Correspondence Analysis Examples

Smoke data example

STAT 32950-24620

Spring 2025 (wk4)

1/32

3/32

Cell percentages

 $\sum_{i,j} p_{ij} = 1$, where

$$p_{ij}=\frac{x_{ij}}{n}, \qquad i=1,\cdots,I; \ j=1,\cdots,J$$

X = as.matrix(smoke); #sum(X) # 193
P = X/sum(X); round(P,2) # cell percent table

Contingency table

Contingency tables:

Display the cell counts $(n_{ii} \text{ or } x_{ii})$ of the row and column variables.

Example

Employee smoke status

library(ca); data(smoke); smoke

2/32

Marginal percentages

Row variable marginal percents (sum = 1)

$$r_i = \sum_{j=1}^J p_{ij} = \frac{n_{i\bullet}}{n}, \qquad i = 1, \cdots, I$$

round(t(P%*%c(1,1,1,1)),2)

SM JM SE JE SC ## [1,] 0.06 0.09 0.26 0.46 0.13

Column variable marginal percents (sum = 1)

$$c_j = \sum_{i=1}^{I} p_{ij}, \qquad j = 1, \cdots, J$$

round(c(1,1,1,1,1)%*%P,2)

none light medium heavy ## [1,] 0.32 0.23 0.32 0.13

Row profile matrix

$$P_r = \left\lceil \frac{p_{ij}}{r_i} \right\rceil = \left\lceil \frac{n_{ij}}{n_{i\bullet}} \right\rceil = D_r^{-1} P$$

Row profile matrix (row sum = 1) for comparing rows

smokerow = X%*%c(1,1,1,1) # row sum 11 18 51 88 25
round(diag(c(1/smokerow))%*%X,2)

```
## none light medium heavy
## [1,] 0.36 0.18 0.27 0.18
## [2,] 0.22 0.17 0.39 0.22
## [3,] 0.49 0.20 0.24 0.08
## [4,] 0.20 0.27 0.38 0.15
## [5,] 0.40 0.24 0.28 0.08
```

5/32

7/32

Expected values under independence

$$E_{ij} = nr_i c_j = \frac{x_{i \bullet} x_{\bullet j}}{n} = \frac{n_{i \bullet} n_{\bullet j}}{n}, \qquad i = 1, \cdots, I; \ j = 1, \cdots, J.$$

where

$$x_{i\bullet} = \sum_{j=1}^{J} x_{ij} = \sum_{j=1}^{J} n_{ij}, \qquad x_{\bullet j} = \sum_{i=1}^{I} x_{ij}$$

are the row sum and column sum.

E = smokerow%*%smokecol/193 # expected counts under indep.
round(E,1)

Column profile matrix

$$P_c = \left[\frac{p_{ij}}{c_j}\right] = \left[\frac{n_{ij}}{n_{ullet}j}\right] = PD_c^{-1}$$

Column profile matrix (column sum = 1) for comparing columns

smokecol = c(1,1,1,1,1)%*%X # col sum 61 45 62 25
round(X%*%diag(c(1/smokecol)),2)

```
## [,1] [,2] [,3] [,4]

## SM 0.07 0.04 0.05 0.08

## JM 0.07 0.07 0.11 0.16

## SE 0.41 0.22 0.19 0.16

## JE 0.30 0.53 0.53 0.52

## SC 0.16 0.13 0.11 0.08
```

6/32

Test of independence

Assuming the $n = I \times J$ observations are independent.

 H_o : The row variable and the column variable are independent.

Under H_o , the test statistic (sometime written as X^2)

$$\sum_{i=1}^{I} \sum_{i=1}^{J} \frac{(x_{ij} - E_{ij})^2}{E_{ij}}$$

is of χ^2 distribution with degrees of freedom df=(I-1)(J-1)

Chi-square test

chisq.test(smoke) #16.442, df = 12, p-value = 0.1718

##
Pearson's Chi-squared test
##

data: smoke

X-squared = 16, df = 12, p-value = 0.2

Total "inertia" $\frac{X^2}{n} = \frac{16.442}{193} = 0.085$

9 / 32

Graphical representation by CA

plot(ca(smoke),map="symmetric") # default of (ca(smoke))

Cell level contributions

Individual cell contributions to the chi-square test statistic:

$$\frac{(x_{ij}-E_{ij})^2}{E_{ij}}$$

round((smoke-E)^2/E,2)

none light medium heavy
SM 0.08 0.12 0.08 0.23
JM 0.50 0.34 0.26 1.19
SE 4.89 0.30 1.17 1.03
JE 3.46 0.59 0.79 0.22
SC 0.56 0.01 0.13 0.47

Overall

sum((smoke-E)^2/E) # 16.44164

[1] 16.44

10 / 32

11/32

plot(ca(smoke), map="rowprincipal") #rowgreen

13 / 32

CA derivations

The chi-square statistic (divided by overall counts = total inertia)

$$\sum_{i=1}^{J} \sum_{j=1}^{J} \frac{(x_{ij} - E_{ij})^2}{E_{ij}} = trace(SS^T) = \sum_{k} \lambda_k^2$$

where λ_k 's are singular values of the $I \times J$ matrix

$$S = D_r^{-1/2} (P - rc^T) D_c^{-1/2}$$

$$D_r = diag\{r_1, \dots, r_I\}, \qquad D_c = diag\{c_1, \dots, c_J\}$$

are $I \times I$ and $J \times J$ diagonal matrices,

$$r = [r_1 \cdots r_l]', \qquad c = [c_1 \cdots c_l]'$$

are vectors of length I and J respectively. Recall

$$P = [p_{ij}], \ p_{ij} = \frac{x_{ij}}{n}, \ r_i = \sum_{j=1}^{J} p_{ij}, \ c_j = \sum_{i=1}^{I} p_{ij}, \ i = 1, \dots, I; \ j = 1, \dots, J$$

plot(ca(smoke), map="colprincipal") #colgreen

14 / 32

Verify CA derivations

```
# Verify by hand
Drow=diag(c(sqrt(smokerow/sum(X))))
Dcol=diag(c(sqrt(smokecol/sum(X))))
S = solve(Drow)%*%(as.matrix(smoke-E)/193)%*%solve(Dcol)
S

## [,1] [,2] [,3] [,4]
## [1,] 0.02020 -0.025384 -0.02044 0.03468
## [2,] -0.05098 -0.042054 0.03645 0.07865
## [3,] 0.15922 -0.039477 -0.07795 -0.07299
## [4,] -0.13394 0.055330 0.06404 0.03413
## [5,] 0.05374 0.005098 -0.02619 -0.04953

193*sum(diag(S%*%t(S))) # 16.4 = chisq = total mass
## [1] 16.44
```

Singular value decomp. $S = U\Sigma V^T$

```
svd(S)$d;svd(S)$u;svd(S)$v # svd(S)
## [1] 2.734e-01 1.001e-01 2.034e-02 1.548e-17
                    [,2]
            [,1]
                             [,3]
                                    [,4]
## [1,] -0.05743 -0.46212 0.8333 -0.2604
## [2,] 0.28924 -0.74240 -0.5061 -0.3194
## [3,] -0.71555 -0.05475 -0.1303 -0.4492
## [4,] 0.57530 0.38958 0.1098 -0.6396
## [5,] -0.26470 0.28376 -0.1430 -0.4683
           [,1]
                   [,2]
                             [,3]
## [1,] -0.8087 -0.17128 -0.02462 0.5622
## [2,] 0.1756 0.68057 0.52232 0.4829
## [3,] 0.4070 0.04167 -0.71512 0.5668
## [4,] 0.3867 -0.71116 0.46387 0.3599
```

17 / 32

19 / 32

Ortho-normal U

```
round(t(svd(S)$u)%*%(svd(S)$u)) # U'U

## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1

round((svd(S)$u)%*%t(svd(S)$u)) #UU'

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 0
## [2,] 0 1 0 0 0
## [3,] 0 0 1 0 0
## [4,] 0 0 0 1 0
## [4,] 0 0 0 0 0
```

18 / 32

Ortho-normal V

```
round(t(svd(S)$v)%*%(svd(S)$v)) #V'V

## [,1] [,2] [,3] [,4]

## [1,] 1 0 0 0

## [2,] 0 1 0 0

## [3,] 0 0 1 0

## [4,] 0 0 0 1

round((svd(S)$v)%*%t(svd(S)$v)) #VV'

## [,1] [,2] [,3] [,4]

## [1,] 1 0 0 0

## [2,] 0 1 0 0

## [3,] 0 0 1 0

## [4,] 0 0 0 1
```

Principal coordinates of rows

```
Principal coordinates of rows: F = D_r^{-1/2}U\Sigma
```

Fmat = solve(Drow)%*%(svd(S)\$u)%*%diag(c(svd(S)\$d))
round(Fmat,4)

```
## [,1] [,2] [,3] [,4]

## [1,] -0.0658 -0.1937 0.0710 0

## [2,] 0.2590 -0.2433 -0.0337 0

## [3,] -0.3806 -0.0107 -0.0052 0

## [4,] 0.2330 0.0577 0.0033 0

## [5,] -0.2011 0.0789 -0.0081 0
```

Principal coordinates of columns

```
Principal coordinates of columns: G = D_c^{-1/2}V\Sigma

Gmat = solve(Dcol)%*%(svd(S)$v)%*%diag(c(svd(S)$d))

round(Gmat,4)

## [,1] [,2] [,3] [,4]

## [1,] -0.3933 -0.0305 -0.0009 0

## [2,] 0.0995 0.1411 0.0220 0

## [3,] 0.1963 0.0074 -0.0257 0

## [4,] 0.2938 -0.1978 0.0262 0
```

21 / 32

Coordinates of columns $D_c^{-1/2}V$ (standard)

```
Coordinates of columns using D_c^{-1/2}V
```

```
round(solve(Dcol)%*%(svd(S)$v),4)
```

```
## [,1] [,2] [,3] [,4]

## [1,] -1.4385 -0.3047 -0.0438 1

## [2,] 0.3637 1.4094 1.0817 1

## [3,] 0.7180 0.0735 -1.2617 1

## [4,] 1.0744 -1.9760 1.2889 1
```

ca(smoke)\$colcoord

```
## Dim1 Dim2 Dim3
## none -1.4385 -0.30466 -0.04379
## light 0.3637 1.40943 1.08170
## medium 0.7180 0.07353 -1.26172
## heavy 1.0744 -1.97596 1.28886
```

Coordinates of rows $D_r^{-1/2}U$ (standard)

Coordinates of rows using $D_r^{-1/2}U$

```
round((solve(Drow)%*%(svd(S)$u)),4)
           [,1]
                   [,2]
                           [,3]
                                   [,4]
## [1,] -0.2405 -1.9357 3.4903 -1.0908
## [2,] 0.9471 -2.4310 -1.6574 -1.0459
## [3,] -1.3920 -0.1065 -0.2535 -0.8739
## [4,] 0.8520 0.5769 0.1625 -0.9472
## [5,] -0.7355 0.7884 -0.3974 -1.3011
ca(smoke) $rowcoord
        Dim1
                Dim2
                        Dim3
## SM -0.2405 -1.9357 3.4903
## JM 0.9471 -2.4310 -1.6574
## SE -1.3920 -0.1065 -0.2535
## JE 0.8520 0.5769 0.1625
## SC -0.7355 0.7884 -0.3974
                                                      22 / 32
```

```
ca(smoke)
##
## Principal inertias (eigenvalues):
##
             0.074759 0.010017 0.000414
## Value
## Percentage 87.76% 11.76% 0.49%
##
##
## Rows:
##
                                   SE
                 SM
                          JM
                                           JΕ
## Mass
           0.056995 0.09326 0.26425 0.45596 0.129534
## ChiDist 0.216559 0.35692 0.38078 0.24002 0.216169
## Inertia 0.002673 0.01188 0.03831 0.02627 0.006053
## Dim. 1 -0.240539 0.94710 -1.39197 0.85199 -0.735456
## Dim. 2 -1.935708 -2.43096 -0.10651 0.57694 0.788435
##
##
## Columns:
                      light medium
                                      heavy
              none
                                                     24 / 32
```

```
ca(smoke) $rowcoord
##
         Dim1
                 Dim2
                         Dim3
## SM -0.2405 -1.9357 3.4903
## JM 0.9471 -2.4310 -1.6574
## SE -1.3920 -0.1065 -0.2535
## JE 0.8520 0.5769 0.1625
## SC -0.7355 0.7884 -0.3974
ca(smoke)$sv
## [1] 0.27342 0.10009 0.02034
round(ca(smoke)$rowcoord[,1]*ca(smoke)$sv[1],4)
                JM
                        SE
                                        SC
##
        SM
                                 JΕ
## -0.0658 0.2590 -0.3806 0.2330 -0.2011
round(Fmat[,1],4)
## [1] -0.0658 0.2590 -0.3806 0.2330 -0.2011
                                                       25 / 32
```

Verify CA by hand

26 / 32

Plots verifying CA

27 / 32

CA Plot with vector notations

CA Plot connecting row/col variables

Comparison to independent case

If the row variables and column variables almost independent:

- The data agrees with the expected counts
- The total mass is small
- The chisquare test is not significant

However, the ca picture is still available.

30 / 32

CA plot under independence

29 / 32

Edata = round(E) # rounded expected counts plot(ca(Edata),main="CA expected counts under indep.")

CA expected counts under indep.

ca(data) vs ca(expected counts) in comparable scales

CA on original data Smoke CA expected counts (if indep) 9.0

32 / 32

0.1

0.2