Bap № 1

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования N=9797 у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=97$, $d_A=6433$ соответственно. Открытый ключ абонента B, $e_B=131$. Чему равен результат дешифрования зашифрованного сообщения Y=3025, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=311, образующий множества ненулевых вычетов по модулю $P \quad \alpha=17$, секретный ключ a=19, случайно выбираемое число (рандомизатор) r=41, найти зашифрованное сообщение Y, шифруемого сообщения X=27.

- 4. Назовем сеансовый ключ итеративного t— раундового блочного шифра m—слабым, если набор из t раундовых ключей содержит только m различных ключей, 1 ≤ m <t. Если m=1, то такой сеансовый ключ называют слабым. Сколько слабых ключей в DES? Сколько слабых и 2-слабых ключей в Гост 28147-89? После скольких раундов работы AES каждый байт текущего состояния зависит от всех байт исходного состояния?
- 5. Для двоичной последовательности 111110111 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования N=11857 у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=159$, $d_A=8039$ соответственно. Открытый ключ абонента B, $e_B=211$. Чему равен результат дешифрования зашифрованного сообщения Y=5494, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P = 313, образующий множества ненулевых вычетов по модулю $P = \alpha = 10$, секретный ключ a = 17, случайно выбираемое число (рандомизатор) r = 52, найти зашифрованное сообщение Y, шифруемого сообщения X = 54.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m <t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111110110 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования N=10001 у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=341$, $d_A=6461$ соответственно. Открытый ключ абонента B, $e_B=193$. Чему равен результат дешифрования зашифрованного сообщения Y=3850, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента B?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P = 337, образующий множества ненулевых вычетов по модулю $P = \alpha = 10$, секретный ключ a = 16, случайно выбираемое число (рандомизатор) r = 65, найти зашифрованное сообщение Y, шифруемого сообщения X = 39.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m <t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111110101 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования N=10541 у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=113$, $d_A=7589$ соответственно. Открытый ключ абонента B, $e_B=257$. Чему равен результат дешифрования зашифрованного сообщения Y=8631, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента B?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=409, образующий множества ненулевых вычетов по модулю $P=\alpha=21$, секретный ключ a=18, случайно выбираемое число (рандомизатор) r=42, найти зашифрованное сообщение Y, шифруемого сообщения X=79.

- 4. Назовем сеансовый ключ итеративного t— раундового блочного шифра m—слабым, если набор из t раундовых ключей содержит только m различных ключей, 1 ≤ m <t. Если m=1, то такой сеансовый ключ называют слабым. Сколько слабых ключей в DES? Сколько слабых и 2—слабых ключей в Гост 28147—89? После скольких раундов работы AES каждый байт текущего состояния зависит от всех байт исходного состояния?
- 5. Для двоичной последовательности 111110100 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования N=12193 у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=141$, $d_A=7045$ соответственно. Открытый ключ абонента B, $e_B=111$. Чему равен результат дешифрования зашифрованного сообщения Y=1354, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента B?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P = 367, образующий множества ненулевых вычетов по модулю P = 6, секретный ключ a = 21, случайно выбираемое число (рандомизатор) r = 39, найти зашифрованное сообщение Y, шифруемого сообщения X = 248.

- 4. Назовем сеансовый ключ итеративного t— раундового блочного шифра m—слабым, если набор из t раундовых ключей содержит только m различных ключей, 1 ≤ m <t. Если m=1, то такой сеансовый ключ называют слабым. Сколько слабых ключей в DES? Сколько слабых и 2—слабых ключей в Гост 28147—89? После скольких раундов работы AES каждый байт текущего состояния зависит от всех байт исходного состояния?
- 5. Для двоичной последовательности 111110011 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования N=9797 у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=211$, $d_A=91$ соответственно. Открытый ключ абонента B, $e_B=12$. Чему равен результат дешифрования зашифрованного сообщения Y=3504, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P = 439, образующий множества ненулевых вычетов по модулю P = 600 секретный ключ P = 600 а P = 600 г = 600 найти зашифрованное сообщение P = 600 ключ P = 600 найти зашифрованное сообщение P = 600 на P =

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m <t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111110010 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования N=7031 у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=199$, $d_A=2311$ соответственно. Открытый ключ абонента B, $e_B=211$. Чему равен результат дешифрования зашифрованного сообщения Y=6235, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента B?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=457, образующий множества ненулевых вычетов по модулю P = 13 секретный ключ a=23, случайно выбираемое число (рандомизатор) r=72, найти зашифрованное сообщение Y, шифруемого сообщения X=69.

- 4. Назовем сеансовый ключ итеративного t— раундового блочного шифра m—слабым, если набор из t раундовых ключей содержит только m различных ключей, 1 ≤ m <t. Если m=1, то такой сеансовый ключ называют слабым. Сколько слабых ключей в DES? Сколько слабых и 2—слабых ключей в Гост 28147—89? После скольких раундов работы AES каждый байт текущего состояния зависит от всех байт исходного состояния?
- 5. Для двоичной последовательности 111101111 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования N=589 у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=229$, $d_A=1529$ соответственно. Открытый ключ абонента B, $e_B=193$. Чему равен результат дешифрования зашифрованного сообщения Y=1640, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=383, образующий множества ненулевых вычетов по модулю P $\alpha=5$, секретный ключ $\alpha=26$, случайно выбираемое число (рандомизатор) $\alpha=91$, найти зашифрованное сообщение $\alpha=123$.

- 4. Назовем сеансовый ключ итеративного t— раундового блочного шифра m—слабым, если набор из t раундовых ключей содержит только m различных ключей, 1 ≤ m <t. Если m=1, то такой сеансовый ключ называют слабым. Сколько слабых ключей в DES? Сколько слабых и 2-слабых ключей в Гост 28147-89? После скольких раундов работы AES каждый байт текущего состояния зависит от всех байт исходного состояния?
- 5. Для двоичной последовательности 111100100 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования N=8137 у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=197$, $d_A=5129$ соответственно. Открытый ключ абонента B, $e_B=679$. Чему равен результат дешифрования зашифрованного сообщения Y=6151, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента B?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P = 241, образующий множества ненулевых вычетов по модулю $P = \alpha = 7$, секретный ключ a = 28, случайно выбираемое число (рандомизатор) r = 54, найти зашифрованное сообщение Y, шифруемого сообщения X = 87.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m <t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111101000 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования N=6497 у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=235$, $d_A=5636$ соответственно. Открытый ключ абонента B, $e_B=101$. Чему равен результат дешифрования зашифрованного сообщения Y=2766, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=643, образующий множества ненулевых вычетов по модулю $P=\alpha=11$, секретный ключ $\alpha=15$, случайно выбираемое число (рандомизатор) $\alpha=82$, найти зашифрованное сообщение $\alpha=49$.

- 4. Назовем сеансовый ключ итеративного t— раундового блочного шифра m—слабым, если набор из t раундовых ключей содержит только m различных ключей, 1 ≤ m <t. Если m=1, то такой сеансовый ключ называют слабым. Сколько слабых ключей в DES? Сколько слабых и 2—слабых ключей в Гост 28147—89? После скольких раундов работы AES каждый байт текущего состояния зависит от всех байт исходного состояния?
- 5. Для двоичной последовательности 111100100 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=10961\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=97$, $d_A=1441\,$ соответственно. Открытый ключ абонента B, $e_B=139\,$. Чему равен результат дешифрования зашифрованного сообщения Y=9507, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента B?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=359, образующий множества ненулевых вычетов по модулю P $\alpha=7$, секретный ключ a=27, случайно выбираемое число (рандомизатор) r=79, найти зашифрованное сообщение Y, шифруемого сообщения X=157.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111011010 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=11573\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=103$, $d_A=7927\,$ соответственно. Открытый ключ абонента B, $e_B=97\,$. Чему равен результат дешифрования зашифрованного сообщения Y=7168, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=271, образующий множества ненулевых вычетов по модулю P $\alpha=6$, секретный ключ a=31, случайно выбираемое число (рандомизатор) r=81, найти зашифрованное сообщение Y, шифруемого сообщения X=135.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111011001 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=9563\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=343$, $d_A=2647\,$ соответственно. Открытый ключ абонента B, $e_B=347\,$. Чему равен результат дешифрования зашифрованного сообщения Y=8324, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P = 719, образующий множества ненулевых вычетов по модулю P $\alpha = 11$, секретный ключ a = 25, случайно выбираемое число (рандомизатор) r = 76, найти зашифрованное сообщение Y, шифруемого сообщения X = 188.
- Полученное зашифрованное сообщение проверить посредством его расшифрования.
- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111011000 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=9379\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=131\,,d_A=1963\,$ соответственно. Открытый ключ абонента B, $e_B=257\,$. Чему равен результат дешифрования зашифрованного сообщения Y=2846, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=479, образующий множества ненулевых вычетов по модулю P $\alpha=13$, секретный ключ a=29, случайно выбираемое число (рандомизатор) r=93, найти зашифрованное сообщение Y, шифруемого сообщения X=177.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111010111 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=11303\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=97$, $d_A=4801\,$ соответственно. Открытый ключ абонента B, $e_B=139\,$. Чему равен результат дешифрования зашифрованного сообщения Y=9101, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента B?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=499, образующий множества ненулевых вычетов по модулю P $\alpha=7$, секретный ключ a=20, случайно выбираемое число (рандомизатор) r=97, найти зашифрованное сообщение Y, шифруемого сообщения X=122.

- 4. Назовем сеансовый ключ итеративного t— раундового блочного шифра m—слабым, если набор из t раундовых ключей содержит только m различных ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ называют слабым. Сколько слабых ключей в DES? Сколько слабых и 2—слабых ключей в Гост 28147—89? После скольких раундов работы AES каждый байт текущего состояния зависит от всех байт исходного состояния?
- 5. Для двоичной последовательности 111010010 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=9797\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=97\,$, $d_A=6433\,$ соответственно. Открытый ключ абонента B, $e_B=131\,$. Чему равен результат дешифрования зашифрованного сообщения $Y=3025\,$, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=311, образующий множества ненулевых вычетов по модулю P $\alpha=17$, секретный ключ a=19, случайно выбираемое число (рандомизатор) r=41, найти зашифрованное сообщение Y, шифруемого сообщения X=27.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111010001 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=11857\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=159$, $d_A=8039\,$ соответственно. Открытый ключ абонента B, $e_B=211\,$. Чему равен результат дешифрования зашифрованного сообщения Y=5494, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=313, образующий множества ненулевых вычетов по модулю P $\alpha=10$, секретный ключ a=17, случайно выбираемое число (рандомизатор) r=52, найти зашифрованное сообщение Y, шифруемого сообщения X=54.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111010000 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=10001\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=341$, $d_A=6461\,$ соответственно. Открытый ключ абонента B, $e_B=193\,$. Чему равен результат дешифрования зашифрованного сообщения Y=3850, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=337, образующий множества ненулевых вычетов по модулю P $\alpha=10$, секретный ключ a=16, случайно выбираемое число (рандомизатор) r=65, найти зашифрованное сообщение Y, шифруемого сообщения X=39.

- 4. Назовем сеансовый ключ итеративного t— раундового блочного шифра m—слабым, если набор из t раундовых ключей содержит только m различных ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ называют слабым. Сколько слабых ключей в DES? Сколько слабых и 2—слабых ключей в Гост 28147—89? После скольких раундов работы AES каждый байт текущего состояния зависит от всех байт исходного состояния?
- 5. Для двоичной последовательности 111001101 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=10541\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=113$, $d_A=7589\,$ соответственно. Открытый ключ абонента B, $e_B=257\,$. Чему равен результат дешифрования зашифрованного сообщения Y=8631, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=409, образующий множества ненулевых вычетов по модулю P $\alpha=21$, секретный ключ a=18, случайно выбираемое число (рандомизатор) r=42, найти зашифрованное сообщение Y, шифруемого сообщения X=79.

- 4. Назовем сеансовый ключ итеративного t— раундового блочного шифра m—слабым, если набор из t раундовых ключей содержит только m различных ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ называют слабым. Сколько слабых ключей в DES? Сколько слабых и 2—слабых ключей в Гост 28147—89? После скольких раундов работы AES каждый байт текущего состояния зависит от всех байт исходного состояния?
- 5. Для двоичной последовательности 111001100 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=12193\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=141$, $d_A=7045\,$ соответственно. Открытый ключ абонента B, $e_B=111\,$. Чему равен результат дешифрования зашифрованного сообщения Y=1354, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=367, образующий множества ненулевых вычетов по модулю P $\alpha=6$, секретный ключ a=21, случайно выбираемое число (рандомизатор) r=39, найти зашифрованное сообщение Y, шифруемого сообщения X=248.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111001010 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=9797\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=211\,$, $d_A=91\,$ соответственно. Открытый ключ абонента B, $e_B=121\,$. Чему равен результат дешифрования зашифрованного сообщения Y=3504, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=439, образующий множества ненулевых вычетов по модулю P $\alpha=15$, секретный ключ a=22, случайно выбираемое число (рандомизатор) r=83, найти зашифрованное сообщение Y, шифруемого сообщения X=234.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111001001 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=7031\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=199$, $d_A=2311\,$ соответственно. Открытый ключ абонента B, $e_B=211\,$. Чему равен результат дешифрования зашифрованного сообщения Y=6235, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=457, образующий множества ненулевых вычетов по модулю P $\alpha=13$, секретный ключ a=23, случайно выбираемое число (рандомизатор) r=72, найти зашифрованное сообщение Y, шифруемого сообщения X=69.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111001000 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=5893\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=229$, $d_A=1529\,$ соответственно. Открытый ключ абонента B, $e_B=193\,$. Чему равен результат дешифрования зашифрованного сообщения Y=1640, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=383, образующий множества ненулевых вычетов по модулю P $\alpha=5$, секретный ключ a=26, случайно выбираемое число (рандомизатор) r=91, найти зашифрованное сообщение Y, шифруемого сообщения X=123.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111000111 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=8137\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=197\,$, $d_A=5129\,$ соответственно. Открытый ключ абонента B, $e_B=679\,$. Чему равен результат дешифрования зашифрованного сообщения Y=6151, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=241, образующий множества ненулевых вычетов по модулю P $\alpha=7$, секретный ключ a=28, случайно выбираемое число (рандомизатор) r=54, найти зашифрованное сообщение Y, шифруемого сообщения X=87.

- 4. Назовем сеансовый ключ итеративного t— раундового блочного шифра m—слабым, если набор из t раундовых ключей содержит только m различных ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ называют слабым. Сколько слабых ключей в DES? Сколько слабых и 2—слабых ключей в Гост 28147—89? После скольких раундов работы AES каждый байт текущего состояния зависит от всех байт исходного состояния?
- 5. Для двоичной последовательности 111000110 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.

- 1. Ниже приведено описание шифра. Множества открытых текстов X, шифрованных текстов Y и ключей K заданы следующим образом: $X = \{x_0, x_1\}$, $Y = \{y_0, y_1, y_2\}$, $K = \{k_0, k_1, k_2\}$. Зашифрование открытого текста x_i на ключе k_j дает зашифрованный текст y_m , где m=(i+j) mod 3. Ключи для зашифрования выбираются равновероятно. Является ли данный шифр совершенным? Ответ обосновать.
- 2. В сети абонентов, использующих систему RSA, модуль шифрования $N=6497\,$ у всех абонентов один и тот же. Открытый и секретный ключи абонента A, $e_A=235\,$, $d_A=5636\,$ соответственно. Открытый ключ абонента B, $e_B=101\,$. Чему равен результат дешифрования зашифрованного сообщения Y=2766, отправленного в адрес абонента B, абонентом A, при атаке со стороны абонента A на секретный ключ абонента A?
- 3. При использовании шифра Эль-Гамаля с параметрами модуль P=643, образующий множества ненулевых вычетов по модулю P $\alpha=11$, секретный ключ a=15, случайно выбираемое число (рандомизатор) r=82, найти зашифрованное сообщение Y, шифруемого сообщения X=49.

- 4. Назовем сеансовый ключ итеративного tраундового блочного шифра m-слабым, если набор из
 t раундовых ключей содержит только m различных
 ключей, 1 ≤ m<t. Если m=1, то такой сеансовый ключ
 называют слабым. Сколько слабых ключей в DES?
 Сколько слабых и 2-слабых ключей в Гост 28147-89?
 После скольких раундов работы AES каждый байт
 текущего состояния зависит от всех байт исходного
 состояния?
- 5. Для двоичной последовательности 111000101 найти её линейную сложность и регистр сдвига слева направо, на котором она реализуется, с указанием начального заполнения этого регистра сдвига.