Problem londonskega stolpa

Ines Meršak

mentor: prof. dr. Sandi Klavžar

13.05.2016

Klasični problem londonskega stolpa (Shallice)

- izumljen leta 1982
- 3 enako velike krogle različnih barv
- 3 palice različnih velikosti
- cilj igre je priti iz trenutnega stanja v neko dano stanje z minimalnim številom potez

Osnovne definicije teorije grafov

- graf G = (V, E)
- soseščina vozlišča u: $N(u) = \{x \in V; ux \in E\}$
- stopnja vozlišča u: deg u = |N(u)|
- sprehod v grafu je zaporedje vozlišč v_1, \ldots, v_k , da za vsak i velja $v_i v_{i+1} \in E$
- graf je povezan, če za poljuben par vozlišč obstaja sprehod med njima
- razdalja $d_G(u, v)$ je najmanjše možno število povezav na nekem sprehodu, ki se začne v vozlišču u in konča v vozlišču v
- premer grafa je največja minimalna razdalja med pari vozlišč

- ravninski graf je graf, ki ga lahko narišemo v ravnini brez križanja povezav
- pot v grafu, ki vsebuje vsa vozlišča, je Hamiltonova pot
- Hamiltonov cikel je cikel v grafu, ki poteka skozi vsa vozlišča

Primer

končni položaj

Graf klasičnega problema londonskega stolpa

Lastnosti grafa

- 36 vozlišč (36 možnih stanj)
- po 12 vozlišč stopnje 2, 3, 4
- premer grafa je 8
- ravninski

Trditev

Klasični londonski graf vsebuje Hamiltonovo pot, ne pa tudi Hamiltonovega cikla.

Oznake

- J. R. Tunstall je prva predlagala razširitev na 4 krogle s podaljšanimi palicami
- n krogel različnih barv, $n \ge 2$
- p palic, $p \ge 3$
- ullet vsako palico označimo s številom $k \in [p]$, njeno višino pa s h_k
- veljati mora $n \leq \sum_{k=1}^{p} h_k$
- veljavnost poteze
- ullet vsako stanje lahko enolično predstavimo s permutacijo $s \in \mathcal{S}_{n+p}$
- položaje oštevilčimo od leve palice proti desni, z vrha palice proti dnu

Primer

končni položaj

Definicija

Definicija

Londonski graf L_h^n , kjer je $p \ge 3$, $n \ge 2$, $h \in [n]^p$, $\sum_{k=1}^p h_k \ge n$:

• vozlišča: vse permutacije $s \in S_{n+p}$, za katere velja:

$$\forall k \in [p]: 1 \leq s_{n+k} - s_{n+k-1} \leq h_k + 1, \ s_{n+p} = n + p,$$

 povezave: vsaki dve stanji (oz. pripadajoči permutaciji), med katerima lahko prehajamo z veljavno potezo, sta povezani

Povezanost grafa

V nadaljevanju bomo privzeli, da so palice urejene po velikosti naraščajoče, velja torej $h_1 \leq h_2 \leq \cdots \leq h_p$. Potreben pogoj za povezanost londonskega grafa je

$$n \leq \sum_{k=1}^{p-1} h_k.$$

Izrek

Londonski graf L_h^n je povezan natanko tedaj, ko velja pogoj

$$n \leq \sum_{k=1}^{p-1} h_k.$$

Oxfordski graf

Oxfordski graf je poseben primer londonskega grafa, kjer velja, da so vse palice velikosti n, pri čemer je n število krogel. Oxfordski graf označimo z O_p^n , zanj torej velja $O_p^n := L_{n^p}^n$.

Lastnosti

Trditev

Število vozlišč oxfordskega grafa O_p^n je enako

$$\frac{(n+p-1)!}{(p-1)!}.$$

$\mathsf{Trditev}$

Število povezav oxfordskega grafa O_p^n je enako

$$\frac{np}{2}\frac{(p-2+n)!}{(p-2)!}.$$

Dokaz formule za število povezav oxfordskega grafa

Lema o rokovanju

Za vsak graf G = (V(G), E(G)) velja formula

$$\sum_{u\in V(G)}\deg u=2\cdot |E(G)|.$$

Spomnimo se še, da velja formula

$$\binom{b+w}{l} = \sum_{k=0}^{l} \binom{b}{k} \binom{w}{l-k}$$

