Metoda złotego podziału

Lemat: Jeżeli funkcja f(x) jest *unimodalna* (posiada tylko jedno minimum) w przedziale [a,b] to dla określenia podprzedziału, w którym leży punkt stacjonarny należy obliczyć wartość funkcji w *dwóch* punktach tego przedziału oprócz końców przedziału.

Jeżeli dla a<x $_1<$ x $_2<$ b zachodzi f(a)>f(x $_1$) i f(x $_1$)<f(x $_2$) to minimum znajduje się pomiędzy a oraz x $_2$; jeżeli zachodzi f(x $_2$)<f(x $_1$) i f(x $_2$)<f(b) to minimum znajduje się pomiędzy x $_1$ i b. Te obserwacje stanowią podstawę zawężania przedziału, w którym zawarte jest minimum.

W metodzie złotego podziału chcemy żeby przedział był zawężany w tym samym stosunku α w każdej iteracji. Musi zatem zachodzić:

$$\frac{x_2 - a}{b - a} = \frac{b - x_1}{b - a} = \alpha \implies x_1 - a = b - x_2$$

Załóżmy, że minimum jest pomiędzy a i x_2 . Wtedy mamy:

$$\frac{x_1 - a}{x_2 - a} = \alpha = -1 + \frac{1}{\alpha} \implies \alpha^2 + \alpha - 1 = 0$$

$$\alpha = \frac{\sqrt{5} - 1}{2} \approx 0.618$$

Algorytm:

- 1. Oblicz: $x1 = b \tau (b a)$ $x2 = a + \tau (b - a)$
- 2. Jeżeli f(x1) < f(x2), to min znajduje się w "lewej części" i podstaw: a = a b = x2
- Jeżeli f(x1) > f(x2), to min znajduje się w "prawej części" i podstaw: a = x1 b = b 4.
- 4. Jeżeli b a ≥ 2 ε, to wróc do pkt. 1, wp x* = (b + a) / 2 i zakończyć algorytm

Uwagi:

- 1. W każdej iteracji przedział poszukiwań jest zmniejszany o ok. 38.2%.
- Jeden z punktów x1 lub x2 jest wykorzystywany w kolejnej iteracji. Stąd w każdej iteracji potrzebna jest tylko jedna dodatkowa ewaluacja funkcji celu.
- 3. Długość przedziału po n ewaluacjach funkcji celu jest zadana wzorem:

$$L_n = 0.618^{(n-1)} L_1$$

gdzie: L1 – długość początkowa przedziału

Logarytmując to wyrażenie, można policzyć minimalną liczbę ewaluacji funkcji n, potrzebną do uzyskania dokładności L_n, tj.

$$n = sufit(\frac{\ln(L_n / L_1)}{\ln(0,618)} + 1)$$

Zlokalizować minimum funkcji e^x - x w przedziale [-1,1]