AE 2018 40-52

1

EE24BTECH11005 - Arjun Pavanje

40) A clamped-clamped beam, subjected to a point load P at the midspan, is shown in the figure below. The magnitude of the moment reaction at the two fixed ends of the beam is

a) $\frac{PI}{2}$

b) $\frac{PL}{4}$

c) $\frac{PL}{8}$

d) $\frac{PL}{16}$

41) Which of the following statement(s) is/are true about the state of a body in plane strain condition?

P: All the points in the body undergo displacements in one plane only, for example the x - y plane, leading to $\varepsilon_{zz} = \gamma_{xz} = \gamma_{yz} = 0$.

Q: All the components of stress perpendicular to the plane of deformation, for example the x-y plane, of the body are equal to zero, i.e. $\sigma_{zz} = \tau xz = \tau yz = 0$

R: Except the normal component, all the other components of stress perpendicular to the plane of deformation of the body, for example the x-y plane, are equal to zero, i.e. $\sigma_{zz} \neq 0$, $\tau_{sz} = \tau_{yz} = 0$.

a) P only

b) Q only

c) P and Q

d) P and R

42) An aircraft with a turbojet engine flies at a velocity of 100m/s. If the jet exhaust velocity is 300m/s, the propulsive efficiency of the engine, assuming a negligible fuel-air ratio, is

a) 0.33

b) 0.50

	c) 0.67	d) 0.80
43)	43) An axial compressor that generates a stagnation pressure ratio of 4.0, operates wit inlet and exit stagnation temperatures of $300K$ and $480K$, respectively. If the rati of specific heats γ is 1.4, the isentropic effeciency of the compressor is,	
	a) 0.94	b) 0.81
	c) 0.72	d) 0.63
44) An aircraft with a turboprop engine produces a thrust of $500N$ and flies at $100m/s$. If the propeller efficiency is 0.5, the shaft power produced by the engine is		
	a) 50kW	b) 100 <i>kW</i>
	c) 125kW	d) 500 <i>kW</i>
45) A rocket has an initial mass of $150kg$. After operating for a duration of $10s$, its final mass is $50kg$. If the acceleration due to gravity is $9.81m/s^2$ and the thrust produced by the rocket is $19.62kN$, the specific impulse of the rocket is		
	a) 400s	b) 300s
	c) 200s	d) 100s
46) Consider the vector field $\mathbf{v} = \begin{pmatrix} -\frac{y}{r^2} \\ \frac{x}{r^2} \end{pmatrix}$ where $r = \sqrt{x^2 + y^2}$. The contour integral $\oint \mathbf{v} \cdot \mathbf{ds}$ where \mathbf{ds} is tangent to the contour that encloses the origin is, (accurate to two decimal places)		
47) The magnitude of the x-component of the unit vector at the point $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ that is normal		
	to equipotential lines of the potential function $\phi(r) = \frac{1}{r^2+4}$, where $r = \sqrt{x^2 + y^2}$ is, (accurate to two decimal places) 48) Assuming <i>ISA</i> standard sea level conditions, the density of air $\left(\ln kg/m^3\right)$ at Leh, which has an altitude of 3500 <i>m</i> above mean sea level isaccurate to two decimal places) 49) Consider a cubical tank of side 2 <i>m</i> with its top open. It is filled with water up to a	
50)	height of 1m. Assuming the density of w atmospheric pressure to be 100kPa, the r of the tank due to the air and water is An aircraft with mass of 400,000kg crui	rater to be $1000kg/m^3$, $g = 9.81m/s^2$ and the net hydrostatic force (in kN) on the side face (accurate to two decimal places) sees at $240m/s$ at an altitude of $10km$. Its lift g as $9.81m/s^2$, the power (in MW) needed
01)		

 $C_{L_{\alpha}} = 5$ (where the angle of attack, α , is measured in radians)

. The coefficient of moment of the aircraft about the center of gravity is given as		
$C_{M,C,g} = 0.05 - 4\alpha$. The mean aerodynamic chord of the aircraft wing is 1m. The		
location (positive towards the nose) of the neutral point of the aircraft from the center		
of gravity is (accurate to two decimal places)		

52) An aircraft with a gross weight of 2000kg has a speed of 130m/s at sea level, where the conditions are: 1 atmosphere (*pressure*), 288K (*temperature*), and $1.23kg/m^3$ (*density*). The speed (in m/s) required by the aircraft at an altitude of 9000m, where the conditions are: 0.31 atmosphere, 230K, and $0.47kg/m^3$, to maintain a steady, level flight is ______ (accurate to two decimal places)