

NAME DES DOZENTEN: BJÖRN-HELGE BUSCH

KLAUSUR I140 AUTOMATENTHEORIE UND FORMALE SPRACHEN I14A, **I14B**

QUARTAL: Q2/2016

Name des Prüflings:		Matrikelnummer:	Zenturie:
Dauer: 90 Min.	Seiten ohne I	Deckblatt und Infoblatt: 15	Datum: 18.04.2016
Hilfsmittel: Bemerkungen:		sur (siehe letzte Seite) n Sie Ihr Klausurheft zu Begi	nn der Prüfung auf
	s sind 90 Punkte erreic um Bestehen der Klaus	chbar. sur sind 45 Punkte ausreiche	end.
	Punkte für Aufga	ben	
	Aufgabe 1		von 10
	Aufgabe 2		0.0
	Aufgabe 3		
	Aufgabe 4		von 27
	Insgesamt		von 90
Datum:	Note:	Ergänzungsp	rüfung:
Unterschrift:			
Termin für Klausureir	nsicht:	Ort:	

Aufgabe 1: Wortmengen und Wortfunktionen

a) Geben Sie jeweils drei Eigenschaften von <u>formalen</u> und <u>natürlichen</u> Sprachen an. Nutzen Sie für die Gegenüberstellung die Tabelle (3 Punkte)

Natürliche Sprache	Formale Sprache

b) Erläutern Sie die Begriffe <u>Alphabet</u> und <u>Plushülle</u> über einem Alphabet mithilfe eines Beispiels. (2 Punkte)

c)	In	welche	<u>drei</u>	Bestan	dteile	lassen	sich	Wörte	r <i>w</i> ∈	Σ^+	zerle	gen?	Welche
	Be	dingung	mus	s erfüllt	sein,	damit si	ch w	$\in \Sigma^*$ in	drei d	disju	nkte 1	Γeile z	zerlegen
	las	sen? (2	2 Pun	kt)									

d) Geben Sie <u>zwei Wortfunktionen</u> inklusive des <u>Definitions</u>- und <u>Wertebereichs</u> gemäß üblicher (mengentheoretischer) Funktionsvorschrift und beispielhaftem Funktionsaufruf an. Ordnen Sie ferner, sofern möglich, die Attribute <u>total</u>, <u>partiell</u>, <u>injektiv</u>, <u>surjektiv</u> und <u>bijektiv</u> zu. Begründen Sie Ihre Antwort. (3 Punkte)

Aufgabe 2: Endliche Automaten

a) Gegeben sind die Sprachen

$$\begin{split} L_1 &= \{ w \in \Sigma^* | w = \{c\}^* \{ aa, ab\}^+ \{ ee\}^* \} \\ L_2 &= \{ w \in \Sigma^* | w = \{ zz\}^+ \{ xy, xx, yx, yy \} \mathbf{1}^j, j > 2, j \ mod \ 3 = 0 \}. \end{split}$$

Konstruieren Sie einen <u>nicht verallgemeinerten</u> DEA A_3 , der <u>ausschließlich</u> die Sprache

$$L_3 = L_1 \circ L_2$$

akzeptiert. Geben Sie die graphische Repräsentation mit markierten akzeptierenden Zuständen an. Auf eine mengenwertige Darstellung von δ_3 kann verzichtet werden. (8 Punkte)

b)	Erläutern Sie den Begriff Produktautomat. Konstruieren Sie für Ihre Aus-
	führungen den Produktautomaten A_{Π} , wobei A_{Π} ausschließlich $L_3 \cap L_4$
	akzeptieren soll. Die graphische Repräsentation mit akzeptierenden Zuständen
	genügt.

$$L_3 = \{ w \in \Sigma^* | w = \{a, b\}^* \{c\}^* \}$$

$$L_4 = \{ w \in \Sigma^* | w = \{a\}^+ \{b\} \{c\}^+ \},$$

(6 Punkte)

c) Was versteht man unter der <u>reflexiv-transitiven Hülle</u> der <u>Zustandsüberführungsfunktion</u> δ eines endlichen Automaten. Für welchen <u>Automatentyp</u> ist δ stets <u>total</u>? Begründen Sie Ihre Antwort. (1 Punkt)

e) Erläutern Sie den Begriff <u>Turingautomat.</u> Konstruieren Sie einen Turingautomaten, der die Funktion

$$f: \mathbb{N}_0 \times \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0, (x, y, z) \mapsto x + y + z$$

umsetzt. Die Operanden sollen in <u>Strichnotation</u> kodiert (z.B. 3 als |||, 5 über |||||, etc.) werden. Als Trennsymbol für die Operanden soll die Null verwendet werden. Geben Sie den Bandinhalt für die Operanden (x = 3, y = 5, z = 2) für den Anfang und das Ende der Bearbeitung an. (6 Punkte)

f) Gegeben sei die Sprache

$$L_5 = \{w \in \Sigma^* | w = \{0, 1, 2, 3\}^* \{123\} \{0, 1\}^+ \}$$

Konstruieren Sie den korrespondierenden, <u>nicht verallgemeinerten</u> NEA A_5 (Automatengraph genügt) und demonstrieren Sie die Äquivalenz zwischen NEA und DEA, indem Sie A_5 in einen äquivalenten DEA A_5' <u>transformieren</u>. Nutzen Sie dafür den <u>tabellarischen Ansatz</u> und <u>zeichnen</u> Sie den Graphen von A_5' . (8 Punkte)

Aufgabe 3: Grammatiken

a) Erläutern Sie den Begriff <u>Greibach-Normalform-GNF</u>. Welche Einschränkung gilt hinsichtlich der durch GNF-konforme Grammatiken erzeugten Sprachen? (1 Punkt)

b) Gegeben ist die Sprache

$$L_6 = \{w \in \Sigma^* | w = \{aua\}^+ (cc, cd)^i \{e, f\}^+, i > 0\}.$$

Geben Sie die <u>normierte Grammatik</u> G_6 mit der Regelmenge P_6 an, die <u>ausschließlich</u> die Sprache L_6 erzeugt. <u>Zeichnen</u> Sie den mit P_6 korrespondierenden endlichen Automaten (6 Punkte).

c) Gegeben sei die Sprache

$$L_7 = \{ w \in \Sigma^* | w = \{ ee \}^* x^i y^i \{ c \}^+, i > 0 \}$$

- Konstruieren Sie die Typ 2 – Grammatik G_7 mit der Regelmenge P_7 .

- Überführen Sie Ihre konstruierte Regelmenge P_7 in die Chomsky-Normalform (CNF).

- Konstruieren Sie den <u>Kellerautomaten</u> K_7 mit Angabe der Zustandsübergangsfunktion δ_7 , der L_7 akzeptiert (insgesamt 9 Punkte).

d) Gegeben sei $P = \{S_0 \to S_0 BB | CCS_0 | Bb | Cc, B \to b | c, C \to b | c\}$ mit dem Startsymbol S_0 . Handelt es sich um eine mehrdeutige Grammatik? Begründen Sie Ihre Antwort mithilfe eines Syntaxbaumes für ein beliebiges Wort w mit |w| = 4. (2 Punkte)

e) Geben Sie den Mehrkellerautomaten K_8 an, der die Sprache

$$L_8 = \{ w \in \Sigma^* | w = \{c\}^* y^i z^i w^i \{c\}^+, i > 0 \}$$

akzeptiert. Die Angabe der Zustandsüberführungsfunktion genügt. (5 Punkte)

Aufgabe 4: Sprachklassen

a) Skizzieren Sie die <u>Chomsky-Hierarchie</u> und erläutern Sie die Unterschiede anhand der Ausdrucksmächtigkeit der klassifizierten Grammatiken (Hinweis: *P* enthält Regeln unterschiedlichen Typs zur Worterzeugung). Geben Sie die jeweiligen <u>Abschlusseigenschaften</u> an. (7 Punkte)

b)	Gegeben sei eine beliebige reguläre Sprache L . Handelt es sich bei L^* um eine reguläre Sprache? Nutzen Sie für Ihre Ausführungen eine Skizze. (2 Punkte)
c)	Erläutern Sie mithilfe einer Skizze, warum reguläre Sprachen abgeschlosser gegenüber der Konkatenation sind. (2 Punkte)
d)	Gegeben sei $L=\Sigma$. Handelt es sich bei L um eine reguläre Sprache? Begründen Sie Ihre Antwort mithilfe einer Skizze. (1 Punkt)

f) Gegeben sei die nicht normierte Typ 3-Grammatik G_a und der Epsilon-Au A_b . Lässt sich das Äquivalenzproblem für reguläre Sprachen entscheiden	
würden Sie vorgehen, um zu prüfen, ob $L_a \equiv L_b$ gilt. (3 Punkte)	
g) Lässt sich das Wortproblem für Typ 1 – Sprachen entscheiden? Erläute Ihre Antwort. (1 Punkt)	rn Sie

i) Gegeben seien die Sprachen

$$L_9 = \{ w \in \Sigma^* | w = a^i \{ x, y \}^+ b^i \{ a, f \}^*, i > 0 \}$$

$$L_{10} = \{ w \in \Sigma^* | w = \{ aa, bb \} \{ y, x \}^* c^i d, i > 3 \}$$

Testen Sie mithilfe des <u>Pumping-Lemmas</u>, ob es sich um Typ 3, Typ 2 oder Typ1/Typ0 Sprachen handeln könnte und geben Sie für die jeweilige Zerlegung, sofern möglich, die Pumping-Lemma-Zahl an. (8 Punkte)