Josefina Silveyra Marzo de 2017

Expresiones útiles en los sistemas de coordenadas ortogonales más usuales Notación:

 dl_i : elemento de longitud **paralelo** al versor i-ésimo

 dS_i : elemento de superficie **normal** al versor i-ésimo ("base x altura")

dV: elemento de volumen ("lado x lado x lado")

Coordenadas cartesianas

Fig. 1. Sistema de coordenadas cartesianas.

[Rodríguez Trelles, Félix. <u>Temas de Electricidad y</u> <u>Magnetismo.</u> Eudeba, 1984]

Variables: x, y, z

$$r = \sqrt{x^2 + y^2 + z^2}$$

<u>Versores</u>: \hat{x} , \hat{y} , \hat{z}

<u>Vector posición</u>: $\vec{r} = x \hat{x} + y \hat{y} + z \hat{z}$

Elementos de longitud: $dl_x = dx$, $dl_y = dy$, $dl_z = dz$

Elementos de superficie: $dS_x = dy dz$, $dS_y = dz dx$, $dS_z = dx dy$

Elemento de volumen: dv = dx dy dz

Josefina Silveyra Marzo de 2017

Coordenadas cilíndricas

Fig. 2. Sistema de coordenadas cilíndricas.

Figura modificada de [Rodríguez Trelles, Félix. <u>Temas de Electricidad y</u> <u>Magnetismo.</u> Eudeba, 1984]

Variables:

$$\rho = \sqrt{x^2 + y^2} \ (\rho \ge 0)$$

$$\varphi = \operatorname{arctg} y/x \ (\varphi \in [0,2\pi))$$

$$z (z \in \mathcal{R})$$

$$x = \rho \cos \varphi$$

$$y = \rho \operatorname{sen} \varphi$$

7

$$r = \sqrt{\rho^2 + z^2} = \sqrt{x^2 + y^2 + z^2}$$

Versores:

$$\hat{\rho} = \cos \varphi \, \hat{x} + \sin \varphi \, \hat{y}$$

$$\hat{\varphi} = -\operatorname{sen} \varphi \, \hat{x} + \cos \varphi \, \hat{y}$$

 \hat{z} (idem cartesianas)

<u>Vector posición</u>: $\vec{r} = \rho \cos \varphi \ \hat{x} + \rho \sin \varphi \ \hat{y} + z \ \hat{z}$

Elementos de longitud: $dl_{\rho}=d\,\rho$, $dl_{\varphi}=\rho d\,\varphi$, $dl_{z}=dz$

Elementos de superficie: $dS_{\rho} = dl_{\varphi} dl_{z} = \rho dl_{\varphi} dz$

 $dS_{\varphi} = dl_{\rho} \ dl_{z} = d\rho \ dz$

 $dS_z = dl_{\varphi} dl_{\rho} = \rho d\varphi d\rho$

Elemento de volumen: $dv = (\rho d\varphi)d\rho dz = \rho d\rho d\varphi dz$

Josefina Silveyra Marzo de 2017

Coordenadas esféricas

Fig. 3. Sistema de coordenadas esféricas.

[Rodríguez Trelles, Félix. <u>Temas de Electricidad y</u> <u>Magnetismo.</u> Eudeba, 1984]

Variables:

$$r = \sqrt{x^2 + y^2 + z^2} \ (r \ge 0)$$

$$\theta = \arccos \frac{z}{r} \ (\theta \in [0, \pi])$$

$$\varphi = \operatorname{arctg} \frac{y}{x} \left(\varphi \in [0, 2\pi) \right)$$

$$x = \rho \cos \varphi = r \sin \theta \cos \varphi$$

$$y = \rho \operatorname{sen} \varphi = r \operatorname{sen} \theta \operatorname{sen} \varphi$$

$$z = r \cos \theta$$

Versores:

$$\hat{r} = \operatorname{sen} \theta \cos \varphi \, \hat{x} + \operatorname{sen} \theta \operatorname{sen} \varphi \, \hat{y} + \cos \theta \, \hat{z}$$

$$\hat{\theta} = \cos \theta \cos \varphi \, \hat{x} + \cos \theta \sin \varphi \, \hat{y} - \sin \theta \, \hat{z}$$

$$\hat{\varphi} = -\sin\varphi \,\,\hat{x} + \cos\varphi \,\,\hat{y}$$

Vector posición: $\vec{r} = r(\sin\theta\cos\phi \hat{x} + \sin\theta\sin\phi \hat{y} + \cos\theta \hat{z})$

Elementos de superficie: $dS_r = dl_\theta \ dl_\varphi = r^2 \operatorname{sen} \theta \, d\theta \, d\varphi$

 $dS_{\theta} = dl_r \ dl_{\varphi} = r \operatorname{sen} \theta \operatorname{dr} \operatorname{d} \varphi$

 $dS_{\varphi} = dl_r \ dl_{\theta} = r \operatorname{dr} \operatorname{d} \theta$

Elemento de volumen: $dv = (dr)(rd\theta)(r \sin\theta \ d\varphi) = r^2 \sin\theta \ drd\varphi$