Multi-Objective Optimization Model for a Scrum-Based Software Development Company

Generated from Entities, Relationships, Goals, Conditions, Decision Variables CSVs ${\rm August}\ 12,\,2025$

Contents

1	1. Sets (Entities)	2
2	2. Indices	4
3	3. Goals	4
4	4. Conditions	5
5	5. DecisionVariables	6

Modeling Overview

We formulate a mixed-integer, multi-objective model that uses: (i) the **Entities** as sets and attributes, (ii) the **Relationships** as incidence sets between entities, (iii) the provided **Decision Variables**, and (iv) **Goals** and **Conditions** as (soft/hard) objectives and constraints. We scalarize the goals via a weighted sum with signs derived from **GoalType**.

Notation conventions. For each entity attribute used in goals/conditions we introduce parameters named intuitively:

 a_w : Worker availability (from Worker.availability) b_p : Project budget ceiling (from Project.budget)

 $\mathrm{sp}_{us} \quad : \text{UserStory story points (from UserStory.story_points)}$

 ef_{tsk} : Task effort (from Task.effort)

pr_f : Feature priority (from Feature.priority)

nt_{sbl}: SprintBacklog number of tasks (from SprintBacklog.number_of_tasks)

 ag_{sp} : Sprint goal achievement (from Sprint.achievement_of_goal)

 ts_{sre} : Team satisfaction (from SprintRetrospective.team_satisfaction)

 sev_{bl} : Blocker severity (from Blocker.severity)

<u>sp</u>_{vel}: Velocity average story points (from Velocity.avg._story_points)

 tr_{vel} : Velocity trend (from Velocity.trend)

att_{sr}: SprintReview attendees count (from SprintReview.attendees_count)

For relationships, we use incidence sets, e.g. $(us, tsk) \in \mathcal{E}^{US\text{-}TSK}$ iff UserStory us consists of Task tsk (R10).

1 1. Sets (Entities)

- \mathcal{P} : Projects (Project)
- \mathcal{T} : Teams (Team)
- W: Workers (Worker)
- \mathcal{F} : Features (Feature)
- S: Skills (Skill)
- \mathcal{R} : Roles (Role)
- \mathcal{PO} : Product Owners (ProductOwner)
- \mathcal{SM} : Scrum Masters (ScrumMaster)
- \mathcal{PB} : Product Backlogs (ProductBacklog)
- SP: Sprints (Sprint)
- SPP: Sprint Plannings (SprintPlanning)
- \mathcal{DS} : Daily Scrums (DailyScrum)
- SR: Sprint Reviews (SprintReview)

- SRE: Sprint Retrospectives (SprintRetrospective)
- \mathcal{SBL} : Sprint Backlogs (SprintBacklog)
- SG: Sprint Goals (SprintGoal)
- \mathcal{E} : Epics (Epic)
- \mathcal{US} : User Stories (UserStory)
- TSK: Tasks (Task)
- \mathcal{DEV} : Development Snapshots (DevelopmentSnapshot)
- \mathcal{BL} : Blockers (Blocker)
- SH: Stakeholders (Stakeholder)
- VEL: Velocities (Velocity)
- \mathcal{REP} : Release Plans (ReleasePlan)
- \mathcal{RM} : Roadmaps (Roadmap)
- SCB: Scrum Boards (ScrumBoard)
- \mathcal{FED} : Feature Documentations (FeatureDocumentation)

Relationship incidence sets (from Relationships.csv). We introduce:

- $\mathcal{E}^{PB\text{-}F} \subseteq \mathcal{PB} \times \mathcal{F}$ for R7 (contains_feature)
- $\mathcal{E}^{PB-E} \subseteq \mathcal{PB} \times \mathcal{E}$ for R8 (contains_epic)
- $\mathcal{E}^{E\text{-}US} \subseteq \mathcal{E} \times \mathcal{US}$ for R9 (contains_user_story)
- $\mathcal{E}^{US\text{-}TSK} \subset \mathcal{US} \times \mathcal{TSK}$ for R10 (consists_of_tasks)
- $\mathcal{E}^{SBL\text{-}SP} \subset \mathcal{SBL} \times \mathcal{SP}$ for R12 (belongs_to_sprint)
- $\mathcal{E}^{SP\text{-}SG} \subseteq \mathcal{SP} \times \mathcal{SG}$ for R13 (pursues_goal)
- $\mathcal{E}^{SCB\text{-}TSK} \subseteq \mathcal{SCB} \times \mathcal{TSK}$ for R14 (contains_tasks)
- $\mathcal{E}^{FED\text{-}F} \subseteq \mathcal{FED} \times \mathcal{F}$ for R15 (documents_feature)
- $\mathcal{E}^{TSK\text{-}BL} \subseteq \mathcal{TSK} \times \mathcal{BL}$ for R16 $(is_blocked_by)$
- $\mathcal{E}^{VEL-T} \subseteq \mathcal{VEL} \times \mathcal{T}$ for R19 (refers_to_team)
- $\mathcal{E}^{REP\text{-}F} \subseteq \mathcal{REP} \times \mathcal{F}$ for R20 (plans_release)
- $\mathcal{E}^{REP\text{-}RM} \subseteq \mathcal{REP} \times \mathcal{RM}$ for R21 (is_part_of_roadmap)
- $\mathcal{E}^{SP\text{-}DEV} \subseteq \mathcal{SP} \times \mathcal{DEV}$ for R22 (generates_snapshot)

(Other relationships may be handled analogously as metadata or fixed associations.)

2 2. Indices

- $p \in \mathcal{P}, t \in \mathcal{T}, w \in \mathcal{W}, f \in \mathcal{F}, s \in \mathcal{S}, r \in \mathcal{R},$
- $po \in \mathcal{PO}$, $sm \in \mathcal{SM}$, $pb \in \mathcal{PB}$, $sp \in \mathcal{SP}$, $spp \in \mathcal{SPP}$, $ds \in \mathcal{DS}$,
- $sr \in \mathcal{SR}, sre \in \mathcal{SRE}, sbl \in \mathcal{SBL}, sg \in \mathcal{SG}, e \in \mathcal{E},$
- $us \in \mathcal{US}$, $tsk \in \mathcal{TSK}$, $dev \in \mathcal{DEV}$, $bl \in \mathcal{BL}$, $sh \in \mathcal{SH}$,
- $vel \in VEL$, $rep \in REP$, $rm \in RM$, $scb \in SCB$, $fed \in FED$.

3 3. Goals

We scalarize goals with weights $w_i^{(G)}$ and signs from GoalType:

$$\max Z = \sum_{\text{max goals } i} w_i^{(G)} T_i - \sum_{\text{min goals } j} w_j^{(G)} T_j \quad (\text{+ soft-condition preferences; see Section 4}).$$

Each item lists its ID/Name and the term T. it contributes.

- [G0] maximize_team_availability (IsSum=True, max, Worker.availability, weight = 1.0) $T_{G0} = \sum_{w \in \mathcal{W}} a_w.$
- [G1] minimize_total_project_budget (IsSum=True, min, Project.budget, weight = 1.0) Decision uses allocated budget B_p ; limit by b_p (see constraints). $T_{G1} = \sum_{p \in \mathcal{P}} B_p.$
- [G2] maximize_story_points_delivered (IsSum=True, max, UserStory_points, weight = 1.2) $T_{G2} = \sum_{us \in \mathcal{US}} \operatorname{sp}_{us} x_{us}.$
- [G3] minimize_task_effort (IsSum=True, min, Task.effort, weight = 1.0) $T_{G3} = \sum_{tsk \in \mathcal{TSK}} \operatorname{ef}_{tsk} x_{tsk}.$
- [G4] maximize_feature_priority (IsSum=True, max, Feature.priority, weight = 0.8) $T_{G4} = \sum_{f \in \mathcal{F}} \operatorname{pr}_f x_f.$
- [G5] minimize_number_of_tasks_in_sprint_backlog (IsSum=True, min, SprintBacklog.number_of_task weight = 0.7) $T_{G5} = \sum_{sbl \in \mathcal{SBL}} \operatorname{nt}_{sbl}.$
- sbl∈SBL
 [G6] maximize_sprint_goal_achievement (IsSum=True, max, Sprint.achievement_of_goal, weight = 1.5)

Uses user-set scalar weight ω on goal attainment if desired.

$$T_{G6} = \sum_{sp \in \mathcal{SP}} \omega \operatorname{ag}_{sp}.$$

• [G7] maximize_team_satisfaction (IsSum=True, max, SprintRetrospective.team_satisfaction, weight = 1.3)

weight = 1.3)
$$T_{G7} = \sum_{sre \in SRE} ts_{sre}.$$

• [G8] $minimize_blocker_severity$ (IsSum=True, min, Blocker.severity, weight = 1.1)

$$T_{G8} = \sum_{bl \in \mathcal{BL}} \text{sev}_{bl}.$$

• [G9] maximize_average_velocity (IsSum=True, max, Velocity.avg._story_points, weight - 14)

$$T_{G9} = \sum_{vel \in \mathcal{VEL}} \overline{\mathrm{sp}}_{vel}.$$

• [G10] maximize_velocity_trend (IsSum=True, max, Velocity.trend, weight = 0.9)

$$T_{G10} = \sum_{vel \in \mathcal{VEL}} \operatorname{tr}_{vel}.$$

• [G11] maximize_review_attendance (IsSum=True, max, SprintReview.attendees_count,

$$T_{G11} = \sum_{sr \in SR} \operatorname{att}_{sr}.$$

4 4. Conditions

Hard Must-Match (CriteriaType = 2) constraints are enforced strictly. Cannot-Match (CriteriaType = 0) exclude items. May-Match (CriteriaType = 1) are modeled as soft preferences via bonus terms P_k added to Z with their weights.

• [C0] must_have_certified_skills (Must-Match, Skill.certified, weight = 1.0)

Logical: only certified skills are considered in any skill-dependent assignment.

Math: define $S^{cert} = \{s \in S \mid \text{certified}(s) = 1\}$ and restrict any skill-related sums to S^{cert} .

• [C1] prefer_high_feature_status (May-Match, Feature.status, weight = 0.5)

Logical: prefer features with advanced/ready status.

Math (soft):
$$P_{C1} = \sum_{f \in \mathcal{F}} \mathbf{1}\{\text{status}(f) \in \text{Ready/Approved}\} x_f$$
.

• [C2] exclude_blocked_tasks (Cannot-Match, Task.status, weight = 1.0)

Logical: tasks that are currently blocked are excluded.

Math: $x_{tsk} = 0 \quad \forall tsk \in TSK \text{ with status}(tsk) = \text{Blocked.}$

 $\bullet \ [\textbf{C3}] \ \ \textbf{must_have_team_status_active} \ (\textbf{Must-Match}, \ \textbf{Team_status}, \ \textbf{weight} = 1.0) \\$

Logical: only active teams can receive workers.

Math:
$$\sum_{w \in \mathcal{W}} y_{w,t} = 0 \quad \forall t \in \mathcal{T} \text{ with team_status}(t) \neq \text{Active.}$$

• [C4] prefer_product_backlog_status_ready (May-Match, ProductBacklog.status, weight - 0.6)

Logical: prefer PBs in "Ready" state.

Math (soft):
$$P_{C4} = \sum_{pb \in PB} \mathbf{1}\{\text{status}(pb) = \text{Ready}\}.$$

 $\bullet \ [\textbf{C5}] \ \textbf{must_have_worker_status_active} \ (\textbf{Must-Match}, \ \textbf{Worker_status}, \ weight = 1.0) \\$

Logical: only active workers can be assigned.

Math:
$$\sum_{t \in \mathcal{T}} y_{w,t} = 0 \quad \forall w \in \mathcal{W} \text{ with status}(w) \neq \text{Active.}$$

• [C6] prefer_team_type_cross_functional (May-Match, Team.team_type, weight = 0.4) Logical: prefer cross-functional teams.

Math (soft): $P_{C6} = \sum_{t \in \mathcal{T}} \mathbf{1}\{\text{team_type}(t) = \text{CrossFunctional}\} \cdot \min\{1, \sum_{w} y_{w,t}\}.$

• [C7] must_have_sprint_status_active (Must-Match, Sprint.status, weight = 1.0) Logical: only active sprints are counted in sprint-related calculations.

Math: restrict sums involving SP to $SP^{act} = \{ sp \in SP \mid \mathtt{status}(sp) = \mathrm{Active} \}$.

• [C8] exclude_low_priority_user_stories (Cannot-Match, UserStory.priority, weight = 1.0)

Logical: very low priority stories are excluded.

Math: $x_{us} = 0 \quad \forall us \in \mathcal{US} \text{ with priority}(us) < \theta.$

• [C9] prefer_high_benefit_sprint_goal (May-Match, SprintGoal.benefit, weight = 0.7) Logical: prefer sprints whose goals promise higher benefit.

Math (soft): $P_{C9} = \sum_{(sp,sg) \in \mathcal{E}^{SP-SG}} \text{benefit}(sg)$.

• [C10] must_have_skill_category_required (Must-Match, Skill.category, weight = 1.0) Logical: only skills from required categories are eligible.

Math: restrict skill sums to $S^{req} = \{s \in S \mid \mathtt{category}(s) \in \mathtt{RequiredSet}\}.$

• [C11] prefer_location_remote (May-Match, Team.location, weight = 0.3)

Logical: prefer teams that operate remotely, if allowed.

Math (soft & gated): $P_{C11} = \rho \cdot \sum_{t \in \mathcal{T}} \mathbf{1}\{\text{location}(t) = \text{Remote}\} \cdot \min\{1, \sum_{w} y_{w,t}\}.$

Soft-condition aggregation. Let $w_k^{(C)}$ be the weight of a May-Match condition. We augment the objective:

 $Z' = Z + \sum_{\text{May-Match } k} w_k^{(C)} P_k.$

5 5. Decision Variables

- Binary selections
 - $-x_f \in \{0,1\}$: (DVO) select_feature feature f selected for implementation.
 - $-x_{us} \in \{0,1\}$: (DV1) select_user_story user story us included in the sprint.
 - $-x_{tsk} \in \{0,1\}$: (DV2) select_task task tsk included in the sprint plan.
 - $-y_{w,t} \in \{0,1\}$: (DV3) assign_worker_to_team worker w assigned to team t.
 - $-\rho \in \{0,1\}$: (DV10) allow_remote_team.
- Integer/scalar choices
 - $-L \in \{1, 2, 3, 4\}$: (DV4) sprint_length_weeks.
 - $B_p \in [0, 10,000,000]$: (DV5) allocate_project_budget for each $p \in \mathcal{P}$.
 - $-N_t \in \{1,\ldots,50\}$: (DV6) team_size for each $t \in \mathcal{T}$.
 - $-K \in \{1, \dots, 100\}$: (DV7) max_parallel_tasks.
 - $-V \in [0,200]$: (DV8) velocity_target.
 - $-\theta \in \{1, 2, 3, 4, 5\}$: (DV9) priority_threshold.
 - $-\omega \in [0,10]$: (DV11) sprint_goal_weight.

Core structural constraints (logic from relationships/attributes).

$$\sum_{w \in \mathcal{W}} y_{w,t} = N_t \qquad \forall t \in \mathcal{T} \qquad \text{(team size equals a subset of the proof of the pro$$

Final scalarized objective (including soft preferences). Let $\mathcal{G}^{max} = \{G0, G2, G4, G6, G7, G9, G10, G11\}$, $\mathcal{G}^{min} = \{G1, G3, G5, G8\}$ and T_{Gi} as above. Let $\mathcal{C}^{soft} = \{C1, C4, C6, C9, C11\}$ with preference terms P_{Ck} . Weights come from the CSVs. The model solves:

$$\max Z'' = \sum_{i \in \mathcal{G}^{max}} w_i^{(G)} T_{Gi} - \sum_{j \in \mathcal{G}^{min}} w_j^{(G)} T_{Gj} + \sum_{k \in \mathcal{C}^{soft}} w_k^{(C)} P_{Ck}$$

subject to (1)–(10), domain bounds of Section 5, and entity/relationship gating described in Section 4.