Estructuras algebraicas

Una **estructura algebraica** es un conjunto no vacío junto con operaciones. Las operaciones pueden ser, por ejemplo, binarias (cuando la operación es sobre dos elementos del conjunto) o unarias (cuando la operación es sobre un elemento del conjunto).

• Por ejemplo, el conjunto de los números reales con la operación binaria de suma es una estructura algebraica que escribimos $(\mathbb{R}, +)$.

$$3 + \sqrt{2}$$
$$-5 + 8 = 3$$

• Si en el conjunto de los enteros definimos la operación unaria op, que da el opuesto, es decir, op(a) = -a, entonces (\mathbb{Z}, op) es una estructura algebraica.

$$op(-1) = 1$$
$$op(0) = 0$$

• El conjunto de los números naturales con las operaciones binarias de suma y producto es una estructura algebraica que escribimos $(\mathbb{N}, +, \cdot)$

$$4 + 7 = 11$$

$$23 \cdot 2 = 46$$

Grupos

Un **grupo** (A,*) es una estructura algebraica en la cual * es una operación binaria y se cumple que:

- A es **cerrado** con la operación *, es decir, que para todo $a, b \in A$, $a * b \in A$.
- La operación * es **asociativa** en A, es decir, para todo a, b, $c \in A$, (a*b)*c = a*(b*c).
- Existe un **neutro** $n \in A$, es decir, un elemento tal que a * n = n * a = a
- Para todo elemento $a \in A$, existe un **opuesto** $a' \in A$ tal que a * a' = a' * a = n

¿Es (\mathbb{Z} , +) un grupo?

- Para todo $a, b \in \mathbb{Z}$, $a + x \in \mathbb{Z}$
- Para todo $a, b, c \in \mathbb{Z}$, vale que (a + b) + c = a + (b + c)
- Existe el neutro $0 \in \mathbb{Z}$ tal que a + 0 = 0 + a = a, para todo $a \in \mathbb{Z}$
- Para todo $a \in \mathbb{Z}$, existe $-a \in \mathbb{Z}$ tal que a + (-a) = (-a) + a = 0

¿Es (\mathbb{Z},\cdot) un grupo?

- Para todo $a, b \in \mathbb{Z}$, $a \cdot x \in \mathbb{Z}$
- Para todo $a, b, c \in \mathbb{Z}$, vale que $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Existe el neutro $1 \in \mathbb{Z}$ tal que $a \cdot 1 = 1 \cdot a = a$, para todo $a \in \mathbb{Z}$
- Para todo $a \in \mathbb{Z}$, ¿existe $a' \in \mathbb{Z}$ tal que $a \cdot a' = a' \cdot a = 1$?

Como la última propiedad no se cumple, no es un grupo.

Un **grupo abeliano/conmutativo** (A,*) es una estructura algebraica en la cual * es una operación binaria y se cumple que:

- A es **cerrado** con la operación *, es decir, que para todo $a, b \in A$, $a * b \in A$.
- La operación * es **asociativa** en A, es decir, para todo $a,b,c \in A$, (a*b)*c = a*(b*c).
- Existe un **neutro** $n \in A$, es decir, un elemento tal que a * n = n * a = a
- Para todo elemento $a \in A$, existe un **opuesto** $a' \in A$ tal que a * a' = a' * a = n
- La operación * es **conmutativa** en A, es decir, para todo $a, b \in A$, a * b = b * a

Si definimos sobre \mathbb{Z} la operación Δ como $a\Delta b=a+b+2$, ¿es (\mathbb{Z},Δ) un grupo abeliano?

- Para todo $a, b \in \mathbb{Z}$, $a\Delta b = a + b + 2 \in \mathbb{Z}$.
- Para todo $a,b,c\in\mathbb{Z}$, vale que $(a\Delta b)\Delta c=a\Delta(b\Delta c)$, ya que

$$(a + b + 2) + c + 2 = a + (b + c + 2) + 2$$

- Existe el neutro $-2 \in \mathbb{Z}$ tal que $a\Delta(-2) = a + (-2) + 2 = a$ y $(-2)\Delta a = -2 + a + 2 = a$ para todo $a \in \mathbb{Z}$
- Para todo $a \in \mathbb{Z}$, existe $-a 4 \in \mathbb{Z}$ tal que $a\Delta(-a 4) = a + (-a 4) + 2 = -2$ y $(-a 4)\Delta a = -a 4 + a + 2 = -2$.
- Para todo $a, b \in \mathbb{Z}$ tenemos que $a\Delta b = a + b + 2 = b + a + 2 = b\Delta a$.

Si A es un conjunto, definimos el **conjunto de partes de** A, que escribimos P(A), como $P(A) = \{X : X \subseteq A\}$, es decir el conjunto cuyos elementos son los subconjuntos de A.

Si
$$A = \{1,2,3\}$$
, entonces $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Sea A un conjunto, ¿es $(P(A), \cup)$ un grupo abeliano?

- Para todo $B, C \in P(A), B \cup C \in P(A)$
 - Si $B, C \in P(A)$, entonces veamos que $B \cup C \in P(A)$, es decir, que $B \cup C \subseteq A$.
 - Sea $x \in B \cup C$. Luego, $x \in B \vee x \in C$.
 - Como $B \in P(A)$, entonces $B \subseteq A$ y como $C \in P(A)$, entonces $C \subseteq A$.
 - Teníamos entonces que $x \in B \lor x \in C$, pero entonces tenemos que $x \in A \lor x \in A$. Por lo tanto, vimos que $B \cup C \subseteq A$.
- Para todo $B, C, D \in P(A), (B \cup C) \cup D = B \cup (C \cup D)$
- Para todo $B \in P(A)$, existe $\emptyset \in P(A)$ tal que $B \cup \emptyset = \emptyset \cup B = B$
- ¿Para todo $B \in P(A)$ existe un opuesto?
 - Como la última propiedad no se cumple, no es un grupo.

Anillos

Un anillo $(A, +, \cdot)$ es una estructura algebraica en la cual $+ y \cdot$ son operaciones binarias que cumplen que:

- (A, +) es un grupo conmutativo/abeliano.
- Para todo $a, b \in A$, $a \cdot b \in A$
- Para todo $a, b, c \in A$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Para todo $a, b, c \in A$, $a \cdot (b + c) = a \cdot b + a \cdot c$ y $(a + b) \cdot c = a \cdot c + b \cdot c$

¿Es $(\mathbb{R}, +, \cdot)$ un anillo?

- Para todo $a, b \in \mathbb{R}$, $a + b \in \mathbb{R}$
- Para todo $a, b, c \in \mathbb{R}$, (a + b) + c = a + (b + c)
- Existe $0 \in \mathbb{R}$ tal que a + 0 = 0 + a = a, para todo $a \in \mathbb{R}$
- Para todo $a \in \mathbb{R}$, existe $-a \in \mathbb{R}$ tal que a + (-a) = -a + a = 0
- Para todo $a, b \in \mathbb{R}$, a + b = b + a
- Para todo $a, b \in \mathbb{R}$, $a \cdot b \in \mathbb{R}$
- Para todo $a, b, c \in \mathbb{R}$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Para todo $a, b, c \in \mathbb{R}$, $a \cdot (b + c) = a \cdot b + a \cdot c$ y $(a + b) \cdot c = a \cdot c + b \cdot c$

Sea # la operación binaria definida sobre $\mathbb Q$ como $a\#b=rac{a.b}{2}$

¿Es (\mathbb{Q} , +, #) un anillo?

- Para todo $a, b \in \mathbb{Q}$, $a + b \in \mathbb{Q}$
- Para todo $a, b, c \in \mathbb{Q}$, (a + b) + c = a + (b + c)
- Existe $0 \in \mathbb{Q}$ tal que a + 0 = 0 + a = a, para todo $a \in \mathbb{Q}$
- Para todo $a \in \mathbb{Q}$, existe $-a \in \mathbb{Q}$ tal que a + (-a) = -a + a = 0
- Para todo $a, b \in \mathbb{Q}$, a + b = b + a
- Para todo $a, b \in \mathbb{Q}$, $a \# b \in \mathbb{Q}$

$$a\#b = \frac{a.b}{2} \in \mathbb{Q}$$

• Para todo $a, b, c \in \mathbb{Q}$, (a#b)#c = a#(b#c)

$$(a\#b)\#c = \frac{a.b}{2}\#c = \frac{\left(\frac{a.b}{2}\right).c}{2} = \frac{\frac{a.b.c}{2}}{2} = \frac{a.b.c}{4}$$
$$a\#(b\#c) = a\#\frac{b.c}{2} = \frac{a.\frac{b.c}{2}}{2} = \frac{\frac{a.b.c}{2}}{2} = \frac{a.b.c}{4}$$

$$a\#(b+c) = \frac{a.(b+c)}{2} = \frac{a.b+a.c}{2} = \frac{a.b}{2} + \frac{a.c}{2} = a\#b + a\#c$$
$$(a+b)\#c = \frac{(a+b).c}{2} = \frac{a.c+b.c}{2} = \frac{a.c}{2} + \frac{b.c}{2} = a\#c + b\#c$$