intel

4040

SINGLE CHIP 4-BIT P-CHANNEL MICROPROCESSOR

- Functionally and Electrically Upward Compatible to 4004 CPU
- 14 Additional Instructions (60 total) Including Logical Operations and Read Program Memory
- Interrupt Capability
- Single Step Operation

- 8K Byte Memory Addressing Capability
- 24 Index Registers
- Subroutine Nesting to 7 Levels
- Standard Operating Temperature Range of 0°to 70°C
- Also Available With -40° to +85°C Operating Range

The Intel® 4040 is a complete 4-bit parallel central processing unit (CPU). The CPU can directly address 4K eight bit instruction words or 8K with a bank switch. Seven levels of subroutine nesting, including interrupt, and 24 randomly accessable index registers (24x4) are provided as convenient facilities for the designer. The index registers may be used for addressing or for scratch pad memory for storing computation results. The interrupt feature permits a normal program sequence to be interrupted, with normal program execution continuing after the interrupt service routine is completed. Provisions have also been made to permit single-stepping the CPU using the STOP and ACKNOWLEDGE signals.

The 4040 is an enhanced version of the 4004 and as such retains all the functional capability of that device. It will execute all the 4004 instructions, and is also electrically compatible with all components used with a 4004 CPU.

BLOCK DIAGRAM

Pin Description

D_0-D_3

BIDIRECTIONAL DATA BUS. All address and data communication between the processor and the RAM and ROM chips occurs on these 4 lines.

STP

STOP input. A logic "1" level on this input causes the processor to enter the STOP mode.

STPA

STOP ACKNOWLEDGE output. This signal is present when the processor is in the stopped state. Output is "open drain" requiring pull-down resistor to V_{DD} .

INT

INTERRUPT input. A logic "1" level at this input causes the processor to enter the INTERRUPT mode.

INTA

INTERRUPT ACKNOWLEDGE output. This signal acknowledges receipt of an INTERRUPT signal and prevents additional INTERRUPTS from entering the processor. It remains active until cleared by the execution of the new BRANCH BACK and SRC (BBS) instruction. The output is "open drain" requiring a pull-down resistor to VDD.

RESET

RESET input. A logic "1" level at this input clears all flag and status registers and forces the program counter to zero. To completely clear all address and index registers, RESET must be applied for 96 clock cycles (12 machine cycles).

TEST

TEST input. The logical state of this signal may be tested with the JCN instruction.

SYNC

SYNC output. Synchronization signal generated by the processor and sent to ROM and RAM chips. It indicates the beginning of an instruction cycle.

$CM-RAM_0 - CM-RAM_3$

CM-RAM outputs. These are bank selection signals for the 4002 RAM chips in the system.

$CM-ROM_0 - CM-ROM_1$

CM-ROM outputs. These are bank selection signals for program ROM chips in the system.

CY

CARRY output. The state of the carry flip-flop is present on this output and updated each X_1 time. Output is "open-drain" requiring pull down resistor to V_{DD} .

ϕ_1, ϕ_2	Two phase clock inputs
Vss	Most positive voltage
V _{DD} *V _{DD1} **V _{DD2}	V _{SS} -15V ±5% - Main supply voltage V _{SS} -15V ±5% - Timing supply voltage - Output buffer supply voltage

^{*}For low power operation

^{**} May vary depending on system interface

Instruction Set Format

A. Machine Instructions

- 1 word instruction 8-bits requiring 8 clock periods (1 instruction cycle)
- 2 word instruction 16-bits requiring 16 clock periods (2 instruction cycles)

Each instruction is divided into two 4-bit fields. The upper 4-bits is the OPR field containing the operation code. The lower 4-bits is the OPA field containing the modifier. For two word instructions, the second word contains address information or data.

The upper 4-bits (OPR) will always be fetched before the lower 4-bits (OPA) during $\rm M_1$ and $\rm M_2$ times respectively.

Table I. Machine Instruction Format.

Input/Output and RAM Instructions and Accumulator Group Instructions

In these instructions (which are all single word) the OPR contains a 4-bit code which identifies either the I/O instruction or the accumulator group instruction and the OPA contains a 4-bit code which identifies the operation to be performed. Table II illustrates the contents of each

Table II. I/O and Accumulator Group Instruction Formats.

4040 Instruction Set BASIC INSTRUCTIONS (* = 2 Word Instructions)

Hex Code	MNEMONIC	OPR D ₃ D ₂ D, D ₀	OPA D ₃ D ₂ D ₁ D ₀	DESCRIPTION OF OPERATION					
00	NOP	0 0 0 0	0 0 0 0	No operation.					
1 -	*JCN	0 0 0 1 A ₂ A ₂ A ₂ A ₂	C ₁ C ₂ C ₃ C ₄ A ₁ A ₁ A ₁	Jump to ROM address A_2 A_2 A_2 A_2 , A_1 , A_1 , A_1 , A_1 (within the same ROM that contains this JCN instruction) if condition C_1 , C_2 C_3 C_4 is true, otherwise go to the next instruction in sequence.					
2	* FIM	0 0 1 0 D ₂ D ₂ D ₂ D ₂	R R R 0 D ₁ D ₁ D ₁ D ₁	Fetch immediate (direct) from ROM Data D ₂ D ₂ D ₂ D ₂ D ₁ D ₁ D ₁ D ₁ to index register pair location RRR.					
3 -	FIN	0 0 1 1	RRR 0	Fetch indirect from ROM. Send contents of index register pair location 0 out as an address. Data fetched is placed into register pair location RRR.					
3 -	JIN	0 0 1 1	RRR1	Jump indirect. Send contents of register pair RRR out as an address at A_1 and A_2 time in the instruction cycle.					
4 -	*JUN	0 1 0 0 A ₂ A ₂ A ₂ A ₂	A ₃ A ₃ A ₃ A ₃ A ₁ A ₁ A ₁ A ₁	Jump unconditional to ROM address A_3 A_3 A_3 A_3 A_2 A_2 A_2 A_2 A_3 A_4 A_1 A_4 A_5 A_5					
5 -	*JMS	0 1 0 1 A ₂ A ₂ A ₂ A ₂	A ₃ A ₃ A ₃ A ₃ A ₁ A ₁ A ₁ A ₁	Jump to subroutine ROM address $A_3 A_3 A_3 A_3 A_2 A_2 A_2 A_2 A_4 A_1 A_1 A_1 A_2 A_3 A_3 A_4 A_2 A_2 A_2 A_3 A_3 A_4 A_5 A_5 A_5 A_5 A_5 A_5 A_5 A_5 A_5 A_5$					
6 -	INC	0 1 1 0	RRRR	Increment contents of register RRRR.					
7 -	* ISZ	0 1 1 1 A ₂ A ₂ A ₂ A ₂	R R R R A, A, A, A,	Increment contents of register RRRR. Go to ROM address $A_2A_2A_2$ A_2 $A_1A_1A_1A_1$, A_1 (within the same ROM that contains this ISZ instruction) if result $= 0$, otherwise go to the next instruction in sequence.					
8 -	ADD	1 0 0 0	RRRR	Add contents of register RRRR to accumulator with carry.					
9 -	SUB	1 0 0 1	RRRR	Subtract contents of register RRRR to accumulator with borrow.					
A -	LD	1010	RRRR	Load contents of register RRRR to accumulator.					
В-	XCH	1011	RRRR	Exchange contents of index register RRRR and accumulator.					
C -	BBL	1 1 0 0	DDDD	Branch back (down 1 level in stack) and load data DDDD to accumulator.					
D -	LDM	1 1 0 1	DDDD	Load data DDDD to accumulator.					
FO	CLB	1111	0 0 0 0	Clear both. (Accumulator and carry)					
F1	CLC	1111	0 0 0 1	Clear carry.					
F2	IAC	1111	0 0 1 0	Increment accumulator.					
F3	CMC	1 1 1 1	0 0 1 1	Complement carry.					
F4	CMA	1111	0 1 0 0	Complement accumulator.					
F5	RAL	1111	0 1 0 1	Rotate left. (Accumulator and carry)					
F6	RAR	1111	0 1 1 0	Rotate right. (Accumulator and carry)					
F7	TCC	1 1 1 1	0 1 1 1	Transmit carry to accumulator and clear carry.					
F8	DAC	1111	1 0 0 0	Decrement accumulator.					
F9	TCS	1111	1 0 0 1	Transfer carry subtract and clear carry.					
FA	STC	1 1 1 1	1010	Set carry.					
FB	DAA	1 1 1 1	1 0 1 1	Decimal adjust accumulator.					
FC	КВР	1111	1 1 0 0	Keyboard process. Converts the contents of the accumulator from one out of four code to a binary code.					
FD	DCL	1111	1 1 0 1	Designate command line.					
-									

4040 ONLY INSTRUCTIONS

Hex Code	MNEMONIC	D,		PR D,	D,	D ₃		PA D,	D _o	DESCRIPTION OF OPERATION		
01	HLT	0	0	0	0	0	0	0	1	Executes Halt until interrupt received.	19 45 45	
02	BBS	0	0	0	0	0	0	1	0	Return from subroutine and restore SRC.		
03	LCR	0	0	0	0	0	0	1	1	Data RAM and ROM bank status loaded into ACC.		
04	OR4	0	0	0	0 :	0	1	G	0	OR accumulator with IR4.		
05	OR5	0	0	0	0	0	1	0	1	OR accumulator with IR5.		
06	AN6	0	0	0	0	0	1	1	0	AND accumulator with IR6.	-	
07	AN7	0	0	0	0	0	1	1.	1	AND accumulator with IR7.		-
08	DBO	0	0	0	0	1	0	0	0	Select ROM bank 0		
09	DB1	0	0	0	0	1	0	0	1	Select ROM bank 1.		
0A	SBO	0	0	0	0	1	0	1	0	Select IR bank 0	-	
OB	SB1	0	0	0	0 .	1	0	1	1	Select IR bank 1.		-
OC	EIN	0	0	0	0	1	1	0	0	Enable interrupt detection		74.
OD	DIN	0	0	0	0	1	1	0	1	Disable interrupt detection.		
0E	RPM	0	0	0	0	1	1	1	0	Load accumulator from 4289-controlled program RA	M.	12

4001/4002/4008/4009/4289 INPUT/OUTPUT AND RAM INSTRUCTIONS

Hex Code	MNEMON	IC D	O D ₂	PR D	, D _o	l	D ₃	01 D2		D,	DESCRIPTION OF OPERATION
2 -	SRC				0		R	R	R	1	Send register control. Send the address (contents of index register pair RRR) to ROM and RAM at X ₂ and X ₃ time in the instruction cycle.
EO.	WRM	1	1	1	0		0	0	0	0	Write the contents of the accumulator into the previously selected RAM main memory character.
Εt	WMP	1	1	1	0		0	0	0	1	Write the contents of the accumulator into the previously selected RAM output port. (Output Lines)
E2	WRR	1	1	1	0		0	0	1	0	Write the contents of the accumulator into the previously selected ROM output port. (I/O Lines)
E3 .	WPM	1	1	1.	, 0	e e	0	0	1	1	Write the contents of the accumulator into the previously selected half byte of read/write program memory (used with 4008/4009 or 4289 only)
E4	WR0	1	1	1	0		0	1	0	0	Write the contents of the accumulator into the previously selected RAM status character 0.
E5	WR1	1	1	1	0		0	1	0	1	Write the contents of the accumulator into the previously selected RAM status character 1.
E6	WR2	1	1	1	0		0	1	1	0	Write the contents of the accumulator into the previously selected RAM status character 2
E 7	WR3	1	1	1	0		0	1	1	1	Write the contents of the accumulator into the previously selected RAM status character 3.
E8	SBM	1	1	1	0		1	0	0	0	Subtract the previously selected RAM main memory character from accumulator with borrow.
E9	RDM	1	1	1	0		1	0	0	1	Read the previously selected RAM main memory character into the accumulator.
EA	RDR	1	1	1	0		1	0	1	0	Read the contents of the previously selected ROM input port into the accumulator. (I/O Lines)
EB	ADM	1	1	1	0		1	0	1	1	Add the previously selected RAM main memory character to accumulator with carry.
EC	RD0	1	1	1	0		1	1,	0	0	Read the previously selected RAM status character 0 into accumulator.
ED	RD1	1	-1	1	0	4	1	1	0	1	Read the previously selected RAM status character 1 into accumulator.
ΕE		1	1	1	0	3.7	1	1.	1	0	Read the previously selected RAM status character 2 into accumulator.
EF.	RD3	1	1	1	0	7. T 24!	1	1	1	1	Read the previously selected RAM status character 3 into accumulator.

4040 Instruction Codes

Hex	Mnemonic	Hex	Mnemoni	:	Hex Mnemonic	Hex	Mnemonic
00	NOP	40	JUN	1	80 ADD 0	CO	BBL 0
01	HLT	41	JUN		81 ADD 1	C1	BBL 1
02	BBS	42	JUN		82 ADD 2	C2	BBL 2
03	LCR	43	JUN	1	83 ADD 3	C3	BBL 3
04	0R4	44	JUN	1	84 ADD 4	C4	BBL 4
05	OR5	45	JUN	1	85 ADD 5	C5	BBL 5
06	AN6	46	JUN	1	86 ADD 6	C6	BBL 6
07	AN7	47	JUN	1	87 ADD 7	C7	BBL 7
08	DB0	48	JUN	1	88 ADD 8	C8	BBL 8
09	DB1	49	JUN		89 ADD 9	C9	BBL 9
03 0A	SBO	4A	JUN		8A ADD 10	CA	BBL 10
OB	SB1	4B	JUN		8B ADD 11	СВ	BBL 11
OC OB	EIN	4C	JUN		8C ADD 12	CC	BBL 12
OD OD	DIN	4D	JUN		8D ADD 13	CD	BBL 13
0E	RPM	4E	JUN	Second hex	8E ADD 14	CE	BBL 14
OF	n r w	4F	JUN	digit is part	8F ADD 15	CF	BBL 15
10	JCN CN=0	50	JMS	of jump	90 SUB 0	DO	LDM 0
11	JCN CN=1 also JNT	51	JMS	address.	91 SUB 1	D1	LDM 1
12	JCN CN=2 also JC	52	JMS	auuress.	92 SUB 2	D2	
13	JCN CN=3	53	JMS		93 SUB 3	D3	LDM 3
14	JCN CN=4 also JZ	54	JMS		94 SUB 4	D4	LDM 4
1		55	JMS		95 SUB 5	D5	LDM 5
15	JCN CN=5 JCN CN=6	56	JMS	1	96 SUB 6	D6	LDM 6
16	-		JMS		97 SUB 7	D7	LDM 7
17	JCN CN=7	57 58	JMS	1	98 SUB 8	D8	
18	JCN CN=8	58 59	JMS	1	99 SUB 9	D9	
19	JCN CN=9 also JT	1			9A SUB 10	DA	
1A	JCN CN=10 also JNC	5A	JMS	1	9B SUB 11	DB	
1B	JCN CN=11	5B	JMS		9C SUB 12	DC	
10	JCN CN=12 also JNZ	5C	JMS		9D SUB 13	DO	
1D	JCN CN=13	50	JMS		9E SUB 14	DE	
1E	JCN CN=14	5E	JMS		9F SUB 15	DF	_
1F	JCN CN=15	5F	JMS	ļ		EO	
20	FIM 0	60	INC	0	1	E1	
21	SRC 0	61	INC	1	A1 LD 1	E2	
22	FIM 2	62	INC	2	A2 LD 2	E3	
23	SRC 2	63	INC	3	A3 LD 3	E4	
24	FIM 4	64	INC	4	A4 LD 4	1	
25	SRC 4	65	INC	5	A5 LD 5	E5	
26	FIM 6	66	INC	6	A6 LD 6	1	
27	SRC 6	67	INC	7	A7 LD 7	E7	
28		68	INC	8	A8 LD 8	ES	
29		69	INC	9	A9 LD 9	E/	
2A		6A		10	AA LD 10	E	
2B		6B		11	AB LD 11	E	
20		6C		12	AC LD 12	E	
2D		6D		13	AD LD 13	E	
2E		6E		14	AE LD 14	E	
2F		6F		15	AF LD 15	F	
30		70		0 .	BO XCH O	F	
31		71		1	B1 XCH 1		I CLC 2 IAC
32		72		2	B2 XCH 2	1	3 CMC
33		73		3	B3 XCH 3	F	
34		74		4	B4 XCH 4	F!	
35		75		5	B5 XCH 5		
36		76		6	B6 XCH 6	FI	
37		77		7	B7 XCH 7	F	
38		78		8	B8 XCH 8	F	
39		79		9	B9 XCH 9	F:	
3A		7/		10	BA XCH 10	1	A STC
3B		7E		11	BB XCH 11		B DAA
30	C FIN 12	70		12	BC XCH 12		C KBP
30		1 70	ISZ	13	BD XCH 13	F	D DCL
30) JIN 12	70	102			- 1	_
1		76		14	BE XCH 14 BF XCH 15	F	E - F -

Absolute Maximum Ratings*

Ambient Temperature Under Bias	0°C to 70°C
Storage Temperature5	5°C to + 125°C
Input Voltages and Supply Voltage	
with respect to Vss	+0.5V to -20V
Power Dissipation	1.0 Watt

"COMMENT:
Stresses above those listed under "Absolute Maximum Ratings"
may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this specification is not implied.

D.C. and Operating Characteristics

 $^{\circ}$ T_A = 0°C to 70°C; V_{SS} -V_{DD} = 15V ±5%; t_{ϕ PW} = t_{ϕ D1} = 400 nsec; t_{ϕ D2} = 150 nsec; 4040 V_{DD1} = V_{DD2} = V_{DD}; Logic "0" is defined as the more positive voltage (V_{IH}, V_{OH}); Logic "1" is defined as the more negative voltage (V_{IL}, V_{OL}): Unless Otherwise specified.

SUPPLY CURRENT

Symbol	Parameter	Min.	Limit Typ.	Max.	Unit	Test Conditions
I _{SB}	Standby Supply Current (V _{DD1} + V _{DD2})		3	5	mA	T _A = 25°C, V _{DD} = V _{SS}
I _{DD} (total)	Supply Current (V _{DD} + V _{DD1} + V _{DD2})		40	60	mA	T _A = 25°C
NPUT CH	IARACTERISTICS				<u> </u>	
ILI	Input Leakage Current			10	μΑ	V _{IL} = V _{DD}
V _{IH}	Input High Voltage (Except Clocks)	V _{SS} -1.5		V _{SS} +.3	V	112 100
VIL	Input Low Voltage (Except Clocks)	V _{DD}		V _{SS} -5.5	V	
V _{ILO}	Input Low Voltage	V _{DD}	*.	V _{SS} -4.2	V	4040 TEST and INT inputs
V _{IHC}	Input High Voltage Clocks	V _{SS} -1.5		V _{SS} +.3	V	
V _{ILC}	Input Low Voltage Clocks	V _{DD}		V _{SS} -13.4	V	
OUTPUT (CHARACTERISTICS					L
lo	Data Bus Output Leakage Current			10	μΑ	V _{OUT} =-12V
V _{OH}	Output High Voltage	V _{SS} 5V	V _{SS}		v	Capacitive Load
loL	Data Lines Sinking Current	8	15		mA	V _{OUT} =V _{SS}
lοL	CM-ROM Sinking Current	6.5	12		mA	V _{OUT} =V _{SS}
lοL	CM-RAM Sinking Current	2.5	6		mA	V _{OUT} =V _{SS}
VoL	Output Low Voltage, Data Bus, CM, SYNC	V _{SS} -12		V _{SS} -6.5	٧	I _{OL} =0.5mA
R _{OH}	Output Resistance, Data Line "0" Level		150	250	Ω	V _{OUT} =V _{SS} 5V
R _{OH}	CM-ROM Output Resistance, Data Line "0" Level		320	600	Ω	Vout=Vss5V
R _{OH}	CM-RAM Output Resistance, Data Line "0" Level		1.1	1.8	kΩ	V _{OUT} =V _{SS} 5V
R _{OH}	INTA, CY, STPA Output Resistance "0" Level		1.1	1.8	kΩ	V _{OUT} =V _{SS} 5V
CAPACITA	ANCE					
C _{\phi}	Clock Capacitance		17	25	pF	V _{IN} =V _{SS}
C _{DB}	Data Bus Capacitance		7	10	pF	V _{IN} =V _{SS}
CIN	Input Capacitance			10	pF	V _{IN} =V _{SS}
Соит	Output Capacitance			10	pF	V _{IN} =V _{SS}

Typical D.C. Characteristics

A.C. Characteristics $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{SS} - V_{DD} = 15V \pm 5\%$

			Limit			
Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
tcy	Clock Period	1.35		2.0	μsec	
tφ _R	Clock Rise Time			50	ns	
tφ _F	Clock Fall Times			50	ns	
tφ _{PW}	Clock Width	380		480	ns	
tφ _{D1}	Clock Delay ϕ_1 to ϕ_2	400		550	ns	
tφ _{D2}	Clock Delay φ ₂ to φ ₁	150			ns	
tw	Data-In, CM, SYNC Write Time	350	100		ns	
twrpm	Data-In Hold Time-RPM Instruction (X ₂ state)	350	100		ns	
t _H [1,3]	Data-In, CM, SYNC Hold Time	40	20		ns	
THRPM	Data-In Write Time-RPM Instruction (X ₂ state)	40	20		ns	
t _H [3]	Data Bus Hold Time During X ₂ - X ₃ Transition (I/O Read Instruction only)	150			ns	
tos[2]	Set Time (Reference)	0			ns	
t _{ACC^[5]}	Data-Out Access Time					C _{OUT} =
-700	Data Lines	1		930	ns	500pF Data Lines
	Data Lines			700	ns	200pF Data Lines[
	SYNC			930	ns	500pF SYNC
	CM-ROM	1		930	ns	160pF CM-ROM
	CM-RAM	1		930) ns	50pF CM-RAM
•	Data-Out Hold Time	50	150		ns	C _{OUT} =20pF
t _{DEL}	CY, STPACK, INTACK Delay			2.0	μsec	

NOTES: 1. t_H measured with t_{φR} = 10nsec.
 t_{ACC} is Data Bus, SYNC and CM-line output access time referred to the φ₂ trailing edge which clocks these lines out.
 t_{ACC} is Data Bus, SYNC and CM-line output access time referred to the leading edge of the next φ₂ clock pulse.
 All MCS-40 components which may transmit instruction or data to the 4040 at X₂ always enter a float state until the 4040 at kes over the data bus at X₃ time. Therefore the t_H requirement is always insured since each component contributes 10μA takes over the data bus at A3 time. Therefore the tH requirement is always insuled since each component contribution of leakage current and 10pF of capacitance which guarantees that the data bus cannot change faster than 1V/μs.
 CDATA BUS = 200pF if 4008 and 4009 or 4289 is used.
 The 4040 accumulator is gated out at X1 time at φ1 leading edge, and the tACC is 930 nsec + tφD2.

Figure 1. Timing Diagram.

Figure 2. Timing Detail.

Figure 3. Stop Timing.

Figure 4. Halt Timing (Exit Using Stop Input).

Figure 5. Interrupt Timing.

Figure 6. Halt Timing (Exit Using Interrupt).