

Shortest Paths

Objective

- Define the single source shortest path problem.
- Optimal substructure, Triangle inequality and Relaxation.
- The Dijkstra algorithm and its extension.

Paths in graphs.

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$.

The **weight** of path $p = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Example:

Paths in graphs.

A **shortest path** from u to v is a path of minimum weight from u to v.

The **shortest-path** weight from u to v is defined as:

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Well-definedness of shortest paths

6

If a graph *G* contains a negative-weight cycle, then some shortest paths do not exist.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

If v_j on optimal path from v_0 to v_n : $\delta(v_0, v_n) = \delta(v_0, v_j) + \delta(v_j, v_n)$.

If the sub-path v_i to v_j is not optimal, then by finding a shorter path from v_i to v_j we can strictly improve the original path.

Triangle inequality

Theorem. For all $u, v, x \in V$, we have

$$\delta(u, v) \le \delta(u, x) + \delta(x, v)$$
.

If u not on shortest path from s to t: $\delta(s,t) < \delta(s,u) + \delta(u,t)$. u is on shortest path from s to t iff $\delta(s,t) = \delta(s,u) + \delta(u,t)$.

Single-source shortest paths

Problem. Assume that $w(u, v) \ge 0$ for all $(u, v) \in E$. (Hence, all shortest-path weights must exist.) From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortest-path distances from *s* are known.
- 2. At each step, add to S the vertex $v \in V S$. whose distance estimate from S is minimum.
- 3. Update the distance estimates of vertices adjacent to v.

Dijkstra's algorithm

$$d[s] \leftarrow 0$$

for each $v \in V - \{s\}$
 $do d[v] \leftarrow \infty$
 $S \leftarrow \emptyset$
 $Q \leftarrow V$ $\triangleright Q$ is a priority queue maintaining $V - S$,
keyed on $d[v]$

Dijkstra's algorithm


```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V
                  \triangleright Q is a priority queue maintaining V-S,
                      keyed on d[v]
while Q \neq \emptyset
    \mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
              do if d[v] > d[u] + w(u, v)
                       then d[v] \leftarrow d[u] + w(u, v)
```

Dijkstra's algorithm


```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
                 \triangleright Q is a priority queue maintaining V-S,
Q \leftarrow V
                    keyed on d[v]
while Q \neq \emptyset
    \mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)
        S \leftarrow S \cup \{u\}
        for each v \in Adi[u]
                                                          relaxation
             do if d[v] > d[u] + w(u, v)
                     then d[v] \leftarrow d[u] + w(u, v)
                                                                step
                                       Implicit Decrease-Key
```


TECHNOLOGY (GUANGZHO)

Dijkstra can only handle graphs with nonnegative edge weights:

Try to think why?

S: { }

S: { A }

Correctness — Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then,

$$d[v] < \delta(s,v)$$
 supposition
 $\leq \delta(s,u) + \delta(u,v)$ triangle inequality
 $\leq \delta(s,u) + w(u,v)$ sh. path \leq specific path
 $\leq d[u] + w(u,v)$ v is first violation
Contradiction.

Correctness — Part II

Lemma. Let u be v's predecessor on a shortest path from s to v. Then, if $d[u] = \delta(s, u)$ and edge (u, v) is relaxed, we have $d[v] = \delta(s, v)$ after the relaxation.

Proof.

Observe that $\delta(s, v) = \delta(s, u) + w(u, v)$. Suppose that $d[v] > \delta(s, v)$ before the relaxation. (Otherwise, we're done.) Then, the test d[v] > d[u] + w(u, v) succeeds, because $d[v] > \delta(s, v) = \delta(s, u) + w(u, v) = d[u] + w(u, v)$, and the algorithm sets $d[v] = d[u] + w(u, v) = \delta(s, v)$.

Correctness — Part III

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] > \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:

Correctness — Part III (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x] = \delta(s, x)$.

When x was added to S, the edge (x, y) was relaxed, which implies that $d[y] = \delta(s, y) \le \delta(s, u) < d[u]$. But, $d[u] \le d[y]$ by our choice of u.

Contradiction.


```
while Q \neq \emptyset

do u \leftarrow \text{Extract-Min}(Q)

S \leftarrow S \cup \{u\}

for each v \in Adj[u]

do if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)
```


Jing Tang DSA | HKUST(GZ) 30

Handshaking Lemma $\Rightarrow \Theta(|E|)$ implicit DECREASE-KEY's.

$$\Theta(|V| \cdot T_{\text{EXTRACT-MIN}} + |E| \cdot T_{\text{DECREASE-KEY}})$$

Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

Analysis of Dijkstra (continued)

Time = $\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$

Q $T_{\text{EXTRACT-MIN}}$ $T_{\text{DECREASE-KEY}}$ Total

array

O(|V/)

O(1)

 $O(|V|^2)$

Analysis of Dijkstra (continued)

Time = $\Theta(|V/) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E/) \cdot T_{\text{DECREASE-KEY}}$ $Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}} \quad \text{Total}$ array O(|V/) O(1) $O(|V/^2)$ binary heap $O(\lg|V/)$ $O(\lg|V/)$ $O(\lg|V/)$ $O(|E/\lg|V/)$

Analysis of Dijkstra (continued)

Time = $\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$			
Q	T _{EXTRACT-MIN}	T _{DECREASE-KE}	Y Total
array	O(V/)	<i>O</i> (1)	$O(V ^2)$
binary heap	$O(\lg V/)$	$O(\lg V/)$	$O(E/\lg V/)$
Fibonacci heap	O(lg V/) amortized	O(1) amortized	$O(E + V \lg V)$ worst case

Unweighted graphs

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

• Use a simple FIFO queue instead of a priority queue.

Unweighted graphs

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

Use a simple FIFO queue instead of a priority queue.

```
Breadth-first search

while Q \neq \emptyset

do u \leftarrow \text{Dequeue}(Q)

for each v \in Adj[u]

do if d[v] = \infty

then d[v] \leftarrow d[u] + 1

Enqueue(Q, v)
```

Analysis: Time = O(|V/ + |E/).

43

Q: a b d c e g i f h

48

Q: a b d c e g i f h

Correctness of BFS

while
$$Q \neq \emptyset$$

 $\mathbf{do} \ u \leftarrow \mathrm{DEQUEUE}(Q)$
 $\mathbf{for} \ \mathrm{each} \ v \in Adj[u]$
 $\mathbf{do} \ \mathbf{if} \ d[v] = \infty$
 $\mathbf{then} \ d[v] \leftarrow d[u] + 1$
 $\mathrm{ENQUEUE}(Q, v)$

Key idea:

The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.

• Invariant: v comes after u in Q implies that d[v] = d[u] or d[v] = d[u] + 1.

Jing Tang DSA | HKUST(GZ) 50

- (-) Slower than Dijkstra's algorithm
- (+) Can handle negative edge weights.
 - -Can be useful if you want to say that some edges are actively good to take, rather than costly.
 - Can be useful as a building block in other algorithms.

Basic idea:

Instead of picking the u with the smallest d[u] to update, just update all of the u's simultaneously.

Bellman-Ford(G,s):

- $d[v] = \infty$ for all v in V
- d[s] = 0
- **For** i=0,..., |V|-1:
 - **For** u in V:*
 - **For** v in u.neighbors:
 - $d[v] \leftarrow min(d[v], d[u] + edgeWeight(u,v))$

Instead of picking u cleverly,

just update for all of the u's.

Compare to Dijkstra:

- While there are not-sure nodes:
 - Pick the not-sure node u with the smallest estimate d[u].
 - **For** v in u.neighbors:
 - d[v] ← min(d[v], d[u] + edgeWeight(u,v))
 - Mark u as sure.

- We are actually going to change this to be less smart.
- Keep n arrays: d⁽⁰⁾, d⁽¹⁾, ..., d⁽ⁿ⁻¹⁾

Bellman-Ford*(G,s):

- $d^{(i)}[v] = \infty$ for all v in V, for all i=0,..., |V|-1
- $d^{(0)}[s] = 0$
- **For** i=0,..., |V|-2:
 - For u in V:
 - For v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$
- Then dist(s,v) = $d^{(n-1)}[v]$

Slightly different than the original Bellman-Ford algorithm, but the analysis is basically the same.

How far is a node from Gates?

- For i=0,..., |V|-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

How far is a node from Gates?

- For i=0,..., |V|-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

- For i=0,..., |V|-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

- For i=0,..., |V|-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

These are the final distances!

- For i=0,..., |V|-2:
 - **For** u in V:
 - **For** v in u.neighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i+1)}[v], d^{(i)}[u] + edgeWeight(u,v))$

- Does it work?
 - -Yes
 - -Idea to the right.

- Is it fast?
 - –Not really...

A simple path is a path with no cycles.

	Gates Packard CS161 Union Dish				
d ⁽⁰⁾	0	∞	∞	∞	∞
d ⁽¹⁾	0	1	∞	∞	25
d ⁽²⁾	0	1	2	45	23
d ⁽³⁾	0	1	2	6	23
d ⁽⁴⁾	0	1	2	6	23

Inductive Hypothesis:

d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.

Conclusion:

 $d^{(|V|-1)}[v]$ is equal to the cost of the shortest simple path between s and v. (Since all simple paths have at most |V|-1 edges).

Proof by induction

- Inductive Hypothesis:
 - After iteration i, for each v, d⁽ⁱ⁾[v] is equal to the cost of the shortest path between s and v with at most i edges.
- Base case:
 - After iteration 0...

• Inductive step:

Inductive step

61

- Suppose the inductive hypothesis holds for i.
- We want to establish it for i+1.

Say this is the shortest path between s and v of with at most i+1 edges:

Let u be the vertex right before v in this path.

Hypothesis: After iteration i, for each v, d⁽ⁱ⁾ [v] is equal to the cost of the shortest path between s and v with at most i edges.

- By induction, d⁽ⁱ⁾[u] is the cost of a shortest path between s and u of i edges.
- By setup, $d^{(i)}[u] + w(u,v)$ is the cost of a shortest path between s and v of i+1 edges.
- In the i+1'st iteration, we ensure $d^{(i+1)}[v] \le d^{(i)}[u] + w(u,v)$.
- So d⁽ⁱ⁺¹⁾[v] <= cost of shortest path between s and v with i+1 edges.
- But $d^{(i+1)}[v] = cost$ of a particular path of at most i+1 edges >= cost of shortest path.
- So d[v] = cost of shortest path with at most i+1 edges.

Pros and cons of Bellman-Ford

- Running time: O(|V|/E|) running time
 - -For each of |V| steps we update m edges
 - -Slower than Dijkstra
- However, it's also more flexible in a few ways.
 - Can handle negative edges
 - —If we constantly do these iterations, any changes in the network will eventually propagate through.

Negative edge weights?

- What is the shortest path from Gates to the Union?
- Shortest paths aren't defined if there are negative cycles!
- B-F works with negative edge weights...as long as there are not negative cycles.
 - A negative cycle is a path with the same start and end vertex whose cost is negative.
- However, B-F can detect negative cycles.

How Bellman-Ford deals with negative cycles

- If there are no negative cycles:
 - Everything works as it should.
 - − The algorithm stabilizes after |V|-1 rounds.
 - Note: Negative *edges* are okay!!
- If there are negative cycles:
 - Not everything works as it should...
 - it couldn't possibly work, since shortest paths aren't well-defined if there are negative cycles.
 - The d[v] values will keep changing.
- Solution:
 - Go one round more and see if things change.
 - If so, return NEGATIVE CYCLE 😊

Summary

- The Bellman-Ford algorithm:
 - -Finds shortest paths in weighted graphs with negative edge weights
 - -runs in time O(|V||E|) on a graph G with n vertices and m edges.
- If there are no negative cycles in G:
 - -the BF algorithm terminates with $d^{(|V|-1)}[v] = d(s,v)$.
- If there are negative cycles in G:
 - -the BF algorithm returns negative cycle.

Bellman-Ford is also used in practice.

- eg, Routing Information Protocol (RIP) uses something like Bellman-Ford.
 - -Older protocol, not used as much anymore.
- Each router keeps a **table** of distances to every other router.
- Periodically we do a Bellman-Ford update.
- This means that if there are changes in the network, this will propagate. (maybe slowly...)

Destination	Cost to get there	Send to whom?
172.16.1.0	34	172.16.1.1
10.20.40.1	10	192.168.1.2
10.155.120.1	9	10.13.50.0

Shortest Path

Single-source shortest paths

- Nonnegative edge weights
 - *Dijkstra's algorithm: $O(|E| + |V| \lg |V|)$
- General
 - *Bellman-Ford algorithm: O(|V|/E|)

All-pairs shortest paths

- Nonnegative edge weights
 - *Dijkstra's algorithm |V| times: $O(|V|/E| + |V|^2 \lg |V|)$
- General
 - ***** Floyd-Warshall algorithms: $\Theta(/V/^3)$.

Remain for Dynamic Programming

The End

Jing Tang DSA | HKUST(GZ) 68