Regressive Sin Taxes by Lockwood and Taubinsky: A Critical Review

Nathan Mather

University of Michigan

2019

Introduction

Two conflicting forces at play when considering sin taxes

- People make bad decisions
 - Correcting this can potentially increase welfare
 - Similar logic to Pigouvian tax
- Sin taxes can be regressive
 - Cigarettes and sugary drinks consumed disproportionately by the poor
 - High efficiency subsidies disproportionately taken by rich

Goal of Model

- ► A model that addresses both of these concerns
- Includes variable income tax.
- Consumers have heterogeneous earnings, abilities, and tastes, and can choose labor supply and consumption bundles
- Policy makers choose linear commodity tax and non-linear income tax.
- Policy maker and consumers disagree about what is best for them.

The Environment

Variable definitions

Variable	Meaning
θ	Consumer Type
$\mu(\theta)$	Distribution of Type
Z	Earnings
T(z)	nonlinear income tax
<i>c</i> ₂	Sin Good
t	Linear Commodit tax on c_2
<i>c</i> ₁	Numeraire good
р	Price of c ₂
$U(c_1,c_2.z;\theta)$	Decision Utility
$V(c_1,c_2.z;\theta)$	Policymaker "correct" utility
$\alpha(\theta)$	Pareto Weights

- ► Functional form assumptions
 - ▶ U is increasing and weakly concave in c_1 and c_2 and decreasing and strictly concave in z

Policymaker's Problem

- Policymaker wants to maximize experienced utility V
 - ▶ Weight consumers by Pareto weights
 - ▶ Can choose $T(\cdot)$ and t to do this
 - Subject to budget constraint
 - Subject to individuals doing what they want

$$\max_{T,t} \int \alpha(\theta) V(c_1(\theta), c_2(\theta), z(\theta); \theta) \mu(\theta)$$

Subject to the budget constraint

$$\int (tc_2(\theta) + T(z(\theta)))\mu(\theta) = 0$$

and individual maximization

$$\{c_1(\theta), c_2\theta, z(\theta)\} = \arg\max_{c_1, c_2, z} U(c_1, c_2, z; \theta)$$

$$s.t. \quad c_1 + (1+t)c_2 < z - T(z) \quad \forall \quad \theta \quad \exists \quad \text{odd}$$

Difference between U and V

- Incorrect beliefs
 - Calorie content of food
 - Health costs of food or drugs
 - Energy efficiency of products
- Limited attention or salience bias
 - People think "fat free" ice cream is healthy
- Present Bias/ Time Inconsistency
 - Hyperbolic discounting $(\beta \delta \text{ discounting})$
 - ▶ The model can treat β as a bias.
 - Policy maker could also weight present and future selves arbitrarily

A Price Metric for Consumer Bias

Variable	Meaning
у	z-T(z)
$c_2(\theta, y, p, t, T)$	Consumption chosen by individual of type $ heta$ given constraints
$c_2^V(\theta, y, p, t, T)$	What individual would choose if maximizing over V
$\gamma(\theta,z,t,T)$ or "Bias"	$\gamma \text{ s.t. } c_2(\theta, y, p, t, T) = c_2^V(\theta, y - c_2\gamma, p - \gamma, t, T)$

- ► This is the compensated price change that produces the same effect on demand as the bias does
- In some cases this can be measure directly
 - Chetty et al. (2009)
 - ► Tax salience
 - Δ price that alters demand as much as tax-inclusive price

Redistributive Motives

- Marginal Social welfare weights
 - Marginal social welfare generated by a marginal unit of consumption of c₁ for a given individual
 - Formally, $g(\theta) = \alpha(\theta)V_1/\lambda$

 - If there are no income effects on consumption and labor supply, then $\bar{g}=1$ by construction.
- Formulas for optimal taxes will thus depend on the policymaker's (or society's) preferences for wealth equality

Optimal Tax With Discrete Types

- \triangleright $\theta \in L, H$
- \triangleright $w_L < w_H$
- ▶ Internality is harmful $\gamma(\theta) > 0$
- ightharpoonup L consumes more c_2 than H
- Normalize c_2 so p=1
- $ightharpoonup c_1^*(\theta) = z^*(\theta) T_{\theta} (1+t)c_2^*(\theta)$

Eample 1: Regressivity Caused by Heterogeneous Preferences

Functional Form Assumptions

$$U(c_1, c_2, z; \theta) = G(c_1 + v(c_2, \theta) - \Psi(z/w_{\theta}))$$

 $V(c_1, c_2, z; \theta) = G(c_1 + v(c_2, \theta) - \gamma(\theta)c_2 - \Psi(z/w_{\theta}))$

- $ightharpoonup c_2^*(H) < c_2^*(L)$
- G is concave
- \blacktriangleright No income effects for choice of c_2 or labor supply

Eample 1: Regressivity Caused by Heterogeneous Preferences

Policy Maker's problem

Policymaker solves

$$\max_{t, T_L, T_H} \sum_{\theta} V(c_1^*(\theta), c_2^*(\theta, z^*(\theta); \theta) \mu(\theta)$$

S.T.

$$\frac{1}{2}\sum_{\theta}(T_{\theta}+tc_2^*(\theta))\geq 0$$

and

$$(c_1^*(\theta), c_2^*(\theta), z^*(\theta))$$
 Maximizes $U(c_1, c_2, z; \theta)$ given constraints

Eample 1: Regressivity Caused by Heterogeneous Preferences

result

$$t^* = \underbrace{\frac{\sum_{\theta} g(\theta) \gamma(\theta) \frac{dc_2^*(\theta)}{dt}}{\sum_{\theta} \frac{dc_2^*(\theta)}{dt}}}_{\text{corrective benefits}} - \underbrace{\frac{\sum_{\theta} c_2^*(\theta) (g(\theta) - 1)}{\sum_{\theta} \frac{dc_2^*(\theta)}{dt}}}_{\text{Regressivity Costs}}$$

- ▶ *NOTE: in the paper they incorrectly have $1 g(\theta)$ in the second term
- ► Correction is more valuable with greater bias $\gamma(\theta)$ and higher welfare weight $g(\theta)$
- ▶ Regressivity cost reduces optimal tax since g(L) > 1, g(H) < 1, and $c_2^*(H) < c_2^*(L)$

Example 2: Regressivity Caused by Income Effects

Functional Form Assumptions

$$U(c_1, c_2, z; \theta) = G(c_1 + v(c_2, c_1) - \Psi(z/w_{\theta})$$

 $V(c_1, c_2, z; \theta) = G(c_1 + v(c_2, c_1) - \gamma(\theta)c_2 - \Psi(z/w_{\theta})$

Perturbation argument Raise commodity tax and adjust income tax to neutralize effect on wealth. At the optimum, this has zero first oder effect on welfare. Giving

$$t\left(\sum_{\theta} \frac{dc_2^*(\theta)}{dt}\Big|_{u}\right) - \sum_{\theta} \left(g(\theta)\gamma \frac{dc_2^*(\theta)}{dt}\Big|_{u}\right) = 0$$
fect on Gvernment Revenue

Effect on Consumer Welfare

Effect on Gvernment Revenue

Example 2: Regressivity Caused by Income Effects

Result

$$t^* = \frac{\sum_{\theta} \left(g(\theta) \gamma \frac{dc_2^*(\theta)}{dt} \bigg|_{u} \right)}{\sum_{\theta} \frac{dc_2^*(\theta)}{dt} \bigg|_{u}}$$

- No Regressivity costs in this case
- Income tax reform can perfectly neutralize the effects of the commodity tax on income

Understanding The Difference

- Progressive taxes make people work less
- Heterogeneous Preferences
 - ► Changing income will not alter consumption
 - c₂ tax is regressive from societal standpoint
 - Not regressive for individual.
 - Doesn't alter z
 - Progressive income tax lowers z
- Income Effects
 - c₂ good is inferior
 - $ightharpoonup c_2$ tax is regressive from societal standpoint
 - c₂ tax is also regressive for individual
 - ▶ If I work more, I can buy less c_2 and avoid the tax
 - leads to higher z
 - Progressive income tax lowers z
 - z effects offset, total output unchanged

Assumptions and elasticity concepts

assumptions

- No Labor supply mis-optimization
- Constant Marginal Social Welfare weights conditional on income
- ▶ U and V are smooth, strictly concave in c_1, c_2, z and μ is differentiable with full support
- $T(\cdot)$ is twice differentiable and each consumer's choice of income z admits a unique global optimum

Assumptions and elasticity concepts

Parameters

- $ightharpoonup \zeta(\theta,t,T)$: Price elasticity of demand for c_2 of type θ
- $ightharpoonup \zeta^c(\theta,t,T)$: Compensated price elasticity of demand for c_2
- $ightharpoonup \eta(\theta,t,T)$: The income effect on c_2 Equal to $\zeta-\zeta^c$
- $\downarrow \zeta_z^c(\theta, t, T)$: The compensated elasticity of taxable income with respect to the marginal income tax rate
- $ightharpoonup \eta_z(\theta,t,T)$: Income effect on labor supply

Assumptions and elasticity concepts

- $ightharpoonup ar{X}(z)$ is the average of Variable X for given income z
- ► C_2 is $\int_{\Theta} 1z(\theta) \le zd\mu(\theta)$
- \blacktriangleright H(z) is the income Distribution
- $\phi(z)$ is how much c_2 an average z-earner would consume if all variation in c_2 was explained solely by income effects.
- $\blacktriangleright \text{ Let } \tilde{\phi}(z) := \frac{\bar{c}_2(z) \phi(z)}{C_2}$
 - This measures how much difference between $\bar{c}_2(z)$ and $\bar{c}_2(0)$ is explained by preference heterogeneity. (normalize by average c_2)

An expression for the optimal commodity tax 1

Average Marginal Bias

$$\bar{\gamma}(t,T) = \frac{\int_{\Theta} \gamma(\theta,t,T) \left(\frac{dc_2(\theta,t,T)}{dt} \Big|_{u} \right) d\mu(\theta)}{\int_{\Theta} \left(\frac{dc_2(\theta,t,T)}{dt} \Big|_{u} \right) d\mu(\theta)}$$

Average Marginal Bias Given z

$$\bar{\gamma}(z,t,T) = \frac{\int_{\Theta} \gamma(\theta,t,T) \left(\frac{dc_2(\theta,t,T)}{dt} \bigg|_{u} \right) 1\{z(\theta,t,T) = z\} d\mu(\theta)}{\int_{\Theta} \left(\frac{dc_2(\theta,t,T)}{dt} \bigg|_{u} \right) 1\{z(\theta,t,T) = z\} d\mu(\theta)}$$

This is the marginal bias weighted by individuals marginal responses to a compensated change in t.

An expression for the optimal commodity tax 1

Covariance of welfare weight with consumption-weighted bias and elasticity

$$\sigma := \operatorname{Cov}_{H} \left[g(z), \frac{\gamma(\bar{z})}{\bar{\gamma}} \frac{\bar{\zeta}^{c}(z)}{\bar{\zeta}^{c}} \frac{\bar{c}_{2}(z)}{C_{2}} \right]$$

This captures the extent to which bias correction is concentrated on the low-end of the income distribution

An expression for the optimal commodity tax 1

- Start by using social marginal utility of income $\hat{g}(z)$ rather than social marginal welfare weights.
- Average welfare effect of marginally increasing the incomes of consumers currently earning income z.
- ▶ rather than marginally increasing numeraire consumption c₁
- ➤ This accounts for fiscal externalities resulting from income effects, and for the fact that some of this additional consumption will be mis-spent due to bias.

An expression for the optimal commodity tax 1

Proposition 1

$$t = \bar{\gamma}(\bar{g} + \sigma) - \frac{p+t}{\bar{\zeta}^c} \operatorname{Cov}\left[\hat{g}(z), \tilde{\phi}(z)\right]$$
 (1)

$$= \frac{\bar{\zeta}^{c}\bar{\gamma}(\bar{g}+\sigma) - p\operatorname{Cov}\left[\hat{g}(z), \tilde{\phi}(z)\right]}{\bar{\zeta}^{c} + \operatorname{Cov}\left[\hat{g}(z), \tilde{\phi}(z)\right]}$$
(2)

- Corrective benefit is increase in
 - ightharpoonup Average marginal bias $\bar{\gamma}$
 - ightharpoonup Average social welfare weight \bar{g}
 - ightharpoonup Extent to which bias correction is concentrated with low income consumers σ
- ▶ $\operatorname{Cov}\left[\hat{g}(z), \tilde{\phi}(z)\right]$ is roughly regressivity cost that cannot be offset by progressive income taxes.
 - ▶ Depends on extent to which c₂ differential is due to preference heterogeneity or income effects.

An expression for the optimal commodity tax 2

Lemma 2 Let
$$\chi(z) := \phi(z) - \int_0^z w(x,z) \frac{\eta_z}{\zeta_z^c x} (c_2(x) - \phi(x)) dx$$
,

where $w(x,z)=\mathrm{e}^{\int_{z'=x}^{x'=z}\frac{\eta_z}{\zeta_z^2z}}dx'$. Then increasing the commodity tax by dt and decreasing the income tax by $\chi(z)dt$ leaves the average labor supply of z-earners unchanged.

 $\chi(z) := \phi(z)$ when $\eta_z = 0$. i.e. when there are no labor supply income effects.

Define
$$\tilde{\chi}(z) := \frac{\bar{c}_2(z) - \chi(z)}{C_2}$$

An expression for the optimal commodity tax 2

Proposition 2 The optimal commodity tax t satisfies.

$$t = \underbrace{\bar{\gamma}(\bar{g} + \sigma)}_{\text{corrective benefits}} + \underbrace{\frac{p+t}{\bar{\zeta}^c}}_{\text{regressivity costs}} + \underbrace{\frac{1}{\bar{\zeta}^c}\int \tilde{\chi}(z)\eta(z)(t-g(z)\bar{\gamma}(z))}_{\text{additional impact from income effect}}$$

In the absence of income effects

$$t = \bar{\gamma}(\bar{g} + \sigma) - \frac{p+t}{\bar{\zeta}^c} \text{Cov}\left[g(z), \tilde{\phi}(z)\right]$$

Optimal taxes in the Absence of Redistributive Concerns

Corollary 2 suppose that either

- 1) $z(\theta)$ is constant in θ or
- 2) $g(\theta) = 1 \ \forall \ \theta$

Then $t^* = \bar{\gamma}$ (From Proposition 1).

Optimal commodity tax exactly offsets the average marginal bias.

Optimal taxes in the Absence of corrective Concerns

When there are no corrective concerns

$$t = -\frac{p \operatorname{Cov}\left[\hat{g}(z), \tilde{\phi}(z)\right]}{\bar{\zeta}^{c} + \operatorname{Cov}\left[\hat{g}(z), \tilde{\phi}(z)\right]}$$

The Atkinson-Stiglitz theorem itself obtains as a special case of (6) when all variation in c_2 consumption is driven by income effects, which then implies that t=0

Optimal Taxes When Income Effects do not Affect c2 consumption

Corollary 3 Suppose that there are no income effects: $\eta \equiv 0$ and $\eta_z \equiv 0$ then

$$t = \underbrace{\bar{\gamma}(\bar{g} + \sigma)}_{\text{Corrective Benefits}} - \underbrace{\frac{p+t}{\bar{\zeta}^c} \text{Cov}\left[g(z), \tilde{\phi}(z)\right]}_{\text{Regressivity Costs}}$$

- Generalizes the result in Example 1
- First term now depends of σ (concentration of corrective benefits among low income)
- ► Second term persists because progressive income tax. Fiscal externalities outweigh re-distributive benefit
- As consumption of c_2 becomes inelastic, t become a sin subsidy.

Optimal taxes when all differences in c_2 consumption are due to income effects

Corolalry 4 Suppose that $U_2(c_1, c_2, \theta, z)/U_1(c_1, c_2, \theta, z)$ is constant in θ for each z. Then

$$t^* = \bar{\gamma}(\bar{g} + \sigma)$$

- Generalizes Example 2
- ightharpoonup higher σ implies higher benefit to bias correction
- Policymaker will spend more that \$1 to eliminate \$1 mistake made by poor consumers.

The key role of the price elasticity of demand in determining the importance of corrective benefits

Recall From Proposition 1

$$t = \frac{\bar{\zeta}^c \bar{\gamma}(\bar{g} + \sigma) - p \text{Cov}\left[\hat{g}(z), \tilde{\phi}(z)\right]}{\bar{\zeta}^c + \text{Cov}\left[\hat{g}(z), \tilde{\phi}(z)\right]}$$

- ► As elasticity grows large, corrective benefits per unit of tax grow large
- ▶ As elasticity gets small, corrective benefits become negligible
- Elasticity low enough can imply a subsidy on sin goods.

extensions

- ► Tax salience on the labor supply margin
 - Effect of commodity taxes on labor supply my be minimal
 - ▶ If people don't consider commodity taxes in in labor supply, moves us closer to preference heterogeneity case.
- ▶ N > 2 Dimension of Consumption
 - Considers substitutability of goods
- Externalities
 - Special case of this framework
- Without te First-order approach
- ► labor supply misoptimization

Conclusion

- reconciles the role for corrective taxes with the concern that such taxes may be regressive
- Clarifies that the optimal policy depends on a number of statistics.
 - Preference heterogeneity vs. Income effects
 - Bias of both rich and poor
 - Elasticity of demand and how it varies across income
 - salience of commodity taxes on labor supply margin

Citation

B. Lockwood and D. Taubinsky, "Regressive Sin Taxes," NBER WP No. 23085, March 2017.