MRNet for Knee Diagnosis

Introduction

Magnetic resonance imaging (MRI) is the most prefered used method by clinicians to diagnose knee injuries but it takes long time to diagnose them and is subject to error so Deep learning methods are developed to help in the interpretation of the medical images . one of these methods is the MRNet model which cares about detecting general abnormalities and special abnormalities like anterior cruciate ligament (ACL) tears and meniscal tears.

Dataset

We have 1250 MRI exams in which 1130 exams for training and 120 for validation so we classified them as following:

- Training

 90% of training data (1017 exams)
- → Validation

 10% of training data (113 exams)
- → Test

 whole Validation data (120 exams)

Exams setup

Each MRI exam consists of S slices each one is of size (256 X 256 X 3). Exams of patients are passed through three different series (Axial, Sagittal and Coronal) to check the probability of detecting the anomaly (abnormal, ACL and Meniscal) from each series.

Model

It mainly consists of three parts:

→ Feature extractor

For training, it takes the first slice from a certain series to specify the features of each anomaly according to a specific series. So, we have 9 total.

Classifier

To detect the probability of each anomaly according to its series. Also, 9 total.

→ Regressor

It finds the probability of detecting the anomaly by taking the predictions of three classifiers for the same anomaly from the three different series. 3 total.

_

Feature extractors models

• We used three different CNN models for training the feature extractors :

VGG

RESNet

Inception V3

VGG

 It is a simple neural network architecture of 16 layers with simple hyperparameters. All conv layers are 3X3 filters and same padding. for all max pooling layers we used 2 X 2 filters with stride of 2

Training Extractors

By using low learning rate (10^-6) but the loss decayed slowly.

Using regularization term = 0.01 but it increases the validation loss

It is the final model for extractor with learning rate (10^-4) and use some dropout layers

Training Classifiers

Using many neurons in dense layers (4096)

Using less neurons in dense layers with high learning rate (0.01)

It is the final model for classifier with learning rate (10^-4) and use (1024 neurons in first dense layer and 512 in the second one).

Training Regressors

Regressor 1

Using low learning rate (10^-4)

Regressor 2

It is the executed model for regressor by Using higher learning rate (10^-2)

RESNet

 It introduces the idea of training a very deep neural networks using the residual blocks that allows us to take the activation from a layer and feed it to a further layer in the network.

Idea

- When the problem is more complex we need more complex network to solve
- deep networks suffer from overfitting because it may get harder to learn anything in some layers
- In this situation the residual blocks allows the layer to be skipped by feeding the output of the previous layer instead of overfitting

This transforms the regular network to this new shape with the skip connections

Residual blocks

- The skipping operation is implemented via adding the i/p of the block to the o/p of the same block before performing the activation
- If the dimensions are compatible we will add them, if not we will need to pass the i/p via conv layer to make them add compatible
- That's why we have 2 types of block identical,conv blocks

Training Extractors

First attempts were too bad without any modifications

Adjusting the params and the dense layer it was better but seems to over fit

Adding learning rate scheduler call-back to start with 0.01 then 0.001 then if we continue it will be 0.0001

And adding a dropout layer

Now adding the early stop call-back

Training Classifiers

With the classifier the same params from the extractor wew just fine

Training Regressors

Regressor 1

Using the same previous params

_

Inception V3

Instead of using all filters of the same size for a specific layer, We use different sizes(eg: 3 X 3, 1 X 1, ...) of filters for a layer. It also helps in reducing the computational cost by using 1 X 1 filters.

Training Extractors

Decreasing the learning rate from 10^-3 to 10^-5 we now can see the changing in loss as it's decreasing but before it was approaching straight line.

Training Classifiers

Using learning rate 10^-5 there is a little decreasing in loss but this can be changed by using different learning rate

Training Regressors

Regressor 1

Low Learning rate 10^-5 for abnormal regresor - failed trial

4/4 [=======================] - 0s 2ms/step - loss: 1.0370 - acc: 0.2083

[1.0369518995285034, 0.2083333283662796]

Regressor 2

Abnormal regressor after using learning rate 10^-2

Statistics

Regressors

We judge the model by two methods

- → Loss
- Accuracy

VGG

Abnormal

Loss: 0.5356 Accuracy: 0.7917

VGG

• ACL

Loss: 0.6903 Accuracy: 0.5500

VGG

Meniscal

Loss: 0.6982 Accuracy: 0.5667

RESNet

Abnormal

Loss: 0.5182 Accuracy: 0.7917

RESNet

• ACL

Loss: 0.7051 Accuracy: 0.5500

RESNet

Meniscal

Loss: 0.7024 Accuracy: 0.5667

Inception V3

Abnormal

Loss: 0.5167 Accuracy: 0.7917

Inception V3

• ACL

Loss: 0.7071

Accuracy: 0.5500

Inception V3

Meniscal

Loss: 0.6912 Accuracy: 0.5667

models summary

	Anomaly	Accuracy	Loss
VGG	Abnormal	0.7917	0.5356
	Acl	0.5500	0.6903
	Meniscal	0.5667	0.6982
RESNet	Abnormal	0.7917	0.5182
	Acl	0.5500	0.7051
	Meniscal	0.5667	0.7024
Inception V3	Abnormal	0.7917	0.5167
	Acl	0.5500	0.7071
	Meniscal	0.5667	0.6912

Transfer learning

We trained the three feature extractors (VGG, RESNet and Inception V3) by the models implemented in keras by training them on ImageNet which contains more than 14 million different images and then start training of classifiers and regressors by our Dataset.

Training Classifiers For VGG

Using less neurons in dense layers (128 neurons then 64 neurons with regularization and dropout layers)

Removing regularization and dropout layers and use more neurons in dense layers (1024 neurons then 512)

It is the final model for classifier by using more neurons in dense layers (1024 neurons then 512) and add dropout layers to overcome the overfitting

Training Regressors For VGG

Regressor 1

It is the final model for regressor using the adam optimizer with learning rate = 0.01

Training Classifiers For RESNet

Using less neurons in dense layers (512 neurons then 256 neurons with dropout layers)

Using learning rate = 10^-4 and this test is for Axial ACL classifier not Axial Abnormal like the other ones

It is the final model for the classifier by using learning rate = 10^-5 for adam optimizer with (512 neurons in first dense and 256 in the next dense layer)

Training Regressors For RESNet

Regressor 1

It the final model for regressor using the learning rate = 0.01 by adam optimizer

Training Classifiers For Inception V3

Using less neurons in dense layers (128 neurons then 64 neurons as MRNet paper with regularization and dropout layers)

Removing regularization and dropout layers and use more neurons in dense layers (1024 neurons then 512)

It is the final model for classifier by using more neurons in dense layers (1024 neurons then 512) and add dropout layers to overcome the overfitting

Training Regressors For Inception V3

Regressor 1

It the final model for regressor using the learning rate = 0.01 by adam optimizer

Transfer Learning Statistics

Regressors

We judge the model by two methods

- → Loss
- Accuracy

VGG

Abnormal

Loss: 0.5338 Accuracy: 0.8083

VGG

• ACL

Loss: 0.659 Accuracy: 0.625

VGG

Meniscal

Loss: 0.6374 Accuracy: 0.5917

RESNet

Abnormal

Loss: 0.3940 Accuracy: 0.8333

RESNet

• ACL

Loss: 0.6274 Accuracy: 0.6583

RESNet

Meniscal

Loss: 0.5947 Accuracy: 0.7083

Inception V3

Abnormal

Loss: 0.5504 Accuracy: 0.7917

Inception V3

ACL

Loss: 0.7141 Accuracy: 0.5417

Inception V3

Meniscal

Loss: 0.7000 Accuracy: 0.5667

Transfer learning models summary

	Anomaly	Accuracy	Loss
VGG	Abnormal	0.8083	0.5338
	Acl	0.6250	0.6590
	Meniscal	0.5917	0.6374
RESNet	Abnormal	0.8333	0.3940
	Acl	0.6583	0.6274
	Meniscal	0.7083	0.5947
Inception V3	Abnormal	0.7917	0.5504
	Acl	0.5417	0.7141
	Meniscal	0.5667	0.7000

Contribution

The first paper

" Deep Learning for Musculoskeletal Image Analysis" suggests two approaches

- → Train DenseNet model as feature extractor By transfer learning
- → Use large amount of imaging data (sooo... challenging !!!)

_

DenseNet

• It enhances the RESNet model by connecting output of a layer to all subsequent layers. This architecture helps in improving in the flow of information and gradient in the network.

Training Classifiers For DenseNet

Using less neurons in dense layers (512 neurons then 256 neurons with dropout layers)

Using learning rate = 10^-4 and decay rate = 0.1

Increase learning rate to 0.01

It is the final model for the classifier by using learning rate = 10^-5 for adam optimizer with (512 neurons in first dense and 256 in the next dense layer)

Training Regressors For DenseNet

Regressor 1

It the final model for regressor using the learning rate = 0.01 by adam optimizer

DenseNet Model Statistics

Regressors

We judge the model by two methods

- → Loss
- Accuracy

DenseNet

Abnormal

Loss: 0.4418 Accuracy: 0.8167

DenseNet

• ACL

Loss: 0.6972 Accuracy: 0.5500

DenseNet

Meniscal

Loss: 0.6453 Accuracy: 0.6417

DenseNet model summary

	Accuracy	Loss
Abnormal	0.8167	0.4418
ACL	0.5500	0.6972
Meniscal	0.6417	0.6453

The second paper

Using Deep Learning Algorithms to Automatically Identify the Brain MRI Contrast: Implications for Managing Large Databases

Training Extractors For Contrast

Extractor 1

Without using dropout layer and using adam optimizer there was overfitting problem

Extractor 2

Using dropout layer reduces the overfitting problem also optimizer changed to nadam

Training Classifiers For Contrast

At the first trial we used the same optimizer used in extractor but there was overfitting so we changed the optimizer to adam with learning rate 10^-7 and it was much better

Training Regressors For Contrast

Regressor

At first we used the adam optimizer with learning rate 10^-7 but result was not good so we tried to increase the learning rate and make it 10^-2 and it was much better

Contrast Model Statistics

Regressors

We judge the model by two methods

- → Loss
- Accuracy

Abnormal

Loss: 0.5096 Accuracy: 0.7917

• ACL

Loss: 0.8062 Accuracy: 0.5500

Meniscal

Loss: 0.6925 Accuracy: 0.5667

Contrast model summary

	Accuracy	Loss
Abnormal	0.7917	0.5096
ACL	0.5500	0.8062
Meniscal	0.5667	0.6925