Laser Pulsing Techniques

modes, mode locking, cavity dumping, pulse compression, grating pairs, femtosecond pulses

Energy and Power

- energy of a photon: $\varepsilon = hv$
- h, plank's constant in J s photon⁻¹, ν in s⁻¹
- i,e. energy is Joules per photon
- photon beam passes unit area per unit time, or energy area⁻¹ time⁻¹
- power is energy time⁻¹
- energy is power area⁻¹, or watts m⁻²

Standing Wave between Mirrors

- nodes at ends of cavity coherence
- integer # of half-wavelengths gives constructive interference
- $m\lambda/2 = L$
- several million half λ 's
- range restricted by gain bandwidth of lasing medium

confocal mirrors LENS **PHOTOGRAPHIC** TEM₂₀ TEM, TEM .. Lasers in Chemistry, D.L.Andrews, 3rd edn., Springer, 1997

TEM modes

- a) on axis TEM₀₀*
- b) off axis TEM₁₀
- (TEM_{pq}) confocal
- p, q, # intensity min.

multimode - less coherence $narrow \ cavity \Rightarrow TEM_{00}$

^{*}transverse electromagnetic mode

Laser Gain Profile

• modes - different wavelengths, $m\lambda/2 = L$

monochromaticity

- gratings and etalons isolate modes
- linewidth e.g. 1 cm⁻¹
 - − wavenumber $\Rightarrow 1/\lambda = \sqrt{1/2}$
- Quality factor, $Q = v / \Delta v$,
- $\nu \Rightarrow$ frequency, $\Delta \nu \Rightarrow$ spectral linewidth
 - can be 10⁸
 - $-\Delta\lambda = \lambda/\mathbf{Q}$
 - $-\Delta \tilde{\mathbf{v}} = \Delta \lambda / \lambda^2$

Cavity Dumping

fully reflective mirrors + switchable mirror to give single pulse

diffraction at AOM modulated at MHz ns pulses

sinusoidal output

$$Q = \frac{2\pi \times \text{energy stored in cavity}}{\text{energy stored per optical cycle}}$$

Q switching

- shutter increases losses (reduces Q) to give inversion w/o stimulated emission
- losses switched out to produce pulse optical cycle ⇒ inverse of resonant frequency

Q-switching

- pulse repetition rate determined by time to re-establish inversion
- depends on many factors including pumping rate
- interval between pulses usually seconds
- often reduces pulse width, e.g. ruby laser but increases peak irradiance
- e.g. 1 ms pulse at 10 J average 10kW becomes 10 ns with average power of 1GW (assuming no other losses)

Mode-Locking (ps)

cw laser

- $m\lambda/2 = L$
- v = mc' / 2L
- separated by $\Delta v = c / 2L$ (free spectral range)
- odye laser up to 10⁴ modes no grating etc, no phase coherence, intensity varies
- electro-optic switch, saturable absorbers, etc create "in-phase" at one point only - train of pulses

Mode-locking Theory

- pulse duration (width of pulse at half power) can be shown to be:
 - $\Delta t = 4\pi L / (2N + 1)c'$
- interval between pulses is round trip time
 - $-\tau = 2L/c'$
- ns between pulses and duration 1-10 ps
- greater the number of modes, N, shorter pulse length
- energy same before and after mode locking, so increased "power" in ps pulse (energy per unit time)

Mode Locking Method

random fluctuations of laser output no phase relationships between modes

saturable absorber e.g. DODCL 3,3' - diethyloxadicarbocyanine iodide

more intense pulses reduced less than smaller pulses

builds up single mode pulse via amplication in gain medium (gain is non linear) creates phase relatonship

Mode locking methods

- saturable aborber method is passive mode-locking
- active methods use modulation of the gain with electro-optic devices
- very similar to Q-switching
- light travelling in phase with modulation will amplify

Other pulse compression methods

- By use of other pulse compressoin methods, in conjunction with modelocking, can obtain ps and fs pulses
- duration of pulses less than 10⁻⁴ s are only a few optical cycles
 - $\Delta \upsilon \ \Delta \tau \ge 1/2\pi$ (time/frequency uncertainy principle)
- broad range of frequencies in short pulses

Colliding Pulse Mode-locked laser

- ring dye laser
- A1, A2, thin dye jets
- pump beam

 A 1

 An amplifier

 A 2

 absorber
- path length A1-A2 is 1/4 of total ring length
 L
- pulses travel in both directions, collide in absorber with maximum gain
- max time for amplifier to recover inversion after depletion by prior pulse
- pulse intensity at pulse collision is 2x
- larger satⁿ less absorption at absorber

Demtroder, Laser Spectroscopy, Springer, 2nd edn, 1998

- time in jet (<100 μ m) ~ 400 fs
- two colliding pulses form standing wave

- spatially modulated saturation occurs
- forms refractive index grating period $\lambda/2$
- partial reflection of two opposite pulses, interfere with each other and couple
- absorption of pulses at a min. at overlap
- pulses shorter with each round trip
- limited by spectral broadening (dispersion at dielectric mirror surfaces diff. λ 's in light)

Demtroder, Laser Spectroscopy, Springer, 2nd edn, 1998

Demtroder, Laser Spectroscopy, Springer, 2nd edn, 1998