TEST REPORT

Reference No. : WTS16S0961813E

FCC ID : 2AJYRPOWERPACK

Applicant...... : Nomad Goods, Inc.

Manufacturer BCD China Electronics Manufacturing (Shenzhen) Ltd

3/F&5/F, Bldg B2, Xin An No. 3 Industrial Park, Hang Cheng Industrial

Address...... Zone, Qian Jin Road, Xi Xiang, Bao An District, Shenzhen,

Guangdong, China

Product Name : POWERPACK

Model No. : powerpack-tile

Date of Receipt sample Sep. 28, 2016

Date of Test : Oct. 19 – Nov. 20, 2016

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Tested by:

Zero Zhou / Tested Engineer

2 %

Approved by:

o Zhong / Manager

2 Contents

		Page
1	COVER PAGE	
2	CONTENTS	
3	REVISION HISTORY	
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T.	
	4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST.	
	4.4 TEST MODE	
	4.5 TEST FACILITY	7
5	EQUIPMENT USED DURING TEST	8
	5.1 EQUIPMENTS LIST	
	5.2 DESCRIPTION OF SUPPORT UNITS	
	5.4 TEST EQUIPMENT CALIBRATION	
6	TEST SUMMARY	
7	CONDUCTED EMISSION	
	7.1 E.U.T. OPERATION	11
	7.2 EUT SETUP	11
	7.3 MEASUREMENT DESCRIPTION	
	7.4 CONDUCTED EMISSION TEST RESULT	
8	RADIATED EMISSIONS	
	8.1 EUT OPERATION	
	8.3 SPECTRUM ANALYZER SETUP	
	8.4 TEST PROCEDURE	18
	8.5 SUMMARY OF TEST RESULTS	
9	BAND EDGE MEASUREMENT	
	9.1 TEST PRODUCE	
	9.2 TEST RESULT	
10	BANDWIDTH MEASUREMENT	
	10.1 TEST PROCEDURE	
11	MAXIMUM PEAK OUTPUT POWER	
11	11.1 Test Procedure	
	11.2 TEST RESULT	
12	POWER SPECTRAL DENSITY	28
	12.1 Test Procedure	28
	12.2 Test Result	28
13	ANTENNA REQUIREMENT	30
14	RF EXPOSURE	31
	14.1 REQUIREMENTS	
	14.2 THE PROCEDURES / LIMIT	
15	PHOTOGRAPHS -MODEL POWERPACK-TILE TEST SETUP	
	15.1 PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP AT TEST SITE 1#	
\/\/a	15.2 PHOTOGRAPH - RADIATED EMISSION	32

Reference No.: WTS16S0961813E Page 3 of 41

16	PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS	30
	16.1	Model Powerpack-tile - External Photos	36
	16.2	MODEL POWERPACK-THE - INTERNAL PHOTOS	30

Reference No.: WTS16S0961813E Page 4 of 41

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS16S0961813E	Sep. 28, 2016	Oct. 19 – Nov. 20, 2016	Nov. 23, 2016	original	-	Replaced
WTS16S0961813E	Sep. 28, 2016	Oct. 19 – Nov. 20, 2016	Dec. 05, 2016	Revision1	Updated Test Report	Valid

Reference No.: WTS16S0961813E Page 5 of 41

4 General Information

4.1 General Description of E.U.T.

Product Name: POWERPACK

Model No.: powerpack-tile

Model Difference: N/A

Operation Frequency: 2402MHz ~ 2480MHz, separated by 2MHz,40 channels in total

The lowest oscillator: 32.768KHz

Type of modulation: GFSK(BLE only)

Test software: Prodtest.exe

Test firmware: DA1458x_SDK_3.0.6

Test software date: 20-Jun-2014

Test software version number: P_04

Test software storage location: \Windows\System32

4.2 Details of E.U.T.

Technical Data: Input: DC 5V === 3.0A,

Out 1: DC 5V === 3.0A | 9V === 2.0A | 12V === 2.0A

Out 2: DC 5V === 2.4A, Total Output: 27W Max

Capacity 3.7V 9000mAh Li-ion (33.3Wh)

4.3 Channel List

BLE mode

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Table 1 Tests carried out under FCC part 15.247

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2440MHz	2480MHz

Table 2 Tests carried out under FCC part 15.207&15.209

Test Item	Test Mode1	Test Mode2	Test Mode3*
Conducted Emissions	Charging under BLE mode	Discharging under BLE mode	Charging + Discharging under BLE mode
Radiated Emissions	Charging under BLE mode	Discharging under BLE mode	Charging + Discharging under BLE mode

Note: "*" show the worst case mode, all test mode were tested and passed, only the worst case mode which were recorded in this report. The Bluetooth (BLE) is only use to tracking your POWERPACK anywhere, no other function.

Reference No.: WTS16S0961813E Page 7 of 41

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services (Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, Oct. 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

	5.1 Equipments List									
Cond	Conducted Emissions at Mains Terminals Disturbance Voltage(1#)									
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1	EMI Test Receiver	R&S	ESCI	100947	Sep.12, 2016	Sep.11, 2017				
2	LISN	R&S	ENV216	100115	Sep.12, 2016	Sep.11, 2017				
3	Cable	Тор	TYPE16(3.5M)	-	Sep.12, 2016	Sep.11, 2017				
Conducted Emissions at Mains Terminals Disturbance Voltage(2#)										
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1	EMI Test Receiver	R&S	ESCI	101155	Sep.12, 2016	Sep.11, 2017				
2	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12, 2016	Sep.11, 2017				
3	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12, 2016	Sep.11, 2017				
4 Cable		Laplace	RF300	-	Sep.12, 2016	Sep.11, 2017				
3m Se	emi-anechoic Chambe	er for Radiation(1#)	T .		T				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1	1 Spectrum Analyzer R&S		FSP	100091	Apr.29, 2016	Apr.28, 2017				
2	Amplifier	Agilent	8447D	2944A10178	Jan.13, 2016	Jan.12, 2017				
3	Active Loop Antenna	Beijing Dazhi	ZN30900A	0703	Oct.17, 2016	Oct.16, 2017				
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	33 6	Apr.09, 2016	Apr.08, 2017				
5	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12, 2016	Sep.11, 2017				
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.09, 2016	Apr.08, 2017				
7	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.09, 2016	Apr.08, 2017				
8	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.13, 2016	Apr.12, 2017				
9	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	Apr.13, 2016	Apr.12, 2017				
3m Se	emi-anechoic Chambe	er for Radiation(2#)							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date				
1	Test Receiver	R&S	ESCI	101296	Apr.13, 2016	Apr.12, 2017				
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09, 2016	Apr.08, 2017				
3	Amplifier	ANRITSU	MH648A	M43381	Apr.13, 2016	Apr.12, 2017				

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Reference No.: WTS16S0961813E Page 9 of 41

4 Cable HUBER+SUHNER CBL2 525178 Apr.13, 2016 Apr.12, 20	4	Cable	HUBER+SUHNER	CBL2	525178	Apr.13, 2016	Apr.12, 2017
--	---	-------	--------------	------	--------	--------------	--------------

5.2 Description of Support Units

Equipment	Manufacturer	Model No.
AC Adapter	BCD China Electronics Manufacturing	LY04
	(Shenzhen) Ltd	
Type C USB Line	BCD China Electronics Manufacturing	N/A
	(Shenzhen) Ltd	
Resistive Load	Waltek Services (Shenzhen) Co., Ltd.	1R7J 50W
Resistive Load	Waltek Services (Shenzhen) Co., Ltd.	4R5J 50W
Resistive Load	Waltek Services (Shenzhen) Co., Ltd.	6R 50W
Resistive Load	Waltek Services (Shenzhen) Co., Ltd.	2R1 50W
		·

Note: the Bluetooth (BLE) is only use to tracking your POWERPACK anywhere, no other function.

5.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S0961813E Page 10 of 41

6 Test Summary

Test Items	Test Requirement	Result		
Radiated Emissions	15.205(a)	С		
Nadiated Effissions	15.209(a)	_		
Conducted Emissions	15.207(a)	С		
Bandwidth	15.247(a)(2)	С		
Maximum Peak Output Power	15.247(b)(3),(4)	С		
Power Spectral Density	15.247(e)	С		
Band Edge	15.247(d)	С		
Antenna Requirement	15.203	С		
SAR	1.1307(b)(1)	С		
Note: C=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.				

Reference No.: WTS16S0961813E Page 11 of 41

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207
Test Method: ANSI C63.10:2013;ANSI C63.4:2014

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

Live line:

Neutral line:

Reference No.: WTS16S0961813E Page 14 of 41

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013;ANSI C63.4:2014

Test Result: PASS
Measurement Distance: 3m

Limit:

Littit.						
_	Field Strength		Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

8.1 EUT Operation

Operating Environment:

Temperature: $25.5 \, ^{\circ}\text{C}$ Humidity: $51 \, ^{\circ}\text{RH}$ Atmospheric Pressure: 1016 mbar

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10:2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

Description of the absorber: (Meet the requirements of ANSI C63.4:2014 Section 5.5.1(a) 2: Alternative site validation without SVSWR measurements)

Name: Absorber

Manufacturer: ECCOSORB Model number: VHP-12

Size: 61cm (L)*61cm (W)*31cm (H)

Electromagnetic properties

	120 MHz	200 MHz	300 MHz	500 MHz	1 GHz	3 GHz	5 GHz	10 GHz	15 GHz	24 GHz
ECCOSORB VHP-2							-30	-40	-45	-50
ECCOSORB VHP-4						-30	-40	-45	-50	-50
ECCOSORB VHP-8					-30	-40	-50	-50	-50	-50
ECCOSORB VHP-12				-25	-35	-40	-50	-50	-50	-50
ECCOSORB VHP-18				-30	-40	-45	-50	-50	-50	-50
ECCOSORB VHP-26			-25	-35	-40	-50	-50	-50	-50	-50
ECCOSORB VHP-36		-20	-30	-35	-45	-50	-50	-50	-50	-50
ECCOSORB VHP-45	-20	-25	-35	-40	-45	-50	-50	-50	-50	-50

8.3 Spectrum Analyzer Setup

Below	30MI	Ηz
-------	------	----

Sweep Speed	Auto
IF Bandwidth	10 kHz
Video Bandwidth	10 kHz

Resolution Bandwidth......10 kHz

 $30MHz \sim 1GHz$

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth	100 kHz
Video Bandwidth	300 kHz

Above 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth	1MHz
Video Bandwidth	3MHz
Detector	Ave.
Resolution Bandwidth	1MHz
Video Bandwidth	10Hz

Reference No.: WTS16S0961813E Page 18 of 41

8.4 Test Procedure

- 1. The EUT is placed on a turntable, which is above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X, Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), the worst condition was tested putting the eut in X axis, so the worst data were shown as follow.
- 8. New battery was used during test.

8.5 Summary of Test Results

Test Frequency: 32.768 kHz~30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Receive		Receiver		RX An	tenna	Corrected	Corrected		
Frequency		Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Low	Channel				
268.28	36.56	QP	318	1.9	Н	-13.35	23.21	46.00	-22.79
268.28	40.28	QP	221	1.9	V	-13.35	26.93	46.00	-19.07
4804.00	45.87	PK	193	2.0	V	-1.06	44.81	74.00	-29.19
4804.00	42.78	Ave	193	2.0	V	-1.06	41.72	54.00	-12.28
7206.00	40.55	PK	325	1.1	Н	1.33	41.88	74.00	-32.12
7206.00	36.12	Ave	325	1.1	Н	1.33	37.45	54.00	-16.55
2319.06	45.89	PK	140	1.2	V	-13.19	32.70	74.00	-41.30
2319.06	39.72	Ave	140	1.2	V	-13.19	26.53	54.00	-27.47
2389.29	42.70	PK	50	1.5	Н	-13.14	29.56	74.00	-44.44
2389.29	37.98	Ave	50	1.5	Н	-13.14	24.84	54.00	-29.16
2498.39	43.78	PK	280	1.6	V	-13.08	30.70	74.00	-43.30
2498.39	38.08	Ave	280	1.6	V	-13.08	25.00	54.00	-29.00

	Receiver		Turn	RX An	ntenna Corrected		Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Middle	e Channe	el			
268.28	35.50	QP	329	1.4	Н	-13.35	22.15	46.00	-23.85
268.28	39.49	QP	231	1.8	V	-13.35	26.14	46.00	-19.86
4882.00	46.83	PK	154	1.4	V	-0.62	46.21	74.00	-27.79
4882.00	42.37	Ave	154	1.4	V	-0.62	41.75	54.00	-12.25
7323.00	40.85	PK	202	1.2	Н	2.21	43.06	74.00	-30.94
7323.00	37.44	Ave	202	1.2	Н	2.21	39.65	54.00	-14.35
2348.47	46.44	PK	41	1.1	V	-13.19	33.25	74.00	-40.75
2348.47	39.64	Ave	41	1.1	V	-13.19	26.45	54.00	-27.55
2383.24	42.79	PK	191	1.5	Н	-13.14	29.65	74.00	-44.35
2383.24	37.06	Ave	191	1.5	Н	-13.14	23.92	54.00	-30.08
2483.54	44.32	PK	189	1.1	V	-13.08	31.24	74.00	-42.76
2483.54	38.73	Ave	189	1.1	V	-13.08	25.65	54.00	-28.35

	Receiver Reading		Turn	RX Antenna		Corrected	Corrected		
Frequency		Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK High C	Channel				
268.28	34.57	QP	155	1.9	Н	-13.35	21.22	46.00	-24.78
268.28	38.50	QP	104	1.7	V	-13.35	25.15	46.00	-20.85
4960.00	47.42	PK	171	1.8	V	-0.24	47.18	74.00	-26.82
4960.00	42.58	Ave	171	1.8	V	-0.24	42.34	54.00	-11.66
7440.00	42.12	PK	44	1.1	Н	2.84	44.96	74.00	-29.04
7440.00	37.31	Ave	44	1.1	Н	2.84	40.15	54.00	-13.85
2314.40	45.08	PK	126	1.6	V	-13.19	31.89	74.00	-42.11
2314.40	37.23	Ave	126	1.6	V	-13.19	24.04	54.00	-29.96
2361.44	44.04	PK	52	1.5	Н	-13.14	30.90	74.00	-43.10
2361.44	38.73	Ave	52	1.5	Н	-13.14	25.59	54.00	-28.41
2494.96	43.43	PK	350	1.6	V	-13.08	30.35	74.00	-43.65
2494.96	38.17	Ave	350	1.6	V	-13.08	25.09	54.00	-28.91

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS16S0961813E Page 22 of 41

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. As defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) and

15.205(c).

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

Test Mode: Transmitting

9.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the spectrum analyser: RBW = 100 kHz, VBW = 300 kHz, Sweep = auto

Detector function = peak, Trace = max hold

- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.2 Test Result

Band edge-left side

Band edge-right side

Reference No.: WTS16S0961813E Page 24 of 41

10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyser: RBW = 100 kHz, VBW = 300 kHz

10.2 Test Result

Operation mode	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	
Low channel	0.731	1.090	
Middle channel	0.731	1.096	
High channel	0.731	1.096	

Test result plot as follows:

Mode: Low channel

Mode: Middle channel

Mode: High channel

Reference No.: WTS16S0961813E Page 26 of 41

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

11.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r05 section 8.1.2 Option 2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result

Maximum Peak Output Power (dBm)						
Low channel Middle channel High channel						
-2.12 -3.06		-3.25				
Limit: 1W/30dBm						

Test mode: Low channel

Test mode: Middle channel

Test mode: High channel

Reference No.: WTS16S0961813E Page 28 of 41

12 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

12.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r05 section 9.1 Option 1

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port To the spectrum.
- 2. Set the spectrum analyzer: RBW = 3 kHz. VBW = 10 kHz, Span = 1.5 times the DTS channel bandwidth. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result

Power Spectral Density						
Low channel	Middle channel	High channel				
-14.17	-14.77	-14.41				
Limit: 8dBm per 3kHz						

Test mode: Low channel

Test mode: Middle channel

Test mode: High channel

13 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one PCB printed antenna, the gain is 0dBi. Meets the requirements of FCC 15.203.

Reference No.: WTS16S0961813E Page 31 of 41

14 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part2.1093 & KDB 447498 D01 General RF Exposure Guidance v06

14.1 Requirements

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR where

- 1. f(GHz) is the RF channel transmit frequency in GHz
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is <5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

14.2 The procedures / limit

		Source-based	Minimum test		
Conducted	Conducted	time-averaged	separation distance	SAR Test Exclusion	
Peak	Peak	maximum	required for the	Thresholds(mW)	Result
power(dBm)	power(mW)	conducted output	exposure conditions	Tillesilolus(IIIVV)	
		power(mW)	(mm)		
-2.12	0.614	0.614	5	10	Compliance

Remark: Max. duty factor is 100%

Calculation formula: Source-based time-averaged maximum conducted output power (mW)

=Conducted peak power (mW)*Duty factor

For frequency in 2.402GHz: SAR Test Exlusion Thresholds \leq 3.0 / [$\sqrt{f(GHz)}$] *(min. test separation

distance, mm)=3.0/($\sqrt{2.402}$) *5=9.679 mW \approx 10mW

For frequency in 2.480GHz: SAR Test Exlusion Thresholds \leq 3.0 / [$\sqrt{f(GHz)}$] *(min. test separation

distance, mm)=3.0/(√2.480) *5=9.525 mW≈10mW

5.2 Result: Compliance

No SAR measurement is required.

15 Photographs – Model powerpack-tile Test Setup

15.1 Photograph - Conducted Emission Test Setup at Test Site 1#

15.2 Photograph - Radiated Emission

Test frequency 32.768 KHz to 30MHz Test Site 2#

Test frequency from 30MHz to 1GHz Test Site 2#

Test frequency above 1GHz Test Site 1#
Charging + Discharging under BLE mode

16 Photographs - Constructional Details

16.1 Model powerpack-tile - External Photos

Reference No.: WTS16S0961813E Page 37 of 41

Reference No.: WTS16S0961813E Page 38 of 41

16.2 Model powerpack-tile - Internal Photos

Reference No.: WTS16S0961813E Page 40 of 41

=====End of Report=====