

Engenharia da Computação - Inteligência Artificial Avaliação de Classificadores

Prof. Dr. Ruy de Oliveira IFMT

Avaliação de um Classificador

- Qual é a efetividade do modelo criado?
 - Que medida de desempenho deve ser usada?
- Medida de desempenho natural para problemas de classificação: taxa de erro em um conjunto de teste
 - Sucesso: exemplo classificado corretamente
 - Erro: exemplo classificado erroneamente
 - Taxa de erro: proporção de erros cometidos sobre sobre o conjunto de dados por completo
 - Exatidão (accuracy): proporção de exemplos classificados corretamente sobre o conjunto de dados por completo

exatidão = 1 - taxa de erro

Risco da superadaptação

- Memorizar os dados de treinamento muito precisamente usualmente resulta em classificação pobre sobre dados novos
- Classificadores devem ter a habilidade de generalizar!

Dados de treinamento vs. Dados de teste

Problema: apenas uma quantidade finita de dados está disponível e tem de ser usada para as fases de treinamento e teste

- Mais dados de treinamento melhorar a generalização
- Mais dados de teste possibilita melhor estimativa para a probabilidade de erro de classificação
- Nunca se deve avaliar desempenho com os dados de treinamento
 - As conclusões tenderiam a ser muito otimistas
- O problema ocorre quando a base de dados não é grande o suficiente para ser dividida em duas!

Métodos de avaliação de classificador

Todos os métodos utilizam dados separados para as fases de treinamento e teste

- Base de dados de treinamento
- Base de dados de teste (avaliação)
- Métodos mais populares
 - Hold out
 - Validação cruzada (Cross validation)
 - Bootstrap

O método Hold out

- Divide a base de dados em dois grupos
 - Dados de treinamento: para treinar o classificador
 - Dados de teste: para estimar a taxa de erro do classificador treinado

- Requer base de dados relativamente grande!
- Há o risco de a divisão escolhida ser inadequada (desbalanceada) -> taxa de erro enganosa

O método Hold out

As limitações do método Hold out podem ser superadas com uma família de métodos de reamostragem (*resampling*)

- Validação cruzada
 - Subamostragem aleatória (random subsampling)
 - K-fold
 - Leave-one-out
- Bootstrap

Subamostragem aleatória

- Também conhecido como Monte Carlo crossvalidation
- Divide a base de dados em k partes
 - Cada parte é composta de um número fixo de exemplos, sem reposição
 - Para cada parte o classificador é treinado novamente com os exemplos de treinamento e o erro E; é estimado com exemplos de teste

- A estimativa de erro final é obtida da média dos E_i da partes
 - Provê resultado superior ao médodo hold out

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

Método k-fold

Cria k partições da base de dados

Para cada um dos k experimentos, usa k-1 partições para o

treinamento e as demais partições para o teste

- K-fold é similar ao método subamostragem aleatória
 - A vantagem da validação cruzada k-fold é que no final todos os exemplos da base de dados são usados para ambos o treinamento e o teste
- Analogamente ao caso anterior, o erro total é estimado como a média do erro de cada experimento

$$E = \frac{1}{K} \sum_{i=1}^{K} E$$

Método leave-one-out

- Cria k partições da base de dados, mas k é escolhido como o número total de exemplos
 - Para uma base de dados com N exemplos → N experimentos
 - Para cada experimento, usa N-1 exemplos para treinamento e o exemplo restante para teste

 Como usual, o erro final é computado como a média do erro dos experimentos

$$E = \frac{1}{K} \sum_{i=1}^{K} E$$

Qual é o número ideal de partições?

- Número grande de partições
 - O vício (bias) da taxa de erro real será pequeno
 - A variância do erro será grande
 - O tempo de processamento será muito grande
- Número pequeno de partições
 - O número de experimentos (e tempo de processamento) serão reduzidos
 - A variância do erro será pequena
 - O vício (bias) da taxa de erro real será grande
- Na prática, a escolha do número de partições depende do tamanho da base de dados
 - Para base de dados grande, até 3-fold proverá resultado preciso
 - Para base de dados esparsas, deve-se usar o método leaveone-out, de modo a treinar o máximo possível de exemplos
- Uma escolha comum para validação cruzada k-fold é k=10

Falso Positivo e Falso Negativo (tipo 1 e 2)

O classificações erradas pode ser muito alto!

Matriz Confusão

- A matriz confusão (MF) resume os resultados da estimativa de um classificador
- A MF mostra o quão "confuso" o classificador está quando fazendo as estimativas
- A MF provê informações não apenas acerca dos erros, mas também sobre os tipos de erros que o classificador está cometendo, o que é ainda mais importante

Classe Estimada

		Pos	Neg
Classe	Pos	TP	FN
Real	Neg	FP	TN

exatidão (accuracy) =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

Exemplos de Matriz Confusão

A matriz confusão (MF) de duas e três classes

predicted→ real↓	Class_pos	Class_neg
Class_pos	114	86
Class_neg	7	93

predicted → real ↓	Class_1	Class_2	Class_3
Class_1	94	16	10
Class_2	21	113	16
Class_3	4	4	92

Predicted

A medida exatidão (accuracy)

- A medida exatidão pode ser inútil em casos onde:
 - Há uma variação significativa na quantidade das classes
 - □ 98% de exatidão é bom, se 97% dos exemplos (instâncias) são negativos?
 - Há diferentes custos para a classificação errada (um positivo errado custa mais do que um negativo errado)
 - Na área médica, um falso positivo resulta num exame extra, mas um falso negativo resulta numa falha referente ao tratamento da doença

Classe Estimada

	Pos	Neg
Pos	TP	FN
Neg	FP	TN

Classe Real

Principais métricas para avaliação de classificadores

- Exatidão (Accuracy) = (TP+TN)/(P+N)
 - Proximidade da medida com o valor correto
- Erro = (FP+FN)/(P+N)

Classe

Real

Accuracy Vs Precision

- Precisão (Precision) = TP/(TP+FP)
 - Proximidade entre as várias medidas
 - Quantidade de exemplos que o classificador identificou como positivo e são realmente positivos

Classe Estimada

	Pos (P)	Neg (N)
Pos	TP	FN
Neg	FP	TN

Principais métricas para avaliação de classificadores

- □ Revocação (Recall) Sensibilidade = TP/(FN+TP)
 - Fração de instâncias relevantes que são recuperadas
 - Que porcentagem de exemplos positivos resultou em positivo
 - Ex.: essa métrica pode nos informar a proporção de pacientes que realmente tinha câncer e foi diagnosticado pelo algoritmo como tendo câncer

Classe Estimada

	Pos (P)	Neg (N)
Pos	TP	FN
Neg	FP	TN

O custo do falso negative pode ser muito alto!!!

Classe Real

Outra métricas para avaliação de classificadores

- Especificidade = TN/TN+FP
 - Representa o contrário do Recall
 - Ex.: esta métrica pode nos informar a proporção de pacientes que não tiveram câncer, e foram selecionados pelo classificador como não cancerígenos

Classe Estimada

	Pos	Neg
Pos	TP	FN
Neg	FP	TN

Classe Real

Exercício1: matriz confusão

- Calcule para a matriz confusão abaixo:
 - Exatidão
 - Erro
 - Precisão
 - Sensibilidade
 - Especificidade

		Predicted				
		Class1	Class2	Class3	Class4	Class5
Ground Truth	Class1	92	3	2	2	1
	Class2	2	92	2	2	2
	Class3	1	1	92	6	0
	Class4	0	1	1	92	6
	Class5	1	4	2	1	92

Exercício2: avaliação do classificador

- Modelar um classificador Árvore de decisão para a base de dados Íris, disponível no link abaixo
 - (https://archive.ics.uci.edu/ml/datasets/iris)
- O classificador deve utilizar inicialmente a métrica Ganho de informação e depois a métrica índice GINI, como medida de incerteza
- Depois de treinando, o classificador deve ser avaliado pelos métodos: hold out e k-fold (k=5 e 10)
 - Compare: exatidão, precisão e taxa de erro
- Mostre os resultados, considerando as duas métricas de incerteza acima, e também na matriz confusão
- Compare os resultados da avaliação com os dados de teste e com os dados originais

Base de dados

- Repositório online com várias bases de dados
 - https://archive.ics.uci.edu/ml/datasets.html
- Iris
 - https://gist.github.com/curran/a08a1080b88344b0c8a7#file -iris-csv
 - <u>https://archive.ics.uci.edu/ml/datasets/Iris</u>
- Breast Cancer Wisconsin (Diagnostic)
 - https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wis consin+%28Diagnostic%29
- Sonar (Mines vs. Rocks)
 - https://archive.ics.uci.edu/ml/datasets/Connectionist+ Bench+(Sonar,+Mines+vs.+Rocks)
- Titanic
 - https://www.kaggle.com/c/titanic/data

Links interessantes

K-fold

https://www.talend.com/blog/2017/05/15/machine-learningalgorithms-with-k-fold-cross-validation/

Bibliografia

- RUSSEL, S. Inteligência Artificial. 3^a ed.
 Campus, 2013
- BRAGA, A. de P. Redes Neurais Artificiais. 2^a
 ed. Rio de Janeiro: LTC, 2007
- HAYKIN, S. S. Redes Neurais. 2a ed. Porto Alegre: Bookman, 2000
- COPPIN, B. Inteligência Artificial. 1a ed. LTC, 2010
- LUGER, G. F. Inteligência Artificial. 6a ed. Pearson, 2013

Bibliografia

- NORVIG, P. Inteligência Artificial. 2a ed. Campus, 2004
- ROSA, J. L. G. Fundamentos da Inteligência Artificial. 1a ed. LTC, 2011
- SILVA, I. N. da Redes Neurais Artificiais para Engenharia e Ciências Aplicadas. 1a ed. São Paulo: Artliber, 2010