

EXHIBIT 5

GNE.3230R1C39

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Eaton, et al.
Appl. No. : 10/063,557
Filed : May 2, 2002
For : SECRETED AND
TRANSMEMBRANE
POLYPEPTIDES AND NUCLEIC
ACIDS ENCODING THE SAME
Examiner : David J. Blanchard
Group Art Unit : 1642

DECLARATION OF J. CHRISTOPHER GRIMALDI, UNDER 37 C.F.R. § 1.132

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

I, J. Christopher Grimaldi, declare and say as follows:

1. I am a Senior Research Associate in the Molecular Biology Department of Genentech, Inc., South San Francisco, CA 94080.

2. I joined Genentech in January of 1999. From 1999 to 2003, I directed the Cloning Laboratory in the Molecular Biology Department. During this time I directed or performed numerous molecular biology techniques including qualitative Polymerase Chain Reaction (PCR) analyses. I am currently involved in, among other projects, the isolation of genes coding for membrane associated proteins which can be used as targets for antibody therapeutics against cancer. In connection with the above-identified patent application, I personally performed or directed the semi-quantitative PCR analyses in the assay entitled "Tumor Versus Normal Differential Tissue Expression Distribution" which is described in EXAMPLE 18 in the specification that were used to identify differences in gene expression between tumor tissue and their normal counterparts.

3. My scientific Curriculum Vitae, including my list of publications, is attached to and forms part of this Declaration (Exhibit A).

4. In differential gene expression studies, one looks for genes whose expression levels differ significantly under different conditions, for example, in normal versus diseased tissue.

Appl. No. : 10/063,557
Filed : May 2, 2002

Chromosomal aberrations, such as gene amplification, and chromosomal translocations are important markers of specific types of cancer and lead to the aberrant expression of specific genes and their encoded polypeptides, including over-expression and under-expression. For example, gene amplification is a process in which specific regions of a chromosome are duplicated, thus creating multiple copies of certain genes that normally exist as a single copy. Gene under-expression can occur when a gene is not transcribed into mRNA. In addition, chromosomal translocations occur when two different chromosomes break and are rejoined to each other chromosome resulting in a chimeric chromosome which displays a different expression pattern relative to the parent chromosomes. Amplification of certain genes such as Her2/Neu [Singleton *et al.*, Pathol. Annu., 27Pt1:165-190], or chromosomal translocations such as t(5;14), [Grimaldi *et al.*, Blood, 73(8):2081-2085(1989); Meeker *et al.*, Blood, 76(2):285-289(1990)] give cancer cells a growth or survival advantage relative to normal cells, and might also provide a mechanism of tumor cell resistance to chemotherapy or radiotherapy. When the chromosomal aberration results in the aberrant expression of a mRNA and the corresponding gene product (the polypeptide), as it does in the aforementioned cases, the gene product is a promising target for cancer therapy, for example, by the therapeutic antibody approach.

5. Comparison of gene expression levels in normal versus diseased tissue has important implications both diagnostically and therapeutically. For example, those who work in this field are well aware that in the vast majority of cases, when a gene is over-expressed, as evidenced by an increased production of mRNA, the gene product or polypeptide will also be over-expressed. It is unlikely that one identifies increased mRNA expression without associated increased protein expression. This same principle applies to gene under-expression. When a gene is under-expressed, the gene product is also likely to be under-expressed. Stated in another way, two cell samples which have differing mRNA concentrations for a specific gene are expected to have correspondingly different concentration of protein for that gene. Techniques used to detect mRNA, such as Northern Blotting, Differential Display, *in situ* hybridization, quantitative PCR, Taqman, and more recently Microarray technology all rely on the dogma that a change in mRNA will represent a similar change in protein. If this dogma did not hold true then these techniques would have little value and not be so widely used. The use of mRNA quantitation techniques have identified a seemingly endless number of genes which are differentially expressed in various tissues and these genes have subsequently been shown to have correspondingly similar changes in their protein levels. Thus, the detection of increased mRNA expression is expected to result in increased polypeptide expression, and the detection of decreased mRNA expression is expected to result in decreased polypeptide expression. The detection of increased or decreased polypeptide expression can be used for cancer diagnosis and treatment.

6. However, even in the rare case where the protein expression does not correlate with the mRNA expression, this still provides significant information useful for cancer diagnosis and treatment. For example, if over- or under-expression of a gene product does not correlate with over- or under-expression of mRNA in certain tumor types but does so in others, then identification of both gene expression and protein expression enables more accurate tumor classification and hence better determination of suitable therapy. In addition, absence of over- or

BEST AVAILABLE COPY

Appl. No. : 10/063,557
Filed : May 2, 2002

under-expression of the gene product in the presence of a particular over- or under-expression of mRNA is crucial information for the practicing clinician. For example, if a gene is over-expressed but the corresponding gene product is not significantly over-expressed, the clinician accordingly will decide not to treat a patient with agents that target that gene product.

7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information or belief are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful statements may jeopardize the validity of the application or any patent issued thereon.

By: _____

Christopher Grimaldi

Date: 8/10/2001

S:\DOCS\AOK\ADK-5479.DOC
071904

BEST AVAILABLE COPY