1

Assignment 4

Perambuduri Srikaran - AI20BTECH11018

Download latex codes from

https://github.com/srikaran-p/AI1103/tree/main/ Assignment4

PROBLEM

(GATE-MA 2015 Q17) Let τ_1 be the usual topology on \mathbb{R} . Let τ_2 be the topology on \mathbb{R} generated by $\mathcal{B} = \{ [a,b) \subset \mathbb{R} : -\infty < a < b < \infty \}$. Then the set $\{x \in \mathbb{R} : 4sin^2x \leq 1\} \cup \left\{\frac{\pi}{2}\right\}$ is

- (A) closed in (\mathbb{R}, τ_1) but NOT in (\mathbb{R}, τ_2)
- (B) closed in (\mathbb{R}, τ_2) but NOT in (\mathbb{R}, τ_1)
- (C) closed in both (\mathbb{R}, τ_1) and (\mathbb{R}, τ_2)
- (D) neither closed in (\mathbb{R}, τ_1) nor closed in (\mathbb{R}, τ_2)

SOLUTION

Let A be the set of all the solutions of the given inequality,

$$A = \bigcup_{n \in \mathbb{Z}} \left[2n\pi - \frac{\pi}{6}, 2n\pi + \frac{\pi}{6} \right] + \bigcup_{n \in \mathbb{Z}} \left[2n\pi + \frac{5\pi}{6}, 2n\pi + \frac{7\pi}{6} \right] + \left\{ \frac{\pi}{2} \right\} \quad (0.0.1)$$

$$A' = \left(\frac{-5\pi}{6}, \frac{-\pi}{6}\right) + \left(\frac{\pi}{6}, \frac{\pi}{2}\right) + \left(\frac{\pi}{2}, \frac{5\pi}{6}\right) + \bigcup_{n \in \mathbb{Z} - \{0\}} \left(2n\pi - \frac{5\pi}{6}, 2n\pi - \frac{\pi}{6}\right) + \bigcup_{n \in \mathbb{Z} - \{0\}} \left(2n\pi + \frac{\pi}{6}, 2n\pi + \frac{5\pi}{6}\right) \quad (0.0.2)$$

0.1 Definition

A set U of real numbers is said to be open if for all $x \in U$, there exists $\delta(x) > 0$ such that $(x - \delta(x), x + \delta(x)) \subset U$.

The intervals in A' are open sets by 0.1.

0.2 Theorem

If $\{U_{\alpha}\}$ is any collection (finite, infinite, countable or uncountable) of open sets, then $\bigcup_{\alpha} U_{\alpha}$ is an open set.

A' is an open set by 0.2.

$$A' \in \tau_1 \tag{0.2.1}$$

A' is not closed in (\mathbb{R}, τ_1) .

 \implies A is closed in (\mathbb{R}, τ_1) .

$$(a,b) = \bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b \right]$$
 (0.2.2)

The intervals in A' can be written as (0.2.2).

$$A' \in \tau_2 \tag{0.2.3}$$

A' is not closed in (\mathbb{R}, τ_2) .

 \implies A is closed in (\mathbb{R}, τ_2) .

Hence, option (C) is correct.