Taller de Azure Machine Learning

Junio 2016 – Microsoft Argentina & Uruguay

Este documento presenta un recorrido paso por paso sobre cómo crear un modelo con <u>Azure Machine Learning</u> y está enfocado en desarrolladores de software, administradores de bases de datos, científicos de datos y arquitectos de software. Se espera que los lectores tengan conocimientos básicos de computación en la nube y de procesamiento y manejo de datos informáticos.

El objetivo de este documento es permitir a los usuarios familiarizarse con el ambiente de Azure Machine Learning a través de un ejemplo práctico.

El ejemplo elegido para este documento permitirá crear un modelo capaz de predecir, en base a diferentes datos sobre un individuo, si este tiene ingresos anuales mayores o menores a USD 50.000. Para dicho ejercicio, se utilizará un *dataset* de pruebas que contiene información anónima sobre aproximadamente 32.000 individuos.

El ejercicio está basado en el algoritmo *Two-Class Boosted Decision Tree*. Para más información sobre los algoritmos disponibles, visitar http://aka.ms/algoritmosML

Tabla de contenidos

Sección #1: Creación de la subscripción para Azure Machine Learning	2
Sección #2: Creación del Experimento	2
Sección #3: Ingreso de la información	3
Sección #4: Proyección y transformación de los datos	4
Sección #5: Entrenar el modelo de Machine Learning	7
Sección #6: Evaluación y puntuación del modelo de Machine Learning	9
Sección #7: Probar el modelo de Machine Learning	10
Sección #8: Mejorar y calibrar el modelo de Machine Learning	11
Sección #9: Publicar como Web Service el modelo de Machine Learning	13
Sección #10: Probar un caso real del Web Service	14

Sección #1: Creación de la subscripción para Azure Machine Learning

<u>Requisitos</u>: contar con una Microsoft Account. De no contar con una, se puede crear en http://signup.live.com/.

1.1 Ingresar en http://studio.azureml.net/ e iniciar sesión (Sign in).

Se creará una nueva cuenta gratuita para pruebas de Azure Machine Learning.

Sección #2: Creación del Experimento

2.1 Dentro de Machine Learning Studio, ingresar en New > Blank Experiment

Sección #3: Ingreso de la información

- 3.1 Seleccionar en la solapa izquierda la opción Saved Datasets > Samples
- **3.2** Seleccionar *Adult Census Income Binary Classification* y arrastrarlo hacia la pantalla principal (*drag & drop*).

3.3 Dar click en el número 1 bajo la caja, y luego Visualize

3.4 Esta opción permite visualizar el *dataset*. Notar la cantidad de columnas y registros, vista previa de la distribución para cada columna.

Sección #4: Proyección y transformación de los datos

4.1 Seleccionar el componente **Data Transformation** > **Manipulation** > **Select Columns in Dataset** y arrastrarlo debajo de la caja anterior

- 4.2 Unir la salida del dataset con la entrada del selector de columnas.
- 4.3 Notar el cartel de error. Hacer click en Launch Column Selector.

- **4.4** En primera instancia seleccionar los campos *age*, *workclass*, *education*, *marital-status*, *occupation*, *race*, *sex*, *income* y utilizando las flechas, moverlos al lado derecho del cuadro.
- 4.5 Dar click en OK.

Select co	lumns			×
BY NAME	AVAILABLE COLUMNS		SELECTED COLUMNS	
WITH RULES	All Types ∨ search columns		All Types ✓ search columns	٥
	fnlwgt education-num relationship capital-gain capital-loss hours-per-week native-country	>	age workclass education marital-status occupation race sex income	1
	7 columns available		8 columns selected	_
				\checkmark

4.6 Hacer click en Run en el menú inferior

4.7 Visualizar la salida del selector de columnas.

Sección #5: Entrenar el modelo de Machine Learning

- 5.1 Para este ejemplo, utilizaremos el algoritmo Two Class Boosted Decision Tree.
- 5.2 Seleccionar Machine Learning > Initialize Model > Classification > Two-Class Boosted Decision Tree y arrastrarlo al menú principal.

- **5.3** Seleccionar **Machine Learning** > **Train** > **Train Model** y arrastrarlo hacia el menú principal.
- 5.4 Unir la salida del algoritmo con la primer entrada (izquierda) de Train Model

- **5.5** Seleccionar **Data Transformation** > **Sample and Edit** > **Split Data** y arrastrarlo al menu principal.
- 5.6 Unir la salida del selector con el componente Split Data.
- 5.7 Unir la primer salida de Split Data con la segunda entrada de Train Model.
- 5.8 En la columna derecha, seleccionar 0.8 en el cuadro Fractions of rows in the first output.

- 5.9 Seleccionar Train Model, y hacer click en Launch Column Selector (solapa derecha).
- 5.10 Seleccionar únicamente la columna income, que será la columna que se busca predecir.
- 5.11 Click en OK.

Sección #6: Evaluación y puntuación del modelo de Machine Learning

- **6.1** Seleccionar el componente **Machine Learning** > **Score** > **Score Model** y arrastrarlo hacia la ventana principal.
- 6.2 Conectar la salida de Train Model con la primer entrada (izquierda) de Score Model
- **6.3** Conectar la segunda salida (derecha) de **Split Data** con la segunda entrada (derecha) de **Score Model**.

- **6.4** Seleccionar el componente **Machine Learning** > **Evaluate** > **Evaluate Model** y arrastrarlo a la ventana principal.
- 6.5 Conectar la salida de Score Model con la primer entrada (izquierda) de Evaluate Model

Sección #7: Probar el modelo de Machine Learning

7.1 Hacer click en Run. Esperar a que todas las cajas tengan íconos verdes (éxito).

7.2 Evaluar la salida del componente Evaluate Model, haciendo click en Visualize.

7.3 Notar bajo los gráficos, el desempeño del algoritmo a través de los indicadores **Accuracy** y **Precision**.

Sección #8: Mejorar y calibrar el modelo de Machine Learning

- 8.1 Regresar a la vista principal, seleccionar el componente Select Columns in Dataset.
- 8.2 Abrir el selector de columnas (solapa derecha).

8.3 Agregar en el cuadro derecho los campos relationship, native-country, hours-per-week.

- 8.4 Click en OK.
- 8.5 Click en Run.
- 8.6 Luego de la ejecución, volver al menú Visualize de la salida de Evaluate Model

True Positive 947	False Negative 560	Accuracy 0.836	Precision 0.689	Threshold 0.5	AUC 0.889
False Positive 427	True Negative 4086	Recall 0.628	F1 Score 0.657		
Positive Label >50K	Negative Label				

8.7 Nótese que, al agregar más campos, se mejora la precisión y exactitud a expensas de un mayor tiempo de ejecución.

Sección #9: Publicar como Web Service el modelo de Machine Learning

9.1 Hacer Click sobre Set Up Web Service > Predictive Web Service

- 9.2 Esperar la publicación luego de la animación.
- 9.3 Ejecutar el Web Service, haciendo click en Run.

9.4 Hacer click en Deploy Web Service

Sección #10: Probar un caso real del Web Service

10.1 Hacer click en Test.

10.2 Ingresar datos de prueba para todos los campos.

10.3 Sugerencia de algunos datos de prueba:

- Age: 45

Workclass: State-gov Education: Masters

Marital Status: MarriedRelationship: Husband

- Race: White- Sex: Male

- Hours per week: 40

- Native Country: United States

No todos los campos son obligatorios (incluyendo, por supuesto, income).

10.4 El último campo numérico indicará la probabilidad de ocurrencia para ese escenario.

✓ "Predicción de Ingresos [Predictive Exp.]" test returned ["45","State-gov","Masters","Married","Exec-managerial","Husband","White","Male","40","United States",null,"<=50K","0.318737477064133"]...

10.5 La probabilidad de que un hombre blanco de 45 años con un Masters, casado, nacido en USA tenga ingresos menores a USD \$50.000 anuales es igual al 31%.

Evaluación

- 1. Un programa aprende si P función de T, mejora con E. ¿Cuál es la definición de P?
 - Probabilidad
 - Posibilidad
 - Performance
 - Programación
- 2. Un programa aprende si P función de T, mejora con E. ¿Cuál es la definición de E?
 - Energía
 - Evolución
 - Experiencia
 - Experimentos
- 3. ¿Cuál es otra forma de llamar a Machine Learning?
 - Análisis predictivo (predictive analysis)
 - Data warehousing
 - Data mining
 - Random sampling
- 4. Verdadero o falso: Entrenamiento Supervisado sirve para predecir respuestas de casos que ya conozco.
- 5. Elegir un algoritmo de Machine Learning para cada uno de estos escenarios:
 - o Customer Churn
 - o Recomendación de música
 - o Predecir si un pasajero sobrevive al Titanic o no

Competencia

Desarrollar un modelo de Machine Learning que permita predecir la probabilidad de que un vuelo se demore (al menos un minuto) o no. Utilizar el data set disponible en AzureML Studio.

El ganador será el que mejor precisión tenga.