

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Química Nivel Superior Prueba 1

Viernes 14 de mayo de 2021 (mañana)

1 hora

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

	,	((•	•	I		bla pe	Tabla periódica	g ;		,	;	;	•	ļ	
	~	7	m	4	2	9	7	œ	တ	10	-	75	ر س	4	15	16	17	
_	1,01			Z Z	Número atómico Elemento		-					,						-
7	3 Li 6,94	4 Be 9,01		Masa	Masa atómica relativa	elativa							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	_
က	11 Na 22,99	12 Mg 24,31											13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,07	17 CI 35,45	
4	19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,96	35 Br 79,90	
r.	37 Rb 85,47	38 Sr 87,62	39 × 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,96	43 Tc (98)	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,41	49 In 114,82	50 Sn 118,71	51 Sb 121,76	52 Te 127,60	53 I 126,90	
9	55 Cs 132,91	56 Ba 137,33	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,84	75 Re 186,21	76 Os 190,23	77 Ir 192,22	78 Pt 195,08	79 Au 196,97	80 Hg 200,59	81 TI 204,38	82 Pb 207,2	83 Bi 208,98	84 Po (209)	85 At (210)	
_	87 Fr (223)	88 Ra (226)	89‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	
			+	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm (145)	62 Sm 150,36	63 Eu 151,96	64 Gd 157,25	65 Tb 158,93	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,05	71 Lu 174,97	
			**	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

1. Se mezclan 0,20 mol de magnesio con 0,10 mol de ácido clorhídrico.

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

¿Cuál es correcto?

	Reactivo limitante	Rendimiento máximo de H ₂ / mol
A.	HCl	0,10
B.	Mg	0,20
C.	HCl	0,05
D.	Mg	0,10

- 2. ¿Qué cantidad, en mol, de cloruro de sodio se necesita para preparar 250 cm³ de solución 0,10 mol dm⁻³?
 - A. 4.0×10^{-4}
 - B. 0,025
 - C. 0,40
 - D. 25
- 3. ¿Cuál es la suma de los coeficientes cuando se ajusta la ecuación con números enteros?

$$__Sn(OH)_4(aq) + __NaOH(aq) \rightarrow __Na_2SnO_3(aq) + __H_2O(l)$$

- A. 4
- B. 5
- C. 6
- D. 7
- **4.** ¿Qué representa "2-" en ${}_{Z}^{A}X^{2-}$?
 - A. pérdida de electrón
 - B. ganancia de electrón
 - C. pérdida de protón
 - D. ganancia de protón

5. Se muestran las primeras ocho energías de ionización sucesivas de un elemento. ¿En qué grupo está el elemento?

- A. 6
- B. 7
- C. 8
- D. 17
- 6. ¿Qué propiedad aumenta hacia abajo en el grupo 1?
 - A. radio atómico
 - B. electronegatividad
 - C. energía de primera ionización
 - D. punto de fusión
- 7. ¿Cuál es un elemento del bloque d?
 - A. Ca
 - B. Cf
 - C. Cl
 - D. Co

-5- 2221-6125

8.	¿Que	é factor no afecta el color de un ion complejo?
	A.	temperatura de la solución
	B.	identidad del ligando
	C.	identidad del metal
	D.	número de oxidación del metal
9.	¿Que	é compuesto tiene mayor volatilidad en las mismas condiciones?
	A.	SO ₂
	B.	SiO ₂
	C.	SnO ₂
	D.	SrO
10.	¿Que	é compuesto tiene el enlace de C a N más corto?
	A.	HCN
	B.	CH ₃ CH ₂ NH ₂
	C.	CH ₃ CHNH
	D.	(CH ₃) ₂ NH
11.	¿Cua	ál es el orden correcto basado en la fuerza creciente ?
	A.	enlaces covalentes < enlaces de hidrógeno < fuerzas dipolo-dipolo < fuerzas de dispersión
	B.	fuerzas dipolo-dipolo < fuerzas de dispersión < enlaces de hidrógeno < enlaces covalentes
	C.	fuerzas de dispersión < fuerzas dipolo-dipolo < enlaces de hidrógeno < enlaces covalentes
	D.	fuerzas de dispersión < fuerzas dipolo-dipolo < enlaces covalentes < enlaces de hidrógeno
12.	¿Que	é átomo tiene un octeto expandido?
	A.	C en el CO ₂
	B.	S en el SCl ₄
	C.	O en el H ₂ O ₂
	D.	P en el PCl。

- **13.** ¿Cuál es la geometría de dominio electrónico del Si en el SiO₂?
 - A. curva
 - B. lineal
 - C. plana cuadrada
 - D. tetraédrica
- 14. ¿Cuál describe una reacción exotérmica?

	Transferencia de calor	Entalpía
A.	del entorno al sistema	reactivos > productos
B.	del entorno al sistema	productos > reactivos
C.	del sistema al entorno	productos > reactivos
D.	del sistema al entorno	reactivos > productos

15. Se muestra el perfil de energía potencial para una reacción.

Progreso de la reacción

¿Qué se puede determinar sobre la estabilidad y la variación de energía a partir del perfil de energía potencial mostrado?

	Más estable	Reacción
A.	reactivos	exotérmica
B.	reactivos	endotérmica
C.	productos	exotérmica
D.	productos	endotérmica

16. ¿Cuál representa la afinidad electrónica?

A.
$$Al^{2+}(g) \to Al^{3+}(g) + e^{-}$$

B.
$$C(g) + e^- \rightarrow C^-(g)$$

C.
$$Cl_2(g) \rightarrow 2Cl(g)$$

D.
$$S(s) \rightarrow S^+(g) + e^-$$

17. ¿Qué cambio produce mayor valor negativo de Δ S?

A.
$$C_2H_5OH(l) + SOCl_2(l) \rightarrow C_2H_5Cl(l) + SO_2(g) + HCl(g)$$

B.
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

C.
$$H_2O(l) \rightarrow H_2O(s)$$

D.
$$NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$$

18. ¿Qué cambio causa mayor aumento de la velocidad inicial de la reacción entre ácido nítrico y magnesio?

$$2HNO_3(aq) + Mg(s) \rightarrow Mg(NO_3)_2(aq) + H_2(g)$$

	[HNO ₃]	Tamaño de los trozos de metal
A.	duplicada	reducido a la mitad
B.	duplicada	duplicado
C.	reducida a la mitad	reducido a la mitad
D.	reducida a la mitad	duplicado

19. ¿Cuál explica el aumento de la velocidad de reacción con el aumento de la temperatura?

	Partículas con $E > E_a$	Frecuencia de las colisiones
A.	igual	igual
B.	más	mayor
C.	igual	mayor
D.	más	igual

20. ¿Qué gráfica representa una reacción de segundo orden con respecto a X?

A.

В.

C.

D.

- 21. ¿Qué enunciados son correctos sobre la acción de un catalizador en una reacción química?
 - I. Aumenta la energía de cada colisión.
 - II. Altera el mecanismo de la reacción.
 - III. Permanece inalterado al final de la reacción.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **22.** ¿Qué efecto tiene un catalizador sobre la posición de equilibrio y el valor de la constante de equilibrio, K_c , para una reacción exotérmica?

	Posición de equilibrio	Valor de la constante de equilibrio
A.	se desplaza hacia los productos	aumenta
B.	permanece igual	aumenta
C.	permanece igual	permanece igual
D.	se desplaza hacia los productos	permanece igual

23. El dióxido de azufre reacciona con oxígeno para formar trióxido de azufre.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ}$

¿Qué cambio aumenta el valor de K_c ?

- A. aumento de temperatura
- B. disminución de temperatura
- C. disminución de la [SO₂(g)]
- D. disminución de la [SO₃(g)]

24. ¿Cuál no puede actuar como base de Brønsted-Lowry?

- A. HPO₄²⁻
- B. H₂O
- C. CH₄
- D. NH₃

25. ¿Cuál causa deposición ácida?

- A. SO₂
- B. SiO₂
- C. SrO
- D. CO₂

26. ¿Cuál es correcta?

- A. Los electrófilos son ácidos de Brønsted-Lowry.
- B. Los nucleófilos son ácidos de Brønsted-Lowry.
- C. Los electrófilos son ácidos de Lewis.
- D. Los nucleófilos son ácidos de Lewis.

- 27. ¿Qué compuesto es ácido en solución acuosa?
 - A. KBr
 - B. CH₃COONa
 - C. NH₄Cl
 - D. Na₂CO₃
- 28. ¿Cuál es el estado de oxidación del oxígeno en el H₂O₂?
 - A. -2
 - B. -1
 - C. +1
 - D. +2
- 29. ¿Cuáles son los productos de la electrólisis de cloruro de potasio fundido, KCl(l)?

	Ánodo (electrodo positivo)	Cátodo (electrodo negativo)
A.	К	Cl
B.	Cl_2	K
C.	Cl	K
D.	К	Cl ₂

30. ¿Cuál sería el potencial de electrodo, E^{\ominus} , de la semicelda de Mn²+ (aq)|Mn (s) si se usara como referencia estándar el Fe³+ (aq)|Fe²+ (aq)?

$$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$$
 $E^{\ominus} = -1,18 \text{ V}$

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$$
 $E^{\ominus} = +0.77 \, V$

- A. -1,95 V
- B. -0,41 V
- C. +0,41 V
- D. +1,95 V

31. ¿Qué le sucede a la masa de cada electrodo de cobre cuando se electroliza una solución acuosa de sulfato de cobre(II)?

	Ánodo (electrodo positivo)	Cátodo (electrodo negativo)
A.	aumenta	aumenta
B.	aumenta	disminuye
C.	disminuye	aumenta
D.	disminuye	disminuye

32. ¿Cuál es el nombre IUPAC de la molécula mostrada?

- A. 2,4-dimetilhexano
- B. 3,5-dimetilhexano
- C. 2-metil-4-etilpentano
- D. 2-etil-4-metilpentano

33. ¿Qué monómero forma el polímero mostrado?

- A. $CH(Cl)=CH(CH_3)$
- B. CH₂=C(Cl)CH₃
- C. (CH₃)₂CHCl
- D. CH₂=CHCl

34. ¿Cuál es la etapa de propagación en el mecanismo de sustitución por radicales libres del etano con cloro?

- A. $Cl_2 \rightarrow 2 \cdot Cl$
- B. ${}^{\bullet}C_2H_5 + Cl_2 \rightarrow C_2H_5Cl + {}^{\bullet}Cl$
- C. ${}^{\bullet}C_2H_5 + {}^{\bullet}Cl \rightarrow C_2H_5Cl$
- D. $C_2H_6 + \bullet Cl \rightarrow C_2H_5Cl + \bullet H$

35. ¿Qué compuesto presenta isomería cis-trans?

- A. CH₃CH=CCl₂
- B. CCl₂=CH₂

36 . ¿	Qué d	compuesto	hace rotar	el plano	de la	luz polarizada?
---------------	-------	-----------	------------	----------	-------	-----------------

- A. CH₃C(CH₃)ClCH₃
- B. CH₃CH₂CHClCH₃
- C. CH₃C(Cl)₂CH₃
- D. CH₃CClBrCH₃

37. ¿Cuál se puede reducir a un alcohol secundario?

- A. C₂H₅COOH
- B. CH₃CH₂OCH₃
- C. (CH₃)₂CHCHO
- D. CH₃COC₂H₅

38. ¿Qué espectro mostraría la diferencia entre 2-propanol, $CH_3CH(OH)CH_3$, y propanal, CH_3CH_2CHO ?

- I. de masas
- II. infrarrojo
- III. RMN de ¹H
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

39. ¿Cómo se debe mostrar la diferencia entre 27,0 \pm 0,3 y 9,0 \pm 0,2?

- A. $18,0 \pm 0,1$
- B. $18,0 \pm 0,3$
- C. $18,0 \pm 0,5$
- D. $18,0 \pm 0,6$

- 14 - 2221-6125

- **40.** ¿Qué información se puede deducir del patrón de desdoblamiento de las señales de RMN de ¹H?
 - A. el número total de átomos de hidrógeno en un compuesto
 - B. el número de átomos de hidrógeno en el/los átomo(s) adyacente(s)
 - C. el grupo funcional donde están localizados los átomos de hidrógeno
 - D. el número de átomos de hidrógeno en un ambiente químico particular

uentes:	
Derechos de autor Prof Mark Winter. os demás textos, gráficos e ilustraciones: © Organización del Bachillerato Internacional, 2021	
201	