Assignment-7 (Papoulis Chapter 8 Example 8.27)

J Sai Sri Hari Vamshi Al21BTECH11014

June 20, 2022

Contents

Question

Solution

Question

Suppose that $f(x, \theta)$ $\theta e^{-\theta x} U(x)$. Then test the likelihood ratio hypothesis

$$H_0: 0 < \theta \leq \theta_0$$
 against $H_1: \theta > \theta_0$

Solution

In this problem, Φ_0 is the segment $0 < \theta \le \theta_0$ of the real line and Φ is the half-line $\theta < 0$. Thus both hypotheses are composite. The likelihood function

$$f(X,\theta) = \theta^n e^{-n\bar{x}\theta} \tag{1}$$

is shown for $\bar{x}>1/\theta_0$ and $\bar{x}<1/\theta_0$. In the half-line $\theta_0>0$ this function is maximum for $\theta=1/\bar{x}$. In the interval $0<\theta\leq\theta_0$ it is maximum for $\theta=1/\bar{x}$ if $\bar{x}>1/\theta_0$ and for $\theta=\theta_0$ if $\bar{x}<1/\theta_0$. Hence

$$\theta_m = \frac{1}{x} \qquad \theta_{m0} = \begin{cases} 1/\bar{x} & \text{for } \bar{x} > 1/\theta_0 \\ \theta_0 & \text{for } \bar{x} < 1/\theta_0 \end{cases} \tag{2}$$

Solution

The likelihood ratio equals

$$\lambda = \begin{cases} 1 & \text{for } \bar{x} > 1/\theta_0 \\ (\bar{x}\theta_0)^n e^{-n\theta_0 \bar{x} + n\theta_0} & \text{for } \bar{x} < 1/\theta_0 \end{cases}$$
 (3)

We reject H_0 if $\lambda < c$ or, equivalently, if $\bar{x} < c_1$, where c_1 equals the α percentile of the random variable \bar{x} .

Solution 0

