# **Basic ECG interpretation**

Lisa Leonard FNP-C, ENP-C

Departmental Lead Emergency Department PRISMA Health



## Disclosures

No Disclosures

# Learning Objectives

- Be able to interpret a basic ECG
- Be able to recognize a STEMI
- Be able to recognize T wave changes
- Be able to interpret the PR interval
- Be able to recognize different ECG rhythms

#### What is an ECG

 An electrocardiogram or ECG, records electrical activity in the heart. An ECG machine records these electrical signals across multiple heart beats and produces an ECG strip

#### What are normal adult heart rates

- **Normal** = 60 100 bpm
- Tachycardia > 100 bpm
- Bradycardia < 60 bpm</p>

# What are the components

- It is waveform components that consist of the electrical events during one heartbeat
- The waveforms are labeled as P, Q, R, S, T and U.



#### P wave

- P wave is the first short upward movement of the ECG tracing. It indicates that the atria are contracting, pumping blood into the ventricles.
- Amplitude: 2-3 mm high The P-wave should be 2-3 small squares in duration Duration: 0.06 - 0.12 sec



# QRS complex

- The QRS complex, normally beginning with a downward deflection, Q; a larger upwards deflection, a peak (R); and then a downwards S wave. The QRS complex represents ventricular depolarization and contraction.
- Amplitude: 5-30 mm high
   The QRS complex should be 1.5-2.5 small squares in duration

Duration: 0.06 - 0.10 sec

#### PR interval

- The PR interval indicates the transit time for the electrical signal to travel from the sinus node to the ventricles.
- Duration: 0.012 0.20 sec
- The PR interval should be 3–5 squares in duration



## **QT** interval

• The QT interval should be 9–11 small squares



#### T wave

- T wave is normally a modest upwards waveform representing ventricular repolarization
- Amplitude: 0.5 mm in limb leads Duration: 0.1 - 0.25 sec



# Know your measurements!

 Assuming standard paper speed of 25 mm/s, then one small square = 0.04 s



#### Rate Estimation

- To calculate the rate of a regular ECG, simply divide 300 by the number of large squares between two complexes.
- For irregular rhythms, count the number of complexes between 30 large squares and multiply by 10 (30 large squares = 6 seconds, assuming standard paper speed of 25 mm/s).

#### Rate estimation cont. rule of 300

#### **HEART RATE**

(NORMAL ECG)





HEART RATE =  $300 \div (NUMBER OF LARGE SQUARES IN ONE R-R INTERVAL)$  $300 \div 4 = 75 BPM$ 

**HEART RATE = 75 BPM** 

**GEEKYMEDICS.COM** 

## What if the rhythm is irregular?

- The first method of calculating the heart rate doesn't work when the R-R interval differs significantly throughout the ECG and therefore another method is required
  - Count the number of complexes on the rhythm strip (each rhythm strip is 10 seconds long)
  - Multiply the number of complexes by 6 (giving you the average number of complexes in 1 minute)

e.g. 10 complexes on a rhythm strip X 6 = 60 beats per minute



# Irregular rhythms

- Mark out the RR patterns on a piece of paper to see if intervals are the same
- Regularly irregular
  - In a reoccurring irregular pattern
- Irregularly irregular
  - completely disorganized

#### A-Fib

#### **HEART RHYTHM**



# IRREGULARLY IRREGULAR (ATRIAL FIBRILLATION)

# P waves where did they go?

- P waves are absent in atrial fibrillation compared to a sinus rhythm
- If P waves are absent and it is an irregular rhythm it may suggest A-Fib
- Is there a QRS after the P wave

#### P waves cont.

# P-WAVES PRESENT (SINUS RHYTHM) P-WAVE P-WAVE P-WAVE ABSENT (ATRIAL FIBRILLATION)



# Prolonged PR interval

- A prolonged PR interval suggests there is an atrioventricular delay (AV block)
- First Degree Heart Block
  - Involves a fixed prolonged interval >200ms

#### FIRST DEGREE HEART BLOCK

P-R INTERVAL > 200MS (5 SMALL SQUARES)



# Second Degree Heart block

- Mobitz type 1
  - Wenkebach
- If the PR interval slowly increases then there is a dropped QRS complex

# SECOND DEGREE HEART BLOCK MOBITZ TYPE 1 (WENCKEBACH)



## Second Degree Heart block cont.

- Mobitz type 2
  - If the PR interval is fixed but there are dropped beats
- Clarify by the number of dropped beats (2:1, 3:1, 4:1)



# Third degree Heart Block

- Complete Heart Block
- Think baby shark from the fin like look
- The P waves and the QRS complex are completely

unrelated

# THIRD DEGREE HEART BLOCK (COMPLETE HEART BLOCK)



COMPLETE DISSOCIATION BETWEEN ATRIAL AND VENTRICULAR ACTIVITY

#### The shortened PR interval

- Wolf Parkinson White Syndrome (WPW)
- The atrial impulse is getting to the ventricle by a faster shortcut instead of conducting slowly across the atrial wall. This is an accessory pathway which can be associated with a delta wave.



#### ST elevation

- Is significant when it is greater than 1 mm (1 small square) in 2 or more contiguous limb leads or greater than 2 mm in 2 or more leads
- It is usually caused by complete full thickness myocardial infarction



(ANTERIOR MYOCARDIAL INFARCTION)

# ST depression

 ST depression > or equal to 0.5 mm in greater than or equal to 2 contiguous leads, it indicates myocardial ischemia

#### ST DEPRESSION



#### BEWARE: T waves are too tall

- >5 mm in the limb leads
- >10 mm in the chest leads, its the same criteria as small QRS complexes

You should be thinking of Hyperkalemia or a hyper

acute STEMI

#### **TALL TENTED T-WAVES**



**HYPERKALAEMIA** 

#### Inverted T waves

- Normally inverted in V1 and inversion in lead III is a normal variant
- In other leads can be a non specific sign of a variety of conditions
- Use this finding in the context of your patient



# Bi phasic T waves

- They have 2 peaks
- Can be indicative of ischemia and hypokalemia



## Flat T waves

- non specific
- May represent ischemia or electrolyte imbalances





## The only stable rhythm... Asystole

A cardiac arrest rhythm with no electrical activity.
 There are no P waves or QRS complexes, The heart is not functioning.





#### References

- ECG interpretation. Medical training and simulation. (2019) accessed 02/19/2019 <a href="https://www.practicalclinicalskills.com/ecg-interpretation">https://www.practicalclinicalskills.com/ecg-interpretation</a>
- Jackson, Matthew. (Cardiology Data interpretations)
   How to read an ECG. Accessed 02/19/2019 from
   https://geekymedics.com/how-to-read-an-ecg/
- Wetherell, Heather. My top 10 tips for ECG interpretation. Accessed 02/19/2019 from https://bjcardio.co.uk/2014/03/my-top-10-tips-for-ecginterpretation/



# ECTOPOOPY:

When You Look At Your Patients' ECG and Say

'OH S\*\*T!'