

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Proiect 1 – Dispozitive și circuite electronice Stabilizator de tensiune cu Element de Reglaj Serie

Stoian Cezar-Iulian

Grupa 435E

2020-2021

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Cuprins:

Tema proiectului și datele de proiectare	3
Schema bloc	4
Schema circuitului	5
Lista componentelor	6
Alegerea valorilor componentelor	7
Schema electrică de detaliu	10
Puncte statice de funcționare	11
Calculul puterilor pe rezistoare	15
Calculul puterilor pe tranzistoare	16
Amplificarea în buclă deschisă	17
Simulari	18
Stabilizare 9V / Stabilizare 9V (intrare 0-60V)	18
Stabilizare 18V / Stabilizare 18V (intrare 0-60V)	19
V _{ref} în funcție de V _{in} / V _{ref} în funcție de temperatură	20
Protecția la supracurent / Protecția la temperatură	21
Deriva termică	22
PSSR	23
PSF	24

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Să se proiecteze și realizeze un stabilizator de tensiune cu ERS având următoarele caracteristici (N = 18):

- Tensiunea de ieșire reglabilă în intervalul: 9-18V
- Element de reglaj serie
- Sarcina la ieșire: 900 Ω
- Deriva termică: < 2mV/°C
- Protecție la suprasarcină prin limitarea temperaturii tranzistorului element de reglaj serie la 100°C, si a curentului maxim la 0,4A
- Tensiune de intrare în intervalul: 32.4-36V
- Domeniul temperaturilor de funcționare: 0º -70ºC
- Amplificarea în tensiune minimă (în buclă deschisă) a amplificatorului de eroare: minim 200
- Semnalizarea prezenței tensiunilor de intrare/ieșire cu diodă de tip LED

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Schema bloc a circuitului:

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Schema circuitului:

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Lista componentelor:

 R_1 - R_{15} , R_L : rezistor (R_1 - R_3 , R_5 - R_9 , R_{12} - R_{13} , R_{15} : rezistor cu peliculă de carbon; R_4 , R_{14} : rezistor cu peliculă metalică; R_{10} : rezistor cu pelicula subțire)

T₁ - T₂: tranzistor PNP

 T_3 - T_{10} : tranzistor NPN

Z₁: diodă Zener

 P_1 : potențiometru

LED₁: diodă electroluminiscentă (culoare: albastru)

V₁: alimentare

Vout: ieșire

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Alegerea valorilor componentelor:

Vout
$$e [9...18] V$$
 $V_0 = V_2 \left(1 + \frac{R^2}{R^2}\right)$

Alleg Θ diode Zener or $V_2 = 6,2 V$
 $3 = 6,2 \left(1 + \frac{R^2}{R^2}\right)$
 $48 = 6,2 \left(1 + \frac{R^2}{R^2}\right)$
 $48 = 6,2 + 6,2 \frac{R^2}{R^2} \Rightarrow 6,2 \frac{R^2}{R^2} \Rightarrow 2,8 \Rightarrow \frac{R^2}{R^2} = \frac{2,8}{6,2}$
 $48 = 6,2 + 6,2 \frac{R^2}{R^2} \Rightarrow 8 \Rightarrow \frac{R^2}{R^2} \Rightarrow \frac{3}{6,2}$

Allog an potentionation de $S \times \Omega$
 $3 - S \Rightarrow S \Rightarrow S \Rightarrow 3,544 \Rightarrow S \Rightarrow R^2 = 3,545 \times \Omega$
 $3 - S \Rightarrow S \Rightarrow S \Rightarrow 3,544 \Rightarrow R^2 = 3,545 \times \Omega$
 $3 - S \Rightarrow S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow R \Rightarrow 3,545 \times \Omega$
 $3 - S \Rightarrow 3,545 \times \Omega$
 $3 - S$

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

LED:

Am ales R₁ atât, deoarece vreau să am un curent mai mic de 20mA.

$$V_{\text{in maxim}} = 36V => R_{1 \text{ minim}} = (V_{\text{in maxim}} - V_{\text{LED}})/20\text{mA} = (36V - 3V)/20\text{mA} = 1.65\text{k}\Omega$$

$$V_{LED} = 3V$$

Referința de tensiune:

$$V_z = 6.2V$$

Am ales R₂ atât, deoarece vreau să am un curent mai mare de 5mA pe dioda Zener (pentru a se deschide).

 $V_{in\ minim} = 32.4V => R_{2\ maxim} = (V_{in\ minim} - V_z)/5mA = (32.4V - 6.2V)/5mA = 5.25k\Omega$

Amplificatorul diferențial $(T_1 - T_4, R_5, R_6)$:

Este un amplificator diferențial cu emitori degenerați și oglindă de curent (T_1, T_2) . Tensiune de referință se regăsește pe baza lui T_3 , iar reacția negativă prin baza lui T_4 .

Rețeaua de reacție ($R_{12} - R_{15}$, P):

$$V_{out} = V_z [1 + ((R_{12} + R_{13}) + P)/(R_{14} + R_{15})]$$

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Circuitul de protecție la supracurent (T₁₀, R₁₁):

Am ales rezistența astfel încât atunci când avem I_c pe T_9 egal cu 0.4A, să avem $V_{BE\,T10}$ = 0.7V. Când curentul crește peste valoarea de 0.4A, tensiunea pe R_{11} o să devină suficientă (0.7V) ca să se deschidă T_{10} . Deoarece T_{10} este conectat de la baza la emitorul lui T_9 , deschiderea lui T_{10} va reduce $V_{BE\,T9}$. Curentul de ieșire nu va putea crește mai mult de o valoare predeterminată (0.4A), chiar dacă va exista un scurtcircuit.

$$0.7V/0.4A = 1.75k\Omega$$

Circuitul de protecție în temperatură $(T_7 - T_8, R_9 - R_{10})$:

Tensiunea V_{BE} la care tranzistorul T_8 poate să conducă un curent semnificativ scade cu $2mV/^0C$. Am ales valorile rezistoarelor R_9 și R_{10} (care alcătuiesc un divizor de tensiune), astfel încât tensiunea din emitorul lui T_7 să-l deschidă pe T_8 la 100^0C .

Rețeaua pentru curentul amplificatorului ($T_5 - T_6$, $R_3 - R_4$, $R_7 - R_8$):

Rezistoarele R_3 și R_4 dau curentul prin T_5 – T_6 și, astfel, prin amplificatorul diferențial.

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Schema electrică de detaliu:

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Puncte statice de funcționare:

P.S.F.

$$V_{im} = 36 \text{ V}$$
 $S_{closed} = P : 100 \%$
 $\begin{cases}
V_{R_1} + V_{LED} = V_{im} \\
V_{LED} = 3V
\end{cases}$
 $V_{R_1} = V_{im} - V_{LED} = 36 - 3 = 33V$
 $V_{R_2} = V_{V_{R_1}} = \frac{33 \text{ V}}{54 \text{ K}D} = 7,02 \text{ m/A}$
 $V_{R_2} = 62 \text{ V}$
 $V_{R_3} = \frac{V_{R_3}}{R_2} = \frac{23.8 \text{ V}}{54 \text{ K}D} = 5,95 \text{ m/A} > 5, \text{m/A}$
 $S_{LCC} = a_{rm} = R = a_{rm} + v_{rm} = 32.5 \text{ V} \Rightarrow 1_{R_3} = \frac{32.5 + 6.2}{5.1} = \frac{16.2 \text{ V}}{5.4 \text{ K}D} = 6,15 \text{ m/A} > 5, \text{m/A}$
 $P_{LD} = T_{R_1} = T_{L_1} \Rightarrow T_{L_2} \Rightarrow R_{R_3} = R_{R_4} = R_{R_5} = 0,6 \text{ V} \text{ (purition DUP)}$
 $V_{R_3} = 0.6 \text{ V} \text{ (partion NPN)} = N = 0.6 \text{ V} =$

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

$$V_{EBT_{2}} = 0.0V$$

$$V_{BCT_{3}} = V_{CET_{3}} - V_{BET_{3}} = 26.39 - 0.6 = 26.39 V$$

$$V_{R6} + V_{ECT_{3}} = V_{BCT_{3}} = V_{ECT_{2}} = V_{BCT_{3}} - V_{R6} = 26.39 - 0.46 = 25.93 V \ge V_{EBT_{2}} = 37.2 \text{ RAN}$$

$$V_{R6} + V_{ECT_{3}} + V_{CET_{4}} + V_{CET_{6}} + V_{R8} = V_{in} = 3V_{CET_{6}} = V_{in} - V_{R6} - V_{ECT_{2}} - V_{CET_{6}} - V_{R8} = 3$$

$$= 3V_{CET_{4}} = 36 - 0.46 - 25.93 - 4.67 - 0.93 = 4.01 V \ge V_{GET_{4}} = 37.4 \text{ RAN}$$

$$V_{BET_{4}} = 0.6V$$

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Calculul puterilor pe rezistoare:

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Calculul puterilor pe tranzistoare:

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Amplificarea în buclă deschisă:

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Simulari:

> Stabilizare 9V:

> Stabilizare 9V (intrare 0-60V):

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

> Stabilizare 18V:

> Stabilizare 18V (intrare 0-60V):

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

➤ V_{ref} în funcție de V_{in}:

➤ V_{ref} în funcție de temperatură:

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

> Protecția la supracurent:

> Protecția la temperatură:

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Deriva termică (este calculată pentru cel mai rău caz: setarea potențiometrului la 0 și intrarea minimă):

Deriva: $135.57 \text{mV}/70^{\circ}\text{C} = 1.93 \text{mV}/{^{\circ}\text{C}} < 2 \text{mV}/{^{\circ}\text{C}}$

Facultatea de Electronică, Telecomunicații și Tehnologia Informației > PSSR:

 $A_{VV} = 538.65 \text{uV} = 0.539 \text{mV} \Rightarrow A = A_{VV}/2 = 0.269 \text{mV}$ $20 \log(0.269 \text{mV}/100 \text{mV}) = -52 \text{dB}$

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

> PSF:

PSF:	
I_R1[8,3]	6.98mA
I_R10[2,0]	4.88mA
I_R11[13,Vout]	11.82mA
I_R12[Vout,14]	1.81mA
I_R13[14,20]	1.81mA
I_R14[16,7]	1.79mA
I_R15[7,0]	1.79mA
I_R2[8,1]	5.84mA
I_R3[19,15]	9.28mA
I_R4[8,19]	9.28mA
I_R5[8,18]	4.68mA
I_R6[8,17]	4.77mA
I_R7[5,0]	9.24mA
I_R8[6,0]	9.26mA
I_R9[11,2]	4.88mA
I_RL[Vout,0]	10.01mA
V_LED1[3,0]	3.18V
V_R1[8,3]	32.82V
V_R10[2,0]	619.24mV
V_R11[13,Vout]	20.68mV
V_R12[Vout,14]	84.96mV
V_R13[14,20]	2.71V
V_R14[16,7]	6.09V
V_R15[7,0]	121.82mV
V_R2[8,1]	29.8V
V_R3[19,15]	927.67mV
V_R4[8,19]	33.4V
V_R5[8,18]	467.61mV
V_R6[8,17]	477.03mV
V_R7[5,0]	924.38mV
V_R8[6,0]	926.29mV
V_R9[11,2]	4.88V
V_RL[Vout,0]	9.01V
V_V1[8,0]	36V
V_Z1[0,1]	-6.2V
Vout	9.01V
VP_1	6.2V
VP_10	5.5V
VP_11	5.5V
VP_12	9.79V
VP_13	9.03V
VP_14	8.92V
VP_15	1.68V
VP_16	6.21V
VP_17	35.52V
VP_18	35.53V
VP_19	2.6V
VP_2	619.24mV
VP_20	6.21V
VP_3	3.18V
VP_5	924.38mV
VP_6	926.29mV
VP_7	121.82mV
VP_8	36V
VP_9	34.84V
VP_Vout	9.01V
1000-1000	Empediate.