HW#1

2023-20200 박건도

Theorem 1.6.8 Suppose $X_n \to X$ a.s. Let g, h be continuous functions with (i) $g \ge 0$ and $g(x) \to \infty$ as $|x| \to \infty$, (ii) $|h(x)|/g(x) \to 0$ as $|x| \to \infty$, and (iii) $Eg(X_n) \le K < \infty$ for all n. Then $Eh(X_n) \to Eh(X)$.

Proof By subtracting a constant from h, we can suppose without loss of generality that h(0)=0. Pick M large so that P(|X|=M)=0 and g(x)>0 when $|x|\geq M$. Given a random variable Y, let $\bar{Y}=Y1_{(|Y|\leq M)}$. Since P(|X|=M)=0, $\bar{X}_n\to\bar{X}$ a.s. Since $h(\bar{X}_n)$ is bounded and h is continuous, it follows from the bounded convergence theorem that

(a)
$$E(h(\bar{X}_n) \to Eh(\bar{X})$$

To control the effect of the truncation, we use the following:

(b)
$$|Eh(\bar{Y}) - Eh(Y)| \le E|h(\bar{Y}) - h(Y)| \le E(|h(Y)|; |Y| > M) \le \epsilon_M Eg(Y)$$

where $\epsilon_M = \sup\{|h(x)|/g(x) : |x| \geq M\}$. To check the second inequality, note that when $|Y| \leq M$, $\bar{Y} = Y$, and we have supposed h(0) = 0. The third inequality follows from the definition of ϵ_M .

Taking $Y = X_n$ in (b) and using (iii), it follows that

(c)
$$|Eh(\bar{X_n}) - Eh(X_n)| \le K\epsilon_M$$

To estimate $|Eh(\bar{X}) - Eh(X)|$, we observe that $g \ge 0$ and g is continuous, so Fatou's lemma implies

$$Eg(X) \le \liminf_{n \to \infty} Eg(X_n) \le K$$

Taking Y = X in (b) gives

(d)
$$|Eh(\bar{X}) - Eh(X)| \le K\epsilon_M$$

The triangle inequality implies

$$|Eh(X_n) - Eh(X)| \le |Eh(X_n) - Eh(\bar{X}_n)|$$
$$+ |Eh(\bar{X}_n) - Eh(\bar{X})| + |Eh(\bar{X}) - Eh(X)|$$

Taking limits and using (a), (c), (d), we have

$$\limsup_{n \to \infty} |Eh(X_n) - Eh(X)| \le 2K\epsilon_M$$

which proves the desired result since $K < \infty$ and $\epsilon_M \to 0$ as $M \to \infty$.