Mathematical Foundation of Comp. Science.

1.a) (pv7r) 1 (-pv(qv7r).

b) Consistent premises

If from a given set

of premises we are

able to come to any

conclusion (other than

contradiction (F), then

the premises are consistent

ag: Let PI, P2 he 2 premises

Inconsistent premises

If from a gaier set

of premises we come to

a conclusion of Fire.

a contradiction then the

premises are inconsistent.

eg: Let P1, P2 be 2 premises eg: Let P1 and P2 che 2 premises.

P1: $P \rightarrow q$ P2: PP2: P

Rule. Step Derivation Step Derivation Rule Rule P 1. P->9 Rule P PAQ Rale P Rule P. 7 P P 2. 1-Conjunction Simplification 3. 9 1,2 Modus Poneous. P 3. Poneous:

Here the conclusion is q. 4. F 2,3 pr7p=F
i.e. not F, so the premises Here the conclusion is a contradiction
consistent. co the premises are inconsistent.

12 7: Diagr	nostu message is reticu	remitted.
From the	quien question une	COUN CONSIONS UNE
following	premises.	
Pi: SVY		
P2: 75		pod acra
P2: 78	→ Y · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	Derivation	Rule.
Step		Rule P
1.	SVY	
	75->Y	1. Rule T P→9 = TPV
٦.	Canada	Rule p.
3 .	75	
<i>5</i> `	· Y	1,2, Modus Poners,
4.	•	DIP
_	S-> V	Rule P.
5.		Rule T, 5,
6.	7507	P-W=7PVC
	15 m	6 Die zunden
A.		Simplication
8	(78 V.Y) A.Y	416
9.	(75AY) V T	Distribution 8
7.		at a contradiction th

```
& (pv75) 1 (7pv (qv7r).
    PV7S = PV7SVF
            = pv75 v (q179)
              = (pv7svq) 1 (pv7sv7q)
               = (pv7svq)vFA (pv7sv7q) VF
                = [(pv75vq) v(vn7r)] A [(pv75v7q) v(rn7r)]
                = (pvqvrv7s) *( pvqv7rv7s) 1 (pv7qvvv7s) 1 (pv7qv
     TPV (qvTr) = TPV qvTY VF
               = 7pvqv7r v (5 175)
                = (7pyqv78 v5) 1 (7pvq y78 v75)
    · The PCNF of (PV75) 1 (TPV(qV7Y)) is
   (pravrus) (pravrrus) (pragravr) (pragravr) (pragravr) 1
                                  ( TPV9V7Y V7S).
    PCNF of the 7 [CPV75) N (7PV (QVTV))] is
    (1pv7qv7xv75) 1 (1pv7qv7xv5) 1 (7pv7qv7v5) 1 (7pvqv8v5)
     A(pvqv7xvs) A(pv7qvxvs) A(pvqv73xvs) A(pvqvxvs) A(pvqvxvs)
The PDNF of the term (pv75) 1 (7pv(qv7x)).
    (PAGAYAS) V (PAGAYA 75) V (PAGATS AS) V (PAGATYATS) V (PAGATYATS)
     V (PATQATYAS) V (TPAQAYATS) V (TPATQ AYATS) V
```


4.

$$\frac{\chi}{2} = \frac{1}{2} \frac{1}{(\chi + z)} + \frac{1}{(\chi + z)} + \frac{1}{(\chi + z)}$$

$$\frac{\chi}{2} = \frac{1}{(\chi + z)} + \frac{1}{(\chi + z)} +$$

Expression is

$$(\bar{x}yz) \cdot \{ (\bar{x}+\bar{z}) + (g+\bar{z}) \}$$

$$= (\bar{x}yz) \cdot (\bar{x}+\bar{y}+\bar{z})$$

$$= (\bar{x}+\bar{y}+\bar{z}) \cdot (\bar{x}+\bar{y}+\bar{z})$$

$$= (\bar{x}+\bar{y}+\bar{z}) \cdot (\bar{x}+\bar{y}+\bar{z})$$

$$= (\bar{x}+\bar{y}+\bar{z}) \cdot (\bar{x}+\bar{y}+\bar{z}) \cdot$$

 \mathcal{E}_a) w(x,y): x wrote y $\mathcal{L}(x,y): x \text{ is longer than } y$ $\mathcal{N}(x): x \text{ is a nonel.}$

h: Hardy a: Austen j: Jude the Obsure p: Pside and Pre

Hardy wrote a novel which is longer than any of Austens.

Fx Fy (L(W(H, NGE)), W(A, N(y)))

XX(x) L(W(u;z))

2) Jude the Obscire is not longer than Pride and Prejudice.

L(P, J) (01) 72(J,P)

3) Austen wrote Jude the Obscure

W(a, N(j)

Di) Proposition:

It is a simple, declarative sentence with truth value either true or false but not both. It is indicated by homes case alphabets - eg:p: Dog is black.

Predicate Logic: It is an extension of propositional logic raing which operates consisely the entension of a concept oner a related set of objects. It is denoted by upper care letters. eg: P(x): n is black. The Predicate logic separates the subject from the predicate.
When x is replaced by a specific subject it decomes a proposition Proposition is the atomic level of predicate eg: P(x): x is black.

when x is a clog, it becomes the proposition dog is black.

b) ij Conditional Proof:

If we are able to coclude 'S' from a given set of premises and premises and premise 'R', then we can come the Conclusion R > 5 from the given set of premises.

eg: PGO Let there be 2 premisis -PI: P-> V P2: 977 Conclusion: P-Y If we take P as an entra primise Then the conclusion is Y. Rule. Desiration Rule P-PoV Rule CP. Þ 1,2. Modus Peners V Rule P. q sx 3,4 Rule T Modus Hence r is a valid conclusion. : We can say (p-sr) logically follows from (P-19) and grow. Induct Hethod: If we take the negation of the conclusion as an entra premise and prove that the conclusión is a contradiction then we can conclusión say the entra premise polows the guien set of

P2: 97x C: P-r. If we consider 7 (p->r) as a premise p3:7(p-)r) If the Conclusion is F, then the can say from (p-sa) and growis a valid conclusion Rule ' Derivation Step Rule ?. p > 9. Rule P -1 (p->x) PAY = 7PVT. 1(7pvr) Rule 7. De Morgans. Rule T. Conjunction Simplicate 1,5. Modus poners. Rule P 9-> x 6,7 Modus Panery 7. 4, Conjunction Sniph 89. YATY = F.