Problème 1 : (75/100)

Question	Barème
1- Le moment dipolaire du doublet s'écrit : $\vec{p} = q NP = q \vec{a} \vec{u}_z = p \vec{u}_z$	0.75
2- La distribution de charges est invariante par rotation d'angle φ autour de l'axe oz	0.75
\Rightarrow V(M)= V(r, θ) et \vec{E} (M) = \vec{E} (r, θ)	0.75
3- Approximation dipolaire : $r = OM \gg a$	0.5
Démonstration : $V(M) = \frac{p\cos\theta}{4\pi\epsilon_0 r^2} = \frac{\vec{p}.\vec{u}_r}{4\pi\epsilon_0 r^2}$	+
$4\pi\epsilon_0 r^2 - 4\pi\epsilon_0 r^2$	2
4-1- $\vec{E}(M) = -gradV(M) \implies E_r = \frac{2p\cos\theta}{4\pi\epsilon_0 r^3}$; $E_\theta = \frac{p\sin\theta}{4\pi\epsilon_0 r^3}$; $E_\phi = 0$.	1.5
4-2- $\vec{p} = p\vec{u}_z = p\cos\theta \vec{u}_r - p\sin\theta \vec{u}_\theta \Rightarrow \vec{E}(M) = \frac{3(\vec{p}.\vec{u}_r)\vec{u}_r - \vec{p}}{4\pi\epsilon_0 r^3}$; donc $k = 3$	1.5
On accepte autres méthodes de démonstration	
4-3- $E^2 = E_r^2 + E_\theta^2 \implies E = \frac{p}{4\pi\epsilon_0 r^3} \sqrt{1 + 3\cos^2\theta}$	1
5-1- $V(M) = Cte \implies r^2 = A\cos\theta$; A est une constante.	1
5-2- $\frac{d\mathbf{r}}{E_r} = \frac{rd\theta}{E_{\theta}} \implies r = \lambda \sin^2\theta$; λ est une constante.	1
Surfaces équipotentielles Lignes de champ	1 + 1
6-1- Force : $\vec{F} = (\vec{p}.gr\vec{a}d)\vec{E}_{ext} = \vec{0}$	1
Moment: $\vec{\Gamma} = \vec{p} \wedge \vec{E}_{ext}$ (démonstration)	+ 15
	1.5
6-2- $U_p = -\vec{p}.\vec{E}_{ext}$ (démonstration)	1.5
6-3- $U_p = -pE_{ext}\cos\beta$; $\frac{dU_p}{d\beta} = 0 \Rightarrow \beta = 0 \text{ ou } \beta = \pi$	0.5
$\frac{d^2 U_p}{d\beta^2}\Big _{\beta=0} = pE_{ext} > 0 \implies \text{équilibre stable}$	+
$\frac{d\beta^2}{d\beta^2}\Big _{\theta=0} = pE_{ext} > 0 \implies equilibre stable$	0.5
ιρ≈υ 	+ 0.5
$\frac{d^2 U_{\rho}}{d\beta^2} \bigg _{\beta=\pi} = -pE_{\text{ext}} < 0 \implies \text{\'equilibre instable}$	0.5
7-1- $[E] = \left[\frac{p}{\varepsilon_0 r^3}\right] \Rightarrow [\alpha] = [r^3] = L^3 \Rightarrow \alpha \text{ s'exprime en m}^3$	1

7-2- $\alpha \approx 10^{-30} \mathrm{m}^3 = \left(\text{taille moléculaire}\right)^3 \implies \alpha$ représente le volume du nuage électronique de la molécule non polaire dont la déformation entraînera l'apparition de \vec{p}_i .	1
8- Pour un dipôle rigide $U_p = -\vec{p}.\vec{E}$. Pour \vec{p}_i , le dipôle est induit au fur et à mesure que l'on amène la molécule dans le champ $\vec{E} \Rightarrow k' < 1$.	1
9- $U_p = -k' \epsilon_0 \alpha E^2 = -\frac{k' \epsilon_0 \alpha}{\left(4\pi \epsilon_0\right)^2} \frac{p^2 \left(1 + 3\cos^2\theta\right)}{r^6}$; $\bar{F} = -gr\bar{a}dU_p \Rightarrow$	0.5
$F_{r} = -\frac{6k'\epsilon_{0}\alpha}{\left(4\pi\epsilon_{0}\right)^{2}} \frac{p^{2}\left(1+3\cos^{2}\theta\right)}{r^{7}} = \frac{6U_{p}}{r} ; F_{\theta} = -\frac{6k'\epsilon_{0}\alpha}{\left(4\pi\epsilon_{0}\right)^{2}} \frac{p^{2}\cos\theta\sin\theta}{r^{7}}$	1+1
10-1- $\langle F_{\theta} \rangle = 0$; $\langle F_{r} \rangle = -\frac{15k' \epsilon_{0} \alpha}{\left(4\pi \epsilon_{0}\right)^{2} r^{7}} = -\frac{C}{r^{7}}$; $C > 0$	0.5 + 1
10-2- La force est alors radiale, en moyenne. $\langle F_r \rangle \langle 0 \Rightarrow$ cette force est attractive.	0.5 + 0.5
11- Jauge de Lorentz : $\operatorname{div} \vec{A} + \frac{1}{c^2} \frac{\partial V}{\partial t} = 0 \Rightarrow V(M, t) = \frac{p_0 \cos \theta}{4\pi\epsilon_0 r^2} \left(1 + j \frac{r\omega}{c}\right) e^{j\omega \left(t - \frac{r}{c}\right)}$;	1.5
Sachant que $\frac{r\omega}{c} = 2\pi \frac{r}{\lambda}$:	+
• Si $r << \lambda$, $V(M,t) = \frac{p_0 \cos \theta}{4\pi\epsilon_0 r^2} e^{j\omega t}$: c'est le potentiel crée par le dipôle dans	1.5
l'ARQS.	+
• Si $r >> \lambda$, $V(M,t) = j - \frac{(\frac{\omega}{c})p_0 \cos \theta}{4\pi\epsilon_0 r} e^{j\omega\left(t - \frac{r}{c}\right)}$: c'est le potentiel rayonné à grande	1.5
distance par le dipôle.	
12- $\vec{E}(M,t) = -gr\vec{a}dV(M,t) - \frac{\partial \vec{A}}{\partial t}$; $\vec{B} = r\vec{o}t\vec{A}$	0.5 + 0.5
13- Le plan $(M, \vec{u}_r, \vec{u}_\theta)$ est un plan de symétrie pour la distribution de charge \Rightarrow	0.5
$\vec{E}(M,t) = E_r(M,t)\vec{u}_r + E_\theta(M,t)\vec{u}_\theta$	+
La distribution est invariante par rotation d'angle φ autour de oz ⇒	.'
$\vec{E}(M,t) = E_r(r,\theta,t)\vec{u}_r + E_\theta(r,\theta,t)\vec{u}_\theta$	0.5
• Champ proche : $r << \lambda$: $\bar{E}_{proche}(M,t) = \frac{2p_0 e^{j\omega t} \cos \theta}{4\pi\epsilon_0 r^3} \vec{u}_r + \frac{p_0 e^{j\omega t} \sin \theta}{4\pi\epsilon_0 r^3} \vec{u}_\theta$: c'est le	
champ créé par le dipôle dans l'ARQS (variation en $\frac{1}{a^3}$)	0.75
• Champ moyen: $r \approx \lambda$, $\vec{E}_{moyen}(M,t) = \frac{j2\pi}{4\pi\epsilon_0 r^2 \lambda} \left(2p_0 \cos\theta \vec{u}_r + p_0 \sin\theta \vec{u}_\theta\right) e^{j\omega\left(t-\frac{r}{c}\right)}$:	+
$4\pi\epsilon_0 r^2 \lambda$ c'est le champ créé dans la zone : $r \approx \lambda$ (variation en $\frac{1}{r^2 \lambda}$)	0.75
• Champ lointain ou rayonné: $r >> \lambda$, $\vec{E}_{ray}(M,t) = -\frac{\omega^2 p_0 \sin \theta}{4\pi \epsilon_0 r c^2} e^{j\omega \left(1-\frac{r}{c}\right)} \vec{u}_{\theta}$:	0.75
variation en $\frac{1}{r\lambda^2}$	

14-2- zone de rayonnement : $r >> \lambda$, $\vec{E}(M,t) = -\frac{\omega^2 p_0 \sin \theta}{4\pi \epsilon_0 r c^2} e^{j\omega \left(t - \frac{r}{c}\right)} \vec{u}_{\theta}$	0.5 + 0.5
15- $\vec{B} = \frac{\vec{k} \wedge \vec{E}}{\omega} = \frac{\vec{u}_r \wedge \vec{E}}{c} \implies \vec{B}(M, t) = -\frac{\omega^2 p_0 \sin \theta}{4\pi \epsilon_0 r c^3} e^{j\omega \left(t - \frac{r}{c}\right)} \vec{u}_{\varphi}$	1
$16 - \vec{\Pi}(M,t) = \frac{\vec{E} \wedge \vec{B}}{\mu_0} = \frac{\omega^4 p_0^2 \sin^2 \theta}{16\pi^2 \epsilon_0 c^3 r^2} \cos^2 \omega \left(t - \frac{r}{c} \right) \vec{u}_i \; ; \; < \vec{\Pi}(M,t) > = \frac{\omega^4 p_0^2 \sin^2 \theta}{32\pi^2 \epsilon_0 c^3 r^2} \vec{u}_r$	1.5 + 1
17- $\mathcal{P}_{R} = \iint_{\text{spiker}} \langle \ddot{\Pi} \rangle r^{2} \sin \theta d\theta d\phi \ddot{u}_{r} \implies \mathcal{P}_{R} = \frac{\rho_{0}^{2} \omega^{4}}{12\pi \epsilon_{0} c^{3}}$	1
\mathcal{P}_R ne dépend pas de r, puisque le vide dans lequel se propage l'onde n'est pas absorbant.	+ 0.5
$1S - m \frac{d^2 \vec{r}}{dt^2} = -m\omega_0^2 \vec{r} - e\vec{E}_0 \cos(\omega t)$	
* $\tilde{F}_{\text{rap}} = -m\omega_0^2 \tilde{r}$: force de rappel exercée sur l'électron élastiquement lié par le reste de l'atome.	0.5
* $\bar{F}_e = -e\bar{E}_0 \cos(\omega t)$: force électrique excitatrice due à la présence de \bar{E} 19- Approximations adoptées:	0.5
* Le poids de l'électron est négligeable devant la force électrique : $\frac{F_e}{mg} >> 1$	0.5
* La contribution magnétique de la force de Lorentz est négligeable : $\frac{F_m}{F} = \frac{V}{c} <<1 \text{ (l'électron est non relativiste)}$	+ 0.5
* La force d'amortissement $\vec{F}_{acc} = -\frac{m}{2} \frac{d\vec{r}}{dr}$ est négligeable dans le domaine de la	+
diffusion Rayleigh $(\frac{1}{2} << \omega << \omega_0)$	0.75
 A l'échelle de l'atome, Ē est quasi - uniforme : x ≈ 10⁻⁴ μm ; λ ≈ 0,5 μm 	+ .
$kx = \frac{2\pi x}{\lambda} \approx 2\pi \frac{10^{-4}}{0.4} = 1.57 \ 10^{-5} << 1$	0.75
$20- \vec{r} = \frac{e}{m(\omega^2 - \omega_0^2)} \vec{E}_0 \cos(\omega t)$	1
21- $\vec{p} = -e\vec{r} = -\frac{e^2}{m(\omega^2 - \omega_0^2)} \vec{E}_0 \cos(\omega t)$; $p_0(\omega) = -\frac{e^2 E_0}{m(\omega^2 - \omega_0^2)}$	1.5
22- $\mathcal{Q}_{R} = \frac{\omega^{4} p_{0}^{2}(\omega)}{12\pi\epsilon_{0}c^{3}} = \frac{\omega^{4}e^{4}E_{0}^{2}}{12\pi\epsilon_{0}m^{2}c^{3}(\omega_{0}^{2} - \omega^{2})^{2}}$	1.5
23-1- $P_i = \frac{1}{2} c \varepsilon_0 E_0^2 S$ (démonstration)	1.5
23-2- $\mathcal{P}_{R} = \frac{\omega^{4} e^{4}}{6\pi \epsilon_{0}^{2} m^{2} c^{4} S(\omega_{0}^{2} - \omega^{2})^{2}} P_{i}$	1
24-1- $P_i(x) - P_i(x + dx) = \mathcal{Q}_R \text{NSd}x$	
$\frac{P_{i}(x)}{P_{i}(x+dx)}$	0.5
$\frac{\mathrm{d} P_{i}}{\mathrm{d} x} = -\mathrm{NS} \mathcal{Q}_{R} = -\frac{P_{i}}{\ell_{c}} \; ; \; \ell_{c} = \frac{6\pi \varepsilon_{0}^{2} \mathrm{m}^{2} \mathrm{c}^{4} \left(\omega_{0}^{2} - \omega^{2}\right)^{2}}{\mathrm{N} \omega^{4} \mathrm{e}^{4}}$	1

24-2- $P_i(x) = P_i(0)e^{-\frac{x}{\ell_c}}$; ℓ_c : distance caractéristique de l'atténuation de P_i .	0.5 + 0.5
25- $\omega << \omega_0$ 25-1- $\ell_c = \frac{6\pi \varepsilon_0^2 \text{m}^2 \text{c}^4 \omega_0^4}{\text{Ne}^4 \omega_0^4}$	0.75
25-2- $\ell_{\rm c} = \frac{6\pi\epsilon_0^2 {\rm m}^2 {\rm c}^4}{{\rm Ne}^4} \left(\frac{\lambda}{\lambda_0}\right)^4$ en nm; $\ell_{\rm eR} = 2789$ km, $\ell_{\rm cB} = 174$ km	0.5+0.5 + 0.5
25-3- La lumière diffusée est plus riche en bleu : $\frac{\varphi_R(B)}{\varphi_R(R)} = \left(\frac{\lambda_R}{\lambda_B}\right)^4 \approx 16 \Rightarrow$ ceci explique la couleur bleu du ciel. $\ell_{cR} >> \ell_{cB}$: l'atténuation de la radiation bleue est beaucoup plus importante que celle de la radiation rouge \Rightarrow le soleil couchant est rouge car la lumière traverse une plus grande couche atmosphérique.	1.5
26- d'après la question -14 $\tilde{E}_{ray}(M,t) = \frac{1}{4\pi\epsilon_0 rc^2} \left(\frac{\partial^2}{\partial t^2}(p)\right)_{t=\frac{r}{c}} \sin\theta \bar{u}_{\theta}$; ce qui donne $d\tilde{E}_{O}(M,t) = \frac{1}{4\pi\epsilon_0 rc^2} \left(\frac{\partial^2}{\partial t^2}(\delta p)\right)_{t=\frac{r}{c}} \sin\theta \bar{u}_{\theta}$	1
$\frac{\partial}{\partial z}$	
$\frac{1}{PM} \approx \frac{1}{r}$; au premier ordre en $\frac{z}{r}$, on a:	1.5
$t - \frac{PM}{c} \approx t - \frac{1}{c} (r - z\cos\theta) = t - \frac{r}{c} + \frac{z}{c}\cos\theta$ Ce qui donne $\phi_P = \phi_0 + \frac{\omega}{c}z\cos\theta \Rightarrow \phi = \phi_P - \phi_0 = \frac{\omega}{c}z\cos\theta$	1
28- En utilisant la notation complexe : $\frac{\partial^2}{\partial t^2} (\delta p) = j\omega I_0 \cos \left(\frac{2\pi}{\lambda} z \right) e^{j\omega t} dz$; $k = \frac{\omega}{c} = \frac{2\pi}{\lambda}$	2
$d\vec{E}(M,t) = \frac{j\omega I_0 \sin \theta}{4\pi\epsilon_0 c^2 r} e^{j(\omega t - kr)} \left[e^{jk(1 + \cos \theta)z} + e^{-jk(1 - \cos \theta)z} \right] dz \ \vec{u}_\theta \ ; \ \vec{E}(M,t) = \int_{-\frac{\lambda}{4}}^{\frac{\pi}{4}} d\vec{E}(M,t) \ ; \ soit :$	+
$\vec{E}(M,t) = \frac{jI_0}{2\pi\epsilon_0 cr} \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta} e^{j(\omega t - kr)} \vec{u}_{\theta} ;$	2 +
ou en notation réelle $\ddot{E}(M,t) = -\frac{I_0}{2\pi\epsilon_0 cr} \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta} \sin\omega(t-\frac{r}{c})\vec{u}_\theta$	1

• L'utilisation de l'approximation $\cos(\frac{\pi}{2}\cos\theta) \approx 0.95\sin^2\theta$, donne :	
$\vec{E}(M,t) = -\frac{0.95I_0}{2\pi\epsilon_0 cr} \sin\theta \sin\omega(t - \frac{r}{c}) \vec{u}_{\theta}$	1
29- Le champ rayonné possède la structure d'une onde localement plane \Rightarrow	1
$\bar{B} = \frac{\bar{u}_r \wedge \bar{E}}{c} = \frac{E(M, t)}{c} \bar{u}_{\varphi} \implies \bar{B}(M, t) = -\frac{0.95 I_0}{2\pi \epsilon_0 c^2 r} \sin \theta \sin \omega (t - \frac{r}{c}) \bar{u}_{\varphi}$	+ 1
$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} = \frac{\left(0.95I_0\right)^2}{4\pi^2 \epsilon_0 c r^2} \sin^2 \theta \sin^2 \omega (t - \frac{r}{c}) \vec{u}_r$	1
	+
$\langle \vec{\Pi} \rangle = \frac{\left(0.95I_0\right)^2}{8\pi^2 \varepsilon_0 cr^2} \sin^2 \theta \ \vec{u}_r$	0.5
$31- f(\theta) = \left\ \langle \vec{\Pi} \rangle \right\ = \frac{\left(0.95I_0\right)^2}{8\pi^2 \varepsilon_0 c} \frac{\sin^2 \theta}{r^2} $	0.5
θ $f(\theta)$ $\in (xoy)$	+ 1.5
Le facteur $\sin^2\theta$ traduit l'anisotropie du rayonnement. Pour $\theta = 0$, la puissance rayonnée est nulle.	+ 1
Pour $\theta = \frac{\pi}{2}$, la puissance rayonnée est maximale.	
32 $P_R = \iint_{sphere} \langle \vec{\Pi} \rangle r^2 \sin\theta d\theta d\phi \vec{u}_r \implies P_R = \frac{(0.95)^2}{3\pi\epsilon_0 c} I_0^2$	1.5
33- $R_{ray} = \frac{2(0.95)^2}{3\pi\epsilon_0 c}$; A.N: $R_{ray} = 72.2 \Omega$	0.5 + 0.5

Problème 2 (25/100)

3-1-	
• En B.F: $u_v \rightarrow \frac{8\pi k_B T}{c^3} v^2 = u_{v,RJ}$	0.5
	+
• En H.F: $u_v \rightarrow \frac{8\pi h}{c^3} v^3 e^{-\frac{hv}{k^BT}} = u_{v, \text{Wien}}$	0.5
3-2- $u = \frac{8\pi h}{c^3} \int_0^{\infty} \frac{v^3}{e^{\frac{hv}{k_BT}} - 1} dv$, en posant $x = \frac{hv}{k_BT}$ puis en intégrant, on trouve :	1.5 + 0.5
$u = \frac{8\pi^5 k_B^4}{15h^3 c^3} T^4 = aT^4 ; a = \frac{8\pi^5 k_B^4}{15h^3 c^3} ; A.N : a = 7,52 \cdot 10^{-16} \text{ Jm}^{-3} \text{K}^{-4}$	
$\frac{15\text{n c}}{4 - \frac{\text{du}}{\text{d}\lambda} = \frac{\text{c}}{\lambda^2} \frac{\text{du}}{\text{dv}}(\frac{\text{c}}{\lambda}), \text{ d'où } u_{\lambda}(\lambda, T) = \frac{8\pi\text{hc}}{\lambda^5} \frac{1}{e^{\frac{\text{hc}}{\lambda k_B T}} - 1}$	1.5
5- $u_{\lambda}(\lambda, T)$ est maximale si $\lambda^{5}\left(e^{\frac{hc}{\lambda k_{B}T}}-1\right)$ est extrémale, soit en posant $x = \frac{hc}{\lambda k_{B}T}$	2
$e^{x_m}(5-x_m)=5 \Rightarrow x_m = 4{,}97 \text{ ou encore } \lambda_m T = 2900 \mu\text{mK} : \text{loi de Wien}$	
δ - a- T = 300K, λ_m = 9,67 μm: rayonnement I-R	0.5 + 0.5
b- T = 5800K, $\lambda_m = 0.5 \mu m$: rayonnement visible	0.5 + 0.5
7-1- Loi de Stefan :	0.5
La puissance surfacique totale émise par un corps noir s'écrit $\varphi = \sigma T^4$	+ 0.5
La constante de Stefan σ s'exprime en Wm ⁻² K ⁻⁴	
7-2- $P_s = 4\pi R_s^2 \sigma T_s^2$	1
8- $P_t = P_s \frac{d\Omega}{4\pi}$, $d\Omega = \frac{\pi R_t^2}{d^2}$: angle solide élémentaire sous lequel on voit la terre	2.5
depuis le soleil ; soit $P_t = P_s \frac{R_t^2}{4d^2} = \frac{\pi \sigma R_s^2 R_t^2}{d^2} T_s^4$	
9-1- $P_t = 4\pi R_t^2 \sigma T_0^4 \Rightarrow T_0 = \sqrt{\frac{R_s}{2d}} T_s$	1
9-2- $T_0 \approx 280K = 7^{\circ}C$	0.5
T ₀ est inférieur à la température moyenne de la terre estimée à 20°C ⇒ le modèle est insuffisant car il ne tient pas compte de la présence de l'atmosphère (effet de serre)	+ 1
10-1- Equilibre radiatif:	
• Pour la terre : $4\pi R_t^2 \sigma T_p^4 = (1 - \alpha) \frac{\pi \sigma R_s^2 R_t^2}{d^2} T_s^4 + 4\pi R_t^2 \sigma T_a^4$	1.5
• Pour l'atmosphère : $2 \times 4\pi R_t^2 \sigma T_a^4 = \alpha \frac{\pi \sigma R_s^2 R_t^2}{d^2} T_s^4 + 4\pi R_t^2 \sigma T_p^4$, car e << R_t	1.5
10-2- En simplifiant les deux équations précédentes, on trouve :	0.5 + 0.5
$T_p^4 = (1 - \alpha)T_0^4 + T_a^4$ et ${}^42T_a = \alpha T_0^4 + T_p^4$	1.5
La combinaison de ces deux équations donne : $T_p = T_0(2-\alpha)^{\frac{1}{4}}$	0.5.0.5
$^{\text{1-3- A.N}}$: $T_p \approx 290 \text{K} = 17^{\circ}\text{C}$, ce modèle est plus réaliste (il peut être amélioré aussi)	0.5 + 0.5