You will be given a list of integers, arr, and a single integer k. You must create an array of length k from elements of arr such that its unfairness is minimized. Call that array subarr. Unfairness of an array is calculated as

$$max(subarr) - min(subarr)$$

Where:

- max denotes the largest integer in **subarr**.
- min denotes the smallest integer in **subarr**.

As an example, consider the array [1,4,7,2] with a k of 2. Pick any two elements, test subarr = [4,7]. unfairness = max(4,7) - min(4,7) = 7 - 4 = 3

Testing for all pairs, the solution [1, 2] provides the minimum unfairness.

Note: Integers in *arr* may not be unique.

Function Description

Complete the maxMin function in the editor below. It must return an integer that denotes the minimum possible value of unfairness.

maxMin has the following parameter(s):

- *k*: an integer, the number of elements in the array to create
- arr: an array of integers .

Input Format

The first line contains an integer n, the number of elements in array arr.

The second line contains an integer k.

Each of the next n lines contains an integer arr[i] where $0 \le i < n$.

Constraints

$$\begin{array}{l} 2 \leq n \leq 10^5 \\ 2 \leq k \leq n \\ 0 \leq arr[i] \leq 10^9 \end{array}$$

Output Format

An integer that denotes the minimum possible value of unfairness.

Sample Input 0

Sample Output 0

20

Explanation 0

Here k=3; selecting the 3 integers 10, 20, 30, unfairness equals

```
\max(10,20,30) - \min(10,20,30) = 30 - 10 = 20
```

Sample Input 1

```
10
4
1
2
3
4
10
20
30
100
200
Sample Output 1
3
Explanation 1
Here \emph{k}=\emph{4}; selecting the \emph{4} integers \emph{1},\emph{2},\emph{3},\emph{4}, unfairness equals
\max(1,2,3,4) - \min(1,2,3,4) = 4 - 1 = 3
Sample Input 2
5
2
1
2
1
2
Sample Output 2
Explanation 2
Here k=2. \mathit{subarr}=[2,2] or \mathit{subarr}=[1,1] give the minimum unfairness of 0.
```