class 8 halloween

```
candy_file <- read.csv("candy-data.csv", row.names = 1)
head(candy_file)</pre>
```

	choco	olate	fruity	caramel	peanut	yalmondy	nougat	crispedr	icewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent wir	npercent	
100 Grand	0	1	()	0.732	0	.860	36.97173	
3 Musketeers	0	1	()	0.604	0	.511 6	67.60294	
One dime	0	0	()	0.011	0	.116 3	32.26109	
One quarter	0	0	()	0.011	0	.511 4	46.11650	
Air Heads	0	0	()	0.906	0	.511 5	52.34146	
Almond Jov	0	1	()	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy_file)
```

[1] 85

Q2. How many fruity candy types are in the dataset? The functions dim(), nrow(), table() and sum() may be useful for answering the first 2 questions.

```
dim(candy_file)
```

```
[1] 85 12
  sum(candy_file$fruity)
[1] 38
Q3. What is your favorite candy in the dataset and what is it's winpercent value?
  candy_file["Almond Joy",]$winpercent
[1] 50.34755
Q4. What is the winpercent value for "Kit Kat"?
  candy_file["Kit Kat",]$winpercent
[1] 76.7686
Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?
  candy_file["Tootsie Roll Snack Bars",]$winpercent
[1] 49.6535
  library(skimr)
  skim(candy_file)
```

Table 1: Data summary

Name	candy_file
Number of rows	85
Number of columns	12
Column type frequency: numeric	12

Variable type: numeric

$skim_variable n_$	_missingcomple	ete_ra	ntmean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

skimr::skim(candy_file)

Table 3: Data summary

Name	candy_file
Number of rows	85
Number of columns	12
Column type frequency:	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom _]	plete_ra	ntanean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	

skim_variable n_	_missingcomp	lete_ra	tmenean	sd	p0	p25	p50	p75	p100	hist
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

hist

Q7. What do you think a zero and one represent for the candy\$\chocolate \column? 0 - no chocolate 1- \chocolate

```
candy_file$chocolate
```

```
choc.ind <- as.logical(candy_file$chocolate)
fruit.ind <- as.logical(candy_file$fruity)
choc.win <- candy_file[choc.ind,]$winpercent
choc.win</pre>
```

```
[1] 66.97173 67.60294 50.34755 56.91455 38.97504 55.37545 62.28448 56.49050
```

mean(choc.ind)

[1] 0.4352941

^{[9] 59.23612 57.21925 76.76860 71.46505 66.57458 55.06407 73.09956 60.80070}

^{[17] 64.35334 47.82975 54.52645 70.73564 66.47068 69.48379 81.86626 84.18029}

^{[25] 73.43499 72.88790 65.71629 34.72200 37.88719 76.67378 59.52925 48.98265}

^{[33] 43.06890 45.73675 49.65350 81.64291 49.52411}

```
mean(fruit.ind)

[1] 0.4470588

mean(candy_file$chocolate)

[1] 0.4352941

mean(candy_file$fruity)
```

[1] 0.4470588

Q8. Plot a histogram of winpercent values

hist(candy_file\$winpercent)

Histogram of candy_file\$winpercent

Q9. Is the distribution of winpercent values symmetrical? NO

Q10. Is the center of the distribution above or below 50%?

```
candy_file$winpercent[as.logical(candy_file$nougat)]
[1] 67.60294 56.91455 38.97504 73.09956 60.80070 46.29660 76.67378
Q11. On average is chocolate candy higher or lower ranked than fruit candy?
  mean(candy_file$chocolate) >= mean(candy_file$fruity)
[1] FALSE
Q12. Is this difference statistically significant?
Welch Two Sample t-test
data: chocolate and fruity
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974
Q13. What are the five least liked candy types in this set?
  x \leftarrow c(5,2,3,6)
```

sort(x)

```
[1] 2 3 5 6
  sort(x, decreasing=TRUE)
[1] 6 5 3 2
  sort(x, decreasing =FALSE)
[1] 2 3 5 6
  X
[1] 5 2 3 6
  order(x)
[1] 2 3 1 4
  x[order(x)]
[1] 2 3 5 6
  y<-c("D", "A", "E")
  order(y)
[1] 2 1 3
Q14. What are the top 5 all time favorite candy types out of this set?
  order.win <- order(candy_file$winpercent)</pre>
  candy_file[order.win[1:5],1]
[1] 0 0 0 0 0
```

tail(order.win) [1] 54 65 29 80 52 53 head(order.win) [1] 45 8 13 73 27 58

head(candy_file[order(candy_file\$winpercent),], n=5)

		chocolate	fruity	cara	nel j	peanutyalm	nondy :	nougat	
Nik L Nip		0	1		0		0	0	
Boston Baked	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedrio	ewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked	Beans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	;						
Nik L Nip		22.44534	<u> </u>						
Boston Baked	Beans	23.41782	2						
Chiclets		24.52499)						
Super Bubble		27.30386	3						
Jawbusters		28.12744	<u> </u>						

$\label{tail} \verb|tail(candy_file[order(candy_file$winpercent),], n=5||$

	chocolate	fruity	caramel	peanutyalmondy	nougat
Snickers	1	0	1	1	1
Kit Kat	1	0	0	0	0
Twix	1	0	1	0	0
Reese's Miniatures	1	0	0	1	0
Reese's Peanut Butter cup	1	0	0	1	0

crispedricewafer hard bar pluribus sugarpercent Snickers 0 1 0 0.546 Kit Kat 1 1 0 0.313 Twix 1 0 1 0 0.546 0 Reese's Miniatures 0 0 0 0.034 Reese's Peanut Butter cup 0 0 0.720 pricepercent winpercent Snickers 0.651 76.67378 Kit Kat 0.511 76.76860 Twix 0.906 81.64291 Reese's Miniatures 0.279 81.86626 Reese's Peanut Butter cup 0.651 84.18029

```
x <- order(candy_file$winpercent)
order(candy_file$winpercent)</pre>
```

```
[1] 45 8 13 73 27 58 72 3 71 20 10 70 60 56 12 51 49 63 9 11 82 31 17 46 15 [26] 50 30 84 22 14 59 76 16 83 81 77 64 4 47 35 18 79 40 75 85 78 6 21 5 68 [51] 32 41 74 36 62 42 23 25 7 19 28 26 66 67 38 24 61 39 57 44 34 1 69 2 48 [76] 43 33 55 37 54 65 29 80 52 53
```

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)
ggplot(candy_file) +
  aes(winpercent, rownames(candy_file))+
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy_file) +
  aes(winpercent, rownames(candy_file), reorder(candy_file, FUN=mean(candy_file$winpercent
  geom_col()
```



```
mycols <- "gray"
ggplot(candy_file) +
  aes(winpercent, reorder(rownames(candy_file), winpercent)) +
  geom_col(bg=mycols)</pre>
```



```
mycols <- rep("gray",nrow(candy_file))

ggplot(candy_file) +
  aes(winpercent, reorder(rownames(candy_file),winpercent)) +
  geom_col(bg=mycols)</pre>
```



```
mycols <- rep("gray", nrow(candy_file))
mycols[as.logical(candy_file$chocolate)] <- "brown"
mycols=rep("black", nrow(candy_file))
mycols[as.logical(candy_file$chocolate)] = "chocolate"
mycols[as.logical(candy_file$bar)] = "orange"
mycols[as.logical(candy_file$fruity)] = "pink"
mycols</pre>
```

```
[1] "orange"
                  "orange"
                               "black"
                                            "black"
                                                         "pink"
                                                                      "orange"
 [7] "orange"
                  "black"
                               "black"
                                            "pink"
                                                         "orange"
                                                                      "pink"
                               "pink"
[13] "pink"
                  "pink"
                                            "pink"
                                                         "pink"
                                                                      "pink"
[19] "pink"
                  "black"
                               "pink"
                                            "pink"
                                                         "chocolate"
                                                                      "orange"
                               "pink"
[25] "orange"
                  "orange"
                                            "chocolate" "orange"
                                                                      "pink"
[31] "pink"
                  "pink"
                                            "chocolate" "pink"
                                                                      "chocolate"
                               "chocolate"
[37] "orange"
                  "orange"
                               "orange"
                                            "orange"
                                                         "orange"
                                                                      "pink"
[43] "orange"
                  "orange"
                               "pink"
                                            "pink"
                                                         "orange"
                                                                      "chocolate"
[49] "black"
                  "pink"
                               "pink"
                                            "chocolate" "chocolate" "chocolate"
[55] "chocolate"
                  "pink"
                               "chocolate"
                                           "black"
                                                         "pink"
                                                                      "chocolate"
                               "chocolate"
                                            "pink"
[61] "pink"
                  "pink"
                                                         "orange"
                                                                      "orange"
[67] "pink"
                  "pink"
                               "pink"
                                            "pink"
                                                         "black"
                                                                      "black"
[73] "pink"
                  "pink"
                               "pink"
                                            "chocolate" "chocolate" "orange"
[79] "pink"
                  "orange"
                               "pink"
                                            "pink"
                                                         "pink"
                                                                      "black"
```

[85] "chocolate"

```
ggplot(candy_file) +
  aes(winpercent, reorder(rownames(candy_file), winpercent)) +
  geom_col(bg=mycols)
```


- Q17. What is the worst ranked chocolate candy? Resse's Peanut Butter cup
- Q18. What is the best ranked fruity candy? Nik L Nip

How about a plot of price vs win

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

```
library(ggrepel)

ggplot(candy_file) +
  aes(winpercent, pricepercent, label=rownames(candy_file)) +
  geom_point(col=mycols) +
```

```
geom_text_repel(col=mycols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy_file$pricepercent, decreasing = TRUE)
head( candy_file[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershev's Milk Chocolate	0.918	56.49050

Q21. Make a barplot again with geom_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom_col() for geom_point() + geom_segment().

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

```
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy_file)
corrplot(cij)</pre>
```


chocolate and fruity

Q23. Similarly, what two variables are most positively correlated? chocolate and bar abd oricepercent and winpercent

#Principal Component Analysis

```
pca <- prcomp(candy_file, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                PC4
                                                       PC5
                                                                PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                           PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

```
plot(pca$x[,1:2], col=mycols, pch=16)
```



```
library(ggrepel)

p + geom_text_repel(size=3.3, col=mycols, max.overlaps = 7) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538