RULE 60

SEND and TOW	NSEND and CREV	W LLP		Atty. Docket	No. 1395	2A-005	321		٥
Embarcadero Center	, 8th Floor			"Express Mai	il" Label l	No. EH	314450612US		40
Fancisco, CA 9411 467-9600	1-3834			Date of Depo					ň =
STANT COMMISS	SIONER FOR PAT	ENTS		I hereby certi	fy that thi	s is bein	g deposited wi	ith the Unit	ted States
*** PATENT APPLIC							Post Office to		
Washington, D.C. 2023	1			under 37 CFF	R 1.10 on	the date	indicated abo	ove and is a	addressed
				to: Assistant	Commissi	oner for	Patents, Wash	hington, D.	C. 20231
Sir:									
This is a request under 37		g a		Vià	۸.)	1-0			
[] Continuation [X] Di		Elad Irana 7 1006	=	By Um	14 L	JOPE	en_		
of application No. <u>08/47</u> of (list each inventor)And		filed June 7, 1995		, a D. Kindevog	<u>_1</u>	•			
or (list each inventor) And	irzej Z. Siedziewski	, Lillian A. Den an	u wayii	C. Kiliusvogo	<u>C1</u>				
for METHODS OF PROI	DUCING SECRETE	D RECEPTOR AN	ALOGS	AND BIOLO	GICALLY	ACTI	VE DIMERIZI	ED POLYI	EPTIDE
FUSIONS	DOCATO BEGIANTE	D RECEI TORTAL							
1 0 0 1 0 1 0 1	A			- 1 - 12100					
The application papers F	LED HEREWITH	(specification, clai	ms, orig	ginally filed dra	awing(s) a	and oath	or declaration	n) are a tru	e copy of
the prior application.									
	pecification by inser	rting before the firs	t line the	e sentence:					
This is a [] Con	ntinuation [X] Div	ision of application	1 No. <u>0</u>	8/477,329, file	d June 7	, 1995	which is a co	ntinuation	of USSN
08/180,195, filed J	anuary 11, 1994, iss	sued as U.S. Patent	No. 5,5	67,584; which	is a file w	rapper	continuation of	f USSN 07	<u>/634,510,</u>
filed December 27	, 1990; which is a	continuation-in-pa	rt of US	SSN 07/347,29	1, filed	May 2,	1989, issued	as U.S. P	atent No.
	s a continuation-in-		16,877, :	<u>filed January 2</u>	2, 1988, i	now aba	indoned.	,	
	hich is incorporated	•							
	ndment is enclosed.								
[X] Formal drawings a									
	sclosure Statement u	inder 37 CFR 1.97	is enclo	sea.					
[X] Substitute Power o	f Attorney	- 4 27 CED 10	1 27 CT	D 1 27 F 1 to a	malagad a	- f] wo	r filed in the o	hove identif	ried narent
[] A verified statement application.	to establish status u	nder 3/ CFR 1.9 an	a 3/ CF	K 1.2/ [] IS e	nciosea, o	ı į j wa	s med in the a	bove identifi	icu parcin
application.	is assigned to Zymo	Genetics, Inc.							
[X] Please cancel claims		Odinatios, 2220							
		Claims as Filed,	Less an	Cancelled Cla	ims		OTHER THA	N A	
10°	(0-1 1)	(0-1 2)		CMAALI ENET	TTV		SMALL ENT		
7	(Col. 1)	(Col. 2)	1	SMALL ENT	11 1	ı	SWIALL EN	1111	1
FOR:	NO. FILED	NO. EXTRA		RATE	FEE	OR	RATE	FEE]
BASIC FEE			10		\$385	OR		\$ 790]
TOTAL CLAIMS	30 -20=	* 10		x11=	\$	OR	x22=	\$ 220	
					 	i			1

Please charge Deposit Account No. 20-1430 as follows:

[] MULTIPLE DEPENDENT CLAIM PRESENTED

* If the difference in Col. 1 is less than zero,

[X] Filing fee

INDEP CLAIMS

enter "0" in Col. 2

[X] Any additional fees associated with this paper or during the pendency of this application

[] The issue fee set in 37 CFR 1.18 at or before mailing of the Notice of Allowance, pursuant to 37 CFR 1.311(b).

-3=

[] A check for \$_____ is enclosed.

2 extra copies of this sheet are enclosed.

Telephone: (415) 576-0200

I:\13952\53\2-1Div.TRN

Respectfully submitted,

\$1,092

OR

OR

OR

x40 =

+130 =

TOTAL

TOWNSEND and TOWNSEND and CREW LLP

x80 =

+260=

TOTAL

\$ 82

\$1,092

\$

Jeffrey J. King Reg. No.: 38,515

Attorneys for Applicant

TOWNSEND and TOWNS	END and CREV	V LLP	Atty. Docket	No. 139	52A-00	5321		
Two Embarcadero Center, 8	th Floor		•			1314450612US		
San Francisco, CA 94111-3 (206) 467-9600	834		Date of Depo					
ASSISTANT COMMISSIO BOX PATENT APPLICAT Washington, D.C. 20231 Sir: This is a request under 37 C.	TON FR 1.60 for filin		I hereby certi Postal Servic under 37 CFI to: Assistant	ify that the "Expre R 1.10 or Commiss	is is bei ss Mail the da sioner fo	ng deposited w Post Office to te indicated about Patents, Was	Addressee	e" servic addresse
[] Continuation [X] Division of application No. 08/477,3		filed June 7, 1995	By lim	14 V	Jope	en		
of (list each inventor) Andrze				el				
for METHODS OF PRODUC FUSIONS	CING SECRETE	D RECEPTOR AN	ALOGS AND BIOLO	GICALL	Y ACT	IVE DIMERIZ	ED POLYI	PEPTIDI
The application papers FILE the prior application. [X] Please amend the spec -This is a [] Contin 08/180,195, filed Janu filed December 27, 1: 5,155,027; which is a the disclosure of which [X] A preliminary amenda	ification by inservation [X] Divide ary 11, 1994, isseem 1990; which is a continuation-in-ph is incorporated	ting before the first sion of application ued as U.S. Patent continuation-in-par part of USSN 07/14	line the sentence: No. 08/477,329, file No. 5,567,584; which t of USSN 07/347,29	ed June 7 is a file v	7, 1995 wrapper May 2,	which is a co	ntinuation f USSN 07	of USSI /634,510
 [X] A preliminary amendar [X] Formal drawings are experience [X] An Information Disclot [X] Substitute Power of An Averified statement to application. [X] The prior application is a please cancel claims 1-2 	enclosed. Sure Statement uttorney establish status ur assigned to Zymot	ider 37 CFR 1.9 and		nclosed, c	or[]wa	as filed in the a	bove identif	fied parer
		Claims as Filed,	Less any Cancelled Cla	<u>ims</u>		OTHER THA	AN A	
	(Col. 1)	(Col. 2)	SMALL ENT	ITY	_	SMALL ENT	TTY	-
FOR:	NO. FILED	NO. EXTRA	RATE	FEE	OR	RATE	FEE	
BASIC FEE				\$385	OR		\$ 790	
TOTAL CLAIMS 3	0 -20=	* 10	x11=	\$	OR	x22=	\$ 220	
INDEP CLAIMS 4	-3=	* 1	x40=	\$	OR	x80=	\$ 82]
[] MULTIPLE DEPENDEN		NTED	+130=	\$	OR	+260=	\$	
* If the difference in Col. 1 is enter "0" in Col. 2	s less than zero,		TOTAL	\$	OR	TOTAL	\$1,092]
[] The issue fee	l fees associated and and appropriate the state of this appropriate the state of th	with this paper or olication 18 at or before mail		\$ <u>1</u>	,092 submitt	ed,	·	
[] A check for \$ 2 extra copies of this		is enclosed.	TO	WNSENI	and T	OWNSEND an	d CREW I	LLP

Telephone: (415) 576-0200

1:\13952\53\2-1Div.TRN

Jeffrey J. Kjng Reg. No.: 38,515 Attorneys for Applicant

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail #EH314450612US in an envelope addressed to: Box Patent Application, Assistant Commissioner for Patents, Washington, D. C. 20231 on 1126-71

TOWNSEND and TOWNSEND and CREW

PATENT

Attorney Docket No. 13952A-005321US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

Andrzej Z. Sledziewski, Lillian A. Bell, and Wayne R. Kindsvogel

Serial No.: Unassigned

Parent Serial No. 08/477,329

Filed: Herewith

Parent Filed: June 7, 1995

For: METHODS OF PRODUCING

SECRETED RECEPTOR ANALOGS AND BIOLOGICALLY ACTIVE DIMERIZED POLYPEPTIDE

FUSIONS

Examiner: Unassigned Parent Exr: C. Kaufman

Art Unit: Unassigned Parent Art Unit: 1812

PRELIMINARY AMENDMENT

Box Patent Application Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to calculating the claims fee, please enter the following amendments in the above-identified application.

IN THE SPECIFICATION:

At page 1, please delete lines 7-11 setting forth cross-references to related applications and substitute therefor the following -- This application is a divisional of U.S. Application Serial No. 08/477,329, filed June 7, 1995, which is a divisional of U.S. Application Serial No.180,195, filed January 11, 1994, now Patent No. 5,567,584, which is a continuation of U.S. Application Serial No. 07/634,510 filed December 27, 1990, now abandoned, which is a continuation-inpart of U.S. Application Serial No. 07/347,291, filed May 2, 1989, now Patent No. 5,155,027, which is a continuation-in-part of U.S. Application No. 07/146,877, filed January 22, 1988, now abandoned.

At page 6, line 11, please delete "encodes" and substitute therefor --encoded--.

At page 14, line 6, please delete "Figure 1" and insert therefor --Figures 1A-1D--.

At page 14, line 7, please delete "illustrates" and insert therefor --illustrate--.

At page 14, line 24, delete " μ promoter, μ enh; μ enhancer" and insert therefor -- μ promoter; μ enh, μ enhancer-

At page 15, line 7, please delete "Figure 11 illustrates and insert therefor --Figures 11A-11D illustrate--

At page 16, line 18, please delete "and/or are" and insert therefor --and/or is--.

At page 18, line 11, please change "doamin" to --domain--.

At page 18, line 25, please change "Figure 1" to --Figures 1A and 1B--.

At page 18, line 27, after "amino acid 531" please insert -- (Figure 1B)--.

At page 18, line 29, please delete "Figure 11" and insert therefor --Figures 11A and 11B--.

At page 22, line 6, please delete "Figure 1" and insert therefor --Figures 1A and 1B--.

At page 22, line 9, please delete "Figure 1" and insert therefor --Figures 1A and 1B--.

At page 22, line 12, please delete "Figure 11" and insert therefor --Figures 11A and 11B--.

and "smaller".

At page 25, line 23, please delete "joined is" and

At page 22, line 14, please insert "a" between "of"

substitute therefor --is joined--.

At page 25, line 27, please delete "varable" and insert therefor --variable--.

At page 46, line 1, please delete "Figure 11" and insert therefor --Figures 11A-11D--.

At page 57, line 1, please delete "Figure 1" and insert therefor --Figure 1B--.

At page 57, line 2, please delete "Figure 1" and insert therefor --Figure 1B--.

At page 83, line 34, please delete "Figure 11" and insert therefor --Figure 11A--.

At page 84, line 22, please delete "Figure 11" and insert therefor --Figure 11B--.

At page 84, line 24, please delete "Figure 11" and insert therefor --Figure 11B--.

At page 88, line 7, please delete "was" and substitute therefor --were--.

IN THE CLAIMS:

Kindly amend the claims as follows: Please cancel claims 1-28, without prejudice. Please add the following new claims:

--29. A dimerized polypeptide fusion, comprising:
first and second polypeptide chains, wherein each of
said polypeptide chains comprises a non-immunoglobulin
polypeptide requiring dimerization for biological activity
joined to a dimerizing protein heterologous to said nonimmunoglobulin polypeptide.

		-	30.	The	dimerized	polypeptide	fusion	of	claim	29
which	is	a	homo	odime	er.					

- 31. The dimerized polypeptide fusion of claim 29 wherein the dimerizing protein of one of said polypeptide chains comprises an immunoglobulin heavy chain constant region.
- 32. The dimerized polypeptide fusion of claim 31 wherein the immunoglobulin heavy chain constant region is joined to an immunoglobulin hinge region.
- 33. The dimerized polypeptide fusion of claim 31 wherein the immunoglobulin heavy chain constant region is joined to an immunoglobulin variable region.
- 34. The dimerized polypeptide fusion of claim 33 wherein the immunoglobulin variable region is selected from the group consisting of V_H , $V\kappa$, and $V\lambda$.
- 35. The dimerized polypeptide fusion of claim 29 wherein the dimerizing protein one of said polypeptide chains comprises an immunoglobulin heavy chain constant region domain selected from the group consisting of C_H1 , C_H2 , C_H3 , and C_H4 of a γ , α , ϵ , μ , or δ class immunoglobulin heavy chain.
- 36. The dimerized polypeptide fusion of claim 29 wherein the dimerizing protein one of said polypeptide chains comprises an immunoglobulin light chain constant region.
 - 37. A multimerized polypeptide fusion, comprising:

2	
3	
4	
5	
6	
1	
2	
3	
4	
1	
2	
3	
1	
2	
3	
1	
2	
3	
1	

1

2

3

4 5 a non-immunoglobulin polypeptide requiring multimerization for biological activity joined to an immunoglobulin light chain constant region; and an immunoglobulin heavy chain constant region domain selected from the group consisting of C_H1 , C_H2 , C_H3 , and C_H4 .

- 38. The multimerized polypeptide fusion of claim 37 which is a tetramer comprising four polypeptide fusions each having a non-immunoglobulin polypeptide joined to a multimerizing protein.
- 39. The multimerized polypeptide fusion of claim 37 wherein the multimerizing protein comprises an immunoglobulin heavy chain constant region.
- 40. The multimerized polypeptide fusion of claim 39 wherein the immunoglobulin heavy chain constant region is joined to an immunoglobulin hinge region.
- 41. The multimerized polypeptide fusion of claim 39 wherein the immunoglobulin heavy chain constant region is joined to an immunoglobulin variable region.
- 42. The multimerized polypeptide fusion of claim 41 wherein the immunoglobulin variable region is selected from the group consisting of V_H , $V\kappa$, and $V\lambda$.
- 43. The multimerized polypeptide fusion of claim 37 wherein the multimerizing protein comprises an immunoglobulin heavy chain constant region domain selected from the group consisting of C_H1 , C_H2 , C_H3 , and C_H4 of a γ , α , ϵ , μ , or δ class immunoglobulin heavy chain.

1	
2	
3	
1	
2	
3	
4	
5	
6	
7	
8	
9	
1	
2	
3	
4	
5	
6	
7	
1	
2	
3	
1	

1

2

- 44. The multimerized polypeptide fusion of claim 37 wherein the multimerizing protein comprises an immunoglobulin light chain constant region.
- 45. A heteromultimeric polypeptide fusion, comprising:
- a first polypeptide fusion comprising a first non-immunoglobulin polypeptide joined to a first multimerizing protein heterologous to said first non-immunoglobulin polypeptide and a second polypeptide fusion comprising a second non-immunoglobulin polypeptide joined to a second multimerizing protein heterologous to said second non-immunoglobulin polypeptide.
- 46. The heteromultimeric polypeptide fusion of claim 45 wherein the first and second non-immunoglobulin polypeptides each comprise an amino acid sequence selected from the group consisting of (A) the amino acid sequence of Figures 1A-1D (Sequence ID Numbers 1 and 2), and (B) the amino acid sequence of Figures 11A-11D (Sequence ID Numbers 35 and 36).
- 47. The heteromultimeric polypeptide fusion of claim 45 wherein the first multimerizing protein is different from the second multimerizing protein.
- 48. The heteromultimeric polypeptide fusion of claim 47 wherein the first and second non-immunoglobulin polypeptides are the same.
- 49. The heteromultimeric polypeptide fusion of claim 45 wherein the first and second multimerizing proteins

each comprise an immunoglobulin heavy chain constant region or an immunoglobulin light chain constant region.

- 50. The heteromultimeric polypeptide fusion of claim 45 which comprises a first polypeptide fusion having a first non-immunoglobulin polypeptide joined to a first immunoglobulin constant region and a second polypeptide fusion having a second non-immunoglobulin polypeptide fused to a second immunoglobulin constant region different from the first immunoglobulin constant region.
- 51. The heteromultimeric polypeptide fusion of claim 50 wherein the first multimerizing protein comprises an immunoglobulin heavy chain constant region and the second multimerizing protein comprises an immunoglobulin light chain constant region.
- 52. The heteromultimeric polypeptide fusion of claim 49 wherein one of said multimerizing proteins comprises an immunoglobulin heavy chain constant region joined to an immunoglobulin hinge region.
- 53. The heteromultimeric polypeptide fusion of claim 49 wherein one of said multimerizing proteins comprises an immunoglobulin heavy chain constant region joined to an immunoglobulin variable region.
- 54. The heteromultimeric polypeptide fusion of claim 53 wherein the immunoglobulin variable region is selected from the group consisting of V_H , $V\kappa$, and $V\lambda$.
- 55. The heteromultimeric polypeptide fusion of claim 45 wherein one of said multimerizing proteins comprises

an immunoglobulin heavy chain constant region domain selected from the group consisting of C_H1 , C_H2 , C_H3 , and C_H4 of a γ , α , ϵ , μ , or δ class immunoglobulin heavy chain.

- 56. The heteromultimeric polypeptide fusion of claim 45 wherein said multimerized polypeptide fusion comprises a first polypeptide fusion comprising a first receptor or receptor domain requiring multimerization for activity joined to a first immunoglobulin constant region and a second polypeptide fusion comprising a second receptor or receptor domain requiring multimerization for activity joined to a second immunoglobulin constant region.
- 57. The heteromultimeric polypeptide fusion of claim 56 wherein one of said receptor domains comprises a ligand binding domain.
- 58. The heteromultimeric polypeptide fusion of claim 45 which is a heterotetramer comprising four polypeptide fusions each having a non-immunoglobulin polypeptide joined to a multimerizing protein. --

REMARKS

By this amendment, claims 1-28 have been cancelled and new claims 29-58 have been added to more distinctly claim certain aspects of the invention. All of the amendments presented herein are fully supported by the specification, and no new matter has been added to the application. Specific support for new claims 29-58 is found throughout the specification, for example at pages 5-12, pages 23-25, pages 67-71, pages 71-73, pages 78-83 (Examples 13 and 14), and within the original claims as filed.

Formal Drawings

The Drawings have been amended to meet the separate numbering requirement of 37 CFR §1.84. The specification has also been amended to reflect these changes to Figures 1 and 11. Enclosed herewith are formal drawings incorporating these changes for the Draftperson's review and entry in the application.

Applicants believe that the claims presented herein for the Office's consideration are all in condition for allowance. Notice to that effect is requested. If for any reason, however, the Examiner feels that a telephone conference would expedite prosecution of the subject application, the Examiner is invited to telephone the undersigned at 206/467-9600.

Respectfully submitted,

ated November 26, 1997 By

Jeffrey J. King

Reg. No. 38,515

TOWNSEND and TOWNSEND and CREW Two Embarcadero Center, 8th Floor San Francisco, CA 94111-3834 (206) 467-9600

I:\13952\53\2-1AMD.PRE

DECLARATION AND POWER OF ATTORNEY

As the below-named inventors, we declare that:

Our residences, post office addresses, and citizenships are as stated below under our names.

We have reviewed and understand the contents of the foregoing specification, including the claims, and we believe are the original, first and joint inventors of invention entitled "METHODS OF PRODUCING SECRETED RECEPTOR ANALOGS _ AND BIOLOGICALLY ACTIVE DIMERIZED - POLYPEPTIDE FUSIONS," which is described and claimed in the specification and claims of patent application Serial No. 07/634,510, which we filed in the United States Patent and Trademark Office on December 27, 1990 (hereinafter referred to as "later C-I-P application"); and that this application in part discloses and claims subject matter disclosed in our earlier filed pending application entitled "METHODS OF PRODUCING SECRETED RECEPTOR ANALOGS AND BIOLOGICALLY ACTIVE PEPTIDE DIMERS, " Serial No. 07/347,291, filed May 2, 1989 (hereinafter referred to as "earlier application").

We hereby claim priority based on a foreign patent application filed in Europe on January 18, 1989, identified by Application No. 89100787.4

We acknowledge our duty to disclose information of which we are aware which is material to the examination of this application in accordance with 37 C.F.R. § 1.56(a), including material information which occurred between the filing date of said earlier filed pending application and the present.

We hereby appoint RICHARD W. SEED, Registration No. 16,557; ROBERT J. BAYNHAM, Registration No. 22,846; EDWARD W. BULCHIS, Registration No. 26,847; GEORGE C. RONDEAU, JR., Registration No. 28,893; DAVID H. DEITS, Registration No. 28,066; WILLIAM O. FERRON, JR., Registration No. 30,633; PAUL T. MEIKLEJOHN, Registration No. 26,569; DAVID J. Registration No. 31,392; MICHAEL J. FOLISE, Registration No. 31,952; ROBERT M. STORWICK, Registration No. 30,112; RICHARD G. SHARKEY, Registration 32,629; No. GEORGE В. FOX,

Registration No. 31,510; DAVID V. CARLSON, Registration No. 31,153; MAURICE J. PIRIO, Registration No. 33,273; KARL R. HERMANNS. Registration No. 33,507; L. GRANT Registration No. 33,236; DAVID D. McMASTERS, Registration No. 33,963; and JOHN M. KELLY, Registration No. 33,920, composing the firm of SEED and BERRY, 6300 Columbia Center, Seattle, Washington 98104-7092, our attorneys to prosecute this application and transact all business in the Patent Trademark Office connected therewith. Please direct telephone calls to David J. Maki at (206) 622-4900 telecopies to (206) 682-6031.

We further declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that the making of willfully false statements and the like is punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and may jeopardize the validity of any patent issuing from this patent application.

Andrzej Z. Sledziewski

Date 03/01/91

Residence : City of Seattle, County of King

State of Washington

Citizenship : Poland

P.O. Address: 14543 - 30th Avenue N.E.

Seattle, Washington 98155

The person person person person are at a person person of the person per

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants

Andrzej Z. Sledziewski, Lillian A. Bell, Wayne R. Kindsvogel

Serial No.

08/477,329

Filed

June 7, 1995

For

METHODS OF PRODUCING SECRETED RECEPTOR ANALOGS

AND BIOLOGICALLY ACTIVE DIMERIZED POLYPEPTIDE FUSIONS

Examiner

Art Unit

1805

Docket

ZY1.P10C6

Assistant Commissioner of Patents

Washington, D.C. 20231

SUBSTITUTE POWER OF ATTORNEY

Sir:

I, Mark J. Murray, Vice President, Business Development of ZymoGenetics, Inc., a corporation of the State of Washington, having a place of business at 1201 Eastlake Avenue East, Seattle, WA 98102, hereby declare that ZymoGenetics, Inc. is the assignee of the above-identified application, which is a continuation of Serial No. 08/180,195, filed January 11, 1994, which is a continuation of Serial No. 07/634,510, filed December 27, 1990, which is a continuation in part of Serial No. 07/347,291, filed May 2, 1989 (U.S. Patent No. 5,155,027), which is a continuation in part of Serial No. 07/146,877, filed January 22, 1988. Documentary evidence of chain of title from the original owners to ZymoGenetics, Inc. has been filed with the United States patent and Trademark Office and has been recorded at Reel 5630, Frame 0638. I have reviewed the evidentiary documents referred to herein and it is certified that, to the best of my knowledge and belief, title is in ZymoGenetics, Inc.

ZymoGenetics, Inc., assignee of the entire interest in the above-mentioned application, hereby revokes all powers of attorney heretofore given in the above-referenced application and hereby appoints JEFFREY J. KING, Reg. No. 38,515; FRANK ABRAMONTE, Reg. No. 38,066; CHRIS E. SVENDSEN, Reg. No. 40,193; BETH A HAGEN, Reg. No. 37,032; and GEORGE A. CASHMAN, Reg. No. 26, 448, as the principal attorneys with full power of substitution, association and revocation to transact all business in

land there were the property of the property o

the Patent and Trademark Office connected therewith, and to all notices relating to the prosecution and issuance of this application. Please direct all future correspondence to:

Jeffrey J. King STRATTON BALLEW PLLC 1218 Third Avenue, Suite 1313 Seattle, Washington 98101

and direct all telephone calls to Jeffrey J. King at (206) 682-1496 or facsimiles to (206) 682-0446.

Please change the attorney docket number to ZY1.P10C6.

I further represent that I have the authority to execute this document on behalf of ZymoGenetics, Inc. I declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that the making of willfully false statements and the like is punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and may jeopardize the validity of any patent issuing from this patent application.

7-15-46 Date

Mark J. Murray, Ph.D.

Vice President, Business Development

Client No.: 87-19C4

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail #EH314450612US in an envelope addressed to: Box Patent Application, Assist. Commissioner for Patents, Washington, D. C. 20231 on 11-2697.

By Kimm Joplen

Patent

Attorney Docket No. 13952A-005321US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of

Andrzej Z. Sledziewski,
Lillian A. Bell, and
Wayne R. Kindsvogel

Serial No.: Unassigned

Parent Serial No. 08/477,329

Filed: Herewith
Parent Filed: June 7, 1995

For: METHODS OF PRODUCING
SECRETED RECEPTOR ANALOGS
AND BIOLOGICALLY ACTIVE
DIMERIZED POLYPEPTIDE
FUSIONS

Examiner: Unassigned Parent Exr: C. Kaufman

Art Unit: Unassigned Parent Art Unit: 1812

TRANSMITTAL OF FORMAL DRAWINGS

Box Patent Application Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

In regard to the above-identified application, Applicants submit eighteen (18) sheets of formal drawings to be made of record.

Respectfully submitted,

Dated: November 26, 1997

By:

Jeffrey J. King & Reg. No. 38,515

TOWNSEND and TOWNSEND and CREW Two Embarcadero Center, 8th Fl. San Francisco, California 94111 (206) 467-9600 i:\13952\53\2-1DRAW.TRN

1	GGCC	CCT	CAG	ccc	rgc	TGC	CCA	GCA	CGA	GCC	TGT	GCT	CGC	CCTY	GCC	CAAC	ege:	λGλ	CAG	CCY	GAC	CCAC	;G	69
70	GCGG	ccc	CTC	TGG	CGG	CTC	TGC	TCC	TCC	CGA	AGG	ÀТG	CTT	GGG	GAG:	rgac	GCC	GAA	GCT	GGG	CGC	rcc	rc	138
139	TCCC	СТА	CAG	CAG	ccc	CCT	TCC	TCC	ATC	сст	CTG	TTC	TCC	TGA	GCC'	rrci	NGG	AGC	CTG	CAC	CAG'	rcc:	ľG	207
208	CCTG	TCC	TTC	TAC	rca:	GCT	GTT	ACC	CAC	тст	GGG	ACC	AGC	AGT	CTT	rcto	GAT	λλC	TGG	GAG.	AGG	GCA	3 T	276
	AAGG																							345
	GCAA																							414
346	GCAA	GUA	CAC	M	R	L	P	G	A	M	P	A	L	A	L	K	G	E	L	L	L	L	S	20
415	CTCT	ССТ	GTT	ACT	TCT	GGA	λCC	ACA	GAT	CTC	тса	GGG	CCI	GT	CGT	CAC	ACC	ccc	GGG	GCC	AGA	GCT	rg	483
																				P				43
484	TCCT	CAA	TGT V	CTC	CAG 8	CAC T	CTT	CGT V	TCT L	GAC T	CTG C	CTC S	egge G	TTC S	AGC A	TCC P	GGT V	GGI V	'GTG W	GGA E	ЛCG R	GAT M	gt S	552 66
<i></i>	CCCA			•	'																			621
223	Q	E	P	P	Q	E	H	λ	K	λ	Q	D	G	T	F	s	8	V	L	T	L	T	N	89
622	ACCT	CAC	TGG	GCT	λGλ	CYC	GGG	AGA	ATA	CTI	TTG	CYC	:CCA	СУУ	TGA	CTC	CCG	TGG	ACT	GGA	GAC	CGA	TG	690 112
		T	G	L	D	T	G	E	¥	r	C	T	n	M	ט	5	K	G		E	•			
																								~~~
691	AGCG	GAA K	ACG R	GCT L	СТА Ч	CAT I	CTI F	TGI V	GCC P	AGA D	TCC P	CAC T	ecgi V	rggg <b>G</b>	CTT F	CCT L	CCC	KAT: N	KDT/ D	TGC <b>À</b>	CGA E	GGA B	YC F	759 135
	R	K	R	L	¥	I	F	V	P	D	P	T	V	G	F	L	P	N	D	λ	E	E	L	
	R	K	R CTT	arcar F	Y CAC	I GGA	F AAT	V PAAC	P TGA	D GAT	P CAC	T CAT	V TCC	G CATG	F CCG	L AGT	P AAC	N :AGA:	D ACCO	λ	E GCT	e Egt	GG	135
760	R TATT F	K CAT I	R CTT F	L TCT L	Y CAC T	I GGA	F AAT I	V OAA? T	P TGA E	D GAT I	P CAC T	T CAT I	V TTCC P	G CATG C	F CCG R CTA	L AGT V TGA	P AAC T	N AGA D	D ACCO P	A CACA Q GTGG	GCT L	e GGT V	GG V	135 828 158 897
760 829	R TATT F TGAC	K CAT I CACT L	R CTT F CCA H	L TCT L CGA	Y CAC T GAA K	I GGA E .GAA K	F LAAT I LAGG G	V T T SGGA D	P E E V	D GAT I TGC A	P CAC T CAC L	T CAT I	V TCC P TGT	G C C C C C C	F CCG R CTA	L AGT V TGA D	P AAC T TCA	N SAGI D LCCI Q	ACCO P AACO R	A Q GTGG	GCT L CTT	E GGT V TTC	GG V TG	135 828 158 897 181
760 829	R TATT F TGAC T	K CAT I CACT	R CTT F GCA H	L TCT L CGA E	Y CAC T GAA K	I GGA E .GAA K	F LAAT I LAGG G	V TAAC TGGGS D	P ETGA E V CGT	D GAT I TGC A	P T T :ACT	T I I PGCO P	V TTCC P TTGT V	G C C C C C C C	F SCCG R SCTA Y	L AGT V TGA D	P AAC T TCA H	N D LCCI Q LGGI	ACCO P AACO R	A Q GTGG	E GCT L GCTT F	E GGT V TTC S	E G V CT G CT	135 828 158 897
760 829 898	R TATT F TGAC T	K CAT I ACT L CTT	R CTT F CCA H TGA E	TCT L .CGA E .GGA D	Y CAC T GAA K CAG R	GGAA K K AAG	F AAT AAGG G GCTA	V TAAC TGGG D ACAT I	P ETGA E ACGT V FCTG C	D GAT I TGC A CAA K	P CAC T CAC L AAC T	T ECAT I FGCO P ECAC T	V TCC P CTGT V CCAT	G C C C C C C C C	F CCG R CCTA Y GGGA	L AGT V TGA D ACAG	PAAC TACA H GGA E	AGI D LCCI Q LGGI V	AGAGAGA	A CACA Q GTGG G ATTC	E GCT L GCTT F CTGA D	E Y Y TTC S ATGO A	GG V ETG G ECT Y	135 828 158 897 181 966 204
760 829 898 967	R TATT P TGAC T GTAT I ACTA	CAT L CACT L CTT F	R F GCA H TGA E	L TCT L CGA E GGA D CAG	CAC T GAA K CAG R ACT	GGAA K AAG S	F LAAT LAGG G CT? Y LGGT	V TAAC T GGGA D ACAT I TGTC	P ETGA CGT V TCTC C	D GAT TGC A K CAT K	P CAC T L AAC T	T FGC(P PCA(T ACGT	Y PTCC P CTGT V CCAT	G P P PTGG G	F CCG R CTA Y GGGA D GGAA N	ACAG	P AAC T TCA H GGA E SAGT	AGI D LCCI Q LGGI V TGCI Q	AGAG	A CACA Q GTGG G ATTC S CTGT	E GCT E GCTT F CTGA CTGA V	E V TTC S TGC A	GG V TG G CT Y CCC Q	135 828 158 897 181 966 204 1035 227
760 829 898 967	R TATT F TGAC T GTAT I ACTA Y	K CAT I ACT L CTT F	R F GCA H TGA E CTA	L CGA B GGA D CAG	CAC T GAA K CAG R ACT	GGA E GAA K AAG S CCCI	F LAAT LAGG G CT! Y LGGT V	V TAAC T GGG ACAT I TGTC S	P CTGA CGT V CCTG CATG	D GAT TGC A CAN K	P CAC T L AAAC T CAI	T CCAT P CCAC T ACGT	V PTCC P PTGT V PCTC S EGAL	G P TGG G CTGT V	F SCCG R SCTA Y SGGA D TGAA N	ACAG	P TAAC TCA H GGA E GGA	AGI Q Q AGGI V AGGI Q	AGAG	A CACA Q GTGG G ATTG S CTGT V	E GCT L GCTT F CTGA CTGA CTGA CTGA CTGA CTGA CTGA CTGA	EGT V TTC S ATGC A CCCG	GG V TG G CT Y CC Q	135 828 158 897 181 966 204 1035 227
760 829 898 967	R TATT F TGAC T GTAT I ACTA Y AGGG	K CAT I CACT F ATGT V	R F GCA H TGA TCTA Y AGAA N	L TCT L CGA B .GGA D .CAG R	CAC T  GAA K  CAG R  ACT L  CAC T	I GGA K S CCCI Q	F AAAT I AAGG G GCT! Y AGGT V TCAT	V TAAC T GGA ACAT I GGG S TGT C	P ETGA CGT C C C C C C C C C C	D GAT TGC A GCAP K CCAT I	P CAC T CAC T CAC N	T FGC( P CCA( T ACG( V	V TTCO P TTGO V CCAT I TCTO S GGAI	G C C P TGG G CTGT V	F SCCG R SCTA Y SGGA D TGAA N	L AGT V ATGA CAG R ACGC A	PAAC TACA HAGGA EAGT CAA	N D LCCA Q LGGT V TGCA Q	AGAGE T	A CACA Q GTGG G ATTG S CTGT V AGTG	E GCT E GCTT F CTGA CTGA CTGA CTGA CTGA CTGA CTGA CTGA	EGGT V TTC S ATGC A CCG R CATA	E G V C C Q LCC P	135 828 158 897 181 966 204 1035 227 1104 250
760 829 898 967	TATT F TGAC T GTAT I ACTA Y AGGG	K CAT I CAT L CAT F V TGT V	R PCTT F CGCA H TGA A CCTA Y AGAA A AGAA	L TCT L CGA B .GGA D .CAG R	CAC T GAA K CAG R ACT L CAC T	I GGA K K K K K K K K K K K K K K K K K K	F LAAT I LAGG G GCTA Y AGGT V TCAT H	V T GGGGA D ACAT I FGTG C C T GGTG C T GGTG T GGT T G G G G G G G G G G G G G G G G G G G G	P CTGA E ACGT V TCTG C C CATC	D GAT TGC A GCAA CCAT I TTGT V	PCACT TCACT LAAACT TCAA	T  CCA1  I  FGCC P  CCCAC T  V  FCCC G	V TTCC P CCA1 I TCTC S GGGA N	G CATG P CTGT V ATGA E	F SCCG R SCTA Y SGGA D SGAA N N SGGI V	L AGT V ACAG R ACGG A	PAACT TCAAGGA EGGA VCAA	N ACCA Q ACCA V ACCA Q ACCA V ACCA ACCA A	AGAGE T	A CACA Q GTGG G ATTC S CTGT V AGTC	E GCT F CTGA CTGA CTGA CTGA CCCA	E Y Y Y Y A C C C C C C C C C C C C C C C	E G V T G G G V Y G G G G G G G G G G G G G G G	135 828 158 897 181 966 204 1035 227 1104 250
760 829 898 967 1036	TATT F TGAC T GTAT I ACTA Y AGGG G CCCG R	K CAT I CACT F TGT V TGT K CACT F CAC	R CTT F CGCA H TTGA E CCTA Y AGAAA N AAGA	L TCT L CGA B GGA D CAG R CAT I LAAG S	Y CAC T GAA K CAG R ACT CAC T CAC	I GGA K K K K K K K K K K K K K K K K K K	F AAAT I AAGG G GCTA Y AGGT V TCAT H TCAT TCAT	V TAAC T GGGA ACAT I GGTC C C TGGTC V	P TTGA E ACGT V TCTC C C CATC S GCAT I	D AGAT I TTGC A GCAN I TTGT V AGCC P	PCACT LAACT TCAAACA TC	T  CCAT  I  CCCAC  P  CCCAC  T  ACGT  V  CCCAC  T  ACGT  ACG	V PTCC P CTGI V CCAI I PCTCI S GGAI N CTGI	G CATGO P P TOGGO G AATGA E AATGA F CGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	P GCCG R GCTA Y GGGA D GGGA N CCCT L GGGA GGGA GGGA GGGA GGGA GGGA GGGA G	L AGT V TGA A CGC A CCTA	PARCE TO A COLOR OF THE COLOR O	N PAGA  CCA  CCA  CCA  CCA  CCA  CCA  CCA	D ACCO P AACCO R PGGAAGAC T TCGA TCGA	A CACACACACACACACACACACACACACACACACACAC	E GCT F CTGA D CGGAC T ACCA H	E GGT V TTC S ATGC A CCCG R CATA  CATA I CCGG	EGG V TTG G SCT Y GCC Q ACC P	135 828 158 897 181 966 204 1035 227 1104 250 1173 273
760 829 898 967 1036 1105	TATT F TGAC T GTAT I ACTA Y AGGG G CCCG R	K CAT I CACT F ACT F ATGA  ATG	R CTT F CGCA H TGA A CTA Y AGAA N AAGA E TCCT L	L TCT L .CGA B .CAG R .CAG I .CAT I	Y CAC T GAA K CAG R ACT L CAC T TGG G	GGAA K S CCCI L GGCC R	F LAAT I LAGG G G CTA AGGT V CCAT H CCCAC	V TAAC T GGGA ACAT I GGTC S GGTC V GGTGGA A	P ETGA E ACGT V TCTC C C CATCG S GCAT I TCGG E	D GGAT TGC A GCAF K CCAT I TTGT V AGCC P	PCACT TACT L LAACT TCAL NCAL YCAL YCAL YCAL YCAL YCAL YCAL YCAL Y	T CCAT I I GCC P CCAC T CCGC G G G G AGG T AAGG	V TTCO P CTGO V CCAN I CTGO S GGAA N CTGO D ACTG	G C C C C C C C C C C C C C C C C C C C	F GCCG R CTA Y GGGA D CGAA N AGGT V CCCI L GGAA T	L AGT V AGG A A A A A A A A A A A A A A A A A	PAACT TCAAR B CAACAC TCAACT	ATAM	ACCCC P ACCCC R R R GGA AGAC T T GGA T GGA AGAC T GA AGAC T GGA AG	A CACACACACACACACACACACACACACACACACACAC	GCTI F CTGA COACCA H TGAC T	E GGT V TTC S ATGO A CCCG R ACATA Y ACAT I CCGGA	EGG V ETG G ECT Y ECC Q ACC P ECC R AGA S	135 828 158 897 181 966 204 1035 227 1104 250 1173 273

1212	TGGG	AG A	CCT	ദേദ	CAC	ACT	ACA.	ATT	TGC	TGA	GCT	GCA'	TCG	GAG	CCG	GλC	ACT	GCA	GGT.	AGT	GTT	CGA	GG	1380
	G	E	V	G	T	L	Q	F	λ	E	L	н	R	8	K	T	L	Q	V	٧	F	Б	•	342
1781	CCTA	ccc	ACC	GCC	CAC	rgt	CCT	GTG	GTT	CAA	AGλ	CAA	CCG	CAC	CCT	GGG	CGA	CTC	CAG	CGC	TGG	CGY	λλ	1449
	Y	P	P	P	T	V	L	W	F	K	D	N	R	T	L	G	D	8	8	^	•	E	•	303
1450	TCGC	ССТ	GTC	CAC	GCG	CAA	CGT	GTC	GGA	GAC	CCG	GTA	TGT	GTC	λGλ	GCT	GAC	ACT	GGT	TCG	CGT	GAA	GG	1518
	λ	L	S	T	R	N	V	8	E	T	R	¥	V	S	E	L	T	L	٧	K	٧		•	300
1519	TGGC	AGA	GGC	TGG	CCA	СТА	CAC	CAT	GCG	GGC	CTT	CCA	TGA	GGA	TGC	TGA	GGT	CCY	GCT	CTC	CTT	CCY	GC	1587
	λ	E	λ	G	H	Y	T	M.	R	λ	F	Н	E	D	λ	E	V	Q	L	5	E	, <b>Q</b>	D	411
1588	TACA	GAT	CAA	TGT	ccc	TGT	CCG	AGT	GCT	GGA	GCT	ÀÀG	TGA	GAG	CCA	CCC	TGA	CAG	TGG	GGA	ACA	GAC	λG	1656
	Q	I	H	V	P	V	R	٧	L	E	L	s	E	8	H	P	D	8	G	E	Q	*	٧	727
1657	TCCG	CTG	TCG	TGG	CCG	GGG	CAT	GCC	CCA	GCC	GAA	CAT	CAT	CTG	GTC	TGC	CTG	CAG	AGA	CCI	СУУ	AAG	GT	1725
	R	C	R	G	R	G	M	P	Q	₽	N	1	I	W	S	λ	C	R	ט	L	v	K	C	75,
1726	GTCC	ACG	TGA	GCT	GCC	GCC	CAC	GCT	GCT	GGG	GAA	CAG	TTC	CGA	AGA	<b>IGGA</b>	GAG	CCA	GCI	'GGA	GAC	TAA	CG	1794
	P	R	E	L	P	P	T	L	L	G	N	S	S	E	E	E	8	Q	1.	4	T	м	•	400
1795	TGAC	GTA	CTG	GGA	GGA	GGA	GCA	GGA	GTI	TGA	GGI	'GGT	GAG	CAC	ACI	rgcg	TCT	GCA	GC	CGI	GGA	TCG	iGC	1863
	T	Y	W	E	E	E	Q	E	P	B	V	V	8	T	L	R	L	Q	n	٧	D	K	•	303
1864	CACT	GTC	:GGT	GCG	CTG	CAC	CCI	GCG	CAA	CGC	TGT	GGG	CCA	GGA	CAC	CGC	\GG/	\GG7	CAT	rcgi	GGT	GCC	C	1932
	L	S	V	R	C	T	L	R	H	λ	V	G	Q	D	T	Q	E	٧	1	•	•	•	••	
1933	ACTO	CT1	GCC	CTT	TAA	GGT	rggī	GGI	'GAT	CTC	:AGC	CAT	CCT	<b>YGGC</b>	CCI	rggi	'GG'	rgC1	CYC	CVI	'CY'	CTC	CC.	2001
	8	L	P	F	K	V	V	V	I	S	A	1	L	A	L	V	V	L	T		-		-	545
2002	TTAT	CAT	CCI	CAT	CAT	GCT	TTG	GCA	GA	\GA?	GCC	CACG	TT	/CG}	GAT	rcco	ATC	3GA?	LGG?	[GA]	TG	<i>i</i> GTC	JIG.	2070 572
	1	I	L	I	M	L	W	Q	K	K	P	R	¥	E	1	R	W	K	٧	-	<b>E</b>	3	•	3,0
2071	TGAG	CTC	TGA	CGG	CCY	TG	\GT)	/CY1	CT	\CG7	rGG1	<b>7CCC</b>	CYI	LGCY	/CC3	rgc	CCIV	ATG	CLO	CAU	JUTU W	,007 <b>P</b> .	10C T.	2139 595
				G																				
2140	TGCC	GCC	GGA	CCY Q	GCT	TG?	rgen	rgge	SAC	CAC	ecc.	rege	iCr(	JIGO	) <i>(</i> ) ( ) ( )	CCT.	G	30C1	v.	v.	E.	λ	T	2208 618
																							ccc	2277 641
2209	CGGC	Frei	rrgo	CCT L	CAG	CC	1111		1001	マンスト	JUA.	. U.A.	v.	ı UU.	v	K	M	T.	ĸ	S	T	λ	R	641
																							λCG	2346
2278	GCAC 8	SCAC S	F E	K K	GCA Q	A A	L	M	S	E	L	K	I	M	S	H	L	G	P	Н	L	N	V	664
									~~~		~ > ~	C 3 C 4	~~ » (	n~n	N CTO A	ጥር እ	<b>ጥ</b> ር እ	ርጥር	A C T	A CT	GCC	GCT.	ACG	2415 687
2347	TGG	CA	(CC	IGTI L	GGG	iGG	CCTC	3CAC	CAL	AAG!	JAG O	GACI	CCA.	101	T	T	ut. T ∩ V.	E.	Y	C	R	Y	G	687
																								•
2416	GAG	ACC:	rgg	rggy	CTI	rcc.	rgc	NCC.	UA.	ACA.	AAC.	ハレハリハ	- I	100	10C	มูน	ncc. u	D T	n CCG	K	R	R	F	2484 710
				2003				CC3	a m√	CTC	mc C	eee'	PTC.	GGC	ሞርር	ccc	ጥርር	CCA	GCC	ATG	TGT	CCT	TGA	2553
2485	CGC	CCA	GCG(CGGA	IGC.	rCT.	AUA	GCA.	ATG	CIC	1.0C		110		D	T.	200	S	н	v	Š	ī	ิ์า	733
	_	-	-																					

2554	CCGG	GG?	GAG	CGA	CGG	TGG	CTA	CAT	GGY	CAT	GAG	CYY	GGA	CGA	GTC	GGT	GGA(CTA	TGT V	GCC(YKS M	CTG L	G:	2622 756
2623	ACAT M	Gλ) K	AGG G	λGλ D	CGT V	CYY K	ATA Y	TGC À	AGA D	CAT I	CGA E	GTC S	CTC S	CAA N	CTA Y	CAT	GGC(P	Y	D D	N LVV	Y	V	779
2692	TTCC	CTC	TGC	ccc	TGA	GAG	GAC	CTG	CCG	AGC	λλο	TTT	GAT	СУУ	CGA	GTC	TCC	AGT	GÇT	AAG	CTAC	CATO	G D	2760
																								802
2761	ACCT	'CG1	rgge	CTT	CAG	CTA	CCA	GGT	GGC	CAA	TGG	CAT	GGA	GTI	TCT	GGC	CTC	CYY	Gλλ	CTG	CGT	CCYC	:y	2829
	L	V	G	P	S	Y	Q	٧	λ	N	G	H	E	F	L	λ	S	K	N	C	V	n	K	825
2830	GAGA	CCI	rggc	GGC	TAG	Gλλ	CGT	GCT	CAT	'CTG	TGA	AGG	CAA	GCI	GGT	CAA	GAT	CTG	TGA	CTT	TGG	CCTC	3G	2898
	D	L	λ	λ	R	И	V	L	I	C	E	G	K	L	V	K	I	C	D	F	G	L	λ	848
2899	CTCG	AGZ	CAT	CAT	GCG	GGA	CTC	GAA	TTA	CAT	стс	CAA	AGG	CAG	CAC	CTT	TTT	GCC	TTT	AAA	GTG	GAT	3G	2967
	R	D	I	H	R	D	8	H	Y	I	S	K	G	8	T	F	L	P	L	K	W	M	٨	8/1
2968	CTCC	GGZ	GAG	CAT	CTT	CAA	CAG	CCT	CTA	CAC	CAC	CCT	GAG	CGA	CGT	GTG	GTC	CTT	'CGG	GAT	CCT	GCT	CT	3036
	P	E	8	I	F	N	S	L	¥	T	T	L	S	D	V	W	8	r	G	T	T.	ь	•	034
3037	GGGA	GAT	rett	CAC	CTT	GGG	TGG	CAC	ccc	TTA	ccc	AGA	GCT	GCC	CAT	Ġλλ	CGA	GCA	GTI	CTA	CAA	TGC	CA	3105
	E	I	F	T	L	G	G	T	P	Y	₽	E	L	P	H	N	E	Q	F	X	n	^	•	717
3106	TCAA	ACC	GGG	TTA	CCG	CAT	GGC	CCA	GCC	TGC	CCA	TGC	CTC	:CG?	CGA	GAT	CTA	TGA	GAT	CAT	GCA	GAA	G T	3174
	K	R	G	¥	R	M	λ	Q	P	λ	H	λ	S	D	B	I	Y	E	1	M	Q	X	C	940
3175	GCTG	GG2	\AG!	GAA	GTT	TGA	GAT	TCG	GCC	ccc	CTT	CTC	CC	(GC)	rggt	'GCT	GCT	TCI	CGA	GAG	ACT	GTT	GG	3243
	W	E	E	K	F	E	I	R	P	P	F	8	Q	L	V	L	L	L	E	K	ħ	L	•	303
3244	GCGA	AGC	TT	CAA	λλλ	GλA	GTA	CCA	GC	GGT	YGGA	TGλ	.GG?	GTT	PTC1	GAG	GλG	TGA	CCA	ccc	AGC	CAT	CC	3312
	E	G	Y	K	K	K	¥	Q	Q	V	D	B	E	F	L	R	8	ט	n		Λ	1,	L	200
3313	TTCG	GT(ccci	AGGC	CCG	CTI	GCC	TGG	GTI	CCA	TGG	CCI	CCC	TK	CTCC	CCT	'GGÀ	CYC	CAC	CTC	CGT	CCT	CT	3381
	R	8	Q	λ	R	L	P	G	F	H	G	L	R	S	P	L	D	T	8	8	٧	ы		1003
3382	ATAC	TG	CCG1	rgca	GCC	CAA	TG	\GGG	TG!	CYY	CGA	CTA	TA1	CAT	rccc	CCI	.ecc	TGA	rcco	CYY	YCC	CGA	GG	3450
	T	λ	V	Q	P	N	E	G	D	N	D	Y	1	1	P	L	P	D	P		•	E	•	1032
3451	TTGC	TG	NCG 2	\GGG	ccc	ACT	YGG?	\GGG	TTC	ccc	CAG	CCI	'AG	CCAC	CTC	CAC	CCT	GAZ	\TG!	LAGI	CYY	CYC	CI	3519
	λ	D	E	G	P	L	E	G	S	P	S	L	λ	5	S	T	L	N	E	٧	T.	1	3	1033
3520	CCTC	:AAC	CCA?	CTC	CTG	TGA	CAC	CCC	CCT	KDD1	GCC	CCA	.GG	ACG	AACC	CAGA	GCC	λG	V GC	CCY	GCI	TGA	GC	3588
	S	T	I	S	C	D	S	P	L	E	P	Q	D	E	P	E	P	E	P	Q	L	E	L	10/8
3589	TCCA	GG	rgg/	AGCC	GGA	GCC	CAG	AGCT	rgg.	AAC	GTI	GCC	CGG	ATT	CGGC	GTG	CCC	TGC	CGC	CTCC	GGC	GGA	ΑĢ	3657
	Q	Y	E	P	E	P	E	L	E	Q	L	P	D	S	G	С	P	λ	P	R	A	E	^	1101
3658	CAGA	GG	NTA	CTI	CCT	'GTA	\GG(GGG	TGC	seco	CT	ccc	TG	ccc	rgco	TG	AGC	TCC	ccc	cca	CCC	CAGC	AC	3726 1106
				P																			vn ~	3795
2727	OCAC.	102	$n \sim n c$	$\sim \sim \sim$	CCC	YTCC	2000	ቦር እ /	ነውር (ccc	የጥሶ	سكتم	የርንሳ	このの	NGG($\neg r_G($	\cdot CC1	"TA"	ľCA	JCT'	TU		10	3133

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11A

1 70	GC(CCT(CTG(GGG(CAG/	SACC ACCC	GA(CACA	CCGT AGGG	GGG AAG	GCGG GTAC	CTC(CGCA	AGC(FTG/	GGC(ACCT	GGG/ FCC(ACG(GGG(CGTT GAG(TT(GGG(CGA(GAC(CCA(GTG(GGT	STG(FATA	ACG	AGC(FTG(CTGG
139	TGO	GAA	4AG	TGAC	CAAT	тст	rag(3AA	VAG/	AGC ⁻	ΓΑΑ	4AG(CCG	GATO	CGGT	ΓGA	CCG	444 (ЗП	TCC	CAG	AGC"	TATG M 1
208	GG(GAC T	TTC S	CCAT H	rcc(P	GGC(A	GTT(F	CCT(L	GGT(V	CTT/ L	AGG(G	CTG ⁻ C	TCT L	TCT(L	CAC/ T	AGG(G	GCT(GAG(S	CCT/ L	AAT(I	CCT(L	CTG C	CCAG Q
277	CT L	TTC. S	ATT. L	ACC(P	CTC ⁻ S	TAT(I	CCT	TCC/ P	AAA N	TGA E	AAA N	TGA E	AAAI K	GGT V	TGT(V	GCA Q	GCT L	gaa' N	TTC. S	ATC S	CTT F	TTC S	TCTG L
346	AG/ R	ATG C	CTT F	TGG(G	GGA(E	GAG	tga E	AGT(V	GAG S	CTG W	GCA Q	GTA Y	CCC P	CAT(GTC S	TGA E	AGA E	AGA E	GAG S	CTC S	CGA D	TGT V	GGAA E
415				TGA E		AAA(N			CGG G	CCT L	TTT F	TGT V	GAC T	GGT V	CTT(GGA E	AGT V	GAG S	CAG S	TGC A	CTC S	GGC A	GGCC A
484	_	CAC T		GTT(CCA H	CAC T	TCA Q	GAC T	AGA E	AGA E	gaa N	TGA E	GCT L	TGA E	AGG G	CAG R	igcac H
553	AT I	TTA Y	CAT I	CTA Y	TGT V	GCC. P	AGA D	CCC. P	AGA D	TGT V	AGC A	CTT F	TGT V	ACC P	TCT L	AGG G	TAA: M	GAC T		ATT. Y	TT L	AGT V	CATC
622			GGA D		TGA D	TTC S	TGC A	CAT I	TAT I	ACC P	TTG C	TCG R	CAC T	AAC T	TGA D	TCC P	CGA E	GAC T	TCC P	TGT V	AAC T	CTT L	TACAC H
691			TGA E			GGT. V			CTC S	CTA Y	CGA D	CAG S	CAG R	ACA Q	G G	CTT F	TAA N	ATGG G	GAC T	CTT F	CAC T	TGT V	raggg G
760	CC P	CTA Y	TAT I	CTG C	TGA E	GGC A	CAC T	CGT V	CA4 K	AG0 G	AAA K	\GA∕ K	GTT F	CCA Q	AGAC T	CAT I	CCC P	ATT F	TAA N				L
829	AA K	AGC A	AAC T	ATC S	AGA E	GCT L	GGA D	TCT L	AGA E	[AA] M	GG/ E	AGC A	TCT L	TA4 K	VAAC T	CGT V	GT/ Y	ATA/ K	AGTO S	AGC G	GG/ E	VAA(T	CGATT I
898	GT V	GGT V	CAC T	CTG C	TGC A	TGT V	TTT F	TAA N	CA4 N	ATG/ E	\GGT V	rggt V	TG/ D	ACC1 L	TCA Q	ATO W	GA(T	CTTA Y	ACCO P	TG(G	AG/ E	VAG ⁻ V	tgaa4 K

Figure 11B

967																							GGTC
	G	K	G	I	T	I	L	Ε	Ε	I	K	٧	P	S	I	K	L	V	Y	T	L	T	٧
1036																						GGT(CAAA
1105	•	_	• •	-	-		_	-	_			_	-										CCAG
1105																						S	
1174																							CAGG
	L	Ε	A	٧	N	L	Н	Ε	٧	K	Н	F	٧	٧	Ε	٧	R	Α	Y	P	P	P	R
1243	AT 1	ATC S	CTG W	GCT	GAA K	AAA N	CAA'	TCT(GAC	TCT L	GAT I	TGA E	AAA N	TCT L	CAC T	TGA E	GAT I	CAC	CAC	TGA D	TGT V	GGA E	AAAG K
1010																							TTAT
1312																						Н	
1381																							TTCA
	•	-																		•		P	
1450																						agc A	TGAA E
1519	ee		err -	GCT	TCC	TGA	TAT	TGA	GTG	GAT	GAT	ATG	CAA	AGA	ΤΑΤ	ΤΔΔ	GAA	ATG	ΤΑΔ	ΤΑΔ	TGA	AAC	TTCC
1313																						T	
1588																							CGTG
	••	·		_																		T	
1657																						TCT L	CCTT
1726	GG	AGC	TGA	GAA	CCG	aga	GCT	GAA	GCT	GGT	GGC	TCC	CAC	CCT	GCG	TTC	TGA	VACT	CAC	GGT	GGC	TGC	TGCA
																						Α	
1795																						GAA K	ACCG
	¥	L	٧	L	L	٧	1	•	1	1	J	L	Ţ	¥	L	٧	¥	ī	п	~	ч	~	r

Figure 11C

1864															GGA D								GGAC D
1933	CC P	GAT	GCA Q	GCT(GCC [*]	TTA Y	TGA D	CTC S	aag R	ATG W	GGA E	GTT F	TCC P	aag R	AGA D	TGG G	ACT L	AGT -V	GCT L	TGG G	TCG R	GGT V	CTTG L
2002															TGG G								CATG M
2071															TGA E								ACTG L
2140															CTT L								AGGC G
2209															GGT V							TAG R	GGAT D
2278															GGA D								TGAT D
2347															TGG G				GGA D		GAA K		GGCT A
2416															ТТС S								atca S
2485															AGA D								TTCA S
25 54															CTT F				AGT V		CCG R		AATG M
26 23																							vagga G
2692																							GAAA K
2761															CAT I								

Figure 11D

AG	TGA	TGT	CTG	GTC ⁻	ITA	TGG	CAT	TCT	GCT	CTG	GGA	GAT	CTT	TTC	CCT	TGG	TGG	CAC	CCC	TTA	CCC	CGGC
S	D	٧	W	S	Y	G	I	L	L	W	Ε	I	F	S	L	G	G	T	P	Y	P	G
ΑT	GAT	GGT	GGA	TTC	TAC	ПТ	CTA	CAA	TAA	GAT	CAA	GAG	TGG	GTA	.CCG	GAT	GGC	CAA	GCC	TGA	CCA	CGCT
			D	S											R	M	Α.	K	P	D	Н	Α
AC:	CAG	TGA	AGT	CTA	CGA	GAT	CAT	GGT	GAA	ATG	CTG	GAA	CAG	TGA	GCC	GGA	GAA	GAG	ACC	СТС	CTT	TTAC
												N	S	Ε	P	Ε	K	R	P	S		Y
۲Δ	CCT	GAG	TGA	GAT	TGT	GGA	GAA	тст	GCT	GCC	TGG	ACA	ATA	\TAA	/	GAG	TTA	TGA	AAA	AAT	TCA	CCTG
H	L	S	E	I	V	E	N	L	L	P	G	Q	Y	K	K	S	Y	Ε	K	I	Н	L
GΛ	CTT	ጉጉጉ	ሮልል	GAG	TGA	ርርል	TCC	TGC	TGT	GGC	ACG	CAT	GCG	TGT	GG/	CTO	AGA	CAA	TGC	ATA	CAT	TGGT
D	F	L	K	S	D	Н	P	A	V	A	R	M	R	V	D	S	D	N	A		I	G
СT	ጉለበ	ጉፐለ		۸۸۸	ന്ദ്രമ	GGA	ΔGA	CAA	GCT	GAA	GGA	CTG	GGA	rece.	TGO	тст	GGA	\TGA	.GCA	GAG	ACT	GAGC
			K	N	E	E	D	K	L	K	D	W	E	G	G	L	D	Ε	Q	R	L	S
GC	TGA	\CAG	TGG	CTA	CAT	CAT	TCC	тст	GCC	TGA	CAT	TGA	ACCC	TGT	CC(CTGA	\GGA	NGG/	GG/	CCT	rgg(CAAG
			G						P	D	I	D	P	٧	P					L	G	K
AG	GA/	ACAG	ACA	ACAG	CTC	GCA	GAC	CTO	TG/	VAG/	\GAG	TGC	CAT	ITG/	4GA(CGGC	TT(CAG	CAG	STT	CCAC	CCTTC
R	N	R	Н	S	S	Q	T	S	Ε	Ε	S	Α	I	Ε	T	G	S	S	S	S	T	F
ΑT	CA	AGAG	SAGA	AGGA	CG/	\GAC	CAT	TG/	VAG/	\CAT	rcg/	(CAT	[GA]	rgg/	ACG/	4CA7	rcg(GCA1	rag/	ACT(CTT	CAGAC
																			D	S	S	D
СТ	GGT	rgg/	VAG/	\CAG	ст	CCT	GTA	VACT	rgg(CGG/	ATT(GA(GGG(STTO	ССТ	TCC	ACT	ГСТ	GG(GCC.	ACC [*]	TCTGG
L	٧	Ε	D	. \$	F	_																
							_															
ΑT	CCC	CGTT	CA6		AC(CACT	11/	ATT(GCA	ATG(CGG/	\GG	TTG/	4GA(GGA	GGA	CTT	GGT	TGA	TGT	TTA	AAGAG
AA	4GT	rccc	CAGO	CCAP	AGG(GCC1	CGC	GG/	4GC(GTT(CTA	\AT	ATG/	4AT(GAA	TGG	GAT	ATT	TTG	4AA	TGA	ACIII
GT	CAC	STG1	TTGC	CCTC	TT:	SCA	ATG(CCT	CAG	TAG	CAT	CTC	AGT(GGT	GTG	TGA	AGT	TTG	GAG	ATA	GAT	GGATA
AG	GG/	VATA	VATA	AGGC	CAC	CAGA	VAG(STG/	4AC	$\Pi\Pi$	GTG(CTT	CAAC	GGA	CAT	TGG	TGA	GAG	TCC	4AC	AGA	CACAA
Π	TA	TAC1	rgc(SACA	GA	ACTI	CAC	GCA.	TTG	TAA	TTA	rgt/	444	TAA	CTC	TAA	CCA	AGG	CTG	TGT	TTA	GATTG
TA	ATT/	VACT	TAT(CTTC	TT:	rgg/	CT	rct(GAA	GAG/	ACC/	ACT	CAA	TCC	ATC	CTG	TAC	TTC	CCT	CTT	GAA	ACCTG
ΑT	GT/	4GCT	rgc1	ΓGΤΤ	GAV	ACT1	П	ΓΑΑ	AGA	AGT	GCA [*]	TGA		ACC.	ATT	П	GAA	CCT	TAA	aag	GTA	CTGGT
AC	TA"	TAG(CATT	ПТ	CTA	ATCI		ПТ	AGT	GTT	444	GAG	ATA	AAG	AAT.	AAT.	AAG					
	S AT M ACT CAH GAD GTV GCA ACT CAT AT A	S D ATGAT M M ACCAG T S CACCT H L GACTT D F GTCAC V T GCTGA A D AGGAA R N ATCAA I K CTGGT L V	S D V ATGATGGT M M V ACCAGTGA T S E CACCTGAG H L S GACTTCCT D F L GTCACCTA V T Y GCTGACAG A D S AGGAACAG R N R ATCAAGAG I K R CTGGTGGA L V E ATCCCGTT AAGTTCCC GTCAGTG AGGGAATA TTTATACT TATTAACT ATGTAGCT	ATGATGGTGGAMM W V D ACCAGTGAAGTT S E V CACCTGAGTGAAGT S E V CACCTGAGTGAAGT S E V CACCTGAGTGAAG S E S E S S E S S E S S E S S E S S E S S E S S E S	S D V W S ATGATGGTGGATTC M M V D S ACCAGTGAAGTCTAT T S E V Y CACCTGAGTGAAGAT H L S E I GACTTCCTGAAGAG D F L K S GTCACCTACAAAAA V T Y K N GCTGACAGTGGCTA A D S G Y AGGAACAGACACAG R N R H S ATCAAGAGAGAGAGAGA I K R E D CTGGTGGAAGACACAG L V E D S ATCCCGTTCAGAAA AAGTTCCCAGCCAA GTCAGTGTTGCCTC AGGGAATAATAGGC TTTATACTGCGACA TATTAACTACTTCTC ATGTAGCTGCTGTT	ATGATGGTGGATTCTACM M W V D S T ACCAGTGAAGTCTACGAT S E V Y E CACCTGAGTGAGATTGTH L S E I V GACTTCCTGAAGAGTGAAD F L K S D GTCACCTACAAAAACGAV T Y K N E GCTGACAGTGGCTACATA D S G Y I AGGAACAGAGAGAGAGACACATA R N R H S S ATCAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	ATGATGGTGGATTCTACTTTOM M V D S T F ACCAGTGAAGTCTACGAGATGT S E V Y E I CACCTGAGTGAGATTGTGGACH L S E I V E GACTTCCTGAAGAGTGACCAD F L K S D H GTCACCTACAAAAACGAGGAAV T Y K N E E GCTGACAGTGGCTACATCATAD S G Y I I AGGAACAGACAGACAGCTCGCARN R H S S Q ATCAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	ATGATGGTGGATTCTACTTTCTAM M V D S T F Y ACCAGTGAAGTCTACGAGATCATT S E V Y E I M CACCTGAGTGAGATTGTGGAGAAH L S E I V E N GACTTCCTGAAGAGTGACCATCCD F L K S D H P GTCACCTACAAAAACGAGGAAGAV T Y K N E E D GCTGACAGTGGCTACATCATTCCA D S G Y I I P AGGAACAGACACACAGCTCGCAGACR N R H S S Q T ATCAAGAGAGAGAGACAGACCATI K R E D E T I CTGGTGGAAGACAGACAGCTTCCTGTAL V E D S F L 1089 ATCCCGTTCAGAAAAACCACTTTAAAGTTCCCAGCCAAGGGCCTCGCGTAAGGACAAACCACTTTAAAGTTCCCAGCCAAGGGCCTCGCAATGCAAGTTCCCAGCAAGGCCTCCCAGAAGCTTCACTATTAACTACTGCGACAGAACTTCACTATTAACTATCTTCTTTTGGACTTATTAACTATCTTCTTTTTTTT	ATGATGGTGGATTCTACTTTCTACAAM M V D S T F Y N ACCAGTGAAGTCTACGAGATCATGGT T S E V Y E I M V CACCTGAGTGAGATTGTGGAGAATCT H L S E I V E N L GACTTCCTGAAGAGTGACCATCCTGC D F L K S D H P A GTCACCTACAAAAACGAGGAAGACAA V T Y K N E E D K GCTGACAGTGGCTACATCATTCCTCT A D S G Y I I P L AGGAACAGACACAGCTCGCAGACCTC R N R H S S Q T S ATCAAGAGAGAGAGACAGCTCCTGCAGACCTC I K R E D E T I E CTGGTGGAAGACAGCTTCCTGTAACT L V E D S F L 1089 ATCCCGTTCAGAAAACCACTTTATTC AAGTTCCCAGCCAAGAGGTGATTATACTACTGCGACAGAACTTCAGCATTATTACTGCGACAGAACTTCAGCATTATTACTGCGACAGAACTTCAGCATTATTACTGCGACAGAACTTCAGCATTATTACTGCGACAGAACTTCAGCATTATTACTGCGACAGAACTTCAGCATTATTACTGCGACAGAACTTCAGCATTATTACTGCGACAGAACTTCAGCATTATTAACTATCTTCTTTGGACTTCTTAACTTCTTTTGAACTTCTTTTTAACTATCTTCTTTTGAACTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTTGAACTTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTGAACTTTTTTAACTATCTTCTTTTTTAACTATCTTCTTTTTT	S D V W S Y G I L L ATGATGGTGGATTCTACTTTCTACAATAA M M V D S T F Y N K ACCAGTGAAGTCTACGAGATCATGGTGAA T S E V Y E I M V K CACCTGAGTGAGATTGTGGAGAATCTGCT H L S E I V E N L L GACTTCCTGAAGAGTGACCATCCTGCTGT D F L K S D H P A V GTCACCTACAAAAACGAGGAAGACAAGCT V T Y K N E E D K L GCTGACAGTGGCTACATCATTCCTCTGCC A D S G Y I I P L P AGGAACAGACACAGCTCGCAGACCTCTGAACAAAACGAGAGACAAGCT R N R H S S Q T S E ATCAAGAGAGAGAGACAAGCTTCCTGTAACTGGC L V E D S F L 1089 ATCCCGTTCAGAAAAACCACTTTATTGCAAAAATCCCCAGCCAAGGGCCTCAGGAAACCACTTTATTGCAAAAATCCACTTTATTGCAAAAATCCACTTTATTGCAAAAATCCACTTTATTGCAAAAATCCACTTTATTGCAAAAATCCACTTTATTGCAAAATCCACTCAGGAAAAACCACTTTATTGCAAAATTCCCCAGCCAAGGGCCTCAGGAAAACCACTTTATTGCAAAATTCCCCAGCAAAAAACCACTTTATTGCAAAATTCCCCAGCAAAAACCACTTTATTGCAAAATTCCCCAGCAAAAACCACTTTATTGCAAAATTCCCCAGCAAAAACCACTTTATTGCAAAATTCCCCAGCAAAAACCACTTTATTACCTACACTTCTTTTTAAAGAAAATCTTCTTTTTAAAGAAAATCTTCTTTTTAAAGAAAATTTTTAAACTAACT	ATGATGGTGGATTCTACTTTCTACAATAAGAT M M V D S T F Y N K I ACCAGTGAAGTCTACGAGATCATGGTGAAATG T S E V Y E I M V K C CACCTGAGTGAGATTGTGGAGAATCTGCTGCC H L S E I V E N L L P GACTTCCTGAAGAGTGACCATCCTGCTGTGGC D F L K S D H P A V A GTCACCTACAAAAACGAGGAAGACAAGCTGAA V T Y K N E E D K L K GCTGACAGTGGCTACATCATTCCTCTGCCTGAA A D S G Y I I P L P D AGGAACAGACACAGCTCGCAGACCTCTGAAGAC R N R H S S Q T S E E ATCAAGAGAGAGACAAGCTGCAGACCATTGAAGACAT I K R E D E T I E D I CTGGTGGAAGACAGCTTCCTGTAACTGGCGGAA CAGTTCCCAGCAAGACCATTTATTGCAATGC AAGTTCCCAGCAAGAGCCATGCAAGCCTTCAGTAGGAAGACATTCCAGCATTGTAACTGCCTCAGTAGGAAGACTTCCTGCAAGACACTTTATTGCAATGC AAGTTCCCAGCCAAGGGCCTTCCTGCAAGACACTTTATTACTGCAATGCCTCAGTAGGAAGACTTCCTGCAAGACACTTTTATACTGCGACAGACCTTCTGAAGACACTTTTATACTGCGACAGACCTTCTGAAGACACTTTTATACTGCGACAGACCTTCTGAAGACACTTTTATACTGCGACAGACA	ATGATGGTGGATTCTACTTTCTACAATAAGATCAAMM M V D S T F Y N K I K ACCAGTGAAGTCTACGAGATCATGGTGAAATGCTG T S E V Y E I M V K C W CACCTGAGTGAGATTGTGGAGAATCTGCTGCCTGGGH L S E I V E N L L P G GACTTCCTGAAGAGTGACCATCCTGCTGCCTGGGAAGAGACCATCCTGCAAGAGAGAG	ATGATGGTGGATTCTACTTTCTACAATAAGATCAAGAG M M V D S T F Y N K I K S ACCAGTGAAGTCTACGAGATCATGGTGAAATGCTGGAA T S E V Y E I M V K C W N CACCTGAGTGAGATTGTGGAGAATCTGCTGCCTGGACA H L S E I V E N L L P G Q GACTTCCTGAAGAGTGACCATCCTGCTGTGGCACGCAT D F L K S D H P A V A R M GTCACCTACAAAAACGAGGAAGACAAGCTGAAGGACTG V T Y K N E E D K L K D W GCTGACCAGTGGCTACATCATTCCTCTGCCTGACAATGAA A D S G Y I I P L P D I D AGGAACAGACAGCAGCTCCCAGACCTCTGAAGAGAGTGCA R N R H S S Q T S E E S A ATCAAGAGAGAGAGACAGCTTCCTGTAAGAGACATCGACAT I K R E D E T I E D I D M CTGGTGGAAGACAGCTTCCTGTAACTGGCGGAGG CAGTTCCCAGCAAGGCCTCCTGAAGAGACATCGACAT I K R E D E T I E D I D M CTGGTGGAAGACAGCTTCCTGTAACTGGCGGAGG AAGTTCCCAGCAAGAGCTTCCTGTAACTGGCGGAGGTTCTAAATAGGCCACATGAAATAGGCCACAGAAGGTTCCTAGTAGCATCTCAAGAATAATAGGCCACAGAAGGTGAACTTTGTGCTTCAATATTACTGCGACAGAAACCACTTTTTTAACTATTTGTAATTATGTATTAACTATCTTCTTTTGGACTTCTGAAGAGAGCCACTCAATGTAATTATGTATTAACTATCTTCTTTTGGACTTCTGAAGAGAGCCACTCAATGTAATTATGTATTAACTATCTTCTTTTGGACTTCTGAAGAGAGACCACTTCAAGAAGAGTGCATGAAATTAATGTATTAACTATCTTCTTTTGGACTTCTGAAGAGAGACCACTTCAAGAAGAGTGCATGAAATTAATGTATTAACTATCTTCTTTTGGACTTCTGAAGAGAGCCACTCAATGTAATTATGTATTAACTATCTTCTTTTGGACTTCTGAAGAGAGCCACTCAATGTAATTATGTATTAACTATCTTCTTTTTGAACTTTCTTT	S D V W S Y G I L L W E I F ATGATGGTGGATTCTACTTTCTACAATAAGATCAAGAGTGG M M V D S T F Y N K I K S G ACCAGTGAAGTCTACGAGATCATGGTGAAATGCTGGAACAG T S E V Y E I M V K C W N S CACCTGAGTGAGATTGTGGAGAATCTGCTGCCTGGCACAATA H L S E I V E N L L P G Q Y GACTTCCTGAAGAGTGACCATCCTGCTGGCACGCATGCG D F L K S D H P A V A R M R GTCACCTACAAAAACGAGGAAGACAAGCTGAAGACTGGGA V T Y K N E E D K L K D W E GCTGACAGTGGCTACATCATTCCTCTGCCTGACATTGACCC A D S G Y I I P L P D I D P AGGAACAGACACAGCTCGCAGACCTCTGAAGAGAGTGCCAT R N R H S S Q T S E E S A I ATCAAGAGAGAGACAGCTTCCTGTAACTGAGACATCGACATGAT I K R E D E T I E D I D M M CTGGTGGAAGACACAGCTTCCTGTAACTGGCGGATTCGAGGGC L V E D S F L 1089 ATCCCGTTCAGAAAACCACTTTATTGCAATGCGGAGGTTCAAGTGGCGCATGCGCGAATTCCAGCACATGATAGTTCCCAGCCAAGAGACACCTCCAGTAGCATTCAACTGCGCAATTCCACATTGAAGAAAACTGCTCAATAGCGGAAGTTCCAACTTTATTGCAATGCGGAAGTTCCAACTTTATTGCAATGCGGAAGTTCCAACTTTTATACTGCGACAGAACCTTCAACTTTTATACTACTTCTTTTGCAATGCCTCCAACATTTATACTTCAACTTCTTTTTGCAATGCCTCCAACATTTATACTTCAACTTCTTTTTGCAATGCCTCCAACATTTATTT	ATGATGGTGGATTCTACTTTCTACAATAAGATCAAGAGGGGTAM M V D S T F Y N K I K S G Y ACCAGTGAAGTCTACGAGATCATGGTGAAATGCTGGAACAGTGAT S E V Y E I M V K C W N S E CACCTGAGTGAGATTGTGGAGAATCTGCTGCCTGGACAATATAA H L S E I V E N L L P G Q Y K GACTTCCTGAAGAGTGACCATCCTGCTGTGGCACGCATGCGTGT D F L K S D H P A V A R M R V GTCACCTACAAAAACGAGGAAGACAAGCTGAAGGACTGGAGGGV T Y K N E E D K L K D W E G GCTGACAGTGGCTACATCATTCCTCTGCCTGACATTGACCCTGT A D S G Y I I P L P D I D P V AGGAACAGACACAGCTCGCAGACCTCTGAAGAGAGTGCCATTGACATTGACCCTGT I K R E D E T I E D I D M M D C CTGGTGGAAGACAGCTTCCTGTAACTGGCGGAGGTTCGAGGGGTTCCAGTGTTGACATTGCCTCTGCAGGAGGACTTCGAGGGGTTCTAAATATGAATAGGCCAGGGCCTCGGGGGGAGCGTTCTAAATATGAATCGTCAGTGTTGACCCTGTTAATTGCAATGCGGAGGTTCCAGTGGTCAGGGAATATAACTATCTTCTTTGGAATGCCTCAGTAGGACTTCAAGGAATTAACTATCTTCTTTGGAATGCCTCAGAGAGACCACTCAATCAA	S D V W S Y G I L L W E I F S L ATGATGGTGGATTCTACTTTCTACAATAAGATCAAGAGTGGGTACCG M M V D S T F Y N K I K S G Y R ACCAGTGAAGTCTACGAGATCATGGTGAAATGCTGGAACAGTGAGCC T S E V Y E I M V K C W N S E P CACCTGAGTGAGATTGTGGAGAATCTGCTGCCTGGACAATATAAAAA H L S E I V E N L L P G Q Y K K GACTTCCTGAAGAGTGACCATCCTGCTGTGGCACGCATGCGTGGGA D F L K S D H P A V A R M R V D GTCACCTACAAAAACGAGGAAGACAAGCTGAAGGACTGGGAGGGTGC V T Y K N E E D K L K D W E G G GCTGACAGTGGCTACATCATTCCTCTGCCTGACAATTGACCCTGTCCC A D S G Y I I P L P D I D P V P AGGAACAGACACAGCTCGCAGACCTCTGAAGAGAGTGCCATTGAGAC R N R H S S Q T S E E S A I E T ATCAAGAGAGAGACAGCTTCCTGTAACTGGCGGAGGTTCCT L V E D S F L 1089 ATCCCGTTCAGAAAACCACTTTATTGCAATGCGGAGGTTCCTC CAGCCAAGGGCCTCCTGAAGACATCGACATGATGAACGAC GTCAGTGTTGCCTCTTGCAATGCCGAGGGTTCCTT AAGGAACAAACCACTTTATTGCAATGCGGAGGTTGAGAGGAC GTCAGTGTTGCCTCTTGCAATGCCTCAGTAGCATCTAAATATGAATGA	ATGATGGTGGATTCTACTTTCTACAATAAGATCAAGAGTGGGTACCGGATM M V V D S T F Y N K I K S G Y R M ACCAGTGAAGTCTACGAGATCATGGTGAAATGCTGGAACAGTGAGCCGGAT S E V Y E I M V K C W N S E P E CACCTGAGTGAGATTGTGGAGAATCTGCTGCCTGGAACAATATAAAAAAGAG H L S E I V E N L L P G Q Y K K S GACTTCCTGAAGAGTGACCATCCTGCTGTGGCACGAATATAAAAAAGAG H L S E I V E N L L P G Q Y K K S GACTTCCTGAAGAGTGACCATCCTGCTGTGGCACGCATGCGTGTGGACTC D F L K S D H P A V A R M R V D S GTCACCTACAAAAACGAGGAAGACAAGCTGAAGGACTGGAGGAGGTGGTCT V T Y K N E E D K L K D W E G G L GCTGACAGTGGACACATCATTCCTCTGCCTGACAATTGACCCTGTCCCTGAAGAACAGACAAGACAAGCTGAAGAGACAATGAACCATTGAGACGGC R N R H S S Q T S E E S A I E T G ATCAAGAAGAGAGACAAGCTTCCTGTAACTGAGACATGAAGACAATGATGAACGACAATGATGAACAGACAAGCTTCCTGTAAACTAGACACATGAAGACAATGAACGACAATGAACAACAGCTTCCTGTAAACTAGACTGAAGAGACATCGACATGAAGAGACAAGCTTCCTGTAAACTAGACTGAAGAGACAATGAATG	ACCAGTGAAGATCTACCTCTCTACAATAAGATCAAGAGTGAGT	ATGATGGTGGATTCTACTTTCTACAATAAGATCAAGAGTGGGTACCGGATGGCCAAMM M V D S T F Y N K I K S G Y R M A K ACCAGTGAAGGTCTACGAGTCAGGATCATGGTGAAATGCTGGAACAGTGAGCCGGAGAGAGA	S D V W S Y G I L L W E I F S L G G T P ATGATGGTGGATTCTACTTTCTACAATAAGATCAAGAGTGGGTACCGGATGGCCAAGCC M M V D S T F Y N K I K S G Y R M A K P ACCAGTGAAGTCTACGAGATCATGGTGAAATGCTGGAACAGTGAGCCGGAGAAGAGACC T S E V Y E I M V K C W N S E P E K R P CACCTGAGTGAGATTGTGGAGAATCTGCTGCCTGGACAATATAAAAAGAGTTATGAAAA H L S E I V E N L L P G Q Y K K S Y E K GACTTCCTGAAGAGTGACCATCCTGCTGGCACGCATGCGTGGACCTCAGACAATGC D F L K S D H P A V A R M R V D S D N A GTCACCTACAAAAACGAGGAAGACAAGCTGAAGGACTGGGAGGGTGGTCTGGATGAGCA V T Y K N E E D K L K D W E G G L D E Q GCTGACAGTGGCTACATCATTCCTCTGCCTGACATTGACCCTGTCCCTGAGGAGGAGAGA A D S G Y I I P L P D I D P V P E E E D AGGAACAGACACAGCTCGCAGACCTCTGAAGAGAGTGCCATTGAGACGAGTTCCAGCAAG R N R H S S Q T S E E S A I E T G S S S ATCAAGAGAGAGACAAGCTCCTGAAGAGACATCGACATGATGGACGACATCGGCATAGA I K R E D E T I E D I D M M D D I G I D ATCCCGTTCAGAAAACCACTTTATTGCAATGCGGAGGGTTCCAGCACTCTCCAGTTCCAGTTCAGAGAGAG	S D V W S Y G I L L W E I F S L G G T P Y ATGATGGTGGATTCTACTTTCTACAATAAGATCAAGAGTGGGTACCGGATGGCCAAGCCTGA M M V D S T F Y N K I K S G Y R M A K P D ACCAGTGAAGTCTACGAGATCATGGTGAAATGCTGGAACAGTGAGCCGGAGAAGAGACCCTC T S E V Y E I M V K C W N S E P E K R P S CACCTGAGTGAGATTGTGGAGAATCTGCTGCCTGGACAATATAAAAAGAGTTATGAAAAAAT H L S E I V E N L L P G Q Y K K S Y E K I GACTTCCTGAAGAGTGACCATCCTGCTGTGGCCACGCATGCGTGTGGACTCAGACAATGCATA D F L K S D H P A V A R M R V D S D N A Y GTCACCTACAAAAACGAGGAAGACAAGCTGAAGGACTGGGAGGGGTTCTGGATGAGCAGAC V T Y K N E E D K L K D W E G G L D E Q R GCTGACAGTGGCTACATCATTCCTCTGCCTGACAATTGACCCTGTCCCTGAGGAGGAGGACCT A D S G Y I I P L P D I D P V P E E E D L AGGAACAGACACAGCTCGCAGACCTCTGAAGAGAGTGCCATTGAGACGAGACCT R N R H S S Q T S E E S A I E T G S S S S CTGGTGGAAGACACAGCTTCCTGTAACTGGCGGAGTTCGACGAGGGGTTCCCACCTTCCACTTCCTGGGGCC L V E D S F L 1089 ATCCCGTTCAGAAAACCACTTTCTTGCAATGCGGAGTTCAAATATGAATGA	ATGATGGTGGATTCTACTTTCTACAATAAGATCAAGAGTGGGTACCGGATGGCCAAGCCTGACCAM M M V D S T F Y N K I K S G Y R M A K P D H ACCAGTGAAGTCTACGAGATCATGGTGAAATGCTGGAACAGTGAGCCGGAGAAGAGACCCTCCTT T S E V Y E I M V K C W N S E P E K R P S F CACCTGAGTGAGATTGTGGAGAATCTGCTGCCTGGCCTG

Figure 12

Description

METHODS OF PRODUCING SECRETED RECEPTOR ANALOGS AND BIOLOGICALLY ACTIVE DIMERIZED POLYPEPTIDE FUSIONS

5

35

Cross Reference to Related Application

This application is a continuation-in-part of U.S. Application Serial No. 07/347,291, filed May 2, 1989, which is a continuation-in-part application of U.S. Application Serial No. 146,877, filed January 22, 1988, now abandoned.

Technical Field

The present invention is generally directed toward the expression of proteins, and more specifically, toward the expression of growth factor receptor analogs and biologically active dimerized polypeptide fusions.

Background of the Invention

20 In higher eucaryotic cells, the interaction between receptors and ligands (e.g., hormones) central importance in the transmission of and response to a variety of extracellular signals. It is generally accepted that hormones and growth factors elicit their biological functions by binding to specific recognition 25 sites (receptors) in the plasma membranes of their target ligand binding, cells. Upon a receptor undergoes a conformational change, triggering secondary cellular responses that result in the activation or inhibition of 30 intracellular processes. The stimulation or blockade of such an interaction by pharmacological means has important therapeutic implications for a wide variety of illnesses.

Ligands fall into two classes: those that have stimulatory activity, termed agonists; and those that block the effects elicited by the original ligands, termed antagonists. The discovery of agonists that differ in structure and composition from the original ligand may be

15

medically useful. In particular, agonists that smaller than the original ligand may be especially useful. The bioavailability of these smaller agonists may greater than that of the original ligand. This may be of 5 particular importance for topical applications and for instances when diffusion of the agonist to its target sites is inhibited by poor circulation. Agonists may also have slightly different spectra of biological activity and/or different potencies, allowing them to be used in very specific situations. Agonists that are smaller and chemically simpler than the native ligand may be produced in greater quantity and at lower cost. The identification of antagonists which specifically block, for example, growth factor receptors has important pharmaceutical applications. Antagonists that block receptors against the action of endogenous, native ligand may be used as therapeutic agents for conditions including atherosclerosis, autocrine tumors, fibroplasia and keloid formation.

20 The discovery of new ligands that may be used in pharmaceutical applications has centered around designing compounds by chemical modification, complete synthesis, and screening potential ligands by complex and costly screening procedures. The process of designing a new ligand usually begins with the alteration of the structure 25 of the original effector molecule. If the original effector molecule is known to be chemically simple, for example, a catecholamine or prostaglandin, the task is relatively straightforward. However, if the ligand is structurally complex, for example, a peptide hormone or a growth factor, finding a molecule which is functionally equivalent to the original ligand becomes difficult.

Currently, potential ligands are screened using radioligand binding methods (Lefkowitz et al., Biochem. 35 Biophys. Res. Comm. 60: 703-709, 1974; Aurbach et al., Science 186: 1223-1225, 1974; Atlas et al., Proc. Natl.

20

25

Acad. Sci. USA 71: 4246-4248, 1974). Potential ligands be directly assayed by binding the radiolabeled compounds to responsive cells, to the membrane fractions of disrupted cells, or to solubilized Alternatively, potential ligands may be screened by their ability to compete with a known labeled ligand for cell surface receptors.

The success of these procedures depends on the availability of reproducibly high quality preparations of 10 membrane fractions or receptor molecules, as well as the isolation of responsive cell lines. The preparation of membrane fractions and soluble receptor molecules involves extensive manipulations and complex purification steps. isolation of membrane fractions requires gentle The manipulation of the preparation, a procedure which does 15 not lend itself to commercial production. It is very difficult to maintain high biological activity biochemical purity of receptors when they are purified by classical protein chemistry methods. Receptors, being integral membrane proteins, require cumbersome purification procedures, which include the use detergents and other solvents that interfere with their biological activity. The use of these preparations in ligand binding assays typically results in low reproducibility due to the variability of membrane preparations.

As noted above, ligand binding assays require the isolation of responsive cell lines. Often, only a limited subset of cells is responsive to a particular 30 agent, and such cells may be responsive only under certain In addition, these cells may be difficult to conditions. grow in culture or may possess a low number of receptors. Currently available cell types responsive to plateletderived growth factor (PDGF), for example, contain only a low number (up to 4 x 10^5 ; see Bowen-Pope and Ross, J. 35 Biol. Chem. 257: 5161-5171, 1982) of receptors per cell,

15

20

25

30

thus requiring large numbers of cells to assay PDGF analogs or antagonists.

Presently, only naturally-occurring а few secreted receptors, for example, the interleukin-2 receptor (IL-2-R) have been identified. Rubin et al. (J. <u>Immun.</u> 135: 3172-3177, 1985) have reported the release of large quantities of IL-2-R into the culture medium of activated T-cell lines. Bailon et al. (Bio/Technology 5: 1195-1198, 1987) have reported the use of a matrix-bound interleukin-2 receptor to purify recombinant interleukin-2.

Three other receptors have been secreted from mammalian cells. The insulin receptor (Ellis et al., J. Cell Biol. 150: 14a, 1987), the HIV-1 envelope glycoprotein cellular receptor CD4 (Smith et al., Science 238: 1704-1707, 1987), the murine IL-7 receptor (Cell 60: 941-951, 1990) and the epidermal growth factor (EGF) receptor (Livneh et al., J. Biol. Chem. 261: 12490-12497, 1986) have been secreted from mammalian cells using truncated cDNAs that encode portions of the extracellular domains.

Naturally-occurring, secreted receptors have not been widely identified, and there have been only a limited number of reports of secreted recombinant receptors. Secreted receptors may be used in a variety of assays, which include assays to determine the presence of ligand in biological fluids and assays to screen for potential agonists and antagonists. Current methods for ligand screening and ligand/receptor binding assays have been limited to those using preparations of whole cells or cell membranes for as a source for receptor molecules. The low reproducibility and high cost of producing preparations does not lend itself to commercial There is therefore a need in the art for a production. method of producing secreted receptors. There further need in the art for an assay system that permits high volume screening of compounds that may act on higher eucaryotic cells via specific surface receptors.

assay system should be rapid, inexpensive and adaptable to high volume screening. The present invention discloses such a method and assay system, and further provides other related advantages.

5

10

15

20

25

30

Disclosure of Invention

Briefly stated, the present invention discloses methods for producing secreted receptor analogs, including receptor analogs and secreted platelet-derived growth factor receptor (PDGF-R) analogs. In addition, the present invention discloses methods for producing secreted biologically active dimerized polypeptide fusions.

Within one aspect of the invention a method for producing secreted PDGF-R is а analog disclosed, comprising (a) introducing into a eukaryotic host cell a construct comprising a transcriptional promoter operatively linked to a secretory signal sequence followed downstream of and in proper reading frame with a DNA sequence encoding at least a portion of the ligand-binding domain of a PDGF-R, the portion including a ligand-binding domain; (b) growing the host cell in an appropriate growth medium under physiological conditions to secretion of a PDGF-R analog encoded by said DNA sequence; and (c) isolating the PDGF-R analog from the host cell.

Within one embodiment of the present invention, a PDGF-R analog comprising the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, to methionine, number 441, is secreted. Within another embodiment, a PDGF-R analog comprising the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29 to lysine, number 531 is secreted. Within yet another embodiment of the invention, a PDGF-R analog comprising the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524 is secreted.

Yet another aspect of the present invention discloses a method for producing a secreted, biologically

active dimerized polypeptide fusion. The method generally comprises a) introducing into a eukaryotic host cell a DNA construct comprising transcriptional a promoter operatively linked to a secretory signal sequence followed downstream by and in proper reading frame with a DNA non-immunoglobulin sequence encoding a polypeptide requiring dimerization for biological activity joined to a dimerizing protein; (b) growing the host cell in an appropriate growth medium under physiological conditions to allow the secretion of a dimerized polypeptide fusion encodes by said DNA sequence; and (c) isolating the biologically active dimerized polypeptide fusion from the host cell.

Within one embodiment, the dimerizing protein is 15 yeast invertase. Within another embodiment, is dimerizing protein at least a portion of immunoglobulin light chain. Within another embodiment, the dimerizing protein is at least a portion of immunoglobulin heavy chain.

20 In another aspect of the invention, a method is disclosed for producing a secreted, biologically active dimerized polypeptide fusion, comprising (a) introducing into eukaryotic host cell a first DNA construct comprising a transcriptional promoter operatively linked 25 to a first secretory signal sequence followed downstream by and in proper reading frame with a first DNA sequence encoding non-immunoglobulin polypeptide requiring dimerization for biological activity to joined an light immunoglobulin chain constant region; (b) 30 introducing into the host cell a second DNA construct comprising a transcriptional promoter operatively linked to a second secretory signal sequence followed downstream by and in proper reading frame with a second DNA sequence encoding an immunoglobulin heavy chain constant region 35 domain selected from the group consisting of CH1, CH2, CH3, and CH4; (c) growing the host cell in an appropriate growth medium under physiological conditions to allow the

secretion of a dimerized polypeptide fusion encoded by said first and second DNA sequences; and (d) isolating the dimerized polypeptide fusion from the host cell. In one embodiment, the second DNA sequence further encodes an immunoglobulin heavy chain hinge region wherein the hinge region is joined to the heavy chain constant region domain. In a preferred embodiment, the second DNA sequence further encodes an immunoglobulin variable region joined upstream of and in proper reading frame with the immunoglobulin heavy chain constant region.

In another aspect of the invention, a method is disclosed for producing a secreted, biologically active dimerized polypeptide fusion, comprising (a) introducing into a eukaryotic host cell а first DNA construct 15 comprising a transcriptional promoter operatively linked to a first secretory signal sequence followed downstream by and in proper reading frame with a first DNA sequence encoding non-immunoglobulin polypeptide requiring dimerization for biological activity ioined immunoglobulin heavy chain constant region domain selected from the group consisting of $C_{\rm H}1$, $C_{\rm H}2$, $C_{\rm H}3$, and $C_{\rm H}4$; (b) introducing into the host cell a second DNA construct comprising a transcriptional promoter operatively linked to a second secretory signal sequence followed downstream by and in proper reading frame with a second DNA sequence encoding an immunoglobulin light chain constant region; (c) growing the host cell in an appropriate growth medium under physiological conditions to allow the secretion of a dimerized polypeptide fusion encoded by said first and 30 second DNA sequences; and (d) isolating the dimerized polypeptide fusion from the host cell. In one embodiment, the first DNA sequence further encodes an immunoglobulin heavy chain hinge region wherein the hinge region is joined to the heavy chain constant region domain. In a 35 preferred embodiment, the second DNA sequence further encodes an immunoglobulin variable region joined upstream

of and in proper reading frame with the immunoglobulin light chain constant region.

In another aspect of the invention, a method is disclosed for producing a secreted, biologically active 5 dimerized polypeptide fusion, comprising (a) introducing into a eukaryotic host cell a DNA construct comprising a transcriptional promoter operatively linked to a secretory signa sequence followed downstream by and in proper frame with a DNA sequence encoding 10 immunoglobulin polypeptide requiring dimerization biological activity joined to an immunoglobulin heavy chain constant region domain selected from the group consisting of $C_{\rm H}1$, $C_{\rm H}2$, $C_{\rm H}3$, and $C_{\rm H}4$; (b) growing the host cell in an appropriate growth medium under physiological 15 conditions to allow the secretion of а dimerized polypeptide fusion encoded by said first and second DNA sequences; and (c) isolating the biologically active dimerized polypeptide fusion from the host cell. In one embodiment, the DNA sequence further encodes immunoglobulin heavy chain hinge region wherein the hinge region is joined to the heavy chain constant region domain.

In another aspect of the invention, a method is disclosed for producing a secreted, biologically active dimerized polypeptide fusion, comprising (a) introducing 25 eukaryotic host cell a first DNA construct comprising a transcriptional promoter operatively linked to a first secretory signal sequence followed downstream by and in proper reading frame with a first DNA sequence encoding a first polypeptide chain of a non-immunoglobulin polypeptide dimer requiring dimerization for biological activity joined to an immunoglobulin heavy chain constant region domain, selected from the group consisting of CH1, C_{H2} , C_{H3} , and C_{H4} ; (b) introducing into the host cell a second DNA construct comprising a transcriptional promoter operatively linked to a second secretory signal sequence followed downstream by and in proper reading frame with a

15

20

25

30

35

second DNA sequence encoding a second polypeptide chain of the non-immunoglobulin polypeptide dimer joined to an immunoglobulin light chain constant region domain; (c) growing the host cell in an appropriate growth medium under physiological conditions to allow the secretion of a dimerized polypeptide fusion encoded by said first and second DNA sequences wherein said dimerized polypeptide fusion exhibits biological activity characteristic of said non-immunoglobulin polypeptide dimer; and (d) isolating the dimerized polypeptide fusion from the host cell. In one embodiment the first DNA sequence further encodes an immunoglobulin heavy chain hinge region domain wherein the hinge region is joined to the immunoglobulin heavy chain constant region domain.

Within one embodiment of the present invention, biologically active dimerized polypeptide comprising the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, methionine, number 441, is secreted. Within embodiment, a biologically active dimerized polypeptide fusion comprising the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29 lysine, number 531 is secreted. Within another embodiment of the invention, а biologically dimerized polypeptide fusion comprising the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number secreted. Within yet another embodiment of the invention, biologically active dimerized polypeptide comprising the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29 to lysine, number 531 dimerized to the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524 is secreted.

In yet another aspect of the invention, a method is disclosed for producing a secreted receptor analog, comprising (a) introducing into a eukaryotic host cell a

10

15

20

25

30

construct DNA comprising a transcriptional promoter operatively linked to at least one secretory sequence followed downstream by and in proper reading frame with a DNA sequence encoding a ligand-binding domain receptor requiring dimerization for activity joined to a dimerizing protein; (b) growing the cell in an appropriate growth medium physiological conditions to allow the secretion receptor analog encoded by said DNA sequence; and (c) isolating the receptor analog from the host cell.

In yet another aspect of the invention, a method is disclosed for producing a secreted receptor analog, comprising (a) introducing into a eukaryotic host cell a first DNA construct comprising a transcriptional promoter operatively linked to a first secretory signal sequence followed downstream by and in proper reading frame with a first DNA sequence encoding a ligand-binding domain of a receptor requiring dimerization for biological activity joined to an immunoglobulin light chain constant region; (b) introducing into the host cell a second DNA construct comprising a transcriptional promoter operatively linked to a second secretory signal sequence followed downstream by and in proper reading frame with a second DNA sequence encoding an immunoglobulin heavy chain constant region domain, selected from the group consisting of CH1, CH2, CH3, and CH4; (c) growing the host cell in an appropriate growth medium under physiological conditions to allow the secretion of a receptor analog encoded by said first and second DNA sequences; and (d) isolating the receptor analog from the host cell. In one embodiment, the second DNA sequence further encodes an immunoglobulin heavy chain hinge region wherein the hinge region is joined to the heavy chain constant region domain. In a preferred embodiment, the second DNA sequence further encodes an immunoglobulin variable region joined upstream of and in proper reading frame with the immunoglobulin heavy chain constant region.

15

20

25

30

35

In another aspect of the invention, a method is for producing a secreted receptor comprising (a) introducing into a eukaryotic host cell a construct comprising a transcriptional promoter operatively linked to a secretory signal sequence followed downstream by and in proper reading frame with a DNA sequence encoding a ligand-binding domain of a receptor requiring dimerization for biological activity joined to immunoglobulin heavy chain constant region domain, selected from the group CH1, CH2, CH3, and CH4; growing the host cell in an appropriate growth medium under physiological conditions to allow the secretion of the receptor analog; and (c) isolating the receptor analog In one embodiment, the DNA sequence from the host cell. further encodes an immunoglobulin heavy chain hinge region wherein the hinge region is joined to the heavy chain constant region domain.

In another aspect of the invention, a method is disclosed for producing а secreted receptor comprising (a) introducing into a eukaryotic host cell a first DNA construct comprising a transcriptional promoter operatively linked to a first secretory signal sequence followed downstream of and in proper reading frame with a first DNA sequence encoding a ligand-binding domain of a receptor requiring dimerization for biological activity joined to an immunoglobulin heavy chain constant region domain, selected from the group $C_{\rm H}1$, $C_{\rm H}2$, $C_{\rm H}3$, and $C_{\rm H}4$; (b) introducing into the host cell a second DNA construct comprising a transcriptional promoter operatively linked to a second secretory signal sequence followed downstream by and in proper reading frame with a second DNA sequence encoding an immunoglobulin light chain constant region; (c) growing the host cell in an appropriate growth medium under physiological conditions to allow the secretion of a receptor analog encoded by said first and second DNA sequences; and (d) isolating the receptor analog from the host cell. In one embodiment, the first DNA sequence

15

30

further encodes an immunoglobulin heavy chain hinge region wherein the hinge region is joined to the heavy chain constant region domain. In a preferred embodiment, the second DNA sequence further encodes an immunoglobulin variable region joined upstream of and in proper reading frame with the immunoglobulin light chain constant region.

In another aspect of the invention, a method is disclosed for producing a secreted receptor analog, comprising (a) introducing into a eukaryotic host cell a first DNA construct comprising a transcriptional promoter operatively linked to a first secretory signal sequence followed downstream in proper reading frame by a first DNA sequence encoding a first polypeptide chain of a ligandbinding domain of a receptor requiring dimerization for biological activity joined to an immunoglobulin heavy chain constant region domain, selected from the group $C_{\rm H}1$, $C_{\rm H}2$, $C_{\rm H}3$, and $C_{\rm H}4$; (b) introducing into the host cell a second DNA construct comprising a transcriptional promoter operatively linked to a second secretory signal sequence followed downstream by and in proper reading frame with a second DNA sequence encoding a second polypeptide chain of the ligand-binding domain of said receptor joined to an immunoglobulin light chain constant region domain; growing the host cell in an appropriate growth medium under physiological conditions to allow the secretion of a receptor analog encoded by said first and second DNA sequences; and (d) isolating the receptor analog from the host cell. In one embodiment the first DNA sequence further encodes an immunoglobulin heavy chain hinge region domain wherein the hinge region is joined immunoglobulin heavy chain constant region domain.

Host cells for use in the present invention include cultured mammalian cells and fungal cells. In a preferred embodiment strains of the yeast <u>Saccharomyces</u>

35 <u>cerevisiae</u> are used as host cells. Within another preferred embodiment cultured rodent myeloma cells are used as host cells.

: ::

10

15

20

Within one embodiment of the present invention, a receptor analog is a PDGF-R analog comprising the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, to methionine, number 441. Within another embodiment a PDGF-R analog comprises the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, to lysine, number 531. Within another embodiment of the invention, a PDGF-R analog comprises the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524 is secreted. Within yet another embodiment of the invention, a PDGF-R analog comprises the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29 to lysine, number 531 and the amino acid sequence of Figure (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524 is secreted.

PDGF-R analogs produced by the above-disclosed methods may be used, for instance, within a method for determining the presence of human PDGF or an isoform thereof in a biological sample.

A method for determining the presence of human PDGF or an isoform thereof in a biological sample is disclosed and comprises (a) incubating a polypeptide comprising a PDGF receptor analog fused to a dimerizing 25 protein with a biological sample suspected of containing PDGF or an isoform thereof under conditions that allow the formation of receptor/ligand complexes; and (b) detecting the presence of receptor/ligand complexes, and therefrom determining the presence of PDGF or an isoform thereof. 30 Suitable biological samples in this regard include blood, urine, plasma, serum, platelet and other cell lysates, platelet releasates, cell suspensions, cell-conditioned culture media, and chemically or physically separated portions thereof.

These and other aspects of the present invention will become evident upon reference to the following detailed description and attached drawings.

5 Brief Description of the Drawings

Figure 1 (Sequence ID Numbers 1 and 2) illustrates the nucleotide sequence of a representative PDGF $\overline{\beta}$ -receptor cDNA and the derived amino acid sequence of the primary translation product and corresponds to Sequence ID Number 1). Numbers above the lines refer to the nucleotide sequence; numbers below the lines refer to the amino acid sequence.

Figure 2 illustrates the construction of pBTL10, pBTL11 and pBTL12.

Figure 3 illustrates the construction of pCBS22.

Figure 4 illustrates the construction of pBTL13 and pBTL14.

Figure 5 illustrates the construction of pBTL15.

Figure 6 illustrates the construction of pBTL22 and pBTL26.

Figure 7 illustrates the construction of pSDL114. Symbols used are S.S., signal sequence, C_k , immunoglobulin light chain constant region sequence; μ prom, μ promoter, μ enh; μ enhancer.

25 Figure 8 illustrates the construction pSDLB113. Symbols used are S.S., signal sequence; CH1, immunoglobulin heavy chain constant region $C_{H}2$, $C_{H}3$, domain sequences; H, immunoglobulin heavy chain hinge region sequence; M, immunoglobulin membrane anchor 30 sequences; $C_{\gamma}1M$, immunoglobulin heavy chain constant region and membrane anchor sequences.

Figure 9 illustrates the constructions pBTL115, pBTL114, p ϕ 5V_HHuC $_{\gamma}$ 1M-neo, plC ϕ 5V $_{\kappa}$ HuC $_{\kappa}$ -neo. Symbols used are set forth in Figures 7 and 8, and also include L $_{\rm H}$, mouse immunoglobulin heavy chain signal sequence; V $_{\rm H}$, mouse immunoglobulin heavy chain variable region sequence; E, mouse immunoglobulin heavy chain enhancer sequence; L $_{\kappa}$,

mouse immunoglobulin light chain signal sequence; ϕ_{5V_K} , mouse immunoglobulin light chain variable region sequence; Neo^R, <u>E. coli</u> neomycin resistance gene.

Figure 10 illustrates the constructions Zem229R, 5 p ϕ 5VHFab-neo and pWKI. Symbols used are set forth in Figure 9.

Figure 11 illustrates the sequence of a representative PDGF α-receptor cDNA and the deduced amino acid sequence (using standard one-letter codes) encoded by the cDNA and corresponds to Sequence ID Numbers 35 and 36. Numbers at the ends of the lines refer to nucleotide positions. Numbers below the sequence refer to amino acid positions.

Figure 12 illustrates the assembly of a cDNA molecule encoding a PDGF α -receptor. Complementary DNA sequences are shown as lines. Only those portions of the vectors adjacent to the cDNA inserts are shown.

Detailed Description of the Invention

Prior to setting forth the invention, it may be helpful to an understanding thereof to set forth definitions of certain terms to be used hereinafter.

DNA Construct: A DNA molecule, or a clone of such a molecule, either single- or double-stranded that has been modified through human intervention to contain segments of DNA combined and juxtaposed in a manner that as a whole would not otherwise exist in nature.

DNA constructs contain the information necessary to direct the expression and/or secretion of DNA sequences encoding polypeptides of interest. DNA constructs will generally include promoters, enhancers and transcription terminators. DNA constructs containing the information necessary to direct the secretion of a polypeptide will also contain at least one secretory signal sequence.

Secretory Signal Sequence: A DNA sequence encoding a secretory peptide. A secretory peptide is an amino acid sequence that acts to direct the secretion of a

15

25

30

35

mature polypeptide or protein from a cell. peptides are characterized by a core of hydrophobic amino acids and are typically (but not exclusively) found at the amino termini of newly sythesized proteins. the secretory peptide is cleaved from the mature protein during secretion. Such secretory peptides processing sites that allow cleavage of the signal peptides from the mature proteins as it passes through the secretory pathway. Processing sites may be encoded within the signal peptide or may be added to the signal peptide by, for example, in vitro mutagenesis. Certain secretory peptides may be used in concert to direct the secretion of polypeptides and proteins. One such secretory peptide that may be used in combination with other secretory peptides is the third domain of the yeast Barrier protein.

; 5

Receptor Analog: A non-immunoglobulin polypeptide comprising a portion of a receptor which is capable of binding ligand and/or are recognized by antireceptor antibodies. The amino acid sequence of the receptor analog may contain additions, substitutions or deletions as compared to the native receptor sequence. receptor analog may be, for example, the ligand-binding domain of a receptor joined to another protein. Plateletderived growth factor receptor (PDGF-R) analogs may, for example, comprise a portion of a PDGF receptor capable of binding anti-PDGF receptor antibodies. PDGF. **PDGF** isoforms, PDGF analogs, or PDGF antagonists.

<u>Dimerizing Protein</u>: A polypeptide chain having affinity for a second polypeptide chain, such that the two chains associate under physiological conditions to form a dimer. The second polypeptide chain may be the same or a different chain.

Biological activity: A function or set of activities performed by a molecule in a biological context (i.e., in an organism or an in vitro facsimile thereof). Biological activities may include the induction of extracellular matrix secretion from responsive cell lines,

15

20

25

30

35

the induction of hormone secretion, the induction of chemotaxis, the induction of mitogenesis, the induction of differentiation, or the inhibition of cell division of responsive cells. A recombinant protein or peptide is considered to be biologically active if it exhibits one or more biological activities of its native counterpart.

Ligand: A molecule capable of being bound by the ligand-bindind domain of a receptor or by a receptor analog. The molecule may be chemically synthesized or may occur in nature. Ligands may be grouped into agonists and antagonists. Agonists are those molecules whose binding to a receptor induces the response pathway within a cell. Antagonists are those molecules whose binding to a receptor blocks the response pathway within a cell.

Joined: Two or more DNA coding sequences are said to be joined when, as a result of in-frame fusions between the DNA coding sequences or as a result of the removal of intervening sequences by normal cellular processing, the DNA coding sequences are translated into a polypeptide fusion.

As noted above, the present invention provides methods for producing biologically active dimerized polypeptide fusions and secreted receptor analogs, which include, for example, PDGF receptor analogs. receptor analogs may be used to screen for new compounds that act as agonists or antagonists when interacting with cells containing membrane-bound receptors. In addition, the methods of the present invention provide dimerized non-immunoglobulin polypeptide fusions of therapeutic that are biologically active only as dimers. Moreover, the present invention provides methods producing polypeptide dimers that are biologically active non-covalently associated dimers. Secreted, biologically active dimers that may be produced using the present invention include nerve growth factor,

25

stimulating factor-1, factor XIII, and transforming growth factor β .

As used herein, the ligand-binding domain of a receptor is that portion of the receptor that is involved with binding the natural ligand. While not wishing to be bound by theory, the binding of a natural ligand to a receptor is believed to induce a conformational change which elicits a response to the change within the response pathway of the cell. For membrane-bound receptors, the ligand-binding domain is generally believed to comprise the extracellular doamin for the receptor. The structure of receptors may be predicted from the primary translation products using the hydrophobicity plot function of, for example, P/C Gene or Intelligenetics Suite (Intelligenetics, Mt. View, CA) or may be predicted according to the methods described, for example, by Kyte and Doolittle, J. Mol. Biol. 157:105-132, 1982). ligand-binding domain of the PDGF β -receptor, for example, has been predicted to include amino acids 29-531 of the 20 published sequence (Gronwald et al., ibid.). The ligandbinding domain of the PDGF α -receptor has been predicted to include amino acids 25-500 of the published α -receptor sequence (Matsui et al., ibid.). As used herein, the ligand-binding domain of the PDGF β -receptor amino acids 29-441 of the sequence of Figure 1 (Sequence ID Number 1) and C-terminal extensions up to and including amino acid 531. The ligand-binding domain of the PDGF α receptor is understood to include amino acids 24-524 of Figure 11 (Sequence ID Numbers 35 and 36).

30 Receptor analogs that may be used in the present invention include the ligand-binding domains of epidermal growth factor receptor (EGF-R) and the insulin As used herein, a ligand-binding domain is that receptor. portion of the receptor that is involved in binding ligand and is generally a portion or essentially all of the 35 extracellular domain that extends from the plasma membrane into the extracellular space. The ligand-binding domain

25

30

35

of the EGF-R, for example, resides in the extracellular domain. EGF-R dimers have been found to exhibit higher ligand-binding affinity than EGF-R monomers (Boni-Schnetzler and Pilch, Proc. Natl. Acad. Sci. USA 84:7832-7836, 1987). The insulin receptor (Ullrich et al., Nature 313:756-761, 1985) requires dimerization for biological activity.

Another example of a receptor that may secreted from a host cell is a platelet-derived growth factor receptor (PDGF-R). Two classes of PDGF-Rs, which recognized different isoforms of PDGF, have identified. (PDGF is disulfide-bonded, а two-chain molecule, which is made up of an A chain and a B chain. These chains may be combined as AB heterodimers, homodimers or BB homodimers. These dimeric molecules are referred to herein as "isoforms".) The β -receptor (PDGF β -R), which recognizes only the BB isoform of PDGF (PDGF-BB), has been described (Claesson-Welsh et al., Mol. Cell. Biol. 8:3476-3486, 1988; Gronwald et al., Proc. Natl. Acad. Sci. USA 85:3435-3439, 1988). The a-receptor (PDGFa-R), which recognizes all three PDGF isoforms (PDGF-AA, PDGF-AB and PDGF-BB), has been described by Matsui et al. (Science 243:800-804, 1989) and Kelly and Murray (pending commonly assigned U.S. Patent Application Serial 07/355,018, which is incorporated herein by reference). primary translation products of these indicate that each includes an extracellular implicated in the ligand-binding process, a transmembrane domain, and a cytoplasmic domain containing a tyrosine kinase activity.

The present invention provides a standardized assay system, not previously available in the art, for determining the presence of PDGF, PDGF isoforms, PDGF agonists or PDGF antagonists using a secreted PDGF receptor analogs. Such an assay system will typically involve combining the secreted PDGF receptor analog with a biological sample under physiological conditions which

the formation of receptor-ligand complexes, followed by detecting the presence of the receptor-ligand The term physiological conditions is meant to complexes. include those conditions found within the host organism and include, for example, the conditions of osmolarity, salinity and pH. Detection may be achieved through the use of a label attached to the PDGF receptor analog or through the use of a labeled antibody which is reactive with the receptor analog or the ligand. A wide variety of labels may be utilized, such as radionuclides, fluorophores, enzymes and luminescers. Receptor-ligand complexes may also be detected visually, immunoprecipitation assays which do not require the use of label. assay system provides secreted PDGF This receptor analogs that may be utilized in a variety of screening assays for, for example, screening for analogs The present invention also provides a methods for measuring the level of PDGF and PDGF isoforms in biological fluids.

20 As noted above, the present invention provides methods for producing dimerized polypeptide fusions that dimerization require for biological activity biological enhancement of activity. Polypeptides requiring dimerization for biological activity include, in 25 addition to certain receptors, nerve growth colony-stimulating factor-1 (CSF-1), transforming growth factor β (TGF- β), PDGF, and factor XIII. Nerve growth factor is a non-covalently linked dimer (Harper et al., J. Biol. Chem. 257: 8541-8548, 1982). CSF-1, which 30 specifically stimulates the proliferation and differentiation of cells of mononuclear phagocytic lineage, is a disulfide-bonded homodimer (Retternmier et al., Mol. Cell. Biol. 7: 2378-2387, 1987). $TGF-\beta$ is biologically active as a disulfide-bonded dimer (Assoian 35 et al., <u>J. Biol. Chem. 258</u>: 7155-7160, 1983). Factor XIII is a plasma protein that exists as a two chain homodimer in its activated form (Ichinose et al., Biochem. 25: 6900-

10

6906, 1986). PDGF, as noted above, is a disulfide-bonded, two chain molecule (Murray et al., U.S. Patent 4,766,073).

The present invention provides methods by which receptor analogs, including receptor analogs and PDGF-R analogs, requiring dimerization for activity secreted from host cells. The methods described herein are particularly advantageous in that they allow production of large quantities of purified receptors. The receptors may be used in assays for the screening of potential ligands, in assays for binding studies, imaging agents, and as agonists and antagonists within therapeutic agents.

A DNA sequence encoding a human PDGF receptor may be isolated as a cDNA using techniques known in the art (see, for example, Okayama and Berg, Mol. Cell. Biol. 15 2: 161-170, 1982; Mol. Cell. Biol. 3: 280-289, 1983) from a library of human genomic or cDNA sequences. libraries may be prepared by standard procedures, such as those disclosed by Gubler and Hoffman (Gene 25: 263-269, It is preferred that the molecule is a cDNA molecule because cDNA lack introns and are therefore more suited to manipulation and expression in transfected or transformed cells. Sources of mRNA for use in the preparation of a cDNA library include the MG-63 human 25 osteosarcoma cell line (available from ATCC under accession number CRL 1427), diploid human dermal fibroblasts and human embryo fibroblast and brain cells (Matsui et al., ibid.). A cDNA encoding a PDGF β -R has been cloned from a diploid human dermal fibroblast cDNA 30 using oligonucleotide probes complementary to sequences of the mouse PDGF receptor (Gronwald et al., ibid.). A PDGFa-R cDNA has been isolated by Matsui et al. from human embryo fibroblast and brain cells. Alternatively, a cDNA encoding a PDGFq-R may be isolated library prepared from MG-63 human osteosarcoma cells using a cDNA probe containing sequences encoding the transmembrane and cytoplasmic domains of the

15

(described by Kelly and Murray, ibid.). Partial cDNA clones (fragments) can be extended by re-screening of the library with the cloned cDNA fragment until the full sequence is obtained. In one embodiment, a ligand-binding domain of a PDGF receptor is encoded by the sequence of Figure 1 (Sequence ID Number 1) from amino acid 29 through amino acid 441. In another embodiment, a ligand-binding domain of a PDGF receptor is encoded by the sequence of Figure 1 (Sequence ID Number 1) from amino acid 29 through amino acid 531. In yet another embodiment, a ligandbinding domain of a PDGF receptor is encoded by the sequence of Figure 11 (Sequence ID Numbers 35 and 36) from amino acid 24 through amino acid 524. One skilled in the art may envision the use of smaller DNA sequence encoding the ligand-binding domain of a PDGF receptor containing at least 400 amino acids of the extracellular domain.

DNA sequences encoding EGF-R (Ullrich et al., Nature 304: 418-425, 1984), the insulin receptor (Ullrich et al., Nature 313: 756-761, 1985), nerve growth factor (Ullrich et 20 al. Nature 303: 821-825, 1983), factor-1 stimulating (Rettenmier al., et ibid.), transforming growth factor β (Derynck et al., Nature 316: 701-705, 1985), PDGF (Murray et al., ibid.), and factor XIII (Ichinose et al., ibid.) may also be used within the 25 present invention.

To direct polypeptides requiring dimerization for biological activity or receptor analogs into the secretory pathway of the host cell, at least one secretory signal sequence is used in conjunction with 30 sequence of interest. Preferred secretory signals include alpha factor signal sequence (pre-pro (Kurjan and Herkowitz, Cell 30: 933-943, 1982; Kurjan et al., U.S. Patent No. 4,546,082; Brake, EP 116,201, 1983), the PHO5 signal sequence (Beck et al., WO 86/00637), the BAR1 secretory signal sequence (MacKay et al., U.S. Patent 4,613,572; MacKay, WO 87/002670), immunoglobulin $V_{\rm H}$ signal sequences (Loh et al., Cell 33: 85-93, 1983; Watson Nuc. Acids. Res. 12: 5145-5164, 1984) and immunoglobulin V_K signal sequences (Watson, ibid.). Particularly preferred signal sequences are the <u>SUC2</u> signal sequence (Carlson et al., <u>Mol. Cell. Biol. 3</u>: 439-447, 1983) and PDGF receptor signal sequences. Alternatively, secretory signal sequences may be synthesized according to the rules established, for example, by von Heinje (<u>Eur. J. Biochem. 133</u>: 17-21, 1983; <u>J. Mol. Biol. 184</u>: 99-105, 1985; <u>Nuc. Acids. Res. 14</u>: 4683-3690, 1986).

10 Secretory signal sequences may be used singly or For example, a first secretory signal may be combined. sequence may be used singly or combined with a sequence encoding the third domain of Barrier (described in copending commonly assigned U.S. Patent Application Serial No. 07/104,316, which is incorporated by reference herein 15 in its entirety). The third domain of Barrier may be positioned in proper reading frame 3' of the DNA sequence of interest or 5' to the DNA sequence and in proper reading frame with both the secretory signal sequence and 20 the DNA sequence of interest.

In one embodiment of the present invention, a sequence encoding a dimerizing protein is joined to a sequence encoding a polypeptide chain of a polypeptide dimer or a receptor analog, and this fused sequence is joined in proper reading frame to a secretory signal 25 As shown herein, the present invention utilizes sequence. such an arrangement to drive the association of polypeptide or receptor analog to form a biologically active molecule upon secretion. Suitable dimerizing 30 proteins include the S. cerevisiae repressible phosphatase (Mizunaga et al., J. Biochem. (Tokyo) 103: 321-326, 1988), the s. <u>cerevisiae</u> type preprotoxin (Sturley et al., EMBO J. 5: 3381-3390, 1986), the s. <u>calsbergensis</u> alpha galactosidase melibiase 35 (Sumner-Smith et al., Gene 36: 333-340, 1985), the S. cerevisiae invertase (Carlson et al., Mol. Cell. Biol. 3: 439-447, 1983), the <u>Neurospora</u> crassa ornithine

25

35

decarboxylase (Digangi et al., J. Biol. Chem. 262: 7889-7893, immunoglobulin heavy chain hinge regions 1987), (Takahashi et al., Cell 29: 671-679, 1982), and other dimerizing immunoglobulin sequences. In a preferred embodiment, S. cerevisiae invertase is used to drive the 5 association of polypeptides into dimers. Portions of dimerizing proteins, such as those mentioned above, may be used as dimerizing proteins where those portions capable of associating as a dimer in a covalent or noncovlent manner. Such portions may be determined by, for example, altering a sequence encoding a dimerizing protein through in vitro mutagenesis to delete portions of the coding sequence. These deletion mutants may be expressed in the appropriate host to determine which portions retain the capablity of associating as dimers. Portions of immunoglobulin gene sequences may be used to drive the association of non-immunoglobulin polypeptides. These portions correspond to discrete domains of immunoglobulins. Immunoglobulins comprise variable and constant regions, which in turn comprise discrete domains that show similarity in their three-dimensional conformations. These discrete domains correspond immunoglobulin heavy chain constant region domain exons, immunoglobulin heavy chain variable region domain exons, immunoglobulin light chain varable region domain exons and immunoglobulin light chain constant region domain exons in immunoglobulin genes (Hood et al., in Immunology, Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA; Honjo et al., Cell 18: 559-568, 1979; Takahashi et al., Cell 29: 671-679, 1982; and Honjo, Ann. Rev. Immun. 1:499-528, 1983)). Particularly preferred portions immunoglobulin heavy chains include Fab and Fab' fragments. (An Fab fragment is а portion of an immunoglobulin heavy chain that includes a heavy chain variable region domain and a heavy chain constant region domain. Fab' fragment is a portion immunoglobulin heavy chain that includes a heavy chain

20

25

variable region domain, a heavy chain constant region domain and a heavy chain hinge region domain.)

It is preferred to use an immunoglobulin light chain constant region in association with at least one immunoglobulin heavy chain constant region domain. another embodiment, an immunoglobulin light chain constant region is associated with at least one immunoglobulin heavy chain constant region domain joined immunoglobulin hinge region. In one set of embodiments, an immunoglobulin light chain constant region joined in frame polypeptide chain of a non-immunoglobulin polypeptide dimer or receptor analog and is associated with at least one heavy chain constant region. preferred set of embodiments a variable region is joined upstream of and in proper reading frame with at least one immunoglobulin heavy chain constant region. In another embodiments, an immunoglobulin heavy chain frame with a polypeptide chain of a nonjoined in immunoglobulin polypeptide dimer or receptor analog and is associated with an immunoglobulin light chain constant In yet another set of embodiments, a polypeptide chain of а non-immunoglobulin polypeptide receptor analog joined is to at least one immunoglobulin heavy chain constant region which is joined immunoglobulin hinge region and is associated with an immunoglobulin light chain constant region. preferred set of embodiments an immunoglobulin varable region is joined upstream of and in proper reading frame with the immunoglobulin light chain constant region.

Immunoglobulin heavy chain constant region domains include C_H1 , C_{H2} , C_{H3} , and C_{H4} of any class of immunoglobulin heavy chain including γ , α , ϵ , μ , and δ classes (Honjo, ibid., 1983) A particularly preferred immunoglobulin heavy chain constant region domain is human 35 C_{H1} . Immunoglobulin variable regions include V_H , V_K , or V_{λ} .

DNA sequences encoding immunoglobulins may be cloned from a variety of genomic or cDNA libraries known in the art. The techniques for isolating such DNA sequences using probe-based methods are conventional 5 techniques and are well known to those skilled in the art. Probes for isolating such DNA sequences may be based on published DNA sequences (see, for example, Hieter et al., Cell 22: 197-207, 1980). Alternatively, the polymerase chain reaction (PCR) method disclosed by Mullis et al. 10 (U.S. Patent No. 4,683,195) and Mullis (U.S. Patent No. 4,683,202), incorporated herein by reference may be used. The choice of library and selection of probes for the isolation of such DNA sequences is within the level of ordinary skill in the art.

15 Host cells for use in practicing the present invention include eukaryotic cells capable of transformed or transfected with exogenous DNA and grown in culture, such as cultured mammalian and fungal including Fungal cells, species of yeast 20 Saccharomyces spp., Schizosaccharomyces spp.), filamentous fungi (e.g., <u>Aspergillus</u> spp., Neurospora spp.) may be used as host cells within the present invention. Strains of the yeast <u>Saccharomyces</u> <u>cerevisiae</u> are particularly preferred.

25 Expression units for in use the invention will generally comprise the following elements, operably linked in 5*'* 3′ a to orientation: transcriptional promoter, a secretory signal sequence a sequence encoding nonimmunoglobulin polypeptide 30 requiring dimerization for biological activity joined to a dimerizing protein and a transcriptional terminator. selection of suitable promoters, signal sequences terminators will be determined by the selected host cell and will be evident to one skilled in the art and are discussed more specifically below.

Suitable yeast vectors for use in the present invention include YRp7 (Struhl et al., Proc. Natl. Acad.

Sci. USA 76: 1035-1039, 1978), YEp13 (Broach et al., Gene 121-133, 1979), pJDB249 and pJDB219 (Beggs, Nature 275:104-108, 1978) and derivatives thereof. Such vectors will generally include a selectable marker, which may be one of any number of genes that exhibit a dominant phenotype for which a phenotypic assay exists to enable transformants to be selected. Preferred selectable markers are those that complement host cell auxotrophy, provide antibiotic resistance or enable a cell to utilize specific carbon sources, and include LEU2 (Broach et al. ibid.), <u>URA3</u> (Botstein et al., <u>Gene</u> <u>8</u>: 17, 1979), <u>HIS3</u> (Struhl et al., ibid.) or POT1 (Kawasaki and Bell, 171,142). Other suitable selectable markers include the CAT gene, which confers chloramphenical resistance on yeast cells.

Preferred promoters for use in yeast include promoters from yeast glycolytic genes (Hitzeman et al., J. Biol. Chem. 255: 12073-12080, 1980; Alber and Kawasaki, J. Mol. Appl. Genet. 1: 419-434, 1982; Kawasaki, U.S. Patent 20 No. 4,599,311) or alcohol dehydrogenase genes (Young et Genetic Engineering of Microorganisms for Chemicals, Hollaender et al., (eds.), p. 355, Plenum, New York, 1982; Ammerer, Meth. Enzymol. 101: 192-201, 1983). In this regard, particularly preferred promoters are the TPI1 promoter (Kawasaki, U.S. Patent No. 4,599,311, 1986) 25 and the ADH2-4° promoter (Russell et al., Nature 304: 652-654, 1983 and Irani and Kilgore, described in pending, commonly assigned U.S. Patent Application Serial 07/183,130, which is incorporated herein by reference). The expression units may also include a transcriptional terminator. A preferred transcriptional terminator is the TPI1 terminator (Alber and Kawasaki, ibid.).

In addition to yeast, proteins of the present invention can be expressed in filamentous fungi, for example, strains of the fungi <u>Aspergillus</u> (McKnight and Upshall, described in commonly assigned U.S. Patent 4,935,349, which is incorporated herein by reference).

, ÷.

Examples of useful promoters include those derived from Aspergillus nidulans glycolytic genes, such as the ADH3 promoter (McKnight et al., EMBO J. 4: 2093-2099, 1985) and the tpiA promoter. An example of a suitable terminator is the ADH3 terminator (McKnight et al., ibid.). The expression units utilizing such components are cloned into vectors that are capable of insertion into the chromosomal DNA of Aspergillus.

Techniques for transforming fungi are well known in the literature, and have been described, for instance, by Beggs (ibid.), Hinnen et al. (Proc. Natl. Acad. Sci. USA 75: 1929-1933, 1978), Yelton et al., (Proc. Natl. Acad. Sci. USA 81: 1740-1747, 1984), and Russell (Nature 301: 167-169, 1983). The genotype of the host cell will generally contain a genetic defect that is complemented by the selectable marker present on the expression vector. Choice of a particular host and selectable marker is well within the level of ordinary skill in the art.

a preferred embodiment, a Saccharomyces 20 cerevisiae host cell that contains a genetic deficiency in a gene required for asparagine-linked glycosylation of glycoproteins is used. Preferably, the S. cerevisiae host cell contains a genetic deficiency in the MNN9 gene (described in pending, commonly assigned U.S. Application Serial Nos. 116,095 and 189,547 which are incorporated by reference herein in their entirety). preferably, the S. cerevisiae host cell contains disruption of the MNN9 gene. S. cerevisiae host cells having such defects may be prepared using standard techniques of mutation and selection. Ballou et al. (J. Biol. Chem. 255: 5986-5991, 1980) have described isolation of mannoprotein biosynthesis mutants that are defective in genes which affect asparagine-linked glycosylation. Briefly, mutagenized S. cerevisiae cells were screened using fluoresceinated antibodies directed 35 against the outer mannose chains present on wild-type yeast. Mutant cells that did not bind antibody were

30

further characterized and were found to be defective in addition asparagine-linked of oligosaccharide moieties. To optimize production of the heterologous proteins, it is preferred that the host strain carries a 5 mutation, such as the S. cerevisiae pep4 mutation (Jones, Genetics 85: 23-33, 1977), which results in reduced proteolytic activity.

In addition to fungal cells, cultured mammalian cells may be used as host cells within the present invention. Preferred cell lines are rodent myeloma cell lines, which include p3X63Aq8 (ATCC TIB 9), FO (ATCC CRL 1646), NS-1 (ATCC TIB 18) and 210-RCY-Ag1 (Galfre et al., Nature 277: 131, 1979). A particularly preferred rodent myeloma cell line is SP2/0-Ag14 (ATCC CRL 1581). addition, a number of other cell lines may be used within the present invention, including COS-1 (ATCC CRL 1650), BHK, p363.Aq.8.653 (ATCC CRL 1580) Rat Hep I (ATCC CRL 1600), Rat Hep II (ATCC CRL 1548), TCMK (ATCC CCL 139), Human lung (ATCC CCL 75.1), Human hepatoma (ATCC HTB-52), Hep G2 (ATCC HB 8065), Mouse liver (ATCC CC 29.1), 293 20 (ATCC CRL 1573; Graham et al., <u>J. Gen. Virol.</u> 36: 59-72, 1977) and DUKX cells (Urlaub and Chasin, Proc. Natl. Acad. Sci USA 77: 4216-4220, 1980) A preferred BHK cell line is the tk ts13 BHK cell line (Waechter and Baserga, Proc. Natl. Acad. Sci USA 79: 1106-1110, 1982). A preferred BHK 25 cell line is the tk ts13 BHK cell line (Waechter and Baserga, Proc. Natl. Acad. Sci. USA 79: 1106-1110, 1982). A tk BHK cell line is available from the American Type Culture Collection, Rockville, MD, under accession number A particularly preferred tk BHK cell line is CRL 1632. BHK 570 which is available from the American Type Culture Collection under accession number 10314.

Mammalian expression vectors for use in carrying out the present invention will include a promoter capable of directing the transcription of a cloned gene or cDNA. 35 Preferred promoters include viral promoters and cellular promoters. Preferred viral promoters include the major

30

late promoter from adenovirus 2 (Kaufman and Sharp, Mol. Cell. Biol. 2: 1304-13199, 1982) and the SV40 promoter (Subramani et al., Mol. Cell. Biol. 1: 854-864, 1981). promoters include the cellular Preferred metallothionein 1 promoter (Palmiter et al., Science 222: 809-814, 1983) and a mouse V_{κ} promoter (Grant et al., Nuc. A particularly preferred 1987). Acids Res. 15: 5496, promoter is a mouse V_H promoter (Loh et al., ibid.). expression vectors may also contain a set of RNA splice sites located downstream from the promoter and upstream from the DNA sequence encoding the peptide or protein of Preferred RNA splice sites may be obtained from interest. adenovirus and/or immunoglobulin genes. Also contained in the expression vectors is a polyadenylation signal located coding of interest. sequence downstream of the early or the Polyadenylation signals include polyadenylation signals from SV40 (Kaufman and Sharp, ibid.), the polyadenylation signal from the adenovirus 5 E1B region and the human growth hormone gene terminator (DeNoto et al., Nuc. Acids Res. 9: 3719-3730, 1981). 20 particularly preferred polyadenylation signal is the V_{H} gene terminator (Loh et al., ibid.). The expression vectors may include a noncoding viral leader sequence, 2 tripartite leader, such as the adenovirus between the promoter and the RNA splice sites. Preferred 25 vectors may also include enhancer sequences, such as the SV40 enhancer and the mouse μ enhancer (Gillies, Cell 33: Expression vectors may also include 717-728, 1983). sequences encoding the adenovirus VA RNAs.

Cloned DNA sequences may be introduced for mammalian cells by, example, cultured phosphate-mediated transfection (Wigler et al., Cell 14: 725, 1978; Corsaro and Pearson, Somatic Cell Genetics 7: 603, 1981; Graham and Van der Eb, Virology 52: 456, 1973.) Other techniques for introducing cloned DNA sequences into 35 mammalian cells, such as electroporation (Neumann et al., EMBO J. 1: 841-845, 1982), may also be used. In order to

15

20

25

30

identify cells that have integrated the cloned DNA, selectable marker is generally introduced into the cells along with the gene or cDNA of interest. Preferred selectable markers for use in cultured mammalian cells include genes that confer resistance to drugs, such as The selectable neomycin, hygromycin, and methotrexate. marker may be an amplifiable selectable marker. preferred amplifiable selectable marker is the DHFR gene. A particularly preferred amplifiable marker is the DHFR^r cDNA (Simonsen and Levinson, Proc. Natl. Adac. Sci. USA Selectable markers are reviewed by 80: 2495-2499, 1983). Thilly (Mammalian Cell Technology, Butterworth Publishers, Stoneham, MA) and the choice of selectable markers is well within the level of ordinary skill in the art.

Selectable markers may be introduced into the cell on a separate plasmid at the same time as the gene of interest, or they may be introduced on the same plasmid. If on the same plasmid, the selectable marker and the gene under the control of interest may be promoters or the same promoter, the latter arrangement producing a dicistronic message. Constructs of this type are known in the art (for example, Levinson and Simonsen, It may also be advantageous U.S. Patent No. 4,713,339). to add additional DNA, known as "carrier DNA" to the mixture which is introduced into the cells.

for a period of time, typically 1-2 days, to begin expressing the DNA sequence(s) of interest. Drug selection is then applied to select for growth of cells that are expressing the selectable marker in a stable fashion. For cells that have been transfected with an amplifiable selectable marker the drug concentration may be increased in a stepwise manner to select for increased copy number of the cloned sequences, thereby increasing expression levels.

Host cells containing DNA constructs of the present invention are grown in an appropriate growth

-7.3

15

30

As used herein, the term "appropriate growth medium" means a medium containing nutrients required for Nutrients required for cell growth the growth of cells. may include a carbon source, a nitrogen source, essential amino acids, vitamins, minerals and growth factors. growth medium will generally select for cells containing the DNA construct by, for example, drug selection or deficiency in an essential nutrient which are complemented by the selectable marker on the DNA construct or transfected with the DNA construct. Yeast cells, example, are preferably grown in a chemically defined medium, comprising a non-amino acid nitrogen vitamins and essential amino inorganic salts, preferably the medium is The Нq of supplements. maintained at a pH greater than 2 and less than 8, preferably at pH 6.5. Methods for maintaining a stable pH include buffering and constant pH control, preferably through the addition of sodium hydroxide. buffering agents include succinic acid and Bis-Tris (Sigma 20 Chemical Co., St. Louis, MO). Yeast cells having a defect in a gene required for asparagine-linked glycosylation are a medium containing an osmotic preferably grown in A preferred osmotic stabilizer is sorbitol stabilizer. supplemented into the medium at a concentration between 25 0.1 M and 1.5 M., preferably at 0.5 M or 1.0 M. Cultured cells in commercially are generally grown mammalian available serum-containing or serum-free media. Selection of a medium appropriate for the particular cell line used is within the level of ordinary skill in the art.

The culture medium from appropriately transformed or transfected host cells is separated from of dimerized and the presence material, cell polypeptide fusions secreted receptor analogs or A preferred method of detecting receptor demonstrated. analogs, for example, is by the binding of the receptors or portions of receptors to a receptor-specific antibody. monoclonal anti-receptor antibody may be a

.

10

antibody raised against receptor polyclonal the question, for example, an anti-PDGF receptor monoclonal antibody may be used to assay for the presence of PDGF receptor analogs. Another antibody, which may be used for detecting substance P-tagged peptides and proteins, is a commercially available rat anti-substance P monoclonal antibody which may be utilized to visualize peptides or proteins that are fused to the C-terminal amino acids of Ligand binding assays may also be used to substance P. detect the presence of receptor analogs. In the case of it is preferable to use fetal PDGF receptor analogs, foreskin fibroblasts, which express PDGF receptors, compete against the PDGF receptor analogs of the present invention for labeled PDGF and PDGF isoforms.

Assays for detection of secreted, biologically 15 active peptide dimers and receptor analogs may include Western transfer, protein blot or colony filter. Western transfer filter may be prepared using the method described by Towbin et al. (Proc. Natl. Acad. Sci. USA 76: Briefly, samples are electrophoresed in 4350-4354, 1979). a sodium dodecylsulfate polyacrylamide gel. The proteins electrophoretically transferred the gel are Protein blot filters nitrocellulose paper. prepared by filtering supernatant samples or concentrates through nitrocellulose filters using, 25 for example, Minifold (Schleicher & Schuell, Keene. NH). prepared by growing colonies filters may be nitrocellulose filter that has been laid across In this method, a solid medium appropriate growth medium. The cells are allowed to grow on the is preferred. 30 filters for at least 12 hours. The cells are removed from the filters by washing with an appropriate buffer that does not remove the proteins bound to the filters. preferred buffer comprises 25 mM Tris-base, 19 mM glycine, pH 8.3, 20% methanol. 35

The dimerized polypeptide fusions and receptor analogs present on the Western transfer, protein blot or

15

20

30

35

colony filters may be visualized by specific antibody binding using methods known in the art. For example, Towbin et al. (ibid.) describe the visualization of proteins immobilized on nitrocellulose filters with a specific antibody followed by a labeled second antibody, directed against the first antibody. Kits and reagents required for visualization are commercially available, for example, from Vector Laboratories, (Burlingame, CA), and Sigma Chemical Company (St. Louis, MO).

Secreted, biologically active dimerized polypeptide fusions and receptor analogs may be isolated from the medium of host cells grown under conditions that allow the secretion of the biologically active dimerized polypeptide fusions and receptor analogs. The material is removed from the culture medium, and the biologically active dimerized polypeptide fusions receptor analogs are isolated using isolation techniques known in the art. Suitable isolation techniques include precipitation and fractionation by variety а chromatographic methods, including gel filtration, exchange chromatography and immunoaffinity chromatography. particularly preferred purification method immunoaffinity chromatography using an antibody directed against the receptor analog or dimerized polypeptide 25 fusion. The antibody is preferably immobilized attached to a solid support or substrate. A particularly preferred substrate is CNBr-activated Sepharose (Pharmacia LKB Technologies, Inc., Piscataway, NJ). By this method, the medium is combined with the antibody/substrate under conditions that will allow binding to occur. The complex may be washed to remove unbound material, and the receptor analog or peptide dimer is released or eluted through the of conditions unfavorable to complex formation. Particularly useful methods of elution include changes in pH, wherein the immobilized antibody has a high affinity for the ligand at a first pH and a reduced affinity at a second (higher or lower) pH; changes in concentration of

20

25

certain chaotropic agents; or through the use of detergents.

The secreted PDGF receptor analogs of present invention can be used within a variety of assays for detecting the presence of and/or screening for native PDGF, PDGF isoforms or PDGF-like molecules. These assays will typically involve combining PDGF receptor analogs, which may be bound to a solid substrate such as polymeric microtiter plate wells, with a biological sample under conditions that permit the formation of receptor/ligand complexes. Screening assays for the detection of PDGF, or PDGF-like molecules will typically isoforms PDGF involve combining soluble PDGF receptor analogs with a biological sample and incubating the mixture with a PDGF isoform or mixture of PDGF isoforms bound to a solid substrate such as polymeric microtiter plates, conditions that permit the formation of receptor/ligand complexes. Detection may be achieved through the use of a label attached to the receptor or through the use of a labeled antibody which is reactive with the receptor. Alternatively, the labeled antibody may be reactive with the ligand. A wide variety of labels may be utilized, such radionuclides, fluorophores, as enzymes and Complexes may also be detected visually, luminescers. i.e., in immunoprecipitation assays, which do not require the use of a label.

Secreted PDGF receptor analogs of the present invention may also be labeled with a radioisotope or other imaging agent and used for in vivo diagnostic purposes. Preferred radioisotope imaging agents include iodine-125 and technetium-99, with technetium-99 being particularly Methods preferred. for producing protein-isotope conjugates are well known in the art, and are described for example, Eckelman et al. (U.S. Patent 4,652,440), Parker et al. (WO 87/05030) and Wilber et al. 35 Alternatively, 203,764). the secreted analogs may be bound to spin label enhancers and used for

imaging. Suitable spin label magnetic resonance (MR) enhancers include stable, sterically hindered, free radical compounds such as nitroxides. for labeling ligands for MR imaging are disclosed by, for example, Coffman et al. (U.S. Patent No. 4,656,026). administration, the labeled receptor analogs are combined with a pharmaceutically acceptable carrier or diluent, such as sterile saline or sterile water. Administration injection, preferably by bolus preferably intravenously. These imaging agents are particularly useful in identifying the locations of atherosclerotic plaques, PDGF-producing tumors, and receptor-bound PDGF.

secreted PDGF receptor analogs present invention may also be utilized within diagnostic kits. Briefly, the subject receptor analogs 15 preferably provided in a lyophilized form or immobilized onto the walls of a suitable container, either alone or in conjunction with antibodies capable of binding to native PDGF or selected PDGF isoform(s) or specific ligands. antibodies, which may be conjugated to а label 20 unconjugated, are generally included in the kits with suitable buffers, such as phosphate, stabilizers, inert proteins or the like. Generally, these materials are present in less than about 5% weight based upon the amount of active receptor analog, and are usually present in an 25 amount of at least about 0.001% weight. It may also be desirable to include an inert excipient to dilute the active ingredients. Such an excipient may be present from about 1% to 99% weight of the total composition. addition, the kits will typically include other standard reagents, instructions and, depending upon the nature of the label involved, reactants that are required to produce a detectable product. Where an antibody capable binding to the receptor or receptor/ligand complex is employed, this antibody will usually be provided in a separate vial. The antibody is typically conjugated to a label and formulated in an analogous manner with the

formulations briefly described above. The diagnostic including the containers, kits, may be produced and packaged using conventional kit manufacturing procedures.

the secreted PDGF noted above, analogs of the present invention may be utilized within methods for purifying PDGF from a variety of samples. Within a preferred method, the secreted PDGF receptor analogs are immobilized or attached to a substrate or support material, such as polymeric tubes, polysaccharide particulates, 10 polysaccharide-containing materials. polyacrylamide or other water insoluble polymeric materials. Methods for immobilization are well known in the art (Mosbach et al., U.S. Patent No. 4,415,665; Clarke et al., Meth. Enzymology 68: 436-442, method of 15 1979). A common immobilization is activation. Activated substrates are commercially available from a number of suppliers, including Pharmacia (Piscataway, NJ), Pierce Chemical Co. (Rockford, IL) and Bio-Rad Laboratories (Richmond, CA). Α preferred is 20 substrate CNBr-activated Sepharose (Pharmacia, Piscataway, NJ). Generally, the substrate/receptor analog complex will be in the form of a column. The sample is then combined with the immobilized receptor analog under conditions that allow binding to occur. The substrate 25 with immobilized receptor analog is first equilibrated with a buffer solution of a composition in which the receptor analog has been previously found to bind its ligand. The sample, in solution the used equilibration, is then applied to the substrate/receptor 30 analog complex. Where the complex is in the form of a column, it is preferred that the sample be passed over the column two or more times to permit full binding of ligand to receptor analog. The complex is then washed with the same solution to elute unbound material. In addition, a second wash solution may be used to minimize nonspecific binding. The bound material may then be released or eluted through the use of conditions unfavorable

. . .

complex formation. Particularly useful methods include changes in pH, wherein the immobilized receptor has a high affinity for PDGF at a first pH and reduced affinity at a second (higher or lower) pH; changes in concentration of certain chaotropic agents; or through the use of detergents.

The secreted PDGF receptor analogs dimerizing proteins of the present invention may be used in pharmaceutical compositions for topical or intravenous The secreted PDGF receptor analogs of the application. present invention may be useful in the treatment atherosclerosis by, for example, binding endogenous PDGF to prevent smooth muscle cell proliferation. receptor analogs fused to dimerizing proteins are used in combination with a physiologically acceptable carrier or diluent. Preferred carriers and diluents include saline and sterile water. Pharmaceutical compositions may also contain stabilizers and adjuvants. The resulting aqueous solutions may be packaged for use or filtered under aseptic conditions and lyophilized, the lyophilized preparation being combined with a sterile aqueous solution prior to administration.

The following examples are offered by way of illustration and not by way of limitation.

25

10

15

20

EXAMPLES

Enzymes, including restriction enzymes, polymerase I (Klenow fragment), T4 DNA polymerase, T4 DNA ligase and T4 polynucleotide kinase, were obtained from 30 New England Biolabs (Beverly, MA), GIBCO-BRL (Gaithersburg, MD) and Boerhinger-Mannheim Biochemicals (Indianapolis, IN) and were used as directed by the manufacturer or as described in Maniatis et al. (Molecular 35 Cloning: A Laboratory Manual, Cold Spring Laboratory, NY, 1982) and Sambrook et al. (Molecular Cloning: A Laboratory Manual/Second Edition, Cold Spring Harbor Laboratory, NY, 1989).

Example 1

5

Cloning PDGF Receptor cDNAs

; £

Cloning the PDGF \(\beta\)-Receptor A.

A cDNA encoding the PDGF β -receptor was cloned as follows. Complementary DNA (cDNA) libraries were prepared from poly(A) RNA from diploid human dermal fibroblast 10 cells, prepared by explant from a normal essentially as described by Hagen et al. (Proc. Natl. Acad. Sci. USA 83: 2412-2416, 1986). Briefly, the poly(A) RNA was primed with oligo d(T) and cloned into $\lambda gt11$ using Eco RI linkers. The random primed library was screened for the presence of human PDGF receptor cDNA's using three oligonucleotide probes complementary to sequences of the mouse PDGF receptor (Yarden et al., Nature 323: 226-232, Approximately one million phage from the random primed human fibroblast cell library were screened using oligonucleotides ZC904, ZC905 and ZC906 (Table 1; Sequence ID Numbers 5, 6 and 7, respectively). Eight positive clones were identified and plaque purified. Two clones, designated RP41 and RP51, were selected for analysis by restriction enzyme mapping and DNA sequence analysis. RP51 was found to contain 356 bp of noncoding sequence, the ATG translation initiation codon and 738 bp of the amino terminal coding sequence. was found to overlap clone RP51 and contained 2649 bp encoding amino acids 43-925 of the β -receptor protein.

30

20

25

Table 1 Oligonucleotide Sequences

ZC871 (Sequence ID Number 3)

5' CTC TCT TCC TCA GGT AAA TGA GTG CCA GGG CCG GCA AGC CCC CGC TCC 3'

ZC872 (Sequence ID Number 4)

5' CCG GGG AGC GGG GGC TTG CCG GCC CTG GCA CTC ATT TAC CTG AGG AAG AGA GAG CT 3'

5 ZC904 (Sequence ID Number 5)

5' CAT GGG CAC GTA ATC TAT AGA TTC ATC CTT GCT CAT ATC CAT GTA 3'

ZC905 (Sequence ID Number 6)

10 5' TCT TGC CAG GGC ACC TGG GAC ATC TGT TCC CAC ATC ACC GG

ZC906 (Sequence ID Number 7)

5' AAG CTG TCC TCT GCT TCA GCC AGA GGT CCT GGG CAG CC 3'

15

ZC1380 (Sequence ID Number 8)

5' CAT GGT GGA ATT CCT GCT GAT 3'

ZC1447 (Sequence ID Number 9)

20 5' TG GTT GTG CAG AGC TGA GGA AGA GAT GGA 3'

ZC1453 (Sequence ID Number 10)

5' AAT TCA TTA TGT TGT TGC AAG CCT TCT TGT TCC TGC TAG CTG GTT TCG CTG TTA A 3'

25

ZC1454 (Sequence ID Number 11)

5' GAT CTT AAC AGC GAA ACC AGC TAG CAG GAA CAA GAA GGC TTG CAA CAA CAT AAT G 3'

30 ZC1478 (Sequence ID Number 12)

5' ATC GCG AGC ATG CAG ATC TGA 3'

ZC1479 (Sequence ID Number 13)

5' AGC TTC AGA TCT GCA TGC TGC CGA T 3'

35

ZC1776 (Sequence ID Number 14)

5' AGC TGA GCG CAA ATG TTG TGT CGA GTG CCC ACC GTG CCC AGC TTA GAA TTC T 3'

ZC1777 (Sequence ID Number 15)

5 5' CTA GAG AAT TCT AAG CTG GGC ACG GTG GGC ACT CGA CAC AAC ATT TGC GCT C 3'

ZC1846 (Sequence ID Number 16)

5' GAT CGG CCA CTG TCG GTG CGC TGC ACG CTG CGC AAC GCT GTG
10 GGC CAG GAC ACG CAG GAG GTC ATC GTG GTG CCA CAC TCC TTG
CCC TTT AAG CA 3'

ZC1847 (Sequence ID Number 17)

5' AGC TTG CTT AAA GGG CAA GGA GTG TGG CAC CAC GAT GAC CTC

15 CTG CGT GTC CTG GCC CAC AGC GTT GCG CAG CGT GCA GCG CAC

CGA CAG TGG CC 3'

ZC1886 (Sequence ID Number 18)

5' CCA GTG CCA AGC TTG TCT AGA CTT ACC TTT AAA GGG CAA GGA
20 G 3'

ZC1892 (Sequence ID Number 19)

5' AGC TTG AGC GT 3'

12

25 ZC1893 (Sequence ID Number 20)

5' CTA GAC GCT CA 3'

ZC1894 (Sequence ID Number 21)

5' AGC TTC CAG TTC TTC GGC CTC ATG TCA GTT CTT CGG CCT CAT 30 GTG AT 3'

ZC1895 (Sequence ID Number 22)

5' CTA GAT CAC ATG AGG CCG AAG AAC TGA CAT GAG GCC GAA GAA CTG GA 3'

35

ZC2181 (Sequence ID Number 23)

5' AAT TCG GAT CCA CCA TGG GCA CCA GCC ACC CGG CGT TCC TGG TGT TAG GCT GCC TGA CCG GCC 3'

ZC2182 (Sequence ID Number 24)

5 5' TGA GCC TGA TCC TGT GCC AAC TGA GCC TGC CAT CGA TCC TGC CAA ACG AGA ACG AGA AGG TTG TGC AGC TA 3'

ZC2183 (Sequence ID Number 25)

5' AAT TTA GCT GCA CAA CCT TCT CGT TCT CGT TTG GCA GGA TCG
10 ATG GCA GGC TCA GTT GGC ACA GGA TCA 3'

ZC2184 (Sequence ID Number 26)

5' GGC TCA GGC CGG TCA GCA GGC AGC CTA ACA CCA GGA ACG CCG GGT GGC TGG TGG TGG ATC CG 3'

15

ZC2311 (Sequence ID Number 27)

5' TGA TCA CCA TGG CTC AAC TG 3'

ZC2351 (Sequence ID Number 28)

20 5' CGA ATT CCA C 3'

ZC2352 (Sequence ID Number 29)

5' CAT GGT GGA ATT CGA GCT 3'

25 ZC2392 (Sequence ID Number 30)

5' ACG TAA GCT TGT CTA GAC TTA CCT TCA GAA CGC AGG GTG GG

The 3'-end of the cDNA was not isolated in the first cloning and was subsequently isolated by screening 6×10^5 phage of the oligo d(T)-primed cDNA library with a 630 bp Sst I-Eco RI fragment derived from the 3'-end of clone RP41. One isolate, designated OT91, was further analyzed by restriction enzyme mapping and DNA sequencing.

35 This clone was found to comprise the 3'-end of the receptor coding region and 1986 bp of 3' untranslated sequence.

15

Clones RP51, RP41 and OT91 were ligated together to construct a full-length cDNA encoding the entire PDGF β -receptor. RP41 was digested with Acc I and Bam HI to isolate the 2.12 kb fragment. RP51 was digested with Eco RI and Acc I to isolate the 982 bp fragment. The 2.12 kb RP41 fragment and the 982 bp RP51 fragment were joined in which three-part ligation with pUC13, linearized by digestion with Eco RI and Bam HI. The resultant plasmid was designated 51/41. Plasmid 51/41 was digested with Eco RI and Bam HI to isolate the 3 fragment comprising the partial PDGF receptor cDNA. was digested with Bam HI and Xba I to isolate the 1.4 kb fragment containing the 3' portion of the PDGF receptor The Eco RI-Bam HI 51/41 fragment, the Bam HI-Xba I OT91 fragment and the Eco RI-Xba I digested pUC13 were The resultant plasmid joined in a three-part ligation. was designated pR-RX1 (Figure 2).

B. Cloning the PDGF-α Receptor

A cDNA encoding to PDGF α-receptor was cloned as follows. RNA was prepared by the method of Chirgwin et al. (Biochemistry 18: 5294, 1979) and twice purified on oligo d(T) cellulose to yield poly(A)+ RNA. Complementary DNA was prepared in λgt10 phage using a kit purchased from 25 Invitrogen (San Diego, CA). The resulting λ phage DNA was packaged with a coat particle mixture from Stratagene Cloning Systems (La Jolla, CA), infected into E. colistrain C600 Hfl⁻ and titered.

Approximately 1.4 x 10⁶ phage recombinants were plated to produce plaques for screening. 30 Nitrocellulose filter lifts were prepared according to standard methods and were hybridized to a radiolabeled PDGF β -receptor DNA fragment (Gronwald et al., ibid.) comprising the 1.9 kb Fsp I-Hind III fragment that encodes the transmembrane and the 35 cytoplasmic domains of PDGF β-receptor Hybridization was performed for 36 hours at 42°C in a mixture containing 40% formamide, 5x SSCP (SSC containing

20

25

35

25 mM phosphate buffer, pH 6.5), 200 μg/ml denatured salmon sperm DNA, 3x Denhardt's, and 10% dextran sulfate. Following hybridization, the filters were washed extensively at room temperature in 2x SSC, then for 15 5 minutes at 47-48°C. Following an exposure to X-ray film, the filters were treated to increasingly stringent wash conditions followed by film recording until a final wash with 0.1x SSC at 65°C was reached. Film analysis showed that a "family" of plaques that hybridized at lower wash stringency but not at the highest stringency. This "family" was selected for further analysis.

Two λ phage clones from the "family" obtained from the initial screening were subcloned into the Not I site of the pUCtype plasmid vector pBluescript SK⁺ (obtained from Stratagene Cloning Systems, La Jolla, CA) and were analyzed by restriction mapping and sequence analysis. Restriction enzyme analysis of a phage clone, designated α 1-1, revealed a restriction fragment pattern dissimilar from that of the PDGF β -receptor cDNA with the exception of a common Bgl II-Bgl II band of approximately 160 bp. The PDGF β -receptor cDNA contains two similarly spaced Bgl II sites within the region coding for the second tyrosine kinase domain.

Restriction analysis of a second plasmid subclone (designated \$\alpha 1-7\$) revealed an overlap of the 5' approximately 1.2 kb of clone $\alpha 1-1$, and an additional approximately 2.2 kb of sequence extending in the direction. Sequence analysis revealed that the 3' end of this clone encodes the second tyrosine kinase domain, which contains regions of near sequence identity to the corresponding regions in the PDGF β -receptor. The 5' end clone \alpha1-7 contained non-receptor sequences. additional a-receptor clones were obtained by probing with α 1-1 sequences. Clone α 1-1 was digested with Not I and Spe I, and a 230 bp fragment was recovered. Clone 01-1 was also digested with Bam HI and Not I, and a 550 bp fragment was recovered. A clone that hybridized to the 230 bp

15

20

probe was designated $\alpha 5-1$. This clone contained the 5'-most coding sequence for the PDGF α -receptor. Another clone, designated $\alpha 6-3$, hybridized to the 550 bp probe and was found to contain 3' coding and non-coding sequences, including the poly(A) tail.

Clone $\alpha 1-1$ was radiolabeled (32 P) and used to probe a northern blot (Thomas, Methods Enzymol. 100: 225-265, 1983) of the MG-63 poly(A) + RNA used to prepare the cDNA library. A single band of approximately 6.6 kb was RNA prepared from receptor-positive cell lines including the human fibroblast SK4, WI-38 and 7573 cell lines; the mouse fibroblast line DI 3T3; the U2-OS human osteosarcoma cell line and baboon aortic smooth muscle cells, and RNA prepared from receptor-negative including A431 (an epithelial cell line) and VA 13 (SV40transformed WI-38 cells) were probed by northern format with the α1-1 cDNA. In all cases, the amount of the 6.6 kb band detected in these RNA correlated well with the relative levels of α -receptor detected on the respective The 6.6 kb RNA was not detected in RNA cell surfaces. prepared from any tested cell line of hematopoietic origin, in agreement with a lack of PDGF α-receptor protein detected on these cell types.

Clones \alphall-1 and and \alphall-7 were joined at a unique 25 I site in the region encoding the transmembrane portion of the receptor. Clone $\alpha 1-1$ was digested with Xba I and Pst I and the receptor sequence fragment was Clone 01-7 was digested with Pst I and Bam HI recovered. and the receptor fragment was recovered. The 30 fragments were ligated with Xba I + Bam HI-digested pIC19R (Marsh et al. Gene 32: 481-486, 1984) to construct plasmid pα17R (Figure 12).

The remainder of the 5'-most α-receptor sequence was obtained from clone α5-1 as an Sst I-Cla I fragment.

35 This fragment was joined to the Eco RI-Sst I receptor fragment of pα17R and cloned into Eco RI + Cla I-digested pBluescript SK+ plasmid to construct plasmid pα17B (Figure

12). Figure 11 (Sequence ID Numbers 35 and 36) shows the nucleotide sequence and deduced amino acid sequence of the cDNA present in $p\alpha17B$.

5 <u>E</u>>

Example 2

Construction of a SUC2 Signal Sequence-PDGF β -Receptor Fusion

To direct the PDGF β -receptor into the yeast secretory pathway, the PDGF β -receptor cDNA was joined to 10 a sequence encoding the Saccharomyces cerevisiae SUC2 Oligonucleotides signal sequence. ZC1453 and ZC1454 (Sequence ID Numbers 10 and 11; Table 1) were designed to form an adapter encoding the SUC2 secretory signal flanked by a 5' Eco RI adhesive end and a 3' Bgl II adhesive end. 15 ZC1453 and ZC1454 were annealed under conditions described by Maniatis et al. (ibid.). Plasmid pR-RX1 was digested with Bgl II and Sst II to isolate the 1.7 kb fragment comprising the PDGF β -receptor coding sequence from amino 20 acids 28 to 596. Plasmid pR-RX1 was also cut with Sst II and Hind III to isolate the 1.7 kb fragment comprising the coding sequence from amino acids 597 through the translation termination codon and 124 gd of 3 ' untranslated DNA. The two 1.7 kb pR-RX1 fragments and the 25 ZC1453/ZC1454 adapter were joined with pUC19, which had been linearized by digestion with Eco RI and Hind III. The resultant plasmid, comprising the SUC2 signal sequence in-frame fused with the PDGF β -receptor cDNA, was designated pBTL10 (Figure 2).

30

Example 3 Construction of pCBS22

The <u>BAR1</u> gene product, Barrier, is an exported protein that has been shown to have three domains. When used in conjunction with a first signal sequence, the third domain of Barrier protein has been shown to aid in

15

20

the secretion of proteins into the medium (MacKay et al., U.S. Patent Application Serial No. 104,316).

The portion of the BAR1 gene encoding the third domain of Barrier was joined to a sequence encoding the Cterminal portion of substance P (subP; Munro and Pelham, EMBO J. 3: 3087-3093, 1984). The presence substance P amino acids on the terminus of the fusion protein allowed the protein to be detected commercially available anti-substance P antibodies. Plasmid pZV9 (deposited as a transformant in E. coli strain RR1, ATCC accession no. 53283), comprising the entire <u>BAR1</u> coding region and its associated flanking regions, was cut with Sal I and Bam HI to isolate the 1.3 This fragment was subcloned into pUC13, kb <u>BAR1</u> fragment. which had been cut with Sal I and Bam HI, to generate the plasmid designated pZV17. Plasmid pZV17 was digested with Eco RI to remove the 3'-most 0.5 kb of the BAR1 coding region. The vector-BAR1 fragment was religated to create the plasmid designated pJH66 (Figure 3). Plasmid pJH66 linearized with Eco RI and blunt-ended with DNA polymerase I (Klenow fragment). Kinased Bam HI linkers (5' CCG GAT CCG G 3') were added and excess linkers were removed by digestion with Bam HI before religation. The resultant plasmid was designated pSW8 (Figure 3).

25 Plasmid pSW81, comprising the TPI1 promoter, the BAR1 coding region fused to the coding region of the Cterminal portion of substance P (Munro and Pelham, EMBO J. 3: 3087-3093, 1984) and the TPI1 terminator, was derived from pSW8. Plasmid pSW8 was cut with Sal I and Bam HI to 30 isolate the 824 bp fragment encoding amino acids 252 through 526 of BAR1. Plasmid pPM2, containing synthetic oligonucleotide sequence encoding the dimer form of the C-terminal portion of substance P (subP) in M13mp8, was obtained from Hugh Pelham (MRC Laboratory of Molecular 35 Biology, Cambridge, England). Plasmid pPM2 was linearized by digestion with Bam HI and Sal I and ligated with the 824 bp <u>BAR1</u> fragment from pSW8. The resultant plasmid,

10

15

20

pSW14, was digested with Sal I and Sma I to isolate the BAR1-substance P fragment. Plasmid comprising a fragment of BAR1 encoding amino acids 1 through 250, was cut with Xba I and Sal I to isolate the 767 bp BAR1 fragment. This fragment was ligated with the 871 bp BAR1-substance P fragment in a three-part ligation with pUC18 cut with Xba I and Sma I. The resultant plasmid, designated pSW15, was digested with Xba I and Sma I to isolate the 1.64 kb BAR1-substance P fragment. ADH1 promoter was obtained from pRL029. Plasmid pRL029, comprising the ADH1 promoter and the BAR1 5′ encoding amino acids 1 to 33 in pUC18, was digested with Sph I and Xba I to isolate the 0.42 kb ADH1 promoter The TPI1 terminator (Alber and Kawasaki, ibid.) fragment. was provided as a linearized fragment containing the TPI1 terminator and pUC18 with a Klenow-filled Xba I end and an Sph I end. This fragment was ligated with the 0.42 kb ADH1 promoter fragment and the 1.64 kb BAR1-substance P fragment in a three-part ligation to produce plasmid pSW22.

The ADH1 promoter and the coding region of BAR1, from the translation initiation ATG through the Eco RV site present in pSW22, were removed by digestion with Hind III and Eco RV. The 3.9 kb vector fragment, comprising the 401 bp between the Eco RV and the Eco RI sites of the 25 BAR1 gene fused to subP and the TPI1 terminator, was isolated by gel electrophoresis. Oligonucleotide ZC1478 (Sequence ID Number 12; Table 1) was kinased and annealed with oligonucleotide ZC1479 (Sequence ID Number 13; Table 30 1) using conditions described by Maniatis et al. (ibid.). The annealed oligonucleotides formed an adapter comprising a Hind III adhesive end and a polylinker encoding Bgl II, I, Nru Ι and Eco RV restriction sites. The ZC1479/ZC1478 adapter was ligated with the gel-purified 35 pSW22 fragment. The resultant plasmid was designated pCBS22 (Figure 3).

25

30

35

Example 4

Construction of pBTL13

In order to enhance the secretion of the PDGF β and to facilitate the identification of the receptor secreted protein, a sequence encoding the third domain of BAR1 fused to the C-terminal amino acids of substance P was fused in frame with the 5' 1240 bp of the PDGF β receptor. Plasmid pBTL10 (Example 2) was digested with 10 Sph I and Sst I to isolate the 4 kb fragment comprising the SUC2 signal sequence, a portion of the PDGF β -receptor cDNA and the pUC19 vector sequences. Plasmid pCBS22 was digested with Sph I and Sst I to isolate the 1.2 kb fragment comprising the BAR1-subP fusion and the TPI1 15 terminator. These two fragments were ligated, and the resultant plasmid was designated pBTL13 (Figure 4).

Example 5

Construction of an Expression Vector Encoding the Entire PDGF β -Receptor

The entire PDGF β -receptor was directed into the secretory pathway by fusing a <u>SUC2</u> signal sequence to the 5' end of the PDGF β -receptor coding sequence. This fusion was placed behind the <u>TPI1</u> promoter and inserted into the vector YEp13 for expression in yeast.

The <u>TPI1</u> promoter was obtained from plasmid pTPIC10 (Alber and Kawasaki, <u>J. Mol. Appl. Genet. 1</u>: 410-434, 1982), and plasmid pFATPOT (Kawasaki and Bell, EP 171,142; ATCC 20699). Plasmid pTPIC10 was cut at the unique Kpn I site, the <u>TPI1</u> coding region was removed with Bal-31 exonuclease, and an Eco RI linker (sequence: GGA ATT CC) was added to the 3' end of the promoter. Digestion with Bgl II and Eco RI yielded a <u>TPI1</u> promoter fragment having Bgl II and Eco RI sticky ends. This fragment was then joined to plasmid YRp7' (Stinchcomb et al., <u>Nature 282</u>: 39-43, 1979) that had been cut with Bgl

15

II and Eco RI (partial). The resulting plasmid, TE32, was cleaved with Eco RI (partial) and Bam HI to remove a portion of the tetracycline resistance gene. The linearized plasmid was then recircularized by the addition of an Eco RI-Bam HI linker to produce plasmid TEA32. Plasmid TEA32 was digested with Bgl II and Eco RI, and the 900 bp partial TPI1 promoter fragment was gel-purified. Plasmid pIC19H (Marsh et al., Gene 32:481-486, 1984) was cut with Bgl II and Eco RI and the vector fragment was gel The TPI1 promoter fragment was then ligated to linearized pIC19H and the mixture was transform <u>E</u>. <u>coli</u> RR1. Plasmid DNA was prepared and screened for the presence of a ~900 bp Bgl II-Eco RI A correct plasmid was selected and designated fragment. pICTPIP.

The TPI1 promoter was then subcloned to place convenient restriction sites at its ends. Plasmid pIC7 (Marsh et al., ibid.) was digested with Eco RI, fragment ends were blunted with DNA polymerase I (Klenow fragment), and the linear DNA was recircularized using T4 20 The resulting plasmid was used to transform DNA ligase. E. coli RR1. Plasmid DNA was prepared from transformants and was screened for the loss of the Eco RI A plasmid having the correct restriction pattern was designated pIC7RI*. Plasmid pIC7RI* was digested with 25 Hind III and Nar I, and the 2500 bp fragment was gel-The partial TPI1 promoter fragment (ca. 900 bp) purified. was removed from pICTPIP using Nar I and Sph I and was gel-purified. The remainder of the TPI1 promoter was 30 obtained from plasmid pFATPOT by digesting the plasmid with Sph I and Hind III, and a 1750 bp fragment, which included a portion of the TPI1 promoter fragment from pICTPIP, and the fragment from pFATPOT were then combined in a triple ligation to produce pMVR1 (Figure 2).

The <u>TPI1</u> promoter was then joined to the <u>SUC2-PDGF</u> β -receptor fusion. Plasmid pBTL10 (Example 2) was digested with Eco RI and Hind III to isolate the 3.4 kb

fragment comprising the <u>SUC2</u> signal sequence and the entire PDGF β -receptor coding region. Plasmid pMVR1 was digested with Bgl II and Eco RI to isolate the 0.9 kb <u>TPI1</u> promoter fragment. The <u>TPI1</u> promoter fragment and the fragment derived from pBTL10 were joined with YEp13, which had been linearized by digestion with Bam HI and Hind III, in a three-part ligation. The resultant plasmid was designated pBTL12 (Figure 2).

10 Example 6

Construction of an Expression Vector Encoding the 5' Extracellular Portion of the PDGF β -Receptor

The extracellular portion of the PDGF β -receptor was directed into the secretory pathway by fusing the 15 coding sequence to the SUC2 signal sequence. This fusion was placed in an expression vector behind the Plasmid pBTL10 (Example 2) was digested with Eco RI and Sph I to isolate the approximately 1.3 kb fragment comprising the SUC2 signal sequence and the PDGF 20 β -receptor extracellular domain coding sequence. pMVR1 (Example 5) was digested with Bgl II and Eco RI to isolate the 0.9 kb TPI1 promoter fragment. The TPI1 promoter fragment was joined with the fragment derived 25 from pBTL10 and YEp13, which had been linearized by digestion with Bam HI and Sph I, in a three-part ligation. The resultant plasmid was designated pBTL11 (Figure 2).

Example 7

Construction of Yeast Expression Vectors pBTL14 and pBTL15, and The Expression of PDGF β -Receptor-BAR1-subP Fusions

A. Construction of pBTL14

The <u>SUC2-PDGF</u> β -R fusion was joined with the third domain of <u>BAR1</u> to enhance the secretion of the receptor, and the expression unit was cloned into a

35

derivative of YEp13 termed pJH50. YEp13 was modified to destroy the Sal I site near the LEU2 gene. This was achieved by partially digesting YEp13 with Sal I followed by a complete digestion with Xho I. The 2.0 kb Xho I-Sal I fragment comprising the LEU2 gene and the 8.0 kb linear YEp13 vector fragment were isolated and ligated together. The ligation mixture was transformed into E. coli strain RR1. DNA was prepared from the transformants and was analyzed by digestion with Sal I and Xho I. A clone was isolated which showed a single Sal I site and an inactive Xho I site indicating that the LEU2 fragment had inserted in the opposite orientation relative to the parent plasmid YEp13. The plasmid was designated pJH50.

Referring to Figure 4, plasmid pBTL12 (Example 5) was digested with Sal I and Pst I to isolate the 2.15 15 kb fragment comprising 270 bp of YEp13 vector sequence, the TPI1 promoter, the SUC2 signal sequence, and 927 bp of PDGF β -receptor cDNA. Plasmid pBTL13 (Example 4) was digested with Pst I and Hind III to isolate the 1.48 kb 20 fragment comprising 313 bp of PDGF β -receptor cDNA, the BAR1-subP fusion and the TPI1 terminator. The fragments derived from pBTL12 and pBTL13 were joined with pJH50, which had been linearized by digestion with Hind III and Sal I, in a three-part ligation. The resultant plasmid was designated pBTL14. 25

B. Construction of pBTL15

Referring to Figure 5, a yeast expression vector was constructed comprising the <u>TPI1</u> promoter, the <u>SUC2</u> signal sequence, 1.45 kb of PDGF β -receptor cDNA sequence fused to the <u>BAR1</u>-subP fusion and the <u>TPI1</u> terminator. Plasmid pBTL12 (Example 5) was digested with Sal I and Fsp I to isolate the 2.7 kb fragment comprising the <u>TPI1</u> promoter, the <u>SUC2</u> signal sequence, the PDGF β -R coding sequence, and 270 bp of YEp13 vector sequence. Plasmid pBTL13 (Example 4) was digested with Nru I and Hind III to isolate the 1.4 kb fragment comprising the <u>BAR1</u>-subP

fusion, the <u>TPI1</u> terminator and 209 bp of 3' PDGF β-receptor cDNA sequence. The fragments derived from pBTL12 and pBTL13 were joined in a three-part ligation with pJH50, which had been linearized by digestion with Hind III and Sal I. The resultant plasmid was designated pBTL15.

- C. Expression of PDGF β -R-subP fusions from pBTL14 and pBTL15
- 10 Yeast expression vectors pBTL14 and pBTL15 were transformed into Saccharomyces cerevisiae strains ZY100 (MATa leu2-3,112 ade2-101 suc2-A9 gal2 pep4::TPI1prom-CAT) and ZY400 (MATa <u>leu2-3,112</u> <u>ade2-101</u> suc2-∆9 gal2 pep4::TPI1prom-CAT ∆mnn9::URA3). Transformations carried out using the method essentially described by Transformants were selected for their Beggs (ibid.). ability to grow on -LEUDS (Table 2).

Table 2 Media Recipes

20

-LeuThrTrp Amino Acid Mixture

- 4 g adenine
- 3 g L-arginine
- 25 5 g L-aspartic acid
 - 2 g L-histidine free base
 - 6 g L-isoleucine
 - 4 g L-lysine-mono hydrochloride
 - 2 g L-methionine
- 30 6 g L-phenylalanine
 - 5 g L-serine
 - 5 g L-tyrosine
 - 4 q uracil
 - 6 g L-valine

35

Mix all the ingredients and grind with a mortar and pestle until the mixture is finely ground.

-LEUDS

20 g glucose

6.7 g Yeast Nitrogen Base without amino acids (DIFCO

5 Laboratories Detroit, MI)

0.6 g -LeuThrTrp Amino Acid Mixture

182.2 g sorbitol

18 g Agar

Mix all the ingredients in distilled water. Add distilled water to a final volume of 1 liter. Autoclave 15 minutes. After autoclaving add 150 mg L-threonine and 40 mg L-tryptophan. Pour plates and allow to solidify.

15 <u>-LEUDS + sodium succinate, pH 6.5</u>

20 g Yeast Nitrogen Base without amino acids

0.6 g -LeuTrpThr Amino Acid Mixture

182.2 g sorbitol

11.8 g succinic acid

20

Mix all ingredients in distilled water to a final volume of 1 liter. Adjust the pH of the solution to pH 6.5. Autoclave 15 minutes. After autoclaving add 150 mg L-threonine and 40 mg L-tryptophan.

25

Fermentation Medium

7 g/l yeast nitrogen base without amino acids or ammonium sulfate (DIFCO Laboratories)

0.6 g/l ammonium sulfate

30 0.5 M sorbitol

0.39 g/l adenine sulfate

0.01% polypropylene glycol

Mix all ingredients in distilled water.

35 Autoclave 15 minutes. Add 80 ml 50% glucose for each liter of medium.

Super Synthetic -LEUD, pH 6.5 (liquid or solid medium) 6.7 g Yeast Nitrogen Base without amino acids or ammonium sulfate (DIFCO) 6 g ammonium sulfate 5 160 g adenine 0.6 g -LeuThrTrp Amino Acid Mixture 20 g glucose 11.8g succinic acid

- Mix all ingredients and add distilled water to a final volume of 800 ml. Adjust the pH of the solution to pH 6.4. Autoclave 15 minutes. For solid medium, add 18 g agar before autoclaving, autoclave and pour plates.
- 15 Super Synthetic-LEUDS, pH 6.4 (liquid or solid medium)

 Use the same recipe as Super Synthetic -LEUD, pH
 6.4, but add 182.2 g sorbitol before autoclaving.

YEPD

20 20 g glucose

٠٠,

- 20 g Bacto Peptone (DIFCO Laboratories)
- 18 g agar
- 4 ml adenine 1%
- 25 8 ml 1% L-leucine

Mix all ingredients in distilled water, and bring to a final volume of 1 liter. Autoclave 25 minutes and pour plates.

30

35

The transformants were assayed for binding to an anti-PDGF β -receptor monoclonal antibody (PR7212) or an anti-substance P antibody by protein blot assay. ZY100[pBTL14] and ZY100[pBTL15] transformants were grown overnight at 30°C in 5 ml Super Synthetic -LEUD, pH 6.4 (Table 2). ZY400[pBTL14] and ZY400[pBTL15] transformants

25

30

35

were grown overnight at 30°C in 5 ml Super Synthetic-LEUDS, pH 6.4 (Table 2). The cultures were pelleted by centrifugation and the supernatants were assayed for the presence of secreted PDGF β -receptor anlogs by protein blot assay using methods described in Example 18. Results of assays using PR7212 are shown in Table 3.

TABLE 3

Results of a protein blot probed with PR7212

10		
	Transformant:	
	ZY100[pBTL14]	+
	ZY400[pBTL14]	+-
	ZY100[pBTL15]	+
15	ZY400[pBTL15]	+

Example 8

Construction of a SUC2-PDGF β -R Fusion Comprising the Complete PDGF β -R Extracellular Domain

A. Construction of pBTL22

The PDGF β -R coding sequence present in pBTL10 was modified to delete the coding region 3' to the extracellular PDGF β -R domain. As shown in Figure 6, plasmid pBTL10 was digested with Sph I and Bam HI and with Sph I and Sst II to isolate the 4.77 kb fragment and the 466 bp fragment, respectively. The 466 bp fragment was then digested with Sau 3A to isolate the 0.17 kb fragment. The 0.17 kb fragment and the 4.77 kb were joined by ligation. The resultant plasmid was designated pBTL21.

Plasmid pBTL21, containing a Bam HI site that was regenerated by the ligation of the Bam HI and Sau 3A sites, was digested with Hind III and Bam HI to isolate the 4.2 kb fragment. Synthetic oligonucleotides ZC1846 (Sequence ID Number 16; Table 1) and ZC1847 (Sequence ID Number 17; Table 1) were designed to form an adapter encoding the PDGF β -R from the Sau 3A site after bp 1856

15

25

30

(Figure 1; (Sequence ID Number 1)) to the end of the extracellular domain at 1958 bp (Figure 1; Sequence ID Number 1), having a 5' Bam HI adhesive end that destroys HI site and a 31 Hind III adhesive Oligonucleotides ZC1846 and ZC1847 were annealed under conditions described by Maniatis et. al. (ibid.). pBTL21 fragment and the ZC1846/ZC1847 adapter were joined by ligation. The resultant plasmid, designated pBTL22, comprises the SUC2 signal sequence fused in proper reading frame to the extracellular domain of PDGF β -R in the vector pUC19 (Figure 6).

В. Construction of pBTL28

An in-frame translation stop codon was inserted immediately after the coding region of the PDGF β -R in pBTL22 using oligonucleotides ZC1892 (Sequence ID Number 19; Table 1) and ZC1893 (Sequence ID Number 20; Table 1). These oligonucleotides were designed to form an adapter encoding a stop codon in-frame with the PDGF β -R coding sequence from pBTL22 flanked by a 5' Hind III adhesive end 20 and a 3' Xba I adhesive end. Plasmid pBTL22 was digested with Eco RI and Hind III to isolate the 1.6 kb $\underline{SUC2}$ -PDGF β -R fragment. Plasmid pMVR1 was digested with Eco RI and Xba I to isolate the 3.68 kb fragment comprising the TPI1 promoter, pIC7RI* vector sequences and the TPI1 terminator. Oligonucleotides ZC1892 and ZC1893 were annealed to form a Hind III-Xba I adapter. The 1.6 kb $\underline{SUC2}\text{-PDGF}\beta\text{-R}$ fragment, the 3.86 kb pMVR1 fragment and the ZC1892/ZC1893 adapter were joined in а ligation. The resultant plasmid was designated pBTL27.

expression unit present in pBTL27 inserted into the yeast expression vector pJH50 by first digesting pJH50 with Bam HI and Sal I to isolate the 10.3 kb vector fragment. Plasmid pBTL27 was digested with Bgl II and Eco RI and with Xho I and Eco RI to isolate the 0.9 35 TPI1 promoter fragment and the 1.65 kb respectively. The 10.3 kb pJH50 vector fragment, the 0.9

25

30

35

kb TPI1 promoter fragment and 1.65 kb fragment were joined in a three-part ligation. The resultant plasmid was designated pBTL28.

5 C. Construction of Plasmid pBTL30

The PDGF β -R coding sequence present in plasmid pBTL22 was modified to encode the twelve C-terminal amino acids of substance P and an in-frame stop codon. Plasmid pBTL22 was digested with Eco RI and Hind III to isolate the 1.6 kb $\underline{SUC2}$ -PDGF β -R fragment. 10 Plasmid pMVR1 was digested with Eco RI and Xba I to isolate the 3.68 kb fragment comprising the TPI1 promoter, pIC7RI* and the TPI1 terminator. Synthetic oligonucleotides (Sequence ID Number 21; Table 1) and ZC1895 (Sequence ID Number 22; Table 1) were annealed to form an adapter 15 containing the codons for the twelve C-terminal amino acids of substance P followed by an in-frame stop codon and flanked on the 5' end with a Hind III adhesive end and the 3′ end with an Xba I adhesive ZC1894/ZC1895 adapter, the 1.6 kb $\underline{SUC2}$ -PDGF β -R fragment the pMVR1 fragment were joined in a three-part The resultant plasmid, designated pBTL29, was ligation. digested with Eco RI and Xho I to isolate the 1.69 kb SUC2-PDGF\$-R-subP-TPI1 terminator fragment. Plasmid pBTL27 was digested with Bgl II and Eco RI to isolate the 0.9 kb <u>TPI1</u> promoter fragment. Plasmid pJH50 was digested with Bam HI and Sal I to isolate the 10.3 kb vector The 1.69 kb pBTL29 fragment, the 0.9 kb TPI1 fragment. promoter fragment and the 10.3 kb vector fragment were joined in a three-part ligation. The resulting plasmid was designated pBTL30.

Example 9

Construction and Expression of a SUC2-PDGF β -R-IgG Hinge Expression Vector

An expression unit comprising the TPI1 promoter, the SUC2 signal sequence, the PDGFβ−R extracellular

15

20

25

immunoglobulin hinge region and the domain. an terminator was constructed. Plasmid pBTL22 was digested with Eco RI and Hind III to isolate the 1.56 kb fragment. Plasmid pMVR1 was digested with Eco RI and Xba I to isolate the 3.7 kb fragment, comprising the TPI1 promoter, pIC7RI* vector sequences and the TPI1 terminator. Oligonucleotides ZC1776 (Sequence ID Number 14; Table 1) and ZC1777 (Sequence ID Number 15; Table 1) were designed form, when annealed, an adapter encoding immunoglobulin hinge region with a 5' Hind III adhesive end and a 3' Xba I adhesive end. Oligonucleotides ZC1776 and ZC1777 were annealed under conditions described by Maniatis et al. (ibid.). The 1.56 kb pBTL22 fragment, the 3.7 kb fragment and the ZC1776/ZC1777 adapter were joined in a three-part ligation, resulting in plasmid pBTL24.

The expression unit of pBTL24, comprising the TPI1 promoter, SUC2 signal sequence, PDGF β -R extracellular domain sequence, hinge region sequence, and TPI1 terminator, was inserted into pJH50. Plasmid pBTL24 was digested with Xho I and Hind III to isolate the 2.4 kb Plasmid pJH50 was digested with Hind III expression unit. and Sal I to isolate the 9.95 kb fragment. The 2.4 kb pBTL24 fragment and 9.95 kb pJH50 vector fragment were joined by ligation. The resultant plasmid was designated pBTL25.

Plasmid pBTL25 was transformed into Saccharomyces cerevisiae strain ZY400 using the method essentially described by Beggs (ibid.). Transformants were selected for their ability to grow on -LEUDS (Table 30 The transformants were tested for their ability to bind the anti-PDGFeta-R monoclonal antibody PR7212 using the colony assay method described in Example 18. Plasmid pBTL25 transformants were patched onto nitrocellulose filters that had been wetted and supported by YEPD solid 35 Antibody PR7212 was found to bind to the PDGF β -R-IgG hinge fusion secreted by ZY400[pBTL25] transformants.

Example 10

Construction and Expression of a <u>SUC2</u> signal sequence-PDGF β -R Extracellular Domain-<u>SUC2</u> Fusion

As shown in Figure 6, an expression comprising the TPI1 promoter, SUC2 signal sequence, PDGF\$-R extracellular domain sequence, and SUC2 coding sequence Plasmid pBTL22 was digested was constructed as follows. with Eco RI and Hind III to isolate the 1.6 kb SUC2-PDGF β -R fragment. Plasmid pMVR1 was digested with Bgl II and 10 Eco RI to isolate the 0.9 kb TPI1 promoter fragment. SUC2 coding region was obtained from pJH40. Plasmid pJH40 was constructed by inserting the 2.0 kb Hind III-Hind III SUC2 fragment from pRB58 (Carlson et al., Cell 28:145-154, 1982) into the Hind III site of pUC19 followed by the destruction of the Hind III site 3' to the coding region. 15 Plasmid pJH40 was digested with Hind III and Sal I to Plasmid pJH50 isolate the 2.0 kb SUC2 coding sequence. was digested with Sal I and Bam HI to isolate the 10.3 kb The 0.9 kb Bgl II-Eco RI TPI1 promoter vector fragment. 20 fragment, the 1.6 kb Eco RI-Hind III SUC2-PDGF β -R, the 2.0 kb Hind III-Sal I SUC2 fragment and the 10.3 kb Bam HI-Sal I vector fragment were joined in a four-part ligation. The resultant plasmid was designated pBTL26 (Figure 6).

Plasmid pBTL26 was transformed into Saccharomyces cerevisae strain ZY400 using the method essentially described by Beggs (ibid.). Transformants were selected for their ability to grow on -LEUDS (Table 2). ZY400 transformants (ZY400[pBTL26]) were assayed by protein blot (Example 18), colony blot (Example 18) and competition assay.

Protein blot carried assays were out on ZY400[pBTL26] and ZY400[pJH50] (control) transformants that had been grown in flasks. Two hundred-fifty microliters of a 5 ml overnight cultures of ZY400[pBTL26] and ZY400 [pJH50] in -LEUDS + sodium succinate, pH 6.5 (Table 2) were inoculated into 50 ml of -LEUDS + sodium succinate, pH 6.5. The cultures were incubated for 35

25

30

in an airbath shaker at 30°C. The culture supernatants were harvested by centrifugation. culture supernatants were assayed as described in Example 18 and were found to bind PR7212 antibody.

Colony assays were carried out on ZY400[pBTL26] 5 ZY400[pBTL26] transformants were patched transformants. onto wetted nitrocellulose filters that were supported on a YEPD plate. The colony assay carried out as described in Example 8.A. showed that ZY400[pBTL26] antibodies bound 10 PR7212 antibodies.

Competition binding assays were carried out on ZY400[pBTL26] ZY400[pJH50] and transformants. transformants were grown in two liters of fermentation medium (Table 2) in a New Brunswick Bioflo2 fermentor (New 15 Brunswick, Philadelphia, PA) with continuous pH control at The cultures were adjusted to pH 7.5 immediately prior to harvesting. Culture supernatants concentrated in an Amicon concentrator (Amicon, San Francisco, CA) using an Amicon 104 mw spiral filter The concentrated supernatants were further cartridge. concentrated using Amicon Centriprep 10's. milliliters of the concentrated supernatant samples were added to the Centripreps, and the Centripreps were spun in Beckman GRP centrifuge (Beckman Instruments Carlsbad, CA) at setting 5 for a total of 60 minutes. concentrates were removed from the Centripreps and were assayed in the competition assay.

competition binding assay measured the 125_{I-PDGF} amount of left to bind to fetal fibroblast cells after preincubation with the concentrate containing the PDGF β -R-SUC2 fusion protein. PDGF-AA and PDGF-AB were iodinated using the Iodopead method (Pierce Chemical). PDGF-BB_{Tyr} was iodinated and purified as described in Example 18.F. The concentrate was serially diluted in binding medium (Table 4). The dilutions were mixed with 0.5 ng of iodinated PDGF-AA, PDGF-BB $_{ ext{Tyr}}$ or PDGF-AB, and the mixtures were incubated for two hours at

15

room temperature. Three hundred micrograms of unlabeled PDGF-BB was added to each sample mixture. The sample mixtures were added to 24-well plates containing confluent fetal foreskin fibroblast cells (AG1523, available from the Human Genetic Mutant Cell Repository, Camden, The cells were incubated with the mixture for four hours at 4°C. The supernatants were aspirated from the wells, and the wells were rinsed three times with phosphate buffered saline that was held at 4°C (PBS; Sigma, St. Louis, Mo.). Five hundred microliters of PBS + 1% NP-40 was added to each well, and the plates were shaken on a platform shaker for five minutes. The cells harvested and the amount of iodinated PDGF was determined. The results of the competition binding assay showed that the PDGF β -R-SUC2 fusion protein was able to competetively

bind all three isoforms of PDGF.

The $PDGF\beta-R$ produced from ZY400 [pBTL26] transformants tested was for reactivity cross fibroblast growth factor (FGF) and transforming growth factor- β (TGF- β) using the competition assay essentially 20 described above. Supernatant concentrates ZY400[pBTL26] and ZY400[JH50] (control) transformants were serially diluted in binding medium (Table 4). The dilutions were mixed with 7.9 ng of iodinated FGF or 14 ng of iodinated TGF- β , and the mixtures were incubated for 25 two hours at room temperature. Fourteen micrograms of unlabeled FGF was added to each mixture containing labeled FGF, and 7 μ g of unlabeled TGF- β was added to each mixture containing labeled TGF-\$. The sample mixtures were added 30 24-well plates containing confuent human fibroblast cells. (Human dermal fibroblast cells express both FGF receptors and TGF β receptors.) The cells were incubated with the mixtures for four hours at 4°C. Five hundred microliters of PBS + 1% NP-40 was added to each well, and the plates were shaken on a platform shaker for five minutes. The cells were harvested and the amount of iodinated FGF or TGF- β bound to the cells was determined.

The results of these assays showed that the PDGF β -R-SUC2 fusion protein did not cross react with FGF or TGF- β .

Table 4

5

Reagent Recipes

Binding Medium

500 ml Ham's F-12 medium

12 ml 1M HEPES, pH 7.4

10 5 ml 100x PSN (Penicillin/Streptomycin/Neomycin,

Gibco)

1 g rabbit serum albumin

Western Transfer Buffer

15 25 mM Tris, pH 8.3
19 mM glycine, pH 8.3
20% methanol

Western Buffer A

20 50 ml 1 M Tris, pH 7.4

20 ml 0.25 mM EDTA, pH 7.0

5 ml 10% NP-40

37.5 ml 4 M NaCl

2.5 g gelatin

25

The Tris, EDTA, NP-40 and NaCl were diluted to a final volume of one liter with distilled water. The gelatin was added to 300 ml of this solution and the solution was heated in a microwave until the gelatin was in solution. The gelatin solution was added back to the remainder of the first solution and stirred at 4°C until cool. The buffer was stored at 4°C.

Western Buffer B

35 50 ml 1 M Tris, pH 7.4

20 ml 0.25 M EDTA, pH 7.0

5 ml 10% NP-40

58.4 g NaCl

2.5 g gelatin

4 g N-lauroyl sarcosine

The Tris, EDTA, NP-40, and the NaCl were mixed and diluted to a final volume of one liter. The gelatin was added to 300 ml of this solution and heated in a microwave until the gelatin was in solution. The gelatin solution was added back to the original solution and the N-lauroyl sarcosine was added. The final mixture was stirred at 4°C until the solids were completely dissolved. This buffer was stored at 4°C.

2x Loading Buffer

15 36 ml 0.5 M Tris-HCl, pH 6.8

16 ml glycerol

16 ml 20% SDS

4 ml 0.5% Bromphenol Blue in 0.5 M Tris-HCl, pH 6.8

20 Mix all ingredients. Immediately before use, add 100 μ l β -mercaptoethanol to each 900 μ l dye mix

Example 11

Construction and Expression of PDGF Receptor Analogs From BHK cells

A. Construction of pBTL114 and pBTL115

The portions of the PDGF β-receptor extracellular domain present in pBTL14 and pBTL15 were placed in a mammalian expression vector. Plasmids pBTL14 and pBTL15 were digested with Eco RI to isolate the 1695 bp and 1905 bp SUC2 signal-PDGFβ-R-BAR1 fragments. The 1695 bp fragment and the 1905 bp fragment were each ligated to Zem229R that had been linearized by digestion with Eco RI.

The vector Zem229R was constructed as shown in Figure 10 from Zem229. Plasmid Zem229 is a pUC18-based

25

30

35

expression vector containing a unique Bam HI site for insertion of cloned DNA between the mouse metallothioneinpromoter and SV40 transcription terminator expression unit containing the SV40 early promoter, mouse dihydrofolate reductase gene, and SV40 transcription Zem229 was modified to delete the Eco RI terminator. sites flanking the Bam HI cloning site and to replace the Bam HI site with a single Eco RI cloning site. The plasmid was partially digested with Eco RI, treated with polymerase I (Klenow fragment) and dNTPs, Digestion of the plasmid with Bam HI followed religated. by ligaion of the linearized plasmid with a Bam HI-Eco I adapter resulted in a unique Eco RI cloning site. The resultant plasmid was designated Zem229R.

The ligation mixtures were transformed into E. coli strain RR1. Plasmid DNA was prepared and the plasmids were subjected to restriction enzyme analysis. A plasmid having the 1695 bp pBTL14 fragment inserted into Zem229R in the correct orientation was designated pBTL114 (Figure 9). A plasmid having the 1905 bp pBTL15 fragment inserted into Zem229R in the correct orientation was designated pBTL115 (Figure 9).

B. Expression of secreted PDGF β -receptor analogs in tk⁻ ts13 BHK cells

Plasmids pBTL114 and pBTL115 were transfected into tk ts13 cells using calcium phosphate precipitation (essentially as described by Graham and van der Eb, <u>J. Gen. Virol.</u> 36: 59-72, 1977). The transfected cells were grown in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum, 1x PSN antibiotic mix (Gibco 600-5640), 2.0 mM L-glutamine. The cells were selected in 250 nM methotrexate (MTX) for 14 days, and the resulting colonies were screened by the immunofilter assay (McCracken and Brown, Biotechniques, 82-87, March/April Plates were rinsed with PBS or No Serum medium 1984). (DMEM plus 1x PSN antibiotic mix). Teflon® mesh (Spectrum

15

Medical Industries, Los Angeles, CA) was then placed over the cells. Nitrocellulose filters were wetted with PBS or No Serum medium, as appropriate, and placed over the mesh. After six hours incubation at 37°C, filters were removed and placed in Wester buffer A (Table 4) overnight at room temperature. The filters were developed using the antibody PR7212 and the procedure described in Example 8. The filters showed that conditioned media from pBTL114-transfected and pBTL115-transfected BHK cells bound the PR7212 antibody indicating the presence of biologically active secreted PDGF β -R.

Example 12

Expression of PDGF β -Receptor Analogs in Cultured Mouse Myeloma Cells

A. Construction of pICµPRE8

The immunoglobulin μ heavy chain promoter and enhancer were sublconed into pIC19H to provide a unique Hind III site 3' to the promoter. 20 Plasmid pµ (Grosschedl and Baltimore, Cell 41: 885-897, 1985) was digested with Sal I and Eco RI to isolate the 3.1 kb fragment comprising μ promoter. Plasmid pIC19H was linearized digestion with Eco RI and Xho I. The μ promoter fragment and the linearized pIC19H vector fragment were joined by 25 The resultant plasmid, designated pIC#3, was ligation. digested with Ava II to isolate the 700 bp μ promoter fragment. The 700 bp fragment was blunt-ended treatment with DNA polymerase I (Klenow fragment) and 30 deoxynucleotide triphosphates. Plasmid pIC19H was linearized by digestion with Xho I, and the adhesive ends were filled in by treatment with DNA polymerase I (Klenow fragement) and deoxynucleotide triphosphates. The bluntended Ava II fragment was ligated with the blunt-ended, 35 linearized pIC19H, and the ligation | mixture was transformed into E. coli JM83. Plasmid DNA was prepared from the transformants and was analyzed by restriction

digest. A plasmid with a Bgl II site 5' to the promoter was designated pIC μ PR1(-). Plasmid pIC μ PR1(-) was digested with Hind III and Bgl II to isolate the 700 bp μ promoter fragment. Plasmid pIC19R was linearized by digestion with Hind III and Bam HI. The 700 bp promoter fragment was joined with the linearized pIC19R by ligation. The resultant plasmid, designated pIC μ PR7, comprised the μ promoter with an unique Sma I site 5' to the promoter and a unique Hind III site 3' to the promoter.

- 10 The immunoglobulin heavy chain enhancer (Gillies et al., Cell 33: 717-728, 1983) was inserted into the unique Sma I site to generate plasmid pIC#PRE8. Plasmid pJ4 (obtained from F. Blattner, Univ. Wisconsin, Madison, Wisconsin), comprising the 1.5 kb Hind III-Eco RI 15 enhancer fragment in the vector pAT153 (Amersham, Arlington Heights, IL), was digested with Hind III and Eco RI to isolate the 1.5 kb enhancer fragment. The adhesive ends of the enhancer fragment were filled in by treatment with T4 DNA polymerase and deoxynucleotide triphosphates. The blunt-ended fragment and pICμPR7, 20 which had been linearized by digestion with Sma I, were joined ligation. The ligation mixture was transformed into E.
- transformants, and the plasmids were analyzed by restriction digests. A plasmid comprising the μ enhancer and the μ promoter was designated pIC μ PRE8 (Figure 7).

DNA

was

prepared

from

the

Plasmid

B. Construction of pSDL114

coli

RR1.

DNA sequence encoding the extracellular domain of the PDGF β -receptor was joined with the DNA 30 sequence encoding the human immunoglobulin light chain constant region. The PDGF β -receptor extracellular domain was obtained from mpBTL22, which comprised the Eco RI-Hind III fragment from pBTL22 (Example 8.A.) cloned into Eco 35 RI-Hind III cut M13mp18. Single stranded DNA was prepared from a mpBTL22 phage clone, and the DNA was subjected to in vitro mutagenesis using the oligonucleotide

(Table 1) and the method described by Kunkel (<u>Proc. Natl. Acad. Sci. USA 82</u>: 488-492, 1985). A phage clone comprising the mutagenized PDGF β -R with a donor splice site (5' splice site) at the 3' end of the PDGF β -R extracellular domain was designated pBTLR-HX (Figure 7).

The native PDGF β -R signal sequence was obtained from pPR5. Plasmid pPR5, comprising 738 bp of 5' coding sequence with an Eco RI site immediately 5' to the translation initiation codon, was constructed by in vitro mutagenesis of the PDGF β -R cDNA fragment from RP51 (Example 1). Replicative form DNA of RP51 was digested with Eco RI to isolate the 1.09 kb PDGF β -R fragment. PDGFeta-R fragment was cloned into the Eco RI site of M13mp18. Single stranded template DNA was prepared from a 15 phage clone containing the PDGFβ-R fragment in the proper orientation. The template DNA was subjected to in vitro mutagenesis using oligonucleotide ZC1380 (Sequence ID Number 8; Table 1) and the method described by Zoller and Smith (Meth. Enzymol. 100: 1983). 468-500, mutagenesis resulted in the placement of an Eco RI site immediately 5' to the translation initiation codon. Mutagenized phage clones were analyzed by dideoxy sequence A phage clone containing the ZC1380 mutation was selected, and replicative form (Rf) DNA was prepared 25 from the phage clone. The Rf DNA was digested with Eco RI and Acc I to isolate the 0.63 kb fragment. Plasmid pR-RXI (Example 1) was digested with Acc I and Eco RI to isolate the 3.7 kb fragment. The 0.63 kb fragment and the 3.7 kb fragment were joined by ligation resulting in plasmid pPR5 (Figure 7). 30

As shown in Figure 7, the PDGFβ-R signal peptide and part of the extracellular domain were obtained from plasmid pPR5 as a 1.4 kb Eco RI-Sph I fragment. Replicative form DNA from phage clone pBTLR-HX was digested with Sph I and Hind III to isolate the approximately 0.25 kb PDGFβ-R fragment. Plasmid pUC19 was linearized by digestion with Eco RI and Hind III. The 1.4

kb Eco RI-Sph I PDGF β -R fragment, the 0.25 kb Sph I-Hind III fragment from pBTLR-HX and the Eco RI-Hind III cut pUC19 were joined in a three-part ligation. The resultant plasmid, pSDL110, was digested with Eco RI and Hind III to isolate the 1.65 kb PDGF β -R fragment.

Plasmid pICHuCk3.9.11 was used as the source of the human immunoglobulin light chain gene (Figure 7). The human immunoglobulin light chain gene was isolated from a human genomic library using an oligonucleotide probe (5' TGT GAC ACT CTC CTG GGA GTT A 3'; Sequence ID Number 32), which was based on a published human kappa C gene sequence (Hieter et al., Cell 22: 197-207, 1980). The human light chain (kappa) constant region was subcloned as a 1.1 kb Sph I-Hinf I genomic fragment of the human kappa gene, 15 which has been treated with DNA polymerase DNA I (Klenow Fragment) to fill in the Hinf I adhesive end, into Sph I-Hinc II cut pUC19. The 1.1 kb human kappa constant region was susbsequently isolated as a 1.1 kb Sph I-Bam HI fragment that was subcloned into Sph I-Bgl II cut pIC19R 20 (Marsh et al., ibid.). The resultant plasmid was designated pICHuCλ3.9.11. Plasmid pICHuCx3.9.11 was digested with Hind III and Eco RI to isolate the 1.1 kb kappa constant region gene. Plasmid pIC19H was linearized by digestion with Eco RI. The 1.65 kb PDGF β -R fragment, 25 the 1.1 kb human kappa constant region fragment and the linearized pIC19H were joined in a three part ligation. The resultant plasmid, pSDL112, was digested with Bam HI and Cla I to isolate the 2.75 kb fragment. Plasmid puPRE8 was linearized with Bgl II and Cla I. The 2.75 kb 30 fragment and the linearized ppPRE8 were joined by ligation. The resultant plasmid was designated pSDL114 (Figure 7).

Plasmid pSDL114 was linearized by digestion with Cla I and was cotransfected with Pvu I-digested p416 into SP2/0-Ag14 (ATCC CRL 1581) by electroporation using the method essentially described by Neumann et al. (EMBO J. 1: 841-845, 1982). (Plasmid p416 comprises the Adenovirus 5

5...

ori, SV40 enhancer, Adenovirus 2 major late promoter, Adenovirus 2 tripartite leader, 5' and 3' splice sites, the DHFR^r cDNA, the SV40 polyadenylation signal and pML-1 (Lusky and Botchan, Nature 293: 79-81, 1981) vector sequences.) Transfectants were selected in growth medium containing methotrexate.

Media from drug resistant clones were tested for the presence of secreted PDGF β -receptor analogs by enzyme-linked immunosorbant assay (ELISA). Ninety-six 10 well assay plates were prepared by incubating 100 μ l of 1 μ g/ml polyclonal goat anti-human kappa chain (Cappel Laboratories, Melvern, PA) diluted in phosphate buffered saline (PBS; Sigma) overnight at 4°C. Excess antibody was removed by three washes with 0.5% Tween 20 in PBS. One 15 hundred microliters of spent media was added to each well, and the well were incubated for one hour at 4°C. Unbound proteins were removed by eight washes with 0.5% Tween 20 One hundred microliters of peroxidase-conjugated goat anti-human kappa antibody (diluted 1:1000 in a solution containing 5% chicken serum (GIBCO-BRL) + 0.5% Tween 20 in PBS) was added to each well and the wells were incubated for one hour at 4°C. One hundred microliters of (100 µ1 ABTS (2,2'-Azinobis(3-ethylbenzthiazoline sulfonic acid) diammonium salt; Sigma) + 1 μ l 25 30% H_2O_2 + 12.5 ml citrate/phosphate buffer (9.04 g/l citric acid, 10.16 g/l Na₂HPO₄)) was added to each well, and the wells were incubated to thirty minutes at room temperature. The samples were measured at 405 nm. results of the assay showed that the PDGFβ-R analog 30 secreted by the transfectants contained an immunoglobulin light chain.

Spent media from drug resistant clones was also tested for the presence of secreted PDGF β -receptor analogs by immunoprecipitation. Approximately one million drug resistant transfectants were metabolically labeled by growth in DMEM medium lacking cysteine + 2% calf serum for 18 hours at 37°C in the presence of 50 μ CI 35 S-cysteine.

Media was harvested from the labeled cells and 250 μl of the spent media was assayed by immunoprecipitation with the anti-PDGF β -receptor antibody PR7212 to detect the prsence of metabolically labeled PDGF β -receptor analogs. 5 PR7212, diluted in PBS, was added to the media to a final concentration of 2.5 μ g per 250 μ l spent media. microliters of rabbit anti-mouse Ig diluted in PBS was added to the PR7212/media mixtures. The immunocomplexes were precipitated by the addition of 50 µl 10% fixed Staph 10 A (weight/volume in PBS). The immunocomplexes were analyzed on 8% SDS-polyacrylamide gels followed by autoradiography overnight at -70°C. The results of the immunoprecipitation showed that the PDGF eta-receptor analog

secreted by the transfectants was bound by the anti-PDGF β -receptor antibody. The combined results of the ELISA and immunoprecipitation assays showed that the PDGF β -receptor analog secreted by the transfectants contained both the PDGF β -receptor ligand-binding domain and the human light chain constant region.

20

C. Cotransfection of pSDL114 with an immunoglobulin heavy chain

Plasmid pSDL114 was cotransfected with $p\phi 5V_HhuC_71M$ -neo, which encodes a neomycin resistance gene expression unit and a complete mouse/human chimeric immunoglobulin heavy chain gene expression unit.

Plasmid p\$5VHnUC\(\gamma\)1M-neo was constructed as follows. The mouse immunoglobulin heavy chain gene was isolated from a lambda genomic DNA library constructed from the murine hybridoma cell line NR-ML-05 (Serafini et al., Eur. J. Nucl. Med. 14: 232, 1988) using an oligonucleotide probe designed to span the VH/D/JH junction (5' GCA TAG TAG TTA CCA TAT CCT CTT GCA CAG 3'; Sequence ID Number 33). The human immunoglobulin gamma-1 C gene was isolated from a human genomic library using a cloned human gamma-4 constant region gene (Ellison et al., DNA 1: 11-18, 1981). The mouse immunoglobulin variable

region was isolated as a 5.3 kb Sst I-Hind III fragment from the original phage clone and the human gamma-1 C gene was obtained from the original phage clone as a 6.0 kb Hind III-Xho I fragment. The chimeric gamma-1 C gene was created by joining the V_H and C_H fragments via the common Hind III site and incorporating them with the <u>E. colimeomycin</u> resistance gene expression unit into pIC19H to yield p\$5V_HhuC_Y1M-neo.

Plasmid pSDL114 was linearized by digestion with 10 Cla I and was co-transfected into SP2/0-Ag14 cells with Asp 718 linearized p\$\phi\$5V_HhuC_\gamma\$1M-neo. The transfectants were selected in growth medium containing methotrexate and neomycin. Media from drug-resistant clones were tested for their ability to bind PDGF in a competition binding 15 assay.

The competition binding assay measured the amount of 125I-PDGF left to bind to human dermal fibroblast cells after preincubation with the spent media from pSDL114-p ϕ 5VHhuC γ 1M-neo transfected cells. The media were serially diluted in binding medium (Table 4). dilutions were mixed with 0.5 ng of iodinated PDGF-BB or iodinated PDGF-AA, and the mixtures were incubated for two hours at room temperature. Three hundred micrograms of unlabeled PDGF-BB or unlabeled PDGF-AA was added to one tube from each series. The sample mixtures were added to 25 well plates containing confluent human fibroblast cells. The cells were incubated with the mixture for four hours at 4°C. The supernatants were aspirated from the wells, and the wells were rinsed three 30 times with phosphate buffered saline that was held a 4°C (PBS; Sigma, St. Louis, Mo.). Five hundred microliters of PBS + 1% NP-40 was added to each well, and the plates were shaken on a platform shaker for five minutes. were harvested and the amount of iodinated PDGF was 35 determined. The results of the competition binding assay showed that the protein produced from pSDL114-p ϕ 5V $_{H}$ huC $_{\gamma}$ 1M-

neo transfected cells was able to competetively bind PDGF-BB but did not bind PDGF-AA.

The PDGF β -receptor analog produced from a pSDL114-p\$5VHhuCy1M-neo transfectant was assayed 5 determine if the receptor analog was able to bind PDGF-BB with high affinity. Eight and one half milliliters of spent media containing the PDGF β -R analogs from a pSDL114 $p\phi 5V_{H}huC_{\gamma}1M$ -neo transfectant was added to 425 μl of Sepharose Cl-4B-Protein A beads (Sigma, St. Louis, MO), 10 and the mixture was incubated for 10 minutes at 4°C. beads were pelleted by centrifugation and washed with binding medium (Table 4). Following the wash the beads were resuspended in 8.5 ml of binding media, and 0.25 ml aliquots were dispensed to 1.5 ml tubes. 15 reactions were prepared by adding iodinated PDGF-BBTvr (Example 18.F.) diluted in DMEM + 10% fetal calf serum to the identical aliquots of receptor-bound beads to final PDGF-BBTVr concentrations of between 4.12 pM and 264 pM. Nonspecific binding was determined by adding a 100 fold excess of unlabeled BB to an identical set of binding reactions. Mixtures were incubated overnight at 4° C.

The beads were pelleted by centrifugation, and unbound PDGF-BB was removed with three washes in PBS. The beads were resuspended in 100 μ l of PBS and were counted. Results of the assay showed that the PDGF β -R analog was able to bind PDGF-BB with high affinity.

D. Construction of pSDL113.

As shown in Figure 8, the DNA sequence encoding the extracellular domain of the PDGF β-receptor was joined with the DNA sequence encoding a human immunoglobulin heavy chain constant region joined to a hinge sequence. Plasmid pSDL110 was digested with Eco RI and Hind III to isolate the 1.65 kb PDGFβ-R fragment. Plasmid pICHuγ-1M was used as the source of the heavy chain constant region and hinge region. Plasmid pICHuγ-1M comprises the approximately 6 kb Hind III-Xho I fragment of a human

.2

The mouse NR-ML-05 immunoglobulin light chain variable region gene was subcloned from the original mouse genomic phage clone into pIC19R as a 3 kb Xba I-Hinc II fragment. The human kappa C gene was subcloned from the original human genomic phage clone into pUC19 as a 2.0 kb Hind III-Eco RI fragment. The chimeric kappa gene was created by joining the NR-ML-05 light chain variable region gene and human light chain constant region gene via the common Sph I site and incoporating them with the <u>F. coli</u> neomycin resistance gene into pIC19H to yield pIC\$\phi\$V_KHuC_K-Neo (Figure 9).

The linearized pSDL113 and pIC\$\psi 5V_K\text{HuC}_K\text{-Neo} are transfected into SP2\$/0\text{-Ag14} cells by electroporation. The transfectants are selected in growth medium containing methotrexate and neomycin.

F. Cotransfection of pSDL113 and pSDL114

A clone of SP2/0-Ag14 stably transfected with pSDL114 and p416 was co-transfected with Cla I-digested pSDL113 and Bam HI-digested pICneo by electroporation. (Plasmid pICneo comprises the SV40 promoter operatively linked to the E. coli neomycin resistance gene and pIC19H vector sequences.) Transfected cells were selected in growth medium containing methotrexate and G418. Media from drug-resistanct clones were tested for their ability to bind PDGF-BB or PDGF-AA in a competition binding assay as described in Example 12.C. The results of the assay showed that the transfectants secreted a PDGF β-receptor analog which was capable of competitively binding PDGF-BB 30 but did not detectably bind to PDGF-AA.

G. Cotransfection of pSDL114 with Fab

A clone of SP2/0-AG14 stably transfected with pSDL114 and p416 was transfected with the Fab region of the human gamma-4 gene (γ_4) in plasmid p ϕ 5V $_H$ Fab-neo.

Plasmid p ϕ 5VHFab-neo was constructed by first digesting plasmid p24BRH (Ellison et al., <u>DNA 1</u>: 11, 1988)

was digested with Xma I and Eco RI to isolate the 0.2 kb fragment comprising the immunoglobulin 3' untranslated Synthetic oligonucleotides ZC871 (Sequence ID Number 3; Table 1) and ZC872 (Sequence ID Number 4; Table 5 1) were kinased and annealed using essentially the methods described by Maniatis et al. (ibid.). The annealed oligonucleotides ZC871/ZC872 formed an Sst I-Xma I adapter. The ZC871/ZC872 adapter, the 0.2 kb p24BRH fragment and Sst I-Eco RI linearized pUC19 were joined in 10 a three-part ligation to form plasmid p_{43} . Plasmid p_{43} . was linearized by digestion with Bam HI and Hind III. Plasmid p24BRH was cut with Hind III and Bgl II to isolate the 0.85 kb fragment comprising the $C_{\rm H}1$ region. The $p\gamma_43'$ fragment and the Hind III-Bgl II p24BRH fragment were 15 joined by ligation to form plasmid $p\gamma_4$ Fab. Plasmid $p\gamma_4$ Fab was digested with Hind III and Eco RI to isolate the 1.2 kb fragment comprising γ_4 Fab. Plasmid pICneo, comprising the SV40 promoter operatively linked to the E. coli neomycin resistance gene and pIC19H vector sequences, was 20 linearized by digestion with Sst I and Eco RI. p\$5VH, comprising the mouse immunoglobulin heavy chain gene variable region and pUC18 vector sequences, was digested with Sst I and Hind III to isolate the 5.3 kb VH fragment. The linearized pICneo was joined with the 5.3 25 kb Sst I-Hind III fragment and the 1.2 kb Hind III-Eco RI fragment in a three-part ligation. The resultant plasmid was designated $p\phi 5V_HFab$ -neo (Figure 10).

A pSDL114/p416-transfected SP2/0-AG14 clone was transfected with Sca I-linearized pø5V_HFab-neo. 30 Transfected cells were selected in growth containing methotrexate and G418. Media from drugresistant clones were tested for their ability to bind PDGF in a competition binding assay as described in Example 12.C. The results of the assay showed that the 35 PDGF β -receptor analog secreted from the transfectants was capable of competitively binding PDGF-BB.

H. Cotransfection of pSDL114 with Fab'

A stably transfected SP2/0-AG14 isolate containing pSDL114 and p416 was transfected with plasmid pWKI, which contained the Fab' portion of an immunoglobulin heavy chain gene. Plasmid pWKI was constructed as follows.

The immunoglobulin gamma-1 Fab' sequence, comprising the $C_{\mathrm{H}}1$ and hinge regions sequences, was derived from the gamma-1 gene clone described in Example 10 12.C. The gamma-1 gene clone was digested with Hind III and Eco RI to isolate the 3.0 kb fragment, which was subcloned into Hind III-Eco RI linearized M13mp19. Single-stranded template DNA from the resultant phage was subjected to site-directed mutagenesis 15 oligonucleotide ZC1447 (Sequence ID Number 9; Table 1) and essentially the method of Zoller and Smith (ibid.). phage clone was identified having a ZC1447 induced deletion resulting in the fusion of the hinge region to a DNA sequence encoding the amino acids Ala-Leu-His-Asn-His-20 Tyr-Thr-Glu-Lys-Ser-Leu-Ser-Leu-Ser-Pro-Gly-Lys (Sequence ID Number 31) followed in-frame by a stop codon. Replicative form DNA from a positive phage clone was digested with Hind III and Eco RI to isolate the 1.9 kb fragment comprising the $C_{\rm H}1$ and hinge regions. 25 $p\phi 5V_{
m H}$ was digested with Sst I and Hind III to isolate the 5.3 kb fragment comprising the mouse immunoglobulin heavy chain gene variable region. Plasmid pICneo was linearized by digestion with Sst I and Eco RI. The linearized pICneo was joined with the 5.3 kb Hind III-Sst I fragment and the 1.9 kb Hind III-Eco RI fragment in a three-part ligation. The resultant plasmid was designated pWKI (Figure 10).

An SP2/0-AG14 clone stably transfected with pSDL114 and p416 was transfected with Asp 718-linearized pWKI. Transfected cells were selected by growth in medium containing methotrexate and G418. Media samples from transfected cells were assayed using the competition assay described in Example 12.C. Results from the assays showed

that the transfected cells produced a PDGF β -receptor analog capable of competetively binding PDGF-BB.

Example 13

Purification and Characterization of PDGF β -Receptor Analogs from Mammalian cells Co-transfected With pSDL113 and pSDL114

A. Purification of PDGF β -Receptor Analogs

5

- The PDGF \$-receptor analog was purified from 10 conditioned culture media from a clone of transfected cells grown in a hollow fiber system. The media was passed over a protein-A sepharose column, and the column was washed sequentially with phosphate buffered saline, pH 15 7.2 (PBS; Sigma, St. Louis, MO) and 0.1 M citrate, pH 5.0. The PDGF β -receptor analog was eluted from the protein-A column with 0.1 M citrate pH 2.5 and immediately neutralized by the addition of Tris-base, pH 7.4. eluate fractions containing PDGF β -receptor analog, as silver stain, were pooled and 20 determined by chromatographed over an S-200 column (Pharmacia LKB Technologies, Inc., Piscataway, NJ) equilibrated with PBS. The peak fractions from the S-200 column were pooled and concentrated on a centriprep-10 concentrator (Amicon). 25 Glycerol (10% final volume) was added to the preparation
- and the sample frozen at -80°C. PDGF β -receptor analogs purified from pSDL114 + pSDL113 co-transfected cells were termed "tetrameric PDGF α -receptors".
- 30 B. Measurement of The Relative Binding Affinity of Tetrameric PDGF β -Receptor Analog by Soluble Receptor Assay

Purified tetrameric PDGF β -receptor analog was compared to detergent solubilized extracts of human dermal fibroblasts for 125 I-labeled PDGF-BB binding activity in a soluble receptor assay essentially as described by Hart et al. (<u>J. Biol. Chem.</u> 262: 10780-10785, 1987). Human dermal

fibroblast cells were extracted at 20 x 106 equivalents per ml in TNEN extraction buffer (20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5% Nonidet P-40, 1 mM PMSF, 10% glycerol). Two hundred and fifty thousand 5 PDGF β -receptor-subunits per cell was used to calculate the tetrameric PDGF β -receptor analog number per volume of This value has been previously published by extract. Seifert et al. (<u>J. Biol Chem.</u> <u>264</u>: 8771-8778, 1989). PDGF β -receptor analog number was determined from the 10 protein concentration of the PDGF β -receptor analog assuming an average molecular weight of 140 kDa for each immunoglobulin-PDGF β -receptor monomer, and four monomers Thus, each tetrameric molecule contains per tetramer. four receptor molecules.

detergent of either Increasing amounts 15 solubilized extracts of human dermal fibroblast cells or purified PDGF β -receptor analog were incubated with 1ng of 125 I-labeled PDGF-BB for one hour at 37°C. The sample was then diluted with 1 ml binding media and was added to 20 monolayers of human dermal fibroblast cells grown in 24-The samples were incubated for two well culture dishes. The wells were washed to remove unbound, hours at 4°C. On half of a milliliter of 125I-labeled PDGF-BB. extraction buffer (PBS + 1% Nonidet P-40) was added to 25 each well followed by a 5 minute incubation. The extraction mixtures were harvested and counted in a gamma counter.

The results showed that the PDGF β -receptor analog had the same relative binding affinity as solubilized PDGF β -receptor-subunit from mammalian cells in a solution phase binding assay.

C. Determination of the Binding Affinity of the PDGF β Receptor Analog in a Solid Phase Format

The apparent dissociation constant $K_D(app)$ of the PDGF β -receptor analog was determined essentially as described by Bowen-Pope and Ross (Methods in Enzymology

109: 69-100, 1985), using the concentration of 125 I-labeled PDGF-BB giving half-maximal specific 125 I-labeled PDGF-BB binding. Saturation binding assays to determine the concentration of 125 I-labeled PDGF-BB that gave half-maximal binding to immobilized PDGF β-receptor analog were conducted as follows.

Affinity purified goat anti-human IgG, H- and L-(Commercially available from Cappel Labs) was diluted into 0.1 M Na₂HCO₃, pH 9.6 to a concentration of 2 One hundred microliters of the antibody solution was coated onto each well of 96-well microtiter plates for 18 hours at 4°C. The wells were washed once with ELISA C buffer (PBS + 0.05% Tween-20) followed by an incubation with 175 μ l/well of ELISA B buffer (PBS + 1% BSA + 0.05% 15 Tween-20) to block the wells. The wells were washed once with ELISA B buffer. One hundred microliters of 12.1 ng/ml or 24.3 ng/ml of tetrameric PDGF β -receptor analog protein diluted in ELISA B was added to each well and the plates were incubated for 2 hours at 37°C. 20 protein was removed from the wells by two washes with ELISA C. 125 I-labeled PDGF-BB $_{ ext{Tyr}}$ (Example 18.F.) was serially diluted into binding media (25 mM HEPES, pH 7.2, 0.25% rabbit serum albumin diluted in HAMs F-12 medium (GIBCO-BRL)), and 100 μ l of the dilutions were added to 25 the wells. The plates were incubated for two hours at The unbound 125I-labeled PDGF-BB was room temperature. removed, and the wells were washed three times with binding media. Following the last wash, 100 μ l of 0.1 M citrate, pH 2.5 was added to each well. 30 minutes, the citrate buffer was removed, transferred to a tube and counted in a gamma counter. The counts reflect counts of 125 I-labeled PDGF-BB $_{\mathrm{Tyr}}$ bound by the receptor Nonspecific binding for each concentration of 125 I-labeled PDGF-BB $_{
m Tyr}$ was determined by a parallel assay 35 wherein separate wells coated only with goat anti-human IgG were incubated with the 125I-labeled PDGF-BB concentrations. Nonspecific binding was determined to be 2.8% of the total input counts per well and averaged 6% of the total counts bound.

Saturation binding assay on 12.1 and 24.3 ng/ml of tetrameric PDGF β -receptor analog gave half-maximal 5 binding at 0.8 and 0.82 ng/ml 125 I-labeled PDGF-BB_{Tyr}, respectively. By Scatchard analysis (Scatchard, <u>Ann. NY Acad. Sci</u> 51: 660-667, 1949) these values were shown to correspond to a $K_D(\text{app})$ of 2.7 x 10^{-11} which agree with the published values for PDGF receptors on mammalian cells.

Example 14

Solid Phase Ligand Binding Assay Using the PDGF eta-Receptor Analog

Solid Phase Radioreceptor Competition Binding Assay In a solid phase radioreceptor competition binding assay (RRA), the wells of 96-well microtiter plates were coated with 100 µl of 2 µg/ml affinity purified goat anti-human IgG (Cappel Labs) diluted in 0.1 M 20 Na₂HCO₃, pH 9.6. After an eighteen hour incubation at 4°C, the wells were washed once with ELISA C. The wells were blocked by incubation for 2 hours at 37°C with 175 μ l/well ELISA B. The wells were washed once with ELISA B then incubated for 2 hours at 37°C with 50 ng/ml 25 tetrameric PDGF β -receptor analog diluted in ELISA B. The unbound receptor was removed, and the test wells were incubated with increasing concentrations of serially diluted, unlabeled PDGF-BB (diluted in binding media. Following a two hour incubation at room temperature, the 30 wells were washed three times with binding media. hundred microliters of 5 ng/ml 125I-labeled PDGF-BBTVr (Example 18.F.) was added to each well, and the plates were incubated for an additional two hours at room temperature. The wells were washed three times with 35 binding media followed by a 5 minute incubation with 100 μ l/well of 0.1 M citrate, pH 2.5. The samples were harvested and counted in a gamma counter.

Radioreceptor assay (RRA) competition binding curves were generated for PDGF β-receptor analog protein plated at 48.6 ng/ml. The sensitivity of the assays is 1 ng/ml of PDGF-BB, with 8 ng/ml giving 50% inhibition in ¹²⁵I-PDGF-BB binding, and a working range between 1 and 32 ng/ml of PDGF-BB. The values were similar to those obtained using monolayers of SK-5 cells in an RRA.

B. Use of Tetrameric PDGF β -Receptor Analogs As Antagonists for PDGF-Stimulated Mitogenesis.

A tetrameric PDGF β -receptor analog, purified as described in Example 13, was analyzed for the ability to neutralize PDGF-stimulated mitogenesis in mouse 3T3 cells. Increasing amounts of the purified tetrameric PDGF β -15 receptor analog were mixed with 5 ng of PDGF. mixtures were then added to cultures of mouse 3T3 cells. The ability of the PDGF to stimulate a mitogenic response, as measured by the incorporation of ³H-thymidine, was determined essentially as described (Raines and Ross, 20 <u>Methods in Enzymology</u> 109: 749-773, 1985, which is incorporated by reference herein). The tetrameric PDGF β receptor analog demonstrated a dose response inhibition of PDGF-BB-stimulated ³H-thymidine incorporation, having essentially no effect on PDGF-AA- and PDGF-ABstimulated 3H-thymidine incorporation.

C. Binding of Tetrameric PDGF β -receptor Analog to Immobilized PDGF.

A tetrameric PDGF β-receptor analog, purified as described in Example 13, was analyzed for its ability to bind to immobilized PDGF. PDGF-BB (100 ng/ml) was coated onto wells a 96-well microtiter plate, and the plates were incubated 18 hours at 4°C followed by one wash with ELISA C buffer. The wells were incubated for 2 hours 37°C with ELISA B buffer to block the wells. Increasing concentrations of 125I-labeled tetrameric PDGF β-receptor analog, diluted in binding media, was added to the wells

20

for two hours at room temperature. The wells were washed four times with ELISA C buffer to remove unbound receptor analog. One hundred microliters of 1 M H₂SO₄ was added to each well and the plates were incubated for five minutes at room temperature. The solution was then harvested and transferred to tubes to be counted in a gamma counter. Nonspecific binding was determined to be less than 10% of the total counts bound.

A receptor competition binding assay was

10 developed using this assay format. The assay was carried out as described above, and simultaneous to the addition of the ¹²⁵I-labeled tetrameric PDGF β-receptor analog, increasing amounts of PDGF-AA, AB or BB were added to the PDGF-BB coated wells. Under these condtions, only PDGF-BB

15 was found to significantly block the binding of the labeled PDGF β-receptor analog to the immobilized PDGF-BB.

Example 15

Construction and Expression of PDGFq-R Analogs in Cultured
Mouse Myeloma Cells

. Construction of an optimized PDGFa-R cDNA

The PDGF a-receptor coding region was optimized for expression in mammalian cells as follows. The 5' end of the cDNA was modified to include an optimized Kozak 25 consensus translation initiation sequence (Kozak, Nuc. Acids Res. 12: 857-872, 1984) and Eco RI and Bam HI sites 5′ of the initiation methionine codon. Oligonucleotides ZC2181, ZC2182, ZC2183 (Sequence ID Numbers 23, 24, 25 and 26, respectively; 30 Table 1) were designed to form, when annealed, an adapter having an Eco RI adhesive end, a Bam HI restriction site, a sequence encoding a Kozak consensus sequence 5' to the initation methionine codon, a mammalian codon optimized sequence encoding amino acids 1-42 of Figure 11, and an 35 Eco RI adhesive end that destroys the Eco RI site within the PDGFa-R coding sequence. The adapter also introduced a diagnostic Cla I site 3' to the initiation methionine

codon. Oligonucleotides ZC2181, ZC2182, ZC2183 and ZC2184 were kinased, annealed and ligated. Plasmid po17B was linearized by partial digestion with Eco RI. linearized pα17B was ligated with the ZC2181/ZC2182/ZC2183/ZC2184 oligonucleotide adapter, and the ligation mixture was transformed into E. coli. Plasmid DNA prepared from the transformants was analyzed by restriction analysis and a positive clone having the oligonucleotide adapter in the correct orientation was digested with Eco RI and Pst I to isolate the 1.6 kb fragment. This fragment was subcloned into Eco RI + Pst I-linearized M13mp19. The resultant phage clone was designated 792-8. Single-stranded 792-8 DNA was sequenced to confirm the orientation of the adapter.

15 A fragment encoding the ligand-binding domain of the PDGF α-receptor (PDGFα-R) was then generated as follows. Restriction sites and a splice donor sequence were introduced at the 3' end of the PDGFa-R extracellular domain by PCR amplification of the 792-8 DNA and 20 oligonucleotides ZC2311 and ZC2392 (Sequence ID Numbers 27 and 30, Table 1). Oligonucleotide ZC2311 is a sense primer encoding nucleotides 1470 to 1489 of Figure 11. Oligonucleotide ZC2392 is an antisense primer that encodes nucleotides 1759 to 1776 of Figure 11 followed by a splice 25 donor and Xba I and Hind III restriction sites. The 792-8 DNA was amplified using manufacturer recommended (Perkin Elmer Cetus, Norwalk, CT) conditions and the GeneAmpTM DNA amplification reagent kit (Perkin Elmer Cetus), and bluntended 329 bp fragment was isolated. The blunt-end fragment was digested with Nco I and Hind III and ligated with Sma I-digested pUC18. A plasmid having an insert with the Nco I site distal to the Hind III site present in the pUC18 polylinker was designated pUC18 Sma-PCR Nco HIII The Hind III site present in the insert was not 35 regenerated upon ligation with the linearized pUC18. Plasmid pUC18 Sma-PCR Nco HIII #13 was digested with Nco I and Hind III to isolate the 355 bp PDGFq-R containing

fragment encoding PDGFaR. Oligonucleotides ZC2351 and ZC2352 (Table 1; Sequence ID Numbers 28 and 29) were kinased and annealed to form an Sst I-Nco I adapter encoding an internal Eco RI site and a Kozak consensus 5 translation initiation site. The 355 bp Nco I-Hind III fragment, the ZC2351/ZC2352 adapter and a 1273 bp Nco I fragment comprising the extracellular domain of of PDGF α -R derived from 792-8 were ligated with Hind III + SstIdigested pUC18 and tranformed into E. coli. Plasmid DNA 10 was isolated from the transformants and analyzed by restriction analysis. None of the isolates contained the 1273 bp Nco I fragment. A plasmid containing the Nco I-Hind III fragment and the ZC2351/ZC2352 adapter was desginated pUC18 Hin Sst ∆ Nco #46. Plasmid pUC18 Hin Sst 15 Å Nco #46 was linearized by digestion and joined by ligation with the 1273 bp Nco I fragment comprisising the extracellular domain of the PDGFa-R from clone al8 R-19. The ligations were transformed into E. coli, and plasmid DNA was isolated from the transformants. Analysis of the 20 plasmid DNA showed that only clones with the Nco I fragment in the wrong orientation were isolated. A clone having the Nco I fragment in the wrong orientation was digested with Nco I, religated and transformed into \underline{E} . coli. Plasmid DNA was isolated from the transformants and 25 was analyzed by restriction analysis. A plasmid having the Nco I insert in the correct orientation was digested to completion with Hind III and partially digested with Sst I to isolate the 1.6 kb fragment comprising the extracellular domain of the PDGFa-R preceded by a consensus initiation sequence (Kozak, ibid.) and followed by a splice donor site.

B. Construction of pPAB7

The DNA sequence encoding the extracellular domain of the PDGF α -R was joined to the immunoglobulin μ enhancer-promoter and to a DNA sequence encoding an immunoglobulin light chain constant region. The

immunoglobulin μ enhancer-promoter was obtained from plasmid pJH1 which was derived from plasmid PICµPRE8 (Example 12.A.) by digestion with Eco RI and Sst I to isolate the 2.2 kb fragment comprising the immunoglobulin 5 enhancer and heavy chain variable region promoter. 2.2 kb Sst I-Eco RI fragment was ligated with Sst I + Eco RI-linearized pUC19. The resulting plasmid, designated pJH1, contained the immunoglobulin enhancer and heavy chain variable region promoter immediately 5' to the pUC19 10 linker sequences. Plasmid pJH1 was linearized by digestion with Sst I and Hind III and joined with the 1.6 kb partial Sst I-Hind III fragment containing the PDGF α -R extracellular domain sequences. The resulting plasmid having the immunoglobulin μ enhancer-promoter joined to 15 the PDGFα-R extracellular domain was designated pPAB6. Plasmid pSDL112 was digested with Hind III to isolate the 1.2 kb fragment encoding the immunoglobulin light chain constant region (CK). The 1.2 kb Hind III fragment was ligated with Hind III-linearized pPAB6. A plasmid having 20 the C_{κ} sequence in the correct orientation was desginated pPAB7.

C. Construction of pPAB9

The partial Sst I-Hind III fragment encoding the 25 extracellular domain of the PDGFα-R was joined to the immunoglobulin heavy chain constant region. For convenience, the internal Xba I site in plasmid pJH1 was removed by digestion with Xba I, blunt-ending with T4 DNA polymerase, and religation. A plasmid which did not 30 contain the internal Xba I site, but retained the Xba I site in the polylinker was desginated 11.28.3.6. Plasmid 11.28.3.6 was linearized by digestion with Sst I and Xba Plasmid pPAB6 was digested to completion with Hind III and partially digested with Sst I to isolate the 1.6 kb 35 Sst I-Hind III fragment containing the extracellular domain. Plasmid pø5V_HhuC₇1M-neo (Example 12.C.) was digested with Hind III and Xba I to isolate the 6.0 kb fragment encoding the immunoglobulin heavy chain constant region (huC_γlM). The Sst I-Hind III-linearized 11.28.3.6, the 1.6 kb Sst I-Hind III PDGFα-R fragment and the 6.0 kb Hind III-Xba I huC_γlM fragment were ligated to 5 form plasmid pPAB9.

D. Expression of pPAB9 in Mammalian Cells

Bgl II-linearized pPAB7 and Pvu I-linearized pPAB9 were cotransfected with Pvu I-linearized p416 into 10 SP2/0-Ag14 cells by electroporation. Transfected cells were initially selected in growth medium containing 50 nM methotrexate and were subsequently amplified in a growth medium containing 100 μM methotrexate. Media from drug resistant clones were tested for the presence of secreted 15 PDGF α -receptor analogs by enzyme-linked immunosorbant assay (ELISA). Ninety-six well assay plates were prepared by incubating 100 μ l of 1 μ g/ml monoclonal antibody 292.1.8 which is specific for the PDGF a-receptor diluted in phosphate buffered saline (PBS; Sigma] overnight at 4°C. 20 Excess antibody was removed by three washes with 0.5% Tween 20 in PBS. One hundred microliters of spent media was added to each well, and the plates were incubated for one hour at 4°C. Unbound proteins were removed by eight washes with 0.5% Tween 20 in PBS. One hundred microliters 25 of peroxidase-conjugated goat anti-human IgG heavy chain antibody (diluted 1:1000 in a solution containing 5% chicken serum (GIBCO-BRL) + 0.5% Tween 20 in PBS) was added to each well, and the plates were incubated for one hour at 4°C. One hundred microliters of chromophore (100 [2,2'-Azinobis(3-ethylbenz-thiazoline sulfonic ABTS acid] diammonium salt; Sigma] + 1 μ l 30% H_2O_2 + 12.5 ml citrate/phosphate buffer [9.04 g/l citric acid, 10.16 g/l Na2HPO4]) was added to each well, and the wells were incubated for 30 minutes at room temperature. The samples 35 were measured at 405 nm. The results of the assay showed PDGF a-receptor that the analogs secreted by transfectants contained an immunoglobulin heavy chain.

Analysis of spent media from transfected cells by Northern analysis, Western analysis and by radioimmunoprecipitation showed that the transfectants did not express a PDGF α-receptor analog from the pPAB7 construction. Transfectants were subsequently treated as containing only pPAB9.

Drug resistant clones was also tested for the presence secreted PDGF a-receptor immunoprecipitation. For each clone, approximately one 10 million drug resistant transfectants were grown in DMEM lacking cysteine + 2% calf serum for 18 hours at 37°C in the presence of 50 μ Ci 35 S-cysteine. The spent media was harvested from the labeled cells and 250 μl of medium from each clone was assayed for binding to the anti-PDGF lpha-15 receptor antibody 292.18. Monoclonal antibody 292.18 diluted in PBS was added to each sample to a final concentration of 2.5 µg per 250 µl spent media. microliters of rabbit anti-mouse Ig diluted in PBS was added to each sample, and the immunocomplexes were 20 precipitated by the addition of 50 μ l 10% fixed Staph A (weight/volume in PBS). The immunocomplexes were analyzed on 8% SDS-polyacrylamide gels followed by autoradiography overnight -70°C. at The results immunoprecipitation showed that the PDGF a-receptor analog 25 secreted by the transfectants was bound by the anti-PDGF a-receptor antibody. The combined results of the ELISA and immunoprecipitation assays showed that the PDGF α receptor analog secreted by the transfectants contained both the PDGF lpha-receptor ligand-binding domain and the human heavy chain. 30

Spent medium from drug-resistant clones were tested for their ability to bind PDGF in a competition binding assay esssentially as described in Example 12.C. The results of the assay showed that the transfectants secreted a PDGF \(\alpha\)-receptor analog capable of binding PDGF-AA. A clone containing the pPAB9 was desginated 3.17.1.57.

Co-expression of pPAB7 and pPAB9 in Mammalian Cells Bgl II-linearized pPAB7 and Bam HI-linearized pICneo were cotransfected into clone 3.17.1.57, and 5 transfected cells were selected in the presence of neomycin. Media from drug resistant cells were assayed for the presence of immunoglobulin heavy immunoglobulin light chain and the PDGF α-receptor ligandbinding domain by ELISA essentially as described above. Briefly, ninety-six well assay plates were prepared by incubating 100 μ l of 1 μ g/ml goat anti-human IgG Fc antibody (Sigma) or 100 µl of 1 µg/ml 292.18 overnight at Excess antibody was removed by three washes with 0.5% Tween 20 in PBS. One hundred microliters of spent media was added to each well of each plate, and the plates were incubated for one hour at 4°C. Unbound proteins were removed by eight washes with 0.5% Tween 20 in PBS. hundred microliters of peroxidase-conjugated goat anti-IgG antibody (diluted 1:1000 in a solution containing 5% chicken serum (GIBCO-BRL) + 0.5% Tween 20 in PBS) was added to each well of the plate coated with the anti-Fc antibody, and 100 µl of peroxidase-conjugated goat anti human kappa antibody (diluted 1:1000 in a solution containing 5% chicken serum (GIBCO-BRL) + 0.5% Tween 20 in 25 PBS) was added to each well of the plate coated with 292.18. The plates were incubated for one hour at 4°C. One hundred microliters of chromophore (100 µl ABTS [2,2'-Azinobis(3-ethylbenz-thiazoline sulfonic acid) diammonium salt; Sigma] + 1 μ l 30% H_2O_2 + 12.5 ml citrate/phosphate 30 buffer [9.04 g/l citric acid, 10.16 g/l Na₂HPO₄]) was added to each well of each plate, and the plates were incubated to 30 minutes at room temperature. The samples were measured at 405 nm, the wavelength giving maximal absorbance of the chromogenic substrate, to identify 35 clones having absorbances higher than background

indicating the presence of immunoglobulin heavy chain. Clones that gave positive results in both ELISA assays

(showing that the clones produced proteins containing heavy chain regions, light chain constant regions and the PDGF α -receptor ligand-binding region) were selected for further characterization.

5 Drug resistant clones that were positive for both ELISA assays were subsequently tested for presence of secreted PDGF a-receptor analogs immunoprecipitation. For each positive clone, approximately one million drug resistant transfectants 10 were grown in DMEM lacking cysteine + 2% calf serum for 18 hours at 37°C in the presence of 50 µCI 35s-cysteine. spent media was harvested from the labeled cells and 250 µl of medium from each clone was assayed for binding to monoclonal antibody 292.18. Monoclonal antibody 292.18 15 diluted in PBS was added to each sample to a final concentration of 2.5 μ g. Five microliters of rabbit antimouse Ig diluted in PBS was added to each sample and the immunocomplexes were precipitated by the addition of 50 μ l fixed Staph A (weight/volume in PBS). immunocomplexes were analyzed on 8% SDS-polyacrylamide gels followed by autoradiography overnight at -70°C. results of the immunoprecipitation showed that the PDGF α receptor analog secreted by the transfectants was bound by the anti-PDGF α-receptor antibody. The combined results 25 of the ELISA and immunoprecipitation assays showed that the PDGF α -receptor analog secreted by the transfectants contained the PDGF α -receptor ligand-binding domain, the human heavy chain and the human light chain constant region. A clone that secreted a PDGF a-receptor analog 30 that was positive for both the above-described ELISA assays and the immunoprecipitation assay was designated

5.6.2.1.

Example 16

Purification and Characterization of PDGF $\alpha\text{-Receptor}$ Analogs

 A. Purification of PDGF α-Receptor Analogs From Clone 3.17.1.57

The PDGF α -Receptor analog was purified from the conditioned culture media of clone 3.17.1.57 by cycling cell-conditioned medium over an immunoaffinity column

- 10 composed of monoclonal antibody 292.18 bound to a CNBractivated Sepharose 4B resin, which is specific for the PDGF α-receptor. The column was washed with PBA, then eluted with 0.1 M citrate, pH 3.0. The peak column fractions containing the α-receptor were pooled,
- neutralized to pH 7.2 by the addition of 2 M Tris, pH 7.4, then passed over a protein-A Sepharose column. This column was washed sequentially with PBS, then with 0.1 M citrate, pH 5.0. The PDGF α -receptor analog was then eluted with 0.1 M citrate, pH 3.0. The peak eluate
- fractions were pooled, and glycerol was added to a final concentration of 10%. The sample was concentrated on a centriprep 10 concentrator (Amicon). The PDGF α-receptor analog purified from clone 3.17.1.57 was termed a "dimeric PDGF α-receptor analog".

25

B. Purification of PDGF α -Receptor Analogs From Clone 5.6.2.1

The PDGF α-receptor analog was purified from the conditioned culture media of clone 5.6.2.1 by cycling cell-conditioned medium over the immunoaffinity column described above. The column was washed with PBS then eluted with 0.1 M citrate, pH 3.0. The peak column fractions containing the α-receptor were pooled, neutralized to pH 7.2 by the addition of 2 M Tris (what pH 7.4), then passed over a protein-A sepharose column. This column was washed sequentially with PBS then with 0.1 M

citrate, pH 5.0. The PDGF α-receptor analog was then eluted with 0.1 M citrate, pH 3.0. The peak eluate fractions were pooled and glycerol was added to a final concentration of 10%. The sample was concentrated on a centriprep 10 concentrator. The PDGF α-receptor analogs purified from clone 5.6.2.1 was termed a "tetrameric PDGF α-receptor analog".

Example 17

10 A. Use of the PDGF α -receptor Analogs in Ligand Binding Studies

Purified tetrameric PDGF α-receptor analog and purified dimeric PDGF α-receptor analog were compared to monolayers of a control cell line of canine kidney epithelial cells, which do not naturally express the PDGF α-receptor, transfected with the human PDGF α-receptor cDNA for ligand binding activity. The dissociation constant (Kd) of the receptor preparations was determined by saturation binding and subsequent Scatchard analysis.

20 Ligand binding of the purified PDGF a-receptor analogs was determined using a solid phase binding assay. Affinity-purified goat anti-human IgG was diluted to a concentration of 2 μ g/ml in 0.1 M Na₂HCO₃, pH 9.6 and 100 µl/well of the solution was used to coat 96-well 25 microtiter plates for 18 hours at 4°C. Excess antibody was removed from the wells with one wash with ELISA C buffer (PBS, 0.05% Tween-20). The plates were incubated with 175 μ l/well of ELISA B buffer (PBS, 1% BSA, 0.05% Tween-20) to block the wells, followed by two washes with 30 ELISA C buffer. One hundred microliters of 50 ng/ml PDGF α-receptor analog (dimeric or tetrameric) diluted in ELISA buffer B was added to each well and the plates were incubated over night at 4°C. Unbound protein was removed from the wells with two washes with ELISA buffer B. 125 I-35 labeled PDGF-AA was serially diluted in binding media (Hams F-12, 25 mM HEPES pH 7.2, 0.25% rabbit serum

albumin), and 100 μ l of each dilution was added to the

wells. The samples were incubated for two hours at room temperature. Unbound \$^{125}I\$-labeled PDGF-AA was removed with three washes with binding media. One hundred microliters of 0.1 M citrate, pH 2.5 was added to each 5 well, and the plates were incubated for five minutes. After the incubation, the citrate buffer was removed and transferred to a tube for counting in a gamma counter. Nonspecific binding for each concentration of \$^{125}I\$-labeled PDGF-AA was determined by a parallel assay wherein separate wells coated only with goat anti-human IgG were incubated with the \$^{125}I\$-labeled PDGF-AA samples.

A saturation binding assay was performed on alpha T-7 cells transfected with the PDGF α -receptor. The cells were grown to confluency in 24-well culture plates.

15 The cells were washed one time with binding media. Iodinated PDGF-AA was serially diluted in binding media. One milliliter of each dilution was added to the wells, and the plates were incubated for 3 hours at 4°C. Unbound 125 I-labeled PDGF-AA was removed and the cells were washed 20 three times with binding media. PBS containing 1% Triton X-100 was added to the cells for 5 minutes. harvested and counted in gamma Nonspecific binding was determined at single

25 excess PDGF-BB.

The dissociation constants determined by Scatchard analysis (ibid.) of the saturation binding assays for the tetrameric PDGF α -receptor analog, dimeric PDGF α -receptor analog and the control cells (Table 5).

concentration of 125 I-labeled PDGF-AA using a 500-fold

Table 5

Dissociation Constants for the Tetrameric PDGF α -Receptor, the Dimeric PDGF α -receptor and control cells Transfected with the PDGF α -receptor

5

	Receptor		<u>kD</u>
	Tetrameric PDGF α-receptor analog	-	1.6×10^{-11}
	Dimeric PDGF α-receptor analog	-	8.51 x 10 ⁻¹¹
10	Control cells[PDGF a-receptor]	-	3.7×10^{-11}

A solid-phase competition binding assay was established using the tetrameric PDGF a-receptor analog. Ninety six-well microtiter plates were coated with goat 15 anti-human IgG (2 μ g/ml), the wells blocked with ELISA B buffer, 50 ng/ml of purified tetrameric PDGF a-receptor analog diluted in binding media was added, and the plates were incubated two hours at room temperature. receptor was removed and the wells were washed with 20 binding media. The plates were incubated for two hours at room temperature with increasing concentrations of either PDGF-AA or PDGF-BB diluted in binding media. were washed, then incubated for two hours at room temperature with 3 ng/ml 125I-labeled PDGF-AA diluted in Unbound labeled PDGF-AA was removed, the 25 binding media. wells were subsequently washed with binding media, and the bound, labeled PDGF-AA was harvested by the addition of 0.1 M citrate, pH 2.5, as described for the saturation binding studies. PDGF-AB, PDGF-AA and PDGF-BB were found 30 to compete for receptor binding with 125I-PDGF-AA.

B. Use of Tetrameric PDGF α -Receptor Analogs As Antagonists for PDGF-Stimulated Mitogenesis.

A dimeric PDGF α -receptor analog, purified as 35 described in Example 16.B., was analyzed for the ability to neutralize PDGF-stimulated mitogenesis in mouse 3T3 cells. Increasing amounts of the purified tetrameric PDGF

α-receptor analog were mixed with PDGF-AA, -AB or -BB ranging .6 to 5 ng. The mixtures were then added to cultures of confluent mouse 3T3 cells. The ability of the PDGF to stimulate a mitogenic response, as measured by the incorporation of ³H-thymidine, was determined essentially as described (Raines and Ross, <u>Methods in Enzymology 109: 749-773, 1985</u>, which is incorporated by reference herein). The dimeric PDGF α-receptor analog demonstrated a dose response inhibition of PDGF-stimulated ³H-thymidine incorporation for all three isoforms of PDGF.

C. Inverse Ligand-Receptor Radioreceptor Assay

An inverse ligand-receptor radioreceptor assay was designed to screen for the presence of PDGF-BB, PDGF-15 BB binding proteins, PDGF-BB related molecules, and PDGF- β receptor antagonists in test samples. PDGF-BB (100 ng/ml) was coated onto the walls of 96-well microtiter plates, and the plates were incubated at 4°C for 16 hours. wells were washed once with ELISA C buffer and then incubated with ELISA B buffer to block the nonspecific binding sites. To the wells were added 50 μ l of either PDGF standard or a test sample and 50 μ l of ¹²⁵I-labeled tetrameric PDGF β -receptor analog. The samples were incubated for one hour at room temperature. The wells 25 were washed once with ELISA C buffer, and 0.1 M citrate, pH 2.5 containing 1% NP-40 was added to each well to disrupt the ligand-receptor analog bond and elute the bound receptor analog. The acid wash was collected and counted in a gamma counter. The presence of PDGF or a molecule which mimics PDGF or otherwise interferes with the binding of the well-bound PDGF-BB with its receptor will cause a decrease in the binding of the radiolabeled tetrameric PDGF β -receptor. Using this assay, PDGF-BB was found to inhibit receptor binding while PDGF-AA and PDGF-35 AB caused no significant decrease in receptor binding.

Example 18

Assay Methods

A. Preparation of Nitrocellulose Filters for Colony Assay

5 Colonies of transformants were tested secretion of PDGF β -receptor analogs by first growing the cells on nitrocellulose filters that had been laid on top of solid growth medium. Nitrocellulose (Schleicher & Schuell, Keene, NH) were placed on top of 10 solid growth medium and were allowed to be completely Test colonies were patched onto the wetted filters and were grown at 30°C for approximately 40 hours. The filters were then removed from the solid medium, and the cells were removed by four successive rinses with 15 Western Transfer Buffer (Table 4). The nitrocellulose filters were soaked in Western Buffer A (Table 4) for one hour at room temperature on a shaking platform with two changes of buffer. Secreted PDGF\$-R analogs were visualized on the filters described below.

20

B. Preparation of Protein Blot Filters

A nitrocellulose filter was soaked in Western Buffer A (Table 4) without the gelatin and placed in a Minifold (Schleicher & Schuell, Keene, NH). Five 25 milliliters of culture supernatant was added without dilution to the Minifold wells, and the liquid was allowed to pass through the nitrocellulose filter by gravity. The nitrocellulose filter was removed from the minifold and was soaked in Western Buffer A (Table 3) for one hour on a shaking platform at room temperature. The buffer was changed three times during the hour incubation.

C. Preparation of Western Blot Filters

The transformants were analyzed by Western blot,
35 essentially as described by Towbin et al. (Proc. Natl.
Acad. Sci. USA 76: 4350-4354, 1979) and Gordon et al.
(U.S. Patent No. 4,452,901). Culture supernatants from

appropriately grown transformants were diluted with three volumes of 95% ethanol. The ethanol mixtures were incubated overnight at -70°C. The precipitates were spun out of solution by centrifugation in an SS-24 rotor at 18,000 rpm for 20 minutes. The supernatants were discarded and the precipitate pellets were resuspended in 200 µl of dH₂0. Two hundred microliters of 2x loading buffer (Table 4) was added to each sample, and the samples were incubated in a boiling water bath for 5 minutes.

The samples were electrophoresed in a 15% sodium dodecylsulfate polyacrylamide gel under non-reducing conditions. The proteins were electrophoretically transferred to nitrocellulose paper using conditions described by Towbin et al. (ibid.). The nitrocellulose filters were then incubated in Western Buffer A (Table 4) for 75 minutes at room temperature on a platform rocker.

D. Processing the Filters for Visualization with Antibody

20 Filters prepared as described above screened for proteins recognized by the binding of a PDGF β-receptor specific monoclonal antibody, designated The filters were removed from the Western Buffer A (Table 4) and placed in sealed plastic bags containing a 25 10 ml solution comprising 10 μ g/ml PR7212 monoclonal antibody diluted in Western Buffer A. The filters were incubated on a rocking platform overnight at 4°C or for one hour at room temperature. Excess antibody was removed with three 15-minute washes with Western Buffer A on a 30 shaking platform at room temperature.

Ten microliters biotin-conjugated horse antimouse antibody (Vector Laboratories, Burlingame, CA) in 20 ml Western Buffer A was added to the filters. The filters were re-incubated for one hour at room temperature on a platform shaker, and unbound conjugated antibody was removed with three fifteen-minute washes with Western Buffer A.

The filters were pre-incubated for one hour at room temperature with a solution comprising 50 μ l Vectastain Reagent A (Vector Laboratories) in 10 ml of Western Buffer A that had been allowed to incubate at room temperature for 30 minutes before use. The filters were washed with one quick wash with distilled water followed by three 15-minute washes with Western Buffer B (Table 4) at room temperature. The Western Buffer B washes were followed by one wash with distilled water.

- 10 During the preceding wash step, the substrate __ reagent was prepared. Sixty mg of horseradish peroxidase reagent (Bio-Rad, Richmond, CA) was dissolved in 20 ml HPLC grade methanol. Ninety milliliters of distilled water was added to the dissolved peroxidase followed by 15 2.5 ml 2 M Tris, pH 7.4 and 3.8 ml 4 M NaCl. One hundred microliters of 30% H2O2 was added just before use. washed filters were incubated with 75 ml of substrate and incubated at room temperature for 10 minutes with vigorous shaking. After the 10 minute incubation, the buffer was 20 changed, and the filters were incubated for an additional 10 minutes. The filters were then washed in distilled water for one hour at room temperature. Positives were scored as those samples which exhibited coloration.
- 25 E. Processing the Filters For Visualization with an Anti-Substance P Antibody

Filters prepared as described above were probed with an anti-substance P antibody. The filters were removed from the Western Buffer A and rinsed with Western transfer buffer, followed by a 5-minute wash in phosphate buffered saline (PBS, Sigma, St. Louis, MO). The filters were incubated with a 10 ml solution containing 0.5 M 1-ethyl-3-3-dimethylamino propyl carbodiimide (Sigma) in 1.0 M NH4Cl for 40 minutes at room temperature. After incubation, the filters were washed three times, for 5 minutes per wash, in PBS. The filters were blocked with 2% powdered milk diluted in PBS.

The filters were then incubated with a rat antisubstance P monoclonal antibody (Accurate Chemical &
Scientific Corp., Westbury, NY). Ten microliters of the
antibody was diluted in 10 ml of antibody solution (PBS
containing 20% fetal calf serum and 0.5% Tween-20). The
filters were incubated at room temperature for 1 hour.
Unbound antibody was removed with four 5-minute washes
with PBS.

The filters were then incubated with a biotin10 conjugated rabbit anti-rat peroxidase antibody (Cappel
Laboratories, Melvern, PA). The conjugated antibody was
diluted 1:1000 in 10 ml of antibody solution for 2 hours
at room temperature. Excess conjugated antibody was
removed with four 5-minute washes with PBS.

The filters were pre-incubated for 30 minutes at room temperature with a solution containing 50 μl Vectastain Reagent A (Vector Laboratories) and 50 μl Vectastain Reagent B (Vector Laboratories) in 10 ml of antibody solution that had been allowed to incubate for 30 minutes before use. Excess Vectastain reagents were removed by four 5-minute washes with PBS.

During the preceding wash step, the substrate reagent was prepared. Sixty milligrams of horseradish peroxidase reagent (Bio-Rad Laboratories, Richmond, CA) was dissolved in 25 ml of HPLC grade methanol. Approximately 100 ml of PBS and 200 μ l H₂O₂ were added just before use. The filters were incubated with the substrate reagent for 10 to 20 minutes. The substrate was removed by a vigorous washing distilled water.

30

F. Iodination of PDGF-BB.

A PDGF-BB mutant molecule having a tyrosine replaing the phenylalanine at position 23 (PDGF-BB_{Tyr}) was iodinated and subsequently purified, using a purification method which produces 125I-labeled PDGF-BB with a higher specific activity than primary-labeled material and which was found to substantially derease the nonspecific binding

component. The PDGF-BB_{Tyr} was labeled using the Iodobead method (Pierce Chemical). The labeled protein was gel filtered over a C-25 desalting column (Pharmacia LKB Technologies) equilibrated with 10 mM acetic acid, 0.25% gelatin and 100 mM NaCl. The peak fractions were pooled and pH adjusted to 7.2 by the addition of Tris-base. The labeled mixture was chromatographed over an affinity column composed of PDGF β-receptor analog protein coupled to CnBr-activated Sepharose (Pharmacia LKB Technologies, Inc.). The column was washed with phosphate buffered saline and eluted with 0.1 M citrate, pH 2.5 containing 0.25% gelatin. The peak eluate fractions were pooled and

Although the foregoing invention has been 15 described in some detail by way of illustration and example for purposes of clarity of understanding, it will be evident that certain changes and modifications may be practiced within the scope of the appended claims.

assayed by ELISA to determine the PDGF-BB concentration.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Sledziewski Ph.D., Andrzej Z Bell, Lillian A. Kindsvogel Ph.D., Wayne R.
 - (ii) TITLE OF INVENTION: METHODS OF PRODUCING SECRETED RECEPTOR ANALOGS AND BIOLOGICALLY ACTIVE DIMERIZED POLYPEPTIDE
 - (iii) NUMBER OF SEQUENCES: 36
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Seed and Berry (B) STREET: 6300 Columbia Center

 - (C) CITY: Seattle (D) STATE: WA
 - (E) COUNTRY: USA
 - (F) ZIP: 98104-7092
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.24
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US (B) FILING DATE: (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/146,877 (B) FILING DATE: 22-JAN-1988

 - (vii) PRIOR APPLICATION DATA:
 (A) APPLICATION NUMBER: US 07/347,291
 (B) FILING DATE: 02-MAY-1989
 - (viii) ATTORNEY/AGENT INFORMATION:

 - (A) NAME: Maki J.D., David J. (B) REGISTRATION NUMBER: 31,392 (C) REFERENCE/DOCKET NUMBER: 990008.446C3
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 206-622-4900 (B) TELEFAX: 206-682-6031 (C) TELEX: 3723836

(2) INFORMATION FOR SEQ ID NO:1:
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4465 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(iii) HYPOTHETICAL: N
(iv) ANTI-SENSE: N
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (D) DEVELOPMENTAL STAGE: Adult (F) TISSUE TYPE: Skin (G) CELL TYPE: fibroblasts
(vii) IMMEDIATE SOURCE: (B) CLONE: pR-rX1
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3543671 (D) OTHER INFORMATION:
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
CCCTCAGCCC TGCTGCCCAG CACGAGCCTG TGCTCGCCCT GCCCAACGCA GACAGCCAGA 6
CCCAGGGCGG CCCCTCTGGC GGCTCTGCTC CTCCCGAAGG ATGCTTGGGG AGTGAGGCGA 12
AGCTGGGCGC TCCTCTCCCC TACAGCAGCC CCCTTCCTCC ATCCCTCTGT TCTCCTGAGC 18
CTTCAGGAGC CTGCACCAGT CCTGCCTGTC CTTCTACTCA GCTGTTACCC ACTCTGGGAC 24
CAGCAGTCTT TCTGATAACT GGGAGAGGGC AGTAAGGAGG ACTTCCTGGA GGGGGTGACT 30
GTCCAGAGCC TGGAACTGTG CCCACACCAG AAGCCATCAG CAGCAAGGAC ACC ATG Met 1
CGG CTT CCG GGT GCG ATG CCA GCT CTG GCC CTC AAA GGC GAG CTG CTG Arg Leu Pro Gly Ala Met Pro Ala Leu Ala Leu Lys Gly Glu Leu Leu 5 10 15

TTG CTG TCT CTC CTG TTA CTT CTG GAA CCA CAG ATC TCT CAG GGC CTG Leu Leu Ser Leu Leu Leu Leu Glu Pro Gln Ile Ser Gln Gly Leu 20 25 30

GTC Val	GTC Val 35	ACA Thr	CCC Pro	CCG Pro	GGG Gly	CCA Pro 40	GAG G1u	CTT Leu	GTC Val	CTC Leu	AAT Asn 45	GTC Val	TCC Ser	AGC Ser	ACC Thr	500
50	Val	Leu	Thr	TGC Cys	Ser 55	Gly	Ser	Ala	Pro	Va1 60	Val	Trp	Glu	Arg	Met 65	548
TCC Ser	CAG G1n	GAG G1u	CCC Pro	CCA Pro 70	CAG Gln	GAA Glu	ATG Met	GCC Ala	AAG Lys 75	GCC Ala	CAG Gln	GAT Asp	GGC Gly	ACC Thr 80	TTC Phe	596
TCC Ser	AGC Ser	GTG Val	CTC Leu 85	ACA Thr	CTG Leu	ACC Thr	AAC Asn	CTC Leu 90	ACT Thr	GGG Gly	CTA Leu	GAC Asp	ACG Thr 95	GGA Gly	GAA Glu	644
TAG Tyr	TTT Phe	TGC Cys 100	ACC Thr	CAC His	AAT Asn	GAC Asp	TCC Ser 105	CGT Arg	GGA Gly	CTG Leu	GAG G1u	ACC Thr 110	GAT Asp	GAG Glu	CGG Arg	692
AAA Lys	CGG Arg 115	CTC Leu	TAC Tyr	ATC Ile	TTT Phe	GTG Val 120	CCA Pro	GAT Asp	CCC Pro	ACC Thr	GTG Val 125	GGC Gly	TTC Phe	CTC Leu	CCT Pro	740
AAT Asn 130	GAT Asp	GCC Ala	GAG G1u	GAA G1u	CTA Leu 135	TTC Phe	ATC Ile	TTT Phe	CTC Leu	ACG Thr 140	GAA Glu	ATA Ile	ACT Thr	GAG GT u	ATC Ile 145	788
ACC Thr	ATT Ile	CCA Pro	TGC Cys	CGA Arg 150	GTA Val	ACA Thr	GAC Asp	CCA Pro	CAG Gln 155	CTG Leu	GTG Val	GTG Val	ACA Thr	CTG Leu 160	CAC His	836
GAG G1u	AAG Lys	AAA Lys	GGG Gly 165	GAC Asp	GTT Val	GCA Ala	CTG Leu	CCT Pro 170	GTC Val	CCC Pro	TAT Tyr	GAT Asp	CAC His 175	CAA G1n	CGT Arg	884
GGC Gly	TTT Phe	TCT Ser 180	GGT Gly	ATC Ile	TTT Phe	GAG G1u	GAC Asp 185	AGA Arg	AGC Ser	TAC Tyr	ATC Ile	TGC Cys 190	AAA Lys	ACC Thr	ACC Thr	932
ATT Ile	GGG Gly 195	GAC Asp	AGG Arg	GAG G1u	GTG Val	GAT Asp 200	TCT Ser	GAT Asp	GCC Ala	TAC Tyr	TAT Tyr 205	GTC Val	TAC Tyr	AGA Arg	CTC Leu	980
CAG Gln 210	GTG Val	TCA Ser	TCC Ser	ATC Ile	AAC Asn 215	GTC Val	TCT Ser	GTG Val	AAC Asn	GCA Ala 220	GTG Val	CAG G1n	ACT Thr	GTG Val	GTC Val 225	1028
CGC Arg	CAG Gln	GGT Gly	GAG Glu	AAC Asn 230	ATC Ile	ACC Thr	CTC Leu	ATG Met	TGC Cys 235	ATT Ile	GTG Val	ATC Ile	GGG Gly	AAT Asn 240	GAG G1u	1076
GTG Val	GTC Val	AAC Asn	TTC Phe 245	GAG G1u	TGG Trp	ACA Thr	TAC Tyr	CCC Pro 250	CGC Arg	AAA Lys	GAA Glu	AGT Ser	GGG G1y 255	CGG Arg	CTG Leu	1124

GTG G Val G	alu P	CG (ro \ 60	GTG Val	ACT Thr	GAC Asp	TTC Phe	CTC Leu 265	TTG Leu	GAT Asp	ATG Met	CCT Pro	TAC Tyr 270	CAC His	ATC Ile	CGC Arg	1172
TCC A Ser I 2	ATC C' []e Lo 275	TG (eu l	CAC His	ATC Ile	CCC Pro	AGT Ser 280	GCC Ala	GAG G1u	TTA Leu	GAA Glu	GAC Asp 285	TCG Ser	GGG Gly	ACC Thr	TAC Tyr	1220
ACC T Thr C 290	TGC A	AT (sn \	GTG Val	ACG Thr	GAG G1u 295	AGT Ser	GTG Val	AAT Asn	GAC Asp	CAT His 300	CAG G1n	GAT Asp	GAA G1u	AAG Lys	GCC Ala 305	1268
ATC A Ile A	VAC A' Vsn I'	TC /	ACC Thr	GTG Val 310	GTT Val	GAG G1u	AGC Ser	GGC Gly	TAC Tyr 315	GTG Val	CGG Arg	CTC Leu	CTG Leu	GGA Gly 320	GAG Glu	1316
GTG G Val G	GC A	hr l	CTA Leu 325	CAA Gln	TTT Phe	GCT Ala	GAG G1u	CTG Leu 330	CAT His	CGG Arg	AGC Ser	CGG Arg	ACA Thr 335	CTG Leu	CAG Gln	1364
GTA G Val V	Ial Pl	TC (he (40	GAG G1u	GCC Ala	TAC Tyr	CCA Pro	CCG Pro 345	CCC Pro	ACT Thr	GTC Val	Leu	TGG Trp 350	TTC Phe	AAA Lys	GAC Asp	1412
AAC C Asn A	GC AI Irg TI 155	CC (hr l	CTG Leu	GGC Gly	GAC Asp	TCC Ser 360	AGC Ser	GCT Ala	GGC Gly	GAA Glu	ATC Ile 365	GCC Ala	CTG Leu	TCC Ser	ACG Thr	1460
CGC A Arg A 370	VAC G ⁻ Van Va	TG 1 al S	FCG Ser	GAG G1u	ACC Thr 375	CGG Arg	TAT Tyr	GTG Val	TCA Ser	GAG G1u 380	CTG Leu	ACA Thr	CTG Leu	GTT Val	CGC Arg 385	1508
GTG A Val L	IAG G .ys Va	TG 6 al A	41a	GAG G1u 390	GCT Ala	GGC Gly	CAC His	TAC Tyr	ACC Thr 395	ATG Met	CGG Arg	GCC Ala	TTC Phe	CAT His 400	GAG Glu	1556
GAT G Asp A	CT G/	lu V	TC /a7 105	CAG Gln	CTC Leu	TCC Ser	TTC Phe	CAG Gln 410	CTA Leu	CAG Gln	ATC Ile	AAT Asn	GTC Val 415	CCT Pro	GTC Val	1604
CGA G Arg V	al Le	TG 0 eu 0 20	GAG G1u	CTA Leu	AGT Ser	GAG G1u	AGC Ser 425	CAC His	CCT Pro	GAC Asp	AGT Ser	GGG Gly 430	GAA G1u	CAG Gln	ACA Thr	1652
GTC C Val A	GC TO lrg Cy 35	GT (GT Arg	GGC Gly	CGG Arg	GGC Gly 440	ATG Met	CCC Pro	CAG Gln	CCG Pro	AAC Asn 445	ATC Ile	ATC Ile	TGG Trp	TCT Ser	1700
GCC TO Ala C 450	GC AC	GA G rg A	SAC Asp	CTC Leu	AAA Lys 455	AGG Arg	TGT Cys	CCA Pro	CGT Arg	GAG Glu 460	CTG Leu	CCG Pro	CCC Pro	ACG Thr	CTG Leu 465	1748

CTG Leu	GGG Gly	AAC Asn	AGT Ser	TCC Ser 470	Glu	GAG G1u	GAG Glu	AGC Ser	CAG G1n 475	Leu	GAG G1u	ACT Thr	AAC Asn	GTG Val 480	ACG Thr		1796
TAC Tyr	TGG Trp	GAG G1u	GAG G1u 485	GAG Glu	CAG G1n	GAG Glu	TTT Phe	GAG G1u 490	GTG Val	GTG Val	AGC Ser	ACA Thr	CTG Leu 495	CGT Arg	CTG Leu		1844
CAG Gln	CAC	GTG Val 500	GAT Asp	CGG Arg	CCA Pro	CTG Leu	TCG Ser 505	GTG Val	CGC Arg	TGC Cys	ACG Thr	CTG Leu 510	CGC Arg	AAC Asn	GCT Ala		1892
GTG Val	GGC Gly 515	CAG Gln	GAC Asp	ACG Thr	CAG Gln	GAG G1u 520	GTC Val	ATC Ile	GTG Val	GTG Val	CCA Pro 525	CAC His	TCC Ser	TTG Leu	CCC Pro		1940
T TT Phe 530	Lys	GTG Val	GTG Val	GTG Val	ATC 11e 535	TCA Ser	GCC Ala	ATC Ile	CTG Leu	GCC Ala 540	CTG Leu	GTG Val	GTG Val	CTC Leu	ACC Thr 545	• •	1988
ATC Ile	ATC Ile	TCC Ser	CTT Leu	ATC Ile 550	ATC Ile	CTC Leu	ATC Ile	ATG Met	CTT Leu 555	TGG Trp	CAG Gln	AAG Lys	AAG Lys	CCA Pro 560	CGT Arg		2036
TAC Tyr	GAG G1u	ATC Ile	CGA Arg 565	TGG Trp	AAG Lys	GTG Val	ATT Ile	GAG G1u 570	TCT Ser	GTG Val	AGC Ser	TCT Ser	GAC Asp 575	GGC Gly	CAT His		2084
GAG G1u	TAC Tyr	ATC Ile 580	TAC Tyr	GTG Val	GAC Asp	CCC Pro	ATG Met 585	CAG G1n	CTG Leu	CCC Pro	TAT Tyr	GAC Asp 590	TCC Ser	ACG Thr	TGG Trp		2132
GAG Glu	CTG Leu 595	CCG Pro	CGG Arg	GAC Asp	CAG G1n	CTT Leu 600	GTG Val	CTG Leu	GGA Gly	CGC Arg	ACC Thr 605	CTC Leu	GGC Gly	TCT Ser	GGG Gly		2180
GCC Ala 610	TTT Phe	GGG Gly	CAG G1n	GTG Val	GTG Val 615	GAG G1u	GCC Ala	ACG Thr	GCT Ala	CAT His 620	GGC Gly	CTG Leu	AGC Ser	CAT His	TCT Ser 625		2228
CAG Gln	GCC Ala	ACG Thr	ATG Met	AAA Lys 630	GTG Val	GCC Ala	GTC Val	AAG Lys	ATG Met 635	CTT Leu	AAA Lys	TCC Ser	ACA Thr	GCC Ala 640	CGC Arg		2276
AGC Ser	AGT Ser	GAG G1u	AAG Lys 645	CAA G1n	GCC Ala	CTT Leu	ATG Met	TCG Ser 650	GAG G1u	CTG Leu	AAG Lys	ATC Ile	ATG Met 655	AGT Ser	CAC His		2324
CTT Leu	GGG Gly	CCC Pro 660	CAC His	CTG Leu	AAC Asn	GTG Val	GTC Val 665	AAC Asn	CTG Leu	TTG Leu	GGG Gly	GCC Ala 670	TGC Cys	ACC Thr	AAA Lys		2372
GGA Gly	GGA G1y 675	CCC Pro	ATC Ile	TAT Tyr	ATC Ile	ATC Ile 680	ACT Thr	GAG G1u	TAC Tyr	Cys	CGC Arg 685	TAC Tyr	GGA Gly	GAC Asp	CTG Leu		2420

GTG Val 690	Asp	TAC Tyr	CTG Leu	CAC His	CGC Arg 695	AAC Asn	AAA Lys	CAC His	ACC Thr	TTC Phe 700	CTG Leu	CAG Gln	CAC His	CAC His	TCC Ser 705	2468
GAC Asp	AAG Lys	CGC Arg	CGC Arg	CCG Pro 710	CCC Pro	AGC Ser	GCG Ala	GAG G1u	CTC Leu 715	TAC Tyr	AGC Ser	AAT Asn	GCT Ala	CTG Leu 720	CCC Pro	2516
GTT Val	GGG Gly	CTC Leu	CCC Pro 725	CTG Leu	CCC Pro	AGC Ser	CAT His	GTG Val 730	TCC Ser	TTG Leu	ACC Thr	GGG Gly	GAG G1u 735	AGC Ser	GAC Asp	2564
GGT Gly	GGC Gly	TAC Tyr 740	ATG Met	GAC Asp	ATG Met	AGC Ser	AAG Lys 745	GAC Asp	GAG G1u	TCG Ser	GTG Val	GAC Asp 750	TAT Tyr	GTG Val	CCC Pro	2612
ATG Met	CTG Leu 755	GAC Asp	ATG Met	AAA Lys	GGA Gly	GAC Asp 760	GTC Val	AAA Lys	TAT Tyr	GCA Ala	GAC Asp 765	ATC Ile	GAG Glu	TCC Ser	TCC Ser	2660
AAC Asn 770	TAC Tyr	ATG Met	GCC Ala	CCT Pro	TAC Tyr 775	GAT Asp	AAC Asn	TAC Tyr	GTT Val	CCC Pro 780	TCT Ser	GCC Ala	CCT Pro	GAG G1u	AGG Arg 785	2708
ACC Thr	TGC Cys	CGA Arg	GCA Ala	ACT Thr 790	TTG Leu	ATC Ile	AAC Asn	GAG Glu	TCT Ser 795	CCA Pro	GTG Val	CTA Leu	AGC Ser	TAC Tyr 800	ATG Met	2756
GAC Asp	CTC Leu	GTG Val	GGC G1y 805	TTC Phe	AGC Ser	TAC Tyr	CAG Gln	GTG Val 810	GCC Ala	AAT Asn	GGC Gly	ATG Met	GAG G1u 815	TTT Phe	CTG Leu	2804
GCC Ala	TCC Ser	AAG Lys 820	AAC Asn	TGC Cys	GTC Val	CAC His	AGA Arg 825	GAC Asp	CTG Leu	GCG Ala	GCT Ala	AGG Arg 830	AAC Asn	GTG Val	CTC Leu	2852
ATC Ile	TGT Cys 835	GAA Glu	GGC Gly	AAG Lys	CTG Leu	GTC Val 840	AAG Lys	ATC Ile	TGT Cys	GAC Asp	TTT Phe 845	GGC Gly	CTG Leu	GCT Ala	CGA Arg	2900
GAC Asp 850	ATC Ile	ATG Met	CGG Arg	GAC Asp	TCG Ser 855	AAT Asn	TAC Tyr	ATC Ile	TCC Ser	AAA Lys 860	GGC Gly	AGC Ser	ACC Thr	TTT Phe	TTG Leu 865	2948
CCT Pro	TTA Leu	AAG Lys	TGG Trp	ATG Met 870	GCT Ala	CCG Pro	GAG G1u	AGC Ser	ATC 11e 875	TTC Phe	AAC Asn	AGC Ser	CTC Leu	TAC Tyr 880	ACC Thr	2996
ACC Thr	CTG Leu	AGC Ser	GAC Asp 885	GTG Val	TGG Trp	TCC Ser	TTC Phe	GGG Gly 890	ATC Ile	CT G Leu	CTC Leu	TGG Trp	GAG G1u 895	ATC Ile	TTC Phe	3044

ACC TTG GGT Thr Leu Gly 900	GGC ACC Gly Thr	CCT TAC Pro Tyr	CCA GAI Pro Gli 905	CTG Leu	CCC Pro	Met	AAC Asn 910	GAG G1u	CAG Gln	TTC Phe	3092
TAC AAT GCC Tyr Asn Ala 915	ATC AAA Ile Lys	CGG GGT Arg Gly 920	TAC CGG	ATG Met	Ala	CAG G1n 925	CCT Pro	GCC Ala	CAT His	GCC Ala	3140
TCC GAC GAG Ser Asp Glu 930	ATC TAT Ile Tyr	GAG ATC Glu Ile 935	ATG CAC Met Gli	AAG Lys	TGC Cys 940	TGG Trp	GAA Glu	GAG G1u	AAG Lys	TTT Phe 945	3188
GAG ATT CGG Glu Ile Arg	CCC CCC Pro Pro 950	TTC TCC Phe Ser	CAG CTO	GTG Val 955	CTG Leu	CTT Leu	CTC Leu	GAG G1u	AGA Arg 960	CTG Leu	3236
TTG GGC GAA Leu Gly Glu	GGT TAC Gly Tyr 965	AAA AAG Lys Lys	AAG TAG Lys Tyr 970	° Gln	CAG G1ni	GTG Val	GAT Asp	GAG G1u 975	GAG G1u	TTT · ~ Phe	3284
CTG AGG AGT Leu Arg Ser 980	GAC CAC Asp His	CCA GCC Pro Ala	ATC CT 11e Lei 985	CGG Arg	TCC Ser	Gln	GCC Ala 990	CGC Arg	TTG Leu	CCT Pro	3332
GGG TTC CAT Gly Phe His 995	GGC CTC Gly Leu	CGA TCT Arg Ser 1000	Pro Lei	GAC I Asp	Thr	AGC Ser 1005	Ser	GTC Val	CTC Leu	TAT Tyr	3380
ACT GCC GTG Thr Ala Val 1010	CAG CCC Gln Pro	AAT GAG Asn Glu 1015	GGT GAG Gly Asi	AAC Asn	GAC Asp 1020	Tyr	ATC Ile	ATC Ile	CCC Pro	CTG Leu 1025	3428
CCT GAC CCC Pro Asp Pro	AAA CCC Lys Pro 1030	Glu Val	GCT GAG Ala Asp	GAG Glu 103	Gly	CCA Pro	CTG Leu	GAG Glu	GGT Gly 1040	Ser	3476
CCC AGC CTA Pro Ser Leu	GCC AGC Ala Ser 1045	TCC ACC Ser Thr	CTG AAT Leu Asr 105	G1u	GTC .	AAC Asn	ACC Thr	TCC Ser 1055	Ser	ACC Thr	3524
ATC TCC TGT Ile Ser Cys 1060	Asp Ser	CCC CTG Pro Leu	GAG CCC Glu Pro 1065	CAG Gln	GAC Asp	Glu	CCA Pro 1070	Glu	CCA Pro	GAG Glu	3572
CCC CAG CTT Pro Gln Leu 1075	GAG CTC Glu Leu	CAG GTG Gln Val 1080	Glu Pro	GAG Glu	Pro	GAG G1u 1085	Leu	GAA Glu	CAG Gln	TTG Leu	3620
CCG GAT TCG Pro Asp Ser 1090	GGG TGC Gly Cys	CCT GCG Pro Ala 1095	CCT CGG Pro Arg	GCG Ala	GAA Glu 1100	Ala	GAG G1u	GAT Asp	AGC Ser	TTC Phe 1105	3668
CTG TAGGGGGC	TG GCCC	CTACCC TO	CCCTGC	T GA	AGCTC	ССС	ссст	GCCA	IGC		3721

ACCCAGC	ATC	TCCTGGCCTG	GCCTGACCGG	GCTTCCTGTC	AGCCAGGCTG	CCCTTATCAG	3781
CTGTCCC	CTT	CTGGAAGCTT	TCTGCTCCTG	ACGTGTTGTG	CCCCAAACCC	TGGGGCTGGC	3841
TTAGGAG	GCA	AGAAAACTGC	AGGGGCCGTG	ACCAGCCCTC	TGCCTCCAGG	GAGGCCAACT	3901
GACTCTG	AGC	CAGGGTTCCC	CCAGGGAACT	CAGTTTTCCC	ATATGTAAGA	TGGGAAAGTT	3961
AGGCTTG	ATG	ACCCAGAATC	TAGGATTCTC	TCCCTGGCTG	ACACGGTGGG	GAGACCGAAT	4021
CCCTCCC	TGG	GAAGATTCTT	GGAGTTACTG	AGGTGGTAAA	TTAACATTTT	TTCTGTTCAG	4081
CCAGCTA	CCC	CTCAAGGAAT	CATAGCTCTC	TCCTCGCACT	TTTTATCCAC	CCAGGAGCTA	4141
GGGAAGA	GAC	CCTAGCCTCC	CTGGCTGCTG	GCTGAGCTAG	GGCCTAGCTT	GAGCAGTGTT	4201
GCCTCAT	CCA	GAAGAAAGCC	AGTCTCCTCC	CTATGATGCC	AGTCCCTGCG	TTCCCTGGCC	4261
CGAGCTG	GTC	TGGGGCCATT	AGGCAGCCTA	ATTAATGCTG	GAGGCTGAGC	CAAGTACAGG	4321
ACACCCC	CAG	CCTGCAGCCC	TTGCCCAGGG	CACTTGGAGC	ACACGCAGCC	ATAGCAAGTG	4381
CCTGTGTC	ССС	TGTCCTTCAG	GCCCATCAGT	CCTGGGGCTT	TTTCTTTATC	ACCCTCAGTC	4441
TAATCC	ATC	CACCAGAGTC	TAGA			**	4465

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1106 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Arg Leu Pro Gly Ala Met Pro Ala Leu Ala Leu Lys Gly Glu Leu $10 \ 15$

Leu Leu Ser Leu Leu Leu Leu Leu Glu Pro Gln Ile Ser Gln Gly $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Leu Val Val Thr Pro Pro Gly Pro Glu Leu Val Leu Asn Val Ser Ser 35 40 45

Thr Phe Val Leu Thr Cys Ser Gly Ser Ala Pro Val Val Trp Glu Arg 50 55 60

Met Ser Gln Glu Pro Pro Gln Glu Met Ala Lys Ala Gln Asp Gly Thr 65 70 75 80

Phe Ser Ser Val Leu Thr Leu Thr Asn Leu Thr Gly Leu Asp Thr Gly 85 90 95

Glu Tyr Phe Cys Thr His Asn Asp Ser Arg Gly Leu Glu Thr Asp Glu 100 105 110

Arg Lys Arg Leu Tyr Ile Phe Val Pro Asp Pro Thr Val Gly Phe Leu 115 120 125

Pro Asn Asp Ala Glu Glu Leu Phe Ile Phe Leu Thr Glu Ile Thr Glu 130 140

Ile Thr Ile Pro Cys Arg Val Thr Asp Pro Gln Leu Val Val Thr Leu 145 150 160

His Glu Lys Lys Gly Asp Val Ala Leu Pro Val Pro Tyr Asp His Gln
— 165 170 175

Arg Gly Phe Ser Gly Ile Phe Glu Asp Arg Ser Tyr Ile Cys Lys Thr 180 185 190

Thr Ile Gly Asp Arg Glu Val Asp Ser Asp Ala Tyr Tyr Val Tyr Arg 195 200 205

Leu Gln Val Ser Ser Ile Asn Val Ser Val Asn Ala Val Gln Thr Val 210 215 220

Val Arg Gln Gly Glu Asn Ile Thr Leu Met Cys Ile Val Ile Gly Asn 225 235 240

Glu Val Val Asn Phe Glu Trp Thr Tyr Pro Arg Lys Glu Ser Gly Arg 245 250 255

Leu Val Glu Pro Val Thr Asp Phe Leu Leu Asp Met Pro Tyr His Ile 260 265 270

Arg Ser Ile Leu His Ile Pro Ser Ala Glu Leu Glu Asp Ser Gly Thr 275 280 285

Tyr Thr Cys Asn Val Thr Glu Ser Val Asn Asp His Gln Asp Glu Lys 290 295 300

Ala Ile Asn Ile Thr Val Val Glu Ser Gly Tyr Val Arg Leu Leu Gly 305 310 320

Glu Val Gly Thr Leu Gln Phe Ala Glu Leu His Arg Ser Arg Thr Leu 325 330 335

Gln Val Val Phe Glu Ala Tyr Pro Pro Pro Thr Val Leu Trp Phe Lys 340 345 350

Asp Asn Arg Thr Leu Gly Asp Ser Ser Ala Gly Glu Ile Ala Leu Ser 355 360 365

Thr Arg Asn Val Ser Glu Thr Arg Tyr Val Ser Glu Leu Thr Leu Val 370 380

Arg Val Lys Val Ala Glu Ala Gly His Tyr Thr Met Arg Ala Phe His 385 395 400

Glu Asp Ala Glu Val Gln Leu Ser Phe Gln Leu Gln Ile Asn Val Pro 405 410 415

Val Arg Val Leu Glu Leu Ser Glu Ser His Pro Asp Ser Gly Glu Gln 420 425 430

Thr Val Arg Cys Arg Gly Arg Gly Met Pro Gln Pro Asn Ile Ile Trp
435 440 445

Leu Leu Gly Asn Ser Ser Glu Glu Glu Ser Gln Leu Glu Thr Asn Val 465 470 475 480

Thr Tyr Trp Glu Glu Glu Glu Glu Phe Glu Val Val Ser Thr Leu Arg 485 490 495

Leu Gln His Val Asp Arg Pro Leu Ser Val Arg Cys Thr Leu Arg Asn 500 505 510 -4

Ala Val Gly Gln Asp Thr Gln Glu Val Ile Val Val Pro His Ser Leu 515 520 525

Pro Phe Lys Val Val Val Ile Ser Ala Ile Leu Ala Leu Val Val Leu 530 535 540

Thr Ile Ile Ser Leu Ile Ile Leu Ile Met Leu Trp Gln Lys Lys Pro 545 550 560

Arg Tyr Glu Ile Arg Trp Lys Val Ile Glu Ser Val Ser Ser Asp Gly 565 570 575

His Glu Tyr Ile Tyr Val Asp Pro Met Gln Leu Pro Tyr Asp Ser Thr 580 585 590

Trp Glu Leu Pro Arg Asp Gln Leu Val Leu Gly Arg Thr Leu Gly Ser 595 600 605

Gly Ala Phe Gly Gln Val Val Glu Ala Thr Ala His Gly Leu Ser His 610 620

Ser Gln Ala Thr Met Lys Val Ala Val Lys Met Leu Lys Ser Thr Ala 625 630 640

Arg Ser Ser Glu Lys Gln Ala Leu Met Ser Glu Leu Lys Ile Met Ser 645 650 655 His Leu Gly Pro His Leu Asn Val Val Asn Leu Leu Gly Ala Cys Thr 660 665 670

Lys Gly Gly Pro Ile Tyr Ile Ile Thr Glu Tyr Cys Arg Tyr Gly Asp 685

Leu Val Asp Tyr Leu His Arg Asn Lys His Thr Phe Leu Gln His His 690 695 700

Ser Asp Lys Arg Arg Pro Pro Ser Ala Glu Leu Tyr Ser Asn Ala Leu 705 710 720

Pro Val Gly Leu Pro Leu Pro Ser His Val Ser Leu Thr Gly Glu Ser 725 730 735

Asp Gly Gly Tyr Met Asp Met Ser Lys Asp Glu Ser Val Asp Tyr Val
740 745 750

Pro Met Leu Asp Met Lys Gly Asp Val Lys Tyr Ala Asp Ile Glu Ser 755 760 765

Ser Asn Tyr Met Ala Pro Tyr Asp Asn Tyr Val Pro Ser Ala Pro Glu 770 775 780

Arg Thr Cys Arg Ala Thr Leu Ile Asn Glu Ser Pro Val Leu Ser Tyr 785 790 800

Met Asp Leu Val Gly Phe Ser Tyr Gln Val Ala Asn Gly Met Glu Phe 805 810 815

Leu Ala Ser Lys Asn Cys Val His Arg Asp Leu Ala Ala Arg Asn Val 820 825 830

Leu Ile Cys Glu Gly Lys Leu Val Lys Ile Cys Asp Phe Gly Leu Ala 835

Arg Asp Ile Met Arg Asp Ser Asn Tyr Ile Ser Lys Gly Ser Thr Phe 850 860

Leu Pro Leu Lys Trp Met Ala Pro Glu Ser Ile Phe Asn Ser Leu Tyr 865 870 880

Thr Thr Leu Ser Asp Val Trp Ser Phe Gly Ile Leu Leu Trp Glu Ile 885 890 895

Phe Thr Leu Gly Gly Thr Pro Tyr Pro Glu Leu Pro Met Asn Glu Gln 900 905 910

Phe Tyr Asn Ala Ile Lys Arg Gly Tyr Arg Met Ala Gln Pro Ala His 915 920 925

Ala Ser Asp Glu Ile Tyr Glu Ile Met Gln Lys Cys Trp Glu Glu Lys 930 935 940 Phe Glu Ile Arg Pro Pro Phe Ser Gln Leu Val Leu Leu Glu Arg 945 950 955 960

Leu Leu Gly Glu Gly Tyr Lys Lys Lys Tyr Gln Gln Val Asp Glu Glu 965 970 975

Phe Leu Arg Ser Asp His Pro Ala Ile Leu Arg Ser Gln Ala Arg Leu 980 985 990

Pro Gly Phe His Gly Leu Arg Ser Pro Leu Asp Thr Ser Ser Val Leu 995 1000 1005

Tyr Thr Ala Val Gln Pro Asn Glu Gly Asp Asn Asp Tyr Ile Ile Pro 1010 1015 1020

Leu Pro Asp Pro Lys Pro Glu Val Ala Asp Glu Gly Pro Leu Glu Gly 1025 1030 1035 1040

Ser Pro Ser Leu Ala Ser Ser Thr Leu Asn Glu Val Asn Thr Ser Ser 1045 1050 1055

Thr Ile Ser Cys Asp Ser Pro Leu Glu Pro Gln Asp Glu Pro Glu Pro 1060 1065 1070

Glu Pro Gln Leu Glu Leu Gln Val Glu Pro Glu Pro Glu Leu Glu Gln 1075 1080 1085

Leu Pro Asp Ser Gly Cys Pro Ala Pro Arg Ala Glu Ala Glu Asp Ser 1090 1095 1100

Phe Leu 1105

- (2) INFORMATION FOR SEQ ID NO:3:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 57 base pairs
 - B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other nucleic acid
 - (iii) HYPOTHETICAL: N
 - (iv) ANTI-SENSE: N
 - (vii) IMMEDIATE SOURCE: (B) CLONE: ZC871
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATTATACGCT CTCTTCCTCA GGTAAATGAG TGCCAGGGCC GGCAAGCCCC CGCTCCA

(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 56 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•
(ii) MOLECULE TYPE: Other nucleic acid	
(iii) HYPOTHETICAL: N	
(iv) ANTI-SENSE: N	
(vii) IMMEDIATE SOURCE:(B) CLONE: ZC872	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
CCGGGGAGCG GGGGCTTGCC GGCCCTGGCA CTCATTTACC TGAGGAAGAG AGAGCT	56
(2) INFORMATION FOR SEQ ID NO:5:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid	
(iii) HYPOTHETICAL: N	
(iv) ANTI-SENSE: N	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC904	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
CATGGGCACG TAATCTATAG ATTCATCCTT GCTCATATCC ATGTA	45
(2) INFORMATION FOR SEQ ID NO:6:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

- 114 (ii) MOLECULE TYPE: Other nucleic acid (iii) HYPOTHETICAL: N (iv) ANTI-SENSE: N (vii) IMMEDIATE SOURCE: (B) CLONE: ZC906 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: AAGCTGTCCT CTGCTTCAGC CAGAGGTCCT GGGCAGCC (2) INFORMATION FOR SEQ ID NO:7:
 - - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 38 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other nucleic acid
 - (111) HYPOTHETICAL: N
 - (iv) ANTI-SENSE: N
 - (vii) IMMEDIATE SOURCE: (B) CLONE: ZC906
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

AAGCTGTCCT CTGCTTCAGC CAGAGGTCCT GGGCAGCC

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other nucleic acid
 - (111) HYPOTHETICAL: N
 - (iv) ANTI-SENSE: N
 - (vii) IMMEDIATE SOURCE: (B) CLONE: ZC1380

38

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CATGGTGGAA TTCCTGCTGA T	21
(2) INFORMATION FOR SEQ ID NO:9:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid	
(iii) HYPOTHETICAL: N	~
(iv) ANTI-SENSE: N	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC1447	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
TGGTTGTGCA GAGCTGAGGA AGAGATGGA	29
(2) INFORMATION FOR SEQ ID NO:10:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 55 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid	
(111) HYPOTHETICAL: N	
(iv) ANTI-SENSE: N	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC1453	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
AATTCATTAT GTTGTTGCAA GCCTTCTTGT TCCTGCTAGC TGGTTTCGCT GTTAA	55

(2) INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 55 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Other nucleic acid (iii) HYPOTHETICAL: N (iv) ANTI-SENSE: N (vii) IMMEDIATE SOURCE: (B) CLONE: ZC1454 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: GATCTTAACA GCGAAACCAG CTAGCAGGAA CAAGAAGGCT TGCAACAACA TAATG 55 (2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleac acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Other nucleic acid (iii) HYPOTHETICAL: N (iv) ANTI-SENSE: N (vii) IMMEDIATE SOURCE: (B) CLONE: ZC1478 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: ATCGCGAGCA TGCAGATCTG A 21 (2) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other nucleic acid

(iii) HYPOTHETICAL: N (iv) ANTI-SENSE: N (vii) IMMEDIATE SOURCE:
(B) CLONE: ZC1479 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: AGCTTCAGAT CTGCATGCTG CCGAT 25 (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: Other nucleic acid (111) HYPOTHETICAL: N (iv) ANTI-SENSE: N (vii) IMMEDIATE SOURCE: (B) CLONE: ZC1776 (x1) SEQUENCE DESCRIPTION: SEQ ID NO:14: AGCTGAGCGC AAATGTTGTG TCGAGTGCCC ACCGTGCCCA GCTTAGAATT CT 52 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Other nucleic acid

(iii) HYPOTHETICAL: N

(iv) ANTI-SENSE: N

(vii) IMMEDIATE SOURCE:

(B) CLONE: ZC1777

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
CTAGAGAATT CTAAGCTGGG CACGGTGGGC ACTCGACACA ACATTTGCGC TC	52
(2) INFORMATION FOR SEQ ID NO:16:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid	
(iii) HYPOTHETICAL: N	
(iv) ANTI-SENSE: N	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC1846	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
GATCGGCCAC TGTCGGTGCG CTGCACGCTG CGCAACGCTG TGGGCCAGGA CACGCAGGAG	60
GTCATCGTGG TGCCACACTC CTTGCCCTTT AAGCA	95
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 95 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid	
(iii) HYPOTHETICAL: N	
(iv) ANTI-SENSE: N	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC1847	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
AGCTTGCTTA AAGGGCAAGG AGTGTGGCAC CACGATGACC TCCTGCGTGT CCTGGCCCAC	60
AGCGTTGCGC AGCGTGCAGC GCACCGACAG TGGCC	95

(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid	
(iii) HYPOTHETICAL: N	
(iv) ANTI-SENSE: N	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC1886	
-	, - -
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
CCAGTGCCAA GCTTGTCTAG ACTTACCTTT AAAGGGCAAG GAG	43
(2) INFORMATION FOR SEQ ID NO:19:	
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	-a
(ii) MOLECULE TYPE: Other nucleic acid	
(iii) HYPOTHETICAL: N	
(iv) ANTI-SENSE: N	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC1892	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
AGCTTGAGCG T	11
(2) INFORMATION FOR SEQ ID NO:20:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(ii) MOLECULE TYPE: Other nucleic acid

14443	UVDOTUETICAL. N	
,	HYPOTHETICAL: N	
(tv)	ANTI-SENSE: N	
(vii)	IMMEDIATE SOURCE: (B) CLONE: ZC1893	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:20:	
CTAGACGCT	TC A	11
(2) INFOR	RMATION FOR SEQ ID NO:21:	
_ (i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(11)	MOLECULE TYPE: Other nucleic acid	
(iii)	HYPOTHETICAL: N	
(iv)	ANTI-SENSE: N	
(vii)	IMMEDIATE SOURCE: (B) CLONE: ZC1894	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:21:	
AGCTTCCA	GT TCTTCGGCCT CATGTCAGTT CTTCGGCCTC ATGTGAT	47
(2) INFO	RMATION FOR SEQ ID NO:22:	
(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(11)	MOLECULE TYPE: Other nucleic acid	
(111)	HYPOTHETICAL: N	
(iv)	ANTI-SENSE: N	
(vii)	IMMEDIATE SOURCE: (B) CLONE: ZC1895	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
CTAGATCACA TGAGGCCGAA GAACTGACAT GAGGCCGAAG AACTGGA	47
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 66 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid	
(iii) HYPOTHETICAL: N	
(iv) ANTI-SENSE: N	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC2181	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
AATTCGGATC CACCATGGGC ACCAGCCACC CGGCGTTCCT GGTGTTAGGC TGCCTGCTGA	60
CCGGCC	66
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other nucleic acid	
(iii) HYPOTHETICAL: N	
(iv) ANTI-SENSE: N	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC2182	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
TGAGCCTGAT CCTGTGCCAA CTGAGCCTGC CATCGATCCT GCCAAACGAG AACGAGAAGG	60
TTGTGCAGCT A	71

(2) INFOR	MATION FOR SEQ ID NO:25:	
(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 69 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: Other nucleic acid	
(iii)	HYPOTHETICAL: N	
(iv)	ANTI-SENSE: N	
(vii)	IMMEDIATE SOURCE: (B) CLONE: ZC2183	
-		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:25:	
AATTTAGC	TG CACAACCTTC TCGTTCTCGT TTGGCAGGAT CGATGGCAGG CTCAGTTGGC	60
ACAGGATC	Α	69
(2) INFO	RMATION FOR SEQ ID NO:26:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 68 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(11)	MOLECULE TYPE: Other nucleic acid	
(111)	HYPOTHETICAL: N	
(iv)	ANTI-SENSE: N	
(vii)	IMMEDIATE SOURCE: (B) CLONE: ZC2184	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:26:	
GGCTCAGG	CC GGTCAGCAGG CAGCCTAACA CCAGGAACGC CGGGTGGCTG GTGCCCATGG	60
TGGATCCG		68
(2) INFO	RMATION FOR SEQ ID NO:27:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: Other nucleic acid	
(iii)	HYPOTHETICAL: N	
(iv)	ANTI-SENSE: N	
(vii)	IMMEDIATE SOURCE: (B) CLONE: ZC2311	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:27:	
TGATCACC	AT GGCTCAACTG	20
(2) INFO	RMATION FOR SEQ ID NO:28:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: Other nucleic acid	
(111)	HYPOTHETICAL: N	
(iv)	ANTI-SENSE: N	
(vii)	IMMEDIATE SOURCE: (B) CLONE: ZC2351	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:28:	
CGAATTCCA	AC	10
(2) INFOR	RMATION FOR SEQ ID NO:29:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: Other nucleic acid	
(iii)	HYPOTHETICAL: N	
(iv)	ANTI-SENSE: N	

(vii) IMMEDIATE SOURCE: (B) CLONE: ZC2352

ί,

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

ATTATACGCA TGGTGGAATT CGAGCT

26

- (2) INFORMATION FOR SEQ ID NO:30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: sin (D) TOPOLOGY: linear STRANDEDNESS: single
 - (ii) MOLECULE TYPE: Other nucleic acid
 - (iii) HYPOTHETICAL: N
 - (iv) ANTI-SENSE: N
 - (vii) IMMEDIATE SOURCE: (B) CLONE: ZC2392
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

ACGTAAGCTT GTCTAGACTT ACCTTCAGAA CGCAGGGTGG G

41

- (2) INFORMATION FOR SEQ ID NO:31:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v) FRAGMENT TYPE: C-terminal
 (vii) IMMEDIATE SOURCE:
 - (B) CLONE: pWK1
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Ala Leu His Asn His Tyr Thr Glu Lys Ser Leu Ser Leu Ser Pro Gly

Lys

(2) INFORMATION FOR SEQ ID NO:32:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: Other nucleic acid		
(iii) HYPOTHETICAL: N		
(iv) ANTI-SENSE: N		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:		
TGTGACACTC TCCTGGGAGT TA		22
(2) INFORMATION FOR SEQ ID NO:33:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	, ve	
(ii) MOLECULE TYPE: Other nucleic acid		
(111) HYPOTHETICAL: N		
(iv) ANTI-SENSE: N		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:		
GCATAGTAGT TACCATATCC TCTTGCACAG		30
(2) INFORMATION FOR SEQ ID NO:34:		
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii) MOLECULE TYPE: Other nucleic acid		
(iii) HYPOTHETICAL: N		
(iv) ANTI-SENSE: N	•	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
ACCGAACGTG AGAGGAGTGC TATAA	25
(2) INFORMATION FOR SEQ ID NO:35:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4054 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: N	
(iv) ANTI-SENSE: N	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(vii) IMMEDIATE SOURCE: (B) CLONE: p-alpha-17B	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2053471 (D) OTHER INFORMATION:	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
GCCCTGGGGA CGGACCGTGG GCGGCGCGCA GCGGCGGGAC GCGTTTTGGG GACGTGGTGG	60
CCAGCGCCTT CCTGCAGACC CACAGGGAAG TACTCCCTTT GACCTCCGGG GAGCTGCGAC	120
CAGGTTATAC GTTGCTGGTG GAAAAGTGAC AATTCTAGGA AAAGAGCTAA AAGCCGGATC	180
GGTGACCGAA AGTTTCCCAG AGCT ATG GGG ACT TCC CAT CCG GCG TTC CTG Met Gly Thr Ser His Pro Ala Phe Leu 1 5	231
GTC TTA GGC TGT CTC ACA GGG CTG AGC CTA ATC CTC TGC CAG CTT Val Leu Gly Cys Leu Leu Thr Gly Leu Ser Leu Ile Leu Cys Gln Leu 10 15 20 25	279
TCA TTA CCC TCT ATC CTT CCA AAT GAA AAT GAA AAG GTT GTG CAG CTG Ser Leu Pro Ser Ile Leu Pro Asn Glu Asn Glu Lys Val Val Gln Leu 30 35 40	327
AAT TCA TCC TTT TCT CTG AGA TGC TTT GGG GAG AGT GAA GTG AGC TGG Asn Ser Ser Phe Ser Leu Arg Cys Phe Gly Glu Ser Glu Val Ser Trp 45 50 55	375

CAG Gln	TAC Tyr	CCC Pro 60	ATG Met	TCT Ser	GAA Glu	GAA G1u	GAG G1u 65	AGC Ser	TCC Ser	GAT Asp	GTG Val	GAA G1u 70	ATC Ile	AGA Arg	AAT Asn		423
GAA G1u	GAA Glu 75	AAC Asn	AAC Asn	AGC Ser	GGC Gly	CTT Leu 80	TTT Phe	GTG Val	ACG Thr	GTC Val	TTG Leu 85	GAA G1u	GTG Val	AGC Ser	AGT Ser		471
GCC Ala 90	TCG Ser	GCG Ala	GCC Ala	CAC His	ACA Thr 95	GGG Gly	TTG Leu	TAC Tyr	ACT Thr	TGC Cys 100	TAT Tyr	TAC Tyr	AAC Asn	CAC His	ACT Thr 105		519
CAG G1n	ACA Thr	GAA G1u	GAG G1u	AAT Asn 110	GAG G1u	CTT Leu	GAA G1u	GGC Gly	AGG Arg 115	CAC His	ATT Ile	TAC Tyr	ATC Ile	TAT Tyr 120	GTG Val		567
CCA Pro	GAC "Asp	CCA Pro	GAT Asp 125	GTA Val	GCC Ala	TTT Phe	GTA Val	CCT Pro 130	CTA Leu	GGA Gly	ATG Met	ACG Thr	GAT Asp 135	TAT Tyr	TTA Leu		615
GTC Val	ATC Ile	GTG Val 140	GAG G1u	GAT Asp	GAT Asp	GAT Asp	TCT Ser 145	GCC Ala	ATT Ile	ATA Ile	CCT Pro	TGT Cys 150	CGC Arg	ACA Thr	ACT Thr		663
GAT Asp	CCC Pro 155	GAG Glu	ACT Thr	CCT Pro	GTA Val	ACC Thr 160	TTA Leu	CAC His	AAC Asn	AGT Ser	GAG Glu 165	GGG Gly	GTG Val	GTA Va]	CCT Pro	-	711
GCC Ala 170	TCC Ser	TAC Tyr	GAC Asp	AGC Ser	AGA Arg 175	CAG G1n	GGC Gly	TTT Phe	AAT Asn	GGG Gly 180	ACC Thr	TTC Phe	ACT Thr	GTA Val	GGG Gly 185		759
CCC Pro	TAT Tyr	ATC Ile	TGT Cys	GAG Glu 190	GCC Ala	ACC Thr	GTC Val	AAA Lys	GGA Gly 195	AAG Lys	AAG Lys	TTC Phe	CAG Gln	ACC Thr 200	ATC Ile		807
CCA Pro	TTT Phe	AAT Asn	GTT Val 205	TAT Tyr	GCT Ala	TTA Leu	AAA Lys	GCA Ala 210	ACA Thr	TCA Ser	GAG Glu	CTG Leu	GAT Asp 215	CTA Leu	GAA Glu		855
ATG Met	GAA Glu	GCT Ala 220	CTT Leu	AAA Lys	ACC Thr	GTG Val	TAT Tyr 225	AAG Lys	TCA Ser	GGG Gly	GAA G1u	ACG Thr 230	ATT Ile	GTG Val	GTC Val		903
ACC Thr	TGT Cys 235	GCT Ala	GTT Val	TTT Phe	AAC Asn	AAT Asn 240	GAG Glu	GTG Val	GTT Val	GAC Asp	CTT Leu 245	CAA Gln	TGG Trp	ACT Thr	TAC Tyr		951
CCT Pro 250	GGA Gly	GAA Glu	GTG Val	AAA Lys	GGC Gly 255	AAA Lys	GGC Gly	ATC Ile	ACA Thr	ATA Ile 260	CTG Leu	GAA Glu	GAA Glu	ATC Ile	AAA Lys 265		999
GTC Val	CCA Pro	TCC Ser	ATC Ile	AAA Lys 270	TTG Leu	GTG Val	TAC Tyr	ACT Thr	TTG Leu 275	ACG Thr	GTC Val	CCC Pro	GAG Glu	GCC Ala 280	ACG Thr		1047

GTG Val	AAA Lys	GAC Asp	AGT Ser 285	GGA Gly	GAT Asp	TAC Tyr	GAA G1u	TGT Cys 290	GCT Ala	GCC Ala	CGC Arg	CAG G1n	GCT Ala 295	ACC Thr	AGG Arg	1095
GAG Glu	GTC Val	AAA Lys 300	GAA G1u	ATG Met	AAG Lys	AAA Lys	GTC Val 305	ACT Thr	ATT Ile	TCT Ser	GTC Val	CAT His 310	GAG G1u	AAA Lys	GGT Gly	1143
TTC Phe	ATT Ile 315	GAA Glu	ATC Ile	AAA Lys	CCC Pro	ACC Thr 320	TTC Phe	AGC Ser	CAG G1n	TTG Leu	GAA G1u 325	GCT Ala	GTC Val	AAC Asn	CTG Leu	1191
CAT His 330	GAA Glu	GTC Val	AAA Lys	CAT His	TTT Phe 335	GTT Val	GTA Val	GAG G1u	GTG Val	CGG Arg 340	GCC Ala	TAC Tyr	CCA Pro	CCT Pro	CCC Pro 345	1239
AGG Arg	ATA Ile	TCC Ser	TGG Trp	CTG Leu 350	AAA Lys	AAC Asn	AAT Asn	CTG Leu	ACT Thr 355	CTG Leu	ATT Ile	GAA Glu	AAT Asn	CTC Leu 360	ACT Thr	1287
GAG Glu	ATC Ile	ACC Thr	ACT Thr 365	GAT Asp	GTG Val	GAA G1u	AAG Lys	ATT Ile 370	CAG Gln	GAA G1u	ATA Ile	AGG Arg	TAT Tyr 375	CGA Arg	AGC Ser	1335
AAA Lys	TTA Leu	AAG Lys 380	CTG Leu	ATC Ile	CGT Arg	GCT Ala	AAG Lys 385	GAA Glu	GAA G1u	GAC Asp	AGT Ser	GGC Gly 390	CAT His	TAT Tyr	ACT Thr	1383
ATT	GTA Val 395	GCT Ala	CAA G1n	AAT Asn	GAA G1u	GAT Asp 400	GCT Ala	GTG Val	AAG Lys	AGC Ser	TAT Tyr 405	ACT Thr	TTT Phe	GAA Glu	CTG Leu	1431
TTA Leu 410	ACT Thr	CAA G1n	GTT Val	CCT Pro	TCA Ser 415	TCC Ser	ATT Ile	CTG Leu	GAC Asp	TTG Leu 420	GTC Val	GAT Asp	GAT Asp	CAC His	CAT His 425	1479
GGC Gly	TCA Ser	ACT Thr	GGG Gly	GGA G1y 430	CAG Gln	ACG Thr	GTG Val	AGG Arg	TGC Cys 435	ACA Thr	GCT Ala	GAA G1u	GGC G1y	ACG Thr 440	CCG Pro	1527
CTT : Leu	CCT Pro	GAT Asp	ATT Ile 445	GAG G1u	TGG Trp	ATG Met	ATA Ile	TGC Cys 450	AAA Lys	GAT Asp	ATT Ile	AAG Lys	AAA Lys 455	TGT Cys	AAT Asn	1575
AAT Asn	GAA G1u	ACT Thr 460	TCC Ser	TGG Trp	ACT Thr	ATT Ile	TTG Leu 465	GCC Ala	AAC Asn	AAT Asn	GTC Val	TCA Ser 470	AAC Asn	ATC Ile	ATC Ile	1623
ACG Thr	GAG G1u 475	ATC Ile	CAC His	TCC Ser	CGA Arg	GAC Asp 480	AGG Arg	AGT Ser	ACC Thr	GTG Val	GAG Glu 485	GGC Gly	CGT Arg	GTG Val	ACT Thr	1671

gamma-1 C gene subcloned into pUC19 that had been linearized by digestion with Hind III and SaI I. Plasmid $pICHu_{\gamma}-1M$ was digested with Hind III and Eco RI to isolate the 6 kb fragment encoding the human heavy chain constant 5 region. Plasmid pIC19H was linearized by digestion with Eco RI. The 1.65 kb PDGF β -R fragment, the 6 kb heavy chain constant region fragment and the linearized pIC19H were joined in a three part ligation. The resultant plasmid, pSDL111, was digested with Bam HI to isolate the 10 7.7 kb fragment. Plasmid p μ PRE8 was linearized with Bgl II and was treated with calf intestinal phosphatase to prevent self-ligation. The 7.7 kb fragment and the linearized $p\mu$ PRE8 were joined by ligation. A plasmid containing the insert in the proper orientation was 15 designated pSDL113 (Figure 8).

Plasmid pSDL113 is linearized by digestion with Cla I and is cotransfected with Pvu I-digested p416 into SP2/0-Ag14 by electroporation. Transfectants are selected in growth medium containing methotrexate.

Media from drug resistant clones are tested for the presence of secreted PDGF β -R analogs by immunoprecipitation using the method described in Example 12.B.

25 E. Cotransfection of pSDL113 with an Immunoglobulin Light Chain Gene

Plasmid pSDL113 is linearized by digestion with Cla I and was cotransfected with pICφ5V_KHuC_K-Neo, which encodes a neomycin resistance gene and a mouse/human chimeric immunoglobulin light chain gene. The mouse immunoglobulin light chain gene was isolated from a lambda genomic DNA library constructed from the murine hybridoma cell line NR-ML-05 (Woodhouse et al., ibid.) using an oligonucleotide probe designed to span the V_K/J_K junction (5' ACC GAA CGT GAG AGG AGT GCT ATA A 3'; Sequence ID Number 34). The human immunoglobulin light chain constant region gene was isolated as described in Example 12.B.

TTC Phe 490	GCC Ala	AAA Lys	GTG Val	GAG G1u	GAG Glu 495	ACC Thr	ATC Ile	GCC Ala	GTG Val	CGA Arg 500	TGC Cys	CTG Leu	GCT Ala	AAG Lys	AAT Asn 505	1	719
CTC Leu	CTT Leu	GGA Gly	GCT Ala	GAG G1u 510	AAC Asn	CGA Arg	GAG G1u	CTG Leu	AAG Lys 515	CTG Leu	GTG Val	GCT Ala	CCC Pro	ACC Thr 520	CTG Leu	1	1767
CGT Arg	TCT Ser	GAA Glu	CTC Leu 525	ACG Thr	GTG Val	GCT Ala	GCT Ala	GCA Ala 530	GTC Val	CTG Leu	GTG Val	CTG Leu	TTG Leu 535	GTG Val	ATT Ile		1815
GTG Val	ATC Ile	ATC Ile 540	TCA Ser	CTT Leu	ATT Ile	GTC Val	CTG Leu 545	GTT Val	GTC Val	ATT Ile	TGG Trp	AAA Lys 550	CAG Gln	AAA Lys	CCG Pro		1863
AGG. Arg	TAT Tyr 555	Glu	ATT	CGC Arg	TGG Trp	AGG Arg 560	GTC Val	ATT Ile	GAA Glu	TCA Ser	ATC 11e 565	Ser	CCG Pro	GAT Asp	GGA Gly		1911
CAT His 570	Glu	TAT Tyr	ATT	TAT Tyr	GTG Val 575	Asp	CCG Pro	ATG Met	CAG Gln	CTG Leu 580	CCT Pro	TAT Tyr	GAC Asp	TCA Ser	AGA Arg 585		195 9
TGG Trp	GAG Glu	TTT Phe	CCA Pro	AGA Arg 590	Asp	GGA Gly	CTA Leu	GTG Val	Leu 595	Gly	CGG Arg	GTC Val	TTG Leu	GG6 G1y 600	TCT Ser		2007
GGA G1y	GC6	TTI Phe	GGG 61y 605	Lys	GTG Val	GTT Val	GAA G1u	GGA Gly 610	Thr	GCC Ala	TAT Tyr	GGA Gly	Leu 615	261	CGG Arg		2055
TCC Ser	CAA G1r	CC1 Pro 620	Val	ATG Met	AAA Lys	GTT Val	GCA Ala 625	. Val	AAG Lys	ATG Met	CT#	A AAA Lys 630	Pro	ACC Thi	G GCC		2103
Arg	5e1	r Sei	r Glu	ı Ly:	s G1r	640	Let	ı Met	t Sei	r Glu	64!	u Ly: 5	s Ile	e Me	G ACT t Thr		2151
Hi:	s Lei	u G1;	y Pro	o Hi	5 Lei 65!	ı Ası 5	110	e Va	1 Ası	n Lei 660	ı Le	u GI,	у АТ	ацу	C ACC s Thr 665		2199
AA(Ly:	G TC	A GG r Gl	c cci y Pr	C AT 0 11 67	e Ty	r Il	C ATO	C AC e Th	A GA r G1 67	u Ty	T TG r Cy	C TT s Ph	C TA e Ty	T GG r G1 68	A GAT y Asp O		2247
TT(G GT u Va	C AA 1 As	C TA' n Ty 68	r Le	G CA u Hi	T AAI	G AA' s As	T AG n Ar 69	g As	T AGO p Seo	C TT r Ph	C CT e Le	G AG u Se 69	r Hi	C CAC s His		2295
CC Pr	A GA o G1	G AA u Ly 70	s Pr	A AA o Ly	G AA s Ly	A GA s G1	G CT u Le 70	u As	TA TA	C TT e Ph	T GG e G1	A TT y Le 71	u As	C CC n Pr	T GCT O Ala		2343

Asp	GAA Glu 715	AGC Ser	ACA Thr	CGG Arg	Ser	TAT Tyr 720	GTT Val	ATT Ile	TTA Leu	Ser	777 Phe 725	GAA G1u	AAC Asn	AAT Asn	GGT Gly	2391
GAC Asp 730	TAC Tyr	ATG Met	GAC Asp	ATG Met	AAG Lys 735	CAG G1n	GCT Ala	GAT Asp	ACT Thr	ACA Thr 740	CAG G1n	TAT Tyr	GTC Val	CCC Pro	ATG Met 745	2439
CTA Leu	GAA Glu	AGG Arg	AAA Lys	GAG G1u 750	GTT Val	TCT Ser	AAA Lys	TAT Tyr	TCC Ser 755	GAC Asp	ATC Ile	CAG G1n	AGA Arg	TCA Ser 760	CTC Leu	2487
TAT Tyr	GAT Asp	CGT Arg	CCA Pro 765	GCC Ala	TCA Ser	TAT Tyr	AAG Lys	AAG Lys 770	Lys	TCT Ser	ATG Met	TTA Leu	GAC Asp 775	TCA Ser	GAA G1u	2535
GTC Val	`AAA Lys	AAC Asn 780	Leu	CTT Leu	TCA Ser	GAT Asp	GAT Asp 785	AAC Asn	TCA Ser	GAA G1u	GGC Gly	CTT Leu 790	ACT Thr	TTA Leu	TTG Leu	2583
GAT Asp	TTG Leu 795	Leu	AGC Ser	TTC Phe	ACC Thr	TAT Tyr 800	CAA G1n	GTT Val	GCC Ala	CGA Arg	GGA Gly 805	Met	GAG G1u	TTT Phe	TTG Leu	2631
GCT Ala 810	Ser	AAA Lys	AAT Asn	TGT Cys	GTC Val 815	CAC His	CGT Arg	GAT Asp	CTG Leu	GCT Ala 820	GCT Ala	CGC Arg	AAC Asn	GTC Val	CTC Leu 825	2679
CTG Leu	GCA A1 a	CAA G1n	GGA Gly	AAA Lys 830	He	GTG Val	AAG Lys	ATC Ile	TGT Cys 835	Asp	TTT Phe	GGC Gly	CTG Leu	GCC Ala 840	Arg	2727
GAC Asp	ATC	ATG Met	CAT His 845	Asp	TCG Ser	AAC Asn	TAT Tyr	GT0 Val 850	Ser	AAA Lys	GGC Gly	AG1	T ACC Thr 855	. Lue	CTG Leu	2775
CCC Pro	GTG Val	Lys 860	Trp	ATG Met	GCT Ala	CCT Pro	GA0 G10 865	ı Sei	ATO	TTT Phe	GAC Asp	AA(As) 87(n Lei	TAC 1 Tyl	ACC Thr	2823
ACA Thr	CT6 Let 87!	ı Sei	GAT Asp	GTC Val	TGG Trp	TC1 Ser 880	· Tyı	GG(c ATT	CTG Leu	CTC Let 88	u Ir	G GAO p Glu	ATO	TTT Phe	2871
TC(Ser 890	r Lei	r GG u Gly	r GGC y Gly	C ACC	CCT Pro 895	Tyı	CC(C GG o G1	C ATO	ATO t Mei 900	t Va	G GA 1 As	T TC p Se	T AC	T TTC r Phe 905	2919
TA(C AA' r Asi	T AAI n Ly:	G ATO	C AA(e Ly: 910	s Sei	GG(TA	C CG r Ar	G AT	t Ali	C AA a Ly	G CC s Pr	T GA	C CA p Hi 92	C GCT s Ala O	2967

ACC AGT GAA GTC TAC GAG ATC ATG GTG AAA TGC TGG AAC AGT GAG CCG Thr Ser Glu Val Tyr Glu Ile Met Val Lys Cys Trp Asn Ser Glu Pro 925 930 935	3015
GAG AAG AGA CCC TCC TTT TAC CAC CTG AGT GAG ATT GTG GAG AAT CTG Glu Lys Arg Pro Ser Phe Tyr His Leu Ser Glu Ile Val Glu Asn Leu 940 945 950	3063
CTG CCT GGA CAA TAT AAA AAG AGT TAT GAA AAA ATT CAC CTG GAC TTC Leu Pro Gly Gln Tyr Lys Lys Ser Tyr Glu Lys Ile His Leu Asp Phe 955 960 965	3111
CTG AAG AGT GAC CAT CCT GCT GTG GCA CGC ATG CGT GTG GAC TCA GAC Leu Lys Ser Asp His Pro Ala Val Ala Arg Met Arg Val Asp Ser Asp 970 975 980 985	3159
AAT GCA TAC ATT GGT GTC ACC TAC AAA AAC GAG GAA GAC AAG CTG AAG Asn Ala Tyr Ile Gly Val Thr Tyr Lys Asn Glu Glu Asp Lys Leu Lys 990 995 1000	3207
GAC TGG GAG GGT GGT CTG GAT GAG CAG AGA CTG AGC GCT GAC AGT GGC ASP Trp Glu Gly Leu Asp Glu Gln Arg Leu Ser Ala Asp Ser Gly 1005 1010 1015	3255
TAC ATC ATT CCT CTG CCT GAC ATT GAC CCT GTC CCT GAG GAG GAC Tyr Ile Ile Pro Leu Pro Asp Ile Asp Pro Val Pro Glu Glu Asp 1020 1025 1030	3303
CTG GGC AAG AGG AAC AGA CAC AGC TCG CAG ACC TCT GAA GAG AGT GCC Leu Gly Lys Arg Asn Arg His Ser Ser Gln Thr Ser Glu Glu Ser Ala 1035 1040 1045	3351
ATT GAG ACG GGT TCC AGC AGT TCC ACC TTC ATC AAG AGA GAG GAC GAG Ile Glu Thr Gly Ser Ser Ser Ser Thr Phe Ile Lys Arg Glu Asp Glu 1050 1055 1060 1065	3399
ACC ATT GAA GAC ATC GAC ATG ATG GAC GAC ATC GGC ATA GAC TCT TCA Thr Ile Glu Asp Ile Asp Met Met Asp Asp Ile Gly Ile Asp Ser Ser 1070 1075 1080	3447
GAC CTG GTG GAA GAC AGC TTC CTG TAACTGGCGG ATTCGAGGGG TTCCTTCCAC Asp Leu Val Glu Asp Ser Phe Leu 1085	3501
TTCTGGGGCC ACCTCTGGAT CCCGTTCAGA AAACCACTTT ATTGCAATGC GGAGGTTGAG	3561
AGGAGGACTT GGTTGATGTT TAAAGAGAAG TTCCCAGCCA AGGGCCTCGG GGAGCGTTCT	3621
AAATATGAAT GAATGGGATA TTTTGAAATG AACTTTGTCA GTGTTGCCTC TTGCAATGCC	3681
TCAGTAGCAT CTCAGTGGTG TGTGAAGTTT GGAGATAGAT GGATAAGGGA ATAATAGGCC	3741
ACAGAAGGTG AACTTTGTGC TTCAAGGACA TTGGTGAGAG TCCAACAGAC ACAATTTATA	3801
CTGCGACAGA ACTTCAGCAT TGTAATTATG TAAATAACTC TAACCAAGGC TGTGTTTAGA	3861

TIGITATIAAC TATCITCTIT GGACTICIGA AGAGACCACT CAATCCATCC TGTACTICCC 3921 TCTTGAAACC TGATGTAGCT GCTGTTGAAC TTTTTAAAGA AGTGCATGAA AAACCATTTT 3981 TGAACCTTAA AAGGTACTGG TACTATAGCA TTTTGCTATC TTTTTTAGTG TTAAAGAGAT 4041 AAAGAATAAT AAG 4054

(2) INFORMATION FOR SEQ ID NO:36:

- (1) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1089 amino acids

 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:36:
- Met Gly Thr Ser His Pro Ala Phe Leu Val Leu Gly Cys Leu Leu Thr 1 15
- Gly Leu Ser Leu Ile Leu Cys Gln Leu Ser Leu Pro Ser Ile Leu Pro 20 25 30 ---
- Asn Glu Asn Glu Lys Val Val Gln Leu Asn Ser Ser Phe Ser Leu Arg 35 40 45
- Cys Phe Gly Glu Ser Glu Val Ser Trp Gln Tyr Pro Met Ser Glu Glu
 50 55 60
- Glu Ser Ser Asp Val Glu Ile Arg Asn Glu Glu Asn Asn Ser Gly Leu 65 70 75 80
- Phe Val Thr Val Leu Glu Val Ser Ser Ala Ser Ala Ala His Thr Gly 85 90 95
- Leu Tyr Thr Cys Tyr Tyr Asn His Thr Gln Thr Glu Glu Asn Glu Leu 100 105 110
- Glu Gly Arg His Ile Tyr Ile Tyr Val Pro Asp Pro Asp Val Ala Phe 115 120 125
- Val Pro Leu Gly Met Thr Asp Tyr Leu Val Ile Val Glu Asp Asp 130 135 140
- Ser Ala Ile Ile Pro Cys Arg Thr Thr Asp Pro Glu Thr Pro Val Thr 145 150 155 160
- Leu His Asn Ser Glu Gly Val Val Pro Ala Ser Tyr Asp Ser Arg Gln
 165 170 175

Gly Phe Asn Gly Thr Phe Thr Val Gly Pro Tyr Ile Cys Glu Ala Thr 180 185 190

Val Lys Gly Lys Lys Phe Gln Thr Ile Pro Phe Asn Val Tyr Ala Leu 195 200 205

Lys Ala Thr Ser Glu Leu Asp Leu Glu Met Glu Ala Leu Lys Thr Val 210 215 220

Tyr Lys Ser Gly Glu Thr Ile Val Val Thr Cys Ala Val Phe Asn Asn 225 230 235 240

Glu Val Val Asp Leu Gln Trp Thr Tyr Pro Gly Glu Val Lys Gly Lys 245 250 255

Gly Ile Thr Ile Leu Glu Glu Ile Lys Val Pro Ser Ile Lys Leu Val — 260 265 270

Tyr Thr Leu Thr Val Pro Glu Ala Thr Val Lys Asp Ser Gly Asp Tyr 275 280 285

Glu Cys Ala Ala Arg Gln Ala Thr Arg Glu Val Lys Glu Met Lys Lys 290 295 300

Val Thr Ile Ser Val His Glu Lys Gly Phe Ile Glu Ile Lys Pro Thr 305 310 315 320

Phe Ser Gln Leu Glu Ala Val Asn Leu His Glu Val Lys His Phe Val 325 330 335

Val Glu Val Arg Ala Tyr Pro Pro Pro Arg Ile Ser Trp Leu Lys Asn 340 345 350

Asn Leu Thr Leu Ile Glu Asn Leu Thr Glu Ile Thr Thr Asp Val Glu 355 360 365

Lys Ile Gln Glu Ile Arg Tyr Arg Ser Lys Leu Lys Leu Ile Arg Ala 370 385

Lys Glu Glu Asp Ser Gly His Tyr Thr Ile Val Ala Gln Asn Glu Asp 385 390 395 400

Ala Val Lys Ser Tyr Thr Phe Glu Leu Leu Thr Gln Val Pro Ser Ser 405 410 415

Ile Leu Asp Leu Val Asp Asp His His Gly Ser Thr Gly Gly Gln Thr 420 425 430

Val Arg Cys Thr Ala Glu Gly Thr Pro Leu Pro Asp Ile Glu Trp Met 435 440 445

Ile Cys Lys Asp Ile Lys Lys Cys Asn Asn Glu Thr Ser Trp Thr Ile 450 455 460 Ĺ

Leu Ala Asn Asn Val Ser Asn Ile Ile Thr Glu Ile His Ser Arg Asp Arg Ser Thr Val Glu Gly Arg Val Thr Phe Ala Lys Val Glu Glu Thr
485 490 495 Ile Ala Val Arg Cys Leu Ala Lys Asn Leu Leu Gly Ala Glu Asn Arg 500 505 510 Glu Leu Lys Leu Val Ala Pro Thr Leu Arg Ser Glu Leu Thr Val Ala 515 520 525 Ala Ala Val Leu Val Leu Val Ile Val Ile Ser Leu Ile Val 530 540 Leu Val Val Ile Trp Lys Gln Lys Pro Arg Tyr Glu Ile Arg Trp Arg 545 550 560 Val Ile Glu Ser Ile Ser Pro Asp Gly His Glu Tyr Ile Tyr Val Asp 565 570 575 Pro Met Gln Leu Pro Tyr Asp Ser Arg Trp Glu Phe Pro Arg Asp Gly 580 585 Leu Val Leu Gly Arg Val Leu Gly Ser Gly Ala Phe Gly Lys Val Val 595 600 605 Glu Gly Thr Ala Tyr Gly Leu Ser Arg Ser Gln Pro Val Met Lys Val 610 615 620 Ala Val Lys Met Leu Lys Pro Thr Ala Arg Ser Ser Glu Lys Gln Ala 625 630 635 640 Leu Met Ser Glu Leu Lys Ile Met Thr His Leu Gly Pro His Leu Asn 645 650 655 Ile Val Asn Leu Leu Gly Ala Cys Thr Lys Ser Gly Pro Ile Tyr Ile
660 665 670 Ile Thr Glu Tyr Cys Phe Tyr Gly Asp Leu Val Asn Tyr Leu His Lys 675 680 685 Asn Arg Asp Ser Phe Leu Ser His His Pro Glu Lys Pro Lys Lys Glu 690 700 Leu Asp Ile Phe Gly Leu Asn Pro Ala Asp Glu Ser Thr Arg Ser Tyr 705 710 715 720 Val Ile Leu Ser Phe Glu Asn Asn Gly Asp Tyr Met Asp Met Lys Gln
725 730 735 Ala Asp Thr Thr Gln Tyr Val Pro Met Leu Glu Arg Lys Glu Val Ser 740 745 750

Lys Tyr Ser Asp Ile Gln Arg Ser Leu Tyr Asp Arg Pro Ala Ser Tyr 755 760 765 Lys Lys Lys Ser Met Leu Asp Ser Glu Val Lys Asn Leu Leu Ser Asp 770 780 Asp Asn Ser Glu Gly Leu Thr Leu Leu Asp Leu Leu Ser Phe Thr Tyr 785 790 795 800 Gln Val Ala Arg Gly Met Glu Phe Leu Ala Ser Lys Asn Cys Val His 805 810 815 Arg Asp Leu Ala Ala Arg Asn Val Leu Leu Ala Gln Gly Lys Ile Val 820 825 830 Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Met His Asp Ser Asn — 835 845 Tyr Val Ser Lys Gly Ser Thr Phe Leu Pro Val Lys Trp Met Ala Pro 850 860 Glu Ser Ile Phe Asp Asn Leu Tyr Thr Thr Leu Ser Asp Val Trp Ser 865 870 875 880 Tyr Gly Ile Leu Leu Trp Glu Ile Phe Ser Leu Gly Gly Thr Pro Tyr 885 890 895 Pro Gly Met Met Val Asp Ser Thr Phe Tyr Asn Lys Ile Lys Ser Gly 900 905 910 Tyr Arg Met Ala Lys Pro Asp His Ala Thr Ser Glu Val Tyr Glu Ile 915 920 925 Met Val Lys Cys Trp Asn Ser Glu Pro Glu Lys Arg Pro Ser Phe Tyr 930 935 940 His Leu Ser Glu Ile Val Glu Asn Leu Leu Pro Gly Gln Tyr Lys Lys 945 955 960 Ser Tyr Glu Lys Ile His Leu Asp Phe Leu Lys Ser Asp His Pro Ala 965 970 975 Val Ala Arg Met Arg Val Asp Ser Asp Asn Ala Tyr Ile Gly Val Thr 980 985 990 Tyr Lys Asn Glu Glu Asp Lys Leu Lys Asp Trp Glu Gly Gly Leu Asp 995 1000 1005 Glu Gln Arg Leu Ser Ala Asp Ser Gly Tyr Ile Ile Pro Leu Pro Asp 1010 1015 1020

Ile Asp Pro Val Pro Glu Glu Glu Asp Leu Gly Lys Arg Asn Arg His 1025 1030 1035 104

Ser Ser Gln Thr Ser Glu Glu Ser Ala Ile Glu Thr Gly Ser Ser Ser 1045 $1050\,$ 1055

Ser Thr Phe Ile Lys Arg Glu Asp Glu Thr Ile Glu Asp Ile Asp Met 1060 1065 1070

Met Asp Asp Ile Gly Ile Asp Ser Ser Asp Leu Val Glu Asp Ser Phe 1075 1080 1085

Leu

Claims

1. A method for producing a secreted, biologically active dimerized polypeptide fusion, comprising:

introducing into a eukaryotic host cell a DNA construct comprising a transcriptional promoter operatively linked to a secretory signal sequence followed downstream by and in proper reading frame with a DNA sequence encoding a non-immunoglobulin polypeptide requiring dimerization for biological activity joined to a dimerizing protein;

growing said host cell in an appropriate growth medium under physiological conditions to allow the secretion of a dimerized polypeptide fusion encoded by said DNA sequence; and

isolating said dimerized polypeptide fusion from said host cell.

2. A method for producing a secreted, biologically active dimerized polypeptide fusion, comprising:

introducing into a eukaryotic host cell a first DNA construct comprising a transcriptional promoter operatively linked to a first secretory signal sequence followed downstream by and in proper reading frame with a first DNA sequence encoding a non-immunoglobulin polypeptide requiring dimerization for biological activity joined to an immunoglobulin light chain constant region;

introducing into said host cell a second DNA construct comprising a transcriptional promoter operatively linked to a second secretory signal sequence followed downstream by and in proper reading frame with a second DNA sequence encoding an immunoglobulin heavy chain constant region domain selected from the group consisting of $C_{\rm H}1$, $C_{\rm H}2$, $C_{\rm H}3$, and $C_{\rm H}4$;

growing said host cell in an appropriate growth medium under physiological conditions to allow the secretion of a biologically active dimerized polypeptide fusion encoded by said first and second DNA sequences; and

isolating said biologically active dimerized polypeptide fusion from said host cell.

- 3. The method of claim 2 wherein said second DNA sequence further encodes an immunoglobulin hinge region and wherein said hinge region is joined to said immunoglobulin heavy chain constant region.
- 4. The method of claim 2 wherein said second DNA sequence further encodes an immunoglobulin variable region and wherein said variable region is joined upstream of and in proper reading frame with said immunoglobulin heavy chain constant region domain.
- 5. The method of claim 2 wherein said host cell is a fungal cell or a cultured mammalian cell.
- 6. The method of claim 2 wherein said host cell is a cultured rodent myeloma cell line.
- 7. The method of claim 2 wherein said non-immunoglobulin polypeptide requiring dimerization for biological activity is selected from the group consisting of a polypeptide comprising the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, to lysine, number 531, a polypeptide comprising the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, to methionine, number 441, and a polypeptide comprising the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524.
- 8. A method for producing a secreted, biologically active dimerized polypeptide fusion, comprising:

introducing into a eukaryotic host cell a first DNA construct comprising a transcriptional promoter operatively linked to a first secretory signal sequence followed

downstream by and in proper reading frame with a first DNA sequence encoding a non-immunoglobulin polypeptide requiring dimerization for biological activity joined to an immunoglobulin heavy chain constant region domain selected from the group consisting of $C_{\rm H}1$, $C_{\rm H}2$, $C_{\rm H}3$, and $C_{\rm H}4$;

introducing into said host cell a second DNA construct comprising a transcriptional promoter operatively linked to a second secretory signal sequence followed downstream by and in proper reading frame with a second DNA sequence encoding an immunoglobulin light chain constant region;

growing said host cell in an appropriate growth medium under physiological conditions to allow the secretion of a biologically active dimerized polypeptide fusion encoded by said first and second DNA sequences; and

isolating said biologically acitve dimerized polypeptide fusion from said host cell.

- 9. The method of claim 8 wherein said first DNA sequence further encodes an immunoglobulin hinge region and wherein said hinge region is joined to said immunoglobulin constant region.
- 10. The method of claim 8 wherein said second DNA sequence further encodes an immunoglobulin variable region and wherein said variable region is joined upstream of and in proper reading frame with said immunoglobulin light chain constant region domain.
- 11. The method of claim 8 wherein said host cell is a fungal cell or a cultured mammalian cell.
- 12. The method of claim 8 wherein said host cell is a cultured rodent myeloma cell line.
- 13. The method of claim 8 wherein said non-immunoglobulin polypeptide requiring dimerization for

biological activity is selected from the group consisting of a polypeptide comprising the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, to lysine, number 531 a polypeptide comprising the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, to methionine, number 441, and a polypeptide comprising the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524.

14. A method for producing a secreted receptor analog, comprising:

introducing into a eukaryotic host cell a DNA construct comprising a transcriptional promoter operatively linked to at least one secretory signal sequence followed downstream by and in proper reading frame with a DNA sequence encoding a ligand-binding domain of a receptor requiring dimerization for biological activity joined to a dimerizing protein;

growing said host cell in an appropriate growth medium under physiological conditions to allow the secretion of a receptor analog encoded by said DNA sequence; and

isolating said receptor analog from said host cell.

15. A method for determining the presence of PDGF or isoforms thereof in a biological sample, comprising:

incubating a polypeptide comprising a PDGF receptor analog fused to a dimerizing protein with a biological sample suspected of comprising PDGF or an isoform thereof under physiological conditions to allow the formation of receptor/ligand complexes; and

detecting the presence of the receptor/ligand complexes as an indication of the presence of human PDGF or an isoform thereof.

- 16. The method of claim 15 wherein the polypeptide is tagged with a label selected from the group consisting of radionuclides, fluorophores, enzymes, and luminescers.
- 17. The method of claim 15 wherein the biological sample is selected from the group consisting of blood, urine, plasma, serum, platelet and other cell lysates, platelet releasates, cell suspensions, cell-conditioned culture media and chemically or physically separated portions thereof.
- 18. The method of claim 15 wherein said human PDGF receptor analog is selected from the group consisting of the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, to methionine, number 441, joined to a dimerizing protein, the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, to lysine, number 531, joined to a dimerizing protein and the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524, joined to a dimerizing protein.
- 19. The method of claim 15 wherein said dimerizing protein comprises at least a portion of a protein selected from the group consisting of an immunoglobulin light chain, an immunoglobulin heavy chain and yeast invertase, wherein said portion associates as a dimer in a covalent or a noncovalent manner.
- 20. A method for producing a secreted PDGF receptor analog, comprising:

introducing into a eukaryotic host cell a DNA construct comprising a transcriptional promoter operatively linked to a secretory signal sequence followed downstream in proper reading frame by a DNA sequence encoding a ligand-binding domain of a PDGF receptor:

growing said host cell in an appropriate growth medium under physiological conditions to allow the secretion of a PDGF receptor analog encoded by said DNA sequence; and

isolating said PDGF receptor analog from said host cell.

21. A method for producing a secreted PDGF receptor analog, comprising:

introducing into a cultured rodent myeloma cell a DNA construct comprising a transcriptional promoter operatively linked to a PDGF receptor signal sequence followed downstream by and in proper reading frame with a DNA sequence encoding the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24, to glutamic acid, number 524, joined to a dimerizing protein, wherein said dimerizing protein is an immunoglobulin constant region selected from the group consisting of CH1, CH2, CH3, CH4 and CK joined to an immunoglobulint hinge region;

growing said cultured rodent myeloma cell in an appropriate growth medium under physiological conditions to allow the secretion of a PDGF receptor analog encoded by said DNA sequence; and

isolating the PDGF receptor analog from said cultured rodent myeloma cell.

22. A method for producing a secreted PDGF receptor analog, comprising:

introducing into a cultured rodent myeloma cell a first DNA construct comprising a transcriptional promoter operatively linked to a PDGF receptor signal sequence followed downstream by and in proper reading frame with a first DNA sequence encoding the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine, number 29, to lysine, number 531 joined to an immunoglobulin light chain constant region;

introducing into said cultured rodent myeloma cell a second DNA construct comprising a transcriptional promoter

operatively linked to a PDGF receptor signal sequence followed downstream by and in proper reading frame with a second DNA sequence encoding the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine number 29, to lysine, number 531 joined to an immunoglobulin heavy chain constant region domain selected from the group consisting of $C_{\rm H}1$, $C_{\rm H}2$, $C_{\rm H}3$, and $C_{\rm H}4$ joined to an immunoglobulin hinge region;

growing said cultured rodent myeloma cell in an appropriate growth medium under physiological conditions to allow the secretion of a PDGF receptor analog encoded by said first and second DNA sequences; and

isolating said PDGF receptor analog from said cultured rodent myeloma cell.

23. A method for producing a secreted PDGF receptor analog, comprising:

introducing into a cultured rodent myeloma cell a first DNA construct comprising a mouse $V_{\rm H}$ promoter operatively linked to a PDGF receptor signal sequence followed downstream of and in proper reading frame with a DNA sequence encoding the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524, joined to an immunoglobulin heavy chain constant region domain selected from the group consisting of $C_{\rm H}1$, $C_{\rm H}2$, $C_{\rm H}3$ and $C_{\rm H}4$ joined to an immunoglobulin hinge region;

introducing into said cultured rodent myeloma cell a second DNA construct comprising a mouse V_{K} promoter operatively linked to a PDGF receptor signal sequence followed downstream of and in proper reading frame with a DNA sequence encoding the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524, joined to an immunoglobulin light chain constant region;

growing said cultured rodent myeloma cell in an appropriate growth medium under physiological conditions to

allow the secretion of a PDGF receptor analog encoded by said first and second DNA sequences; and

isolating said PDGF receptor analog from said cultured myeloma cell.

24. A method for producing a secreted PDGF receptor analog, comprising:

introducing into a cultured rodent myeloma cell a first DNA construct comprising a mouse $V_{\rm H}$ promoter operatively linked to a PDGF receptor signal sequence followed downstream of and in proper reading frame with a DNA sequence encoding the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine number 29, to lysine, number 531, joined to an immunoglobulin heavy chain constant region domain selected from the group consisting of $C_{\rm H}1$, $C_{\rm H}2$, $C_{\rm H}3$ and $C_{\rm H}4$ joined to an immunoglobulin hinge region;

introducing into said cultured rodent myeloma cell a second DNA construct comprising a mouse V_K promoter operatively linked to a PDGF receptor signal sequence followed downstream of and in proper reading frame with a DNA sequence encoding the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524, joined to an immunoglobulin light chain constant region;

growing said cultured rodent myeloma cell in an appropriate growth medium under physiological conditions to allow the secretion of a PDGF receptor analog encoded by said first and second DNA sequences; and

isolating said PDGF receptor analog from said cultured myeloma cell.

25. A method for producing a secreted PDGF receptor analog, comprising:

introducing into a cultured rodent myeloma cell a first DNA construct comprising a mouse $V_{\rm H}$ promoter operatively linked to a PDGF receptor signal sequence followed downstream of and in proper reading frame with a DNA sequence encoding

the amino acid sequence of Figure 11 (Sequence ID Numbers 35 and 36) from glutamine, number 24 to glutamic acid, number 524, joined to an immunoglobulin heavy chain constant region domain selected from the group consisting of $C_{\rm H}1$, $C_{\rm H}2$, $C_{\rm H}3$ and $C_{\rm H}4$ joined to an immunoglobulin hinge region;

introducing into said cultured rodent myeloma cell a second DNA construct comprising a mouse V_K promoter operatively linked to a PDGF receptor signal sequence followed downstream of and in proper reading frame with a DNA sequence encoding the amino acid sequence of Figure 1 (Sequence ID Numbers 1 and 2) from isoleucine number 29, to lysine, number 531, joined to an immunoglobulin light chain constant region;

growing said cultured rodent myeloma cell in an appropriate growth medium under physiological conditions to allow the secretion of a PDGF receptor analog encoded by said first and second DNA sequences; and

isolating said PDGF receptor analog from said cultured myeloma cell.

26. A method for determining the presence of PDGF or an isoform thereof in a biological sample comprising the steps of:

incubating a polypeptide comprising a PDGF receptor analog joined to a dimerizing protein with a biological sample suspected of containing PDGF or an isoform thereof under conditions that allow the formation of receptor/ligand complexes; and

detecting the presence of receptor/ligand complexes, and therefrom determining the presence of human PDGF or an isoform thereof.

27. The method according to claim 26 wherein said biological sample is selected from the group consisting of blood, urine, plasma, serum, platelet and other cell lysates, platelet releasates, cell suspensions, cell-conditioned culture media, and chemically or physically separated portions thereof.

28. A method for purifying PDGF or an isoform thereof from a sample, comprising:

immobilizing a polypeptide comprising a PDGF receptor analog fused to a dimerizing protein on a substrate;

contacting a sample comprising PDGF or an isoform thereof with the immobilized polypeptide under conditions such that the PDGF or isoform thereof binds to the polypeptide; and eluting the PDGF or isoform thereof from the polypeptide.

WP-DJM-2/8719clp2/v1

METHODS OF PRODUCING SECRETED RECEPTOR ANALOGS AND BIOLOGICALLY ACTIVE DIMERIZED POLYPEPTIDE FUSIONS

Abstract of the Disclosure

Methods for producing secreted receptor analogs and biologically active peptide dimers are disclosed. methods for producing secreted receptor analogs and biologically active peptide dimers utilize a DNA sequence encoding a receptor analog or a peptide requiring dimerization for biological activity joined to a dimerizing The receptor analog includes a ligand-binding essentially the domain. Polypeptides comprising extracellular domain of a human PDGF receptor fused to dimerizing proteins, the portion being capable of binding human PDGF or an isoform thereof, are also disclosed. The polypeptides may be used within methods for determining the presence of and for purifying human PDGF or isoforms thereof.

10 20 30 40 50 60 70 CCCTCAGCCC TGCTGCCCAG CACGAGCCTG TGCTCGCCCT GCCCAACGCA GACAGCCAGA CCCAGGGGGG CCCCTCTGGC GGCTCTGCTC CTCCCGAAGG ATGCTTGGGG AGTGAGGCGA AGCTGGGCGC TCCTCTCCCC 180 TACAGCAGCC CCCTTCCTCC ATCCCTCTGT TCTCCTGAGC CTTCAGGAGC CTGCACCAGT CCTGCCTGTC CTTCTACTCA GCTGTTACCC ACTCTGGGAC CAGCAGTCTT TCTGATAACT GGGAGAGGGC AGTAAGGAGG ACTTCCTGGA GGGGGTGACT GTCCAGAGCC TGGAACTGTG CCCACACCAG AAGCCATCAG CAGCAAGGAC 359 368 377 386 395 404 ACC ATG CGG CTT CCG GGT GCG ATG CCA GCT CTG GCC CTC AAA GGC GAG CTG CTG H R L P G A H P A L A L K G E L L TTG CTG TCT-CTC CTG TTA CTT CTG GAA CCA CAG ATC TCT CAG GGC CTG GTC L L L L L E P Q I S Q G L V V ACA CCC CCG GGG CCA GAG CTT GTC CTC AAT GTC TCC AGC ACC TTC GTT CTG ACC
T P P G P E L V L N V S S T F V L T GAA ATG GCC AAG GCC CAG GAT GGC ACC TTC TCC AGC GTG CTC ACA CTG ACC AAC E M A K A Q D G T F S S V L T L T N 629 638 647 656 665 674

CTC ACT GGG CTA GAC ACG GGA GAA TAC TTT TGC ACC CAC AAT GAC TCC CGT GGA

L T G L D T G E Y F C T H N D S R G CTG GAG ACC GAT GAG CGG AAA CGG CTC TAC ATC TTT GTG CCA GAT CCC ACC GTG
L E T D E R K R L Y I F V P D P T V 791 800 809 818 827 836

5AG ATC ACC ATT CCA TGC CGA GTA ACA GAC CCA CAG CTG GTG GTG ACA CTG CAC
E I T I P C R V T D P Q L V V T L H 845 854 863 872 881 890

3AG AAG AAA GGG GAC GTT GCA CTG CCT GTC CCC TAT GAT CAC CAA CGT GGC TTT

E K K G D V A L P V P Y D H Q R G F 908 917 926 935 944

FCT GGT ATC TTT GAG GAC AGA AGC TAC ATC TGC AAA ACC ACC ATT GGG GAC AGG

G I F E D R S Y I C K T T I G D R

GAG GTG GAT TCT GAT GCC TAC TAT GTC TAC AGA CTC CAG GTG TCA TCC ATC AAC 1007 1016 1025 1034 1043 1052 GTC TCT GTG AAC GCA GTG CAG ACT GTG GTC CGC CAG GGT GAG AAC ATC ACC CTC V S V N A V Q T V V R O G E N I T L ATG TGC ATT GTG ATC GGG AAT GAG GTG GTC AAC TTC GAG TGG ACA TAC CCC CGC M C I V I G N E V V N F E W T Y P R 251 AAA GAA AGT GGG CGG CTG GTG GAG CCG GTG ACT GAC TTC CTC TTG GAT ATG CCT 1169 1178 1187 1196 1205 1214

TAC CAC ATC CGC TCC ATC CTG CAC ATC CCC AGT GCC GAG TTA GAA GAC TCG GGG
Y H I R S I L H I P S A E L E D S G ACC TAC ACC TGC AAT GTG ACG GAG AGT GTG AAT GAC CAT CAG GAT GAA AAG GCC T Y T C N V T E S V N D H Q D E K A ATC AAC ACC GTG GTT GAG AGC GGC TAC GTG CGG CTC CTG GGA GAG GTG GGC 1349 1358 ACA CTA CAA TTT GCT GAG CTG CAT CGG AGC CGG ACA CTG CAG GTA GTG TTC GAG T L Q F A E L H R S R T L Q V V F E GCC TAC CCA CCG CCC ACT GTC CTG TGG TTC AAA GAC AAC CGC ACC CTG GGC GAC A Y P P P T V L W F K D N R T L G D 1439 1448 1457 1466 1475 1484
TCC AGC GCT GGC GAA ATC GCC CTG TCC ACG CGC AAC GTG TCG GAG ACC CGG TAT
S S A G E I A L S T R N V S E T R Y GTG TCA GAG CTG ACA CTG GTT CGC GTG AAG GTG GCA GAG GCT GGC CAC TAC ACC V S E L T L V R V K V A E A G H Y T 1547 1556 1565 1574 1583 1592 ATG CGG GCC TTC CAT GAG GAT GCT GAG GTC CAG CTC TCC TTC CAG CTA CAG ATC AAT GTC CCT GTC CGA GTG CTG GAG CTA AGT GAG AGC CAC CCT GAC AGT GGG GAA
N V P V R V L E L S E S H P D S G E CAG ACA GTC CGC TGT CGT GGC CGG GGC ATG CCC CAG CCG AAC ATC ATC TGG TCT 1709 1718 1727 1736 1745 1754

GCC TGC AGA GAC CTC AAA AGG TGT CCA CGT GAG CTG CCG CCC ACG CTG CGG
A C R D L K R C P R E L P P T L L G

医格兰克氏试验检尿病

1763 1772 1781 1790 1799 1808
AAC AGT TCC GAA GAG GAG AGC CAG CTG GAG ACT AAC GTG ACG TAC TGG GAG GAG
N S S E E E S Q L E T N V T Y W E E GAG CAG GAG TTT GAG GTG GTG AGC ACA CTG CGT CTG CAG CAC GTG GAT CGG CCA E O E F E V V S T L R L Q H V D R P 1871 1880 1889 1898 1907 1916
CTG TCG GTG CGC TGC ACG CTG CGC AAC GCT GTG GGC CAG GAC ACG CAG GAG GTC
L S V R C T L R N A V G Q D T Q E V 1925 1934 1943 1952 1961 1970
ATC GTG GTG CCA CAC TCC TTG CCC TTT AAG GTG GTG GTG ATC TCA GCC ATC CTG
I V V P H S L P F K V V V I S A I L 2033 2042 2051 2060 2069 2078

AAG AAG CCA CGT TAC GAG ATC CGA TGG AAG GTG ATT GAG TCT GTG AGC TCT GAC

K K P R Y E I R W K V I E S V S S D 2087 2096 2105 2114 2123 2132 3GC CAT GAG TAC ATC TAC GTG GAC CCC ATG CAG CTG CCC TAT GAC TCC ACG TGG 3 H E Y I Y V D P M Q L P Y D S T W TAG CTG CCG CGG GAC CAG CTT GTG CTG GGA CGC ACC CTC GGC TCT GGG GCC TTT E L P R D Q L V L G R T L G S G A F 3GG CAG GTG GAG GCC ACG GCT CAT GGC CTG AGC CAT TCT CAG GCC ACG ATG 629 2249 2258 2267 2276 2285 2294

NAA GTG GCC GTC AAG ATG CTT AAA TCC ACA GCC CGC AGC AGT GAG AAG CAA GCC

K V A V K M L K S T A R S S E K Q A TTT ATG TCG GAG CTG AAG ATC ATG AGT CAC CTT GGG CCC CAC CTG AAC GTG GTC 2366 LAC CTG TTG GGG GCC TGC ACC AAA GGA GGA CCC ATC TAT ATC ATC ACT GAG TAC 2429 THE CHE TAC GGA GAC CTG GTG GAC TAC CTG CAC CGC AAC AAA CAC ACC TTC CTG TAG CAC CAC TCC GAC AAG CGC CGC CCC AGC GCG GAG CTC TAC AGC AAT GCT H H H S D K R R P P S A E L Y S N A 2519 2528 2537 2546 2555 2564 TG CCC GTT GGG CTC CCC CTG CCC AGC CAT GTG TCC TTG ACC GGG GAG AGC GAC P V G L P L P S H V S L T G E S D

2582 GGT GGC TAC ATG GAC ATG AGC AAG GAC GAG TCG GTG GAC TAT GTG CCC ATG CTG G G Y M D M S K D E S V D Y V P M L 2645 2654 GAC ATG AAA GGA GAC GTC AAA TAT GCA GAC ATC GAG TCC TCC AAC TAC ATG GCC 2681 2690 2699 2708 2717 2726
CCT TAC GAT AAC TAC GTT CCC TCT GCC CCT GAG AGG ACC TGC CGA GCA ACT TTG
P Y D N Y V P S A P E R T C R A T L ATC AAC GAG TCT CCA GTG CTA AGC TAC ATG GAC CTC GTG GGC TTC AGC TAC CAG I N E S P V L S Y M D L V G F S Y Q 2816 GTG GCC AAT GGC ATG GAG TTT CTG GCC TCC AAG AAC TGC GTC CAC AGA GAC CTG V A N G M E F L A S K N C V H R D L 2861 2879 GCG GCT AGG AAC GTG CTC ATC TGT GAA GGC AAG CTG GTC AAG ATC TGT GAC TTT A A R N V L I C E G K L V K I C D F GGC CTG GCT CGA GAC ATC ATG CGG GAC TCG AAT TAC ATC TCC AAA GGC AGC ACC G L A R D I M R D S N Y I S K G S T 2951 2960 2969 2978 2987 2996

TTT TTG CCT TTA AAG TGG ATG GCT CCG GAG AGC ATC TTC AAC AGC CTC TAC ACC
F L P L K W M A P E S I F N S L Y T ACC CTG AGC GAC GTG TGG TCC TTC GGG ATC CTG CTC TGG GAG ATC TTC ACC TTG 3059 3068 3077 3086 3095 3104
3GT GGC ACC CCT TAC CCA GAG CTG CCC ATG AAC GAG CAG TTC TAC AAT GCC ATC
3 G T P Y P E L P M N E Q F Y N A I 3131 AAA CGG GGT TAC CGC ATG GCC CAG CCT GCC CAT GCC TCC GAC GAG ATC TAT GAG R R G Y R M A Q P A H A S D E I Y E 3176 3185 3194 ATC ATG CAG AAG TGC TGG GAA GAG AAG TTT GAG ATT CGG CCC CCC TTC TCC CAG 953 3221 3230 3239 3248 3257 5 3266
TG GTG CTG CTC GAG AGA CTG TTG GGC GAA GGT TAC AAA AAG AAG TAC CAG
V L L L E R L L G E G Y K K K Y Q AG GTG GAT GAG GAG TTT CTG AGG AGT GAC CAC CCA GCC ATC CTT CGG TCC CAG 3329 3338 3347 3356 3365 3374 ;cc cgc ttg cct ggg ttc cat ggc ctc cga tct ccc ctg gac acc acc tcc gtc , R L P G F H G L R S P L D T S S V

Special Control of

Figure 1 comming CTC TAT ACT GCC GTG CAG CCC AAT GAG GGT GAC AAC GAC TAT ATC ATC CCC CTG
L Y T A V Q P N E G D N D Y I I P L CCT GAC CCC AAA CCC GAG GTT GCT GAC GAG GGC CCA CTG GAG GGT TCC CCC AGC CTA GCC AGC TCC ACC CTG AAT GAA GTC AAC ACC TCC TCA ACC ATC TCC TGT GAC L A S S T L N E V N T S S T I S C D AGC CCC CTG GAG CCC CAG GAC GAA CCA GAG CCA GAG CCC CAG CTT GAG CTC CAG 3599 3608 3617 3626 3635 3644 GTG GAG CCG GAG CCG GAG CCG GAA CAG TTG CCG GAT TCG GGG TGC CCT GCG CCT 3694 - - 3704 CGG GCG GAA GCA GAG GAT AGC TTC CTG TAG GGGGCTGGCC CCTACCCTGC CCTGCCTGAA - 3814 TTATCAGCTG TCCCCTTCTG GAAGCTTTCT GCTCCTGACG TGTTGTGCCC CAAACCCTGG GGCTGGCTTA GGAGGCAAGA AAACTGCAGG GGCCGTGACC AGCCCTCTGC CTCCAGGGAG GCCAACTGAC TCTGAGCCAG GGTTCCCCCA GGGAACTCAG TTTTCCCATA TGTAAGATGG GAAAGTTAGG CTTGATGACC CAGAATCTAG GATTCTCTCC CTGGCTGACA GGTGGGGAGA CCGAATCCCT CCCTGGGAAG ATTCTTGGAG TTACTGAGGT GGTAAATTAA CTTTTTTCTG TTCAGCCAGC TACCCCTCAA GGAATCATAG CTCTCTCCTC GCACTTTTTA TCCACCCAGG AGCTAGGGAA GAGACCCTAG CCTCCCTGGC TGCTGGCTGA GCTAGGGCCT AGCCTTGAGC AGTGTTGCCT CATCCAGAAG AAAGCCAGTC TCCTCCCTAT GATGCCAGTC CCTGCGTTCC CTGGCCCGAG CTGGTCTGGG GCCATTAGGC AGCCTAATTA ATGCTGGAGG CTGAGCCAAG TACAGGACAC CCCCAGCCTG CAGCCCTTGC CCAGGGCACT TGGAGCACAC GCAGCCATAG CAAGTGCCTG TGTCCCTGTC CTTCAGGCCC

ATCAGTCCTG GGGCTTTTTC TTTATCACCC TCAGTCTTAA TCCATCCACC AGAGTCTAGA AGGCCAGACG

GGCCCCGCAT CTGTGATGAG AATGTAAATG TGCCAGTGTG GAGTGGCCAC GTGTGTGTGC CAGTATATGG

Figure 8

Figure 10

FIGURE !!

:

70	GC(CIC	GGG CAG	GAC ACC	GGA CAC	CCG AGG	TGG Gaa	GCG GTA	GCG CTC	CGC. CCT	AGC:	GGC(366. 100	ACG(CGTT GAG	TGC	iGG(CGλ(SAC(TGC	TG(CC:	AGC(CTGG
139	TG	SAA	λλG	TGA	CAA	TTC	TAG	GAA	λλG.	AGC	TAA	N AG6	cce	SAT	CGG1	rgad	ccs	U X	TT.	rcc	CAG	AGC:	TATG M 1
208	GG(GAC T	TTC S	H	TCC P	GGC A	GTT F	L CCT	GGT V	CIT. L	AGG(G	CTG:	rcr L	rcr L	CACI T	G G	L	S S	L	l I	CCT(C C	Q Q
277															V V								rctg L
336															GTC: S								
415															CTT(GGCC A
484															AGA. E								GCAC H
	I	¥	I.	¥	V	P	D	P	D	٧	λ	F	٧	P	L	G	H	T	D	¥	L	V	
	V	E	D	D	D	S	λ	I	I	P	С	R	T	T	Đ	P	E	T	₽	•	T	L	
	N	s	E	G	V	V	P	A	s	Y	Đ	s	R	Q	G	F	H	G	T	F	T	¥	
	P	¥	I	С	Ε	λ	T	V	K	G	K	K	7	Q	T	I	P	F	N	V	Y	λ	
	K	λ	T	S	E	L	D	L	E	M	E	λ	L	K	T	V	¥	K	, s	G	E	T	
898	GT V	GGT V	T	CTG	TGC A	Y	F	TAA N	N N	TGA E	v V	V V	TGA D	L	TCA Q	ATG W	GAC T	Y	P	G	E E	VC.	rgaaa K

967 GGCAAAGGCATCACAATACTGGAAGAAATCAAAGTCCCATCCAACTAAATTGGTGTACACTTTT G R G I T I L E E I R V P S I R L V Y T L 1036 CCCGAGGCCACGGTGAAAGACAGTGGAGATTACGAATGTGCTGCCCGCCAGGCTACCAGGGA P E A T V R D S G D Y E C A A R Q A T R E 1105 GAAATGAAGAAAGTCACTATTTCTGTCCATGAGAAAGGTTTCATTGAAATCAAACCCACCTT E H K R V T I S V H E R G F I E I R P T F 1174 TTGGAAGCTGTCAACCTGCATGAAGTCAAACATTTTGTTGTAGAGGTGCGGGCCTACCCACC L E A V N L H E V K H F V V E V R A Y P P	T V GGTCAAA V K CAGCCAG S Q
1036 CCCGAGGCCACGGTGAAAGACAGTGGAGATTACGAATGTGCTGCCCGCCAGGCTACCAGGGA PEATVKDSGDYECATACTCCTGCCATGAGAAAGGTTTCATTGAAATCAAACCCACCTT EHKKVTISVHEKGFIE	GGTCAAA V K CAGCCAG S Q
1105 GAAATGAAGAAAGTCACTATTTCTGTCCATGAGAAAGGTTTCATTGAAATCAAACCCACCTT E H K K V T I S V H E K G F I E I K P T F	V K CAGCCAG S Q
1105 GAAATGAAGAAAGTCACTATTTCTGTCCATGAGAAAGGTTTCATTGAAATCAAACCCACCTT E H K K V T I S V H E K G F I E I K P T F	V K CAGCCAG S Q
1105 GAAATGAAGAAAGTCACTATTTCTGTCCATGAGAAAGGTTTCATTGAAATCAAACCCACCTT E H K K V T I S V H E K G F I E I K P T F	V K CAGCCAG S Q
1105 GAAATGAAGAAAGTCACTATTTCTGTCCATGAGAAAGGTTTCATTGAAATCAAACCCACCTT E H K K V T I S V H E K G F I E I K P T F	CAGCCAG S Q
1174 TTGGAAGCTGCAACCTGCATGAAGTCAAACATTTTGTTGTAGAGGTGCCGGCCTACCCACC	S Q
1174 TTGGAAGCTGCAACCTGCATGAAGTCAAACATTTTGTTGTAGAGGTGCCGGCCTACCCACC	S Q
1174 TTGGAAGCTGCAACCTGCATGAAGTCAAACATTTTGTTGTAGAGGTGCCGGCCTACCCACC	S Q
1174 TTGGAAGCTGTCAACCTGCATGAAGTCAAACATTTTGTTNTAGAGGTGCCCCCCTACCCACC	
1174 TTGGAAGCTGTCAACCTGCATGAAGTCAAACATTTTGTTGTAGAGGTGCGGGCCTACCCACC L E A V H L H E V K H P V V E V R A Y P P	
1174 TTGGAAGCTGTCAACCTGCATGAAGTCAAACATTTTGTTGTAGAGGTGCGGGCCTACCCACC L E A V H L H E V K H P V V E V R A Y P P	
LEAVHLHEVKHPVVEVRAYPP	TCCCAGG
	PR
,	
1243 ATATCCTGGCTGAAAAACAATCTGACTCTGATTGAAAATCTCACTGAGATCACCACTGATGT	GGAAAAG
I S W L K N N L T L I E N L T E I T T D V	EK

1312 ATTCAGGAAATAAGGTATCGAAGCAAATTAAAGCTGATCCGTGCTAAGGAAGAAGACAGTGG	CCATTAT
IQEIRYRSKLKLIRAKEEDSG	H Y
1201 1001000010000111001100000000000000	
1381 ACTATTGTAGCTCAAAATGAAGATGCTGTGAAGAGCTATACTTTTGAACTGTTAACTCAAGT	ICCTICA
TIVAQNEDAVKSYTFELLTQV	P S
·	
1450 TCCATTCTGGACTTGGTCGATGATCACCATGGCTCAACTGGGGGACAGACGGTGAGGTGCAC	
2 T T D T U D D U U CACCATTOGGE CACCAGA COG TGAGGTGCAC	AGCTGAA
SILDLVDDHHGSTGGQTVRCT	λE
1519 GGCACGCCGCTTCCTGATATTGAGTGGATGATATGCAAAGATATTAAGAAATGTAATAATGA	
G T P L P D I E W M I C K D I K K C N N E	MCLICC
o	T S
1588 TGGACTATTTTGGCCAACAATGTCTCAAACATCATCACGGAGATCCACTCCCGAGACAGGAG	***

1795 GTCCTGGTGCTGTTGGTGATTGTGATCATCTCACTTATTGTCCTGGTTGTCATFTGGAAACAGAAACCG V L V L L V I V I I S L I V L V V I W K Q K P

m,

stigue Il continue d

1004	V.	OIV	TON	~~1	TCG	CTG	GAG	GGI	CXI	TGX	LATC	רגגי	CXG	ccc	YC (2)	TOO	:202	77.3	171	TIT	TYPE	~~	
	R	Y	E	I	R	받	Ð	v	7	r	- E	7		- 5			***		~~~	177	*^	161	CGAC D
	-	_	_	_	••	••	• • • • • • • • • • • • • • • • • • • •	•	•	_	3	-	3	-	U	•	п	L	1	7	I	V	D

- 1933 CCGATGCAGCTGCCTTATGACTCAAGATGGGAGTTTCCAAGAGATGGACTAGTGCTTGGTCGGGTCTTG
 P M Q L P Y D S R W E F P R D G L V L G R V L
- 2002 GGGTCTGGAGCGTTTGGGAAGGTGGTTGAAGGAACAGCCTATGGATTAAGCCGGTCCCAACCTGTCATG
 G S G A F G K V V E G T A Y G L S R S Q P V H
- 2071 ANAGTTGCAGTGAAGATGCTAAAACCCACGGCCAGATCCAGTGAAAAACAAGCTCTCATGTCTGAACTG
 K V A V K H L K P T A R S S E K Q A L H S E L
- 2140 $\lambda\lambda$ GATAATGACTCACCTGGGGCCACATTTGAACATTGTAAACTTGCTGGGAGCCTGCACCAAGTCAGGC K I H T H L G P H L N I V N L L G λ C T K S G
- 2209 CCCATTTACATCACAGAGTATTGCTTCTATGGAGATTTGGTCAACTATTTGCATAAGAATAGGGAT PIYIIT EYCFYGDLVNYLHKNRD
- 2278 AGCTTCCTGAGCCACCCAGAGAAGCCCAAAGAAAGAGCTGGATATCTTTGGATTGAACCCTGCTGAT
 S F L S H H P E K P K K E L D I F G L N P A D
- 2347 GAAAGCACACGGAGCTATGTTATTTTATCTTTTGAAAACAATGGTGACTACATGGACATGAAGCAGGCT E S T R S Y V I L S F E N N G D Y N D N K Q λ
- 2416 GATACTACACAGTATGTCCCCATGCTAGAAAGGAAAGAGGTTTCTAAATATTCCGACATCCAGAGATCA
 D T T Q Y V P K L E R K E V S K Y S D I Q R S
- 2485 CTCTATGATCGTCCAGCCTCATATAAGAAGAAATCTATGTTAGACTCAGAAGTCAAAAACCTCCTTTCA L Y D R P A S Y K K K S H L D S E V K N L L S
- 2554 GATGATAACTCAGAAGGCCTTACTTTATTGGATTTGTTGAGCTTCACCTATCAAGTTGCCCGAGGAATG D D N S E G L T L L D L L S F T Y Q V A R G H
- 2623 GAGTITITIGGCTTCAAAAATTGTGTCCACCGTGATCTGGCTGCTCGCAACGTCCTCCTGGCACAAGGAEFF FL λ S K N C V H R D L λ λ R N V L L λ Q G
- 2692 $\lambda\lambda\lambda\lambda$ TTGTG λ GATCTGTG λ CTTTGGCCTGGCC λ GAG λ CATC λ TGCATGATCGAACT λ TGTGTCG $\lambda\lambda\lambda$ K I V K I C D F G L λ R D I M H D S N Y V S K
- 2761 GGCAGTACCTTTCTGCCCGTGAAGTGGATGCTCCTGAGAGCATCTTTGACAACCTCTACACCACACTG G S T F L P V K W H A P E S I F D N L Y T T L

- 2830 AGTGATGTCTGGTCTTATGGCATTCTGGTGGGAGATCTTTTCCCTTGGTGGCACCCCTTACCCCGGC S D V W S Y G I L L W E I F S L G G T P Y P G
- 2899 ATGATGGTGGATTCTACTTTCTACAATAAGATCAAGAGTGGGTACCGGATGGCCAAGCCTGACCACGCT H H V D S T F Y N K I K S G Y R H λ K P D H λ
- 2968 ACCAGTGAAGTCTACGAGATCATGGTGAAATGCTGGAACAGTGAGCCGGAGAAGAGACCCTCCTTTTAC T S E V Y E I H V K C W H S E P E K R P S F Y
- 3037 CACCTGAGTGAGATTGTGGAGAATCTGCTGCCTGGACAATATAAAAAGAGTTATGAAAAAATTCACCTG H L S E I V E N L L P G Q Y K K S Y E K I H L
- 3106 GACTTCCTGAAGAGTGACCATCCTGCTGTGGCACGCATGCGTGTGGACTCAGACAATGCATACATTGGT D F L K S D H P A V A R N R V D S D N A Y I G
- 3175 GTCACCTACAAAAACGAGGAAGACAAGCTGAAGGACTGGGAGGGTGGTCTGGATGAGCAGAGACTGAGC V T Y K N E E D K L K D W E G G L D E Q R L S
- 3244 GCTGACAGTGGCTACATCATTCCTCTGCCTGACATTGACCCTGTCCCTGAGGAGGACGAGGACCTGGGCAAG ADSGYIIPLPDIDPVPEEEDLGK
- 3313 AGGAACAGACTCGCAGACCTCTGAAGAGAGTGCCATTGAGACGGGTTCCAGCAGTTCCACCTTC R N R H S S Q T S E E S A I E T G S S S T F
- 3382 ATCAAGAGAGGACGAGACCATTGAAGACATCGACATGATGGACGACATCGGCATAGACTCTTCAGAC I K R E D E T I E D I D M M D D I G I D S S D
- 1089
- 3520 ATCCCGTTCAGAAAACCACTTTATTGCAATGCGGAGGTTGAGAGGAGGACTTGGTTGATGTTTAAAGAG

- 3727 AGGGAATAATAGGCCACAGAAGGTGAACTTTGTGCTTCAAGGACATTGGTGAGAGTCCAACAGACACAA
- 3796 TITATACTGCGACAGAACTTCAGCATTGTAATTATGTAAATAACTCTAACCAAGGCTGTGTTTAGATTG
- 3934 ATGTAGCTGCTGTTGAACTTTTTAAAGAAGTGCATGAAAAACCATTTTTGAACCTTAAAAGGTACTGGT
- 4003 ACTATAGCATTTTGCTATCTTTTTTAGTGTTAAAGAATAAAGAATAATAAG

FIGURE 12