Détaillez vos réponses, prouvez vos affirmations. Les étoiles marquent les questions difficiles.

IMPORTANT : Pensez à noter le numéro du sujet sur votre copie.

Durée : 2h. Documents autorisés. Pas de calculettes. Pas d'ordinateur. Pas de téléphone.

Question 1

Développer le calcul suivant en base 4 :

$$31 \cdot (2323 - 2012).$$

Question 2

En utilisant les règles de la déduction naturelle (voir annexe au verso) prouver que

$$\vdash p \to ((p \to q) \to q).$$

Question 3

En utilisant exclusivement les symboles $+, -, \times, =, \leq$, les constantes $0, 1, 2, \ldots$ et le calcul des prédicats, écrire en langage logique l'affirmation « 2 est un nombre premier ».

Question 4

Montrer par induction que $\sum_{k=0}^{n} (4k-5) = (2n-5)(n+1)$ pour tout $n \ge 0$.

Question 5

Pour chacune des fonctions suivantes dire si elle est injective et/ou surjective. Donner une justification dans le cas affirmatif, ou un contre-exemple dans le cas négatif.

- (a) La fonction $f: \mathbb{N}^2 \to \mathbb{N}$ définie par f(m,n) = m+n,
- (b) La fonction $f: \mathbb{N} \to \mathbb{N}$ définie par $f(n) = n^2 3n + 2$,
- (c) La fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^3$.

Question 6

On considère la relation \circ sur \mathbb{Q}^* (les rationnels privés de 0) définie par

$$a \circ b$$
 ssi $\frac{a}{b}$ est un carré.

Rappel : 9/4 est un carré car égal à $(3/2)^2$, alors que 7/3 n'est pas un carré.

- (a) Dire si $1 \circ \frac{1}{49}$, $1 \circ 10$, $\frac{1}{49} \circ 1$, $8 \circ \frac{8}{25}$.
- (b) La relation est-elle réflexive, symétrique, transitive, anti-symétrique? Justifier.
- (c) Décrire la classe d'équivalence de 1.

Question 7

Soient

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 3 & 5 & 4 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 3 & 6 & 5 & 1 \end{pmatrix}.$$

- (a) Calculer $\sigma_1 \circ \sigma_2$ et σ_1^{-1} .
- (b) Calculer les décompositions en cycles de σ_1 , σ_2 , σ_1^{-1} et σ_2^{-1} .

Question 8

Un sous-mot d'un mot donné est une suite de lettres apparaissant dans le même ordre que dans le mot d'origine. Par exemple, « prl » et « are » sont des sous-mots de « parole », mais « plr » ne l'est pas.

- (a) Combien de sous-mots a le mot « mot »?
- (b) Étant donné un mot de n lettres distinctes, combien de sous-mots de m lettres y a-t-il?
- (c) Étant donné un mot de n lettres distinctes, combien de sous-mots y a-t-il?

Annexe : règles de la déduction naturelle

Hypothèse	$\overline{\Gamma,\phi \vdash \phi}^{ H}$	Tiers exclus	${\Gamma \vdash \phi \lor \neg \phi} T$
Affaiblissement	$\frac{\Gamma \vdash \phi}{\Gamma, \psi \vdash \phi} W$	Élimination du faux	$\frac{\Gamma \vdash \psi \land \neg \psi}{\Gamma \vdash \phi} F$
Introduction du et	$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi} I_{\land}$		
Élimination du et	$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \phi} L_{\land}$	$\frac{\Gamma \vdash \phi \land \psi}{\Gamma \vdash \psi} R_{\land}$	
Introduction du ou	$\frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \lor \psi} L_{\lor}$	$\frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \lor \psi} R_{\lor}$	
Élimination du ou	$\frac{\Gamma \vdash \phi \lor \psi \qquad \Gamma \vdash \phi \to \gamma}{\Gamma \vdash \chi}$	$\chi \Gamma \vdash \psi \to \chi \\ E_{\vee}$	
Modus ponens	$\frac{\Gamma \vdash \phi \qquad \Gamma \vdash \phi \to \psi}{\Gamma \vdash \psi} M$	Déduction	$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi} D$