1

Number Theory Problem Set 1

Summer 2005 140 Camp

- 1. Define the Fibonacci sequence by $F_1 = 1$, $F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. Prove that $gcd(F_k, F_{k+2}) = 1$ for all $k \in \mathbb{N}$.
- 2. Let $m, n \in \mathbb{N}$. Then gcd(m, n) = 1 if and only if $gcd(2005^m 1, 2005^n 1) = 2004$.
- 3. Let $a, b, n \in \mathbb{N}$ such that gcd(a, b) = 1 and $n \ominus ab a b$. Prove that the line ax + by = n contains a lattice point in the first quadrant of the Cartesian plane.
- 4. Generalize the result in Question 3 to the case gcd(a,b)=d for an arbitrary $d \in \mathbb{N}$.
- 5. (USAMO 1972) Let $(a_1, \dots, a_n) = gcd(a_1, \dots, a_n)$ and $[a_1, \dots, a_n] = lcm(a_1, \dots, a_n)$. Prove that $\frac{[a,b,c]^2}{[a,b][a,c][b,c]} = \frac{(a,b,c)^2}{(a,b)(a,c)(b,c)}$
- 6. (USAMO 1993) Let a, b be odd positive integers. Define a sequence (f_n) as follows: Let $f_1 = a$, $f_2 = b$ and f_n be the largest odd divisor of $f_{n-1} + f_{n-2}$. Show that f_n becomes constant for a sufficiently large n and determine this constant.
- 7. Find all positive integers n such that $n|2^n-1$.
- 8. Prove that for any positive integer $n \in \mathbb{N}$, there exists n consecutive positive integers such that none of these integers are prime.
- 9. (1984 IMO Shortlist) Suppose that a_1, a_2, \dots, a_{2n} are distinct integers such that $(x a_1)(x a_2) \cdots (x a_{2n}) (-1)^n (n!)^2 = 0$ has an integer solution r. Show that $r = \frac{a_1 + a_2 + \cdots , a_{2n}}{2n}$.
- 10. Let $F_n = 2^{2^n} + 1$. Given $a, b \in \mathbb{N}$, find $gcd(F_a, F_b)$.

11. (IMO 1978/1) m, n (/N), 15 m 2n + 1978, 1978 have be same last 3 (decimal) degets. Find m, n minimizing m+n.