Table 3—Continued

#	${ m LOG(Acc.\ rate)} \ ({ m M}_{\odot}/{ m yr})$	Mass Disk ^a (M_{JUP})	r _{proj.} b (AU)	$\lambda_{tun-off}$ $\mu\mathrm{m}$	α_{excess}	$LOG(L_D/L_*)$	A_J (mag)	Object Type
32	-9.9	11.1		8.00	0.72	-2.70	1.3	giant planet forming disk
33				8.00	-2.21	< -3.86	1.6	AGB star
34			• • •	8.00	-1.83	< -3.58	1.4	AGB star

 $^{^{\}rm a}{\rm The~disk}$ mass upper limits for targets #12 and 27 come from Cieza et al. (2008).

^bSource # 12 is a binary identified by VLBA observations (Loinard et al. 2008). Source # 24 is a triple system. The tight components are consistent with two equal-brightness objects with a separation of \sim 7 AU and a \sim 30 deg position angle (see § 4.4 and Figure 4). Source # 27 is a triple system. The "primary" star in the VLT observations is itself a spectroscopic binary with a 35.9 d period and estimated separation of 0.27 AU (Mathieu et al. 1994).