

스마트 가로등이란?

ICT 기술을 결합시킨 스마트도시 핵심 인프라

스마트 가로등 예측모델 분석 이유?

2014~

- 전국에 약 1.300개
- 서울의 시범사업

서울시 공문 🗸

다양한 스마트서비스 확산 장소 확보

독립변수 설정 가설

가설1 현재 스마트가로등이 설치된 입지는 최적의 위치다.

기설2 우리가 생각한 x는 스마트가로등 설치에 영향을 준다.

독립변수 설정

Y: 스마트폴 설치 여부

안전

- 어린이 보호구역
 - 화재 빈도
 - 범죄 발생 빈도
 - 인구밀도

편의 - 관광지

전국 스마트가로등 설치 위치

데이터셋 (+정규화)

5	caled_D	led_Dataset.head()'									
	시도명	시군구명	읍/면/동	설치유무	등록인구수	어린이보호구역개수	화재발생횟수	관광지개수	예상범죄비율		
0	강원도	강릉시	주문진읍	1.0	17085.0	8.0	0.0	1.0	0.000258		
1	강원도	강릉시	성산면	0.0	3393.0	3.0	0.0	1.0	0.000051		
2	강원도	강릉시	왕산면	0.0	1648.0	2.0	0.0	0.0	0.000025		
3	강원도	강릉시	구정면	0.0	4096.0	5.0	0.0	0.0	0.000062		
4	강원도	강릉시	강동면	1.0	4690.0	3.0	0.0	0.0	0.000071		

643 rows

독립변수 시각화 (시군구 기준)

삼관관계

'Dataset.correlation matrix'										
	설치유무	등록인구수	어린이보호구역개수	화재발생횟수	관광지개수	예 상범죄비율				
설치유무	1.000000	-0.094284	-0.006521	-0.096913	0.091346	0.231305				
등록인구수	-0.094284	1.000000	0.811589	0.788874	0.006554	0.235147				
어린이보호구역개수	-0.006521	0.811589	1.000000	0.741144	-0.014155	0.170189				
화재발생횟수	-0.096913	0.788874	0.741144	1.000000	-0.004895	0.080852				
관광지개수	0.091346	0.006554	-0.014155	-0.004895	1.000000	0.078242				
예상범죄비율	0.231305	0.235147	0.170189	0.080852	0.078242	1.000000				

Rf 정확도: 0.907 / Lr 정확도: 0.891

```
rf_model = RandomForestClassifier()
rf_model.fit(X_train, y_train)
rf_pred = rf_model.predict(X_test)
accuracy_rf = accuracy_score(y_test, rf_pred).round(3)
lr_model = LogisticRegression()
lr_model.fit(X_train,y_train)
lr_pred = lr_model.predict(X_test)
accuracy_lr = accuracy_score(y_test,lr_pred).round(3)
svc_model = SVC()
svc_model.fit(X_train,y_train)
svc_pred = svc_model.predict(X_test)
accuracy_svc = accuracy_score(y_test, svc_pred).round(3)
knc_model = KNeighborsClassifier()
knc_model.fit(X_train,y_train)
knc_pred = knc_model.predict(X_test)
accuracy_knc = accuracy_score(y_test,knc_pred).round(3)
print('rf 정확도:{}\nlr 정확도:{}\nsvc 정확도:{}\nknc 정확도:{}'.format(accuracy_rf,accuracy_lr,accuracy_svc,accuracy_knc))
 rf 정확도:0.907
 svc 정확도:0.884
 knc 정확도:0.876
```