CSC281: Discrete Math for Computer Science

Computer Science Department

First Semester 1442

King Saud University

Tutorial 5: Sequences + Divisibility and Modular Arithmetic

Question 1. Show that the sequence a_n is a solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2} + 2n - 9$ if:

a)
$$a_n = -n + 2$$

b)
$$a_n = 5(-1)^n - n + 2$$

Question 2. Find the solution to each of these recurrent relations and initial conditions. Use iterative approach.

$$a)a_n = 3a_{n-1}, a_0 = 2$$

b)
$$a_n = a_{n-1} + 2$$
, $a_0 = 3$

Question 3. Suppose that the number of bacteria in a colony triples every hour.

- a) Set up a recurrence relation for the number of bacteria after n hours have elapsed.
- b) If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?

Question 4. Let $\{a_n\}$ be an arithmetic sequence:

- a) What's the value of a_{30} if the value of the initial term is -23 and the common difference is 7?
- b) Express the sequence as a recurrence relation.
- c) Express a summation for this sequence, and find a closed form formula for it.

Question 5. Show that if a|b and b|a, where a and b are integers, then a=b or a=-b.

Question 6. Show that if a, b, and c are integers, where $a \neq 0$ and $c \neq 0$, such that ac|bc, then a|b.

Question 7. Show that if n|m, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Question 8. Find counterexamples to each of these statements about congruences.

- a) If $ac \equiv bc \pmod{m}$, where a,b,c,and m are integers with $m \geq 2$, then $a \equiv b \pmod{m}$.
- b)If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, where a, b, c, d, and m are integers with c and d positive and $m \geq 2$, then $ac \equiv bd \pmod{m}$.