Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik FMI-MA0022

Wintersemester 2020/21

Übungsblatt 12

Liveaufgaben (10.–11.02.2021)

Präsenzaufgabe 12.1: Definitheit testen

Untersuchen Sie, ob die durch $B \in M_n(\mathbb{R})$ gegebene Bilinearform auf \mathbb{R}^n positiv definit ist. Was kommt heraus, wenn man ohne Nachdenken das Sylvester-Kriterium anwendet?

- a) $n = 2, B := \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix}$.
- b) $n = 2, B := \begin{pmatrix} 2 & -2 \\ 5 & -3 \end{pmatrix}$.
- c) $n = 3, B := \begin{pmatrix} 8 & 6 & 2 \\ 6 & 9 & 0 \\ 2 & 0 & 2 \end{pmatrix}$.

Präsenzaufgabe 12.2: Klassifikation orthogonaler Abbildungen in \mathbb{R}^3 Ist der durch Multiplikation mit A gegebene Endomorphismus von \mathbb{R}^3 orthogonal? Bestimmen Sie ggf. Typ, Achse und Drehwinkel der Abbildung.

a)
$$A := \begin{pmatrix} 0 & -\frac{4}{5} & -\frac{3}{5} \\ \frac{4}{5} & -\frac{9}{25} & \frac{12}{25} \\ \frac{3}{5} & \frac{12}{25} & -\frac{16}{25} \end{pmatrix}$$

b)
$$A := \begin{pmatrix} 0 & \frac{4}{5} & -\frac{3}{5} \\ \frac{4}{5} & -\frac{9}{25} & \frac{12}{25} \\ \frac{3}{5} & \frac{12}{25} & -\frac{16}{25} \end{pmatrix}$$

c)
$$A := \begin{pmatrix} \frac{3}{5} & \frac{12}{25} & -\frac{16}{25} \\ \frac{4}{5} & -\frac{9}{25} & \frac{12}{25} \\ 0 & -\frac{4}{5} & -\frac{3}{5} \end{pmatrix}$$

Bitte wenden

Präsenzaufgabe 12.3: "Quadratwurzel" einer Matrix Sei $A \in M_n(\mathbb{R})$, $A^{\top} = A$. Zeigen Sie: A ist positiv definit \iff es gibt eine untere Dreiecksmatrix $L \in GL_n(\mathbb{R})$, so dass $A = L \cdot L^{\top}$. **Hinweise für "\Rightarrow":** Sei A positiv definit.

- Wie kann man durch Modifikation des symmetrischen Gauß-Algorithmus eine obere Dreiecksmatrix $S \in GL_n(\mathbb{R})$ finden mit $S^{\top}AS = \mathbb{1}_n$?
- Sei $M \in GL_n(\mathbb{R})$ eine untere Dreiecksmatrix. Warum ist auch M^{-1} eine untere Dreiecksmatrix? Möglicher Ansatz: Analyse des Inversionsalgorithmus.

Anmerkung: Man nennt $A = L \cdot L^{\top}$ Cholesky-Zerlegung. Man kann sie numerisch stabil berechnen. Man kann dadurch sogar lineare Gleichungssysteme mit symmetrischer Koeffizientenmatrix durch weniger Rechenoperationen lösen als mit dem Gauß-Jordan-Algrorithmus.