V206 - Die Wärmepumpe

 ${\it Jan~Herdieckerhoff} \\ {\it jan.herdieckerhoff@tu-dortmund.de}$

Karina Overhoff karina.overhoff@tu-dortmund.de

Durchführung: 18.12.2018, Abgabe: 08.01.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	3
2	Theorie 2.1 Theoretische Grundlagen einer Wärmepumpe	4
	2.5 Bestimmung der mechanischen Kompressorleistung	5
3	Durchführung	5
4	Auswertung	6
5	Diskussion	6

1 Ziel

Die Funktionsweise und das physikalische Verhalten einer Wärmepumpe soll bei diesem Versuch übermittelt werden.

2 Theorie

2.1 Theoretische Grundlagen einer Wärmepumpe

Die thermische Energie geht in einem abgeschlossenen System immer vom heißeren zum kälteren Körper über. Es ist möglich, die Richtung des Wärmeflusses mit der Aufwendung zusätzlicher Energie umzukehren. Eine Vorrichtung, die diesen Prozess durchführt, ist eine sogenannte Wärmepumpe.

Das Verhältnis aus der transportierten Wärmemenge und der dafür aufgebrachten Arbeit nennt man Güteziffer ν der Wärmepumpe. Aus dem ersten Hauptsatz der Thermodynamik lässt sich ableiten, dass sich die abgegebene Wärmemenge Q_1 aus der Summe der entnommenen Wärmemenge Q_2 und der aufgewandten Energie W bestimmt. Somit gilt

$$Q_1 = Q_2 + W.$$

Die Güteziffer ergibt sich zu

$$\nu = \frac{Q_1}{W}.$$

Aus dem zweiten Hauptsatz der Thermodynamik ergibt sich, dass zwischen den Wärmemengen Q_1 und Q_2 und den Temperaturen T_1 und T_2 in einem idealen System folgende Beziehung besteht:

$$\frac{Q_1}{T_1} - \frac{Q_2}{T_2} = 0.$$

Für die Richtigkeit dieser Gleichung muss aber die Voraussetzung gelten, dass der Prozess der Wärmeübertragung reversibel, also umkehrbar, ist.

Aus diesen Gleichungen folgt, dass

$$Q_1 = W + \frac{T_2}{T_1} Q_1$$

gilt und sich die Güteziffer ν zu folgender Gleichung ergibt:

$$\nu_{id} = \frac{T_1}{T_1 - T_2}.$$

Dies gilt aber nur im Idealfall. Für die reale Wärmepumpe gilt die Ungleichung:

$$\nu_{real} < \frac{T_1}{T_1 - T_2}.$$

2.2 Funktionsweise einer Wärmepumpe

Die Wärme wird innerhalb der Pumpe als Phasenumwandlungsenergie eines Gases transportiert, das beim Verdampfen Wärme aufnimmt und bei der Verflüssigung wieder abgibt. Der schematische Aufbau der hier verwendeten Apparatur ist in Abb. 1 zu erkennen.

Abbildung 1: Schematischer Aufbau einer Wärmepumpe. Der Druck p_b und die Temperatur T_1 beziehen sich auf das Reservoir 1. Der Druck p_a und die Temperatur T_2 beziehen sich auf das Reservoir 2. p_b und T_1 sind jeweils größer als die anderen Werte.

2.3 Bestimmung der Güteziffer

Aus dem Quotienten aus $\varDelta T_1$ und $\varDelta t$ ergibt sich die pro Zeiteinheit gewonnene Wärmemenge zu

$$\frac{\varDelta Q_1}{\varDelta t} = (m_1 c_w + m_k c_k) \frac{\varDelta T_1}{\varDelta t}. \label{eq:deltaQ1}$$

 m_1c_w ist dabei die Wärmekapazität des Wassers in Reservoir 1. m_kc_k ist die Wärmekapazität der Kupferschlange und des Eimers. Für die Güteziffer ergibt sich dann mit N als die vom Wattmeter angezeigte und über das Zeitintervall Δt gemittelte Leistungsaufnahme des Kompressors:

$$\nu = \frac{\Delta Q_1}{\Delta t \cdot N}.\tag{1}$$

2.4 Bestimmung des Massendurchsatzes

Für Q_2 lässt sich die Gleichung ?? analog anwenden. Für die Wärmeentnahme durch Verdampfung des Transportmediums wird pro Massen- und Zeiteinheit die Verdampfungswärme L verbraucht:

$$\frac{\Delta Q_2}{\Delta t} = L \frac{\Delta m}{\Delta t}.$$

Der Massendurchsatz wird also durch

$$\frac{\Delta m}{\Delta t} = \frac{\Delta Q_2}{\Delta t \cdot L} \tag{2}$$

bestimmt.

2.5 Bestimmung der mechanischen Kompressorleistung

Die mechanische Kompressorleistung N_{mech} ergibt sich zu

$$N_{mech} = \frac{1}{\kappa - 1} (p_b \sqrt[\kappa]{\frac{p_a}{p_b}} - p_a) \frac{1}{\rho} \frac{\Delta m}{\Delta t}. \tag{3}$$

Dabei ist κ das Verhältnis der Molwärmen C_P und $C_V \rho$ ist die Dichte des Transportmediums im gasförmigen Zustand. Diese wird bestimmt durch

$$\rho = \frac{p_a}{p_0} \frac{T_0}{T_2} \rho_0.$$

Die Normalbedingungen lauten $p_0 = 1$ bar und $T_0 = 0$ °C.

3 Durchführung

Die Reservoire der in Abb. 2 dargestellten Apparatur werden jeweils mit einer Wassermenge von 3 L aufgefüllt. Anschließend werden die Temperaturen T_1 und T_2 in den Reservoiren, die Drücke $p_{\rm a}$ und $p_{\rm b}$ im Verdampfungs- bzw. Verflüssigungsbereich und die Leistungsaufnahme des Kompressors gemessen. Der Zeittakt beträgt dabei eine Minute. Die Messung wird abgebrochen, sobald T_1 einen Wert von ca. 50 °C erreicht hat.

Abbildung 2: Aufbau einer Wärmepumpe sowie der Messapparatur. Der Druck p_b und die Temperatur T_1 beziehen sich auf das Reservoir 1. Der Druck p_a und die Temperatur T_2 beziehen sich auf das Reservoir 2. p_b und T_1 sind jeweils größer als die anderen Werte.

4 Auswertung

Abbildung 3: <++>

5 Diskussion