CSDS503 / COMP552 – Advanced Machine Learning

Faizad Ullah

Supervised Learning

What does a classifier see?

Features

Morning:	Evening:
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Unsupervised Learning

Supervised Learning Setup

Feature Space: Tabular Data

Feature Space: Tabular Data

Dense Vectors

A Record is 4-dimensional Feature Vector

Training Data/Training Split

Testing Data/Testing Split

Feature Space: Image Data

 \square Images are nothing but a **2D/3D arrays** with values of color intensities, typically ranging 0-255

Dense Vectors

Feature Space: Image Data

- \square The color Image is 3D array ($Width \times Height \times Channels$)
- □ Color image has 3 channels while grayscale image has 1 channel.

Dense Vectors

Feature Space: Text Data

□ Suppose you are given labeled textual data in excel sheet

	Document#	Text	Class
Training	1	the best movie best	Pos
	2	the best best ever	Pos
	3	the best film	Pos
	4	the worst cast ever	Neg
Testing	5	The Best best best worst ever	?

the	best	movie	ever	film	worst	cast
1	1	1	0	0	0	0
1	1	0	1	0	0	0
1	1	0	0	1	0	0
1	0	0	1	0	1	1
	These	are called '	Binary Oco	currences"	features.	
1	1	0	1	0	1	0

label
1
1
1
0

Sparse Vectors

Distributions

- Suppose we want to predict whether someone is a child or an adult based on height and weight.
- If the feature makes sense, then there is a distribution **P** of the labels across the input features.
- Every child and adult gets sampled from that hidden distribution based on probabilities.

We cannot access **P**

• But we can estimate (reverse-engineer) it by sampling from it

• We collect a dataset of 50 adults and 50 children

Height (cm)	Weight (kg)	Status
96.9	40.4	Child
131.6	30.9	Child
***	>****	
160.4	64.4	Adult
187.7	72.2	Adult
***		***

Rules vs. Learning

- Suppose we are working on classification of emails into "spam" and "ham" (not spam)
- **☐** We can write a complicated set of rules
 - Works well for a while
 - Cannot adapt well to new emails
 - Program could be reverse-engineered and circumvented
- ☐ Learn the mapping between an email and its label using past labelled data
 - Can be retrained on new emails
 - Not easy to reverse-engineer and circumvent in all cases
 - Easier to plug the leaks

Formalizing the Setup

$$D = \{(x^1, y_1), (x^2, y_2), \dots, (x^n, y_n) \subseteq X \times Y$$

Feature vector

$$D = \{(\overrightarrow{x_1}, y_1), (\overrightarrow{x_2}, y_2), \dots, (\overrightarrow{x_n}, y_n) \subseteq X \times Y\}$$

■ Where,

- D is the dataset
- X is the d-dimensional feature space (\mathbb{R}^d)
- $\overrightarrow{x_i}$ or x^i is the input vector of the *ith* sample/record/instance
- Y is the label space

The data points are drawn from an **unknown** distribution P

$$(\overrightarrow{x_i}, y_i) \sim P(x, y)$$

If we don't know the distribution, lets approximate that using samples we gathered!

Any categorical attribute can be converted to numerical representation.

We want to learn a function $h \in H$, such that for a new instance $(x_1, y) \sim P$

 $\boldsymbol{h}(\overrightarrow{x}) = \boldsymbol{y}$ with a high probability or at least $\boldsymbol{h}(\overrightarrow{x}) \approx \boldsymbol{y}$

This also have to be from the same distribution as $\overrightarrow{x_i}$

In plain words, don't train on dogs and ask prediction for cats.

Training and Testing: Formally

Label Space

☐ Binary (Binary classification)

- Sentiment: positive / negative
- Email: spam / ham
- Online Transactions Fraud: Yes / No
- Tumor: Malignant / Benign
- $y \in \{0,1\}$
- $y ∈ {-1, 1}$

■ Multi-class (multi-class classification)

- Sentiment: Positive / Negative / Neutral
- Emotion: Happy / Sad / Surprised / Angry / ...
- Parts of Speech Tag: Noun / Verb / Adjective / Adver / ...
- $y \in \{0,1,2,...\}$

☐ Real-valued (Regression)

■ Temperature, height, age, length, weight, duration, price, ...

Hypothesis Space

 \square The hypothesis h is sampled from a hypothesis space H

```
h \in H H \in \{H_D, H_R, H_{SVM}, H_{DL}, \dots\}
```

 $\square H$ can be thought of to contain types of hypotheses, which share sets of assumptions like:

• Would be instance of decision trees of different height, arity, thresholds etc.

So, how do we choose our *h*?

- **□** Randomly?
- **□** Exhaustively?

How do we evaluate h?

How to choose h?

□ Randomly

- May not work well
- Like using a random program to solve your sorting problem!
- May work if H is constrained enough

□ Exhaustively

- Would be very slow!
- The space H is usually very large (if not infinite)
- $\square H$ is usually chosen by ML Engineers (You!) based on their experience
 - $h \in H$ is estimated efficiently using various optimization techniques

References

- Murphy Chapter 1
- ☐ Alpaydin Chapter 1
- ☐ TM Chapter 1
- Lectures of Andrew Ng., Dr. Ali Raza, and "Machine Learning for Intelligent Systems (CS4780/CS5780)", Kilian Weinberger.
- ☐ This disclaimer should serve as adequate citation.