Examenul național de bacalaureat 2021 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Testul 11

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBII	SUBIECTUL I (30 de pu	
1.	$\sqrt{\left(1-\sqrt{2}\right)^2} = \left 1-\sqrt{2}\right = \sqrt{2} - 1$	2p
	Cum $\sqrt[3]{\left(6-\sqrt{2}\right)^3} = 6-\sqrt{2}$, obținem că $\sqrt[3]{\left(6-\sqrt{2}\right)^3} + \sqrt{\left(1-\sqrt{2}\right)^2} = 6-\sqrt{2}+\sqrt{2}-1=5$	3p
2.	$f(x) = 0 \Leftrightarrow x = 3$, deci graficul funcției f intersectează axa Ox în punctul $(3,0)$	2p
	$g(3) = 0 \Leftrightarrow 9 - 6m - 6 = 0$, deci $m = \frac{1}{2}$	3p
3.	$\log_2(x^2 - 4x + 12) = 3 \Rightarrow x^2 - 4x + 12 = 8 \Rightarrow x^2 - 4x + 4 = 0$	3 p
	x = 2, care convine	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri	2p
	posibile Numerele naturale de două cifre care au suma cifrelor divizibilă cu 3 sunt numerele naturale de două cifre care sunt divizibile cu 3, deci sunt 30 de cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{30}{90} = \frac{1}{3}$	1p
5.	$AB \perp BC \Rightarrow m_{AB} \cdot m_{BC} = -1$	2p
	Cum $m_{AB} = 1$ și $m_{BC} = \frac{m-3}{2}$, obținem $\frac{m-3}{2} = -1$, deci $m = 1$	3p
6.	$\sin\frac{25\pi}{6} = \sin\left(4\pi + \frac{\pi}{6}\right) = \sin\frac{\pi}{6} = \frac{1}{2}$	2p
	Cum $\cos \frac{23\pi}{3} = \cos \left(6\pi + \frac{5\pi}{3}\right) = \cos \frac{5\pi}{3} = \frac{1}{2}$, obținem că $\sin \frac{25\pi}{6} + \cos \frac{23\pi}{3} = \frac{1}{2} + \frac{1}{2} = 1$	3 p
CUDIF CTU al II las		

SUBIECTUL al II-lea (30 de pune		
1.a)	$A(-2,0,2) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{pmatrix} \Rightarrow \det(A(-2,0,2)) = \begin{vmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{vmatrix} =$	2p
	=-3+1+1-1-(-1)-3=-4	3 p
b)	$\det(A(a,b,c)) = \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = (1+a)(1+b)(1+c)+1+1-(1+a)-(1+b)-(1+c)=$	2p
	$=abc+ab+ac+bc\neq 0$, deci matricea $A(a,b,c)$ este inversabilă	3 p
c)	Sistemul este compatibil nedeterminat, deci $\det(A(a,b,c)) = 0 \Rightarrow abc + ab + ac + bc = 0$	3p
	$ab + ac + bc = -abc \Rightarrow \frac{ab + ac + bc}{abc} = -1$, deci $N = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = -1$, care este număr întreg	2p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

Testul 11

2.a)	$1*1 = \frac{1 \cdot 1}{1 \cdot 1 - 1 - 1 + 2} = \frac{1}{1 - 1 - 1 + 2} =$	3p
	$=\frac{1}{1}=1$	2p
b)	$f(x)*f(y) = \frac{f(x)f(y)}{f(x)f(y) - f(x) - f(y) + 2} = \frac{\frac{2}{x+1} \cdot \frac{2}{y+1}}{\frac{2}{x+1} \cdot \frac{2}{y+1} - \frac{2}{x+1} \cdot \frac{2}{y+1} + 2} =$	2p
	$= \frac{4}{4 - 2(y+1) - 2(x+1) + 2(x+1)(y+1)} = \frac{4}{2xy+2} = \frac{2}{xy+1} = f(xy), \text{ pentru orice } x, y \in (0, +\infty)$	3 p
c)	$f\left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2020}{2021}\right) = \frac{2n}{n+1} \Leftrightarrow f\left(\frac{1}{2021}\right) = \frac{2n}{n+1}, \text{ unde } n \text{ este număr natural}$	3 p
	$\frac{2}{\frac{1}{2021} + 1} = \frac{2n}{n+1} \Leftrightarrow \frac{2 \cdot 2021}{2022} = \frac{2n}{n+1}, \text{ deci } n = 2021$	2 p

SUBIECTUL al III-lea

(30 de puncte)

	· ·	
1.a)	$f'(x) = 2\ln x - 2x + 2, \ x \in (0, +\infty)$	3 p
	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = 0$ $f''(x) = \frac{2(1 - x)}{x}, \ x \in (0, +\infty)$	2p
b)	$f''(x) = \frac{2(1-x)}{x}, x \in (0,+\infty)$	2p
	Cum $f''(x) > 0$, pentru orice $x \in (0,1)$, obținem că funcția f este convexă pe $(0,1)$	3 p
c)	$f''(x) < 0$, pentru orice $x \in (1, +\infty) \Rightarrow f'$ strict descrescătoare pe $x \in (1, +\infty) \Rightarrow f'(x) < f'(1)$, deci $f'(x) < 0$, pentru orice $x \in (1, +\infty)$	2p
	f continuă și f strict descrescătoare pe $(1,+\infty) \Rightarrow f(x) < f(1)$, pentru orice $x \in (1,+\infty)$, deci $2x \ln x - x^2 + 3 < 2$, de unde obținem $2\ln x < x - \frac{1}{x}$, pentru orice $x \in (1,+\infty)$	3 p
2.a)	$I_1 + \int_0^1 \frac{1}{1+x} dx = \int_0^1 \frac{x}{1+x} dx + \int_0^1 \frac{1}{1+x} dx = \int_0^1 \left(\frac{x}{1+x} + \frac{1}{1+x}\right) dx = \int_0^1 1 dx = \int_0^1 \frac{1}{1+x} dx = \int_0^1 \frac{1}{1+x$	3p
	$=x\begin{vmatrix} 1\\0 \end{vmatrix}$	2p
b)	$I_2 = 2\int_0^1 \frac{x^2}{1+x^2} dx = 2\int_0^1 \left(1 - \frac{1}{1+x^2}\right) dx = 2\left(x - \arctan x\right) \Big _0^1 =$	3 p
	$=2\left(1-\frac{\pi}{4}\right)=2-\frac{\pi}{2}$	2p
c)	$I_n = n \int_0^1 \frac{x^n}{1+x^n} dx = \int_0^1 x \cdot \left(\ln\left(1+x^n\right) \right)' dx \le \int_0^1 \left(\ln\left(1+x^n\right) \right)' dx =$	3p
	$=\ln(1+x^n)\Big _{0}^{1}=\ln 2$, deci $I_n \leq \ln 2$, pentru orice număr natural nenul n	2p