Step-1

The columns of the matrix A are: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}_{and} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Thus, the nonnegative combinations of the columns of the matrix A is given by

$$\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Here, $\alpha \ge 0$ and $\beta \ge 0$.

Step-2

The vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is along the x-axis and the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ makes the angle of 45Å° with the positive direction of x-axis. Thus, the space is the region in the first quadrant between the x-axis and the line y = x. The region is as drawn below:

Step-3

Consider the vector b = (3,2), which lies inside the space.

Let Ax = b, where $x = (x_1, x_2)$. Then we have

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
$$\begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Therefore, $x_2 = 2$ and this implies that $x_1 = 1$.

Therefore, $\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix} 1 \\
2
\end{bmatrix}$

Step-4

Suppose b = (0,1). Let us write, Ax = b. This gives,

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} y_1 + y_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Therefore, $y_2 = 1$ and this implies that $y_1 = -1$.

Therefore,
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$