$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+ \alpha eta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_1^{\#_1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

Lagrangian density	$-t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\frac{2}{3}r_1\partial^\beta\omega^{\theta\alpha}_{\alpha}\partial^{\theta}\omega^{\alpha}_{\beta} - \frac{2}{3}r_1\partial_{\theta}\omega^{\alpha}_{\beta}\partial^{\kappa}\omega^{\alpha\beta} + \frac{2}{3}r_1\partial_{\theta}\omega^{\beta}\partial^{\kappa}\omega^{\beta}\partial^{\kappa}\omega^{\beta} + \frac{2}{3}r_1\partial_{\theta}\omega^{\alpha}_{\beta}\partial^{\kappa}\omega^{\delta}\partial^{\kappa}\omega^{\delta}\omega^{\delta}\partial^{\kappa}\omega^{\delta}\partial^{\kappa}\omega^{\delta}\omega^{\delta}\omega^{\delta}\omega^{\delta}\omega^{\delta}\omega^{\delta}\omega^{\delta}\omega^{\delta$	$r_1 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + r_1 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - 2 r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$	$\frac{1}{2}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^\alpha f^{\lambda}_{\kappa}\partial^\kappa f_{\alpha\lambda} + t_1\omega_{\kappa\alpha}^{\alpha}\partial^\kappa f_{\prime}^{\prime} +$	$t_1\;\omega_{_{K\lambda}}^{\;\;\lambda}\;\partial^{\kappa}f^{'}_{\;\;\prime}+2t_1\partial^{lpha}f_{_{Klpha}}^{\;\;\lambda}\partial^{\kappa}f^{'}_{\;\;\;\prime}-t_1\partial_{\kappa}f^{\lambda}_{\;\;\;\lambda}\partial^{\kappa}f^{'}_{\;\;\;\prime}+2t_1\;\omega_{_{IKeta}}\partial^{\kappa}f^{'eta}_{\;\;\;\prime}-$	$t_1\;\omega_{_{I}\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{_{K}}-t_1\;\omega_{_{I}\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{_{K}}+\frac{1}{2}t_1\;\partial^{\alpha}f^{\lambda}_{\;\;K}\;\partial^{\kappa}f_{_{A}\alpha}+\frac{1}{2}t_1\;\partial_{\kappa}f_{_{B}}^{\;\;\lambda}\partial^{\kappa}f_{_{A}}^{\;\;\beta}+$	$\frac{1}{2}t_1\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\theta}-t_1\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\kappa}+\frac{2}{3}r_1\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta}-\frac{2}{3}r_1\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta}+$	$\frac{2}{3} r_1 \partial^\beta \omega_{\alpha}^{\ \alpha \lambda} \partial_\lambda \omega_{\alpha \beta}^{\ \ \prime} - \frac{8}{3} r_1 \partial^\beta \omega_{\lambda}^{\ \lambda \alpha} \partial_\lambda \omega_{\alpha \beta}^{\ \ \prime} - r_1 \partial_\alpha \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} + r_1 \partial_\theta \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa}$
$\frac{\text{Unitarity conditions}}{r_1 < 0 \&\& t_1 > 0}$		(No massless particle						

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$		$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

$f_{1}^{\#2}$	0	0	0	ikt_1	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{u}kt_1$
$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
·	$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{-}}^{\#1} +^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\#1}\dagger$	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	-t ₁

Source constraints

 $\overline{\tau_{0+}^{\#1} - 2 \, \bar{l} \, k \, \sigma_{0+}^{\#1} == 0}$

 $\frac{\tau_1^{\#2\alpha} + 2 \,i\,k\,\,\sigma_1^{\#2\alpha} == 0}{$

 $\tau_{1+}^{\#1\,\alpha\beta} + i\,k\,\,\sigma_{1+}^{\#2\,\alpha\beta} == 0$ 3

 $\tau_{2+}^{\#1\,\alpha\beta} - 2\,i\,k\,\,\sigma_{2+}^{\#1\,\alpha\beta} == 0 \,\, 5$

SO(3) irreps

 $\tau_{0^{+}}^{\#2} == 0$

 $\tau_1^{\#1\alpha} == 0$

Total #:

	$\omega_{2}^{\#1} \dagger^{\alpha\beta}$
	$f_{2^{+}}^{#1} \dagger^{\alpha\beta}$
# #	$\omega_2^{#1} \dagger^{\alpha\beta\chi}$
1	
1	
3	

0	$0 k^2 r$	$\frac{t_1}{2}$		
	$\sigma_{0}^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0+}^{\#2}$ †	0	0	0	0

0

 $0 \quad -\frac{1}{t_1}$

0

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

<u>t</u>1 2

 $\frac{i k t_1}{\sqrt{2}}$

particle				
lue:	$-\frac{1}{r_1} > 0$			
ons:	5			
ass:	$-\frac{t_1}{2r_1} > 0$			
	2			
	Odd			

No massless particles)