Chapitre 10

Fonction exponentielle

I. La fonction exponentielle

1) Existence et unicité

Propriété:

Il existe une **unique** fonction f dérivable sur \mathbb{R} telle que :

$$f' = f$$
 et $f(0) = 1$

Cette fonction est appelée fonction exponentielle et notée exp.

Ainsi pour tout réel x:

$$\exp'(x) = \exp(x)$$
 et $\exp(0) = 1$

Propriété:

Si une fonction f dérivable sur \mathbb{R} vérifie f'=f et f(0)=1, alors, pour tout réel x, on a :

$$f(x) f(-x) = 1$$
 et donc $f(x) \neq 0$.

Par conséquent :

pour tout réel x, $\exp(x) \neq 0$.

Démonstration:

Soit f une fonction dérivable sur \mathbb{R} telle que : f'=f et f(0)=1.

On pose pour tout réel x, $\phi(x)=f(x)f(-x)$; ϕ est dérivable sur \mathbb{R} comme produit de deux fonctions dérivables et, pour tout réel x:

$$\phi'(x) = f'(x) f(-x) + f(x) \times (-f'(-x)) = f(x) f(-x) - f(x) f(-x) = 0$$
.

La fonction ϕ est donc constante sur $\mathbb R$ et, comme $\phi(0)=1$, on obtient pour tout réel x, f(x)f(-x)=1 et donc $f(x)\neq 0$.

Remarque:

On utilise ici une propriété fondamentale : si une fonction admet une dérivée nulle sur un intervalle, alors cette fonction est constante sur cet intervalle.

Démonstration de l'unicité de la fonction :

On suppose l'existence d'une fonction dérivable g vérifiant g'=g et g(0)=1.

La fonction exp ne s'annulant pas, on peut définir $h = \frac{g}{\exp}$ sur \mathbb{R} .

$$h'(x) = \frac{g'(x)\exp(x) - g(x)\exp(x)}{(\exp(x))^2} = \frac{g(x)\exp(x) - g(x)\exp(x)}{(\exp(x))^2} = 0.$$

h est donc constante sur \mathbb{R} et $h(0) = \frac{g(0)}{\exp(0)} = 1$. Ainsi, pour tout réel x, on a h(x) = 1.

On en déduit que, pour tout réel $x : g(x) = \exp(x)$.

2) Propriétés algébriques

Propriété:

Pour tout réel x, pour tout réel y :

$$\exp(x+y) = \exp(x) \times \exp(y)$$

Démonstration :

Comme $\exp(x) \neq 0$ pour tout réel x, on peut considérer la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{\exp(x+y)}{\exp(x)}.$$

où y est un nombre réel quelconque fixé.

La fonction f est dérivable sur $\mathbb R$ et on a, pour tout x réel :

$$f'(x) = \frac{\exp(x+y)\exp(x) - \exp(x+y)\exp(x)}{(\exp(x))^2} = 0.$$

Donc f est une fonction constante.

Comme $\exp(0)=1$, on a $f(0)=f(x)=\exp(y)$, c'est-à-dire :

$$\frac{\exp(x+y)}{\exp(x)} = \exp(y).$$

Remarque:

On dit que exp transforme les sommes en produit.

Propriétés:

Pour tout réel x, pour tout réel y et pour tout entier relatif n:

- $\exp(-x) = \frac{1}{\exp(x)}$
- $\exp(x-y) = \frac{\exp(x)}{\exp(y)}$
- $\exp(nx) = (\exp(x))^n$

Démonstrations:

• D'après la propriété précédente :

$$\exp(x)\exp(-x) = \exp(x-x) = \exp(0) = 1.$$

• Pour tout réel x, comme $\exp(x) \neq 0$, $\exp(-x) = \frac{1}{\exp(x)}$.

$$\exp(x-y) = \exp(x+(-y)) = \exp(x)\exp(-y) = \exp(x)\frac{1}{\exp(y)} = \frac{\exp(x)}{\exp(y)}$$
.

Exemples:

- $\exp(3) \times \exp(7) = \exp(3+7) = \exp(10)$.
- $\exp(-5) = \frac{1}{\exp(5)}$.
- $(\exp(2))^4 = \exp(4 \times 2) = \exp(8)$.

3) Le nombre e

Définition:

On note e l'image de 1 par la fonction exponentielle. Ainsi $\exp(1)=e$.

Remarque:

Le nombre $\exp(1)$ noté e est un nombre irrationnel et admet 2,71828 pour valeur approchée à 10^{-5} .

Propriété:

Pour tout entier n, on a $\exp(n) = \exp(1 \times n) = (\exp(1))^n = e^n$.

Par **convention**, on décide de noter pour tout réel $x : \exp(x) = e^x$.

Exemples:

- $\exp(3) \times \exp(7) = \exp(3+7) = \exp(10)$ peut donc s'écrire $e^3 \times e^7 = e^{3+7} = e^{10}$.
- $(e^{3,4})^2$ peut donc s'écrire $e^{2 \times 3,4} = e^{6,8}$.

Remarques:

Avec cette nouvelle notation on a donc:

- $e^{x+y} = e^x \times e^y$
- $e^{-x} = \frac{1}{e^x}$
- $e^{x-y} = \frac{e^x}{e^y}$
- $e^{nx} = (e^x)^n$

Propriété:

Pour tout réel a, la suite (e^{na}) est une suite géométrique.

Démonstration :

Soit a un réel. On définit la suite (u_n) sur \mathbb{N} par $u_n = e^{na}$.

Pour tout entier naturel n, $u_{n+1} = e^{(n+1)a} = e^{na+a} = e^{na} \times e^a = u_n \times e^a$.

On en déduit que la suite (u_n) est une suite géométrique de raison e^a et de premier terme $u_0 = e^0 = 1$.

II. Étude de la fonction exponentielle

1) Signe et variations

Propriété:

La fonction exponentielle est **strictement positive** sur \mathbb{R} .

On peut écrire :

pour tout réel x, $e^x > 0$.

Démonstration :

On sait que, pour tout réel x, $e^x = \left(e^{\frac{x^2}{2}}\right)^2 > 0$, donc pour tout réel x, on a : $e^x > 0$.

Propriété:

La fonction exponentielle est **strictement croissante** sur \mathbb{R} .

Démonstration :

On sait que $\exp' = \exp$ et, d'après le théorème précédent, la fonction \exp est strictement positive sur \mathbb{R} .

Ainsi, la fonction exponentielle est strictement croissante sur \mathbb{R} .

Remarque:

La fonction exponentielle est de croissance très rapide.

D'où l'expression de « croissance exponentielle ».

Propriété:

Pour tout x et y:

- $x < y \Leftrightarrow e^x < e^y$
- $x=y \Leftrightarrow e^x=e^y$

Exemples:

- Résoudre $e^{-2x} = e^2$ dans \mathbb{R} : $e^{-2x} = e^2 \Leftrightarrow -2x = 2 \Leftrightarrow x = -1 \Leftrightarrow S = \{-1\}$
- Résoudre $e^{-2x} < 1$ dans \mathbb{R} : $e^{-2x} < 1 \Leftrightarrow e^{-2x} < e^0 \Leftrightarrow -2x < 0 \Leftrightarrow x > 0 \Leftrightarrow S =]0; +\infty[$

Tableau de variations:

x	$-\infty$	0	1	+∞
f(x)	0	1	e	+∞

2) Représentation graphique

3) Fonction $x \mapsto \exp(ax + b)$

Propriété:

Soit a et b deux réels.

La fonction f définie sur \mathbb{R} par $f(x) = e^{ax+b}$ est dérivable sur \mathbb{R} .

Pour tout réel $x, f'(x) = a e^{ax+b}$.

Démonstration:

On utilise la formule du cours sur la dérivation.

Exemple:

Soit f définie sur \mathbb{R} par $f(x) = e^{2x+1}$.

Pour tout réel x, on a $f'(x) = 2e^{2x+1}$.

Comme $e^{2x+1} > 0$, on en déduit que la fonction f est strictement croissante sur \mathbb{R} .

Remarque:

Les fonctions e^{ax+b} et ax+b ont le même sens de variation : leurs fonctions dérivées sont de même signe.