O Teorema Espectral Álgebra Linear – Videoaula 24

Luiz Gustavo Cordeiro

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Motivação ad hoc

Trabalhar com matrizes diagonais é simples:

$$\begin{bmatrix} 1 & & & \\ & 2 & & \\ & & -3 \end{bmatrix} + \begin{bmatrix} -1 & & \\ & 0 & \\ & & 2 \end{bmatrix} = \begin{bmatrix} 1 + (-1) & & \\ & 2 + 0 & \\ & & (-3) + 2 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & & \\ & 2 & \\ & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & & \\ & 2 & \\ & & -3 \end{bmatrix} \begin{bmatrix} -1 & & \\ & 0 & \\ & & 2 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) & & \\ & 2 \cdot 0 & \\ & & (-3) \cdot 2 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & & \\ & 0 & \\ & & -6 \end{bmatrix}$$

Motivação ad hoc

Mais geralmente, para $A = diag(a_1, \ldots, a_n)$, $B = diag(b_1, \ldots, b_n)$,

$$A + B = \begin{bmatrix} a_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n \end{bmatrix} + \begin{bmatrix} b_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & b_n \end{bmatrix} = \begin{bmatrix} a_1 + b_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n + b_n \end{bmatrix}$$

$$AB = \begin{bmatrix} a_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & b_n \end{bmatrix} = \begin{bmatrix} a_1b_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_nb_n \end{bmatrix},$$

isto é,

$$\operatorname{diag}(a_1,\ldots,a_n) + \operatorname{diag}(b_1,\ldots,b_n) = \operatorname{diag}(a_1+b_1,\ldots,a_n+b_n)$$
$$\operatorname{diag}(a_1,\ldots,a_n) \operatorname{diag}(b_1,\ldots,b_n) = \operatorname{diag}(a_1b_1,\ldots,a_nb_n) = BA$$

Em particular, matrizes diagonais comutam!

Seria bom se toda matriz fosse diagonal...

Diagonalizabilidade unitária

Caso complexo

Definição

Seja $T \in L(V)$, onde V é um EPI complexo de dimensão finita.

Dizemos que T é unitariamente diagonalizável se existe uma base ortonormal $\mathcal B$ de V tal que $\left[T\right]_{\mathcal B}^{\mathcal B}$ é diagonal.

(Dizemos que \mathcal{B} diagonaliza T.)

Definição

Seja $A \in M_n(\mathbb{C})$.

Dizemos que A é unitariamente diagonalizável se existe uma matriz unitária $U \in M_n(\mathbb{C})$ tal que UAU^* é diagonal.

(Dizemos que U diagonaliza A.)

Diagonalizabilidade simultânea (caso complexo)

Lema

Se \mathcal{B} é uma base que diagonaliza duas transformações $T,S\in L(V)$ simultaneamente, então T e S comutam, i.e., TS=ST.

De fato, se $[T]_{\mathcal{B}}^{\mathcal{B}}$ e $[S]_{\mathcal{B}}^{\mathcal{B}}$ são diagonais então comutam, logo S e T comutam: Em detalhes,

$$[T]_{\mathcal{B}}^{\mathcal{B}}[S]_{\mathcal{B}}^{\mathcal{B}} = [S]_{\mathcal{B}}^{\mathcal{B}}[T]_{\mathcal{B}}^{\mathcal{B}}$$
$$[TS]_{\mathcal{B}}^{\mathcal{B}} = [ST]_{\mathcal{B}}^{\mathcal{B}}$$
$$TS = ST$$

Diagonalizabilidade unitária (caso complexo)

Lema

Se V é um EPI complexo de dimensão finita e $T \in L(V)$ é unitariamente diagonalizável, então $T^*T = TT^*$.

Se uma base ortonormal \mathcal{B} diagonaliza \mathcal{T} , então

$$\left[T^*\right]_{\mathcal{B}}^{\mathcal{B}} = \left(\left[T\right]_{\mathcal{B}}^{\mathcal{B}}\right)^*$$

é a adjunta de uma diagonal, logo diagonal. Então $[T^*]_{\mathcal{B}}^{\mathcal{B}}$ e $[T]_{\mathcal{B}}^{\mathcal{B}}$ comutam, logo T^* e T comutam: $T^*T = TT^*$.

Matrizes e endomorfismos normais e autoadjuntos (casos real e complexo)

Definição

Um endomorfismo linear $T \in L(V)$, onde V é um EPI real ou complexo de dimensão finita, é **normal** se $T^*T = TT^*$.

Definição

Uma matriz $A \in M_n(\mathbb{C})$ é **normal** se $A^*A = AA^*$.

Definição

Um endomorfismo linear $T \in L(V)$, onde V é um EPI real ou complexo de dimensão finita, é **auto-adjunto** se $T^* = T$.

Definição

Uma matriz $A \in M_n(\mathbb{C})$ é auto-adjunta se $A^* = A$.

Exemplo de uma matriz normal (caso complexo)

Considere a matriz de rotação

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Então

$$p_{R_{\theta}}(x) = \det \begin{bmatrix} x - \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & x - \cos(\theta) \end{bmatrix} = x^2 - 2x \cos(\theta) + 1$$

cujas raízes são

$$\lambda_{\pm} = \frac{2\cos(\theta) \pm \sqrt{4\cos^2\theta - 4}}{2}$$

$$= \cos(\theta) \pm \sqrt{-(1 - \cos^2\theta)}$$

$$= \cos(\theta) \pm i\sin\theta$$

Exemplo de uma matriz normal (caso complexo)

Os autovalores de R_{θ} são

$$\lambda_{\pm}\cos(\theta) \pm i\sin(\theta)$$

- Se θ , é múltiplo de π , há somente uma única raiz $\lambda = \pm 1$, e $R_{\theta} = \pm I_2$.
- Se θ não é múltiplo de π , então 1, i e $v_{\pm} = \begin{bmatrix} 1 \\ \pm i \end{bmatrix}$ é autovetor associado a $\lambda_{+} = \cos(\theta) \pm i \sin(\theta)$

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Diagonalizabilidade simultânea de endomorfismos

Teorema (Teorema Espectral Complexo, versão com endomorfismos)

Sejam $A_1, \ldots, A_k \in L(V)$ endomorfismos em um EPI complexo de dimensão finita.

São equivalentes:

- \bullet A_1, \ldots, A_k são normais e comutam.
- ② V admite uma base ortonormal cujos elementos são autovetores simultâneos de A_1, \ldots, A_k .
- **3** Existe uma base ortonormal \mathcal{B} de V que diagonaliza A_1, \ldots, A_k simultaneamente.

Já sabemos que $2 \iff 3$ e que $3 \Rightarrow 1$.

Fixemos um EPI complexo V de dimensão finita.

Diagonalizabilidade simultânea de enfomorfismos

Lema C1

Se $A \in \mathsf{L}(V)$ é normal, então para todo $v \in V$ vale que $\|A(v)\| = \|A^*(v)\|$

Se A é normal e $v \in V$ então

$$||A(v)||^{2} = \langle A(v), A(v) \rangle$$

$$= \langle A^{*}A(v), v \rangle$$

$$= \langle AA^{*}(v), v \rangle$$

$$= \langle A^{*}(v), A^{*}(v) \rangle$$

$$= ||A^{*}(v)||^{2}$$

Diagonalizabilidade simultânea de endomorfismos

Lema C2

Se $A \in L(V)$ é normal e (λ, v) é autopar de A, então $(\overline{\lambda}, v)$ é autopar de A^* .

De fato, $A - \lambda \operatorname{id}_V$ é normal (verifique). Pelo Lema C1,

$$||A^*v - \overline{\lambda}v||^2 = ||(A - \lambda \operatorname{id})^*v||$$

$$= ||(A - \lambda \operatorname{id})v||$$

$$= 0,$$
(Lema C1)

o que significa que $A^*(v) = \overline{\lambda}v$.

Diagonalizabilidade simultânea de endomorfismos

Lema C3

Se $A, B \in L(V)$ comutam, onde V é um EPI complexo, então $\ker(A)$ é B-invariante.

De fato, se $v \in \ker(A)$, então

$$A(B(v)) = (AB)(v) = (BA)(v) = B(A(v)) = B(0_V) = 0_V,$$

logo $B(v) \in \ker(A)$. Portanto $B(\ker(A)) \subseteq \ker(A)$.

Diagonalizabilidade simultânea de endomorfismos

Lema C4

Se $A_1, \ldots, A_k \in \mathsf{L}(V)$ comutam, onde V é um EPI complexo, então A_1, \ldots, A_k possuem algum autovetor em comum.

Seja λ_1 um autovalor qualquer de A_1 .

Como A_1 comuta com todos os A_j , então $A_1 - \lambda_1$ id também comuta com todos os A_i .

Pelo Lema C3, o auto-espaço $\ker(A_1 - \lambda_1 \operatorname{id})$ é A_j -invariante para todo j.

Em particular, A_2 possui algum autovetor em $\ker(A_1 - \lambda_1 \operatorname{id})$, com autovalor associado λ_2 . Isso significa que $\ker(A_1 - \lambda_1 \operatorname{id}) \cap \ker(A_2 - \lambda_2 \operatorname{id})$ é não-trivial.

Diagonalizabilidade simultânea de endomorfismos

Lema C4

Se $A_1, \ldots, A_k \in \mathsf{L}(V)$ comutam, onde V é um EPI complexo, então A_1, \ldots, A_k possuem algum autovetor em comum.

Já encontramos λ_1, λ_2 autovalores de A_1, A_2 tais que $\ker(A_1 - \lambda_1 \operatorname{id}) \cap \ker(A_2 - \lambda_2 \operatorname{id})$ é não-trivial.

Novamente pelo Lema C3, $ker(A_2 - \lambda_2 id)$ é A_j -invariante para todo j.

Como a intersecção de espaços invariantes é invariante, então $\ker(A_1 - \lambda_1 \operatorname{id}) \cap \ker(A_2 - \lambda_2 \operatorname{id})$ é um espaço não-trivial, A_j -invariante para todo j.

Continue repetindo o processo...

Diagonalizabilidade simultânea de endomorfismos

- Temos λ_1, λ_2 , autovalores de A_1, A_2 tais que $\ker(A_1 \lambda_1 \operatorname{id}) \cap \ker(A_2 \lambda_2 \operatorname{id})$ é não-trivial e A_j -invariante para todo j.
- Encontre um autovetor de A_3 em $\ker(A_1-\lambda_1\operatorname{id})\cap\ker(A_2-\lambda_2\operatorname{id})$, com autovalor associado λ_3 . Então $\ker(A_1-\lambda_1\operatorname{id})\cap\ker(A_2-\lambda_2\operatorname{id})\cap\ker(A_3-\lambda_3\operatorname{id})$ é um subespaço não-trivial, A_j -invariante para todo j pelo Lema C3.
- Repita o argumento até A_k .

Diagonalizabilidade simultânea de endomorfismos

No fim, encontraremos $\lambda_1, \ldots, \lambda_k$ tais que

$$\bigcap_{i=1}^{n} \ker(A_{i} - \lambda_{i} \operatorname{id}) = \ker(A_{1} - \lambda_{1} \operatorname{id}) \cap \cdots \cap \ker(A_{k} - \lambda_{k} \operatorname{id})$$

é um subespaço não-trivial de V.

Qualquer vetor não-nulo v neste subespaço é um autovetor comum a todos os A_1, \ldots, A_k , associado respectivamente a autovalores $\lambda_1, \ldots, \lambda_k$.

Diagonalizabilidade simultânea de endomorfismos

A prova do teorema (caso complexo)

Pelo Lema C4, tome um autovetor v_1 associado a todos os A_1, \ldots, A_k . SPG, tomamos v_1 unitário.

$$W_1 = \{v_1\}^{\perp} = \operatorname{span}\{v_1\}^{\perp}.$$

Seja $j \in \{1, ..., k\}$.

- Como v_1 é autovalor de A_j , então span (v_1) é A_j -invariante, e $W_1 = \operatorname{span} \{v_1\}^{\perp}$ é A_j^* -invariante.
- Pelo Lema C2, v_1 também é autovalor de A_j^* . Pelo mesmo argumento que acima, W_1 é A_j -invariante.

Diagonalizabilidade simultânea de endomorfismos

Obtemos uma decomposição ortogonal

$$V=\operatorname{span}\left\{v_1\right\}\oplus W_1,$$

onde v_1 é autovetor de A_j e W_1 é A_j , A_j^* -invariante para todo j. Em particular, as compressões dos A_j satisfazem

$$(A_j)_{W_1}^* = (A_j^*)_{W_1},$$

logo são normais, e claramente comutam.

Restrinja tudo a W_1 e repita o argumento: Encontre um autovetor $v_2 \in W_1$ (SPG unitário) comum a todos os A_j , de forma que tenha-se uma decomposição ortogonal

$$W_1 = \operatorname{\mathsf{span}} \{v_2\} \oplus W_2,$$

com W_2 A_i e A_i^* -invariante para todo j.

Diagonalizabilidade simultânea de endomorfismos

Obtemos uma decomposição ortogonal

$$V = \operatorname{span} \{v_1\} \oplus \operatorname{span} \{v_2\} \oplus W_2.$$

Note que $\dim(W_2) = \dim(V) - 2$.

Repetindo o argumento, obtém-se sucessivamente decomposições ortogonais

$$V = \operatorname{span} \{v_1\} \oplus \cdots \oplus \operatorname{span} \{v_p\} \oplus W_p,$$

com v_1, \ldots, v_p autovetores unitários comuns a todos os A_j e W_p sendo A_j e A_j^* -invariante para todo j. Ademais, $\dim(W_p) = \dim(V) - p$.

Diagonalizabilidade simultânea de endomorfismos

No fim, temos uma decomposição ortogonal

$$V = \operatorname{span} \{v_1\} \oplus \operatorname{span} \{v_2\} \oplus \cdots \oplus \operatorname{span} \{v_n\}$$

com v_1, \ldots, v_n autovetores ortogonais unitários comuns a todos os A_j .

Estes vetores formam a base ortonormal desejada.

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Diagonalizabilidade simultânea de matrizes

Teorema (Teorema Espectral Complexo, versão matricial)

Sejam $A_1, \ldots, A_k \in M_n(\mathbb{C})$. São equivalentes:

- \bullet A_1, \ldots, A_k são normais e comutam.
- ② $\mathbb{C}^{n\times 1}$ admite uma base ortonormal cujos elementos são autovetores simultâneos de A_1, \ldots, A_k .
- **3** Existe uma matriz unitária $U \in M_n(\mathbb{C})$ tal que UA_jU^* é diagonal para todo j.

Diagonalizabilidade de um único endomorfismo

Teorema (Teorema Espectral Complexo)

Seja $A \in L(V)$ um endomorfismo em um EPI complexo de dimensão finita. São equivalentes:

- A é normal.
- V admite uma base ortonormal cujos elementos são autovetores de A.
- 3 Existe uma base ortonormal \mathcal{B} de V que diagonaliza A.

JNIVERSIDADE FEDERAL DE SANTA CATARINA

Diagonalizabilidade de uma única matriz

Teorema (Teorema Espectral Complexo, versão matricial)

Sejam $A \in M_n(\mathbb{C})$. São equivalentes:

- A é normal.
- **2** $\mathbb{C}^{n\times 1}$ admite uma base ortonormal cujos elementos são autovetores de A.
- **3** Existe uma matriz unitária $U \in M_n(\mathbb{C})$ tal que UAU* é diagonal.

JNIVERSIDADE FEDERAL DE SANTA CATARINA

Diagonalizabilidade unitária

Caso real

Definição

Seja $T \in L(V)$, onde V é um EPI real de dimensão finita.

Dizemos que T é unitariamente/ortogonalmente diagonalizável se existe uma base ortonormal \mathcal{B} de V tal que $[T]_{\mathcal{B}}^{\mathcal{B}}$ é diagonal.

(Dizemos que \mathcal{B} diagonaliza T.)

Definição

Seja $A \in M_n(\mathbb{R})$.

Dizemos que A é ortogonalmente diagonalizável se existe uma matriz ortogonal $U \in M_n(\mathbb{R})$ tal que UAU^* é diagonal.

(Dizemos que U diagonaliza A.)

Diagonalizabilidade simultânea (caso real)

Lema

Se \mathcal{B} é uma base que diagonaliza duas transformações $T,S\in L(V)$ simultaneamente, então T e S comutam, i.e., TS=ST.

Mesma prova do caso complexo.

Diagonalizabilidade unitária (caso real)

Lema

Se V é um EPI real de dimensão finita e $T \in L(V)$ é unitariamente diagonalizável, então $T = T^*$.

Se uma base ortonormal \mathcal{B} diagonaliza T, então

$$\left[T^*\right]_{\mathfrak{B}}^{\mathfrak{B}} = \left(\left[T\right]_{\mathfrak{B}}^{\mathfrak{B}}\right)^t$$

é a transposta de uma diagonal, logo a mesma matriz: $[T^*]_{\mathcal{B}}^{\mathcal{B}} = [T]_{\mathcal{B}}^{\mathcal{B}}$, logo $T = T^*$.

Diagonalizabilidade simultânea de endomorfismos

Teorema (Teorema Espectral Real, versão com endomorfismos)

Sejam $A_1, \ldots, A_k \in L(V)$ endomorfismos em um EPI real de dimensão finita.

São equivalentes:

- **1** A_1, \ldots, A_k são auto-adjuntos e comutam.
- ② V admite uma base ortonormal cujos elementos são autovetores simultâneos de A_1, \ldots, A_k .
- **3** Existe uma base ortonormal \mathcal{B} de V que diagonaliza A_1, \ldots, A_k simultaneamente.

Já sabemos que $2 \iff 3$ e que $3 \Rightarrow 1$.

Fixemos um EPI real V de dimensão finita.

Diagonalizabilidade simultânea de enfomorfismos

Lema R1

- Se T é um operador auto-adjunto num EPI complexo, então seus auto-valores são todos reais.
- Todo operador auto-adjunto num EPI real tem algum autovalor real.
- Se (λ, v) é um auto-par de um operador auto-adjunto T num EPI complexo, então

$$\langle T(v), v \rangle = \langle v, T(v) \rangle$$

$$\langle \lambda v, v \rangle = \langle v, \lambda v \rangle$$

$$\lambda \langle v, v \rangle = \overline{\lambda} \langle v, v \rangle$$

$$\lambda = \overline{\lambda},$$

pois $v \neq 0_V$. Portanto, $\lambda \in \mathbb{R}$.

Diagonalizabilidade simultânea de enfomorfismos

Lema R1

- Se T é um operador auto-adjunto num EPI complexo, então seus auto-valores são todos reais. √
- 2 Todo operador auto-adjunto num EPI real tem algum autovalor real.
- **②** Represente T em uma base ortonormal qualquer: $M = [T]_{\mathcal{B}}^{\mathcal{B}}$.

A matriz M tem entradas reais, mas vamos vê-la como complexa (o polinômio característico continua o mesmo).

Essa matriz tem algum autovalor λ (pelo caso complexo). Pelo item 1, esse autovalor é real, ou seja, λ é um número real tal que $p_T(\lambda) = p_M(\lambda) = 0$, ou seja, λ é um autovalor de T.

Diagonalizabilidade simultânea de endomorfismos

Se $A, B \in L(V)$ comutam, onde V é um EPI real, então $\ker(A)$ é B-invariante.

Mesma prova do Lema C3.

Diagonalizabilidade simultânea de endomorfismos

Lema R3

Se $A_1, \ldots, A_k \in \mathsf{L}(V)$ comutam e são auto-adjuntos, onde V é um EPI real, então A_1, \ldots, A_k possuem algum autovetor em comum.

Mesma prova do Lema C4.

Diagonalizabilidade simultânea de endomorfismos

A prova do teorema (caso real)

A mesma do caso complexo (na verdade é até mais fácil, pois $A_j = A_j^*$).

UNIVERSIDADE FEDERAL
DE SANTA CATARINA

Diagonalizabilidade simultânea de matrizes

Teorema (Teorema Espectral Real, versão matricial)

Sejam $A_1, \ldots, A_k \in M_n(\mathbb{R})$. São equivalentes:

- \bullet A_1, \ldots, A_k são auto-adjuntos e comutam.
- **2** $\mathbb{R}^{n \times 1}$ admite uma base ortonormal cujos elementos são autovetores simultâneos de A_1, \ldots, A_k .
- **3** Existe uma matriz ortogonal $U \in M_n(\mathbb{R})$ tal que UA_jU^* é diagonal para todo j.

Diagonalizabilidade de um único endomorfismo

Teorema (Teorema Espectral Real)

Seja $A \in L(V)$ um endomorfismo em um EPI real de dimensão finita. São equivalentes:

- A é auto-adjunto.
- ② V admite uma base ortonormal cujos elementos são autovetores de A.
- **3** Existe uma base ortonormal \mathcal{B} de V que diagonaliza A.

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Diagonalizabilidade de uma única matriz

Teorema (Teorema Espectral Real, versão matricial)

Sejam $A \in M_n(\mathbb{R})$. São equivalentes:

- A é auto-adjunto.
- ② $\mathbb{R}^{n \times 1}$ admite uma base ortonormal cujos elementos são autovetores de A.
- **3** Existe uma matriz ortogonal $U \in M_n(\mathbb{R})$ tal que UAU^* é diagonal.

JNIVERSIDADE FEDERAL DE SANTA CATARINA