```
In [1]:
        import pandas as pd
        import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
        %matplotlib inline
In [2]: from sklearn import preprocessing
        from sklearn.model_selection import train_test_split
In [3]: from sklearn.linear_model import LinearRegression, Ridge, Lasso
        from sklearn.metrics import r2_score
In [4]:
        data = pd.read_csv(r"C:\Users\DELL\Desktop\FSDS\ML\22nd- 11, 12, scaling\lasso,
        data.head()
Out[4]:
                  cyl
                       disp
                             hp
                                             yr origin
            mpg
                                   wt
                                        acc
                                                       car_type
                                                                               car_name
         0
            18.0
                      307.0 130 3504
                                       12.0
                                             70
                                                     1
                                                                 chevrolet chevelle malibu
            15.0
                                                               0
         1
                      350.0
                           165
                                 3693
                                       11.5
                                             70
                                                                         buick skylark 320
                                                               0
         2
            18.0
                                                     1
                      318.0 150
                                 3436
                                       11.0
                                             70
                                                                        plymouth satellite
            16.0
         3
                      304.0
                           150
                                 3433
                                       12.0
                                             70
                                                               0
                                                                            amc rebel sst
                                                               0
            17.0
                      302.0 140 3449
                                                     1
                                                                              ford torino
                                       10.5
In [5]:
        data = data.drop(['car_name'], axis=1)
In [6]:
        data['origin'] = data['origin'].replace({1: 'america', 2: 'europe',3: 'asia'})
        data= pd.get_dummies(data,columns =['origin'], dtype=int)
        data= data.replace('?',np.nan)
        data=data.apply(pd.to_numeric, errors='ignore')
In [7]:
         numeric_cols=data.select_dtypes(include=[np.number]).columns
        data[numeric_cols] = data[numeric_cols].apply(lambda x: x.fillna(x.median()))
       C:\Users\DELL\AppData\Local\Temp\ipykernel_5376\202028991.py:1: FutureWarning: er
       rors='ignore' is deprecated and will raise in a future version. Use to_numeric wi
       thout passing `errors` and catch exceptions explicitly instead
         data=data.apply(pd.to_numeric, errors='ignore')
In [8]:
        data.head()
Out[8]:
                                               yr car_type origin_america origin_asia origin_
                       disp
            mpg cyl
                               hp
                                     wt
                                          acc
         0
            18.0
                           130.0 3504
                                              70
                                                         0
                                                                        1
                                                                                    0
                      307.0
                                         12.0
            15.0
                      350.0
                            165.0 3693
                                         11.5
                                              70
                                                         0
                                                                        1
                                                                                    0
         2
            18.0
                                                         0
                                                                        1
                                                                                    0
                      318.0
                           150.0 3436
                                         11.0
                                              70
            16.0
                      304.0
                           150.0 3433
                                         12.0
                                              70
                                                         0
                                                                                    0
                   8 302.0 140.0 3449 10.5 70
                                                         0
                                                                        1
                                                                                    0
            17.0
```

Model Buliding

```
In [9]: X=data.drop(['mpg'],axis=1)
         y=data[['mpg']]
In [10]: X_s=preprocessing.scale(X)
         X columns=X.columns
         X_s=pd.DataFrame(X_s, columns= X_columns)
         y_s=preprocessing.scale(y)
         y_columns=y.columns
         y_s=pd.DataFrame(y_s, columns= y_columns)
In [13]: X_train, X_test, y_train,y_test = train_test_split(X_s, y_s, test_size = 0.30, r
         X_train.shape
Out[13]: (278, 10)
         Simple Linear Regression
In [14]: regression_model = LinearRegression()
         regression_model.fit(X_train, y_train)
         for idx, col name in enumerate(X train.columns):
             print('The coefficient for {} is {}'.format(col_name, regression_model.coef_
         intercept = regression_model.intercept_[0]
         print('The intercept is {}'.format(intercept))
        The coefficient for cyl is 0.321022385691611
        The coefficient for disp is 0.32483430918483897
        The coefficient for hp is -0.22916950059437569
        The coefficient for wt is -0.7112101905072298
        The coefficient for acc is 0.014713682764191237
        The coefficient for yr is 0.3755811949510748
        The coefficient for car_type is 0.3814769484233099
        The coefficient for origin america is -0.07472247547584178
        The coefficient for origin_asia is 0.044515252035677896
        The coefficient for origin_europe is 0.04834854953945386
        The intercept is 0.019284116103639764
         Regularized Ridge Regression
In [15]: ridge_model = Ridge(alpha = 0.3)
         ridge_model.fit(X_train, y_train)
         print('Ridge model coef: {}'.format(ridge_model.coef_))
        Ridge model coef: [[ 0.31649043  0.31320707 -0.22876025 -0.70109447  0.01295851
        0.37447352
           0.37725608 -0.07423624 0.04441039 0.04784031]]
         Regularized Lasso Regression
In [16]: lasso model = Lasso(alpha = 0.1)
         lasso_model.fit(X_train, y_train)
         print('Lasso model coef: {}'.format(lasso_model.coef_))
```

Lasso model coef: [-0.

-0.

-0.01690287 -0.51890013 0.

```
0.28138241
          0.1278489 -0.01642647 0.
                                               0.
                                                          ]
          Score Comparision
In [17]:
         #Simple Linear Model
          print(regression_model.score(X_train, y_train))
          print(regression_model.score(X_test, y_test))
          print('*************************
          #Ridge
          print(ridge_model.score(X_train, y_train))
          print(ridge_model.score(X_test, y_test))
          print('**************************)
          #Lasso
          print(lasso_model.score(X_train, y_train))
          print(lasso_model.score(X_test, y_test))
        0.8343770256960538
        0.8513421387780066
        **********
        0.8343617931312616
        0.8518882171608506
        *********
        0.7938010766228453
        0.8375229615977083
          Model Parameter Tuning
In [18]:
         data_train_test = pd.concat([X_train, y_train], axis =1)
          data_train_test.head()
Out[18]:
                     cyl
                              disp
                                         hp
                                                   wt
                                                             acc
                                                                             car_type origin_a
                                                                        yr
          350
               -0.856321
                         -0.849116
                                   -1.081977
                                             -0.893172
                                                       -0.242570
                                                                   1.351199
                                                                             0.941412
                                                                                            0
               -0.856321
                         -0.925936
                                   -1.317736
                                             -0.847061
                                                        2.879909
                                                                  -1.085858
                                                                             0.941412
                                                                                           -1
          120
               -0.856321
                         -0.695475
                                    0.201600
                                             -0.121101
                                                       -0.024722
                                                                  -0.815074
                                                                             0.941412
                                                                                           -1
           12
                1.498191
                          1.983643
                                    1.197027
                                              0.934732
                                                       -2.203196
                                                                  -1.627426
                                                                                            0
                                                                            -1.062235
               -0.856321
                         -0.983552
                                   -0.951000
                                            -1.165111
                                                        0.156817
                                                                   1.351199
                                                                             0.941412
                                                                                           -1
          349
          import statsmodels.formula.api as smf
In [19]:
          ols1 = smf.ols(formula = 'mpg ~ cyl+disp+hp+wt+acc+yr+car_type+origin_america+or
          ols1.params
```

```
Out[19]: Intercept
                           0.019284
         cyl
                           0.321022
         disp
                           0.324834
                          -0.229170
         hp
                          -0.711210
         wt
                           0.014714
         acc
         yr
                           0.375581
         car_type
                           0.381477
         origin_america -0.074722
         origin_europe
                           0.048349
         origin_asia
                           0.044515
         dtype: float64
```

In [20]: print(ols1.summary())

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	15:53:29 278 268 9 nonrobust		<pre>Prob (F-statistic): Log-Likelihood: AIC: BIC:</pre>		0.834 0.829 150.0 3.12e-99 -146.89 313.8 350.1		
======================================	coef			P> t	[0.025	0.97	
-							
Intercept 9	0.0193	0.025	0.765	0.445	-0.030	0.06	
cyl	0.3210	0.112	2.856	0.005	0.100	0.54	
2	0 2240	0 100	2.544	0.012	0.072	0 57	
disp 6	0.3248	0.128	2.544	0.012	0.073	0.57	
hp	-0.2292	0.079	-2.915	0.004	-0.384	-0.07	
4 wt 9	-0.7112	0.088	-8.118	0.000	-0.884	-0.53	
acc 2	0.0147	0.039	0.373	0.709	-0.063	0.09	
yr 2	0.3756	0.029	13.088	0.000	0.319	0.43	
car_type 3	0.3815	0.067	5.728	0.000	0.250	0.51	
origin_america 5	-0.0747	0.020	-3.723	0.000	-0.114	-0.03	
origin_europe 0	0.0483	0.021	2.270	0.024	0.006	0.09	
origin_asia 5	0.0445	0.020	2.175	0.031	0.004	0.08	
Omnibus:	=======	22.678	======================================		2.105		
Prob(Omnibus):		0.000	Jarque-Bera (JB):		3	36.139	
Skew:		0.513	Prob(JB):			1.42e-08	
Kurtosis:	========	4.438	Cond. No.			9e+16	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 6.14e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [21]: mse = np.mean((regression_model.predict(X_test)-y_test)**2)
import math
rmse = math.sqrt(mse)
print('Root Mean Squared Error: {}'.format(rmse))
```

Root Mean Squared Error: 0.37766934254087847

```
In [25]: fig = plt.figure(figsize=(10,8))
    sns.residplot(x= X_test['hp'], y= y_test['mpg'], color='green', lowess=True )
    plt.show()

fig = plt.figure(figsize=(10,8))
    sns.residplot(x= X_test['acc'], y= y_test['mpg'], color='green', lowess=True )
    plt.show()
```


In []:

In []: