Снижение размерности пространств в задачах мультимоделирования динамических систем

Тихонов Д.М.

1.2.1 – Искусственный интеллект и машинное обучение

Научный руководитель: д.ф.-м.н. Стрижов В. В.

Москва, 2023 г.

Снижение размерности пространств в задачах мультимоделирования динамических систем

Исследуется задача выбора модели для восстановления динамической системы по множественным наблюдениям.

Цель исследования

Предложить подход (метод и модель) восстановления неизвестной динамической системы, описываемой ОДУ, по нескольким измерениям.

Метод решения

Предлагается объединить всю исходную информацию с помощью MDT (multi-way delay embedding transform) или тензорного произведения (например, векторов задержек нескольких временных рядов).

Предполагаемая практическая ценность

Анализ исследуемой проблемы и смежных областей показывает, что переход к моделированию с помощью тензорный нейронных сетей и тензорных разложения позволяет достигать уменьшения числа настраиваемых параметров модели при «допустимых» потерях в точности прогнозирования.

- Восстановление динамической системы $\frac{d}{dt}\mathbf{x} = f(\mathbf{x}(t))$ по вектору множественных измерений
- Заранее определяемая «библиотека» зависимостей понижает число необходимых измерений и предлагает подходящую функциональную зависимость
- Использую теорему
 Такенса подход позволяет
 восстанавливать исходную
 динамическую систему по
 одному наблюдению

- Подход обобщается с помощью нейронный сетей (автоэнкодера)
- Позволяет уменьшить размер «библиотеки» до простых полиномов
- Переводит изначально сложную систему к линейной или близкой к линейной

Восстановление теневого многообразия

- ▶ По теореме Такенса можем для каждого временного ряда в отдельности восстановить теневое многообразие, диффеоморфное истинному.
- ▶ Подходы, например, ССМ анализируют связь через близость в соответствующих отдельно полученных пространствах
- ▶ Подход с использованием нескольких измерений позволит анализировать теневое многообразие совместно.

Объединение разнородный данных

- ▶ Тензорное произведение как способ объединения векторов задержек нескольких временных рядов
- ▶ По результатам близких работ, подход более устойчив к шумам, пропускам и неравномерном распределении во времени

Объединение разнородный данных

- Тензорное произведение как способ объединения векторов задержек нескольких временных рядов
- По результатам близких работ, подход более устойчив к шумам, пропускам и неравномерном распределении во времени

(a) DNN for Vector-to-Vector Regression (b) TTN for Tensor-to-Vector Regression

Исследуемые подходы

Идея объединить подходы для восстановлением сложной динамической системы с помощью

- ▶ функции оптимизации учитывающей динамику, как в SINDY моделях,
- тензорного представления, как тензорное произведение векторов задержек

Первый вариант Снижение размерности без снижения «индексности»

- ▶ Из-за векторизации тензора теряется структура данных
- При большей индексности, тензора необходимо раскладывать (например, tensor train), но непонятно как автоматизировать (тогда не будет вычислительной эффективности при оптимизации на каждой итерации)

Исследуемые подходы

Снижение размерности, включая снижения «индексности»

- Не найдено теории по снижению индексности
- ▶ Предлагаемый подход через сверточные слои

Резюме

- Проведено исследование литературы по восстановлению динамической системы из разных источников данных
- ▶ Тензорные представления в теории более устойчивы к шумам
- Прорабатываются базовые варианты со снижением индексности и векторизацией
- ▶ Идея уйти в топологический анализ данных и тензорный анализ