CSCE 633: Machine Learning

Lecture 11: Random Forests

Texas A&M University

10-2-18

Last Time

• Decision Trees

Goals of this lecture

• Random Forest

Many decisions are tree-like structures

Medical treatment

Salary in a company

Create a basic tree

make a prediction of e raised to the regression value What is the most important variable?

This partitions our data space

These regions are known as leaves or terminal nodes
B Mortazavi CSE
Copyright 2018

Gini Index and Entropy - A Review

$$G = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk})$$

, which measures the total variance across K classes. This is a measure of node purity.

$$H = -\sum_{k=1}^{K} \hat{p}_{mk} \log(\hat{p}_{mk})$$

, Entropy which takes a value near 0 if all the \hat{p} are near zero or one - smaller value if node is pure

Advantages

- The models are transparent: easily interpretable by human (as long as the tree is not too big)
- Data can contain combination of continuous and discrete features
- Decision tress more closely mirror human decision making than do regressions?
- Graphical representation
- Qualitative predictors without dummy variables!

Disadvantages

- Usually not same level of predictive accuracy as other regression and classification approaches
- Non-robust small change in data can change a large amount of the final estimated tree
- Solutions? Bagging, Random Forest, Boosting

Random Forests

- We grow many classification trees through bagging & randomization
- Bagging (Bootstrap aggregating)
 - · Generate independently bootstrap datasets from original data
 - Run a decision tree in each one of them
- Randomize over the set of attributes
 - Before growing a bootstrap decision tree
 - When splitting an interior node of the classification tree
- No pruning (small trees)
- For each sample, each tree "votes" for a class and we perform majority voting for final decision

Random Forests

Advantages

- Very good performance in practice
- Runs efficiently on large data bases
- Runs efficiently on large feature sets
- Gives estimates of the most relevant variables for the problem

- Decision Trees suffer from high variance
- If we split data in half, tree could be very different on both halves

Bootstrapped Aggregating

• Bootstrap aggregation (bagging) reduces variance!

- Bootstrap aggregation (bagging) reduces variance!
- Given *n* independent observations Z_1, \dots, Z_n each with variance σ^2

- Bootstrap aggregation (bagging) reduces variance!
- Given *n* independent observations Z_1, \dots, Z_n each with variance σ^2
- Variance of mean $\bar{Z} = \frac{\sigma^2}{n}$

- Bootstrap aggregation (bagging) reduces variance!
- Given *n* independent observations Z_1, \dots, Z_n each with variance σ^2
- Variance of mean $\bar{Z} = \frac{\sigma^2}{n}$
- What if we apply this to decision trees? (Classification and Regression Trees - CART)

Bootstrapped Aggregating

• Take B different training sets

- Take B different training sets
- Train f^1 on training set 1

- Take B different training sets
- Train f^1 on training set 1
- Train f^2 on training set 2

- Take B different training sets
- Train f^1 on training set 1
- Train f^2 on training set 2
- ...

- Take B different training sets
- Train f^1 on training set 1
- Train f^2 on training set 2
- ...
- Can average result over B trees for a single low-variance model from $\hat{f}^1(x)$, $\hat{f}^2(x)$, \cdots , $\hat{f}^B(x)$ as $\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^B \hat{f}^b(x)$

- Take B different training sets
- Train f^1 on training set 1
- Train f^2 on training set 2
- ...
- Can average result over B trees for a single low-variance model from $\hat{f}^1(x)$, $\hat{f}^2(x)$, \cdots , $\hat{f}^B(x)$ as $\hat{f}_{avg}(x) = \frac{1}{B} \sum_{b=1}^B \hat{f}^b(x)$
- But where do we come up with B Training sets?

• Take B different bootstraps of our one dataset

• Take B different bootstraps of our one dataset

•
$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{*B} \hat{f}^b(x)$$

- Take B different bootstraps of our one dataset
- $\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{*B} \hat{f}^b(x)$
- Turns out, you can grow these trees without pruning

- Take B different bootstraps of our one dataset
- $\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{*B} \hat{f}^b(x)$
- Turns out, you can grow these trees without pruning
- Regression average the values from each tree

- Take B different bootstraps of our one dataset
- $\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{*B} \hat{f}^b(x)$
- Turns out, you can grow these trees without pruning
- Regression average the values from each tree
- Classification majority vote from each tree

- Take B different bootstraps of our one dataset
- $\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{*B} \hat{f}^b(x)$
- Turns out, you can grow these trees without pruning
- Regression average the values from each tree
- Classification majority vote from each tree
- Test error can be plotted as a function of B

- Take B different bootstraps of our one dataset
- $\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{*B} \hat{f}^b(x)$
- Turns out, you can grow these trees without pruning
- Regression average the values from each tree
- Classification majority vote from each tree
- Test error can be plotted as a function of B
- B is not a critical parameter (will see shortly) so large B does not mean we overfit

Out of Bag Error

• If we repeatedly fit bootstrapped subsets (say 2/3 of data)

Out of Bag Error

- If we repeatedly fit bootstrapped subsets (say 2/3 of data)
- Each time we are left with 1/3 of the data we can call out of bag

Out of Bag Error

- If we repeatedly fit bootstrapped subsets (say 2/3 of data)
- Each time we are left with 1/3 of the data we can call out of bag
- We can estimate error for this called Out of Bag Estimation

Example: Heart Dataset

> summary(data)						
X	Age	Sex	ChestPain	RestBP	Cho1	Fbs
Min. : 1.0	Min. :29.00	Min. :0.0000	asymptomatic:144	Min. : 94.0	Min. :126.0	Min. :0.0000
1st Qu.: 76.5	1st Qu.:48.00	1st Qu.:0.0000	nonanginal: 86	1st Qu.:120.0	1st Qu.:211.0	1st Qu.:0.0000
Median :152.0	Median :56.00	Median :1.0000	nontypical : 50	Median :130.0		
Mean :152.0	Mean :54.44	Mean :0.6799	typical : 23	Mean :131.7		Mean :0.1485
3rd Qu.:227.5	3rd Qu.:61.00	3rd Qu.:1.0000		3rd Qu.:140.0	3rd Qu.:275.0	3rd Qu.:0.0000
Max. :303.0	Max. :77.00	Max. :1.0000		Max. :200.0	Max. :564.0	Max. :1.0000
RestECG	MaxHR	ExAng		Slope	Ca	Thal
Min. :0.0000	Min. : 71.0	Min. :0.0000			Min. :0.0000	fixed : 18
1st Qu.:0.0000	1st Qu.:133.5	1st Qu.:0.0000	1st Qu.:0.00		1st Qu.:0.0000	normal :166
Median :1.0000	Median :153.0	Median :0.0000			Median :0.0000	reversable:117
Mean :0.9901	Mean :149.6	Mean :0.3267			Mean :0.6722	NA's : 2
3rd Qu.:2.0000	3rd Qu.:166.0	3rd Qu.:1.0000	3rd Qu.:1.60		3rd Qu.:1.0000	
Max. :2.0000	Max. :202.0	Max. :1.0000	Max. :6.20 /	4ax. :3.000	Max. :3.0000	
					NA's :4	
AHD						
No :164						
Yes:139						

Example: Heart Dataset

Variable Importance is Lost!

- Interpretting Bagging becomes hard
- No longer possible to decide a variable order from a single tree
- With regression trees overall summary with reduction in RSS at each split
- With classification overall summary in reduction in Gini Index at each split
- Relative importance of predictor variable how often is it in trees?

$$v_j = \frac{1}{M} \sum_{m=1}^{M} \mathbb{I}(j \in T_m)$$

Example: Heart Dataset

Problems with Bagging

• What if you have a strong predictor and a bunch of moderate predictors?

Problems with Bagging

- What if you have a strong predictor and a bunch of moderate predictors?
- Each time, the first variable is that strong predictor

Problems with Bagging

- What if you have a strong predictor and a bunch of moderate predictors?
- Each time, the first variable is that strong predictor
- is variance really reduced?

Problems with Bagging

- What if you have a strong predictor and a bunch of moderate predictors?
- Each time, the first variable is that strong predictor
- is variance really reduced?
- What if at each split of each tree we only consider a subset m of predictors p? (essentially - randomly eliminate the strong predictor when making some trees)

• set $m \approx \sqrt{p}$

- set $m \approx \sqrt{p}$
- Each time $\frac{p-m}{p}$ predictors aren't even considered

- set $m \approx \sqrt{p}$
- Each time $\frac{p-m}{p}$ predictors aren't even considered
- other predictors have a chance

- set $m \approx \sqrt{p}$
- Each time $\frac{p-m}{p}$ predictors aren't even considered
- other predictors have a chance
- Turns out, this process decorrelates trees

- set $m \approx \sqrt{p}$
- Each time $\frac{p-m}{p}$ predictors aren't even considered
- other predictors have a chance
- Turns out, this process decorrelates trees
- The average tree becomes less variable and thus more reliable

Example: Heart Dataset

RF with different *m*

RF with different m

What have we learnt so far

Decision Trees

- Hierarchical (tree-like) structure to perform classification/regression
- Tree structure determined by splitting criterion
 - Entropy (measure of uncertainty), gini index, etc.
- Pruning
 - Prevent overfitting by limiting the depth of the tree
 - Avoids perfect performance on train set
 - Pre/Post-pruning
- Main advantage: interpretability

- Tree ensemble
- Bagging & Randomization
- Good peformance in practice

Takeaways and Next Time

- Decision Trees
- Random Forest
- Next Time: Discussion: Random Forest
- Next Time: Lecture: Boosting