МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Отчёт о выполнении лабораторной работы 2.4.1

Определение теплоты испарения жидкости

Соболевский Федор Александрович Б03-109

1 Аннотация

В данной температуре исследована зависимость давления насыщенных паров воды от её температуры. Полученные значения применены для вычисления молярной и удельной теплоты испарения воды. Проанализированы методы измерения давления насыщенных паров и их погрешности.

2 Теоретические сведения

2.1 Вычисление теплоты испарения

Количество теплоты, необходимое для изотермического испарения одного моля жидкости при внешнем давлении, равном упругости ее насыщенных паров, называется молярной теплотой испарения (парообразования). В данной работе применён метод, основанный на уравнении Клапейрона-Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)},\tag{1}$$

где T - абсолютная температура, P - давление насыщенного пара при данной температуре, L - теплота испарения жидкости, V_2 - объём пара, V_1 - объём жидкости.

В используемом приборе измерения проводятся при давлениях значительно ниже атмосферного, что позволяет сделать ряд упрощений. Во-первых, молярный объём воды составляет не более 0.2% от молярного объёма пара, что заметно меньше погрешности измерений, поэтому при расчётах величиной V_1 можно пренебречь. Во-вторых, величины a/V^2 и b, возникающие при описании водяного пара уравнением газа Ван-дер-Ваальса, также достаточно малы по сравнению с измеряемыми величинами, чтобы можно было применить уравнение Клапейрона, откуда

$$V = \frac{RT}{P}. (2)$$

Подставляя (2) в (1) и пренебрегая V_1 , получаем выражение для теплоты испарения:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)}.$$

Удельную теплоту испарения можно найти как

$$\lambda = L/\mu$$
.

2.2 Экспериментальная установка

На рисунке приведена схема установки с использованием современного термостата. Установка включает термостат А, экспериментальный прибор В и отсчетный микроскоп С. Экспериментальный прибор В представляет собой емкость 12, заполненную водой. В нее погружен запаянный прибор 13 с исследуемой жидкостью 14. Перед заполнением исследуемой жидкости воздух из запаянного прибора был удален, так что над жидкостью находится только её насыщенный пар. Давление пара определяется по ртутному манометру 15, соединенному с емкостью 13. Численная величина давления измеряется по разности показаний отсчетного микроскопа 16, настраиваемого последовательно на нижний и верхний уровни столбика ртути манометра. Показания микроскопа снимаются по шкале 17.

Рис. 1: Схема экспериментальной установки

3 Оборудование и инструментальные погрешности

В работе использовались: термостат, герметичный сосуд с исследуемой жидкостью (водой), отсчётный микроскоп, штангенциркуль.

Инструментальные погрешности:

• Штангенциркуль: $\Delta_h = 0.1 \text{ мм}$;

• **Термометр термостата:** $\Delta_T = 0.1 \; {\rm K}.$

4 Результаты измерений и обработка экспериментальных данных

Перепад давлений в установке измерялся по разности высот колен ртутного манометра. Величину давления насыщенных паров P_0 можно определить по формуле $P_0 = \rho g \Delta H$, где плотность ртути $\rho = 13600~{\rm kr/m^3}$. Также было необходимо учесть ошибку, связанную с возникновением в правом колене прибора столбика воды высотой 4,2 мм, что даёт ошибку $\Delta P = (1000-13600) \cdot 0.0042 \cdot 9.81 = -519.14$ (Па).

Результаты измерения давления насыщенных паров при разных температурах при нагревании и охлаждении представлены в таблицах 1 и 2 соответственно. Графики зависимости давления насыщенного пара от температуры в каждом опыте представлены на рисунках 2 и 3.

Величину $d(\ln P)/d(1/T)$ и случайную погрешность её определения можно вычислить как коэффициент наклона наилучшей прямой и погрешность его определения соответственно с помощью метода наименьших квадратов:

$$\frac{d(\ln P)}{d(1/T)} = \frac{\langle \ln P \cdot 1/T \rangle - \langle \ln P \rangle \langle 1/T \rangle}{\langle (1/T)^2 \rangle - \langle 1/T \rangle^2},$$

$$\sigma_{\text{случ}} = \sqrt{\frac{1}{N} \left(\frac{\langle (\ln P)^2 \rangle - \langle \ln P \rangle^2}{\langle (1/T)^2 \rangle - \langle 1/T \rangle^2} - (\frac{d(\ln P)}{d(1/T)})^2 \right)}.$$

Систематическая и полная погрешности измерения dP/dT определяются как

$$\sigma_{\text{cmct}} = \sqrt{(\frac{\Delta_T}{T})^2 + (\frac{\ln(\rho g \Delta_h)}{\ln P})^2}$$

t, °C	T, K	Δh , mm	P_0 , кПа	P , к Π а	$1/T$, 10^{-3} K ⁻¹	$\ln P$
23	296,15	19,1	2,55	2,03	3,377	7,62
24	297,15	20,5	2,74	2,22	3,365	7,70
25	298,15	21,9	2,92	2,40	3,354	7,78
26	299,15	23,5	3,14	2,62	3,343	7,87
27	300,15	24,9	3,32	2,80	3,332	7,94
28	301,15	26,3	3,51	2,99	3,321	8,00
29	302,15	28,5	3,80	3,28	3,310	8,10
30	303,15	29,5	3,94	3,42	3,299	8,14
31	304,15	31,2	4,16	3,64	3,288	8,20
32	305,15	33,4	4,46	3,94	3,277	8,28
33	306,15	35,4	4,75	4,23	3,266	8,35
34	307,15	37,6	5,02	4,50	3,256	8,41
35	308,15	39,8	5,31	4,79	3,245	8,47
36	309,15	42,6	5,68	5,16	3,235	8,55
37	310,15	44,4	5,92	5,41	3,224	8,59

Таблица 1: Зависимость давления насыщенного пара от температуры при нагревании

Рис. 2: График зависимости давления насыщенного пара от температуры при нагревании

t, °C	T, K	Δh , mm	P_0 , к Π а	P , к Π а	$1/T$, 10^{-3} K ⁻¹	$\ln P$
36	309,15	43,4	5,79	5,27	3,235	8,57
35	308,15	40,8	5,44	4,92	3,245	8,50
34	307,15	39,0	5,20	4,68	3,256	8,45
33	306,15	37,4	4,99	4,47	3,266	8,41
32	305,15	35,0	4,67	4,15	3,277	8,33
31	304,15	33,2	4,43	3,91	3,288	8,27
30	303,15	31,2	4,16	3,64	3,299	8,20
29	302,15	28,4	3,79	3,27	3,310	8,09
28	301,15	25,2	3,36	2,84	3,321	7,95
26	299,15	22,0	2,94	2,42	3,343	7,79

Таблица 2: Зависимость давления насыщенного пара от температуры при охлаждении

Рис. 3: График зависимости давления насыщенного пара от температуры при охлаждении

№ опыта	$d(\ln P)/d(1/T), 10^{-3} \text{ K}$	L, кДж/моль	λ , МДж/кг
1	$-6,38 \pm 0,07$	$53,0 \pm 0,6$	$2,95 \pm 0,03$
2	$-7,16 \pm 0,28$	$59,5 \pm 2,3$	$3,30 \pm 0,13$

Таблица 3: Результаты вычисления теплоты испарения воды

$$\sigma_{\text{полн}} = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2}.$$

Отсюда можно найти значения L и λ в каждом опыте. Результаты вычислений представлены в таблице 3.

5 Обсуждение результатов и выводы

В данной работе были получены два значения удельной теплоты парообразования воды:

- 1. $\lambda = 2.95 \pm 0.03 \text{ МДж/кг}$;
- 2. $\lambda = 3.30 \pm 0.13 \text{ МДж/кг.}$

Ошибка измерений во втором опыте оказалась в несколько раз больше, чем в первом. Причиной тому могло послужить замедленное остывание исследуемой жидкости и меньшее количество измерений. Вследствие этого конечным результатом измерений будем считать значение, полученное в первом опыте.

Табличное значение удельной теплоты парообразования $\lambda_{\rm табл}=2,26~{\rm MДж/кг}$. Полученное в эксперименте значение отличается от табличного на 30%. Повышенное значение теплоты парообразования связано, прежде всего, с неточностью измерений с помощью ртутного манометра. Дефект измерений, возникший из-за образования скоплений воды в ртути, сложно оценить точно из-за поверхностных эффектов на границе раздела жидкостей и наличию более мелких вкраплений воды. Также нельзя достаточно точно оценить неидеальность откачки воздуха из установки и давление паров ртути в коленах. Всё это привело с заниженным результатам измерения давления и, как следствие, значительно завышенному значению теплоты парообразования.

Однако полученное значение не отличается от табличного по порядку, а зависимость $\ln P$ от 1/T действительно близка к линейной в измеряемом диапазоне температур. Это говорит о том, что при наличии более точного оборудования для измерения давления рассмотренный метод применим для измерения теплоты испарения жидкости.