Statistical and Mathematical Methods for Data Analysis

Dr. Syed Faisal Bukhari

Associate Professor

Department of Data Science

Faculty of Computing and Information Technology

University of the Punjab

Textbooks

- ☐ Probability & Statistics for Engineers & Scientists,
 Ninth Edition, Ronald E. Walpole, Raymond H.
 Myer
- ☐ Elementary Statistics: Picturing the World, 6th Edition, Ron Larson and Betsy Farber
- ☐ Elementary Statistics, 13th Edition, Mario F. Triola

Reference books

- ☐ Probability and Statistical Inference, Ninth Edition, Robert V. Hogg, Elliot A. Tanis, Dale L. Zimmerman
- ☐ Probability Demystified, Allan G. Bluman
- □ Practical Statistics for Data Scientists: 50 Essential Concepts, Peter Bruce and Andrew Bruce
- ☐ Schaum's Outline of Probability, Second Edition, Seymour Lipschutz, Marc Lipson
- ☐ Python for Probability, Statistics, and Machine Learning, José Unpingco

References

- ☐ Probability & Statistics for Engineers & Scientists, Ninth edition, Ronald E. Walpole, Raymond H. Myer
- ☐ Elementary Statistics, Tenth Edition, Mario F. Triola
- ☐ https://libguides.library.kent.edu/spss/chisquare

These notes contain material from the above resources.

Chi-Square Test of Independence

- ☐ The Chi-Square Test of Independence determines whether there is an association between categorical variables (i.e., whether the variables are independent or related). It is a nonparametric test.
- ☐ This test utilizes a contingency table to analyze the data. A contingency table (also known as a cross-tabulation, crosstab, or two-way table) is an arrangement in which data is classified according to two categorical variables. The categories for one variable appear in the rows, and the categories for the other variable appear in columns. Each variable must have two or more categories. Each cell reflects the total count of cases for a specific pair of categories.

Commons Uses

The Chi-Square Test of Independence is commonly used to test the following:

- ☐ Statistical independence or association between **two or more categorical variables**.
- The Chi-Square Test of Independence can only compare categorical variables. It cannot make comparisons between continuous variables or between categorical and continuous variables. Additionally, the Chi-Square Test of Independence only assesses associations between categorical variables, and can not provide any inferences about causation

Data Requirements

(80%) of the cells.

Data must meet the following requirements: ☐ Two categorical variables. ☐ Two or more categories (groups) for each variable. ☐ Independence of observations. There is no relationship between the subjects in each group. The categorical variables are not "paired" in any way (e.g. pre-test/post-test observations). ☐ Relatively large sample size. Expected frequencies for each cell are at least 1.

Dr. Faisal Bukhari, PUCIT, PU, Lahore

Expected frequencies should be at least 5 for the majority

Contingency Tables for Testing Independence of Attributes

- □ Suppose a medical researcher wants to determine whether there is a relationship between caffeine consumption and heart attack risk. Are these variables independent or are they dependent?
- ☐ We use the **chi-square test for independence** to answer such a question.
- ☐ To perform a chi-square test for independence, we will use sample data that are organized in a contingency table.

Contingency table

- \Box An r \times c contingency table shows the observed frequencies for two variables.
- □ The observed frequencies are arranged in r rows and c columns.
- ☐ The intersection of a row and a column is called a **cell**.

Example: The contingency table shows the results of a random sample of 2200 adults classified by their favorite way to eat ice cream and gender. At a = 0.01, can you conclude that the variables favorite way to eat ice cream and gender are related?

	Favorite way to eat ice cream								
Gender	Cup	Cone	Sundae	Sandwich	Other				
Male	592	300	204	24	80				
Female	410	335	180	20	55				

1. We state our hypothesis as:

 H_0 : The variables favorite way to eat ice cream and gender are independent.

 H_1 : The variables favorite way to eat ice cream and gender are dependent. (Claim)

2. The level of significance is set $\alpha = 0.01$.

3. Test statistic to be used is

$$\chi_{cal}^2 = \sum \frac{(O_f - E_f)^2}{E_f}$$

4. Calculations

	Favorite way to eat ice cream							
Gender	Cup	Cone	Sundae	Sandwich	Other			
Male	592	300	204	24	80	1200		
Female	410	335	180	20	55	1000		
Total	1002	635	384	44	135	2200		

Expected Frequency (E_f)

$$E_{r,c} = \frac{\text{(Sum of row } r\text{)(Sum of column } c\text{)}}{\text{Sample size}}$$
 $E_{1,1} = \frac{(1200)(1002)}{2200} = 546.55$

	Favorite way to eat ice cream							
Gender	Cup	Cone	Sundae	Sandwich	Other			
Male	546.55	346.36	209.45	24	73.64	1200		
Female	455.45	288.64	174.55	20	61.36	1000		
Total	1002	635	384	44	135	2200		

O_f	E_f	$(O_f - E_f)$	$(O_f - E_f)^2$	$O_f - E_f)^2$
				$\overline{E_f}$
592	546.55	45.45	2065.7025	3.7795
300	346.36	- 46.36	2149.2496	6.2052
204	209.45	- 5.45	29.7025	0.1418
24	24	0	0	0
80	73.64	6.36	40.4496	0.5493
410	455.45	- 45.45	2065.7025	4.5355
335	288.64	46.36	2149.2496	7.4461
180	174.55	5.45	29.7025	0.1702
20	20	0	0	0
55	61.36	- 6.36	40.4496	0.6592
				χ^2_{cal} = 23.487

5. Critical region:

$$\chi^2_{cal} > \chi^2_{tab}$$

Where
$$\chi_{tab}^2 = \chi_{\alpha,(r-1)(c-1)}^2 = \chi_{0.01,(2-1)(5-1)}^2$$

$$= 13.277$$

23.487 > 13.277 (true)

6. Conclusion

There is enough evidence at the 1% level of significance to conclude that the variables *favorite way to eat ice cream* and *gender* are dependent.

Chi-Squared Table

Table A.5 Chi-Squared Distribution Probability Table

Table A.5 Critical Values of the Chi-Squared Distribution

					α					
\boldsymbol{v}	0.995	0.99	0.98	0.975	0.95	0.90	0.80	0.75	0.70	0.50
1	0.0^4393	0.0^3157	$0.0^{3}628$	0.0^3982	0.00393	0.0158	0.0642	0.102	0.148	0.455
2	0.0100	0.0201	0.0404	0.0506	0.103	0.211	0.446	0.575	0.713	1.386
3	0.0717	0.115	0.185	0.216	0.352	0.584	1.005	1.213	1.424	2.366
4	0.207	0.297	0.429	0.484	0.711	1.064	1.649	1.923	2.195	3.357
5	0.412	0.554	0.752	0.831	1.145	1.610	2.343	2.675	3.000	4.351
6	0.676	0.872	1.134	1.237	1.635	2.204	3.070	3.455	3.828	5.348
7	0.989	1.239	1.564	1.690	2.167	2.833	3.822	4.255	4.671	6.346
8	1.344	1.647	2.032	2.180	2.733	3.490	4.594	5.071	5.527	7.344
9	1.735	2.088	2.532	2.700	3.325	4.168	5.380	5.899	6.393	8.343
10	2.156	2.558	3.059	3.247	3.940	4.865	6.179	6.737	7.267	9.342
11	2.603	3.053	3.609	3.816	4.575	5.578	6.989	7.584	8.148	10.341
12	3.074	3.571	4.178	4.404	5.226	6.304	7.807	8.438	9.034	11.340
13	3.565	4.107	4.765	5.009	5.892	7.041	8.634	9.299	9.926	12.340
14	4.075	4.660	5.368	5.629	6.571	7.790	9.467	10.165	10.821	13.339
15	4.601	5.229	5.985	6.262	7.261	8.547	10.307	11.037	11.721	14.339
16	5.142	5.812	6.614	6.908	7.962	9.312	11.152	11.912	12.624	15.338
17	5.697	6.408	7.255	7.564	8.672	10.085	12.002	12.792	13.531	16.338
18	6.265	7.015	7.906	8.231	9.390	10.865	12.857	13.675	14.440	17.338
19 20	6.844 7.434	7.633 8.260	8.567	8.907 9.591	10.117 10.851	11.651 12.443	13.716	14.562 15.452	15.352 16.266	18.338 19.337
			9.237				14.578			
21	8.034	8.897	9.915	10.283	11.591	13.240	15.445	16.344	17.182	20.337
22 23	8.643 9.260	9.542 10.196	10.600 11.293	10.982 11.689	12.338 13.091	14.041 14.848	16.314 17.187	17.240 18.137	18.101 19.021	21.337 22.337
24	9.886	10.196	11.293	12,401	13.848	15.659	18.062	19.037	19.021	23.337
25	10.520	11.524	12.697	13.120	14.611	16.473	18.940	19.939	20.867	24.337
26 27	11.160 11.808	12.198 12.878	13.409 14.125	13.844 14.573	15.379 16.151	17.292 18.114	19.820 20.703	20.843 21.749	21.792 22.719	25.336 26.336
28	12.461	13.565	14.123	15.308	16.928	18.939	21.588	22.657	23.647	27.336
29	13.121	14.256	15.574	16.047	17.708	19.768	22.475	23.567	24.577	28.336
30	13.787	14.953	16.306	16.791	18.493	20.599	23.364	24.478	25.508	29.336
40	20.707	22.164	23.838	24,433	26.509	29.051	32.345	33.66	34.872	39.335
50	27.991	29.707	31.664	32.357	34.764	37.689	41.449	42.942	44.313	49.335
60	35.534	37.485	39.699	40.482	43.188	46,459	50.641	52.294	53,809	59.335
00	00.004	01.400	63.033	40.402	40.100	40.403	1207.050.2	02.234	00.003	03.000

Dr. Faisal Bukhari, PUCIT, PU, Lahore

Table A.5 (continued) Critical Values of the Chi-Squared Distribution

		α								
\boldsymbol{v}	0.30	0.25	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.074	1.323	1.642	2.706	3.841	5.024	5.412	6.635	7.879	10.827
2	2.408	2.773	3.219	4.605	5.991	7.378	7.824	9.210	10.597	13.815
3	3.665	4.108	4.642	6.251	7.815	9.348	9.837	11.345	12.838	16.266
4	4.878	5.385	5.989	7.779	9.488	11.143	11.668	13.277	14.860	18.466
5	6.064	6.626	7.289	9.236	11.070	12.832	13.388	15.086	16.750	20.515
6	7.231	7.841	8.558	10.645	12.592	14.449	15.033	16.812	18.548	22.457
7	8.383	9.037	9.803	12.017	14.067	16.013	16.622	18.475	20.278	24.321
8	9.524	10.219	11.030	13.362	15.507	17.535	18.168	20.090	21.955	26.124
9	10.656	11.389	12.242	14.684	16.919	19.023	19.679	21.666	23.589	27.877
10	11.781	12.549	13.442	15.987	18.307	20.483	21.161	23.209	25.188	29.588
11	12.899	13.701	14.631	17.275	19.675	21.920	22.618	24.725	26.757	31.264
12	14.011	14.845	15.812	18.549	21.026	23.337	24.054	26.217	28.300	32.909
13	15.119	15.984	16.985	19.812	22.362	24.736	25.471	27.688	29.819	34.527
14	16.222	17.117	18.151	21.064	23.685	26.119	26.873	29.141	31.319	36.124
15	17.322	18.245	19.311	22.307	24.996	27.488	28.259	30.578	32.801	37.698
16	18.418	19.369	20.465	23.542	26.296	28.845	29.633	32.000	34.267	39.252
17	19.511	20.489	21.615	24.769	27.587	30.191	30.995	33.409	35.718	40.791
18	20.601	21.605	22.760	25.989	28.869	31.526	32.346	34.805	37.156	42.312
19	21.689	22.718	23.900	27.204	30.144	32.852	33.687	36.191	38.582	43.819
20	22.775	23.828	25.038	28.412	31.410	34.170	35.020	37.566	39.997	45.314
21	23.858	24.935	26.171	29.615	32.671	35.479	36.343	38.932	41.401	46.796
22	24.939	26.039	27.301	30.813	33.924	36.781	37.659	40.289	42.796	48.268
23	26.018	27.141	28.429	32.007	35.172	38.076	38.968	41.638	44.181	49.728
24	27.096	28.241	29.553	33.196	36.415	39.364	40.270	42.980	45.558	51.179
25	28.172	29.339	30.675	34.382	37.652	40.646	41.566	44.314	46.928	52.619
26	29.246	30.435	31.795	35.563	38.885	41.923	42.856	45.642	48.290	54.051
27	30.319	31.528	32.912	36.741	40.113	43.195	44.140	46.963	49.645	55.475
28	31.391	32.620	34.027	37.916	41.337	44.461	45.419	48.278	50.994	56.892
29	32.461	33.711	35.139	39.087	42.557	45.722	46.693	49.588	52.335	58.301
30	33.530	34.800	36.250	40.256	43.773	46.979	47.962	50.892	53.672	59.702
40	44.165	45.616	47.269	51.805	55.758	59.342	60.436	63.691	66.766	73.403
50	54.723	56.334	58.164	63.167	67.505	71.420	72.613	76.154	79.490	86.660
60	65.226	66.981	68.972	74.397	79.082	83.298	84.58	88.379	91.952	99.608

Dr. Faisal Bukhari, PUCIT, PU, Lahore