ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ИГР

Теория игр – раздел теории оптимизации и исследования операций, занимающийся изучением конфликтных ситуаций (при несовпадающих либо прямо противоположных целях сторон-игроков).

Игроки могут влиять на ход «игры», но не могут управлять ею.

Задача теории игр: выработка принципов (*стратегий*), определяющих поведение игроков в конкретных ситуациях.

Игра — набор правил и соглашений, составляющий конкретный вид противоборства.

Альтернатива – возможность выбора одной из 2-х или нескольких (*N*) взаимоис-клчающих друг друга возможностей.

Ход – процесс выбора альтернативы игроком. **Решение игры** заключается в выборе линии поведения, обеспечивающей состояние равновесия.

Цель теории игр: выработка стратегий, обеспечивающих ситуацию равновесия «в среднем» (для многих «партий»), независимо от поведения противника, одновременно не позволяя ему превысить некоторый средний выигрыш для многих партий.

Классификация игр

1. По количеству игроков

- 1 (пасьянс)
- 2
- N

Лицо – множество игроков с одинаковыми интересами (*коалиция*).

Пример. Командный шахматный турнир 3х3 – игра с 2 игроками, 2 лицами.

Рассмотрим игру N лиц i=1,N.

Пусть P_i — платеж игроку в конце партии (если P_i < 0 — убыток).

Если $\sum_{i=1}^{N} P_i = 0$, то партия — с нулевой сум-мой.

Если любая партия игры – с нулевой суммой, то имеем *игру N игроков с нулевой суммой*.

Пример. Все «коммерческие» карточные игры.

Пример игр с ненулевой суммой - игровые модели экономических процессов (существует прибавочная стоимость).

2. По количеству ходов.

Конечные игры – конечное число ходов и конечное число альтернатив.

Бесконечные игры – otherwise («крестики / нолики» на бесконечном поле).

3. По количеству информации.

С полной информацией (шахматы и др. «логические» игры).

С неполной информацией («азартные» игры: карты, кости и т.д.)

Прямоугольные (матричные) игры

1 игрок с нулевой суммой – любое решение (тривиальный случай).

1 игрок с ненулевой суммой — задача на поиск экстремума (или матожидание экстремума).

2 игрока с нулевой суммой: $P_1 + P_2 = 0$.

Одноходовая игра: 1 ход A + 1 ход В (ходы совершаются одновременно)

ТЕОРЕМЫ О МИНИМАКСЕ

Теорема 1

Пусть задана $f(x,y) \in R$, $x \in A$, $y \in B$, такая, что существуют $\max_{x \in A} \min_{y \in B} f(x,y)$ и

$$\min_{y \in B} \max_{x \in A} f(x, y)$$
, тогда

$$\max_{x \in A} \min_{y \in B} f(x, y) \le \min_{y \in B} \max_{x \in A} f(x, y)$$

Доказательство.

Для любых фиксированных x, y:

$$\min_{y \in B} f(x, y) \le f(x, y) \le \max_{x \in A} f(x, y),$$

следовательно

$$\min_{y \in B} f(x, y) \le \max_{x \in A} f(x, y).$$

Т.к.
$$\min_{y \in B} f(x, y) = g(x)$$
 не зависит от y , то

$$\min_{y \in B} \left(\min_{y \in B} f(x, y) \right) \le \min_{y \in B} \left(\max_{x \in A} f(x, y) \right),$$

T.e.
$$\min_{y \in B} f(x, y) \le \min_{y \in B} \max_{x \in A} f(x, y)$$
.

Т.к.
$$\min_{y \in B} \max_{x \in A} f(x, y) = C$$
 не зависит от x , то

$$\max_{x \in A} \left(\min_{y \in B} f(x, y) \right) \le \max_{x \in A} \left(\min_{y \in B} \max_{x \in A} f(x, y) \right)$$

ЧТД

Дискретная функция $f(x_i, y_j) \sim f[i, j]$ задается матрицей

$$\begin{pmatrix} c_{11} & \dots & c_{1n} \\ \dots & \dots & \dots \\ c_{m1} & \dots & c_{mn} \end{pmatrix}$$

T.e.

$$f[i,j] = c_{ij}$$

$$i = \overline{1,m}, \quad j = \overline{1,n}$$

Следствие Т1. Пусть (c_{ij}) — произвольная матрица $m \times n$, тогда

$$\max_{i \in A} \min_{j \in B} c_{ij} \leq \min_{j \in B} \max_{i \in A} c_{ij},$$

где

$$A = \overline{1,m}, \quad B = \overline{1,n}$$

Определение.

Пусть $f(x,y) \in R$, $x \in A$, $y \in B$. Точка (x_0, y_0) – **седловая** $(x_0 \in A, y_0 \in B)$, если

$$f(x, y_0) \le f(x, y) \le f(x_0, y)$$

для любых $x \in A, y \in B$.

Теорема 2

Пусть задана $f(x,y) \in R$, $x \in A$, $y \in B$, такая, что существуют $\max_{x \in A} \min_{y \in B} f(x,y)$ и

$$\min_{y \in B} \max_{x \in A} f(x, y)$$
, тогда

$$\max_{x \in A} \min_{y \in B} f(x, y) = \min_{y \in B} \max_{x \in A} f(x, y)$$

iff f(x, y) имеет седловую точку (x_0, y_0) и

$$\max_{x \in A} \min_{y \in B} f(x, y) = \min_{y \in B} \max_{x \in A} f(x, y) = f(x_0, y_0).$$

<u>Следствие.</u> Пусть (c_{ij}) – произвольная матрица $m \times n$, тогда

$$\max_{i \in A} \min_{j \in B} c_{ij} = \min_{j \in B} \max_{i \in A} c_{ij},$$

где $A=\overline{1,m}, \quad B=\overline{1,n}, \text{ iff } (c_{ij})$ имеет седловую точку (i_0,j_0) , для которой $c_{i_0j_0}$ является одновременно min элементом строки и max элементом столбца, и

$$\max_{i \in A} \min_{j \in B} c_{ij} = \min_{j \in B} \max_{i \in A} c_{ij} = c_{i_0 j_0}$$
 — Цена игры.

Пример.

$$\begin{pmatrix}
-5 & 3 & 1 & 20 \\
5 & 5 & 4 & 6 \\
-4 & -2 & 0 & -5
\end{pmatrix}$$

$$(i_0, j_0) = (2,3)$$
 — оптим. стратегии A и B Цена игры 4.

СМЕШАННЫЕ СТРАТЕГИИ

Пример 1

Матрица стратегий без седловой точки:

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Пусть

x – вероятность выбора стратегии a_1 ,

1 - x — вероятность выбора стратегии a_2 .

Матожидание выигрыша A при b_1 :

$$PA_{b1} = 1 \cdot x + (-1) \cdot (1 - x) = 2x - 1.$$

Матожидание выигрыша A при b_2 :

$$PA_{b2} = -1 \cdot x + 1 \cdot (1 - x) = -2x + 1.$$

Если
$$x > \frac{1}{2}$$
, то $-2x + 1 < 0$ (проигрыш при b_2)

Если
$$x < \frac{1}{2}$$
, то $2x - 1 < 0$ (проигрыш при b_1)

Следовательно, оптимальная стратегия

$$x=\frac{1}{2}$$
.

Матожидание выигрыша игрока *А* (цена игры)

$$P_A = 1 \cdot \frac{1}{2} + (-1) \cdot \frac{1}{2} = 0.$$

Аналогично $P_B = 0$.

Пример 2 Матрица стратегий:

$$\begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$$

Пусть

x — вероятность выбора стратегии a_1 , 1-x — вероятность выбора стратегии a_2 , y — вероятность выбора стратегии b_1 , 1-y — вероятность выбора стратегии b_2 .

Матожидание выигрыша

$$E(x,y) =$$

$$= 1 \cdot xy + 3x(1-y) + 4(1-x)y + 2(1-x)(1-y) =$$

$$= 4\left(x - \frac{1}{2}\right)\left(y - \frac{1}{4}\right) + \frac{5}{2}.$$

При
$$x = \frac{1}{2}$$
 и/или $y = \frac{1}{4}$
$$P_A = \frac{5}{2}.$$

Т.о., для любых $x, y \in [0,1]$

$$E\left(x,\frac{1}{4}\right) = E\left(\frac{1}{2},\frac{1}{4}\right) = E\left(\frac{1}{2},y\right).$$

Точка
$$\left(\frac{1}{2}, \frac{1}{4}\right)$$
 – **седловая точка** для мато-

жидания выигрыша E(x,y), т.к. одновременно

$$E\left(x,\frac{1}{4}\right) \le E\left(\frac{1}{2},\frac{1}{4}\right) \le E\left(\frac{1}{2},y\right)$$

Определение.

 x^* – оптимальная частота выбора страте-гии для игрока A,

 y^* – оптимальная частота выбора стратегии для игрока B, если

$$E(x, y^*) \le E(x^*, y^*) \le E(x^*, y).$$

Рассмотрим произвольную игру с матрицей стратегий

$$C = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \dots & \dots & \dots \\ c_{m1} & \dots & c_{mn} \end{pmatrix}$$

Определение. Смешанная стратегия игрока A — это упорядоченная система m действительных неотрицательных чисел x_i (i=1,...,m), такая что

$$\sum_{i=1}^{m} x_i = 1.$$

 S_m — множество всех смешанных стратегий игрока A.

Аналогично – смешанная стратегия игрока *В*:

$$y_j$$
 ($j = 1,...,n$):

$$\sum_{j=1}^{n} y_j = 1.$$

 S_n — множество всех смешанных стратегий игрока B.

Определение. Стратегия А, когда

$$x_1 = x_2 = \dots = x_{i-1} = x_{i+1} = x_{i+2} = \dots = x_m = 0,$$

a

$$x_{i} = 1$$
,

называется *і-й чистой стратегией*. Аналогично для игрока *B*.

Если смешанная стратегия игрока А

$$X = (x_1, ..., x_m),$$

а смешанная стратегия игрока В

$$Y = (y_1, ..., y_m),$$

то матожидание выигрыша А

$$E(X,Y) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{i} y_{j}$$

Определение. Если существуют стратегии

 $X^* \in S_m$, $Y^* \in S_n$ такие, что для любых $X \in S_m$, $Y \in S_n$

$$E(X,Y^*) \le E(X^*,Y^*) \le E(X^*,Y),$$

то X^*, Y^* – оптимальные смешанные стратегии игроков A, B;

 $E(X^*,Y^*)$ – **цена игры** для игрока **A**;

 X^*, Y^* — решение игры или *стратегиче-ская седловая точка*

Теорема 3 (основная теорема прямоугольных игр, теорема Неймана, теорема о минимаксе).

Пусть задани платежная матрица

$$C = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \dots & \dots & \dots \\ c_{m1} & \dots & c_{mn} \end{pmatrix}$$

и выбраны стратегии $X = (x_1, ..., x_m) \in S_m$, $Y = (y_1, ..., y_m) \in S_n$;

математическое ожидание выигрыша А

$$E(X,Y) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{i} y_{j};$$

тогда существуют и равны между собой

$$\max_{X \in S_m} \min_{Y \in S_n} E(X,Y) = \min_{Y \in S_n} \max_{X \in S_m} E(X,Y) = E(X^*,Y^*),$$

где

 (X^*, Y^*) – стратегическая седловая точка.

СВЕДЕНИЕ МАТРИЧНОЙ ИГРЫ К ЗАДА-ЧЕ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Рассмотрим прямоугольную игру с нулевой суммой

$$C = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \dots & \dots & \dots \\ c_{m1} & \dots & c_{mn} \end{pmatrix}.$$

Пусть

$$\min_{Y\in S_n}E(X,Y)=g(X),$$

тогда для любых
$$X \in S_m$$
, $Y \in S_n$ $E(X,Y) \ge g(X)$.

В частности, для любой <u>чистой стратегии</u> Y_i и любых $X \in S_m$ имеем

$$\begin{cases} E(X, Y_j) = \sum_{i=1}^{m} c_{ij} x_i \ge g(X), & j = 1, ..., n \\ x_i \ge 0, & i = 1, ..., m, & \sum_{i=1}^{m} x_i = 1 \end{cases}$$

Пусть g(X) > 0. Разделим почленно обе части неравенства на g(X) и положим

$$u_i = \frac{x_i}{g(X)}, \quad i = 1, ..., m$$
:

$$\begin{cases} \sum_{i=1}^{m} c_{ij} u_i \ge 1, & j = 1, ..., n \\ u_i \ge 0, & i = 1, ..., m, & \sum_{i=1}^{m} u_i = \frac{1}{g(X)} \end{cases}$$

Задача игрока А

$$g(X) \rightarrow \max$$

T.e.

$$\begin{cases} w(U) = \sum_{i=1}^{m} u_i \to \min \\ \sum_{i=1}^{m} c_{ij} u_i \ge 1, \quad j = 1, ..., n \\ u_i \ge 0, \quad i = 1, ..., m \end{cases}$$

Доказано, что система (*) совместна и имеет конечное решение.

Для игрока *В* – аналогично:

Пусть

$$\max_{X \in S_m} E(X,Y) = h(Y),$$

тогда для любых
$$X \in S_m$$
, $Y \in S_n$ $E(X,Y) \le h(Y)$.

В частности, для любой <u>чистой стратегии</u> X_i , и любых $Y \in S_n$ имеем

$$\begin{cases} E(X_i, Y) = \sum_{j=1}^{n} c_{ij} y_j \le h(Y), & i = 1, ..., m \\ y_j \ge 0, & j = 1, ..., n, & \sum_{j=1}^{n} y_j = 1 \end{cases}$$

Пусть h(Y) > 0. Разделим почленно обе части неравенства на h(Y) и положим

$$v_j = \frac{y_j}{h(Y)}, \quad j = 1, ..., n$$
:

$$\begin{cases} \sum_{j=1}^{n} c_{ij} v_{j} \ge 1, & i = 1, ..., m \\ v_{j} \ge 0, & j = 1, ..., n, & \sum_{j=1}^{n} v_{j} = \frac{1}{h(Y)} \end{cases}$$

Задача игрока В

$$h(Y) \rightarrow \min$$

T.e.

$$\begin{cases} z(V) = \sum_{j=1}^{n} v_{j} \to \max \\ \\ \sum_{j=1}^{n} c_{ij} v_{j} \le 1, \quad i = 1, ..., m \\ \\ v_{j} \ge 0, \quad j = 1, ..., n \end{cases}$$

Задачи (*) и (**) – прямая и двойственная задачи линейного программирования:

$$\min w(U) = w(U^*) =$$

$$= \max z(V) = z(V^*)$$

Оптимальные стратегии

$$X^* = (x_1^*, ..., x_m^*), Y^* = (y_1^*, ..., y_n^*),$$

где

$$x_i^* = \frac{u_i^*}{w(U^*)}, \quad i = 1, ..., m$$

$$y_j^* = \frac{v_j^*}{z(V^*)}, \quad j = 1, ..., n$$

T.K.

$$\sum_{i=1}^{m} c_{ij} x_{i}^{*} = \frac{\sum_{i=1}^{m} c_{ij} u_{i}^{*}}{w(U^{*})} \ge \frac{1}{w(U^{*})}, \quad j = 1, ..., n$$

$$\sum_{i=1}^{n} c_{ij} x_{i}^{*} = \frac{\sum_{j=1}^{n} c_{ij} v_{j}^{*}}{z(V^{*})} \le \frac{1}{z(V^{*})}, \quad i = 1, ..., m$$

Цена игры
$$E(X^*,Y^*) = \frac{1}{w(U^*)} = \frac{1}{z(V^*)}$$
.

Верно и обратное: если X^*, Y^* — оптимальные стратегии A и B, то

$$u_i^* = \frac{x_i^*}{g(X^*)}, \quad v_j^* = \frac{y_j^*}{h(Y^*)}$$

оптимальные решения прямой и двойственной задач линейного программирования (*) и (**).