Home Assignment 1

- 1. Let $\Omega = \mathbb{R}$. Explicitly find the sigma-algebras $\mathcal{F}_1 = \sigma(A)$, $\mathcal{F}_2 = \sigma(B)$, $\mathcal{F}_3 = \sigma(A,B)$ where A = [-10;5] and B = (0;10).
- 2. I throw a die once. Let X be the result of the toss. Count the number of events in sigma-algebras $\mathcal{F}_1 = \sigma(X)$, $\mathcal{F}_2 = \sigma(\{X > 3\})$, $\mathcal{F}_3 = \sigma(\{X > 3\})$, $\{X < 5\}$).
- 3. Let $\Omega = \mathbb{R}$. The sigma-algebra \mathcal{F} is generated by all the sets of the form $(-\infty, t]$,

$$\mathcal{F} = \sigma\left(\left\{\left(-\infty; t\right) \mid t \in \mathbb{R}\right\}\right)$$

Check whether $A_1 = (0; 10) \in \mathcal{F}$, $A_2 = \{5\} \in \mathcal{F}$, $A_3 = \mathbb{N} \in \mathcal{F}$.

- 4. Prove the following statements or provide a counter-example:
 - (a) If \mathcal{F}_1 and \mathcal{F}_2 are sigma-algebras then $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$ is sigma-algebra.
 - (b) If X and Y are independent random variables then card $\sigma(X,Y) = \operatorname{card} \sigma(X) + \operatorname{card} \sigma(Y)$.

For finite sets card denotes just the number of elements.

- 5. I throw a die infinite number of times. Let the random variable X_n be equal to 1 if the n-th toss is head and 0 otherwise. Consider a pack of sigma-algebras: $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ and $\mathcal{H}_n = \sigma(X_n, X_{n+1}, X_{n+2}, \dots)$. Where possible provide and example of a non-trivial event (neither Ω nor \emptyset) such that
 - (a) $A_1 \in \mathcal{F}_{2020}$;
 - (b) $A_2 \in \mathcal{H}_{2020}$;
 - (c) $A_3 \in \mathcal{F}_{2020}$ and $A_3 \in \mathcal{H}_{2020}$;
 - (d) $A_4 \in \mathcal{F}_n$ for all n;
 - (e) $A_5 \in \mathcal{H}_n$ for all n.

Deadline: 25 September 2020, 21:00 MSK.

2020-2021 1/3

Home Assignment 2

1. Consider the Markov chain with the transition matrix:

- (a) Draw the most beautiful graph for this chain. A fox or a cat is ok:)
- (b) Classify the states of the Markov chain.
- 2. The Lonely Knight is standing on the A1 field of the chessboard. She starts moving randomly according to chess rules.
 - (a) How many moves on average will it take to go back to A1?
 - (b) What proportion of her eternal life will she spend on every field?
- 3. Donald Trump throws a die until one appears or until he says «Stop». The payoff is equal to the last thrown number. Donald maximizes the expected payoff.
 - (a) What is the best strategy and the corresponding expected payoff?

How do the answers change in the following modifications of the original game?

- (b) Donald is also required to stop at 3 and to continue on 4.
- (c) Donald should pay 0.3 for every throw.
- 4. Ilya Muromets stands before the first stone. There are three roads behind the stone. And every road ends with a new stone. And there are three new roads behind every new stone. And so on. Every road is guarded with one-third probability by a three headed Zmei Gorynich. Yes, there are infinitely many Zmei Gorynich.

What is the probability that there is an Eternal Peaceful Journey?

- 5. Ilya and Zmei finally met and play with a coin. They throw a coin until the sequence HTT or TTH appears. Ilya wins if HTT appears and Zmei wins if TTH appears.
 - (a) What is the probability that Ilya wins?
 - (b) What is the expected number of throws?
 - (c) What is the expected number of throws given that Ilya won?

Deadline: 9 October 2020, 21:00 MSK.

2020-2021 2/3

Home Assignment 2

1.

Deadline: 25 September 2020, 21:00 MSK.

2020-2021 3/3