Probabilistic models for neural data: From single neurons to population dynamics

NEUROBIO 316QC

Jan Drugowitsch
jan_drugowitsch@hms.harvard.edu

Session 6: The Laplace approximation & state space models

Today

Q&A about previous session

Paper discussion (~1h)

Laplace approximation & state space models (~30min)

Laplace approximation

State space models

General structure, and dependence/independence

Filtering (forward pass)

Laplace approximation

State space models

General structure, and dependence/independence

Filtering (forward pass)

The Laplace approximation

Likelihood p(z) non-Gaussian in z & potentially no conjugate prior (e.g., logistic regression)

Aim: approximate likelihood by Gaussian $q(z) = N(z|\mu, \Sigma)$; which mean μ and covariance Σ ?

Approach: observe that Gaussian mode at μ & log-probability is quadratic function

1. Match modes (optimization; e.g., gradient ascent)

$$\mu = \operatorname{argmax}_{\mathbf{z}} p(\mathbf{z}) \longrightarrow \nabla_{\mathbf{z}} \log p(\mathbf{z}) \Big|_{\mathbf{z} = \mu} = 0$$
 (as μ at maximum $p(\mathbf{z})$)

2. Second-order Taylor expand $\log p(z)$ around $z = \mu$ to find quadratic log-probability

$$\log p(\mathbf{z}) \approx \log p(\mathbf{z}) \Big|_{\mathbf{z} = \boldsymbol{\mu}} + \nabla_{\mathbf{z}} \log p(\mathbf{z}) \Big|_{\mathbf{z} = \boldsymbol{\mu}} (\mathbf{z} - \boldsymbol{\mu}) - \frac{1}{2} (\mathbf{z} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{z} - \boldsymbol{\mu})$$

$$\mathbf{A} = -\nabla \nabla_{\mathbf{z}} \log p(\mathbf{z}) \Big|_{\mathbf{z} = \boldsymbol{\mu}} \text{ (neg. Hessian)}$$

$$\log q(\mathbf{z}) = \log \mathsf{N}(\mathbf{z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{1}{2} (\mathbf{z} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{z} - \boldsymbol{\mu}) + \text{const.}$$

Other use of (neg.) Hessian: quantify posterior uncertainty (implicit Laplace approximation)

approximate posterior covariance by
$$\left(-\nabla\nabla_{\boldsymbol{\theta}}\log p(\boldsymbol{\theta}|\boldsymbol{X})\Big|_{\boldsymbol{\theta}=\operatorname{argmax}_{\boldsymbol{\theta}}p(\boldsymbol{\theta}|\boldsymbol{X})}\right)^{-1}$$

Illustrating the Laplace approximation

Good approximation

"Gaussian-like" distribution (light tail, ~symmetric)

Bad approximation

Heavily skewed, heavy tails

Laplace approximation

State space models

General structure, and dependence/independence

Filtering (forward pass)

Markov chain

Assumes $p(x_{n+1}|x_1,...,x_n) = p(x_{n+1}|x_n)$

Interpretation of x_n full characterization of a system's state, everything that needs to be known to predict future states

Examples Full-information board games (e.g., chess, backgammon, ...) Brownian motion

Violations x = location for movement with momentum (velocity missing) activity of individual neuron in network

Higher-order Markov chains 2nd order $p(x_{n+1}|x_1,...,x_n) = p(x_{n+1}|x_n,x_{n-1})$ 3rd order $p(x_{n+1}|x_1,...,x_n) = p(x_{n+1}|x_n,x_{n-1},x_{n-2})$

General structure of state space models

(Markovian) *transition model*: how latent states are assumed to evolve

Sequence of latent states, $z_1, z_2, ...$

Sequence of observations, $x_1, x_2, ...$

emission model:

how observations are generated from latent states

Special cases

Hidden Markov Model (HMM): Discrete latent states z_n ,

such that $p(z_n|z_{n-1})$ specified by transition matrix

Kalman filter: Continuous observations x_n and latent states z_n ,

with linear-Gaussian $p(z_n|z_{n-1})$ and $p(x_n|z_n)$

Dependence/independence in state space models

without latent state conditioning, observations are all dependent on each other

Conditional on z_n (i.e., hypothesizing or observing its value)

$$p(x_{1:N}|z_n) = p(x_{1:n-1}|z_n)p(x_n|z_n)p(x_{n+1:N}|z_n)$$

Filtering (forward pass)

"What is my estimate of the current latent state z_n , given all observations so far $x_{1:n}$ "

Assume we know $p(z_{n-1}|x_{1:n-1})$ (i.e., previous latent state given all observations until then)

Prediction step: predict next latent state z_n given observations $x_{1:n-1}$ (i.e., not including x_n)

$$p(z_n|x_{1:n-1}) = \sum_{z_{n-1}} p(z_n, z_{n-1}|x_{1:n-1}) = \sum_{z_{n-1}} \underbrace{p(z_n|z_{n-1}, x_{1:n-1})p(z_{n-1}|x_{1_n-1})}_{\text{transition model}} \underbrace{p(z_n|z_{n-1}, x_{1:n-1})p(z_{n-1}|x_{1_n-1})}_{\text{known from previous step}}$$

Observation step: include knowledge of observed x_n

Bayes' rule conditional independence
$$p(z_n|x_{1:n}) = p(z_n|x_n, x_{1:n-1}) \propto p(x_n|z_n, x_{1:n-1}) p(z_n|x_{1:n-1})$$
 emission model: "prior" computed in prediction step likelihood for observation x_n

Smoothing (forward & backward pass)

"What is my estimate of some past latent state z_n , given all observations $x_{1:N}$ "

$$\propto p(x_{n+1:N}|z_n)p(z_n|x_{1:n})$$

including information from "future" observations (the "backward" step in HMMs)

information from "past, current" observations (from filtering, "forward" step in HMMs)

Laplace approximation

State space models

General structure, and dependence/independence

Filtering (forward pass)

Summary

Laplace approximation (Gaussian): quadratic approximation of target log-probability

Markov chains assume that *x* completely characterizes the system's state

State space models assume latent Markov chain observed through noisy emissions

Special cases: HMMs and Kalman filter

Filtering (forward pass): best estimate given all past

Smoothing (forward & backward pass): best estimate given past & future

Until next week

Read paper and prepare presentation (see notes for Session 7)

Read statistical methods section (see notes for Session 7)

Next session

Q&A for previous session

Paper discussions (~1h)

Kernel methods & Gaussian Processes (~30min)