Game: Hangman

3 - Phát triển chương trình https://github.com/csuet

Nội dung

- Trò chơi Hangman
- Sơ đồ khối, mã giả và tư tưởng chia để trị
 - Hình dung các thành phần của chương trình
- Kỹ thuật:
 - Thao tác với xâu ký tự trong C++
 - Bắt đầu với hàm đơn giản, dần dần biến đổi và luôn có chương trình chạy được

Cùng chơi Hangman

- Đối với người mới lập trình
- Mô-đun hóa chương trình
- Thao tác với xâu ký tự
- Xử lý logic của trò chơi (game logic)
- Vẽ hình đơn giản (text)

Hangman: Luật chơi

- Trò chơi giữa A (chủ trò) và B (người chơi)
- A nghĩ ra một từ tiếng Anh nhưng giấu
 - secretWord: Số vạch = số chữ cái trong từ
- B tìm cách đoán ra từ của A
 - Mỗi lần B đoán 1 chữ cái đúng, A ghi chữ cái đó lên các vạch tương ứng
 - Nếu B đoán sai, B mất 1 lượt đoán
- Số lượt đoán sai của B = số nét vẽ giá treo và thân người

Hangman: Luật chơi

- Sai lần đầu: Vẽ 1 vạch (dây treo cổ)
- Sai lần 2: Vẽ vòng tròn (đầu)
- Sai lần 3: Vẽ 1 vạch (thân người)
- Sai lần 4: Vẽ 1 vạch (tay trái)
- Sai lần 5: Vẽ 1 vạch (tay phải)
- Sai lần 6: Vẽ 1 vạch (chân trái)
- Sai lần 7: Vẽ 1 vạch (chân phải)
- Đủ thân người → thua cuộc

Ví dụ 1 ván chơi

Lập trình trò chơi Hangman

Hãy lập trình trò chơi Hangman với máy là chủ trò Trước khi bắt tay vào lập trình, hãy *hình dung các tác vụ* của chương trình

- Khởi tạo: máy nghĩ từ tiếng Anh, số đếm lần đoán sai, đúng
- Nhập liệu: phán đoán của người chơi
- Cập nhật: xử lý kết quả đoán và thay đổi trạng thái trò chơi
- Hiển thị trạng thái trò chơi: người trên giá treo và secretWord
- Thông báo kết quả trò chơi

Sơ đồ khối - quan hệ giữa các tác vụ

Mã giả

```
Initialize
                                               Render
                                                                   Input
choose secretWord;
initialize guessedWord with '-';
                                               false
badGuessCount = 0;
                                                Game
                                                               Update game
                                                 Over
                                               true
do {
    render game;
                                               End game
        char guess = readAGuess;
        if (secretWord contains guess) update guessedWord;
        else badGuessCount++;
} while (game not over);
display game result;
```

```
string secretWord = chooseWord();
string guessedWord = string(word.length(), '-');
int badGuessCount = 0;
do {
   renderGame(guessedWord, badGuessCount);
       char guess = readAGuess();
       if (contains(secretWord, guess))
       guessedWord = update(guessedWord, secretWord, guess);
       else badGuessCount++;
} while (badGuessCount < 7 && secretWord != guessedWord);</pre>
renderGame(guessedWord, badGuessCount);
if (badGuessCount < 7) cout << "Congratulations! You win!";</pre>
else cout << "You lost. The correct word is " << word;
```

10 / 24

```
string secretWord = chooseWord();
string guessedWord = string(secretWord.length(), '-');
int badGuessCount = 0;
                                                      Các logic đủ đơn
do {
                                                      giản để đặt tại
   renderGame(guessedWord, badGuessCount);
                                                      câu chuyện chính
       char guess = readAGuess();
       if (contains(secretWord, guess))
       guessedWord = update(guessedWord, secretWord, guess);
       else badGuessCount++;
} while (badGuessCount < 7 && secretWord != guessedWord);</pre>
renderGame(guessedWord, badGuessCount);
if (badGuessCount < 7) cout << "Congratulations! You win!";</pre>
else cout << "You lost. The correct word is " << secretWord;</pre>
```

Chia để trị

- Sơ đồ khối và mã giả
 - Chuyển hóa từ ngôn ngữ đời thường sang ngôn ngữ gần máy hơn
 - Cấu trúc chung của chương trình cơ bản đã rõ
 - Tách các thành phần tương đối độc lập thành hàm
- Xây dựng, cài đặt từng thành phần / hàm
 - Thử nghiệm các kỹ thuật
 - Kiểm tra, chạy thử
 - Ráp nối

Các vấn đề kĩ thuật tồn đọng

- Choose word: chọn ra một từ ngẫu nhiên từ đâu?
 - Hardcode? Hơi mất công nếu muốn có nhiều lựa chọn
 - o file? Cần học về ra vào dữ liệu với file
- Render game: vẽ màn hình game với giá treo cổ như thế nào?
 - Đồ họa? Chưa học thư viện
 - Text? Vẫn mất thì giờ vẽ và chỉnh
- Quyết định thế nào?

Làm gì trước?

- Thử nghiệm các kỹ thuật
- Kiểm tra, chạy thử
- Ráp nối

Hai cách tiếp cận:

- 1. Thử các kĩ thuật trước khi lắp ghép vào chương trình chính
- 2. Chạy chương trình với phiên bản tối thiểu để test logic trước khi nâng cấp về giao diện, hiệu năng

Kế hoạch

Mục tiêu: nhanh chóng có game chơi được, nâng cấp dần chất lượng

Các phiên bản:

- **0.1** Phiên bản tối thiểu dùng để test logic chính của game: chooseWord luôn trả về một từ, renderGame hiển thị thông tin tối thiểu đủ chơi
- **0.2** ChooseWord chọn ngẫu nhiên trong một danh sách hardcode
- 1.0 RenderGame vẽ được giá treo cổ
- 2.0 ChooseWord chọn từ trong file (để các bài sau)

15 / 24

3.0 RenderGame dùng thự viên đồ họa (để tự làm sau)

Phiên bản 0.1

```
Giao diện tối thiểu
Từ được chọn cố định
```

Tập trung vào logic chính của game

string chooseWord()

endl;

cout << guessedWord << endl;</pre>

void renderGame(string guessedWord, int badGue

return "book";

cout << "Number of wrong guesses:</pre>

Your guess: a

Number of wrong guesses: 1 Your guess: **b**

Number of wrong guesses: 1 Your guess: e b---

Number of wrong guesses: 2 Your guess: o boo-

Number of wrong guesses: 2 Your guess: **k** book

Number of wrong guesses: 2 Congratulations! You wink 124

Number of wrong guesses: 0

Thao tác với từ

- Chương trình cần thao tác và xử lý từ và chuỗi kí tự. Ví dụ:
 - Cần kiểm tra xem "book" có chứa kí tự 'o'
 - Update("----", "book", 'o') cần biến "----" thành "-oo-"
- Các lựa chọn kiểu dữ liệu cho từ:
 - Mång char
 - Kiểu string (tự tra tài liệu)
 string ~ Mảng các kí tự + Các hàm tiện ích
- Lựa chọn của ta: string

string

- Khai báo giống các kiểu cơ bản
- Có thể là kết quả trả về của hàm
- Có nhiều thao tác xâu kí tự được cài đặt sẵn
- Lập trình viên không phải
 lo cấp phát bộ nhớ

```
Io câp phát bộ nhở

http://www.cplusplus.com/reference/string/string/
```

```
cout << greeting << " " << name << endl;
cout << "First char: " << greeting[0];

greeting[0] = 'H';
cout << greeting + " " + name << endl;</pre>
```

18 / 24

size_t pos = name.find("or"); // 1

//sub string starting at pos
string found = name.substr(pos);
cout << found << endl; //</pre>

orld!

cout << name.size() << endl; // 6</pre>

string greeting = "hello"

string name = "world!";

Xử lý luật chơi (game logic)

Trạng thái trò chơi tại mỗi lượt chơi (lượt đoán):

- char guess: phán đoán của người chơi
- string secretWord: từ tiếng Anh được máy chọn để người chơi đoán
- string guessedWord: các vạch (chữ cái chưa đoán được) và các chữ cái đã đoán được
- int badGuessCount: số lần đoán sai

Cần cập nhật guessedWord, badGuessCount theo luật chơi, kiểm tra thắng / thua

Xử lý luật chơi (game logic)

- Kiểm tra thắng thua dễ
 - Thua: badGuessCount == 7
 - Đã đoán xong: secretWord == guessedWord
 - Chưa đoán xong: secretWord != guessedWord
 - (ở kiểu string, các phép so sánh == và != kiểm tra nội dung hai chuỗi kí tự nằm trong hai biến string)

Xử lý luật chơi (game logic)

Cập nhật guessedWord, badGuessCount theo luật chơi. Tiếp tục cách tiếp cận top-down if (contains(secretWord, guess))
 Update //sửa guessedWord else badGuessCount++;

 Hàm update sửa guessedWord để hiện các kí tự đã đoán được

```
'----' ('book') thành '-oo-' nếu vừa đoán 'o' '-oo-' ('book') thành '-ook' nếu vừa đoán 'k'
```

update(guessedWord, secretWord, guess)

Đầu vào (tham số):

- char guess: phán đoán của người chơi
- string guessedWord: các vạch (chữ cái chưa đoán được) và các chữ cái đã đoán được
- string secretWord: từ máy chọn để người chơi đoán

Đầu ra: Xâu guessedWord mới, hiển thị các vị trí guess xuất hiện trong secretWord

```
update("-----", "HANGMAN", 'A') trả về "-A---A-" update("-A---A-", "HANGMAN", 'P') trả về "-A---A-" update("-A---A-", "HANGMAN", 'H') trả về "HA---A-"
```

update(guessedWord, word, guess)

Duyệt lần lượt các ký tự của secretWord: Nếu ký tự đó bằng guess thì thay thế vào vị trí tương ứng (cùng chỉ số) trong guessedWord

```
string update(string guessedWord, string secretWord, char guess)
      for (int i = secretWord.length() - 1; i >= 0; i--) {
        if (secretWord[i] == guess) {
           guessedWord[i] = guess;
    return guessedWord;
```

23 / 24

update(guessedWord, word, guess)

Chú ý hàm length() lấy độ dài của string, cách đọc và ghi giá trị của một ký tự trong string

```
string update(string guessedWord, string secretWord, char guess)
      for (int i = secretWord.length() - 1; i >= 0; i--) {
        if (secretWord[i] == guess) {
           guessedWord[i] = guess;
    return guessedWord;
```

Hàm contains(word, ch)

Đầu vào (tham số):

- char ch: một kí tự
- string word: từ cần kiểm tra xem có chứa kí tự ch hay không

```
Đầu ra: giá trị kiểu bool:
```

```
true nếu word có chứa kí tự ch, là false nếu word không chứa ch
contains("HANGMAN", 'A') trả về true
contains("HANGMAN", 'P') trả về false
```

Gợi ý: hàm s.find_first_of(c) trả về chỉ số của vị trí đầu tiên của c trong string s, trả về hằng số string::npos nếu không tìm thấy

Hoàn thành phiên bản 0.1

- Test được luật chơi
- Do chooseWord cố định nên khi chạy ta biết đang đoán từ nào
 - dễ dàng tạo các trường hợp đoán sai/đúng để test badGuessCount và renderGame

 Nên refactor (cải tiến, làm sạch code) trước khi đi tiếp

Dùng hằng để tránh magic number

```
do {
                                                  Magic number:
} while (badGuessCount < 7 && secretWord</pre>
                                                  7 là gì vậy?
if (badGuessCount < 7) cout << "Congratulations! You win!";</pre>
                                                          Dễ hiểu hơn
                                                            Dễ dàng sửa giá
const int MAX BAD GUESSES = 7;
                                                            trị khi cần
 while (badGuessCount < MAX_BAD_GUESSES && secretWord != guessedWord);
if (badGuessCount < MAX BAD GUESSES) ...
```

Phiên bản 0.2

Có thể chọn từ ngẫu nhiên từ một danh sách cố định trong code (hardcode)

string chooseWord()

- Danh sách từ vựng lưu trong mảng
- Chọn từ ngẫu nhiên ⇔ Chọn chỉ số ngẫu nhiên trong mảng đó
- Các kỹ thuật cần thiết
 - Dữ liệu về từ vựng
 http://www.manythings.org/vocabulary/lists/l/
 http://www.manythings.org/vocabulary/lists/l/words.php?f=ogden-picturable (200 từ)
 - Mång các string (array of strings)
 http://stackoverflow.com/questions/9626722/c-string-array-initialization

string chooseWord()

Thử với số từ nhỏ

```
const string WORD_LIST[] = {"dog", "cat", "human"};
string chooseWord()
{
    int randomIndex = rand() % 3;
    return WORD_LIST[randomIndex];
}
```

string chooseWord()

- Tổng quát hóa số lượng từ (không thể mỗi lần sửa danh sách lại phải sửa cả số từ)
 - Kĩ thuật tìm số phần tử của mảng

```
const string WORD_LIST[] = {"dog", "cat", "human"};
const int WORD_COUNT = sizeof(WORD_LIST) / sizeof(string);
string chooseWord()
{
    int randomIndex = rand() % WORD_COUNT;
    return WORD_LIST[randomIndex];
}
```

string chooseWord(): 200 tù

- Thay danh sách từ
- Đã có srand()?
- Đến đây ta đã cho chương trình chọn ngẫu nhiên 1 từ

 Hoàn thành phiên bản 0.2

```
string WORD_LIST[] = {
        "angle", "ant", "apple", "arch", "arm", "army",
        "baby", "bag", "ball", "band", "basin", "basket", "bath", "bed", "bee", "bell", "berry",
        "bird", "blade", "board", "boat", "bone", "book", "boot", "bottle", "box", "boy",
        "brain", "brake", "branch", "brick", "bridge", "brush", "bucket", "bulb", "button",
        "cake", "camera", "card", "cart", "carriage", "cat", "chain", "cheese", "chest",
        "chin", "church", "circle", "clock", "cloud", "coat", "collar", "comb", "cord",
        "cow", "cup", "curtain", "cushion",
        "dog", "door", "drain", "drawer", "dress", "drop", "ear", "egg", "engine", "eye",
        "face", "farm", "feather", "finger", "fish", "flag", "floor", "fly",
        "foot", "fork", "fowl", "frame", "garden", "girl", "glove", "goat", "gun",
        "hair", "hammer", "hand", "hat", "head", "heart", "hook", "horn", "horse",
        "hospital", "house", "island", "jewel", "kettle", "key", "knee", "knife", "knot",
        "leaf", "leg", "library", "line", "lip", "lock",
        "map", "match", "monkey", "moon", "mouth", "muscle",
        "nail", "neck", "needle", "nerve", "net", "nose", "nut",
        "office", "orange", "oven", "parcel", "pen", "pencil", "picture", "pig", "pin",
        "pipe", "plane", "plate", "plow", "pocket", "pot", "potato", "prison", "pump",
        "rail", "rat", "receipt", "ring", "rod", "roof", "root",
        "sail", "school", "scissors", "screw", "seed", "sheep", "shelf", "ship", "shirt",
        "shoe", "skin", "skirt", "snake", "sock", "spade", "sponge", "spoon", "spring",
        "square", "stamp", "star", "station", "stem", "stick", "stocking", "stomach",
        "store", "street", "sun", "table", "tail", "thread", "throat", "thumb", "ticket",
        "toe", "tongue", "tooth", "town", "train", "tray", "tree", "trousers", "umbrella",
        "wall", "watch", "wheel", "whip", "whistle", "window", "wire", "wing", "worm",
   };
                                                                                     32 / 24
```

Phiên bản 1.0

Vẽ giá treo cổ bằng text

Hiển thị giá treo cổ

- Bản chất là 1 đoạn văn bản có nhiều dòng
 - 1 Hình vẽ ⇔ 1 string (xuống dòng bằng ký tự \n)
- Nếu lưu các hình vẽ trong mảng string
 - badGuessCount tương ứng với chỉ số mảng

renderGame()

Luôn bắt đầu từ đơn giản để chạy thử

```
const string FIGURE[] = {
  "fig0", "fig1", "fig2", "fig3", "fig4", "fig5", "fig6", "fig7"
void renderGame(string guessedWord, int badGuessCount)
        cout << FIGURE[badGuessCount] << endl;</pre>
        cout << guessedWord << endl;</pre>
        cout << "Number of wrong guesses: " << badGuessCount <<</pre>
endl;
```

Hoàn thành phiên bản 1.0

Sau đó đưa hình vẽ thật vào biến figure

36 / 2

Tổng kết

- Viết chương trình
 - Bắt đầu đơn giản
 - Bổ sung chi tiết dần dần, làm đến đâu test đến đấy.
 - Từng bước nhỏ tiến tới hoàn thiện

Kết quả:

- Luôn có chương trình chạy được
- Code mới dựa trên nền tảng là code cũ đã chạy đúng → giảm thời gian sửa lỗi
- Nhớ dùng hằng thay vì magic number
 - Code dễ hiểu, dễ sửa