HOW TO ADD LARGE NUMBERS USING STACKS!

Rynz A. Daval CompSci 22-A

Given two large numbers:

Place them into variables operand_1 and operand_2.

Let's say:

```
operand_1 = 9367
operand_2 = 891
```

Create:

A variable **sum** to store the sum. Three stacks called **stack 1** and stack_2 and stack_3. stack_1 is for operand_1. stack_2 is for operand_2. stack_3 is for the sum. Create also a variable carry that contains a temporary value.

Before Solution:

Step 1:

Push the digits from *operand_1* into *stack_1* from left to right, one by one.

Divide operand_1 by 10 until it is no longer >10 to find its leftmost digit.

Step 2:

Repeat Step 1, this time for *operand_2* and *stack_2*.

After Step 1 and 2:

Step 3:

Pop a digit from the top of **stack_1** and **stack_2**. Then, add them together with variable **carry** and store result into **sum**.

After Step 3:

Step 4:

Divide *sum* by 10 and store the quotient into *carry*. The remainder of *sum* divided by 10 will be pushed into *stack_3*.

After Step 4:

Step 5:

Repeat Step 3 and 4 until *stack_1* and *stack_2* are empty and *carry* is equal to 0.

Step 5 iteration 1:

Pop a digit from the top of **stack_1** and **stack_2**. Then, add them together with variable **carry** and store result into **sum**.

Step 5 iteration 1:

Divide *sum* by 10 and store the quotient into *carry*. The remainder of *sum* divided by 10 will be pushed into *stack_3*.

After Step 5 iteration 1:

Step 5 iteration 2:

Pop a digit from the top of **stack_1** and **stack_2**. Then, add them together with variable **carry** and store result into **sum**.

Step 5 iteration 2:

Divide *sum* by 10 and store the quotient into *carry*. The remainder of *sum* divided by 10 will be pushed into *stack_3*.

After Step 5 iteration 2:

Step 5 iteration 3:

Pop a digit from the top of **stack_1** and **stack_2**. Then, add them together with variable **carry** and store result into **sum**.

Step 5 iteration 3:

Divide *sum* by 10 and store the quotient into *carry*. The remainder of *sum* divided by 10 will be pushed into *stack_3*.

After Step 5 iteration 3:

Step 5 iteration 4:

Pop a digit from the top of **stack_1** and **stack_2**. Then, add them together with variable **carry** and store result into **sum**.

Step 5 iteration 4:

Divide *sum* by 10 and store the quotient into *carry*. The remainder of *sum* divided by 10 will be pushed into *stack_3*.

After Step 5 iteration 4:

After iteration 4, stack_1 and stack_2 are now empty and carry is 0.

Step 6 loop 1:

Change the value of *sum* to 0. Pop from *stack_3* and add it to 10 times *sum* until the stack is empty.

Step 6 loop 2:

Step 6 loop 3:

Step 6 loop 4:

Step 6 loop 5:

Step 6 end of loop:

Since *stack_3* is now empty, we will terminate the loop. We have the final sum which is 10,258.

+ 891