第七讲大数定律

龚鹤扬

中国科学技术大学统计学博士 上海芯梯科技有限公司

2025年5月7日

目录

- 1 引言
- ② 切比雪夫不等式
- ③ 弱大数定律 (WLLN)
- 4 强大数定律 (SLLN)
- 5 大数定律的应用
- 6 总结与展望

引言:大数定律的重要性与局限

并非对所有随机变量都成立的普适规律

- 本讲主题: 大数定律 (LLN) 重要的极限定理。
- 核心思想: 大量重复试验中, 频率 → 概率; 样本均值 → 总体期望。
- LLN: 理论概率 ↔ 统计推断的桥梁; 多种统计方法的基础。
- 重要: LLN 结论依赖特定条件 (如期望存在、方差有限)。
- 条件不满足? LLN 可能失效。反例: 柯西分布, 探讨条件必要性。

7.1 切比雪夫不等式 (Chebyshev's Inequality)

一个重要的概率上界

• 作用: 给出随机变量偏离期望概率的上界。

◆特点:不依赖具体分布,仅需期望、方差存在且有限。

7.1 切比雪夫不等式 (Chebyshev's Inequality)

一个重要的概率上界

作用:给出随机变量偏离期望概率的上界。

特点:不依赖具体分布,仅需期望、方差存在且有限。

定理 7.1 (切比雪夫不等式)

设随机变量 X 具有期望 $\mathrm{E}(X)=\mu$ 和方差 $\mathrm{Var}(X)=\sigma^2$ (其中 $0<\sigma^2<+\infty$)。则对于任意正数 $\epsilon>0$,有:

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$

或者等价地:

$$P(|X - \mu| < \epsilon) \ge 1 - \frac{\sigma^2}{\epsilon^2}$$

7.1 切比雪夫不等式 (Chebyshev's Inequality)

一个重要的概率上界

• 作用: 给出随机变量偏离期望概率的上界。

特点:不依赖具体分布,仅需期望、方差存在且有限。

定理 7.1 (切比雪夫不等式)

设随机变量 X 具有期望 $\mathrm{E}(X)=\mu$ 和方差 $\mathrm{Var}(X)=\sigma^2$ (其中 $0<\sigma^2<+\infty$)。则对于任意正数 $\epsilon>0$,有:

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$

或者等价地:

$$P(|X - \mu| < \epsilon) \ge 1 - \frac{\sigma^2}{\epsilon^2}$$

意义与特点:

• 普适性:条件满足时,对任何分布成立。

• 实用性: 分布未知时的粗略估计。

● 局限性: 界限通常较宽松。

7.2 弱大数定律 (Weak Law of Large Numbers, WLLN)

样本均值的依概率收敛

WLLN 核心:特定条件下,样本均值 依概率收敛 于总体期望。

定理 7.2 (切比雪夫弱大数定律)

设 $X_1, X_2, \ldots, X_n, \ldots$ 是一列<mark>相互独立</mark>、具有相同期望 $\mathrm{E}(X_i) = \mu$ 和相同<mark>有限方差 $\mathrm{Var}(X_i) = \sigma^2 < +\infty$ 的随机变量序列。令样本均值为 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ 。则对于任意 $\epsilon > 0$,有:</mark>

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0$$

或者等价地:

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| < \epsilon) = 1$$

这表示样本均值 \bar{X}_n 依概率收敛于 μ ,记作 $\bar{X}_n \stackrel{P}{\to} \mu$ 。

注: 依赖方差有限; 由切比雪夫不等式证明。

伯努利弱大数定律

频率的稳定性

定理 7.3 (伯努利弱大数定律)

设 n_A 是 n 次独立重复伯努利试验中事件 A 发生的次数,p 是事件 A 在每次试验中发生的概率。令 $f_n = \frac{n_A}{n}$ 为事件 A 发生的频率。则对于任意 $\epsilon > 0$. 有:

$$\lim_{n\to\infty} P\left(|f_n - p| \ge \epsilon\right) = 0$$

揭示了"频率稳定性"本质: n 很大时, f_n 高概率接近 p_o

注:切比雪夫 WLLN 特例;频率估计概率的理论依据。

期望存在的重要性: 引入柯西分布

一个大数定律不成立的著名反例

柯西分布 (Cauchy Distribution)

PDF:

$$f(x; x_0, \gamma) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - x_0}{\gamma} \right)^2 \right]}$$

 x_0 : 位置参数 (峰值、中位数、众数); $\gamma > 0$: 尺度参数 (宽度、半峰全宽)。 标准柯西 ($x_0 = 0, \gamma = 1$): $f(x) = \frac{1}{\pi(1+x^2)}$ 。

特点:

- 钟形对称,但<mark>重尾</mark> (比正态分布尾部厚)。
- 期望 E(X) 不存在 (积分发散)。
- 方差 Var(X) 亦不存在。

图: *

PDFs: N(0,1) vs C(0,1)

对 LLN 的影响:

- 不满足 LLN 的"期望存在/方差有限"条件。
- i.i.d. 柯西序列的样本均值不收敛。

可视化: 正态 vs. 柯西样本均值路径

样本均值随样本量 n 变化的轨迹

正态分布
$$N(0,1)$$
 (E(X) = 0, $Var(X) = 1$)

图: \bar{X}_n 快速稳定收敛到 $\mu = 0$

柯西分布 *C*(0,1) (E(X) 不存在)

图: \bar{X}_n 持续剧烈波动, 不收敛

柯西样本均值:持续波动,不收敛 (极端值影响)

辛钦弱大数定律 (Khinchin's WLLN)

期望存在即可保证依概率收敛 (i.i.d. 情况)

辛钦 WLLN: i.i.d. 序列,仅要求<mark>期望存在</mark> (无需方差有限)。

定理 7.4 (辛钦弱大数定律)

设 $X_1, X_2, ..., X_n, ...$ 是一列<mark>独立同分布 (i.i.d.)</mark> 的随机变量序列,且其共同的期望 $\mathrm{E}(X_i) = \mu$ 存在 (即 $|\mu| < \infty$)。令样本均值为 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ 。则对于任意 $\epsilon > 0$,有:

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0$$

即 $\bar{X}_n \stackrel{P}{\rightarrow} \mu$ 。

柯西分布与辛钦 WLLN:

- i.i.d. 柯西序列: 期望不存在 ⇒ 不满足辛钦 WLLN 条件。
- 结论: 其样本均值 X_n 不依概率收敛。

7.3 强大数定律 (Strong Law of Large Numbers, SLLN)

样本均值的几乎必然收敛 (更强的收敛)

SLLN: 更强收敛性,样本均值几乎必然收敛 ($\stackrel{a.s.}{\longrightarrow}$) 于总体期望 (同样要求期望存在)。

定理 7.5 (柯尔莫哥洛夫强大数定律)

设 $X_1, X_2, ..., X_n, ...$ 是一列<u>独立同分布 (i.i.d.)</u> 的随机变量序列,且其共同的期望 $\mathrm{E}(X_i) = \mu$ 存在 (即 $|\mu| < \infty$)。 令样本均值为 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ 。则:

$$P\left(\lim_{n\to\infty}\bar{X}_n=\mu\right)=1$$

这表示样本均值 \bar{X}_n 几乎处处收敛 (Almost Surely Converge) 于 μ ,记作 $\bar{X}_n \xrightarrow{a.s.} \mu$ 。

柯西分布与 SLLN:

- i.i.d. 柯西序列: 期望不存在 ⇒ 不满足SLLN 条件。
- 结论: 其样本均值 \bar{X}_n 不几乎必然收敛。

注:柯尔莫哥洛夫强大数定律的条件与辛钦弱大数定律相同 (i.i.d. 且期望存在),但结论更强。

WLLN 与 SLLN 的区别与联系 (1): 正态分布

依概率收敛 vs. 几乎必然收敛

核心区别:

- WLLN 依概率收敛 ($\stackrel{P}{\to}$): $\lim_{n\to\infty} P(|\bar{X}_n \mu| \ge \epsilon) = 0$. 关注概率的极限。
- SLLN 几乎必然收敛 ($\xrightarrow{a.s.}$): $P(\lim_{n\to\infty} \bar{X}_n = \mu) = 1$. 关注样本路 径的极限。

WLLN 与 SLLN 的区别与联系 (1): 正态分布

依概率收敛 vs. 几乎必然收敛

核心区别:

- WLLN 依概率收敛 ($\stackrel{P}{\to}$): $\lim_{n\to\infty} P(|\bar{X}_n \mu| \ge \epsilon) = 0$. 关注概率的极限。
- SLLN 几乎必然收敛 ($\xrightarrow{a.s.}$): $P(\lim_{n\to\infty} \bar{X}_n = \mu) = 1$. 关注样本路 径的极限。

条件与对比:

- SLLN 比 WLLN 更强 $(\stackrel{a.s.}{\longrightarrow} \Longrightarrow \stackrel{P}{\rightarrow})$ 。
- 两者最广泛应用的 i.i.d. 版本都要求 期望存在 $(|\mu| < \infty)$ 。
- 对于正态分布 (例如 $N(\mu, \sigma^2)$):
 - 期望 μ 存在、方差 σ^2 有限 \implies 满足 LLN 条件。
 - i.i.d. 正态样本均值 \bar{X}_n : $\stackrel{P}{\rightarrow} \mu$ 且 $\stackrel{a.s.}{\longrightarrow} \mu$ 。

WLLN 与 SLLN 的区别与联系 (2): 柯西分布反例

期望不存在导致大数定律失效

特性	正态分布	柯西分布
均值	存在 (μ)	不存在 (位置参数 x ₀)
方差	有限 (σ^2)	不存在 (尺度参数 γ)
LLN	成立	不成立
样本均值行为	收敛至 μ	剧烈波动

表: 正态分布与柯西分布对比

WLLN 与 SLLN 的区别与联系 (2): 柯西分布反例

期望不存在导致大数定律失效

特性	正态分布	柯西分布
均值	存在 (μ)	不存在 (位置参数 x ₀)
 方差	有限 (σ^2)	不存在 (尺度参数 γ)
LLN	成立	不成立
样本均值行为	收敛至 μ	剧烈波动

表: 正态分布与柯西分布对比

关键特性: 对于 i.i.d. 柯西序列的样本均值 \bar{X}_n

● 期望不存在 ⇒ 不满足 LLN 的期望存在条件, 即

$$\bar{X}_n \xrightarrow{P} \text{const}, \quad \bar{X}_n \xrightarrow{a.s.} \text{const}$$

• 惊人事实: 若 $X_i \sim C(0,1)$ i.i.d., 则 $\bar{X}_n = \frac{1}{n} \sum X_i \sim C(0,1)$ (仍为标准柯西分布, 与 n 无关!)

7.4 大数定律的应用 (Applications of LLN)

应用广泛,但基础是满足 LLN 条件 (尤其期望存在)

- 前提: 应用均假设满足 LLN 条件 (尤其期望存在)。
- 理论与解释:
 - 频率稳定性 (伯努利 LLN)。
 - 解释平均结果的稳定趋向。
- 统计推断:
 - 参数估计 (样本均值 → 总体期望, 前提: 期望存在!)。
 - 蒙特卡洛方法 (随机抽样估计)。
- 风险管理与保险: 预测平均赔付。
- 质量控制: 样本推断总体。
- 物理与工程: 多次测量取平均减小误差。
 - 警示: 若误差为柯西分布, 平均无效!

核心警示: LLN 条件 (尤其期望存在) 是应用有效的关键。

总结与展望

本讲小结

- 切比雪夫不等式: 概率上界 (需方差)。
- 弱大数定律 (WLLN): $\bar{X}_n \stackrel{P}{\to} \mu$ (如辛钦: i.i.d., EX_i 存在)。
- 强大数定律 (SLLN): $\bar{X}_n \xrightarrow{a.s.} \mu$ (如柯尔莫哥洛夫: i.i.d., EX_i 存在); SLLN \Longrightarrow WLLN.
- LLN 条件核心: 期望存在性。
- $\overline{\text{LM}}$ 柯西分布: $\overline{\text{E}}X$ 不存在 \Longrightarrow $\overline{\text{LLN}}$ 不适用; \overline{X} , 仍为柯西。
- LLN 地位: 连接概率论与统计实践的核心桥梁。

展望

- 大数定律描述了平均行为的极限。
- 核心极限定理 中心极限定理 (CLT): 描述样本均值的分布 \rightarrow 正态分布 (通常需 EX, Var X 存在)。
- 大数定律和中心极限定理共同构成了现代统计推断的理论基石。

谢谢聆听!

相关数学证明参考资料请访问:

https://1587causalai.github.io/BasicProbabilityLectureNotes

问题与讨论