

蚂蚁金服数据可视化

新一代可视化引擎 G2

章伟星

蚂蚁金服

个人介绍

- 2013 年毕业于哈尔滨工业大学, 软件工程硕士。
- 2013.07 2014.06 任职于百度,商务搜索质量部。
- 2014.07 至今,任职于蚂蚁金服,高级前端开发工程师,主要负责 G2 的开发以及相关数据可视化工作。

团队介绍

蚂蚁金服集团下的体验技术部,有很多热情似火的设计师,负责交互、视觉、用研、设计研究等等工作,也有很多Web 工程师,玩转 Java 与 Node 服务、多端 UI 架构、工程效能、数据可视化等种种领域。

数据可视化的本质

数据空间到图形空间的映射

什么是视觉编码

2

视觉编码

可视化引擎 G2

一套属于 DT 时代的图形语法

the Grammar of Graphics

一套属于 DT 时代的图形语法

一个简单的例子

antvis.github.io/exec.html

那么,什么是图形语法?

图形语法 The Grammar of Graphics

Wilkinson(2005) 创建的一套用来描述所有统计图形深层特性的语法规则,该语法回答了『什么是统计图形』这一问题,以自底向上的方式组织最基本的元素形成更高级的元素。

图形语法

The Grammar of Graphics

G2 的可视化框架设计

G2 的数据处理流程

可视化引擎 G2

G2 图表模块简介

G2 的图形语法

一张图表就是从<u>数据到几何</u>标记对象的图形属性的一个映射,此外图形中还可能包含数据的统计变换,最后绘制在某个特定的坐标系中。

Data, 数据

https://g2.alipay.com/tutorial/data.html

Stat, 统计 https://g2.alipay.com/tutorial/stat.html

统计变换是对数据进行的某种汇总,是可选的,但通常非常有用。

chart.intervalStack().position(Stat.summary.proportion()).color('cut');

Scale,数据度量

#https://g2.alipay.com/tutorial/scale.html

根据不同的数据类型定义对应的度量:

- identity
- linear pow log time
- cat timeCat

Attr,图形属性 https://g2.alipay.com/tutorial/attr.html

图形属性对应视觉编码中的视觉通道。

那么,如何将变量映射到图形属性上?

视觉通道的表现力

数据和视觉通道的映射

G2 使用的视觉通道

position	位置, chart.point().position('x*y')
color	颜色, chart.interval().position('x*y').color('x');
size	大小,chart.point().position('x*y').size('z');
shape	形状,chart.point().position('x*y').shape('square');
opacity	透明度,chart.interval().position('x*y').opacity(0.8);

Position 位置

1. postion('dim')

2. postion('dim1*dim2')

Color 颜色

分类数据的颜色映射

定量(连续)数据的颜色映射:

PS: opactiy 透明度在视觉编码过程中,只能进行定量(连续)数据的映射,作为颜色的一个补充使用。

Size 大小

在这里,不同的视觉标记对应不同的视觉表现。

Shape 形状

不同的对应不同的 shapes。

Geom, 几何标记

chart.point()

几何标记 Geom 决定了图表类型,而对于每一种图表类型来说,又可以使用不同的形状绘制图形。

Geom 类型	Shape
point	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
line	
area	Va/M/Mac
interval	
polygon	
schema	†

Coord, 坐标系

描述了数据是如何映射到图形所在的平面,我们通常使用的是笛卡尔坐标系,但也可以将其变换为其他类型,如极坐标和地图投影。

实例演示

4

DEMO 1

R语言中的钻石数据

表 2.1 diamonds 数据集。变量 depth、table、x、y 和 z 代表了钻石的各种测量尺度,如图 2.1 所示。

carat	cut	color	clarity	depth	table	price	x	у	z
0.2	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
0.2	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
0.2	Good	\mathbf{E}	VS1	56.9	65.0	327	4.05	4.07	2.31
0.2	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
0.2	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
0.2	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48

http://antvis.github.io/demo.html

DEMO 2

https://g2.alipay.com/demo/05-pie/pie.html

DEMO 3

杭州地铁票价可视化

http://g2.alipay.com/demo/08-heatmap/subway.html

更多内容请访问 G2 官网 https://g2.alipay.com

AntV 一套专业数据可视化规范 https://antv.alipay.net/

联系我们

https://github.com/antvis

https://github.com/antvis/feedback/issues/new

总结、展望

4

G2 的目标

以数据为中心

融入统计学知识

专业的可视化引擎

目前的 G2

1.0版

常见图表 数据映射

统计函数

0 0 0

1.1版

多坐标系图形 的统一展示

数据流程改造

1.2版

性能优化

统一精度

加法运算符

Roadmap

数据统计结果图表化

数据结果展示化

数据分析过程可视化

使图表可视化更简单, 通过简洁易用的语法服 务于更多更广的用户群 体。

G2 1.x

图形语法、数据映射、多坐标 系统一、简单统计函数、统一 显示精度 以 D3 为目标,成为一套 完整的以数据驱动的可 视化工具,并将 PC 与 mobile 端技术统一。

G2 2.x

Shape 扩展、异构数据多view 支持、交互语法、多图联动、多端统等

将技术产品化,打造一款 web 端的 ggplot2,贯 通数据分析过程的可视化产品,今年起步。

G2 3.x

数据分析、数据统计、可视 步骤、产品化等

谢谢

联系方式

团队: @王保平 / yubo@alipay.com

个人: @章伟星 / zaifei.zwx@alibaba-inc.com