خلاصه فیزیک هالیدی - فصل شانزدهم:انتروپی و قانون دوم ترمودینامیک

فرآیندهای یک سویه: فرآیند برگشت ناپذیر فرآیندی است که به کمک تغییرات کوچکی در محیط نتوان آن را معکوس کرد . جهتی که در آن یک فرآیند برگشت ناپذیر رخ می دهدبا تغییر در انتروپی که سامانه ای که فرآیند را انجام می دهد مشخص می شود.انتروپی S یک خاصیت حالت (یا تابع حالت) سامانه است؛ یعنی فقط به حالت سامانه بستگی دارد و به چگونگی راهی که سامانه به آن رسیده است بستگی ندارد.اصل موضوع انتروپی (در قسمتی) می گوید: اگر فرآیند برگشت ناپذیری در سامانه ای بسته رخ دهد, انتروپی سامانه همیشه افزایش می یابد.

محاسبهٔ تغییر انتروپی: تغییر انتروپی ΔS یک فرایند برگشت ناپذیر که سامانه ای را از یک حالت اولیهٔ ابه یک حالت نهایی δS می برد دقیقا برابر است با تغییر انتروپی δS هر فرآیند برگشت پذیری که سامانه میان همان حالتها انجام می دهد. تغییر انتروپی اخیر (نه قبلی) را می توان از این رابطه محاسبه کرد:

$$\Delta S = s_f - s_i = \int_i^f \frac{dQ}{T}$$

در اینجاQانرژی گرمایی مبادله شده با سامانه در طی فرآیند و T دمای سامانه بر حسب کلوین در طی فرآیند است.

در مورد یک فرآیند تکدمایی برگشت پذیر معادلهٔ بالا به صورت زیر ساده می شود:

$$\Delta S = s_{\rm f} - s_{\rm i} = \frac{Q}{T}$$

هر گاه تغییر دمای ΔT سامانه ای نسبت به دمای (بر حسب کلوین) پیش و پس از فر آیند کوچک

باشد, تغییر انتروپی را با تقریب می توان به صورت زیر نوشت:

$$\Delta S = s_{\rm f} - s_{\rm i} = \frac{Q}{T_{\rm avg}}$$

که در آن T_{avg} دمای میانگین سامانه در طی فرآیند است.

هر گاه یک گاز آرمانی به طور برگشت پذیر از یک حالت اولیه با دمای T_i حجم به یک حالت نهایی با دمای T_f و حجم v_f تغییر کند,تغییر کند,تغییر کند و کانت است از تعالی با دمای تعالی ب

$$\Delta S = s_f - s_i = n R In \frac{v_f}{v_i} + nc_v In \frac{T_f}{T_i}$$

قاتون دوم ترمودینامیک: این قانون که از تعمیم اصل موضوع انتروپی به دست می آیدبیان می کند که: اگر فر آیندی در یک سامانهٔ بسته رخ دهد؛انتروپی سامانه برای فر آیندهای برگشت ناپذیر افزایش می یابد و برای فر آیندی برگشت پذیر ثابت می ماند.انتروپی هرگز کاهش نمی یابد در شکل معادله داریم:

$$\Delta S \geq 0$$

ماشینها: ماشین وسیله ای است که با عمل در یک چرخه, انرژی گرمایی $|Q_H|$ را از منبع با دمای بالا می گیرد و مقدار معین کار |w|را انجام می دهد.بازده ϵ هر ماشین به صورت زیر تعریف می شود:

$$oldsymbol{arepsilon} = rac{ ext{liv}(z)}{ ext{liv}(z)}$$
 انرژی مصرف شده $= rac{|w|}{|oldsymbol{Q}_{ ext{H}}|}$

در یک ماشین آرمانی همهٔ فرآیندها برگشت پذیرند و هیچ اتلاف انرژی مثلا بر اثر اصطکاک و آشفتگی صورت نمی گیرد.ماشین کارنو یک ماشین آرمانی است.بازده آن عبارت است از:

$$\varepsilon_C = 1 - \frac{|Q_L|}{|Q_H|} = 1 - \frac{T_L}{T_H}$$

که در آن $T_{\rm H}$ و $T_{\rm L}$ به ترتیب منبعهای با دمای بالا و دمای پایین هستند بازده ماشین ها ی واقعی همیشه

کمتر از مقدار آن است. بازده ماشین های آرمانی که ماشینهای کارنو هستندنیز کمتر از مقداری است که با معادلهٔ بالا داده می شود.

ماشین کامل یک ماشین فرضی است که در آن انرژی گرمایی گرفته شده از منبع با دمای بالا به طور کامل به کار تبدیل می شود. چنین ماشینی قانون دوم ترمودینامیک را نقض می کندکه به صورت زیر بیان می شود: هیچ رشته فرآیندی که نتیجهٔ آن گرفتن انرژی گرمایی از یک منبع و تبدیل کامل آن به کار باشدامکانپذیر نیست.

یخچالها: یخچال وسیله ای است که به صورت چرخه ای کار می کند و با گرفتن انرژی گرمایی $|Q_L|$ از یک منبع با دمای پایین روی آن کار w انجام می دهد. ضریب کارایی k یک یخچال به صورت زیر تعریف می شود:

$$k = \frac{1}{1}$$
 آنچه که می خواهیم $k = \frac{|Q_{\rm L}|}{1}$

يخچال كارنو: ماشينى است, كه به طور معكوس عمل مى كند.در مورد يخچال كارنو معادلهٔ بالا چنين خواهد شد:

$$k_{c} = \frac{|Q_{L}|}{|Q_{H}| - |Q_{L}|} = \frac{T_{L}}{T_{H} - T_{L}}$$

یخچال کامل یک یخچال فرضی است که در آن انرژی گرمایی گرفته از منبع با دمای پایین به طور کامل و بدون نیاز به انجام کار به منبع با دمای بالا داده می شود. چنین یخچالی قانون دوم ترمودینامیک را نقض می کند که به صورت زیر بیان می شود:

هیچ رشته فرآیندی که نتیجهٔ ان فقط انتقال انرژی گرمایی از منبع در دمای معین به منبعی در دمای بالاتر باشد امکانپذیر نیست. انتروپی از دیدگاه آماری: انتروپی یک سامانه را می توان بر حسب توزیع های ممکن مولکولهای آن تعریف کرد .برای مولکولهای یکسان, هر توزیع امکان پذیر از مولکولها یک میکروحالت سامانه نامیده می شود. تمام میکروحالتهای معادل در یک پیکربندی سامانه قرار می گیرند. تعداد میکروحاتهای یک پیکربندی چند تایگی W آن پیکربندی نامیده می شود.

برای سامانله ای شامل N مولکول که می تواند بین دو نیمهٔ یک جعبه توزیع شد, چندتایگی با رابطهٔ زیر داده می شود:

$$w = \frac{N!}{n_1! \, n_2!}$$

که در آن n_1 تعداد مولکولهای یک نیمهٔ جعبه و n_2 تعداد نیمهٔ دیگر است .فرض اساسی مکانیک آماری این است که همهٔ میکروحاتها احتمال یکسانی دارند.بنابراین,اغلب پیکربندی های با چندتایگی زیاد رخ می دهند . هرگاه Nخیلی زیاد باشد مولکولها تقریبا همیشه در پیکربندی $n_{1=n_2}$ قرار می گیرند. چند تایگی wپیکربندی سامانه ای و انتروپی سامانه در آن پیکربندی با معادلهٔ انتروپی بولنزمن به هم مربوط می شوند:

$$S = k In w$$

است. $K=1/38 \times 10^{-23} J/k$ که دانزمن است.

هر گاه Nخیلی بزرگ باشد (حالت معمول) با تقریب استرلینگ می توان رابطه N! را به صورت تقریبی زیر نوشت:

$$In N! = N(In N) - N$$