

A Novel Waveform Generation Methodology for Power Estimation

Shang-Wei Tu (Presenter), Peng-Chuan Huang, Ya-Shih Huang

Mediatek Inc.

Jack Yen, Sean Lin

Synopsys Inc.

Sept. 6-7, 2017

SNUG Taiwan

Motivation

Basic Concept of Siloti

Proposed Methodology

Specification of FSDB Merge & Replay

Steps and Corresponding Inputs for FSDB Merge & Replay

Results

Motivation

- Low power is one of key competitiveness of mobile devices
 - Famous power failure case: Qualcomm 810 overheating issue!
- To make sure no surprise after tapeout, estimating power accurately is very crucial
 - High accuracy is guaranteed by using post-layout sim. pattern with post-layout netlist
 - However, it is very time-consuming and too late
- Siloti (PowerReplay) can generate post-sim like pattern efficiently
 - Siloti can generate many patterns for power/IR tool
 - But power/IR tool requires many runs to get whole power/IR info. of subsystem or whole chip

 Single whole subsystem/chip post-sim like pattern can save efforts and runtime of successive power/IR tool

Motivation

Basic Concept of Siloti

Proposed Methodology

Specification of FSDB Merge & Replay

Steps and Corresponding Inputs for FSDB Merge & Replay

Results

Siloti Correlation Technology

Cross-Abstraction Correlation and Debug

Automatic mapping of signals between RTL and gate level design

Siloti Replay Simulation Technology

Replay Gate Level Simulation with RTL Signal Inputs

RTL Sim.

Post Sim.

FF1.CK, FF2.CK arrival time of posedge delays

Siloti – Q-Delay

FF1.Q

Q-Delay is extract from PrimeTime worst-case rise/fall FF2.Q delay

FF1.CK, FF2.CK arrival time of posedge delays

Motivation

Basic Concept of Siloti

Proposed Methodology

Specification of FSDB Merge & Replay

Steps and Corresponding Inputs for FSDB Merge & Replay

Results

Concept: Concurrently Merging & Replaying RTL FSDBs

Siloti Top FSDB

Proposed Siloti Merge & Replay Flow |

Motivation

Basic Concept of Siloti

Proposed Methodology

Specification of FSDB Merge & Replay

Steps and Corresponding Inputs for FSDB Merge & Replay

Results

Specification of FSDB Merge & Replay

How to merge when replaying scopes have overlap?

FSDB config. File:

rtl_a.fsdb -begin_time 300ns -end_time 900ns -from_scope tb.Top.Subsys -to_scope Top.Subsys rtl_b.fsdb -begin_time 5600ns -end_time 6200ns -from_scope tb.Top.Subsys.Block -to_scope Top.Subsys.Block

Specification of FSDB Merge & Replay (cont'd)

How to handle signal conflict?

Spec. "Replay busiest one to source"

Convert Conflict FSDB to Average SAIF

Concept: "Resolve conflict signals by averaging their total toggles"

SAIF TC (Toggle Count) of "W3", "W2", and "W1": (2+4+1)/3 = 2.3

SAIF T0 (Total time at 0) of "W3", "W2", and "W1": (0.4+0.6+0.4)/3 = 0.47

SAIF T1 (Total time at 1) of "W3", "W2", and "W1": (0.6+0.4+0.6)/3 = 0.53

Note: SAIF is IEEE standard

=> converting to SAIF means 3rd party tool can use merged waveform as well

Motivation

Basic Concept of Siloti

Proposed Methodology

Specification of FSDB Merge & Replay

Steps and Corresponding Inputs for FSDB Merge & Replay

Results

Step 1: Compile KDB

Step 2: Gen. G2R Mapping

./G2R.crdb

G2R.list.gz

Mapping Data Base

Gate-to-RTL Reg. Mapping File

Step 3: Gen. Port Mapping

Step 4: Extract

Step 5: VCS Compile

VCS Data Base

VCS Sim. Execution File

Step 6: Replay

Motivation

Basic Concept of Siloti

Proposed Methodology

Specification of FSDB Merge & Replay

Steps and Corresponding Inputs for FSDB Merge & Replay

Results

Results

Results (Cont'd)

- Replay 8 RTL FSDBs for 8 different subsystems
- 40M instances
- Runtime 12+ hours

Motivation

Basic Concept of Siloti

Proposed Methodology

Specification of FSDB Merge & Replay

Steps and Corresponding Inputs for FSDB Merge & Replay

Results

Conclusions and Future Works

- Novel waveform generation methodology is proposed for the power estimation, IR signoff, and power optimization
 - By enhancing Siloti for concurrently replaying multiple RTL waveforms to different gate design scopes
- SAIF solution is proposed for solving the signal conflict issues in merged FSDB
 - By averaging wires which have conflicts
- Results are also demonstrated in this paper for proving the effectiveness of the proposed methodology
- The future work contains:
 - Generate separate gate-to-RTL mapping rate report for each target replaying gate scope
 - Generate separate RTL FSDB mapping rate report for each target replaying gate scope
 - Develop solution for efficient debugging between RTL FSDBs and merged gate FSDB

Thank You

