

1. The independent bounded differences inequality

[Theorem 3.1] Let $I = (X_1, \dots, X_n)$ be a family of independent random variables with X_k taking values in A_k for each k. Suppose that the real-valued function f defined on $T(X_k) = f(X_k) = C_k$

whenever \vec{x} and \vec{x}' differ only in the k-th coordinate. Let $\mu = E[f(\mathbf{I})]$, then for any $t \ge 0$, $P_r(f(\mathbf{I}) - \mu \ge t) \le e^{-2t^2/\sum c_k^2}$

If we apply it to -f we obtain $Pr(f(\mathbf{I})-\mu \leq -t) \leq e^{-2t^2/\sum C_k^2}$

and we get the 'two-sided' inequlity $Pr(|f(x)-\mu| \ge 1) \le 2e^{-2t^2/\sum C_k^2}$

Note: ① If we let $A_{k=10.15}$ and $f(\bar{x}) = \sum x_k$, we obtain Th2.1 ② If A_k is a bounded set, we obtain Th2.5 We don't give the proof of Th. 3.1. One application is given:

[Random Graphs], we may take A_k as a set of edges in a graph. Grip has vertices $1, \dots, n$ and the possible edges appear independently with prob. p.

[Lemma 3.2] Let (A_1, \dots, A_m) be a partition of the edge set of the complete graph K_n into m blocks; suppose that the graph function f s.t. $|f(G)-f(G')| \leq |$ whenever the symmetric difference $E(G)\Delta E(G')$ of the edge-sets is contained

In a single block Ak. Then the r.v. $1=J(\Omega_{n,p})$ such that $P_r(Y-E(Y) \ge t) \le e^{-2t^2/m}$ for $t \ge 0$.

Note: Lemma 3.2 follows directly from Theorem 3.1 with Ck=1.

2. Extensions.

Let
$$I = (I_1, ..., I_n)$$
, if $E(I) = 0$ and $0 \le I \le b$,

$$Vor(I) = E(I^2) = E(I(I-a)) \le E(b(I-a))$$

$$= |ab| \le \frac{1}{4}(b-a)^2 \quad (3.13)$$

Let $x_i \in A_i$ for $i = 1, \dots, k-1$, and let B denote the event that $x_i = x_i$ for each $i = 1, \dots, k-1$. Let $r.v. P(Y) = P(x_k|B)$

For x e Ak , let

g(x) = E(f(x)|B, xk = x) - E(f(x)|B)

If I_k independent then rewrite g(x) as $E(f(x_1,...,x_{k-1},X,I_{k+1},...,I_n))-E(f(x_1,...,x_{k-1},I_k,...,I_n))$. Observe that E(g(Y))=0.

Let $dev^+(x_1,...,x_{k-1})$ be the positive deviation of g(Y) as $dev^+(x_1,...,x_{k-1}) = \sup\{g(x) : x \in A_k \}$

Similarily, let $dev(x_1,...,x_{k-1}) = sup\{|g(x)|: x \in A_k\}.$

If denote E(f(X)) by μ , then $|f(\overline{x}) - \mu| \leq \sum dev(x_1, \dots, x_{k-1})$

Let Υ an (x_1, \dots, x_{r-1}) denote the range of $g(\Upsilon)$ as Υ an $(x_1, \dots, x_{r-r}) = \sup_{x \in \Gamma} g(x) - g(y) | x, y \in A_F$

Also, denote the variance of $g(\gamma)$ by $var(x_1,...,x_{r-1})$

For XETTAR, let

$$R^{2}(\vec{x}) = \sum_{k=1}^{n} (ran(x_{1}, ..., x_{k-1}))^{-1}$$

$$\hat{r}^{2} = \sup_{k=1}^{n} R^{2}(\vec{x})$$

Similarily, let

$$\sqrt{(\vec{x})} = \frac{n}{k-1} \text{ Var}(x_1, \dots, x_{k-1})$$

$$\vec{v} = \sup_{x \in \mathbb{R}} \sqrt{(\vec{x})}$$

Observe that $V(\vec{x}) \leq R^2(\vec{x})/4$ for each \vec{x} by (3.15), and so $\hat{v} \leq \hat{r}^2/4$.

Finally, let max dev⁺ be the maximum of all the positive deviation values dev (x_1, \dots, x_{k-1}) over all K and x_i .

Similar to denote max dev.

A extension of Th. 3.1

[Th 3.7] Let $X=(X_1,\cdots,X_n)$ with X_k taking values in A_k , and let f be a bounded real-valued function defined on TA_k . Let μ denote the mean of f(X), and let \hat{r}^2 denote the max sum of squared ranges. Then for any t>0,

$$\Pr(f(\mathbf{X}) - \mu \geq t) \leq e^{-2t^2/\hat{r}^2}$$

More generally, let B be any 'bad' subset of TA_k s.t. $R^2(\frac{1}{2}) \leq r^2$ for $\frac{1}{2} \notin B$. Then

$$Pr(f(\mathbf{I}) - \mu \geqslant t) \leq e^{-2t^2/r^2} + Pr(\mathbf{I} \in B)$$

The next theorem extends the Bernstein theorem.

[Th 3.8] Let $X = (X_1, \dots, X_n)$ be a family of r.v. with X_k taking values in a set A_k . f defined on X_k . Let y = E(f(X)), Let $y = \max_{k} dev^{\dagger}$, $\hat{v} = \max_{k} snm \cdot f$ variance,

both of which we assume to be finite. Then for any two $Pr(f(X)-\mu>t) \in e^{-\frac{t^2}{2\hat{V}(1+(bt/3\hat{V}))}}$

3. Martingales.

[Martingales] Fost, son of of fields in 牙. 五o, 五,...

Colled Martingale if E(IKH|Fik) = Ik,

[martingale difference sequence] $E(X_{k+1}|\mathcal{F}_{k})=0$.

Note: From a martingale Io, I,..., we obtain a martingale difference sequence by setting $Y_k = X_k - X_{k-1}$ The Hoeffding - Azuma Inequality

[Theorem 3.107 Let C_1, \dots, C_n be constants and let Y_1, \dots, Y_n be a martingale difference sequence with $|Y_k| \le C_k$. Then for any $t \ge 0$, $\Pr(|\sum Y_k| \ge t) \le 2e^{-t^2/2\sum C_k^2}$.

An extension is Th3,13.

[Th 3.13] Let Y_1, \dots, Y_N be MDS with $\alpha_k \in Y_k \in b_k$. Then for any 4>0 $P_r(|\Sigma Y_k| > t) \leq 2e^{-2t^2/\Sigma(b_k-\alpha_k)^2}$