

Module 5

Use Case 1

LESSON 1

Data Preparation: **Cleaning** and Wrangling

José Manuel García Nieto – University of Málaga

- The context of data analytics
 - One of the most common mistakes of data analytic projects is thinking that they start with "analysis"
 - In their natural form, the "Raw Data" usually have registry errors that make an exact analysis impossible
 - All the data records have to be pre-processed:
 - In other words, the data must be cleaned, unified, consolidated and normalized, so that it can be used and extract valuable information.


```
rs743534 10 135349226 GG
rs7435347 4 156654735 AG
rs743537 9 130634944 AA
rs743539 9 130633904 TG
rs7435399 4 24765819 TC
rs7435410 4 89456219 AG
rs7435410 4 89456219 AG
rs7435410 4 69426096 GA
rs743554 17 73754248 CC
rs7435615 4 20399168 AG
rs7435615 4 20399168 AG
rs743567 14 23890982 AA
rs743567 14 23890982 AA
rs743567 14 23890982 AA
rs7435692 4 88489929 AC
rs743578 4 116426581 TC
rs743577 1 11119135 GA

Genomapp
```


- The context of data analytics
 - Any data project needs a previous step to be successful, which comprises two main tasks:
 - Data Cleaning
 - Data Wrangling
 - In fact, they are usually the most time consuming for data analysts
 - According to a survey conducted in 2017, a data analyst can spend, on average, 80% of their time on Data Wrangling.

- Tools and methods for data preparation
 - Commercial: Trifacta https://www.trifacta.com/
 - Open source: Open Refine https://openrefine.org/

• Do it by yourself!

Data Cleaning and Preparation

- Handling Missing Data
 - Filtering Out Missing Data
 - Filling In Missing Data
- Data Transformation
 - Removing Duplicates
 - Transforming Data Using a Function or Mapping
 - Replacing Values
 - Renaming Axis Indexes
 - Discretization and Binning
 - Detecting and Filtering Outliers
 - Permutation and Random Sampling
 - Derived Variables
- String Manipulation
 - String Object Methods
 - Regular Expressions

Data Cleaning and Preparation

- Handling Missing Data
 - Filtering Out Missing Data
 - Filling In Missing Data
- Data Transformation
 - Removing Duplicates
 - Transforming Data Using a Function or Mapping
 - Replacing Values
 - Renaming Axis Indexes
 - Discretization and Binning
 - Detecting and Filtering Outliers
 - Permutation and Random Sampling
 - Derived Variables
- String Manipulation
 - String Object Methods
 - Regular Expressions

- Handling Missing Data
 - For numeric data, pandas uses the floating-point value NaN (Not a Number) to represent missing data

```
In [10]: string_data = pd.Series(['aardvark', 'artichoke', np.nan, 'avocado'])

In [11]: string_data
Out[11]:
0 aardvark
1 artichoke
2 NaN
3 avocado
dtype: object
```

```
In [12]: string_data.isnull()

Out[12]:
0 False
1 False
2 True
3 False
dtype: bool
```


- Handling Missing Data
 - The built-in Python **None** value is also treated as NA in object arrays

```
In [13]: string_data[0] = None

In [14]: string_data.isnull()
Out[14]:
0 True
1 False
2 True
3 False
dtype: bool
```

- NA Handling methods
 - dropna: Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much missing data to tolerate
 - fillna: Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'
 - isnull: Return boolean values indicating which values are missing/NA
 - notnull: Negation of isnull

- Handling Missing Data: <u>Filtering Out Missing Data</u>
 - dropna on a Series, it returns the Series with only the non-null data and index values

```
In [15]: from numpy import nan as NA

In [16]: data = pd.Series([1, NA, 3.5, NA, 7])

In [17]: data.dropna()

Out[17]:
0 1.0
2 3.5
4 7.0
dtype: float64
```

This is equivalent to:

```
In [18]: data[data.notnull()]
Out[18]:
0 1.0
2 3.5
4 7.0
dtype: float64
```


- Handling Missing Data: <u>Filtering Out Missing</u>
 Data
 - dropna on Dataframe, it drops rows or columns that are all NA or only those containing any NAs. dropna by default drops any row containing a missing value:
 - Passing how='all' will only drop rows that are all NA:

```
In [19]: data = pd.DataFrame([[1., 6.5, 3.], [1., NA, NA],
                                       [NA, NA, NA], [NA, 6.5, 3.]])
In [20]: cleaned = data.dropna()
In [21]: data
Out[21]:
             1.0
                                      3.0
0
             1.0
                         NaN
                                      NaN
                                      NaN
             NaN
                         NaN
3
                         6.5
                                      3.0
             NaN
In [22]: cleaned
Out[22]:
                                      3.0
0
            1.0
```

• To drop columns, pass axis=1:

In [24]: data.dropna(axis=1, how='all')

- Handling Missing Data: <u>Filtering Out Missing Data</u>
 - Filter out DataFrame rows tends to concern time series data
 - Suppose you want to keep only rows containing a certain number of observations. You can indicate this with the thresh argument:

- Handling Missing Data: Filling In Missing Data
 - Rather than filtering out missing data (and potentially discarding other data along with it), you may want to fill in the "holes" in any number of ways
 - fillna method with a constant replaces missing values with that value
 - fillna with a dict, can use a different fill value for each column
 - **fillna** returns a new object, but it is possible to modify the existing object <u>in-place</u>

 In [35]: = df.fillna(0, inplace=True)

- Handling Missing Data: <u>Filling In Missing Data</u>
 - A set of interpolation methods can be also used with fillna:
 - **ffill:** to fill from front values

Máster en

bfill: to backward fill the missing values

pass the mean or median value of a Series

```
ArgumentDescriptionvalueScalar value or dict-like object to use to fill missing valuesmethodInterpolation; by default 'ffill' if function called with no other argumentsaxisAxis to fill on; default axis=0inplaceModify the calling object without producing a copylimitFor forward and backward filling, maximum number of consecutive periods to fill
```

```
In [43]: data = pd.Series([1., NA, 3.5, NA, 7])
In [44]: data.fillna(data.mean())
Out[44]:
0    1.000000
1    3.833333
2    3.500000
3    3.833333
4    7.000000
dtype: float64
```


Data Cleaning and Preparation

- Handling Missing Data
 - Filtering Out Missing Data
 - Filling In Missing Data
- Data Transformation
 - Removing Duplicates
 - Transforming Data Using a Function or Mapping
 - Replacing Values
 - Renaming Axis Indexes
 - Discretization and Binning
 - Detecting and Filtering Outliers
 - Permutation and Random Sampling
 - Derived Variables
- String Manipulation
 - String Object Methods
 - Regular Expressions

Data Transformation: <u>Removing Duplicates</u>

DataFrame method duplicated returns a boolean Series indicating

whether each row is a duplicate

• drop_duplicates solves this issue

```
In [48]: data.drop_duplicates()
Out[48]:
    k1    k2
0    one    1
1    two    1
2    one    2
3    two    3
4    one    3
5    two    4
```

```
In [46]: data
Out[46]:
    k1    k2
0    one    1
1    two    1
2    one    2
3    two    3
4    one    3
5    two    4
6    two    4
```

```
In [47]: data.duplicated()
Out[47]:
0    False
1    False
2    False
3    False
4    False
5    False
6    True
dtype: bool
```

```
    Specify any subset of columns to detect duplicates
```

```
In [49]: data['v1'] = range(7)
```

```
In [51]: data.drop_duplicates(['k1', 'k2'], keep='last')
Out[51]:
    k1 k2 v1
0 one 1 0
1 two 1 1 Keep='last' will return the last
2 one 2 2 duplicate
3 two 3 3 Instead of the first one
4 one 3 4
6 two 4 6
```


- Data Transformation: <u>Transforming Data Using a Function or Mapping</u>
 - For many datasets, you may wish to perform some transformation based on the values in an array, Series, or column in a DataFrame
 - Consider the following data collected about various kinds of meat

```
In [53]: data
Out[53]:
          food
                ounces
         bacon
                   4.0
                   3.0
   pulled pork
                  12.0
         bacon
     Pastrami
                   6.0
  corned beef
                   7.5
                   8.0
         Bacon
     pastrami
                   3.0
    honey ham
                   5.0
                   6.0
     nova lox
```

We want to add a column indicating the type of animal that each food came from. Let's write down a mapping of each distinct meat type to the kind of animal:

```
meat_to_animal = {
  'bacon': 'pig',
  'pulled pork': 'pig',
  'pastrami': 'cow',
  'corned beef': 'cow',
  'honey ham': 'pig',
  'nova lox': 'salmon'
```

```
In [55]: lowercased = data['food'].str.lower()
```

Then we map

```
In [57]: data['animal'] = lowercased.map(meat to animal)
In [58]: data
Out[58]:
          food
               ounces
                        animal
         bacon
                   4.0
                           pig
  pulled pork
                   3.0
                           pig
                  12.0
         bacon
                           pig
      Pastrami
                   6.0
                           COW
  corned beef
                   7.5
                           COW
         Bacon
                           pig
      pastrami
                           COW
     honey ham
                            piq
      nova lox
                         salmon
```

Alternatively, we may use a lambda function to do the same

```
In [59]: data['food'].map(lambda x: meat_to_animal[x.lower()])
```


- Data Transformation: <u>Replacing Values</u>
 - replace provides a simpler and more flexible way to substitute values
 Let's consider this Series
 - We can use replace, producing a new Series (unless you pass inplace=True)

```
In [62]: data.replace(-999, np.nan)
```

replace multiple values at once, you instead pass a list and then the substitute value

```
In [63]: data.replace([-999, -1000], np.nan)
```

To use a different replacement for each value, pass a list of substitutes

```
In [64]: data.replace([-999, -1000], [np.nan, 0])
```

The argument passed can also be a dict

```
In [65]: data.replace({-999: np.nan, -1000: 0})
```

```
In [61]: data
Out[61]:
0     1.0
1     -999.0
2     2.0
3     -999.0
4     -1000.0
5     3.0
dtype: float64
```

```
Out[65]:
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64
```


- Data Transformation: Renaming Axis Indexes
 - Axis labels can be similarly transformed by a function or mapping of some form to produce new differently labelled objects

Axis indexes have a map method

```
In [67]: transform = lambda x: x[:4].upper()
```


- Data Transformation: Renaming Axis Indexes
 - rename method: to create a transformed version of a dataset

without modifying the original

```
In [71]: data.rename(index=str.title, columns=str.upper)
Out[71]:
     ONE    TWO    THREE    FOUR
Ohio     0    1    2   3
Colo     4    5    6    7
New     8    9    10   11
```

 rename can be used in conjunction with a dict-like object providing new values for a subset of the axis labels

To modify a dataset in-place, pass **inplace=True**

```
In [73]: data.rename(index={'OHIO': 'INDIANA'}, inplace=True)
```

special

Categorical

object

Big Data e Inteligencia Artificial

- Data Transformation: <u>Discretization and Binning</u>
 - Continuous data is often discretized or otherwise separated into "bins" for analysis

```
In [75]: ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
```

• Let's divide these into bins of 18 to 25, 26 to 35, 36 to 60, and finally 61 and older: use **cut** function in pandas

```
In [76]: bins = [18, 25, 35, 60, 100]
In [77]: cats = pd.cut(ages, bins)

In [78]: cats
Out[78]:
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]
Length: 12
Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]</pre>
```

Notación	Intervalo
[a,b]	$a \le x \le b$
[a,b)	$a \le x < b$
(a,b]	$a < x \le b$
(a,b)	a < x < b

Hotacion	IIICCI Valo
[a,b]	$a \le x \le b$
[<i>a</i> , <i>b</i>)	$a \le x < b$
(a,b]	$a < x \le b$
(a b)	a < x < h

Notación Intervalo

 Data Transformation: <u>Discretization and Binning</u>
--

- pandas.cut:
 - like an array of strings indicating the bin name
 - internally it contains a categories array specifying the distinct category names along with a labelling for the ages data in the codes attribute

a parenthesis means that the side is *open*, while the square bracket means it is *closed* (inclusive);

It can be changed by passing right=False

In [82]: pd.cut(ages, [18, 26, 36, 61, 100], right=False)

Histograming

Data Transformation: Discretization and Binning

- pandas.cut:
 - It allows to pass own bin names by passing a list or array to the labels option

```
In [83]: group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior']
In [84]: pd.cut|(ages, bins, labels=group_names)
Out[84]:
[Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, MiddleAged, YoungAdult]
Length: 12
Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]</pre>
```

 Compute equal-length bins based on the minimum and maximum values in the data

```
precision=2 option limits the
decimal precision to two digits
```

```
In [85]: data = np.random.rand(20)

In [86]: pd.cut(data, 4, precision=2)
Out[86]:
[(0.34, 0.55], (0.34, 0.55], (0.76, 0.97], (0.76, 0.97], (0.34, 0.55], ..., (0.34, 0.55], (0.34, 0.55], (0.34, 0.55], (0.34, 0.55], (0.12, 0.34]]
Length: 20
Categories (4, interval[float64]): [(0.12, 0.34] < (0.34, 0.55] < (0.55, 0.76] < (0.76, 0.97]]</pre>
```


- Data Transformation: Discretization and Binning
 - pandas.qcut: bins the data based on sample quantiles
 - by definition roughly equal-size bins are obtained

Similar to cut you can pass your own quantiles (numbers between 0 and 1, inclusive)

```
In [91]: pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])
```


- Data Transformation: <u>Detecting and Filtering Outliers</u>
 - It's a matter of array indexing
 - Having this DataFrame:

• Let's find values in one of the columns exceeding 3 in absolute

value:

```
In [94]: col = data[2]
In [95]: col[np.abs(col) > 3]
Out[95]:
41    -3.399312
136    -3.745356
Name: 2, dtype: float64
```

cap values outside the interval –3 to 3:

np.sign(data) produces 1 and -1values based on whether the valuesin data are positive or negative

```
In [92]: data = pd.DataFrame(np.random.randn(1000, 4))
In [93]: data.describe()
Out[93]:
                                                1000.000000
      1000.000000
                    1000.000000
                                  1000.000000
count
          0.049091
                        0.026112
                                     -0.002544
                                                  -0.051827
mean
                                                   0.998311
          0.996947
                       1.007458
                                     0.995232
std
                                    -3.745356
min
         -3.645860
                       -3.184377
                                                  -3.428254
25%
         -0.599807
                       -0.612162
                                     -0.687373
                                                  -0.747478
                                    -0.022158
                                                  -0.088274
50%
          0.047101
                       -0.013609
                       0.695298
                                     0.699046
75%
          0.756646
                                                   0.623331
                       3.525865
                                     2.735527
          2.653656
                                                   3.366626
max
```

```
In [97]: data[np.abs(data) > 3] = np.sign(data) * 3
In [98]: data.describe()
Out[98]:
                                  1000.000000
                                                1000.000000
       1000,000000
                    1000,000000
          0.050286
                        0.025567
                                    -0.001399
                                                  -0.051765
mean
                       1.004214
std
          0.992920
                                     0.991414
                                                   0.995761
         -3.000000
                      -3.000000
                                    -3.000000
                                                  -3.000000
min
25%
         -0.599807
                       -0.612162
                                    -0.687373
                                                  -0.747478
50%
          0.047101
                       -0.013609
                                    -0.022158
                                                  -0.088274
75%
          0.756646
                       0.695298
                                     0.699046
                                                   0.623331
                                     2.735527
                                                  3.000000
max
          2.653656
                       3.000000
```


Data Transformation: <u>Detecting and Filtering Outliers</u>

Remove all the random numbers that lie in the lowest quantile and the highest quantile

```
x = pd.Series(np.random.normal(size=size)) # 200 values
x = x[x.between(x.quantile(.15), x.quantile(.85))] # without outliers
print(x) # Now only 140 values
```

```
0 0.691716

1 0.519569

3 -0.145321

4 -0.490216

5 -0.357589

...

191 -0.254481

192 0.808355

194 -0.755343

196 -0.132525

199 -0.494869

Length: 140, dtype: float64
```

With two axes

```
import datetime

todays_date = datetime.datetime.now().date()
dates = pd.date_range(todays_date-datetime.timedelta(10), periods=size, freq='D')

rando_nums = np.random.normal(size=size)
columns = ['rando']

df = pd.DataFrame(rando_nums, index=dates, columns=columns)
df  # 200 random numbers indexed by days in a week
df.plot().get_figure()
```

p

```
y = df['rando']
removed_outliers = y.between(y.quantile(.05), y.quantile(.95))

print(str(y[removed_outliers].size) + "/" + str(size) + " data points remain.")

y[removed_outliers].plot().get_figure()
```


np.percentile

• Data Transformation: Permutation and Random Sampling

permutation with the length of the axis you want to permute produces an array

of integers indicating the new ordering

```
In [100]: df = pd.DataFrame(np.arange(5 * 4).reshape((5, 4)))
In [101]: sampler = np.random.permutation(5)
In [102]: sampler
Out[102]: array([3, 1, 4, 2, 0])
```

 To select a random subset without replacement, you can use the sample method on Series and DataFrame

```
In [105]: df.sample(n=3)
Out[105]:
     0    1    2    3
3    12    13    14    15
4    16    17    18    19
2    8    9    10    11
```

In [103]: df
Out[103]:

4 16 17 18 19

- Data Transformation: Derived Variables
 - Create one or more variables based on other variable(s)
 - Ex) From the "Date" variable derive the "Year", "Month", "Day", "Weekday", etc.

Date	←	Year	Month	Day	Weekday	
2009-8-21		4	2009	8	21	Friday
2013-8-27		2013	8	27	Tuesday	
2019-2-11		2019	2	11	Monday	

- Ex) From the "X_coordinate" and "Y_coordinate" derive the "Distance" variable:
 - Distance = $\sqrt{X_{coordinate^2} + Y_{coordinate^2}}$

X_coordinate	Y_coordinate		Distance
3	4		5
5	12		13
9	12	_	15

- Data Transformation: Derived Variables
 - Dealing with categorical variables: **Dummy variables**
 - A dummy variable is a derived variable that can have only 0 or 1 as value.
 - A categorical variable generates "Category count 1" dummy variables.
 - Ex) "Gender" variable with two category values: "male" and "female".
 - → Only one dummy variable is required: "Gender_male".

Gender		Gender_male
female		0
male		1
pandas.get_dummies(date	a, prefix=None, prefix	<_sep='_', dummy_na=False,

https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html

- Data Transformation: Derived Variables
 - Dealing with categorical variables: **Dummy variables**
 - Ex) "Gender" variable with two category values: "male" and "female".

```
# Load the data
df = pd.read_table('http://data.princeton.edu/wws509/datasets/salary.dat',delim_whitespace=True)
# Take a look
df.head()
```

	sx	rk	yr	dg	yd	sl
0	male	full	25	doctorate	35	36350
1	male	full	13	doctorate	22	35350
2	male	full	10	doctorate	23	28200
3	female	full	7	doctorate	27	26775
4	male	full	19	masters	30	33696

dummy = pd.get_dummies(df['sx']) #turns my type column into a dummy variable
dummy.head()

	female	male
0	0	1
1	0	1
2	0	1
3	1	0
4	0	1

- Data Transformation: Derived Variables
 - Dealing with categorical variables: One hot encoding
 - A Similar to dummy variables.
 - In this case, there are as many dummy variables as the count of unique category values.
 - Ex) One hot encoding for a variable that can have integer values 0~9.
 - Integer variables often represent category or class rather than the numeric value!

XO	X1	X2	Х3	X4	X5	Х6	X7	X8	Х9
0	0	0	0	0	1	0	0	0	0
					5				

sklearn.preprocessing.OneHotEncoder

class sklearn.preprocessing. OneHotEncoder(*, categories='auto', drop=None, sparse=True, dtype=<class 'numpy.float64'>, handle_unknown='error') [source]

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

- Data Transformation: Derived Variables
 - Turning numerical variables into categorical:
 - From a numerical variable we can derive a categorical one that contains intervals as values.
 - These intervals can be quantiles or custom made.
 - From the categorical variable, the corresponding dummy variables can be generated as usual.
 - Ex) A numerical "Age" variable can be converted into "Age_10", "Age_20", etc.

Age		Age_10	Age_20	Age_30	Age_40	Age_50	Age_60	Age_70	Age_80
8		0	0	0	0	0	0	0	0
17	—	1	0	0	0	0	0	0	0
26		0	1	0	0	0	0	0	0
63		0	0	0	0	0	1	0	0

Data Cleaning and Preparation

- Handling Missing Data
 - Filtering Out Missing Data
 - Filling In Missing Data
- Data Transformation
 - Removing Duplicates
 - Transforming Data Using a Function or Mapping
 - Replacing Values
 - Renaming Axis Indexes
 - Discretization and Binning
 - Detecting and Filtering Outliers
 - Permutation and Random Sampling
 - Derived Variables
- String Manipulation
 - String Object Methods
 - Regular Expressions

String Manipulation: <u>String Object Methods</u>

• In many string munging and scripting applications, built-in string methods are sufficient.

Example

a comma-separated string can be broken into pieces with split

```
In [134]: val = 'a,b, guido'
In [135]: val.split(',')
Out[135]: ['a', 'b', ' guido']
```

split is often combined with strip to trim whitespace (including line breaks)

```
In [136]: pieces = [x.strip() for x in val.split(',')]
In [137]: pieces
Out[137]: ['a', 'b', 'guido']
```

These substrings could be concatenated together with a two-colon delimiter by passing a list or tuple
to the join method on the string '::'

In [140]: '::'.join(pieces)
Out[140]: 'a::b::guido'

- String Manipulation: <u>String Object Methods</u>
 - Other methods are concerned with locating substrings
 - index and find methods to detect substrings

count returns the number of occurrences of a particular substring

```
In [145]: val.count(',')
Out[145]: 2
```

 replace will substitute occurrences of one pattern for another.

```
In [146]: val.replace(',', '::')
Out[146]: 'a::b:: guido'

In [147]: val.replace(',', '')
Out[147]: 'ab guido'
```

```
In [134]: val = 'a,b, guido'
```

```
In [141]: 'guido' in val
Out[141]: True

In [142]: val.index(',')
Out[142]: 1

In [143]: val.find(':')
Out[143]: -1
ind
exce
strin
(versus)

val.find(':')
val.find(':')
```

index raises an
 exception if the
 string isn't found
(versus returning -1)
 val.index(':')

It is commonly used to delete patterns, too, by passing an empty string

- String Manipulation: String Object Methods
 - Python built-in string methods

Argument	Description
count	Return the number of non-overlapping occurrences of substring in the string.
endswith	Returns True if string ends with suffix.
startswith	Returns True if string starts with prefix.
join	Use string as delimiter for concatenating a sequence of other strings.
index	Return position of first character in substring if found in the string; raises ValueError if not found.
find	Return position of first character of first occurrence of substring in the string; like $index$, but returns -1 if not found.
rfind	Return position of first character of <i>last</i> occurrence of substring in the string; returns -1 if not found.
replace	Replace occurrences of string with another string.
strip, rstrip, lstrip	Trim whitespace, including newlines; equivalent to $x.strip()$ (and $rstrip$, $lstrip$, respectively) for each element.
split	Break string into list of substrings using passed delimiter.
lower	Convert alphabet characters to lowercase.
upper	Convert alphabet characters to uppercase.
casefold	Convert characters to lowercase, and convert any region-specific variable character combinations to a common comparable form.
ljust, rjust	Left justify or right justify, respectively; pad opposite side of string with spaces (or some other fill character) to return a string with a minimum width.

- String Manipulation: Regular Expressions
 - A single expression, commonly called a regex, is a string formed according to the regular expression language

 In [148]: tmport re
 - Python's built-in **re** module is responsible for applying regular expressions to strings
 - re functions fall into three categories
 - Pattern matching
 - Substitution
 - Splitting

Describing one or more whitespace characters is \s+

To avoid unwanted escaping with \ in a regular expression, use *raw* string literals like **r'C:\x'** instead of the equivalent 'C:\\x'.

```
In [149]: text = "foo bar\t baz \tqux"
In [150]: re.split('\s+', text)
Out[150]: ['foo', 'bar', 'baz', 'qux']
```

```
In [151]: regex = re.compile('\s+')
In [152]: regex.split(text)
Out[152]: ['foo', 'bar', 'baz', 'qux']
Compiling by
yourself
```

```
In [153]: regex.findall(text)
Out[153]: [' ', '\t', ' \t']
```


- String Manipulation: Regular Expressions
 - findall returns all matches in a string
 - search returns only the first match
 - match only matches at the beginning of the string

```
text = """Dave dave@google.com
Steve steve@gmail.com
Rob rob@gmail.com
Ryan ryan@yahoo.com
"""

pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'

# re.IGNORECASE makes the regex case-insensitive
regex = re.compile(pattern, flags=re.IGNORECASE)
```

None, because it only will match if the pattern occurs at the start of the string

```
In [155]: regex.findall(text)
Out[155]:
['dave@google.com',
  'steve@gmail.com',
  'rob@gmail.com',
  'ryan@yahoo.com']
```

```
In [156]: m = regex.search(text)

In [157]: m
Out[157]: <_sre.SRE_Match object; span=(5, 20), match='dave@google.com'>
In [158]: text[m.start():m.end()]
Out[158]: 'dave@google.com'
```

```
In [159]: print(regex.match(text))
None
```


- String Manipulation: Regular Expressions
 - **sub** will return a new string with occurrences of the pattern replaced by the a new string

```
In [160]: print(regex.sub('REDACTED', text))
Dave REDACTED
Steve REDACTED
Rob REDACTED
Ryan REDACTED
```

text = """Dave dave@google.com
Steve steve@gmail.com
Rob rob@gmail.com
Ryan ryan@yahoo.com
"""
pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'

re.IGNORECASE makes the regex case-insensitive
regex = re.compile(pattern, flags=re.IGNORECASE)

 To segment components (username, domain name, and domain suffix) put parentheses around the parts of the pattern

```
In [161]: pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'
In [162]: regex = re.compile(pattern, flags=re.IGNORECASE)
```

 A match object produced by this modified regex returns a tuple of the pattern components with its groups method

```
In [163]: m = regex.match('wesm@bright.net')
In [164]: m.groups()
Out[164]: ('wesm', 'bright', 'net')
```


- String Manipulation: Regular Expressions
 - **findall** returns a list of tuples when the pattern has groups

- **sub** also has access to groups in each match using special symbols like \1 and \2
 - The symbol \1 corresponds to the first matched group, \2 corresponds to the second, and so forth

```
In [166]: print(regex.sub(r'Username: \1, Domain: \2, Suffix: \3', text))
Dave Username: dave, Domain: google, Suffix: com
Steve Username: steve, Domain: gmail, Suffix: com
Rob Username: rob, Domain: gmail, Suffix: com
Ryan Username: ryan, Domain: yahoo, Suffix: com
```