	Total I	No. of	Questions	:8]
--	---------	--------	------------------	-----

[5670] 698

SEAT No.:		
[Total	No. of Pages	:2

B.E. (Computer Engineering)

HIGH PERFORMANCE COMPUTING

(2015 Pattern) (Semester-I) (End Sem.) (410241)

<i>Time</i> :2 ¹ /	[Max. Marks	: 70
Instructi	ions to the candidates:	
1)	Answer Four questions Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.	
2)	Neat diagram must be drawn wherever necessary.	
<i>3</i>)	Figures to the right side indicate full marks.	
<i>4</i>)	Assume suitable data if necessary.	
5)	Justify your answer with an example wherever necessary.	
Q1) a)	Explain term of all-to-all broadcast on linear array, mesh & Hyperco	ube
	topologies.	[8]
b)	Explain mapping techniques for local balancing.	[6]
ŕ		
c)	Explain N-wide superscalar architecture	[6]
	OR	
Q2) a)	Explain the methods for containing Interaction overheads.	[8]
		2
b)	Write short note on circular shift on a mesh.	[6]
		5
c)	List application of parallel programming	[6]
	9. A.	
Q3) a)	Explain sources of overhead in parallel program.	[8]
Q3) u)	Explain sources of overhead in parallel program.	[o]
b)	Explain the performance Metrics for parallel system.	[8]
0)	2.1.p. a.m. the performance meetics for parameters govern	[o]
	OR	
Q4) a)	Write a note on minimum & cost optimal execution time.	[8]
~ / 3/		
b)	Explain parallel Matrix-vector multiplication algorithm with example.	[8]
,		
	26.	

P.T.O.

Q 5)	a)	What are the issues in sorting on parallel computers with example?	[8]
	b)	Modity DFS for parallel execution & analyze its complexing.	[8]
		OR	
Q6)	a)	Explain dijkastra algorithm in parallel formulations	[8]
	b)	Explain communication strategies for parallel BFS.	[8]
<i>Q7</i>)	a)	Draw & explain CUDA architecture in detail	[8]
	b)	List APIs for dealing with CUDA device memory.	[5]
	c)	Explain different kinds of CUDA memory.	[5]
		OR	
Q 8)	a)	Explai how the CUDA-C program executes at kernel level with example	e.[8]
	b)	How synchronization manage in CUDA with example.	[5]
	c)	Give five application of CUDA.	[5]
		kg.la.la.la.la.la.la.la.la.la.la.la.la.la.	94. 23.