

ESc201, Lecture 15: Power Supply 1 N₁: N₂ $\mathbf{R}_{\mathbf{L}}$ 60.000 40.000 ---20.000 0.000 -20.000 ----40.000 0.000m 12.000m 24.000m 36.000m 48.000m 60.000m

Still some ripple due to finite resistance of the Zener is observed.

ESc201, Lecture 16: Power Supply

Crossover Distortion: For diodes, generally $V_{on} \neq 0$, even if $r_F=0$ is assumed, and cannot conduct until $V_{in}=V_D \geq V_{on}$. This creates a dead-band of around $2V_{on}$ at all the crossover points (i.e., points where the input signal crosses zero in the time axis). This problem becomes more acute if V_{max} is not much larger than V_{on} and for $V_{max} \sim V_{on}$, the entire signal is mixed up.

 $\theta = \sin^{-1}(V_{on}/V_{max}) =$ Angle of Crossover Distortion, appears 4 times in a complete cycle.

ESc201, Lecture 16: Power Supply

 $h = P.n \pm 1$

where:

 $n = an integer (1, 2, 3, 4... \infty).$

h = **harmonic order**.

P = the number of pulses of the rectifier.

There are some residual noncharacteristic harmonics such as the 5th and 7th in 12 and 18-pulse topologies due to the non-ideal behaviour of the transformer causing angle phase errors

characteristic harmonics