Wi-Fi Module 3

- 1.) What are the different 802.11 PHY layer standards? Compare their characteristics.
 - There are various 802.11 PHY layer standards such as
 - o 802.11b
 - o 802.11a
 - o 802.11g
 - o 802.11n
 - o 802.11ac
 - o 802.11ax
 - o 802.11be
 - Each PHY layer standard offers improvement in areas Data rate, Modulation technique, QoS services, range etc.
- 2.) What are DSSS and FHSS? How do they work?
 - DSSS stands for Direct Sequence Spread Spectrum.
 - DSSS works by spreading a narrower bandwidth signal into a wider bandwidth signal by combining the data signal with a pseudo-random noise (PN) sequence (called a chipping code).
 - FHSS stands for Frequency Hopping Spread Spectrum.
 - FHSS works by rapidly hopping between different frequencies while transmitting data.
 - The signal stays on each frequency for a short time before hopping to the next.
- 3.) How do modulation schemes work in the PHY layer? Compare different modulation schemes and their performance across various Wi-Fi standards.
 - Modulation schemes directly determine the amount of data that can be transmitted in one symbol
 - Higher modulation schemes mean better throughput, but the signal must not have any interference.
 - Whereas lower modulation schemes support low throughput but can have some tolerances to interference.

- 4.) What is the significance of OFDM in WLAN? How does it improve performance?
 - **OFDM** is a digital modulation technique that splits a high-speed data stream into many slower sub-streams, each transmitted over a **separate**, narrow frequency subcarrier, all within the same channel.
 - It's significance in WLAN include,
 - Better resilience to Multipath fading and interference.
 - It uses the spectrum much more efficiently.
 - It supports parallel transmission and higher data rates.
- 5.) How are frequency bands divided for Wi-Fi? Explain different bands and their channels.
 - There are 3 frequency bands
 - o 2.4 Ghz
 - o 5 Ghz
 - 6 Ghz
 - 2.4 Ghz frequency band has 14 channels spaced 5 MHz apart, but each channel is 22 MHz wide
 - Only 3 non-overlapping channels: 1, 6, 11
- 6.) What is the role of Guard Intervals in WLAN transmission? How does a short Guard Interval improve efficiency?
 - A Guard Interval is a small-time gap inserted between symbols (data blocks) in wireless communication.
 - Long Guard interval means less interference, but bandwidth is wasted.
 - Short Guard interval means only a less time gap is present between packets which means bandwidth is used much more efficiently.
 - This is how a short Guard interval improves efficiency.
- 7.) Describe the structure of an 802.11 PHY layer frame. What are its key components?
 - It consists of preamble, Phy header, PSDU.
 - A preamble is used for synchronization purposes.
 - Phy header has information on
 - Modulation type

- Coding rate
- Length of the payload
- Other information
- PSDU is the Data Field.
- 8.) What is the difference between OFDM and OFDMA?
 - OFDM is a Multiplexing technique
 - OFDMA is a Multiuser access technique
- 9.) What is the difference between MIMO and MU-MIMO?
 - MIMO stands for Multiple Input Multiple Output
 - MU-MIMO stands for Multi User MIMO
 - MIMO means multiple antenna single user
 - MU-MIMO means multiple antennas, multiple users.
- 10.) What are PPDU, PLCP, and PMD in the PHY layer?
 - PPDU Physical Layer Protocol Data unit
 - PLCP Physical layer Convergence protocol
 - PMD Physical Medium Dependent
- 11.) What are the types of PPDU? Explain the PPDU frame format across different Wi-Fi

Generations.

- There are various types of PPDU.
 - Legacy PPDU
 - o HT PPDU
 - VHT PPDU
 - o EH PPDU
 - o EHT PPDU
- 12.) How is the data rate calculated?
 - Data rate is calculated using this formula,

