	EE 046746 - Technion - Computer Vision Tal Daniel Appendix Tutorial - Visualizing CNN Filters				
	Agenda • Visualizing CNN Filters • Approach 1 • Approach 2 • Visualizing Layer Output • Credits				
In [1]:	<pre># imports for the tutorial import numpy as np import matplotlib.pyplot as plt import seaborn as sns from PIL import Image # pytorch import torch import torch.nn as nn import torchvision</pre> # import datasets in torchvision				
	<pre>import torchvision.datasets as datasets # import model zoo in torchvision import torchvision.models as models import torchvision.transforms as transforms from torchvision import utils</pre> Visualizing CNN Filters • In this appendix tutorial we are going to deonstrate how to visualize the filters in a trained CNN.				
In [2]:	We are going to present two approaches, choose the one you are most comfortable with, they are equivalent. Approach 1 Taken from this repo: https://github.com/Niranjankumar-c/DeepLearning-PadhAl/tree/master/DeepLearning_Materials/6_VisualizationCNN_Pytorch # functions to visualize the kernels				
	<pre>def plot_filters_single_channel_big(t): #setting the rows and columns nrows = t.shape[0] * t.shape[2] ncols = t.shape[1] * t.shape[3] npimg = np.array(t.numpy(), np.float32) npimg = npimg.transpose((0, 2, 1, 3)) npimg = npimg.ravel().reshape(nrows, ncols) npimg = npimg.T</pre>				
	<pre>fig, ax = plt.subplots(figsize=(ncols/10, nrows/200))</pre>				
	<pre>npimg = np.array(t.numpy(), np.float32) count = 0 fig = plt.figure(figsize=(ncols, nrows)) # looping through all the kernels in each channel for i in range(t.shape[0]): for j in range(t.shape[1]): count += 1 ax1 = fig.add_subplot(nrows, ncols, count) npimg = np.array(t[i, j].numpy(), np.float32) npimg = (npimg - np.mean(npimg)) / np.std(npimg) npimg = np.minimum(1, np.maximum(0, (npimg + 0.5))) ax1.imshow(npimg)</pre>				
	<pre>ax1.set_title(str(i) + ',' + str(j)) ax1.axis('off') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.tight_layout() def plot_filters_multi_channel(t): # get the number of kernals num_kernels = t.shape[0]</pre>				
	<pre># define number of columns for subplots num_cols = 12 # rows = num of kernels num_rows = num_kernels # set the figure size fig = plt.figure(figsize=(num_cols,num_rows)) # looping through all the kernels for i in range(t.shape[0]): ax1 = fig.add_subplot(num_rows,num_cols,i+1) # for each kernel, we convert the tensor to numpy npimg = np.array(t[i].numpy(), np.float32)</pre>				
	<pre># standardize the numpy image npimg = (npimg - np.mean(npimg)) / np.std(npimg) npimg = np.minimum(1, np.maximum(0, (npimg + 0.5))) npimg = npimg.transpose((1, 2, 0)) ax1.imshow(npimg) ax1.axis('off') ax1.set_title(str(i)) ax1.set_xticklabels([]) ax1.set_yticklabels([])</pre> # plt.savefig('myimage.png', dpi=100) plt.tight_layout()				
	<pre>def plot_weights(model, layer_num, single_channel=True, collated=False): # extracting the model features at the particular layer number layer = model.features[layer_num] # checking whether the layer is convolution layer or not if isinstance(layer, nn.Conv2d): # getting the weight tensor data weight_tensor = model.features[layer_num].weight.data if single_channel: if collated: plot_filters_single_channel_big(weight_tensor) else: plot_filters_single_channel(weight_tensor)</pre>				
In [3]:	<pre>else: if weight_tensor.shape[1] == 3: plot_filters_multi_channel(weight_tensor) else: print("Can only plot weights with three channels with single channel = False") else: print("Can only visualize layers which are convolutional")</pre>				
In [4]:	# visualize weights for vgg16 - first conv layer plot_weights(model, 0, single_channel=False) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23				
	24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63				
In [5]:	# plotting single channel images plot_weights (model, 0, single_channel=True) 0,0				
	8,0 8,1 8,2 9,0 9,1 9,2 10,0 10,1 10,2 11,0 11,1 11,2 12,0 12,1 12,2 13,0 13,1 13,2 14,0 14,1 14,2 15,0 15,1 15,2 16,0 16,1 16,2 17,0 17,1 17,2 18,0 18,1 18,2 19,0 19,1 19,2				
	20,0 20,1 20,2 21,0 21,1 21,2 22,0 22,1 22,2 23,0 23,1 23,2 24,0 24,1 24,2 25,0 25,1 25,2 26,0 26,1 26,2 27,0 27,1 27,2 28,0 28,1 28,2 29,0 29,1 29,2 30,0 30,1 30,2 31,0 31,1 31,2				
	32,0 32,1 32,2 33,0 33,1 33,2 34,0 34,1 34,2 35,0 35,1 35,2 36,0 36,1 36,2 37,0 37,1 37,2 38,0 38,1 38,2 39,0 39,1 39,2 40,0 40,1 40,2 41,0 41,1 41,2 42,0 42,1 42,2 43,0 43,1 43,2				
	44,0 44,1 44,2 45,0 45,1 45,2 46,0 46,1 46,2 47,0 47,1 47,2 48,0 48,1 48,2 49,0 49,1 49,2 50,0 50,1 50,2 51,0 51,1 51,2 52,0 52,1 52,2 53,0 53,1 53,2 54,0 54,1 54,2 55,0 55,1 55,2				
In [6]:	56,0 56,1 56,2 57,0 57,1 57,2 58,0 58,1 58,2 59,0 59,1 59,2 60,0 60,1 60,2 61,0 61,1 61,2 62,0 62,1 62,2 63,0 63,1 63,2 plot_weights (model, 0, single_channel=True, collated=True)				
In [7]:	plot_weights(model, 5, single_channel=True, collated=True)				
In [9]:	• Taken from this repo: https://github.com/pedrodiamel/nettutorial/blob/master/pytorch/pytorch_visualization.ipynb # functions to visualize the kernels def vistensor(tensor, ch=0, allkernels=False, nrow=8, padding=1): vistensor: visualization tensor				
	<pre>@ch: visualization channel @allkernels: visualization all tensores ''' n, c, w, h = tensor.shape if allkernels: tensor = tensor.view(n*c, -1, w, h) elif c != 3: tensor = tensor[:, ch, :, :].unsqueeze(dim=1) rows = np.min((tensor.shape[0] // nrow + 1, 64)) grid = utils.make_grid(tensor, nrow=nrow, normalize=True, padding=padding) plt.figure(figsize=(nrow,rows)) plt.imshow(grid.numpy().transpose((1, 2, 0)))</pre>				
In [12]:	<pre>def savetensor(tensor, filename, ch=0, allkernels=False, nrow=8, padding=2): """ savetensor: save tensor @filename: file name @ch: visualization channel @allkernels: visualization all tensores """ n, c, w, h = tensor.shape if allkernels: tensor = tensor.view(n*c, -1, w, h) elif c != 3: tensor = tensor[:, ch, :, :].unsqueeze(dim=1) utils.save_image(tensor, filename, nrow=nrow) ik = 5</pre>				
Out[12]:	<pre>kernel = model.features[ik].weight.data.clone() print(kernel.shape) vistensor(kernel, ch=0, allkernels=False) # savetensor(kernel, 'kernel.png', allkernels=False) plt.axis('off') torch.Size([128, 64, 3, 3]) (-0.5, 32.5, 64.5, -0.5)</pre>				
In [10]:	<pre>def to_grayscale(image): """</pre>				
	<pre>input is (d,w,h) converts 3D image tensor to grayscale images corresponding to each channel """ image = torch.sum(image, dim=0) image = torch.div(image, image.shape[0]) return image def normalize(image, device=torch.device("cpu")): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) preprocess = transforms.Compose([transforms.Resize((224,224)),</pre>				
	<pre>transforms.ToTensor(), normalize]) image = preprocess(image).unsqueeze(0).to(device) return image def predict(image, model, labels=None): _, index = model(image).data[0].max(0) if labels is not None: return str(index.item()), labels[str(index.item())][1] else: return str(index.item())</pre>				
In [3]:	<pre>def deprocess(image, device=torch.device("cpu")): return image * torch.tensor([0.229, 0.224, 0.225]).to(device) + torch.tensor([0.485, 0.456, 0.406]).to(device) def load_image(path): image = Image.open(path) plt.imshow(image) plt.title("Image loaded successfully") return image # load sample image kitten_img = load_image("./assets/sample_images/kitten.jpg") Image loaded successfully</pre>				
	100 - 200 - 300 - 400 -				
In [4]:	<pre># load pre-trained model device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = models.vgg16(pretrained=True).to(device) # put in evaluation mode model.eval(); # pre-process image and predict label prep_img = normalize(kitten_img, device) print("predicted class:", predict(prep_img, model))</pre> predicted class: 281				
In [17]:	<pre>Output of Each Layer def layer_outputs(image, model): modulelist = list(model.features.modules()) outputs = [] names = [] for layer in modulelist[1:]: image = layer(image) outputs.append(image) names.append(str(layer)) output_im = [] for i in outputs:</pre>				
	<pre>for i in outputs: i = i.squeeze(0) temp = to_grayscale(i) output_im.append(temp.data.cpu().numpy()) fig = plt.figure(figsize=(30, 50)) for i in range(len(output_im)): a = fig.add_subplot(8, 4, i+1) imgplot = plt.imshow(output_im[i]) a.set_axis_off() a.set_title(names[i].partition('(')[0], fontsize=30) plt.tight_layout() # plt.savefig('layer_outputs.jpg', bbox_inches='tight')</pre>				
In [18]:	Conv2d ReLU Conv2d ReLU Conv2d ReLU Conv2d Relu Rel				
	MaxPool2d Conv2d ReLU Conv2d ReLU Conv2d ReLU Conv2d ReLU Conv2d ReLU Conv2d ReLU Conv2d ReLU Conv2d ReLU Conv2d ReLU ReLU				
	Conv2d ReLU Conv2d ReLU				
	MaxPool2d Conv2d ReLU Conv2d				
	ReLU Conv2d ReLU MaxPool2d				
	Conv2d ReLU Conv2d ReLU				
	Conv2d ReLU MaxPool2d				
In [22]:	<pre>Output of Each Filter for a Certain Layer def filter_outputs(image, model, layer_to_visualize): modulelist = list(model.features.modules()) if layer_to_visualize < 0: layer_to_visualize += 31 output = None name = None for count, layer in enumerate(modulelist[1:1);</pre>				
	<pre>for count, layer in enumerate(modulelist[1:]): image = layer(image) if count == layer_to_visualize: output = image name = str(layer) filters = [] output = output.data.squeeze().cpu().numpy() for i in range(output.shape[0]): filters.append(output[i,:,:]) fig = plt.figure(figsize=(10, 10)) for i in range(int(np.sqrt(len(filters))) * int(np.sqrt(len(filters)))):</pre>				
In [23]:	<pre>for i in range(int(np.sqrt(len(filters))) * int(np.sqrt(len(filters)))): ax = fig.add_subplot(np.sqrt(len(filters)), np.sqrt(len(filters)), i+1) imgplot = ax.imshow(filters[i]) ax.set_axis_off() plt.tight_layout()</pre> filter_outputs(prep_img, model, 0)				
	 Credits EE 046746 Spring 21 - Tal Daniel GitHub Repository 1 GitHub Repository 2 GitHub Repository 3 Icons from Icon8.com - https://icons8.com 				