METODA GAUSSA-SEIDLA

W niniejszej metodzie również należy zastosować pochodne numeryczne omówione przy okazji metody Newtona.

DANE:
$$f(x, y), x_0 = [x_0, y_0], \varepsilon$$

Kolejne kroki metody polegają na wyznaczaniu miejsca zerowego pochodnej na zmianę stosując pochodną po x, podstawiając y i wyznaczając x, a potem stosując pochodną po y, podstawiając x i wyznaczając y. Do wyznaczenia miejsca zerowego najlepiej zastosować metodę stycznych z wystarczająco dużym przedziałem a, b (przykładowo -100, 100).

Kolejne kroki można opisać następująco:

- 1. Szukamy miejsca zerowego pochodnej $\frac{\partial f(x,y)}{\partial x}=0$ podstawiając jako y wartość startową w pierwszej iteracji, w kolejnych y z poprzedniej iteracji i wyznaczamy metodą stycznych x, w którym znajduje się miejsce zerowe. Nadpisujemy x wyznaczoną wartością.
- 2. Szukamy miejsca zerowego pochodnej $\frac{\partial f(x,y)}{\partial y}=0$ podstawiając jako x wartość wyliczoną powyżej i wyznaczamy metodą stycznych y, w którym znajduje się miejsce zerowe. Nadpisujemy y wyznaczoną wartością.
- 3. Jeśli $|\nabla f(x,y)| \le \mathcal{E}$, to koniec, w p. p. wracamy do 1.

PRZYKŁAD: Proszę pamiętać aby pochodne liczyć ze wzorów omówionych przy okazji metody Newtona. Program ma działać dla dowolnej funkcji.

Dane:
$$f(x,y) = 10x^2 + 12xy + 10y^2$$
, $x_0 = [10,10]$, $E = 0.07$
$$\frac{\partial f(x,y)}{\partial x} = 20x + 12y \qquad \frac{\partial f(x,y)}{\partial y} = 12x + 20y$$

I iteracja:

1.
$$y = 10 \implies \frac{\partial f(x,y)}{\partial x} = 20x + 12y = 0 \implies 20x + 12 \cdot 10 = 0 \implies x = -6$$

2. $x = -6 \implies \frac{\partial f(x,y)}{\partial y} = 12x + 20y = 0 \implies 12 \cdot (-6) + 20y = 0 \implies y = 3,6$

Il iteracja:

1.
$$y = 3.6$$
 => $\frac{\partial f(x,y)}{\partial x} = 20x + 12y = 0$ => $20x + 12 \cdot 3.6 = 0$ => $x = -2.16$
2. $x = -2.16$ => $\frac{\partial f(x,y)}{\partial y} = 12x + 20y = 0$ => $12 \cdot (-2.16) + 20y = 0$ => $y = 1.296$

......

VIII iteracja:
$$x = -0.0047$$
 $y = 0.00282$

Etap wyznaczania miejsca zerowego powyżej został przedstawiony poprzez analityczne przestawienie natomiast w programie należy zastosować metodę stycznych. Proszę również pamiętać aby w metodzie stycznych zastosować wystarczająco dużą dokładność (większą niż $\mathcal E$ założony w metodzie Gaussa-Seidla).