Análisis Numérico I — **Práctico N°4 - 2022** Aproximación de funciones por cuadrados mínimos

- 1. Obtener el polinomio que mejor aproxima en el sentido de cuadrados mínimos del grado indicado en cada caso:
 - a) polinomio de grado 1, para la siguiente tabla de datos

ſ	x	0	1	2	3	4	5	6	7	8	9
	y	0-0.1	1.1	1.9	3.2	3.8	5.0	6.0	7.3	8.1	8.9

b) polinomio de grado 2, para la siguiente tabla de datos

X	-1	0	1	3	6
у	6.1	2.8	2.2	6	26.9

- 2. Probar que si se tienen n+1 puntos distintos, la mejor aproximación polinomial (en el sentido de cuadrados mínimos) de grado n coincide con el polinomio interpolante.
- 3. Hallar el polinomio de grado cero que mejor aproxime en el sentido de cuadrados mínimos a una función $f:[a,b]\to\mathbb{R}$ en n puntos x_1,\ldots,x_n del intervalo [a,b].
- 4. Aproximar los datos de la siguiente tabla con un modelo de la forma $f(x) \sim ae^{bx}$ en el sentido de cuadrados mínimos.

5. Aproximar los datos de la siguiente tabla con un modelo de la forma $f(x) \sim -e^{ax^2+bx+c}$ en el sentido de cuadrados mínimos.

X	-1	0	1	2
у	-1.1	-0.4	-0.9	-0.5

- 6. Un pasaje en ónmibus saliendo desde Córdoba cuesta (en pesos Cordobeses) C\$1500 hasta Bariloche y se recorren 1523 km, C\$900 hasta Jujuy recorriendo 880 km, C\$800 hasta Corrientes recorriendo 898 km, C\$1050 hasta Tandil recorriendo 960 km, C\$650 hasta Mendoza recorriendo 618 km, C\$690 hasta Buenos Aires recorriendo 709 km. Sabiendo que Viedma queda a 1150 km, usar una aproximación lineal en el sentido de cuadrados mínimos para obtener el costo aproximado del pasaje.
- 7. Obtener la aproximación lineal en el sentido de cuadrados mínimos de la función f en el intervalo indicado si:
 - a) $f(x) = x^2 + 3x + 2$ en el intervalo [0, 1].
 - b) $f(x) = x^2 + 3x + 2$ en el intervalo [-1, 1].
 - c) $f(x) = e^x$ en el intervalo [0, 2].
- 8. Aproximar los datos de la siguiente tabla en el sentido de cuadrados mínimos con un modelo de la forma $f(x) \sim a \cos(x) + b \sin(x)$.

												10
İ	y	1.8	3.5	2.1	-1.0	-3.3	-2.7	0.9	3.3	2.8	-0.1	-3.0

- 9. Considerar el conjunto de polinomios ortogonales de Legendre $\{P_0, P_1, P_2\}$ en el intervalo [-1,1], dados por $P_0(x)=1$, $P_1(x)=x$ y $P_2(x)=x^2-1/3$. Verificar que $\{P_0, P_1, P_2\}$ es un conjunto ortogonal de funciones.
- 10. Determinar las aproximaciones lineal y cuadrática de la función $f(x) = e^x$ en el sentido de cuadrados mínimos usando los polinomios ortogonales de Legendre, en el intervalo [-1, 1].
- 11. Hallar una base ortogonal $\{\Phi_0, \Phi_1, \Phi_2\}$ del conjunto de polinomios de grado menor o igual a 2 en el intervalo [-1, 1] respecto a la función de peso $\omega(x) = x^2$.

Ayuda: elegirlos de modo que $gr(\Phi_k) = k, k = 0, 1, 2.$