Gramatyki SLR, LR(1) i LALR

Języki formalne i techniki translacji - Wykład 11

Maciek Gębala

18 grudnia 2018

Maciek Gebala

Gramatyki SLR, LR(1) i LALR

Tablice analizatorów SLR

- Sytuacją LR(0) nazywamy produkcję z gramatyki G z kropką w jakimś miejscu prawej strony.
- Z produkcji $A \to XYZ$ możemy otrzymać cztery sytuacje: $A \to \cdot XYZ$, $A \to X \cdot YZ$, $A \to XY \cdot Z$ i $A \to XYZ \cdot$, a z produkcji $A \to \varepsilon$ jedną $A \to \cdot$.
- Każdą sytuację możemy reprezentować parą liczb: numer produkcji i pozycja kropki.
- Konstruujemy z gramatyki deterministyczny automat skończony rozpoznający odpowiednie prefiksy.
- Sytuacje można traktować jak stany automatu niedeterministycznego.
- Rozważane gramatyki uzupełniamy o specjalną produkcję początkową $\mathcal{S}' o \mathcal{S}.$

Maciek Gębal

Gramatyki SLR, LR(1) i LAL

Operacja domknięcia

Jeśli I jest zbiorem sytuacji z gramatyki G to domknięcie(I) jest zbiorem sytuacji otrzymanych z I przy zastosowaniu reguł

- Każda z sytuacja z I należy do domknięcie(I).
- ⓐ Jeśli $A \rightarrow \alpha \cdot B\beta$ jest w domknięcie(I), a $B \rightarrow \gamma$ jest produkcją to do domknięcie(I) dodajemy $B \rightarrow \cdot \gamma$. Powtarzamy, dopóki można dodać nowe elementy.

Maciek Gębala

iramatyki SLR, LR(1) i LALR

Przykład

$$E' \rightarrow E$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

- Niech $I = \{[E' \rightarrow \cdot E]\}.$
- Wtedy domknięcie(I) zawiera

$$\begin{array}{ccc} E' & \rightarrow & \cdot E \\ E & \rightarrow & \cdot E + T \mid \cdot T \\ T & \rightarrow & \cdot T * F \mid \cdot F \\ F & \rightarrow & \cdot (E) \mid \cdot \textit{id} \end{array}$$

Notatki
Notatki
Notatki

Operacja przejścia	Notatki
Jeśli / jest zbiorem sytuacji a <i>X</i> symbolem z gramatyki, to przejście(<i>I</i> , <i>X</i>) jest domknięciem zbioru wszystkich sytuacji	
$A o \alpha X \cdot \beta$ takich, że $A o \alpha \cdot X \beta$ jest w <i>I</i> .	
Maciek Gebala Gramatyki SLR, LR(1) i LALR	
mercian Operas Gramayar Sch. Let (1) LACA	
Przykład	Notatki
$E' \rightarrow E$ $E \rightarrow E + T \mid T$	
$T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$	
, (2) 10	
 Niech I = {[E' → E·], [E → E·+T]}. Wtedy przejście(I, +) zawiera 	
$E \rightarrow E + \cdot T$	
$egin{array}{ll} T & ightarrow & \cdot T * F \mid \cdot F \ F & ightarrow & \cdot (E) \mid \cdot id \end{array}$	
Maciok Gebala Gramatyki SLR, LR(1) I LALR	
Konstruowanie zbiorów sytuacji	Notatki
Dopóki C może się powiększyć to dla każdego zbioru sytuacji $I \in C$ i każdego symbolu X takiego, że przejście $(I,X) \neq \emptyset$ dodaj	
przejście (I,X) do C .	
Maciek Ogbata Gramatyki SLR, LR(1) i LALR	
Drauklad	
Przykład	Notatki
• $I_0: E' \to \cdot E, E \to \cdot E + T, E \to \cdot T, T \to \cdot T * F, T \to \cdot F,$ $F \to \cdot (E), F \to \cdot id$	
• $I_1: E' \rightarrow E \cdot , E \rightarrow E \cdot + T$ • $I_2: E \rightarrow T \cdot , T \rightarrow T \cdot *F$	
• $t_3: T \to F$. • $t_4: F \to (\cdot E), E \to \cdot E + T, E \to \cdot T, T \to \cdot T * F, T \to \cdot F,$	
$F ightarrow \cdot (E), \ F ightarrow \cdot id$ • I_5 : $F ightarrow id \cdot$	
• $I_6: E \to E + \cdot T, T \to \cdot T * F, T \to \cdot F, F \to \cdot (E), F \to \cdot id$ • $I_7: T \to T * \cdot F, F \to \cdot (E), F \to \cdot id$	
• $l_8: F \to (E \cdot), E \to E \cdot + T$ • $l_9: E \to E + T \cdot, T \to T \cdot *F$	
• $I_{10}: T \rightarrow T * F$	
$\bullet \ \ I_1: F \to (E).$	

Funkcja przejścia dla utworzonego DFA

	E	Τ	F	()	+	*	id
10	<i>I</i> ₁	12	<i>I</i> ₃	14				<i>I</i> ₅
- I ₁						16		
12							17	
<i>I</i> ₃								
14	<i>I</i> ₈	<i>I</i> ₂	<i>I</i> ₃					<i>I</i> ₅
<i>I</i> ₅								
16		<i>l</i> ₉	<i>I</i> ₃	14				<i>I</i> ₅
17			I ₁₀	14				<i>I</i> ₅
-I ₈					<i>I</i> ₁₁	16		
<i>I</i> ₉							17	
<i>I</i> ₁₀								
/11								

Konstrukcja tablicy analizatora SLR

- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- Stan i budujemy z Ii. Akcje analizatora dla stanu i wyznaczamy następująco:
 - Jeśli $[A \rightarrow \alpha \cdot a\beta] \in I_i$, a jest terminalem i przejście $(I_i, a) = I_j$ to
 - Jesii $[A \to \alpha : a_i] \in I_i$, a joo sommer akcja[i, a] = j.

 Jesii $[A \to \alpha :] \in I_i$ to akcja $[i, a] = A \to \alpha$ dla wszystkich $a \in FOLLOW(A)$ $(A \ne S')$.

 Jesii $[S' \to S :] \in I_i$ to akcja[i, \$] = ACC.
- **③** Jeśli przejście(I_i , A) = I_j to przejście[i, A] = j.
- Stan startowy analizatora to stan odpowiadający zbiorowi sytuacji zawierającemu [$\mathcal{S}'
 ightarrow \cdot \mathcal{S}$].

Przykład

$$S \rightarrow L = R|R, L \rightarrow *R|id, R \rightarrow L$$

 $\textit{I}_{0}:\textit{S'}\rightarrow\cdot\textit{S},\,\textit{S}\rightarrow\cdot\textit{L}=\textit{R},\,\textit{S}\rightarrow\cdot\textit{R},\,\textit{L}\rightarrow\cdot\ast\textit{R},\,\textit{L}\rightarrow\cdot\textit{id},\,\textit{R}\rightarrow\cdot\textit{L};\,\textit{I}_{1}:$ $S' \rightarrow S \cdot; \not b : S \rightarrow L \cdot = R, R \rightarrow L \cdot; \not b_3 : S \rightarrow R \cdot; \not l_4 : L \rightarrow * \cdot R, R \rightarrow \cdot L, L \rightarrow * R, L \rightarrow * id; \not l_5 : L \rightarrow id \cdot; \not l_6 : S \rightarrow L = R, R \rightarrow \cdot L, L \rightarrow * R, L \rightarrow * id; \not l_7 : L \rightarrow * R \cdot; \not l_8 : R \rightarrow L \cdot; \not l_9 : S \rightarrow L = R \cdot;$

Co to jest akcja[2,=]?

- akcja[2, =] = 6 bo przejście(I_2 , =) = I_6
- $akcja[2, =] = R \rightarrow L bo = \in FOLLOW(R)$
- Konflikt redukcja/przesunięcie

Kanoniczne tablice analizatorów LR

- Przechowujemy w stanie więcej informacji aby wykluczyć niektóre konflikty.
- Rozszerzamy definicję sytuacji przez dodanie do produkcji z kropką terminala lub \$. (Sytuacja LR(1))
- Drugą składową nazywamy podglądem sytuacji.
- Redukcję $\mathbf{A} \rightarrow \alpha$ wykonujemy tylko dla tych symboli wejściowych a dla których sytuacja [$A \rightarrow \alpha$, a] wyznaczyła stan z wierzchołka

Notatki
Notatki
Votatki
Jotatki
Jotatki
Jotatki
Jotatki
Notatki
Votatki
Votatki
Votatki
Notatki
Notatki
Notatki
Notatki

Konstruowanie sytuacji LR(1)

Dopóki można dodać nowy element do I dla każdej sytuacji $[{\it A}
ightarrow lpha \cdot {\it B}eta, {\it a}] \in {\it I}$, każdej produkcji ${\it B}
ightarrow \gamma \in {\it G}'$ i każdego terminala $b \in FIRST(\beta a)$ dodaj $[B \rightarrow \cdot \gamma, b]$ do I.

przejście(I, X)

J – zbiór sytuacji [A → αX · β, a] takich, że [A → α · Xβ, a] ∈ I. przejście(I, X) = domknięcie(J).

Konstruowanie zbiorów sytuacji *LR*(1)

- Dopóki C może się powiększyć to dla każdego zbioru sytuacji $I \in \mathcal{C}$ i każdego symbolu X takiego, że przejście $(I,X) \neq \emptyset$ dodaj przejście(I, X) do C.

Konstrukcja kanonicznej tablicy analizatora LR

- **①** Zbuduj $C = \{I_0, \dots, I_n\}$ rodzinę zbiorów sytuacji LR(1) dla G'.
- Stan i budujemy z li. Akcje analizatora dla stanu i wyznaczamy następującó:
 - Jeśli $[A \rightarrow \alpha \cdot a\beta, b] \in I_i$, a jest terminalem i przejście $(I_i, a) = I_j$ to akcja[i, a] = j. Jeśli [$A \to \alpha$, b] $\in I_i$ to akcja[i, b] = $A \to \alpha$ ($A \ne S'$). Jeśli [$S' \to S$, \$] $\in I_i$ to akcja[i, \$] = ACC.
- **3** Jeśli przejście(I_i , A) = I_j to przejście[i, A] = j.
- Stan startowy analizatora to stan odpowiadający zbiorowi sytuacji zawierającemu $[S' \rightarrow \cdot S, \$]$.

Gramatyki LALR

- Tablice analizatorów LR(1) są często bardzo duże tablice LALR są przeważnie mniejsze.
- Główna idea to łączenie takich stanów LR(1) które nie powodują konfliktów.

Jądro sytuacji

Jądrem sytuacji nazywamy te sytuacje których prawa strona nie zaczyna się od kropki oraz sytuację $\mathcal{S}' o \cdot \mathcal{S}$. (Rozpatrujemy sytuacje

Operacja domknięcia zbioru sytuacji LR(0) dodaje tylko sytuacje spoza jądra.

Przykład

 $\mathcal{S}' \to \mathcal{S}$ $\textbf{\textit{S}} \rightarrow \textbf{\textit{CC}}$ $C \rightarrow cC|d$

Zbiory sytuacji

 $\begin{array}{l} \textit{I}_0: [\textit{S}' \rightarrow \cdot \textit{S},\$], [\textit{S} \rightarrow \cdot \textit{CC},\$], [\textit{C} \rightarrow \cdot \textit{cC},\textit{c}/\textit{d}], [\textit{C} \rightarrow \cdot \textit{d},\textit{c}/\textit{d}]; \\ \textit{I}_1: [\textit{S}' \rightarrow \textit{S}\cdot,\$]; \end{array}$ $\emph{l}_{2}: [\emph{S} \rightarrow \emph{C} \cdot \emph{C},\$], [\emph{C} \rightarrow \cdot \emph{cC},\$], [\emph{C} \rightarrow \cdot \emph{d},\$];$ $I_3: [C \rightarrow c \cdot C, c/d], [C \rightarrow \cdot cC, c/d], [C \rightarrow \cdot d, c/d];$ $I_4: [C \rightarrow d \cdot, c/d];$ $I_5:[S \rightarrow CC \cdot, \$];$ $l_6: [C \rightarrow c \cdot C, \$], [C \rightarrow \cdot cC, \$], [C \rightarrow \cdot d, \$];$ $l_7: [C \rightarrow d, \$];$ $I_8:[C
ightarrow cC \cdot, c/d]; \ I_9:[C
ightarrow cC \cdot, \$];$

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Przykład

Kanoniczna tablica	analiz	ator	а					
	stan		akcj	а	prze	jście		
		С	d	\$	S	С		
	s ₀	S 3	S ₄		<i>S</i> ₁	S ₂		
	s_1			acc				
	s ₂	S 6	S 7			S 5		
	s 3	S 3	S_4			s 8		
	s_4	<i>r</i> ₃	<i>r</i> ₃					
	s 5			<i>r</i> ₁				
	s ₆	S 6	S 7			S 9		
	s_7			<i>r</i> ₃				
	s 8	<i>r</i> ₂	r_2					
	S 9			r_2				

aciek Gebala

Gramatyki SLR, LR(1) i LALR

Przykład

Porównajmy stany s_3 i s_6 , s_4 i s_7 , oraz s_8 i s_9 . Poszczególne pary mają te same jądra sytuacji (różnią się one tylko podglądanym symbolem).

Czy połączenie stanów może spowodować konflikt?

Tak. Jest to jednak mało prawdopodobne dla błędu przesunięcie/redukcja. Może natomiast zajść błąd redukcja/redukcja. Stąd nie wszystkie gramatyki *LR*(1) są gramatykami *LALR*(1).

Maciek Gębala

Gramatyki SLR, LR(1) i LALR

Przykład powstania konfliktu

 ${\it S'} \rightarrow {\it S}, \quad {\it S} \rightarrow {\it aAd}|{\it bBd}|{\it aBe}|{\it bAe}, \quad {\it A} \rightarrow {\it c}, \quad {\it B} \rightarrow {\it c}$

Tworząc zbiory sytuacji otrzymamy m.in. $\{[A \to c \cdot, d], [B \to c \cdot, e]\}$ i $\{[A \to c \cdot, e], [B \to c \cdot, d]\}$. Zaden z tych zbiorów nie wywołuje konfliktów.

Ich suma $\{[A \to c \cdot, d/e], [B \to c \cdot, d/e]\}$ wywołuje konflikt.

Maciek Gębala

Gramatyki SLR, LR(1) i LALF

Metoda budowania tablic LALR

- Zbuduj $C = \{I_0, \dots, I_n\}$ rodzinę zbiorów sytuacji LR(1).
- Dla każdego jądra zbiorów sytuacji znajdź wszystkie zbiory o tym samym jądrze i zastąp je przez ich sumę.
- Niech C' = {J₀,...,J_m}. Utwórz na podstawie tego zbioru tablicę akcji i przejść. Jeśli nastąpił konflikt – przerwij (uznaj, że gramatyka nie jest typu LALR(1)).

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Przykład

Tablica analizatora	a <i>LALF</i>	R(1)					
	stan	С	akcja d	١ \$	prze	ejście <i>C</i>	
	s ₀	s ₃₆	S ₄₇		<i>S</i> ₁	<u>s</u> 2	
	S 1			acc			
	s ₂	s ₃₆	S ₄₇			s 5	
	s 36	S 36	S ₄₇			S 89	
	S ₄₇	<i>r</i> ₃	r ₃	r_3			
	s 5			r_1			
	S 89	<i>r</i> ₂	r ₂	r_2			

faciek Gebala

Gramatyki SLR, LR(1) i LALR

Różnice w działaniu LR(1) i LALR(1)

Dla poprawnych danych obie metody działają identycznie dając to samo wyprowadzenie.

Dla niepoprawnych wejść analiza *LALR*(1) może wykonać pewne redukcje po zgłoszeniu błędu przez analizę *LR*(1). Ale analiza *LALR*(1) nie wykona już żadnego przesunięcia.

Maciek Gębala

Gramatyki SLR, LR(1) i LALR

Przykład

S' o S S o CC C o cC|d

Słowo: ccd

LR(1) odłoży na stosie $s_0cs_3cs_3ds_4$ i widząc $s_0cs_3cs_3ds_4$

- LALR(1) odłoży na stosie $s_0cs_{36}cs_{36}ds_{47}$ i widząc \$ dokona redukcji $C \rightarrow d$ i zmieni stos na $s_0cs_{36}cs_{36}cs_{89}$.
- ullet Teraz wykona redukcję C o cC i otrzyma $s_0 cs_{36} Cs_{89}$.
- Następna redukcja $C \rightarrow cC$ i otrzyma $s_0 C s_2$.
- I dopiero teraz wykryje błąd.

Maciek Gebala

Gramatyki SLR, LR(1) i LALR

Obsługa błędów w analizie LR

Kanoniczny analizator LR przed zgłoszeniem błędu nigdy nie wykona żadnej redukcji. Analizatory SLR i LALR mogą wykonać pewną liczbę redukcji ale nie przesuną na stos błędnego symbolu wejściowego.

Tryb paniki

Przeglądamy stos w dół aż napotkamy stan s z przejściem dla pewnego nieterminala A. Następnie wyrzucamy z wejścia symbole aż znajdziemy symbol a który legalnie może występować po A. Odkładamy na stos przejście[s,A] i kontynuujemy analizę.

Uzupełnienie tablicy analizatora o obsługę błędów

W puste miejsca tablicy wstawiamy odpowiednie akcje korygujące stos i wejście.

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Analiza składniowa – podsumowanie

- Rola analizatora składniowego.
- Deterministyczne gramatyki bezkontekstowe.
- Analiza zstępująca: gramatyki LL(k).
- Analiza wstępująca: gramatyki operatorowe, SLR, LR i LALR.
- Obsługa błędów.

Maciek Gebala

oramatyle oeri, eri(1) revert

Notatki
Notatki
Notatki
Notatki
Notatki