a) Write the truth table for the function Z=B'(C'+A)+BC'. (1 point)

A	В	С	Z
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

b) Compose a Karnaugh Map for the truth table from question 2(a). (1 point)

A\BC	00	01	11	10
0	1	0	0	1
1	1	1	0	1

c) Find a minimal Boolean Equation from the Karnaugh Map (2(b)) or the Boolean Equation (2 (a)) for Z (1 point)

$$Z = AB' + C'$$

d) Examine the circuit below. We want to find out the Boolean equation by inspection. You can use bubble-pushing methods to simplify the circuit. Write the Boolean equation. (2 points)

$$Z = A + B + C + D' + E'FG$$