NGS data formats and variant calling

2019 Dragon Star Bioinformatics Course (Day 1)

Sample Preparation

Basic Concepts in NGS

Insert – the DNA fragment that is used for sequencing

Read – the part of the insert that is sequenced

Single End – a sequencing procedure by which the insert is sequenced from one end only

Paired End – a sequencing procedure by which the insert is sequenced from both ends

Demultiplexing

Example of mapping parameters:

- Number of mismatches per read
- Scores for mismatch or gaps

Mapping parameters affect the rest of the analysis

 $average\ coverage = \frac{read\ length\ \cdot\ number\ of\ reads\ \cdot\ \%\ uniquely\ mapped\ reads}{genome\ size}$

NGS – high-throughput, but

- Shorter reads
 - Sanger sequencing: up to ~1Kb
 - NGS technologies: typically 30-300bp
 - Implication: a lot of computational tasks e.g, assembly, read alignment, haplotyping, detection of SNPs, CNVs, indels etc.
 - Higher per-base sequencing error rate
 - Sanger sequencing: < 0.001%
 - NGS: 0.5-1%
 - Implication: Need redundant sequencing of each base to distinguish sequencing errors from true polymorphisms

Now How do NGS Data Look Like?

What do you want them to look like?

Fantasy Land


```
Chr1 haplo1: agttataagat...
Chr1 haplo2: agttattagat...
Chr2 haplo1: cctagctggat...
Chr2 haplo2: ccaagctcgat...
Chr3 haplo1: agctctgagcg...
Chr3 haplo2: agctctgagcg...
Chr4 haplo1: atcgttcgatc...
Chr4 haplo2: atcgatcgaac...
etc...
```

3 billion bases from the beginning of chromosome 1 to the end of the last sex chromosome (2x) in haplotypes

The Raw Raw Data

Typically: images

- The first step is to call nucleotides at each base of each read: **base calling**, which is NOT 100% accurate
 - Typically base calling is done by the sequencer itself, and we start analysis after base calling (for example, fastq format file)

How do the Data Really Look Like: fastq

```
@IL27 748:3:286:254:231/1
GTGGAATAATGACCATGACGAAGAGGATGACAGTCC
BBBDCDED4DEAECEFEF2DC/>>@&*/C6208'<*
@IL27 748:3:285:138:811/1
AAGTGGATTACTACCTACAGAGAGTCAGTAAGAGAG
BB3D2D<D>D7DE0+19242?=57?=4%'6%.2.'(
@IL27 748:3:142:204:780/1
AGAAAAAGAAGAGAGAGACAGACAGACAGAAAAG
26B3C8<DDD>AAA0FCF7DCA012A?(;2?AC(=/
@IL27 748:3:23:252:759/1
TTTTAGATGAAGTTATTTCCTTTACTACCGTAGGCC
BB0D; DED>; >CEC: 2EFA@69CDC3?@'%=585=
```

Millions of short reads from unknown genetic locations

How do the Data Really Look Like: fastq

```
@IL27_748:3:286:254:231/1
                                         Read 1
GTGGAATAATGACCATGACGAAGAGGATGACAGTCC
BBBDCDED4DEAECEFEF2DC/>>@&*/C6208'<*
@IL27_748:3:285:138:811/1
AAGTGGATTACTACCTACAGAGAGTCAGTAAGAGAG
                                         Read 2
BB3D2D<D>D7DE0+19242?=57?=4%'6%.2.'(
@IL27 748:3:142:204:780/1
AGAAAAAGAAGAGAGAGACAGACAGACAGAAAAG
                                         Read 3
26B3C8<DDD>AAA0FCF7DCA012A?(;2?AC(=/
@IL27 748:3:23:252:759/1
TTTTAGATGAAGTTATTTCCTTTACTACCGTAGGCC
                                         Read 4
BB0D; DED>; >CEC: 2EFA@69CDC3?@'%=585='
```

•••

Millions of short reads from unknown genetic locations

How do the Data Really Look Like: fastq

```
unique read identifier ->
                       @IL27_748:3:286:254:231/1
                                                                  Read 1
Bases/nucleotides read
                       GTGGAATAATGACCATGACGAAGAGGATGACAGTCC
        "+" format line
per-base quality scores
                       BBBDCDED4DEAECEFEF2DC/>>@&*/C6208'<*
                       @IL27 748:3:285:138:811/1
                       AAGTGGATTACTACCTACAGAGAGTCAGTAAGAGAG
                       BB3D2D<D>D7DE0+19242?=57?=4%'6%.2.'(
                       @IL27 748:3:142:204:780/1
                       AGAAAAAGAAGAGAGAGACAGACAGACAGAAAAG
                       26B3C8<DDD>AAA0FCF7DCA012A?(;2?AC(=/
                       @IL27 748:3:23:252:759/1
                          TAGATGAAGTTATTTCCTTTACTACCGTAGGCC
                       BB0D; DED>; > CEC: 2EFA@69CDC3?@'%=585= '
```

Millions of short reads from unknown genetic locations

Base Qualities

Short Read Sequence

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Short Read Base Qualities

30.30.28.28.29.27.30.29.28.25.24.26.27.24.24.23.20.21.22.10.25.25.20.20.18.17.16.15.14.14.13.12.10

- Each base is typically associated with a quality value
- Measured on a "Phred" scale, which was introduced by Phil Green for his Phred sequence analysis tool

 $BQ = -10log_{10}(\varepsilon)$ where ϵ is the probability of an error

BED format

BED format Index ▷

BED format provides a flexible way to define the data lines that are displayed in an annotation track. BED lines have three required fields and nine additional optional fields. The number of fields per line must be consistent throughout any single set of data in an annotation track. The order of the optional fields is binding: lower-numbered fields must always be populated if higher-numbered fields are used.

If your data set is BED-like, but it is very large (over 50MB) and you would like to keep it on your own server, you should use the bigBed data format.

The first three required BED fields are:

- 1. chrom The name of the chromosome (e.g. chr3, chrY, chr2_random) or scaffold (e.g. scaffold10671).
- 2. chromStart The starting position of the feature in the chromosome or scaffold. The first base in a chromosome is numbered 0.
- 3. **chromEnd** The ending position of the feature in the chromosome or scaffold. The *chromEnd* base is not included in the display of the feature. For example, the first 100 bases of a chromosome are defined as *chromStart=0*, *chromEnd=100*, and span the bases numbered 0-99.

The 9 additional optional BED fields are:

- 4. name Defines the name of the BED line. This label is displayed to the left of the BED line in the Genome Browser window when the track is open to full display mode or directly to the left of the item in pack mode.
- 5. **score** A score between 0 and 1000. If the track line *useScore* attribute is set to 1 for this annotation data set, the *score* value will determine the level of gray in which this feature is displayed (higher numbers = darker gray). This table shows the Genome Browser's translation of BED score values into shades of gray:

- 6. strand Defines the strand either '+' or '-'.
- 7. **thickStart** The starting position at which the feature is drawn thickly (for example, the start codon in gene displays). When there is no thick part, thickStart and thickEnd are usually set to the chromStart position.
- 8. thickEnd The ending position at which the feature is drawn thickly (for example, the stop codon in gene displays).
- 9. **itemRgb** An RGB value of the form R,G,B (e.g. 255,0,0). If the track line *itemRgb* attribute is set to "On", this RBG value will determine the display color of the data contained in this BED line. NOTE: It is recommended that a simple color scheme (eight colors or less) be used with this attribute to avoid overwhelming the color resources of the Genome Browser and your Internet browser.
- 10. blockCount The number of blocks (exons) in the BED line.
- 11. blockSizes A comma-separated list of the block sizes. The number of items in this list should correspond to blockCount.
- 12. **blockStarts** A comma-separated list of block starts. All of the *blockStart* positions should be calculated relative to *chromStart*. The number of items in this list should correspond to *blockCount*.

Minimal BED format. So-called BED3 format.

CAGTCGACATAGACTGATATGACACCACACTGAGC...

chr1 0 3chr1 11 18chr1 29 35

BED format supports "labels"

CAGTCGACATAGACTGATATGACACCACACTGAGC...

And scores

CAGTCGACATAGACTGATATGACACCACACTGAGC...

And strands. This is so-called BED6 format.

CAGTCGACATAGACTGATATGACACCACACTGAGC...

And more! BED12 format

BED format Index ▷

BED format provides a flexible way to define the data lines that are displayed in an annotation track. BED lines have three required fields and nine additional optional fields. The number of fields per line must be consistent throughout any single set of data in an annotation track. The order of the optional fields is binding: lower-numbered fields must always be populated if higher-numbered fields are used.

If your data set is BED-like, but it is very large (over 50MB) and you would like to keep it on your own server, you should use the bigBed data format.

The first three required BED fields are:

- 1. chrom The name of the chromosome (e.g. chr3, chrY, chr2_random) or scaffold (e.g. scaffold10671).
- 2. chromStart The starting position of the feature in the chromosome or scaffold. The first base in a chromosome is numbered 0.
- 3. **chromEnd** The ending position of the feature in the chromosome or scaffold. The *chromEnd* base is not included in the display of the feature. For example, the first 100 bases of a chromosome are defined as *chromStart=0*, *chromEnd=100*, and span the bases numbered 0-99.

The 9 additional optional BED fields are:

- 4. name Defines the name of the BED line. This label is displayed to the left of the BED line in the Genome Browser window when the track is open to full display mode or directly to the left of the item in pack mode.
- 5. **score** A score between 0 and 1000. If the track line *useScore* attribute is set to 1 for this annotation data set, the *score* value will determine the level of gray in which this feature is displayed (higher numbers = darker gray). This table shows the Genome Browser's translation of BED score values into shades of gray:

shade score in range ≤ 166 167-277 278-388 389-499 500-611 612-722 723-833 834-944 ≥ 945

- 6. strand Defines the strand either '+' or '-'.
- 7. **thickStart** The starting position at which the feature is drawn thickly (for example, the start codon in gene displays). When there is no thick part, thickStart and thickEnd are usually set to the chromStart position.
- 8. thickEnd The ending position at which the feature is drawn thickly (for example, the stop codon in gene displays).
- 9. **itemRgb** An RGB value of the form R,G,B (e.g. 255,0,0). If the track line *itemRgb* attribute is set to "On", this RBG value will determine the display color of the data contained in this BED line. NOTE: It is recommended that a simple color scheme (eight colors or less) be used with this attribute to avoid overwhelming the color resources of the Genome Browser and your Internet browser.
- 10. blockCount The number of blocks (exons) in the BED line.
- 11. blockSizes A comma-separated list of the block sizes. The number of items in this list should correspond to blockCount.
- 12. **blockStarts** A comma-separated list of block starts. All of the *blockStart* positions should be calculated relative to *chromStart*. The number of items in this list should correspond to *blockCount*.

BED12 example

chr17	41196311	41277340	uc010whm.2	0	- 41	1197694	41277202	0	8	1508,61,74,55,84,41,78,142, 0,3348,4826,6768,12757,19038,19579,80887,
chr17	41196311	41277340	uc002icp.4	0	- 41	1197694	41258496	0	23	1508,61,74,55,84,41,78,88,311,191,127,172,89,3426,77,46,103,140,89,56,54,99,142,
0,3348	,4826,6768,12757	,19038,19579,233	13,26633,30036,3	32193,38109	,46649,471	140,51551,52949	,55480,59827,60	0573,6218	3,71431,	79722,80887,
chr17	41196311	41277468	uc002icu.3	0	- 41	1197800	41276113	0	22	1508,61,55,84,41,78,88,311,191,124,172,89,117,77,46,106,140,89,78,54,99,175,
0,3348	,6768,12757,1903	8,19579,23313,26	633,30036,32193	,38109,4664	9,50449,51	1551,52949,5548	80,59827,60573,	62161,714	31,79722	2,80982,
chr17	41196311	41277468	uc010cyx.3	0	- 41	1197694	41258543	0	22	1508,61,74,55,84,41,78,88,311,191,127,172,89,3426,77,46,106,140,89,78,99,175,
0,3348	,4826,6768,12757	,19038,19579,233	13,26633,30036,3	32193,38109	,46649,471	140,51551,52949	,55480,59827,60	0573,6216	1,79722,	80982,
chr17	41196311	41277500	uc002ict.3	0	- 41	1197694	41276113	0	24	1508,61,74,55,84,41,78,88,311,191,124,66,172,89,3426,77,46,106,140,89,78,54,99,213,
0,3348	,4826,6768,12757	,19038,19579,233	13,26633,30036,3	32193,35039	,38109,466	649,47140,51551	,52949,55480,59	9827,6057	3,62161,	71431,79722,80976,
chr17	41196311	41277500	uc010whn.2	0	- 41	1197694	41226495	0	11	1508,61,74,55,84,41,78,88,311,191,213, 0,3348,4826,6768,12757,19038,19579,23313,26633,30036,80976,
chr17	41196311	41277500	uc010who.3	0	- 41	1197694	41202109	0	5	1508,61,74,129,213, 0,3348,4826,5767,80976,
chr17	41196311	41277500	uc002icq.3	0	- 41	1197694	41276113	0	23	1508,61,74,55,84,41,78,88,311,191,127,172,89,3426,77,46,106,140,89,78,54,99,213,
0,3348	,4826,6768,12757	,19038,19579,233	13,26633,30036,3	32193,38109	,46649,471	140,51551,52949	,55480,59827,60	0573,6216	1,71431,	.79722,80976,
chr17	41196311	41322420	uc010whp.2	•			41258543	0	22	1508,61,74,55,84,41,78,88,311,191,124,172,89,117,77,46,106,140,89,78,54,278,
0,3348	,4826,6768,12757	,19038,19579,233		32193,38109	,46649,504	449,51551,52949	,55480,59827,60	0573,6216	1,71431,	125831,
chr17		41256973	uc010whq.1	•	- 41	1215349	41256198	0	12	41,78,88,311,191,127,172,89,117,106,140,89,
	4275,7595,10998,									
chr17		41277468	uc002idc.1	•			41276113	0	18	41,78,88,311,191,127,172,89,117,77,46,103,140,89,78,54,99,175,
	4275,7595,10998,									
chr17		41277468	uc010whr.1	0			41258543	0	17	41,78,88,311,191,127,172,89,117,77,46,106,140,89,78,99,175,
	4275,7595,10998,									
chr17	41243116	41276132	uc002idd.3	0			41276113	0	9	3761,77,46,106,140,89,78,54,99, 0,4746,6144,8675,13022,13768,15356,24626,32917,
chr17	41243451	41256973	uc002ide.1	0			41256198	0	4	3426,103,140,89, 0,8340,12687,13433,
chr17	41243451	41277340	uc010cyy.1	0			41276113	0	10	3426,77,46,106,140,89,78,54,99,142, 0,4411,5809,8340,12687,13433,15021,24291,32582,33747,
chr17	41243451	41277468	uc010whs.1	0			41276113	0	10	3426,77,46,106,140,89,78,54,99,175, 0,4411,5809,8340,12687,13433,15021,24291,32582,33842,
chr17	41243451	41277500	uc010cyz.2	0			41258543	0	11	3426,77,46,106,140,89,78,116,54,99,213, 0,4411,5809,8340,12687,13433,15021,19030,24291,32582,33836,
chr17	41243451	41277500	uc010cza.2	0			41276113	0	9	3426,77,46,106,140,89,54,99,213, 0,4411,5809,8340,12687,13433,24291,32582,33836,
chr17	41243451	41277500	uc010wht.1	0			41246659	0	2	3426,213, 0,33836,
chr17	41277599	41292342	uc002idf.3	0			41277599	0	4	188,63,182,1669, 0,5625,7373,13074,
chr17	41277599	41292342	uc010czb.2	0			41277599	0	2	188,1669, 0,13074,
chr17	41277599	41297125	uc002idg.3	•			41277599	0	5	188,63,266,468,381, 0,5625,13074,14233,19145,
chr17	41277599	41305688	uc002idh.3	0	+ 41	1277599	41277599	0	8	188,63,125,182,205,266,120,70, 0,5625,7016,7373,12573,13074,16874,28019,

BAM/SAM format

- SAM: Sequence Alignment/Map format (tab-delimited text file).
- BAM: The binary equivalent of a SAM file, which stores the same data in a compressed binary representation

Col	Field	Туре	Brief description
1	QNAME	String	Query template NAME
2	FLAG	Int	bitwise FLAG
3	RNAME	String	References sequence NAME
4	POS	Int	1- based leftmost mapping POSition
5	MAPQ	Int	MAPping Quality
6	CIGAR	String	CIGAR String
7	RNEXT	String	Ref. name of the mate/next read
8	PNEXT	Int	Position of the mate/next read
9	TLEN	Int	observed Template LENgth
10	SEQ	String	segment SEQuence
11	QUAL	String	ASCII of Phred-scaled base QUALity+33

Example of a SAM file

CRAM

- CRAM was designed to be an efficient referencebased alternative to SAM/BAM file formats
- Better lossless compression than BAM, but also allow for controlled loss of BAM data
- Typically used for large-scale population-based genome/exome sequencing project (for example, CRAMs has ~50TB for 50K exomes in UK Biobank).

VCF file format

- Variant Call Format, established > 10 years ago and is now a gold standard for describing variants.
- One locus per line, and it may contain more than one mutations, but most lines contain on variant only.
- Additional header lines starts with "#" to explain the meaning of the various tags in the file

Example of a VCF file

```
##fileformat=VCFv4.3
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                                        QUAL FILTER
                                                                                        FORMAT
                                                                                                                     NA00002
                                                                                                                                      NA00003
                                                     INFO
                                                                                                     NA00001
                                                                                        GT:GO:DP:HO 0|0:48:1:51,51 1|0:48:8:51,51
      14370
                rs6054257 G
                                              PASS
                                                      NS=3;DP=14;AF=0.5;DB;H2
                                                                                                                                      1/1:43:5:.,.
                                                                                        GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
20
      17330
                                        3
                                              q10
                                                      NS=3;DP=11;AF=0.017
                                                                                                                                      0/0:41:3
20
      1110696 rs6040355 A
                                              PASS
                                                      NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
                                                                                                                                      2/2:35:4
      1230237 .
                                              PASS
                                                      NS=3;DP=13;AA=T
                                                                                        GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51
                                                                                                                                      0/0:61:2
      1234567 microsat1 GTC G,GTCT 50
                                                      NS=3;DP=9;AA=G
                                                                                        GT:GO:DP
                                                                                                     0/1:35:4
                                                                                                                     0/2:17:2
                                                                                                                                      1/1:40:3
```

As of June 2019, the latest version is 4.3

The header line of a VCF file

- The header line names the 8 fixed, mandatory columns. These columns are as follows:
 - #CHROM POS ID REF ALT QUAL FILTER INFO
- If genotype data is present in the file, these are followed by a FORMAT column header, then an arbitrary number of sample IDs

The INFO line of a VCF file

- INFO fields are encoded as a semicolon-separated series of short keys with optional values in the format: key[=data[,data]].
- Some keys are reserved:

Key	Number	Type	Description
AA	1	String	Ancestral allele
AC	A	Integer	Allele count in genotypes, for each ALT allele, in the same order as
			listed
AD	R	Integer	Total read depth for each allele
ADF	R	Integer	Read depth for each allele on the forward strand
ADR	R	Integer	Read depth for each allele on the reverse strand
AF	A	Float	Allele frequency for each ALT allele in the same order as listed
			(estimated from primary data, not called genotypes)
AN	1	Integer	Total number of alleles in called genotypes
BQ	1	Float	RMS base quality
CIGAR	A	String	Cigar string describing how to align an alternate allele to the refer-
			ence allele
DB	0	Flag	dbSNP membership
DP	1	Integer	Combined depth across samples

The genotypes in a VCF file

- A FORMAT field is given specifying the data types and order
- This is followed by one data block per sample, with the colon-separated data corresponding to the types specified in the format.

```
FORMAT NA00001 NA00002

GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51

GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3

GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2

GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51

GT:GQ:DP 0/1:35:4 0/2:17:2
```

gVCF format

- gVCF (Genomic VCF): the basic format specification is the same as for a regular VCF, but gVCF contains extra information.
- gVCF was developed to store sequencing information for both variant and non-variant positions, which is required for human clinical applications.

VCF versus gVCF

Visualization of genomic data

 Integrative Genomics Viewer (IGV) is a highperformance visualization tool for interactive exploration of large, integrated genomic datasets.

Visualization: IGV Viewer

Visualization: IGV Viewer

Calling a single nucleotide variant

FDR calculation: What is the expected number of such sites (3 errors of the same) given an average depth of 30x?

 $N_{errors} / base = 30x0.005 / 3 = 0.05;$

#errors/site ~ Poisson(0.05) [for a particular Ref-Alt error]

E(# sites with \geq 3 errors) ~ [1- ppois(2, 0.05)] * 3 * N

Coding regions ~ 30Mbp, number of variants in total ~ 20,000

E(false positive | K=3) = $1800 \rightarrow FDR \sim 9\%$

 $K=4 \rightarrow FDR \sim 0.1\%$

K-allele algorithm:

- Map reads to the reference genome
- Pick a depth threshold K, (e.g. K=4)
- Candidate variant sites: if n₁ ≥ K
- Additional filters {testing a different null model (there is a SNV)}:
 - Strand bias
 - Mapping bias
 - Quality bias

SNV calling: improvement from K-allele

Problems with K-allele method:

- 1. Errors are not independent
- 2. Hard to set threshold when *average depth of* coverage varies across samples and batches.

Solutions:

- Factor in context-dependency
- Full likelihood calculation
 - Genotype likelihood and posterior
- Leverage genetic priors:
 - Diploid genome,
 - known polymorphisms

General strategy for variant calling

- Reads piled up at each base of interest
- With per-base qualities and mapping quality

TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTAGCTAGCTAGCTAGCTGATGAGCCCGATCGCTAGCTCGACG-3'
Reference Genome

Predicted Genotype

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A, read mapped)= 1.0

P(reads | A/C, read mapped) = 1.0

P(reads | C/C, read mapped)= 1.0

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'
Reference Genome

P(reads | A/A, read mapped) = P(C observed | A/A, read mapped)

P(reads | A/C, read mapped) = P(C observed | A/C, read mapped)

P(reads | C/C, read mapped) = P(C observed | C/C, read mapped)

Sequence Reads

5'-ACTGGTCGATGCTAGCTAGCTAGCTAGCTAGCTGATGAGCCCGATCGCTAGCTCGACG-3'
Reference Genome

P(reads | A/A, read mapped) = 0.01

P(reads | A/C, read mapped) = 0.50

P(reads | C/C, read mapped) = 0.99

Sequence Reads

5'-ACTGGTCGATGCTAGCTAGCTAGCTAGCTAGCTGATGAGCCCGATCGCTAGCTCGACG-3'
Reference Genome

P(reads | A/A, read mapped) = 0.0001

P(reads | A/C, read mapped) = 0.25

P(reads | C/C, read mapped) = 0.98

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'
Reference Genome

P(reads | A/A, read mapped) = 0.000001

P(reads | A/C, read mapped) = 0.125

P(reads | C/C, read mapped) = 0.97

ATAGCTAGATGAGCCCGATCGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAG CTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A , read mapped) = 0.00000099

P(reads | A/C, read mapped) = 0.0625

P(reads | C/C, read mapped) = 0.0097

TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A , read mapped) = 0.00000098

P(reads | A/C, read mapped) = 0.03125

P(reads | C/C, read mapped) = 0.000097

TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAG CTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'

Reference Genome

P(reads | A/A, read mapped) = 0.00000098

P(reads | A/C, read mapped) = 0.03125

P(reads | C/C, read mapped) = 0.000097

Combine these likelihoods with a prior incorporating information from other individuals and flanking sites to assign a genotype.

TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAG CTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3'
Reference Genome

$$P(Genotype|reads) = \frac{P(reads|Genotype)Prior(Genotype)}{\sum_{G} P(reads|G)Prior(G)}$$

Combine these likelihoods with a prior incorporating information from other individuals and flanking sites to assign a genotype.

Ingredients in the Prior

- Most sites don't vary
 - P(non-reference base) ~ 0.001
- When a site does vary, it is usually heterozygous
 - P(non-reference heterozygote) ~ 0.001 * 2/3
 - P(non-reference homozygote) ~ 0.001 * 1/3
- Mutation model
 - Transitions account for most variants ($C \leftrightarrow T$ or $A \leftrightarrow G$)
 - Transversions account for minority of variants

From Sequence to Genotype: Individual Based Prior

TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTAGCTC
ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAG CTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTAGCTCGACG-3'
Reference Genome

P(reads | A/A) = 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001

P(reads | A/C) = 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175

P(reads | C/C) = 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825

Individual Based Prior: Every site has 1/1000 probability of varying.

From Sequence to Genotype: Individual Based Prior

TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAG CTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTAGCTCGACG-3'
Reference Genome

P(reads | A/A) = 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001

P(reads | A/C) = 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175

P(reads | C/C) = 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825

Individual Based Prior: Every site has 1/1000 probability of varying.

Calling SNP Genotype for One Person at a Time

- Idea is simple
 - Calculate from observed data P(reads | genotype)
 - Impose a prior on P(genotype)
 - Get posterior probability P(genotype | reads)
- Issues
 - Choice of a prior
 - P(reads | genotype) involves per-base errors that are very likely to be corrected and/or not well calibrated, reads that are mapped with different level of confidence

More on Prior

Individual Based Prior

- Assumes all sites have an equal probability of showing polymorphism
- Specifically, assumption is that about 1/1000 bases differ from reference
- If reads were error free and sampling Poisson ...
- ... 14x coverage would allow for 99.8% genotype accuracy
- ... 30x coverage of the genome needed to allow for errors and clustering

From Sequence to Genotype: Population Based Prior

TAGCTGATAGCTAGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTAGCTCGACG-3'
Reference Genome

P(reads A/A) = 0.00000098 $Prior(A/A) = 0.04$	Posterior(A/A) = $<.001$
---	--------------------------

$$P(reads | A/C) = 0.03125$$
 $Prior(A/C) = 0.32$ $Posterior(A/C) = 0.999$

$$P(reads | C/C) = 0.000097$$
 $Prior(C/C) = 0.64$ $Posterior(C/C) = <.001$

Population Based Prior: Use frequency information from examining others at the same site. In the example above, we estimated P(A) = 0.20

From Sequence To Genotype: Population Based Prior

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

ATGCTAGCTGATAGCTAGCTGATGAGCC

AGCTGATAGCTAGCTGATGAGCCCGATCGCTG

GCTAGCTGATAGCTAG CTAGCTGATGAGCCCGA

Sequence Reads

5'-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTAGCTCGACG-3'
Reference Genome

P(reads | A/A) = 0.00000098 Prior(A/A) = 0.04 Posterior(A/A) = <.001

P(reads | A/C) = 0.03125 Prior(A/C) = 0.32 Posterior(A/C) = 0.999

P(reads | C/C) = 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001

Population Based Prior: Use frequency information from examining others at the same site. In the example above, we estimated P(A) = 0.20

More on Prior

Population Based Prior

- Uses frequency information obtained from examining other individuals
- Calling very rare polymorphisms still requires 20-30x coverage of the genome
- Calling common polymorphisms requires much less data