Linear Algebra Working Group:: Day 2

Note: All vector spaces will be finite-dimensional vector spaces over the field \mathbb{R} .

1 Diagonalization

Definition 1.1. An $n \times n$ matrix A is **similar** to an $n \times n$ matrix B if there exists an invertible $n \times n$ matrix P such that $A = PBP^{-1}$. More generally, let V be a finite-dimensional vector space. Linear transformations $A, B: V \to V$ are **similar** if there exists an invertible $P: V \to V$ such that $A = P \circ B \circ P^{-1}$.

Exercise 1. Show that if two matrices are similar then they have the same eigenvalues. (*Hint: Consider the characteristic polynomials.*) This of course also applies to linear transformations too. Give a counterexample to show the converse is not true.

Definition 1.2. An $n \times n$ matrix A is **diagonalizable** if it is similar to a diagonal matrix. More generally, a linear transformation $T: V \to V$ is **diagonalizable** if its matrix representation with respect to *some* basis on V is diagonalizable.

Theorem 1.3. Let A be an $n \times n$ matrix. The matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

Exercise 2. Prove Theorem Thm 1.3. (Hint: Look for a diagonalization $A = PDP^{-1}$ where D has the eigenvalues on the diagonal and P has the respective eigenvectors as columns.)

Exercise 3. Diagonalize the following matrices if possible:

$$\begin{pmatrix}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{pmatrix}
\qquad
\begin{pmatrix}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{pmatrix}$$

Exercise 4. Show that a diagonalization is not unique.

Definition 1.4. Let A be an $n \times n$ matrix and λ an eigenvalue of A. The **algebraic multiplicity** of λ is the multiplicity of λ as a root of the characteristic polynomial $\det(A - \lambda I)$. The **geometric multiplicity** of λ is the dimension of the eigenspace E_{λ} of the eigenvalue λ .

Exercise 5. Suppose A is a matrix given in block form by:

$$A = \left(\begin{array}{cc} B & C \\ 0 & D \end{array}\right)$$

where B and D are squares matrices. Give the eigenvalues of A, with their corresponding algebraic multiplicities, in terms of those of B and D.

Theorem 1.5. Let A be an $n \times n$ matrix and $\lambda_1, ..., \lambda_p$ its distinct eigenvalues. Let d_k be the geometric multiplicity of λ_k , and a_k the algebraic multiplicity.

1

- 1. For all $1 \le k \le p$, we have $d_k \le a_k$.
- 2. The matrix A is diagonalizable if and only if $\sum_{k=1}^{p} d_k = n$.

- 3. The matrix A is diagonalizable if and only if the characteristic polynomial factors into linear factors in \mathbb{R} and $d_k = a_k$ for all $1 \le k \le p$.
- 4. If A is diagonalizable, the union of the bases of each eigenspace forms a basis for \mathbb{R}^n .

Exercise 6. Prove Theorem 1.5

Exercise 7. Determine if the matrix A is diagonalizable:

- 1. A is 5×5 and has two distinct eignevalues λ_1 and λ_2 with geometric multiplication $d_1 = 3$ and $d_2 = 2$.
- 2. A is 4×4 and has three eigenvalues λ_1, λ_2 , and λ_3 , where the first two have geometric multiplicites $d_1 = 1$ and $d_2 = 2$. Can A fail to be diagonalizable?

Exercise 8. Show that if an $n \times n$ matrix A has n linearly independent eigenvectors, then so does A^T .

Exercise 9. Show by a 2×2 nonzero matrix example that a matrix may be invertible, but not diagonalizable. Show by a nondiagonal 2×2 matrix that a matrix may be diagonal but not invertible.

Definition 1.6. Let A be an $n \times n$ matrix. A (real) **Schur decomposition** is a factorization of the form $A = URU^T$, where U is an orthogonal $n \times n$ matrix and R is an $n \times n$ upper triangular matrix.

Exercise 10. Let A be an $n \times n$ matrix.

- 1. Show that if A admits a real Schur decomposition, then A has n real eigenvalues, counting algebraic multiplicies.
- 2. Suppose A has n real eigenvalues $\lambda_1, ..., \lambda_n$, counting algebraic multiplicities. Let u_1 be a unit eigenvector for λ_1 . Complete this to an orthonormal basis $\{u_1, ..., u_n\}$ of \mathbb{R}^n . Let U be the matrix with columns the vectors u_i . Show that the matrix U^TAU has the following form:

$$\begin{pmatrix} \lambda_1 & * & * & * & * \\ 0 & & & & \\ \vdots & & A_1 & & \\ 0 & & & & \end{pmatrix}$$

where A_1 has eigenvalues $\lambda_2, ..., \lambda_n$. (Hint: For the last part, exercise 5 may be useful.)

3. Use part (2) to give an algorithm to obtain a real Schur decomposition when A has n real eigenvalues, counting algebraic multiplicities.

2 Symmetric Matrices, the Spectral Theorem, and Quadratic Forms

Definition 2.1. An $n \times n$ matrix A is **symmetric** or **self-adjoint** if $A^T = A$. More generally, a linear map $A: V \to V$ on a finite-dimensional inner product space $(V, \langle \cdot, \cdot \rangle)$ is **symmetric** or **self-adjoint** if $A^T = A$; that is, if the following holds:

$$\langle Av,w\rangle = \langle v,Aw\rangle$$

for all $v, w \in V$.

Exercise 11. Suppose A is an $n \times n$ self-adjoint matrix. Let $x \in \mathbb{C}^n$ be a nonzero vector such that $Ax = \lambda x$ for some $\lambda \in \mathbb{C}$ (we still require A to have real entries). Show that λ is real and the real part of x is an eigenvector of A. (Hint: Consider $\overline{x}^T Ax$).

Definition 2.2. An $n \times n$ matrix A is **orthogonally diagonalizable** if it is diagonalizable in the form $A = PDP^{-1}$, where P is an orthogonal matrix. A linear map $A: V \to V$ on a finite-dimensional inner product space is **orthogonally diagonalizable** if there is a matrix representing it that is orthogonally diagonalizable.

Exercise 12. Show that if an $n \times n$ matrix is orthogonally diagonalizable, then it is self-adjoint.

Exercise 13. Suppose $A = PRP^{-1}$ with P orthogonal and R upper triangular. Show that if A is symmetric, then R is diagonal.

Exercise 14. Suppose that A is an $n \times n$ matrix that is diagonalizable in the form PDP^{-1} . Show that any eigenvalue shows up in the diagonal matrix D the same number of times as its geometric multiplicity.

Definition 2.3. The collection of eigenvalues of a linear map on a finite-dimensional vector space is oftened called its **spectrum**.

The following theorem is a classic. Halmos' discussion about it in [Hal58, Sec. 79] is great, I really recommend it. (Note he states the theorem a little differently, i.e. in terms of projections.) Also, the theorem can be rephrased to be about self-adjoint linear maps on finite-dimensional inner product spaces in the ovious way.

Theorem 2.4. (The Spectral Theorem.) Let A be an $n \times n$ symmetric matrix. Then:

- 1. The spectrum of the matrix A has n real eigenvalues, counting algebraic multiplicaties.
- 2. The eigenspaces of the matrix A are mutually orthogonal.
- 3. The matrix A is orthogonally diagonalizable.
- 4. The algebraic and geometric multiplicaties of A are the same.

Exercise 15. Let A be an $n \times n$ symmetric matrix. Prove Theorem 2.4 using the following hints:

- 1. For the first statement, exercise 11 may be helpful.
- 2. Use eigenvectors from different eigenvalues for the second statement.
- 3. For the third statement, use the first statement. Also exercise 13 and real Schur decompositions may be useful.
- 4. Exercise 14 may be helpful for the last statement.

Exercise 16. Suppose A and B are orthogonally diagonalizable matrices that commute. Show that AB is orthogonally diagonalizable. Take a moment to appreciate why the Spectral Theorem makes showing this so much easier.

Definition 2.5. Let A be an $n \times n$ symmetric matrix, a **spectral decomposition** for A is an expression of the form:

$$A = \sum_{i=1}^{n} \lambda_i u_i u_i^T$$

where $\lambda_1, ..., \lambda_n$ are the eigenvalues of A and $u_1, ..., u_n$ are orthonormal eigenvectors.

Exercise 17. Let A be an $n \times n$ symmetric matrix.

- 1. Show that the matrix A has a spectral decomposition.
- 2. Given any unit vector $u \in \mathbb{R}^n$, define the matrix $B := uu^T$. Note B is a symmetric matrix. Show that this is an orthogonal projection onto some subspace. Specify the subspace.
- 3. Use part 2 to interpret the spectral decomposition of Definition 2.5 in terms of projections.

Exercise 18. Obtain a spectral decomposition of the matrix:

$$\begin{pmatrix}
6 & -2 & -1 \\
-2 & 6 & -1 \\
-1 & -1 & 5
\end{pmatrix}$$

Exercise 19. Let $\{u_1, ..., u_n\}$ be an orthonormal basis of \mathbb{R}^n and let $\lambda_1, ..., \lambda_n$ be real scalar. Define the matrix:

$$A := \sum_{i=1}^{n} \lambda_i u_i u_i^T$$

Show that A is symmetric and that the eigenvalues of A are $\lambda_1, ..., \lambda_n$.

Definition 2.6. Let A be an $n \times n$ symmetric matrix. A quadratic form on \mathbb{R}^n is a function of the form:

$$Q: \mathbb{R}^n \to \mathbb{R}, \qquad Q(x) := x^T A x$$

Exercise 20. Consider the following quadratic forms and write their corresponding matrices:

- 1. $Q: \mathbb{R}^n \to \mathbb{R}$, $Q(x) = ||x||^2$
- 2. $Q: \mathbb{R}^2 \to \mathbb{R}$, $Q(x,y) = 3x^2 4xy + 7y^2$
- 3. $Q: \mathbb{R}^3 \to \mathbb{R}$, $Q(x, y, z) = 5x^2 + 3y^2 + 2z^2 xy + 8yz$

Theorem 2.7. (Principal Axes Theorem.) Given a quadratic form $Q : \mathbb{R}^n \to \mathbb{R}$, there is an orthogonal change of variables y = Px that gets rid of the cross-product terms.

Definition 2.8. Given a quadratic form $Q : \mathbb{R}^n \to \mathbb{R}$. Let $\{v_1, ..., v_n\}$ be a basis of \mathbb{R}^n such that Q has no cross-product terms in terms of this basis. The spans $\operatorname{span}(v_i)$, are called the **principal axes** of the quadratic form.

Exercise 21. Prove Theorem 2.7. (Hint: What do the cross-product terms correspond to in the matrix of the form? Note the matrix of the form is symmetric.)

Exercise 22. Get rid of the cross-product term in the quadratic form $Q(x,y) = x^2 - 8xy - 5y^2$.

Definition 2.9. Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a quadratic form. Then:

- 1. Q is **positive definite** if Q(x) > 0 for all $x \neq 0$.
- 2. Q is **positive semidefinite** if $Q(x) \ge 0$ for all x.
- 3. Q is negative definite if Q(x) < 0 for all $x \neq 0$.
- 4. Q is negative semidefinite if $Q(x) \leq 0$ for all x.
- 5. Q is **indefinite** if Q(x) is none of the above.

Theorem 2.10. Let A be an $m \times n$ symmetric matrix and consider the quadratic form $Q(x) = x^T A x$. Then:

- 1. Q is positive definite if and only if the spectrum of A is positive (all eigenvalues are positive).
- 2. Q is negative definite if and only if the spectrum of A is negative (all eigenvalues are negative).
- 3. Q is indefinite if and only if the spectrum of A has both positive and negative eigenvalues.

Exercise 23. Prove Theorem 2.10. (Hint: Apply Theorem 2.7.)

Exercise 24. We say a matrix A has the properties in Definition 2.9 if the quadratic form $Q(x) = x^T A x$ has them.

- 1. Show that B^TB is positive semidefinite, where B is an $m \times n$ matrix.
- 2. Show that if B is an invertible $n \times n$ matrix, then B^TB is positive definite.

Exercise 25. Show that if A is an $n \times n$ positive definite symmetric matrix, then there exists a positive definite matrix B such that $A = B^T B$. (Hint: Use that A is orthogonally diagonalizable with diagonal matrix D. Write $D = C^T C$ for some matrix C and let $B = P C P^T$.)

Definition 2.11. Let A be an $n \times n$ matrix. A **Cholesky decomposition** of A is a factorization $A = R^T R$, where R is upper triangular with positive entries on the diagonal.

Exercise 26. Show that an $n \times n$ matrix A has a Cholesky decomposition if and only if it is poistive definite. (Hint: QR factorization and exercise 25).

Exercise 27. Let A be an $n \times n$ invertible symmetric matrix. Show that if A is positive definite, then so is A^{-1} .

Exercise 28. Let D be the $n \times n$ diagonal matrix with the numbers $\lambda_1 \geq \lambda_2 \geq \geq \lambda_n$ on its diagonal in order from greatest to lowest from left to right. Show that the quadratic form $Q: \mathbb{R}^n \to \mathbb{R}$ defined by $Q(x) = x^T Dx$ is such that $Q(x) \leq \lambda_1$ for all x in the unit sphere $S^{n-1} = \{x \in \mathbb{R}^n \mid x^T x = 1\}.$

Exercise 29. Let A be an $n \times n$ symmetric matrix. Let Q_A be the corresponding quadratic form and let $S^{n-1} = \{x \in \mathbb{R}^n \mid x^T x = 1\}$ be the unit sphere in \mathbb{R}^n .

1. Apply Theorem 2.7 to make an orthogonal change of variables so that the quadratic form becomes the quadratic form Q_D given by a matrix as in exercise 28 with the entries the eigenvalues of A and the columns of the change of variable y = Px are corresponding orthonormal eigenvectors. Show that Q_A and Q_D obtain the same values on the unit sphere S^{n-1} .

2. Use the previous step and exercise 28 to show that Q_A obtains the maximum λ_1 on S^{n-1} .

This shows that Q_A obtains the largest eigenvalue as its maximum when constrained to the unit sphere, and that it does so at a unit eigenvector of A. An analogous argument shows that it obtains the smallest eigenvalue as its minimum when constrained to the unit sphere.

A similar approach to the one of the previous exercise can be done to prove the following theorem:

Theorem 2.12. Let A be an $n \times n$ symmetric matrix and let Q be the corresponding quadratic form. Let $\lambda_1 \geq \lambda_2 \geq \geq \lambda_n$ be the eigenvalues of A and $u_1, ..., u_n$ be corresponding unit eigenvectors. Then for any integer k with $1 \leq k \leq n$, the form Q constrained to:

$$x^T x = 1$$
 $x^T u_1 = 0$ $x^T u_2 = 0$... $x^T u_{k-1} = 0$

obtains the maximum λ_k at the eigenvector u_k . (Note the constraint $x^T u_j = 0$ means the hyperplane defined by u_i of vectors orthogonal to u_i .)

Exercise 30. Consider the matrix:

$$A := \left(\begin{array}{ccc} 4 & 11 & 14 \\ 8 & 7 & -2 \end{array}\right)$$

Then:

- 1. When is the function $x \mapsto ||Ax||^2$ maximized when constrained to S^2 ? (Hint: Consider the quadratic form $x \mapsto x^T A^T A x$.)
- 2. What is the image of the unit sphere S^2 under the linear map A?

3 The Singular Value Decomposition

Exercise 31. Let A be an $m \times n$ matrix. Show that the eigenvalues of $A^T A$ are all nonnegative. (Hint: Let $v_1,, v_n$ be orthonormal eigenvectors for the eigenvalues $\lambda_1, ..., \lambda_n$ of the matrix $A^T A$ and consider the quadratic form corresponding to $A^T A$.)

Definition 3.1. Let A be an $m \times n$ matrix. Let $\lambda_1 \geq ... \geq \lambda_n \geq 0$ be the eigenvalues of $A^T A$. The **singular values** of A are the numbers $\sigma_i := \sqrt{\lambda_i}$, for i = 1, ..., n.

Exercise 32. Let A be an $m \times n$ matrix, and let $v_1, ..., v_n$ be orthonormal vectors corresponding to the eigenvalues $\lambda_1, ..., \lambda_n$ of the matrix $A^T A$. What is the geometric relationship between the vectors $||Av_i||$ and the singular values $\sigma_i = \sqrt{\lambda_i}$?

Exercise 33. Let A be an $m \times n$ matrix. Show that eigenvectors corresponding to different singular values are orthogonal.

Exercise 34. Let A be an $m \times n$ matrix and let $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n \geq 0$ be its singular values. Suppose there are exactly r nonzero singular values $\sigma_1, ..., \sigma_r$ with corresponding orthonormal eigenvectors $v_1, ..., v_r$. Show that $\{Av_1, ..., Av_r\}$ is an orthogonal basis for $\operatorname{im}(A)$ and so the rank of A is r. (Hint: Complete the basis $\{v_1, ..., v_r\}$ to an orthonormal basis of \mathbb{R}^n consisting of eigenvectors and check directly.)

Definition 3.2. Let A be an $m \times n$ matrix. A singular value decomposition is a factorization of the form:

$$A = U\Sigma V^T$$

where U is an orthogonal $m \times m$ matrix, V is an orthogonal $n \times n$ matrix, D is an $r \times r$ matrix where r is the rank of A, and Σ is of the form:

$$\Sigma = \left(\begin{array}{cc} D & 0 \\ 0 & 0 \end{array}\right)$$

with D a diagonal matrix with positive entries on its diagonal and with the lowest right block Σ having size $(m-r)\times(n-r)$.

Theorem 3.3. Let A be an $m \times n$ matrix of rank r and let $\sigma_1 \geq \geq \sigma_r > 0$ be the first r singular values of A. Let Σ be a matrix of the form:

$$\Sigma = \left(\begin{array}{cc} D & 0 \\ 0 & 0 \end{array}\right)$$

where D is of size $r \times r$ and is diagonal with entries the singular values in decreasing order. There exist an orthogonal $m \times m$ matrix U and an orthogonal $n \times n$ matrix V such that:

$$A = U\Sigma V^T$$

Exercise 35. Prove Theorem 3.3 by considering the following algorithm:

- 1. Let $\lambda_1 \geq ... \geq \lambda_r$ be the first nonzero eigenvalues of A^TA and $v_1, ..., v_r$ be corresponding orthonormal eigenvectors. Complete this to an orthonormal eigenvector basis $\{v_1, ..., v_n\}$ of \mathbb{R}^n . Thus, by Exercise 34, we know $Av_1, ..., Av_r$ is an orthogonal basis of im(A). Normalize to obtain an orthonormal basis $\{u_1, ..., u_m\}$ of \mathbb{R}^m .
- 2. Define the matrices U and V to have as columns the basis vectors $\{u_1, ..., u_m\}$ and $\{v_1, ..., v_n\}$ respectively.
- 3. Let D be a diagonal matrix with the first r singular values. Let Σ be of the form given in Definition 3.2.

This gives the SVD, show it works by doing the following:

1. Show that:

$$AV = (Av_1 \dots Av_r \ 0 \dots 0) = (\sigma_1 u_1 \dots \sigma_r u_r \ 0 \dots 0)$$

- 2. Show that $U\Sigma = AV$.
- 3. State that U and V are orthogonal and finish the proof.

Exercise 36. Use the above algorithm, to compute an SVD for the matrices:

$$\left(\begin{array}{ccc}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right) \qquad \left(\begin{array}{ccc}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right)$$

Exercise 37. Show that if A is an $m \times n$ matrix with SVD decomposition $A = U\Sigma V^T$, then the columns of V are eigenvectors of A^TA and the columns of U are eigenvectors of AA^T . Show that the diagonal entries of Σ are the singular values of A. (Hint: Use the SVD for the matrices A^TA and AA^T .)

Exercise 38. Let A be an $m \times n$ matrix. Show that A is invertible if and only if A has n nonzero singular values.

Definition 3.4. Let A be an $n \times n$ matrix of rank r. A reduced singular value decomosition of A is a factorization $A = U_r D V_r^T$, where D be an $r \times r$ diagonal matrix with positive entries, U_r is an $m \times r$ matrix with orthogonal columns, and V_r is an $n \times r$ matrix with orthogonal columns. The **Moore-Penrose inverse** or **pseudoinverse** of A is the matrix:

$$A^+ = V_r D^{-1} U_r^T$$

Exercise 39. Obtain a reduced singular value decomposition from an SVD of A for each of the matrices in exercise 36.

Exercise 40. Let A be an $m \times n$ matrix of rank r with Moore-Penrose inverse $A^+ = V_r D^{-1} U_r^T$. Show that:

- 1. The linear map AA^+ is the projection of \mathbb{R}^m onto im(A).
- 2. The linear map A^+A is the projection of \mathbb{R}^n onto $\operatorname{im}(A^T)$
- 3. $AA^{+}A = A$ and $A^{+}AA^{+} = A^{+}$
- 4. Let $b \in \mathbb{R}^m$ be a vector. Show that A^+b gives the least-squares solution to Ax = b.

References

- [Hal58] P.R. Halmos. Finite-Dimensional Vector Sapces. Reprinting of the 1958 second edition. *Undergraduate Texts in Mathematics*. Springer-Verlag, New York-Heidelberg, 1974.
- [L94] D.C. Lay. Linear Algebra and its Applications. Fourth Edition. Addison-Wesley, 2012.
- [Rom08] S. Roman. Advanced Linear Algebra. Third Edition. *Graduate Texts in Mathematics*, 135. Springer, New York, 2008.