

TABLE OF CONTENTS

03 04 05

01 CONTEXT

O2 PROCESS

OVERVIEW

MODELING

SUMMARY

CONTEXT

- About us
- Our client
- Missions

ABOUT US

Dataworld is an international consulting firm, specialized in analysing data for the the travel industry since 2008

OUR CLIENT

Booking.com is one of the leading online accommodation booking websites

MISSIONS

PROBLEM

SOLUTION

Approach clients based on their characteristics

Predict customers cancellations with supervised machine learning algorithms

PROCESS

4 key steps

PROCESS

DATA COLLECTION

- Data: booking information about two hotels located in Portugal (2015-2017)
- Source : Kaggle

DATA EXPLORATORY & MANIPULATION

OVERVIEW

- Data
- Data cleaning
- Data distribution

DATA

Bookings information of a city

hotel and a resort hotel based in

Portugal

From the 1st of July of **2015** to the 31st of August **2017**

119.368 x

	r	notel		object
Target	i	is cancel	.ed	int64
. 0		Lead time	•	int64
	ā	arrival c	late_year	int64
Period	ā	arrival_date_month		object
	-{ a	arrival_c	late_week_number	int64
	ā	arrival_c	late_day_of_month	int64
			weekend_nights	int64
	٤	stays_in_	_week_nights	int64
Client		adults		int64
		children		float64
		oabies		int64
	n	neal		object
		country		object
		narket_se		object
			ion_channel	object
			ed_guest	int64
		; · · · · · · · · · · · · · · · · · · ·	_cancellations	int64
	_		_bookings_not_canceled	
			room_type	object
		_	room_type	object
		oooking_c		int64
	C	deposit_t	ype	object
	ā	agent		int64
		company		int64
Reservation	- 0	days_in_v	aiting_list	int64
		customer_	type	object
	ā	adr		float64
			_car_parking_spaces	int64
	t	total_of_	special_requests	int64
	r	reservati	on_status	object
	_ r	reservati	on_status_date	object

DATA CLEANING

MULTIPLE CATEGORIES FEATURES

- Countries: grouping the Top 5, "Other Europe" and "Other" countries
- Agent & Company: replacing their ID by 1 and 0 if not
- Meal: merging 'Undefined' and 'SC' (Self Catering) as both mean 'No Meal'

MISSING VALUES

- Children: replacing with 0
- Country: placing in "other" category
- Agent & Company: replacing with 0

POSSIBLE SYSTEM ERRORS

- Dropping rows with booking containing more than 10 people
- Dropping bookings with 10 children & 8 babies
- Dropping negative prices ('adr')

DATA

→ Well balanced data

ightarrow More clients from the resort hotel than the city hostel

CORRELATION MATRIX

6 correlated features:

- "distribution_channel_Direct" with "market segment Direct"
- "customer_type_Transient" with "customer_type_Transient-Party"
- "arrival_date_week_number" with "arrival_date_month

MODELING

- Clustering clients
- Predicting cancellations

DATA MANIPULATION

TRANSFORMING FEATURES IN NUMERICAL DATA

- Month into interger values
- Creating dummies for multi-value features: 'hotel',
 'meal','country','market_segment','distribution_channel','deposit_type',
 'customer_type','reserved_room_type','arrival_date_year'

STANDARDIZING FEATURES HAVING DIFFERENT SCALES

'previous_cancellations','previous_bookings_not_canceled'

CLUSTERING CLIENTS

KMEANS WITH PCA

4 clusters:

• 1:48 568

• 3:38399

• 2:19 029

• 0:13 372

CLUSTERING WITH PCA

VISUALIZATION WITH UMAP

Silhouette score : 0.48

Davies Bouldin score: 1.3

[→] Even if metrics are not bad, we do not see clear separations between clusters

PREDICTING BOOKING CANCELLATIONS

- Objective
- Comparison of models
- Contribution of features

OBJECTIVE

The worst case

= risk of over-booking

The main objective

= decrease the False Positive

Metrics to increase

= precision score

COMPARISON

	Model	Roc Auc	Accuracy	Recall	Precision	F1 score
0	Logistic Regression	0.759	0.771	0.713	0.683	0.698
1	K Nearest Neighbors	0.812	0.833	0.734	0.798	0.765
2	Decision Tree	0.830	0.841	0.786	0.786	0.786
3	Random Forest	0.861	0.879	0.792	0.869	0.829
4	Naive Bayes	0.637	0.578	0.864	0.463	0.602
5	Catboost	0.844	0.862	0.777	0.839	0.806
6	Voting Classifier	0.863	0.880	0.798	0.866	0.831

[→] Since we know that Random forest tends to overfit, we will keep the **Voting Classifier** (the ensemble of our best models) as our final model

CONTRIBUTION OF FEATURES

Features that have a **high impact** for **predicting a cancellation** are:

SUMMARY

RESULTS

- 1. With the Voting Classifier model, we are able to **predict a booking** cancellation by 86%
- Voting Classifier works well and guarantees us a model that will tend to be less over-fitted than the Random Tree Classifier
- 3. While we weren't confident about our **clusters**, it turns out to be **the 4th most important feature** for predicting a cancelation

Hard to see the result of our clustering and understand what the model did

Building a more universal model getting more data from various hotels

Building a more specialized model with better results focusing only on a specific hotel

Do you have any questions?

