

Université d'Ottawa · University of Ottawa

Faculté de Génie - Faculty of Engineering ITI1100C Digital Systems I – Assignment 2

Due date: February 27th, 2023 11:59 PM

Professor: Mohammad Al Ridhawi (malridha@uottawa.ca)

- 1) Obtain the truth table of the following functions, and express each function in sum of minterms and product of maxterms form:
 - (a) (b + cd)(c + bd)

(b)
$$(cd + b'c + bd')(b + d)$$

(c) (c' + d)(b + c')

(d)
$$\overrightarrow{b}\overrightarrow{d}' + ac\overrightarrow{d}' + a\overrightarrow{b}'\overrightarrow{c} + a'\overrightarrow{c}'$$

2) Convert each of the following to the other canonical form:

(a)
$$F(x, y, z) = \sum (1, 3, 5)$$

(b)
$$F(A, B, C, D) = \prod (3, 5, 8, 11)$$

Write Boolean expressions and construct the truth tables describing the outputs of the circuits described by the logic diagrams in the following figures.

- 4) Simplify the following Boolean expressions to a minimum number of literals:
 - (a) ABC + A'B + ABC'

(b)
$$x'yz + xz$$

(c)
$$(x + y)'(x' + y')$$

(d)
$$xy + x(wz + wz')$$

(e)
$$(BC' + A'D)(AB' + CD')$$

(f)
$$(a' + c') (a + b' + c')$$

5) Find the complement of the following expressions:

(a)
$$xy' + x'y$$

(b)
$$(a + c) (a + b') (a' + b + c')$$
 (c) $z + z'(v'w + xy)$

(c)
$$z + z'(v'w + xy)$$

- 6) Given the Boolean functions F_1 and F_2 , show that:
 - (a) The Boolean function $E = F_1 + F_2$ contains the sum of the minterms of F_1 and F_2 .
 - (b) The Boolean function $G = F_1F_2$ contains only the minterms that are common to F_1 and F_2 .
- 7) Implement the Boolean function F = xy + x'y' + y'z
 - (a) With AND, OR, and inverter gates
 - (b) With OR and inverter gates
 - (c) With AND and inverter gates
 - (d) With NAND and inverter gates
 - (e) With NOR and inverter gates
- 8) Simplify the following Boolean functions T_1 and T_2 to a minimum number of literals:

A	В	C	<i>T</i> ₁	T ₂	
0	0	0	1	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	0	1	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	0	1	

- 9) Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.
- 10) Determine whether the following Boolean equation is true or false.

$$x'y' + x'z + x'z' = x'z' + y'z' + x'z$$