Supplemental Material to TKDE-2020-01-0058 Context-Aware Path Ranking in Road Networks

Sean Bin Yang, Chenjuan Guo [⊠], Bin Yang

1 EDIT DISTANCE BASED RANKING SCORES

In addition to weighted Jaccard Similarity, we use edit distance to derive a ranking score between a candidate path and a ground truth path. We conduct additional experiments on edit distance based ranking scores, where we compare *PathRank* with different regression baselines in Table 1. We observe that when using edit distance to derive ranking scores, *PathRank* also outperforms all baselines. The results are consistent with the results from *PathRank* using weighted Jaccard similarity (see Table 9 in the paper). Thus, we conclude that no matter which ranking score is used, the proposed *PathRank* achieves the best accuracy and thus is a generic path ranking framework.

TABLE 1: Comparison with Regression Baselines, Edit Distance

	Method	MAE	MARE	au	ρ
BF	LR	0.1058	0.5503	0.7103	0.7427
	Lasso	0.1454	0.7565	0.6548	0.6964
	SVR	0.1021	0.5311	0.6631	0.6927
	DT	0.1081	0.5629	0.7184	0.7604
	DTA	0.1128	0.5869	0.7247	0.7637
AF	LR	0.1374	0.7148	0.2960	0.2943
	Lasso	0.1199	0.9970	0.5887	0.6261
	SVR	0.0676	0.3517	0.7577	0.7891
	DT	0.1356	0.7055	0.5727	0.5970
	DTA	0.1601	0.8328	0.4940	0.5207
Deep Learning	LSTM PRC	0.1199 0.0481	0.6239 0.2504	0.7291 0.8585	0.7526 0.8786

2 COMPARISON WITH THE RANKING PART OF TOP- k PATH SELECTION ALGORITHMS

The ranking part of a top-k path selection algorithm is often a simple ranking function on a specific travel cost. More specifically, top-k shortest path selection algorithm uses a ranking function on distances, top-k fastest path selection algorithm uses a ranking function on travel times, and top-k most fuel efficient path selection algorithm uses a ranking function on fuel consumption.

We conduct additional experiments to compare the ranking part of a top-k path selection algorithm with PathRank.

The input is a set of paths that are returned by each of the following top-k path selection algorithms.

- 1) top-k shortest path selection algorithm;
- 2) top-k fastest path selection algorithm;
- 3) top-k most fuel efficient path selection algorithm;

- 4) top-k diversified shortest path selection algorithm;
- 5) top-k diversified fastest path selection algorithm;
- top-k diversified most fuel efficient path selection algorithm.

For inputs 1) and 4), we compare PathRank with the ranking part of the top-k path selection algorithms, which is a ranking function on distance (DI). For inputs 2) and 5), we compare PathRank with the ranking part of the top-k path selection algorithms, which is a ranking function on travel time (TT). For inputs 3) and 6), we compare PathRank with the ranking part of the top-k path selection algorithms, which is a ranking function on fuel consumption (FC).

The results in Table 2 show that PathRank outperforms the ranking part of a top-k path selection algorithm in all settings.

TABLE 2: Comparison with The Ranking Part of Top-k Path Selection Algorithms

Input		Ranking	τ	ρ
Top-k	Shortest Paths 1)	DI	0.7127	0.7555
	Shortest Paths 1)	PRC	0.7551	0.7838
	Fastest Paths 2)	TT	0.6491	0.6988
	rastest ratiis 2)	PRC	0.7488	0.7825
	Fuel Efficient Paths 3)	FC	0.6234	0.6939
	ruel Efficient Latis 3)	PRC	0.7229	0.7538
Top-k Diversified	Chartast Daths 4)	DI	0.6732	0.7303
	Shortest Paths 4)	PRC	0.7997	0.8331
	Eastast Daths 5)	TT	0.6922	0.7410
	Fastest Paths 5)	PRC	0.8167	0.8452
	Fuel Efficient Paths 6)	FC	0.6517	0.7028
	ruei Efficient Faths 0)	PRC	0.7964	0.8271