tidysą: efektywne przetwarzanie sekwencji biologicznych w ${\sf R}$ Szczegółowy opis testów

22 stycznia 2021

Mateusz Bąkała, Dominik Rafacz

promotor: Michał Burdukiewicz

Spis treści

1	\mathbf{W} stęp	3
2	Testy jednostkowe	3
	2.1 Testy funkcjonalności Alfabetu	3
	2.2 Testy funkcji bite()	4
	2.3 Testy funkcji complement()	5
	2.4 Testy funkcji export_sq()	6
	2.5 Testy funkcji find_invalid_letters()	6
	2.6 Testy funkcji find_motifs()	7
	2.7 Testy operatora %has%	9
	2.8 Testy funkcji import_sq()	9
	2.9 Testy funkcji random_sq()	10
	2.10 Testy funkcji remove_ambiguous()	10
	2.11 Testy funkcji remove_na()	
	2.12 Testy funkcji reverse()	11
	2.13 Testy funkcji sq()	12
	2.14 Testy funkcji sq_type()	
	2.15 Testy funkcji sqapply()	13
	2.16 Testy funkcji substitute_letters()	
	2.17 Testy funkcji translate()	
	2.18 Testy funkcji typify()	
	2.19 Testy konkatenacji	

1 Wstęp

Niniejszy dokument zawiera opis testów funkcjonalnych pakietu. W ramach walidacji *Pakietu* przeprowadzone zostały liczne testy jednostkowe, zapewniające zgodność oczekiwanych typów wejściowych oraz wyjściowych. Z uwagi na wysoki poziom delegacji zadań z poziomu R do C++ większość testowanych funkcjonalności pokrywa wywołania odpowiadających sobie funkcji w obydwu interfejsach.

Pakiet przechodzi pomyślnie wszystkie poniższe przypadki testowe.

2 Testy jednostkowe

Testy funkcjonalności Alfabetu

Ekstrahowalność wektora Liter użytego przy konstrukcji

Warunki wstępne:

• Istnieje wektor *Liter* char.

Procedura testowa:

Konstruowany jest *Alfabet* przy użyciu wewnętrznej funkcji sq_alphabet() z dowolnym typem, a następnie na uzyskanym obiekcie aplikowana jest metoda as.character().

Oczekiwana odpowiedź:

Zwrócony wektor napisów jest identyczny z wektorem char.

Równoważność indeksowania Alfabetu i wektora napisów

Warunki wstępne:

- Istnieje wektor *Liter* char.
- Istnieje Alfabet alph skonstruowany z wektora char.

Procedura testowa:

Ekstrahowane są elementy z obiektów char oraz alph przy użyciu tych samych indeksów różnych od wartości odpowiadającej NA dla danego Alfabetu.

Oczekiwana odpowiedź:

Zwracane wektory zawierają te same elementy (*Litery*).

Ekstrakcja *Litery* oznaczającej NA

Warunki wstępne:

 \bullet Istnieje Alfabet alph.

Procedura testowa:

Ekstrahowany jest element z obiektu alph pod indeksem równym wartości odpowiadającej NA dla danego Alfabetu.

Oczekiwana odpowiedź:

Zwracana jest Litera oznaczająca brak wartości.

Zachowanie atrybutów

Warunki wstępne:

• Istnieje wektor Sekwencji x.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x.

Oczekiwana odpowiedź:

Atrybuty zwracanego wektora Sekwencji są identyczne z atrybutami x.

Wyjątek dla obiektów nie-są

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Ekstrahowanie dodatnimi indeksami

Warunki wstępne:

- Istnieje wektor napisów seq.
- Istnieje wektor Sekwencji x skonstruowany z wektora seq.
- Istnieje wektor dodatnich indeksów ind.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrem ind. Równocześnie wybierany jest analogiczny podzbiór *Liter* w obrębie elementów wektora seg.

Oczekiwana odpowiedź:

Zachodzi równoważność przechowywanych Sekwencji pomiędzy uzyskanymi obiektem klasy sq oraz wektorem napisów.

Ekstrahowanie ujemnymi indeksami

Warunki wstępne:

- Istnieje wektor napisów seq.
- Istnieje wektor Sekwencji x skonstruowany z wektora seq.
- Istnieje wektor ujemnych indeksów ind.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrem ind. Równocześnie wybierane są Litery w obrębie elementów wektora seg z pominięciem wskazywanych przez negatywne indeksy.

Oczekiwana odpowiedź:

Zachodzi równoważność przechowywanych Sekwencji pomiędzy uzyskanymi obiektem klasy sq oraz wektorem napisów.

Zastępowanie brakami danych

- Istnieje wektor Sekwencji x.
- Istnieje wektor dodatnich indeksów ind taki że istnieje liczba większa niż długość przynajmniej jednej Sekwencji.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrem ind.

Oczekiwana odpowiedź:

Zwracany obiekt zawiera wartości NA w miejscach odpowiadających indeksom o wartościach większych niż długość odpowiadającej Sekwencji. W trakcie działania operacji wyświetlane jest ostrzeżenie o pojawieniu się braków danych.

Wyjątek dla indeksów o mieszanej dodatniości

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje wektor dodatnich i ujemnych indeksów ind.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrem ind.

Oczekiwana odpowiedź:

Wyrzucany jest wyjątek o nieprawidłowej wartości indeksów.

Testy funkcji complement()

Zachowanie atrybutów

Warunki wstępne:

 \bullet Istnieje wektor Sekwencjix.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie ${\tt x}.$

Oczekiwana odpowiedź:

Atrybuty zwracanego wektora Sekwencji są identyczne z atrybutami x.

Wyjątek dla obiektów nie-sq_dna/sq_rna

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq_dna/sq_rna.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Podwójne użycie funkcji

Warunki wstępne:

 \bullet Istnieje wektor Sekwencjix.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x, a następnie wywoływana jest rzeczona funkcja na wyniku poprzedniej operacji.

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji jest identyczny z x.

Wyjątek dla obiektów nie-sq

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Zachowanie informacji Sekwencji

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje tekstowa reprezentacja klasy z innego pakietu target.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrem target.

Oczekiwana odpowiedź:

Zwracany jest obiekt o docelowej klasie, zawierający Sekwencje równoważne z Sekwencjami wektora x.

Eksport pojedynczej Sekwencji do Biostrings::XString

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje napis target równy "Biostrings::DNAString", "Biostrings::RNAString" albo "Biostrings::AAString".

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrem target.

Oczekiwana odpowiedź:

Jeśli długość wektora x jest równa 1, wówczas zwracany jest obiekt klasy odpowiadającej tej opisanej w obiekcie target. W przeciwnym wypadku zwracany jest wyjątek o konieczności zawierania dokładnie jednej sekwencji.

Testy funkcji find_invalid_letters()

Zwrócenie listy wektorów napisów

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje Typ Standardowy type.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrem type.

Oczekiwana odpowiedź:

Zwracana lista ma elementy będące wektorami napisów, gdzie każdy napis jest Literq pochodzącą z Alfabetu wektora \mathbf{x} .

Wyjątek dla obiektów nie-sq

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Wartość NA częścią Alfabetu

Warunki wstępne:

- Istnieje wektor Sekwencji x, wśród których występują takie, które zawierają braki danych.
- Istnieje Typ Standardowy type.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie ${\tt x}$ z parametrem ${\tt type}.$

Oczekiwana odpowiedź:

Elementy listy nie zawierają *Litery* odpowiadającej brakowi danych.

Testy funkcji find_motifs()

Wyjątek dla obiektów nie-sq

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Zwrócenie ramki danych

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje wektor nazw x_names.
- Istnieje wektor *Motywów* motifs.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrami x_names i motifs.

Oczekiwana odpowiedź:

Zwracany obiekt jest ramką danych klasy tibble o następujących kolumnach: tekstowej names, found klasy sq, tekstowej sought oraz liczbowych start i end. Prototyp kolumny found jest identyczny z prototypem wektora x.

Wyjątek dla znaków specjalnych w niewłaściwym miejscu

- Istnieje wektor Sekwencji x.
- Istnieje wektor nazw x_names.
- Istnieje wektor *Motywów* motifs, wśród elementów którego znajdują się zdeformowane *Motywy* zawierające znaki ^ nie na początku albo \$ nie na końcu napisu.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrami x_names i motifs.

Oczekiwana odpowiedź:

Zwracany jest wyjątek informujący o zdeformowanym Motywie.

Podzbiór Motywów w kolumnie sought

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje wektor nazw x_names.
- Istnieje wektor *Motywów* motifs.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrami x_names i motifs. Z wynikowej ramki danych wyciągana jest kolumna sought.

Oczekiwana odpowiedź:

Elementy w wyciągniętej kolumnie stanowią podzbiór wektora motifs.

Uzyskiwalność podsekwencji

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje wektor nazw x_names.
- Istnieje wektor *Motywów* motifs.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrami x_names i motifs. Następnie dla każdego rzędu w wynikowej ramce danych wybierana jest Sekwencja, której indeks w wektorze x odpowiada indeksowi wartości z kolumny names w wektorze x_names. Na Sekwencji tej aplikowana jest funkcja bite() z ciągiem indeksów start:end.

Oczekiwana odpowiedź:

Uzyskana podsekwencja jest identyczna z odpowiadającą jej Sekwencją w kolumnie found.

Interpretacja Liter Niejednoznacznych

- \bullet Istnieje wektor Sekwencji x o Typie Standardowym.
- Istnieje wektor nazw x_names.
- Istnieje wektor *Motywów* motifs, wśród elementów którego znajdują się *Motywy* zawierające *Litery Niejednoznaczne*.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrami x_names i motifs. Z wynikowej ramki danych wyciągana jest kolumna found.

Oczekiwana odpowiedź:

Sekwencje w wyciągniętej kolumnie mają jedną z interpretacji Liter Niejednoznacznych w miejscu tej Litery w odpowiadającym Motywie.

Wyjątek dla obiektów nie-sq

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Interpretacja Liter Niejednoznacznych

Warunki wstępne:

- Istnieje wektor Sekwencji x o Typie Standardowym.
- Istnieje wektor *Motywów* motifs, wśród elementów którego znajdują się *Motywy* zawierające *Litery Niejednoznaczne*.

Procedura testowa:

Wywoływana jest testowana funkcja na operandach x oraz motifs.

Oczekiwana odpowiedź:

Zwracane wartości logiczne są 'prawdą' wtedy, kiedy Sekwencje w operandzie x mają jedną z interpretacji $Liter\ Niejednoznacznych$ w miejscu tej Litery w odpowiadającym Motywie.

Sumowalność logiczna operatora

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje wektor *Motywów* motifs o długości co najmniej 2.

Procedura testowa:

Wywoływana jest testowana funkcja na operandach z oraz motifs. Wywoływana jest także testowana funkcja na operandach z oraz każdym pojedynczym *Motywie* z wektora motifs, a następnie uzyskane wyniki są łączone przy użyciu zwektoryzowanej koniunkcji logicznej.

Oczekiwana odpowiedź:

Uzyskane wektory logiczne są sobie równe.

Testy funkcji import_sq()

Zachowanie informacji Sekwencji

Warunki wstępne:

• Istnieje obiekt jednej ze wspieranych klas obj.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x.

Oczekiwana odpowiedź:

Zwracany jest wektor Sekwencji klasy sq. zawierający Sekwencje równoważne z Sekwencjami obj.

Nieujemność długości Sekwencji

Warunki wstępne:

- Istnieje liczba naturalna n.
- Istnieje liczba naturalna len.
- Istnieje Typ Standardowy bądź Alfabet alph.
- Istnieje liczba dodatnia sd.

Procedura testowa:

Generator losowych długości jest lokalnie mockowany w celu zapewnienia zwrócenia co najmniej jednej ujemnej wartości, a następnie wywoływana jest testowana funkcja na obiekcie \mathbf{x} z pozostałymi obiektami jako parametry.

Oczekiwana odpowiedź:

Wygenerowane Sekwencje mają nieujemne długości.

Testy funkcji remove_ambiguous()

Wyjątek dla obiektów nie-sq_dna/sq_rna/sq_ami

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq_dna/sq_rna/sq_ami.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Zachowanie obiektów o Alfabecie Podstawowym

Warunki wstępne:

• Istnieje wektor Sekwencji x o jednym Typów Standardowych z Alfabetem Podstawowym.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x.

Oczekiwana odpowiedź:

Zwracany jest oryginalny, niezmieniony obiekt x.

Redukcja Alfabetu Rozszerzonego

Warunki wstępne:

• Istnieje wektor Sekwencji x o jednym Typów Standardowych z Alfabetem Rozszerzonym.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x.

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji o analogicznym Typie z Alfabetem Podstawowym.

Zachowanie atrybutów

Warunki wstępne:

• Istnieje wektor Sekwencji x.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x.

Oczekiwana odpowiedź:

Atrybuty zwracanego wektora Sekwencji są identyczne z atrybutami x.

Wyjątek dla obiektów nie-są

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Usunięcie wartości NA

Warunki wstępne:

• Istnieje wektor Sekwencji x z Sekwencjami zawierającymi braki danych.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x.

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji nie zawiera Sekwencji z brakami danych.

Testy funkcji reverse()

Zachowanie atrybutów

Warunki wstępne:

 \bullet Istnieje wektor Sekwencjix.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie ${\tt x}.$

Oczekiwana odpowiedź:

Atrybuty zwracanego wektora Sekwencji są identyczne z atrybutami \mathbf{x} .

Wyjątek dla obiektów nie-sq

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Podwójne użycie funkcji

• Istnieje wektor Sekwencji x.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie \mathbf{x} , a następnie wywoływana jest rzeczona funkcja na wyniku poprzedniej operacji.

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji jest identyczny z x.

Testy funkcji sq()

Zgodność długości

Warunki wstępne:

• Istnieje wektor napisów zawierających Sekwencje proto.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie proto.

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji ma długość równą wektorowi proto. Jeśli nie został przekazany Alfabet Wieloznakowy bądź wieloznakowa Litera braku danych, wówczas długości Sekwencji odpowiadają liczbie znaków elementów wektora proto.

Wczytywanie *Liter* spoza *Alfabetu*

Warunki wstępne:

- Istnieje Typ Standardowy bądź Alfabet alph.
- Istnieje wektor napisów zawierających Sekwencje proto, takie że istnieją znaki nie występujące w Alfabecie opisywanym przez obiekt alph.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie proto z parametrem alph.

Oczekiwana odpowiedź:

Zwraca wektor Sekwencji z brakami wartości w miejscach, gdzie w wektorze proto występowały znaki spoza Alfabetu.

Zachłanne wczytywanie Liter

Warunki wstępne:

- Istnieje wektor napisów zawierających Sekwencje proto.
- Istnieje Alfabet Wieloznakowy alph, taki że istnieją Litery stanowiące podciąg znaków innych Liter.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie proto z parametrem alph.

Oczekiwana odpowiedź:

Zwraca wektor Sekwencji z zachłannie wczytanymi Literami, to znaczy dopasowując lokalnie najdłuższą możliwą Literę w danym miejscu Sekwencji.

Ignorowanie wielkości znaków

Warunki wstępne:

• Istnieje wektor napisów zawierających *Sekwencje* proto, takie że istnieją równocześnie małe oraz wielkie znaki, również tej samej *Litery*.

• Istnieje wektor napisów zawierających Sekwencje uppercase, takie że wszystkie małe znaki wektora proto zastąpione zostały ich wielkimi odpowiednikami.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie proto z parametrem ignore_case równym TRUE. Analogiczne wywołanie jest wykonywane na obiekcie uppercase z rzeczonym parametrem oraz bez niego.

Oczekiwana odpowiedź:

Uzyskane wektory Sekwencji są identyczne.

Testy funkcji sq_type()

Wyjątek dla obiektów nie-sq

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Zwrócenie *Typu*

Warunki wstępne:

• Istnieje wektor Sekwencji x.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x.

Oczekiwana odpowiedź:

Zwracany napis reprezentuje jeden z Typów.

Przypisanie wartości

Warunki wstępne:

- \bullet Istnieje wektor Sekwencjix.
- Istnieje Typ type.

Procedura testowa:

Wartości sq_type wektora x przypisywana jest wartość type.

Oczekiwana odpowiedź:

Działanie przypisania jest równoważne działaniu funkcji typify() z przypisaniem rezultatu do zmiennej x.

Testy funkcji sqapply()

Wyjątek dla obiektów nie-sq

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Zwrócenie listy wyników

- Istnieje wektor Sekwencji x.
- Istnieje funkcja f.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrem f.

Oczekiwana odpowiedź:

Zwracany obiekt jest listą, której każdy element jest jednym z możliwych typów zwracanych przez funkcję f.

Testy funkcji substitute_letters()

Wyjątek dla obiektów nie-sq

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Konwesja Typu do Niestandardowego

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje nazwany wektor napisów enc.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrem enc.

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji ma Typ Niestandardowy. Liczba oraz długość Sekwencji pozostają niezmienione względem wektora \mathbf{x} .

Surjekcja Alfabetu

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje nazwany wektor napisów enc.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie ${\tt x}$ z parametrem ${\tt enc},$ a następnie z rezultatu oraz obiektu ${\tt x}$ wyciągane są ich Alfabety.

Oczekiwana odpowiedź:

Alfabet rezultatu jest nie większy niż ten oryginalnego wektora Sekwencji.

Wyjątek dla obiektów nie-sq_dna_bsc/sq_rna_bsc

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq_dna_bsc/sq_rna_bsc.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Zwrot Sekwencji aminokwasów

Warunki wstępne:

• Istnieje wektor Sekwencji x typu DNA lub RNA.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x.

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji ma Alfabet Podstawowy dla aminokwasów oraz odpowiadający mu Typ.

Testy funkcji typify()

Wyjątek dla obiektów nie-są

Warunki wstępne:

• Istnieje obiekt obj o klasie innej niż sq.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie obj.

Oczekiwana odpowiedź:

Zwracany jest wyjątek o braku implementacji metody dla klasy przekazanego obiektu.

Docelowy prototyp Sekwencji

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje Typ Stadardowy type.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie x z parametrem type.

Oczekiwana odpowiedź:

Atrybuty oraz klasa zwracanego wektora Sekwencji odpowiadają prototypowi wektora Sekwencji o docelowym Typie.

Wczesny zwrot dla sekwencji o docelowym Typie

Warunki wstępne:

- Istnieje wektor Sekwencji x.
- Istnieje Typ Stadardowy type identyczny z Typem obiektu x.

Procedura testowa:

Wywoływana jest testowana funkcja na obiekcie ${\tt x}$ z parametrem ${\tt type}.$

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji jest identyczny z x.

Łączenie takich samych Typów Standardowych

Warunki wstępne:

• Istnieją minimum dwa wektory Sekwencji o jednym z Typów Standardowych.

Procedura testowa:

Wszystkie wektory Sekwencji przekazywane są do funkcji c().

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji jest również tego typu oraz długości równej sumie długości przekazanych wektorów.

Łączenie Podstawowego i Rozszerzonego Alfabetu

Warunki wstępne:

• Istnieją minimum dwa wektory *Sekwencji*, takie że występuje co najmniej jeden wektor o *Typie Standardowym* z *Podstawowym Alfabetem*, zaś reszta (również co najmniej jeden) — o odpowiadającym *Typie Standardowym* z *Rozszerzonym Alfabetem*.

Procedura testowa:

Wszystkie wektory Sekwencji przekazywane sa do funkcji c().

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji ma ten sam Typ Standardowy z Alfabetem Rozszerzonym oraz długość równą sumie długości przekazanych wektorów.

Łączenie dwóch Typów Nieokreślonych

Warunki wstępne:

• Istnieja minimum dwa wektory Sekwencji o Typach Nieokreślonych o nieidentycznych Alfabetach.

Procedura testowa:

Wszystkie wektory Sekwencji przekazywane są do funkcji c().

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji ma Typ Nieokreślony, Alfabet stanowiący sumę teoriomnogościową wszystkich wejściowych Alfabetów oraz długość równą sumie długości przekazanych wektorów.

Łączenie Sekwencji Nietypowych i Typów Standardowych

Warunki wstępne:

- Istnieje minimum jeden wektor Sekwencji Nietypowych.
- Istnieje minimum jeden wektor Sekwencji o jednym z Typów Standardowych.

Procedura testowa:

Wszystkie wektory Sekwencji przekazywane są do funkcji c().

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji Nietypowych ma Alfabet stanowiący sumę teoriomnogościową wszystkich wejściowych Alfabetów oraz długość równą sumie długości przekazanych wektorów.

Łączenie z wektorem napisów

Warunki wstępne:

• Istnieje minimum jeden wektor Sekwencji o dowolnym Typie.

• Istnieje wektor napisów interpretowalny jako wektor Sekwencji.

Procedura testowa:

Wszystkie wektory przekazywane są do funkcji c(), tak aby pierwszym wektorem był któryś z wektorów Sekwencji.

Oczekiwana odpowiedź:

Zwracany wektor Sekwencji ma Typ i Alfabet zgodny z oczekiwaniami przedstawionymi w pozostałych testach konkatenacji oraz długość równą sumie długości przekazanych wektorów. Dodanie oraz odjęcie wektorów napisów nie wpływa na wynikowe Typ i Alfabet.