CS321: Computer Networks

Data-link Layer

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Introduction to DLL

- Study of algorithms for achieving reliable, efficient communication between two adjacent machines at DLL.
 - Adjacent: two machines physically connected using a (wired/wireless) communication channel
 - Basic Requirement: bits should be delivered in the same order as they are sent

Why so difficult?

- Problem in Communication Circuit
 - introduce propagation delay
 - circuits have a finite data rate
 - different types of links
 - Framing
 - introduce errors
 - Error control
- Problem in End Systems
 - Not all machines have the same speed
 - Flow control
 - Lack of mutual understanding
 - Synchronization

Sublayers in DLL

- Two sublayers in Data-link Layer
 - Data link control (DLC)
 - Medium access control (MAC)

b. Data-link layer of a point-to-point link

- DLC handles issues common to broadcast & p2p
- MAC handles issues specific to broadcast channel

Major Functions of DLL

- Related to DLC
 - Link Layer Addressing
 - Framing
 - Error Control
 - Flow Control

- Related to MAC
 - Multiple Access

Link Layer Addressing

Types of Addresses

 Format: 48 bits (six bytes) that are presented as 12 hexadecimal digits separated by colons

- Unicast Address
 - e.g., A2:34:45:11:92:F1
- Multicast Address
 - e.g., A3:34:45:11:92:F1
- Broadcast Address
 - FF:FF:FF:FF:FF

Address Resolution Protocol (ARP)

- Source node knows the IP address of the destination node and the default router. But, IP address is not helpful in moving a frame through the link.
- We need link-layer address of the next node
 Why?

ARP operation

a. ARP request is broadcast

b. ARP reply is unicast

Approaches in Packet-switching

- ARP is an auxiliary protocol defined in Network layer
- Why these steps?
 - ARP Request Broadcast
 - ARP Response Unicast
 - Datagram Unicast

Example

Framing

- Signals travel between signalling components
- Bits flow between adaptors
- Frames between hosts

- Two size:
 - Fixed size
 - Variable size

- Character-Oriented Framing
 - View each frame as a collection of bytes (characters)
 - Suitable for Byte-oriented protocol (e.g. PPP)
 - Useful for text data only
- Bit-Oriented Framing
 - View each frame as a collection of bits
 - Suitable for bit-oriented protocol (e.g. HDLC)
 - Useful for any type of data (text, graph, audio, video, etc.)

- Both are variable size framing
- Frame format:

 Byte & Bit stuffing: addition of special byte/bit for avoiding the appearance of flag pattern inside of data stream

DLC Protocols

Four Mechanisms:

- Simple
- Stop-and-Wait
- Go-Back-N
- Selective Repeat

Protocols:

- HDLC (High-level Data Link Control)
- PPP (Point-to-Point Protocol)
- Ethernet

Simple

Stop-and-Wait

Stop-and-Wait

Thanks!