Содержание

Γ аймер- 5	
Режимы работы	
Форматы регистров состояния/управления	
Формирование выходного сигнала	
Буферирование старшего байта	
Описание режимов работы	

Таймер-5

Модуль включает (рис. 1):

- 16-разрядный реверсивный счётчик ТСХТ (относительные адреса 1, 0),
- предделитель частоты счёта,
- 16-разрядный регистр сравнения ОСК (3, 2),
- схему сравнения CNT = IOR,
- 16-разрядный регистр захвата ІСК (5, 4),
- 8-разрядный буферный регистр старших байтов BUFH,
- два 8-разрядных регистра состояния/управления TSCRL (6) и TSCRH (7),
- блок управления таймером,
- формирователь выходного сигнала.

Таймер-5 может формировать запросы на прерывания по трём различным событиям:

- превышение заданного верхнего предела счёта,
- захват состояния TCNT в ICR
- совпадение значений TCNT и IOR.

Все три события генерируют запрос на прерывание с одним вектором (по умолчанию - 3), а идентификация конкретного события должна выполняться программно в обработчике прерывания путём анализа соответствующих флагов регистра TSCRH.

Верхний предел счёта устанавливается программно (поле TSCRH[1:0]) и может принимать значение одной из трёх констант: 0x00FF, 0x0FFF, 0xFFFF. Кроме того, в качестве значения верхнего предела может выступать содержимое регистра ICR, в этом случае в качестве верхнего предела может быть выбрано любое значение от 0 до 0xFFFF.

Рисунок 1. Функциональная схема Таймера-5

Режимы работы

Модуль поддерживает следующие режимы работы:

Режим 0 — **Просто счёт**: инкремент TCNT, формирование флага OVF при переходе $Bерхний\ npeden \to 0.$

Режим **1** – **Сброс** TCNT при совпадении TCNT = OCR, формирование флага ICF.

Режим 2 – Быстрый ШИМ;

Режим 3 – ШИМ с фазовой коррекцией (ШИМ ФК).

Форматы регистров состояния/управления

Назначение полей регистра TSCRL:

TSCRL[1:0] – определяет режим работы (0..3);

TSCRL[3:2] – задаёт частоту счёта (управление предделителем):

00 – счётчик выключен,

01 – OSC (частота задающего генератора),

10 - OSC/16,

11 - OSC/64;

TSCRL[5:4] — управление формированием внешнего сигнала (зависит от выбранного режима, см. табл. в разделе);

TSCRL[6] – разрешение внешнего захвата;

TSCRL[7] – программный захват.

Назначение полей регистра TSCRH:

TSCRH[1:0] – определяет значение верхнего предела:

00 - ICR

01 - 00FF

10 - 0FFF

11 - FFFF

TSCRH[4:2] – биты разрешения прерываний по событиям: внешний захват (ICIE), совпадение TCNT = OCR (OCIE), таймер достиг верхнего предела (OVIE);

TSCRH[7:5] – флаги соответствующих событий: ICF, OCF, OVF.

Формирование выходного сигнала

TSCRL[5:4]	Без ШИМ	Быстрый ШИМ	шим ФК
00	Выход отключён		
01	Инверсиия при совпадени TCNT = OCR		
10	Сброс («0») с	Сброс при совпа-	Сброс при совпадении во вре-
	при совпаде-	дении, установка	мя прямого счёта, установка при
	нии	на верхнем пре-	совпадении во время обратного
		деле счёта	счёта
11	Установка	Установка при	Установка при совпадении во
	(«1») при	совпадении,	время прямого счёта, сброс при
	совпадении	сброс на верхнем	совпадении во время обратного
		пределе счёта	счёта

Буферирование старшего байта

Для того, чтобы извлекаемые/записываемые данные 16-разрядных регистров, передаваемые по 8-разрядной шине, *относились* κ *одному моменту времени* используется буферирование старшего байта регистров.

При чтении из регистра программа должна обращаться сначала к его младшему байту. При этом содержимое старшего байта в том же такте автоматически копируется в буфер Buf_H. Команда чтения из старшего байта регистра считывает информацию из Buf_H. Таким образом, оба считанных из регистра байта относятся к одному моменту времени.

При записи следует сначала записывать старший байт, при этом он всегда попадает в Buf_H. По команде записи в регистр младшего байта старший байт одновременно загружается в регистр из Buf_H.

Заметим, что обращение в регистр состояния/управления TSCR не буферируется – обращаение выполняется непосредственно в TSCRH, причём обращаться к TSCRH и TSCRL можно в любом порядке.

Описание режимов работы

<u>Режим 0</u> — Простой счёт. ТСПТ икрементируется от нижнего предела (всегда 0) до определённого в поле TSCRH[1:0] верхнего предела счёта¹ с частотой, определяемой полем TSCRL[3:2]. В момент достижения верхнего предела TCNT сбрасывается в 0х0; устанавливается флаг переполнения OVF; формируется запрос на прерывание с вектором 3, если OVIE = 1; продолжается счёт.

В Режиме 0 можно использовать функцию захвата состояния ТСNТ в регистр ICR. Захват выполняется при нажатии кнопки 3axeam, если установлено разрешение внешнего захвата (TSCRL[6] = 1) или безусловно – по установке флага Π рограммный saxeam (TSCRL[7]). При внешнем захвате устанавливается флаг ICF и может быть сформирован запрос на прерывание с вектором 3, если ICIE = 1.

 $^{^{1}}$ При TSCRH[1:0] = 00 значение верхнего предела программно задаётся в регистр ICR.

Примечание. Отдельно следует сказать о захвате в ситуации, когда верхний предел задаётся содержимым регистра ICR. Внешний захват (если TSCRL[6] = 1) выполняется успешно, при этом заданное в ICR значение верхнего предела сохраняется во внутреннем регистре и продолжает определять верхний предел счёта. Программный захват выполняется, при этом значение верхнего предела становится неопределённым.

<u>Режим 1</u> — Сброс по совпадению. Так же, как и в Режиме 0, выбирается частота счёта, верхний предел и, кроме того загружается константа в регистр ОСR. При совпадении TCNT = ОСR устанавливается флаг совпадения ОСF; при установленном флаге ОСIE формируется запрос на прерывание; TCNT сбрасывается в 0х0 и продолжает счёт; возможно изменение выходного сигнала в соответствии с установками поля TSCRL[5:4] (см. табл. в разделе).

Очевидно, значение OCR должно быть меньше верхнего предела счёта, иначе совпадение TCNT = OCR не наступит никогда.

В режиме 1 функция захвата работает как по внешнему, так и по программному сигналу.

Режим 2 — Быстрая ШИМ. В этом режиме период импульса ШИМ определяется значением верхнего предела (и, разумеется, выбранной тактовой частотой), а длительность импульса — значением регистра ОСР. По достижении верхнего предела ТСПТ сбрасывается в 0 и начинается новый период ШИМ (рис. 2).

Значение регистра ОСR должно выбираться всегда *меньше* установленного верхнего предела счёта (ВПС). Тогда в каждом периоде ШИМ можно выделить два события: TCNT = BПС и TCNT = OCR. Поле (TSCRL[5:4] определяет, по какому из этих двух событий выходной сигнал устанавливается в «1», а по какому – сбравывается в «0».

Рисунок 2. Быстрая ШИМ

В режиме 2 не формируется флаг совпадения ОСF, но при достижении верхнего предела счёта устанавливается OVF, что позволяет при необходимости «поймать» момент завершения очередного периода ШИМ.

На фоне генерации ШИМ-импульсов можно захватывать текущее состояние TCNT в регистр ICR программно (команда sbi 0x36,7) или по внешнему сигналу (кнопка 3a-xeam обозревателя), причём внешний захват возможен при условии TSCRL[6] = 1. Относительно захвата в случае, когда для задания верхнего предела счёта используется регистр ICR см. Примечание на стр. 5.

<u>Режим 3</u> — **ШИМ с фазовой коррекцией.** Для некоторых применений ШИМ важным является расположение импульса в периоде ШИМ. Режим 3 обеспечивает выдачу импульса, симметричного относительно середины периода² ШИМ при любой длительности (рис. 3).

Период ШИМ ФК определяется временем перехода TCNT $0 \to B\Pi C \to 0$, то есть при прочих равных условиях он вдвое длиннее периода быстрого ШИМ. Изменение значения выходного сигнала происходит при совпадении TCNT = OCR на участках прямого и обратного счёта TCNT.

Рисунок 3. ШИМ с фазовой коррекцией

 $^{^2}$ Инверсный выходной сигнал симметричен относительно начала периода (см. рис. 3 при TSCRL[5:4] = 10).