Seminar Nr.4, Discrete Random Variables and Discrete Random Vectors

Theory Review

Bernoulli Distribution with parameter $p \in (0,1)$: $X \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$

<u>Binomial Distribution</u> with parameters $n \in \mathbb{N}, p \in (0,1)$: $X \begin{pmatrix} k \\ C_n^k p^k q^{n-k} \end{pmatrix}_{k=\overline{0,n}}$

<u>Hypergeometric Distribution</u> with parameters $a, b, n \in \mathbb{N}, n \leq a$: $X \begin{pmatrix} k \\ p_k \end{pmatrix}_{k=\overline{0,n}}$, where $p_k = \frac{C_a^k C_b^{n-k}}{C_a^n}$

Poisson Distribution with parameter $\lambda > 0$: $X \begin{pmatrix} k \\ p_k \end{pmatrix}_{k \in \mathbb{N}}$, where $p_k = \frac{\lambda^k}{k!} e^{-\lambda}$

<u>Pascal Distribution</u> with parameters $n \in \mathbb{N}, p \in (0,1)$: $X \begin{pmatrix} k \\ C_{n+k-1}^k p^n q^k \end{pmatrix}_{k \in \mathbb{N}}$

Geometric Distribution with parameter $p \in (0,1)$: $X \begin{pmatrix} k \\ pq^k \end{pmatrix}_{k \in \mathbb{N}}$

<u>Discrete Uniform Distribution</u> with parameter $m \in \mathbb{N}$: $X \begin{pmatrix} k \\ \frac{1}{m} \end{pmatrix}_{k=\overline{1,m}}$

Cumulative Distribution Function $F_X : \mathbb{R} \to \mathbb{R}, F_X(x) = P(X < x)$

 $\overline{(X,Y): S \to \mathbb{R}^2 \text{ discrete random vector with pdf } p_{ij} = P\left(X = x_i, Y = y_j\right), (i,j) \in I \times J \text{ and } \text{cdf } F = F_{(X,Y)}: \mathbb{R}^2 \to \mathbb{R}, \ F(x,y) = P(X < x, Y < y) = \sum_{x_i < x} \sum_{y_j < y} p_{ij}, \ \forall (x,y) \in \mathbb{R}^2.$

$$p_i = P(X = x_i) = \sum_{i \in J} p_{ij}, \ \forall i \in I, \ q_j = P(Y = y_j) = \sum_{i \in I} p_{ij}, \ \forall j \in J \text{ (marginal densities)}$$

Let $X \begin{pmatrix} x_i \\ p_i \end{pmatrix}_{i \in I}$, $Y \begin{pmatrix} y_j \\ q_j \end{pmatrix}_{j \in J}$ be discrete random variables. Then

X and Y are **independent** $\ll > p_{ij} = P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j) = p_i q_j$.

$$X + Y \left(\begin{array}{c} x_i + y_j \\ p_{ij} \end{array} \right)_{(i,j) \in I \times J}, \ \alpha X \left(\begin{array}{c} \alpha x_i \\ p_i \end{array} \right)_{i \in I}, \ XY \left(\begin{array}{c} x_i y_j \\ p_{ij} \end{array} \right)_{(i,j) \in I \times J}, \ X/Y \left(\begin{array}{c} x_i / y_j \\ p_{ij} \end{array} \right)_{(i,j) \in I \times J} (y_j \neq 0)$$

- 1. A coin is flipped 3 times. Let X denote the number of heads that appear.
- a) Find the probability distribution function (pdf) of X. What type of distribution does X have?
- b) Find the cumulative distribution function (cdf) of X, F_X .
- c) Find $P(X \le 2)$ and P(X < 2).
- 2. It was found that the probability to log on to a computer from a remote terminal is 0.7. Let X denote the number of attempts that must be made to gain access to the computer:
- a) Find the pdf of X. What type of distribution does X have?
- b) Find the cdf of X, F_X .
- c) Find the probability that at most 4 attempts must be made to gain access to the computer.
- d) Find the probability that at least 3 attempts must be made to gain access to the computer.

- **3.** A number is picked randomly out of 1, 2, 3, 4 and 5. Let X denote the number picked. Let Y be 1 if the number picked was 1, 2 if the number was prime and 3, otherwise.
- a) Find the pdf of X, Y.
- b) Find the pdf's of X + Y, XY.
- **4.** Same problem with 2 numbers being picked randomly. Variable X refers to the 1st number, variable Y to the 2nd. Is there a difference in the answers, from the previous problem?
- **5.** Eight letters are randomly distributed into 3 mailboxes. Let X be the number of letters in the 1st mailbox. Find the pdf of X.
- **6.** In an automobile factory two tasks are performed by robots: welding two joints and tightening three bolts. Let X denote the number of defective welds and Y the number of improperly tightened bolts produced per car. The joint pdf for (X,Y) is given in the following table:

$X \setminus Y$	0	1	2	3
0	.840	.030	.020	.010
1	.060	.010	.008	.002
2	.010	.005	.004	.001

Find

- a) The marginal densities f_X , f_Y ;
- b) The probability that exactly two defective welds and one improperly tightened bolt will be produced by the robots (event A);
- c) The probability that at least one defective weld and at least one improperly tightened bolt will be produced (event B);
- d) The probability that at most one defective weld will be produced (event C).
- 7. Let X_1, \ldots, X_n be independent and identically distributed, with a Bernoulli distribution with parameter p. Find the pdf of $Y = \sum_{i=1}^{n} X_i$. What type of distribution does Y have?
- 8. The independent variables X, Y have binomial distributions with parameters m, p and n, p, respectively. Find the pdf of X + Y.

Bonus Problems:

- **9.** Let X_1, \ldots, X_n be independent random variables having a discrete uniform distribution on the set $\{1, \ldots, m\}$. Find the pdf of $U = \max\{X_1, \ldots, X_n\}$ and $V = \min\{X_1, \ldots, X_n\}$.
- 10. A die is thrown 3 times. Let X_1 , X_2 and X_3 be the number that shows on the 1st, 2nd and 3rd throw, respectively.
- a) Find $P(X_1 + X_2 = X_3)$ and $P(X_1 + X_2 + X_3 = 7)$.
- b) Consider the equation ax + by c = 0, where a, b, c are determined by throwing a die 3 times. Find the probability that the straight line defined by the equation passes through the point (1,1).