પ્રકરણ 2

બહુપદીઓ

2.1 પ્રાસ્તાવિક

અગાઉના વર્ગોમાં આપણે બૈજિક અભિવ્યક્તિના સરવાળા, બાદબાકી, ગુણાકાર, ભાગાકાર શીખ્યાં છીએ. કેટલીક બૈજિક અભિવ્યક્તિના અવયવો પાડવાનું પણ આપણે શીખ્યાં છીએ. કેટલાંક બૈજિક નિત્યસમો નીચે આપેલા છે.

$$(x + y)^2 = x^2 + 2xy + y^2$$
$$(x - y)^2 = x^2 - 2xy + y^2$$
$$24 + x^2 - y^2 = (x + y)(x - y)$$

અને અવયવ પાડવામાં તેમનો ઉપયોગ કરવાનું પણ શીખ્યાં છીએ. આ પ્રકરણમાં આપણે જેને 'બહુપદી' કહીશું તેવી ચોક્કસ પ્રકારની બૈજિક અભિવ્યક્તિ અને તેને સંબંધિત કેટલાક પારિભાષિક શબ્દોની સમજૂતી મેળવીશું. આ પ્રકરણમાં આપણે શેષ પ્રમેષ (Remainder Theorem) અને અવયવ પ્રમેષ (Factor Theorem)નો અભ્યાસ કરીશું અને બહુપદીઓના અવયવો પાડવામાં તેમનો ઉપયોગ કરતાં શીખીશું આ ઉપરાંત, કેટલાક વધુ બૈજિક નિત્યસમો અને તેમનો અવયવો પાડવામાં અને આપેલ કિંમતો આગળ અભિવ્યક્તિઓનું મૂલ્ય શોધવામાં ઉપયોગ કરીશું.

2.2 એકચલ બહુપદી

ભિન્ન કિંમતો ધારણ કરી શકે તેવી સંજ્ઞાને ચલ કહે છે. ચલને x, y, z વગેરે સંકેતથી દર્શાવાય છે. નોંધો કે 2x, 3x, -x, $-\frac{1}{2}x$ એ *બૈજિક અભિવ્યક્તિ* (Algebraic Expressions) છે. આ બધી બૈજિક અભિવ્યક્તિ (અચળપદ) $\times x$ પ્રકારની છે. હવે ધારો કે આપણે એક (અચળપદ) \times (ચલ) પ્રકારની બહુપદી લખવી છે અને આપણે અચળ વિશે જાણતાં

નથી. આવાં ઉદાહરણોમાં અચળને સામાન્ય રીતે a, b, c વગેરે દ્વારા દર્શાવવામાં આવે છે. તેથી પદાવિલને ax પ્રમાણે દર્શાવવામાં આવે છે.

આમ, છતાં અચળ અને ચલ દર્શાવતા સંકેતો વચ્ચે તફાવત હોય છે. કોઇ એક સ્થિતિમાં અચળની કિંમત એક સરખી જળવાઇ રહે છે, પરંતુ ચલની કિંમત બદલાતી રહે છે.

હવે 3 એકમ બાજુવાળા ચોરસનો વિચાર કરો.(આકૃતિ 2.1). તેની પરિમિતિ કેટલી થશે? તમે જાણો છો કે ચાર બાજુઓનાં માપના સરવાળાને ચોરસની પરિમિતિ કહે છે. અહીં દરેક બાજુની લંબાઈ 3 એકમ છે. તેથી તેની પરિમિતિ $4 \times 3 = 12$ એકમ છે. હવે જો ચોરસની એક બાજુનું માપ 10 એકમ હોય તો તેની પરિમિતિ કેટલી થશે? પરિમિતિ 4×10=40 એકમ થશે. જો ચોરસની એક બાજુનું માપ x એકમ હોય તો (આકૃતિ 2.2) ચોરસની પરિમિતિ 4x એકમ થાય. આમ, જેમ બાજુની લંબાઇનું માપ બદલાય તેમ પરિમિતિનું માપ પણ બદલાય છે.

તમે ચોરસ PQRS નું ક્ષેત્રફળ શોધી શકો ? તે $x \times x = x^2$ ચોરસ એકમ છે. x^2 એ બૈજિક અભિવ્યક્તિ છે. તમે 2x, $x^2 + 2x$, $x^3 - x^2 + 4x + 7$ જેવી બીજી બૈજિક અભિવ્યક્તિથી પરિચિત છો. આપણે નોંધીએ કે બધી જ બૈજિક અભિવ્યક્તિઓના ચલના ઘાતાંક એ પૂર્ણ સંખ્યાઓ છે. આ પ્રકારની અભિવ્યક્તિઓને એક ચલ વાળી બહુપદીઓ કહે છે. ઉપરના ઉદાહરણમાં x એ ચલ છે. ઉદાહરણ તરીકે $x^3 - x^2 + 4x + 7$ એ x ચલ વાળી બહુપદી છે. તે જ પ્રમાણે $3y^2 + 5y$ એ yચલ વાળી બહુપદી છે અને $t^2 + 4$ એ t ચલ વાળી બહુપદી છે.

આકૃતિ 2.1

બહુપદી $x^2 + 2x$ માં x^2 અને 2x એ બહુપદીનાં **પદો** છે. તે જ પ્રમાણે $3y^2 + 5y + 7$ ને $3y^2$, 5y અને 7એમ ત્રણ પદો છે. તમે બહુપદી $-x^3 + 4x^2 + 7x - 2$ નાં પદો લખી શકશો ? આ બહુપદીને 4 પદો $-x^3$, $4x^2$, 7x, અને -2 છે.

બહુપદીના દરેક પદને $\mathbf{\mathcal{H}}\mathbf{\mathcal{G}}$ છોય છે. તેથી બહુપદી $-x^3+4x^2+7x-2$ માં x^3 નો સહગુણક $-1,\ x^2$ નો સહગુણક 4, x નો સહગુણક 7 અને x^0 નો સહગુણક -2 છે. (યાદ છે ને કે $x^0=1$) x^2-x+7 માં x નો સહગુણક શું છે તે તમે કહી શકશો? તે —1 છે.

સંખ્યા 2 એ પણ બહુપદી છે. હકીકતમાં 2, –5, 7 વગેરે અચળ બહુપદીઓનાં ઉદાહરણો છે. અચળ બહુપદી 0 ને *શૂન્ય બહુપદી* કહે છે. બધી બહુપદીઓના સંગ્રહમાં આ શૂન્ય બહુપદી ખૂબ જ મહત્વની ભૂમિકા ભજવે છે. આ વિશે તમે આગળના ધોરણમાં શીખશો.

હવે $x+\frac{1}{x}$, $\sqrt{x}+3$ અને $\sqrt[3]{y}+y^2$ જેવી બૈજિક અભિવ્યક્તિઓનો વિચાર કરો. તમે જાણો છો કે $x+\frac{1}{x}$ ને $x+x^{-1}$ તરીકે પણ લખી શકાય. અહીં બીજા પદનો ઘાતાંક એટલે કે x^{-1} નો ઘાતાંક-1 છે અને તે પૂર્ણ સંખ્યા નથી. તેથી આ બૈજિક અભિવ્યક્તિ એ બહુપદી નથી.

ફરીથી જોતાં, $\sqrt{x}+3$ ને $x^{\frac{1}{2}}+3$ રીતે પણ લખી શકાય. અહીં x નો ઘાતાંક $\frac{1}{2}$ છે અને તે પૂર્ણ સંખ્યા નથી. તેથી $\sqrt{x}+3$ એ x માં બહુપદી છે ? ના તે નથી. તો $\sqrt[3]{y}+y^2$ અંગે તમારું શું માનવું છે ? તે પણ y માં બહુપદી નથી. (કેમ ?)

જો બહુપદીમાં ચલ તરીકે x હોય તો આપણે બહુપદીને p(x) અથવા q(x) અથવા r(x) વગેરે તરીકે ઓળખીશું. ઉદાહરણ તરીકે,

$$p(x) = 2x^{2} + 5x - 3$$

$$q(x) = x^{3} - 1$$

$$r(y) = y^{3} + y + 1$$

$$s(u) = 2 - u - u^{2} + 6u^{5}$$

બહુપદીમાં ગમે તેટલાં પદો હોઇ શકે. $x^{150} + x^{149} + ... + x^2 + x + 1$ એ 151 પદો વાળી બહુપદી છે. 2x, 2, $5x^3$, $-5x^2$, y અને u^4 જેવી બહુપદીઓનો વિચાર કરો. તમે જોયું કે આ બધી બહુપદીઓમાં માત્ર એક જ પદ છે. તેમને *એકપદીઓ* (Monomials) કહે છે. (Mono એટલે 1)

હવે નીચેની બહુપદીઓનું નિરીક્ષણ કરો :

$$p(x) = x + 1, q(x) = x^2 - x, \quad r(y) = y^{30} + 1, \quad t(u) = u^{43} - u^2$$

આ દરેકમાં કેટલાં પદો છે ? આ દરેક બહુપદીને બે પદો છે. જે બહુપદીને માત્ર બે જ પદો હોય તેને *દ્વિપદી* (binomial) કહે છે. (bi એટલે 2)

તે જ પ્રમાણે જે બહુપદીઓને માત્ર 3 પદો હોય તેને *ત્રિપદી (trinomials) (tri* એટલે 3)કહે છે. ત્રિપદીનાં કેટલાંક ઉદાહરણો નીચે પ્રમાણે છે :

$$p(x) = x + x^2 + \pi,$$
 $q(x) = \sqrt{2} + x - x^2,$
 $r(u) = u + u^2 - 2,$ $t(y) = y^4 + y + 5.$

હવે $p(x) = 3x^7 - 4x^6 + x + 9$ નો વિચાર કરો. x ની મહત્તમ ઘાતવાળું પદ કયું છે ? તે $3x^7$ છે. x નો ઘાતાંક 7 છે. તે જ પ્રમાણે બીજી બહુપદી $q(y) = 5y^6 - 4y^2 - 6$ માં y ની મહત્તમ ઘાતવાળુ પદ $5y^6$ છે અને y નો ઘાતાંક 6 છે. બહુપદીના ચલના મહત્તમ ઘાતાંકને **બહુપદીની ઘાત**(degree of the polynomial) કહે છે. તેથી બહુપદી $3x^7 - 4x^6 + x + 9$ ની ઘાત 7 છે અને બહુપદી $5y^6 - 4y^2 - 6$ ની ઘાત 6 છે. શૂન્ય સાવાયની અચળ બહુપદીની ઘાત 0 હોય છે.

ઉદાહરણ 1 : નીચે આપેલી બહુપદીઓની ઘાત જણાવો :

(i)
$$x^5 - x^4 + 3$$
 (ii) $2 - y^2 - y^3 + 2y^8$ (iii) 2

ઉ<mark>કેલ : (i)</mark> ચલનો મહત્તમ ઘાતાંક 5 છે. તેથી બહુપદીની ઘાત 5 છે.

- (ii) ચલનો મહત્તમ ઘાતાંક 8 છે. તેથી બહુપદીની ઘાત 8 છે.
- (iii) અહીં એક જ પદ 2 છે. તેને $2x^0$ તરીકે પણ લખી શકાય છે. તેથી x નો ઘાતાંક 0 છે. તેથી બહુપદીની ઘાત 0 છે.

હવે બહુપદીઓ p(x)=4x+5, q(y)=2y, $r(t)=t+\sqrt{2}$ અને s(u)=3-u નો વિચાર કરો. તમને આ બધામાં કંઇ સામાન્ય લાગે છે ? આ બધી બહુપદીઓની ઘાત 1 છે. જે બહુપદીની ઘાત 1 હોય તે બહુપદીને **સુરેખ બહુપદી** કહે છે. કેટલીક અન્ય સુરેખ બહુપદીઓ $2x-1,\sqrt{2}y+1$, 2-u છે. હવે ત્રણ પદ અને ચલ x વાળી સુરેખ બહુપદી લખવાનો પ્રયત્ન કરો. તમે તે નહીં લખી શકો કારણ કે ચલ x વાળી સુરેખ બહુપદીને વધુમાં વધુ બે પદ હોય છે. તેથી દરેક ચલ x વાળી સુરેખ બહુપદીને ax+b સ્વરૂપમાં લખી શકાય, જયાં a અને b અચળ છે અને $a\neq 0$ (શા માટે ?) તે પ્રમાણે ay+b એ ચલ y વાળી સુરેખ બહુપદી છે.

હવે નીચેની બહુપદીઓનો વિચાર કરોઃ

$$2x^2 + 5$$
, $5x^2 + 3x + \pi$, $x^2 \approx 1$ $x^2 + \frac{2}{5}x$

આપેલી બહુપદીઓની ઘાત 2 છે. તેથી તે બહુપદીઓને *દ્વિઘાત બહુપદી* કહે છે. દ્વિઘાત બહુપદીનાં કેટલાંક ઉદાહરણો $5-y^2$, $4y-5y^2$ અને $6-y-y^2$ છે. તમે ચાર પદ વાળી એક ચલ વાળી દ્વિઘાત બહુપદી લખી શકો ? તમને ખ્યાલ આવશે કે એક ચલ વાળી દ્વિઘાત બહુપદીને વધુમાં વધુ 3 પદો હોય છે. જો તમે દ્વિઘાત બહુપદીના કેટલાંક વધારે ઉદાહરણો જોશો તો ખ્યાલ આવશે કે તે સામાન્ય રીતે ચલ x વાળી દ્વિઘાત બહુપદી ax^2+bx+c સ્વરૂપમાં મળશે. અહીં $a\neq 0$ તથા a, b, c અચળો છે. તે જ પ્રમાણે ચલ y વાળી દ્વિઘાત બહુપદી ay^2+by+c છે. અહીં $a\neq 0$ તથા a, b, c અચળ છે.

જે બહુપદીની ઘાત 3 હોય તેને ત્રિઘાત બહુપદી કહે છે. ત્રિઘાત બહુપદીનાં કેટલાંક ઉદાહરણો $4x^3$, $2x^3+1$, $5x^3+x^2$, $6x^3-x$, $6-x^3$, $2x^3+4x^2+6x+7$ છે. એક ચલ વાળી ત્રિઘાત બહુપદીને કેટલાં પદ હોઇ શકે? તેને વધુમાં વધુ 4 પદો હોઇ શકે. તેને સામાન્ય રીતે ax^3+bx^2+cx+d સ્વરૂપમાં લખી શકાય. અહીં $a\neq 0$ અને a, b, c, d અચળ છે.

હવે, તમે જોયું કે એક ઘાતવાળી, 2 ઘાતવાળી અથવા 3 ઘાતવાળી બહુપદીઓની જેમ તમે એક ચલ વાળી n ઘાતવાળી બહુપદીને લખી શકો ? એક ચલ વાળી n ઘાતની બહુપદીને સામાન્ય રીતે નીચે પ્રમાણે લખી શકાય :

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

જ્યાં $a_{\scriptscriptstyle 0},\,a_{\scriptscriptstyle 1},\,a_{\scriptscriptstyle 2},\,\ldots,\,a_{\scriptscriptstyle n}$ અચળ છે અને $a_{\scriptscriptstyle n} \neq 0$.

વિશેષ વિકલ્પમાં જો $a_0 = a_1 = a_2 = a_3 = \ldots = a_n = 0$ (બધાં જ અચળ શૂન્ય છે) તો આપણે *શૂન્ય બહુપદી* મેળવીશું. શૂન્ય બહુપદીની ઘાત કેટલી હશે ? શૂન્ય બહુપદીની ઘાત અવ્યાખ્યાયિત છે.

અત્યાર સુધી આપણે એક ચલ વાળી બહુપદીઓનો અભ્યાસ કર્યો. એક કરતાં વધારે ચલ વાળી બહુપદીઓ પણ હોઇ શકે. ઉદાહરણ તરીકે x^2+y^2+xyz (જ્યાં x, y, z એ ચલ છે.) એ ત્રણ ચલ વાળી બહુપદી છે. તે જ પ્રમાણે $p^2+q^{10}+r$ (જ્યાં p, q, r એ ચલ છે.) u^3+v^2 (જ્યાં u, v ચલ છે.) અનુક્રમે ત્રણ અને બે ચલ વાળી બહુપદીઓ છે. આવી બહુપદીઓનો વિગતે અભ્યાસ તમે પછી કરશો.

સ્વાધ્યાય 2.1

1. નીચે આપેલી અભિવ્યક્તિઓ પૈકી કઇ બહુપદી એક ચલ વાળી છે અને કઇ બહુપદી એક ચલ વાળી નથી ? તમારા જવાબ માટે કારણ આપો.

(i)
$$4x^2 - 3x + 7$$

(ii)
$$y^2 + \sqrt{2}$$

(i)
$$4x^2 - 3x + 7$$
 (ii) $y^2 + \sqrt{2}$ (iii) $3\sqrt{t} + t\sqrt{2}$ (iv) $y + \frac{2}{y}$

(iv)
$$y + \frac{2}{y}$$

(v)
$$x^{10} + y^3 + t^{50}$$

2. નીચેનામાં x^2 નો સહગુણક લખો :

(i)
$$2 + x^2 + x$$

(i)
$$2 + x^2 + x$$
 (ii) $2 - x^2 + x^3$ (iii) $\frac{\pi}{2}x^2 + x$ (iv) $\sqrt{2}x - 1$

(iii)
$$\frac{\pi}{2}x^2 + x$$

(iv)
$$\sqrt{2}x - 1$$

3. 35 ઘાતાંકવાળી દ્વિપદીનું કોઈ પણ એક ઉદાહરણ અને 100 ઘાતાંકવાળી એકપદીનું કોઈ પણ એક ઉદાહરણ આપો.

4. નીચે આપેલી બહુપદીઓની ઘાત જણાવો.

(i)
$$5x^3 + 4x^2 + 7x$$

(ii)
$$4 - y^2$$

(iii)
$$5t - \sqrt{7}$$

5. નીચે આપેલી બહુપદીઓને સુરેખ, દ્વિઘાત કે ત્રિઘાત બહુપદીમાં વર્ગીકૃત કરો :

(i)
$$x^2 + x$$

(ii)
$$x - x^3$$

(iii)
$$y + y^2 + 4$$
 (iv) $1 + x$

(iv)
$$1 + x$$

(vi)
$$r^2$$

(vii)
$$7x^3$$

2.3 બહુપદીનાં શુન્યો

બહુપદી $p(x) = 5x^3 - 2x^2 + 3x - 2$ નો વિચાર કરો.

જો આપણે x ના બદલે 1 લઇએ તો,

$$p(1) = 5 \times (1)^3 - 2 \times (1)^2 + 3 \times (1) - 2$$
$$= 5 - 2 + 3 - 2$$
$$= 4$$

આ પરિસ્થિતિમાં આપણે કહીશું કે x=1 આગળ p(x) નું મૂલ્ય 4 છે.

તે જ પ્રમાણે,
$$p(0) = 5(0)^3 - 2(0)^2 + 3(0) - 2$$
$$= -2$$

શું તમે p(-1) શોધી શકશો ?

ઉદાહરણ 2 : નીચે આપેલી બહુપદીઓનું મૂલ્ય બહુપદીની ચલની સામે દર્શાવેલ કિંમતો માટે શોધો.

(i)
$$p(x) = 5x^2 - 3x + 7$$
, $x = 1$ આગળ

(ii)
$$q(y) = 3y^3 - 4y + \sqrt{11}$$
, $y = 2$ આગળ

(iii)
$$p(t) = 4t^4 + 5t^3 - t^2 + 6$$
, $t = a$ આગળ

ઉકેલ : (i)
$$p(x) = 5x^2 - 3x + 7$$

$$x = 1 \text{ આગળ બહુપદી } p(x) - \frac{1}{2} \text{ મૂલ્ય,}$$

$$p(1) = 5(1)^2 - 3(1) + 7$$

(ii)
$$q(y) = 3y^3 - 4y + \sqrt{11}$$

= 5 - 3 + 7 = 9

y = 2 આગળ બહુપદી q(y)નું મૂલ્ય,

$$q(2) = 3(2)^3 - 4(2) + \sqrt{11} = 24 - 8 + \sqrt{11} = 16 + \sqrt{11}$$

(iii)
$$p(t) = 4t^4 + 5t^3 - t^2 + 6$$

 $t = a$ આગળ બહુપદી $p(t)$ નું મૂલ્ય,
 $p(a) = 4a^4 + 5a^3 - a^2 + 6$

હવે, બહુપદી p(x) = x - 1નો વિચાર કરીએ.

p(1) નું મૂલ્ય શું? આપણે જોઇશું કે : p(1) = 1 - 1 = 0.

અહીં p(1)=0. તેથી 1 એ આપેલી બહુપદી p(x) નું શૂન્ય છે તેમ કહેવાય છે.

જો, q(x) = x - 2 તો, 2 એ q(x)નું શૂન્ય છે.

સામાન્ય રીતે આપણે કહી શકીએ કે p(x) નું શૂન્ય c હોય તો p(c)=0.

તમે નિરીક્ષણ કર્યું હશે કે બહુપદી x-1 નું શૂન્ય શોધવા માટે તેને 0 સાથે સરખાવવી પડે. એટલે કે x-1=0, આથી x=1 મળે. આપણે કહી શકીએ કે p(x)=0 એ બહુપદીય સમીકરણ છે અને 1 એ આ બહુપદીય સમીકરણ p(x)=0 નું બીજ છે. તેથી આપણે કહી શકીશું કે 1 એ બહુપદી x-1 નું શૂન્ય છે, અથવા 1 એ બહુપદીય સમીકરણ x-1=0 નું બીજ છે.

હવે, અચળ બહુપદી 5 નો વિચાર કરો. તમે આ બહુપદીનું કોઇ શૂન્ય કહી શકશો ? તેને શૂન્ય નથી કારણ કે x ને બદલે કોઇ પણ સંખ્યા લખવાથી $5x^{\circ}$ આપણને 5 જ આપશે. હકીકતમાં શૂન્ય ન હોય તેવી અચળ બહુપદીને શૂન્ય હોતું નથી. શૂન્ય બહુપદીનાં શૂન્ય વિશે શું કહી શકાય ? સરળતા ખાતર સ્વીકારી લઇએ કે દરેક વાસ્તવિક સંખ્યા એ શૂન્ય બહુપદીનું શૂન્ય છે.

ઉદાહરણ 3 : ચકાસો કે -2 અને 2 બહુપદી x+2 નાં શૂન્યો છે કે નહી.

ઉકેલ : ધારો કે p(x) = x + 2

$$p(2) = 2 + 2 = 4$$
, $p(-2) = -2 + 2 = 0$

તેથી, -2 એ બહુપદી x+2 નું શૂન્ય છે, પરંતુ 2 એ બહુપદી x+2 નું શૂન્ય નથી.

ઉદાહરણ 4: બહુપદી p(x) = 2x + 1 નાં શૂન્ય શોધો.

ઉકેલ : ધારો કે p(x) = 0

હવે,
$$2x + 1 = 0$$
 લેતાં, $x = -\frac{1}{2}$ તેથી, $-\frac{1}{2}$ એ બહુપદી $2x + 1$ નું શૂન્ય છે

હવે જો, p(x)=ax+b, $a\neq 0$, એ સુરેખ બહુપદી હોય, તો આપણે p(x) નું શૂન્ય કેવી રીતે શોધી શકીએ ? ઉદાહરણ 4 પરથી કદાચ તમને ઉકેલ મળી શકે. p(x) નું શૂન્ય શોધવું એટલે કે સમીકરણ p(x)=0 નો ઉકેલ મેળવવો.

હવે,
$$p(x) = 0$$
 એટલે કે $ax + b = 0$, $a \neq 0$

તેથી,
$$ax = -b$$

એટલે કે
$$x = -\frac{b}{a}$$

તેથી, $x = -\frac{b}{a}$ એ p(x) નું એક માત્ર શૂન્ય છે. એટલે કે સુરેખ બહુપદીને એક અને માત્ર એક જ શૂન્ય છે.

હવે, આપણે કહી શકીએ કે 1 એ x-1 નું શૂન્ય છે અને -2 એ x+2 નું શૂન્ય છે.

ઉદાહરણ 5 : ચકાસો : 2 અને 0 બહુપદી $x^2 - 2x$ નાં શૂન્ય છે.

ઉકેલ : ધારો કે,
$$p(x) = x^2 - 2x$$

તેથી
$$p(2) = 2^2 - 2(2) = 4 - 4 = 0$$

અને
$$p(0) = 0 - 0 = 0$$

આથી, 2 અને 0 બંને બહુપદી $x^2 - 2x$ નાં શૂન્યો છે.

ચાલો આપણે અગત્યના મુદ્દાઓ નોંધીએ.

- (i) બહુપદીનું શૂન્ય 0 હોય તે જરૂરી નથી.
- (ii) 0 પણ બહુપદીનું શૂન્ય હોઇ શકે.
- (iii) દરેક સુરેખ બહુપદીને એક અને માત્ર એક જ શૂન્ય હોય છે.
- (iv) બહુપદીને એક કરતાં વધારે શૂન્ય પણ હોઇ શકે.

સ્વાધ્યાય 2.2

1. x ની નીચેની કિંમતો માટે $5x - 4x^2 + 3$ બહુપદીનું મૂલ્ય શોધો.

(i)
$$x = 0$$

(ii)
$$x = -1$$

(iii)
$$x = 2$$

2. નીચે આપેલ દરેક બહુપદી માટે p(0), p(1) અને p(2) શોધો.

(i)
$$p(y) = y^2 - y + 1$$

(ii)
$$p(t) = 2 + t + 2t^2 - t^3$$

(iii)
$$p(x) = x^3$$

(iv)
$$p(x) = (x - 1)(x + 1)$$

3. નીચેની બહુપદીની સામે દર્શાવેલ x ની કિંમતો એ આપેલ બહુપદીનાં શુન્યો છે કે નહિ તે ચકાસો :

(i)
$$p(x) = 3x + 1$$
, $x = -\frac{1}{3}$

(ii)
$$p(x) = 5x - \pi$$
, $x = \frac{4}{5}$

(iii)
$$p(x) = x^2 - 1$$
, $x = 1$, -1

(iv)
$$p(x) = (x + 1)(x - 2), x = -1, 2$$

(v)
$$p(x) = x^2$$
, $x = 0$

(vi)
$$p(x) = lx + m, x = -\frac{m}{l}$$

(vii)
$$p(x) = 3x^2 - 1$$
, $x = -\frac{1}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$

(viii)
$$p(x) = 2x + 1, x = \frac{1}{2}$$

4. નીચે આપેલી દરેક બહુપદીનાં શૂન્યો શોધો :

(i)
$$p(x) = x + 5$$

(ii)
$$p(x) = x - 5$$

(iii)
$$p(x) = 2x + 5$$

(iv)
$$p(x) = 3x - 2$$

(v)
$$p(x) = 3x$$

(vi)
$$p(x) = ax$$
, $a \neq 0$

(vii) p(x) = cx + d, $c \neq 0$, c અને d એ વાસ્તવિક સંખ્યાઓ છે.

2.4 શેષ પ્રમેય

ચાલો, બે સંખ્યાઓ 15 અને 6 લઇએ. તમે જાણો છો કે જો આપણે 15 ને 6 વડે ભાગીએ તો આપણને ભાગફળ 2 મળે અને શેષ 3 આવે. તમને યાદ છે કે આ હકીકતને કેવી રીતે દર્શાવી શકાય ? આપણે 15 ને આ પ્રમાણે લખી શકીએ:

$$15 = (6 \times 2) + 3$$

આપણે નિરીક્ષણ કર્યુ કે શેષ 3 એ ભાજક 6 કરતાં નાની છે. તે જ પ્રમાણે જો આપણે 12 ને 6 વડે ભાગીએ તો,

$$12 = (6 \times 2) + 0$$

અહીં શેષ કેટલી છે ? અહી શેષ 0 છે. આપણે કહીશું કે 6 એ 12 નો અવયવ છે અથવા 12 એ 6 નો ગુણાત છે. હવે, પ્રશ્ન એ છે કે આપણે એક બહુપદીને બીજી બહુપદીથી ભાગી શકીએ ? શરૂઆતમાં ચાલો પ્રયત્ન કરવા માટે ભાજક તરીકે એકપદી લઇએ. તેથી ચાલો બહુપદી $2x^3 + x^2 + x$ ને એકપદી x વડે ભાગીએ.

$$(2x^3 + x^2 + x) \div x = \frac{2x^3}{x} + \frac{x^2}{x} + \frac{x}{x}$$
$$= 2x^2 + x + 1$$

હકીકતમાં, તમે નોંધ્યુ હશે કે $2x^3 + x^2 + x$ માં x સામાન્ય છે. તેથી આપણે $2x^3 + x^2 + x$ ને $x(2x^2 + x + 1)$ લખી શકીએ.

આપણે કહી શકીએ કે x અને $(2x^2+x+1)$ એ $2x^3+x^2+x$ ના અવયવો છે અને $2x^3+x^2+x$ એ x નો તથા $2x^2+x+1$ નો ગુણિત છે.

ચાલો આપણે બીજી બે બહુપદીઓની જોડ $3x^2+x+1$ અને x નો વિચાર કરીએ.

અહી
$$(3x^2 + x + 1) \div x = (3x^2 \div x) + (x \div x) + (1 \div x)$$

આપણે જાણીએ છીએ કે 1 ને x વડે ભાગીને બહુપદી ન મેળવી શકાય. તેથી આવી પરિસ્થિતિમાં આપણે અટકીશું અને 1 ને શેષ તરીકે લઇશું.

$$\therefore 3x^2 + x + 1 = \{x \times (3x + 1)\} + 1$$

અહીં (3x+1) એ ભાગફળ છે અને 1 એ શેષ છે. તમને લાગે છે કે x એ $3x^2+x+1$ નો અવયવ છે ? અહીં શેષ 0 ન હોવાથી x એ અવયવ નથી.

ચાલો હવે આપણે જેમાં કોઈપણ બહુપદીને શૂન્ય સિવાયની બહુપદી વડે ભાગવાની હોય એવું ઉદાહરણ જોઇએ.

ઉદાહરણ $6: p(x) = x + 3x^2 - 1$ અને g(x) = 1 + x માટે p(x) ને g(x) વડે ભાગો.

ઉકેલ : આપણે આ ઉદાહરણનો ઉકેલ કેવી રીતે શોધી શકાય તેની સમજ નીચેનાં સોપાનો દ્વારા મેળવીશું.

સોપાન 1 : ભાજય $x + 3x^2 - 1$ અને ભાજક 1 + x ને પ્રમાશિત સ્વરૂપમાં લખીએ એટલે કે ચલના ઘાતાંકના ઉતરતા ક્રમમાં પદોની ગોઠવણી કરીએ. તેથી ભાજય $= 3x^2 + x - 1$ અને ભાજક = x + 1.

સોપાન 2 : હવે આપશે ભાજ્યના પ્રથમ પદનો ભાજકના પ્રથમ પદ વડે ભાગાકાર કરીશું. એટલે કે $3x^2$ ને x વડે ભાગીશું. તેથી ભાગફળનું પ્રથમ પદ મળશે.

$$\frac{3x^2}{x} = 3x$$
 ભાગફળનું પ્રથમ પદ

સોપાન 3: હવે આપણે ભાગફળના પ્રથમ પદને ભાજક સાથે ગુણીશું અને જે પરિણામ મળે તેને ભાજયમાંથી બાદ કરીશું એટલે $3x^2 + x - 1$ માંથી બાદ કરીશું. તેથી આપણાને શેષ તરીકે -2x-1 મળશે.

સોપાન 4: હવે આપણે શેષ -2x-1 ને નવો ભાજય ગણીશું. પણ ભાજક તેનો તે જ રહેશે. હવે આપણે ભાગફળ મેળવવા સોપાન 2 નો ઉપયોગ કરીશું. એટલે કે નવા ભાજયના પ્રથમ પદ -2x ને ભાજકના પ્રથમ પદ x વડે ભાગીશું. તેથી -2 મળશે. આ રીતે -2 એ ભાગફળનું બીજું પદ થશે.

$$\frac{-2x}{x} = -2$$
 નવું ભાગફળ = $3x - 2$

સોપાન 5 : હવે આપણે ભાગફળના બીજા પદને ભાજક સાથે ગુણીશું અને જે પરિણામ મળે તેને ભાજયમાંથી બાદ કરીશું. એટલે (x+1) ને -2 વડે ગણીશું અને ગુણાકાર -2x-2 ને ભાજય -2x-1 માંથી બાદ કરીશું. તેથી આપણને શેષ 1 મળશે.

$$(x + 1) (-2) \begin{vmatrix} -2x - 1 \\ -2x - 2 \end{vmatrix} + +$$

આ પ્રક્રિયાને શેષ 0 ન થાય ત્યાં સુધી ચાલુ રાખવામાં આવે છે

અથવા નવા ભાજયની ઘાત એ ભાજકની ઘાત કરતાં ઓછી થાય ત્યાં સુધી ચાલુ રાખવામાં આવે છે. આ તબક્કે નવું ભાજય એ શેષ બને છે અને ભાગફળોનો સરવાળો એ સમગ્ર ભાગફળ બને છે.

સોપાન 6: અહીં ભાગફળ એ 3x - 2 છે અને શેષ 1 છે.

ઉપરોક્ત સમગ્ર પ્રક્રિયા દરમિયાન આપણે શું કર્યું તેને સમગ્ર રીતે જોઇએ.

$$3x^2 + x - 1 = (x + 1)(3x - 2) + 1$$

એટલે કે ભાજ્ય = (ભાજક × ભાગફળ) + શેષ

વ્યાપક રીતે જો p(x) ની ઘાત $\geq g(x)$ ની ઘાત હોય તેવી બહુપદીઓ p(x) અને g(x) આપેલ હોય અને $g(x) \neq 0$, તો આપણને બહુપદીઓ q(x) અને r(x) એવી મળશે કે જેથી

$$p(x) = g(x) q(x) + r(x),$$

જયાં r(x)=0 અથવા r(x) ની ઘાત < g(x) ની ઘાત. અહીં આપણે કહી શકીએ કે p(x) ને g(x) વડે ભાગીએ તો ભાગ ϕ 0 તો અને શેષ r(x) મળે છે.

ઉપરોક્ત ઉદાહરણમાં ભાજક એ સુરેખ બહુપદી હતી. આ સ્થિતિમાં ચાલો આપણે એ જોઇએ કે શેષ અને ભાજયની કેટલીક ચોક્કસ કિંમતો વચ્ચે કોઇ સંબંધ છે કે નહિ ?

$$p(x) = 3x^2 + x - 1$$
, માં આપણે x ની જગ્યાએ -1 લેતાં,

$$p(-1) = 3(-1)^2 + (-1) - 1 = 1$$

તેથી $p(x) = 3x^2 + x - 1$ ને x + 1 વડે ભાગતાં મળતી શેષ અને બહુપદી p(x) નું x = -1 માટે મળતું મૂલ્ય સમાન છે.

ચાલો બીજાં ઉદાહરણ જોઇએ.

ઉદાહરણ 7 : બહુપદી $3x^4 - 4x^3 - 3x - 1$ ને x - 1 વડે ભાગો.

ઉકેલ: ભાગાકાર કરતાં,

$$3x^{3} - x^{2} - x - 4$$

$$x - 1 \overline{)3x^{4} - 4x^{3} - 3x - 1}$$

$$-3x^{4} + 3x^{3}$$

$$-x^{3} - 3x - 1$$

$$+ x^{2} + x^{2}$$

$$-x^{2} - 3x - 1$$

$$+ x^{2} + x$$

$$-4x - 1$$

$$-4x + 4$$

અહીં શેષ -5 છે. x-1 નું શૂન્ય 1 છે. તેથી જો p(x) માં x=1 મૂકીએ તો, $p(1)=3(1)^4-4(1)^3-3(1)-1$ =3-4-3-1=-5 અને તે શેષ પણ છે.

ઉદાહરણ $8: p(x) = x^3 + 1 + 1 + 1 + 1$ વડે ભાગતાં મળતી શેષ શોધો.

ઉકેલ: ભાગાકાર કરતાં,

અહીં શેષ 0 છે અને $p(x) = x^3 + 1$ છે. વળી x + 1 = 0 નું બીજ -1 છે. તેથી જો p(x) માં x = -1 મૂકીએ તો,

$$p(-1) = (-1)^3 + 1$$
$$= -1 + 1$$
$$= 0$$

શું ખરેખર ભાગાકાર કરતાં મળતી શેષ પણ 0 છે.

શું બહુપદીનો સુરેખ બહુપદી વડે ભાગાકાર કરીને શેષ મેળવવાની આ રીત સરળ નથી ? હવે આપણે વ્યાપક રીતે નીચેના પ્રમેય સ્વરૂપમાં આ સત્ય જોઇશું. વળી તમને આ પ્રમેયની સાબિતી આપીને દર્શાવીશું કે શા માટે આ પ્રમેય સત્ય છે.

સાબિતી : ધારો કે કોઈ બહુપદી p(x)ની ઘાત એક કે એક કરતાં વધારે છે. વળી, ધારો કે ભાજ્ય p(x)ને ભાજક (x-a) વડે ભાગવામાં આવે, તો ભાગફળ q(x) મળે છે અને શેષ r(x) છે. આથી,

$$p(x) = (x - a) q(x) + r(x)$$

ભાજક x-a ની ઘાત 1 છે અને તેથી શેષ r(x)ની ઘાત < ભાજક (x-a) ની ઘાત એટલે કે r(x) ની ઘાત 0 છે. એટલે કે r(x) એ શ્ન્યેતર અચળ અથવા r(x)=0.

તેથી x ની તમામ કિંમતો માટે r(x) = r (અંચળ).

$$\therefore p(x) = (x - a) q(x) + r.$$

આ નિત્યસમમાં x = a લેતાં,

$$p(a) = (a - a) q(a) + r$$
$$= r$$

 \therefore શેષ r એ p(a) છે. આથી આ પ્રમેય સિદ્ધ થાય છે.

ચાલો, આ પ્રમેયનો ઉપયોગ આપણે બીજા ઉદાહરણમાં કરીએ.

ઉદાહરણ 9 : જ્યારે $x^4 + x^3 - 2x^2 + x + 1$ ને x - 1 વડે ભાગવામાં આવે ત્યારે મળતી શેષ શોધો.

ઉકેલ: અહીં $p(x) = x^4 + x^3 - 2x^2 + x + 1$ અને x - 1 નું શૂન્ય 1 છે.

$$\therefore p(1) = (1)^4 + (1)^3 - 2(1)^2 + 1 + 1 = 2$$

તેથી શેષ પ્રમેય પ્રમાણે જ્યારે $x^4 + x^3 - 2x^2 + x + 1$ ને x - 1 વડે ભાગવામાં આવે ત્યારે મળતી શેષ 2 છે.

ઉદાહરણ 10 : બહુપદી $q(t) = 4t^3 + 4t^2 - t - 1$ એ 2t + 1 ની ગુણિત છે કે નહીં તે ચકાસો.

ઉકેલ: તમે જાણો છો કે જો q(t) ને 2t+1 વડે ભાગીએ અને શેષ 0 મળે તો q(t) એ 2t+1 ની ગુણિત થાય.

તેથી 2t + 1 = 0 લેતાં, $t = -\frac{1}{2}$.

$$q\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{2}\right)^3 + 4\left(-\frac{1}{2}\right)^2 - \left(-\frac{1}{2}\right) - 1 = -\frac{1}{2} + 1 + \frac{1}{2} - 1 = 0$$

તેથી q(t) ને 2t+1 વડે ભાગતાં મળતી શેષ = 0. તેથી 2t+1 એ બહુપદી q(t) નો એક અવયવ છે. એટલે કે q(t) એ 2t+1 નો ગુષ્ટિત છે.

સ્વાધ્યાય 2.3

1. બહુપદી $x^3 + 3x^2 + 3x + 1$ નો નીચેના ભાજક વડે ભાગાકાર કરો અને શેષ શોધો.

(i)
$$x + 1$$

(ii)
$$x - \frac{1}{2}$$

(iv)
$$x + \pi$$

(v)
$$5 + 2x$$

2. $x^3 - ax^2 + 6x - a + 7$ x - a + 6

2.5 બહુપદીઓનું અવયવીકરણ

ઉદાહરણ 10 પર દેષ્ટિપાત કરતાં જણાય છે કે શેષ = $q\left(-\frac{1}{2}\right)=0$. અહીં (2t+1) એ q(t) નો એક અવયવ છે. q(t)=(2t+1) g(t). આ પરિણામ નીચેના અવયવ પ્રમેય માટે ઉપયોગી છે.

અવયવ પ્રમેય : જો બહુપદી p(x) ની ઘાત એક કે એક કરતાં વધુ હોય અને a વાસ્તવિક સંખ્યા હોય તો,

(i)
$$\Re p(a) = 0$$
 હોય તો $x - a$ એ $p(x)$ નો એક અવયવ છે અને

(ii)
$$\Re x - a \Rightarrow p(x)$$
 -l અવયવ હોય તો $p(a) = 0$.

સાબિતી : શેષ પ્રમેય પરથી, આપણે જાણીએ છીએ કે p(x)=(x-a) q(x)+p(a).

(i) જો
$$p(a) = 0$$
 તો $p(x) = (x - a) q(x)$. આથી $x - a$ એ $p(x)$ નો અવયવ છે.

(ii) વળી
$$x-a$$
 એ $p(x)$ નો અવયવ હોય તો કોઇક બહુપદી $g(x)$ માટે $p(x)=(x-a)\ g(x)$

હવે,
$$p(a) = (a - a) g(a) = 0$$
.

ઉદાહરણ 11 : x + 2 એ $x^3 + 3x^2 + 5x + 6$ અને 2x + 4 નો અવયવ છે કે નહી તે ચકાસો.

ઉકેલ : x + 2 નું શૂન્ય -2 છે.

ધારો કે,
$$p(x) = x^3 + 3x^2 + 5x + 6$$
 અને $s(x) = 2x + 4$

$$p(-2) = (-2)^3 + 3(-2)^2 + 5(-2) + 6$$

$$= -8 + 12 - 10 + 6$$

$$= 0$$

તેથી અવયવ પ્રમેય પરથી x + 2 એ $x^3 + 3x^2 + 5x + 6$ નો અવયવ છે.

તેથી x+2 એ 2x+4 નો અવયવ છે. હકીકતમાં તમે અવયવ પ્રમેયનો ઉપયોગ કર્યા વગર પણ આ ચકાસી શકો છો, કારણ કે, 2x+4=2(x+2).

ઉદાહરણ 12 : જો x-1 એ $4x^3+3x^2-4x+k$ નો અવયવ હોય તો k ની કિંમત શોધો.

ઉકેલ :
$$x-1$$
 એ $p(x)=4x^3+3x^2-4x+k$ નો અવયવ છે.

$$p(1) = 0$$

હવે
$$p(1) = 4(1)^3 + 3(1)^2 - 4(1) + k$$

$$4 + 3 - 4 + k = 0$$

$$k = -3$$

હવે આપશે અવયવ પ્રમેયના ઉપયોગથી દ્વિઘાત અને ત્રિઘાત બહુપદીઓના અવયવ પાડવાનું શીખીશું.

તમે દ્વિઘાત બહુપદી $x^2 + lx + m$ ના અવયવો કેવી રીતે પાડવા તે જાણો છો. તેમાં મધ્યમ પદ lx ને વિભાજિત કરીને તમે અવયવો મેળવેલ. ab = m બને તે રીતે મધ્યમપદ lx = ax + bx તરીકે વિભાજિત થાય. પછી $x^2 + lx + m = (x + a) (x + b)$. ચાલો આપણે દ્વિઘાત બહુપદી $ax^2 + bx + c$, જયાં $a \neq 0$ અને a, b, c અચળ છે, ના અવયવો પાડવાનો પ્રયત્ન કરીએ.

મધ્યમ પદને વિભાજિત કરીને બહુપદી $ax^2 + bx + c$ ના અવયવો મેળવવાની રીત આ પ્રમાણે છે :

ધારો કે તેના અવયવો (px + q) અને (rx + s) છે.

$$ax^2 + bx + c = (px + q) (rx + s) = pr x^2 + (ps + qr) x + qs$$

 x^2 ના સહગુણકોને સરખાવતાં, a = pr.

તે જ પ્રમાણે x ના સહગુણકોને સરખાવતાં b=ps+qr અને અચળ પદોને સરખાવતાં c=qs.

આ આપણને બતાવે છે કે b એ ps અને qr નો સરવાળો છે. તેમનો ગુણાકાર (ps)(qr)=(pr)(qs)=ac.

તેથી $ax^2 + bx + c$ ના અવયવો પાડવા માટે આપણે b ને જેમનો ગુણાકાર ac થાય એવી બે સંખ્યાના સરવાળા તરીકે લખવું પડે. નીચેના ઉદાહરણ 13 પરથી આ વાત સરળતાથી સમજાશે.

ઉદાહરણ $13:6x^2+17x+5$ ના અવયવો મધ્યમ પદને વિભાજિત કરીને અને અવયવ પ્રમેયનો ઉપયોગ કરીને મેળવો. ઉકેલ $1:(\mu$ ધ્યમપદને વિભાજિત કરવાની રીત): આપણે એવી બે સંખ્યા p અને q શોધીએ કે જેથી p+q=17 અને $pq=6\times 5=30$ થાય. હવે આપણે અવયવો મેળવીએ.

ચાલો આપણે 30 ના અવયવોની જોડનો વિચાર કરીએ. તેમાંની કેટલીક 1 અને 30, 2 અને 15, 3 અને 10, 5 અને 6 આ બધી જોડમાંથી 2 અને 15 ની જોડ આપણને p+q=17 આપે છે.

તેથી
$$6x^2 + 17x + 5 = 6x^2 + (2 + 15)x + 5$$

= $6x^2 + 2x + 15x + 5$
= $2x(3x + 1) + 5(3x + 1)$
= $(3x + 1)(2x + 5)$

ઉકેલ 2 : અવયવ પ્રમેયની મદદથી $6x^2 + 17x + 5 = 6\left(x^2 + \frac{17}{6}x + \frac{5}{6}\right) = 6p(x)$ કહો. જો a અને b, p(x) નાં

શૂન્ય હોય તો, $6x^2 + 17x + 5 = 6(x - a)(x - b)$. તેથી, $ab = \frac{5}{6}$. ચાલો a અને b ની કેટલીક સંભવિત કિંમતો જોઇએ.

$$\pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{5}{3}, \pm \frac{5}{2}, \pm 1. \quad હવે, \quad p\left(\frac{1}{2}\right) = \frac{1}{4} + \frac{17}{6}\left(\frac{1}{2}\right) + \frac{5}{6} \neq 0. \quad પરંતુ \quad p\left(\frac{-1}{3}\right) = \left(\frac{-1}{3}\right)^2 + \frac{17}{6}\left(\frac{-1}{3}\right) + \frac{5}{6} = 0.$$
 તેથી $\left(x + \frac{1}{3}\right)$ એ $p(x)$ નો અવયવ છે.

તે જ પ્રમાણે પ્રયત્નો દ્વારા $\left(x+\frac{5}{2}\right)$ એ p(x) નો અવયવ છે તે નક્કી થઇ શકે.

$$6x^{2} + 17x + 5 = 6\left(x + \frac{1}{3}\right)\left(x + \frac{5}{2}\right)$$
$$= 6\left(\frac{3x+1}{3}\right)\left(\frac{2x+5}{2}\right)$$
$$= (3x+1)(2x+5)$$

ઉપરના ઉદાહરણમાં મધ્યમ પદના ભાગ પાડવાની રીત વધુ સરળ લાગે છે. છતાંયે ચાલો બીજું ઉદાહરણ જોઇએ.

ઉદાહરણ 14 : અવયવ પ્રમેયનો ઉપયોગ કરીને $y^2 - 5y + 6$ ના અવયવ પાડો.

ઉંકેલ : ધારો કે $p(y) = y^2 - 5y + 6$. હવે જો p(y) = (y - a) (y - b), તો સ્પષ્ટ છે કે ab અચળ પદ છે. તેથી ab = 6. તેથી p(y) ના અવયવો શોધવા માટે 6 ના અવયવોનો વિચાર કરીએ.

6 ના અવયવો : 1, 2, 3 અને 6

હવે,
$$p(2) = 2^2 - (5 \times 2) + 6 = 0$$

તેથી, y - 2 એ p(y) નો અવયવ છે.

આ ઉપરાંત,
$$p(3) = 3^2 - (5 \times 3) + 6 = 0$$

તેથી, y - 3 એ પણ $y^2 - 5y + 6$ નો અવયવ છે.

તેથી,
$$y^2 - 5y + 6 = (y - 2)(y - 3)$$

આપણે નોંધીએ છીએ કે $y^2 - 5y + 6$ ના મધ્યમ પદ -5y ને વિભાજિત કરીને પણ અવયવો મેળવી શકીએ.

ચાલો, ત્રિઘાત બહુપદીના અવયવો પાડવાનું વિચારીએ. અહીં ભાગ પાડવાની રીતનો ઉપયોગ એ શક્ય નથી. આપણે ઓછામાં ઓછો એક અવયવ નક્કી કરીએ તો જ રીત સરળ બને છે. એ તમે નીચેના ઉદાહરણમાં જોશો.

ઉદાહરણ 15: અવયવ પાડો : $x^3 - 23x^2 + 142x - 120$.

ઉકેલ : ધારો કે,
$$p(x) = x^3 - 23x^2 + 142x - 120$$

હવે આપણે -120 ના બધા જ અવયવો વિચારતાં તેમાંનાં કેટલાંક ± 1 , ± 2 , ± 3 , ± 4 , ± 5 , ± 6 , ± 8 , ± 10 , ± 15 , ± 20 , ± 24 , ± 30 , ± 60 છે.

આપણે પ્રયત્નો દ્વારા જાણી શકીએ કે p(1)=0. તેથી x-1 એ p(x) નો અવયવ છે.

હવે,
$$x^3 - 23x^2 + 142x - 120 = x^3 - x^2 - 22x^2 + 22x + 120x - 120$$

$$= x^2(x-1) - 22x(x-1) + 120(x-1)$$

$$= (x-1)(x^2 - 22x + 120)$$
[(x-1) સામાન્ય લેતાં]

આપણે p(x) ને x-1 વડે ભાગીને પણ ઉપરોક્ત જવાબ મેળવી શકીએ.

હવે, $x^2 - 22x + 120$ ના અવયવો મધ્યમ પદને વિભાજીત કરીને અથવા અવયવ પ્રમેયનો ઉપયોગ કરીને મેળવી શકીએ. મધ્યમ પદને વિભાજીત કરતાં,

$$x^2 - 22x + 120 = x^2 - 12x - 10x + 120$$

$$= x(x - 12) - 10(x - 12)$$

$$= (x - 12)(x - 10)$$
તેથી, $x^3 - 23x^2 - 142x - 120 = (x - 1)(x - 10)(x - 12)$

સ્વાધ્યાય 2.4

1. નીચે આપેલ બહુપદીમાંથી કઈ બહુપદીનો અવયવ (x+1) છે તે નક્કી કરો :

(i)
$$x^3 + x^2 + x + 1$$

(ii)
$$x^4 + x^3 + x^2 + x + 1$$

(iii)
$$x^4 + 3x^3 + 3x^2 + x + 1$$

(iv)
$$x^3 - x^2 - (2 + \sqrt{2}) x + \sqrt{2}$$

2. આપેલ બહુપદી g(x) એ આપેલ બહુપદી p(x) નો એક અવયવ છે કે નહિ તે અવયવ પ્રમેય પરથી નક્કી કરો.

(i)
$$p(x) = 2x^3 + x^2 - 2x - 1$$
, $g(x) = x + 1$

(ii)
$$p(x) = x^3 + 3x^2 + 3x + 1$$
, $g(x) = x + 2$

(iii)
$$p(x) = x^3 - 4x^2 + x + 6$$
, $g(x) = x - 3$

3. નીચેના દરેકમાં જો x-1 એ p(x) નો એક અવયવ હોય તો k ની કિંમત શોધો.

(i)
$$p(x) = x^2 + x + k$$

(ii)
$$p(x) = 2x^2 + kx + \sqrt{2}$$

(iii)
$$p(x) = kx^2 - \sqrt{2}x + 1$$

(iv)
$$p(x) = kx^2 - 3x + k$$

4. અવયવ પાડો :

(i)
$$12x^2 - 7x + 1$$

(ii)
$$2x^2 + 7x + 3$$

(iii)
$$6x^2 + 5x - 6$$

(iv)
$$3x^2 - x - 4$$

5. અવયવ પાડો :

(i)
$$x^3 - 2x^2 - x + 2$$

(ii)
$$x^3 - 3x^2 - 9x - 5$$

(iii)
$$x^3 + 13x^2 + 32x + 20$$

(iv)
$$2y^3 + y^2 - 2y - 1$$

2.6 બૈજિક નિત્યસમો

અગાઉના વર્ગોના અભ્યાસ પરથી તમને યાદ હશે કે **બૈજિક નિત્યસમો** એ આપેલ ચલની તમામ કિંમતો માટે સત્ય બૈજિક સમીકરણો જ છે. નીચેના તમામ નિત્યસમો તમે અગાઉના વર્ગોમાં શીખ્યા છે.

नित्यसम I : $(x + y)^2 = x^2 + 2xy + y^2$

नित्यसम II : $(x - y)^2 = x^2 - 2xy + y^2$

नित्यसम III : $x^2 - y^2 = (x + y)(x - y)$

નિત્યસમ IV : $(x + a)(x + b) = x^2 + (a + b)x + ab$

બૈજિક પદાવલીઓના અવયવો પાડવા માટે તમે કેટલાક બૈજિક નિત્યસમોનો ઉપયોગ કરેલ છે. તમે ગણતરીઓ કરવામાં તેનો ઉપયોગ જોઇ શકો છો.

ઉદાહરણ 16 : યોગ્ય નિત્યસમનો યોગ્ય ઉપયોગ કરીને નીચેના ગુણાકાર મેળવો.

(i)
$$(x + 3) (x + 3)$$

(ii)
$$(x-3)(x+5)$$

ઉકેલ : (i) અહીં નિત્યસમ I નો ઉપયોગ કરતાં : $(x+y)^2 = x^2 + 2xy + y^2$

$$y = 3$$
 Heati, $(x + 3)(x + 3) = (x + 3)^2 = x^2 + 2(x)(3) + (3)^2$
= $x^2 + 6x + 9$

(ii) ઉપરના નિત્યસમ IV નો ઉપયોગ કરતાં, એટલે કે : $(x + a)(x + b) = x^2 + (a + b)x + ab$.

$$(x-3)(x+5) = x^2 + (-3+5)x + (-3)(5)$$
$$= x^2 + 2x - 15$$

ઉદાહરણ 17 : સીધો ગુણાકાર કર્યા સિવાય 105 🗙 106 ની કિંમત મેળવો.

ઉંકેલ :
$$105 \times 106 = (100 + 5) \times (100 + 6)$$
$$= (100)^2 + (5 + 6)(100) + (5 \times 6), (નિત્યસમ IV નો ઉપયોગ કરતાં)$$
$$= 10000 + 1100 + 30$$
$$= 11130$$

ઉપરોક્ત દર્શાવેલ નિત્યસમોનો ઉપયોગ તમે પદાવલીઓનો ગુણાકાર કરવામાં કરેલ છે. આ નિત્યસમો બૈજિક પદાવલીઓના અવયવો પાડવામાં પણ ઉપયોગી છે. તમે હવે પછીનાં ઉદાહરણોમાં આ હકીકત જોઇ શકશો.

ઉદાહરણ 18 : અવયવ પાડો.

(i)
$$49a^2 + 70ab + 25b^2$$
 (ii) $\frac{25}{4}x^2 - \frac{y^2}{9}$

ઉકેલ : (i) અહીં $49a^2 = (7a)^2$, $25b^2 = (5b)^2$, 70ab = 2(7a) (5b)

આપેલી પદાવલીને $x^2 + 2xy + y^2$, સાથે સરખાવતાં x = 7a અને y = 5b.

નિત્યસમ I નો ઉપયોગ કરતાં,

$$49a^2 + 70ab + 25b^2 = (7a + 5b)^2 = (7a + 5b)(7a + 5b)$$

(ii)
$$\frac{25}{4}x^2 - \frac{y^2}{9} = \left(\frac{5}{2}x\right)^2 - \left(\frac{y}{3}\right)^2$$

હવે નિત્યસમ III સાથે સરખાવતાં,

$$\frac{25}{4}x^2 - \frac{y^2}{9} = \left(\frac{5}{2}x\right)^2 - \left(\frac{y}{3}\right)^2 = \left(\frac{5}{2}x + \frac{y}{3}\right)\left(\frac{5}{2}x - \frac{y}{3}\right)$$

અત્યાર સુધી આપણે તમામ ચાર નિત્યસમોનો ઉપયોગ દ્વિઘાત બહુપદીઓના ગુણાકાર કરવામાં કરેલ છે. ચાલો, આપણે નિત્યસમ I ને ત્રિપદી x+y+z સુધી વિસ્તારીએ. આપણે $(x+y+z)^2$ નું વિસ્તરણ નિત્યસમ I નો ઉપયોગ કરીને મેળવીએ.

$$x + y = t$$
 ધારતાં,
$$(x + y + z)^2 = (t + z)^2$$
 = $t^2 + 2tz + t^2$ (નિત્યસમ I નો ઉપયોગ કરતાં)
$$= (x + y)^2 + 2(x + y)z + z^2$$
 (ત્તિયસમ I નો ઉપયોગ કરતાં)
$$= x^2 + 2xy + y^2 + 2xz + 2yz + z^2$$
 (નિત્યસમ I નો ઉપયોગ કરતાં)
$$= x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$
 (પદોની પુનઃગોઠવણી કરતાં) તેથી આપણને નીચેનં નિત્યસમ મળશે.

નિત્યસમ V : $(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$

નોંધ : જમણી બાજુની બહુપદી એ ડાબી બાજુની બહુપદીનું વિસ્તરણ છે. યાદ રાખો કે $(x+y+z)^2$ એ ત્રણ વર્ગવાળા પદ અને ત્રણ ગુણાકારના પદ ધરાવે છે.

ઉદાહરણ 19 : $(3a + 4b + 5c)^2$ નું વિસ્તરણ કરો.

6કેલ : આપેલ પદાવલિ $(x+y+z)^2$ સાથે સરખાતાં,

$$x = 3a, y = 4b \text{ eq}$$
 $z = 5c.$

નિત્યસમ V નો ઉપયોગ કરતાં,

$$(3a+4b+5c)^2 = (3a)^2 + (4b)^2 + (5c)^2 + 2(3a)(4b) + 2(4b)(5c) + 2(5c)(3a)$$
$$= 9a^2 + 16b^2 + 25c^2 + 24ab + 40bc + 30ac$$

ઉદાહરણ 20 : $(4a - 2b - 3c)^2$ નું વિસ્તરણ કરો.

ઉકેલ : નિત્યસમ V નો ઉપયોગ કરતાં,

$$(4a-2b-3c)^2 = [4a + (-2b) + (-3c)]^2$$

$$= (4a)^2 + (-2b)^2 + (-3c)^2 + 2(4a)(-2b) + 2(-2b)(-3c) + 2(-3c)(4a)$$

$$= 16a^2 + 4b^2 + 9c^2 - 16ab + 12bc - 24ac$$

ઉદાહરણ 21 : અવયવ પાડો : $4x^2 + y^2 + z^2 - 4xy - 2yz + 4xz$.

ઉંકેલ :
$$4x^2 + y^2 + z^2 - 4xy - 2yz + 4xz = (2x)^2 + (-y)^2 + (z)^2 + 2(2x)(-y) + 2(-y)(z) + 2(2x)(z)$$
$$= [2x + (-y) + z]^2 \qquad (િનત્યસમ V નો ઉપયોગ કરતાં,)$$
$$= (2x - y + z)^2 = (2x - y + z)(2x - y + z)$$

અત્યાર સુધી આપણે બે ઘાતવાળા નિત્યસમો જોયા છે. ચાલો આપણે $(x+y)^3$ નો ઉકેલ મેળવવા માટે નિત્યસમ I નો ઉપયોગ કરીએ.

$$(x + y)^{3} = (x + y) (x + y)^{2}$$

$$= (x + y)(x^{2} + 2xy + y^{2})$$

$$= x(x^{2} + 2xy + y^{2}) + y(x^{2} + 2xy + y^{2})$$

$$= x^{3} + 2x^{2}y + xy^{2} + x^{2}y + 2xy^{2} + y^{3}$$

$$= x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$= x^{3} + y^{3} + 3xy(x + y)$$

આમ આપણને નીચેનું નિત્યસમ મળશે :

નિત્યસમ VI :
$$(x + y)^3 = x^3 + y^3 + 3xy (x + y)$$

નિત્યસમ VI માં y ના બદલે -y મૂકતાં,

િત્યસમ VII:
$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

= $x^3 - 3x^2y + 3xy^2 - y^3$

ઉદાહરણ 22 : નીચે આપેલા ઘનને વિસ્તૃત સ્વરૂપમાં લખો.

(i)
$$(3a + 4b)^3$$
 (ii) $(5p - 3q)^3$

ઉંકેલ : (i) આપેલ પદાવલીને $(x + y)^3$ સાથે સરખાવતાં, x = 3a અને y = 4b.

તેથી નિત્યસમ VI નો ઉપયોગ કરતાં,

$$(3a+4b)^3 = (3a)^3 + (4b)^3 + 3(3a)(4b)(3a+4b)$$
$$= 27a^3 + 64b^3 + 108a^2b + 144ab^2$$

(ii) આપેલી પદાવલીને $(x-y)^3$ સાથે સરખાવતાં,

$$x = 5p$$
, $y = 3q$.

તેથી નિત્યસમ VII નો ઉપયોગ કરતાં,

$$(5p - 3q)^3 = (5p)^3 - (3q)^3 - 3(5p)(3q)(5p - 3q)$$
$$= 125p^3 - 27q^3 - 225p^2q + 135pq^2$$

ઉદાહરણ 23 : યોગ્ય નિત્યસમનો ઉપયોગ કરીને કિંમત શોધો.

(i) $(104)^3$ (ii) $(999)^3$

ઉકેલ : (i)
$$(104)^3 = (100 + 4)^3$$

= $(100)^3 + (4)^3 + 3(100)(4)(100 + 4)$ (નિત્યસમ VI નો ઉપયોગ કરતાં)
= $1000000 + 64 + 124800$
= 1124864

(ii)
$$(999)^3 = (1000 - 1)^3$$

= $(1000)^3 - (1)^3 - 3(1000)(1)(1000 - 1)$ (નિત્યસમ VII નો ઉપયોગ કરતાં)
= $1000000000 - 1 - 2997000$
= 997002999

ઉદાહરણ 24 : અવયવ પાડો : $8x^3 + 27y^3 + 36x^2y + 54xy^2$

ઉકેલ: આ પદાવલીને નીચે પ્રમાણે પણ લખી શકાય.

$$(2x)^3 + (3y)^3 + 3(4x^2)(3y) + 3(2x)(9y^2)$$

$$= (2x)^3 + (3y)^3 + 3(2x)^2(3y) + 3(2x)(3y)^2$$

$$= (2x + 3y)^3 \qquad (િનત્યસમ VI નો ઉપયોગ કરતાં)$$

$$= (2x + 3y)(2x + 3y)(2x + 3y)$$

હવે, $(x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$ નો વિચાર કરો.

વિસ્તરણ કરતાં.

$$x(x^2 + y^2 + z^2 - xy - yz - zx) + y(x^2 + y^2 + z^2 - xy - yz - zx) + z(x^2 + y^2 + z^2 - xy - yz - zx)$$

$$= x^3 + xy^2 + xz^2 - x^2y - xyz - zx^2 + x^2y + y^3 + yz^2 - xy^2 - y^2z - xyz + x^2z + y^2z + z^3 - xyz - yz^2 - xz^2$$

$$= x^3 + y^3 + z^3 - 3xyz$$
(સાફુંરૂપ આપતાં)

તેથી, આપણને નીચેનું નિત્યસમ મળશે.

નિત્યસમ VIII:
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$$

ઉદાહરણ 25 : અવયવ પાડો : $8x^3 + y^3 + 27z^3 - 18xyz$

634:
$$8x^3 + y^3 + 27z^3 - 18xyz = (2x)^3 + y^3 + (3z)^3 - 3(2x)(y)(3z)$$

$$= (2x + y + 3z)[(2x)^2 + y^2 + (3z)^2 - (2x)(y) - (y)(3z) - (2x)(3z)]$$

$$= (2x + y + 3z)(4x^2 + y^2 + 9z^2 - 2xy - 3yz - 6xz)$$

સ્વાધ્યાય: 2.5

1. યોગ્ય નિત્યસમનો ઉપયોગ કરીને નીચેના ગુણાકાર મેળવો :

(i)
$$(x+4)(x+10)$$

(ii)
$$(x + 8) (x - 10)$$

(iii)
$$(3x+4)(3x-5)$$

(iv)
$$\left(y^2 + \frac{3}{2}\right) \left(y^2 - \frac{3}{2}\right)$$
 (v) $(3 - 2x)(3 + 2x)$

(v)
$$(3-2x)(3+2x)$$

2. સીધો ગુણાકાર કર્યા સિવાય નિત્યસમોનો ઉપયોગ કરીને નીચેના ગુણાકારની કિંમતો મેળવો :

(i)
$$103 \times 107$$

(ii)
$$95 \times 96$$

(iii)
$$104 \times 96$$

3. યોગ્ય નિત્યસમનો ઉપયોગ કરી અવયવ પાડો :

(i)
$$9x^2 + 6xy + y^2$$

(ii)
$$4y^2 - 4y + 1$$

(iii)
$$x^2 - \frac{y^2}{100}$$

4. યોગ્ય નિત્યસમનો ઉપયોગ કરીને વિસ્તરણ કરો :

(i)
$$(x + 2y + 4z)^2$$

(ii)
$$(2x - y + z)^2$$

(iii)
$$(-2x + 3y + 2z)^2$$

(iv)
$$(3a - 7b - c)^2$$

(iv)
$$(3a-7b-c)^2$$
 (v) $(-2x+5y-3z)^2$

(vi)
$$\left[\frac{1}{4}a - \frac{1}{2}b + 1 \right]^2$$

5. અવયવ પાડો :

(i)
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$

(ii)
$$2x^2 + y^2 + 8z^2 - 2\sqrt{2} xy + 4\sqrt{2} yz - 8xz$$

6. નીચેના ઘનનું વિસ્તરણ કરો :

(i)
$$(2x+1)^3$$

(i)
$$(2x+1)^3$$
 (ii) $(2a-3b)^3$

(iii)
$$\left[\frac{3}{2}x+1\right]$$

(iii)
$$\left[\frac{3}{2}x+1\right]^3$$
 (iv) $\left[x-\frac{2}{3}y\right]^3$

7. યોગ્ય નિત્યસમનો ઉપયોગ કરીને કિંમત મેળવો :

$$(i)(99)^3$$

$$(ii)(102)^3$$

$$(iii)(998)^3$$

8. નીચેના પૈકી પ્રત્યેકના અવયવ પાડો :

(i)
$$8a^3 + b^3 + 12a^2b + 6ab^2$$

(ii)
$$8a^3 - b^3 - 12a^2b + 6ab^2$$

(iii)
$$27 - 125a^3 - 135a + 225a^2$$

(iv)
$$64a^3 - 27b^3 - 144a^2b + 108ab^2$$

(v)
$$27 p^3 - \frac{1}{216} - \frac{9}{2} p^2 + \frac{1}{4} p$$

9. ચકાસો : (i)
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$
 (ii) $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$

(ii)
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

10. નીચેના પૈકી દરેકના અવયવ પાડો :

(i)
$$27y^3 + 125z^3$$

(ii)
$$64m^3 - 343n^3$$

[**સૂચન** : પ્રશ્ન 9 જુઓ]

11. અવયવ પાડો :
$$27x^3 + y^3 + z^3 - 9xyz$$

12. ચકાસો
$$x^3 + y^3 + z^3 - 3xyz = \frac{1}{2} (x + y + z) [(x - y)^2 + (y - z)^2 + (z - x)^2]$$

13. જો
$$x + y + z = 0$$
 તો સાબિત કરો કે $x^3 + y^3 + z^3 = 3xyz$.

14. ઘનનું મૂલ્ય મેળવ્યા સિવાય નીચેના દરેકની કિંમતો મેળવો :

(i)
$$(-12)^3 + (7)^3 + (5)^3$$

(ii)
$$(28)^3 + (-15)^3 + (-13)^3$$

15. નીચે લંબચોરસનાં ક્ષેત્રફળ દર્શાવેલ છે તેમની સંભવિત લંબાઇ અને પહોળાઇ શોધો :

ક્ષેત્રફળ : 25
$$a^2$$
 – 35 a + 12

ક્ષેત્રફળ :
$$35y^2 + 13y - 12$$

(i)

(ii)

16. નીચે લંબઘનનાં ઘનફળ દર્શાવેલ છે. તેમનાં શક્ય પરિમાણ શોધો :

ઘનફળ :
$$3x^2 - 12x$$

(i)

(ii)

2.7 સારાંશ

આ પ્રકરણમાં તમે નીચેના મુદ્દાઓ શીખ્યા :

એક ચલ x વાળી બૈજિક અભિવ્યક્તિને *બહુપદી* p(x) સ્વરૂપમાં નીચે પ્રમાણે લખી શકાય

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x^2 + a_1 x + a_0$$

જ્યાં $a_0, a_1, a_2, \ldots, a_n$ અચળ છે અને $a_n \neq 0$.

 $a_0, a_1, a_2, \ldots, a_n$ એ અનુક્રમે x^0, x, x^2, \ldots, x^n ના સહગુશકો છે અને બહુપદીની ઘાત n છે. $a_n \neq 0$ અને $a_n x^n$, $a_{n-1} x^{n-1}$, ..., a_0 ને બહુપદી p(x)નાં uદો કહે છે.

- 2. એક પદવાળી બહુપદીને એકપદી કહે છે.
- 3. બે પદવાળી બહુપદીને દ્વિપદી કહે છે.
- 4. ત્રણ પદવાળી બહુપદીને ત્રિપદી કહે છે.
- 5. જે બહુપદીની ઘાત I હોય તેને સુરેખ બહુપદી કહે છે.
- 6. જે બહુપદીની ઘાત 2 હોય તેને દ્વિઘાત બહુપદી કહે છે.
- 7. જે બહુપદીની ઘાત 3 હોય તેને ત્રિઘાત બહુપદી કહે છે.
- 8. જો p(a) = 0 હોય તો વાસ્તવિક સંખ્યા 'a' ને બહુપદીનું n્રૂન્ય કહે છે. વળી, 'a' ને સમીકરણ p(x)=0 નું બીજ પણ કહે છે.
- 9. દરેક એક ચલવાળી સુરેખ બહુપદીને અનન્ય શૂન્ય હોય છે. શૂન્ય સિવાયની અચળ બહુપદીને શૂન્ય હોતું નથી અને દરેક વાસ્તવિક સંખ્યા એ શૂન્ય બહુપદીનું શૂન્ય હોય છે.
- **10. શેષ પ્રમેય :** જો બહુપદી p(x) ની ઘાત 1 કે 1 કરતાં વધુ હોય અને તેને સુરેખ બહુપદી x-a વડે ભાગવામાં આવે તો શેષ p(a) આવે.
- 11. અવયવ પ્રમેય : જો p(a)=0 હોય તો x-a એ p(x) નો અવયવ છે અને જો x-a એ p(x) નો અવયવ હોય તો p(a)=0.
- **12.** $(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$
- 13. $(x + y)^3 = x^3 + y^3 + 3xy(x + y)$
- **14.** $(x y)^3 = x^3 y^3 3xy(x y)$
- **15.** $x^3 + y^3 + z^3 3xyz = (x + y + z)(x^2 + y^2 + z^2 xy yz zx)$