

Transformer for time series forecasting

2021 여름 IAB 이예준

Background

Time series forecasting has been...

ARIMA

- Linear assumption
- Limited scalability

RNN (LSTM)

- Difficult to train
- Struggles to capture long-term dependencies

Transformer

Vaswani et al., "Attention is all you need", NeurIPS, 2017.

NLP

Vision

Arguably the hottest algorithm in DL

Transformer in time series forecasting

- ➤ Li et al., "Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting", NeurIPS, 2019.
- ➤ Wu et al., "Deep transformer models for time series forecasting: The influenza prevalence case.", ICML, 2020.
- ➤ Zhou et al., "Informer: Beyond efficient transformer for long sequence time-series forecasting.", Proceedings of AAAI, 2021.

Overview

Model structure

max *L*

Short-term vs Long-term

Goal

- 1. Build a pipeline.
- 2. Improve the model by tweaking the model structure and hyperparameters.

Coin dataset

- Data provided per minute
 - 'open' as a time series
- seq length = $1500 \rightarrow$ source length = 300, target length = 10

Synthetic dataset

Li et al., "Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting", NeurIPS, 2019.

source length = 96, target length = 24

Results

Coin dataset – training curve

- Loss: Negative log likelihood
- Metric: Mean Absolute Error(MAE)

Val loss is not falling 😥

Coin dataset - summary

*Only use 1/10 for long-term forecasting
**Value for long-term forecasting

	Train (608K)	Val (152K)	Test (95K*)
Loss (NLL)	-4.68	-5.12	-5.13 (-5.11**)
MAE	0.0043	0.0027	0.0025 (0.0026**)

- Metrics above and plots do show some signs of underfitting.
- Nonetheless, more training leads to significant overfitting in which model simply copies the previous value.
- Then long-term forecasting turns into disaster where model simply repeats the upward/downward direction.
- Hyperparameter optimization was not done enough due to limited resources.
- Lack of patterns for model to learn

Synthetic dataset – training curve

• Loss: Negative log likelihood

Metric: MAE

Seems good 🐴

Short-term Long-term ground truth ground truth forecast forecast 673 673 - ground truth ground truth forecast forecast 561 561 ground truth ground truth forecast forecast

prediction quantile = 50

Synthetic dataset - summary

*Value for long-term forecasting

	Train (4.5K)	Val (0.5K)	Test (1K)
Loss (NLL)	1.16	0.88	0.88 (1.13*)
MAE	1.59	1.10	1.09 (1.39*)

- Overall good performance.
- Performance drops in long-term forecasting (would be surprising if it didn't), but not significantly.

Embedding before attention

- Information of a single pixel or time series value is very limited.
- Convolution is a common choice in vision.
- > Xu et al., "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML, 2015.
- ➤ Ascoli et al., "ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases", ICML, 2021
- Causal convolution is a common choice in time series.
- ➤ Li et al., "Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting", NeurIPS, 2019.
- > Zhou et al., "Informer: Beyond efficient transformer for long sequence time-series forecasting", Proceedings of AAAI, 2021.

Wavenet

• Oord et al., "Wavenet: A generative model for raw audio", 2016.

Wavenet

Figure 2: Visualization of a stack of causal convolutional layers.

Figure 3: Visualization of a stack of *dilated* causal convolutional layers.

"enable networks to have very large receptive fields" without expense of complexity.

Wavenet for time series

Motivation:

Audio could be seen as an extreme of time series, at least in an approach taken by wavenet.

Related work:

Couldn't find in top-tier conferences, but few works exist on the Internet.

Use synthetic dataset.

Ablation study on wavenet as time series embedding

Improves long-term performance(24%) while reducing the training time(7%).

Code

 https://github.com/Wittgensteinian/Transformer_for_t ime_series

Thank You!