

MACHINING LEARNING

K-MEANS CLUSTERING (MACQUEEN 1967)

- K-means clustering is a type of unsupervised learning, which is used when you have unlabeled data (i.e., data without defined categories or groups).
- The goal of this algorithm is to find groups in the data, with the number of groups represented by the variable K.
- The algorithm works iteratively to assign each data point to one of K groups based on the features that are provided.
- Data points are clustered based on feature similarity.

K-MEANS CLUSTERING

- The results of the K-means clustering algorithm are:
 - The centroids of the K clusters, which can be used to label new data
 - Labels for the training data (each data point is assigned to a single cluster)

K-MEANS CLUSTERING

- Each centroid of a cluster is a collection of feature values which define the resulting groups.
- Examining the centroid feature weights can be used to qualitatively interpret what kind of group each cluster represents.

ALGORITHM

- The K-means clustering algorithm uses iterative refinement to produce a final result.
- Two inputs: the number of clusters K and the data set.
- The data set is a collection of features for each data point.
- The algorithms starts with initial estimates for the K centroids, which can either be randomly generated or randomly selected from the data set.

ALGORITHM

ALGORITHM

- The algorithm then iterates between two steps:
- 1. Data assignment step
- 2. Centroid update step

ALGORITHM 1. DATA ASSIGNMENT STEP:

- Each centroid defines one of the clusters.
- In this step, each data point is assigned to its nearest centroid, based on the Euclidean distance.

EUCLIDEAN DISTANCE

$$d_{ij} = \sqrt{\sum_{v=1}^{V} (x_{iv} - c_{jv})^2}$$

• where x_{iv} is the value of attribute v of the data i, and c_{jv} is the value of the attribute v of the centroid of the cluster j.

ALGORITHM 2. CENTROID UPDATE STEP:

 In this step, the centroids are recomputed. This is done by taking the mean of all data points assigned to that centroid's cluster.

EXAMPLE: DATA

Subject	Α	В
I	I	I
2	1.5	2
3	3	4
4	5	7
5	3.5	5
6	4.5	5
7	3.5	4.5

Iteration 1							
					Initial centri	Initial centriod	
Subject	Α	В	Distance C1	Distance C2		Α	В
1	1	1	0.00	7.21	Centroid 1	1.00	1.00
2	1.5	2	1.12	6.10	Centroid 2	5.00	7.00
3	3	4	3.61	3.61			
4	5	7	7.21	0.00			
5	3.5	5	4.72	2.50			
6	4.5	5	5.32	2.06			
7	3.5	4.5	4.30	2.92			
Re-compute	e centroids						
	Α	В					
Centroid 1	1.8	2.3					
Centroid 2	4.1	5.4					

Iteration 2							
Subject	Α	В	Distance C1	Distance C2		Α	В
1	1	1	1.57	5.38	Centroid 1	1.83	2.33
2	1.5	2	0.47	4.28	Centroid 2	4.13	5.38
3	3	4	2.03	1.78			
4	5	7	5.64	1.85			
5	3.5	5	3.14	0.73			
6	4.5	5	3.77	0.53			
7	3.5	4.5	2.73	1.08			
Re-compute	e centroids						
	Α	В					
Centroid 1	1.3	1.5					
Centroid 2	3.9	5.1					

Iteration 3							
Subject	Α	В	Distance C1	Distance C2		Α	В
1	1	1	0.56	5.02	Centroid 1	1.25	1.50
2	1.5	2	0.56	3.92	Centroid 2	3.90	5.10
3	3	4	3.05	1.42			
4	5	7	6.66	2.20			
5	3.5	5	4.16	0.41			
6	4.5	5	4.78	0.61			
7	3.5	4.5	3.75	0.72			
Re-compute	centroids						
	Α	В					
Centroid 1	1.25	1.50					
Centroid 2	3.90	5.10					
Stop							

SELECT THE BEST K: ELBOW POINT

- Plot graph Within-Cluster-Sum-of Squares (OR avg. within centroid distance) vs. K
- Select the best K from elbow point
 - It demarks significant drop-in rate of increase.

SELECT THE BEST K: SILHOUETTE COEFFICIENT

 Silhouette coefficient (Rousseeuw 1987) of observation i is calculated as:

$$s_i = \frac{(b_i - a_i)}{\max(a_i, b_i)}, \qquad -1 \le s_i \le 1$$

Where:

 a_i : **average distance** of observation i to all other observations within same cluster b_i : **minimum of average distance** of observation i to all other observations from all other clusters.

- K giving the highest average of Silhouette (S) is the best
 K.
- It applies to any cluster, not just k-means.

SELECT THE BEST K: SILHOUETTE

a(i) = avg. dissimilarity of object i to all other objects within the same cluster

d(i, 0) = avg. dissimilarity of object i to all objects in the **other cluster** 0

$$b(i) = \min_{O \neq A} d(i, O)$$

SELECT THE BEST K: SILHOUETTE

Euclidean distance

А		1	1.5	3	5	3.5	4.5	3.5
	Subject	1	2	3	4	5	6	7
1	1	0.00	0.25	4.00	16.00	6.25	12.25	6.25
1.5	2	0.25	0.00	2.25	12.25	4.00	9.00	4.00
3	3	4.00	2.25	0.00	4.00	0.25	2.25	0.25
5	4	16.00	12.25	4.00	0.00	2.25	0.25	2.25
3.5	5	6.25	4.00	0.25	2.25	0.00	1.00	0.00
4.5	6	12.25	9.00	2.25	0.25	1.00	0.00	1.00
3.5	7	6.25	4.00	0.25	2.25	0.00	1.00	0.00
В		1	2	4	7	5	5	4.5
	Subject	1	2	3	4	5	6	7
1	1	0.00	1.00	9.00	36.00	16.00	16.00	12.25
2	2	1.00	0.00	4.00	25.00	9.00	9.00	6.25
4	3	9.00	4.00	0.00	9.00	1.00	1.00	0.25
7	4	36.00	25.00	9.00	0.00	4.00	4.00	6.25
5	5	16.00	9.00	1.00	4.00	0.00	0.00	0.25
5	6	16.00	9.00	1.00	4.00	0.00	0.00	0.25
4.5	7	12.25	6.25	0.25	6.25	0.25	0.25	0.00
Euclidean								
	Subject	1	2	3	4	5	6	7
	1	0.00	1.12	3.61	7.21	4.72	5.32	4.30
	2	1.12	0.00	2.50	6.10	3.61	4.24	3.20
	3	3.61	2.50	0.00	3.61	1.12	1.80	0.71
	4	7.21	6.10	3.61	0.00	2.50	2.06	2.92
	5	4.72	3.61	1.12	2.50	0.00	1.00	0.50
	6	5.32	4.24	1.80	2.06	1.00	0.00	1.12
	7	4.30	3.20	0.71	2.92	0.50	1.12	0.00

SELECT THE BEST K: SILHOUETTE

Compute average of Silhouette (Example: K=2)

B 1	a(i)	d(i,2)							
B 1	a(i)	d(i 2)							
B 1	a(i)	d(i 2)							
1		u(1,∠)	b(i)	s(i)	Distance C1	Distance C2		Α	В
	1.12	5.03	5.03	0.78	0.56	5.02	Centroid 1	1.25	1.50
2	1.12	3.93	3.93	0.72	0.56	3.92	Centroid 2	3.90	5.10
4	1.81	3.05	3.05	0.41	3.05	1.42			
7	2.77	6.66	6.66	0.58	6.66	2.20			
5	1.28	4.16	4.16	0.69	4.16	0.41			
5	1.50	4.78	4.78	0.69	4.78	0.61			
4.5	1.31	3.75	3.75	0.65	3.75	0.72			
		AVG of Silho	uette	0.65					
В									
1.50									
5.10									
	7 5 5 4.5 B 1.50	7 2.77 5 1.28 5 1.50 4.5 1.31 B 1.50	7 2.77 6.66 5 1.28 4.16 5 1.50 4.78 4.5 1.31 3.75 AVG of Silho	7 2.77 6.66 6.66 5 1.28 4.16 4.16 5 1.50 4.78 4.78 4.5 1.31 3.75 3.75 AVG of Silhouette B 1.50	7 2.77 6.66 6.66 0.58 5 1.28 4.16 4.16 0.69 5 1.50 4.78 4.78 0.69 4.5 1.31 3.75 3.75 0.65 AVG of Silhouette 0.65 B 1.50	7 2.77 6.66 6.66 0.58 6.66 5 1.28 4.16 4.16 0.69 4.16 5 1.50 4.78 4.78 0.69 4.78 4.5 1.31 3.75 3.75 0.65 AVG of Silhouette 0.65	7 2.77 6.66 6.66 0.58 6.66 2.20 5 1.28 4.16 4.16 0.69 4.16 0.41 5 1.50 4.78 4.78 0.69 4.78 0.61 4.5 1.31 3.75 3.75 0.65 3.75 0.72 AVG of Silhouette B 1.50	7 2.77 6.66 6.66 0.58 6.66 2.20 5 1.28 4.16 4.16 0.69 4.16 0.41 5 1.50 4.78 4.78 0.69 4.78 0.61 4.5 1.31 3.75 3.75 0.65 3.75 0.72 AVG of Silhouette B 1.50	7 2.77 6.66 6.66 0.58 6.66 2.20 5 1.28 4.16 4.16 0.69 4.16 0.41 5 1.50 4.78 4.78 0.69 4.78 0.61 4.5 1.31 3.75 3.75 0.65 3.75 0.72 AVG of Silhouette B 1.50

EXE 1: IDENTIFY K FOR K-MEANS

PROS AND CONS

- Pros:
 - Easy to implement
 - Low complexity O(nkt), where t = # of iterations
- Con
 - Necessity of specifying k
 - Sensitive to noise and outlier data points
 - Sensitive to initial assignment of centroids
 - No guarantee to find a globally optimal solution

EXAMPLE: CLUSTER TYPES OF IRIS (//SAMPLES/DATA/IRIS)

ANALYSIS STEPS:

- Data Preparation & Cleaning
 - Deal with missing values
 - Normalization (always do it)
- 2. Data Visulization & Analysis
 - Select attributes
 - Select k
- 3. k-means Segmentation:
 - Clusters
- 4. Evaluation:
 - Average within centroid distance

HW8: APPLY K-MEANS ON IMDB, AND COMPARE THE IMDB_SCORE (IMDB_1) AND CLUSTERS

- movie_title : Title of the Movie
- duration: Duration in minutes
- director_name : Name of the Director of the Movie.
- director_facebook_likes: Number of likes of the Director on his Facebook Page.
- color: Film colorization. 'Black and White' or 'Color'
- genres: Film categorization like 'Animation', 'Comedy', 'Romance', 'Horror', 'Sci-Fi', 'Action', 'Family'
- actor_1_name: Primary actor starring in the movie
- actor_1_facebook_likes: Number of likes of the Actor_1 on his/her Facebook Page.
- actor_2_name: Other actor starring in the movie
- actor_2_facebook_likes: Number of likes of the Actor_2 on his/her Facebook Page.

- actor_3_name: Other actor starring in the movie
- actor_3_facebook_likes: Number of likes of the Actor_3 on his/her Facebook Page.
- num_critic_for_reviews : Number of critical reviews on imdb
- num_voted_users: Number of people who voted for the movie
- cast_total_facebook_likes: Total number of facebook likes of the entire cast of the movie.
- language: English, Arabic, Chinese, French, German, Danish, Italian, Japanese etc
- country: Country where the movie is produced.
- gross: Gross earnings of the movie in Dollars
- budget: Budget of the movie in Dollars
- title_year: The year in which the movie is released (1916:2016)
- imdb_score: IMDB Score of the movie on IMDB
- movie_facebook_likes: Number of Facebook likes in the movie page.

H8: SOLUTION STEPS

- 1. Data Preparation & Cleaning
 - Select attributes
 - Deal with missing values
 - Calculate imdb_1 by int(imdb_score) and change it to be ploynomial
 - Normalized attributes
- 2. Data Visulization & Analysis
 - Set Label: imdb_1
 - Select k
- k-means Segmentation:
 - Clusters
- 4. Evaluation:
 - Average within centroid distance

REFERENCES

- MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297).
- Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65.