Bagging 方法

Boosting方法

Stacking方法

复习决策树

PersonID		Age	LikesGardening	PlaysVideoGames	LikesHats
1		13	FALSE	TRUE	TRUE
2		14	FALSE	TRUE	FALSE
3		15	FALSE	TRUE	FALSE
4		25	TRUE	TRUE	TRUE
5		35	FALSE	TRUE	TRUE
6		49	TRUE	FALSE	FALSE
7		68	TRUE	TRUE	TRUE
8		71	TRUE	FALSE	FALSE
9		73	TRUE	FALSE	TRUE

为什么一颗树会过拟合?

一颗树还是一片森林

解决方法I:Bagging Method- 随机森林

和而不同

问题: 随机森林的显著效果是?

A,减少了模型方差,可以有效防止过拟合

B, 增大模型拟合力,减少偏差

CRUster 解决方法2: Boosting方法 - 在跌倒的地方爬起来

回到刚刚的问题

PersonID Age		Age	LikesGardening	PlaysVideoGames	LikesHats	
1		13	FALSE	TRUE	TRUE	
2		14	FALSE	TRUE	FALSE	
3		15	FALSE	TRUE	FALSE	
4		25	TRUE	TRUE	TRUE	
5		35	FALSE	TRUE	TRUE	
6		49	TRUE	FALSE	FALSE	
7		68	TRUE	TRUE	TRUE	
8		71	TRUE	FALSE	FALSE	
9		73	TRUE	FALSE	TRUE	

回到刚刚的问题

PersonID	Age	Tree1 Prediction	了上上 Tree1 Residual	Tree2 Prediction	Combined Pre	diction Final Residual
1	127 -	19.25	-6.25	-3.567	15.68	2.683
2	14	19.25	-5.25	-3.567	15.68	1.683
3	15	19.25	-4.25	-3.567	15.68	0.6833
4	25	57.2	-32.2	-3.567	53.63	28.63
5	35	19.25	15.75	3 .567	15.68	-19.32
6	49	57.2	-8.2	7.133	64.33	15.33
7	68	57.2	10.8	-3.567	53.63	-14.37
8	71	57.2	13.8	7.133	64.33	-6.667
9	73	57.2	15.8	7.133	64.33	-8.667
Tree1 SSE			Comb	oined SSE	l	
1994			1765			

Gradient Boosting

https://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

梯度: 寻找当下最优的解决路径

Gradient Boosting [J. Friedman, 1999]

$$\frac{\partial \left(\operatorname{ost}(w)/\partial w\right)}{\left(\operatorname{ost}(F) = \frac{2}{1-1}\left(F(x_i) - \frac{2}{1-1}\right)^2\right)}$$

Statistical view on boosting

⇒ Generalization of boosting to arbitrary loss functions

Residual fitting

1.
$$\frac{5}{5}(y-tx)^{2}$$

2. $cwt = (1-tx)^{2}$

3. $\frac{3}{5}(x) = \frac{3}{5}(x)$

4. $\frac{3}{5}(x) = 1$

6. $\frac{3}{5}(x) = 1$

7. $\frac{3}{5}(x) = 1$

7. $\frac{3}{5}(x) = 1$

7. $\frac{3}{5}(x) = 1$

7. $\frac{3}{5}(x) = 1$

8. $\frac{3}{5}(x) = 1$

9. $\frac{3}{5}(x) = 1$

10. $\frac{3}{5}(x) = 1$

11. $\frac{3}{5}(x) = 1$

12. $\frac{3}{5}(x) = 1$

13. $\frac{3}{5}(x) = 1$

14. $\frac{3}{5}(x) = 1$

15. $\frac{3}{5}(x) = 1$

16. $\frac{3}{5}(x) = 1$

17. $\frac{3}{5}(x) = 1$

18. $\frac{3}{5}(x) = 1$

19. $\frac{3}{5}(x) = 1$

10. $\frac{3}{5}(x) = 1$

10. $\frac{3}{5}(x) = 1$

10. $\frac{3}{$

$$\alpha = \frac{1}{2} \ln \left(\frac{1-\varepsilon}{\varepsilon} \right)$$

The AdaBoost algorithm can be seen schematically in figure 7.1.

Algorithm AdaBoost.M2

Input: sequence of m examples $((x_1, y_1), \ldots, (x_m, y_m))$ with labels $y_i \in Y = \{1, \ldots, k\}$ weak learning algorithm WeakLearn integer T specifying number of iterations

Let
$$B = \{(i, y) : i \in \{1, ..., m\}, y \neq y_i\}$$

Initialize $D_1(i, y) = 1/|B|$ for $(i, y) \in B$.
Do for $t = 1, 2, ..., T$

- Call WeakLearn, providing it with mislabel distribution D_t.
- Get back a hypothesis h_t: X × Y → [0, 1].
- 3. Calculate the pseudo-loss of h_t : $\epsilon_t = \frac{1}{2} \sum_{(i,y) \in B} D_t(i,y) (1 h_t(x_i, y_i) + h_t(x_i, y)).$
- 4. Set $\beta_t = \epsilon_t/(1-\epsilon_t)$.
- 5. Update D_t : $D_{t+1}(i, y) = \frac{D_t(i, y)}{Z_t} \cdot \beta_t^{(1/2)(1+h_t(x_i, y_i)-h_t(x_i, y))}$ where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).

Output the hypothesis: $h_{fin}(x) = \arg \max_{y \in Y} \sum_{t=1}^{T} \left(\log \frac{1}{\beta_t} \right) h_t(x, y).$

Figure 2: The algorithm AdaBoost.M2.

CRUNSER

升级版本: GradientBoosting

