1202 大班期末考试复习资料 (大三上学期)

目录

2011 年 DSP 期末考题・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 1
2012 年 DSP 期末考题・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
2013 年 DSP 期末考题・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
2014 年 DSP 期末考题 · · · · · · · · · · · · · · · · · · ·	• 11
2012 年数字电路期末考题 • • • • • • • • • • • • • • • • • • •	15
2011 年数字电路期末考题 • • • • • • • • • • • • • • • • • • •	• 21
2010 年数字电路期末考题 • • • • • • • • • • • • • • • • • • •	26
2013年电子电路 II 期末考题 · · · · · · · · · · · · · · · · · · ·	31
2010年电子电路 期末考题 · · · · · · · · · · · · · · · · · · ·	36

更多考题和答案 尽在资源站

2010~2011 学年第 1 学期

数字信号处理 期末考试试卷

	(2011	年 1月	21	日)
学号:	姓名:	:		成绩:

一、基本计算题(60分,每小题10分)

1.给定两个序列:

$$x_1[n] = \begin{cases} n+1, & 0 \le n \le 5 \\ 0, & 其他 \end{cases}$$

$$x_2[n] = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & 其他 \end{cases}$$

- 1) 求两者的线性卷积 $x_1[n]*x_2[n]$;
- 2) 求两者的循环卷积 $x_1[n]$ ⑧ $x_2[n]$ 。
- 2.试确定 $x(n) = \cos(\omega_0 n)u[n]$ 的 z 变换。

3.试求
$$H(z) = \frac{1+2z^{-1}+z^{-2}}{2-3z^{-1}+z^{-2}}$$
, $ROC: |z| > 1$ 的反变换。

4.假设 $H_a(s) = \frac{1}{(s+3)(s+2)}$ 为模拟滤波器的系统函数, 试分别用冲击响应不变法和双线

性 Z 变换法将其转换为离散滤波器 H(z),请给出离散滤波器的系统函数,并给出典范型实现结构。

- 5.对离散时间序列 x[n]进行 1024 点 DFT 计算,得到 X[k],请问:
 - 1) 在 X[k] 中, k = 10, k = 800 对应的频率 $\omega = ?$
 - 2) 请问完成 1024 点 DFT 所需的复数乘法的次数?
 - 3) 若采用 1024 点 FFT 运算,请问其蝶形个数?

6.下图为两个系统框图:

- 1) 求两系统的差分方程;
- 2) 说明上述两流程图对应系统之间的关系。
- 二、 $(15\, eta)$ 一利用离散时间滤波器过滤连续时间信号的系统,其输入信号的频谱 $X_{\mathfrak{o}}(j\Omega)$

及离散时间滤波器的频率响应 $H(e^{j\omega})$ 如下图所示。

第 2 页 共 40 页

系统采样周期为 T。

- 1) 试问系统采样周期最大可选择多少?
- 3)请画出采样周期为最大周期时,输出信号的频谱 $Y_{s}(j\Omega)$ 。
- 三、(15分)利用离散时间滤波器过滤连续时间信号的系统如图所示:

采样时间 $T=10^{-4}s$ 。系统等效的连续时间系统的 $H_{eff}(j\Omega)$ 指标为:

$$0.99 \le \left| H_{eff}(j\Omega) \right| \le 1.01$$
, $\left| \Omega \right| \le 2\pi (1000)$
 $\left| H_{eff}(j\Omega) \right| \le 0.01$

- 1)分别用冲击不变法和双线性变换法来设计中的离散时间系统。试分别给出这两种方法的 $H(e^{j\omega})$ 指标。
- 2) 用双线性不变法设计一满足上面要求的数字巴特沃兹滤波器,该滤波器的阶数是多少?

四、(10 分)试证对于第 III 类 FIR 线性相位系统不适合作为低通滤波器,也不适合作为高通滤波器。(注:第 III 类 FIR 线性相位系统单位脉冲相应?? [n]=-h[M-n], $0 \le n \le M$; M 为偶整数)

2011~2012 学年第 1 学期

数字信号处理_期末考试试卷

学号:	(2011 姓名:	年 1月		:	
一、填空计算题(共					
1. 已知因果广义线性	相位 FIR 滤波器的	的一个零点为	ı 2-2j,则必定	存在零点	`
`	;				
2. IIR 滤波器设计的冲	击响应不变法和	双线性变换法	中,模拟角频	[率和数字角频	[率之间的关
系分别为		;			
3. 若有系统 <i>H</i> ₁ (<i>z</i>) =	$\frac{0.5-z^{-1}}{1-0.2z^{-1}}$,则与	之具有相同幅	ā度响应的最 小	ヽ相位系统 $H_{\scriptscriptstyle m m}$	$_{ ext{in}}(z)$ 的零点
是,极点	是;				
4.某 LTI 系统的单位版 延迟为;	次冲响应为 -1 ↓ 0	1 2 3 4 , 该	系统((是否) 线性相	目位系统,群
5. 带宽限制在 5KHz,	即对于 $ \Omega \ge 2\pi$	z(5000), X	$_{\varepsilon}(j\Omega)=0$ 的语	车续时间信号:	$x_{c}(t)$,以最
小Hz 的采标	羊率对 $x_c(t)$ 采样名	得到的 <i>x</i> [<i>n</i>] =	$x_c(nT)$ 不会消	昆叠。对该采样	率下所得采
样信号 <i>x</i> [<i>n</i>] 做 FFT,	当采用	_点数的 FFT	时,可保证谱	线间隔对应模	拟频率小于
5Hz;					
6.对于长度为 10 的序	列 x[n],其 10 点	ī DFT 记为 <i>X</i>	[₁₀ [k],100 点	的 DFT 记为 Z	$X_{100}[k]$ 。已
知 $X_{10}[1] = 5 + 3j$, 之	$X_{10}[8] = 7$,必定	有 X ₁₀₀ [[] = 5 + 3j	X_{100} [_]=7;
7、无限长信号 <i>x</i> [n] 乘	以长度为L的矩	形窗函数 w[n],可得到有阳	艮长序列 <i>ν[n]</i> =	=x[n]w[n]
计算 <i>v[n</i>]的 N 点 FFT	得到 <i>V</i> [k]。				_方法可提高
V[k]的分辨率;				方法可减少	少 频谱泄露。

二、
$$(12\, \%)$$
 某因果的 LTI 系统的系统函数为 $H(z)=\frac{2}{1-\frac{1}{2}z^{-1}}+\frac{-1}{1+\frac{1}{4}z^{-1}}$

a) H(z) 的收敛域是什么? b) 系统是稳定的吗? 说明理由;

c)输入 x[n]产生的输出为 $y[n] = -\frac{1}{3}(-\frac{1}{4})^n u[n] - \frac{4}{3}(2)^n u[-n-1]$, 求 x[n]的 z 变换 X(z);

d) 该系统是否存在因果稳定的逆系统?

三、 $(12\, eta)$ 在图 1 (a) 示系统中,输入连续信号的频谱 $X_c(j\Omega)$ 和离散时间系统 $H(e^{j\omega})$ 分别如 (b) (c) 所示。当 $T_1=T_2=0.02s$ 时,试画出 $X(e^{j\omega})$ 、 $Y(e^{j\omega})$ 及输出 $Y_c(j\Omega)$ 的图形。

四、(10分)考虑如下图所示由子系统 A 和子系统 B 组成的系统,

- a) 求子系统 A 的差分方程; b) 画出子系统 B 的线性相位直接型结构;
- c) 若想具有最小延迟单元个数, 信号流图可作何种修改?
- d) 子系统 B 是第几类线性相位系统? 是否适合做低通和高通滤波器?

五、(15 分) 给定两个序列 $x_1[n]$ 和 $x_2[n]$, 其中:

$$x_1[n] = \begin{cases} n+1 & 0 \le n \le 5 \\ 0 & 其它 \end{cases} \qquad x_2[n] = \begin{cases} n^2 & 0 \le n \le 4 \\ 0 & 其它 \end{cases}$$

- **a**) 求线性卷积 $x_1[n]^*x_2[n]$; **b**) 求 6 点循环卷积;
- c) 求 11 点循环卷积; d) 说明循环卷积和线性卷积相同需要满足的条件。

六、(10分)采用窗函数法设计一个广义线性相位的数字低通滤波器。要求性能指标为: $\omega_2 = 0.5\pi$, $\omega_2 = 0.7\pi$ 。通带纹波 $\delta_1 = 0.04$,阻带纹波 $\delta_2 = 0.05$ 。

 \mathbf{a}) 写出该离散时间系统的单位脉冲响应h[n]; \mathbf{b}) 该滤波器的延迟是多少?

(参考表)

() () ()					
名称	最大旁瓣幅度	主瓣近似宽度	最大逼近误差	等效 Kaiser 窗	等效 Kaiser 过渡带宽
矩形	-13	4π/(M+1)	21dB	0	1.8π/M
巴特利特	-25	8π/M	25dB	1.33	2.37π/M
汉宁	-31	$8\pi/{ m M}$	8π/M 44dB		5.01π/M
哈明	-41	8π/M	51dB	4.86	6.27π/M
布莱克曼	-57	12π/M	74dB	7.04	9.19π/M

七、(10 分) 两个 8 点长序列 $x_1[n]$ 、 $x_2[n]$ 如下所示,

$$x_1[n] = 1\delta[0] + 2\delta[1] + 3\delta[2] + 4\delta[3] + 3\delta[4] + 2\delta[5] + 1\delta[6]$$

$$x_2[n] = 3\delta[0] + 2\delta[1] + \delta[2] + 1\delta[4] + 2\delta[5] + 3\delta[6] + 4\delta[7]$$

 $X_1[n]$ 、 $X_2[n]$ 的 8点 DFT 分别记为 $X_1[k]$ 、 $X_2[k]$,若已知 $X_1[k]$,试用 $X_1[k]$ 表示 $X_2[k]$ 。

八、(10 分) 一个长度为 100 的有限长序列 x[n], 即 n < 0 和 $n \ge 100$ 时 x[n] = 0, $X(e^{j\omega})$ 表示其 DTFT。现有长度为 64 和 128 点的 FFT 程序可供使用,请说明如何利用所提供的 FFT 程序, 计算得到:

a)
$$X(e^{j\omega})\Big|_{\omega_1 = \frac{2\pi k}{64}, k=0,1,\cdots,63}$$
 b) $X(e^{j\omega})\Big|_{\omega_2 = \frac{2\pi k}{128}, k=0,1,\cdots,127}$

2012~2013 学年第 1 学期

数字信号处理_期末考试试卷

(2013 年 1 月 8 日)
学号: 姓名: 成绩:
字号:
$\frac{1}{0}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{1}$ 1
$X(k)$ 为其 6 点傅里叶变换,则可求得 $X(e^{j0}) =, X(e^{j\infty}) =,$
$X(0) = $, $X(3) = $, $\int_{-\infty}^{\infty} X(e^{j\omega}) ^2 d\omega = $;
2.复指数序列 $e^{j0.5n}$ (其中 $-\infty < n < \infty$) 的傅里叶变换(DTFT)为、
$e^{j0.5n}u[n]$ 的 z 变换为、 $x[n] = e^{j\frac{2\pi}{N}mn}(0 < m < N)$ 的 N 点 DFT 为
3.单位脉冲响应为 $h[n] = \delta[n] - \delta[n-1]$ 的系统是(时变、非时变)(因
果、非因果)(稳定、不稳定)(线性、非线性)系统;
x(n) z ⁻¹ z ⁻¹ z ⁻¹ z ⁻¹ z ⁻¹ x(n) 2 4 8 16 32 y(n) 图 1 某 LTI 系统的横截型结构
4.某 LTI 系统的横截型结构如图 1 所示,该系统的单位脉冲响应为 ,系统函数
为, 该系统(是否)线性相位系统;
5.FIR 滤波器的窗函数设计法中,阻带衰减取决于,加特定形状窗口条件下,过
渡带宽度取决于;
6.一个时间连续的实信号 $x_c(t)$, 带宽限制在 5KHz 以下, 即对于 $ \Omega \ge 2\pi (5000)$, $X_C(j\Omega) = 0$
以每秒 10000 个样本的采样率对信号 $x_c(t)$ 进行采样,得到一个长度为 N=1000 的序列
$x[n] = x_c(nT) \circ x[n]$ 的 N 点 DFT 记作 $X[k]$ 。若已知 $X[400] = 1 + j$,则 $X[__] = 1 - j,k = 400$
对 应 $X_{\mathcal{C}}(j\Omega)$ 的 连 续 频 率 是 $\Omega_{\scriptscriptstyle k}$ =rad/s , 在 该 连 续 频 率 处

$$X_C(j\Omega_k) = \underline{\hspace{1cm}};$$

- 7.任何信号通过线性时不变的离散时间系统不可能产生比输入信号本身更多的频率分量()。
- 8.离散时间系统的极点全部在 Z 平面的单位圆内,则系统一定是稳定的 ()
- 9.因果线性时不变系统的其单位冲激响应未必是正半轴序列 ()
- 10.线性常系数差分方程无论初始状态为何, 总是代表线性时不变系统 ()
- 11.线性时不变离散时间系统存在系统函数,则频率响应必存在且连续 ()
- 二、(12分)某LTI因果系统用下面差分方程描述:

$$y(n)=0.9y(n-1)+x(n)+0.9x(n-1)$$

- a)求系统函数 H(z)及单位脉冲响应 h(n);
- b)写出系统频率响应函数 $H(e^{j\omega})$ 的表达式,说明该系统为低通滤波器还是高通滤波器?
- c)该系统是否存在因果稳定的逆系统?
- 三、(15 分) 在图 3 所示系统中,输入连续信号 $x_c(t)$ 的频谱 $X_c(j\Omega)$ 是带限的,即 $|\Omega| \ge \Omega_N$

时,
$$X_{C}(j\Omega) = 0$$
。离散时间系统 $H(e^{j\omega}) = \begin{cases} 1 & |\omega| \leq \omega_{c} \\ 0 & 其它 \end{cases}$

- (a) 为了使 $y_{c}(t) = x_{c}(t)$, 采样周期 T 最大可以取多少?
- (b) 要使整个系统等效为低通滤波器,确定 T的取值范围?
- (c)若给定采样频率 $1/T=20 {
 m KHz}$,整个系统等效为截止频率为 $3 {
 m KHz}$ 的理想低通滤波器,确定 ω_c 及 Ω_N 的取值范围。

四、 $(15\, eta)$ 已知序列 $x[n]=4\delta[n]+3\delta[n-1]+2\delta[n-2]+\delta[n-3]$,其 6 点离散傅里叶变换(DFT)用 X[k] 表示。

- a) 若序列 y[n] 的长度为 6, 其 6 点离散傅里叶变换为 $Y[k] = W_6^{4k} X[k]$, 求 y[n];
- b) # x[n] * x[n]; c) # x[n] 4 x[n];

五、(10分) 采用 Kaiser 窗函数法设计一个广义线性相位的数字低通滤波器,经验公式如下

$$\beta = \begin{cases} 0.1102(A - 8.7) & A > 50 \\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21) & 21 \le A \le 50 \\ 0.0 & A < 21 \end{cases} \qquad M = \frac{A - 8}{2.285\Delta\omega}$$

要求性能指标为: $\omega_p=0.4\pi$, $\omega_s=0.6\pi$, 通带纹波 $\delta_1=0.005$, 阻带纹波 $\delta_2=0.001$ 。 确定该滤波器的参数 β 、最小阶次及延迟。

六、 $(8 \, \mathcal{O})$ 研究一个如图所示长度为 N 的有限长序列 x[n],实线表示序列在 0 和 N-1 之间取值的包络, $x_1[n]$ 是 x[n]后面补上 N 个零的长度为 2N 的有限长序列。

 $\mathbf{x}[n]$ 的 N 点 DFT 用 X[k] 表示, $\mathbf{x}_1[n]$ 的 2N 点 DFT 用 $X_1[k]$ 表示,能否用 $X_1[k]$ 表示得出 X[k] ,说明理由。

七、 $(15\, eta)$ 考虑两个实值有限长序列 h[n]和 x[n], $0 \le n \le 58$,若线性卷积为 y[n] = x[n]*h[n],该线性卷积可用 DFT 进行计算,即分别计算出 H[k]、X[k],然后通过 IDFT 计算出 $y[n] = IDFT\{X[k]H[k]\}$ 。试问:

- (a) 计算 H[k]、X[k]的最小点数是多少?
- (b) 若有复数基 2-FFT 程序可供使用,如何构造一序列 z[n],通过一次调用该程序,并经简单计算得到 H[k]和 X[k],写出实现步骤。

2013~2014 学年第 1 学期

数字信号处理 期末考试试卷

学号:	(2014 年 姓名·	, ·	* *	
一、填空计算题(每空1分,				
1.用 $T(x[n]) = \sum_{k=n-n_0}^{k=n+n_0} x[k]$ 京	【描述的系统是_	(稳知	定、不稳定)_	(因果、非
因果)(线性、非线	送性)	(时变、非	时变)	_(有、无记忆)的;
2.图 1 示出了某 LTI 系统的系	统函数 H(z)的零	7极点图,该	系统是	(因果、非因果)、
(是否) 广义线性相	位系统,	(是否)	存在稳定的逆	系统;这样的零点分
布 (能否)作为某个幅度平方	函数的零点,		(能否) 作为基	某个最小相位系统的
零点。				
2 - 图 1 某 LTI 系统的:		30 — 20 — 10 —		列的幅度谱
3.为了对两个正弦(或余弦)	序列求和组成的	的信号 x[n]进		用 64 点矩形窗对数
据截取。图 2 给出了截取序列	的 64 点 DFT 的	幅度(仅画	出 0≤k≤32 范	围),则不考虑混叠
时,x[n]中两个频率分量的数	字角频率分别为		_和	_, 若该序列是对连
续时间信号 x(t)以 fs=400Hz 矛	· 样获得,则两个	个分量的频率	区分别为	_Hz 和Hz。
4.序列 x(n)= δ (n-n ₀), (0 <n<sub>0·</n<sub>	<n)的傅里叶变< th=""><td>换(DTFT)</td><td>为</td><td>、z 变换为</td></n)的傅里叶变<>	换(DTFT)	为	、z 变换为
、N 点 D	FT 为	;	若 n ₀ =2,则序	列{1,2,3,4,5}与 x(n)

图 3 连续时间信号的离散事件处理

- 二、(10 分) 已知 LTI 系统的差分方程 y(n)=x(n)-x(n-4)
- (a)写出其系统函数, 画出零极点图;
- (b)画出系统的实现流图;
- (c)若差分方程为 y(n)=0.5y(n-1)+x(n)-x(n-4), 画出系统的直接 II 型流图。
- 三、(10 分)在图 3 所示系统之前,通常需要加入如图 4 所示的连续时间抗混叠滤波器 Ha(j Ω)。 给定连续时间信号 $x_a(t)$ 的傅里叶变换如图 5 所示,采样周期 T 为已知。
- (a) 画出理想抗混叠滤波器 $Ha(i\Omega)$ 的幅频响应;
- (b) 画出 $x_s(t)$ 和 x[n] 的傅里叶变换 $Xc(i\Omega)$ 和 $X(e^{j\omega})$;
- (c) 若图 3 系统中的 $H(e^{j\omega})$ 如图 6 所示,请画出 $Y(e^{j\omega})$ 和 $Y(c(j\Omega))$;

图 4 抗混叠滤波器

图 5 x_a(t)的傅里叶变换(最大幅度为 1)

图 6 H(e^{Jw}

四、(10分)采用 Kaiser 窗函数法设计一个广义线性相位的数字低通滤波器,经验公式如下

$$\beta = \begin{cases} 0.1102(A - 8.7) & A > 50 \\ 0.5842(A - 21)^{0.4} + 0.07886(A - 21) & 21 \le A \le 50 \\ 0.0 & A < 21 \end{cases} \qquad M = \frac{A - 8}{2.285\Delta\omega}$$

(这中间的文字都没照上)

(b) Kaiser 窗表达式记为 w(n), 写出所设计的滤波器的脉冲响应 h(n)。

五、(10 分) 若一个系统的冲激响应为
$$h[n] = \begin{cases} 1 & 0 \le n \le 11 \\ 0 &$$
其它 , 当输入信号

$$x[n] = \begin{cases} n & 0 \le n \le 9 \\ 0 &$$
其它 时,输出 y[n]可用不同方法求得

- (a)求线性卷积 x[n]*h[n]可得 y[n], 请计算 x[n]*h[n];
- (b)计算 N 点 FFT 得到 Y[k]=X[k]H[k]。利用逆 FFT 可得 y[n],请分别计算 N=12、N=21 时的输出 y[n];
- (c)请说明什么时候(b)的计算结果和(a)相同,简要说明理由。

六、 $(10 \, f)$ 一个 N 点长序列 x[n]的 DFT 可表示为 $X[k] = \sum_{n=0}^{n=N-1} x[n] e^{-j(2\pi/N)kn}$,k=0,1,... N-1。 (a)设 N=8,若将 x[n]分为两个 4 点长序列 $x_1[n]$ 和 $x_2[n]$,其 4 点 DFT 分别记为 $X_1[k]$ 和 $X_2[k]$, 试问如何通过 $X_1[k]$ 和 $X_2[k]$ 的组合计算出 x[n]的 8 点 DFT X[k], 给出实现方法; (b)给出 N 点 FFT 计算流图中蝶形个数计算公式,并计算 N=4096 的蝶形个数?

七、 $(10\, eta)$ 设 $x_c(t)$ 为限带信号,即当 $|\Omega| \ge \Omega_N$ 时 $X_c(j\Omega) = 0$,现对 $x_c(t)$ 采样得到序列 $x[n] = x_c(t)|_{t=nT}$,采样间隔 $T < \pi/\Omega_N$,试证明 $x_c(t)$ 可由 x[n] 重构,即

$$x_c(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

八、(10 分) 设 x[n]是长度为 N=1000 点的序列,X[k]表示 x[n]的 1000 点 DFT,

$$X[k] = X(e^{j\omega})|_{\omega=2\pi k/N}$$
,k=0,1,...999,设

$$W[k] = \begin{cases} X[k] & 0 \le k \le 250 \\ 0 & 251 \le k \le 749 \\ X[k] & 750 \le k \le 999 \end{cases}$$

可求得 W[k]的 1000 点 IDFT, w[n]=IDFT{W[k]}

现构造
$$y[n] = \begin{cases} w[2n] & 0 \le n \le 499 \\ 0 & 500 \le n \le 999 \end{cases}$$

对 y[n]做 1000 点 DFT 得到 Y[k],试分析 Y[k]与 $X(e^{j\omega})$ 之间的关系。

2011 \sim 2012 学年第一学期

《数字电路与系统》期末考试试卷 (A卷)

(2012年01月09日)

班级:	; 学	号:	; 妁	生名:		; 成绩: _				
注意事项:					分可以直接	在试卷上作	答;其它部分请			
计分栏:	μη,									
_	=	Ξ	四	五.	六	七	合计			
(10分)	(10分)	(15分)	(15分)	(15分)	(20分)	(15分)	H VI			
括号 (1) 对于- (2) TTL 门 流约 (3) 三态门 (4) 单稳流度。	一、(10分,每小题 2分)判断各题正误,正确的在括号内记"√",错误的在括号内记"×"。 (1)对于十进制纯小数,求它的二进制表示可以采用"除 2 取余"法。() (2)TTL门电路在高电平输入时,其输入电流很小(74系列每个输入端的输入电流约为 40 μ A)。									
二、(10)	分,每小匙	5分)								
(1) 设逻	辑 函 数	为 $f(A,B,$	(C,D) = A((B+C)+B	$\cdot \overline{D}(\overline{A} + C)$,则它。	的反函数			
$\overline{f(A,B,C)}$	(,D)=					(写成	"与或"表			
达式的形	式,可以2	不用化简)	,则 <i>f</i> (A,B,	C,D) 的对得	禺式为					

 $f^{D}(A,B,C,D) = _____(可以不用化简)$ 。

(2) 如图 2-1,门电路 G_1,G_2 均 TTL 工艺,当输入信号 A 为低电平 V_{ll} ,

B 为高电平 V_H 的情况下,图中 T 点为______ 电平(填写"高"或"低");如果采用正逻辑(即:高电平代表逻辑"1",低电平代表逻辑"0"),请写出输出 Y 关于 A,B,C 的逻辑函数 Y(A,B,C)=

三、(15分)如图 3-1 所示的电路,其中 74151 是"8选1"数据选择器;试进行如下的组合逻辑电路分析。

- (1) 写出该电路的逻辑表达式 Y(A,B,C,D);
- (2) 将该逻辑表达式化简为最简"与或"表达式 Y₁(A,B,C,D);
- (3) 设:根据应用的情况,还存在着无关项集合 $d(A,B,C,D)=\{m_0,m_5,m_6,m_7\}$,利用这些无关项对逻辑函数进行化简,请以"与非——与非"形式写出化

简后的结果 Y₂(A,B,C,D)。

四、(15 分)已知电路原理图如图 4-1 所示, CP_1 、 CP_2 的波形如图 4-2 所示,设触发器的初始状态均为 "0",请在图 4-2 中画出输出端 B 和 C 的波形。

图 4-2

五、(15分)分析如图 5-1 所示的时序逻辑电路,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,其中 X 为输入的逻辑变量。

六、 $(20\, \%)$ 设计一个彩灯控制的时序逻辑电路,要求红(R)、黄(Y)、绿(G) 三种颜色的灯在时钟信号 CP 的作用下按表 6-1 规定的顺序转换状态。表中"1"表示"亮","0"表示"灭"。 要求电路能够自启动。

可供选用的器件为:上升沿触发的JK 触发器、与非门、反相器。 请简要说明设计过程,并绘制电路图。

表 6-1

CP顺序	红 (R)	黄 (Y)	绿 (G)
0	0	0	1
1	0	1	0
2	1	0	1
3	0	1	1 循环
4	1	1	1
5	1	1	0
6	1	0	0

- 七、(15分)综合分析图 7-1 所示的电路。其中,芯片 74160 为同步十进制加法 计数器,其操作特性如表 7-1 所示; PROM 的 16 个地址单元中的数据在表 7-2 种列出,设初始时刻计数器状态为 0000,要求:
 - (1) 请说明 555 定时器构成什么类型的电路;
 - (2) 请说明在图 7-1 中, 芯片 74160 被配置为多少进制的计数器:
 - (3) 芯片 CB7520 为 10 位 D/A 转换器,输出表达式为: $v_{\rm o} = -\frac{V_{\rm REF}}{2^{10}} \sum_{i=0}^9 d_i \times 2^i$,请在图 7-2 中画出 D/A 转换器输出电压 $v_{\rm o}$ 的波形图。

表 7-1

时钟	清零	预置	使能		
CLK	$\overline{R_{\scriptscriptstyle D}}$	\overline{LD}	EP	ET	工作模式
×	0	×	×	×	异步清零
↑	1	0	×	×	同步预置数
×	1	1	0	1	保持
\times	1	1	×	0	保持 (但 <i>C</i> =0)
<u> </u>	1	1	1	1	加法计数

第 18 页 共 40 页

表 7-2 PROM 的 16 个地址单元中的数据

地址输入							数据	输出			
A_7	A_6	A_5	A_4	A ₃	A_2	A_1	A_0	O ₃	O_2	O_1	O_0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	1	1	0	1	0	0
0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	1	0	1	0	1	0	0
0	0	0	0	0	1	1	0	0	0	1	0
0	0	0	0	0	1	1	1	0	0	0	1
0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	1	1	1	0	0
0	0	0	0	1	0	1	0	0	0	0	1
0	0	0	0	1	0	1	1	0	0	1	0
0	0	0	0	1	1	0	0	0	0	0	1
0	0	0	0	1	1	0	1	0	1	0	0
0	0	0	0	1	1	1	0	0	1	1	1
0	0	0	0	1	1	1	1	0	0	0	0

2010 ~ 2011 学年 第 一 学期

《数字电路与系统》期末考试试卷

(2011年1月17日)

班级:	; 学	号:	; 奖	生名:		; 成绩: _			
注意事项: 1. 解答问题时,请给出必要的步骤; 2. 第一、二、四、六题直接在试卷上作答;其它题在答题纸上作答; 3. 绘制电路原理图可以采用美标符号,也可以采用国标符号。 计分栏:									
_	二 (10分)	三 (15分)	四 (15分)	五 (15分)	六 (15分)	七 (20分)	合计		
括号 (1) 一片 (2) 三态 (3) 以 8-k	内记"× [°] ROM 有 <i>n</i> 门能实现' oit 表示有	"。 根地址线新 "线与"功 符号整数,	俞入, m 根 能。 则以补码	位线输出, 表示(-26)1	则其容量 o为(E5)	为 <i>m×n</i> 。 … () 16。 告果为 1 。.	(
(5) 电路?	S — CLK — 守号 R —	IS ヿ ー Q CI IR ヿ ⊶ 豆 _表	 示下降沿	触发的触发	 发器。		()		
二、(10 /	分,第 1 7	、题 6 分,	第2小题	4 分)电路	各的功能与	特性			

- (1) 对于图 2-1 中的门电路,请判断输出 Y_a, Y_b, Y_c 为高电平还是低电平。

Y_a为______电平; Y_b为______电平; Y_c为_____电平。

(2) 对于倒 T 形电阻网络 D/A 变换器电路,电路内部的开关状态如图 2-2 所示; R_F 的阻值为 R,参考电压源为 V_{REF} =-8V,运算放大器输出的电压值为:

三、(15 分) 由 1 位全加器、2-4 译码器 以及 与非门 组成的逻辑电路如图 3-1 所示,试写出最小项之和形式的逻辑函数 F(a,b,c,d)。(不用化简)

四、(15 分)电路如图 4-1 所示, FF_1 和 FF_2 为边沿触发 JK 触发器,初始状态均为 0,请按照给定的输入信号波形(如图 4-2),绘出输出信号 Q_1 和 Q_2 端的波形。

五、(15分)分析图 5-1 给出的计数器电路,74LS161 为同步二进制计数器,其功能表见表 5-1。请写出分析思路,并说明这是多少进制的计数器。

表 5-1

时钟	清零	预置	使能		
CLK	$\overline{R_{\scriptscriptstyle D}}$	\overline{LD}	EP	ET	工作模式
×	0	×	X	X	异步清零
†	1	0	×	×	同步预置数
×	1	1	0	1	保持
×	1	1	×	0	保持 (但 <i>C</i> =0)
↑	1	1	1	1	加法计数

六、(15 分)如图 6-1 所示的电路,虚线框内是 CMOS 门电路构成的微分型单稳 态触发器;单稳态触发器的反相输出 $\overline{v_{02}}$ 作为 D 触发器的时钟;试分析:

(1) 设 R=30k Ω , C=0.1 μ F, CMOS 门限为 $V_{TH}=V_{DD}/2$, $R_{d}\cdot C_{d} << R\cdot C$,求单 稳态触发器输出脉冲的宽度 T_{W} ;(计算中取 In2 \approx 0.69)

(2) 根据图 6-2 中 v_1 的波形,绘出 $\overline{v_{o2}}$ 和 v_0 的波形。

- 七、(20分)设现有 正边沿触发的 JK 触发器 和 与非门 元件,数目不限。如图 7-1,给定时钟脉冲序列 CLK,请设计 同步时序逻辑电路,以实现 Y_1 和 Y_2 的波形输出。
 - (1) 根据设计需求,请简要说明电路设计的思路;
 - (2) 推导出电路的状态方程、输出方程、驱动方程,并要求驱动逻辑最简;
 - (3) 绘制出电路的原理图,并要求能够自启动。

2009 ~2010 学年第 1 学期

数字电路与系统 期末考试试卷

(2010 年 1 月 19 日)

班	级:	; 学 [!]	号:	;	姓名:		; 成	绩:	
注		1、解答问题 2、第一题和 3、绘制电函 4、表示逻辑 中应统一	印第三、四 路原理图可 掛变量(如	、五、七月 以采用国材	题的画图部 示符号,也	可以采用	美标符号;	; ,但在同一道	题
	(10分)	(15分)	三 (15分)	四 (15 分)	五(15分)	六 (20分)	七 (10分)	合计	
分 (1) (2) (3)	一、判断各题正误,正确的在括号内记"√",错误的在括号内记"×"。(10 分,每小题 2 分) (1) 原码和补码均可实现将减法运算转化为加法运算。								
(5)	用具有:	3 位地址输	入的数据说	选择器,可	以产生任何	何形式输入	变量数为	4的组合逻辑	函
数。									
_	、逻辑函	数式与化简	(15 分,)	第 1 小题 5	分,第2	小题 10 分)		
(1)	(1) 根据图 2-1 所示的电路原理图,写出 Y 关于逻辑变量 A, B, C 的函数式。								

(2) 已知 $F(A,B,C,D) = \sum m(2,3,9,11,12)$; 约束条件: $\sum m(5,6,7,8,10,13) \equiv 0$ 。试用卡诺图化简法求 F 的最简 "与一或"表达式和最简 "或一与"表达式。

三、触发器电路如图 3-1 所示,已知 CLK 和 A 端的波形如图 3-2,设触发器的初始状态为 O,请绘出 \overline{R}_D 和 Q 端波形。(15 分)

四、使用 4 位同步二进制计数器 74161(如图 4-1 所示),设计一个 13 进制的计数器;要求计数器必须包括状态 0000 和 1111,并且利用原芯片的进位端 c 作为 13 进制计数器的进位输出,可以附加必要的门电路。74161 的功能表如表 4-1 所示。(15 分)

表 4-1

CLK	$\overline{R_D}$	\overline{LD}	EP	ET	工作 状态
×	0	×	×	×	清零
1	1	0	×	×	预置数
×	1	1	0	1	保持
×	1	1	×	0	保持 (但 <i>C</i> =0)
1	1	1	1	1	计数

图 4-1

五、采用 555 定时器设计一个多谐振荡器,如图 5-1 所示。要求输出脉冲的振荡频率为 f=3 kHz,占空比 q=60%,积分电容 C=1000pF。(15 分)

- (1) 补全图 5-1 中电路连线,实现多谐振荡功能;
- (2) 在图 5-2 中画出输出端 v_O 和电容端 v_C 的工作波形图;

(3) 计算 R_1 和 R_2 的阻值(In2 pprox 0.7)。

图 5-2

六、采用上升沿触发的 D 触发器设计一种进制可控的同步加法计数器,按照自然二进制编码进行加法计数; 当输入 A=0 时,为七进制计数器; 当 A=1 时,为五进制计数器; 要求具有自启动功能。(20 分)

- (1) 分析设计要求,绘出状态转换图和状态转换表;
- (2) 求出最简的驱动方程;
- (3) 进行自启动检查; 如果必要,对设计进行修正,使之能够自启动;
- (4) 绘制设计的电路图。

七、采用脉冲触发的主从 J-K 触发器和容量为 16×8 的 PROM 组成时序逻辑电路,如图 7-1 所示, $Y_3Y_2Y_1Y_0$ 输出的是自然二进制数编码。(10 分)

- (1) 求电路的驱动方程、状态方程;
- (2) 设 $Q_3Q_2Q_1Q_0$ 的初始状态为 0000, 绘出如图 7-2 所示的状态转换图;
- (3) 求实现该输出功能的 $Y_3Y_2Y_1Y_0$ 的编程,在图 7-1 中画出 PROM 的矩阵连接图。

2012~2013 学年第 一 学期

<u>电子线路Ⅱ</u> 期末考试试卷 (2013 年 1 月 14 日)

班级:	; 学号:	;姓名:	; 成绩:	
一、填空	(共20分)			
1. (3分)	滤波器的频率特性包括	特性和	特性,理想滤波器是 	指
			对应频率范围为 }范围内最多可容纳	_
a)倍频器 d)脉冲抗	B; b) 混频 (变频) 器; c) 技术中的 RC 微分电路,RC	并联或串联谐振回题 积分电路;e)工作	各,]正弦波);
{ {	題图 1 所示振荡器类型为 15l0Ω 15pF 15mΩ 1500P 2 3.3PF 5.1kΩ 510Ω 2.5μH	V _{CC}	勝	R3
5. (3 分	题图 1)题图 2 中 R_1 是电感 L 的	固有损耗电阻,并且	题图 2 ${\mathbb R}$ 的阻抗 X_{C2} 满足 X_{C2}	$<< R_3$
当 R_1 增大	时回路的品质因数 $oldsymbol{Q}$; 当 <i>R</i> ₂ 增大	时回路的谐振频率	;
当 R_3 增大	、时回路的等效通频带	。(加大,派	域小,不变)	

6. (4分)题图 3 是某接收机原理框图,其中射频输入范围为 4~30MHz, VCO 自身射频通过 外部信道选择开关在 6~32MHz 之间调整。图中 1 处频率为_____, 2 处频率为_____, 3 处频率为 ______, 4 处频率为_____。

7. (2 分)若非线性电路的输入信号 $v_i(t) = \cos \omega_i t + \cos \omega_2 t$ (V), 非线性电路的输出输入 特性表示为下列幂级数

(a)
$$v_0(t) = a_0 + a_1 v_i(t) + a_2 v_i^2(t)$$
, (b) $v_0(t) = a_2 v_i^2(t) + a_5 v_i^5(t)$

(b)
$$v_0(t) = a_2 v_i^2(t) + a_5 v_i^5(t)$$

(c)
$$v_0(t) = a_0 + a_1 v_i^3(t) + a_4 v_i^4(t)$$
, (d) $v_0(t) = a_4 v_i^4(t) + a_5 v_i^5(t)$

(d)
$$v_0(t) = a_4 v_i^4(t) + a_5 v_i^5(t)$$

则上述非线性电路中能产生 $\omega_1 + \omega_2$ 频率的是______,能产生 $3\omega_1$ 频率的是_____。

- 二、选择题(每题2分,共10分)
- 1. 根据调频波的特性, 当单音频调制信号的频率均增大一倍时, 则调频波的有效带宽将

- 2. 峰值包络检波器在解调高频等幅波时,其低通滤波器的输出波形为 _____。
 - (A) 正弦波 (B) 直流
- (C) 余弦脉冲 (D) 零

3. 二极管峰值包络检波器,原电路工作	三正常, 若负载电阻	加大,会引起	0	
(A)惰性失真 (B)底部切削失真	(C) 频率失真	(D)惰性失真及底	部切削失真	
4. 用乘积型同步检波器解调SSB 信号时	,要求参考信号与训	周制端的载频信号		
(A) 同频 (B) 同相	(C) 同频同相	(D)没有要求		
5. 高频功率放大器一般工作在丙类工作	状态,它的效率为	0		
(A) 50% (B) 78.5% (_		n) 89 7%	
(A) 30%			D / U3.770	
三、简答题(每题4分,20分)				
	U.) === U. W == 0			
1. 接收机中为什么会出现干扰?有哪些主要干扰类型?				

- 2. 为什么幅度解调器必须由非线性元件和低通滤波器组成?
- 3. 给出PLL的主要框图,分析PLL的频率特性为什么不等于环路滤波器的频率特性?在PLL中低通滤波器的作用是什么?
- 4. 为什么低频功率放大器不能工作在丙类,而高频功率放大器则可以工作在丙类?为什么 晶体管在低频工作不要考虑单向化问题,而在高频工作时时,必须考虑?
- 5. 有 A、B、C 三个匹配放大器,它们的特性如下:

放大器	功率増益 (<i>dB</i>)	噪声系数
Α	6	1.7
В	12	2.0
С	20	4.0

现将此三个放大器级联,放大一低电平信号,问此三个放大器应如何连接,才能使总的噪声系数最小,最小值为多少?

- 四、(15 分)假定晶体管的输入、输出阻抗对振荡器的影响可以忽略,而且两个变容二极管 特性完全相同,如题图 4 所。
- 1) 分析该电路的功能和特点,给出该电路的高频等效电路图;
- 2)图 4-a 中 5 个电感分别为 $L_{C1}=L_{C2}=L_{C3}=L_{C4}=300uH, L=10uH$, 试分析每个电感的作用;计算中心频率;
- 3) 如果调制信号波形如题图 4-c 所示, 求上下频偏值;
- 4) 无线电通信中为什么要进行调制解调?

题图 4-a 变容二极管直接调频电路

第 33 页 共 40 页

五、(15分)如图5所示接收机及其鉴频特性,中频为 10MHz,本振频率 $f_L > f_C$ 。当输入一个电压为 $5 \,\mu\,V$ (有效值),载波频率为 100MHz、调制频率 F=5kHz、调制指数 m=10 的单音余弦调频信号,

- 1) 写出输入电压 $U_s(t)$ 的表达式;
- 2) 分析接收机的频带宽度;
- 3) 画出鉴频器输出电压的波形图 (标出最大值); 若鉴频特性不变, 调制指数 m降低为原来的1/2, 给出此时鉴频器输出电压的波形。

六、(10分) 题图 所示振荡电路,其元件参数已注于图中。

- (1) 画出高频等效电路;
- (2) 要使振荡频率 $f_0 = 500$ KHz, 求回路电感 L 应为多少?
- (3) 计算反馈系数F;
- (4) 若把F 值减小到 $F' = \frac{1}{2}F$, 应如何修改电路元件参数?

 $C_1:510 \ pF, C_2:2200 \ pF$

七、(10分)已知一阶环路的复频域传递函数为

$$T(s) = \frac{K_P}{s + K_P}$$

若输入信号为

$$v_i(t) = V_{im} \sin[\omega_{i0}t + \Delta\theta_1 \sin\frac{K_P}{10}t + \Delta\theta_2 \sin\frac{K_P}{5}t] \quad (V)$$

环路锁定后输出信号为

$$v_o(t) = V_{om} \cos[\omega_{i0}t + A_1 \sin(\frac{K_P}{10}t + \phi_1) + A_2 \sin(\frac{K_P}{5}t + \phi_2)] \quad (V)$$

确定 A_1 、 A_2 、 ϕ_1 和 ϕ_2 的值。

2009~2010 学年第 一 学期

<u>电子线路Ⅱ</u> 期末考试试卷 (2010 年 1 月 14 日)

班级:	; 学号:	; 姓名:	; 成	绩:
一、填空(每是	题 2 分,共 10 分)			
1. (2分)常用口	中波广播波段的波长落	范围为 187m─560m,∄	『么其频率范围为	;为了
避免邻台干扰,	两个相邻电台载频之	之间至少要相差 10kHz	,那么在此波段剂	5国内最多可以容
纳个电台。				
2. (2分) 在题	图 1 所示并联谐振回]路中,电感的 Q 值为	7 200,电感量为 2	10μH, 电容值为
10pF,电容器的	的损耗可以忽略,则i	该回路通频带的宽度 4	Δ f=; 要	要使其通频带扩大
到 4 ∆ f,可以∋	采用的方法有 <u></u> C <u>L</u> (Q) 题图 1		R_s R_2 R_2 R_2 R_3 R_4 R_5	
3. (2分)题图	图 2 中电阻网络的噪声	^ե 系数为	, 其中V _s 、	R_{S} 为外加信号源
电压及其内阻,	R_1, R_2 均为有噪电阻	1.		
4. (2分)在超外	外差广播收音机中,中	1频 $f_I = f_L - f_S = 40$	65 <i>kHz</i> ,当收到频	i 率 $f_S = 550kHz$
的电台时,听到	到频率为 1480kHz	的强电台播音,则意响	未着出现了	干扰; 当收
到频率 $f_S = 14$	180 <i>kHz</i> 的电台时,听	行到频率为 740kHz	的强电台播音,原	训意味着出现了
	干扰。		$15k\Omega$ 15	V_{CC} Ω Ω
5. (2分)题图	图 3 所示		15PF	⊩_ _
振荡器类型为	,			2.2 <i>PF</i>
振荡频率为	°	ξ = 57 μ1		$ \frac{1}{\Omega} $ 2.2PF

	选择题	(伝晒っ	\triangle	# 10	Δ
→ `	処拝巡	【母赵 2	''刀',	大 10	757

_		世位3名是4周明 <i>444</i> 人山中17月。
1.	峰值包络检波器在解调高频等幅波时,	具低週滤波器图输出电压为

- (A) 正弦波电压 (B) 直流电压 (C) 余弦脉冲
- (D) 零电压

2. 根据调频波的特性,当单音频调制信号的振幅和频率均增大一倍时,则调频波的有效带

- (A) 减小一倍 (B) 增大一倍 (C) 不变 (D) 增大两倍

3. 若非线性电路的输出——输入特性表示为下列幂级数 $v_0(t) = a_0 + a_2 v_i^2 + a_6 v_i^6$, 若输 入信号 $v_i(t) = (\sin 2\pi \times 10^5 t + \sin 5\pi \times 10^5 t)V$, 则输出电压 $v_0(t)$ 中含有下述哪些频率分 量? ___

- (A) 50kHz、150kHz、350kHz
- (B) 350kHz、1050kHz、200kHz
- (C) 100kHz、80kHz、1500kHz (D) 300kHz、850kHz、1250kHz
- 4. 判断图示电路是否可能产生正弦波振荡 (图中谐振回路的交流等效电感4毫亨, C_B 、 C_C 、 C_E 对交流短路.)
- (A)都能振荡 (B)都不能振荡 (C) a能振荡
- (D) b能振荡

- 5. 高频功率放大器一般工作在丙类工作状态,它的效率为。

- (A) 50% (B) 78.5% (C) 与导通角和电压利用系数有关 (D) 89.7%
- 三、简答题(每题4分,共24分)
- 1. 在无线电通信中为什么要进行调制解调?

- 2. 为什么晶体管在高频工作时要考虑单向化问题,而在低频工作时,可不必考虑?
- 3. 为什么在振荡电路中,晶体管大都用固定偏置与自偏置的混合偏置电路?在通常条件下 反馈型振荡器的振荡频率与其振荡回路的自然谐振频率是否一致?为什么?
- 4. *PLL* 的频率特性为什么不等于环路滤波器的频率特性? 在 *PLL* 中低通滤波器的作用是什么?
- 5. 为什么振荡电路必须满足平衡条件、起振条件和稳定条件? 试从振荡的物理过程来说明 这三个条件的含义。
- 6. 试说出两种频率合成的方法,并说明频率合成器的主要指标有哪些?

四、(16分) 调频接收机方框图如图 5 (a),中频为 10MHZ,本振频率 $f_L > f_C$,其鉴频特性如图 5 (b)所示,现输入一个电压为 $5 \mu V$ (有效值),载波频率为 100MHZ、调制频率 F=5KHZ、调制指数 m=5 的单音余弦调频信号。

- 1) 写出输入电压 $U_s(t)$ 的表达式;
- 2)接收机必须的频带宽度为多少;
- 3) 画出鉴频器输出电压的波形图; (标出最大值)
- 4) 若鉴频特性不变, m=10, 画出鉴频器输出电压的波形。

五、(12分)一阶环路的输入信号为

$$V_i(t) = V_{im} \sin(\omega_{i0}t + \frac{\Delta\omega}{\Omega}\cos\Omega t) = V_{im} \sin(\omega_{i0}t + m_F\cos\Omega t) \quad (V)$$

当其接入环路的瞬间,输出信号(压控振荡器振荡信号)为:

$$v_o(t) = V_{om} \cos \omega_{o0} t \quad (V)$$

求: (1) 环路的起始频差;

- (2) 环路的起始相差;
- (3) 环路的稳态相差;
- (4) 锁定后环路输出电压表示式。
- 六、(16分)题图 6(a)所示为谐振功率放大器的电路图。其中,电容 C_0 为旁路电容, R_1 为产生自偏压的电阻, RFC 为高频扼流圈, R_L 为负载电阻, LC 回路谐振于输入信号 $v_i(t)$ 的频率 f_c 。若晶体管的转移特性如题图 6(b)所示,输入信号 $v_i(t)=V_{im}\cos 2\pi f_c t$ 。 己知晶体管集电极电流余弦脉冲的峰值为 30mA,流通角为 60° 。
 - (1)试计算自偏压 V_B 的值;
 - (2) 电阻 R_1 的值;
 - (3)输入电压的振幅 V_{im}
 - (4)输出电压 $v_0(t)$ 中频率为 f_c 分量的振幅(假定 $R_L=1K\Omega$)。

$$\alpha_0(60^\circ) = 0.218, \alpha_1(60^\circ) = 0.391$$

- 七、(12分) 题图 7 是一个超外差式接收机方框图,在解调器前是八级线性系统的级联。已 知两个射频放大器的噪声系数为 2dB 和 3.5dB,功率增益为 8dB 和 14dB,变频器的噪声系数为 8dB,插入损耗为 68dB,两个中频放大器的放大倍数为 18dB 和 50dB,噪声系数为 15dB 和 17dB,两个射频滤波器的带宽均为 5MHz,插入损耗为 1dB,中频滤波器的带宽为 200kHz,插入损耗为 20dB。
 - 1) 求该接收机前端的噪声系数;
 - 2) 如果解调器需要最小 8.7 dB 的信噪比才能正常解调, 求接收机的灵敏度;
 - 3) 简要说明框图中各模块的功能;

