Chapitre 7 : Lois de probabilités

Définition : Arbre de probabilités

Une expérience aléatoire peut être représentée par un **arbre de probabilités** si elle est composée de plusieurs *épreuves*.

Deux épreuves sont **indépendantes** lorsque le résultat de l'une n'influence pas la probabilité des résultats de l'autre.

Exemple

On fait une expérience qui consiste à lancer un dé équilibré 3 fois de suite, et à regarder si on a obtenu un 6.

On note A l'évènement «Le dé est tombé sur 6». Ainsi on peut dessiner l'arbre suivant :

Propriété: Probabilité d'une issue

Si les épreuves que représente notre arbre sont indépendantes, la probabilité d'une issue est le **produit** des probabilités du chemin qui mène à cette issue.

Exemple

Dans l'exemple précédent, l'issue «On a obtenu un six *uniquement* au premier lancé» est représentée par le chemin $(A, \overline{A}, \overline{A})$. Sa probabilité est alors $\frac{1}{6} \times \frac{5}{6} \times \frac{5}{6} = \frac{25}{216}$.

Propriété: Probabilité d'un évènement

La probabilité d'un évènement est la somme des probabilités des issues qui forment cet évènement.

Exemple

Si on veut obtenir la probabilité d'obtenir exactement 1 six sur les trois lancés : Cet évènement est constitué des issues $(A, \overline{A}, \overline{A})$, $(\overline{A}, A, \overline{A})$ et $(\overline{A}, \overline{A}, A)$. Sa probabilité est donc

Définition: Variable aléatoire

Dans une expérience aléatoire, une **variable aléatoire** est un nombre réel associé à chaque issue de l'expérience. On la note avec une lettre majuscule, souvent (mais pas toujours!) X ou Y.

Ainsi on peut définir des évènements liés à cette variable aléatoire :

- $\{X = a\}$ désigne l'évènement « X prend la valeur a »
- $\{X < a\}$ désigne l'évènement « X prend une valeur strictement inférieure à a »

Exemple

On lance trois dés, et :

- Si on obtient 3 six, on gagne 1000€.
- Sinon, on perd 10€.

Ici la variable aléatoire est le gain G que l'on peut obtenir, en euros. Il y a deux possibilités :

- Si on fait 3 six, alors G = +1000. On a donc $P(G = 1000) = \frac{1}{216}$ (la probabilité de faire 3 six).
- Sinon, G = -10. On a donc $P(G = -10) = \frac{215}{216}$.

On dira que l'issue (6;6;6) est **favorable** à l'évènement $\{G = 1000\}$, tandis que les issues (1;1;1), (2;3;2), etc... sont favorable à l'évènement $\{G = -10\}$.

Définition : Loi de probabilité

Pour une variable aléatoire X, sa **loi de probabilité** est la description des probabilités associées à chaque valeur possible de X.

Exemple

Dans l'exemple ci-dessus, la loi de probabilité de G est

•
$$P(G = 1000) = \frac{1}{216}$$

•
$$P(G = -10) = \frac{215}{216}$$

Noter que le total des probabilités est toujours 1.

Définition: Espérance

L'**espérance** d'une variable aléatoire X est la valeur de la moyenne que l'on peut *espérer* obtenir si on répète l'expérience un grand nombre de fois.

Si la loi de probabilité de X est donnée par

a_i	a_1	a_2	•••	a_n
$P(X = a_i)$	p_{1}	p_{2}		p_n

Alors son espérance est

$$E(X) = p_1 a_1 + p_2 a_2 + \dots + p_n a_n$$

Exemple

Si on jette un dé équilibré à six faces, et que l'on défini la variable aléatoire X telle que :

- Si on obtient 1, 2, 3 ou 4, X = 0.
- Si on obtient 5, X = 1.
- Si on obtient 6, X = 2.

On a alors le tableau suivant :

a	0	1	2
P(X = a)	<u>4</u>	<u>1</u>	<u>1</u>

Et donc

$$E(X) = \frac{4}{6} \times 0 + \frac{1}{6} \times 1 + \frac{1}{6} \times 2$$
$$= 0 + \frac{1}{6} + \frac{2}{6}$$
$$= \frac{1}{2}$$