COMP 3203 Assignment 4

Name: Nirmith Victor D'Almeida

Number: 101160124

1.

a.

Distance Address Range	List Interface
0000000	0
Through	
00111111	
01000000	1
Through	
01011111	
01100000	2
Through	
01111111	
10000000	2
Through	
10111111	
11000000	3
Through	
11111111	

Number of addresses for interface $0 = 2^6 = 64$

Number of addresses for interface $1 = 2^5 = 32$

Number of addresses for interface $2 = 2^6 + 2^5 = 96$

Number of addresses for interface $3 = 2^6 = 64$

b.

Destination Address Range	Link Interface
11000000	0
Through	
11011111	
10000000	1
Through	
10111111	
11100000	2
Through	
11111111	
0000000	3
Through	
01111111	

Number of addresses for interface $0 = 2^5 = 32$

Number of addresses for interface 1 = $2^6 = 64$

Number of addresses for interface $2 = 2^5 = 32$

Number of addresses for interface $3 = 2^7 = 128$

2.

$$\Rightarrow$$
 2⁹ = 512 *IP addresses*

However the first and last IP address cannot be used therefore

b. Yes

IP address and their equivalent binary value

108.17.154.0	01101100 00010001 10011010 00000000

Subnet 1 -> 60 interfaces

Subnet 2 -> 60 interfaces

Subnet 3 -> 125 interfaces

Subnet 4 -> 250 interfaces

Subnet 1

= $2^6=64$ we need 6 bits for host portion, hence subnet mask will be /26 i.e 32-6=26

108.17.154.0/26 -> can be used for subnet 1

Subnet 2

 $=2^6=64$ we need 6 bits for host portion hence subnet mask will be /26 l,e, 32-6=26

108.17.154.64/26 -> can be used for subnet 2

Subnet 3

= $2^7 = 128$ we need 7 bits for host portion hence subnet mask will be /25 i.e 32 - 7 = 25

108.17.154.128/25 -> can be used for subnet 3

Subnet 4

= $2^8 = 256$ we need 8 bits for host portion hence subnet mask will be /24 i.e. 32 - 8 = 24

108.17.155.0/24 -> can be used for subnet 4

Subnet 1	108.17.154.0/26
Subnet 2	108.17.154.64/26
Subnet 3	108.17.154.128/25
Subnet 4	108.17.155.0/24

c. No, since the subnet number 2 will need 9 host bits thereby making subnet mask /23. The given ip address is 108.17.154/23, hence the entire IP range has to be used for subnet 2.