Maximum Entropy

CL1: Jordan Boyd-Graber

University of Maryland

October 21, 2013

COLLEGE OF INFORMATION STUDIES

Adapted from material by Robert Malouf, Philipp Koehn, and Matthew Leingang

Roadmap

- Why we need more powerful probabilistic modeling formalism
- Example: POS tagging
- Introducing key concepts from information theory
- Maximum Entropy Models
 - Formulation
 - Estimation

Outline

- 1 Motivation: Supervised POS Tagging
- Expectation and Entropy
- Constraints
- 4 Maximum Entropy Form

Modeling Distributions

- Modeling Distributions
- Estimating from data
- Thus far, only counting
 - MLE
 - Priors
 - Backoff

Modeling Distributions

- Modeling Distributions
- Estimating from data
- Thus far, only counting
 - MLE
 - Priors
 - Backoff
- What about features?

Supervised Learning

- Problem Setup
 - ▶ Given: some annotated data
 - Goal: Build a model
 - Task: Apply it to unseen data
- Issues
 - More data help
 - How to represent the data

Supervised Learning

- Problem Setup
 - Given: some annotated data
 - ► Goal: Build a model
 - Task: Apply it to unseen data
- Issues
 - More data help
 - How to represent the data
- Part of speech tagging

Supervised Learning

- Problem Setup
 - Given: some annotated data (words with POS tags)
 - Goal: Build a model (using some feature representation)
 - Task: Apply it to unseen data (POS tags for untagged sentences)
- Issues
 - More data help
 - How to represent the data
- Part of speech tagging

Contrast: Hidden Markov Models

- HMMs are useful and simple; three parameters
 - Initial distribution
 - Transition
 - ► Conditional emission
- Training is easy from tagged data
- Find best sequence using Vitterbi

Contrast: Hidden Markov Models

- HMMs are useful and simple; three parameters
 - Initial distribution
 - Transition
 - Conditional emission
- Training is easy from tagged data
- Find best sequence using Vitterbi
- But it ignores important clues that could help

$$w_{n-2}$$
 w_{n-1} w_n w_{n+1} w_{n+2} t_{n-2} t_{n-1} t_n t_{n+1} t_{n+2}

But we can do better

$$w_{n-2}$$
 w_{n-1} w_n w_{n+1} w_{n+2}
 t_{n-2} t_{n-1} t_n t_{n+1} t_{n+2}

- But we can do better
- If one of the previous tags is md, then vb is likelier than vbp (basic verb form instead of singular)

$$w_{n-2}$$
 w_{n-1} w_n w_{n+1} w_{n+2}
 t_{n-2} t_{n-1} t_n t_{n+1} t_{n+2}

- But we can do better
- If **one** of the previous tags is md, then vb is likelier than vbp (basic verb form instead of singular)
- If next tag is jj, rbr is likelier than jjr (adverb instead of adjective)

$$w_{n-2}$$
 w_{n-1} w_n w_{n+1} w_{n+2}
 t_{n-2} t_{n-1} t_n t_{n+1} t_{n+2}

- But we can do better
- If one of the previous tags is md, then vb is likelier than vbp (basic verb form instead of singular)
- If next tag is jj, rbr is likelier than jjr (adverb instead of adjective)
- If one of the previous words is "not", the vb is likelier than vbp

$$W_{n-2}$$
 W_{n-1} W_n W_{n+1} W_{n+2} t_{n-2} t_{n-1} t_n t_{n+1} t_{n+2}

- But we can do better
- If one of the previous tags is md, then vb is likelier than vbp (basic verb form instead of singular)
- If next tag is jj, rbr is likelier than jjr (adverb instead of adjective)
- If one of the previous words is "not", the vb is likelier than vbp
- If a word ends in "-tion" it is likely a nn, but "-ly" implies adverb

Encoding Features

- Much more powerful and expressive than counting single observations
 - $ightharpoonup \vec{f}(x)$ a vector with the feature count for observation x
 - $f_i(x)$: count of feature i in observation x

Encoding Features

- Much more powerful and expressive than counting **single** observations
 - $\vec{f}(x)$ a vector with the feature count for observation x
 - $f_i(x)$: count of feature i in observation x
- Typical example

$$\begin{split} f(w_{n-2},w_{n-1},w_n,&w_{n+1},w_{n+1},t_n) = \\ \begin{cases} 1, & \text{if } w_{n-1} = \text{``angry'' and } t_n = \text{NNP} \\ 0, & \text{otherwise} \end{cases} \end{split}$$

Where Maximum Entropy Models Fit

- Suppose we have some data-driven information about these features
- What distribution should we use to model these features?
- "Maximum Entropy" models provide a solution

Where Maximum Entropy Models Fit

- Suppose we have some data-driven information about these features
- What distribution should we use to model these features?
- "Maximum Entropy" models provide a solution . . . but first we need some definitions

Outline

- 1 Motivation: Supervised POS Tagging
- Expectation and Entropy
- Constraints
- 4 Maximum Entropy Form

Expectation

An expectation of a random variable is a weighted average:

$$\mathbb{E}\left[f(X)\right] = \sum_{x=1}^{\infty} f(x) \, p(x) \qquad \text{(discrete)}$$
$$= \int_{-\infty}^{\infty} f(x) \, p(x) \, dx \qquad \text{(continuous)}$$

Alternate formulation for positive random variables:

$$\mathbb{E}[X] = \sum_{x=1}^{\infty} P(X > x)$$
 (discrete)
= $\int_{0}^{\infty} P(X > x) dx$ (continuous)

Expectation

Expectations of constants or known values:

•
$$\mathbb{E}[a] = a$$

•
$$\mathbb{E}[Y | Y = y] = y$$

What is the expectation of the roll of die?

What is the expectation of the roll of die?

One die

$$1 \cdot \tfrac{1}{6} + 2 \cdot \tfrac{1}{6} + 3 \cdot \tfrac{1}{6} + 4 \cdot \tfrac{1}{6} + 5 \cdot \tfrac{1}{6} + 6 \cdot \tfrac{1}{6} =$$

What is the expectation of the roll of die?

One die

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

What is the expectation of the roll of die?

One die

$$1 \cdot \tfrac{1}{6} + 2 \cdot \tfrac{1}{6} + 3 \cdot \tfrac{1}{6} + 4 \cdot \tfrac{1}{6} + 5 \cdot \tfrac{1}{6} + 6 \cdot \tfrac{1}{6} = 3.5$$

What is the expectation of the sum of two dice?

What is the expectation of the roll of die?

One die

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

What is the expectation of the sum of two dice?

Two die

$$2 \cdot \tfrac{1}{36} + 3 \cdot \tfrac{2}{36} + 4 \cdot \tfrac{3}{36} + 5 \cdot \tfrac{4}{36} + 6 \cdot \tfrac{5}{36} + 7 \cdot \tfrac{6}{36} + 8 \cdot \tfrac{5}{36} + 9 \cdot \tfrac{4}{36} + 10 \cdot \tfrac{3}{36} + 11 \cdot \tfrac{2}{36} + 12 \cdot \tfrac{1}{36} =$$

What is the expectation of the roll of die?

One die

$$1 \cdot \tfrac{1}{6} + 2 \cdot \tfrac{1}{6} + 3 \cdot \tfrac{1}{6} + 4 \cdot \tfrac{1}{6} + 5 \cdot \tfrac{1}{6} + 6 \cdot \tfrac{1}{6} = 3.5$$

What is the expectation of the sum of two dice?

Two die

$$2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + 5 \cdot \frac{4}{36} + 6 \cdot \frac{5}{36} + 7 \cdot \frac{6}{36} + 8 \cdot \frac{5}{36} + 9 \cdot \frac{4}{36} + 10 \cdot \frac{3}{36} + 11 \cdot \frac{2}{36} + 12 \cdot \frac{1}{36} = 7$$

Entropy

- Measure of disorder in a system
- In the real world, entroy in a system tends to increase
- Can also be applied to probabilities:
 - Is one (or a few) outcomes certain (low entropy)
 - Are things equiprobable (high entropy)

Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a random variable:

$$H(X) = -\mathbb{E}\left[\lg(p(X))\right]$$

$$= -\sum_{x} p(x) \lg(p(x)) \qquad \text{(discrete)}$$

$$= -\int_{-\infty}^{\infty} p(x) \lg(p(x)) dx \qquad \text{(continuous)}$$

Does not account for the values of the random variable, only the spread of the distribution.

- $H(X) \ge 0$
- uniform distribution = highest entropy, point mass = lowest
- suppose P(X=1)=p, P(X=0)=1-p and P(Y=100)=p, P(Y=0)=1-p: X and Y have the same entropy

What is the entropy of a roll of a die?

What is the entropy of a roll of a die?

One die

$$-\left(\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)\right)=2.58$$

What is the entropy of a roll of a die?

One die

$$-\left(\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)\right)=2.58$$

What is the entropy of the sum of two die? Tricky question: will it be higher or lower than the first one?

What is the entropy of a roll of a die?

One die

$$-\left(\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)+\tfrac{1}{6}\lg\left(\tfrac{1}{6}\right)\right)=2.58$$

What is the entropy of the sum of two die? Tricky question: will it be higher or lower than the first one?

Two die

$$-\left(\frac{1}{36}\lg\left(\frac{1}{36}\right) + \frac{2}{36}\lg\left(\frac{2}{36}\right) + \frac{3}{36}\lg\left(\frac{3}{36}\right) + \frac{4}{36}\lg\left(\frac{4}{36}\right) + \frac{5}{36}\lg\left(\frac{5}{36}\right) + \frac{6}{36}\lg\left(\frac{6}{36}\right) + \frac{5}{36}\lg\left(\frac{5}{36}\right) + \frac{4}{36}\lg\left(\frac{4}{36}\right) + \frac{3}{36}\lg\left(\frac{3}{36}\right) + \frac{2}{36}\lg\left(\frac{2}{36}\right) + \frac{1}{36}\lg\left(\frac{1}{36}\right) \right) = 3.27$$

Principles for Modeling Distributions

Maximum Entropy Principle (Jaynes)

All else being equal, we should prefer distributions that maximize the Entropy

Principles for Modeling Distributions

Maximum Entropy Principle (Jaynes)

All else being equal, we should prefer distributions that maximize the Entropy

- What additional constraints do we want to place on the distribution?
- How, mathematically, do we optimize the entropy?

Outline

- 1 Motivation: Supervised POS Tagging
- Expectation and Entropy
- Constraints
- 4 Maximum Entropy Form

The obvious one . . .

- We're attempting to model a probability distribution p
- By definition, our probability distribution must sum to one

$$\sum_{x} p(x) = 1 \tag{1}$$

Feature constraints

- We observe features across many outcomes
- We're modeling a distribution p over observations x. What is the correct model of features under this distribution?
- The whole point of this is that we don't want to count outcomes (we've discussed those methods)

Feature constraints

- We observe features across many outcomes
- We're modeling a distribution p over observations x. What is the correct model of features under this distribution?
- The whole point of this is that we don't want to count outcomes (we've discussed those methods)
- Ideally, the expected count of the features should be consistent with observations

Estimated Counts

$$\mathbb{E}_{p}\left[f_{i}(x)\right] = \sum_{x} p(x)f_{i}(x) \quad (2)$$

Empirical Counts

$$\hat{\mathbb{E}}_{\hat{\rho}}\left[f_i(x)\right] = \hat{\rho}(x)f_i(x) \qquad (3)$$

Empirical distribution is just what we've observed in data

Optimizing Constrained Functions

Theorem: Lagrange Multiplier Method

Given functions $f(x_1, ... x_n)$ and $g(x_1, ... x_n)$, the critical points of f restricted to the set g = 0 are solutions to equations:

$$\frac{\partial f}{\partial x_i}(x_1, \dots x_n) = \lambda \frac{\partial g}{\partial x_i}(x_1, \dots x_n) \quad \forall i$$
$$g(x_1, \dots x_n) = 0$$

This is n+1 equations in the n+1 variables $x_1, \ldots x_n, \lambda$.

Maximize $f(x, y) = \sqrt{xy}$ subject to the constraint 20x + 10y = 200.

Compute derivatives

Maximize $f(x, y) = \sqrt{xy}$ subject to the constraint 20x + 10y = 200.

Compute derivatives

$$\frac{\partial f}{\partial x} = \frac{1}{2} \sqrt{\frac{y}{x}} \quad \frac{\partial g}{\partial x} = 20$$
$$\frac{\partial f}{\partial y} = \frac{1}{2} \sqrt{\frac{x}{y}} \quad \frac{\partial g}{\partial y} = 10$$

Maximize $f(x, y) = \sqrt{xy}$ subject to the constraint 20x + 10y = 200.

Compute derivatives

$$\frac{\partial f}{\partial x} = \frac{1}{2} \sqrt{\frac{y}{x}} \quad \frac{\partial g}{\partial x} = 20$$
$$\frac{\partial f}{\partial y} = \frac{1}{2} \sqrt{\frac{x}{y}} \quad \frac{\partial g}{\partial y} = 10$$

Create new systems of equations

Maximize $f(x, y) = \sqrt{xy}$ subject to the constraint 20x + 10y = 200.

Compute derivatives

$$\frac{\partial f}{\partial x} = \frac{1}{2} \sqrt{\frac{y}{x}} \quad \frac{\partial g}{\partial x} = 20$$
$$\frac{\partial f}{\partial y} = \frac{1}{2} \sqrt{\frac{x}{y}} \quad \frac{\partial g}{\partial y} = 10$$

Create new systems of equations

$$\frac{1}{2}\sqrt{\frac{y}{x}} = 20\lambda$$

$$\frac{1}{2}\sqrt{\frac{x}{y}} = 10\lambda$$

$$20x + 10y = 200$$

Dividing the first equation by the second gives us

$$\frac{y}{x} = 2 \tag{4}$$

• which means y = 2x, plugging this into the constraint equation gives:

$$20x + 20(2x) = 200$$

 $x = 5 \Rightarrow y = 10$

Outline

- 1 Motivation: Supervised POS Tagging
- Expectation and Entropy
- Constraints
- Maximum Entropy Form

Objective Function

• We want a distribution p that maximizes

$$H(p) \equiv -\sum_{x} p(x) \log p(x) \tag{5}$$

Under the constraints that

$$\sum_{x} p(x) = 1 \tag{6}$$

• and, for every feature f_i

$$\mathbb{E}_{p}\left[f_{i}\right] = \hat{\mathbb{E}}_{\hat{p}}\left[f_{i}\right]. \tag{7}$$

Augmented Objective Function

$$L(p, \lambda, \gamma) = -\sum_{x} p(x) \log p(x)$$
$$-\sum_{i} \lambda_{i} \left(\sum_{x} p(x) f_{i}(x) - \hat{\mathbb{E}} \left[f_{i} \right] \right)$$
$$-\gamma \left(\sum_{x} p(x) - 1 \right)$$

Plan for solution:

- Take derivative
- Set it equal to zero
- Solve for the p(x) that optimizes equation
- This will give the functional form of our solution

Form of Solution

- Derivation in class
- (Feel free to work out for yourself)

$$p(x) = \frac{\exp\left\{\lambda^{\top} \vec{f}(x)\right\}}{\sum_{x'} \exp\left\{\lambda^{\top} \vec{f}(x)\right\}}$$
(8)

ullet Thus, distribution is parameterized by $\vec{\lambda}$ (one for each feature)

Finding Parameters

- Form is simple
- However, finding parameteris is difficult
- Solutions take iterative form
 - Start with $\vec{\lambda}^{(0)} = \vec{0}$
 - ② For k = 1...
 - $\textbf{0} \ \ \mathsf{Determine} \ \mathsf{update} \ \vec{\delta}^{(k)}$
 - $\vec{\lambda}^{(k)} \rightarrow \vec{\lambda}^{(k-1)} + \vec{\delta}^{(k)}$

Method for finding updates

 \bullet Our objective is a function of $\vec{\lambda}$

$$L(\lambda) = \sum_{x} \frac{\exp\left\{\lambda^{\top} f(x)\right\}}{\sum_{x'} \exp\left\{\lambda^{\top} f(x')\right\}}$$
(9)

(in practice, we typically use the log probability)

- Strategy: Move $\vec{\lambda}$ by walking up the gradient $G(\lambda^{(k)})$
- Gradient

$$G_i(\lambda) = \frac{\partial L(\lambda)}{\partial \lambda_i} = -\left[\left(\sum_{x} p_{\lambda}(x) f_i(x)\right) - \hat{\mathbb{E}}\left[f_i\right]\right]$$
(10)

Method for finding updates

Set the update of the form

$$\delta^{(k)} = \alpha^{(k)} G(\lambda^{(k)}) \tag{11}$$

Use the new parameter

$$\vec{\lambda}^{(k)} \to \vec{\lambda}^{(k-1)} + \vec{\delta}^{(k)} \tag{12}$$

• What value of α ?

Method for finding updates

Set the update of the form

$$\delta^{(k)} = \alpha^{(k)} G(\lambda^{(k)}) \tag{11}$$

• Use the new parameter

$$\vec{\lambda}^{(k)} \to \vec{\lambda}^{(k-1)} + \vec{\delta}^{(k)} \tag{12}$$

- What value of α ?
 - ▶ Try lots of different values, pick the one that optimizes $L(\lambda)$ (grid search)

Other parameter estimation techniques

- Iterative scaling
- Conjugate gradient methods
- Real difference is speed and scalability

Regularization / Priors

 We often want to prefer small parameters over large ones, all else being equal

$$L(\lambda) = \sum_{x} \frac{\exp\left\{\lambda^{\top} f(x)\right\}}{\sum_{x'} \exp\left\{\lambda^{\top} f(x')\right\}} - \sum_{i} \frac{\lambda^{2}}{\sigma^{2}}$$
(13)

- ullet This is equivalent to having a Gaussian prior on the weights λ
- Also possible to use informed priors when you have an idea of what the weights should be (e.g. for domain adaptation)

All sorts of distributions

- We talked about a simple distribution p(x)
- But could just as easily be joint distribution p(y,x)

$$p(y,x) = \frac{\exp\left\{\lambda^{\top} f(y,x)\right\}}{\sum_{y',x'} \exp\left\{\lambda^{\top} f(y',x')\right\}}$$
(14)

• Or a conditional distribution p(y|x)

$$p(y|x) = \frac{\exp\left\{\lambda^{\top} f(y,x)\right\}}{\sum_{y'} \exp\left\{\lambda^{\top} f(y',x)\right\}}$$
(15)

Uses of MaxEnt Distributions

- POS Tagging (state of the art)
- Supervised classification: spam vs. not spam
- Parsing (head or not)
- Many other NLP applications

In class ...

- HW 3 Results
- Quiz
- Deriving MaxEnt formula
- Defining feature functions