# **Knowledge-based recommendation**

#### **Outline**

- Knowledge-based general approach
- Knowledge representation and reasoning
- Interacting with constraint-based recommenders
- Interacting with case-based recommenders
- Example applications
- Summary

## **Knowledge-based Approach**

Collaborative Filtering

Recommends items that similar users liked

Content-based Recommendation

Recommends items that are similar to those the user liked in the past

Knowledge-based Recommendation

Recommends items that that match the user's needs

# **Collaborative Filtering Paradigm**



#### **Basic I/O Relationship**

# **Content-based Paradigm**



#### **Basic I/O Relationship**

# **Knowledge-based Paradigm**



# Why do we need knowledge-based recommendation?

Products with low number of available ratings





- Time span plays an important role
  - five-year-old ratings for computers
  - user lifestyle or family situation changes
- Customers want to define their requirements explicitly
  - "the color of the car should be black"

### **Knowledge-based recommender systems**

#### Constraint-based

- based on explicitly defined set of recommendation rules
- fulfill recommendation rules

#### Case-based

- based on different types of similarity measures
- retrieve items that are similar to specified requirements

# Both approaches are similar in their conversational recommendation process

- users specify the requirements
- systems try to identify solutions
- if no solution can be found, users change requirements

### **Constraint-based recommender systems**

#### Knowledge base

- usually mediates between user model and item properties
- variables
  - user model features (requirements), Item features (catalogue)
- set of constraints
  - logical implications (IF user requires A THEN proposed item should possess feature B)
  - hard and soft/weighted constraints
  - solution preferences

#### Derive a set of recommendable items

- fulfilling set of applicable constraints
- applicability of constraints depends on current user model
- explanations transparent line of reasoning

#### **Constraint-based recommendation tasks**

- Find a set of user requirements such that a subset of items fulfills all constraints
  - ask user which requirements should be relaxed/modified such that some items exist that do not violate any constraint
- Find a subset of items that satisfy the maximum set of weighted constraints
  - similar to find a maximally succeeding subquery (XSS)
  - all proposed items have to fulfill the same set of constraints
  - compute relaxations based on predetermined weights
- Rank items according to weights of satisfied soft constraints
  - rank items based on the ratio of fulfilled constraints
  - does not require additional ranking scheme

# **Constraint-based recommendation problem**

#### Select items from this catalog that match the user's requirements

| id             | price(€) | mpix | opt-zoom | LCD-size | movies | sound | waterproof |
|----------------|----------|------|----------|----------|--------|-------|------------|
| P <sub>1</sub> | 148      | 8.0  | 4×       | 2.5      | no     | no    | yes        |
| P <sub>2</sub> | 182      | 8.0  | 5×       | 2.7      | yes    | yes   | no         |
| P <sub>3</sub> | 189      | 8.0  | 10×      | 2.5      | yes    | yes   | no         |
| $P_4$          | 196      | 10.0 | 12×      | 2.7      | yes    | no    | yes        |
| P <sub>5</sub> | 151      | 7.1  | 3×       | 3.0      | yes    | yes   | no         |
| P <sub>6</sub> | 199      | 9.0  | 3×       | 3.0      | yes    | yes   | no         |
| P <sub>7</sub> | 259      | 10.0 | 3×       | 3.0      | yes    | yes   | no         |
| P <sub>8</sub> | 278      | 9.1  | 10×      | 3.0      | yes    | yes   | yes        |

#### User's requirements can, for example, be

- "the price should be lower than 300 €"
- "the camera should be suited for sports photography"

## **Constraint satisfaction problem (CSP)**

A knowledge-based RS with declarative knowledge representation

$$CSP(X_I \cup X_U, D, SRS \cup KB \cup I)$$

- Def.
  - X<sub>I</sub>, X<sub>II</sub>: Variables describing product and user model with domain D
  - KB: Knowledge base with domain restrictions (e.g. if purpose=on travel then lower focal length < 28mm)</li>
  - SRS: Specific requirements of user (e.g. purpose = on travel)
  - I: Product catalog
- Solution: Assignment tuple  $\theta \ \forall x \in X_I(x=v) \in \theta \land v \in dom(x)$

$$s.t.SRS \cup KB \cup I \cup \theta$$
 is satisfiable

# **Conjunctive query**

#### Different from a constraint solver

it is not to find valid instantiations for a CSP

#### Conjunctive query is executed in the item catalog

- a conjunctive database query
- a set of selection criteria that are connected conjunctively

#### σ[criteria](P)

- P: product assortment
- example:  $\sigma$ [mpix≥10, price<300](P) = {p4, p7}

### Interacting with constraint-based recommenders

#### The user specifies his or her initial preferences

- all at once or
- incrementally in a wizard-style
- interactive dialog

#### The user is presented with a set of matching items

- with explanation as to why a certain item was recommended
- The user might revise his or her requirements
  - see alternative solutions
  - narrow down the number of matching items

#### **Defaults**

#### Support customers to choose a reasonable alternative

- unsure about which option to select
- simply do not know technical details

#### Type of defaults

- static defaults
- dependent defaults
- derived defaults

#### Selecting the next question

- most users are not interested in specifying values for all properties
- identify properties that may be interesting for the user

### **Unsatisfied requirements**

"no solution could be found"

#### Constraint relaxation

- the goal is to identify relaxations to the original set of constraints
- relax constraints of a recommendation problem until a corresponding solution has been found
- Users could also be interested in repair proposals
  - recommender can calculate a solution by adapting the proposed requirements

# **Deal with unsatisfied requirements**

Calculate diagnoses for unsatisfied requirements



■ The diagnoses derived from the conflict sets  $\{CS_1, CS_2, CS_3\}$  are  $\{d_1:\{r_1, r_2\}, d_2:\{r_1, r_4\}, d_3:\{r_2, r_3\}\}$ 

### QuickXPlain

#### Calculate conflict sets

```
Algorithm 4.1 QuickXPlain(P, REQ)
```

```
Input: trusted knowledge (items) P; Set of requirements REQ
Output: minimal conflict set CS
if \sigma_{IREOI}(P) = \emptyset or REQ = \emptyset then return \emptyset
else return QX' (P, Ø, Ø, REQ);
Function QX' (P, B, \Delta, REQ)
if = \emptyset and \sigma_{(B)}(P) = \emptyset then return \emptyset;
if REQ = \{r\} then return \{r\};
let \{r_1, \ldots, r_n\} = REQ;
let k be n/2;
REQ_1 \leftarrow r_1, \ldots, r_k and REQ_2 \leftarrow r_{k+1}, \ldots, rn;
\Delta_2 \leftarrow QX(P, B \cup REQ_1, REQ_2);
\Delta_1 \leftarrow QX(P, B \cup \Delta 2, \Delta 2, REQ_1);
return \Delta_1 \cup \Delta_2;
```

### **Example of QuickXPlain**

| id             | Price(€) | mpix | opt-zoom   | LCD-size | movies | sound | waterproof |
|----------------|----------|------|------------|----------|--------|-------|------------|
| $P_1$          | 148      | 8.0  | 4×         | 2.5      | no     | no    | yes        |
| P <sub>2</sub> | 182      | 8.0  | 5×         | 2.7      | yes    | yes   | no         |
| P <sub>3</sub> | 189      | 8.0  | 10×        | 2.5      | yes    | yes   | no         |
| $P_4$          | 196      | 10.0 | 12×        | 2.7      | yes    | no    | yes        |
| P <sub>5</sub> | 151      | 7.1  | 3×         | 3.0      | yes    | yes   | no         |
| P <sub>6</sub> | 199      | 9.0  | $3 \times$ | 3.0      | yes    | yes   | no         |
| P <sub>7</sub> | 259      | 10.0 | 3×         | 3.0      | yes    | yes   | no         |
| P <sub>8</sub> | 278      | 9.1  | 10×        | 3.0      | yes    | yes   | yes        |

REQ = {r1:price≤150, r2:opt-zoom=5x, r3:sound=yes, r4:waterproof=yes}

(1) QX(P, 
$$\{r_1, r_2, r_3, r_4\})$$
  
 $\{r_1, r_2\}$   
(2) QX'(P,  $\{\}, \{\}, \{r_1, r_2, r_3, r_4\})$   
 $\{\}$   $\{r_1, r_2\}$   
(3) QX'(P,  $\{r_1, r_2\}, \{r_3, r_4\})$  (4) QX'(P,  $\{\}, \{\}, \{r_1, r_2\})$   
 $\{r_2\}$  (5) QX'(P,  $\{r_1\}, \{r_1\}, \{r_2\})$  (6) QX'(P,  $\{r_2\}, \{r_2\}, \{r_1\})$ 

# Repairs for unsatisfied requirements

- Identify possible adaptations
- Or query the product table P with  $\pi[attributes(d)]\sigma[REQ-d](P)$ 
  - $\pi[attributes(d1)]\sigma[REQ-d1](P) = \{price=278, opt-zoom=10\times\}$
  - $\pi[attributes(d2)]\sigma[REQ-d2](P) = \{price=182, waterproof=no\}$
  - $\pi[attributes(d3)]\sigma[REQ-d3](P) = \{opt-zoom=4\times, sound=no\}$

| repair           | price(€) | opt-zoom | sound | waterproof |
|------------------|----------|----------|-------|------------|
| Rep <sub>1</sub> | 278      | 10×      | ٧     | ٧          |
| Rep <sub>2</sub> | 182      | ٧        | ٧     | no         |
| Rep <sub>3</sub> | ٧        | 4×       | no    | ٧          |

# Ranking the items

- Multi-attribute utility theory
  - each item is evaluated according to a predefined set of dimensions that provide an aggregated view on the basic item properties
- E.g. quality and economy are dimensions in the domain of digital cameras

| id         | value | quality | economy |
|------------|-------|---------|---------|
| price      | ≤250  | 5       | 10      |
|            | >250  | 10      | 5       |
| mpix       | ≤8    | 4       | 10      |
|            | >8    | 10      | 6       |
| opt-zoom   | ≤9    | 6       | 9       |
|            | >9    | 10      | 6       |
| LCD-size   | ≤2.7  | 6       | 10      |
|            | >2.7  | 9       | 5       |
| movies     | Yes   | 10      | 7       |
|            | no    | 3       | 10      |
| sound      | Yes   | 10      | 8       |
|            | no    | 7       | 10      |
| waterproof | Yes   | 10      | 6       |
|            | no    | 8       | 10      |

# **Item utility for customers**

### Customer specific interest

| Customer        | quality | economy |
|-----------------|---------|---------|
| Cu <sub>1</sub> | 80%     | 20%     |
| Cu <sub>2</sub> | 40%     | 60%     |

### Calculation of Utility

| quality                                | economy                           | cu <sub>1</sub> | cu <sub>2</sub> |
|----------------------------------------|-----------------------------------|-----------------|-----------------|
| $P_1 \Sigma(5,4,6,6,3,7,10) = 41$      | Σ (10,10,9,10,10,10,6) = 65       | 45.8 [8]        | 55.4 [6]        |
| $P_2 \Sigma(5,4,6,6,10,10,8) = 49$     | $\Sigma$ (10,10,9,10,7,8,10) = 64 | 52.0 [7]        | 58.0 [1]        |
| $P_3 \Sigma(5,4,10,6,10,10,8) = 53$    | Σ (10,10,6,10,7,8,10) = 61        | 54.6 [5]        | 57.8 [2]        |
| $P_4 \Sigma(5,10,10,6,10,7,10) = 58$   | $\Sigma$ (10,6,6,10,7,10,6) = 55  | 57.4 [4]        | 56.2 [4]        |
| $P_5 \Sigma(5,4,6,10,10,10,8) = 53$    | Σ (10,10,9,6,7,8,10) = 60         | 54.4 [6]        | 57.2 [3]        |
| $P_6 \Sigma(5,10,6,9,10,10,8) = 58$    | $\Sigma$ (10,6,9,5,7,8,10) = 55   | 57.4 [3]        | 56.2 [5]        |
| $P_7 \Sigma(10,10,6,9,10,10,8) = 63$   | Σ (5,6,9,5,7,8,10) = 50           | 60.4 [2]        | 55.2 [7]        |
| $P_8 \Sigma(10,10,10,9,10,10,10) = 69$ | $\Sigma$ (5,6,6,5,7,8,6) = 43     | 63.8 [1]        | 53.4 [8]        |

## **Case-based recommender systems**

- Items are retrieved using similarity measures
- Distance similarity

$$similarity(p, REQ) = \frac{\sum_{r \in REQ} w_r * sim(p, r)}{\sum_{r \in REQ} w_r}$$



- Def.
  - sim (p, r) expresses for each item attribute value  $\phi$ r (p) its distance to the customer requirement  $r \in REQ$ .
  - w<sub>r</sub> is the importance weight for requirement r
- In real world, customer would like to
  - maximize certain properties. i.e. resolution of a camera, "more is better"(MIB)
  - minimize certain properties. i.e. price of a camera, "less is better"(LIB)

### **Case-based recommender systems**

Local similarity (MIB):

$$sim(p, r) = \frac{\phi_r(p) - min(r)}{max(r) - min(r)}$$



Local similarity (LIB):

$$sim(p,r) = \frac{max(r) - \phi_r(p)}{max(r) - min(r)}$$

Local similarity based solely on the distance to the originally defined requirements:

$$sim(p,r) = 1 - \frac{|\phi_r(p) - r|}{max(r) - min(r)}$$

### Interacting with case-based recommenders

- Customers maybe not know what they are seeking
- Critiquing is an effective way to support such navigations
- Customers specify their change requests (price or mpix) that are not satisfied by the current item (entry item)



# **Compound critiques**

 Operate over multiple properties can improve the efficiency of recommendation dialogs



### **Dynamic critiques**

- Association rule mining
- Basic steps for dynamic critiques
  - q: initial set of requirements
  - CI: all the available items
  - K: maximum number of compound critiques
  - $\sigma_{min}$ : minimum support value for calculated association rules.

```
Algorithm 4.4 DynamicCritiquing(q,CI)
Input: Initial user query q; Candidate items CI;
number of compound critiques per cycle k;
minimum support for identified association rules \sigma_{min}
procedure DynamicCritiquing(q, CI, k, \sigma_{min})
repeat
r \leftarrow ItemRecommend(q, CI);
CC \leftarrow CompoundCritiques(r, CI, k, \sigma_{min});
q \leftarrow UserReview(r, CI, CC);
until empty(q)
end procedure
procedure ItemRecommend(q, CI)
CI \leftarrow \{ci \in CI: satisfies(ci, q)\};
r \leftarrow mostsimilar(CI, q);
return r;
end procedure
procedure UserReview(r, CI, CC)
q \leftarrow critique(r, CC);
CI \leftarrow CI - r;
return q;
end procedure
procedure CompoundCritiques(r, Cl, k, \sigma_{min})
CP \leftarrow CritiquePatterns(r, CI);
CC \leftarrow Apriori(CP, \sigma min);
SC \leftarrow SelectCritiques(CC, k);
return SC;
end procedure
```

## **Example: sales dialogue financial services**



#### In the financial services domain

- sales representatives do not know which services should be recommended
- improve the overall productivity of sales representatives

#### Resembles call-center scripting

- best-practice sales dialogues
- states, transitions with predicates

#### Research results

- support for KA and validation
  - node properties (reachable, extensible, deterministic)

## **Example software: VITA sales support**



### **Example: Critiquing**

### Find your Favourite restaurant

Traditional







Creative

Livelier

### Similarity-based navigation in item space

#### Compound critiques

- more efficient navigation than with unit critiques
- mining of frequent patterns

#### Dynamic critiques

 only applicable compound critiques proposed

#### Incremental critiques

considers history

#### Adaptive suggestions

suggest items that allow to best refine user's preference model

### **Example: Critiquing**

### Find your Favourite restaurant

Traditional







Creative

Livelier

### Similarity-based navigation in item space

#### Compound critiques

- more efficient navigation than with unit critiques
- mining of frequent patterns

#### Dynamic critiques

 only applicable compound critiques proposed

#### Incremental critiques

considers history

#### Adaptive suggestions

suggest items that allow to best refine user's preference model

### **Summary**

#### Knowledge-based recommender systems

- constraint-based
- case-based

#### Limitations

- cost of knowledge acquisition
  - from domain experts
  - from users
  - from web resources
- accuracy of preference models
  - very fine granular preference models require many interaction cycles
  - collaborative filtering models preference implicitly
- independence assumption can be challenged
  - preferences are not always independent from each other