Persons-Organizations.

Law of Popular Non-referendary Consults. - Organizations.

Law of Popular Non-referendary Consults. - Persons.

- An unbiased, low-cost, automated tool to aid the process of Policy Network generation and analysis.
- 2 The system automatically:
 - 1 Detect entities related to a bill.
 - 2 Computes and thresholds similarity measures for SN generation.
- The method works better for finding relationships between organizations than for persons, particularly politicians.

Contributions.

- **1** The use of bills as a cornerstone relating political actors, allowing to:
 - Understand better the discovered relations.
 - Find fine-grained relationships which would otherwise be missed.
- 2 A method for combining parliamentary open data and news papers for PN generation.
- 3 An unsupervised method for automatically detecting relevant entities of a given topic from a corpus of documents given a set of seed entities.

- 1 A more rigorous evaluation and problem definition.
- 2 Improving the PN generation phase.
- 3 Generative models.
- 4 Use-case driven PN generation.
- 5 Time component.
- 6 Signed Social Network Analysis

Merci beacoup! Gràcies! Grazie! Mulţumesc!

Questions?

Understanding the representation of entities and documents.

- Roger B Bradford, Application of latent semantic indexing in generating graphs of terrorist networks, Intelligence and Security Informatics, Springer, 2006, pp. 674–675.
- Jesús Espinal-Enríquez, J Mario Siqueiros-García, Rodrigo García-Herrera, and Sergio Antonio Alcalá-Corona, A literature-based approach to a narco-network, Social Informatics, Springer, 2014, pp. 97–101.
- James H Fowler, Connecting the congress: A study of cosponsorship networks, Political Analysis 14 (2006), no. 4, 456-487.
- Justin H Kirkland, The relational determinants of legislative outcomes: Strong and weak ties between legislators, The Journal of Politics 73 (2011), no. 03, 887-898.

References II

- David Newman, Chaitanya Chemudugunta, Padhraic Smyth, and Mark Steyvers, *Analyzing entities and topics in news articles using statistical topic models*, Intelligence and Security Informatics, Springer, 2006, pp. 93–104.
- Bruno Pouliquen, Ralf Steinberger, and Clive Best, *Automatic detection of quotations in multilingual news*, Proceedings of Recent Advances in Natural Language Processing, 2007, pp. 487–492.

References III

- Hristo Tanev, Unsupervised learning of social networks from a multiple-source news corpus, MuLTISOuRcE, MuLTILINguAL INFORMATION ExTRAc-TION AND Summarization (2007), 33.
- Matt Thomas, Bo Pang, and Lillian Lee, Get out the vote: Determining support or opposition from congressional floor-debate transcripts, Proceedings of the 2006 conference on empirical methods in natural language processing, Association for Computational Linguistics, 2006, pp. 327–335.

Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella, *Kernel methods for relation extraction*, The Journal of Machine Learning Research **3** (2003), 1083–1106.