

Week 9

Data analysis and visualization — Using Python's Pandas for Data Wrangling

Applied Data Science

Columbia University - Columbia Engineering

Course Agenda

- Week 1: Python Basics: How to Translate Procedures into Codes
- ❖ Week 2: Intermediate Python Data structures for Your Analysis
- Week 3: Relational Databases Where Big Data is Typically Stored
- Week 4: SQL Ubiquitous Database Format/Language
- Week 5: Statistical Distributions The Shape of Data
- Week 6: Sampling When You Can't or Won't Have ALL the Data

- Week 7:Hypothesis Testing Answering Questions about Your Data
- Week 8: Data Analysis and Visualization Using Python's NumPy for Analysis
- Week 9: Data analysis and visualization Using Python's Pandas for Data Wrangling
- Week 10: Text Mining Automatic Understanding of Text
- Week 11: Machine learning Basic Regression and Classification
- Week 12: Machine learning Decision Trees and Clustering

Visualize and analyze data using Panda

```
In [ ]: datafile = "nyc 311 data subset.csv"
In [ ]: import pandas as pd
          import numpy as np
         read_csv: A pandas function that reads a comma separated file
         read_csv will try to format the data so that it is the correct type and will report any typing problems
         It will also look for a header row.
         http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
In [ ]: data = pd.read csv(datafile)
         data
         Let's examine our data
In [ ]: data.info()
         Looks like Unique Key really is a unique key and can serve as an index
In [ ]: data = pd.read csv(datafile,index col='Unique Key')
In [ ]: data.iloc[1:10]
```

Data Cleaning with Pandas

Data contains several columns, also known as Panda data frame-

In [3]:	data	= pd.read_cs	sv(datafile)						
	ns (4) have mixed	s-001/anaconda/lib/p d types. Specify dty interactivity, compi	pe option on import	or set	low_memory		hell.py:271	7: DtypeWa
Out[3]:		Unique Key	Created Date	Closed Date	Agency	Incident Zip	Borough	Latitude	Longitude
	0	33136109	10/11/2016 11:53:00 AM	10/11/2016 12:00:00 PM	DSNY	NaN	QUEENS	NaN	NaN
	1	33137323	10/11/2016 11:36:00 AM	10/11/2016 12:00:00 PM	DSNY	NaN	QUEENS	NaN	NaN
	2	33139057	10/11/2016 11:36:00 AM	10/11/2016 12:00:00 PM	DSNY	NaN	QUEENS	NaN	NaN
	3	33140865	10/11/2016 12:39:00 PM	10/11/2016 12:39:00 PM	DSNY	NaN	QUEENS	NaN	NaN
	4	33141225	10/11/2016 12:18:00 PM	10/11/2016 12:18:00 PM	DSNY	NaN	QUEENS	NaN	NaN
	5	33141715	10/11/2016 11:36:00 AM	10/11/2016 12:00:00 PM	DSNY	NaN	QUEENS	NaN	NaN
	6	33141787	10/11/2016 12:39:00 PM	10/11/2016 12:39:00 PM	DSNY	NaN	QUEENS	NaN	NaN
	7	33141934	10/11/2016 11:44:00 AM	NaN	DSNY	NaN	QUEENS	NaN	NaN
	_								

882944 non-null object

971063 non-null object

911140 non-null object

971063 non-null object

dtypes: float64(2), int64(1), object(5)

887284 non-null float64 887284 non-null float64

Let's examine our data

memory usage: 59.3+ MB

Closed Date

Incident Zip

Agency

Borough Latitude

Longitude

The 'data.info()' command tells us what the structure of data file/Panda frame

there are 971,000 records of 'Unique Key'

Data Cleaning with Pandas

Use first ten records-

In [6]: data.iloc[1:10]

Out[6]:

	Created Date	Closed Date	Agency	Incident Zip	Borough	Latitude	Longitude
Unique Key							
33137323	10/11/2016 11:36:00 AM	10/11/2016 12:00:00 PM	DSNY	NaN	QUEENS	NaN	NaN
33139057	10/11/2016 11:36:00 AM	10/11/2016 12:00:00 PM	DSNY	NaN	QUEENS	NaN	NaN
33140865	10/11/2016 12:39:00 PM	10/11/2016 12:39:00 PM	DSNY	NaN	QUEENS	NaN	NaN
33141225	10/11/2016 12:18:00 PM	10/11/2016 12:18:00 PM	DSNY	NaN	QUEENS	NaN	NaN
33141715	10/11/2016 11:36:00 AM	10/11/2016 12:00:00 PM	DSNY	NaN	QUEENS	NaN	NaN
33141787	10/11/2016 12:39:00 PM	10/11/2016 12:39:00 PM	DSNY	NaN	QUEENS	NaN	NaN
33141934	10/11/2016 11:44:00 AM	NaN	DSNY	NaN	QUEENS	NaN	NaN
33142524	10/11/2016 12:35:00 PM	10/11/2016 12:35:00 PM	DSNY	NaN	QUEENS	NaN	NaN
33142733	10/11/2016 11:26:00 AM	05/27/2016 12:00:00 PM	DSNY	NaN	QUEENS	NaN	NaN

Note -

```
In [5]: data = pd.read_csv(datafile,index_col='Unique Key')

/Users/cvn-mm-pbs-001/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py:2717: DtypeWarning: Columns (4) have mixed types. Specify dtype option on import or set low_memory=False.
interactivity=interactivity, compiler=compiler, result=result)
```

If we want to do analysis, we want to use an NP array kind of structure, i.e. data of same kind.

Function called 'unique' can be used to pull out unique values in a column.

Columns 4 has mixed types

Column 4 is incident zip

Let's examine it

The unique() function returns unique values in a column

```
In [7]: data['Incident Zip'].unique()
Out[7]: array([nan, '10001', '11691', '11211', '10027', '10452', '11428', '11101',
               '10075', '11215', '11210', '11231', '11217', '10457', '10033',
               '11209', '11201', '11367', '10029', '10021', '10028', '10034',
               '10032', '10039', '11414', '10461', '11229', '10462', '11223',
               '10023', '10453', '11225', '11219', '10451', '11234', '10014',
               '11354', '11361', '10468', '11233', '10466', '11204', '11413',
               '11224', '11375', '11040', '11232', '11203', '11205', '11434',
               '10011', '10003', '10025', '10013', '10036', '11237', '11355',
               '11368', '10454', '10456', '10463', '11222', '11228', '11216',
               '10128', '11435', '11419', '11358', '11421', '10019', '11238',
               '11213', '11235', '11420', '10038', '11226', '10472', '10016',
               '11221', '11236', '11436', '11214', '11377', '11385', '11365',
               '10312', '11426', '11373', '11218', '10005', '11230', '10026',
               '10473', '10280', '10301', '10309', '10310', '10009', '10002',
               '11433', '10020', '11357', '10030', '11378', '11249', '11432',
               '11212', '10024', '10035', '11429', '11206', '11372', '10471',
               '10119', '10307', '11364', '11103', '10017', '10012', '11105',
               '10458', '10018', '11374', '10459', '10314', '10037', '10302',
```

Some issues

- . Sometimes zip is a float, other times it is a str
- · Zipcodes that are represented as floats and start with 0 are missing the first digit
- . Some zipcodes have the 4 digit extension added. Comparison becomes tough
- · What the heck is zip 0?
- What about the missing (nan) values? The ? (question mark)? "UNKNOWN"?

Data Cleaning with Pandas: Step One

The first step in data cleaning is to:

Decide what to do with "bad" data ("JFK", "UNKNOWN", etc.). Convert to Nan or delete the record.

Make sure all data in a column is in the correct format (convert floats to strings, get rid of the 4 digit extension)

Decide what to do with missing values (NaNs)

for "Incident Zip"

we'll drop rows with NaN or bad data

get rid of the 4 digit extension

remove zips less than 10000 and greater than 19999

Let's write a function that fixes zips

Use function called 'fix_zip' to take the zip code in whatever format

```
In [ ]:
In [ ]: def fix zip(input zip):
                input zip = int(float(input zip))
            except:
                    input_zip = int(input_zip.split('-')[0])
                except:
                    return np.NaN
            if input zip < 10000 or input zip > 19999:
                return np.NaN
            return str(input_zip)
                      And test it
             In [9]: fix_zip('11211.00')
             Out[9]: '11211'
                       And test it
             In [11]: fix_zip('UNKNOWN')
             Out[11]: nan
```


Next, we'll apply this function to every element in input zip to get a revised column

The pandas function "apply" applies a function to a dataframe column

• fix_zip will be applied to each element of the Incident Zip column and we replace the existing column with the modified one

	data['Incide					
t[12]:	Unique Key					
	33136109	NaN				
	33137323	NaN				
	33139057	NaN				
	33140865	NaN				
	33141225	NaN				
	33141715	NaN				
	33141787	NaN	71			
	33141934	NaN	In [12]:	data['Incident	<pre>Zip'].apply(fix_zip)</pre>	
	33142524	NaN	0			
	33142733	NaN	Out[12]:	Unique Key		
	34215673	10001		33136109	NaN	
	34219052	11691		33137323	NaN	
	34219145	11211		33139057	NaN	
	34219385	10027		33140865	NaN	
	34219399	10452		33141225	NaN	
	34219470	11691		33141715	NaN	
	34219513	11428		33141787	NaN	
	34219516	11101		33141934	NaN	
	34219534	10075		33142524	NaN	
	34219623	11215		33142733	NaN	
	34219638	11101			10001	
	34219639	11210			11691	
	34219640	11231			11211	
	34219643	11210		34219385	10027	

Data Cleaning with Pandas: Step Two


```
In [14]: data['Incident Zip'] = data['Incident Zip'].apply(fix zip)
In [15]: data['Incident Zip'].unique()
Out[15]: array([nan, '10001', '11691', '11211', '10027', '10452', '11428', '11101',
                 '10075', '11215', '11210', '11231', '11217', '10457', '10033',
                 '11209', '11201', '11367', '10029', '10021', '10028', '10034',
                 '10032', '10039', '11414', '10461', '11229', '10462', '11223',
                 '10023', '10453', '11225', '11219', '10451', '11234', '10014',
                 '11354', '11361', '10468', '11233', '10466', '11204', '11413',
                 '11224', '11375', '11040', '11232', '11203', '11205', '11434',
                 '10011', '10003', '10025', '10013', '10036', '11237', '11355',
                 '11368', '10454', '10456', '10463', '11222', '11228', '11216',
                 '10128', '11435', '11419', '11358', '11421', '10019', '11238',
                 '11213', '11235', '11420', '10038', '11226', '10472', '10016',
                 '11221', '11236', '11436', '11214', '11377', '11385', '11365',
                 '10312', '11426', '11373', '11218', '10005', '11230', '10026',
                 '10473', '10280', '10301', '10309', '10310', '10009', '10002',
                 '11433', '10020', '11357', '10030', '11378', '11249', '11432',
                 '11212', '10024', '10035', '11429', '11206', '11372F', '10471',
                 '10119', '10307', '11364', '11103', '10017', '10012', '11105',
                 '10458', '10018', '11374', '10459', '10314', '10037', '10302',
                 '10040', '11411', '11692', '10303', '11418', '10031', '11220',
                 '11427', '10465', '10306', '10010', '10460', '10305', '11207',
                 '11208', '10474', '11417', '10475', '10455', '11416', '10065',
                 '11363', '11693', '10308', '11356', '10469', '11369', '10470',
                 '10467', '10007', '10304', '11366', '11694', '11102', '11423',
                 '11422', '19044', '11412', '10022', '11379', '11251', '11004',
                 '11104', '10004', '11362', '11360', '11109', '11590', '11001',
                 '11430' '11106' '10464' '11370' '10271' '11239' '11415'
```


Finally, we'll get rid of all rows that have zip == Nan

. We don't have to, that's just a choice we're making

```
In [16]: data = data[data['Incident Zip'].notnull()]
In [17]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 910907 entries, 34215673 to 34368845
         Data columns (total 7 columns):
         Created Date 910907 non-null object
         Closed Date 829453 non-null object
                       910907 non-null object
         Agency
         Incident Zip 910907 non-null object
                        910907 non-null object
         Borough
                        887168 non-null float64
         Latitude
         Longitude
                         887168 non-null float64
         dtypes: float64(2), object(5)
         memory usage: 55.6+ MB
```


Let's examine our data

```
In [4]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 971063 entries, 0 to 971062
        Data columns (total 8 columns):
        Unique Key
                        971063 non-null int64
        Created Date 971063 non-null object
        Closed Date
                       882944 non-null object
        Agency
                       971063 non-null object
        Incident Zip 911140 non-null object
                       971063 non-null object
        Borough
                        887284 non-null float64
        Latitude
                        887284 non-null float64
        Longitude
        dtypes: float64(2), int64(1), object(5)
        memory usage: 59.3+ MB
```

```
In [17]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 910907 entries, 34215673 to 34368845
         Data columns (total 7 columns):
         Created Date
                        910907 non-null object
         Closed Date
                         829453 non-null object
                         910907 non-null object
         Agency
                         910907 non-null object
         Incident Zip
                         910907 non-null object
         Borough
                         887168 non-null float64
         Latitude
                         887168 non-null float64
         Longitude
         dtypes: float64(2), object(5)
         memory usage: 55.6+ MB
```


Let's get rid of them

```
In [19]: data = data[(data['Latitude'].notnull()) & (data['Longitude'].notnull()) & (data['Closed Date'].notnull())]
 In [20]: data.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 806561 entries, 34215673 to 34368845
          Data columns (total 7 columns):
          Created Date
                         806561 non-null object
          Closed Date
                         806561 non-null object
                         806561 non-null object
          Agency
                         806561 non-null object
          Incident Zip
                         806561 non-null object
          Borough
          Latitude
                         806561 non-null float64
          Longitude
                          806561 non-null float64
          dtypes: float64(2), object(5)
          memory usage: 49.2+ MB
          Let's take a look at Borough data
In [21]: data['Borough'].unique()
Out[21]: array(['MANHATTAN', 'QUEENS', 'BROOKLYN', 'BRONX', 'STATEN ISLAND',
                   'Unspecified'], dtype=object)
```


Let's look at 'Unspecified'

In [22]: data[data['Borough']=='Unspecified'][['Agency','Incident Zip']]

Out[22]:		Agency	Incident Zip
	Unique Key		
	35281310	NYPD	10312
	35287553	NYPD	11368
	35288108	NYPD	11422
	35288996	NYPD	10454
	35280674	NYPD	11209
	35280721	NYPD	11226
	35281352	NYPD	11225
	35281873	NYPD	11373
	35282130	NYPD	10467

We found lot of NYPD

Closer Look

In [23]: data[data['Borough'] == 'Unspecified'].groupby('Agency').count()

Out[23]:

	Created Date	Closed Date	Incident Zip	Borough	Latitude	Longitude
Agency						
3-1-1	1	1	1	1	1	1
DHS	67	67	67	67	67	67
DOE	1	1	1	1	1	1
DOF	3	3	3	3	3	3
DOT	13	13	13	13	13	13
DPR	2	2	2	2	2	2
FDNY	1	1	1	1	1	1
NYPD	725	725	725	725	725	725
TLC	6	6	6	6	6	6

Unspecified appears to have a systematic bias toward NYPD

Though only a small proportion of NYPD complaints (see below)

We have to decide whether to keep them or lose them!

```
In [24]: nypd_complaints_total = data[data['Agency']=='NYPD']['Borough'].count()
          #nypd_unspecified = data[(data['Borough']=='Unspecified') & (data['Agency']=="NYPD")]['Borough'].count()
          #percentage = nypd unspecified/nypd complaints total*100
          #print("%1.2f"%percentage)
In [25]: nypd complaints total
Out[25]: 274408
          We have to decide whether to keep them or lose them!
In [26]: nypd complaints total = data[data['Agency']=='NYPD']['Borough'].count()
          nypd unspecified = data[(data['Borough']=='Unspecified') & (data['Agency']=="NYPD")]['Borough'].count()
          #percentage = nypd unspecified/nypd complaints total*100
          #print("%1.2f"%percentage)
In [27]: nypd unspecified
Out[27]: 725
In [28]: nypd complaints total = data[data['Agency'] == 'NYPD']['Borough'].count()
         nypd unspecified = data[(data['Borough'] == 'Unspecified') & (data['Agency'] == "NYPD")]['Borough'].count()
         percentage = nypd unspecified/nypd complaints total*100
         print("%1.2f"%percentage)
         0.26
```


For now, we'll get rid of them. Unspecified will be hard to explain!

```
In [29]: data = data[data['Borough'] != 'Unspecified']
In [30]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 805742 entries, 34215673 to 34368845
         Data columns (total 7 columns):
         Created Date 805742 non-null object
         Closed Date 8057#2 non-null object
         Agency 805742 non-null object Incident Zip 805742 non-null object
         Borough 805742 non-null object
         Latitude 805742 non-null float64
         Longitude 805742 non-null float64
         dtypes: float64(2), object(5)
         memory usage: 49.2+ MB
```


Dealing with time

- · Dates and times are best converted to datetime
- . That way they will be useful for analysis because we can compute timedelta objects

Aim is to convert all the strings into datetime object

```
In [ ]: import datetime
              data['Created Date'] = data['Created Date'].apply(lambda x:datetime.datetime.strptime(x,'%m/%d/%Y %I:%M:%S %p'))
Out[34]: Unique Key
                    2016-09-01,00:33:42
         34215673
                    2016-09-01 20:16:24
         34219052
         34219145
                    2016-09-01 12:17:00
         34219385
                    2016-09-01 12:10:22
         34219399
                    2016-09-01 12:32:32
         34219470
                    2016-09-01 20:16:24
         34219513
                    2016-09-01 08:35:00
         34219516
                    2016-09-01 13:19:42
         34219534
                    2016-09-01 11:00:00
         34219623
                    2016-09-01 11:45:00
         34219638
                    2016-09-01 10:11:45
         34219639
                    2016-09-01 08:22:53
         34219640
                    2016-09-01 17:31:04
         34219643
                    2016-09-01 08:50:41
         34219644
                    2016-09-01 14:19:21
         34219646
                    2016-09-01 12:46:35
         34219681
                    2016-09-01 13:33:58
         34219813
                    2016-09-01 13:51:10
```


How Much Time Did It Take to Close the Complaints

Out[37]:		Created Date	Closed Date	Agency	Incident Zip	Borough	Latitude	Longitude
	Unique Key							
	34215673	2016-09-01 00:33:42	2016-09-16 01:06:56	DCA	10001	MANHATTAN	40.744790	-73.988834
	34219052	2016-09-01 20:16:24	2016-09-10 18:08:25	HPD	11691	QUEENS	40.600554	-73.750704
	34219145	2016-09-01 12:17:00	2016-09-07 12:00:00	DSNY	11211	BROOKLYN	40.704925	-73.962007
	34219385	2016-09-01 12:10:22	2016-09-10 14:23:44	HPD	10027	MANHATTAN	40.812322	-73.955338
	34219399	2016-09-01 12:32:32	2016-09-11 02:03:37	HPD	10452	BRONX	40.839529	-73.922534
	34219470	2016-09-01 20:16:24	2016-09-10 18:08:24	HPD	11691	QUEENS	40.600554	-73.750704
	34219513	2016-09-01 08:35:00	2016-09-07 12:00:00	DSNY	11428	QUEENS	40.721866	-73.745982
	34219516	2016-09-01 13:19:42	2016-09-16 14:32:35	DOT	11101	QUEENS	40.746875	-73.952711
	34219534	2016-09-01 11:00:00	2016-09-08 12:00:00	DSNY	10075	MANHATTAN	40.773336	-73.955054
	24040602	2010 00 01 11-45-00	2016 00 03 12-00-00	DONIV	11015	BBOOKIVN	40 660000	72 002000

```
In [38]: data['processing time'] = data['Closed Date'] - data['Created Date']
In [39]: #And look at summary statistics
         data['processing time'].describe(')
Out[39]: count
                                    805742
                   5 days 00:05:11.538976
         mean
                  12 days 06:08:17.201098
         std
                      -134 days +00:00:00
         min
         25%
                          0 days 02:34:46
                   0 days 21:10:44.500000
         50%
                   4 days 14:29:59.750000
         75%
                        148 days 13:10:54
         max
         Name: processing time, dtype: object
```


There is some odd stuff here

- · Negative processing time?
- . Since our data is for two months, a max of 148 days worth checking out

Let's examine the negative processing time data

34339796	2016-09-16 14:24:00	2016-09-15 14:23:00	DOT	10314	STATEN ISLAND	40.597868	-74.140537
34367448	2016-09-20 14:03:00	2016-09-16 14:03:00	DOT	11220	BROOKLYN	40.630682	-74.010970
34580456	2016-10-20 11:24:00	2016-10-19 01:24:00	DOT	11412	QUEENS	40.696186	-73.751966
34580514	2016-10-20 16:40:00	2016-10-19 16:39:00	DOT	10306	STATEN ISLAND	40.580343	-74.103262
34580724	2016-10-20 12:19:00	2016-10-19 12:18:00	DOT	11209	BROOKLYN	40.634865	-74.026381
34582178	2016-10-20 12:05:00	2016-10-19 02:05:00	DOT	11208	BROOKLYN	40.681095	-73.873586
34612455	2016-10-24 10:37:00	2016-10-21 10:37:00	DOT	11691	QUEENS	40.608713	-73.747670
34669594	2016-10-31 10:26:00	2016-10-28 10:26:00	DOT	11417	QUEENS	40.676871	-73.840344
34671873	2016-10-31 10:46:00	2016-10-27 10:46:00	DOT	11362	QUEENS	40.765202	-73.738088
34360609	2016-09-20 11:49:00	2016-09-16 11:49:00	DOT	11432	QUEENS	40.703220	-73.802559
34360615	2016-09-20 14:16:00	2016-09-16 14:16:00	DOT	11238	BROOKLYN	40.680797	-73.958397

And the large processing times as well

In [41]:	data[data['processing_time	ne']>datetime.tir	medelta(14	8,0,0)]				
Out[41]:		Created Date	Closed Date	Agonou	Incident 7in	Borough	Latituda	Longitudo	processing time

	Created Date	Closed Date	Agency	Incident Zip	Borough	Latitude	Longitude	processing_time
Unique Key								
34220964	2016-09-01 10:49:06	2017-01-28 00:00:00	DOB	11691	QUEENS	40.597741	-73.775975	148 days 13:10:54
34222594	2016-09-01 09:04:14	2017-01-27 14:12:22	DOT	11357	QUEENS	40.791344	-73.827361	148 days 05:08:08


```
In [ ]: def read 311 data(datafile):
            import pandas as pd
            import numpy as no
            #Add the fix zip function
            def fix zip(input zip):
                try:
                    input zip = int(float(input zip))
                except:
                        input zip = int(input zip.split('-')[0])
                    except:
                        return np. NaN
                if input zip < 10000 or input zip > 19999:
                    return np. NaN
                return str(input_zip)
            #Read the file
            df = pd.read csv(datafile,index col='Unique Key')
            #fix the zip
            df['Incident Zip'] = df['Incident Zip'].apply(fix zip)
            #drop all rows that have any nans in them (note the easier syntax!)
            df = df.dropna(how='any')
            #get rid of unspecified boroughs
            df = df[df['Borough'] != 'Unspecified']
            #Convert times to datetime and create a processing time column
         import datetime
         df['Created Date'] = df['Created Date'].apply(lambda x:datetime.datetime.strptime(x,'%m/%d/%Y %I:%M:%S %p'))
         df['Closed Date'] = df['Closed Date'].apply(lambda x:datetime.datetime.strptime(x,'%m/%d/%Y %I:%M:%S %p')
         df['processing time'] = df['Closed Date'] - df['Created Date']
```

Though it sounds trivial, incorporating all the changes is very important step, the data will be used several times.


```
In [45]: df = read 311 data('nyc 311 data subset.csv')
         df.info()
         /Users/cvn-mm-pbs-001/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py:2821: DtypeWarning: Colum
         ns (4) have mixed types. Specify dtype option on import or set low memory=False.
           if self.run code(code, result):
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 799323 entries, 34215673 to 34368845
         Data columns (total 8 columns):
         Created Date
                            799323 non-null datetime64[ns]
         Closed Date
                            799323 non-null datetime64[ns]
                       799323 non-null object
         Agency
         Incident Zip
                         799323 non-null object
                           799323 non-null object
         Borough
         Latitude
                           799323 non-null float64
         Longitude
                           799323 non-null float64
         processing time 799323 non-null timedelta64[ns]
         dtypes: datetime64[ns](2), float64(2), object(3), timedelta64[ns](1)
         memory usage: 54.9+ MB
```

The idea there is that we take our data, we look at, examine it in as much detail as possible, and that really means getting down and looking at the actual values, looking at what the data is telling us in terms of what it contains, and then trying to figure out what kinds of anomalies we're finding in the data you know, data that looks problematic, and then removing any data that is problematic but is not going to bias our results, That's our goal with the data cleaning process.

The idea there is to look at the actual values in our data, and analyze anomalies in the data. That's our goal though the data cleaning process is to remove problematic data without biasing the results

```
def read 311 data(datafile):
    import pandas as pd
    import numpy as np
    #Add the fix zip function
    def fix_zip(input_zip):
       try:
            input zip = int(float(input zip))
       except:
           try:
                input zip = int(input zip.split('-')[0])
           except:
                return np. NaN
       if input zip < 10000 or input zip > 19999:
            return np.NaN
       return str(input zip)
    #Read the file
    df = pd.read csv(datafile,index col='Unique Key')
    #fix the zip
    df['Incident Zip'] = df['Incident Zip'].apply(fix zip)
    #drop all rows that have any nans in them (note the easier syntax!)
    df = df.dropna(how='any')
    #get rid of unspecified boroughs
    df = df[df['Borough'] != 'Unspecified']
    #Convert times to datetime and create a processing time column
    import datetime
    df['Created Date'] = df['Created Date'].apply(lambda x:datetime.datetime.strptime(x,'%m/%d/%Y %I:%M:%S %p'))
    df['Closed Date'] = df['Closed Date'].apply(lambda x:datetime.datetime.strptime(x,'%m/%d/%Y %I:%M:%S %p'))
    df['processing time'] = df['Closed Date'] - df['Created Date']
```


Out[3]:		Created Date	Closed Date	Agency	Incident Zip	Borough	Latitude	Longitude	processing_time
	Unique Key								
	34215673	2016-09-01 00:33:42	2016-09-16 01:06:56	DCA	10001	MANHATTAN	40]744790	-73.988834	15 days 00:33:14
	34219052	2016-09-01 20:16:24	2016-09-10 18:08:25	HPD	11691	QUEENS	40.600554	-73.750704	8 days 21:52:01
	34219145	2016-09-01 12:17:00	2016-09-07 12:00:00	DSNY	11211	BROOKLYN	40.704925	-73.962007	5 days 23:43:00
	34219385	2016-09-01 12:10:22	2016-09-10 14:23:44	HPD	10027	MANHATTAN	40.812322	-73.955338	9 days 02:13:22
	34219399	2016-09-01 12:32:32	2016-09-11 02:03:37	HPD	10452	BRONX	40.839529	-73.922534	9 days 13:31:05
	34219470	2016-09-01 20:16:24	2016-09-10 18:08:24	HPD	11691	QUEENS	40.600554	-73.750704	8 days 21:52:00
	34219513	2016-09-01 08:35:00	2016-09-07 12:00:00	DSNY	11428	QUEENS	40.721866	-73.745982	6 days 03:25:00
	34219516	2016-09-01 13:19:42	2016-09-16 14:32:35	DOT	11101	QUEENS	40.746875	-73.952711	15 days 01:12:53
	34219534	2016-09-01 11:00:00	2016-09-08 12:00:00	DSNY	10075	MANHATTAN	40.773336	-73.955054	7 days 01:00:00

Install library called – Gmplot library: https://github.com/vgm64/gmplot

In [4]: !pip install gmplot --upgrade

Data dataframe contains latitudes and longitudes for each complaint. We can draw heatmap that will help us see the relative concentration using latitudes and longitudes

Drawing Heatmap

Set up the map

GoogleMapPlotter constructor

- · GoogleMapPlotter(center_lat, center_ing, zoom)
- · from_geocode(location_string,zoom)

Grouping Operations

Incidents by Borough

In [20]: %matplotlib inline

Group data by borough and plot a bar chart of the incident count

Incidents by Agency

In [22]: agency_group = data.groupby('Agency')
 agency_group.size().plot(kind='bar')

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x113755400>

Grouping Operations

Let's combine the two in a single graph

We can unstack the groups so that we get borough by agency

pointless; unstacking

Increasing size of image can make it readable and clearer

Increase the size of the image and add a title

```
In [ ]:
        agency borough = data.groupby(['Agency', 'Borough'])
        agency borough.size().unstack().plot(kind='bar',title="Incidents in each Agency by Borough",figsize=(15,15);)
```


You can use functions to group data

In [28]: writers

Out[28]:

	Age	Author	Country	Gender
0	46	George Orwell	UK	М
1	66	John Steinbeck	USA	м
2	80	Pearl Buck	USA	F
3	85	Agatha Christie	UK	F

Digression: The groupby Function

Group by country

```
In [29]: grouped = writers.groupby('Country')
    #grouped.first()
    #grouped.last()
    #grouped.sum()
    #grouped.mean()
    #grouped.apply(sum)

In [30]: grouped.groups
Out[30]: {'UK': Int64Index([0, 3], dtype='int64'),
    'USA': Int64Index([1, 2], dtype='int64')}
```

Group by multiple columns

Perform basic analysis

In [33]:	<pre>grouped = writers.groupby('Country') grouped.first() #grouped.last() #grouped.sum() #grouped.mean() #grouped.apply(sum)</pre>
	A STATE OF THE STATE OF STATE

	Age	Author	Gender	
Country				
UK	46	George Orwell	м	
USA	66	John Steinbeck	М	

Group by age groups

Out[33]:

In [41]:	writers								
Out[41]:		Age	Author	Country	Gender				
	0	46	George Orwell	UK	м				
	1	66	John Steinbeck	USA	м				
	2	80	Pearl Buck	USA	F				
	3	85	Agatha Christie	UK	F				
	<pre>print(index,col) if df[col].iloc[index] < 30: return 'Young' if df[col].iloc[index] < 60: return 'Middle' else: return 'Old'</pre>								
In []:	wr	iter	s['Age'].iloo	c[0]					
In [43]:	<pre>grouped = writers.groupby(lambda x: age_groups(writers,x,'Age')) grouped.groups</pre>								
	0 Age 1 Age 2 Age 3 Age								
Out[43]:			le': Int64Ind : Int64Index(

Digression: The groupby Function

Grouping by the values in a column

For example, grouping the data by values in a column that are greater than or less than zero

```
In [46]: import numpy as np
   import pandas as pd
   people = pd.DataFrame(np.random.randn(5, 5), columns=['a', 'b', 'c', 'd', 'e'], index=['Joe', 'Steve', 'Wes', 'Jim',
   people
```

Out[46]:

	а	b	С	d	е
Joe	1.147479	0.619510	-1.056473	0.315374	-1.106932
Steve	0.790722	-0.641755	1.709861	0.078417	-0.050602
Wes	-0.449524	-1.060829	-1.175451	-0.435145	0.509904
Jim	1.539456	0.325200	-0.679341	0.596718	1.764196
Travis	-1.493185	-0.550559	-1.025666	0.330545	0.760488

Write a function that takes three arguments - a dataframe, an index, and a column name and returns the grouping for that row

```
In [ ]: def GroupColFunc(df, ind, col):
    if df[col].loc[ind] > 0:
        return 'Group1'
    else:
        return 'Group2'
```

In []: people.groupby(lambda x: GroupColFunc(people, x, 'a')).groups

Now we can compute stats on these groups

```
In [49]: print(people.groupby(lambda x: GroupColFunc(people, x, 'a')).mean())
print(people.groupby(lambda x: GroupColFunc(people, x, 'a')).std())

a b c d e
Group1 1.159219 0.100985 -0.008651 0.33017 0.202221
Group2 -0.971354 -0.805694 -1.100558 -0.05230 0.635196
a b c d e
Group1 0.374505 0.659849 1.500173 0.259467 1.452165
Group2 0.737980 0.360816 0.105914 0.541425 0.177190
```

- Grouping is versatile function to use in dataframes
- You can find sum, mean, standard deviations, or apply any functions to groups

Incidents by Time

Incidents by time

We know the creation date of each incident so we can build a bar graph of number of incidents by month

Not particularly useful with a few months data but if we had all data from 2010, we could use this sort of analysis to eyeball trends and seasonality

We're going to need to do some data manipulation for this

```
In [51]: import datetime
         data['yyyymm'] = data['Created Date'].apply(lambda x:datetime.datetime.strftime(x,'%Y%m'))
In [52]: data['yyyymm']
Out[52]: Unique Key
         34215673
                     201609
         34219052
                     201609
         34219145
                     201609
         34219385
                     201609
         34219399
                     201609
         34219470
                     201609
         34219513
                     201609
         34219516
                     201609
         34219534
                     201609
         34219623
                     201609
         34219638
                     201609
         34219639
                     201609
         34219640
                     201609
         34219643
                     201609
         34219644
                     201609
         34219646
                     201609
         34219681
         34219813
                     201609
         34219941
                     201609
         34220256
                     201609
         34220375
                     201609
         34220447
                     201609
         34220448
                     201609
         34220449
                     201609
         34220450
                     201609
         34220479
                     201609
         34220488
                     201609
         34220607
                     201609
         34220609
                     201609
         34220627
                     201609
         34364916
                     201609
         34365064
                     201609
         34365415
                     201609
         34365624
                     201609
```

```
In [ ]: date_agency = data.groupby(['yyyymm','Agency'])
    date_agency.size().unstack().plot(kind='bar',figsize=(12,15))
```

Out[53]: <matplotlib.axes._subplots.AxesSubplot at 0x11bde53c8>

Examining by Agencies

COLUMBIA ENGINEERING EXECUTIVE EDUCATION

We'll look at the frequency by agency and report the top 5 values

```
data.groupby('Agency').size().sort_values(ascending=False)
Out[54]: Agency
         NYPD
                   273683
         HPD
                   244815
                    66178
         DOT
         DSNY
                    63321
         DEP
                    60346
                    34821
         DOB
         DHS
                    15083
         DOHMH
                    14188
                    10830
         DPR
         TLC
                     7129
         DCA
                     5760
         FDNY
                     1676
         DOF
                      579
         DOE
                      454
        data.groupby('Agency').size().sort values(ascending=False).plot(kind='bar', figsize=(20,4))
Out[55]: <matplotlib.axes. subplots.AxesSubplot at 0x11bdea668>
```


Drilling down into agency complaints by borough

In [56]: agency_borough = data.groupby(['Agency', 'Borough']).size().unstack()

In [57]: agency_borough

Out[57]:

Borough	BRONX	BROOKLYN	MANHATTAN	QUEENS	STATEN ISLAND
Agency					
3-1-1	17.0	28.0	23.0	28.0	6.0
DCA	958.0	1532.0	1529.0	1547.0	194.0
DEP	5837.0	17917.0	17315.0	15216.0	4061.0
DFTA	21.0	33.0	24.0	21.0	2.0
DHS	397.0	1130.0	12767.0	734.0	55.0
DOB	5160.0	10993.0	6507.0	10567.0	1594.0
DOE	129.0	127.0	49.0	136.0	13.0
DOF	143.0	161.0	153.0	112.0	10.0
ронмн	2406.0	4481.0	3759.0	2814.0	728.0
DOITT	7.0	18.0	91.0	18.0	NaN
DOT	8682.0	19176.0	9673.0	22096.0	6551.0
DPR	1416.0	2929.0	1103.0	3897.0	1485.0
DSNY	6406.0	22208.0	6079.0	18125.0	10503.0
EDC	1.0	62.0	41.0	15.0	4.0
FDNY	39.0	127.0	1344.0	158.0	8.0
HPD	77774.0	81382.0	51017.0	31080.0	3562.0
NYPD	48837.0	88973.0	55841.0	69931.0	10101.0
TLC	318.0	1238.0	4393.0	1146.0	34.0

Examining by Agencies

"Top Five Agency" subplot for each borough

Processing Time

It is easier to convert the timedelta processing_time into floats for calculation purposes

Processing Time

Other useful visualization libraries

seaborn https://seaborn.pydata.org

bokeh http://bokeh.pydata.org/en/latest

www.emeritus.org