Trigonometry

Paolo Bettelini

Contents

1	Law of sines	2
2	Law of cosines	2
3	Pythagorean identities	2

1 Law of sines

Given a triangle with sides a, b and c and their respective opposite angles α , β and γ

$$\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}$$

2 Law of cosines

Given a triangle with sides a, b and c

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

where γ is the angle between a and b (opposite of c).

3 Pythagorean identities

An arbitrary angle θ on the unit circle forms a triangle with sides 1, $\sin \theta$ and $\cos \theta$. Give the Pythagorean theorem we have

$$\sin^2\theta + \cos^2\theta = 1$$

which implies

$$\sin\theta = \pm\sqrt{1-\cos^2\theta}$$

$$\cos\theta = \pm\sqrt{1-\sin^2\theta}$$