impor from def a y = for) retu	<pre>rt numpy as np rt matplotlib.pyplot as plt statsmodels.graphics.tsaplots import plot_acf, plot_pacf ar_model(p, phi, c, n, burnin=100): np.zeros(n + burnin) t in range(p, n + burnin): y[t] = c + np.dot(phi, y[t-p:t][::-1]) + np.random.normal() urn y[burnin:] ma_model(q, theta, c, n, burnin=100):</pre>)
y = e = for y retu	<pre>ma_model(q, theta, c, n, burnin=100): np.zeros(n + burnin) np.random.normal(size=n + burnin) t in range(q, n + burnin): y[t] = c + e[t] + np.dot(theta, e[t-q:t][::-1]) urn y[burnin:] andom.seed(101) rams=np.array([0.75,-0.25]) rams=np.array([0,0])</pre>	
ar=npma=npprintprint[1. [100]	<pre>p.r_[1,-arparams] p.r_[1,maparams] t(ar) t(ma) -0.75 0.25]</pre>	
y=arm	<pre>ma_generate_sample(ar,ma,2000) d.DataFrame(y,columns=['AR(2)']) lot()</pre>	— AR(2)
2 -		
-2 - -4 -		
y2=maplt.p	0 250 500 750 1000 1250 1500 175 r_model(2, [0.75,-0.25], 1, 2000) a_model(2, [0,0], 1, 2000) plot(y1) rtplotlib.lines.Line2D at 0x14cf03ef0>]	50 2000
6 -		
2 -		
	0 250 500 750 1000 1250 1500 175 plot(y2) htplotlib.lines.Line2D at 0x14cf85c70>]	50 2000
4 - 3 - 2 -		
1 - 0 - -1 -		
	0 250 500 750 1000 1250 1500 175 statsmodels.tsa.arima.model import ARIMA 11=ARIMA(y1,order=(2,0,0)).fit()	50 2000
print	SARIMAX Results	2000 -2873.91 5755.83 5778.23 5764.05
=====	0.7468 0.021 35.396 0.000 0.7 -0.2858 0.021 -13.401 0.000 -0.3	0.975
Ljung- Prob(Q Hetero Prob(H ======	oskedasticity (H): 0.97 Skew: H) (two-sided): 0.74 Kurtosis:	
print	Tue, 23 Apr 2024 AIC	
Sample Covari	e: 0 HQIC - 2000 iance Type: opg coef std err z P> z [0.0] 1.0009 0.022 45.855 0.000 0.9 -0.0240 0.023 -1.053 0.293 -0.0	5711.89 25 0.975 58 1.04 69 0.02
sigma2 ===== Ljung- Prob(Q Hetero Prob(H	2 1.0100 0.033 30.845 0.000 0.9	1.07-
[1] Co	by ariance matrix calculated using the outer product of grade ${\sf b}$ ${\sf 6}$ ARIMA function to fit the AR(p) models to the AR(2) time se	ries generate
: ar2_n : for p	<pre>model is given by the following equation: y(t) = 8 + 1.3y model=ar_model(2, [1.3,-0.7], 8, 2000) p in range(1,5): model=ARIMA(ar2_model,order=(p,0,0)).fit() print(model.summary()) SARIMAX Results</pre>	<i>t-1) - 0.7</i> y(t-2
Dep. V Model: Date: Time: Sample	Variable: ARIMA(1, 0, 0) Log Likelihood Tue, 23 Apr 2024 AIC 17:38:01 BIC HQIC - 2000 iance Type: y No. Observations: y No. Observations: Hogical ARIMA(1, 0, 0) Log Likelihood Hogical ARIMA(1, 0, 0) Log	200 -3550.86 7107.73 7124.53 7113.90
const ar.L1 sigma2 ===== Ljung- Prob(Q	0.7528 0.015 49.390 0.000 0.7 2 2.0392 0.069 29.663 0.000 1.9 	0.975
Prob(H ====== Warnin [1] Co	H) (two-sided): O.01 Kurtosis: O.02 Kurtosis: Oxariance matrix calculated using the outer product of grade standard s	lients (comple
Date: Time: Sample Covari	Tue, 23 Apr 2024 AIC	5698.08 5720.48 5706.30 25 0.975
ar.L1 ar.L2 sigma2 ===== Ljung- Prob(Q Hetero Prob(H	1.2896 0.016 80.299 0.000 1.2 -0.7121 0.016 -44.779 0.000 -0.7 2 1.0060 0.031 32.174 0.000 0.9	1.32 43 -0.68 45 1.06
=====	SARIMAX Results SARIMAX Results SARIMAD Results SARIMAN Results SARIMA	
Sample Covari	e: 0 HQIC - 2000 iance Type: opg coef std err z P> z [0.0 20.0024 0.055 364.813 0.000 19.8 1.3117 0.023 57.843 0.000 1.2	5708.44 25 0.975 295 20.11 67 1.35
Ljung- Prob(Q Hetero Prob(H	2 1.0051 0.031 32.169 0.000 0.9 	0.07 044 1.06 0.05
=====	SARIMAX Results SARIMAX Results Ariable: ARIMA(4, 0, 0) Log Likelihood Tue, 23 Apr 2024 AIC 17:38:01 BIC	
Covari	- 2000 iance Type: opg coef std err z P> z [0.0 20.0024 0.056 360.253 0.000 19.8 1.3113 0.023 57.872 0.000 1.2 -0.7427 0.037 -20.208 0.000 -0.8	94 20.11 67 1.35
ar.L4 sigma2 ===== Ljung- Prob(Q Hetero Prob(H	0.0126 0.023 0.555 0.579 -0.0 2 1.0049 0.031 32.139 0.000 0.9 	32 0.05 944 1.06
Repe	rigs: Evariance matrix calculated using the outer product of grade eating the analogous calculations for the MA(2) series gene 2) model is given by the following equation: $y(t) = e(t) - e(t-1)$ model=ma_model(2, [-1, 0.8], 0, 2000)	rated during t
===== Dep. V Model:	· · · · · · · · · · · · · · · · · · ·	200 -3288.73
Date: Time: Sample Covari	Tue, 23 Apr 2024 AIC	6583.466 6600.276 6589.63
Ljung- Prob(Q Hetero Prob(H	-0.5470 0.019 -29.414 0.000 -0.5 2 1.5694 0.051 30.798 0.000 1.4 	.69 1.66
=====	SARIMAX Results SARIMAX Results Ariable: ARIMA(0, 0, 2) Tue, 23 Apr 2024 AIC 17:38:02 SARIMAC pouter product of grade strength of the substitution of the subst	
Covari	- 2000 iance Type: opg coef std err z P> z [0.0 0.0088 0.017 0.510 0.610 -0.0 -0.9929 0.014 -73.021 0.000 -1.0 0.7820 0.014 56.717 0.000 0.7	0.975 0.975 0.04 025 0.04 020 -0.96 055 0.80
Ljung- Prob(Q Hetero Prob(H =====	-Box (L1) (Q): 0.00 Jarque-Bera (JB): Q): 0.99 Prob(JB): Diskedasticity (H): 1.00 Skew: H) (two-sided): 1.00 Kurtosis:	
===== Dep. V Model: Date: Time: Sample	SARIMAX Results	
const ma.L1 ma.L2 ma.L3 sigma2	coef std err z P> z [0.0 0.0088 0.017 0.510 0.610 -0.0 -0.9928 0.022 -45.229 0.000 -1.0 0.7818 0.025 30.817 0.000 0.7 0.0002 0.022 0.011 0.992 -0.0	0.975 0.975 0.04 036 0.04 032 0.04 0396 0.04
Prob(Q Hetero Prob(H =====	oskedasticity (H): 1.00 Skew: H) (two-sided): 1.00 Kurtosis:	========
Dep. V Model: Date: Time: Sample	Tue, 23 Apr 2024 AIC 17:38:02 BIC	200 -2791.13 5594.26 5627.86 5606.60
const ma.L1 ma.L2 ma.L3 ma.L4 sigma2	-0.9941 0.022 -45.316 0.000 -1.0 0.7993 0.031 25.496 0.000 0.7 -0.0217 0.031 -0.691 0.490 -0.0 0.0210 0.022 0.946 0.344 -0.0 0.9532 0.030 32.224 0.000 0.8	0.04 0.04 0.37 -0.95 0.88 0.88 0.04 0.02 0.06 0.95 1.01
Ljung- Prob(Q Hetero Prob(H	-Box (L1) (Q):	