$12n_{0344} \ (K12n_{0344})$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle -1.57884 \times 10^{37} u^{43} + 4.19415 \times 10^{37} u^{42} + \dots + 3.14492 \times 10^{36} b + 2.00463 \times 10^{38},$$

$$5.51340 \times 10^{37} u^{43} - 1.47280 \times 10^{38} u^{42} + \dots + 3.14492 \times 10^{36} a - 7.82161 \times 10^{38}, \ u^{44} - 3u^{43} + \dots - 36u + I_2^u = \langle au + b + 2a + 1, \ 2a^2 - au + 2a + 2u - 3, \ u^2 - 2 \rangle$$

$$I_1^v = \langle a, b+v-2, v^2-3v+1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.58 \times 10^{37} u^{43} + 4.19 \times 10^{37} u^{42} + \dots + 3.14 \times 10^{36} b + 2.00 \times 10^{38}, \ 5.51 \times 10^{37} u^{43} - 1.47 \times 10^{38} u^{42} + \dots + 3.14 \times 10^{36} a - 7.82 \times 10^{38}, \ u^{44} - 3u^{43} + \dots - 36u + 4 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -17.5312u^{43} + 46.8311u^{42} + \dots - 1316.37u + 248.706 \\ 5.02029u^{43} - 13.3363u^{42} + \dots + 367.657u - 63.7420 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 3.47461u^{43} - 10.7515u^{42} + \dots + 355.136u - 74.5401 \\ -1.68885u^{43} + 5.62072u^{42} + \dots - 173.747u + 30.1506 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -9.86564u^{43} + 26.8155u^{42} + \dots - 755.031u + 138.369 \\ -4.70217u^{43} + 10.4432u^{42} + \dots - 226.148u + 33.6781 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -9.86564u^{43} + 26.8155u^{42} + \dots - 755.031u + 138.369 \\ -4.03012u^{43} + 8.38511u^{42} + \dots - 165.479u + 22.5523 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -19.4067u^{43} + 52.8978u^{42} + \dots - 1495.34u + 274.133 \\ -4.36737u^{43} + 8.86394u^{42} + \dots - 164.017u + 21.4464 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -15.0159u^{43} + 40.6500u^{42} + \dots - 1164.20u + 225.930 \\ 5.45610u^{43} - 13.6789u^{42} + \dots + 357.423u - 61.0333 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-58.5401u^{43} + 159.424u^{42} + \cdots 4534.07u + 846.150$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{44} + 45u^{43} + \dots + 4203u + 81$
c_2, c_5	$u^{44} + 3u^{43} + \dots + 21u - 9$
c_3, c_7, c_8	$u^{44} - 3u^{43} + \dots - 36u + 4$
<i>c</i> ₄	$u^{44} + 9u^{43} + \dots + 1500u - 964$
c_6, c_{10}	$u^{44} + 2u^{43} + \dots + 10u + 1$
c_9, c_{11}, c_{12}	$u^{44} + 4u^{43} + \dots - 18u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{44} - 85y^{43} + \dots - 6110883y + 6561$
c_2, c_5	$y^{44} - 45y^{43} + \dots - 4203y + 81$
c_3, c_7, c_8	$y^{44} - 39y^{43} + \dots - 368y + 16$
c_4	$y^{44} + 21y^{43} + \dots - 41187888y + 929296$
c_6, c_{10}	$y^{44} - 12y^{43} + \dots - 58y + 1$
c_9, c_{11}, c_{12}	$y^{44} - 36y^{43} + \dots - 242y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.361562 + 0.932667I		
a = 0.23727 - 1.40400I	-4.54866 - 9.17617I	5.81808 + 6.48451I
b = 0.961486 - 1.024300I		
u = -0.361562 - 0.932667I		
a = 0.23727 + 1.40400I	-4.54866 + 9.17617I	5.81808 - 6.48451I
b = 0.961486 + 1.024300I		
u = 0.242419 + 0.963914I		
a = 0.542404 + 0.771039I	2.03227 + 3.85207I	10.41827 - 8.61488I
b = 0.650253 + 0.479584I		
u = 0.242419 - 0.963914I		
a = 0.542404 - 0.771039I	2.03227 - 3.85207I	10.41827 + 8.61488I
b = 0.650253 - 0.479584I		
u = -0.155342 + 0.896950I		
a = -0.31935 + 1.38694I	-8.52514 - 3.75610I	2.09209 + 2.89832I
b = -0.99704 + 1.03670I		
u = -0.155342 - 0.896950I		
a = -0.31935 - 1.38694I	-8.52514 + 3.75610I	2.09209 - 2.89832I
b = -0.99704 - 1.03670I		
u = 1.125730 + 0.043899I		
a = 0.058942 + 0.745233I	1.99922 - 0.04818I	6.00000 + 0.I
b = 0.556341 + 0.553872I		
u = 1.125730 - 0.043899I		
a = 0.058942 - 0.745233I	1.99922 + 0.04818I	6.00000 + 0.I
b = 0.556341 - 0.553872I		
u = -0.851420 + 0.746270I		
a = -0.677609 - 0.190566I	-3.05540 + 3.53185I	6.00000 + 0.I
b = -0.609425 - 0.874938I		
u = -0.851420 - 0.746270I		
a = -0.677609 + 0.190566I	-3.05540 - 3.53185I	6.00000 + 0.I
b = -0.609425 + 0.874938I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.060206 + 0.789681I		
a = 0.420124 - 1.337940I	-4.31168 + 1.72166I	4.04968 - 1.22187I
b = 1.05150 - 1.02729I		
u = 0.060206 - 0.789681I		
a = 0.420124 + 1.337940I	-4.31168 - 1.72166I	4.04968 + 1.22187I
b = 1.05150 + 1.02729I		
u = -1.104880 + 0.498321I		
a = 0.424315 + 0.083138I	-5.61992 - 1.18304I	0
b = 0.625620 + 1.104260I		
u = -1.104880 - 0.498321I		
a = 0.424315 - 0.083138I	-5.61992 + 1.18304I	0
b = 0.625620 - 1.104260I		
u = 1.22068		
a = -1.07819	10.3320	0
b = 1.88874		
u = 1.218830 + 0.333934I		
a = 1.13833 - 0.87054I	-0.76043 + 2.33473I	0
b = -1.31850 - 0.66505I		
u = 1.218830 - 0.333934I		
a = 1.13833 + 0.87054I	-0.76043 - 2.33473I	0
b = -1.31850 + 0.66505I		
u = -1.271900 + 0.268067I		
a = -0.553133 - 1.124420I	2.75377 - 4.58010I	0
b = 0.895901 - 0.644934I		
u = -1.271900 - 0.268067I		
a = -0.553133 + 1.124420I	2.75377 + 4.58010I	0
b = 0.895901 + 0.644934I		
u = -1.305420 + 0.064505I		
a = 1.20456 + 0.91583I	5.20530 - 0.47373I	0
b = -0.813618 + 0.359887I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.305420 - 0.064505I		
a = 1.20456 - 0.91583I	5.20530 + 0.47373I	0
b = -0.813618 - 0.359887I		
u = 1.310900 + 0.166284I		
a = -0.028578 + 0.886239I	5.87917 + 2.87968I	0
b = -0.526233 + 0.907268I		
u = 1.310900 - 0.166284I		
a = -0.028578 - 0.886239I	5.87917 - 2.87968I	0
b = -0.526233 - 0.907268I		
u = -1.310400 + 0.345353I		
a = -0.233101 - 0.138958I	-0.02123 - 5.81626I	0
b = -0.79762 - 1.32164I		
u = -1.310400 - 0.345353I		
a = -0.233101 + 0.138958I	-0.02123 + 5.81626I	0
b = -0.79762 + 1.32164I		
u = -1.39785		
a = 8.91764	4.90257	0
b = -0.188474		
u = -0.006322 + 0.581193I		
a = -0.89655 - 1.33079I	-1.17226 + 1.37524I	0.82630 - 4.37313I
b = -0.503249 - 0.484782I		
u = -0.006322 - 0.581193I		
a = -0.89655 + 1.33079I	-1.17226 - 1.37524I	0.82630 + 4.37313I
b = -0.503249 + 0.484782I		
u = 1.37514 + 0.39616I		
a = -0.881677 + 1.000200I	-3.70647 + 8.39508I	0
b = 1.24438 + 0.87011I		
u = 1.37514 - 0.39616I		
a = -0.881677 - 1.000200I	-3.70647 - 8.39508I	0
b = 1.24438 - 0.87011I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.33260 + 0.53021I		
a = -0.126765 - 0.487206I	5.26881 + 2.02524I	0
b = -0.626528 - 0.301390I		
u = 1.33260 - 0.53021I		
a = -0.126765 + 0.487206I	5.26881 - 2.02524I	0
b = -0.626528 + 0.301390I		
u = 1.45079		
a = 0.972042	3.37301	0
b = -0.251576		
u = -1.45928		
a = -0.521642	13.6404	0
b = 1.51795		
u = -1.41359 + 0.38694I		
a = 0.320048 + 0.993129I	7.26218 - 8.61162I	0
b = -0.997773 + 0.724464I		
u = -1.41359 - 0.38694I		
a = 0.320048 - 0.993129I	7.26218 + 8.61162I	0
b = -0.997773 - 0.724464I		
u = 1.48503 + 0.37724I		
a = 0.730260 - 1.019420I	1.34332 + 13.91980I	0
b = -1.20624 - 0.98697I		
u = 1.48503 - 0.37724I		
a = 0.730260 + 1.019420I	1.34332 - 13.91980I	0
b = -1.20624 + 0.98697I		
u = -0.115716 + 0.402697I		
a = -0.38670 + 2.62883I	1.42746 - 0.71018I	6.25077 - 1.25816I
b = 0.377022 + 0.479190I		
u = -0.115716 - 0.402697I		
a = -0.38670 - 2.62883I	1.42746 + 0.71018I	6.25077 + 1.25816I
b = 0.377022 - 0.479190I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.339286		
a = -1.00783	7.49147	26.0080
b = -1.53932		
u = 0.302786		
a = -0.689575	0.759214	14.0520
b = 0.583905		
u = 0.266557		
a = 9.48986	-0.455563	39.4620
b = -0.525421		
u = 1.76844		
a = -0.0279231	6.40427	0
b = 0.581616		

II.
$$I_2^u = \langle au + b + 2a + 1, 2a^2 - au + 2a + 2u - 3, u^2 - 2 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ -au - 2a - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u \\ au + 2a + 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u \\ au + 2a + u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u \\ au + 2a + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} au + 2a + \frac{1}{2}u \\ au + 2a + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -au - a - 1 \\ -au - 2a - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^4$
c_2	$(u+1)^4$
c_3, c_4, c_7 c_8	$(u^2-2)^2$
c_6, c_{11}, c_{12}	$(u^2+u-1)^2$
c_9, c_{10}	$(u^2 - u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^4$
c_3, c_4, c_7 c_8	$(y-2)^4$
c_6, c_9, c_{10} c_{11}, c_{12}	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -0.473911	4.27683	12.0000
b = 0.618034		
u = 1.41421		
a = 0.181018	12.1725	12.0000
b = -1.61803		
u = -1.41421		
a = 1.05505	12.1725	12.0000
b = -1.61803		
u = -1.41421		
a = -2.76216	4.27683	12.0000
b = 0.618034		

III.
$$I_1^v = \langle a, \ b+v-2, \ v^2-3v+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -v+2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -v+3 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} v - 1 \\ v - 3 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ v - 3 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v - 2 \\ v - 3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -v+2\\ -v+2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_4, c_7 c_8	u^2
<i>C</i> ₅	$(u+1)^2$
c_{6}, c_{9}	$u^2 - u - 1$
c_{10}, c_{11}, c_{12}	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^2$
c_3, c_4, c_7 c_8	y^2
c_6, c_9, c_{10} c_{11}, c_{12}	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.381966		
a = 0	7.23771	-6.00000
b = 1.61803		
v = 2.61803		
a = 0	-0.657974	-6.00000
b = -0.618034		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{44} + 45u^{43} + \dots + 4203u + 81)$
c_2	$((u-1)^2)(u+1)^4(u^{44}+3u^{43}+\cdots+21u-9)$
c_3, c_7, c_8	$u^{2}(u^{2}-2)^{2}(u^{44}-3u^{43}+\cdots-36u+4)$
c_4	$u^{2}(u^{2}-2)^{2}(u^{44}+9u^{43}+\cdots+1500u-964)$
<i>C</i> ₅	$((u-1)^4)(u+1)^2(u^{44}+3u^{43}+\cdots+21u-9)$
c_6	$(u^{2} - u - 1)(u^{2} + u - 1)^{2}(u^{44} + 2u^{43} + \dots + 10u + 1)$
<i>c</i> ₉	$((u^2 - u - 1)^3)(u^{44} + 4u^{43} + \dots - 18u + 1)$
c_{10}	$((u^2 - u - 1)^2)(u^2 + u - 1)(u^{44} + 2u^{43} + \dots + 10u + 1)$
c_{11}, c_{12}	$((u^2 + u - 1)^3)(u^{44} + 4u^{43} + \dots - 18u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{44} - 85y^{43} + \dots - 6110883y + 6561)$
c_2, c_5	$((y-1)^6)(y^{44} - 45y^{43} + \dots - 4203y + 81)$
c_3, c_7, c_8	$y^{2}(y-2)^{4}(y^{44}-39y^{43}+\cdots-368y+16)$
c_4	$y^{2}(y-2)^{4}(y^{44}+21y^{43}+\cdots-4.11879\times10^{7}y+929296)$
c_6, c_{10}	$((y^2 - 3y + 1)^3)(y^{44} - 12y^{43} + \dots - 58y + 1)$
c_9, c_{11}, c_{12}	$((y^2 - 3y + 1)^3)(y^{44} - 36y^{43} + \dots - 242y + 1)$