

Plan Chapitre 2 Internet Protocol

Partie I – Vue d'ensemble d'IP

- Rôle
- Modèle en sablier simple

Partie II – Adressage IPv4

Partie III - Routage

Partie IV – Format du paquet IP

• Construire le paquet IP

Partie V – Autour d'IP

- Modèle en sablier plus complet
- ICMP
- ARP

Une vision de la communication

- Les bases d'IP:
 - Un monde parfait!
- Et si ce n'était pas le cas?
 - Une réponse
 - o TANT PIS! Ce n'est pas mon problème!
- Qui s'en occupe?
 - En dessous:
 - Les technologies sont assez fiables
 - Au dessus:
 - Les applications font le nécessaire?
 - o L'ajout d'un protocole qui s'en occupe de bout en bout

LE RÔLE D'IP

- Objectifs:
 - Pouvoir communiquer entre tous les équipements d'Internet
 - Clients
 - Serveurs
 - A travers un ensemble de moyens de communication hétérogènes

Interconnexion

- Message IP (Unité protocolaire = N-PDU)
 - Un paquet = Datagramme IP

Header

Payload

COMMENT FAIRE?

- Comment?
 - Acheminer le message jusqu'au bon destinataire
 - Dans le bon réseau
 - Notion de hiérarchie
 - Utilisation d'un équipement pour faire le lien entre deux réseaux
- Equipment d'interconnexion = Routeur
 - Interconnexion entre plusieurs réseaux
 - Chaque paquet est traité indépendamment
 - Le routeur décide seul
- On parle de routage en mode paquet

INTERACTIONS

- Service rendu à l'application
 - wooclap1

INTERACTIONS

- Service rendu à l'application
 - Acheminer mes messages
- Service rendu par la technologie de communication
 - wooclap2

INTERACTIONS

- Service rendu à l'application
 - Acheminer mes messages
- Service rendu par la technologie de communication
 - Véhicule jusqu'à un équipement de ton réseau
- o Modèle en sablier simple

L'ADRESSAGE IPV4 RÔLE

- Notion d'adresse
 - Localisation et représentation d'une entité IP
 - o Unicité (gestion centralisée)
 - Attribution
 - Toute entité de niveau 3 IP doit avoir au moins une adresse pour pouvoir communiquer
 - Question de l'unicité?
 - o Adresse liée à une interface réseau
- o Dans un datagramme?
 - Source
 - Destination

L'ADRESSAGE IPV4 ATTRIBUTION ET HIERARCHIE

- Comment les attribuer?
 - Obtenir une adresse
 - Configurer une adresse
 - o Statique ou dynamique
 - Par qui?
 - o Notion d'interface IP / interface réseau

- Hiérarchie
 - Notion de réseau
 - Attribution liée à la hiérarchie
- Adresses « hors hiérarchie »
 - Privées vs publiques
 - o Non unicité des adresses privées
 - Adresses spécifiques

L'ADRESSAGE IPV4 LE FORMAT

- Format: 4 Octets soit 32 bits
 - Exemple: 125.255.12.1
 - 2³² adresses possibles = 4, 29 Milliards
- Deux parties distinctes
 - Partie réseau (network)
 - Partie machine (host)
 - Propose une forme de hiérarchie

Mais où est la limite?

L'ADRESSAGE IPV4 LES CLASSES

- Historiquement séparée en 3 classes principales
 - Séparer en réseaux de tailles différentes
 - A adresse réseau : 55.0.0.0

• B – adresse réseau : 155.221.0.0

• C – adresse réseau: 201.1.45.0

L'ADRESSAGE IPV4 Plage d'Adresses et pénurie

- Besoin
 - S'affranchir des classes trop contraignantes
 - o Limites de la hiérarchie en classe
 - o Classe A et B trop importante / Classe C trop petite
 - Gaspillage & Pénurie
 - Taille d'une adresse IP limitante (4 octets)
- Plages d'adresses
 - 1993 -Classless Inter-Domain Routing (CIDR)
 - Notion de plages d'adresses
 - Fin de la notion de la classe
 - Utilisation des masques pour agréger
- Changer IP?
 - IPv6
 - Adressage sur 16 octets (128 bits)
 - Notion de hiérarchie innée
- Briser les règles?
 - o Adressage privé et traduction d'adresses (NAT)

L'ADRESSAGE IPV4 LA NOTION DE MASQUE

Besoin

Avoir des plages d'adresses flexibles

• Comment? le masque

- Permet de différencier la partie réseau de la partie machine en appliquant:
 - o Un & binaire avec le masque pour obtenir l'adresse réseau
 - o Un & binaire avec le !(masque) pour obtenir l'adresse machine
- Le masque est une adresse IPv4 avec
 - o Tous les bits à 1 pour la partie réseau
 - o Tous les bits à 0 pour la partie hôte
- Autre notation: le préfixe
 - = /<nombre de bits du réseau>

L'ADRESSAGE IPV4 ADRESSES SPÉCIFIQUES

o Adresses spécifiques d'un réseau

- Bits machines à 0 → adresse réservée au réseau
- Bits machines à $1 \rightarrow adresse de diffusion du réseau$
- 0.0.0.0
 - Adresse illégale en destination
 - Signifie sur une machine
 - toute interface
 - o le « par défaut »
- 255.255.255.255
 - Adresse de diffusion sur Internet
- 127.0.0.1
 - Adresse de rebouclage (loopback)

L'ADRESSAGE IPV4 ADRESSES PRIVÉES

- Non routables sur Internet
 - Non unicité
 - Usage à l'origine local ou expérimental
- Les plages d'adresses
 - 10.0.0.0
 - 172.16.0.0 172.31.0.0
 - 192.168.0.0 192.168.255.0
- o wooclap5

L'ADRESSAGE IPV4

DÉCOUPAGE D'UNE PLAGE EN SOUS-RÉSEAUX WOOCLAP6

LE ROUTAGE IP OBJECTIF ET DÉFINITION

- Objectif:
 - Acheminer les paquets d'un point A à B à travers Internet
 - Service au cœur d'IP
- Comment?
 - Trouver les chemins vers toute entité d'Internet
 - → algorithme de routage (pas le rôle d'IP)
 - Aiguillage et relayage du datagramme sur une entité de niveau 3
 - \rightarrow routage IP

LE ROUTAGE IP PRINCIPE

- Qui fait du routage?
 - Machine source ou destination
 - Routeur
- Routeur IP
 - Interconnecte au moins deux réseaux différents
 - Appartient à différents réseaux
 - o Présente plusieurs interfaces IP
 - Attention c'est aussi possible pour une machine non routeur!
 - Prend en charge des messages dont il n'est ni la source ni la destination
 - o Différence avec le fonctionnement classique d'une machine
 - Mode « forwarding »

Illustration du principe

3.3 – LE ROUTAGE IP LES INFORMATIONS DE ROUTAGE

- Format
 - Un chemin = une route
 - Routes regroupées en un table de routage
- Illustration du fonctionnement d'une table de routage
 - Focus sur les intérêts d'une bonne hiérarchie

- Comment obtenir les routes?
 - Ce n'est pas le problème d'IP

3.3 – LE ROUTAGE IP ILLUSTRATION

Table de routage

145.20.45.6/24

145.20.46.18/24

Le format des messages Vue d'ensemble

Le format des messages Construire l'en-tête

Source IP address

Destination IP address

Vue d'ensemble – Transport

Application

Transport

Le format des messages Construire l'en-tête - Protocol

Protocol

Source IP address

Destination IP address

Le format des messages Construire l'en-tête – En-tête erronée?

	Protocol	Header checksum								
Source IP address										
Destination IP address										

Le format des messages Construire l'en-tête - Protocol

00 01 02 03	04 05 06 07	08 09 10 11 12 13 14 15	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Version	IHL		Total Length

TTL	Protocol	Header checksum								
Source IP address										
Destination IP address										

$\underline{\mathbf{M}}$ AXIMUM $\underline{\mathbf{T}}$ RANSMISSION $\underline{\mathbf{U}}$ NIT

Le format des messages Construire l'en-tête - fragmentation

00 01 02 03	04 05	06	07	08 09	10	11 12	2 13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Version	II	HL										Total Length													
Identification										R DFMF Fragment offset															
1	TTL Protocol									Header checksum															
Source IP address																									
Destination IP address																									

Le format des messages Construire l'en-tête - ToS

00 01 02 03	04 05	06	07	08 09	10	11	12 1:	3 14	15	16	17	18	19	20 2	21	22	23	24	25	26	27	28	29	30	31
Version	ı	HL		ToS							Total Length														
	Identification									R DFMF Fragment offset															
Т	TTL Protocol									Header checksum															
Source IP address																									
Destination IP address																									

Modèle ip

capsule vidéo – modèle plus complet

ICMP

Plan de contrôle d'Internet?

- Internet Control Message Procotol
 - Internet
 - Service Best Effort
 - Pas de garanties
 - Pas de chemin fixe
 - o Pas de délai maximum
 - Pas de fiabilité
 - Control
 - Configuration?
 - o Mise en place d'un chemin?
 - Vérification des ressources?
 - Vérification du bon acheminement des données?
 - Ambiguïté
 - IP or not IP?
 - Principe

ICMP GÉNÉRALITÉS

- o RFC 792
 - Signalisation au niveau IP
 - Véhiculé par IP
- Utilisations
 - Test du réseau
 - Echo request/reply (ping)
 - Timestamp request/reply
 - Avertissements
 - Destination unreachable
 - Time Excedeed
- Obsolescence
 - Configuration
 - Redirection...

$\underline{\mathbf{A}}$ DDRESS $\underline{\mathbf{R}}$ ESOLUTION $\underline{\mathbf{P}}$ ROTOCOL

- o RFC 826
- Objectif:

Correspondance dynamique entre une adresse IP et une adresse MAC

- Comment?
 - Des messages
 - ARP Request
 - ARP Reply
 - Un Cache
 - Temporisation
 - Possibilité de proxy

BILAN SUR IP

- Nature Best Effort
 - Fait au plus simple
 - Réponse commune à un problème = détruire le message
- o Modèle de communication en couches
 - Un seul protocole pour le réseau IP
 - Modèle en sablier

• Rôle:

• Acheminer des messages dénommés datagramme d'un point A à B d'Internet

Comment

- Adressage hiérarchique
- Routage IP
- Demande peu aux technologies sous-jaccentes

