Preenchido pelo Aluno		
Nome	•	Data
Disciplina Álgebra Linear	Curso	
Professor (a)	Período	Tumo
Wagner da Silva Zanco		
Pre	enchido pelo Professor	
	Prova AV1	

1) Calcule o determinante da matriz utilizando o teorema de Laplace: (2,0 pontos)

D =
$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 3 & -2 & 1 & 5 \\ 6 & 0 & -1 & 4 \\ -5 & 0 & 3 & 2 \end{bmatrix}$$

2) Esboce os seguintes vetores, com ponto inicial na origem. (2,0 pontos)

a)
$$v_1 = (-4, 3)$$

b)
$$v_2 = (5, -4)$$

c)
$$v_3 = (3, 4, 5)$$

d)
$$v_4 = (3, 3, 0)$$

3) Sejam $\mathbf{u} = (-3, 1, 2), \mathbf{v} = (4, 0, -8)$ e $\mathbf{w} = (6, -1, -4)$, encontre os componentes de:

a)
$$v-w$$

b)
$$6u+2v$$

$$c)$$
 $-v+u$

$$d) \ \ 5(v-4u)$$

4) Calcule a magnitude (módulo) dos vetores *u*, *v e w*, da questão 3.

5) Encontre o produto escalar $u \cdot v$ e os respectivos vetores unitários do produto escalar.

a)
$$u = (2,1); v = (2,3)$$

b)
$$u = (2, -2); v = (2, 4)$$

c)
$$u = (2,3,4); v = (1,1,0)$$

6) Sendo u = (3, -1, -2), v = (2, 4, -1) e w = (-1, 0, 1), calcule:

a)
$$u + v \times w$$

b)
$$2v + (3u \times w)$$

c)
$$(u \times v) + (v \times w)$$

d)
$$u + (v \times w)$$

7) Prove que os vetores u = (1,0,0), v = (0,2,0) e w = (2,4,0) são coplanares por meio do produto misto $(u \times v) \cdot w$.

- 8) Dados os vetores v = (-2,0,3,) e w = (2,3,-2,), o produto vetorial $v \times w$ tem como resultado o vetor n. Determine a equação do plano onde se encontram os vetores $v \in w$.
- 9) Verifique se o vetor $v=(7,8,9) \in \mathbb{R}^3$ é combinação linear de $v_1=(2,1,4), \ v_2=(1,-1,3)$ e $v_3=(3,2,5)$.
- 10) Os vetores $v_1 = (1,2), v_2 = (2,4)$ são LI ou LD?
- 11) Verifique se o conjunto $V = \{(1,1,1), (1,1,0), (1,0,0)\}, \text{ \'e LI ou LD}?$
- 12) Verifique se o conjunto $V = \{(x, y, z) \in \mathbb{R}^3 | 2x y = 0\}$ é um espaço vetorial.
- 13) Verifique se o conjunto W é um subespaço vetorial de \mathbb{R}^4 .

$$W = \{x, y, z, t \in \mathbb{R}^4 \mid x + y = 0 \ e \ z - t = 0\}$$

14) Verifique se o conjunto S é um subespaço vetorial de $V = \mathbb{R}^3$.

$$S = \{x, y, z \in \mathbb{R}^3 \mid x \in \mathbb{Z} \ e \ y, z \in \mathbb{R}\}$$