Metody numeryczne - projekt 1.

Kinga Świderek

1 Zadanie 1.

1.1 Opis algorytmu faktoryzacji Cholesky'ego-Banachiewicza

Aby rozwiązać układ równań $\mathbf{A}\mathbf{x} = \mathbf{b}$ metodą faktoryzacji Cholesky'ego-Banachiewicza, należy wyznaczyć macierz \mathbf{L} , która spełniałaby równanie:

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

Każda symetryczna, dodatnio określona macierz $\bf A$ może być w ten sposób jednoznacznie przedstawiona. Do wyznaczenia rozkładu wykorzystam algorytm:

$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}$$

$$l_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik}}{l_{ii}}$$

Po wyznaczeniu macierzy $\mathbf L$ należy rozwiązać dwa układy równań, aby otrzymać rozwiązanie $\mathbf x$:

$$Ly = b$$

$$\mathbf{L}^T\mathbf{y} = \mathbf{x}$$

1.2 Wyniki

Sprawdziłam czas obliczeń oraz błąd ϵ zaimplementowanego algorytmu dla macierzy ${\bf A}$ i wektora ${\bf b}$ zdefiniowanych jako:

$$a_{ij} = 2(i+j) + 1, j \neq i; a_{ii} = 3n^2 + (3i+3)n; b_i = 2.5 + 0.6i$$

dla wartości n = 5, 25, 50, 100, 250, 500, 1000.

Oba wykresy, zarówno czasu i błędu, są kształtem podobne do siebie. Wynika to z nakładu obliczeń, gdyż każda operacja ma swój czas wykonania, a zarazem każda wprowadza pewien błąd numeryczny. Do wyznaczenia rozkładu $\mathbf{L}\mathbf{L}^T$ wykonane jest $\frac{1}{6}n^3$ operacji dodawania i mnożenia oraz n pierwiastkowań. Do wyznaczenia \mathbf{x} należy rozwiązać dwa układy równań z macierzami trójkątnymi, co oznacza n^2 mnożeń i dodawań. Są to wyrażenia niższego rzędu - wyrażeniem dominującym jest $O(\frac{1}{6}n^3)$, które ma największy wpływ na kształt wykresu:

Rysunek 1: Zależność czasu obliczeń (s) od wartości \boldsymbol{n}

Rysunek 2: Zależność wartości błędu ϵ od wartości n

Rysunek 3: $O(\frac{1}{6}n^3)$ dla n=5,25,50,100,250,500,1000

Najmniejsza wartość ϵ (dla n=5) jest rzędu wielkości 10^{-15} , natomiast wartość eps jest rzędu 10^{-16} , co sugeruje, że zadanie zostało rozwiązane poprawnie.

2 Zadanie 2.

Dla macierzy \mathbf{A} i wektora \mathbf{b} danych wzorami:

$$a_{ii} = 10; a_{ij} = -3, j = i \pm 3; a_{ij} = 0 \ dla \ pozostaych; b_i = 2.5 + 0.5i$$

należy porównać dokładność i czas rozwiązania solwerem napisanym w zadaniu 1. oraz implementującym metodę Gaussa-Seidela.

Liczba iteracji metody Gaussa-Seidela rośnie logarytmicznie w zależności od n.

Rysunek 4: Zależność ilości iteracji od wartości n w metodzie Gaussa-Seidela

Dokładność metody Gaussa-Seidela jest na poziomie 10^{-9} , co zgadza się z ustaloną dokładnością, przekazaną jako argument wejściowy dla solwera. Dokładność metody Cholesky-ego-Banachiewicza nie jest ustalona odgórnie - przyjmuje najmniejszą możliwą wartość.

n	Cholesky-	$Gauss ext{-}Seidel$		
	Banachiewicz			
5	9.9301e-16	5.5549e-10		
25	1.1791e-14	2.2997e-09		
50	4.3003e-14	1.3000e-09		
100	8.2387e-14	2.8765 e-09		
250	2.0564e-13	2.4101e-09		
500	3.8824e-13	2.9616e-09		
1000	6.5469e-13	1.5444e-09		

Rysunek 5: Zależność wartości błędu ϵ od wartości n

Czas wykonywania obliczeń jest znacząco krótszy dla metody Gaussa-Seidela wraz ze wzrostem wymiarowości zadania. Metoda Cholesky'ego-Banachiewicza ma złożoność obliczeniową $O(\frac{1}{6}n^3)$. Złożoność obliczeniowa metody Gaussa-Seidela jest zależna od specyfiki macierzy i uwarunkowania problemu. W tym przypadku wygląda na wzrost liniowy (O(n)).

Rysunek 6: Zależność czasu obliczeń (s) od wartości \boldsymbol{n}

3 Zadanie 3.

Należy metodą najmniejszych kwadratów wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą poniższe dane:

x_i	-10	-8	-6	-4	-2	0	2	4	6	8	10
y_i	2.008	-3.668	-4.916	-1.870	-0.045	0.550	-0.839	-1.011	2.613	14.615	39.655

3.1 Opis algorytmu LZNK

Powyższe zadanie można przedstawić jako następujący układ równań:

$$Xa = v$$

gdzie \mathbf{X} jest macierzą, której i-ty wiersz składa się z wartości x_i podniesionej do kolejnych potęg (zaczynając od potęgi zerowej):

$$\mathbf{X} = \begin{bmatrix} x_1^n & x_1^{n-1} & \dots & x_1 & 1 \\ x_2^n & x_2^{n-1} & \dots & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_m^n & x_m^{n-1} & \dots & x_m & 1 \end{bmatrix}$$

a jest wektorem współczynników wielomianu $f(x) = a_1 x^n + a_2 x^{n-1} + ... + a_n x + a_{n+1}$; y jest wektorem zbadanych wartości f(x), przedstawionych w powyższej tabeli.

Liniowe zadanie najmniejszych kwadratów polega na odnalezieniu wektora $\hat{\mathbf{x}}$, który dla danego układu równań $\mathbf{A}\mathbf{x} = \mathbf{b}$ minimalizuje wartość błędu:

$$\forall \mathbf{x} \in R^n \ \|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\|_2 \leqslant \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2$$

Jest to równoznaczne ze znalezieniem minimum funkcji:

$$J(x) = (\mathbf{b} - \mathbf{A}\mathbf{x})^T (\mathbf{b} - \mathbf{A}\mathbf{x}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x} - 2\mathbf{x}^T \mathbf{A}^T \mathbf{b} + \mathbf{b}^T \mathbf{b}$$

W przypadku, gdy macierz \mathbf{A} jest pełnego rzędu, funckja J(x) ma jednoznaczne minimum w punkcie zerowania jej gradientu:

$$J'(x)^T = 2\mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} = \mathbf{0}$$

Powyższe równanie można zapisać jako układ równań normalnych:

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

Lub zgodnie z powyższymi oznaczeniami: $\mathbf{X}^T\mathbf{X}\mathbf{a} = \mathbf{X}^T\mathbf{y}$.

Dla słabo uwarunkowanych macierzy zalecane jest skorzystanie z rozkładu QR. Powyższe równanie można zapisać jako:

$$\mathbf{R}\mathbf{x} = \mathbf{Q}^T \mathbf{b}$$

Lub zgodnie z powyższymi oznaczeniami: $\mathbf{R}\mathbf{a} = \mathbf{Q}^T\mathbf{y}$

3.2 Wyniki

Poniżej widać porównanie aproksymacji - po lewej stronie za pomocą układu równań normalnych (a), po prawej za pomocą rozkładu QR (b):

Tabela poniżej przedstawia błąd aproksymacji w normie euklidesowej:

n	3	5	7	9	10
(a)	11.9237	1.0707	0.5140	0.3489	3.5717e-10
(b)	14.8415	1.1184	0.8655	0.5510	0.5500

Tabela poniżej przedstawia bład aproksymacji w normie maksimum:

n	3	5	7	9	10
(a)	4.9326	0.6951	0.3276	0.2045	2.1901e-10
(b)	6.9226	0.7081	0.5500	0.5500	0.5500

Wartości błędu w każdym przypadku były mniejsze dla aproksymacji za pomocą układu równań normalnych (a) niż za pomocą rozkładu QR (b). W obu metodach błąd maleje wraz ze wzrostem stopnia wielomianu. Wielomian stopnia 3 w obu przypadkach nie przybliża dobrze próbek. Wielomiany stopnia 5, 7, 9 oraz 10 wyznaczone przez metodę (b) mają bardzo podobne do siebie wykresy. Wartości błędu dla tych wielomianów są na bardzo zbliżonym poziomie. W przypadku metody (a) wielomiany stopnia 5, 7 oraz 9 również nie mają między sobą dużych różnic - zarówno w kształcie jak i obliczonej wartości błędu. Widać jednak duży skok w rzędach wielkości między błędem wielomianu 9 a 10 stopnia. Wartość błędu jest rzędu 10^{-10} . Oznacza to, że krzywa przebiega niemal idealnie przez wszystkie 11 punktów. Kształt krzywej najbardziej odbiega od poprzednich w zakresie $x \in (-10, -5)$.