Third Year - Programs 5ce, 5e, 5bm
EXAMINER - W.M. Wonham

ECE 355F 197 FINAL

No aids permitted, other than a calculator.

PLEASE ANSWER EACH OF THE THREE MAIN QUESTIONS IN A SEP-ARATE BOOKLET.

Marking scheme: Each of the three main questions is worth 1/3 of the total

The system with block diagram displayed represents a regulator whose purpose is to hold the output angle variable θ approximately constant at the 'setpoint' value of 0 in the face of 'disturbances' represented by the input signal f. The parameters α , K are positive real numbers.

- 1.1 Find the transfer function $\hat{h}(s) := \hat{\theta}(s)/\hat{f}(s)$ (on the assumption that all internal initial values of the system are 0).
 - 1.2 Find the range of K such that the system is BIBO stable.
- 1.3 Write $\hat{k}(s)$ for the limiting form of $\hat{h}(s)$ as the angle sensor (represented by the block in the feedback return path) becomes 'perfect'. What can be said about the stability of $\hat{k}(s)$?
- 1.4 Suppose f satisfies the differential equation and initial conditions

$$d^2 f(t)/dt^2 = 0$$
, $t > 0$; $f(0) = f_0$, $f'(0) = f_1$

Find the Laplace transform $\hat{f}(s)$.

- 1.5 With f as in 1.4 what conditions must hold on the parameters K, α , f_o and f_1 to guarantee that $\lim \theta(t)$ $(t \to \infty)$ exists and is finite? In that case, evaluate the
- 1.6 With $f\equiv 0$, find the critical frequency at which the system may oscillate spontaneously when it is just on the boundary between stability and instability.
- 1.7 For what range of K does the system have a steady-state frequency response? For such K, find the approximate amplitude and phase of the frequency response for very high frequencies \(\omega\).
- 1.8 Assume $\alpha = 2$, K = 30, and that $f \equiv 0$. Verify carefully that $\theta(t)$ may oscillate with an amplitude that grows like e^t as $t \to \infty$, and calculate the frequency of this oscillation.

#1.80each

2. Let f(t), $-\infty < t < \infty$, be a real-valued signal with L_1 and L_2 norms both finite. Consider a linear time-invariant filter (called H, say) with impulse response h, given by

$$h(u) = f(-u+\tau), \quad -\infty < u < \infty$$

where r is a fixed real number.

- 2.1 When the input to H is f, let the output signal be $g(t), -\infty < t < \infty$. Calculate the Fourier transform $\hat{g}(\omega)$ in terms of the Fourier transform $\hat{f}(\omega)$.
 - 2.2 With g as in 2.1, use the Fourier integral representation of g to calculate the specific output value $g(\tau)$, in terms of the energy of f.
 - 2.3 With g as in 2.1, use 2.2 to show that g(t) is maximized with respect to t ($-\infty < t < \infty$) when $t = \tau$.
- 2.4 Under what condition on f is the filter H causal?
- 2.5 Specifically let

$$f(t) = \begin{cases} \sin t, & 0 \le t \le \pi \\ 0, & \text{otherwise} \end{cases}$$

and let $\tau=2\pi$. Carefully define h and sketch the graphs of f and h.

- 2.6 From the result of 2.5, evaluate $g(\pi)$, $g(2\pi)$ and $g(3\pi)$. Sketch the graph of g(t) for $0 \le t \le 4\pi$. Hint: It's easy and fun if you draw the pictures!
- 2.7 Consider the general case when the input to H is a real-valued signal $r(t), -\infty < t < \infty$, with energy $\|r\|^2 = 1$. Denote the output signal by s. Use Schwarz to show that $s(\tau)$ is a positive maximum with respect to all such r when $r(t) = f(t)/\|f\|$ for all $t, -\infty < t < \infty$. Here $\|\cdot\|$ denotes the L_2 norm.

Let $\Phi = \{\phi_n | n = 1, 2, ..., \}$ be an orthonormal system of functions in $L_2(I)$ for some subinterval I of the real line (so $\phi_n : I \to \mathbb{C}$). Let $f: I \to \mathbb{C}$, $f \in L_2(I)$.

- $3.1\,$ Define the generalized Fourier series of f with respect to the system $\Phi.$
- 3.2 If f_N is the Nth partial sum of the Fourier series of f, and $e_N := f f_N$, calculate $\|f_N\|^2$ in terms of the Fourier coefficients of f, and show that e_N and f_N are orthogonal.
- 3.3 State Parseval's formula for f.
- 3.4 Define the meaning of the statement

$$\lim_{N\to\infty} f_N = f \ (\text{m.s.})$$

 $3.5\,$ Show that the above statement is true only if Parseval's formula holds for f_{\odot}

The system Φ is said to be complete if, whenever $f \in L_2(I)$ and $\langle f, \phi_n \rangle = 0$ for all n, then necessarily f = 0 a.e.

- 3.6 Briefly explain in words what completeness means, and exhibit a system Φ that is not complete.
- 3.7 Show that if Parseval's formula holds for all $f\in L_2(I)$ then Φ is complete