Számításelmélet

8. előadás

előadó: Kolonits Gábor kolomax@inf.elte.hu

Állítás: Eldönthetőek az ítéletkalkulus alábbi algoritmikus kérdései:

lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthető-e,

- ightharpoonup egy φ ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,

- ullet egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,
- ullet egy arphi ítéletkalkulusbeli formula tautológia-e,

- ullet egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- ightharpoonup egy φ ítéletkalkulusbeli formula kielégíthetetlen-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula tautológia-e,
- φ és ψ ítéletkalkulusbeli formulákra $\varphi \sim_0 \psi$ fennáll-e,

- ullet egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,
- ullet egy arphi ítéletkalkulusbeli formula tautológia-e,
- φ és ψ ítéletkalkulusbeli formulákra $\varphi \sim_0 \psi$ fennáll-e,
- egy \mathcal{F} véges ítéletkalkulusbeli formulahalmaz és egy φ formula esetén $\mathcal{F}\models_0 \varphi$ fennáll-e.

Állítás: Eldönthetőek az ítéletkalkulus alábbi algoritmikus kérdései:

- ullet egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,
- ullet egy arphi ítéletkalkulusbeli formula tautológia-e,
- φ és ψ ítéletkalkulusbeli formulákra $\varphi \sim_0 \psi$ fennáll-e,
- egy \mathcal{F} véges ítéletkalkulusbeli formulahalmaz és egy φ formula esetén $\mathcal{F} \models_0 \varphi$ fennáll-e.

Bizonyítás: Készítsük el az ítélettáblá(ka)t a szóban forgó formulá(k)ra és olvassuk le belőlük.

Állítás: Eldönthetőek az ítéletkalkulus alábbi algoritmikus kérdései:

- ullet egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,
- ullet egy arphi ítéletkalkulusbeli formula tautológia-e,
- φ és ψ ítéletkalkulusbeli formulákra $\varphi \sim_0 \psi$ fennáll-e,
- egy \mathcal{F} véges ítéletkalkulusbeli formulahalmaz és egy φ formula esetén $\mathcal{F} \models_0 \varphi$ fennáll-e.

Bizonyítás: Készítsük el az ítélettáblá(ka)t a szóban forgó formulá(k)ra és olvassuk le belőlük.

Megjegyzés: A fenti algoritmikus kérdések eldönthetősége azon múlik, hogy véges sok interpretáció lehetséges, ezek egyesével megvizsgálhatóak.

Állítás: Eldönthetőek az ítéletkalkulus alábbi algoritmikus kérdései:

- ullet egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- lacktriangle egy arphi ítéletkalkulusbeli formula kielégíthetetlen-e,
- ullet egy arphi ítéletkalkulusbeli formula tautológia-e,
- φ és ψ ítéletkalkulusbeli formulákra $\varphi \sim_0 \psi$ fennáll-e,
- egy \mathcal{F} véges ítéletkalkulusbeli formulahalmaz és egy φ formula esetén $\mathcal{F}\models_0 \varphi$ fennáll-e.

Bizonyítás: Készítsük el az ítélettáblá(ka)t a szóban forgó formulá(k)ra és olvassuk le belőlük.

Megjegyzés: A fenti algoritmikus kérdések eldönthetősége azon múlik, hogy véges sok interpretáció lehetséges, ezek egyesével megvizsgálhatóak. Mivel n ítéletváltozó esetén az ítélettáblának 2^n , azaz exponenciális sora van, ez a "brute force" módszer persze nem hatékony.

Állítás: Eldönthetőek az ítéletkalkulus alábbi algoritmikus kérdései:

- ullet egy arphi ítéletkalkulusbeli formula kielégíthető-e,
- egy φ ítéletkalkulusbeli formula kielégíthetetlen-e,
- ullet egy arphi ítéletkalkulusbeli formula tautológia-e,
- φ és ψ ítéletkalkulusbeli formulákra $\varphi \sim_0 \psi$ fennáll-e,
- egy \mathcal{F} véges ítéletkalkulusbeli formulahalmaz és egy φ formula esetén $\mathcal{F}\models_0 \varphi$ fennáll-e.

Bizonyítás: Készítsük el az ítélettáblá(ka)t a szóban forgó formulá(k)ra és olvassuk le belőlük.

Megjegyzés: A fenti algoritmikus kérdések eldönthetősége azon múlik, hogy véges sok interpretáció lehetséges, ezek egyesével megvizsgálhatóak. Mivel *n* ítéletváltozó esetén az ítélettáblának 2ⁿ, azaz exponenciális sora van, ez a "brute force" módszer persze nem hatékony. Ugyan ismeretesek az ítélettáblánál praktikusan jobb módszerek, azonban ezek mindegyike a legrosszabb esetben szintén exponenciális műveletigényű.

A következőkben belátjuk, hogy az elsőrendű logikában olyan alapvető kérdések, mint hogy egy formula logikailag igaz, kielégíthető, kielégíthetetlen, illetve hogy egy formula egy formulahalmaz logikai következménye-e (algoritmikusan) eldönthetetlen.

A következőkben belátjuk, hogy az elsőrendű logikában olyan alapvető kérdések, mint hogy egy formula logikailag igaz, kielégíthető, kielégíthetetlen, illetve hogy egy formula egy formulahalmaz logikai következménye-e (algoritmikusan) eldönthetetlen.

Definíció

```
\begin{split} \text{VALIDITYPRED} &:= \{ \left\langle \varphi \right\rangle | \, \varphi \, \, \text{logikailag igaz elsőrendű formula} \}. \\ \text{UNSATPRED} &:= \{ \left\langle \varphi \right\rangle | \, \varphi \, \, \text{kielégíthetetlen elsőrendű formula} \}. \\ \text{SATPRED} &:= \{ \left\langle \varphi \right\rangle | \, \varphi \, \, \text{kielégíthető elsőrendű formula} \}. \\ \text{EQIVPRED} &:= \{ \left\langle \varphi, \psi \right\rangle | \, \varphi, \psi \, \, \text{elsőrendű formulák, melyekre} \, \varphi \sim \psi \}. \\ \text{CONSPRED} &:= \{ \left\langle \mathcal{F}, \varphi \right\rangle | \, \mathcal{F} \, \, \text{véges elsőrendű formulahalmaz,} \\ \varphi \, \, \text{elsőrendű formula}, \, \mathcal{F} \vDash \varphi \}. \end{split}
```

A következőkben belátjuk, hogy az elsőrendű logikában olyan alapvető kérdések, mint hogy egy formula logikailag igaz, kielégíthető, kielégíthetetlen, illetve hogy egy formula egy formulahalmaz logikai következménye-e (algoritmikusan) eldönthetetlen.

Definíció

```
\begin{split} \text{VALIDITYPRED} &:= \{ \langle \varphi \rangle \, | \, \varphi \text{ logikailag igaz elsőrendű formula} \}. \\ \text{UNSATPRED} &:= \{ \langle \varphi \rangle \, | \, \varphi \text{ kielégíthetetlen elsőrendű formula} \}. \\ \text{SATPRED} &:= \{ \langle \varphi \rangle \, | \, \varphi \text{ kielégíthető elsőrendű formula} \}. \\ \text{EQIVPRED} &:= \{ \langle \varphi, \psi \rangle \, | \, \varphi, \psi \text{ elsőrendű formulák, melyekre } \varphi \sim \psi \}. \\ \text{CONSPRED} &:= \{ \langle \mathcal{F}, \varphi \rangle \, | \, \mathcal{F} \text{ véges elsőrendű formulahalmaz,} \\ \varphi \text{ elsőrendű formula}, \mathcal{F} \vDash \varphi \}. \end{split}
```

Megjegyzés: Itt $\langle \varphi \rangle$ a φ formula egy $\{0,1\}$ feletti kódolása.

A TG-ek kódolásánál látott módon a nem-kódokhoz hozzárendelhetjük pl. \perp -t, a konstans kielégíthetetlen formulát, így feltehető, hogy $\overline{\rm UNSATPRED} = {\rm SATPRED}$.

Tétel

 $ValidityPred \notin R$

Tétel

ValidityPred ∉ R

Bizonyítás: L_{PMP} -t vezetjük vissza ValidityPred-re, korábbi tételünk alapján ebből a tétel állítása következik. Minden D dominókészlethez megadunk egy φ_D elsőrendű formulát, amelyre teljesül, hogy D-nek akkor és csak akkor van megoldása, ha $\models \varphi_D$.

Tétel

ValidityPred ∉ R

Bizonyítás: L_{PMP} -t vezetjük vissza ValidityPred-re, korábbi tételünk alapján ebből a tétel állítása következik. Minden D dominókészlethez megadunk egy φ_D elsőrendű formulát, amelyre teljesül, hogy D-nek akkor és csak akkor van megoldása, ha $\models \varphi_D$.

Legyen tehát $D = \left\{\frac{u_1}{v_1}, \dots, \frac{u_k}{v_k}\right\} \ (k \ge 1)$ egy $\Sigma = \{a_1, \dots, a_n\}$ feletti dominókészlet.

Tétel

ValidityPred ∉ R

Bizonyítás: L_{PMP} -t vezetjük vissza ValidityPred-re, korábbi tételünk alapján ebből a tétel állítása következik. Minden D dominókészlethez megadunk egy φ_D elsőrendű formulát, amelyre teljesül, hogy D-nek akkor és csak akkor van megoldása, ha $\models \varphi_D$.

Legyen tehát $D = \left\{\frac{u_1}{v_1}, \dots, \frac{u_k}{v_k}\right\} \ (k \ge 1)$ egy $\Sigma = \{a_1, \dots, a_n\}$ feletti dominókészlet.

Tekintsük azt az elsőrendű logikai nyelvet ahol Pred = $\{p\}$, ar(p) = 2, Func = $\{f_{a_1}, \ldots, f_{a_n}\}$, ar $(f_{a_i}) = 1 \ (\forall \ 1 \le i \le n)$, Cnst = $\{c\}$.

Tétel

ValidityPred ∉ R

Bizonyítás: L_{PMP} -t vezetjük vissza ValidityPred-re, korábbi tételünk alapján ebből a tétel állítása következik. Minden D dominókészlethez megadunk egy φ_D elsőrendű formulát, amelyre teljesül, hogy D-nek akkor és csak akkor van megoldása, ha $\models \varphi_D$.

Legyen tehát $D = \left\{\frac{u_1}{v_1}, \dots, \frac{u_k}{v_k}\right\} \ (k \geq 1)$ egy $\Sigma = \{a_1, \dots, a_n\}$ feletti dominókészlet.

Tekintsük azt az elsőrendű logikai nyelvet ahol Pred = $\{p\}$, $\operatorname{ar}(p) = 2$, Func = $\{f_{a_1}, \ldots, f_{a_n}\}$, $\operatorname{ar}(f_{a_i}) = 1 \ (\forall \ 1 \leq i \leq n)$, Cnst = $\{c\}$.

 $\textit{Jel\"ol\'es: } f_{b_1\cdots b_m}(t) := f_{b_1}(f_{b_2}(\cdots (f_{b_m}(t))\cdots)) \text{ ahol } b_1\ldots b_m \in \Sigma, t \text{ pedig egy term.}$

Ekkor $\varphi_D := \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$, ahol

Ekkor
$$\varphi_D := \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$$
, ahol
$$\varphi_1 = p(f_{u_1}(c), f_{v_1}(c)) \wedge \cdots \wedge p(f_{u_k}(c), f_{v_k}(c)),$$

Ekkor
$$\varphi_D := \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$$
, ahol
$$\varphi_1 = p(f_{u_1}(c), f_{v_1}(c)) \wedge \cdots \wedge p(f_{u_k}(c), f_{v_k}(c)),$$

$$\varphi_2 = \forall x \forall y (p(x, y) \rightarrow p(f_{u_1}(x), f_{v_1}(y)) \wedge \cdots \wedge p(f_{u_k}(x), f_{v_k}(y))),$$

Ekkor
$$\varphi_D := \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$$
, ahol
$$\varphi_1 = p(f_{u_1}(c), f_{v_1}(c)) \wedge \cdots \wedge p(f_{u_k}(c), f_{v_k}(c)),$$

$$\varphi_2 = \forall x \forall y (p(x, y) \rightarrow p(f_{u_1}(x), f_{v_1}(y)) \wedge \cdots \wedge p(f_{u_k}(x), f_{v_k}(y))),$$

$$\varphi_3 = \exists z p(z, z).$$

Ekkor $\varphi_D := \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$, ahol $\varphi_1 = p(f_{u_1}(c), f_{v_1}(c)) \wedge \cdots \wedge p(f_{u_k}(c), f_{v_k}(c)),$ $\varphi_2 = \forall x \forall y (p(x, y) \rightarrow p(f_{u_1}(x), f_{v_1}(y)) \wedge \cdots \wedge p(f_{u_k}(x), f_{v_k}(y))),$ $\varphi_3 = \exists z p(z, z).$

Először tegyük fel, hogy φ_D logikailag igaz. Legyen / a következő interpretáció.

Ekkor
$$\varphi_D := \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$$
, ahol
$$\varphi_1 = p(f_{u_1}(c), f_{v_1}(c)) \wedge \cdots \wedge p(f_{u_k}(c), f_{v_k}(c)),$$

$$\varphi_2 = \forall x \forall y (p(x, y) \rightarrow p(f_{u_1}(x), f_{v_1}(y)) \wedge \cdots \wedge p(f_{u_k}(x), f_{v_k}(y))),$$

$$\varphi_3 = \exists z p(z, z).$$

Először tegyük fel, hogy φ_D logikailag igaz. Legyen I a következő interpretáció. (φ_D zárt formula, így igazságértéke csak az interpretációtól függ.)

Ekkor
$$\varphi_D := \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$$
, ahol
$$\varphi_1 = p(f_{u_1}(c), f_{v_1}(c)) \wedge \cdots \wedge p(f_{u_k}(c), f_{v_k}(c)),$$

$$\varphi_2 = \forall x \forall y (p(x, y) \rightarrow p(f_{u_1}(x), f_{v_1}(y)) \wedge \cdots \wedge p(f_{u_k}(x), f_{v_k}(y))),$$

$$\varphi_3 = \exists z p(z, z).$$

Először tegyük fel, hogy φ_D logikailag igaz. Legyen I a következő interpretáció. (φ_D zárt formula, így igazságértéke csak az interpretációtól függ.)

I alaphalmaza legyen Σ^* . $f_{a_i}^I(u) := a_i u (1 \leqslant i \leqslant k, u \in \Sigma^*)$, $c^I := \varepsilon$, p interpretációja pedig az alábbi.

Ekkor
$$\varphi_D := \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$$
, ahol
$$\varphi_1 = p(f_{u_1}(c), f_{v_1}(c)) \wedge \cdots \wedge p(f_{u_k}(c), f_{v_k}(c)),$$

$$\varphi_2 = \forall x \forall y (p(x, y) \rightarrow p(f_{u_1}(x), f_{v_1}(y)) \wedge \cdots \wedge p(f_{u_k}(x), f_{v_k}(y))),$$

$$\varphi_3 = \exists z p(z, z).$$

Először tegyük fel, hogy φ_D logikailag igaz. Legyen I a következő interpretáció. (φ_D zárt formula, így igazságértéke csak az interpretációtól függ.)

I alaphalmaza legyen Σ^* . $f_{a_i}^I(u) := a_i u (1 \leqslant i \leqslant k, u \in \Sigma^*)$, $c^I := \varepsilon$, p interpretációja pedig az alábbi. Tetszőleges $u, v \in \Sigma^*$ esetén $p^I(u, v) :=$ igaz akkor és csak akkor, ha az alábbi feltétel teljesül:

Ekkor
$$\varphi_D := \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$$
, ahol
$$\varphi_1 = p(f_{u_1}(c), f_{v_1}(c)) \wedge \cdots \wedge p(f_{u_k}(c), f_{v_k}(c)),$$

$$\varphi_2 = \forall x \forall y (p(x, y) \rightarrow p(f_{u_1}(x), f_{v_1}(y)) \wedge \cdots \wedge p(f_{u_k}(x), f_{v_k}(y))),$$

$$\varphi_3 = \exists z p(z, z).$$

Először tegyük fel, hogy φ_D logikailag igaz. Legyen I a következő interpretáció. (φ_D zárt formula, így igazságértéke csak az interpretációtól függ.)

I alaphalmaza legyen Σ^* . $f_{a_i}^I(u) := a_i u (1 \leqslant i \leqslant k, u \in \Sigma^*)$, $c^I := \varepsilon$, p interpretációja pedig az alábbi. Tetszőleges $u, v \in \Sigma^*$ esetén $p^I(u, v) :=$ igaz akkor és csak akkor, ha az alábbi feltétel teljesül:

van olyan
$$m \geqslant 1$$
 és $1 \leqslant i_1, \dots i_m \leqslant k$, hogy $u_{i_1} \cdots u_{i_m} = u$ és $v_{i_1} \cdots v_{i_m} = v$. (*)

Ekkor
$$\varphi_D := \varphi_1 \wedge \varphi_2 \rightarrow \varphi_3$$
, ahol
$$\varphi_1 = p(f_{u_1}(c), f_{v_1}(c)) \wedge \cdots \wedge p(f_{u_k}(c), f_{v_k}(c)),$$

$$\varphi_2 = \forall x \forall y (p(x, y) \rightarrow p(f_{u_1}(x), f_{v_1}(y)) \wedge \cdots \wedge p(f_{u_k}(x), f_{v_k}(y))),$$

$$\varphi_3 = \exists z p(z, z).$$

Először tegyük fel, hogy φ_D logikailag igaz. Legyen I a következő interpretáció. (φ_D zárt formula, így igazságértéke csak az interpretációtól függ.)

I alaphalmaza legyen Σ^* . $f_{a_i}^I(u) := a_i u (1 \le i \le k, u \in \Sigma^*)$, $c^I := \varepsilon$, p interpretációja pedig az alábbi. Tetszőleges $u, v \in \Sigma^*$ esetén $p^I(u, v) :=$ igaz akkor és csak akkor, ha az alábbi feltétel teljesül:

van olyan
$$m \geqslant 1$$
 és $1 \leqslant i_1, \dots i_m \leqslant k$, hogy $u_{i_1} \cdots u_{i_m} = u$ és $v_{i_1} \cdots v_{i_m} = v$. (*)

Vegyük észre, hogy a feltétel pontosan akkor teljesül, ha D néhány dominója egymás után tehető úgy hogy felül u, alul v olvasható.

A u hosszára vonatkozó teljes indukcióval könnyen látható, hogy minden $u \in \Sigma^*$ esetén $|f_u(c)|^I = u$. Így minden $1 \leqslant i \leqslant k$ -ra $|f_{u_i}(c)|^I = u_i$ és $|f_{v_i}(c)|^I = v_i$ és így $p^I(u_i, v_i) = \text{igaz}$.

A u hosszára vonatkozó teljes indukcióval könnyen látható, hogy minden $u \in \Sigma^*$ esetén $|f_u(c)|^I = u$. Így minden $1 \leqslant i \leqslant k$ -ra $|f_{u_i}(c)|^I = u_i$ és $|f_{v_i}(c)|^I = v_i$ és így $p^I(u_i, v_i) = \text{igaz}$. Tehát $I \models \varphi_1$.

A u hosszára vonatkozó teljes indukcióval könnyen látható, hogy minden $u \in \Sigma^*$ esetén $|f_u(c)|^I = u$. Így minden $1 \leqslant i \leqslant k$ -ra $|f_{u_i}(c)|^I = u_i$ és $|f_{v_i}(c)|^I = v_i$ és így $p^I(u_i, v_i) = \text{igaz}$. Tehát $I \models \varphi_1$.

Tegyük fel, hogy $p^{I}(u, v) = \text{igaz valamely } u, v \in \Sigma^*\text{-ra}.$

A u hosszára vonatkozó teljes indukcióval könnyen látható, hogy minden $u \in \Sigma^*$ esetén $|f_u(c)|^I = u$. Így minden $1 \leqslant i \leqslant k$ -ra $|f_{u_i}(c)|^I = u_i$ és $|f_{v_i}(c)|^I = v_i$ és így $p^I(u_i, v_i) = \text{igaz}$. Tehát $I \models \varphi_1$.

Tegyük fel, hogy $p^I(u,v)=$ igaz valamely $u,v\in \Sigma^*$ -ra. Ekkor p^I definíciója szerint van olyan $m\geqslant 1$ és $1\leqslant i_1,\ldots i_m\leqslant k$, hogy $u_{i_1}\cdots u_{i_m}=u$ és $v_{i_1}\cdots v_{i_m}=v$.

A u hosszára vonatkozó teljes indukcióval könnyen látható, hogy minden $u \in \Sigma^*$ esetén $|f_u(c)|^I = u$. Így minden $1 \leqslant i \leqslant k$ -ra $|f_{u_i}(c)|^I = u_i$ és $|f_{v_i}(c)|^I = v_i$ és így $p^I(u_i, v_i) = \text{igaz}$. Tehát $I \models \varphi_1$.

Tegyük fel, hogy $p^I(u,v)=$ igaz valamely $u,v\in \Sigma^*$ -ra. Ekkor p^I definíciója szerint van olyan $m\geqslant 1$ és $1\leqslant i_1,\ldots i_m\leqslant k$, hogy $u_{i_1}\cdots u_{i_m}=u$ és $v_{i_1}\cdots v_{i_m}=v$.

Ekkor nyilván minden $1 \le i \le k$ -ra az $u_i u$ és $v_i v$ szavakra is teljesül a (*) feltétel (az $i, i_1, \ldots i_m$ index sorozat jó), tehát $p^I(u_i u, v_i v) =$ igaz.

A u hosszára vonatkozó teljes indukcióval könnyen látható, hogy minden $u \in \Sigma^*$ esetén $|f_u(c)|^I = u$. Így minden $1 \leqslant i \leqslant k$ -ra $|f_{u_i}(c)|^I = u_i$ és $|f_{v_i}(c)|^I = v_i$ és így $p^I(u_i, v_i) = \text{igaz}$. Tehát $I \models \varphi_1$.

Tegyük fel, hogy $p^I(u,v)=$ igaz valamely $u,v\in \Sigma^*$ -ra. Ekkor p^I definíciója szerint van olyan $m\geqslant 1$ és $1\leqslant i_1,\ldots i_m\leqslant k$, hogy $u_{i_1}\cdots u_{i_m}=u$ és $v_{i_1}\cdots v_{i_m}=v$.

Ekkor nyilván minden $1 \le i \le k$ -ra az $u_i u$ és $v_i v$ szavakra is teljesül a (*) feltétel (az $i, i_1, \ldots i_m$ index sorozat jó), tehát $p^I(u_i u, v_i v) =$ igaz.

Mivel $|f_{u_i}(u)|^I = u_i u$ és $|f_{v_i}(v)|^I = v_i v$, ezért bármely $u, v \in \Sigma^*$ -ra ha $p^I(u, v) = \text{igaz}$, akkor $p^I(|f_{u_1}(u)|^I, |f_{v_1}(v)|^I) \wedge \cdots \wedge p^I(|f_{u_k}(u)|^I, |f_{v_k}(v)|^I) = \text{igaz}$.

A u hosszára vonatkozó teljes indukcióval könnyen látható, hogy minden $u \in \Sigma^*$ esetén $|f_u(c)|^I = u$. Így minden $1 \leqslant i \leqslant k$ -ra $|f_{u_i}(c)|^I = u_i$ és $|f_{v_i}(c)|^I = v_i$ és így $p^I(u_i, v_i) = \text{igaz}$. Tehát $I \models \varphi_1$.

Tegyük fel, hogy $p^I(u,v)=$ igaz valamely $u,v\in \Sigma^*$ -ra. Ekkor p^I definíciója szerint van olyan $m\geqslant 1$ és $1\leqslant i_1,\ldots i_m\leqslant k$, hogy $u_{i_1}\cdots u_{i_m}=u$ és $v_{i_1}\cdots v_{i_m}=v$.

Ekkor nyilván minden $1 \le i \le k$ -ra az $u_i u$ és $v_i v$ szavakra is teljesül a (*) feltétel (az $i, i_1, \ldots i_m$ index sorozat jó), tehát $p^I(u_i u, v_i v) =$ igaz.

Mivel $|f_{u_i}(u)|^I = u_i u$ és $|f_{v_i}(v)|^I = v_i v$, ezért bármely $u, v \in \Sigma^*$ -ra ha $p^I(u, v) = \text{igaz}$, akkor $p^I(|f_{u_1}(u)|^I, |f_{v_1}(v)|^I) \wedge \cdots \wedge p^I(|f_{u_k}(u)|^I, |f_{v_k}(v)|^I) = \text{igaz}$. Tehát $I \models \varphi_2$.

A u hosszára vonatkozó teljes indukcióval könnyen látható, hogy minden $u \in \Sigma^*$ esetén $|f_u(c)|^I = u$. Így minden $1 \leqslant i \leqslant k$ -ra $|f_{u_i}(c)|^I = u_i$ és $|f_{v_i}(c)|^I = v_i$ és így $p^I(u_i,v_i) = \text{igaz}$. Tehát $I \models \varphi_1$.

Tegyük fel, hogy $p^I(u,v)=$ igaz valamely $u,v\in \Sigma^*$ -ra. Ekkor p^I definíciója szerint van olyan $m\geqslant 1$ és $1\leqslant i_1,\ldots i_m\leqslant k$, hogy $u_{i_1}\cdots u_{i_m}=u$ és $v_{i_1}\cdots v_{i_m}=v$.

Ekkor nyilván minden $1 \le i \le k$ -ra az $u_i u$ és $v_i v$ szavakra is teljesül a (*) feltétel (az $i, i_1, \ldots i_m$ index sorozat jó), tehát $p^I(u_i u, v_i v) =$ igaz.

Mivel $|f_{u_i}(u)|^I = u_i u$ és $|f_{v_i}(v)|^I = v_i v$, ezért bármely $u, v \in \Sigma^*$ -ra ha $p^I(u, v) = \text{igaz}$, akkor $p^I(|f_{u_1}(u)|^I, |f_{v_1}(v)|^I) \wedge \cdots \wedge p^I(|f_{u_k}(u)|^I, |f_{v_k}(v)|^I) = \text{igaz}$. Tehát $I \models \varphi_2$.

Mivel φ_D logikailag igaz, ezért $|\varphi_D|^I = \text{igaz}$.

A u hosszára vonatkozó teljes indukcióval könnyen látható, hogy minden $u \in \Sigma^*$ esetén $|f_u(c)|^I = u$. Így minden $1 \leqslant i \leqslant k$ -ra $|f_{u_i}(c)|^I = u_i$ és $|f_{v_i}(c)|^I = v_i$ és így $p^I(u_i, v_i) = \text{igaz}$. Tehát $I \models \varphi_1$.

Tegyük fel, hogy $p^I(u,v)=$ igaz valamely $u,v\in \Sigma^*$ -ra. Ekkor p^I definíciója szerint van olyan $m\geqslant 1$ és $1\leqslant i_1,\ldots i_m\leqslant k$, hogy $u_{i_1}\cdots u_{i_m}=u$ és $v_{i_1}\cdots v_{i_m}=v$.

Ekkor nyilván minden $1 \le i \le k$ -ra az $u_i u$ és $v_i v$ szavakra is teljesül a (*) feltétel (az $i, i_1, \ldots i_m$ index sorozat jó), tehát $p^I(u_i u, v_i v) =$ igaz.

Mivel $|f_{u_i}(u)|^I = u_i u$ és $|f_{v_i}(v)|^I = v_i v$, ezért bármely $u, v \in \Sigma^*$ -ra ha $p^I(u, v) = \text{igaz}$, akkor $p^I(|f_{u_1}(u)|^I, |f_{v_1}(v)|^I) \wedge \cdots \wedge p^I(|f_{u_k}(u)|^I, |f_{v_k}(v)|^I) = \text{igaz}$. Tehát $I \models \varphi_2$.

Mivel φ_D logikailag igaz, ezért $|\varphi_D|^I = \text{igaz}$. Mivel $|\varphi_1|^I = \text{igaz}$ és $|\varphi_2|^I = \text{igaz}$, ezért ez csak úgy lehet hogy $|\varphi_3|^I = \text{igaz}$.

A u hosszára vonatkozó teljes indukcióval könnyen látható, hogy minden $u \in \Sigma^*$ esetén $|f_u(c)|^I = u$. Így minden $1 \leqslant i \leqslant k$ -ra $|f_{u_i}(c)|^I = u_i$ és $|f_{v_i}(c)|^I = v_i$ és így $p^I(u_i, v_i) = \text{igaz}$. Tehát $I \models \varphi_1$.

Tegyük fel, hogy $p^I(u,v)=$ igaz valamely $u,v\in \Sigma^*$ -ra. Ekkor p^I definíciója szerint van olyan $m\geqslant 1$ és $1\leqslant i_1,\ldots i_m\leqslant k$, hogy $u_{i_1}\cdots u_{i_m}=u$ és $v_{i_1}\cdots v_{i_m}=v$.

Ekkor nyilván minden $1 \le i \le k$ -ra az $u_i u$ és $v_i v$ szavakra is teljesül a (*) feltétel (az $i, i_1, \ldots i_m$ index sorozat jó), tehát $p^I(u_i u, v_i v) =$ igaz.

Mivel $|f_{u_i}(u)|^I = u_i u$ és $|f_{v_i}(v)|^I = v_i v$, ezért bármely $u, v \in \Sigma^*$ -ra ha $p^I(u,v) = \text{igaz}$, akkor $p^I(|f_{u_1}(u)|^I,|f_{v_1}(v)|^I) \wedge \cdots \wedge p^I(|f_{u_k}(u)|^I,|f_{v_k}(v)|^I) = \text{igaz}$. Tehát $I \models \varphi_2$.

Mivel φ_D logikailag igaz, ezért $|\varphi_D|^I=$ igaz. Mivel $|\varphi_1|^I=$ igaz és $|\varphi_2|^I=$ igaz, ezért ez csak úgy lehet hogy $|\varphi_3|^I=$ igaz. φ_3 I-ben viszont akkor és csak akkor igaz, ha D-nek van megoldása.

A másik irány bizonyításához tegyük fel most, hogy ${\cal D}$ -nek van megoldása

A másik irány bizonyításához tegyük fel most, hogy D-nek van megoldása és legyen $I=\left\langle U,I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}}\right\rangle$ egy tetszőleges interpretáció.

A másik irány bizonyításához tegyük fel most, hogy D-nek van megoldása és legyen $I=\langle U,I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}}\rangle$ egy tetszőleges interpretáció. Be kell látni, hogy $I\models\varphi_D$.

A másik irány bizonyításához tegyük fel most, hogy D-nek van megoldása és legyen $I=\left\langle U,I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}}\right\rangle$ egy tetszőleges interpretáció. Be kell látni, hogy $I\models\varphi_D$.

Ha $I \not\models \varphi_1 \land \varphi_2$, akkor $I \models \varphi_D$ fennáll az implikáció igazságértékének definíciója miatt.

A másik irány bizonyításához tegyük fel most, hogy D-nek van megoldása és legyen $I=\left\langle U,I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}}\right\rangle$ egy tetszőleges interpretáció. Be kell látni, hogy $I\models\varphi_D$.

Ha $I \not\models \varphi_1 \land \varphi_2$, akkor $I \models \varphi_D$ fennáll az implikáció igazságértékének definíciója miatt. Feltehető tehát, hogy $I \models \varphi_1$ és $I \models \varphi_2$.

A másik irány bizonyításához tegyük fel most, hogy D-nek van megoldása és legyen $I=\left\langle U,I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}}\right\rangle$ egy tetszőleges interpretáció. Be kell látni, hogy $I\models\varphi_D$.

Ha $I \not\models \varphi_1 \land \varphi_2$, akkor $I \models \varphi_D$ fennáll az implikáció igazságértékének definíciója miatt. Feltehető tehát, hogy $I \models \varphi_1$ és $I \models \varphi_2$.

Legyen $m\geqslant 1$ és $1\leqslant i_1,\ldots i_m\leqslant k$ olyanok, hogy $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$ (ilyen létezik, mert D-nek van megoldása).

A másik irány bizonyításához tegyük fel most, hogy D-nek van megoldása és legyen $I=\langle U,I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}}\rangle$ egy tetszőleges interpretáció. Be kell látni, hogy $I\models\varphi_D$.

Ha $I \not\models \varphi_1 \land \varphi_2$, akkor $I \models \varphi_D$ fennáll az implikáció igazságértékének definíciója miatt. Feltehető tehát, hogy $I \models \varphi_1$ és $I \models \varphi_2$.

Legyen $m\geqslant 1$ és $1\leqslant i_1,\ldots i_m\leqslant k$ olyanok, hogy $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$ (ilyen létezik, mert D-nek van megoldása). $I\models \varphi_1$ -ből $I\models p(f_{u_{i_m}}(c),f_{v_{i_m}}(c))$ adódik.

A másik irány bizonyításához tegyük fel most, hogy D-nek van megoldása és legyen $I=\left\langle U,I_{\mathsf{Pred}},I_{\mathsf{Func}},I_{\mathsf{Cnst}}\right\rangle$ egy tetszőleges interpretáció. Be kell látni, hogy $I\models\varphi_D$.

Ha $I \not\models \varphi_1 \land \varphi_2$, akkor $I \models \varphi_D$ fennáll az implikáció igazságértékének definíciója miatt. Feltehető tehát, hogy $I \models \varphi_1$ és $I \models \varphi_2$.

Legyen $m\geqslant 1$ és $1\leqslant i_1,\ldots i_m\leqslant k$ olyanok, hogy $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$ (ilyen létezik, mert D-nek van megoldása). $I\models \varphi_1$ -ből $I\models p(f_{u_{i_m}}(c),f_{v_{i_m}}(c))$ adódik.

Ebből $I \models \varphi_2$ miatt sorra (teljes indukcióval) adódik, hogy

$$I \models p(f_{u_{i_{m}}}(c), f_{v_{i_{m}}}(c))$$

$$I \models p(f_{u_{i_{m-1}}u_{i_{m}}}(c), f_{v_{i_{m-1}}v_{i_{m}}}(c))$$

$$\vdots$$

$$I \models p(f_{u_{i_{1}}\cdots u_{i_{m-1}}u_{i_{m}}}(c), f_{v_{i_{1}}\cdots v_{i_{m-1}}v_{i_{m}}}(c))$$

Mivel $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$, ezért a $w=|f_{u_{i_1}\cdots u_{i_{m-1}}u_{i_m}}(c)|^I$ *U*-beli elemre $p^I(w,w)=$ igaz teljesül.

Mivel $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$, ezért a $w=|f_{u_{i_1}\cdots u_{i_{m-1}}u_{i_m}}(c)|^I$ *U*-beli elemre $p^I(w,w)=$ igaz teljesül.

Tehát $I \models \varphi_3$ és így $I \models \varphi_D$.

Mivel $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$, ezért a $w=|f_{u_{i_1}\cdots u_{i_{m-1}}u_{i_m}}(c)|^I$ *U*-beli elemre $p^I(w,w)=$ igaz teljesül.

Tehát $I \models \varphi_3$ és így $I \models \varphi_D$. D alapján a φ_D formula nyilván kiszámítható,

Mivel $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$, ezért a $w=|f_{u_{i_1}\cdots u_{i_{m-1}}u_{i_m}}(c)|^I$ *U*-beli elemre $p^I(w,w)=$ igaz teljesül.

Tehát $I \vDash \varphi_3$ és így $I \vDash \varphi_D$. D alapján a φ_D formula nyilván kiszámítható, így $L_{\text{PMP}} \leqslant \text{VALIDITYPRED}$.

Mivel $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$, ezért a $w=|f_{u_{i_1}\cdots u_{i_{m-1}}u_{i_m}}(c)|^I$ *U*-beli elemre $p^I(w,w)=$ igaz teljesül.

Tehát $I \vDash \varphi_3$ és így $I \vDash \varphi_D$. D alapján a φ_D formula nyilván kiszámítható, így $L_{\mathsf{PMP}} \leqslant \mathsf{VALIDITYPRED}$. A tétel állítása következik egy a visszavezetésről tanult tételből és abból, hogy $L_{\mathsf{PMP}} \notin \mathsf{R}$.

Mivel $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$, ezért a $w=|f_{u_{i_1}\cdots u_{i_{m-1}}u_{i_m}}(c)|^I$ *U*-beli elemre $p^I(w,w)=$ igaz teljesül.

Tehát $I \models \varphi_3$ és így $I \models \varphi_D$. D alapján a φ_D formula nyilván kiszámítható, így $L_{\text{PMP}} \leqslant \text{VALIDITYPRED}$. A tétel állítása következik egy a visszavezetésről tanult tételből és abból, hogy $L_{\text{PMP}} \notin \mathbb{R}$.

Következmény

UnsatPred, SatPred, EquivPred, ConsPred ∉ R

Mivel $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$, ezért a $w=|f_{u_{i_1}\cdots u_{i_{m-1}}u_{i_m}}(c)|^I$ *U*-beli elemre $p^I(w,w)=$ igaz teljesül.

Tehát $I \models \varphi_3$ és így $I \models \varphi_D$. D alapján a φ_D formula nyilván kiszámítható, így $L_{\mathsf{PMP}} \leqslant \mathsf{VALIDITYPRED}$. A tétel állítása következik egy a visszavezetésről tanult tételből és abból, hogy $L_{\mathsf{PMP}} \notin \mathsf{R}$.

Következmény

UnsatPred, SatPred, EquivPred, ConsPred ∉ R

Bizonyítás: φ kielégíthetetlen $\Leftrightarrow \models \neg \varphi$. Tehát az előző tétel alapján UNSATPRED $\notin \mathbb{R}$.

Mivel $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$, ezért a $w=|f_{u_{i_1}\cdots u_{i_{m-1}}u_{i_m}}(c)|^I$ *U*-beli elemre $p^I(w,w)=$ igaz teljesül.

Tehát $I \models \varphi_3$ és így $I \models \varphi_D$. D alapján a φ_D formula nyilván kiszámítható, így $L_{\mathsf{PMP}} \leqslant \mathsf{VALIDITYPRED}$. A tétel állítása következik egy a visszavezetésről tanult tételből és abból, hogy $L_{\mathsf{PMP}} \notin \mathsf{R}$.

Következmény

UnsatPred, SatPred, EquivPred, ConsPred ∉ R

Bizonyítás: φ kielégíthetetlen $\Leftrightarrow \models \neg \varphi$. Tehát az előző tétel alapján UNSATPRED $\notin \mathbb{R}$.

Eldönthetetlen nyelv komplementere eldönthetetlen, tehát $\mathtt{SatPred} \notin \mathbf{R}.$

Mivel $u_{i_1}\cdots u_{i_m}=v_{i_1}\cdots v_{i_m}$, ezért a $w=|f_{u_{i_1}\cdots u_{i_{m-1}}u_{i_m}}(c)|^I$ *U*-beli elemre $p^I(w,w)=$ igaz teljesül.

Tehát $I \models \varphi_3$ és így $I \models \varphi_D$. D alapján a φ_D formula nyilván kiszámítható, így $L_{\mathsf{PMP}} \leqslant \mathsf{VALIDITYPRED}$. A tétel állítása következik egy a visszavezetésről tanult tételből és abból, hogy $L_{\mathsf{PMP}} \notin \mathsf{R}$.

Következmény

UnsatPred, SatPred, EquivPred, ConsPred ∉ R

Bizonyítás: φ kielégíthetetlen $\Leftrightarrow \models \neg \varphi$. Tehát az előző tétel alapján UNSATPRED $\notin \mathbb{R}$.

Eldönthetetlen nyelv komplementere eldönthetetlen, tehát SATPRED $\not\in$ R.

 φ kielégíthetetlen $\iff \varphi \sim \bot$, így EQUIVPRED $\notin R$.

Mivel $u_{i_1} \cdots u_{i_m} = v_{i_1} \cdots v_{i_m}$, ezért a $w = |f_{u_{i_1} \cdots u_{i_{m-1}} u_{i_m}}(c)|^I$ *U*-beli elemre $p^I(w, w) = \text{igaz teljesül}$.

Tehát $I \models \varphi_3$ és így $I \models \varphi_D$. D alapján a φ_D formula nyilván kiszámítható, így $L_{\text{PMP}} \leq \text{VALIDITYPRED}$. A tétel állítása következik egy a visszavezetésről tanult tételből és abból, hogy $L_{\text{PMP}} \notin \mathbb{R}$.

Következmény

UnsatPred, SatPred, EquivPred, ConsPred ∉ R

Bizonyítás: φ kielégíthetetlen $\Leftrightarrow \models \neg \varphi$. Tehát az előző tétel alapján UNSATPRED \notin R.

Eldönthetetlen nyelv komplementere eldönthetetlen, tehát SATPRED $\not\in R.$

 φ kielégíthetetlen $\Longleftrightarrow \varphi \sim \bot$, így EQUIVPRED \notin R.

 $\mathcal{F} \models \varphi \iff \mathcal{F} \cup \{\neg \varphi\} \text{ kielégíthetetlen, így ConsPred} \notin \mathbb{R}.$

Megjegyzés: Van olyan parciális algoritmus, amely egy tetszőleges φ elsőrendű formulára pontosan akkor áll meg "igen" válasszal, ha φ kielégíthetetlen (ilyen például az elsőrendű logika rezolúciós algoritmusa).

Megjegyzés: Van olyan parciális algoritmus, amely egy tetszőleges φ elsőrendű formulára pontosan akkor áll meg "igen" válasszal, ha φ kielégíthetetlen (ilyen például az elsőrendű logika rezolúciós algoritmusa).

Az elsőrendű rezolúció ismertetése meghaladja az előadás kereteit így bizonyítás nélkül kimondjuk a következőt:

Tétel

UnsatPred ∈ RE.

Megjegyzés: Van olyan parciális algoritmus, amely egy tetszőleges φ elsőrendű formulára pontosan akkor áll meg "igen" válasszal, ha φ kielégíthetetlen (ilyen például az elsőrendű logika rezolúciós algoritmusa).

Az elsőrendű rezolúció ismertetése meghaladja az előadás kereteit így bizonyítás nélkül kimondjuk a következőt:

Tétel

UnsatPred ∈ RE.

Következmény

SATPRED **∉** RE

Megjegyzés: Van olyan parciális algoritmus, amely egy tetszőleges φ elsőrendű formulára pontosan akkor áll meg "igen" válasszal, ha φ kielégíthetetlen (ilyen például az elsőrendű logika rezolúciós algoritmusa).

Az elsőrendű rezolúció ismertetése meghaladja az előadás kereteit így bizonyítás nélkül kimondjuk a következőt:

Tétel

UnsatPred ∈ RE.

Következmény

SATPRED **∉** RE

Bizonyítás: Korábbi tételünk volt hogy $L, \overline{L} \in RE \Rightarrow L \in R$.

Megjegyzés: Van olyan parciális algoritmus, amely egy tetszőleges φ elsőrendű formulára pontosan akkor áll meg "igen" válasszal, ha φ kielégíthetetlen (ilyen például az elsőrendű logika rezolúciós algoritmusa).

Az elsőrendű rezolúció ismertetése meghaladja az előadás kereteit így bizonyítás nélkül kimondjuk a következőt:

Tétel

UnsatPred ∈ RE.

Következmény

SATPRED **∉** RE

Bizonyítás: Korábbi tételünk volt hogy $L, \overline{L} \in RE \Rightarrow L \in R$.Mivel $\overline{UNSATPRED} = SATPRED$

Megjegyzés: Van olyan parciális algoritmus, amely egy tetszőleges φ elsőrendű formulára pontosan akkor áll meg "igen" válasszal, ha φ kielégíthetetlen (ilyen például az elsőrendű logika rezolúciós algoritmusa).

Az elsőrendű rezolúció ismertetése meghaladja az előadás kereteit így bizonyítás nélkül kimondjuk a következőt:

Tétel

UnsatPred ∈ RE.

Következmény

SATPRED **∉** RE

Bizonyítás: Korábbi tételünk volt hogy $L, \overline{L} \in \mathsf{RE} \Rightarrow L \in \mathsf{R}.$ Mivel $\overline{\mathsf{UNSATPRED}} = \mathsf{SATPRED}$ és $\mathsf{UNSATPRED} \in \mathsf{RE} \backslash \mathsf{R}$, ezért $\mathsf{SATPRED} \notin \mathsf{RE}$.

Tétel

Minden G grammatikához megadható egy L(G)-t felismerő NTG.

Tétel

Minden G grammatikához megadható egy L(G)-t felismerő NTG.

Bizonyítás: Legyen *M*-nek 3 szalagja, az első a TG bemenetét, a második a *G* grammatika szabályait tartalmazza. Ezeket a működés során csak olvassuk.

Tétel

Minden G grammatikához megadható egy L(G)-t felismerő NTG.

Bizonyítás: Legyen *M*-nek 3 szalagja, az első a TG bemenetét, a második a *G* grammatika szabályait tartalmazza. Ezeket a működés során csak olvassuk.

A harmadik szalagon mindig egy α mondatforma áll (kezdetben G kezdőszimbóluma).

Tétel

Minden G grammatikához megadható egy L(G)-t felismerő NTG.

Bizonyítás: Legyen *M*-nek 3 szalagja, az első a TG bemenetét, a második a *G* grammatika szabályait tartalmazza. Ezeket a működés során csak olvassuk.

A harmadik szalagon mindig egy α mondatforma áll (kezdetben G kezdőszimbóluma).

A Turing gép nemdeterminisztikusan választ egy $p \to q$ szabályt és α -ban egy pozíciót. Ha az adott pozícióban éppen p kezdődik, azaz $\alpha = xpy$, akkor p-t q-ra cseréli, az új mondatforma xqy lesz.

Tétel

Minden G grammatikához megadható egy L(G)-t felismerő NTG.

Bizonyítás: Legyen *M*-nek 3 szalagja, az első a TG bemenetét, a második a *G* grammatika szabályait tartalmazza. Ezeket a működés során csak olvassuk.

A harmadik szalagon mindig egy α mondatforma áll (kezdetben G kezdőszimbóluma).

A Turing gép nemdeterminisztikusan választ egy $p \to q$ szabályt és α -ban egy pozíciót. Ha az adott pozícióban éppen p kezdődik, azaz $\alpha = xpy$, akkor p-t q-ra cseréli, az új mondatforma xqy lesz.

Ha az 1. és a 3. szalag tartalma megegyezik a gép q_i -ben megáll. M ezt minden iteráció előtt ellenőrzi.

Tétel

Minden G grammatikához megadható egy L(G)-t felismerő NTG.

Bizonyítás: Legyen *M*-nek 3 szalagja, az első a TG bemenetét, a második a *G* grammatika szabályait tartalmazza. Ezeket a működés során csak olvassuk.

A harmadik szalagon mindig egy α mondatforma áll (kezdetben G kezdőszimbóluma).

A Turing gép nemdeterminisztikusan választ egy $p \to q$ szabályt és α -ban egy pozíciót. Ha az adott pozícióban éppen p kezdődik, azaz $\alpha = xpy$, akkor p-t q-ra cseréli, az új mondatforma xqy lesz.

Ha az 1. és a 3. szalag tartalma megegyezik a gép q_i -ben megáll. M ezt minden iteráció előtt ellenőrzi. Így L(M) = L(G).

Tétel

Minden G grammatikához megadható egy L(G)-t felismerő NTG.

Bizonyítás: Legyen *M*-nek 3 szalagja, az első a TG bemenetét, a második a *G* grammatika szabályait tartalmazza. Ezeket a működés során csak olvassuk.

A harmadik szalagon mindig egy α mondatforma áll (kezdetben G kezdőszimbóluma).

A Turing gép nemdeterminisztikusan választ egy $p \to q$ szabályt és α -ban egy pozíciót. Ha az adott pozícióban éppen p kezdődik, azaz $\alpha = xpy$, akkor p-t q-ra cseréli, az új mondatforma xqy lesz.

Ha az 1. és a 3. szalag tartalma megegyezik a gép q_i -ben megáll. M ezt minden iteráció előtt ellenőrzi. Így L(M) = L(G).

Következmény: Egy korábbi tételünk alapján persze determinisztikus TG is megadható *G*-hez.

Tétel

Minden $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ determinisztikus TG-hez megadható egy L(M)-et generáló G grammatika.

Tétel

Minden $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ determinisztikus TG-hez megadható egy L(M)-et generáló G grammatika.

Bizonyítás: *G* mondatformái *M* konfigurációit fogják kódolni. A *G* grammatika éppen fordítottan fog haladni. Nemdeterminisztikusan előállít egy elfogadó konfigurációt, majd ebből megpróbál egy kezdőkonfigurációt levezetni.

 $\mathsf{Legyen}\ \mathit{G} = \langle (\Gamma \backslash \Sigma) \cup \mathit{Q} \cup \{\mathit{S}, \mathit{A}, \rhd, \lhd\}, \Sigma, \mathit{P}, \mathit{S} \rangle.$

Legyen $G = \langle (\Gamma \backslash \Sigma) \cup Q \cup \{S, A, \triangleright, \lhd\}, \Sigma, P, S \rangle$. P szabályai:

1.
$$S \rightarrow \triangleright Aq_i A \triangleleft$$

2.
$$A \rightarrow aA \mid \varepsilon$$
 $(\forall a \in \Gamma)$

3.
$$bq' \rightarrow qa$$
, ha $\delta(q, a) = (q', b, R)$

4.
$$q'b \rightarrow qa$$
, ha $\delta(q,a) = (q',b,S)$

5.
$$q'cb \rightarrow cqa$$
, ha $\delta(q, a) = (q', b, L)$ $(\forall c \in \Gamma)$

6.
$$\square \triangleleft \rightarrow \triangleleft$$
, $\triangleleft \rightarrow \varepsilon$, $\triangleright \sqcup \rightarrow \triangleright$, $\triangleright q_0 \rightarrow \varepsilon$

Legyen $G = \langle (\Gamma \backslash \Sigma) \cup Q \cup \{S, A, \triangleright, \lhd\}, \Sigma, P, S \rangle$. P szabályai:

- 1. $S \rightarrow \triangleright Aq_i A \triangleleft$
- 2. $A \rightarrow aA \mid \varepsilon$ $(\forall a \in \Gamma)$
- 3. $bq' \rightarrow qa$, ha $\delta(q, a) = (q', b, R)$
- 4. $q'b \rightarrow qa$, ha $\delta(q, a) = (q', b, S)$
- 5. $q'cb \rightarrow cqa$, ha $\delta(q, a) = (q', b, L)$ $(\forall c \in \Gamma)$
- 6. $\square \triangleleft \rightarrow \triangleleft$, $\triangleleft \rightarrow \varepsilon$, $\triangleright \sqcup \rightarrow \triangleright$, $\triangleright q_0 \rightarrow \varepsilon$
- 1-2. generálunk egy tetszőleges elfogadó konfigurációt
- 3-5. a konfigurációátmeneteket fordított irányban szimuláljuk. Pl. ha $\alpha cqa\beta \vdash \alpha q'cb\beta$ egy $\delta(q,a) = (q',b,L)$ szabály szerint, akkor most a grammatikában az 5-ös pont szerint q'cb íródhat át cqa-ra.
- 6. Ha a mondatformánk egy kezdőkonfiguráció (esetleg néhány extra ⊔-el), akkor ezek takarítják el a már felesleges jeleket.

A konfiguráció
átmenet hosszára (n) vonatkozó indukcióval könnyen megmutatható, hogy

 $upv \vdash^* u'qv' \ (p, q \in Q, u, u', v, v' \in \Gamma^*)$ akkor és csak akkor ha $\rhd \sqcup^{i'} u'qv' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd \text{ valamely } i, i', j, j' \in \mathbb{N}$ -re.

A konfiguráció
átmenet hosszára (n) vonatkozó indukcióval könnyen megmutatható, hogy

 $upv \vdash^* u'qv' \ (p, q \in Q, u, u', v, v' \in \Gamma^*)$ akkor és csak akkor ha $\rhd \sqcup^{i'} u'qv' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^i upv \sqcup^j \lhd \text{valamely } i, i', j, j' \in \mathbb{N}$ -re.

n = 0-ra nyilvánvaló.

A konfiguráció
átmenet hosszára (n) vonatkozó indukcióval könnyen megmutatható, hogy

 $upv \vdash^* u'qv' \ (p, q \in Q, u, u', v, v' \in \Gamma^*)$ akkor és csak akkor ha $\rhd \sqcup^{i'} u'qv' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd \text{ valamely } i, i', j, j' \in \mathbb{N}$ -re.

n=0-ra nyilvánvaló. n-ről n+1-re nézzük meg a jobbralépés példáján.

A konfiguráció
átmenet hosszára (n) vonatkozó indukcióval könnyen megmutatható, hogy

 $upv \vdash^* u'qv' \ (p, q \in Q, u, u', v, v' \in \Gamma^*)$ akkor és csak akkor ha $\rhd \sqcup^{i'} u'qv' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd \text{ valamely } i, i', j, j' \in \mathbb{N}$ -re.

n=0-ra nyilvánvaló. n-ről n+1-re nézzük meg a jobbralépés példáján. Ha $upv \vdash^* u'qav' \vdash u'brv''$ valamely $a,b \in \Gamma, r \in Q$ -ra ahol v''=v' ha $v'\neq \varepsilon, \ v''=\sqcup$ különben, akkor $\rhd \sqcup^{i'} u'qav' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^i upv \sqcup^j \lhd$ valamely $i,i',j,j' \in \mathbb{N}$ -re az indukciós feltevés miatt

A konfiguráció
átmenet hosszára (n) vonatkozó indukcióval könnyen megmutatható, hogy

 $upv \vdash^* u'qv' \ (p, q \in Q, u, u', v, v' \in \Gamma^*)$ akkor és csak akkor ha $\rhd \sqcup^{i'} u'qv' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd \text{ valamely } i, i', j, j' \in \mathbb{N}$ -re.

n=0-ra nyilvánvaló. n-ről n+1-re nézzük meg a jobbralépés példáján. Ha $upv \vdash^* u'qav' \vdash u'brv''$ valamely $a,b \in \Gamma, r \in Q$ -ra ahol v''=v' ha $v'\neq \varepsilon, \ v''=\sqcup$ különben, akkor $\rhd \sqcup^{i'} u'qav' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd$ valamely $i,i',j,j' \in \mathbb{N}$ -re az indukciós feltevés miatt és $\rhd \sqcup^{i'} u'brv'' \sqcup^{j'} \lhd \Rightarrow \rhd \sqcup^{i'} u'qav' \sqcup^{j'} \lhd$ mivel $bs \to qa \in P$.

A konfiguráció
átmenet hosszára (n) vonatkozó indukcióval könnyen megmutatható, hogy

 $upv \vdash^* u'qv' \ (p, q \in Q, u, u', v, v' \in \Gamma^*)$ akkor és csak akkor ha $\rhd \sqcup^{i'} u'qv' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd \text{ valamely } i, i', j, j' \in \mathbb{N}$ -re.

n=0-ra nyilvánvaló. n-ről n+1-re nézzük meg a jobbralépés példáján. Ha $upv \vdash^* u'qav' \vdash u'brv''$ valamely $a,b \in \Gamma, r \in Q$ -ra ahol v''=v' ha $v'\neq \varepsilon, \ v''=\sqcup$ különben, akkor $\trianglerighteq \sqcup^{i'} u'qav' \sqcup^{j'} \lhd \Rightarrow^* \trianglerighteq \sqcup^{i} upv \sqcup^{j} \lhd$ valamely $i,i',j,j' \in \mathbb{N}$ -re az indukciós feltevés miatt és $\trianglerighteq \sqcup^{i'} u'brv'' \sqcup^{j'} \lhd \Rightarrow \trianglerighteq \sqcup^{i'} u'qav' \sqcup^{j'} \lhd$ mivel $bs \to qa \in P$. Tehát $\trianglerighteq \sqcup^{i'} u'brv'' \sqcup^{j'} \lhd \Rightarrow^* \trianglerighteq \sqcup^{i} upv \sqcup^{j} \lhd$, azaz a jobbralépéssel végződő n+1 hosszú konfigurációátmenetekre is igaz az állítás.

A konfiguráció
átmenet hosszára (n) vonatkozó indukcióval könnyen megmutatható, hogy

 $upv \vdash^* u'qv' \ (p, q \in Q, u, u', v, v' \in \Gamma^*)$ akkor és csak akkor ha $\rhd \sqcup^{i'} u'qv' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd \text{ valamely } i, i', j, j' \in \mathbb{N}$ -re.

n=0-ra nyilvánvaló. n-ről n+1-re nézzük meg a jobbralépés példáján. Ha $upv \vdash^* u'qav' \vdash u'brv''$ valamely $a,b \in \Gamma, r \in Q$ -ra ahol v''=v' ha $v'\neq \varepsilon, \ v''=\sqcup$ különben, akkor $\rhd \sqcup^{i'} u'qav' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd$ valamely $i,i',j,j' \in \mathbb{N}$ -re az indukciós feltevés miatt és $\rhd \sqcup^{i'} u'brv'' \sqcup^{j'} \lhd \Rightarrow \rhd \sqcup^{i'} u'qav' \sqcup^{j'} \lhd$ mivel $bs \to qa \in P$. Tehát $\rhd \sqcup^{i'} u'brv'' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd$, azaz a jobbralépéssel végződő n+1 hosszú konfigurációátmenetekre is igaz az állítás. Hasonlóan megy a bizonyítás az S és L irányokra illetve az állítás megfordítására.

A konfiguráció
átmenet hosszára (n) vonatkozó indukcióval könnyen megmutatható, hogy

 $upv \vdash^* u'qv' \ (p, q \in Q, u, u', v, v' \in \Gamma^*)$ akkor és csak akkor ha $\rhd \sqcup^{i'} u'qv' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd \text{ valamely } i, i', j, j' \in \mathbb{N}$ -re.

n=0-ra nyilvánvaló. n-ről n+1-re nézzük meg a jobbralépés példáján. Ha $upv \vdash^* u'qav' \vdash u'brv''$ valamely $a,b \in \Gamma, r \in Q$ -ra ahol v''=v' ha $v'\neq \varepsilon, \ v''=\sqcup$ különben, akkor $\rhd \sqcup^{i'} u'qav' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd$ valamely $i,i',j,j' \in \mathbb{N}$ -re az indukciós feltevés miatt és $\rhd \sqcup^{i'} u'brv'' \sqcup^{j'} \lhd \Rightarrow \rhd \sqcup^{i'} u'qav' \sqcup^{j'} \lhd$ mivel $bs \to qa \in P$. Tehát $\rhd \sqcup^{i'} u'brv'' \sqcup^{j'} \lhd \Rightarrow^* \rhd \sqcup^{i} upv \sqcup^{j} \lhd$, azaz a jobbralépéssel végződő n+1 hosszú konfigurációátmenetekre is igaz az állítás. Hasonlóan megy a bizonyítás az S és L irányokra illetve az állítás megfordítására.

Tehát $q_0w \vdash^* \alpha q_i\beta$ valamely $\alpha, \beta \in \Gamma^*$ -ra akkor és csak akkor, ha $S \Rightarrow^* \rhd \alpha q_i\beta \lhd \Rightarrow^* \rhd \sqcup^i q_0w \sqcup^j \lhd \Rightarrow^* w$.

Definíció

A lineárisan korlátolt automata (LKA) olyan nemdeterminisztikus TG, melynek Σ bemeneti ábécéje két speciális szimbólumot tartalmaz ⊳-et (baloldali végejel/endmarker) és ⊲-et (jobboldali végejel/endmarkert). Ezen felül

- ▶ a bemenetek $\triangleright(\Sigma\backslash\{\triangleright, \lhd\})^* \lhd$ -beliek,
- ▶ bes < nem írhatók felül</p>
- ► b-tól balra illetve <-től jobbra nem állhat a fej.</p>
- a fej kezdőpozíciója a ⊳ tartalmú cella jobb-szomszédja

Definíció

A lineárisan korlátolt automata (LKA) olyan nemdeterminisztikus TG, melynek Σ bemeneti ábécéje két speciális szimbólumot tartalmaz ⊳-et (baloldali végejel/endmarker) és ⊲-et (jobboldali végejel/endmarkert). Ezen felül

- ▶ a bemenetek $\triangleright(\Sigma\backslash\{\triangleright, \lhd\})^* \lhd$ -beliek,
- ▶ b és < nem írhatók felül</p>
- ► tól balra illetve <-től jobbra nem állhat a fej.</p>
- a fej kezdőpozíciója a ⊳ tartalmú cella jobb-szomszédja

Magyarán az LKA egy korlátos munkaterülettel rendelkező NTG.

Definíció

A lineárisan korlátolt automata (LKA) olyan nemdeterminisztikus TG, melynek Σ bemeneti ábécéje két speciális szimbólumot tartalmaz ⊳-et (baloldali végejel/endmarker) és ⊲-et (jobboldali végejel/endmarkert). Ezen felül

- ▶ a bemenetek $\triangleright(\Sigma\backslash\{\triangleright, \lhd\})^* \lhd$ -beliek,
- ▶ bes < nem írhatók felül</p>
- ► b-tól balra illetve <-től jobbra nem állhat a fej.</p>
- a fej kezdőpozíciója a ⊳ tartalmú cella jobb-szomszédja

Magyarán az LKA egy korlátos munkaterülettel rendelkező NTG.

Megjegyzés: Nevét egy vele ekvivalens modellről kapta, amelyben a rendelkezésre álló tár az input hosszának konstansszorosa (lineáris függvénye). (Megmutatható, hogy egy konstans szorzó a megengedett munkaterület méretére nem növeli meg a gép számítási erejét.)

Tétel

- (1) Minden G 1-es típusú grammatikához megadható egy A LKA, melyre L(A) = L(G).
- (2) Minden A LKA-hoz megadható egy G 1-es típusú grammatika, melyre L(G) = L(A).

Tétel

- (1) Minden G 1-es típusú grammatikához megadható egy A LKA, melyre L(A) = L(G).
- (2) Minden A LKA-hoz megadható egy G 1-es típusú grammatika, melyre L(G) = L(A).

Bizonyítás (vázlat):

(1) Az előző előtti tételben láttuk, hogy minden 0. típusú grammatikához lehet konstruálni L(G)-t felismerő NTG-t.

Tétel

- (1) Minden G 1-es típusú grammatikához megadható egy A LKA, melyre L(A) = L(G).
- (2) Minden A LKA-hoz megadható egy G 1-es típusú grammatika, melyre L(G) = L(A).

Bizonyítás (vázlat):

(1) Az előző előtti tételben láttuk, hogy minden 0. típusú grammatikához lehet konstruálni L(G)-t felismerő NTG-t. A konstrukció a 3. szalagján nemdeterminisztikusan szimulált egy G-beli levezetést, az iterációk végén ellenőrizte, hogy a 3. szalagon lévő mondatforma megegyezik-e az első szalagon lévő u inputtal.

Tétel

- (1) Minden G 1-es típusú grammatikához megadható egy A LKA, melyre L(A) = L(G).
- (2) Minden A LKA-hoz megadható egy G 1-es típusú grammatika, melyre L(G) = L(A).

Bizonyítás (vázlat):

(1) Az előző előtti tételben láttuk, hogy minden 0. típusú grammatikához lehet konstruálni L(G)-t felismerő NTG-t.

A konstrukció a 3. szalagján nemdeterminisztikusan szimulált egy G-beli levezetést, az iterációk végén ellenőrizte, hogy a 3. szalagon lévő mondatforma megegyezik-e az első szalagon lévő u inputtal.

Amennyiben G 1-es típusú, azaz hossz-nemcsökkentőek a szabályai, akkor a 3. szalagon lévő mondatforma hossza nem haladhatja meg |u|-t, így ez az NTG egy LKA.

(2) Ha az előző bizonyításban konstruált grammatika szabályai hossz-nemcsökkentőek lennének, akkor ez megfelelő is lenne.

(2) Ha az előző bizonyításban konstruált grammatika szabályai hossz-nemcsökkentőek lennének, akkor ez megfelelő is lenne.

Azonban a hosszcsökkentő szabályok kiküszöbölhetőek:

(2) Ha az előző bizonyításban konstruált grammatika szabályai hossz-nemcsökkentőek lennének, akkor ez megfelelő is lenne.

Azonban a hosszcsökkentő szabályok kiküszöbölhetőek:

▶ az elfogadó konfiguráció generálásakor használtuk az $A \rightarrow \varepsilon$ szabályt. Mivel itt valójában S-ből egy hosszabb szót építünk fel, ennek a szabálynak az alkalmazása könnyen megkerülhető (az egyszerűség miatt szerepelt),

(2) Ha az előző bizonyításban konstruált grammatika szabályai hossz-nemcsökkentőek lennének, akkor ez megfelelő is lenne.

Azonban a hosszcsökkentő szabályok kiküszöbölhetőek:

- ightharpoonup az elfogadó konfiguráció generálásakor használtuk az A
 ightharpoonup arepsilon szabályt. Mivel itt valójában S-ből egy hosszabb szót építünk fel, ennek a szabálynak az alkalmazása könnyen megkerülhető (az egyszerűség miatt szerepelt),
- ▶ ▷, ⊲, q_0 -t eltüntető szabályok. Mindegyiket csak egyszer használjuk levezetésenként. $(N \cup T) \times (N \cup T)$ -beli jeleknek a nemterminálisokhoz való hozzáadásával ezek használata elkerülhető (példa: az $AB \rightarrow C$ hosszcsökkentő szabályt $(A, B) \rightarrow C$ -vel helyettesíthetjük),

(2) Ha az előző bizonyításban konstruált grammatika szabályai hossz-nemcsökkentőek lennének, akkor ez megfelelő is lenne.

Azonban a hosszcsökkentő szabályok kiküszöbölhetőek:

- > az elfogadó konfiguráció generálásakor használtuk az $A \to \varepsilon$ szabályt. Mivel itt valójában S-ből egy hosszabb szót építünk fel, ennek a szabálynak az alkalmazása könnyen megkerülhető (az egyszerűség miatt szerepelt),
- ▶ ▷, ⊲, q_0 -t eltüntető szabályok. Mindegyiket csak egyszer használjuk levezetésenként. $(N \cup T) \times (N \cup T)$ -beli jeleknek a nemterminálisokhoz való hozzáadásával ezek használata elkerülhető (példa: az $AB \rightarrow C$ hosszcsökkentő szabályt $(A, B) \rightarrow C$ -vel helyettesíthetjük),
- a lineáris korlátoltság miatt M konfigurációi egy adott u inputra nem lehetnek hosszabbak, mint az u-hoz tartozó kezdőkonfiguráció hossza, így nincs szükség ⊔-eket eltüntető szabályokra.

Tétel

Ha A LKA, akkor L(A) eldönthető.

Tétel

Ha A LKA, akkor L(A) eldönthető.

Bizonyítás: A lineáris korlátoltság miatt A lehetséges konfigurációinak száma egy u bemenetre legfeljebb $m(u) = |Q| \cdot |u| \cdot |\Gamma|^{|u|}$, ahol Q az A állapothalmaza és Γ a szalagábécéje. Ha A-nak van elfogadó számítása, akkor van legfeljebb m(u) hosszú számítása is (a számítások két azonos konfiguráció közötti része kihagyható).

Tétel

Ha A LKA, akkor L(A) eldönthető.

Bizonyítás: A lineáris korlátoltság miatt A lehetséges konfigurációinak száma egy u bemenetre legfeljebb $m(u) = |Q| \cdot |u| \cdot |\Gamma|^{|u|}$, ahol Q az A állapothalmaza és Γ a szalagábécéje. Ha A-nak van elfogadó számítása, akkor van legfeljebb m(u) hosszú számítása is (a számítások két azonos konfiguráció közötti része kihagyható).

Működjön az M Turing gép pontosan úgy, mint A, de minden u bemenetre számolja a lépéseit m(u)-ig. Ekkor állítsuk le M-et q_n -ben. Nyilván L(M) = L(A) és M minden bemenetre megáll.

Következmény

 $\mathcal{L}_1 \subseteq R$.

Tétel

 $\mathcal{L}_1 \subset \mathsf{R}.$

Tétel

$$\mathcal{L}_1 \subset R.$$

Az előző következmény alapján $\mathcal{L}_1 \subseteq \mathsf{R}.$

Tétel

$$\mathcal{L}_1 \subset R.$$

Az előző következmény alapján $\mathcal{L}_1 \subseteq \mathsf{R}$.

Legyen $L_{\mathsf{LKA-\acute{a}tl\acute{o}}} = \{\langle M \rangle \mid M \ \mathsf{LKA} \ \mathsf{\acute{e}s} \ \langle M \rangle \notin L(M)\}.$

Tétel

$$\mathcal{L}_1 \subset \mathsf{R}$$
.

Az előző következmény alapján $\mathcal{L}_1 \subseteq \mathsf{R}$.

Legyen $L_{\mathsf{LKA-\acute{a}tl\acute{o}}} = \{\langle M \rangle \mid M \ \mathsf{LKA} \ \mathsf{\acute{e}s} \ \langle M \rangle \notin L(M)\}.$

A Cantor-féle átlós módszerrel megmutatható, hogy $L_{\mathsf{LKA-\acute{a}tl\acute{o}}} \in \mathsf{R} \setminus \mathcal{L}_1$. Ezt nem bizonyítjuk.

Tétel

$$\mathcal{L}_1 \subset \mathsf{R}$$
.

Az előző következmény alapján $\mathcal{L}_1 \subseteq \mathsf{R}.$

 $\mathsf{Legyen}\ \mathit{L}_{\mathsf{LKA-\acute{a}tl\acute{o}}} = \{ \left< \mathit{M} \right> | \ \mathit{M}\ \mathsf{LKA}\ \mathsf{\acute{e}s}\ \left< \mathit{M} \right> \notin \mathit{L}(\mathit{M}) \}.$

A Cantor-féle átlós módszerrel megmutatható, hogy $L_{\mathsf{LKA-\acute{a}tl\acute{o}}} \in \mathsf{R} \setminus \mathcal{L}_1$. Ezt nem bizonyítjuk.

Tehát az algoritmikus és a Chomsky nyelvosztályok kapcsolata így foglalható össze:

Következmény

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset R \subset \mathcal{L}_0 = RE.$$

R,RE és a Chomsky nyelvosztályok – Összefoglaló

Az alábbi táblázatban adott sorban minden nyelvleíró eszköz egyforma erejű és erősebb a korábbi sorokban felsoroltaknál.

\mathcal{L}_3	3-típusú grammatika
~3	determinisztikus véges automata
	_
	nemdeterminisztikus véges automata
	reguláris kifejezés
	determinisztikus veremautomata
\mathcal{L}_2	2-típusú grammatika
	verematomata
\mathcal{L}_1	1-típusú grammatika
	lineárisan korlátolt automata
R	minden inputra megálló Turing gép
RE	Turing gép
=	nemdeterminisztikus Turing gép
\mathcal{L}_0	0-típusú grammatika