Combo 7 de definiciones y convenciones notacionales

Emanuel Nicolás Herrador - November 2024

1 v es sustituible por w en φ

Defina recursivamente la relación "v es sustituible por w en φ "

Definiremos recursivamente la relación "v es sustituible por w en φ " del siguiente modo:

- 1. Si φ es atómica, entonces v es sustituible por w en φ
- 2. Si $\varphi = (\varphi_1 \eta \varphi_2)$ con $\eta \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, entonces v es sustituible por w en φ sii v es sustituible por w en φ_1 y en φ_2
- 3. Si $\varphi = \neg \varphi_1$, entonces v es sustituible por w en φ sii v es sustituible por w en φ_1
- 4. Si $\varphi = Qv\varphi_1$ con $Q \in \{\forall, \exists\}$, entonces v es sustituible por w en φ
- 5. Si $\varphi = Qw\varphi_1$ con $Q \in \{\forall, \exists\}$ y $v \in Li(\varphi_1)$, entonces v no es sustituible por w en φ
- 6. Si $\varphi = Qw\varphi_1$ con $Q \in \{\forall, \exists\}$ y $v \notin Li(\varphi_1)$, entonces v es sustituible por w en φ
- 7. Si $\varphi = Qu\varphi_1$ con $Q \in \{\forall, \exists\}$, con $u \neq v$ y $u \neq w$, entonces v es sustituible por w en φ sii v es sustituible por w en φ_1

2 $J \in Just^+$ es balanceada

Defina cuándo $\mathbf{J} \in Just^+$ es balanceada (no hace falta que defina $\mathcal{B}^{\mathbf{J}}$)

Diremos que $\mathbf{J} \in Just^+$ es balanceada si se dan las siguientes:

- 1. Por cada $k \in N$ a lo sumo hay un i tal que $\mathbf{J}_i = \text{HIPOTESIS}\bar{k}$ y a lo sumo hay un j tal que $\mathbf{J}_j = \text{TESIS}\bar{k}\alpha$, con $\alpha \in JustBas$
- 2. Si $\mathbf{J}_i = \text{HIPOTESIS}\bar{k}$, entonces hay un l > i tal que $\mathbf{J}_l = \text{TESIS}\bar{k}\alpha$, con $\alpha \in JustBas$
- 3. Si $\mathbf{J}_i = \text{TESIS}\bar{k}\alpha$, con $\alpha \in Just Bas$, entonces hay un l < i tal que $\mathbf{J}_l = \text{HIPOTESIS}\bar{k}$
- 4. Si $B_1, B_2 \in \mathcal{B}^{\mathbf{J}}$, entonces $B_1 \cap B_2 = \emptyset$ o $B_1 \subseteq B_2$ o $B_2 \subseteq B_1$

3 Filtro del reticulado terna (L, s, i)

Defina "filtro del reticulado terna (L, s, i)"

Un filtro de un reticulado terna (L, s, i) será un subconjunto $F \subseteq L$ tal que:

- 1. $F \neq \emptyset$
- 2. $x, y \in F \Rightarrow x \ i \ y \in F$
- 3. $x \in F$ y $x \le y \Rightarrow y \in F$

4 Teoría elemental

Defina "teoría elemental"

Una teoría elemental será un par (Σ, τ) tal que τ es un tipo cualquiera y Σ es un conjunto de sentencias elementales de tipo τ , las cuales no tienen nombres de elementos fijos.

Un modelo de (Σ, τ) será una estructura de tipo τ la cual haga verdaderos a todos los elementos de Σ .