

§ 4.6 上下文无关语言的性质

- ◆2型语言的泵浦引理
- ◆2型语言的封闭性
- ◆2型语言的判定问题
- + 二义性问题

1. 2型语言的泵浦引理

- ■设L是上下文无关语言,存在常数p,如果 $\omega \in L$,且 $|\omega|$ $\geq p$,则 ω 可以写为 $\omega = \omega 1 \omega 2 \omega 0 \omega 3 \omega 4$,使 $\omega 2 \omega 3 \neq \varepsilon$, $|\omega 2 \omega 0 \omega 3| \leq p$,对于 $i \geq 0$ 有 $\omega 1 \omega 2^i \omega 0 \omega 3^i \omega 4 \in L$ 。(不含L={ ε }的情况)
- ■物理意义:
- ■线性语言的泵浦引理是说,在正规集合中,每个足够长的字符串都包含一个短的字串,随便将这个子串在原处重复插入多少次,所得的新字串还是在原正规集中。
- ■2型语言的泵浦引理是说,有两个靠得很近的子串,它们可以重复任意多次(但二者重复的次数相同),所得的新串依然属于该2型语言。

证明:

 \diamondsuit 被G是Chomsky文法(形则A \to BC,A \to a),产生语言L $-\{\epsilon\}$,若 ω \in L且 ω 有一定的长度,则边缘为 ω 的推导村有一定长度的路径。

◆ 对于Chomsky范式,设路径长度笱n,则有边缘长度

路径=4

 $|\omega|$ ≤ 2^{4-1} =8 (第 i 层 最 多 有 2^{i} 个非终结符。第 i+1 层若全为终结符,则 与第 i 层 非终结符个 数相等。)

令被文法G有n个旅终结符,取 $p=2^n$,若 $\omega \in L$,且 $|\omega|$ ≥p (即 $|\omega| \ge 2^n$),则必有 $|\omega| > 2^{n-1}$,即存在一条 长度 > n的路径,至少为n+1。这时,该路径上的结点数为 n+2(包括最高层顶点及最底层叶子)。

- ◆∵G中只有n个旅终结符
- ◆∴在这条路径上必然有某两个结点相同

\diamondsuit 设为v1=v2=A, v1靠近树根,v1到叶子的最长路径为n+1。

令形的

如图: $Z1 = \omega 2\omega 0\omega 3$

$$|Z1| \leq 2^n = p$$

(∵v1到叶子的路径最多为n+1)

 \overrightarrow{m} v1 * => ω 2v2 ω 3, v2 * => ω 0

$$\because$$
v1=v2=A

$$\therefore$$
 v1 * => ω 2v2 ω 3

$$=>\omega 2\omega 2v2\omega 3\omega 3$$

$$=>\omega 2^{i}\omega 2v2\omega 3\omega 3^{i}$$

$$=>\omega 2^{i}v2\omega 3^{i}$$

$$=>\omega 2^{i}\omega 0\omega 3^{i}$$

$$\therefore$$
 S => ω 1 ω 2 ω 0 ω 3 ω 4 * => ω 1 ω 2ⁱ ω 0 ω 3ⁱ ω 4

2型文法泵浦引理的用途:判断一给 定语言不是上下文无关文法。

思路:用反证法。

例: 证明 L={aⁿbⁿcⁿ |n≥1 不是2型语言}

证:假设L是2型语言。 取常数p, $\omega = a^p b^p c^p$, $|\omega| = 3p \ge p$

将ω写成 $\omega = \omega 1 \omega 2 \omega 0 \omega 3 \omega 4$, 其中 | $\omega 2 \omega 3$ | ≥ 1 且

- |ω2ω0ω3 | ≤p. 考虑ω2ω0ω3在ω中所处的位置:
 - ①如果ω2含有a,ω3含有c,
 - $: \omega = a^p b^p c^p$, 则有 | $\omega 2 \omega 0 \omega 3$ | 最小为 | $ab^p c$ | = p+2>p
 - ::不满足泵浦引理的条件。
 - ②如果ω₂、ω3都含有a, (b或c)

其中 $m+n+1 \le p$, $m+1 \ge 1$, k+m+n+1+j=p.

将 ω 2、 ω 3重复i=2次,将有 ω ' = $a^k a^{mi} a^n a^{li} a^{j} b^p c^p$ = $a^{p+m+l} b^p c^p \in L$ (a的个数大于b和c的个数)

二与2型语言的假设矛盾。

(3)若 $\omega 2$ 、 $\omega 3$ 分别包含a和b(b和c)

设ω2=a^m、ω3=bⁿ 且m+n≥1

当取 $\omega = a^k a^m a^{p-m-k} b^j b^n b^{p-j-n} c^p$ 时

将 ω 2、 ω 3重复i=2次,

有将 ω ' = $a^k a^{im} a^{p-m-k} b^j b^{in} b^{p-j-n} c^p \in L$

(::其中a、b个数将大于c的个数)

二与2型语言假设矛盾。

综上,L不是2型语言。

例:证明L={ a^{k2} | k≥1}不是2型语言证: 假设L是2型语言。

由泵浦引理,取常数p,当 ω \in L时, $|\omega|=k^2\geq p$ 将 $\omega=a^{k2}$ 写为 $\omega=\omega1\omega2\omega0\omega3\omega4$,并有

| ω2ω0ω3 | ≤ p 且 | ω2ω3 | ≠ε即 | ω2ω3 | ≥1

则应有ω1ω2ⁱω0ω3ⁱω4 ∈ L

- : | ω2ω0ω3 | ≤ p, | ω2ω3 | ≥1
- ∴1≤ | ω2ω0ω3 | ≤p

又∵ω=a^{k2} ,特别是当取k=p时,

有 $|\omega| = p^2 = |\omega 1 \omega 2 \omega 0 \omega 3 \omega 4|$

∴ $p^2 < |\omega 1\omega 2^2\omega 0\omega 3^2\omega 4| < p^2 + p$

(增加了ω2ω3, 而 | ω2ω3 | ≤ p)

而 $(p+1)^2 = p^2 + 2p + 1 > p^2 + p$

即导致p² < | ω1ω2 ²ω0ω3²ω4 | < (p+1) ²

即ω' ∈L, 与假设L是2型文法矛盾

:L不是2型文法。

2. 2型语言的封闭性

- (1) 设有2型语言L1、L2,则L1∪L2,L1L2,L1*为2型语言。 证明——自学
 - (2) 2型语言对交不封闭

反证: 取反例 L1={ aⁿbⁿc^m | m, n≥1} —— 2型 L2={ a^mbⁿcⁿ | m, n≥1} —— 2型 L1∩L2={aⁿbⁿcⁿ | n≥1} —— 不是2型

- (3) 2型语言对补运算不封闭 若对补封闭,则对交封闭。 已知对交不封闭,
- :.对补不封闭
- (4) 2型语言对置换封闭。 (略)

《 3.2型语言的判定问题——略

4. 二义性问题

- a. 二义性定义:对同一句子(句型)存在两个不同的推导树或存在两个不同的最左(右)推导。
- b. 上下文无关文法的二义性是不可判定的。
- c. 可能导致二义性的某些生成式形式
 - (1) S→SS | β 对句型SSS, 有

将S \rightarrow SS | β 变换为 S \rightarrow SA | A,可消除二义性。 A \rightarrow β

- $(2) S \rightarrow SbS$
- (3) $S \rightarrow aS$ | confige of Computer Science & Technology, BUPT

§ 4.7 受限型上下文无关文法

对文法的生成式形式加以某些限制=>受限型文法一、线性文法:

生成式为A \rightarrow ω 1C ω 2 或 A \rightarrow ω 1 形式的2型文法,其中 ω 1、 ω 2 \in T* , A, C \in N ,且 ω 1 ω 2 \neq ϵ 。

- 由线性文法产生的语言称为线性语言。
- 正则文法为线性文法。反之不成立。

• 例:G1= ({S},{a,b},P,S) S \rightarrow aSa | bSb | ϵ L(G1)={ $\omega\omega$ | ω \in {a,b}* }

- 例: G2= ({S},{a,b},P,S) S \rightarrow aSb | ab L(G2)={aⁿbⁿ | n≥1}
- L(G1)和L(G2)都是线性语言,但不是正则集。

- 二、顺序文法:

设G=(N,T,P,S),若非终结符可被排序为 $A_1A_2...A_n$, N={ $A_1,A_2,...,A_n$ }, 当P中有生成式 $A_k \rightarrow \beta$, 则 β 内不含有l<k的 A_l 。此时称文法G为顺序文法。

- 由顺序文法产生的语言为顺序语言。
- 例: A_1 -> A_2A_1 , A_1 -> A_2 , A_2 -> aA_2b , A_2 ->e

Chapter 4 上下文元系之伤之模 消毒无用等了可选为 消去を 消生 单字对 尚去去五18 Cta /Gtat 下价的场机 M= (Q, T, T, S, 20, 20, F) &, QX(TUE)XT - QXTX 上下文元录 1/2 (9,2,17) 7村往的场机

Coll

作业: ch4习题 23 (1, 2, 3)