语义等价与精化

定义与例子

```
Record eequiv (e1 e2: expr): Prop := {
    nrm_eequiv:
       [ e1 ].(nrm) == [ e2 ].(nrm);
    err_eequiv:
       [ e1 ].(err) == [ e2 ].(err);
}.
```

```
Record cequiv (c1 c2: com): Prop := {
  nrm_cequiv: [ c1 ].(nrm) == [ c2 ].(nrm);
  err_cequiv: [ c1 ].(err) == [ c2 ].(err);
  inf_cequiv: [ c1 ].(inf) == [ c2 ].(inf);
}.
```

精化的例子

```
Lemma const_plus_const_refine: forall n m: Z,
   EConst (n + m) <<= [[n + m]].</pre>
```

证明见 Coq 代码。

• 定理: c_1 ; $(c_2; c_3) \equiv (c_1; c_2)$; c_3 .

- 定理: c_1 ; $(c_2; c_3) \equiv (c_1; c_2)$; c_3 .
- 证明: 程序正常终止的情况

• 上面证明用到集合运算性质: $A \circ (B \circ C) = (A \circ B) \circ C$ 。

• 定理: if (e) then $\{c_1\}$ else $\{c_2\}$; $c_3 \equiv \text{if }(e)$ then $\{c_1; c_3\}$ else $\{c_2; c_3\}$.

- 定理: if (e) then $\{c_1\}$ else $\{c_2\}$; $c_3 \equiv$ if (e) then $\{c_1; c_3\}$ else $\{c_2; c_3\}$.
- 证明: 程序正常终止的情况
 - [if (e) then $\{c_1\}$ else $\{c_2\}$; c_3].nrm
 - $= (\mathsf{test_true}(\llbracket e \rrbracket) \circ \llbracket c_1 \rrbracket.\mathrm{nrm} \cup \mathsf{test_false}(\llbracket e \rrbracket) \circ \llbracket c_2 \rrbracket.\mathrm{nrm}) \circ \\ \llbracket c_3 \rrbracket.\mathrm{nrm}$
 - $= \qquad \mathsf{test_true}(\llbracket e \rrbracket) \circ \llbracket c_1 \rrbracket. \mathsf{nrm} \circ \llbracket c_3 \rrbracket. \mathsf{nrm} \cup \\ \mathsf{test_false}(\llbracket e \rrbracket) \circ \llbracket c_2 \rrbracket. \mathsf{nrm} \circ \llbracket c_3 \rrbracket. \mathsf{nrm}$
 - = $[if (e) then{c_1; c_3} else {c_2; c_3}].nrm$
- 上面证明用到集合运算性质: $(A \cup B) \circ C = (A \circ C) \cup (B \circ C)$.

语义等价于精化的性质

• 对于任意表达式 *E, E* ≡ *E*。

- 对于任意表达式 E, E ≡ E。
- 证明:
 - 求值成功的情况: [E].nrm = [E].nrm (集合相等的自反性);
 - 求值失败的情况: [E].err = [E].err (集合相等的自反性);

- 对于任意表达式 E, E ≡ E。
- 证明:
 - 求值成功的情况: [E].nrm = [E].nrm (集合相等的自反性);
 - 求值失败的情况: ||E||.err = ||E||.err (集合相等的自反性);
- 对于任意表达式 E_1 与 E_2 , 如果 $E_1 \equiv E_2$, 那么 $E_2 \equiv E_1$ 。

- 对于任意表达式 E, E ≡ E。
- 证明:
 - 求值成功的情况: [E].nrm = [E].nrm (集合相等的自反性);
 - 求值失败的情况: [E].err = [E].err (集合相等的自反性);
- 对于任意表达式 E_1 与 E_2 , 如果 $E_1 \equiv E_2$, 那么 $E_2 \equiv E_1$ 。
- 证明:
 - 求值成功的情况: 由 $E_1 \equiv E_2$ 这一假设可知 $[E_1]$.nrm = $[E_2]$.nrm, 故 $[E_2]$.nrm = $[E_1]$.nrm (集合相等的对称性)。
 - 求值失败的情况: 由 $E_1 \equiv E_2$ 这一假设可知 $[E_1]$.err = $[E_2]$.err, 故 $[E_2]$.err = $[E_1]$.err (集合相等的对称性)。

• 对于任意表达式 E_1 , E_2 与 E_3 , 如果 $E_1 \equiv E_2$ 且 $E_2 \equiv E_3$, 那么 $E_1 \equiv E_3$ 。

- 对于任意表达式 E_1 , E_2 与 E_3 , 如果 $E_1 \equiv E_2$ 且 $E_2 \equiv E_3$, 那么 $E_1 \equiv E_3$ 。
- 证明:
 - 求值成功的情况: 由 E₁ ≡ E₂ 与 E₂ ≡ E₃ 这两条假设可知 [E₁]].nrm = [E₂].nrm 并且 [E₂].nrm = [E₃].nrm, 故 [E₁].nrm = [E₃].nrm (集合相等的传递性)。
 - 求值失败的情况: 由 E₁ ≡ E₂ 与 E₂ ≡ E₃ 这两条假设可知 [[E₁]].err = [[E₂]].err 并且 [[E₂]].err = [[E₃]].err, 故 [[E₁]].err = [[E₃]].err (集合相等的传递性)。

- 对于任意表达式 E_1 , E_2 与 E_3 , 如果 $E_1 \equiv E_2$ 且 $E_2 \equiv E_3$, 那么 $E_1 \equiv E_3$ 。
- 证明:
 - 求值成功的情况: 由 E₁ = E₂ 与 E₂ = E₃ 这两条假设可知 [E₁].nrm = [E₂].nrm 并且 [E₂].nrm = [E₃].nrm, 故 [E₁].nrm = [E₃].nrm (集合相等的传递性)。
 - 求值失败的情况: 由 E₁ ≡ E₂ 与 E₂ ≡ E₃ 这两条假设可知 [[E₁]].err = [[E₂]].err 并且 [[E₂]].err = [[E₃]].err , 故 [[E₁]].err = [[E₃]].err (集合相等的传递性)。

请看 Coq 证明演示