(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 February 2001 (15.02.2001)

PCT

(10) International Publication Number WO 01/11074 A2

- (51) International Patent Classification?:
- C12Q
- (21) International Application Number: PCT/US00/21223
- (22) International Filing Date: 3 August 2000 (03.08.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/369.364

6 August 1999 (06.08.1999) US

- (71) Applicant yfor all designated States except US: THE CLEVELAND CLINIC FOUNDATION [US/US]; 9500 Euclid Avenue, Cleveland, OH 44195 (US).
- (71) Applicants and
- (72) Inventors: APTE, Suncel, S. [IN/US]; 19917 Malvern Road, Shaker Hts., OH 44122 (US) HURSKAINEN, Tiina, L. [FI/FI], Onnelantie 3A, FIN-90230 Oulu (FD, HI-ROHATA, Satoshi [JP/US]; 6809 Mayfield Road, #859, Mayfield Hts., OH 44124 (US).

- (74) Agent: DOCHERTY, Pamela, A.; Calfee, Halter & Griswold LLP, Suite 1400, 800 Superior Avenue, Cleveland, OH 44114 (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, EO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States tregionals: ARIPO patent (GH, GM, IAE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, C1, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Withous international search report and to be republished in in receipt of that report

For the Metter codes and other abbreviations refer to the "Guidance News en Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEIC ACIDS ENCODING ZINC METALLOPROTEASES

ADAM-TS RELATED PROTEIN-I (ADAM-TSRI)

74 A2

SIGNAL PEPTIDE

PRO-COMAIN

METALLOPROTEASE DOMAIN

DISINTEGRIN-LIKE DOMAIN

THROMBOSPONDIN TYPE I REPEAT

CYSTEINE-RICH DOMAIN

CYSTEINE-POOR DOMAIN

UNIQUE DOMAINS

can propose on the came of specifical transformed or transfered and the case. The project in edition is obtained to other discontinuous pecifical cone or note of the ADAMIS Napoteons. The present invention also relates to a proton referred the remarket as ADAMIS-R1 (ADAMIS Related proteins), and the polynocleotides which encode such protein.

WO 01:11074

-1-

MUCLEIC ACIDS ENCODING ZINC METALLOPROTEASES

Background of the Invention

This invention relates to isolated nucleic acid -molecules

5 which encode proteins belonging to a zinc metalloprotease family.

The zinc metalloproteases have been implicated in a variety of diseases and development disorders that involve* enhanced or depressed proteolysis of components of the extracellular matrix, receptors, or other extracellular molecules.

- More particularly, the invention relates to isolated nucleic acid molecules encoding proteins belonging to a subfamily of zinc metalloproteases referred to as "ADAMTS", an abbreviation for A Disintegrin-like And Metalloprotease domain with ThromboSpondin type I motifs. Proteins in the ADAMTS subfamily all possess a Zn
- 15 protease catalytic site consensus sequence (HEXXH+H), which suggests an intact catalytic activity for each of these proteins. The ADAMTS proteins also have putative N-terminal signal peptides and lack transmembrane domains, which suggests that the proteins in this subfamily are secreted. The proteins in the ADAMTS subfamily also
- 20 possess at least one thrombospondin type (TSP1) motif, which suggests a binding of these proteins to components of the extracellular matrix (ECM) or to cell surface components.

Members of the ADAMTS subfamily of proteins are ADAMTS-1,
ADAMTS-2, ADAMTS-3, and ADAMTS-4. ADAMTS-1 protein is selectively
15 expressed in colon 26 adenocarcinoma cachexigenic sublines. ADAMTS-1
mRNA is induced by the inflammatory cytokine interleukin-1 in vitro
and by intravenous administration of lipopolysaccharide in vivo.
Thus, the ADAMTS-1 protein is believed to play a role in tumor

cleavage of native triple-helical procollagen I and procollagen II.

The ADAMTS-2 protein also has an affinity for collagen XIV. Lack of the ADAMTS-2 protein is known to cause dermatosparaxis in cattle, or Ehlers-Danlos syndrome type VIIC (EDS-VIIC) in humans. EDS-VIIC is characterized clinically by severe skin fragility, and biochemically by the presence in skin of procollagen which is incompletely processed at the amino terminus. Thus, it is believed that the ADAMTS-2 protein plays a role in processing of procollagen to mature collagen, an essential step for correct assembly of collagen into collagen fibrils. The ADAMTS-3 protein is similar in sequence to ADAMTS-2 and may have similar function.

The ADAMTS-4 protein catalyzes cleavage of the core protein of the extracellular matrix proteoglycan, aggrecan. Aggrecan degradation is an important factor in the erosion of articular cartilage in arthritic disease. Aggrecan fragments have been identified in cultures undergoing cartilage matrix degradation and in arthritic synovial fluids. Therefore, overexpression or activation to of ADAMTS-4 protein may be related to both inflammatory and non-inflammatory arthritis.

- On the basis of the structure, location, and the demonstrated proteolytic activity of ADAMTS proteins 1-4, it is expected that other members of the ADAMTS subfamily play a role in the cleavage of proteoglycan core proteins that are found in the extracellular matrix, such as, for example, versican, brevican, neuracan, NG-2,
- 25 aggrecan, as well as molecules such as collagen. It is also expected that other members of the ADAMTS subfamily play a role in embryogenesis, implantation of a fertilized ear languagements.

Thus, it is deployed to him independent of the MANNA

subfamily of proteins, the nucleic acids that encode such proteins, and antibodies that are specific for such proteins. Such molecules are useful research tools for studying development of the extracellular matrix during embryogenesis and fetal development, and 5 for studying disorders or diseases that are characterized by improper development of the extracellular matrix or enhanced or reduced destruction of the extracellular matrix. Such molecules, particularly the nucleic acids and the antibodies, are also useful tools for diagnosing such diseases or for monitoring the efficacy of therapeutic agents that have been developed to treat such diseases.

Summary of the Invention

The present invention provides novel, isolated, and substantially purified proteins having the characteristics of an 15 ADAMTS protein. The novel proteins are referred to hereinafter individually as "ADAMTS-5", "ADAMTS-6", "ADAMTS-7", "ADAMTS-8", "ADAMTS-9" and "ADAMTS-10", and collectively as "ADAMTS-N". In one embodiment, the ADAMTS-5 protein is a mature mouse protein which comprises amino acid 231 through amino acid 930 of the sequence set 20 forth set forth in SEQ ID NO: 2. In another embodiment, ADAMTS-5 is a human ADAMTS-5 protein which comprises amino acid 1 through amino acid 518 of the sequence set forth in SEQ ID NO: 4. In one embodiment, mature human ADAMTS-6 protein comprises amino acid 245 through amino acid 860 of SEQ ID NO: 6. In one embodiment, mature 25 human ADAMTS-7 protein comprises amino acid 233 through amino acid 997 of the sequence set forth in SEQ ID NO: 8. In one embodiment, mature ADAMTS-8 protein is a mouse protein which comprises amino acid The second of th

is a human protein which comprises amino acid 236 through amino acid 1882 of the sequence set forth in SEQ ID NO: 14. In another embodiment, ADAMTS-9 protein is a mouse protein which comprises amino acid 1 through amino acid 974 of the sequence set forth in SEQ ID NO:

- 5 16. In one embodiment, mature ADAMTS 10 protein is a human protein which comprises amino acid 212 through amino acid 1081 of the sequence set forth in SEQ ID NO: 18. In another embodiment, ADAMTS-10 protein is a mouse protein which comprises amino acid 1 through amino acid 547 of the sequence set forth in SEQ ID NO: 20
- The present invention also provides isolated polynucleotides which encode an ADAMTS-N protein or a variant thereof, polynucleotide sequences complementary to such polynucleotides, vectors containing such polynucleotides, and host cells transformed or transfected with such vectors. The present invention also relates to antibodies which
- 15 are immunospecific for one or more of the ADAMTS-N proteins. The present invention also relates to a protein referred to hereinafter as ADAMTS-R1 (ADAM-T-S Related protein-1) and the polynucleotides which encode such protein. In one embodiment, the ADAMTS-R1 protein comprises amino acid 1 through amino acid 525 of the sequence set 20 forth in SEQ. ID NO: 22.

Brief Description of the Drawings
Figure 1 shows an amino acid sequence (SEQ ID NO:2) of a full-length
mouse ADAMTS-5 protein and a nucleic acid sequence (SEQ ID NO: 1)
which encodes such protein.

25 Figure 2 shows an amino acid sequence (SEQ ID NO:4) of a partial human ADAMTS-5 protein and a nucleic acid sequence (SEQ ID NO: 3) which encodes such protein.

go this end thes such profitting

Figure 4 shows an amino acid sequence (SEQ ID NO:8) of a full-length human ADAMTS-7 protein and a nucleic acid sequence (SEQ ID NO:7) which encodes such protein.

Figure 5 shows an amino acid sequence (SEQ ID NO 10) of a full-

- 5 length mouse ADAMTS-8 protein and a nucleic acid sequence (SEQ ID NO:9) which encodes such protein.
 - Figure 6 shows an amino acid sequence (SEQ ID NO: 12) of a partial human ADAMTS-8 protein and a nucleic acid sequence (SEQ ID NO: 11) which encodes such amino acid sequence
- 10 Figure 7 shows an amino acid sequence (SEQ ID NO: 14), of a full-length human ADAMTS-9 protein and a nucleic acid sequence (SEQ ID NO: 13) Which encodes such protein.

Figure 8 shows an amino acid sequence (SEQ ID NO. 16) of a partial mouse ADAMTS-9 protein and a nucleic acid sequence (SEQ ID NO: 15)

15 which encodes such amino acid sequence.

Figure 9 shows an amino acid sequence (SEQ ID NO 18) of a full-length human ADAMTS-10 protein and a nucleic acid sequence (SEQ ID NO: 17) which encodes such protein.

Figure 10 show's an amino acid sequence (SEQ ID NO:20) of a partial 20 mouse ADAMTS-10 protein and a nucleic acid sequence (SEQ ID NO: 19) which encodes such amino acid sequence.

Figure 11 shows an amino acid sequence (SEQ ID NO:22, of a full length ADAMTS-R1 protein and a nucleic acid sequence (SEQ ID NO: II) which encodes such protein.

25 Figure 12 depicts the cloning strategy used for isolation of a. mouse and human ADAMTS-5 cDNAs b. human ADAMTS-6 cDNA and c. human ADAMTS-7

⁻ regular former-perein of loss transcripts are drive in the answer

dotted lines. DNA scale marker (in bp) and amino acid scale marker are at upper right. Location of the probe used for in situ hybridization (ISH) is shown in a.

Figure 13 shows the predicted amino acid sequences of a. the mouse 5 and human ADAMTS-5 proteins (alignment shows mouse sequence above, partial human sequence below) b. ADAMTS-6, and c. ADAMTS-7. The active-site sequences and proposed Met-turn are enclosed in boxes.

Potential furin cleavage site(s) are indicated by arrows.

Thrombospondin type 1 modules are underlined. Potential sites for M-

- 10 inked glycosylation are overlined. Cysteine residues within the context of an MMP-like "cysteine switch" are indicated by the solid circles. Other cysteine residues are indicated by asterisks. The prodomain extends until the furin cleavage site, and the catalytic domain extends from the furin cleavage site to the approximate start
- 15 of the disintegrin-like sequence (Dis). The start of the spacer domain is indicated; the region between the N-terminal TS domain and the spacer domain is the cysteine-rich domain. The single letter amino acid code is used.

Figure 14 shows Northern analysis of expression of ADAMTS-5, 6 and 7.

- 20 RNA kilobase markers are shown at left of each autoradiogram, and tissue origin is indicated above each lame. a. Mouse embryo northern blots. b. Human multiple adult tissue northern blots.
 - Figure 15 is a schematic representation of the domain structure of ADAMTS-R1 protein as compared to ADAMTS-1 protein.
- 25 Figure 16 shows an amino acid sequence (SEQ ID NO: 24) of an alternative embodiment of a full length human ADAMTS-16 protein and a

is priteir designated as jumes ALAMIS but and a numbers acid englished

(SEQ ID NO: 25) which encodes such protein.

Figure 18 is a schematic representation of the domain structure of human ADAMTS-9b protein as compared to human and mouse ADAMTS-9 protein.

Detailed Description of the Invention

ADAMTS-N Proteins

The present invention relates to novel, isolated, substantially purified, mammalian proteins belonging to the ADAMTS subfamily of metalloproteases. As used herein, the term "substantially purified" refers to a protein that is removed from its natural environment, isolated or separated, and at least 60% free, preferably 75% free,

and most preferably 90% free from other components with which it is naturally associated.

The novel mammalian proteins are ADAMTS-5, ADAMTS-6, ADAMTS-7,

15 ADAMTS-8, ADAMTS-9 and ADAMTS-10, collectively ADAMTS-N. In one embodiment, the ADAMTS-5 protein is a mature mouse protein which comprises amino acid 231 through amino acid 930 of the sequence set forth in SEQ ID NO: 2. In another embodiment, the ADAMTS-5 protein is a human protein which comprises amino acid 1 through amino acid

20 518 of the sequence set forth in SEQ ID NO: 4. In one embodiment, ADAMTS-6 protein is a mat-Lire human protein which comprises amino

acid 245 through amino acid 860 of SBQ ID NO:6. In one embodiment,

the ADAMTS-7 protein is a mature human protein which comprises smind acid 233 through amino acid 99% of the sequence set forth in SEQ ID

25 NO: 8. In one embodiment, the ADAMTS-8 protein is a mature mouse protein which comprises amino acid 229 through amino acid 905 of the sequence set forth in SEQ ID NO: 10. In another embodiment, the

The second of th

forth in SEQ ID NO: 14. In another embodiment, the ADAMTS-9 protein is a mouse protein which comprises amino acid 1 through amino acid 874 of the sequence set forth in SEQ ID NO: 16. In another embodiment, the ADAMTS-9 designated ADAMTS-9b is a human protein

- 5 which is comprised of 1934 amino acids as set forth in SEQ ID NO 26.

 In one embodiment, the ADAMTS-10 protein is a mature human protein which comprises amino acid 212 through amino acid 1081 of the sequence set forth in SEQ ID NO: 18. In another embodiment the ADAMTS- 10 protein is a mouse protein which comprises amino acid 1
- 10 through amino acid 525 of the sequence set forth in SEQ ID NO:20. In another embodiment, the ADAMTS-10 protein is a human protein which is comprised of 1072 amino acids as set forth in SEQ ID NO 24.

All of the novel ADAMTS-N proteins starting at the amino terminus comprise a signal sequence followed by a putative pro region

- 15 which contains a consensus sequence for furin cleavage (except for ADAMTS-10), a catalytic domain, a domain of 60-90 residues with 35 to 45% similarity to snake venom disintegrins, a TS module, a cysteine rich domain containing multiple conserved cysteine residues, a spacer domain, and one or multiple C terminal TS modules. (See Figure 12.)
- 20 As determined using the BLAST software from the National Center for Biotechnology Information, the predicted mature forms of the ADAMTS-N proteins show an overall 20-30% similarity to each other and to ADAMTS-1 4, although this may be considerably higher or lower for individual domains as described below.
- The ADAMTS-N proteins also encompass variants of the ADAMTS-N proteins shown in Figs. 1-10. A "variant" as used herein, refers to

^{-:} the reference sequence. The variant plutein had an altered dependen-

WO 01 11074 PCT \(\text{Y S00-21223} \)

-9-

in which one or more of the amino acids in the reference sequence is deleted or substituted, or one or more amino acids are inserted into the sequence of the reference amino acid sequence. As a result of the alterations, the variant protein has an amino acid sequence which is at least 95% identical to the reference sequence, preferably, at least 97% identical, more preferably at least 98% identical, most preferably at least 99% identical to the reference sequence. Variant sequences which are at least 95% identical have no more than 5 alterations, i.e. any combination of deletions, insertions or 10 substitutions, per 100 amino acids of the reference sequence.

Percent identity is determined by comparing the amino acid sequence of the variant with the reference sequence using MEGALIGN project in the DNA STAR program. Sequences are aligned for identity calculations using the method of the software basic local alignment

15 search tool in the BLAST network service (the National Center for Biotechnology Information, Bethesda, MD) which employs the method of Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) J. Mol. Biol. 215, 403-410. Identities are calculated by the Align program (DNAstar, Inc.) In all cases, internal gaps and amino acid insertions in the candidate sequence as aligned are not ignored when making the identity calculation.

While it is possible to have nonconservative amino acid substitutions, it is preferred that the substitutions be conservative amino acid substitutions, in which the substituted amino acid has similar structural or chemical properties with the corresponding amino acid in the reference sequence. By way of example,

ou amide ació e y séripe and threchune. With another supotitution et

one acidic residue, e.g. glutamic acid or aspartic acid, with another; replacement of one amide-containing residue, e.g. asparagine and glutamine, with another; replacement of one aromatic, residue, e.g. phenylalanine and tyrosine, with another; replacement of one basic residue, e.g. lysine, arginine and histidine, with another; and replacement of one small amino acid, e.g., alanine, serine, threonine, methionine, and glycine, with another.

The alterations are designed not to abolish the immunoreactivity of the variant protein with antibodies that bind to the reference protein. Guidance in determining which amino acid residues may be substituted, inserted or deleted without abolishing immunoreactivity of the variant protein with an antibody specific for the respective reference protein are found using computer programs well known in the art, for example, DNASTAR software.

- The ADAMTS-N proteins also encompass fusion proteins comprising an ADAMTS-N protein and a tag, i.e., a second protein or one or more amino acids, preferably from about 2 to 65 amino acids, more preferably from about 34 to about 62 amino acids, which are added to the amino terminus of, the carboxy terminus of, or any point within the amino acid sequence of an ADAMTS-N protein, or a variant of such protein. Typically, such additions are made to stabilize the resulting fusion protein or to simplify purification of an expressed recombinant form of the corresponding ADAMTS-N protein or variant of such protein. Such tags are known in the art. Representative
- 25 examples of such tags include sequences which encode a series of histidine residues, the epitope tag FLAG, the Herpes simplex

or the lambing among actors preferably no more than 1, which act his on

the respective ADAMTS-N protein are altered by posttranslation processes or synthetic methods. Examples of such modifications include, but are not limited to, acetylation, amidation, ADP-ribosylation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or a lipid, cross-linking gamma-carboxylation, glycosylation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, sulfation, and transfer-RNA mediated additions of amino acids to proteins such as arginylation and ubiquitination.

The ADAMTS-N proteins are immunogenic and, thus, are useful for preparing antibodies. Such antibodies are useful for identifying and diagnosing disorders which are associated with decreased expression or activity or increased expression of an ADAMTS-N protein. The ADAMTS-N protein may also be useful for treating such disorder.

Diseases involving enhanced or depressed proteolyisis of the core proteins of the extracellular may involve enhanced expression or activity or decreased expression or activity of one or more ADAMTS-N proteins. Thus, ADAMTS-N proteins may be used to identify drugs,

- 20 polypeptides, auto-antibodies, or other natural compounds which bind to an ADAMTS-N protein with sufficient affinity to block or facilitate its activity. The activity of the ADAMTS-N protein is assayed in the presence and the absence of the putative inhibitor or facilitator using any of a variety of protease assays known in the
- 25 art. In general, the activity of the ADAMTS-N protein is assayed through the use of a peptide or protein substrate having a known or

all example, the publitude may be tabled with a fullyeacent group on the

side of the cleavage site and with a fluorescence-quenching group on the opposite side of the cleavage site. Upon cleavage by the substrate, quenching is eliminated and a detectable signal is produced. Alternatively, the substrate is tagged with a colorimetric leaving group that more strongly absorbs upon cleavage. Agents which block ADAMTS-N-catalyzed cleavage of a protein substrate may be administered to a subject to block proteolysis of the corresponding protein substrate.

ADAMTS-R1 Protein

- The present invention also relates to a protein, referred to hereinafter as "ADAMTS-R1". From its amino to its carboxyl terminus, ADAMTS-R1 comprises a signal peptide sequence, a TS1 module, a cysteine-rich domain, a spacer domain, and three TS1 modules. Thus, ADAMTS-P1 has a structure which is related to or similar to an
- 15 ADAMTS-N protein, but which lacks a catalytic domain and a disintegrin-like domain. In one embodiment, ADAMTS-R1, protein comprises amino acid 1 through amino acid 525 of the amino acid sequence, SEQ ID NO:22, shown in Fig. 11. Such protein has a 30-40% overall sequence identity with similar regions of the ADAMTS-N
- 20 proteins. The ADAMTS-R1 proteins also encompass variants of the amino acid sequence shown in Fig. 11 and fusion proteins which contain the amino acid sequence shown in Fig. 11 or a variant thereof. In the basis of its domain organization, it is expected that ADAMTS-R1 can bind to extracellular matrix or cell surface
- 25 molecules, including ADAMTS-N substrates. Thus, it is expected that ADAMTS-R1 can be used as an cell-matrix or cell-cell adhesion molecule or an ADAMTS-N competitive inhibitor. The ADAMTS-R1

i i praktizing dim kimia wi shigi and inatha kata besiva sa

expression or increased expression of. an ADAMTS-R1 protein.

Polynucleotides

The present invention also provides isolated polynucleotides which encode the mammalian ADAMTS-N proteins and the mammalian

- 5 ADAMTS-R1 protein. Figure 1 shows one embodiment of a polynucleotide, SEQ ID NO: 1, which encodes the full-length mouse ADAMTS-5 protein. Figure 2 shows one embodiment of a polynucleotide; SEQ ID NO: 3, which encodes a partial human ADAMTS-5 protein. Figure 3 shows one embodiment of a polynucleotide; SEQ ID NO: 5, which
- 10 encodes a full-length human ADAMTS-6 protein. Figure 4 shows one embodiment of a polynucleotide; SEQ ID NO: 7, which encodes a full-length human ADAMTS-7 protein. Figure 5 shows one embodiment of a polynucleotide; SEQ ID NO: 9, which encodes a full-length mouse ADAMTS-8 protein. Figure 6 shows one embodiment of a polynucleotide;
- 15 SEQ ID No: 11, which encodes a partial human ADAMTS-8 protein.

 Figure 7 shows one embodiment of a polynucleotide; SEQ ID NO: 13,

 which encodes a full-length human ADAMTS-9 protein. Figure 8 shows

 one embodiment of a polynucleotide; SEQ ID NO: 15, which encodes a

 partial ADAMTS-9 protein. Figure 9 shows one embodiment of a
- 20 polynucleotide; SEQ ID NO: 17, which encodes a full-length human ADAMTS-10 protein. Figure 10 shows one embodiment of a polynucleotide; SEQ ID NO: 19, which encodes a partial mouse ADAMTS-10 protein. Figure 11 shows one embodiment of a polynucleotide: SFQ ID NO: 21, which encodes a full-length ADAMTS-R1 protein.
- Due to the known degeneracy of the genetic code wherein more than one coden can encode the same amino acid, a DNA sequence may vary from that shown in SEQ ID NO: 1 and still encode an ADAMTS-5

in SEQ ID NO:6. Similarly a DNA sequence may vary from that shown in SEQ ID NOS: 7, 9, 11, and 13, and still encode the amino acid sequences shown in SEQ ID NOS: 8, 10, 12, and 14, respectively. Such variant DNA sequence may result from silent mutations, such as for example those that occur during PCR amplification or from deliberate mutagenesis of a native sequence.

The present polynucleotides also encompass polynucleotides having sequences that are capable of hybridizing to the nucleotide sequences of FIGS 1 - 11 under stringent conditions, preferably

- 10 highly stringent conditions. Hybridization conditions are based on the melting temperature of the nucleic acid binding complex or probe, as described in Berger and Kimmel (1987) Guide to Molecular Cloning Techniques, Methods in Enzymology, vol 152, Academic Press. The term "stringent conditions, as used herein, is the "stringency"
- 15 which occurs within a range from about Tm-5 (5° below the melting temperature of the probe) to about 20° C below Tm. As used herein "highly stringent" conditions employ at least 0.2 x SSC buffer and at least 65° C. As recognized in the art, stringency conditions can be attained by varying a number of factors such as the length and
- 20 nature, i.e., DNA or RNA, of the probe; the length and nature of the target sequence, the doncentration of the salts and other components, such as formamide, dextran sulfate, and polyethylene glycol. of the hybridization solution. All of these factors may be varied to generate conditions of stringency which are equivalent to the 25 conditions listed above.

The present polynucleotides also encompasses alleles of the

Givere has people from the or mide mutations in the ADAMIS Dist

WO 01 11074 PCT US00/21223

-15-

ADAMTS-R1 encoding sequence. Such mutations typically arise from natural addition, deletion of substitution of nucleotides in the open reading frame sequences. Any gene which encodes an ADAMTS-N protein or ADAMTS-RI protein may have none, one, or several allelic forms.

5 Such alleles are identified using conventional techniques, such as for example screening libraries with probes having sequences identical to or complementary with one or more ADAMTS-N polynucleotides.

The present polynucleotides also encompass altered

10 polynucleotides which encode ADAMTS-N proteins, ADAMTS-R1 proteins,
and variants thereof. Such alterations include deletions, additions,
or substitutions. Such alterations may produce a silent change and
result in an ADAMTS-N protein having the same amino acid sequence as
the ADAMTS-N protein encoded by the unaltered polynucleotide. Such

15 alterations may produce a nucleotide sequence possessing non-

naturally occurring codons. For example, codons preferred by a particular prokaryotic or eucaryotic host may be incorporated into the nucleotide sequences showing Figures 1 -II to increase the rate of expression of the proteins encoded by such sequences. Such

20 alterations may also introduce new restriction sites into the sequence or result in the production of an ADAMTS-N or ADAMTS-PI variant. Typically, such alterations are accomplished using site-directed mutagenesis.

The polynucleotides are useful for producing ADAMTS-N or

25 ADAMTS-R1 proteins. For example, an RNA molecule encoding an ADAMTSN protein is used in a cell-free translation systems to prepare such

es meniminoscental una aprinción INA Repaires, e y la bistat tabas.

SV40, bacterial plasmids, phage DNAs; yeast plasmids, vectors derived from combinations of plasmids and phage DNAs, viral DNA such as vaccinia, adenovirus, fowl pox virus, pseudorables, baculovirus, and retrovirus. The DNA sequence is introduced into the expression 5 vector by 5 conventional procedures.

Accordingly, the present invention also relates to recombinant constructs comprising one or more of the present polynucleotide sequences. Suitable constructs include, for example, vectors, such as a plasmid, phagemid, or viral vector, into which a sequence that 10 encodes an ADAMTS-N protein or an ADAMTS-R1 protein has been inserted. In the expression vector, the DNA sequence which encodes the ADAMTS-N protein is operatively linked to an expression control sequence, i.e., a promoter, which directs mRNA synthesis. Representative examples of such promoters, include the LTR or SV40 15 promoter, the E. coli lac or trp, the phage lambda PL promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or in viruses. The promoter may also be the natural promoter of the ADAMTS-N encoding sequence. The expression vector, preferably, also contains a ribosome binding site for 20 translation initiation and a transcription terminator. Preferably, the recombinant expression vectors also include an origin of replication and a selectable marker, such as for example, the ampicullin resistance gene of E. coli to permit selection of transformed cells, i.e. cells that are expressing the heterologous 25 DNA sequences. The polynucleotide sequence encoding the ADAMTS-N protein is incorporated into the vector in frame with translation

فالتاب بالمتاهينين والهاؤان الماساسيون

y) in the art - Such techniques are described in Campillah, i of all

(1989) Molecular Cloning A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y. and Ausubel, F. M. et al. (1989) Cuurent Protocols in Molecular Biology, John Wile & Sons, New York, NY.

Polynucleotides encoding an ADAMTS-N or ADAMTS-R1 protein may

5 also be used for diagnostic purposes. The polynucleotides may be
used to detect and quantify ADAMTS-N or ADAMTS-R1 gene transcripts in
biopsied tissues in which enhanced expression or reduced expression
of the corresponding ADAMTS-N or ADAMTS-RI gene is correlated with a
disease. The diagnostic assay may be used to determine whether

10 expression is absent, present, or altered and to determine whether

O expression is absent, present, or altered and to determine whether certain therapeutic agents modulate expression of the corresponding ADAMTS-N or ADAMTS-R1 gene.

Also encompassed by the present invention, are single stranded polynucleotides, hereinafter referred to as antisense

- 15 polynucleotides, having sequences which are complementary to the DNA and RNA sequences which encode the ADAMTS-N or ADAMTS-R1 proteins.

 The term complementary as used herein refers to the natural binding of the polynucleotides under permissive salt and 5 temperature conditions by base pairing.
- The present invention also encompasses oligonucleotides that are used as primers in polyrnerase chain reaction (FCR technologies to amplify transcripts of the genes which encode the ADAMTS-N and ADAMTSR-1 proteins or portions of such transcripts. Preferably, the primers comprise 18-30 nucleotides, more preferably 19-25
- 25 nucleotides. Preferably, the primers have a G+C content of 40% or greater. Such oligonucleotides are at least 98% complementary with a

sense strand or its corresponding antisense strand. Primers which are which have 100% complementarity with the antisense strand of a double-stranded DNA molecule which encodes an ADAMTS-N protein have a sequence which is identical to a sequence contained within the sense 5 strand. The identity of primers which are 15 nucleotides in length and have full complementarity with a portion of the antisense strand of a double-stranded DNA molecule which encodes the ADAMTS-N protein is determined using the nucleotide sequences, shown in FIG I - 11 and described by the general formula a-b; where a is any integer between 10 I and the position number of the nucleotide which is located 15 residues upstream of the 3' end of the sense or antisense strand of the cDNA sequences shown in FIG I -11; where b is equal to a+14; and where both a and b correspond to the positions of nucleotide residues of the cDNA sequences shown in FIGS I - 11.

- The present invention also encompasses oligonuclectides that are useful as hybridization probes for for isolating and identifying cDNA clones and genomic clones encoding the ADAMTS-N or ADAMTS-R1 protein or allelic forms thereof. Such hybridization probes are also useful for detecting transcripts of the genes which encode the
- 20 ADAMTS-N family proteins or for mapping of the genes which encode the ADAMTS-N proteins Preferably, such oligonucleotides comprise at least 210 nucleotides, more preferably at least 230, most preferably from about 210 to 280 nucleotides. Such hybridization probes have a sequence which is at least 90% complementary with a sequence
- 25 contained within the sense strand of a DNA molecule which encodes an ADAMTS-N protein or ADAMTS-Pl protein or with a sequence contained

A within a range for habour till 5 7 million, a tox melting imparation

WO 01:11074 PCT \(\text{Y S00:21223} \)

-19-

The of the probe) to about 10°C to 25°C below Th. The probes are used in Northern assays to detect transcripts of ADAMTS-N homologous genes and in Scuthern assays to detect ADAMTS-N homologous genes. The identity of probes which are 200 nucleotides 5 in length and have 5 full complementarity with a portion of the antisense strand of a double-stranded DNA molecule which encodes the ADAMTS-N protein is determined using the nucleotide sequences shown in FIG 1 - 10 and described by the general formula a-b; where a is any integer between I and the position number of the nucleotide which is located 200 residues upstream of the 3' end of the sense or antisense strand of the cDNA sequences shown in FIG 1 -10; b is equal to a +200; and where both a and b correspond to the positions of nucleotide residues of the cDNA sequences shown in FIG 1-10.

Such probes or primers are also useful for identifying tissues

15 or cells in which the corresponding ADAMTS-N or ADAMTS-R1 gene is

preferentially expressed either constitutively or at particular state

of tissue differentiation or development or in disease states.

Expression of the ADAMTS-N or ADAMTS-R1 gene in a particular tissue

or group of cells is determined using conventional procedures

20 including, but not limited to, Northern analysis, in situ

hybridization to RNA or RT-PCR amplification. Isolated

polynucleatides encoding an ADAMTS-N or ADAMTS-R1 protein are also

useful as chromosome markers to map linked gene positions to

identify chromosomal aberrations such as translocations, inversions

25 and trisomies, to compare with endogenous DNA sequences in patients

to identify potential genetic disorders, and as probes to hybridize

WO 01 11074 PCT T 800/21223

-20-

and chromosomes, PCR, and allele specific hybridization.

Antibodies

20 protein.

In another aspect, the present invention relates to antibodies which are specific for and bind to the ADAMTS-5 protein, the ADAMTS-6 5 protein, the ADAMTS-7 protein, the ADAMTS-8 protein, the ADAMTS-9 protein, the ADAMTS-10 protein, or the ADAMTS-R1 protein. Such antibodies are useful research tools for identifying *tissues that contain elevated levels of the respective protein and for purifying the respective protein from cell or tissue extracts, medium of 10 cultured cells, or partially purified preparations of intracellular and extracellular proteins by affinity chromatography. Such antibodies are also useful for identifying and diagnosing diseases associated with elevated or reduced levels of an ADAMTS-N protein or ADAMTS-R1 protein. Such antibodies are also useful for monitoring 15 the effect of therapeutic agents on the synthesis and secretion of ADAMTS-N proteins by cells in vitro and in vivo. Such antibodies may also be employed in procedures, such as co-immunoprecipitation and co-affinity chromatography, for identifying other proteins, activators and inhibitors which bind to an ADAMTS-N or ADAMTS-R1

The present invention also provides a method for detecting an ADAMTS-N or ADAMTS-F1 protein, in a bodily sample from a patient using antibodies immunospecific for an ADAMTS-N or ADAMTS-F1 protein. The method comprises contacting the antibody with a sample taken from the patient; and assaying for the formation of a complex between the antibody and the corresponding ADAMTS-N or ADAMTS-R1 protein present in the sample. The sample may be a tissue or a biological fluid,

e race of the second state of the second second

tissue, cells obtained from swabs and smears. To monitor changes in expression of the ADAMTS-N protein during fetal development and pregnancy, it is preferred that the sample be amniotic fluid. To monitor changes in expression of the ADAMTS-N protein during joint

- 5 disorders, the preferred sample is synovial fluid. To monitor changes in expression of ADAMTS-N proteins during cancer, the preferred samples include, but are not limited to, serum, body fluids, or biopsy tissue. To monitor changes in expression of ADAMTS-N proteins during inflammation the preferred samples include,
- 10 but are not limited to, serum, body fluids, or biopsy tissue.

The sample may be untreated, or subjected to precipitation; fractionation, separation, or purification before combining with the anti-ADAMTS-N protein antibody. For ease of detection, it is

preferred that isolated proteins from the sample be attached to 15 a substrate such as. a column, plastic dish, matrix, or membrane, preferably nitrocellulose. Preferably, the detection method employs an enzyme-linked immunosorbent assay (ELISA) or a Western immunoblot procedure.

Interactions between an ADAMTS-N protein in the sample and the corresponding anti ADAMTS-N antibody are detected by radiometric, colorimetric or fluorometric means, size separation, or precipitation. Preferably, detection of the antibody-ADAMTS-N protein complex is by addition of a secondary antibody that is coupled to a detectable tag, such as for example, an enzyme, fluorophore, or chromophore. Formation of the complex is indicative of the presence of the ADAMTS-N protein in the test sample. Thus,

and quantify the around of the ADAMILON protect in the test sample.

Deviation between control and test values establishes the parameters for diagnosing the disease.

Preparing the ADAMTS-N proteins and the ADAMTS-P1 protein

The ADAMTS-N proteins and the ADAMT-SR1 protein may be produced 5 by conventional peptide synthesizers. The ADAMTS-N proteins and the ADAMTS-R1 protein may also be produced using cell-free translationsystems and RNA molecules derived from DNA constructs that encode an ADAMTS-N protein or an ADAMTS-RI protein. Alternatively, ADAMTS-N proteins are made by transfecting host cells with expression 10 vectors that comprise a DNA sequence that encodes the respective ADAMTS-N protein and then inducing expression of the protein in the host. cells. For recombinant production, recombinant constructs comprising one or more of the sequences which encode the ADAMTS-N protein or a variant thereof are introduced into host cells by 15 conventional methods such as calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape lading, ballistic introduction or infection.

The ADAMTS-N protein and the ADAMTS-R1 protein may be expressed 20 in suitable host cells, such as for example, mammalian cells, yeast, bacteria, insect cells or other cells under the control of appropriate promoters using conventional techniques. Suitable hosts include, but are not limited to. E. coli, P. pastoris, Cos cells and 293 HEK cells. Following transformation of the suitable host strain 25 and growth of the host strain to an appropriate cell density, the cells are harvested by centrifugation, disrupted by physical or

transf smed nost religious to is retirally in the extremit to n

WO 01 11074 PCT US00/21223

-23-

cell pellets or from cell culture medium, followed by salting-out, and one or more chromatography steps, including aqueous ion exchange chromatography, size exclusion chromatography steps, and high performance liquid chromatography (HPLC), and affinity chromatography may be used to isolate the recombinant ADAMTS-N protein or ADAMTS R1 protein

Preparation of Antibodies

immunogens to produce antibodies immunospecific for one or more

10 ADAMTS-N protein. The term "immunospecific" means the antibodies
have substantially greater affinity for one or more ADAMTS-N protein
than for other proteins. Such antibodies may include, but are not
limited to, polyclonal, monoclonal, chimeric, single chain, and Fab
fragments.

The ADAMTS-N proteins, and variants thereof are used as

- Antibodies are also prepared using an oligopeptide having a sequence which is identical to a portion of the amino acid sequence of an ADAMTS-N protein. Preferably the oligopeptide has an amino acid sequence of at least five amino acids, and more preferably, at least 10 amino acids that are identical to a portion of the amino
- 20 acid sequence of an ADAMTS-N protein. Such peptides are conventionally fused with those of another protein such as keyhole limpet hemocyanin and antibody produced against the colmeric molecule. One preferred oligopeptide for preparing an anticody to mouse ADAMTS-5 has the sequence (C.HIKVRQFKAKDQTRF, SEQ ID NO: 30.
- 25 Another preferred oligopeptide for preparing an antibody to ADAMTS-5 is CEAKNGYQSDAKGYKTFYEWYPKYAG, SEQ ID NO: 3 1. One preferred cligopeptide for preparing an antibody to ADAMTS-6 has the sequence

will minusiate a written as a second of the effective of the

preparing an antibody to ADAMTS-8 has the sequence

CVKEDVENPKAVVDGDWGP, SEQ ID NO:25. One preferred oligopeptide for

preparing an antibody to ADAMTS-9 has the sequence

QHPFQNEDYRPRSASPSRTH, SEQ ID NO:26. Another preferred oligopeptide

- 5 for preparing an antibody to ADAMTS-9 has the sequence

 PQNCKEVKRLKGASEDGEYF, SEQ ID NO:27. One preferred oligopeptide for

 preparing an antibody for ADAMTS-R1 has the sequence QELEEGAAVSEEPS,

 SEQ ID NO:28. Another preferred oligopeptide for preparing an

 aptibody for ADAMTS-R1 has the sequence YYPENIKPKPKLOE; SEQ ID NO:29.
- 10 Polyclonal antibodies are generated using conventional techniques by administering the ADAMTS-N protein or achimeric molecule to a host animal. Depending on the host species, various adjuvants may be used to increase immunological response. Among adjuvants used in humans, Bacilli Calmette-Guerin (BCG), and
 15 Corynebacterium parvum. are especially preferable. Conventional protocols are also used to collect blood from the immunized animals

and to isolate the serum and or the IgG fraction from the blood.

For preparation of monoclonal antibodies, conventional hybridoma techniques are used. Such antibodies are produced by continuous cell lines in culture. Suitable techniques for preparing monoclonal antibodies include, but are not limited to, the hybridoma technique, the human 2-cell hybridoma technique, and the EBV hybridoma technique.

Various immunoassays may be used for screening to identify

25 antibodies having the desired specificity. These include protocols which, involve competitive binding or immunoradiometric assays and

g. Tynusleutides Ergrisins begynnoss childing d. AfAMTO f

protein or an ADAMTS-R1 protein may be synthesized in whole or in part using chemical methods. Polynucleotides which encode an ADAMTS-N protein, particularly alleles of the genes which encode the ADAMTS-N protein, may be obtained by screening a genomic library or CDNA library with a probe comprising sequences identical or complementary to the sequences shown in Figures 1 - 10 or with antibodies immunospecific for a ADAMTS-N protein to identify clones containing such polynucleotide.

Example 1 ADAMTS-512 protein

- A cDNA encoding mouse ADAMTS-5 protein was obtained using IMAGE Clone 569515, purchased from Research Genetics, Huntsville, Alabama and 7 day old mouse embryo cDNA library from Clontech, Palo Alto, CA. A cDNA encoding human ADAMTS-5 protein was obtained using IMAGE Clone 345484 purchased from Research Genetics, Huntsville, Alabama
- 15 and a human fetal brain cDNA from Clontech. The clone inserts were sequenced in their entirety. Using oligonucleotide primers based on the sequences at the ends of the. clone inserts as template, successive rounds of RACE (Rapid Amplification of cDNA Ends) by PCR was performed at 5' and 3 ends. RACE primers were generated 50-200
- 20 bp from the ends of the sequences so that the contiguity of RACE clones with the I.M.A.G.E. clone could be clearly established. A single round of 5' and 3' 20 RACE sufficed for cloning of the entire coding sequence of the rouse ADAMTS-5 protein and part of the catalytic zinc binding site through to the stop codon of the human
- 25 ADAMTS-5 protein. Primers were designed with calculated Tm>72°C and RACE was performed with nested primers for each amplification. FCR used the Advantage PCR reagents. Clontech, Palo Alto, CA); the

o optomo kitoliensy. Padi usek sne sili gono todzniana og sk

conditions; 95°C for 1 minute followed by 5 cycles of 95°C for 0.5 minutes, 72°C for 5 minutes, then 5 cycles of 95°C for 0.5 minutes, 70°C for 5 minutes and 20 cycles of 95°C for 0.5 minutes, 68°C for 5 minutes. The PCR products were analyzed by Southern blotting, 5 initially using [a¹²P]-dCTP labeled.

Hybridizing bands were ligated into pGEM-T Easy (Fromega, Madison, WI) and individual clones were selected by another round of Southern analysis. Automated nucleotide sequencing of both strands of each clone were done at the Molecular Biotechnology Core of the 10 Lerner Research Institute, Cleveland Clinic Foundation and nucleotide sequence data were analyzed using the DNAStar software. By integration of the overlapping sequences thus obtained, a contiguous nucleotide sequence was determined. The nucleotide sequence of the mouse ADAMTS-5 cDNA and the predicted amino acid sequence of the 15 protein encoded by this cDNA are shown in Fig. 1. The nucleotide sequence of the human ADAMTS-5 cDNA and the predicted partial amino acid sequence of the protein encoded by this cDNA are shown in Fig. 2.

The predicted molecular mass (Mr) of the mature ADAMTS-5

20 protein is 73717.50 daltons. It is expected that the actual Mr of the active ADAMTS-5 protein is different due to post-translational modification, which could potentially increase the Mr. The predicted domain organization of ADAMTS 5 protein felative to the cloned cDNA is shown in Figure 12. The pro-domain of the full-length mouse

25 ADAMTS-5 protein has 3 consensus cleavage signals for furin. The most carboxyl-terminal furin cleavage site in ADAMTS-5 predicts the

Is. Five systeins residies are "spatroam of the time binding dequence

WO 01 11074 PCT 1 800/21223

-27-

while three residues are downstream, an arrangement that is shared with other ADAMTS members. The zinc binding signature is followed by a "Met-turn". The catalytic domain is followed by a domain with 35% similarity to snake venom disintegrins. The disintegrin domain

- 5 contains eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserved cysteine-rich sequence termed the cysteine-rich domain, designated "CRD", to distinguish it from the cysteine-free spacer domain. The CRD contains ten conserved cysteines and demonstrates high sequence homology with the CRD of
- amino acids in length and is followed by a second TS module. ADAMTS-5 contains three potential glycosylation sites in the mature protease one of which is just upstream of the start of the spacer domain and the second lies within the spacer domain and the third is near the
- 15 start of the disintegrin domain. The human ADAMTS-5 protein and the mouse ADAMTS-5 protein have 96% sequence identity. ADAMTS-5 bears 46% sequence identity to ADAMTS-4 (KIAA0688), which is characterized as being involved in catabolism of aggrecan core protein in arthritis and 60% identity to ADAMTS-1 which is involved in inflammation.

20 Example 2 ADAMTS-6

The nucleotide sequence of a human cDNA encoding the full-length ADAMTS-6 protein was obtained using IMAGE clone 742630, which encodes EST AA400393, and a human fetal prain cDNA from Clontech.

RACE was performed as described above in Example 1. The I.M.A.G.E.

25 clone 742630 contained an ORF flanked by consensus splice sequences, indicating the presence of introns. Two successive rounds of RACE at the 5' end and a single round of RACE at the 3' end provided the

WO 01 11074 PCT I \$00-21223

-28-

The nucleotide sequence of the ADAMTS-6 DNA is shown in Fig. 3 The predicted amino acid sequence, SEQ ID NO:6, of the ADAMTS-6 protein is also shown in Fig. 3. The predicted Mr of the fulllength, unprocessed ADAMTS-6 protein is 97,115 daltons., and the 5 predicted Mr of the mature ADAMTS-6 protein is 68412.10 daltons. The domain organization of the ADAMTS-6 protein is shown in Fig. 12. The pro-domain of the full-length ADAMTS-6 protein has one consensus cleavage signal for furin. The catalytic domain of the ADAMTS-6 contains six dysteine residues and the reprolysin -zinc binding 10 signature sequence, HEIVHNFGMNHD, which is followed by a "Met-tum". The catalytic domain is followed by a domain with 35% similarity to disintegrins. The disintegrin domain contains snake venom eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserve CRD sequence which contains ten 15 conserved cysteines and demonstrates high sequence homology with the CRD of other ADAMTS proteins. The spacer domain of ADAMTS-6 is 127 amino acids in length and is followed by a second TS module. ADAMTS-6 contains four potential glycosylation sites within the pyo-domain and two in the mature protease one of which is in the cysteine rich 20 domain and the other of which is in the spacer domain. ADAMTS-6 bears 46% sequence identity to ADAMTS-1, which is involved in

Example 3 ADAMTS-7

inflammation.

The nucleotide sequence of a cDNA encoding an ADAMTS-7 protein

25 was obtained using IMAGE clone 272098, which encodes EST N4.8032, and a human fetal brain cDNA from Clontech. RACE was performed as described above in Example 1. The I.M.A.G.E. clone 272098 encoded &

displayed in the first office since in the fixing steel of the

WO 01 11074 PCT (\$00/21223)

-29-

methionine codon lies within a satisfactory Kozak consensus for translation initiation.

The nucleotide sequence of the ADAMTS-7 cDNA is shown in Fig.

- 4. The predicted amino acid sequence, SEQ ID NO: 8, of the ADAMTS-7
- 5 protein is also shown in Fig. 4. The predicted Mr of the hill-length, unprocessed ADAMTS-7 protein is 116,607 daltons, and the predicted Mr of the mature ADAMTS-7 protein is 84005 daltons. The domain organization of the ADAMTS-7 protein is shown in Fig. 12. The pro-domain of the full length ADAMTS-7 protein has one consensus
- 10 cleavage signal for furin. The catalytic domain of the ADAMTS-7 protein contains eight cysteine residues and the reprolysin-zinc binding signature sequence, HELGHSFGIQHD, which is followed by a "Met-tum". The catalytic domain is followed by a domain with 30% similarity to snake venom disintegrins The disintegrin domain
- 15 contains eight cysteine residues. The first TS repeat contains 52 residues and is followed by a conserved CRD sequence which contains ten conserved cysteines. The spacer domain of ADAMTS-7 is 221 amino acids in length and is followed by a second TS module and a short sequence containing two cysteine residues. ADAMTS-7 contains three
- 20 potential glycosylation sites within the mature protease; one of which is just upstream of the spacer domain and one of which is within the spacer domain. ADAMTS-7 bears 35 % sequence identity to ADAMTS-1, which is characterized as being involved in inflammation and 32% identity to ADAMTS-2 which is a procollagen processing

25 enzyme.

Example 4: ADAMTS-8

y. migleutide sequence of a rida encoding a partial ADAMIs-Horman

WO 01-11074 PCT/US00/21223

- 30-

protein was obtained using IMAGE clone 2119838, which encodes EST
A1460905, and a human fetal brain cDNA library from Clontech. RACE
was performed, as described above in Example 1. The nucleotide
sequence of the cDNA encoding the full-length ADAMTS-8 mouse protein
and the amino acid sequence of such protein is shown in Fig. 5. The
nucleotide sequence of the cDNA encoding the partial ADAMTS-8 human
protein and the amino acid sequence of such protein is shown in Fig.
6.

The predicted Mr of the full-length, unprocessed ADAMTS-8 mouse 10 protein is 1260693 daltons, and the predicted Mr of the mature ADAMTS-8 protein is 68412.10 daltons. The pro domain of the fulllength ADAMTS-8 protein has one consensus cleavage signal for furin. The catalytic domain contains eight cysteine residues and the reprolysm-zinc binding signature sequence, HELGHVLSMPHD, which is 15 followed by a "Met-turn". The catalytic domain is followed by a domain with 20-30% similarity to snake venom disintegrins. The disintegrin-like domain contains eight cysteine residues. The first TS repeat is followed by a conserved CRD sequence which contains 10 conserved cysteines. The spacer domain of ADAMTS-8 is 146 amino 20 acids in length and is followed by a second TS module. The ADAMTS-8 protein contains 4 potential glycosylation sites within the mature protease: one is in the cysteine-rich domain; one is in the matalytic domain; and two are in the disintegrin-like domain. ADAMTS-8 bears 46% sequence identity to ADAMTS-1 and 42% identity to 15 ADAMTS-4.

Example_5: ADAMTS-9
 The nucleotide sequence of a cDNA encoding a full-length, human

protein was obtained using IMAGE clone 535663, which encodes EST AAL 56215, and a mouse cDNA library obtained from Clonetech. RACE was performed as described above in Example 1. The nucleotide sequence of the cDNA encoding the full-length ADAMTS-9 human proteinand the amino acid sequence of such protein is shown in Fig.6. The nucleotide sequence of the cDNA encoding the partial ADAMTS-9 mouse protein and the amino acid sequence of such protein is shown in Fig. 7.

The predicted Mr of the mature human ADAMTS-9 protein is

10 189777.20 daltons. The prodomain of the predicted ADAMTS-9 protein
has 3 consensus cleavage signal for furin. The catalytic domain of
the ADAMTS-9 contains eight cysteine residues and the reprolysin zinc binding signature sequence, HELGHVFNMPHD, which is followed by a
"Met-turn". The catalytic domain is followed by a domain with 25-30%

15 similarity to snake venom disintegrins The disintegrin domain
contains eight cysteine residues. The first TS repeat contains is
followed by a conserved CRD sequence which, contains 10 conserved
cysteines. The spacer domain of ADAMTS-9 is 124 amino acids in
length and is followed by 14 additional TS modules and a C-terminal
20 domain. The ADAMTS-9 protein contains 6 potential glycosylation
sites within the mature protease: one in the spacer domain, one in
TSP 1 -7, one in TSPI-8, and 3 in the C-terminal domain. The ADAMTS9 bears 44% sequence identity to ADAMTS-4.

Example 6: ADAMIS-10

The nucleotide sequence of a cDNA encoding a fail-length ALAMTS- 10 protein was obtained using IMAGE clone 110403, which encodes EST AA588434, and a human fetal brain cDNA from Clonetech. The nucleotide sequence of a cDNA encoding a partial, mouse ADAMTS-10 protein was obtained using IMAGE clone 1077653, which encodes EST

performed as described above in Example 1. The nucleotide sequence of the human ADAMTS-10 cDNA and the predicted amino acid sequence, SEQ ID 18, of the human ADAMTS-10 protein encoded by such DNA is shown in Fig. 9. The nucleotide sequence of the cDNA encoding the partial mouse ADAMTS-10 protein and the amino acid sequence of such protein is shown in Fig. 10.

The predicted Mr of the mature ADAMTS-10 protein is 95238 daltons. The pro-domain of the full-length ADAMTS-10 protein has no consensus cleavage signal for furin. The catalytic domain of the 10 ADAMTS-10 contains eight cysteine residues and the reprolysin-zinc binding signature sequence, HEIGHTFGMNHD, which is followed by a "Met-turn". The catalytic domain is followed by a domain with 30% similarity to snake venom disintegrins. The disintegrin-like domain contains eight cysteine residues. The first TS repeat is followed by 15 a conserved CRD sequence which contains 8 conserved cysteines. The spacer domain of ADAMTS-10 is followed by 4 additional TS modules and a Kunitz domain. The ADAMTS-10 protein contains 2 potential glycosylation sites within the mature protease: one in the catalytic domain, and one in the TS 1-3 domain. ADAMTS-10 bears approximately 20 40% sequence identity to ADAM-TS1, which is characterized as being involved in inflammation.

Comparison of the ADAMTS-N Proteins.

As shown in Figure 11, the ADAMTS-5. ADAMTS-6, and ADAMTS-7 proteins share a common domain organization. From amino to carboxyl 25 termini, they are as follows:

1. A pre-pro region. A typical signal sequence of variable length is followed by a putative pro-region of variable length but

WO 01/11074 PCT/US00/21223

context similar to the cysteine "switch" of the MMPs. All three novel cDNAs predict consensus cleavage signals for furin, three in the case of ADAMTS-5, and one each in the case of ADAMTS-6 and ADAMTS-7. The most carboxyl-terminal furin cleavage site in ADAMTS-5

- 5 predicts the processing site for generation of the mature protease.

 The amino terminus of the mature proteins is predicted to start at the residue immediately following the cleavage sites.
 - 2. A catalytic domain. The catalytic domains are very similar to each other and contain eight cysteine residues and a typical
- 10 reprolysin-type zinc binding signature followed by a "Met-turn".

 Five cysteine residues are upstream of the zinc binding sequence,
 while three residues are downstream, an arrangement that is shared
 with other ADAMTS members. The methionine of the met-turn is not at
 a constant distance from the zinc-binding signature, but in all three
 15 novel proteases, a constant cysteine residue is present in that
 interval.
- 3. A disintegrin-like domain. The catalytic domain is followed by a domain of 60-90 residues with 35-45% similarity to snake venom disintegrins, but without the canonical cysteine arrangement seen in 20 the latter. This disintegrin-like domain is of comparable length in
- 4. A TS module. The first TS repeat is very similar in all three novel proteases and very similar to the first TS repeat of other ADAMTSs. It contains the same number of residues (fifty-two) in all 25 three novel proteins.

ADAMIS-5 and ADAMIS-7, it is considerably shorter in ADAMIS-6.

5. The cysteine-rich domain. This TS domain is followed by a

ADAMTES and Lacks the deglence languages of that's two letters of a 1 tax

other domains. It shows the least homology of all the domains.

7. A C-terminal TS module. The sequence of the second TS module is more variant between the members of the ADAMTS family than the first TS module, despite the conservation of the number and spacing 5 of cysteine residues.

Overall, the predicted mature forms of these proteases show 20-30% similarity to each other and to ADAMTS1-4 although this may be considerably higher or lower for individual domains as described above.

- ADAM-TS9 and ADAM-TS10 contain all the domains present in ADAMTS-5 through ADAMTS-8. In addition, ADAMTS-9 and ADAMTS-10 contain the following domains:
- A. ADAMTS-9: After the c-terminal TS1 domain which is present in ADAMTS5-8, ADAMTS-9 contains 13 additional and homologous TS11 domains, thus, ADAMTS-9 contains a total of 15 TS1 domains, of which 14 are adjacent to each other in the c-terminal half of the molecule. The 15th TS1 domain from the N-terminus is followed by a unique c-terminal domain which does not possess recognizable domain structure and contains 196 residues including 9 cysteine residues.
- B. ADAMTS-10: After the c-terminal TS1 domain which is present in ADAMTS 8, ADAMTS-10 contains 3 additional and homologous TS1 domains, thus, that ADAMTS-10 contains a total of 5 TS1 domains, of which 4 are adjacent to each other in the c-terminal half of the molecule. The 5th TS 1 domain from the N-terminus is followed by an additional 47 amino acid residues including six (6) cysteine residues. These 47 residues have sequence similarity of 30%-40% to

year. Mouse emps, a mestical misses and relapse take of a linear to the

WO 01 11074 PCT:US00/21223

-35-

from human and mouse tissues (Clontech, Palo Alto, CA) were hybridized to the $[\alpha^{12}P]$ -dCTP labeled inserts of I.M A.G.E. clones as per the manufacturer's recommendations followed by autoradiographic exposure for 3-7 days.

- In situ hybridization used cryosections of mouse embryos of gestational age 8.5 days and 10.5 days. Embryos were collected with the inclusion of the surrounding uterus and fixed overnight in 4% paraformaldehyde. Sense and anti-sense probes continuously labeled with digoxigenin-UTP (Boehringer-Mannheim, Indianapolis, IN) were
- 10 transcribed with T7 and T3 RNA polymerases, respectively, using as template a 63 0 bp EcoRI-Sacl fragment from the Adamts-5 clone 569515 (Fig. 14) cloned into pBluescript SK+ (Stratagene, La Jolla, CA). In situ hybridization was done essentially as previously described in Apte, et al. (1997) J. Biol. Chem. 272:2551-25517, which is
- 15 specifically incorporated herein by reference, except that sections were predigested with proteinase K (Boehringer-Mannheim, Indianapolis, IN) at a lower, concentration (1 -5 µq/ml) than reported in Apte, et al.. Bound, digoxigenin-labeled probe was detected using an alkaline phosphatase tagged anti-digoxigenin 20 antibody (Boehringer-Mannheim, Indianapolis, IN) and nuclei were counterstained with methyl green.

Specific hybridization of the antisense Adamts 5 probe to sections of 8.5 day-old mouse embryos was obtained, whereas only low background staining was noted with the control sense probe. Staining 25 was uniform throughout the 8.5 day old embryos. In addition, there was labeling of mRNA in trophoblastic cells lining the uterine cavity

embryos listeling was widespread but isse intende compared to the end

day-old embryo. Labeled cells were seen in mesenchyme and somites as well as in the neural tube and developing hindgut. Northern analysis also indicated that mRNA encoding ADAMTS-5 was present in human placenta but was barely detectable in adult lung, heart, brain, 5 liver, skeletal muscle, kidney and pancreas.

Northern analysis showed undetectable expression of Adamts-6 during mouse embryo development. Northern analysis indicated that mRNA encoding ADAMTS-6 was present in human placenta but was barely detectable in adult lung, heart, brain, liver, skeletal muscle, kidney and pancreas. Adamts-7 was expressed at low levels

- throughout mouse development. In adult human tissues examined with human cDNA probes, ADAMTS-7 mRNA was found in all tissues examined, i.e. in lung, heart, brain, liver, skeletal muscle, kidney, pancreas and placenta. The sizes of the mRNA species recognized by the probes
- 15 varied. ADAMTS-5 mRNA was approximately 10 kbp in size in human tissue. The most prominent Adamts-5 species was estimated at 7.5 kbp together with additional bands at 10 kbp and 4.5 kbp. The lone mRNA species detected by ADAMTS-6 probe was approximately 8.5 kbp, whereas the most common mRNA species detected by ADAMTS-7 probe 5 was 5 kbp

20 in size with an additional species seen at 7 kbp in skeletal muscle.

In mouse, ADAMTS-8 is expressed during fetal development (days 7, 11, 15, 17) and in adult mouse lung and heart with an mPNA size of approximately 3.8 kmp. In adult human tissue, ADAMTS-8 is expressed in lung and brain but not in heart, muscle, kidney, colon or thymus.

25 The mRNA size is 3.6 kbp.

ADAMTS-9 is expressed in lung, ovary placenta, heart, brain.

³ alternatively opinion in White forms of ADAMTOR

ADAMTS-10 is expressed in thymus, prostate, testis, ovary, small intestine, colon, peripheral blood leukocytes, heart, brain, placenta, lung, liver, muscle, kidney and pancreas, as well as in many cell lines such as A549, HeLa and K562. There are two 5 transcripts of 5 kb and 8kb present in all tissues.

Example 7: ADAMTS-R1

The nucleotide sequence of a cDNA encoding a full-length ADAMTS-R1 protein was obtained using IMAGE clone 752797 which encodes EST AA, and a human fetal brain cDNA from Clontech. RACE was 10 performed as described above in Example 1. The nucleotide sequence, SEQ ID NO:21, of the ADAMTS-R1 cDNA and the predicted amino acid sequence, SEQ ID NO:22, of the ADAMTS-R1 protein encoded by such DNA is shown in Fig. 11.

The predicted Mr of the full-length, unprocessed ADAMTS-R1 15 protein is 58358.20 daltons. The domain organization of the ADAMTS-10 protein is shown in Fig. 15. In contrast to the ADAMTS-N proteins of examples 1-6, ADAMTS-R1 protein does not have a prometalloprotease or disintegrin-like domain or a consensus cleavage signal for furin. ADAMTS-R1 has a signal(pre) peptide which is 20 followed by a first TS module and a conserved CRD sequence which contains 10 conserved cysteines. The spacer domain of ADAMTS-R1 is 115 amino acids in length and is followed by 3 additional TS modules and a short sequence of 33 amino acids. The ADAMTS-R1 protein contains one potential glycosylation sites which is in the spacer 25 domain. ADAMTS-R1 bears 30-40% sequence identity to ADAMTS1 and ADAMTS4 in the related domains. ADAMTS-R1 mRNA is present in human heart, brain, kidney, muscle, lung, placenta, testis, cvary, colon,

Although certain embodiments of this invention have been shown and described, various adaptations and modifications can be made without departing from the scope of the invention as defined in the appended claims.

5

CLAIMS

- An isolated mammalian protein selected from the group consisting of an ADAMTS-5 protein an ADAMTS-6 protein, an ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS-10 protein, and an ADAMTS-R1 protein.
- 2. The isolated mammalian protein of claim 1 wherein said protein comprises an amino acid sequence which is at least 95% identical to a sequence selected from the group consisting of: amino acid 262 through amino acid 930 of SEQ ID NO-2; amino acid 1 through amino acid 518 of SEQ ID NO:4; amino acid 245 10 through amino acid 860 of SEQ ID NO:6; amino acid 233 through amino acid 997 of SEQ ID NO:8; amino acid 229 through amino acid 905 of SEQ ID NO:10; amino acid 1 through amino acid 245 of SEQ ID NO:12; amino acid 236 through amino acid 1882 of SEQ ID NO:14; amino acid 1 through amino acid 874 of SEQ ID NO:16; 15 amino acid 212 through amino acid 1081 of SEQ ID NO:18; amino acid 1 through amino acid 450 of SEQ ID NO:20; and amino acid 1 $\,$ through amino acid 547 of SEQ ID NO:22.
- 3. The isolated protein of claim 2 wherein said amino acid

 sequence further comprises a prepropeptide sequence at the

 amino terminus thereof.
 - 4. The isolated protein of claim 1 wherein said protein is a human ADAMTS-5 protein or a mouse ADAMTS-5 protein.
- 5. The isolated protein of claim 1 wherein said protein is a human25 ADAMTS-6 protein.
 - 6. The isolated protein of claim 1 wherein said protein is a human

- ADAMTS-9 or a mouse ADAMTS-9 protein.
- The isolated protein of claim 1 wherein said protein is a human ADAMTS-10 or a mouse ADAMTS-10 protein.
- 10. The isolated protein of claim 1 wherein said protein is a human ADAMTS-R1 protein.
- 11. An isolated polynucleotide comprising a sequence which encodes a mammalian protein selected from the group consisting of an ADAMTS-5 protein, an ADAMTS-6 protein, an ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS 10 protein,
- and an ADAMTS-R1 protein.
- The isolated polynucleotide of claim 11 wherein said protein 12. comprises an amino acid sequence which is at least 95% identical to a sequence selected from the group consisting of: amino acid 262 through amino acid 930 of SEQ ID NO:2; amino 15 acid 1 through amino acid 518 of SEQ ID NO:4; amino acid 245 through amino acid 860 of SEQ ID NO:6; amino acid 233 through amino acid 997 of SEQ ID NO:8; amino acid 229 through amino acid 905 of SEQ ID NO:10; amino acid 1 through amino acid 245 of SEQ ID NO:12; amino acid 236 through amino acid 1882 of SEQ ID NO:14; amino acid 1 through amino acid 874 of SEQ ID NO:16; 20 amino acid 212 through amino acid 1081 of SEQ ID NO:18: amino acid 1 through amino acid 480 of SEQ ID NO:20, and amino acid 1 through amine ac.d 547 of SEQ ID M0:22.
- 13. The isolated polynucleotide of claim 11 wherein said nucleotide 25 sequence encodes a protein having a signal sequence at the amino terminus thereof.

nucleotide 1519 of SEO ID NO:3 or an allelic variant thereof; nucleotide 754 through nucleotide 2602 of SEQ ID NO:5 or an allelic variant thereof; nucleotide 708 through nucleotide 3003 of SEQ ID NO:7 or an allelic variant thereof; nucleotide 962 through nucleotide 2992 of SEQ ID NO:9 or an allelic variant 5 thereof; nucleotide 1 through nucleotide 739 of SEQ ID NO:11 or an allelic variant thereof; nucleotide 708 through nucleotide 5648 of SEQ ID NO:13 or an allelic variant thereof; nucleotide 1 through nucleotide 2625 of SEQ ID MO:15 or an allelic variant thereof; nucleotide 634 through nucleotide 3243 of SEQ ID NO:17 10 or an allelic variant thereof; nucleotide 1 through nucleotide 1642 of SEO ID NO:19 or an allelic variant thereof; and nucleotide 51 through nucleotide 1625 of SEQ ID NO:21 or an allelic variant thereof.

- 15 15. The isolated polynuclectide of claim 11 wherein said polynucleotide hybridizes under stringent conditions to a nucleic acid molecule comprising a sequence complementary to the protein encoding sequence of SEQ ID NO:1; SEQ ID NO:3; SEQ ID NO:5; SEQ ID NO:7; SEQ ID NO:9; SEQ ID NO:11; SEQ ID NO:13; SEQ ID NO:15; SEQ ID NO:17; SEQ ID NO:19; or SEQ ID NO:21.
 - 16. An isolated polynucleatide having a sequence which is complementary to the protein encoding sequence of the polynucleatide of claim 11.
 - 17. An expression vector comprising a polynucleotide of claim 11.
- 25 18. A host cell transformed or transfected with an expression vector of claim 17.

protein; and

- $\mbox{(b)} \quad \mbox{recovering said ADAMTS-N protein or said ADAMTS-R1} \\ \mbox{protein from the host cell culture}.$
- 20. An antibody that binds to a protein selected from the group consisting of an ADAMTS-5 protein, an ADAMTS-6 protein, an ADAMTS-7 protein, an ADAMTS-8 protein, an ADAMTS-9 protein, an ADAMTS-10 protein and an ADAMTS-R1 protein.
 - 21. An oligopeptide for producing an antibody that binds to an ADAMTS N protein or an ADAMTS-R1 protein wherein said
- cligopeptide has a sequence selected from the group consisting of:
 - a) SVSIERFVETLVVADK, SEQ ID NO:23;
 - b) EVAEAANFLALRSEDPDKY, SEQ ID NO:24;
 - c) VKEDVENPKAVVDGDWGP, SEQ ID NO:25;
- d) QHPFQNEDYRPRSASPSRTH, SEQ ID NO:26;
 - e) PQNCKEVKRLKGASEDGEYF, SEQ ID NO:27;
 - f) QELEEGAAVSEEPS, SEQ ID NO:28;
 - g) YYPENIKPKPKLQE; SEQ ID NO:29;
 - h) HIKVRQFKAKDQTRF; and
- 20 i) CEAKNGYQSDAKGYKTFVEWYPKYAG, SEQ ID NO:30.

Fig. 1

FEATURES Location/Qualifiers 1..3002 source /organism="Mus musculus" /db_xref='taxon:10090" /chromosome="Mouse 16" /map=*58 cM (consensus position)* gene 1..3002 /note='a disintegrin-like and metalloprotease domain with thrombospondin type I repeats) * /gene="Adamts5" CDS 13..2810 /gene='Adamts5' /note='putative secreted metalloprotease' /codon_start=1 /product="ADAM-TS5 (a disintegrin-like and metalloprotease domain with thrombospondin type I repeats) * /translation='MRLEWASLLLLLLLSASCLSLAADSPAAAPAQDKTRQPQAAAA $\verb|AAEPDQPQGEETFERGHLQPLAGQRRSGGLVHNIDQLYSGGGKVGYLVYAGGRRFLLD|$ LERDDTVGAAGSIVTAGGGLSASSGHPGHCFYRGTVDGSPRSLAVFDLCGGLDGFFAV $\verb"KHARYTLKPLLRGSWAEYERIYGDGSSRILHVYNREGFSFEALPPRASCETPASPSGP"$ QESPSVHSRSRRRSALAPQLLDHSAFSPSGNAGPQTVMRRRRRSISRARQVELLLVAD SSMARMYGRGLCHYLLTLASIANRLYSHASI£HIRLAVVKVVVLIDKDTSLEVSKVA ATTLEMFCKWQHQHNQLGDDHESHYDAAILFTREDLCGHHSCDTLGAADVGTICSPER SCAVIEDDGLHAAFTVAHEIGHLLGLSHDDSKFCEENFGTTEDKFLMSSILTSIDASK PWSKCTSATITEFLDDGHGNCLLDLPRKQILGPEELPGQTYDATQQCNLTFGFEYS/C ${\tt PGMDVCARLWCAVVRQGCMVCLTWCLPAVEGTPCGKGRVCLQGKCVDKTKKKYYSTSS}$ HONWGSWGPWGQOSRSCOGG/QFAYRHCINIPAPENSGRYCTGKRAIYRSOSVIPOPPN

1 ccggcgggca gcgcactatg cggctcgagt gggcgtcctt gttgctgcta ctgctgctgc 61 tgagegegte otgeotetee otggeogotg acagecoege egeggeacet geocaggata 121 aaaccaggca geeteagget geageagegg eegeegagee ggaeeageeg eagggggagg 181 maacacggga gcgaggccat ttacaaccct tggccgggca gcgcaggagc ggcgggctgg 241 tocataatat agaccaacto tactotggog gtggcaaagt gggctacott gtotacgogg 301 geggeeggag gttoetgetg gaeetggaga gagatgaeae agtgggtget getggtagea 361 togitactgc aggaggaggg ctgagegeat ectetggeea eeggggteac tgtttetaca 421 gaggeaccgt ggacggcage octogatoos tagotgtott tgacctotge gggggtoteg 481 atgyettett tgeagteaag eatgegeget acaetetaaa geeaeteetg egtgggteet 541 gggcmgagta tgaacgaatt tatggggatg gatottoocg catcotgcat gtotacaacc 601 gegagggett tagettegag geoetgeege caegegeeag tigegagaet eetgeateee $\mathsf{EE1}$ catctgggcc ccaagagage costcggtgs acagtagate taggagacge teagegetgg 721 occognaget gotggaccae teagetttet egecatetgg gaacgeggga ceteagaett 781 yglygaggeg taggegeegt tecateteea gggeeegeea ggtggagete etettggtgg 841 otgactogto catggocagg atgtatgggo ggggootgea goattacotg otgaccotgg 901 octobatogo caacaggotg tabagtbatg caagbattga gaacbabatb egeetggogg 961 tggtgaaggt ggtggtgotg acggacaagg acacgagtot ggaggtgago aagaatgogg 1021 ccaegaccet caagaacttt tgcaaatggc agcaccaaca taaccagcta ggggatgatc 1081 acgaayagca ctacgatgca gocatcotgt tcaccegaga ggatttatgt gggcatcatt 1141 catgigacae cotgggaatg geagacgitg ggaceataig tictooggag cgcagoigtg 1201 cagigatiga agatgatgg: ottoatgcag cottoactgt ggotcatgaa attgggcatc 1261 tacttygeet tteteatgae gatteeaaat tetgtgaaga gaactteggt actaeagaag 1321 acaagogtit aatgiottoa atoottacca goatogatgo atocaagooo tggtobaaat 1381 geacgteage caccateaca gaatteetgy atgatggtea tggtaattgt ttgetagaee 1441 taccanggaa geagattttg ggtenegagg aacteecagg anagacetae gatgeranen 1501 agcagtgeaa ottgacattt gggootgagt actoggtgtg cootggoatg gatgtotgtg 1561 egeggetgtg gtgtgetgtg gtgegeeaag geeaaatggt gtgtetgaec aagaagetge 1621 eggetytgga gggeattoos tgtgggaagg gaagagtetg cetteaagge aaatgtgtgg 1681 acaaaactaa gaaaaaatat tastogacat caagocatgg aaattggggg tootggggco 1741 cotggggtom gtgttstage temtgegggg gmggmgtgem gtttgsctme egcemttgtm 1801 ataacsetge acctegaaac agtggeeget actgcacagg gaagagggee atatacegtt 1861 cotgoagtgt tacactotge ceacecaatg gtaaatottt tegecatgag cagtgtgaag 1921 ccaaaaatgg ctatcagtct gatgtaaaag gagtcaaaac atttgtagaa tyggttocca 1981 aatatgoagg tgtootgoog goagatgtgt goaagottac otgoagagot aagggoacag 2041 gotactatgt ggtottttot coaaaggtta oggatgggad tgaatgdagg oogtacagda 2101 actotytyty tyteogajya ogjitytytya gaactyyaty tyacyycatt attyyiteaa 2161 agetacaata tgacaagtgt ggagtgtgeg gaggggataa etecagttgt acaaagatta 2121 toggaacott caataaaaaa agcaagggtt atactgacgt totgaggate eetgaaggag 2081 daacobacat aaaagtooga cagttoaaag ccaaagacca gaotagatto cotgootact 2041 tagocotgaa gaagaaaast ggogagtaco ttatoaatgg caagtasatg atttojastt 2401 dagagaccat datogadato aatggtadog toatgaadta dagtggatog ayodatagag 1461 atgattitti araigggaty ggriaticag chacaaaga aatootgato gigdayatoo 1821 tigocapaga opoaactiaa gogotaggog toogitiacag cittititgit ordaagaaga 1991 coacticaeaa agtaaastot gtoatcagoo atggcagcaa caaggtggga cracastota 1941 dasagutysa ytggysgasa gytosatyge tygeotyete saygaestyt gasasagyet 2°31 ggcasactag gaccgtgsag tgccaggatg gaaasaggaa attagotaea gyatgccttc 2761 tototicagas goottotijoa tittaagoaat giotgotgaa gaaatgitag ootgitggitt IF21 actotaatgo acaaaaaac aacaggagga toatogoaga tacagotgtg gtgaayacaa 1981 ggcctaccca aagcacagaa agtcatgcct toatgtcatt gtcaccacga gtcgaattat 2941 gggcagaato tgotototgo gaccaaaagg titastotas tiggigaatg atggtacogt 3001 da

Fig. 2

```
FEATURES
                     Location/Qualifiers
     source
                     1..1520
                     /crganism="Homo sapiems"
                     /db_xref="taxon:9606"
                     /chromosome="21"
BASE COUNT
                416 a
                        372 c
                                 376 g
                                          352 t
                                                      4 others
ORIGIN
        1 ggacatttac tiggectote coatgacgat tocaaattot gigaagagac ciitiggitee
       61 acagaagata agegettaat gtetteeate ettaceagea tigatgeate taageestgg
      121 tecaaatgca etteageeae cateacagaa tteetggatg atggecatgg taactgtttg
      181 ctggacctac cacgaaagca gateetggge ceegaagaac teecaggaca gacetacgat
      241 gecacceage agigeaacet gacatteggg cetgagtaet eegigigtee eggeanggat
      301 gtotgtgotc gcctgtggtg tgctgtggta cgccagggcc agatggtctg tctgaccaag
     361 gagtgeagtt tgeetategt caetgtaata accetgetee cagaaacaac ggaegetaet
     421 gcacagggaa gagggccato taccacteet geagteteat gecetgeeca eccaatggta
     481 aatcatttog toatgaacag tgtgaggoca aaaatggota toagtotgat goaaaaggag
     541 teaaaaettt tgtggaatgg gtteecaaat atgeaggtgt ootgeeageg gatgtgtgea
     601 agetgaeetg cagagecaag ggeaetgget aetatgtggt atttteteca aaggtgaeeg
     661 atggcactga atgtaggccg tacagtaatt ccgtctgcgt ccggggggaag tgtgtgagaa
     721 etggetgtga eggeateatt ggeteaaage tgeagtatga caagtgegga gtatgtggag
     781 gagacaacto cagotytaca aagattytty gaacotttaa taagaaaagt aagyyttaca
     841 ctgacgtggt gaggatteet gaaggggcaa cecacataaa agttegacag tteaaagcea
     901 aagaccagac tagattcact gootatttag cootgaaaaa gaaaaacggt gagtacotta
     961 traatggaaa gtacatgato tocacttoag agactatoat tgacatcaat ggaacagtoa
    1021 tgaactatag cggttggago cacagggatg acttectgca tggcatggge tactetgcca
    1081 cgaaggaaat totaatagtg cagattottg caacagacco cactaaacca ttagatgtoo
    1141 gttatagett ttttgtteec aagaagteea etccaaaagt aaactetgte actagteatg
    1201 gcagcaataa agtgggatca cacacttcgc agccgcagtg ggtcacgggc ccatggctcg
    1261 cotgototag gacotgigas acaggitiggs acaccagaas ggigsagigs caggatggaa
    1321 accygaagtt agcaaaagga tgtcctctot cocaaaggee ttctgcgttt aagcaatgot
    1381 tgttgaagaa atgttagoot gtgggttatg atottattgc acaaaagata ctggaggatt
    1441 cancaccegt gematernigg tgameaggam ggetmeettm megememgam mytemigett
    1501 taatgacatt gtraaccagg
```

Fig. 3

FEATURES

Location/Qualifiers

scurce

1..2848

/crganism="Homo sapiens" /db_xref="taxon:9606"

/chromosome="5"

gene

1..2848

/note=" A Disintegrin-like And Metalloprotease domain

with ThromboSpondin type I motifs 6°

.gene='ADAMTS6"

CDS

22..2602 /gene="ADAMTS6"

/note="zinc metalloprotease"

/codon_start=1

/product=* A Disintegrin-like And Metalloprotease domain

with ThromboSpondin type I motifs-6 (ADAM-TS6)*

/translation='MEILWKTLTWILSLIMASSEFHSDHRLSYSSQEEFLTYLEHYQL TIPIRVDQNGAFLSFTVKNDKHSRRRRSMDPIDPQQAVSKLFFKLSAYGKHFHLNLTL ${\tt NTDFVS} {\tt MHFTVEYWGKDGPQWKHDFLDNCHYTGYLQDQRSTTKVALSNCVGLHGVIAT}$ EDEEYFIEPLKWTTEDSYHFSYENGHPHVIYKKSALQQRHLYDHSHCGVSDFTRSGKP WILDDISTVSYSLPINNTHIHHRQKRSVSIERFVETLVVADKMMVGYHGRKDIEHYIL SVMNIVAKLYRDSSLGNVVNIIVARLIVLTEDQPNLEINHADKSLDSFCKVQKSILS ${\tt HQSDGNTIPERGIAHHDNAVLITRYDICTYKNKPCGTLGLASVAGMCEPERSCSINED}$ $\tt IGLGSAFTIAHEIVHNFGMNHDGIGNSCGRKVMKQQNYGSSHYCEYQSFFLVCLQSFX$ HHQLFREVCRELWCLSKSNRCVTNSIPAAEGTLCQTGNIEKGWCYQGDCVPFGTWPQS ${\tt IDGGWGPWSLWGECSRTCGGGVSSSLRHCDSPAPSGGGKYCLGERKRYRSCNTDPCPL}$ GSRDFREKQCADFDNMPFRGKYYNWKPYTGGGVKPCALNCLAEGYNFYTERAPAVIDG TOCNADSLDICINGECKHVGCDNILGSDAREDFCRVCGGGGSTCDAIEGFFNDSLPRG

Fig. 3 (con't)

GYMEVVQIPRGSVHIEVREVAMSKOYLALKSEGDDYYINGAWTIOWPRKEDVASTAFH
YKRPTDEFESLEALGPISENLIVM/LLQEQNLGIRYKENVPITRTGSGDNEVGFTWNH
QPWSECSATCAGGKKPTRQPTQRARWRIKHILSYALCLLKKLIGNISCRFASSINLAK
ETLL

BASE COUNT 837 a 551 c 664 g 794 t 2 others CRIGIN 1 aatcatccag tittictaaat taiggaaatt tigiggaaga cgitgaccig gattiigago 61 ctcatcatgg cttcatcgga atttcatagt gaccacaggc tttcatacag ttctcaagag 121 gaattootga ottatottga acactaccag otaactatto caataagggt tgatcaaaat 161 ggagcattto toagotttac tgtgaaaaat gataaacact caaggagaag acggagtatg 241 gaccotattg atocacagea ggcagtatot aagttatttt thaaacttto agcotatgge 301 aagcacttto atotamactt gaototoamo acagattttg tgtocmaaca ttttacagta 361 gaatattggg ggaaagatgg accccagtgg amacatgatt ttttagacaa ctgtcattac 421 acaggatatt tgcaagatca acgtagtaca actaaagtgg ctttaagcaa ctgtgttggg 481 ttgcatggtg ttattgctac agaagatgaa gagtatttta tcgaaccttt aaagaatacc 541 acagaggatt ccaagcattt tagttatgaa aatggecacc ctcatgttat ttacaaaaag 601 totgocotte aacaacgaca totgtatgat cactotoatt gtggggttto ggatttcaca 661 agaagtggca aaccttggtg gctgaatgac acatccactg tttcttattc actaccaatt 721 macmacaca matatecacca cagacagang agatemgtga genttgameg gittgtggmg 781 acattggtag tggcagacaa aatgatggtg ggctaccatg gccgcaaaga cattgaacat 841 tacattttga gtgtgatgaa tattgttgcc aaactttacc gtgattccag cctaggaaa: 901 gttgtgaata ttatagtggo ocgottaatt gttotoacag aagatoagoo aaacttggay 961 ataaaccacc atgcagacaa gtccctcgat agcttctgta aatggcagaa atccattct: 1021 toccaccasa gigatggasa caccattoca gasasiggga tigoccacca ogatasigca 1031 gttcttatta ctagatatga tatctgcact tataaaaaata agccctgtgg aacactggg: 1141 tiggeototg tiggetiggaat gigtigageet gaaaggaget geageattaa tigaagaeatt 1201 ggcctgggtt cagcttttac cattgcacat gagattgttc acaattttgg tatgaaccat 1261 gatggaattg gaaattottg tggacgaaag gtcatgaagc agcaaaatta tggcagctca 1321 cattactgcg aataccaatc ctttttcctg gtctgcttgc agtcgagant acatcaccay 1381 ottottagag aagtgtgtag agagototgg tgtotcagca aaagcaaccg otgtgtcact 1441 aacagtatto cagcagotga ggggacactg tgtcaaactg ggaatattga aaaagggtgg 1501 tgttatcage gagattgtgt teettttgge acttggeece agageataga tgggggetgg 1561 ggtocotggt cactatgggg agagtgcagc aggacctgcg ggggaggcgt ntoctcato: 1621 otaagacact gtgacagtoc agcamottoa ggaggtggaa aatattgoot tggggaaagg 1681 aaacggtate geteetgtaa cacaqateca tgccctttgg gtteccqaga ttttcgaqaq 1741 aaacagtigtig cagactitiga caatatigoot ticogaggaa agtattataa otiggaaacoo 1801 tatactggag gtggggtaaa accttgtgca ttaaactgct tggctgaagg ttataattte 1861 tacactyaac gtgctcotgo ggtgatcgat gggacccagt gcaatgogga ttcactggat 1921 atotgoatca atggagaatg caageacgta ggotgtgata atattttggg atotgatgot 1981 agggaagata gatgtegagt etgtggaggg ggeggaagea catgtgatge cattgaaggg 2041 ttottcaatg attoactgop daggggagge tacatggaag tggtgcagat accaagagge 2101 totyttoaca tigaagitag agaagitgoo atgicaaaga actatatigo titaaaatoi 2161 gaaggagatg attactatat taatggtgcc tggactattg actggcctag gaaatttgat 2211 gttgctggga cagcttttca ttacaagaga ccaactgatg aaccagaatc cttggaagot 2081 otaggiocia cotcagaaaa totoatogio atggittoigo ticaagaada gaattiggga 2341 attaggtata agitoaatgt toocatoact ogaactggca gtggagataa tgaagitgg: 2491 titacatgga abcatcagos tiggicagaa tgotcagota citgigotgg aggiaagatg 2451 occaetagge agreeactea gagggeaaga tggagaacaa aacacattot gagotatgot 2521 tigigitigi taaaaaagot aattiggaaac atticitgoa ggtitgotic aagotytaat 2581 ttagcaaaag aaactttgct ttaattatat tatattocat ttgttttcaa cotcatgtaa 2641 titigtgcaga titigttggta aaatacatct tggcacaatg agtgtotoig otggtgotto 2701 todoaagast atottgaagg tgggstgttt gostttogtg aasasattot tggtaaagaa 2761 catcaaaagt tittaaaaaag aaaatgagca agaatcagac atcacagatg caacticitg

2821 taatgggaga tgagaatgta oggotgtg

Fig. 4

FEATURES

Location/Qualifiers

source

1..3218

/organism="Homo sapiens" /db_xref="taxon:9606"

/chromosome='15'

gene

1..3218

/gene="ADAMTS7"

CDS

13..3003 .'gene="ADAMT57"

'note="ZINC METALLOPROTEASE"

/codon_start=1

'product=" A Disintegrin-like And Metalloprotease domain

with ThromboSpondin type I motifs-7 (ADAM-TS7)*

TITALS Lation= 'MPGGPSPRSPAFLLRPLLLLCALAPGAPGPAPGPATEGRAALD IVHPVRVDAGGSFLSYELWPRALEKKDUSVRRDAPAFYELQYRGRELRFNLTANQHLL APGFVSETRRRGGLGRAHIRAHTPACHLLGEVÇDPELEGGLAAISACDGLKG:FQLSN EDYFIEPLDSAPARPGHAQPHVVYKRQAPERLAQRGDSSAPSTCGVQVYPELESRRER WEQRQQWRRPRLRRLHQRSVSKEKWVETLVVADAKMVEYHGQPQVESYVLTIMDIVAG LFHDPSIGNPIHITIVRLVLLEDEEEDLKITHHALNTLKSFCKWQKSINMKGDAHPLH HDTAILLTRKDLCAAMNRPCETLGLSHVAGMCQPHRSGSINEDTGLPLAFTVAHELGH SFGIQHDGSGNDCEPVGKRPFIMSPGLLYDAAPLTWSRCSRQVITRFLDRGWGLCLED PPAKDIIDFPSVPPGVLYVJSHQCRLQYGAYSAFCEDMDNVCHTLWGSVGTTCHSKLC AAVDGTRGSENKWCLSGECVPVGFRPEAVDGGWSGWSAWSIGSRSGGMGVQSAERQCT QFTFKYRGRYCVGERKFRLCNLQACPAGRPSFRHVQCSHFDAMLYKGQLHTWVPVVII DVNPCELHCRPANEYFAYGLRDAVVDGTPCYGVRASROLGINGICKNVGGCFEIDSGA MEDRGGYCHGNGSTCHTVSGTFEEAEGLGYVDVGLIPAGAREIRIQEVAEAANFLALR SELPEKYFLNGGWTIQMNGDYQVAGTTFTYARRGNWENLTSPGPTKEPVWIQVPASRG

POGGSRGGVERBSTLHGRSRPGGVSPGSVTEPGSEPGPPAAASTS
VHRGGVJQAPLGLGGGRRHLVLKGPRLPTQLLFQESNPGVHYETTIALLAGGRLEVFF
FVFSMMGPNTKCTVTCGRGENVGFHSPTCRGLVSGQGHWLQLPAHCWATTGLEVCFS
EPQFSTCEMFLAIALCPRPAGRVHG

BASE COUNT 584 & 1041 c 1003 g 590 t CEIGIN

l coggitteety chaigeology eggeochagi occogoaged degegeettit geigegeed 61 otootootgo toototgogo totggotooo ggogoooog gaccogcaco aggacgtyca 111 accgagggcc gggcggcact ggacatcgtg cacccggttc gagtcgacgc gggggctcc 181 trootgtoot acgagetgtg geocegogea etgegeaage gggatgtate tgtgegeega 241 gacgegeeeg eettetaega getacaatae egegggegeg agetgegett caacetgaee 301 godaatcage acctgetgge geoeggettt gtgagegaga egeggeggeg eggeggeetg 361 ggccgcgcgc acatecgggc ccacaceceg geetgccaee tgettggcga ggtgcaggae 421 cotgageteg agggtggeet ggeggeeate agegeetgeg aeggeetgaa aggtgtgtte 431 cageteteca aegaggaeta etteattgag eccetggaea gtgeecegge eeggeetgge 541 cacgecoage cocatgtggt gtacaagegt caggeeeegg agaggetgge acageggggt 601 gattocagtg otocaageae otgtggagtg caagtgtace cagagetgga gtotogxogg 561 gagogttggg ageageggea geagtggegg eggeeaegge tgaggegtet acaecagegg 721 teggteagea aagagaagtg ggtggagaee etggtagtag etgatçeeaa aatggtggag 781 taccacegae ageogoaggt tgagagetat gtgctgacca tcatgaacat ggtggetgge 341 etgitteatg accceageat igggaaceee atccacatea coatigigeg coiggineitg 301 otggaagatg aggaggagga cotaaagato acgcaccatg cagacaacac cotgaagage 961 trotgoaagt ggoagaaaag catcaacatg aagggggatg cocatcooot gcaccatgac 1021 actgecated tgeteaccag aaaggadetg tgtgdageda tgaadegged etgtgagade 1081 otgggactgt cocatgtggc gggcatgtgc cagoogcaco gcagotgcag catcaacgag 1141 gacaegggee tgeegetgge etteactgta geceaegage teggggaacag ttttggeatt 1201 cagcatgacg gaageggeaa tgactgtgag cocgttggga aacgacettt catcatgtet 1261 ccacagetee tgtacgacge egeteecete acetggteec getgeageeg ccagtatate 1321 accapattoe ttgaecatag gtggggcetg tgcctggacg accettectge caaggacatt 1381 atogactico cotoggigos acotggogio ototatgaty tangetacca gigoegeoto 1441 cagtacgggg cotactotgc ottotgcgag gacatggata atgtotgcca cacactotgg 1501 tgctctgtgg ggaccacctg tcactccaag ctggatgcag ctgtgjacgg cacccggtgt 1561 ggggagaata agtggtgtet cagtggggag tgcgtacceg tgggcttccg gecegaggee 1621 gtggatggtg getggtetgg etggagegee tggteeatet geteaeggag etgtggeatg 1681 ggogtacaga gogoogagog goagtgoacg cagootacgo coaaatacaa aggoagatac 1741 tgtgtgggtg agegeaageg etteegeete tgeaacetge aggeetgeee tgetggeege 1801 contention genangtona gigoagonan titigangona igointanaa gggoragong 1861 cacacatggg tgcccgtggt caatgacgtg aacccctgcg agctgcactg ccggcccgcg 1921 aatgagtact tigocaagaa goigogggac goigtggiog atggcacccc cigotaccag 1981 gtccgagcca gccgggacct ctgcatcaac ggcatctgta agaacgtggg ctgtgacttc 2041 gagattgact coggtgotat ggaggacogo tgtggtgtgt gccacggcaa cggctccacc 2101 tgccacaceg tgagegggae ettegaggag geegagggte tggggtatgt ggatgtgggg 2161 etgatoccag egggegeacg egagateege atccaagagg ttgeegagge tgecaactte 2221 otggcactge ggagegagga coeggagaag tactteetea atggtggetg gaccateeag 2281 tggaacgggg actaccaggt ggcagggacs accttcacat acgcacgcag gggcaactgg 2341 gagaacotca egiceeeggg teccaccaag gageetgiet ggateeaggt geetgietee 2401 ogtggoddag gogggggag dagaggogga gtococaggo ocagraeoct coatggdagg 1461 totogtootg gaggagtgag cootggttoa gtoadagago otggetotga godaggoodt ISII ootgobgogg oototasoto agtitoocoa tobbtaaaat ggooraatob tgbagobgoa 0561 gutcacagag guggotgggg udaagotoot tuaggadugg guggatggag aagadacott 2041 gugoteatgg goedeegoot goedaccoag etgetgitee aggarageaa eestggggig [70] caetaegagt acaccatica cagggaggca ggtggccaeg acgaggtocc geogeoogtg 1961 tieteetggs attatygged etggaecaag tycacagtea eetgeggeag aggtgagaag 1821 tagggonaggo adagooocad otgonaggago ttagtgtotg gacayagada otggottong 2881 otoccagoto actgotgggo caccaegggt ttggaagttt gettitetga gesteagtte 2941 tocatotyty agatgagget agogattyco otytytocca gyconyctyg gaggytacat 3001 ggatgaggca ggtgggtget ggetegegge geatgtteag tgtgeteeag etettggegt 3081 teteceteca geggaeaeag etececeteg atagaceagt coagtegeee eteaceatae 3101 tgacttattt occtaaacta titataaaaa gtagggcaat ticattaact otgactotta 3181 octgoooggg oggoogotog agoogagtaa toactagt

Fig. 5A

10 20		40	50	60	70 I
tagggcgactgcacgggacg					
ctaggttggctggcgcagga					
gccgctagccgagtcggcct gccaccagcacctgcccgcg					
CTCCGCGACCCACCACCAC					
360 37		390 l	400 	410	420
TOGICIGOGGAGCOCOGGOG					
DCADODADOSOBACEEDOCA COCODESCADOSOBACEEDOCA					
OCTGACGCCAGCTTCCTGGC					
GOGAGOOGEGACTIGOGTGGC					
GAGCTGTGTCGCGGGGCTGGA					
				760	770
710 72	,	740 I	- 750 .		
GTGGGGACTCCCTGGACCA					
GECTOSOFFCCCCCCGAAGTT					
93GACA3GAGAGAAGTGACA					
GACTODOGDAAAGIGOCACO					
TOGTGGAAACACTTCTGGTG					
1060 107				1110	1120
1000 <u></u> <u>1111</u>	·				
COTCACOGIGATORCAATOG					
GIGGIGAAAGIGCIAATAGI					
TGOGLAACTTCTGCAGCTGG					
TGCCATUTTGTTCACCAGAC					
GTTGGCACCATCTGTGACCC					
3410 142				1460	1470
					_
OBOT 9900 LATEASCTAGES					
TEGGOCCATGESCAAGTACL					
COCTECAGIGOTGICTACCI					
GOAGATOTTTGGGCCTGATT					

Fig. 5A (con't)

1760	1770	1780	1790	1800	1810	1820
GCCCGTCATCCGGAT						
CACCCICATOGGAT		-				
GGCTGTGGTAGATO						
ATACAATTCTCGAAC GAGTCAAGTACCAAT						
2110	2120	2130	2140	2150	2160	2170
TGAGAAATATAATCC						
GEYELGLGCCCCCG						
AAGCTAAGGTEATOG						
TAAGGCTGGCTGA						
GGCACTGCCTGTAGG	AAGATOTOOG	GITCITICAC	CCCTTCAGI	TATGGCTACA	ATGACATIGI	CACCA 1450
2460	2470	2480	2490	2500	2510	2520
		لتتبليين	لتسلست	لسلست	ليتبلين	
TOUCAGGTGGTGGCCA	CAAACATIGA	IGTGAAACAC	COGAGICACO	CAGGGGTCAG	GAAOGACGGC	AGCTA 1520
OCTGGCGCTGAAGAC	AGCCAATGGG	CAGTACCIGC	PCAATGGTAA	ACCIGGCCAIC	ICTGCCATAG	AGCAA 2590
GACATCITEGIGAAC	GGACCATCC	TGAACTACAG	PGGCTCCATC	ECTACOCTGG	AGOGGCTGCA	GAGCT 1660
TOTAGGOCCTGOCTG	AGCCTCTTAC	AGTACAGCTC	TIGACIGIGI	CIGGIGAGGIO	CTTOCCPCCA	AAAGT 2730
CAGATATACCTTCTT	TGICCCCAAT	GACATGGACT	NCAGOGTGCA	GAATAGCAAG	BAAAGAGCAA	.CCACC 1890
2810	2820	2830	2840	2850	2860	2870
AACATCATTCAGTCA	.CTGCCCTCTG	OGGACTGGGT.	TCTGGGAGAC	TGGTCTGAAT	STOOGAGCAC	GIGCA 1870
GAGGTAGCTGGCAGC	GGCGGACTGT	GAATGCAGG	EACCCCTCAC	GTCACGCCTC	IGACACCIGI	GATGA 1940
GECTCIGAAACCTGA						
totottaggottatg						
caagatggcacggcc						
3160	3170	318C	3190	3200	3210	3220
			 		<u> </u>	91:1
agagaagagggtata						
agsagtoggg ata gg						
ttigcaaaggactag						
aatotacotcacago						
agcaagctccatagg						

WO 01-11074 PCT/US00-21223 10:54

Fig. 5A (con't)

MOWNE ADAM TS	8
10 20 30 40	
MIRDPTTTGWPPLLLLLOLPPPPLVCGAFAGPGTGAQAS 40	
ELVVPTRLPGSASELAFHLSAFGOGFVLRLAPDASFLAPE 80	
FKIERLOGSSAAAGGEPGLROCFFSGTVNGERESLAAMSC 120	
VAGNSGSFILLAGEEFTIOPOGAGDSLDOPHRLORWGPGOR 160	
REDPGLAAAEVFPLPQGLEWEVENGVGQGCERSDNEEDRK 200	
210 220 230 240	N-ferninus of manne professe
QDKECLLKETEDSRKVPPPFGSKTRSKRFVSEARFVETLL 240	FUSEAR
VADASYAAFYGIDLQNHILIVMSMAARIYKHPSIRNSVNL 280	
VVVKVLIVEHERMGPEVSDIGGLTLRNFCSWQRRFNKPSD 320	_
RHPEHYDTAILFTRONFCGKGEQCDTLGMADVGTICDPDK 360	5 up
${\tt SCSVIKDEGLQAAYTLAHELGHVLSMPHDESKPCVRLFGP} \ \ 400$	
410 420 430 440	3 4
MGKYHMMAPFFIHVNKTLPWSPCSAVYLTELLDDGHGDCL 440	
$\verb LDAPTSVLPLPTGLPGHSTLYELDQQCKQIFGPDFRHCPN 480$	
TSVEDICVQLCARHRDSDEPICHIKNGSLLWADGTPCGPG 520	8 Cp.
HLCLDGSCVLKEDVENPKAVVDGDWGPWRFWGQCSRTCGG 560	
GIQFSNRECDNPMPQNGGRFCLGERVKYQSCNTEECPPNG 600	
610 620 630 640	
KSFFEQQCEKYNAYNHTDLDGNFLQWYPKYSGVSPRDRCK 640	. 2:
LFCFARGRSEFKVFEAKVIDGTLOGPDTLSICVROQCVKA 680	10 69
GCDHVVNSPKFLDKCGVCGGKGTACRKISGSFTPFSYGYN 720	_
DIVTIPAGATHIDVKQRSHPGVRNDGSYLALKTANGQYLL 760	Hoaa
MENLAISAIEQDILVKGTTLKYSGSMATLERLQSFQALPE 800	spacer ~ 146aa.
810 820 830 840	
A STATE OF THE STA	
PLIVQLLTVSGEVFPPKVRYTFFVFNDMDFSVQNSKEFAT 840	
TVIIQSLPSAEMVLGDWSECPSTCRGSWQRRTVECRDPSG 880	
CASDICDEALFPEDAKPCGSOPCPL 905	

Fig. 6A

CATALYTIC DOMAIN, ADAM TS-8 (HUMAN)
10 20 30 40
CGACCCCACAACCCCCTACCCACCCCCCCCCCCCCCCCC
GGCCACGAGTAGGACCAAGCGGTTTGTGTCTGAGGCGCGC 80
TTCGTGGAGACGCTGCTGCCCGATGCGTCCATGGCTG 120
CCTTCTACGGGGCGACCTGCAGAACCACATCCTGACGTT 160
AATGTCTGTGGCAGCCCGAATCTACAAGCACCCCAGCATC 200
210 220 230 240
AAGAATTCCATCAACCTGATCGTCATAAAAGTGCTCATCG 240
TAGAAGATGAAAAATGGGGCCCAGAGGTGTCCGACAATGG 280
GGGGCTTALACTGCGTAACTTCTGCAACTGGCAGCGGCGT 320
TTCAACCAGCCCAGCGACCGCCAGCCAGCAGCACTACGACA 360
CGGCCATCCTGCTCACCAGACAGAACTTCTGTGGGCAGGA 400
410 420 430 440
GGGGCTGTGTGACACCCTGCGTGTGGCAGACATCGGGACC 440
ATTTGTGACCCCAACAAAACCTGCTCCGTGATCGAGGATG 430
AGGGGCTCCAGGCCGACACCCTGGCCCATGAACTAGG 520
GCACTCCTCAGCATGCCCCACGACGACTCCAAGCCCTGC 550
ACACECCTCTTCCGGCCCATCGGCAAGCACCACGTGATGG 600
610 620 630 640
CACCECIGITCGICCACCIGAACCAGACCCIGCCCIGGIC 640
CCCCTCCAGCGCCATGTTCTCAGGCTGCCACCTGCAGGGG 630
TGGATCCATTTCAAGTATTTATGCAAATGTGTCTCTGAAC 720
TAAAGIGIGATCITAIGCC 739

HUMAN ADAM-TSS! CATALYTIC DOMAIN

10	20 7	Mature 30	protease	FUSEAR·
<u> </u>	لتنظلتنا	ليبيابيي		
RAEGASEPPPPLGAT	SRIKRFVSEZ	RFVETLLVAD	DASMAA 40	
FYGADLQNHILITLMS	/AARIYKHPS	TKNSINLMV	KVLIV 80	
EDEKWGFEVSDNGGL:	TLRNFCNWQF	RFNQPSDRHF	PEHYDT 120	
ALLLTRONFCOCEGLA	DTLGVADIO	TICOPNKSCS	VIEDE 160	
G_QAAHTLAHELGHVI	LSMPHDDSKE	CTRLFGPMGK	HHVMA 200	
210	220	230	240	
	لتسلبين	لتتبليين	ــــــــــــــــــــــــــــــــــــــ	
PLFVHLNQTLPWSPC	RAMFSGCHL(KANTHEKYLCK	CVSEL 240	
KCDLM 245				

Fig. 6B

Fig. 7A

Fig. 7A (con't)

1760	1770	1780	1790	1800	1810	1820
بلسطيين						
CTGCAACACGGAGCCA						
AAGCATTTTAACATCA						
AGGACCGGIGCAAGIT						
AGATGGAACTCCTTGT						
GATCATGTTTTAAACT	CAAAAGCCCC	GAGAGATAAA:	IGCG3GGITI	GTGGTGGCGA	TAATICITCA	ATGCA 2100
2110	2120	2130			2160	2170
والمتعالية والمتعالية	بليتينانين		بليينابي	بلتتيلين		
AAACAGTGGCAGGAAC	ATTTAATACA	GTACATTATC	JTTACAATAC	TGTGGTCCGA	ATTCCAGCIC	EGTGC 2170
TACCAATATTGATGTG	XCGGCAGCACA	GTTTCTCAGG	GAAACAGAC	GATGACAACT.	ACTTACCITI	TATCA 2240
AGCAGTAAAGGTGAAT	TCTTGCTAAA	TGGAAACTTT	FITGTCACAA	TGGCCAAAAG	GGAAATTCGC	CATTG 2310
GGAATGCTGTGGTAGA	GTACAGTGGG	TOOGAGACTG	CCTAGAAAG	AATTAACTCA	ACAGATCGC ^A	ATTGA 2380
GCAAGAACTTTTGCTT	CAGGITTIGI	CGGTGGGAAA	GTTGTACAAC	CCCGATGTAC	GCTATTCTTT	CAAT 2450
2460	2470	2480	2490	2500	2510	2520
<u>matrilian</u>	بليسلين	<u> بلينيلن</u>	بليينلين	سلسسلت		
ATTCCAATTGAAGATA	AACCICAGCA	GITTTACTGG	AACAGTCATG	GGCCATGGCA	AGCATGCAGI	AAAC 2520
OTTGCCAAGGGGAACG	XGAAACGAAAA	CTTGTTTGCA	CAGGGAATC	TGATCAGCTT	ACIGITICIO	ATCA 2590
AAGATGCGATCGCCTG	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	GACACATTAC	IGAACCCIGI	GGTACAGGCT	GTGACCTGAC	GIGG 2660
CATGTTGCCAGCAGGA						
CCAAATATAGCAGGCT	GGATGGGAAG	ACTGAGAAGG	MGATGATGG	TTTTTGCAGC	AGCCATOCCA	AACC 2800
2810	2820	2830	2840	2850	2860	2870
بليبين المستنابيين	بالبساليين	<u> بالمنظين</u>	بلينيلين	بليبيلين	طبيب	
AAGCAACCGTGAAAAA						
TCAAAAAGCTGTGACG						
ATGACAGCAAATGCAC						
GAAATCTGGAGACTGG						
CAGTTTOTTGAAGATC						
3160	3170	3180	3190	3200	3210	3220
بايتينا عبياتين	بليتينايي		<u> باينياني</u>	<u> </u>	طعنبطني	
GTCAGCAGCOGGAATO						
ATACCAGCTAAGACCA						
GLAGLAAUTAGACCAA						
.AAACGAGGAGAACCAC						
CACTIGUGGGAAAGGI						

Fig. 7A (con't)

3510 3520 3530 3540 3550 3560 3570
AGTGCCTGTGCTACCCTGCCTAGACCAGTGGCAAAGGAACAATGTTCTGTGACACCCTGTGGGCAATGGA 3570
ACCCCTTCCACTCGACCTCTTCCTCTGTGACCTGTGGGCAACGTAGCGCAACCCGCCAAGTGATGTGTGT 3640
CAACTACAGTGACCACGTGATCGGATCGGAGTGAGTGTGACCAGGATTATATCCCAGAAACTGACCAGGAC 3710
IGITCCATGTCACCATGCCCTCAAAGGACCCCAGACAGTGCCTTAGCTCAGCACCCCTTCCAAAATGAGG 3780
ACTATOGICCCCGGAGCCCCAGCCCCAGCCCATGTCCTCCGTGGAAACCAGTGGAGAACTGGCCC 3850
3860 3870 3880 3890 3900 3910 3920
CTGGGGAGCATGTTCCAGTACCTGTGCTGGCGGATCCCAGCGGGTGTTGTTGTATGTCAGGATGAAAAT 3920
GGATACACCGCAAACGACTGTGTGGAGAGAATAAAACCTGATGAGCAAAGAGCCTGTGAATCCGGCCCTT 3990
FICCTCAGTGGGCTTATGGCAACTGGGGAGAGTGCACTAAGCTGTGTGGTGGAGGCATAAGAACAAGACT 4060
GGIGGICIGICAGCGGICCAACGGIGAACGGIITCCAGATTIGAGCTGTGAAATTCTIGATAAACCTCCC 4130
CATCCTGAGCAGTGTAACACACATGCTTGTCCACACGACGCTGCATGGAGTACTGGCCCTTGGAGCTCGT 4200
4210 4220 4230 4240 4250 4260 4270
GPTCTGTCTCTTGTGGCCACCCCATAAACAACGAAATGTTTACTGCATGCCAAAAGATGGAAGCCATTT 4270
AGAAAJTGATTACTGTAAGCACCTGGCTAAGCCACATGGGCACAGAAAGTGCCGAGGAGGAGGACATGCCCC 4340
AAATGGAAAGCTGGCGCTTGGAGTCAGTGCTCTGTGTCCTGTGGCCGAGGCGTACAGCAGAGGCATGTGG 4410
ECTGTCAGATCCGAACACACAAAATAECCAGAGAGACCGAGTGCAACCCATACACCAGACCGGAGTCGGA 4480
ATGCGAATGCCAAGGCCCACGGTGTCCCCTTTACACTTGGACGCAGAGGAATGGCAAGAATGCACCAAG 4550
4560 4570 4580 4590 4600 461 0 4620
material continuity in the colored colored continuity in the colored continuity in the colored colored colored colored continuity in the colored color
ACCTECCCEAACCCTCCACETACCCEAACCTCGTGTGTGTGCATGACAAAAAACGAGGTGCATCGGG 4620
DA DGDIGTGACGTGAGCAAGDGGDCGGTGGACCGTGAAGCTGTAGTTTGCAACCCTGCGAGTATGTCTG 4670
CATCACAGGAGAATGGTCAGAGTGGTCAGTGACCTGTGGAAAAGGCTACAAAACAAAGGCTTGTCTCGTGC 47:60
AGDENGATTIACACOOGGAAAGAGAAAITATGAATACAGCTACCAAAOEACCATCAACTGCCCAGGCACGE 4830
AGDODOCCAJIGITOACCODIGITACOTCAGGGAGICCCCICTCTCCGCCAGCGGGGGGGGGCCAACTG 4900
<u>4910</u> 4920 4930 494C 4950 4960 4970
POGGAPOTGOTCAGTGTOTTGTGGTGTTCGAGTGATCCAGAGATCTGTGCAATGtttaaccaatgaggac 4970
caasscagcsasttatgcsasastgatstgaagssagaasgaaasasstgssgtaatgtstataast 5040
ntrauttaccocagaattgcaaggaggtaaaaagacttaaaggtgccagtgaagatggtgaatatttcct 5110

Fig. 7A (con't)

	5260	5270	5280	5290	5300	5310	5320 LLL
GICCCI	LATAACGGGAC		GACTGCCAAT				
TTTTC	AGAAAATCAGA	ATAGACCTG	CCAGCATGCA	GATAATCACCA	ACTGACTTACA	AGTTTGCAAGC	ACA 5390
AGCGA	AGGACATCCCC	FICCCTTTTGC	CACAGCCGGG	GATICCTACAC	XCCTGCCAAC	FTGCCCACAGC	ECTC 5460
GFITTA	GCATCAACC:	TTATGGAACC	GCTTGTCTT.	TAACTGAATCI	TGCCAGATTGGA	ATATCACAAGO	GAA 5530
TTATG	CIGICICIGAC	'ATCAAGAAGI	CGCCGGATGG	TACCCGAGTCC	TAGGGAAATG	COGTOGTTAC	NGT 5600
	5610	5620	5630	5640	5650	5660	5670
بلينير	ىلىنىلىنىن	ىلىنىلىن	<u></u>	سلسسلس	بيلينيلين	سلسسلت	
GGAAAA	ATECACTOCAT	CCICIGGIAC	TGGCCTGGAG	GTGCGAGTTTI	TATACCTAACC	FIGCITIGAAG	AGG 5670
AAGCCA	ATTATGGATGG	ATGAAGGATA	GTAATGCAAT!	ACCICCACCII	CAATTTCCCTC	CATGIGIAIC	ngr 5740
GIGIGI	GITIGIGIGI	GACTICIATO	CTIGIGIGIG.	iaaatgigigi	ACATATACAT	ATATACA 58	104

Fig. 7B

Fig. 7B (con't)

	1760	1770	1780	1790	1800	1810	1820
بليين		ليستلسين	لنبيليين	ليتنظينين	لتنظينينا	<u></u>	
							KCPQGR 1820
FSINLY	GIGLSLIES	ARVII SQQINYA	VSDIKKSPDG	JIRVVGKCGGY	CCKCTPSSGI	GLEVRVL.L	RCFEEE 1890
AIMDG.	RIVMOYLH	NLGACVCVCV	FVCDLYACVC	KCVYIYIYT	1934		

Fig. 8

CRF=2	protein	
HIAVISLOSGMMGTFRSHDGDYFIEPLQ	SVOĐQEDEEĐQN 40	
KPHI IYRHSTPQREPSTGKHACATSELK	NSHSKDKRKIRM 80	FLSYPRF
RKRKRNSLADEVALLKSGLATKVLSGY	SNOTNIVIRDRUN 120	CICYPPE
HKRTKRFLSYPRFVEVMVVADHRMVLYH		
SIVASİYKDSSIGNLINIVIVNLVVIHN		Mouse Apam-759
TTLKNFCQWQHSKNYLGGIQHDTAVLVT		
TLGLAELGTICDPYRSCSISEDSGLSTA		fortal sequent
MPHDOSNKCKEEGVKSPQHVMAPILNFY		•
YITEFILDIGYGECLLNEPASRTYPLPSQ		$\mathcal{L}_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}}}}}$
FLIFGPGSQVCPYMMQCRRLWCNNVDGA		Coel figne
DGIEGEPCKHCKEGFCVPKEMEGPAIDG		V
RTCGCGIKTAIRECNRPEPKNGGKYCVC		
CMKQHRDFREEQCAHFDGKHFNINGLLP		
MKDRCKLFCRVAGNTAYYQLRDRVIDG		
GLCRQAGCDHILNSKVRKOKCGICGGIN		
VHYGYNIVVRIPAGATSIDVRQHSFSGK		
KGEFLLNGDFVVSMSKREVRVGSAVIEY		
TERIEFELLLQVLSVGKLYNPDVRYSFR		
NSHGPWQACSKPQQGERRRK_VCTRESI		
POPGPVIEACGIDCDLRVHVASKSECSA		
CAKYSRMDGKTEKVDDSFCSSQPRPSM		
RYSAWTECSRSCDOGTQRRRAICVNTRI	N-7172 014	

Created: Saturday, April 10, 1999 11:40 AM

Fig. 8 (con't)

360 370 380 390 400 410 420	
and the land of th	
ACAGATGGAACCACAAAAGAACCAAACGCTTTCTGTCCTACCCACGCTTTGTAGAGGTGATGGTGGTGGC 420	1
TGACCACAGGATGGTTTTATACCACGGAGCAAACCTTCAACATTATATCTTAACCTTAATGTCCATTGTA 490	,
CCTTCTATCTATAAAGACTCAAGTATTGGAAATTTAATTAA	,
ATAATGAACAGGAAGGACCITTACATAAATTTCAATGCCCAGACAACATTAAAGAACTTTTTGCCAGTGGCA 630	,
GCACTCAAAGAACTACTTCGGTGGGATTCAGCACGACACGCCGTTCTCGTCACAAGGGAAGATATCTGC 700	
710 720 730 740 750 760 770	
	
MEAGCTCACCACAAATGTGACACCTTAGGTCTTGCTGAACTGGGAACCATTTGCGACCCCTACCGAAGCT 770	
GITCCATTAGTGAAGACAGTGGGCTGAGCACAGCTFICACAATAGCTCACGAGCTGGGCCATGTGTTTAA 840	
TATGCCTCACGATGACAGCAATAAATGCAAAGAAGAAGAAGGAGTTAAGAGTCCCCAGCATGTCATGCCACCA 910	
ACACTGAACTTCTACACCAACCCCTGGATGTGGTCAAAGTGCAGTCCGAAATACATCACTGAGTTCCTAG 980	
ACACTGGGTACGGAGAGTGCTTGCTGAATGAACCTGCATCCAGGACCTATCCTTTGCCTTCCCAACTGCC 105	ال ا
1060 1070 1080 1090 1100 1110 1120	
	—
COCCCTTCTCTACAACGTGAATAAACAATGTGAACTGATTTTTGCGCCAGGCTCTCAAGTGTGCCCCCTAT 112	:0
ATGATGCAGTGCAGACGCTCTGGTGCAATAATGTGGATGGA	10
CCCCTCCCCAGATCGAACCGAGTGTGACCCTCGAAAGCACTCCAAGTTTGCATTTTGTGTTCCCCAAAGA 126	10
AATGEAGGCCCTGCAATTGATGCATCCTGGGGAGGTTGGAGCCACTTTGGGACCTGCTCAAGAACGTGT 133	10
GGAGGAGGCATCAAAACAGCCATCAGAGAGTGCAACAGACCAGACCCAAAAAATGGTGGGAAGTACTGTG 140	C
1410 1420 1430 1440 1450 1460 1470	
<u> </u>	
TAGGAAGGAGAATGAAGTTCAAATCCTGCAACACGGAGCCCTGCATGAAGCAGAAGCGAGACTTCCGAGA. 147	/O
GGAGLAGIGICCICACITICATCCCAAACACITCAACATCAATCGICTCCCCCAGCGTACCCTGGTTT 154	• 0
CCTAAGTACAGCGCAATTTTGATCAAGGACCGGTGCAAGTTGTTCTGCAGAGTGGCAGCAAACACACCCT 161	.0
AUTACCACCTCCGAGACAGAGTGATTGACCGAACCCCTTGTCCCCAGGACACAAATGACATCTGTGTCCA 163	30 - o
AGGOUTTIGCOGGCAAGCIGGATGIGATCATATTTTAAACICAAACGICCGGAAAGATAAATGIGGGATT 175)(I
1760 1770 1780 1790 1800 1810 1820	
THE TAXABLE PARTY OF THE PARTY	
TETERICGAGATAATICTICATCCAAAACAGTGGCAGGAACATTTAACACTGTCCATTATGGTTACAATA 182	אט טג
CTGTTGTCCGAATTCCGGCTGGTGCTACCACCATTGACGTCCGTC	70 50
GCATGACAACTACCTACCTACCTAACACACACACACACAC	
ATGT CLAGAGGGAGAGGCGTCATTG-5-ACAGGGALACAGTCGCGALAATGTCGCGAGAAGGCGAGAGGGAGAGGGCGAGAGAGGGCGAGAGAGGGCGAGAGGGCGAGAGGGCGAGAGAGGGCGAGAGAGGGCGAGAGAGGGCGAGAGAGGGCGAGAGAGGGCGAGAGAGGGCGAGAGAGGCGAGAGAGGGCGAGAGAGGGCGAGAGAGGGCGAGAGAGGGCGAGAGAGGGCGAGAGAGGGCGAGAGAGAGGGCGAGAGAGAGGGCGA	
GACTGAACTGTACCGACCGTATCGAGGAAGAACTTCTCCTTCAGGTGTTGTCCGTGGGAAAGCTGTATAA 210	ال ر

Fig. 8 (con't)

	2110	2120	2130	2140	2150	2160	2170
لسب	لتبتخليت	احصياحي		لتتتليينا	لتستليين	ليبينليني	
CCCAG	ATGTGCGGTA	CICATTCAAT	'ATTCCCATIC	SAGGACAAACC	TCAGCAATTI	TACTGGAACA	GTCAC 2170
GGGCCC	TGGCAAGCA	TGCAGCAAGC	CCTGCCAAG	GGAGCCGAGA	CGAAAACTTC	TTTGCACCAG	OGAGT 2240
CTGATO	CAGCTAACCG	TTTCTGATCA	AAGATGTGAC	COGGITGCCCC	'AGCCAGGACC	TGTCACTGAA	GCGTG 2310
CGGCA.	CAGACTGTGA	CITGAGGIGG	CACGITGCCZ	AGCA AGAGOGA	ATGCAGTGCC	CAGIGIGGII	TIGGGC 2380
TACCG.	PACTITAGAC	ATCCACTGIG	CCAAATACAC	CAGGATGGAC	YGGGAAGACGC	AGAAGGTGGA	NTGACA 2450
	2460	2470	2480	2490	2500	2510	2520
<u> </u>	<u> </u>		ليتطيين		<u>لىنىدلىنىد</u>	لبالايليين	
GITIC:	IGTAGCAGTC	AACCCAGACC	GAGTAACCAC	GAGAAATGCT	CAGGAGAGTG	CAGCACAGGI	CGATG 2520
GCGCTZ	ATTCAGCCTG	GACCGAATGI	TCTAGAAGCT	GIGATEGICO	TACCCAGAGA	AGAAGAGCAA	ATTGT 2590
GICAA	CACCCGCAAT	GATGTCCTGG	ATGACAGCAA	2625			

Fig. 9A

10 20 30 40 50 60 70
TCACGCACGCCTTCCGGTCTCAAGATGAGTTCCTGTCCAGTCTGGAGAGCTATGAGATCGCCTTCCCCAC 70
CCGCGTGGACCACAACGGGGCACTGCTGGCCTTCTCGCCACCTCCTCCCCGGAGCAGCGCCGCGCACGG 140
GGGCCACAGCCGAGTCCCGGCTCTTCTACAAAGTGGCCTCGCCAGCACCCACTTCCTGCTGAACCTGACC 210
CGCAGCTCCCGTCTACTGCCAGGGGGGGTCTCCGTGGAGTACTGGACACGGGAGGGCCTGGCCTGGCAGA 280
GGGCGGCCCGCCCCACTGCCTCTACGCTGGTCACCTGCAGGCCCAGGCCAGCAGCTCCCATGTGGCCAT 350
360 370 380 390 400 410 420
CAGCACCTTIGGAGGCCIGCACGCCTCATOGIGGCAGACGAGGAAGAGTACCIGATIGAGCCCCTGCAC 420
CCTCGGCCCAACCCTTCTCCGCACCCCCCACCAAAGTGCACCACATGTGGTGTACAAGCGTTCCTCTCTCCC 490
GTCACCCCACCTGGACACACCCTGTGGAGTGAGAGATGAGAAACCGTGGAAAGGGGCGGCCATGGTGGCT 560
GOGGA COTTGA AGOCACOGOCTOCCAGACOCOTOGOGAATCAAACAGAGOGTGGCCAGGCCA
CGATOBGTCACCOGAGACOGETACGTGGAGACCCTGGTGGCTGACAAGATGATGGTGGCCTATCADB 700
710 720 730 740 750 760 770
GGCGCCGGGATGTGGAGCAGTATGTCCTGGCCATCATGAACATTGTTGCCAAACTTTTCCAGGACTCGAG 770
TCTGGEAABCAOOGTTAACATCCTCGTAACTCGCCTCATCCTGCTCACGGAGCACCACCCCACTCTGGAG 840
ATCACICACCATGOCGGGAAFICOCTAGACAGCTTCTGTAAGTGGCAGAAATCCATCGTGAACCACAGOG 910
GOCATEGCAATGCCATTCCAGAGAACGGTGTGGCTAACCATGACACAGCAGTGCTCATCACACGCTATGA 980
CATCTECATCTACAAGAACAAACCCTGCGGCACACTAGGCCTGGCCCGGTGGGCGGAATGTGTGAGCGCG 1050
1060 1070 1080 1090 1100 1110 1120
<u> </u>
AGAGAAGCTGCAGCGTCAATGAGGACATTGGCTGCCACAAGCGTTCACCATTGCCACGAGATCGGGCACA 1120
CATTOGGCATGAACCATGACGGCGTGGGAAACAGCTGTGGGGCCCGTGGTCAGGACCCAGCCAAGCTCAT 1190
GCCTGCCCACATTACCATGAAGACCAACCCATTCGTGTGGTCATCCTGCAACCGTGACTACATCACCAGC 1260
TITOTAGACTOGEGCCTGGGECTGTGCCTGAACAACCGGCCCCCAGACAGGACTITGTGTACCCGACAG 1330
TGGCAGOGGGCCAAGCCTACGATGCAGATGAGCAATGCCGCTTTCAGCATGGAGTCAAATCGCGTCAGTG 1400
1410 1420 1430 1440 1450 1460 1470
<u> </u>
TAAATAOGGGCAGGTOTGCAGGGAGCTGTGGTGTGTGTGTGTGAGCAAGAGCAACOGGTGCATCACCAACAGCATC 147)
COGGCOGCGAGGCCACCCTTTGCCAGACGCACACCATCGACAAGGGGTGGTGCTACAAACGGGTCTGTG 1540
TCCCCTTTGGGTCGCGCCCAGAGGGTGTGGACGGACCTGGGGGCCGTGGACTCCATGGGGCGACTGCAG 1610
CCCCACCTCTCCCCCCCCCCCTCTTCTACTCCTCACTCCCACCCCCACCCCAACCATCCCCCC
AAGTACTGTCTGEGTGAGAGAAGCCGCCACCCCTCCTGCAACACGGATGACTGTCCCCCTGGCTCCCAGG 1750

Fig. 9A (con't)

1760 1770 1780 1790 1800 1810 1820
ACTICAGAGAAGTGCAGTGTTCTGAATTTGACAGCATCCCTTTCCGTGGGAAATTCTACAAGTGGAAAAC 1820
GIACCOOGAGGGGGGGGGAGGCCTGCTCGCTCACGAGCCTAGCGGAAGGCTTCAACTTCTACACGGAG 1890
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
GCAAGCACGTGGGCTGCGACCGAGTCCTGGGGCTCCGACCTGCGGGAGGACAAGTGCCGAGTGTGTGGGGG 2030
TGACGGCAGTGCCTGCGAGACCATCGACGGCGTCTTCAGCCCAGCCTCACCTGGGGCCGGGTACGAGGAT 2100
2110 2120 2130 2140 2150 2160 2170
GTCGTCTGGATTCCCAAAGGCTCCGTCCACATCTTCATCCAGGATCTGAACCTCTCTCT
COUTGAAGGGACCACCACCCTCCTCCTCCTCCCCCCCCCCCC
TOTAGCTOUGACCACCTTTCAACTGOGACAGGGGCCCAGACCAGGTCCAGAGCCTTCGAAGCCCTGGGACCG 2310
ATTAATECATCTCATCGTCATGGTGGTGGCCCGGACCGAGCTGCCTGC
CCCCCATCGCCCGTGACTCGCTGCCCCCTACTCCTGGCACTATGCGCCCTGGACCAAGTGCTCGGCCCA 2450
2460 2470 2480 2490 2500 2510 2520
GIGIGCAGGCGTAGCCAGGIGCAGGCGTCGAGTGCCGCAACCAGCTGGACAGCTCCGCCGTCGCCCCC 2520
CACTACTGCAGTGCCCACAGCTAGCTGCCCAAAAGGCAGCGCGCCTGCAACACGGAGCTTGCCCTCCAG 1590
ACTGGGTTGTAGGGAACTGGTCGCTCTGCAGCCGCAGCTGCGATGCAGGCGTGCGCAGTCGCTCGGTCGT 1560
GTGCCACCGCGCGTCTCTGCCGCGGACGACGACGCGCTGGACGACGACGCCATGCCCGCAGCCGCGCCCA
CCTGTACTGGAGGCCTGCCACGGCCCCACTTGCCCTCCGGAGTGGGCAACCCTCGACTGGTCTGAGTGTA. 2800
2810 2820 2830 2840 2850 2860 2870
COCCAAGCTGTGGGCCTGGTCTCCGCCACCGAGTGGTCCTTTGTAAGAGTGCAGATCAACGATCTACTCT 2870
BODOCOTGBBCACTGCCTTOCTGCAGCCAAGCCACCATCTACTATGCGATGTAACTTGCGCCGCTGCCCT 2940
CCTGCCCGCTGCGTGACCAGTGAGTGCGGTCAGTGTTCCACACAGTGTGCCCTCGGCCAGCAGCAGCAGCAGCAC
CAGTIGOGOTOCACCACCACACOGOCCAGCCATCTOGAGAGTGCACTGAAGCCTTGCGGCCATCCACCAT 3080
GCAG CAGTGTGAGGCCAAGTGTGACAGTGTGGTGCCGCCTGGAGATGGCCCAGAAGAATGCAAGGATGTG 3150
3160 3170 3180 3190 3200 3210 3220
AACAAGGIGGCITACTGCCCCCCGTGCICAAATTTCAGTTCTGTAGCCGAGCCTACTTCCGCCAGATGT 3220
GCTGCAAAACCTGCCAAGGCCGCtagggtacctggaaccaacctggagcacaggctgaggcaggggacat 3290
cccactggagagggcatgagggaaaggggggcttgaattgaagggtgagatgcagttgaaagttatttat
tgggtaaccetacagggeteetgactaaggggtggagaagagetggetacceagggacestetgetgtat 343)
cttgeceagttgatagtgaagagagaggaeteettgttgeacacatatttaagteectageaceceteee 3500

Fig. 9A (con't)

1	3510	3520	3530	3540	3550	3560	35 70
							cctgc 3570
	tctatccctad tgtagccctcd						:accac 3640 :ccagg 3710
							ictect 3780 iggece 3850
	3860	3870 	3880	3890 	3900 	3910 	3920
ggtac	caattegege	tatagtaaa	tngggtntta	3885			

26.54 Fig. 9B

human ADAM TS-\$10 10 20 30 40
SRTPSGLKMSSCPVWRAMRSPSPPAWITITGHCWPSRHLLP 40
GAAPRHOCHSRVPPLLQSGLASTHFLLNLTRSSRLLAGRV 80
SVEYWIREGLAWQRAARPHCLYAGHLQGQASSSHVALSIC 120
GGLHGLIVADEFEYLIEPLHGGPKGSRSPEESGPHVVYKR 160
SSLRHPHI.DTACGVRDEKPWKGRPWWLRTLKPPPARPLGN 200
210 220 230 240
make processe
ETEROOPGLKROVSRERYVETLVVADKMMVAYHORRIVEQ 240
YVLAIMIVAKLEQDSSLGSTVNILVIRLILLTEDQPILE 280 SVSRERY
ITHHAGKSLDSFCKWOKSIVNHSCHCVAIPENGVANHDTA 320
vlitrydiciykikecgilglarwaecvsarfaaasmril 360
AATSVHHCHEIGHTFGYNHDGVGNSCGARGQDPAKLMAAH 400
410 420 430 440
ITMKTNPFVWSSCNRDYITSFLDSGLGLCLNNRPPRQDFV 440
YPTVAPGQAYDADEQCRFQHGVKSRQCKYCEVCSELMCLS 480
KSNRCITNSIPAAEGTLOQTHTIDKGWCYKRVCVPFGSRP 520
EGVDGAVGFWTFVGDCSRTCGGGVSSSSRHCDSPRPTTGG 560
KYCLGERRRHPSCVIDDCPPGSQDFREVQCSEFDSIPFRG 600
610 620 630 640
HFYKWHTYRGOGVKACSLITSLAEGFNFYTERAAAVVDGTP 640
CRPDIVDICVSGECKHVCCDRVLGSDLREDKCRVCGGDGS 680
ACETIBGVFSPASPGAGYEDVVWIPKGSVHIFIQDLNLSL 720
SHLALKGDQESLLLÆGLÆGTÆQPHRLPLAGTTÆQLRQGPD 760
QVQSLEALGPINASLIVMVLARTELPALRYRFNAPIARDS 800
810 820 830 840
and the desired metallication of the second
LPPYSMHYAPMTWOSAQCAGGSQVQAVECRNQLDSSAVAP 840
HYCSAHSKLPKRQRACINTEPCPPDWVCNWSLCSRSCDAG 880
VFSFSVVCQRRVSAAEEKALDDSACPQPRPFVLEACHGPT 920
CPPEVIATILDWSECTPSCGPGLR-RVVLCKSADQRSTLPPG 960
HCLPAAKPPSIMHCNLRRCPPARUMTSEWGECSTQCGLGQ 1000

27.54

Fig. 9B (con't)

R 1081

Fig. 10A

partial dequence of mouse ADAM 75-10 [See figne]
(for a fine a)
10 20 30 40
<u> </u>
AGCAGCAGCTGTGGTGGATGCAACACCCTGCCGCCCTGAC 40
ACGGTGGACATTTGTGTCAGCGGCGAGTGCAAGCATGTAG 80
GCTGTGACAGGGTCCTGGGTTCTGATCTCCGAGAGGACAA 120
ATCCCGIGIGIGICCCCGIGAIGCCAGICCCTGIGAGACC 150
ATTGAACGIGICTTTACCCCACCTTTCCCACGAACTCCGT 200
210 220 230 240
<u> </u>
ATGAGGACGICGICIGGATCCCCAAAGGCICGGTCCACAT 240
TITCATOCAAGATOTGAAOCTGIOOCTGAGTCACCTGGOC 280
CTAAAGGGGGACCAAGAGTCTCTGCTACTGGAGGGGCTAC 320
CIBEGACCCCCAACCINACCGCCTTCCCCTGGNIGGGAC 360
CACATTTCATCTACGGCAGGGCCGGACCAGGCACAGAGC 400
410 420 430 440
CTGGAAGCCCTGGGACCCATTAATGCATCTCTCATCATCA 440
TGFTGCTGGCCCAGGCAGAGTTGCCTGCTCTCCACTACCG 480
CITCAATGCACCCATTGCCCGGGATGCACTGCCTCCCTAC 520
TOTTEGRACIATECCCCCTEGACCAAATECTCAGCCCAGT 560
GT9CACCCCCACCACGTACTACTCCACGTACACTACTCCCGAAA 600
610 620 630 640
and the state of t
TCAGCTGGACAGCTCAGCAGTGGCCCCACACTACTGTAGT 640
GGCCACAGTAAATTGCCCCAAGAGGCAGCGTGCCTGCAACA 680
CAGAAOCATGTCCACCAGATTGGGTGTAGGAAACTGGTC 720
ACECTECAGCCGTACCTGTGCGTGTGCGTACCCGC 750
TCAGTGGIGIGCCAACGCCGGGTGTCTGCTGCAGACGAAA 800
810 820 830 840
with the third in the transfer of the transfer
AAGCCTTAGACGACAGTGCCTGTCCACAGCCACGCCCACC 810
TGIGCIGGAGGCCIGCCAAGGCCCAATGIGCCCTCCTGAG 830
TGEGCAACCCTCGACTGGTCTGACTGTACCCCAACCTGTG 920
GGCCTGGTCTCCCCCACCCAGTGGTCCTTTGTAAGAGTGC 960
2) File Fiel Fried Charles And Market Market Charles and Color

Fig. 10A (con't)

1010 1020 1030 1040
GCAGCCAAGCCACCATCTACTATGCGATGTAACTTGCGCC 1040
GCTGCCCTCCTGCCCGCTGACCAGTGAGTGGGGTGA 1080
GTGTTCCACAGTGTGGCCTCGGCCAGCAGCAGCGCACA 1120
GTGCGCTGCACCACCACCCACCCACCCATCTCGAGAGT 1160
GCACTGAAGCCTTGCGGCCATCCACCATGCAGCGTGTGA 1200
1210 1220 1230 1240
GCCCAAJIGIGACAGIGIGCCGCCTGGAGATGGCCCA 1240
GAAGAATGCAAGGATGTGAACAAGGTGGCTTACTGCCCCC 1280
TEGISCICAAATTICAGTICIGIMECCCMECCIMCITCCC 1320
CCAGATIFICCTGCAAAACCTGCCAAGGCCGCTAGGGTACC 1360
TOGAAOCAACCTOGAGCACAGCCTGAGGCAGGGGACATCC 1400
1410 1420 1430 1440
<u> </u>
CACTGGAGAGGGCATGAGGGGGGCCTTGAATTGAA 1440
CCCTCACATCCAACTTCAAACTATTTATTTCCCTAACCCC 1480
TACAGGECTTCTGACTTAAGGGGTGGAGAANAGCTGGCTA 1520
CCCCAGOGACCCTTTTGTTGCATCTTGCCCCANTTGATAG 1560
TGAAGAGAGAGTTCTTGGTGNACACATTTTTAAGTCC 1600
1610 1620 1630 1640
TTAGACCCTTCCACCNTTGATCCGGATATGTCTGCGAAGAG 1640 CN 1642

Fig. 10B

10 20	30	40 Monse	ADAM TSIO
بالتسليب فالمساليين	untirindini d		
AAAVVDGTPCRPDTVDICVSGE	XXHVGCDRVLGSDLR	REDK 40	
CRVCCCDGSACETIEGVFSPAL	PGTGYEDVVWIPKGS	SVHI 80	
FIQDINISLSHLALKGDQESLI	LEGLPGTPQPXRLPL	XGT 120	
TFHLRQGPDQAQSLEALGPIN	SLIIMVLAQAELPAL	HYR 160	
FNAPIARDALPPYSWHYAPWIY	CSAQCAGGSQVQVVE	CRN 200	
210 220	230	240	
	<u></u>	<u> </u>	
QLDSSAVAPHYCSGHSKLPKRQ	PACNTEPCPPDWVG	ENWS 240	
RCSRSCDAGVRSRSVVCQRRVS	AAEEKALDDSACPQP	RPP 280	
VLEACQGPMCPPEWATLDWSEC	TPSCGPGLRHRVVLC	iksa 320	
DQRSTLPPGHCLPAAKPPSTMF	CNLRRCPPARWVTSE	WGE 360	
CSTQCGLGQQQRTVRCTSHTGQ	PSRECTEALRPSIMQ	QCE 400	
410 420	430	44 0	
	بيليوريليوران	ــــــــــــــــــــــــــــــــــــــ	
AKCDSVVPPGDGPEECKDVNKV	AYCPLVLKFQFCSRA	YFR 440	
gmeaktreggr 450			

Fig. 11A

Ligated 459225+482392 with Sac I(168)&Eco RI(or Not I) Cloning site:5';Eco RI 3';Not I Vector; PI7T3 pac.

You can put this construct to pcDNA3.1(+) for transfection 5'-UTR is 50bp &3'-UTR is 175bp

210-215; in 482392 it's TCCTAC(SY).

10 20 30 40)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
gaatteggeaegaggeagtgteegattetgatteeggeaa	40
ggatccaagcATGGAATGCTGCCGTCGGGCAACTCCTGGC	80
ACACTGCTCTTTCTGGCTTTCCTGCTCCTGAGTTCCA	. 120
GGACCGCACGCtCCGAGGAGGACCGGCCTATGGGA	160
TGCCTGGGGCCCATGGAGTGAATGCTCACGCACCTGCGGG	200
210 220 230 24	0
And the state of t	
CGTGGGGCCCAACTCTCTGAGGCGCTGCCTGAGCAGCA	240
AGACCTGTGAACGAACAATATCCCATACAGAACATGCAG	280
TAATGTGGACTGCCCACCAGAAGCAGGTGATTTCCGAGCT	320
CAGCAATECTCAGCTCATAATGATGTCAAGCACCATGGCC	360
AGPPTATGAATOCCTTCCTGTGTCTAATGACCCTGACAA	400
410 400 400	
41C 420 430 44	0
410 420 430 440 	0
	440
CCCATGITCACICAAGTGCCAAGCCAAAGGAACAACCCIG	440 480
OCCATGITCACICAAGTGCCAAGCCAAAGGAACAACCCIG GITGITGAACTACCACCTAAGGICTTAGATGGTACGCGTT	440 480 520
COCATGITCACICAAGTGCCAAGCCAAAGGAACAACCCTG GTTGTTGAACTACCACCTAAGGTCTTAGATGGTACGCGTT GTTATACAGAATCTTTGGATATGTCCATCAGTGGTTTATG	440 480 520 560
OCCATGITCACTCAAGTGCCAAGCCAAAGGAACAACCCTG GITGITGAACTAGCACCTAAGGICTTAGATGGTACGCGTT GITATACAGAATCTTTGGATATGTGCATCAGTGGTTTATG CCAAATTGTTGGCTGCGATCACCAGCTGGGAAGCACCGTC	440 480 520 560 630
COCATGITCACTCAAGTGCCAAGCCAAAGGAACAACCCTG GTTGTTGAACTACCACCTAAGGTCTTAGATGGTACGCGTT GTTATACAGAATCTTTGGATATGTGCATCAGTGGTTTATG GTAAATTGTTGGCTGCGATCACCAGCTGGGAAGCACCGTC AAGGAACATAACTGTGGGGGTCTGCAACGGAGATCGCTCCA	440 480 520 560 630
COCATOTICACTCAAGTOCCAAGCCAAAGGAACAACCCTG GTTGTTGAACTACCACCTAAGGTCTTAGATOGTACGCGTT GOTATACAGAATCTTTGGATATGTCCATCAGTGGTTTATG DDAAATTGTTGGCTGCGATCACCAGCTGGGAAGCACCGTC AAGGAAGATAACTGTGGGGGTCTGCAACGGAGATCGGTCCA 610 620 630 640	440 480 520 560 630
CCCATGITCACTCAAGTGCCAAGCCAAAGGAACAACCCTG GTTGITGAACTACCACCTAAGGTCTTAGATGGTACGCGTT GTTATACAGAATCTTTGGATATGTCCATCAGTGGTTTATG CCAAATTGTTGGCTGCGATCACCAGCTGGGAAGCACCGTC AAGGAAGATAACTGTGGGGTCTGCAACGGAGATGGGTCCA 610 620 630 640	440 480 520 560 630
CCCATGITCACICAAGTGCCAAGCCAAAGGAACAACCTG GITGITGAACTACCACCTAAGGICITAGATGGTACGCGTT GITATACAGAATCTITGGATATGTGCATCAGTGGTTTATG DIAAATTGITGGCTGGGATCACCACCTGGGAAGCACCGTC AAGGAAGATAACTGTGGGGTCTGCAACGGAGATGGTCCA 610 620 630 640 CCTGCCGGCTGGTCCGAGGGCAGTATAAATCCCAGCTCTC	440 480 520 560 630 640 660
COCATGITCACICAAGTGCCAAGCCAAAGGAACAACCCTG GITGITGAACTAGCACCTAAGGICTTAGATGGTACGCGTT GITATACAGAATCTTTGGATATGTGCATCAGTGGTTTATG DIAAATTGTTGGCTGCGATCACCAGCTGGGAAGCACCGTC AAGGAAGATAACTGTGGGGGTCTGCAACGGAGATGGTCCA 610 620 630 640	440 480 520 560 630 630 640 660 720

Fig. 11A (con't)

AATTCTASTGTGGACTCCAGAAATTTCCAGACAAAGA 840 TACTGAGAATGGACCACTCACACACATTTCATTT 880 CAAGATTGTAACTCGGGCCACTCACACCAGATTCATTT 880 CAAGATTGTTACTCTGACCAACCATGAGGGACA 960 CGGATTTCTTTCTCTCCTCACCAACCTGTGAGGACGATA 1000 1010 1020 1030 1040 TCACCTGACATCCCCTGAGTGCTACGATCGAGGACACA 1040 CGTGTGGTTGCTGACCAACATGTCACGATCTGAGGACCAAC 1040 CGTGTGGTTGCTGACCAACATGTCACGATCTGAGGACCAAC 1080 ACATCAAACCCAAACCCAACGTTCACGAGGACCAAC 1080 ACATCAAACCCAAACCCAACGTTCACGAGGACACACTATTCCCTACAA 1120 TCCTTGTCCAGCAACCCAACGTTCACGAGGACAACATGTCCT 1160 TACTGACCTGACCATGAGGGATACAAGCACAATCATGCCT 1160 TACTGACCTCACCTTCCTCGGTGGGAGAGCCACCC 1200 1210 1220 1230 1240 TACTGACCGCGTCCTCCTCGTGTGGGGGGGAGCCACCC 1240 CACCGCGCAGTTTCCTGTGTGGGGGGGGGGGGGGGGGGG	810 820 830 840
TACTGAGAATGGCTGACCALTCAAGCAGATTTCALTGT	
CAAGATTTCTTAACTCGGGCTCACAGTACAGTCCAG 920 TTCATCTTCATCAACCCATCACCGATGGAGGAGA 960 CGGATTTCTTTCCTTCCTCCACCACCGATGGAGGAGGAGA 960 1010 1020 1030 1040 TTCAGCTGACATCCACCGATGCACGAGGAGCACACACACCTCACGAGTCGAGGACCACACACCCACC	AAITCIAGTGIGGACTTOCAGAAATTTOCAGACAAAGAGA 840
######################################	
1010	CAAGATTOGTAACTOGGGCTGOGCTGACAGTACAGTCCAG 920
1010	
TCAGCIGACATCCCCTGAGTCCTACGATCIGAGGACCAAC 1040 CGTGTCGTTCCTGACCAACACTCACTATTACCCAGAGA 1080 ACATCAAACCCAAACCCAACCTTCAGGAGTCAACCTTGGA 1120 TCCTTTSTCCACCCAGTCAACCAGATCATGCACTATTACCCAGAGA 1080 ACATCAAACCCAAACCCAACCTTCAGGAGTGCAACTTGGA 1120 TCCTTTSTCCACCCCCTTCCTCGGTGGCAGCCACC 1160 TATGACCTCTACCATCCCTTCCTCGGTGGCAGCCACC 1200 1210 1220 1230 1240 CATGGACCCGCGTCCTCCTCGTGGTGCCGGGGGGCACCC 1200 CATGGACCCGCGTCCTCCTCGTGTGCCGGGGGGGGGGGG	CGGATITCITTCCTTGCTCAGCAACCTGTGGAGGAGGTTA 1000
TCAGCITGACATCGCCTGAGTGCTACGATTCTGAGGGCAAC 1040 CGTGTGGTTGCTGACCAACACTGTCACTATTACCCAGAGA 1080 ACATCAAACCCAAACCCAACGTTCAGGAGTGCAACTTGGA 1120 TCCTTGTCCAGCCAGTGAGGGATACAAGCAGATCATGCCT 1160 TATGACCTCTACCATCCCCTTCCTGGGTGGGAGGCCACCC 1200 1210 1220 1230 1240 LILLIA LILIA LILLIA LI	1010 1020 1030 1040
CONTRACTOCACACACACTCCACCACTCACCACACACTTCACACTACTCACACCAC	
ACATCAAACCCAAACCCAAGCTTCAGGAGTGCAACTTGGA 1120 TCCTTGTCCAGCCAGTGAGGGATACAAGCAGATCATGCCT 1160 TATGACCTCTACCATCCCCTTCCTCGGTGGGAGGCCACCC 1200 1210 1220 1230 1240 LILLIA LILIA LILLIA LILLIA LILLIA LILLIA LILIA LILIA LILLIA LILLIA LILLIA	TCAGCTGACATCGGCTGAGTGCTACGATCTGAGGAGCAAC 1040
TCCTTGTCCACCAGTGACGATACAACCAGATCATGCCT	CGTGTGGTTGCTGACCAACACTGTCACTATTACCCAGAGA 1080
1210 1220 1230 1240	ACATCAAACCCAAACCCAACCTTCACGAGTGCAACTTGGA 1120
1210 1220 1230 1240	TCCTTGTCCAGCCAGTGACGGATACAAGCAGATCATGCCT 1160
CATGGACCGGTGCTCCTCGTGTGGGGGGGGGCATCCA 1240 GAGCCGGCAGTTTCCTGTGTGGAGGAGACACCCCCCCCCC	TATGACCICTACCATCCCCTTCCTCGGTGGGAGGCCACCC 1200
CATGGACCGCGTCTCCTCGTGTGGGGGGGGCCATCCA 1240 CAGCCGGCAGTTTCCTGTGTGGAGCAGGACATCCAGGGG 1280 CATGTCACTTCAGTGGAAGAGTGGAAATCCAGTGTACACCC 1320 CTAAGATGCCCATCCGCGAGCCCTGCAACATTTTGACTG 1360 CCCTAAAATGCCCGCACAGGAGTGGTCTCCGTCCACAGTG 1400 1410 1420 1430 1440 ACGTGTGGCCAGGGCCTCAGATACCGTGTGGTCCTCCAC 1440 TCGACCATCGAGGACCTCAGATACCGTGTGGTCCTCCACA 1480 AACAAAGCCCCACATAAAAGAGGAATGCATCGTACCCACT 1520 CCCTGCTATAAAACCCAAAGAGAAACTTCCAGTCGAGGCCA 1560 AGTTGCCATCGTTCAAACAACACTCAGAGACTTACAGACAACG 1600 1610 1620 1630 1640 LILLILLILLILLILLILLILLILLILLILLILLILLI	1210 1220 1230 1240
CATGTCACTTCAGTGGAGAGACTGCACACTGTACACCC 1320 CTAAGATGCCCATCGCGCAGCCCTGCAACATTTTTGACTG 1360 CCCTAAAATGCCCGCACCAGGAGTGGTCTCCGTCACACTG 1400 1410 1420 1430 1440 ACGTGTGCCCAGGGCCTCAGATACCGTGTGCTCCCCAA 1440 TCCACCATCGAGGGCCTCAGATACCGTGTGCTCCTCCA 1440 TCCACCATCGAGGACTGCACACAGGAGGCTGTAGCCCAAA 1480 AACAAACCCCCACATAAAAGAGGAATCCATCGTACCCACT 1520 CCCTCCTATAAAACCCCAAAGAAGAACATCCAGTCGAGGCCA 1560 AGTTGCCATGGTTCAAACAACTCCAGTCGAGGCCA 1560 AGTTGCCATGGTTCAAACAACTCAAGACCTAGAACAACG 1600 1610 1620 1630 1640 LITTLITTLITTLITTLITTLITTLITTLITTLITTLI	<u> </u>
CATGTCACTTCAGTGGAAGAGTGGAAATCCATGTACACCC 1320 CTTAAGATGCCCATCGGCAGCCCTGCAACATTTTTGACTG 1360 CCCTTAAATGCCTGGCACAGGGTGGTCTCCGTCCACAGTG 1400 1410 1420 1430 1440 ACGTGTGGCCCAGCGCCTCAGATACCGTGTGGTCCTCTGCA 1440 TCGACCATGGAGCACTAGAGCCCTGTAGCCCAAA 1480 AACAAACCCCCACATAAAAGAGGAATCCATGGTACCCACT 1520 CCCTGCTTATAAACCCAAAGAGAAACTTCCAGTCCAGCCCA 1560 AGTTGCCATGGTTCAAACAACCTCAAGACCTAGAACAACG 1600 1610 1620 1630 1640 LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	CATGGACCGCGTCCTCCTCGTGTCCCCGGGGCCATCCA 1240
CTAAGATGCCCATCGCGCAGCCCTCGAACATTTTTGACTG 1360 CCCTAAATGGCTGGCACAGGAGTGGTCTCCGTCCACAGTG 1400 1410 1420 1430 1440 ACGTGTGGCCAGGGCCTCAGATACCGTGTGGTCCTCTGCA 1440 TCGACCATCGAGGAATGCACACAGCAGCCTGTAGCCCAAA 1480 AACAAAGCCCCACATAAAAGAGGAATGCATCGAGTCGAG	GAGCCCGGCAGTTTCCTGTGTGGAGGACGACATCCAGCGG 1280
1410 1420 1430 1440 ACTITICA ACCORDENCE TO	CATGTCACTTCAGIGGAAGAGIGGAAATGCATGTACACCC 1320
1410 1420 1430 1440 ACTIGICACCAGGACCTICAGATACCGIGIGGICCTCTGCA 1440 TOTACCATOGAGGATGCACCACGAGGCCTGIAGCCCAAA 1480 AACAAAGCCCCACATAAAAGAGGAATGCATCGIACCCACT 1520 COCTECTATAAACCCAAAGAGAAAACTTCCAGTCGAGGCCA 1560 AGTTGCCATGGITCAAACAAGCTCAAGACCTAGAACAAGG 1600 1610 1620 1630 1640 LIIILIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CTAAGATGCCCATCGCGCAGCCCTGCAACATTTTTGACTG 1360
ACGREGOCAGGCCTCAGATACCGTGTGGTCCTCCA 1440 TCCACCATCGAGGAATGCACACAGGAGGCTGTAGCCCAAA 1480 AACAAAGCCCCACATAAAAGAGGAATGCATCGTGCCCACT 1520 CCCTGCTATAAACCCAAAGAGAAACTTCCAGTCGAGGCCA 1560 AGTTGCCATGGTTCAAACAACTCCAGTCGAGGCCA 1600 1610 1620 1630 1640 HILLIHIH HILLIH HILLI	COCTAPATGGCTGGCACAGGGGTGTCTCCGTGCACAGTG 1400
ACGREGOCAGGCCTCAGATACCGTGTGGTCCTCTGCA 1440 TCCACCATCGAGGAATGCACAGAGGCCTGTAGCCCAAA 1480 AACAAAGCCCCACATAAAAGAGGAATGCATCGTACCCACT 1520 CCCTGCTATAAACCCAAAGAGAAACTTCCAGTCGAGGCCA 1560 ACGTTGCCATGGTTCAAACAACCTCAAGACCTAGAACAACG 1600 1610 1620 1630 1640 TITITITITITITITITITITITITITITITITITITI	1410
TOTACCATOSAGGAATGCACACAGGAGGCTGTAGCCCAAA 1480 AACAAAGCCCCACATAAAAGAGGAATGCATCGTACCCACT 1520 COUTSCTATAAAACCCAAAGASAAACTTCCAGTCGAGGCCA 1560 AGTTGCCATGGTTCAAACAACCTCAAGAGCTAGAACAAGG 1600 1610 1620 1630 1640 LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	
AACAAAGCCCCACATAAAAGAGGAATGCATCGTACCCACT 1520 CCCTGCTATAAACCCAAAGAGAAACTTCCAGTCGAGGCCA 1560 AGTTGCCATGGTTCAAACAACCTCAAGACCTAGAACAACG 1600 1610 1620 1630 1640 LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	ACGIGIGGCCAGGGCCICAGATACCGIGIGGTCCICTGCA 1440
COCTECTATAAACCCAAAGABAACTTCCAGTCGAGGCCA 1560 AGTTGCCATGGTTCAAACAACTCAAGACCTAGAACAAGG 1600 1610 1620 1630 1640 LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	TOGACCATOGAGGAATGCACACAGGAGGCTGTAGCCCAAA 1480
AGTTGCCATGGTTCAAACAACCTCAAGACCTAGAACAAGG 1600 1610 1620 1630 1640 LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	AACAAAGCCCCACATAAAAGAGGAATGCATCGTACCCACT 1520
1610 1620 1630 1640 number of the first of	COCTECTATAAACCCAAAGAEAAACTTCCAGTCGAGGCCA 1560
AGUNCTGNGTCAGAGCAGCCCTCGTAAgttgtaaaagca 1640 cagactgttctatattttgaaacttttgtttaaagaaagca 1680 gtgtctcactggttgtagctttcatgggttctgaactaag 1720 tgtaatcatctcaccaaagcttttttggctctcaaattaaa 1760	AGTTGCCATGGTTCAAACAAGCTCAAGAGCTAGAACAAGG 1600
AGGNOCTGTGTGTCAGAGCACCCCTCGTAAgttgtaaaagca 1640 cagastgttctatatttgaaacttttgtttaaagaaagca 1680 gtgtetcactggttgtagctttcatgggttetgaactaag 1720 tgtaatcatctcaccaaagcttttttggctctcaaattaaa 1760	1610 1620 1630 1640
cagastgttstatatttgaaacttttgtttaaagaaagca 1680 gtgtstsastggttgtagstttsatgggttstgaastaag 1720 tgtaatsatstsassaagstttttggststsaaattaaa 1760	
gtgteteaetggttgtagetttteatgggttetgaactaag 1720 tgtaatcateteaecaaagetttttggeteteaaattaaa 1760	AGGTGCTGTGTCAGAGCCCCTCGTAAgttgtaaaagca 1640
tgtaatcatctcaccaaagctttttggctctcaaattaaa 1760	cagastgttstatatttgaaacttitgtttaaagaaagca 1680
	gtgteteaetggttgtagettteatgggttetgaactaag 1720
gattgattagtttcaaaaaaaaaaaaaaaaaaaaaagatgcggc 1800	
	gattgattagtttcaaaaaaaaaaaaaaaaaaaaaagatgcggc 1800

33.54

g. 11A (con't)

1810 1820 1830 1840

aga 1803

34:54 Fig. 11B

ugc ugu	Asp (D) Cys (C) Cys (C) Cys (C)	26 10	# cug	Leu(L) Leu(L) Leu(L)	11 14	# uca # ucc # ucg # ucu	Ser(S)	10 5	#	: Val(V) - Val(V) n ???(X)	6 29 0 526
	Cys (C) Gln (Q)			Leu(L) Leu(L)			Ser(S)	43		ساق	526

Created: Wednesday, May 5, 1999 10:19 AM

Ligated 459225+482392 with Sac I(168)&Eco RI(or Not I) Cloning site:5';Eco RI 3';Not I Vector; PI7T3 pac.

human ADAM-TSRI Adam-Ts related protein-1.

		30		
MECCRRATEGILLE	AFLLLSSR'	IARSEEDRDGL	WIDAWG 40	- Signal pephide
PWSECSRTCGGGAAN: CPPEAGDFRAQQCSAI				v
LKCQAKGITLVVELAI GCDHQLGSTVKEDVC				
210		230 Lean Janea L		
SDDTVVAIPYGSRHII LSSTGTFLVDNSSVDI NSGSADSTVQFIFYQI SABCYDLRSNRVVAD ASDGYKQIVPYDLYHI	RLVLKGPDH FQ:FPDKEII PIIHFWREII JYCHYYPEN PLPFWEATF	LYLETKTLQGT LRMAGPLTADE DEFPCSATCGG EKPKPKLQECN VTACSSSCCGG	KGENS 240 IVKIR 280 GYQLIT 320 LDPCP 350 IQSRA 400	(C) YYPENIKPKPKLYE
410 		430 <u>Lii</u> liii		
VSCVEEDIQGHVISVE LAQEWSPCIVICGQG HIKEECIVPTPCYKFE SEEPS. 526	RYFVVLCII CE-LIPVEAKI	CHRCMHICCCS: LPWFKQAQELEI	PKIKP 480 BGAAV 520	(c) QELEEGAAV = Learning Combine for AL
Similar	to molean	ADAM-75 e and	farm district	eguin domain. Our

Fig. 12

Fig. 13

C MPOGPSFRSPAFLLRPLLLLLCALAPGAPGPAPGRATEGRAALDIVHPVRVDAGGSFLSYELWFRALRKRDVSVRPDAPA 80 fyelogreelrenitanchilapgevsetrrogicrahifahtpachilgevodpelegglaaisacdgikgveqlsn 160 EDYFIEFIDSAPARPCHAQPHWYKRQAPERLAQRSDSSAPSTOGVQVYPELESRREFWEQRQQWRRPRLRRLHORSVSK 240 EKWETLVVADAKWEYHGOPQVESYVLTIMMVAGLFHDPSIGNPIHETIVRLVLLEDEEEDLKITHHADVTLKSPCKW 320 CKSTRYKGDAHPLHHDTATILITRKDLCAAM IRPCETLGLSHVAGMOOPHRSOS INEDTGLPLAF WHELGHSEGIOHIG 400 YSAFCEININVOHTLMCSVIJ.TCHSKILDAANDITRCGENIVALLSGECVP/AIFFPEAVDOG/ASG/ASANSICSRSCQAIG/QS 560 ÇACPAGRPSFRHVQCSHFDAMLYKGQLHIWVP J-→Spacer domain AKKLRDAWDGTFCYQVRASRDLCINGICKINGCDFEIDSGAMEDRCGVCHEVGSTCHIVSGTFEEAEGLGYVDVGLIPA. 720 GARETRICEVAFAANFLALRSEDFEKYFINGGWIIQVNGDYQVAGIITFTYARRONWENLISPGPIKEPWIQVFASRGPG 800 GGERGGVFPPSTLHGESRPGGVSPGSVTEPGSEPGPPAAASTSVSPSLKVFNLVAAVHFGGVGQAFLGLGGWRRHLVLMG 880 PRLIPTQLLFQFSNBGWWEYTTEREAGCHTEVPPPWFSWHWGPWIRCTVTCGFGFRWAFHSPTCFGLVSCQGHALQLBAH 960 CHATTOLEVOFSETOFSICEMRLALALOFREAGRVAG 997

Fig. 13 (con't)

		adamalysin II atrolysin A	HELGHNLGME HD HELGHNLGMV HD	
	a	hADAM-9 hADAM-10 hADAM-15 hADAM-17 mADAM-19	HELGHNLGMNHD HEVGHNFGSPHD HELGHSLGLDHD HELGHNFGAEHD HEIGHNFGMSHD	
	а	mADAM-TS1 hADAM-TS2 hADAM-TS3 hADAM-TS4 mADAM-TS5 hADAM-TS6 hADAM-TS7	HELGHVFNMP HD HETGHVLGME HD HETGHVLGME HD HELGHVFNML HD HEIGHLLG LS HD HEIVHN FGMNHD HELGH S FG I Q HD	
	mADAM-TS1 hADAM-TS2 hADAM-TS4 hADAM-TS4 hADAM-TS5 hADAM-TS6 hADAM-TS7	W G P W G P W G A W S P W G A W S P W G P W G P W G P W G P W G P W G P W G P W G P W G P W G P W G P W G P W G P W G P W S L W S G W S A	F G S C S R T C G T G V K F F G S C S R T C G T G V K F W G D C S R T C G G V Q F W G Q C S R S C G G G V Q F W G E C S R T C G G G V S S	20 20 20 20 20 20 20 20
b	mADAM-TS1 hADAM-TS2 hADAM-TS3 hADAM-TS4 hADAM-TS5 hADAM-TS6 hADAM-TS7	T M R E C D R T R Q C D S S R D C T A Y R H C D A E R Q C T	N P H P A N G G R T C S G L N P H P A N G G R T C S G L R P Y P R N G G K Y C E G R N P A P R N N G R Y C T G K S P A P S G G G K Y C L G E	40 40 40 40 40 40 40
	mADAM-TS1 hADAM-TS2 hADAM-TS3 hADAM-TS4 hADAM-TS5 hADAM-TS6 hADAM-TS7	R	C N S Q D C C S R O D C C N T E D C C S L M P C C N T D P C	52 52 52 52 52 52 52 52

Fig. 13 (con't)

Fig. 15

ADAM-TS RELATED PROTEIN-1 (ADAM-TSR1)

FIGURE 16 Pa

MSSCFWVPAMRSPSPPAWITIGHCWPSRHLLP 40	
GAAPRHGGHSRVFPLLQSGLASTHFLLNLTRSSRLLAGRV	80
SVEYWIREGLAWQRAARPHCLYACHLQGQASSSHVAISTC	120
GGLHGLIVADEEEYLIEPLHGGPKGSRSPEESGPHVVYKR	160
SSLPHPHLDTACGVRDEKPWKGRPWWLRTLKPPPARPLGN	200
ETEFGQPGLKRSVSRERYVETLVVADKMMVAYHGRRDVEQ	240
YVLAIMNIVAKLEQDSSLGSIVNILVIRLILLITEDQPILE	280
ITH+AGKSLDSFCKVQKSIVN+SG+GNAIPENGVAN+DTA	320
VLITRYDICIYKNKPCGTLGLARWAECVSAREAAASMRTL	360
AATSVHHCHEIGHTFGMNHDGVGNSCGARGQDPAKLMAAH	4 00
ITI4TINPFVWSSCNRDYITSFLDSGLGLCLANRPPRQDFV	440
YPTVAPGQAYDAL BQCRFQHGVKSRQCKYGEVCSELWCLS	4 80
KENFCITNSIPAAEGILOQIHTIDKGWCYKRVCVPFGSRP	520
DGVDGAVGPWTPWGDCSRTCGGGVSSSSRHCDSPRPTIGG	560
KYCLGERRRHRSCNTDDCPPGSQDFREVQCSEFDSIPFRG	600
KET/KWETTYROGGVKACSLITSLAEGFNFYTERAAAVVDGIP	640
CFPDTVDICVSGECKHVGCDRVLGSDLREDKCRVCGGDGS	680
ACETTEGVFSPASPGAGYEDVVWIPKGSVHIFIQDLNLSL	720
SHLALKGDQESLLLEGLPGTPQPHRLPLAGTTFQLRQGPD	760
QUQSLEATGPINASLIVMVLARTELPALRYRFNAPIARDS	800
LPPYSWHYAPWIKCSAQCAGGSQVQAVECRNQLDSSAVAP	840
HYCSAHSKLPKRÇRACNTEPCPPDWVVCNWSLCSRSCDAG	880
VF_SRS\VCQRRVSAAEFKALDDSACPQPRPPVLEACHGPT	920
CPPEW4ALDWSECTPSCGPGLRHRVVLCKSADHRATLPPA	960
HCSPA4KPPATMFCNLRRCPPARW/AGEMGECSAQCGVGQ	1000
RQRSVRCTSHIGQASHECTEALRPPTTQQCEAKCDSPTPG	1040
DGPEBCHDVNKVAYCPLVLKFQFCSRAYFRQMCCKTCQGH	1080
Created: Thursday, October 01, 1998 11:05	5 PM

10 20 30 40	
toacgoacgocttccggtctcaagATGAGTTCCTGTCCAG	40
TOTOGAGAGOTIATGAGATOGOCTTOCOCCACOCGGGGGAC	8 0
CACAACGGGGCACTGGTGGCCTTCTCCCCACCTCCTCCCC	120
-9EACCAGOGEOGCACGCGCCCACAGOCGAGTCCCGC	1 60
الماكيلين الماليان و مالانتخاب في الماليان المال	200

FIGURE 16 (continued) Pa 230 240 210 220 GAACCTGACCCGCAGCTCCCGTCTACTGCCAGGCCCCGTC 240 TCCGTGGAGTACTGGACACGGGAGGGCCTGGCCTGGCAGA 280 GGGGGGCCGGCCCCACTGCCTCTACGCTGGTCACCTGCA 320 GGGCCAGGCCAGCAGCTCCCATGTGGCCATCAGCACCTGT 360 GGAGGCCTGCACGGCCTGATCGTGGCAGACCAGGAAGAGT 400 410 420 430 _______ ACCIGATICACCCCTGCACGGTGGGCCCAAGGGITCTCG 440 GABCODGIAGGAAAGTGGACCACATGTGGTGTACAAGCGT 480 TOCICICTGCGTCACCCCCACCTGGACACAGCCTGTGGAG 520 TGAGAGATGAGAAACCGTGGAAAGGGCGGCCATGGTGGCT 560 GOGGACCITGAAGCCACCCCTGCCAGACCCCTGCGGAAT 600 610 620 630 640 GAAACAGAGCGTGGCCAGCCAGGCCTGAAGCGATCGGTCA 640 GCCGAGAGCGCTACGTCGAGACCCTCGTCGTCGCCTGACAA 680 GATGATGTTGGCCTATCACGGGCGCCGGGATGTGGAGCAG 720 TATGTCCTGGCCATCATGAACATTGTTGCCAAACTTTTCC 760 AGGACTCGAGTCTGGGAAGCACCGTTAACATCCTCGTAAC 800 820 830 840 810 ______ TCGCCCATCCTCCTCACGGACGACCACCCCACTCTCGAG 840 ATCACCCACCATGCCGGGAAGTCCCTAGACAGCTTCTGTA 880 AGTGGCAGAAATCCATCGTGAACCACAGCGGCCATGGCAA 920 TGCCATTCCAGAGAACGGTGTGGCTAACCATGACACAGCA 960 GTECTTATCACACGCTATGACATCTCCATCTACAAGAACA 1000 1010 1020 1030 1040 AACCTGDGGCACACTAGGCCTGGCCCGGTGGCCGGAATG 1040 TOTGA GOGOGAGAGAAGOTGCAGCGTCAATGAGGACATTG 1080 GCTGCLACAAGOGTTCACCATTGCCACGAGATCGGGCACA 1120 CATTO EGLATGA ACCATGA O GO GO GO GAAA CAGO TG TG 1160

CTODFICCACATCTTCATCCAGGATCTGAACCTCTCTCC 2160

FIGURE 16 (continued)	Pa
2210 2220 2230 22	40
TGGAGGGGTGCCTGGGACCCCCCAGCCCCACCGTCTGCC	2240
TCTAGCTGGGACCACCTTTCAACTGCGACAGGGGCCCAGAC	2280
CAGGTCCAGAGCCTCGAAGCCCTGGGACCGATTAATGCAT	2320
CICICATCGICATGGIGCTGCCCGGACCGACCTGCCTGC	2360
CCTCCCCTACCCCTTCAATGCCCCCCATCCCCCGTGACTCG	2400
2410 2420 2430 24	40
	
CIGCCCCCTACTCCTGGCACTATGCGCCCTGGACCAAGT	2440
GCTCGGCCCAGTGTGCAGGCGGTAGCCAGGTGCAGGCGGT	2480
GGAGTGCCGCAACCAGCTGGACAGCTCCGCGGTCGCCCCC	2520
CACTACTCCAGIGCCCACAGCAGCTGCCCAAAAGCCAGC	2560
GCGCCTGCAACACGGAGCCTTGCCCTCCAGACTGGGTTGT	2600
2610 2620 2630 264	10
AGGGAACTIGTTCGCTCTGCAGCCGCAGCTGCGATGCAGGC	2640
GIGCGCAGICGCTCGGTCGTGTGCCAGCGCCGCGTCTCTG	2680
CCGCGGAGGAGAGGCGCTCGACGACAGCGCATGCCCGCA	2720
SCCCCCCCACCTGTACTGGAGGCCTGCCACGCCCCACT	2760
TCCCTCCGGAGTGGCCGCCCTCGAGTGGTCTGAGTGCA	2800
2810 2820 2830 284	10
OCCCAGCTGCGGGCCGGGCCTCCCCCCCCCCCGCGTCGTCCT	2840
TTGCAAGAGGGCAGACCACGGCGCGCGCG	2880
CACTGCTCA/2CCGCCGCCAAGCCACCGCCCACCATGCGCT	2920
GUAACITGUGCCGCTGCCCCCGCTGGTGCCTGG	2960
OBAGIGOGGIGAGIGCICTOCACAGIGCGGCGICGGGCAG	3000
3010 3020 3030 304	10
OBCAGOCTOGGTGCGCTGCACCACCCACACGGGCCAGG	3040
OGICGCACGAGTGCACGGAGGCCCTGCGGCCGCCCACCAC	3080
GCAGCAGTGTGAGGCCAAGTGCGACAGCCCAACCCCCGGG	3120
GAOGGOCTGAAGAGTGCAAGGATGTGAACAAGGTGGCCT	3160

	FIGUR	E 16 (contir	iued)		Pε
			•		
	3210	3220	3230	3240	0
سبب	لتتبليبنا	<u></u>	حسلست	للبييا	
CTAC	TTCCGCCAGAT	GIGCIGCAAA	ACCTGCCAGO	GCCAC	3240
taggg	gggcgcgcggc	cacccggagcc	acagetggcg	ggggtc	3280
	ccgccagccct				
cgggg	gggggggaac	tgggagggaa	.gggtgagacg	ggagcc	3360
ggaag	gttatttattg	ggaacccctg	cagggccctg	getgg	3400
	3410	3420	3430	3440	0
	لتتباليتنا	ليتباليين	لتستليبي	لبيبا	
gggga	atgga 3409				

FIGURE 17

Molecular Weight 216301.30 Daltons

- 1934 Amino Acids
- 234 Strongly Basic(+) Amino Acids (K,R)
- 216 Strongly Acidic(-) Amino Acids (D,E)
- 477 Hydrophobic Amino Acids (A, I, L, F, W, V)
- 657 Polar Amino Acids (N,C,Q,S,T,Y)

7.734 Isolectric Point

24.102 Charge at PH 7.0

MQFVSWATLLJTLLVRDLAEMGSPDAAAAVRKDRLHPRQVKLLETLSEYEIVSPIRVNALG 60 EPFPINVHFIRTRSINSATDPWPAFASSSSSSTSPQAHYRLSAFGOOFLFNLTANAGFI 120 APLFTVTLLGTPGVNQTKFYSEEFAELKHCFYKGYVNTNSEHTAVISLCSGMLGTFRSHD 180 GGYFIEPLQSMDEQEDEEEQNKPHIIYRRSAPQREPSIGRHACDISEHKNRHSKDKKKTR 240 ARKIVGERIDILAGIVAALNSGLATEAFSAYGIKTIMTREKRTHRRTKRFLSYPREVEVLVV 300 ADNRMVSYHGENLQHYILTLMSIVASIYKDPSIGNLINIVIVNLIVIHNEQDGPSISFNA 360 QTTLKNFCQMQHSNSPGGIHHDTAVLLTRQDICRAHDKCDTLGLAFLGTICDPYRSCSIS 420 EDSGLSTAFTIAHELGHVFNMPHDDNNKCKEEGVKSPQHVMAPILNFYTNPVMVSKCSRK 480 YITEFLDTGYGECLINEPESRPYPLPVQLPGTLYNVNKQCELIFGPGSQVCPYMMQCRRL 540 WCNNVNGVHKGCRTQHTPMADGTECEPGKHCKYGFCVPKEMDVFVTDGSMGSMSPFGTCS 600 RTCGGGIKTAIRECNRPEPKNGGKYCVGRRMKFKSCNTEPCLKOKRDFRDEOCAHFDGKH 650 FNINGLLPNVFWPKYSGILMKDRCKLFCRVAGNIAYYQLRDRVIDGIPCGQDINDICVQ 720 GLCRQAGCDHVLNSKARRDKCGVCGGINSSCKTVAGTFNIVHYGYNIVVRIPAGATNIDV 780 RQHSFSGEIDDDNYLALSSSKGEFLLNGNEVVIMAKREIRIGNAVVEYSGSETAVERINS 840 TDRIEQELLIQVLSVGKLYNPDVRYSFNIPIEDKPQOFYWNSHGPWQACSKPCQGERKRK 900 LVCTRESDQLTVSDQRCDRLPQPGHITEPCGTGCDLRWHVASRSECSAQCGLGYRTLDIY 960 CAKYSRLDGKTEKVDDGFCSSHPKPSNREKCSGECNIGGWRYSAWTECSKSCDGGTQRRR 1020 AICVNIRNIVLDDSKCTHQEKVTIQRCSEFPCPQWKSGDWSECLVTGGKGHKHRQWWCQF 1080 GEDFLNDRMCDPETHPTSMQTCQQPECASMQAGFWVQCSVICGQGYQLRAVKCIIGTYMS 1140 VVDDNDCVAATRPTDTQDCELPSCHPFPAAPETRRSTYSAPRTOWRFGSWI'PCSATCGKG 1200 TRM: YVSCFLENGSVADESACATLPR: FVAKEECSVTPCGCWKALDWSSCSVTCGCGRATR 1260 QVMCVNYSCHVIDESECDQDYIPEIDQDCSMSPCPQRTPDSGLAQHPFQNEDYRPRSASP 1320 SRTHVLGC:\CMRTGPWGACSSTCAGGSQRRVVVCQDENGYTANDCVERIKPDEQPACESG 1380 PCPCWAYGMGECTKLCGGGIRTRLVVCQRSNGERFPDLSCEILDKPPDREQCNTHACPH 1440 DAAWSTGPWSSCSVSCGRCHKQRNVYCMAKDGSHLESDYCKHLAKPHGHRKCRGGRCPKW 1500 KAGAWSQCSVSCGRGVQQRHVGCQIGTHKLAFETECNPYTRPESECECQGPRCPLYTWRA 1560 HEMOBOTHTOGEGSRYRHANONDINHNEVHGARCIDVSKRPVDRESCSIOPOFYVWITGEN 1620

LECTROLOGICA CONTRACTOR SECURIOR TO THE PROPERTY OF A CONTRACTOR OF A CONTRACT

FIGURE 17 (cc inued)

Ρa

DCYSAAKCPQGRFSINLYGTGLSLITESARWISQGNYAVSDIKKSPDGTRVVGKCGGYCGK 1920 CTPSSGTGLEVRVL 1934

10 20 30 40
tgggggcagcggagggggggggaagcaccATGCAGTT 40
TGTATCCTGGGCCACACTGCTAACGCTCCTGGTGCGGGAC 80
CTGGCCGAGATGCGGAGCCCAGACGCCGGGGGGGGGGGG
GCAAGGACAGGCTGCACCCGAGGCAAGTGAAATTATTAGA 160
GACCCTCAGCGAATACGAAATCGTGTCTCCCATCCGAGTG 200
210 220 230 240
AACGCTCTCGGAGAACCCTTTCCCACGAACGTCCACTTCA 240
AAAGAACGCGACGGAGCAITAACICIGCCACTGACCCCTG 280
GCCIGCCITCGCCTCCTCCTCTCTCTCTCCCCCC 320
CAGGOGCATTACCGCCTCTCTCGCCCAGCAGTTTC 360
TATTTAATCTCACCGCCAATGCCGGATTTATCGCTCCACT 400
410 420 430 440
GITCACIGTCACCCTCCICGGGACGCCCGGGGIGAATCAG 440
ACCAAGTITTATTCCGAAGAGGAACCGGAACTCAAGCACT 480
GITTCTACAAAGCTATGTCAATACCAACTCCGAGCACAC 520
GGCCGTCATCAGCCTCTGCTCAGGAATGCTGGGCACATTC 560
OGGTCTCATGATGGGGGTTATTTTATTGAACCACTACAGT 600
610 620 630 640
OTEN TO CONTROL OF THE PROPERTY OF THE PROPERT
-CTAT-33ATGAACAAGATGAAGAGAACAAAACA4ACC 640 - CCACATC4TTTATAGGCGCACCCCCCCCCCCAGAGAGACCCC 680
- OTACATCATTTATAGGCGCACCGCCCCCAGAGAGACCCC - 680 - TCAACACCAACCCATGCATCTGACACCTCAGAACACAAAA - 720
ATAGGCACAGTAAAGACAAGAAAAACCAGAGCAAGAAA 750
ATAGGGAAAGGATTAACCTGGTGACGTAGCAGCA 800
810 820 833 840

الله المسائنيسيان المستستان الماليات والمالي والمسائن المسائن والماليات والم

Ρê

FIGURE 17 (co! lued)

1010 1020 1030 1040 TGTAGCCTCTATCTATAAAGACCCAAGTATTGGAAATTTA 1040 ATTAATATTGTTATTGTGAACTTAATTGTGATTCATAATG 1080 AACAGGATGGCCTTCCATATCTTTTAATGCTCAGACAAC 1120 ATTAAAAAAACTTTTGCCAGTGCAGCATCGAACAGTCCA 1160 GGTGGAATCCATCATGATACTGCTGTTCTCTTAACAAGAC 1200 1210 1220 1230 1240 LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
TGTAGCCTCTATCTATAAAGACCCAAGTATTGGAAATTTA 1040 ATTAATATTGTTATTGTGAACTTAATTGTGATTCATAATG 1080 AACAGGATGGCCCTTCCATATCTTTTAATCCTCAGACAAC 1120 ATTAAAAAAACTTTTGCCAGTGCCAGCATTCGAACAGTCCA 1160 GGTGCAATCCATCATGATACTGCTGTTCTCTTAACAAGAC 1200 1210 1220 1230 1240 AGGATATCTGCAGAGCCTACGACAAATGTGATACCTTAGG 1240 CCTGGCTGAACTGCGAACCATTTGTGATCCCTATAGAAGC 1280 TGTTCTATTAGTCAAGATAGTGGATACAGCTTTTA 1320 CGATCGCCCATGAGCTGGCCCATGTGTTTAACAAGCTTTTA 1360 TGATGACAACAACAAATGTAAAGAAGAAGGAGTTAAGAAGT 1400 1410 1420 1430 1440 CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
TGTAGCCTCTATCTATAAAGACCCCAAGTATTGGAAATTTA 1040 ATTAATATTGTTATTGTGAACTTAATTGTGATTCATAATG 1080 AACAGGATGGGCCTTCCATATCTTTTAATGCTCAGACAAC 1120 ATTAAAAAAACTTTTGCCAGTGGCAGCACTTCGAACAGTCCA 1160 GGTGGAATCCATCATGATACTGCTGTTCTCTTAACAAGAC 1200 1210 1220 1230 1240 AGGATATCTGCAGACCACACACACACATGTGATACCCTTAGG 1240 CCTGGCTGAACTGGGAACCATTTGTGATCCCTATAGAAGC 1280 TGTTCTATTAGTGAAGATAGTGGATTGAGTACAGCTTTTA 1320 CGATCGCCCATGAGCTGGCCCATGTGTTTAACATGCCTCA 1360 TGATGACAACAACAAATGTAAAGAAGAAGAGTAAGAGT 1400 1410 1420 1430 1440 CCCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
ATTAATATTGTTATTGTGAACTTAATTGTGATTCATAATG 1080 AACAGGATGGGCCTTCCATATCTTTTAATGCTCAGACAAC 1120 ATTAAAAAAACTTTTGCCAGTGGCAGCATTCGAACAGTCCA 1150 GGTGGAATCCATCATGATACTGCTGTTCTCTTAACAAGAC 1200 1210 1220 1230 1240
AACAGGATGGCCTTCCATATCTTTTAATGCTCAGACAAC 1120 ATTAAAAAAACTTTTGCCAGTGGCAGCATTCGAACAGTCCA 1160 GGTGGAATCCATCATGATACTGCTGTTCTCTTAACAAGAC 1200 1210 1220 1230 1240 AGGATATCTGCAGAGCTCACGACAAATGTGATACCTTAGG 1240 CCTGGCTGAACTGGGAACCATTTGTGATCCCTATAGAAGC 1280 TGTTCTATTAGTCAAGATAGTGGATTGAGTACAGCTTTTA 1320 CGATCGCCCATGAGCTGGGCCATGTGTTTAACATGCCTCA 1360 TGATGACAACAACAAATGTAAAGAAGAAGGAGTTAAGAGT 1400 1410 1420 1430 1440 CCCCAGCATGTCATGACTCCCAACACTGAACTTCTACACCA 1440
ATTAAAAACTTTTGCCAGTGGCAGCATTCGAACAGTCCA 1160 GGTGGAATCCATCATGATACTGCTGTTCTCTTAACAAGAC 1200 1210 1220 1230 1240 1211 1220 1230 1240 AGGATATCTGCAGAGCACACAAATGTGATACCTTAGG 1240 CCTGGCTGAACTGGGAACCATTTGTGATCCCTATAGAAGC 1280 TGTTCTATTAGTGAAGATAGTGGATTGAGTACAGCTTTTA 1320 CGATCGCCCATGAGCTGGGCCATGTGTTTAACATGCCTCA 1360 TGATGACAACAACAAATGTAAAGAAGAAGGAGTTAAGAGT 1400 1410 1420 1430 1440 CCCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
GGTGGAATCCATCATGATACTGCTGTTCTCTTAACAAGAC 1200 1210 1220 1230 1240 AGGATATCTGCAGAGCACACAATGTGATACCTTAGG 1240 CCTGGCTGAACTGGGAACCATTTGTGATCCCTATAGAAGC 1280 TGTTCTATTAGTGAAGATAGTGGATTGAGTACAGCTTTTA 1320 CGATCGCCCATGAGCTGGGCCATGTGTTTAACATGCCTCA 1360 TGATGACAACAACAAATGTAAAGAAGAAGAAGAGTTAAGAGT 1400 1410 1420 1430 1440 CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
1210 1220 1230 1240 AGGATATCTGCAGACCACAGACAAATGTGATACCTTAGG 1240 CCTGGCTGAACTGGGAACCATTTGTGATCCCTATAGAAGC 1280 TGTTCTATTAGTGAAGATAGTGGATTGAGTACAGCTTTTA 1320 CGATCGCCCATGAGCTGGGCCCATGTGTTTAACATGCCTCA 1360 TGATGACAACAACAAATGTAAAGAAGAACGAGTTAAGAGT 1400 1410 1420 1430 1440 CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
AGGATATCTGCAGACCACAGACAATGTGATACCTTAGG 1240 CCTGGCTGAACTGGGAACCATTTGTGATCCCTATAGAAGC 1280 TGTTCTATTAGTCAAGATAGTGGATTGAGTACAGCTTTTA 1320 CGATCGCCCATGAGCTGGGCCATGTGTTTAACATGCCTCA 1360 TGATGACAACAACAAATGTAAAGAAGAAGGAGTTAAGAGT 1400 1410 1420 1430 1440 CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
AGGATATOTGCAGAGCTCACGACAAATGTGATACCTTAGG 1240 CCTGGCTGAACTGGGAACCATTTGTGATCCCTATAGAAGC 1280 TGTTCTATTAGTGAAGATAGTGGATTGAGTACAGCTTTTA 1320 CGATCGCCCATGAGCTGGGCCATGTGTTTAACATGCCTCA 1360 TGATGACAACAACAAATGTAAAGAAGAAGGAGTTAAGAGT 1400 1410 1420 1430 1440 CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
CCTGGCTGAACTGGGACCATTTGTGATCCCTATAGAAGC 1280 TGFTCTATTAGTGAAGATAGTGGATTGAGTACAGCTTTTA 1320 CGATCGCCCATGAGCTGGGCCATGTGTTTAACATGCCTCA 1360 TGATGACAACAACAAATGTAAAGAAGAAGGAGTTAAGAGT 1400 1410 1420 1430 1440 CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
TGTTCTATTAGTGAAGATAGTGGATTGAGTACAGCTTTTA 1320 CGATCGCCCATGAGCTGGGCCATGTGTTTAACATGCCTCA 1360 TGATGACAACAACAAATGTAAAGAAGAAGGAGTTAAGAGT 1400 1410 1420 1430 1440 CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
CGATCGCCCATGAGCTGGGCCATGTGTTTAACATGCCTCA 1360 TGATGACAACAACAAATGTAAAGAAGAAGGAGTTAAGAGT 1400 1410 1420 1430 1440 CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
TGATGACAACAAATGTAAAGAAGAAGGAGTTAAGAGT 1400 1410 1420 1430 1440 CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
1410 1420 1430 1440 CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
CCCCAGCATGTCATGGCTCCAACACTGAACTTCTACACCA 1440
$\lambda CCCCCC$
TGAGITITTAGACACTCGITATCGCGAGIGTTTGCTTAAC 1520
GAACCIGAATCCAGACCCTTGCCIGICCAACIGC 1560
CAGGCATCCTTTACAACGTGAATAAACAATGTGAATTGAT 1600
1610 1620 1630 1640
TTTTGGACCAGGTTCTCAGGTGTGCCCCATATATGATGCAG 1640
TGCAGACGCTCTGGTGCAATAACGTCAATGGAGTACACA 1680
AAGGCTGCCGGACTCAGCACACCCTGGGCCGATGGGAC 1710
GEAGUCCGAGCCICGAAAGCACTGLAAGTATCGATTTTGT 1760
GTTCCCAAAGAAATGGATGTCCCCGTGACAGATGGATCCT 18:0
1810 1820 1830 1840
GGGAAGITGGAGICCCTITTGGAACCIGCTCCAGAACATG 1840
TOGAGGGGCATCAAAACAGCCATTCGAGAGTGCAACAGA 1880
OCAGAACCAAAAATOGTOGAAAATACTGTGTAGGACGTA 1920
GAATGAAATTTAAGICCTGCAACACGEAGCCATGTCTCAA 1960

Þε

FIGURE	17	(continued)
--------	----	-------------

(continued)	
2010 2020 2030 204	10
	±∪
GACGGGAGCATTTTAACATCAACGGTCTGCTTCCCAATG	3040
TGCGCTGGGTCCCTAAATACAGTGGAATTCTGATGAAGGA	
CCGGTGCAAGTTGTTCTGCAGAGTGGCAGGGAACACAGCC	
TACTATCAGCTTCGAGACAGAGTGATAGATGGAACTCCTT	
GTGGCCAGBACACAAATGATATCTGTGTCCAGGGCCTTTG	3 2200
2210 2220 2230 224	40
CCGCCAAGCTGGATGCGATCATGTTTTAAACTCAAAAGCC	2 2240
CGGAGAGATAAATCCGGGGTTTGTGGTGGCGATAATTCTT	2 2280
CATGCAAAACAGTGGCAGGAACATITAATACAGTACATTA	2320
TEGITACAATACTGTGGTCCGAATTCCAGCTGGTGCTACC	
AATATTGATGTGCGGCAGCAGTTTCTCAGGGGAAACAG	G 2400
2410 2420 2430 24	40
ACGATGACAACTACTTAGCTTTATCAAGCAGTAAAGGTGA	
ATTCTTGCTAAATGGAAACTTTGTTGTCACAATGGCCAAA	
AGGGAAATTCGCATTGGGAATGCTGTGGTAGAGTACAGTG	
GGTCCGAGACTGCCGTAGAAAGAATTAACTCAACAGATCG	
CATIGACCAAGAACITITGCTICAGGITITGICGGIGGGA	A 2600
2610 2620 2630 26	40
AAGITGTACAACCCCGATGTACCCTATTCTTTCAATATTC	
CAATTGAAGATAAACCTCAGCAGTTTTACTGGAACAGTCA	
TGGCCATGCAAGCATGCAGTAAACCCTGCCAAGGGGAA	
OGEAAAOGAAAACTTGTTTGCACCAGGGAATCTGATCAGG	
TTACTGTTTCTGATCAAA;GATGCGATCGGCTGCCCCAGCC	
2810 2820 2830 28	40
(YXXX) CA CANUMA CONTACTOR A CONTACTOR A CANONICAL CONTACTOR A CANONICAL CAN	2010
TGEACACATTACTGAACCTTGTGGTACAGGCTGTGACCTG AGETGGCATGTTGCCAGCAGGAGTGAATGTAGTGCCAG	
AGSIGSCATGTISCCASCASCASTGAATGTAGTISCCCAST	
ATATAGCA/2GCTYCGATGGGAAGACTGAGAAGGTTGATGAT	
	-

Рa

FIGURE 17 (continued)

Pε

FIGURE 17 (continued)

Pa

FIGURE 17 (cc nued)


```
SEQUENCE LISTING
   <110> Apte, Suneel
        Hurskainen, Tiina L.
        Hirohata, Satoshi
   <120> Nucleic Acids Encoding Zinc Metalloproteases
   <130> 26473-04007
10
   <140> 09/369,364
   <141> 1999-08-06
   <160> 26
15
   <170> PatentIn Ver. 2.1
  <210> 1
  <211> 3002
20 <212> DNA
   <213> mus musculus ADAMTS-5
   <2220>
   <221> CDS
25 <222> (18)..(2810)
   <400> 1
   coggogggda gogdact atg ogg etc gag tgg gog tcc ttg ttg otg cta
                       Met Arg Leu Glu Trp Ala Ser Leu Leu Leu Leu
30
   etg etg etg age geg tee tge etg tee etg gee get gae age eee
   Leu Leu Leu Ser Ala Ser Cys Leu Ser Leu Ala Ala Asp Ser Pro
35
   gee geg gea eet gee eag gat aaa ace agg eag eet eag get gea gea
   Ala Ala Ala Pro Ala Gln Asp Lys Thr Arg Gln Pro Gln Ala Ala Ala
40 geg ged ged gag deg gad dag deg dag gag gaa ada dgg gag ega
                                                                        194
   Ala Ala Ala Glu Pro Asp Gln Pro Gln Gly Glu Glu Thr Arg Glu Arg
   ggo cat tha caa occ tig goo ggg cag ogc agg agc ggc ggg otg gio
45 Gly His Led Glm Pro Leu Ala Gly Glm Arg Arg Ser Gly Gly Leu Val
  cut aat ata gab baa ete tab tot ggb ggt gge aaa gtg gje tab ett
His Aon Ile Asp Gln Leu Tyr Ser Oly Gly Sly Lys Val Gly Tyr Leu
   gto tao gog ggo ggo ogg agg tto otg otg gao otg gag aga gat gad
   Val Tyr Ala Gly Gly Arg Arg Phe Leu Leu Asp Leu Glu Arg Asp Asp
```

aca gig ggi goi goi ggi ago ato gil aci gra gga gga ágg cig ago Inn Val Gly Ala Ala Gly Ser Ile Val Thr Ala Gly Gly Gly Leu Ser

The graph gast for a per graph to the control of the graph of the state of the graph of the first state of the state of th

	ggc Gly	tts Phe	ttt Fhe	gca Ala	gtc Val 160	aag Lys	cat His	gog Ala	ogo Arg	tac Tyr 165	act Thr	cta Leu	aag Lys	cca Pro	ctc Leu 170	cig Leu	530
5	ogt Arg	999 Gly	tcc Ser	tgg Trp 175	gca Ala	gag Glu	tat Tyr	gaa Glu	oga Arg 180	att Ile	tat Tyr	999 Gly	gat Asp	gga Gly 185	tct Ser	tcc Ser	578
10	cgc Arg	atc Ile	ctg Leu 190	cat Hıs	gtc Val	tac Tyr	aac Asn	cgc Arg 195	gag Glu	ggc Gly	ttt Phe	agc Ser	ttc Phe 200	gag Gl:	gcc Ala	ctg Leu	€26
15	ccg Pro	cca Pro 205	cgc Arg	gcc Ala	agt Ser	tgc Cys	gag Glu 210	act Thr	cct Pro	gca Ala	tc: Ser	oca Pro 215	tot Ser	31 y	ccc Pro	caa Gln	€74
20	gag Glu 220	agc Ser	ccc Fro	tog Ser	gtg Val	cac His 225	agt Ser	aga Ary	tot Sei	agg Ary	aga Arg 230	yr A cgc	toa Ser	Ala gcg	ctg Leu	gcc Ala 235	722
2.5	ccg Pro	cag Gln	ctg Leu	ctg Leu	gac Asp 240	cac His	tca Ser	got Ala	ttc Phe	tcg Ser 245	cca Pro	tct Ser	Gly 999	aac Asn	909 Ala 250	gga Gly	770
25	cct Pro	cag Gln	act Thr	tgg Trp 255	tgg Trp	agg Arg	cgt Arg	agg Arg	cgc Arg 260	cgt Arg	tcc Ser	atc Ile	toc Ser	agg Arg 265	gcc Ala	cgc Arg	8.18
3 0	cag Glr	gtg Val	gag Glu 270	ctc Leu	ctc Leu	ttg Leu	gtg Val	gct Ala 275	gac Asp	tcg Ser	tcc Ser	atg Met	god Ala 280	agg Arg	atg Met	tat Tyr	866
35	ggg Gly	cgg Arg 285	ggc Gly	ctg Leu	cag Gln	cat His	tad Tyr 290	otg Leu	ctg Leu	acc Thr	atg Met	gcc Ala 295	toc Ser	atc Ile	gcc Ala	aac Asn	914
40	agg Arg 300	ctg Leu	tāc Tyr	agt Ser	cat His	gca Ala 305	agc Ser	att Ile	gag Glu	aac Asn	cac His 310	atc Ile	cgc Arg	ctg Leu	gcg Ala	gtg Val 315	962
	gtg Val	aag Lys	gtg Val	gtg Val	gtg Val 320	atg Leu	acg Thr	gac Asp	aag Lys	gac Asp 325	acg Thr	agt Ser	ctg Leu	gag Glu	gtg Val 330	agc Ser	1010
45	aay Lys	aát Asn	gog Ala	gro Ala 331	acg Tur	acc Thy	ctu Leu	aag Lys	aac Asn 340	tit Phe	tgc Cys	аяр Lys	tgg Trị	dag Gln 345	Cal His	Caa Gln	1098
5.0	Cat His	aar Asn	cag Gln 350	ota Leu	999 91y	gat Asp	gat Asp	cac His 355	gaa Glu	gaş Glu	cac His	ran Tyr	gat Asp 360	oca Ala	gge Ala	ath Ile	1106
55	ctg Leu	ttc Phe 365	acc Thr	oga Arg	gag Glu	gat Asp	tta Leu 370	tgt Cys	999 31y	cat His	cat His	tca Ser 3"5	tgt Cya	gac Asp	acc Thr	ctg Leu	1154
	ויי	350	7 , 7	78.7	755	001	322	a 5 3	+-15	101	273	: £c	202	ago	2:12	qta	1202

et ggg par stalett ggd útt fur Par gad gat tir Baarit. Ogf gad i Herr

	Ile	Зіу	His	Leu 415	Leu	Gly	leu	Ser	His 420	Asp	Asp	Ser	Lys	Phe 425	Суs	Glu	
5	gag Glu	aac Asr.	ttc Phe 430	ggt Gly	act Thr	aca Thr	gaa Glu	gac Asp 435	aag Lys	cgt Arg	tta Leu	atg Met	tot Ser 440	tca Ser	atc Ile	att Leu	1346
10	acc Thr	agc Ser 445	atc Ile	gat Asp	gca Ala	tcc Ser	aag Lys 450	ccc Pro	tgg Trp	tcc Ser	aaa Lys	tgc Cys 455	acg Thr	tca Ser	gcc Ala	acc Thr	1394
	atc Ile 460	aca Thr	gaa Glu	ttc Phe	ctg Leu	gat Asp 465	gat Asp	ggt Gly	cat His	ggt Gly	aat Asn 470	tgt Cys	ttg Leu	cta Leu	gac Asp	cta Leu 475	1442
15	cca Pro	cgg Arg	aag Lys	cag Gln	att Ile 480	ttg Leu	ggt Gly	ccc Pro	gag Glu	gaa Glu 485	ctc Leu	cca Pro	gga Gly	cag Gln	acc Thr 490	tac Tyr	1490
20	gat Asp	gcc Ala	acc Thr	cag Gln 493	cag Glr.	tgc Cys	aac Asn	ttg Leu	aca Thr 500	ttt Phe	999 Gly	cct Pro	gag Glu	tac Tyr 505	tog Ser	gtg Val	1538
25	tgc Cys	cct Pro	ggc Gly 510	atg Met	gat Asp	gtc Val	tgt Cys	9¢g Ala 515	cgg Arg	ctg Leu	tgg Trp	tgt Cys	gct Ala 520	gtg Val	gtg Val	ege Arg	1586
30	caa Gln	ggc Gly 525	caa Gln	atg Met	gtg Val	tgt Cys	ctg Leu 530	acc Thr	aag Lys	aag Lys	ctg Leu	ccg Pro 535	gct Ala	gtg Val	gag 3lu	ggc Gly	1634
	act Thr 540	ccc Pro	tgt Cys	ggg Gly	aag Lys	gga Gly 545	aga Arg	gtc Val	tgc Cys	ott Leu	caa Gln 550	ggc Gly	aaa Lys	tgt Cys	gtg Val	gas Asp 555	1682
35	aaa Lys	act Thr	aag Lys	aaa Lys	aaa Lys 560	tat Tyr	tac Tyr	tog Ser	aca Thr	tca Ser 565	agc Ser	cat His	gga Gly	aat Asn	tgg Trp 570	999 Gly	1730
4 C	tcc Ser	tgg Trp	990 Gly	cc: Pro 575	tgg Trp	ggt Gly	cag Gln	tgt Cys	tct Ser 580	cgc Arg	tca Ser	tgc Cys	999 Gly	gga Gly 585	gga 3ly	gtg Val	1778
45	cag 31n	ttt Fhe	gcc Ala 590	ta: Tyr	Arg	cat His	tgt Cys	aat Asn 592	aac Asb	oot Fro	gca Ala	act Pro	oga Arg 600	aac Asn	agt Ser	gga Gly	1826
5.0	age Arg	tas Tyr €05	tyb Cys	aci Thr	499 317	aag Lys	agg Arg 610	gee Ala	ata Ile	tas Tyr	ogt Arg	500 Ser 615	tgc Sys	agt Ser	gut Vál	aca Thr	_ \$ ⁷ 4
	ccc Fro 620	tgc Cys	cca Pro	ece Pro	aat Asn	ggt Gly 625	aaa Lys	tot Ser	ttt Phe	ogo Arg	cat His 630	gag Glu	cag Glm	tgt Cys	gaa Glu	900 Ala 635	1922
55	aaa Lys	aat Aan	ggc Gly	tat Tyr	cag Gln	tot Ser	gat Asp	gca Ala	aaa Lys	gga 317 445	gtc Val	aaa Lys	aca Thr	ttt Phe	gta Tal ren	gaa Glu	1973

ign in already in a to ten on the first of the second of t

5										tac Tyr							2114
5										gac Asp							2162
10	cta Leu									gga Gly 725							2210
15	aca Thr									aaa Lys							1258
20										cac His							2306
2.5										gcc Ala							2354
25										aag Lys							2402
30	gag Glu				-					gtc Val 805							2450
35	agc Ser									atg Met				-			2498
40	_		_			_			_	aca Thr	-						2546
										aag Lys							2594
45										aag Lys							2642
50	nag Glm									eta Leu 885							2437
55	gac Asp									cag Gln							2738
	.123	ita	ったた。	a sa	1-7.3	172	255	~ ". C	t ::t	cad	500	cot	tot	⊒∦ra	tit	33¢	278€

```
agtratgoot toatgroatt gtoaccacga gtogaattat gggcagaatd tgotototigu 2960
  gaccaaaagg titactotac tiggigaatg aiggiacogi ga
   <210> 2
   <011> 930
   <212> PRT
10 <213> mus musculus ADAMTS-5
   <4CC> 2
   Met Arg Leu Glu Trp Ala Ser Leu Leu Leu Leu Leu Leu Leu Ser
                                      10
15 Ala Ser Cys Leu Ser Leu Ala Ala Asp Ser Pro Ala Ala Ala Pro Ala
                                 25
   Gln Asp Lys Thr Arg Gln Pro Gln Ala Ala Ala Ala Ala Glu Pro
                              4.0
                                                  45
          35
   Asp Gin Pro Gln Gly Glu Glu Thr Arg Glu Arg Gly Hib Leu Glm Pro
   50 55
                                             60
   Leu Ala Gly 31n Arg Arg Ser Gly Gly Leu Val His Asn Ile Asp Gln
    65
                       70
   Lou Tyr Ser Bly Gly Lys Val Gly Tyr Leu Val Tyr Ala Gly Gly
95
25 Arg Arg Phe Leu Leu Asp Leu Glu Arg Asp Asp Thr Val Gly Ala Ala 100 105 110
   Gly Ser Ile Val Thr Ala Gly Gly Gly Leu Ser Ala Ser Ser Gly His
                   12C
   Arg Gly His Tys Phe Tyr Arg Gly Thr Val Asp Gly Ser Pro Arg Ser
                         135
                                      14(
    130
   Leu Ala Val Phe Asp Leu Cys Gly Gly Leu Asp Gly Phe Phe Ala Val 145 150 150 160
   Lys His Ala Arg Tyr Thr Leu Lys Pro Leu Leu Arg Gly Ser Trp Ala _{\rm 165} _{\rm 270} _{\rm 175}
35 Glu Tyr Glu Arg Ile Tyr Gly Asp Gly Ser Ser Arg Ile Leu His Val
   Tyr Asn Arg Glu Gly Phe Ser Phe Glu Ala Leu Pro Pro Arg Ala Ser
                                       205
         195
                            200
   Cys Glu Thr Pro Ala Ser Pro Ser Gly Pro Gln Glu Ser Pro Ser Val
210 215 230
   His Ser Arg Ser Arg Arg Ser Ala Leu Ala Pro Gln Leu Leu Asp
           230 235
   215
   His Ser Ala Phe Ser Pro Ser Gly Ash Ala Gly Pro Gln Thr Trp Trp
                245 250
45 Arg Arg Arg Arg Ser Ile Ser Arg Ala Arg Sin Val Glu Leu leu
                             2 6 5
              260
   Leu Val Ala Asp Ser Ser Met Ala Arg Met Tyr Gly Arg Gly Led Gln
                             260
   His Tyr Leu Leu Thr Met Ala Ser Ile Ala Ash Arg Leu Tyr Ser His
                        2 5 5
   Ala Ser Ile 3lu Asn His Ile Arg Let Ala Val Val Lys Val Val Val
                    310
                                        315
   305
   Len Thr Asp Lys Asp Thr Ser Led Glu Val Ser Lys Asn Ala Ala Thr 325 330 335
55 Thr Les Lys Ash Phe Cys Lys Trp Gln His Gln His Ash Gln Led Gly 345 $350
   Asp Asp His 3lt Glu His Tyr Asp Ala Ala Ile Leo Phe Tor Arg 3lo
```

Thr Glu Asp Lys Arg Leu Met Ser Ser Ile Leu Thr Ser Ile Asp Ala 440 Ser Lys Fro Trp Ser Lys Cys Thr Ser Ala Thr Ile Thr Glu Phe Leu 450 4.55 460 5 Asp Asp Gly His Gly Ash Cys Leu Leu Asp Leu Pro Arg Lys Gin The 470 4.75 Leu Gly Pro Blu Glu Leu Pro Gly Gln Thr Tyr Asp Ala Thr Bln Gln 485 490 Cys Asn Leu Thr Phe Gly Pro Glu Tyr Ser Val Cys Pro Gly Met Asp 500 505 510 Val Cys Ala Arg Leu Trp Cys Ala Val Val Arg 3ln Gly Gln Met Val 520 525 515 Cys Leu Thr Lys Lys Leu Pro Ala Val Glu Gly Thr Pro Cys Gly Lys 540 530 535 15 Gly Arg Val Dys Leu Glm Gly Lys Cys Val Asp Lys Thr Lys Lys 550 555 Tyr Tyr Ser Thr Ser Ser His Gly Asm Trp Gly Ser Trp Gly Pro Trp 565 570 Gly Gln Cys Ger Arg Ser Cys Gly Gly Gly Val 31% Phe Ala Tyr Arg 590 585 His Cys Asn Asn Pro Ala Pro Arg Asn Ser Gly Arg Tyr Cys Thr Gly 595 600 605 Lys Arg Ala Ile Tyr Arg Ser Cys Ser Val Thr Pro Cys Pro Pro Asn 615 25 Gly Lys Ser Phe Arg His Glu Gln Cys Glu Ala Lys Asn Gly Tyr Gln 625 630 635 640 Ser Asp Ala Lys Gly Val Lys Thr Phe Val Glu Trp Val Pro Lys Tyr 645 550 Ala Gly Val Leu Pro Ala Asp Val Cys Lys Leu Thr Cys Arg Ala Lys 660 665 Gly Thr Gly Tyr Tyr Val Val Phe Ser Pro Lys Val Thr Asp Gly Thr 675 680 685 Glu Cys Arg Pro Tyr Ser Asn Ser Val Cys Val Arg Gly Arg Cys Val 690 700 35 Arg Thr Gly Cys Asp Gly Ile Ile Gly Ser Lys Leu Gln Tyr Asp Lys 715 710 705 Cys Gly Val Cys Gly Gly Asp Asn Ser Ser Cys Thr Lys Ile Ile Gly 725 730 Thr Phe Asn Lys Ser Lys Gly Tyr Thr Asp Val Val Arg Ile Pro 740 Glu Gly Ala Thr His Ile Lys Val Arg Gln Fhe Lys Ala Lys Asp Gln 760 Thr Arg Phe Pro Ala Tyr Leu Ala Leu Lys Lys Lys Thr Gly Glu Tyr 77C 775 780 45 Let 11e Asn Gly Lys Tyr Met 11e Ser Thr Ser Glu Thr 11e 11e Asp 785 790 800 7.35 lle Asn Gly Tor Val Met Asn Tyr Ser Gly Trp Ser His Arg Asp Asp 805 510 Fine Let His Oly Met Oly Tyr Ser Ala Thr Lys Slu lie Let Nie Nal 905 820 Gin He Let Ala Thr Asp Pro Thr Lys Ala Let Gly Wal Arg Tyr Ser 840 Phe Phe Val Fro Lys Lys Thr Thr Glm Lys Val Asm Ser Val Ile Ser 855 55 His Gly Ser Asn Lys Val Gly Pro His Ser Thr Gln Leu Gln Trp Val 865 570 8 **-** E Thi Bly Fro Tip Lou Ala Cys Ser Aig Thr Cys Asp Thr Gly Tip His

```
<210> 3
   <211> 1520
   <212> DNA
 5 <213> homo sapiens ADAMTS-5
   ggacatttac tiggoctote coatgacgat topaaattet gigaagagac cittggited 60
   acaqaaqata aqoqottaat qtottocato ottaccagoa ttgatgoato taagoootgg 120
10 tocaaatgca ottoagocac catcacagaa ttootggatg atggccatgg taactgtttg 180
   ctggacctac dacgaaagca gatoctgggo cccgaagaac toccaggaca gacctacgat 240
   gonaccoago agigoaacci gacattoggg coigagiact cogigigico eggeanggat 300
   gtotgtgoto gootgtggtg tgotgtggta ogroagggod agatggtotg totgaccaag 360
   gagtgeagtt tgcctatcgt sactgtaata accetyctoc cagaaacaac ggacgetact 420
15 geacagggaa gagggeeate taccaeteet geagteteat geeetgeeca cecaatggta 480
   aatcatttcg toatgaacag tgtgaggoca aaaatggota toagtotgat godaaaggag 540
   todaaacttt tgtggaatgg gttoocaaat atgoaggtgt ootgobagog gatgtgtgca 600
   agetgacetg dagagedaag ggcactgget actatgtggt attituteda aaggtgadeg 660
   atggcactga atgtaggeeg tacagtaatt cegtetgegt cegggggaag tgtgtgagaa 720
20 otggotgtga oggoatoatt ggotoaaago tgcagtatga osagtgogga gtatgtggag 780
   gagacaacto cagotgtaca aagattgttg gaacotttaa taagaaaagt aagggttaca 840
   ctgacgtggt gaggatteet gaaggggcaa comacataaa agttogacag ttcaaagcca 900
   aagaccagac tagatteaet geetatttag cootgaaaaa gaaaaaeggt gagtaeetta 960
   tcaatggaaa gtacatgato tocaottoag agactatoat tgacatoaat ggaacagtoa 1020
25 tgaactatag eggttggage cacagggatg actto:tg:a tggcatggge tactetg:ca 1080
   cgaaggaaat totaatagtg cagattottg caacagacco cactaaacca ttagatgtoo 1140
   gttatagett tittgiteed aagaagidea etheaaaagi asacthigid actagidaig 1200
   gcagcastaa agtigggatca bacactitogo agbogbagtig igitoacgiggo coatiggotog 1260
   octgototag gacotgtgac acaggttggc acaccagaac ggtgcagtgc caggatggaa 1320
30 acoggaagtt agcaaaagga tgtcctctct cocaaaggco ttctgcgttt aagcaatgct 1380
   tgttgaagaa atgttagcot gtgggttatg atottattgc acaaaagata otggaggatt 1440
   cancaccegt gcaatenngy tgaacaggaa ggetacetta acgeacagaa agteatgett 1500
   taatgacatt gtcaaccagg
   <210> 4
   <211> 2848
   <212> DNA
   <213> Homo sapiens ADAMTS-6
   <220>
   <221> CDS
   <222> (22)..(2601)
45 <220>
   <221> misc_feature
   2221> 1369 L. 1971(
   <4005 4
Fi satisfied thiritisals to any gas upon the rigg sain and the set of the Glu Ile Leu Trp bys Thr Leu Thr Trp
   att tig ago did atd aig got toa tog gab tit dat agit gab dad agg
55 The Leu Ser Leu The Met Ala Ser Ser 3lu Phe His Ser Asp His Arg
```

	Phe	Thr 60	Val	Lys	Asn	Asp	Lys 65	His	Ser	Arg	Arg	Arg 70	Arg	Ser	Met	Asp	
5	cct Pro 75		-		cag Gln	_	-	_									291
10					cac His 95												339
15					ttt Phe		**									_	387
					ttt Phe												435
20	gat Asp		_	_	aca Thr			-	_		_		-	_		_	4.83
25	cat His 155				gct Ala												531
3 C					gag Glu 175												579
35			_		tac Tyr												627
,,,					tgt Cys												675
40	tgg Trp				gac Asp												723
45	aac Asn 235				cac His												. d.j
ā 0		Val Gra			tty Leu 255										268 7777 268		91,
5.5					att Ile												867
د د					ogt Arg												915

5													oca Pro				1089
-													tat Tyr				1107
10													gcc Ala 375				1155
15													gaa Glu				1203
20													cac His				1251
25	_			_						_		_	aag Lys	_			1299
													caa Gln				1347
30													ttt Phe 455				1395
35	_	-				_		-		_		_	tgt Cys				1443
4 C													31Y 399				1491
15													gga Gly				1539
													tgg Trp				1587
5.0	u≓t Ser	agg Arg	10c Thr 525	tg: Cys	317 317	993 Gly	ggn Gly	gth Val 530	top Ser	toa Ser	s o Ser	gta Leu	aga Arg 535	nan His	igi Cys	gac Asp	1637
55	agt Ser	cca Pro 540	gca Ala	cct Pro	tog Ser	gag Glu	gtg Val 545	gaa Glu	aaa Lys	tat Tyr	tgc Cys	ott Leu 550	999 31y	gaa Glu	agg Arg	aaa Lys	1683
	רהר	- 4 -	220	•	tat	аас	3 C 7.	7 4 5	274	175	701	553	33+		nda	Tat	: 77 ;

ië. - Saan tat tot das til aaw Die tut wil die 1994 1995 gewond 1997 in die

	Lys	Tyr	Tyr	Aen 590	Trp	Lys	Fro	Tyr	Thr 595	Gly	Gly	Gly	Val	Lys €00	Pro	Cyrs	
5	gca Ala	tta Leu	aac Asn 605	tgc Cys	ttg Leu	got Ala	gaa Glu	ggt Gly 610	tat Tyr	aat Asn	tts Phe	tac Tyr	act Thr 615	gaa Glu	cgt Arg	gct Ala	1575
1 C	cct Pro	909 Ala 620	gtg Val	atc Ile	gat Asp	ggg Gly	acc Thr 625	cag Gln	tgc Cys	aat Asn	gog Ala	gat Asp 630	tca Ser	ctg Leu	gat Asp	atc	1923
7.5	tgc Cys 635	atc Ile	aat Asn	gga Gly	gaa Glu	tgc Cys 640	aag Lys	cac His	gta Val	ggc Gly	tgt Cys 645	gat Asp	aat Asn	att Ile	ttg Leu	gga Gly 650	1971
15						gat Asp											2019
20	aca Thr	tgt Cys	gat Asp	gcc Ala 670	att Ile	gaa Glu	999 91y	ttc Phe	ttc Phe 675	aat Asn	gat Asp	tca Ser	ctg Leu	ccc Pro 680	agg Arg	gga Gly	2067
25	ggc Gly	tac Tyr	atg Met 685	gaa Glu	gtg Val	gtg Val	cag Gln	ata Ile 690	oca Pro	aga Arg	ggc 31y	tct Ser	gtt Val 695	cac His	att Ile	gaa Glu	2115
30	gtt Val	aga Arg 700	gaa Glu	gtt Val	gcc Ala	atg Met	tca Ser 705	aag Lys	aac Asn	tat Tyr	att Ile	gct Ala 710	tta Leu	aaa Lys	tct Ser	gaa Glu	2163
7 -	gga Gly 715	gat Asp	gat Asp	tac Tyr	tat Tyr	att Ile 720	aat Asn	ggt Gly	gcc Ala	tgg Trp	act Thr 725	att Ile	gac Asp	tgg Trp	cct Pro	agg Arg 730	2211
35	aaa Lys	ttt Phe	gat Asp	gtt Val	gct Ala 735	ggg gg;	aca Thr	get Ala	itt Phe	cat His 740	tac Tyr	aag Lys	aga Arg	cca Pro	act Thr 745	gat Asp	2259
40	gaa Glu	cca Pro	gaa Glu	too Ser 750	t tg Leu	gaa Glu	got Ala	cta Leu	ggt Gly 755	cct Pro	acc Thr	tca Ser	gaa Glu	aat Asn 760	ctc Leu	atc Ile	2307
45	gtc Val	atg Met	gtt Val 765	atg Leu	ott Leu	caa 31%	gaa Glu	cag Gln 970	aat Asn	ttg Led	31; 31;	att Ile	agg Arg	tat Tyr	aag Lys	ttc Phe	2355
50					act Thr	oga Arg				gga Gly							1403
CF	aca Thr 795	tgg Trp	aat Asn	cat His	cag Gln	cct Pro 800	tgg Trp	tca Ser	gaa Glu	tgc Cys	toa Ser 305	got Ala	act Thr	tgt Cys	gct Ala	gga Gly 810	2451
55	ggt Gly	aag Lys	atg Met	pro	act Thr	agg Arg	cag Gln	ccc Pro	acc Thr	cag Gln 821	yrğ 399	gca Ala	aga Arg	tgg Trp	aga Arg 825	aca Thr	5499

ig in the control of the second of its and the second of its and the second of the sec

```
off tag thatathata thocathigh thicascond abghashing tgcagathing 2651
   Leu
   ttggtaaaat acatottggc acaatgagtg tototgotgg tgcttotooc aagactatot 2911
   tgaaggtggg ctgtttgcct ttcgtgaaca cattcttggt aaagaacatc aaaagtttta 2771
10 aaaaagaaaa tgagcaagaa tcagacatca cagatgcaac ttcttgtaat gggagatgag 2831
                                                                    2848
   gagaatgtac ggctgtg
15 <210> 5
   <211> 359
   <212> PRT
   <213> Homo sapiens ADAMTS-6
20 <400> 5
   Met Glu Ile Leu Trp Lys Thr Leu Thr Trp Ile Leu Ser Leu Ile Met
   Ala Ser Ser Gla Phe His Ser Asp His Arg Leu Ser Tyr Ser Ser Glm
                                  25
25 Glu Glu Phe Leu Thr Tyr Leu Glu His Tyr Gln Leu Thr Ile Pro Ile
           35
                              40
   Arg Val Asp Gln Asn Gly Ala Phe Leu Ser Phe Thr Val Lys Asn Asp
       5.0
                           55
                                              6 C
   Lys His Ser Arg Arg Arg Ser Met Asp Pro Ile Asp Pro Gln Gln
30 65
                                          75
   Ala Va. Ser Lys Leu Phe Phe Lys Leu Ser Ala Tyr Gly Lys His Phe
                   85
                                      90
                                                          95
   His Leu Ash Leu Thr Leu Ash Thr Asp Phe Val Ser Lys His Phe Thr
              100
                                                     110
                       105
35 Val Glu Tyr Trp Gly Lys Asp Gly Pro Gln Trp Lys His Asp Phe Leu
                             123
           115
   Asp Asn Cys His Tyr Thr Gly Tyr Leu Gln Asp Gln Arg Ser Thr Thr
                        135
      130
                                            140
   Lys Val Ala Len Ser Asm Cys Val Gly Leu His Gly Val Ile Ala Thr
40 145
            150
                                      155
   Glu Asp Glu Glu Tyr Phe Ile Glu Pro Leu Lys Asn Thr Thr Glu Asp
                                    170
                 165
   Ser Lys His Phe Ser Tyr Glu Asn Gly His Pro His Val Ile Tyr Lys
              13)
                                 185
45 Lys Ser Ala Leu Gin Sin Arg His Leu Tyr Asp His Ser His Cys Sly
   Val Ser Asp Fne Thr Arg Ser Gly Lys Pro Trp Trp Leu Asn Asp Thr
                          115
   lid Leu Phe Leu Ilé His Tyr Gln Ile Asn Asn Thr His Ile His His
                                         035
   Arg Gim Lys Arg Ser Val Ser Ile Glu Arg Phe Val Glu Thr Leu Val
                  245
                                     250
   Val Ala Asp Lys Met Met Val Gly Tyr His Gly Arg Lys Asp Ile Glu
                                 255
55 His Twr Ile Leu Ser Val Met Ash Ile Val Ala Lys Leu Tyr Arg Asg
          2 - 5
                              283
                                          285
   Ser Ser Leu Gly Ach Val Val Ash Ile Ile Val Ala Arg Leu Ile Val
```

Cys Gly Thr Leu Gly Leu Ala Ser Val Ala Gly Met Cys Glu Pro Glu 375 380 Arg Ser Cys Ser Ile Ash Glu Asp Ile Gly Leu Gly Ser Ala Phe Thr 390 395 385 5 Ile Ala His Glu Ile Val His Asn Phe Gly Met Asn His Asp Gly Ile 410 415 405 Gly Asn Ser Dys Gly Arg Lys Val Met Lys Gln Gln Asn Tyr 3ly Ser 425 420 Ser His Tyr Cys Glu Tyr Glm Ser Phe Phe Leu Val Cys Leu Glm Ser 445 440 435 Arg Xaa His His Glm Leu Phe Arg Glu Val Cys Arg Glu Leu Trp Cys 450 455 460 Leu Ser Lys 3er Asn Arg Cys Val Thr Asn Ser Ile Pro Ala Ala Glu 475 465 470 15 Gly Thr Leu Tys Gln Thr Gly Ash Ile Glu Lys Gly Trp Cys Tyr Gln 4.85 490 Gly Asp Cys Val Pro Phe Gly Thr Trp Pro Gln Ser Ile Asp Gly Gly 500 505 Trp Gly Pro Trp Ser Leu Trp Gly Glu Cys Ser Arg Thr Cys Gly Gly 515 520 525 Gly Val Ser Ser Ser Leu Arg His Cys Asp Ser Pro Ala Pro Ber Blu 535 540 Val Glu Lys Tyr Cys Leu Gly Glu Arg Lys Arg Tyr Arg Ser lys Asn 550 555 25 Thr Asp Pro Cys Pro Leu Gly Ser Arg Asp Phe Arg Glu Lys Gln Cys 565 570 575Ala Asp Phe Asp Asm Met Pro Phe Arg Gly Lys Tyr Tyr Asm Trp Lys 585 580 590 Pro Tyr Thr Gly Gly Gly Val Lys Pro Cys Ala Leu Ash Cys Leu Ala 595 600 605 Glu Gly Tyr Asn Phe Tyr Thr Glu Arg Ala Pro Ala Val Ile Asp Gly 615 520 610 Thr Gln Cys Asn Ala Asp Ser Leu Asp Ile Cys Ile Asn Gly Glu Cys €30 635 625 35 Lys His Val Gly Cys Asp Asn Ile Leu Gly Ser Asp Ala Arg Glu Asp 650 655 645 Arg Cys Arg Val Cys Gly Gly Gly Ser Thr Cys Asp Ala Ile Glu 660 665 Gly Phe Phe Ash Asp Ser Leu Pro Arg Gly Gly Tyr Met Glu Val Val 630 685 680 4.0 Gln Ile Pro Arg Gly Ser Val His Ile Glu Val Arg Glu Val Ala Met 695 700 Ser Lys Asn Tyr Ile Ala Leu Lys Ser Glu Gly Asp Asp Tyr Tyr Ile 715 795 710 45 Ash Gly Ala Trp Thr Ile Asp Trp Pro Arg Lys Phe Asp Val Ala Bly 735 735 Thr Ala The His Tyr Lys Arg Pro Thr Asp Glu Pro Blu Ser Leu Blu 750 745 745 Ala Leu Gly Pro Thr Ser Blu Ash Leu Ile Val Met Val Leu Bln 788 - 768 - 768 755 Glu Gln Asn Leu Gly Ile Arg Tyr Lys Pne Asn Val Pro Ile Thr Arg 775 760 770 Thr Gly Ser Gly Asp Asm Gla Val Gly Phe Thr Trp Asm His Glm Pro 790 7.85 795 55 Trp Ser Glu Cys Ser Ala Thr Cys Ala Gly Gly Lys Met Fro Thr Arg 910 305 Sin Fro Thr Gin Arg Ala Arg Trp Arg Thr Lys His Ilo Leu sor Tyr

:: -111» :

	<211	1> 3: 2> DI 3> H:		sapı	ens i	ADAM'	IS-7										
5		1 > CI	DS 13).	. (30)	03}												
10		C> 6 gttc:	ctg (cc at Me	tg co et P: 1	ec go ro Gi	ge gg ly Gi	ga ce ly Pi	cc as ro Se	gt co er P:	ce eç ro A:	gc aq rg S	er Pi	cc go ro Ai	eg e: la P:	et ttg ro Leu	51
15													Pro				99
20													gca Ala				147
25	gtg Val	cac His	ccg Pro	gtt Val	cga Arg 50	gtc Val	gac Asp	gcg Ala	999 Gly	ggc Gly 55	tcc Ser	ttc Phe	ctg Leu	tda Ser	tac Tyr 60	gag Glu	195
23													gtg Val				243
30													gag Glu 90				291
35													ttt Phe				339
40	acg Thr 110	Arg	cgg Arg	cgc Arg	ggc Gly	ggc Gly 115	cig	ggc Gly	arg	gcg Ala	cac His 120	atc Ile	cgg Arg	gcc Ala	cac His	acc Thr 125	387
4.5	ccg Pro	gcc Ala	tgc Cys	cac His	ctg Leu 130	ctt Leu	ggc Gly	gag Glu	gtg Val	cag Gln 135	gac Asp	cct Pro	gag Glu	ctc Leu	gag Glu 140	ggt Gly	435
													ggt Gly				463
53	áta Leu	:00 Ser	aac Asn 160	gag Glu	ga: Asp	tür Tyr	tti Phe	utt Ile 165	gag Glu	pud Pro	itg Leu	ди з Авр	agt Ser 170	Ala g∈∈	gog Pro	gru Ala	Cu.
55	YL3 caa	cct Fro 175	ggo Gly	cac His	god Ala	cag Gln	occ Pro 180	cat His	gtg Val	gtg Val	tac Tyr	aag 195	cgt Arg	cag Glr.	gcc Ala	Pro Cog	579
	* . *		÷ ÷	•	· 1	1.1	* * * *	٠,٠	¥		10-	:	3150	. 25 -	- ;-	::4	2.5

ti. ti. Togg bag dag tgg ogg igg sea ogh otg agg igt sta pag olg byg ten ...

	۸rg	Glm	Gln	Trp 225	Arg	Arg	Fro	Arg	1eu 230	Arg	Arg	Leu	Ніє	Gln 235	Arg	Ser	
5	gto Val	agc Ser	aaa Lys 240	gag Glu	aag Lys	tgg Trp	tgt Cys	gag Glu 245	acc Thr	ctg Leu	gta Val	gta Val	gat Ala 250	gat Asp	god Ala	aaa Lys	77:
10	atg Met	gtg Val 255	gag Glu	tac Tyr	cac His	gga Gly	cag Gln 260	ccg Pro	cag Gln	gtt Val	gag Glu	agc Ser 265	tat Tyr	gtg Val	etg Leu	acc Thr	819
1 F	atc Ile 270	atg Met	aac Asn	atg Met	gtg Val	gct Ala 275	ggc Gly	ctg Leu	ttt Phe	cat His	gac Asp 280	sec Pro	agc Ser	att	399 31y	aac Asn 285	667
15	ccc Fro	atc Ile	cac His	atc Ile	acc Thr 290	att Ile	gtg Val	cgc Arg	ctg Leu	gtc Val 295	otg Leu	etg Leu	gaa Glu	gat Asp	gag Glu 300	gag Glu	915
20	gag Glu	gac Asp	cta Leu	aag Lys 305	atc Ile	acg Thr	cac His	cat His	gca Ala 310	gac Asp	aac Asn	ac: Thr	ctg Leu	aag Lys 315	agc Ser	ttc Phe	963
25	tgc Cys	aag Lys	199 Trp 320	cag Gln	aaa Lys	agc Ser	atc Ile	aac Asn 325	atg Met	aag Lys	ggg Gly	gat Asp	gcc Ala 330	cat His	ccc Pro	otg Leu	1011
30	cac His	cat His 335	gac Asp	act Thr	gcc Ala	atc Ile	ctg Leu 340	ctc Leu	acc Thr	aga Arg	aag Lys	дар Авр 345	ctg Leu	tgt Cys	gca Ala	gcc Ala	1059
3.5	atg Met 350	aac Asn	cgg Arg	ccc Pro	tgt Cys	gag Glu 355	acc Thr	ctg Leu	gga Gly	ctg Leu	tcc Ser 360	cat His	gtg Val	gcg Ala	ggc Gly	atg Met 365	1107
35	tgc Cys	cag Gln	ceg Pro	cac His	cgc Arg 370	agc Ser	tgc Cys	agc Ser	atc Ile	aac Asn 375	gag Glu	gat Asp	acg Thr	ggc Gly	ctg Leu 380	ccg Pro	1155
40	ctg Leu	gcc Ala	ttc Phe	act Thr 385	gta Val	gcc Ala	cac His	gag Glu	ctc Leu 390	999 Gly	cac His	agt Ser	ttt Phe	ggc Gly 395	att Ile	cag Gln	1203
45	cat His	gac Asp	gga Gly 400	agc Ser	31y	aat Asn	gac Asp	tgt Cye 415	gag Glu	000 F10	gtt Väl	999 317	aaa Lys 410	aga Arg	odt Pic	tto File	1281
50	ato Ile	31] Met 415	tot S∈r	dda Fre	Jag Gln	dt. Leu	utg Leu 410	tat Tyr	មួន វ ឧទ្ធថ	gaa Ala	aut Ala	330 Pro 42°	itd Leu	at: Thr	tea Trp	tis Ser	12.5
	ogo Arg 430	tga Cys	agc Ser	ege Arg	cag Gln	tat Tyr 435	atc Ile	acc	agg Arg	ttc Phe	ctt Leu 440	gac Asp	ogt Arg	993 91y	tgg Trp	990 Gly 445	1347
55	atg Leu	tg: Cys	atg Leu	дас Азр	უმი გად 450	cot Fro	act Pro	gno Ala	aag Lys	gad Asp 455	att Tie	atc Ile	gac	tt: Phe	000 Pric 461	tog	1395

5				tgc Cys													1539
2				ggc Gly													1557
10				ccc Pro													1635
15				agc Ser 545													1683
20				gcc Ala													1731
25		-		tgt Cys	-				_	_							1779
23				cct Pro													1827
30				gct Ala													1875
35		_		gac Asp 625				**		_		_					1923
4 C				gcc Ala													1971
45				gtc Val													2019
				gga Gly													2057
50				gig Val													2015
5 5				gag 31u 705													2163
	ato	003	ācā	997	gca	cgc	gag	атс	5 g S	ato	caa	qag	att	dec	gag	act.	2711

	Asn 750	Gly	Gly	Trp	Thr	Ile 755	Gln	Trp	Asn	Gly	Asp 760	Tyr	Gln	∵al	Ala	Gly 765	
5	acc Thr					gca Ala											2355
10	_				_	gag Glu		_			_			_		_	2403
15						agc Ser	_			_				_			2451
						cct Pro											2499
20	cct Pro 830					ggc Gly 835											2547
25	cca Pro					ccc Pro			-					-			2595
3 0				-		tta Leu		_				-	_				2643
35						otg Leu											2691
33						gag Glu											2739
40	gac Asp 910					ccc Pro 915											2767
4.5						Sys											2835
E :						ttu Leu										otr Leu	185%
55						gcc Ala										gag Glu	2931
						tgt Cys											2 9 79

on Tryigh of Tage had been as to see year. The second of t

	999	Caat	EEC	atta	acto	tg a	ocut	tacc	t go	cuyg	gegg	ceg	arda	ago	cgag	Cautti	32.3	
5	cta	95															3218	
10	<21 <21	0 > 7 1 > 9 2 > P 3 > H	RT	sapi	ens 1	ADAM"	TS-7											
1 5		0> 7 Pro	Gly	Glγ	Pro 5	Ser	Pro	Arg	Ser	Pro 10	Ala	Pro	Leu	Leu	Arg 15	Pro		
15	Leu	Leu	Leu	Leu 20	Leu	Cys	Ala	Leu	Ala 25	Pro	зіу	Ala	Pro	Gly 30	Pro	Ala		
20	Pro	Gly	Arg 35	Ala	Thr	Ğlu	Gly	Arg 40	Ala	Ala	Leu	Aap	īle 45	Val	His	Pro		
	Val	Arg 50	Val	Asp	Ala	Gly	Gly 55	Ser	Phe	Leu	Ser	Tyr 60	Glu	Leu	Trp	Pro		
25	Arg €5	Ala	Leu	Arg	Lys	Arg 70	Asp	Val	Ser	Val	Arg 75	Arg	Asp	Ala	Pro	Ala 80		
30	Fhe	Tyr	Glu	Leu	Gln 85	Tyr	Arg	Gly	Arg	Glu 90	Leu	Arg	Phe	Asn	Leu 95	Thr		
20	Ala	Asn	Gln	His 100	Leu	Leu	Ala	Pro	Gly 105	Phe	Val	Ser	Glu	Thr 110	Arg	Arg		
35	Arg	Gly	Gly 115	Leu	Gly	Arg	Ala	His 120	Ile	Arg	Ala	His	Thr 125	Pro	Ala	Cys		
	H13	Leu 130	Leu	Gly	Glu	Val	Gln 135	Asp	Pro	Glu	Leu	Glu 140	Зlу	Gly	Leu	Ala		
40	Ala 145	Ile	Ser	Ala	Cys	Asp 150	Gly	Leu	Lys	Gly	Val 155	Phe	Gln	Leu	Ser	Asn 160		
4.5	Glu	Asp	Tyr	Phe	Ile 165	Glu	Pro	Leu	Asp	Ser 170	Ala	Pro	Ala	Arg	Pro 175	Gly		
	His	Ala	Glr.	Pro 180	His	Val	Val	Tyr	Lys 185	Arg	∃lr.	Ala	Fro	314 190	Arg	Leu		
57	Ala	@lr.	Arg 198	317	Asp	Ser	Sei	Alā :::	Fro	Ser	21.2	Cys	317 215	Val	Glr	Val		
	Tyr	Pro 210	Glu	Leu	Glu	Ser	Arg 215	Arg	Glu	Arg	Trp	31u 220	Glr.	Arg	Gln	Glm		
55	Trp 225	Arg	Arg	Pro	Arg	Let 230	Arģ	Arg	Lou	His	Gl:: 235	Arg	Ser	Val	Ser	Lys 241		
	-	• 15	Tire	÷,	-:·.	7-1	100	**:1		Ala.	7.5 ·	āla	7 50 7	Mer	7.15.	71.		

in the first that the second was the second of the second

	Ile	Thr 290	Ile	Val	Arg	Lēt.	Val 295	Leu	Lel	31u	Asp	300	Gla	Glu	Asp	Leu
5	Lys 305	Ile	Thr	His	His	Ala 310	Asp	Asn	Thr	Leu	Lys 315	Ser	Fhe	Cys	Lys	Trp 320
	Gln	Lys	Ser	Ile	Asn 325	Met	Lys	Gly	Asp	Ala 330	His	Pro	Leu	His	His 335	Asp
10	Thr	Ala	Ile	Leu 340	Leu	Thr	Arg	Lys	Asp 345	Leu	Cys	Ala	Ala	Met 350	Asn	Arg
15	Fro	Cys	Glu 355	Thr	Leu	Gly	Leu	Ser 360	His	Val	Ala	Gly	Met 365	Cys	Gln	Pro
	His	Arg 370	Ser	Суз	Ser	Ile	Asn 375	Glu	Asp	Thr	Gly	Leu 380	Pro	Leu	Ala	Fhe
20	Thi 385	Val	Ala	His	Glu	Leu 390	Gly	Ніз	Ser	Fhe	Gly 395	īle	Gln	His	Asp	Gly 400
	Ser	Gly	Asn	Asp	Cys 405	Glu	Pro	Val	GJÅ	Lys 410	Arg	Pro	Phe	Ile	Met 415	Ser
25	Pro	Gln	Leu	Leu 420	Tyr	Asp	Alā	Ala	Pro 425	Leu	Thr	Trp	Ser	Arg 430	Cys	Ser
3.0	Arg	Gln	Tyr 435	Ile	Thr	Arg	Phe	Leu 440	Asp	Arg	Gly	Trp	Gly 445	Leu	Cys	Гел
	Asp	Asp 450	Pro	Fro	Ala	Lys	Asp 455	Ile	Ile	Asp	Phe	Pro 460	Ser	Val	Pro	Pro
35	Gly 465	Val	Leu	Tyr	Asp	Val 470	Ser	His	Gln	Cys	Arg 475	Leu	Gln	Tyr	Gly	Ala 490
	Tyr	Ser	Ala	Fhe	Cys 485	Glu	Asp	Met	Asp	Asn 490	Val	Cys	His	Thr	Leu 495	Trp
40	Cys	Ser	Val	Gly 500	Thr	Thr	Суз	His	Ser 505	Lys	Leu	Asp	Ala	Ala 510	Val	Asp
45	Gly	Thr	Arg 515	Сув	Gly	Glu	Asn	Lys 520	Trp	Сув	Leu	Ser	Gly 525	Glu	Cys	Val
	Fic	Val 530	Gly	Fhe	Arg	Pro	315 531	Ala	Val	Asp	Gly	Gly 540	Tri	Ser	Gly	Tip
51	Ser 545	Ala	Tr;	Ser	Ile	Cys 551	Ser	Arg	Se1	Ċya	51y 555	Met	Gly	Nai	Cln	Ser sec
	Ala	Glu	Arg	Gln	Cys 565	Thr	Gln	Fro	Thr	Frc 570	Lys	Tyr	Lуs	Gly	Arg 575	Tyr
55	Сув	Val	Gly	31u 580	Arg	Lys	Arg	Fhe	A:9 565	Leu	2ys	Aan	Leu	Gln 591	Ala	Cys
	Fra	Al i	27.5	Aro	Fire	Ser	Far	A: a	H.3	Voi	21:	200	201	Hir	Fine	Act

- Ala Lys Lys Leu Arg Asp Ala Cys Mal Asp Gly Thr Pro Cys Tyr Gln 645 650 655
- Val Arg Ala Ser Arg Asp Leu Cys Ile Ash Gly Ile Cys Lys Ash Val
 - Gly Cys Asp Phe Glu Ile Asp Ser Gly Ala Met Glu Asp Arg Cys Gly
 675 680 685
- 10 Val Cys His Gly Asn Gly Ser Thr Cys His Thr Val Ser Gly Thr Phe 690 700
 - Glu Glu Ala Glu Gly Leu Gly Tyr Val Asp Val Gly Leu Ile Fro Ala 705 710 720
- Gly Ala Arg Glu Ile Arg Ile Gln Glu Val Ala Glu Ala Ala Asn Phe
- Lêu Ala Leu Arg Ser Glu Asp Pro Glu Lys Tyr Phe Leu Ash Gly Gly 20 745 750
 - Trp Thr Ile Gln Trp Asn Gly Asp Tyr Gln Val Ala Gly Thr Thr Phe
- 25 Thr Tyr Ala Arg Arg Gly Asn Trp Glu Asn Leu Thr Ser Pro Gly Pro 770 775 780
- Thr Lys Glu Pro Val Trp Ile Gln Val Pro Ala Ser Arg Gly Pro Gly 785 790 795 800
- Gly Gly Ser Arg Gly Gly Val Pro Arg Pro Ser Thr Leu His Gly Arg
- Ser Arg Pro Gly Gly Val Ser Pro Gly Ser Val Thr Glu Pro Gly Ser 35 820 825 830
 - Glu Pro Gly Pro Pro Ala Ala Ala Ser Thr Ser Val Ser Pro Ser Leu 835 840 545
- 40 Lys Trp Pro Asn Leu Val Ala Ala Val His Arg Gly Gly Trp Gly Gln 850 860
- Ala Pro Leu Gly Leu Gly Gly Trp Arg Arg His Leu Val Leu Met Gly 865 870 875 E80
- Fro Arg Led Fro Thr 3lm Lou Lou Ane 3lm Flu Ser Aam Fro 3ly Val
- His Tyr 31d Tyr Thr Tie His Arg Riu Als Bly Bly His Asp Glu Val 50 $_{\odot}$ 005 $_{\odot}$ 01
 - Fro Pro Pro Val Phe Ser Trp His Tyr Gly Pro Trp Thr Lys Cys Thr 915 920 925
- 55 Val Thr Cys Gly Arg Gly Gl: Lys Trp Gly Arg His Ser Pro Thr Cys 930 930 940
 - And Bly Let Val Ser Gly Glo Gly His Try Let Glo Let Bro Ala His

```
Gly Arg Val His Gly
    <210> 8
    <211> 3638
     <212> DNA
     <213> Mus musculus ADAMTS-8
    <220>
    <221> CDS
    <222> (278)..(2992)
15 <400> 8
    tagggegact geacgggacg eegoggagga egeggeteg eggeeegggg egecacgtge 60
    tegagttetg etaggttgge tggegeagga ggagegget gegegateea gaggggeege 120
20 cagggacege egegecacgt geogetages gagteggeet ecceateega tigateatit 180
    ttootogapa gagogacceg geogeotogg geoaccagea cotgeoogeg egeggegate 240
    ttottocoto tecegegete egeageacto tgeseco atg ete ege gas eco acc. 295
                                                           Met Leu Arg Asp Pro Thr
    acc acc ggg tgg ccg ccc ctc ctg ctg cta ttg cag ctg ccg
    Thr Thr Gly Trp Pro Pro Leu Leu Leu Leu Leu Gln Leu Pro Pro
                                                                                             391
    ceg cea etc gtc tgc gga gcc ceg gcg ggg ceg gga acc ggg geg cag
    Pro Pro Leu Val Cys Gly Ala Pro Ala Gly Pro Sly Thr Sly Ala Gln
3.5
   god tog gag ota gtg gtg odd acg egg ttg cod ggd agd geg agd gag Ala Ser Glu Leu Val Val Pro Thr Arg Leu Pro Gly Ser Ala Ser Glu
40\, ate get the dad off too god the ggs dag ggs the gtg dtg dgc ofg Leu Ala Phe His Leu Ser Ala Phe Gly Gln Gly Phe Val Leu Arg Leu
gog oot gad god ago the ong gog oog gaa the aag ato gag ogd one
45 Ala Pro Asp Ala Ser Phe Leu Ala Pro Blu Phe Lys Ile Glu Arg Lou
                                                                                             E 3 C
    ggg ggc tog agt gog gtg gtc ggg ggc gag ctg gga ctg cgc ggc fgc
Gly Gly Ser Ser Ala Ala Ala Dly Gly Blu Pro Gly Leu Arg Gly Cys
    tto tto tot ggo aca gtg aat gga gaa cgg gag tog otg gcg gcg atg
The Phe Ser Oly Thr Val Asn Oly Glu Arg Olu Ser Leu Ala Ala Met
   ago tgt gto gog ego tgg ago ggo tog too ttg otg goa ggo gag gag
Ser Cys Val Ala Gly Trp Ser Gly Wer Phe Leu Leu Ala Gly Glu Glu
100 125 130
```

-					gtt Val												\$23
5	gag Glu	atg Met	ggt Gly 185	aat Asn	ggg Gly	cag Gln	aga Gly	cag Glm 190	gag Glu	aga Arg	agt Ser	gac	aac Asn 195	gaa Glu	gag Glu	pac Asp	871
10	aag Lys	aag Lys 200	cag Glr.	gac Asp	aag Lys	gag Glu	399 31y 205	ttg Leu	ctc Leu	aaa Lys	gag Glu	aca Thr 210	gaa Glu	gac Asp	tcc Ser	aga Arg	919
15					ccc Pro												967
20	too Ser	gag Glu	gct Ala	ege Arg	tto Phe 235	gtg Val	gaa 31	aca Thr	ott Leu	ctg Leu 240	gtg Val	gct Ala	gat Asp	gcg Alā	tod Ser 245	atg Met	1015
2.5	gct Ala	gcc Ala	ttc Phe	tat Tyr 250	999 Gly	acc Thr	gac Asp	ctg Leu	cag Gln 255	aac Asn	cac His	atc [le	ota Leu	acg Thr 260	gtg Val	atg Met	1063
25	tca Ser	atg Met	gca Ala 265	gcc Ala	cga Arg	atc Ile	tac Tyr	aag Lys 270	cac His	bro	agc Ser	atc Ile	agg Arg 275	aac Asn	toc Ser	gto Val	1111
30	aac Asn	ctt Leu 280	gtg Val	gtg Val	gtg Val	aaa Lys	gtg Val 285	cta Leu	ata Ile	gtg Val	gaa Glu	aaa Lys 290	gaa Glu	aga Arg	tgg Trp	990 31y	1159
35	ccg Pro 295	gaa Glu	gtg Val	tcc Ser	gac Asp	aac Asn 300	999 999	999 Gly	ctc Leu	aca Thr	atg Leu 305	cgc Arg	aac Asn	ttc Phe	tgc Cys	agc Ser 310	1297
4 C	tgg Trp	caa Gln	cgg Arg	cgt Arg	ttc Phe 315	aac Asn	aag Lys	.ccc Pro	agt Ser	gac Asp 320	ege Arg	cac His	ccg Fro	gag Glu	cac His 325	tat Tyr	1295
, -	gac Asp	act Thr	gcc Ala	atc Ile 330	ttg Leu	ttc Phe	acc Thr	aga Arg	cag Glm 335	aac Asn	ttc Phe	tgt Cys	Gly 999	aag Lys 340	gga Gly	gag Glu	1303
45	cag 31n	tgt Çys	gac Asp 345	adr Thr	etg Leu	Gly GB9	atg Jet	gra Ala 350	gad Asp	gtt Val	Gly Sec	acc Thr	atc 11e 355	tgt Cys	gac Asr	cen Pro	1361
50	gar Asp	13g Lys 360	ag: Ser	tg: Cys	toa Ser	gig Val	atc Ile 365	aag Lys	gat Asp	gag Glu	gga Gly	ong Leu 370	cag Gln	gca Ala	gr: Ala	tar Tyr	1222
55	acc Thr 375	ctg Leu	gcc Ala	cat His	gag Glu	cta Leu 390	999 Gly	cac His	gtt Val	oto Leu	ago Ser 185	atg Met	occ Pro	cat His	gat Asp	gat Asp 390	1447
	;	9 9 13	C C C	+ g+	ata	ASA	** 3	-55	225	700	a-s	aa c	ववद	tac	232	ati	14.55

tur. It grounder goth gene has stocked also glad his stocked gas das gas day leak each in vivil.

	Сув	Ser	Ala 425	Val	Tyr	Leu	Thr	31u 430	Leu	Leu	Asp	Asp	Gly 435	His	βlγ	Asp	
5		ctt Leu 440															1639
10	_	ggc Gly		_					_	-	_	_	_	•	•		1687
15		999 Gly															1735
		gtc Val															1783
20		aca Thr															1831
25		999 Gly 520		_	_	_	_		-	_	_		-		_		1379
30		aat Asn															1927
35		gga Gly															1975
,,,		gaa Glu															2023
40	ggt Gly	gaa Glu	aga Arg 585	gtc Val	aag Lys	tac Tyr	caa Gln	tia Ser 590	tgc Cys	aac Asn	aca Thr	gag Glu	gaa Glu 595	tgt Cys	cca Pro	cca Pro	2071
45		99a 617 600															2119
5.0	aab Asn 615	cac His	act Thr	gac Asp	etg Leb	gat Asp 620	999 91y	äst Asn	ttc Pne	otg Leu	cag Gln 625	tgg Trp	gte Val	occ Pro	aag Lys	tat Tyž 430	.267
55		gga Gly															1215
20		agg Arg															2273

... where the second constant is a second constant of the second co

	tgt Cys 695	31% 333	gtg Val	tgt Cys	999 999	995 317 700	aaa Lys	ggc Gly	act Thr	gcc Ala	tgt Cys 705	agg Arg	aag Lys	atc Ile	too	991 91y 710	2407
5	tot Ser	ttc Phe	acc Thr	ccc Pro	tto Phe 715	agt Ser	tat Tyr	ggc Gly	tac Tyr	aat Asn 720	gac Asp	att Ile	gtc Val	acc Thr	atc Ile 725	cca Pro	2455
10						att Ile											2503
15						tac Tyr											2551
20						otg Lou											2599
25						ctg Leu 780											2647
25	cgg Arg	ctg Leu	cag Gln	agc Ser	ttc Phe 795	cag Gln	gcc Ala	ctg Leu	cct Pro	gag Glu 800	cct Pro	ctt Leu	aca Thr	gta Val	cag 31n 805	ctc Leu	2695
30						gag Glu											2743
35	ttt Phe	gtc Val	CCC Pro 825	aat Asn	gac Asp	atg Met	gac Asp	ttc Phe 830	agc Ser	gtg Val	cag Glm	aat Asn	agc Ser 835	aag Lys	gaa Glu	aga Arg	2791
40	gca Ala	acc Thr 840	acc Thr	aac Asn	atc Ile	att Ile	sag Gln 845	tca Ser	ctg Leu	ccc Pro	tct Ser	g0g Ala 850	gag Glu	tgg Trp	gtt Val	ctg Leu	2639
45						tgt Cys 860											2887
40	ogg Arg	act Thr	gtg Val	gaa Glu	tgc Cys 875	Arg	gar Asp	ccc Pro	ica Ser	ggt Gly 880	cag Sln	god Ala	tat Ser	gac Asp	acc Thr 885	tgt Cys	1935
50	gat Asp	gag Glu	grs Ala	ntg Leu 890	aaa Lys	cat Pro	gag Glu	gat Asp	gcc Ala 895	aag Lys	cac Pro	tgt Cys	gga Gly	900 900	31n	eeg Pro	2493
55		ccc Pro		tgat	3000	at ş	gtgg	aaa:	ed to	sttaş	ggat t	i atg	gatt	tgg			3032
	net.	ista	and t	(Badi	L 14Si	ki H	: :		· · :	vadi i	1:14		· {= } •	- <u>-</u> 4	ijat i	77.74	*: 15.5

a nough gas in the control of the second of the control of the second of the control of the cont

3638

tototototat toggitticoo caataatoaa totacotoac agoggggaaa aatcagtata 3392 caagaggtat aaggccaggt gitggcagtg aacgccaaag caagctccat aggtatotoo 3452 aagetatett eagaaatgie egiggetgit tioagiatta aaateigitig telaaaaggg 3512 cagcagigio calcaraggg tiatagaaag coactitiot caggotgoca coigotgggg 3572 10 eggacceatt teaagtattt atgeaaatat gteteegaac taaagtgtgt ettacaccaa 3632 aagngc 15 <210> 9 <211> 905 <212> PRT <213> Mus musculus ADAMTS-8 20 <400> 9 Met Leu Arg Asp Pro Thr Thr Thr Gly Trp Pro Pro Leu Leu Leu Leu 1 5 15 Leu Leu Gln Leu Pro Pro Pro Pro Leu Val Cys Gly Ala Pro Ala Gly Pro Gly Thr Gly Ala Gln Ala Ser Glu Leu Val Val Pro Thr Arg Leu 30 Pro Gly Ser Ala Ser Glu Leu Ala Phe His Leu Ser Ala Phe Gly Gln 50 $\,$ 60 Gly Phe Val Leu Arg Leu Ala Pro Asp Ala Ser Phe Leu Ala Pro Glu 65 70 75 80 35 Fhe Lys Ile Glu Arg Leu Gly Gly Ser Ser Ala Ala Ala Gly Glu 85 90 95 Pro Gly Leu Arg Gly Cys Phe Phe Ser Gly Thr Val Asn Gly Glu Arg Glu Ser Leu Ala Ala Met Ser Cys Val Ala Gly Trp Ser Gly Ser Phe 115 120 125 45 led Led Ala Gly Gli Glu Phe Thr Ile Gln Fro Gln Gly Ala Gly Asp 130 $\,$ 135 $\,$ 140 Sor Lou Asp Gin Pr: His Arg Lou Bin Arg Trp Gly Fro Gly Gln Arg 145 150 150 Arg Glu Asp Pro Gly Leu Ala Ala Ala Glu Val Phe Pro Leu Pro Gln 165 170 175 3ly Leu Glu Trp Glu Val Glu Met Gly Asn Gly Gln Gly Gln Glu Arg 180 180 190 Ser Asp Ash Glu Glu Asp Lye Lys Gln Asp Lye Glu Gly Leu Leu Lys 195 215

Val Ala Asy Ala Jer Met Ala Al. Fn- Tyr Sly Thr Asy 140 Alm Ash

					245					250					255	
5	His	ile	Leu	Thr 260	Val	Met	Ser	Met	Ala 265	Ala	Arg	Ile	Tyr	Lys 270	His	Pro
,	Ser	Ile	Arg 275	Asn	Ser	Val	Asn	Leu 280	∵al	Val	Val	Lys	Val 285	Leu	Ile	Vāl
10	Glu	Lys 290	Glu	Arg	Trp	Gly	Pro 295	Glu	Val	Ser	Asp	Asn 300	Gly	Gly	Leu	Thr
	Leu 305	Arg	Asn	Phe	Сув	Ser 310	Trp	Gln	уrâ	Arg	Phe 315	Asn	Lys	Pro	Ser	Asp 320
15	Arg	His	Fro	Glu	His 325	Tyr	Asp	Thr	Ala	Ile 330	Leu	Ph.e	Thr	Arg	Gln 335	Asn
20	Phe	Cys	Gly	Lys 340	Gly	Glu	Gln	Суз	Asp 345	Thr	Leu	Gly	Met	Ala 350	qeA	Val
	Gly	Thr	Ile 355	Сув	Asp	Fro	Asp	ւրs 360	Ser	C)·s	Ser	Val	Ile 365	Lys	Asp	Glu
25	Gly	Leu 370	Gln	Ala	Ala	Tyr	Thr 375	Leu	Ala	His	Glu	Leu 380	Gly	His	Val	Leu
	Ser 385	Met	Pro	His	Asp	Asp 390	Ser	ΓÀ2	Pro	C'rs	Val 395	Arg	Leu	Phe	Gly	Pro 400
30	Met	Gly	Lys	Tyr	His 405	Met	Met	Ala	Pro	Phe 410	Fhe	Ile	His	Val	Asn 415	Lys
35	Thr	Leu	Pro	Trp 426	Ser	Pro	Cys	Ser	Ala 425	Val	Tyr	Leu	Thr	Glu 430	Leu	Leu
	Asp	Asp	Gly 435	His	Gly	Asp	Cys	Leu 440	Leu	Asp	Ala	Pro	Thr 445	Ser	Val	Leu
40	Pro	Leu 450	Pro	Thr	Gly	Leu	Pro 455	Gly	His	Ser	Thr	Leu 460	Tyr	Glu	Leu	Asp
	Gln 465	Glr.	Сув	Lys	Gln	Ile 470	Phe	Gly	Pro	Asp	Fhe 475	Arg	His	Cys	Fro	Asr. 480
45	Thi	Ser	Val	Glu	Asp 485	Ile	Cys	Val	3ln	164 490	Cys	Ala	Arg	H15	Arg 495	ĀSĻ
5 C	Se1	yat	Glu	E10 500	ile	078	H.B	Thi	L;*a 505	Asn	315	Cel	Leu	1eu 510	Tip	Ala
	Asp	Gly	Thr 515	Pro	Cys	Gly	Fro	Gly 520	His	L€U	∃ys	Fen	Asp 525	Gly	Ser	cys
5.5	Val	1eu 530	Lys	Glu	Asp	Val	91u 535	Asn	Pro	Lys	Ala	Val 540	Val	Asp	Gly	Asp
	Trp 545	Gly	F rs	Trp	Arg	Pro 553	Trp	Gly	Glm	Сув	Ser 55 5	ИгЭ	Thr	Cys	Sly	317 56î

ins out of a type is a second to the Arabia Carolina Arabia.

595 600 Glu Lys Tyr Asn Ala Tyr Asn His Thr Asp Leu Asp Gly Asn Phe Leu Gin Trp Val Pro Lys Tyr Ser Gly Val Ser Pro Arg Asp Arg Cys Lys Leu Phe Cys Arg Ala Arg Gly Arg Ser Glu Phe Lys Val Phe Glu Ala Lys Val Ile Asp Gly Thr Leu Cys Gly Pro Asp Thr Leu Ser Ile Cys 665 15 Val Arg Gly Gln Cys Val Lys Ala Gly Cys Asp His Val Val Asn Ser Pro Lys Lys Leu Asp Lys Cys Gly Val Cys Gly Gly Lys Gly Thr Ala Cys Arg Lys Ile Ser Gly Ser Phe Thr Pro Phe Ser Tyr Gly Tyr Asn Asp Ile Val Thr Ile Pro Ala Gly Ala Thr Asn Ile Asp Val Lys Gln Arg Ser His Pro Gly Val Arg Asn Asp Gly Ser Tyr Leu Ala Leu Lys 745 30 Thr Ala Asn Gly Gln Tyr Leu Leu Asn Gly Asn Leu Ala Ile Ser Ala Ile Glu Gln Asp Ile Leu Val Lys Gly Thr Ile Leu Lys Tyr Ser Gly Ser Met Ala Thr Leu Glu Arg Leu Gln Ser Phe Gln Ala Leu Pro Glu Pro Leu Thr Val Gln Leu Leu Thr Val Ser Gly Glu Val Phe Pro Pro Lys Val Arg Tyr Thr Phe Phe Val Pro Asn Asp Met Asp Phe Ser Val 825 45 Jin Ash Ser Lys Glu Arg Ala Thr Thr Ash Ile Ile Gln Ser Leu Pro Ser Ala Slu Tup Val Led Sly Asy Tup Ser Glo Cys Pro Ser Tor Sys 880 880 860 Arg Sly Ser Trp Gln Arg Arg Thr Val Blo Cys Arg Asp Pro Ser Gly Gln Ala Ser Asp Thr Cys Asp Glu Ala Leu Lys Pro Glu Asp Ala Lys

kulus 1924 ES külev Ermi gaşiend ALAMTA's

Pro Cys Gly Ser Gln Pro Cys Pro Lou

		[> [> C; [>]		1737													
5	<40; og :	agg (gca .	gaa Glu	ggo	got Ala 5	agc Ser	gag Glu	ceg Pro	cca Pro	ccg Pro 10	ccc Pro	ctg Leu	egg Gly	gcc Ala	acg Thr 15	
10	agt Ser	agg Arg	acc Thr	aag Lys	egg Arg 20	Fhe	gtg Val	t ct Ser	gag Glu	gcg Ala 25	Arg	tto Phe	gtg Val	gag Glu	acg Thr	Leu	95
15	cto Leu	gtg Val	gcc Ala	gat Asp 35	Ala	tcc Ser	atg Met	got Ala	gcc Ala 43	Phe	tac Tyr	ggg Gly	gcc Ala	gac Asp 45	Leu	cag Gln	143
20									Val					Tyr	aag Lys		191
2.5								Asn					Lys		ctg Leu	atc Ile	209
25	gta Val 80	gaa Glu	gat Asp	gaa Glu	aaa Lys	tgg Trp 85	ggc Gly	cca Pro	gag Glu	gtg Val	toc Ser 90	Asp	aat Asn	999 Gly	999 939	ott Leu 95	28-7
3 C						Cys					Arg				ccc Pro	Ser	335
35	gac Asp	ogo Arg	cac His	cca Pro	Glu	cac His	tac Tyr	gac Asp	acg Thr 120	gcc Ala	ato Ile	otg Leu	oto Leu	acc Thr 125	aga Arg	cag Gln	383
4 C	aac Asn	ttc Phe	igt Dys 130	999 Gly	cag Gln	gag Glu	999 Gly	ctg Leu 135	Cys	gac Asp	acc Thr	ctg Leu	ggt Gly 140	Val	gca Ala	gac Asp	431
1.5	atc Ile	099 Gly 145	acc Thr	att Ile	tgt Cys	gac Asp	ccc Pro 150	aac Asn	aaa Lys	agc Ser	tgc Cys	tcc Ser 155	gtg Val	ato	gag Glu	gat Asp	4 79
45	9a9 Glu 160	917 999	ata Leu	cag Gln	gag Ala	gcc Ala 165	cac His	aco Thr	atg Deu	god Ala	cat His	333 314	cta Leu	993 Gly	cac His	gt2 Val 175	927
50						Asp					Cys				tt: Phe 190		irt
55	ccc Fro	atg Met	gge	aag Lys	H18	cac His	gtg Val	atg Met	gca Ala 200	Pro	otg Leu	ttc Phe	gtc Val	cac His	Leu	aac Asn	€23
	- 1 -	-1 ₁ - 1 ₇	:		٠,			1 -	4 7 5	· §	Ę • 1)		+ ·· .		• •	9	200

Leu Lys Cys Asp Leu Met

```
5 <210> 11
   <211> 245
   <212> PRT
   <213> Homo sapiens ADAMTS-8
10 <400> 11
   Arg Ala Glu Gly Ala Ser Glu Pro Pro Pro Pro Leu Gly Ala Thr Ser
   Arg Thr Lys Arg Phe Val Ser Glu Ala Arg Phe Val Glu Thr Leu Leu
   Val Ala Asp Ala Ser Met Ala Ala Phe Tyr Gly Ala Asp Leu Glm Asm
20 His Ile Leu Thr Leu Met Ser Val Ala Ala Arg Ile Tyr Lys His Pro
   Ser Ile Lys Asn Ser Ile Asn Leu Met Val Val Lys Val Leu Ile Val
   Glu Asp Glu Lys Trp Gly Pro Glu Val Ser Asp Asn Gly Gly Leu Thr
   Lea Arg Asn Phe Cys Asn Trp Gln Arg Arg Phe Asn Gln Pro Ser Asp
3.0
   Arg His Pro Glu His Tyr Asp Thr Ala Ile Leu Leu Thr Arg Gln Asn
35 Phe Cys Gly Gln Glu Gly Leu Cys Asp Thr Leu Gly Val Ala Asp Ile
   Gly Thr Ile Cys Asp Pro Asn Lys Ser Cys Ser Val Ile Glu Asp Glu
40
   Gly Leu Gln Ala Ala His Thr Leu Ala His Glu Leu Gly His Val Leu
   Ser Met Pro His Asp Asp Ser Lys Pro Cys Thr Arg Leu Phé Gly Pro
185 - 186 - 190
```

Met Gly lys His His Val Met Ala Fft led Fhe Val His led Ash Gli 195 - 200 - 205

Glm Gly Trp Ilo His Phe Lys Tyr Leu Cys Lys Cys Val Ser Glu Leu

50 Th: Let Fit Tig Ser Fro Tye dor Ala Mat Phe Ser Gly Cys His Led 210 215 220

Lys Cys Asp Leu Met

agaid Alami

.

		1> C 2> (.: 5 6 4	8 '												
5		1 > m		feat		ı											
10		1 > m		feat)()											
15	gá i	-	acc ·	_	_		•			-		ctg Leu		_		_	47
												gcc Ala					95
20												tta Leu					143
25												aac Asn		Leu			191
30						_				_	_	cga Arg 75		_			233
35		_		_				_		_		tcc Ser					287
	acc Thr	toc Ser	ccc Ser	cag Gln	gcg Ala 100	cat His	tac Tyr	cgc Arg	ctc Leu	tct Ser 105	gcc Ala	ttc Phe	ggc Gly	cag Gln	cag Gln 110	ttt Phe	335
40												gct Ala					3 8 3
45												acc Thr					431
50	gaa 214	gag Gln 145	gaa Glu	gag Ala	gaa 9)-;	ota Deu	aay Lys 150	cac His	tgt Tys	ttc Fh4	tad Tyr	aaa Lys 155	agg Arg	sta Leu	tgt Tys	caa Pln	4 = 3
55												ttg Leu					527
												ass Thr					9.75

cal in the consequence of the term of the consequence and sequence of the tap in CALL turn plo Ala income flat. Typically Associate for Associate

			210					215					220				
5		_	_	_		acc Thr		_									719
10						gtc Val 245											767
				_		ctt Leu								_			815
15						aaa Lys											863
20						att Ile											911
25					-	cag Gln								_		_	959
30						ggt Gly 325											1007
30		_	_	_		tgc Cys	_	_		_		-	-				1055
35	_	-	-	_		acc Thr		-	_			_	_	_			1103
40						ttg Leu											1151
45						atg Met											1199
50						000 P10 405				Met						111 Fre 415	1040
50						atg Met											1295
55	gag Glu	ttt Pne	tta Leu	gac Asp 435	act	ggt Gly	tat Tyr	gg¢ Gly	gag 314 440	tgt Cys	ttg Leu	ott Leu	aat Ast	gaa Glu 448	oot Pro	gaa Glu	2343

non de la companya d Paga de la companya
	30a Pro 460	tat Tyr	atg Met	atg Met	cag Glm	tgc Cys 485	aga Arg	cgg Arg	ctc Leu	tgg Trp	tgc Cys 490	aat Asn	aac Asn	gtc Val	aat Asn	gga Gly 495	1487
5	gta Val	cac His	aaa Lys	ggc Gly	tgc Cys 500	cgg Arg	act Thr	cag 31r	cac Hıs	aca Thr 505	ccc Pro	tgg Trp	gcc Ala	gat Asp	999 Gly 510	acş Thr	1535
10						aag Lys											1583
15						gtg Val											1631
20	ttt Phe	99a Gly 545	acc Thr	tgc Jys	tcc Ser	aga Arg	aca Thr 550	igt Cys	gga Gly	999 Gly	ggc Gly	atc Ile 555	aaa Lys	aca Thr	gca Ala	att Ile	1679
20	cga Arg 560	gag Glu	tgc Cys	aac Asn	aga Arg	cca Pro 565	gaa Glu	cca Pro	aaa Lys	aat Asn	99t Gly 570	gga Gly	aaa Lys	tac Tyr	tgt Cys	gta Val 575	1727
25						ttt Phe											1775
30	cag Gln	aag Lys	cga Arg	gac Asp 595	ttc Phe	cga Arg	gat Asp	gaa Glu	cag Gln 600	tgt Cys	gct Ala	cac His	ttt Phe	gac Asp 605	999 999	aag Lys	1823
35						ggt Gly											1871
40	tac Tyr	agt Ser €25	gga Gly	att Ile	ctg Leu	atg Met	aag Lys 630	gac Asp	ogg Arg	tgc Cys	aag Lys	ttg Leu 635	ttc Phe	tgc Cys	aga Arg	gtg Val	1919
40	gca Ala 640	999 Gl _¥	aac Asn	aca Thr	gcc Ala	tac Tyr 645	tat Tyr	cag 31n	ctt Leu	cga Arg	gac Asp 650	aga Arg	gtg Val	ata Ile	gat Asp	gga Gly 655	1967
45	act Thr	cot Pro	tgt Cys	age Gly	660 €60	gac Asp	aca Tar	aat Asn	gat Aap	310 11e 685	tgt Cys	gts Val	cag Gln	ggc Gly	ctt Leu 670	tg: Cys	2015
ēĵ	agy Arg	Cái Bli	got Ala	933 313 675	tgo Cys	gat Asp	eat His	gtt Val	tta Lec 680	aac Aan	toa Ser	aaa Lys	900 Ala	099 Arg 685	aga Ang	gat Asr	Ž(ć)
5.5	aaa Lys	tg: Cys	999 Gly 690	git Val	tgt Cys	ggt Gly	ggc Gly	gat Asp 695	aat Asr.	tot Ser	tca Ser	tgc Cys	aaa Lys 700	aca Thr	gtg Val	gca Ala	2111
						gta Val											1159

⁽i) graining purious grains that the graining the Agri Agt on, ggr 30s (1.1) Grain Thr App Asp Asp Ash Tyr Lo. Aln Lou Fer Ser Ser Lys Tly Stu

					740					245					750		
5	ttc Fhe	ttg Leu	cta Leu	aat Asn 755	gga Gly	aac Asn	ttt Phe	gtt Val	gto Val 760	aca Thr	atg Met	gcc Ala	aaa Lys	agg Arg 765	gaa Glu	att Ile	2303
10	agc Arg	att Ile	999 Gly 770	aat Asn	got Ala	gtg Val	gta Val	gag Glu 775	tac Tyr	agt Ser	999 Gly	tcc Ser	gag Glu 780	act Thr	gcc Ala	gta Val	2351
10	gaa Glu	aga Arg 785	att Ile	aac Asn	tca Ser	aca Thr	gat Asp 790	cgc Arg	att Ile	gag 31u	caa Gln	gaa Glu 795	ctt Leu	ttg L e u	ctt Leu	cag Gln	2399
15						aag Lys 805											2447
20	aar Asn	arr Ile	cca Pro	att Ile	gaa Glu 520	gat Asp	aaa Lys	cct Pro	cag Gln	32g 31n 825	ttt Phe	tac Tyr	tgg Trp	aac Asn	agt Ser 830	cat His	2495
25	999 Gly	cca Pro	tgg Trp	caa Gln 835	gca Ala	tgc Cys	agt Ser	aaa Lys	ccc Pro 840	tgc Cys	caa Gln	ggg Gly	gaa Glu	cgg Arg 845	aaa Lys	cga Arg	2543
2.0	aaa Lys	ctt Leu	gtt Val 850	tgc Cys	acc Thr	agg Arg	gaa Glu	tot Ser 855	gat Asp	cag Gln	ctt Leu	act Thr	gtt Val 860	tct Ser	gat Asp	caa Gln	2591
30	aga Arg	tgc Cys 865	gat Asp	cgg Arg	ctg Leu	ccc Fro	cag Gln 870	aat Pro	gga Gly	cac His	att Ile	act Thr 875	gaa Glu	ccc Pro	tgt Çys	ggt Gly	2639
35	aca Thr 880	ggc Gly	tgt Cys	gac Asp	ctg Leu	agg Arg 885	tgg Trp	cat His	gtt Val	gcc Ala	agc Ser 890	agg Arg	agt Ser	gaa Glu	tgt Cys	agt Ser 895	2687
40	gcc Ala	cag Gln	tgt Cys	ggc Gly	ttg Leu 900	ggt Gly	tac Tyr	ege Arg	aca	ttg Leu 905	gac Asp	atc Ile	tac Tyr	tgt Cys	300 Ala 910	aaa Lys	2735
45	tat Tyr	agc Ser	agg Arg	otg Leu 915	gat Asp	999 Gly	aag Lys	act Thr	gag Glu 920	aag Lys	gtt Val	gat Asp	gat Asp	ggt Gly 925	ttt Phe	tgc Cys	2763
5.0						cca Fro											2831
50	aac Asn	acg Thr 945	ggt Gly	ggo	tgg Trp	Yzā cāc	tat Tyr 950	tot Ser	gcc Ala	tgg Trp	act Thr	gaa Glu 955	tgt Cys	tca Ser	aaa Lys	agc Ser	2879
55	tgt Cys 960	gác Asp	ggt 317	999 Gly	acc Thr	cag Gln 965	agg Arg	aga Arg	agg Arg	got Ala	att ile 971	tgt Cys	gto Val	aat Asn	acc Thr	oga Arg 905	2927

	tgg tca gag Trp Ser 3lu 1010	tgc ttg gtc Cys Leu Val	acc tgt gg Thr Cys Gl	a aaa ggg cat y Lys Gly His	aag cac ag Lys His Se 1020	c cag 3071 r Gln
5	gto tgg tgt Val Trp Cys 1025	Gln Phe Gly	gaa gat cg Glu Asp Ar 1030	a tta aat gat g Leu Asn Asp 1035	Arg Met Cy	t gac 3119 s Asp
1 C	cct gag acc Pro Glu Thr 1040	aag cca aca Lys Pro Thr 1045	tot atg car Ser Met Gl:	g act tgt cag n Thr Cys Glr 1050	, cag c¢g ga n Gln Pro Gl	a tgt 3167 u Cys 1055
15	gca too tgg Ala Ser Trp	cag gcg ggt Gln Ala Gly 1060	ecc tgg gt Pro Trp Va	a cag tgo agt 1 Gln Cys Ser 1065	gto act tg Val Thr Cy 107	s Gly
20	Glm Gly Tyr	cag cta aga Gln Leu Arg 1875	gca gtg aa Ala Val Ly 108	a tgc atc att s Cys Ile Ile O	ggg act ta ggg act ta ggg act ta ggg ggg ggg ggg ggg ggg ggg ggg ggg g	t atg 3263 r Met
20	tca gtg gta Ser Val Val 1090	gat gac aat Asp Asp Asn	gac tgt aa Asp Cys As: 1095	t goa goa act n Ala Ala Thi	aga cca ac Arg Pro Th 1100	t gat 3311 r Asp
25	acc cag gac Thr Gln Asp 1105	Cys 3lu Leu	cca tca tg Pro Ser Cy: 1110	t cat oct coo s His Pro Pro 1115	p Pro Ala Al	c ccg 3359 a Pro
3 0	gaa acg agg Glu Thr Arg 1120	aga agc aca Arg Ser Thr 1125	tac agt gc Tyr Ser Al	a cca aga acc a Pro Arg Thr 1130	e dag tgg cg 31m Trp Ar	a ttt 3407 g Phe 1135
35	ggg tot tgg Gly Ser Trp	acc cca tgc Thr Pro Cys 1140	tca gcc ac Ser Ala Th	t tgt ggg aaa r Cys Gly Lys 1145	a ggt acc cg s 3ly Thr Arc 115	g Met
40	Arg Tyr Val	age tge ega Ser Cys Arg 1155	gat gag aa Asp Glu As: 116	t ggd tot gtg n Gly Ser Val D	g got gad ga . Ala Asp Gl 1165	g agt 3503 u Ser
40				g gca aag gaa 1 Ala Lys Glu		
4.5	aca coo tgt Thr Pro Cys 1185	ggg caa tgg Gly Glm Trp	aag goo tt Lys Ala Le 1190	g gad tgg agd 1 Asp Trp Ser 1198	- Sei Cys Se	ogtg 3599 r Val
5.0	App tyt 999 Thr Cys 3ly 1200	caa ggt agg Gln Gly Arg 1205	gra arr og Ala Thy Ar	g caa gtg útg g 31m Val Met 1210	g tÿt gto au : Cys Val As	o tao - 3647 n Tyr 1215
5.5	agi gac cac Ser Asp His	gig ato gat Val Ile Asp 1220	logg agt gag Arg Ser Gla	g tgt gac cag u Cys Asp Glr 1225	g gat tat at h Asp Tyr Il 123	e Pro
	gaa act gac Glu Thr Asp	cag gad tgt Gln Asp Tvs	ich ang to Ser Met Se	a oca igo set r Pro Tvs Pro	caa agg ac Sin Ara Th	o coù 3743 m Eth

HT op ugt growep" or upo typewin in and only gan agales? The ias Ang Sen Ala Ser Pro Ser Ang Tor Bie Mal Lew Niy Guy Aen Sin Tap

	1265	1270		1275	
5	aga act ggc Arg Thr Gly 1280	ccc tgg gga gca Pro Trp Gly Ala 1285	Cys Ser Ser T	co tgt got ggo hr Cys Ala Gly 90	gga toc 3887 Gly Ser 1295
10	cag cgg cgt Gln Arg Arg	gtt gtt gta tgt Val Val Cys 1300	cag gat gaa a Gln Asp Glu A 1305	sn Gly Tyr Thr	gca aac 3935 Ala Asr 310
10	Asp Cys Val	gag aga ata aaa Glu Arg Ile Lys 1315	cct gat gag c Pro Asp Glu G 1320	aa aga goo tgt In Arg Ala Cys 1325	gaa too 3983 Glu Ser
15	ggc cat tgt Gly Pro Cys 1330	cot dag tgg got Pro Gln Trp Ala	tat ggc aac to Tyr Gly Asn T 1335	gg gga gag tgc Trp Gly Glu Cys 1340	act aag 4031 Thr Lys
20	ctg tgt ggt Leu Cys Gly 1345	gga ggo ata aga Gly Gly Ile Arg 1350	aca aga ctg g Thr Arg Leu V	tg gto tot cag Wal Val Ser Gln 1355	egg tee 1079 Arg Ser
25	aac ggt gaa Asn Gly Glu 1360	egg ttt cca gat Arg Phe Pro Asp 1365	Leu Ser Cys G	aa att ott gat lu Ile Leu Asp 70	aaa cct 4127 Lys Pro 1375
30	ccc gat cgt Pro Asp Arg	gag cag tgt aac Glu Gln Cys Asn 1380	aca cat get t Thr His Ala C 1385	ys Pro His Asp	get gea - 4175 Ala Ala 390
30	Trp Ser Thr	ggd dot tigg agd Gly Pro Trp Ser 1395	tog tgt tot g Ser Cys Ser V 1400	to tot tgt ggt Tal Ser Cys Gly 1405	cga ggg 4223 Arg Gly
35	cat aaa caa His Lys Gln 1410	iga aat gtt tac Arg Asn Val Tyr	tgc atg gca a Cys Met Ala L 1415	aa gat gga agc ys Asp Gly Ser 1420	cat tta 4271 His Leu
40	gaa agt gat Glu Ser Asp 1425	tac tgt aag cac Tyr Cys Lys His 1430	Leu Ala Lys P	ca cat ggg cac ro His Gly His 1435	aga aag 4319 Arg Lys
4 5	tgc cga gga Cys Arg Gly 1440	gga aga tgc ccc Gly Arg Cys Pro 1443	Lys Trp Lys A	ot ggc got tgg la Gly Ala Trp	agt dag 4367 Ser Gln 1455
r o	tgo tot gtg Cys Ser Val	cod atg ggd oga Ser Met Gly Arg 1460	ggo gta dag d Bly Val Gln B 1465	Hn Arg His Val	gga tat 4415 Gly Cys 470
•	Gln Ile Gly	aca cac aaa ata Thr His Lys Ile 1475	god Aga gag a Ala Arg Glu T 1480	ico gag tge aac ihr Glu Cys Asn 1485	coa tad 4463 Pro Tyr
55	acc aga ccg Thr Arg Pro 1490	gag tog gad tgo Glu Ser Glu Cys	gaa tgo caa g Glu Cys Gln G 1495	igo oca egg tgt Ely Fro Arg Cys 1800	cos ott 4511 Pro Leu

및 붉으로 하는 1980년의 경기 등을 받는 것이다.

	gag Glu	gtç Val	cat His	Gly	gca Ala 1540	ag¢ Arg	tgt Cys	gac Asp	Va.	agc Ser 1545	aag Lys	cgg	510 203	Val	gac Asp 550	cgt Arg	4655
5	gaa Glu	ag: Ser	Сув	agt Ser 1555	ttg Leu	caa Glm	ccc Pro	Сув	gaç Glu 1560	tat Tyr	gtc Val	tgg Trp	Thr	aca Thr 1565	gga Gly	gaa Glu	4703
10	tgg Trp	Ser	gag Glu 1570	tg: Cys	tca Ser	gtg Val	Thr	tgt Cys 1575	gga Gly	aaa Lys	ggc Gly	Tyr	aaa Lys 1580	caa Gln	agg Arg	ctt Leu	4751
15	Val					Ile				aaa Lys	Glu						4 799
20	tac Tyr 1600	Gln	acc Thr	acc Thr	Ile	aac Asn 1605	tgc Cys	cca Pro	39c 31y	acg Thr	cag Gln IC10	CCC Pro	ecc Pro	agt Ser	Val	cac His 1615	4847
20	ccc Pro	tgt Cys	tac Tyr	Leu	agg Arg 1620	gag Glu	tgc Cys	cct Pro	Val	tcg Ser 1623	gcc Ala	acc Thr	tgg Trp	Arg	gtt Val 1630	ggc Gly	4895
25	aac Asn	tgg Trp	$Gl\gamma$	agc Ser 1635	tgc Cys	tca Ser	gtg Val	Ser	tgt Cys 1640	ggt Gly	gtt Val	gga Gly	Val	atg Met 1645	cag Gln	aga Arg	4943
30		Val					Asn			caa Gln		Ser					4991
35	Thr	gat Asp 1665	ctg Leu	aag Lys	cca Pro	Glu	gaa 31u 1570	cga Arg	aaa Lys	ac: Thr	Сув	egt Arg 1675	aat Asn	gtc Val	tat Tyr	aac Asn	5039
4 C	tgt Cys 1680	Glu	tta Leı	ccc Pro	Gln	aat Asn 1685	tgc Cys	aag Lys	gag 31u	gta Val	aaa Lys 1690	aga Arg	ctt Leu	aaa Lys	Gly	gcc Ala 1695	5087
40	agt Ser	gaa Glu	gat Asp	Gly	gaa Glu 1700	tat Tyr	ttc Phe	ctg Leu	Met	att Ile 1705	aga Arg	gga Gly	aag Lys	Leu	ctg Leu 1710	aag Lys	\$135
45	ata Ile	tts Phe	J.'. è	909 Ala 1715	317, 333	atg Met	cac His	tot Ser	gar Asp 1720	cac His	000 Pro	aaa Lys	Glu	tac Tyr 1725	gtg Val	aca Thr	5183
50	otg Leu	Val	265 His 1730	33ā 317	gal Asp	tot Ser	-31 u	aut Asn 1735	ttu Phe	to: Ser	gāg 314	Val	tat Tyr 1740	999 Gly	JaU His	agg Arg	22.2
55	tta Leu	His	āāC Asn	cca Pro	aca Thr	Glu	tgt Cys 1750	cac Pro	tat Tyr	aac Asn	Gly	agc Ser 1755	egg	Arg	gat Asp	gac Asp	5279
	tgs ~.,	Saa Nir	tgt nug	ugg Arm	aag Lyo	gat Aap	tac Tvi	aug Th∽	gos Ala	got Ala	317 āgā	ttt Fhe	tor Skr	äþt Ser	ttt Phe	cay aln	£ 3 27

An import groups are tables as grown of groups for the product of the Ala Tor Ala

				1795				:	1800					1805			
5	999 Gly	Asp	tgc Cys 1810	tac Tyr	agc Ser	gct Ala	Ala	aag Lys 1815	tgc Cys	cca Pro	cag Gln	Gly	cgt Arg 1820	ttt Phe	agc Ser	atc Ile	5471
	Asn	ctt Leu 1825	tat Tyr	gga Gly	acc Thr	Gly	ttg Leu 1830	tet Ser	tta Leu	act Thr	Glu	tct Ser 1835	gcc Ala	aga Arg	tgg Trp	ata Ile	5519
10		Gln			Tyr					Ile					gat Asp		5567
15				Val					Gly					Cys	act Thr 1870		5615
20	toc Ser	tot Ser	Gly	acı Thr 1875	ggc Gly	etg Leu	gag Glu	Val	cga Arg 1880	gct Val	tta Leu	tago	otaaş	jgt (gotti	igaaga	5668
	ggaa	agees	att a	atgg	atgga	at ga	aagga	stagt	. aat	gcaa	tac	ctc	cacct	ta a	atttg	gggtgs	5728
25	atgt	gtat	gtg	gtgtg	gtgts	gt ti	igigt	gtga	a ctt	gtat	get	tgtg	gtgtg	gta a	aatgt	gtgta	5788
	cata	ataca	ata t	catad	ea.												5804
30	<212	l> 18 2> PF	82 T	sapie	ens A	ADAM:	rs-9										
3 5	<400 Ser 1			Gln	Phe 5	Val	Ser	Trp	Ala	Thr 10	Leu	Leu	Thr	Leu	Leu 15	Val	
: C	Arg	Asp	Leu	Ala 20	Glu	Met	Gly	Ser	Pro 25	Asp	Ala	Ala	Ala	Ala 30	Val	Arg	
	Lys	Asp	Arg 35	Leu	His	Pro	Arg	Gln 40	Val	Lys	Leu	Leu	Glu 45	Thr	Leu	Ser	
: 5	Glu	Tyr 50	Glu	lle	\al	Ser	Pro St	De	Arg	Val	Asn	Ala 60	Leu	Зly	Glu	Pro	
	Phe 65	Pri	Tnr	Asn	∵al	His Ti	Fhe	Lys	Arj	Inr	Aily 15	Aij	<u>ಫ್ರ</u>	ile	AVE	8e1 80	
	Ala	Thr	Asp	Fro	Trp 85	Pro	Ala	Phe	Ala	Ser 90	Ser	Ser	Ser	Ser	Ser 95	Thi	
5	Ser	Ser	Gln	Ala 100	His	Tyr	Arg	Leu	Ser 105	Ala	Phe	Gly	Gln	Gln 115	Fhe	Leu	
	Fhe	Asn	Le. ::¤	Thr	Ala	Asn	Ala	31y 12	Phe	lle	Ala	Frc	leu 115	Phe	Thr	Val.	

gin bes Arg Ala His Bly Arg His Jin Fr. Les Les Ars Ash Slu His

					1 € 5					170					175	
۔	Lys	Asr.	Arg	His 180	Ser	Lys	Asp	Lys	Lys 185	Lys	Tar	Arg	Ala	Arg 190	Lys	Trp
5	Gly	Glı	Arg 195	Ile	Asn	lei	Ala	Gly 200	Asp	Val	Ala	Ala	Leu 205	Asn	Ser	Gly
10	Leu	Ala 210	Thr	Glu	Ala	Phe	Ser 215	Ala	Tyr	Gly	Asn	Lys 220	Thr	Asp	Asn	Thr
	Arg 225	Glu	Lys	Arg	Thr	His 230	Arg	Arg	Thr	Lys	Arg 235	Phe	Leu	Ser	Tyr	Pro 240
15	Arg	Phe	Val	Glu	Val 245	Leu	Val	Val	Ala	Asp 250	Asr.	Arg	Met	Val	Ser 255	Tyr
20	His	Gly	Glu	As n 260	Leu	Gln	His	Tyr	Ile 265	Leu	Thr	Leu	Met	Ser 270	Ile	Val
20	Ala	Ser	Ile 275	Tyr	Lys	Asp	Pro	Ser 280	Ile	Gly	Asn	Leu	Ile 285	Asn	Ile	Val
25	lle	Val 290	Asn	Leu	Ile	Val	Ile 295	His	Asr.	Glu	Gln	Asp 300	Gly	Pro	Ser	lle
	Ser 305	Phe	Asn	Ala	Glm	Thr 310	Thr	Leu	Lys	Asn	Phe 315	Cys	Gln	Trp	Gln	His 320
30	Ser	Asr.	Ser	Pro	Gly 325	Gly	Ile	His	His	Asp 330	Thr	Ala	Val	Leu	Leu 335	Thr
35	Arg	Gln	Asp	Ile 340	Cys	Arg	Ala	His	Asp 345	Lys	Сув	Asp	Thr	Leu 350	Gly	Leu
33	Ala	Glu	Leu 355	Gly	Thr	Ile	Сув	Asp 360	Pro	Tyr	Arg	Ser	Cys 3€5	Ser	ile	Ser
40	Glu	Asp 370	Ser	Gly	Leu	Ser	Thr 375	Ala	Phe	Thr	Ile	Ala 380	His	Glu	Leu	Gly
	His 385	Val	Phe	Asn	Met	Pro 390	His	Asp	Asp	Asn	Asn 395	Lys	Cys	Lys	Glu	Glu 400
45	Gly	Val	Lys	Ser	Fro 405	Glr.	His	Val	Met	Alā 415	Pro	Thr	Leta	Asn	The	Tyr
ē (Thr	Asn	Pic	Trp 421	Met	Trp	Ser	Lys	2ys 425	Ser	Arg	Lys	Tyr	11e 431	Tnr	3 lα
- `	Fre	Leu	Asp 435	Thr	gly	Tyr	gly	Glu 440	Сув	Leu	Leu	Asr.	Glu 445	Fro	Glu	Ser
5.5		Pro 450	Tyr	Pro	Leu	Pro	Val 455	Gln	Leu	Pro	Gly	11e 463	Seu	Tyr	Aan	Val
	Asn 465	Lys	Gln	Хаа	3lu	Leu arr	Ile	Fne	Gly	Fro	31y	Ser	Glm	Val	Cys	Pro

(4)
(5)
(6)
(7)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)

			515					520					525			
5	Met	Asp 530	Val	Pro	Val	Inr	Asp 535	Gly	Ser	Trp	Gly	Ser 540	Trp	Ser	Pro	Phe
_	Gly 545	Thr	Cys	Ser	Arg	Thr 550	Cys	Gly	Gly	Зіу	Ile 555	Lys	Thr	Ala	Ile	Arg 560
10	Glu	Cys	Asn	Arg	Pro 565	Glu	Pro	Lys	Asn	Gly 570	Gly	Lys	Tyr	Сув	Val 575	Gly
	Arg	Arg	Met	Lys 580	Phe	Lys	Ser	Cys	Asn 585	Thr	Glu	Pro	Cys	Leu 590	Lys	Glm
15	Lys	Arg	Asp 595	Phe	Arg	Asp	Glu	Gln 600	Сув	Ala	His	Phe	Asp 605	${ m Gl}_Y$	Lys	His
20	Phe	Asn 610	Ile	Asn	Gly	Leu	Leu 615	Pro	Asn	Val	Arg	Trp 620	Val	Pro	Lys	Tyr
	Ser 625	Gly	Ile	Leu	Met	Lys 630	Asp	Arg	Cys	Lys	Leu 635	Phe	Сув	Arg	Val	Ala 540
25	Gly	Asn	Thr	Ala	Tyr 645	Tyr	Gln	Leu	Arg	Asp 550	Arg	Val	Ile	Asp	Gly 655	Thr
	Pro	Суѕ	Gly	Gln €60	Asp	Thr	Asn	Asp	Ile 665	Сув	Val	Gln	Gly	Leu 670	Cys	Arg
30	Gln	Ala	31y 675	Cys	Asp	His	Val	Leu 680	Asn	Ser	Lys	Ala	Arg 685	Arg	Asp	Lys
35	Сув	Gly 690	Val	Cys	Gly	Gly	Asp 695	Asn	Ser	Ser	Сув	Lys 700	Thr	Val	Ala	Gly
	Thr 705	Phe	Asr.	Thr	Val	His 710	Tyr	Gly	Туг	Asn	Thr 715	Val	Val	Arg	Ile	Pro 720
40	Ala	Gly	Ala	Thr	Asn 725	Ile	Asp	Val	Arg	Gln 730	His	Ser	Phe	Ser	Gly 735	Glu
	Thr	Asp	Asp	Asp 740	Asn	Tyr	Leu	Ala	Leu 745	Ser	Ser	Ser	Lys	Gly 750	Glu	Phe
4 5	Leu	Leu	Asn. 755	Gly	Asc	Fhe	Val	Vā1 160	Thr	Met	Ala	Lys	Arg 765	Glu	ile	Arg
ç ÷	ile	319	ABT.	Ali		Val	31u 5	Tjr	Ser	З1у	Ser	31a 780	Th.r	Ala	Val	31.
	Arg 785	He	Aat.	Jer	nar	290 190	Arg	1.€	314	ЗÌГ.	31. 795	Leu	Leu	Leu	31n	7.41 800
55	Lei	Ser	Val	Gly	Lys 805	Leu	Tyr	Asn	Pro	Asp 810	Vāl	Arg	Tyr	Ser	Fire 815	Asr.
	Ile	Pro	I:Ę	31. 820	Asp	Lys	Dri	Gln	31n 825	Ehe	Tyr	Trp	Asn	Ser 830	His	33.7

	365					8 7 0					275					881
5	Gly	Cys	Asp	Leu	Arg 885	Trp	His	Val	Ala	Ser 890	Arg	Ser	Slu	Cys	Ser 895	Alā
ر	Gln	Cys	Gly	Leu 900	31,	Tyr	Arg	Thr	leu 905	Asp	Ile	Tyr	Сув	Ala 910	гÀг	Tyr
10	Ser	Arg	Leu 915	Asp	Gl/	Lys	Thr	Glu 920	Lys	Val	Asp	Asp	Gly 925	Phe	Cys	Ser
	Ser	His 930	Pro	Lys	Pro	Ser	Asn 935	Arg	Glu	Lys	Cys	Ser 940	Gly	Glu	Cys	Asn
15	Thr 945	Gly	Gly	Trp	Arg	Tyr 950	Ser	Ala	Trp	Thr	31u 955	Суѕ	Ser	Lys	Ser	C∵s 9€0
20	Asp	Gly	Gly	Thr	Gln 965	Arg	Arg	Arg	Ala	Ile 970	Сув	Val	Asn	Thr	Arg 975	Asn
•	Asp	Val	Leu	Asp 980	Asp	Ser	Lys	Фys	Thr 985	His	Gln	Glu	Lys	Val 990	Thr	Ile
25	Gln	Arg	Cys 995	Ser	Glu	Phe		Gys 1000	Pro	Gln	Trp		Ser 1005	Gly	Asp	Trp
		Glu 1010	Cys	Leu	Val		Cys :015	Gly	Lys	Gly	His	Lys 1020	His	Ser	Gln	Val
30	Trp		Gln	Phe		Glu 1030	qeA	Arg	Leu		Asp 1035	Arg	Met	Cys	Asp :	Pro 1040
35	Glu	Thr	Lys		Thr 1045	Ser	Met	Gln		Cys 1050	Gln	Gln	Pro		Cys 1055	Ala
,,,	Ser	Trp		Ala LC6C	Gly	Pro	Trp		Gln 1965	Cys	Ser	Val		Cys 1070	Gly	Glr
40	Gly		Gln 1075	Leu	Arg	Ala		Lys 1380	Cys	Ile	Ile		Thr 1085	Tyr	Met	Ser
		Val 1090	Asp	Asp	Asn		Cys 1095	Asn.	Ala	Ala	Thr	Arg	Pro	Thr	Asp	Thi
45	3ln 110		Cyrs	Glu		Pro	Ser	Сув	415		Pro 1115	Pic	Ala	Ala	Fro	glu 122
50	Thi	Arg	Arg		Th.: 1125	Tyr	Ser	Ala		Aig 1130	Thr	3 <u>1</u> ::	Tri		Fne 1135	G%;
	Ser	Trp		Pro 1140	Cys	Ser	Ala		Cys 1145	Gly	Lys	Gly		Arg	Met	Arg
5 5	Tyr		Ser 1155	Cys	Arg	Asp		Asn 1160	Gly	Ser	Val		Asp 1165	Glu	Ser	Ala
	Cys	Ala	Tar	Leu	Fre	Arg	Pro	Väl	Als	Lys	៤1៦	31u ::30	Cys	Ser	Val	Thi

				1220					1225					1230		
5	Thr		Gln 1235	Asp	Cys	Ser		Ser 1240	Pro	Cys	Pro		Arg 1245	Thr	Fro	As
٠		Gly 1250	Leu	Ala	Glr.		Prc 1255	Fhe	Gln	Asn	Glu :	Asp 1260	Tyr	Arg	Pro	Arg
10	Ser 126		Ser	Pro		Arg 1270	Thr	His	Val		Gly 1275	Gly	Asr.	Gln		Ar9
	Thr	Gly	Pro		Gly 1285	Ala	Cha	Ser		Thr 1290	Сув	Ala	Gly		Ser 1295	Gli
15	Arg	Arg		Val 1300	Val	Cys	Gln		Glu 1305	Asn	Gly	Tyr		Ala 1310	Asn	Ası
20	Суз		Glu 1315	Arā	Ile	Lys		Asp 1320	Glu	Gln	Arg		Cys 1325	Glu	Ser	Gly
	1	1330			_	=	1335					1340				
25	Cys 1349		Gly	Gly		Arg 1350	Thr	Arg	Leu		Val 1355	Ser	Gln	Arg		Asi (36)
	Gly	Glu	Arg		Pro L365	Asp	Leu	Ser		Glu 1370	Ile	Leu	Asp		Pro 1375	Pro
30	Asp	Arg		Gln 1380	Cys	Asn	Thr		Ala 1385	Cys	Pro	His		Ala 1390	Ala	Tri
35		2	395				:	1400			Ser		1405			
		Gln 1410	Arg	Asn	Val		Cys .415	Met	Ala	Lys	Asp 1	Gly .420	Ser	His	Leu	Gli
40	Ser 1425		Tyr	Cys		H1S 430	Leu	Ala	Lys		His 1435	Gly	His	Arg		Cys .440
		_		1	445				1	450	Gly			1	455	
45			1	1460				-	.495		Arg.		:	470		
ξħ		:	.475					461			Glu	1	1485			
		Pt0 490	314	Ser	Glu		G15 495	Cys	Gln	Gly	Pro 1	Ar g .500	Cys	Fic	Let	Tyr
	Thr 1505		Arg	Ala		Glu 510	Trp	Jln	Glu		Thr 515	77.2	Thr	Cys	Gly 1	01u 520

Bur Dil ye Fer Mal The Mye Huy Dye Ruy Tyr Lyw Run Arg Les Mas

Gly Ser Arg Tyr Arg Lys Val Val Cys Val Asp Asp Ash Lys Ash Glu 1898 1899 1895

	1570		1575		1580	
5	Ser Cys 1585	Ser Glu Ile	Tyr Thr Gly .590	Lys Glu Asn 1595	Tyr Glu	Tyr Ser Ty 160
,	Gln Thr	Thr Ile Asn 1605	Cys Pro 3ly	Thr Gln Fro 1610	Pro Ser	Val His Pr 1615
10	Cys Tyr	Leu Arg Glu 1620	Cys Pro Val	Ser Ala Thr 1625		Val Gly Asi .630
		Ser Cys Ser 1635	Val Ser Jys 1640		Val Met 1645	Gln Arg Se
15	Val Gln 1658	Cys Leu Thr	Asn Glu Asp 1655		His Leu 1660	Cys His Th
20	Asp Leu 1665	Lys Pro Glu	Glu Arg Lys .670	Thr Cys Arg 1675	Asn Val	Tyr Asn Cyr 168
20	Glu Leu	Pro Gln Asn 1685	Cys Lys 3lu	Val Lys Arg 1690	Leu Lys	Gly Ala Se: 1695
25	Glu Asp	Gly Glu Tyr 1700		Ile Arg Gly 1705		Leu Lys Ile 710
		Ala Gly Met 1715	His Ser Asp 1720		Glu Tyr 1725	Val Thr Le
30	Val His 1730	Gly Asp Ser	Glu Asn Phe 1735		Tyr Gly 1740	His Arg Le
35	His Asn 1745	Pro Thr Glu	Cys Pro Tyr .750	Asn Gly Ser 1755	Arg Arg	Asp Asp Cyr 176
رر	Gln Cys	Arg Lys Asp 1765	Tyr Thr Ala	Ala Sly Phe 1770	Ser Ser	Phe Gln Ly: 1775
40	Ile Arg	Ile Asp Leu 1780		Gln Ile Ile 1785		Asp Leu Gl: 790
		Arg Thr Ser 1795	Glu Gly His 1900		Phe Ala 1805	Thr Ala Gli
45	Asp Cys 1510	Tyr Ser Ala	Ala Lys Cys 1815		Arg Pho 1620	Ser Ile As:

Let Tyr Cly Inr Cly Let Ser Let Thr Glu Ser Ala Arg Trr Ile Ser 1625 1831 1635 1847 Si Gln Gly Asn Tyr Ala Val Ser Asp Ile Lys Lys Ser Pro Asp Gly Thr 1845 1851 1855

Arg Val Val Gly Lys Cys Gly Gly Tyr Cys Gly Lys Cys Thr Pro Ser 55 1860 1868 1870

Ser Sly Thr Sly Leu Slu Val Arg Val Leu

ville 15A v vilve mikoligario ALAMII o

		0 > 1 > 01 2 > +1		.262	3·												
5	<400 g ca H:	ac ac	it g	09 9: la Va	to at al II	to aq le Se 5	ga di er Le	ig to	go t ya S	er G	ga ar ly Mo 10	tg a' et M	tg g: et G:	gc ac ly Th	nr Pi	to oga ne Arg 15	49
10													tct Ser				97
15													att Ile 45				145
20	_			_							_		gcc Ala				193
25													aaa Lys				241
	cga Arg	aaa Lys	cgg Arg	aga Arg	aag Lys 85	agg Arg	aat Asn	agc Ser	ctg Leu	got Ala 90	gac Asp	gac Asp	gtg Val	gca Ala	ctg Leu 95	cta Leu	269
30													agc Ser				337
35													aaa Lys 125				3 ê 5
40													gac Asp				433
45	gtt Val 145	tta Leu	tac Tyr	ca: His	gga Gly	gca Ala 150	aac Asn	ctt Leu	caa Gln	cat His	tat Tyr 155	atc Ile	tta Leu	acc Thr	tta Leu	atg Met 160	481
	too Ser	ast Ile	gta Val	got Ala	tot Ser 165	atc Ile	tat Tyr	aas Lys	gas Asp	tda Sər	agt Ser	att Ile	gga Gly	aat Aan	tta Leu 175	att Ile	F29
50	lit Asn	att Ile	gtt Val	180 11e	gtg Val	aab Asn	ttä Leu	git Val	gtg Val 185	ut: Ile	Sut Els	aal Asn	Glu	001g Gln 190	jan 31u	gga Gly	I
55													aac Asn 205				€25
	. 1.5	* 1 *	*10	+ - 3	333	1 1 -	• • •	• • •		רני	7, * *	- 3 7		~	1000	;	. * .

in the second of
	Thr	Leu	Gly	Leu	Ala 245	314	Leu	Gly	Thr	Ile 250	Cys	Asp	Pro	Tyr	Arg 285	Ser	
5	tgt Cys	tee Ser	att Ile	agt Ser 260	gaa Glu	gac Asp	agt Ser	999 999	ctg Leu 265	agc Ser	aca Thr	got Ala	ttc Phe	aca Thr 270	ata Ile	gct Ala	817
10			_	-		gtg Val			_			_	_	-			865
15						gtt Val	_	-		_		_	_	_			913
						aac Asn 310											961
20						cta Leu											1009
25	_					acc Thr			_				-				1057
30						aaa Lys											1105
35		_				atg Met	-	_	_	_				_			1153
33						aaa Lys 390											1201
40						gag Glu											1249
4 5						gag Glu											1297
<u> 5</u> Ç	tgg Trp	agu Ber	cac His 435	ttt Fhe	333 31y	300 Th:	tga Cys	tra Ser 440	aga Arg	aig Thr	tgt Cys	gga Gly	334 31y 448	ggc Gly	atb Ile	aaa Lys	1343
rr		_		_	_	Cys		_								aag Lys	1393
55						aga Arg 470											1441

5			aag Lys 515		_				_		_						1585
_	_	_	gtg Val	_													1533
10		_	gga Gly			_		-	-			_		_	_		1681
15			tgc Cys														1729
20			gat Asp		_			_			_				_		1777
25			gca Ala 595						-							_	1825
			att Ile														1873
30			999 Gly	_				_				_					1921
35			gaa Glu														1969
40			gtc Val														2017
4.5			tgt Cys 675														2065
			cag Gln														2113
50	140 Tyr 205	tca Ser	tts Phe								cat Pro 715		caa Glm		tso Tyr	†93 Trp 720	1161
55			cac His														2209
	בביי	5 T B	973	is B B	ct:	?**	1-77		арт	737	171	355	3.8.3	213	327	17	2057

. Tigag nga da Hawa gari nga ga litag agg tiga sak gat gawa aga wag aya . 2000

	Ala	Cys 770	Gly	Thr	qaA	Cys	Asp 775	Leu	Arg	Trp	His	Val 780	Ala	Ser	Lys	Ser	
5					cag Gln											cac His 800	240:
10					agc Ser 805												2443
15					agt Ser												2491
					aca Thr												2549
20					gat Asp												2593
25			_		gat Asp	_	_	_	-	_	aa						2625
30	<213 <213	0> 19 1> 8° 2> PF 3> Mu	74 RT	ıscul	lus A	I.MACA	TS - 9										
	<211 <211 <211 <400	1> 8° 2> PF 3> Mu 3> 19	74 RT 15 Mi		lus A Ile 5			Сүв	Ser	Gly 10	Met	Met	Gly	Thr	Phe 15	Arg	
35	<211 <211 <211 <400 His	1> 8° 2> PF 3> Mu 3> 19 Thr	74 RT HS MI Ala	Val	Ile	Ser	Leu	-		10			•		15	_	
	<211 <211 <211 <400 His 1	1> 8° 2> PF 3> Mu 0> 19 Thr	74 RT IS mu Ala Asp	Val Gly 20	Ile 5	Ser Tyr	Leu Phe	Ile	Glu 25	10 Pro	Leu	Gln	Ser	Val 30	15 Asp	Glu	
35	<211 <211 <400 His 1 Ser	1> 8°2> PF 2> PF 3> Mu 0> 18° Thr His	Asp Asp	Val Gly 20 Glu	Ile 5 Asp	Ser Tyr Glu	Leu Phe Gln	Ile Asn 40	Glu 25 Lys	10 Pro	Leu Eis	Gln Ile	Ser Ile	Val 30 Tyr	15 Asp Arg	Glu His	
35 40	<211 <212 <400 His 1 Ser Glm	1> 87 2> PF 2> PF 3> Mu 0> 15 Thr His Glu 50	74 AT Ala Asp Asp 35	Val Gly 20 Glu Gln	Ile 5 Asp Glu	Ser Tyr Glu	Leu Phe Gln Fro	Ile Asn 40 Ser	Glu 25 Lys Thr	Pro Pro Gly	Leu Eis Lys	Gln Ile His 60	Ser Ile 45	Val 30 Tyr Cys	15 Asp Arg Ala	Glu His	
35	<211 <2211 <400 His 1 Ser Gln Ser	1> 8 2 PF 22 PF 23 PF 24 PF 25	74 RT is mi 3 Ala Asp 35 Fro	Val Gly 20 Glu Gln Lys	Ile 5 Asp Glu Arg	Ser Tyr Glu Glu Ser	Leu Phe Gln Fro 55	Ile Asn 40 Ser	Glu 25 Lys Thr	Pro Pro Gly	Leu Eis Lys Lys	Glm Ile His 60 Arg	Ser Ile 45 Ala	Val 30 Tyr Cys	Asp Arg Ala Arg	Glu His Thr Mêt 87	
35	<211 <211 <410 His 1 Ser Ser 45	1> 8 2> PF 25 PF 2	74 RT US mu Asp Asp 35 Fro	Val Gly 20 Glu Gln Lys	Ile 5 Asp Glu Arg Asn	Ser Tyr Glu Glu Ser	Leu Phe Gln Fro 55 His	Asn 40 Ser Ser	Glu 25 Lys Thr Lys	Pro Pro Gly Asp	Leu Eis Lys Lys 75	Gln Ile His 60 Arg	Ser Ile 45 Ala Lys	Val 30 Tyr Cys Tle	Asp Arg Ala Arg	Glu His Thr Mai ST Let.	

	Asn	Ile	Val	Ile 180	∵al	Asn	Leu	Val	Val 185	Ile	H15	Asn	Glu	Gln 190	Glu	31 y
5	Pro	Tyr	Ile 195	Asn	Phe	Asn	Ala	Gln 200	Thr	Tnr	Leu	Lys	Asn 205	Phe	Cys	Gln
10	Trp	Gln 210	His	Ser	Lys	Asn	Tyr 215	Leu	Gly	Gly	Ile	Gln 220	His	Asp	Thr	Ala
* 0	Val 225	Leu	Val	Thr	Arg	Glu 230	Asp	Ile	Суѕ	Arg	Ala 235	Gln	Asp	Lys	Cys	Asp 240
15	Thr	Leu	Glγ	Leu	Ala 245	Glu	Leu	Gly	Thr	Ile 250	Су5	Asp	Pro	Tyr	Arg 255	Ser
	Cys	Ser	Ile	Ser 260	Glu	Asp	ser	Gly	leu 265	Ser	Thr	Ala	Phe	Thr 270	Ile	Ala
20	His	Glu	Leu 275	Gly	His	Val	Phe	Asn 280	Met	Pro	His	Asp	Asp 285	Ser	Asn	Lys
25	Сўз	Lув 290	Glu	Glu	Gly	Val	Lys 295	Ser	Pro	Gln	His	Val 300	Met	Ala	Pro	Thr
	Leu 305	Asn	Phe	Tyr	Thr	Asn 310	Pro	Trp	Met	Trp	Ser 315	Lya	Cys	Ser	Arg	Lуз 320
30	Tyr	Ile	Thr	Glu	Phe 325	Leu	Asp	Thr	Gly	Tyr 330	Gly	Glu	Cys	Leu	16u 335	Asn
	Glu	Pro	Ala	Ser 340	Arg	Thr	Tyr	Pro	Leu 345	Pro	Ser	Gln	Leu	Pro 350	Gly	Leu
35	Leu	Tyr	Asn 355	Val	Asn	Lys	Gln	Cys 360	Glu	Leu	Ile	Fhe	Gly 365	Pro	Эly	Ser
40	Gln	Val 370	Cys	Pro	Tyr	Met	Met 375	Gln	Сув	Arg	Arg	Leu 380	Trp	Сув	Asn	Asn
	Val 385	Asp	Gly	Ala	His	179 390	Gly	Cys	Lys	Thr	Gln 395	His	Thr	Pro	Trp	Ala 400
15	Asp	Gly	Thr	Glu	Cys 405	Glu	Fro	Gly	hys	His 410	Сув	Lys	Phe	Sly	Fne 418	Cys
	Val	Fro	lys	31u 420	Met	314	347	Fil	A18	lle	Asp	gly	Ger	Trp 440	317.	317
5 v	Tip	Ser	H18 435	Fhe	J.,	Thr	Сув	365 440	Aig	Thr	€};*\$	Uly	G17 445	diy	12".	Lys
55	Thr	Ala 450	Ile	Arg	Glu	Cys	Asn 455	Arg	Pro	3lu	Fro	Lys 460	Asn	317	Gly	Lys
	Tyr 465	Tys	∵al	317	Arg	Arg	Met	Lys	Pn∈	Lys	501 475	Cys	Asn	Thr	314	F50

Cys Arg Val Ala Gly Asn Thr Ala Tyr Tyr Gln Leu Arg Asp Arg Val 5 Ile Asp Gly Thr Pro Cys Gly Gln Asp Thr Asn Asp Ile Cys Val Gln Gly Leu Cys Arg Gln Ala Gly Cys Asp His Ile Leu Asn Ser Lys Val Arg Lys Asp Lys Cys Gly Ile Cys Gly Gly Asp Asn Ser Ser Cys Lys Thr Val Ala Gly Thr Phe Asn Thr Val His Tyr Gly Tyr Asn Thr Val Val Arg Ile Pro Ala Sly Ala Thr Ser Ile Asp Val Arg 3ln His Ser 20 Phe Ser Gly Lys Ser Glu Asp Asp Asn Tyr Leu Ala Leu Ser Asn Ser Lys Gly Glu Phe Leu Leu Asn Gly Asp Phe Val Val Ser Met Ser Lys Arg Glu Val Arg Val Gly Ser Ala Val Ile Glu Tyr Ser 3ly Ser Asp Asn Val Cys Glu Arg Leu Asn Cys Thr Asp Arg Ile Glu Glu Glu Leu 675 680 685 30 leu Leu Gln Val Leu Ser Val Gly Lys Leu Tyr Asn Pro Asp Val Arg 35 Tyr Ser Phe Asn Ile Pro Ile Glu Asp Lys Pro Gln Gln Phe Tyr Trp Ash Ser His Gly Pro Trp Gln Ala Cys Ser Lys Pro Cys 3ln Gly Glu Arg Arg Pro Lys Leu Val Cys Thr Arg Glu Ser Asp Gln Leu Thr Val 740 750 Ser Asp Gln Arg Cys Asp Arg led Pro Gln Pro Gly Pro Val Thr Glu 788 769 Ala Dye Gly Thr Asp Dye Asp Leu Arg Trp His Val Ala Ser Lys Ser 770 780 EI Glu Dys Sei Ala Gln Dys Bly Lou Bly Tyl Aig Thi Lou Asi Ile His 785 786 796 600 Cys Ala Lys Tyr Ser Arg Met Asp Gly Lys Thr Glu Lys Val Asp Asp 815 Ser Fne Cys (Ser Ser Gln Frp Arg Fro Ser Asn Gln Glu Lys Cys Ser 820 830

¹¹ Apr. 1911 Apr. Apr. Apr. New York Livin App. App. 484, 1999

5	<212 <212	0 > 16 1 > 38 2 > D: 3 > H:	585 NA	sapı	ens i	ADAM:	TS-1:	0									
10		1 > C		(324)	6)												
15	tca	0> 19 Egc Arg	acg	cct Pro	toc Ser 5	ggt Gly	oto Leu	aag Lys	atg Met	agt Ser 10	tcc Ser	tgt Cys	cca Pro	gtc Val	tgg Trp 15	aga Arg	4 6
20					cct Pro												96
25	tgą Trį	cat Pro	tot Ser 35	cgc Arg	cac His	ctc Leu	oto Seu	ccc Pro 40	gga Gly	gca Ala	gcg Ala	ocg Pro	cgg Arg 45	cac His	ggg Gly	ggc Gly	144
دد					ccg Pro												192
30	tt: Phe 65	otg Leu	ctg Leu	aac Asn	ctg Leu	acc Thr 70	agc Arg	agc Ser	tc: Ser	cg: Arg	cta Leu 75	ctg Let	gca Ala	999 Gly	Arg	gtc Val 80	240
35	toc Sei	gtg Val	gag Glu	tac Tyr	tgg Trp 85	aca Thr	sgg Arg	gag Glu	gg: Gly	ctg Leu 90	gcc Ala	tgg Trp	cag Gln	agg Arg	gcg Ala 95	gcc Ala	288
40	cgg Arg	acc Pro	cac His	tgc Cys 100	ctc Leu	tac Tyr	∋ct Ala	ggt Gly	cas His 105	ctg Leu	cag Gln	ggc Gly	cag Gln	gcc Ala 110	agc Ser	agc Ser	636
, c	toc Ser	cat His	gtg Val	gcc Ala	atc Ile	agc Ser	acc Thr	tgt Cys 120	gga Gly	ggc Gly	ctg Leu	cac His	990 Gly 125	ctg Leu	atc Ile	gtg Val	384
45	gta Ala	gar Asp 130	gag Glu	gaa Glu	gag Glu	tan Tyr	otg Leu 135	att	gag Glu	CCC Pro	ctg Leu	cac His 143	391 Gly	999 31y	ccc Pro	aag Lye	432
<u> </u>	93t Gly 145	tet Ser	agg Arg	ag: Ser	aag Pro	349 Glu 150	gaa Blu	agt Ser	gga Gly	ora Pro	535 His 155	tgt Cys	gtg Val	tac Tyr	aag Lys	091 Arg 160	4.F.J
5.5	too Sei	cct Ser	stg Leu	ogt Arg	cac His 185	cad Pro	cac dis	ctg Deu	gac Asp	aca Thr 130	gcc Ala	tgt Cys	gga Gly	gtg Val	aga Arg 175	gat Asp	528
	1 /2	ta 1	227	* 33	113	3 213	-27	rti	r 25	1,00	250	zaja	<u>a 2</u> 0	ttq	āāJ	CCA	ē ^ f

gri gri log kag oga hog griv bgo mga gag mgu han gog gag akk ang gat grig i kiri

	Leu	Lys 210	Arg	Ser	Val	Ser	Arg 215	Glu	Arg	Tyr	Val	Glu 220	Thr	Met	Aep	√a1	
5	_	-	_	_	-	gtg Val 230	_				_		-			_	720
10						atg Met											768
15						git Val											816
1.0						act Thr											864
20						aag Lys											912
25						cca Pro 310											960
3 C						tat Tyr											1008
35						gcc Ala											1356
33	-	_			_	agg Arg		_	_	-		_					1104
40						aca Thr											1152
4 5						ggt 317 390											1200
5 .0			-			aac Asn						_	_	_	_	_	114b
. .						cta Leu											1296
55						gac Asp											1:44

	aag Lys	ag: Ser	aac Asn	ogg Arg	tgc Cys 485	ats Ile	acc Thr	aac Asn	agc Ser	atc Ile 490	JC9 Pro	gcc Ala	gcc Ala	gag Glu	ggc Gly 495	acg Tnr	1488
5	atg Leu	tg: Cys	cag Gln	acg Thr 500	cac His	acc Thr	atc Ile	gac Asp	aag Lys 505	ggg Gly	tgg Trp	tgc tgc	tac Tyr	aaa Lys 510	agg Arg	gtc Val	1536
10	tgt Cys	gtc Val	ccc Pro 515	ttt Phe	ддд Glү	tcg Ser	cgc Arg	cca Pro 520	gag Glu	ggt Gly	gtg Val	gac Asp	gga Gly 525	gcc Ala	tgg Trp	999 Gly	1584
15	cog Pro	tgg Trp 530	act Thr	cca Pro	tgg Trp	ggc Gly	gac Asp 535	tgc Cys	agc Ser	cgg Arg	acc Thr	tgt Cys 540	99° Gl;	31y	ggc Gly	gtg Val	1632
20	tcc 3e: 545	tot Ser	tot Se:	agt Ser	agt Arg	cac His 550	tgc Cys	gac Asp	agc Ser	300 215	agg Arg 555	cca Pro	acc Thr	atc	999 Gly	ggc Gly 560	1680
	аад Lys	tac Tyr	tgt Cys	ctg Leu	995 Gly 565	gag Glu	aga Arg	agg Arg	cgg Arg	cac His 570	cgc Arg	tcc Ser	tga Cys	aac Asn	acg Thr 575	gat Asp	1728
25	gac Asp	tg: Cys	ccc Pro	cct Pro 580	ggc Gly	tcc Ser	cag Gln	gac Asp	ttc Phe 585	aga Arg	gaa Glu	gig Val	cag Gln	tgt Cys 590	gct Ala	gaa Glu	177€
3 0										ttc Phe							1824
35	:gg Arg	gga Gly 610	ggg Gly	ggc Gly	gtg Val	aag Lys	gcc Ala 615	tgc Cys	tog Ser	oto Leu	acg Thr	agc Ser 620	cta Leu	geg Ala	gaa Glu	ggc Gly	1872
40	ttc Phe 625	aac Asn	ttc Phe	tac Tyr	acg Thr	gag Glu 630	agg Arg	gcg Ala	gca Ala	gcc Ala	gtg Val 635	gig Val	gac Asp	339 31y	aca Thr	ccc Pro 640	1920
	tgc Cys	egt Arg	cca Pro	gac Asp	acg Thr 645	gtg Val	gac Asp	att Ile	tgc Cys	gtc Val 650	agt Ser	ggc Gly	gaa Glu	tgo Cys	aag Lys 655	cac His	1968
4 5										gac Asp							2116
2 (1)	aga Arg	grg Val	131 Cya 675	şş∷ Gly	gat Gly	gar Asp	73° Gly	apt Ser 680	ger Ala	tg: Cys	gag Glu	acc Thr	11e 11e 695	31u 36g	gas gas	oto Val	2361
5.5	ttc Phe	agt Sex 690	cca Fro	gee Ala	tca Ser	cct Fro	999 617 695	goo Ala	999 917	tac Tyr	gag Olu	gat Asp 700	gtc Val	gtc Val	tgg Trp	att Ile	2112
	=	833	ggs	- ; -	g-~	つきつ	ą • · ·	ttr	atc	23,0	qat	ctg	35C	ctc	tii	ctc	2160

ing out gan was sau has bed was not be stained with a get gag and well in the second of the second o

	Leu	Pro	Gly	Tnr 740	Pro	31n	Fro	His	Arg 745	Leu	Pro	Leu	Ala	Gly 750	Tnr	Thr	
5	ttt Fhe	caa Gln	ctg Leu 755	cga Arg	cag Gln	999 Gly	cca Pro	gac Asp 760	cag Gln	gtc Val	cag Gln	agc Ser	ctc Leu 765	gaa Glu	gcc Ala	ctg Leu	2304
10	gga Gly	ccg Pro 770	att Ile	aat Asn	gca Ala	tct Ser	ctc Leu 775	atc Ile	gtc Val	atg Met	gtg Val	ctg Leu 780	gcc Ala	cgg Arg	acc Tnr	gag Glu	2352
15														cgt Arg			2400
														tgc Cys			2448
20	cag 31n	tgt Cys	gca Ala	990 Gly 820	ggt 31y	ag: Ser	cag Gln	gtg Val	cag Gln 825	903 Ala	gtg Val	gag Glu	tgc Cys	cgc Arg 830	aac Asn	cag Gln	249€
25														cac His			2544
30	otg Leu	ccc Pro 850	aaa Lys	agg Arg	cag 31n	og: Arg	gcc Ala 855	tgc Cys	aac Asn	acg Thr	gag Glu	cct Pro 850	tgc Cys	cct Pro	cca Pro	gac Asp	2592
35														gat Asp			2640
,,	gtg Val	cgc Arg	agt Ser	acg Thr	tog Ser 885	gt: Val	gtg Val	tgc Cys	cag Gln	oge Arg 890	cgc Arg	gtc Val	tct Ser	gcc Ala	gcg Ala 895	Glu	2688
40	gag Glu	aag Lys	gcg Ala	ctg Leu 900	gac Asp	gac Asp	agc Ser	gca Ala	tgc Cys 905	ccg Pro	cag Gln	ccg Pro	cgc Arg	cca Pro 910	cct Pro	gtů Val	2736
45														gca Ala			2784
50	-													Arg			2437
55	gtg Val 945	gtc Val	ctt Leu	tgt Cys	aag Lys	agt Ser 95)	gca Ala	gat Asp	caa Glm	oga Arg	tot Ser 955	act Thr	ctg Leu	ccc Pro	cat Pro	960 960	2860
23	qac His	Cys	çtt Det	oot Pro	gba Ala Gai	gac Ala	aag Lys	rca Pro	cca Pro	töt Ser	act Thr	atg Met	oga Arg	tgt Cys	aad Asn y≃c	ttg Leu	2928

tof and fugitarise for gar to carried a more TEX Fore as the electron limitation by Day Daw Similar Aug Inc Val Aug Ups The Agg. 1000

5	age cac acc ggo cag coa tot oga gag tgo act gaa ged ttg ogg coa Ser His Thr Gly Gln Pro Ser Arg Glu Cys Thr Glu Ala Leu Arg Pro 1010 1015 1020	3072
	too acc atg cag cag tgt gag gcc aag tgt gac agt gtg gtg ccg cct Ser Thr Met Gln Gln Cys Glu Ala Lys Cys Asp Ser Val Val Pro Pro 1025 1030 1035 1040	3100
10	gga gat ggc cca gaa gaa tgc aag gat gtg aac aag gtg gct tac tgc Gly Asp Gly Pro Glu Glu Cys Lys Asp Val Asn Lys Val Ala Tyr Cys 1045 1050 1055	3169
15	coo ctg gtg ctc aaa ttt cag ttc tgt ago cga gcc tac ttc cgc cag Pro Leu Val Leu Lys Phe Gln Phe Cys Ser Arg Ala Tyr Phe Arg Gln 1060 1065 1070	3216
20	aty tgo tgo aaa acc tgo caa ggo cgo tag ggtacetgga accaacctgg Hel Cys Cys Lys Thr Cys Glin Gly Arg 1075 1080	3266
	agracajgot gaggeagggg acateceact ggagagggea tgagggaaag gggggettga	3326
	attgaaggt gagatgcagt tgaaagttat ttattgggta accetacagg geteetgact	3386
25	aaggggtgga gaagagetgg etacceaggg accetetget gtatettgee eagttgatag	5446
	tgaagagaga ggactcottg ttgcacacat atttaagtcc stagcacccc tcccaccctt	3503
30	tgatoggaat atgtactgtg aagagtgggg gtggggaggg gtgtgctggt gccctgcccc	3565
	regeactyte etateootas actotgagot ggggggattt atatotgota tggggggatt	3626
	aggottjata coaccidect giageocico codagaciga ogaaggggaa gaiceaceco	
35	sacctotged objectgeds daggggggag bedaacated agggegeted doatdatggt	
	potacaageo otgocotggg goocacacan tootcaccaa gaageottan attaaaaaaag	
40	ttgtgttate etacaaaaaa aaaaaaaac tegaggggg geeeggtace caattegegs	
		3885
	tatagtsaat ngggtntta	3003
45	-210> 17 +211> 1081 +312> FRT 	
5.7	<410> 17	
	Ser Arg Thr Pro Ser Sly Leu Lys Met Ser Ser Sys Pro Val Trp Arg	
	Ala Met Arg Ser Pro Ser Pro Pro Ala Trp Thr Thr Thr Gly His Cys	
5.5	Trp Pro Ser Arg His Leu Leu Pro Sly Ala Ala Pro Arg His Gly Gly	
	His Ser Arg Val Pro Pro Leu Lei Gin Sor Bly Leu Ala Ser Thr His	

Ala Asp Slu Glu Glu Tyr Leu Ile Glu Pro Leu His Gly Gly Pro Lys 135 140 Gly Ser Arg Ser Pro Glu Glu Ser Gly Pro His Cys Val Tyr Lys Arg 155 145 150 5 Ser Ser Leu Arg His Pro His Leu Asp Thr Ala Cys Gly Val Arg Asp 165 \$170\$ 175Glu Lys Fro Frp Lys Gly Arg Pro Trp Trp Leu Arg Thr Leu Lys Pro 185 180 Pro Pro Ala Arg Pro Leu Gly Asn Glu Thr Glu Arg Gly Gln Pro Gly 195 200 205 1.0 Leu Lys Arg Ser Val Ser Arg Glu Arg Tyr Val Glu Thr Met Asp Val 215 220 Ala Asp Lys Met Met Val Ala Tyr His Gly Arg Arg Asp Val Glu Glr. 235 230 15 Tyr Val Leu Ala Ile Met Asn Ile Val Ala Lys Leu Phe Gln Asp Ser 250 245 Ser Leu Gly Ser Thr Val Asn Ile Leu Val Thr Arg Leu Ile Leu Leu 260 270 260 The Glu Asp Gln Pro The Leu Glu Ile Thr His His Ala Gly Lys Ser 275 280 285 Leu Asp Ser Phe Cys Lys Trp Gln Lys Ser Ile Val Asn His Ser Gly 295 300 His Gly Asn Ala Ile Pro Glu Asn Gly Val Ala Asn His Asp Thr Ala 310 25 Val Leu Ile Thr Arg Tyr Asp Ile Cys Ile Tyr Lys Ash Lys Pro Cys 325 330 335 Gly Thr Leu Gly Leu Ala Arg Trp Ala Glu Cys Val Ser Ala Arg Glu 345 Ala Ala Ala Ser Met Arg Thr Leu Ala Ala Thr Ser Val His His Cys 355 360 365 His Glu Ile Gly His Thr Phe Gly Met Asn His Asp Gly Val Gly Asn 375 37C 380 Ser Cys Gly Ala Arg Gly Gln Asp Pro Ala Lys Leu Met Ala Ala His 385 390 395 400 35 Ile Thr Met Lys Thr Asn Pro Phe Val Trp Ser Ser Cys Asn Arg Asp 405 410 415 410 Tyr Ile Thr Ser Fhe Leu Asp Ser Gly Leu Gly Leu Cys Leu Asm Asm 425 420 Arg Pro Pro Arg Gln Asp Phe Val Tyr Pro Thr Val Ala Pro Gly Gln 435 440 445 435 Ala Tyr Asp Ala Asp Glu Gln Cys Arg Phe Gln His Gly Val Lys Ser 455 Arg Gln Cys Lys Tyr Gly Glu Val Cys Ser Glu Leu Trp Cys Leu Ser 470 475 4 5 5 45 Lys Ser Ash Arg Cys Ile Thr Ash Ser Ile Pro Ala Ala Glu Gly Thr 4.85 430 Lua Cys Gln Thr His Thr Ile Asp Dys Gly Trp Cys Tyr Lys Arg Val 505 500 Cys Mal Pro Phe Gly Ser Arg Pro Glu Gly Mal Asp Gly Als Trp Gly 520 Fro Trp Thr Fro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Gly Val 535 Ser Ser Ser Arg His Cys Asp Ser Pro Arg Pro Thr Ile Gly Gly 550 555 55 Lys Tyr Cys Leu Gly Glu Arg Arg Arg His Arg Ser Cys Asn Thr Asp 565 578 570 Asp Cys Pro Pro Gly Ser Gin Asp Fno Arg Glu Val Gin Cys Ala Glu 595

The Arrier Avg Int Val Avg Int To Val Her Cly El. We Int Elic 845

```
Val Gly Cys Asp Arg Val Leu Gly Ser Asp Leu Arg Glu Asp Lys Cys
                             665
   Arg Val Cys Gly Gly Asp Gly Ser Ala Cys Glu Thr The Glu Gly Val
          675
                         680
                                        685
 5 Phe Ser Pro Ala Ser Pro Gly Ala Gly Tyr Glu Asp Val Val Trp 11e
                    695
                                  700
   Pro Lys Gly Ser Val His Ile Fhe Ile Gln Asp Leu Asn Leu Ser Leu
                   710
                                  715
   Ser His Leu Ala Leu Lys Gly Asp Gln Glu Ser Leu Leu Leu Glu Gly
        725
                          730
   Leu Pro Gly Thr Pro Gln Pro His Arg Leu Pro Leu Ala Gly Thr Thr
       740 745
   Phe Glm Leu Arg Glm Gly Pro Asp Glm Val Glm Ser Leu Glu Ala Leu
                       760
       755
15 Gly Pro Ile Asn Ala Ser Leu Ile Val Met Val Leu Ala Arg Thr Glu
                       775
                                     780
   Leu Pro Ala Leu Arg Tyr Arg Fhe Asn Ala Fro Ile Ala Arg Asp Ser
                           795
   785 79C
   Leu Pro Pro Lyr Ser Irp His Lyr Ala Pro Irp Ihr Lys Cys Ser Ala
805 815
   Gln Cys Ala Gly Gly Ser Gln Val Gln Ala Val Glu Cys Arg Asn Gln
          820
                          825
                                            830
  Leu Asp Ser Ser Ala Val Ala Pro His Tyr Cys Ser Ala His Ser Lys
    835
                 840
                                        845
25 Leu Pro Lys Arg Gln Arg Ala Cys Asn Thr Glu Pro Cys Pro Pro Asp
               855
    850
                              860
   Trp Val Val Gly Asn Trp Ser Leu Cys Ser Arg Ser Cys Asp Ala Gly
   865 870
                          875 880
  Val Arg Ser Thr Ser Val Val Cys Gln Arg Arg Val Ser Ala Ala Glu
              885
                              890
                                         895
  Glu Lys Ala Leu Asp Asp Ser Ala Cys Pro Gln Pro Arg Pro Pro Val
           900
                           905
                                     910
  Leu Glu Ala Cys His Gly Pro Thr Cys Pro Pro Glu Trp Ala Thr Leu
                                  925
         915
                      920
35 Asp Trp Ser Glu Cys Thr Pro Ser Cys Gly Pro Gly Leu Arg His Arg
             935
                              940
  Val Val Leu Cys Lys Ser Ala Asp Gln Arg Ser Thr Leu Pro Pro Gly
                 950
                                  955
  His Cys Leu Pro Ala Ala Lys Pro Pro Ser Thr Met Arg Cys Asn Leu
        965
                        97C
  Arg Arg Cys Fro Pro Ala Arg Trp Val Thr Ser Glu Trp Gly Glu Cys
           980 985
  Ser Thr Gln Cys Gly Leu Gly Gln Gln Gln Arg Thr Val Arg Cys Thr
       995
                      1000
                                        1005
45 Ser His Thr Gly Gln Pro Ser Arg Glu Cys Thr Glu Ala Led Arg Pro
  Ser Thr Met 3ln 3ln Cys 3lu Ala Lys Cys Asp Ser Val Val Pro Fro
1025 1030 1035 1040
  Gly Asp Gly Pro Glu Glu Gys Lys Asp Val Asn Lys Val Ala Tyr Gys
            1045
                        1080 1088
  Pro Leu Val Leu Lys Fhe Gln Phe Cys Ser Arg Ala Tyr Phe Arg Gln
      1060 1068
  Met Cys Cys Lys Thr Cys Gln Gly Arg
       1075
```

15111 15

yaraian an asta

```
<220s
    <221> misc_feature
    <222> (336, ...(340)
 5 <220>
    <221> misc_feature
    <222> (353)..(355)
    <400> 18
10 a gca gca gct gtg gtg gat gga aca ecc tgc cgc cct gac acg gtg gac 49
      Ala Ala Ala Val Val Asp Gly Thr Pro Cys Arg Pro Asp Thr Val Asp
    att tgt gtc agc ggc gag tgc aag cat gta ggc tgt gac agg ctc ctg
15 Ile Cys Val Ser Gly Glu Cys Lys His Val Gly Cys Asp Arg Leu Leu
    ggt tot gat oto oga gag gad aaa tgo ogt gtg tgt ggg ggt gat ggc
                                                                               145
    Gly Ser Asp Leu Arg Glu Asp Lys Cys Arg Val Cys Gly Gly Asp Gly
    agt god tgt gag acc att gaa ggt gtc ttt agc cca gct ttg cca gga
    Ser Ala Cys Glu Thr Ile Glu Gly Val Phe Ser Pro Ala Leu Pro Gly
    act ggg tat gag gad gtd gtd tgg atd ccc aaa ggd tcg gtd cac att Thr Gly Tyr Glu Asp Val Val Trp Ile Pro Lys Gly Ser Val His Ile
                                                                               241
30 ttc atc caa gat ctg aac ctg tcc ctg agt cac ctg gcc cta aag ggg
    Phe Ile Gln Asp Leu Asn Leu Ser Leu Ser His Leu Ala Leu Lys Gly
    gac caa gag tot otg cha otg gag ggg cha oot ggg aco coo caa cot
35 Asp Gln Glu Ser Leu Leu Leu Glu Gly Leu Pro Gly Thr Pro Gln Pro
   had ago off occ atg ght ggg acc aca tit cat ata agg dag ggg dag
   Maa Arg Leu Pro Leu Maa Gly Thr Thr Phe His Leu Arg Gln Gly Pro
    gad dag goa dag ago otg gaa god otg gga dod att aat goa tot otd
   Asp Gln Ala Gln Ser Leu Glu Ala Leu Gly Pro Ile Asn Ala Ser Leu
                               135
   lto ato atg gtg otg göd dag gca gag tig dot got die dad tad ogd
Ile Ile Met Val Leu Ala Glm Ala Glu Leu Fro Ala Leu His Tyr Arg
50 the sac you can att you egy gat ghairty egh con tac ter top can
    Phe Asn Ala Pro Ile Ala Arg Asp Ala Leu Fro Pro Tyr Ser Trp His
tat god cod tgg acc asa tgt toa god dag tgt god ggd ggd agd cag
55 Tyr Ala Pro Trp Thr Lys Cys Ser Ala Gln Cys Ala Gly Gly Ser Gln
  Turis taka anta onis daka himi nga aan madi mis gabi ann nna dina dina din
```

ਹਮੂਹ ਪੁਕਰ ਕਰਕ ਕੁਕਰ ਨਾਰ ਹਰੂਹ ਹੈ। ਮਾਨਾਤ ਪ੍ਰਤਾ ਹਰੂਸ਼ ਕਰਨ ਕੁਹਰ ਚੁਰੂਆ ਚੁਚਨ ਨੁਕੂਰੂ ਨਿੱਚ । 21

	Cys 225	Asn	Thr	Glu	Pro	Cys 230	Fro	Pro	Asp	Trp	Val 235	Val	Gly	Asn	Trp	Ser 240	
5						tgt Cys											769
10						tot Ser											e17
15						cgc Arg											865
12	_	_				tg; Trp	_										913
20						ctc Leu 310											961
25						ctg Leu											1009
30						cga Arg											1057
2.5	tgg Trp	gig Val	acc Thr 355	agt Ser	gag Glu	tgg Trp	ggt Gly	gag Glu 360	tgt Cys	toc Ser	aca Thr	cag Gln	tgt Cys 365	ggc Gly	ctc Leu	ggc Gly	1105
35	cag Gln	cag Gln 370	cag Gln	aga Arg	aca Thr	gtg Val	ogo Arg 375	tgc Cys	acc Thr	agc Ser	cac His	acc Thr 380	ggc Gly	cag Gln	cca Pro	tct Ser	1153
40	oga Arg 385	gag Glu	tgc Cys	act Thr	gaa Glu	900 Ala 390	ttg Leu	cgg Arg	cca Pro	toc Ser	acc Thr 395	atg Met	cag Gln	cag Gln	tgt Cys	gag Glu 400	1201
4€						gtg Val											1249
5.0						gtg Val									ttt Pne		1.22-
.						tac Tyr										caa Gln	1345
55	ggc Gly	-	tagg	gta:	ect (ggaa:	caad	ng t <u>i</u>	ggags	racag	ga:	. g a g (gcag	9991	icato	gac .	1471

egugusta serraktas autrosy... Ettäystäst aks vyäysk suottetti, 200 eli tynapadatt ittasyteet hugasiitti japiningat hygitatyi läyygsäysyy ledl n 1642

5 <210> 19

<211> 450

<212> PRT

<213> Mus musculus ADAMTS-10

10 <400> 19

Ala Ala Ala Val Val Asp Gly Thr Pro Cys Arg Pro Asp Thr Val Asp 1 5 10

Ile Cys Val Ser Gly Glu Cys Lys His Val Gly Cys Asp Arg Leu Leu 15 20 25 30

Gly Ser Asp Leu Arg Glu Asp Lys Cys Arg Val Cys Gly Gly Asp Gly $_{+}$ 35 40 45

20 Ser Ala Cys Glu Thr Ile Glu Gly Val Phe Ser Pro Ala Leu Pro Gly 50 60

Thr Gly Tyr Glu Asp Val Val Trp Ile Pro Lys Gly Ser Val His Ile 65 70 75 80

Phe Ile 3ln Asp Leu Asn Leu Ser Leu Ser His Leu Ala Leu Lys Gly

Asp Gln Glu Ser Leu Leu Leu Glu Gly Leu Pro Gly Thr Fro Gln Pro 30 \$100\$

Xaa Arg Leu Pro Leu Xaa Gly Thr Thr Phe His Leu Arg Gln Gly Pro \$125\$

35 Asp Gln Ala Gln Ser Leu Glu Ala Leu Gly Pro Ile Asn Ala Ser Leu 130 $$135\ \ \,$ 140

Ile Ile Met Val Leu Ala Gln Ala Glu Leu Pro Ala Leu His Tyr Arg 145 150 150 155 160

Phe Ash Ala Pro Ile Ala Arg Asp Ala Leu Pro Pro Tyr Ser Trp His 165 170 175

Tyr Ala Pro Trp Thr Lys Cys Ser Ala Gln Cys Ala Gly Gly Ser Gln 45 180 190

Val Bin Val Val Blu Cys Arg Ash Bin Le: Asp Ser Ser Ala Val Ala 195 - 200 - 205

St Pro His Tyr bye Ser Cl, His Ser bys Lou Pro Lys Arg Bln Arg Ala 210 215 230

Cys Ash Thr Glu Pro Cys Fro Fro Asp Trp Val Val Gly Ash Trp Ser 225 230 235 240

Arg Cys Sei Arg Ser Cys Asp Ala Gly Val Arg Ser Arg Ser Val Val 245 250 255

For we, it is an energy line for the first first form of the first firs

	Ser 305	Сув	Gly	Pro	Gly	Leu 310	Arg	His	Arg	Val	Val 315	Leu	Cys	Lys	Ser	Ala 320	
5	Asp	Glr.	Arg	Ser	Thr 325	Leu	Pro	Pro	Gly	His 330	Cys	Leu	Pro	Ala	Ala 335	Lys	
٦.۸	Pro	Pro	Ser	Thr 340	Met	Arg	Сув	Asn	Leu 345	Arg	Arg	СУs	Pro	Pro 350	Ala	Arg	
10	Trp	Vāl	Thr 355	Ser	Glu	Trp	Gly	Glu 360	Суѕ	Şer	Thr	Glm	Cys 365	Gly	Leu	Gly	
15	Gln	Gln 370	Gln	Arg	Thr	Val	Arg 375	Cys	Thr	Ser	Ніз	Th.r 380	Gly	Gln	Pro	Ser	
	Arg 385	Glu	Cys	Thr	Glu	Ala 390	Leu	Arg	Pro	Ser	Thr 395	Met	Glr.	Gln	Cys	Glu 400	
20	Ala	Lys	Cys	Asp	Ser 405	Val	Val	Pro	Pro	Gly 410	Asp	Gly	Pro	Glu	Glu 415	Сув	
7 E	Г'nв	Asp	Val	Asr. 420	Lys	Val	Ala	Tyr	Cys 425	Pro	Leu	Val	Leu	Lys 430	Phe	Gln	
25	Phe	Сув	Ser 435	Arg	Ala	Tyr	Phe	Arg 440	Gln	Met	Ser	Cys	Lys 445	Thr	Cys	Gln	
3 C	Gly	Arg 450															
35	<211 <212	0> 20 L> 18 E> Di B> Ho	03 :A	sapie	ens A	ADAMI	:S-R1										
40)> L> CI l> 15		(163	84)												
45)> 20 :tcgg		gagg	jcāgt	g to	rogat	totg	; att	cegg	gcaa	ggat	ccaa		itg g fet û î		55
Ē Ē					gca Ala												. AI
55					tcc Ser												15
5.0					tga Trp												20

tan Epa ada not it in the left in a tig a minute in the left in a tig a minute in the left
5	cca Pro	gaa Glu	gca Ala 85	ggt Gly	gat Asp	tto Phe	cga Arg	gct Ala 90	cag Gln	caa Glr.	tgc Cys	tca Ser	gct Ala 95	cat His	aat Asn	gat Asp	344
٦	gtc Val	aag Lys 100	cac His	cat His	ggc Gly	cag Gln	ttt Phe 105	tat Tyr	gaa Glu	tgg Trp	ctt Leu	cct Pro 110	gtg Val	tct Ser	aat Asn	gac Asp	392
10															acc Thr		440
15	gtt Val	gtt Val	gaa Glu	cta Leu	gca Ala 135	cct Pro	aag Lys	gtc Val	tta Leu	gat Asp 140	ggt Gly	acg Thr	cgt Arg	tgc Cys	tat Tyr 145	aca Thr	488
20	gaa Glu	tot Ser	ttg Leu	gat Asp 150	atg Met	tga Cys	atc .le	agt Ser	ggt 51y 155	tta Leu	tgc	caa Gln	ātt īle	gtt Val 160	ggc Gly	tgc Cys	506
	gat Asp	cac His	cag Gln 165	ctg Leu	gga Gly	agc Ser	acc Thr	gtc Val 170	aag Lys	gaa Glu	gat Asp	aac Asn	tgt Cys 175	ggg Glγ	gtc Val	tgc Cys	5 :4
25	aac Asn	gga Gly 180	gat Asp	999 Gly	toc Ser	acc Thr	tgc Cys 185	cgg Arg	ctg Leu	gtc Val	cga Arg	999 -3ly 190	cag Gln	tat Tyr	aaa Lys	tcc Ser	€12
30															ecc		680
35	gga Gly	agt Ser	aga Arg	cat His	att Ile 215	cgc Arg	ctt Leu	gtc V a l	tta Leu	aaa Lys 220	ggt Gly	act Pro	gat Asp	cac His	tta Leu 225	tat Tyr	728
40	otg Leu	gaa Glu	acc Thr	aaa Lys	acc Thr	ctc Leu	cag Gln	ggg Gly	act Thr 235	aaa Lys	ggt Gly	gaa Glu	aac Asn	agt Ser 240	ctc Leu	ag: Ser	77€
	tcc Ser	aca Thr	gga Gly 245	act Thr	ttc Phe	ctt Leu	gtg Val	gac Asp 250	aat Asn	tot Ser	agt Ser	gtg Val	gac Asp 255	ttc Phe	cag Gln	aaa Lys	824
45	tit Fhe	SJE Pro 240	gac Asp	aaa Lys	gag Glu	ata Ile	clg Led 168	aga Arg	atg Met	gat Ala	934 31y	35a Fro 270	bts Leu	asa Thr	gca Ala	gat Asp	s"1
5.3	its Phe 275	att Ile	gtc Val	sag Lys	att Ile	ngi Arg 280	aac Asn	t⊂g Ser	ggs Gly	toc Ser	35t Ala 285	gas Asp	agt Ser	aca Thr	-gtc Val	78g Gln 290	·
55	tto Phe	atc Ile	ttc Phe	tat Tyr	caa Glm 295	ccc Pro	atc Ile	atc 1le	cac His	oga Arg 300	tgg Trp	agg Arg	gag Glu	acg Thr	gat Asp 305	ttc The	968
			- 1 .	₃	₹ - - 4	; - ·	+ 3=	739	1273	3/7 =	-4-	733	٠- ;	7 - 5	٠.,	3,	7 * * * 6

of They that they down yard was not ask too many fitting gay tiph (1977)

	Нів	Tyr 340	Tyr	Pro	314	Asn	Ile 345	Lys	Pro	Lys	Fro	Lys 350	leu	Gln	Glu	Cys	
5	aac Asn 355	ttg Leu	gat Asp	cct Pro	tgt Cys	cca Pro 360	gcc Ala	agt Ser	gac Asp	gga Gly	tac Tyr 365	aag Lys	cag Gln	atc Ile	atg Met	cct Pro 370	1160
10	tat Tyr	gac Asp	ctc Leu	tac Tyr	cat His 375	ccc Pro	ctt Leu	cct Pro	egg Arg	tgg Trp 380	gag Glu	gcc Ala	acc Thr	cca Pro	tgg Trp 385	acc Thr	1208
15	gcg Ala	tgc Cys	tcc Ser	too Ser 390	tog Ser	tgt Cys	999 Gly	999 Gly	ggc Gly 395	atc Ile	cag Gln	agc Ser	Arg	gca Ala 400	gtt Val	tod Ser	1256
15	tgt Cys	gtg Val	gag Glu 405	gag 31u	gac Asp	atc Ile	cag Gln	ggg Gly 410	cat His	gtc Val	act Thr	tca Ser	gtg Val 415	gaa Glu	gag Glu	tgg Trp	1304
20	aaa Lys	tgc Cys 420	atg Met	tac Tyr	acc Thr	cat Pro	aag Lys 425	atg Met	ccc Pro	atc Ile	gog Ala	cag Gln 430	ccc	tgc Cys	aac Asn	att Ile	1352
25	ttt Phe 435	gac Asp	tgc Cys	act Pro	aaa Lys	tgg Trp 440	ctg Leu	gca Ala	cag Gln	gag Glu	tgg Trp 445	tct Ser	Pro CC3	tgc Tys	aca Thr	gtg Val 450	1400
30	acg Thr	tgt Cys	ggc Gly	cag 31n	ggc Gly 455	ctc Leu	aga Arg	tac Tyr	cgt Arg	gtg Val 460	gtc Val	ctc Leu	tg: Cys	atc Ile	gac Asp 465	cat His	1448
	cga Arg	gga Gly	atg Met	cac His 470	aca Thr	gga Gly	ggc Gly	tgt Cys	agc Ser 475	cca Pro	aaa Lys	aca Thr	aag Lys	200 Pro 480	cac His	ata Ile	1496
35	aaa Lys	gag Glu	gaa Glu 485	tgc Jys	atc Ile	gta Val	ccc Pro	act Thr 490	ccc Pro	tgc Cys	tat Tyr	aaa Lys	ccc Pro 495	заа Lys	gag Glu	aaa Lys	1544
40	ctt Leu	cca Pro 500	gtc Val	gag Glu	gcc Ala	aag Lys	ttg Leu 505	cca Pro	tgg Trp	ttc Phe	aaa Lys	caa Gln 510	gct Ala	caa Gln	gag Glu	ota Leu	1592
45	gaa 513 515	gaa Glu	gga 31y	got Ala	got Alā	gtg Val 520	tca Sei	gag Glu	gag Glu	odd Pro	tog Ser 525	tэз	gtt ∵al				1634
	EEs	graci	iga (.tgt:	intat	13 tt	tgaa	ا ئالەقد	. 19	et të	шад	зая	gragt	igt (otoat	stygt:	1694
ć:	jub 3 j	greti	ija t	399	itstj	ja ä.	زفاقا.	gigi.	ı at.	.atot	121	0333	wgot:	.15	-832	. ttta.	1754
	att:	aaaga	att g	gatta	gttt	c aa	aaaa	EES	a aaa	aaaa	aga	tgcg	goog	ţ¢			1803
5.5	4211 4211	02 20 14 51 23 FF	25 RT	iani-	ira :		Lens.										

48 App N., 16. Try App N. Stry N., 800 op 200 (L. 78. - 17.3) 1 7. 31 1 45

Cys Gly Gly Ala Ala Asn Ser Led Arg Arg Cys Led Ser Ser Lys Ser Cys Glu Gly Arg Asn Ile Arg Tyr Arg Thr Cys Ser Asn Val Asp 75 7.0 5 Dys Pro Pro Glu Ala Gly Asp Phe Arg Ala 3lm Glm Cys Ser Ala His 85 90 95 Asn Asp Val Lys His His Gly Gln Phe Tyr Glu Trp Leu Pro Val Ser 110 100 105 Asn Asp Pro Asp Asn Pro Cys Ser Leu Lys Cys Gln Ala Lys Gly Thr 120 115 Thr Leu Val Val Glu Leu Ala Pro Lys Val Leu Asp Gly Thr Arg Cys 135 140 Tyr Thr Glu Ser Leu Asp Met Cys Ile Ser 3ly Leu Cys Gln Ile Val 150 155 16C 145 15 Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly 165 170 175 Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Glm Tyr 190 180 185 Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Ile 20 195 200 205 Pro Tyr Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His 210 215 220 Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser 235 225 230 25 Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp Phe 250 245 Gln Lys Phe Pro Asp Lys Glu lle Leu Arg Met Ala Gly Pro Leu Thr 270 265 260 Ala Asp Phe Ile Val Lys Ile Arg Asm Ser Gly Ser Ala Asp Ser Thr 280 285 Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu Thr 295 300 Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly Gly Tyr Gln Leu Thr 310 315 35 Ser Ala Glu Cys Tyr Asp Leu Arg Ser Ash Arg Val Val Ala Asp Gln 325 335Tyr Cys His Tyr Tyr Pro Glu Asn Ile Lys Pro Lys Pro Lys Leu Gln 350 340 345 Glu Cys Ash Leu Asp Pro Cys Pro Ala Ser Asp Gly Tyr Lys Glh Ile 365 3.5.5 1€0 Met Pro Tyr Asp Leu Tyr His Pro Leu Pro Arg Trp Glu Ala Thr Pro 370 360 375 Trp Thr Ala Cys Ser Ser Ser Cys Gly Gly Gly Ile Glm Ser Arg Ala 395 3.90 385 45 Val Ser Cys Val Glu Glu Asp lle Gln Gly His Val Thr Ser Val Glu 405 410 Gld Trp Lys Cys Met Tyr Tar Fro Lys Met Pro Ilo Ala Sla Pro Cys Ash I.e Phe Asp Cys Pro Lys Trp Leu Ala Gin Glu Trp Ser Fro Cys 435 4-0 445 Thr Val Thr Cys Gly Gln Gly Leu Arg Tyr Arg Val Val Leu Cys Ile 455 450 Asp His Arg Gly Met His Thr Gly Gly Cys Ser Pro Lys Thr Lys Pro 55 His Tie Lys Glu Glu Cys Ile Val Pro Thr Pro Cys Tyr Lys Pro Lys 490 Glu Lys Leu Pro Val Glu Ala Lys Leu Fro Trp Phe Lys Gln Ala Gln

^{(8 .111 - 119} .111 - 177

<213> Homo sapiens ADAMTS-5

<400> 22

Gly His Leu Leu Gly Leu Ser His Asp Asp Ser Lys Phe Cys Glu Glu 5 10 15

Thr Phe Gly Ser Thr Glu Asp Lys Arg Leu Met Ser Ser Ile Leu Thr 20 25 30

10 Ser Ile Asp Ala Ser Lys Pro Trp Ser Lys Cys Thr Ser Ala Thr Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Glu Phe Leu Asp Asp Gly His Gly Asn Cys Leu Leu Asp Leu Pro 50 60

Arg Lys Gln Ile Leu Gly Pro Glu Glu Leu Pro Gly Gln Thr Tyr Asp 65 70 75 60

Ala Thr Gln Gln Cys Asn Leu Thr Phe Gly Fro Asp Tyr Ser Val Cys 20 95

Pro Gly Xaa Asp Val Cys Ala Arg Leu Trp Cys Ala Val Val Arg Gln $100 \,$ $100 \,$ $110 \,$

25 Gly Gln Met Val Cys Leu Thr Lys Lys Leu Pro Ala Val Glu Gly Thr 115 120 125

Pro Cys Gly Lys Gly Arg Ile Cys Leu Gln Gly Lys Cys Val Asp Lys 130 135 140

Thr Lys Lys Lys Tyr Tyr Ser Thr Ser Ser His Gly Asn Trp Gly Ser 145 150 155 160

Trp Gly Ser Trp Gly Gln Cys Ser Arg Ser Cys Gly Gly Gly Wal Gln 35 165 170 175

Phe Ala Tyr Arg His Cys Asn Asn Pro Ala Fro Arg Asn Asn Gly Arg

40 Tyr Cys Thr Gly Lys Arg Ala Ile Tyr His Ser Cys Ser Leu Met Pro 195 200 205

Cys Pro Pro Asn Gly Lys Ser Phe Arg His Glu Gln Cys Glu Ala Lys 210 215 220

Asn Gly Tyr Gln Ser Asp Ala Lys Gly Val Lys Thr Fhe Val Glu Trp 235 235 240

Val Pro Lys Cyr Ala Sly Val Dou Pro Ala Asp Val Cys Lys Len Thr Si 245 255

Cys Arg Ala Lys Gly Thr Gly Tyr Tyr Val Val Phe Ser Pro Lys Val 260 270

55 Thr Asp Gly Thr Glu Cys Arg Fro Tyr Ser Ash Ser Val Cys Val Arg 280 $\,$ 285 $\,$

(a) The second representation of the second seco

	Val	Arg	Il€	Pro 340	Glu	Зlу	Ala	Thr	H15	Ile	Lys	Vāl	Arg	Gln 350	Phe	Lys	
5	Ala	Lys	Asp 355	Gln	Thr	Arg	Phe	Thr 360	Ala	Tyr	Leu	Ala	Let 365	Lys	Lys	Lys	
	Asn	Gly 370	Glu	Tyr	Leu	Ile	Asn 375	Gly	Lys	Tyr	Met	Ile 380	Ser	Thr	Ser	Glu	
10	Thr 385	Ile	Ile	Asp	Ile	Asn 390	Gly	Thr	Val	Met	Asn 395	Tyr	Ser	Gly	Trp	Ser 400	
15	Hïs	Arg	Asp	Asp	Phe 405	Leu	His	Gly	Met	Gly 410	Tyr	Ser	Ala	Thr	Lys 415	Glu	
	Ile	Leu	Ile	Val 420	Gln	:le	Leu	Ala	Thr 425	Asp	Pro	Thr	Lys	Prc 430	Leu	Asp	
20	val	Arg	Tyr 435	Ser	Phe	Phe	Val	P10 440	Lys	Lys	Şer	Thr	Pro 445	Lys	Val	Asn	
	Ser	Val 450	Thr	Ser	His	Gly	Ser 455	Asn	Lys	Val	Gly	Ser 460	His	Thr	Ser	Gln	
25	Pro 465	Gln	Trp	Val	Thr	Gly 470	Pro	Trp	Leu	Ala	Cys 475	Ser	Arg	Thr	Суз	Asp 480	
30	Thr	Gly	Trp	His	Thr 485	Arg	Thr	Val	Gln	Cys 490	Gln	Asp	Gly	Asn	Arg 495	Lys	
	Leu	Ala	Lys	Gly 500	Сув	Pro	Leu	Ser	Gln 505	Arg	Pro	Ser	Ala	Phe 510	Lys	Glr	
35	Cys	Leu	Leu 515	Lys	Lys	Cys											
40	<211 <211	0 > 23 1 > 34 2 > Di 3 > Ho	109 VA	5 a p16	ະກຣ /	ADAM!	[S-](ĵ									
4 5)> l> CI l> (1		. +324	. 27												
5 C) > 2) ngba:		otto:	iggt:	er bi	:303 á	atg (Ket :	ağt t Ser s	.do t Ser (igt Tys i	ita (Exc)	gto : Mal :	lgg (Irp <i>i</i>	aga (Arg <i>i</i>	yat Nia	<u> </u>
	atg Met 10	aga Arg	tog Ser	cat Pro	tee Ser	cca Pro 15	cdc Pro	gog Ala	tgg Trp	ācc Thr	aca Thr 20	acg Thr	ggg Gly	cac His	tgc Cys	tgg Trp 25	59
55	oot Fro	tot Ser	aga Arg	cac Els	ote Deu 33	etc Leu	og: Pro	gga Bly	gca Ala	geg Ala	oog Pro	433 433	cas His	31y	392 317 40	cac His	14

ng panggan ang managan ang Bis 1901 iku Aggi iku i Shir Ara i Sara i

5	-								-	-				gog Ala			291
														agc Ser			339
10		~ ~	-		_		_			_				atc Ile			387
15														ccc Pro 135			435
20														aag Lys			483
25														aga Arg			531
23	aaa Lys 170	ccg Pro	tgg Trp	aaa Lys	Gly 993	cgg Arg 175	cca Pro	tgg Trp	tgg Trp	ctg Leu	cgg Arg 180	acc Thr	ttg Leu	aag Lys	cca Pro	ccg Pro 185	579
30														cca Pro			627
35														gig Val 215			675
40														gag Glu			723
÷5														gac Asp			771
4 D	sta Leu 150	gga Sly	agc Ser	acc Thr	git Val	aa∈ Asn 288	atc Ile	ctc Led	gta Val	act Th:	aga Aig Téo	cts Leu	atc Ile	atg Lei	ota Lou	acg Thr 186	:12
<u>50</u>	gag Glu	jac Asp	dag Glm	obb Pro	ast Thr 270	atg Leu	зај Glu	atd Ile	ade Thr	040 His 275	cat His	goo Ala	Gly Gly	aug Lys	tos Ser 280	sta Leu	~ · · ·
5.5	gac Asp	agc Ser	ttc Fhe	tgt Cys 285	aag Lys	tgg Trp	cag Gln	aaa Lys	tdo Ser 290	atc Ile	gtg Val	aac Asn	cac His	agc Ser 295	gly ggc	cat His	915
	77-	9 .		a • •		5		~~•	- <u>1</u>		5 "	; ; · ; ·	, . ·	<u>+</u>	~ ~ ·,	7:	57.5

HE will bid ggs itg job igg to: gro gas tijt itl di. 400 400 800 800 - 400 t

	Thr 330	Let	Gly	Leu	Ala	Arg 335	Trp	Ala	Gl=	Cys	Val 340	Ser	Ala	Arg	Glu	Ala 345	
5	gca Ala	gog Ala	tca Ser	atg Met	agg Arg 350	Thr	ttg Leu	got Ala	gcc Ala	aca Thr 355	ag: Ser	gtt Val	cac	cat His	tgc Cys 360	car Els	1167
10													gtg Val				1155
15	tgt Cys	ggg Gly	gcc Ala 380	cgt Arg	ggt Gly	cag 31n	gac Asp	cca Pro 385	gcc Ala	aag Lys	ctc Leu	atg Met	gct Ala 390	gcc Ala	cac His	att Ile	1203
													aac Asn				1251
20	atc Ile 410	acr Thr	agc Ser	ttt Phe	cta Leu	gac Asp 415	tog Ser	ggc Gly	ctg Leu	999 Gly	ctc Leu 420	tgc Cys	ctg Leu	aac Asn	aac Asn	cgg Arg 425	1299
25													ccg Pro			gcc' Ala	1347
30													gtc Val				1395
35													tgt Cys 470				1443
													gag Glu				1491
40													aaa Lys				1539
4.5	gto Val	ccc Pro	ttt Ph e	317 333	tog Ser 510	oga Arg	Erc	gag Glu	ggt Gly	gtg Val 515	gac Asp	gga Gly	god Ala	tgg Trp	939 917 520	Brt cca	1587
50	tgg Trp	act Thr	cca Pro										930 Gly				1735
5.5							Asp						atc Ile 550				1683
<u> </u>													uac Asn			gac Asp	1811

5	gga Gly	999 Gly	ggc Gly	gtg Val 605	aag Lys	gca Ala	tgc Cys	tog Ser	ctc Leu 610	acg Thr	agc Ser	cta Leu	gog Ala	gaa Glu 615	ggo Gly	tto Phe	1875
_							gcg Ala										1923
10	cgt Arg						att Ile 640										1971
15	ggc Gly 650	_	_	_	_	_	ggc Gly		-	_			_	_			2019
20	gtg Val	tgt Cys	ggc Gly	ggt Gly	gac Asp 670	ggc Gly	agt Ser	gcc Ala	tgc Cys	gag Glu 675	acc Thr	atc Ile	gag Glu	ggc Gly	gtc Val 680	ttc Fhe	2067
							gcc Ala										2115
25							ttc Phe										2163
30	cac His						gac Asp 720										2211
35	cct Fro 730						cac His										2259
40							gaç Asp										2307
							atc Ile										2355
45							tto Fhe										2403
5%	ctc Pro						tat Tyr 800										
55	tgt Cys 810	gca Ala	39c 31;	ggt Gly	agc Ser	cag Gln 815	gtg Val	cag Gln	gog Ala	gtg Val	gag 314 823	tgc Cys	ege Arg	aac Ast	cag Gln	otg Leu 925	2499
				.					• •			8	1		111		

est of the second of the secon

	Val	Val	Gly 860	Asn	Trp	Ser	Leu	Cys 365	Ser	Arg	Ser	Cys	Asp 870	Ala	Gly	Vál	
5	agc	agt Ser 875	cgc Arg	tog Ser	gtc Val	gtg Val	tga Cys 880	cag Glr.	ogc Arg	cgc	gts Val	tot Ser 885	gcc Ala	gog Ala	gag Glu	gāg Glu	2691
10						_	_		_	_	_	_	cca Pro		_	_	2739
15													gcg Ala				2787
4-7													cgc Arg				2835
20													ccc Prc 950				2883
25													tgc Cys				2931
30													ggt Gly				2979
3.5													cgc Arg	Суѕ			3027
35			Gly					Glu					ctg Leu				3075
40		Thr					Ala					Pro	acc Thr				3123
45	Gly					Lys					"al		tac Tyr			_	3171
50		Leu			31.					Ala			ego Arp		Met		3219
			acc Thr	Cys				tagg	jāāā:	ige g	icaão	rabbo	ig ga	igeda	ıcagı		3270
55	193	эээ.	jio t	ಚರಿತ	reget	ia go	coute	توخي	931	gegr.	JJa	4.425	19931	ere c	eday.	933344	333
													1 ×			. 0	

	< 40.	J> 4.	1													
5	Met 1	Ser	Ser	Cys	Pro 5	Vāl	Trp	Arg	Ala	Met 10	Arg	Ser	Pro	Ser	Pro 15	Pro
	Ala	Trp	Thr	Thr 20	Thr	Gly	His	Cys	Trp 25	Pro	Ser	Arg	His	Leu 30	Leu	Fro
10	Gly	Ala	Ala 35	Pro	Arg	Hıs	Gly	Gly 40	Hls	Ser	Arg	Val	Pro 45	Pro	Leu	Leu
	Gln	Ser 50	Gly	Leu	Ala	Ser	Thr 55	His	Phe	Leu	Leu	Asn 60	Leu	Thr	Arg	Ser
15	Ser 65	Arg	Leu	Leu	Ala	Gly 70	Arg	Val	Ser	Val	Glu 75	Tyr	Trp	Thr	Arg	Glu SO
20	3lγ	Leu	Ala	Trp	Gln 85	Arq	Ala	Ala	Arq	Pro 90	His	Cvs	Leu	Tyr	Ala 95	Gly
20	His	Leu	Gln	Gly 100	Gln	Ala	Ser	Ser	Ser 105	His	Val	Ala	Ile	Ser 110	Thr	Cys
25	Gly	Gly	Leu 115	His	Gly	Leu	Ile	Val 120	Ala	Asp	Glu	Glu	Glu 125	Tyr	Leu	Ile
	Glu	Pro 130	Leu	His	Gly	Gly	Pro 135	Lys	Gly	Ser	Arg	Ser 140	Pro	Glu	Glu	Ser
30	Gly 145	Pro	His	Val	Val	Tyr 150	Lys	Arg	Ser	Ser	Leu 155	Arg	His	Pro	His	Leu 160
35	Asp	Thr	Ala	Cys	Gly 165	Val	Arg	Asp	Glu	Lуs 170	Pro	Trp	Lys	Gly	Arg 175	Pro
33	Trp	Trp	Leu	Arg 180	Thr	Leu	Lys	Pro	Pro 185	Pro	Ala	Arg	Pro	Leu 190	Gly	Asn
4 C	Glu	Thr	Glu 195	Arg	Gly	Gln	Pro	Gly 200	Гел	Lys	Arg	Ser	Val 205	Ser	Arg	Glu
	Arg	Tyr 210	Val	Glu	Thr	Leu	Val 215	Val	Ala	Asp	Lys	Met 220	Met	Val	Ala	Tyr
4.5	H13 225	Gly	Ärg	Arg	Asp	Val 230	31.	Gl:	Tyr	Mal.	164 235	Als	ile	Mei	Asn	11e 240
50	Val	Ala	Dys	Leu	1 ne 245	Gla	AEŞ	Sei	Ser	Let. 250	31 y	Se:	Thr	Val	Asn 255	ï.º
	Leu	Val	Thr	Arg 260	Leu	Ile	Leu	Leu	Thr 265	Glu	Asp	Gln	Pro	Thr 270	Leu	Glu
55	Il€	Thr	H1s 275	His	Ala	Gly	Lys	Ser 280	Leu	Aep	Ser	Phe	Cys 285	Lys	Trp	Gln
	Lys	Ser	Il∈	Val	Asn	His	Ser	Gly	His	Gly	Asn	Ala	ile	Pro	glu	Asn

Ala Giu Dye Val Sêr Ala Ary Biu Ala Ala Ala Ser Met Ary Thr Leu-

				340					345					350		
5	Ala	Ala	Thr 355	Ser	Val	His	His	Сув 360	His	514	Ile	Gly	His 365	Thr	Fne	G1
,	Met	Asn 370	His	Asp	Gly	Vál	317 375	Asn	Ser	Cys	gly	Ala 380	Arg	Sly	Gln	AS
10	Pro 385	Ala	Lys	Leu	Met	Ala 390	Ala	His	Ile	Thr	Met 395	Lys	Thr	Asn	Pro	Ph 40
	Val	Trp	Ser	Ser	Cys 405	Asn	Arg	Asp	Tyr	Ile 410	Thr	Ser	Phe	Leu	Asp 415	Se
15	Зlу	Leu	Gly	Leu 420	Cys	Leu	Asn	Asn	Arg 425	Pro	Pro	Arg	Gln	Asp 430	Phe	Vа
20	Tyr	Pro	Tnr 435	Val	Ala	Pro	Gly	Gln 440	Ala	Tyr	Asp	Ala	Asp 445	Glu	Эln	Су
20	Arg	Phe 450	Gln	His	Gly	Val	Lys 455	Ser	Arg	Gln	Cys	Lуs 460	Tyr	Gly	3lu	Vа
25	Cys 465	Ser	Glu	Leu	Trp	Cys 470	Leu	Ser	Lys	Ser	Asn 475	Arg	Cys	Ile	Thr	As:
	Ser	Ile	Pro	Ala	Ala 485	Glu	Gly	Thr	Leu	Сув 490	Gln	Thr	His	Thr	Ile 495	Asj
30	Lys	Gly	Trp	Сув 500	Tyr	Lys	Arg	Val	Сув 505	Val	Pro	Phe	Gly	Ser 510	Arg	Pro
35	Glu	Gly	Val 515	Asp	Gly	Ala	Trp	Gly 520	Pro	Trp	Thr	Pro	Trp 525	Gly	Asp	Cyr
,,,	Ser	Arg 530	Thr	Сув	Gly	Gly	Gly 535	Val	Ser	Ser	Ser	Ser 540	Arg	His	lys	ÀS
4 0	Ser 545	Pro	Arg	Pro	Thr	Ile 550	Gly	Gly	Lys	Tyr	Суз 555	Leu	Gly	Glu	Arg	Arg 56
	Arg	His	Arg	Ser	Суs 565	Asn	Thr	Asp	Asp	Cys 570	Prc	Pro	Gly	Ser	31n 575	Asj
4 5	Fhe	Arg	3lu	Val 680	Gln	Cys	Ser	Glu	The 585	Asp	Ser	Ile	Pri	9he 591	4r3	G1;
£ 04	Ĺyε	Foe	Tyr 595	Lys	Trp	_yre	Tnr	Tyr 600	Arg	Bly	Bly	917	Val €05	Lys	A) a	771
	Ser	Leu 610	Thr	Ser	Leu	Ala	Glu 615	Gly	Fhe	Asn	Fhe	Tyr 620	Thr	glu	Arg	Al
5.5	Ala 625	Ala	Val	Val	Asp	Gly 630	Thr	Fro	Сув	Arg	Pro 635	Asp	Thr	Val	Asp	11e
	Dys	Val	Ser	317	glu	Cyrs	Lys	His	Wal	31;	Cys	Asp	Arg	1.0.1	Leu	Gl:

oly Typ stu App Val Val Top lie For Lyp Sly ser Val His fie For

		690					595					700				
5	Ile 705	Glr.	Asp	Leu	Asn	leu 710	Ser	Leu	Ser	His	Leu 715	Ala	Leu	Lys	313	Asp 720
_	Gln	Glu	Ser	Leu	Leu 725	Leu	Glu	зlү	Leu	Pro 730	Gly	Thr	Pro	Glr.	Pro 735	His
10	Arg	Leu	Pro	Leu 740	Ala	Gly	Thr	Thr	Phe 745	Gln	Leu	Arg	Gln	Gly 750	Pro	Asp
	Gln	Val	Gln 755	Ser	Leu	Glu	Ala	Leu 760	Gly	Pro	Ile	Asn	Ala 765	Ser	Leu	Ile
15	Val	Мес 770	Val	Leu	Ala	Arg	Thr 775	Glu	Leu	Pro	Ala	Leu 730	Arg	Tyr	Arg	Phe
20	Asn 785	Ala	Pro	Ile	Ala	Arg 790	Asp	Ser	Leu	Pro	Pro 795	Tyr	Ser	Trp	His	Tyr 833
	Ala	Pro	Trp	Thr	Lys 805	Cys	Ser	Ala	Gln	Cys 810	Ala	Gly	Gly	Ser	Gln 815	Val
25	Gln	Ala	Val	Glu 820	Tys	Arg	Asn	Gln	Leu 825	Asp	Ser	Ser	Ala	Val 830	Ala	Pro
	His	Tyr	Cys 835	Ser	Ala	His	Ser	Lys 840	Leu	Pro	Lys	Arg	Gln 845	Arg	Ala	Суз
30	Asn	Thr 850	Glu	Pro	Jys	Pro	Pro 855	Asp	Trp	Val	Val	Gly 860	Asn	Trp	Ser	Leu
35	Сув 865	Ser	Arg	Ser	Cys	Asp 870	Ala	Gly	Val	Arg	Ser 875	Arg	Ser	Vāl	Val	Cys 880
	Gln	Arg	Arg	Val	3er 385	Ala	Ala	Glu	Glu	E90	Ala	Leu	Asp	Asp	Ser 895	Ala
40	Cys	Pro	Glr.	Pro 900	Arg	Pro	Pro	Val	Leu 905	Glu	Ala	Cys	His	Gly 910	Pro	Thr
	Cys	Fro	Pro 915	Glu	Trp	Ala	Ala	Leu 920	Asp	Trp	Ser	Glu	Cys 925	Thr	Pro	Ser
45	îys	31y 930	Pro	Gly	Leu	Arg	H18 935	Arg	Val	Va1	Les	0)/s 940	Lys	Ser	Ala	Asp
5 Q I	H16 945	Arg	Ala	Tilr	leu.	Pro 950	Pil	Ala	His	Cys	Ser 955	Fre	Ala	Ala	Lys	Fre 961
	Pro	Ala	Thr	Met	Arg 365	Сув	Asn	let	Arg	Aig 970	Cys	Pro	Pro	Ala	Ar g 975	Trp
55	√āl	Ala	Gly	Glu 950	Trp	Gly	Glu	Cys	945 945	Ala	Glm	Cys	Gly	Val 990	Gly	31r.
	Aig	51:.	Arg 995	Ser	Val	Arg	Cys :	T::.2	Ser	Hls	Ini		Glm inne	Alb	Sei	His

. Val Am. 199 Val Ala Tyr Tym Pri leu Cal Leu Lyd Ame Sim Fue Sy

				-	1045				:	1050				:	1055		
5	Ser	Arg		Tyr 1060	Phe	Arg	Gln		Cys 1065	Cys	Lys	Tnr		Gln 1070	gly	His	
10	<211 <211		990 NA	sapie	ens 2	ADAM:	IS- 91	2									
15		1 > C		. (55)	34)												
20		0 > 2: qqqc		rcaqu	aqaqq	ad di	:däd:	aagca	a cc					tcc Ser 5		_	53
25				acg Thr													101
23	gac Asp	gcc Ala 25	gcg Ala	gog	gcc Ala	gtg Val	age Arg 30	aag Lys	gac qaA	agg Arg	ctg Leu	cac His 35	Pro	agg Arg	caa Gln	gtg Val	149
30				gag Glu													197
35				ctc Leu													245
40				agc Ser 75													293
45	tcc Ser	tcc Ser	tot Ser 90	tcc Ser	tcc Ser	tot Ser	acc Thr	taa Ser 95	ccc Pro	cag Gln	geg Ala	cat His	tac Tyr 100	cgc Arg	ctc Leu	tot Ser	341
				cag Gln												ttt Fie	3 8 3
50	alt Ile 120	get Ala	cca Pro	ütg Leu	tto Phe	act Thr 125	gts Val	acc Thr	oto Leu	ati Let	338 31y 130	acg Thr	Sők Pro	ggg Gly	gtg Val	Asn 135	Į, .
55	cag 31n	acc Thr	aag Lys	ttt Fhe	tat Tyr 140	tc: Ser	gaa Glu	gaq Glu	gaa Glu	gcg Ala 145	gaa Glu	oto Lei	aag Lys	cac His	tgt Cye 150	tto Fhe	485
									٠			3	. 0	•• 0		(f) • •	ŧ

The second of th

	Fhe	Ile 195	Glu	Pro	leu	gln	Ser 190	Met	Asp	Glu	3ln	Glu 195	Asp	Glu	Glu	314	
5						atc Ile 205											677
10						cat His	-	_	_			_					725
15		_		_	_	aag Lys			_	_	-				-		773
~~						gac											821
20						tat Tyr											869
25						aca Thr 285											917
30						gca Ala											965
35						att Ile											1013
23						att Ile											1061
40						aat Asn											1109
45						aaa Lys 368											1157
ΕĴ						tat His	_		_	_				_			1275
5.5						gac Asp											1253
						ede Pro											1900

5				cat His													1445
٢	tgg Trp	atg Met	tgg Trp	tca Ser 475	aag Lys	tgt Cys	agt Ser	cga Arg	aaa Lys 480	tat Tyr	atc Ile	act Thr	gag Glu	ttt Phe 485	tta Leu	gac Asp	1493
10				ggc Gly													1541
15	cct Pro	ttg Leu 305	cct Prc	gtc Val	caa Gln	ctg Leu	cca Pro 510	ggc Gly	atc Ile	ctt Leu	tac Tyr	aac Asn 515	gtg Val	aat Asn	aaa Lys	caa Gln	1589
20	tgt Cys 520	gaa jlu	ttg Leu	att 11e	ttt Fne	gga Gly 525	cca Pro	ggt Gly	tct Ser	¢ag Gln	gtg Val 530	tge Cys	cca Pro	tat Tyr	atg Met	atg Met 535	1637
25				yrā cāā													1685
	tgc Cys	ogg Arg	act Thr	cag Gln 555	cac His	aca Thr	pro	tgg Trp	gcc Ala 560	gat Asp	G17 639	acg Thr	gag Glu	tgc Cys 565	gag Glu	cct Pro	1733
30	gga Gly	aag Lys	cac His 570	tgc Cys	aag Lys	tat Tyr	gga Gly	Pne 575	tgt Cys	gtt Val	ccc Pro	aaa Lys	gaa Glu 580	atg Met	gat Asp	gtc Val	1781
35	Pro	gtg Val 585	aca Thr	gat Asp	gga Gly	tcc Ser	tgg Trp 590	gga Gly	agt Ser	tgg Trp	agt Ser	ccc Pro 595	ttt Phe	gga Gly	acc Thr	tgc Cys	1829
4 C	toc Ser 600	aga Arg	aca Thr	tgt Cys	gga Gly	999 Gly 605	Gly	atc	aaa Lys	aca Thr	goc Ala 610	att Ile	oga Arg	gag Glu	tgc Cys	aac Asn 615	1877
45	aga Arg	cca Pro	gaa Glu	cca Pro	aaa Lys 620	aat Asn	ggt Gly	gga Gly	aaa Lys	tac Tyr 625	tgt Cys	gta Val	gga Gly	cgt Arg	aga Arg €30	atg Met	1925
	aaa Lys	tit Phe	aag Lys	t20 Ser 635	tgc Cys	aac Asn	acg Thr	gag Glu	oca Pro 640	tÿt Gys	otq Deu	aag Lys	Jág Glπ	aag Lys 645	oga Arg	gati Asp	1973
5 1	The	nga Arg	раг Авр 650	gaa Glu	Tag Gln	tqt Cys	get Ala	737 His 655	tit Phe	nsr Asr	333 Gly	aat Lys	237 His 660	tit Pne	aar Aan	11¢ 4.3	1071
55				ctt Leu												att Ile	2069
	77.7	₹* ?	337	÷ 9 ™	200	ts:	als	tt:	::=	100	ара	323	975	דרה	3 3 T	433	2117

PCT US00-21223

The state of the day of the state of the first of the state of the sta

5													aac Asn				3029
,		Arg			Ala					Ser			tgt Cys		Gly		3077
10				Arg					Val				aat Asn	Asp			3125
15			Ser					-Gln					att Ile				2173
20	agt Se:	314	ttc Ple 1050	cct P:o	tgt Cys	cca Piu	Gl.i	tgg T.p :055	aaa L ₎ s	tot Sel	gga Gly	Asp	tgg Trp 1060	tca Ser	gag Glu	tgc Cys	3221
25	Leu	gtc Val 1065	acc Thr	tgt Cys	gga Gly	Lys	ggg Gly 1070	cat His	aag Lys	cac His	Arg	cag Gln L075	gtc Val	tgg Trp	tgt Cys	cag 31n	1269
		Gly			Arg					Met			cct Pro		Thr		1317
30	cca Prc	aca Thr	tct Ser	Met	cag Gln 1100	act Thr	tgt Cys	cag Gln	Gln	ccg Pro	gaa 3lu	atg Met	gca Ala	Ser	tgg Trp 1110	cag 31n	3365
35	gcg Ala	ggt Gly	Pro	tgg Trp 1115	gta Val	cag Gln	tgc Cys	Ser	gtc Val 1120	act Thr	tgt Cys	gga Gly	cag Gln	gga Gly 125	tac Tyr	cag 31n	3413
40	cta Leu	Arg	gca Ala 1130	gtg Val	aaa Lys	tgc Cys	lle	att Ile 1135	ggg Gly	act Thr	tat Tyr	Met	tca Ser	gtg Val	gta Val	gat Asp	3461
45	Asp	aat Asn 1145	gac Asp	tgt Cys	aat Asn	Ala	gca Ala 1150	act Thr	aga Arg	cca Pro	Ihr	gat Asp 1155	acc Thr	cag Gln	gac Asp	tgt Cys	0509
	gaa Glu 116.	Leu	23a Fio	ica Ser	Tys	cat His	ret Pro	JOS Pro	oda Pro	gut Ala	gco Ala (155	ero ceg	ģāā Glu	atg Thr	Arg	iga Arg	3557
5.0	üge Ser	ara Thr	tan Tyr	Ser	35ā Ala 1180	ida Pro	aga Arg	Thr	Glr.	tgg Trp 1185	oga Arg	itt Fhe	398 31y	Ser	193 Trp 1190	arr Thr	78 E =
5.5			Ser					Lys					aga Arg				3653
	+		225	~ = ~	a a =		177	at a	3C*	330	~ 4.~	ag-	3 - C	F -2 F	301	2 ~ ~	2000

cas týg aag god tig gat tig ago tit tig tot gig att tig 300 TAP (/ /)

	Gln Ti 1240	p Lys	Alâ		Asp 1245	Trp	Sér	Ser	-	Ser 1250	Val	Thr	Cys	_	Gln 1255	
5	ggt ag Gly Ar		Thr			-		Сув	_				Asp			3845
1 0	atc ga Ile As	p Arg					Gln					Glu				3893
15	gac tg Asp Cy					Cys					Pro					3941
15	got ca Ala Gl 130	n His			Gln					Arg						3989
20	ccc ag Pro Se 1329			His					Asn					Gly		4037
25	tgg gg Trp Gl	_	Сув		_		_	Ala				_	Arg	_	_	4085
30	gtt gt: Val Val	Cys					31 _Y					Asp				4133
35	aga ata Arg Ile					Gln					Ser					4181
33	cag tg: Gln Trp 138	p Ala	tat Tyr	ggc Gly	Asn	tgg Trp 390	gga Gly	gag Glu	tgc Cys	Thr	aag Lys 395	ctg Leu	tgt Cys	ggt Gly	gga Gly	4229
40	ggo ata Gly Ile 1400			Arg					Gln					Glu		4277
4.5	ttt com		Let					Leu					Asp			4325
ΞÚ	cag tg Gin Cyr	e Asn				_	Fro		_			Trp	-		- 1	4375
	cat tg: Pro Tri					Val					Gly					4421
55	aat gt: Asn Val															446è

The first of auditive low out for this capturantly to the first of Asia by the first Law Cip Lye Ala Cip des Cim Lye Des Yellows 1983 1985

5			Arg					Arg					Gln		gga Gly		4613
٠		Lys					Thr					Tyr			9ro CCG		4661
10	Ser					Gln					Pro				tgg Trp		4709
15		Glu			Glr					Thr					toc Ser		4757
20				Val					${\tt Asp}$					Val	cat His 1590		4805
25			Cys					Arg					Glu		tgt Cys		4853
		Gln					Val					Glu			gag Glu		4901
30	Ser					Lys					Arg				tgc Cys		4949
35		lle			Gly					Glu		_			acc Thr		4997
4 C				Pro					Pro					Сув	tac Tyr L670		5045
45			Суз					Thr					Asn		ggg Gly		5093
10		ëe:					∵al					Arg			caa Glm		5141
50	Leu					Gln					Cys				ctg Leu	aag Lys	1189
55		Glu													tta Leu		5237
								-									

ugg af a cas for Bar ល៉ូនិន (prosas Bas of a cata www.gtd.ata hat ava in 1983

	Gly		His 1770	Ser	Asp	His	Frc	Lys 1775	Glu	Tyr	Val		Leu 1780	Val	His	Gly	
5	Asp	tot Ser 785	gag Glu	āāt Asī	trc Phe	Ser	gag Glu 1790	gtt Val	tat Tyr	339 31y	His	agg Arg 1795	tta Leu	cac His	aac Asn	cca Pro	5429
10		Glu			Tyr		999 Gly			Arg					Суз		5477
15				Thr			399 31y		Ser					Ile			5525
			Thr				ata Ile	Ile					Gln				5573
20	aca Thr	Ser	gaa Glu 1850	gga Gly	cat His	ccc Fro	Val	cct Pro .855	ttt Pne	gcc Ala	aca Thr	Ala	999 Gly 1860	gat Asp	tgc Cys	tac Tyr	5621
25	age Ser 1					Pro					Ser						5669
30	acc Thr 1880	Gly			Leu		gaa Glu			Arg					Gly		5717
35	tat (Tyr .	_	_	Ser	_		aag Lys	_	Ser					Arg			5765
	999 31y		Cys					Gly					Ser				5813
40	ggc Gly	Leu						tago	taag	igt g	cttt	gaag	ga gg	gaago	catt		58€4
45	itgg	atgg	jat g	аэде	ataç	įt 4≣	tges	atac	e ete	cacc	tta	attt	gggt	:gc a	itgtg	tatgt	5924
	ątęt:	gigt	gt t	tgtg	tete	ja et	.igta	tgat.	. tgt	419t	gta .gta	aatg	ytgt:	ta :	:at a	.apath	F 9 8 4
	tāta-	Ċā															€995
51	<210 <211 <212 <213	> 19 > FR	34 T	aple	ns A	DAMI	:S-9b										
5 5	- 4 00	> 26															
	Met :	Gln	Fhe	Val	Ser =	Trp	Ala	Thr	Leu	leu	Tar	Leu	le ₁	Val	Arr	Asp	

i Signifie that der fre file Arp Val Ass Ala Leu Signification for File 5.0

5	Thr 65	Asn	Va_	His	Fne	Dys 70	Arg	Thr	Arg	Arg	Ser 75	Ile	Asn	Ser	Ala	Tr.
	Asp	Pro	Trp	Pro	Ala 85	Phe	Ala	Ser	Ser	Ser 90	Ser	Ser	Ser	Thr	Ser 95	Pro
10	Gln	Ala	His	T yr 100	Arg	Leu	Ser	Ala	Phe 105	Gly	Gln	Gln	Phe	Leu 110	Phe	As
	Leu	Thr	Ala 115	Asn	Ala	Gly	Phe	Ile 120	Ala	Pro	Leu	Phe	Thr 125	Val	Thr	Lei
15	Leu	Gly 130	Thr	Pro	Gly	Val	Asn 135	Gln	Thr	Lys	Phe	Tyr 140	Ser	Glu	Glu	Gli
20	Ala 145	Glu	Leu	Lys	His	Cys 150	Phe	Tyr	Lys	Gly	Tyr 155	Val	Asr.	Thr	Asn	Se:
20	Glu	His	Thr	Ala	Val 165	Ile	Ser	Leu	Cys	Ser 170	Gly	Met	Leu	Gly	Thr 175	Ph€
25	Arg	Ser	His	Asp 180	Gly	Gly	Tyr	Phe	Ile 185	Glu	Pro	Leu	Gln	Ser 190	Met	Asp
	Glu	Gln	Glu 195	Asp	Glu	Glu	Glu	Gln 200	Asn	Lys	Pro	Els	11e 205	Ile	Tyr	Arg
3 0	Arg	Ser 210	Ala	Pro	Glr.	Arg	Glu 215	Pro	Ser	Thr	Gly	Arg 220	His	Ala	Cys	Asp
	Thr 225	Ser	Glu	His	Lys	Asn 230	Arg	His	ser	Lys	Asp 235	Lys	Lys	Lys	Thr	Arg 240

55

Thr Asp Ash Thr Arg Glu Lys Arg Thr His Arg Arg Thr Lys Arg Phe 275 280 285

Ala Arg Lys Trp Gly Glu Arg Ile Asr. Leu Ala Gly Asp Val Ala Ala 245 256 255

Leu Ash Ser Gly Leu Ala Thr Glu Ala Phe Ser Ala Tyr Gly Ash Lys 260 265 270

45 Leu Ser Tyr Pro Arg Phe Val Glu Val Leu Val Val Ala Asp Ash Arg 290 295 300

Met Val Ser Tyr His dly Sid Ash Led Sin His Tyr Ile Led Thr Led 305 316 316 325

Met Ser Ile Val Ala Ser Ile Tyr Lys Asp Pro Ser Ile Gly Ash Leu 325 330 1335

Ile Ash Ile Val Ile Val Ash Leu Ile Val Ile His Ash Olu Oln Asp 55 340 345 350

Sty Fro Ser Ile Ser Phe Ash Ala Gin Thr Thr Leu Lys Ash Fne Cys

					405					410					415	
5	Cys	Ser	Ile	Ser 420		Asp	Ser	Gly	Leu 425	Ser	Thr	Ala	Phe	Thr 430	Ile	Ala
_	His	Glu	Leu 435		His	Val	Fne	Asn 440	Met	Pro	His	Asp	Asp 445	Asn	Asn	Lys
1 C	Cys	Lys 450	Glu	Glu	Gly	Val	Lys 455	Ser	Pro	Gln	His	Val 460	Met	Ala	Fro	Thr
	Leu 465	Asr.	Phe	Tyr	Thr	Asn 470	Pro	Trp	Met	Trp	Ser 475	Lys	Cys	Ser	Arg	Lys 460
15	Tyr	lle	Thr	Glu	Phe 485	Leu	Asp	Thr	Gly	Tyr 490	Gly	Glu	Cys	Leu	Leu 495	Asn
20	Glu	Pro	Glu	Ser 500	Arg	Pro	Tyr	Pro	Leu 505	Pro	Val	Gln	Leu	Pro 510	Gly	Ile
	Leu	Tyr	Asn 515	Val	Asn	Lys	Gln	Сув 520	Glu	Leu	Ile	Phe	Gly 525	Pro	Gly	Ser
25	Gln	Val 530	Сув	Pro	Туг	Met	Met 535	Gln	Суѕ	Arg	Arg	Leu 540	Trp	Ser	Asn	Asn
	Val 545	Asn	Gly	Val	His	Lys 550	Gly	Сув	Arg	Thr	31n 555	His	Thr	Pro	Trp	Ala 560
30	Asp	Gly	Thr	Glu	Суя 565	Glu	Pro	Gly	Lys	His 570	Cys	Lys	Tyr	Gly	Phe 575	Cys
35	Val	Pro	స్కెక	Glu 580	Met	Asp	Val	Pro	Val 585	Thr	Asp	Gly	Ser	Trp 590	Gly	Ser
	Trp	Ser	Pro 595	Fhe	Gly	Thr	Cys	Ser 600	Arg	Thr	Сув	Gly	Gly 605	Gly	Ile	Lys
40	Thr	Ala 610	I l e	Arg	Glu	Суз	Asn 615	Arg	Pro	Glu	Pro	Lys 620	Asn	Gly	Gly	Lys
	Tyr 525	Cys	Val	Gly	Arg	Arg 630	Met	Lys	Phe	Lys	Ser 635	Cys	Asn	Thr	Glu	Pro 640
45	Cys	Leu	Lys	Gln	Lys 645	Arg	yst	Phe	Arg	Asp 650	Glu	31m	Сув	Ala	H13	Fhe
50	Asp	ēly	Lys	H18 360	F∴≏	Asn	: i a	Asn	31y 365	161	le.	Fic	Azn	₹12 €10	Arş	Tir
	Val	Fro	Ъув 675	Tyr	Ser	Gly	ile	Leu 680	Met	Lys	Asp	Arg	Cys 685	Lys	Lci	Phe
55	Cys	Arg 690	Val	Ala	Gly	Asn	Tnr 695	Ala	Tyr	Tyr	Gln	Leu Tii	Arg	Asp	Arg	Val
	11e 70⊆	Asp	Jly	Thr	FIO	Cys 711	3.y	Gln	ăsp	Thr	Asn Tir	Asp	Ile	Cys	Val	∃ln -;-

At the Cal Ala Bly The Env Ash the Mai His Lya Bly Tye Ash The Mai

			755					760					765			
5	Val	Arg 770	Ile	Fro	Ala	Gly	Ala 775	Thr	Asn	Il€	Asp	Val 780	Arg	Gln	Hls	Ser
J	Phe 785	Ser	Gly	Glu	Thr	Asp 790	qsA	Asp	Asn	Tyr	Leu 795	Ala	Leu	Ser	Ser	Ser 800
10	Lys	Gly	Glu	Phe	Leu 805	Leu	Asn	Зіу	Asn	Phe 810	Val	Val	Thr	Met	Ala 815	Lys
	Arg	Glu	Ile	Arg 820	Ile	Gly	Asn	Ala	Val 825	Val	Glu	Tyr	Ser	Gly 830	Ser	Glu
15	Thr	Ala	Val 835	3lu	Arg	Ile	Asn	Ser 840	Thr	Asp	Arg	Ile	Glu 845	Gln	Glu	Leu
20	Leu	Leu 850	Glm	Val	Leu	Ser	Val 855	Зlу	Lys	Leu	Tyr	Asn 860	Pro	Asp	Val	Arq
	Tyr 865	Ser	Phe	Asn	Ile	Pro 870	Ile	-31u	Asp	Lys	Pro 875	Gln	Gln	Phe	Tyr	Trp 880
25	Asn	Ser	His	Gly	Pro 885	Trp	Gln	Ala	Cys	Ser 890	Lys	Fro	Cys	Gln	Gly 895	Glu
	Arg	Lys	Arg	Lys 900	Leu	Val	Cys	Thr	Arg 905	Glu	Ser	Asp	Gln	Leu 910	Thr	Val
30	Ser	Asp	Gln 915	Arg	Cys	Авр	Arg	Leu 920	Pro	Gln	Pro	Gly	H19 925	Ile	Thr	Glu
35	Pro	Cys 930	Gly	Thr	Gly	Cys	Asp 935	Leu	Arg	Trp	His	Val 940	Ala	Ser	Arg	Ser
	Glu 945	Cys	Ser	Ala	Gln	Cys 950	Gly	Leu	Gly	Tyr	Arg 955	Thr	Leu	Asp	Ile	Tyr 960
40	Cys	Ala	Lys	Tyr	Ser 965	Arg	Leu	Asp	Gly	Lys 970	Thr	Glu	Lys	Val	Asp 975	Asp
	Gly	Phe	Cys	Ser 980	Ser	Hıs	Pro	Lys	Prc 985	Ser	Asn	Arg	Glu	Ъуs Э90	Сув	Ser
45	Gly	G1::	Gys 995	Asn	Thr	Gly	aly 1	Trp (300	Arg	Tyr	Ser		Trp 1885	Thr	31u	Cys
ಕರ		1975 1010	Ser	Tys	Asp		31y 015	Tr.Y	31 m	Arq		A19 1023	A. a	ile	Гуз	Val.
	Asn 1029		Arg	Asn		Val .030	Leu	Asp	Asp		Lys 1035	Cys	Thr	His	3ln 1	G1u 040
55	Lys	Val	Thr		Gln 1045	Arg	Сув	Ser		Phe 050	Pro	Cys	Pro		Trp .355	Lys
	Ser	Gly	Asp.	Trp	Ser	glu	Cys	Leu	Val		Cys	317	Lys	Gly	Hils	Lys

ti ti Bio did Med Ala Ser Trp Fin Ala Diy isi Trp Val Jin Cys Ser Val

	1105	11	.10	1115		1120
-	Thr Cys G	ly Glm Gly T 1125	Cyr Gln Leu	Arg Ala Val		e Ile Gly 1135
5	Thr Tyr Me	et Ser Val V 1140		Asn Asp Cys .145	Asn Ala Ala 1150	
10	Pro Thr A		Asp Cys Glu 1160	Leu Pro Ser	Cys His Pro 1165	Pro Pro
	Ala Ala P: 1170	ro Glu Thr A	Arg Arg Ser 1175	Thr Tyr Ser	Ala Pro Arg .180	Thr Glr
15	Trp Arg Pl		Trp Thr Pro	Cys Ser Ala 1195	Thr Tys Gly	Lys Gly 1200
20	Thr Arg M	et Arg Tyr V 1205	al Ser Cys	Arg Asp Glu 1210	Asn Gly Ser	Val Ala 1315
20	Asp Glu Se	er Ala Cys A 1220		Pro Arg Pro 1225	Val Ala Lys 1230	
25	Cys Ser V		cys Gly Gln 1240	Trp Lys Ala	Leu Asp Trp 1245	Ser Ser
	Cys Ser Va 1250	al Thr Cys G	ely Gln Gly 1285	Arg Ala Thr	Arg 31m Val .260	Met Tys
30	Val Asn T		His Val Ile 170	Asp Arg Ser 1275	Glu Tys Asp	Gln Asp 1280
35	Tyr Ile P	ro Glu Thr A 1285	Asp Gln Asp	Cys Ser Met 1290	Ser Pro Cys	Pro 31r 1195
,,,	Arg Thr P	ro Asp Ser 3		Gln His Pro 1305	Phe Glm Asn 1310	
4 0	Tyr Arg F:		Ala Ser Pro 1320	Ser Arg Thr	His Val Leu 1325	Gly 3ly
	Asn Gln T: 1330	rp Arg Thr (Sly Pro Trp 1335	Gly Ala Cys	Ser Ser Thr .340	: Cys Ala
45	Gly 31y S		Arg Val Val EST	Val Cys Glm 1355	Asp 314 Asn	Gly Tyr 1360
5 0	Thr Ala A	sn Asp Cys 1 1365	wal Olu Arg	The Lys Fro	Asp 31% Glo	. Arg. 41) 1378
	Cya Glu S	er Gly Pro G 1380		Trp Ala Tyr 1385	Gly Ash Trp 1390	
55	Cys Thr L		ely Gly Gly 1400	Ile Arg Thr	Arg Leu Val 1405	. Val Cys
	Gla Arg S	er Asn Gly C	Blu Arg Fhe	Pro Asp leu	Ser Dys 310	. Ile bed

Cly Arg Bry Him Lye Din Arg Adn Wal Tyu Tyu Met Ala Lya Asg al.

1460 1465 1470

Ser His Leu Glu Ser Asp Tyr Cys Lys His Leu Ala Lys Pro His Gly

5

His Arg Lys Cys Arg Gly Gly Arg Cys Pro Lys Trp Lys Ala Gly Ala 1490 1500

- Trp Ser Gln Cys Ser Val Ser Cys Gly Arg Gly Val Gln Gln Arg His 10 1505 1510 1525 1520
 - Val Gly Cys Gln Ile Gly Thr His Lys Ile Ala Arg Asp Thr Glu Cys 1525 1530 1535
- 15 Asn Pro Tyr Thr Arg Pro Glu Ser Glu Cys Glu Cys Gln Gly Pro Arg 1540 1545 1550
- Cys Pro Leu Tyr Thr Trp Arg Ala 3lu Glu Ser Gln Glu Cys Thr Lys 1555 1560 1565
- Thr Cys Gly Glu Gly Ser Arg Tyr Arg Lys Val Val Cys Val Asp Asp 1570 1575 1580
- Asn Lys Asn Glu Val His Gly Ala Arg Cys Asp Val Ser Lys Arg Pro 25 1585 1590 1595 1600
- Val Asp Arg Glu Ser Cys Ser Leu Gln Pro Cys Glu Tyr Val Trp Ile
- 30 Thr Gly Glu Trp Ser Glu Cys Ser Val Thr Cys Gly Lys Gly Tyr Lys 1620 1630
- Gln Arg Leu Val Ser Cys Ser Glu Ile Tyr Thr Gly Lys Glu Asn Tyr 1635 1640 1645

Glu Tyr Ser Tyr Gln Thr Thr Ile Asn Cys Pro Gly Thr Gln Pro Pro

- Ser Val His Pro Cys Tyr Leu Arg Glu Cys Pro Val Ser Ala Thr Trp 40 1665 1670 1680
 - Arg Val Gly Asn Trp Gly Ser Cys Ser Val Ser Cys Gly Val Gly Val
- 45 Met Gln Arg Ser Val Gln Dys leu Thr Ash 31t Asp Gln Frb Ser His 1705 1710
- Led Tys His Tor Asp Led Lys Pro Flu Sud Arg Lys Tor Tys Arg Aso 1715 1720 1725
- Val Tyr Asn Cys Glu Leu Pro Gln Asn Cys Lys Glu Val Lys Arg Leu 1730 1740
- Lys Gly Ala Ser Glu Asp Gly Glu Tyr Phe Leu Met Ile Arg Gly Lys 55 1745 1760 1760
 - Leu Deu Lys Ile Phe Cys Ala Gly Met His Ser Asp His Pro Lys Glu

1915 1610 1820

Ser Phe Gln Lys Ile Arg Ile Asp Leu Thr Ser Met Gln Ile Ile Thr 1635

Thr Asp Leu Gln Phe Ala Arg Thr Ser Glu Gly His Pro Val Pro Phe 1850 1845

Ala Thr Ala Gly Asp Cys Tyr Ser Ala Ala Lys Cys Pro Gln Gly Arg 1860

Phe Ser Ile Asn Leu Tyr Gly Thr Gly Leu Ser Leu Thr Glu Ser Ala 1875 1880 1885

15 Arg Trp Ile Ser Gln Gly Asn Tyr Ala Val Ser Asp Ile Lys Lys Ser

...y Gry Thr Arg Val Va 1905 1910 Pro Asp Gly Thr Arg Val Val Gly Lys Cys Gly Gly Tyr Cys Gly Lys 1915 1920

Cys Thr Pro Ser Ser Gly Thr Gly Leu Glu Val Arg Val Leu 1930

25