

The student will use formulas for surface area and volume of three-dimensional objects to solve real-world problems.

Definitions:

Surface Area: The sum of all of the areas of the sides of an object (units = Distance²)

Volume: The amount of space inside an object (units = Distance³)

EXAMPLE:

Essential Knowledge and Skills

The student will use problem solving, mathematical communication, mathematical reasoning, connections, and representations to:

- 1) Find the total surface area of cylinders, prisms, pyramids, cones, and spheres, using the appropriate formulas.
- 2) Calculate the volume of cylinders, prisms, pyramids, cones, and spheres, using the appropriate formulas.
- 3) Solve problems, including real-world problems, involving total surface area and volume of cylinders, prisms, pyramids, cones, and spheres as well as combinations of three-dimensional figures

CYLINDERS

*To find the surface area of the **cylinder**, add the areas of each of the surfaces. For a cylinder, there is a top, middle, and bottom. The top and bottom are both circles with the same dimensions, and the middle is a rectangle.

Area of each circle = $\pi * r^2$

Area of rectangle = length * width

Length of rectangle = (circumference of circle) = $2\pi r$

Circumference of circle = Length of rectangle

Width of rectangle = h

Area of rectangle = $2\pi r$ *h

Surface area of cylinder = Area of both circles + Area of rectangle **Surface area of cylinder** = $2\pi r$ *h + $2\pi r^2$ = $2\pi r$ (h+r)

Volume of cylinder = (area of base) * height = πr^2 *h

PRISMS

A **prism** is an object with equal ends and a uniform middle:

*TO FIND THE SURFACE AREA OF A PRISM, ADD TOGETHER THE AREAS OF EACH SURFACE

*TO FIND THE **VOLUME** OF A PRISM, MULTIPLY THE AREA OF THE BASE BY THE HEIGHT OF THE PRISM

PYRAMIDS

A **pyramid** is a 3D object with either a triangle, square, pentagon, etc, as a base and triangular sides that meet to a point at the top (this point is called the apex).

Triangular pyramid

For a triangular pyramid, there is a triangular base and three triangular sides that meet at the apex.

If the triangle is an equilateral triangle, the formula for surface area that can be used is:

Surface area = (base area)+ 1/2 (perimeter of base) x (slant height)

Surface area = 1/2 (b x c) + 1/2 (perimeter of base) x s

If the triangle is not equilateral, add all the areas of each side:

Surface area = (area of base) + (Lateral area)

Surface area = (area of base) + (area of triangle 2)+(area of triangle 3) + (area of triangle 4)

Volume of triangular pyramid = 1/3 (area of base) * height

Volume = $\frac{1}{3}(\frac{1}{2} b \times c)$ * height

Square pyramid

Side of square

For a square pyramid, there is a square base and four equal triangular sides that meet at the apex.

Surface area = (base area)+ 1/2 (perimeter of base) x (slant height)

Surface area = $(b \times b) + \frac{1}{2}(4b) \times s$

Volume of square pyramid = 1/3 (area of base) * height

Volume = 1/3(b x b) * height

CONES

A **cone** is a 3D object with a circular base and a point at the top.

Surface area = (area of cone) + (area of base) Surface area = $(\pi rs) + (\pi r^2)$

Volume = $\frac{1}{3} \pi r^2 h$

SPHERES

A **sphere** is a 3D circular object that is rounded at all sides, and every point on the surface is equidistant from the center

Surface area = $4\pi r^2$

Volume = $\frac{4}{3} \pi r^3$

Practice Problems

G.13 Review

- **1.** A cardboard box has dimensions of length = 3 cm, width = 5 cm, and height = 10 cm. What is the surface area?
 - a. 150 cm²
 - b. 160 cm²
 - c. 130 cm²
 - d. 140 cm²
- 2. A soup can has dimensions diameter = 64 mm and height = 100 mm. What is the volume?
 - e. 320,000 mm³
 - f. 400 cm³
 - g. 120 cm³
 - h. 200,000 mm³
- 3. What is the approximate volume of a basketball with diameter 10 inches?
 - a. 450 in³
 - b. 500 in³
 - c. 520 in³
 - d. 600 in³
- **4.** What is the surface area of this party hat?

- a. 75 in²
- b. 65 in²
- c. 83 in²
- d. 60 in²
- **5.** What is the surface area of a square pyramid with one side of the square = 1.5 m and slant height = 3 m?
 - a. 11 m³
 - b. 11.25 m³
 - c. 11.5 m³
 - d. 11.75³

- **6.** What is the surface area of a tennis ball with diameter 3 inches?
 - a. 32 in²
 - b. 30 in²
 - c. 28 in²
 - d. 25 in²
- 7. What is the volume of this cardboard box?

- a. 50 cm³
- b. 60 cm³
- c. 70 cm³
- d. 80 cm³
- **8.** What is the approximate volume of a square prism with side = 3.5 cm?
 - a. 43 cm³
 - b. 46 cm³
 - c. 50 cm³
 - d. 55 cm³
- **9.** What is the volume of a regular triangular pyramid with area of base = 9 cm^2 and height = 5 cm?
 - a. 9 cm^3
 - b. 10 cm³
 - c. 11 cm³
 - d. 15 cm³

Answer Key: Practice Problems

G.13 Geometry

1.	В
2.	A
3.	С
4.	A
5.	В
6.	С
7.	В
8.	A
9.	D

3D Object- Questions for Practice

SOL - Geometry

This container is composed of a right circular cylinder and a right circular cone.

Which is closest to the surface area of the container?

- A 490 ft²
- O B 754 ft2
- C 1,243 ft²
- D 1,696 ft²

The height of a cylinder is 9.5 centimeters. The diameter of this cylinder is 1.5 centimeters longer than the height. Which is closest to the volume of the cylinder?

- \bigcirc **A** 1,150 π cm³
- **B** 287π cm³
- \bigcirc **C** 165 π cm³
- \bigcirc **D** 105 π cm³

Which shape must have opposite sides that are parallel and congruent, and diagonals that are perpendicular bisectors of each other?

- A Parallelogram
- O B Rectangle
- O C Rhombus
- D Trapezoid

A rectangular prism is shown.

What is the surface area of the prism?

- A 156 sq in.
- B 936 sq in.
- C 1,872 sq in.
- O D 5,184 sq in.

The ratio of the lengths of the radii of two spheres is 3:5. What is the ratio of the volumes of these two spheres?

A rectangular pyramid is shown.

What is the volume of the pyramid?

- A 864 cm³
- B 432 cm³
- C 288 cm³
- D 108 cm³