- Step 2: Importing the libraries and loading the dataset

data = pd.read_csv('_/content/Churn_Modelling.csv')

	KOMMUNDEL	Customer1d	Surname	Creditscore	Geography	uender	age	Tenure	Balance	NumU+Products	Hascreard	1sactivemenber	EstimatedSalary	EXIT
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542,58	
2	3	15619304	Onio	502	France	Female	42	8	159660,80	3	1	0	113931.57	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	

file['HasCrCard'] = file['HasCrCard'].astype('category')

file['IsActiveMember'] = file['IsActiveMember'].astype('category')
file['Exited'] = file['Exited'].astype('category')

file.head() #Displaying the data without first three columns

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exit
0	619	France	Female	42	2	0.00	1	1	1	101348.88	
1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	
2	502	France	Female	42	8	159660.80	3	1	0	113931.57	
3	699	France	Female	39	1	0.00	2	0	0	93826.63	
4	850	Spain	Eamala	43	2	125510.92	4	- 1	4	79084 10	

3.Performing the visualizations

- Uni-variate Analysis Bi-variate Analysis
- Multi-variate Analysis

#Importing seabron library import seaborn as sns depth = file('Exited') value_counts(normalize=True).reset_index() sns.barplot(data=depth,x='index',y='Exited')

	index	Exited
0	0	0.7963

From the above relation analysis, it can be said as the data is imbalanced For to correct this, we are processing and visualizing the data using matplotlib libary below

import matplotlib.pyplot as plt

categorical = file.drop(columns=['CreditScore', 'Age', 'Tenure', 'Balance', 'EstimatedSalary'])
rows = int(np.ceil(categorical.shape[1] / 2)) - 1

fig, axes = plt.subplots(nrows=rows, ncols=2, figsize=(10,6))
axes = axes.flatten()

#Generating subplots
for row in range(rows):
cols = min(z, categorical.shape[1] - row*2)
for col in range(cols):
col_name = categorical.columns[2 * row + col]
ax - axes[row*2 + col]

sns.countplot(data=categorical, x=col_name, hue="Exited", ax=ax);

plt.tight_layout()

• 4.Performing Descriptive Statistics method for to explain the features on the dataset

> 5. Handling and checking for any missing values

[] I 2 nalle hidden

• 6. Finding the outliers and replacing the outliers

[] I, 2 cells hidden

19 outliers in the analysis view

```
box_scatter(file, 'Age', 'Exited');
plt.tight_layout()
print(f'# of Bivariate Outliers: {len(file.loc[file['Age'] > 87])}")
  # of Bivariate Outliers: 3
                                               20 30 40 50 60 70 00 90
Age
        20 20 40 50 60 70
```

- 3 outliers in the above analysis view

box_scatter(file,'Balance','Exited');
plt.tight_layout()
print(f'# of Bivariate Outliers: {len(file.loc[file['Balance'] > 228080])}') # of Bivariate Outliers: 4

We can see that there are four outliers above

box_scatter(file,'EstimatedSalary','Exited');
plt.tight_layout()

Removing the outliers

• After removing outliers, boxplot can visualized as below

[] I, 3 cells hidden

[] L 6 cells hidden

> 7. Checking for categorical columns and performing label encoding

Label encoding is performed to convert the labels into numerical(binary digits) values

[] i, 1 cell hidden

• 8. Splitting the data into dependent and independent variables [] I, 2 cells hidden

• 9. Scaling the independent variables

It can done using StandardScaler from sciket-learn framework

[] I, 1 cell hidden

▶ 10. Splitting the data into training and testing

Colab paid products - Cancel contracts here