HIDK 4()5():

Today

- CAs
- Checkin Test
- Vectr Consent Form
- Data wrangling

CAs

- Aidi Bian (ab4499@tc.columbia.edu)
- Anna Lizard (al3868@tc.columbia.edu)

CAs

- Open RStudio
- Create a vector with Aidi & Anna's name
- Randomly draw from that vector one name
- That is the person you should email if you have a question

What should I be able to do at this point in the course?

- Open RStudio
- Connect to Github
- Fork/Clone/Commit/Push/ Pull Request
- Start Swirl

 If you can't do these thing you should talk to Prof, CAs, the internet or a classmate to figure it out

Analytics Discretion

- Can we find out if you have done these things?
- Should we?

Data Wrangling

Data Wrangling with dplyr and tidyr

Cheat Sheet

Syntax - Helpful conventions for wrangling

dplyr::tbl_df(iris)

Converts data to tbl class, tbl's are easier to examine than data frames. R displays only the data that fits onscreen:

Source: local data f	rame [150 x 5	5]
Sepal.Length Sepa 1 5.1 2 4.9 3 4.7 4 4.6 5 5.0 Variables not shown: Species (fctr)	3.5 3.0 3.2 3.1 3.6	1.4 1.4 1.3 1.5 1.4

dplyr::glimpse(iris)

Information dense summary of tbl data.

utils::View(iris)

View data set in spreadsheet-like display (note capital V).

	iris ×				=
↓ □ ∑ Y Filter Q					
	Sepal-Length ³	Sepal.Width	Petal.Length ³	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

dplyr::%>%

Passes object on left hand side as first argument (or. argument) of function on righthand side.

$$x \% f(y)$$
 is the same as $f(x, y)$
y %>% $f(x, ., z)$ is the same as $f(x, y, z)$

"Piping" with %>% makes code more readable, e.g.

Tidy Data - A foundation for wrangling in R

In a tidy data set:

Each observation is saved in its own row Tidy data complements R's vectorized operations. R will automatically preserve observations as you manipulate variables. No other format works as intuitively with R.

Reshaping Data - Change the layout of a data set

in its own column

tidyr::gather(cases, "year", "n", 2:4)

Gather columns into rows.

tidyr::separate(storms, date, c("y", "m", "d"))

Separate one column into several.

tidyr::spread(pollution, size, amount)

Spread rows into columns.

tidyr::unite(data, col, ..., sep)

Unite several columns into one.

 $dplyr::data_frame(a = 1:3, b = 4:6)$

Combine vectors into data frame (optimized).

dplyr::arrange(mtcars, mpg)

Order rows by values of a column (low to high).

dplyr::arrange(mtcars, desc(mpg))

Order rows by values of a column (high to low).

dplyr::rename(tb, y = year)

Rename the columns of a data

Subset Observations (Rows)

dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.

dplyr::distinct(iris)

Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.

dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.

dplyr::slice(iris, 10:15) Select rows by position.

dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

	Logic in R - ?	Comparison, ?base	::Logic
<	Less than	!=	Not equal to
>	Greater than	%in%	Group membership
==	Equal to	is.na	Is NA
<=	Less than or equal to	!is.na	Is not NA
>=	Greater than or equal to	&, ,!,xor,any,all	Boolean operators

Subset Variables (Columns)

dplyr::select(iris, Sepal.Width, Petal.Length, Species)

Select columns by name or helper function.

Helper functions for select - ?select

select(iris, contains("."))

Select columns whose name contains a character string.

select(iris, ends_with("Length"))

Select columns whose name ends with a character string.

select(iris, everything())

Select every column.

select(iris, matches(".t."))

Select columns whose name matches a regular expression.

select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5.

select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.

select(iris, starts_with("Sepal"))

Select columns whose name starts with a character string.

select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive).

select(iris, -Species)

Select all columns except Species.

Tidy Data

Data Frames, Vectors, Lists, Matrices, (Arrays)

numeric, character, factor

- character: "a", "swc"
- <u>numeric</u>: 2, 15.5
- <u>integer</u>: 2L (the L tells R to store this as an integer)
- <u>logical</u>: TRUE, FALSE
- <u>complex</u>: 1+4i

(complex numbers with real and imaginary parts)

Atomic vs generic*

All naked numbers are double-width floating-point atomic vectors of length one* (There 2 is not an integer)

TRUE/FALSE vs T/F

Why is tidy data?

- Difference between "clean" and "tidy"
- Data comes in a lot different structures, some which are difficult to analyze
- We want to make them manageable
- We want them to be "intuitive" to R (vectorized)
- BUT we want to keep a very precise record of how we did that

What is tidy data?

- 1. Observations are in rows
- 2. Variables are in columns
- 3. In a single data set

But...?

- What is a variable?
- What is an observation?
- What goes where in a data matrix?

Wide Format

Repeated measures are in a single row

Student	Quiz 2-1-16	Quiz 2-10-16	Quiz 2-20-16
Francis	10	10	11
Alex	14	15	18
Kaji	11	17	14
Miriam	8	10	8

Long (Narrow) Format

Each row is one time point per subject

Student	Quiz	Date
Francis	10	2-1-16
Francis	10	2-10-16
Francis	11	2-20-16
Alex	14	2-1-16

Generalize

Male	Female
4	10
7	10

How many variables are in the above matrix?

- 1. Male
- 2. Female
- 3. Count

Types of Messiness

- Column headers are values, not variable names
- Multiple variables are stored in one column
- Variables are stored in both rows and columns
- Multiple types of experimental unit stored in the same table
- One type of experimental unit stored in multiple tables

Tidy System

- There are many commands and several packages for doing this in R
- We are going to try to stick to two: tidyr & dplyr (we may end up using more)
- Reshape, Subset, Variable generation, Combine, Summarize

Subset

Splitting data frames

Student	Quiz	Date
Francis	10	2-1-16
Francis	10	2-10-16
Francis	11	2-20-16
Alex	14	2-1-16

Student	Quiz	Date
Francis	10	2-1-16
Francis	10	2-10-16
Francis	11	2-20-16

Student	Quiz	Date
Alex	14	2-1-16

Variable Generation

Create new variable from current variables

Student	Quiz 2-1-16	Quiz 2-10-16	Quiz 2-20-16	mean
Francis	10	10	11	10.3
Alex	14	15	18	15.7
Kaji	11	17	14	14
Miriam	8	10	8	8.7

Combine

- Merge and bind dataframes
- Mutate or Filter

Student	Quiz 2-1-16	Quiz 2-10-16
Francis	10	10
Alex	14	15
Kaji	11	17

Student	Quiz 2-1-16	Quiz 2-20-16
Francis	10	9
Suchi	14	5
Kaji	11	10

Summarize

 Collapse data into a limited number of values according to a function

Student	Quiz 2-1-16	Quiz 2-10-16
Francis	10	10
Alex	14	15
Kaji	11	17

Data Wrangling with dplyr and tidyr

Cheat Sheet

Syntax - Helpful conventions for wrangling

dplyr::tbl_df(iris)

Converts data to tbl class, tbl's are easier to examine than data frames. R displays only the data that fits onscreen:

Source: local data f	rame [150 x 5	5]
Sepal.Length Sepa 1 5.1 2 4.9 3 4.7 4 4.6 5 5.0 Variables not shown: Species (fctr)	3.5 3.0 3.2 3.1 3.6	1.4 1.4 1.3 1.5 1.4

dplyr::glimpse(iris)

Information dense summary of tbl data.

utils::View(iris)

View data set in spreadsheet-like display (note capital V).

	iris ×				=	
↓ □ □ ▼ Filter □						
Sepal.Length • Sepal.Width • Petal.Length • Petal.Width						
1	5.1	3.5	1.4	0.2	setosa	
2	4.9	3.0	1.4	0.2	setosa	
3	4.7	3.2	1.3	0.2	setosa	
4	4.6	3.1	1.5	0.2	setosa	
5	5.0	3.6	1.4	0.2	setosa	
6	5.4	3.9	1.7	0.4	setosa	
7	4.6	3.4	1.4	0.3	setosa	
8	5.0	3.4	1.5	0.2	setosa	

dplyr::%>%

Passes object on left hand side as first argument (or. argument) of function on righthand side.

$$x \% f(y)$$
 is the same as $f(x, y)$
y %>% $f(x, ., z)$ is the same as $f(x, y, z)$

"Piping" with %>% makes code more readable, e.g.

Tidy Data - A foundation for wrangling in R

In a tidy data set:

Each observation is saved in its own row Tidy data complements R's vectorized operations. R will automatically preserve observations as you manipulate variables. No other format works as intuitively with R.

Reshaping Data - Change the layout of a data set

in its own column

tidyr::gather(cases, "year", "n", 2:4)

Gather columns into rows.

tidyr::separate(storms, date, c("y", "m", "d"))

Separate one column into several.

tidyr::spread(pollution, size, amount)

Spread rows into columns.

tidyr::unite(data, col, ..., sep)

Unite several columns into one.

 $dplyr::data_frame(a = 1:3, b = 4:6)$

Combine vectors into data frame (optimized).

dplyr::arrange(mtcars, mpg)

Order rows by values of a column (low to high).

dplyr::arrange(mtcars, desc(mpg))

Order rows by values of a column (high to low).

dplyr::rename(tb, y = year)

Rename the columns of a data

Subset Observations (Rows)

dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.

dplyr::distinct(iris)

Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.

dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.

dplyr::slice(iris, 10:15) Select rows by position.

dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

	Logic in R - ?	::Logic	
<	Less than	!=	Not equal to
>	Greater than	%in%	Group membership
==	Equal to	is.na	Is NA
<=	Less than or equal to	!is.na	Is not NA
>=	Greater than or equal to	&, ,!,xor,any,all	Boolean operators

Subset Variables (Columns)

dplyr::select(iris, Sepal.Width, Petal.Length, Species)

Select columns by name or helper function.

Helper functions for select - ?select

select(iris, contains("."))

Select columns whose name contains a character string.

select(iris, ends_with("Length"))

Select columns whose name ends with a character string.

select(iris, everything())

Select every column.

select(iris, matches(".t."))

Select columns whose name matches a regular expression.

select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5.

select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.

select(iris, starts_with("Sepal"))

Select columns whose name starts with a character string.

select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive).

select(iris, -Species)

Select all columns except Species.

Reshape

- Similar to generating pivot tables
- Long format
 → Wide format

Student	Quiz 1	Quiz 2	Quiz 3
Francis	10	10	11
Alex	14	15	18
Kaji	11	17	14
Miriam	8	10	8

Spread

Gather

Student	Quiz	Date
Francis	10	Quiz 1
Francis	10	Quiz 2
Francis	11	Quiz 3
Alex	14	Quiz 1

tidyr::spread()

Specify:

- dataframe
- key: the column that the reshape will be based on
- value: column whose values will populate the cells

tidyr::spread()

Key Value

Student	Quiz	Date
Francis	10	Quiz 1
Francis	10	Quiz 2
Francis	11	Quiz 3
Alex	14	Quiz 1

Student	Student Quiz 1		Quiz 3	
Francis	10	10	11	
Alex 14		15	18	
Kaji	11	17	14	
Miriam	8	10	8	

tidyr::gather()

Specify:

- dataframe
- key: the new column that the reshape will be based on
- value: new column to store the values that will be generated for new data frame
- gather_cols: the columns that are reshaped to accommodate the new structure
 - * Can also identify key using "-" and all other columns will be gathered

tidyr::gather()

Student	Student Quiz 1 Quiz 2		Quiz 3
Francis	10	10	11
Alex	14	15	18
Kaji	11	17	14
Miriam	8	10	8

Student	Quiz	Date
Francis	10	Quiz 1
Francis	10	Quiz 2
Francis	11	Quiz 3
Alex	14	Quiz 1

key

Student
Francis
Francis
Alex

Quiz 1	Quiz 2	Quiz 3	10	11	14	15	18
10	10	11	Quiz 1	Quiz 3	NA	NA	NA
10	10	11	Quiz2	NA	NA	NA	NA
14	15	18	NA	NA	Quiz 1	Quiz 2	Quiz 3

Class Activity 1

core-methods-in-edm/class-activity-1