Machine Learning C++

Generated by Doxygen 1.8.6

Sat Aug 19 2017 23:34:13

## **Contents**

| 1 | MLc  | pp      |             |                                |   | 1      |
|---|------|---------|-------------|--------------------------------|---|--------|
| 2 | Hier | archica | l Index     |                                |   | 3      |
|   | 2.1  | Class   | Hierarchy   |                                |   | <br>3  |
| 3 | Clas | s Index |             |                                |   | 5      |
|   | 3.1  | Class   | List        |                                |   | <br>5  |
| 4 | Clas | s Docu  | mentation   | l                              |   | 7      |
|   | 4.1  | abalon  | ie_data Str | ruct Reference                 |   | <br>7  |
|   |      | 4.1.1   | Detailed    | Description                    |   | <br>7  |
|   |      | 4.1.2   | Member      | Function Documentation         |   | <br>7  |
|   |      |         | 4.1.2.1     | data_info                      |   | <br>7  |
|   |      |         | 4.1.2.2     | load                           |   | <br>7  |
|   | 4.2  | bpnet   | Class Refe  | erence                         |   | <br>8  |
|   |      | 4.2.1   | Detailed    | Description                    |   | <br>8  |
|   |      | 4.2.2   | Construc    | tor & Destructor Documentation |   | <br>9  |
|   |      |         | 4.2.2.1     | bpnet                          |   | <br>9  |
|   |      |         | 4.2.2.2     | ~bpnet                         |   | <br>9  |
|   |      | 4.2.3   | Member      | Function Documentation         |   | <br>9  |
|   |      |         | 4.2.3.1     | create                         |   | <br>9  |
|   |      |         | 4.2.3.2     | get_n_hidden_layers            |   | <br>9  |
|   |      |         | 4.2.3.3     | get_output                     |   | <br>9  |
|   |      |         | 4.2.3.4     | propagate                      |   | <br>9  |
|   |      |         | 4.2.3.5     | train                          |   | <br>10 |
|   |      |         | 4.2.3.6     | update                         |   | <br>10 |
|   |      | 4.2.4   | Member      | Data Documentation             |   | <br>10 |
|   |      |         | 4.2.4.1     | hidden layers                  |   | 10     |
|   |      |         | 4.2.4.2     | input_layer                    |   | 10     |
|   |      |         | 4.2.4.3     | output_layer                   |   | 10     |
|   | 4.3  | bonet   |             | opy softmax Class Reference    |   | 10     |
|   | -    | 4.0.4   |             |                                | - |        |

iv CONTENTS

|      | 4.3.2    | Construc    | tor & Destructor Documentation | 11 |
|------|----------|-------------|--------------------------------|----|
|      |          | 4.3.2.1     | bpnet_CrossEntropy_softmax     | 11 |
|      |          | 4.3.2.2     | ~bpnet_CrossEntropy_softmax    | 11 |
|      | 4.3.3    | Member      | Function Documentation         | 11 |
|      |          | 4.3.3.1     | create                         | 11 |
|      |          | 4.3.3.2     | get_n_hidden_layers            | 12 |
|      |          | 4.3.3.3     | get_output                     | 12 |
|      |          | 4.3.3.4     | propagate                      | 12 |
|      |          | 4.3.3.5     | train                          | 12 |
|      |          | 4.3.3.6     | update                         | 12 |
| 4.4  | bpnet_l  | MSE_sign    | noid Class Reference           | 13 |
|      | 4.4.1    | Detailed    | Description                    | 13 |
|      | 4.4.2    | Construc    | tor & Destructor Documentation | 13 |
|      |          | 4.4.2.1     | bpnet_MSE_sigmoid              | 13 |
|      |          | 4.4.2.2     | ~bpnet_MSE_sigmoid             | 14 |
|      | 4.4.3    | Member      | Function Documentation         | 14 |
|      |          | 4.4.3.1     | create                         | 14 |
|      |          | 4.4.3.2     | get_n_hidden_layers            | 14 |
|      |          | 4.4.3.3     | get_output                     | 14 |
|      |          | 4.4.3.4     | propagate                      | 14 |
|      |          | 4.4.3.5     | train                          | 14 |
|      |          | 4.4.3.6     | update                         | 15 |
| 4.5  | datafra  | me Struct   | Reference                      | 15 |
|      | 4.5.1    | Detailed    | Description                    | 16 |
|      | 4.5.2    | Construc    | tor & Destructor Documentation | 16 |
|      |          | 4.5.2.1     | dataframe                      | 16 |
|      |          | 4.5.2.2     | ~dataframe                     | 16 |
|      | 4.5.3    | Member      | Function Documentation         | 16 |
|      |          | 4.5.3.1     | data_info                      | 16 |
|      |          | 4.5.3.2     | load                           | 16 |
|      | 4.5.4    | Member      | Data Documentation             | 16 |
|      |          | 4.5.4.1     | all_feature                    | 16 |
|      |          | 4.5.4.2     | all_label                      | 16 |
| 4.6  | layer St | truct Refer | rence                          | 16 |
| 4.7  | layer_s  | igmoid Str  | ruct Reference                 | 17 |
| 4.8  | layer_s  | oftmax Str  | ruct Reference                 | 17 |
| 4.9  | layer_ta | anh Struct  | Reference                      | 18 |
| 4.10 | neuron   | Struct Re   | ference                        | 18 |

## **Chapter 1**

# **MLcpp**

A Machine Learning Library written in C++ Practice the state-of-art machine learning algorithms in C++ (Growing weekly by 1 or 2 algorithms).

Algorithms included:

- · Artificial neural network
- Support vector machines

Step one: Set up the third party libraries

Boost C++ libraries

2 **MLcpp** 

# Chapter 2

## **Hierarchical Index**

## 2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

| bpnet                      | 8    |
|----------------------------|------|
| bpnet_CrossEntropy_softmax | . 10 |
| bpnet_MSE_sigmoid          | . 13 |
| dataframe                  | 15   |
| abalone_data               | . 7  |
| layer                      | 16   |
| layer_sigmoid              |      |
| layer_softmax              | . 17 |
| layer_tanh                 | . 18 |
| neuron                     | 18   |

**Hierarchical Index** 

# **Chapter 3**

## **Class Index**

## 3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

| abalone_data                                                                                   |    |
|------------------------------------------------------------------------------------------------|----|
| The UCI data abalone data set                                                                  | 7  |
| bpnet                                                                                          |    |
| A backpropagation neural network class The back-propagation network has the architecture of    |    |
| three components propagate, update and train                                                   | 8  |
| bpnet_CrossEntropy_softmax                                                                     |    |
| Child class, backpropagation foward feed nerual net using croos entropy loss and softmax acti- |    |
| vation. Usually a good choice for multi-classification problems                                | 10 |
| bpnet_MSE_sigmoid                                                                              |    |
| Child class, backpropagation foward feed nerual net using mean squared error loss and sigmoid  |    |
| activation. Usually a good choice for binary classification problems                           | 13 |
| dataframe                                                                                      |    |
| The data framework for classification problems. It defines the way to load data and handle     |    |
| categorical class variables and display data info                                              | 15 |
| layer                                                                                          | 16 |
| layer_sigmoid                                                                                  | 17 |
| layer_softmax                                                                                  | 17 |
| layer_tanh                                                                                     | 18 |
| neuron                                                                                         | 18 |

6 Class Index

## **Chapter 4**

## **Class Documentation**

## 4.1 abalone\_data Struct Reference

The UCI data abalone data set.

```
#include <abalone.h>
```

Inheritance diagram for abalone\_data:



## **Public Member Functions**

- void load (std::string &path)
- void data\_info ()

## **Additional Inherited Members**

## 4.1.1 Detailed Description

The UCI data abalone data set.

## 4.1.2 Member Function Documentation

```
4.1.2.1 void abalone_data::data_info() [virtual]
```

print data info

Reimplemented from dataframe.

```
4.1.2.2 void abalone_data::load ( std::string & path ) [virtual]
```

load data from file

#### **Parameters**

| path | string path to file |
|------|---------------------|

Reimplemented from dataframe.

The documentation for this struct was generated from the following files:

- · /home/jiguangshen/HPC MachineLearning/MLcpp/src/examples/abalone.h
- /home/jiguangshen/HPC MachineLearning/MLcpp/src/examples/abalone.cpp

## 4.2 bpnet Class Reference

A backpropagation neural network class The back-propagation network has the architecture of three components propagate, update and train.

```
#include <nnet.h>
```

Inheritance diagram for bpnet:



#### **Public Member Functions**

- bpnet (int \_n\_input, int \_n\_neurons\_in, int \_n\_output, std::vector< int > \_hidden\_layers, int \_n\_hidden\_-layers)
- virtual ∼bpnet ()
- virtual void create ()
- virtual int get\_n\_hidden\_layers ()
- void propagate (const std::vector< double > &input)
- void update (int layer index)
- virtual double train (const std::vector< double > &train\_data, const std::vector< double > &train\_class, double learning\_rate, double momentum)
- virtual void get\_output (std::vector< double > &input, std::vector< double > &output)

#### **Protected Attributes**

- std::unique\_ptr< layer > input\_layer
- std::unique ptr< layer > output layer
- std::vector< std::unique\_ptr</li>< layer >> hidden\_layers
- int n\_hidden\_layers
- int n\_input
- int n\_neurons\_in
- int n output
- std::vector< int > hidden\_layer\_layout

## 4.2.1 Detailed Description

A backpropagation neural network class The back-propagation network has the architecture of three components propagate, update and train.

## 4.2.2 Constructor & Destructor Documentation

4.2.2.1 bpnet::bpnet ( int\_n\_input, int\_n\_neurons\_in, int\_n\_output, std::vector< int > \_hidden\_layers, int\_n\_hidden\_layers )

bpnet constructor

#### **Parameters**

| _n_input       | number of input variables.        |
|----------------|-----------------------------------|
| _n_neurons_in  | number of neurons in input layer. |
| _n_ouput       | number of output                  |
| _hidden_layers | hidden_layers size vector         |
| _n_hidden      | number of hidden layers           |
| layers         |                                   |

**4.2.2.2** virtual bpnet:: $\sim$ bpnet( ) [inline],[virtual]

bpnet destructor

## 4.2.3 Member Function Documentation

**4.2.3.1 virtual void bpnet::create()** [inline],[virtual]

a virtual function to create neural network

Reimplemented in bpnet\_CrossEntropy\_softmax, and bpnet\_MSE\_sigmoid.

**4.2.3.2** virtual int bpnet::get\_n\_hidden\_layers() [inline], [virtual]

a function to get number of hidden layers

Returns

number of hidden layers

Reimplemented in bpnet CrossEntropy softmax, and bpnet MSE sigmoid.

**4.2.3.3** void bpnet::get\_output ( std::vector < double > & input, std::vector < double > & output ) [virtual]

a virtual function to get output class labels

## **Parameters**

| input  | input data         |
|--------|--------------------|
| output | output class label |

Reimplemented in bpnet\_CrossEntropy\_softmax, and bpnet\_MSE\_sigmoid.

4.2.3.4 void bpnet::propagate ( const std::vector< double > & input )

a function to perform forward feeding of data

#### **Parameters**

| input | the input data vector |
|-------|-----------------------|
|-------|-----------------------|

4.2.3.5 virtual double bpnet::train ( const std::vector< double > & train\_data, const std::vector< double > & train\_class, double learning\_rate, double momentum ) [inline], [virtual]

a virtual function to train data

#### **Parameters**

| train_data    | training data              |
|---------------|----------------------------|
| train_class   | training data class label  |
| learning_rate | learning rate              |
| momentum      | momentum or damping factor |

#### Returns

loss value

Reimplemented in bpnet\_CrossEntropy\_softmax, and bpnet\_MSE\_sigmoid.

4.2.3.6 void bpnet::update ( int layer\_index )

a function to update

**Parameters** 

| , , ,       |                 |
|-------------|-----------------|
| layer_index | the layer index |
| -           | •               |

## 4.2.4 Member Data Documentation

 $\textbf{4.2.4.1} \quad \textbf{std::vector} < \textbf{std::unique\_ptr} < \textbf{layer} > \textbf{bpnet::hidden\_layers} \quad \texttt{[protected]}$ 

hidden layers holder

**4.2.4.2 std::unique\_ptr<layer**> **bpnet::input\_layer** [protected]

input layer

**4.2.4.3 std::unique\_ptr**<**layer**> **bpnet::output\_layer** [protected]

output layer

The documentation for this class was generated from the following files:

- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/nnet.h
- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/nnet.cpp

## 4.3 bpnet\_CrossEntropy\_softmax Class Reference

child class, backpropagation foward feed nerual net using croos entropy loss and softmax activation. Usually a good choice for multi-classification problems.

#include <nnet.h>

Inheritance diagram for bpnet\_CrossEntropy\_softmax:



## **Public Member Functions**

- bpnet\_CrossEntropy\_softmax (int n\_input, int n\_neurons\_in, int n\_output, std::vector< int > \_hidden\_layers, int \_n\_hidden\_layers)
- ~bpnet\_CrossEntropy\_softmax ()
- void create ()
- void propagate (const std::vector< double > &input)
- void update (int layer\_index)
- double train (const std::vector< double > &train\_data, const std::vector< double > &train\_class, double learning\_rate, double momentum)
- int get\_n\_hidden\_layers ()
- void get\_output (std::vector< double > &input, std::vector< double > &output)

#### **Additional Inherited Members**

## 4.3.1 Detailed Description

child class, backpropagation foward feed nerual net using croos entropy loss and softmax activation. Usually a good choice for multi-classification problems.

## 4.3.2 Constructor & Destructor Documentation

4.3.2.1 bpnet\_CrossEntropy\_softmax::bpnet\_CrossEntropy\_softmax ( int n\_input, int n\_neurons\_in, int n\_output, std::vector< int > \_hidden\_layers, int \_n\_hidden\_layers ) [inline]

constructor initialize from base class

#### **Parameters**

| _n_input       | number of input variables.        |
|----------------|-----------------------------------|
| _n_neurons_in  | number of neurons in input layer. |
| _n_ouput       | number of output                  |
| _hidden_layers | hidden_layers size vector         |
| _n_hidden      | number of hidden layers           |
| layers         |                                   |

4.3.2.2 bpnet\_CrossEntropy\_softmax::~bpnet\_CrossEntropy\_softmax( ) [inline]

default destructor

#### 4.3.3 Member Function Documentation

4.3.3.1 void bpnet\_CrossEntropy\_softmax::create() [virtual]

create network

Reimplemented from bpnet.

4.3.3.2 int bpnet\_CrossEntropy\_softmax::get\_n\_hidden\_layers() [inline], [virtual]

get number of hidden layers

Returns

number of hidden layers

Reimplemented from bpnet.

4.3.3.3 void bpnet\_CrossEntropy\_softmax::get\_output ( std::vector< double > & input, std::vector< double > & output ) [virtual]

get output class labels

#### **Parameters**

| input  | input data         |
|--------|--------------------|
| output | output class label |

Reimplemented from bpnet.

4.3.3.4 void bpnet\_CrossEntropy\_softmax::propagate ( const std::vector< double > & input )

forward feeding of data

## **Parameters**

| input | the input data vector |
|-------|-----------------------|
|-------|-----------------------|

4.3.3.5 double bpnet\_CrossEntropy\_softmax::train ( const std::vector< double > & train\_data, const std::vector< double > & train\_class, double learning\_rate, double momentum ) [virtual]

training function

## **Parameters**

| train_data    | training data              |
|---------------|----------------------------|
| train_class   | training data class label  |
| learning_rate | learning rate              |
| momentum      | momentum or damping factor |

**Returns** 

loss value

Reimplemented from bpnet.

4.3.3.6 void bpnet\_CrossEntropy\_softmax::update ( int layer\_index )

update a layer

#### **Parameters**

| layer_index | the layer index |
|-------------|-----------------|
|-------------|-----------------|

The documentation for this class was generated from the following files:

- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/nnet.h
- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/nnet.cpp

## 4.4 bpnet\_MSE\_sigmoid Class Reference

child class, backpropagation foward feed nerual net using mean squared error loss and sigmoid activation. Usually a good choice for binary classification problems.

```
#include <nnet.h>
```

Inheritance diagram for bpnet\_MSE\_sigmoid:



#### **Public Member Functions**

- bpnet\_MSE\_sigmoid (int n\_input, int n\_neurons\_in, int n\_output, std::vector< int > \_hidden\_layers, int \_n\_- hidden\_layers)
- ∼bpnet\_MSE\_sigmoid ()
- void create ()
- void propagate (const std::vector< double > &input)
- void update (int layer index)
- double train (const std::vector< double > &train\_data, const std::vector< double > &train\_class, double learning\_rate, double momentum)
- int get\_n\_hidden\_layers ()
- void get\_output (std::vector< double > &input, std::vector< double > &output)

## **Additional Inherited Members**

## 4.4.1 Detailed Description

child class, backpropagation foward feed nerual net using mean squared error loss and sigmoid activation. Usually a good choice for binary classification problems.

## 4.4.2 Constructor & Destructor Documentation

4.4.2.1 bpnet\_MSE\_sigmoid::bpnet\_MSE\_sigmoid ( int *n\_input*, int *n\_neurons\_in*, int *n\_output*, std::vector< int > \_\_hidden\_layers, int \_n\_hidden\_layers ) [inline]

constructor initialize from base class

#### **Parameters**

| _n_input       | number of input variables.        |
|----------------|-----------------------------------|
| _n_neurons_in  | number of neurons in input layer. |
| _n_ouput       | number of output                  |
| _hidden_layers | hidden_layers size vector         |
| _n_hidden      | number of hidden layers           |
| layers         |                                   |

4.4.2.2 bpnet\_MSE\_sigmoid::~bpnet\_MSE\_sigmoid() [inline]

destructor

## 4.4.3 Member Function Documentation

**4.4.3.1** void bpnet\_MSE\_sigmoid::create() [virtual]

create network

Reimplemented from bpnet.

4.4.3.2 int bpnet\_MSE\_sigmoid::get\_n\_hidden\_layers( ) [inline], [virtual]

get number of hidden layers

Returns

number of hidden layers

Reimplemented from bpnet.

4.4.3.3 void bpnet\_MSE\_sigmoid::get\_output ( std::vector< double > & input, std::vector< double > & output ) [virtual]

get output class labels

#### **Parameters**

| input  | input data         |
|--------|--------------------|
| output | output class label |

Reimplemented from bpnet.

4.4.3.4 void bpnet\_MSE\_sigmoid::propagate ( const std::vector< double > & input )

forward feeding of data

**Parameters** 

| input | the input data vector |
|-------|-----------------------|

4.4.3.5 double bpnet\_MSE\_sigmoid::train ( const std::vector< double > & train\_data, const std::vector< double > & train\_class, double learning\_rate, double momentum ) [virtual]

training function

#### **Parameters**

| train_data    | training data              |
|---------------|----------------------------|
| train_class   | training data class label  |
| learning_rate | learning rate              |
| momentum      | momentum or damping factor |

## Returns

loss value

Reimplemented from bpnet.

4.4.3.6 void bpnet\_MSE\_sigmoid::update ( int layer\_index )

update a layer

## **Parameters**

| layer_index | the layer index |
|-------------|-----------------|

The documentation for this class was generated from the following files:

- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/nnet.h
- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/nnet.cpp

## 4.5 dataframe Struct Reference

The data framework for classification problems. It defines the way to load data and handle categorical class variables and display data info.

#include <dataframe.h>

Inheritance diagram for dataframe:



#### **Public Member Functions**

- dataframe ()
- virtual ∼dataframe ()
- virtual void load (std::string &path)
- virtual void data\_info ()

## **Public Attributes**

- int n\_instance
- · int n attributes
- std::vector< std::vector
  - < double > > all\_label
- std::vector< std::vector</li>
  - < double > > all\_feature

## 4.5.1 Detailed Description

The data framework for classification problems. It defines the way to load data and handle categorical class variables and display data info.

#### 4.5.2 Constructor & Destructor Documentation

```
4.5.2.1 dataframe::dataframe( ) [inline]
```

constructor

```
4.5.2.2 virtual dataframe::∼dataframe() [inline], [virtual]
```

destructor

## 4.5.3 Member Function Documentation

```
4.5.3.1 virtual void dataframe::data_info() [inline], [virtual]
```

print data info

Reimplemented in abalone\_data.

```
4.5.3.2 virtual void dataframe::load ( std::string & path ) [inline], [virtual]
```

load data from file

**Parameters** 

```
path string path to file
```

Reimplemented in abalone\_data.

## 4.5.4 Member Data Documentation

```
\textbf{4.5.4.1} \quad \textbf{std::vector} < \textbf{std::vector} < \textbf{double} > > \textbf{dataframe::all\_feature}
```

feature sets

4.5.4.2 std::vector<std::vector<double>> dataframe::all label

all class label which is transformed into numerical values

The documentation for this struct was generated from the following file:

• /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/examples/dataframe.h

## 4.6 layer Struct Reference

Inheritance diagram for layer:



## **Public Member Functions**

- void create (int \_n\_input, int \_n\_neuron)
- virtual void calculate ()=0

## **Public Attributes**

- std::vector< neuron > neurons
- std::vector< double > layerinput
- int n neuron
- int n\_input

The documentation for this struct was generated from the following files:

- · /home/jiguangshen/HPC MachineLearning/MLcpp/src/neural network/layer.h
- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/layer.cpp

## 4.7 layer\_sigmoid Struct Reference

Inheritance diagram for layer\_sigmoid:



## **Public Member Functions**

· void calculate ()

## **Additional Inherited Members**

The documentation for this struct was generated from the following files:

- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/layer.h
- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/layer.cpp

## 4.8 layer\_softmax Struct Reference

Inheritance diagram for layer\_softmax:



## **Public Member Functions**

· void calculate ()

## **Additional Inherited Members**

The documentation for this struct was generated from the following files:

- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/layer.h
- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/layer.cpp

## 4.9 layer\_tanh Struct Reference

Inheritance diagram for layer\_tanh:



## **Public Member Functions**

• void calculate ()

## **Additional Inherited Members**

The documentation for this struct was generated from the following files:

- · /home/jiguangshen/HPC MachineLearning/MLcpp/src/neural network/layer.h
- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/layer.cpp

## 4.10 neuron Struct Reference

## **Public Member Functions**

- void create (int n\_input)
- · void activate ()
- · void deactivate ()

## **Public Attributes**

- std::vector< double > weights
- $\bullet \ \ \mathsf{std} : \! \mathsf{vector} \! < \mathsf{double} > \mathbf{deltas}$
- double output
- double bias
- double w\_bias
- · bool active

The documentation for this struct was generated from the following files:

- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/neuron.h
- /home/jiguangshen/HPC\_MachineLearning/MLcpp/src/neural\_network/neuron.cpp