Modéliser les systèmes asservis dans le but de prévoir leur comportement

Sciences Industrielles de l'Ingénieur

Colle 1

Cheville du robot NAO

Xavier Pessoles

Savoirs et compétences :

Présentation

La figure ci-dessous représente une partie de la chaîne fonctionnelle de la cheville du robot NAO.

Objectif L'objectid est de vérifier que les exigences suivantes sont satisfaites:

- écart statique inférieur à 0,1°;
- dépassement inférieur à 1%;
- temps de réponse à 5% inférieur à 0.1 z.

Modélisation du réducteur

Le réducteur de la cheville est un réducteur à train simple dont une image CAO est donnée ci-dessous.

Les caractéristiques des roues dentées sont les suivantes:

Pièce	Module	Nombre dents
Pignon 3 20	0,3	20
Mobile inf 1 – Roue	0,3	80
Mobile inf 1 – Pignon	0,4	25
Mobile inf 2 – Roue	0,4	47
Mobile inf 2 – Pignon	0,4	12
Mobile inf 4 – Roue	0,4	58
Mobile inf 4 – Pignon	0,7	10
Roue sortie inf	0,7	36

Question 1 Donner le rapport de réduction du réducteur r.

Modélisation du moteur à courant continu

On donne les équations permettant de modéliser le comportement du moteur à courant continu :

- $u(t) = e(t) + Ri(t) + L\frac{\mathrm{d}i(t)}{\mathrm{d}t}$;
- $e(t) = K\omega(t)$;
- c(t) = Ki(t);
- $c(t) c_r(t) f\omega(t) = J \frac{d\omega(t)}{dt}$.

1

- u(t): tension d'alimentation du moteur;
- *i*(*t*): courant circulant dans le moteur;
- *R* et *L* : résistance et inductance du moteur;
- *K* : constante électromécanique du moteur;
- *e*(*t*) force contre électromotrice;
- $\omega(t)$: taux de rotation du moteur;
- *I* : inertie du moteur, du réducteur et de la cheville ramenées à l'arbre moteur;
- c(t): couple moteur;
- $c_r(t)$: couple résistant;
- *f* : coefficient de frottement visqueux.

Question 2 Donner les équations dans le domaine de Laplace.

Le moteur à courant continu est commandé par la tension u(t). On mesure le taux de rotation en $\omega(t)$ en sortie. Le système est perturbé par un couple résistant.

Question 3 Tracer le schéma-blocs du moteur à courant continu.

On considère que $c_r(t) = 0$.

Question 4 Exprimer la fonction de transfert $\frac{d\omega(t)}{du(t)}$.

On considère que L = 0 H et $f_v = 0$ Nms.

Question 5 Donner l'expression de la fonction de transfert simplifiée ainsi que le schéma bloc associé.

Le moteur est sollicité par un échelon de tension $u(t) = U_0 h(t)$ (h fonction de Heaviside).

Question 6 Quelle est la valeur finale atteinte par $\omega(t)$? Quelle est la valeur initiale? Quelle est la pente à l'origine?

Question 7 Proposer une allure de $\omega(t)$ en fonction du temps.

Modélisation du système complet

La cheville est asservie en position angulaire.

Question 8 *Que cela signifie-t-il?*

Le moteur « fournit » un taux de rotation $\omega(t)$. On souhaite obtenir une angle $\theta(t)$.

Question 9 Quelle opération mathématique permet de passer d'un taux de rotation à une position angulaire? Quel est le bloc équivalent dans le domaine de Laplace?

La structure de l'asservissement de la cheville est la suivante :

Question 10 Compléter le schéma-blocs.

Lorsque le système est correctement asservi, $\theta_c(p) = \theta(p)$ et $\varepsilon(p) = 0$.

Question 11 Dans ces conditions proposez une technologie de capteur pour le gain K_{capt} . Proposer une valeur de gain pour K_{adapt} .

Question 12 Déterminer la fonction de transfert du système $\frac{\theta(p)}{\theta_c(p)}$.

Conclusion

La figure ci-dessus illustre la réponse du modèle suite à une entrée échelon de 20°.

Question 13 Les exigences du cahier des charges sontelles respectées?