Ville Väänänen

Numeerinen integrointi: kvadratuureista kubatuureihin

Elektroniikan, tietoliikenteen ja automaation tiedekunta

Kandidaatintyö Espoo 10.5.2010

Vastuuopettaja:

Prof. Markus Turunen

Työn ohjaaja:

TkT Simo Särkkä

Esipuhe

Espoo 10.5.2010

 $1 \mathrm{cm}$

Sisältö

$\mathbf{E}_{\mathbf{S}}$	sipuh	ne e	iii			
\mathbf{Si}	sälly	sluettelo	iv			
1	Joh	danto	1			
2		egraali	2			
	2.1	Geometrical valuation	2			
	2.2	Numeerisia menetelmiä	3			
		2.2.1 Eulerin menetelmä	3			
		2.2.2 Simpsonin menetelmä	3			
3	Yksiulotteinen kvadratuuri-integrointi					
	3.1	Ortogonaaliset polynomikannat	3			
	3.2	Gaussinen kvadratuuri	3			
	3.3	Gauss-Hermite kvadratuuri	3			
	3.4	Muita Gaussisia kvadratuureja	3			
4	Mo	niulotteinen kvadratuuri-integrointi	3			
	4.1	Tulosäännöt	3			
	4.2	Kubatuurit	3			
		4.2.1 Gauss-Hermite	3			
	4.3	Muita menetelmiä	3			
5	Koe	easetelma	3			
6	5 Tulokset					
7	Yhteenveto					
$\mathbf{V}^{:}$	Viitteet					

1 Johdanto

Pinta-alojen ja tilavuuksien määrittäminen on tavallinen ongelma matematiikan ja fysiikan sovelluksissa. Ei siis ole yllättävää, että jo kauan on tiedetty keinoja muuntaa pinta-aloja kvadratuureiksi, samansuuruisiksi suorakulmioiksi. Matemaattinen työkalu jolla on läheinen yhteys edellä mainittuun ongelmaan on nimeltään integraali· Tänä päivänä tekniikan alan ammattilaiset arkkitehdeistä tilastotieteilijöihin tarvitsevat työssään tarkkoja ja tehokkaita keinoja integraalien määrittämiseen.

Numeerinen integrointi on sovelletun matematiikan alalaji, joka pyrkii vastaamaan tähän tarpeeseen. Alalta on aikojen saatossa julkaistu suunnaton määrä tutkimustuloksia ja kirjallisuutta, joten minkä tahansa käytännössä esiintyvän integraalin ratkaisemiseen voisi olettaa löytyvän laskennallisesti tehokas ratkaisualgoritmi. Näin todennäköisesti onkin mikäli ongelmallinen integraali on määritelty ainoastaan yhdessä ulottuvuudessa. Jos kuitenkin dimensioita on enemmän, on ongelma, ehkä hieman yllättäen, kaikkea muuta kuin ratkaistu.

Tässä kandidaatintyössä pyritään esittämään syitä siihen miksi näin on. Samalla luodaan katsaus niihin ongelmiin joihin törmätään, kun yhdessä ulottuvuudessa niin erinomaisia tuloksia tuottavia *Gaussisia kvadratuureja* yritetään soveltaa useassa ulottuvuudessa.

Teoreettisen selvityksen jälkeen vertaillaan eräitä kiinnostavia menetelmiä keskenään soveltamalla niitä esimerkki-integraaleihin useissa eri dimensioissa. Saatujen tulosten ja esitellyn teorian perusteellä tehdään päätelmiä menetelmien soveltuvuudesta erilaisiin tilanteisiin.

[2, 5, 8, 4, 3, 7, 9, 6, 10, 1]

2 Integraali

Integraalille on olemassa useita kehittäjiensä mukaan nimettyjä määritelmiä, joista Riemann-integraali lienee yksinkertaisin ja intuitiivisin. Usein kun puhutaan integraalista tarkoitetaan nimenomaan Riemann-integraalia, mikä pätee myös tähän työhön. Jokainen suljetulla välillä [a,b] jatkuva ja rajoitettu reaaliarvoinen funktio on (Riemann-)integroituva ja integraalia merkitään $\int_a^b f(x) \, dx \in \mathbb{R}$, jota kutsutaan myös määrätyksi integraaliksi. Määrätyllä integraalilla ja integraalifunktiolla F(x) (ja sitä kautta derivoinnilla) on läheinen yhteys, joka tunnetaan analyysin ensimmäisenä peruslauseena:

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{b} F'(x) \, \mathrm{d}x = F(b) - F(a) \tag{1}$$

Huomionarvoista on se, että määrätyn integraalin olemassaolo ei ole millään tavalla riippuvainen integraalifunktion F(x) olemassaolosta.[1]

2.1 Geometrinen tulkinta

Geometrisesti tarkasteltuna luku $\int_a^b f(x) dx$ tarkoittaa kuvaajan y = f(x), x-akselin ja suorien x = a ja x = b rajaamaa pinta-alaa. Tämä on suora seuraus Riemannintegraalin määritelmästä. Olkoon $P = \{a = x_0, x_1, \dots, x_{n-1}, x_n = b\}$ välin [a, b] jako, $m_i = \inf\{f(x) : x_i \leq x \leq x_{n+1}\}$ funktion f(x) suurin alaraja ja $M_i = \sup\{f(x) : x_i \leq x \leq x_{n+1}\}$ vastaavasti pienin yläraja välillä $[x_i, x_{i+1}]$. Tällöin Riemann-integraali voidaan määritellä ala-

$$L_P(f) = \sum_{i=0}^{n-1} m_i (x_{n+1} - x_n)$$

ja yläsummien

$$U_P(f) = \sum_{i=0}^{n-1} m_i (x_{n+1} - x_n)$$

avulla [1]:

$$\inf_{P} U_{P}(f) = \sup_{P} L_{P}(f) = S \implies \int_{a}^{b} f(x) \, \mathrm{d}x = S \tag{2}$$

- 2.2 Numeerisia menetelmiä
- 2.2.1 Eulerin menetelmä
- 2.2.2 Simpsonin menetelmä
- 3 Yksiulotteinen kvadratuuri-integrointi
- 3.1 Ortogonaaliset polynomikannat
- 3.2 Gaussinen kvadratuuri
- 3.3 Gauss-Hermite kvadratuuri
- 3.4 Muita Gaussisia kvadratuureja
- 4 Moniulotteinen kvadratuuri-integrointi
- 4.1 Tulosäännöt
- 4.2 Kubatuurit
- 4.2.1 Gauss-Hermite
- 4.3 Muita menetelmiä
- 5 Koeasetelma
- 6 Tulokset
- 7 Yhteenveto

Viitteet

- [1] W. Cheney and D. Kincaid. *Numerical mathematics and computing*. Cengage Learning, 6 edition, 2007.
- [2] R. Cools. Advances in multidimensional integration. *Journal of Computational and Applied Mathematics*, 149(1):1–12, 2002.
- [3] R. Cools. The state of the art of constructing cubature formulas for multivariate integrals. *FEMTEC 2006*, page 4, 2006.
- [4] R. Cools, D. Huybrechs, and D. Nuyens. Recent topics in numerical integration. *International Journal of Quantum Chemistry*, 109(8):1748–1755, 2009.
- [5] R. Cools, I. P. Mysovskikh, and H. J. Schmid. Cubature formulae and orthogonal polynomials. *Journal of Computational and Applied Mathematics*, 127(1-2):121–152, 2001.
- [6] P. J. Davis and P. Rabinowitz. *Methods of numerical integration*. Academic Press, 1975.
- [7] V. I. Krylov. Approximate calculation of integrals. Macmillan, 1962.
- [8] F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, and H. Woźniakowski. Liberating the dimension. *Journal of Complexity*, 2010.
- [9] A. H. Stroud. Approximate calculation of multiple integrals. Prentice-Hall, 1971.
- [10] C. W. Ueberhuber. Numerical computation: methods, software, and analysis, Volume 2. Springer, 1997.