MATHEMATICS

TOPIC : MATHEMATICAL INDUCTION, SEQUECES AND SERIES, MATHEMATICAL REASONING

1) Let $P(n)$: $2^n < (1x 2 x 3 x 4 x x n)$. Then the smallest positive integer			ositive integer for				
	which P(n) is true is						
	a) 1	b) 2	c) 3	d) 4			
2)	If P (n): "2.4 ²ⁿ⁺¹	+3 ³ⁿ⁺¹ is divisible by	λ for all $n \in N$ is tru	ie, then the value of λ is			
	a) 3	b) 11	c) 209	d) 5			
3)	If P (n): " $49^n + 16^n + k$ is divisible by 64 for $n \in N$ " is true, then						
	The least negative	ve integral value of l	x is				
	a) -1	b) -2	c) -3	d)-4			
4)	The smallest pos	sitive integer n for w	which n! $< \left(\frac{n+1}{2}\right)^n$ h	olds is,			
	a) 1	b) 2	c) 3	d) 4			
5)	The greatest pos	itive integer which o	divides (n+1) (n+2).	$(n+r)$ for all $n \in N$ is,			
	a) r	b) r!	c) (n+r)	d) (r+1)!			
6)	The inequality n!	$>2^{n-1}$ is true					
	a) for all $n \in N$		b) for all n>1				
	c) for all n>2		d) for no $n \in N$				
7)	The sum of the cu	ibes of three success	sive natural numbers	s is divisible by,			
	a) 6	b) 9	c) 27	d) 8			
8)	If $10^n + 3.4^{n+2} + k$	is divisible by 9 for	r all $n \in \mathbb{N}$, then the le	east positive integer			
	value of k is						
	a) 5	b) 3	c) 7	d) 1			
9) The number $(49^2 - 4) (49^3 - 49)$ is divisible by							
	a) 5!	b) 6!	c) 9!	d) 7!			
10)	If $x^n - 1$ is divisible	ole by x-k, then the	least positive integr	al value of k is			
	a) 1	b) 2	c) 3	d) 4			

12)	If $(a-1)$ is the G.M between $(a-2)$ and $(a+1)$ then $a =$					
	a) 2	b) 3	c) 4	d) 1		
13)	$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots$	$ + \frac{1}{(3n-1)(3n+2)} =$				
	a) $\frac{n}{6n+3}$	b) $\frac{n}{6n-4}$	$c) \frac{n+1}{6n+4}$	d) $\frac{n}{6n+4}$		
14)	The 50^{th} term of the	series 2+3+6+11+1	18+ is			
	a) $(49)^2 - 1$	b) $(49)^2 + 2$	c) 50^2	d) $(50)^2 - 1$		
15)	The 12 th element from	om the end of AP 3,	8, 13 253 is			
	a) 190	b) 194	c) 198	d) 200		
16)	The sum of all two	digit numbers which	h when divided by	4, yield unity		
	as remainder is					
	a) 1012	b) 1201	c) 1212	d) 1210		
17)	Sum of all integers	between 100 and 20	00 which are not div	visible by 2 is		
	a) 7000	b) 7550	c) 7500	d) 7250		
18)	The sum of the ser	ies $15^2 + 16^2 + \dots$	$ + 30^2$ is			
	a) 7440	b) 8440	c) 6220	d) 4220		
19)	9) The nth term of $3 + 13 + 29 + 51 + 79 + \dots$ is					
	a) $3n^2 + n + 1$	b) $3n^2 + n - 1$	c) $4n^2 - 1$ d)	$3n^2 - n + 1$		
20)	The sum $9^{\frac{1}{3}} \times 9^{\frac{1}{9}} \times$	$9^{\frac{1}{27}} \times \infty$ is				
	a) 3	b) 6	c) 9	d) 12		
21)	21) If second, third and sixth terms of an AP are consecutive elements of a GP,					
	then common ratio of the GP is					
	a) 1	b) -1	c) 3	d) -3		

c) 3

d) 4

11) If P (n): 2n < n!, $n \in N$, then P (n) is true for all $n \ge n!$

b) 2

a) 1

22)	Let $P(n)$ denote the statement that $n^2 + n$ is odd. It is seen that $P(n) \Longrightarrow P(n+1)$.						
	P (n) is true for all						
	a) n >1	b) n	c) n>2	d) none of these			
23) The sum to n terms of a series is $2^{n+1} + n - 2$, then the n^{th} term is							
	a) 2n + 1	b) $3^{n} - 1$	c) $2^{n} + 1$	d) $3^n + 1$			
24)	If m, n are any two	odd positive intege	ers with $m > n$ then	n the largest			
	positive integers	which divides all t	the numbers of the	type $m^2 - n^2$ is			
	a) 4	b) 6	c) 8	d) 9			
25)	$1^2 + 2.2^2 + 3^2 + 2.4$	$x^2 + 5^2 + 2.6^2 + \dots$	$\frac{n(n+1)^2}{2}$ where r	n is even . When n is			
	Odd, the sum is						
	a) $\frac{n(n+1)}{2}$	$b) \frac{n^2(n+1)}{2}$	$c) \frac{n(n+1)^2}{2}$	d) $\left[\frac{n(n+1)}{2}\right]^2$			
26)	The 10 th common to	term between the se	eries 3+7+11+	and 1+6+11+ is			
	a) 191	b) 193	c) 211	d) 181			
27)	27) If a clock strikes appropriate number of times at each hour. Then the number of times it strikes in one full day is						
	a)78	b)156	c) 144	d) 72			
28)	$\frac{1.2^2 + 2.3^2 + \dots}{1^2.2 + 2^2.3 + \dots}$	$\frac{\dots + n \cdot (n+1)^2}{\dots + n^2 \cdot (n+1)} =$					
	a) $\frac{(n+1)}{n}$	$b) \frac{3n+4}{3n+1}$	$c) \frac{3n+7}{3n+2}$	$d) \frac{3n+5}{3n+1}$			

29)	The minimum value of $4^x + 4^{1-x}$, $x \in \mathbb{R}$ is						
	a) 2	b)	4	c)	1	d)	0
30)	"The diagonals of a	ı rhom	ibus are perper	ndicu	ılar" The contra	pos	sitive of this
	statement is						
	a) If the figure is r	ot a r	hombus ,then i	ts di	agonals are not	per	pendicular
	b) If the diagonal	ls are	perpendicular,	then	the figure is a	rhor	nbus
	c) If the diagonal	s are	not perpendicu	lar ,t	then the figure i	s a	rhombus
	d) If the diagonal	s are n	not perpendicul	lar ,t	hen the figure is	s no	t a rhombus
31) The inverse of "if :	$X \in AI$	B then $x \in A$	or x	ε B" is		
	a) if $x \notin A \cap B$ then $x \notin A \cap B$	± A 8	X X∉B		b) if $x \notin A \cap B$	then	$\mathbf{x} \notin A \text{ or } \mathbf{x} \notin B$
	c) if $x \notin A$ or $x \notin B$	then 2	$X \notin A \cap B$		d)none		
32)	The contra-positive	of the	e inverse of p-	→~q			
	a) ~q→~p	b)	~p -> ~q	c)	$\sim q \rightarrow p$	d)	p→q
33)	Negate the followin	g prop	position :" If i	t rai	ns heavily, the	coll	lege is closed
	But the students	do no	ot go home"				
	a) It rains heavily go home	and	either the col	lege	is not closed	or t	he students
	b) It does not rain h	eavily	and the colle	ege i	s closed or the	e stu	idents go home
	c) It does not rain h	neavil	y, the college	is ne	either closed no	or t	he students
	go home						
	d) None of these						
34)	If p,q,r have truth	value	s T,F,T respect	ivel	y, which of the	foll	lowing is true?
	$a)(p=>q)\Lambda r$	b) (1	p=>q)Λ~r	c)($p\Lambda q)\Lambda(pvr)$	d)	$q=>(p\Lambda r)$

35) The truth value of the contra positive of the statement "If $x \in A$, $x \in B$ then					
$x \in A \cap B$ " is					
a) T	b) F	c) no conclusion	d) None		
36) Let p:2+3=5; q=	$\sqrt{2}$ is irrational. The	ne symbolic form o	f the statement		
"It is not true that	2+3=5 iff $\sqrt{2}$ is	s irrational",is			
a) ~p↔q	b) ~p↔~q	c) \sim (p \leftrightarrow \sim q)	$d) \sim (p \leftrightarrow q)$		
37) Which of the follow	ing is not logically	equivalent to the p	roposition:		
"A real number is e	ther rational or irra	tional"			
a) If a number is neith	ther rational nor irra	ational then it is not	real		
b) If a number is not	rational or not an in	rrational then it is n	ot real		
c) If a number is not	real, then it is neith	her rational nor irra	tional		
d) If a number is rea	al, then it is rational	l or irrational			
38) Negation of "2+3=	=5 and 8<10" is				
a) $2 + 3 \neq 5$ and $8 <$	10	b) $2 + 3 = 5$ and	8 10</td		
c) $2 + 3 \neq 5$ or $8 < 6$	10	d) None of these			
39) The contrapositive of	of $(p \lor q) \Rightarrow r$ is				
a) $r \Rightarrow (p \lor q)$		b) $\sim r \Rightarrow (p \ v \ q)$			
c) \sim r \Rightarrow (\sim p \wedge \sim q)	c) $\sim r \Rightarrow (\sim p \land \sim q)$ d) $p \Rightarrow (q \lor r)$				
40) If $(p \land \neg r) \rightarrow (\neg p \lor q)$ is false, then truth values of p, q, r are respectively					
a) F,F & T	b) T, F & F	c) T, F & T	d) F, T & T		
41) The negation of p v	$(q \Lambda \sim r)$ is				
a) p∧(~qv r)	b) $\sim p\Lambda(\sim q\Lambda r)$	c) $\sim p\Lambda(\sim qv r)$	d) None		

42) Contrapositive of the inverse of the proposition "if I am Ok, then							
ϵ	everybody is Ok" is						
a)	a) If everybody is Ok, then I am Ok						
b	b) If everybody is not Ok, I am not Ok						
c) If I am not Ok, th	nen everybody is no	ot Ok				
d) If I am Ok, then	everybody is Ok					
43) T	he negation of the	proposition " If $x \in$	$\in A \cap B$, then $x \in A$	and $x \in B$ " is			
	a) $x \notin A \cap B$, then	$x \notin A$ and $x \notin B$	b) $x \in A \cap B$ and	$1 \ x \notin A \text{ or } x \notin B$			
	c) If $x \in A \cap B$, th	en $x \notin A$ and $x \notin I$	B d) $x \in A \cap B$ and	$d x \notin A \text{ and } x \notin B$			
44)	The third term of	a GP is 4, the prod	uct of the first five	terms is			
	a) 64	b)1024	c)256 d) 5	12			
45) T	he sum to n terms	of an AP is $n(n+3)$,	the common differ	rence is			
	a) 1	b) 2	c) 3	d) 4			
46) T	he nth term of the	series $2 \cdot 1^2 \cdot 3^3 + 3 \cdot 2^2 \cdot 4$	$1^3+\dots$ Is				
	a) $(n^2+3n+2)(n^2+2)$	$(2n)^2$	b) $(n^2+3n+2)(n^2+$	$(2n+1)^2$			
	c) $(n^2+3n)(n^2+2n-6)$	+1) ²	d) None of these				
47)	Sum to n terms of	The series is $1 - \frac{1}{(n-1)^n}$	$\frac{1}{+1)!}$ The 20 th term	n is			
	a) $\frac{20}{2!!}$	b) $\frac{19}{20!}$	c) $\frac{21}{22!}$	d)None of these			
48) If the sum of n terms of the series $2^3+4^3+6^3+\infty$ is 3528 then n=							
	a) 6	b) 7	c)8	d)9			
49)	$\frac{1}{1^3} + \frac{1+2}{1^3+2^3} + \frac{1+2}{1^3+2^3}$	$\frac{2+3}{2^3+3^3} +n$ terms	=				
	a) $\frac{2}{n+1}$	b) $\frac{2n}{n+1}$	c) $\frac{n}{n+1}$	$d) \frac{1}{n+1}$			

- a) $\frac{n(n+1)(n+2)}{6}$ b) $\frac{n(n+1)^2(n+2)}{12}$ c) $\frac{n(n+1)(n+2)^2}{12}$ d) $\frac{n(n+1)}{2}$ 60)
- 60) The 99^{th} term of the series $2 + 7 + 14 + 23 + 34 + \dots$ is
 - a) 9999 b) 9998 c) 10000 d) None

Solutions:

- 1) Ans: d P(1),P(2),P(3) all are false. P(4) is true
- 2) Ans:b for n = 1, P(n) = 209 , For n = 2 , P(n) = 4235 HCF of 209 and 4235 is 11

So, P(n) is divisible by 11. Hence $\lambda = 11$

- 3) Ans:a for n=1 ,p(1) :65 +k is divisible by 64 Thus,k should be -1
- 4) Ans: c
- 5) Ans: b Product of r consecutive integers is divisible by r!
- 6) Ans: c Put n=1,2,3,... Verify
- 7) Ans: b

Let the numbers be n, n+1, n+2. Sum of the cubes of successive natural Numbers is $n^3 + (n+1)^3 + (n+2)^3$. Put n=1,2,.... And verify

- 8) Ans:a put n=1,202+k is divisible by 9 if k = 5
- 9) Ans: a product of 5 consecutive numbers
- 10) Ans: $a^{-}x^{n}-1^{n}$ is a multiple of x-1
- 11)Ans: d

12Ans: b
$$(a-1)^2 = (a-2)(a+1) = a=3$$

- 13)Ans:d put n=1
- 14) Ans:b successive differences are in AP . using method of differences solve it .
- 15) Ans: c a=253, d=-5 , $t_{12}=253+12x-5=198$
- 16) Ans:d
- 17) Ans:c sum = 101+103+105+...+199=50/2[101+199]
- 18) Ans:b $\sum 30^2 \sum 14^2$
- 19) Ans:b put n=2

20) Ans:a
$$9^{\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots \infty} = 9^{\frac{\frac{1}{3}}{1 - \frac{1}{3}}}$$

- 21) Ans:c a+d, a+2d, a+5d are in GP => d= -2a
- 22) Ans: d
- 23) Ans:c $T_n = S_n S_{n-1}$
- 24) Ans:c $m^2 n^2 = (2n+3)^2 (2n+1)^2$

- 25) Ans:b put n=3
- 26) Ans:a first common term = 11=a, d=LCM(4,5)=20, $T_{10}=11+9x20=191$
- 27) Ans:b $2(1+2+3+....12) = 2\sum 12$
- 28) Ans:d put n=2
- 29) Ans:b $AM \ge GM$
- 30) Ans:d
- 31) Ans:a
- 32) Ans:c
- 33) Ans:a
- 34) Ans:d
- 35) Ans:a
- 36) Ans:d
- 37) Ans:b
- 38) Ans:c
- 39) Ans:c
- 40) Ans:b
- 41) Ans:c
- 42) Ans: a
- 43) Ans: b

$$p: x \in A \cap B$$
, $q: x \in A$, $r: x \in B$

Then given statement is $p \rightarrow (q \land r)$

Then
$$\sim [p \rightarrow (q \land r)] = p \land (\sim q \lor \sim r)$$

- 44) Ans:b $ar^2=4$, $a.ar.ar^2.ar^3.ar^4=4^5$
- 46) Ans: a

nth term =
$$(n+1) n^2 (n+2)^3 = (n^2 + 3n + 2)(n^2 + 2n)^2$$

47) Ans: a

$$S_n = 1 - \frac{1}{(n+1)!}$$
, $S_{n-1} = 1 - \frac{1}{n!}$ and $t_n = S_n - S_{n-1} = \frac{n}{(n+1)!}$ and $t_{20} = \frac{n}{(n+1)!}$

21!

48) Ans: a

$$t_n = (2n)^3 = 8n^3$$
; $S_n = 8\sum n^3 = \frac{8n^2(n+1)^2}{4} = 2n^2(n+1)^2$

$$2n^2(n+1)^2 = 3528$$
, $n^2(n+1)^2 = 1764$, $n(n+1)=42$, $n^2 + n - 42 = 0$ => n=6 or n= -7, but n≠-7

49) Ans: b

Put n=1, n=2 and verify

When n=1, $\frac{1}{1^3}$ =1 2) gives answer 1

When n=2, $\frac{1}{1^3} + \frac{1+2}{1^3+2^3} = 1 + \frac{1}{3} = \frac{4}{3}$ option 2) gives $\frac{4}{3}$

50) Ans: c

$$(1+2+3+\ldots+n)+(1^2+2^2+\ldots+n^2)=\frac{n(n+1)}{2}+\frac{n(n+1)(2n+1)}{6}=\frac{n(n+1)(n+2)}{3}$$

51) Ans: d

$$(\sum n^3)(\sum n) = (\sum n^2)^2$$
, simplifying we get $\frac{n(n+1)}{2} = \frac{(2n+1)^2}{9}$, clearly this holds good for n=1

52) Ans:c $T_2 = S_2 - S_1$

53) Ans:c
$$ar^3=p$$
, $ar^6=q$, $ar^9=r => pr= a^2r^{12}=q^2$

- 54) Ans: a+6d=40 $S_{13}=13/2[2a+12d]$
- 55) Ans:d
- 56) Ans:b a+5d=61 and a+9d=105, solve it
- 57) Ans:a

58) Ans:a use result:
$$\frac{1}{a(a+d)} + \frac{1}{(a+d)(a+2d)} + \dots ton terms = \frac{n}{a(a+nd)}$$

- 59) Ans:b put n=2
- 60) Ans:b using method of differences
