Analyse 3

Feuille d'exercices 0 : Rappels sur les suites, intégrales et développements limités ; suites de Cauchy.

Les exercices avec des étoiles sont à préparer en priorité et sont les seuls qui seront à coup sûr corrigés en TD.

1 Limites et DLs

*Exercice 1. Calculer les limites des fonctions suivantes quand x tend vers 0.

$$\frac{\ln(\cos(x))}{x^2}\;;\;\frac{\ln(1+x)-\sin x}{x}\;;\;\frac{\cos x-\sqrt{1-x^2}}{x^2}\;;\;\frac{1}{\sin^2(x)}-\frac{1}{x^2}$$

*Exercice 2. Donner un équivalent simple quand n tends vers $+\infty$ de

$$1 + \left(n - \frac{1}{2}\right) \ln\left(\frac{n-1}{n}\right)$$

Exercice 3. Déterminer un équivalent simple, puis un développement au second ordre des suites suivantes, en fonction du paramètre $\alpha > 0$ quand il est présent.

$$a_{n} = \frac{(-1)^{n}}{n + (-1)^{n} \ln(n)} \qquad b_{n} = \left(\frac{\ln(n+1)}{\ln(n)} - 1\right)^{\alpha} \qquad c_{n} = \frac{\ln(n+1)}{n} - \frac{\ln(n)}{n+1}$$

$$d_{n} = \left(n \sin\left(\frac{1}{n}\right)\right)^{n} \qquad e_{n} = \frac{e^{\frac{2}{n}} - 1}{\sin\left(\frac{1}{n}\right)} \qquad f_{n} = \sqrt{\ln(n+1)} - \sqrt{\ln(n)}$$

$$g_{n} = n^{\frac{1}{1+n^{2}}} - 1 \qquad h_{n} = \ln(1 + (1+n^{-2})^{2/3}), \qquad i_{n} = \frac{\cos(\frac{1}{n})}{n \sin(\frac{1}{n}) + \ln(1+n)}$$

$$j_{n} = \frac{e^{\frac{2}{\sqrt{n}}} - 1 - \frac{2}{\sqrt{n}}}{\sin(\frac{1}{n}) - \frac{1}{n}}, \qquad k_{n} = \sqrt{1 + \ln\left(1 + \frac{1}{n}\right)} - 1 - \frac{1}{2n} \qquad l_{n} = n^{3} \sin\left(\frac{1}{n} - \frac{1}{n^{3}}\right) - n^{2}$$

$$m_{n} = \frac{\ln(1+\alpha^{n})}{\sqrt{1+n\ln n + \cos(n)}}$$

Suites numériques 2

*Exercice 4. Soit (u_n) une suite complexe telle que $(u_{2n}), (u_{2n+1})$ et (u_{3n}) convergent. Montrer que (u_n) converge.

Exercice 5. Soient (u_n) et (v_n) deux suites telles que $0 \le u_n \le 1, 0 \le v_n \le 1$ et $u_n v_n \to 1$.

Que dire de ces suites?

Exercice 6. Soit (u_n) et (v_n) deux suites convergentes. Etudier $\lim_{n\to+\infty} \max(u_n,v_n)$.

Exercice 7. Soit (u_n) une suite de réels non nuls vérifiant : $\frac{u_{n+1}}{u_n} \to 0$

Etudier la convergence de (u_n) .

Exercice 8. Soit $\theta \in]0, \pi/2[$, $u_n = 2^n \sin \frac{\theta}{2^n}, v_n = 2^n \tan \frac{\theta}{2^n}.$ Montrer que les suites (u_n) et (v_n) sont adjacentes. Quelle est leur limite commune?

Exercice 9. Soit (u_n) une suite définie par : $u_0 = 1/2$ et $\forall n \in \mathbb{N}, u_{n+1} = 1 - u_n^2$.

Etudier la monotonie et la convergence de (u_n) .

Exercice 10. La suite $(\sin(n))$ a-t-elle une limite?

Exercice 11. Etude qualitative des équations (E_n) : $\frac{x^3}{x^2+1}=n$

- 1. Etudier les variations de $f: x \to \frac{x^3}{x_-^2+1}$. En déduire que pour tout entier $n \geqslant 0$, l'équation (E_n) possède une unique solution dans \mathbb{R} , notée x_n .
- 2. Quelle est la monotonie de la suite $(x_n)_n$? (On utilisera la monotonie de f).
- **3.** Montrer que $\forall n \ge 0$, $n \le x_n \le n+1$
- 4. En déduire la limite de la suite $(x_n)_n$ et en donner un équivalent simple.

Exercice 12. Posons $f_n(x) = x^n + 1 - nx$.

- 1. Montrer que, pour chaque entier $n \ge 2$, l'équation $x^n + 1 = nx$ possède une unique solution dans l'intervalle [0,1]. On note x_n cette racine.
- **2.** Justifier que $\forall n \geq 2$, $\frac{1}{n} \leq x_n \leq \frac{2}{n}$. En déduire $\lim_{n \to +\infty} x_n$.
- 3. En utilisant l'égalité $f_n(x_n) = 0$, déterminer $\lim_{n \to +\infty} nx_n$. En déduire un équivalent de x_n .
- 4. Etudier le signe de $t \to f_{n+1}(t) f_n(t)$. En évaluant en $t = x_n$, en déduire le signe de $f_{n+1}(x_n)$.
- **5.** Déterminer la monotonie de la suite $(x_n)_n$.

- *Exercice 13. 1. Montrer que pour tout $n \in \mathbb{N}$, l'équation $\tan x = x$ admet une unique solution x_n dans $]n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2}[$.
- 2. Trouver un équivalent simple de x_n , qu'on va noter a_n .
- **3.** Soit $b_n = x_n a_n$. Etudier la convergence de la suite (b_n) . On note ℓ sa limite, que l'on déterminera.
- 4. Soit $c_n = b_n \ell$. Trouver un équivalent de (c_n) .

En déduire un développement asymptotique à 3 termes de x_n , c'est à dire une écriture de la forme

$$x_n = u_n + v_n + w_n + o(w_n)$$

telle que $v_n = o(u_n)$ et $w_n = o(v_n)$.

Exercice 14. Pour tout entier $n \ge 2$ on considère l'équation $(E_n): x^n = x + n$.

- 1. Montrer que (E_n) admet une unique solution sur \mathbb{R}^+ . On note u_n cette solution.
- **2.** Montrer que (u_n) est bornée.
- **3.** Dans cette question, on suppose que (u_n) converge.

Montrer que sa limite ne peut être qu'un réel ℓ qu'on déterminera.

- 4. Le suite (u_n) converge-t-elle?
- **5.** Donner un équivalent de $(u_n \ell)$.

Exercice 15. Etudier la suite définie pour n > 0 par $u_n = \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots + \sqrt{2 + \sqrt{2}}}}}$ (il y a n "2")

Exercice 16. Soit $u_n = \sqrt{n + \sqrt{n - 1 + \dots + \sqrt{1}}}$.

- 1. Montrer que $u_n \leq 2\sqrt{n}$.
- **2.** En déduire que $u_n \sim \sqrt{n}$.
- **3.** Déterminer $\lim_{n\to\infty} (u_n \sqrt{n})$.

3 Intégration

- *Exercice 17. On pose pour tout entier naturel non nul $n: I_n = \int_1^e (\ln x)^n dx$
- 1. Montrer que $\forall n \in \mathbb{N}, \quad I_n \geqslant 0$ et donner la monotonie de la suite $(I_n)_{n \geqslant 0}$
- 2. Etablir à l'aide d'une intégration par parties que pour tout entier naturel $n: I_{n+1} = e (n+1)I_n$.
- **3.** Déduire des questions précédentes que $\forall n \in \mathbb{N}, \quad 0 \leqslant I_n \leqslant \frac{e}{n+1}$.
- 4. Déterminer $\lim_{n\to+\infty} I_n$ puis, avec la question 2, donner un équivalent simple de I_n .

Exercice 18. On pose $I_n = \int_0^1 \ln(1+x^n) dx$.

- 1. Vérifier : $\forall x \in [0, +\infty[, 0 \le \ln(1+x) \le x]$.
- **2.** En déduire que $\forall n \in \mathbb{N}$, $0 \leqslant I_n \leqslant \frac{1}{n+1}$ puis calculer $\lim_{n \to +\infty} I_n$.

Exercice 19. On pose $I_n = \int_2^n \frac{dx}{\sqrt{x^2 - 1}}$. Montrer que $\forall x \in]1, +\infty[, \frac{1}{x} \leqslant \frac{1}{\sqrt{x^2 - 1}} \leqslant \frac{1}{x - 1}$. En déduire que $\forall n \geqslant 2, \ln n - \ln 2 \leqslant I_n \leqslant \ln(n - 1)$.

Calculer alors $\lim_{n\to+\infty} I_n$ et $\lim_{n\to+\infty} \frac{I_n}{\ln n}$.

Exercice 20. Soit f une fonction continue sur [0,1], à valeur dans [0,1], autre que la fonction nulle. Montrer que, si $\int_0^1 f(t)dt = \int_0^1 f(t)^2 dt$, alors f est la fonction constante égale à 1 sur [0,1].

Exercice 21. $\forall n \in \mathbb{N}^*$, on note $I_n = \int_0^1 \frac{t^n}{1+t^2} dt$ et $J_n = \int_0^1 t^n \ln(1+t^2) dt$.

- 1. Donner la monotonie des suites $(I_n)_{n\geqslant 0}$ et $(J_n)_{n\geqslant 0}$.
- **2.** Montrer que $\forall n \ge 1$, $0 \le I_n \le \frac{1}{n+1}$. En déduire $\lim_{n \to +\infty} I_n$.
- 3. Montrer que, $J_n = \frac{\ln 2}{n+1} \frac{2}{n+1} I_{n+2}$.
- 4. En déduire la limite de J_n et celle de nJ_n puis donner un équivalent J_n .

Exercice 22. Calcular $\lim_{n\to+\infty}\sum_{k=1}^n\frac{n}{n^2+k^2}$.

Exercice 23. 1. Montrer que $\int_0^{\frac{\pi}{4}} \ln \cos x \ dx = \int_0^{\frac{\pi}{4}} \ln \cos(\frac{\pi}{4} - x) \ dx$.

2. En déduire la valeur de $\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) \ dx$.

Exercice 24. Si $m, n \in \mathbb{N}$, on pose $I_{m,n} = \int_{0}^{1} x^{m} (1-x)^{n} dx$.

- 1. Montrer que $\forall n, m \in \mathbb{N}, I_{m,n} = I_{n,m}$.
- **2.** Montrer que pour $m \ge 1$, on a : $I_{m,n} = \frac{m}{n+1} I_{m-1,n+1}$.
- 3. En déduire la valeur de $I_{m,n}$.

Exercice 25. Intégrales de Wallis

On note

$$W_n = \int_0^{\pi/2} \cos^n(t) dt.$$

- 1. Calculer W_0 et W_1 .
- 2. Montrer que la suite W_n est positive et décroissante.
- 3. En intégrant par partie, trouver une relation de récurrence entre W_n et W_{n-2} , pour tout $n \geq 2$. En déduire que $W_n \sim W_{n+1}$.
- 4. Déduire de la relation de récurrence des formules explicites pour W_{2n} et W_{2n+1} .
- **5.** On admet une forme faible de la formule de Stirling : $n! \sim K\sqrt{n} \left(\frac{n}{e}\right)^n$. Déterminer la constante K.

4 Suites de Cauchy

*Exercice 26. Parmi les suites suivantes, vérifier lesquelles sont des suites de Cauchy en utilisant la définition :

(i)
$$a_n = \frac{1}{n^2}$$
, (ii) $b_n = (-1)^n$, , (iii) $d_n = \ln n$.

Exercice 27. 1. Soit (r_n) une suite de nombres réels telle que $r_{n+1} - r_n$ tend vers 0. Est-elle de Cauchy?

2. Soit (r_n) une suite de nombres réels telle que $|r_{n+1} - r_n| \leq \lambda^n$ pour tout $n \in \mathbb{N}$, où λ est un réel strictement compris entre 0 et 1. Montrer que la suite (r_n) est de Cauchy.

3. Soit (r_n) la suite définie par récurrence par $r_0=2$ et $r_{n+1}=1+\frac{1}{r_n}, n\geq 0$. Montrer que (r_n) est à valeurs dans $[\frac{3}{2},2]$. Puis, en utilisant la question précédente, montrer que (r_n) est une suite de Cauchy dans $\mathbb Q$ qui ne converge pas dans $\mathbb Q$. Autrement dit on a montré que $\mathbb Q$ n'est pas complet, contrairement à $\mathbb R$.