1. a.
$$P(Pass)$$

$$P(Pass = Yes) = \frac{3}{7}$$

$$P(Pass = N_0) = \frac{4}{7}$$

c.
$$P(sleep | pass)$$
 $P(sleep = yes | pass = yes) = \frac{2}{3}$
 $P(sleep = yes | pass = NO) = \frac{1}{4}$
 $P(sleep = NO | pass = yes) = \frac{1}{3}$
 $P(sleep = NO | pass = NO) = \frac{3}{3}$

$$= \chi(\frac{3}{7})(\frac{3}{5})(\frac{1}{3})(\frac{1}{3})$$

$$= \chi(\frac{3}{7})(\frac{1}{3})(\frac{1}{3})(\frac{1}{3})$$

$$= \chi(\frac{3}{7})(\frac{1}{3})(\frac{1}{3})(\frac{1}{3})(\frac{1}{3})$$

$$= \chi(\frac{3}{7})(\frac{1}{3})(\frac{1}{3})(\frac{1}{3})(\frac{1}{3})$$

$$= \chi(\frac{3}{7})(\frac{1}{3})(\frac{1}{3})(\frac{1}{3})(\frac{1}{3})(\frac{1}{3})$$

$$= \chi(\frac{3}{7})(\frac{1}{3})(\frac{1$$

$$= \chi(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})(\frac{1}{2}) = \frac{4}{107}\chi = 0.038\chi = 0.19$$

$$= \chi(\frac{4}{2})(\frac{3}{4})(\frac{1}{4})(\frac{1}{4}) = \frac{3}{112} \times = 0.006 \times = 0.40$$

because P(panty=yes 1 pass=yes)= 3.

In order to make this probability not
become zero, we use the method

" add _ | to solve it.

/ 1	
U	

# Party 1 1 2 1		Sleep	Stud	+ Pass
			0	0
		0	1	0
3	1	0	0	0
4	0	1	1	11
5	0	1	0	1
6	0	D	1	1
2	D	0	0	0

ROWO 8, U, 82U2 X3 U3 3 Pass = X

1. (1) (1) + (1) (1) + (1) (1) + (0) (1) = 3 20 -> Pass = X

Modify weights

 $\Delta \mathcal{W}_{3} = (0.47)(0-1)(1) = -0.47, \ \mathcal{W}_{0} = 1-0.47 = 0.75$ $\Delta \mathcal{W}_{1} = (0.47)(0-1)(1) = -0.47, \ \mathcal{W}_{1} = 1-0.47 = 0.75$ $\Delta \mathcal{W}_{3} = (0.47)(0-1)(0) = 0, \ \mathcal{W}_{3} = 1-0=1$

Z. (1) (0.75) + (1) (0.75) + (0) (0.75) + 1(1) = 2.5 ≥0 → Pass ← X

Modify weights

 $\Delta W_0 = (0.4)(0-1)(1) = -0.45, W_0 = 0.75 - 0.47 = 0.5$ $\Delta W_1 = (0.47)(0-1)(1) = -0.45, W_1 = 0.75 - 0.47 = 0.5$ $\Delta W_2 = (0.47)(0-1)(0) = 0, W_2 = 0.75 - 0.47 = 0.5$

OW3 = (0.15) (0-1) (1) = -0.5, W3 = 1-0.5 = 0.75 3. (0.5)(1)+(0.5)(1)+(0.75)(0)+(0.75)(0)=120 > Pass < X Modify weights. A Wo = (0.>5) (0-1)(1) = -0.5 , Wo = 0.5 - 0.5 = 0.5 DW1 = (0.4) (0-1) (1) = -0.4 , W1:05-0.4 = 0.4 OW2 = (0.25) (0-1) (0) = 0 , W2 = 0.75 -0 = 0.75 aus = (0.x) (0-1) (0) = 0 , Ws = 0.75 - 0 = 0.75 4. (0.4)(1) + (0.2)(0) + (0.75)(1) + (0.75)(1) = 1.75 =0 -> Pass = V 5. (0.4) (1) + (0.4) (0) + (0.75) (1) + (0.75) (0) = 120 -> Pass & 6. (0.4) (1) + (0.4) (*) + (0.75) (0) + (0.75) (1) = 120 + Pass EV 7. (0.5)(1) + (0.4) (0) + (0.75) (0) + (0.95) (0) = 0.420 → Pass ← X Modify Weights △ Wo = (0.7) (0-1) (1) = -0.5, Wo = 0.8-0.8=0 0 W1 = (0. 2) (0-1) (0) = 0 W1 = 0.4 - 0 = 0.5 OW2 = (0.7) (0-1) (0) = 0 1 W3 = 0.75-0 =0.75 S W3 = (0.7) (0-1) (0) #0 2nd round. W. X. Wx Xx W3 X3 Y Pass & X

1. (0)(1) + (0. x5)(1) + (0.75)(1)+(0.75)(0) = 120 > Pass & X Pass

 $\mu_{0}dif_{y} \text{ Weight}$ $= \omega_{0} = (0.47)(0-1)(1) = -0.47, \ \omega_{1} = 0 - 0.47 = -0.47$ $= \omega_{1} = (0.47)(0-1)(1) = -0.47, \ \omega_{2} = 0.47 - 0.47 = 0$ $= \omega_{1} = (0.47)(0-1)(1) = -0.47, \ \omega_{3} = 0.75 - 0.47 = 0.57$ $= \omega_{3} = (0.47)(0-1)(0) = 0, \ \omega_{4} = 0.75 - 0 = 0.75$

$$\Delta W_0 = (0.25)(0-1)(1) = -0.5$$
, $W_0 = -0.5 - 0.25 = -0.5$

$$\Delta W_1 = (0.25)(0-1)(1) = -0.5$$
, $W_1 = 0 - 0.5 = -0.25$
 $\Delta W_2 = (0.25)(0-1)(0) = 0$, $W_2 = 0.5 - 0 = 0.5$

$$3W_{3} = (0.7)(0-1)(1) = -0.7 1 W_{3} = 0.75 - 0.7 = 0.5$$

3.
$$(-0.5)(1) + (-0.5)(1) + (0.5)(0) + (0.5)(1) = 0.5 = 0 \rightarrow \text{ pass} \in V$$

4. $(-0.5)(1) + (-0.5)(0) + (0.5)(1) + (0.5)(1) = 0 = 0 \rightarrow \text{ pass} \in V$

4.
$$(-0.5)(1) + (-0.5)(0) + (0.5)(1) + (0.5)(0) = 0 = 0 = 0 = 0$$

5. $(-0.5)(1) + (0.5)(0) + (0.5)(1) + (0.5)(0) = 0 = 0 = 0 = 0 = 0$

8. $(-0.5)(1) + (0.5)(0) + (0.5)(1) = 0 = 0 = 0 = 0 = 0$

8. $(-0.5)(1) + (0.5)(0) + (0.5)(1) = 0 = 0 = 0 = 0 = 0 = 0 = 0$

5.
$$(-0.5)(1) + (0.37)(0) + (0.5)(1) + (0.5)(1) = 0$$
 $0 \Rightarrow Pass \leftarrow \sqrt{$
6. $(-0.5)(1) + (-0.37)(0) + (0.5)(0) + (0.5)(1) = 0$ $0 \Rightarrow Pass \leftarrow \sqrt{}$

6.
$$(-0.5)(1) + (-0.4)(0) + (0.5)(0) + (0.5)(1) = 0.5 \times 0.5$$

Wo Xo Wi Xi Wz X2 W3 X3 1. (-0.5)(1)+(0.25)(1)+(0.5)(1)+(0.5)(0)=-0.25 <0 → XPass < X 3rd round 2. (-0.5)(1)+(-0.7)(1)+(0.5)(0)+(0.5)(1)=-0.8 <0 > > Pass < X

- Since the weights doesn't charge from stimple 3
- In 2nd round, sample 3-) In this round will has the same results as 2nd round.

Final Weights.

Wo = 0.5, W1 = -0.8, U1 = 0.5, W2 = 05

C. 8. Party = yes (1), sleep = yes (1), study = yes (1). 8. (-0.5)(1)+(-0.7)(1)+(0.5)(1)+(0.5)(1) = 0.25 20 → Pass The prediction result is yes! It will pass!

3.Weka input file

@relation Pass

@attribute Party {yes, no}
@attribute Sleep {yes, no}
@attribute Study {yes, no}
@attribute Pass {yes, no}

@data

yes,yes,no,no

yes, no, yes, no

yes,no,no,no

no, yes, yes, yes

no, yes, no, yes

no,no,yes,yes

no, no, no, no

output file

=== Run information ===

Scheme: weka.classifiers.bayes.NaiveBayes

Relation: Pass Instances: 7 Attributes: 4

Party Sleep Study Pass

Test mode: evaluate on training data

=== Classifier model (full training set) ===

Naive Bayes Classifier

	Class			
Attribute	yes	no		
	(0.44) (0	.56)		
Party	========	=====		
yes	1.0	4.0		
no	4.0	2.0		
[total]	5.0	6.0		
[totat]	5.0	0.0		
Sleep				
yes	3.0	2.0		
no	2.0	4.0		
[total]	5.0	6.0		
Ctudy				
Study	2.0	2.0		
yes	3.0	2.0		
no	2.0	4.0		
[total]	5.0	6.0		

```
Time taken to build model: 0 seconds
```

=== Evaluation on training set ===

Time taken to test model on training data: 0 seconds

=== Summary ===

Correctly Classified Instances	7	100	%
Incorrectly Classified Instances	0	0	%
Kappa statistic	1		
Mean absolute error	0.2413		
Root mean squared error	0.2643		
Relative absolute error	49.0388 %		
Root relative squared error	53.381 %		
Total Number of Instances	7		

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	yes
	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	no
Weighted Ava.	1.000	0.000	1.000	1.000	1.000	1.000	1.000	1.000	

=== Confusion Matrix ===

a b <-- classified as

3 0 | a = yes 0 4 | b = no