2 ONE-DIMENSIONAL SEARCH METHODS

2.1 GOLDEN SECTION SEARCH

- The search methods allow us to determine the minimizer of a function $f: \mathbb{R} \to \mathbb{R}$ over a closed interval, say $[a_0, b_0]$.
- We assume that the objective function *f* is unimodal, which means that *f* has only one local minimizer.
- We choose the intermediate points in such a way that the reduction in the range is symmetric, in the sense that

$$a_1 - a_0 = b_0 - b_1 = \rho(b_0 - a_0),$$

where $\rho < 1/2$.

• If $f(a_1) < f(b_1)$, then the minimizer must lie in the range $[a_0, b_1]$. If, on the other hand, $f(a_1) \ge f(b_1)$, then the minimizer is located in the range $[a_1, b_0]$.

• Without loss of generality, imagine that the original range $[a_0,b_0]$ is of unit length. Then, to have only one new evaluation of f, it is enough to choose ρ so that

$$\rho(b_1 - a_0) = b_1 - b_2.$$

• Because $b_1 - a_0 = 1 - \rho$ and $b_1 - b_2 = 1 - 2\rho$, we have

$$\rho(b_1 - a_0) = b_1 - b_2
\rho(1 - \rho) = 1 - 2\rho
\rho^2 - 3\rho + 1 = 0
\rho = \frac{3 \pm \sqrt{5}}{2}$$

- Because we require that $\rho < 1/2$, we take $\rho = (3 \sqrt{5})/2 \approx 0.382$.
- Using the golden section rule means that at every stage of the uncertainty range reduction (except the first), the objective function/need only be evaluated at one new point. The uncertainty range is reduced by the ratio $1 \rho \approx 0.61803$ at every stage. Hence, N steps of reduction using the golden section method reduces the range by the factor $(1 \rho)^N \approx (0.61803)^N$.

1

Example 2.1.1. Use the golden section search to find the value of x that minimizes

$$f(x) = x^4 - 14x^3 + 60x^2 - 70x$$

in the range [0,2]. Locate this value of x to within a range of 0.3.

After N stages the range [0,2] is reduced by $(0.61803)^N$. So, we choose N so that

$$(0.61803)^N \le 0.3/2.$$

Four stages of reduction will do; that is, N = 4.

Iteration 1.

$$f(a_1) = -24.36$$
,
 $f(b_1) = -18.96$,

where $a_1 = a_0 + \rho(b_0 - a_0) = 0.7639$ and $b_1 = a_0 + (1 - \rho)(b_0 - a_0) = 1.236$. Thus, $f(a_1) < f(b_1)$, so the uncertainty interval is reduced to $[a_0, b_1] = [0, 1.236]$.

Iteration 2.

$$f(a_2) = -21.10,$$

 $f(b_2) = f(a_1) = -24.36,$

where $a_2 = a_0 + \rho(b_1 - a_0) = 0.4721$. Thus, $f(a_2) > f(b_2)$, so the uncertainty interval is reduced to $[a_2, b_1] = [0.4721, 1.236]$.

Iteration 3.

$$f(a_3) = f(b_2) = -24.36,$$

 $f(b_3) = -23.59,$

where $b_3 = a_2 + (1 - \rho)(b_1 - a_2) = 0.9443$. Thus, $f(a_3) < f(b_3)$, so the uncertainty interval is reduced to $[a_2, b_3] = [0.4721, 0.9443]$.

Iteration 4.

$$f(a_4) = -23.84,$$

 $f(b_4) = f(a_3) = -24.36,$

where $a_4 = a_2 + \rho(b_3 - a_2) = 0.6525$. Thus, $f(a_4) > f(b_4)$, so the uncertainty interval is reduced to $[a_4, b_3] = [0.6525, 0.9443]$.

Note that $b_3 - a_4 = 0.292 < 0.3$.

2.2 FIBONACCI SEARCH

• Suppose now that we are allowed to vary the value ρ from stage to stage, so that at the kth stage in the reduction process we use a value ρ_k , at the next stage we use a value ρ_{k+1} , and so on.

• Without loss of generality, imagine that the range $[a_{k-1}, b_{k-1}]$ is of unit length. Then, to have only one new evaluation of f, it is enough to choose ρ_{k+1} so that

$$\rho_{k+1}(b_k - a_{k-1}) = b_k - b_{k+1}.$$

• Because $b_k - a_{k-1} = 1 - \rho_k$ and $b_k - b_{k+1} = 1 - 2\rho_k$, we have

$$\begin{split} \rho_{k+1}(b_k - a_{k-1}) &= b_k - b_{k+1} \\ \rho_{k+1}(1 - \rho_k) &= 1 - 2\rho_k \\ \rho_{k+1} &= \frac{1 - \rho_k - \rho_k}{1 - \rho_k} \\ \rho_{k+1} &= 1 - \frac{\rho_k}{1 - \rho_k} \end{split}$$

- Then, after *N* iterations of the algorithm, the uncertainty range is reduced by a factor of $(1 \rho_1)(1 \rho_2) \cdots (1 \rho_N)$.
- The sequence $\rho_1, \rho_2, ...$ that minimizes the factor above is

$$\rho_1 = 1 - \frac{F_N}{F_{N+1}}, \rho_2 = 1 - \frac{F_{N-1}}{F_N}, \dots, \rho_k = 1 - \frac{F_{N-k+1}}{F_{N-k+2}}, \dots, \rho_N = 1 - \frac{F_1}{F_2}, \dots$$

where the F_k are the elements of the Fibonacci sequence.

- The **Fibonacci sequence** is defined as follows. First, let $F_{-1} = 0$ and $F_0 = 1$ by convention. Then, for $k \ge 0$, $F_{k+1} = F_k + F_{k-1}$.
- Some values of elements in the Fibonacci sequence are as follows: $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, F_5 = 8, F_6 = 13, F_7 = 21, F_8 = 34$.
- In the Fibonacci search method, the uncertainty range is reduced by the factor:

$$(1 - \rho_1)(1 - \rho_2) \cdots (1 - \rho_N) = \frac{F_N}{F_{N+1}} \frac{F_{N-1}}{F_N} \cdots \frac{F_1}{F_2} = \frac{1}{F_{N+1}}.$$

• Fibonacci method is better than the golden section method in that it gives a smaller final uncertainty range.

- In the final iteration of the Fibonacci search method, because $\rho_N = 1 F_1/F_2 = 1/2$, the two intermediate points coincide in the middle of the uncertainty interval, and therefore we cannot further reduce the uncertainty range.
- To get around this problem, we perform the new evaluation for the last iteration using $\rho_N = 1/2 \varepsilon$, where ε is a small number. Therefore, in the worst case, the reduction factor in the uncertainty range for the Fibonacci method is

$$(1 - \rho_1)(1 - \rho_2) \cdots (1 - \rho_N) = \frac{F_N}{F_{N+1}} \frac{F_{N-1}}{F_N} \cdots \frac{F_2}{F_3} \left(\frac{F_1}{F_2} + \varepsilon\right) = \frac{1 + 2\varepsilon}{F_{N+1}}.$$

Example 2.1.1. Use the Fibonacci search to find the value of *x* that minimizes

$$f(x) = x^4 - 14x^3 + 60x^2 - 70x$$

in the range [0,2]. Locate this value of x to within a range of 0.3.

After N stages the range [0, 2] is reduced by $(1 + 2\varepsilon)/F_{N+1}$. So, we choose N so that

$$\frac{1+2\varepsilon}{F_{N+1}} \le \frac{0.3}{2}.$$

Let $\varepsilon = 0.1$. Four stages of reduction will do; that is, N = 4.

Iteration 1.

$$f(a_1) = -24.36 - 24.340,$$

 $f(b_1) = -18.96 - 18.652,$

where $a_1 = a_0 + \rho(b_0 - a_0) = 0.76390.750$ and $b_1 = a_0 + (1 - \rho)(b_0 - a_0) = 1.2361.250$. Thus, $f(a_1) < f(b_1)$, so the uncertainty interval is reduced to $[a_0, b_1] = [0, \frac{1.236}{1.250}]$.

Iteration 2.

$$f(a_2) = \frac{-21.10}{-21.688},$$

 $f(b_2) = f(a_1) = \frac{-24.36}{-24.340},$

where $a_2 = a_0 + \rho(b_1 - a_0) = 0.47210.500$. Thus, $f(a_2) > f(b_2)$, so the uncertainty interval is reduced to $[a_2, b_1] = [0.47210.500, 1.2361.250]$.

Iteration 3.

$$f(a_3) = f(b_2) = \frac{-24.36}{-24.340}$$
,
 $f(b_3) = \frac{-23.59}{-23.000}$,

where $b_3 = a_2 + (1 - \rho)(b_1 - a_2) = \frac{0.9443}{1.000}$. Thus, $f(a_3) < f(b_3)$, so the uncertainty interval is reduced to $[a_2, b_3] = [\frac{0.4721}{0.500}, \frac{0.9443}{0.000}]$.

Iteration 4.

$$f(a_4) = \frac{-23.84 - 24.162}{f(b_4)} = f(a_3) = \frac{-24.36 - 24.340}{f(b_4)}$$

where $a_4 = a_2 + \rho(b_3 - a_2) = 0.65250.700$. Thus, $f(a_4) > f(b_4)$, so the uncertainty interval is reduced to $[a_4, b_3] = [0.65250.700, 0.94431.000]$.

Note that $b_3 - a_4 = 0.3 \le 0.3$.

2.3 NEWTON'S METHOD

• Assume that at each measurement point $x^{(k)}$ we can calculate $f(x^{(k)})$, $f'(x^{(k)})$ and $f''(x^{(k)})$. We can fit a quadratic function through $x^{(k)}$ that matches its first and second derivatives with that of the function f. This quadratic has the form

$$q(x) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) + \frac{1}{2}f''(x^{(k)})(x - x^{(k)})^{2}.$$

- Note that $q(x^{(k)}) = f(x^{(k)})$, $q'(x^{(k)}) = f'(x^{(k)})$, and $q''(x^{(k)}) = f''(x^{(k)})$. Then, instead of minimizing f, we minimize its approximation q.
- The first-order necessary condition for a minimizer of *q* yields

$$0 = q'(x) = f'(x^{(k)}) + f''(x^{(k)})(x - x^{(k)}).$$

• Setting $x = x^{(k+1)}$, we obtain

$$x^{(k+1)} = x^{(k)} - \frac{f'(x^{(k)})}{f''(x^{(k)})}.$$

• Newton's method works well if f''(x) > 0 everywhere. However, if f''(x) < 0 for some x, Newton's method may fail to converge to the minimizer.

Example 2.3.1. Use Newton's method, find the minimizer of

$$f(x) = \frac{1}{2}x^2 - \sin x.$$

The initial value is $x^{(0)} = 0.5$. The required accuracy is $\epsilon = 10^{-5}$, in the sense that we stop when $|x^{(k+1)} - x^{(k)}| < \epsilon$.

We compute

$$f'(x) = x - \cos x$$
, $f''(x) = 1 + \sin x$.

Hence,

$$x^{(1)} = x^{(0)} - \frac{f'(x^{(0)})}{f''(x^{(0)})} = 0.5 - \frac{0.5 - \cos 0.5}{1 + \sin 0.5} = 0.7552$$

$$x^{(2)} = x^{(1)} - \frac{f'(x^{(1)})}{f''(x^{(1)})} = x^{(1)} - \frac{0.02710}{1.685} = 0.7391$$

$$x^{(3)} = x^{(2)} - \frac{f'(x^{(2)})}{f''(x^{(2)})} = x^{(2)} - \frac{9.461 \times 10^{-5}}{1.673} = 0.7390$$

$$x^{(4)} = x^{(3)} - \frac{f'(x^{(3)})}{f''(x^{(3)})} = x^{(3)} - \frac{1.17 \times 10^{-9}}{1.673} = 0.7390$$

Note that $|x^{(4)} - x^{(3)}| < 10^{-5}$. Furthermore, $f'(x^{(4)}) = -8.6 \times 10^{-6} \approx 0$. Observe that $f''(x^{(4)}) = 1.673 > 0$, so we can assume that $x^* \approx x^{(4)}$ is a strict minimizer.

• Newton's method can also be viewed as a way to drive the first derivative of f to zero. Indeed, if we set g(x) = f'(x), then we obtain a formula for iterative solution of the equation g(x) = 0:

$$x^{(k+1)} = x^{(k)} - \frac{g(x^{(k)})}{g'(x^{(k)})}.$$

Example 2.3.2. Apply Newton's method to improve a first approximation, $x^{(0)} = 12$, to the root of the equation

$$g(x) = x^3 - 12.2x^2 + 7.45x + 42 = 0.$$

We have $g'(x) = 3x^2 - 24.4x + 7.45$.

$$x^{(1)} = x^{(0)} - \frac{g(x^{(0)})}{g'(x^{(0)})} = 12 - \frac{102.6}{146.65} = 11.33$$

$$x^{(2)} = x^{(1)} - \frac{g(x^{(1)})}{g'(x^{(1)})} = 11.33 - \frac{14.73}{116.11} = 11.21.$$

2.4 SECANT METHOD

- Newton's method for minimizing *f* uses **second derivatives** of *f*.
- If the second derivative is not available, we may attempt to approximate it using first derivative information. In particular, we may approximate $f''(x^{(k)})$ with

$$\frac{f'(x^{(k)}) - f'(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}.$$

• Using the foregoing approximation of the second derivative, we obtain the algorithm

$$x^{(k+1)} = x^{(k)} - \frac{x^{(k)} - x^{(k-1)}}{f'(x^{(k)}) - f'(x^{(k-1)})} f'(x^{(k)}) = \frac{f'(x^{(k)})x^{(k-1)} - f'(x^{(k-1)})x^{(k)}}{f'(x^{(k)}) - f'(x^{(k-1)})},$$

called the **secant method**.

• Note that the algorithm requires two initial points $x^{(-1)}$ and $x^{(0)}$.

Example 2.4.1. Apply the secant method to find the root of the equation

$$g(x) = x^3 - 12.2x^2 + 7.45x + 42 = 0$$

with starting points $x^{(-1)} = 13$ and $x^{(0)} = 12$.

We have $g'(x) = 3x^2 - 24.4x + 7.45$.

$$x^{(1)} = 11.40$$
.

$$x^{(2)} = 11.25.$$

2.5 REMARKS ON LINE SEARCH METHODS

- One-dimensional search methods play an important role in multidimensional optimization problems. Iterative algorithms for solving such optimization problems typically involve a line search at every iteration.
- Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function that we wish to minimize. Iterative algorithms for finding a minimizer of f are of the form

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k+1)} + \alpha_k \mathbf{d}^{(k)},$$

where $\mathbf{x}^{(0)}$ is a given initial point and $\alpha_k \geq 0$ is chosen to minimize $\phi_k(\alpha) = f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$. The vector $\mathbf{d}^{(k)}$ is called the **search direction**.

• Note that choice of α_k involves a one-dimensional minimization.