

Outlier, Noise and Missing Value

Penyusun Modul: Chairul Aulia

Editor: Rina Fitriyani, Silfa Rahma Aulia

Outlier is an observation that appears far away and diverges from an overall pattern in a sample.

Type of Outlier

Source: https://analyticsvidhya.com/

- **Univariate Outlier**: A univariate outlier is a data point that consists of an extreme value on one variable.
- Multivariate Outlier: A multivariate outlier is a combination of unusual scores on at least two variables/in an n-dimensional space

What is the impact of Outliers on a dataset?

If the outliers are non-randomly distributed, they can decrease normality

They can bias or influence estimates that may be of substantive interest.

They can also impact the basic assumption of Regression, ANOVA and other statistical model assumptions.

What causes Outliers?

Artificial(error)/ Non-Natural

Natural

Most common causes of outliers on a data set:

- Data entry errors (human errors)
- Measurement errors (instrument errors)
- Experimental errors (data extraction or experiment planning/executing errors)
- Intentional (dummy outliers made to test detection methods)
- Data processing errors (data manipulation errors)
- Sampling errors (extracting or mixing data from wrong or various sources)
- Natural (not an error, novelties in data)

How to remove the outlier?

The common techniques used to deal with outliers are:

- 1. Deleting observations
- 2. Transforming and binning values

Source: https://medium.com/

- 3. Imputing
- 4. Treat Outliers separately.

As usual, let's try it out!

Let's try to detect and remove outliers

Open the Outliers notebook file on JupyterLab

Exercise

Now, try doing the same thing with the winequalitywhite dataset

Noisy data is data with a large amount of additional meaningless information in it called noise. This includes corrupted data. It also includes any data that a system cannot user understand and interpret correctly.

Noise Types

Class Noise

- Contradictory examples
- Mislabeled examples

Attribute Noise

- Erroneous values
- Missing values
- Don't care values

https://sci2s.ugr.es/noisydata

Missing Value

Name	Weight	Gender	Play Cricket/ Not
Mr. Amit	58	M	Υ
Mr. Anil	61	M	Υ
Miss Swati	58	F	N
Miss Richa	55		Υ
Mr. Steve	55	M	N
Miss Reena	64	F	Υ
Miss Rashmi	57		Υ
Mr. Kunal	57	M	N

In statistics, missing data, or missing values, occur when no data value is stored for the <u>variable</u> in an <u>observation</u>. Missing data are a common occurrence and can have a significant effect on the conclusions that can be drawn from the data.

Data extraction

Data collection

Missing completely at random

Missing at random

Missing that depends on unobserved predictors

Missing that depends on the missing value itself

Which are the methods to treat missing values?

List wise deletion

Gender	Manpower	Sales
M	25	343
F		280
M	33	332
M		272
F	25	
M	29	326
	26	259
M	32	297

Pair wise deletion

Gender	Manpower	Sales
M	25	343
F		280
M	33	332
M		272
F	25	-
M	29	326
_	26	259
M	32	297

- 2. Mean/ Mode/ Median Imputation
 - Generalized Imputation
 - Similar case Imputation
- 3. Prediction Model
- 4. KNN Imputation

Let's Try it Out!

Let's try to detect and remove null values

Open the Titanic_Statistics notebook file on JupyterLab and head to the Working with null values section

Now, try doing the same thing with the winequality-white dataset

Please detect and remove outliers from a variable, you can choose one variable freely

Or if you feel that you can do all of the variable, then just do all of it

Exploratory DataAnalysis

Now that you've learn the fundamentals of Exploratory Data Analysis, how about we go take an example of how it is fully used as a whole?

Open and explore the White_Wine_EDA file on your JupyterLab