좋은 훈련세트 만들기:

데이터 전처리

2020.01.13 박동민

모델링 == 재단

기성복을 만들기 위한 고객들의 치수 데이터 확보 나머지 1/3 고객에게 해당 옷을 입혀보고 옷이 몸에 맞는지 파악(Overfitting 방지)

만들고자 하는 옷 선택

고객 중 2/3의 데이터로 옷을 만듦

옷제공

모델링 == 재단

식별

누락 데이터 처리

is.null()

테이블 형태 데이터에서 누락된 값 식별하기

```
In [1]: import pandas as pd
        from io import StringlO
In [2]: csv_data = #
        '''A,B,C,D
        1.0,2.0,3.0,4.0
        5.0,6.0,,8.0
        10.0.11.0.12.0.'''
In [3]: df = pd.read_csv(Stringl0(csv_data))
        df
Out [3]:
                       C
                            D
            1.0 2.0 3.0
                          4.0
            5.0
                 6.0 NaN 8.0
         2 10.0 11.0 12.0 NaN
```


제외

누락 데이터 처리

dropna()

4.1.2 누락된 값 있는 샘플(row), 특성(column) 제외

샘플 제외

```
df.dropna(axis = 0)
```

A B C D

1.0 2.0 3.0 4.0

특성 제외

df.dropna(axis = 1)

A B
0 1.0 2.0
1 5.0 6.0
2 10.0 11.0

모든 열이 NaN 일 때, 행 삭제

df.dropna(how = 'all')

A B C D

1.0 2.0 3.0 4.0

5.0 6.0 NaN 8.0

1 10.0 11.0 12.0 NaN

모든 행이 NaN일 때, 열 삭제

: df.dropna(axis =1, how = 'all')

 A
 B
 C
 D

 0
 1.0
 2.0
 3.0
 4.0

 1
 5.0
 6.0
 NaN
 8.0

 2
 10.0
 11.0
 12.0
 NaN

조건 넣기

실수 값이 네 개보다 작은 행 삭제

[15]: df.dropna(thresh = 4)

t [15]:

A B C D

0 1.0 2.0 3.0 4.0

특정 '열'에 NaN이 있을 경우, '행' 삭제(C열을 조건으로 넣기)

[17]: df.dropna(subset = ['C'])

t[17]:

	A	В	C	D
0	1.0	2.0	3.0	4.0
2	10.0	11.0	12.0	NaN

대체

Imputer / 평균, 중앙값, 최빈값

사이킷런 0.20

사이킷런 0.22

[24]: from sklearn.impute import SimpleImputer import numpy as np

대체

누락 데이터 처리

Imputer / 평균, 중앙값, 최빈값

사이킷런 0.20

```
imr = Imputer(missing_values='NaN', strategy='mean', axis=0)
imr = imr.fit(df.values)
imputed_data = imr.transform(df.values)
imputed_data

/home/haesun/anaconda3/envs/python-ml/lib/python3.7/site-packages/
s deprecated; Imputer was deprecated in version 0.20 and will be r
    warnings.warn(msg, category=DeprecationWarning)

]: array([[ 1. , 2. , 3. , 4. ],
        [ 5. , 6. , 7.5, 8. ],
        [ 10. , 11. , 12. , 6. ]])
```

사이킷런 0.22

'most_frequent'

대체

누락 데이터 처리

Imputer / 평균, 중앙값, 최빈값

```
최빈값
```

simr = SimpleImputer(missing_values = np.nan, strategy =

대체

누락 데이터 처리

Imputer / 평균, 중앙값, 최빈값, 지정값

지정값

```
simr = SimpleImputer(missing_values = np.nan, strategy = 'constant', fill_value = 1)

simr = simr.fit(df.values)

imputed_data = simr.transform(df.values)

imputed_data

array([[ 1., 2., 3. 4.], [ 5., 6., 1., 8], [ 10., 11., 12., 1.]])
```

대체

Imputer / 평균, 중앙값, 최빈값, 지정값

사이킷런 0.20

from sklearn.preprocessing import Imputer

imr = Imputer(missing_values='NaN', strategy='mean', axis=1)
imr = imr.fit(df.values)
imputed_data = imr.transform(df.values)
imputed_data

사이킷런 0.22

SimpleImputer에는 axis 매개변수 존재 X

행-열 변환 뒤, 동일 처리 후, 다시 열 - 행 변환

from sklearn.preprocessing import FunctionTransformer

ftr_simr = FunctionTransformer(lambda X: simr.fit_transform(X.T).T, validate = False)

imputed data = ftr simr.fit transform(df.values)

imputed_data

array([[1., 2., 3., 4.], [5., 6., 1., 8.], [10., 11., 12., 1.]])

순서가 있는 특성, 그리고 없는 특성

데이터 불러오기

import pandas as pd

df = pd.DataFrame([['green', 'M', 10.1, 'class1'],

['red', 'L', 13.5, 'class2'], ['blue', 'XL', 15.3, 'class1']])

df.columns = ['color', 'size', 'price', 'classlabel']

df

size price classlabel color M 10.1 class1 0 green 13.5 class2 red blue XL 15.3 class1

순서O

누락 데이터 처리

map()

4.2.2 순서 특성 매핑

```
size_mapping ={
    'XL': 3,
    'L' : 2,
    'M' : 1}
```

```
df['size'] = df['size'].map(size_mapping)
```

df

	color	size	price	classlabel
0	green	1	10.1	class1
1	red	2	13.5	class2
2	blue	3	15.3	class1

누락 데이터 처리

map()

```
df['classlabel'] = df['classlabel ].map(class_mapping)

df
```

		color	size	price	classlabel
Ī	0	green	1	10.1	0
	1	red	2	13.5	1
	2	blue	3	15.3	0

누락 데이터 처리

LabelEncoder()

```
from sklearn.preprocessing import LabelEncoder
```

```
class_le = LabelEncoder()
```

```
y = class_le.fit_transform(df['classlabel'].values)
```

: у

array([0, 1, 0], dtype=int64)

LabelEncoder(), OneHotEncoder()

사이킷런 0.20

사이킷런 0.22

```
ohe = OneHotEncoder(categorical_features = [0])
# sklearn 0.22 에서는 안 먹힌

TypeError

(ipython-input-65-d359a713137a> in <module>
----> 1 ohe = OneHotEncoder(categorical_features = [0])

TypeError: __init__() got an unexpected keyword argument
```

```
oh_enc = OneHotEncoder(categories='auto')

col_trans = ColumnTransformer([('oh_enc', oh_enc, [0])], remainder='passthrough')
```

LabelEncoder(), OneHotEncoder()

사이킷런 0.20

사이킷런 0.22

array([[0.0, 1.0, 0.0, 1, 10.1], [0.0, 0.0, 1.0, 2, 13.5],

[1.0, 0.0, 0.0, 3, 15.3]], dtype=object)

```
ohe = OneHotEncoder(categorical_features = [0])
# sklearn 0.22 에서는 안 먹힌

TypeError

(ipython-input-65-d359a713137a> in <module>
----> 1 ohe = OneHotEncoder(categorical_features = [0])

TypeError: __init__() got an unexpected keyword argument
```

```
from sklearn.compose import ColumnTransformer

oh_enc = OneHotEncoder(categories='auto')

col_trans = ColumnTransformer([('oh_enc', oh_enc, [0])], remainder='passthrough')

col_trans.fit_transform(X)
```

누락 데이터 처리

LabelEncoder(), OneHotEncoder(), 그리고 get_dummies()

• 문자열만변환

: df

 color
 size
 price
 classlabel

 0
 green
 1
 10.1
 0

 1
 red
 2
 13.5
 1

 2
 blue
 3
 15.3
 0

get_dummies 활용

pd.get_dummies(df[['price', 'color', 'size']])

	price	size	color_blue	color_green	color_red
0	10.1	1	0	1	0
1	13.5	2	0	0	1
2	15.3	3	1	0	0

데이터셋, 그리고 m-1

Converting Categorical Variables to Binary Dummies

It usually does not make sense to calculate Euclidean distance between two nonnumeric categories (e.g., cookbooks and maps, in a bookstore). Therefore, before k-NN can be applied, categorical variables must be converted to binary dummies. In contrast to the situation with statistical models such as regression, all m binaries should be created and used with k-NN. While mathematically this is redundant, since m-1 dummies contain the same information as m dummies, this redundant information does not create the multicollinearity problems that it does for linear models. Moreover, in k-NN the use of m-1 dummies can yield different classifications than the use of m dummies, and lead to an imbalance in the contribution of the different categories to the model.

데이터셋, 그리고 m-1

- 다중공선성문제 유념
 - 어떤 알고리즘에 이슈가 되는가?
 - -> 선형 모델
 - 반대로 **K-NN**같은 **비선형 모델**에는 m-1 **불필요**
 - -> 오히려 m개일 때와 다른 분류 산출 가능하며 모델에 대한 기여도 불균형 초래

train_test_split (in 'model_selection' module)

	Class label	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenois	Proanthocyanins	Color intensity	Hue	OD280/OD315 of diluted wines	Proline
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

from sklearn.model_selection import train_test_split

X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values

정규화와표준화

- 정규화
 - 특성의 **스케일**을 [0, 1] 범위에 맞추는 것

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- 표준화
 - 특성의 평균을 0 표준편차 1로 만들어
 정규분포와 같은 특징 가지도록함

$$z=\frac{X-\mu}{\sigma}$$

유용한 특성 선택

- 더 많은 훈련 데이터를 모읍니다.
- 규제를 통해 복잡도를 제한합니다.
- 파라미터 개수가 적은 간단한 모델을 선택합니다.
- 데이터 차원을 줄입니다.

- 더 많은 훈련 데이터를 모읍니다.
- 규제를 통해 복잡도를 제한합니다.
- 파라마터 개수가 적은 간단한 모델을 선택합니다.
- 데이터 차원을 줄입니다.

규제(=정규화)

$$cost(W,b) = rac{1}{m} \sum_{i}^{m} L(\hat{y^i}, y^i)$$

penalty tems

규제(=정규화)

$$cost(W,b) = rac{1}{m} \sum_{i}^{m} L(\hat{y^i}, y^i) + \lambda rac{1}{2} ||w||^2$$

누락 데이터 처리

L1 규제

- Manhattan Norm
 - **Norm은 벡터의 길이, 혹은 크기를 측정하는 방법
- 요소절댓값의합

$$L_1 = (\sum_i^n |x_i|)$$

= $|x_1| + |x_2| + |x_3| + \ldots + |x_n|$

L2 규제

- Euclidean Norm
 - **Norm은 벡터의 길이, 혹은 크기를 측정하는 방법
- n 차원 좌표평면에서의벡터 크기 계산

$$egin{aligned} L_2 &= \sqrt{\sum_i^n x_i^2} \ &= \sqrt{x_1^2 + x_2^2 + x_3^2 + \ldots + x_n^2} \end{aligned}$$

SSE

SSE + L2

SSE + L1

L1 규제

- 대부분의 **유용하지 않은 가중치**가 정확히 **0이 되도록 유도** **회소성(sparsity)
- **모델**의 **특성 개수**를 줄임

L2 규제

- 계수 값을 작게 만들지만 가중치를 0으로 유도하지는 않음
- 요소절댓값의합

차원축소

• 특성 선택 & 특성 추출(여기서는특성선택만)

순차 특성 선택(탐욕적탐색알고리즘)

- 초기 **d차원의 특성 공간을 k < d**인 **k 차원의 특성 부분 공간**으로 **축소**
- 주어진 문제에 **가장 관련이 높은 특성 부분 집합**을 **자동으로선택**하는 것이 목적
- 관계없는 특성이나 잡음을 제거하여 계산 효율성을 높이고 모델의 일반화 오차를 줄임

차원축소

차원축소

```
k3 = list(sbs.subsets_[10])
print(df_wine.columns[1:][k3])
Index(['Alcohol', 'Malic acid', 'OD280/OD315 of diluted wines'], dtype='object')
```

```
knn.fit(X_train_std, y_train)
print('훈련 정확도:', knn.score(X_train_std, y_train))
print('테스트 정확도:', knn.score(X_test_std, y_test))
훈련 정확도: 0.967741935483871
테스트 정확도: 0.9629629629629
```

```
print('테스트 정확도:', knn.score(X_test_std[:, k3], y_test))
훈련 정확도: 0.9516129032258065
테스트 정확도: 0.9259259259259
```

knn.fit(X_train_std[:, k3], y_train)

print('훈련 정확도:', knn.score(X_train_std[:, k3], y_train))

1)	Proline	0.185453
2)	Flavanoids	0.174751
3)	Color intensity	0.143920
4)	OD280/OD315 of diluted wines	0.136162
5)	Alcohol	0.118529
6)	Hue	0.058739
7)	Total phenols	0.050872
8)	Magnesium	0.031357
9)	Malic acid	0.025648
10)	Proanthocyanins	0.025570
11)	Alcalinity of ash	0.022366
12)	Nonflavanoid phenols	0.013354
13)	Ash	0.013279

