Math 523 Homework 2

Theo Koss

September 2023

Section 2.1

- 2. Determine whether the given sequence $\{a_n\}$ converges or diverges with a_n as given. In each case, prove your conclusion.
 - b. $a_n = \frac{n}{n^2 2}$. Converges to $\lim_{n \to \infty} \frac{n}{n^2 2} = 0$.

Proof. Choose an $\epsilon > 0$, and choose N so that $\left| \frac{n}{n^2 - 2} \right| < \epsilon$ when $n \ge N$. Whenever $n \ge N$, we get $\left| \frac{n}{n^2 - 2} \right| = \frac{|n|}{|n^2 - 2|} |n| = n$ if $n \ge 0$, and $|n^2 - 2| = n^2 - 2$ if n > 1. So

$$|\frac{n}{n^2 - 2}| = \frac{n}{n^2 - 2}$$

if n > 1.

$$\frac{n}{n^2-2}<\frac{2n}{n^2}=\frac{2}{n}$$

If n>2. This is less than ϵ when $n>\frac{2}{\epsilon}$. So choose $N>\max\{2,\frac{2}{\epsilon}\}$. Then $|\frac{n}{n^2-2}|<\epsilon$ for $n\geqslant N$.

c. $a_n = \frac{1}{n^p}$ where p positive constant. Converges to 0 for $p \ge 1$.

Proof. By Theorem 2.1.13 in the text, if |r| < 1, then $\lim_{n \to \infty} r^n = 0$. Then note that $\frac{1}{n^p} = (\frac{1}{n})^p$, and furthermore, $|(\frac{1}{n})^p| < 1$ for all $p \ge 1$ and n > 1. So choose N > 1, then if n > N,

$$\left|\frac{1}{n^p}\right| < \epsilon$$

. QED

11. Give an example of a sequence that is bounded but not convergent.

$$a_n = (-1)^n$$

Series is bounded, as it fluctuates between -1 and 1 for n odd and even, respectively, so it is bounded by 1, however it does not converge.

17. Use the binomial theorem to prove that $\lim_{n\to\infty} nr^n = 0$ if |r| < 1.

Proof. Let $|r| = \frac{1}{1+x}$, by binomial thm, $(1+x)^n \ge 1 + nx + ... > nx + n(n-1)\frac{x^2}{2}$ for n > 2.

Let $\epsilon > 0$ be given, then let $N > \ell$

$$|nr^n| = \frac{|n|}{(1+x)^n} < \frac{2n}{2nx + n(n-1)x^2} < \frac{2}{2x + (n-1)x^2} = \frac{2}{nx^2 - x^2 + 2x} < \epsilon$$

Solving for n:

$$n > \frac{-x^2\epsilon + 2x\epsilon - 2}{-x^2\epsilon}$$

Call $\ell = \frac{-x^2\epsilon + 2x\epsilon - 2}{-x^2\epsilon}$. Then for $n \geqslant \ell$, we have that nr^n converges to 0.

Section 2.2

3. Part d, prove that $\lim_{n\to\infty} a_n = A$ implies $\lim_{n\to\infty} a_n^p = A^p$ for $p \in \mathbb{N}$.

Proof. We will use induction, base case: p=2, then by part (b) of this theorem, $\lim_{n\to\infty}a_n=A$ and $\lim_{n\to\infty}a_n=A$ implies $\lim_{n\to\infty}a_na_n=AA$.

Assume it holds for p, then

$$\lim_{n \to \infty} a_n^{p+1} = A^{p+1}$$

$$\iff \lim_{n \to \infty} a_n^{p-1} \cdot a_n = A^{p-1} \cdot A$$

$$\implies \text{(By assumption) } a_n = A$$

Which is true by assumption.

Negative case of part (a):

Proof. Let ϵ be given, since a_n and b_n converge, let $|a_n - A| < 3\epsilon$ and $|b_n - A| < 2\epsilon$.

$$|a_n - b_n - A - B| = |(a_n - A) - (b_n - B)| \le |a_n - A| - |b_n - B| < 3\epsilon - 2\epsilon = \epsilon$$
QED

12. Consider the sequences $\{a_n\}$ and $\{b_n\}$, where sequence $\{a_n\}$ converges to zero. Is it true that the sequence $\{a_nb_n\}$ converges to zero? Explain. (See Theorem 2.2.7.)

It is true when b_n is a bounded sequence, by theorem, however when it is unbounded, the product may not converge to 0, if b_n "grows faster" than a_n .

Additional Questions

1. *Proof.* By way of contradiction, assume $|-1^n - A| < \epsilon = \frac{1}{2}$ for $n \ge N$. If n is even:

$$|a_n - A| < \frac{1}{2} \implies |-1 - A| < \frac{1}{2} \implies -\frac{1}{2} < -1 - A < \frac{1}{2}$$

Then consider n+1, which is odd:

$$|a_n - A| < \frac{1}{2} \implies |1 - A| < \frac{1}{2} \implies -\frac{1}{2} < 1 - A < \frac{1}{2}$$

Therefore we have that A is between $-\frac{1}{2}$ and $-\frac{3}{2}$, and it is between $\frac{1}{2}$ and $\frac{3}{2}$. This is true of no real number, so a_n must not converge to a real.

2. Show that $\lim_{n\to\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 0$.

Proof. Remark 2.1.8(b) states: If $\{a_n\}$ and $\{b_n\}$ differ from each other in only a finite number of terms, then both sequences converge to the same value or they both diverge. Given that $a_n = \{\frac{1}{n}\}$ converges to

0 (problem 2(b) above), notice that $a_n = b_{n-1}$, where $b_n = \{\frac{1}{n+1}\}$ so they have all the same terms, offset by 1, except the starting point. Therefore b_n also converges to 0. By theorem 2.2.7(a), their difference diverges to the difference 0 - 0 = 0.

3. Show that if $\{a_n\}$ converges to A, then $\{|a_n|\}$ converges to |A|.

Proof. By the triangle inequality, we have that

$$||a_n| - |A|| \leqslant |a_n - A|$$

Since a_n converges to A, we have an N s.t. for any $\epsilon > 0$, $n \ge N$ implies $|a_n - A| < \epsilon$. Then, by our inequality above,

$$||a_n| - |A|| \le |a_n - A| < \epsilon$$

For $n \ge N$, therefore we have shown $\{|a_n|\}$ converges to |A| for $n \ge N$. QED