# Sensors and Wireless Sensor Networks

# Roadmap

- Motivation for a Network of Wireless Sensor Nodes
  - Definitions and background
  - Challenges and constraints
  - Overview of topics covered

# Sensing and Sensors

- Sensing: technique to gather information about physical objects or areas
- Sensor (transducer): object performing a sensing task; converting one form of energy in the physical world into electrical energy
- Examples of sensors from biology: the human body
  - eyes: capture optical information (light)
  - ears: capture acoustic information (sound)
  - nose: captures olfactory information (smell)
  - skin: captures tactile information (shape, texture)

# Sensing (Data Acquisition)



- Sensors capture phenomena in the physical world (process, system, plant)
- Signal conditioning prepare captured signals for further use (amplification, attenuation, filtering of unwanted frequencies, etc.)
- Analog-to-digital conversion (ADC) translates analog signal into digital signal
- Digital signal is processed and output is often given (via digital-analog converter and signal conditioner) to an actuator (device able to control the physical world)

#### Sensor Classifications

 Physical property to be monitored determines type of required sensor

| Туре              | Examples                                                                    |
|-------------------|-----------------------------------------------------------------------------|
| Temperature       | Thermistors, thermocouples                                                  |
| Pressure          | Pressure gauges, barometers, ionization gauges                              |
| Optical           | Photodiodes, phototransistors, infrared sensors, CCD sensors                |
| Acoustic          | Piezoelectric resonators, microphones                                       |
| Mechanical        | Strain gauges, tactile sensors, capacitive diaphragms, piezoresistive cells |
| Motion, vibration | Accelerometers, mass air flow sensors                                       |
| Position          | GPS, ultrasound-based sensors, infrared-based sensors, inclinometers        |
| Electromagnetic   | Hall-effect sensors, magnetometers                                          |
| Chemical          | pH sensors, electrochemical sensors, infrared gas sensors                   |
| Humidity          | Capacitive and resistive sensors, hygrometers, MEMS-based humidity sensors  |
| Radiation         | Ionization detectors, Geiger-Mueller counters                               |

#### Sensors



- Enabled by recent advances in MEMS technology
- Integrated Wireless Transceiver
- Limited in
  - Energy
  - Computation
  - Storage
  - Transmission range
  - Bandwidth

#### Sensors

#### Modern Sensor Nodes



UC Berkeley: COTS Dust



UC Berkeley: COTS Dust



UC Berkeley: Smart Dust



UCLA: WINS



Rockwell: WINS



JPL: Sensor Webs

## Sensor Nodes





# Sensors (contd.)

- The overall architecture of a sensor node consists of:
  - The sensor node processing subsystem running on sensor node main CPU
  - The sensor subsystem and
  - The communication subsystem
- The processor and radio board includes:
  - TI MSP430 microcontroller with 10kB RAM
  - 16-bit RISC with 48K Program Flash
  - IEEE 802.15.4 compliant radio at 250 Mbps
  - 1MB external data flash
  - Runs TinyOS 1.1.10 or higher
  - Two AA batteries or USB
  - 1.8 mA (active); 5.1uA (sleep)



Crossbow Mote TPR2400CA-TelosB

#### Overall Architecture of a Sensor Node



### Wireless Sensor Network (WSN)



- Multiple sensors (often hundreds or thousands) form a network to cooperatively monitor large or complex physical environments
- Acquired information is wirelessly communicated to a base station (BS), which propagates the information to remote devices for storage, analysis, and processing

#### Networked vs. Individual Sensors

- Extended range of sensing:
  - Cover a wider area of operation
- Redundancy:
  - Multiple nodes close to each other increase fault tolerance
- Improved accuracy:
  - Sensor nodes collaborate and combine their data to increase the accuracy of sensed data
- Extended functionality:
  - Sensor nodes can not only perform sensing functionality, but also provide forwarding service.

### History of Wireless Sensor Networks

- DARPA:
  - Distributed Sensor Nets Workshop (1978)
  - Distributed Sensor Networks (DSN) program (early 1980s)
  - Sensor Information Technology (SensIT) program
- UCLA and Rockwell Science Center
  - Wireless Integrated Network Sensors (WINS)
  - Low Power Wireless Integrated Microsensor (LWIM) (1996)
- UC-Berkeley
  - Smart Dust project (1999)
  - Concept of "motes": extremely small sensor nodes
- Berkeley Wireless Research Center (BWRC)
  - PicoRadio project (2000)
- MIT
  - μAMPS (micro-Adaptive Multidomain Power-aware Sensors) (2005)

### History of Wireless Sensor Networks

- Recent commercial efforts
  - Crossbow (<u>www.xbow.com</u>)
  - Sensoria (<u>www.sensoria.com</u>)
  - Worldsens (<u>worldsens.citi.insa-lyon.fr</u>)
  - Dust Networks (<u>www.dustnetworks.com</u>)
  - Ember Corporation (<u>www.ember.com</u>)

#### **WSN** Communication

- Characteristics of typical WSN:
  - Low data rates (comparable to dial-up modems)
  - Energy-constrained sensors
- IEEE 802.11 family of standards
  - Most widely used WLAN protocols for wireless communications in general
  - Can be found in early sensor networks or sensors networks without stringent energy constraints
- IEEE 802.15.4 is an example for a protocol that has been designed specifically for short-range communications in WSNs
  - Low data rates
  - Low power consumption
  - Widely used in academic and commercial WSN solutions

## Single-Hop vs. Multi-Hop

#### Star topology

- Every sensor communicates directly (single-hop) with the base station
- May require large transmit powers and may be infeasible in large geographic areas

#### Mesh topology

- Sensors serve as relays (forwarders) for other sensor nodes (multihop)
- May reduce power consumption and allows for larger coverage
- Introduces the problem of routing



## Challenges in WSNs: Energy

- Sensors typically powered through batteries
  - replace battery when depleted
  - recharge battery, e.g., using solar power
  - discard sensor node when battery depleted
- For batteries that cannot be recharged, sensor node should be able to operate during its entire mission time or until battery can be replaced
- Energy efficiency is affected by various aspects of sensor node/network design
- Physical layer:
  - switching and leakage energy of CMOS-based processors

$$E_{CPU} = E_{switch} + E_{leakage} = C_{total} * V_{dd}^{2} + V_{dd} * I_{leak} * \Delta t$$

## Challenges in WSNs: Energy

- Medium access control layer:
  - contention-based strategies lead to energy-costly collisions
  - problem of idle listening
- Network layer:
  - responsible for finding energy-efficient routes
- Operating system:
  - small memory footprint and efficient task switching
- Security:
  - fast and simple algorithms for encryption, authentication, etc.
- Middleware:
  - in-network processing of sensor data can eliminate redundant data or aggregate sensor readings

# Challenges in WSNs: Self-Management

- Ad-hoc deployment
  - many sensor networks are deployed "without design"
    - sensors dropped from airplanes (battlefield assessment)
    - sensors placed wherever currently needed (tracking patients in disaster zone)
    - moving sensors (robot teams exploring unknown terrain)
  - sensor node must have some or all of the following abilities
    - determine its location
    - determine identity of neighboring nodes
    - configure node parameters
    - discover route(s) to base station
    - initiate sensing responsibility

## Challenges in WSNs: Self-Management

- Unattended operation
  - Once deployed, WSN must operate without human intervention
  - Device adapts to changes in topology, density, and traffic load
  - Device adapts in response to failures
- Other terminology
  - Self-organization is the ability to adapt configuration parameters based on system and environmental state
  - Self-optimization is the ability to monitor and optimize the use of the limited system resources
  - Self-protection is the ability recognize and protect from intrusions and attacks
  - Self-healing is the ability to discover, identify, and react to network disruptions

# Challenges in WSNs: Wireless Networks

- Wireless communication faces a variety of challenges
- Attenuation:
  - limits radio range

$$P_r \mu \frac{P_t}{d^2}$$

- Multi-hop communication:
  - increased latency
  - increased failure/error probability
  - complicated by use of duty cycles

## Challenges in WSNs: Decentralization

- Centralized management (e.g., at the base station) of the network often not feasible to due large scale of network and energy constraints
- Therefore, decentralized (or distributed) solutions often preferred, though they
  may perform worse than their centralized counterparts
- Example: routing
- Centralized:
  - BS collects information from all sensor nodes
  - BS establishes "optimal" routes (e.g., in terms of energy)
  - BS informs all sensor nodes of routes
  - Can be expensive, especially when the topology changes frequently
- Decentralized:
  - Each sensors makes routing decisions based on limited local information
  - Routes may be nonoptimal, but route establishment/management can be much cheaper

# Challenges in WSNs: Design Constraints

- Many hardware and software limitations affect the overall system design
- Examples include:
  - Low processing speeds (to save energy)
  - Low storage capacities (to allow for small form factor and to save energy)
  - Lack of I/O components such as GPS receivers (reduce cost, size, energy)
  - Lack of software features such as multi-threading (reduce software complexity)

## Challenges in WSNs: Security

- Sensor networks often monitor critical infrastructure or carry sensitive information, making them desirable targets for attacks
- Attacks may be facilitated by:
  - Remote and unattended operation
  - Wireless communication
  - Lack of advanced security features due to cost, form factor, or energy
- Conventional security techniques often not feasible due to their computational, communication, and storage requirements
- As a consequence, sensor networks require new solutions for intrusion detection, encryption, key establishment and distribution, node authentication, and secrecy

# Comparison

| Traditional Networks                                                                                   | Wireless Sensor Networks                                                            |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| General-purpose design; serving many applications                                                      | Single-purpose design; serving one specific application                             |
| Typical primary design concerns are network performance and latencies; energy is not a primary concern | Energy is the main constraint in the design of all node and network components      |
| Networks are designed and engineered according to plans                                                | Deployment, network structure, and resource use are often ad-hoc (without planning) |
| Devices and networks operate in controlled and mild environments                                       | Sensor networks often operate in environments with harsh conditions                 |
| Maintenance and repair are common and networks are typically easy to access                            | Physical access to sensor nodes is often difficult or even impossible               |
| Component failure is addressed through maintenance and repair                                          | Component failure is expected and addressed in the design of the network            |
| Obtaining global network knowledge is typically feasible and centralized management is possible        | Most decisions are made localized without the support of a central manager          |

# Roadmap

- Motivation for a Network of Wireless Sensor Nodes
- Applications
  - Structural Health Monitoring
  - Traffic Control
  - Health Care
  - Pipeline Monitoring
  - Precision Agriculture

# Structural Health Monitoring

#### Motivation

- Events:
  - On August 2, 2007, a highway bridge unexpectedly collapsed in Minnesota
  - Nine people were killed in the event
  - Potential causes: wear and tear, weather, and the weight of a nearby construction project
  - In fact, the BBC reported (August 14, 2007) that China had identified more than 6,000 bridges that were damaged or considered to be dangerous
- These accidents motivate wireless sensor networks for monitoring bridges and similar structures

# Structural Health Monitoring

#### Motivation:

- Traditional inspections:
  - Visual inspection → everyday
    - Labor-intensive, tedious, inconsistent, and subjective
  - Basic inspections at least once a year
  - Detailed inspection → at least every five years on selected bridges
  - Special inspections → according to technical needs
    - The rest require sophisticated tools → expensive, bulky, and power consuming

# Local and Global Inspections

- Local inspection techniques focus on detecting highly localized, imperceptible fractures in a structure
  - Requires:
    - a significant amount of time
    - the disruption of the normal operation of the structure
- Global inspection techniques aim to detect a damage or defect that is large enough to affect the entire structure
  - Researcher have been developing and testing wireless sensor networks as global inspection techniques

#### Wisden

#### http://enl.usc.edu/projects/wisden/

- First prototype to employ WSN for monitoring structural health
  - Installing a large scale wired data acquisition system may take several weeks and is quite expensive
  - First deployment for conducting seismic experiments
    - on an imitation of a full-scale 28 × 28 square foot hospital ceiling
    - the overall weight which the ceiling supports is approximately 12,000 pounds

#### Second deployment

- 25 nodes (a tree topology) and a 16 bit vibration card
- a high-sensitive triaxial accelerometer is attached to the vibration card
- designed for high-quality, low-power vibration sensing
- the task of the network was to reliably send time-synchronized vibration data to a remote sink over a multi-hop route
  - NACK
  - hop-by-hop scheme

# Golden Gate Bridge

(University of California)

http://www.cs.berkeley.edu/~binetude/ggb/





Figure: The deployment scenario on the Golden Gate Bridge

## Golden Gate Bridge

- 64 wireless sensor nodes deployed on this bridge
- The network monitors ambient vibrations synchronously
  - 1 KHz rate, ≤10μs jitter, accuracy=30μG, over a 46 hop network
- The goal of the deployment:
  - determine the response of the structure to both ambient and extreme conditions
  - compare actual performance to design predictions
  - measure ambient structural accelerations from wind load
  - measure strong shaking from a potential earthquake
  - the installation and the monitoring was conducted without the disruption of the bridge's operation

# Roadmap

- Motivation for a Network of Wireless Sensor Nodes
- Applications
  - Structural Health Monitoring
  - Traffic Control
  - Health Care
  - Pipeline Monitoring
  - Precision Agriculture
  - Underground Mining

#### **Traffic Control**

#### Motivation:

- Ground transportation is a vital and a complex socio-economic infrastructure
- It is linked with and provides support for a variety of systems, such as supply-chain, emergency response, and public health
- The 2009 Urban Mobility Report reveals that in 2007, congestion caused urban Americans to
  - travel 4.2 billion hours more
  - purchase an extra 2.8 billion gallons of fuel
- Congestion cost is very high \$87.2 billion; an increase of more than
   50% over the previous decade

#### **Traffic Control**

- Motivation:
  - Building new roads is not a feasible solution for many cities
    - lack of free space
    - high cost of demolition of old roads
  - One approach: put in place distributed systems that reduce congestions
    - Gather information about the density, sizes, and speed of vehicles on roads
    - Infer congestions
    - Suggest alternative routes and emergency exits

# The Sensing Task

- Inductive loops (in-road sensing devices)
  - Advantages:
    - Unaffected by weather
    - Provide direct information (few ambiguity)
  - How does it work: using Faraday's induction law
    - A coil of wire (several meters in diameter, passes an electric current through the coil)
    - Buried under the road and connected to a roadside control box
    - Magnetic field strength can be induced as a result of a current and the speed and the size of passing vehicles



## Magnetic Sensors

- Magnetic sensors can determine the direction and speed of a vehicle
  - A moving vehicle can disturb the distribution of the magnetic field
    - by producing its own magnetic field
    - by cutting across it
- The magnitude and direction of the disturbance depends on



## Magnetic Sensors



Figure: Detection of a moving vehicle with an ARM magnetic sensor (Caruso and Withanawasam 1999)

## Magnetic Sensors

- Almost all road vehicles contain a large mass of steel
- The magnetic permeability of steel is much higher than the surrounding air
- Steel has the capacity to concentrate the flux lines of the Earth's magnetic field
- The *concentration* of magnetic flux *varies as* the *vehicle moves*; it can be *detected* from a distance of up to 15m
- The field variation reveals a detailed magnetic signature
- It is possible to distinguish between different types of vehicles

# Roadmap

- Motivation for a Network of Wireless Sensor Nodes
- Applications
  - Structural Health Monitoring
  - Traffic Control
  - Health Care
  - Pipeline Monitoring
  - Precision Agriculture
  - Underground Mining

- A wide range of health care applications have been proposed for WSN, including monitoring patients with:
  - Parkinson's Disease and epilepsy
  - heart patients
  - patients rehabilitating from stroke or heart attack
  - elderly people
- Health care applications do not function as standalone systems
- They are integral parts of a comprehensive and complex health and rescue system

- Motivation:
  - cost is very high
    - according to the US Centers for Medicare and Medicaid Services (CMS):
      - the national health spending of the country in 2008 was estimated to be \$2.4 trillion USD
      - the costs caused by heart disease and stroke are around \$394 billion
    - this is a concern for policy makers, health care providers, hospitals, insurance companies, and patients
  - higher spending does not imply quality service or prolonged lifetime (Kulkarni and Öztürk 2007)
    - for example, in 2000, the US spent more on health care than any other country in the world an average of \$4,500 USD per person but ranked 27th in average life expectancy
    - many countries achieve higher life expectancy rates at a lower cost

#### Motivation:

- preventive health care to reduce health spending and mortality rate
  - but some patients find certain practices inconvenient,
     complicated, and interfering with their daily life (Morris 2007)
  - many miss checkup visits or therapy sessions because of a clash of schedules with established living and working habits, fear of overexertion, or transportation cost

- To deal with these problems, researchers proposed comprehensible solutions that involve the following tasks:
  - building pervasive systems that provide patients with rich information about diseases and their prevention mechanisms
  - seamless integration of health infrastructures with emergency and rescue operations as well as transportation systems
  - developing reliable and unobtrusive health monitoring systems that can be worn by patients to reduce the task and presence of medical personnel
  - alarming nurses and doctors when medical intervention is necessary
  - reducing inconvenient and costly check-up visits by creating reliable links between autonomous health monitoring systems and health institutions

## Commercially Available Sensors

- Pulse oxygen saturation sensors
- Blood pressure sensors
- Electrocardiogram (ECG)
- Electromyogram (EMG) for measuring muscle activities
- Temperature sensors (core body temperature and skin temperature)
- Respiration sensors
- Blood flow sensors
- Blood oxygen level sensor





# Roadmap

- Motivation for a Network of Wireless Sensor Nodes
- Applications
  - Structural Health Monitoring
  - Traffic Control
  - Health Care
  - Pipeline Monitoring
  - Precision Agriculture
  - Underground Mining

## Pipeline Monitoring

- Objective: monitoring gas, water and oil pipelines
- Motivation:
  - management of pipelines presents a formidable challenge
    - long length, high value, high risk
    - difficult access conditions
    - requires continuous and unobtrusive monitoring
  - leakages can occur due to excessive deformations
    - earthquakes
    - landslides or collisions with an external force
    - corrosion, wear, material flaws
    - intentional damage to the structure



## Pipeline Monitoring

- To detect leakages, it is vital to *understand the* characteristics of the substance the pipelines transport
  - fluid pipelines generate a hot-spot at the location of the leak
  - gas pipelines generate a cold-spot due to the gas pressure relaxation
  - fluid travels at a higher propagation velocity in metal pipelines than in a Polyvinyl Chloride (PVC)
  - a large number of commercially available sensors to detect and localize thermal anomalies
    - fiber optics sensors
    - temperature sensors and
    - acoustic sensors

## PipeNet

#### Motivation:

- sewerage systems convey domestic sewage, rainwater runoff, and industrial wastewater to sewerage treatment plants
- historically, these systems are designed to discharge their content to nearby streams and rivers
- subsequently, combined sewer overflows are among the major sources of water quality impairment
- nearly 770 large cities in the US, mainly older communities, have combined sewer systems (Stoianov et al. 2007)

## PipeNet

- The PipeNet prototype has been developed to monitor water pipelines in urban areas
- The task is to monitor:
  - hydraulic and water quality by measuring pressure and pH
  - the water level in combined sewer systems
    - sewer collectors and combined sewer outflows



# Roadmap

- Motivation for a Network of Wireless Sensor Nodes
- Applications
  - Structural Health Monitoring
  - Traffic Control
  - Health Care
  - Pipeline Monitoring
  - Precision Agriculture
  - Underground Mining

## Precision Agriculture

#### Motivation:

- traditionally, a large farm is taken as homogeneous field in terms of resource distribution and its response to climate change, weeds, and pests
- accordingly, farmers administer
  - fertilizers, pesticides, herbicides, and water resources
- in reality, wide spatial diversity in soil types, nutrient content, and other important factors
- therefore, treating it as a uniform field can cause
  - inefficient use of resources
  - loss of productivity
- Precision agriculture is a method of farm management that enables farmers to produce more efficiently through a frugal use of resources

## Precision Agriculture

- Precision agriculture technologies:
  - yield monitors
  - yield mapping
  - variable rate fertilizer
  - weed mapping
  - variable spraying
  - topography and boundaries
  - salinity mapping
  - guidance systems
- Requirements of precision agriculture technologies:
  - collect a large amount of data
  - over several days



# Wine Vineyard (2004)



#### Motivation:

- in a vineyard, temperature is the predominant parameter that affects the quality as well as the quantity of the harvest
- grapes see no real growth until the temperature goes above 10° C
- different grapes have different requirements for heat units
- subsequently, the deployment aims to
  - measure the temperature over a 10° C baseline that a site accumulates over the growing season

## Wine Vineyard (2004)

- Beckwith et al. deploy a WSN to monitor and characterize variation in temperature of a wine vineyard
  - heat summation and periods of freezing temperatures
- 65 nodes in a grid like pattern 10 to 20 meters apart,
   covering about two acres
- Easy to develop the network (1 person day)
  - due to the self-configuration nature of the network
  - inherent structured layout of vineyard fields
- Two essential constraints of the network topology
  - placement of nodes in an area of viticulture interest
  - the support for multi-hop communication

## Wine Vineyard (2004)

- The data were used to investigate several aspects:
  - the existence of co-variance between the temperature data collected by the network
  - growing degree day differences
  - potential frost damage
- The mean data enabled to observe the relative differences between heat units accumulation during that period
  - according to the authors' report, the extent of variation in this vineyard – there was a measured difference of over 35% of heat summation units (HSUs) in as little as 100 meters

## Roadmap

- Motivation for a Network of Wireless Sensor Nodes
- Applications
- Coverage and Connectivity Issues in Sensor Networks
  - Coverage
  - Connectivity

## A Sensor Node



## Sensor Deployment

- How to deploy sensors over a field?
  - Deterministic, planned deployment
  - Random deployment
- Desired properties of deployments?
  - Depends on applications
  - Connectivity
  - Coverage





## Coverage, Connectivity

- Every point is covered by 1 or K sensors
  - 1-covered, K-covered
- The sensor network is connected
  - K-connected
- Others



# Coverage & Connectivity: not independent, not identical

If region is continuous & Rt ≥ 2Rs
 Region is covered ⇒ sensors are connected



# Connectivity Issues

## Power Control for Connectivity

- Adjust transmission range (power)
  - Resulting network is connected
  - Power consumption is minimum

- Transmission range
  - Homogeneous
  - Node-based

## Power Control for K-Connectivity

- For fault tolerance, k-connectivity is desirable
- K-connected graph:
  - K paths between every two nodes
  - with k-1 nodes removed, graph is still connected



## Two Types of Approaches



- Probabilistic
  - How many neighbors are needed?
- Algorithmic
  - Gmax connected
  - Construct a connected subgraph with desired properties





# Probabilistic Approach

How many neighbors are necessary and/or sufficient to ensure connectivity?



## How Many Neighbors are Needed?

Regular deployment of nodes – easy



- Random deployment (Poisson distribution)
- N: number of nodes in a unit square
- Each node connects to its k nearest neighbors
- For what values of k, is network almost sure connected?
   P( network connected ) → 1, as N → ∞

## An Alternative View

- A square of area N
- Poisson distribution of a fixed density λ
- Each node connects to its k nearest neighbors
- For what values of k, is the network almost sure connected?

P( network connected )  $\rightarrow$  1, as N  $\rightarrow \infty$ 

N

## A Related Old Problem

- Packet radio networks (1970s/80s)
- Larger transmission radius
  - Good: more progress toward destination
  - Bad: more interference
- Optimum transmission radius?





## Magic Number

- Kleinrock and Silvester (1978)
  - Model:
    - slotted Aloha
    - homogeneous radius R
    - Poisson distribution
    - maximize one hop progress toward destination
  - Set R so that every station has 6 neighbors on average
  - 6 is the magic number

## More Magic Numbers

- Tobagi and Kleinrock (1984)
  - Eight is the magic number

- Other magic numbers for various protocols and models:
  - 5, 6, 7, 8

## Are Magic Numbers Magic?

- Xue & Kumar (2002)
- For the network to be almost sure connected, Θ(log n) neighbors are necessary and sufficient
- Heterogeneous radius



## Coverage Issues

## Simple Coverage Problem

- Given an area and a sensor deployment
- Question: Is the entire area covered?



#### K-Covered

- 1-covered
- 2-covered
- 3-covered



#### K-Coverage Problem

- Given: region, sensor deployment, integer k
- Question: Is the entire region k-covered?



#### Reference

- C. Huang and Y. Tseng, "The coverage problem in a wireless sensor network,"
  - In WSNA, 2003.
  - Also MONET 2005.

## Density (or Topology) Control

- Given: an area and a sensor deployment
- Problem: turn on/off sensors to maximize the sensor network's life time



#### PEAS and OGDC

- PEAS: A robust energy conserving protocol for long-lived sensor networks
  - Fan Ye, et al (UCLA), ICNP 2002
- "Maintaining Sensing Coverage and Connectivity in Large Sensor Networks"
  - H. Zhang and J. Hou (UIUC), MobiCom 2003

#### **PEAS: Basic Ideas**

- How often to wake up?
- How to determine whether to work or not?



#### How Often to Wake Up?

 Desired: the total wake-up rate around a node equals some given value





#### Inter Wake-up Time

$$f(t) = \lambda \exp(-\lambda t)$$

- exponential distribution
- $\lambda$  = average # of wake-ups per unit time

#### Wake-Up Rates

A 
$$f(t) = \lambda \exp(-\lambda t)$$

B
$$f(t) = \frac{\lambda'}{\lambda'} \exp(-\lambda't)$$

A + B: 
$$f(t) = (\lambda + \lambda') \exp(-(\lambda + \lambda') t)$$

## Adjust Wake-Up Rates

- Working node knows
  - Desired total wake-up rate  $\lambda$ d
  - Measured total wake-up rate  $\lambda$ m
- When a node wakes up, adjusts its  $\lambda$  by  $\lambda := \lambda (\lambda d / \lambda m)$

## Go to Work or Return to Sleep?

Depends on whether there is a working node nearby





## Is the Resulting Network Covered or Connected?

• If Rt  $\geq$  (1 +  $\sqrt{5}$ ) Rp and ... then P(connected)  $\rightarrow$  1

Simulation results show good coverage

## Roadmap

- Motivation for a Network of Wireless Sensor Nodes
- Applications
- Coverage and Connectivity Issues in Sensor Networks
- Routing Protocols for Wireless Sensor Networks

## **Usage and Constraints**

- Gather data locally (Temperature, Humidity, Motion Detection, etc.)
- Send them to a command center (sink)
- Limitations
  - Energy Constrains
  - Bandwidth
  - All layers must be energy aware
  - Need for energy efficient and reliable network routing
  - Maximize the lifetime of the network

## Differences of Routing in WSN and Traditional Networks

- No global addressing
  - Classical IP-based protocols cannot be applied to sensor networks
- Redundant data traffic
  - Multiple sensors may generate same data within the vicinity of a phenomenon
  - Such redundancy needs to be exploited by the routing protocols to improve energy and bandwidth utilization
- Multiple-source single-destination network
  - Almost all applications of sensor networks require the flow of sensed data from multiple regions (sources) to a particular sink
- Careful resource management
  - Sensor nodes are tightly constrained in terms of:
    - Transmission power
    - On-board energy
    - Processing capacity
    - Storage

## Classification of Routing Protocols

- Data Centric:
  - Data-centric protocols are query-based
- Hierarchical:
  - Aim at clustering the nodes so that cluster heads can do some aggregation and reduction of data in order to save energy
- Location-based:
  - Utilize the position information to relay the data to the desired regions rather than the whole network.
- Network Flow & QoS Aware:
  - Are based on general network-flow modeling and protocols that strive for meeting some QoS requirements along with the routing function

#### Hierarchical Routing Protocols

- Scalability is one of the major design attributes of sensor networks
- A single-tier network can cause the gateway to overload with the increase in sensors density
  - Such overload might cause latency in communication and inadequate tracking of events
- The single-gateway architecture is not scalable for a larger set of sensors covering a wider area of interest

#### Hierarchical Protocols

- Maintain energy consumption of sensor nodes
  - By multi-hop communication within a particular cluster
  - By data aggregation and fusion → decrease the number of the total transmitted packets
- LEACH: Low-Energy Adaptive Clustering Hierarchy
- PEGASIS: Power-Efficient GAthering in Sensor Information Systems
  - Hierarchical PEGASIS
- TEEN: Threshold sensitive Energy Efficient sensor Network protocol
  - Adaptive Threshold TEEN (APTEEN)
- Energy-aware routing for cluster-based sensor networks
- Self-organizing protocol

# LEACH: Low-Energy Adaptive Clustering Hierarchy

- One of the first hierarchical routing protocols
- Forms clusters of the sensor nodes based on received signal strength
- Self-organizing, adaptive clustering protocol
- Dynamic cluster formation
- Local cluster heads route the information of the cluster to the sink
- Data processing & aggregation done by cluster head
- Cluster heads change randomly over time balance energy dissipation

#### LEACH - Architecture



#### LEACH's Two Phases

- The LEACH network has two phases: the set-up phase and the steady-state
  - The set-up phase
    - Where cluster-heads are chosen
    - Cluster formation
  - The steady-state
    - The cluster-head is maintained
    - When data is transmitted between nodes



#### Setup Phase

- At the beginning of each round, each node advertises it probability, (depending upon its current energy level) to be the Cluster Head, to all other nodes
  - Nodes (k for each round) with higher probabilities are chosen as the Cluster Heads
- Cluster Heads broadcasts an advertisement message (ADV) using CSMA MAC protocol
- Based on the received signal strength, each non-Cluster Head node determines its Cluster Head for this round (random selection with obstacle)
- Each non-Cluster Head transmits a join-request message (Join-REQ)
   back to its chosen Cluster Head using a CSMA MAC protocol
- Cluster Head node sets up a TDMA schedule for data transmission coordination within the cluster

#### Flow Graph for Setup Phase



#### Cluster Head Selection Algorithm

 P<sub>i</sub>(t) is the probability with which node i elects itself to be Cluster Head at the beginning of the round r+1 (which starts at time t) such that expected number of cluster-head nodes for this round is k

$$E[\#CH] = \sum_{i=1}^{N} P_i(t) * 1 = k.$$
(1)

k = number of clusters during each round

N = number of nodes in the network

## Cluster Head Selection Algorithm

- Each node will be Cluster Head once in N/k rounds
- Probability for each node i to be a cluster-head at time t

$$P_i(t) = \begin{cases} \frac{k}{N - k * (r \operatorname{mod} \frac{N}{k})} : & C_i(t) = 1\\ 0 & : C_i(t) = 0 \end{cases}$$
 (2)

 $C_i(t)$  = it determines whether node i has been a Cluster Head in most recent  $(r \mod(N/k))$  rounds

## **Dynamic Cluster Formation**



Clusters at time t



Clusters at time t+d

#### Steady-State Phase



Timeline showing LEACH operation

- TDMA schedule is used to send data from node to head cluster
- Head Cluster aggregates the data received from node cluster's
- Communication is via direct-sequence spread spectrum (DSSS) and each cluster uses a unique spreading code to reduce intercluster interference
- Data is sent from the cluster head nodes to the BS using a fixed spreading code and CSMA

#### Steady-State Phase



Timeline showing LEACH operation

- Assumptions
  - Nodes are all time synchronized and start the setup phase at same time
    - BS sends out synchronized pulses to the nodes
  - Cluster Head must be awake all the time
- To reduce inter-cluster interference, each cluster in LEACH communicates using direct-sequence spread spectrum (DSSS)
- Data is sent from the cluster head nodes to the BS using a fixed spreading code and CSMA

#### Flow Chart for Steady Phase



#### **LEACH Simulation**



100 node random test network

| Nodes                   | 100                                  |
|-------------------------|--------------------------------------|
| Network size            | $100 \text{ m} \times 100 \text{ m}$ |
| Base station location   | (50, 175)                            |
| Radio propagation speed | $3x10^{8} \text{ m/s}$               |
| Processing delay        | $50 \ \mu s$                         |
| Radio speed             | 1 Mbps                               |
| Data size               | 500 bytes                            |

#### **LEACH – Simulation Result**





**Energy dissipation** 

System Lifetime

#### **LEACH Conclusion**

- Advantages
  - Completely distributed
  - No global knowledge of the network
  - Increases the lifetime of the network
- Disadvantages
  - Uses single-hop routing within cluster → not applicable to networks in large regions
  - Dynamic clustering brings extra overhead (advertisements, etc.)
  - The paper assumes all the nodes begin with same energy this assumption may not be realistic