Statistiques descriptives

Guillaume Wisniewski guillaume.wisniewski@limsi.fr

LIMSI — Université Paris Sud

13 septembre 2014

Rappel/problématique

Ceci est un corpus

Conséquence

En l'état c'est inutilisable! On a besoin

- ► avoir un aperçu / résumé
- identifier certaines tendances
 / répondre à certaines
 questions

Vocabulaire :

- uni varié : on s'intéresse à 1 valeurs
- multi varié : plusieurs valeurs+ leurs « interactions »

Running example

Quelle est la plus grosse variété de pomme?

La démarche statistique

- 1. collecte des données
- 2. description des données (résumé), identifier les caractéristiques pertinentes
- 3. test d'hypothèse différencier les observations significatives des autres
- 4. estimation : extraire de l'information pour prédire les caractéristiques de nouveaux exemples

Dans notre cas...

Pour chaque variété de pomme, collecter les tailles d'un échantillon

Difficulté

échantillon \Rightarrow propriété générale

Problématique locale

Comment résumer un ensemble de valeur?

- ▶ de manière quantitative
- ▶ de manière qualitative

1^{er} descripteur : la moyenne

Notations :

- ▶ population de *n* individus/exemples/échantillons
- ightharpoonup chaque individu x_i est décrit par un ensemble de valeur
- ▶ techniquement : $x_i \in \mathbb{R}^d$

Moyenne :

$$m = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- ► décrit le comportement « moyen »
- ► critère de position
- ► central tendancy

Exemple

Pour un exemple univarié

- exemple : note à un examen, taille d'une pomme
- $\triangleright \mathcal{D} = \{12, 14, 8, 18, 3\}$
- μ =

Pour un exemple multivarié

• exemple : note à l'examen d'info et à l'examen de physique

$$\blacktriangleright \mathcal{D} = \left\{ \begin{pmatrix} 12\\16 \end{pmatrix}, \begin{pmatrix} 14\\4 \end{pmatrix}, \begin{pmatrix} 8\\8 \end{pmatrix}, \begin{pmatrix} 18\\19 \end{pmatrix}, \begin{pmatrix} 3\\8 \end{pmatrix} \right\}$$

μ =

Exemple

Pour un exemple univarié

- exemple : note à un examen, taille d'une pomme
- $\mathcal{D} = \{12, 14, 8, 18, 3\}$
- $\mu = 11$

Pour un exemple multivarié

• exemple : note à l'examen d'info et à l'examen de physique

$$\blacktriangleright \ \mathcal{D} = \left\{ \left(\begin{array}{c} 12 \\ 16 \end{array} \right), \left(\begin{array}{c} 14 \\ 4 \end{array} \right), \left(\begin{array}{c} 8 \\ 8 \end{array} \right), \left(\begin{array}{c} 18 \\ 19 \end{array} \right), \left(\begin{array}{c} 3 \\ 8 \end{array} \right) \right\}$$

$$\mu = \begin{pmatrix} 11 \\ 11 \end{pmatrix}$$

Interprétation

- ▶ population = nuage de points
- ► moyenne = « centre » du nuage (position)

Et en 1-D?

Comment représenter des données en 1-D? La mauvaise solution :

En pratique

- représenter la fréquence d'une valeur
- ▶ = histogramme
- nécessite de discrétiser les valeurs
- ⇒ distribution des données

Le problème de la moyenne

La moyenne = bon descripteur d'éléments qui « se ressemble »

Exemple

- ightharpoonup j'ai trois pommes qui font $600g \Rightarrow$ chaque pomme fait 200g
- vrai tant que toutes les pommes ont, à peu près, la même taille

2e descripteur : variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

- $ightharpoonup \sigma^2 = {
 m variance}, \ \sigma = {
 m d\'eviation} \ {
 m standard}$
- $lackbox{ } x_i \mu = {
 m d}{
 m e}{
 m d}{
 m e}{
 m i}{
 m a}{
 m la}{
 m m}{
 m o}{
 m e}{
 m n}{
 m e}{
 m d}{
 m e}{
 m la}{
 m m}{
 m o}{
 m e}{
 m n}{
 m e}{
 m l}{
 m e}{
 m$
- mesure la dispersion des données autour de la moyenne

En image

Bilan

- dans beaucoup de cas, moyenne et variance sont suffisant pour décrire des données (avoir une idée de leur tête)
- essentiellement quand les données sont proches
- note pour plus tard : proche = distribuée selon une normale

3^e descripteur : médiane

- 1. trier les exemples d'une population (ordre indifférent)
- 2. médiane = élément à la position $\frac{n}{2}$
- ▶ description de la position (comme la moyenne)
- moins sensible aux outliers / mieux adapté aux données peux similaires

Exemples

Considérons la population :

$$\mathcal{D} = \left\{ \underbrace{10, \dots, 10}_{5 \text{ fois}}, 20 \right\}$$

Deux descriptions de la centralité :

$$\label{eq:mu} \mu = 11.6$$
médiane = 10

⇒ meilleur description de la note majoritaire

4^e descripteur : corrélation

- ightharpoonup 2 variables aléatoires X et Y (p.ex. une mesurant la largeur de la tête, l'autre sa hauteur)
- ▶ y a-t-il une « relation » entre ces deux variables?
- deux caractéristiques de la relation :
 - « sens » (positif si X augmente quand Y augmente)
 - « force » (impact de la variation d'une des variables)

En image

Quantitativement

- hypothèse sur la « forme » de la relation entre X et Y (p.ex. linéaire)
- ▶ coefficient de Pearson (corrélation linéaire) d'une série de valeur $(x_i, y_i)_{i=1}^n$

$$\rho_{X,Y} = \frac{\sum_{i}(x_i - \bar{x}) \cdot (y_i - \bar{y})}{(n-1) \cdot \sigma_x \cdot \sigma_y}$$

- ▶ attention au problème d'instabilité numérique lors du calcul
- ▶ indique la « force » d'une corrélation linéaire entre les données

Autres mesures

- ▶ le coefficient de Pearson ne permet de détecter que certaines dépendances très particulières
- il existe des mesures plus générales permettant de détecter quasiment toutes les dépendances fonctionnelles :
 - ▶ information mutuelle
 - corrélation polychorique
 - copule
 - **...**

Corrélation et causalité

Il n'y a pas de lien entre corrélation et causalité

- ► corrélations : certaines valeurs « évoluent » dans le même sens
- ► causalité : lien « physique »

Exemple

Conclusion: le danger des stat. descriptives

Toutes les propriétés statistiques de ces populations sont identiques (moyenne, variance, corrélation)