Solucionando el problema de la mochila en el Modelo Sticker

Mario J. Pérez-Jiménez & Fernando Sancho-Caparrini

Ernesto Mancebo

Universidad de Sevilla

Febrero 2020

Contenido

- Modelo Sticker
 - Concepto de Candena de Memoria
 - Concepto de Tubo
 - Operaciones sobre las moleculas
 - Concepto de Librería
 - Sub-Rutina Ordenado por Cardinalidad
 - Subrutina I lenado en Paralelo
- Problema de Suma de Subconjuntos
- Problema de la mochila acotado
- Problema de la mochila no acotado
- Bibliografía

Modelo Sticker

- Modelo propuesto por Sam Roweis.
- Inspirado en Cadenas de ADN.
- Basado en operaciones de filtrado.
- Distinguido por utilizar Memoria de Acceso Aleatorio y la manera de representar la data.

Concepto de Candena de Memoria

Las cadenas de memoria (también llamadas moléculas σ) son cadenas de forma (n, k, m), tal que $n \ge k.m$, siendo n la longitud de la cadena, k la cantidad de sub-cadenas , y m la longitud de cada sub-cadena p.

Cada región m tiene un estado "apagado"/"encendido" o "0"/"1"

Concepto de Tubo

Un Tubo (T) consiste en un multiconjunto de complejos de memoria o de moléculas σ del mismo tipo.

Se puede ilustrar de la manera: $\begin{bmatrix} \sigma_0 \\ \sigma_i \\ \sigma_{i+1} \end{bmatrix}$

Operaciones sobre las moleculas

- $mezclar(T_1, T_2)$
- separar(T, i)
- encender(T, i)
- apagar(T, i)
- leer(T)

Concepto de Librería

- Complejo de memoria de forma (k, l) tal que $(1 \le k \le l)$.
- Se inicializan las primeras k-l regiones "encendidas"/"apagadas" en todas sus posibles combinaciones.

Sub-Rutina Ordenado por Cardinalidad

Partiendo de los siguientes elementos:

- $A = \{1, \dots, p\}$
- $B = \{b_1, \cdots, b_s\} \subset A$
- $F = \{D_1, \cdots, D_t\} \subset P(A)$

Se busca ordenar F con respecto a su cardinalidad en B, o en otras palabras, la cantidad de elementos que conincidan de manera $B \cap D_i$.

Codificando los subconjuntos F

Sea σ una molécula para el tubo T_0 , la misma se codifica de forma $T_0 = \{ \{ \sigma : |\sigma| = p \land \exists j (\chi_{D_i} = \sigma) \} \}$; tal que χ_{D_i} es la función característica en A, siendo $(\chi_{D_i}(i) = 1 \text{ si } i \in D_i \text{ de lo contrario})$ $\chi_{D_i} = 0 \text{ si } i \in A - D_i$

Resultado esperado

- Una vez concluido el paso i, se tendrán i+1 tubos, empezando en T_0 .
- Se tendrá $\forall \sigma (\sigma \in T_i \to |\sigma \in \{b_1, \dots, b_i\}| = j)$.

Algoritmo

```
1: procedure Cardinal\_Sort(T_0, B)
 2:
        for i = 1 to s do
            (T_0, T_0') = separar(T_0, b_i)
 3:
            for j = 0 to i - 1 do
 4:
                (T'_{i+1}, T''_i) = separar(T_i, b_i)
 5:
               T_i = mezclar(T_i', T_i'')
 6:
            end for
 7:
            T_i = T'_i
 8:
        end for
 9:
        Return [T_0, ..., T_s]
10:
11: end procedure
```

Traza

A fin de ilustrar el comportamiento:

- \bullet A: $\{0, 1, 2, 3, 4, 5, 6\}$
- $B: \{1, 2, 4\}$
- $F: \{[2,6],[3],[4],[2,4]\}$

Los elementos que cumplen $B \cap D_i$ en F son: $\{[2,6],[3],[4],[2,4]\}$.

F codificado y procesado

Codificando F para llevarlo a un tubo tendremos:

```
\begin{bmatrix} [0,0,1,0,0,0,1] \\ [0,0,0,1,0,0,0] \\ [0,0,0,0,1,0,0] \\ [0,0,1,0,1,0,0] \end{bmatrix}
```

Tras la ejecución de Cardinal_Sort tendremos:

```
T_0: [[0,0,0,1,0,0,0]]

T_1: [[0,0,0,0,1,0,0], [0,0,1,0,0,0,1]]
T_2: [[0, 0, 1, 0, 1, 0, 0]]
```

Otras Notaciones

- $Cardinal_Sort(T_0)$ cuando B = A.
- $Cardinal_Sort(T_0, l, k)$ cuando $B = \{l, l + 1, \dots, k\}.$

Subrutina Henado en Paralelo

El propósito de la subrutina de llenado es manipular en el tubo T_0 las moléculas en $(\sigma(i))$ y codifiquen su valor con respecto a f en el sub-conjunto A, esto se define como:

- $A = \{1, \cdots, p\}$
- \bullet $r \in \mathbb{N}$
- $f:A\to\mathbb{N}$

Delimitación de Regiones

Podemos considerar la idea de segmentar cada molécula σ en T_0 en posibles regiones como:

$$\bullet (A\sigma) = \sigma(1) \cdots \sigma(p)$$

•
$$(L\sigma) = \sigma(p+1)\cdots\sigma(p+r)$$

•
$$(F\sigma) = \sigma(p+r+1)\cdots\sigma(p+r+q_f)$$

•
$$(R\sigma) = \sigma(p+r+q_f+1)\cdots$$

Notaciones

Denotamos que si $B \subseteq A$, decimos que $f(B) = \sum_{i \in B} f(i)$. Tal suma nos indica el espacio a reservar en el complejo de memoria T_0 para codificar f(B).

Asimismo, definimos $q_f = f(A)$, tal que $A_i = \{0, \dots, i\}$ siendo (1 < i < p).

Por último, tenemos que r corresponde a la región comprendida entre $p \vee f(B)$.

Todos estos ingredientes nos dan soporte para definir el tubo T_0 de moléculas σ cuyo $k > p + r + q_f$.

Algoritmo

```
1: procedure Parallel_Fill(T_0, f, p, r)
        for i = 1 to p do
 2:
            (T_{i,0}^+, T_i^-) = separar(T_{i-1}, i)
 3:
            for i = 1 to f(i) do
 4:
                T_{i,i}^+ = encender(T_{i,i}^+, p + r + f(A_{i-1}) + j)
 5:
            end for
 6:
            T_i = mezclar(T_{i,f(i)}^+, T_i^-)
 7:
        end for
 8:
        Return T_0
 9:
10: end procedure
```

Traza

A fin de ilustrar el comportamiento, estudiemos lo siguiente:

- \bullet A: $\{1, 2, 3, 4\}$
- $B: \{2,3,4\}$
- $T_0: \{[2], [4], [3]\}$

Para el tubo T_0 lo codificaríamos de la siguiente forma:

$$\begin{bmatrix} [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \\ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \\ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \end{bmatrix}$$

T_0 procesado

Una vez el tubo T_0 sea procesado por $Parallel_Fill$, tendremos:

```
\begin{bmatrix} [0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] \\ [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] \\ [0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0] \end{bmatrix}
```

Problema de Suma de Subconjuntos

Se busca determinar si existe en B un subconjunto cuyo valor equivalga a k.

En ese sentido, definimos $A = \{1, \dots, p\}, k \in \mathbb{N}, w : A \to \mathbb{N}$, siendo w la función peso tal que $k \leq w(A) = q_w$.

Algoritmo

```
procedure Subset\_Sum(p, w, k)
      q_w = \sum_{i=1}^p w(i)
      T_0 = \text{Liber\'ia}(p + q_w, p)
3:
      T_1 = Parallel_Fill(T_0, w, p, 0)
4:
      T_k = Cardinal\_Sort(T_1, p + 1, p + q_w)[k]
5:
      leer(T_k)
6:
7: end procedure
```

Traza

Teniendo como ejemplo el T_0 anterior:

```
\begin{bmatrix} [0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] \\ [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] \\ [0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0] \end{bmatrix}
```

Para un k=10, una vez el T_0 sea procesado por $Subset_Sum$ tendríamos como salida: [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Problema de la mochila acotado

Es un problema considerado NP-completo, en el que se busca recolectar una serie de objetos cuyo peso sea menor que k y valor mayor o igual al k'. En ese sentido, consideramos los valores: $A = \{1, \cdots, p\}$ un conjunto no vacío, $w: A \to \mathbb{N}$ una función que codifica el valor para un $A, \rho: A \to \mathbb{N}$ una función que codifica el valor para un A, asimismo, $k, k' \in \mathbb{N}$, tal que $k \leq w(A) = q_w$ y $k' < \rho(A) = q_o$.

Algoritmo (I)

```
procedure Bounded\_Knapsack(p, w, \rho, k, k')
       q_w = \sum_{i=1}^p w(i); q_\rho = \sum_{i=1}^p \rho(i);
2:
       T_0 = \text{Libería}(p + q_w + q_o, p)
3:
       T_0 = Parallel_Fill(T_0, w, p, 0)
4:
       T_0 = Cardinal\_Sort(T_0, p+1, p+q_w)
5:
     T_1 = \emptyset
6:
7:
        . . .
8: end procedure
```


Algoritmo (II)

```
procedure Bounded\_Knapsack(p, w, \rho, k, k')
2:
      for i = k' to q_o do
3:
4:
  T_1 = merge(T_1, Cardinal\_Sort(T_0, p + q_w + 1, p + q_w + q_\rho)[i])
      end for
5:
      leer(T_1)
6:
7: end procedure
```

Problema de la mochila no acotado

Este se distingue de la anterior implementación en el resultado a mostrar, pues ordena los tubos de salida y elije aquel tubo cuyo valor (definido por la función $\rho(B)$) sea el máximo.

Matemáticamente sería: $\rho(B) = max\{\rho(C) : C \subseteq A \land w(C) \le k\}.$

Algoritmo (I)

```
procedure Unbounded\_Knapsack(p, w, \rho, k, k')
        q_w = \sum_{i=1}^p w(i);
 2:
        q_o = \sum_{i=1}^p \rho(i);
 3:
        T_0 = \text{Libería}(p + q_w + q_o, p)
 4:
        T_0 = Parallel_Fill(T_0, w, p, 0)
 5:
        T_0 = Cardinal_{-}Sort(T_0, p+1, p+q_w)
 6:
        T_1 = \emptyset
 7:
        for i = 1 to k do
 8:
            T_1 = mezclar(T_1, Cardinal\_Sort(T_0, p+1, p+q_w)[i])
 9:
        end for
10:
11:
12: end procedure
```

Algoritmo (II)

```
procedure Unbounded\_Knapsack(p, w, \rho, k, k')
 2:
 3:
       T_0 = Parallel_Fill(T_1, \rho, p, q_w)
 4:
      i = q_{o}; t = 0
        while i > 1 \wedge t == 0 do
 5:
            T' = Cardinal\_Sort(T_0, p + q_w + 1, p + q_w + q_\rho)[i]
 6:
            if T' \neq \emptyset then
 7:
                leer(T')
 8:
               t=1
 9:
            else
10:
               i = i - 1
11:
            end if
12:
        end while
13:
14: end procedure
```

Bibliografía