Something Something

Fmoc

December 29, 2024

There are something I should have learnt back in my first two years as an undergraduate.

1 Polynomials

1.1 Some Divisibility

Proposition 1.1. Let R be a UFD, $X \in R$, $a, b \in \mathbb{Z}_{\geq 1}$. Then the ideal

$$(X^a - 1) + (X^b - 1) = (X^{(a,b)-1}).$$

In particular, the gcd

$$(X^a - 1, X^b - 1) = X^{(a,b)} - 1.$$

1.2 Resultant and Discriminant

Let K be a field. We want to know when are two polynomials $f,g\in K[X]$ coprime.

$$\textbf{Lemma 1.1.} \ (f,g) \neq 1 \iff \exists u,v \in K[X] \setminus \{0\} \text{ s.t. } \begin{cases} fu = gv, \\ \deg u < \deg g, \ \deg v < \deg f. \end{cases}$$

Proof. If $(f,g) \neq 1$, then put u = g/(f,g), v = f/(f,g).

$$\text{If } (f,g)=1 \text{ and } fu=gv \text{, then } u \mid g, \ v \mid f \text{, so } g/u=f/v \text{ divides } (f,g)=1 \text{, meaning } u=g, v=f. \\ \square$$

Now assume fu = gv for some $u, v \in K[X]$ with $\deg u < \deg g, \deg v < \deg f$. Lemma 1.1 shows that, $(f,g) \neq 1$ iff fu = gv has nonzero solution. This is a linear equation in the K-vector space $K \oplus KX \oplus \cdots \oplus KX^{m+n-1}$, and it has a nonzero solution iff and only if the discriminant is zero.

Definition 1. Let A be a commutative ring, $f, g \in A[X]$. We define the **resultant** of $f = \sum_{i=0}^{n} a_i X^i$ and $g = \sum_{j=0}^{m} b_j X^j$ to be¹

$$\operatorname{res}_{X}(f,g) := \begin{vmatrix} a_{n} & \cdots & a_{0} \\ & a_{n} & \cdots & a_{0} \\ & & & \ddots \\ & & & & a_{n} & \cdots & a_{0} \\ \\ b_{m} & \cdots & b_{0} & & & \\ & & b_{m} & \cdots & b_{0} \\ & & & \ddots & & \\ & & & & b_{m} & \cdots & b_{0} \end{vmatrix},$$

¹Of course, we require $\deg f = n$ and $\deg g = m$.

a determinant of an $(n+m) \times (n+m)$ -matrix over A.

So we can rephrase Lemma 1.1 into: $f, g \in K[X]$ are coprime if and only if their resultant $\operatorname{res}_X(f,g) \neq 0$. Now assume that both f and g split in K. Then $(f,g) \neq 1 \iff f$ and g share at least one same root. This suggests that $\operatorname{res}_X(f,g)$ should be divided by all x-y, where x is a root of f and g is a root of g; multiplicity are considered here.

Theorem 1. If $f = \sum_{i=0}^n a_i X^i = \prod_{i=1}^n (X - x_i)$ and $g = \sum_{j=0}^m b_j X^j = \prod_{j=1}^m (X - y_j)$, are polynomials that splits in K, then

$$\operatorname{res}_X(f,g) = a_n^m b_m^n \prod_{i=1}^n \prod_{j=1}^m (x_i - y_j).$$

In particular, we can study if a polynomial has multiple roots (in its splitting field) using resultant.

Definition 2. Let A be a commutative ring and $f(X) = a_n X^n + \cdots + a_0 \in A[X]$. The **discriminant** of f is

$$\operatorname{disc}(f) := \frac{(-1)^{\frac{1}{2}n(n-1)}}{a_n} \operatorname{res}_X(f, f') \in A,$$

where $f'(X) = na_n X^{n-1} + \cdots + a_1$ is the derivative of f.

Note that $\operatorname{res}_X(f, f')$ is a multiple of a_n , because its first column is ${}^t(a_n\ 0\ \cdots\ 0\ na_n\ 0\ \cdots\ 0)$, and we require $a_n \neq 0$. Thus $\operatorname{disc}(f)$ is well-defined.

So f has multiple roots iff disc(f) = 0.

Example 1.1. (1) If
$$f(X) = aX^2 + bX + c$$
, then $disc(f) = -\frac{res_X(f, f')}{a} = b^2 - 4ac$.

(2) If
$$f(X) = X^3 + pX + q$$
, then $\operatorname{disc}(f) = -\operatorname{res}_X(f, f') = -(4p^3 + 27q^2)$.

Proposition 1.2. Let $f(X) = a_n X^n + \cdots + a_0 \in K[X]$, then

$$\operatorname{disc}(f) = a_n^{2n-2} \prod_{1 \le i \le j \le n} (x_i - x_j)^2,$$

where x_1, \ldots, x_n are all the roots of f in a fixed splitting field with multiplicity counted.

Proof. By Theorem 1,

$$\operatorname{res}_X(f,g) = a_n^m \prod_{i=1}^n g(x_i).$$

Use this to compute.

2 Elementary Number Theory

2.1 Valuation of Binomial Coefficients

Proposition 2.1. Let $n \in \mathbb{Z}_{>1}$, then

$$v_p(n!) = \sum_{i \ge 1} \left\lfloor \frac{n}{p^i} \right\rfloor$$

$$= \frac{n - \text{sum of digits in the expansion of } n \text{ in base } p}{p - 1}.$$

For example,
$$v_p(p^r!) = \frac{p^r - 1}{p - 1}$$
.

Proof. Think and you'll find the first equality trivial.

If $n = \sum_{i \geq 0} n_i p^i$ with $0 \leq n_i \leq p - 1$, then

$$\left[\frac{n}{p^i}\right] = \frac{n - (n_0 + n_1 p + \dots + n_{i-1} p^{i-1})}{p^i}, \quad i \ge 1.$$

So

$$v_p(n!) = n \sum_{i \ge 1} \frac{1}{p^i} - \sum_{i \ge 1} \sum_{j=0}^{i-1} n_j p^{j-i}$$

$$= \frac{n}{p-1} - \sum_{i \ge 0} n_j \sum_{i \ge j+1} p^{j-i} = \frac{n - \sum_{j \ge 0} n_j}{p-1}.$$

Corollary 2.1 (Kummer). Let $a, b \in \mathbb{Z}_{>1}$, then

$$v_p\left(\binom{a+b}{b}\right) = \sum_{i\geq 1} \left(\left\lfloor \frac{a+b}{p^i} \right\rfloor - \left\lfloor \frac{a}{p^i} \right\rfloor - \left\lfloor \frac{b}{p^i} \right\rfloor\right)$$
$$= \# \text{ of carries when compute } a+b \text{ in base } p.$$

Proof. Note that if $n = \sum_{i \geq 0} n_i p^i$ for $0 \leq n_i \leq p-1$, then

$$\left| \frac{n}{p^i} \right| = \frac{n - (n_0 + n_1 p + \dots + n_{i-1} p^{i-1})}{p^i}.$$

By definition, there is a carry at p^i in a+b means that

$$(a_0 + a_1 p + \dots + a_{i-1} p^{i-1}) + (b_0 + b_1 p + \dots + b_{i-1} p^{i-1}) \ge p^i.$$

So Proposition 2.1 gives the result.

3 Commutative Algebra

3.1 Nakayama Lemma

3.2 Flatness

Recall:

preserve $\varprojlim \iff$ right-adjoint \implies left-exact \iff right-derivative \iff preserve \varprojlim

3.2.1 Definition

Let A be a commutative ring, M an A-module. We say M is **flat** over A, if the tensor-with-M functor $(-) \otimes_A M$ is exact; i.e., the tensor-with-M functor preserves injections:

$$N \hookrightarrow N' \implies N \otimes_A M \hookrightarrow N' \otimes_A M'$$
.

Proposition 3.1 (Basic properties of flat modules). Let A be a commutative ring, B an A-algebra.

(a) free \implies flat.

- (b) (Tensor) M flat over A & N flat over $A \Longrightarrow M \otimes_A N$ flat over A.
- (c) (Base change) M flat over $A \implies M \otimes_A B$ flat over B.
- (d) (Transitivity) B flat over A & M flat over $B \Longrightarrow M$ flat over A.

Theorem 2. An A-module M is flat if and only if for every ideal I of A, $I \otimes_A M \to IM$ is an isomorphism.

Corollary 3.1. Over a PID, flat \iff torsion-free.

3.2.2 Local Nature of Flatness

Corollary 3.2. Over a Dedekind domain, flat \iff torsion-free.

3.3 Cyclotomic Extensions

Fix an algebraic closure \bar{F} of a field F. An n-th root of unity is $\zeta \in F$ s.t. $\zeta^n = 1$. A **primitive** n-th root of unity is an n-th root of unity $\zeta \in \mu_n(\bar{F})$ s.t.

$$\zeta^d = 1 \iff n \mid d.$$

Proposition 3.2. Assume char $F \nmid n$, then:

- $\mu_n(\bar{F}) \simeq \mathbb{Z}/n\mathbb{Z}$ as group, and the generatos of $\mu_n(\bar{F})$ are precisely the *n*-th *premitive* roots of unity.
- $F(\mu_n)$ is the splitting field of X^n-1 over F, and $F(\mu_n)/F$ is Galois with an embedding

$$\chi_n: \operatorname{Gal}(F(\mu_n)/F) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times}$$

defined by

$$\sigma(\zeta) = \zeta^{\chi_n(\sigma)}, \quad \forall \zeta \in \mu_n, \ \sigma \in \operatorname{Gal}(F(\mu_n)/F).$$

Cyclotomic Polynomials

Definition 3. The *n*-th cyclotomic polynomial is

$$\Phi_n(X) := \prod_{d|n} (X^d - 1)^{\mu(n/d)},$$

where $\mu:\mathbb{Z}_{\geq 1} \to \{0,\pm 1\}$ is the Mobiüs function.

Example 3.1. If $p \in \mathbb{Z}$ is a prime, then

$$\Phi_{p^n}(X) = \frac{X^{p^n} - 1}{X^{p^{n-1}} - 1}, \quad \forall n \in \mathbb{Z}_{\geq 1}.$$

Theorem 3. The polynomial $\Phi_n(X) \in \mathbb{Z}[X]$ is monic with integral coefficients of degree $\varphi(n) = \#\mathbb{Z}/n\mathbb{Z}$. These polynomials are characterised by

$$\prod_{d|n} \Phi_d(X) = X^n - 1, \quad \forall n \ge 1.$$

In addition, $\Phi_n(X)$ is irreducible over \mathbb{Q} .

4 Schemes

In this section, all rings are assumed to be commutative.

4.1 Some Properties of Schemes

4.1.1 Reduced Schemes

A ring A is reduced if its nilradical nil(A) = 0.

A scheme X is said to be **reduced at** $x \in X$, if the local ring $\mathcal{O}_{X,x}$ is reduced. We say that X is **reduced** if it is reduced at every point.

Proposition 4.1. Let X be a scheme. Then TFAE:

- (a) X is reduced.
- (b) $\forall U \subset X$ open, $\mathcal{O}_X(U)$ is reduced.
- (c) \exists affine cover $\{U_i\}$ of X, s.t. all $\mathcal{O}_X(U_i)$ are reduced.

To prove this, we consider an ideal sheaf \mathcal{N}_X on X defined by

$$\mathcal{N}_X(U) := \{ s \in \mathcal{O}_X(U) \mid s_x \in \text{nil}(\mathcal{O}_{X,x}) \},$$

so that X is reduced $\iff \mathcal{N}_X = 0$

Proposition 4.2. Let Z be a closed subset of the scheme X. Then there is a unique structure of reduced scheme on Z, making it a closed subscheme of X.

In particular, there is a unique closed subscheme $i: X_{\text{red}} \hookrightarrow X$ with the same topological space as X. More precisely, $X_{\text{red}} = V(\mathcal{N}_X) = (X, \mathcal{O}_X/\mathcal{N}_X)$. This subscheme X_{red} verifies the following property:

• If Y is a reduced scheme, then any morphism $Y \to X$ factors through $Y \to X_{\text{red}} \to X$.

Proof of Proposition 4.1 and Proposition 4.2. Let $U \subset X$ be an affine open. Then since taking radical commutes with localization, we have $\mathcal{N}_X(U) = \mathrm{nil}(\mathcal{O}_X(U))$. This proves Proposition 4.1. We also see that $|V(\mathcal{N}_X)| = |X|$.

Next, we verify that the closed ringed subspace $X_{\text{red}} := (X, \mathcal{O}_X/\mathcal{N}_X)$ of X is a scheme (and, of course, reduced); that is, it is locally affine. So assume X = Spec A. Let N = nil(A) and $i : \text{Spec } A/N \to \text{Spec } A$ the closed embedding. For any $g \in A$, we know that the kernel of

$$A_g = \mathcal{O}_{\operatorname{Spec} A}(D(g)) \to \mathcal{O}_{\operatorname{Spec} A/N}(D(\bar{g})) = (A/N)_{\bar{g}}$$

is $N \otimes_A A_g$, which = $\operatorname{nil}(A_g) = \mathcal{N}_X(D(g))$; i.e, $\ker i^\# = \mathcal{N}_X$. Hence $X_{\operatorname{red}} \simeq \operatorname{Spec} A/N$ is a scheme.

Now let Z be a closed subset of X. We first show that the reduced closed subscheme (Z, \mathcal{O}_Z) is unique if it exists. For an affine open $U \subset X$, $(Z \cap U, \mathcal{O}_Z|_{Z \cap U})$ is a closed subscheme of U, so it is isomorphic to $\operatorname{Spec} \mathcal{O}_X(U)/I$ for some ideal $I \subset \mathcal{O}_X(U)$. As a subset of $U = \operatorname{Spec} \mathcal{O}_X(U)$, $Z \cap U = V(I)$. Since Z is reduced, $\operatorname{nil}(\mathcal{O}_X(U)/I) = 0$, namely I is radical. If there is another reduce closed subscheme structure of X on Z, it must also be given by a radical ideal $J \subset \mathcal{O}_X(U)$ on U, and V(I) = V(J). But for radical ideals, this means I = J.

To make Z a reduced closed subscheme, take affine cover $\{U_i = \operatorname{Spec} A_i\}_i$ of X and ideals $I_i \subset A_i$ s.t. $Z \cap U_i = V(I_i)$. We endow $Z \cap U_i$ with the reduced scheme structure of $\operatorname{Spec} A_i / \sqrt{I_i}$ and use uniqueness to glue them.

4.2 Irreducible Components

A topological space X is **irreducible** if it is *not* the union of proper closed subsets.

- The closure of a irreducible subset is irreducible.
- The set of irreducible subsets in a space X admits maximal w.r.t. inclusions, called **irreducible** components.

4.3 Integral Schemes

A scheme X is said to be **integral at** $x \in X$, if the local ring $\mathcal{O}_{X,x}$ is an integral domain.

4.4 Normal Schemes

An integral domain A is normal if it is integrally closed in its fraction field.

4.5 Regular Schemes

A scheme X is said to be **normal at** $x \in X$, if the local ring $\mathcal{O}_{X,x}$ is (an integral domain and) normal.

5 Some Properties of Morphisms

5.1 Seperated Morphisms

5.2 Quasi-Compact Morphisms

A morphism $f: X \to Y$ of schemes is said to be **quasi-compact**, if the inverse image $f^{-1}(V)$ of any affine open $V \subset Y$ is quasi-compact.

Proposition 5.1. Let $f: X \to Y$ be a morphism of schemes.

- (1) If f is a closed immersion, then f is quasi-compact.
- (2) If f is an open immersion, and Y is locally Noetherian, then f is quasi-compact.

5.3 Morphisms of Finite Type

A ring homomorphism $A \to B$ is of finite type if it make B a finitely generated A-algebra.

A morphism $f: X \to Y$ of schemes is said to be **of finite type**, if

- f is quasi-compact, and
- For any affine open $V \subset Y$ and affine open $U \subset f^{-1}(V)$, the map $\mathcal{O}_Y(V) \to \mathcal{O}_X(f^{-1}V) \to \mathcal{O}_X(U)$ is of finite type.

5.4 Proper Morphisms

5.5 Flat Morphisms

A morphism $f: X \to Y$ of schemes is said to be **flat at** $x \in X$, if $f_x^\#: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is flat. We say that f is **flat** if it is flat at every point.

- 5.6 Unramified Morphisms
- 5.7 Étale Morphism
- 5.8 Smooth Morphisms