

Hypothesis Testing: Two sample test

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT

Agenda

Comparing two population variances

- Choosing z or t test
- Sample size

Hypothesis Tests for Two Variances Tushihulian

Right should distribution

Goal: Test hypotheses about two population variances

$$H_0: \sigma_1^2 \ge \sigma_2^2$$

 $H_1: \sigma_1^2 < \sigma_2^2$

$$H_0: \sigma_1^2 \le \sigma_2^2$$

$$H_1: \sigma_1^2 > \sigma_2^2$$

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_1$$
: $\sigma_1^2 \neq \sigma_2^2$

Lower-tail

test

Upper-tail

test

Two-tail test

The two populations are assumed to be independent and normally distributed

Hypothesis Tests for Two Variances Both Pup = Small wierce

F= Si/Si : x1=x

Tests for Two **Population** Variances F test statistic The random variable

$$F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$$

Has an F distribution with $(n_1 - 1)$ numerator degrees of freedom and $(n_1 - 1)$ denominator degrees of freedom

Denote an F value with v_1 numerator and v_2 denominator degrees of freedom by

Test Statistic

Tests for Two
Population
Variances

F test statistic

The critical value for a hypothesis test about two population variances is

$$F = \frac{s_1^2}{s_2^2}$$

where F has $(n_x - 1)$ numerator degrees of freedom and $(n_y - 1)$ denominator degrees of freedom

Decision Rules: Two Variances $H_0: \sigma_1^2 \le \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$ Reject H₀ Do not $F_{n_x-1,n_y-1,\alpha}$ reject H₀ Reject H_0 if $F > F_{n_x-1,n_y-1,\alpha}$ asimo sue sos

rejection region for a twotail test is:

Reject
$$H_0$$
 if $F > F_{n_x-1,n_y-1,\alpha/2}$

where s_x^2 is the larger of the two sample variances

- A company manufactures impellers for use in jet-turbine engines.
- One of the operations involves grinding a particular surface finish on a titanium alloy component.
- Two different grinding processes can be used, and both processes can produce parts at identical mean surface roughness.
- The manufacturing engineer would like to select the process having the least variability in surface roughness. (< www.)
- A random sample of n1 = 11 parts from the first process results in a sample standard deviation s1 = 5.1 micro inches, and a random sample of n2 = 16 parts from the second process results in a sample standard deviation of s2 = 4.7 micro inches.
- We will find a 90% confidence interval on the ratio of the two standard deviations.

Form the hypothesis test:

 H_0 : $\sigma_1^2 = \sigma_2^2$ (there is no difference between variances)

 H_1 : $\sigma_1^2 \neq \sigma_2^2$ (there is a difference between variances)

• Find the F critical values for $\alpha = .10/2$:

Fiz?

R2 0./2

Degrees of Freedom:

Numerator

$$n_1 - 1 = 11 - 1 = 10 \text{ d.f.}$$

Denominator:

$$n_2 - 1 = 16 - 1 = 15 \text{ d.f.}$$

Assuming that the two processes are independent and that surface roughness is normally distributed

$$\frac{s_1^2}{s_2^2} f_{0.95,15,10} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{s_1^2}{s_2^2} f_{0.05,15,10}$$

$$\frac{(5.1)^2}{(4.7)^2} \, 0.39 \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{(5.1)^2}{(4.7)^2} \, 2.85$$

or upon completing the implied calculations and taking square roots,

$$0.678 \le \frac{\sigma_1}{\sigma_2} \le 1.887$$

Table of F-statistics P=0.05

t-statistics

F-statistics with other P-values: $\underline{P=0.01} \mid \underline{P=0.001}$

Chi-square statistics

df2\df1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Ī
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	8.73	8.71	8.70	[
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91	5.89	5.87	5.86	[
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68	4.66	4.64	4.62	4
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	3.98	3.96	3.94	[
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.57	3.55	3.53	3.51	[
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.28	3.26	3.24	3.22	[
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10	3.07	3.05	3.03	3.01	[
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91	2.89	2.86	2.85	0
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79	2.76	2.74	2.72	[
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69	2.66	2.64	2.62	[
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60	2.58	2.55	2.53	[
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53	2.51	2.48	2.46	
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48	2.45	2.42	2.40	

- $f_{0.95,15,10} = 1/f_{0.05,10,15} = 1/2.54 = 0.39$
- Since this confidence interval includes unity, we cannot claim that the standard deviations of surface roughness for the two processes are different at the 90% level of confidence.


```
In [1]: import pandas as pd
         import numpy as np
         import math
                                              10.95,157,10
         from scipy import stats
         import scipy
In [45]: scipy.stats.f.ppf(q=1-0.05, dfn= 15, dfd=10)
Out[45]: 2.8450165269958436
In [44]: | scipy.stats.f.ppf(q=0.05, dfn=15, dfd=10)
Out[44]: 0.3931252536255495
```


F Test example:

```
In [9]: X = [3,7,25,10,15,6,12,25,15,7]
         Y = [48,44,40,38,33,21,20,12,1,18]
         import numpy as np
In [11]: F = np.var(X) / np.var(Y)
         dfn = len(X) -1
         dfd = len(Y) -1
In [12]: p_value = scipy.stats.f.cdf(F, dfn, dfd)
In [13]: p_value
                                 0.025 < .05 : Reject to
Out[13]: 0.024680183438910465
```


Z Vs t

Pop old deviation σ –known σ –unknown n ≤ 30 **Z-test** t-test **Z-test** n > 30**Z-test** Use Sample standard deviation

$$n = \frac{\left(z_{\alpha} + z_{\beta}\right)^2 \sigma^2}{(\mu_0 - \mu_a)^2}$$

where

 $z_{\alpha} = z \text{ value providing an area of } \alpha \text{ in the tail}$ $z_{\beta} = z \text{ value providing an area of } \beta \text{ in the tail}$ $\sigma = \text{population standard deviation}$ $\mu_0 = \text{value of the population mean in } H_0$ $\mu_a = \text{value of the population mean used for the}$ Type II error

(40-pa)2

Ze = or - cloud-chas

Note: In a two-tailed hypothesis test, use $z_{\alpha/2}$ not z_{α}

• Let's assume that the manufacturing company makes the following statements about the allowable probabilities for the Type I and Type II errors:

• If the mean diameter is μ = 12 mm, I am willing to risk an α = .05 probability of rejecting H_0 .

• If the mean diameter is 0.75 mm over the specification (μ = 12.75), I am willing to risk a β = .10 probability of not rejecting H_0 .

$$\alpha = .05, \ \beta = .10$$
 $z_{\alpha} = 1.645, \ z_{\beta} = 1.28$
 $\mu_{0} = 12, \ \mu_{a} = 12.75$
 $\sigma = 3.2$

$$n = \frac{\left(z_{\alpha} + z_{\beta}\right)^{2} \sigma^{2}}{(\mu_{0} - \mu_{a})^{2}} = \frac{(1.645 + 1.28)^{2} (3.2)^{2}}{(12 - 12.75)^{2}}$$
$$= 155.75 \approx 156$$


```
In [2]: import pandas as pd
         import numpy as np
         from scipy import stats
In [5]: | import math
In [22]:
         def samplesize(alfa,beta,mu1,mu2,sigma):
             z1 = -1*stats.norm.ppf(alfa)
             z2 = -1*stats.norm.ppf(beta)
             n = (((z1+z2)**2)*(sigma**2))/((mu1-mu2)**2)
             print (n)
In [23]: samplesize(0.05,0.1,12,12.75,3.2)
         155.900083325938 CDSC ·
```


Thank You

