2020

COMPUTAÇÃO GRÁFICA

VISUALIZAÇÃO 3D

EXERCÍCIO DE VISUALIZAÇÃO 3D. ENVOLVE PROJEÇÕES,TRANSFORMAÇÃO JANELA-VIEWPORT, ILUMINAÇÃO E SOMBREAMENTO

Considere o objeto gráfico ilustrado na figura 1. Observe a lista de vértices e suas respectivas coordenadas cartesianas:

Figura 1: coordenadas dos vértices do objeto gráfico em WCS

- a) calcule a projeção perspectiva deste objeto gráfico sobre o plano Z = 0 tomando como ponto de vista a posição (WCS: 20,10,30);
- realize por meio de uma transformação janela-viewport o mapeamento da projeção para um dispositivo físico de 32 x 24 pixels (DCS);
- c) Indique as faces visíveis do objeto (backface culling);
- d) calcule a projeção perspectiva do objeto representado na figura 1 utilizando o conceito de câmera sintética. Tome como ponto de vista (PV) as coordenadas (WCS: 20,10,30) e para locar o plano de projeção utilize a distância do PV até o ponto médio das coordenadas limites do objeto gráfico;
- e) realize por meio de uma transformação **janela-viewport** o mapeamento da projeção feita na câmera sintética para um dispositivo físico de **32 x 24** pixels (**DCS**);
- f) Indique as faces visíveis do objeto (backface culling) na projeção de câmera sintética;
- g) Utilize o método de PHONG e calcule a intensidade de luz nas faces visíveis produzidas na projeção de câmera sintética assumindo uma única luz pontual L localizada nas coordenadas L=[15,10,10]. Considere como parâmetros de iluminação $I_a=1$, $I_l=10,\ n_s=2,\ K_s=0.8,\ K_a=0.15,\ k_d=0.15$

- h) Calcule com os dados do item anterior a intensidade de luz baseada na proposta simplificada de James Blinn.
- i) Inclua no item anterior a atenuação atmosférica levando em consideração a posição da fonte de luz pontual L = [15, 10, 10].
- j) Calcule o sombreamento plano (**Flat Shading**) nas faces visíveis produzidas na projeção de câmera sintética assumindo uma única **luz pontual** localizada em L=[15,10,10]. Considere como parâmetros de iluminação cor do **objeto** O_{RGB} [255, 255, 255], cor da **luz ambiente RGB** [255, 200, 100], cor da **luz pontual RGB** [50, 200, 0] com $K_a=0.50$, $k_d=1.0$, $n_s=2$, $K_s=0.8$.

Inicialmente, vamos representar este objeto em coordenadas homogêneas (**WCS – World Coordinate System**) por meio de uma matriz de seus vértices, da seguinte maneira (figura2):

Figura 2: Coordenadas Homegêneas dos vértices do objeto e Plano de Projeção em WCS

$$M_{\text{objeto}} = \begin{pmatrix} 1 & 7 & 7 & 1 & 4 \\ 1 & 1 & 1 & 1 & 7 \\ 1 & 1 & 7 & 7 & 4 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

a) Projeção Perspectiva do Objeto Gráfico em Coordenadas Globais

Vamos calcular a projeção do objeto no plano **Z=0** segundo o **ponto de vista PV(20,10,30)**. Para isto, montaremos a matriz de projeção perspectiva que, por sua vez, precisa de informações sobre o **plano** (um vetor normal e um ponto sobre o plano) e das coordenadas do **ponto de vista** (figura3).

Figura 3: especificação do Ponto de Vista (PV) em WCS

A projeção perspectiva de um dado ponto em coordenadas do mundo (World Coordinate System - WCS) pode ser expressa de forma genérica da seguinte maneira:

$$P' = M_{per}.P$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} d + an_x & an_y & an_z & -ad_0 \\ bn_x & d + bn_y & bn_z & -bd_0 \\ cn_x & cn_y & d + cn_z & -cd_0 \\ n_x & n_y & n_z & -d_1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Para o **objeto gráfico** mostrado na figura 1 a expressão algébrica acima pode ser matricialmente assim escrita:

$$M'_{objeto} = M_{per}.M_{objeto}$$

Assim, temos que calcular a matriz de projeção perspectiva M_{per} . Para tal, precisamos do **vetor normal** ao plano de projeção $\vec{n}=n_x\vec{\iota}+n_y\vec{j}+n_z\vec{k}$ e das coordenadas do ponto **de vista** PV(a,b,c) (figura 4). Com estes valores, determinamos d_0 , d_1 e d. Sabemos que um **plano** é univocamente determinado quando se conhece um **vetor normal** e um **ponto** sobre ele. Para o **plano** Z=0 temos o seguinte **vetor normal** ao **plano**:

$$\vec{n} = n_x \cdot \vec{i} + n_y \cdot \vec{j} + n_z \cdot \vec{k}$$

$$\vec{n} = 0 \cdot \vec{i} + 0 \cdot \vec{j} + 1 \cdot \vec{k}$$

$$\vec{n} = 1 \cdot \vec{k}$$

Figura 4: Projeção Perspectiva do ponto P

Para a construção do **plano**, escolhemos como ponto sobre o **plano** o ponto $P_0(x_0, y_0, z_0) = (0, 0, 0)$. O Cálculo de d_0 depende apenas de dados provindos do **plano**, assim temos:

$$d_0 = x_0 . n_x + y_0 . n_y + z_0 . n_z$$

 $d_0 = 0$

O Cálculo de d_1 depende de dados do **plano** e do **ponto de vista**. Considerando as coordenadas do **ponto de vista** como sendo (a,b,c)=(20,10,30), temos:

$$d_1 = a \cdot n_x + b \cdot n_y + c \cdot n_z$$

 $d_1 = 20 \cdot 0 + 10 \cdot 0 + 30 \cdot 1$
 $d_1 = 30$

Para d:

$$d = d_0 - d_1$$

 $d = 0 - 30$
 $d = -30$

Substituindo estes valores na matriz de projeção perspectiva na equação que projeta o objeto sobre o **plano** teremos o resultado em coordenadas homogêneas:

$$\mathbf{M}_{\text{per}} = \begin{pmatrix} -30 & 0 & 20 & 0\\ 0 & -30 & 10 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 1 & -30 \end{pmatrix}$$

$$M'_{objeto} = M_{per}.M_{objeto}$$

$$M_{objeto}' = \begin{pmatrix} -30 & 0 & 20 & 0 \\ 0 & -30 & 10 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -30 \end{pmatrix} \begin{pmatrix} 1 & 7 & 7 & 1 & 4 \\ 1 & 1 & 1 & 1 & 7 \\ 1 & 1 & 7 & 7 & 4 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$M'_{\text{objeto}} = \begin{pmatrix} 10 & -190 & -70 & 110 & -40 \\ -20 & -20 & 40 & 40 & -170 \\ 0 & 0 & 0 & 0 & 0 \\ -29 & -29 & -23 & -23 & -26 \end{pmatrix}$$

Vamos passar a matriz de coordenadas Homogêneas para Cartesianas (**WCS**). Para isto, basta dividir as coordenadas por w da seguinte forma $(\frac{x'}{w}, \frac{y'}{w}, \frac{z'}{w}, \frac{w'}{w})$:

$$M'_{\text{objeto}} = \begin{pmatrix} 0.345 & 6.552 & 3.043 & -4.782 & 1.538 \\ 0.690 & 0.690 & -1.739 & -1.739 & 6.538 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Estas coordenadas são expressas em coordenadas globais, também conhecidas como coodenadas do mundo (WCS). Desta forma vamos referenciá-la como sendo $M'_{obj-wcs}$:

$$M'_{obj-wcs} = \begin{pmatrix} 0.345 & 6.552 & 3.043 & -4.782 & 1.538 \\ 0.690 & 0.690 & -1.739 & -1.739 & 6.538 \end{pmatrix}$$

A figura 5 mostra estas coordenadas, resultado da projeção perspectiva.

Figura 5: Perspectiva do objeto gráfico no plano Z=O do ponto de vista (20,10,30) em WCS

b) Transformação Janela-Viewport

Vamos agora aplicar uma transformação **janela-viewport** (T_{jv}) para um dispositivo com a resolução de **32 x 24** pixels (**Device Coordinate System - DCS**). Para esta transformação vamos definir no plano **Z=0** uma **janela** com as seguintes dimensões: **16 x 12**, figura 6.

Figura 06: definição da janela no plano Z=0 (objeto projetado)

Vamos realizar a tranformação para um **viewport** com **32** colunas e **24** linhas, conforme ilustrado na figura 7:

Figura 7: dimensões e direções principais do viewport - DCS

Esta transformação (T_{jv}) pode ser feita por uma matriz que realiza o mapeamento das informações contidas em uma **janela** (WCS) para um viewport (DCS). Notamos que o Aspcet Ratio da **janela** é igual ao da viewport: 4/3, pois 16/12= 32/24 =4/3. Desta forma, podemos utilizar a seguinte transformação:

$$M_{obj-DCS} = T_{jv}.M_{obj-wcs}$$

$$T_{jv} = \begin{pmatrix} S_x & 0 & u_{min} - S_x x_{min} \\ 0 & -S_y & S_y y_{max} + v_{min} \\ 0 & 0 & 1 \end{pmatrix}$$

Precisamos calcular S_x e S_y . Para tal, vamos especificar os valores mínimos e máximos da **janela** e da **viewport**.

$$u_{min} = 0;$$
 $v_{min} = 0$ $u_{max} = 32;$ $v_{max} = 24$

$$x_{min} = -5.0; y_{min} = -2.0$$

 $x_{max} = 7.0; y_{max} = 7.0$

Calculo de S_x e S_v :

$$S_x = \frac{u_{max} - u_{min}}{x_{max} - x_{min}} = \frac{32 - 0}{7 - (-5)} = \frac{32}{12} = 2.66$$

$$S_y = \frac{v_{max} - v_{min}}{y_{max} - y_{min}} = \frac{24 - 0}{7.0 - (-2.0)} = \frac{24}{9} = 2.66$$

Em seguida, apresentamos a matriz da transformação janela-viewport.

$$T_{jv} = \begin{pmatrix} 2.66 & 0 & 13.33 \\ 0 & -2.66 & 18.66 \\ 0 & 0 & 1 \end{pmatrix}$$

Aplicando a transformação janela-view-port:

$$\mathbf{M}_{\text{obj-DCS}} = \begin{pmatrix} 2.66 & 0 & 13.33 \\ 0 & -2.66 & 18.66 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.345 & 6.552 & 3.043 & -4.782 & 1.538 \\ 0.690 & 0.690 & -1.739 & -1.739 & 6.538 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$M_{obj-DCS} = \begin{pmatrix} 14.25 & 30.80 & 21.45 & 0.58 & 17.43 \\ 16.83 & 16.83 & 23.30 & 23.30 & 1.23 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$M_{\text{obj-DCS}} = \begin{pmatrix} 14 & 31 & 21 & 1 & 17 \\ 17 & 17 & 23 & 23 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

A figura 8 mostra o resultado da transformação **janela-viewport**. Observe que nesta figura os valores decimais sofreram arredondamentos para inteiros (**pixels**).

Figura 8: objeto gráfico na viewport

c) Backface Culling

Vamos verificar quais faces dos objetos gráficos são visíveis e quais não são. Este processo é conhecido como eliminação de faces ocultas, em inglês **backface culling**. Isto pode ser feito calculando o produto interno entre os vetores que representa o **raio de visualização** e o **vetor normal** de cada superfície do objeto, figura 9.

Figura 9: ângulo formado entre o raio de visão e a normal de cada face do objeto gráfico

Na figura 9 podemos notar que o ângulo formado pelo **raio de visualização** que atinge a face 1 do cubo e o **vetor normal** a esta face é inferior a 90 graus. Com isto, podemos concluir que a face será visível ao ponto de vista. Matematicamente podemos estabelecer uma relação com o produto interno dos dois vetores. Caso o produto interno seja positivo, podemos concluir que a face é visível.

$$\overrightarrow{v_1}.\overrightarrow{n_1} = |\overrightarrow{v_1}|.|\overrightarrow{n_1}|.\cos\emptyset$$

$$\overrightarrow{v_1} = x_{v1}. \vec{\imath} + y_{v1}. \vec{\jmath} + z_{v1} \vec{k}$$

$$\overrightarrow{\mathbf{n}_1} = \mathbf{x}_{\mathbf{n}\mathbf{1}}.\overrightarrow{\mathbf{i}} + \mathbf{y}_{\mathbf{n}\mathbf{1}}.\overrightarrow{\mathbf{j}} + \mathbf{z}_{\mathbf{n}\mathbf{1}}\overrightarrow{\mathbf{k}}$$

Como o módulo dos vetores ($|\overrightarrow{v_1}|$. $|\overrightarrow{n_1}|$) sempre terão sinais positivos, quem determina o sinal do produto interno é o $\cos \emptyset$. Assim, podemos avaliar o sinal do produto interno por meio da equação:

$$\overrightarrow{v_1}.\overrightarrow{n_1} = x_{v1}.x_{n1} + y_{v1}.y_{n1} + z_{v1}.z_{n1}$$

Vamos realizar os cálculos para a face 1 do nosso objeto gráfico. Para isto precisamos das coordenadas dos vertices em **WCS** e das coordenadas do **PV(20,10,30)**, Figura 10.

Figura 10: faces do objeto gráfico

Vamos ao cálculo do vetor normal $\overrightarrow{n1}$, da face 1. Para tal, vamos observar a figura 11 que mostra a os detalhes da face 1.

Figura 11: destaque da face 1 do objeto gráfico

O vetor normal $\overrightarrow{n1}$ pode ser calculado por meio do produto vetorial dos vetores criados pelo pontos V4, V3, V5.

$$\overline{V4V3} = (x_3 - x_4)\vec{i} + (y_3 - y_4)\vec{j} + (z_3 - z_4)\vec{k}$$

$$\overline{V4V5} = (x_5 - x_4)\vec{i} + (y_5 - y_4)\vec{j} + (z_5 - z_4)\vec{k}$$

$$\overline{V4V3} \times \overline{V4V5} = \overline{n_1}$$

$$\overrightarrow{n_1} = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ (x_3 - x_4) & (y_3 - y_4) & (z_3 - z_4) \\ (x_5 - x_4) & (y_5 - y_4) & (z_5 - z_4) \end{pmatrix}$$

Assim, $\overrightarrow{n_1}$, terá os seguintes coeficientes:

$$\begin{split} &+ \big((y_3 - y_4). \, (z_5 - z_4) - (y_5 - y_4). \, (z_3 - z_4) \big).\vec{1} \\ &- \big((x_3 - x_4). \, (z_5 - z_4) - (x_5 - x_4). \, (z_3 - z_4) \big).\vec{1} \\ &+ ((x_3 - x_4). \, (y_5 - y_4) - \big(x_5 - x_4). \, (y_3 - y_4) \big).\vec{k} \end{split}$$

Como temos as seguintes coordenadas dos vértices V3, V2 e V5, $\overrightarrow{n_1}$ pode ser calculado da seguinte forma:

$$V4 = (x_1, y_1, z_1) = (1,1,7)$$

$$V3 = (x_2, y_2, z_2) = (7,1,7)$$

$$V5 = (x_5, y_5, z_5) = (4,7,4)$$

$$\overrightarrow{\mathbf{n}_1} = \begin{pmatrix} \overrightarrow{\mathbf{1}} & \overrightarrow{\mathbf{J}} & \overrightarrow{\mathbf{k}} \\ 6 & 0 & 0 \\ 3 & 6 & -3 \end{pmatrix}$$

$$\overrightarrow{n_1} = 0\overrightarrow{i} + 18\overrightarrow{j} + 36\overrightarrow{k}$$

Vamos calcular agora o vetor $(\overrightarrow{v_1})$ que parte do **ponto de vista PV** $(x_{pv}, y_{pv}, z_{pv}) = (20, 10, 30)$ e chega até a face 1 (figura12). O ponde de referência para construção do vetor é o centróide das faces. Assim, temos:

Figura 12: incidência do vetor $(\overrightarrow{v_1})$ na face 1 e o vetor normal da face 1 $(\overrightarrow{n_1})$

$$\overrightarrow{v_1} = \left(x_{pv} - C_{x-Face1}\right) \vec{i} + \left(y_{pv} - C_{y-Face1}\right) \vec{j} + \left(z_{pv} - C_{z-Face1}\right) \vec{k}$$

Cálculo do centróide da Face1:

$$\begin{split} &C_{x-Face1} = \frac{(x_{V4} + x_{V3} + x_{V5})}{3} = \frac{(1+7+4)}{3} = 4 \\ &C_{y-Face1} = \frac{(y_{V4} + y_{V3} + y_{V5})}{3} = \frac{(1+1+7)}{3} = 3 \\ &C_{z-Face1} = \frac{(z_{V4} + z_{V3} + z_{V5})}{3} = \frac{(7+7+4)}{3} = 6 \end{split}$$

Assim:

$$\vec{v_1} = (20 - 4)\vec{i} + (10 - 3)\vec{j} + (30 - 6)\vec{k}$$

$$\vec{v_1} = 16\vec{i} + 7\vec{j} + 24\vec{k}$$

$$\vec{v_1} \cdot \vec{n_1} = 990$$

O valor é positivo. Desta forma, podemos concluir que o ângulo formado entre estes vetores é menor que 90 graus o que nos leva a afirmar que esta face é visível deste **ponto de vista**. Fazendo os cálculos para as outras faces, temos os seguintes resultados (Tabela 1):

Faces	Centroide - Coordenadas			\vec{v}	\vec{n}	$\vec{v}.\vec{n}$	Visibilidade
	х	y	Z				
Face 1	4	3	6	$\overrightarrow{v_1} = 16\overrightarrow{i} + 7\overrightarrow{j} + 24\overrightarrow{k}$	$\overrightarrow{n_1} = 0\overrightarrow{i} + 18\overrightarrow{j} + 36\overrightarrow{k}$	990	Visível
Face 2	6	3	4	$\overrightarrow{v_2} = 14\overrightarrow{i} + 7\overrightarrow{j} + 26\overrightarrow{k}$	$\overrightarrow{n_2} = 36\overrightarrow{\imath} + 18\overrightarrow{\jmath} + 0\overrightarrow{k}$	630	Visível
Face 3	4	3	2	$\overrightarrow{v_3} = 16\overrightarrow{i} + 7\overrightarrow{j} + 28\overrightarrow{k}$	$\overrightarrow{n_3} = 0\overrightarrow{i} + 18\overrightarrow{j} - 36\overrightarrow{k}$	-882	Oculta
Face 4	2	3	4	$\overrightarrow{v_4} = 18\overrightarrow{i} + 7\overrightarrow{j} + 26\overrightarrow{k}$	$\overrightarrow{n_4} = -36\overrightarrow{i} + 18\overrightarrow{j} + 0\overrightarrow{k}$	-522	Oculta
Face 5	3	1	1	$\overrightarrow{v_5} = 17\vec{\imath} + 9\vec{\jmath} + 27\vec{k}$	$\overrightarrow{n_5} = 0\overrightarrow{i} - 36\overrightarrow{j} + 0\overrightarrow{k}$	-324	Oculta

Tabela 1: visibilidade das faces em ralação ao PV(20,10,30)

Com a remoção das superfícies ocultas temos a figura 13.

Figura 13: superfícies ocultas removidas em WCS e DCS

d) Projeção Perspectiva com o Conceito de Câmera Sintética

Vamos utilizar a norma **PHIGS** para especificar nossa câmera sintética (figura 14). Nesta norma, o **centro do sistema projetivo**, ou seja, a origem (0,0,0), é o **ponto de vista** (**PV**) definido pelo sistema de coordenadas $\{\vec{u}, \vec{v}, \vec{n}\}$. Este novo sistema é chamado de **VRC** (**View Reference Coordinate**)

Figura 14: na norma PHIGS o ponto de vista é o centro do sistema de projeção

Precisamos tornar o **ponto de vista** (**PV**) a origem do nosso novo sistema de coordenadas $\{\vec{u}, \vec{v}, \vec{n}\}$. Neste novo sistema, o **centro de projeção** ou **ponto de vista** se chama **PRP** (**Projection Reference Point**). A distância de **PRP** ao **plano de projeção** é dada por **VPD** (**View Plane Distance**). Agora, teremos o **plano de projeção** (**View Plane – VP**) perpendicular ao eixo de visão. Vamos ilustrar esta situação com ajuda da figura 15.

Figura 15: mudança de sistema de coordenadas de WCS para VRC

Nesta situação, temos uma mudança de sistema de coordenadas e posição do **plano de projeção**. Vamos determinar a matriz que faz esta transformação de sistemas. Ela consiste em uma translação do **ponto de vista** para a origem do sistema seguida de uma rotação definida pelos cossenos diretores do novo sistema de coordenadas (**VRC**), figura 16.

Figura 16: mudança de sistema de coordenadas de WCS para VRC

Mapeamento do WCS para VRC

$$\begin{pmatrix} u \\ v \\ n \\ 1 \end{pmatrix} = R. T(x_{pv}, y_{pv}, z_{pv}). \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

A matriz de translação de PV para a origem fica:

$$T(x_{pv}, y_{pv}, z_{pv}) = \begin{pmatrix} 1 & 0 & 0 & -x_{pv} \\ 0 & 1 & 0 & -y_{pv} \\ 0 & 0 & 1 & -z_{pv} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

A matriz de cossenos diretores:

$$R = \begin{pmatrix} u_{x} & u_{x} & u_{x} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ n_{x} & n_{y} & n_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Assim, temos:

$$R. T(x_{pv}, y_{pv}, z_{pv}) = \begin{pmatrix} u_{x} & u_{x} & u_{x} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ n_{x} & n_{y} & n_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -x_{pv} \\ 0 & 1 & 0 & -y_{pv} \\ 0 & 0 & 1 & -z_{pv} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Lembrando que VRP é (20,10,30):

$$-x_{pv} = -20$$
$$-y_{pv} = -10$$
$$-z_{pv} = -30$$

Para determinar os cossenos diretores temos que calcular os vetores \vec{u} , \vec{v} , \vec{n} que serão os versores do sistema VRC. Para este cálculo é preciso verificar a direção e sentido apontado pelo **ponto de vista**, agora chamado de VRP, figura 17.

Figura 17: vetores $\overrightarrow{\boldsymbol{n}}$ e **VUP** determinam a direção e sentido da projeção

Cálculo do VPN. Este vetor pode ser construído pela subtração dos pontos CP (Centro de Projeção) do ponto VRP. Estamos utilizando como centro de projeção o ponto médio do objeto gráfico.

$$\begin{aligned} x_{\text{m\'edio do objeto}} &= \frac{(x_{\text{m\'ax}} + x_{\text{min}})}{2} = \frac{7+1}{2} = 4 \\ y_{\text{m\'edio do objeto}} &= \frac{(y_{\text{m\'ax}} + y_{\text{min}})}{2} = \frac{7+1}{2} = 4 \\ z_{\text{m\'edio do objeto}} &= \frac{(z_{\text{m\'ax}} + z_{\text{min}})}{2} = \frac{7+1}{2} = 4 \end{aligned}$$

$$CP = (4,4,4)$$

$$\overrightarrow{VPN} = VRP - CP$$

$$\overrightarrow{\text{VPN}} = (20,10,30) - (4,4,4)$$

$$\overrightarrow{VPN} = 16\overrightarrow{i} + 6\overrightarrow{j} + 26\overrightarrow{k}$$

Cálculo do View Up Vector (VUP).

Para cálculo do vetor **VUP** indicaremos um ponto para a direção do eixo da câmera. **Arbitrariamente**, temos o ponto **(22,11,33)** em **WCS**.

$$\overrightarrow{VUP} = 1.10(16\vec{i} + 6\vec{j} + 26\vec{k})$$

$$\overrightarrow{VUP} = 17.6\vec{i} + 6.6\vec{i} + 28.6\vec{k}$$

Para apontar para cima vamos adicionar duas unidades (2) à direção \vec{j}

$$\overrightarrow{VUP} = 17.6\vec{j} + 8.6\vec{j} + 28.6\vec{k}$$

$$\vec{u} = \frac{\vec{VUP} \ X \ \vec{VPN}}{|\vec{VUP} \ X \ \vec{VPN}|}$$

$$\overrightarrow{\text{VUP}}$$
 X $\overrightarrow{\text{VPN}}$ = $(17.6\vec{j} + 8.6\vec{j} + 28.6\vec{k})$ X $(16\vec{i} + 6\vec{j} + 26\vec{k})$

$$\overrightarrow{\text{VUP}} \ X \ \overrightarrow{\text{VPN}} = \begin{pmatrix} \vec{1} & \vec{j} & \vec{k} \\ 17.6 & 8.6 & 28.6 \\ 16 & 6 & 26 \end{pmatrix}$$

$$\overrightarrow{\text{VUP}} \text{ X } \overrightarrow{\text{VPN}} = 52\vec{i} + 0\vec{j} - 32\vec{k}$$

$$\vec{u} = \frac{\vec{VUP} \times \vec{VPN}}{|\vec{VUP} \times \vec{VPN}|}$$

$$|\overrightarrow{VUP} \ X \ \overrightarrow{VPN}| = \sqrt{52^2 + 0^2 + (-32)^2} = 61.0574$$

$$\vec{u} = \frac{52\vec{i} + 0\vec{j} - 32\vec{k}}{61.0574}$$

$$\vec{u} = 0.852\vec{i} + 0\vec{j} - 0.5241\vec{k}$$

$$\vec{n} = \frac{\vec{VPN}}{|\vec{VPN}|}$$

$$|\overrightarrow{VPN}| = \sqrt{16^2 + 6^2 + 26^2}$$

 $|\overrightarrow{VPN}| = 31.1126$

$$\vec{n} = \frac{16\vec{i} + 6\vec{j} + 26\vec{k}}{31.1126}$$

$$\vec{n} = 0.514\vec{i} + 0.193\vec{j} + 0.836\vec{k}$$

$$\vec{v} = \vec{n} X \vec{u}$$

$$\vec{n} \times \vec{u} = \vec{v} = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0.514 & 0.193 & 0.836 \\ 0.852 & 0 & -0.524 \end{pmatrix}$$

$$\vec{v} = -0.101\vec{\imath} + 0.982\vec{\jmath} - 0.164\vec{k}$$

Temos então:

$$\vec{u} = 0.852\vec{i} + 0\vec{j} - 0.524\vec{k}$$

$$\vec{n} = 0.514\vec{i} + 0.193\vec{j} + 0.836\vec{k}$$

Vamos fazer uma transformação de WCS para VRC (View Reference Coordinate)

$$\begin{pmatrix} u \\ v \\ n \\ 1 \end{pmatrix} = R. T(VRP_x, VRP_y, VRP_z). \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$R = \begin{pmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.852 & 0 & -0.524 & 0 \\ -0.101 & 0.982 & -0.164 & 0 \\ 0.514 & 0.193 & 0.836 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 0 & 0 & -VRP_x \\ 0 & 1 & 0 & -VRP_y \\ 0 & 0 & 1 & -VRP_z \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -20 \\ 0 & 1 & 0 & -10 \\ 0 & 0 & 1 & -30 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R. T(VRP_x, VRP_y, VRP_z) = \begin{pmatrix} 0.852 & 0 & -0.524 & 0 \\ -0.101 & 0.982 & -0.164 & 0 \\ 0.514 & 0.193 & 0.836 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -20 \\ 0 & 1 & 0 & -10 \\ 0 & 0 & 1 & -30 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R. T(VRP_x, VRP_y, VRP_z) = \begin{pmatrix} 0.852 & 0 & -0.524 & -1.32 \\ -0.101 & 0.982 & -0.164 & -2.88 \\ 0.514 & 0.193 & 0.836 & -37.29 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Mapeamento do objeto em coordenadas $\vec{u}, \vec{v}, \vec{n}$:

$$\begin{pmatrix} u \\ v \\ n \\ 1 \end{pmatrix} = \begin{pmatrix} 0.852 & 0 & -0.524 & -1.32 \\ -0.101 & 0.982 & -0.164 & -2.88 \\ 0.514 & 0.193 & 0.836 & -37.29 \\ 0 & 0 & 0 & 1 \end{pmatrix}. M_{objeto}$$

$$\begin{pmatrix} u \\ v \\ n \\ 1 \end{pmatrix} = \begin{pmatrix} 0.852 & 0 & -0.524 & -1.32 \\ -0.101 & 0.982 & -0.164 & -2.88 \\ 0.514 & 0.193 & 0.836 & -37.29 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 7 & 7 & 1 & 4 \\ 1 & 1 & 1 & 1 & 7 \\ 1 & 1 & 7 & 7 & 4 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} u \\ v \\ n \\ 1 \end{pmatrix} = \begin{pmatrix} -0.992 & 4.12 & 0.976 & -4.136 & -0.008 \\ -2.163 & -2.769 & -3.753 & -3.147 & 2.934 \\ -35.747 & -32.663 & -27.647 & -30.731 & -30.539 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Projeção do Objeto Gráfico no VRC

Temos agora o objeto em coordenadas do VRC. Vamos calcular a projeção no plano de projeção definido pela VDP (view Distance Plane) e os vetores $\vec{u}, \vec{v}, \vec{n}$. A nossa nova origem é VRP. Assim, vamos utilizar a matriz de projeção com o ponto de vista (VRP) na origem do sistema.

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} d_0 & 0 & 0 & 0 \\ 0 & d_0 & 0 & 0 \\ 0 & 0 & d_0 & 0 \\ n_x & n_y & n_z & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$\vec{n} = n_x \cdot \vec{i} + n_y \cdot \vec{j} + n_z \cdot \vec{k}$$

Lembrando que:

$$VRP = (0,0,0)$$

Como o eixo de projeção é perpendicular ao plano de projeção tomando-se como base o VRC, temos:

$$\vec{n} = 0\vec{i} + 0\vec{j} + 1\vec{k}$$

Como ponto sobre o plano temos o ponto médio em VRC:

$$PM = (x_0, y_0, z_0) = (0, 0, -31.1126)$$

$$d_0 = x_0 . n_x + y_0 . n_y + z_0 . n_z$$

$$d_0 = (0).(0) + (0.).(0.193) + (-31.1126).1$$

$$d_0 = -31.1126$$

$$M_{per} = \begin{pmatrix} -31.1126 & 0 & 0 & 0\\ 0 & -31.1126 & 0 & 0\\ 0 & 0 & 31.2611 & 0\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathsf{M}'_{objeto} = \begin{pmatrix} -31.1126 & 0 & 0 & 0 \\ 0 & -31.1126 & 0 & 0 \\ 0 & 0 & 31.2611 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \mathsf{V1} & \mathsf{V2} & \mathsf{V3} & \mathsf{V4} & \mathsf{V5} \\ -0.992 & 4.12 & 0.976 & -4.136 & -0.008 \\ -2.163 & -2.769 & -3.753 & -3.147 & 2.934 \\ -35.747 & -32.663 & -27.647 & -30.731 & -30.539 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Coordenadas Homegêneas do Objeto Gráfico

$$\mathbf{M}'_{objeto} = \begin{pmatrix} 30.8636992 & -128.183912 & -30.3658976 & 128.6817136 & 0.2489008 \\ 67.2965538 & 86.1507894 & 116.7655878 & 97.9113522 & -91.2843684 \\ -1117.4905417 & -1021.0813093 & -864.2756317 & -960.6848641 & -954.6827329 \\ -35.747 & -32.663 & -27.647 & -30.731 & -30.539 \end{pmatrix}$$

Coordenadas Cartesianas do Objeto Gráfico:

Coordinates).

$$\mathbf{M}_{objeto}' = \begin{pmatrix} -0.8554288 & 3.932278224 & 1.106089334 & -4.17907 & 0 \\ -1.86962757 & -2.62405996 & -4.20924523 & -3.17252 & 2.9994614 \\ -31.1126984 & -31.1126984 & -31.1126984 & -31.1126984 & -31.1126984 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

-0.8554288 3.932278224 1.106089334 -4.17907 0 -1.86962757 -2.62405996 -4.20924523 -3.17252 2.9994614

Figura 18: mostra o objeto gráfico no VP (View Plane) em VRC.

e) Transformação Janela-Viewport para Projeção de Câmera

Vamos agora aplicar uma transformação **janela-viewport** para um dispositivo com a resolução de 32 x 24 pixels (**Device Coordinate System - DCS**). Para esta transformação vamos definir no plano **Z = 11.180** uma **janela** com as seguintes dimensões: **20 x 15**, figura 19.

Figura 19: definição da janela no VRC

Vamos realizar a tranformação para um **viewport** com **32** colunas e **24** linhas, conforme ilustrado na figura 19.

Esta transformação (T_{jv}) pode ser feita por uma matriz que realiza o mapeamento das informações contidas em uma **janela** (VRC) para um **viewport** (DCS). Notamos que o **Aspcet** Ratio da **janela** é igual ao da **viewport**: 4/3, pois 20/15 = 32/24 = 4/3. Desta forma, podemos utilizar a seguinte transformação:

$$M_{obj-DCS} = T_{jv}.M_{obj-VRC}$$

$$T_{jv} = \begin{pmatrix} S_x & 0 & u_{min} - S_x x_{min} \\ 0 & -S_y & S_y y_{max} + v_{min} \\ 0 & 0 & 1 \end{pmatrix}$$

Precisamos calcular S_x e S_y C. Para tal, vamos especificar os valores mínimos e máximo da **janela** e da **viewport**.

$$u_{\min} = 0; \quad v_{\min} = 0$$

$$u_{max} = 32$$
; $v_{max} = 24$

$$x_{min} = --6; y_{min} = -5$$

$$x_{max} = 6; y_{max} = 4$$

Calculo de S_x e S_y :

$$S_x = \frac{u_{max} - u_{min}}{x_{max} - x_{min}} = \frac{32 - 0}{6 - (-6)} = \frac{32}{12} = 2,66$$

$$S_y = \frac{v_{max} - v_{min}}{v_{max} - v_{min}} = \frac{24 - 0}{4 - (-5)} = \frac{24}{9} = 2,66$$

Em seguida, apresentamos a matriz da transformação janela-viewport.

$$T_{jv} = \begin{pmatrix} 2.66 & 0 & 16 \\ 0 & -2.66 & 10.66 \\ 0 & 0 & 1 \end{pmatrix}$$

A matriz homogênea do objeto projetado em VRC é:

$$M_{objeto}' = \begin{pmatrix} -0.8554288 & 3.932278224 & 1.106089334 & -4.17907 & 0 \\ -1.86962757 & -2.62405996 & -4.20924523 & -3.17252 & 2.9994614 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathsf{M}_{\text{obj-DCS}} = \begin{pmatrix} 2.66 & 0 & 16 \\ 0 & -2.66 & 10.66 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -0.8554288 & 3.932278224 & 1.106089334 & -4.17907 & 0 \\ -1.86962757 & -2.62405996 & -4.20924523 & -3.17252 & 2.9994614 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{M}_{obj-DCS} = \begin{pmatrix} 13.724559392 & 26.45986007584 & 18.94219762844 & 4.8836738 & 16 \\ 15.6332093362 & 17.6399994936 & 21.8565923118 & 19.0989032 & 2.681432676 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

A figura 20 mostra o resultado da transformação **janela-viewport**. Observe que nesta figura 20 os valores decimais foram aproximados para inteiros (**pixels**).

Figura 20: objeto gráfico na viewport

f) Backface Culling para Projeção de Câmera

Embora tenhamos no **VRC** o mesmo **ponto de vista** do **WCS**, o plano de projeção do sistema da **câmera** fica em uma posição distinta. Na **câmera**, como já vimos, o plano de projeção é paralelo ao plano formado pelos vetores \overrightarrow{u} e \overrightarrow{v} . Apesar disso, o cálculo da visibilidade é feito por meio do produto interno entre os vetores de visualização e normal a cada face. Este cálculo já foi realizado no item **c** do presente exercício. Assim, não precisamo repetí-lo. Para melhor entendimento, apresentamos na figura 21 as faces do objeto gráfico, lembrando que as visíveis são a face 1 e a face 2.

Figura 21: faces projetadas do objeto gráfico no sistema VRC (visíveis e ocultas)

g) Sombreamento das Faces Visíveis da Projeção de Câmera

Agora vamos realizar um processo de **síntese** (Render) deste objeto. Este procedimento também é conhecido como sombreamento. No caso deste exercício consiste em determinar a iluminação em um determinado pixel de cada superfície visível e com este resultado pintar toda a respectiva face. Este processo é conhecimento como **sombreador plano** ou **flat shading**. Temos a seguinte situação mostrada na figura 22.

Figura 22: faces projetadas do objeto gráfico no sistema VRC (visíveis e ocultas)

Temos como dados:

Uma luz pontual na direção L=[15,10,10]. Como parâmetros de iluminação f(d)=1, $I_a=1$, $I_l=10$, $n_s=2$, $K_s=0.8$, $K_a=0.15$, $k_d=0.15$. Com a luz ambiente e a pontual situada no infinito podemos calcular o resultado da intensidade de energia luminosa refletida em um determinado objeto, o que caracteriza um modelo local de iluminação. Assim, vamos utilizar a proposta de Phong para o cálculo da iluminação. Podemos escrever algebricamente a seguinte equação representativa deste modelo:

$$I = I_a.k_a + I_i[k_d(N.L) + k_s(V.R)^n]$$

As variáveis representam:

- I: intensidade de energia luminosa refletida até o observador;
- ullet I_a : intensidade de energia luminosa provinda da luz ambiente incidente uniformemente em todos os objetos da cena;
- k_a : coeficiente que indica a capacidade de reflexão dassuperfícies dos objetos gráficos em relação a luz ambiente;

- I_i: intensidade de energia luminosa que chega a superfície (incidente) do objeto provindo de uma fonte de luz pontual situada no infinito;
- k_d : coeficiente que indica a capacidade de reflexão difusa das superfícies dos objetos gráficos em relação a uma luz pontual situada no infinito;
- N: vetor unitário normal a superfície de reflexão;
- L: vetor unitário que indica a direção da luz pontual situada no infinito;
- k_s : coeficiente que indica a capacidade de reflexão especular das superficies dos objetos gráficos em relação a uma luz pontual situada no infinito;
- R: vetor unitário que indica a direção de reflexão especular ideal de luz provinda de fonte pontual situada no infinito;
- V: vetor unitário que indica a direção do observador;
- *H*: vetor unitário intermediário a *Le V* que representa de forma empírica a reflexão especular de energia luminosa provinda de fonte luminosa pontual situada no infinito;
- n: constante que pode variar de 0 a ∞ . Quanto maior o valor de n mais próximoestará o vetor V de representar o vetor R.

Da formulação precisamos calcular:

- N: vetor unitário normal a superfície de reflexão;
- L: vetor unitário que indica a direção da luz pontual situada no infinito;
- R: vetor unitário que indica a direção de reflexão especular ideal de luz provinda de fonte pontual situada no infinito;
- V: vetor unitário que indica a direção do observador;
- H: vetor unitário intermediário a Le V que representa de forma empírica a reflexão especular de energia luminosa provinda de fonte luminosa pontual situada no infinito;

Temos duas faces visíveis conforme figura 23.

Figura 23: faces visíveis

Calculo da Intensidade de Luz para a Face 1:

Vamos utilizar como ponto de referência de cada face o centróide. Vamos começar coma face 1 composta pelos vértices V4, V3, V5.

$$x_{c-Face-1} = \frac{(1+7+4)}{3} = 4$$

$$y_{c-Face-1} = \frac{(1+1+7)}{3} = 3$$

$$z_{c-Face-1} = \frac{(7+7+4)}{3} = 6$$

$$C_{Face-1} = (4,3,6)$$

Agora vamos calcular o vetor normal a face 1. É importante destacar que o cálcuo deste vetor é feito utilizando a regra da mão direita, figura 24.

Figura 24: vetores que geradores do vetor normal na face 1

$$V4 = (1,1,7)$$

$$V3 = (7,1,7)$$

$$V5 = (4,7,4)$$

$$\overrightarrow{V4V3} = -6\overrightarrow{i} + 0\overrightarrow{j} + 0\overrightarrow{k}$$

$$\overrightarrow{VAV5} = 3\overrightarrow{i} + 6\overrightarrow{j} - 3\overrightarrow{k}$$

$$\vec{N}_{Face-1} = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ -6 & 0 & 0 \\ 3 & 6 & -3 \end{pmatrix}$$

$$\vec{N}_{Face-1} = 0\vec{i} + 18\vec{j} + 36\vec{k}$$

$$|\vec{N}_{Face-1}| = \sqrt{0^2 + 18^2 + 36^2} = 40.249$$

Vamos utilizar o vetor normalizado.

$$\vec{N}_{n-Face-1} \frac{\vec{N}_{Face-1}}{|\vec{N}_{Face-1}|} = \frac{0\vec{i} + 18\vec{j} + 36\vec{k}}{40.249}$$

$$\vec{N}_{n-Face-1} = \frac{\vec{N}_{Face-1}}{|\vec{N}_{Face-1}|} = 0\vec{1} + 0.447\vec{j} + 0.894\vec{k}$$

$$\vec{N}_{n-Face-1} = 0\vec{i} + 0.447\vec{j} + 0.894\vec{k}$$

Vamos calcular agora o vetor que representa a trajetória da luz do PV-PRP até o centróide da face 1:

$$\begin{split} \vec{L}_{Face-1} &= L - C_{Face-1} \\ \vec{L}_{Face-1} &= (15, 10, 10) - (4, 3, 6) \\ \vec{L}_{Face-1} &= 11\vec{i} + 7\vec{j} + 4\vec{k} \\ |\vec{L}_{Face-1}| &= \sqrt{11^2 + 7^2 + 4^2} = 13.638 \\ \vec{L}_{n-Face-1} &= \frac{\vec{L}_{Face-1}}{|\vec{L}_{Face-1}|} = \frac{11\vec{i} + 7\vec{j} + 4\vec{k}}{13.638} \\ \vec{L}_{n-Face-1} &= 0.807\vec{i} + 0.513\vec{j} + 0.293\vec{k} \end{split}$$

Cálculo do \vec{N} . \vec{L} :

$$\begin{split} \overrightarrow{N}_{n-Face-1} \cdot \overrightarrow{L}_{n-Face-1} \\ \overrightarrow{N}_{n-Face-1} \cdot \overrightarrow{L}_{n-Face-1} &= (0).\,(0.807) + (0.447).\,(0.513) + (0.894).\,(0.293) \\ \\ \overrightarrow{N}_{n-Face-1} \cdot \overrightarrow{L}_{n-Face-1} &= 0.492 \end{split}$$

Cálculo do \vec{R} :

$$\begin{split} \vec{R} &= \left(2\vec{L}.\,\vec{N}\right)\!.\,\vec{N} - \vec{L} \\ \\ \vec{R}_{n-Face-1} &= \left(2\vec{L}_{n-Face-1}\,.\,\,\vec{N}_{n-Face-1}\right)\!.\,\vec{N}_{n-Face-1} - \vec{L}_{n-Face-1} \\ \\ \vec{R}_{n-Face-1} &= -0.807\vec{i} - 0.073\vec{j} + 0.587\vec{k} \end{split}$$

Cálculo de \vec{V} :

$$\begin{split} \vec{V}_{Face-1} &= V - C_{Face-1} \\ \vec{V}_{Face-1} &= (0,0,0) - (4,3,6) \\ \vec{V}_{Face-1} &= -4\vec{\imath} - 3\vec{\jmath} - 6\vec{k} \\ |\vec{V}_{Face-1}| &= \sqrt{(-4)^2 + (-3)^2 + (6)^2} = 7.810 \\ \vec{V}_{n-Face-1} &= \frac{\vec{L}_{Face-1}}{|\vec{L}_{Face-1}|} = \frac{-4\vec{\imath} - 3\vec{\jmath} - 6\vec{k}}{7.810} \\ \vec{V}_{n-Face-1} &= -0.512\vec{\imath} - 0.384\vec{\jmath} - 0.768\vec{k} \end{split}$$

Cálculo do \vec{V} . \vec{R}

$$\vec{V}_{n-Face-1}.\vec{R}_{n-Face-1} = (-0.512 \ (-0.807)) + (-0.384 \ (-0.073)) + (-0.768. \ (0.587))$$

$$\vec{V}_{n-Face-1}.\vec{R}_{n-Face-1} = -0.009$$

Aplicando na fórmula:

$$I = I_a.k_a + I_i[k_d(N.L) + k_s(V.R)^n]$$

$$\vec{I}_{Face-1} = (1)(0.15) + 10[0.15(0.492) + 0.8(-0.009)^2]$$

$$\vec{I}_{Face-1} = 0.89$$

Calculo da Intensidade de Luz para a Face 2:

Vamos agora fazer os cálculo para a face 2 composta pelos vértices V2,V5,V3.

$$x_{c-Face-2} = \frac{(7+7+4)}{3} = 6$$

$$y_{c-Face-2} = \frac{(1+1+7)}{3} = 3$$

$$z_{c-Face-2} = \frac{(7+1+4)}{3} = 4$$

$$C_{Face-2} = (6,3,4)$$

Agora vamos calcular o vetor normal a face 2. É importante destacar que o cálculo deste vetor é feito utilizando a regra da mão direita, figura 25.

Figura 25: vetores geradores do vetor normal da face 2

$$V3 = (7,1,7)$$

$$V2 = (7,1,1)$$

$$V5 = (4,7,4)$$

$$\overrightarrow{V3V2} = 0\vec{i} + 0\vec{j} - 6\vec{k}$$

$$\overrightarrow{V3V5} = -3\vec{i} + 6\vec{j} - 3\vec{k}$$

$$\vec{N}_{Face-2} = \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & -6 \\ -3 & 6 & -3 \end{pmatrix}$$

$$\vec{N}_{Face-2} = 36\vec{i} + 18\vec{j} + 0\vec{k}$$

Vamos utilizar o vetor normalizado.

$$\left| \vec{N}_{Face-2} \right| = \sqrt{36^2 + 18^2 + 0^2} = 40.249$$

$$\vec{N}_{n-Face-2} \frac{\vec{N}_{Face-2}}{|\vec{N}_{Face-2}|} = \frac{36\vec{i} + 18\vec{j} + 0\vec{k}}{40.249}$$

$$\vec{N}_{n-Face-2} = \frac{\vec{N}_{Face-2}}{|\vec{N}_{Face-2}|} = 0.894\vec{i} + 0.447\vec{j} + 0\vec{k}$$

$$\vec{N}_{n-Face-2} = 0.894\vec{i} + 0.447\vec{j} + 0\vec{k}$$

Vamos calcular agora o vetor que representa a trajetória da luz do PV-PRP até o centróide da face 2:

$$\begin{split} \vec{L}_{Face-2} &= \vec{L}_{Face-2} - C_{Face-2} \\ \vec{L}_{Face-2} &= (15,10,10) - (6,3,4) \\ \vec{L}_{Face-2} &= 9\vec{i} + 7\vec{j} + 6\vec{k} \\ |\vec{L}_{Face-2}| &= \sqrt{9^2 + 7^2 + 6^2} = 12.884 \\ \vec{L}_{n-Face-2} &= \frac{\vec{L}_{Face-2}}{|\vec{L}_{Face-2}|} = \frac{9\vec{i} + 7\vec{j} + 6\vec{k}}{12.884} \end{split}$$

$$\vec{L}_{n-Face-2} = 0.699\vec{i} + 0.543\vec{j} + 0.466\vec{k}$$

Cálculo do \vec{N} . \vec{L} :

$$\begin{split} \overrightarrow{N}_{n-Face-2} \cdot \overrightarrow{L}_{n-Face-2} \\ \overrightarrow{N}_{n-Face-2} \cdot \overrightarrow{L}_{n-Face-2} &= (0.894). \, (0.699) + (0.447). \, (0.543) + (0). \, (0.466) \\ \\ \overrightarrow{N}_{n-Face-2} \cdot \overrightarrow{L}_{n-Face-2} &= 0.868 \end{split}$$

Cálculo do \vec{R} :

$$\begin{split} \vec{R} &= \left(2\vec{L}.\,\vec{N}\right)\!.\,\vec{N} - \vec{L} \\ \\ \vec{R}_{n-Face-2} &= \left(2\vec{L}_{n-Face-2}\,.\,\,\vec{N}_{n-Face-2}\right)\!.\,\vec{N}_{n-Face-2} - \vec{L}_{n-Face-2} \\ \\ \vec{R}_{n-Face-2} &= 0.854\vec{i} + 0.233\vec{j} - 0.466\vec{k} \end{split}$$

Calculo de \vec{V} :

$$\begin{split} \vec{V}_{Face-2} &= V - C_{Face-2} \\ \vec{V}_{Face-2} &= (0,0,0) - (6,3,4) \\ \vec{V}_{Face-2} &= -6\vec{\imath} - 3\vec{\jmath} - 4\vec{k} \\ \\ |\vec{V}_{Face-2}| &= \sqrt{(-6)^2 + (-3)^2 + (4)^2} = 7.810 \\ \vec{V}_{n-Face-2} &= \frac{\vec{L}_{Face-1}}{|\vec{L}_{Face-1}|} = \frac{-6\vec{\imath} - 3\vec{\jmath} - 4\vec{k}}{7.810} \\ \vec{V}_{n-Face-2} &= -0768\vec{\imath} - 0.384\vec{\jmath} - 0.512\vec{k} \end{split}$$

Cálculo do \vec{V} . \vec{R}

$$\vec{V}_{n-Face-2}.\vec{R}_{n-Face-2} = (-0.768.~(0.854)) + (-0.384.(0.233)) + (-0.512.(-0.466))$$

$$\vec{V}_{n-Face-2}.\vec{R}_{n-Face-2} = -0.5068$$

Aplicando na fórmula:

$$I = I_a.k_a + I_i[k_d(N.L) + k_s(V.R)^n]$$

$$\vec{I}_{Face-2} = (1)(0.15) + 10[0.15 (0.868) + 0.8 (-0.5068)^2]$$

$$\vec{I}_{Face-2} = 3.50655$$

h) Vamos refazer os cálculos com a proposta de James Blinn

Inicialmente vamos fazer os cálculos para a face 1.

$$I = I_a.k_a + I_i[k_d(N.L) + k_s(N.H)^n]$$

$$H = \frac{L + V}{|L + V|}$$

$$\vec{L}_{Face-1} + \vec{V}_{Face-1} = (0.807\vec{i} + 0.513\vec{j} + 0.293\vec{k}) + (-0.512\vec{i} - 0.384\vec{j} - 0.768\vec{k})$$

$$\vec{L}_{Face-1} + \vec{V}_{Face-1} = 0.294\vec{i} + 0.129\vec{j} - 0.475\vec{k}$$

$$\left| \vec{L}_{Face-1} + \vec{V}_{Face-1} \right| = \sqrt{0.294^2 + 0.129^2 + (-0.475)^2}$$

$$\left| \vec{L}_{Face-1} + \vec{V}_{Face-1} \right| = 0.573$$

$$\vec{H}_{n-Face-1} = \frac{0.294\vec{i} + 0.129\vec{j} - 0.475\vec{k}}{0.573}$$

$$\vec{H}_{n-Face-1} = 0.513\vec{i} + 0.225\vec{j} - 0.828\vec{k}$$

$$\vec{N}_{n-Face-1} \cdot \vec{H}_{n-Face-1} = (0\vec{i} + 0.447\vec{j} + 0.894\vec{k}) \cdot (0.513\vec{i} + 0.225\vec{j} - 0.828\vec{k})$$

$$\vec{N}_{n-Face-1} \cdot \vec{H}_{n-Face-1} = -0.6399$$

$$\vec{I}_{Face-2} = (1)(0.15) + 10[0.15(0.492) + 0.8(-0.6399)^2]$$

$$\vec{I}_{Face-1} = 4.014$$

Agora vamos apresentar os cálculos com a proposta de James Blinn para a face 2.

$$I = I_a.k_a + I_i[k_d(N.L) + k_s(N.H)^n]$$

$$H = \frac{L+V}{|L+V|}$$

$$\vec{L}_{Face-2} + \vec{V}_{Face-2} = (0.6997\vec{\imath} + 0.543\vec{\jmath} + 0.466\vec{k}) + (-0.7682\vec{\imath} - 0.384\vec{\jmath} - 0.51215\vec{k})$$

$$\vec{L}_{Face-2} + \vec{V}_{Face-2} = -0.07\vec{i} + 0.159\vec{j} - 0.046\vec{k}$$

$$\left| \vec{L}_{Face-2} + \vec{V}_{Face-2} \right| = \sqrt{(-0.07)^2 + 0.159^2 + (-0.046)^2}$$

$$|\vec{L}_{Face-2} + \vec{V}_{Face-2}| = 0.17988$$

$$\vec{H}_{n-Face-2} = \frac{-0.07\vec{i} + 0.159\vec{j} - 0.046\vec{k}}{0.17988}$$

$$\vec{H}_{n-Face-2} = -0.3874\vec{i} + 0.885\vec{j} - 0.258\vec{k}$$

$$\vec{N}_{n-Face-2} \cdot \vec{H}_{n-Face-2} \ = \big(0.894\vec{i} + 0.447\vec{j} + 0\vec{k}\big) \cdot (-0.3874\vec{i} + 0885\vec{j} - 0.25827\vec{k})$$

$$\vec{N}_{n-Face-2} \cdot \vec{H}_{n-Face-2} = 0.04928$$

$$\vec{I}_{Face-2} = (1)(0.15) + 10[0.15 (0.868) + 0.8 (0.0428)^2]$$

$$\vec{I}_{Face-2} = 1.471$$

i) Agora vamos incluir à proposta de Blinn a atenuação atmosférica

Para o cálculo da atenuação vamos adotar K=1 e a distância já calculada. No caso da face 1 a distância da luz ao centróide 13.638.

$$I = I_a.k_a + \frac{I_i}{d+k} [k_d(N.L) + k_s(N.H)^n]$$

$$\vec{I}_{Face-2} = (1)(0.15) + \frac{10}{(13.638+1)} [0.15 (0.492) + 0.8 (-0.6399)^2]$$

$$\vec{I}_{Face-1} = 0.424$$

Para a face 2 temos K=1 e d 12.8841:

$$\vec{I}_{Face-2} = (1)(0.15) + \frac{10}{(12.884 + 1)}[0.15 (0.868) + 0.8 (0.0428)^{2}]$$

$$\vec{I}_{Face-2} = 0.43913$$

j) Flat Shading com definição de cores das luzes e do objeto gráfico.

Cor do objeto branca: RGB [255, 255, 255] ou de forma normalizada [1, 1, 1]. Cor da luz ambiente: RGB [255, 200, 100] ou de forma normalizada [1, 0.78, 0.39]. Cor da luz pontual: RGB [50, 200, 100] ou de forma normalizada [0.20 0.78, 0.39]. Os valores de Ka=50 de [0..100] na fórmula = 0.5, Kd = 100 de [0.. a 100] na fórmula = 1.0 e Ks = 80 de [0..100] na tabela 2. Para atenuação atmosférica vamos adotar k=1.

Dados									
Luz Ambiente	Cor(R,G,B)	255	200	100	Luz Ambiente				
Lua Baratural	Cor(R,G,B)	50	200	100					
Luz Pontual	Posição(x,y,z)	15	10	10	Luz Pontual				
Objete	Ka, Kd, Ks	0.5	1.0	0.8	Cor do objeto				
Objeto	Cor(R,G,B)	255	255	255					

Tabela 2: dados de luzes e cor do objeto gráfico

$$\begin{split} I_{R} &= I_{aR}.k_{a}O_{dR} + \frac{I_{iR}}{d+k} \left[k_{d}O_{dR}(N.L) + k_{s}O_{sR}(N.H)^{n} \right] \\ I_{G} &= I_{aG}.k_{a}O_{dG} + \frac{I_{iG}}{d+k} \left[k_{d}O_{dG}(N.L) + k_{s}O_{sG}(N.H)^{n} \right] \\ I_{B} &= I_{aB}.k_{a}O_{dB} + \frac{I_{iB}}{d+k} \left[k_{d}O_{dB}(N.L) + k_{s}O_{sB}(N.H)^{n} \right] \end{split}$$

Para a Face 1 temos:

Cálculo da intensidade de Vermelho para a face 1:

$$\begin{split} I_{R\,face\,1} &= I_{aR}.\,k_aO_{dR} + \frac{I_{iR}}{d_{face\,1}+k}\left[k_dO_{dR}(N.\,L) + k_sO_{sR}(N.\,H)^n\right] \\ I_{aR} &= 1 \\ I_{iR} &= 0.5 \\ O_{dR} &= 1 \end{split}$$

$$I_{R \text{ face 1}} = (1)(0.5)(1) + \frac{0.5}{(13.638 + 1)} [(1)(1)(0.492) + 0.80(1)(-0.6399)^{2}]$$

$$I_{R \text{ face 1}} = 0.5110$$

$$RGB = (130, 0, 0)$$

Cálculo da intensidade de Verde para a face 1, método de Blinn:

$$\begin{split} I_{G\,face\,1} &= I_{aG}k_{a}O_{dG} + \frac{I_{iG}}{d_{face\,1} + k}\left[k_{d}O_{dG}(N.\,L) + k_{s}O_{sG}(N.\,H)^{n}\right] \\ &I_{aG} = 0.78 \\ &I_{iG} = 0.78 \\ &O_{dG} = 1 \end{split}$$

$$I_{G\,face\,1} &= (0.78)(0.15)(1) + \frac{0.78}{(13.638 + 1)}\left[1.0(1)(0.492) + 0.8(1)(-0.6399)^{2}\right] \\ &I_{G} = 0.4361 \end{split}$$

$$RGB = (0, 111, 0)$$

Cálculo da intensidade de Azul para a face 1, método de Blinn:

$$\begin{split} I_B &= I_{aB} k_a O_{dB} + \frac{I_{iB}}{d_{face \, 1} + k} [k_d O_{dB} (N.\,L) + k_s O_{sB} (N.\,H)^n] \\ &I_{aB} = 0.39 \\ &I_{iB} = 0.39 \\ &k_a O_{dB} = 1 \end{split}$$

$$I_{B \, face \, 1} &= (1)(0.5)(1) + \frac{1.0}{(13.638 + 1)} \left[(1)(1)(0.492) + 0.80(1)(-0.63997)^2 \right] \\ &I_{B} = 0.2180 \end{split}$$

$$RGB = (0, 0, 56)$$

Cor final Blinn para face 1 do objeto gráfico:

$$I_R = 0.5110, I_G = 0.4361, I_B = 0.2180)$$

Para a Face 2 temos:

Cálculo da intensidade de Vermelho para a face 2:

$$\begin{split} I_R &= I_{aR}.k_a O_{dR} + \frac{I_{iR}}{d_{face\ 2} + k} \left[k_d O_{dR}(N.\,L) + k_s O_{sR}(N.\,H)^n \right] \\ I_{aR} &= 1 \\ I_{iR} &= 0.5 \\ O_{dR} &= 1 \end{split}$$

$$I_{R \text{ face 2}} = (1)(1)(1) + \frac{0.5}{(13.638 + 1)} [(1)(1)(0.492) + 0.80(1)(-0.6399)^{2}]$$

$$I_{R} = 0.5123$$

$$RGB = (131, 0, 0)$$

Cálculo da intensidade de Verde para a face 2, método de Blinn:

$$\begin{split} I_G &= I_{aG} k_a O_{dG} + \frac{I_{iG}}{d_{face\ 2} + k} \left[k_d O_{dG}(N.\,L) + k_s O_{sG}(N.\,H)^n \right] \\ I_{aG} &= 0.78 \\ I_{iG} &= 0.78 \\ O_{dG} &= 1 \end{split}$$

$$I_{G \text{ face 2}} = (0.78)(0.50)(1) + \frac{0.78}{(13.638 + 1)} [(1)(1)(0.492) + 0.8(1)(-0.6399)^{2}]$$

$$I_{G} = 0.4413$$

$$RGB = (0, 113, 0)$$

Cálculo da intensidade de Azul para a face 2, método de Blinn:

$$\begin{split} I_B &= I_{aB} k_a O_{dB} + \frac{I_{iB}}{d_{face\ 2} + k} [k_d O_{dB} (N.\,L) + k_s O_{sB} (N.\,H)^n] \\ I_{aB} &= 0.39 \\ I_{iB} &= 0.39 \\ k_a O_{dB} &= 1 \end{split}$$

$$I_{B \text{ face 2}} = 0.39(0.5)(1) + \frac{0.39}{(13.638 + 1)} [(1)(1)(0.492) + 0.80(1)(-0.63997)^{2}]$$

$$I_{B} = 0.2206$$

$$RGB = (0, 0, 56)$$

Cor final pela proposta de **Blinn** para a face 2 do objeto gráfico:

$$I_R = 0.5123$$
, $I_G = 0.4413$, $I_B = 0.2206$)

RGB(131, 113, 56)

Vejamos graficamente o resultado:

Figura 26: sombreamento plano ou flat shading do objeto gráfico no VRC

Referências

AGUILERA, V. Computação gráfica: animação. Cotia, SP: Editora Íbis Ltda, 1993.

ANGEL, Edward. **Interactive computer graphics**: a top-down approach with OpenGL. Massachusetts: Addison-Wesley, 1997.

AZEVEDO, Eduardo; CONCI, Aura. **Computação gráfica**: teoria e prática. Rio de Janeiro: Elsevier, 2003.

CONCI, Aura; AZEVEDO, Eduardo; LETA, Fabiana R. **Computação gráfica**. Rio de Janeiro: Elsevier, 2008.

COPELAND, Arthur H. **Geometry, algebra and trigonometry by vector methods**. New York: The Macmillan Company, 1962.

CUNHA, Gilberto J. da et al. Computação gráfica: o padrão GKS. São Paulo: Editora Atlas, 1987.

FERGUSON, R. S. Practical algorithms for computer graphics. New York: A. K. Peters Ltda., 2001.

FOLEY, D. James et al. **Computer graphics**: principles and practice. Delhi: Pearson Education, 2004.

GOMES, J. M.; VELHO, Luís C. Conceitos básicos de computação gráfica. São Paulo: IME-USP, 1990.

HARRINGTON, S. Computer graphics: a programming approach. 2 ed. New York: MacGRAW-HILL, 1987.

HEARN, Donald; BAKER, Pauline M. **Computer graphics**: C version. New Jersey: Printice Hall, 1986.

HETEM JUNIOR, Annibal. **Coleção fundamentos de informática**: computação gráfica. Rio de Janeiro: LTC, 2006.

MAGALHÃES, Léo P. **Computação gráfica**: interfaces em sistemas de computação gráfica. Campinas: Editora da Unicamp, 1986.

McCONNELL, J. J. **Computer graphics theory into practice**. Sudbury, Massachusetts: Jones and Bartlett Publishers, 2006.

MORTENSON, M. E. **Mathematics for computer graphics applications**. New York: Industrial Press Inc., 1999.

NEWMAN, W. M.; SPROULL, R. F. **Principles of interactive computer graphics**. 2 ed. New York: MacGRAW-HILL, 1979.

PERSIANO, R. C. Marinho; OLIVEIRA, A. A. Fernandes de. **Introdução a computação gráfica**. Rio de Janeiro: LTC, 1988.

ROGERS, D. F. Procedural elements for computer graphics. New York: MacGRAW-HILL, 1985.

SCHNEIDER, Philip J.; EBERLY, David H. **Geometric tools for computer graphics**. San Francisco, CA: Morgan Kaufmann Publishers, 2003.

VELHO, Luiz; GOMES Jonas. Sistemas gráficos 3D. Rio de Janeiro: IMPA, 2001.

VERMA, C. S. Computer graphics. New Delhi: Ane Books Pvt, Ltd., 2012.

VINCE, J. **Geometry for computer graphics**: formulae, examples & proofs. London: Spring, 2005.

VINCE, J. Essential computer animation fast. London: Spring, 1999.

WATT, A. **Fundamentals of three-dimensional computer graphics**. New York: Addison-Wesley Publishing Company, 1989.

WATT, A. **3D computer graphics**. 2. ed. Rio de Janeiro: Addison-Wesley Publishing Company, 1993.

XIANG, Zhigang; PLASTOCK Roy. Computer graphics. New York: McGRAW-HILL, 1992.