PROJET 4 LA CONSOMMATION D'ÉNERGIE DE BÂTIMENTS

EVA BOOKJANS

Objectif

Prédire pour des bâtiments:

- Consommation d'Énergie
- Émission de CO₂

Les Données:

- déclarées pour le permis d'exploitation commerciale
- Taille
- Usage de Bâtiments
- Date de Construction
- Emplacement
- • •
- ENERGYSTAR Score

Le Jeu de Données

- Données collectées par la ville de Seattle avec l'objectif
 à réduire la consommation d'énergie et les émissions de gaz à
 effet de serre des bâtiments existants.
- Obligatoire pour les bâtiments avec plus de 20 000 Sf (1 858 m²)

- Années: 2015 et 2016
- Analyse pour les bâtiments non-résidentielles

Ce Projet

Chemin Général

Définir l'Objectif

Récupération des Données

Comprendre

Types Définitions Nettoyage

Valeurs Nulles Erreurs **Exploration**

Distributions Corrélations, ...

Préparation

Sélection et création de features

Mise en Place d'un Modèle

Évaluation du Modèle

Sélection de Modèle et Mise en Production

Les Variables

Paramètres et d'Aide

Target

Consommation d'Énergie

- En-soi
- Les relevés
 - électricité, gaz, vapeur
 - avec différents unités
- Normalisée
 - par la surface / le météo

Émissions de CO₂

- · Calculées des relevés
- Normalisées
 - par la surface / le météo

Identificateur

- Numéro Id
- Nom
- Numéro d'impôt

Emplacement

- Latitude, Longitude
- Adresse, Code postale
- Quartier
- Districts...

Date de Construction

ENERGYSTAR Score

- Score
- Années de certification

Taille

- Nombre de bâtiments
- Nombre d'étages
- Surface (Totale)
 - Parking + **Bâtiment**

Usage de Bâtiment

- Type de bâtiment
- Usages de bâtiment
- Premiers 3 types d'usage
 - Surfaces correspondantes

Conformité

- Conforme (ou pas)
- Données par défaut
- Valeurs aberrantes

Nettoyage

Détecter (et corriger si possible) des erreurs

- valeurs absurdes (e.g. une surface négative)
- comparaison des données des années 2015 et 2016

Imputer des valeurs nulles avec

- la valeur de l'autre année
- une valeur par défaut ou une estimation raisonnable

Écarter des données

- non-conformes ou pas fiables
- sans rapport au projet (les bâtiment résidentiels)
- avec des variables targets nulles

Feature Engineering et Exploration

Taille du Bâtiment

Surface

Étages

Property GFA Total

PropertyGFABuilding(s) + PropertyGFAParking

NumberofFloors

PropertyGFABuilding(s)

Parking Frac

GFAperFloor

Bâtiments

NumberofBuildings Variable pas fiable / utile

Corrélation! 1.75 Taille du Bâtiment 1.50 1.25 2015 0.15 -0.12 0.43 0.2 0.031 NumberofFloors 0.75 *s*2 -0.018 PropertyGFATotal - 0.8 0.50 PropertyGFABuilding(s) 0.043-0.0036 0.25 PropertyGFAParking 0.36 0.065 -0.053 -0.017 0.12 0.054 0.12 0.077 0.00 2015 2015 Corrélation ? 🕆 0.12 0.27 SiteEnergyUse(kBtu) 0.43 0.69 TotalGHGEmissions 3.0 1.2 SiteEUI(kBtu/sf) 0.031 0.052 0.043 0.065 0.12 0.0034 0.41 0.31 ParkingFra -0.00 1.0 GHGEmissionsIntensity -0.059 -0.018-0.0036-0.053 -0.077 0.029 0.4 1.0 0.5 0.2 0.0 0.0 2015 2015

Régression Linéaire - un simple modèle

SiteEnergyUse(kBtu)

PropertyGFABuilding(s)

TotalGHGEmissions

ParkingFrac > 0.1

plus de points rouges audessous la ligne de régression

Emplacement

Latitude Longitude

EastWestDistance NorthSouthDistance CenterDistance

Neighborhood	Eta-carré
SiteEnergyUse(kBtu)	0.042
TotalGHGEmissions	0.033
SiteEUI(kBtu/sf)	0.041
GHGEmissionsIntensity	0.051

Faible Corrélation ?

Âge du Bâtiment DataYear - YearBuilt

DecadeBuilt/BuildingAge	Eta-carré	Corrélation
SiteEnergyUse(kBtu)	0.042	-0.17
TotalGHGEmissions	0.033	-0.09
SiteEUI(kBtu/sf)	0.041	-0.15
GHGEmissionsIntensity	0.051	-0.02

Faible Corrélation ?

BuildingType: Campus, Multifamily HR (10+), Multifamily LR (1-4), Multifamily MR (5-9), NonResidential, Nonresidential COS, Nonresidential WA, SPS-District K-12

PublicBuilding:

PrimaryPropertyType: 20 catégories (sans 'Multifamily')

ListofPropertyUseTypes:

Number of Property Use Types

Contient 'Swimming Pool'?

HasSwimmingPool: Oui = 1, Non = 0

Contient 'Data Center' ?

HasDataCenter : Oui = 1, Non = 0

Eta-carré	Primary PropertyType	Largest PropertyUseType	SecondLargest PropertyUseType	ThirsLargest PropertyUseType
SiteEnergyUse(kBtu)	0.51	0.53	0.05	0.16
TotalGHGEmissions	0.55	0.55	0.03	0.14
SiteEUI(kBtu/sf)	0.49	0.55	0.07	0.09
GHGEmissionsIntensity	0.40	0.43	0.09	0.06

Corrélation!

NumberofPropertyUseTypes	Corrélation
SiteEnergyUse(kBtu)	0.04
TotalGHGEmissions	0.03
SiteEUI(kBtu/sf)	0.04
GHGEmissionsIntensity	0.05

LargestPropertyUseType SecondLargestPropertyUseType ThirdLargestPropertyUseType

68 catégories

grouper

25 catégories (sans 'Parking')

LargestPropertyUseTypeGFA
SecondLargestPropertyUseTypeGFA
ThirdLargestPropertyUseTypeGFA

InLargestPropertyUseTypeGFA
si (nLargestPropertyUseType != Parking)

nLargestPropertyUseTypeGFAFrac

24 Frac-Hot Variables avec valeurs entre 0 et 1

indiquent **la fraction** de la surface du bâtiment utilisée pour chaque catégorie d'utilisation

Catégorie Différente

Distribution Différente

Attention aux petits échantillons!

	Public Building	Has Swimming Pool	Has Data Center
0	1310	1380	1361
1	86	16	35

Petits échantillons

Corrélation?

Sources d'Énergie

Tous les bâtiments ont l'air d'utiliser de l'électricité

Electricity(kBtu)
NaturalGas(kBtu)
Steam(kBtu)

UseofElectricity
UseofNaturalGas
UseofSteam

les compteurs connectés sont connus, mais pas les relevés en détail

SourcesEnergy	Eta-carré
SiteEnergyUse(kBtu)	0.058
TotalGHGEmissions	0.089
SiteEUI(kBtu/sf)	0.029
GHGEmissionsIntensity	0.150

Interdépendances!

LargestPropertyUseType	Eta-carré
PropertyGFABuilding(s)	0.36
ParkingFrac	0.42
NumberofFloors	0.36
BuildingAge	0.14

Bâtiments en centre-ville :

- plus haute et plus de surface
- plus vieux

Bâtiments plus vieux :

- moins de % de parking
- moins haute et moins de surface

Consommation d'Énergie

Émissions de CO2

Combinaison des Datasets

1325 propriétés avec des données pour 2015 et 2016

- <u>PrimaryPropertyType</u> et <u>nLargestPropertyUseType</u> ne changent pas:
 - la moyenne des années pour les variables numériques
 - la valeur de 2016 pour les variables catégorielles
- <u>PrimaryPropertyType</u> et <u>nLargestPropertyUseType</u> changent :
 - Ce sont 59 des 1325 bâtiments : prend l'entrée de 2016

Construire un Modèle

- Features
- Train-Test Division
- Prétraitement
- Modèle
- Pipeline
- Entraînement
- Optimisation
- Évaluation

Version 0:

- PrimaryPropertyType
- PropertyGFABuilding(s)
- ParkingFrac

Version Minimaliste

Version 1:

- PrimaryPropertyType
- PropertyGFABuilding(s), NumberofFloors
- ParkingFrac
- BuildingAge, EastWestDistance, NorthSouthDistance

Version 2:

- nLargestPropertyUseTypes
- PropertyGFABuilding(s),
- ParkingFrac

Version 3:

•

Construire un Modèle

- Features
- Train-Test Division
- Prétraitement
- Modèle
- Pipeline
- Entraînement
- Optimisation
- Évaluation

X[features], y[targets]

X_train[features]
y_train[targets]

Prétraitement Entraînement Optimisation (grid_search)

Modèle Complet Evaluation - train (cross_validation) 20% Mis à coté

X_test[features]
y_test[targets]

Prédiction avec le Modèle Complet

Evaluationavec le test-set

Construire un Modèle

- Features
- Train-Test Division
- Prétraitement
- Modèle
- Pipeline
- Entraînement
- Optimisation
- Évaluation

Conversion des catégories en numérique

- one-hot / frac-hot variables
 - PrimaryPropertyType, nLargestPropertyUseType
 - PublicBuilding, HasSwimmingPool, HasDataCenter, UseofSteam, UseofNaturalGas

Mise à l'échelle

StandardScaler

- BuildingAge, EastWestDistance, NorthSouthDistance, CenterDistance
- Logarithme (+ StandardScaler)
 - SiteEnergyUse(kBtu)
 - PropertyGFABuilding(s), NumberofFloors, GFAperFlors
- Logarithme de 1+ (+ StandardScaler)
 - > TotalGHGEmissions
 - ParkingFrac

Préprocesseurs pour features et targets

Feature

Engineering

Construire un Modèle

- Features
- Train-Test Division
- Prétraitement
- Modèle
- Pipeline
- Entraînement
- Optimisation
- Évaluation

Mise à l'échelle

Modèle

- DummyRegressor
- LinearRegressor
- Ridge
- Lasso
- LinearSVR
- SVR
- GradientBoostingRegressor
- KNeighborsRegressor
- RandomForestRegressor

Pipeline

Simplification du processus de modélisation

Création d'un modèle complet

Construire un Modèle

- Features
- Train-Test Division
- Prétraitement
- Modèle
- Pipeline
- Entraînement
- Optimisation
- Évaluation

Entraînement / Optimisation

GridSearchCV

- Optimise les hyperparamètres
- Retourne le meilleur version de modèle
- Retourne une évaluation du modèle (cross validation avec 5 divisions)

Le Métric - R²

une mesure statistique représentant la proportion de la variance d'une variable dépendante qui est expliquée par une ou plusieurs variables indépendantes dans un modèle de régression

- $ightharpoonup R^2 = 1$ modèle explique la variance parfaitement
- $ightharpoonup R^2 = 0$ le modèle performe également à la moyenne

Construire un Modèle

- Features
- Train-Test Division
- Prétraitement
- Modèle
- Pipeline
- Entraînement
- Optimisation
- Évaluation

Évaluation

Cross Validation avec le Train set

Comparaison Surapprentissage?

Les Métriques

- R² coefficient de détermination
- MAE erreur absolue moyenne
- RMSE racine de l'erreur quadratique moyenne
- Temps d'entraînement

Comparaisons des Modèles - la Consommation d'Énergie (EnergieSiteUse(kBtu))

	Train R2	Test R2	Train nMAE xe6	Test nMAE xe6	Train nRMSE	Test nRMSE	Train time (ms)
Dummy0	-0.069	-0.104	-6.59	-5.55	-19.89	-12.53	18.2
SVRO	0.774	0.621	-3.03	-3.10	-8.85	-7.35	64.3
GradientBoostingR0	0.751	0.630	-3.17	-3.12	-9.02	-7.26	81.1
SVR1	0.764	0.648	-3.01	-3.00	-8.89	-7.08	47.7
Ridge2	0.782	0.603	-2.93	-3.16	-8.84	-7.51	9.8
Lasso2	0.783	0.626	-2.93	-3.11	-8.80	-7.29	9.3
LinearSVR2	0.776	0.491	-2.95	-3.34	-9.00	-8.50	14.0
SVR2	0.817	0.621	-2.85	-3.11	-7.94	-7.34	39.0
GradientBoostingR2	0.753	0.744	-3.05	-2.82	-8.97	-6.04	91.2
RandomForestR2	0.770	0.670	-3.16	-3.12	-8.88	-6.85	57.9
LinearSVR3	0.755	0.369	-3.05	-3.32	-9.45	-9.47	22.4
SVR3	0.788	0.602	-2.96	-3.09	-8.25	-7.52	57.2
RandomForestR3	0.759	0.604	-3.13	-3.24	-9.21	-7.50	55.0
SVR4	0.784	0.630	-2.99	-3.06	-8.39	-7.25	63.6

Comparaisons des Modèles - la Consommation d'Énergie (EnergieSiteUse(kBtu))

- Les modèles de Version 2 ont l'air de performer le mieux
 - nLargestPropertyUseType (frac-hot variables)
 - PropertyGFABuilding(s)
 - ParkingFrac
- Les classes de modèle le plus performantes:
 - GradientBoostingRegressor
 - RandomForrestRegressor
 - SVR
- LinearSVR surajoute les données
- GradientBoostingR2 est le plus performant modèle
 - Learning rate = 0.1778 (hyperparamètre optimisé)
 - Temps d'entraînement: 91 ms (presque 10 fois le temps que pour le Ridge ou Lasso)

Comparaisons des Modèles GradientBoostingR2 - la Consommation d'Énergie

Comparaisons des Modèles GradientBoostingR2 - la Consommation d'Énergie

28 Data Centers:

- > 2 à 100 %
- > 3 > 30 %

20 Hôpitaux:

> 18 à 100 %

16 Refrigerated Warehouses

> 9 > 90 %

31 Other- Education

▶ 19 > 98%

Petits échantillons

	Train R2	Test R2	Train nMAE	Test nMAE	Train nRMSE	Test nRMSE	Train time (ms)
Dummy0	-0.001	-0.011	-193.6	-165.5	-591.5	-286.5	11.2
GradientBoostingR0	0.768	0.215	-95.4	-116.9	-239.0	-252.5	76.8
KNRO	0.736	0.361	-108.9	-107.2	-284.2	-227.7	6.34
RandomForestR0	0.775	0.314	-103.2	-115.1	-258.2	-235.9	32.0
GradientBoostingR1	0.752	0.078	-98.8	-113.6	-255.4	-273.5	156.0
SVR2	0.735	0.481	-97.3	-96.2	-301.0	-205.2	7486.7
GradientBoostingR2	0.794	0.344	-92.8	-106.7	-242.1	-230.8	89.7
KNR2	0.743	0.541	-104.0	-98.1	-271.0	-193.0	7.90
RandomForestR2	0.808	0.345	-94.3	-107.2	-249.6	-230.6	32.4
SVR3	0.713	0.555	-101.0	-88.5	-310.6	-190.1	56262.8
GradientBoostingR3	0.753	0.511	-98.8	-103.1	-263.0	-199.3	151.9
RandomForestR3	0.782	0.511	-88.0	-96.1	-252.0	-233.0	127.2
GradientBoostingR4	0.772	0.474	-89.2	-97.5	-254.0	-206.6	208.5
RandomForestR4	0.737	0.374	-92.7	-98.3	-289.8	-225.4	61.7

- Les classes de modèle le plus performantes:
 - GradientBoostingRegressor
 - RandomForrestRegressor
- SVR est performant mais a un temps d'entraînement trop longue
 - Version 0: 3.7s / Version 1: 4.1s / Version 2: 7.4s / Version 3: 56s !!
- LinearSVR ne converge pas
- KNR2 est le plus performant modèle
 - Leaf size: 1, N neighbors: 2, Weights': 'uniform' (hyperparamètres optimisés)
 - Temps d'entraînement : 7.9 ms

KNR2

RandomForestR2

28 Data Centers:

- > 2 à 100%
- > 3 > 30 %

23 Laboratories:

- > 7 > 99%
- > 7 > 50%

25 Financial Offices:

> 9 > 75%

Petits échantillons

- GradientBoostingR3 et RandomForestR3 sont aussi performants
 - Temps d'entraînement : 152 ms et 127ms (plus que 15 fois plus longue que KNR2)
- Version 3:
 - nLargestPropertyUseTypeFrac
 - PropertyGFABuilding(s)
 - ParkingFrac
 - GPAperFLoor
 - BuildingAge, CenterDistance
 - UseofSteam, UseofNaturalGas
 - PublicBuilding, HasSwimmingPool, HasDataCenter

Émissions de CO2 - modèles avancés

Prédire la Consommation d'Energie

• avec GradientBoostingR2 (considéré comme le plus performant modèle)

Utiliser le ENERGYSTARScore

• imputer les valeurs nulles avec 0

Modéliser avec KNR2, GradientBoostingR3, RandomForestR3

- avec la prédiction de la consommation d'énergie
- avec l'ENERGYSTARScore
- avec les deux variables de plus

Émissions de CO2 - modèles avancés

	Train R2	Test R2	Train nMAE	Test nMAE	Train nRMSE	Test nRMSE	Train time (ms)
KNR2	0.743	0.541	-104.0	-98.1	-271.0	-193.1	7.9
GradientBoostingR2	0.793	0.344	-92.8	-106.7	-242.0	-230.8	89.7
RandomForestR2	0.808	0.345	-94.3	-107.2	-249.6	-230.6	32.4
KNR3	0.558	-0.254	-105.3	-101.7	-370.9	-319.0	9.7
GradientBoostingR3	0.753	0.511	-98.8	-103.1	-263.0	-199.3	151.9
RandomForestR3	0.782	0.331	-88.0	-96.1	-252.0	-233.0	127.2
KNR5	0.790	0.509	-86.4	-91.2	-255.3	-199.6	*14.4
GradientBoostingR5	0.843	0.180	-69.0	-83.7	-214.7	-257.9	*284.9
RandomForestR5	0.873	0.411	-68.4	-84.5	-200.1	-218.7	*38.4
VNID/	0.003	0.240	1145	105.0	322.0	240.4	17.0
GradientBoostingR6	0.726	0.387	-81.3	-72.9	-282.6	-223.1	265.3
RandomForcotR/	0.752	0.570	01.0	74.0	207.2	105.0	142.0
GradientBoostingR7	0.844	0.146	-69.0	-79.1	-221.7	-263.3	*297.9
RandomForestR7	0.882	0.553	-66.7	-76.8	-191.8	-190.5	*48.1

Émissions de CO2 - modèles avancés

- · La Prédiction de la Consommation d'Énergie
 - améliore GradientBoostingR3 et RandomForestR3
 - entraîne un surapprentissage pour KNR2
- ENERGYSTARScore
 - améliore GradientBoostingR3 et RandomForestR3
 - entraı̂ne un surapprentissage pour KNR2
- KNR a une tendence vers le surapprentissage
- RandomForestR3 + ENERGYSTARScore est le modèle le plus performant
 - Max depth: 50, N estimators: 30
 - Temps d'entraînement : 142 ms

Émissions de CO2 - RandomForestR6

Courbe d'Apprentissage

Émissions de CO2 - RandomForestR6

Résumé

La Consommation d'Énergie:

- > GradientBoostingR2
 - Train R2:0.75, Test R2:0.74
 - Temps d'entraînement: 91 ms

Les Émissions de CO₂:

- Le plus performante:
 - RandomForestR6 = RandomForestR3 + ENERGYSTARScore
 - Train R2: 0.75, Test R2: 0.58
 - Temps d'entraînement : 142 ms
- Modèle rapide et simple:
 - > KNR2
 - Train R2:0.74, Test R2:0.54
 - Temps d'entraînement : 8 ms

Résumé

Variables paramètres le plus importantes:

- > Taille du bâtiment : PropertyGFABuilding(s), ParkingFrac
- Usage du bâtiment: PrimaryPropertyType / nLargestPropertyUseType

Pistes d'Améliorations:

- Meilleur Catégorisation d'usage de bâtiment
 - essayer d'éviter les groupes avec peu réprésentants
 - envisager d'écarter des cas particulières (e.g. Data Center)
 - identifier des groupes d'observations similaires (e.g. clustering)
- Considérer la Non-linéarité (e.g.Polynomial Features)
- Selection des Features
 - Différentes features ou collection de plus de données (e.g. panneaux solaires)
 - Analyser leur importance (e.g. SequentialFeatureSelector)
- Affiner les hyperparamètres du modèle / tester autres modèles