ScaRC is ready for use in FDS

Alternative solver for the FDS pressure equation

Dr. Susanne Kilian hhpberlin - Ingenieure für Brandschutz 10245 Berlin

Agenda

1 2 3 4

Pressure equation ScaRC solver Solver

FDS pressure Poisson equation Different discretization types

Elliptic partial differential equation of "Poisson" type

$$abla^2\mathcal{H} = -rac{\partial (
abla\cdot \mathbf{u})}{\partial t} -
abla\cdot \mathbf{F}$$
 + boundary conditions

Strongly coupled with velocity field, to be solved at least twice per time step

Source terms of previous time step. e.g. radiation, combustion pyrolysis, ...

Key feature: Local information is spread immediately over whole domain!

5-point stencil in 2D

7-point stencil in 3D

Specifies physical relations between grid cells according to elliptic equation

Demo-case, 2D-pipe with obstruction'

Simple example to explain the concepts

Pressure equation

Global discretization

1 global matrix, 1 global right hand side vector

Global discretization

1 global matrix, 1 global right hand side vector

Set of local discretizations

M local matrices, M local right hand side vectors

Global discretization

1 global matrix, 1 global right hand side vector

Set of local discretizations

M local matrices, M local right hand side vectors

Pressure equation

Mesh 3 Mesh 4

There are different possibilities to discretize ...

Pressure equation

Mesh 3 Mesh 4

... at cells inside and around a solid obstruction

Structured versus unstructured discretizations

1

Pressure equation

Structured

Regular matrix stencils

8x8 cells

Cells inside obstructions are included

Structured versus unstructured discretizations

1

Pressure equation

Structured

Regular matrix stencils

8x8 cells

Unstructured

Irregular matrix stencils

Cells inside obstructions are **included**

Cells inside obstructions are excluded

8x8 cells

Sparsity

patterns

1

Pressure equation

Structured

Highly regular Poisson matrix A

Highly optimized solvers usable (fast!)

Unstructured

Irregular Poisson matrix A

Need of more robust solvers (slower!)

8x8 cells

Sparsity

patterns

1

Pressure equation

Structured

Highly regular Poisson matrix A

Highly optimized solvers usable (fast!)

Unstructured

Irregular Poisson matrix A

Need of more robust solvers (slower!)

Current FDS pressure solver Mesh-wise FFT with pressure iteration

FFT solver

Local structured discretizations to solve the local Poisson problems by FFT's

FFT solver

Mesh-wise FFT-solver

Mathematical solvability requires internal boundary conditions for local FFTs ...

FFT solver

... average of neighboring cells from previous time step is used

Question: How accurate is the velocity field at mesh interfaces?

FFT solver

Local velocity components may be different along mesh interfaces

FFT solver

Question: How accurate is the velocity field along inner obstructions?

Accuracy along internal obstructions?

Velocity components may penetrate into the inner obstructions

FFT solver

Mesh-wise FFT-solver

FFT solver

Start iteration: Initial velocity errors

Intermediate iteration: Velocity errors are reduced more and more

End of iteration: Velocity errors are below specified tolerance

FFT solver

solver

Mapping of the global flow of information?

Question: How quickly does new local information spread?

FFT solver

1. Cycle: Information reaches Mesh 1

Mapping of the global flow of information?

2

FFT solver

2. Cycle: Information reaches Mesh 2

FFT solver

3. Cycle: Information reaches Mesh 3

→ local communication

hhpberlin •

FFT solver

4. Cycle: Information finally reaches Mesh 4

UGLMAT solver Optimized parallel LU-decomposition

solver

Alternative pressure solver UGLMAT

- Global unstructured discretization of whole domain
- ullet Decomposition of global Poisson matrix A in lower and upper triangular matrices L and U

Parallel LU-decomposition

• Usage of optimized LU - solver from Intel Math Kernel Library (MKL)

- Global unstructured discretization of whole domain
- Decomposition of global Poisson matrix A in lower and upper triangular matrices L and U

Parallel LU-decomposition

ullet Usage of optimized LU - solver from Intel Math Kernel Library (MKL)

UGLMAT - Memory needs for 3D-cube

UGLMAT solver

L has much more non-zero entries than A due to ,fill-in'

Huge memory requirements if grid is refined

Scalable Recursive Clustering

Global structured discretization

Data-parallel iterative method for global Poisson matrix

Global basic iteration

Not used as stand-alone solvers

only as corrections to global solution

Global basic iteration

Local solvers offer fine grid accuracy

Basic information transfer is provided globally

ScaRC Core: Structured basic version

ScaRC solver

4

ScaRC solver

Use of different discretization techniques

- Pressure iteration for structured case --> Fix errors at obstructions
- Global unstructured discretization -- No errors at obstructions

Use of different global solvers

- Conjugated Gradient method (CG) Exploit basic robustness
- Geometric Multigrid method (MG) -- Improve global coupling

Use of different local solvers

- Optimized FFT (CRAYFISHPAK) --> Speed up local solutions in structured case
- Optimized LU (Intel MKL) -> Speed up local solutions in unstructured case

ScaRC-CG: Default for structured grids

ScaRC solver

ScaRC-CG: Default for structured grids

Global data-parallel Conjugate Gradient method Accurate along mesh interfaces Accurate along obstructions

Global data-parallel Conjugate Gradient method

Optimize globally (CG)
Optimize locally (LU)

No need for pressure iteration

UScaRC-CG: Default for unstructured grids

ScaRC solver

ScaRC-MG: Alternative for structured grids

ScaRC solver

→ local communication ←→ global communication

Pressure trace for 2D-pipe

4

ScaRC solver

FFT default and tight (tol=10⁻⁵ m/s)

Only accurate for tight pressure iteration

Number of required pressure iterations

Increased number of pressure iterations (Ø 28)

Pressure trace for 2D-pipe

4

ScaRC solver

Different variants of ScaRC and UGLMAT

Accurate for all variants

Less pressure iterations: 1 (default), max 9 (tight)

dancing_eddies

Pressure trace 10-mesh case

FFT default and tight (tol=10⁻⁵ m/s)

ScaRC default and tight (tol=10⁻⁵ m/s)

Accurate only for tight tolerance, but increased number of pressure iterations (Ø 28)

Accurate already for default tolerance, max 4 pressure iterations for tight tolerance

duct_flow

Many internal obstructions
which cause frequent
changes of flow direction

Velocity error along channel

ScaRC solver

Structured

FFT and ScaRC (tol=10⁻³ m/s)

Unstructured

UGLMAT, UScaRC

Time: 43.8

hhpberlin 1

Verification cases: Periodic boundaries

4

ScaRC solver

NS_Analytical_Solution

u - component velocity

ScaRC 16 meshes

Preserves periodic behavior

shunn3

Still to do/to improve

- use different refinement levels between meshes (currently same is needed)
- test further global methods (i.e. algebraic multigrid) and local methods (ILU)
- optimise runtime of single components and incorporate OpenMP-directives
- optimise parameter settings for global and local iterations

Verification & Validation

- run all pressure related verification tests
- run selected validation tests

