Rozwiązywanie układów równań liniowych metodami iteracyjnymi

Łukasz Wala

AGH, Wydział Informatyki, Elektroniki i Telekomunikacji Metody Obliczeniowe w Nauce i Technice 2021/2022

Kraków, 25 maja 2022

1 Problem 1

1.1 Opis problemu

Dany jest układ równań liniowych $\mathbf{A}\mathbf{x}=\mathbf{b}$. Elementy macierzy \mathbf{A} o wymiarze $n \times n$ są określone wzorem:

$$\begin{cases} a_{i,i} = k \\ a_{i,j} = \frac{1}{|i-j|+m} \ dla \ i \neq j \end{cases} \quad i, j = 1, ..., n$$

Gdzie k = 8, m = 3.

Układ zostanie rozwiązany metodą Jakobiego. Obliczenia zostaną wykonane dla różnych n, dla różnych wektorów początkowych oraz różnych wartości ρ w kryteriach stopu. Wyznaczone zostaną: liczba iteracji, różnica w czasie obliczeń dla obu kryteriów stopu. Sprawdzona zostanie dokładność obliczeń.

Użyte kryteria stopu (norma euklidesowa):

- 1. $||x^{(i+1)} x^{(i)}|| < \rho$
- 2. $||Ax^{(i)} b|| < \rho$

1.2 Opracowanie problemu

Program użyty do rozwiązania układu został napisany w języku Python z użyciem pakietu numpy.

1.3 Wnioski

2 Problem 2

2.1 Opis problemu

Przy użyciu dowolnej metody zostanie znaleziony promień spektralny macierzy iteracji z poprzedniego problemu (dla różnych rozmiarów układu — takich, dla których znajdowane były rozwiązania układu). Sprawdzone zostanie, czy spełnione są założenia o zbieżności metody dla zadanego układu. Opisana zostanie metoda znajdowania promienia spektralnego.

2.2 Opracowanie problemu

2.3 Wnioski