EPITA / InfoS3		Novembre 2017
NOM :	Prénom :	Groupe:

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le harème est donné à titre indicatif.

ÉCOLE	D'INGÉNIEURS EN INFORMATIQUE Réponses exclusivement	est donne a titre indicatif. It sur le sujet. Si vous manquez de place, It utiliser le verso des pages.
<u>Exer</u>	<u>cice 1.</u> Questions de cours (QCM sans p	oints négatifs – 5 points)
Q1.	Le dopage permet d'augmenter la résistivité	
	a- VRAI	b- FAUX
Q2.	Le dopage permet de favoriser le phénomène	_
	a- VRAI	b- FAUX
Q3.	On utilise l'élément semi-conducteur de silie valence. Si on le dope avec du bore, éléme valence, quel est le type de dopage :	
	a- Dopage P	c- Dopage NP
	b- Dopage N	d- Aucun dopage
Q4.	Dans un semi-conducteur intrinsèque, le nom	nbre d'électrons libres est :
	a- égal au nombre de trous	c- plus petit que le nombre de trous
	b- plus grand que le nombre de trous	d- aucun des cas précédents
Q5.	Quel modèle permet la représentation la plus	s précise de la diode :
	a- Le modèle idéal	c- Le modèle réel
	b- Le modèle à seuil	d- Les trois modèles sont équivalents
	L'équation de la caractéristique de la diode s'é rant qui traverse la diode et V_D , la tension à ses la convention récepteur. I_S correspond au cou	s bornes, courant et tension étant fléchés rant inverse. C'est un courant :
	a- Très grand (plusieurs dizaines	b- Très faible (quelques nano

- d'ampères)
- ampères)

Q7.Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle idéal de la diode :

Q8. Par quoi remplace-t-on la diode bloquée si on utilise le modèle réel?

Q9. Soit le circuit ci-contre, dans lequel on considère la diode D idéale :

Que vaut la tension aux bornes de D si E=10V, $R=100\Omega$.

- a- 0*V*
- b- 10 V

- c- 1 *kV*
- d- 0,1 V

Soit le circuit ci-contre :

- **Q10.** Quel type de porte logique réalise ce montage?
 - a- ET
- c- NON ET
- b- OU
- d- NON OU

Exercice 2. Révisions SUP (4 points)

Soit le circuit suivant, dans lequel E, I et R sont connus. Les générateurs sont indépendants.

1. En utilisant la méthode de votre choix, déterminer la tension U_{AM} .

2. En déduire la tension U_{BM} .

Exercice 3. Diodes (5 points)

Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil avec $V_0=0.7V$. Pour les questions suivantes, vous utiliserez un raisonnement par l'absurde.

1. Si $R=100\Omega$, $I_0=60mA$ et E=5V, montrer que la diode est bloquée. Déterminer alors l'intensité du courant qui traverse la résistance.

2. Si $R=100\Omega$, $I_0=30mA$ et E=5V, montrer que la diode est passante. Déterminer alors l'intensité du courant qui traverse la résistance.

Exercice 4. Caractéristique de transfert (6 points)

Dans le schéma ci-contre, on veut déterminer et tracer l'évolution de u(t). On donne :

$$e(t) = E_0 \sin(\omega t),$$
 avec $E_0 = 30V$ et $\omega = 2\pi \times 50 rad/s$

 E_1 et E_2 sont deux sources de tensions continues idéales, $E_1=10V$ et $E_2=15V$

Les diodes seront supposées idéales.

1. Montrer, en raisonnant par l'absurde que les 2 diodes ne peuvent pas être passantes simultanément.

2.	Donner l'expression	de u(t)) si D_1	est passante.

3. Donner l'expression de u(t) si D_2 est passante.

EPITA / InfoS3 Novembre 2017

4	. Donner l'expression de $u(t)$ si les 2 diodes sont bloquées.
5	. Pour quelles valeurs de $e(t)$ les 2 diodes sont-elles bloquées ?
6	. Tracer la caractéristique de transfert de ce circuit.

EPITA / InfoS3 Novembre 2017

7. Tracer la courbe u(t).

