浙江大学

本科实验报告

 姓名:

 学院:
 生物医学工程与仪器科学学院

 系:
 生物医学工程

 专业:
 生物医学工程

 学号:

 指导教师:
 陈凌翔

2025年4月3日

浙江大学实验报告

课程名称:	生物医学传感与标	<u> </u>	
实验项目名称:	:电容传点	惑器的特性测试及	其应用
指导老师:	陈凌翔		
实验地点:	教 7 西裙楼 - 301	实验日期: 20)25 年 4 月 3 F

一、实验目的和要求

了解差动变面积式电容传感器的原理、特性及应用。

二、实验内容和原理

图 1.1 为差动变面积式电容传感器的实验装置。它由两组上、下层定片和一组固定在振动台上的动片组成,上层定片组与动片组组成电容器,总电容值为 CX1,下层定片组与动片组组成另一个电容器,总电容值为 CX2。当改变振动台上下位置时,动片组跟着改变垂直位置,使动片组与上下两组定片之间的重叠面积相应发生变化,引起上下两组电容器的总电容值 CX1 和 CX2 差动变化。如将 CX1, CX2 接入电容—电压变换电路(电容变换器),则变换电路的输出电压 U 与电容变化有关,即与振动台位移量 Y 有关。

图 1.1 实验装置示意图

图 1.2 为电容变换器电路原理图,电容变换器采用二极管双 T 型交流电桥电路,将两个差动电容器 CX1 和 CX2 电容值的差值转换为电压信号输出,其电容—电压转换特性为:

$U_L \approx E[(R+2R_L)/(R+R_L)^2]RfR_L(C_{X1}-C_{X2})$

式中 f——电容变换器高频方波电源的频率;

E--方波的幅值:

R——内部固定电阻;

RL——负载电阻(可调);

CX1、CX2——差动电容。

图 1.2 电容变换器电路原理图

三、主要仪器设备

电容传感器、电容放大(变换)器、差动变换(放大)器Ⅱ、低通滤波器、 电压表、测微头、示波器、低频振荡器。

差动变换器Ⅱ增益旋钮置于中间, 电压表置于 2V 档, 电容放大器增益最大。

四、操作方法和实验步骤

1. 差动变换器 II 调零,实验按图 1.3 接线。

图 1.3 实验接线参考图

- 2. 电压表选 2V 档,安装测微头与圆盘工作台吸合,转动测微头,调节电容传感器动片的垂直位置,直至电压表读数为零,此时电容传感器的动片位于上层和下层定片的正中间(CX1 = CX2),标记为位移零点。
- 3. 转动测微头,上下位移±2mm,每次 0.1mm,记录测微头读数及电压表读数。 找到位移零点后,可将测微头转到 +2mm 处,从 +2mm 往下到 -2mm 连续测量,保持数据的连贯性,避免回程误差。
- 4. 卸下测微头和电压表,将低频振荡器的输出端与频率表的输入端及振动源相连,如图 1.4,调节低频振荡器的频率和幅度,使圆盘工作台产生适当幅度的振动。用示波器观察低通滤波器的输出电压波形,记录振动频率,并与低频振荡器的频率相比较。

图 5.4 振动接线参考图

五、实验数据记录和处理

Y (mm)	U(mV)	Y (mm)	U(mV)
2	0.82	-0. 1	-0.054
1.9	0. 78	-0.2	-0. 101
1.8	0. 743	-0.3	-0. 159
1. 7	0. 701	-0.4	-0. 203
1.6	0.661	-0.5	-0. 25
1.5	0.621	-0.6	-0. 292
1.4	0. 585	-0.7	-0.341
1.3	0. 547	-0.8	-0.386
1.2	0. 506	-0.9	-0. 434
1. 1	0. 465	-1	-0. 483
1	0. 422	-1.1	-0. 538
0.9	0. 383	-1.2	-0. 589
0.8	0. 335	-1.3	-0.649
0. 7	0. 297	-1.4	-0.692
0.6	0. 255	-1.5	-0.74
0. 5	0. 203	-1.6	-0. 777
0.4	0. 168	-1.7	-0.84
0.3	0. 127	-1.8	-0. 902
0. 2	0. 085	-1.9	-0. 953
0. 1	0.038	-2	-0. 997
0	0		

六、实验结果与分析

根据线性拟合公式 U=0.45485Y+0.0013,灵敏度 S 计算为直线斜率 $0.45485\ mV/mm$ 。线性度根据最大偏差与满量程输出的百分比计算:

线性度 L = \triangle Umax/U_{FS} × 100% = 2.74%

由图可看出,示波器观测显示低通滤波器输出频率与低频振荡器频率误差小于 0.5%,表明电容变换器电路具有良好的频率响应特性,即验证了系统设计的合理性。

七、讨论、心得

1. 与电涡流式传感器作比较,比较两种传感器在相同区间内的线性度。

在 lab3 中测得电涡流式传感器的线性度为 4.56%, 因此排除误差影响(同台设备)仅从结果而言, 差动变面积式电容传感器要优于电涡流式传感器。

而从原理来说,电容传感器采用差动结构,通过两个电容的差值输出有效抵消了共模干扰;电涡流式传感器受被测材料电导率、磁导率影响显著,且存在趋肤效应限制。变面积式电容变化与位移呈线性关系,而电涡流效应的非线性度更高,从而进一步验证了结果的结论。

2. 变面积式电容传感器与变极距式电容传感器相比哪一种线性好?讨论它们存在非线性的原因。

变面积式电容传感器的线性度明显优于变极距式。变面积式通过极板有效面积变化实现电容变化,其数学关系为 $C=\epsilon A/d$,当 d 固定时 C 与 A 成正比,理论线性度可达 0.1%。而变极距式的 $C=\epsilon A/(d\pm\Delta d)$,其非线性来源于分母的 Δd 项,导致输出与位移成反比关系。两种传感器非线性的主要原因包括:

- (1) 边缘效应导致电场分布不均匀;
- (2) 寄生电容的存在改变实际电容值;
- (3) 极板机械变形引入附加误差:
- (4) 变极距式传感器的非线性度随 Δd/d 增大而加剧。

实验结果验证了差动结构在改善线性度方面的有效性,同时也认识到环境因素对电容测量的影响。与电涡流式传感器的对比实验,使我更清晰地理解了不同类型传感器的适用场景,为后续工程应用奠定了实践基础。