ReadMe

Two-Wheeler Detection System

Overview

This research project presents a cutting-edge object detection and classification system by integrating **GroundingDINO**, **Segment Anything (SAM)**, and **DINOv2** models. The system is designed to detect and classify objects based on **template** (**reference**) **images**, offering high accuracy and generalization capabilities. This research is focused on detecting two-wheelers such as **bikes**, **scooters**, **and bicycles**.

🔑 Key Features

- Template-based detection: Detect and classify objects using reference images.
- **Customizable classification**: Easily extend the system to support new object classes.
- Comprehensive outputs: JSON metadata and color coded visual outputs.
- Command-line interface (CLI): Simple and flexible configuration using CLI arguments.

ReadMe 1

% Installation

Prerequisites

- Set up the environment using instructions from the ReadMe_conda file.
- Refer to the ReadMe_python file for step-by-step setup and execution quidance.

Repository Structure and File Descriptions

Experiment 1

Objective: Compare the original architecture from <u>this paper</u> with our modified architecture for detection and segmentation of a **single class ("Two-Wheelers")**.

- nids_net_experiment1_authors.py
 - ➤ Original implementation from the authors.
 - ➤ Supports only a single object class.
- nids_net_experiment1_ours.py
 - ➤ Our improved implementation.
 - ➤ Capable of handling multiple classes, but in this experiment, it saves predictions under a unified label: "Two-Wheelers".

main_poc.py (Proof of Concept)

This is our **multi-class detection and segmentation** implementation. It supports CLI execution.

Usage instructions can be found in the ReadMe_python file.

Experiment 2

Objective: Compare our model (main_poc.py) with **YOLOv8** on the **object** detection task.

Experiment 3

Objective: Compare our model (main_poc.py) with **YOLOv8** on the **segmentation** task.

ReadMe 2