BAB 3

SISTEM INFORMASI GEOGRAFIS

KONSEP DASAR

- Pada era komputerisasi sekarang ini, telah membuka paradigma baru didalam proses pengambilan keputusan dan penyebaran informasi yang terkait.
- Sehubungan dengan hal ini, maka " Data yang merepresentasikan dunia nyata " dapat disimpan, selanjutnya diproses sedemikian rupa sehingga bisa disajikan dalam bentuk- bentuk yang lebih sederhana / bersifat elementer, tetapi sesuai dengan kebutuhan.
- Perhatikan Gambar 3.1 berikut ini :

Gambar 3.1. Model Dunia Nyata

- Sejak tahun 1970-an Sistem-sistem yang secara khusus dibuat untuk menangani masalah " Informasi yang bereferensi Geografis " dalam berbagai cara & bentuk yaitu SIG, yang mencakup masalah-masalah:
 - a) Pengorganisasian data dan informasi
 - b) Penempatan informasi pada lokasi geografis tertentu
 - c) Melakukan komputasi-komputasi, memberikan ilustrasi mengenai koneksi antara suatu obyek spasial dengan obyek spasial yang lain, dan analisa-analisa spasial terkait.
- Pada awalnya, data / obyek-obyek geografi hanya disajikan di atas peta, dengan menggunakan bentuk : Simbol, Variasi Ukuran, Pola Garis, Kombinasi Warna.
 - ✓ Elemen-elemen geometrinya dideskripsikan di dalam legendanya, yaitu :
 - ✓ Garis Hitam Tebal, untuk jalan utama.
 - ✓ Garis Hitam Tipis, untuk jalan sekunder dan jalanjalan selanjutnya.
- Sehingga ⇒ Peta dapat menjadi media yang sangat efektif untuk : Presentasiatau.... Bank tempat penyimpanan data / obyek geografis.
- Tapi peta juga masih mengandung beberapa kelemahan / keterbatasan.
- Didalam konteks yang lebih luas, : Peta merupakan aset public yang sangat berharga, Survei-survei pemetaan di berbagai

Negara, menunjukkan bahwa " Keuntungan akan penggunaan peta, adalah berkali-kali lipat dibanding biaya pembuatan peta tersebut".

- Dibandingkan dengan Fungsionalitas Peta, SIG memiliki sejumlah keuntungan, karena :
 - ✓ Penyimpanan data / informasi ...dan... Presentasinya dipisahkan secara tegas / Dibedakan dengan jelas.
- Perhatikan Gambar 3.2 berikut ini :

Gambar 3.2. Ilustrasi Pemisahan Presentasi & Penyimpanan didalam SIG

DEFINISI-DEFINISI

Hingga saat ini belum ada kesepakatan mengenai definisi SIG yang baku, jadi ada berbagai definisi.

- Beberapa Negara dan sejumlah institusi seringkali menggunakan beberapa istilah berbeda dalam merujuk terminologi SIG.
- Berikut ini mencakup beberapa terminology / sinonim
 yang merujuk pada istilah SIG :
 - a) Geographic Information System→ Terminologi dari AS
 - b) Geographical Information System \rightarrow Terminologi dari Eropa.
 - c) Geomatique → Terminologi dari Kanada
 - d) Georelational Information System→ Terminologi yang berbasiskan Teknologi
 - e) Natural Resources Information System→ Terminologi yang berbasiskan disiplin ilmu.
 - f) Geoscience or Geological Information System→ Terminologi yang berbasiskan disiplin ilmu.
 - g) Spatial Information System \rightarrow Terminologi / turunan non geografi.
 - h) Spatial Data Analysis System → Terminologi berdasarkan sistemnya.
- Definisi SIG kemungkinan besar masih berkembang,
 bertambah dan mungkin bervariasi.
 - ✓ Terlihat dari banyaknya definisi SIG yang telah beredar di berbagai sumber pustaka.
 - ✓ SIG juga merupakan suatu bidang kajian ilmu dan teknologi yang belum terlalu lama : dikembangkan,

digunakan oleh berbagai disiplin ilmu, dan berkembang dengan cepat.

√ ...

- Berikut ini sejumlah definisi SIG yang sudah beredar di berbagai sumber pustaka :
 - a) **SIG**: Sistem computer (CBIS) yang digunakan untuk " memasukkan, menyimpan, memeriksa, mengintegrasikan, memanipulasi, menganalis dan menampilkan data-data yang berhubungan dengan posisi-posisinya di permukaan bumi ".
 - b) **SIG**: Kombinasi perangkat lunak dan perangkat keras sistem computer, yang memungkinkan penggunanya untuk "mengelola, menganalisa dan memetakan" informasi spasial berikut data atributnya / data deskriptif dengan akurasi kartografis.
 - c) **SIG**: Sistem yang berbasiskan computer (CBIS) yang digunakan untuk menyimpan dan memanipulasi informasi-informasi geografis. SIG dirancang untuk " mengumpulkan, menyimpan dan menganalisis obyekobyek dan fenomena dimana lokasi geografis merupakan karakteristik yang penting untuk dianalisis. Jadi **SIG**: Sistem Komputer yang mempunyai kemampuankemampuan berikut ini dalam menangani data yang bereferensi geografis : a).Masukan b). Manajemen

- (penyimpanan dan pemanggilan) data c). Analisis dan manipulasi data, d). Keluaran.
- d) **SIG**: Sistem yang terdiri dari perangkat keras, perangkat lunak, data, manusia/brainware, organisasi yang digunakan untuk " mengumpulkan, menyimpan, menganalisis, menyebarkan " informasi-informasi mengenai daerah-daerah di permukaan bumi.
- Sistem computer yang digunakan untuk geografis. memanipulasi data Sistem ini diimplementasikan dengan menggunakan perangkat keras dan perangkat lunak computer yang berfungsi untuk: (a). Akuisisi dan verifikasi data, (b). Kompilasi data, (c).Penyimpanan data, (d).Perubahan dan/atau updating data, (e). Manajemen dan pertukaran data, (f). Manipulasi data, (g). Pemanggilan dan presentasi data, (h). Analisis data.
- f) **SIG**: Sistem computer yang digunakan untuk "mengumpulkan, memeriksa, mengintegrasikan dan menganalisis informasi-informasi yang berhubungan dengan permukaan bumi.
- g) **SIG**: Kumpulan yang terorganisasi dari " perangkat keras computer, perangkat lunak, data geografi dan personil yang dirancang secara efisien untuk : memperoleh, menyimpan, meng-update, memanipulasi,

- menganalisis, dan menampilkan semua bentuk informasi yang bereferensi geografis.
- h) **SIG** Sistem yang dapat mendukung proses pengambilan keputusan terkait aspek spasial dan mampu deskripsi-deskripsi mengintegrasikan lokasi karakteristik-karakteristik fenomena yang ditemukan di SIG yang lengkap, lokasi tersebut. mencakup metodologi dan teknologi yang diperlukan, yaitu : data spasial, perangkat keras, perangkat lunak, dan struktur organisasi.
- i) SIG: Sistem informasi yang dirancang untuk bekerja dengan data yang tereferensi secara spasial atau koordinat-koordinat geografis. Dengan kata lain, SIG: Sistem basis data dengan kemampuan-kemampuan khusus terkait data yang tereferensi secara geografis berikut sekumpulan operasi-operasi fungsional yang terkait dengan pengelolaan data tersebut.
- j) SIG: Teknologi informasi yang dapat "menganalisis, menyimpan, dan menampilkan data, baik data spasial maupun non spasial". SIG mengkombinasikan kekuatan fungsionalitas perangkat lunak basis data relasional (DBMS) dan paket perangkat lunak CAD.
- k) **SIG**: Suatu fasilitas untuk "mempersiapkan, mempresentasikan dan menginterpretasikan fakta-fakta"

- yang terdapat di permukaan bumi (**Definisi umum**). **Definisi yang lebih sempit**, **SIG**: Konfigurasi perangkat keras dan perangkat lunak sistem computer yang secara khusus dirancang untuk proses-proses "akusisi, pengelolaan dan penggunaan" data kartografi.
- l) **SIG**: Sistem informasi yang dirancang untuk bekerja dengan data yang tereferensi secara spasial atau koordinat geografis. Dkl, **SIG**: Sistem basis data dengan kemampuan-kemampuan khusus dalam menangani data yang tereferensi secara spasial, dan juga merupakan Sekumpulan operasi yang dikenakan terhadap data tersebut.

SUBSISTEM SIG

- SIG dapat dibagi menjadi beberapa sub-sistem sebagai berikut:
 - a) Data Input → Sub-sistem ini bertugas : Mengumpulkan, mempersiapkan, dan menyimpan data spasial dan atributnya dari berbagai sumber. Sub-sistem Data Input→ Juga bertanggung jawab : Mengkonversikan / mentransformasikan format-format data aslinya ke dalam format yang dapat digunakan oleh perangkat SIG yang bersangkutan.
 - b) **Data Output** → Sub-sistem ini bertugas untuk menampilkan / menghasilkan keluaran (termasuk :

- mengekspornya ke format yang dikehendaki) seluruh atau sebagian basis data spasial baik dalam bentuk softcopy maupun hardcopy seperti : tabel, grafik, report, peta, dll.
- c) Data management → Sub-sistem ini mengorganisasikan data Spasial dan tabel-tabel atribut terkait, ke dalam sebuah sistem basis data sedemikian rupa sehingga: mudah dipanggil kembali, di-update dan di-edit.
- d) Data manipulation & analysis → Sub-sistem inimenentukan "Informasi-informasi yang dapat dihasilkan oleh SIG", Melakukan manipulasi (evaluasi & penggunaan fungsi-fungsi dan operator matematis dan logika) dan Pemodelan data untuk menghasilkan informasi yang diharapkan.
- Perhatikan Gambar 3.3 dan 3.4 berikut ini :

Gambar 3.3. Ilustrasi Sub-Sistem SIG

Gambar 3.4. Ilustrasi Uraian Sub-Sistem SIG

KOMPONEN SIG

- SIG merupakan salah-satu sistem yan kompleks dan pada umumnya terintegrasi dengan lingkungan sistem computer lainnya di tingkat fungsional dan jaringan.
- SIG terdiri dari beberapa komponen sebagai berikut :

a) Perangkat Keras

- ✓ Pada saat ini SIG sudah tersedia untuk berbagai platform perangkat keras : PC desktop, workstations, multi-user host yg dapat digunakan oleh "banyak orang secara bersamaan, dalam jaringan computer yang luas, tersebar, berkemampuan tinggi, mempunyai harddisk yg besar, mempunyai kapasitas memori (RAM) yang besar.
- ✓ Perangkat keras yang sering digunakan untuk aplikasi SIG : Komputer, mouse, monitor (plus VGA-card

grafik) beresolusi tinggi, digitizer, printer, plotter, receiver GPS, scanner.

b) **Perangkat Lunak**

c) Data & Informasi Geografi

✓ SIG dapat : mengumpulkan dan menyimpan data / informasi yang diperlukan baik secara tidak langsung (dengan meng-import dari format-format perangkat lunak SIG yang lain) dan secara langsung (dengan cara: Melakukan dijitasi data spasialnya, yaitu dengan dijitasi on-screean atau head-up di atas tampilan monitor, atau manual menggunakan digitizer dari peta analog, kemudian memasukkan data atributnya dari tabel-tabel/laporan menggunakan key-board.

d) Manajemen

✓ Suatu proyek SIG akan berhasil jika dikelola dengan baik dan dikerjakan oleh orang-orang yang memiliki keahlian yang tepat pada semua tingkatan.

PERANGKAT KERAS SIG

 Perangkat keras yang mendukung kebutuhan analisis geografi dan pemetaan (SIG), tidak jauh berbeda dengan perangkat keras lainnya yang digunakan untuk mendukung kebutuhan aplikasi-aplikasi bisnis dan sain. Perangkat keras SIG (perangkat-perangkat fisik yang digunakan oleh sistem computer) untuk keperluan pemetaan dan analisis geografis, yang mencakup :

a) CPU

- ✓ Bagian dari sistem computer yang berfungsi sebagai tempat untuk pemrosesan semua instruksi dan program.
- ✓ Untuk mengendalikan seluruh operasi yang ada di dalam sistem computer yang bersangkutan.
- ✓ Untuk SIG yang besar dan volume data yang sangat besar, diperlukan CPU yang memiliki processor berkemampuan tinggi [dual-core, core-2-duo, dst].

b) RAM

- ✓ Perangkat ini digunakan CPU untuk : menyimpan sementara semua data dan program yang dimasukkan melalui input device.
- ✓ Untuk perangkat lunak SIG yg kecil diperlukan RAM sebesar 4 Mb atau 8 Mb.
- ✓ Untuk SIG yang besar, dengan menggunakan jaringan intranet, internet(web) dan analisis spasial (rasterbased), maka kebutuhan RAM nya tinggi.

c) **STORAGE**

✓ Merupakan tempat penyimpanan data secara permanen
 / semi permanen.

- ✓ Contoh Storage : Hard disk, CD-ROM, flash-disk, pita magnetis.
- ✓ Jika dibandingkan dengan RAM, akses pada Storage agak lambat.

d) Input Device

✓ Peralatan yang digunakan untuk memasukkan data ke dalam perangkat SIG, diantaranya : keyboard, mouse, digitizer, scanner, kamera digital.

e) Output Device

✓ Peralatan yang digunakan untuk merepresentasikan data dan / informasi SIG, diantaranya : layar monitor, printer, plotter, dll.

f) Peripheral

- ✓ Merupakan perangkat pelengkap, yaitu bagian dari sistem computer SIG yang belum termasuk yang disebutkan di atas, seperti : kabel jaringan, modem, ISP, router, card jaringan / Ethernet, CPU khusus untuk clients & server (diperlukan untuk SIG yg besar dan menggunakan jaringan).
- Institusi WGIAC (Wyoming Geographic Information Advisory Council) membuat standard untuk perangkat keras SIG sebagai berikut :
 - a) CPU: Berbasiskan processor 32-bit Intel
 - b) **RAM**: >= 32 Mb

- c) **Storage:** Hard disk dg kapasitas 1 Gb untuk workstation yang tersambung jaringan, dan berkapasitas 2 Gb untuk workstation yang berdiri sendiri.
- d) **Input Device :** key-board 101-key, digitizer dengan dimensi minimum 24 x 36(D size) dengan akurasi 0,005 inchi, scanner hitam-putih dengan ukuran minimum 24 x 36 (D size) dengan resolusi 400 dpi, scanner berwarna dengan ukuran 11 x 17 (B size) dengan resolusi 400 dpi.
- e) **Output Device :** Monitor dengan resolusi 1280 x 1024 dengan 256 warna dan memori 4 Mb, printer dengan teknologi laser atau inkjet dengan ukuran minimum ukuran kertas 11 x 17 (B size) dan resolusi minimum 300 dpi, plotter dengan teknologi inkjet dengan resolusi minimum 300 dpi untuk ukuran kertas minimum 36 x 48 (E size)
- f) **Peripheral Lainnya**: Receiver GPS, untuk pemetaan (akurasi horizontal 5 meter), untuk survey (akurasi horizontal < 1 cm), jumlah channel yang dapat diterima (6, 8 atau 12), antena internal atau eksternal, kapasitas penyimpanan data sementara, kemampuan postprocessing dan konversi file ke format perangkat lunak standard SIG.

PERANGKAT LUNAK SIG

- Pada Sistem Komputer modern, perangkat lunak yang digunakan biasanya terdiri dari beberapa layer (tidak dapat berdiri sendiri).
- Model layernya terdiri dari :
 - ✓ Perangkat lunak Sistem operasi
 - ✓ Program-program pendukung sistem-sistem khusus (
 Special system utilities)
 - ✓ Perangkat lunak aplikasi
- Sistem Operasi terdiri dari : program-program yang bertugas untuk mengawasi jalannya operasi-operasi sistem dan untuk mengendalikan proses komunikasi yang terjadi diantara perangkat keras yang terhubung ke sistem computer yang bersangkutan.
- Special system Utilities dan Perangkat Lunak Aplikasi
 (yang digunakan untuk menjalankan tugas-tugas seperti
 menampilkan / mencetak peta), akan mengakses program program milik Sistem Operasi untuk mengeksekusi fungsi fungsi yang dimilikinya.
- Sistem Operasi ⇒ Mengandung program-program yang bertugas untuk :mengelola memori, akses sistem, pengendalian komunikasi, pengolahan perintah-perintah, manajemen data dan file.

- Special system Utilities dan Program-program
 pendukungnya ⇒ Terdiri dari Kompiler bahasa
 pemrograman; device driver (diperlukan untuk mendukung
 fasilitas input dan output) spt : digitizer, printer, plotter, VGA Card, Scanner ; Utility untuk back-up data; Pustaka fungsi dan
 prosedur; Perangkat Lunak Komunikasi Khusus.
- Perangkat Lunak Aplikasi ⇒ Terdiri dari kelompok wordprocessing, sphread-sheet, database, Presentation, DBMS, image-processing, charting &drawing.
- Perangkat lunak khusus Aplikasi SIG \rightarrow Digunakan untuk menjalankan tugas-tugas SIG.
- Perangkat Lunak yang dikembangkan untuk SIG secara konseptual terdiri dari 2 bagian :
 - a) Paket Inti → Digunakan untuk pemetaan digital dasar dan manajemen data.
 - b) Paket-paket aplikasi yang terintegrasi dengan Paket inti →Untuk menjalankan fungsionalitas pemetaan digital khusus dan aplikasi analisis geografis.
- WGIAC (Wyoming Geographic Information Advisory Council)
 membuat standar umum dalam rangka memenuhi kebutuhan
 perangkat lunak SIG sebagai berikut :
 - a. Sistem Operasi ⇒ Berbasis UNIX (X Window) atau
 Ms.Window (Win95, Win98, WinNT,dll)
 - b. **Model Data Spasial** ⇒ Raster dan Vektor, dengan prioritas pada data spasial vector

- c. **Basis Data (DBMS)** ⇒ Jika *menggunakan sistem basis data relasional*, maka sistem yang bersangkutan harus sesuai dengan standar SQL (FIPS 127-2) sebagaimana telah dideskripsikan di dalam sistem manajemen basis data (DBMS) untuk standar aplikasi-aplikasi multi-user.
 - ⇒ Jika *tidak menggunakan Basis data relasional*, maka sistem basis data yang bersangkutan harus mampu melakukan fungsionalitas ekspor ke Sistem basis data relasional (DBMS) dan impor dari Sistem basis data relasional (DBMS).

CARA KERJA SIG

- SIG dapat merepresentasikan suatu model dunia nyata di atas layar monitor computer sebagaimana lembaran-lembaran peta dapat merepresentasikan dunia nyata di atas kertas.
- SIG mempunyai kekuatan lebih dan daya-fleksibilitas dibanding lembaran-lembaran peta kertas.
- Peta merupakan salah-satu bentuk representasi grafis milik dunia nyata.

- Obyek-obyek yang direpresentasikan di atas peta disebut : Unsur-unsur peta / map features (mis : sungai, jalan, gunung, sawah, gedung, dll)
- Peta mengorganisasikan unsur-unsurnya berdasarkan lokasi masing-masing, shg peta sangat baik didalam memperlihatkan relasi yang dimiliki oleh unsur-unsurnya.
- Gambar berikut adalah contoh tampilan peta dan unsurunsurnya :

Gambar 3.5. Contoh Tampilan Peta & Unsur-unsurnya

- Peta menggunakan unsur-unsur geometri : titik, garis dan polygon didalam merepresentasikan obyek-obyek dunia nyata.
- Sebagai ilustrasi adalah sbb:
 - a. Pada Skala besar → Unsur sungai ditampilkan sebagai unsur geometri Poligon, Pada Skala Kecil → Sungai ditampilkan sebagai garis/polyline dengan ketebalan tertentu.

- b. Jalan bebas hambatan digambarkan sebagai garis-garis dengan ketebalan tertentu.
- c. Pada Skala Besar → Unsur bangunan direpresentasikan sebagai unsur geometri polygon, Pada Skala Kecil → Unsur bangunan direpresentasikan sebagai unsur geometri titik.
- Peta menggunakan symbol-simbol grafis/geometri, ukuran,
 warna untuk membantu dalam mengidentifikasi unsur-unsur spasial berikut deskripsinya. Berikut ini beberapa contoh:
 - a. Unsur sungai diberi warna biru.
 - b. Unsur taman/kebun diberi warna hijau.
 - c. Unsur jalan bebas hambatan diberi warna merah.
 - d. Unsur jalan yg lebih kecil/setapak digambarkan menggunakan garis-garis yang tipis warna hitam.
 - e. Unsur bangunan digambarkan sebagai geometri polygon.
 - f. Label dan teks / notasi digunakan untuk membantu dalam mengidentifikasi unsur-unsur peta dengan menggunakan nama-nama unsur-unsur yangbersangkutan.
- Skala tampilan atau peta akan menentukan ukuran dan bentuk representasi unsur-unsurnya.
 - ✓ Makin besar skala peta, makin besar ukuran unsurunsurnya.
 - ✓ Contoh: Peta yg berskala 1:250.000 atau bahkan yg lebih kecil 1: 500.000 atau 1:1.000.000, unsur kota akan direpresentasikan sebagai titik, unsur-unsur jalan dan

sungai akan direpresentasikan sebagai garis-garis. Perhatikan Gambar 3.6 berikut ini:

Gambar 3.6. Tampilan Peta Skala Kecil & Unsur-unsurnya

✓ Contoh: Peta yang berskala 1:25.000 atau bahkan yang skala-skala yg lebih besar 1:5.000 atau 1: 1.000, suatu unsur kota akan direpresentasikan sebagai symbol/geometric polygon, unsur-unsur jalan dan sungai kemungkinan dapat direpresentasikan sebagai geometri garis-garis atau polygon. Perhatikan Gambar 3.7 berikut ini:

Gambar 3.7. Tampilan Peta Skala Besar & Unsur-unsurnya

- Sistem perangkat lunak SIG menyimpan semua informasi deskriptif unsur-unsur spasialnya, sebagai atribut-atribut.
- Selanjutnya SIG membentuk dan menyimpan atribut-atribut tsb, didalam tabel-tabel sistem basis data relasional (DBMS) terkait.
- Selanjutnya juga, SIG menghubungkan unsur-unsur spasialnya dengan tabel-tabel basis data yang bersangkutan.
- Sehingga:
 - ✓ Atribut-atribut spasialnya dapat diakses melalui lokasi-lokasi obyek atau unsur petanya
 - ✓ Sebaliknya, Obyek spasial atau unsur-unsur peta tsb, juga dapat diakses melalui atribut-atributnya.
- Jadi obyek-obyek spasial dapat : dicari, dipanggil,
 ditemukan berdasarkan atribut-atributnya.

• Perangkat SIG dapat menghubungkan sekumpulan unsurunsur atau obyek peta (yg diimplementasikan didalam satuan-satuan, dan disebut layer), dengan atribut-atributnya yang disimpan didalam tabel-tabel basis data atribut. Perhatikan Gambar 3.8 berikut ini:

Gambar 3.8. Tampilan relasi Layer, Tabel-tabel atribut & Basis data SIG

KEMAMPUAN SIG

Kemampuan SIG dapat dinyatakan dalam : fungsi-fungsi
 analisis spasial dan atribut yang dimiliki, jawaban jawaban / solusi yang dapat diberikan terhadap
 pertanyaan-pertanyaan yang diajukan.

PERTANYAAN KONSEPTUAL

- Kemampuan SIG dapat dilihat dari kemampuan-kemampuannya dalam menjawab pertanyaan-pertanyaan yang bersifat konseptual berikut:
 - a. What is that ?.
 - b. Where is it?.
 - c. What has changed since?.
 - d. What spatial patterns exist?.
 - e. What if?.
- Pertanyaan ke-1: What is that ?.
 - ✓ Mencari keterangan / deskripsi (atribut-atribut yg disimpan didalam tabel-tabel basis data) mengenai : Suatu unsur / obyek peta yang terdapat pada lokasi tertentu / pada posisi-posisi yg ditentukan
 - ✓ Lokasi tsb dapat dirujuk oleh :nama lokasi atau kode lokasi / kode pos atau secara langsung merujuk pada referensi geografisnya (koordinat-koordinat geodetic atau proyeksi petanya).
- Pertanyaan ke-2: Where is it?.
 - ✓ Kebalikan dari yg ke-1, memerlukan analisis spasial untuk menjawabnya.
 - ✓ Mengidentifikasikan unsur peta, yang deskripsinya (≥ 1 atributnya) ditentukan.
 - ✓ Dengan pertanyaan ini, SIG dapat menemukan lokasi-lokasi yang memenuhi beberapa syarat/kriteria sekaligus.

- Pertanyaan ke-3: What has changed since ?.
 - ✓ Bisa melibatkan pertanyaan ke-1 dan 2.
 - ✓ Untuk menjawabnya, diperlukan beberapa layers / data spasial yg didapat dari ≥ 2 pengukuran / pengamatan secara periodik.
 - ✓ Unsur-unsur didalam setiap layer dibandingkan dengan unsur-unsur yang terdapat di dalam layer lain yg sejenis, menggunakan fungsi analisis spasial / atribut.
- Pertanyaan ke-4: What spatial patterns exist?.
 - ✓ Mirip pertanyaan ke-3, tp lebih rumit.
 - ✓ Lebih menekankan pada keberadaan pola-pola yg terdapat di dalam unsur-unsur spasial atau layers suatu SIG.
- PERTANYAAN KE-5: What if ?.
 - ✓ Berkenaan dengan masalah pemodelan di dalam SIG.
 - ✓ Pemodelan di dalam SIG adalah " penggunaan fungsi-fungsi dasar manipulasi (mis : transformasi) dan analisis spasial (mis : overlay) dlm rangka : menyelesaikan persoalan yg cukup kompleks, atau memberikan solusi dan alternatifnya.

Catatan:

Overlay merupakan proses penyatuan data dari lapisan layer yang berbeda. Secara sederhana overlay disebut sebagai operasi visual yang membutuhkan lebih dari satu layer untuk digabungkan secara fisik

PERTANYAAN TAMBAHAN

- Kemampuan SIG juga dapat dilihat didalam menjawab beberapa pertanyaan berikut ini:
 - a. Pertanyaan mengenai representasi.
 - b. Pertanyaan mengenai relasi antara representasi dengan penggunanya.
 - c. Pertanyaan mengenai model dan struktur data.
 - d. Pertanyaan mengenai tampilan data geografis.
 - e. Pertanyaan mengenai analytical tools.
- Pertanyaan ke-1 : Pertanyaan mengenai representasi/ penggambaran.
 - ✓ Umumnya bersumber dari karakteristik permukaan bumi yg kompleks.
 - ✓ ..sehingga perancang SIG harus memutuskan bagaimana :
 - Cara menangkap/memasukkan fakta, data, informasi unsur-unsur yg terletak di permukaan bumi.
 - Merepresentasikannya di dalam sistem digital.

Melakukan sampling data dan format apa yang akan digunakan.

•

- ✓ Dipengaruhi oleh kriteria-kriteria yg digunakan didalam pemilihan representasi.
- ✓ ..sehingga perancang SIG harus dapat memecahkan masalah:
 - Akurasi representasi
 - Akurasi prediksi dan keputusan yg diambil
 berdasarkan: representasi, minimalisasi volume data
 yang digunakan, maksimalisasi kecepatan komputasi,
 kesesuaian dengan kebutuhan para pengguna,
 ketersediaan perangkat lunak.
- ✓ Aspek representasi harus bisa menjawab pertanyaanpertanyaan "bagaimana: mengukur akurasi, mengukur ketidakpastian, menyatakan akurasi dan ketidakpastian tsb hingga berarti bagi para pengguna SIG, mendiskripsikannya di dalam dokumen terkait, memvisualkannya di berbagai media, mensimulasikan berbagai dampaknya ".
- Pertanyaan ke-2 : Pertanyaan mengenai relasi antara representasi dengan penggunanya.
 - ✓ Mencakup pertanyaan-pertanyaan :

- Bagaimana konsep kebanyakan orang dalam berpikir mengenai bumi dan isinya.
- Bagaimana cara unsur-unsur permukaan bumi dapat direpresentasikan dengan menggunakan sistem computer, sehingga dapat dengan mudah dipahami oleh banyak orang.
- Bagaimana manusia belajar dan berkomunikasi dengan dunia/unsur-unsur geografis.
- Bagaimana keluaran SIG dapat menjadi lebih mudah untuk dimengerti oleh pengguna-penggunanya.

Pertanyaan ke-3 : Pertanyaan mengenai model dan struktur data.

- ✓ Mencakup pertanyaan-pertanyaan :
 - Bagaimana cara SIG dalam menyimpan bentuk/ representasi unsur-unsur spasial secara efektif dan efisien.
 - Bagaimana memanggil informasi yang sudah tersimpan, dengan cepat.
 - Bagaimana berkomunikasi dengan sistem-sistem lain yang sudah ada.
- Pertanyaan ke-4 : Pertanyaan mengenai tampilan data geografis.
 - ✓ Mengenai tampilan data / unsur-unsur geografis.

- ✓ Berhubungan dengan pertanyaan-pertanyaan mengenai :
 - Bagaimana pengaruh metode-metode tampilan terhadap penafsiran data / unsur-unsur geografis.
 - Bagaimana ilmu kartografi bisa mendapatkan keuntungan dari perkembangan sistem digital.
 - Bagaimana menilai keberhasilan suatu metode tampilan yang digunakan.
- Pertanyaan ke-5: Pertanyaan mengenai analytical tools.
 - ✓ Mengandung pertanyaan-pertanyaan :
 - Bagaimana relasi intuisi manusia terhadap data spasial.
 - Bagaimana meningkatkan kemampuannya dengan memanfaatkan SIG sebagai tools.
 - Metode analisis apa yg diperlukan untuk mendukung proses pengambilan keputusan dengan menggunakan SIG.
 - Bagaimana metode-metode analisis tersebut dapat direpresentasikan sed.rupa sehingga para penggunanya dapat memilih yang paling efektif dan efisien.

DARI DEFINISI

 Kemampuan SIG juga dapat dilihat dari pengertian / definisinya.

- Berikut contoh kemampuan-kemampuan SIG yang diambil dari beberapa definisi SIG :
 - a. Memasukkan dan mengumpulkan data unsur-unsur geografis (spasial dan atribut).
 - b. Mengintegrasikan data unsur-unsur geografis (spasial dan atribut).
 - c. Memeriksa, meng-update/mengedit data unsur-unsur geografis (spasial dan atribut).
 - d. Menyimpan dan memanggil kembali data unsur-unsur geografis (spasial dan atribut).
 - e. Merepresentasikan atau menampilkan data unsur-unsur geografis (spasial dan atribut).
 - f. Mengelola data unsur-unsur geografis (spasial dan atribut)
 - g. Memanipulasi data unsur-unsur geografis (spasial dan atribut)
 - h. Menganalisis data unsur-unsur geografis (spasial dan atribut)
 - i. Menghasilkan keluaran data unsur-unsur geografis dalam bentuk-bentuk : peta tematik, tabel, grafik/chart, laporan/report dalam bentuk hardcopy maupun softcopy.

FUNGSI ANALISIS

- Kemampuan SIG juga dapat dikenali dari " fungsi-fungsi analisis yg dapat dilakukannya".
- Terdapat 2 jenis fungsi analisis di dalam SIG:

- a. Fungsi analisis Spasial.
- b. Fungsi analisis atribut /basis data atribut / non-spasial.
- Fungsi analisis atribut / basis data atribut / non-spasial:

Terdiri dari operasi-operasi dasar sistem pengelolaan basis data (DBMS) dan perluasannya :

- a. Operasi-operasi dasar pengelolaan basis data, diantaranya:
 - ✓ Pembuatan basis data baru (create database)
 - ✓ Penghapusan basis data (drop database)
 - ✓ Pembuatan tabel baru (create table)
 - ✓ Penghapusan tabel (*drop table*)
 - ✓ Pengisian dan penyisipan data/record baru ke dalam tabel (add record V insert record)
 - ✓ Penambahan field baru dan penghapusan field lama (add filed, delete field)
 - ✓ Pembacaan dan pencarian data(field / record) dari tabel basis data(seek, find, search, retrieve)
 - ✓ Peng-update-an dan peng-edit-an data yang terdapat di dalam tabel basis data(update record / retrieve record)
 - ✓ Penghapusan data dari suatu tabel basis data(delete record, zap, pack)
 - √ Membuat indeks untuk setiap tabel basis data
- **b.** Perluasan operasi-operasi basis data:
 - ✓ Fungsionalitas pembacaan dan penulisan tabel-tabel basis data ke dalam sistem basis data yang lain(export & import)

- ✓ Fungsionalitas untuk berkomunikasi dengan sistem basis data yang lain
- ✓ Penggunaan kalimat-kalimat Bahasa standar SQL yang terdapat didalam sistem basis data
- ✓ Operasi / fungsi analisis lain yang sudah rutin digunakan didalam sistem basis data
- Untuk Fungsi-fungsi analisis spasial antara lain:
 - **a.** *Klasifikasi* (reclassify) : Mengklasifikasikan kembali suatu data hingga menjadi data spasial baru berdasarkan kriteria/atribut tertentu.
 - **b.** Jaringan / Network : Merujuk data spasial titik-titik atau garis-garis sebagai jaringan yang tak terpisahkan.
 - c. Overlay : Menghasilkan layer data spasial baru yang merupakan hasil kombinasi dari ≥ 2 layer yang menjadi masukannya
 - **d. Buffering**: Akan menghasilkan layer spasial baru yang berbentuk polygon dengan jarak tertentu dari unsur-unsur spasial yg menjadi masukannya.
 - e. 3D analysis: Terdiri dari sub-sub fungsi yang terkait dengan presentasi data spasial didalam ruang 3D.
 - **f. Digital Image Processing**: Nilai atau intensitas dianggap sebagai fungsi sebaran (spasial)
- Jadi SIG tidak hanya bertindak sebagai tools pembuat peta, tetapi juga:

- ✓ Mengolah dan mengelola data spasial dan non-spasial dengan volume yg besar.
- ✓ Melakukan integrasi data spasial, dengan analisis overlay, yaitu : dengan memadukan beberapa layer spasial yg berbeda.
- ✓ Mengintegrasikan data spasial secara matematis, dengan menerapkan beberapa operasi aritmatika dan logika thd atribut-atribut tertentu dari datanya.

APLIKASI-APLIKASI SIG:

- Terdapat beberapa cara dalam mengorganisasikan data dan informasi, serta melakukan analisis dan membuat presentasinya:
 - a. Menyimpan informasi SIG dalam bentuk tabel Basis Data

a custo	omer.dbf		×
10	Name	Street4.ddr	
15186008	MUSANNA	JL. IKAN NO. 12	•
15186012	UMAR ABD	JL. GAJAH NO 3	
15186002	ALI SOLEH	JL. EMAS NO. 17	
15186037	UAIDULLAH	JL. EKOR NO. 8	
15186011	QAQA SAIFULLAH	JL. MUJAIR NO.	
15186023	ABDURRAHMAN	JL. PIPIT NO. 4	Ţ
4			F

Gambar 3.9. Tampilan Daftar Pelanggan dlm bentuk Tabel Basis Data SIG

b. Mengorganisasikan INformasi SIG dalam bentuk Layer Peta Digital

Gambar 3.10.Contoh Tampilan Lokasi-lokasi Pelanggan

c. Membuat Peta Tematik dengan SIG

Gambar 3.11. Tampilan Peta-Peta Tematik Buatan SIG

d. Memvisualisasi dan Menganalisis Lokasi dengan SIG

Gambar 3.12. Contoh Tampilan Lokasi Klien, Potensi Lokasi Bisnis & Pilihannya e.Menyatakan Relasi, Pola/Pattern dan Trend didalam SIG

Gambar 3.13. Contoh Tampilan Kondisi Jalan & Lokasi Kecelakaan LL

Gambar 3.14. Contoh Tampilan Lokasi Kecelakaan, Atribut & Report Terkait

f. Bekerja dengan Layer/Tematik Peta didalam SIG

Gambar 3.15. Contoh Tampilan Layer-Layer untuk Pengembangan

Gambar 3.16. Contoh Tampilan Trade Area Supermarket, Trade Area Usulan,
Grafik Populasi & Pendapatan Rata-Rata Tahunan

KEDUDUKAN SIG

 Kedudukan SIG diantara sistem-sistem informasi yang sudah ada digambarkan seperti blok diagram berikut :

Gambar 3.17. Contoh Tampilan Kedudukan SIG Diantara SI Lainnya

PENGERTIAN SIG

- Maguire mendiskripsikan SIG dalam 2 Pendekatan/Perspektif:
 - a. Pendekatan Teknologi
 - b. Pendekatan Organisasional / Institusional
- Dengan <u>pendekatan Teknologi</u>, Maguire menggunakan 4 pendekatan didalam mendefinisikan SIG :
 - a. Orientasi pada Proses atau Fungsi ⇒ Penekanan pada kemampuan SIG dalam penanganan informasi (Mis. Dlm hal : menyimpan, memanggil, memanipulasi, menampilkan data geografis)
 - **b.** Sebagai Aplikasi. ⇒ Membagi SI menurut masalah yg sedang dikelolanya (Mis: SI Pertahanan, SI Perencanaan)
 - c. Sebagai toolbox ⇒ Menekankan aspek umum software SIG sebagai alat bantu untuk memanipulasi data spasial.

- d. Sebagai Basis Data ⇒ Memandang software SIG sbg suatu sistem basis data.
- Implementasi perangkat SIG dapat dipengaruhi beberapa faktor, yaitu :
 - ✓ Target
 - ✓ Pertimbangan cost-benefit
 - ✓ Stake-holders
 - ✓ Dukungan manajemen
 - ✓ Kultur organisasi
- Berdasarkan seberapa besar tingkat kepastian & seberapa baik pendefinisian faktor-faktor tsb akan berpengaruh terhadap para pengambil keputusan SIG, maka ada <u>2 skenario untuk</u> mengimplementasikan SIG:
 - a. SIG Lokal : Skenario yg sangat dipengaruhi oleh kepastian / ketentuan didalam mendefinisikan semua/sebagian besar faktor-faktor kunci implementasi.

CONTOH:

- SIG yg dikembangkan untuk menyediakan produk informasi spasial untuk memenuhi kebutuhan lokal suatu proyek / proses bisnis yg terdapat didalam suatu organisasi.
- ь. SIG Global : Skenario yg sangat dipengaruhi oleh ketidakpastian didalam penentuan semua / sebagian besar faktor-faktor kunci didalam pengimplementasian SIG-nya.

CONTOH:

- SIG yg dikembangkan dengan tujuan untuk memenuhi kebutuhan komunitas yg lebih global, mis : BHMN, Propinsi, Negara, Beberapa negara yg berdekatan
- Dengan membandingkan definisi-definisi SIG, maka <u>ada 2</u>
 <u>karakteristik pendekatan Organisasional</u> yang dapat diketahui:
 - a. Mendeskripsikan SIG dalam pengertian elemenelemen"generiknya".
 - b. Mendiskripsikan SIG dalam pengertian konteks/struktur organisasionalnya

• Definisi SIG dalam Pengertian sejumlah elemen:

- 1. SIG terdiri dari 5 elemen dasar : data, hardware, software, prosedur, manusia (Dangermond, 1988)
- SIG terdiri dari 3 komponen : teknologi, basis data, infrastruktur (Dickinson & Calkins, 1988)
- 3. SIG: Suatu entitas institusional yg mencerminkan suatu struktur organisasi yg mengintegrasikan teknologi dengan "basis data, keahlian dan kontinuitas dukungan finansial". (Carter, 1989)
- 4. SIG memiliki 3 komponen: Perangkat keras computer, sejumlah modul perangkat lunak aplikasi, konteks organisasional yg sesuai". (Burrough, 1990)
- 5. SIG terdiri dari 4 elemen dasar yg dioperasikan didalam konteks institusional :" hardware, software, data, liveware" (Maguire, 1991).

• Elemen-elemen SIG:

- Data ⇒ Semua data (spasial, non spasial/atribut) yg dapat diakses dan diperlukan untuk memenuhi kebutuhan informasi geografis.
- 2. Teknologi Informasi ⇒ Semua perangkat keras, perangkat lunak, beserta teknologi komunikasi terkait yg diperlukan untuk memenuhi kebutuhan informasi geografis.
- 3. Standard ⇒ Semua praktek / operasional yang diperlukan untuk memfasilitasi pembagian elemen-elemen SIG.
- 4. Personil dengan Keahlian SIG ⇒ Semua pengetahuan, keahlian, prosedur, sistem, teknik yg didapatkan oleh stakeholders, yg diperlukan untuk memfungsikan SIG dengan baik dalam memenuhi kebutuhan2 informasi.
- organisasional Setting ⇒ Semua lingkungan operasi, teknis, politik, atau finansial, yang terbentuk oleh interaksiinteraksi diantara para stakeholders dimana SIG akan difungsikan.