Learning Deep Learning with PyTorch

(1) Introduction

Qiyang Hu UCLA IDRE February 19, 2020

About the series

- Not a comprehensive course!
 - Scratching the surface of deep learning
 - High-level descriptive review
 - Mastering the content needs your own effort after each class
- Workshop plan in this quarter
 - Introduction (Feb 19, 2020)
 - <u>Learning Mechanics of Deep Learning</u> (Feb 21, 2020)
 - Knowing PyTorch (Feb 26, 2020)
 - Convolutional Neural Networks (Feb 28, 2020)
 - Practical techniques in Deep Learning (Mar 4, 2020)

Slides only

w/ Pytorch example

Amazing Deep Learning Achievements in 2019

Detectron2

COPICS The state of the first in processor than 1 and 1 and

Equation-solving AI

EQUATION	SOLUTION
$y' = \frac{16x^3 - 42x^2 + 2x}{(-16x^8 + 112x^7 - 204x^6 + 28x^5 - x^4 + 1)^{1/2}}$	$y = \sin^{-1}(4x^4 - 14x^3 + x^2)$
$3xy\cos(x) - \sqrt{9x^2\sin(x)^2 + 1y^2} + 3y\sin(x) = 0$	$y = c \exp (\sinh^{-1}(3x \sin(x)))$
4x*yy"-8x*y'*-8x*yy'-3x*y"-8x*y*-6x*y'-3x*y"-9xy'-3y =0	$y = \frac{c_1 + 3x + 3\log(x)}{x(c_2 + 4x)}$

What is Machine Learning?

Traditional Programming Input Known Algorithm Output

What is Deep Learning?

Traditional Programming Input Known Algorithm Output

What is Neural Network?

Recap for simple linear classification problem

A linear classifier ~ one artificial neuron

(Deep) Neural Networks ~ piling/stacking logistic-regression classifiers

How deep a deep learning network can be?

<u>LeNet-5</u> (1998)

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

Machine Learning vs. Deep Learning

Machine Learning Car Not Car Output Feature extraction Classification Input Deep Learning Not Car Feature extraction + Classification Output Input

Source: https://www.xenonstack.com/blog/log-analytics-deep-machine-learning/

Interest over time from Google Trends

Driving Forces in Deep Learning (1): Algorithms

- Key Issues in Deep Learning:
 - Optimization for models with huge number of parameters
 - Gradient Propagation through stacks of layers
 - Gradient vanishing and exploding
- Algorithmic improvements in 2009-2010:
 - Better activation functions
 - Better weight-initialization schemes
 - Better optimization schemes
- Advanced techniques in 2014-2018:
 - Batch normalization/Drop-out
 - Residual/skip connections
 - Depth-wise separable convolutions

Driving Forces in Deep Learning (2): Data

- ImageNet (a large dataset of annotated photographs built on 2009)
 - 14 million+ images
 - o 21,000 groups or classes
 - ILSVRC competition (1.2 million image, 1000 classes)
- Kaggle (Founded in 2010, acquired by Google in 2017)
 - 1,000,000+ registered users in 194 countries in 2017
 - Hosts 19K+ of datasets and 200K+ code snippets
 - Famous for the high-rewards competitions
- Datasets from the rise of internet
 - User-generated image tags on Flickr
 - Video dataset/tags on Youtube
 - Data from Wikipedia for NLP

Al compute amount increases 10 times per year!

Driving Forces in Deep Learning (3): Hardware

Free GPU Computation Resources

- Cloud-based resources (Google Colaboratory, Kaggle, Paperspace's Gradient)
 - A free Jupyter notebook env that requires no setup and runs entirely in the cloud.
 - Google Drive → New → More → Google Colaboratory
 - Kaggle.com → Log in → Kernel → New Kernel
- Hoffman2 (GPU resources)
 - Work under python shell in terminal:
 - qrsh -l gpu,P4
 module load python/anaconda3
 conda activate pytorch-1.3.1-gpu
 - Work in Jupyter notebook session:
 - For the very first time, add the virtual env to kernel in the <u>above</u> qrsh session:
 - python -m ipykernel install --user --name=pytorch-1.3.1-gpu
 - Using <u>h2jupynb</u>:
 - ./h2jupynb -v anaconda3 -g yes -c P4 -l 10.0

	Colab	Kaggle	Hoffman2
CPU Type	Intel Xeon 2.30GHz	Intel Xeon 2.30GHz	Intel Xeon 2.80GHz
Slots/Threads available	1 core / 2 threads	1 core / 2 threads	8 cores / no hyper-threads
RAM available	12 GB	18 GB	24 GB
Disk available	311 GB	626 GB	1 TB
GPU Type	Tesla T4 (2018)	Tesla P100 (2018)	Tesla P4 (2016)
GPU SP Floating-Point Perf	8.1 TFLOPs	10.6 TFLOPs	5.5 TFLOPs
GPU Memory	16 GB	16 GB	8 GB
Active Time Limit	8 hours	6 hours	24 hours

Driving Forces in Deep Learning (4): Investment

- Venture Capital Investment soars
 - Source
 - 20x increase in 8 years
 - Most for deep-learning
- Al acquisitions
 - Google: \$500M for DeepMind (2013)
 - Intel: \$400M for Nervana Systems (2016)
 - Tons of M&As undisclosed
- Demand drives supply
 - 100x more people working on deep learning

Driving Forces in Deep Learning (5): *Toolsets*

From C++/Cuda to scripting languages (Python, R)

Deep Learning Framework Battles

Finals?

Key Terminology in Machine/Deep Learning

- Datasets:
 - <u>Label</u>: a desired output (e.g. house price)
 - <u>Feature</u>: a known input (e.g. address, condition, household income, etc)
- Model: relationship between input & output
 - Parameter: to be learned from data, e.g. weight, coefficients
 - Weight: a coefficient for a feature in linear model
 - Bias: an intercept or offset from an origin
 - <u>Hyperparameter</u>: often set by heuristics, e.g. learning rate, depth of trees, batch, epoch.
 - <u>Batch</u>: a subset from the division of training datasets
 - <u>Epoch</u>: all data in training sets has had an opportunity to update the internal model parameters

Complete Glossary

A lot of "Learning"s to learn

- Supervised Learning (data with labels)
 - Regression
 - Classification
- Unsupervised Learning (data without labels) (Auto Encoders)
- Semi-supervised Learning (data with partial labels)
- Reinforcement Learning (reward rules to get data) (PPO, Deep Q-learning)
- Inverse reinforcement learning (no rules & no labels)
- Transfer Learning (data with unrelated labels)

(zero-shot learning, one-shot learning, few-shot learning, etc.)

- ⇒ Continuous learning
- ⇒ Meta Learning (MAML, LSTM)

Don't forget to

- Sign in your info to the class
 - To get the email notifications
- Contact me for questions or discussions
 - huqy@idre.ucla.edu

Office: Math Sci #3330

o Phone: 310-825-2011