

Predictive Coding

Computational Psychiatry Course Zurich 14.09.2022

Alex Hess
Translational Neuromodeling Unit
University of Zurich & ETH Zurich

"Bayesian brain" hypothesis

x: state of the world

y: sensory input

m: current model

Bayes' rule

$$p(x|y,m) = \frac{p(y|x,m)p(x|m)}{p(y|m)}$$

"Bayesian brain" hypothesis

x: state of the worldy: sensory inputm: current model

"Bayesian brain" hypothesis

x: state of the worldy: sensory input

m: current model

Bayes' rule

$$\frac{p(x|y,m)}{p(x|y,m)} = \frac{\frac{p(y|x,m)p(x|m)}{p(y|m)}}{\frac{p(y|m)}{p(y|m)}} = \frac{p(y|x,m)p(x|m)}{\int p(y|x,m)p(x|m)dx}$$

model evidence

(Bayesian) Predictive Coding

what?

how?

implementation?

Bayes' rule
$$p(x|y,m) = \frac{p(y|x,m)p(x|m)}{p(y|m)}$$

$$= \frac{p(y|x,m)p(x|m)}{\int p(y|x,m)p(x|m)dx}$$

Figure adapted from a slide by Klaas Enno Stephan

(Bayesian) Predictive Coding

Marr's levels of analysis

computational

(approximate)
Bayesian inference

algorithmic

predictive coding

implementational

[predictive coding in the brain]

Bayes' rule
$$p(x|y,m) = \frac{p(y|x,m)p(x|m)}{p(y|m)}$$

$$= \frac{p(y|x,m)p(x|m)}{\int p(y|x,m)p(x|m)dx}$$

Figure adapted from a slide by Klaas Enno Stephan

PC in engineering and information theory

Minimum redundancy principle

(Barlow, 1961)

- Efficient way to transmit a signal s(n):
 - Model ⇒ prediction p(n) Residual error e(n)reconstruct signal s(n)

$$e(n) = s(n) - p(n)$$

Adapted from O'Shaughnessy 1988, IEEE Potentials

PC in engineering and information theory

Minimum redundancy principle

(Barlow, 1961)

- Efficient way to transmit a signal s(n):
 - Model ⇒ prediction p(n) Residual error e(n)reconstruct signal s(n)
- Decorrelation

$$e(n) = s(n) - p(n)$$

Adapted from O'Shaughnessy 1988, IEEE Potentials

Predictive Coding as neuroscientific theory

Intellectual antecedents

 Redundancy reduction

Neuroanatomy

Cerebral Cortex

Budday et al. 2014, Sci Rep Barrett 2017

10

Cell layers of the neocortex

adapted from Barrett 2017

Hierarchical Relationships in the Visual Cortex

Area A

Visual cortex of macaque monkeys

(Felleman & Van Essen 1991, Cereb Cortex)

- Reciprocity of cortico-cortical connections
- Laminar patterns
 - Forward connections (ascending pathways):
 - Origin: superficial pyramidal cells (layers II & III)
 - Termination: granular layer (IV)
 - Backward connections (descending pathways):
 - Origin: deep pyramidal cells (layer V)
 - Termination: agranular layers (mainly I & VI)

Hierarchical Relationships in the Visual Cortex

Visual cortex of macaque monkeys

(Felleman & Van Essen 1991, Cereb Cortex)

- Reciprocity of cortico-cortical connections
- Laminar patterns
 - Forward connections (ascending pathways):
 - Origin: superficial pyramidal cells (layers II & III)
 - Termination: granular layer (IV)
 - Backward connections (descending pathways):
 - Origin: deep pyramidal cells (layer V)
 - Termination: agranular layers (mainly I & VI)
- Identify hierarchy based on laminar patterns of cortical connectivity (forward & backward connections)
- Hierarchical relationships also...
 - In other regions (somatosensory, auditory cortex, etc.)
 - In other species (other primates, cats, rats, etc.)

HC

Felleman & Van Essen 1991, Cereb Cortex

Predictive Coding as neuroscientific theory

On the computational architecture of the neocortex

(D. Mumford 1992, Biol Cybern)

Intellectual antecedents

 Redundancy reduction

Neuroanatomy

 Hierarchical organization of cortex

Predictive coding in the visual cortex (Rao & Ballard 1999, *Nat Neurosci*)

Hierarchical PC model

- Hierarchical network
 - Feedback connections: predictions
 - Feedforward connections: error signal
 - Predictive estimator: use error signal to generate next prediction

$$I = f(Ur) + n$$
 $\mathbf{r} = r^{td} + n^{td}$
= $f(U^h r^h) + n^{td}$

I: inputs U^h : higher-level weights

 $m{r}$: causes $m{r}^h$: higher-level causes

U: weights n^{td} : noise

f: activation function

n: noise

- Hierarchical network
 - Feedback connections: predictions
 - Feedforward connections: error signal
 - Predictive estimator: use error signal to generate next prediction
- Train network on patches of static natural images
 - Learned synaptic weights resemble cell-like receptive fields
 - Receptive field sizes: lower vs. upper levels

Rao & Ballard 1999, Nat Neurosci

- Hierarchical network
 - Feedback connections: predictions
 - Feedforward connections: error signal
 - Predictive estimator: use error signal to generate next prediction
- Train network on patches of static natural images
 - Learned synaptic weights resemble cell-like receptive fields
 - Receptive field sizes: lower vs. upper levels
- Functional explanation for extra-classical receptive field effects:
 - Endstopping: error-detecting model neurons

Rao & Ballard 1999. Nat Neurosci

17

- Assume probabilistic hierarchical generative model for images
 - Cost function: negative log joint (⇒ MAP estimation)

$$\frac{1}{\sigma^2} (\boldsymbol{I} - f(U\boldsymbol{r}))^T (\boldsymbol{I} - f(U\boldsymbol{r})) + \frac{1}{\sigma_{td}^2} (\boldsymbol{r} - \boldsymbol{r}^{td})^T (\boldsymbol{r} - \boldsymbol{r}^{td})$$

$$E = -\log p(\boldsymbol{I}|\boldsymbol{r}, U) - \log p(\boldsymbol{r}) - \log p(U)$$

$$= -\log(p(\boldsymbol{I}|\boldsymbol{r}, U) p(\boldsymbol{r}) p(U))$$

posterior ∝ likelihood * prior

$$p(x|y,m) \propto p(y|x,m)p(x|m)$$

$$I = f(Ur) + n$$
 $\mathbf{r} = r^{td} + n^{td}$ $\Rightarrow p(I|r, U)$

I: inputs

r: causes

U: weights

f: activation function

n: noise

- Assume probabilistic hierarchical generative model for images
 - Cost function: negative log joint (⇒ MAP estimation)
- Network dynamics & synaptic learning rules
 - Error signal weighted by inverse variances (precisions)

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} = -\frac{k_1}{2} \frac{\partial E}{\partial \boldsymbol{r}}$$

$$= \frac{k_1}{\sigma^2} U^T \frac{\partial f}{\partial U \boldsymbol{r}}^T \left(\boldsymbol{I} - f(U \boldsymbol{r}) \right) + \frac{k_1}{\sigma_{td}^2} (\boldsymbol{r}^{td} - \boldsymbol{r}) - k_1 \alpha \boldsymbol{r}$$

$$\frac{\mathrm{d}\mathbf{U}}{\mathrm{d}t} = -\frac{k_2}{2} \frac{\partial E}{\partial U} = \frac{k_2}{\sigma^2} \frac{\partial f}{\partial U \mathbf{r}}^T \left(\mathbf{I} - f(U \mathbf{r}) \right) \mathbf{r}^T - \frac{k_2}{2} \lambda U$$

$$I = f(Ur) + n \qquad \qquad r = r^{td} + n^{td}$$

I: inputs

r: causes

U: weights

f: activation function

n: noise

Rao & Ballard 1999. Nat Neurosci

20

- Assume probabilistic hierarchical generative model for images
 - Cost function: negative log joint (⇒ MAP estimation)
- Network dynamics & synaptic learning rules
 - Error signal weighted by inverse variances (precisions)

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} = -\frac{k_1}{2} \frac{\partial E}{\partial \boldsymbol{r}}$$

$$= \frac{k_1}{\sigma^2} U^T \frac{\partial f}{\partial U \boldsymbol{r}}^T (\boldsymbol{I} - f(U \boldsymbol{r})) + \frac{k_1}{\sigma_{td}^2} (\boldsymbol{r}^{td} - \boldsymbol{r}) - k_1 \alpha \boldsymbol{r}$$

$$\frac{\mathrm{d}U}{\mathrm{d}t} = -\frac{k_2}{2} \frac{\partial E}{\partial U} = \frac{k_2}{\sigma^2} \frac{\partial f}{\partial U r}^T \left(I - f(U r) \right) r^T - \frac{k_2}{2} \lambda U$$

$$I = f(Ur) + n \qquad \qquad \mathbf{r} = r^{td} + n^{td}$$

I: inputs

r: causes

U: weights

f: activation function

n: noise

Rao & Ballard 1999. Nat Neurosci

21

- · Assume probabilistic hierarchical generative model for images
 - Cost function: negative log joint (⇒ MAP estimation)
- Network dynamics & synaptic learning rules
 - Error signal weighted by inverse variances (precisions)
 - Single cost function accounts for inference (updating r) & learning (updating U)

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} = -\frac{k_1}{2} \frac{\partial E}{\partial \boldsymbol{r}}$$

$$= \frac{k_1}{\sigma^2} U^T \frac{\partial f}{\partial U \boldsymbol{r}}^T \left(\boldsymbol{I} - f(U \boldsymbol{r}) \right) + \frac{k_1}{\sigma_{td}^2} (\boldsymbol{r}^{td} - \boldsymbol{r}) - k_1 \alpha \boldsymbol{r}$$

$$\frac{\mathrm{d}U}{\mathrm{d}t} = -\frac{k_2}{2} \frac{\partial E}{\partial U} = \frac{k_2}{\sigma^2} \frac{\partial f}{\partial U r}^T \left(I - f(U r) \right) r^T - \frac{k_2}{2} \lambda U$$

$$I = f(Ur) + n$$
 $r = r^{td} + n^{td}$

I: inputs

r: causes

U: weights

f: activation function

n: noise

- Assume probabilistic hierarchical generative model for images
 - Cost function: negative log joint (⇒ MAP estimation)
- Network dynamics & synaptic learning rules
 - Error signal weighted by inverse variances (precisions)
 - Single cost function accounts for inference (updating r) & learning (updating U)
 - Separation of timescales

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} = -\frac{k_1}{2} \frac{\partial E}{\partial \boldsymbol{r}}$$

$$= \frac{k_1}{\sigma^2} U^T \frac{\partial f}{\partial U \boldsymbol{r}}^T \left(\boldsymbol{I} - f(U \boldsymbol{r}) \right) + \frac{k_1}{\sigma_{td}^2} (\boldsymbol{r}^{td} - \boldsymbol{r}) - k_1 \alpha \boldsymbol{r}$$

$$\frac{\mathrm{d}\mathbf{U}}{\mathrm{d}t} = -\frac{k_2}{2} \frac{\partial E}{\partial U} = \frac{k_2}{\sigma^2} \frac{\partial f}{\partial U \mathbf{r}}^T \left(\mathbf{I} - f(U \mathbf{r}) \right) \mathbf{r}^T - \frac{k_2}{2} \lambda U$$

$$I = f(Ur) + n$$
 $r = r^{td} + n^{td}$

I: inputs

r: causes

U: weights

f: activation function

n: noise

Predictive Coding as neuroscientific theory

On the computational architecture of the neocortex (D. Mumford 1992, *Biol Cybern*)

 $s(n) \longrightarrow p(n) \longrightarrow e(n)$ | model |

Intellectual antecedents

 Redundancy reduction

Neuroanatomy

 Hierarchical organization of cortex

Predictive coding in the visual cortex (Rao & Ballard 1999, *Nat Neurosci*)

Hierarchical PC model

- Visual cortex
- · Point estimate of posterior
- · Static representations

Learning and Inference in the Brain (Friston 2003, Neural Netw)

A theory of cortical responses (Friston 2005, *Phil Trans Royal Soc B*)

Hierarchical Models in the Brain (Friston 2008, *PLoS Comput Biol*)

PC as variational inference

Recap: Methods for Bayesian inference Generative Models lecture (Day 2, Klaas Enno Stephan)

Recap: Variational inference VB & MCMC lecture (Day 2, Lionel Rigoux)

$$p(x|y,m) = \frac{p(y|x,m)p(x|m)}{p(y|m)} \qquad p(y|m) = \int p(y|x,m)p(x|m)dx$$

Approximate posterior $q(x|y;\phi)$ e.g. for q Gaussian, $\phi = \{\mu, \Sigma\}$

Find best proxy $q^*(x|y;\phi) = argmin_{\phi} D_{KL}[q(x|y;\phi)||p(x|y,m)]$

Figure adapted from slide by Yu Yao

Recap: Variational inference VB & MCMC lecture (Day 2, Lionel Rigoux)

$$p(x|y,m) = \frac{p(y|x,m)p(x|m)}{p(y|m)} \qquad p(y|m) = \int p(y|x,m)p(x|m)dx$$

Approximate posterior $q(x|y;\phi)$ e.g. for q Gaussian, $\phi = \{\mu, \Sigma\}$

Find best proxy $q^*(x|y;\phi) = argmin_{\phi}D_{KL}[q(x|y;\phi)||p(x|y,m)]$

Figure adapted from slide by Yu Yao

$$D_{KL}[q(x|y;\phi)||p(x|y,m)] = \ln p(y|m) - \int q(x|y;\phi) \frac{p(x,y|m)}{q(x|y;\phi)} dx$$
$$= \ln p(y|m) - F$$

 $\ln p(y|m) = D_{KL}[q(x|y;\phi)||p(x|y,m)] + F(q(x|y;\phi),p(x,y|m))$

Stephan et al. 2017 Neurolmage

Predictive coding as variational inference

The free energy formulation of predictive coding

(Friston 2003, 2005, 2008)

- Minimal neuronal model
 - PE units (SG layers)at each level of
 - Prediction units (IG layers)
 the hierarchy
 - ⇒ canonical microcircuit model (Bastos et al. 2012, Neuron)
- Model dynamics
 - Differential equations
 - Gradient descent on free energy F
- Importance of precision
- Extension to ...
 - Temporal sequences (dynamic environment) \Rightarrow minimize free action \overline{F}
 - Action (active inference)
 (Friston et al. 2010, Biol Cybern; Adams et al. 2013, Brain Struct Funct)

Active Inference lecture

(Day 3, Thomas Parr)

Friston 2008, PLoS Comput Biol

$$F = \int q(x|y;\phi) \frac{p(x,y|m)}{q(x|y;\phi)} dx$$

$$\bar{F} = \int F_t dt$$

Predictive Coding as neuroscientific theory

Non-Bayesian

On the computational architecture of the neocortex (D. Mumford 1992, *Biol Cybern*)

Intellectual antecedents

 Redundancy reduction

Neuroanatomy

 Hierarchical organization of cortex

PC as approximate Bayesian inference

Predictive coding in the visual cortex (Rao & Ballard 1999, *Nat Neurosci*)

Learning and Inference in the Brain (Friston 2003, Neural Netw)

A theory of cortical responses (Friston 2005, *Phil Trans Royal Soc B*)

Hierarchical Models in the Brain (Friston 2008, *PLoS Comput Biol*)

Hierarchical PC model

- Visual cortex
- · Point estimate of posterior
- Static representations

PC as variational inference

- Cortical function
- Estimate full posterior
- Dynamic representations

Predictive coding in computational psychiatry

Predictive coding in computational psychiatry

The role of precision

- Finding the right balance
- Disorders of precision?

From exteroception...

Schizophrenia lecture

(Day 1, Jakob Siemerkus)

Schizophrenia/Psychosis

(Stephan et al. 2006, *Biol Psychiatry*; Corlett et al. 2011, *NPP*; Adams et al. 2013, *Front Psychiatry*; Friston et al. 2016, *Schizophr Res*; Sterzer et al. 2018, *Biol Psychiatry*)

Autism lecture

(Day 1, Helene Haker Rössler)

Autism Spectrum Disorder

(Pellicano & Burr 2012, TiCS; Van de Cruys et al. 2014, Psychol Rev; Lawson et al. 2014, Front Hum Neurosci; Haker et al. 2016, Front Psychiatry; Lawson et al. 2017, Nat Neurosci)

Figure adapted from a slide by Klaas Enno Stephan

Predictive coding in computational psychiatry

The role of precision

- Finding the right balance
- Disorders of precision?

Schizophrenia lecture

(Day 1, Jakob Siemerkus)

Schizophrenia/Psychosis

(Stephan et al. 2006, Biol Psychiatry; Corlett et al. 2011, NPP; Adams et al. 2013, Front Psychiatry; Friston et al. 2016, Schizophr Res; Sterzer et al. 2018, Biol Psychiatry)

Autism lecture

(Day 1, Helene Haker Rössler)

Autism Spectrum Disorder

(Pellicano & Burr 2012, TiCS; Van de Cruys et al. 2014, Psychol Rev; Lawson et al. 2014, Front Hum Neurosci; Haker et al. 2016, Front Psychiatry; Lawson et al. 2017, Nat Neurosci)

From exteroception to interoception

- Interoceptive predictive coding (Seth et al. 2012, Front Psychol; Seth 2013, TiCS; Barrett & Simmons 2015, Nature Rev Neurosci;)
- Crucial role in mental health disorders
- Fatique & depression (Stephan et al. 2016, Front Hum Neurosci)

Fatigue lecture

(Day 1, Inês Pereira)

Figure adapted from a slide by Klaas Enno Stephan

33

Hierarchical Bayesian Inference in Computational Psychiatry

(Petzschner et al. 2017, Biol Psychiatry)

- General framework to model adaptive behaviour
- Possible primary disruption at:
 - Sensory inputs (sensations)
 - Inference (perception)
 - Forecasting
 - Control (action)
 - Metacognition
- At any of the above, possible disturbance of:
 - predictions
 - prediction error computation
 - Estimation of precision
- ⇒ guide differential diagnosis

Petzschner et al. 2017, Biol Psychiatry

Hierarchical Bayesian Inference in Computational Psychiatry

(Petzschner et al. 2017, Biol Psychiatry)

Example: Autism Spectrum Disorder

- Patients: excessive processing of irrelevant details
- 2 competing explanations
 - Sensory inputs of overwhelming precision
 - Too imprecise higher-order beliefs
 - ⇒ large PEs during perception
- · Disambiguate 2 hypotheses:
 - Assess individual sensory processing (experiment + model)
 - Detect (sub)groups

Petzschner et al. 2017, Biol Psychiatry

Predictive coding in a nutshell

- Possible way of implementing Hierarchical Bayesian inference in the brain
- Based on
 - Redundancy reduction
 - Hierarchical organization of cortex
- Computational quantities:
 - Each layer makes **predictions** about activity in layer immediately below
 - Predictions are compared with inputs of each layer
 - Prediction errors (PE) signalled upwards
 - Relative influence of PEs and predictions is determined by their relative precision (certainty)
- Goal of the brain:
 - minimize PE at each level of the hierarchy
- Utility of this framework for Computational Psychiatry & Computational Psychosomatics

Adapted from Stephan et al. 2016, Brain

Further reading

REVIEWS

Theoretical & experimental review Millidge et al. 2021, arXiv:2107.12979

Experimental evidence for PC in the brain Walsh et al. 2020, Ann N Y Acad Sci

PC algorithms Spratling et al. 2017, Brain Cogn

TUTORIALS

PC as variational inference Bogacz 2017, J Math Psychol; Buckley 2017, J Math Psychol

OTHER

PC & laminar fMRI Stephan et al. 2019, Neurolmage

PC networks and backpropagation of error algorithm Whittington & Bogacz 2017, Neural Comput, Song et al. 2020, Adv Neural Inf Process Syst

PC, variational autoencoders & normalizing flows Marino 2020, arXiv:2011.07464

Thank you!

Lilian Weber
Matthias Müller-Schrader
Sandra Iglesias
Stefan Frässle
Klaas Enno Stephan

Alex Hess

E-Mail: hess@biomed.ee.ethz.ch

