Package 'contingency'

November 18, 2022

2 aperm.tables

multiInf .																					
mutualInf																					
ntables																					
perm_dim																					
print.tables																					
repTables																					
rprobMat																					
tables																					
tdim																					
tdimnames																					
[.tables																					

17

aperm.tables

Permute dimensions of tables

Description

Method for permuting indices of tables object.

Usage

Index

```
## S3 method for class 'tables'
aperm(a, perm, ...)
```

Arguments

a object of class tables
 perm
 permutation of 1,...,k, where each table has k dimensions
 other arguments to methods

Value

A permuted tables object.

as.array.tables 3

as.array.tables

Convert tables into array

Description

Convert tables into array

Usage

```
## S3 method for class 'tables'
as.array(x, ...)
```

Arguments

x tables object... other arguments

Value

An array object

as.matrix.tables

Convert tables into matrix

Description

Convert tables into matrix

Usage

```
## S3 method for class 'tables'
as.matrix(x, ...)
```

Arguments

x tables object... other arguments

Value

A matrix object

4 capply

as_tables

As tables

Description

As tables

Usage

```
as_tables(x, tdim, ...)
```

Arguments

x array or matrix objecttdim dimensions for each tableother arguments for methods

Value

A tables object.

capply

Apply function over tables

Description

Apply a function to each contingency table in a tables object.

Usage

```
capply(x, f, ...)
```

Arguments

x object of class tables

f function to apply to each table
... additional arguments to f

Value

a vector, matrix or list of outputs from the function f.

checkCI 5

hε		

Check conditional independence

Description

Gives a numerical check that a (conditional) independence holds in a probability distribution.

Usage

```
checkCI(x, A, B, C = integer(0), eps = .Machine$double.eps, ...)
## S3 method for class 'array'
checkCI(x, A, B, C = integer(0), eps = .Machine$double.eps, ...)
## S3 method for class 'tables'
checkCI(x, A, B, C = integer(0), eps = .Machine$double.eps, ...)
```

Arguments

X	an array or object of class tables
А, В	the sets of variables whose independence is to be tested
С	conditioning set (possibly empty)
eps	tolerance parameter
	other arguments to methods

Details

just tests to an appropriate numerical precision that a conditional independence holds: this is *not* a statistical test for conditional independence. If A and B overlap with C then these vertices are ignored. If A and B intersect with one another (but not C) then the solution is always false.

Value

A logical, or a vector of logicals of the same length as the number of tables provided, indicating whether the conditional independence seems to hold numerically.

Methods (by class)

```
• array: method for array object
```

• tables: method for tables object

6 entropy

entropy

Calculate entropy of discrete distribution

Description

Calculate entropy of discrete distribution

Usage

```
entropy(p, ...)
## Default S3 method:
entropy(p, ...)
## S3 method for class 'array'
entropy(p, margin, ...)
## S3 method for class 'tables'
entropy(p, margin, ...)
```

Arguments

```
p non-negative numeric vector... other arguments to methodsmargin margin to consider
```

Value

A numeric value of the entopy, or vector of entropies.

Methods (by class)

• default: Default method for vectors

• array: Method for arrays

• tables: Method for tables object

interactionInf 7

interaction Inf

Interaction information

Description

Interaction information

Usage

```
interactionInf(p, ...)
## Default S3 method:
interactionInf(p, ..., condition)
```

Arguments

p object to find interaction information for

... other arguments to methods

condition variables on which to condition

Value

Numeric value for interaction information, or a vector of interaction information values.

Methods (by class)

• default: Default method for vectors

kl

Kullback-Leibler Divergence

Description

Get the KL Divergence between two discrete distributions

Usage

```
kl(x, y, ...)
## Default S3 method:
kl(x, y, ...)
## S3 method for class 'tables'
kl(x, y, ...)
```

8 margin

Arguments

```
x, y vectors (of probabilities)... other arguments to methods
```

Value

a numberic value, vector or matrix of KL-divergences.

Methods (by class)

default: Default method for vectorstables: Method for tables object

margin

Get margin of a table or tables

Description

Get margin of a table or tables

Usage

```
margin(x, ...)
margin2(x, ...)
conditional(x, ...)
conditional2(x, ...)
intervention(x, ...)
```

Arguments

```
x a contingency table or tables object... a contingency table or tables object
```

Details

margin2 keeps all dimensions, and hence results will sum to the number of cells summed over.

Value

an object of the same class as x. The resulting array, or collection of tables, will contain a marginal, conditional or interventional distribution.

margin.tables 9

Functions

- margin2: keep all dimensions
- conditional: conditional distributions
- conditional2: conditional distributions with all dimensions kept
- intervention: interventional distributions

margin.tables

Get the marginal distributions

Description

Get the marginal distributions

Usage

```
## S3 method for class 'tables'
margin(x, margin = NULL, order = TRUE, ...)
```

Arguments

x an object of class tables

margin integer vector giving margin to be calculated (1 for rows, etc.)

order logical indicating whether resulting indices should be in the same order as stated

in margin

... other arguments to function

Details

Calculates marginal distributions for each entry in a probMat.

Value

An object of class tables consisting of the required marginal distribution.

10 mutualInf

multiInf

Multiinformation

Description

Get the multiinformation for a discrete distribution

Usage

```
multiInf(x, ...)
## Default S3 method:
multiInf(x, margin = NULL, ...)
## S3 method for class 'tables'
multiInf(x, margin = NULL, ...)
```

Arguments

x vectors (of probabilities)... other arguments to methodsmargin margin to find multiinformation for

Value

a numberic value, vector or matrix of required multiinformation.

Methods (by class)

- default: Default method for vectors and arrays
- tables: Method for tables object

mutualInf

(Conditional) mutual information

Description

(Conditional) mutual information

ntables 11

Usage

```
mutualInf(p, m1, m2, condition, ...)
## Default S3 method:
mutualInf(p, m1, m2, condition, ...)
## S3 method for class 'tables'
mutualInf(p, m1, m2, condition, ...)
```

Arguments

p numeric array or tables class
 m1, m2 margins for mutual information
 condition conditional margin
 other arguments to methods

Value

Numeric value for mutual information, or a vector of mutual information values.

Methods (by class)

default: Default method for vectorstables: Method for tables object

ntables

Number of tables

Description

Number of tables

Usage

```
ntables(x)
```

Arguments

Х

an object of class tables

Details

Gives the number of tables in an object of class tables.

Value

An integer.

12 print.tables

perm	dii	n
DCI III	uтı	ш

Permute indices for variable k

Description

Currently only works for binary dimensions.

Usage

```
perm_dim(x, k, perm, ...)
```

Arguments

x array or related object
k index to permute
perm permutation to perform

... other arguments (not currently used)

Details

Permutes the levels of one variable according to the permutation given in perm. Can be applied to matrices, arrays or tables.

Value

A permuted array or tables object.

```
print.tables
```

Print tables

Description

Print method for object of class tables.

Usage

```
## S3 method for class 'tables' print(x, ...)
```

Arguments

x object of class tables

... arguments to pass to print method for an array

Value

The input provided (invisibly).

repTables 13

	_		7	
re	ומ	ab	Iе	S

Turn distributions into tables

Description

Turn distributions into tables

Usage

```
repTables(n, f, ...)
```

Arguments

n number of distributions to generate

f function that generates a probability distribution

... arguments to f

Value

a tables object containing the outputs of f

rprobMat

Generate matrix of (conditional) probability distributions

Description

Generates discrete probability distributions in a matrix.

Usage

```
rprobMat(n, dim, d, alpha = 1)
rcondProbMat(n, dim, d, alpha = 1, condition)
```

Arguments

n	number	αf	distributions
11	Hullioci	O1	uisuituuuons

dim dimension of contingency table for distributions

d number of dimensions of table

alpha parameter to use in dirichlet distribution

condition which dimensions should be conditioned upon

14 tdim

Details

Returns an object of class tables consisting of discrete probability distributions. Each distribution is assumed to be a contingency table of dimension dim, and the probabilities are generated using a Dirichlet distribution with parameters all equal to alpha.

Value

A tables object containing random distributions.

Functions

• rcondProbMat: Random conditional distributions

Examples

```
dat <- rprobMat(10, c(2,2,2))
```

tables

Create blank tables

Description

Create blank tables

Usage

```
tables(n, tdim)
```

Arguments

n number of tables tdim dimension of each table

tdim

Dimension of distributions over contingency tables

Description

Dimension of distributions over contingency tables

Usage

```
tdim(x)
tdim(x) <- value</pre>
```

tdimnames 15

Arguments

x an object of class tablesvalue value to set parameters to

Details

The class tables is used to represent a collection of multidimentional tables; this function returns the dimension of each table.

Value

an integer vector of the dimensions the tables object inputted with the new dimensions

Functions

• tdim<-: assign tables dimension

tdimnames

Dimension names for distributions over contingency tables

Description

Dimension names for distributions over contingency tables

Usage

```
tdimnames(x)
tdimnames(x) <- value</pre>
```

Arguments

x tables object

value value to set dimension names to

Value

the tables object inputted with the new dimension names

Functions

• tdimnames<-: assign dimension names

16 [.tables

[.tables	Subset object of class tables	

Description

Take subset of tables class.

Usage

```
## S3 method for class 'tables' x[i, j, ..., drop = TRUE, keep = FALSE]
```

Arguments

Х	object of class tables
i	indicies of which tables to retain
j	which rows of each table to retain (or if not specified, entries)
	additional indices up to the dimension of the table
drop	usual logical indicating whether to consolidate margins of the table (doesn't apply to i)
keep	if only one table is specified with i, should the object output be an object of class tables? If not becomes a suitable array.

Details

There are two main ways to subset these tables. In both cases the first index refers to the tables being selected; one of the methods is to additionally specify all the indices corresponding to the tables, the other is to only specify a single entry. For example, x[,1,2,2] specifies the (1,2,2)th entry of each table; x[,7] will have the same effect for 2x2x2 tables.

If only one index is specified, then the function behaves just as ordinary subsetting on an array.

Value

A tables object over the specific entries and values selected.

Examples

```
x <- rprobMat(n=10, rep(2,3))
x[1,]
x[,1,1:2,1]
x[,1,1:2,1,drop=FALSE]</pre>
```

Index

```
[.tables, 16
aperm.tables, 2
as.array.tables, 3
as.matrix.tables, 3
as_tables, 4
capply, 4
checkCI, 5
conditional (margin), 8
conditional2(margin), 8
entropy, 6
interactionInf, 7
intervention (margin), 8
k1, 7
margin, 8
{\it margin.tables}, 9
\verb|margin2| (\verb|margin|), 8
multiInf, 10
mutualInf, 10
ntables, 11
perm_dim, 12
print.tables, 12
rcondProbMat (rprobMat), 13
repTables, 13
rprobMat, 13
tables, 14
tdim, 14
tdim<- (tdim), 14
tdimnames, 15
tdimnames<- (tdimnames), 15
```