Занятие №1

Архитектура и проектирование Баз Данных

Дина Сафина, Павел Лысак

Mail.Ru Games

Цель курса

1. Отвечать на вопросы по БД на собеседовании

2. Писать SQL-запросы любой сложности

3. Грамотно проектировать базы данных

4. Обосновывать выбор инструментов для хранения данных

Структура курса

- 1. SQL
- 2. Проектирование
- 3. Архитектура

10 лекций + защита проекта

Проект

Всё выкладывается на github.

Оценивается:

- 1. Проработанность области деятельности
- 2. Логическая и физическая схема базы данных
- 3. Правильность подсчёта основных метрик
- 4. Оптимальность построения запросов

Баллы за курс

За что начисляются баллы:

- 75 домашнее задание
- 15 защита проекта
- 10 доклад

Баллы	Оценка
0 – 50	2
51 – 69	3
70 – 84	4
85 – 199	5

Чатик

https://t.me/joinchat/A9Gm9hJXOPr0-gyyqEBjng

План первой лекции

- 1. Что такое Базы Данных
- 2. Реляционные Базы Данных
- 3. Реляционная алгебра
- 4. Ключи
- 5. Немного про MySQL
- 6. Типы данных в MySQL
- 7. Домашняя работа

Где используются базы данных?

Самые популярные Базы Данных

База данных

- База данных совокупность данных, хранимых в соответствии со схемой данных, манипулирование которыми выполняют в соответствии с правилами средств моделирования данных
- Система управления базами данных (СУБД) совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных

Чем СУБД лучше файликов на диске

- + Совместный доступ
- + Непротиворечивость
- + Целостность данных
- + Масштабируемость
- + Транзакционность
- + Скорость обработки
- + Готовые способы манипуляции данными

- Нужно знать SQL
- Имеет смысл только с какого-то объёма информации

Основные модели данных

- Иерархическая
- Сетевая

- Объектно-ориентированная
- Реляционная

Реляционная модель данных

- Реляционной моделью называется база данных, в которой все данные, доступные пользователю, организованы в виде таблиц, а все операции над данными сводятся к операциям над этими таблицами
- Сформулирована в 1970 Эдгаром Коддом
- Три аспекта:
 - 1. Структурный
 - 2. Манипуляционный
 - 3. Целостный

SQL

 Structured Query Language — декларативный язык программирования, применяемый для создания, модификации и управления данными в реляционной базе данных, управляемой соответствующей СУБД

Операции реляционной алгебры

- Выборка
- Проекция
- Объединение
- Пересечение
- Разность
- Произведение
- Деление
- Соединение

Выборка

Персоны

Имя	Возраст	Bec
Harry	34	80
Donald	29	70
Helena	54	54
Peter	34	80

σВозраст >= 34 (Персоны)

Имя	Возраст	Bec
Harry	34	80
Helena	54	54
Peter	34	80

Проекция

Персоны

Имя	Возраст	Bec
Harry	34	80
Donald	29	70
Helena	54	54
Peter	34	80

πВозраст, Вес (Персоны)

Возраст	Bec
34	80
29	70
54	54
34	80

Объединение

Персоны

Имя	Возраст	Вес
Harry	34	80
Donald	29	70
Helena	54	54
Peter	34	80

Персонажи

Имя	Возраст	Вес
Daffy	24	19
Donald	29	70
Scrooge	81	27

Имя	Возраст	Bec
Harry	34	80
Donald	29	70
Helena	54	54
Peter	34	80
Duffy	24	19
Scrooge	81	27

Пересечение

Персоны

Имя	Возраст	Вес
Harry	34	80
Donald	29	70
Helena	54	54
Peter	34	80

Персонажи

Имя	Возраст	Вес
Daffy	24	19
Donald	29	70
Scrooge	81	27

Имя	Возраст	Bec
Donald	29	70

Разность

Персоны

Имя	Возраст	Вес
Harry	34	80
Donald	29	70
Helena	54	54
Peter	34	80

Персонажи

Имя	Возраст	Вес
Daffy	24	19
Donald	29	70
Scrooge	81	27

Имя	Возраст	Bec
Harry	34	80
Helena	54	54
Peter	34	80

Произведение

Код	Название
0	Gravity Falls
1	Duck Tales
2	Over the Garden Wall

Каналы

Код	Название
0	Disney
1	Cartoon Network

Мультфильмы.Код	Мультфильмы.Название	Каналы.Код	Каналы.Название
0	Gravity Falls	0	Disney
0	Gravity Falls	1	Cartoon Network
1	Duck Tales	0	Disney
1	Duck Tales	1	Cartoon Network
2	Over the Garden Wall	0	Disney
2	Over the Garden Wall	1	Cartoon Network

Деление

Мультфильмы

Код	Название	Перевод		
0	Gravity Falls	Сыендук		
0	Gravity Falls	LostFilm		
0	Gravity Falls	Кубик в Кубе		
1	Duck Tales	LostFilm		
1	Duck Tales	Кубик в Кубе		
2	Over the Garden Wall	Сыендук		
2	Over the Garden Wall	LostFilm		

Перевод

Название
Сыендук
LostFilm

Мультфильмы.Код	Мультфильмы.Название	
0	Gravity Falls	
2	Over the Garden Wall	

Соединение

Мультфильмы

1

Название	Каналы.Код
Gravity Falls	0

Gravity Falls	U
Duck Tales	0
Over the Garden Wall	1

Каналы

Код	Название
0	Disney
1	Cartoon Network

Мультфильмы.Код	Мультфильмы.Название	Каналы.Код	Каналы.Название
0	Gravity Falls	0	Disney
1	Duck Tales	0	Disney
2	Over the Garden Wall	1	Cartoon Network

Сущности Базы Данных

- Атрибут свойство сущности в предметной области
- **Кортеж** множество именованных атрибутов, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения
- Домен допустимое множество значений
- Отношение множество кортежей (неупорядоченное)
- **Целостность** соответствие имеющейся в БД информации её внутренней логике, структуре и всем явно заданным правилам

Сущности Базы Данных

Первичный ключ

Потенциальный ключ – уникальность + минимальность

Первичный ключ – один из потенциальных

Альтернативный ключ – все остальные

Суррогатный ключ – искусственно введённый идентификатор

Внешний ключ – использование первичного ключа одного отношения в другом

Суррогатный ключ

- + Неизменность
- + Гарантированная уникальность
- + Гибкость
- + Эффективность (длина ссылок)
- + Упрощение разработки

- Уязвимость
- Неинформативность
- Неоптимальность (одновременное обслуживание уникальности естественного и суррогатного ключа)

Почему MySQL?

345 systems in ranking, September 2018

				/	дү өөрсөлгөөг дөгө
Rank					
Sep 2018	Aug 2018	Sep 2017	DBMS	Database Model	Sep Aug Sep 2018 2018 2017
1.	1.	1.	Oracle 🚻	Relational DBMS	1309.12 -2.91 -49.97
2.	2.	2.	MySQL 🚹	Relational DBMS	1180.48 -26.33 -132.13
3.	3.	3.	Microsoft SQL Server 🕕	Relational DBMS	1051.28 -21.37 -161.26
4.	4.	4.	PostgreSQL 🚹	Relational DBMS	406.43 -11.07 +34.07
5.	5.	5.	MongoDB 🚹	Document store	358.79 +7.81 +26.06
6.	6.	6.	DB2 🚹	Relational DBMS	181.06 -0.78 -17.28
7.	1 8.	1 0.	Elasticsearch 🞛	Search engine	142.61 +4.49 +22.61
8.	4 7.	1 9.	Redis 🚹	Key-value store	140.94 +2.37 +20.54
9.	9.	4 7.	Microsoft Access	Relational DBMS	133.39 +4.30 +4.58
10.	10.	4 8.	Cassandra 🚹	Wide column store	119.55 -0.02 -6.65

https://db-engines.com

Немного о MySQL

- Реляционная СУБД
- Кросплатформенная
- Несколько разных движков
- Двойное лицензирование (GPL + платное)

- Появилась в 1995г
- B 2008r Sun Microsystems MySQL AB
- В 2009г от MySQL отпочковалась MariaDB
- В 2010г Oracle купил Sun Microsystems

Архитектура MySQL

Движок MyISAM

- До MySQL 5.5 была движком по умолчанию
- Полнотекстовый поиск
- Отсутствие транзакций
- Отсутствие внешних ключей
- Блокировка на уровне таблицы
- Заброшен разработчиками

Движок InnoDB

- Основной движок MySQL
- Поддерживает транзакции
- Поддерживает внешние ключи
- Блокировки на уровне строк
- Ближе всего к поддержке спецификации SQL-92
- С версии MySQL 5.6.4 поддерживает полнотекстовый поиск

Типы данных в MySQL

- 1. Числовые
- 2. С плавающей точкой
- 3. Бинарные
- 4. Строковые
- 5. Календарные
- 6. Географические
- 7. JSON

Числовые типы данных

Тип поля	Объём памяти	Диапазон значений
TINYINT [(M)]	1 байт	От -128 до 127 От 0 до 255
SMALLINT [(M)]	2 байта	От -32 768 до 32 767 От 0 до 65 535
MEDIUM INT [(M)]	3 байта	От -8 388 608 до 8 388 608 От 0 до 16 777 215
INT [(M)]	4 байта	От -2 147 683 648 до 2 147 683 648 От 0 до 4 294 967 295
BIGINT [(M)]	8 байт	От -2 ⁶³ до 2 ⁶³ — 1 От 0 до 2 ⁶⁴

Числа с плавающей точкой

Тип поля	Объём памяти	Диапазон значений
DECIMAL [(M [, D])], DEC [(M [, D])], NUMERIC [(M [, D])]	М + 2 байта	Повышенная точность; зависимость параметров
FLOAT [(M, D)]	4 байта	От -3.402823466E + 38 до 1.175494351E - 38 От 1.175494351E - 38 до 3.402823466E + 38
DOUBLE [(M, D)], REAL [(M, D)], DOUBLE PRECISION [(M, D)]	8 байт	От -1.7976931348623157E + 308 до -2.2250738585072014E - 308 От 2.2250738585072014E - 308 до 1,7976931348623157E + 308

Бинарные типы

Тип поля	Объём памяти	Диапазон значений
BIT [(M)]	(М + 7) / 8 байт	От 1 до 64 бита, в зависимости от М
BOOLEAN [(M)]	1 байт	0 или 1

Строковые типы

Тип поля	Объём памяти	Диапазон значений
CHAR (M)	M	М символов
VARCHAR (M)	L + 1	М символов
TINYBLOB, TINYTEXT	L+1	2 ⁸ — 1 символов
BLOB, TEXT	L + 2	2 ¹⁶ — 1 символов
MEDIUMBLOB, MEDIUMTEXT	L + 3	2 ²⁴ — 1 символов
LONGBLOB, LONGTEXT	L + 4	2 ³² — 1 символов
ENUM ('value1', 'value2',)	1 или 2 байта	65 536 элементов
SET ('value1', 'value2',)	1, 2, 3, 4 или 8	64 элемента

Календарные типы

Тип поля	Объём памяти	Диапазон значений
DATE	3 байта	От «1000-01-01» до «9999-12-31»
TIME	3 байта	От «-828:59:59» до «828:59:59»
DATETIME	8 байт	От «1000-01-01 00:00:00» до «9999-12-31 59:59:59»
TIMESTAMP	4 байта	От «1970-01-01 00:00:00» до «2038-12-31 59:59:59»
YEAR [(2 / 4)]	1 байт	От 1901 до 2115 для YEAR(4) От 1970 до 2069 для YEAR(2)

Географические типы

Тип поля	Смысл
GEOMETRY GEOMETRYCOLLECTION	Геометрии любого типа
POINT MULTIPOINT	Точка в пространстве
LINESTRING MULTILINESTRING	Набор точек, кривая
POLYGON MULTIPOLYGON	Замкнутый набор точек, граница

JSON

- JSON_TYPE()
- JSON_ARRAY()
- JSON_OBJECT()
- JSON_VALID()
- JSON_EXTRACT()
- JSON_REPLACE()
- JSON_INSERT()
- JSON_REMOVE()
- ...

NULL

Запрос	Результат
1 = NULL	NULL
1 != NULL	NULL
1 > NULL	NULL
1 < NULL	NULL
1 + NULL	NULL
1 IS NULL	0
1 IS NOT NULL	1
NULL = NULL	NULL
NULL != NULL	NULL
NULL IS NULL	1
NULL IS NOT NULL	0

Примеры тем проектов

- Управление городским транспортом
- Ломбард
- Издательство манги
- Продвинутая Мафия
- Рекомендательная музыкальная система
- Поисковик авиабилетов
- Спортивный трекер

Домашнее задание № **1**

- Установить MySQL Server
- Установить MySQL WorkBench
- Завести репозиторий на GitHub'e
- Выбрать тему проекта
- Перечислить сущности

Срок сдачи

26 сентября 2018