MNN. Firemed abers. com

## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

**International General Certificate of Secondary Education** 

## MARK SCHEME for the May/June 2014 series

## 0606 ADDITIONAL MATHEMATICS

**0606/21** Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | IGCSE – May/June 2014 | 0606     | 21    |

|       |                                                                                                     |                | 1                                                                                                                                           |
|-------|-----------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | $x^2 + x [> 0]$                                                                                     | M1             | expands and rearranges                                                                                                                      |
|       | critical values 0 and -1 soi                                                                        | <b>A1</b>      |                                                                                                                                             |
|       | -1 < x < 0                                                                                          | A1             | condone space, comma, "and" but not "or" Mark final answer.                                                                                 |
| 2     | $\frac{6}{(1+\sqrt{3})^2}$ or $6 = (a+b\sqrt{3})(1+\sqrt{3})^2$                                     | M1             | for dealing with the negative index (condone treating 6 as have negative index at this stage)                                               |
|       | $\frac{6}{4+2\sqrt{3}}$ or $6 = (a+b\sqrt{3})(4+2\sqrt{3})$                                         | M1             | for squaring                                                                                                                                |
|       | $\frac{6}{4 + 2\sqrt{3}} \times \frac{4 - 2\sqrt{3}}{4 - 2\sqrt{3}}$ AND attempting to multiply out | M1             | for rationalising or for obtaining a pair of simultaneous equations $4a + 6b = 6$ and                                                       |
|       | $6-3\sqrt{3}$ isw                                                                                   | <b>A1</b>      | 2a + 4b = 0                                                                                                                                 |
| 3 (i) | -2 0 4                                                                                              | B1<br>B1       | correct shape <i>x</i> intercepts marked or implied by tick marks, for example or seen nearby; condone <i>y</i> intercept omitted           |
| (ii)  | x = 1 (only) soi<br>$y = \pm 9$ (only)<br>0 < k < 9                                                 | B1<br>B1<br>B1 | can be implied by second <b>B1</b> or $k = \pm 9, +9$ or $-9$ or both; must be strict inequality in $k$ ; condone space, comma, "and", "or" |
| 4     | Attempt to find f(4) or f(1) or division to a                                                       | M1             | condone one error                                                                                                                           |
|       | remainder<br>128 + 16a + 4b + 12 = 0 or better<br>(16a + 4b = -140)                                 | A1             |                                                                                                                                             |
|       | 2 + a + b + 12 = -12 or better $(a + b = -26)$                                                      | <b>A1</b>      |                                                                                                                                             |
|       | Solves linear equations in a and b                                                                  | M1             |                                                                                                                                             |
|       | a = -3, b = -23                                                                                     | <b>A1</b>      | both                                                                                                                                        |

| Page 3 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | IGCSE – May/June 2014 | 0606     | 21    |

|   |         | ( , , , , , , , , , , , , , , , , , , ,                                                                                        |                |                                                                                                     |
|---|---------|--------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|
| 5 | (i)     | $2\left(x - \frac{1}{4}\right)^2 + \frac{47}{8}(5.875)$ isw                                                                    | B3,2,1,0       | one mark for each of $p$ , $q$ , $r$ correct; allow correct equivalent values. If ${\bf B0}$ , then |
|   |         |                                                                                                                                |                | SC2 for $2\left(x-\frac{1}{4}\right) + \frac{47}{8}$ , or                                           |
|   |         |                                                                                                                                |                | SC1 for correct values but incorrect format                                                         |
|   | (ii)    | $\frac{47}{8}$ is min value when $x = \frac{1}{4}$                                                                             | B1ft +         | strict <b>ft</b> their $\frac{47}{8}$ and their $\frac{1}{4}$ ; each                                |
|   |         | 8 4                                                                                                                            | B1ft           | value must be correctly attributed;                                                                 |
|   |         |                                                                                                                                |                | condone $y = \frac{47}{8}$ for <b>B1</b> , or                                                       |
|   |         |                                                                                                                                |                | $\left(\frac{1}{4}, \frac{47}{8}\right) \text{ for } \mathbf{B1B1}$                                 |
| 6 | (a)     | ${}^{8}C_{3} \times 3^{3} \times (\pm 2)^{5} \text{ or } 3^{8} \left[ {}^{8}C_{3} \left( \pm \frac{2}{3} \right)^{5} \right]$  | M1             | condone ${}^8C_5$ , $-2x^5$                                                                         |
|   |         | -48384                                                                                                                         | <b>A1</b>      | can be in expansion                                                                                 |
|   | (b) (i) | $1 + 12x + 60x^2$                                                                                                              | B2,1,0         | ignore additional terms. If <b>B0</b> , allow <b>M1</b> for 3 correct unsimplified terms            |
|   | (ii)    | Coefficient of x correct or correct <b>ft</b> $(12+a)$ soi<br>Coefficient of $x^2$ correct or correct <b>ft</b> $(60+12a)$ soi | B1ft<br>B1ft   | ft their $1 + 12x + 60x^2$<br>ft their $1 + 12x + 60x^2$                                            |
|   |         | $1.5 \times their(12+a) = their(60+12a)$ $-4$                                                                                  | M1<br>A1       | no $x$ or $x^2$                                                                                     |
| 7 | (i)     | $-\frac{1}{x^2} + \frac{1}{x^{1/2}}$                                                                                           | B1 + B1        | or equivalent with negative indices                                                                 |
|   | (ii)    | $-\frac{1}{x^2} + \frac{1}{x^{\frac{1}{2}}}$ $\frac{2}{x^3} - \frac{1}{2x^{\frac{3}{2}}}$                                      | B1ft +<br>B1ft | or equivalent with negative indices. Strict <b>ft</b>                                               |
|   | (iii)   | Attempting to solve their $\frac{dy}{dx} = 0$                                                                                  | M1             | must achieve $x = \dots$ (allow slips)                                                              |
|   |         | x = 1  y = 3                                                                                                                   | A1             | SC2 for (1, 3) stated, nfww                                                                         |
|   |         | Substitute their $x = 1$ into their $\frac{d^2 y}{dx^2}$ ; or examines                                                         | M1             | for using <i>their</i> value from $\frac{dy}{dx} = 0$                                               |
|   |         | $\frac{dy}{dx}$ or y on both sides of their $x = 1$                                                                            |                |                                                                                                     |
|   |         | Complete and correct determination of nature. If correct, minimum.                                                             | A1             | must be from correct work                                                                           |

| Page 4 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | IGCSE – May/June 2014 | 0606     | 21    |

| 8 (i)  | $2r + r\theta = 30$ giving $\theta = \frac{30 - 2r}{r}$                                               | M1        | correct arc formula + (2) <i>r</i> rearranged                                                                                                    |
|--------|-------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Substitute <i>their</i> expression for $\theta$ into $A = \frac{1}{2}r^2\theta$                       | M1        |                                                                                                                                                  |
|        | Correct simplification to $A = 15r - r^2$ AG                                                          | <b>A1</b> |                                                                                                                                                  |
| (ii)   | $ \begin{aligned} 15 - 2r &= 0 \\ r &= 7.5 \end{aligned} $                                            | M1<br>A1  | their $\frac{\mathrm{d}A}{\mathrm{d}r} = 0$                                                                                                      |
|        | 56.25                                                                                                 | A1        | 56.3 is <b>A0</b> unless 56.25 seen; if <b>M0</b> , then <b>SC2</b> for $A = 56.25$ with no working; or <b>SC1</b> for $r = 7.5$ with no working |
| 9 (i)  | (3, 5)                                                                                                | B1B1      | column vector B0B1                                                                                                                               |
| (ii)   | $m_{BD} \left( = \frac{6-4}{1-5} \right) = -\frac{1}{2}$                                              | M1        | can be implied by second M1                                                                                                                      |
|        | $m_{AC} \left( = -1 \div -\frac{1}{2} \right)$ seen or used                                           | M1        |                                                                                                                                                  |
|        | y-5=2(x-3) or $y=2x+c$ , $c=-1$ or better                                                             | <b>A1</b> |                                                                                                                                                  |
| (iii)  | p = 1 $q = 7$ [ $A(1, 1)$ $C(4, 7)$ ]<br>Method for finding area numerically                          | M1<br>M1  | could be in (ii) e.g.                                                                                                                            |
|        |                                                                                                       |           | $24 - \left(\frac{1}{2} \times 1 \times 3 + \frac{1}{2} \times 1 \times 3 + \frac{1}{2} \times 4\right)$ or shoelace method                      |
|        | 15                                                                                                    | <b>A1</b> | SC2 for 15 with no working                                                                                                                       |
| 10 (i) | $-2\sin 2x$ and $\frac{1}{3}\cos\left(\frac{x}{3}\right)$                                             | B1+B1     | each trig function correctly differentiated                                                                                                      |
|        | Attempt at product rule                                                                               | M1        | ()                                                                                                                                               |
|        | $\frac{1}{3}\cos 2x \cos\left(\frac{x}{3}\right) - 2\sin 2x \sin\left(\frac{x}{3}\right) \text{ isw}$ | A1ft      | $\mathbf{ft} \ k_1 \sin 2x \text{ and } k_2 \cos \left(\frac{x}{3}\right)$                                                                       |
| (ii)   | $\sec^2 x$ and $\frac{1}{x}$                                                                          | B1 + B1   | provided $k_1$ , $k_2$ are non-zero                                                                                                              |
|        | Attempt at quotient rule (with given quotient)                                                        | M1        | or rearrangement to correct product and attempt at product rule                                                                                  |
|        | $\frac{\left(\sec^2 x\right)(1+\ln x)-\frac{1}{x}(\tan x)}{(1+\ln x)^2}$ isw                          | <b>A1</b> | penalise poor bracketing if not recovered                                                                                                        |

| Page 5 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | IGCSE – May/June 2014 | 0606     | 21    |

| 11 (a) | $2^{x^2-5x} = 2^{-6}$ $x^2 - 5x + 6 = 0$ Correct method of solution of their 3 term quadratic $x = 2 \text{ or } x = 3$                                    | M1<br>M1<br>M1       | Or $(x^2 - 5x) \ln 2 = \ln \left(\frac{1}{64}\right) = -6 \ln 2$<br>their "6"      |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------|
| (b)    | Correct change of base to $\frac{\log_a 4}{\log_a 2a}$ $\frac{\log_a 4}{\log_a 2 + \log_a a}$ $\log_a a = 1 \text{ used soi}$ simplification to $\log_a 4$ | B1<br>M1<br>M1<br>A1 | base $a$ only at this stage but can recover at end for $\log 2a = \log 2 + \log a$ |

| Page 6 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | IGCSE – May/June 2014 | 0606     | 21    |

| 12 (i) | $f(3)$ $\frac{6}{4} \text{ oe}$                                                     | M1<br>A1  | or $fg(x) = \frac{2\sqrt{(x+1)}}{\sqrt{(x+1)+1}}$                            |
|--------|-------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------|
| (ii)   | $\frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1}+1}$                             | M1        | allow omission of 2() in                                                     |
|        | $\frac{2x}{x+1} + 1$                                                                |           | numerator or () + 1 in denominator, but not both.                            |
|        | A correct and valid step in simplification                                          | dM1       | e.g. multiplying numerator and denominator by $x + 1$ , or $2x$              |
|        |                                                                                     |           | simplifying $\frac{2x}{x+1} + 1$ to $\frac{2x+x+1}{x+1}$                     |
|        | Correctly simplified to $\frac{4x}{3x+1}$                                           | <b>A1</b> | x + 1                                                                        |
| (iii)  | Putting $y = g(x)$ , changing subject to $x$ and swopping $x$ and $y$ or vice versa | M1        | condone $x = y^2 - 1$ ; reasonable attempt at correct method                 |
|        | $g^{-1}(x) = x^2 - 1$                                                               | <b>A1</b> | condone $y = \dots$ , $f^{-1} = \dots$                                       |
|        | (Domain) $x > 0$<br>(Range) $g^{-1}(x) > -1$                                        | B1<br>B1  | condone $y > -1$ $f^{-1} > -1$                                               |
| (iv)   | y                                                                                   |           |                                                                              |
|        |                                                                                     | B1 + B1   | correct graphs; -1 need not be labelled but could be implied by 'one square' |
|        | -1 9 x                                                                              | B1        | idea of reflection or symmetry in line $y = x$ must be stated.               |