4723 Core Mathematics 3

1 (i)	Obtain integral of form ke^{-2x} Obtain $-4e^{-2x}$	M1 A1		any constant <i>k</i> different from 8 or (unsimplified) equiv
(ii)	Obtain integral of form $k(4x+5)^7$ Obtain $\frac{1}{28}(4x+5)^7$ Include + c at least once	M1 A1 B1	5	any constant <i>k</i> in simplified form in either part
2 (i)	Form expression involving attempts at y values and addition Obtain $k(\ln 4 + 4 \ln 6 + 2 \ln 8 + 4 \ln 10 + \ln 12)$ Use value of k as $\frac{1}{3} \times 2$ Obtain 16.27 State 162.7 or 163	A1 A1	 	with coeffs 1, 4 and 2 present at least once any constant <i>k</i> or unsimplified equiv or 16.3 or greater accuracy (16.27164)
3 (i)	Attempt use of identity for $\tan^2 \theta$	M1	5	using $\pm \sec^2 \theta \pm 1$; or equiv
	Replace $\frac{1}{\cos \theta}$ by $\sec \theta$ Obtain $2(\sec^2 \theta - 1) - \sec \theta$	B1 A1	3	or equiv
(ii)	Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$ Relate $\sec \theta$ to $\cos \theta$ and attempt at least one value of θ Obtain 60°, 131.8° Obtain 60°, 131.8°, 228.2°, 300°	M1 M1 A1 A1	4	as far as factorisation or substitution in correct formula may be implied allow 132 or greater accuracy allow 132, 228 or greater accuracy; and no others between 0° and 360°
4 (i)	Obtain derivative of form $kx(4x^2 + 1)^4$ Obtain $40x(4x^2 + 1)^4$ State $x = 0$	M1 A1 A1	3	any constant k or (unsimplified) equiv and no other; following their derivative of form $kx(4x^2 + 1)^4$
(ii)	Attempt use of quotient rule Obtain $\frac{2x \ln x - x^2 \cdot \frac{1}{x}}{(\ln x)^2}$	M1 A1		or equiv
	Equate to zero and attempt solution Obtain $e^{\frac{1}{2}}$	M1 A1	4	as far as solution involving e or exact equiv; and no other; allow from ± (correct numerator of derivative)

5 (i)	State 40 Attempt value of k using 21 and 80 Obtain $40e^{21k} = 80$ and hence 0.033 Attempt value of M for $t = 63$ Obtain 320 Differentiate to obtain $ce^{0.033t}$ or $40ke^{kt}$ Obtain $40 \times 0.033e^{0.033t}$ Obtain 2.64	B1 M1 A1 M1 A1 A1 A1	 I	or equiv or equiv such as $\frac{1}{21} \ln 2$ using established formula or using exponential property or value rounding to this any constant c different from 40 following their value of k allow 2.6 or 2.64 ± 0.01 or greater accuracy (2.64056)			
6 (i)	Attempt correct process for finding inverse Obtain $2x^3 - 4$ State $\sqrt[3]{2}$ or 1.26	M1 A1 B1	3	maybe in terms of y so far or equiv; in terms of x now			
(ii)	State reflection in $y = x$ Refer to intersection of $y = x$ and $y = f(x)$ and hence confirm $x = \sqrt[3]{\frac{1}{2}x + 2}$	B1 B1	2	or clear equiv AG; or equiv			
(iii)	Obtain correct first iterate Show correct process for iteration Obtain at least 3 correct iterates in all A1 allowing recovery after error Obtain 1.39 A1 4 following at least 3 steps; answer required to exactly 2 d.p. $[0 \to 1.259921 \to 1.380330 \to 1.390784 \to 1.391684 \\ 1 \to 1.357209 \to 1.388789 \to 1.391512 \to 1.391747 \\ 1.26 \to 1.380337 \to 1.390784 \to 1.391684 \to 1.391761 \\ 1.5 \to 1.401020 \to 1.392564 \to 1.391837 \to 1.391775 \\ 2 \to 1.442250 \to 1.396099 \to 1.392141 \to 1.391801]$						
7 (i)	Refer to stretch and translation State stretch, factor $\frac{1}{k}$, in <i>x</i> direction State translation in negative <i>y</i> direction by a [SC: If M0 but one transformation complete						
(ii)	Show attempt to reflect negative part in <i>x</i> -axis Show correct sketch	M1 A1	2	ignoring curvature with correct curvature, no pronounced 'rounding' at x-axis and no obvious maximum point			
(iii)	Attempt method with $x = 0$ to find value of Obtain $a = 14$ Attempt to solve for k Obtain $k = 3$	aM1 A1 M1 A1	4 9	other than (or in addition to) value -12 and nothing else using any numerical a with sound process			

8 (i)	-	to express x or x^2 in terms of y	M1		
	Obtain :	$x^2 = \frac{1296}{(y+3)^4}$	A1		or (unsimplified) equiv
	Obtain ir	stegral of form $k(y+3)^{-3}$	M1		any constant k
	Obtain -	$-432\pi(y+3)^{-3}$ or $-432(y+3)^{-3}$	A1		or (unsimplified) equiv
	Attempt	evaluation using limits 0 and p	M1		for expression of form $k(y+3)^{-n}$ obtained from integration attempt; subtraction correct way round
	Confirm	$16\pi(1-\frac{27}{(p+3)^3})$	A1	6	AG; necessary detail required, including
		(p+3) ^c			appearance of π prior to final line
(ii)	State or o	obtain $\frac{dV}{dp} = 1296\pi (p+3)^{-4}$	B1		or equiv; perhaps involving y
	Multiply	$\frac{\mathrm{d}p}{\mathrm{d}t}$ and attempt at $\frac{\mathrm{d}V}{\mathrm{d}p}$	*M1		algebraic or numerical
		e $p = 9$ and attempt evaluation	M1		dep *M
	Obtain -	$\frac{1}{4}\pi$ or 0.785	A1	_	or greater accuracy
				10	
9 (i)	State co	$s 2\theta \cos \theta - \sin 2\theta \sin \theta$	B1		
		ast one of $\cos 2\theta = 2\cos^2 \theta - 1$			
		$\sin 2\theta = 2\sin \theta \cos \theta$ to express in terms of $\cos \theta$ only	B1 M1		using correct identities for
	rttempt	to express in terms of cost only	1711		$\cos 2\theta$, $\sin 2\theta$ and $\sin^2 \theta$
	Obtain 4	$4\cos^3\theta - 3\cos\theta$	A1	4	AG; necessary detail required
(ii)		State or imply $\cos 6\theta = 2\cos^2 3\theta$ – Use expression for $\cos 3\theta$ and	1B1		
		_	M1		for expression of form $\pm 2\cos^2 3\theta \pm 1$
		Obtain $32c^6 - 48c^4 + 18c^2 - 1$	A1	3	AG; necessary detail required
		State $\cos 6\theta = 4\cos^3 2\theta - 3\cos 2\theta$	B1		maybe implied
		Express $\cos 2\theta$ in terms of $\cos \theta$	N/1		for expression of form $\pm 2\cos^2\theta \pm 1$
		and attempt expansion Obtain $32c^6 - 48c^4 + 18c^2 - 1$	M1 A1	(3)	AG; necessary detail required
(iii)		e for $\cos 6\theta$	*M1		with simplification attempted
	Obtain $32c^6 - 48c^4 = 0$ Attempt solution for c of equation				
			A1 M1		or equiv dep *M

Obtain $32c^6 - 48c^4 = 0$ A1 or equiv Attempt solution for c of equation M1 dep *M Obtain $c^2 = \frac{3}{2}$ and observe no solutions A1 or equiv; correct work only Obtain c = 0, give at least three specific angles and conclude odd multiples of 90 A1 5 AG; or equiv; necessary detail required; correct work only