

Continuous Measurements and Feedback Control of a Quantum Harmonic Oscillator

Max Eriksson

Bachelor Thesis, 15 ECTS, Spring 2025

Supervised by Kalle Kansanen and Peter Samuelsson Division of Mathematical Physics | Department of Physics

M. ERIKSSON CONTENTS

Contents

1	Introduction					
	1.1 Open Quantum Systems	1				
	1.1.1 Lindblad Master Equation	1				
	1.2 Continuous Measurements	1				
	1.3 Feedback Control	1				
	1.4 Wigner Function	1				
2	Method					
3	8 Result					
4	Discussion					
Re	References					
\mathbf{A}	Appendix	3				
В	EOM Calculation	3				

M. ERIKSSON 4 DISCUSSION

1 Introduction

[1]

- 1.1 Open Quantum Systems
- 1.1.1 Lindblad Master Equation
- 1.2 Continuous Measurements
- 1.3 Feedback Control
- 1.4 Wigner Function
- 2 Method
- 3 Result
- 4 Discussion

M. Eriksson

References

[1] B. Annby-Andersson, Continuous measurements of small systems: Feedback control, thermodynamics, entanglement. Doctoral thesis (compilation), Lund University, 4 2024.

A Appendix

B EOM Calculation

Consider a quantum harmonic oscillator described by the Hamiltonian

$$\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + 1/2). \tag{1}$$

Consider also that the quantum harmonic oscillator is subject to a temperature bath and is continuously measured. The system then evolves according to the master equation

$$\partial_t \hat{\rho} = -\frac{i}{\hbar} [\hat{H}, \hat{\rho}] + \gamma (\bar{n} + 1) \mathcal{D}[\hat{a}] \hat{\rho} + \gamma \bar{n} \mathcal{D}[\hat{a}^{\dagger}] \hat{\rho} + \lambda \mathcal{D}[\hat{A}] \hat{\rho}$$
 (2)

where γ is the damping rate, \bar{n} is the thermal occupancy defined as

$$\bar{n} = \frac{1}{e^{\hbar \omega/k_B T} - 1},\tag{3}$$

 λ is the measurement rate, \hat{A} is the measurement operator, and $\mathcal{D}[\hat{O}]$ is the Lindblad super operator defined as

$$\mathcal{D}[\hat{O}]\hat{\rho} = \hat{O}\hat{\rho}\hat{O}^{\dagger} - \frac{1}{2}\{\hat{O}^{\dagger}\hat{O}, \hat{\rho}\}. \tag{4}$$

Then we also have the quadrature operators defined as

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger}), \quad \hat{p} = i\sqrt{\frac{m\omega\hbar}{2}} (\hat{a} - \hat{a}^{\dagger}). \tag{5}$$

We want to find the equations of motion when measuring the position quadrature

$$\partial_t \left\langle \hat{x}^2 \right\rangle = \operatorname{tr}(\hat{x}^2 \partial_t \hat{\rho}) \tag{6}$$

$$\partial_t \left\langle \hat{p}^2 \right\rangle = \operatorname{tr} \left(\hat{p}^2 \partial_t \hat{\rho} \right) \tag{7}$$

$$\partial_t \langle \{\hat{x}, \hat{p}\} \rangle = \operatorname{tr}(\{\hat{x}, \hat{p}\} \partial_t \hat{\rho}).$$
 (8)

We start by defining the Liouvillian super operator

$$\mathcal{L}\hat{\rho} = -\frac{i}{\hbar}[\hat{H}, \hat{\rho}] + \gamma(\bar{n} + 1)\mathcal{D}[\hat{a}]\hat{\rho} + \gamma\bar{n}\mathcal{D}[\hat{a}^{\dagger}]\hat{\rho}$$
(9)

which turns the master equation into

$$\partial_t \hat{\rho} = \mathcal{L} \hat{\rho} + \lambda \mathcal{D}[\hat{x}] \hat{\rho}. \tag{10}$$

We can then write Eq. (6) as

$$\partial_t \langle \hat{x}^2 \rangle = \operatorname{tr}(\hat{x}^2 \mathcal{L} \hat{\rho}) + \operatorname{tr}(\hat{x}^2 \lambda \mathcal{D}[\hat{x}] \hat{\rho}) \tag{11}$$

and then rewriting the left term using the creation and annihilation operators we get

$$\operatorname{tr}(\hat{x}^{2}\mathcal{L}\hat{\rho}) = \frac{\hbar}{2m\omega}\operatorname{tr}\left((\hat{a}^{2} + (\hat{a}^{\dagger})^{2} + \hat{a}\hat{a}^{\dagger} + \hat{a}^{\dagger}\hat{a})\mathcal{L}\hat{\rho}\right)$$
(12)

$$= \frac{\hbar}{2m\omega} \left[\operatorname{tr}(\hat{a}^2 \mathcal{L}\hat{\rho}) + \operatorname{tr}((\hat{a}^{\dagger})^2 \mathcal{L}\hat{\rho}) + \operatorname{tr}(\hat{a}\hat{a}^{\dagger} \mathcal{L}\hat{\rho}) + \operatorname{tr}(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho}) \right]$$
(13)

Solving these separately

$$\operatorname{tr}(\hat{a}^{2}\mathcal{L}\hat{\rho}) = -\frac{i}{\hbar}\operatorname{tr}(\hat{a}^{2}[\hat{H},\hat{\rho}]) + \gamma(\bar{n}+1)\operatorname{tr}(\hat{a}^{2}\mathcal{D}[\hat{a}]\hat{\rho}) + \gamma\bar{n}\operatorname{tr}(\hat{a}^{2}\mathcal{D}[\hat{a}^{\dagger}]\hat{\rho})$$
(14)

$$= -i\omega \operatorname{tr}\left(\hat{a}^2 \hat{a}^{\dagger} \hat{a} \hat{\rho}\right) + i\omega \operatorname{tr}\left(\hat{a}^2 \hat{\rho} \hat{a}^{\dagger} \hat{a}\right) \tag{15}$$

$$+\gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{3}\hat{\rho}\hat{a}^{\dagger}\right) - \frac{\gamma(\bar{n}+1)}{2}\operatorname{tr}\left(\hat{a}^{2}\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) - \frac{\gamma(\bar{n}+1)}{2}\operatorname{tr}\left(\hat{a}^{2}\hat{\rho}\hat{a}^{\dagger}\hat{a}\right) \tag{16}$$

$$+ \gamma \bar{n} \operatorname{tr} \left(\hat{a}^2 \hat{a}^{\dagger} \hat{\rho} \hat{a} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a}^3 \hat{a}^{\dagger} \hat{\rho} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a}^2 \hat{\rho} \hat{a} \hat{a}^{\dagger} \right)$$

$$\tag{17}$$

Using cyclic permutations of the trace and combining terms we get

$$\operatorname{tr}(\hat{a}^{2}\mathcal{L}\hat{\rho}) = i\omega\operatorname{tr}\left(\left[\hat{a}^{\dagger}\hat{a}, \hat{a}^{2}\right]\hat{\rho}\right) + \frac{\gamma(\bar{n}+1)}{2}\operatorname{tr}\left(\left[\hat{a}^{\dagger}\hat{a}, \hat{a}^{2}\right]\hat{\rho}\right) + \frac{\gamma\bar{n}}{2}\operatorname{tr}\left(\left[\hat{a}^{2}, \hat{a}\hat{a}^{\dagger}\right]\hat{\rho}\right)$$
(18)

The commutators are

$$\left[\hat{a}^{\dagger}\hat{a},\hat{a}^{2}\right] = \left[\hat{a}^{\dagger},\hat{a}^{2}\right]\hat{a} = \hat{a}\left[\hat{a}^{\dagger},\hat{a}\right]\hat{a} + \left[\hat{a}^{\dagger},\hat{a}\right]\hat{a}^{2} = -2\hat{a}^{2} \tag{19}$$

$$\left[\hat{a}^2, \hat{a}\hat{a}^{\dagger}\right] = \hat{a}\left[\hat{a}^2, \hat{a}^{\dagger}\right] = \hat{a}^2\left[\hat{a}, \hat{a}^{\dagger}\right] + \hat{a}\left[\hat{a}, \hat{a}^{\dagger}\right]\hat{a} = 2\hat{a}^2 \tag{20}$$

Thus

$$\operatorname{tr}(\hat{a}^{2}\mathcal{L}\hat{\rho}) = -2i\omega\operatorname{tr}(\hat{a}^{2}\hat{\rho}) - \gamma(\bar{n}+1)\operatorname{tr}(\hat{a}^{2}\hat{\rho}) + \gamma\bar{n}\operatorname{tr}(\hat{a}^{2}\hat{\rho}) = -(\gamma+2i\omega)\operatorname{tr}(\hat{a}^{2}\hat{\rho})$$
(21)

$$= -(\gamma + 2i\omega) \langle \hat{a}^2 \rangle. \tag{22}$$

By taking the hermition conjugate of the above we get

$$\operatorname{tr}\left((\hat{a}^{\dagger})^{2}\mathcal{L}\hat{\rho}\right) = (\gamma - 2i\omega)\operatorname{tr}\left((\hat{a}^{\dagger})^{2}\hat{\rho}\right) = -(\gamma - 2i\omega)\left\langle(\hat{a}^{\dagger})^{2}\right\rangle. \tag{23}$$

Now we do the same for $\operatorname{tr}(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho})$, so

$$\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho}\right) = -\frac{i}{\hbar}\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\left[\hat{H},\hat{\rho}\right]\right) + \gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{D}[\hat{a}]\hat{\rho}\right) + \gamma\bar{n}\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{D}[\hat{a}^{\dagger}]\hat{\rho}\right)$$
(24)

$$= -i\omega \operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) + i\omega \operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\hat{a}^{\dagger}\hat{a}\right)$$
(25)

$$+\gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}^{2}\hat{\rho}\hat{a}^{\dagger}\right) - \frac{\gamma(\bar{n}+1)}{2}\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) - \frac{\gamma(\bar{n}+1)}{2}\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\hat{a}^{\dagger}\hat{a}\right) \tag{26}$$

$$+ \gamma \bar{n} \operatorname{tr} \left(\hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{\rho} \hat{a} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a}^{\dagger} \hat{a}^{2} \hat{a}^{\dagger} \hat{\rho} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a}^{\dagger} \hat{a} \hat{\rho} \hat{a} \hat{a}^{\dagger} \right)$$

$$(27)$$

using cyclic permutations of the trace and combining terms we get

$$\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho}\right) = i\omega\operatorname{tr}\left(\left[\hat{a}^{\dagger}\hat{a},\hat{a}^{\dagger}\hat{a}\right]\hat{\rho}\right) + \gamma(\bar{n}+1)\operatorname{tr}\left((\hat{a}^{\dagger})^{2}\hat{a}^{2}\hat{\rho}\right) - \gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) \tag{28}$$

$$+ \gamma \bar{n} \operatorname{tr} \left(\hat{a} \hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{\rho} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a}^{\dagger} \hat{a}^{2} \hat{a}^{\dagger} \hat{\rho} \right) - \frac{\gamma \bar{n}}{2} \operatorname{tr} \left(\hat{a} (\hat{a}^{\dagger})^{2} \hat{a} \hat{\rho} \right)$$

$$(29)$$

Commuting to simplify we get

$$\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho}\right) = -\gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) - \gamma\bar{n}\operatorname{tr}\left(\left[\hat{a}\hat{a}^{\dagger},\hat{a}^{\dagger}\hat{a}\right]\hat{\rho}\right) + \gamma\bar{n}\operatorname{tr}\left(\hat{a}\hat{a}^{\dagger}\hat{\rho}\right)$$
(30)

The commutator is equal to 0, and thus we get

$$\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\mathcal{L}\hat{\rho}\right) = -\gamma(\bar{n}+1)\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) + \gamma\bar{n} + \gamma\bar{n}\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) = -\gamma\operatorname{tr}\left(\hat{a}^{\dagger}\hat{a}\hat{\rho}\right) + \gamma\bar{n} = -\gamma\left\langle\hat{a}^{\dagger}\hat{a}\right\rangle + \gamma\bar{n}. \tag{31}$$

Similarly we can find that

$$\operatorname{tr}\left(\hat{a}\hat{a}^{\dagger}\mathcal{L}\hat{\rho}\right) = -\gamma\operatorname{tr}\left(\hat{a}\hat{a}^{\dagger}\hat{\rho}\right) + \gamma(\bar{n}+1) = -\gamma\left\langle\hat{a}\hat{a}^{\dagger}\right\rangle + \gamma(\bar{n}+1). \tag{32}$$

Then since \hat{x}^2 commutes with \hat{x} (the measurement operator) we can write Eq. (11) the equation

of motion

$$\partial_{t} \langle \hat{x}^{2} \rangle = \operatorname{tr}(\hat{x}^{2} \mathcal{L} \hat{\rho})$$

$$= \frac{\hbar}{2m\omega} \left(-(\gamma + 2i\omega) \langle \hat{a}^{2} \rangle - (\gamma - 2i\omega) \langle (\hat{a}^{\dagger})^{2} \rangle - \gamma \langle \hat{a}^{\dagger} \hat{a} \rangle + \gamma \bar{n} - \gamma \langle \hat{a} \hat{a}^{\dagger} \rangle + \gamma (\bar{n} + 1) \right)$$

$$(34)$$