Тема III. Квадратичные формы

§ 2. Критерий Сильвестра

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Положительно и отрицательно определенные формы

Определение

Квадратичная форма над \mathbb{R} , которая положительна при любом ненулевом наборе значений переменных, называется *положительно определенной*. Квадратичная форма над \mathbb{R} , которая отрицательна при любом ненулевом наборе значений переменных, называется *отрицательно определенной*.

Из закона инерции следует, что форма $q(x_1,x_2,\dots,x_n)$ положительно определена, если и только если она приводится к каноническому виду

$$\alpha_1 y_1^2 + \alpha_2 y_2^2 + \dots + \alpha_n y_n^2,$$
 (*)

где $\alpha_1,\alpha_2,\ldots,\alpha_n>0$. Аналогично, форма $q(x_1,x_2,\ldots,x_n)$ отрицательно определена тогда и только тогда, когда она приводится к каноническому виду (*) с $\alpha_1,\alpha_2,\ldots,\alpha_n<0$. Поэтому положительную/отрицательную определенность можно распознать, приведя форму к каноническому виду.

Однако иногда удобны условия положительной/отрицательной определенности, выраженные в терминах матрицы исходной формы $q(x_1, x_2, \ldots, x_n)$.

Угловые миноры и унитреугольные матрицы

Мы выведем критерий положительной определенности формы из одного полезного разложения квадратных матриц над произвольными полями. Нам понадобятся два новых определения.

Определение

Верхнетреугольная (нижнетреугольная) матрица называется *верхней* (нижней) унитреугольной, если элементы ее главной диагонали равны 1.

Типичная верхняя унитреугольная матрица:
$$\begin{pmatrix} 1 & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & 1 & a_{23} & \dots & a_{2n} \\ 0 & 0 & 1 & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

Отметим, что определитель любой унитреугольной матрицы равен 1.

Определение

Миноры $n \times n$ -матрицы, расположенные в ее первых k строках и первых k столбцах $(k=1,2,\ldots,n)$ называются *угловыми минорами*.

k-й угловой минор обозначим Δ_k . Если $A=(a_{ij})$, то $\Delta_1=a_{11}$ и $\Delta_n=|A|$.

LDU-разложение

Teopeмa (LDU-разложение, Тадеуш Банахевич, 1938)

Квадратная матрица $A=(a_{ij})$ над произвольным полем, все угловые миноры которой отличны от 0, однозначно представима в виде A=LDU, где матрица L нижняя унитреугольная, матрица D диагональная, а матрица U верхняя унитреугольная.

Доказательство. Обозначим через A_k матрицу на пересечении первых k строк и первых k столбцов матрицы A, т.е. ту матрицу, определителем которой служит угловой минор Δ_k . Индукцией по k докажем, что она однозначно представима в виде $A_k = L_k D_k U_k$, где L_k – нижняя унитреугольная, D_k – диагональная, а U_k – верхняя унитреугольная $k \times k$ -матрицы. При k, равном размеру A, получим утверждение теоремы.

База индукции. При k=1 имеем $A_1=(a_{11})$, и единственно возможное LDU-разложение для A_1 есть $(a_{11})=(1)\cdot(a_{11})\cdot(1)$.

Шаг индукции. Допустим, что доказываемое утверждение верно для матрицы A_k , и проверим, что тогда оно верно и для матрицы A_{k+1} .

Матрицу
$$A_{k+1}$$
 запишем в виде $A_{k+1} = \begin{pmatrix} A_k & \mathbf{v}^T \\ \mathbf{u} & a_{k+1\,k+1} \end{pmatrix}$, где $\mathbf{u} = (a_{k+1\,1}, \dots, a_{k\,k+1})$, а $\mathbf{v} = (a_{1\,k+1}, \dots, a_{k\,k+1})$.

LDU-разложение (2)

Будем искать представление $A_{k+1}=L_{k+1}D_{k+1}U_{k+1}$, где L_{k+1} – нижняя унитреугольная, D_{k+1} – диагональная, а U_{k+1} – верхняя унитреугольная $(k+1)\times(k+1)$ -матрицы. Разобьём каждый множитель на четыре блока:

ullet $L_{k+1} = egin{pmatrix} L & O_k^T \ \mathbf{x} & 1 \end{pmatrix}$, где L – нижняя унитреугольная k imes k-матрица,

 \mathbf{x} – строка длины k, O_k^T – нулевой столбец высоты k;

ullet $U_{k+1} = egin{pmatrix} U & \mathbf{y}^T \ O_k & 1 \end{pmatrix}$, где U — верхняя унитреугольная k imes k-матрица,

 \mathbf{y}^T – столбец высоты k, O_k – нулевая строка длины k;

ullet $D_{k+1} = egin{pmatrix} D & O_k^T \ O_k & d_{k+1} \end{pmatrix}$, где D — диагональная k imes k-матрица.

Перемножая блочные матрицы, получаем

$$\begin{pmatrix} A_k & \mathbf{v}^T \\ \mathbf{u} & a_{k+1\,k+1} \end{pmatrix} = \begin{pmatrix} L & O_k^T \\ \mathbf{x} & 1 \end{pmatrix} \begin{pmatrix} D & O_k^T \\ O_k & d_{k+1} \end{pmatrix} \begin{pmatrix} U & \mathbf{y}^T \\ O_k & 1 \end{pmatrix} = \begin{pmatrix} LDU & LD\mathbf{y}^T \\ \mathbf{x}DU & \mathbf{x}D\mathbf{y}^T + d_{k+1} \end{pmatrix}.$$

Приравнивая северо-западные блоки, заключаем, что $A_k=LDU$. По предположению индукции матрица A_k однозначно представима как $A_k=L_kD_kU_k$, где L_k и U_k – нижняя и верхняя унитреугольные, а D_k – диагональная $k\times k$ -матрицы. Отсюда $L=L_k$, $U=U_k$ и $D=D_k$.

LDU-разложение (3)

Итак,

$$\begin{pmatrix} A_k & \mathbf{v}^T \\ \mathbf{u} & a_{k+1\,k+1} \end{pmatrix} = \begin{pmatrix} L_k D_k U_k & L_k D_k \mathbf{y}^T \\ \mathbf{x} D_k U_k & \mathbf{x} D_k \mathbf{y}^T + d_{k+1} \end{pmatrix}.$$

Приравняв северо-восточные блоки, получим равенство $L_kD_k\mathbf{y}^T=\mathbf{v}^T$, которое дает систему линейных уравнений для координат столбца \mathbf{y}^T . Определитель этой системы $\det L_kD_k=\det L_kD_k\det U_k$ (так как $\det U_k=1$) $=\det L_kD_kU_k=\det A_k=\Delta_k\neq 0$ по условию теоремы. Значит, система крамеровская, и столбец \mathbf{y}^T существует и единствен. Аналогично, из равенства $\mathbf{x}D_kU_k=\mathbf{u}$ однозначно определяется строка \mathbf{x} . Наконец, зная \mathbf{x} и \mathbf{y}^T , из равенства $\mathbf{x}D_k\mathbf{y}^T+d_{k+1}=a_{k+1}$ однозначно определяем элемент d_{k+1} . Итак, $(k+1)\times(k+1)$ -матрицы L_{k+1} , D_{k+1} и U_{k+1} , такие, что L_{k+1} — нижняя унитреугольная, D_{k+1} — диагональная, а U_{k+1} — верхняя унитреугольная и $A_{k+1}=L_{k+1}D_{k+1}U_{k+1}$, существуют и однозначно определяются по матрице A_{k+1} .

LDU-разложение симметрической матрицы

Следствие (LDU-разложение симметрической матрицы)

Если A – симметрическая матрица, все угловые миноры которой отличны от 0, и A=LDU – ее LDU-разложение, то $L=U^T$.

Доказательство. Транспонируя обе части равенства A=LDU, получим $A=U^TDL^T$ (поскольку $A=A^T$ и $D=D^T$). Матрица U^T нижняя унитреугольная, а матрица L^T верхняя унитреугольная, т.е. равенство $A=U^TDL^T$ есть LDU-разложение матрицы A. Но LDU-разложение единственно, откуда $L=U^T$.

Комментарии. Доказательство теоремы о LDU-разложении конструктивно и позволяет строить такие разложения. В действительности, можно проверить, что для симметрической матрицы условие, что все угловые миноры отличны от 0, означает в точности то, что при приведении квадратичной формы с этой матрицей к каноническому виду методом Лагранжа всегда встретится только первый случай (и потому приведение сводится к последовательному выделению полных квадратов).

Метод Лагранжа в этой ситуации дает LDU-разложение. В примере на метод Лагранжа из прошлой лекции встретилась именно такая ситуация.

LDU-разложение симметрической матрицы (2)

Мы привели форму

$$f = 4x_1^2 + 2x_2^2 + x_3^2 + x_4^2 - 4x_1x_2 - 4x_1x_3 + 4x_1x_4 + 4x_2x_3 - 4x_3x_4.$$

к каноническому виду $4y_1^2+y_2^2-y_3^2+3y_4^2$, и результирующая замена выглядела так:

$$\begin{cases} y_1 = x_1 - \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{1}{2}x_4 \\ y_2 = x_2 + x_3 + x_4 \\ y_3 = x_3 + 2x_4 \\ y_4 = x_4 \end{cases}$$

Видно, что матрица этой замены верхняя унитреугольная и по существу мы построили LDU-разложение матрицы формы f:

$$\begin{pmatrix} 4 & -2 & -2 & 2 \\ -2 & 2 & 2 & 0 \\ -2 & 2 & 1 & -2 \\ 2 & 0 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 1 & 0 \\ \frac{1}{2} & 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Критерий Сильвестра

Теорема (Сильвестр, 1852)

Квадратичная форма над $\mathbb R$ положительно определена тогда и только тогда, когда все угловые миноры ее матрицы положительны.

Доказательство. Необходимость. Пусть форма $q(x_1,x_2,\dots,x_n)=X^TAX$ положительно определена. Тогда из нее невырожденной линейной заменой переменных можно получить форму

$$\alpha_1 y_1^2 + \alpha_2 y_2^2 + \dots + \alpha_n y_n^2, \tag{*}$$

где $\alpha_1,\alpha_2,\dots,\alpha_n>0$. Матрица формы (*) диагональна и ее определитель равен $\alpha_1\alpha_2\dots\alpha_n>0$. На прошлой лекции мы отмечали, что если форма g получена из формы q невырожденной линейной заменой переменных, то определители матриц форм q и g либо оба положительны, либо оба отрицательны, либо оба равны 0. В нашем случае определитель матрицы формы (*) положителен, откуда и определитель $|A|=\Delta_n$ положителен.

Осталось заметить, что если форма $q(x_1,x_2,\dots,x_n)$ положительно определена, то такова и форма от k переменных $q(x_1,x_2,\dots,x_k,\underbrace{0,\dots,0})$.

Матрица этой формы есть A_k , откуда $|A_k| = \Delta_k > 0$.

Критерий Сильвестра (2)

<u>Достаточность.</u> Предположим, что $\Delta_1, \Delta_2, \dots, \Delta_n > 0$. По следствию о LDU-разложении симметрической матрицы $A = U^T D U$ для некоторых

э LDU-разложении симметрическо...... $D = \begin{pmatrix} \delta_1 & 0 & \dots & 0 \\ 0 & \delta_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \delta_n \end{pmatrix}.$

Тогда $q = X^TAX = X^TU^TDUX = (UX)^TDUX = Y^TDY$, где Y := UX. Итак, замена Y = UX приводит форму $q = X^T AX$ к каноническому виду

$$\delta_1 y_1^2 + \delta_2 y_2^2 + \dots + \delta_n y_n^2.$$

Поскольку $A_k = U_k^T D_k U_k$ и определители унитреугольных матриц равны 1, имеем $\Delta_k = |A_k| = |D_k| = \delta_1 \delta_2 \cdots \delta_k$.

Отсюда $\delta_1=\Delta_1>0$ и $\delta_i=rac{\Delta_i}{\Delta_{i-1}}>0$ для всех $i=2,\dots,n.$ Поэтому форма q положительно определена.

Отрицательно определенные формы

Понятно, что форма q отрицательно определена тогда и только тогда, когда форма -q положительно определена. Поэтому из доказательства критерия Сильвестра немедленно следует критерий отрицательной определенности:

Следствие

Квадратичная форма над $\mathbb R$ отрицательно определена, если и только если знаки угловых миноров ее матрицы чередуются, причем $\Delta_1 < 0$.

Упражнение. Докажите критерий Якоби: квадратичная форма над \mathbb{R} положительно определена, если и только если у характеристического многочлена ее матрицы все коэффициенты ненулевые и их знаки чередуются.