Measurement of the Number of Muons in Inclined Showers

M. Oliveira, L. Cazon, R. Conceição, M. Pimenta

2nd MARTA Progress Meeting 19th October 2012

Outline

- Reconstruction Mehod
- EM contamination
- Calibration
- Bias and Resolution
- Application to Data
- Conclusions and Prospects

Reconstruction Method

S(r) [VEM]

Method to recover the number of muons on the ground from the LDF

Signal on the ground is due to various components:

Signal as a function of r the distance to the shower core in the perpendicular plane

2000

2

$$S_{total} = S_{\mu} + S_{em} + S_{\mu/em}$$

- At theta=60 the EM component is small, the signal in the tanks is dominated by muons
- Muons give signals proportional to their tracks
- The muonic signal in the tanks can be expressed as:

$$\left(\frac{r + r_{700}}{\sqrt{1000}}\right)^{\beta + \gamma}$$

$$S_{\mu} = N_{\mu} \hat{t}_{\mu}$$

$$\text{NKG:} \quad S_{\mu} = S_{1000} \left(\frac{r}{r_{1000}} \right)^{\beta} \left(\frac{r + r_{700}}{r_{1000} + r_{700}} \right)^{\beta + \gamma}$$

Reconstruction Method

Averaging the Signal:

$$S_{\mu}(\theta) = N_{\mu} \langle t_{\mu}(\theta) \rangle = \rho_{\mu} A_{\theta} \langle t_{\mu}(\theta) \rangle$$

And from the projected area:

$$\langle t_{\mu}(\theta) \rangle = \frac{\int t_{\mu} dA_{\theta}}{\int dA_{\theta}}$$
$$= \frac{V_{station}}{A_{\theta}}$$

Finally we get the number of muons on the ground from the Signal:

$$N_{\mu} = \int_{0}^{2\pi} \int_{R} \rho_{\mu} r dr d\phi$$
$$= \frac{2\pi}{A_{0}} \int S_{\mu} r dr$$

Number of muons from the fit to the signal sampled by the SD

Simulations

The integral of the LDF will be evaluated for various r-cuts

- Assess the best r-cuts for the resolution and bias
- Good separation between the Proton and Iron muon distributions
- 50 Shower Simulations with CORSIKA for proton and iron QGSJET-II.03
- Energy = $10^{18.6} 10^{19.5} \,\text{eV}$
- Theta = 60°
- random Phi
- 5 different realizations for each CORSIKA simulation.
- Total of 250 Reconstructed events for Proton and Iron

 N_{μ} TRUE: Number of Muons obtained from the CORSIKA simulated files

 N_{μ} REC: Number of Muons obtained from our reconstruction using the LDF

Signal Contamination

- Electromagnetic halo decreases with the distance to the shower core
- The method considers all the signal in the stations, EM halo included
- Need for a Calibration in order to attenuate the electromagnetic halo

- EM contamination: **15% 30%**
- Depends on Primary Energy
- Depends on zenith angle

Calibration

Fit to $N_{\mu}(Rec)$ vs $N_{\mu}(True)$ to get parameters in order to attenuate the EM component.

$$N_{\mu}^{rec} = \frac{N_{\mu}^{rec'} - \beta}{\alpha}$$

- Calibration relative to the True number of muons
- Number of muons without the EM component
- alpha an beta are the calibration parameters
- Fit to alpha an beta in order to recover values for all energies

Bias & Resolution

We apply the Proton primary calibration to Proton and Iron primaries

After the calibration:

- Pull Distributions give the Bias and the Resolution of the Method
- Fit in order to determine the distribution for any given energy

Application to Data

Application to **SDHASRec Data** (2004-2012 except 2009) Cuts:

- Energy [E +/- 0.05]
- Theta [**58.5 61.5**]
- T5 Trigger

ENERGY	18.6		18.8		19.0		19.2		19.4		19.5	
EVENTS	600		261		113		47		15		5	
	Mean x10 ⁶	RMS x10 ⁶										
Р	4.96	1.08	6.72	1.54	10.2	1.94	15.6	2.33	25.0	4.11	30.9	5.02
FE	6.13	0.97	8.60	1.21	13.1	1.70	19.8	2.34	30.9	2.89	39.8	3.61
DATA	9.85	1.17	15.2	1.56	23.5	2.23	37.3	3.35	56.3	4.20	69.7	4.78

Muonic Distributions

Elongation Rate

β (data)

= 0.95

Application to Data

Application to **GoldenRec Data** (2004-2012 except 2009) Cuts:

- Energy [E +/- 0.05]
- Theta [**57. 63.**]
- T5 Trigger
- FD HasEnergy

ENERGY	18.6		18.8		19.0		19.2		19.4		19.5	
E VENTS	168		88		48		24		14		7	
	Mean x10 ⁶	RMS x10 ⁶										
Р	4.96	1.08	6.72	1.54	10.2	1.94	15.6	2.33	25.0	4.11	30.9	5.02
FE	6.13	0.97	8.60	1.21	13.1	1.70	19.8	2.34	30.9	2.89	39.8	3.61
DATA	7.75	3.22	12.6	5.13	19.2	10.4	30.1	11.6	47.5	8.65	66.9	11.3

Elongation Rate

$$\beta$$
 (proton) = 0.91
 β (iron) = 0.91
 β (data) = 0.91

Preliminary

Umbrella

These parabolas define a closed contour that contain all possible combinations of mass mixtures for A[1-56]

- Two first momenta of the distribution N_{μ} and RMS(N_{μ})
- The result obtained is not compatible with any of the hadronic interaction models
- Systematics to be included

Umbrella

Conclusions and Prospects

- Encouraging preliminary results
- Simple method that allows to obtain the distribution of the number of muons
- Study of their shape, analysis of the momenta of the distribution
- Measure more muons than the previsions of the models, in accordance with previous works
- None of the models gives an accurate description of the number of muons in Auger data
- Integrate the X^{μ}_{max} , obtain a better resolution

Better understanding of the hadronic models
High Precision measurements of the muonic component of the
EAS, Detector Enhancements

Thank You!

