# Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001223

International filing date: 28 January 2005 (28.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-020493

Filing date: 28 January 2004 (28.01.2004)

Date of receipt at the International Bureau: 24 March 2005 (24.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)



# 日本国特許庁 JAPAN PATENT OFFICE

02. 2. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 1月28日

出 願 番 号

特願2004-020493

Application Number: [ST. 10/C]:

[JP2004-020493]

出 願 人
Applicant(s):

出光興產株式会社

特 ii Com Japa

特許庁長官 Commissioner, Japan Patent Office 2005年 3月 9日

1) 11



【書類名】 特許願 IDS1548A 【整理番号】 【提出日】 平成16年 1月28日 特許庁長官 今井 康夫 殿 【あて先】 C07C 51/00 【国際特許分類】 C07C 69/00 【発明者】 千葉県市原市姉崎海岸1番地1 【住所又は居所】 佐藤 治仁 【氏名】 【発明者】 【住所又は居所】 千葉県市原市姉崎海岸1番地1 柏村 孝 【氏名】 【発明者】 【住所又は居所】 千葉県市原市姉崎海岸1番地1 岡本 卓治 【氏名】 【発明者】 千葉県市原市姉崎海岸1番地1 【住所又は居所】 横田 清彦 【氏名】 【特許出願人】 【識別番号】 000183657 出光石油化学株式会社 【氏名又は名称】 【代理人】 【識別番号】 100086759 【弁理士】 渡辺 喜平 【氏名又は名称】 【手数料の表示】 【予納台帳番号】 013619 21,000円 【納付金額】 【提出物件の目録】 【物件名】 特許請求の範囲 1 明細書 1 【物件名】 図面 1 【物件名】 【物件名】 要約書 1 【包括委任状番号】 0200132

【書類名】特許請求の範囲

【請求項1】

下記式[1]に示すカルボニル化合物。

【化1】

$$CH_3(CH_2)_{n+2}CH_2$$
 $CHCH_2$ 
 $CHCH_2$ 
 $CHCH_3$ 
 $CH_3(CH_2)_nCH_2$ 
 $CHCH_3$ 

[式中、Xは、水素、ヒドロキシ基、アルコキシ基、Yはポリオール由来の基であり、xは4~30である。]

【請求項2】

前記式[1]のnが4~20である請求項1に記載のカルボニル化合物。

【請求項3】

前記式 [1] のnが $4\sim1$ 0の偶数である請求項1に記載のカルボニル化合物。

【請求項4】

請求項1~3のいずれかに記載のカルボニル化合物を含む合成潤滑油。

# 【書類名】明細書

【発明の名称】長鎖分岐アルキル基含有カルボニル化合物

#### 【技術分野】

# [0001]

本発明は、長鎖分岐アルキル基含有1級カルボニル化合物に関する。さらに詳しくは、 低温流動性に優れ、高沸点を有し、かつ生分解性に優れた長鎖分岐アルキル基含有1級ア ルデヒド、カルボン酸及びカルボン酸エステル、及びこれらを含む合成潤滑油に関する。

#### 【背景技術】

#### [00002]

エンジン油には、スラッジ等を分散させ、エンジン内を清浄に保つために、アルカリ土類金属塩を代表とする様々な潤滑油添加剤が使用されている。これらの添加剤については、その塩基性が高いほど、使用量が少なくてすむため、経済的に有利である。しかし、添加剤自身の安定性が悪くなり、エンジンの表面に皮膜を形成しゲル化する等の問題がある。このため、脂肪酸の添加による改質がなされている(例えば、特許文献 1 参照。)。

また、2 サイクルエンジン油に関しては、機構上、排ガスに同伴されてエンジン油の一部が排出されることから、船外機で使用されるエンジン油等に関しては、生分解性及び熱安定性が求められている。

# [0003]

エンジン油の添加剤として使用されるカルボン酸には、3-メチルオクタン-3-カルボン酸等の3級カルボン酸、2-エチルへキサン酸、イソステアリン酸等の2級カルボン酸等が用いられ、長鎖分岐を有する炭素数20以上の1級カルボン酸は知られていない。これらの化合物は、潤滑油添加剤として求められる、低温流動性、低揮発性、生分解性等の性質を十分に満足するものは得られていない。

# [0004]

また、潤滑油のベースストックには、様々なカルボン酸エステルを使用することが知られている。例えば、木材の伐採に使用されるチェーンソーの潤滑油は、鉱油系が用いられている。しかし、近年、環境問題への配慮から、生分解性を持つ植物系オイル、即ち、菜種油(脂肪酸のトリグリセリド)等を用いることが提案されている(例えば、特許文献2参照。)。

#### [0005]

しかし、植物系オイルは、生分解性を有しているものの、不飽和結合を持つことによる 不安定性、及び乏しい低温特性等から、潤滑油用途における使用は限られている。

これに関して、熱安定性の改良を目的として合成エステルを利用することが開示されている (例えば、特許文献3参照。)。しかし、良好な低温特性を有するものは得られていない。

#### [0006]

生分解性を有しつつ、常温における流れ特性の改良を図ったエステル系潤滑油についても開示されている(例えば、特許文献4参照。)。しかし、使用されているカルボン酸は炭素数10までの比較的短鎖のものであり、潤滑油特性を示す重要な指数である粘度指数を十分に満足しうるものとはなっていない。

# [0007]

また、ペイント塗料、エポキシ樹脂改質、化粧品原料、安定剤原料等に用いられるカルボン酸は、取り扱い上の問題から、液状で高沸点を有するカルボン酸が望まれているが、この要求を満足する化合物は知られていない。

# [0008]

【特許文献1】特開昭63-203645号公報

【特許文献2】特開平5-230490号公報

【特許文献3】特開平5-98276号公報

【特許文献4】特表2000-514470号公報

#### 【発明の開示】

# 【発明が解決しようとする課題】

#### [0009]

本発明は、上記問題に鑑み、低温流動性に優れ、高沸点を有し、かつ生分解性に優れた 長鎖分岐アルキル基含有1級カルボニル化合物(アルデヒド、カルボン酸及びカルボン酸 エステル)の提供を目的とする。

#### 【課題を解決するための手段】

# [0010]

本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、鎖長の長い直鎖アルキル基を有し、ホルミル基、カルボキシル基及びエステル基の $\beta$ 位に分岐を有し、かつ主鎖と分岐鎖が特定の関係を有する分岐アルキル鎖を含むアルデヒド、カルボン酸及びカルボン酸エステルが、低温流動性に優れ、高沸点を有し、かつ生分解性に優れていることを見出し、本発明を完成させた。

# [0011]

即ち、本発明によれば、以下の長鎖分岐アルキル基含有1級カルボニル化合物及び合成 潤滑油が得られる。

下記式[1] に示すカルボニル化合物。

#### 【化2】

$$CH_3(CH_2)_{n+2}CH_2$$
 $CHCH_2$ 
 $CH_3(CH_2)_nCH_2$ 
 $CH_3(CH_2)_nCH_2$ 
 $CH_3(CH_2)_nCH_2$ 
 $CH_3(CH_2)_nCH_2$ 
 $CH_3(CH_2)_nCH_2$ 
 $CH_3(CH_2)_nCH_2$ 

[式中、Xは、水素、ヒドロキシ基、アルコキシ基、又はポリオール由来の基であり、nは4~30である。]

- 2. 前記式 [1] のnが4~20である1に記載のカルボニル化合物。
- 3. 前記式「1]のnが4~10の偶数である1に記載のカルボニル化合物。
- 4. 1-3に記載のカルボニル化合物を含む合成潤滑油。

## 【発明の効果】

#### $[0\ 0\ 1\ 2\ ]$

本発明によれば、低温流動性に優れ、高沸点を有し、かつ生分解性に優れた長鎖分岐アルキル基含有1級カルボニル化合物を提供できる。

#### 【発明を実施するための最良の形態】

#### [0013]

以下、本発明の長鎖分岐アルキル基含有1級カルボニル化合物について説明する。 本発明のカルボニル化合物は、下記式[1]に示す構造を有する。

#### 【化3】

$$CH_3(CH_2)_{n+2}CH_2$$
 $CHCH_2$ 
 $CH_3(CH_2)_nCH_2$ 
 $CH_3(CH_2)_nCH_2$ 
 $CH_3(CH_2)_nCH_2$ 
 $CH_3(CH_2)_nCH_2$ 

[式中、Xは、水素、ヒドロキシ基、アルコキシ基、Yはポリオール由来の基であり、xは x0 である。]

#### [0014]

式[1]において、Xは、水素、ヒドロキシ基、アルコキシ基(OR)、又はポリオール由来の基である。即ち、Xが水素であれば、アルデヒド化合物となり、Xがヒドロキシ基であれば、カルボン酸化合物となり、Xがアルコキシ基又はポリオール由来の基であればエステル化合物となる。

#### [0015]

アルコキシ基(OR)のRは、炭素数 $1\sim100$ の炭化水素基であり、例えば、アルキル基、アルケニル基、アリール基又はアラルキル基を示す。

アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基等の直鎖ア

ルキル基、イソブチル基、イソデシル基、2-エチルヘキシル基、2-オクチルードデシル基、ネオペンチル基、t-ブチル基等の分岐アルキル基、シクロヘキシル基、シクロペンチル基、シクロプロピル基等の環状アルキル基が挙げられる。

アルケニル基としては、アリル基、ホモアリル基、ブテニル基等が挙げられる。

#### [0016]

アリール基としては、フェニル基、トリル基、ナフチル基、ビフェニル基、ヒドロキシビフェニル基、ビナフチル基等が挙げられる。

アラルキル基としては、ベンジル基, p-トリルメチル基, p-ニトロベンジル基, p-アミノベンジル基, p-クロロベンジル基等が挙げられる。

その他のRとして、2-ブトキシエチル基,n-プロポキシエチル等の主鎖にヘテロ原子を持つものも使用できる。

これらのRのうち、好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基、イソデシル基、2-xチルへキシル基、2-xチルドデシル基、ネオペンチル基、t-ブチル基、シクロヘキシル基、シクロペンチル基であり、特に好ましくは、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基、イソデシル基、2-xチルへキシル基、2-x

# [0017]

ポリオール由来の基としては、エチレングリコール、1,2ーブタンジオール、1,2ーへキサンジオール、1,4ーシクロへキサンジオール、1,5ーへキサンジオール、1,6ーへキサンジオール、2,5ーへキサンジオール、ジエチレングリコール、カテコール、ビフェノール、ビナフトール、ネオペンチルグリコール、フィタントリオール、トリメチロールプロパン、ジグリセリン、ペンタエリスリトール、ポリグリセリン等のポリオール類に由来するもの、コレステロール、グルコース、フルクトース、マルトース、キチン、キトサン、ソルビット、マンニット等の天然物由来アルコール類に由来するものが挙げられる。

これらのうち、好ましくは、エチレングリコール、1, 2 ー ブタンジオール、1, 4 ー ヘキサンジオール、1, 5 ー ヘキサンジオール、ジエチレングリコール、カテコール、コレステロール、グルコース、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールであり、特に好ましくは、エチレングリコール、1, 5 ー ヘキサンジオール、ジエチレングリコール、グルコース、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールである。

尚、Xがポリオール由来の基である場合、ポリオールの有する1以上のヒドロキシ基が エステル結合を形成することにより、式[1]に示す構造を1以上有していればよい。

#### [0018]

式 [1] の n は、 $4 \sim 3$  0 の整数である。 n が 4 未満では、沸点が低く、揮発成分が発生しやすいため、潤滑油又は潤滑油添加剤として使用する場合に問題となり、n が 3 0 を超えると、粘度が高すぎたり、また、固体となってしまう等の問題が発生する。好ましくは、n は  $4 \sim 2$  0 の整数であり、さらに好ましくは、 $4 \sim 2$  0 の偶数、なかでもn が  $4 \sim 1$  0 の偶数の場合が好ましい。

# [0019]

式[1]に示される長鎖分岐アルキル基含有1級アルデヒド化合物の具体例としては、3-ヘキシルウンデカナール、3-オクチルトリデカナール、3-デシルペンタデカナール、3-ドデシルへプタデカナール、3-テトラデシルノナデカナール、3-ヘキサデシルイコサナール、3-オクタデシルトリコサナール、3-エイコシルペンタコサナール、3-ドコサニルへプタコサナール等が挙げられる。

#### [0.020]

式[1]に示される長鎖分岐アルキル基含有1級カルボン酸の具体例としては、3-ヘキシルウンデカン酸、3-オクチルトリデカン酸、3-デシルペンタデカン酸、3-ドデシルへプタデカン酸、3-テトラデシルノナデカン酸、3-ヘキサデシルイコサン酸、3-オクタデシルトリコサン酸、3-エイコシルペンタコサン酸、3-ドコサニルヘプタコ

サン酸等が挙げられる。

### [0021]

式[1]に示される長鎖分岐アルキル基含有1級エステル化合物の具体例としては、3 ーヘキシルウンデカン酸メチル、3ーヘキシルウンデカン酸エチル、3ーヘキシルウンデ カン酸 (n-プロピル)、3-ヘキシルウンデカン酸 (n-ブチル)、3-ヘキシルウン デカン酸アリル、3-ヘキシルウンデカン酸ホモアリル、3-ヘキシルウンデカン酸(1 ーブテニル)、3ーヘキシルウンデカン酸(2ーブテニル)、3ーヘキシルウンデカン酸 (n-ブトキシエチル)、3-ヘキシルウンデカン酸(n-プロポキシエチル)、3-ヘ キシルウンデカン酸イソブチル、3-ヘキシルウンデカン酸イソデシル、3-ヘキシルウ ンデカン酸(2-エチルヘキシル)、3-ヘキシルウンデカン酸(2-オクチルドデシル )、3-ヘキシルウンデカン酸ネオペンチル、3-ヘキシルウンデカン酸(t-ブチル) 、3-ヘキシルウンデカン酸シクロヘキシル、3-ヘキシルウンデカン酸シクロペンチル 、3-ヘキシルウンデカン酸シクロプロピル、3-ヘキシルウンデカン酸フェニル、3-ヘキシルウンデカン酸 (p-トリル)、3-ヘキシルウンデカン酸(m-トリル)、3-ヘキシルウンデカン酸 (o-トリル)、3-ヘキシルウンデカン酸(1-ナフチル)、3 - ヘキシルウンデカン酸(2 - ナフチル)、3 - ヘキシルウンデカン酸ビフェニル、3 -ヘキシルウンデカン酸ベンジル、3-ヘキシルウンデカン酸-1,4-シクロヘキサンジ オールエステル類、3-ヘキシルウンデカン酸-カテコールエステル類、3-ヘキシルウ ンデカン酸-ビフェノールエステル類、3-ヘキシルウンデカン酸-ビナフトールエステ ル類、3-ヘキシルウンデカン酸-エチレングリコールエステル類、3-ヘキシルウンデ カン酸-1,2-ブタンジオールエステル類、3-ヘキシルウンデカン酸-1,5-ヘキ サンジオールエステル類、3-ヘキシルウンデカン酸-1,6-ヘキサンジオールエステ ル類、3-ヘキシルウンデカン酸-2,5-ヘキサンジオールエステル類、3-ヘキシル ウンデカン酸ージエチレングリコールエステル類、3-ヘキシルウンデカン酸ーネオペン チルグリコールエステル類、3-ヘキシルウンデカン酸-1,4-フィタントリオールエ ステル類、3-ヘキシルウンデカン酸-トリメチロールプロパンエステル類、3-ヘキシ ルウンデカン酸ージグリセリンエステル類、3-ヘキシルウンデカン酸-ペンタエリスリ トールエステル類、3-ヘキシルウンデカン酸ーポリグリセリンエステル類、3-ヘキシ ルウンデカン酸-コレステロールエステル類、3-ヘキシルウンデカン酸-グルコースエ ステル類、3-ヘキシルウンデカン酸-フルクトースエステル類、3-ヘキシルウンデカ ン酸-マルトースエステル類、3-ヘキシルウンデカン酸-キチンエステル類、3-ヘキ シルウンデカン酸ーキトサンエステル類、3-ヘキシルウンデカン酸-ソルビットエステ ル類、3-ヘキシルウンデカン酸-マンニットエステル類、

# [0022]

3-オクチルトリデカン酸メチル、3-オクチルトリデカン酸エチル、3-オクチルト リデカン酸(n-プロピル)、3-オクチルトリデカン酸(n-ブチル)、3-オクチル トリデカン酸アリル、3-オクチルトリデカン酸ホモアリル、3-オクチルトリデカン酸 (1-ブテニル)、3-オクチルトリデカン酸(2-ブテニル)、3-オクチルトリデカ ン酸(n-ブトキシエチル)、3-オクチルトリデカン酸(n-プロポキシエチル)、3 - オクチルトリデカン酸イソブチル、3-オクチルトリデカン酸イソデシル、3-オクチ ルトリデカン酸(2-エチルヘキシル)、3-オクチルトリデカン酸(2-オクチルドデ シル)、3-オクチルトリデカン酸ネオペンチル、3-オクチルトリデカン酸(t-ブチ ル)、3-オクチルトリデカン酸シクロヘキシル、3-オクチルトリデカン酸シクロペン チル、3-オクチルトリデカン酸シクロプロピル、3-オクチルトリデカン酸フェニル、 3-オクチルトリデカン酸 (p-トリル)、3-オクチルトリデカン酸 (m-トリル)、 3-オクチルトリデカン酸(o-トリル)、3-オクチルトリデカン酸(1-ナフチル) 、3-オクチルトリデカン酸(2-ナフチル)、3-オクチルトリデカン酸ビフェニル、 3-オクチルトリデカン酸ベンジル、3-オクチルトリデカン酸-1,4-シクロヘキサ ンジオールエステル類、3-オクチルトリデカン酸-カテコールエステル類、3-オクチ ルトリデカン酸-ビフェノールエステル類、3-オクチルトリデカン酸-ビナフトールエ ステル類、3-オクチルトリデカン酸ーエチレングリコールエステル類、3-オクチルトリデカン酸ー1, 2-ブタンジオールエステル類、3-オクチルトリデカン酸ー1, 5-ヘキサンジオールエステル類、3-オクチルトリデカン酸ー1, 6-ヘキサンジオールエステル類、3-オクチルトリデカン酸ー2, 5-ヘキサンジオールエステル類、3-オクチルトリデカン酸ージエチレングリコールエステル類、3-オクチルトリデカン酸ーネオペンチルグリコールエステル類、3-オクチルトリデカン酸ー1, 4-フィタントリオールエステル類、3-オクチルトリデカン酸ー1, 4-フィタントリオールエステル類、3-オクチルトリデカン酸ージグリセリンエステル類、3-オクチルトリデカン酸ーペンタエリスリトールエステル類、3-オクチルトリデカン酸ーポリグリセリンエステル類、3-オクチルトリデカン酸ーブルコースエステル類、3-オクチルトリデカン酸ーフルクトースエステル類、3-オクチルトリデカン酸ーマルトスエステル類、3-オクチルトリデカン酸ーマルトスエステル類、3-オクチルトリデカン酸ーキトサンエステル類、3-オクチルトリデカン酸ーソルビットエステル類、3-オクチルトリデカン酸ーキトサンエステル類、3-オクチルトリデカン酸ーフルビットエステル類、3-オクチルトリデカン酸ーマンニットエステル類、

#### [0023]

3ーデシルペンタデカン酸メチル、3ーデシルペンタデカン酸エチル、3ーデシルペン タデカン酸(n-プロピル)、3-デシルペンタデカン酸(n-ブチル)、3-デシルペ ンタデカン酸アリル、3ーデシルペンタデカン酸ホモアリル、3ーデシルペンタデカン酸 (1-ブテニル)、3-デシルペンタデカン酸(2-ブテニル)、3-デシルペンタデカ ン酸(n-ブトキシエチル)、3-デシルペンタデカン酸(n-プロポキシエチル)、3 ーデシルペンタデカン酸イソブチル、3-デシルペンタデカン酸イソデシル、3-デシル ペンタデカン酸(2-エチルヘキシル)、3-デシルペンタデカン酸(2-オクチルドデ シル)、3-デシルペンタデカン酸ネオペンチル、3-デシルペンタデカン酸(t-ブチ ル)、3-デシルペンタデカン酸シクロヘキシル、3-デシルペンタデカン酸シクロペン チル、3-デシルペンタデカン酸シクロプロピル、3-デシルペンタデカン酸フェニル、 3 - デシルペンタデカン酸 (p - トリル)、3 - デシルペンタデカン酸 (m - トリル)、 3 - デシルペンタデカン酸 (o-トリル)、3-デシルペンタデカン酸(1-ナフチル) 、3-デシルペンタデカン酸(2-ナフチル)、3-デシルペンタデカン酸ビフェニル、 3-デシルペンタデカン酸ベンジル、3-デシルペンタデカン酸-1, 4-シクロヘキサ ンジオールエステル類、3ーデシルペンタデカン酸ーカテコールエステル類、3ーデシル ペンタデカン酸-ビフェノールエステル類、3-デシルペンタデカン酸-ビナフトールエ ステル類、3-デシルペンタデカン酸-エチレングリコールエステル類、3-デシルペン タデカン酸-1,2-ブタンジオールエステル類、3-デシルペンタデカン酸-1,5-ヘキサンジオールエステル類、3ーデシルペンタデカン酸-1,6-ヘキサンジオールエ ステル類、3-デシルペンタデカン酸-2,5-ヘキサンジオールエステル類、3-デシ ルペンタデカン酸ージエチレングリコールエステル類、3ーデシルペンタデカン酸ーネオ ペンチルグリコールエステル類、3ーデシルペンタデカン酸-1,4-フィタントリオー ルエステル類、3ーデシルペンタデカン酸ートリメチロールプロパンエステル類、3ーデ シルペンタデカン酸-ジグリセリンエステル類、3-デシルペンタデカン酸-ペンタエリ スリトールエステル類、3-デシルペンタデカン酸ーポリグリセリンエステル類、3-デ シルペンタデカン酸-コレステロールエステル類、3-デシルペンタデカン酸-グルコー スエステル類、3ーデシルペンタデカン酸ーフルクトースエステル類、3ーデシルペンタ デカン酸ーマルトースエステル類、3ーデシルペンタデカン酸ーキチンエステル類、3ー デシルペンタデカン酸ーキトサンエステル類、3ーデシルペンタデカン酸ーソルビットエ ステル類、3-デシルペンタデカン酸-マンニットエステル類、

# [0024]

3-ドデシルへプタデカン酸メチル、3-ドデシルへプタデカン酸エチル、3-ドデシルへプタデカン酸(n-プロピル)、3-ドデシルへプタデカン酸アリル、3-ドデシルへプタデカン酸アリル、3-ドデシルへプタデカン酸(1-ブテニル)、3-ドデシルへプタデカン酸(2-ブテニル)、3-

ドデシルヘプタデカン酸 (n-ブトキシエチル)、3-ドデシルヘプタデカン酸 (n-プ ロポキシエチル)、3-ドデシルヘプタデカン酸イソブチル、3-ドデシルヘプタデカン 酸イソデシル、3-ドデシルヘプタデカン酸(2-エチルヘキシル)、3-ドデシルヘプ タデカン酸(2-オクチルドデシル)、3-ドデシルヘプタデカン酸ネオペンチル、3-ドデシルヘプタデカン酸(tーブチル)、3ードデシルヘプタデカン酸シクロヘキシル、 3-ドデシルヘプタデカン酸シクロペンチル、3-ドデシルヘプタデカン酸シクロプロピ ル、3-ドデシルヘプタデカン酸フェニル、3-ドデシルヘプタデカン酸(p-トリル) 、3-ドデシルヘプタデカン酸 (m-トリル)、3-ドデシルヘプタデカン酸 (o-トリ ル)、3-ドデシルヘプタデカン酸(1-ナフチル)、3-ドデシルヘプタデカン酸(2 ーナフチル)、3ードデシルヘプタデカン酸ビフェニル、3ードデシルヘプタデカン酸ベ ンジル、3-ドデシルヘプタデカン酸-1,4-シクロヘキサンジオールエステル類、3 ードデシルヘプタデカン酸ーカテコールエステル類、3-ドデシルヘプタデカン酸ービフ ェノールエステル類、3-ドデシルヘプタデカン酸-ビナフトールエステル類、3-ドデ シルヘプタデカン酸-エチレングリコールエステル類、3-ドデシルヘプタデカン酸-1 , 2-ブタンジオールエステル類、3-ドデシルヘプタデカン酸-1,5-ヘキサンジオ -ルエステル類、3-ドデシルヘプタデカン酸-1.6-ヘキサンジオールエステル類、 3-ドデシルヘプタデカン酸-2,5-ヘキサンジオールエステル類、3-ドデシルヘプ タデカン酸-ジエチレングリコールエステル類、3-ドデシルヘプタデカン酸ーネオペン チルグリコールエステル類、3-ドデシルヘプタデカン酸-1,4-フィタントリオール エステル類、3ードデシルヘプタデカン酸ートリメチロールプロパンエステル類、3ード デシルヘプタデカン酸ージグリセリンエステル類、3-ドデシルヘプタデカン酸ーペンタ エリスリトールエステル類、3ードデシルヘプタデカン酸ーポリグリセリンエステル類、 3-ドデシルヘプタデカン酸-コレステロールエステル類、3-ドデシルヘプタデカン酸 ーグルコースエステル類、3ードデシルヘプタデカン酸ーフルクトースエステル類、3ー ドデシルヘプタデカン酸ーマルトースエステル類、3ードデシルヘプタデカン酸ーキチン エステル類、3-ドデシルヘプタデカン酸-キトサンエステル類、3-ドデシルヘプタデ カン酸ーソルビットエステル類、3ードデシルヘプタデカン酸ーマンニットエステル類等 が挙げられる。

#### [0025]

尚、ここでは長鎖分岐アルキル基含有1級エステル化合物の例として、式 [1] 中、nが 4, 6, 8, 10の例を記載したが、これらに限られず、上述した範囲においてnを適宜選択できる。

#### [0026]

次に、式[1]に示すカルボニル化合物の合成方法について説明する。

図1は、本発明のカルボニル化合物の合成スキームの一例を示す図である。

出発化合物としては、図1中、式 [2] で示されるビニリデン化合物を使用する。ビニリデン化合物は、特定の長さの $\alpha$  - オレフィンを、メタロセン触媒等を用いて 2 量化することで合成できる。

このビニリデン化合物を常法によりカルボニル化することで、アルデヒド化合物(図 1中、式 [3])、カルボン酸化合物(図 1中、式 [4])が得られる。

#### [0027]

尚、式 [4] のカルボン酸化合物を合成する他の方法としては、 $\alpha$  ーオレフィンの 2 量化ビニリデン化合物に、V i 1 s m e y e r 反応を経由する方法、又は対応するハロゲン化物よりグリニヤール試薬、リチウム試薬等の求核性化合物を調製し、これに二酸化炭素、炭酸ジメチル、ジメチルホルムアミド等を反応させた後に、目的のカルボン酸を得る方法等が挙げられる。

#### [0028]

エステル化合物 [図1中、式 [6]] を得る方法としては、対応するハロゲン化物 [図1中、式 [5]] より調製したグリニヤール試薬、リチウム試薬等の求核試薬に、炭酸ジメチル等の炭酸エステル類を反応させる方法や、上記の方法で得たカルボン酸 [図1中、

式[4]]とアルコール類を、酸又は塩基触媒の存在化、加熱脱水する方法、さらに、カルボン酸を塩化チオニル等の試薬を用いて、酸塩化物に誘導し、その後、アルコールと反応させる方法等が挙げられる。

# [0029]

本発明のカルボニル化合物は、低温流動性に優れ、高沸点を有し、かつ生分解性に優れている。そのため、合成潤滑油の添加剤として好適に使用できる。

本発明の合成潤滑油は、上述した式[1]に示すカルボニル化合物を含んでいる。これ らカルボニル化合物のなかでも、3ーオクチルトリデカン酸メチル、3ーオクチルトリデ カン酸、3-オクチルトリデカナール、3-オクチルトリデカン酸イソブチル、3-オク チルトリデカン酸(2-エチルヘキシル)、3-オクチルトリデカン酸-(1,5-ヘキ サンジオールエステル類)、3ーオクチルトリデカン酸ーネオペンチルグリコールエステ ル類、3-オクチルトリデカン酸(トリメチロールプロパンエステル類)、3-オクチル トリデカン酸ー(ペンタエリスリトールエステル類)、3-ヘキシルウンデカン酸メチル 、3-ヘキシルウンデカン酸、3-ヘキシルウンデカナール、3-ヘキシルウンデカン酸 イソブチル、3-ヘキシルウンデカン酸(2-エチルヘキシル)、3-ヘキシルウンデカ ン酸(1.5-ヘキサンジオールエステル類)、3-ヘキシルウンデカン酸ーネオペンチ ルグリコールエステル類、3-ヘキシルウンデカン酸(トリメチロールプロパンエステル 類)、3ーデシルペンタデカン酸メチル、3ーデシルペンタデカン酸、3ーデシルペンタ デカナール、3-デシルペンタデカン酸イソブチルが好ましく、特に、3-オクチルトリ デカン酸メチル、3-オクチルトリデカン酸、3-オクチルトリデカナール、3-オクチ ルトリデカン酸イソブチル、3-オクチルトリデカン酸(2-エチルヘキシル)、3-オ クチルトリデカン酸ー(1,5-ヘキサンジオールエステル類)、3-オクチルトリデカ ン酸ー(ネオペンチルグリコールエステル類)、3ーオクチルトリデカン酸(トリメチロ ールプロパンエステル類)、3-オクチルトリデカン酸-(ペンタエリスリトールエステ ル類)が好ましい。

# [0030]

合成潤滑油に含まれるその他の成分としては、潤滑油において一般に使用されるベース油、清浄分散剤、粘度調整剤を挙げることができる。

# [0031]

本発明の合成潤滑油は、低温流動性に優れ、高沸点を有し、かつ生分解性に優れている 長鎖分岐アルキル基含有1級カルボニル化合物を使用しているので、優れた潤滑性能を有 し、しかも、環境負荷が少ない。従って、エンジン、チェーンソー、軸受け油、切削油等 に使用される潤滑油として好適に使用できる。

#### 【実施例】

#### [0032]

以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。

尚、化合物の同定及び評価は、下記の方法にて行なった。

#### (1) NMR

日本電子(株)製、JNM-LA500を用いて測定を行なった。

#### (2) GC-MS

キャリアガスにヘリウムを用い、カラムはDB-1HTを用い、100~330 C(10 C/分) 昇温で昇温を行なった。検出方法はEI及びCI法を用いた。

#### (3) 生分解性評価

JIS K6950に準じ、タイテック社製BODテスターを用いて、試料濃度100 ppm、活性汚泥濃度30ppm、25℃の条件下で28日間測定した。

#### [0033]

#### 実施例1

本発明のエステル化合物として、3-オクチルートリデカン酸メチルエステルを合成した。

#### [合成方法]

2-オクチルドデカノール10g(33.49 mm o 1、アルドリッチ社製)とトリフェニルホスフィン8.8g(33.5 mm o 1、関東化学社製)を脱水ジクロロメタン100 m 1 に溶解し氷冷した。これに、N-プロモコハク酸イミド6.0g(33.9 mm o 1、和光純薬社製)を徐々に加えた後、室温で3時間撹拌した。減圧下、溶媒を留去し、残査にヘキサンを加え沈殿を濾別し、ろ液を濃縮することにより2-オクチル-1-ブロモドデカン10.0g(27.6 mm o 1)を得た。

#### [0034]

窒素気流下、マグネシウム3g(123.3mmo1)を脱水テトラヒドロフラン溶液30m1に懸濁させ、ジブロモエタンでマグネシウムを活性化させた。これに、合成した2ーオクチルー1ーブロモドデカン8.0g(22.1mmo1)の脱水テトラヒドロフラン溶液120m1を滴下した。滴下終了後、さらに2時間撹拌した。反応混合物を氷冷し、炭酸ジメチル2.0m1(23.7mmo1)を加えた後、室温(25℃)で一晩撹拌を行なった。反応溶液を濾過後、濾液に希塩酸を加え、ヘキサンを用いて抽出を行なった後、減圧下、溶媒を留去した。残査を、0.15mmHg、オイルバス温度180~190℃の条件で蒸留することにより、3ーオクチルートリデカン酸メチルエステル5.0g(14.7mmm01)を無色オイルとして得た。この化合物は一20℃に冷却しても流動性を失うことが無かった。

合成した3-オクチルートリデカン酸メチルエステルの、 $^1$  H-NMR、 $^1$   $^3$  C-NM R及びGC-MSの測定結果を以下に示す。

#### [0035]

 $[1 H-NMR (CDCl_3)]$ 

0. 88 (t,  $J=14\,Hz$ , 6H,  $C\,H_3$ ), 1. 26 ( $C\,H_2$ , 32H), 1. 8 4 (m, 1H,  $C\,H$ ), 2. 23 (d,  $J=14\,Hz$ , 2H,  $C\,H_2\,C\,O$ ), 3. 65 (s, 3H,  $O\,C\,H_3$ )

 $\begin{bmatrix} 1 & 3 & C - NMR & (CDC13) \end{bmatrix}$ 

14.00 (CH<sub>3</sub>) : 22.58 (CH<sub>2</sub>-CH<sub>3</sub>) : 26.41, 29.20, 29.24, 29.47, 29.51, 29.78, 31.81, 33.79 (以上、CH<sub>2</sub>) : 34.95 (CH) : 38.99 (CH<sub>2</sub> C=O) : 51.21 (OCH<sub>3</sub>) : 174.03 (C=O)

[GC-MS]

 $341 (M^{+} + 1)$  ,  $227 (M^{+} - (C_8 H_{17}) + 1)$  ,  $199 (M^{+} - (C_{10} H_{21}) + 1)$ 

# [0036]

#### 実施例2

本発明のカルボン酸化合物として、3-オクチルートリデカン酸を合成した。

#### [合成方法]

窒素気流下、3-オクチルートリデカン酸メチルエステル5.0g(14.7mmol)に水酸化カリウム1.7g(43.5mmol)の水溶液<math>30mlを加え、80℃で5時間加熱した。反応溶液を希塩酸で酸性にした後、エーテル抽出することにより3-オクチルートリデカン酸4.2g(13.1mmol)を無色オイルとして得た。

この化合物は−20℃に冷却しても流動性を失うことが無く、低温流動性に優れていた

合成した3-オクチルートリデカン酸の、 $^1$  HーNMR、 $^1$   $^3$  CーNMR及びGCーM Sの測定結果を以下に示す。

# [0037]

 $[1 H-NMR (CDCl_3)]$ 

0. 88 (t, J=14. 0 Hz, 6 H, CH<sub>3</sub>), 1. 26 (32 H, CH<sub>2</sub>), 1 84 (m, 1 H, CH), 2. 26 (d, J=13. 0 Hz, 2 H, CH<sub>2</sub> CO)  $I^{13}$  C-NMR (CDC  $I_{3}$ )  $14.00 (CH_3): 22.59 (CH_2-CH_3): 26.39, 29.21, 29.26, 29.48, 29.54, 29.78, 31.80, 33.67 (以上、CH_2): 34.77 (CH): 38.94 (CH_2CO): 179.53 (C=O) [GC-MS] 326 (M+), 213 (M+-(C8H_17)), 141 (M+-(C10H_21))$ 

# 【0038】 実施例3

本発明のアルデヒド化合物として、3ーオクチルートリデカナールを合成した。

#### [合成方法]

窒素気流下、マグネシウム3g(123.3mmol)を脱水テトラヒドロフラン溶液30mlに懸濁させ、ジブロモエタンでマグネシウムを活性化させた。

実施例 1 の方法で得た、2 ーオクチルー1 ーブロモドデカン 8 . 0 g(2 2 . 1 mm o 1 ) の脱水テトラヒドロフラン溶液 1 2 0 m 1 を滴下し、滴下終了後、更に 2 時間撹拌した。反応混合物を氷冷し、脱水ジメチルホルムアミド 5 . 0 m 1 (6 6 . 3 mm o 1 、関東化学社製)を加えた後、室温(2 5  $\mathbb C$ )にて一晩撹拌を行なった。ろ液に希塩酸を加え、ヘキサンを用いて抽出を行ない、減圧下溶媒を留去した。残査を真空蒸留することにより、3 ーオクチルートリデカナールを無色オイルとして得た。

この化合物は、-20℃に冷却しても流動性を失うことはなかった。

合成した3-オクチルートリデカナールの、 $^1$  H-NMR、 $^1$   $^3$  C-NMR及びGC-MSの測定結果を以下に示す。

# [0039]

 $[^{1} H-NMR (CDCl_{3})]$ 

0. 88 (t, J = 14 Hz, 6H,  $CH_3$ ), 1. 26 ( $CH_2$ , 32H), 1. 9 5 (m, 1H, CH), 2. 32 (dd, J = 6. 7, 2. 4Hz, 2H,  $CH_2$ C (O) H), 9. 75 (t, J = 2. 4Hz, 1H, C (O) H)

 $[^{1} \ ^{3} \ C - NMR \ (CDC1_{3})]$ 

14.00 (CH<sub>3</sub>):22.55 (<u>C</u>H<sub>2</sub>-CH<sub>3</sub>):26.56,29.18,2 9.23,29.44,29.49,29.74,31.77,34.08 (以上、CH<sub>2</sub>):32.91 (CH):48.51 (<u>C</u>H<sub>2</sub>-C (O) H),203.17 (C=O)

[GC-MS]

 $3 \ 1 \ 1 \ (M^+ + 1)$ 

#### $[0\ 0\ 4\ 0\ ]$

実施例 1 又は 2 で合成した 3 ーオクチルートリデカン酸、 3 ーオクチルートリデカン酸メチルエステル、及び、比較例として、 2 ーエチルへキサン酸(和光純薬社製)とメタノールより、常法により合成したもの)について生分解性試験を実施した。結果を表 1 に示す。

# 【0041】 【表1】

| 化合物名              | 生分解度(%) |
|-------------------|---------|
| 3-オクチルートリデカン酸     | 62. 7   |
| 3-オクチルートリデカン酸メチル  | 52. 3   |
| エステル              |         |
| 2-エチルヘキサン酸メチルエステル | 25. 7   |

表1に示した結果から、本発明の長鎖分岐アルキル基含有1級カルボニル化合物が高い生分解性を有していることが確認できた。また、比較例であるエステル化合物は、生分解性が低く、生分解性を必要とする分野では使用できないことが確認できた。

# 【産業上の利用可能性】

# [0043]

本発明の長鎖分岐アルキル基含有1級カルボニル化合物は、低温流動性に優れ、高沸点を有し、かつ生分解性に優れている。従って、潤滑油、潤滑油添加剤、ペイント塗料、樹脂改質、化粧品原料等に好適に使用できる。

# 【図面の簡単な説明】

# [0044]

【図1】本発明の長鎖分岐アルキル基含有1級カルボニル化合物の合成スキームの一例を示す図である。





【要約】

【課題】 低温流動性に優れ、高沸点を有し、かつ生分解性に優れた長鎖分岐アルキル基 含有1級カルボニル化合物及び合成潤滑油を提供する。

【解決手段】 下記式 [1] に示すカルボニル化合物。

【化1】

$$CH_3(CH_2)_{n+2}CH_2$$
 $CHCH_2$ 
 $CHCH_2$ 
 $CHCH_3$ 
 $CHCH_2$ 
 $CHCH_3$ 

[式中、Xは、水素、ヒドロキシ基、アルコキシ基、Yはポリオール由来の基であり、xは4~30である。]。この化合物は、低温流動性に優れ、高沸点を有し、かつ生分解性に優れており、合成潤滑油に好適に使用できる。

【選択図】 なし

【書類名】

出願人名義変更届 (一般承継)

【提出日】

平成16年 9月13日

【あて先】

特許庁長官 小川 洋 殿

【事件の表示】

【出願番号】

特願2004-20493

【承継人】

【識別番号】

000183646

【氏名又は名称】

出光興產株式会社

【承継人代理人】

【識別番号】

100086759

【弁理士】

【氏名又は名称】

渡辺 喜平

【提出物件の目録】

【物件名】

承継人であることを証する書面 1

【援用の表示】

特願2004-199675の出願人名義変更届に添付のものを

援用する。

【包括委任状番号】 0200131

特願2004-020493

出願人履歴情報

識別番号

[000183657]

1. 変更年月日

2000年 6月30日

[変更理由]

住所変更

住 所 氏 名 東京都墨田区横網一丁目6番1号

出光石油化学株式会社

特願2004-020493

出願人履歴情報

識別番号

[000183646]

1. 変更年月日 [変更理由]

[変更理由] 住 所 氏 名 1990年 8月 8日

新規登録

東京都千代田区丸の内3丁目1番1号

出光興產株式会社