Facultatea de Matematică și Informatică

Concursul de admitere iulie 2014 Domeniul de licentă - Informatică

I. Algebră. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \in M_2(\mathbf{R}).$

- (a) Să se determine matricele $X \in M_2(\mathbf{R})$ pentru care AX = XA.
- (b) Să se arate că pentru orice $n \in \mathbf{N}^*$ există două numere întregi x_n și y_n astfel încât $A^n = \begin{pmatrix} x_n & -2y_n \\ y_n & x_n \end{pmatrix}$.
- (c) Să se arate că pentru orice $n \in \mathbf{N}^*$ numerele x_n și y_n de la (b) sunt nenule.

II. Analiză. Fie $f: \mathbf{R} \setminus \{0\} \to \mathbf{R}, f(x) = \frac{1}{x^2} e^{\frac{1}{x}}$.

- (a) Determinați ecuațiile asimptotelor la graficul funcției f.
- (b) Arătați că $f(x) \leq \frac{4}{c^2}, \forall x \in (-\infty, 0).$
- (c) Considerăm şirul $(x_n)_{n\in\mathbb{N}}$ dat de $x_0\in\left(0,\frac{1}{2}\right)$ şi $x_{n+1}=f\left(\frac{1}{x_n}\right),\ \forall\,n\in\mathbb{N}$. Demonstrați că şirul $(x_n)_{n \in \mathbb{N}}$ este convergent și că $\lim_{n \to \infty} x_n = 0$.
- (d) Calculați $\int_{-2}^{2} f(x) dx$.

III. Geometrie.

- (a) Fie A(1,1) şi B(3,2) două puncte în plan. Să se determine punctul M(x,0) astfel încât valoarea sume
iAM+MBsă fie minimă. Să se găsească minimul acestei sume.
- (b) Să se rezolve ecuația $\cos^4 x \sin^4 x = \frac{\sqrt{3}}{2}$. (c) Fie ABC un triunghi cu laturile AB = c, BC = a şi AC = b. Să se exprime suma de produse scalare $\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ în funcție de a, b si c.
- IV. Informatică. Se dă operația $\bar{}$: $\{1,2\} \to \{1,2\}$ astfel încât $\bar{1}=2$ și $\bar{2}=1$. Operația se extinde asupra oricărei secvențe formate cu cifre de 1 și 2, de exemplu $\overline{1211212121} = 2122121212$. Se consideră șirul infinit s format cu cifre de 1 şi 2, generat incremental prin extindere după următoarea regulă de concatenare: $s_1 = 1221, s_2 = 1221211221121221, \ldots, s_{k+1} = s_k \overline{s_k s_k} s_k, \ldots$, pentru orice număr natural nenul k.

Fie n un număr natural nenul, n < 1000000.

- (a) Să se scrie un program care citește n și afișează primele n cifre ale șirului s. Exemplu: Pentru n=18 programul va afişa 12212112211212121.
- (b) Să se scrie un program care citește n și afișează a n-a cifră a șirului s, astfel încât numărul de pași ai programului să fie proporțional cu $\log_2 n$ (complexitate timp logaritmică în funcție de n). Exemplu: Pentru n=11 programul va afişa 1, iar pentru n=20 programul va afişa 2.

Notă: Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal, C, C++). Pentru fiecare soluție se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive, a instrucțiunilor condiționale.

Timp de lucru 3 ore.

Facultatea de Matematică și Informatică

Concursul de admitere iulie 2014 Domeniul de licentă - Matematică

- I. Algebră. Fie matricea $A = \begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix} \in M_2(\mathbf{R}).$
 - (a) Să se arate că $A^3 = \mathbf{I}_2$ și să se calculeze A^{2014} .
 - (b) Să se determine matricele $X \in M_2(\mathbf{R})$ pentru care $AX = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.
 - (c) Fie n un număr natural care nu este divizibil cu 3. Să se arate că există $X \in M_2(\mathbf{R})$ astfel încât $X^n = A$.
- II. Analiză. Fie $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x \operatorname{arctg} x$.
 - (a) Studiați monotonia funcției f.
 - (b) Determinați ecuațiile asimptotelor la graficul funcției f.
 - (c) Considerăm şirul $(x_n)_{n\in\mathbb{N}}$ dat de $x_0>0$ şi $x_{n+1}=f(x_n),\ \forall\,n\in\mathbb{N}$. Demonstrați că şirul $(x_n)_{n\in\mathbb{N}}$ este convergent și că $\lim_{n\to\infty} x_n = 0$.
 - (d) Calculați $\int_0^1 f(x) dx$.

III. Geometrie.

- (a) În planul xOy fie punctele A(-1,-2), B(-4,1) și C(5,4). Să se determine lungimea segmentului [GO], unde G este centrul de greutate al triunghiului ABC, iar O este centrul cercului circumscris acestui triunghi.
- (b) Fie $\alpha \in (0, \frac{\pi}{2})$. Să se calculeze tg α , știind că are loc egalitatea $\sin \frac{\alpha}{2} \cos \frac{\alpha}{2} = \frac{\sqrt{3}}{3}$. (c) Fie ABCD un paralelogram. Se consideră punctele M și N date de relațiile $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{MB}$, respectiv $\overrightarrow{DN} = \frac{1}{3}\overrightarrow{DC}$. Se notează cu P intersecția dintre dreapta AB și paralela dusă prin C la dreapta OM, unde O este punctul de intersecție a diagonalelor paralelogramului. Să se determine $\alpha, \beta \in \mathbb{R}$ pentru care are loc egalitatea $\overrightarrow{NP} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AD}$.

IV. Informatică.

Se consideră ecuația de gradul al 2-lea cu coeficienți reali $ax^2 + bx + c = 0$ cu $a \neq 0$ și expresia: $S_n = x_1^n + x_2^n$, unde x_1 și x_2 sunt rădăcinile ecuației. Să se scrie un program care primind coeficienții a, b, c ai ecuației și un număr natural n calculează și afișază valoarea expresiei S_n , știind că S_n este un număr real indiferent dacă rădăcinile ecuației sunt reale sau nu. De exemplu, dacă programul va primi la intrare numerele: 1 1 1 6 (ceea ce înseamnă că ecuația este $x^2 + x + 1 = 0$ și se cere S_6) va afișa 2.

Notă: Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal, C, C++). Pentru fiecare soluție se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive, a instrucțiunilor condiționale.

Timp de lucru 3 ore.

Concursul de admitere iulie 2014 Domeniul de licentă - *Informatică*

Barem

I. Algel	oră. Oficiu
(a)	\bullet Calculul produselor AX și XA și scrierea sistemului de ecuații
	• Determinarea matricei: $X = \begin{pmatrix} x & -2z \\ z & x \end{pmatrix}$, cu x, z numere reale arbitrare2 puncte
(b)	• Demonstrație prin inducție
(c)	• Orice rezolvare corectă
II. Ana	liză. Oficiu
(a)	• $y=0$ asimptotă orizontală spre $\pm\infty$
(b)	• Calculul lui f'
(c)	 Monotonia şi mărginirea Calculul limitei 1 punct 1 punct
(d)	• Calculul integralei
III. Ge	ometrie. Oficiu
(a)	• Considerarea punctului $A'(1,-1)$
	\bullet Scrierea ecuației dreptei $A'B$ și aflarea coordonatei x
	• Calculul minimului
	e metodă corectă și completă (de exemplu folosind analiza matematică) se punctează maxim.
(b)	• Descompunerea $(\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x)$
	• $\cos^2 x + \sin^2 x = 1$
	• $\cos^2 x - \sin^2 x = \cos 2x$
	• Rezolvarea ecuației $\cos 2x = \frac{\sqrt{3}}{2}$
(c)	• Formula produsului scalar
	• Teorema cosinusului
	• Finalizare

IV. Info	rmatică. Oficiu	1 punct
(a)	• Şirul s este generat corect	3 puncte
	\bullet Programul afişează exact n cifre	1 punct
	\bullet Cifrele afișate sunt corecte în raport cu șirul s	1 punct
(b)	\bullet Programul afișează corect a n -a cifră, într-o complexitate mai mică decât C	O(n) .1 punct
	\bullet Programul afișează corect a n-a cifră, într-o complexitate egală cu $O(\log n)$	1 punct
- P	rogramele nu au greșeli de limbaj	1 punct
- C	laritatea rezolvărilor	1 punct

Concursul de admitere iulie 2014 Domeniul de licentă - Matematică

Barem

I. Algebră. Oficiu			
(a)	• $A^3 = \mathbf{I}_2$		
(b)	• $X = \begin{pmatrix} -1 & -3 \\ 1 & 4 \end{pmatrix}$		
(c)	• Orice rezolvare corectă		
II. Analiză. Oficiu			
(a) (b)	• Calculul lui f'		
(c)	• Calculul limitei $\lim_{x\to\infty} f(x)$ şi $y=x-\pi/2$ asimptotă oblică spre $+\infty$		
(d)	• Calculul integralei		
III. Geometrie. Oficiu			
(a)	• Determinarea centrului de greutate G		
(b)			
(c)	• P este mijlocul lui $[AB]$		
IV. Informatică. Oficiu			
	• Calculul lui S_1 şi S_2		