Engenharia de Software Experimental

Prof. Dr. Manoel Mendonça 2014

- Manoel Mendonça
- manoel.g.mendonca@gmail.com
- Ao enviar e-mail, coloque o código da disciplina no campo do assunto: MATE94

Sobre o Curso

O curso deve cobrir, sempre com foco em ciência da computação:

- 1 O processo de pesquisa;
- 2 Princípios éticos e filosóficos associados à pesquisa científica;
- 3 Projeto de estudos experimentais;
- 4 Análise de dados e estatística inferencial;
- 5 Escrevendo sobre resultados experimentais;
- 6 Avaliando resultados experimentais publicados por outros;
- 7 Planejando e avaliando sua própria pesquisa (trabalho individual usado para avaliação no curso e, possivelmente, para ajudar no planejamento da validação do trabalho de doutorado do aluno).

http://disciplinas.dcc.ufba.br/MATE94/WebHome

21/11 Intro ao Curso - Caracterização 28/11 Treinamento do Experimento 1 05/12 Intro à Ciência Experimental 12/12 Execução do Experimento 1 19/12 Introdução à ESE 26/12 RECESSO DE NATAL 02/01 Revisões e Mapeamentos Sistemáticos 09/01 Mapeamento Sistemático – Hands on 16/01 Experimentos Controlados 23/01 Exemplo Exp. Controlado

30/01 Métodos Experimentais I 06/02 Métodos Experimentais II e Explicação do Experimento 2 13/02 QUARTA DE CINZA 20/03 Treinamento do Experimento 2 27/02 Execução do Experimento 2 06/03 Surveys e Lev. de Campo 13/03 Métodos Qualitativos 20/03 Etnografia (Carol) 27/03 Estudos de Caso 03/04 **PROVA**

21/11 Intro ao Curso - Caracterização

28/11 Treinamento do Experimento 1

05/12 Experimentos Controlados

12/12 Métodos Experimentais I

19/12 Apresentação da Fer. START - Métodos Experimentais II

26/12 RECESSO DE NATAL

02/01 RECESSO DE NATAL

09/01 Mapeamento Sistemático Exemplo (Renato) e aula Revisão e Mapeamento Sistemático

16/01 RS: consenso seleção

23/01 Mapeamento Sistemático Exemplo (Renato) e explicação P4

30/01 Revisitando Intro Ciência Experimental, Intro à ESE e explicação P5

06/02 Execução do Experimento 1

13/02 QUARTA DE CINZA

20/02 Surveys e Lev. de Campo/ Estudos de Caso

27/02 Resultados Exp. Controlado (Renato)

06/03 Treinamento do Experimento 2

13/03 Execução do Experimento 2

20/03 Métodos Qualitativos e Etnografia (Carol)

27/03 Resultados da RS e do Experimento 2 (Amancio)

03/04 PROVA

Avaliação

21/11 Sinopse sobre ciência (05/12) OK 28/11 Participar do experimento 05/12 Artigo Crítico sobre ESE (13/03) OK 12/12 19/12 TRABALHO DE R.S. parte 1 (13/01) Mapeamento Sistemático – Escreva em duas páginas o que é um mapeamento sistemático (09/01). 26/12 RECESSO DE NATAL 02/01 RECESSO DE NATAL 09/01 Esclarecimentos sobre o trabalho 16/01 R.S. consenso seleção Parte 2 e Explicação da Parte 3 – Coleta de dados básicos (18/02)

23/01 Explicação da Parte 4 - escrita – Coleta de dados I (25/02) 30/01 Artigos carregados e dúvidas da parte 4 e Explicação da Parte 5 Coleta de dados II (04/03) 06/02 Participar do experimento 13/02 QUARTA DE CINZA 20/02 27/02 06/03 Participar do Experimento 13/03 Participar de Experimento 2 e entregar o artigo. 20/03 Artigo menos um ponto por dia a partir de 21/03-22:00 27/03 03/04

Fazer um sumário de no mínimo 5 páginas do material fornecido sobre ciência, tecnologia, e experimentação. (5/12)

Material compilado a partir de:

- Victor R. Basili, "The Role of Experimentation in Software Engineering", Keynote Speech at ICSE 1996;
- Shari L. Pfleeger, "Evaluating Software Technologies", Tutorial at SBES'2002;
- Guilherme H. Travassos, "Experimental Software Engineering: An Introdution", ESELAW 2005
- Erika Nina Höhn, "Revisão Sistemática", USP/ICMC.

Agenda

- 1. Introdução
 - 1. Motivação
 - 2. Conceitos Básicos
 - 3. Engenharia de Software Experimental
 - 4. Definindo o Tipo de Estudo Experimental
 - 5. Definindo um Estudo Experimental
 - 6. Conclusões e Bibliografia

1. Motivação

O Que é Engenharia de Software?

Engenharia de software é a disciplina que estuda o desenvolvimento e a manutenção de software em escala industrial.

- Técnicas
- Metodologias
- Processos
- Ferramentas

... para gerência, desenvolvimento, manutenção, reengenharia, e componentização de software

- Adotar novas tecnologias
- Testar se uma nova tecnologia é útil para você
- Avaliar o impacto de uma tecnologia no seu negócio

Abordagens que Podem Ser Adotadas

- Perguntar a um perito
- Pesquisar na literatura
- Seguir a prática da indústria
- Fazer um piloto
- Pedir para sair e arrumar outro trabalho menos complicado

SER EXPERIMENTAL

- □ Fazer uma revisão sistemática
- □ Fazer um levantamento de campo (survey)
- Fazer um estudo de caso
- □ Fazer um experimento controlado

- Você acredita no que outros falam ...
- Ou toma uma abordagem científica para engenharia de software...

- Quais são as suas metas e qual é a sua situação?
- 2. Existe evidência na literatura e/ou na indústria e como esta evidência se aplica a SUA situação?
- 3. Se não existe evidência suficiente, que tipo de avaliação experimental você deve fazer?

O Uso da abordagem científica para o desenvolvimento, evolução e manutenção de software é o que chamamos de

Engenharia de Software Experimental

2. Conceitos Básicos

Modelos, Experimentação e Aprendizado: um paradigma experimental

- Para entender uma disciplina é necessário a construção de modelos, não só de produtos mas também de processos e domínios de aplicação;
- Para testar se nossa compreensão está correta precisamos testar estes modelos, isto implica em experimentação;
- Ao se analisar resultados experimentais, nós aprendemos e encapsulamos este conhecimento em modelos mais sofisticados;
- Este paradigma experimental é usado em muitas áreas de conhecimento: física, medicina, química, manufatura, etc.

O Paradigma Experimental

- O Paradigma experimental de uma disciplina evolui pela aplicação do ciclo: modele, experimente, aprenda;
- Normalmente ele começa com a observação e o registro do que é observado, e evolui para a manipulação de variáveis controláveis e a observação do seu efeito em variáveis de interesse;
- A diferença na aplicação do paradigma experimental nos vários campos de conhecimento são ditadas pelos objetos de estudo, as propriedades do sistemas que os contêm, as relações entre os objetos e o sistema, e a cultura da disciplina;
- Isto impacta em:
 - □ como modelos são construídos
 - □ como experimentação é feita.

O Paradigma Experimental em Física

- Física visa entender e predizer o comportamento do universo físico;
- Tem dois grupos bem definidos de pesquisadores, os teóricos e os experimentalistas, e progride a partir do interrelacionamento entre estes dos grupos;
- Teóricos constroem modelos para explicar o universo baseados em teorias sobre variáveis essenciais e sua interação determinada em experimentos anteriores;
- Suas teorias predizem o resultado de eventos mensuráveis;
- Experimentalistas observam, medem, e experimentam para provar ou refutar uma hipótese ou teoria;
- Eles também exploram novos domínios.

O Paradigma Experimental em Medicina

- Também tem dois grupos bem definidos, práticos e os pesquisadores, existe um claro relacionamento entre eles;
- Os pesquisadores visam entender o funcionamento do corpo humano para predizer os efeitos de procedimentos e drogas;
- Os práticos aplicam o conhecimento ganho para definir processos de tratamento do corpo humano;
- Começou como uma forma de arte e só evoluiu quando começou com o ciclo de observação, construção de modelos, experimentação e aprendizado;
- Dificuldades
 - ☐ Estudos variam de experimentos controlados a estudos de caso
 - □ Variância do ser humano dificulta a interpretação de resultados
 - □ É trabalho e complexo para se obter dados
- Nem por isto a medicina não evoluiu muito no tempo!

O Paradigma Experimental em Engenharia de Software

- Como tantas outras disciplinas, a engenharia de software necessita de um ciclo próprio de construção de modelos, experimentação e aprendizado;
- Engenharia de software (também) é uma disciplina de laboratório;
- Devem existir práticos cujo papel é construir cada vez "mais barato" e "mais rápido" sistemas cada vez "melhores", utilizando o conhecimento disponível;
- Devem existir pesquisadores que tentem entender a natureza dos processos e produtos de software e a da relação entre os dois no desenvolvimento e manutenção de sistemas;
- Comparado com outras disciplinas, a Engenharia de Software é uma disciplina muito nova (1967), e a área de experimentação ainda está na sua infância.

O Paradigma Experimental em Engenharia de Software

- A relação entre práticos e pesquisadores é altamente simbiótica:
 - □ Pesquisadores precisam de laboratórios para observar e manipular variáveis, a indústria é o ambiente ideal;
 - □ Práticos precisam entender como melhor construir e manter seus sistemas, os pesquisadores são quem melhor podem auxiliar nesta tarefa.

3. Engenharia de Software Experimental (ESE)

w

Natureza do Software

- Software é desenvolvimento e não produção
 - As fábricas de software quebram um pouco este paradigma
- A maioria das tecnologias são intensivamente humanas;
- Software, domínio, e culturas variam muito. Nem todo software é mesmo.
 - Existem um número enorme de variáveis envolvidas;
 - Seus efeitos são mal compreendidos e modelados;
- Atualmente:
 - Existem poucos modelos
 - Existe pouca compreensão dos limites de tecnologias
 - Existe pouca análise e experimentação controlada

Paradigmas de Pesquisa em ES

Paradigma Analítico

- Baseado em matemática
- Propõe uma teoria formal ou um conjunto de axiomas
- Deriva matematicamente um conjunto de resultados
- Está no cerne da ciência da computação e expõe a herança matemática de nossa área

Paradigma Experimental

- Observa o mundo ou soluções existentes;
- Propõe um modelo de comportamento ou solução melhor;
- Mede e analisa modelo experimentalmente
- Valida (ou refuta) hipóteses e modelo
- Repete o processo para evoluir o conhecimento

.

O Quê o Paradigma Experimental Envolve

- Observação
- Projeto experimental
- Coleta de dados
- Análise qualitativa ou quantitativa
- Avaliação do processo e produtos sendo estudados

Análise Qualitativa x Análise Quantitativa

- Análise Quantitativa
 - □ Medição controlada (normalmente intrusiva)
 - □ Objetiva
 - □ Orientada à Verificação
- Análise Qualitativa
 - Observação naturalística (normalmente não intrusiva)
 - □ Entrevistas e questionários (normalmente intrusivas)
 - □ Subjetiva
 - □ Orientada à descoberta

М

Tipos de Estudos em ESE

Um estudo é o ato de descobrir algo desconhecido ou de testar uma hipótese, pode incluir todos os tipos de análise quantitativa e qualitativa.

- Estudos Experimentais
 - □ Voltado ao teste de hipóteses geralmente quantitativos
 - Experimento controlados, quasi-experimentos, ou estudos pilotos
- Estudos Observacionais
 - Voltado à compreensão e descoberta geralmente são mais qualitativos que quantitativos
 - □ Pesquisa qualitativa ou semi-qualitativa, entrevistas e levantamentos

O Estado da Disciplina Experimental em ES (1)

Aonde está o estado da disciplina de modelagem, experimentação e construção de modelos em ES?

- No começo ...
- Principal conferência mundial é o "International Symposium on Empirical Software Engineering and Measurement" (ESEM, antigo ISESE and Metrics).
- Outra é o "Empirical Assessment of Software Engineering" EASE.
- Principal evento "nacional" é o "Experimental Software Engineering Latin-American Workshop" (ESELAW), dentro do CIBSE.

O Estado da Disciplina Experimental em ES (2)

Uso de Modelos

- □ Modelos empíricos de custo e ocorrência de defeitos
- Modelos de processos
- Modelos de produtos (uso intensivo de modelos matemáticos)

Pouca Experimentação Historicamente

- Teóricos e práticos vêm seus modelos com autoevidentes que não precisam ser testados
- □ Para qualquer modelo e tecnologia precisa-se testar as condições em que eles funcionam adequadamente.

Duas Questões a Serem Respondidas

- O quê estamos estudando e por que estamos estudando?
 - □ Estudos de fatores humanos
 - □ Estudos de projetos e produtos
 - Métodos e técnicas
 - □ Estudos da organização e processos
- Qual o tipo e as características do estudo experimental ?
 - □ Estudos In Vivo
 - □ Estudos in Vitro
 - □ Estudos in Virtuo e in Silico

Tipos de Estudo Experimentais

In Vivo

 Envolve pessoas no seu próprio ambiente de trabalho em condições realistas de trabalho

In Vitro

 Realizado em condições controladas tais como em um laboratório ou um grupo fechado

■ In Virtuo

 □ Realizado em condições controladas onde os participantes interagem com modelos computacionais da realidade (simuladores)

■ In Silico

 □ Participantes e o mundo real são descritos por modelos computacionais (dinâmica de sistemas)

Definindo o que Vai se Estudar

- Qual o objeto de estudo
 - □ O quê será estudado: um processo, um produto, um modelo?
- Qual finalidade do estudo
 - □ Caracterizar (o quê está acontecendo?);
 - □ Avaliar (é bom?);
 - □ Predizer (posso estimar seu comportamento futuro?);
 - □ Controlar (posso manipular eventos e situações?);
 - □ Melhorar (posso melhorar eventos e situações?)
- Qual o foco
 - Quais aspectos e variáveis do objeto de estudo são de meu interesse ?
- Qual a perspectiva
 - Quais grupos de pessoas estão interessadas no estudo ?

4. Definindo o Tipo de Estudo Experimental

Comece com o Objetivo

O que você quer investigar e porque você quer investigar?

Exemplo: Avaliar se o método de projeto XYZ produz resultados melhores que o método ABC

Finalidade: Testar se os dados que você vai coletar confirmarão ou refutarão a hipótese

Levantamento de Campo (Survey)	Estudo Primário	
 Trabalho de campo de levantamento de opinião (caracterizando o universo consultado) 	de várias pessoas	
Estudo de caso	Estudo Primário	
 Aplicação do objeto de estudo em um pequeno (caracterizando o ambiente de aplicação) 	número de casos	
Pesquisa Ação	Estudo Primário	
 Aplicação do objeto de estudo em um pequeno número de casos (caracterizando o ambiente de aplicação) 		
 Todavia o objeto de estudo também estará sen ou evoluído durante o estudo 	•	
Experimento Controlado	Estudo Primário	
 Aplicação do objeto de estudo e do tratamento sob condições fortemente controladas 	de controle em vários casos	
Revisão ou Mapeamento Sistemático	Estudo Secundário	
 Sintetizar a evidência, identificando, avaliando pesquisas disponíveis em relação a uma quest 		

Defina Hipóteses em Termos Quantitativos

Defina hipóteses em termos quantitativos

- □ Em vez de: Avaliar se o método de projeto XYZ produz resultados melhores que o método ABC
- Defina algo do tipo: O código produzido pelo método XYZ produz um menor número de defeitos por milhares de linhas de código fonte que o método ABC

Defina a relação entre conceitos e medidas

□ No exemplo anterior nós queremos medir qualidade e estamos usando número de defeitos para isto. Esta relação entre o que se quer e o que se mede deve ser documentado, e as vezes explicitado em modelos de relacionamento.

Identifique Seu Controle Sobre Variáveis

- Que outras variáveis podem afetar a variável sendo avaliada
 - □ Variável dependente: número de defeitos por milhares de linhas de código
 - Variáveis de estado: experiência do projetista com o método, experiência em projeto, tipo do sistema
- Determine quanto controle você têm sobre estas variáveis
 - Se você está coletando informação depois do fato e não tem nenhum controle – então você irá usar um survey;
 - Se você está coletando informação enquanto desenvolvimento e manutenção está acontecendo, mas não tem controle básico sobre variáveis comportamentais – então você irá fazer um estudo de caso;
 - Se o seu objeto de análise estiver sendo evoluído então você irá fazer uma pesquisa ação;
 - Se você tem controle sobre a maioria das variáveis e controle sobre os participantes – você pode fazer um experimento controlado.
- Uma variável de contexto é uma variável de estado que assume um único valor sobre todos os meus estudos experimentais

- Suponha que você está avaliando o efeito de um método de projeto sobre a qualidade do software resultante
 - Se você não tem controle sobre quem está usando qual método, então você usa um estudo de caso para documentar os resultados;
 - Se você pode controlar quem usa cada método, quando e como estes métodos são usados, então você pode fazer um experimento controlado.

Experimentos *in-vivo* x *in-vitro*

- Experimentos in-vitro são feitos em laboratórios simulando a forma que eles aconteceriam no mundo real;
- Experimentos in-vivo são feitos no mundo real e monitorados à medida em que o uso do objeto de estudo realmente ocorre;
- Em engenharia de software, normalmente experimento controlados são feitos in-vitro e estudos de caso são feitos in-vivo.

Outros Pontos Importantes

- Em experimentos controlados você amostra sobre as variáveis de estado
 - Se experiência é importante você pode incluir pessoas com experiências bem distribuídas.
- Em estudos de caso você amostra das variáveis de estado
 - Se experiência é importante você escolhe para avaliação as pessoas com a experiência característica média de sua organização.
- Em experimentos controlados você pode facilmente definir a variável experimental, a de controle, e as variáveis de estado.
 - As variáveis de estados não devem variar ou devem ter variações igualmente distribuídas entre os tratamentos (controle e experimental)

Fatores a se Considerar

Fator	Experimentos	Estudos de Caso	Survey
Nível de Controle	Alto	Baixo	Baixo
Dificuldade de Controle	Alto	Médio	Médio
Facilidade de Replicação	Alto	Baixo	Alta
Custo de Execução	Alto (in-vivo) Médio (in-vitro)	Médio	Baixo Médio
Riscos à validade	Baixo (in-vivo) Médio (in-vitro)	Médio	Baixo Médio

4. Definindo um Estudo Experimental

Definição (1)

- Defina os Objetivos do seu estudo
 - Sobre o quê você quer aprender, qual o objeto de análise, quais aspectos de interesse, qual a finalidade do estudo, sob qual ponto de vista e em que contexto o estudo será feito.
- Traduza seu Objeto em hipóteses formais
 - □ Hipótese nula: não existe diferença entre tratamentos.
 - Exemplo: n\u00e3o existe diferen\u00e7a entre a qualidade do c\u00e9digo produzido pelas t\u00e9cnicas de projeto XYZ e ABC.
 - Hipótese alternativa: existe diferença entre os tratamentos.
 - Exemplo: técnica XYZ produz código de melhor qualidade que técnica ABC.
- A hipótese nula é considerada verdadeira a não ser que os dados experimentais provem o contrário.

Definição (2)

- Descreva as informações iniciais do experimento
 - □ Identificação: título, tema, área, autor, data.
 - Caracterização: tipo de estudo, objeto de estudo, domínio, objetivo, linguagem, glossário, número de execução e replicação.
 - Introdução: trabalhos relacionados, caracterização do problema, organização do documento (isto terá que ser atualizado mais tarde).

Planejamento

- Defina formalmente o Estudo
 - ☐ Gere projeto experimental para testar hipóteses
 - O projeto experimental é um plano completo para avaliar as variáveis experimentais frente as variáveis de controle acompanhando e mitigando a influência das variáveis de estado
 - Exemplo: Determinar o efeito do uso de C++ na qualidade resultante do código. O projeto experimental deve responder:
 - Como qualidade é medida ?
 - Contra o que o uso de C++ será medido ?
 - Que variáveis influenciam as características analisadas ?
 - Qual destes fatores serão estudados, controlados e ignorados ?
 - Em que ambiente o experimento será rodado ?
 - Que formato experimental será usado ?
 - Quais os riscos à validade dos resultados ?
 - Como os resultados serão analisados ?

м

Planejamento Detalhado (1)

- Definição dos objetos experimentais e objetos de controle
- Definição de variáveis independentes e dependentes
- Projeto Experimental
 - Objetos, medidas, instruções, técnicas, formato experimental e tratamentos.
- Critérios de seleção de participantes, critérios de agrupamento de participantes, técnicas de amostragem a serem utilizadas
- Instrumentação e Recursos necessários: software, hardware, questionários, formulários
- Mecanismos de Análise
- Análise de Validade
 - Interna, externa, construção, instrumentação e conclusão.

Planejamento Detalhado (2)

- Treinamento
 - □ Aplicadores, participantes (processos, artefatos e técnicas)
- Definição do Processo Experimental
- Procedimentos de Execução
 - Objetivos
 - Participantes
 - □ Processo Experimental
 - □ Artefatos Usados
 - Resultados Esperados e Artefatos Resultantes (lições aprendidas e sugestões de modificação)
- Custos experimentais
 - Tempo por tipo de participante, custos de aplicação, custos de análise, custos de empacotamento e divulgação dos resultados

Avaliação do Planejamento

- Consulte com especialistas
 - Consulte com especialistas no domínio para avaliar seus artefatos experimentais
 - Consulte com especialistas em ES para avaliar objetivos e projeto experimental
 - Consulte com especialistas em ESE e estatísticos para avaliar formato experimental e planos de coleta e análise de dados
- Se possível, rode um estudo piloto
 - Rode uma versão simplificada do experimento para avaliar seu projeto e artefatos.
- Redesenhe o experimento e melhore os artefatos conforme necessário

Execução

- Siga os passos especificados no plano;
- Aplique os tratamentos consistentemente, não desvie do plano
 - □ Desvios devem abortar o experimento
 - □ Não se deve "consertar" um experimento durante sua execução (ex. corrigir artefatos)
- Colete dados conforme descrito no plano.

Análise dos Resultados

- Se possível entreviste os participantes para obter feedback:
 - □ Sobre os artefatos
 - Sobre o processo experimental
 - □ Para capturar sua impressão sobre os resultados
- Revise os dados coletados para verificar se eles são úteis e válidos
- Organize os dados em conjuntos para análise de validade, exploração e teste das hipóteses
- Analise os dados com base em princípios estatísticos válidos
- Verifique se as hipóteses são aceitas ou rejeitadas

Empacotamento

- Documente resultados e conclusões de forma que eles possam ser usados pelos seus colegas
- Documente todos os aspectos importantes do experimento de forma a facilitar a sua replicação
 - □ Objetivos, hipóteses, variáveis, tratamentos, e dados obtidos.
 - □ Instruções, descrição do processo experimental, ferramentas e artefatos, manuais e material de treinamento, etc.
- Descreva problemas encontrados, lições aprendidas, e sugestões de evolução do experimento e material utilizado.

Concluindo ...

- Decisões sobre tecnologias devem ser baseadas em raciocínio científico e evidência empírica
- O que esta apresentação deu foi uma introdução superficial aos conceitos de experimentação em ES
 - Se você quer fazer um experimento você tem que ler a bibliografia sobre o assunto e deve procurar um perito na área
- Projetos experimentais devem ser cuidadosamente planejados
 - □ São trabalhosos
 - □ Não dão resultado imediato
 - □ Precisa de apoio da gerência da empresa

- Ŋ,
 - Por ser intensivamente humana, a ES tem características de experimentos em ciências sociais
 - □ Difícil de controlar
 - □ Difícil de coletar dados
 - □ Envolvem dados subjetivos e qualitativos
 - Por usar fortemente ferramentas, pode ter partes automatizadas
 - □ Existe pouco? suporte automatizado para experimentação
 - Quanto mais cuidadoso for o projeto e o controle
 - Mais confiança nos resultados
 - Melhor compreensão do problema
 - □ Mais efetivos são as nossas ações e os resultados obtidos

Endereços Interessantes

- ESELAW
 - CIBSE
- ESEM:
 - □ http://www.esem-conferences.org
- □ EASE:
 - www.cin.ufpe.br/~ease2013/
- International Software Engineering Research Network (ISERN):
 - □ http://isern.iese.de
- Experimental Software Engineering Latin-American Network (ESELAN) discussion list:
 - http://listas.cos.ufrj.br/mailman/listinfo/eselan-l

Bibliografia Básica

- Wohlin, C. Experimentation in Software Engineering, Kluwer Academic Publishers, 2000, 2a Edição 2012
- Juristo, N. and Moreno, A. Basics of Software Engineering Experimentation, Kluwer Academic Publishers, 2000.

Bibliografia Complementar

- Tichy, W. Should Computer Scientists Experiment More?, IEEE Computer, May 1998.
- Zelkowitz, M. and Wallace, D. Experimental Models for Validating Technology?, IEEE Computer, May 1998.
- Marcus Ciolkowski, Oliver Laitenberger, Sira Vegas, and Stefan Biffl. Practical Experiences in the Design and Conduct of Surveys in Empirical Software Engineering, In. R. Conradi and A.I. Wang (Eds.): ESERNET 2001-2003, LNCS 2765, pp. 104–128, 2003.
- Barbara A. Kitchenham, Tore Dybå, and Magne Jørgensen. Evidence-based Software Engineering.
 Proceedings of the 26th International Conference on Software Engineering (ICSE'04), 2004.
- Basili, V., "Evolving and Packaging Reading Technologies." Journal of Systems and Software, 1997. 38(1): p. 3-12.
- Basili, V., R. Selby, D. Hutchens, "Experimentation in Software Engineering." IEEE Transactions in Software Engineering, 1986. 12 (7), 733–743.
- Basili, V., F. Shull, and F. Lanubile, "Building Knowledge through Families of Experiments." IEEE Transactions on Software Engineering, 1999. 25(4): p. 456-473.
- Biolchini, J., P. Mian, A. Natali, and G. Travassos, "Systematic Review in Software Engineering." Technical Report ES 679/05, PESC, Federal University of Rio de Janeiro, 2005. Available at http://cronos.cos.ufrj.br/publicacoes/reltec/es67905.pdf
- Brooks, A., M. Roper, M. Wood, J. Daly and J. Miller, "Replication of Software Engineering Experiments." Empirical Foundation of Computer Science Technical Report, EFoCS-51-2003, Department of Computer and Information Sciences, University of Strathclyde University, 2003. Available at http://www.cis.strath.ac.uk/~efocs/home/Research-Reports/EFoCS-51-2003.pdf
- Curtis, B., "Measurement and experimentation in software engineering." Proceedings of the IEEE, 1990 68(9) 1144–1157.

Bibliografia Complementar

- J. Daly, "Replication and a Multi-Method Approach to Empirical Software Engineering research." PhD Thesis,
 Department of Computer Science, University of Strathclyde, 1996.
- Glass, R., I. Vessey, and V. Ramesh, "Research in Software Engineering: An Analysis of the Literature," J. Information and Software Technology, vol. 44, no. 8, pp. 491-506, June 2002.
- Jedlitschka, A. and M. Ciolkowski, "Towards Evidence in Software Engineering." Proceedings of the 2004 International Symposium on Empirical Software Engineering (ISESE'04), Redondo Beach, California, pp. 261-270, 2004.
- Jedlitschka, A. and D. Pfahl, "Reporting Guidelines for Controlled Experiments in Software Engineering."
 International Software Engineering Network Technical Report, ISERN-55-01, 2005.
- Kamsties, E., C. Lott, "An empirical evaluation of three defect detection techniques." International Software Engineering Network Technical Report, ISERN-95-02, 1995.
- Kitchenham, B. "Procedures for Performing Systematic Reviews." Technical Report TR/SE-0401, Keele University, and Technical Report 0400011T.1, NICTA, 2004.
- Kitchenham, B., S. Pfleeger, L. Pikard, P. Jones, D. Hoaglin, K. El Emam, and J. Rosenberg, "Preliminary Guidelines for Empirical Research in Software Engineering." IEEE Transactions on Software Engineering, 2002. 28(8): p. 721-734.
- Lott, C., H. Rombach, "Repeatable Software Engineering Experiments for Comparing Defect-detection Techniques." Journal of Empirical Software Engineering, 1(3) 1997, 241–277.
- Maldonado, J., J. Carver, F. Shull, S. Fabbri, E. Dória, L. Martimiano, M. Mendonça, and V. Basili. "Perspective-Based Reading: A Replicated Experiment Focused on Individual Reviewer Effectiveness." Empirical Software Engineering An International Journal, 11(1), to appear 2006.
- Miller, J. "Applying meta-analytical procedures to software engineering experiments." Journal of Systems and Software. 54(1), 2004, pp. 29-39.

Bibliografia Complementar

- Miller, J. "Replicating Software Engineering Experiments: A Poisoned Chalice or the Holy Grail." Information and Software Technology. 47(4), 2005, pp. 233-244.
- Shull, F., V. Basili, J. Carver, J. Maldonado, G. Travassos, M. Mendonca, and S. Fabbri. "Replicating Software Engineering Experiments: Addressing the Tacit Knowledge Problem." Proceedings of International Symposium on Empirical Software Engineering (ISESE'02). 2002. Nara, Japan, 7-16.
- Shull, F., J. Carver, G. Travassos, J. Maldonado, R. Conradi, and V. Basili, Replicated Studies: Building a Body of Knowledge about Software Reading Techniques, in Lecture Notes on Empirical Software Engineering, N. Juristo and A. Moreno, Editors. 2003, World Scientific.
- Shull F., Cruzes D., Basili V. R., and Mendonca M., "Simulating Families of Studies to Build Confidence in Defect Hypotheses," Information and Software Technology, 47(15), pp. 1019-1032, 2005.
- Shull, F., M. Mendonca, V. Basili, J. Carver, J. Maldonado, S. Fabbri, G. Travassos, and M. Ferreira, "Knowledge-sharing Issues in Experimental Software Engineering." Empirical Software Engineering - An International Journal, 2004. 9(1): p. 111-137.
- Sjøberg, D., J. Hannay, O. Hansen, V. Kampenes, A. Karahasanović, N. Liborg, A. Rekdal, "A Survey of Controlled Experiments in Software Engineering". IEEE Transactions on Software Engineering, 2006. 31(9): p. 733-753.
- Tichy, W., P. Lukowicz, L. Prechelt, and E.A. Heinz, "Experimental Evaluation in Computer Science: A
 Quantitative Study," J. Systems and Software, vol. 28, no. 1, pp. 9-18, Jan. 1995.
- Wood, M., J. Daly, J. Miller, M. Roper, "Multi-method research: an empirical investigation of object-oriented technology." Journal of Systems and Software 48(1) 13–26, 1999.
- Zendler, A. "A Preliminary Software Engineering Theory as Investigated by Published Experiments," Empirical Software Eng., vol. 6, no. 2, pp. 161-180, 2001.