Cognoms	Nom	DNI
Examen Parcial AP3	Duració: 2.5 hores	30/10/2019
 L'enunciat té 5 fulls, 10 cares i Poseu el vostre nom complet i i Contesteu tots els problemes er A no ser que es digui el contrat 	número de DNI a cada full. n el propi full de l'enunciat i a l'	espai reservat.
Problema 1		(4 punts)
Una <i>variable booleana</i> només pot prés una variable booleana o la seva Una <i>CNF</i> és una conjunció de clà donada una CNF <i>F</i> , determinar si de valors a les variables booleane. Navegant per Internet us trobeu s'afirma que resol CNF-SAT en te (a) (1 pt.) Hi ha cap motiu que fac ma amb el programa? Si es qu	negació. Una <i>clàusula</i> és una àusules. El problema de CNI és satisfactible, és a dir, si exi es de <i>F</i> que faci <i>F</i> certa. una pàgina web on es dón emps polinòmic.	disjunció de literals. F-SAT consisteix en, steix una assignació a un programa que
(b) (0.75 pts.) El programa reprebles booleanes es representer nombres enters diferents de 0 clàusules es representen com ci les CNF com conjunts de clà typedef int variable;	n amb nombres enters position. La negació de la variable bo conjunts de literals (la disjunc	us, i els literals amb poleana x és $-x$. Les ió s'entén implícita),

```
typedef int variable;

typedef int literal;

typedef set < literal > clause;

typedef set < clause > cnf;
```

Així doncs, per exemple es representen:

```
• les variables booleanes x_1, x_2 i x_3 amb 1, 2 i 3 respectivament;
   • els literals x_1, \neg x_2 i x_3 amb 1, -2 i 3 respectivament;
   • les clàusules x_1 \vee \neg x_2 \vee x_3 i \neg x_1 \vee \neg x_3 amb \{1, -2, 3\} i \{-1, -3\} respec-
     tivament;
   • la CNF (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) amb \{\{1, -2, 3\}, \{-1, -3\}\}.
La funció principal del programa és la següent funció sat:
bool propagate (clause & C, literal 1) {
  return C.erase(-l); // Retorna true quan -l era a C i per tant s'ha esborrat
}
bool sat (cnf& F) {
  set < literal > propagated;
  stack < literal > pending;
  for (const clause & C : F) {
    if
             (C.size() == 0) return false;
    else if (C. size () == 1) {
       literal l = *(C.begin());
       if (propagated.find(l) == propagated.end()) {
         propagated . insert (1);
        pending.push(l);
  } } }
  while (not pending.empty()) {
     literal l = pending.top();
    pending.pop();
    cnf nF;
    for (const clause & C : F) {
       clause nC = C;
       if (propagate(nC, l)) {
                  (nC.size() == 0) return false;
         else if (nC.size() == 1) {
            literal l = *(nC.begin());
           if (propagated.find(l) == propagated.end()) {
             propagated . insert (1);
             pending.push(l);
       } } }
      nF. insert (nC);
    F = nF;
  }
  return true;
```

).75 pts.) És e	el cost de la fur	nció <i>sat</i> polir	nòmic? Justif	iqueu la vost	tra resposta.

Pista: podeı	ı usar l'apartat	(b)				
(0. 55	(T)		C)		T. (. 1
	i <i>sat</i> (F) retorna ? Justifiqueu la			leshores qu	ie F es una f	ormula
•						

Problema 2

(4 punts)

Dos grafs (no dirigits) $G_1=(V_1,E_1)$ i $G_2=(V_2,E_2)$ es diuen *isomorfs* si existeix un *isomorfisme* entre ells, això és, una bijecció $\rho:V_1\to V_2$ tal que $\{u,v\}\in E_1$ si i només si $\{\rho(u),\rho(v)\}\in E_2$.

(a) (0.5 pts.) Demostreu que, si hi ha un isomorfisme $\rho: V_1 \to V_2$ entre $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$, aleshores per tot $u \in V_1$ es té que grau $(u) = \operatorname{grau}(\rho(u))$.

Recordeu que el grau d'un vèrtex en un graf és el nombre d'arestes que hi incideixen.

(b) (0.5 pts.) Doneu un isomorfisme $\rho:V_1\to V_2$ que certifiqui que els grafs G_1 i G_2 a continuació són isomorfs:

 $\rho(0) =$ $\rho(1) =$ $\rho(2) =$ $\rho(3) =$

$$\rho(4) =$$
 $\rho(5) =$
 $\rho(6) =$
 $\rho(7) =$

Pista: podeu usar l'apartat anterior

(c) (2 pts.) Completeu el codi següent per decidir si dos grafs donats són isomorfs. Noteu que els grafs s'implementen amb matrius d'adjacència: si G és un graf, el booleà G[x][y] és cert quan x i y són adjacents a G, i val el mateix que G[y][x]. **typedef** *vector* < *vector* < **bool** >> *Graph*; **bool** *compatible* (**const** *Graph*& *G*1, **int** *x*1, **const** *Graph*& *G*2, *vector*<**int**>& *p*) { for (int y1 = 0; $y1 \le x1$; ++y1) if () return false; return true; **bool** rec(int x1, const Graph& G1, const Graph& G2, vector<int>& p, vector<bool>& used) { if (x1 == G1.size()) return for (int x2 = 0; x2 < G2.size (); ++x2) { if () { p[x1] = x2;if (compatible(G1, x1, G2, p)) and rec(x1+1, G1, G2, p, used)) return } } return **bool** *iso* (int *n*1, int *m*1, const *Graph*& *G*1, int *n*2, int *m*2, const *Graph*& *G*2) { if $(n1 \neq n2 \text{ or } m1 \neq m2) \text{ return}$ vector < int > p(n1);vector < bool > used(n1, false);**return** *rec* (0, *G*1, *G*2, *p*, *used*); void read(int& n, int& m, Graph& G) { $cin \gg n \gg m$; G = Graph(n, vector < bool > (n, false));for (int k = 0; k < m; ++k) { int x, y; $cin \gg x \gg y$; G[x][y] = G[y][x] =true; } } int main() { **int** *n*1, *m*1, *n*2, *m*2; Graph G1, G2; read(n1, m1, G1); read(n2, m2, G2);if (iso(n1, m1, G1, n2, m2, G2)) cout \ll "true" \ll endl; else $cout \ll "false" \ll endl;$ }

pt.) Expliqueu quins canv	is faríeu al codi de l'apar	tat (c) per fer-lo més efic
nt usant l'apartat (a).		

Aquesta cara estaria en blanc intencionadament si no fos per aquesta nota.

Cognoms	Nom	DNI	
Problema 3		(2 pun	ts)
Donat un conjunt U i un conjunt $C = \{S \mid S_i \subseteq U \text{ per tot } 1 \leq i \leq n\}$, un <i>empaquetam</i> per tot $S, S' \in P$ es compleix $S \cap S' = \emptyset$.			
Per exemple, si $U = \{1, 2, 3, 4, 5, 6\}$ i $C = \{\{1, 2\}, \{3, 4\}, \{6\}\}$ és un empaquetament (perquè $\{1, 2\} \cap \{2, 3\} = \{2\} \neq \emptyset$).			
El problema de EMPAQUETAMENT con junt <i>C</i> de subconjunts de <i>U</i> i un natural <i>k</i> , <i>P</i> de <i>C</i> amb almenys <i>k</i> elements, és a dir,	determinar si existe	,	
<i>Nota:</i> aquí $ P $ representa el nombre d'eler ris per a codificar P .	nents de <i>P,</i> no el no	ombre de bits neces	sa-
(a) (0.5 pt.) Demostreu que EMPAQUET	AMENT pertany a	la classe NP.	

(b) (1 pt.) Donat un graf G = (V, E) i un natural k, el problema de **INDEPEN- DENT** consisteix en determinar si existeix un subconjunt $S \subseteq V$ d'almenys k vèrtexs (és a dir, $|S| \ge k$) que sigui *independent*: per tot $u, v \in S$, els vèrtexs u i v **no** són adjacents, o sigui, $\{u, v\} \not\in E$.

És ben sabut que INDEPENDENT és un problema NP-complet.

Doneu una reducció polinòmica de **INDEPENDENT** a **EMPAQUETAMENT** i demostreu que ho és.

