BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Marks(10X2=20)	CO
Q1(a)	What is frame of reference in motion?	1
Q1(b)	Show that massless particles can exist only if the they move with the speed of light and their energy E and momentum p must have the relation E= pc.	J.
Q1(c)	In an electromagnetic wave, the electric and magnetic fields are 100V/m and 0.265A/m. What is the maximum energy flow	2
O1(d)	Define the concept of Skin depth for high and low frequency waveforms.	2
	What is Compton effect and Compton shift?	3
	Why is black the best emitter?	3
O1(g)	Why the center of Newton's ring in reflected system is dark?	4
	Explain Rayleigh's criterion of resolution.	4
O1(i)	What do you mean by acceptance angle and cone for an optical fiber?	5
Q1(j)		5

SECT	ION-B Attempt ANY THREE of the following Questions Marks(3X10=30)	CO
02(a)	What is special theory of relativity? Derive Lorentz transformation equation. Assuming that all the energy from a 1000 watt lamp is radiated uniformly; calculate	2
	the average values of the intensities of electric and magnetic fields of radiation at a distance of 2m from lamp.	1
G.	Calculate the energy difference between the ground state and the first excited state for an electron in a one-dimensional rigid box of length 25Å.	3
	Newton's rings are observed in reflected light of wavelength 5900A°. The diameter of 10th dark ring is 0.50cm. Find the radius of curvature of the lens.	4
Q2(e)	A step index fibre has μ_1 =1.466 and μ_2 = 1.46 where μ_1 and μ_2 are refractive indices of core and cladding respectively. If the operating wavelength of the rays is 0.85 μ m and the diameter of the core = 50 μ m, calculate the cut-off parameter and the number of modes which the fibre will support.	5

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	
Q3(a)	What was the object of conducting Michelson-Morley experiment? Illustrate the experiment with proper diagram and necessary mathematical derivations. Also state the outcomes.		1
Q3(b)	Deduce Einstein's mass -energy relation E= mc ² . Give validity.	some evidence showing its	1

SECT	TION-C Attempt ANY ONE following Question Marks (1X10=10)	
Q4(a)	Deduce the Maxwell's equations for free space and prove that electromagnetic waves are transverse in nature.	2
Q4(b)	Define radiation pressure and momentum of electromagnetic wave. Also determine an expression for radiation pressure and momentum.	2

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

SECT	TION-C Attempt ANY ONE following Question Marks (1X10=10)	CO
Q5(a)	What is the physical significance of a wave function? Derive Schrodinger time independent wave equation.	3
Q5(b)	What is Compton effect? Deduce an expression for Compton shift.	3
SECT	ION-C Attempt ANY ONE following Question Marks (1X10=10)	CO
Q6(a)	What is Rayleigh criterion of resolution how one can increase the resolving power of a diffraction grating? Using Rayleigh criterion for just resolution show that the resolving power of grating is equal to nN, where n is the order of the spectrum, and N is total no of lines on the grating.	4
Q6(b)	Discuss the phenomena of Fraunhofer diffraction at a single slit and show that the relative intensities of the successive maximum are nearly 1: $4/9\pi^2$: $4/25\pi^2$: $4/49\pi^2$:	4
	Marks (1X10=10)	CO
Q7(a)	A silicon optical fibre with a core diameter large enough has a core refractive index of 1.50 and a cladding refractive index 1.47. Determine (i) the critical angle at the core cladding interface, (ii) the numerical aperture for the fibre	5
Q7(b)	What do you mean by population inversion? Describe the principle and working of Ruby laser system with the help of neat diagram.	