Homework 2 & 3

Question 1

- Estimate a prediction model of BuildYear using
 - 80% of "Example.csv" (training data)
 - Stacking model including OLS and RandomForest
- Evaluate it's performance using the remainings 20% of "Example.csv" (test data)

Question 2

- Estimate summary parameters of $\tau(X) = E[Size|Reform = 1, X] E[Size|Reform = 0, X]$ where X = [Distance, BuildYear] as
 - $-E[\tau(X)]$
 - $-\ \tau(X) \simeq \beta_0 + \beta_1 \times Distance + \beta_2 \times BuildYear$
- Use
 - All sample of of "Example.csv"
 - Double Machine Learning (can use DoubleML)
 - Random forest to estimate nuisance functions

Question 3

- Estimate $\tau(X) = E[Size|Reform = 1, X] E[Size|Reform = 0, X]$ using
 - grf package
 - all sample of of "Example.csv"

Question 4

- Estimate $E[\tau(x)|s(x) \leq median(s(x))]$ as follows;
 - $-\ s(x)$ is a "signal" of conditional average difference
 - estimate s(x) with grf and 50% of data
 - given estimated s(x), estimate $E[\tau(x)|s(x) \leq median(s(x))]$ with AIPW and remaining 50% of data

Qeustion 5

- In generally,
 - When $\tau(x)$ can be interpreted as the conditional average effect?
 - Why AIPW estimator may converge even with slower convergence of estiamted nuisance functions?

Details

- Submit script-file (Code for Question 1-4, and comment for Question 5) on ITC-LMS
- DeadLine: Feb 6