Segmentation

Semantic Segmentation

Instance Segmentation

Semantic segmentation - 동일 오브젝트의 경우 동일 형식으로 masking Instance segmentation - 개별 오브젝트 별로 masking

Mask Rcnn

Mask R CNN FCN + Faster RCNN

segmented

1: Person 2: Purse

3: Plants/Grass

4: Sidewalk

5: Building/Structures

3	3	3	3	3	3	3	3	3	3	3	3	5	5	5	5	5	5	
3	3	3	3	3	3	3	3	3	3	3	3	5	5	5	5	5	5	
3	3	3	3	3	3	1	1	3	3	3	3	5	5	5	5	5	5	
3	3	3	3	3	1	1	1	1	3	3	3	5	5	5	5	5	5	
3	3	3	3	3	3	1	1	3	3	3	5	5	5	5	5	5	5	
5	5	3	3	3	3	1	1	3	3	5	5	5	5	5	5	5	5	
4	4	3	4	1	1	1	1	1	1	4	4	4	5	5	5	5	5	
4	4	3	4	1	1	1	1	1	1	4	4	4	4	4	5	5	5	
4	4	4	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	
3	3	3	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	
3	3	3	1	2	2	1	1	1	1	1	4	4	4	4	4	4	4	
3	3	3	1	2	2	1	1	1	1	1	4	4	4	4	4	4	4	

Input Semantic Labels

각 클래스의 값들이 배치

Mask Rcnn

각 채널에 각 이미지 별로 분류

Mask Rcnn

Faster Rcnn의 경우 Rolpooling을 사용 Segmentation 의 경우 Rolpooling을 사용하면 정확도가 떨어지게 되어 RolAlign사용

FCN - Fully Convolutional Network for Semantic Segmentaion

Semantic Segmentation Encoder-Decoder Model 원본 이미지를 Convolution으로 차원축소하여 응축된 정보를 가지고, 이를 다시 복원하면서 필요한 정보를 학습 이렇게 학습된 정보를 기반으로 segmentation수행

FCN Down sampling과 Upsampling

De-Convolution을 통한

Upsampling 32x upsampled pool2 conv3 pool3 conv6-7 prediction (FCN-32s) image conv1 pool1 conv2 conv4 pool4 conv5 pool5 Ground truth FCN-32s

FCN32를 바로 적용할 경우 Segmentation이 정확하게는 이루어지지 않는다.

32 - 16 - 8FCN의 결과는 위와 같다 FCN8이 Ground Truth와 가장 유사하게 Segmentation이 되고 있다.

Mask Rcnn - FCN-32s/16s/8s 별 성능

FCN-32s

FCN-16s

FCN-8s

정답(Ground truth)

	FCN-32s	FCN-16s	FCN-8s
IOU (Intersection over Union)	59.4(%)	62.4(%)	62.7(%)

Mask Rcnn 구조

Segmentation 에서 ROI Pooling 문제점

기존 Faster Rcnn에서는 ROI Pooling을 사용하여 Detection을 실행 Segmentation의 경우 좀 더 정확성을 요구함으로 ROI Align을 사용

Segmentation 에서 ROI Pooling 문제점

ROI Pooling의 경우 위와 같은 경우 2X2를 적용할 경우 정확하게 나누어 구하기 어렵다. ROI Align의 경우 기존 그리드에 구애받지 않고 소수점 그대로 매핑

~ing