Matave Control Toolbox

Applied Control Engineering Toolbox for MATLAB and GNU Octave

Version 1.0

Model building

Function name	Description	Status	MIMO	TF/SS	Discrete
tf	Crate transfer function model	Done	No	N/N	Y
zpk	Create zero-pole-gain model	Done	No	N/N	Y
SS	Create state space model	Done	Yes	N/N	Y

Model transformation

Function name	Description	Status	MIMO	TF/SS	Discrete
Minreal	Minimal realization	Done	Yes	Y/Y	Y
Balreal	Balanced realization	Done	Yes	N/Y	Y
Modred	Model reduction	Done	Yes	N/Y	Y
Append	Append systems	Done	Yes	Y/Y	Y
Feedback	Feedback model	Done	Yes	Y/Y	Y
Series	Serial model	Done	Yes	Y/Y	Y
Parallel	Parallel model	Done	Yes	Y/Y	Y

Model data access

Function name	Description	Status	MIMO	TF/SS	Discrete
dcgain	Get the low frequency gain	Done	Yes	Y/Y	Y
Pzmap	Plot poles and zeros	Done	Yes	Y/Y	Y
Damp	Get the damping	Done	Yes	Y/Y	Y
Pole	Get poles	Done	Yes	Y/Y	Y
zero	zeros for SISO	Done	No	Y/Y	Y
tzero	zeros for MIMO	Done	Yes	N/Y	Y

Model conversions

Function name	Description	Status	MIMO	TF/SS	Discrete
C2d	Convert continuous to discrete	Done	Yes	Y/Y	N
C2dt	Convert continuous to discrete with delay	Done	Yes	Y/Y	N
D2c	Convert discrete to continuous	Done	Yes	Y/Y	Y
D2d	Rediscrete the model	Done	Yes	Y/Y	Y
Tf2ss	Transfer function to state space	Done	No	Y/N	Y
Ss2tf	State space to transfer function	Done	Yes	N/Y	Y

Frequency domain analysis

Function name	Description	Status	MIMO	TF/SS	Discrete
evalfr	Get one frequency	Done	Yes	Y/Y	Y
freqresp	Get multiple frequencies	Done	Yes	Y/Y	\mathbf{Y}
Bode	Bode diagram	Done	Yes	Y/Y	Y
Bodemag	Bode diagram without phase	Done	Yes	Y/Y	Y
Nyquist	Nyquist diagram	Done	Yes	Y/Y	Y
Sigma	Singular value diagram	Done	Yes	Y/Y	Y
Margin	Stability margins	Done	Yes	Y/Y	Y
Allmargin	Show all margin	Done	Yes	Y/Y	Y
Sensitivity	Show sensitivity margins	Done	Yes	Y/Y	Y
db2mag	Convert dB to magnintude	Done	Yes	Y/Y	Y
mag2db	Conver magnintude to dB	Done	Yes	Y/Y	Y
Rlocus	Root locus plot	Done	Yes	Y/Y	Y
dBdrop	Find the frequency at 3 dB drop	Done	Yes	Y/Y	Y

Time domain analysis

Function name	Description	Status	MIMO	TF/SS	Discrete
gensig	Generate signals	Done	No	N/N	Y
Impulse	Impulse response	Done	Yes	Y/Y	Y
Step	Step response	Done	Yes	Y/Y	Y
Ramp	Ramp response	Done	Yes	Y/Y	Y
initial	Response with initial conditions	Done	Yes	N/Y	Y
Lsim	Linear simulation response	Done	Yes	Y/Y	Y

Singel variable control

Function name	Description	Status	MIMO	TF/SS	Discrete
Pid	Parallel PID controller	Done	No	N/N	Y
PIPD	Serial PID controller	Done	No	N/N	Y
Loop	Loopshaping controller	Done	No	Y/N	Y
Acker	Acker formula	Done	No	N/Y	Y

Multivariable control

Function name	Description	Status	МІМО	TF/SS	Discrete
lqr	Linear quadratic regulator	Done	Yes	N/Y	Y
lqe	Linear quadratic estimator	Done	Yes	N/Y	Y
Lqi	Linear quadratic integral	Done	Yes	N/Y	Y
reg	Generates the LQ-model	Done	Yes	N/Y	Y
Lqgreg	Generates the Gaussian LQG-model	Done	Yes	N/Y	Y

Matrix equations

Function name	Description	Status	MIMO	TF/SS	Discrete
Lyap	Solve Lyapunov equation	Done	Y	N/Y	Y
are	Solve algibraic riccati equation	Done	Y	N/Y	Y
Obsv	Observbility matrix	Done	Y	N/Y	Y
Ctrb	Controllbility matrix	Done	Y	N/Y	Y
Gram	Gramian	Done	Y	N/Y	Y
Hsvd	Hankel singular values	Done	Y	N/Y	Y
Covar	Covaraiance matrix	Done	Y	N/Y	Y

LQR + LQI:

Assume that we have a regular state space model

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

The LQR control law

$$u = -L x + Li x_i$$

with integral action LQI

$$\dot{x}_i = r - y = r - Cx - Du$$

$$x_i = \int \dot{x}_i = \int (r - Cx - Du)$$

This will create the augmented state space model

$$\begin{bmatrix} \dot{x} \\ \dot{x}_i \end{bmatrix} = \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix} \begin{bmatrix} x \\ x_i \end{bmatrix} + \begin{bmatrix} B \\ -D \end{bmatrix} [u] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} [r]$$

$$y = Cx + Du$$

With the LQR and LQI control law. The augmented state space model will then be:

$$\begin{bmatrix} \dot{x} \\ \dot{x}_i \end{bmatrix} = \begin{bmatrix} (A - BL) & BLi \\ (DL - C) & -DLi \end{bmatrix} \begin{bmatrix} x \\ x_i \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} [r]$$
$$[y] = \begin{bmatrix} (C - DL) & DLi \end{bmatrix} \begin{bmatrix} x \\ x_i \end{bmatrix}$$

LQR + LQE:

Assume a state space gaussian model

$$\dot{x} = Ax + Bu + B_d d$$

$$y = Cx + Du + B_n n$$

And a state state space gaussian observer

$$\hat{x} = A \hat{x} + Bu + Ke$$

$$\hat{y} = C \hat{x} + Du$$

$$e = y - \hat{y} = Cx + Du + B_n n - C \hat{x} - Du = Cx + B_n n - C \hat{x}$$

The LQR control law

$$u=-Lx+r$$

One important step is to create one error state of diffrence between real state and estimated state

$$\tilde{x} = x - \hat{x}$$

This will change the control law to a new control law

$$u=-L\hat{x}+r=L\tilde{x}-Lx+r$$

Because

$$\tilde{x} - x = -\hat{x}$$

Insert the new control law into the state space gaussian model

$$\dot{x} = Ax + B(L\tilde{x} - Lx + r) + B_d d$$

$$\dot{x} = (A - BL)x + BL\tilde{x} + Br + B_d d$$

Insert the new control law to the output of the state space gaussian model

$$y = Cx + D(L\widetilde{x} - Lx + r) + B_n n$$

$$y = (C - DL)x + DL\widetilde{x} + Dr + B_n n$$

Insert the new control law into the state state space gaussian observer

$$\dot{\hat{x}} = A \hat{x} + Bu + Ke
\dot{\hat{x}} = A \hat{x} + B(L \tilde{x} - L x + r) + K(Cx + B_n n - C \hat{x})
\dot{\hat{x}} = A \hat{x} + BL \tilde{x} - BL x + Br + KCx + KB_n n - KC \hat{x}$$

Assume now

$$\begin{split} &\dot{\widetilde{x}} = \dot{x} - \dot{\widehat{x}} \\ &\dot{\widetilde{x}} = \left[(A - BL)x + BL\,\widetilde{x} + r + B_d d \right] - \left[A\,\hat{x} + BL\,\widetilde{x} - BL\,x + r + KCx + KB_n \, n - KC\,\hat{x} \right] \\ &\dot{\widetilde{x}} = Ax - BLx + BL\,\widetilde{x} + r + B_d \, d - A\,\hat{x} - BL\,\widetilde{x} + BL\,x - r - KCx - KB_n \, n + KC\,\hat{x} \\ &\dot{\widetilde{x}} = Ax + B_d \, d - A\,\hat{x} - KCx - KB_n \, n + KC\,\hat{x} \end{split}$$

Remember

$$\tilde{x} = x - \hat{x}$$

Which results:

$$\dot{\tilde{x}} = Ax + B_d d - A \hat{x} - KCx - KB_n n + KC \hat{x}$$

$$\dot{\tilde{x}} = A(x - \hat{x}) + B_d d - KC (x - \hat{x}) - KB_n n$$

$$\dot{\tilde{x}} = (A - KC) \tilde{x} + B_d d - KB_n n$$

The whole state space model will then be:

$$\begin{bmatrix} \dot{x} \\ \dot{\tilde{x}} \end{bmatrix} = \begin{bmatrix} (A - BL) & BL \\ 0 & (A - KC) \end{bmatrix} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix} + \begin{bmatrix} B & B_d & 0 \\ 0 & B_d - KB_n \end{bmatrix} \begin{bmatrix} r \\ d \\ n \end{bmatrix}$$

$$y = [(C - DL) \quad DL] \begin{bmatrix} x \\ \tilde{x} \end{bmatrix} + [Dr \quad 0 \quad B_n] \begin{bmatrix} r \\ d \\ n \end{bmatrix}$$

Because the most important equations are:

$$\dot{x} = (A - BL)x + BL\tilde{x} + Br + B_d d$$

$$\dot{\tilde{x}} = (A - KC)\tilde{x} + B_d d - KB_n n$$

$$y = (C - DL)x + DL\tilde{x} + Dr + B_n n$$

LQR + LQE + LQI:

Assume a state space gaussian model

$$\dot{x} = Ax + Bu + B_d d$$

$$y = Cx + Du + B_n n$$

And a state state space gaussian observer

$$\dot{\hat{x}} = A \hat{x} + Bu + Ke$$

$$\dot{\hat{y}} = C \hat{x} + Du$$

$$e = y - \hat{y} = Cx + Du + B_n n - C \hat{x} - Du = Cx + B_n n - C \hat{x}$$

The LQR control law

$$u = -L \hat{x} + Li x$$

with integral action LQI

$$\dot{x}_i = r - y = r - Cx - Du - B_n n$$

$$x_i = \int \dot{x}_i = \int (r - Cx - Du - B_n n)$$

One important step is to create one error state of diffrence between real state and estimated state

$$\tilde{x} = x - \hat{x}$$

This will change the control law to a new control law

$$u = -L \hat{x} + Li x_i = L \tilde{x} - L x + Li x_i$$

Because

$$\tilde{x} - x = -\hat{x}$$

Insert the new control law into the integral state

$$\dot{x}_i = r - y = r - Cx - D(L\widetilde{x} - Lx + Lix_i) - B_n n$$

$$\dot{x}_i = r - y = r - Cx - DL\widetilde{x} + DLx - DLix_i - B_n n = r + (DL - C)x - DL\widetilde{x} - DLix_i - B_n n$$

Insert the new control law into the state space gaussian model

$$\dot{x} = Ax + B(L\tilde{x} - Lx + Lix_i) + B_d d$$

$$\dot{x} = (A - BL)x + BL\tilde{x} + BLix_i + B_d d$$

Insert the new control law to the output of the state space gaussian model

$$y = Cx + D(L\tilde{x} - Lx + Lix_i) + B_n n$$

$$y = (C - DL)x + DL\tilde{x} + DLix_i + B_n n$$

Insert the new control law into the state state space gaussian observer

$$\begin{split} \dot{\hat{x}} &= A \, \hat{x} + B u + K e \\ \dot{\hat{x}} &= A \, \hat{x} + B \left(L \, \widetilde{x} - L \, x + L i \, x_i \right) + K \left(C x + B_n \, n - C \, \hat{x} \right) \\ \dot{\hat{x}} &= A \, \hat{x} + B L \, \widetilde{x} - B L \, x + B L i \, x_i + K C x + K B_n \, n - K C \, \hat{x} \end{split}$$

Assume now

$$\begin{split} &\dot{\widetilde{x}} = \dot{x} - \dot{\widehat{x}} \\ &\dot{\widetilde{x}} = \left[(A - BL) \, x + BL \, \widetilde{x} + BL i \, x_i + B_d \, d \, \right] - \left[A \, \hat{x} + BL \, \widetilde{x} - BL \, x + BL i \, x_i + KCx + KB_n n - KC \, \hat{x} \, \right] \\ &\dot{\widetilde{x}} = Ax - BLx + BL \, \widetilde{x} + BL i \, x_i + B_d \, d - A \, \hat{x} - BL \, \widetilde{x} + BL \, x - BL i \, x_i - KCx - KB_n \, n + KC \, \hat{x} \\ &\dot{\widetilde{x}} = Ax + B_d \, d - A \, \hat{x} - KCx - KB_n \, n + KC \, \hat{x} \end{split}$$

Remember

$$\tilde{x} = x - \hat{x}$$

Which results

$$\dot{\tilde{x}} = Ax + B_d d - A \hat{x} - KCx - KB_n n + KC \hat{x}$$

$$\dot{\tilde{x}} = A(x - \hat{x}) + B_d d - KC (x - \hat{x}) - KB_n n$$

$$\dot{\tilde{x}} = (A - KC) \tilde{x} + B_d d - KB_n n$$

The whole state space model will then be:

$$\begin{bmatrix} \dot{x} \\ \dot{\tilde{x}} \\ \dot{\tilde{x}} \end{bmatrix} = \begin{bmatrix} (A - BL) & BL & BLi \\ 0 & (A - KC) & 0 \\ (DL - C) & -DL & -DLi \end{bmatrix} \begin{bmatrix} x \\ \tilde{x} \\ x_i \end{bmatrix} + \begin{bmatrix} 0 & B_d & 0 \\ 0 & B_d - KB_n \\ 1 & 0 & -B_n \end{bmatrix} \begin{bmatrix} r \\ d \\ n \end{bmatrix}$$
$$y = \begin{bmatrix} (C - DL) & DL & DLi \end{bmatrix} \begin{bmatrix} x \\ \tilde{x} \\ x_i \end{bmatrix} + \begin{bmatrix} 0 & 0 & B_n \end{bmatrix} \begin{bmatrix} r \\ d \\ n \end{bmatrix}$$

Because the most important equations are:

$$\dot{x} = (A - BL)x + BL\tilde{x} + BLix_i + B_dd$$

$$\dot{\tilde{x}} = (A - KC)\tilde{x} + B_dd - KB_nn$$

$$\dot{x}_i = r + (DL - C)x - DL\tilde{x} - DLix_i - B_nn$$

$$y = (C - DL)x + DL\tilde{x} + DLix_i + B_nn$$