GEMP - UFC Quixadá - ICPC Library

Contents

1	Dat	Structures	1
	1.1	BIT	1
	1.2	BIT 2D	1
	1.3	BIT In Range	4
	1.4	Dynamic Median	2
	1.5	Dynamic Wavelet Tree	2
	1.6	Implicit Treap	4
	1.7	LiChao Tree	Ę
	1.8	Policy Based Tree	(
	1.9	Queue Query	(
	1.10	Range Color	(
	1.11	Segment Tree	7
	1.12	Segment Tree Iterative	7
	1.13	Segment Tree Lazy	5
	1.14	Sparse Table	8
	1.15	SQRT Decomposition	
	$\frac{1.16}{1.17}$	SQRT Tree	10
	1.17	Treap	11
	1.19	Union Find	11
	1.20	Wavelet Tree	12
	1.20	wavelet fiet	12
2	Cra	oh Algorithms	1^{2}
4	2.1	2-SAT	$\frac{12}{12}$
	2.2	Minimum Cost Maximum Flow	13
	2.3	Strongly Connected Component	14
	2.4	Topological Sort	14
3	Dyr	amic Programming	14
3			14
3	Dyr 3.1 3.2	Divide and Conquer Optimization	14 14 14
3	3.1		14
	3.1 3.2	Divide and Conquer Optimization	14
3 4	3.1 3.2 Mat	Divide and Conquer Optimization	14 14
	3.1 3.2	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math	14 14 15
	3.1 3.2 Mat 4.1 4.2	Divide and Conquer Optimization	14 14 15 15
	3.1 3.2 Mat 4.1	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math	14 14 15
	3.1 3.2 Mat 4.1 4.2 4.3	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient	14 14 15 15 15
	3.1 3.2 Mat 4.1 4.2 4.3 4.4	Divide and Conquer Optimization	14 14 15 15 16 16
	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code	14 14 15 15 16 16 16
	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code	14 14 15 15 16 16 16
4	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code	14 14 15 15 16 16 16
4	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6 Geo	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code metry	14 14 15 15 16 16 16
4 5	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6 Geo Stri	Divide and Conquer Optimization Divide and Conquer Optimization Implementation 1 Basic Math Binomial Coefficients Chinese Remainder Theorem Extended Euclidean Gray Code metry g Algorithms	14 14 15 15 16 16 16
4 5 6	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6 Geo Stri	Divide and Conquer Optimization Divide and Conquer Optimization Implementation 1 Basic Math Binomial Coefficients Chinese Remainder Theorem Extended Euclidean Gray Code metry g Algorithms	14 14 15 15 16 16 17
4 5 6	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6 Geo Stri	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient Gray Code metry g Algorithms ellaneous	14 14 15 15 16 16 17
4 5 6 7	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6 Geo Stri	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code metry g Algorithms ellaneous rems and Formulas Binomial Coefficients Binomial Coefficients	14 14 15 15 16 16 17 17
4 5 6 7	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6 Geo Stri Mis	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient Gray Code netry g Algorithms ellaneous orems and Formulas	12^{12} 12^{12} 12^{12} 12^{12} 12^{12} 12^{12} 12^{12} 12^{12} 12^{12} 12^{12} 12^{12} 12^{12}
4 5 6 7	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6 Geo Stri Mis	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code metry g Algorithms ellaneous rems and Formulas Binomial Coefficients Binomial Coefficients	12^{12} 15^{15} 16^{16} 16^{16} 17^{17} 17^{17}
4 5 6 7	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6 Geo Stri Mis The 8.1 8.2	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code metry g Algorithms ellaneous prems and Formulas Binomial Coefficients Catalan Number	17 17 17 18 18 18 18 18 18 18 18
4 5 6 7	3.1 3.2 Mat 4.1 4.2 4.3 4.4 4.5 4.6 Geo Stri Mis The 8.1 8.2 8.3	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Basic Math Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code metry g Algorithms ellaneous orems and Formulas Binomial Coefficients Catalan Number Euler's Totient	$egin{smallmatrix} 12 & 14 & 15 & 15 & 16 & 16 & 16 & 16 & 16 & 16$

1 Data Structures

1.1 BIT

```
#include <bits/stdc++.h>
using namespace std;
```

```
class Bit{
private:
  typedef long long t_bit;
  int nBit;
  int nLog;
  vector<t bit> bit;
public:
  Bit(int n) {
    nBit = n;
    nLog = 20;
    bit.resize(nBit+1, 0);
  //1-indexed
  t_bit get(int i){
    t_bit s = 0;
    for(; i > 0; i -= (i & -i))
      s += bit[i];
    return s;
  //1-indexed [1, r]
  t_bit get(int l, int r){
    return get(r) - get(l-1);
  void add(int i, t_bit value) {
    for(; i <= nBit; i += (i & -i))</pre>
      bit[i] += value;
  t_bit position(t_bit value){
    t_bit sum = 0;
    int pos = 0;
    for(int i=nLog; i>=0; i--) {
      if ( (pos + (1 << i) <= nBit) and (sum + bit[pos + (1 << i)] <
        sum += bit[pos + (1 << i)];
        pos += (1 << i);
    return pos + 1;
} ;
```

7 1.2 BIT 2D

```
#include <bits/stdc++.h>
using namespace std;
class Bit2d{
private:
    typedef long long t_bit;
    vector<vector<t_bit> > bit;
    int nBit, mBit;
public:
    Bit2d(int n, int m) {
        nBit = n;
        mBit = m;
        bit.resize(nBit+1, vector<t_bit>(mBit+1, 0));
}
//1-indexed
t_bit get(int i, int j) {
        t_bit sum = 0;
```

```
for(int a=i; a > 0; a==(a & -a))
    for(int b=j; b > 0; b==(b & -b))
        sum += bit[a][b];
    return sum;
}
//1-indexed
t_bit get(int a1, int b1, int a2, int b2){
    return get(a2, b2) - get(a2, b1-1) - get(a1-1, b2) + get(a1-1, b1 -1);
}
//1-indexed [i, j]
void add(int i, int j, t_bit value){
    for(int a=i; a <= nBit; a+=(a & -a))
        for(int b=j; b <= mBit; b+=(b & -b))
        bit[a][b] += value;
}
};</pre>
```

1.3 BIT In Range

```
#include <bits/stdc++.h>
using namespace std;
class BitRange{
private:
  typedef long long t_bit;
  vector<t_bit> bit1, bit2;
  t bit get(vector<t bit> &bit, int i) {
    t bit sum = 0;
    for(; i > 0; i -= (i & -i))
      sum += bit[i];
    return sum;
  void add(vector<t_bit> &bit, int i, t_bit value) {
    for(; i < (int)bit.size(); i += (i & -i))</pre>
      bit[i] += value;
public:
 BitRange(int n) {
   bit1.assign(n + 1, 0);
    bit2.assign(n + 1, 0);
  //1-indexed [i, j]
  void add(int i, int j, t_bit v) {
    add(bit1, i, v);
   add(bit1, j+1, -v);
    add(bit2, i, v*(i-1));
    add(bit2, j+1, -v*j);
  //1-indexed
  t bit get(int i) {
    return get(bit1, i)*i - get(bit2, i);
  //1-indexed [i, j]
  t bit get(int i, int j) {
    return get(j) - get(i-1);
};
```

1.4 Dynamic Median

```
#include <bits/stdc++.h>
using namespace std;
class DinamicMedian{
  typedef int t_median;
private:
  priority_queue<t_median> mn;
  priority_queue<t_median, vector<t_median>, greater<t_median> > mx;
public:
  double median() {
    if(mn.size() > mx.size())
      return mn.top();
    else
      return (mn.top() + mx.top())/2.0;
  void push(t_median x){
    if(mn.size() <= mx.size())</pre>
      mn.push(x);
    else
      mx.push(x);
    if((!mx.empty()) and (!mn.empty())){
      while(mn.top() > mx.top()){
        t_median a = mx.top(); mx.pop();
        t_median b = mn.top(); mn.pop();
        mx.push(b);
       mn.push(a);
};
```

1.5 Dynamic Wavelet Tree

```
#include <bits/stdc++.h>
using namespace std;
struct SplayTree{
  struct Node{
    int x, y, s;
    Node *p = 0;
    Node *1 = 0;
    Node *r = 0;
    Node (int v) {
      x = v;
      y = v;
      s = 1;
    void upd() {
      s = 1;
      y = x;
      if(1) {
        y += 1 -> y;
        s += 1->s;
      if(r) {
        v += r -> v;
        s += r->s;
```

```
int left size(){
    return 1 ? 1->s : 0;
};
Node *root = 0;
void rot(Node *c)
 auto p = c -> p;
 auto q = p - p;
 if(q)(q->1 == p ? q->1 : q->r) = c;
 if(p->1 == c) {
    p->1 = c->r;
    c->r = p;
    if (p->1) p->1->p = p;
  }else{
    p->r = c->1;
    c->1 = p;
    if (p->r) p->r->p = p;
 p->p = c;
 c->p = q;
 p->upd();
 c->upd();
void splay(Node *c) {
 while(c->p) {
    auto p = c -> p;
    auto g = p - p;
    if(q) rot((q->1 == p) == (p->1 == c) ? p : c);
    rot(c);
 c->upd();
 root = c;
Node* join(Node *1, Node *r) {
 if(not 1) return r;
 if(not r) return 1;
 while (1->r) 1 = 1->r;
 splay(1);
 r->p = 1;
 1->r = r;
 1->upd();
 return 1:
pair<Node*, Node*> split(Node *p, int idx) {
 if(not p)
    return make_pair(nullptr, nullptr);
 if(idx < 0)
    return make_pair(nullptr, p);
  if(idx >= p->s)
    return make_pair(p, nullptr);
  for(int lf = p->left_size(); idx != lf; lf = p->left_size()) {
    if(idx < lf)
     p = p -> 1;
    else
      p = p \rightarrow r, idx = lf + 1;
  splay(p);
 Node *l = p;
 Node *r = p->r;
 if(r) {
```

```
1->r = r->p = 0;
      1->upd();
    return make_pair(l, r);
  Node* get(int idx) {
    auto p = root;
    for(int lf = p->left_size(); idx != lf; lf = p->left_size()) {
      if(idx < lf)
        p = p -> 1;
      else
        p = p - r, idx - = lf + 1;
    splay(p);
    return p;
  int insert(int idx, int x) {
    Node *1, *r;
    tie(1, r) = split(root, idx-1);
    int v = 1 ? 1->y : 0;
    root = join(l, join(new Node(x), r));
    return v;
  void erase(int idx) {
    Node *1, *r;
    tie(l, r) = split(root, idx);
    root = join(1->1, r);
    delete 1;
  int rank(int idx) {
    Node *1, *r;
    tie(l, r) = split(root, idx);
    int x = (1 && 1->1 ? 1->1->y : 0);
    root = join(l, r);
    return x;
  int operator[](int idx) {
    return rank(idx);
  ~SplayTree() {
    if(!root)
      return;
    vector<Node*> nodes {root};
    while(nodes.size()) {
      auto u = nodes.back();
      nodes.pop_back();
      if(u->1) nodes.emplace_back(u->1);
      if(u->r) nodes.emplace_back(u->r);
      delete u;
};
class WaveletTree{
private:
  int lo, hi;
  WaveletTree *1 = 0;
 WaveletTree *r = 0;
  SplayTree b;
public:
  WaveletTree(int min_value, int max_value) {
    lo = min_value;
```

```
hi = max_value;
 b.insert(0, 0);
~WaveletTree() {
 delete 1:
 delete r;
//0-indexed
void insert(int idx, int x) {
 if(lo >= hi)
    return:
 int mid = (lo + hi - 1) / 2;
 if(x <= mid) {
   1 = 1 ?: new WaveletTree(lo, mid);
   l->insert(b.insert(idx, 1), x);
  }else{
    r = r ?: new WaveletTree(mid+1, hi);
    r->insert(idx - b.insert(idx, 0), x);
//0-indexed
void erase(int idx) {
 if(lo == hi)
    return;
 auto p = b.get(idx);
 int lf = p->1 ? p->1->y : 0;
 int x = p -> x;
 b.erase(idx);
 if(x == 1)
    l->erase(lf);
  else
    r->erase(idx-lf);
//kth smallest element in range [i, j[
//0-indexed
int kth(int i, int j, int k) {
 if(i >= i)
    return 0;
 if(lo == hi)
    return lo:
 int x = b.rank(i);
 int y = b.rank(j);
 if(k <= y-x)
    return 1->kth(x, y, k);
    return r->kth(i-x, j-y, k-(y-x));
//Amount of numbers in the range [i, j[ Less than or equal to k
int lte(int i, int j, int k) {
 if(i >= j or k < lo) return 0;</pre>
 if(hi <= k) return j - i;</pre>
 int x = b.rank(i);
 int v = b.rank(j);
 return 1->lte(x, y, k) + r->lte(i-x, j-y, k);
//Amount of numbers in the range [i, j[ equal to k
//0-indexed
int count(int i, int j, int k) {
 if (i >= j \text{ or } k < lo \text{ or } k > hi) \text{ return } 0;
 if(lo == hi) return j - i;
```

```
int mid = (lo + hi - 1)/2;
int x = b.rank(i);
int y = b.rank(j);
if(k <= mid) return l->count(x, y, k);
return r->count(i-x, j-y, k);
}
//0-indexed
int get(int idx){
   return kth(idx, idx+1, 1);
};
```

1.6 Implicit Treap

```
#include <bits/stdc++.h>
using namespace std;
class ImplicitTreap {
private:
  typedef int t_treap;
  const t treap neutral = 0;
  inline t_treap join(t_treap a, t_treap b, t_treap c){
    return a + b + c;
  struct Node{
    int y, size;
    t_treap v, op_value;
    bool rev;
    Node *1, *r;
    Node(t_treap _v){
     v = op_value = _v;
      y = rand();
      size = 1;
      1 = r = NULL;
      rev = false:
  };
  Node* root;
  int size(Node* t) { return t ? t->size : 0; }
  t_treap op_value(Node* t) { return t ? t->op_value : neutral; }
  Node* refresh(Node* t) {
    if (t == NULL) return t;
    t->size = 1 + size(t->1) + size(t->r);
    t \rightarrow p_value = join(t \rightarrow v, op_value(t \rightarrow l), op_value(t \rightarrow r));
    if (t->l != NULL) t->l->rev ^= t->rev;
    if (t->r != NULL) t->r->rev ^= t->rev;
    if (t->rev) {
      swap(t->1, t->r);
      t->rev = false;
    return t;
  void split(Node* &t, int k, Node* &a, Node* &b) {
    refresh(t);
    Node * aux;
    if (!t) a = b = NULL;
    else if (size(t->1) < k) {
      split(t->r, k-size(t->l)-1, aux, b);
      t->r = aux;
      a = refresh(t);
```

```
else {
      split(t->1, k, a, aux);
      t->1 = aux;
      b = refresh(t);
 Node* merge(Node* a, Node* b) {
    refresh(a); refresh(b);
   if (!a || !b) return a ? a : b;
   if (a->y < b->y) {
     a->r = merge(a->r, b);
      return refresh(a):
    else {
      b->1 = merge(a, b->1);
     return refresh(b);
 Node* at (Node* t, int n) {
   if (!t) return t;
   refresh(t);
   if (n < size(t->1)) return at (t->1, n);
   else if (n == size(t->1)) return t;
    else return at (t->r, n-size(t->1)-1);
 void del(Node* &t) {
   if (!t) return;
   if (t->1) del(t->1);
   if (t->r) del(t->r);
   delete t;
   t = NULL;
public:
  ImplicitTreap() : root(NULL) {
   srand(time(NULL));
  ~ImplicitTreap() { clear(); }
  void clear() { del(root); }
  int size() { return size(root); }
  //0-indexed
 bool insert(int n, int v) {
   Node *a, *b;
   split(root, n, a, b);
   root = merge (merge (a, new Node (v)), b);
   return true;
  //0-indexed
 bool erase(int n) {
   Node *a, *b, *c, *d;
   split(root, n, a, b);
   split(b, 1, c, d);
   root = merge(a, d);
   if (c == NULL) return false;
   delete c;
   return true;
  //0-indexed
  t_treap at(int n) {
   Node * ans = at(root, n);
   return ans ? ans->v : -1;
```

```
//0-indexed [1, r]
  t_treap query(int 1, int r) {
    if (l > r) swap(l, r);
    Node *a, *b, *c, *d;
    split(root, l, a, d);
    split(d, r-l+1, b, c);
    t_treap ans = op_value(b);
    root = merge(a, merge(b, c));
    return ans;
  //0-indexed [1, r]
  void reverse(int 1, int r) {
    if (1>r) swap(1, r);
    Node *a, *b, *c, *d;
    split(root, l, a, d);
    split(d, r-l+1, b, c);
    if (b != NULL) b->rev ^= 1;
    root = merge(a, merge(b, c));
};
```

1.7 LiChao Tree

```
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f3f;
class LiChaoTree{
private:
  typedef int t_line;
  struct Line{
    t_line k, b;
   Line() {}
    Line (t_line k, t_line b): k(k), b(b) {}
  int n_tree, min_x, max_x;
  vector<Line> li tree;
  t line f(Line l, int x) {
    return l.k*x + l.b;
  void add(Line nw, int v, int l, int r) {
    int m = (1 + r) / 2;
    bool lef = f(nw, l) > f(li_tree[v], l);
    bool mid = f(nw, m) > f(li tree[v], m);
    if (mid)
      swap(li tree[v], nw);
    if(r - 1 == 1)
      return:
    else if(lef != mid)
      add(nw, 2 * v, 1, m);
    else
      add(nw, 2 * v + 1, m, r);
  int get(int x, int v, int 1, int r) {
    int m = (1 + r) / 2;
    if(r - 1 == 1)
      return f(li_tree[v], x);
    else if (x < m)
      return max(f(li_tree[v], x), get(x, 2 * v, 1, m));
    else
      return max(f(li\_tree[v], x), get(x, 2 * v + 1, m, r));
```

```
public:
  LiChaoTree(int mn_x, int mx_x) {
    min_x = mn_x;
    max_x = mx_x;
    n_tree = max_x-min_x+5;
    li_tree.resize(4*n_tree, Line(0, -INF));
}

void add(t_line k, t_line b) {
    add(Line(k, b), 1, min_x, max_x);
}

t_line get(int x) {
    return get(x, 1, min_x, max_x);
}
};
```

1.8 Policy Based Tree

1.9 Queue Query

```
#include <bits/stdc++.h>
using namespace std;
class QueueQuery{
private:
  typedef int t_queue;
  stack<pair<t_queue, t_queue> > s1, s2;
   t_queue cmp(t_queue a, t_queue b) {
      return min(a, b);
  void move(){
    if (s2.emptv()) {
      while (!sl.empty()) {
        t_queue element = s1.top().first;
        s1.pop();
        t_queue result = s2.empty() ? element : cmp(element, s2.top().
            second):
        s2.push({element, result});
public:
  void push(t_queue x){
    t_queue result = s1.empty() ? x : cmp(x, s1.top().second);
    s1.push({x, result});
  void pop() {
```

```
move();
    s2.pop();
}
t_queue front(){
    move();
    return s2.top().first;
}
t_queue query(){
    if (s1.empty() || s2.empty())
        return s1.empty() ? s2.top().second : s1.top().second;
    else
        return cmp(s1.top().second, s2.top().second);
}
t_queue size(){
    return s1.size() + s2.size();
}
};
```

1.10 Range Color

```
#include <bits/stdc++.h>
using namespace std;
class RangeColor{
private:
  typedef long long 11;
  struct Node {
    11 1, r;
    int color:
    Node(){}
    Node(11 1, 11 r, int color):1(1), r(r), color(color) {}
  struct cmp{
    bool operator() (Node a, Node b) {
      if(a.r == b.r) return a.l < b.l;</pre>
      return a.r < b.r;</pre>
  std::set<Node, cmp> st;
  vector<ll> ans;
  RangeColor(ll first, ll last, int maxColor) {
    ans.resize(maxColor + 1);
    ans[0] = last - first + 1LL;
    st.insert(Node(first, last, 0));
  //set newColor in [a, b]
  void set(ll a, ll b, int newColor){
    auto p = st.upper_bound(Node(0, a-1LL, -1));
    assert(p != st.end());
    11 1 = p -> 1;
    ll r = p->r;
    int oldColor = p->color;
    ans[oldColor] -= (r - l + 1LL);
    p = st.erase(p);
    if(1 < a){
      ans[oldColor] += (a - 1);
      st.insert(Node(l, a - 1LL, oldColor));
    if(b < r){
      ans[oldColor] += (r - b);
```

```
st.insert(Node(b + 1LL, r, oldColor));
    while ( (p != st.end()) and (p->1 <= b) ) {
      1 = p -> 1;
      r = p->r;
      oldColor = p->color;
      ans[oldColor] -= (r - l + 1LL);
      if(b < r)
        ans[oldColor] += (r - b);
        st.insert(Node(b + 1LL, r, oldColor));
        break;
      }else{
        p = st.erase(p);
    ans[newColor] += (b - a + 1LL);
    st.insert(Node(a, b, newColor));
  11 countColor(int x) {
    return ans[x];
};
```

1.11 Segment Tree

```
#include <bits/stdc++.h>
using namespace std;
class SegTree{
private:
  typedef long long Node;
  Node neutral = 0;
  vector<Node> st;
 vector<int> v;
  int n;
  Node join(Node a, Node b) {
    return (a + b);
  void build(int node, int i, int j) {
    if(i == j){
      st[node] = v[i];
      return;
    int m = (i+j)/2;
    int 1 = (node<<1);</pre>
    int r = 1 + 1;
    build(l, i, m);
    build(r, m+1, j);
    st[node] = join(st[l], st[r]);
  Node query (int node, int i, int j, int a, int b) {
    if( (i>b) or (j<a) )
      return neutral:
    if( (a<=i) and (j<=b) )
      return st[node];
    int m = (i+j)/2;
    int 1 = (node<<1);</pre>
    int r = 1 + 1;
    return join( query(l, i, m, a, b), query(r, m+1, j, a, b) );
```

```
void update(int node, int i, int j, int idx, Node value) {
    if(i == j){
      st[node] = value;
      return;
    int m = (i+j)/2;
    int 1 = (node<<1);</pre>
    int r = 1 + 1;
    if(idx \le m)
      update(1, i, m, idx, value);
      update(r, m+1, j, idx, value);
    st[node] = join(st[l], st[r]);
public:
  template <class MyIterator>
  SegTree (MyIterator begin, MyIterator end) {
   n = end-begin;
    v = vector<int>(begin, end);
    st.resize(4*n + 5);
    build(1, 0, n-1);
  //0-indexed [a, b]
  Node query (int a, int b) {
    return query (1, 0, n-1, a, b);
  //0-indexed
  void update(int idx, int value) {
    update(1, 0, n-1, idx, value);
};
```

1.12 Segment Tree Iterative

```
#include <bits/stdc++.h>
using namespace std;
class SegTreeIterative{
private:
   typedef long long Node;
  Node neutral = 0;
  vector<Node> st;
  int n;
  inline Node join (Node a, Node b) {
    return a + b;
public:
  template <class MyIterator>
  SegTreeIterative(MyIterator begin, MyIterator end) {
    int sz = end-begin;
    for (n = 1; n < sz; n <<= 1);
    st.assign(n << 1, neutral);
    for(int i=0; i<sz; i++, begin++) st[i+n] = (*begin);</pre>
    for(int i=n+sz-1; i>1; i--)
      st[i>>1] = join(st[i>>1], st[i]);
  //0-indexed
  void update(int i, Node x) {
    st[i += n] = x;
    for (i >>= 1; i; i >>= 1)
      st[i] = join(st[i << 1], st[1+(i << 1)]);
```

```
}
//0-indexed [1, r]
Node query(int 1, int r) {
   Node ans = neutral;
   for (l+=n, r+=n+1; l<r; l>>=1, r>>=1) {
      if (l & 1) ans = join(ans, st[l++]);
      if (r & 1) ans = join(ans, st[--r]);
   }
   return ans;
}
```

1.13 Segment Tree Lazy

```
#include <bits/stdc++.h>
using namespace std;
class SegTreeLazy{
private:
  typedef long long Node;
  vector<Node> st;
  vector<long long> lazy;
  vector<int> v;
  int n:
  Node neutral = 0;
  inline Node join (Node a, Node b) {
    return a+b;
  inline void upLazy(int &node, int &i, int &j) {
    if(lazy[node] != 0) {
      st[node] += lazy[node] * (j-i+1);
      //tree[node] += lazy[node];
      if(i != j){
        lazy[(node<<1)] += lazy[node];</pre>
        lazy[(node<<1)+1] += lazy[node];
      lazy[node] = 0;
  void build(int node, int i, int j) {
    if(i == j){
      st[node] = v[i];
      return;
    int m = (i+j)/2;
    int 1 = (node<<1);</pre>
    int r = 1 + 1;
    build(l, i, m);
    build(r, m+1, j);
    st[node] = join(st[l], st[r]);
  Node query (int node, int i, int j, int a, int b) {
    upLazy(node, i, j);
    if((i>b) or(i<a))
      return neutral;
    if( (a<=i) and (j<=b) ){
      return st[node];
    int m = (i+j)/2;
    int 1 = (node<<1);</pre>
    int r = 1 + 1;
```

```
return join( query(l, i, m, a, b), query(r, m+1, j, a, b) );
  void update(int node, int i, int j, int a, int b, int value){
    upLazy(node, i, j);
    if( (i>j) or (i>b) or (j<a) )
      return;
    if( (a<=i) and (j<=b) ){
      lazy[node] = value;
      upLazy(node, i, j);
    }else{
      int m = (i+j)/2;
      int 1 = (node<<1);</pre>
      int r = 1 + 1;
      update(l, i, m, a, b, value);
      update(r, m+1, j, a, b, value);
      st[node] = join(st[l], st[r]);
public:
  template <class MyIterator>
  SegTreeLazy(MyIterator begin, MyIterator end) {
    n = end-begin;
   v = vector<int>(begin, end);
    st.resize(4*n + 5);
    lazy.assign(4*n + 5, 0);
    build(1, 0, n-1);
  //0-indexed [a, b]
  Node query(int a, int b) {
    return query (1, 0, n-1, a, b);
  //0-indexed [a, b]
  void update(int a, int b, int value){
    update(1, 0, n-1, a, b, value);
};
```

1.14 Sparse Table

```
#include <bits/stdc++.h>
using namespace std;
class SparseTable{
private:
 typedef int t_st;
  vector<vector<t st> > st;
  vector<int> log2;
  t_st neutral = 0x3f3f3f3f3f;
  int nLog;
  t_st join(t_st a, t_st b){
    return min(a, b);
public:
  template <class MvIterator>
  SparseTable(MyIterator begin, MyIterator end) {
    int n = end-begin;
    nLog = 20;
    log2.resize(n+1);
    log2[1] = 0;
    for (int i = 2; i <=n; i++)</pre>
      log2[i] = log2[i/2] + 1;
```

```
st.resize(n, vector<t_st>(nLog, neutral));
    for(int i=0; i<n; i++, begin++)</pre>
      st[i][0] = (*begin);
    for(int j=1; j<nLog; j++)</pre>
      for(int i=0; (i+(1<<(j-1))) < n; i++)</pre>
        st[i][j] = join(st[i][j-1], st[i+(1<<(j-1))][j-1]);
  //0-indexed [a, b]
  t st query(int a, int b) {
    int d = b - a + 1;
    t_st ans = neutral;
    for(int j=nLog-1; j>=0; j--){
      if(d & (1<<j)){
        ans = join(ans, st[a][j]);
        a = a + (1 << (j));
    return ans;
  //0-indexed [a, b]
  t_st queryRMQ(int a, int b){
    int j = log2[b - a + 1];
    return join(st[a][j], st[b - (1 << j) + 1][j]);
};
```

1.15 SQRT Decomposition

```
#include <bits/stdc++.h>
using namespace std;
struct SqrtDecomposition {
  typedef long long t_sqrt;
  int sqrtLen;
 vector<t_sqrt> block;
  vector<t_sqrt> v;
  template <class MyIterator>
  SqrtDecomposition (MyIterator begin, MyIterator end) {
   int n = end-begin;
   sqrtLen = (int) sqrt (n + .0) + 1;
   v.resize(n);
   block.resize(sqrtLen + 5);
    for(int i=0; i<n; i++, begin++) {</pre>
     v[i] = (*begin);
      block[i / sqrtLen] += v[i];
  //0-indexed
  void update(int idx, t_sqrt new_value) {
   t_sqrt d = new_value - v[idx];
   v[idx] += d:
   block[idx/sqrtLen] += d;
  //0-indexed [l, r]
  t_sqrt query(int 1, int r){
   t_sqrt sum = 0;
   int c_l = l/sqrtLen, c_r = r/sqrtLen;
   if (c_l == c_r) {
      for (int i=1; i<=r; i++)</pre>
        sum += v[i];
    }else{
```

```
for (int i=1, end=(c_l+1)*sqrtLen-1; i<=end; i++)
    sum += v[i];
    for (int i=c_l+1; i<=c_r-1; i++)
        sum += block[i];
    for (int i=c_r*sqrtLen; i<=r; i++)
        sum += v[i];
    }
    return sum;
}</pre>
```

1.16 SQRT Tree

```
#include <bits/stdc++.h>
using namespace std;
class SqrtTree{
private:
  typedef long long t_sqrt;
  t_sqrt op(const t_sqrt &a, const t_sqrt &b) {
    return a | b;
  inline int log2Up(int n) {
    int res = 0;
    while ((1 << res) < n)
      res++;
    return res:
  int n, lq, indexSz;
  vector<t_sqrt> v;
  vector<int> clz, layers, onLayer;
  vector< vector<t_sqrt> > pref, suf, between;
  inline void buildBlock(int layer, int l, int r) {
    pref[layer][l] = v[l];
    for (int i = 1+1; i < r; i++)</pre>
      pref[layer][i] = op(pref[layer][i-1], v[i]);
    suf[layer][r-1] = v[r-1];
    for (int i = r-2; i >= 1; i--)
      suf[layer][i] = op(v[i], suf[layer][i+1]);
  inline void buildBetween (int layer, int lBound, int rBound, int
      betweenOffs) {
    int bSzLog = (layers[layer]+1) >> 1;
    int bCntLog = layers[layer] >> 1;
    int bSz = 1 << bSzLog;</pre>
    int bCnt = (rBound - lBound + bSz - 1) >> bSzLog;
    for (int i = 0; i < bCnt; i++) {</pre>
      t_sqrt ans;
      for (int j = i; j < bCnt; j++) {</pre>
        t_sqrt add = suf[layer][lBound + (j << bSzLog)];
        ans = (i == j) ? add : op(ans, add);
        between[layer-1][betweenOffs + lBound + (i << bCntLog) + j] =</pre>
  inline void buildBetweenZero() {
    int bSzLog = (lg+1) >> 1;
    for (int i = 0; i < indexSz; i++) {</pre>
      v[n+i] = suf[0][i << bSzLog];
```

```
build(1, n, n + indexSz, (1 \ll lg) - n);
inline void updateBetweenZero(int bid) {
 int bSzLog = (lg+1) >> 1;
 v[n+bid] = suf[0][bid << bSzLog];</pre>
 update(1, n, n + indexSz, (1 \ll lg) - n, n+bid);
void build(int layer, int lBound, int rBound, int betweenOffs) {
 if (laver >= (int)lavers.size())
    return;
 int bSz = 1 << ((layers[layer]+1) >> 1);
  for (int 1 = lBound; 1 < rBound; 1 += bSz) {</pre>
   int r = min(l + bSz, rBound);
   buildBlock(layer, l, r);
   build(layer+1, 1, r, betweenOffs);
 if (layer == 0)
   buildBetweenZero();
    buildBetween(layer, lBound, rBound, betweenOffs);
void update (int layer, int lBound, int rBound, int between Offs, int
 if (layer >= (int)layers.size())
   return;
 int bSzLog = (layers[layer]+1) >> 1;
 int bSz = 1 << bSzLog;</pre>
 int blockIdx = (x - lBound) >> bSzLog;
 int l = lBound + (blockIdx << bSzLog);</pre>
 int r = min(l + bSz, rBound);
 buildBlock(layer, l, r);
 if (laver == 0)
    updateBetweenZero(blockIdx);
  else
    buildBetween(layer, lBound, rBound, betweenOffs);
 update(layer+1, 1, r, betweenOffs, x);
inline t_sqrt query(int 1, int r, int betweenOffs, int base) {
 if (1 == r)
   return v[1];
 if (1 + 1 == r)
    return op(v[l], v[r]);
 int layer = onLayer[clz[(l - base) ^ (r - base)]];
 int bSzLog = (layers[layer]+1) >> 1;
 int bCntLog = layers[layer] >> 1;
 int lBound = (((1 - base) >> layers[layer]) << layers[layer]) +</pre>
 int lBlock = ((l - lBound) >> bSzLog) + 1;
 int rBlock = ((r - lBound) >> bSzLog) - 1;
 t_sqrt ans = suf[layer][l];
 if (lBlock <= rBlock) {</pre>
    t_sqrt add;
    if(layer == 0)
      add = query(n + lBlock, n + rBlock, (1 << lq) - n, n);
      add = between[layer-1][betweenOffs + lBound + (lBlock <</pre>
          bCntLog) + rBlock];
    ans = op(ans, add);
 ans = op(ans, pref[layer][r]);
 return ans;
```

```
public:
  template <class MyIterator>
  SqrtTree (MyIterator begin, MyIterator end) {
    n = end-begin;
    v.resize(n);
    for(int i=0; i<n; i++, begin++)</pre>
      v[i] = (*begin);
    lq = log2Up(n);
    clz.resize(1<<lg);
    onLayer.resize(lg + 1);
    clz[0] = 0;
    for (int i = 1; i < (int)clz.size(); i++)</pre>
      clz[i] = clz[i >> 1] + 1;
    int tlg = lg;
    while (tlq > 1) {
      onLayer[tlg] = (int)layers.size();
      layers.push_back(tlq);
      tla = (tla+1) >> 1;
    for (int i = lq-1; i >= 0; i--)
      onLayer[i] = max(onLayer[i], onLayer[i+1]);
    int betweenLayers = max(0, (int)layers.size() - 1);
    int bSzLog = (lg+1) >> 1;
    int bSz = 1 << bSzLog;</pre>
    indexSz = (n + bSz - 1) >> bSzLog;
    v.resize(n + indexSz);
    pref.assign(layers.size(), vector<t_sqrt>(n + indexSz));
    suf.assign(layers.size(), vector<t_sqrt>(n + indexSz));
    between.assign(betweenLayers, vector<t_sqrt>((1 << lg) + bSz));</pre>
    build(0, 0, n, 0);
  //0-indexed
  inline void update(int x, const t_sqrt &item) {
    v[x] = item;
    update(0, 0, n, 0, x);
  //0-indexed [1, r]
  inline t_sqrt query(int 1, int r) {
    return query(1, r, 0, 0);
};
```

1.17 Stack Query

```
#include <bits/stdc++.h>
using namespace std;
struct StackQuery{
  typedef int t_stack;
  stack<pair<t_stack, t_stack> > st;
  t_stack cmp(t_stack a, t_stack b) {
    return min(a, b);
  }
  void push(t_stack x) {
    t_stack new_value = st.empty() ? x : cmp(x, st.top().second);
    st.push({x, new_value});
  }
  void pop() {
    st.pop();
  }
}
```

```
t_stack top() {
    return st.top().first;
}
t_stack query() {
    return st.top().second;
}
t_stack size() {
    return st.size();
};
}
```

1.18 Treap

```
#include <bits/stdc++.h>
using namespace std;
class Treap {
private:
  typedef int t_treap;
  struct Node {
    t_treap x, y, size;
    Node *1, *r;
    Node(t_treap \underline{x}) : \underline{x}(\underline{x}), \underline{y}(rand()), size(1), \underline{1}(NULL), \underline{r}(NULL) {}
  };
  Node* root;
  int size(Node* t) { return t ? t->size : 0; }
  Node* refresh(Node* t) {
    if (!t) return t;
    t->size = 1 + size(t->1) + size(t->r);
    return t;
  void split(Node* &t, t_treap k, Node* &a, Node* &b) {
    Node* aux;
    if(!t){
      a = b = NULL:
    else if(t->x < k) {
       split(t->r, k, aux, b);
       t->r = aux;
       a = refresh(t);
    }else{
       split(t->1, k, a, aux);
      t \rightarrow l = aux;
       b = refresh(t);
  Node* merge(Node* a, Node* b) {
    if (!a || !b) return a ? a : b;
    if (a->y < b->y) {
       a \rightarrow r = merge(a \rightarrow r, b);
      return refresh(a);
    else {
      b -> 1 = merge(a, b -> 1);
       return refresh(b):
  Node* count(Node* t, t_treap k) {
    if (!t) return NULL;
    else if (k < t->x) return count(t->1, k);
    else if (k == t->x) return t;
    else return count(t->r, k);
```

```
Node* nth(Node* t, int n) {
    if (!t) return NULL;
    if (n \le size(t->1)) return nth(t->1, n);
    else if (n == size(t->1) + 1) return t;
    else return nth(t->r, n-size(t->1)-1);
  void del(Node* &t) {
    if (!t) return;
    if (t->1) del(t->1);
    if (t->r) del(t->r);
    delete t:
    t = NULL:
public:
  Treap() : root(NULL) {}
  ~Treap() { clear(); }
  void clear() { del(root); }
  int size() { return size(root); }
  bool count(t_treap k) { return count(root, k) != NULL; }
  bool insert(t_treap k) {
    if (count(k)) return false;
    Node *a, *b;
    split(root, k, a, b);
    root = merge(merge(a, new Node(k)), b);
    return true;
  bool erase(t_treap k) {
    Node * f = count(root, k);
    if (!f) return false;
    Node *a, *b, *c, *d;
    split(root, k, a, b);
    split(b, k+1, c, d);
    root = merge(a, d);
    delete f;
    return true;
  //1-indexed
  t_treap nth(int n) {
   Node * ans = nth(root, n);
    return ans ? ans->x : -1;
};
```

1.19 Union Find

```
#include <bits/stdc++.h>
using namespace std;
class UnionFind{
private:
   vector<int> p, w, sz;
public:
   UnionFind(int n) {
     w.resize(n+1, 1);
     sz.resize(n+1, 1);
     p.resize(n+1);
     for(int i=0; i<=n; i++)
        p[i] = i;
   }
int find(int x) {</pre>
```

```
if(p[x] == x)
      return x;
    return p[x] = find(p[x]);
  void join(int x, int y) {
    x = find(x);
    y = find(y);
    if(x == y)
      return;
    if(w[x] > w[y])
      swap(x, y);
    p[x] = y;
    sz[y] += sz[x];
    if(w[x] == w[y])
      w[y]++;
  bool isSame(int x, int y) {
    return find(x) == find(y);
  int size(int x) {
    return sz[find(x)];
};
```

1.20 Wavelet Tree

```
#include <bits/stdc++.h>
using namespace std:
struct WaveletTree{
private:
  typedef int t_wavelet;
  t_wavelet lo, hi;
  WaveletTree *1, *r;
  vector<int> a, b;
public:
  template <class MyIterator>
  WaveletTree (MyIterator begin, MyIterator end, t_wavelet minX,
      t wavelet maxX) {
    lo = minX, hi = maxX;
    if(lo == hi or begin >= end) return;
    t wavelet mid = (lo+hi-1)/2;
    auto f = [mid](int x){
      return x <= mid;
    a.reserve(end-begin+1);
    b.reserve(end-begin+1);
    a.push_back(0);
    b.push_back(0);
    for(auto it = begin; it != end; it++) {
      a.push_back(a.back() + f(*it));
      b.push_back(b.back() + !f(*it));
    auto pivot = stable partition(begin, end, f);
    l = new WaveletTree(begin, pivot, lo, mid);
    r = new WaveletTree(pivot, end, mid+1, hi);
  //kth smallest element in range [i, j]
  //1-indexed
  int kth(int i, int j, int k){
    if(i > j) return 0;
```

```
if(lo == hi) return lo;
    int inLeft = a[j] - a[i-1];
    int i1 = a[i-1] + 1, j1 = a[j];
    int i2 = b[i-1] + 1, j2 = b[j];
    if(k <= inLeft) return l->kth(i1, j1, k);
    return r->kth(i2, j2, k-inLeft);
  //Amount of numbers in the range [i, j] Less than or equal to k
  int lte(int i, int j, int k) {
    if(i > j or k < lo) return 0;
    if(hi <= k) return j - i + 1;
    int i1 = a[i-1] + 1, j1 = a[j];
    int i2 = b[i-1] + 1, i2 = b[i];
    return 1->lte(i1, j1, k) + r->lte(i2, j2, k);
  //Amount of numbers in the range [i, j] equal to k
  //1-indexed
  int count(int i, int i, int k) {
    if (i > j \text{ or } k < lo \text{ or } k > hi) return 0;
    if(lo == hi) return j - i + 1;
    int mid = (lo+hi-1)/2;
    int i1 = a[i-1]+1, j1 = a[j];
    int i2 = b[i-1]+1, i2 = b[i];
    if(k <= mid) return 1->count(i1, j1, k);
    return r->count(i2, j2, k);
  ~WaveletTree(){
    delete 1;
    delete r;
};
```

2 Graph Algorithms

2.1 2-SAT

```
#include "strongly connected component.h"
using namespace std;
struct SAT{
 typedef pair<int, int> pii;
 vector<pii> edges;
 int n;
 SAT(int size) {
   n = 2*size;
 vector<bool> solve2SAT(){
   vector<bool> vAns(n/2, false);
    vector<int> comp = SCC::scc(n, edges);
    for(int i=0; i<n; i+=2) {</pre>
      if(comp[i] == comp[i + 1])
        return vector<bool>();
      vAns[i / 2] = (comp[i] > comp[i+1]);
    return vAns;
  int v(int x) {
   if(x>=0)
```

```
return (x<<1);
  x = ~x;
  return (x<<1)^1;
}

void add(int a, int b) {
  edges.push_back(pii(a, b));
}

void addOr(int a, int b) {
  add(v(~a), v(b)); add(v(~b), v(a));
}

void addImp(int a, int b) {
  addOr(~a, b);
}

void addEqual(int a, int b) {
  addOr(a, ~b);
  addOr(~a, b);
}

void addDiff(int a, int b) {
  addEqual(a, ~b);
}
</pre>
```

2.2 Minimum Cost Maximum Flow

```
#include <bits/stdc++.h>
using namespace std:
template <class T = int>
class MCMF {
private:
  struct Edge {
    int to:
   T cap, cost;
    Edge(int a, T b, T c) : to(a), cap(b), cost(c) {}
  };
  vector<std::vector<int>> edges;
  vector<Edge> list;
  vector<int> from;
  vector<T> dist, pot;
  vector<bool> visit;
  pair<T, T> augment (int src, int sink) {
    pair<T, T> flow = {list[from[sink]].cap, 0};
    for(int v = sink; v != src; v = list[from[v]^1].to) {
      flow.first = std::min(flow.first, list[from[v]].cap);
      flow.second += list[from[v]].cost;
    for(int v = sink; v != src; v = list[from[v]^1].to) {
      list[from[v]].cap -= flow.first;
      list[from[v]^1].cap += flow.first;
    return flow;
  queue<int> q:
  bool SPFA(int src, int sink) {
    T INF = numeric_limits<T>::max();
    dist.assign(n, INF);
    from.assign(n, -1);
    q.push(src);
    dist[src] = 0;
    while(!q.empty()){
```

```
int on = q.front();
      q.pop();
      visit[on] = false;
      for(auto e: edges[on]){
        auto ed = list[e];
        if(ed.cap == 0) continue;
        T toDist = dist[on] + ed.cost + pot[on] - pot[ed.to];
        if(toDist < dist[ed.to]) {</pre>
          dist[ed.to] = toDist;
          from[ed.to] = e;
          if(!visit[ed.to]){
            visit[ed.to] = true;
            q.push(ed.to);
    return dist[sink] < INF;</pre>
  void fixPot() {
    T INF = numeric_limits<T>::max();
    for(int i = 0; i < n; i++) {</pre>
      if(dist[i] < INF) pot[i] += dist[i];</pre>
public:
  MCMF(int size) {
    n = size;
    edges.resize(n);
    pot.assign(n, 0);
    dist.resize(n);
    visit.assign(n, false);
  pair<T, T> solve(int src, int sink) {
    pair<T, T > ans(0, 0);
    // Can use dijkstra to speed up depending on the graph
    if(!SPFA(src, sink)) return ans;
    fixPot();
    // Can use dijkstra to speed up depending on the graph
    while(SPFA(src, sink)) {
      auto flow = augment(src, sink);
      ans.first += flow.first;
      ans.second += flow.first * flow.second;
      fixPot();
    return ans;
  void addEdge(int from, int to, T cap, T cost) {
    edges[from].push back(list.size());
    list.push_back(Edge(to, cap, cost));
    edges[to].push_back(list.size());
    list.push_back(Edge(from, 0, -cost));
};
/*bool dij(int src, int sink){
  T INF = numeric_limits<T>::max();
  dist.assign(n, INF);
  from.assign(n, -1);
  visit.assign(n, false);
  dist[src] = 0:
  for(int i = 0; i < n; i++) {
```

```
int best = -1;
for(int j = 0; j < n; j++) {
    if(visit[j]) continue;
    if(best == -1 || dist[best] > dist[j]) best = j;
}
if(dist[best] >= INF) break;
visit[best] = true;
for(auto e : edges[best]) {
    auto ed = list[e];
    if(ed.cap == 0) continue;
    T toDist = dist[best] + ed.cost + pot[best] - pot[ed.to];
    assert(toDist >= dist[best]);
    if(toDist < dist[ed.to]) {
        dist[ed.to] = toDist;
        from[ed.to] = e;
    }
}
return dist[sink] < INF;
}*/</pre>
```

2.3 Strongly Connected Component

```
#include "topological_sort.h"
using namespace std;
namespace SCC{
  typedef pair<int, int> pii;
  vector<vector<int>> revAdj;
  vector<int> component;
  void dfs(int u, int c) {
    component[u] = c;
    for(int to: revAdj[u]){
      if(component[to] == -1)
        dfs(to, c);
  vector<int> scc(int n, vector<pii> &edges) {
    revAdj.assign(n, vector<int>());
    for (pii p: edges)
      revAdj[p.second].push_back(p.first);
    vector<int> tp = TopologicalSort::order(n, edges);
    component.assign(n, -1);
    int comp = 0;
    for(int u: tp){
      if(component[u] == -1)
        dfs(u, comp++);
    return component;
```

2.4 Topological Sort

```
#include <bits/stdc++.h>
using namespace std;
namespace TopologicalSort{
  typedef pair<int, int> pii;
  vector<vector<int>> adj;
```

```
vector<bool> visited;
  vector<int> vAns;
  void dfs(int u) {
    visited[u] = true;
    for(int to : adj[u]) {
      if(!visited[to])
        dfs(to);
    vAns.push_back(u);
  vector<int> order(int n, vector<pii> &edges) {
    adj.assign(n, vector<int>());
    for(pii p: edges)
      adj[p.first].push_back(p.second);
    visited.assign(n, false);
    vAns.clear();
    for(int i = 0; i < n; i++) {</pre>
      if(!visited[i])
        dfs(i);
    reverse(vAns.begin(), vAns.end());
    return vAns;
};
```

3 Dynamic Programming

3.1 Divide and Conquer Optimization

Reduces the complexity from $O(n^2k)$ to $O(nk \log n)$ of PD's in the following ways (and other variants):

$$dp[n][k] = \max_{0 \le i < n} (dp[i][k-1] + C[i+1][n]), \ base \ case: \ dp[0][j], dp[i][0] \qquad (1)$$

- C[i][j] = the cost only depends on i and j.
- opt[n][k] = i is the optimal value that maximizes dp[n][k].

It is necessary that *opt* is increasing along each column: $opt[j][k] \leq opt[j+1][k]$.

3.2 Divide and Conquer Optimization Implementation

```
#include <bits/stdc++.h>
using namespace std;
int C(int i, int j);
const int MAXN = 100010;
const int MAXK = 110;
const int INF = 0x3f3f3f3f3f;
int dp[MAXN][MAXK];
void calculateDP(int 1, int r, int k, int opt_l, int opt_r) {
   if(l > r) return;
   int mid = (l+r)>>1;
   int ans = -INF, opt;
   for(int i=opt_l; i<=min(opt_r, mid-l); i++) {
      if(ans < dp[i][k-1] + C(i+1, mid)) {
        opt = i;
   }</pre>
```

```
ans = dp[i][k-1] + C(i+1, mid);
}

dp[mid][k] = ans;
calculateDP(l, mid-1, k, opt_1, opt);
calculateDP(mid+1, r, k, opt, opt_r);

int solve(int n, int k){
  for(int i=0; i<=n; i++) dp[i][0] = -INF;
  for(int j=0; j<=k; j++) dp[0][j] = -INF;
  dp[0][0] = 0;
  for(int j=1; j<=k; j++)
    calculateDP(l, n, j, 0, n-1);
  return dp[n][k];
}</pre>
```

4 Math

4.1 Basic Math

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
11 fastPow(ll base, ll exp, ll mod) {
 base %= mod;
  //exp %= phi(mod) if base and mod are relatively prime
  ll ans = 1LL;
  while (exp > 0) {
    if(exp & 1LL)
      ans = (ans * (\underline{int128}_t)base) % mod;
    base = (base *(__int128_t)base)%mod;
    exp >>= 1;
  return ans;
ll extGcd(ll a, ll b, ll &x, ll &y) {
  if(b == 0){
    x = 1; y = 0; return a;
  }else{
    ll g = extGcd(b, a % b, y, x);
    y -= (a / b) * x;
    return g;
ll gcd(ll a, ll b) {
  return __qcd(a, b);
ll lcm(ll a, ll b) {
  return (a/gcd(a, b)) *b;
void enumeratingAllSubmasks(int mask) {
  for (int s=mask; s; s=(s-1) \& mask)
    cout << s << endl:
bool checkComposite(ll n, ll a, ll d, int s) {
  ll x = fastPow(a, d, n);
  if (x == 1 \text{ or } x == n-1)
    return false;
```

```
for (int r = 1; r < s; r++) {
    x = (x*(\underline{1}nt128_t)x)%n;
    if (x == n-1LL)
      return false;
  return true;
bool millerRabin(ll n) {
  if(n < 2)
    return false;
  int r = 0;
  11 d = n - 1LL:
  while ((d & 1LL) == 0) {
    d >>= 1;
    r++;
  for(int a: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
    if(n == a)
      return true;
    if(checkComposite(n, a, d, r))
      return false:
  return true;
```

4.2 Binomial Coefficients

```
#include <bits/stdc++.h>
#include "./basic_math.h"
using namespace std;
typedef long long 11;
//0(k)
11 C1(int n, int k) {
 ll res = 1LL:
  for(int i = 1; i <= k; ++i)</pre>
    res = (res * (n - k + i)) / i;
  return res;
//0(n^2)
vector<vector<ll> > C2(int maxn, int mod) {
 vector<vector<ll> > mat(maxn+1, vector<ll>(maxn+1, 0));
  mat[0][0] = 1;
  for(int n = 1; n <= maxn; n++) {</pre>
    mat[n][0] = mat[n][n] = 1;
    for(int k = 1; k < n; k++)
      mat[n][k] = (mat[n-1][k-1] + mat[n-1][k]) mod;
  return mat;
vector<int> factorial, inv_factorial;
void prevC3(int maxn, int mod) {
  factorial.resize(maxn + 1);
  factorial[0] = 1;
  for(int i = 1; i <= maxn; i++)</pre>
    factorial[i] = (factorial[i-1]*1LL*i)%mod;
  inv_factorial.resize(maxn + 1);
  inv factorial[maxn] = fastPow(factorial[maxn], mod-2, mod);
  for(int i = maxn-1; i >= 0; i--)
    inv_factorial[i] = (inv_factorial[i+1]*1LL*(i+1))%mod;
```

```
int C3(int n, int k, int mod) {
  if(n < k)
  return (((factorial[n]*1LL*inv_factorial[k])%mod)*1LL*inv_factorial[
      n-k])%mod;
//O(P*log(P))
//C4(n, k, p) = Comb(n, k)%p
vector<int> changeBase(int n, int p) {
  vector<int> v;
  while(n > 0){
    v.push_back(n%p);
    n/=p;
  return v;
int C4(int n, int k, int p) {
  auto vn = changeBase(n, p);
  auto vk = changeBase(k, p);
  int mx = max(vn.size(), vk.size());
  vn.resize(mx, 0);
  vk.resize(mx, 0);
 prevC3(p-1, p);
  int ans = 1;
  for(int i=0; i<mx; i++)</pre>
    ans = (ans * 1LL * C3(vn[i], vk[i], p))%p;
  return ans;
```

4.3 Chinese Remainder Theorem

```
#include <bits/stdc++.h>
#include "extended euclidean.h"
using namespace std;
typedef long long 11;
namespace CRT {
  inline ll normalize(ll x, ll mod) {
    x \% = mod;
    if(x < 0) x += mod;
    return x;
  11 solve(vector<11> a, vector<11>m) {
    int n = a.size();
    for(int i=0; i<n; i++)</pre>
      normalize(a[i], m[i]);
    ll ans = a[0];
    11 \ 1cm1 = m[0];
    for(int i = 1; i < n; i++) {</pre>
      ll q = extGcd(lcm1, m[i], x, y);
      if((a[i] - ans) % q != 0)
        return -1:
      ans = normalize(ans + (((a[i]-ans)/q)*x)%(m[i]/q))*lcm1, (lcm1/q)
          q) *m[i]);
      lcm1 = (lcm1/q) *m[i]; //lcm(lcm1, m[i]);
    return ans;
```

4.4 Euler's totient

```
#include <bits/stdc++.h>
using namespace std;
int nthPhi(int n) {
  int result = n;
  for(int i = 2; i <= n/i; i++) {</pre>
    if(n%i == 0){
      while(n%i == 0)
        n /= i:
      result -= result/i;
  if(n > 1)
    result -= result/n:
  return result:
vector<int> phiFrom1toN(int n) {
  vector<int> vPhi(n + 1);
  vPhi[0] = 0;
  vPhi[1] = 1;
  for(int i=2; i <= n; i++)</pre>
    vPhi[i] = i;
  for(int i=2; i <= n; i++) {</pre>
    if(vPhi[i] == i){
      for(int j=i; j <= n; j+=i)</pre>
        vPhi[j] -= vPhi[j]/i;
  return vPhi;
```

4.5 Extended Euclidean

```
#include <bits/stdc++.h>
using namespace std;
typedef long long l1;
ll extGcd(l1 a, l1 b, l1 &x, l1 &y) {
   if(b == 0) {
      x = 1; y = 0; return a;
} else {
      l1 g = extGcd(b, a % b, y, x);
      y -= (a / b) * x;
      return g;
}
```

4.6 Gray Code

```
int grayCode(int nth) {
   return nth^(nth>>1);
}
int revGrayCode(int g) {
   int nth = 0;
   for(; g>0; g>>=1)
     nth ^= g;
```

return nth;

5 Geometry

6 String Algorithms

7 Miscellaneous

8 Theorems and Formulas

8.1 Binomial Coefficients

```
(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n Pascal's Triangle: \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} Symmetry rule: \binom{n}{k} = \binom{n}{n-k} Factoring in: \binom{n}{k} = \frac{n}{k}\binom{n-1}{k-1} Sum over k: \sum_{k=0}^{n} \binom{n}{k} = 2^n Sum over n: \sum_{m=0}^{n} \binom{m}{k} = \binom{n+1}{k+1} Sum over n and k: \sum_{k=0}^{m} \binom{n+k}{k} = \binom{n+m+1}{m} Sum of the squares: \binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n} Weighted sum: 1\binom{n}{1} + 2\binom{n}{2} + \dots + n\binom{n}{n} = n2^{n-1} Connection with the Fibonacci numbers: \binom{n}{0} + \binom{n-1}{1} + \dots + \binom{n-k}{k} + \dots + \binom{0}{n} = F_{n+1} More formulas: \sum_{k=0}^{m} (-1)^k \cdot \binom{n}{k} = (-1)^m \cdot \binom{n-1}{m}
```

8.2 Catalan Number

Recursive formula: $C_0 = C_1 = 1$ $C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}, n \ge 2$ Analytical formula: $C_n = \binom{2n}{n} - \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}, n \ge 0$ The first few numbers Catalan numbers, C_n (starting from zero): $1, 1, 2, 5, 14, 42, 132, 429, 1430, \dots$ The Catalan number C_n is the solution for:

- ullet Number of correct bracket sequence consisting of n opening and n closing brackets.
- The number of rooted full binary trees with n+1 leaves (vertices are not numbered). A rooted binary tree is full if every vertex has either two children or no children.

- The number of ways to completely parenthesize n+1 factors.
- The number of triangulations of a convex polygon with n+2 sides (i.e. the number of partitions of polygon into disjoint triangles by using the diagonals).
- The number of ways to connect the 2n points on a circle to form n disjoint chords.
- The number of non-isomorphic full binary trees with n internal nodes (i.e. nodes having at least one son).
- The number of monotonic lattice paths from point (0,0) to point (n,n) in a square lattice of size $n \times n$, which do not pass above the main diagonal (i.e. connecting (0,0) to (n,n)).
- Number of permutations of length n that can be stack sorted (i.e. it can be shown that the rearrangement is stack sorted if and only if there is no such index i < j < k, such that $a_k < a_i < a_j$).
- The number of non-crossing partitions of a set of n elements.
- The number of ways to cover the ladder 1...n using n rectangles (The ladder consists of n columns, where i^{th} column has a height i).

8.3 Euler's Totient

If p is a prime number: $\phi(p) = p - 1$ and $\phi(p^k) = p^k - p^{k-1}$ If a and b are relatively prime, then: $\phi(ab) = \phi(a) \cdot \phi(b)$ In general: $\phi(ab) = \phi(a) \cdot \phi(b) \cdot \frac{gcd(a,b)}{\phi(gcd(a,b))}$

This interesting property was established by Gauss: $\sum_{d|n} \phi(d) = n$, Here the sum is over all positive divisors d of n.

Euler's theorem: $a^{\phi(m)} \equiv 1 \pmod{m}$, if a and m are relatively prime.

Generalization: $a^n \equiv a^{\phi(m)+[n \mod \phi(m)]} \mod m$, for arbitrary a, m and n $\geq log_2(m)$.

8.4 Primes

If $n=p_1^{e_1}\cdot p_2^{e_2}\cdot \cdots p_k^{e_k}$ então , then: Number of divisors is $d(n)=(e_1+1)\cdot (e_2+1)\cdot \cdots (e_k+1)$.

Sum of divisors is $\sigma(n) = \frac{p_1^{e_1+1}-1}{p_1-1} \cdot \frac{p_2^{e_2+1}-1}{p_2-1} \cdot \dots \cdot \frac{p_k^{e_k+1}-1}{p_k-1}$