Terminology

Trial: e.g. picking a shape

Sample space Ω : the set of all possible outcomes (e.g. all kinds of shapes)

Event $\omega \subseteq \Omega$: an actual outcome of a trial (a subset of Ω)

Exercise

What is the probability of...?

Other exercises on probability theory:

Define a Bernoulli distribution.

Why is this a good distribution for modeling a coin toss?

Can a Bernoulli distribution be used for modeling a biased coin?

How would you modify it to model a dice?

What is a Binomial distribution? Define it and state the connection to a Bernoulli distribution.

State the connection between the Binomial distribution and a Gaussian distribution.

What is the difference between a categorical and a multinominal distribution?

What is a random variable? Is it actually a variable in the algebraic sense?

Review: Laws of probability

$$P(\Omega) = 1$$

 $\forall A \subseteq \Omega$: $0 \le P(A) \le 1$

 $\forall A,B \subseteq \Omega$: $P(A \cap B) \leq P(A)$

 $\forall A,B\subseteq\Omega$: $P(A\cup B)=P(A)+P(B)-P(A\cap B)$

Conditional Probability:

Probability of A given B: $P(A \mid B)$

Probability of A and B given C: $P(A,B \mid C)$

Probability of A given B and C: $P(A \mid B, C)$

Bayes rule:

$$P(A \mid B) = \frac{P(A,B)}{P(B)}$$

Product rule

$$P(A,B) = P(A \mid B)P(B)$$

Joint Probability

$$P(A \cap B) = P(A, B)$$

If A and B are boolean variables:

$$P(A,B) = P(A \land B)$$

Let's work through some quantitative examples

		Weather					
		Sunny	Cloudy	Rainy	Snowy		
Have Fun?	Yes	0.25	0.15	0.05	0.13		
	No	0.05	0.1	0.25	0.02		

P(Rainy I ¬Sunny) P(Fun I Sunny)
$$= \frac{P(Rainy \land \neg Sunny)}{P(\neg Sunny)} = \frac{P(Fun \land Sunny)}{P(Sunny)}$$

$$= 0.3 / 0.7 \approx 0.43 = 0.25 / 0.3 \approx 0.83$$

		Weather					
		Sunny	Cloudy	Rainy	Snowy		
Have Fun?	Yes	0.25	0.15	0.05	0.13		
	No	0.05	0.1	0.25	0.02		

Do I prefer Sun or Snow?

P(Fun I Snowy)

 $= 0.13 / 0.15 \approx 0.87$ So I prefer snow