Claims

1.	A sensor system for recording environmental data measurements,
	comprising:
	a sensor for detecting environmental data;
	a controller for controlling the operation of the sensor, including:
	a front-end circuit coupled to the sensor;
	a loop filter coupled to the front-end circuit;
	a multiphase clock generator coupled to the front-end circuit and
	the loop filter; and
	a startup sequencer coupled to the loop filter; and
	a communication interface for coupling the sensor and the controller.
2.	A controller for controlling the operation of a sensor, comprising:
	a front-end circuit coupled to the sensor;
	a loop filter coupled to the front-end circuit;
	a multiphase clock generator coupled to the front-end circuit and the loop
	filter;
	a startup sequencer coupled to the loop filter and the multiphase clock
	generator;
	a sensor simulator for simulating the performance of the sensor coupled to
	the startup sequencer, the multiphase clock generator, and the
	front-end circuit; and
	an overload detection device coupled to the loop filter and the startup
	sequencer.
3.	A controller for controlling the operation of a sensor, comprising:
	a front-end circuit coupled to the sensor;
	a loop filter coupled to the front-end circuit;
	a multiphase clock generator coupled to the front-end circuit and the loop
	filter;

6		a startup sequencer coupled to the loop filter and the multiphase clock
7		generator; and
8		an overload detection device coupled to the loop filter and the startup
9		sequencer.
1	4.	A front-end circuit for providing electrostatic forces and position sensing
2		for a measurement mass in a sensor, comprising:
3		a plurality of switches for controlling the operation of the sensor; and
4		a sense amplifier for sensing the position of the measurement mass within
5		the sensor.
1	5 .	A loop filter for providing control to a sensor system, comprising:
2		one or more integrators for providing a signal for controlling the sensor
3		system;
4		one or more derivative controllers for providing a signal for controlling the
5		sensor system;
6		one or more proportional controllers for providing a signal for controlling
7		the sensor system; and
8		a summer for combining the signals from the integrators, the derivative
9		controllers, and the proportional controllers.
1	6.	A method of operating a loop filter within a sensor system, comprising:
2		sending a signal to the loop filter indicating an operating mode of the
3		sensor system;
4		operating the loop filter in a reduced-order mode while the sensor
5		system is operating in a start-up mode;
6		operating the loop filter in the reduced-order mode for a predetermined
7		period of time after the sensor system transitions from the start-
8		up operating mode to a sigma-delta operating mode; and

	9	operating the loop filter in a normal mode during the sigma-delta
	10	operating mode after the productions in the sigma-delta
•	11	operating mode after the predetermined period of time during which the loop filter operates in reduced-order mode.
	1	7. A method of operating a loop filter within a sensor system, comprising:
	2	sending a signal to the loop filter indicating an operating mode of the
	3	sensor system;
•	4	operating the loop filter in a reduced-order mode while the sensor
ł	5	system is operating in a start-up mode.
E		operating the loop filter in the reduced-order mode for a predetermined
7		period of time after the sensor system switches from the start-up
8		operating mode to a sigma delta operating mode;
9		operating the loop filter in the reduced-order mode while the sensor
10		system is operating in the sigma-delta operation
11		operating the loop filter in a normal mode while the sensor system
12		operates in the sigma-delta operating mode after the
13		predetermined period of time during which the loop filter
14		operates in reduced-order mode.
1	8.	A method of controlling the operation within a sensor system of a loop
2		and the or more integrators, a proportional control
3		comprising:
4		sending a signal to the loop filter indicating the operating mode of the
5		sensor system;
6		holding the integrators in a reset mode to place the loop filter in a
7		reduced-order operating mode when the sensor system is
8		operating in a start-up mode; and
		taking the integrators out of the reset mode to place the loop filter in a
		normal operating mode when the sensor system is operating in a
		sigma-delta operating mode.

1	9.	A method of placing a loop filter including one or more integrators, a
2		proportional controller, and a derivative controller in a reduced-order
3		operating mode, comprising:
4		sending a signal to the loop filter to control the operating mode of the
5		loop filter;
6		holding the integrators within the loop filter in a reset mode to place the
7		loop filter in the reduced-order operating mode.
1	10.	A method of providing control to a sensor assembly, comprising:
2		determining an operating mode of the sensor assembly;
3		adjusting a mode of operation of a loop filter in the sensor assembly;
4		providing feedback loop compensation to the sensor assembly during a
5		start-up mode of operation for the sensor assembly; and
6		providing noise shaping to the sensor assembly during a sigma-delta mode
7		of operation for the sensor assembly.
1	11.	A multiphase clock generator for providing clock signals for controlling the
2		operation of a sensor system, comprising:
3		a digital signal generator; and
4		a data-independent clock resynchronization circuit coupled to the digital
5		signal generator.
1	12 .	A sensor simulator for simulating the operation of a sensor, comprising:
2		a filter adapted to receive one or more input signals and generate an
3		output signal representative of the operating state of the sensor;
4		and
5		an input signal selector operably coupled to the filter adapted to
6		controllably select the input signals as a function of the simulated
7		operating state of the sensor.

1	13.	A system for testing the operation of a controller in a sensor system,
2		comprising:
3		a sensor simulator for simulating the operation of a sensor; and
4		a controller coupled to the simulator.
1	14.	A method of controlling the operation of a sensor system, comprising:
2		using a controller to apply electrostatic forces to a sensor to create one or
3		more sensor operating states; and
4		sequentially arranging the operating states into which the sensor is placed
5		to create one or more operating modes for the sensor system.
1	15.	A feedback control system for providing control to a sensor system,
2		comprising:
3		a startup sequencer for selecting the mode of operation of the feedback
4		control system; and
5		a loop filter coupled to the startup sequencer.
1	16.	A multiphase clock generator for generating clock signals for use within a
2		sensor system, comprising:
3		a digital signal generator for generating a first clock signal; and
4		a clock resynchronization circuit coupled to the digital signal generator for
5		receiving the first clock signal from the digital signal
6		generator and resampling the first clock signal to generate a second
7		clock signal.
1	17.	A clock resynchronization circuit for resampling clock signals, comprising:
2		a plurality of inverters;
3		a plurality of NOR gates coupled to the inverters;
4		a plurality of NAND gates coupled to the inverters;
5		a plurality of XNOR gates coupled to the NAND gates and the inverters;

6		a plurality of asynchronous set double-edge flip-flops coupled to the
7		NOR gates; and
8		a plurality of asynchronous reset double-edge flip-flops coupled to the
9		NOR gates.
1	18.	A device for resampling an input signal on a rising edge and a falling edge
2		of a clock signal, comprising:
3		a plurality of transmission gates;
4		one or more NOR gates coupled to the transmission gates; and
5		a plurality of inverters coupled to the NOR gates and the transmission
6		gates.
1	19.	A device for resampling an input signal on a rising edge and a falling edge
2		of a clock signal, comprising:
3		a plurality of transmission gates;
4		one or more NAND gates coupled to the transmission gates; and
5		a plurality of inverters coupled to the NAND gates and the transmission
6		gates.
1	20.	A method of generating a clock signal for a sensor assembly, comprising:
2		generating a first clock signal; and
		resampling the first clock signal to generate a second clock signal to
		restore signal integrity and provide a timing relationship.
1	21.	A method of resampling an input signal, comprising:
2		resampling the input signal in a first level-sensitive latch, including one or
3		more transmission gates, one or more NOR gates, and one or more
4		inverters, on one edge of a clock input signal; and
5		resampling the input signal in a second level-sensitive latch, including
6		one or more transmission gates, one or more NOR gates, and one or

7		more inverters, acting in parallel with the first level-sensitive latch,
8		on another edge of the clock input signal.
1	22.	A method of resampling an input signal, comprising:
2		resampling the input signal in a first level-sensitive latch, including one or
3		more transmission gates, one or more NAND gates, and one or
4		more inverters, on one edge of a clock input signal; and
5		resampling the input signal in a second level-sensitive latch, including
6		one or more transmission gates, one or more NAND gates, and
7		one or more inverters, acting in parallel with the first level-
8		sensitive latch, on another edge of the clock input signal.
1	23 .	A method of operating an analog control circuit, comprising:
2		generating a first clock signal;
3		resampling the first clock signal to generate a second clock signal to
4		restore signal integrity and provide a proper timing relationship;
5		and
6		driving the analog control circuit using the second clock signal.
1	24 .	A controller assembly, comprising:
2		a sensor;
3		a sensor simulator for simulating the operation of the sensor;
4		a controller for controlling the sensor and the sensor simulator; and
		a switch for coupling the controller to the sensor or the sensor
		simulator.
1	25.	A method of testing a controller in a controller assembly, comprising:
2		connecting a sensor simulator to the controller;
3		supplying an input signal of a known value to the sensor simulator;
4		converting the input data to the sensor simulator into an output stream
5		from the sensor simulator:

6		sending the output stream from the sensor simulator to the controller;
7		processing the output stream from the sensor simulator within the
8		controller to create an output stream from the controller; and
9		analyzing the output from the controller to determine the accuracy of the
10		controller.
1	26 .	A method of fabricating a controller assembly for a sensor, comprising:
2		providing a substrate;
3		fabricating one or more controllers on the substrate;
4		fabricating one or more sensor simulators on the substrate; and
5		coupling the controller and the sensor simulator.
1	27 .	A method of offsetting the effects of external acceleration forces on a
2		sensor, independent of an orientation of the sensor, comprising:
3		applying electrostatic forces to the sensor to offset the effects of the
1		acceleration force

4 ^ 4