

08/430035

Figure 1

3H-Thymidine Incorporation

Figure 2

08/430035

Figure 3

08/430035

3H-thymidine Incorporation

Figure 4

**Effect of mpl-ligand depleted APP
on human megakaryocytopoiesis**

Figure 5

08/430035

Figure 6

-10

1 GAATTCCCTGG ATATCCAGGT GACAATGATT TCTTCCTCAT CTTTCAACCT CACCTCTCCT CACTTAAGAA
 CTTAAGGACC TTATGGTCAA CTGTTACTAA AGGAGGAGTA GAAAGTTGGA GTGGAGAGGA GTAGATTCTT AACGAGGAGC ACCAGTACGA AGAGGATGGA

10 A R L T L S S P A P P A C D L R V L S K L L R D S H V L H S R L |

101 GCAAGGGCTAA CGCTGTCCAG CCCGGCTCCT CCTGCTTGAGT ACCTCCCGAGT CCTCAGTAAA CCTCAGTGT ACTCCCATGT CCTCACAGC AGACTGGTGA
 CGTTCCGATT GGCACAGGTC GGGCACGAACAC TGGAACGAC GGACCGAGGA GGACCGAGTC GGAGTCATT GAGGTACAA GGAAAGTACA GGAGGGTACA TCTGACCACT

20 200 CTCAGGAA GACACCATA CTCAGGAA GACACCATA CTCCTCTAA CTCCCTGACC CAATGACTAT
 CTTGAGGGTT GTAATAGGGG AAATAGGGC ATTGACCATT CTGGGGTAT GAGGGGTAT CTGGGTCTT CTGGGTAGT GAAGGGATT GAGGAACCTGG GTTACTGATA

301 GAACTCCCAA CATTATCCCC TTTATCCGCG TAACTGGTAA GACACCCATA CTCAGGAA GACACCATA CTCCTCTAA CTCCCTGACC CAATGACTAT
 CTTGAGGGTT GTAATAGGGG AAATAGGGC ATTGACCATT CTGGGGTAT GAGGGGTAT CTGGGTCTT CTGGGTAGT GAAGGGATT GAGGAACCTGG GTTACTGATA

Figure 7

1 GCGTCTCCCT ACCCATCTGC TCCCCAGGG GCTGCCCTGCT GTGCACTTGG CCTCTGGAGC CCGATAGAT TCCCTCACCC CCGATAGAT TCCCTCACCC TGGCCCGCCT
 CGAGAAGGA TGGTAGACG AGGGTCTCC CGACGGACGA CACGTGAACC CAGGACTCTG GGAGGGTG GCCTATCTA AGGAGTGGGA ACCGGGGGA

 101 TTGCCACC CTACTCTGCC CAGAAGCTTAAG AGAGCCTTAAG CGGCCCTCCAT GGCCCCAGGA AGGATTCAAG GGAGGGCCC CAAACAGGA GCCACGCCAG
 AACGGGGTGG GATGAGACGG TCTTCACGT TCTGGATT CCCTGGAGTA CCTAACGAGG AGCACCACTGA CGAACAGGT TGACGTTCCG CCTCTCCGGG GTTGTCCCT CGCTGGGTC

 201 CCAGACACCC CGGCCAGGAT GGAGCTGACT GAATTGCTCAT GCTGGTCTCC TCGTGGTCAT GCTTCCTCCTA ACTGCAAGG TAACGCTGTC CAGGCCGGCT CCTCCCTGGCT
 GGCTGTGGG GCCGGTCTTA CCTCGACTGA CCTAACGAGG AGCACCACTGA CGAACAGGT TGACGTTCCG ATTCGACAG GTCGGGCGA GGAGGGAGAA

 10 AspLeuAla gValLeuSer LysLeuLeuIgAspSerHi svallLeuHis SerArgLeu 1 10
 20 Me tGluLeuThr GluLeuLeuIeuValValMe tLeuLeuIeuThrIeuLeu euthrLeuSe rserProAla ProProAlaCys
 301 GTGACCTCCG AGTCCTCAGT AACTGCTTC TGACTCCCA TGACTCCTCAGT ACAGGACTG TGACTCCTCAGT CACCTGRCCT
 CACTCGAGGC TCAGGACTCA TTGAGCTCA CACTGAGGAG CACTGAGGT ACAGGAAGT ACAGGAAGT CGGTCAACGCT CGGTCAACGCT GGAAACGGAT GTGGACAGGA

 40 LeuProAla ValAspPheS erLeuGlyGln 40
 50 LeuProAla ValAspPheS erLeuGlyGln utrPlysThr GluMetGluG luthrLysAl 50 60
 60 LeuProAla ValAspPheS erLeuGlyGln utrPlysThr GluMetGluG luthrLysAl ergInCysPr ogluValHis ProLeuProt hrProValLeu
 70 LeuProAla ValAspPheS erLeuGlyGln utrPlysThr GluMetGluG luthrLysAl ergInCysPr ogluValHis ProLeuProt hrProValLeu
 80 ValMetAla1 IaArgGlyGln 80
 90 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 100 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 110 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 120 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 130 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 140 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 150 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 160 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 170 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 180 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 190 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu
 200 ValMetAla1 IaArgGlyGln nleuGlyPro ThrcysLeus erSerLeuIe uGlyGlnLeu SerglyGlnV alargLeuIe uLeuGlyAla LeuGlyInSerLeu

Figure 8a

210 IleProGly1 yLeuLeuAsn GluThrSerA rgSerLeuAs rglSerLeuAsnGlyLeuAsnGlyLeuAsn 230
 901 AGATTCTGG TCTGCTGAAC CAAACCTCCA GGTCCCTGGAA CCAAATCCCC GGATACTGA ACAGGATACA CGAAACTCTG AATGGAACCT CGTGGACTCTT
 TCTAAGGACCC AGACGACTTG GTTTAGGG CCTATGACT TGTCCTATGT CACCTTGAG CACCTTGAG 240
 250 ProGlyPro SerArgArgT hrLeuGlyAlI proAspIle SerSerGlyT hrSerAspT rGlySerLeu 250
 1001 TCTGGACCC TCACGAGGA CCTAGGAGC CCGGACATT TCCTCAGGAA CATCAGACAC AGGCTCCCTG CCACCCAAACC TCCAGCCTGG ATATTCTCCT
 AGGACCTGGG AGTGGCTCTG GGATCCTG AGGAGTCCTT GTAGTCCTG TCCGAGGGAC 260
 280 SerProPro isProProT rGlyGlnTyr ThrLeuProT roLeuProT othrLeuProT ThrProValV 260
 1101 TCCCCAACCC ATCCCTCATC TGAGACAGTAT ACGGCTCTCC CTCCTGCCAC CACCTTGCCC TCCAGCTCCA CCCCTCTGCTT CCTGACCCCT
 AGGGCTGGG TAGGAGGATG ACCTGTCATA TGCGAGAAGG GAGAAGGTGG GTGGAAACGGG AGGTGAGGTGGG 270
 310 AlaProT rProThrPro ThrSerProL euLeuAsnT rSerTyrThr HisSerGlnA smLeuSerGL 270
 1201 CTGCTCAAC GCCCCCCT ACCGCCCCCT TTCTAACAC ATCCCTACACC CACTCCAGA ATCTGTCTCA GGAAAGGGTAA GGTTTCTCAGA CACTGCCGAC
 GACGAGGTG CGGGTGGGA TGGTGGGAG AAGATTTGTG TAGGATGTGG GTGAGGGCT TAGACAGAGT CCTTCCATT CCAGAGTCT GTGACGGCT 280
 320 330
 1301 ATCAGGATAC TCTCATGTAC AGCTCCCTTC CCTGCAAGGGC GCCCCCTGGGA GACAACCTGGA CAAGATTCC TACTTTCTCC TGAAJACCCAA AGCCCTGGTA
 TAGTCGTAAAC AGAGTACATG TCGAGGGAAAG GGACGTCCCG CGGGGACCT CTGTTGACCT GTTGAAGTCT TGTTAAAGG ATGAAAAGGG ACTTTGGGTT TCGGGACCAT 290
 1401 AAAGGGATAC ACAGGACTGA AAAGGGAAATC ATTTCCTACT GTACATTATA AACCTTCAGA AGCTTATTCTT TAAAGCTATC AGGAATAACTC ATCAGAGGAG
 TTTCCCTATG TGTCCTGACT TTTCCTTAG TAAAAGTGA CATGTAATAT TTGGAAGTCT TGTTAAAGGA AAAGACACTA TTGAGACGTT TCGTTATGAG TAGTCCTGCT 300
 1501 CTAGCTCTT GGTCTATTT CTGCAGAAAT TTGCAACTCA CTGATTCTCT ACATGCTCTT TTCTGTGAT AACTCTGCA AGGCCTGGC TGGCCTGGCA
 GATCGAGAAA CCAGATAAAA GACGTCTTAA AACGTGAGT GACTAAGAGA TGACGAGA TGATGAAATTT TTGAGACGTT TTGAGACGTT TCGGGACCTG ACCGGACCTG 310
 1601 GTGAAACAGA GGGAGAGACT AACCTTGAGT CAGAAACAG AGAAAGGGTA ATTTCCTTGCCTT CTICAAATTIC AAGGCCCTCC AACGCCCTCC TCCCCCTTAC
 CAACTTGCTT CCCTCTGAG GTCTTGTCA TGGAAACTCA GTCTTGTCA TCTTCCAT TAAAGAAAC GAAGTTAAG TCCGGAAAGG TTGCGGGGGT AGGGAAATG 320
 1701 TATCATTCAGTC AGTCGGACTC TGATCCCATA TTCTTAACAG ATCTTACTC TTGAGAAATG ATAAGCTT CTCTCAGAAA AAAAAGCTT TCTCAGAAA AAAAAGCTT
 ATAGTAAGAG TCACCCCTGAG ACTAGGGTAT AAGAATTGTC TAGAAATGAG AACTCTTAC TTATTGAG GAGAGTCTT TTTTTTTT TTTTTTTT TTTTTTTT 330

Figure 8b

hmpl1	1 - - - - - M E L T E L L L V V M L L L T A R L T L S S P A P P A C D L R V L S K L L R D S H V L H
hepo	1 M G V H E C P A W L W L L S L L S L P L G L P V L G A P P R L I C D S R V L E R Y L L E A K E A E
hmpl1	45 S R L S Q C P E V H P L P T P V L L P A V D F S L G E W K T Q M E E T K A Q D I L G A V T L L L E G
hepo	51 N I T T G C A E H C S L N E N I T V P D T K V N F Y A W K R M E V G Q Q A V E V W Q G L A L L S E A
hmpl1	95 V M A A R G Q L G P T C L S . . S L L G Q L S G O V R L L . . L G A L Q S L L G T O . . . L P P Q G
hepo	101 V L R G Q A L L V N S S Q P W E P L Q L H V D K A V S G L R S L T T L L R A L G A Q K E A I S P P D
hmpl1	138 R T T A H K D P N A I F L S F O H L L R G K V R F L . . . M L V G G S T L C V R R A P P T T A V P S
hepo	151 A A S A A P L R T I T A D T F R K L F R V Y S N F L R G K L K L Y T G E A C R T G D R
hmpl1	185 R T S L V L T L N E L P N R T S G L L E T N F T A S A R T T G S G L L K W Q Q G F R A K I P G L L N
hmpl1	225 Q T S A S L D Q I P G Y L N R I H E L L N G T R G L F P G P S R R T L G A P D I S S G T S D T G S L
hmpl1	285 P P N L Q P G Y S P S P T H P P T G Q Y T L F P L P P T L P T P V V Q L H P L L P D P S A P T P T P
hmpl1	335 T S P L L N T S Y T H S Q N L S Q E G

Figure 9

Proliferation Assay

Figure 10