Relative Monads

Noah Loutchmia

December 11, 2024

Abstract

The following document is intended as an outline for the formalisation of $Relative\ Monads$ using the proof assistant $Lean\ 4$. Part of this formalisation consists in trying to establish relations between relative monads, monads and Kleisli triples.

Chapter 1

Relative Monads

1.1 Basic Definitions

Definition 1 (Relative Monads). Given two categories \mathcal{C} and \mathcal{D} and a functor $J: \mathcal{C} \to \mathcal{D}$ (root), a relative monad on \mathcal{D} over \mathcal{C} consists in :

- A function $T: \mathcal{C} \to \mathcal{D}$;
- A natural transformation $\eta: J \to T$ (unit);
- For each morphism in \mathcal{D} of the form $f: Ja \to Tb$ (where a and b are objects of \mathcal{C}), a morphism $f^{\dagger}: Ta \to Tb$ (extension /lifting operation);

satisfying the following conditions:

- $\forall a \in obj_{\mathcal{C}}, (f:Ja \rightarrow Ta), f = f^{\dagger} \circ \eta_a \ (\textit{left unitality})$
- $\forall a \in obj_{\mathcal{C}}, (\eta_a)^{\dagger} = \mathbb{1}_{Ta} \ (\textit{right unitality})$
- $\begin{array}{l} \bullet \ \ \, \forall a,b,c \in obj_{\mathcal{C}}, \\ (f:Ja \rightarrow Ta), (g:Jb \rightarrow Tc), \\ g^{\dagger} \circ f^{\dagger} = g^{\dagger} \circ f^{\dagger} \end{array}$

Proposition 2. It follows from the conditions in the definition of a relative monad that:

- T defines a functor;
- η and \cdot^{\dagger} are natural transformations.

Definition 3 (Relative Monads morphisms).

Proposition 4 (Category of Relative monads).

Proof.

1.2 Examples of Relative Monads

T = J

Chapter 2

External presentation of monads - Kleisli Triples

Definition 5 (Kleisli Triples).

Definition 6 (Morphisms of Kleisli triples).

Proposition 7. "Given a category C, the Kleisli triples on C and the morphisms between them form a category."

Proof.

□

Proposition 8. "Given a category C, each Kleisli triple on C corresponds to a relative monad on C over itself."

□
□

Chapter 3

Kleisli triples are equivalent to Monads

Proposition 9.	"Given a category \mathcal{C} , Kleisli triples on \mathcal{C} are equivalent to monads on \mathcal{C} ."
Proof.	
Proposition 10 over itself."	"Given a category \mathcal{C} , each monad on \mathcal{C} corresponds to a relative monad on \mathcal{C}
$D_{mon}f$	