$$x(n-i)+5i = 0$$
 if $k=n-1$
= $x(n-(n-1))+5(n-1)$
= $x(1)+5n-5$
= $x(1)+5n-5$
= $x(1)+5n-5$
= $x(1)+5n-5$

(b)
$$x(n) = 3x(n-1)$$
 $4 \cdot n > 1$ $x(1) = 4$

$$=3(3) \times (n-2)$$

$$3^{(n-1)} \times (n-(n-1))$$
= $3^{n-1} \times (1)$
= $3^{n-1} \times (1)$

=
$$\times (n-2)+(n+1)+n$$

= $\times (n-3)+(n-2)+n-1)+n$

$$\frac{n(n+1)}{2} = \frac{n^2 + n}{2}$$

(a)
$$\times (n) = \times (\frac{n}{2}) + n$$
 $\forall n > 1$
 $\times (n) = 1$
 $\times (2^{k}) = \times (2^{k-1}) + 1$
 $\times (2^{k-1}) = \times (2^{k-2}) + 1$
 $\times (2^{k-1}) = \times (2^{k-2}) + 1$
 $\times (2^{k-1}) = \times (2^{k-3}) + 1$
 $\times (2^{k}) = \times (2^{k-3}) + 2$
 $\times (2^{k}) = \times (2^{k-3}) + 1$
 $\times (2^{k}) = \times (2^{k}) + 1$
 $\times (2^{k}) = \times$

X(1)=0 = X (n-2)+2+2 x(n-(n-1))+.2(n-1) non-rec alg for this the Sum has, book have same # for The recursive has more constants or calling than the otraignt forward worse algorithm, making it they worse performer. multiplications.