Enhanced BERT for Natural Language Inference and Sentence Classification

楚天翔

chutianxiang@gmail.com

Background

• Natural Language Inference

Natural language inference (NLI) is the task of determining the inferential relationship between two or more sentences.

A man inspects the uniform of a figure in some East Asian country.	contradiction C C C C C	The man is sleeping
An older and younger man smiling.	neutral N N E N N	Two men are smiling and laughing at the cats playing on the floor.
A black race car starts up in front of a crowd of people.	contradiction C C C C C	A man is driving down a lonely road.
A soccer game with multiple males playing.	entailment EEEEE	Some men are playing a sport.
A smiling costumed woman is holding an umbrella.	neutral N N E C N	A happy woman in a fairy costume holds an umbrella.

Background

• Sentence-embedding method vs. Cross-sentence Method

Pr(y|P,Q)Prediction Layer softmax Aggregation Layer Matching Layer Context Representation Layer Word Representation Layer

Figure from *Natural Language Inference with Hierarchical BiLSTM Max Pooling Architecture*

Figure from *Bilateral Multi-Perspective Matching for Natural Language Sentences*

Background

• BERT

Figure from *BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding*

Figure from Attention is All You Need.

Method

• As baseline, I simply concatenate the [CLS] token representation from the top four hidden layers as the sentence encoding and feed into the two-layer MLP.

• I propose to extend the [CLS] pooling method to a multi-head way ("multi-head over multi-

head").

Method

• I also tried replacing the [CLS] pooling with generalized pooling proposed in *Enhancing Sentence Embedding with Generalized Pooling*.

$$\mathbf{A} = \operatorname{softmax}(\mathbf{W}_{2}\operatorname{ReLU}(\mathbf{W}_{1}\mathbf{H}^{\mathrm{T}} + \boldsymbol{b}_{1}) + \boldsymbol{b}_{2})^{\mathrm{T}}$$

• Currently I only use single-head generalized pooling with no penalization term, more experiments will be carried on later.

Method

- Inspired by *BERT on STILTS*, pretraining with an intermediate task may help downstream tasks.
- After finetuning on the SNLI dataset, I further finetune it on SST and CoLA datasets to see if it can bring any improvement.

Result

• SNLI

Method	Dev set acc (%)	Test set acc (%)
600D Hierarchical BiLSTM with Max Pooling	-	86.6
600D BiLSTM with generalized pooling	-	86.6
512D Dynamic Meta- Embeddings	_	86.7
2400D Multiple-Dynamic Self-Attention Model	-	87.4
Baseline	87.9	87.4
Multi-CLS	88.3	87.7
Generalized Pooling	88.2	87.6

Result

• GLUE

- I also test the proposed multi CLS method in GLUE too.
- Currently experiments are only performed on 5 relative small datasets(CoLA, MRPC,RTE, SST-2, STS-B). The following scores are on dev set.

Dataset	Single CLS	Multi-CLS
CoLA	63.3	65.8
SST-2	94.2	94.4
MRPC	89.0/92.2	89.2/92.3
RTE	74.0	75.1
STS-B	90.2/90.0	90.5/90.3

Result

- SNLI as Intermediate Task.
- Direct finetune consistently yields better results.

Datasets	Direct Finetune	SNLI + Finetune
SST	94.2	93.4
CoLA	63.3	61.6

Analysis

Analysis

Different Layers

Thank You