МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

Лабораторная работа №4. Исследование усилительных каскадов на биполярных транзисторах

Цель работы - Изучение работы усилительных каскадов на биполярных транзисторах, определение основных параметров и их расчет по постоянному току.

Краткие теоретические сведения

Усилитель это устройство, преобразующее сигнал малой мощности в сигнал большей мощности за счёт энергии источника питания. Именно увеличение мощности выходного сигнала, по сравнению с мощностью входного, является характерной особенностью усилителя и отличает его от других преобразующих устройств, в которых изменяется либо напряжение, либо электрический ток, а мощность остаётся постоянной уменьшается, т. к. КПД любого устройства меньше единицы). Примером устройства такого может служить повышающий трансформатор, преобразующий входное напряжение в более высокое выходное, при этом мощность выходного сигнала, за счёт потерь, будет ниже, чем мощность входного.

Усилительный каскад это минимальный функциональный блок, обеспечивающий усиление сигнала. Обычно в его состав входят один или несколько усилительных элементов (электронный прибор, обеспечивающий усиление сигнала — транзистор или электронная лампа), цепи обратной связи, элементы обеспечивающие режим по постоянному току, и т. д.

Важнейшей величиной, характеризующей усилитель, является коэффициент усиления, равный отношению уровня выходного сигнала к уровню входного. Различают три коэффициента усиления — коэффициент усиления по напряжению, току и мощности:

- по напряжению $K_U = \Delta U_{\text{вых}} / \Delta U_{\text{вх}}$,
- по току $K_I = \Delta I_{\text{вых}} / \Delta I_{\text{вх}}$,
- по мощности $K_P = \Delta P_{\text{вых}} / \Delta P_{\text{вх}} = K_U K_I$.

где $U_{\text{вых}}$, $U_{\text{вх}}$, $I_{\text{вых}}$, $I_{\text{вх}}$ – действующие значения напряжений и токов.

При каскадном соединении нескольких усилительных устройств произведение их коэффициентов усиления определяет общий коэффициент усиления системы:

$$K_{\text{оби }} = K_1 \cdot K_2 \cdot \dots \cdot K_n$$
.

Полоса пропускания усилителя — диапазон рабочих частот, в пределах которого коэффициент усиления не снижается ниже $0.707 \cdot K_{\text{max}}$.

Зависимость коэффициента усиления от частоты усиливаемого сигнала называется амплитудно-частотной характеристикой (АЧХ) усилителя.

Входное и выходное сопротивления — важнейшие параметры усилительных устройств. Их значения должны учитываться при согласовании усилительного устройства как с источником входного сигнала, так и с нагрузкой.

Выходная мощность усилителя – мощность, которая может быть выделена на сопротивлении нагрузки.

Искажения сигналов в усилителе бывают двух типов — статические (нелинейные), обусловленные нелинейностью статических ВАХ применяемых полупроводниковых приборов, и динамические (амплитудные и фазовые), связанные с частотной зависимостью амплитуды и фазы усиливаемого сигнала.

Для количественной оценки нелинейных искажений служит коэффициент нелинейных искажений (коэффициент гармоник) $K_{\rm H}$.

Рабочий режим схемы на биполярных транзисторах можно определить из следующей системы уравнений (для схемы ОК сопротивление резистора $R_{\kappa}=0$) :

$$\begin{split} U_{\textit{num}} &= I_{\kappa} R_{\kappa} + U_{\kappa 9} + I_{9} R_{9}, \\ E_{\tilde{\rho}} &= I_{\tilde{\rho}} R_{\tilde{\rho}} + U_{\tilde{\rho} 9} + I_{3} R_{9}, \end{split}$$

Здесь E_{δ} и R_{δ} - эквивалентный источник питания и эквивалентное сопротивление в цепи базы, которые соответственно равны:

$$E_{\delta} = U_{num}R_2/(R_1 + R_2),$$

 $R_{\delta} = R_1R_2/(R_1 + R_2).$

В систему уравнений необходимо включить уравнения, описывающие работу транзистора в активном режиме:

$$\begin{split} I_{\scriptscriptstyle 9} &= I_{\scriptscriptstyle K} + I_{\scriptscriptstyle \tilde{0}}, \\ I_{\scriptscriptstyle K} &= \beta I_{\scriptscriptstyle \tilde{0}}, \\ U_{\scriptscriptstyle \tilde{0}9} &\approx 0.7 \text{ B}. \end{split}$$

Последнее равенство учитывает, что в активном режиме напряжение на базе существенно не меняется (входная вольтамперная характеристика круто поднимается вверх).

К основным параметрам усилительных каскадов относятся:

 $K_U = U_{\scriptscriptstyle \mathrm{BMX}}/U_{\scriptscriptstyle \mathrm{BX}}$ - коэффициент усиления напряжения;

 $R_{ex} = U_{ex}/I_{ex}$ - входное сопротивление каскада;

 $R_{\scriptscriptstyle Bblx} = \Delta U_{\scriptscriptstyle Bblx}/\Delta I_{\scriptscriptstyle Bblx}$ - выходное сопротивление каскада.

Для усилительного каскада ОЭ (рисунок 1) эти параметры можно рассчитать или через h-параметры малосигнальной схемы замещения, или через известные рабочие токи транзистора:

$$\begin{split} K_{U} &= - \left(I_{\kappa} / \varphi_{T} \right) \cdot R_{\kappa} \cdot \xi_{\text{BbIX}}, \\ R_{\text{ex}} &= \left[\beta \left(\varphi_{T} / I_{\kappa} \right) \right] \| R_{\tilde{o}}, , \\ R_{\text{BbIY}} &= R_{\kappa}. \end{split}$$

В этих уравнениях φ_T - тепловой потенциал, который для нормальной температуры приблизительно равен 25 мВ; $\xi_{\text{вых}}$ - коэффициент деления выходного напряжения:

$$\xi_{\text{\tiny RMX}} = R_{_{\!\scriptscriptstyle H}}/(R_{_{\!\scriptscriptstyle K}} + R_{_{\!\scriptscriptstyle H}}).$$

Рисунок 1 – Усилительный каскад с общим эмиттером

Конденсаторы C_1 и C_2 являются разделительными: C_1 препятствует связи по постоянному току источника входного сигнала и усилителя,

а C_2 служит для разделения по постоянному току коллекторной цепи и нагрузки. Емкости C_1 и C_2 выбирают такими, что на частоте переменной составляющей их сопротивлением можно было пренебречь. Резисторы R_1 и R_2 образуют делитель напряжения, определяющий положение рабочей точки эмиттерного перехода.

Для схемы ОК (рисунок 2) основные параметры рассчитываются через малосигнальную схему замещения каскада:

Рисунок 2 – Усилительный каскад с общим коллектором

Резисторы R_1 и R_2 задают напряжение покоя базы, которое определяет положение точки покоя на линии нагрузки. Конденсатор C_1 разделяет каскад и источник сигнала по постоянному току. Конденсатор C_2 разделяет каскад и нагрузку по постоянному току. Каскад усиливает ток, а напряжение не усиливает.

Приведенные выше уравнения удобны для расчета основных параметров схемы тем, что кроме коэффициента усиления транзистора β никаких других справочных данных не нужно. Малосигнальные параметры транзистора определяются через его рабочий ток I_{κ} .

Порядок выполнения работы

1 Создать модель транзистора в соответствии с вариантом задания таблицы 1. Для этого щелкнуть два раза клавишей указания мыши на изображении транзистора и выбрать в появившемся окне NPN Transistor Properties в разделе Library библиотеку default, а затем в разделе Model — тип транзистора ideal. Выбрать последовательно клавишей указания мыши кнопки Copy и Paste, записать латинскими буквами в появившемся окне тип транзистора в соответствии с вариантом задания и нажать кнопку ОК. В результате в разделе Model добавится новый тип транзистора. Для корректировки его параметров нажать кнопку «Edit» и установить значения параметров Forward current gain coefficient [BF] (коэффициент усиления β), Base ohmic resistance [RB] (сопротивление базы Rб), Emiter ohmic resistance [RC] (сопротивление эмиттера Rэ), Collector ohmic resistance [RC] (сопротивление коллектора Rк) в соответствии с таблицей 1. Значения других параметров оставить без изменения.

Таблица 1

$\mathcal{N}_{\underline{0}}$	Обозначение	Тип	β(BF)	R_{δ} , Ом	$R_{\scriptscriptstyle 9}$, Om	R_{κ} , O_{M}
вариан	транзистора	транзистора	$\rho(\mathbf{D}\mathbf{r})$	(RB)	(RE)	(RC)
та						
1	VT1	КТ315Б	60	5	2	1
2	VT1	КТ3102Ж	100	3	1	0,6
3	VT1	КТ315Г	60	5	2	1
4	VT1	KT3102A	100	3	1	0,6
5	VT1	КТ3102Д	200	3	1	0,6
6	VT1	KT315E	50	5	2	1
7	VT1	KT3102A	100	3	1	0,6
8	VT1	КТ503Б	80	2,5	1,2	0,5
10	VT1	КТ503Г	80	2,5	1,2	0,5

2. Для исследования схемы усилительного каскада ОЭ собрать схему в соответствии с рисунком 1. Установить значения сопротивлений резисторов, емкости конденсаторов и напряжение источника питания для схемы рисунка 1 в соответствии с таблицей 2.

Таблица 2

$N_{\underline{0}}$	E, B	$R_1 = R_2$	Rэ,	R _K ,	R _H ,	$C_1 = C_2$	Сэ, мкФ
Вариан		кОм	кОм	кОм	кОм	мкФ	
та							
1	9	1,6	180	3,3	3	33	33
2	10	2,2	180	3,6	3	33	33
3	12	2,7	200	3,9	3	22	22
4	15	3,0	150	4,3	3	22	33
5	9	1,8	200	3,6	3	33	22

6	10	2,0	180	3,9	3	33	33
7	12	2,2	270	4,3	3	33	22
8	15	2,4	180	4,7	3	22	33
9	9	2,2	240	3,3	3	33	22
10	10	2,4	180	3,6	3	22	33

- 3. Для определения коэффициента усиления каскада ОЭ на вход каскада подать с функционального генератора синусоидальное напряжение $U_{ex}=0.1$ В частотой f=1 кГц. Измерить выходное напряжение U_{eblx} на нагрузочном резисторе $R_{\rm H}$.
- 4. Определить изменение тока коллектора транзистора от вариации коэффициента усиления в диапазоне ($\beta \pm 30\%$) при $U_{ex} = 0$ В. Результаты занести в таблицу 3.

Таблица 3

β	0,7β	0,8β	0,9β	β	1,1β	1,2β	1,3β
I_{κ} , A	İ	i	i.e				

5. Исследовать зависимость изменения тока коллектора транзистора от изменения температуры от -20 до +600 ^{o}C при $U_{ex}=0$ В. Для установки температуры открыть пункт меню **Analysis**/ **Analysis Options/Global** и установить требуемое значение рабочей температуры (параметр **Simulation Temperature** (**TEMP**)). Результаты занести в таблицу 4.

Таблица 4

T, °C	-20	-10	0	10	20	30	40	50	60
I_{κ} , A									

6. Рассчитать коэффициент усиления каскада ОЭ по формуле:

$$K_{U_{O3}} = U_{eblx} / U_{ex}$$

- 7. Построить графики зависимостей $I_{\kappa} = f(\beta)$ и $I_{\kappa} = f(T)$ для каскада ОЭ в соответствии с таблицами 3 и 4 (в OpenOffice или MS Excell).
- 8. Для исследования усилительного каскада ОК собрать схему в соответствии с рисунком 2. Установить значения сопротивлений резисторов, емкости конденсаторов и напряжение источника питания для схемы рисунка 2 в соответствии с таблицей 5.

Таблица 5

$N_{\underline{0}}$	E, B	$R_1=R_2,$	Rэ,	R _H ,	C_1 ,	C_2 ,
Вариан		кОм	кОм	кОм	мкФ	мкФ
та						

1	9	1,6	0,82	3	33	33
2	10	2,2	0,91	3	33	33
3	12	2,7	0,68	3	22	22
4	15	3,0	1,0	3	22	33
5	9	1,8	0,82	3	33	22
6	10	2,0	0,91	3	33	33
7	12	2,2	0,68	3	33	22
8	15	2,4	1,0	3	22	33
9	9	2,2	0,82	3	33	22
10	10	2,4	0,91	3	22	33

- 9. Для определения коэффициента усиления каскада ОК на вход каскада подать с функционального генератора синусоидальное напряжение $U_{\rm ex}=1$ В частотой f=1 к Γ ц. Измерить выходное напряжение $U_{\rm ebx}$ на нагрузочном резисторе $R_{\rm H}$.
- 10. Определить изменение тока коллектора транзистора от вариации коэффициента усиления в диапазоне ($\beta \pm 30\%$). Результаты занести в таблицу 6.

Таблица 6

β	0,7β	0,8β	0,9β	β	1,1β	1,2β	1,3β
I_{κ} , A	100 00 000 000 000	- 2	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		A	1000	

11. Исследовать зависимость изменения тока коллектора транзистора от изменения температуры от -20 до + 600 ^{o}C при $U_{ex}=0.0$ В. Результаты занести в таблицу 7.

Таблица 7

T, °C	-20	-10	0	10	20	30	40	50	60
I_{κ} , A							10		

12. Рассчитать коэффициент усиления каскада ОК по формуле:

$$K_{U_{OK}} = U_{ebix} / U_{ex}$$

13. Построить графики зависимостей $I_{\kappa} = f(\beta)$ и $I_{\kappa} = f(T)$ для каскада ОЭ в соответствии с таблицами 6 и 7.

Требования к оформлению отчета

Отчет по работе должен включать:

- титульный лист с указанием названия и номера варианта работы.
- наименование работы;
- цель работы;
- задание на выполнение работы;
- экспериментальную часть, включающую схемы усилителей с включенными приборами. Качество скриншотов должно обеспечивать читабельность основных параметров схемы.
 - результаты расчета схем, таблицы с результатами экспериментов и графики.
 - выводы (оценка результатов выполненной работы).