Q1. Linear Regression (House Prices)

size_sqft bedrooms age_years price

1200	2	5	250000
1500	3	10	350000
1000	1	2	200000
1800	4	15	400000
2000	3	8	450000

Tasks:

- 1. Build a Linear Regression model to predict price using the other features.
- 2. Evaluate the model using RMSE and R² metrics.

Q2. Ridge Regression (House Prices)

size sqft bedrooms age years price

1200	2	5	250000
1500	3	10	350000
1000	1	2	200000
1800	4	15	400000
2000	3	8	450000

Tasks:

- 1. Implement Ridge Regression with $\alpha = 0.5$.
- 2. Compare RMSE and R² values with the Linear Regression model.

Q3. Lasso Regression (Sales Data)

ad budget social media sales

200	50	1000
300	70	1500
150	30	800
400	80	2000
250	60	1200

Tasks:

- 1. Develop a Linear Regression model for sales prediction.
- 2. Implement Lasso Regression with $\alpha = 0.1$.
- 3. Compare model performance using RMSE and R².

Q4. Logistic Regression (Loan Approval)

income credit_score approved

50000	650	Yes
60000	700	Yes
30000	550	No
70000	720	Yes
40000	600	No

Tasks:

- 1. Train a Logistic Regression model to predict loan approval.
- 2. Generate a classification report (precision, recall, f1-score, accuracy).

Q5. KNN Classifier (Loan Approval)

income credit_score approved

50000	650	Yes
60000	700	Yes
30000	550	No
70000	720	Yes
40000	600	No

Tasks:

- 1. Train a KNN classifier with K = 3.
- 2. Generate a classification report (precision, recall, f1-score, accuracy).
- 3. Compare performance with the Logistic Regression model.