The formula for computing the negative of a grayscale image is:

$$s = (L - 1) - r$$

where:

- r is the original pixel intensity.
- ullet L-1 is the maximum intensity in the image (255 for an 8-bit grayscale image).
- s is the transformed (negative) pixel intensity.

Applying this formula to each element in the given matrix:

$$\begin{bmatrix} 50 & 100 & 150 \\ 200 & 225 & 255 \\ 30 & 90 & 180 \end{bmatrix}$$

We calculate:

$$\begin{bmatrix} (255-50) & (255-100) & (255-150) \\ (255-200) & (255-225) & (255-255) \\ (255-30) & (255-90) & (255-180) \end{bmatrix}$$
$$\begin{bmatrix} 205 & 155 & 105 \\ 55 & 30 & 0 \\ 225 & 165 & 75 \end{bmatrix}$$

В

Analysis of What Happened to the Given Image Patch

- 1. Bright Pixels Became Dark, and Dark Pixels Became Bright:
 - o The highest intensity pixel (255) turned into the lowest (0), and vice versa.
 - o For example:
 - $50 \rightarrow 205$ (a darker region became much brighter)
 - $225 \rightarrow 30$ (a bright region became very dark)

Contrast Is Reversed:

- 2. Lighter areas in the original image now appear dark in the negative, and darker areas now appear bright.
- 3. If this image represents a grayscale scene, objects that were once highlighted by light reflections may now look like shadows, and vice versa.

Question2

(a) Compute the Transformed Values

We compute s for each given intensity r:

For r=5:

$$s = 50 \cdot \log(1+5) = 50 \cdot \log(6)$$

Using $\log(6) \approx 1.7918$,

$$s = 50 \times 1.7918 = 89.59$$

For r = 50:

$$s = 50 \cdot \log(1 + 50) = 50 \cdot \log(51)$$

Using $\log(51) \approx 3.9318$,

$$s = 50 \times 3.9318 = 196.59$$

For r = 150:

$$s = 50 \cdot \log(1 + 150) = 50 \cdot \log(151)$$

Using $\log(151) \approx 5.0173$,

$$s = 50 \times 5.0173 = 250.86$$

For r = 250:

$$s = 50 \cdot \log(1 + 250) = 50 \cdot \log(251)$$

Using $\log(251) \approx 5.5255$,

$$s = 50 \times 5.5255 = 276.27$$

(b)

The values 250.86 and 276.27 are saturated to 200.

Low intensities are enhanced, making dark details more visible.

High intensities get compressed and clipped, reducing contrast in bright regions.

Overall effect: Better visibility in darker parts of the image but loss of distinction in very bright regions.

Question3

(a) Compute the New Values for Given Intensities

1. For r = 85:

$$s = rac{(85-80)}{(180-80)} imes 255 = rac{5}{100} imes 255 = 12.75 pprox 13$$

2. For r = 120:

$$s = rac{(120 - 80)}{(180 - 80)} imes 255 = rac{40}{100} imes 255 = 102$$

3. For r = 160:

$$s = rac{(160 - 80)}{(180 - 80)} imes 255 = rac{80}{100} imes 255 = 204$$

4. For r = 175:

$$s = rac{(175 - 80)}{(180 - 80)} imes 255 = rac{95}{100} imes 255 = 242.25 pprox 242$$

(b) Handling Out-of-Range Intensity $r=70\,$

The given transformation is defined only for pixel values within the range [80, 180]. If a pixel falls **outside** this range:

- ullet If $r < R_{
 m min}$ (e.g., r=70):
 - Since 70 is below $R_{
 m min}=80$, it is **clipped** to the minimum output value, which is **0**.
- If $r > R_{\max}$:
 - If a pixel was greater than 180, it would be mapped to the maximum intensity (255).

Thus, for r=70, the transformed intensity should be 0.

Question4

•
$$g[0] = 20$$

•
$$g[1] = 25 - 20 = 5$$

•
$$g[2] = 30 - 25 = 5$$

•
$$g[3] = 35 - 30 = 5$$

•
$$g[4] = 100 - 35 = 65$$

•
$$g[5] = 200 - 100 = 100$$

•
$$g[6] = 210 - 200 = 10$$

•
$$g[7] = 215 - 210 = 5$$

•
$$g[8] = 220 - 215 = 5$$

•
$$g[9] = 50 - 220 = -170$$

(We stop at g[9] because we ignore a gradient calculation for the last pixel.)

Step 2 - Identify Regions of High Gradient:

Looking at the absolute values:

- The jump from 35 to 100 (gradient 65)
- A larger jump from 100 to 200 (gradient 100)
- And a very large drop from 220 to 50 (gradient -170, absolute value 170)

In the context of lane detection, high gradients indicate sharp intensity changes—likely corresponding to edges of lane markings or boundaries between the road and an obstacle.

- The gradient of 100 suggests a strong edge (possibly the edge of a lane marking).
- The very high gradient of 170 (in absolute terms) likely marks a very distinct boundary (for example, from a bright road marking to a dark surrounding area).

b) Choosing the Right Edge Detector for Rainy Conditions:

Under rainy conditions, images tend to be blurred and noisy.

- Roberts Cross: Uses a very small (2×2) kernel; it is very sensitive to noise and less robust to blurring.
- Prewitt: Slightly larger kernels are used, but it still does not provide much smoothing.
- Sobel: Uses a 3×3 kernel that not only computes the gradient but also incorporates a smoothing effect due to the weighting of the center row/column. This makes Sobel more robust against noise and blurring.

Question5

Gray Level (r)	2	3	4	5
No. of Pixels	6	5	4	1
Cumulative Sum	6	11	15	16
Normalized CDF	0.375	0.6875	0.9375	1
s x 9	3	6	8	9

3	6	6	3
8	3	8	6
6	3	6	9
3	8	3	8

