Convex Homework 1

Aaron Zweig

Throughout, assume θ is an arbitrary element of [0,1].

1. Suppose $(x_1, t_1), (x_2, t_2) \in C$ where C is the quadratic cone. Then $\|(1 - \theta)x_1 + \theta x_2\|_2 \le (1 - \theta)\|x_1\|_2 + \theta\|x_2\| \le (1 - \theta)t_1 + \theta t_2$.

This implies $(1 - \theta)(x_1, t_1) + \theta(x_2, t_2) \in C$, so C is convex.

- 2. Suppose $x, y \in A \cap B$. By convexity of A and B, $(1 \theta)x + \theta y$ is an element of A and B, hence $A \cap B$. So $A \cap B$ is convex.
- 3. Start with f(x) = Ax + b and C is convex.

Say $\alpha, \beta \in f(C)$ such that $f(x) = \alpha$, $f(y) = \beta$ where $x, y \in C$. Then

$$(1 - \theta)\alpha + \theta\beta = A((1 - \theta)x + \theta y) + b = f((1 - \theta)x + \theta y) \in f(C)$$

So f(C) is convex.

Now, say $\alpha, \beta \in f^{-1}(C)$ such that $f(\alpha) = x, f(\beta) = y$ for $x, y \in C$. Then

$$f((1-\theta)\alpha + \theta\beta) = (1-\theta)(A\alpha + b) + \theta(A\beta + b) = (1-\theta)x + \theta y \in C$$

So $(1 - \theta)\alpha + \theta\beta \in f^{-1}(C)$, hence it's convex.

4. Consider $(\theta_1, \ldots, \theta_{k+1})$ such that $\theta_i \geq 0$ and $\sum_{i=1}^{k+1} \theta_i = 1$. Define $y := \sum_{i=1}^k \theta_i x_i$ and $z := \sum_{i=1}^{k+1} \theta_i x_i$.

If $\theta_{k+1} = 1$, then $z = x_{k+1} \in C$. Otherwise, the inductive hypothesis gives $y/(1 - \theta_{k+1}) \in C$ since $\sum_{i=1}^k \theta_i = 1 - \theta_{k+1}$. And by convexity $z = (1 - \theta_{k+1}) * y/(1 - \theta_{k+1}) + \theta_{k+1}x_{k+1} \in C$.

5. If C is convex, a line is convex so their intersection is also convex. Conversely, if $x, y \in C$, and the intersection of C with the line $L := \{(1 - \alpha)x + \alpha y : \alpha \in \mathbb{R}\}$ is convex, then $(1 - \theta)x + \theta y \in C \cap L \subseteq C$ and therefore C is convex.

Similarly, if C is affine, a line is affine so their intersection is also affine. Conversely, if $x, y \in C$, and the intersection of C with the line $L := \{(1 - \alpha)x + \alpha y : \alpha \in \mathbb{R}\}$ is affine, then for any $\beta \in \mathbb{R}$, $(1 - \beta)x + \beta y \in C \cap L \subseteq C$ and therefore C is affine.

6. (a) Define $C_1 = \{(x,t) : (A^{1/2}x)^T (A^{1/2}x) \le t^2, t \ge 0\}, C_2 = \{(x,t) : t^2 \le -b^T x - c\},$ and $C_3 = \{(y,t) : t^2 \le y\}.$ C_1 is the preimage of the second order cone under the affine map $(x,t) \to (A^{1/2}x,t)$ and therefore convex. If $(x_1,t_1), (x_2,t_2) \in C_3$, we observe

$$(\theta t_1 + (1 - \theta)t_2)^2 = \theta^2 t_1^2 + (1 - \theta)^2 t_2^2 + 2\theta (1 - \theta)t_1 t_2$$

$$\leq \theta^2 t_1^2 + (1 - \theta)^2 t_2^2 + \theta (1 - \theta)(t_1^2 + t_2^2)$$

$$\leq \theta t_1^2 + (1 - \theta)t_2^2$$

$$\leq (1 - \theta)y_1 + \theta y_2$$

Therefore C_3 is convex. And C_2 is the preimage of C_3 under the map $(x,t) \to (-b^T x - c, t)$.

Finally, C is gotten by forgetting the last coordinate of $C_1 \cap C_2$, and is therefore convex.

To show the converse is not true, consider A = -I, b = 0, c = 0, then the constraint reduces to $-\|x\|_2^2 \le 0$, so $C = \mathbb{R}^n$ and is therefore convex.

(b) Call the hyperplane H. Define $C' = \{x : x^T(A + \lambda gg^T)x - \lambda h^2 + b^Tx + c \leq 0\}$. By assumption $A + \lambda gg^T \succeq 0$, so by part (a), C' is convex. And for $x \in C \cap H$, $\lambda h^2 = \lambda x^T gg^T x$, so it follows $C \cap H = C' \cap H$, which is the intersection of convex sets and therefore convex.

For the converse, consider A = -I, b = 0, c = 0, $g = e_1$, h = 0, then $A + \lambda gg^T$ still has negative eigenvalues regardless of λ , but C is the hyperplane $\{x : g^Tx = 0\}$ and therefore convex.

7. Say $(a, b), (c, d) \in S$, so there exists $(a, b'), (c, d') \in S_1$ and $(a, b - b'), (c, d - d') \in S_2$. By convexity $((1 - \theta)a + \theta c, ((1 - \theta)b' + \theta d')) \in S_1$ and $((1 - \theta)a + \theta c, (1 - \theta)(b - b') + \theta(d - d')) \in S_2$

Then
$$(1-\theta)(a,b) + \theta(c,d) = ((1-\theta)a + \theta c, (1-\theta)b' + \theta d' + (1-\theta)(b-b') + \theta(d-d')) \in S$$
.

8. Choose $A = \{(x, y) \in \mathbb{R}^2 : y = 0\}$ and $B = \{(x, y) \in \mathbb{R}^2 : y \ge 1/x, x \ge 1\}$. A is clearly affine and therefore convex and closed.

If $(x_1, y_1), (x_2, y_2) \in B$, $(1 - \theta)x_1 + \theta x_2 \ge 1$. Note that $\frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{x_1^2 + x_2^2}{x_1 x_2} \ge \frac{2x_1 x_2}{x_1 x_2} = 2$, and therefore

$$((1-\theta)y_1 + \theta y_2)((1-\theta)x_1 + \theta x_2) \ge (1-\theta)^2 + \theta^2 + \theta(1-\theta)\left(\frac{x_1}{x_2} + \frac{x_2}{x_1}\right)$$

$$\ge (1-\theta)^2 + \theta^2 + 2\theta(1-\theta) = 1$$

So B is convex, and by continuity of 1/x, B is also closed.

Note that any hyperplane not of the form $\{(x,y) \in \mathbb{R}^2 : y=c\}$ will intersect A. If c < 0 the hyperplane doesn't separate the sets, if c = 0 it intersects A and if c > 0 it intersects B, so there is no strictly separating hyperplane.

9. Let $I = \{i \in [n] : |\hat{x}_i| = 1\}$. Since \hat{x} is in the boundary of C, I is non-empty. Consider a potential supporting hyperplane $H(a) = \{x \in \mathbb{R}^n : a^T(x - \hat{x}) = 0\}$. Suppose $a \neq 0$ is such that $a_i = -1 * \delta_{i \in I} * \hat{x}_i * \alpha_i$ where $\alpha_i \geq 0$. If $x \in C$,

$$a^{T}(x - \hat{x}) = \sum_{i} a_{i}(x_{i} - \hat{x}_{i}) = \sum_{i \in I} \alpha_{i}(1 - x_{i}\hat{x}_{i}) \ge 0$$

and therefore those a define valid supporting hyperplanes.

We show those are the only valid normal vectors. Call \mathbf{e}_i the one-hot vector at coordinate i. Say there is $i \notin I$ such that, WLOG, $a_i > 0$. Since $i \notin I$, $\hat{x} - \epsilon \mathbf{e}_i \in C$ for some $\epsilon > 0$. Then $a^T(\hat{x} - \epsilon \mathbf{e}_i - \hat{x}) = -a_i \epsilon < 0$.

Alternatively, say $i \in I$ and $sign(a_i) = sign(\hat{x}_i)$. Clearly $\hat{x} - \epsilon \hat{x}_i \mathbf{e}_i \in C$, but $a^T(\hat{x} - \epsilon \hat{x}_i \mathbf{e}_i - \hat{x}) = -\epsilon a_i \hat{x}_i < 0$.

10. Call H the hyperbolic cone and C the second-order cone.

If $x \in H$, then $xP^Tx \le (c^Tx)^2$ and $c^Tx \ge 0$. Call $z = P^{1/2}x$ and $t = c^Tx$, then $z^Tz \le t^2$ and $t \ge 0$, hence $f(x) = (z, t) \in C$ and $x \in f^{-1}(C)$.

Conversely, if $x \in f^{-1}(C)$, then $f(x) \in C$. So $xP^Tx = (P^{1/2}x)^TP^{1/2}x \le (c^Tx)^2$ and $c^Tx > 0$, i.e. $x \in H$.