Unidad 2: Aritmética de las computadoras

Definición de bit, nibble, byte, palabra, palabra doble, relación con lenguajes de alto nivel. Representaciones numéricas: números enteros con y sin signo. Aritmética con enteros. Fundamentos de la representación en punto flotante, normalización, error de la representación. Representación estándar del IEEE. Aritmética en punto flotante. Representaciones alfanuméricas, ASCII, EBCDIC.

Rango: diferencia entre el número mayor y el menor

Resolución: diferencia entre dos números consecutivos

Teorema fundamental de la numeracion

Este teorema establece la forma general de construir números en un sistema de numeración posicional.

$$N^{\circ} = \sum_{i=-m}^{n} (digito)_{i} \times (base)^{i}$$

Representación en signo-magnitud

El bit mas significativo de la palabra se toma como bit de signo. Si dicho bit es 0 el numero es positivo. Si el bit es 1, el numero es negativo.

Esta representación tiene varias limitaciones:

Tanto en la suma como en la resta debe tenerse en cuenta el signo y la magnitud relativa de cada numero. Otra limitación es que hay dos representaciones para el 0, -0 y +0.

Complemento a 1

El bit más significativo representa el signo de N (mismo convenio que signo y magnitud). Si el número es positivo se representa en binario natural y si es negativo con el complemento a 1 de su magnitud.

El Ca1 de un número en base 2 se obtiene invirtiendo todos los bits.

 $+32_{10} = 00100000 - 32_{10} = 110111111$

+7₁₀= 00000111 -7₁₀= 11111000

+4110= 00101001 -4110=11010110

- El intervalo es simétrico
- Los n bits representan al número
- Los positivos empiezan con cero (0)

- Los negativos empiezan con uno (1)
- Hay dos ceros
- Números distintos 2ⁿ

Complemento a dos

Esta representación usa el bit mas significativo como bit de signo. La diferencia esta en la forma de tratar el resto de los bits.

Consideremos un entero de n bits, A representado en complemento a dos. Si A es positivo, el bit de signo a_{n-1} es 0. Los restantes bits representan la magnitud del numero de la misma forma que en BSS.

El numero 0 se identifica como positivo y tiene por tanto, un bit 0 de signo y una magnitud compuesta de todos ceros.

Ahora, para un numero negativo A, el bit de signo a_{n-1} es 1. Los n-1 bits restantes pueden tomar cualquiera de las 2^{n-1} combinaciones. Por tanto, el rango de los enteros negativos que pueden representarse es desde -1 hasta -2^{n-1} .

El Ca2 de un número (en base 2) se obtiene invirtiendo todos los bits (Ca1) y luego sumándole 1.

Otra forma: "mirando" desde la derecha se escribe el número (base 2) igual hasta el primer "1" uno inclusive y luego se invierten los demás dígitos

- Los positivos empiezan con cero (0)
- Los negativos empiezan con uno (1)
- El rango es asimétrico y va desde (2ⁿ⁻¹) a + (2ⁿ⁻¹-1)
- Hay un solo cero

Técnica del Exceso

La representación de un número A es la que corresponde a la SUMA del mismo y un valor constante E (o exceso).

Dado un valor, el número representado se obtiene RESTANDO el valor del exceso

El signo del número A resulta de una resta En binario, NO sigue la regla del bit mas significativo

decimal	BSS	BCS	CA1	CA2	Exceso 2 ⁿ⁻¹
+7	0111	0111	0111	0111	1111
+6	0110	0110	0110	0110	1110
+5	0101	0101	0101	0101	1101
+4	0100	0100	0100	0100	1100
+3	0011	0011	0011	0011	1011
+2	0010	0010	0010	0010	1010
+1	0001	0001	0001	0001	1001

+0	0000	0000	0000	0000	1000
-0		1000	1111		0111
-1		1001	1110	1111	0110
-2		1010	1101	1110	0101
-3		1011	1100	1101	0100
-4		1100	1011	1100	0011
-5		1101	1010	1011	0010
-6		1110	1001	1010	0001
-7		1111	1000	1001	0000
-8				1000	

Punto flotante

Se representa los números con una palabra binaria de dos campos: mantisa (M) y exponente (E).

M y E están representados en alguno de los sistemas en punto fijo que ya conocíamos como BSS, BCS, Ca2, Ca1, Exceso.

- El rango en punto flotante es mayor
- La cantidad de combinaciones binarias distintas es la misma que en otros sistemas 2⁸
 =256
- En punto flotante la resolución no es constante a lo largo del intervalo

S Exponente Mantisa

Existen distintos valores de mantisa y exponente para representar un mismo número. Con el objetivo de tener un único par de valores de mantisa y exponente para un número, se introduce la normalización.

Con el objetivo anterior, las mantisas fraccionarias se definen de la forma:

0,1ddddddd.....ddd

• donde d es un dígito binario que vale 0 ó 1.

Todas las mantisas empiezan con 0,1

Bit implícito

Como todos los números comienzan con 0,1 no es necesario almacenar ese 1

Si no lo almaceno, puedo "adicionar" un bit más a la mantisa. El bit no almacenado se conoce como bit implícito.

Resolución: es la diferencia entre dos representaciones sucesivas, y varía a lo largo del rango, no es constante como en el caso de punto fijo

Error Absoluto: es la diferencia entre el valor representado y el valor a representar

Estándar IEEE 754

Mantisa: fraccionaria normalizada, con la coma después del primer bit que es siempre uno (1,) en M y S.

Exponente: representado en exceso 2ⁿ⁻¹ – 1

	Simple precisión	Doble precisión
Bit de signo	1	1
Bits de exponente	8	11
Bits de fracción	23	52
Total de bits	32	64
Exponente en exceso	127	1023
Rango de exponente	-126 a +127	-1022 a +1023
Rango de numeros	2 ⁻¹²⁶ a ~2 ⁺¹²⁸	2 ⁻¹⁰²² a ~2 ⁺¹⁰²⁴

Casos especiales:

- E = 255/2047, M \neq 0 \Rightarrow NaN -Not a Number
 - o Exponente máximo, mantisa distinta de 0.
- E = 255/2047, $M = 0 \Rightarrow Infinito$
 - Exponente máximo, mantisa igual a 0. El signo implica si es mas o menos infinito
- E = 0, $M = 0 \Rightarrow Cero$
 - o Mantisa y exponente igual a cero
- E = 0, $M \neq 0 \Rightarrow Denormalizado$
 - o Exponente cero, mantisa distinta de 0.
 - o \pm 0,mantisa_s-p 2^{-126}
 - \circ ± 0,mantisa d-p 2⁻¹⁰²²