朗読音声合成におけるポーズ長分布の多様性を 吸収するための標準化の効果

竹下 隼司 松崎 拓也 東京理科大学 理学部第一部 応用数学科

研究背景・目的

背景

自然な朗読音声合成には、正確なポーズ予測が重要 ポーズ位置/長さには朗読者や作品ごとに異なりあり ポーズ長の標準化で、異なりを吸収できるのではないか?

朗読作品ごとの文間ポーズ長の分布

目的

朗読テキストからポーズ位置とポーズ長を正確に予測する

提案手法

ポーズの認定

- 1. Juliusによる音素アライメントから形態素アライメントを作成
- 2. 音声波形をデシベル変換し、ポーズ区間を閾値で抽出
- 3. 抽出されたポーズを、(1)文中ポーズと(2)文間ポーズに分類

音声波形とデシベル変換後のポーズ区間抽出結果

標準化

ポーズ長を、話者や朗読作品等 ごとに平均と標準偏差で標準化

埋め込み

BERTの最終隠れ層に、話者や 朗読作品等の埋め込みを加算

文中ポーズ長分布を標準化

BERTによるポーズ予測

- モデル構造: BERTまたはBERT+BiLSTMを使用
- タスク: 各形態素の後にポーズがあるかどうか(ポーズ位置)と、 ポーズがある場合の長さ(ポーズ長)を予測

実験

実験設定:

日本語多話者朗読作品コーパス(J-MAC)中の全発話に対し、 以下の7通りのグループ化を行い、

- (1) グループごとに訓練データを標準化した場合と
- ②グループの埋め込みをモデルへ追加した場合とで、

文中と文間ポーズの予測精度を比較した

:標準化なし/埋め込みなし none :全体に対して標準化/埋め込み all : 朗読作品ごとに標準化/埋め込み audiobook

: ナレーションかどうかごとに標準化/埋め narrative

込み

• audiobook-narrative:「朗読作品ごと, かつナレーション かどうか」ごとに標準化/埋め込み

: 朗読者ごとに標準化/埋め込み

 speaker : 文章作品ごとに標準化/埋め込み book

結果:

文中ポーズ位置の分類精度

F1-	BERT	BERT	BERT	BERT
Score	+標準化	+BiLSTM $ $	+埋め込み	+BiLSTM
		+標準化		+埋め込み
none			0.8365	0.8400
all			0.8365	0.8400
audiobook			0.8334	0.8245
narrative	0.8374	0.8336	0.8389	0.8351
audiobook-			0.8341	0.8416
narrative				
speaker			0.8221	0.8384
book			0.8340	0.8404

文中ポーズ長の回帰精度(単位: 秒)

RMSE	BERT	BERT	\mathbf{BERT}	BERT
(単位: 秒)	+標準化	+BiLSTM	+埋め込み	+BiLSTM
		+標準化		+埋め込み
none	0.1522	0.1518	0.1515	0.1541
all	0.1201	0.1203	0.1515	0.1541
audiobook	0.1128	0.1133	0.1550	0.1430
narrative	0.1199	0.1202	0.1546	0.1538
audiobook-	0.1129	0.1128	0.1558	0.1446
narrative				
speaker	0.1139	0.1146	0.1537	0.1440
book	0.1186	0.1189	0.1534	0.1509

文間ポーズ長の回帰精度(単位:秒)

RMSE (単位: 秒)	BERT +標準化	BERT +BiLSTM +標準化	BERT +埋め込み	BERT +BiLSTM +埋め込み
none	0.7179	0.5856	0.7389	0.5824
audiobook	0.6323	0.4889	0.6470	0.4898

考察

グループ化の影響

朗読作品によるグループ化が精度が最も高い

→ 標準化後の分布がより正規分布に近く、モデルが学習しやす い分布形状

標準化と埋め込みの比較

回帰精度は標準化が比較的高いが、要因不明

標準化は、埋め込みと比べて学習後パラメータの調整が容易であ るが、話者などによるポーズ位置の差異は吸収できない

- ポーズ長の回帰タスクでは標準化が埋め込みより精度が高い
- ・ポーズ位置の分類では、埋め込みとBiLSTMの組み合わせが 最も精度が高く、全体的に朗読作品ごとのグループ化が有効

連絡先:竹下隼司(takeshun1619@gmail.com)、松崎拓也(matuzaki@rs.tus.ac.jp)