1. From last time

- a. Finished filling out the binary code table for our edge-detector circuit
- b. Table repeated below

Present State	Binary	Pres	ent S	tate	Input	Next State			Output
Present State	Code	Α	В	C	X	Α'	B'	ù	Z
i	000	0	0	0	0	0	0	1	0
i	000	0	0	0	1	0	1	0	0
0	001	0	0	1	0	0	1	1	0
0	001	0	0	1	1	1	0	0	0
1	010	0	1	0	0	1	0	1	0
1	010	0	1	0	1	1	1	0	0
00	011	0	1	1	0	0	1	1	0
00	011	0	1	1	1	1	0	0	0
01	100	1	0	0	0	1	0	1	1
01	100	1	0	0	1	1	1	0	1
10	101	1	0	1	0	0	1	1	1
10	101	1	0	1	1	1	0	0	1
11	110	1	1	0	0	1	0	1	0
11	110	1	1	0	1	1	1	0	0

c. Use above to create K-maps

- i. Inputs are the concatenation of the current state variables A, B, C, and the input x
- ii. Outputs of each K-map are the next state variables A', B', C' and the output z
 - 1. Need to create 4 different K-maps, one for each variable
- iii. Since state 111 wasn't assigned, combinations of that with x are don't cares

Α		AB					В		AB					С		AB				_
		00	01	11	10				00	01	11	10				00	01	11	10	
	00	0	1	(1)	1			00	0	0	0	0			00	1	1	1	1	
Cv	01	0	1	$\lfloor 1 \rfloor$	1		_	01	1	1	1	1		Сх	01	0	0	0	0	
Cx	11	1	1	d	1		Cx	11	0	0	d	0		CA	11	0	0	d	0	
	10	0	0	d	0			10	1	1	d	1			10	1	1	d	1	
$A = B\bar{C} + A\bar{C} + Cx$				$B = C\bar{x} + C\bar{x}$					$C = \bar{x}$;				•						

- d. Use above derivations from K-maps to design initial combinational circuit
- e. Create K-map based on value to determine the output combinational circuit
 - i. Remember, Moore models don't use the input to determine the current output
 - 1. Therefore, K-map for z only uses A, B, and C
 - ii. Mealy model difference
 - 1. Mealy models use the current input to determine the current output
 - 2. Final K-map for output z would incorporate current flip-flop values as well as input x

Z		AB									
		00	01	11	10						
С	0	0	0	0	1						
L	1	0	0	0	1						
		$z = A\overline{B}$									
			1								

2. Mealy model versus Moore

- a. In general, Mealy model usually involves less circuitry
 - i. In this case, it does
 - ii. Only need two DFFs to remember previous bit
 - iii. XOR those values with input to give final output

3. Minimization

- a. Did the 7-state Moore model edge detector earlier
- b. Can minimize this down to 5 states, as shown below

c. Some definitions

- i. Two states S_i and S_j are *equivalent* if and only if for every possible input sequence, the same output sequence will be produced, regardless of whether S_i or S_i is the initial state
- ii. A successor to state S_i is a state that it transitions to based on its input
 - 1. S_0 in the unminimized FSM has S_{00} and S_{01} as its successors
 - 2. Differentiate successors based on input
 - a. S_{00} is the *O-successor* of S_0
 - b. S_{01} is the *1-successor* of S_0
 - c. Collectively, all immediate successors of a state form the k-successors of the state
- iii. A block is a subset of states that may be equivalent
- iv. A *partition* is a set of blocks where the states in each block are not equivalent to the states in the other blocks

4. Partition minimization procedure

- a. Will use the unminimized edge detector FSM for the rest of this example
- b. Start with all states in one partition and in same block
 - i. $P_1 = (S_i, S_0, S_1, S_{00}, S_{01}, S_{10}, S_{11})$
- c. Create P₂ by dividing states in P₁ that have same outputs
 - i. From definition of equivalent, states that have different outputs cannot be equivalent
 - ii. $P_2 = (S_i, S_0, S_1, S_{00}, S_{11}) (S_{01}, S_{10})$
- d. Create P₃ by looking at k-successors of each state
 - i. States of a block that have k-successors that in are different blocks from others in the block must be placed in new blocks, grouped by their shared k-successors

- ii. Look at first block $(S_i, S_0, S_1, S_{00}, S_{11})$
 - 1. 0-successors for the $(S_i, S_0, S_1, S_{00}, S_{11})$ block of P_2 are $S_0, S_{00}, S_{10}, S_{00}, S_{10}$, respectively
 - a. Need to divide states into those that stay in the block, and those that move to the (S_{01}, S_{10}) of P_2
 - b. Thus, we get (S_i, S_0, S_{00}) and (S_1, S_{11}) .
 - 2. 1-successors for (S_i, S_0, S_{00}) are S_1, S_{01}, S_{01} , respectively
 - a. So, we divide into (S_i) and (S_0, S_{00}) .
 - 3. 1-succesors for (S_1, S_{11}) are S_{11}, S_{11} , so it will not need to be divided.
 - 4. First block of P_2 will be divided into the three blocks (S_i) , (S_1, S_{11}) and (S_0, S_{00}) in P_3 .
- iii. Now look at second block (S_{01} , S_{10})
 - 1. O-successors for the (S_{01}, S_{10}) block of P_2 are S_{10}, S_{00} , respectively
 - 2. These are in different blocks from each other in P_2
 - 3. Will have to divide into two separate blocks (S_{01}) , and (S_{10})
- iv. So $P_3 = (S_i)(S_1, S_{11})(S_0, S_{00})(S_{01})(S_{10})$

e. Further partitions

- i. Once a block has one state in it, don't need to partition it further
 - 1. Will still need to use it to determine k-successors, though
- ii. P₄ and further partitions look at each multiple-element block of the previous partition to see if the k-successors of its elements lead to the same blocks of the previous partition
 - 1. If not, the block must be further divided
 - 2. If any block splits, then we must continue to another step of partitioning
 - 3. If no block splits, then we are done
- iii. Look at P4 now
 - 1. 0-successors of (S_1, S_{11}) are both block (S_{10}) , so that will not cause the block to split.
 - 2. 1-successors are both (S_1 , S_{11}), so there is no need to separate the block further during this partitioning step
 - 3. O-successors of (S_0, S_{00}) are both block (S_0, S_{00}) , so that will not cause the block to split
 - 4. 1-successors are both (S_{01}), so there is no need to separate the block further during this partitioning step
- iv. Since no block split, the final minimized partition is $P_3 = (S_i)(S_1, S_{11})(S_0, S_{00})(S_{01})(S_{10})$
 - 1. This matches the five-state minimized state diagram