PRIPREMNA NASTAVA TEST- Relacije i funkcije

U svakom zadatku dato je više odgovora, a treba zaokružiti broj ili brojeve ispred tačnih odgovora. U jednom istom zadatku broj tačnih odgovora može biti 0,1,2,3,...,svi. U nekim zadacima ostavljena su prazna mesta za upisivanje odgovora.

• U skupu $A = \{1, 2, 3, 4, 5\}$ definisane su relacije:

$$\rho_1 = \{(1,2), (3,5), (4,2), (1,5), (3,2), (1,3), (4,3)\},\$$

$$\rho_2 = \{(1,1), (2,2)\},\$$

$$\rho_3 = \{(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)\},\$$

$$\rho_4 = \{(1,1), (2,2), (3,3), (4,4), (5,5)\},\$$

$$\rho_5 = \{(1,1), (2,2), (1,2), (2,1), (3,4)\},\$$

Ispitati: R – refleksivnost, S – simetričnost, A – antisimetričnost, T – tranzitivnost, F – funkcija datih relacija i naći njima inverzne relacije.

$$\rho_1 : R S A T F$$

$$\rho_2$$
: R S A T F

$$\rho_3: RSATF$$

$$\rho_4: RSATF$$

$$\rho_5 : R S A T F$$

• U skupu \mathbb{N} date su relacije: $\rho_1 = \{(1,1),(2,2),(3,3)\}, \ \rho_2 = \{(x,x)| \land x \in \mathbb{N}\}, \ \rho_3 = \{(x,2x-1)|x \in \mathbb{N}\}, \ \rho_4 = \{(x,|x|)|x \in \mathbb{N}\} \text{ i } \rho_5 = \{(1,2),(2,1),(1,3)\}.$ Ispitati: R – refleksivnost, S – simetričnost, A– antisimetričnost, T – tranzitivnost, F – funkcija datih relacija. Koje od datih relacija su relacije poretka?

\	ρ_i je R	ρ_i je S	ρ_i je A	ρ_i je T	ρ_i je F	ρ_i je rel. ekvivalencije
ρ_1						
ρ_2						
ρ_3						
ρ_4						
ρ_5						

U skupu \mathbb{R} date su relacije: $\rho_1 = \{(x, x^2) | x \in \mathbb{R}\}, \quad \rho_2 = \{(x, -x) | x \in \mathbb{R}\}, \quad \rho_3 = \{(x, y) | x + y = 1, x, y \in \mathbb{R}\}, \quad \rho_4 = \{(x, 2x) | x \in \mathbb{R}\}, \quad \rho_5 = \{(x, y) | x, y \in \mathbb{R}, xy > 0\} \cup \{0\}, \quad \rho_6 = \{(0, 0)\}, \rho_7 = \{(x, y) | \max\{x, y\} = 1, x, y \in \mathbb{R}\}, \quad \rho_8 = \{(x, 3 - x) | x \in \mathbb{R}\}.$

Iza oznake svake od tih relacija zaokružiti samo ona slova koja označavaju svojstvo relacije koju ona poseduje:

R – refleksivnost, S – simetričnost, A – antisimetričnost, T – tranzitivnost, F – funkcija

 $\rho_1: R S A T F \rho_2: R S A T F \rho_3: R S A T F \rho_4: R S A T F \rho_5: R S A T F \rho_6: R S A T F \rho_7: R S A T F \rho_8: R S A T F.$

- ullet Koliko najmanje elemenata mora imati skup A tako da se u njemu može definisati relacija ρ koja nije ni simetrična ni antisimetrična?
- $A = \{1, 2, 3\}, B = \{a, b, c, d\}, f_1 = \{(1, a), (3, a), (3, b)\}, f_2 = \{(1, a), (2, c), (3, d)\}, f_3 = \{(1, a), (2, b), (3, c), (3, d)\}, f_4 = \{(1, a), (2, d), (3, d)\},$ Svako polje obavezno popuniti sa da ili ne.

\	f_i je funkcija	$f_i: A \longrightarrow B$	$f_i: A \xrightarrow{1-1} B$	$f_i: A \xrightarrow{na} B$	$f:A\overset{1-1}{\underset{\mathrm{na}}{\longrightarrow}}B$	f_i je inijektivna
f_1						
f_2						
f_3						
f_4						

• $A = \{1, 2, 3, 4\}, B = \{a, b, c\}, f_1 = \{(1, a), (2, c), (3, b), (4, b)\}, f_2 = \{(1, a), (2, c), (3, c)\}, f_3 = \{(1, a), (2, b)\}.$ Svako polje obavezno popuniti sa da ili ne.

\	f_i je funkcija	$f_i: A \longrightarrow B$	$f_i: \{1,2\} \longrightarrow B$	$f_i: A \xrightarrow{1-1} B$	$f_i: A \xrightarrow{na} B$	$f: A \stackrel{1-1}{\underset{\text{na}}{\longrightarrow}} B$
f_1						
f_2						
f_3						

• $A = \{1, 2, 3\}, B = \{a, b, c\}, f_1 = \{(1, a), (2, b)\}, f_2 = \{(1, a), (2, b), (3, c)\}, f_3 = \{(1, b), (2, c)(3, b)\}, f_4 = \{(1, a), (2, b)\}, f_5 = \{(1, a), (2, b), (3, c)\}, f_6 = \{(1, a), (2, b), (3, c)\}, f_8 = \{(1, a), (2, b), (3, c)\}, f_8 = \{(1, b), (2, c), (2, c)\}, f_8 = \{(1, b),$ $f_4 = \{(1,a),(1,b),(3,c)\}$. Svako polje obavezno popuniti sa da ili ne.

\	f_i je funkcija	$f_i: A \longrightarrow B$	$f_i: A \xrightarrow{1-1} B$	$f_i: A \xrightarrow{na} B$	$f:A\overset{1-1}{\underset{\mathrm{na}}{ ightarrow}}B$	f_i je inijektivna
f_1						
f_2						
f_3						
f_4						

•	Zaokružiti	brojeve	ispred	sirjektivnil	h funkcija

- 1) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x$
- **2)** $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = 3 x$
- 3) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$

- **4)** $f: \mathbb{R} \to [0, \infty), \ f(x) = x^2$
- **5)** $f:[0,\infty)\to [0,\infty), \ f(x)=x^2$ **6)** $f:\mathbb{R}^+\to\mathbb{R}, \ f(x)=\ln x$

• Injektivne funkcije su: 1) $f: \mathbb{R}^+ \to \mathbb{R}, \ f(x) = x^2$ 2) $f: \mathbb{R} \to \mathbb{R}^+, \ f(x) = e^x$

- 3) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x$ 4) $f: [-3,3] \to [0,9], \ f(x) = x^2$ 5) $f: (1,\infty) \to [0,\infty), \ f(x) = \ln x^2$

• Zaokružiti brojeve ispred bijektivnih funkcija:

- 1) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 2x 5$
- **2)** $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$ **3)** $f: \mathbb{R} \to [0, \infty), \ f(x) = x^2$
- 4) $f:[0,\infty)\to[0,\infty), \ f(x)=x^2$
- **5)** $f:[0,\infty)\to [0,\infty), \ f(x)=\sqrt{x}$
- **6)** $f: \mathbb{R} \to \mathbb{R}^+, \ f(x) = e^x$

• Neka je A najveći podskup od $(0,\infty)=\mathbb{R}^+$ a B najmanji podskup skupa \mathbb{R} za koje je funkcija $f:A\to B$ definisana sa $f(x) = \sqrt{1-x^2}$. Tada je $A = \underline{\hspace{1cm}}, f(\underline{\hspace{1cm}}) = 1$ i $B = \underline{\hspace{1cm}}$. Funkcija $f: A \to B$ je: 1) sirjektivna ali ne injektivna **2**) injektivna ali ne sirjektivna **3**) niti injektivna niti sirjektivna **4**) bijektivna **5**) $f^{-1}: O \to S$, $f^{-1}(x) =$ _______, G =________, G =_________,

- Neka je funkcija $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}$ definisana sa $f(x) = \frac{x}{x-2}$. Tada je $f^{-1}(x) = \frac{x}{x-2}$
- Neka su $f:(0,\infty)\to(0,\infty)$ i $g:(0,\infty)\to(0,\infty)$ definisane sa $f(x)=e^x-1$ i $g(x)=\frac{1}{x^2}$. Izračunati:

- 1) $f^{-1}(x) =$ 2) $g^{-1}(x) =$ 3) $(f \circ g)(x) =$ 4) $(f \circ g)^{-1}(x) =$ 5) $(g^{-1} \circ f^{-1})(x) =$

• Neka su $f: \mathbb{R} \to \mathbb{R}$ i $g: \mathbb{R} \to \mathbb{R}$ definisane sa f(x) = 2x + 3 i $g(x) = \sqrt{1+x}$. Izračunati: 1) $f^{-1}(x) = x + 3$

- **2)** $q^{-1}(x) =$
- **3)** $(f^{-1} \circ g^{-1})(x) =$ **4)** $(g \circ f)(x) =$
- **5)** $(g \circ f)^{-1}(x) =$

• Neka su f i g funkcije definisane sa $f=\left(\begin{smallmatrix} a&b&c&d\\ a&d&b&c\end{smallmatrix}\right)$ i $g=\left(\begin{smallmatrix} a&b&c&d\\ a&b&d&c\end{smallmatrix}\right)$. Tada je:

$$f \circ g = \begin{pmatrix} a & b & c & d \\ & & & \end{pmatrix}, \qquad g \circ f = \begin{pmatrix} a & b & c & d \\ & & & \end{pmatrix},$$

$$g \circ f = \begin{pmatrix} a & b & c & d \\ & & & \end{pmatrix}, \qquad g^{-1} = \begin{pmatrix} a & b & c & d \\ & & & \end{pmatrix}, \qquad (f \circ g)^{-1} = \begin{pmatrix} a & b & c & d \\ & & & \end{pmatrix}, \qquad g^{-1} \circ f^{-1} = \begin{pmatrix} a & b & c & d \\ & & & \end{pmatrix}.$$

• Neka je funkcija $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ definisana sa $f(x) = \frac{3}{x^3}$. Tada je:

$$f^{-1}(x) =$$
 , $(f \circ f)(x) =$, $f(x+1) =$, $f(\frac{1}{x}) =$

• Neka je $A = \{1, 2, 3\}, f: A \rightarrow A$ i $g: A \rightarrow A$ funkcije definisane sa $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$. Tada je: $f^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix} \quad g^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix} \quad f \circ f = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix} \quad g \circ f = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix} \quad (g \circ f)^{-1} = f^{-1} \circ g^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & & \end{pmatrix}.$

$$f^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix} \quad g^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix} \quad f \circ f = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix} \quad g \circ f = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix} \quad (g \circ f)^{-1} = f^{-1} \circ g^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ & & \end{pmatrix}$$