HiSpark-Pegasus 智能小车测试

目录

- 一、分模块测试
- •二、超声波测距模块 (HC-SR04)
- 三、红外寻迹模块 (TCRT5000)
- •四、L9110S电机驱动芯片
- 五、SG90舵机
- 六、循迹避障小车测试

文件	说明
robot_hcsr04.c	超声波测距样例
robot_l9110s.c	电机驱动样例
robot_sg90.c	舵机控制样例
robot_sg90_mid.c	舵机校准
robot_tcrt5000.c	红外传感器样例

一、分模块测试

- 1. 直接将robot文件夹拷贝到OpenHarmony源码applications/sample/wifi-iot/app目录下
- 2. 需要编译哪个样例,就将对应的文件的注释打开,将其他的文件注释掉

比如需要编译超声波样例,BUILD.gn文件修改为如下内容:

一、分模块测试

• 3. 修改app目录下的BUILD.gn文件

```
import("//build/lite/config/component/lite_component.gni")

lite_component("app") {
    features = [
        "robot:robot_demo"
    ]
}
```

二、超声波测距模块(HC-SR04)

- 超声波测距模块 (HC-SR04)
 - 采用I/O口TRIG触发测距,给至少10us的高电平信号
 - 模块自动发送8个40kHz的方波,并自动检测 是否有信号返回
 - 有信号返回时,通过I/O口ECHO输出一个高电平,高电平持续时间即为超声波从发射到返回的时间
 - 测试距离=(高电平时间×声速340m/s)/2
 - HC-SR04模块的典型测距范围为2cm-400cm

二、超声波测距模块 (HC-SR04)

根据HC-SR04模块的规格,主要电气参数应符合以下标准 1:

参数	标准值
工作电压	DC 5V
工作电流	15mA
工作频率	40kHz
最远测距	4m
最近测距	2cm
测量角度	15度
输入触发信号	10μs TTL脉冲
输出回响信号	TTL电平,与距离成比例

- 红外寻迹模块 (TCRT5000)
 - TCRT5000是一种红外反射式光电传感器模块,由一个红外发射管和一个红外接收管组成。它广泛应用于机器人循迹、避障、纸张检测等场景

• 主要特点:

- 工作电压: 3.3V-5V (推荐5V)
- 检测距离: 1mm-25mm (可通过电位器调节)
- 输出形式: 数字开关量(0和1), 部分型号带模拟输出
- •响应时间快,驱动能力强 (超过15mA)
- 采用LM393比较器,信号稳定

引脚定义:

引脚	功能	说明
VCC	电源正极	接3.3V或5V
GND	电源地	接系统GND
DO	数字输出	TTL电平信号
АО	模拟输出	部分模块有此引脚(1)6

- 工作原理
 - 发射阶段: 红外发射管持续发射特定波长 (通常为940nm) 的红外线
 - 反射检测
 - 当检测到白色或高反射率表面时,红外线被反射回来,接收管接收到强烈信号,模块输出低电平(DO=0),指示灯亮
 - 当检测到黑色或低反射率表面(如黑线)时,红外线被吸收,接收管信号弱或无信号,模块输出高电平(DO=1),指示灯灭

- •测试步骤
 - 上电后观察电源指示灯(红色)应常亮。
 - 在模块下方放置白色物体(距离2-10mm),输出指示灯(绿色)应亮起, DO输出低电平。
 - 更换为黑色物体或移开物体,输出指示灯应熄灭,DO输出高电平。
 - 旋转电位器可调节检测灵敏度(顺时针提高灵敏度)

四、L9110S电机驱动芯片

- L9110S电机驱动芯片
 - L9110S是一款广泛应用于小型直流电机驱动的双通道H桥集成电路芯片,由国内厂商设计生产,具有低功耗、高效率和小型化等特点
 - 引脚功能

引脚号	符号	功能描述	连接说明
1	OA	A路输出	接电机A端
2	VCC	电源正极	接2.5-12V电源
3	VCC	电源正极	可并联提高稳定性
4	ОВ	B路输出	接电机B端
5	GND	电源地	系统参考地
6	IA	A路输入	接MCU控制信号
7	IB	B路输入	接MCU控制信号
8	GND	电源地	系统参考地 3 9

四、L9110S电机驱动芯片

- 控制逻辑
- PWM调速说明:通过在IA或IB引脚输入PWM信号可实现电机调速, PWM频率建议在6-16kHz之间

L9110S每个通道的控制逻辑如下:		
IA/IB输入	OA/OB输出	电机状态
0	0	停止(刹车)
1	0	正转
0	1	反转
1	1	停止(浮空) 4 8

四、L9110S电机驱动芯片

- 基础功能测试步骤
 - 上电检查: 观察电源指示灯(如有)应亮起, 芯片无明显发热
 - 正转测试: IA=1, IB=0, 电机应正转
 - 反转测试: IA=0, IB=1, 电机应反转
 - 停止测试:IA=IB=0或1,电机应停止
- 调速功能测试步骤
 - 初始化PWM,频率设置为1-20kHz(推荐8kHz)
 - 逐步增加占空比(10%→100%), 观察电机转速变化

• SG90舵机

• SG90是一款微型伺服电机(舵机),因其小巧轻便(仅9克)、价格低廉且易于控制,广泛应用于机器人、航模、智能小车和自动化设备等领域。 SG90舵机通过PWM信号控制角度位置,具有闭环反馈系统,能够精确保持设定角度

• 主要特点

- 体积小巧:22.2×11.8×31mm(不同批次略有差异)
- 重量轻:约9克,适合对重量敏感的应用
- 控制简单:标准PWM信号控制,与主流微控制器兼容
- 性价比高: 价格低廉, 适合教育和小型项目
- 两种版本: 180度位置控制型和360度连续旋转型

• 技术参数

1. 机械参数

参数	规格	备注
尺寸	22.2×11.8×31mm	长×宽×高
重量	9g	不含线材
齿轮材质	塑料齿轮组	尼龙材质,耐磨性一般
输出轴类型	十字轴/圆轴	不同批次可能不同

2. 电气参数

参数	规格	备注
工作电压	3.0-6.0V	推荐4.8-5V
空载电流	10mA	静态电流
堵转电流	650-750mA	最大工作电流
控制信号	PWM方波	周期20ms(50Hz)
信号电平	3.3V/5V TTL	兼容大多数MCU

3. 性能参数

参数	规格	测试条件
扭矩	1.6-1.8kgf·cm	4.8V供电
响应速度	0.12-0.15秒/60°	4.8V无负载
旋转角度	0-180°	标准版本
死区	5μs	最小控制量
工作温度	-30°C ~ +60°C	-

•工作原理

- SG90舵机采用闭环控制系统,由直流电机、减速齿轮组、电位器和控制电路组成
- 控制信号输入: MCU产生PWM信号(周期20ms, 脉宽0.5-2.5ms)通过信号 线输入
- 信号比较: 内部电路将输入信号与电位器反馈的当前位置信号比较
- 电机驱动:根据误差方向驱动电机正转或反转
- 位置反馈: 通过齿轮组带动电位器旋转, 直到反馈信号与输入信号匹配
- 位置保持: 达到目标角度后, 电机停止并保持位置
- 角度控制公式:目标角度(°) = (PWM脉宽 0.5ms)/2ms × 180°

- •测试步骤
 - 上电后观察舵机是否有初始动作(标准180度版本会上电自检)
 - · 发送0.5ms脉宽PWM信号,检查是否转到0°位置
 - 发送1.5ms脉宽PWM信号,检查是否转到90°位置
 - 发送2.5ms脉宽PWM信号,检查是否转到180°位置
 - •测试中间角度(如45°、135°)的定位精度

六、循迹避障小车测试

• 1. 文件说明

文件	说明
ssd1306	ssd1306驱动代码
robot_control.c	智能小车主要控制代码
robot_hcsr04.c	智能小车超声波测距代码
robot_l9110s.c	智能小车电机控制代码
robot_sg90.c	智能小车舵机控制代码
ssd1306_test.c	智能小车OLED显示屏代码
trace_model.c	智能小车循迹功能代码

六、循迹避障小车测试

• 实验要求

- 小车能沿着地图黑线行驶一周,不偏离或使出黑线
- 途中遇到障碍物需停车,不得撞上障碍物;障碍物移除后,小车继续行驶
- 行驶到终点线时,需自动停车
- 在发车前,可以用按键设置车速
- OLED屏在小车行驶过程中实时显示车辆状态(前进、后退或停止)和速度