Aritmética com inteiros e Representação e ponto flutuante

Fernando Pujaico Rivera¹

¹Universidade Federal de Lavras

Aula-1 2016

Número inteiro positivo (decimal) → binário

Divisões sucessivas por 2

Numero binário → inteiro positivo (decimal)

10010010 binário → **146** decimal

$$+1x2^{7} +0x2^{6} +0x2^{5} +1x2^{4} +0x2^{3} +0x2^{2} +1x2^{1} +0x2^{0}$$
 $+128$
 $+16$
 $+2$
 $=146$

$$A = \sum_{i=0}^{L-1} a_i 2^i \qquad (1)$$

Soma de números inteiros positivos

Soma de números inteiros positivos (desboradmento)

Multiplicação de números inteiros positivos

Multiplicação de números inteiros positivos

Num. negativo com representação Sinal-magnitude [1]

00000000=0 dec ??? 10000000=0 dec

L=8 (bits)

Signo MSB

LSB

+18

O O O I O O I O

A= a7 a6 a5 a4 a3 a2 a1 a0

-18

I O O I O O I O

$$A = \begin{bmatrix} -18 & 1 & 0 & 0 & 1 & 0 \\ 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \end{bmatrix}$$
 $A = \begin{bmatrix} -18 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 & 0 \end{bmatrix}$
 $A = \begin{bmatrix} -18 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 & 0 \end{bmatrix}$
 $A = \begin{bmatrix} -18 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 & 0 \end{bmatrix}$
 $A = \begin{bmatrix} -18 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 & 0 \end{bmatrix}$

(2)

Num. negativo com representação complemento a dois

$$X = \overline{A} + 1$$
, X é o complemento a dois de A .

 $-A = \overline{A} + 1$, $-A$ é o complemento a dois de A .

L=8 (bits)

Signo MSB

LSB

+18

0
0
0
1
0
1
0
 $A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_3 & a_4 & a_3 & a_4 & a_3 & a_4 &$

Num. negativo com representação complemento a dois

$$X = \overline{A} + 1$$
, X é o complemento a dois de A .
 $-A = \overline{A} + 1$, $-A$ é o complemento a dois de A .
L=3 (bits)

0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
-4	1	0	0
-3	1	0	1
-2	1	1	0
-1	1	1	1

$$-2^{L-1} \le A \le 2^{L-1} - 1 \qquad (4)$$

$$B - A = B + \overline{A} + 1 \qquad (5)$$

Soma de números inteiros em complemento a dois

Multiplicação de números inteiros em complemento a dois

Algoritmo de Booth para a multiplicação em complementos de dois.

Divisão de números inteiros com signo

- Carregar o divisor no registrador M e o dividendo nos registradores A e Q. O dividendo deve ser expresso como um número em complemento de dois com 2n bits. Por exemplo, o número 0111 de 4 bits seria representado como 00000111 e o número 1001, como 11111011
- 2. Deslocar o conteúdo dos registradores A e Q, juntos, um bit para a esquerda.
- Se M e A têm o mesmo sinal, fazer A ← A M; caso contrário, A ← A + M.
- A operação anterior será bem-sucedida se o sinal de A for o mesmo, antes e depois da operação.
 - **a.** Se a operação for bem-sucedida ou se (A = 0 e Q = 0), então faça $Q_0 \leftarrow 1$.
 - b. Se a operação não for bem-sucedida e se (A ≠ 0 ou Q ≠ 0), então faça Q₀ ← 0 e restaure o antigo valor de A (somando M a A).
- 5. Repita os passos 2 a 4 enquanto houver bits a examinar em Q.
- 6. Ao final, o resto estará em A. Se o divisor e o dividendo tiverem o mesmo sinal, o quociente estará em Q; caso contrário, o quociente correto é o complemento de dois do número armazenado em Q.

N#0:	0	-3= M = 1101	r
A 1111	Q 1001	Valor inicial	2
1111	0010	Deslocar	
0010=A-M		Subtrair	
1111	0010	Restaurar	3
1110	0100	Deslocar	
0001 = A-M		Subtrair	
1110	0100	Restaurar	2
1100	1000	Deslocar	
1111 = A-M		Subtrair	,
1111	1001	Fazer $Q_0 = 1$	1
1111	0010	Deslocar	
0010 = A-M		Subtrair	
1111	0010	Restaurar	C

Representação em ponto flutuante [1]

	Sinal	Expoente	Mantissa
64bit	1bit	k=11bits	52bits
32bit	1bit	k=8bits	23bits

IEEE-754

$$s 1.M 2^{E}$$

$$s \equiv egin{cases} + & se & Sinal \equiv 0 \ - & se & Sinal \equiv 1 \end{cases}$$
 $M \equiv Mantissa$
 $E \equiv Expoente - \left(2^{k-1} - 1\right)$

IEEE-754

$$S \equiv -$$

$$M \equiv 00110000...$$

$$E \equiv 130 - 127 = 3$$

$$-1.00112^3$$

$$-9.5$$

	Single Precision (32 bits)			
	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0
negative zero	1	0	0	-0
plus infinity	0	255 (all 1s)	0	∞
minus infinity	1	255 (all 1s)	0	-∞
quiet NaN	0 or 1	255 (all 1s)	≠0	NaN
signaling NaN	0 or 1	255 (all 1s)	≠0	NaN
positive normalized nonzero	0	0 < e < 255	f	2 ^{e-127} (1.f)
negative normalized nonzero	1	0 < e < 255	f	-2 ^{e-127} (1.f)

	Double Precision (64 bits)			
	Sign	Biased exponent	Fraction	Value
positive zero	0	0	0	0
negative zero	1	0	0	-0
plus infinity	0	2047 (all 1s)	0	∞
minus infinity	1	2047 (all 1s)	0	-∞
quiet NaN	0 or 1	2047 (all 1s)	≠0	NaN
signaling NaN	0 or 1	2047 (all 1s)	≠0	NaN
positive normalized nonzero	0	0 < e < 2047	f	2 ^{e-1023} (1.f)
negative normalized nonzero	1	0 < e < 2047	f	-2 ^{e-1023} (1.f)

Parâmetro	Simples	Duplo
Tamanho da palavra (bits)	32	64
Tamanho do expoente (bits)	8	11
Polarização do expoente	127	1023
Expoente máximo	127	1023
Expoente mínimo	-126	-1022
Faixa de números (base 10)	10^{-38} , 10^{+38}	10^{-308} , 10^{+308}
Tamanho da mantissa (bits)*	23	52
Número de expoentes	254	2046
Número de frações	2 ²³	2 ⁵²
Número de valores	$1,98 \times 2^{31}$	$1,99 \times 2^{63}$

Floating Point Numbers	Arithmetic Operations
$X = X_S \times B^{X_E}$ $Y = Y_S \times B^{Y_E}$	$X + Y = (X_S \times B^{X_E - Y_E} + Y_S) \times B^{Y_E} $ $X - Y = (X_S \times B^{X_E - Y_E} - Y_S) \times B^{Y_E} $ $X \times Y = (X_S \times Y_S) \times B^{X_E + Y_E} $ $\frac{X}{Y} = \left(\frac{X_S}{Y_S}\right) \times B^{X_E - Y_E} $

References I

[1] William Stallings. Arquitetura e Organização de Computadores - 8 Ed. Prentice Hall.