Importing Necessary packages

```
In [1]: 1 import numpy as np, pandas as pd
2 import matplotlib.pyplot as plt
3 import seaborn as sns

In [2]: 1 %matplotlib inline
```

Importing data set

```
In [3]: 1 src = pd.read_csv("Ecommerce - UK Retailer.csv", encoding="ISO-8859-1")
2 src.head()
```

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850.0	United Kingdom

EDA

```
In [4]: 1 src.shape
```

Out[4]: (541909, 8)

```
In [5]:
        1 src.dtypes
Out[5]: InvoiceNo
                    object
       StockCode
                    object
       Description
                    object
       Quantity
                     int64
       InvoiceDate
                    object
       UnitPrice
                    float64
       CustomerID
                    float64
       Country
                    object
       dtype: object
        1 src['InvoiceNo'].unique()[:30]
In [6]:
'C536383', '536384', '536385', '536386', '536387', '536388',
             '536389', '536390', 'C536391', '536392', '536393', '536394'],
            dtype=object)
```

1a Perform Basic EDA - Boxplot - All Numeric Variables

UnitPrice

0

Quantity

-20000 -40000 -60000 -80000

CustomerID

Out[8]: <AxesSubplot:>

1b Perform Basic EDA - Histplot – All Numeric Variables

```
In [9]: 1 src['Quantity'].plot(kind = 'hist')
```

Out[9]: <AxesSubplot:ylabel='Frequency'>


```
In [10]:    1 src[src['Quantity'] < 0].shape
Out[10]: (10624, 8)
In [11]:    1 src['UnitPrice'].plot(kind = 'hist')</pre>
```

Out[11]: <AxesSubplot:ylabel='Frequency'>


```
In [12]: 1 src['CustomerID'].plot(kind = 'hist')
```

Out[12]: <AxesSubplot:ylabel='Frequency'>

1c Perform Basic EDA - Distribution plot – All Numeric Variables

```
In [13]: 1 src.select_dtypes('number').columns
```

Out[13]: Index(['Quantity', 'UnitPrice', 'CustomerID'], dtype='object')

```
In [14]: 1 sns.distplot(a = src['Quantity'])
```

C:\Users\sragh\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[14]: <AxesSubplot:xlabel='Quantity', ylabel='Density'>


```
In [15]: 1 sns.distplot(a = src['UnitPrice'])
```

C:\Users\sragh\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[15]: <AxesSubplot:xlabel='UnitPrice', ylabel='Density'>

C:\Users\sragh\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[16]: <AxesSubplot:xlabel='CustomerID', ylabel='Density'>

1d Perform Basic EDA - Aggregation – All Numeric Variables

In [17]: 1 src.describe().round(2)

Out[17]:

	Quantity	UnitPrice	CustomerID	
count	541909.00	541909.00	406829.00	
mean	9.55	4.61	15287.69	
std	218.08	96.76	1713.60	
min	-80995.00	-11062.06	12346.00	
25%	1.00	1.25	13953.00	
50%	3.00	2.08	15152.00	
75%	10.00	4.13	16791.00	
max	80995.00	38970.00	18287.00	

1e Perform Basic EDA - Unique Value - All Columns

```
In [18]:
            1
               for i in src.columns:
            2
                    print(i)
            3
                    print(src[i].unique())
                    print('\n\n')
            4
          InvoiceNo
          ['536365' '536366' '536367' ... '581585' '581586' '581587']
          StockCode
          ['85123A' '71053' '84406B' ... '90214U' '47591b' '23843']
          Description
          ['WHITE HANGING HEART T-LIGHT HOLDER' 'WHITE METAL LANTERN'
            'CREAM CUPID HEARTS COAT HANGER' ... 'lost'
            'CREAM HANGING HEART T-LIGHT HOLDER' 'PAPER CRAFT , LITTLE BIRDIE']
          Quantity
                                 2
                         8
                                        32
                                                 3
                                                         4
                                                                24
                                                                        12
                                                                                48
                                                                                        18
                 6
          [
                20
                        36
                                80
                                        64
                                                10
                                                       120
                                                                96
                                                                        23
                                                                                 5
                                                                                         1
                -1
                        50
                                       100
                                               192
                                                       432
                                                               144
                                                                       288
                                                                               -12
                                                                                       -24
                                40
                         9
                               128
                                        25
                                                        28
                                                                 7
                                                                        56
                                                                                       200
                16
                                                30
                                                                                72
               600
                       480
                                -6
                                        14
                                                -2
                                                        11
                                                                33
                                                                        13
                                                                                -4
                                                                                        -5
                                                                                        15
                -7
                        -3
                                70
                                       252
                                                60
                                                       216
                                                               384
                                                                       -10
                                                                                27
                                        21
                22
                        19
                                17
                                                34
                                                        47
                                                               108
                                                                        52
                                                                            -9360
                                                                                       -38
                75
                       270
                                42
                                       240
                                                90
                                                       320
                                                              1824
                                                                       204
                                                                                69
                                                                                       -36
              -192
                      -144
                                      2880
                                              1400
                                                        39
                                                               -48
                                                                       -50
                                                                                26
                                                                                      1440
                               160
                31
                        82
                                78
                                        97
                                                98
                                                        35
                                                                57
                                                                       -20
                                                                               110
                                                                                       -22
               -30
                       -70
                              -130
                                       -80
                                              -120
                                                       -40
                                                               -25
                                                                       -14
                                                                               -15
                                                                                       -69
                                                                                49
              -140
                      -320
                                -8
                                       720
                                               156
                                                       324
                                                                38
                                                                        37
                                                                                        95
                -9
                       -11
                                29
                                        41
                                               -72
                                                       -35
                                                               -21
                                                                       -43
                                                                               -19
                                                                                       -18
               -44
                       402
                               378
                                       150
                                               300
                                                        54
                                                               104
                                                                        67
                                                                               258
                                                                                        66
                        55
                                        99
                                                               972
                                                                              1008
                44
                                46
                                                61
                                                       408
                                                                       208
                                                                                      1000
               -77
                      1488
                               250
                                      1394
                                               400
                                                      -223
                                                              -150
                                                                       -13
                                                                               -33
                                                                                      -723
              -177
                        79
                                84
                                       -32
                                              -100
                                                       -28
                                                               272
                                                                      -145
                                                                               -47
                                                                                       -96
               113
                        45
                               106
                                        68
                                               267
                                                       115
                                                                65
                                                                      1728
                                                                               -60
                                                                                       -16
                53
                      -240
                                76
                                       460
                                                71
                                                        43
                                                               213
                                                                        58
                                                                               576
                                                                                      2400
               500
                       180
                              -300
                                      -500
                                               -23
                                                       752
                                                               960
                                                                      1296
                                                                               210
                                                                                       172
                       129
                                                       197
                                                                                      -939
               215
                               138
                                       116
                                               135
                                                              -106
                                                                       -54
                                                                               -17
               147
                                      -201
                                                       -29
                                                                              -290
                       168
                               256
                                               -53
                                                             -2600
                                                                      -990
                                                                                       -45
               860
                      1010
                              1356
                                      1284
                                               186
                                                       114
                                                               360
                                                                      1930
                                                                              2000
                                                                                      3114
              1300
                       670
                               111
                                       211
                                                59
                                                      -310
                                                               -61
                                                                       -41
                                                                               176
                                                                                       648
                62
                    74215 -74215
                                       -64
                                               -84
                                                        89
                                                             -1400
                                                                        73
                                                                               -57
                                                                                       112
                       -59
                                                                                       -94
               456
                               -31
                                      5568
                                              2560
                                                       136
                                                               900
                                                                      -600
                                                                               -42
                                              2592
              -207
                       -52
                               130
                                      -206
                                                       420
                                                               800
                                                                       101
                                                                              1200
                                                                                       864
              -217
                        94
                             -1430
                                      1287
                                              -162
                                                      -230
                                                              -173
                                                                      -390
                                                                              -234
                                                                                       504
               123
                       118
                               -76
                                      -200
                                              1056
                                                      1500
                                                               280
                                                                       407
                                                                               141
                                                                                       124
                                      -741
               -99
                        51
                               -92
                                              3906
                                                      -400
                                                              -114
                                                                       102
                                                                              1152
                                                                                       -88
               198
                       117
                                86
                                      -720
                                               125
                                                       -86
                                                              -391
                                                                       -87
                                                                              -278
                                                                                       140
               228
                      -154
                                              -675
                                                              -345
                                                                      -975
                                                                             -1200
                             -3000
                                        81
                                                      -210
                                                                                     -1121
```

-1100

-63

-5368

-197

-259

-27

-541

-1277

232	-82	-178	170	-110	768	88	700	-102	2160
-323	-62 -450	-232	-83	-110	-524	-2472	-49	-102 -105	342
304	-430 167	-232 -34	-63 640	-133 175	220	-2472 74	-49 93	164	163
63	637	122	158	165	350	-46	-75	-690	-39
-66	83	312	-180	392	-624	-46 -194	-73 -26	-69 -62	-39 -37
-00 -91	-139	-158	-1479	-55	-62 4 -576	-19 4 -750	330	-62 151	-37 -93
-432	-139 -58	-1092	-1479 -670	-33 -1300	-1930	-2000	-3114	462	-95 -65
-432 -68	-56 492		273	-1300	-1930		-511 4 -51	462 85	-65 -56
-160	-360	-620 105	-960	- 2376	1350	-1512 428	-31 -1350	336	-36 -786
-590	-360 -168	-101	-960 -71	132	-413	-664	227	2700	222
-590 246	-168 906	756	-71 888	552	-413 -97	-664 224	738	608	
4300	906 146		276	-125	-97 -116	-108	4000		-212
	-95	143						-304	-272
-1206		1600	323 -420	-161 -126	-472	-618	-204 -1440	1515	-1515
-9058	-9600	660			-220	-271		264	188
588	612	152	-324	-480		-78	-118	430	-1681
87	155	701	828	540	696	560	-250	-408	-179
121	-124	512	-251	-3100	3100	-169	126	291	3186
-2834	-109	109	-121	-530	-227	261	-346	352	142
107	-188	-1060	-342	-288	348	1900	157	-343	-455
425	968	684	824	-828	-701	196	248	410	236
230	-156	-553	145	448	245	-252	-334	-318	-113
-115	171	-242	840	-967	-203	-3167	-443	-1897	225
-434	750	-682	-484	682	344	-635	-117	-3667	450
310	494	-384	92	1788	-138	624	744	416	496
396	306	1878	1944	666	708	1428	852	1412	528
-756	-752	-152	-85	-312	-79	-147		-131	183
-209	-186	-231	-129	-458	-275	-2880		672	-800
-430	-380	-74	-840	-1296	-365	-104	-270	-73	-306
91	255	468	-468	-111	-184	-103	-335	4800	-112
-1000	912	1992	184	148	-657	-1671	-1158	-2618	-2003
-674	-4830	-905	-1128	832	992	630	1020	2100	162
-1560	-1284	-81	314	370	131	133	484	149	153
257	139	137	628	179	1820	478	335	253	242
375	-276	-256	281	193	181	404	244	207	199
1130	326	654	688	268	249	-864	234	-1510	-550
-244	-132	-327	-313	279	-398	-280	374	-504	-696
-149	-224	-428	212	-267	-175	12540	760	-98	774
-151	2040		-135		77	-900	177		388
620	1404	-155	-355	-337	-1050	-338	205	-235	698
80995	-80995]								

InvoiceDate

['12/1/2010 8:26' '12/1/2010 8:28' '12/1/2010 8:34' ... '12/9/2011 12:31' '12/9/2011 12:49' '12/9/2011 12:50']

UnitPrice

[2.55 3.39 2.75 ... 933.17 1714.17 224.69]

CustomerID

[17850. 13047. 12583. ... 13298. 14569. 12713.]

```
Country
```

```
['United Kingdom' 'France' 'Australia' 'Netherlands' 'Germany' 'Norway' 'EIRE' 'Switzerland' 'Spain' 'Poland' 'Portugal' 'Italy' 'Belgium' 'Lithuania' 'Japan' 'Iceland' 'Channel Islands' 'Denmark' 'Cyprus' 'Sweden' 'Austria' 'Israel' 'Finland' 'Bahrain' 'Greece' 'Hong Kong' 'Singapore' 'Lebanon' 'United Arab Emirates' 'Saudi Arabia' 'Czech Republic' 'Canada' 'Unspecified' 'Brazil' 'USA' 'European Community' 'Malta' 'RSA']
```

1f Perform Basic EDA - Duplicate Value – All Columns

In [19]:

1 src[src.duplicated()]

Out[19]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
517	536409	21866	UNION JACK FLAG LUGGAGE TAG	1	12/1/2010 11:45	1.25	17908.0	United Kingdom
527	536409	22866	HAND WARMER SCOTTY DOG DESIGN	1	12/1/2010 11:45	2.10	17908.0	Unitec Kingdorr
537	536409	22900	SET 2 TEA TOWELS I LOVE LONDON	1	12/1/2010 11:45	2.95	17908.0	Unitec Kingdorr
539	536409	22111	SCOTTIE DOG HOT WATER BOTTLE	1	12/1/2010 11:45	4.95	17908.0	United Kingdom
555	536412	22327	ROUND SNACK BOXES SET OF 4 SKULLS	1	12/1/2010 11:49	2.95	17920.0	Unitec Kingdom
541675	581538	22068	BLACK PIRATE TREASURE CHEST	1	12/9/2011 11:34	0.39	14446.0	Unitec Kingdorr
541689	581538	23318	BOX OF 6 MINI VINTAGE CRACKERS	1	12/9/2011 11:34	2.49	14446.0	United Kingdom
541692	581538	22992	REVOLVER WOODEN RULER	1	12/9/2011 11:34	1.95	14446.0	Unitec Kingdor
541699	581538	22694	WICKER STAR	1	12/9/2011 11:34	2.10	14446.0	Unitec Kingdom
541701	581538	23343	JUMBO BAG VINTAGE CHRISTMAS	1	12/9/2011 11:34	2.08	14446.0	Unitec Kingdorr

5268 rows × 8 columns

```
In [20]: 1 sns.heatmap(src.corr(), annot=True, cmap = 'Blues')
Out[20]: <AxesSubplot:>
```


1h Perform Basic EDA - Regression Plot - All Numeric Variables

```
In [21]: 1 sns.regplot(x = 'Quantity', y = 'UnitPrice', data = src)
```

Out[21]: <AxesSubplot:xlabel='Quantity', ylabel='UnitPrice'>


```
In [22]: 1 sns.regplot(x = 'Quantity', y = 'CustomerID', data = src)
```

Out[22]: <AxesSubplot:xlabel='Quantity', ylabel='CustomerID'>

1i Perform Basic EDA - Bar Plot – Every Categorical Variable vs every Numerical Variable

```
In [24]: 1 sns.barplot(x = 'Description', y = 'Quantity', data = src)
```

Out[24]: <AxesSubplot:xlabel='Description', ylabel='Quantity'>


```
In [25]: 1 sns.barplot(x = 'Description', y = 'UnitPrice', data = src)
```

Out[25]: <AxesSubplot:xlabel='Description', ylabel='UnitPrice'>

1j Perform Basic EDA - Pair Plot – Every Numerical Variable

```
In [56]:
           1 | sns.pairplot(src, vars = ['Quantity', 'UnitPrice'])
         KeyboardInterrupt
                                                    Traceback (most recent call last)
         <ipython-input-56-007d79ba35f8> in <module>
         ----> 1 sns.pairplot(src, vars = ['Quantity', 'UnitPrice'])
         ~\Anaconda3\lib\site-packages\seaborn\ decorators.py in inner f(*args, **kwar
         gs)
              44
                              )
              45
                          kwargs.update({k: arg for k, arg in zip(sig.parameters, args)
         })
         ---> 46
                          return f(**kwargs)
                      return inner f
              47
              48
         ~\Anaconda3\lib\site-packages\seaborn\axisgrid.py in pairplot(data, hue, hue
         order, palette, vars, x_vars, y_vars, kind, diag_kind, markers, height, aspec
         t, corner, dropna, plot_kws, diag_kws, grid_kws, size)
                     diag kws.setdefault("legend", False)
                      if diag kind == "hist":
            1960
```

1k Perform Basic EDA - Plot the skewness – Every Numerical Variable

```
In [28]: 1 sns.kdeplot(src['Quantity'], shade = True)
```

ERROR! Session/line number was not unique in database. History logging moved to new session 1856

Out[28]: <AxesSubplot:xlabel='Quantity', ylabel='Density'>


```
In [29]:
            1 sns.kdeplot(src['UnitPrice'], shade = True)
Out[29]: <AxesSubplot:xlabel='UnitPrice', ylabel='Density'>
              0.008
              0.007
              0.006
              0.005
              0.004
              0.003
              0.002
              0.001
              0.000
                   -10000
                                      10000
                                               20000
                                                        30000
                                                                 40000
```

UnitPrice

2. Check for missing values in all columns and replace them with the appropriate metric (Mean/Median/Mode)

```
In [31]:
           1 (src.isna().mean() * 100).sort_values(ascending = False)
                         24.926694
Out[31]: CustomerID
         Description
                          0.268311
                          0.000000
         Country
         UnitPrice
                          0.000000
         InvoiceDate
                          0.000000
         Quantity
                          0.000000
         StockCode
                          0.000000
         InvoiceNo
                          0.000000
         dtype: float64
In [32]:
           1 # Since there are no outliers in CustomerID column, imputing with mean
           2 | src['CustomerID'].fillna(value = src['CustomerID'].mean(), inplace = True)
           1 # Since Desciption is a categorical column, imputing can be done with mode
In [33]:
           2 | src['Description'].fillna(value = src['Description'].mode()[0], inplace = Tr
           1 (src.isna().mean() * 100).sort_values(ascending = False)
In [34]:
Out[34]: Country
                         0.0
         CustomerID
                         0.0
         UnitPrice
                         0.0
         InvoiceDate
                         0.0
         Quantity
                         0.0
         Description
                         0.0
         StockCode
                         0.0
         InvoiceNo
                         0.0
         dtype: float64
```

3. Remove duplicate rows

```
In [35]: 1 src.shape
Out[35]: (541909, 8)
In [36]: 1 src.drop_duplicates(inplace = True)
In [37]: 1 src.shape
Out[37]: (536641, 8)
```

4. Remove rows which have negative values in Quantity column

```
In [38]: 1 src = src.loc[src['Quantity'] > 0, :]
```

5. Add the columns - Month, Day and Hour for the invoice

```
1 src['InvoiceDate'].dtypes
In [39]:
Out[39]: dtype('0')
           1 # Converting the datatype from 'object' to 'datetime' format
In [40]:
           2 | src['InvoiceDate'] = pd.to datetime(src['InvoiceDate'])
           3 src['InvoiceDate'].dtypes
         C:\Users\sragh\Anaconda3\lib\site-packages\ipykernel launcher.py:2: SettingWith
         CopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta
         ble/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pyd
         ata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-c
         opy)
Out[40]: dtype('<M8[ns]')</pre>
In [41]:
           1 | src['Month'] = src['InvoiceDate'].dt.month
         C:\Users\sragh\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: SettingWith
         CopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta
         ble/user guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pyd
         ata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-c
           """Entry point for launching an IPython kernel.
In [42]:
           1 src['Day'] = src['InvoiceDate'].dt.day
           2 src.loc[50000, ['Day', 'InvoiceDate']]
         C:\Users\sragh\Anaconda3\lib\site-packages\ipykernel launcher.py:1: SettingWith
         CopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta
         ble/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pyd
         ata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-c
         opy)
           """Entry point for launching an IPython kernel.
Out[42]: Day
                        2011-01-09 15:18:00
         InvoiceDate
         Name: 50000, dtype: object
```

6. How many orders made by the customers?

```
In [44]:
           1 # Since each Invoice ID represents a customer
           2 src['InvoiceNo'].value counts()
Out[44]: 573585
                    1114
         581219
                     749
         581492
                     731
         580729
                     721
         558475
                     705
         572293
                       1
         543460
                       1
         572072
                       1
         551595
                       1
         571916
                       1
         Name: InvoiceNo, Length: 20728, dtype: int64
```

7. TOP 5 customers with higher number of orders

8. How much money spent by the customers?.

```
In [46]:
           1 | src['Total'] = src['UnitPrice'] * src['Quantity']
          C:\Users\sragh\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: SettingWith
          CopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row_indexer,col_indexer] = value instead
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta
          ble/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pyd
          ata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-c
            """Entry point for launching an IPython kernel.
           1 | src.groupby('InvoiceNo').agg({'Total': 'sum'})
In [47]:
Out[47]:
                       Total
          InvoiceNo
             536365
                      139.12
             536366
                       22.20
                      278.73
             536367
             536368
                       70.05
             536369
                       17.85
                 ...
             581586
                      339.20
             581587
                      249.45
```

20728 rows × 1 columns

A563186 -11062.06 **A563187** -11062.06

11062.06

A563185

9. TOP 5 customers with highest money spent

10. How many orders per month?

```
In [49]: 1 src.groupby('Month').count()['InvoiceNo'].plot(kind = 'bar')
Out[49]: <AxesSubplot:xlabel='Month'>
```

11. How many orders per day?

```
In [50]: 1 src.groupby('Day').count()['InvoiceNo'].plot(kind = 'line')
Out[50]: <AxesSubplot:xlabel='Day'>

24000
22000
18000
16000
12000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
1
```

15

Day

20

25

30

Ś

Ò

10

12. How many orders per hour?

```
1 src.groupby('Hour').count()['InvoiceNo'].plot(kind = 'line')
In [51]:
Out[51]: <AxesSubplot:xlabel='Hour'>
           70000
           60000
           50000
           40000
           30000
           20000
           10000
               0
                   6
                               10
                                     12
                                            14
                                                  16
                                                         18
                                                               20
                                        Hour
```

13. How many orders for each country?

14. Orders trend across months

```
In [53]: 1 src.groupby('Month').count()['InvoiceNo'].plot(kind = 'line')
Out[53]: <AxesSubplot:xlabel='Month'>

80000
70000
60000
40000
30000
2 4 6 8 10 12
```

15. How much money spent by each country?

Month

```
In [54]: 1 plt.figure(figsize=(15, 6))
2 src.groupby('Country').count()['InvoiceNo'].sort_values().plot(kind = 'barh')

Out[54]: <AxesSubplot:ylabel='Country'>

United Kingdom
Frinch
NethorIndia
Frinch
NethorIndia
Frinch
Heng Kong
Hong Kong
Hong
```

200000

300000

400000

500000

100000