Update on momentum resolution measurement

M. De Mattia for the MuScleFit group

Introduction

- The old resolution fit suffered from a coarse background model
- The new detailed model allows to improve significantly the results of the fit
- How the background error is propagated in the resolution and scale fit errors is explained
- Finally, the updated results with 19/pb are shown for all the other plots of the paper

Resolution Fit

- The resolution fit was done after a background fit
- The background function used was a single exponential dependent only on the mass value
- This description can be improved taking into account the eta dependencies of the background shape

Fit on MC (J/Psi signal only)

Calibration with old background fit

• Single exponential function fit and resolution fit: The exponential depends only on the mass

The Background

 The background changes dramatically as a function of (eta1, eta2)

Improved background model

 The background is fit in bins of (eta1,eta2) and the results are used in MuScleFit

Results of the new fit

- Fit strategy:
 - Keep the background fixed
 - Fit order: resolution, scale, resolution
- Further refits of scale or resolution do not produce any improvement

Mass resolution data vs MC (OLD FIT)

Resolution refit after scale fit

- The agreement improves in the forward region
 - Still residual discrepancy in 1.4 < |eta| < 1.8

Comparison of the Fit with the result of direct mass fits in eta bins

Note: the mass fits are done using CrystalBall + exponential

Fit on MC

Fit on Data

Systematics from background model

- Refit using the background parameters +- error
 - 2 parameters: exponential shape and S/N fraction = 4 combinations
- The variation in the resolution and scale fit parameters is taken as the propagation of the background statistical uncertainty
- Variations in the resolution fit are mostly in the endcaps, see next slide
- In addition, shift the eta bins for the background fits in both directions of 0.05 (the smallest bins have a width of 0.1) and repeat the resolution fit with the new models
- Take the biggest variations between all the six cases above as systematic error from the background model

Resolution fit variation for background uncertainties

sigma(Pt)/Pt

Includes: stat + syst(background) + syst(MC)

Background errors comparison

 Become important at high eta, where the background fraction increases.

Additional Test

- Fix the transition parameters to the values found in the MC and repeat the fit
 - The fit seems to go in the same direction...

Update of the results with 19/pb

Mass: Data vs Simulation

Mass Resolution: Data vs Simulation

Integrated mass fit

Scale correction on Data

Backup

Calibration with new background fit

Mass resolution data vs MC

After the scale fit

Probs after refit

Old Considerations

- The systematics do not cover the difference between data and simulation
- This difference appears to reduce when refitting after a scale fit, so it might be still artificial
- But, the fits in that region are not tremendously wrong...
 - Nevertheless the shape could appear not gaussian because of variations in the background shape
- Trying now to refit after additional scale corrections:
 - Resolution, scale, resolution, scale, resolution