This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

(Currently Amended)
 A chiral Chiral dopant having a laterally alkylated phenyl unit of the general formula I:

$$R\text{-}(A\text{-}Z)_n \xrightarrow{\hspace*{1cm} \hspace*{1cm} \hspace*$$

in which:

Q* is a unit having an asymmetric carbon atom,

K is -CH₂-, -O-, -CH₂CH₂-, -OCH₂-, -CH₂O-, -OCF₂-, -CF₂O-, -C≡C-, -CH=CHor a single bond,

L and M are alkyl, cycloalkyl, O-alkyl, or aryl, where L must be different from M,

- R is -H, F. Cl, or an alkyl or alkenyl radical having from 1 to 12 carbon atoms or alkenyl radical having 2 to 12 carbon atoms, which is unsubstituted or at least monosubstituted by halogen, and in which one or more non-adjacent -CH₂-groups are optionally may be replaced by -O- or -S- and/or -C≡C-, as well as F or Cl;
- A are, independently of one another, are a single bond, 1,4-phenylene, in which, in addition, one or more H atoms are optionally may be replaced by F, 1,4-cyclohexylene, in which, in addition, one or two CH2 groups are optionally may be replaced by -O-, or 1,4-bicyclo[2,2,2]octanyl,
- Z are, independently of one another, are a single bond, -CH₂-CH₂-, -O-CH₂-,

- V and W are, independently of one another, H, F, Cl, or a are linear or branched alkyl or alkoxy having from 1 to 12 carbon atoms which is unsubstituted or monosubstituted or polysubstituted by halogen, or H, F or Cl,
- X and Y <u>are</u>, independently of one another, are H, F, Cl, trimethylsilyl, or a linear or branched alkyl or alkoxy having o or p carbon atoms which is unsubstituted or monosubstituted or polysubstituted by halogen, where
- o and p <u>are</u>, independently of one another, are identical or different and are integers in the range from 1 to 12, H, F or Cl, where in the case of H, F and Cl, o or p = 0, or trimethylsilyl, and
- n is from 1 to 3.

with the proviso that X and/or Y is/are either an unsubstituted or halogen-substituted alkyl or alkoxy radical having o or p carbon atoms, where the sum o + p is ≥ 2 , or a trimethylsilyl radical.

2. (Currently Amended)

A chiral Chiral dopant according to Claim 1,
wherein one of eharacterised in that unit Q* having an asymmetric earbon atom has the
following structure

in which

- K is CH₂, O, CH₂CH₂, OCH₂, CH₂O, OCF₂, CF₂O, C=C, CH=CH-or a single bond, and
- L and M are alkyl; is cycloalkyl, O-alkyl, alkenyl, alkynyl or aryl, where L must be different from M
- (Currently Amended) <u>A chiral Chiral</u> dopant according to Claim 1, <u>wherein</u> characterised in that unit Q* is having an asymmetric carbon atom has one of the

following structures:

4. (Currently Amended) <u>A chiral</u> dopant according to Claim 1, <u>which is a compound of formula (Ia), (Ib) or (Ic)</u> characterised in that it has one of the following-basic structures:

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

$$A \cdot (A \cdot Z)_n \xrightarrow{\qquad \qquad } Q^*$$

5. (Cancelled)

- 6. (Currently Amended) <u>A liquid-crystalline Liquid-erystalline</u> mixture comprising at least one chiral dopant according to Claim 1.
- 7. (Currently Amended) An electro-optical Electro-optical display element containing a liquid-crystalline mixture according to Claim 6.
- $8. \qquad (New) \qquad \quad A \ chiral \ dopant \ according \ to \ Claim \ 1, \ wherein \ one \ of \ L \ and \ M$ is alkyl.
- 9. (New) A chiral dopant according to Claim 1, wherein both L and M are alkyl.
 - 10. (New) A chiral dopant according to Claim 1, wherein Q* is

$$H_3$$
C (g) H CH_3 (h)

(f)

11. (New) A chiral dopant according to Claim 3, which is a compound of formula (Ia), (Ib) or (Ic)

$$R-(A-Z)_n$$
 Q^*
 Q
(Ia)
$$R-(A-Z)_n$$
 Q^*

$$R-(A-Z)_n$$

$$Q^*$$
(lc).

12. (New) A chiral dopant according to Claim 9, which is a compound of formula (Ia), (Ib) or (Ic)

$$\text{R-(A-Z)}_n \hspace{-1em} \swarrow \hspace{-1em} \hspace{-1e$$

$$R-(A-Z)_n$$
 Q^* (Ib)

$$R-(A-Z)_n$$
 (Ic).

13. (New) A chiral dopant according to Claim 10, which is a compound of formula (Ia), (Ib) or (Ic)

$$R-(A-Z)_n$$
 Q^* (Ia)

$$R-(A-Z)_n \xrightarrow{\qquad \qquad } Q^* \qquad \qquad (Ib)$$

$$\mathsf{R}\text{-}(\mathsf{A}\text{-}\mathsf{Z})_{\mathsf{n}} \underbrace{\hspace{1.5cm} \mathsf{P}}_{\mathsf{Q}^{\mathsf{A}}} \mathsf{Q}^{\mathsf{A}} \tag{lc)}.$$

14. (New) A chiral dopant according to Claim 1, which is a compound of one of the following formulae

$$R-(A-Z)_n$$
 (laa)

$$R-(A-Z)_n$$
 (lab)

$$R-(A-Z)_n \xrightarrow{C_2H_5} Q^*$$
 (lac)

$$R-(A-Z)_n$$
 (lad)

(lbc)

(lbd)

$$\mathsf{R-}(\mathsf{A-Z})_{\mathsf{n}} \underbrace{\hspace{1cm}}^{\mathsf{F}} \mathsf{CF}_{\mathsf{3}} \\ \mathsf{Q^*} \\ \mathsf{(lbf)}$$

$$\mathsf{R-}(\mathsf{A-Z})_{\mathsf{n}} \underbrace{\hspace{1cm} \mathsf{CH}_{\mathsf{3}}}_{\mathsf{CH}_{\mathsf{3}}}$$

$$(A-Z)_n - Q^*$$
 (Ibi)

$$R-(A-Z)_n$$
 (Ica)

$$\operatorname{R-(A-Z)}_n = \bigcap_{F} \operatorname{Q^*}$$

$$R-(A-Z)_n$$
 Q^* (lcd)

$$R-(A-Z)_n$$
 Q^* (Ici).

- (New) A chiral dopant according to Claim 14, which is a compound of formula (Iab), (Iac), (Iag) or (Ibe).
 - 16. (New) A chiral dopant according to Claim 15, wherein Q* is

$$-O$$
 H $C^{*-}C_{6}H_{13}$ (m) $-O$ $C^{*-}C_{2}H_{5}$ (r) C_{1}

or
$$C^*-C_2H_5$$
 (s).

 $17. \hspace{0.5cm} \text{(New)} \hspace{0.5cm} A \hspace{0.1cm} \text{chiral dopant according to Claim 1, wherein } R\text{-}(A\text{-}Z)_n \hspace{0.1cm} \text{is of one of the following formulae}$

wherein alkyl is an alkyl radical having 1 to 12 carbon atoms, which is straight-chain or branched.

- 18. (New) A chiral dopant according to Claim 17, wherein alkyl is a straight-chain alkyl radical having 1, 2, 3, 4, 5, 6 or 7 carbon atoms.
- 19. (New) A chiral dopant according to Claim 17, wherein $R-(A-Z)_n$ is of formula (5), (7), (9), (17) or (19).
- 20. (New) A chiral dopant according to Claim 1, wherein the compound of formula I is a compound of one of the following formulae

R ¹		Q ¹	
alkyl	(5´)	CH ₃	(h)
		011	
alkyl—————	(7')	CH ₃	(h)
Alkyl	(9′)	CH ₃	(h)
alkyl	(17′)	CH ₃	(h)
alkyl	(19′)	CH ₃	(h)
alkyl———	(5')	H ₃ C CH ₃	(i)
alkyl	(7')	H ₃ C CH ₃	(i)
alkyl	(9.)	H ₃ C CH ₃	(i)

alkyl———	(17′)	H ₃ C CH ₃	(i)
alkyl—	(19′)	H ₃ C CH ₃	(i)
alkyl———	(5′)	—O H C*-C ₆ H ₁₃	(m)
alkyl—	(7')	O H C*-C ₆ H ₁₃ H ₃ C	(m)
alkyl—	(9′)		(m)
alkyl	(17')	—Q H C*-C ₆ H ₁₃	(m)
alkyl	(19′)	—Q H C*-C ₆ H ₁₃	(m)
alkyl———	(5´)	-0 C*-C ₂ H ₅	(r)
alkyl—————	(7')	-0 C*-C ₂ H ₅	(r)

wherein alkyl is a straight-chain alkyl radical having 1 to 7 carbon atoms.

are, each independently of one another, is an alkyl radical and/or an alkoxy radical having from 1 to 7 carbon atoms, which is straight-chain or branched.