

Nation University of Sciences and Technology (NUST), Balochistan Campus (NBC)

<u> Assignment # 3</u>

Department:

Computer Science

ASSIGNMENT TOPICS:

Course Title:

Fundamentals of

Computer

programming.

➤ <u>Integration</u>.

Course Code:

CS-110

Submitted to: Sir Mohsin Raza

Submitted by: Muhammad (391855)

1st Semester,

Session **2021-2025**

Date of Submission: 01/March /2022

Student sign

Instructor sign

Calculation of Integral: Such as this one given below.

$$\int_{a}^{b} f(x) dx$$

The numrical calculation of integal:

- Now we need to calculate the integral b/w two bound, 'a' and 'b'. To do that we numerically divided it into small intervals. As shown in figure above.
- ➤ If the regions are in equal spaces, for example the difference b/w x0 and x1 is same as x1 and x2, then that could be the best case for us and simplify our computation.
- The difference b/w x0 and x1, x1 and x2, x2 and x3 and so on, we call it 'dx'. Like differential of x.
- \triangleright The area of first rectangle would be 'the value of function at a' times 'dx'.
- The area of Second rectangle would be 'the value of function at x1' times 'dx'. And so on. Then we sum all of these and get the actual approximation.

The programic calculation of integal:

```
#include<iostream>
1
       using namespace std;
2
     □double fun(double x)
                                    // It is a funtion of one variable.
4
5
6
          return x;
7
       // The above function means "f(x) = x".
8
     double sumIntegral(double lowBound, int n, double dx) // User-defined function for integration.
10
11
           double cumSum = 0;
12
13
           for (int i = 0; i < n; i++) {
               double xi = lowBound + i * dx;
                                                         // This will give us in ever loop the number x0, x1, x2 and so on.
14
               double funValue = fun(xi);
15
               double rectangleArea = funValue * dx;
16
               cumSum += rectangleArea;
17
18
19
           return cumSum;
20
21
     □int main() {
22
                                       // Can also take this from User.
           double lowBound = 4;
23
                                       // Can also take this from User.
           double upperBound = 7;
24
                                    // Interval
           int n = 5;
25
           double dx = (double)(upperBound-lowBound)/n; // Taking the derivative.
26
           double result = sumIntegral(lowBound, n, dx);
27
           cout << "Integration = " << result << endl;</pre>
28
           system("pause");
29
           return 0;
30
31
```

The Result:

```
Integration = 15.6
Press any key to continue . . .
```

The End.