Mechanika Nieba Wyznaczanie parametrów orbity

Plan prezentacji

- 1. Parametry orbity opis ogólny
- 2. Szczegółowy opis elementów orbitalnych
- 3. Elementy orbitalne w różnych układach współrzędnych
- 4. Wyznaczenie elementów orbitalnych na podstawie wektora stanu
- 5. Elementy orbitalne planet Układu Słonecznego
- 6. Zadania

Parametry orbity

Wyróżnia się 6 głównych parametrów orbity nazywanych elementami orbitalnymi.

i – inklinacja, nachylenie orbity do płaszczyzny odniesienia,

ν – anomalia prawdziwa,
 ω – argument albo długość perycentrum,

Ω – długość węzła wstępującego

Parametry orbity

- e mimośród orbity,
- a półoś wielka orbity

Inklinacja

Określa kąt pomiędzy płaszczyzną orbity a płaszczyzną odniesienia. Zawiera się pomiędzy 0° and 180°

Jeżeli **0 deg < i < 90 deg** Jeżeli **90 deg < i < 180 deg**

orbita "prograde" - wsteczna

Anomalia prawdziwa

Kąt zawarty pomiędzy kierunkiem od ogniska orbity do perycentrum a kierunkiem od ogniska do ciała na orbicie

Związek pomiędzy anomalią prawdziwą a promieniem wodzącym ciała opisuje (we współrzędnych biegunowych) zależność:

$$r=rac{p}{1+e\cdot\cos
u}$$
 $p=a\cdot(1-e^2)$

Argument perycentrum

Określa orientację orbity w jej płaszczyźnie. Jest to kąt pozycyjny mierzony w płaszczyźnie orbity między kierunkami od ciała centralnego do węzła wstępującego i do perycentrum. Kąt ω liczony jest w kierunku ruchu ciała opisywanego po orbicie.

Długość węzła wstępującego

Kąt pozycyjny liczony w wybranej płaszczyźnie (często w płaszczyźnie równika ciała centralnego, wokół którego krąży ciało opisywane) od pewnego ustalonego kierunku do punktu, w którym poruszające się po orbicie ciało przekracza tę płaszczyznę ze strony południowej na północną

Mimośród i półoś wielka

Mimośród inaczej ekscentryczność to wielkość charakteryzująca kształt orbity, opisywanej równaniem parametrycznym krzywej stożkowej.

$$Mimośród = \frac{ogniskowa}{półoś wielka} = \frac{c}{a}$$
 $0 < e < 1$

e	Orbit
0	Circle $(a = r)$
<1	Ellipse $(a > 0)$
1	Parabola [$a \approx \infty$ (undefined)]
>1	Hyperbola $(a < 0)$

$$c = \sqrt{a^2 - b^2}$$

$$e = \frac{c}{a} = \sqrt{1 - \frac{b^2}{a^2}}$$

$$p = \frac{b^2}{a} = a(1 - e^2)$$

Elementy orbitalne w różnych układach współrzędnych

		Table 2.1	Orbital elemen	ıt systems		
Type	1	2	3	4	5	6
1 Cartesian (ECI)	х	у	Z	х́	ý	ż
2 ADBARV (ADB)	α (right ascension)	δ (declination)	β (flight-path angle measured from vertical	A (azimuth)	r (distance from geocenter)	υ (inertial speed)
3 Classical (CLA)	a (semimajor axis)	e (eccentricity)	i (inclination)	Ω (right ascension of ascending node)	ω (argument of perigee)	M (mean anomaly)
4 Geographic (GEO)	λ (longitude)	ϕ (latitude)	β	A	r	υ
5 Equinoctial (EQU)	$a_f = e\cos(\Omega + \omega)$	$a_g = e \sin(\Omega + \omega)$	n (mean motion)	L (mean longitude) $L = M + \Omega + \omega$	$=\sin\Omega$ $\tan\frac{i}{2}$	$= \cos \Omega \\ \tan \frac{i}{2}$
6 Spherical (SPH)	r	α	δ	v	$\alpha_v = (right ascension of velocity)$	δ_v (declination of velocity)

Algorytm wyznaczania elementów orbity na podstawie znanych wartości pozycji **r** i prędkości **v** statku kosmicznego w geocentrycznym równikowym układzie współrzędnych:

1. Obliczenie odległości

$$r = \sqrt{\mathbf{r} \cdot \mathbf{r}} = \sqrt{X^2 + Y^2 + Z^2}$$

2. Obliczenie prędkości

$$v = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_X^2 + v_Y^2 + v_Z^2}$$

3. Obliczenie prędkości kątowej

$$v_r = \mathbf{r} \cdot \mathbf{v}/r = (Xv_X + Yv_Y + Zv_Z)/r.$$

Jeżeli v_r > 0, to statek oddala się od perygeum, a jeżeli v_r < 0 to statek leci w kierunku perygeum.

4. Obliczenie wektora momentu pędu

$$\mathbf{h} = \mathbf{r} \times \mathbf{v} = \begin{vmatrix} \hat{\mathbf{I}} & \hat{\mathbf{J}} & \hat{\mathbf{K}} \\ X & Y & Z \\ v_X & v_Y & v_Z \end{vmatrix}$$

5. Obliczenie długości wektora momentu pędu

$$h = \sqrt{\mathbf{h} \cdot \mathbf{h}}$$

6. Obliczenie inklinacji

$$i = \cos^{-1}\left(\frac{h_Z}{h}\right)$$

7. Obliczenie wektora definiującego linię węzłów

$$\mathbf{N} = \hat{\mathbf{K}} \times \mathbf{h} = \begin{vmatrix} \hat{\mathbf{I}} & \hat{\mathbf{J}} & \hat{\mathbf{K}} \\ 0 & 0 & 1 \\ h_X & h_Y & h_Z \end{vmatrix}$$

8. Obliczenie długości wektora

$$N = \sqrt{\mathbf{N} \cdot \mathbf{N}}$$

9. Obliczenie długości węzła wstępującego (RAAN – right ascension of ascending node):

$$\Omega = \cos^{-1}(N_X/N)$$

$$\Omega = \begin{cases}
\cos^{-1}\left(\frac{N_X}{N}\right) & (N_Y \ge 0) \\
360^\circ - \cos^{-1}\left(\frac{N_X}{N}\right) & (N_Y < 0)
\end{cases}$$

10. Obliczenie wektora ekscentryczności:

$$\mathbf{e} = \frac{1}{\mu} \left[\mathbf{v} \times \mathbf{h} - \mu \frac{\mathbf{r}}{r} \right] = \frac{1}{\mu} \left[\mathbf{v} \times (\mathbf{r} \times \mathbf{v}) - \mu \frac{\mathbf{r}}{r} \right] = \frac{1}{\mu} \left[\underbrace{\mathbf{r} v^2 - \mathbf{v} (\mathbf{r} \cdot \mathbf{v})}_{\text{bac-cab rule}} - \mu \frac{\mathbf{r}}{r} \right]$$

$$\mathbf{e} = \frac{1}{\mu} \left[\left(v^2 - \frac{\mu}{r} \right) \mathbf{r} - r v_r \mathbf{v} \right]$$

11. Obliczenie ekscentryczności

$$e = \sqrt{\mathbf{e} \cdot \mathbf{e}}$$

$$e = \sqrt{1 + \frac{h^2}{\mu^2} \left(v^2 - \frac{2\mu}{r}\right)}$$

12. Obliczenie argumentu perygeum

$$\omega = \cos^{-1}\left(\frac{\mathbf{N}}{N} \cdot \frac{\mathbf{e}}{e}\right)$$

$$\omega = \begin{cases} \cos^{-1}\left(\frac{\mathbf{N} \cdot \mathbf{e}}{Ne}\right) & (e_Z \ge 0) \\ 360^{\circ} - \cos^{-1}\left(\frac{\mathbf{N} \cdot \mathbf{e}}{Ne}\right) & (e_Z < 0) \end{cases}$$

13. Obliczenie anomalii prawdziwej

$$\theta = \cos^{-1}\left(\frac{\mathbf{e}}{e} \cdot \frac{\mathbf{r}}{r}\right)$$

$$\theta = \begin{cases} \cos^{-1}\left(\frac{\mathbf{e}}{e} \cdot \frac{\mathbf{r}}{r}\right) & (v_r \ge 0) \\ 360^{\circ} - \cos^{-1}\left(\frac{\mathbf{e}}{e} \cdot \frac{\mathbf{r}}{r}\right) & (v_r < 0) \end{cases}$$

Alternatywna forma równania:

$$\theta = \begin{cases} \cos^{-1}\left[\frac{1}{e}\left(\frac{h^2}{\mu r} - 1\right)\right] & (v_r \ge 0) \\ 360^\circ - \cos^{-1}\left[\frac{1}{e}\left(\frac{h^2}{\mu r} - 1\right)\right] & (v_r < 0) \end{cases}$$

Elementy orbitalne planet Układu Słonecznego

Planetary Mean Orbits (J2000)

Planet (mean)	a AU	e	i deg	Omega deg	~omega deg	L deg
Mercury	0.38709893	0.20563069	7.00487	48.33167	77.45645	252.25084
Venus	0.72333199	0.00677323	3.39471	76.68069	131.53298	181.97973
Earth	1.00000011	0.01671022	0.00005	-11.26064	102.94719	100.46435
Mars	1.52366231	0.09341233	1.85061	49.57854	336.04084	355.45332
Jupiter	5.20336301	0.04839266	1.30530	100.55615	14.75385	34.40438
Saturn	9.53707032	0.05415060	2.48446	113.71504	92.43194	49.94432
Uranus	19.19126393	0.04716771	0.76986	74.22988	170.96424	313.23218
Neptune	30.06896348	0.00858587	1.76917	131.72169	44.97135	304.88003
Pluto	39.48168677	0.24880766	17.14175	110.30347	224.06676	238.92881

Legend	
	arcseconds
Су	Julian century
a	semi-major axis
e	eccentricity
i	inclination
Omega	longitude of the ascending node
~omega	longitude of perihelion
L	mean longitude

Planet (rate)	a AU/Cy	e /Cy	i "/Cy	Omega "/Cy	~omega "/Cy	L "/Cy
Mercury	0.00000066	0.00002527	-23.51	-446.30	573.57	538101628.29
Venus	0.00000092	-0.00004938	-2.86	-996.89	-108.80	210664136.06
Earth	-0.00000005	-0.00003804	-46.94	-18228.25	1198.28	129597740.63
Mars	-0.00007221	0.00011902	-25.47	-1020.19	1560.78	68905103.78
Jupiter	0.00060737	-0.00012880	-4.15	1217.17	839.93	10925078.35
Saturn	-0.00301530	-0.00036762	6.11	-1591.05	-1948.89	4401052.95
Uranus	0.00152025	-0.00019150	-2.09	-1681.40	1312.56	1542547.79
Neptune	-0.00125196	0.0000251	-3.64	-151.25	-844.43	786449.21
Pluto	-0.00076912	0.00006465	11.07	-37.33	-132.25	522747.90

Zmiany elementów orbitalnych w ciągu stulecia

Znając wektor stanu satelity obliczyć elementy orbitalne:

$$r = -6045\hat{\textbf{l}} - 3490\hat{\textbf{J}} + 2500\hat{\textbf{K}}$$
 (km)

$$\mathbf{v} = -3.457\hat{\mathbf{l}} + 6.618\hat{\mathbf{J}} + 2.533\hat{\mathbf{K}} \text{ (km/s)}$$

Rozwiązanie:

Krok 1

$$r = \sqrt{\mathbf{r} \cdot \mathbf{r}} = \sqrt{(-6045)^2 + (-3490)^2 + 2500^2} = 7414 \,\mathrm{km}$$

Krok 2

$$v = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{(-3.457)^2 + 6.618^2 + 2.533^2} = 7.884 \text{ km/s}$$

Krok 3

$$\textit{v}_{r} = \frac{\textit{v} \cdot \textit{r}}{r} = \frac{(-3.457) \cdot (-6045) + 6.618 \cdot (-3490) + 2.533 \cdot 2500}{7414} = 0.5575 \; \text{km/s}$$

Ponieważ v_r>0 satelita oddala się od perygeum Krok 4

$$\begin{aligned} \textbf{h} = \textbf{r} \times \textbf{v} = \begin{vmatrix} \hat{\textbf{I}} & \hat{\textbf{J}} & \hat{\textbf{k}} \\ -6045 & -3490 & 2500 \\ -3.457 & 6.618 & 2.533 \end{vmatrix} = -25,380\hat{\textbf{I}} + 6670\hat{\textbf{J}} - 52,070\hat{\textbf{K}} \left(\text{km}^2/\text{s} \right) \end{aligned}$$

Rozwiązanie cd.:

Krok 5

$$h = \sqrt{\mathbf{h} \cdot \mathbf{h}} = \sqrt{(-25,380)^2 + 6670^2 + (-52,070)^2} = \boxed{58,310 \,\text{km}^2/\text{s}}$$

Krok 6

$$i = \cos^{-1}\frac{h_Z}{h} = \cos^{-1}\left(\frac{-52,070}{58,310}\right) = \boxed{153.2^{\circ}}$$

Ponieważ i>90, satelita jest na orbicie wstecznej Krok 7

$$\label{eq:N} \textbf{N} = \hat{\textbf{K}} \times \textbf{h} = \begin{vmatrix} \hat{\textbf{I}} & \hat{\textbf{J}} & \hat{\textbf{K}} \\ 0 & 0 & 1 \\ -25,380 & 6670 & -52,070 \end{vmatrix} = -6670\hat{\textbf{I}} - 25,380\hat{\textbf{J}} \left(\text{km}^2/\text{s}\right)$$

Krok 8

$$N = \sqrt{N \cdot N} = \sqrt{(-6670)^2 + (-25,380)^2} = 26,250 \text{ km}^2/\text{s}$$

Krok 9

$$\mathcal{Q} = \cos^{-1} \frac{N_X}{N} = \cos^{-1} \left(\frac{-6670}{26,250} \right) = 104.7^{\circ} \text{ or } 255.3^{\circ}$$

 $Q = 255.3^{\circ}$

Rozwiązanie cd.:

Krok 10

$$\begin{split} \mathbf{e} &= \frac{1}{\mu} \Big[\Big(\mathbf{v}^2 - \frac{\mu}{r} \Big) \mathbf{r} - r \mathbf{v}_r \mathbf{v} \Big] \\ &= \frac{1}{398,600} \Big[\Big(7.884^2 - \frac{398,600}{7414} \Big) \Big(-6045 \hat{\mathbf{i}} - 3490 \hat{\mathbf{j}} + 2500 \hat{\mathbf{K}} \Big) \\ &- (7414)(0.5575) \Big(-3.457 \hat{\mathbf{i}} + 6.618 \hat{\mathbf{j}} + 2.533 \hat{\mathbf{K}} \Big) \Big] \\ &\mathbf{e} = -0.09160 \hat{\mathbf{i}} - 0.1422 \hat{\mathbf{j}} + 0.02644 \hat{\mathbf{K}} \end{split}$$

Krok 11

$$\textbf{e} = \sqrt{\textbf{e} \cdot \textbf{e}} = \sqrt{(-0.09160)^2 + (-0.1422)^2 + (0.02644)^2} = \boxed{0.1712}$$

e<1 orbita to elipsa

Krok 12

$$\begin{split} \omega &= \cos^{-1} \frac{\text{N} \cdot \text{e}}{\textit{Ne}} = \cos^{-1} \left[\frac{(-6670)(-0.09160) + (-25,380)(-0.1422) + (0)(0.02644)}{(26,250)(0.1712)} \right] \\ &= 20.07^{\circ} \text{ or } 339.9^{\circ} \end{split}$$

 $\omega = 20.07^{\circ}$

Rozwiązanie cd.:

Krok 13

$$\theta = \cos^{-1}\left(\frac{\mathbf{e} \cdot \mathbf{r}}{er}\right) = \cos^{-1}\left[\frac{(-0.09160)(-6045) + (-0.1422) \cdot (-3490) + (0.02644)(2500)}{(0.1712)(7414)}\right]$$
= 28.45° or 331.6°

 $\theta = 28.45^{\circ}$

Promienie perygeum i apogeum

$$r_{\rm p} = \frac{h^2}{\mu} \frac{1}{1 + e\cos(0)} = \frac{58,310^2}{398,600} \frac{1}{1 + 0.1712} = 7284 \text{ km}$$

$$r_{\rm a} = \frac{h^2}{\mu} \frac{1}{1 + e\cos(180^\circ)} = \frac{58,310^2}{398,600} \frac{1}{1 - 0.1712} = 10,290 \text{ km}$$

Półoś wielka orbity

$$a = \frac{1}{2}(r_p + r_a) = 8788 \text{ km}$$

Okres obiegu wynosi

$$T=rac{2\pi}{\sqrt{\mu}}a^{rac{3}{2}}=2.278~\mathrm{h}$$

Znając wektor stanu satelity obliczyć elementy orbitalne: $R = [\ -6132\ , -3380,\ 2472]\ km$ $V = [-3.369,\ 6.628,\ 2.433]\ km/s$

Literatura

[1]	V. A. Chobotov, Orbital Mechanics, Third Edition. 2002.
[2]	H. D. Curtis, Orbital Mechanics for Engineering Students, third edition. 2013.
[3]	"EARTH ORBITING SATELLITE THEORY." [Online]. Available: http://what-
	when-how.com/space-science-and-technology/earth- orbiting- satellite-theory/
	[Accessed: 25-Jan-2018].
[4]	"Orbital elements from the state vector « Small Satellites." [Online].
	Available: https://smallsats.org/2013/01/17/orbital-elements-from- the-
	state-vector/. [Accessed: 25-Jan-2018].
[5]	"Planetary Orbital Elements." [Online]. Available:
	http://www.met.rdg.ac.uk/~ross/Astronomy/Planets.html#elems. [Accessed:
	24-Jan-2018].
[6]	"Length of the Synodic Month: 2001 to 2100." [Online]. Available:
	http://astropixels.com/ephemeris/moon/synodicmonth2001.html.
	[Accessed: 24-Jan-2018].
[7]	"Figure 1-1.Satellite inclination." [Online]. Available:
	http://meteorologytraining.tpub.com/14271/css/14271_14.htm. [Accessed:
	24-Jan-2018].
[8]	"Wykład 3: Elementy orbity. Wyznaczanie pozycji obiektu na podstawie
	znanych elementów orbity," 2017.