Deep Learning

Architectures and Methods:

Attention Models

Thanks to John Canny, Ian Goodfellow, Yoshua Bengio, Aaron Courville, Efstratios Gavves, Kirill Gavrilyuk, Berkay Kicanaoglu, and Patrick Putzky and many others for making their materials publically available.

The present slides are mainly based on slides from John Canny

Early attention models

Larochelle and Hinton, 2010, "Learning to combine foveal glimpses with a third-order Boltzmann machine"

Misha Denil et al, 2011, "Learning where to Attend with Deep Architectures for Image Tracking"

2014: Neural Translation Breakthroughs

- Devlin et al, ACL'2014
- Cho et al EMNLP'2014
- Bahdanau, Cho & Bengio, arXiv sept. 2014
- Jean, Cho, Memisevic & Bengio, arXiv dec. 2014
- Sutskever et al NIPS'2014

Other Applications

- Ba et al 2014, Visual attention for recognition
- Mnih et al 2014, Visual attention for recognition
- Chorowski et al, 2014, Speech recognition
- Graves et al 2014, Neural Turing machines
- Yao et al 2015, Video description generation
- Vinyals et al, 2015, Conversational Agents
- Xu et al 2015, Image caption generation
- Xu et al 2015, Visual Question Answering

Soft vs Hard Attention Models

Hard attention:

- Attend to a single input location.
- Can't use gradient descent.
- Need reinforcement learning.

Soft attention:

- Compute a weighted combination (attention) over some inputs using an attention network.
- Can use backpropagation to train end-to-end.

Attention for Recognition (Ba et al 2014)

- RNN-based model.
- Hard attention.
- Required reinforcement learning.

Attention for Recognition (Mnih et al 2014)

• Glimpses are retinal (graded resolution) images

Attention for Recognition (Mnih et al 2014)

- Glimpse trace on some digit images:
- Green line shows trajectory, other images are the glimpses themselves.

"I love coffee" -> "Me gusta el café"

many to many

Distribution over input words

"I love coffee" -> "Me gusta el café"

many to many

"I love coffee" -> "Me gusta el café"

many to many

"I love coffee" -> "Me gusta el café"

many to many

"I love coffee" -> "Me gusta el café"

many to many

From Y. Bengio CVPR 2015 Tutorial

From Y. Bengio CVPR 2015 Tutorial

From Y. Bengio CVPR 2015 Tutorial

From Y. Bengio CVPR 2015 Tutorial

Context vector (input to decoder):

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

Mixture weights:

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

Alignment score (how well do input words near j match output words at position i):

$$e_{ij} = a(s_{i-1}, h_j)$$

Reached State of the art in one year:

(a) English→French (WMT-14)

	NMT(A)	Google	P-SMT		
NMT	32.68	30.6*			
+Cand	33.28		27.020		
+UNK	33.99	32.7°	37.03*		
+Ens	36.71	36.9°			

(b) English→German (WMT-15)

(c) English→Czech (WMT-15)

Model Note		Model	Note		
24.8	Neural MT	18.3	Neural MT		
24.0	U.Edinburgh, Syntactic SMT	18.2	JHU, SMT+LM+OSM+Sparse		
23.6	LIMSI/KIT	17.6	CU, Phrase SMT		
22.8	U.Edinburgh, Phrase SMT	17.4	U.Edinburgh, Phrase SMT		
22.7	KIT, Phrase SMT	16.1	U.Edinburgh, Syntactic SMT		

Yoshua Bengio, NIPS RAM workshop 2015

Luong, Pham and Manning's Translation System (2015):

Luong, Pham and Manning 2015

Stacked LSTM (c.f. bidirectional flat encoder in Bahdanau et al):

Effective Approaches to Attention-based Neural Machine Translation Minh-Thang Luong, Hieu Pham, Christopher D. Manning, EMNLP 15

Global Attention Model

Global attention model is similar but simpler than Badanau's:

Different word matching functions were used

Effective Approaches to Attention-based Neural Machine Translation Minh-Thang Luong Hieu Pham Christopher D. Manning, EMNLP 15

Local Attention Model

• Compute a best aligned position p_t first

 Then compute a context vector centered at that position

Effective Approaches to Attention-based Neural Machine Translation Minh-Thang Luong Hieu Pham Christopher D. Manning, EMNLP 15

Results

System		BLEU	
Winning WMT'14 system - phrase-based + large LM (Buck et al., 2014)		20.7	
Existing NMT systems			
RNNsearch (Jean et al., 2015)		16.5	
RNNsearch + unk replace (Jean et al., 2015)		19.0	
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015)		21.6	
Our NMT systems			
Base	10.6	11.3	
Base + reverse		12.6 (+1.3)	
Base + reverse + dropout		14.0 (+1.4)	
Base + reverse + dropout + global attention (location)		16.8 (+2.8)	
Base + reverse + dropout + global attention (location) + feed input		18.1 (+1.3)	
Base + reverse + dropout + local-p attention (general) + feed input	5.9	19.0 (+0.9)	
se + reverse + dropout + local-p attention (general) + feed input + unk replace		20.9 (+1.9)	
Ensemble 8 models + unk replace		23.0 (+2.1)	

Local *and* global models

Effective Approaches to Attention-based Neural Machine Translation Minh-Thang Luong Hieu Pham Christopher D. Manning, EMNLP 15

Recall: RNN for Captioning

RNN only looks Distribution at whole image, over vocab once d2 d1 CNN h2 h1 Image: Hidden What if the RNN Features: HxWx3 state: H looks at different D y1 y2 parts of the image at each First Second timestep? word word

Soft Attention for Captioning

Soft vs Hard Attention

Soft attention:

Summarize ALL locations $z = p_a a + p_b b + p_c c + p_d d$

Derivative dz/dp is nice! Train with gradient descent

Context vector z (D-dimensional)

Hard attention:

Sample ONE location according to p, z = that vector

With argmax, dz/dp is zero almost everywhere ...
Can't use gradient descent; need reinforcement learning

 $p_a + p_b + p_c + p_c = 1$

with Visual Attention", ICML 2015

Soft Attention for Captioning

Soft Attention for Captioning

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Soft Attention for Video

Soft Attention for Video

The attention model:

"Describing Videos by Exploiting Temporal Structure," Li Yao et al, arXiv 2015.

Soft Attention for Video

Table 1. Performance of different variants of the model on the Youtube2Text and DVS datasets.

	Youtube2Text			DVS				
Model	BLEU	METEOR	CIDEr	Perplexity	BLEU	METEOR	CIDEr	Perplexity
Enc-Dec (Basic)	0.3869	0.2868	0.4478	33.09	0.003	0.044	0.044	88.28
+ Local (3-D CNN)	0.3875	0.2832	0.5087	33,42	0.004	0.051	0.050	84.41
+ Global (Temporal Attention)	0.4028	0.2900	0.4801	27.89	0.003	0.040	0.047	66.63
+ Local + Global	0.4192	0.2960	0.5167	27.55	0.007	0.057	0.061	65.44
Venugopalan et al. [41]	0.3119	0.2687		-			-	
+ Extra Data (Flickr30k, COCO)	0.3329	0.2907		-			-	-
Thomason et al. [37]	0.1368	0.2390		-		-	- 5	+

"Describing Videos by Exploiting Temporal Structure," Li Yao et al, arXiv 2015.

Soft Attention for Captioning

Attention constrained to fixed grid! We'll come back to this

Attending to arbitrary regions?

Attention mechanism from Show, Attend, and Tell only lets us softly attend to fixed grid positions ... can we do better?

Attending to Arbitrary Regions

- Read text, generate handwriting using an RNN
- Attend to arbitrary regions of the **output** by predicting params of a mixture model

Graves, "Generating Sequences with Recurrent Neural Networks", arXiv 2013

Which are real and which are generated?

GENERATED

Attending to Arbitrary Regions: DRAW

Classify images by attending to arbitrary regions of the *input*

Gregor et al, "DRAW: A Recurrent Neural Network For Image Generation", ICML 2015

Generate images by attending to arbitrary regions of the *output*

Time →

Attending to Arbitrary Regions: Spatial Transformer Networks

Attention mechanism similar to DRAW, but easier to explain

Jaderberg et al, "Spatial Transformer Networks", NIPS 2015

Spatial Transformer Networks

Idea: Function mapping *pixel* coordinates (xt, yt) of output to *pixel* coordinates (xs, ys) of input

Network attends to input by predicting θ

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$

Repeat for all pixels in output to get a sampling grid

Then use bilinear interpolation to compute output

Jaderberg et al, "Spatial Transformer Networks", NIPS 2015

Spatial Transformer Networks

Output: Region of interest from input

Sampler uses bilinear interpolation to produce output

Full image

$$V_i^c = \sum_{n}^{H} \sum_{m}^{W} U_{nm}^c \max(0, 1 - |x_i^s - m|) \max(0, 1 - |y_i^s - n|)$$

Sampler

Spatial Transformer

Spatial Transformer Networks

Differentiable "attention / transformation" module

Insert spatial transformers into a classification network and it learns to attend and transform the input

Attention Takeaways

Performance:

Attention models can improve accuracy and reduce computation at the same time.

Complexity:

- There are many design choices.
- Those choices have a big effect on performance.
- Ensembling has unusually large benefits.
- Simplify where possible!

Attention Takeaways

Explainability:

Attention models encode explanation

 Both locus and trajectory help understand what's going on.

- Soft models are easier to train, hard models require reinforcement learning.
- They can be combined, as in Luong et al.

