Série de révision (Algèbre)

Mohamed Essaied Hamrita

IHEC Sousse 2021

Exercice 1

Considérons les matrices à coefficients réels :

$$A = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
$$D = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad E = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Si elles ont un sens, calculer les matrices AB, BA, CD, DC, AE, CE et E'E.

Exercice 2

Soit
$$M = \begin{pmatrix} 2 & 4 & 1 \\ 2 & 5 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
.

- 1) En utilisant l'algorithme de Gauss, déterminer la forme échelonnée de M. En déduire le déterminant et le rang de M. M est-elle inversible?
- 2) En utilisant l'algorithme de Gauss, calculer M^{-1} . Calculer le déterminant de M^{-1} .
- 3) Déterminer la matrice adjointe de M, notée $\mathrm{Adj}(M)$. Recalculer M^{-1} en utilisant la matrice adjointe.

Exercice 3

Soit
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $B = A - I$.

Calculer B^n pour tout $n \in \mathbb{N}$. En déduire A^n .

Exercice 4

Soit
$$A_m = \begin{pmatrix} 0 & 2 & -1 \\ 3 & 1 & 1 \\ -1 & 1 & m \end{pmatrix}$$
.

- 1) Calculer le déterminant de A_m en fonction de m.
- 2) Donner une condition nécessaire et suffisante sur m pour que A_m soit inversible.

Exercice 5

1) Vérifier que les matrices suivantes sont inversibles et déterminer leurs inverses par l'algorithme de Gauss:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 4 \end{pmatrix}, C = \begin{pmatrix} 4 & 8 & 7 & 4 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 3 & 1 & 2 \\ 2 & 3 & 1 & 0 \\ 1 & 0 & 2 & 1 \end{pmatrix}$$

2) On considère les matrices suivantes:

$$P = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 3 & 4 \end{pmatrix}, \quad Q = \begin{pmatrix} -5 & 3 & -6 \\ -6 & 3 & -7 \\ -2 & 1 & -2 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 2 & 0 \\ -2 & 1 & -1 \\ 0 & 1 & -4 \end{pmatrix}$$

- a) Vérifier que P et Q sont inversibles et déterminer leurs inverses.
- b) Trouver la matrice M telle que PMQ = R.

Exercice 6

Déterminer le rang des matrices suivantes $(m \in \mathbb{R})$

$$A = \begin{pmatrix} 1 & 2 & 0 & 5 \\ 3 & 1 & 2 & 2 \\ 2 & 4 & 0 & 10 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 0 & -1 \end{pmatrix}, \ D = \begin{pmatrix} 3 & 0 & m \\ 2 & 3 & 0 \\ 0 & 18 & m+1 \end{pmatrix}$$

Exercice 7

Résoudre les systèmes linéaires suivants en utilisant l'algorithme de Gauss:

$$(S_1): \begin{cases} x_1 + x_2 + x_3 &= 1\\ 2x_1 - 3x_2 + x_3 &= -8\\ 3x_1 + x_2 + 4x_3 &= 7 \end{cases} \quad (S_2): \begin{cases} x_1 + x_2 - 2x_3 &= 2\\ x_1 - x_2 + x_3 + x_4 &= 0\\ 4x_1 - 4x_2 + 4x_3 &= 4\\ -2x_1 + 2x_2 - 2x_3 + x_4 &= -3 \end{cases}$$

$$(S_3): \begin{cases} 2x_1 + x_2 + x_3 & = & 5 \\ 2x_1 + 13x_2 - 7x_3 & = & -1 \\ x_1 - x_2 + x_3 & = & 1 \end{cases} \quad (S_4): \begin{cases} x_1 + 2x_2 + 3x_3 & = & 2 \\ 4x_1 + 5x_2 + 6x_3 & = & 0 \\ 7x_1 + 8x_2 + 9x_3 & = & 0 \end{cases}$$
$$(S_5): \begin{cases} x_2 + x_3 & = & 1 \\ x_1 + x_2 + mx_3 & = & 1 \\ x_1 + mx_2 + x_3 & = & 1 \end{cases} \quad (S_6): \begin{cases} x_1 + x_2 + x_3 & = & 2 \\ 2x_1 + 6x_2 - 4x_3 & = & 2 \\ -3x_1 - 9x_2 + 6x_3 & = & m - 5 \end{cases}$$

Exercice 8

Considérons les vecteurs dans \mathbb{R}^3 :

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ et } v_4 = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}.$$

- 1) Vérifier que la famille $\mathcal{B}=(v_1,v_2,v_3)$ est une famille génératrice de \mathbb{R}^3 . \mathcal{B} est-elle une base de \mathbb{R}^3 .
- 2) Montrer que v_4 est une combinaison linéaire du système \mathcal{B} .

Exercice 9

1) Dans chacun des cas suivants, montrer que E est un sous espace vectoriel de \mathbb{R}^3 et en donner une base en précisant sa dimension.

$$E = \{(x, y, z) \in \mathbb{R}^3 / 2x + y - z = 0\}$$
$$E = \{(x - y, 2x + y + 4z, 3y + 2z) / x, y, z \in \mathbb{R}\}$$

- 2) Dans chacun des cas suivants, déterminer les sous-espaces vectoriels engendrés par les vecteurs définis ci-dessous:
 - a) e = (1, 2).
 - b) u = (1, -1, 0).
 - c) $v_1 = (2, 1, 0)$ et $v_2 = (-1, 2, 1)$.

Exercice 10

Soit $E = \{(x, y, z) \in \mathbb{R}^3 / x + y + 2z = 0\}.$

- 1) Montrer que E est un sous espace vectoriel de \mathbb{R}^3 . En donner une base et préciser sa dimension.
- 2) Soient $u_1 = (3, -7, 2), u_2 = (-4, 2, 1)$. Vérifier que $\mathcal{B}_1 = (u_1, u_2)$ est une base

de E.

3) Soit $\mathcal{B} = (v_1 = (-1, 1, 0), v_2 = (-2, 0, 1))$ une base de E. Déterminer P, la matrice de passage de la base \mathcal{B} à la base \mathcal{B}_1 .

Exercice 11

1) Déterminer les valeurs et vecteurs propres des matrices suivantes:

$$A = \begin{pmatrix} -6 & 3 \\ 4 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 5 \\ 0 & 4 & 3 \end{pmatrix}$$

- 2) Soit la matrice M définie par: $M = \begin{pmatrix} 0.2 & 0.4 & 0 \\ 0.4 & 0.8 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 - a) Vérifier que $V_1 = (0,0,1)$, $V_2 = (1,2,0)$ et $V_3 = (-2,1,0)$ sont des vecteurs propres de M dont on précisera ses valeurs propres associées.
 - b) Déterminer deux matrices P et D telles que $M = PDP^{-1}$.
 - c) En déduire M^n , $n \in \mathbb{N}$.
- 3) On considère les matrices suivantes:

$$N = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}, \quad P = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}, \quad Q = \begin{pmatrix} 6 & 1 \\ 1 & 6 \end{pmatrix}$$

- a) Déterminer les valeurs propres de N, P et Q.
- c) En déduire les valeurs propres de la matrice $R = \begin{pmatrix} N & P \\ 0 & Q \end{pmatrix}$.

Exercice 12

Dans chacun des cas suivants, vérifier que f est une application linéaire et déterminer $\ker(f)$ et $\operatorname{Im}(f)$.

- a) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x y, x + 2y).
- b) $f: \mathbb{R}^3 \to \mathbb{R}^2$, f(x, y, z) = (x y + z, x 2y).
- c) $f : \mathbb{R}^2 \to \mathbb{R}^3$, f(x,y) = (x y, x 2y, -y).

Exercice 13

Pour chacune des applications linéaires définies dans l'exercice précédent, donner la matrice de f relativement à la base canonique.

Exercice 14

Soit f l'application linéaire $f: \mathbb{R}^3 \mapsto \mathbb{R}^3$ définie par :

$$f(x, y, z) = (x - z, 2x + y - 3z, -y + 2z)$$

et soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 .

- 1) Calculer $f(e_1)$, $f(e_2)$ et $f(e_3)$. En déduire la matrice de f relativement à la base canonique. f est-elle bijective?
- 2) Déterminer les coordonnées de $f(e_1)$, $f(e_2)$ et $f(e_3)$ dans la base canonique.
- 3) Calculer une base de ker(f) et une base de Im(f).

Exercice 15

- 1) Montrer qu'il existe une unique application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^3$ telle que : $f(1,2)=(0,2,3), \ f(1,1)=(1,0,1).$
- 2) Déterminer f(x,y) pour tout $(x,y) \in \mathbb{R}^2$.
- 3) On note $\mathcal{B}_2 = (e_1, e_2)$ la base canonique de \mathbb{R}^2 et $\mathcal{B}_3 = (u_1, u_2, u_3)$ la base canonique de \mathbb{R}^3 . Écrire la matrice de f relativement aux bases \mathcal{B}_2 et \mathcal{B}_3 .
- 4) Déterminer le noyau de f, l'image de f et le rang de f.
- 5) f est-elle injective? surjective?

Exercice 16

Soit $f: \mathbb{R}^3 \mapsto \mathbb{R}^2$ une application linéaire telle que:

$$(1,1,0) \in \text{Ker}(f), f(0,1,1) = (1,0) \text{ et } f(0,0,2) = (2,2).$$

- 1) Déterminer f(x, y, z).
- 2) Trouver la matrice associée à f relativement aux bases canoniques.
- 3) Trouver une base et la dimension du Ker(f) et Im(f).

Exercice 17

Soit la matrice A définie dans la base canonique de l'espace vectoriel \mathbb{R}^3 par:

$$A = \begin{pmatrix} 3 & -2 & 0 \\ 0 & 3 & 0 \\ -2 & 0 & 3 \end{pmatrix}$$

- 1) Déterminer le rang de A. A est-elle inversible?
- 2) Trouver une matrice N telle que $A=3I_3-2N$, où I_3 désigne la matrice identité d'ordre 3.
- 3) Calculer N^2 et N^3 .
- 4) En déduire A^n , pour tout $n \in \mathbb{N}$.

5) Soit
$$\mathcal{B} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
.

- a) Vérifier que \mathcal{B} est une base de \mathbb{R}^3 .
- b) Déterminer B, la matrice A relative à la base \mathcal{B} .

Exercice 18

On considère l'endomorphisme f défini sur \mathbb{R}^3 par:

$$f(x, y, z) = (-2x - 4y + 2z, -2x + y + 2z, 4x + 2y + 5z)$$

- 1) Vérifier que f est une application linéaire.
- 2) Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . On note A la matrice de f relative à la base \mathcal{B} . Déterminer A.
- 3) La matrice A est-elle inversible? En déduire que f est bijective.

4) Soit
$$\mathcal{B}' = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, u_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
.

a) Vérifier que \mathcal{B}' est une base de \mathbb{R}^3 .

b) Soit
$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{pmatrix}$$
.

Montrer que P est inversible et déterminer P^{-1} par l'algorithme de Gauss.

- c) En déduire B, la matrice de f relative à la base \mathcal{B}' .
- 5) Soient $v_1 = (2, -3, -1), v_2 = (-2, -1, 1)$ et $v_3 = (1, 6, 16)$.
- a) Vérifier que v_1 , v_2 et v_3 sont trois vecteurs propres de A dont on précisera les

6

valeurs propres associées.

- b) En déduire deux matrices carrées d'ordres 3, Q et D telles que $A = QDQ^{-1}$.
- c) Montrer que $A^n = QD^nQ^{-1}$, $n \in \mathbb{N}$ et expliciter D^n pour tout $n \in \mathbb{N}$.

Exercice 19

On considère les deux bases de \mathbb{R}^3 suivantes:

$$\mathcal{B} = \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix} \end{pmatrix}, \quad \mathcal{B}' = \begin{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} \end{pmatrix}$$

- 1) Déterminer la matrice de passage de \mathcal{B} vers \mathcal{B}' , $P_{\mathcal{B},\mathcal{B}'}$.
- 2) En déduire $P_{\mathcal{B}',\mathcal{B}}$.
- 3) Soit $X = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ dans la base \mathcal{B} . Déterminer les coordonnées de X dans la base \mathcal{B}'

Exercice 20

Soit la matrice A définie par: $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$.

- 1) Déterminer les valeurs et vecteurs propres de A.
- 2) En déduire les valeurs et vecteurs propres de A^2 et A + 4I.
- 3) Écrire A sous la forme de: $A = PDP^{-1}$ dont on précisera les matrices P et D.

Exercice 21

Soit la matrice $A = \frac{1}{10} \begin{pmatrix} 3 & 4 & 5 \\ 3 & 4 & 3 \\ 4 & 2 & 2 \end{pmatrix}$.

- 1) Vérifier que 1 est une valeur propre de A. Déterminer les autres valeurs propres de A.
- 2) Déterminer les vecteurs propres de A.
- 3) Trouver deux matrices, P et D telles que $A = PDP^{-1}$.
- 4) En déduire A^n pour tout $n \in \mathbb{N}$. Calculer $\lim_{n \to +\infty} A^n$.

Le produit de deux matrices a un sens si le nombre de colonnes de la première matrice est égale au nombre de lignes de la deuxième matrice.

$$AB \text{ a un sens et on a } AB = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$
 De même BA a un sens et on a $BA = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 3 \\ -12 & -6 \end{pmatrix}.$ On peut vérifier que $CD = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix}, \ DC = \begin{pmatrix} -1 & -2 & -3 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix}.$
$$AE = \begin{pmatrix} -1 & -2 & 3 \\ -1 & -2 & 3 \end{pmatrix}.$$

CE n'a pas un sens, car le nombre de colonnes de C est différent au nombre de lignes de E.

$$E'E = \begin{pmatrix} -1 & 1 \\ -1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Correction 2

1)
$$M = \begin{pmatrix} 2 & 4 & 1 \\ 2 & 5 & 1 \\ 1 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 4 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{pmatrix}$$

Ainsi, $|M| = 2 \times 1 \times 1/2 = 1$. Puisque M est une matrice carrée d'ordre 3, donc $rg(M) \le 3$ et puisque $|M| \ne 0$, alors rg(M) = 3. M est inversible car $|M| \ne 0$.

$$2) \begin{pmatrix} 2 & 4 & 1 & 1 & 0 & 0 \\ 2 & 5 & 1 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1/2 & -1/2 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1/2 & 5/2 & -2 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1/2 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 3 & -2 & -1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 2 \end{pmatrix} .$$
 Soit $M^{-1} = \begin{pmatrix} 3 & -2 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix} .$

Le déterminant de l'inverse de M est l'inverse du déterminant de M

$$\implies |M^{-1}| = \frac{1}{|M|} = 1.$$

3) $\operatorname{Adj}(M) = \operatorname{Com}^t(M)$ où $\operatorname{Com}(M)$ est la comatrice de M dont ces éléments sont les mineurs de M multipliés par $(-1)^{i+j}$.

8

$$M_{11} = \begin{vmatrix} 5 & 1 \\ 2 & 1 \end{vmatrix} = 3; \ M_{12} = \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1; \ M_{13} = \begin{vmatrix} 2 & 5 \\ 1 & 2 \end{vmatrix} = -1; \ M_{21} = \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 2;$$

$$M_{22} = \begin{vmatrix} 5 & 1 \\ 2 & 1 \end{vmatrix} = 1; \ M_{23} = \begin{vmatrix} 2 & 4 \\ 1 & 2 \end{vmatrix} = 0; \ M_{31} = \begin{vmatrix} 4 & 1 \\ 5 & 1 \end{vmatrix} = -1; \ M_{32} = \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} = 0;$$

$$M_{33} = \begin{vmatrix} 2 & 4 \\ 2 & 5 \end{vmatrix} = 2, \text{ donc Adj}(M) = \begin{pmatrix} 3 & -2 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}.$$

$$M^{-1} = \frac{1}{|M|} \text{Adj}(M) = \begin{pmatrix} 3 & -2 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}.$$

$$B = A - I = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, B^{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ et } B^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ Donc } B^{n} = 0 \text{ pour tout } n > 2.$$

$$A = B + I, \text{ donc } A^{n} = (B + I)^{n} = \sum_{k=0}^{n} C_{n}^{k} B^{k} I^{n-k}$$

$$A^{n} = \sum_{k=0}^{n} C_{n}^{k} B^{k} I^{n-k} = C_{n}^{0} B^{0} I^{n} + C_{n}^{1} B I^{n-1} + C_{n}^{2} B^{2} I^{n-2}$$

$$= I + nBI + \frac{n(n-1)}{2} B^{2} I$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & n & 0 \\ 0 & 0 & n \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \frac{n(n-1)}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$

Correction 4

1)
$$|A_m| = \begin{vmatrix} 0 & 2 & -1 \\ 3 & 1 & 1 \\ 1 & 1 & m \end{vmatrix} = - \begin{vmatrix} 3 & 1 & 1 \\ 0 & 2 & -1 \\ -1 & 1 & m \end{vmatrix} = - \begin{vmatrix} 3 & 1 & 1 \\ 0 & 2 & -1 \\ 0 & \frac{4}{3} & \frac{3m+1}{3} \end{vmatrix} = - \begin{vmatrix} 3 & 1 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & m+1 \end{vmatrix} = -6(m+1).$$

2) A_m est inversible $\iff |A_m| \neq 0 \iff m \neq -1$.

$$|A| = \begin{vmatrix} 1 & 2 & -1 \\ -2 & 0 & 1 \\ 1 & -1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -1 \\ 0 & 4 & -1 \\ 0 & -3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -1 \\ 0 & 4 & -1 \\ 0 & 0 & 1/4 \end{vmatrix} = 1 \neq 0, \text{ donc } A \text{ est inversible.}$$

$$(A|I) = \begin{pmatrix} \mathbf{1} & 2 & -1 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 0 & \mathbf{4} & -1 & 2 & 1 & 0 \\ 0 & -3 & 1 & -1 & 0 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & -1/2 & 0 & 0 & 0 & 1 \\ 0 & 1 & -1/4 & 1/2 & 1/4 & 0 & 0 \\ 0 & 0 & \mathbf{1}/\mathbf{4} & 1/2 & 3/4 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 3 & 4 \end{pmatrix} \sim (I|A^{-1}).$$

2)

a) Vérifier que |P| = -3 et |Q| = 54, donc P et Q sont inversibles.

$$(P|I) = \begin{pmatrix} \mathbf{2} & -2 & 1 & 1 & 0 & 0 \\ 2 & -3 & 2 & 0 & 1 & 0 \\ -1 & 2 & 0 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 1/2 & 1/2 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 \\ 0 & 1 & 1/2 & 1/2 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -1/2 & 3/2 & -1 & 0 \\ 0 & 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 3/2 & -1/2 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 4/3 & -2/3 & 1/3 \\ 0 & 1 & 0 & 2/3 & -1/3 & 2/3 \\ 0 & 0 & 1 & -1/3 & 2/3 & 2/3 \end{pmatrix} \sim (I|P^{-1}).$$

$$(Q|I) = \begin{pmatrix} \mathbf{2} & -2 & 0 & 1 & 0 & 0 \\ 1 & 5 & 3 & 0 & 1 & 0 \\ -2 & 1 & 4 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 1/2 & 0 & 0 \\ 0 & \mathbf{6} & 3 & -1/2 & 1 & 0 \\ 0 & -1 & 4 & 1 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 1/2 & 5/12 & 1/6 & 0 \\ 0 & 1 & 1/2 & -1/12 & 1/6 & 0 \\ 0 & 0 & \mathbf{9/2} & 11/12 & 1/6 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 17/54 & 4/27 & -1/9 \\ 0 & 1 & 0 & -5/27 & 4/27 & -1/9 \\ 0 & 0 & 1 & 11/54 & 1/27 & 2/9 \end{pmatrix} \sim (I|Q^{-1}).$$

b)
$$PMQ = R \Longrightarrow P^{-1}PMQQ^{-1} = P^{-1}RQ^{-1} \Longrightarrow M = P^{-1}RQ^{-1}.$$

Correction 6

• $rg(A) \leq min(3,4) = 3$. $A = \begin{pmatrix} 1 & 2 & 0 & 5 \\ 3 & 1 & 2 & 2 \\ 2 & 4 & 0 & 10 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 5 \\ 0 & -6 & 2 & -13 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, donc rg(A) = 2 (nombre de lignes non nulles de la forme échelonnée).

•
$$rg(B) \le min(3,4) = 3$$
.

$$B = \begin{pmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 5 \\ 0 & 0 & 3 & -8 \\ 0 & 0 & 6 & -16 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 5 \\ 0 & 0 & 3 & -8 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ donc } rg(B) = 2.$$

•
$$rg(C) \le min(3,3) = 3$$
.

$$C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \text{ donc } rg(C) = 3.$$

•
$$D = \begin{pmatrix} 3 & 0 & m \\ 2 & 3 & 0 \\ 0 & 18 & m+1 \end{pmatrix} \sim \begin{pmatrix} 3 & 0 & m \\ 0 & 3 & -2m/3 \\ 0 & 18 & m+1 \end{pmatrix} \sim \begin{pmatrix} 3 & 0 & m \\ 0 & 3 & -2m/3 \\ 0 & 0 & 5m+1 \end{pmatrix}.$$

- Si m = -1/5, alors rg(D) = 2
- Si $m \neq -1/5$, alors rg(D) = 3.

La matrice augmentée du système S_1 est:

$$\begin{pmatrix} \boxed{1} & 1 & 1 & 1 \\ 2 & -3 & 1 & -8 \\ 3 & 1 & 4 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -5 & -1 & -10 \\ 0 & -2 & 1 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{4}{5} & -1 \\ 0 & 1 & \frac{1}{5} & 2 \\ 0 & 0 & \boxed{\frac{7}{5}} & 8 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -\frac{39}{7} \\ 0 & 1 & 0 & \frac{6}{7} \\ 0 & 0 & 1 & \frac{40}{7} \end{pmatrix}$$

D'où, le système admet une unique solution $S_{\mathbb{R}^3}\{(-\frac{39}{7},\frac{6}{7},\frac{40}{7})\}.$

La matrice augmentée du système S_2 est:

$$\begin{pmatrix} \boxed{1} & 1 & -2 & 0 & 2 \\ 1 & -1 & 1 & 1 & 0 \\ 4 & -4 & 4 & 0 & 4 \\ -2 & 2 & -2 & 1 & -3 \end{pmatrix} \sim \begin{pmatrix} \boxed{1} & 1 & -2 & 0 & 2 \\ 0 & \boxed{-2} & 3 & 1 & -2 \\ 0 & -8 & 12 & 0 & -4 \\ 0 & 4 & -6 & 1 & 7 \end{pmatrix} \sim \begin{pmatrix} \boxed{1} & 0 & -\frac{1}{2} & \frac{1}{2} & 1 \\ 0 & 1 & -\frac{3}{2} & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & \boxed{-4} & 4 \\ 0 & 0 & 0 & 3 & 3 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -\frac{1}{2} & 0 & \frac{3}{2} \\ 0 & 1 & -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \Longrightarrow x_4 = -1, \ x_2 = \frac{1}{2} + \frac{3}{2}x_3, \ x_1 = \frac{3}{2} + \frac{1}{2}x_3 \text{ et } x_3 \in \mathbb{R}. \text{ Le}$$

système S_2 admet une infinité de solutions $S_{\mathbb{R}^3}\{(\frac{3}{2}+\frac{1}{2}k,\frac{1}{2}+\frac{3}{2}k,k,-1),k\in\mathbb{R}\}.$

La matrice augmentée du système S_3 est:

$$\begin{pmatrix} 2 & 1 & 1 & 5 \\ 2 & 13 & -7 & -1 \\ 1 & -1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\ 0 & 12 & -8 & -6 \\ 0 & -\frac{3}{2} & \frac{1}{2} & -\frac{3}{2} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{5}{6} & \frac{33}{12} \\ 0 & 1 & -\frac{2}{3} & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & -\frac{9}{4} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & \frac{5}{2} \\ 0 & 0 & 1 & \frac{9}{2} \end{pmatrix}$$

D'où, $S_{\mathbb{R}^3}\{(-1, \frac{5}{2}, \frac{9}{2})\}.$

La matrice augmentée du système S_4 est:

D'où, $S_{\mathbb{R}^3}\{(-1,2,-1)\}.$

La matrice augmentée du système S_5 est:

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & m & 1 \\ 1 & m & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & m & 1 \\ 0 & 1 & 1 & 1 \\ 1 & m & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & m & 1 \\ 0 & 1 & 1 & 1 \\ 1 & m & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & m & 1 \\ 0 & 1 & 1 & 1 \\ 0 & m - 1 & 1 - m & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & m-1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & \mathbf{2}(\mathbf{1}-\mathbf{m}) & 1-m \end{pmatrix}.$$

On distingue deux cas: m = 1 et $m \neq 1$.

Premier cas (m = 1):

Dans ce cas, on a x=0, y=1-z et $z\in\mathbb{R}$. Donc, si m=1, le système admet une infinité de solutions $S_{\mathbb{R}^3}\{(0,1-k,k),k\in\mathbb{R}\}.$

Deuxième cas $(m \neq 1)$:

$$M \sim \begin{pmatrix} 1 & 0 & 0 & \frac{1-m}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2} \end{pmatrix}$$
. Donc le système admet une unique solution $S_{\mathbb{R}^3}\{(\frac{1-m}{2}, \frac{1}{2}, \frac{1}{2})\}$.

La matrice augmentée du système S_6 est:

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & 6 & -4 & 2 \\ -3 & -9 & 6 & m-5 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 4 & -6 & 0 \\ 0 & -6 & 9 & m+1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{5}{2} & 2 \\ 0 & 1 & -\frac{3}{2} & 0 \\ 0 & 0 & 0 & m+1 \end{pmatrix}$$

- Si m=-1, le système admet une infinité de solutions $S_{\mathbb{R}^3}\{(2-\frac{5}{2}k,\frac{3}{2}k,k),k\in\mathbb{R}\}.$
- Si $m \neq -1$, le système n'admet aucune solution, $S_{\mathbb{R}^3} = \emptyset$.

Correction 8

 $\mathcal B$ est une base d'un espace vectoriel si $\mathcal B$ est à la fois génératrice et libre.

 ${\mathcal B}$ est génératrice d'un ${\mathbb R}-e.v$ ssi $\dim(e.v)=$ nombre de vecteurs dans

 \mathcal{B} .

Un système formé par v_i , $i=1,\ldots,n$ est libre si $\lambda_1v_1+\lambda_2v_2+\ldots+\lambda_nv_n=0$ $\Longrightarrow \lambda_1=\lambda_2=\ldots=\lambda_n=0$.

Si v_i a n composante, (v_1, v_2, \dots, v_n) est libre ssi $\det(v_1, v_2, \dots, v_n) \neq 0$.

1) On a $dim(\mathbb{R}^3) = 3 =$ nombre de vecteurs de \mathcal{B} , donc \mathcal{B} est génératrice de \mathbb{R}^3 . Il reste à vérifier que \mathcal{B} est libre.

Méthode 1:

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0 \Longrightarrow \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Longrightarrow \begin{cases} \lambda_1 + \lambda_2 + \lambda_3 &= 0 \\ 2\lambda_1 + \lambda_2 &= 0 \implies \lambda_1 = \lambda_2 = \lambda_3 = 0, \text{ donc } \mathcal{B} \text{ est libre et pae suite, } \mathcal{B} \\ \lambda_2 + \lambda_3 &= 0 \end{cases}$$

Méthode 2:

est une base de \mathbb{R}^3

Puisque $dim(\mathcal{B}) = 3 =$ nombre de composantes des vecteurs v_i , i = 1, 2, 3, alors \mathcal{B} est libre $\iff |\mathcal{B}| \neq 0$.

2) v_4 est une combinaison linéaire du système $\mathcal{B} \Longrightarrow \exists (a,b,c) \in \mathbb{R}^3/v_4 = av_1 + bv_2 + cv_3$.

$$\Longrightarrow \left\{ \begin{array}{ll} a+b+c &= 4 \\ 2a+b &= 3 \\ b+c &= 2 \end{array} \right. \Longrightarrow \left\{ \begin{array}{ll} b &= 3-2a \\ c &= 2-b \\ a+3-2a+2-(3-2a) &= 4 \end{array} \right. \Longrightarrow \left\{ \begin{array}{ll} a &= 2 \\ b &= -1 \\ c &= 3 \end{array} \right.$$

Donc $v_4 = 2v_1 - v_2 + 3v_3$.

Correction 9

Pour vérifier qu'un sous ensemble est un sous espace vectoriel, on doit vérifier deux propriétés:

- $\mathbf{0} \in \mathbf{E}$,
- $\forall \mathbf{X_1}, \mathbf{X_2} \in \mathbf{E} \text{ et } \forall \alpha, \beta \in \mathbb{R}, \ \alpha \mathbf{X_1} + \beta \mathbf{X_2} \in \mathbf{E}.$

$$E = \{(x, y, z) \in \mathbb{R}^3 / 2x + y - z = 0\}.$$

i)
$$0_{\mathbb{R}^3} = (0,0,0) \Longrightarrow 2 \times 0 + 0 - 0 = 0$$
. Donc $0_{\mathbb{R}^3} \in E \Longrightarrow E$ est non vide.

ii) Soit
$$X_1, X_2 \in E$$
 et soit $\alpha, \beta \in \mathbb{R}$, a-t-on $\alpha X_1 + \beta X_2 \in E$.

$$\alpha X_1 + \beta X_2 = \alpha(x_1, y_1, z_1) + \beta(x_2, y_2, z_2) = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha z_1 + \beta z_2)$$
$$= (w_1, w_2, w_3)$$

$$\alpha X_1 + \beta X_2 \in E \iff 2w_1 + w_2 - w_3 = 0.$$

$$2w_1 + w_2 - w_3 = 2(\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2) - (\alpha z_1 + \beta z_2)$$
$$= \alpha (2x_1 + y_1 - z_1) + \beta (2x_2 + y_2 - z_2)$$
$$= \alpha \times 0 + \beta \times 0 = 0 \text{ car } X_1, X_2 \in E$$

Ainsi, E est un s.e.v de \mathbb{R}^3 .

Déterminons une base de E:

 $X = (x, y, z) \in E \iff 2x + y - z = 0 \iff z = 2x + y$, d'où (x, y, z) = (x, y, 2x + y) = x(1, 0, 2) + y(0, 1, 1), donc $E = Vect(v_1 = (1, 0, 2), v_2 = (0, 1, 1))$ (E est engendré par v_1 et v_2). Et puisque (v_1, v_2) est libre (simple à vérifier), alors $\{v_1, v_2\}$ est une base de E et dim(E) = 2.

$$E = \{(x - y, 2x + y + 4z, 3y + 2z)/x, y, z \in \mathbb{R}\}.$$

- i) $0_{\mathbb{R}^3} = (0,0,0) \Longrightarrow (0-0,2\times 0 + 0 + 4\times 0, 3\times 0 + 2\times 0) = (0,0,0)$. Donc $0_{\mathbb{R}^3} \in E \Longrightarrow E$ est non vide.
- ii) $X \in E \iff \exists (x, y, z) \in \mathbb{R}^3 / X = (x y, 2x + y + 4z, 3y + 2z).$ Soit $X_1, X_2 \in E$ et soit $\alpha, \beta \in \mathbb{R}$. $\exists ?(w_1, w_2, w_3) \in \mathbb{R}^3 / \alpha X_1 + \beta X_2 = (w_1 - w_2, 2w_1 + w_2 + 4w_3, 3w_2 + 2w_3).$

$$\alpha X_1 + \beta X_2 = \alpha(x_1 - y_1, 2x_1 + y_1 + 4z_1, 3y_1 + 2z_1) + \beta(x_2 - y_2, 2x_2 + y_2 + 4z_2, 3y_2 + 2z_2) = ((\alpha x_1 + \beta x_2) - (\alpha y_1 + \beta y_2), 2(\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2) - 4(\alpha z_1 + \beta z_2), 3(\alpha y_1 + \beta y_2) + 2(\alpha z_1 + \beta z_2)) = (w_1 - w_2, 2w_1 + w_2 + 4w_3, 3w_2 + 2w_3); \quad w_1 = \alpha x_1 + \beta x_2,$$

Donc $\exists (w_1, w_2, w_3) \in \mathbb{R}^3 / \alpha X_1 + \beta X_2 = (w_1 - w_2, 2w_1 + w_2 + 4w_3, 3w_2 + 2w_3).$

 $w_2 = \alpha y_1 + \beta y_2, w_3 = \alpha z_1 + \beta z_2.$

Ainsi, E est un s.e.v de \mathbb{R}^3 .

Déterminons une base de E:

$$X = (x, y, z) \in E \iff \exists (x, y, z) \in \mathbb{R}^3 / X = (x - y, 2x + y + 4z, 3y + 2z).$$

d'où X = x(1,2,0) + y(-1,1,0) + z(0,4,2), donc $E = Vect(u_1 = (1,2,0), u_2 = (-1,1,0), u_3 = (0,4,2))$ (E est engendré par u_1 , u_2 et u_3). Il reste à vérifier que $\{u_1, u_2, u_3\}$ est libre.

$$|u_1 \ u_2 \ u_3| = \begin{vmatrix} \mathbf{1} & -1 & 0 \\ 2 & 1 & 4 \\ 0 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 0 \\ 0 & \mathbf{3} & 4 \\ 0 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -2 \end{vmatrix} = -6 \neq 0, \text{ donc } \{u_1, u_2, u_3\} \text{ est }$$

libre et par suite le système $\{u_1, u_2, u_3\}$ est une base de E et dim(E) = 3.

2)

- a) $X \in E \iff \exists \ a \in \mathbb{R} \text{ tel que } X = (x, y) = ae \implies (x, y) = (a, 2a) \implies x = 2y,$ donc x - 2y = 0. Soit $E = \{(x, y) \in \mathbb{R}^2 / x - 2y = 0\}.$
- b) $X \in E \iff \exists \ a \in \mathbb{R}^2 \text{ tel que } X = (x, y, z) = au \implies (x, y, z) = (a, -a, 0)$ $\implies x = -y, \text{ donc } x + y = 0. \text{ Soit } E = \{(x, y, z) \in \mathbb{R}^3 / x + y = 0\}.$
- c) $X \in E \iff \exists (a,b) \in \mathbb{R}^2 \text{ tel que } X = (x,y,z) = av_1 + bv_2 \implies (x,y,z) = (2a b, a + 2b, b) \implies x 2y = -5b \text{ et } z = b \text{ donc } x 2y = -5z. \text{ Soit } E = \{(x,y,z) \in \mathbb{R}^3/x 2y + 5z = 0\}.$

Correction 10

- 1) Vérifions que E est un s.e.v de \mathbb{R}^3 .
 - $0_{\mathbb{R}^3} = (0,0,0), \Longrightarrow 0 + 0 + 2 \times 0 = 0 \Longrightarrow 0 \in E$, donc E est non vide.
 - Soient $X_1, X_2 \in E$ et $\alpha, \beta \in \mathbb{R}$. $\alpha X_1 + \beta X_2 = \alpha(x_1, y_1, z_1) + \beta(x_2, y_2, z_2) = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha z_1 + \beta z_2)$. $(\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2) + 2(\alpha z_1 + \beta z_2) = \alpha(x_1 + y_1 + 2z_1) + \beta(x_2 + y_2 + 2z_2)$ $= \alpha \times 0 + \beta \times 0 \quad (\text{car } X_1, X_2 \in E$ $= 0 \Longrightarrow \alpha X_1 + \beta X_2 \in E$

Ainsi, E est un s.e.v de \mathbb{R}^3 .

 $(x,y,z) \in E \implies y = -x - 2z$, d'où $(x,y,z) = (x,-x,0) + (0,-2z,z) = x(1,-1,0) + z(0,-2,1) = xW_1 + zW_2$, donc $E = Vect(W_1,W_2)$ et puisque W_1 et W_2 sont linéairement indépendants (simple à vérifier), alors $\{W_1,W_2\}$ est une base de E et $\dim(E) = 2$.

2) $\dim(E) = \dim(\mathcal{B}_1) = 2$, donc pour montrer que \mathcal{B}_1 est une base de E, il suffit de vérifier que u_1 et u_2 sont linéairement indépendants.

Soient $\lambda_1, \lambda_2 \in \mathbb{R}$.

$$\lambda_1 u_1 + \lambda_2 u_2 = 0 \Longrightarrow \begin{cases} -\lambda_1 - 2\lambda_2 &= 0 \\ \lambda_1 &= 0 \Longrightarrow \lambda_1 = \lambda_2 = 0 \\ \lambda_2 &= 0 \end{cases}$$

d'où u_1 et u_2 sont linéairement indépendants. Ainsi, \mathcal{B}_1 est une base de E.

3) Afin de déterminer la matrice de passage de la base \mathcal{B} à la base \mathcal{B}_1 , on exprimera u_1, u_2 sous forme d'une combinaison linéaire de v_1 et v_2 .

$$u_1 = a_1 v_1 + a_2 v_2 \Longrightarrow \begin{cases} 3 = -a_1 - 2a_2 \\ -7 = a_1 \\ 2 = a_2 \end{cases} \Longrightarrow (a_1, a_2) = (-7, 2).$$

$$u_2 = b_1 v_1 + b_2 v_2 \Longrightarrow \begin{cases} -4 &= -b_1 - 2b_2 \\ 2 &= b_1 \\ 1 &= b_2 \end{cases} \Longrightarrow (b_1, b_2) = (2, 1).$$

Ainsi, la matrice de passage de la base \mathcal{B} à la base \mathcal{B}_1 est la matrice P dont ses colonnes sont formées par les vecteurs a et b.

$$P = (a\ b) = \begin{pmatrix} -7 & 2 \\ 2 & 1 \end{pmatrix}.$$

Remarque: Pour la détermination de la matrice de passage de la base \mathcal{B} à la base \mathcal{B}_1 , on peut procéder autrement (voir l'exercice 18).

Correction 11

 λ est une valeur propre de $A \iff |A - \lambda I| = 0$.

 ${f V}$ est un vecteur propre de ${f A} \Longleftrightarrow {f A} {f V} = \lambda {f V} \Longleftrightarrow ({f A} - \lambda {f I}) {f V} = {f 0}.$

$$1) A = \begin{pmatrix} -6 & 3 \\ 4 & 5 \end{pmatrix}$$

• Valeurs propres de A.

$$|A - \lambda I| = 0 \iff (-6 - \lambda)(5 - \lambda) - 12 = 0 \iff \lambda_1 = -7 \text{ et } \lambda_2 = 6$$

• Vecteurs propres associés aux λ_i .

i)
$$\lambda_1 = -7$$
, $(A - \lambda_1 I)V_1 = 0 \iff (A + 7I)V_1 = 0 \iff \begin{pmatrix} 1 & 3 \\ 4 & 12 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $\iff x = -3y \iff (x, y) = (-3y, y) = y(-3, 1) = yV_1$. D'où, $V_1 = (-3, 1)$ est un vecteur propre associé à la valeur propre $\lambda_1 = -7$.

ii) $\lambda_2 = 6$, $(A - \lambda_2 I)V_2 = 0 \iff (A - 6I)V_2 = 0 \iff \begin{pmatrix} -12 & 3 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\iff y = 4x \iff (x, y) = (x, 4x) = x(1, 4) = xV_2$. D'où, $V_2 = (1, 4)$ est un vecteur propre associé à la valeur propre $\lambda_2 = 6$.

$$B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 5 \\ 0 & 4 & 3 \end{pmatrix}$$

• Valeurs propres de B.

$$|A - \lambda I| = 0 \iff (2 - \lambda)((4 - \lambda)(3 - \lambda) - 20) = 0$$

$$\iff (2 - \lambda)(\lambda^2 - 7\lambda + 8) = 0 \iff \lambda_1 = -1, \lambda_2 = 2 \text{ et } \lambda_3 = 8$$

• Vecteurs propres associés aux λ_i .

i)
$$\lambda_1 = -1$$
, $(B - \lambda_1 I)U_1 = 0 \iff (B + I)U_1 = 0 \iff \begin{pmatrix} 3 & 0 & 0 \\ 0 & 5 & 5 \\ 0 & 4 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
 $\iff x = 0 \text{ et } y = -z \iff (x, y, z) = (0, -z, z) = z(0, -1, 1) = zU_1. \text{ D'où,}$
 $U_1 = (0, -1, 1) \text{ est un vecteur propre associé à la valeur propre } \lambda_1 = -1.$

ii)
$$\lambda_2 = 2$$
, $(B - \lambda_2 I)U_2 = 0 \iff (B - 2I)U_2 = 0 \iff \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
 $\iff x \in \mathbb{R} \text{ et } y = z = 0 \iff (x, y, z) = (x, 0, 0) = x(1, 0, 0) = xU_2. \text{ D'où,}$
 $U_2 = (1, 0, 0) \text{ est un vecteur propre associé à la valeur propre } \lambda_2 = 2.$

iii)
$$\lambda_3 = 8, (B - \lambda_3 I)U_3 = 0 \iff (B - 8I)U_3 = 0$$

$$\iff \begin{pmatrix} -6 & 0 & 0 \\ 0 & -4 & 5 \\ 0 & 4 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff x = 0 \text{ et } z = \frac{4}{5}y \iff (x, y, z) = (0, y, \frac{4}{5}y) = y(0, 1, \frac{4}{5}). \text{ D'où, } U_3 = (0, 5, 4) \text{ est un vecteur propre associé à la valeur propre } \lambda_3 = 8.$$

2) a) Afin de vérifier que V est un vecteur propre, on écrit $MV = \lambda V$ où λ à préciser.

•
$$MV_1 = \begin{pmatrix} 0.2 & 0.4 & 0 \\ 0.4 & 0.8 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 1 \times V_1$$
, donc V_1 est un vecteur propre associé à la valeur propre $\lambda_1 = 1$.

•
$$MV_2 = \begin{pmatrix} 0.2 & 0.4 & 0 \\ 0.4 & 0.8 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = 1 \times V_2$$
, donc V_2 est un vecteur propre associé à la valeur propre $\lambda_2 = 1$.

Remarque: On remarque bien que $\lambda = 1$ est associée à deux vecteurs propres, donc $\lambda = 1$ est une valeur propre **double**.

•
$$MV_3 = \begin{pmatrix} 0.2 & 0.4 & 0 \\ 0.4 & 0.8 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \times V_3$$
, donc V_3 est un vecteur propre associé à la valeur propre $\lambda_3 = 0$.

b) La matrice M est diagonalisable, donc elle admet l'écriture $M=PDP^{-1}$ où P est la matrice dont ses colonnes sont formées par les vecteurs propres et D une matrice diagonale formée par les valeurs propres.

$$P = \begin{pmatrix} 0 & 1 & -2 \\ 0 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

c)
$$M^n = (PDP^{-1})^n = PDP^{-1} \times PDP^{-1} \times ... \times PDP^{-1}$$

= $PDI \times DI \times ... IDP^{-1} = PD^nP^{-1}$.
 $\begin{pmatrix} 1^n & 0 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$

avec
$$D^n = \begin{pmatrix} 1^n & 0 & 0 \\ 0 & 1^n & 0 \\ 0 & 0 & 0^n \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = D.$$

Donc $M^n = PD^nP^{-1} = PDP^{-1} = M$, pour tout $n \in \mathbb{N}$.

- 3)a) On peut vérifier que N possède 1 et 2 comme valeurs propres, P a 3 et 4 comme valeurs propres et Q a 5 et 7 comme valeurs propres.
- b) $|R \lambda I| = |N \lambda I| \times |Q \lambda I|$, donc les valeurs propres de Q sont celles de N et Q, soit 1, 2, 5 et 7.

Correction 13

Correction 14

Correction 16

1) $f: \mathbb{R}^3 \mapsto \mathbb{R}^2$, donc f est de la forme $f(x,y,z) = (ax+by+cz,\alpha x+\beta y+\gamma z)$. $f(0,0,2) = (2,2) \Longrightarrow (2c,2\gamma) = (2,2) \Longrightarrow (c,\gamma) = (1,1)$. $f(0,1,1) = (1,0) \Longrightarrow (b+c,\beta+\gamma) = (1,0) \Longrightarrow (b,\beta) = (0,-1)$. $(1,1,0) \in \operatorname{Ker}(f) \Longrightarrow f(1,1,0) = (0,0) \Longrightarrow (a+b,\alpha+\beta) = (0,0) \Longrightarrow (a,\alpha) = (0,1)$. Ainsi, on aura

$$f(x, y, z) = (z, x - y + z)$$

2) Déterminons la matrice A telle que f(X) = AX.

On a $f(X) = f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ x - y + z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Donc, $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}$

est la matrice de f'relative aux bases canoniques.

3) $X \in \text{Ker}(f) \iff f(X) = 0 \iff (z, x - y + z) = (0, 0) \iff z = 0 \text{ et } x = y.$ Donc $X \in \text{Ker}(f) \implies X = (x, y, z) = (x, x, 0) = x(1, 1, 0).$ Ainsi Ker(f) est un sous espace vectoriel de \mathbb{R}^3 engendré par la vecteur (1, 1, 0) et $\dim(\text{Ker}(f)) = 1$.

f(x,y,z)=(z,x-y+z)=z(1,1)+x(0,1)+y(0,-1), donc Im(f) est le sous espace vectoriel engendré par le système $\{u_1=(0,1),u_2=(0,-1),u_3=(1,1)\}$. et puisque $u_1=(0,1)=-(0,-1)=-u_2$ donc Im(f) est engendré par $\{u_1,u_3\}$ et ce système forme une base de Im(f) car u_1 et u_3 sont linéairement indépendants. En plus, on a $\dim(\text{Im}(f))=2$.

Remarque: On vérifie bien le théorème du rang: $\dim(E) = \dim(\mathbb{R}^3) = 3 = \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Im}(f)) = 1 + 2.$

Correction 18

1) Pour déterminer la matrice de passage de la base \mathcal{B} vers la base \mathcal{B}' , on peut procéder de deux manières:

Méthode 1: Exprimons les vecteurs de la base \mathcal{B}' en fonction des vecteurs de la base \mathcal{B} .

•
$$u_1 = a_1v_1 + a_2v_2 + a_3v_3 \Longrightarrow (1, -1, 2) = (a_1 + a_2 + 2a_3, a_2 + 2a_3, a_1 + 3a_3)$$

19

$$\Rightarrow \begin{cases} a_1 + a_2 + 2a_3 &= 1 \\ a_2 + 2a_3 &= -1 \\ a_1 + 3a_3 &= 2 \end{cases} \Rightarrow \begin{cases} a_1 + a_2 + 2a_3 &= 1 \\ a_2 &= -1 - 2a_3 \\ a_1 &= 2 - 3a_3 \end{cases}$$
$$\Rightarrow (a_1, a_2, a_3) = (2, -1, 0).$$

•
$$u_2 = b_1 v_1 + b_2 v_2 + b_3 v_3 \Longrightarrow (2, 1, 4) = (b_1 + b_2 + 2b_3, b_2 + 2b_3, b_1 + 3b_3)$$

$$\Longrightarrow \begin{cases} b_1 + b_2 + 2b_3 &= 2 \\ b_2 + 2b_3 &= 1 \Longrightarrow \\ b_1 + 3b_3 &= 4 \end{cases} \Longrightarrow \begin{cases} b_1 + b_2 + 2b_3 &= 2 \\ b_2 &= -1 - 2b_3 \\ b_1 &= 4 - 3b_3 \end{cases}$$

$$\Longrightarrow (b_1, b_2, b_3) = (1, -1, 1).$$

•
$$u_3 = c_1 v_1 + c_2 v_2 + c_3 v_3 \Longrightarrow (-1, 2, 0) = (c_1 + c_2 + 2c_3, c_2 + 2c_3, c_1 + 3c_3)$$

$$\Longrightarrow \begin{cases} c_1 + c_2 + 2c_3 &= -1 \\ c_2 + 2c_3 &= 2 \\ c_1 + 3c_3 &= 0 \end{cases} \begin{cases} c_1 + c_2 + 2c_3 &= -1 \\ c_2 &= 2 - 2c_3 \\ b_1 &= -3c_3 \end{cases}$$

$$\Longrightarrow (c_1, c_2, c_3) = (-3, 2, 0).$$

Ainsi la matrice de passage de la base \mathcal{B} vers la base \mathcal{B}' est la matrice dont ses colonnes sont formées par les vecteurs a, b et c. Soit

$$P_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} 2 & 1 & -3 \\ -1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Méthode 2: En utilisant la proposition $P_{\mathcal{B},\mathcal{B}'} = P_{\mathcal{B},\mathcal{B}_1} \times P_{\mathcal{B}_1,\mathcal{B}'}$. Soit \mathcal{B}_1 la base canonique de \mathbb{R}^3 .

$$\mathcal{B}_1 = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right)$$

Les matrices de passage de \mathcal{B}_1 vers \mathcal{B} et \mathcal{B}' sont données par

$$P_{\mathcal{B}_1,\mathcal{B}} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 0 & 3 \end{pmatrix}, \quad P_{\mathcal{B}_1,\mathcal{B}'} = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & 4 & 0 \end{pmatrix}$$

$$P_{\mathcal{B},\mathcal{B}'} = P_{\mathcal{B},\mathcal{B}_1} \times P_{\mathcal{B}_1,\mathcal{B}'} = P_{\mathcal{B}_1,\mathcal{B}}^{-1} \times P_{\mathcal{B}_1,\mathcal{B}'}.$$

On peut vérifier que
$$P_{\mathcal{B}_1,\mathcal{B}}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 2/3 & 1/3 & -2/3 \\ -1/3 & 1/3 & 1/3 \end{pmatrix}$$
.

D'où
$$P_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} 1 & -1 & 0 \\ 2/3 & 1/3 & -2/3 \\ -1/3 & 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & -3 \\ -1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

2)
$$P_{\mathcal{B}',\mathcal{B}} = P_{\mathcal{B},\mathcal{B}'}^{-1} = \begin{pmatrix} 2 & 1 & -3 \\ -1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1/2 & -2 & -3/2 \\ 1/2 & 1 & 3/2 \\ -1/2 & -1 & -1/2 \end{pmatrix}$$
.

3)
$$X_{\mathcal{B}'} = P_{\mathcal{B},\mathcal{B}'} X_{\mathcal{B}} = \begin{pmatrix} 2 & 1 & -3 \\ -1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} -6 \\ -1 \\ 2 \end{pmatrix}.$$

1)

$$|A - \lambda I| = 0 \Longleftrightarrow \begin{vmatrix} 1 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 1 - \lambda \end{vmatrix} = 0 \Longleftrightarrow (1 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ -1 & 1 - \lambda \end{vmatrix} + \begin{vmatrix} -1 & -1 \\ 0 & 1 - \lambda \end{vmatrix} = 0$$
$$\iff (1 - \lambda) \left((2 - \lambda)(1 - \lambda) - (1 - \lambda) \right) = 0$$
$$\iff \lambda (1 - \lambda)(\lambda - 3) = 0$$

Soit $\lambda_1 = 0$, $\lambda_2 = 1$ et $\lambda_3 = 3$. Donc A possède trois valeurs propres réelles simples.

Remarque: On vérifie bien que $\lambda_1 + \lambda_2 + \lambda_3 = tr(A) = 1 + 2 + 1 = 4$ et $|A| = \lambda_1 \lambda_2 \lambda_3 = 0$.

Cherchons des vecteurs propres.

•
$$\lambda_1 = 0 : AV_1 = 0 \Longrightarrow \begin{cases} x - y = 0 \\ -x + 2y - z = 0 \Longrightarrow x = y = z. \\ -y + z = 0 \end{cases}$$

Donc $(x, y, z) = (x, x, x) = x(1, 1, 1)$. Soit $V_1 = (1, 1, 1)$.

•
$$\lambda_2 = 1 : (A - I)V_2 = 0 \Longrightarrow \begin{cases} -y = 0 \\ -x + y - z = 0 \Longrightarrow y = 0 \text{ et } z = -x. \\ -y = 0 \end{cases}$$

Donc
$$(x, y, z) = (x, 0, -x) = x(1, 0, -1)$$
. Soit $V_2 = (1, 0, -1)$.

•
$$\lambda_3 = 3 : (A - 3I)V_3 = 0 \Longrightarrow \begin{cases} -2x - y = 0 \\ -x - y - z = 0 \Longrightarrow y = -2x \text{ et } z = x. \\ -y - 2z = 0 \end{cases}$$

Donc $(x, y, z) = (x, -2x, x) = x(1, -2, 1)$. Soit $V_3 = (1, -2, 1)$.

2) A^2 et A+4I gardent les mêmes vecteurs propres de A, tandis que les valeurs propres sont λ^2 et $\lambda+4$ respectivement.

$$A^2: \lambda_1 = 0, \ \lambda_2 = 1 \text{ et } \lambda_3 = 9.$$

 $A + 4I: \lambda_1 = 4, \ \lambda_2 = 5 \text{ et } \lambda_3 = 7.$

3) La matrice A peut s'écrire sous la forme de $A = PDP^{-1}$ où les colonnes de P sont formées par les vecteurs propres de A et D est une matrice diagonale formée par les valeurs propres.

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{pmatrix} \quad \text{et} \quad D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Correction 21

1) Pour vérifier que 1 est une valeur propre de A, on doit vérifier que |A - I| = 0.

$$|A - I| = \frac{1}{10} \begin{vmatrix} -7 & 4 & 5 \\ 3 & -6 & 3 \\ 4 & 2 & -8 \end{vmatrix} = \frac{1}{10} \begin{vmatrix} -7 & 4 & 5 \\ 0 & \frac{30}{7} & -\frac{36}{7} \\ 0 & -\frac{30}{7} & \frac{36}{7} \end{vmatrix} = \frac{1}{10} \begin{vmatrix} -7 & 4 & 5 \\ 0 & \frac{40}{7} & -\frac{36}{7} \\ 0 & 0 & 0 \end{vmatrix} = 0.$$

Donc, $\lambda = 1$ est une valeur propre de A.

2) On sait que $\sum \lambda_i = tr(A)$ et $\prod \lambda_i = |A|$ avec $|A| = -\frac{2}{100}$. D'où

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 &= \frac{9}{10} \\ \lambda_1 \times \lambda_2 \times \lambda_3 &= \frac{2}{100} \\ \lambda_1 &= 1 \end{cases} \implies \begin{cases} \lambda_2 + \lambda_3 &= -\frac{1}{10} \\ \lambda_2 \times \lambda_3 &= \frac{2}{100} \end{cases} \implies \lambda_2 = -\frac{2}{10} \text{ et } \lambda_3 = \frac{1}{10}$$

Ainsi, la matrice A possède trois valeurs propres distinctes.

Remarque: On peut déterminer les valeurs propres à partir du polynôme caractéristique;

$$P(\lambda) = |A - \lambda I| = 0 \Longleftrightarrow \frac{1}{10} \begin{vmatrix} 3 - 10\lambda & 4 & 5\\ 3 & 4 - 10\lambda & 3\\ 4 & 2 & 2 - 10\lambda \end{vmatrix} = 0$$

2)

•
$$\lambda = 1$$
; $(A - I)V_1 = 0 \Longrightarrow \begin{cases} -7x + 4y + 5z = 0 \\ 3x - 6y + 3z = 0 \\ 4x + 2y - 8z = 0 \end{cases}$

$$\begin{pmatrix} -7 & 4 & 5 \\ 3 & -6 & 3 \\ 4 & 2 & -8 \end{pmatrix} \sim \begin{pmatrix} 1 & -4/7 & -5/7 \\ 0 & -30/7 & 36/7 \\ 0 & 30/7 & -36/7 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -7/5 \\ 0 & 1 & -6/5 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow x = \frac{7}{5}z, \ y = \frac{6}{5}z$$
et $z \in \mathbb{R}$. Soit $(x, y, z) = (\frac{7}{5}z, \frac{6}{5}z, z) = z(\frac{7}{5}, \frac{6}{5}, 1)$. Donc $V_1 = (7, 6, 5)$ est un vecteur propre de A associé à $\lambda = 1$.

•
$$\lambda = -\frac{2}{10}$$
; $(A + \frac{2}{10}I)V = 0 \Longrightarrow \begin{cases} 5x + 4y + 5z = 0\\ 3x + 6y + 3z = 0\\ 4x + 2y + 4z = 0 \end{cases}$
• $\begin{pmatrix} 5 & 4 & 5\\ 3 & 6 & 3\\ 4 & 2 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 4/5 & 1\\ 0 & 18/5 & 0\\ 0 & -6/5 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow x = -z, \ y = 0 \text{ et } z \in \mathbb{R}. \text{ Soit } (x, y, z) = (-z, 0, z) = z(-1, 0, 1). \text{ Donc } V_2 = (-1, 0, 1) \text{ est un vecteur propre de } A \text{ associ\'e \`a} \lambda = -0.2.$

•
$$\lambda = \frac{1}{10}$$
; $(A - \frac{1}{10}I)V = 0 \Longrightarrow \begin{cases} 2x + 4y + 5z &= 0 \\ 3x + 3y + 3z &= 0 \\ 4x + 2y + z &= 0 \end{cases}$
 $\begin{pmatrix} 2 & 4 & 5 \\ 3 & 6 & 3 \\ 4 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 5/2 \\ 0 & -3 & -9/2 \\ 0 & -6 & -9 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 3/2 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow x = z/2, \ y = -3z/2 \text{ et}$
 $z \in \mathbb{R}$. Soit $(x, y, z) = (z/2, -3z/2, z) = z(1/2, -3/2, 1)$. Donc $V_3 = (1, -3, 2)$ est un vecteur propre de A associé à $\lambda = 0.1$.

3) La matrice A est diagonalisable, donc elle admet l'écriture suivante: $A = PDP^{-1}$ avec D une matrice diagonale dont la diagonale est égale à λ_i , i = 1, 2, 3 et P est la matrice de passage dont les colonnes sont les vecteurs propres associés aux valeurs propres de A;

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -0.2 & 0 \\ 0 & 0 & 0.1 \end{pmatrix}, \quad P = (V_1 \ V_2 \ V_3) = \begin{pmatrix} 7 & -1 & 1 \\ 6 & 0 & -3 \\ 5 & 1 & 2 \end{pmatrix}$$

4) Déterminons P^{-1} .

$$\begin{pmatrix} \mathbf{7} & -1 & 1 & 1 & 0 & 0 \\ 6 & 0 & -3 & 0 & 1 & 0 \\ 5 & 1 & 2 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1/7 & 1/7 & 1/7 & 0 & 0 \\ 0 & \mathbf{6/7} & -27/7 & -6/7 & 1 & 0 \\ 0 & 12/7 & 9/7 & -5/7 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -1/2 & 0 & 1/6 & 0 \\ 0 & 1 & -9/2 & -1 & 7/6 & 0 \\ 0 & 0 & \mathbf{9} & 1 & -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1/18 & 1/18 & 1/18 \\ 0 & 1 & 0 & -1/2 & 1/6 & 1/2 \\ 0 & 0 & 1 & 1/9 & -2/9 & 1/9 \end{pmatrix}.$$
Donc $P^{-1} = \begin{pmatrix} 1/18 & 1/18 & 1/18 \\ -1/2 & 1/6 & 1/2 \\ 1/9 & -2/9 & 1/9 \end{pmatrix}.$

$$\begin{split} A^n &= PD^n P^{-1} = \begin{pmatrix} 7 & -1 & 1 \\ 6 & 0 & -3 \\ 5 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-0.2)^n & 0 \\ 0 & 0 & 0.1^n \end{pmatrix} \begin{pmatrix} 1/18 & 1/18 & 1/18 \\ -1/2 & 1/6 & 1/2 \\ 1/9 & -2/9 & 1/9 \end{pmatrix} \\ &= \begin{pmatrix} 7 & -(-0.2)^n & 0.1^n \\ 6 & 0 & -3 \times 0.1^n \\ 5 & 2 \times (-0.2)^n & 2 \times 0.1^n \end{pmatrix} \begin{pmatrix} 1/18 & 1/18 & 1/18 \\ -1/2 & 1/6 & 1/2 \\ 1/9 & -2/9 & 1/9 \end{pmatrix} \\ &= \begin{pmatrix} \frac{7}{18} + \frac{1}{2}(-0.2)^n + \frac{1}{9}0.1^n & \frac{7}{18} - \frac{1}{6}(-0.2)^n - \frac{2}{9}0.1^n & \frac{7}{18} - \frac{1}{2}(-0.2)^n + \frac{1}{9}0.1^n \\ \frac{1}{3} - \frac{1}{3}0.1^n & \frac{1}{3} - \frac{2}{3}0.1^n & \frac{1}{3} - \frac{1}{3}0.1^n \\ \frac{5}{18} - (-0.2)^n + \frac{2}{9}0.1^n & \frac{5}{18} + \frac{1}{3}(-0.2)^n - \frac{4}{9}0.1^n & \frac{5}{18} + (-0.2)^n + \frac{2}{9}0.1^n \end{pmatrix} \end{split}$$

Quand $n \to +\infty$, $(-0.2)^n \to 0$ et $0.1^n \to 0$, d'où

$$\lim_{n \to +\infty} A^n = \begin{pmatrix} \frac{7}{18} & \frac{7}{18} & \frac{7}{18} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{5}{18} & \frac{5}{18} & \frac{7}{18} \end{pmatrix}$$