Introduction to Computer Vision: HW 1

Jeong Min Lee

March 25, 2024

1 Camera Calibration

 \mathbf{a}

From the result of SVD,

$$\mathbf{AV} = \mathbf{U}\mathbf{\Sigma} \tag{1}$$

Since $\mathbf{V} \in \mathbf{O}(\mathbf{n})$, the column vector of \mathbf{V} , denoting $\mathbf{v_i}$, can form the basis of \mathbb{R}^n . That is, $\forall \mathbf{x} \in \mathbf{R}^n, \mathbf{x} = \sum_i a_i \mathbf{v_i}$, for $a_i \in \mathbb{R}$. This results in $\mathbf{Ap} = \sum_i a_i \mathbf{Av_i} = \sum_i a_i \sigma_i \mathbf{u_i}$. Thus,

$$\|\mathbf{A}\mathbf{v}\|^2 = \sum_i a_i^2 \sigma_i^2 \tag{2}$$

It is a convention to make the diagonal entries of Σ , σ_i , be ordered, that is, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$. Thus, to minimize equation 2, $a_1 = a_2 = \cdots = a_{r-1} = 0$ and $a_r = 1$, since \mathbf{p} is normalized. This implies $\mathbf{p} = \mathbf{v_n}$. (note that r = n since we assumed over-determined system.)

b

 \mathbf{c}

Before determining \mathbf{P} , I proved that $\mathbf{p} = \mathbf{A}^{\dagger}\mathbf{b}$. Consider SVD of $\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathbf{T}} \in \mathbb{R}^{m \times n}$, where $\mathbf{U} \in O(m), \boldsymbol{\Sigma} \in \mathbf{R}^{m \times n}, \mathbf{V} \in O(n)$.

$$\|\mathbf{A}\mathbf{p} - \mathbf{b}\|^2 = \|\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathbf{T}}\mathbf{p} - \mathbf{b}\|^2 = \|\mathbf{\Sigma}\mathbf{V}^{\mathbf{T}}\mathbf{p} - \mathbf{U}^{\mathbf{T}}\mathbf{b}\|(::\mathbf{U} \in \mathbf{O}(\mathbf{m}))$$
(3)

Let $V^T p = q$, $U^T b = r$ and rewrite the problem as follow.

Find
$$\underset{\mathbf{q}}{\operatorname{arg min}} \| \mathbf{\Sigma} \mathbf{q} - \mathbf{r} \|^2$$
 (4)

This problem can be solved as follow.

$$\|\mathbf{\Sigma}\mathbf{q} - \mathbf{r}\|^2 = \sum_{i=1}^r (\sigma_i q_i - r_i)^2 \text{ where } r = \min\{m, n\}$$
(5)

We can uniquely select the $q_i = r_i/\sigma_i$, for $i = 1, \dots, r$, or $\mathbf{q} = \mathbf{\Sigma^{-1}r}$, to minimize this expression. This implies $\mathbf{p} = \mathbf{V}\mathbf{\Sigma^{-1}U^Tb}$. Thus, proof is done, noting that $\mathbf{A}^{\dagger} = (\mathbf{A^T}\mathbf{A})^{-1}\mathbf{A^T} = (\mathbf{V}\mathbf{\Sigma^T}\mathbf{\Sigma}\mathbf{V^T})^{-1}\mathbf{\Sigma^T}\mathbf{U^T} = \mathbf{V}\mathbf{\Sigma^{-1}U^T}$