Mini TP - Shell y Procesos

Propósito y sentido de la actividad	1
Producto final de la actividad	1
Evaluación y entrega	2
Insumos necesarios para el TP	2
Ayuda y consultas	2
Enunciado del Mini TP	3
Ejercicio 1 : Shell y terminal	3
Ejercicio 2 : Estados de un Proceso	3
Ejercicio 3 : Threads	4
Anexo	5
Consultas frecuentes del mintp	5

Propósito y sentido de la actividad

En este tp se practican los comandos más usados del sistema GNU/Linux. Conocer y ganar práctica en estos comandos será útil a lo largo de la materia así como también en la vida profesional donde el uso de este sistema puede ser excluyente e indispensable.

En este tp también se trabaja con el concepto de proceso y sus estados. Estos conceptos son la base para entender el funcionamiento de un sistema operativo y eventualmente mejorar su desempeño y performance.

Producto final de la actividad

Al finalizar esta actividad tendremos:

Un ejemplo de shell script Bash que nos permitirá avanzar sobre scripts más complejos.
 Podremos darle permisos y ejecutarlo.

• Tendremos ejemplos básicos de programas escritos en el lenguaje C, sabremos compilarlos y ejecutarlos dentro del sistema GNU/Linux.

Evaluación y entrega

Esta actividad es individual, obligatoria y con autoevaluación. La fecha de entrega se encuentra en el calendario, ese mismo día se publicará la solución para que pueda realizar la autoevaluación.

Fecha de entrega: Ver calendario

Espacio de entrega: Por Moodle

Insumos necesarios para el TP

Para realizar esta actividad es necesario tener instalado un sistema GNU/Linux.

Se recomienda:

- La distribución Lubuntu (Light Ubuntu) por su equilibrio entre facilidad de instalación y rendimiento de la computadora. En el siguiente link se encuentra un tutorial para instalar el sistema Lubuntu en una máquina virtualbox <u>link</u>
- También se puede trabajar sobre el sistema Raspbian de la Raspberry Pi (para los alumnos que vienen de Organización del Computador del semestre anterior). En este caso, consultar a su docente por acceso remoto a la Raspberry Pi.

Ayuda y consultas

Para realizar consultas sobre algún error durante los experimentos se solicita enviar una captura de pantalla del error y la secuencia de pasos que realizaron para obtener ese error. Tendremos disponible un canal de consultas en Telegram, así como también el foro de consultas en moodle y los mails de los profesores.

Enunciado del Mini TP

Ejercicio 1 : Shell y terminal

- Realice un script de shell llamado miniTP.sh tal que realice las siguientes tareas:
 - Al momento de ejecutarse, el programa debe recibir por parámetro en la linea de comandos un nombre y debe crear un directorio con dicho nombre en el home del usuario.

Por ejemplo, la forma de ejecutarlo debe ser así: ./miniTP.sh pepito

Para acceder al home puede ejecutar: cd \$HOME

Si se ejecuta sin parámetros debe dar un mensaje de error, por ejemplo:

"Error: debe ejecutar con un parámetro al menos"

- Dentro del directorio creado en el punto anterior debe crear un archivo llamado contenido home.txt
- Debe agregar al archivo anterior el listado de todos los archivos del home (incluidos los archivos ocultos si existe alguno) y además de los nombres de los archivos se tienen que ver los permisos de los mismos.
- Al final, el script miniTP.sh debe mostrar por pantalla el contenido del archivo contenido_home.txt, esperar a que el usuario aprete enter y después terminar.

Ejercicio 2 : Estados de un Proceso

En esta parte vamos a aplicar nuestros conocimientos de procesos y sus estados.

- Realizar un programa en C compuesto de instrucciones que realizan cálculos (operaciones aritméticas) y operaciones de I/O (leer un input del usuario). Compilar y ejecutar su programa y visualizar los estados por los que pasa. Puede usar la herramienta htop.
- Ejecutar su programa y comprobar mediante el programa htop que su programa efectivamente cambia de estados.

```
Tasks: 110, 548 thr; 1 running
                                          Load average: 0.55 0.48 0.31
                                 2.6%
                                          Uptime: 04:10:18
                                 2.0%
                         2.55G/3.66G]
                                548M
                                        99M S
2326 andrew
                      0 9620M
                                               0.0 14.6 20:30.05
                                                                      usr/lib/fire/
                                                          0:00.01
                 20
                      9620M
                                548M
                                        99M S
                                               0.0
                                                   14.6
4571 andrew
3895 andrew
                 20
                      0 9620M
                                548M
                                        99M S
                                               0.0 14.6
                                                          0:00.32
3734 andrew
                 20
                                        99M S
                      9620M
                                548M
                                               0.0
                                                   14.6
                                                          0:00.47
                 20
                                        99M S
3726 andrew
                      0 9620M
                                548M
                                               0.0
                                                   14.6
                                                          0:00.48
3446 andrew
                                        99M S
                                                          0:01.26
                 20
                      9620M
                                548M
                                               0.0
                                                   14.6
                 20
                                539M 88508 S
                                                   14.4
                                                          9:22.14
3445 andrew
                      0 2249M
                                               0.0
                                     88508 S
                 20
4536 andrew
                      0 2249M
                                               0.0
                                                   14.4
                                                          0:00.02
                 20
                                539M
                                     88508
                                            S
3502 andrew
                      0 2249M
                                               0.0
                                                   14.4
                                                          0:00.06
3501 andrew
                 20
                      0 2249M
                                539M 88508
                                            S
                                               0.0
                                                   14.4
                                                          0:00.66
3500 andrew
                 20
                      0 2249M
                                539M 88508 S
                                               0.0 14.4
                                                          0:00.67
                 20
3499 andrew
                      0 2249M
                                539M 88508 S
                                               0.0 14.4
                                                          0:00.63
                 20
                      0 2249M
3496 andrew
                                539M 88508 S
                                               0.0 14.4
                                                          0:00.01
                F3SearchF4FilterF5SortedF6CollapF7Nic
                                                          -F8Nice
```

Ejemplo de una captura de htop

Ejercicio 3 : Threads

El siguiente programa ejecuta la función calculo_aritmetico() cinco veces. Esta función realiza un operación aritmética que requiere cierto tiempo y continúa:

```
#include <stdio.h> //incluimos la libreria de estandar input/output
#include <unistd.h> //para hacer sleep
#include <time.h> //para inicializar el tiempo

void calculo_aritmetico(){
  int contador=0;
  while(contador < 2147483647){
      contador=contador+1;
   }
}

int main() {`1
  calculo_aritmetico();
  calculo_aritmetico();
  calculo_aritmetico();
  calculo_aritmetico();
  calculo_aritmetico();
  calculo_aritmetico();
  calculo_aritmetico();
  return 0;
}</pre>
```

//para compilar: gcc calculo_aritmetico.c -o ejecutable

//para ejecutar: ./ejecutable

- Con la función time, medir el tiempo que tarda el programa anterior.
- Modificar el programa anterior para que cada una de las 5 llamadas a la función calculo_aritmetico() como un único hilo de ejecución.
- Medir el tiempo que tarda su nuevo programa. ¿Qué diferencias observa en el tiempo? ¿Por qué es importante la cantidad de núcleos en el procesador?

Fin del MiniTP

Anexo

Consultas frecuentes del mintp

<u>link</u>