TEMA 3. ESPACIOS VECTORIALES

- 1. CONJUNTOS LIBRES Y LIGADOS
 - 1.1. DEPENDENCIA E INDEPENDENCIA LINEAL
 - 1.2. RANGO DE UN CONJUNTO DE VECTORES
 - 1.3 CALCULO DE RANGOS
- 2. ESPACIOS VECTORIALES DE DIMENSION FINITA
 - 2.1 SISTEMA GENERADOR Y BASE DE UN ESPACIO VECTORIAL
- 3. CAMBIOS DE BASE
 - 3.1 MATRIZ DE CAMBIO DE BASE
- 4. SUBESPACIOS VECTORIALES (S.E.V.)
 - 4.1 PROYECCIÓN ORTOGONAL DE UN VECTOR SOBRE UN SUBESPACIO
- 5. BASES ORTOGONALES Y ORTONORMALES
 - 5.1 MÉTODO DE ORTOGONALIZACIÓN DE GRAM-SCHMIDT.

2

1. CONJUNTOS LIBRES Y LIGADOS

Recordemos que llamábamos combinación lineal de $\vec{u}_1,\vec{u}_2,....,\vec{u}_p$ a cualquier expresión de la forma $\alpha_1\vec{u}_1+\alpha_2\vec{u}_2+....+\alpha_p\vec{u}_p$ donde $\alpha_1,\alpha_2,....,\alpha_p$ son escalares (reales) y que su resultado siempre es otro vector de las mismas características de aquellos.

ER 1.1: Obtener el vector $\vec{u} = 2\vec{x} - 3\vec{y}$ analítica y gráficamente siendo:

- a) $\vec{x} = (1,0)$ $\vec{y} = (0,1)$ b) $\vec{x} = (1,1)$ $\vec{y} = (-1,-1)$ c) $\vec{x} = (1,1)$ $\vec{y} = (-2,3)$

- $\vec{u} = 2(1,0) 3(0,1) = (2,-3)$ $\vec{u} = 2(1,1) 3(-1,-1) = (5,5)$ $\vec{u} = 2(1,1) 2(-2,3) = (6,-4)$

Expresar el vector \vec{u} como combinación lineal de los vectores $\vec{p}, \vec{v}, \vec{w}$ quiere decir buscar escalares tales que se verifique $\vec{u} = \alpha \cdot \vec{p} + \beta \cdot \vec{v} + \lambda \cdot \vec{w}$

ER 1.2: Expresar el vector (2,-4) como combinación lineal de los vectores (1,1) y (-2,0).

$$(2,-4) = \alpha(1,1) + \beta(-2,0) \rightarrow \begin{cases} 2 = \alpha - 2\beta \\ -4 = \alpha \end{cases} \rightarrow \begin{cases} \alpha = -4 \\ \beta = -3 \end{cases} \text{ Por tanto } (2,-4) = -4(1,1) - 3(-2,0)$$

Los escalares buscados son -4 y -3

EXECUTE: \bullet Expresar el vector (4, -11) como combinación lineal de (2, -3) y (4, -6).

$$(4,-11) = x(2,-3) + y (4,-6) \longrightarrow \begin{cases} 4 = 2x + 4y \\ -11 = -3x - 6y \end{cases}$$

$$\begin{pmatrix} 2 & 4 & 4 \\ -3 & -6 & -11 \end{pmatrix} \approx \begin{pmatrix} 1 & 2 & 2 \\ -3 & -6 & -11 \end{pmatrix} \approx \begin{pmatrix} 1 & 2 & 2 \\ 0 & 0 & -5 \end{pmatrix} \longrightarrow \begin{cases} 2 = x + 2y \\ -5 = 0 \end{cases} \implies \text{Sistema Incompatible}$$

$$F2(n) \leftarrow \frac{1}{2}F2 \qquad F2(n) \leftarrow F2 + 3\mathbf{F1}$$

b) Expresar el vector (4, -11) como combinación lineal de (2, -1) y (1,4).

$$(4,-11) = x(2,-1) + y(1,4) \longrightarrow \begin{cases} 4 = 2x + y \\ -11 = -x + 4y \end{cases}$$

$$\begin{pmatrix} 2 & 1 & 4 \\ -1 & 4 & -11 \end{pmatrix} \approx \begin{pmatrix} 1 & -4 & 11 \\ 2 & 1 & 4 \end{pmatrix} \approx \begin{pmatrix} 1 & -4 & 11 \\ 0 & 9 & -18 \end{pmatrix} \implies \begin{cases} 11 = x - 4y \\ -18 = 9y \end{cases} \implies \begin{cases} y = -2 \\ x = 11 - 8 = 3 \end{cases}$$

Por tanto (4,-11)=3(2,-1) -2 (1,4) Los escalares buscados son 3 y -2

ER 1.4: Probar que **no hay** dos números x, y tales que $x \begin{pmatrix} 2 \\ -3 \end{pmatrix} + y \begin{pmatrix} 4 \\ -6 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$\begin{cases} 2x + 4y = 1 \\ -3x - 6y = 0 \end{cases} \rightarrow \begin{cases} 2 & 4 & 1 \\ -3 & -6 & 0 \end{cases} \approx \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \begin{cases} x + 2y = 0 \\ \mathbf{0} = \mathbf{1} \end{cases}$$

Este sistema no tiene solución.

VER 1.5: a) Expresar el vector (4,-5,7) como combinación lineal de (2,-3,5) y (-1,3,2).

$$(4,-5,7) = \alpha(2,-3,5) + \beta(-1,3,2)$$

$$\begin{cases}
4 = 2\alpha - \beta \\
-5 = -3\alpha + 3\beta \\
7 = 5\alpha + 2\beta
\end{cases}$$

$$\begin{pmatrix} 2 & -1 & \mathbf{4} \\ -3 & 3 & -\mathbf{5} \\ 5 & 2 & \mathbf{7} \end{pmatrix} \approx \begin{pmatrix} 2 & -1 & \mathbf{4} \\ 0 & 3 & \mathbf{2} \\ 0 & 9 & -\mathbf{6} \end{pmatrix} \approx \begin{pmatrix} 2 & -1 & \mathbf{4} \\ 0 & 3 & \mathbf{2} \\ 0 & 0 & -\mathbf{12} \end{pmatrix} \Rightarrow \begin{cases} 2\alpha - \beta = \mathbf{4} \\ 3\beta = \mathbf{2} \\ \mathbf{0} = -\mathbf{12} \end{cases}$$
 Incompatible
$$F2(n) \leftarrow 2F2 + 3F\mathbf{1} \quad F3(n) \leftarrow F3 - 3F\mathbf{2}$$

$$F3(n) \leftarrow 2F3 - 5F\mathbf{1}$$

El vector (4,-5,7) no puede expresarse como combinación lineal de (2,-3,5) y (-1,3,2).

VER 1.6: Expresar el vector (4,-5,7) como C.L. de (0,-3,5), (1,0,-3) y (-1,3,4).

$$(4,-5,7) = a(0,-3,5) + b(1,0,-3) + c(-1,3,4)$$

$$\begin{cases}
4 = -b+c \\
-5 = -3a+3b \\
7 = 5a+4b-3c
\end{cases}$$

$$\begin{pmatrix} 0 & 1 & -1 & \mathbf{4} \\ -3 & 0 & 3 & -\mathbf{5} \\ 5 & -3 & 4 & \mathbf{7} \end{pmatrix} \approx \begin{pmatrix} -3 & 0 & 3 & -\mathbf{5} \\ 0 & 1 & -1 & \mathbf{4} \\ 5 & -3 & 4 & \mathbf{7} \end{pmatrix} \approx \begin{pmatrix} -3 & 0 & 3 & -\mathbf{5} \\ 0 & 1 & -1 & \mathbf{4} \\ 0 & -9 & 27 & -\mathbf{4} \end{pmatrix} \approx \begin{pmatrix} -3 & 0 & 3 & -\mathbf{5} \\ 0 & 1 & -1 & \mathbf{4} \\ 0 & 0 & 18 & \mathbf{32} \end{pmatrix}$$

$$F2 \leftrightarrow F1 \qquad F3(n) \leftarrow 3F3 + 5F1 \qquad F3(n) \leftarrow F3 + 9F1$$

$$\begin{cases} -3a + 3c = -\mathbf{5} \\ b - c = \mathbf{4} \end{cases}$$

$$\begin{cases}
-3a + 3c = -5 \\
b - c = 4 \\
18c = 32
\end{cases}$$

$$18c = 32 \to c = \frac{16}{9} \to b = 4 + \frac{16}{9} = \frac{52}{9} \to b = \frac{52}{9} \to 3a = 5 + \cancel{3}\frac{16}{\cancel{9}3} = \frac{31}{3} \to a = \frac{31}{9}$$

$$(4,-5,7) = \frac{31}{9}(0,-3,5) + \frac{52}{9}(1,0,-3) + \frac{16}{9}(-1,3,4)$$

El vector (4,-5,7) puede expresarse como combinación lineal de (0,-3,5), (1,0,-3)y (-1,3,4)

EXEMPTE 1.7: Expressor, si es posible, el vector (0,0,0) como una C.L. de (-1,6,5), (1,0,-3) y (-1,3,4). distinta de (0,0,0) = 0(-1,6,5) + 0(1,0,-3) + 0(-1,3,4).

Se tratará de encontrar ecalares a,b,c no todos nulos tales que

$$(0,0,0) = a(-1,6,5) + b(1,0,-3) + c(-1,3,4)$$

$$\begin{cases} -a+b-c=\mathbf{0} \\ 6a+3c=\mathbf{0} \\ -11a-3b+4c=\mathbf{0} \end{cases} \begin{pmatrix} -1 & 1 & -1 & \mathbf{0} \\ 6 & 0 & 3 & \mathbf{0} \\ 5 & -3 & 4 & \mathbf{0} \end{pmatrix} \approx \begin{pmatrix} 1 & -1 & 1 & \mathbf{0} \\ 0 & 6 & -3 & \mathbf{0} \\ 0 & 2 & -1 & \mathbf{0} \end{pmatrix} \approx \begin{pmatrix} 1 & -1 & 1 & \mathbf{0} \\ 0 & 2 & -1 & \mathbf{0} \\ 0 & 0 & 0 & \mathbf{0} \end{pmatrix}$$
$$F2(n) \leftarrow F2+6F1 \qquad F3(n) \leftarrow 3F3-F2$$
$$F3(n) \leftarrow 2F3-5F1$$

$$\begin{cases} a-b+c=\mathbf{0} \\ 2b-c=\mathbf{0} \\ 0=\mathbf{0} \end{cases} \Rightarrow \begin{cases} a=b-c=-\mathbf{b} \\ b=\mathbf{b} \\ c=2\mathbf{b} \end{cases}$$
 Hay infinites combinaciones lineales de los vectores que dan el vector nulo.

Por ejemplo
$$\begin{cases} a = -3 \\ b = 3 \\ c = 6 \end{cases} (0,0,0) = -3(-1,6,5) + 3(1,0,-3) + 6(-1,3,4)$$

ER 1.8: Expresar, si es posible, el vector (0,0,0) como una C.L. de (-1,3,1), (1,0,-3) y (-1,3,4).

distinta de (0,0,0) = 0(-1,3,1) + 0(1,0,-3) + 0(-1,3,4).

Se tratará de encontrar ecalares a,b,c no todos nulos tales que

$$(0,0,0) = a(-1,3,1) + b(1,0,-3) + c(-1,3,4)$$

$$\begin{cases} -a+b-c=0\\ 3a+3c=0\\ a-3b+4c=0 \end{cases} = \begin{pmatrix} -1 & 1 & -1 & 0\\ 3 & 0 & 3 & 0\\ 1 & -3 & 4 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & -1 & 1 & 0\\ 1 & 0 & 1 & 0\\ 1 & -3 & 4 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & -1 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & -2 & 3 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & -1 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 3 & 0 \end{pmatrix}$$

$$F1(n) \leftarrow -F1 \qquad F2(n) \leftarrow F2-F1 \qquad F3(n) \leftarrow F3+2F2$$

$$F2(n) \leftarrow \frac{1}{3}F2 \qquad F3(n) \leftarrow F3-F1$$

$$\begin{cases} a-b+c=0 \\ b=0 \\ 3c=0 \end{cases} \Rightarrow \begin{cases} a=0 \\ b=0 \\ c=0 \end{cases}$$
 La única combinación lineal posible es la nula
$$\vec{0} = \mathbf{0}(-1,3,1) + \mathbf{0}(1,0,-3) + \mathbf{0}(-1,3,4)$$

1.1. DEPENDENCIA E INDEPENDENCIA LINEAL

D 1.1-DEPENDENCIA LINEAL

Dado el conjunto de vectores $\vec{u}_1, \vec{u}_2,, \vec{u}_p$, decimos que es linealmente dependiente (L. D.) si alguno de ellos puede expresarse como combinación lineal (C.L.) de los demás.

Los vectores (4,-5,7), (0,-3,5), (1,0,-3), (-1,3,4) del **ER 1.6** son L. D. ya que uno de ellos,

$$(4,-5,7)$$
, es C.L. de los otros tres: $(4,-5,7) = \frac{31}{9}(0,-3,5) + \frac{52}{9}(1,0,-3) + \frac{16}{9}(-1,3,4)$

VER 1.9: Decir si el conjunto de vectores (2,-4,0) (1,1,1) y (-1,2,0) es linealmente dependiente. Podemos comprobar que (1,1,1) no es C.L. de los otros dos.

$$\alpha \begin{pmatrix} 2 \\ -4 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{cases} 2\alpha - \beta = 1 \\ -4\alpha + 2\beta = 1 \end{cases}$$
 Sistema incompatible (no tiene solución)
$$0 = 1$$

Pero (2,-4,0) sí es C.L. de los otros dos.

$$\alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 0 \end{pmatrix} \qquad \begin{cases} \alpha - \beta = 2 & \rightarrow \beta = -2 \\ \alpha + 2\beta = -4 \rightarrow \beta = -2 \\ \alpha = 0 & \rightarrow \alpha = 0 \end{cases} \qquad (2, -4, 0) = \mathbf{0} \cdot (1, 1, 1) - \mathbf{2} \cdot (-1, 2, 0)$$

El conjunto (2,-4,0) (1,1,1) y (-1,2,0) es L.D.

***ER 1.10:** Demostrar que los vectores $\left(-1,6,5\right)$, $\left(1,0,-3\right)$ y $\left(-1,3,4\right)$ son L.D.

Recordemos que en el problema ER 1.7 habíamos visto que hay infinitas combinaciones lineales de estos vectores que nos dan el vector $\vec{0}$, una de las cuales era (0,0,0) = -3(-1,6,5) + 3(1,0,-3) + 6(-1,3,4). Si despejamos en esta igualdad uno de los vectores, por ejemplo (1,0,-3), veremos que es C.L. de los demás:

 $(1,0,-3) = \frac{3}{3}(-1,6,5) - \frac{6}{3}(-1,3,4)$; por tanto estos 3 vectores son L.D.

D 1.2-DEPENDENCIA LINEAL

Dado **el conjunto** de los vectores $\vec{u}_1, \vec{u}_2,, \vec{u}_p$, decimos que es **linealmente dependiente** si al realizar con ellos una combinación lineal e igualarla al vector nulo, la ecuación resultante tiene infinitas soluciones es decir que la ecuación vectorial $a_1\vec{u}_1 + a_2\vec{u}_2 + + a_p\vec{u}_p = \vec{0}$ tiene **infinitas soluciones** y por tanto los escalares pueden tomar valores no nulos.

▼ER 1.11: Decir si el conjunto de vectores (2,-4,0) (1,1,1) y (-1,2,0) es linealmente dependiente.

Formamos una C.L. de los tres vectores,
$$a \begin{pmatrix} 2 \\ -4 \\ 0 \end{pmatrix} + b \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

y después la igualamos al vector nulo: $a \begin{pmatrix} 2 \\ -4 \\ 0 \end{pmatrix} + b \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ Combinación lineal nula

$$\begin{pmatrix} 2 & -1 & 1 \\ -4 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \approx \begin{pmatrix} 2 & -1 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{pmatrix} \approx \begin{pmatrix} 2 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{cases} 2a - b + c = 0 \\ c = 0 \\ 0 = 0 \end{cases} \qquad \longrightarrow \begin{cases} a = a \\ b = 2a \end{cases} \qquad \text{Infinitas soluciones:}$$

$$F2(n) \leftarrow F2 + 2F1$$
 $F3(n) \leftarrow 3F3 - F2$ Por ejemplo: $a = 2$ $b = 4$ $c = 0$
$$2(2, -4, 0) + 4(-1, 2, 0) + 0(1, 1, 1) = (0, 0, 0)$$

D 1.3-INDEPENDENCIA LINEAL

Dado el conjunto de vectores $\vec{u}_1, \vec{u}_2,, \vec{u}_p$, decimos que es linealmente independiente si ninguno de ellos puede expresarse como combinación lineal de los demás.

ER 1.12: Estudiar si el conjunto de vectores (2,-4,0) (1,1,1) y (-1,2,1) es linealm. independiente.

Comprobamos que (1,1,1) no es c.l. de los otros dos: (1,1,1) = a(2,-4,0) + b(-1,2,1)

$$\begin{cases} 1 = 2a - b \\ 1 = -4a + 2b \\ 1 = 0 + b \end{cases}$$
 Sistema incompatible (no tiene solución)

Comprobamos que (2,-4,0) no es C.L. de los otros dos: (2,-4,0) = a(1,1,1) + b(-1,2,1)

$$\begin{cases} \mathbf{2} = a - b \\ -\mathbf{4} = a + 2b \end{cases} \longrightarrow \begin{pmatrix} 1 & -1 & \mathbf{2} \\ 1 & 2 & -\mathbf{4} \\ 1 & 1 & \mathbf{0} \end{pmatrix} \approx \begin{pmatrix} 1 & -1 & \mathbf{2} \\ 0 & 3 & -\mathbf{6} \\ 0 & 2 & -\mathbf{2} \end{pmatrix} \approx \begin{pmatrix} 1 & -1 & \mathbf{2} \\ 0 & 3 & -\mathbf{6} \\ 0 & 0 & \mathbf{6} \end{pmatrix} \longrightarrow \begin{cases} a - b = \mathbf{2} \\ 3a = -\mathbf{6} \\ 0 = \mathbf{6} \end{cases}$$
 Sistema incompatible

Comprobamos que (-1,2,1) no es c.l. de los otros dos: $\left(-1,2,1\right)=a\left(1,1,1\right)+b\left(2,-4,0\right)$

$$\begin{cases} -1 = a + 2b \\ 2 = a - 4b \\ 1 = a \end{cases} \longrightarrow \begin{pmatrix} 1 & 2 & -1 \\ 1 & -4 & 2 \\ 1 & 0 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 2 & -1 \\ 0 & -6 & 3 \\ 0 & -2 & 2 \end{pmatrix} \approx \begin{pmatrix} 1 & 2 & -1 \\ 0 & -6 & 3 \\ 0 & 0 & 3 \end{pmatrix} \longrightarrow \begin{cases} a + 2b = -1 \\ -6a = 3 \\ 0 = 3 \end{cases}$$
 Sistema incompatible

Como ninguno de los vectores es C.L. de los otros dos, este conjunto de tres vectores es L.I.

ER 1.13: Demostrar que los vectores (-1,3,1), (1,0,-3) y (-1,3,4) son L.I.

Recordemos que en el problema **ER 1.8** habíamos visto que SOLO HAY una combinación lineal de estos vectores que nos da el vector $\vec{0}$, la C.L. $\vec{0} = \mathbf{0} \big(-1, 6, 5 \big) + \mathbf{0} \big(1, 0, -3 \big) + \mathbf{0} \big(-1, 3, 4 \big)$

Si quisiésemos despejar en esta igualdad uno cualquiera de los vectores no podríamos ya que obtendríamos una expresión como $(-1,6,5) = -\frac{0}{0}(1,0,-3) - \frac{0}{0}(-1,3,4)$ y ya sabemos que las expresiones $\frac{0}{0}$ no existen; por lo tanto no podremos expresar nunguno de los vectores como C.L de los demás, por tanto estos 3 vectores son L.I.

D 1.4-INDEPENDENCIA LINEAL

Dado el conjunto de vectores $\vec{u}_1, \vec{u}_2,, \vec{u}_p$, decimos que es **linealmente independiente** si al realizar una combinación lineal e igualarla al vector nulo, la ecuación vectorial resultante tiene **únicamente** la solución trivial es decir que $a_1\vec{u}_1 + a_2\vec{u}_2 + + a_p\vec{u}_p = \vec{0}$ solo admite la solución $a_1 = a_2 = ... = a_p = 0$

ER 1.14: Decir si el conjunto (2,-4,0)(1,1,1) y (-1,2,1) es linealmente independiente.

Escribimos una combinación lineal de los vectores y la igualamos al vector (0,0,0) (comb. lineal nula)

$$a \begin{pmatrix} 2 \\ -4 \\ 0 \end{pmatrix} + b \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} + c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} 2a - b + c = 0 \\ -4a + 2b + c = 0 \\ b + c = 0 \end{cases}$$

Solo admite la solución trivial, por lo tanto es L.I.

....

- ▶ER 1.15: a) Demostrar que el conjunto (1,1) y (1,0) es linealmente independiente.
- 1ª forma: Que ninguno de ellos sea combinación lineal de los demás:

$$(1,1) = a(1,0) \Longrightarrow \begin{cases} 1 = a \\ 1 = 0 \end{cases}$$
 Sistema incompatible

(1,1) no es C.L. de (1,0) y por tanto (1,0) tampoco no es C.L. de (1,1)

No es posible expresar ninguno de ellos como combinación lineal de los demás. Es L.I.

2ª forma: que una combinación lineal nula tenga únicamente la solución trivial:

$$a(1,1)+b(1,0)=(0,0)\Rightarrow \begin{cases} 0=a+b \\ 0=a \end{cases} \Rightarrow a=b=0 \Rightarrow \text{ Linealmente independiente}$$

b) Demostrar que el conjunto (1,1) y (0,1) es linealmente independiente.

Iqual que en el apartado a) podemos demostrar que:

$$(1,1) = a(0,1) \Longrightarrow \begin{cases} 1=0 \\ 1=a \end{cases}$$
 Sistema incompatible

$$(1,1) \ \ \text{no es C.L. de } (0,1) \ \ \text{y} \quad \left(0,1\right) \ \ \text{no es C.L. de } (1,1)$$

$$(1,0) = a(1,1) \Longrightarrow \begin{cases} 1 = a \\ 0 = 1 \end{cases}$$
 Sistema incompatible

o bien que cualquier combinación lineal nula solo tiene como solución la trivial:

$$a(1,1)+b(0,1)=(0,0)\Rightarrow \begin{cases} a=0\\ a+b=0 \end{cases} \Rightarrow a=b=0 \Rightarrow \text{ Linealmente independientes}$$

c) Demostrar que (1,0) y (0,1) son L.I.

Análogamente a los apartados anteriores:

$$\left(1,0\right) \text{no es } \textit{C.L.} \text{ de } \left(0,1\right) \text{ y } \left(0,1\right) \text{ no es } \textit{C.L.} \text{ de } \left(1,0\right)$$

$$(0,1) = a(1,0) \Rightarrow \begin{cases} 0 = a \\ 1 = 0 \end{cases}$$
 Sistema incompatible
$$(1,0) = a(0,1) \Rightarrow \begin{cases} 1 = 0 \\ 0 = a \end{cases}$$
 Sistema incompatible

$$(1,0) = a(0,1) \Longrightarrow \begin{cases} 1=0 \\ 0=a \end{cases}$$

o bien que cualquier combinación lineal nula solo tiene como solución la trivial:

$$a(1,0)+b(0,1)=(0,0)\Rightarrow \begin{cases} 0=a \\ 0=b \end{cases} \Rightarrow a=b=0 \Rightarrow \text{ Linealmente independientes}$$

d) Demostrar que (1,1) (1,0) y (0,1) son L.D.

1ª forma:

$$(1,1) = a(1,0) + b(0,1) \implies a = b = 1 \implies (1,1) = (1,0) + (0,1)$$

$$(1,1)$$
 es C.L. de $(1,0)$ y $(0,1)$ por lo tanto $\{(1,1), (1,0), (0,1)\}$ son L.D.

(Basta que uno de ellos sea C.L. de los demás)

2ª forma: Hacemos una combinación lineal nula:

$$a(1,1)+b(1,0)+c(0,1)=(0,0)$$
 y resolvemos el sistema homogéneo resultante

$$\begin{cases} a+b=0 \\ a+c=0 \end{cases} \Rightarrow \begin{cases} a=a \\ b=-a \Rightarrow \text{ Sistema con infinites soluciones} \\ c=-a \end{cases}$$

Una posible solución sería: a=1 b=-1 c=-1 \Rightarrow (1,1)-(1,0)-(0,1)=(0,0)

Hemos obtenido un sistema con infinitas soluciones por lo tanto los vectores son L.D.

Observar que los vectores de este conjunto tomados de dos en dos son L.I. y sin embargo los tres juntos son L.D.

♥ER 1.16: Expresar (5,3) como combinación lineal de:

a)
$$(1,1) \ y (1,0)$$
, $a(1,1)+b(1,0)=(5,3) \Rightarrow \begin{cases} a+b=5 \\ a=3 \end{cases} \Rightarrow \begin{cases} a=3 \\ b=2 \end{cases} \Rightarrow (5,3)=3(1,1)+2(1,0)$
b) $(1,1) \ y (0,1)$ $a(1,1)+b(0,1)=(5,3) \Rightarrow \begin{cases} a=5 \\ a+b=3 \end{cases} \Rightarrow \begin{cases} a=5 \\ b=-2 \end{cases} \Rightarrow (5,3)=5(1,1)-2(0,1)$
c) $(1,0) \ y (0,1)$ $a(1,0)+b(0,1)=(5,3) \Rightarrow \begin{cases} a=5 \\ b=3 \end{cases} \Rightarrow \begin{cases} a=5 \\ b=3 \end{cases} \Rightarrow (5,3)=5(1,0)+3(0,1)$

b) (1,1)
$$\gamma$$
 (0,1) $a(1,1)+b(0,1)=(5,3) \Rightarrow \begin{cases} a=5\\ a+b=3 \end{cases} \Rightarrow \begin{cases} a=5\\ b=-2 \end{cases} \Rightarrow (5,3)=5(1,1)-2(0,1)$

c) (1,0)
$$\gamma$$
 (0,1) $a(1,0)+b(0,1)=(5,3) \Rightarrow \begin{cases} a=5 \\ b=3 \end{cases} \Rightarrow \begin{cases} a=5 \\ b=3 \end{cases} \Rightarrow (5,3)=5(1,0)+3(0,1)$

d) (1,1), (1,0) y (0,1)
$$a(1,0)+b(0,1)+c(1,1)=(5,3) \Rightarrow \begin{cases} a+c=5 \\ b+c=3 \end{cases} \Rightarrow \begin{cases} a=\mathbf{5}-c \\ b=\mathbf{3}-c \\ c=c \end{cases} \Rightarrow \begin{cases} a=\mathbf{5}-c \\ b=\mathbf{3}-c \\ c=c \end{cases} \Rightarrow \text{Infinitas}$$

Una solución posible: Damos un valor a c y calculamos el resto: $c=1 \rightarrow a=4$ y b=2

$$(5,3) = 4(1,0) + 2(0,1) + (1,1)$$

Otra solución: $c=2 \rightarrow a=3 \text{ y } b=1$ (5,3) = 3(1,0) + 1(0,1) + 2(1,1)

1.2. RANGO DE UN CONJUNTO DE VECTORES

D1.5-RANGO DE UN CONJUNTO DE VECTORES

Dado el conjunto de p vectores $\left\{\vec{u}_1,\vec{u}_2,....,\vec{u}_p\right\}$, decimos que tienen rango r si hay como mínimo un subconjunto de r vectores L.I. y ningún subconjunto de r+1 vectores L.I. por lo tanto es el nº máximo de vectores independientes que podemos extraer del conjunto.

Evidentemente el rango siempre será menor o igual al número de vectores que forman el conjunto.

Si tenemos un conjunto con 8 vectores el rango como máximo podrá valer 8 y esto ocurrirá si el conjunto de los 8 vectores es L.I. Si el rango es 5 querrá decir que al menos podemos formar un subconjunto de 5 vectores que es L.I. Sin embargo puede haber muchos subconjuntos con 5 vectores que sean L.D.

Lo que no puede ocurrir es que haya un subconjunto de 6 o más vectores que sea L.I.

1. CALCULO DE RANGOS

Un método para calcular el rango de un conjunto de vectores es construir una matriz utilizando los vectores como columnas (o filas) y se define el rango de la matriz como el rango de sus vectores columna (o fila).

D 1.6-RANGO DE UNA MATRIZ

El rango de una matriz A es el número máximo de vectores fila o columna L.I.

¿Cómo se calcula? Aplicando el método de Gauss el rango resulta ser el nº de filas no nulas de cualquier matriz **escalonada** equivalente por filas a A.

$$\begin{pmatrix} -1 & 4 & -2 & 5 & 0 \\ 3 & -1 & 0 & -2 & 5 \\ 3 & 10 & -6 & 11 & 10 \end{pmatrix} \approx \xrightarrow{F2n \leftarrow F2+3F1} \approx \begin{pmatrix} -1 & 4 & -2 & 5 & 0 \\ 0 & 11 & -6 & 13 & 5 \\ 0 & 22 & -12 & 26 & 10 \end{pmatrix} \approx \xrightarrow{F3n \leftarrow F3-2F2} \approx \begin{pmatrix} -1 & 4 & -2 & 5 & 0 \\ 0 & 11 & -6 & 13 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Matriz escalonada equivalente. No de filas no nulas = Rango 2

~~~~

♥ ER 1.18. - Calcular el rango de las matrices:

a) 
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}$$
 Matriz escalonada equivalente. N° de filas no nulas = Rango 2  $F_2n \leftarrow F_2 - 2F_1$ 

**b)** 
$$\begin{pmatrix} -1 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{pmatrix} \approx \begin{pmatrix} -1 & 3 & 2 \\ 0 & 3 & 3 \\ 0 & 7 & 7 \end{pmatrix} \approx \begin{pmatrix} -1 & 3 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$
 M. Esc. equiv. N° de filas no nulas= Rango 2  $F_2n \leftarrow F_2 + F_1$   $F_3n \leftarrow 3F_3 - 7F_2$   $F_3n \leftarrow F_3 + 2F_1$ 

c) 
$$\begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 1 & 0 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & -2 \end{pmatrix}$$
 M. Esc. equiv. N° de filas no nulas= Rango 3
$$F_{2}n \leftarrow F_{2} - 2F_{1} \qquad F_{3}n \leftarrow F_{3} - F_{2}$$

d) 
$$\begin{pmatrix} -1 & 4 & -2 & 5 & 0 \\ 3 & -1 & 0 & -2 & 5 \\ 3 & 10 & -6 & 11 & 10 \end{pmatrix} \approx \begin{pmatrix} -1 & 4 & -2 & 5 & 0 \\ 0 & 11 & -6 & 13 & 5 \\ 0 & 22 & -12 & 26 & 10 \end{pmatrix} \approx \begin{pmatrix} -1 & 4 & -2 & 5 & 0 \\ 0 & 11 & -6 & 13 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 M. E.E. Rango 2  $F_2n \leftarrow F_2 + 3F_1$   $F_3n \leftarrow F_3 - 2F_2$   $F_3n \leftarrow F_3 + 3F_1$ 

Observar que si se trata de calcular el rango de una matriz cuadrada, el proceso de escalonar coincide con la primera parte del cálculo de la inversa. Para poder llegar a la matriz identidad es necesario y suficiente que la matriz triangular superior obtenida tenga todas sus filas no nulas (rango máximo). Ahora podemos afirmar que para que una matriz tenga inversa es necesario y suficiente que su rango sea máximo o sea que todos sus vectores fila y columna son L.I.