CENG 216 - NUMERICAL COMPUTATION

INTERPOLATION - PART I

Mustafa Özuysal
mustafaozuysal@iyte.edu.tr

May 9, 2022

İzmir Institute of Technology

SLIDE CREDITS

Slides are based on material from the main textbook:

"Numerical Analysis", The new international edition, 2ed, by Timothy Sauer

1

DATA AND INTERPOLATING FUNCTIONS

INTERPOLATION

A function is said to interpolate a set of data points if it passes through those points.

Def: The function y = P(x) interpolates the data points $(x_1, y_1), \ldots, (x_n, y_n)$ if $P(x_i) = y_i \ \forall i = 1, \ldots, n$.

INTERPOLATION

A function is said to interpolate a set of data points if it passes through those points.

Def: The function y = P(x) interpolates the data points $(x_1, y_1), \ldots, (x_n, y_n)$ if $P(x_i) = y_i \ \forall i = 1, \ldots, n$.

To interpolate the n points $(x_1, y_1), \ldots, (x_n, y_n)$, we define the n-1 degree polynomials $L_k(x) \ \forall k, k=1, \ldots, n$:

$$L_k(x) = \frac{(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)}.$$

To interpolate the n points $(x_1, y_1), \ldots, (x_n, y_n)$, we define the n-1 degree polynomials $L_k(x) \ \forall k, k=1, \ldots, n$:

$$L_k(x) = \frac{(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)}.$$

Note that

$$L_k(x_k) = \text{ and } L_k(x_j) = \text{ for } j \neq k.$$

To interpolate the n points $(x_1, y_1), \ldots, (x_n, y_n)$, we define the n-1 degree polynomials $L_k(x) \ \forall k, k=1, \ldots, n$:

$$L_k(x) = \frac{(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)}.$$

Note that

$$L_k(x_k) = 1$$
 and $L_k(x_j) = 0$ for $j \neq k$.

To interpolate the n points $(x_1, y_1), \ldots, (x_n, y_n)$, we define the n-1 degree polynomials $L_k(x) \ \forall k, k=1, \ldots, n$:

$$L_k(x) = \frac{(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)}.$$

Note that

$$L_k(x_k) = 1$$
 and $L_k(x_j) = 0$ for $j \neq k$.

Then the interpolating polynomial of degree n-1 for these data points is

$$P_{n-1}(x) = y_1 L_1(x) + y_2 L_2(x) + \dots + y_n L_n(x),$$

To interpolate the n points $(x_1, y_1), \ldots, (x_n, y_n)$, we define the n-1 degree polynomials $L_k(x) \ \forall k, k=1, \ldots, n$:

$$L_k(x) = \frac{(x - x_1) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_1) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)}.$$

Note that

$$L_k(x_k) = 1$$
 and $L_k(x_j) = 0$ for $j \neq k$.

Then the interpolating polynomial of degree n-1 for these data points is

$$P_{n-1}(x) = y_1 L_1(x) + y_2 L_2(x) + \dots + y_n L_n(x),$$

since

$$P_{n-1}(x_k) = y_1.0 + y_2.0 + \dots + y_k.1 + \dots + y_n.0 = y_k \ \forall k = 1, \dots, n.$$

Interpolate points $(0,1), (2,2), \overline{\text{and } (3,4)}$.

Interpolate points (0,1), (2,2), and (3,4).

$$P_2(x) = 1\frac{(x-2)(x-3)}{(0-2)(0-3)} + 2\frac{(x-0)(x-3)}{(2-0)(2-3)} + 4\frac{(x-0)(x-2)}{(3-0)(3-2)}$$

Interpolate points (0,1), (2,2), and (3,4).

$$P_2(x) = 1\frac{(x-2)(x-3)}{(0-2)(0-3)} + 2\frac{(x-0)(x-3)}{(2-0)(2-3)} + 4\frac{(x-0)(x-2)}{(3-0)(3-2)}$$
$$= \frac{1}{6}(x-2)(x-3) - x(x-3) + \frac{4}{3}x(x-2)$$

Interpolate points (0,1),(2,2), and (3,4).

$$P_2(x) = 1 \frac{(x-2)(x-3)}{(0-2)(0-3)} + 2 \frac{(x-0)(x-3)}{(2-0)(2-3)} + 4 \frac{(x-0)(x-2)}{(3-0)(3-2)}$$

$$= \frac{1}{6}(x-2)(x-3) - x(x-3) + \frac{4}{3}x(x-2)$$

$$= \frac{1}{2}x^2 - \frac{1}{2}x + 1$$

Interpolate points (0,1), (2,2), and (3,4).

$$P_2(x) = 1 \frac{(x-2)(x-3)}{(0-2)(0-3)} + 2 \frac{(x-0)(x-3)}{(2-0)(2-3)} + 4 \frac{(x-0)(x-2)}{(3-0)(3-2)}$$

$$= \frac{1}{6}(x-2)(x-3) - x(x-3) + \frac{4}{3}x(x-2)$$

$$= \frac{1}{2}x^2 - \frac{1}{2}x + 1$$

We can check the interpolation property:

$$P_2(0) = 1$$
, $P_2(2) = 2$, and $P_3(3) = 4$.

Thm: Main Theorem of Polynomial Interpolation

Let $(x_1, y_1), \ldots (x_n, y_n)$ be n points in the plane with distinct x_i . Then there exists **one and only one** polynomial of degree n-1 or less that satisfies $P(x_i) = y_i \ \forall i = 1, \ldots, n$.

Thm: Main Theorem of Polynomial Interpolation

Let $(x_1, y_1), \ldots (x_n, y_n)$ be n points in the plane with distinct x_i . Then there exists **one and only one** polynomial of degree n-1 or less that satisfies $P(x_i) = y_i \ \forall i = 1, \ldots, n$.

Existance Proof: Lagrange interpolation formula.

Thm: Main Theorem of Polynomial Interpolation

Let $(x_1, y_1), \ldots (x_n, y_n)$ be n points in the plane with distinct x_i . Then there exists **one and only one** polynomial of degree n-1 or less that satisfies $P(x_i) = y_i \ \forall i = 1, \ldots, n$.

Existance Proof: Lagrange interpolation formula.

Uniqueness Proof: Let P(x) and Q(x) be distinct n-1 degree polynomials that interpolate the n points.

Thm: Main Theorem of Polynomial Interpolation

Let $(x_1, y_1), \ldots (x_n, y_n)$ be n points in the plane with distinct x_i . Then there exists **one and only one** polynomial of degree n-1 or less that satisfies $P(x_i) = y_i \ \forall i = 1, \ldots, n$.

Existance Proof: Lagrange interpolation formula.

Uniqueness Proof: Let P(x) and Q(x) be distinct n-1 degree polynomials that interpolate the n points. H(x)=P(x)-Q(x) is of degree n-1 and $H(x_i)=0 \ \forall i=1,\ldots,n \to H(x)$ has n distinct zeros.

Thm: Main Theorem of Polynomial Interpolation

Let $(x_1, y_1), \ldots (x_n, y_n)$ be n points in the plane with distinct x_i . Then there exists **one and only one** polynomial of degree n-1 or less that satisfies $P(x_i) = y_i \ \forall i = 1, \ldots, n$.

Existance Proof: Lagrange interpolation formula.

Uniqueness Proof: Let P(x) and Q(x) be distinct n-1 degree polynomials that interpolate the n points. H(x)=P(x)-Q(x) is of degree n-1 and $H(x_i)=0 \ \forall i=1,\ldots,n \to H(x)$ has n distinct zeros. Fundamental Theorem of Algebra states that polynomial of degree d has at most d zeros or its is the zero polynomial $H(x)=0=P(x)-Q(x)\to P(x)=Q(x)$

Find polynomial of degree three or less interpolating (0,2),(1,1),(2,0) and (3,-1).

$$P(x) = 2\frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)} + 1\frac{x(x-2)(x-3)}{(1-0)(1-2)(1-3)} + 0\frac{x(x-1)(x-3)}{(2-0)(2-1)(2-3)} - 1\frac{x(x-1)(x-2)}{(3-0)(3-1)(3-2)}$$

Find polynomial of degree three or less interpolating (0,2),(1,1),(2,0) and (3,-1).

$$P(x) = 2\frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)} + 1\frac{x(x-2)(x-3)}{(1-0)(1-2)(1-3)} + 0\frac{x(x-1)(x-3)}{(2-0)(2-1)(2-3)} - 1\frac{x(x-1)(x-2)}{(3-0)(3-1)(3-2)} = -x + 2,$$

Find polynomial of degree three or less interpolating (0,2),(1,1),(2,0) and (3,-1).

$$P(x) = 2\frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)} + 1\frac{x(x-2)(x-3)}{(1-0)(1-2)(1-3)} + 0\frac{x(x-1)(x-3)}{(2-0)(2-1)(2-3)} - 1\frac{x(x-1)(x-2)}{(3-0)(3-1)(3-2)} = -x + 2,$$

which is a line and the points are colinear. There is no parabola (degree=2) and no cubic (degree=3) passing through the same points.

Newton's Divided Differences

Simpler way of writing the interpolating polynomial.

$$(x_1,f(x_1)),\ldots,(x_n,f(x_n)).$$

$$P(x) = f[x_1] + f[x_1 x_2](x - x_1) + f[x_1 x_2 x_3](x - x_1)(x - x_2) + \dots$$
$$f[x_1 \dots x_n](x - x_1) \dots (x - x_{n-1})$$

Newton's Divided Differences

Simpler way of writing the interpolating polynomial.

$$(x_1, f(x_1)), \ldots, (x_n, f(x_n)).$$

$$P(x) = f[x_1] + f[x_1 x_2](x - x_1) + f[x_1 x_2 x_3](x - x_1)(x - x_2) + \dots$$
$$f[x_1 \dots x_n](x - x_1) \dots (x - x_{n-1})$$

Simpler way of writing the interpolating polynomial.

$$(x_1,f(x_1)),\ldots,(x_n,f(x_n)).$$

$$P(x) = f[x_1] + f[x_1 x_2](x - x_1) + f[x_1 x_2 x_3](x - x_1)(x - x_2) + \dots$$

$$f[x_1 \dots x_n](x - x_1) \dots (x - x_{n-1})$$

$$f[x_k] = f(x_k)$$

Simpler way of writing the interpolating polynomial.

$$(x_1, f(x_1)), \ldots, (x_n, f(x_n)).$$

$$P(x) = f[x_1] + f[x_1 x_2](x - x_1) + f[x_1 x_2 x_3](x - x_1)(x - x_2) + \dots$$

$$f[x_1 \dots x_n](x - x_1) \dots (x - x_{n-1})$$

$$f[x_k] = f(x_k)$$

$$f[x_k x_{k+1}] = \frac{f[x_{k+1}] - f[x_k]}{x_{k+1} - x_k}$$

Simpler way of writing the interpolating polynomial.

$$(x_1, f(x_1)), \dots, (x_n, f(x_n)).$$

 $P(x) = f[x_1] + f[x_1 x_2](x - x_1) + f[x_1 x_2 x_3](x - x_1)(x - x_2) + \dots$

$$f[x_1 \dots x_n](x - x_1) \dots (x - x_{n-1})$$

$$f[x_k] = f(x_k)$$

$$f[x_k x_{k+1}] = \frac{f[x_{k+1}] - f[x_k]}{x_{k+1} - x_k}$$

$$f[x_k x_{k+1} x_{k+2}] = \frac{f[x_{k+1} x_{k+2}] - f[x_k x_{k+1}]}{x_{k+2} - x_k}$$

Simpler way of writing the interpolating polynomial.

Def: Denote by $f[x_1 \ldots x_n]$, the coefficient of the x^{n-1} term in the unique polynomial that interpolates

$$(x_1, f(x_1)), \ldots, (x_n, f(x_n)).$$

$$P(x) = f[x_1] + f[x_1 x_2](x - x_1) + f[x_1 x_2 x_3](x - x_1)(x - x_2) + \dots$$

$$f[x_1 \dots x_n](x - x_1) \dots (x - x_{n-1})$$

$$f[x_k] = f(x_k)$$

$$f[x_k x_{k+1}] = \frac{f[x_{k+1}] - f[x_k]}{x_{k+1} - x_k}$$

$$f[x_k x_{k+1} x_{k+2}] = \frac{f[x_{k+1} x_{k+2}] - f[x_k x_{k+1}]}{x_{k+2} - x_k}$$

$$f[x_k x_{k+1} x_{k+2} x_{k+3}] = \frac{f[x_{k+1} x_{k+2} x_{k+3}] - f[x_k x_{k+1} x_{k+2}]}{x_{k+3} - x_k}$$

7

Interpolate
$$(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)).$$

$$x_1 \mid f[x_1] = f(x_1)$$

$$x_2 \mid f[x_2] = f(x_2)$$

$$x_3 \mid f[x_3] = f(x_3)$$

Interpolate
$$(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)).$$

Interpolate
$$(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)).$$

$$egin{array}{c|cccc} x_1 & f[x_1] = f(x_1) & & & & & & & & \\ & & & f[x_1 \, x_2] = rac{f[x_2] - f[x_1]}{x_2 - x_1} & & & & & & & \\ x_2 & f[x_2] = f(x_2) & & & & & & & & & \\ & & & & f[x_2 \, x_3] = rac{f[x_3] - f[x_2]}{x_3 - x_2} & & & & & & & \\ x_3 & f[x_3] = f(x_3) & & & & & & & & \end{array}$$

Interpolate $(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)).$

$$egin{array}{c|cccc} x_1 & f[x_1] = f(x_1) & & & & & & & & \\ & & f[x_1 \, x_2] = rac{f[x_2] - f[x_1]}{x_2 - x_1} & & & & & \\ x_2 & f[x_2] = f(x_2) & & & & & & & f[x_2 \, x_3] = rac{f[x_2] - f[x_1]}{x_2 - x_1} & & & & & & \\ & & & f[x_2 \, x_3] = rac{f[x_3] - f[x_2]}{x_3 - x_2} & & & & & & \\ x_3 & f[x_3] = f(x_3) & & & & & & & \end{array}$$

Interpolate $(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)).$

And the interpolating polynomial is

$$P_2(x) = f[x_1] + f[x_1 x_2](x - x_1) + f[x_1 x_2 x_3](x - x_1)(x - x_2)$$

Use divided differences to find the interpolating polynomial passing through (0,1),(2,2), and (3,4).

- 0 | 1
- 2 | 2
- 3 | 4

Use divided differences to find the interpolating polynomial passing through (0,1),(2,2), and (3,4).

0 | 1
$$\frac{2-1}{2-0} = \frac{1}{2}$$
 2 | 2
$$3 | 4$$

0 1
$$\frac{2-1}{2-0} = \frac{1}{2}$$
2 2
$$\frac{4-2}{3-2} = \frac{2}{1} = 2$$
3 4

0 | 1

$$\frac{2-1}{2-0} = \frac{1}{2}$$

2 | 2 | $\frac{4-2}{3-2} = \frac{2}{1} = 2$
3 | 4

Use divided differences to find the interpolating polynomial passing through (0,1),(2,2), and (3,4).

0 | 1

$$\frac{2-1}{2-0} = \frac{1}{2}$$

2 | 2 | $\frac{2-\frac{1}{2}}{3-2} = \frac{1}{2}$
 $\frac{4-2}{3-2} = \frac{2}{1} = 2$
3 | 4

And the interpolating polynomial is

$$P_2(x) = 1 + \frac{1}{2}(x-0) + \frac{1}{2}(x-0)(x-2)$$

Use divided differences to find the interpolating polynomial passing through (0,1),(2,2), and (3,4).

And the interpolating polynomial is

$$P_2(x) = 1 + \frac{1}{2}(x - 0) + \frac{1}{2}(x - 0)(x - 2)$$
$$= 1 + \frac{1}{2}x^2 - \frac{2}{2}x$$
$$= \frac{1}{2}x^2 - \frac{1}{2}x + 1$$

- 0 | 1
- 2 | 2
- 3 | 4
- 1 (

$$\begin{array}{c|cccc}
0 & 1 & & & \frac{1}{2} \\
2 & 2 & & & \frac{1}{2} \\
3 & 4 & & & \\
& & \frac{0-4}{1-3} = 2 \\
1 & 0 & & & \\
\end{array}$$

$$\begin{array}{c|ccccc}
0 & 1 & & & & \\
2 & 2 & & & \frac{1}{2} & & \\
2 & & 2 & & & \frac{1}{2} & & \\
3 & 4 & & & & \frac{2-2}{1-2} = 0 \\
& & \frac{0-4}{1-3} = 2 & & \\
1 & 0 & & & & \\
\end{array}$$

Use divided differences to find the interpolating polynomial passing through (0,1),(2,2),(3,4), and (1,0).

And the interpolating polynomial is

$$P_2(x) = \underbrace{1 + \frac{1}{2}(x - 0) + \frac{1}{2}(x - 0)(x - 2)}_{\text{same as before}} - \frac{1}{2}(x - 0)(x - 2)(x - 3)$$

```
\begin{array}{c|c}
0 & 0.0000 \\
\frac{\pi}{6} & 0.5000 \\
\frac{2\pi}{6} & 0.8660 \\
\frac{3\pi}{6} & 1.0000
\end{array}
```

$$P(x) = 0.0000 + 0.9545x - 0.2443x(x - \frac{\pi}{6}) - 0.1139x(x - \frac{\pi}{6})(x - \frac{2\pi}{6})$$

$$P(x) = 0.0000 + 0.9545x - 0.2443x(x - \frac{\pi}{6}) - 0.1139x(x - \frac{\pi}{6})(x - \frac{2\pi}{6})$$

$$\approx \sin(x)$$

$$P(x) = 0.0000 + 0.9545x - 0.2443x(x - \frac{\pi}{6}) - 0.1139x(x - \frac{\pi}{6})(x - \frac{2\pi}{6})$$

$$\approx \sin(x)$$

 $[0,\frac{\pi}{2}]$ is called the **fundamental domain**. It is sufficient for approximating $\sin(x)$ since if $x \in [\frac{\pi}{2},\pi] \to \sin(x) = \sin(\pi-x)$ and if $x \in [\pi,2\pi] \to \sin(x) = -\sin(2\pi-x)$.

$$P(x) = 0.0000 + 0.9545x - 0.2443x(x - \frac{\pi}{6}) - 0.1139x(x - \frac{\pi}{6})(x - \frac{2\pi}{6})$$

$$\approx \sin(x)$$

 $[0, \frac{\pi}{2}]$ is called the **fundamental domain**. It is sufficient for approximating $\sin(x)$ since if $x \in [\frac{\pi}{2}, \pi] \to \sin(x) = \sin(\pi - x)$ and if $x \in [\pi, 2\pi] \to \sin(x) = -\sin(2\pi - x)$.

x	$\sin(x)$	P(x)	$ \sin(x) - P(x) $
1	0.8415	0.8411	0.0004
2	0.9093	0.9192	0.0009
3	0.1411	0.1428	0.0017
4	-0.7568	-0.7557	0.0011
14	0.9906	0.9928	0.0022
1000	0.8269	0.8263	0.0006

INTERPOLATION ERROR

BOUNDING THE INTERPOLATION ERROR

Thm: Assume that P(x) is the (degree n-1 or less) interpolating polynomial fitting the n points $(x_1, y_1), \ldots, (x_n, y_n)$ sampled from a function f(x).

BOUNDING THE INTERPOLATION ERROR

Thm: Assume that P(x) is the (degree n-1 or less) interpolating polynomial fitting the n points $(x_1,y_1),\ldots,(x_n,y_n)$ sampled from a function f(x). The interpolation error is

$$f(x) - P(x) = \frac{(x - x_1)(x - x_2) \dots (x - x_n)}{n!} f^{(n)}(c),$$

where $f^{(n)}(x)$ is the n^{th} derivative of f(x) and c lies between the largest and the smallest of x_1, x_2, \ldots, x_n .

$$\sin(x) - P(x) = \frac{(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})}{4!} f^{(4)}(c)$$
$$= \frac{(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})}{4!} \sin(c)$$

$$\sin(x) - P(x) = \frac{(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})}{4!} f^{(4)}(c)$$

$$= \frac{(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})}{4!} \sin(c)$$

$$|\sin(x) - P(x)| \le \frac{\left|(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})\right|}{2\mu} |1|$$

$$\sin(x) - P(x) = \frac{(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})}{4!} f^{(4)}(c)$$

$$= \frac{(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})}{4!} \sin(c)$$

$$|\sin(x) - P(x)| \le \frac{\left|(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})\right|}{24} |1|$$

• At x=1, the worst case error is ≈ 0.0005348 (> 0.0004 from the table of actual errors that we obtained).

$$\sin(x) - P(x) = \frac{(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})}{4!} f^{(4)}(c)$$

$$= \frac{(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})}{4!} \sin(c)$$

$$|\sin(x) - P(x)| \le \frac{\left|(x-0)(x-\frac{\pi}{6})(x-\frac{\pi}{3})(x-\frac{\pi}{2})\right|}{2h} |1|$$

- At x=1, the worst case error is ≈ 0.0005348 (> 0.0004 from the table of actual errors that we obtained).
- Error will be smaller in the middle of the interval due to smaller terms in the numerator.

Try to interpolate with data points

$$x \in \{-3, -2.5, -2.0, \dots, 2.0, 2.5, 3.0\}$$

with y equal to zeros except at x=0, y=1.

Try to interpolate with data points

$$x \in \{-3, -2.5, -2.0, \dots, 2.0, 2.5, 3.0\}$$

with y equal to zeros except at x=0, y=1.

Try to interpolate with data points

$$x \in \{-3, -2.5, -2.0, \dots, 2.0, 2.5, 3.0\}$$

with y equal to zeros except at x=0, y=1.

Very large errors near the ends of the interval!

Try to interpolate with data points

$$x \in \{-3, -2.5, -2.0, \dots, 2.0, 2.5, 3.0\}$$

with y equal to zeros except at x=0, y=1.

Very large errors near the ends of the interval!

 \rightarrow Place more points closer to the end points instead of uniformly sampling $x \rightarrow$ Chebyshev Interpolation (which we will skip for the course. See §3.3 for more.)