Population Modeling

Steven Turne

Introduction

The Models

The Projec

Results US

Conclusion

Population Modeling

Steven Turner

2016

Introduction

Population Modeling

Steven Turner

Introduction

The Model

The Model

Results US

US Munich

_.

- exponential, logistic, Gompertz
- Populations: US and Munich, Germany
- Analyzing Models
 - The models ability to predict
 - How close the data fits the model

PPGR and Differential Equations

Population Modeling

The Models

Per Unit Population Growth Rate (PPGR)= $\frac{1}{p}\frac{dp}{dt}$

Model	Differential Equation	PPGR	$\lim_{p\to 0} PPGR$	$\lim_{p \to L} PPGR$
exponential	$\frac{dp}{dt} = rp$	r	r	r
logistic	$\frac{dp}{dt} = rp\left(1 - \frac{p}{L}\right)$	$r\left(1-\frac{p}{L}\right)$	r	0
Gompertz	$\frac{dp}{dt} = rp\log\left(\frac{L}{p}\right)$	$r \log \left(\frac{L}{p}\right)$	∞	0

The Project

Population Modeling

Steven Turner

Introduction

The Models

The Project

Results
US
Munich
Conclusion

Solutions to differential equations				
Model	Solutions			
exponential	$P(t) = Ae^{rt}$			
logistic	$P(t) = \frac{L}{1 + Ae^{-rt}}$			
Gompertz	$P(t)Le^{-be^{-rt}}$			

The project steps

- Data for US and Munich, Germany
- Used Python to estimate the parameters in the solutions
- Found R²: This is our measure of fit
- Found % error for the actual last data point and the estimated point using the Leave One Out Method

Testing the Model

Population Modeling

Steven Turner

Introduction

The Models

The Models

Results

US Munich Conclusion

Leave One Out Method				
	R ² error	% error		
exponential	0.9837	10.58%		
logistic	0.9971	-3.81%		
Gompertz	0.9989	-1.28%		

Testing the Model

Population Modeling

Munich

Leave One Out Method				
	R ² error	% error		
exponential	0.9383	7.56%		
logistic	0.9909	-2.83%		
Gompertz	0.9898	-1.26%		

Conclusion

Population Modeling

Steven Turne

Introduction

The Models

The Dueller

Results

US Munich

Conclusion

- Due to the Gompertz model, for both populations, having the lowest percent error and the largest R² error we decided it was the better model.
- Realistically none are very good:
 - Immigration and emigration
 - Always increasing