One-way ANOVA (일원분산분석)

숙명여자대학교 경영학부 오중산

일원분산분석 소개

- 일원분산분석 정의
 - ◆ 세 개 이상 집단간에 종속변수 모평균 차이 유무를 확인하는 통계분석방법
 - 보통 대조군(통제군)을 하나 두고, 실험군을 2개 이상 설정
 - 예) 프로모션 안한 집단(대조군), 프로모션A를 한 집단, 프로모션B를 한 집단 간의 매출평균비교
- 일원분산분석에서의 독립변수와 종속변수
 - ◆ 독립변수(혹은 요인)는 집단을 구분하는 변수로 범주형 척도로 측정됨
 - ◆ 종속변수는 비교 대상이 되는 변수로 실수형/정수형 척도로 측정됨

구분	<i>z</i> -검정	<i>t</i> -검정	ANOVA	
확률변수	모집단에서 정규분포를 띠어야 함 (모를 경우 표본크기 30개 이상)	모집단에서 <mark>정규분포</mark> 를 띠어야 함		
모표준편차	알아야 함	모름	몰라도 됨(무관함)	
모분산 조건	해당사항 없음	등분산 혹은 이분산 등분산 조건 만족 해야		
표본크기	가급적 30개 이상	무관함(30개 미만도 가능)	30개 이상	
비교대상 집단	2개		2개 이상(보통 3개 이상)	

일원분산분석 소개

- 두 가지 가설
 - ♦ H_0 : $\mu_1 = \mu_2 = \dots = \mu_t$ (t: 집단 개수로 t ≥ 2)
 - 집단 간의 표본평균 차이는 우연의 결과이며, 요인효과는 없음
 - 귀무가설이 참이면, 표본평균의 평균 (\bar{X}) 이 최적의 모평균 추정치
 - ◆ H_a: 적어도 한 집단의 모평균은 다른 집단들의 모평균과 같지 않다.
 - 집단 간의 표본평균 차이는 우연의 결과가 아니며, 요인효과가 있음
 - t = 3이고 H_a 가 채택되었을 때 경우의 수
 - ❖ µ_{i(i = 1~3)}가 모두 다른 경우1
 - ❖ 두 개의 모평균은 동일하고, 하나만 다른 경우 2~4
 - \checkmark $\mu_1 = \mu_2 \& \mu_3$ 는 다름 / $\mu_1 = \mu_3 \& \mu_2$ 는 다름 / $\mu_2 = \mu_3 \& \mu_1$ 는 다름

일원분산분석 소개

- 분산분석을 위한 세 가지 전제조건
 - ◆ 독립성: 표본 간에 종속변수 측정은 서로 독립적이어야 함
 - 어떤 표본의 임의의 사례가 다른 표본의 임의의 사례에 대한 측정에 영향을 미쳐서는 안됨
 - ◆ 정규성: 모든 모집단에서 종속변수는 정규분포를 띠어야 함
 - 표본별로 크기를 최소 30개 이상으로 해야 함
 - ◆ 등분산: 모집단 간에 종속변수 모분산은 동일해야 함
 - H_0 : $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_t^2$ (t: 집단 개수로 $t \ge 2$)

ANOVA Table

- 두 가지 편차제곱의 합
 - ◆ 표본간 편차제곱(요인분산): SSTR(sum of squares of treatments)
 - 서로 다른 표본간(between treatments) 표본평균 차이(편차) 제곱의 합
 - SSTR이 클수록 표본간 이질성이 커져서 대립가설 채택 가능성이 커짐
 - ◆ 표본내 편차제곱(오차분산): SSE(sum of squares of error)
 - 동일한 표본 내(within treatments) 측정값 차이(편차) 제곱의 합
 - SSE가 작아질수록 표본내 동질성이 커져서 대립가설 채택 가능성이 커짐
 - ◆ N: 전체 측정치 개수, t: 집단 개수, n_i(j번째 집단의 표본크기)
 - n_i 가 모두 같을 필요는 없지만 30개 이상이어야 함

ANOVA Table

- F-통계량의 의미
 - ◆ 분산 간의 비율은 F-분포를 띰
 - 분자(MSTR)가 커지고, 분모(MSE)가 작을수록 *F*-통계량이 커짐
 - ❖ 서로 다른 표본간에는 이질성이 커야 하고, 동일한 표본 안에서는 동질성이 커야 함
 - \bullet F-통계량의 바깥 쪽 넓이(p-value)가 유의수준(α) 보다 작으면 대립가설 채택
 - F-통계량이 커질수록 유유상종(類類相從)하게 되고, p-value는 작아짐
 - SST(총편차제곱) = SSTR + SSE 이므로
 SSTR과 SSE는 zero-sum 관계

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F-Ratio
Treatments, TR	$SSTR = \sum_{j=1}^{t} n_j (\bar{x}_{,j} - \bar{\bar{x}})^2$	t - 1	$MSTR = \frac{SSTR}{t-1}$	$F = \frac{MSTR}{MSE}$
Sampling Error, E	$SSE = \sum_{j=1}^{t} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_{.j})^2$	N-t	$MSE = \frac{SSE}{N-t}$	
Total, T	$SST = \sum_{j=1}^{t} \sum_{i=1}^{n_j} (x_{ij} - \bar{x})^2$	N - 1		

일원분산분석 검정 절차

- 1단계: 가설수립
- 2단계: 집단간 데이터프레임 생성
- 3단계: 정규성 조건 확인: shapiro.test 함수 사용
- 4단계: 등분산성 조건 확인: car패키지에 있는 leveneTest 함수 사용
 - ◆ 등분산 조건을 만족하지 못하면 Welch Test를 해야 함
- 5단계: 일원분산분석 실시 및 가설검정: 내장함수인 aov 함수 사용
- 6단계(사후검정): 대립가설이 채택되면 Duncan Test 실시
 - ◆ agricolae 패키지에 있는 duncan.test 함수 사용

- 1단계: 가설수립
 - ◆ 데이터프레임 만들기
 - 기존에 만들어서 전처리 과정을 거친 ttest 데이터프레임을 복사해서 anova1 데이터프레임 생성
 - ◆ priority에 따른 price 평균값 비교하기
 - ◆ 이상치 검토 후 제거하여 anova_new 데이터프레임 만들기
 - ◆ priority 측정값 중에서 Critical을 High로 통합하여 새로운 변수 prior 만들기
 - ◆ 두 가지 가설 수립
 - 독립변수: prior / 종속변수: price
 - H_0 : $\mu_H = \mu_M = \mu_L = \mu_N (\mu_t)$: 해당 집단의 price 모평균)
 - H_a: 적어도 한 집단의 price 모평균은 다른 집단과 다르다.

- 2단계: 집단간 데이터프레임 생성하기
 - ◆ 새로 만든 prior 변수 측정값 네 개에 따라 네 개의 서브 데이터프레임 생성
- 3단계: 네 개의 서브 데이터프레임에 대해 종속변수 정규성 검토
 - ♦ histogram을 통한 시각적 검토와 shapiro.test 함수를 활용한 통계적 검토
 - ◆ 정규성 조건 만족을 위한 표본크기 검토
- 4단계: 등분산성 검토
 - ◆ car 패키지에 있는 leveneTest 함수 사용
 - ◆ 기본 명령문: leveneTest(DV~IV, data = df)
 - 주의! df는 서브 데이터프레임이 아니라, 통합 데이터프레임

- 5단계: 일원분산분석 실시
 - ◆ 등분산조건 만족시에는 내장함수인 aov 함수 사용
 - ◆ 등분반조건 만족하지 못할 경우에는 내장함수인 oneway.test 함수 사용
 - 이분산 가정 t-검정과 마찬가지로 Welch's ANOVA를 시행함
 - 기본 코드는 aov와 동일하며, var.equal = F가 default 상태
 - 대립가설을 엄격하게 검정함
 - ◆ 참고: NA가 있으면 자동적으로 이를 제외하고 실행함

- 다음과 같은 one-way ANOVA를 실행하시오.
 - ◆ 데이터: pttest
 - ♦ IV: payment
 - ◆ DV: expense
 - ◆ 유의수준(α) = 0.01