Yelp Star Rating Initiative

Ruo-Ying Qi: 261044984

Yudi Su: 261110250

Keane Dylan Yennoto: 261194825

Claire Zhao: 261194054 Kaibo Zhang: 261110409

Objective: examine the influence of various attributes of businesses and customer reviews on star ratings

Data and Preprocessing

YELP Dataset

01

Business.csv

Business profile

03

Review&tip.csv

Reviews and tips written by users

02

Attributes.csv

Business attributes information

Check-in.csv

Number of check-ins

NATURAL Classification

1,093 cities

67 states

76,419 types

NLP Sentiment Analysis

Polarity

A float where -1.0 is very negative and 1.0 is very positive

[0.0, 1.0]

Subjectivity

A float where 0.0 is very objective and 1.0 is very subjective

What to **DROP**?

Numerical

KEEP!!!

Na rows

KEEP!!!

Accepts_Insurance

Unitary -> DROP!!!

What else????

['HairSpecializesIn_Coloring',..., 'ResturantsDelivery',..., 'DietaryRestrictions',...]

Specific to business types

For the attributes file, columns that are specific to certain business types were **dropped**

NaN After table merging

					0, /				/
	business_id	stars	review_count	label	sentiment_comment	subjectivity_comment	sentiment_tip	subjectivity_tip	checkins
0	FYWN1wneV18bWNgQjJ2GNg	4.0	22	NA	0.276481	0.562467	0643083	0.692667	1.0
1	He-G7vWjzVUyslKrfNbPUQ	3.0	11	NA	0.277838	0.608054	0.650000	0.662500	1.0
2	KQPW8IFf1y5BT2MxiSZ3QA	1.5	18	NA	-0.044467	0.507554	NaN	NaN	1.0
3	8DShNS-LuFqpEWIp0HxijA	3.0	9	NA	0.184669	0.458150	0.223785	0.233333	1.0
4	PfOCPjBrlQAnzNXj9h_w	3.5	116	NA	0.267249	0.596280	0.410907	0.555065	1.0
		(858)	577	(***)			***	3111	(*22
174561	ALV5R8NkZ1KGOZeuZl3u0A	4.0	4	NA	0.175780	0.446376	0.147500	0.450000	1.0
174562	gRGalHVu6BcaUDIAGVW_xQ	5.0	3	NA	0.348030	0.487755	NaN	NaN	NaN
174563	XXvZBIHoJBU5d6-a-oyMWQ	1.5	19	NA	-0.050504	0.517452	NaN	NaN	1.0
174564	INpPGgM96nPIYM1shxciHg	5.0	14	NA	0.360848	0.573782	0.850000	0.883333	1.0
174565	viKaP26BcHU6cLx8sf4gKg	5.0	4	NA	0.241796	0.447840	0.400000	0.375000	1.0

0.5

Hypothesis Testing

Chi-square Test

Ho: the proportion of EU, NA, and SA labels in each cluster would be expected to be similar

H_a: the proportion of EU, NA, and SA labels would differ between the clusters

Cluster label	0	1
label		
EU	0.044976	0.0625
NA	0.954812	0.9375
SA	0.000212	0.0000

Chi-squared statistics: 0.003278

P-value: 0.998387

• Degree of Freedom: 2

- Given the high p-value,
 we fail to reject the null
 hypothesis.
- No evidence showing that geographical location systematically leads to higher star ratings.

Logistic Regression Modelling

Why Logistic Regression?

Inference

Inference as our main objective

Simple Model

Simple model over complex to prioritize interpretability

Binary Class Handling

Logistic Regression's capability in predicting binary classes (positive & negative businesses

Step by Step

Regard businesses with stars >= 4 as positive

Assume {attribute}_Na: as false -> keep only {attribute}_True

Convergence Issues -> dropped binary variables with minority class less than 0.05

All except one of the retrained model were statistically significant at 0.05 level of significance Drop "WheelchairAcce ssible True"

> 10-fold CV Accuracy: 80.96%

sentiment_comment

significantly influences a business's likelihood to be "positive"

checkins

doesn't impact a restaurants performance. Odds near to 1

valet parking

Actually decreases the odds of a business being favorable

Final Logistic Model Summary

Logit Regression Results Dep. Variable: fstars No. Observations: 174564 Model: Df Residuals: Logit 174554 Method: MIF Df Model: Date: Mon, 25 Mar 2024 Pseudo R-squ.: 0.3822 Log-Likelihood: -74738.Time: 21:27:55 LL-Null: -1.2097e+05 converged: True LLR p-value: 0.000 Covariance Type: nonrobust coef std err P>|z| [0.025 0.975] Z -0.20140.007 -30.4230.000 -0.214-0.188const sentiment comment 2.5612 0.013 195.827 0.000 2.536 2.587 subjectivity comment -0.40240.008 -52.605 0.000 -0.417-0.3870.0415 0.007 5.649 0.000 0.027 0.056 sentiment tip subjectivity tip 0.0189 0.007 2.709 0.007 0.005 0.033 checkins -0.02580.008 -3.3990.001 -0.041-0.01122.185 BusinessAcceptsCreditCards True 0.1546 0.007 0.000 0.141 0.168 BusinessParking garage True 0.1280 0.007 18.788 0.000 0.115 0.141 BusinessParking valet True -0.11040.000 -0.123-0.0980.006 -17.873BikeParking True 0.0340 0.006 5.240 0.000 0.021 0.047

Proposed Initiative & Potential Benefits

Text Analysis

Review Summaries

Figure 1: Recurring Keywords in Reviews with **Top 25**% Sentiment Score

Figure 2: Recurring Keywords in Reviews with **Bottom 25%** Sentiment Score

Advisory Service to enhance ratings

Increase ratings

Guide on recurring positive aspects to improve business performance

Reduce chances to receive lower ratings

Suggest to avoid actions associated with common negative keywords

Potential Benefits

Encourage more businesses to register

Provide insights to assist businesses in comprehending and forecasting their probability of achieving top ratings

More & higher quality reviews

Users know their feedback is valued

Yelp gains increased trust among businesses and users --> win-win-win situation

Post-Implementation Strategy

Maintenance and Feedback Loop

Update data source

Focus on collecting data on current attributes for future analysis

Analyze star-rating improvements

If tangible improvements in star ratings occurs as business owners integrate customer- friendly features

Regional Analysis

Zoom in

Analyze the business characters of different regions or cities

