Your Presentation

Andrzej Kokosza

Oblicze 2016

(C1) Dwa punkty $\alpha \neq \beta$ można połączyć prostą.

(C2) Dla puntów $\alpha \neq \beta$ i γ można utworzyć okrąg o środku w γ i promieniu $|\alpha\beta\>$

(P1) Punkt powstaje poprzez przecięcie 2 prostych.

(P2) Punkt powstaje przez przecięcie prostej i okręgu.

(P3) Punkt powstaje przez przecięcie dwóch okręgów.

Definicja

Liczba zespololona jest konstruowalna.

Przykład Liczby naturalne

Przykład Liczby naturalne

Przykład Liczby naturalne

Przykład Liczby urojone całkowite

Twierdzenie

Niech $\mathcal{C}=\{\alpha\in\mathbb{C}\mid \alpha \text{ jest konstuowalne}\}$ \mathcal{C} jest podciałem \mathbb{C} Ponadto:

- (a) Niech $\alpha = a + bi \in C$, gdzie $a, b \in \mathbb{R}$, to $a, b \in C$.
- (b) Jeżeli $\alpha \in \mathcal{C}$, to $\sqrt{\alpha} \in \mathcal{C}$

$$\alpha \cdot \beta = ae^{\theta} \cdot be^{\tau} = (ab)e^{\theta+\tau}$$

$$\frac{lpha}{eta} = \frac{\mathsf{a}\mathsf{e}^{ heta}}{\mathsf{b}\mathsf{e}^{ au}} = (\frac{\mathsf{a}}{\mathsf{b}})\mathsf{e}^{ heta - au}$$

$$\sqrt{\alpha} = \sqrt{a}e^{\frac{\theta}{2}}$$

Twierdzenie

Niech α będzie liczbą zespoloną. Wtedy $\alpha \in \mathcal{C}$ wtedy i tylko wtedy, gdy istnieją ciała

$$\mathbb{Q} = F_0 \subset F_1 \subset ... \subset F_n \subset \mathbb{C}$$

takie, że $\alpha \in F_n$ i $[F_{i-1} : F_i] = 2$ dla $0 < i \leqslant n$

Dowód.

(\Leftarrow) Załóżmy, że istnieje $\mathbb{Q}=F_0\subset\ldots\subset F_n\subset\mathbb{C}$ gdzie $[F_{i-1}:F_i]=2$. Możemy skorzystać z faktu, że jeżeli $[F_{i-1}:F_i]=2$, to $F_i=F_{i-1}(\sqrt{\alpha_i})$ dla pewnego $\alpha_i\in F_{i-1}$. Poprzez indukcję udowodnimy, że dla $0< i\leqslant n$ $F_i\subset\mathbb{Q}$. Oczywiście $F_0=\mathbb{Q}\subset\mathcal{C}$. Załóżmy, że $F_{i-1}\subset\mathcal{C}$, $F_i=F_{i-1}(\sqrt{\alpha_i})$. Skoro $\alpha_i\in\mathcal{C}$, to $\sqrt{\alpha_i}\in\mathcal{C}$, stąd $F_i=F_{i-1}(\sqrt{\alpha_i})\in\mathcal{C}$. Zatem $F_n\in\mathcal{C}$.

Dowód.

 (\Rightarrow) $\alpha \in \mathcal{C}$ Udowodnimy, przez stworzenie wieży rozszerzeń $\mathbb{Q} = F_0 \subset F_1 \subset ... \subset F_n \subset \mathbb{C}$ gdzie $[F_{i-1}:F_i]=2$ takie, że F_n wartości urojone i rzeczywiste liczb, które powstają w trakcie konstrukcji α . Przeprowadzimy indukcje po liczbie N użyć aksjomatów P1, P2, P3. Dla N=0 $\alpha=0$ lub $\alpha=1$ zatem $\mathbb{Q} = F_0 = F_n$.

Dowód.

Niech N>1 i punkt α został otrzymany za pomocą P1, przecięcie się prostych I_1 , I_2 . Proste powstały z punktów α_1 i β_1 oraz α_2 i β_2 . α_1 , β_1 , α_2 , β_2 powstały w co najwyżej N-1 krokach, zatem z założenia indukcyjnego istnieje $\mathbb{Q}=F_0\subset F_1\subset ...\subset F_n\subset \mathbb{C}$ gdzie $[F_{i-1}:F_i]=2$, że części urojone α_1 , β_1 , α_2 , β_2 należą do F_n . Prosta I_1 jest opisana równaniem $a_1x+b_1y=c_1$, ponieważ $\alpha_1,\beta_1\in F_n$ to $a_1,b_1,c_1\in F_n$. analogicznie równaniem I_2 jest I_1 0 jest I_2 1 ponieważ I_3 2 postały I_3 3 postały I_3 4. Zatem jego części urojone i rzeczywiste rozwiązaniem układu równań:

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

Readable Mathematics

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $\mathsf{E}[X_i] = \mu$ and $\mathsf{Var}[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.