Aufgabe 1: Iris-Klassifikation

Ziel: Klassifikation der Iris-Blumen in die drei Arten *setosa*, *versicolor* und *virginica*.

Vorgehen:

1. Datenaufbereitung

- Datensatz laden und auf Vollständigkeit prüfen.
- \bullet Aufteilen in Trainings- (80 %) und Testdaten (20 %) mit festem Seed:

```
- R: set.seed(42)
```

- Python: random_state=42

- RapidMiner: random_seed=42

2. Modellbildung

• R:

```
model_rf <- randomForest(Species ~ ., data = train)</pre>
```

• Python:

```
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(random_state=42)
clf.fit(X_train, y_train)
```

- Orange: File \rightarrow Data Sampler (80/20) \rightarrow Random Forest \rightarrow Test Score
- Rapid Miner: Read CSV \to Split Data \to Random Forest \to Apply Model \to Performance

3. Evaluation

• Metriken: Accuracy, Precision, Recall, F1-Score, Confusion Matrix.

Ergebnisse (Beispiel):

• Accuracy: 0.97

• Precision: Beste Klasse virginica (0.98)

Interpretation: Hohe Trennbarkeit, besonders zwischen setosa und den anderen beiden Arten.

Aufgabe 2: Algorithmusvergleich (Decision Tree, Naive Bayes, SVM)

Ziel: Vergleich der Klassifikationsleistung dreier Algorithmen auf demselben Datensatz und Splits.

Vorgehen:

- 1. Datenbasis: Iris oder anderer Benchmark-Datensatz.
- 2. Splits: Wie in Aufgabe 1.
- 3. Modelle:

• Decision Tree

- R: rpart()
- Python: DecisionTreeClassifier()
- Orange: Decision Tree-Widget
- RapidMiner: Decision Tree \rightarrow Apply Model

• Naive Bayes

- R: e1071::naiveBayes()
- Python: GaussianNB()
- Orange: Naive Bayes-Widget
- RapidMiner: Naive Bayes \rightarrow Apply Model

• SVM

- R: e1071::svm()
- Python: svc()
- Orange: SVM-Widget
- Rapid
Miner: SVM \rightarrow Apply Model

4. Evaluation & Vergleich:

- Accuracy, Precision, Recall, F1
- ROC-AUC (binär) bzw. Micro-/Macro-AUC (multiklassig)

Ergebnisse (Beispiel):

Algorithmus	Accuracy	ROC-AUC
Decision Tree	0.93	0.95
Naive Bayes	0.95	0.96
SVM	0.96	0.98

Interpretation: SVM zeigt insgesamt höchste Genauigkeit und AUC.

Aufgabe 3: Unüberwachtes Clustering (Rotwein-Daten)

Ziel: Strukturen in den Rotwein-Daten entdecken mittels K-Means und hierarchischem Clustering.

Vorgehen:

- 1. Preprocessing:
 - Fehlende Werte behandeln
 - Z-Score-Skalierung aller Merkmale
- 2. Bestimmung k:
 - Elbow-Plot (Within-Cluster-Sum-of-Squares)
 - Silhouette-Score
- 3. Clustering:
 - K-Means (R: kmeans(), Python: KMeans(), Orange: K-Means-Widget, RapidMiner: K-Means-Operator)
 - Hierarchical (Ward)
- 4. Auswertung:
 - Silhouette-Score, Cluster-Profile (Mittelwerte)
 - Visualisierung (Dendrogramm, PCA-Plot)

Ergebnisse (Beispiel):

- Optimaler k = 3
- Cluster unterscheiden sich vor allem im Phenol-Gehalt

Interpretation: Zwei Cluster mit hohem bzw. niedrigem Phenolgehalt; ein drittes Cluster intermediär.

Aufgabe 4: Google Trends Clustering

Ziel: Regionale Suchmuster in Google Trends-Zeitreihen clustern.

Vorgehen:

- 1. Datenbeschaffung: CSV-Export aus Google Trends
- 2. Preprocessing:
 - Fehlende Werte imputieren oder entfernen
 - Normalisierung/Standardisierung
- 3. Feature-Matrix: Regionen als Beobachtungen, Suchbegriffe/Zeiträume als Merkmale
- 4. Clustering: Wie in Aufgabe 3 (K-Means, hierarchisch)
- 5. Visualisierung:
 - PCA-Scatterplots
 - Kartenplot (z.B. mit Python geopandas oder Orange-Geo-Widget)

Ergebnisse (Beispiel):

• Drei Cluster: saisonale Peaks, stabile Volumina, volatile Trends

Interpretation: Saisonale Urlaubsregionen vs. ganzjährig beliebte Destinationen vs. gering frequentierte Gebiete.

Hinweis: Alle Arbeitsschritte wurden in R, Python (scikit-learn), Orange und RapidMiner (Repdiminer) implementiert, um Tool-typische Unterschiede in Usability und Konfigurationsmöglichkeiten zu vergleichen.