Laboratório 05 – Modelo – M/M/c – Cap. Inf.

Teoria das Filas

Laboratório 05

Modelo – M/M/c – Capacidade Infinita

Laboratório 05: Teoria das Filas – Modelo M/M/c/ Cap. Infinita

Utilizando o sistema de comunicação esquematizado a seguir, temos três (3) servidores (CPU 1; CPU 2; CPU 3) e três computadores (C_1 , C_2 , C_3) interligados através de serviços de dados (modens, fibra ótica etc.). Simular o comportamento do sistema com os dados fornecidos:

Dados do sistema:

- a = 210 msg/h (razão de chegada das msg no sistema)
- $ts_{m\'edio}$ (gerar 20 amostras de tempos dos servidores a distr. exponencial) \Rightarrow [$ts_1 = -\theta.ln(r_1)$, $ts_2 = -\theta.ln(r_2)$, $ts_3 = -\theta.ln(r_3)$,, $ts_{20} = -\theta.ln(r_{20})$]
- $\theta = 8$ segundos
- Parâmetro de $C_1 \rightarrow ts = 2.0 s$
- Parâmetro de $C_2 \rightarrow ts = 4.0 s$
- Parâmetro de $C_3 \rightarrow ts = 12,15 s$

Obs: Considerar os três servidores idênticos

Laboratório 05: Teoria das Filas – Modelo M/M/c/ Cap. Infinita

- Com os resultados da simulação determinar qual é o computador mais rápido?
- Elaborar os gráficos das variações de Tr e Lw com relação a razão de chegada "a"?
- Quais conclusões podemos chegar com os gráficos e os cálculos de Tr, , Tw, Lw, Ls, Po, P_(n=2)?

Sugestão para a criação da tabela que vai gerar os gráficos

Simulação							
Nº Simulação	a(msg/h)	Tr - C1	Lw - C1	TR - C2	Lw - C2	TR - C3	Lw-C3
1	5	18,01	0,00	27,10	0,04	13,23	0,00
2	10	18,67	0,00	28,41	0,08	13,59	0,00
3	15	19,36	0,01	29,81	0,12	13,95	0,00
4	20	20,09	0,01	31,34	0,17	14,33	0,01
5	25	20,85	0,02	32,99	0,22	14,73	0,01
6	30	21,66	0,02	34,80	0,28	15,14	0,01
7	35	22,52	0,03	36,79	0,34	15,57	0,02
8	40	23,43	0,05	38,97	0,40	16,02	0,02
9	45	24,39	0,06	41,39	0,48	16,48	0,03
10	50	25,42	0,08	44,08	0,56	16,97	0,04
11	55	26,51	0,10	47,09	0,65	17,48	0,05
12	60	27,68	0,12	50,48	0,76	18,01	0,06
13	65	28,93	0,14	54,33	0,88	18,56	0,07
14	70	30,27	0,17	58,73	1,01	19,15	0,08
15	75	31,71	0,21	63,82	1,17	19,76	0,10
16	80	33,27	0,24	69,78	1,36	20,40	0,12

Laboratório 05: Teoria das Filas – Modelo M/M/c/ Cap. Infinita

M/M/c/∞/∞/∞/FIFO ou M/M/c/ - Capacidade Infinita

Condição de estabilidade: $\rho < 1$; isto é, a < c. μ

$$\rho = \frac{a}{c.\mu}$$
 \rightarrow Intensidade de trafego de cada servidor

$$r = \frac{a}{\mu}$$
 \rightarrow Intensidade de trafego do sistema

$$ts = \frac{1}{\mu}$$
 \rightarrow Tempo médio de atendimento do servidor

$$U = \frac{a}{c.\mu} = \rho$$
 \rightarrow Taxa de utilização média de cada servidor

Probabilidade de zero msg no sistema ou servidor ocioso

$$P_0 = \left\{ \left[\sum_{n=0}^{c-1} \frac{1}{n!} \cdot \left(\frac{a}{\mu} \right)^n \right] + \left[\left(\frac{1}{c!} \right) \cdot \left(\frac{a}{\mu} \right)^c \cdot \left(\frac{1}{1-\rho} \right) \right] \right\}^{-1}$$

Probabilidade de enfileiramento (∂ = Probabilidade de "c" ou mais msg no sistema

$$\partial = P(\geq Cclientes) = \frac{(c.\rho)^c}{c! \cdot (1-\rho)} \cdot P_0$$
;

$$Lw = \frac{(\rho.\partial)}{(1-\rho)}$$

Probabilidade de "n" msg no sistema

$$P_n = \begin{cases} \frac{1}{n!} \cdot \left(\frac{a}{\mu}\right)^n \cdot P_0 &, \text{ para } n = 0, 1, ..., c - 1 \\ \\ \frac{1}{c! \cdot c^{n-c}} \cdot \left(\frac{a}{\mu}\right)^n \cdot P_0 &, \text{ para } n \ge c \end{cases}$$

$$T w = \frac{\partial}{(c \cdot \mu \cdot (1 - \rho))}$$

$$Ls = (c.\rho) + (\frac{\rho.\partial}{(1-\rho)})$$

$$Tr = \frac{1}{\mu} (1 + \frac{\partial}{c \cdot (1 - \rho)})$$