પ્રશ્ન 1(અ) [3 ગુણ]

મશીન લર્નિંગની વ્યાખ્યા આપો. મશીન લર્નિંગની કોઈપણ બે ઉપયોગીતાઓ આપો.

જવાબ:

મશીન લર્નિંગ એ આર્ટિફિશિયલ ઇન્ટેલિજન્સનો એક ભાગ છે જે કમ્પ્યુટરને ડેટામાંથી શીખવા અને દરેક કાર્ય માટે સ્પષ્ટ પ્રોગ્રામિંગ વિના નિર્ણયો લેવાની ક્ષમતા આપે છે.

ઉપયોગીતાઓ:

• ઈમેઇલ સ્પામ ડિટેક્શન: આપોઆપ સ્પામ ઈમેઇલ ઓળખે અને ફિલ્ટર કરે છે

• **સુઝાવ સિસ્ટમ**: Amazon જેવી ઈ-કોમર્સ સાઇટ્સ પર પ્રોડક્ટ સુઝાવે છે

ટેબલ: ML વિ ટ્રેડિશનલ પ્રોગ્રામિંગ

પરંપરાગત પ્રોગ્રામિંગ	મશીન લર્નિંગ
ઇનપુટ ડેટા + પ્રોગ્રામ → આઉટપુટ	ઇનપુટ ડેટા + આઉટપુટ → પ્રોગ્રામ
નિયમો સ્પષ્ટપણે કોડ કરવામાં આવે છે	નિયમો ડેટામાંથી શીખવામાં આવે છે

મેમરી ટ્રીક: "ML = ડેટામાંથી શીખવું બનાવો"

પ્રશ્ન 1(બ) [4 ગુણ]

વ્યાખ્યા આપો: અંડર ફિટિંગ અને ઓવર ફિટિંગ.

જવાબ:

અંકરફિટિંગ ત્યારે થાય છે જ્યારે મોડલ ડેટામાં છુપાયેલા પેટર્ન કેપ્યર કરવા માટે ખૂબ સાદું હોય છે, જેના પરિણામે ટ્રેનિંગ અને ટેસ્ટ બંને ડેટા પર નબળી કામગીરી થાય છે.

ઓવરફિટિંગ ત્યારે થાય છે જ્યારે મોડલ ટ્રેનિંગ ડેટાને અવાજ સહિત ખૂબ સારી રીતે શીખે છે, જેના કારણે નવા અદ્રશ્ય ડેટા પર નબળી કામગીરી થાય છે.

ટેબલ: સરખામણી

પાસું	અંડરફિટિંગ	ઓવરફિટિંગ
ટ્રેનિંગ એક્યુરેસી	ઓછી	વધારે
ટેસ્ટ એક્યુરેસી	ઓછી	ઓછી
મોડલ કોમ્પ્લેક્સિટી	ખૂબ સાદું	ખૂબ જટિલ
સોલ્યુશન	કોમ્પ્લેક્સિટી વધારો	કોમ્પ્લેક્સિટી ઘટાડો

મેમરી ટ્રીક: "અંડર = ઓછું કામ, ઓવર = વધુ પડતું શીખવું"

પ્રશ્ન 1(ક) [7 ગુણ]

મશીન લર્નિંગના વિવિદ્ય પ્રકારો યોગ્ય ઉદાહરણની મદદથી વર્ણવો.

જવાબ:

ટેબલ: મશીન લર્નિંગના પ્રકારો

увіг	વર્ણન	ઉદાહરણ
સુપરવાઇઝ્ડ	લેબલ કરેલ ટ્રેનિંગ ડેટા વાપરે છે	ઈમેઇલ વર્ગીકરણ
અનસુપરવાઇઝ્ડ	લેબલ કરેલ ડેટા નથી, પેટર્ન શોધે છે	કસ્ટમર સેગમેન્ટેશન
રિઇન્ફોર્સમેન્ટ	પુરસ્કાર/દંડ દ્વારા શીખે છે	ગેમ રમતું Al

સુપરવાઇઝ્ડ લર્નિંગ ઇનપુટ-આઉટપુટ જોડીઓ વાપરીને મોડલ ટ્રેન કરે છે. અલ્ગોરિધમ ઉદાહરણોમાંથી શીખીને નવા ડેટા માટે પરિણામોની આગાહી કરે છે.

અનસુપરવાઇઝ્ડ લર્નિંગ ટાર્ગેટ લેબલ વિના ડેટામાં છુપાયેલા પેટર્ન શોધે છે. તે સમાન ડેટા પોઇન્ટ્સને એકસાથે જૂથબદ્ધ કરે છે.

રિઇન્ફોર્સમેન્ટ લર્નિંગ સારા કાર્યો માટે પુરસ્કાર અને ખરાબ કાર્યો માટે દંડ આપીને એજન્ટને નિર્ણય લેવાનું શીખવે છે.

ડાયાગ્રામ:

મેમરી ટ્રીક: "સુપર અન-સુપરવાઇઝ્ડ રિઇન્ફોર્સ શીખવું"

પ્રશ્ન 1(ક) અથવા [7 ગુણ]

મશીન લર્નિંગમાં ઉપયોગ થતી વિવિદ્ય ટૂલ્સ અને ટેકનોલોજી વર્ણવો.

જવાબ:

ટેબલ: ML ટૂલ્સ અને ટેકનોલોજીઓ

કેટેગરી	ટૂલ્સ	હેતુ
પ્રોગ્રામિંગ	Python, R	મુખ્ય ડેવલપમેન્ટ
લાઇબ્રેરીઓ	Scikit-learn, TensorFlow	મોડલ બિલ્કિંગ
ડેટા પ્રોસેસિંગ	Pandas, NumPy	ડેટા મેનિપ્યુલેશન
વિઝ્યુલાઇઝેશન	Matplotlib, Seaborn	ડેટા પ્લોટિંગ

Python તેની સરળતા અને વ્યાપક લાઇબ્રેરીઓને કારણે સૌથી લોકપ્રિય ભાષા છે.

Scikit-learn ડેટા માઇનિંગ અને વિશ્લેષણ માટે સરળ ટ્રલ્સ પ્રદાન કરે છે, જે શરૂઆતીઓ માટે પરફેક્ટ છે.

TensorFlow અને PyTorch ડીપ લર્નિંગ એપ્લિકેશન માટે એડવાન્સ ફ્રેમવર્ક છે.

Jupyter Notebook પ્રયોગ માટે ઇન્ટરેક્ટિવ ડેવલપમેન્ટ એન્વાયર્નમેન્ટ ઓફર કરે છે.

ડાયાગ્રામ:

મેમરી ટ્રીક: "Python Pandas Scikit Tensor Jupyter"

પ્રશ્ન 2(અ) [3 ગુણ]

Qualitative ડેટા અને Quantitative ડેટા વચ્ચેનો તફાવત આપો.

જવાલ:

ટેબલ: Qualitative વિ Quantitative ડેટા

Qualitative sszı	Quantitative sेટા
બિન-સંખ્યાત્મક કેટેગરીઓ	સંખ્યાત્મક મૂલ્યો
રંગો, નામો, ગ્રેડ્સ	ઊંચાઈ, વજન, કિંમત
માપી શકાતું નથી	માપી શકાય છે

Qualitative ડેટા એવા ગુણો અથવા લક્ષણોનું વર્ણન કરે છે જે સંખ્યાત્મક રીતે માપી શકાતા નથી.

Quantitative **ડેટા** સંખ્યાઓ તરીકે વ્યક્ત કરેલા માપી શકાય તેવા જથ્થાઓનું પ્રતિનિધિત્વ કરે છે.

મેમરી ટ્રીક: "Quality = કેટેગરીઓ, Quantity = સંખ્યાઓ"

પ્રશ્ન 2(બ) [4 ગુણ]

નીચે આપેલા ડેટાનું mean અને median શોધો: 3,4,5,5,7,8,9,11,12,14.

જવાબ:

આપેલ ડેટા: 3, 4, 5, 5, 7, 8, 9, 11, 12, 14

Mean ગણતરી:

• સરવાળો = 3+4+5+5+7+8+9+11+12+14 = 78

• સંખ્યાઓની ગિનતી = 10

• Mean = 78/10 = 7.8

Median ગણતરી:

• ડેટા પહેલેથી જ સોર્ટ થયેલ છે

• 10 સંખ્યાઓ માટે: Median = (5મી + 6ઠી મૂલ્ય)/2

• Median = (7+8)/2 = 7.5

ટેબલ: પરિણામો

น _เ นธ์ร	મૂલ્ચ
Mean	7.8
Median	7.5

મેમરી ટ્રીક: "Mean = સરેરાશ, Median = મધ્યક"

પ્રશ્ન 2(ક) [7 ગુણ]

મશીન લર્નિંગની એક્ટિવિટી વિગતવાર વર્ણવો.

જવાબ:

ટેબલ: મશીન લર્નિંગ એક્ટિવિટીઓ

એક્ટિવિટી	વર્ણન	ઉદાહરણ
ડેટા કલેક્શન	સંબંધિત ડેટા એકત્રિત કરવું	સર્વે પ્રતિભાવો
ડેટા પ્રીપ્રોસેસિંગ	ડેટા સાફ અને તૈયાર કરવું	ડુપ્લિકેટ્સ દૂર કરવા
ફીચર સિલેક્શન	મહત્વપૂર્ણ વેરિયેબલ્સ પસંદ કરવા	લોન માટે ઉંમર, આવક
મોડલ ટ્રેનિંગ	અલ્ગોરિદ્યમને પેટર્ન શીખવવું	ટ્રેનિંગ ડેટા ખવડાવવો
મોડલ ઇવેલ્યુએશન	મોડલની કામગીરી પરીક્ષણ	એક્યુરેસી મેઝરમેન્ટ

ડેટા કલેક્શન ડેટાબેસ, સેન્સર્સ અથવા સર્વે જેવા વિવિધ સ્રોતોમાંથી માહિતી એકત્રિત કરવાનો સમાવેશ કરે છે.

ડેટા પ્રીપ્રોસેસિંગ વિશ્લેષણ માટે કાચા ડેટાને સાફ, રૂપાંતર અને ગોઠવવાનો સમાવેશ કરે છે.

કીચર સિલેક્શન આગાહીઓમાં યોગદાન આપતા સૌથી સંબંધિત વેરિયેબલ્સ ઓળખે છે.

મોડલ ટ્રેનિંગ તૈયાર કરેલા ટ્રેનિંગ ડેટામાંથી પેટર્ન શીખવા માટે અલ્ગોરિધમ્સનો ઉપયોગ કરે છે.

મોડલ ઇવેલ્યુએશન ટ્રેન કરેલ મોડલ નવા, અદ્રશ્ય ડેટા પર કેટલી સારી કામગીરી કરે છે તેનું પરીક્ષણ કરે છે.

ડાયાગ્રામ:

મેમરી ટ્રીક: "કલેક્ટ પ્રોસેસ ફીચર ટ્રેન ઇવેલ્યુએટ ડિપ્લોય"

પ્રશ્ન 2(અ) અથવા [3 ગુણ]

Predictive મોડલ અને Descriptive મોડલ વચ્ચેનો તફાવત આપો.

જવાબ:

ટેબલ: Predictive વિ Descriptive મોડલ્સ

Predictive मोडल	Descriptive મોડલ
લવિષ્યના પરિણામોની આગાહી કરે છે	વર્તમાન પેટર્નનું સમજૂતી આપે છે
સુપરવાઇઝ્ડ લર્નિંગ વાપરે છે	અનસુપરવાઇઝ્ડ લર્નિંગ વાપરે છે
સ્ટોક પ્રાઇસ પ્રિડિક્શન	કસ્ટમર સેગમેન્ટેશન

Predictive મોડલ્સ ભવિષ્યની ઘટનાઓ અથવા અજાણ્યા પરિણામોની આગાહી કરવા માટે ઐતિહાસિક ડેટાનો ઉપયોગ કરે છે.

Descriptive મોડલ્સ વર્તમાન પેટર્ન અને સંબંધોને સમજવા માટે હાલના ડેટાનું વિશ્લેષણ કરે છે.

મેમરી ટ્રીક: "Predict = ભવિષ્ય, Describe = વર્તમાન"

પ્રશ્ન 2(બ) અથવા [4 ગુણ]

નીચે આપેલા ડેટાને યોગ્ય ડેટા ટાઇપની મદદથી classify કરો: hair color, gender, blood group type, time of day.

જવાબ:

ટેબલ: ડેટા ટાઇપ ક્લાસિફિકેશન

s̀гı	SISK	કારણ
Hair color	Nominal	કોઈ ક્રમ વિના કેટેગરીઓ
Gender	Nominal	કોઈ ક્રમ વિના કેટેગરીઓ
Blood group	Nominal	કોઈ ક્રમ વિના કેટેગરીઓ
Time of day	Continuous	માપી શકાય તેવી માત્રા

Nominal ડેટા કોઈ કુદરતી ક્રમ વિના કેટેગરીઓનું પ્રતિનિધિત્વ કરે છે.

Continuous ડેટા શ્રેણીમાં કોઈપણ મૂલ્ય લઈ શકે છે અને માપી શકાય છે.

મેમરી ટ્રીક: "નામો = Nominal, સંખ્યાઓ = Numerical"

પ્રશ્ન 2(ક) અથવા [7 ગુણ]

ડેટા પ્રી-પ્રોસેસિંગમાં ઉપયોગ થતી વિવિદ્ય મેથડ્સ વર્ણવો.

જવાબ:

ટેબલ: ડેટા પ્રીપ્રોસેસિંગ મેથડ્સ

મેથડ	હેતુ	ઉદાહરણ
ડેટા ક્લીનિંગ	ભૂલો અને અસંગતતાઓ દૂર કરવી	ટાઇપોઝ ઠીક કરવા, ડુપ્લિકેટ્સ દૂર કરવા
ડેટા ઇન્ટીગ્રેશન	બહુવિધ સ્રોતો એકસાથે જોડવા	કસ્ટમર ડેટાબેસ મર્જ કરવા
ડેટા ટ્રાન્સફોર્મેશન	યોગ્ય ફોર્મેટમાં કન્વર્ટ કરવું	0-1 મૂલ્યો નોર્મલાઇઝ કરવા
ડેટા રિડક્શન	ડેટાસેટનું કદ ઘટાડવું	મહત્વપૂર્ણ ફીચર્સ પસંદ કરવા

ડેટા ક્લીનિંગ ભૂલભરેલ, અધૂરા અથવા અપ્રસ્તુત ડેટાને દૂર કરે છે અથવા સુધારે છે.

ડેટા ઇન્ટીગ્રેશન બહુવિધ સ્રોતોમાંથી ડેટાને એકીકૃત ડેટાસેટમાં જોડે છે.

ડેટા ટ્રાન્સફોર્મેશન વિશ્લેષણ માટે ડેટાને યોગ્ય ફોર્મેટમાં કન્વર્ટ કરે છે.

ડેટા રિડક્શન માહિતીની ગુણવત્તા જાળવીને ડેટાસેટનું કદ ઘટાડે છે.

ડાયાગ્રામ:

મેમરી ટ્રીક: "ક્લીન ઇન્ટીગ્રેટ ટ્રાન્સફોર્મ રિક્યુસ"

પ્રશ્ન 3(અ) [3 ગુણ]

Classification અને Regression વચ્ચેનો તફાવત આપો.

જવાલ:

રેબલ: Classification વિ Regression

Classification	Regression
ડિસ્ક્રીટ આઉટપુટ	કન્ટિન્યુઅસ આઉટપુટ
કેટેગરીઓની આગાહી કરે છે	સંખ્યાત્મક મૂલ્યોની આગાહી કરે છે
ઈમેઇલ: સ્પામ/બિન-સ્પામ	ઘરની કિંમત આગાહી

Classification ઇનપુટ ડેટામાંથી ડિસ્ક્રીટ કેટેગરીઓ અથવા ક્લાસની આગાહી કરે છે.

Regression ઇનપુટ ડેટામાંથી કન્ટિન્યુઅસ સંખ્યાત્મક મૂલ્યોની આગાહી કરે છે.

મેમરી ટ્રીક: "Class = કેટેગરીઓ, Regress = વાસ્તવિક સંખ્યાઓ"

પ્રશ્ન 3(બ) [4 ગુણ]

યોગ્ય ઉદાહરણ લઈને confusion matrix લખો. તેના માટે accuracy અને error rate ગણો.

જવાબ:

ઉદાહરણ: ઈમેઇલ ક્લાસિફિકેશન

วัดต: Confusion Matrix

	પ્રિડિક્ટેડ સ્ યા મ	પ્રિડિક્ટેડ નોટ સ્ યા મ
વાસ્તવિક સ્પામ	85 (TP)	15 (FN)
વાસ્તવિક નોટ સ્પામ	10 (FP)	90 (TN)

ગણતરીઓ:

- Accuracy = (TP+TN)/(TP+TN+FP+FN) = (85+90)/200 = 87.5%
- Error Rate = (FP+FN)/(TP+TN+FP+FN) = (10+15)/200 = 12.5%

મુખ્ય શબ્દો:

- **TP**: True Positive યોગ્ય રીતે સ્પામ આગાહી
- TN: True Negative યોગ્ય રીતે નોટ સ્પામ આગાહી

મેમરી ટ્રીક: "True Positive True Negative = યોગ્ય આગાહીઓ"

પ્રશ્ન 3(ક) [7 ગુણ]

KNN અલ્ગોરિદ્યમ વિગતવાર વર્ણવો.

જવાબ:

K-Nearest Neighbors (KNN) એક સરળ ક્લાસિફિકેશન અલ્ગોરિધમ છે જે તેમના K નજીકના પડોશીઓના મેજોરિટી ક્લાસના આધારે ડેટા પોઇન્ટ્સને ક્લાસિફાઇ કરે છે.

ટેબલ: KNN અલ્ગોરિધમ સ્ટેપ્સ

સ્ટેપ	વર્ણન	ઉદાહરણ
K પસંદ કરો	પડોશીઓની સંખ્યા પસંદ કરો	K=3
અંતર ગણો	બધા પોઇન્ટ્સનો અંતર શોધો	Euclidean અંતર
પડોશીઓ શોદ્યો	K સૌથી નજીકના પોઇન્ટ્સ ઓળખો	3 નજીકના પોઇન્ટ્સ
વોટ કરો	મેજોરિટી ક્લાસ જીતે છે	2 બિલાડી, 1 ફૂતરો → બિલાડી

કામગીરી પ્રક્રિયા:

1. **અંતર ગણો** ટેસ્ટ પોઇન્ટ અને બધા ટ્રેનિંગ પોઇન્ટ્સ વચ્ચે

- 2. **અંતર સોર્ટ કરો** અને K નજીકના પડોશીઓ પસંદ કરો
- 3. **વોટ ગણો** પડોશીઓ વચ્ચે દરેક ક્લાસમાંથી
- 4. ક્લાસ અસાઇન કરો મેજોરિટી વોટ સાથે

ડાયાગ્રામ:

કાયદાઓ:

- લાગુ કરવામાં સરળ અને સમજવામાં આસાન
- **ટ્રેનિંગની જરૂર નથી** આળસુ લર્નિંગ અલ્ગોરિધમ

મેમરી ટ્રીક: "K નજીકના પડોશીઓ ક્લાસિફિકેશન માટે વોટ કરે છે"

પ્રશ્ન 3(અ) અથવા [3 ગુણ]

Multiple linear regression ની કોઈપણ ત્રણ ઉપયોગીતાઓ આપો.

જવાબ:

Multiple Linear Regression ની ઉપયોગીતાઓ:

ટેબલ: ઉપયોગીતાઓ

ઉપયોગીતા	વેરિયેબલ્સ	હેતુ
ઘરની કિંમત આગાહી	કદ, સ્થાન, ઉંમર	પ્રોપર્ટીની કિંમત અંદાજ
સેલ્સ ફોરકાસ્ટિંગ	જાહેરાત, સીઝન, કિંમત	આવકની આગાહી કરવી
મેડિકલ ડાયગ્નોસિસ	લક્ષણો, ઉંમર, ઇતિહાસ	જોખમ આકારણી

Multiple Linear Regression એક કન્ટિન્યુઅસ આઉટપુટ વેરિયેબલની આગાહી કરવા માટે બહુવિધ ઇનપુટ વેરિયેબલ્સનો ઉપયોગ કરે છે.

મેમરી ટ્રીક: "બહુવિધ ઇનપુટ્સ, એક આઉટપુટ"

પ્રશ્ન 3(બ) અથવા [4 ગુણ]

Bagging, boosting અને stacking વિગતવાર વર્ણવો.

જવાબ:

ટેબલ: Ensemble મેથડ્સ

મેથડ	અભિગમ	ઉદાહરણ
Bagging	પેરેલલ ટ્રેનિંગ, સરેરાશ પરિણામો	Random Forest
Boosting	સિક્વેન્શિયલ ટ્રેનિંગ, ભૂલોમાંથી શીખે	AdaBoost
Stacking	મેટા-લર્નર મોડલ્સ કન્બાઇન કરે	Neural network combiner

Bagging વિવિધ ડેટા સબસેટ્સ પર બહુવિધ મોડલ્સને ટ્રેન કરે છે અને આગાહીઓની સરેરાશ કાઢે છે.

Boosting મોડલ્સને ક્રમિક રીતે ટ્રેન કરે છે, દરેક અગાઉના મોડલની ભૂલોમાંથી શીખે છે.

Stacking બેઝ મોડલ્સની આગાહીઓને કેવી રીતે કન્બાઇન કરવી તે શીખવા માટે મેટા-મોડલનો ઉપયોગ કરે છે.

મેમરી ટ્રીક: "Bag પેરેલલ, Boost સિક્વેન્શિયલ, Stack મેટા"

પ્રશ્ન 3(ક) અથવા [7 ગુણ]

Single linear regression તેની ઉપયોગીતાઓ સાથે વર્ણવો.

જવાબ:

Single Linear Regression એક ઇનપુટ વેરિયેબલ (X) અને એક આઉટપુટ વેરિયેબલ (Y) વચ્ચે શ્રેષ્ઠ સીધો રેખા સંબંધ શોધે છે.

ફોર્મ્યુલા: Y = a + bX

• a: Y-intercept

• **b**: લાઇનનો Slope

ટેબલ: ઉપયોગ ઉદાહરણ - ઘરની કિંમત વિ કદ

ઘરનું કદ (sq ft)	કિંમત (લાખ)
1000	50
1500	75
2000	100

કામકાજની પ્રક્રિયા:

- 1. **ડેટા એકત્રિત કરો** ઇનપુટ-આઉટપુટ જોડીઓ સાથે
- 2. **પોઇન્ટ્સ પ્લોટ કરો** સ્કેટર ગ્રાફ પર
- 3. શ્રેષ્ઠ **લાઇન શોધો** જે ભૂલ ન્યૂનતમ કરે
- 4. **આગાહીઓ કરો** લાઇન સમીકરણ વાપરીને

ડાયાગ્રામ:

ઉપયોગીતાઓ:

• **સેલ્સ વિ જાહેરાત**: વધુ જાહેરાત → વધુ સેલ્સ

• **તાપમાન વિ આઇસક્રીમ સેલ્સ**: ગરમ હવામાન → વધુ સેલ્સ

મેમરી ટ્રીક: "એક X એક Y ની લાઇન સાથે આગાહી કરે છે"

પ્રશ્ન 4(અ) [3 ગુણ]

વ્યાખ્યા આપો: (1)support (2)confidence.

જવાબ:

Support માપે છે કે આઇટમસેટ ડેટાસેટમાં કેટલી વાર દેખાય છે.

Confidence માપે છે કે જ્યારે antecedent હાજર હોય ત્યારે consequent માં આઇટમ્સ કેટલી વાર દેખાય છે.

ટેબલ: વ્યાખ્યાઓ

ม เนธ์ร	ફોર્મ્યુલા	ઉદાહરણ
Support	Count(itemset)/ङुस transactions	બ્રેડ 60% transactions માં દેખાય છે
Confidence	Support(A _U B)/Support(A)	બ્રેડ ખરીદનારા 80% લોકો બટર પણ ખરીદે છે

Support = આવૃત્તિની આવર્તન Confidence = નિયમની વિશ્વસનીયતા

મેમરી ટ્રીક: "Support = કેટલી વાર, Confidence = કેટલું વિશ્વસનીય"

પ્રશ્ન 4(બ) [4 ગુણ]

Unsupervised learning ની ઉપયોગીતાઓ વર્ણવો.

જવાબ:

ટેબલ: Unsupervised Learning ઉપયોગીતાઓ

ઉપયોગીતા	હેતુ	ઉદાહરણ
કસ્ટમર સેગમેન્ટેશન	સમાન કસ્ટમર્સને જૂથબદ્ધ કરવા	માર્કેટિંગ કેમ્પેઇન્સ
ડેટા કમ્પ્રેશન	ડેટાનું કદ ઘટાડવું	ઇમેજ કમ્પ્રેશન
અનોમલી ડિટેક્શન	અસામાન્ય પેટર્ન શોધવા	ફ્રોડ ડિટેક્શન
રેકમેન્ડેશન સિસ્ટમ્સ	સમાન આઇટમ્સ સુઝાવવા	મ્યુઝિક રેકમેન્ડેશન્સ

કસ્ટમર સેગમેન્ટેશન લક્ષિત માર્કેટિંગ માટે સમાન ખરીદી વર્તણૂક ધરાવતા કસ્ટમર્સને જૂથબદ્ધ કરે છે.

ડેટા કમ્પ્રેશન પેટર્ન શોધીને અને રિડન્ડન્સી દૂર કરીને સ્ટોરેજ સ્પેસ ઘટાડે છે.

અનોમલી ડિટેક્શન અસામાન્ય પેટર્ન ઓળખે છે જે ફ્રોડ અથવા ભૂલો સૂચવી શકે છે.

મેમરી ટીક: "સેગમેન્ટ કમ્પ્રેસ ડિટેક્ટ રેકમેન્ડ"

પ્રશ્ન 4(ક) [7 ગુણ]

Apriori અલ્ગોરિદ્યમ યોગ્ય ઉદાહરણ સાથે વર્ણવો.

જવાબ:

Apriori Algorithm માર્કેટ બાસ્કેટ એનાલિસિસ માટે ફ્રીક્વન્ટ આઇટમસેટ્સ શોધે છે અને એસોસિએશન રૂલ્સ જનરેટ કરે છે.

ટેબલ: અલ્ગોરિદ્યમ સ્ટેપ્સ

સ્ટેપ	વર્ણન	ઉદાહરણ
ફ્રીક્વન્ટ 1-itemsets શોધો	વ્યક્તિગત આઇટમ્સ ગણો	(બ્રેડ}:4, {દૂધ}:3
2-itemsets જનરેટ કરો	ફ્રીક્વન્ટ આઇટમ્સ કન્બાઇન કરો	{બ્રેડ,દૂધ}:2
મિનિમમ સપોર્ટ લાગુ કરો	ઇન્ફ્રીક્વન્ટ સેટ્સ ફિલ્ટર કરો	support ≥ 50% જો રાખો
રૂલ્સ જનરેટ કરો	if-then રૂલ્સ બનાવો	બ્રેડ → દૂધ

ઉદાહરણ ડેટાસેટ:

- Transaction 1: {બ્રેડ, દૂધ, ຢ໌ડ၊}
- Transaction 2: (ម្ន់s, ខ្គម)
- Transaction 3: {બ્રેડ, ຢ໌ຣເ}
- Transaction 4: {ธุย, ย์รเ}

કામકાજની પ્રક્રિયા:

- 1. **ડેટાબેઝ સ્કેન કરો** આઇટમ ફ્રીક્વન્સીઝ ગણવા માટે
- 2. **કેન્ડિડેટ આઇટમસેટ્સ જનરેટ કરો** વધતા કદની
- 3. **ઇન્ફ્રીક્વન્ટ આઇટમસેટ્સ પ્રૂન કરો** મિનિમમ સપોર્ટથી નીચે
- 4. એસોસિએશન રૂલ્સ જનરેટ કરો ફ્રીક્વન્ટ આઇટમસેટ્સમાંથી

ડાયાગ્રામ:

મેમરી ટ્રીક: "A-priori જ્ઞાન ફ્રીક્વન્ટ પેટર્ન શોધવામાં મદદ કરે છે"

પ્રશ્ન 4(અ) અથવા [3 ગુણ]

Clustering અને Classification ના તફાવતની યાદી આપો.

જવાબ:

ટેબલ: Clustering વિ Classification

Clustering	Classification
અનસુપરવાઇઝ્ડ લર્નિંગ	સુપરવાઇઝ્ ડ લર્નિંગ
લેબલ કરેલ ડેટા નથી	લેબલ કરેલ ટ્રેનિંગ ડેટા વાપરે છે
સમાન ડેટાને જૂથબદ્ધ કરે છે	પૂર્વનિર્ધારિત લેબલ્સ અસાઇન કરે છે

Clustering અનલેબલ ડેટામાં છુપાયેલા જૂથો શોધે છે.

Classification ટ્રેન કરેલા મોડલ્સ વાપરીને નવા ડેટાને જાણીતી કેટેગરીઓમાં અસાઇન કરે છે.

મેમરી ટ્રીક: "Cluster = અજાણ્યા જૂથો, Classify = જાણીતા લેબલ્સ"

પ્રશ્ન 4(બ) અથવા [4 ગુણ]

Clustering ની પ્રોસેસ વિગતવાર વર્ણવો.

જવાબ:

ટેબલ: Clustering પ્રોસેસ સ્ટેપ્સ

સ્ટેપ	qย์ -	હેતુ
ડેટા પ્રિપેરેશન	ડેટા સાફ અને નોર્મલાઇઝ કરો	ગુણવત્તાપૂર્ણ ઇનપુટ સુનિશ્ચિત કરવું
ડિસ્ટન્સ મેટ્રિક	સમાનતાનું માપ પસંદ કરો	Euclidean, Manhattan
અલ્ગોરિધમ સિલેક્શન	ક્લસ્ટરિંગ મેથડ પસંદ કરો	K-means, Hierarchical
ક્લસ્ટર વેલિડેશન	ક્લસ્ટર ગુણવત્તાનું મૂલ્યાંકન કરો	Silhouette score

Clustering પ્રોસેસ તેમની લાક્ષણિકતાઓના આધારે સમાન ડેટા પોઇન્ટ્સને એકસાથે જૂથબદ્ધ કરે છે.

મુખ્ય નિર્ણયોમાં ક્લસ્ટર્સની સંખ્યા અને યોગ્ય ડિસ્ટન્સ મેટ્રિક્સ પસંદ કરવાનો સમાવેશ થાય છે.

વેલિડેશન સુનિશ્ચિત કરે છે કે ક્લસ્ટર્સ અર્થપૂર્ણ અને સારી રીતે અલગ છે.

મેમરી ટીક: "પ્રિપેર ડિસ્ટન્સ અલ્ગોરિધમ વેલિડેટ"

પ્રશ્ન 4(ક) અથવા [7 ગુણ]

K-means clustering અલ્ગોરિધમ યોગ્ય ઉદાહરણ સાથે વર્ણવો.

જવાબ:

K-means વિથિન-કલસ્ટર સમ ઓફ સ્કવેર્સ ન્યૂનતમ કરીને ડેટાને K ક્લસ્ટર્સમાં વિભાજિત કરે છે.

ટેબલ: અલ્ગોરિધમ સ્ટેપ્સ

સ્ટેપ	વર્ણન	ઉદાહરણ
સેન્ટ્રોઇડ્સ ઇનિશિયલાઇઝ કરો	રેન્ડમ K સેન્ટર પોઇન્ટ્સ	C1(2,3), C2(8,7)
પોઇન્ટ્સ અસાઇન કરો	દરેક પોઇન્ટ નજીકના સેન્ટ્રોઇડને	Point(1,2) → C1
સેન્ટ્રોઇડ્સ અપડેટ કરો	અસાઇન થયેલા પોઇન્ટ્સનો મીન	નવું C1(1.5, 2.5)
રિપીટ કરો	સેન્ટ્રોઇડ્સ હલનચલન બંધ ન થાય ત્યાં સુધી	કન્વર્જન્સ

ઉદાહરણ: કસ્ટમર આવક વિ ઉંમર

• કસ્ટમર 1: (આવક=30k, ઉંમર=25)

• કસ્ટમર 2: (આવક=35k, ઉંમર=30)

• કસ્ટમર 3: (આવક=70k, ઉંમર=45)

• કસ્ટમર 4: (આવક=75k, ઉંમર=50)

કામકાજની પ્રક્રિયા:

- 1. **K=2 પસંદ કરો** યુવા/વૃદ્ધ કસ્ટમર્સ માટે ક્લસ્ટર્સ
- 2. **સેન્ટ્રોઇડ્સ ઇનિશિયલાઇઝ કરો** રેન્ડમ રીતે
- 3. **અંતર ગણો** દરેક કસ્ટમરથી સેન્ટ્રોઇડ્સ સુધી
- 4. કસ્ટમર્સ અસાઇન કરો નજીકના સેન્ટ્રોઇડને
- 5. **સેન્ટ્રોઇડ પોઝિશન્સ અપડેટ કરો** અસાઇન થયેલા કસ્ટમર્સના કેન્દ્રમાં
- 6. સ્થિર ન થાય ત્યાં સુધી રિપીટ કરો

ડાયાગ્રામ:

ફાયદાઓ:

- સરળ અને ઝડપી મોટા ડેટાસેટ્સ માટે
- ગોળાકાર ક્લસ્ટર્સ સાથે સારું કામ કરે છે

મેમરી ટ્રીક: "K સેન્ટ્રોઇડ્સ તેમના અસાઇન થયેલા પોઇન્ટ્સનો મીન કરે છે"

પ્રશ્ન 5(અ) [3 ગુણ]

Matplotlib ની ઉપયોગીતાઓની યાદી આપો.

જવાબ:

ટેબલ: Matplotlib ઉપયોગીતાઓ

ઉપયોગીતા	હેતુ	ઉદાહરણ
ડેટા વિઝ્યુલાઇઝેશન	ચાર્ટ્સ અને ગ્રાફ્સ બનાવવા	બાર ચાર્ટ્સ, હિસ્ટોગ્રામ્સ
સાયન્ટિફિક પ્લોટિંગ	સંશોધન પ્રેઝન્ટેશન્સ	ગાણિતિક ફંક્શન્સ
ડેશબોર્ડ ક્રિએશન	ઇન્ટરેક્ટિવ ડિસ્પ્લે	બિઝનેસ મેટ્રિક્સ

Matplotlib સ્ટેટિક, એનિમેટેડ અને ઇન્ટરેક્ટિવ વિઝ્યુલાઇઝેશન્સ બનાવવા માટે Python ની પ્રાથમિક પ્લોટિંગ લાઇબ્રેરી છે.

મુખ્ય ફીચર્સમાં બહુવિદ્ય પ્લોટ ટાઇપ્સ માટેનું સપોર્ટ અને કસ્ટમાઇઝેબલ સ્ટાઇલિંગનો સમાવેશ થાય છે.

મેમરી ટ્રીક: "Mat-plot-lib = ગાણિત પ્લોટિંગ લાઇબ્રેરી"

પ્રશ્ન 5(બ) [4 ગુણ]

હોરિઝોન્ટલ અને વર્ટિકલ લાઇન પ્લોટ કરવાનો કોડ matplotlib ની મદદથી લખો.

જવાબ:

કોડ બ્લોક:

```
import matplotlib.pyplot as plt

# ફિગર બનાવો
plt.figure(figsize=(8, 6))

# x=3 પર વર્ટિકલ લાઇન પ્લોટ કરો
plt.axvline(x=3, color='red', linestyle='--', label='વર્ટિકલ લાઇન')

# y=2 પર હોરિઝોન્ટલ લાઇન પ્લોટ કરો
plt.axhline(y=2, color='blue', linestyle='-', label='હોરિઝોન્ટલ લાઇન')

# લેબલ્સ અને ટાઇટલ ઉમેરો
plt.xlabel('X-અક્ષ')
plt.ylabel('Y-અક્ષ')
plt.title('વર્ટિકલ અને હોરિઝોન્ટલ લાઇન્સ')
plt.legend()
plt.grid(True)
plt.show()
```

મુખ્ય ફંક્શન્સ:

• axvline(): વર્ટિકલ લાઇન બનાવે છે

• axhline(): હોરિઝોન્ટલ લાઇન બનાવે છે

મેમરી ટ્રીક: "axvline = વર્ટિકલ, axhline = હોરિઝોન્ટલ"

પ્રશ્ન 5(ક) [7 ગુણ]

Scikit-Learn ની વિશેષતાઓ અને ઉપયોગીતાઓ સમજાવો.

જવાબ:

ટેબલ: Scikit-Learn વિશેષતાઓ

વિશેષતા	વર્ણન	ઉદાહરણ
સરળ API	ઉપયોગમાં સરળ ઇન્ટરફેસ	fit(), predict()
બહુવિદ્ય અલ્ગોરિદ્યમ્સ	વિવિદ્ય ML મેથડ્સ	SVM, Random Forest
ડેટા પ્રીપ્રોસેસિંગ	બિલ્ટ-ઇન ડેટા ટૂલ્સ	StandardScaler
મોડલ ઇવેલ્યુએશન	પરફોર્મન્સ મેટ્રિક્સ	accuracy_score

Scikit-Learn ડેટા એનાલિસિસ માટે સરળ ટૂલ્સ પ્રદાન કરતી Python ની સૌથી લોકપ્રિય મશીન લર્નિંગ લાઇબ્રેરી છે.

મુખ્ય શક્તિઓ:

• સુસંગત ઇન્ટરફેસ બધા અલ્ગોરિધમ્સમાં

• **ઉત્કૃષ્ટ દસ્તાવેજીકરણ** ઉદાહરણો સાથે

• સિક્રય કમ્યુનિટી સપોર્ટ અને ડેવલપમેન્ટ

ઉપયોગીતાઓ:

• ક્લાસિફિકેશન: ઈમેઇલ સ્પામ ડિટેક્શન

• રિગ્રેશન: ઘરની કિંમત આગાહી

• કલસ્ટરિંગ: કસ્ટમર સેગમેન્ટેશન

• ડાયમેન્શનાલિટી રિડક્શન: ડેટા વિઝ્યુલાઇઝેશન

ડાયાગ્રામ:

મેમરી ટીક: "Scikit = મશીન લર્નિંગ માટે સાયન્સ કિટ"

પ્રશ્ન 5(અ) અથવા [3 ગુણ]

NumPy નો મશીન લર્નિંગના સંદર્ભમાં ઉપયોગ આપો.

જવાબ:

ટેબલ: ML માં NumPy નો હેત્

હેતુ	વર્ણન	ફાયદો
ન્યુમેરિકલ કમ્પ્યુટિંગ	ઝડપી array ઓપરેશન્સ	કાર્યક્ષમ ગણતરીઓ
ફાઉન્ડેશન લાઇબ્રેરી	અન્ય લાઇબ્રેરીઓ માટે આધાર	Pandas, Scikit-learn તેનો ઉપયોગ કરે છે
ગાણિતિક ફંક્શન્સ	બિલ્ટ-ઇન મેથ ઓપરેશન્સ	સ્ટેટિસ્ટિક્સ, લિનિયર આલ્જીબ્રા

NumPy Python મશીન લર્નિંગ એપ્લિકેશન્સમાં ન્યુમેરિકલ કમ્પ્યુટિંગ માટે પાયો પ્રદાન કરે છે.

મોટા ડેટાસેટ્સ હેન્ડલ કરવા અને ગાણિતિક ઓપરેશન્સ કાર્યક્ષમ રીતે કરવા માટે જરૂરી છે.

મેમરી ટ્રીક: "Num-Py = ન્યુમેરિકલ Python"

પ્રશ્ન 5(બ) અથવા [4 ગુણ]

csv ફાઈલને pandas માં ઇમ્પોર્ટ કરવાના સ્ટેપ લખો.

જવાબ:

કોડ બ્લોક:

સ્ટેપ્સ:

- 1. **pandas ઇમ્પોર્ટ કરો** લાઇબ્રેરી
- 2. read_csv() વાપરો ફાઇલનેમ સાથે
- 3. **ડેટા વેરિકાઇ કરો** head() મેથડ સાથે

મેમરી ટ્રીક: "ઇમ્પોર્ટ રીડ વેરિફાઇ"

પ્રશ્ન 5(ક) અથવા [7 ગુણ]

Pandas ની વિશેષતાઓ અને ઉપયોગીતાઓ સમજાવો.

જવાબ:

ટેબલ: Pandas વિશેષતાઓ

વિશેષતા	વર્ણન	ઉદાહરણ
ડેટા સ્ટ્રક્ચર્સ	DataFrame અને Series	ટેબ્યુલર ડેટા હેન્ડલિંગ
Szı I/O	બહુવિધ ફોર્મેટ્સ રીડ/રાઇટ	CSV, Excel, JSON
ડેટા ક્લીનિંગ	મિસિંગ વેલ્યુઝ હેન્ડલ કરવા	dropna(), fillna()
ડેટા એનાલિસિસ	સ્ટેટિસ્ટિકલ ઓપરેશન્સ	groupby(), describe()

Pandas મશીન લર્નિંગ પ્રોજેક્ટ્સમાં Python માં પ્રાથમિક ડેટા મેનિપ્યુલેશન લાઇબ્રેરી છે.

મુખ્ય ક્ષમતાઓ:

- ડેટા લોડિંગ વિવિધ ફાઇલ ફોર્મેટ્સમાંથી
- ડેટા ક્લીનિંગ અને પ્રીપ્રોસેસિંગ ઓપરેશન્સ
- **ડેટા ટ્રાન્સફોર્મેશન** અને રીશેપિંગ
- સ્ટેટિસ્ટિકલ એનાલિસિસ અને એગ્રિગેશન

ઉપયોગીતાઓ:

• ડેટા પ્રીપ્રોસેસિંગ: ML પહેલાં ડેટાસેટ્સ સાફ કરવા

• એક્સ્પ્લોરેટરી એનાલિસિસ: ડેટા પેટર્ન સમજવા

• ફીચર એન્જિનિયરિંગ: નવા વેરિયેબલ્સ બનાવવા

• **ડેટા ઇન્ટીગ્રેશન**: બહુવિધ ડેટા સ્રોતો મર્જ કરવા

ડાયાગ્રામ:

કાયદાઓ:

- સાહજિક સિન્ટેક્સ ડેટા ઓપરેશન્સ માટે
- હાઇ પરફોર્મન્સ ઓપ્ટિમાઇઝડ ઓપરેશન્સ સાથે
- **ઇન્ટીગ્રેશન** અન્ય ML લાઇબ્રેરીઓ સાથે

મેમરી ટ્રીક: "Pandas = એનાલિસિસ માટે પેનલ ડેટા"