ST T	Title	Year	Author	Link	Dataset	Contribution	Methodology	Metric	Result	Limitation/Futurework	Khai thác	Phương pháp hay											
1	Intrusion Detection in Secure Network for Cybersecurity Systems using Machine Learning and Data Mining	22-23 tháng 11, năm 2018	1 Hassan Azwar 2 Muhammad Murtaz 3 Mehwish Siddique 4 Saad Rehman	DOI: 10.1109 /ICETAS. 2018.8629 197 https: //icecxplor c.icec. org/docum ent/86291 97	CICIDS2017 dataset.	Dánh giá và so sánh nhiều thuật toán Mi. trên tập CICIDS2017 nhằm phát hiện tán công mạng.	MI.: Decision Tree, Random Forest, XGBoost, Neural Network (MLP, BP)	Sir dung Confusion Matrix de tinh: Precision, Recall, F1-score, Accuracy	Accuracy –92%. Tấn công phố biến như DDoS/Port/Scan. độ chính xác –99%. Một số tần công hiểm như XSS, SQLi: TP Rate gần 0.	Một số tần cũng hiểm vẫn có độ chính xác thấp Chưa tích hợp phương pháp xử lý false positive nhều Phần tích chủ yếu mạng tính thống kệ, chưa triển khai hệ thống thực tế (real-time)	ICETAS 2018	IDS vẫn là một lĩnh vực nghiên cứu quan trọng trong an ninh mạng											
2	The Promise of Machine Learning in Cybersecurity	2017	James B. Fraley, Dr. James Cannady (Nova Southeastern University)	10.1109 /SECON. 2017.7925 283 https: //iceexplor e.icee. org/docum ent/79252 837	Private SOC dataset (>9M alerts)	Triển khai thực nghiệm mô hình DNN trong mỗi trường SOC thực tế để giảm lại phần tích sự kiện bào mặt	6 buróc: Data prep → SME review → Model design → Training → TensorFlow DNN → Evaluation	Accuracy, Analyst time saved	Accuracy –99% (test data), tiết kiểm –78% thời gian cho các nhà phân tích SOC/NOC (từ 2.000h xuống còn –455h ngày)	Tiếp tục hỗ trự tự động phản hỗi năng cao, kết hợp ngời cảnh để ra quyết định nhanh và giảm false alerts	The Promise of Machine Learning in Cybersecurity		Search Deep Le	aming	Search Term Cybersecurity Search Term			in All Metad		1 X			
3	Detecting Network Intrusion Beyond 1999: Applying Machine Learning Techniques to a Partially Labeled Cybersecurity Dataset		Jan Klein, Sandjai Bhulai, Mark Hoogendoorn, Rob van der Mei, Raymond Hinfelaar	DOI: 10.1109 /WI. 2018.0001 7 https: //iceexplor c.icee. org/docum ent/86096	Locked Shields 2017 (LS'17)	Âp dụng Autoencoder và Gradient Boosting Machine để phát hiện xiân nhận thập treñ tại để liệu kho gia nhân thực kiế từ NATO (LS*17). So sánh với mô hình benchmark CS.0 và đánh giá thêm bằng chuyển gia an ninh.	- Autoencoder (unsupervised) - Gradient Boosting (supervised) - Benchmark C5.0	Accuracy, Precision, Recall, F1-score, nDCG, Expert Analysis	GBM dat nDCG = 0.993, Precision = 1.0 nhmg Recall = 0.0727 Autoencoder, Recall = 0.982 nhmg Precision = 0.142. Expert xiac high c54 sin c6ug môi duoc phái hiện bằng Autoencoder.	Autoencoder nhibu false positives, GBM chinh six cao nhung phit hiện it. Dê xuất kết hợp kỹ thuất và trích xuất đặc trưng sửu hơm trong tương lai.	Detecting Network Intrusion beyond 1999: Applying Machine Learning Techniques to a Partially Labeled Cybersecurity Dataset	Autoencoder có thể là công cụ hữu ích để phát hiện zero-day hoặc APT mới.	OR OR AND	OR Detection Search Term Data Mining Search Term				in Document in Document	it Title ▼	^ × ^ × ^ × +	1 ×		
4	When Machine Learning Meets Hardware Cybersecurity: Delving into Accurate Zero-Day Malware Detection	2021	Zhangying He et al.	DOI: 10.1109 /ISQED51 717. 2021.9424 330 https: //iceexplor e.icee. org/docum	Custom dataset (5000 benign + malware apps, HPC)	Dễ xuất mô hình phát hiện malware zero-day dựn trên phần cóng (HPC) và ML. Dùng Boosted Random Forest để tầng hiệu quá	So sánh nhiều thuật toán ML (DT, RF, GNB, SGD, LR) với AdaBoost. Chọn tọp 4 HPC bằng RFE. Đánh giá trên dữ liệu zero- day.	F1-Score, AUC, TPR, FPR, Latency	Boosted-RF dat FI = 92%, TPR = 95%, FPR = 25% Vury RF thường (FI = 88%), Latency thấp (0.018s).	Cắc ML model chuẩn kém hiệu quả với zero- day. Cân Boosting để tàng khi năng nhận điện. Thiể các chuẩng 4 HPC và chưa viết tới ally cusarial cyasies.	When Machine Learning Meets Hardware Cybersecurity: Delving into Accurate Zero-Day Malware Detection	Mö hình mạnh nhất là Boosted Random Forest (Boosted-RF)											
5	Machine Learning and Deep Learning Methods for Cybersecurity	2018	Yang Xin, Lingshuang Kong, Zhi Liu, Yuling Chen, Yanmiao Li, Hongliang Zhu, Mingcheng Gao, Haixia Hou, Chunhua Wang	DOI: 10.1109 ACCESS. 2018.2836 950 https: /iceexplore.icee. org/document/83592	KDD Cup 99, NSL-KDD, CICIDS, ADFA	Tổng quan và đánh giá các phương phác Machine Learning và Deep Learning ếng dùng trong phát hiện xâm nhập mạng và bào mật hệ thống	ML (SVM, KNN, Decision Tree, etc), DL (CNN, RNN, DBN, LSTM, etc)	Accuracy, Precision, Recall, F1-score, AUC, ROC	Di, thường có độ chính xác cao bơn ML. Ví dọ, CNN đạt –98.4%, DBN có thể đạt +99%, tùy theo cầu hình mô lành và tập đã liệu.	Thiếu dánh giá thực nghiêm thực tế sắu, chủ yếu tổng hợp, chưa triển khai hệ thống thực tiến; nhiều mô hình chí đánh giá bằng accuracy.	Machine Learning and Deep Learning Methods for Cybersecurity	Các thuật toán của MI. và DI. Giảm false positives: Đặc biệt trong anomaly detection. Kết hợp nhiều mô hình (hybrid/ensemble). Tăng khá năng phát hiện gọc dan stạck.											
6	Review: Deep Learning Methods for Cybersecurity and Intrusion Detection Systems	2020	Mayra Macas, Chunming Wu	https://iceexplor e.icee. org/docum ent/92823 242 fbclid—lw ZXh0bgN hZW0CM TAAR44 hCAAl/iz/	KDD, NSL-KDD, CICIDS2017, ISCX2012	Tổng quan toàn diện về các kiến trúc học sâu (DL) dùng trong phát hiện xâm nhập. Để xuất khung DL cho IDS.	Tổng quan CNN, RNN, DBN, AE, GAN, SDA, DBM; kháo sát nhiều nghiên cứu ứng dụng DL vào IDS	Accuracy, FPR, TPR, F1	RNN dạt 97,09%, AE+DBN tầng tử 89,75% kh 91,4%, GAN giảm FPR tử 19,19% xuống 15.59%, SDA vượt nhiều mỗ hình khắc	Cần dánh giá độ tin cậy & độ bền của IDS DI- based. Côn hạn chế với đỡ liện giả mạo (adversaria). Cần nghiến cứu ứng dụng DI, vào real-time IDS.	Review: Deep Learning Methods for Cybersecurity and Intrusion Detection Systems	Tổng hợp các kiến trúc DL phổ biển: CNN, RNN, DBN, DBM, AE, GANs,											
7	A Comprehensive Survey of Databases and Deep Learning Methods for Cybersecurity and Intrusion Detection Systems	2020	D. Gümüşbaş, T. Yıldırım, A. Genovese, F. Scotti	DOI: 10.1109 JSYST. 2020.2992 966 https: /ficecexplor ciece. org/docum cnt/90998 442	KDD99, NSL- KDD, CICIDS2017, AWID2018, etc.	Tổng quan toàn diễn các phương pháp Deop Learning dùng trong IDS và phân tích chi tiết các bộ đờ tiếu benchmark thường dùng trong an ninh mạng.	So sánh các DL models: DBN, AE, CNN, LSTM, GAN; Phân tích chi tiết cách tiến xử lý đữ liệu, chuyển đổi định dạng, nu/nhược của các kiến trúc DL	Accuracy, F1- Score, TPR, FPR	CNN, LSTM, và AE dạt hiệu quả cao trên nhiều tập đờ liệu; AE+GMM cái thiệu hàu kọp DoS/Probe; Hybrid CNN-LSTM có tiêm dáng cao, GANs bỗ trợ tạo đờ liệu huấn luyện	Thiểu dành giá về tính thời gian thực; nhiều DL models chưa được áp dùng thực lệ, đó tin cây dưatest chưa được dẫm bào; cần nghiên cứu bias của đỡ liệu benchmark	A Comprehensive Survey of Databases and Deep Learning Methods for Cybersecurity and Intrusion Detection Systems	Tổng quan toàn điện các phương pháp Deep Learning dùng trong IDS											