Introduction to GPUs

CS378 – Spring 2015

Sreepathi Pai

Outline

- Introduction to Accelerators
 - Specifically, GPUs
 - What can you use them for?
 - When should you consider using them?
- GPU Programming Models
 - How to write programs that use GPUs

Beyond the CPU

- Single-core CPU performance has essentially stagnated
- 10 years ago, the solution was multicore and increased parallelism
 - x86: 16 cores on chip, AMD Interlagos, 2011
- Applications need increased performance
 - Big data, brain simulation, scientific simulation, ...
- So if you're going to write parallel code, are there faster, viable alternatives to the CPU?

GPU Floating Point Performance

The rise of the GPU - 1990s

- The CPU has always been slow for Graphics Processing
 - Visualization
 - Games
- Graphics processing is inherently parallel and there is a lot of parallelism – O(pixels)
- GPUs were built to do graphics processing only
- Initially, hardwired logic replicated to provide parallelism
 - Little to no programmability

GPUs – a decade ago

- Like CPUs, GPUs benefited from Moore's Law
- Evolved from fixed-function hardwired logic to flexible, programmable ALUs
- Around 2004, GPUs were programmable "enough" to do some non-graphics computations
 - Severely limited by graphics programming model (shader programming)
- In 2006, GPUs became "fully" programmable
 - NVIDIA releases "CUDA" language to write non-graphics programs that will run on GPUs

GPU Performance Today

Memory Bandwidth

GPUs today

- GPUs are widely deployed as accelerators
- Intel Paper
 - 10x vs 100x Myth
- GPUs so successful that other CPU alternatives are dead
 - Sony/IBM Cell BE
 - Clearspeed RSX
- Kepler K40 GPUs from NVIDIA have performance of 4TFlops (peak)
 - CM-5, #1 system in 1993 was ~60 Gflops (Linpack)
 - ASCI White (#1 2001) was 4.9 Tflops (Linpack)

Titan (#1 2012)

Tianhe 1A (#1 2010)

Accelerator-based Systems

- CPUs have always depended on co-processors
 - I/O co-processors to handle slow I/O
 - Math co-processors to speed up computation
- These have mostly been transparent
 - Drop in the co-processor and everything sped up
- The GPU is **not** a transparent accelerator for general purpose computations
 - Only graphics code is sped up transparently
- Code must be rewritten to target GPUs

Using a GPU

- 1. You must retarget code for the GPU
 - rewrite, recompile, translate, etc.

The Two (Three?) Kinds of GPUs

Type 1: Discrete GPUs

Primary benefits: More computational power,

more memory B/W

The Two (Three?) Kinds of GPUs

Type 2 and 3: Integrated GPUs

Primary distinction: Share system memory

Primary benefits: Less power (energy)

The NVIDIA Kepler

Using a GPU

- 1. You must retarget code for the GPU
- 2. The working set must fit in GPU RAM
- 3. You must copy data to/from GPU RAM

2-way In-order

NVIDIA Kepler SMX

192 FP/Int 64 DP 32 LD/ST SMX Dispatch Register File (65,536 x 32-bit) LD/ST SFU LD/ST SFU LDIST LD/ST SFU LD/ST SFU LD/ST LD/ST SFU LD/ST SFU LD/ST SFU LD/ST SFU LD/ST SFU LD/ST SFU LD/ST LD/ST SFU LO/ST SFU LD/ST LD/ST SFU LD/ST LD/ST SFU LO/ST SFU LD/ST SFU LD/ST SFU 64 KB Shared Memory / L1 Cache 48 KB Read-Only Data Cache Tex Tex

256KB!

Partitioned (user-defined)

How Threads Are Scheduled

What happens when threads in a warp diverge?

- Consider:
 - if(tid % 2) dothis(); else dothat();
- Transparently, GPU splits warp (branch divergence)
 - Record meeting point
 - Execute one side of branch, wait
 - Execute other side
 - Recombine at meeting point
- SIMT Execution
- May happen on cache misses too! (memory divergence)

CPU vs the GPU

Parameter	CPU	GPU
Clockspeed	> 1 GHz	700 MHz
RAM	GB to TB	12 GB (max)
Memory B/W	~ 60 GB/s	> 300 GB/s
Peak FP	< 1 TFlop	> 1 TFlop
Concurrent Threads	O(10)	O(1000) [O(10000)]
LLC cache size	> 100MB (L3) [eDRAM] O(10) [traditional]	< 2MB (L2)
Cache size per thread	O(1 MB)	O(10 bytes)
Software-managed cache	None	48KB/SMX
Туре	OOO superscalar	2-way Inorder superscalar

Using a GPU

- 1. You must retarget code for the GPU
- 2. The working set must fit in GPU RAM
- 3. You must copy data to/from GPU RAM
- 4.Data accesses should be streaming
- 5.Or use scratchpad as user-managed cache
- 6.Lots of parallelism preferred (throughput, not latency)
- 7.SIMD-style parallelism best suited
- 8. High arithmetic intensity (FLOPs/byte) preferred

GPU Showcase Applications

- Graphics rendering
- Matrix Multiply
- FFT

See "Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU" by V.W.Lee et al. for more examples and a comparison of CPU and GPU

GPU Programming Models

Hierarchy of GPU Programming Models

Model	GPU	CPU Equivalent
Vectorizing Compiler	PGI CUDA Fortran	gcc, icc, etc.
"Drop-in" Libraries	cuBLAS	ATLAS
Directive-driven	OpenACC, OpenMP-to-CUDA	OpenMP
High-level languages	pyCUDA, OpenCL, CUDA	python
Mid-level languages		pthreads + C/C++
Low-level languages	-	PTX, Shader
Bare-metal	Assembly/Machine code	SASS

- Ordered by increasing order of difficulty
- Ordered by increasing order of flexibility

"Drop-in" Libraries

- "Drop-in" replacements for popular CPU libraries, examples from NVIDIA:
 - CUBLAS/NVBLAS for BLAS (e.g. ATLAS)
 - CUFFT for FFTW
 - MAGMA for LAPACK and BLAS
- These libraries may still expect you to manage data transfers manually
- Libraries may support multiple accelerators (GPU + CPU + Xeon Phi)

GPU Libraries

- NVIDIA Thrust
 - Like C++ STL
- Modern GPU
 - At first glance: high-performance library routines for sorting, searching, reductions, etc.
 - A deeper look: Specific "hard"
 problems tackled in a different style
- NVIDIA CUB
 - Low-level primitives for use in CUDA kernels

_

Directive-driven Programming

- OpenACC, new standard for "offloading" parallel work to an accelerator
- Currently supported only by PGI Accelerator compiler
- gcc 5.0 support is ongoing
- OpenMPC, a research compiler, can compile OpenMP code + extra directives to CUDA

```
#include <stdio.h>
#define N 1000000
int main(void) {
 double pi = 0.0f; long i;
 #pragma acc parallel loop reduction(+:pi)
 for (i=0; i<N; i++) {
   double t = (double)((i+0.5)/N);
   pi +=4.0/(1.0+t*t);
 printf("pi=%16.15f\n",pi/N);
 return 0;
```

Python-based Tools (pyCUDA)

```
import pycuda.autoinit
import pycuda.driver as drv
                                                          CUDA Source Code
import numpy
from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
  const int i = threadIdx.x;
  dest[i] = a[i] * b[i];
11 11 11 1
multiply them = mod.get function("multiply them")
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros like(a)
multiply them(
        drv.Out(dest), drv.In(a), drv.In(b),
        block=(400,1,1), grid=(1,1))
print dest-a*b
```

Automatic Data Transfers

Threads

OpenCL

- C99-based dialect for programming heterogenous systems
- Originally based on CUDA
 - nomenclature is different
- Supported by more than GPUs
 - Xeon Phi, FPGAs, CPUs, etc.
- Source code is portable (somewhat)
 - Performance may not be!
- Poorly supported by NVIDIA

CUDA

- "Compute Unified Device Architecture"
- First language to allow general-purpose programming for GPUs
 - preceded by shader languages
- Promoted by NVIDIA for their GPUs
- Not supported by any other accelerator
 - though commercial CUDA-to-x86/64 compilers exist
- We will focus on CUDA programs

CUDA Architecture

- From 10000 feet CUDA is like pthreads
- CUDA language C++ dialect
 - Host code (CPU) and GPU code in same file
 - Special language extensions for GPU code
- CUDA Runtime API
 - Manages runtime GPU environment
 - Allocation of memory, data transfers, synchronization with GPU, etc.
 - Usually invoked by host code
- CUDA Device API
 - Lower-level API that CUDA Runtime API is built upon

_

CUDA π -calculation (GPU)

```
/* -*- mode: c++ -*- */
#include <cuda.h>
                                                                  For CUDA Runtime API
#include <stdio.h>
  global -
                                            Indicates GPU Kernel that can be called by CPU
void pi_kernel(int N, double *pi value) {
 int tid = blockldx.x * blockDim.x + threadIdx.x:
 int nthreads = blockDim.x * gridDim.x;
                                                   Calculates thread identifier
 double pi = 0;
                                                   and total number of threads
 for(int i = tid; i < N; i+=nthreads) {
  double t = ((i + 0.5) / N);
  pi += 4.0/(1.0+t*t);
 pi_value[tid] = pi;
```

pi_value is stored in GPU memory i.e. it is a pointer to GPU memory

CUDA π -calculation (CPU)

```
int main(void) {
 int NTHREADS = 2048:
 int N = 10485760:
                                                               CPU and GPU pointers
 double *c pi, *g pi;
 size t g pi size = NTHREADS * sizeof(double);
 c pi = (double *) calloc(NTHREADS, sizeof(double));
                                                                            CPU Allocation
 if(cudaMalloc(&g pi, g pi size) != cudaSuccess) {
  fprintf(stderr, "failed to allocate memory!\n");
                                                                       GPU Allocation
  exit(1);
 pi kernel<<<NTHREADS/256, 256>>>(N, q pi);
                                                                          Call GPU Kernel
 if(cudaMemcpy(c_pi, g_pi, g_pi size, cudaMemcpyDeviceToHost) != cudaSuccess) {
  fprintf(stderr, "failed to copy data back to CPU!\n");
  exit(1);
                                                                           Copy back pi value
 double pi = 0;
 for(int i = 0; i < NTHREADS; i++)
  pi += c pi[i];
                                                                 Reduce pi_value on GPU
 printf("pi=%16.15f\n", pi/N);
 return 0;
```

CUDA Threading Model Details

- Hierarchical Threading
 - Grid -> Thread Blocks -> Warps -> Threads
 - pthreads has flat threading
- Only threads within same thread block can communicate and synchronize with each other
- Maximum 1024 threads per thread block
 - Differs by GPU generation
- Thread block is divided into mutually exclusive, equally-sized group of threads called warps
 - Warp size is hardware-dependent
 - Usually 32 threads

Mapping Threads to Hardware in CUDA

CUDA Limitations

- No standard library
- No parallel data structures
- No synchronization primitives (mutex, semaphores, queues, etc.)
 - you can roll your own
 - only atomic*() functions provided
- Toolchain not as mature as CPU toolchain
 - Felt intensely in performance debugging
- It's only been a decade :)

Summary

- GPUs are very interesting parallel machines
- They're not going away
 - Xeon Phi might be pose huge challenge
- They're here and now
 - You can buy one of them!