Assignment Project Exam Help Hunctional https://powcoder.com

Add Wecheep Westerdency

Functional Dependency

A "good" database schema should not lead to update anomalies.

- update anomalies,
- functional dependencies,
- Armstrong Axioms, Project Exam Help
- closures. https://powcoder.com

Update Anomalies

Redundancy in a database means storing a piece of data more than once.

Redundancy is often useful for efficiency and semantic reasons, but creates the potantial for resist property problems and Help

A poor redundancy harps! Mayouvouldate on malies.

Consider the example delawe behave power of them "An Introduction to Database Systems" by Desai):

STUDENTS					
Name	Course	Phone_no	Major	Prof	Grade
Jones	353	237-4539	Comp Sci	Smith	Α
Ng	329	427-7390	Chemistry	Turner	В
Jones	328	237-4539	Comp Sci	Clark	В
Martin	456	388-5183	Physics	James	А
Dulles	Agssig	nmantz Pro	estcisiónaso: I	Helpok	С
Duke	491	823-7293	Mathematics	Lamb	В
Duke	356 n	ttps://pow/ 823-7293	Mathematics	Bond	UN
Jones	492 🛕	1237 774539 h	at Genesside	r Cross	UN
Baxter	379	839-0827	English	Broes	—С

Modification anomalies: e.g. Jones's phone number appears 3 times. When a phone number is changed, it must be changed in all 3 places, or the data will be inconsistent.

Update Anomalies

Insertion anomalies:

- If Jones enrolls in another course, and a different phone number is entered, again the data will be inconsistent.

 Assignment Project Exam Help
- Also, if the only way that the association between course and https://powcoder.com

 professor is stored in this relation, we can only enter the association when Add WeChat powcoder someone enrolls in the course.

Deletion anomalies: If the last student in a course is deleted, the association between professor and course is lost.

Functional dependencies

A function f from S_1 to S_2 has the property

if
$$x, y \in S_1$$
 and $x = y$, then $f(x) = f(y)$.

A generalization of keys to avoid design flaws Eighting the appre rule.

Let X and Y be sets of attributes/in Powcoder.com

X (functionally) determined $We Chiff the Webder plies <math>t_1[Y] = t_2[Y]$.

i.e.,
$$f(t(X)) = t[Y]$$

We also say $X \rightarrow Y$ is a *functional* dependency, and that Y is *functionally* dependent on X.

X is called the *left side*, Y the *right side* of the dependency.

Examples

- For every Name, there is a unique Phone_no and Major, assume Name is unique;
- For every Course, there is a unique Prof;
- For every Name and Course, there is a unique Help Grade.

https://powcoder.com

In this example:

```
\{Name\} \rightarrow \{Phone\_no, Major\}
\{Course\} \rightarrow \{Prof\}
\{Name, Course\} \rightarrow \{Grade\}
```

We can also show these in a diagram like this one: Exam Help

Notice that other FD's follow from these:

$$\{Name\} \rightarrow \{Major\}$$
 $\{Course, Grade\} \rightarrow \{Prof, Grade\}$

Functional dependencies

Let F be a set of FD's.

Definition 1: $X \to Y$ is inferred from F (or that F infers $X \to Y$), written in

Assignment Project Exam Help

if any relation instance satisfying X-court also satisfy $X \to Y$.

Impossible to list exert detailed that F inferred from F.

A set ρ of derivation rules are required, such that:

a $X \rightarrow Y$ is inferred from F according to Definition 1 iff it can be derived using ρ .

Armstrong's axioms (1974)

Notation: If X and Y are sets of attributes, we write XY for their union.

e.g.
$$X = \{A, B\}, Y = \{B, C\}, XY = \{A, B, C\}$$

F1 (Reflexivity) Si grament en Project Exam Help

F2 (Augmentation) https://powcoder.com

F3 (Transitivity) {XAdd ,WeChat powzcoder

F4 (Additivity) $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$.

F5 (Projectivity) $\{X \rightarrow YZ\} = X \rightarrow Y$.

F6 (Pseudotransitivity) $\{X \rightarrow Y, YZ \rightarrow W\} = XZ \rightarrow W$.

Example: Given $F = \{A \rightarrow B, A \rightarrow C, BC \rightarrow D\}$, derive $A \rightarrow D$:

- $1. A \rightarrow B$ (given)
- $2. A \rightarrow C$ (given)

Assignments Project a Exam Help

- 4. Bchttps://powcoder.com
- 5. A Add We Chat apowcoder

F4 (Additivity)
$$\{X \rightarrow Y, X \rightarrow Z\} = X \rightarrow YZ$$
.

F5 (Projectivity)
$$\{X \rightarrow YZ\} = X \rightarrow Y$$
.

F6 (Pseudotransitivity)
$$\{X \to Y, YZ \to W\} = XZ \to W$$
.

In fact, F4, F5, and F6 can be derived from F1-F3.

Assignment Project Exam Help

Example: Prove $\{X \rightarrow Y, X \rightarrow Z\} = X \rightarrow YZ$.

https://powcoder.com

1) $X \rightarrow Y$ is given.

Add WeChat powcoder 2) $XX \rightarrow XY$ (by F2); that is, $X \rightarrow XY$

- 3) $X \rightarrow Z$ is given.
- 4) $XY \rightarrow YZ$ (by F2)
- 5) $X \rightarrow YZ$ (by F3, 2) and 4))

Armstrong's axioms

We can prove that Armstrong's axioms are sound and complete:

Sound: if F derives $A \rightarrow B$ by using Armstrong's axioms, then $F \models A \rightarrow B$

B by Definition 1. Assignment Project Exam Help

Complete: if $F \models M \rightarrow N$ by Definition 1, then F derives $M \rightarrow N$ by using Armstrong's axioms.

Algorithm to Check a FD

Given F, how do we check if $X \rightarrow Y$ is in F^+ ?

 F^+ denotes the smallest set of FD's that

• contains *F*, and

https://powcoder.com

• is *closed* under Armstrong's axioms. Add WeChat powcoder

 F^+ is the *closure* of F.

$$F = \{ A \rightarrow B, B \rightarrow C, A \rightarrow C \}$$

F⁺ = {AB -> A, AB -> B, AB -> C, AC -> A, AC -> B, AC -> C, ABC -> A, ABC -> B, ABC -> C, AB -> AB, AB -> BC, AB -> AC,} Assignment Project Exam Help

F⁺ always has an exponential size regarding |F|. https://powcoder.com

Too expensive to compute F^+ to verify a membership.

Instead we can compute the *closure* X⁺ of X under F, X⁺ is the largest set of attributes functionally determined by X.

Assignment Project Exam Help It can be proven (using additivity) that

S1:
$$X^{+} = \bigcup_{\forall X \to A \in F} A.$$
Chat powcoder

S2:
$$X \rightarrow Y \subseteq F^+$$
 iff (if and only if) $Y \subseteq X^+$.

Example:

```
F = \{A \rightarrow B, BC \rightarrow D, A \rightarrow C\}, compute \{A\}^+
1<sup>st</sup> scan of F:
X^+ := \{A\}
X^+ := \{A, B\}
X+:= {A, BASsignment Project Exam Help
2<sup>nd</sup> scan of F: https://powcoder.com
X^+ := \{A, B, C, D\}
Add WeChat powcoder

3rd scan of F: no change, therefore the algorithm terminates.
\{A\}^+ := \{A, B, C, D\}
```

Algorithm to compute X⁺

```
X^{+} := X;
change := true;
while change do
        begin
        chan Assignment Project Exam Help
        for each FD W \rightarrow Z in F do
                https://powcoder.com
                if Wat Wechat powcoder
                         begin
                         X^{+} := X^{+} \cup Z;
                         change := true;
                         end
                end
        end
```

Algorithm to Compute a Candidate Key

Given a relational schema R and a set F of functional dependencies on R.

A key X of R must have the property that $X^+ = R$.

Assignment Project Exam Help
Algorithm to compute a candidate key

https://powcoder.com Step 1: Assign *X* a superkey in F.

Add WeChat powcoder

Step 2: Iteratively remove attributes from X while retaining the property $X^+ =$

R till no reduction on X.

The remaining *X* is a key.

Example:

$$R = \{A, B, C, D\}$$
 and $F = \{A \rightarrow B, BC \rightarrow D, A \rightarrow C\}$

 $X = \{A, B, C\}$ if the left hand side of F is a super key.

A cannot be seignment dangiegt Exam BiedpD} \(\neq R

B can be removed because $\{AC\}^{\perp} = \{A, B, C, D\} = R$ $\longrightarrow X = \{A, C\}_{Add}$ WeChat powcoder

C can be further removed because $\{A\}^+ = \{A, B, C, D\}$ $\longrightarrow X = \{A\}$