Essence of Image

Wei-Ta Chu

Chapters 2 and 6 of "Digital Image Processing" by R.C. Gonzalez and R.E. Woods, Prentice Hall, 2nd edition, 2001

Image Sensing and Acquisition

Collect the incoming energy and focus it onto an image plane.

Multimedia Content Analysis, CSIE, NCKU

A Simple Image Formation Model

□ Denote an image by a 2D function

$$0 < f(x, y) < \infty$$

Characterized by two components:

$$f(x,y) = i(x,y)r(x,y)$$

- Illumination: $0 < i(x, y) < \infty$, determined by the illumination source
- Reflectance: 0 < r(x, y) < 1, determined by the characteristics of the imaged objects.

Image Sampling and Quantization

Multimedia Content Analysis, CSIE, NCKU

Image Sampling and Quantization

Histogram

□ The histogram of an image with gray level in the range [0, L-1] is a discrete function

$$h(r_k) = n_k$$

 r_k is the kth gray level and n_k is the number of pixels in the image having gray level r_k

Normalized histogram

$$p(r_k) = n_k/n$$

n is the total number of pixels in the image

Histogram

- □ Useful image statistics
- Image processing applications
 - Image enhancement
 - Image compression
 - Image segmentation

- □ Color spectrum: violet, blue, green, yellow, orange & red
- □ Each color in the spectrum blends smoothly into the next
- The color perceived in an object are determined by the nature of the light reflected from the object

- Cones can be divided into three principal sensing categories
- Due to the absorption of the human eyes, colors are seen as variable of three primary colors (red, green, blue)
- Approximately 65% of all cones are sensitive to red light, 33% to green light, 2% to blue light.

- Secondary colors of light
 - Magenta (R + B)
 - \Box Cyan (G + B)
 - \blacksquare Yellow (R + G)
- The primary color of pigments subtract a primary color of light and reflects the other two.

Brightness

Embodies the chromatic notion of intensity

Hue

- Attribute associated with the dominant wavelength in a mixture of light waves
- Dominant color as perceived by an observer

Saturation

- The relative purity of the amount of white light mixed with a hue
- Less saturated: e.g. pink (red+white), lavender (violet+white)
- Hue and saturation taken together as called chromaticity.

Specifying Colors

- □ The amounts of red, green, and blue needed to form any particular color are called the tristimulus values and are denoted X, Y, Z, respectively.
- □ A color is then specified by its trichromatic coefficients, defined as

$$x = \frac{X}{X + Y + Z} \qquad y = \frac{Y}{X + Y + Z} \qquad z = \frac{Z}{X + Y + Z}$$
$$x + y + z = 1$$

□ Using CIE chromaticity diagram, which shows color composition as a function of x (red) and y(green)

Specifying Colors

□ The point marked green has approximately 63% green and 25% red content. The composition of blue is approximately 13%.

Color Models (Color Spaces)

- A color model is a specification of a coordinate system and a subspace within that system where each color is represented by a single point.
- Hardware-oriented & application-oriented
 - RGB color monitor, color video cameras
 - CMY (cyan, magenta, yellow) color printing
 - CMYK (cyan, magenta, yellow, black) color printing
 - HSI (hue, saturation, intensity) closely matching with human perception

The RGB Color Model

- □ Based on Cartesian coordinate system
- □ Different colors are points on or inside the cube
- □ Full color image: 8 bits for each component, total 24 bits

The RGB Color Model

a

FIGURE 6.9

(a) Generating the RGB image of the cross-sectional color plane (127, G, B). (b) The three hidden surface planes in the color cube of Fig. 6.8.

The CMY and CMYK Color Models

- □ When a surface coated with cyan pigment is illuminated with white light, no red light is reflected from the surface.
 - Cyan subtracts red light
- Most devices that deposit colored pigments on paper require CMY data input or perform RGB to CMY conversion.
- □ Equal amounts of CMY pigments should produce black.

 \[\Gamma \cap \Gamm

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

The HSI Color Model

- □ RGB/CMY color systems are suited for hardware implementations.
- □ RGB system matches nicely with the fact that the human eye is strongly perceptive to red, green, and blue primaries.
- But RGB and CMY are not well suited for describing colors for human interpretation.

The HSI Color Model

- We describe a color object by its hue, saturation, and brightness.
 - Hue: color attribute that describes a pure color
 - Saturation: degree of pure color diluted by white light
 - Brightness: measured by intensity
- □ HSI color model decouples the intensity component from the color-carrying information

The HSI Color Model

□ Take the RGB cube, stand on the black vertex, with the white vertex above it.

The intensity (gray scale) is along the line joining these two vertices.

HSI

- □ HSI is also known as HSL, HLS
- □ HSV color space

Converting colors from RGB to HSI

Given an image in RGB color format, the H component of each RGB pixel is obtained using the equation

$$H = \begin{cases} \theta & \text{if } B \le G \\ 360 - \theta & \text{if } B > G \end{cases}$$
 (6.2-2)

with

$$\theta = \cos^{-1} \left\{ \frac{\frac{1}{2} [(R-G) + (R-B)]}{[(R-G)^2 + (R-B)(G-B)]^{1/2}} \right\}.$$

The saturation component is given by

$$S = 1 - \frac{3}{(R+G-B)} [\min(R,G,B)]. \tag{6.2-3}$$

Finally, the intensity component is given by

$$I = \frac{1}{3}(R + G + B). \tag{6.2-4}$$

RGB values have been normalized to the range [0,1] The angle θ is measured with respect to the red axis of the HSI space.

The LAB (CIELAB) Color Models

- □ CIELAB $(L^*a^*b^*)$ color space
 - $\Box L^*$: lightness dimension
 - *a**,*b**: two chromatic dimensions that are roughly red-green and blue-yellow.
 - L*a*b* color is designed to approximate human vision

http://en.wikipedia.org/wiki/Lab_color_space http://coatings.specialchem.com.cn/tc/color/index.aspx?id=cielab

Other Color Models

- □ YUV, YIQ, YCbCr color spaces
 - YCbCr is widely used in video/image compression schemes such as MPEG and JPEG
- □ Please refer to
 - http://en.wikipedia.org/wiki/Color_space

Color Histogram

- A representation of the distribution of colors in an image.
- Discretize colors into a number of bins, and counting the number of pixels with colors in each bin.

		red						
		0-63	64-127	128-191	192-255			
blue	0-63	43	78	18	0			
	64-127	45	67	33	2			
	128-191	127	58	25	8			
	192-255	140	47	47	13			

http://rsb.info.nih.gov/ij/plugins/color-inspector.html

Nonuniform Quantization

- □ An example in HLS (HSI) space
 - Considering human perception

NUMBER OF QUANTIZATION LEVELS FOR EACH COMPONENT IN THE THREE SUBREGIONS

	Regions		Achromatic			Low chromatic			High Chromatic		
# of colors		Н	L	S	Н	L	S	Н	L	S	
32		1	4	1	7	3	1	7	1	1	

Characteristics of Histogram

- □ The color histogram of an image represents the global statistics (color distribution) of pixels' colors
- Histogram is one of the most useful feature to describe images or be the basis for similarity measure

Histogram-based Difference

 \square Bin-wise histogram difference between Image I_1 and I_2

$$D_j(I_1, I_2) = \sum_{i=1}^{B} |H_j^1(i) - H_j^2(i)|$$

$$D(I_1, I_2) = w_1 D_1 + w_2 D_2 + w_3 D_3$$

Short Introduction to Image Features

- Color features
 - Color histogram
 - Color moments
 - Color coherence vectors (CCV)
 - Color correlogram

Ma, et al. "Benchmarking image features content-based image retrieval", Record of the 32nd Asilomar Conf. on Signals, Systems & Computers, vol 1., 1998.

Short Introduction to Image Features

- □ Texture features
 - Tamura features (coarseness, directionality, contrast)
 - Multi-resolution simultaneous auto-regressive model
 - Canny edge histogram
 - □ Gabor texture feature
 - Pyramid-structured wavelet transform (PWT) feature
 - Tree-structured transform (TWT) feature

Ma, et al. "Benchmarking image features content-based image retrieval", Record of the 32nd Asilomar Conf. on Signals, Systems & Computers, vol 1., 1998.