5.2 Clock Interrupt Handling

- Clock interrupt is the 2nd to the power-failure interrupt.
- ◆ Tasks:
 - ◆ Rearms the hardware clock if necessary
 - ◆ Update CPU usage statistics
 - ◆ Performs scheduler-related functions
 - ◆ Sends a SIGXCPU signal to the current process
 - ◆ Updates the time-of-day and other related clocks.
 - ♦ Handles callouts
 - ◆ Wakes up system processes
 - ◆ Handles alarms

7

5.3 Scheduler Goals

- ◆ The scheduler must ensure that the system delivers acceptable performance to each application.
- ◆ Different applications:

♦ Interactive: 50-150ms

◆Batch: scientific computation

◆Real-time: time-critical

11

5.4 Traditional UNIX Scheduling

- ◆ To improve response times of interactive users, while ensuring that low-priority, background jobs do not starve.
- ◆ Priority-based:
 - ◆User-process is preempted
 - ◆Kernel is strictly non-preemptive

Priority

- ♦ Kernel:0-49, user: 50-127
- proc fields:
 - ◆ p_pri: Current scheduling priority
 - ◆ p_usrpri: User mode priority
 - ◆ p_cpu: Measure of recent CPU usage
 - ◆ p_nice: User-controllable nice factor
- ◆ Kernel:
 - ◆Sleeping priority

13

12

User mode priority

- ◆ Depends on two factors:
 - ♦Nice: 0-39
 - ◆CPU usage
- ◆ Time-sharing: equal opportunity
- decay factor: for SVR3 it is 1/2, for 4.3BSD:
 - ♦ decay = (2*load_average)/(2*load_average+1)
 - ◆ p_cpu = p_cpu* decay
- p_usrpri = PUSER + (p_cpu/4) +(2*p_nice)

14

Scheduler Implementation

- ◆32 run queues: doubly linked list of proc structures for runnable processes.
- whichqs: bitmask for each queue, "1" means that there is a runnable process
- swtch(): context switch by p_addr
 - ◆Saving part of u area (pcb)
 - ◆Loading the saved context.
- ◆ VAX ffs, ffc, INSQHI, REMQHI, LDPCTX, SVPCTX : special instructions for context switch etc.

