Detailed structure of GNs-LSTM

Index	Input	Operation	Details		
(0)	Task Vector	Task fea. encode	1) GRU(300, 64, batch_first=True, bidirectional=T rue), weights=((192, 300), (192, 64), (192,), (192,), (192,), (192, 64), (192,), (192,)) 2) Linear(1800, 640,), ReLU()		
(1)	Scene graph X_E, X_S	Graph fea. encode1	 Linear(267, 512), ReLU(), Linear(512, 11) (node_mlp1): Linear(139, 512), ReLU(), Linear(512, 139) (node_mlp2): Linear(267, 512), ReLU(), Linear(512, 128) 		
(2)	(1)	Graph fea. encode1	1) (edge_mlp1): Linear(267, 512), ReLU(), Linear (512, 11,) 2) (node_mlp1): Linear(139, 512), ReLU(), Linear(512, 139) 3) (node_mlp2): Linear(267, 512), ReLU(), Linear(512, 64)		
(3)	(0), (2)	Sequence prediction	1) LSTM(22, 1280, batch_first=True), weights=((5 120, 22), (5120, 1280), (5120,), (5120,))		
(4)	(3)	Actions prediction	1) Linear(1280, 10), Softmax(), dropout=0.4		
(5)	(3)	Objects prediction	1) Linear(1280, 11), Softmax(), dropout=0.4		

Detailed structure of MLP-LSTM

Index	Input	Operation	Details		
(0)	Task Vector		1) GRU(300, 32, batch_first=True, bidirectional=T		
		Task fea.	rue) weights=((96, 300), (96, 32), (96,), (96,),		
		encode	(96, 300), (96, 32), (96,), (96,))		
			2) Linear(1800, 640,), ReLU()		
	Scene graph	Graph fea. encode	1) (rel_encode): Linear(10, 64), ReLU()		
			2) (att_encode): Linear(7, 64), ReLU()		
(1)			3) (class_encode): GRU(300, 32, batch_first=Tru		
			e), weights=((96, 300), (96, 32), (96,), (96,),		
			(96, 300), (96, 32), (96,), (96,))		
(2)	(1)	Graph fea.	Linear(102, 64), DoLLI()		
		encode	1) Linear(192, 64), ReLU()		
(3)	(0), (2)	Sequence	1) LSTM(22, 1280, batch_first=True), weights=((5		
		prediction	120, 22), (5120, 1280), (5120,), (5120,))		
(4)	(3)	Actions	Linear(1280, 10), Softmax(), dropout=0.4		
		prediction			
(5)	(3)	Objects			
		prediction	1) Linear(1280, 11), Softmax(), dropout=0.4		
		Eq. (5.2.2.5)			

Detailed structure of GNs-MLP

Index	Input	Operation	Details	
(0)	Task Vector		1)	GRU(300, 64, batch_first=True, bidirectional=
		Task fea.		True), weights=((192, 300), (192,64),(192,),(19
		encode		2,), (192, 300), (192, 64), (192,),(192,))
			2)	Linear(1800, 640,), ReLU()
			1)	(edge_mlp1):Linear(267, 512), ReLU(), Linear
(1)				(512, 11)
	Scene graph	Graph fea.	2)	(node_mlp1): Linear(139, 512), ReLU(), Linea
	X_E, X_S	encode1		r(512, 139)
			3)	(node_mlp2): Linear(267, 512), ReLU(), Linea
				r(512, 128)
	(1)		1)	(edge_mlp1): Linear(267, 512), ReLU(), Linea
				r(512, 11,)
(2)		Graph fea.	2)	(node_mlp1): Linear(139, 512), ReLU(), Linea
(2)		encode1		r(512, 139)
			3)	(node_mlp2): Linear(267, 512), ReLU(), Linea
				r(512, 64)
(3)	(0), (2)	Seqencoder	1)	Linear(22, 640), ReLU()
(4)	(3)	Sequence	1)	Linear(1920, 1280), ReLU()
		prediction		
(5)	(4)	Actions	1)	Linear(1280, 10), Softmax(), dropout=0.4
		prediction		
(6)	(4)	Objects	1)	Linear(1280, 11), Softmax(), dropout=0.4
		prediction	1)	

Figure 1 shows the change curves of loss and accuracy of each model in Table II during the test. It can be seen that with the progress of the learning process, the algorithm gradually summarizes the characteristics of the re-planning model and gets a high return on the target function value. After the 80th iteration, the oscillation tends to converge.

