# **EVOLUTIONARY ALGORITHMS PROJECT 3**

Function Rosenbrock:

a=1,5 b=1,5 
$$f(x) = (1 - x - a)^2 + 100 * (y - b - (x - a)^2)^2$$
 
$$Min(x,y)=(-0.5,5.5)$$
 
$$f(-0.5,5.5)=0$$

#### Summarize all results:

| Algorithm    | Х            | у      | Nº f           | Nº solver  |       | F min     |
|--------------|--------------|--------|----------------|------------|-------|-----------|
|              |              |        | evaluations    | iterations |       |           |
|              | 1,753        | 2,056  | 88298          | 27860      |       | 7,349e-06 |
| PatterSearch | 3,326        | 2,593  | 114440         | 36264      |       | 3,586e-05 |
|              | 2,764        | 3,415  | 49696          | 15262      |       | 3,057e-06 |
|              | 1,695        | 3,429  | 48461          | 14898      |       | 2,027e-06 |
|              | Param        | eters  | PopulationSize | Nº solver  | Total | F min     |
|              |              |        |                | iterations |       |           |
|              | 1ºregu       | lation | 50             | 83         | 4015  | 1,00e-06  |
|              | 1ºregu       | lation | 50             | 66         | 3300  | 1,00e-06  |
| GA           | 1ºregu       | lation | 100            | 33         | 3300  | 1,00e-06  |
|              | 1ºregu       | lation | 150            | 15         | 3000  | 1,00e-06  |
|              | 2ºregu       | lation | 50             | 34         | 1520  | 1,00e-06  |
|              | 2ºregu       | lation | 200            | 34         | 6800  | 1,00e-06  |
|              | 3ºregulation |        | 50             | 183        | 8150  | 1,00e-04  |

### Algorithm PatterSearch

| Х     | у     | Nº f        | Nº solver  | F min     |
|-------|-------|-------------|------------|-----------|
|       |       | evaluations | iterations |           |
| 1,753 | 2,056 | 88298       | 27860      | 7,349e-06 |
| 3,326 | 2,593 | 114440      | 36264      | 3,586e-05 |
| 2,764 | 3,415 | 49696       | 15262      | 3,057e-06 |
| 1,695 | 3,429 | 48461       | 14898      | 2,027e-06 |

(Script OptimPatternSearch.mat)











In the previous bananaOut Plots aren't there drawn every iteration due to the heaviness of that operation, in addition for the optimization history it is just drawn till 2000 iteration for the same reason.

### GΑ

| Parameters   | PopulationSize | Nº solver<br>iterations | Total | 0       |
|--------------|----------------|-------------------------|-------|---------|
| 1ºregulation | 50             | 83                      | 4015  | 0.00001 |
| 1ºregulation | 50             | 66                      | 3300  | 0.00001 |
| 1ºregulation | 100            | 33                      | 3300  | 0.00001 |
| 1ºregulation | 150            | 15                      | 3000  | 0.00001 |
| 2ºregulation | 50             | 34                      | 1520  | 0.00001 |
| 2ºregulation | 200            | 34                      | 6800  | 0.00001 |
| 3ºregulation | 50             | 183                     | 8150  | 0.001   |

(datas optained using GA in Optimtool)

# 1ºregulation:

| 1x1 GaOptions       |                     |  |
|---------------------|---------------------|--|
| Property A          | Value               |  |
| EliteCount          | 8                   |  |
| FitnessLimit        | 1.0000e-06          |  |
| FitnessScalingFcn   | @fitscalingrank     |  |
| HybridFcn           | []                  |  |
| MaxStallTime        | Inf                 |  |
| NonlinearConstrai   | 'auglag'            |  |
| SelectionFcn        | @selectionstochunif |  |
| ConstraintTolerance | 1.0000e-03          |  |
|                     | @gacreationuniform  |  |
| CrossoverFcn        | @crossoverheuristic |  |
| CrossoverFraction   | 0.8000              |  |
| h Display           | 'off'               |  |
| FunctionTolerance   | 1.0000e-06          |  |
| InitialPopulation   | []                  |  |
| InitialPopulationR  | [-10 -10;10 10]     |  |
| InitialScoresMatrix | []                  |  |
| → MaxGenerations    | Inf                 |  |
| MaxStallGeneratio   | Inf                 |  |
| → MaxTime           | Inf                 |  |
| MutationFcn         | @mutationgaussian   |  |
| OutputFcn           | 1x1 cell            |  |
| PlotFcn             | 1x2 cell            |  |

















| 1x1 GaOptions       |                      |  |
|---------------------|----------------------|--|
| Property A          | Value                |  |
| EliteCount          | 10                   |  |
| FitnessLimit        | 1.0000e-06           |  |
| FitnessScalingFcn   | @fitscalingrank      |  |
| HybridFcn           | []                   |  |
| MaxStallTime        | Inf                  |  |
| NonlinearConstrai   | 'auglag'             |  |
| SelectionFcn        | @selectiontournament |  |
| ConstraintTolerance | 1.0000e-03           |  |
| CreationFcn         | @gacreationuniform   |  |
| CrossoverFcn        | @crossoverheuristic  |  |
|                     | 0.8000               |  |
| h Display           | 'off'                |  |
| FunctionTolerance   | 1.0000e-06           |  |
| InitialPopulation   | []                   |  |
| InitialPopulationR  | [-10 -10;10 10]      |  |
| InitialScoresMatrix | []                   |  |
| MaxGenerations      | Inf                  |  |
| MaxStallGeneratio   | Inf                  |  |
| → MaxTime           | Inf                  |  |
| MutationFcn         | @mutationgaussian    |  |
| () OutputFcn        | 1x1 cell             |  |
| () PlotFcn          | 1x2 cell             |  |









# 3ºRegulation

| 1x1 GaOptions       |                     |  |
|---------------------|---------------------|--|
| Property ▼          | Value               |  |
| Population Type     | 'doubleVector'      |  |
| PopulationSize      | 50                  |  |
| {} PlotFcn          | 1x2 cell            |  |
| () OutputFcn        | 1x1 cell            |  |
| MutationFcn         | @mutationgaussian   |  |
| → MaxTime           | Inf                 |  |
| MaxStallGeneratio   | Inf                 |  |
| Max Generations     | Inf                 |  |
| InitialScoresMatrix | []                  |  |
| InitialPopulationR  | [-10 -10;10 10]     |  |
| InitialPopulation   | []                  |  |
| FunctionTolerance   | 1.0000e-06          |  |
| h Display           | 'off'               |  |
| CrossoverFraction   | 0.8000              |  |
| CrossoverFcn        | @crossoverintermedi |  |
| CreationFcn         | @gacreationuniform  |  |
| ConstraintTolerance | 1.0000e-03          |  |
| SelectionFcn        | @selectionstochunif |  |
| NonlinearConstrai   | 'auglag'            |  |
| MaxStallTime        | Inf                 |  |
| HybridFcn           | []                  |  |
| FitnessScalingFcn   | @fitscalingrank     |  |
| FitnessLimit        | 1.0000e-06          |  |
| EliteCount          | 3                   |  |





#### Conclusion:

How the results show, genetic algorithmic is more effective in this case. Also, it is true that to get that efficient I tried several times with different configuration, and with some configurations it never found a proper solution. So it means, that if you don't know the optimum solution it could be a really difficult tast to set the configuration of a GA. On the other hand, Pattern search is a numerical algorithm does not require the calculation of gradrient vector, it use direct search technic instead, for that reasons their calculations are lighter than the calculation of other methods.

The gradient methods such as Newton-method, quasy newton-method and so on, spent less iteration to find the solution with the addicional cost of doing more calculations, and some of them assure convergerce.

To sum up, to optimizate a function we should choose carefully the algorithm keeping in mind the function, the charasteristics of the algorithms, and what it is more important for me speed, precission...