

Bibiana Duarte Luis Filipe Rodrigues

Proposta Inicial

Formulação:

maximize
$$\sum_{i=a}^{n} \sum_{a=a}^{m} t_{ai} \cdot V_{i} + \sum_{i=a}^{n} \sum_{j=a}^{n} \sum_{a=a}^{m} T_{aij} \cdot V_{ij}$$

sujeito a

$$\sum_{i=1}^{n} t_{ai} \cdot P_{i} \leq C_{a}$$

$$\sum_{i=1}^{m} t_{ai} \leq 1 \qquad \forall i \in [n]$$

$$T_{aij} \leq \frac{t_{ai} + t_{aj}}{2} \quad \forall i \in [n], \forall j \in [n], \forall a \in [m]$$

- P_i é o peso da pessoa i.
- V_i é o valor que a pessoa i pagaria para viajar
- V_{ij} é o valor a mais que a pessoa i pagaria para viajar com a pessoa j.
- t_{ai} indica se a pessoa i está viajando ou não no avião a, caso esteja o valor será 1, e 0 caso contrário
- Taij indica se duas pessoas i e j estão viajando ou não em um avião a caso estejam o valor será 1, e 0 caso contrário

Proposta Inicial

Principais elementos da abordagem:

- Solução Inicial: Uma matriz $S_{a,n}$, que representa uma possível alocação de n pessoas em a aviões, onde nenhuma pessoa viaja (pior solução).
- Vizinhança: Modificar se uma pessoa vai ou não viajar e em qual dos aviões ela irá viajar.
- Critério de parada: Utilizar uma temperatura final, que será definida com base em experimentos

Proposta Final

Formulação:

maximize
$$\sum_{i=1}^{n}\sum_{a=1}^{m}t_{ai}\cdot V_{i} + \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{a=1}^{m}T_{aij}\cdot V_{ij}$$

sujeito a

$$\sum_{i=1}^{n} t_{ai} \cdot P_{i} \leq C_{a}$$

$$\sum_{i=1}^{m} t_{ai} \leq 1 \qquad \forall i \in [n]$$

$$T_{aij} \leq \frac{t_{ai} + t_{aj}}{2} \quad \forall i \in [n], \forall j \in [n], \forall a \in [m]$$

- P_i é o peso da pessoa i.
- V_i é o valor que a pessoa i pagaria para viajar
- V_{ij} é o valor a mais que a pessoa i pagaria para viajar com a pessoa j.
- t_{ai} indica se a pessoa i está viajando ou não no avião a, caso esteja o valor será 1, e 0 caso contrário
- Taij indica se duas pessoas i e j estão viajando ou não em um avião a caso estejam o valor será 1, e 0 caso contrário

Proposta Final

Principais elementos da abordagem:

- Solução inicial: Uma matriz $S_{a,n}$, que representa uma possível alocação de n pessoas em a aviões. Essa alocação inicial é feita ordenando as pessoas pela razão $\frac{V_n}{P_n}$ e alocamos nos aviões até que atinja a capacidade máxima (semelhante ao problema da mochila).
- Vizinhanca: Escolhemos dois aviões e uma pessoa de cada um dos aviões aleatoriamente e trocamos elas de avião

Simulated Annealing

- Solução inicial: ordenamos as pessoas pela razão valor/peso e alocamos nos aviões até que atinja a capacidade máxima (semelhante ao problema da mochila).
- Vizinhanca: escolhemos dois aviões aleatoriamente e uma pessoa de cada e trocamos elas de avião

Simulated Annealing

Resultados

Instâncias	V01	V02	V03	V04	V05	V06	V07	V08	V09	V10
Val. Solução Inicial	5044	5093	4983	5330	5683	5874	5597	7076	6301	5657
Val. Solução Final	12676	13098	12684	14190	13618	14644	12900	15160	15260	13038