Basic programming

- 1. for and while
- 2. if .. else and if .. else if .. else
- 3. continue and break

Computing integrals

- 1. Numeric integration: integral, integral2, integral3
- 2. Symbolic integration: syms and int

Exercise

- 1. Let us write a function which computes the integral $\iint_D f dA$ for rectangular domain $D = [a,b] \times [c,d]$
 - (a) First, let us compute the integral line-by-line. Use the example of $f(x,y) = x^2 + y^2$ and $D = [0,1] \times [0,1]$.
 - (b) Find the meshgrid of *D* by partitioning each side to 100 subdivisions.
 - (c) Using for twice, compute the sum $f(x_i, y_i) \Delta x_i \Delta y_i$ where x_i, y_i is the smallest value in the *i*-th subdivision of each interval and $\Delta x_i, \Delta y_i$ is the length of *i*-th subdivision.
 - (d) Check your result with integral2($@(x,y)x.^2+y.^2,0,1,0,1$).
- 2. Next, we compute $\iint_D f dA$ for the domain given by

$$D = \{a < x < b, g_1(x) < y < g_2(x)\}\$$

For example, let $f = 0(x,y) \times *y$, $g1 = 0(x) \times and g2 = 0(x) 2*x$.

- (a) Since $D \subset [0,1] \times [0,2]$, find the meshgrid of $[0,1] \times [0,2]$ by 100 subdivisions.
- (b) For each subdivision, add $f(x_i, y_j) \Delta x_i \Delta y_j$ to the sum only if $(x_i, y_j) \in D$ using if.
- (c) Compare your result with integral2(f,0,1,g1,g2).
- 3. Let $S = \{(x, y, z) | z = x^2 y^2, (x, y) \in [-1, 1] \times [-1, 1]\}.$
 - (a) Find the surface integral $\iint_S xydS$.
 - (b) Find the flux $\iint_S \mathbf{S} \cdot d\mathbf{S}$ of the vector field

$$\mathbf{F}(x,y,z) = (x+y,y+z,x+z).$$

- 4. Write a function inner_tri such that
 - inner_tri checks if a point p lies inside the triangle Δ or not.
 - The triangle Δ is bounded by three vertices represented by rows of 3×2 matrix A.
 - The point p is represented by 2×1 (or 1×2) array v
 - The function inner_tri(A,v) returns 1 if p lies in Δ , and 0 if not.