# Day 4: Reducibility, NP-Completeness, Key Results

Zach Neveu May 9, 2019



Figure 1: Venn Diagram of P, NP-Complete, and NP

## 1 Reducibility

#### Example:

Subset Sum: Given a set of integers and a target, t, is there a subset, S for which  $\sum S = t$ . Subset Partition: given a set of integers, can they be partitioned into 2 sets with equal sums?

- If Subset Sum is solved, is it possible to solve subset partition?
- YES! Solve subset sum with  $t = \frac{1}{2} \sum S$  where S is all items
- We've just used an SS solver to solve SP! This means that SP reduces to SS.
- If Instance is "no" in SS, it is also "no" in SP

Reducibility: Given problems  $L_1$  and  $L_2$ , we say that  $L_1$  is <u>reducible</u> to  $L_2$  in polynomial time if we can rewrite any instance of  $L_1$  as an instance of  $L_2$  such that both instances have the same answer.

Notation:  $L_1 \le L_2$  means that  $L_1$  is reducible to  $L_2$ . Starting point,  $L_1$ , is on the left.  $SP \le SS$ 

Example:  $HC \le TSP$ 

Must be able to rewrite HC as TSP such that they have the same answer.



Figure 2: Graph for  $HC \le TSP$  Proof

For proof, must be able to show either:

- A:  $yes \rightarrow yes$  and  $yes \leftarrow yes$
- B:  $yes \rightarrow yes$  and  $no \rightarrow no$
- Either A or B requires two steps
- Sometimes one path is much easier
- Option B for  $HC \le TSP$
- If HC is yes instance (HC exists), then the found HC makes TSP a yes instance for weights=1 and bound=num\_nodes
- If HC is no instance (no HC exists), then TSP is also no instance because no HCs exist for any cost.

#### Why is Reduction Useful?

- What if SP is intractable, and SS is in P?
- This is impossible! Reducibility allows you to solve SP in polynomial-time by transforming into SS and solving.

# 2 NP-completeness

A problem, *L*, is NP-Complete if:

•  $L \in NP$ 



Figure 3: Solving  $A_1$  using  $A_2$  Solver and Reducibility

• For every  $L' \in NP$ ,  $L' \leq L$ 

In words, Every problem in NP should be reducible to L in polynomial time. This essentially means that all NP complete problems are harder than or equal to any other problem in NP. How do we show this?

### 3 Key Results

- 1. If  $L_1 \le L_2$ , and  $L_2 \in P$ , then  $L_1 \in P$
- 2. If  $L_1 \le L_2$  and  $L_1 \notin P$ , then  $L_2 \notin P$
- 3. If *L* is NPC and  $L \in P$ , then  $NP \in P$
- 4. If  $L' \in NP$  such that  $L' \notin P$ , then all  $NPC \notin P$

## 4 NPC Examples

#### Satisfiability (SAT)

- 1971 Cook found first NPC problem!
- Satisfiability Problem (first one!)
- Consider boolean expression  $\overline{x}_3(x_1 + \overline{x}_2 + x_3)$
- Expression is satisfiable if a set of inputs exists which can produce a true output from the expression.
- Given a POS form of an expression, is it satisfiable?
- Ex:  $(x_1 + x_2 + x_3)(x_1 + \overline{x}_2)(x_2 + \overline{x}_3)(x_3 + \overline{x}_1)(\overline{x}_1 + \overline{x}_2 + \overline{x}_3)$

- Each clause must be satisfiable
- Going by hand from left to right, we can find that this isn't satisfiable.
- How can every problem be reduced to this?
- All problems in NP have a verification algorithm
- Verification algorithm can be expressed as a satisfiability instance, this is the reduction.
- This shows that  $SAT \in NPC$ ! First problem ever done.
- This result can be leveraged to prove that other problems are NPC
- $NP \leq SAT$

#### **Evolution of Problems**

- Year after SAT, first 10 problems shown to be NPC
- After 50 years there are TONS of problems in the list of NPC
- Problems from every field on here.
- When you have a new problem, look for a similar problem that is proved to be NPC and reduce it to your problem.

### Arbitrary Problem $L_2$

• If  $L_1 \in NPC$  and  $L_1 \leq L_2$  than  $L_2 \in NPC$