2018年 GIS 课程设计 实验报告

项目名称:测量全生命周期支持系统

同济大学测绘与地理信息学院

1551126 余周炜

1551140 王雪辰

1551128 江子宇

目 录

1	项目简介	1
2	测量辅助系统 2.1 功能	
3	等高线生成系统	7
4	小组合作 4.1 远程库	
5	提交文件	11

第1章 项目简介

本项目的名称是"测量全生命周期支持系统",使用 vs2010+arcEngine10.1 开发,分为两个部分,一部分进行**辅助测量**,是为测量辅助系统,另一部分**生成等高线**。

本项目的背景如下:测量实习中,我们常常为找不到控制点和输入新的控制点而烦恼,也为后面建立等高线的繁琐操作而苦恼不已,为了解决测量实习中的问题,开发了本系统,将测量过程中的各种操作用 ArcEngine 开发解决,使测量过程更加简单流畅。具体实现的功能将在后面的部分介绍。

本项目主要有三个窗体, Form1 为主窗体, 如图1.1所示。

图 1.1: 主窗体

第二个窗体是 FormSurvey, 辅助有关测量行为的进行,如图1.2所示。

第三个窗体是 FormCoutour, 进行有关等高线的绘制,如图1.3所示。 此外还有 FormDistance,AddControlPoint 等对话框。

图 1.3: FormCoutour

第2章 测量辅助系统

2.1 功能

测量辅助系统实现了如下特色功能

- 1. 鹰眼功能。
- 2. 鼠标拖动移动图层功能。
- 3. 输入坐标的方式添加控制点。
- 4. 拉框选择测区范围,显示测区边界,并将测区范围内的控制点高亮显示。
- 5. 选择测站所在的控制点、输入测距,在考虑遮蔽和测距的前提下给 出可用的后视点。
- 6. 选中测站所在的控制点,给出测区范围。

下面分别说明这些功能

- **鹰眼功能** 利用 axMapControl1 的 OnExtentUpdated 事件,当主视图范围改变时,鹰眼视图主视图在鹰眼视图中的范围同时改变。利用axMapControl2 的 OnMouseDown 事件,当鼠标在鹰眼视图中点击时,axMapControl1 的范围同时改变。
- **图层移动** 利用 axTOCControl1 的 OnMouseDown 事件和它的 HitTest 方法, 记录将要移动的图层, 利用 OnMouseUp 事件和 IMap 的 MoveLayer 方法,将其移到所属的位置。
- 选择测区范围 单击该选项时,将 bool 变量 flagSelectFeature 置为 Checked, 利用 axMapControl1 的 OnMouseDown 事件和 TrackRectangle() 方法, 记录该选框的四个角点坐标, 创建一条 Polyline 加入 axMapControl1

的图形容器中。

坐标添加控制点 单击该选项时,将弹出对话框以输入坐标,单击确定时,将该坐标保存在类 GlobalData 的公有静态变量中,找到点图层并添加。

给出后视点 1. 点击输入仪器测量选项输入仪器测程; 2. 以该测程为半径生成一个缓冲区; 3. 选取该缓冲区内的控制点和建筑物; 4. 对每个除测站所在控制点之外的控制点和测站点生成一条 polyline, 与每个建筑物求交, 若该 polyline 与所有建筑都不相交,则选择该控制点为后视点。

给出可测范围 选中测站所在控制点,以测程为半径并显示。

此外,单击图层时,可以将属性表显示在下方的 dataGridView 中,在 TOCControl 中右键单击,会弹出 menuStrip,将图层上移/下移或删除。还可以在选项中添加控制点,删除控制点和(随机)修改控制点符号。

2.2 函数说明

在文件 FormSurvey 中:

1 public DataTable GetLayerData(IFeatureLayer layer)

作用 从 IFeatureLayer 中获取属性表,并返回 DataTable。

描述 利用到要素层中的要素类的 Fields 的 FieldCount 字段和 get_Field(int index) 方法,得到要素类的属性表的所有字段,利用字段的 AliasName 作为 DataTable 的字段名,对于每个要素,用 get_Value(int index) 方法获取其第 index 个字段的值。

注意 使用完 FeatureCursor 后要释放指针

作用 打开文件。

描述 运用 AxMapConntrol 的 AddShapFile 方法,添加文件。

作用 更新 axMapControl2 的显示范围,画出 axMapControl1 的显示的边框。描述 将事件的 e.newEnvelope 强制转换为 IEnvelope,利用 graphicsContainer 的 AddElement 添加元素画出边框。注意 LineSymbol,FillSymbol 和 RgbColor 的建立。

1 private void 删除图层ToolStripMenuItem_Click(object sender, EventArgs e)

作用 删除所选图层。

描述 利用 TOCControl 的 GetSelectedItem 方法获取选中的 TOCControlItem, 在 MapControl 里找到对应图层,用 MapControl 的 DeleteLayer 方法删除该图层。

第3章 等高线生成系统

等高线生成系统实现了如下特色功能

- 1. 建 TIN
- 2. TIN 转栅格
- 3. 生成等高线

第4章 小组合作

本小组的成员通过 github 进行合作及版本控制,方式是组长把程序推到 github 上,小组成员从组长的库中 fork 到自己的库中,更改后组长提出 拉取请求 (pull request),组长审核后将该提交合并 (merge) 到主分支。

Git 版本控制系统中,将本地库叫 master (主分支),将远程库叫 origin。 其他的分支这里还没有用到不讲。

4.1 远程库

github 上提交的流程如图4.1所示

需要说明的是,因为主场的远程库在不停变动,所以组员在每次修改之前,需要先 merge 组长的远程分支到 master,然后才能进行修改。

4.1 远程库 __9_

图 4.1: 提交流程

4.2 本地库

下面针对本地库作讲解。在本地库中,将你选择建立 git 的文件夹称为工作区,add 之后到暂存区,commit 之后到 master (主分支)。

git 本地的操作如图所示4.2所示

图 4.2: git 本地操作

第5章 提交文件

表 5.1: 文件

项目文件 ArcEngineProgram/ ArcEnginePro-

gram.sln

源代码 ArcEngineProgram/ ArcEngineProgram/

*.cs

编译好的程序 ArcEngineProgram/ ArcEngineProgram/

bin/Debug/ArcEngineProgram

说明文件 document.tex,document.pdf