Transmission

Représentation des signaux

- binaire: 1 si signal, 0 sinon.
- NRZ : transition à la période entre 0 et 1, même valeur que binaire.
- biphase : fronts à la demi-période, montant si 1, descendant si 0.
- biphase différentiel : fronts à la demi-période, même sens que le dernier front connu si 0, sens inverse si 1.
- Miller (Delay Mode): transition à la demi-période si 1, transition à la période entre deux 0, rien sinon.
- bipolaire : zéro si 0, + ou si 1 (état opposé du dernier 1).
- HDBn: bipolaire, avec en plus sur une plage de n+1 bits à 0: bit de bourrage (B) ramenant la tension moyenne à zéro, n-1 bits à 0, bit de copie (C) ou de viol (V) prenant l'état du dernier 1.

Schémas : voir TD1 ex4.

Formules sur les réseaux Telecoms

- Bande Passante : $F_{min} < BP < F_{max}$ (F_{min/max} : fréquence minimale/maximale du signal)
- Echantillonnage : $F_e \ge 2F_{max}$ (Fe: fréquence d'échantillonnage)
- Quantification : $n \ge \log_2 D$ (D : dynamique du signal)
- Capacité : $C \ge n F$
- Rapidité de modulation : R≤2BP (BP en bauds)
- Débit : $D \le R \log_2 n$ (n : valence) avec $n = \sqrt{1 + \frac{S}{N_0}}$ (N₀ : amplitude du bruit, S : puissance du signal)
- Débit maximal : $C = BP \log_2(1 + \frac{S}{N_0})$; $\frac{S}{B} = 10 \log_{10}(\frac{S}{N_0})$
- Taux d'Erreur Binaire (TEB ou BER) : $T_e = \frac{T}{P}$
- Probabilité d'envoi sans erreur : $P = (1 T_e)^n$
- Taux de Transfert des Informations : $TTI = \frac{nb \ bits \ utiles}{dur\'et \ transmission}$ (message sans contrôle)
- Rendement du support : $Rend = \frac{TTI}{d\acute{e}bit \ nominal}$
- Intensité du trafic : $I(t) = \frac{1}{T} \int_{0}^{T} N(t) dt$ (en erlang, entre 0 et 1)
- Probabilité de perte : $p = \frac{\frac{E^m}{m!}}{\sum_{k=0}^{m} \frac{E^k}{k!}}$
- Efficacité de liaison : $Eff = \frac{T_1}{T} = \frac{1}{1 + \frac{2T_p}{T}}$

Systèmes de contrôle :

Cryptographie:

- VRC : bit de parité
- LRC: caractère de parité
- CRC: redondance cyclique
- Symétrique : AES (128bits)
- Asymétrique : RSA (>1000bits)
- L> double cryptage (public, privé)

Compression:

- Huffman
- Run Length Coding (RLC ou RLE)
- L> couple par longueur de plage
- L> binaire : 1er bit + longueur plages
- deux VLC : codes à longueur variable

Organisation du réseau

- ZAA : Zone à Autonomie d'Acheminement | ZTP : Zone de Transit Primaire
- ZTS: Zone de Transit Secondaire
- ZTI : Zone de Transit International

Traitement

Bases du traitement des signaux

1) Qu'est-ce qu'un signal?

On appelle <u>signal</u> toute <u>variation</u> d'une grandeur <u>en fonction</u> d'une autre grandeur extensive.

Il existe différents types de signaux : chimiques , magnétiques, électriques... etc.

2) Axes des signaux :

- temporel (radio, son...)
- spatial (image, GPS...)

3) Transformations de Fourier et Laplace :

<u>Transformation</u>: fonction mathématique changeant le problème d'espace pour le simplifier. (voir annexe sur Fourier / Laplace)

4) Signaux élémentaires :

- pulsation : $\omega = 2\pi f$ ou $2\pi v$
- $L> p = i \omega$ (variable de Laplace)
- échelon : 0 dans]-∞;0[, 1 dans [0;+∞[
- L> H(t): Heaviside
- $L > L_p\{H(t)\} = \frac{1}{p}$
- fenêtre : 0 dans]- ∞ ;0[et]T;+ ∞ [, 1 dans [0;T]
- L>WT(t)=H(t)-H(t-T)
- $L> L_p\{WT(t)\} = \frac{1-e^{-\rho t}}{p}$
- rang: 0 dans]-∞;0[, t dans [0;+∞[
- L > R(t) = t H(t) ; R'(t) = H(t)
- $L > L_p\{R(t)\} = \frac{1}{p^2}$
- parabole:
- $\stackrel{\text{L}}{>} P(t) = \frac{1}{2} t^2 H(t) ; P'(t) = R(t)$
- $L > L_p\{P(t)\} = \frac{1}{n^3}$
- impulsion de Dirac :
- $L > \delta(t)$ a:
 - intégrale égale à 1
 - pente]-∞;0[et]0;+∞[égale à 0
 - pente [0] égale à ∞
- $L > L_p\{\delta(t)\} = L_p\{H'(t)\} = 1$

5) Système linéaire :

$$\begin{array}{c} e1(t) \rightarrow \\ e1(t) + e2(t) \rightarrow \\ e2(t) \rightarrow \end{array} \\ \text{Système Linéaire} \begin{array}{c} \rightarrow s1(t) \\ \rightarrow s1(t) + s2(t) \\ \rightarrow s2(t) \\ \rightarrow s2(t) \end{array}$$

$$e(t) \rightarrow \begin{array}{c} \text{Système Linéaire} \\ \downarrow \\ \text{E(p)} \end{array} \begin{array}{c} \rightarrow s1(t) \\ \rightarrow s2(t) \\ \rightarrow$$

Si un système est linéaire :

- fonctionnement décrit par équations différentielles
- $E(p) = \mathcal{L}_p\{e(t)\}$ et $S(p) = \mathcal{L}_p\{s(t)\}$
- Fonction de transfert F(p) = S(p).E(p)-1
- Réponse impulsionnelle f(t)
- s(t) est un mélange de e(t) et f(t)
- $\downarrow > s(t) = (f \circ e)(t)$

6) Représentation graphique :

Abscisses: log(f)

Ordonnées: 20 log(A(p)) en dB

f_c: fréquence de coupure

filtre en -3dB : filtre couramment utilisé avec fc au niveau de l'amplitude gardée à laquelle on soustrait 3dB

7) Gabarit de filtre :

- Butterworth : réponse la plus plate de la BP pour un ordre donné
- Chebitcher : meilleure atténuation en dehors de la BP
- Bessel : déphasage minimal

 $B(p) = \frac{1}{D_n(p)}$ où n est l'ordre coupé à $\omega_c = 2\pi f_c = 1 \text{ rad.s}^{-1}$

$$B_{fc}(p) = B(\frac{p}{\omega_c})$$

8) Associations de fonctions de tranfert :

e
$$\rightarrow$$
 F \rightarrow u \rightarrow G \rightarrow s \leftrightarrow e \rightarrow F.G \rightarrow s

$$\rightarrow$$
 e \rightarrow F+G \rightarrow

9) Equations différentielles :

- → mise sous forme causale
- → transformation de Laplace
- → dérivations
- → résolution linéaire

Traitement des signaux discrets

1) Transformée de Fourier Numérique (DFT)

- signal discret ↔ transformée continue
- signal continu ↔ transformée discrète

N: nombre d'échantillons $s_n : n^{ieme}$ échantillon de $S(\omega)$

2) Echanillonage des signaux

Pour reconstruire s(t) à partir de S_k , il faut $\omega_e > 2\omega_m$ (ω_m : plus haute fréquence du signal)

→ condition de Shanon

$$S_n = S(ndf) = S(\frac{n f_e}{N})$$

$f_e = 2000Hz$ N = 200

$$n.df = 500$$

$$\rightarrow n = 50$$

4) Manipulation des signaux discrets : la transformée en Z

 $z = e^{Tp}$ avec p : variable de Laplace

Linéarité :
$$Z\{x_k+y_k\} = Z\{x_k\}+Z\{y_k\}$$
 et $Z\{\lambda.x_k\} = \lambda.Z\{x_k\}$
 $S(z) = \sum_{k=0}^{\infty} s_k z^{-k}$; $z^{-1}Z\{x_k\} = Z\{x_{k-1}\}$

$$x_k \rightarrow \begin{bmatrix} boîte \\ num\acute{e}rique \end{bmatrix} \rightarrow y_k \quad y_k = a_0 x^k + a_1 x^{k-1} + ... + a_n x^{k-n} + ...$$

 y_k est l'échantillonnage d'une transformation sur x(t) donc x_k est

l'échantillonnage de x(t).

l'échantillonnage de
$$x(t)$$
.
$$x(t) \rightarrow \boxed{Système Linéaire} \rightarrow y(t)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\sum_{k} y_k$$

$$Dirac: d_0 = 1 \text{ et } d_i = 0 \text{ si } i \neq 0 \rightarrow D(z) = d_0 z^0 + d_1 z^{-1} \dots \qquad \qquad \qquad X_k \rightarrow \boxed{F(z)} \rightarrow y_k \rightarrow \boxed{G(z)} \rightarrow w_k$$

$$= 1 + 0 \dots = 1 \qquad W(z) = G(z) \cdot Y(z) = G(z) \cdot F(z) \cdot X(z)$$

Dirac:
$$d_0 = 1$$
 et $d_i = 0$ si $i \neq 0$ \rightarrow $D(z) = d_0 z^0 + d_1 z^{-1} ... = 1 + 0 ... = 1$

Echelon:
$$H(z) = z^0 + z^{-1} + z^{-2}...$$

H(z) = ZH(z) = (1-z)H(z) = z⁻ⁿ-z
H(z) =
$$\lim_{n \to \infty} \frac{z^{-n}-z}{1-z} = \frac{-z}{1-z} = \frac{z}{z-1}$$

Echelon retardé d'un échantillon : z-1.H(z)

6) Algorithmique

Exemple:
$$x_k \to H(z) \to y_k$$
 avec $H(z) = \frac{1 - z^{-1}}{2 - z^{-1} + z^{-2}}$

Déroulement de l'algorithme :

Deroulement de l'algorithme:
$$Y(z) = H(z)X(z)$$

$$Y(z) = \frac{1-z^{-1}}{2-z^{-1}+z^{-2}}X(z)$$

$$(2-z^{-1}+z^{-2})Y(z) = (1-z^{-1})X(z)$$

$$2Y(z)-z^{-1}Y(z)+z^{-2}Y(z)=X(z)-z^{-1}X(z)$$

$$2Z\{y_k\}-z^{-1}Z\{y_k\}+z^{-2}Z\{y_k\}=Z\{x_k\}-z^{-1}Z\{x_k\}$$

$$2Z\{y_k\}-Z\{y_{k-1}\}+Z\{y_{k-2}\}=Z\{x_k\}-Z\{x_{k-1}\}$$

$$Z\{2y_k-y_{k-1}+y_{k-2}\}=Z\{x_k-x_{k-1}\}$$

$$2y_k-y_{k-1}+y_{k-2}=x_k-x_{k-1}$$

$$y_k=\frac{y_{k-1}-y_{k-2}+x_k-x_{k-1}}{2}$$
si $x=\{0,1,2,1,0,1,2,1,0...\}$
alors $y_0=0$; $y_1=\frac{1}{2}$; $y_2=\frac{3}{4}$; $y_3=-\frac{3}{8}$

5) Systèmes numériques

$$\begin{array}{c|c} x_k \to & \hline Syst\`{e}me \ Lin\'{e}aire \\ \downarrow & \downarrow & \downarrow \\ X(z) & F(z) & Y(z) \\ \hline & Y(z) = F(z).X(z) \\ \end{array}$$

Exemple:
$$si x_k = H(k)$$
 et $F(z) = \frac{1}{az^{-1} + 1}$
 $alors Y(z) = \frac{1}{1 - z^{-1}} \cdot \frac{1}{az^{-1} + 1} = \frac{1}{1 + (a - 1)z^{-1} - az^{-2}}$

$$x_{k} \rightarrow \boxed{F(z)} \rightarrow y_{k} \rightarrow \boxed{G(z)} \rightarrow w_{k}$$

$$W(z) = G(z).Y(z) = G(z).F(z).X(z)$$

$$x_{k} - \begin{bmatrix} \vdots \\ G(z) \end{bmatrix} - y_{k}$$

$$Y(z) = [F(z) + G(z)] \cdot X(z)$$

7) Filtrage numérique

$$B_3^{\omega_c} = \frac{1}{\left(\frac{p}{\omega_c} + 1\right)\left(\frac{p^2}{\omega_c^2} + \frac{p}{\omega_c} + 1\right)}$$

Si F(p) un filtre défini dans l'espace continu, alors G(z) aura les mêmes propriétés si G(z)=F(t(z)).

Pour les basses fréquences,
$$t(z) = \frac{2}{T}(\frac{z-1}{z+1})$$

Pour les hautes fréquences,
$$t(z) = \frac{\omega_c}{\tan(\frac{\omega_c T}{2})} (\frac{z-1}{z+1})$$

Fréquence de coupure numérique :

$$\alpha = \frac{f_c}{f_e} \in [0, \frac{1}{2}] \ car \ f_c < \frac{f_e}{2}$$

On a alors
$$\frac{2}{T \omega_c} = \frac{2f_e}{\omega_c} = \frac{2f_e}{\pi f_c} = \frac{1}{\pi \alpha}$$

Remarque: on s'arrange pour obtenir z-1 au numérateur de G(z) pour faciliter l'algorithmique récursive.

Outils de traitement

Introduction

Un des buts des outils de traitement du signal est de pouvoir nettoyer le signal du bruit qu'il contient.

1) Corrélation linéaire

- covariance: $\delta_{xy} = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \bar{x})(y_i - \bar{y})$

- variance: $\delta_x = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - x)^2}$

- moyenne : $\bar{x} = \frac{1}{N} \sum_{i=0}^{N-1} x_i$

- coefficient de Pearson : $r_{p,xy} = \frac{\delta_{xy}}{\delta_x \delta_y}$ (1 \rightarrow linéarité, 0 \rightarrow pas de linéarité)

3) Auto-corrélation

 \rightarrow comparaison du signal avec ses copies retardées $C_x(\tau) = \int_0^\infty x(t) * x^c(t-\tau) dt$

→ si le signal est réel, on a $x^c = x$: $C_x(\tau) = \int_{-\infty}^{\infty} x(t) * x(t-\tau) dt$

Déterminer la fréquence d'un signal :

Propriétés:

- Homogène à une puissance : $C_x(0) = \int_0^\infty |x(t)|^2 dt$

- Vérifie toujours : $C_x(0) \ge C_x(\tau)$

- Pour un signal aléatoire : $\lim_{x \to \infty} C_x(\tau) = 0$

- Fonction paire : $C_x(-\tau) = C_x(\tau)$

Problèmes:

- Si l'énergie du signal est infinie, l'intégrale diverge

- L'utilisation de l'auto-corrélation est en moyenne :

$$C_x(\tau) = \lim_{x \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) * x^c(t - \tau) dt$$

- Pour les signaux discrets, on utilise le fenêtrage :

$$C_x[n] = \sum_{n=0}^{M} x[m] * x[m-n]$$

2) Application aux signaux

→ ressemblance

→ lien de causalité : mesure du déphasage

→ extraire un signal périodique d'une mesure bruitée

→ mesurer le tempo d'une musique

→ repérer la présence d'un écho sur un radar...etc.

** SAD (Sum of Absolute Difference) \rightarrow 0 si identique

$$SAD_{xy} = \sum_{n=0}^{N-1} |x(n) - y(n)|$$

4) Cross correlation

- Signaux continus (si réel, f° = f):

$$C_{f_{\mathbf{g}}}(\tau) = \int_{-\infty}^{\infty} f^{c}(t) g(t-\tau) dt$$
 avec f le conjugué de f

- Signaux discrets:

$$C_{f_{R}}[n] = \sum_{n=0}^{\infty} f^{c}[m] * g[m-n]$$

- Si facteur d'échelle, corrélation normalisée :

$$C_{f_{\mathcal{B}}}[n] = \frac{\sum_{-\infty}^{\infty} f[m] * g[m-n]}{\sqrt{\sum_{-\infty}^{\infty} f[m]^2 * \sum_{-\infty}^{\infty} g[m]^2}}$$

- Si offset, corrélation centrée :

$$C_{fg}[n] = \sum_{n=0}^{\infty} (f[m] - \bar{f}) * (g[m-n] - \bar{g})$$

-Si combinaison des deux, normalisée centrée :

$$C_{fg}[n] = \frac{\sum_{=0}^{\infty} (f[m] - \bar{f}) * (g[m-n] - \bar{g})}{\sqrt{\sum_{=0}^{\infty} (f[m] - \bar{f})^{2} * \sum_{=0}^{\infty} (g[m] - \bar{g})^{2}}}$$

A cause de supports limités dans le temps, l'infini ne pouvant être atteint, nous irons seulement de m=0 à M.

5) Corrélation et convolution

corrélation : $f * g[n] = \sum_{i=1}^{\infty} f^{c}[m] * g[m-n]$

convolution: $f * g[n] = \sum_{\infty}^{\infty} f^{c}[m] * g[n-m]$

Filtrage

1) Moyenne

- Signaux continus:

$$m = \frac{1}{T} \int_{0}^{T} x(t) dt$$
 La moyenne se note \bar{x} ou $< x(t) >$.

- Signaux discrets:

$$m = \frac{1}{N} \sum_{i=0}^{N-1} x[i]$$

Si le signal est bruité (exemple) :

Soit s[n]=x[n]+b[n] avec
$$\bar{b}=0$$
.

$$m = \frac{1}{N} \sum_{p=0}^{N-1} (x[p]+b[p]) = \frac{1}{N} \sum_{p=0}^{N-1} x[p] + \frac{1}{N} \sum_{p=0}^{N-1} b[p] = \bar{x} + \bar{b}$$
On a donc: $m = \bar{x}$

Pour débruiter :

- → Transformations de Fourier / Laplace
- → Bruit associé aux hautes fréquences (HF)
- → Valeur moyenne associée au continu

Nous devons donc réaliser un filtre passe-bas.

4) Médiane

m est définie telle que :

- |x tel que x < m| = |x tel que x > m|
- m est la valeur centrale de l'ensemble d'échantillons

Meilleure robustesse, moins bonne précision.

→ Compromis nécessaire.

5) Moyenne VS Médiane

- Si le système est déjà robuste : utiliser la moyenne.
- Si le système n'est pas robuste : utiliser la médiane.

2) Fenêtre glissante

- → Pas de périodicité
- → Evolue dans le temps

Pour un signal discret en k avec une fenêtre de taille 2m+1:

$$x_m[k] = \frac{1}{2m+1} \sum_{l=-m}^{m} x[k+l]$$

<u>Réactivité</u>: plus m est grand, moins le filtre est réactif. <u>Précision</u>: plus m est grand, plus on risque de détériorer le signal mais moins m est grand, moins on filtre.

→ Compromis nécessaire.

3) Eliminer les valeurs aberrantes

- → Moyenne Winsorisée : les k plus petites (resp. grandes) valeurs sont remplacées par la k+1 ième plus petite (resp. grande) valeur.
- → Moyenne tronquée : les k plus petites et les k plus grandes valeurs sont ommises.

Ces deux techniques sont moins significatives que la moyenne standard.

6) Utilisation de l'histogramme

- → repérer le mode
- → égalisation de l'histogramme
- → transformation, pour L valeurs possibles :

$$p_x(x_k) = p(x = x_k) = \frac{n_k}{N}$$

$$T(x_k) = (L-1)\sum_{i=0}^{k} p_x(x_i)$$