Verteilte Systeme

...für C++ Programmierer

Security

by

Dr. Günter Kolousek

Sicherheit?

- ► Im Kontext verteilter Systeme...
- Unter (Computer)Sicherheit versteht man die Sicherheit eines Computersystems vor Ausfall und Manipulation sowie vor unerlaubten Zugriff.
- Datenschutz wird nicht betrachtet...

Überblick

- ► Konzept der Sicherheit
- ► Mechanismen
- Anwendungen

Konzept der Sicherheit

- Bedrohungsanalyse
- Schwachstellenanalyse
- Gefahrenanalyse
- Sicherheitsmanagement
- Sicherheitsmaßnahmen
- Mechanismen

Bedrohungsanalyse

- alle möglichen Bedrohungen und Angreifer identifizieren
- Ort der Gefahrenquelle
 - Datenübertragung
 - Datenspeicherung
- Art der Bedrohung
 - Allgemeine Bedrohungen
 - Grundbedrohungen
- Angriffe, wie z.B.
 - Man-in-the-middle

Allgemeine Bedrohungen

- "Ausfall" ... nicht nur bösartige Angriffe bedingt
- Äußere Einflüsse
 - Netzschwankungen und Netzausfall, elektrostatische Aufladungen, Magnetische Felder und Einstrahlungen benachbarter (Rundfunk)Sender
 - Übertragungsfehler und Fehlrouting (z.B. in Folge magnetischer Felder....)
 - ► Überhitzung oder Brand, Blitzschlag, Explosion, Erdbeben, Wasser, Tiere,...
- Systemfehler: z.B. Programmierfehler, Konfigurationsfehler, Verschleißerscheinung der HW,...
- menschliche Fehler (ohne schädigende Absicht): z.B. Eingabeoder Bedienfehler

Grundbedrohungen

- Verlust der Vertraulichkeit
 - Unberechtigter Dritter hat Zugriff auf Daten oder Service
- ► Verlust der Integrität
 - unerlaubt oder unabsichtliche Veränderung der Daten oder des Dienstes
- Verlust der Authentizität
 - ▶ behauptete Identität \neq tatsächlicher Identität
- Verlust der Verbindlichkeit
 - bestandene Kommunikationsbeziehung wird geleugnet
- Verlust der Verfügbarkeit
 - Unterbrechung des Dienstes, Daten nicht mehr nutzbar oder zerstört

Passive Angriffe

- Abhören von Daten
 - Sammeln von "Abfall" → physischer Zugang!
 - ► Illegales Kopieren von Daten → physischer Zugang, Zugriff auf gelöschte Daten, Zugriff auf Hauptspeicher, Zugriff auf GUI System,...
 - Abhören der Kommunikationsverbindung
 - Empfangen der Abstrahlung (Monitor, Kommunikationsweg)
- Abhören von Teilnehmeridentitäten
- Verkehrsflussanalyse
 - ► Zeit, Größe, Häufigkeit, Richtung
- Brute-force-Methode
- Wörterbuchangriff
- Seitenkanalattacke

Wörterbuchangriff

- Hashwert zu einem Passwort immer derselbe
- lacktriangledown Vorberechnung möglich ightarrow Wörterbuchangriff (Rainbow Tables)
- ▶ Salt
 - Server erzeugt je Passwort zufällige Zeichenfolge und speichert diese (Salt)
 - Kombination mit Salt
 - Berechnung des Hashwertes
- Pepper
 - wie Salt, aber für alle Passwörter gleich
 - dafür wird dieser nicht in der Datenbank gespeichert sondern extern an einem sicheren Ort
 - Auch wenn Angreifer Zugriff auf Datenbank erhält (z.B. mittels SQL-Injection) sind keine realistischen Angriffe auf die Passwörter möglich

Seitenkanalattacke

- Aus vorhandenen Daten wie
 - Dauer der Verschlüsselung
 - zeitlicher Verlauf des Stromverlaufs
 - Berechnungsfehler bei extremen Bedingungen
 - elektromagnetische Abstrahlung
 - Schallanalyse
 - Betriebsgeräusche bei Generierung von Schlüssel
- ► Informationen über Algorithmus, Implementierung, Schlüssel zu gewinnen

Aktive Angriffe

- Wiederholen oder Verzögern von Daten
- Einfügen und Löschen von Daten
- Modifikation von Daten
- Verweigerungsangriffe (Denial of Service)
- ► Vortäuschen einer falschen Identität (Masquerade)
 - Spoofing (Verschleierung, Manipulation): Täuschungsversuche in Netzwerken zur Verschleierung der eigenen Identität, z.B. ARP-Spoofing, DNS-Spoofing, IP-Spoofing, URL-Spoofing

Aktive Angriffe – 2

- ► Phishing (ursprünglich: password fishing): mittels gefälschten E-Mails,... an sensitive Daten zu gelangen
- Trittbrettfahrer (hijacking): Übernahme einer Login-Sitzung
- Erzeugung von Systemanamolien
 - Viren: selbstreproduzierend, kopieren sich in andere Programme
 - Würmer: selbstreproduzierend, eigenständig
 - Trojaner: geben vor eine Funktion zu erfüllen, aber eine andere
 - Bomben: stören Betrieb des Rechners nach Eintreten eines Ereignisses
 - ► Falltüren (backdoors): vom Programmierer zu Testzwecken,... eingebaut

Schwachstellenanalyse

- ▶ Untersuchung der konkreten Schwachstellen eines Systems
- ▶ Arten
 - Menschliche Schwachstellen: z.B. Fahrlässigkeit, Naiivität, Wissensmangel, Käuflichkeit, ehemalige Mitarbeiter
 - Organisatorische Schwachstellen: z.B. Vergabe von Zugriffsberechtigungen, Standort von Computersystemen,...
 - ► Technische Schwachstellen: z.B. ftp-Zugang,...

Gefahrenanalyse

- ► Gefahr = Bedrohung + Schwachstelle
- d.h. erkennen/finden von Gefahren und daraus Maßnahmen zur Risikominimierung ableiten und ergreifen

Sicherheitsmanagement

Sicherheitsmanagement führt, lenkt und koordiniert eine Organisation in Bezug auf alle Sicherheitsaktivitäten – Wikipedia

- technische Maßnahmen, betreffen
 - Netzwerk: Glasfaser vs. Kupferkabel, Firewall,...
 - Computer: Redundanz, Virenschutzprogramme, Betriebssysteme, Programmiersprachen,...
 - Brandschutz, Absperrungen, Wetterschutz,...

Sicherheitsmanagement – 2

- personelle Maßnahmen
 - Schulung, Förderung des Sicherheitsbewusstsein, Verbote
- organisatorische Maßnahmen
 - Sicherheitspolicy
 - Zutrittskontrolle, Zugangsberechtigungen, Schlüsselverwaltung, Backup, Brandschutz, Redundanzen,...
 - Audit-Trail Management
 - Überprüfung von sicherheitsrelevanten Ereignissen: Revision (sporadisch) und Controlling (regelmäßig)
 - Eventhandling: Tätigkeiten bei unerwarteten Ereignissen
 - Fehlermanagement: T\u00e4tigkeiten um Fehler zu entdecken, zu diagnosizieren und zu korrigieren

Sicherheitsdienste

- sind technische Maßnahmen im Rahmen des Sicherheitsmanagement
- 5 Arten von Sicherheitsdiensten, um auf mögliche Gefahrenquellen und Sicherheitsgefährdungen zu reagieren:
 - Authentifizierung
 - Geheimhaltung
 - Integrität
 - Zugriffskontrolle
 - Nicht-Zurückweisung

Authentifizierung

- ▶ Überprüfung der Identität eines Benutzers, Clients, Servers
- einseitige vs. zweiseitige Authentifizierung
- Methoden der Sicherstellung der Identität
 - Besitz einer geheimen Information: Passwort, Frage-Antwort Verfahren, One-Time-Passwords wie TANs), digitale Signatur, Challenge-Response Verfahren (Server überträgt Zufallszahl, Client verschlüsselt, sendet zurück und beweist…)
 - Besitz einer bestimmten Hardware
 - biometrische Verfahren

Geheimhaltung

- Sicherstellung der Vertraulichkeit, dass nur beteiligte Partner die Kommunikation verstehen
- Methoden zur Sicherstellung der Geheimhaltung
 - Verschlüsselung
 - Verschleierung
 - ► Auffüllen mit Fülldaten in den Sendepausen → keine Struktur der Netzdaten erkennbar

Integrität

- Sicherstellung, dass Information nicht verändert wird
- Angriffe
 - Modifizieren, Löschen, Einfügen von Nachrichten
 - Wiederholung (replay attack) oder Verzögerung von Nachrichten
- Methoden zur Sicherstellung der Geheimhaltung
 - Verschlüsselung
 - Prüfsummen, Laufnummern, Zeitstempel
 - Wiederholung von gefälschten Nachrichten

Zugriffskontrolle

- Sicherstellung, dass nur berechtigte Benutzer Zugriff auf die Daten bzw. Dienste haben
- ► Methoden zur Sicherstellung der Zugriffskontrolle
 - Access Control Lists (ACL)
 - Schutzklassen (à la Unix)

Nicht-Zurückweisung

- Sicherstellung, das bestandene Kommunikationsbeziehung nicht geleugnet werden kann (non-repudiation)
 - d.h. Sender hat gesendet bzw. Empfänger hat empfangen
- Methoden zur Sicherstellung von Nicht-Zurückweisung
 - digitale Signaturen

Mechanismen

- dienen dazu die Sicherheitsdienste zu realisieren
- Mechanismen
 - Symmetrische Verschlüsselung
 - Asymmetrische Verschlüsselung
 - Message Digests
 - Message Authentication Codes
 - Digitale Signaturen
 - Zertifikate

Symmetrische Verschlüsselung

- Prinzip
 - ► Ein Schlüssel K zum Verschlüsseln (E ... encrypt) und Entschlüsseln (D ... decrypt) verwendet
 - Paket P
 - ightharpoonup Verschlüsselung: E(K, P)
 - ► Entschlüsselung: P = D(E(K, P), K)
 - Grundbausteine: Substitution, Permutation
- Vorteile: schnell, Realisierung in HW, Schlüssellängen kurz
- Nachteile: Schlüsselverwaltung (# der Schlüssel, Schlüsselaustausch über sicheren Kanal)

Symmetrische Verschlüsselung – 2

- Arten: Blockverschlüsselung vs. Streamverschlüsselung
 - ► Modus (bei Blockverschlüsselung)
 - ► ECB (electronic code book)
 - ► CBC ()
 - ► CTR ()
- Verfahren
 - ▶ DES (Data Encryption Standard): Schlüssellänge 56 Bits, unsicher (wurde schon 1999 in 22 Stunden gebrochen, damals 100000 Rechner)
 - ▶ 3DES (Triple DES): Schlüssellänge je nach Modus bis zu 168 Bits
 - AES (Advanced Encryption Standard): Schlüssellänge 128, 192 oder 256 Bits
 - ▶ Blowfish, Twofish, Chacha20, IDEA, RC5 (Stromverschlüsselung)

Nonce und Padding

Nonce

➤ zufällige Zeichenfolge (wie Salt, siehe Folie Wöterbuchangriff), aber Sinn ist Einmaligkeit des Klartextes sicherzustellen, damit nicht zwei Klartexte den gleichen Geheimtext bewirken

Padding

- muss nicht zufällig sein
- Sinn ist die Ermittlung der Länge des Klar- als auch des Geheimtextes zu erschweren bzw. auf Blocklänge aufzufüllen

Asymmetrische Verschlüsselung

- ▶ Prinzip
 - Schlüsselpaar: privater Schlüssel K_pri und ein öffentlicher Schlüssel K_pub
 - ▶ privater Schlüssel kann mit Passwort verschlüsselt werden! → Verlust...
 - Paket P
 - ▶ Verschlüsselung: $E(K_pub, P)$ (K_pub vom Empfänger)
 - ► Entschlüsselung: $D(K_p ri, E(K_p ub, P))$
 - Grundbausteine: meist mathematische Probleme (z.B. Finden von Primfaktoren von sehr großen Zahlen oder Lösen algebraischer Gleichungen)
- ► Vorteile: Schlüsselverwaltung einfacher
- Nachteile: langsamer, Schlüssellänge lang

Asymmetrische Verschlüsselung – 2

zu lösende Probleme

- ► Identität des Benutzers muss geprüft werden, wenn öffentlicher Schlüssel veröffentlicht wird (d.h. Authentizität des Schlüssels)
- der Instanz, die K_ρub veröffentlicht, muss vertraut werden
- diese Instanz ist besonders exponiert
- Wie wird ein öffentlicher Schlüssel zurückgezogen?

Verfahren

- ► RSA (Rivest-Shamir-Adlman) → Primzahlenfaktorisierung
- ▶ ElGamal
- ► ECC (Elliptic Curve Cryptography) → Lösen von elliptischen Kurven in endlichen Körpern

Einweg- und Hashfunktionen

- ► Einwegfunktion
 - in eine Richtung leicht, in andere schwer
- ▶ Hashfunktion
 - Zeichenfolge beliebiger Länge in Zeichenfolge fester Länge
- ▶ Kollisionsresistenz
 - schwach: praktisch unmöglich für geg. x ein x' zu finden, sodass h(x) = h'(x)
 - stark: praktisch unmöglich zwei beliebige Werte x und x' zu finden, sodass h(x) = h'(x)
- ► Einweg-Hashfunktion:
 - Einwegfunktion
 - schwach kollisionsresistent
- kryptographische Hashfunktion
 - Einweg-Hashfunktion
 - stark kollisionsresistent

Message Digest

- ► Zweck: Sicherstellung der Integrität
 - kryptographische Hashfunktion
 - Hashwert wird separat übertragen oder hinten angehängt
- Verfahren
 - MD5: Message Digest 5, 128 Bits, nicht sicher
 - ► SHA-1: Secure Hash Algorithm, 160 Bits, nicht sicher
 - ► SHA-2: SHA-224, SHA-256, SHA-384 und SHA-512
 - SHA-3: variable Bitlänge, üblich sind 224, 256, 384, 512

Kryptoanalyse

- ► Analyse kryptologischer Verfahren → Ziel: brechen!
- Methoden
 - Ciphertext-only (oder known ciphertext)
 - Versuch aus bekannten Geheimtext den Klartext zu ermitteln
 - Known-plaintext
 - Aus bekannten Geheimtext samt zugehörigen Klartext den Schlüssel ermitteln
 - Chosen-plaintext
 - Klartext kann frei gewählt werden (sonst wie known-plaintext)
 - Chosen-ciphertext
 - Geheimtext kann frei gewählt werden und Entschlüsselung ist möglich (z.B. Zugriff auf HW)

Message Authentication Code (MAC)

- wie Message Digests aber mit Passwort
- Zweck
 - Verifikation der Integrität
 - Symmetrische Form der Authentifizierung
- Verfahren
 - ► HMAC

Digitale Signatur

- garantiert, dass Nachricht vom Signierer stammt und nicht verändert wurde
- Vorgang
 - Erzeugung eines Message Digest aus Nachricht
 - und verschlüsseln mit privatem Schlüssel
- Überprüfung
 - mit öffentlichem Schlüssel entschlüsseln
 - und mit berechnetem Message Digest vergleichen
- Eigenschaften
 - ist nicht fälschbar
 - ► ist einfach überprüfbar
 - ist nicht abstreitbar
- Verfahren
 - X.509, OpenPGP (PGP (Pretty Good Privacy) und GPG (GNU Privacy Guard))

Zertifikat

- stellt Zusammenhang zwischen öffentlichem Schlüssel und einer bestimmten Person (Identität) her
- ► Enthält Angaben
 - Name des Zertifikatsinhabers
 - öffentlicher Schlüssel des Zertifikatsinhabers
 - Name der Zertifizierungsinstanz
 - Gültigkeitszeitraum
- ist signiert mit privatem Schlüssel der Zertifizierungsinstanz
- Verfahren
 - ► X.509

Schlüsselverwaltung

- manuelle Verteilung symmetrischer Schlüssel
 - bei n Partnern $O(n^2)$ verschiedene Schlüssel notwendig!
 - sichere Kanäle notwendig
- Schlüsselaustauschprotokolle
 - "mehrfaches Versenden einer verschlossenen Kiste"
 - "Farbmischen" → Diffie-Hellmann
 - Diffie-Hellmann
- Hybride Verschlüsselung
- Public Key Infrastructure (PKI)
- Web of trust

Versenden einer Kiste

- 1. A erzeugt ein Geheimnis
- 2. A gibt dieses Geheimnis in eine Kiste und versperrt diese mit einem Vorhangschloss (nur A hat Schlüssel)
- 3. A versendet diese Kiste an B
- 4. B hängt noch ein Vorhangschloss an diese Kiste
- 5. B versendet diese Kiste an A
- 6. A nimmt eigenes Vorhangschloss ab
- 7. A versendet Kiste nochmals an B
- 8. B nimmt eigenes Vorhangschloss ab und hat Zugang zu dem enthaltenen Geheimnis

Farbmischen

- 1. A denkt sich eine öffentliche Farbe aus und sendet diese an B
- 2. A denkt mischt öffentliche Farbe mit (geheimer) privaten Farbe und sendet das Ergebnis an B
- 3. B denkt mischt öffentliche Farbe mit (geheimer) privaten Farbe und sendet das Ergebnis an A
- 4. A mischt erhaltene Farbe mit geheimer Farbe
- 5. B mischt erhaltene Farbe mit geheimer Farbe
- 6. Beide haben jetzt Zugriff auf einen geheimen Farbwert!

Voraussetzung: Mischen von Farben ist eine Einwegfunktion!

Diffie-Hellmann Schlüsselaustausch

- ▶ basierend auf Exponentialfunktion in GF(p), vereinfacht: $f(x) = g^x \mod p$
- ► A denkt sich große Primzahl p sowie eine Primitivwurzel¹ g aus und teilt B mit (wie gemeinsame Farbe)
- ▶ A und B denken sich jeweils jeweils eine private Zahl x_A und x_B aus $(x_{A,B} \in \{1,...,p-1\})$
- A sendet $y_A = g^{x_A} \mod p$ an B und B sendet $y_B = g^{x_B} \mod p$ an A
- $A berechnet <math>z_{BA} = y_B^{x_A} \mod p = g^{x_B x_A} \mod p$
- ▶ B berechnet $z_{AB} = y_A^{x_B} \mod p = g^{x_A x_B} \mod p$
- aber... nicht sicher gegen MITM Angriffen!

¹jedes Element von GF(p) kann als Potenz von g dargestellt werden

Hybride Verschlüsselung

- Kombination aus symmetrischer und asymmetrischer Verschlüsselung
- A wählt einen symmetrischen Schlüssel, verschlüsselt diesen mit dem öffentlichen Schlüssel von B und sendet diesen an B
- ► B entschlüsselt mit privaten Schlüssel
- ► → Sessionschlüssel!
 - Wird oft mittels Langzeitschlüssel (master key) zwischen Kommunikationspartnern ausgetauscht
 - was wenn Langzeitschlüssel kompromittiert wird?

Hybride Verschlüsselung

- Kombination aus symmetrischer und asymmetrischer Verschlüsselung
- A wählt einen symmetrischen Schlüssel, verschlüsselt diesen mit dem öffentlichen Schlüssel von B und sendet diesen an B
- ► B entschlüsselt mit privaten Schlüssel
- ► → Sessionschlüssel!
 - Wird oft mittels Langzeitschlüssel (master key) zwischen Kommunikationspartnern ausgetauscht
 - was wenn Langzeitschlüssel kompromittiert wird?
 - Speicherung des gesamten Verkehrs und entschlüsseln im nachhinein...
 - perfect forward secrecy (PFS) dann, wenn Sitzungsschlüssel aus Langzeitschlüssel nicht ermittelt werden kann
- Vorteile
 - Schlüsselverteilungsproblem...
 - Geschwindigkeit der symmetrischen Verschlüsselung

Public Key Infrastructure (PKI)

- Idee: PKI wird vertraut
- ► Zertifikate ausstellen, verteilen, prüfen
- Zertifizierungsstelle (engl. certificate authority, CA)
 - stellt CA-Zertifikat zur Verfügung und signiert Zertifikatsanträge
- Registrierungsstelle (engl. registration authority, RA)
 - bearbeitet Zertifikatsanträge: prüft Angaben auf Richtigkeit
- Zertifikatssperrliste (engl. certificate revocation list, CRL)
 - enthält Angaben zu allen zurückgezogenen Zertifikaten
- Hierarchie von CAs
 - Wurzelzertifizierungsinstanz (Root-CA)
 - Zertifikat der Root-CA oft in Anwendungen integriert
 - privater Schlüssel muss besonders geschützt sein!!!
 - Zertifikatskette!

Web of trust (WOT)

- ► Idee: keine zentrale PKI → "Vertrauen durch das Netz"
- Prinzip
 - A signiert Schlüssel von B (und vertraut Schlüsselsignaturen von B)
 - z.B. A trifft B persönlich
 - z.B. B übermittelt A den Fingerprint des öffentlichen Schlüssels über einen sicheren Kanal (z.B. per Telefon)
 - Zertifikat ≡ Signatur & öffentlicher Schlüssel
 - B signiert Schlüssel von C
 - A betrachtet somit den Schlüssel von C als gültig

Web of trust - 2

- Problem
 - Vertrauen, dass B nur wirklich bekannte Schlüssel signiert kann eigentlich nicht sichergestellt werden
 - Lösungsansatz: Mehrere Signaturen u.U. notwendig
 - speichern in öffentlichem Schlüsselbund
- öffentlicher Schlüsselbund (public keyring)
 - eigene und fremde öffentliche Schlüssel samt Zertifikate
 - Zuordnung und Berechnung von Vertrauenswerten
 - je mehr Signaturen ein öffentlicher Schlüssel hat, desto vertrauenswürdiger → Schlüsselserver
- privater Schlüsselbund (private keyring)
 - eigene private Schlüssel

Anwendungen

- Sicherheitsprotokolle
 - ► TLS (siehe Folien tls)
 - OpenVPN
 - ▶ IPSec
- ► Firewalls (siehe Folen firewalls)
- Intrusion Detection Systems (IDS)
- Audit Tools

OpenVPN und IPSec

- OpenVPN
 - ein VPN auf Basis von TLS
 - kann auf Schicht 2 oder Schicht 3 arbeiten
 - einfacher zu konfigurieren als IPSec
 - geringere Performance als IPSec
- ▶ IPSec
 - integraler Bestandteil von IPv6
 - eigenständig auch für IPv4 verfügbar

IDS

- Einbruchserkennung
- Unterschieden wird
 - ► HIDS ... Host Intrusion Detection System
 - oft auch mit Firewalls kombiniert
 - \blacktriangleright wird nur versucht Veränderungen an Dateien zu erkennen \to System Integrity Verifier, z.B. OSSEC, tripwire, Samhain, Snort
 - NIDS ... Network Intrusion Detection System
- ► Einbruchsabwehr → Intrusion Prevention System (IPS)

Audit Tools

- Verwendung im Zuge des Audit-Trail Managements
- ► Beispielhaft:
 - Anwendungsschicht: Schwachstellenscanner, Brute Force Tools, Virenscanner
 - Transportschicht: Scanner, OS-Fingerprinting (wie z.B. nmap)
 - ► Vermittlungsschicht: ICMP-Packet-Injectors
 - Sicherungsschicht: ARP-Spoofer (z.B. Ettercap)
 - Bitübertragungsschicht: Sniffer (wie z.B. Wireshark)