Langages et Compilation

Analyse descendante prédictive

Grammaires LL(1)

Une famille de grammaires analysables de façon efficace.

Caractéristiques de l'analyse LL(1)

• analyse descendante

Construction de l'arbre de dérivation selon l'ordre préfixé : on part de la racine (l'axiome) et on descend vers les feuilles (les terminaux) en développant le nœud interne (une variable) le plus à gauche.

analyse prédictive

Pour développer le nœud, on choisit la règle à appliquer en prévisualisant le symbole courant du mot analysé.

Exemple $S \rightarrow +SS \mid *SS \mid a$

Les chaînes dérivées de ${\it S}$ commencent toutes par un terminal distinct \sim À partir du terminal courant du mot analysé, on sait déterminer la bonne règle.

	+	*	a
5	$S \rightarrow +SS$	$S \rightarrow *SS$	S o a

Analyse du mot *a + aa

Exemple
$$S o aSbS \mid \varepsilon$$

Le choix devient plus délicat lorsque la grammaire comprend des ε -productions. Quel critère doit-on prendre en compte pour choisir entre la règle $S \to aSbS$ et la règle $S \to \varepsilon$?

On est amené à considérer les terminaux qui peuvent suivre 5.

Convention pratique, on introduit un terminal particulier \$ pour marquer la fin du mot à analyser.

\$ et b (mais pas a) peuvent se retrouver à droite de S.

→ On sait alors déterminer la règle à appliquer au vu du terminal courant.

	\$	а	Ь
5	$S o \varepsilon$	S o aSbS	S o arepsilon

Exemple $S \rightarrow aSbS \mid \varepsilon$

sa table d'analyse

	\$	а	Ь
5	S o arepsilon	$\mathcal{S} ightarrow aSbS$	S oarepsilon

Analyse du mot ab\$

Condition pour une analyse LL(1) à chaque étape, pour la variable X à développer et le terminal courant c en entrée, le choix de la dérivation à appliquer doit être déterministe.

- L lecture de l'entrée de la gauche vers la droite (Left to right scanning)
- L construction d'une dérivation gauche (Left derivation)
- 1 symbole de l'entrée pour prédire la bonne règle

L'analyse LL(1) se base sur une table qui indique, pour la variable X et le terminal c, la règle correcte à appliquer.

Pour construire cette table d'analyse, on détermine au préalable :

- 1. les variables effaçables
- 2. les ensembles Premier
- 3. les ensembles Suivant

Grammaire *LL*(1)

Analyseur LL(1)

Rendre une grammaire $\mathit{LL}(1)$

Analyse *LL*(*k*

Les variables effaçables

Une chaîne $\alpha \in N^*$ est dite **effaçable** si le mot vide se dérive de α : $\alpha \stackrel{*}{\to} \varepsilon$

Calcul des variables effaçables

On construit par récurrence sur i, l'ensemble Eff_i des variables A.

$$\operatorname{Eff}_0 = \{A \in \mathit{N} \colon A \to \varepsilon \in \mathit{P}\}$$

$$\mathrm{Eff}_{i+1} = \{ A \in \mathbb{N} \colon A \to \alpha \in P \text{ et } \alpha \in \mathrm{Eff}_i^* \}$$

Arrêt lorsque $Eff_{i+1} = Eff_i$ (au bout d'au plus |N| étapes)

Exemple

Les ensembles Premier

Soit α une chaîne de $(\Sigma \cup N)^*$. Premier (α) est l'ensemble des terminaux qui débutent les chaînes dérivées de α :

$$\left\{a \in \Sigma \colon \alpha \stackrel{*}{\to} a\beta \text{ où } \beta \in (\Sigma \cup N)^*\right\}$$

Calcul des ensembles Premier

```
Pour un terminal a:
\operatorname{Premier}(a\beta) = \{a\}
Pour une variable X:
\operatorname{Premier}(X) = \bigcup_{X \to \beta \in P} \operatorname{Premier}(\beta)
\operatorname{Premier}(X\beta) = \begin{cases} \operatorname{Premier}(X) & \text{si $X$ $n'$est pas effaçable} \\ \operatorname{Premier}(X) \cup \operatorname{Premier}(\beta) & \text{sinon} \end{cases}
```

Les ensembles Premier

Exemple

$$\left\{ \begin{array}{ll} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{array} \right.$$

Premier(S) = Premier(XY)

Calcul des ensembles Premier pour les variables :

$$= \operatorname{Premier}(X) \cup \operatorname{Premier}(Y) \qquad X \text{ effaçable}$$

$$\operatorname{Premier}(X) = \operatorname{Premier}(aXb) \qquad X \to aXb \mid \varepsilon$$

$$= \{a\}$$

$$\operatorname{Premier}(Y) = \operatorname{Premier}(cZ) \cup \operatorname{Premier}(Ze) \qquad Y \to cZ \mid Ze$$

$$= \{c\} \cup \operatorname{Premier}(Z) \cup \{e\} \qquad Z \text{ effaçable}$$

$$\operatorname{Premier}(Z) = \operatorname{Premier}(dcZ) \qquad Z \to dcZ \mid \varepsilon$$

$$= \{d\}$$

 $S \rightarrow XY$

Les ensembles Suivant

Soit X une variable. $\mathrm{Suivant}(X)$ est l'ensemble des terminaux qui peuvent apparaître après X dans une dérivation :

$$\left\{a \in \Sigma \colon S \stackrel{*}{\to} \alpha X a \beta \text{ où } \alpha, \beta \in (\Sigma \cup N)^*\right\}$$

i.e.

$$\operatorname{Suivant}(X) = \bigcup_{Y \to \alpha X \beta \ \in \ P} \operatorname{Premier}(\beta \ \operatorname{Suivant}(Y))$$

Calcul des ensembles Suivant

Mettre \$ dans Suivant(S) (où S est l'axiome)

Pour chaque variable X, examiner chaque production $Y \to \alpha X \beta$ où X est à droite :

- Si $\beta \neq \varepsilon$, ajouter les éléments de Premier(β) à Suivant(X)
- Si $\beta \stackrel{*}{\to} \varepsilon$, ajouter les éléments de Suivant(Y) à Suivant(X)

Les ensembles Suivant

Exemple

```
\begin{cases} S \rightarrow XY \\ X \rightarrow aXb \mid \varepsilon \\ Y \rightarrow cZ \mid Ze \\ Z \rightarrow dcZ \mid \varepsilon \end{cases}
Calcul des ensembles Suivant :
Suivant(S) contient $
Suivant(X)
        S \to XY \sim \operatorname{Premier}(Y \operatorname{Suivant}(S)) \subset \operatorname{Suivant}(X)
                          \sim Premier(Y) \subseteq Suivant(X)
        X \to aXb \rightsquigarrow b \in \text{Suivant}(X)
Suivant(Y)
        S \to XY \leadsto \text{Suivant}(S) \subseteq \text{Suivant}(Y)
Suivant(Z)
        Y \to cZ \sim \text{Suivant}(Y) \subseteq \text{Suivant}(Z)
        Y \to Ze \leadsto e \in \text{Suivant}(Z)
        Z \to dcZ \sim \text{Suivant}(Z) \subseteq \text{Suivant}(Z)
```

(Y non effaçable)

Les variables Effaçables et les ensembles Premier et Suivant Exemple

$$\left\{ \begin{array}{ccc} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{array} \right.$$

Bilan des calculs :

	Effaçable	Premier			Suivant				
5	non	а	С	d	e	\$			
X	oui	a				Ь	С	d	e
Y	non	С	d	e		\$			
Ζ	oui	d				\$	e		

Table à deux dimensions indexée par les variables et les terminaux. Les éléments de la table sont les productions de la grammaire.

Pour toute production $X \to \alpha$:

- Ajouter $X \to \alpha$ à l'entrée T[X, a] pour tout terminal a dans $\operatorname{Premier}(\alpha)$
- Si α est effaçable, ajouter $X \to \alpha$ dans la case T[X, a] pour tout terminal a dans Suivant(X)

$$\left\{ \begin{array}{ccc} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{array} \right.$$

	Effaçable	Premier			Su	ivan	t		
5	non	а	С	d	е	\$			
Χ	oui	a				Ь	С	d	e
Y	non	с	d	е		\$			
Ζ	oui	d				\$	е		

```
S \rightarrow XY : Premier(XY) = Premier(X) \cup Premier(Y) = \{a, c, d, e\}
```

$$X \rightarrow aXb$$
: Premier $(aXb) = \{a\}$

$$Y \rightarrow cZ$$
: Premier $(cZ) = \{c\}$

$$Z \rightarrow dcZ$$
: Premier $(dcZ) = \{d\}$

$$Y \rightarrow Ze$$
: Premier(Ze) = Premier(Z) \cup Premier(e) = { d, e }

$$X \to \varepsilon$$
: Suivant $(X) = \{b, c, d, e\}$

$${\color{red} Z} \rightarrow \varepsilon : \mathsf{Suivant}(Z) = \{\$, e\}$$

	\$	а	Ь	С	d	е
5		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X o \varepsilon$	$X \to \varepsilon$	$X \to \varepsilon$
Y				$Y \rightarrow cZ$	Y o Ze	Y o Ze
Z	$Z o \varepsilon$				Z o dcZ	$Z o \varepsilon$

Grammaire *LL*(1)

Analyseur LL(1)

Rendre une grammaire $\mathit{LL}(1)$

Analyse *LL*(*k*

Définition

Une grammaire est LL(1) s'il existe au plus une production par entrée dans la table.

Proposition

Une grammaire est LL(1) si pour toute paire de productions $A \to \alpha$ et $A \to \beta$, on a :

 $\operatorname{Premier}(\alpha \operatorname{Suivant}(A)) \cap \operatorname{Premier}(\beta \operatorname{Suivant}(A)) = \emptyset$

Ainsi une grammaire ne sera pas LL(1) s'il on a :

- soit un **conflit Premier/Premier**, i.e., deux règles $A \to \alpha \mid \beta$ telles que : $\operatorname{Premier}(\alpha) \cap \operatorname{Premier}(\beta) \neq \emptyset$
- soit un **conflit Premier/Suivant**, i.e., deux règles $A \to \alpha \mid \beta$ avec $\beta \stackrel{*}{\to} \varepsilon$ telles que : $\operatorname{Premier}(\alpha) \cap \operatorname{Suivant}(A) \neq \emptyset$

Exemple

$$\left\{ \begin{array}{lll} S & \rightarrow & XY \\ X & \rightarrow & aXb \mid \varepsilon \\ Y & \rightarrow & cZ \mid Ze \\ Z & \rightarrow & dcZ \mid \varepsilon \end{array} \right. \ \, \text{est une grammaire $LL(1)$}$$

Sa table d'analyse comprend au plus une alternative par case.

 $\,\,\rightarrow\,\,$ Le choix de la règle à appliquer se fait de façon déterministe.

	\$	а	Ь	С	d	е
S		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X \to \varepsilon$	$X \to \varepsilon$	$X \to \varepsilon$
Y				$Y \rightarrow cZ$	Y o Ze	Y o Ze
Z	$Z \to \varepsilon$				Z o dcZ	$Z o \varepsilon$

Exemple

Il existe un conflit Premier/Premier pour les règles $S \to XY$ et $S \to Z$

$$\operatorname{Premier}(XY) = \operatorname{Premier}(X) \cup \operatorname{Premier}(Y) = \{a, b\}$$
 X effaçable $\operatorname{Premier}(Z) = \{b, c\}$

$$\rightarrow$$
 Premier(XY) \cap Premier(Z) = {b} $\neq \emptyset$

	\$ Ь	
5	$S \rightarrow XY$	
	$S \rightarrow Z$	

Exemple

$$\left\{ \begin{array}{ll} S & \rightarrow & aXb \\ X & \rightarrow & bX \mid \varepsilon \end{array} \right. \text{ n'est pas une grammaire } \mathit{LL}(1)$$

Il existe un conflit Premier/Suivant pour les règles $X \to bX$ et $X \to \varepsilon$

Premier
$$(bX) = \{b\}$$

Suivant $(X) = \{b\}$
 \Rightarrow Premier $(X) \cap \text{Suivant}(X) = \{b\} \neq \emptyset$

Grammaire *LL*(1)

Analyseur LL(1)

Rendre une grammaire $\mathit{LL}(1)$

Analyse *LL*(*k*

Analyseur LL(1)

Pour examiner un mot, l'analyseur LL(1) utilise la table d'analyse précédemment construite et une pile.

Initialement, la pile contient le marqueur de fin de mot \$ et l'axiome.

Analyseur LL(1)

 \dot{A} chaque étape, on examine le terminal courant c du mot analysé et le sommet de la pile (premier symbole non traité de l'arbre en construction).

- Soit le sommet de la pile est un terminal a :
 - si a ≠ c,
 l'analyse s'arrête et retourne ÉCHEC
 - si a = c = \$,
 l'analyse s'arrête et retourne SUCCÈS
 - si a = c ≠ \$,
 a est dépilé et on avance dans la lecture du mot analysé
- Soit le sommet de la pile est une variable X:
 - si l'entrée T[X, c] est vide,
 l'analyse s'arrête et retourne ÉCHEC
 - si l'entrée T[X, c] contient une règle X → α,
 X est dépilé et α est empilé en partant de la droite (par exemple, si X → YzT, T est empilé, puis z, puis Y).

Analyseur $\mathit{LL}(1)$

	\$	а	Ь	С	d	е
5		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X \to \varepsilon$	$X o \varepsilon$	$X \to \varepsilon$
Y				$Y \rightarrow cZ$	Y o Ze	Y o Ze
Z	$Z o \varepsilon$				Z o dcZ	$Z o \varepsilon$

Mot analysé	Pile		
abdce\$	<i>5</i> \$	$S \rightarrow XY$	
abdce\$	XY\$	$ extit{X} ightarrow extit{a} extit{X} extit{b}$	X Y S Y
abdce\$	aXbY\$	assortiment	a X b

Mot analysé	Pile		
abdce\$	XbY\$	$X o \varepsilon$	<u></u>
			X a X b
abdce\$	<i>bY</i> \$	assortiment	
ab dc e\$	Y \$	Y o Ze	<i>S</i> .
			X Y A X B Z e
abdce\$	Ze\$	extstyle Z ightarrow extstyle dcZ	έ S
			X Y a X b Z e ξ d c Z
abdce\$	dcZe\$	assortiment	

Mot analysé	Pile		
abdce\$	cZe\$	assortiment	
abdc e \$	Z e\$	$Z o \varepsilon$,S
			a X b Z e E E E E E E E E E E E E E E E E E E
abdc e \$	e\$	assortiment	
abdce\$	\$	SUCCES	

Le coût de l'analyse du mot est linéaire en la taille de l'arbre.

Analyseur $\mathit{LL}(1)$

	\$	а	b	С	d	e
5		$S \rightarrow XY$		$S \rightarrow XY$	$S \rightarrow XY$	$S \rightarrow XY$
X		X o aXb	$X \to \varepsilon$	$X \to \varepsilon$	$X o \varepsilon$	$X o \varepsilon$
Y				$Y \rightarrow cZ$	Y o Ze	Y o Ze
Z	$Z o \varepsilon$				Z o dcZ	$Z o \varepsilon$

Mot analysé	Pile		start
abbab\$	<i>5</i> \$	S o XY	Start
abbab\$	XY\$	$ extit{X} ightarrow extit{a} extit{X} extit{b}$	s <eof></eof>
abbab\$	aXbY\$	assortiment	
abbab\$	XbY\$	$X o \varepsilon$	X X
abbab\$	<i>bY</i> \$	assortiment	
abbab\$	Y \$	ECHEC	axb <mark>bab</mark>

Grammaire *LL*(1

Analyseur LL(1)

Rendre une grammaire LL(1)

Analyse *LL*(*k*

Proposition

Une grammaire ne peut pas être LL(1) si elle est :

- soit ambiguë,
- soit récursive gauche,
- soit n'est pas factorisée à gauche.

On peut modifier la grammaire pour tenter de la rendre LL(1) mais le résultat n'est pas garanti.

Proposition

Il existe des grammaires non ambiguës, non récursives gauche et factorisées à gauche qui ne sont pas LL(1).

Par élimination de la récursivité gauche

Exemple

$$\left\{ \begin{array}{ll} E & \to & E+T \mid T \\ T & \to & T*F \mid F \\ F & \to & (E) \mid nb \end{array} \right.$$
 n'est pas $LL(1)$ car récursive gauche

Il existe un conflit Premier/Premier pour les règles $E \to E + T$ et $E \to T$ à cause de la récursivité gauche de E et un conflit Premier/Premier pour les règles $T \to T * F$ et $T \to F$ à cause de la récursivité gauche de T

	\$ (nb)	+	*
F	$E \rightarrow E + T$	$E \rightarrow E + T$			
_	E o T	E o T			
_	$T \rightarrow T * F$	$T \rightarrow T * F$			
'	$\mathcal{T} o \mathcal{F}$	T o F			
F	F o (E)	$F ightarrow \mathit{nb}$			

Par élimination de la récursivité gauche

Supprimer la récursivité gauche rend cette grammaire LL(1)

$$\begin{cases}
E \rightarrow E+T \mid T \\
T \rightarrow T*F \mid F \\
F \rightarrow (E) \mid nb
\end{cases}
\longrightarrow
\begin{cases}
E \rightarrow TY \\
Y \rightarrow +TY \mid \varepsilon \\
T \rightarrow FZ \\
Z \rightarrow *FZ \mid \varepsilon \\
F \rightarrow (E) \mid nb
\end{cases}$$

Par élimination de la récursivité gauche

	\$	(nb)	+	*
E		$E \rightarrow TY$	$E \rightarrow TY$			
Y	$Y \rightarrow \varepsilon$			$Y \to \varepsilon$	$Y \rightarrow +TY$	
T		T o FZ	T o FZ			
Z	$Z \rightarrow \varepsilon$			$Z o \varepsilon$	$Z o \varepsilon$	$Z \rightarrow *FZ$
F		$F \rightarrow (E)$	F o nb			

Par substitution et factorisation

Exemple

$$\begin{cases} E & \rightarrow & TR \\ T & \rightarrow & id \mid (E) \mid A \\ R & \rightarrow & +E \mid \varepsilon \\ A & \rightarrow & id[E] \end{cases}$$
 n'est pas $LL(1)$

Il existe un conflit Premier/Premier pour les règles T o id et T o A

	\$ id	
Т	T o id $T o A$	

Par substitution et factorisation

On effectue une substitution avant de factoriser à gauche.

$$\begin{cases}
E \rightarrow TR \\
T \rightarrow id \mid (E) \mid A \\
R \rightarrow +E \mid \varepsilon \\
A \rightarrow id[E]
\end{cases}$$

• Substitution
$$\begin{cases} E \rightarrow TR \\ T \rightarrow id \mid (E) \mid id[E] \\ R \rightarrow +E \mid \varepsilon \end{cases}$$

Factorisation à gauche

$$\begin{cases}
E & \to & TR \\
T & \to & id X \mid (E) \\
X & \to & [E] \mid \varepsilon \\
R & \to & +E \mid \varepsilon
\end{cases}$$

Par substitution et factorisation

On obtient une grammaire LL(1)

$$\left\{ \begin{array}{lll} E & \rightarrow & TR \\ T & \rightarrow & id \, X \mid (E) \\ X & \rightarrow & [E] \mid \varepsilon \\ R & \rightarrow & +E \mid \varepsilon \end{array} \right. \left. \begin{array}{lll} & & & & & & & & & \\ \hline E & & & & & & & \\ \hline E & & & & & & & \\ \hline E & & & & & & \\ \hline C & & & & & & \\ \hline C & & & & & & \\ \hline C & & & & & & \\ \hline C & & & & & & \\ \hline C & \\ C & \\ \hline C & \\ \hline C & \\ \hline C & \\ C & \\ \hline C & \\ C & \\ \hline C & \\ C & \\ C & \\ \hline C & \\ C & \\$$

	\$	+	id	()	[]
Ε			$E \rightarrow TR$	$E \rightarrow TR$			
T			$T \rightarrow id X$	$T \rightarrow (E)$			
X	$X \to \varepsilon$	$X o \varepsilon$		$X o \varepsilon$		$X \rightarrow [E]$	$X \to \varepsilon$
R	$R o \varepsilon$	$R \rightarrow +E$			$R o \varepsilon$		$R o \varepsilon$

ou rendre l'analyse déterministe

La grammaire des instructions de branchements conditionnels

$$\left\{ \begin{array}{ll} I & \rightarrow & \textit{si E alors I sinon I} \ | \ \textit{si E alors I} \ | \ \textit{a} \\ E & \rightarrow & \textit{b} \end{array} \right.$$

même factorisée

$$\left\{ \begin{array}{ll} I & \rightarrow & \textit{si E alors I J} \mid \textit{a} \\ J & \rightarrow & \textit{sinon I} \mid \varepsilon \\ E & \rightarrow & \textit{b} \end{array} \right.$$

n'est pas LL(1) car ambiguë.

ou rendre l'analyse déterministe

L'ambiguïté engendre un conflit Premier/Suivant pour les règles $J \to sinon~l$ et $J \to \varepsilon$

	\$	sinon	• • •
,	J oarepsilon	J ightarrow sinon I	
J	$\int \mathcal{J} \rightarrow \varepsilon$	J oarepsilon	

Avec la convention usuelle d'associer le sinon avec le si le plus proche, on peut rendre l'analyseur déterministe et le forcer à produire l'arbre voulu en privilégiant la règle $J \to sinon\ I$ au détriment de la règle $J \to \varepsilon$.

Grammaire *LL*(1

Analyseur LL(1)

Rendre une grammaire $\mathit{LL}(1)$

Analyse LL(k)

Généralisation de l'analyse LL(1) avec prévisualisation non pas juste d'un symbole mais d'un nombre fixé k de symboles. Une grammaire est LL(k) si l'analyseur peut choisir de façon déterministe la règle à appliquer en examinant les k symboles courants de l'entrée.

On note:

- $w|_{k} = \begin{cases} w \text{ si } w \text{ est de longueur au plus } k \\ \text{le préfixe de longueur } k \text{ de } w \text{ sinon} \end{cases}$
- Premier_k(α) = { $w|_k : \alpha \stackrel{*}{\rightarrow} w$ }
- Suivant_k(A) = { $w : \exists \beta, \gamma \text{ t.q. } S \to \beta A \gamma \text{ et } w \in \text{Premier}_k(\gamma)$ }

Proposition

Une grammaire est $\mathit{LL}(k)$ si pour toute paire de productions $A \to \alpha$ et $A \to \beta$, on a :

$$\operatorname{Premier}_{k}(\alpha \operatorname{Suivant}_{k}(A)) \cap \operatorname{Premier}_{k}(\beta \operatorname{Suivant}_{k}(A)) = \emptyset$$

Exemple

$$\left\{ \begin{array}{ll} S & \to & abX \mid \varepsilon \\ X & \to & Saa \mid b \end{array} \right. \text{ n'est pas une grammaire } \mathit{LL}(1)$$

	Effaçable	Premier	Suivant
S	oui	а	\$ a
X	non	a b	\$ a

Conflit Premier/Suivant : $Premier(abX) \cap Suivant(S) \neq \emptyset$

	\$	а	Ь
S	$S \to \varepsilon$	S o abX	
3	$3 \rightarrow \varepsilon$	S oarepsilon	
X		X o Saa	$X \rightarrow b$

$$\left\{ \begin{array}{ccc} S & \rightarrow & abX \mid \varepsilon \\ X & \rightarrow & Saa \mid b \end{array} \right. \quad \text{est une grammaire $LL(2)$}$$

	Effaçable	Premier ₂		Suivant ₂		
S	oui	ab			\$	aa
X	non	aa	ab	b	\$	aa

En prévisualisant deux lettres, il n'y a plus de conflit : $\operatorname{Premier}_2(abX) \cap \operatorname{Suivant}_2(S) = \emptyset$

	\$	aa	ab	b
S	$S o \varepsilon$	S o arepsilon	S o abX	
X		X o Saa	X o Saa	$X \rightarrow b$

	\$	аа	ab	Ь
5	S o arepsilon	S o arepsilon	S o abX	
X		X o Saa	X o Saa	$X \rightarrow b$

Mot analysé	Pile	
abaa\$	<i>5</i> \$	S o abX
abaa\$	abX\$	assortiment
abaa\$	<i>bX</i> \$	assortiment
ab aa \$	<i>X</i> \$	$ extit{X} ightarrow extit{Saa}$
ab aa \$	<i>S</i> aa\$	$\mathcal{S} ightarrow arepsilon$
ab aa \$	aa\$	assortiment
aba a \$	a\$	assortiment
abaa\$	\$	SUCCES

Fait

Il existe des grammaires ni ambiguës, ni récursives gauche qui ne sont LL(k) pour aucun k.

Exemple

$$\begin{cases}
S & \to & A \mid B \\
A & \to & aAb \mid c \\
B & \to & aBbb \mid d
\end{cases}$$

 $a^k \in \operatorname{Premier}_k(A) \cap \operatorname{Premier}_k(B)$ pour tout k

 \sim Conflit Premier/Premier pour tout k

Exemple

$$\left\{ egin{array}{ll} {\it S} &
ightarrow {\it aSb} \mid {\it bSa} \mid arepsilon \end{array}
ight.$$

 $\operatorname{Premier}_k(aSb) \cap \operatorname{Suivant}_k(S) = \{a\}\{a,b\}^{k-2}\{b\} \text{ pour tout } k$

 \sim Conflit Premier/Suivant pour tout k

Analyse syntaxique avec ANTLR

ANTLR4 met en œuvre une analyse descendante prédictive qui a les caractéristiques suivantes

- factorisation à gauche de la grammaire automatique
- suppression automatique des récursivités gauches immédiates
 (mais pas des récursivités gauches indirectes, e.g. A → Bα, B → Aβ)
- résolution de certaines ambiguïtés
 - en jouant sur l'ordre des productions pour lever celles liées aux priorités des opérateurs
 - pour les ambiguïtés dues à l'associativité, par défaut l'association s'effectue à gauche ou de façon explicite à droite, e.g. l'exponentielle, expr: expr '^' (assoc = right) expr
- basé sur une stratégie LL(k)
- enrichi d'un mécanisme additionnel qui permet de traiter plus que les grammaires LL(k) mais qui induit alors un surcoût en temps