LIMIT 2 CONTINUITY

LECTURE 1: Limit of functions

LECTURE 2: Limit of functions

LECTURE 3: Continuitj

LECTURE 4: Continuit

LECTURE 5: Uhiform Continuits.

Conlinuitz

Definition: - Let $f:D \to R$ be a function, where D: an interval. Let $a \in D$. We say f: is continuous at a' if for every sequence (x_n) in D such that $x_n \to a$ of $n \to \infty$, whe have $f(x_n) \to f(a)$ of $h \to \infty$.

• In other words, f is continuous at 'a' if and only if $\lim_{n\to a} f(n) = f(e)$.

x If there exists a sequence (xn) in D such that an -) a but f(xn) /> f(a) y h-) os, then De Saj fis not continuoy at a. Detition: Let f:D-R be a function. It fis Continuois at each Point of the Set D then le Sat f is Continuoy on D. Example 1: - Let f: R1207 -> R be Letined by $f(n) = \frac{1}{x}'$ det a ∈ R1207. Let (xn) be a sequence in R1203 Such that $3n \rightarrow a + h \rightarrow \infty$.

Since (xn) is arbitrary fis continuous at a! Since a is abbitonoy, fis Continuoy on Ridol. Example 2: Let f:R->R be a tunction defided by f(n) = -1, x 20=1, $\chi \geq 0$. Discuss the Continuity of f. Sol": Cose 1, let a e R be Such that a < 0 = $0 \in (-\infty, 0)$. Jut (Xn) be any sequence in R. S.J. Xn -> a Thu, 3 NEM S.R. Xn + (-00,0) 4 h= N. $\Rightarrow f(x_n) = -1 \quad \forall \quad \lambda \geq \lambda$

 $= \int f(an) - 1 = f(a) + h - 3$ Thy fis Continuoy at a. Cose 2 :- Let a > 0. Let (xn) be a sequence converges de $\alpha \in (0, \infty)$. Therefore, \exists $N \in \mathbb{N}$ s.l. $x_n \in (0, s) + n > N$ $=) f(\pi n) = 1 \quad \forall \quad h \geq N$ $=) f(x_n) - - 1 = f(a) + h - - \infty.$ Thy fis Continuoy at a. Cose 3: Let $\alpha = 0$. Then f(0) = 1Let $2n = -\frac{1}{n}$. Then f(2n) = -1 and $2n \to 0$ Here $2n \to 0$ but $f(2n) \to -1 \neq 1 = f(0)$.

This, I a sequence (nn) in R s.f. xn-20 but $f(xn) + f(0) + h \rightarrow \infty$ Thy f is not continuoy at "0". Example 3: $f: R \rightarrow R$ f(n) = 1, $x \in 9$ $=-1, x \in \mathbb{R}^{3}$ Discuss the continuity of the function f. Sol7:- Cose 1, Let $a \in 9$. Then f(a) = 1Let $\chi_n = a + \frac{\sqrt{2}}{n}$. Then $\chi_n \in \mathbb{R}^n \mathcal{S} \stackrel{2}{\sim} \chi_n \rightarrow a$ Therefore f(xn) = -1 $\forall n$ $f(\chi_n) \longrightarrow -1 + 1 = f(q) \Leftrightarrow h \longrightarrow \infty.$ The, an -a but fran) +> f(a) & h->=

f is not continuoy at 'a'. cose 2:- 21 a $\in \mathbb{R} \setminus 9$. Then f(q) = -12et a = I ao. a, a2 a3 a9 a5 ... collère $a_0 \in \text{NUSO}$ and $a_i \in \{0,1,...,9\}$ $\forall i$ Let $\sigma_n = \pm \alpha_0 \cdot \alpha_1 \alpha_2 \cdot \cdot \cdot \alpha_n$ Then on eg and on -> a g h-> a. Therefore $f(\tau_n) = (-) + f(a) + h - a$ Thy, f is not continuous at "a"

Therefore, f is nowhere continuous on the Jomain R.

Example 4: Let J: R -> R $f(x) = 1, x \in 9$ = x, x FR19. Solution? cose 1 / a + 1 \in g. Then f(q) = 1Let $2n = \alpha + \frac{\sqrt{2}}{n}$. Then $2n \in \mathbb{R}^{n}$ & $2n \to \alpha$ But $f(x_n) = a + \frac{\sqrt{2}}{n} - a + 1 = f(a) + h - a$ Threfore, fis not continuous at 'a'. Cose 2: let $a \in \mathbb{R}^{\sim} S$. Then f(a) = aLet $a = \pm a_0$. $a_1 a_2 a_3 a_9$..., alose $a_0 \in \mathbb{N}(U_1^0)^3$ $\delta_n = \pm a_0$. $a_1 a_2$... a_n Let $\sigma_n = \pm a_0. a_1 a_2 \cdots a_n$ Then $\forall n \in \mathcal{S} \geq \forall n \longrightarrow \alpha$. This implied, $f(\forall n) = 1 \longrightarrow 1 \neq \alpha = f(\alpha)$

Theoryon f is not continuof at a CoSe 3, Let Q = 121 (xn) be an arbitrary sequence such that $an \rightarrow 1$ of $h \rightarrow \infty$. choose $\varepsilon > 0$. Since $x_n \to 1$ & $h \to \infty$, \exists NEM 8.2. 12n-1128 7 h=N. Foo any m > N, If x_m is vational then $f(x_m)=1$, Then 1 f(xm) - 1] = 0 < £ It In is isotational then f(xm) = xm. Then $1 + (x_m) - 1 = (x_m - 1) < 2$ Therefore, 1+(2m)-1/28 + h>N, i.e., f(2m) -> 1=+(1).

f is Continuoy at 1. Theoreford, f is Continuoy only at $\kappa=1$. Example 5: 2et f: (0,1) -> R be a function defided by f(x) = 0 if $x \in (01) \setminus 9$ $=\frac{1}{9} \text{ if } \chi = \frac{P}{9} \in (0,1) \text{ 1}$ college P29 ave Velatilely Primo. Discuss the continuity of the function f. soln'-cose1: Let $V = \frac{r}{q} \in (91) \Omega g$ Then $f(r) = \frac{1}{q} + 0$ Let $x_n = \sigma + \frac{\sqrt{2}}{n} \in \mathbb{R}^{\setminus} \mathcal{G}$ But $x_n \rightarrow x \in (0,1)$

The FNEN S.A. Zn E (O,1) ~ B H N>N Ten $f(xn) = 0 \quad \forall \quad h \ge N$ That $f(xn) \rightarrow 0 + f(v)$ of $h \rightarrow \infty$. Therefore, fix not continued at x = x, $x \in (0,1)$ ng. Cose 2, let $a \in (0,1) \setminus 9$. Then f(a) = 0Let (Kn) be any sequence in (91) such that xn -> a y h-> a. : 2et us choest, E>0. we dein that, I NEM S.F. $|f(x_n)-f(a)| = |f(x_n)| \leq x + x > N.$

The number of hatural numbers in Such that $n \leq \frac{1}{2}$ is fixite.

Thus, the numbers of natural numbers of Natural numbers of Natural numbers of $\frac{1}{h} \ge 2$ is fixite.

Thus, the humber of valional humbers $\frac{m}{n}$, $1 \le m < n$ Such that $\frac{1}{n} \ge E$ is also fixite.

This, we have only fixite numbers of vational numbers $\frac{m}{n}$ in (0,1) such that $f(\frac{m}{n}) = \frac{1}{n} \geq E$. Let these valional numbers are $\sigma_1, \sigma_2, \sigma_3, \cdots, \sigma_k$.

 $\frac{1}{\sigma_5} = \frac{(a-b, a+b)}{\sigma_4} + \frac{(a-b, a+b)}{\sigma_2} + \frac{(a-b, a+b)}{\sigma_3} + \frac{(a-b, a+b)}{\sigma_4} + \frac{(a-b, a+b)}{\sigma_5} + \frac{(a-b, a+b)}{\sigma_$

Therefore, $\sigma_{\hat{e}} \neq (a-5, a+5) \quad \forall \quad \hat{e}=1,2,.../k$. The, if $\sigma = \frac{m}{n} \in (\alpha - \delta, \alpha + \delta)$ then $f(\sigma) = \frac{1}{n} \leq \varepsilon$. Threfore, if $C \in (e-5, e+5)$ then if C is valional Sy $c=\frac{m}{\eta}$ then $f(c)=\frac{1}{\eta} \angle E$ and if C is irrational than f(c) = 0 < E. Since $2n \rightarrow a$ & $n \rightarrow a$, $7 N \in M$ 8.2. $\chi_n \in (\alpha - \delta, \alpha + \delta) \ \forall \ h \geq N$ = +(xn) < ETherefore $|f(x_n) - f(a)| = |f(x_n)| < \varepsilon + h \ge N$. Therefore, $f(nn) \rightarrow f(a)$ of $h \rightarrow \infty$ Since, (x_n) is arbitrary, f is continued at x = a, where $a \in (0,1) \setminus 8$.

Properties: - Let f: [9,6] -> IR be a Continuoy function. (1) If f(a) > 0 then $\exists a \in A > 0 \in A$. $f(a) > 0 \forall$ $x \in [a,a+f).$ (ii) If f(b) >0 then Fa &>0 &A, f(x)>0 +x ∈ (b-6, b] (iii) If f(c) >0 for some c e (9,6) then I a f>0 suh that $f(x) > 0 + x \in (c-s, cts)$. proof of (III): Since $C \in (a,b)$, $J \in M \in M$ 8.8. $(C-\frac{1}{n},C+\frac{1}{n})$ (9b) (9b) (9b)we claim, $JM \geq N \leq N \leq f(x) > 0 \qquad \forall x \in (c-\frac{1}{n}, c+\frac{1}{n})$ If the is no such M then for each n > N, $\exists \ \chi_{\eta} \in \left(\mathcal{C} - \frac{1}{\eta} \right) \mathcal{S} \cdot \mathcal{A} \cdot \mathcal{F} \left(\chi_{\eta} \right) \leq 0.$ Therefore, $\chi_{\eta} \rightarrow C$ & $\eta \rightarrow \delta$ Since f is continuent at c, f(m) -> f(c) of n -> o.

Theoretone $f(c) = \lim_{n \to \infty} f(x_n) \leq 0$ This is a Contoalidion. . Thes, we must have M = M s.l.

f(x) > 0 $+ x \in (C - \frac{1}{M}, C + \frac{1}{M})$.

Theorem: - Let f: D-> R be a function and a ED. Then f is continuous at 'a' if and only is for any 220, Fa S>0 Such that $|n-a| \leq S$ and $x \in D$ implies $|f(x)-f(a)| \leq E$.