Lecture12: CMOS amplifier, biasing

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Summary

- Small-signal MOSFET model
 - Two branches are related with two partial derivatives.

Impedances

- Resistance, V(t) = R I(t)
 - It is assumed that V(t) and I(t) are in the same phase.
 - Consider $V(t) = V_0 \sin \omega t$ and $I(t) = I_0 \cos \omega t$. Then, what is the resistance?
 - In this case, we can introduce a phasor voltage, $V(\omega)$, and a phasor current, $I(\omega)$.
 - The relation between V(t) and $V(\omega)$ is

$$V(t) = Re[V(\omega)e^{j\omega t}]$$

- When $V(t) = V_0 \sin \omega t$, the phasor voltage is $V(\omega) = -jV_0$.
- When $I(t) = I_0 \cos \omega t$, the phasor voltage is $I(\omega) = I_0$.
- Impedance, $V(\omega) = Z(\omega)I(\omega)$
 - In the above example, $Z(\omega) = -j\frac{V_0}{I_0}$. A purely imaginary number.

Impedances of MOSFET

- "Looking into the <u>TERMINAL</u>," we see the impedance of the <u>TERMINAL</u>.
 - Consider the following cases:
 - 1) Looking into the gate. The source and drain are ac-grounded.

- 2) Looking into the drain. The source and gate are ac-grounded.
- 3) Looking into the source. The gate and drain are ac-grounded.

CMOS

- 9's complementary of 123?
 - **876**
- Complementary MOS
 - Here we have an NMOSFET.
 - A device where the transport is dominated by holes.

Why is it important?

Why amplifiers?

- Signal amplification
 - Usually, signals are "weak." (in the μ V or mV range)
 - It is too small for reliable processing.
 - If the signal magnitude is made larger, processing is much easier.

Amplifier

"Weak" signal

- Desirable properties
 - Low power consumption
 - High speed operation
 - Low noise

Transistor turned off

- The example 17.5 shows an amplifier circuit.
 - But, the transistor is not turned on.
 - The circuit generates no output signal.

This is a solution.

- The example 17.7 shows a revised circuit.
 - Then, how can we generate 0.75 V, for example?
 - Use of a separate battery can be a way.

Simple biasing (1/2)

A better way

- The gate bias voltage is

$$V_{GS} = \frac{R_2}{R_1 + R_2} V_{DD} \tag{17.10}$$

The drain current is

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2 \quad (17.12)$$

Simple biasing (2/2)

- How to apply the small-signal input
 - Use a capacitor!

