Multimedia-Netze

Gliederung

- Multimedia-Anwendungen
- Audio- und Videostreaming
- Realzeit Multimedia: Voice over IP Internet-Telephonie
- Protokolle für Realzeit-Anwendungen RTP, RTCP, SIP
- Über best effort hinaus
- Scheduling und Policing

Multimedia Netz-Anwendungen

Anwendungsklassen:

- 1) Streaming gespeicherter Audio- und Video-Daten
- 2) Streaming aktueller Audiound Video-Daten (live)
- 3) Interaktive Realzeit-Audio und Video-Kommunikation

<u>Grundlegende Eigenschaften:</u>

- Typisch: Verzögerung ist kritisch
 - Ende-zu-Ende-Verzögerung
 - Jitter (Verzögerungsschwankungen)
- Aber Verluste sind akzeptabel: seltene Paketverluste werden kaum bemerkt
- Unterschied zu klassischem Datentransfer, wo Verluste nicht akzeptabel, aber Verzögerungen unkritisch sind.

Multimedia Daten Audio

- Analoges Signal wird mit konstanter Rate abgetastet (digitales Signal)
- Digitales Signal wird u.U. kodiert (Reduktion der Größe)

 Digitales Signal wird verschickt
- Empfänger transformiert digitales Signal in analoges Signal
- Typische Raten CD 1.411 Mbps, MP3 128-160 kbps, IP-Telefonie 5.3 kbps

Multimedia Daten Video

- Sequenz von Bildern, die mit konstanter Rate (z.B. 24 Bilder/sec) abgespielt werden
- Bild als Feld von Pixeln (durch mehrere Bits repräsentiert)
- Kodierung und Größenreduktion durch Nutzung der Redundanz im Bild und zwischen Bildern
- Typische Raten
 MPEG 1 (CD) 1.5 Mbits,
 MPEG 2 (DVD) 4-6 Mbps,
 MPEG 4 (Internet) < 1 Mbps</p>

(unkodiertes Fernsehbild (HDTV) 1080x1920 Pixel mit 24 Bit Farbinformation pro Pixel bei 24 Bildern pro Sekunde > 1

Gbps)
© Peter Buchholz 2017 nach

Streaming gespeicherter Multimediadaten

- Streaming:
- Sie werden zum Kunden übertragen
- > Streaming: Das Abspielen beim Kunden beginnt, noch bevor die gesamte Datei übertragen ist
 - > Zeitanforderung für die noch zu übertragenden Daten: Rechtzeitig zum lückenlosen Abspielen!

Streaming

Streaming: Interaktivität

- 10 sec Anfangsverzögerung OK
- 1-2 sec bis Kommando wirkt OK
- Protokoll RTSP wird dazu oft benutzt
- Zeitanforderung für die noch zu übertragenden Daten: Rechtzeitig zum unterbrechungsfreien Abspielen

Streaming Live Multimedia

Beispiele:

- Internet Radio Talkshow
- Live Sportereignis

Streaming

- Playback Puffer
- Playback kann um einige 10 sec verzögert werden
- Auch bei Playback gibt es Rechtzeitigkeitsanforderungen

<u>Interaktivität</u>

- Vorwärtsspulen nicht möglich
- Pause und Rückwärtsspulen möglich

Interaktive Realzeit-Multimediadaten

◆ Anwendungen:

IP Telephonie, Video-Konferenz, Verteilte interaktive Welten

- Anforderungen an Übetragungsverzögerung:
 - Audio: < 150 msec gut, < 400 msec OK
 - Muss Anwendungsbearbeitung und Transferzeit umfassen
 - Höhere Verzögerung stören die Interaktivität
- Sitzungsaufbau
 - Wie veröffentlicht der Angerufene seine IP Adresse, Port-Nummer und Codieralgorithmen?

Multimedia über das heutige Internet

TCP/UDP/IP: "Best-Effort Service"

keine Garantien zu Verzögerungszeiten und Verlustfreiheit

Heutige Anwendungen nutzen Techniken auf Anwendungsebene, um (so gut wie möglich) Verzögerungs- und Verlusteffekte zu mildern

Streaming gespeicherter Multimediadaten im Internet

Application-Level Streaming:

"Das beste aus

Best-Effort-Internet machen"

- Pufferung auf Client-Seite
- Benutzung von UDP statt TCP
- Codierung und Kompression

- Jitter entfernen
- Dekompression
- Fehler-Verschleierung
- GUI-Bedienknöpfe

Internet Multimedia: Streaming

Streaming über HTTP (und TCP):

- Ankunftsrate schwankt durch TCP Fluss- und Überlastkontrolle, Übertragungswiederholungen
- Längere Verzögerung bei der Ausgabe glättet den Verkehr
- ➤ Kombination HTTP/TCP wird durch Firewalls zugelassen Alternative:
- UDP mit konstanter Senderate (aber Jitter im Netz)

Dynamic Adaptive Streaming over HTTP (DASH)

> Server:

- Unterteilt die Video-Datei in mehrere chunks
- chunks warden in verschiedenen Formaten (Kodierungen) vorgehalten
- manifest Datei: enthält URLs für die chunks

> Client:

- Misst die Bandbreite zwischen Server und Client periodisch
- Fordert Chunks nacheinander in bestimmter Qualität an
 - Auswahl der maximalen mit gegebener Bandbreite möglichen Kodierungsrate
 - Kodierung kann während der Übertragung wechseln
- Bestimmt wann, in welcher Form und von woher ein Chunk angefordert wird

Streaming Multimedia: Client-seitige Pufferung

Nutzerkontrolle von Streaming Media: RTSP

HTTP

- Nicht für Multimedia-Austausch gedacht
- Keine Kommandos für Vor- und Zurückspulen, Pause etc.
- Durch DASH Anpassung an Multimedia-Anwendungen

Real-time Streaming Protocol RTSP: RFC 2326

- Client-Server Protokoll der Anwendungsschicht.
- Kommandos für Vor- und Zurückspulen, Pause etc.

Nicht enthalten:

- Keine Codierungs- und Kompressionsfestlegungen
- Keine Multimedia-Transfer
 Festlegungen (z.B. UDP, TCP)
- Keine Festlegungen zur Pufferung

RTSP-PDUs werden in separater Verbindung ("Out of Band") übertragen

Interaktive Realzeit-Anwendung: Internet-Telephonie

packets

packets

generated

- Je Richtung gibt es Sprechund Pausenphasen
 - In den Sprechphasen werden alle 20 msec ein Paket generiert, das 160 Datenbyte enthält (entsprechend 8KByte/sec)
 - Jedes Paket wird als UDP-Datagramm gesendet
- UDP Datagramme können:
 - verloren gehen
 - zu langsam transferiert werden
 - 1-10% Verluste sind tolerabel
- Jitter-Behandlung: Fixed Playout Delay
 - Zeitstempel je Paket
 - Abspielen nach konstanter Verzögerungszeit
 - je größer diese Zeit, umso weniger Pakete kommen zu spät
 - je größer diese Zeit, umso weniger kommt ein Gespräch zustande
- Verbesserung: Adaptiver Playout Delay © Peter Buchholz 2017 nach

playout schedule

p' - r

playout schedule

loss

packets

received

Behandlung von Paketverlusten

Forward Error Correction (FEC): Einfaches Schema

- Für je n Pakete wird (n+1)-tes Paket als Parity-Vektor gesendet
 - Redundanz erhöht Bandbreite
 - ermöglicht Rekonstruktion eines verlorenen Pakets, wenn je n-Gruppe höchstens ein Paket verloren geht

Auswahl des Parameters n: Vergrößerung von n führt zu

- geringerenBandbreitenverlusten
- längerenVerzögerungszeiten bis zum Abspielen
- erhöhter
 Wahrscheinlichkeit, dass 2
 oder mehr von n Paketen
 verloren gehen

Behandlung von Paketverlusten

Forward Error Correction (FEC): Flexibleres Schema

 ◆ Dem Datenstrom, der den Audiostrom mit guter Qualität codiert wird ein zweiter Datenstrom überlagert, der den Audiostrom mit schlechte aber kurzzeitig akzeptabler Qualität codiert

Transfer mit dem Real-Time Protokoll (RTP)

- RTP (RFC 3550)
 Paketformat für Datenpakete, die Audio- und Videodaten enthalten
 - Typkennung für diese Nutzdaten
 - Sequenznummer
 - Zeitstempel

Transfer in UDP-Datagrammen Interoperabilität zwischen zwei Anwendungsprozessen, die beide

RTP benutzen und dieselben Codierungen verstehen.

 Keine QoS-Mechanismen enthalten

Payload type 0: PCM mu-law, 64 kbps

Payload type 3, GSM, 13 kbps

Payload type 7, LPC, 2.4 kbps

Payload type 26, Motion JPEG

Payload type 31. H.261

Payload type 33, MPEG2 video

Real-Time Control Protokol (RTCP)

- RTP: Medientransfer
- RTCP: Jeder RTP-Anwendungsprozess sollte periodisch RTCP-PDUs zu seinen entfernten Partnern senden, um Anpassungen zu ermöglichen:
 - Sender bzw. Empfänger-Report:
 Statistische Daten
 (Paketanzahl, Verlustanzahl, Jitter, ..)
 - Paare aus RTP-Stromzeitstempel und Paketerzeugungszeitstempel zur wechselseitigen Synchronisation von Strömen
- Adressierung typischerweise über Multicast-Adressen
 - RTP und RTCP benutzen dieselbe Gruppenadresse, aber verschiedene Port-Nummern

Session Initiation Protokoll (SIP)

Vision

- Jede Form von Telekommunikation (Telefonie, Videokonferenzen, ..) wird über das Internet abgewickelt.
- Adressaten werden durch Namen oder E-Mail-Adressen identifiziert, nicht mehr durch Telefonnummern
- Der Angerufene kann unabhängig davon erreicht werden, ob er momentan am Arbeitsplatz-PC sitzt, auf Reisen ist, oder ..

⇒ Session Initiation Protocol mit den Diensten

- Anruf-Erzeugung
 - Rufen des Partners
 - Abstimmen der Medien und der Codierung
 - Beenden der Sitzung
- Ermittlung der aktuellen IP-Adresse des Partners
- Verbindungsverwaltung
 - Medien- und Codec-Änderungen
 - Neue Partner dazu nehmen
 - Anrufweiterleitung und Pausieren

Rufaufbau bei bekannter IP-Adresse

Kurose/Ross (copyright 99-13)

SIP – weitere Aspekte

HTTP-artiges Nachrichtenformat

INVITE sip:bob@domain.com
 SIP/2.0

Via: SIP/2.0/UDP 167.180.112.24

From: sip:alice@hereway.com

To: sip:bob@domain.com

Call-ID:
 a2e3a@pigeon.hereway.com

Content-Type:
 application/sdp

Content-Length: 885

c=IN IP4 167.180.112.24 m=audio 38060 RTP/AVP 0

- Aushandlung des Codecs:
 - Wenn Bob über keinen PCM-Encoder verfügt, sendet er eine Fehlermeldung (606), auf die Alice mit einer neuen Anfrage mit geändertem Encoder antworten kann
 - Weitere möglicheFehlermeldungen:503 service unavailable600 busy

• • •

Namensübersetzung und Nutzerlokation

> SIP Registrar Server

 Nutzer melden sich dor jeweils aktuell an

SIP Proxy Server

 Übernimmt die Weiterleitung der SIP-Nachrichten für einen Nutzer (u.U. über eine Kette von Proxies)

Aufrufer jim@umass.edu möchte eine Verbindung mit keith@upenn.edu herstellen

- (1) Jim sendet eine Nachricht INVITE zum SIP Proxy umass.edu.
- (2) Proxy leitet die Nachricht an den SIP Proxy upenn.edu weiter.
- (3) Sip Registrar upenn.edu antwortet mit der aktuellen Adresse keith@eurecom.fr.
- (4) Umass.edu sendet INVITE an Sip Registrar eurecom.fr.
- (5) Eurecom.fr leitet die Nachricht INVITE an 197.87.54.21 weiter (Keith's client läuft dort)
- (6-8) SIP Antwort wird zurückgeschickt (9) Medium wird direkt zwischen Clients ausgetauscht.

Proprietärer Ansatz zur Internettelefonie: Skype

- 1. Eintritt in das Skype-Netz durch Verbidnung zu einem SN (super Node)
- 2. Login beim Skype Login Server
- 3. Anfrage nach der IP-Adresse des Anzurufenden vom SN
- 4. Direkte Verbindung zwischen den beiden Gesprächspartnern

Content Distribution Networks (CDNs)

- Replikation um Transfers zu sparen, werden die Inhalte in Kopien auf vielen Servern gespeichert
- > Interessante Aspekte
 - Auswahl und Verteilung der Inhalte
 - Finden des nächsten Servers für einen Kunden
 - Aktualisierung der Server bei Updates
 - Gemeinsame Teilwege beim Ausliefern derselben Inhalte an verschiedene Kunden

Beispiel für ein CDN: Netflix

Evolution des Internets für Multimedia-Anwendungen

Integrated Services

- Grundlegende Änderungen im Internet, so dass Anwendungen Bandbreite reservieren können
- Neue, komplexe Software in Hosts und Routern

Laissez-Faire

- Keine besonderen Änderungen
- Ausbau, wenn Bandbreite benötigt
- Multimedia und Gruppenkommunikation über Anwendungssysteme
 - Application Layer

Differentiated Services

- Wenige Änderungen im Internet
- Dienste
 - Erste Klasse
 - Zweite Klasse
- ◆ **Audio**-Übertragungsrate
 - CD: **1.411 Mbps**
 - MP3: **96, 128, 160 kbps**
 - Internet telephony: 5.3 13 kbps
- ◆ **Video**-Übertragungsrate
 - MPEG 1 (CD-ROM) **1.5 Mbps**
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (oft im Internet verwendet)
 - < 1 Mbps

Verbesserte Dienstgüte in IP Netzen

Internet bisher: "Best Effort – das Beste draus machen"

Zukünftig: Next Generation Internet mit QoS Garantien

- RSVP: Signalisierung für Ressourcenreservierungen
- Differentiated Services: Priorisierungen
- Integrated Services: Feste Garantien
- Grundprobleme des Ressourcensharings und der Staubildung sind schon sichtbar an:

- Beispiel: 1Mbps IP-Telephonie und FTP nutzen einen 1.5 Mbps Link gemeinsam
 - FTP-Burst können Router verstopfen und Audio-Verluste bewirken
 - Priorität für Audio vor FTP wäre eine Lösung

Prinzip 1

Pakete werden markiert, damit die Router zwischen verschiedenen Verkehrsklassen unterscheiden können

- Anwendung weist Fehlverhalten auf (z.B. Audio sendet mit mehrfacher Rate)
 - Policing (Reglementierung): Setze durch, dass die Audioquelle ihre maximale
 Rate nicht überschreitet
- Markieren und Policing an der Netz-Grenze (ähnlich ATM Netzinterface)

Prinzip 2

Schütze eine Klasse vor Fehlverhalten (Überlastung des Netzes) durch andere: **Isolation**

 Feste Bandbreiten-Reservierung ist keine gute Lösung: Ineffizienz

Prinzip 3

Die Ressourcen sollen trotz Isolation möglichst effizient mehrfach genutzt werden.

Auf den Boden der Tatsachen:
 Man kann nicht mehr übertragen, als die Verbindung zulässt.

Prinzip 4

Call Admission: Ein Fluss deklariert seinen Bedarf. Das Netz entscheidet, ob es den Fluss zulassen kann.

Prinzipien für QoS-Garantien: Zusammenfassung

Im Folgenden: Entsprechene Mechanismen

Scheduling und Policing Mechanismen

- Scheduling: Einplanung und Auswahl des nächsten auf Link zu sendenden Pakets
- FIFO (first in first out) Scheduling: Senden in Empfangsreihenfolge
 - Discard Policy: Falls ein ankommendes Paket auf eine volle Queue trifft: Welches Paket soll gelöscht werden?
 - Tail Drop: ankommendes Paket
 - Priorität: Prioritätskennungen, nieder priores Paket
 - Random: zufällige Auswahl

© Peter Buchholz 2017 nach Vorlagen von H. Krumm und Kurose/Ross (copyright 99-13)

RvS Kap. 6 Multimedia-Netze

Scheduling Mechanismen

Priority Scheduling: Sende höchstpriores Paket als nächstes

- > mehrere Prioritätsklassen
- **Problem: Fairness**
- Priotitätskennung im Paketheader, Portnummer, Protokolltyp, etc.

Andere Strategien (vgl. Prozessorscheduling)

- > Round Robin
- Weighted Fair Queuing

Policing Mechanismen

Ziel: Zur Laufzeit soll der Paketstrom so begrenzt werden, dass ausgemachte Schranken nicht überschritten werden

Schranken für:

- (Langfristige) mittlere Senderate
- Spitzenrate
- (Maximale) Burst-Größe

Mechanismen sollen für Nutzer nachvollziehbar sein.

Policing Mechanismen: Leaky Bucket Verfahren

Begrenze Burst-Größe und mittlere Rate

(Idee: Der lecke Eimer – Zufluss und Abfluss, Zufluss darf, solange Eimer nicht überläuft, größer als Abfluss sein (Burst), muss aber im Mittel kleiner gleich Abfluss sein)

IETF — Internet: Integrated Services (IntServ)

- > Architektur, um QoS-Garantien für individuelle Anwendungsanforderungen in IP-Netzen zu unterstützen
- Mittel: Ressourcen-Vorabreservierung, Router verwalten "Virtuelle Verbindungen"
- Neue Verbindungen müssen zugelassen und können abgelehnt werden:

Call Admission

Fragestellung:

Kann ein neuer Fluss zugelassen werden, ohne die Leistunsgarantien an bestehende Flüsse zu gefährden?

Intserv QoS: Dienstmodelle [RFC 2211, RFC 2212]

Guaranteed Service:

- Worst Case Verkehrslast durch Source Policing begrenzt (Leaky Bucket)
- Paketverzögerung ist begrenzt

Controlled Load Service:

Netz stellt eine QoS zur Verfügung, die derselbe Fluss annähernd auch von einem unbelasteten Netz bekäme

IETF – Internet: Differentiated Services (DiffServ)

Probleme bei Intserv:

- Skalierbarkeit: Bei großer Flussanzahl werden Router durch die Verwaltung der Flüsse übermäßig belastet
- Flexible Dienstmodelle: Intserv bietet nur 2 Klassen an.

Man möchte gerne "qualitative" Dienstklassen

Relative Dienst-Unterscheidung: Platin-, Gold- und Silber-Dienste

DiffServ approach:

- Im Inneren des Netzes nur einfache Funktionen
- Komplexe Funktionen nur am Rand (Edge Router o. Host)
- Keine Service-Klassen direkt definiert, nur Funktionseinheiten gegeben, mit denen Services gebildet werden können

IETF – Internet: Differentiated Services (DiffServ)

Edge Router:

- Per-Fluss Verkehrsmanagement
- Markiert Pakete als in-profile oder out-profile

Core Router:

- □ Per-Klasse Verkehrsmanageme
- Pufferung und Scheduling entsprechend Markierung
- In-profile Pakete werden vorgezogen
- Garantierte Weiterleitung

Markierung

Signalisierung im Internet

connectionless (stateless) forwarding best effort service = no network signaling protocols in initial IP design

- Signalisierung: Austausch von Kontrollinformation im Telekommunikationsnetz, Beispiel: Wählzeichen beim Telefon
- Neue Anforderung: Reserviere Ressourcen entlang eines Endezu-Ende-Pfades, um Dienstgüte zu gewährleisten
- RSVP: Resource Reservation Protocol [RFC 2205]
 - * " ... allow users to communicate requirements to network in robust and efficient way." i.e., signaling!
- Vorläufer als Internet-Signalisierungsprotokoll: ST-II [RFC 1819]

RSVP: Funktion – Multimedia-Multicast-Verwaltung

❖ Signalisierung Sender → Netz

- *Path Message:* Router werden über Sender und seine Route imformiert
- Path Teardown: Router löschen die Informationen zum Pfad
- ❖ Signalisierung Empfänger → Netz
 - Reservation Message: Reserviere Ressourcen für Pfade zum Empfänger
 - Reservation Teardown: Ziehe Reservierungen zurück
- ❖ Signalisierung Netz → Host: Fehlermeldungen (Pfad / Reservierung)

Anmerkung:

Die Routenermittlung und Broadcast-Gruppen/Adressverwaltung werden außerhalb von RSVP abgewickelt

- Dynamik: Soft State Konzept
 - Bei Routern gespeicherte Zustandsinformationen verfallen nach Zeitintervall
 - Sie müssen durch periodische RVSP-PDUs wieder aufgefrischt werden