LECTURE 16

Feature Engineering

Transforming numerical features and encoding categorical data in order to build more sophisticated models.

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Alvin Wan, John DeNero, Joseph E. Gonzalez, Josh Hug)

LECTURE 16

Where a Linear Model Struggles

Understanding the downfalls of a linear model and where feature engineering is needed

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Alvin Wan, John DeNero, Joseph E. Gonzalez, Josh Hug)

Recap Linear Models Feature Engineering Feature Functions

Features $\hat{y}=x heta$

Remte

What if the relationship between y and x_i is not linear?

What if the relationship between y and x_i is not linear?

What if our features x_i are not numbers?

Recap Linear Models Feature Engineering Feature Functions

TAKEAWAY

Feature engineering transforms **raw** features into more **informative** features for modeling.

TAKEAWAY

Feature engineering enables you to express non-linear relationships, capture domain knowledge, and encode non-numeric features.

Recap Linear Models Feature Engineering Feature Functions

Non-linear relationship

between x and y

Linear relationship between x² and y

У

Non-linear relationship

between x and y

Linear relationship

between sin(x) and y

$\hat{y} = \sum_{j=1}^{d} \widetilde{x_j} \theta_j$

 $\phi: \mathbb{R}^d o \mathbb{R}^p$ space

BY NC SA

Non-numeric and Raw Values

uid	age	state	hasBought	review
0	32	NY	True	"Meh."
42	50	WA	True	"Worked out of the box"
57	16	CA	NULL	"Hella tots lit"

Entirely **Quantitative** and **Transformed** Values

AK		NY	•••	WY	age	age^2	hasBought missing
0	•••	1		0	32	32^2	0
0		0		0	50	50^2	0
0	•••	0		0	16	16^2	1

Ensured

Designing feature functions is a big part of machine learning and data science.

np.book

xkcd.com/1838/

np book

LECTURE 16

Conclusion

Gotchas for feature engineering. Warnings and pitfalls to be aware of.

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Alvin Wan, John DeNero, Joseph E. Gonzalez, Josh Hug)

TAKEAWAY

Overfitting occurs when your model **memorizes noise**, leading to **poor generalization** beyond training data.

Next Up

Regularization Bias-Variance Tradeoff

Domain Knowledge poor fit on (x, y)

Domain Knowledge great fit on (xt+1-xt, y)

