

신생아 호흡 곤란 증후군의 X-ray 진단 연구

장어진, 조한용

한밭대학교 컴퓨터공학과

CONTENTS

01 Introduction

02 연구 내용

03 캡스톤 1 진행 사항

04 캡스톤 2 진행 방향

05 팀 체계 구성

연구 목표

X-ray 영상 만으로 RDS를 진단

RDS 소개

신생아 호흡곤란증후군

Neonatal Respiratory Distress Syndrome

신생아 호흡곤란 증후군(Respiratory Distress Syndrome)은 무엇인가?

폐 표면 활성제가 부족하면, 폐가 확장된 상태를 유지하지 못해 X-ray 촬영을 하면 폐가 공기로 찬 음영이 아닌 간유리 같이 뿌옇게 나타남

신생아 호흡곤란 증후군(Respiratory Distress Syndrome)은 무엇인가?

RDS(신생아 호흡곤란 증후군)

NonRDS (정상)

RDS는 폐가 확장된 상태를 유지하지 못해 X-ray 촬영을 하면 폐가 간유리 같이 뿌옇게 나타남

반면 Non-RDS의 폐는 공기로 찬 음영으로 보임

RDS 진단 연구 배경

영아 사망 원인 1위가 RDS

NTIS '흉부 X-ray 질환 탐지' 연관어 Word Cloud

RDS 진단 연구 배경

(단위: 백만 달러)

※ 출처 : MarketsandMarkets, Artificial Intelligence in Healthcare Market, 2020

세계 의료용 인공지능 시장의 시장 규모 및 전망

기존 관련 연구와 본 연구의 필요성

- 기존 질환 판별 연구
 - 관심 영역을 분할하는 것이 필수적인 단계
 - ㅁ 관심 영역을 제대로 분할하지 못하면 잘못된 질환 판별을 하거나 큰 오차를 일으킬 수 있음
- 신생아 질환 탐지에서의 적용
 - ㅁ 신생아는 아주 어리고 폐 영역도 작아 정확한 진단을 할 수 있는지 의문으로 남아있었음
 - □ 신생아 특성 상 관심영역이 일관된 위치, 방향이 아님
 - X-ray 사진에 다양한 기계 장치가 포함되어 영향을 미칠 가능성이 높음
- 신생아 질환 중 심각한 문제
 - □ 미숙아 주 사망원인

연구 내용

다양한 기계 장치들이 진단에 영향을 끼칠 수 있다.

연구 내용

dicom, json, csv file 존재

RDS

Non-RDS

filepath	rds	exist_json	roi_area	height	width	
C:₩dataset₩medical_imaging	1	1	199757	2614	2164	
C:₩dataset₩medical_imaging	1	1	173892.9	1657	956	
C:₩dataset₩medical_imaging	0	1	185266	1573	1040	
C:₩dataset₩medical_imaging	1	1	220792.6	2614	2164	
C:₩dataset₩medical_imaging	1	1	137998.4	1370	884	
C:₩dataset₩medical_imaging	0	1	236400	1775	1420	
C:₩dataset₩medical_imaging	0	1	384889.5	2460	1950	
C:₩dataset₩medical_imaging	0	1	203891	2614	2164	
C:₩dataset₩medical_imaging	0	1	133840.8	1484	830	
C:₩dataset₩medical_imaging	1	1	135895.5	1882	1970	
C:₩dataset₩medical_imaging	1	1	246811.5	1775	1420	

CSV 파일 정보 예시

연구 내용

dcm -> png convert, 폐 영역 고려 5그룹으로 분할

dataset_fold_3_5.csv

dataset_fold_4_5.csv

Semantic Segmentation (UNet)

폐 영역 분할 결과 (MIoU)

Image Classification (EfficientNet-B5)

EfficientNet을 활용한 RDS 진단 결과

진단 모델 실험 결과

Model	정확도		
EfficientNet B0	0.843		
EfficientNet B3	0.836		
EfficientNet B5	0.843		

분할과 진단 모델을 결합한 통합 모델의 학습 결과

Model	정확도
EfficientNet B0	0.773
EfficientNet B3	0.797
EfficientNet B5	0.852

Unet, EfficientNet B5를 활용한 최종 Confusion Matrix

Precision =
$$\frac{tp}{tp+fp}$$
Recall =
$$\frac{tp}{tp+fn}$$

캡스톤 1 최종 결과 및 캡스톤 2 진행 방향 보고

RDS를 가지고 있는 신생아의 X-ray의 경우, Grad-CAM으로 시각화 결과를 보면 분류 모델이 삽관영역을 중점적으로 보고 있음.

빨간색이 될 수록 높은 가중치 (판단에 있어 주요하게 본 정보)

캡스톤 2 진행 방향

캡스톤 2 진행 방향 보고

- 진단 모델 가중치 시각화 결과 특정 영역에 집중됨
 - 미 진단 모델이 삽관 영역을 중점적으로 보고 있음.
 - □ 해당 영역을 잘라내서 우선 결과를 확인하고자 함.
- 교차검증으로 모델을 여러 개 생성
 - □ 모델 여러 개 합하면 정확도 측면에서는 올릴 수 있지만, 시각화 결과 어떻게 추출 할 것인가?? (의료에서는 시각화가 진단 보조로 더 중요)
- 전문의분들에게 실제 도움이 되는 지 확인하고자 함
 - ㅁ 해당결과가 병원에서 유용하게 사용되기 위해 확인
 - ㅁ 시각화 결과와 진단 결과가 있을 때와 없을 때를 구분해 진단 정확도를 보고자 함.

캡스톤 2 일정

캡스톤 2 진행 계획

	7월	8월	9월	10월	11월
문제점 개선					
임상 결과 받기					
결과 정리					
논문 작업 및 게재					
작품 전시회 준비					

팀원 별 역할

캡스톤 2 팀원 별 역할 분담

장어진

- 문제점 개선
- 결과 정리 및 모델 개선
- 전체 과정 총괄

조한용

- 문제점 개선
- 실험 및 결과 시각화

THANK YOU

장어진, 조한용

한밭대학교 컴퓨터공학과