Morita-equivalences for MV-algebras

Anna Carla Russo*

University of Salerno - University Paris Diderot

ManyVal 2015 11-13 December 2015

*Joint work with Olivia Caramello (University Paris Diderot)

Topoi

A topos ${\mathcal E}$ is a universe which generalizes the classic universe of sets.

- \mathcal{E} has all finite limits (= is finitely complete)
- \bullet \mathcal{E} has all finite co-limits (= is finitely co-complete)
- ullet ${\cal E}$ has exponentiation
- ullet in ${\mathcal E}$ we can classify subobjects (${\mathcal E}$ has a subobject classifier)

Examples:

- Category of sets (\cong category of sheaves over $\{*\}$)
- Categories of sheaves on a topological spaces
- Grothendieck topoi: categories of sheaves on a site

Models in topoi

In a Grothendieck topos we can consider models of every first-order theory. Given Σ a first-order signature, a Σ -structure in a topos $\mathcal E$ is defined by the following data

- ullet sorts o objects in ${\mathcal E}$
- ullet function symbols o arrows in ${\mathcal E}$
- ullet relation symbols o subobjects in ${\mathcal E}$

A Σ -structure M is a *model* of a theory $\mathbb T$ over the signature Σ if every axiom of $\mathbb T$ is valid in M.

Problem

Let $\mathbb T$ and $\mathbb S$ be two geometric theories such that

$$\mathbb{T}\operatorname{\mathsf{-mod}}(\mathsf{Set})\cong\mathbb{S}\operatorname{\mathsf{-mod}}(\mathsf{Set})$$

Question: Is it true that

$$\mathbb{T}\operatorname{\mathsf{-mod}}(\mathcal{E})\cong\mathbb{S}\operatorname{\mathsf{-mod}}(\mathcal{E})$$

naturally in \mathcal{E} ?

If this is true we say that \mathbb{T} and \mathbb{S} are Morita-equivalent (equivalently, the two theories have the same classifying topos).

The 'bridge' technique

 \mathbb{T} -characterization of I

 \mathbb{S} -characterization of I

If \mathbb{T} and \mathbb{S} are Morita-equivalent we can transfer properties and results from one theory to the other by using topos-theoretic invariants defined over the same classifying topos.

Morita-equivalences for MV-algebras

- Lift to Morita-equivalences of two well-known categorical equivalences between classes of MV-algebras and classes of lattice-ordered abelian groups, namely
 - Mundici's equivalence: category of MV-algebras \simeq category of ℓ -groups with strong unit
 - Di Nola-Lettieri's equivalence:
 category of perfect MV-algebras ≃ category of ℓ-groups
- Application of the method 'toposes as bridges' to these Morita-equivalences
- Construction (by means of the investigation of certain classifying toposes) of a new class of (Morita-)equivalences containing in particular the one lifting Di Nola-Lettieri's equivalence

Results in connection with Mundici's equivalence

- The theory of ℓ-groups with strong unit is of presheaf type and in fact Morita-equivalent to an algebraic theory (namely that of MV-algebras)
- Bijective correspondence between the geometric theory of MV-algebras and the geometric theory of ℓ -u groups (in spite of the fact that they are not bi-interpretable)
- ullet Logical characterization of the finitely presentable $\ell ext{-u}$ groups
- Form of compactness and completeness for the geometric theory of ℓ-u groups (in spite of the infinitary nature of this theory);
- Sheaf-theoretic version of Mundici's equivalence

Results in connection with Di Nola-Lettieri's equivalence

- The theory of perfect MV-algebras is of presheaf type and in fact Morita-equivalent to an algebraic theory (namely that of ℓ-groups)
- Three levels of partial bi-interpretability for
 - irreducible formulas
 - geometric sentences
 - imaginaries
- the finitely presentable models of the theory of perfect MV-algebras are finitely presentable as objects in the variety generated by Chang's algebra
- Representation result: every non-trivial finitely generated MV-algebra in the variety generated by Chang's MV-algebra is a finite direct product of perfect MV-algebras

Equivalences for local MV-algebras in varieties

- The theory of local MV-alebras is NOT of presheaf type
- The theory of local MV-algebras in an arbitrary proper subvariety of MV-algebras IS of presheaf type
- The theory of local MV-algebras in an arbitrary proper subvariety of MV-algebras is Morita-equivalent to a theory extending that of lattice-ordered abelian groups
- the finitely presentable models of the theory of local MV-algebras in an arbitrary proper subvariety are finitely presentable also with respect to the variety
- Representation result: every finitely generated MV-algebra in an abitrary proper subvariety of MV-algebras is a finite direct product of local MV-algebras

Categorical equivalences

- Mundici's equivalence: $\Gamma : \mathbb{L}_u \text{-mod}(\mathbf{Set}) \cong \mathbb{MV} \text{-mod}(\mathbf{Set})$
- ullet Di Nola-Lettieri's equivalence: $\Delta: \mathbb{P} ext{-mod}(\mathbf{Set}) \cong \mathbb{L} ext{-mod}(\mathbf{Set})$

Lifts

- $\Gamma_{\mathcal{E}}: \mathbb{L}_u\text{-mod}(\mathcal{E}) \cong \mathbb{MV}\text{-mod}(\mathcal{E})$
- ullet $\Delta_{\mathcal{E}}: \mathbb{P} ext{-mod}(\mathcal{E}) \cong \mathbb{L} ext{-mod}(\mathcal{E})$

for every Grothendieck topos \mathcal{E} , naturally in \mathcal{E}

Morita-equivalences

- \mathbb{MV} is Morita-equivalent to \mathbb{L}_u
- ullet ${\mathbb P}$ is Morita-equivalent to ${\mathbb L}$

Bijective correspondence between quotients

Theorem

Every quotient of the theory \mathbb{MV} is Morita-equivalent to a quotient of the theory \mathbb{L}_u , and conversely. These Morita-equivalences are the restrictions of the one between \mathbb{MV} and \mathbb{L}_u .

This result is non-trivial since the two theories are **not** bi-interpretable.

Partial bi-interpretations

irreducible objects subterminal objects coherent objects

 $\begin{array}{c} \mathbb{P}\text{-irreducible formulas} \\ \text{geometric sentences over } \Sigma_{\mathbb{P}} \\ \text{imaginaries for } \mathbb{P} \end{array}$

These bi-interpretations are interesting since we do **not** have bi-interpretability at the level of the coherent syntactic categories of the two theories.

Representation result

Theorem

Every finitely generated non-trivial MV-algebra in Chang's variety is a direct product of a finite family of finitely generated perfect MV-algebras.

Proof. Recall that the theory \mathbb{P} is a quotient of the theory of Chang's variety obtained by adding the sequent

$$\top \vdash_{\times} (2x)^2 = 0 \lor (2x)^2 = 1$$

This sequent generates the topology J associated with \mathbb{P} . If \mathcal{A} is a finitely generated MV-algebra in Chang's variety and $\{a_1,\ldots,a_n\}$ is generating system of \mathcal{A} then the final algebras in the following diagram (which generates a J-covering cosieve) are perfect MV-algebras.

4 D > 4 D > 4 E > 4 E > 9 Q P

Representation result

From perfect to local MV-algebras

$$Perfect = Local \cap V(S_1^{\omega})$$

We proved that \mathbb{P} is a theory of presheaf type which is Morita-equivalent to the theory \mathbb{L} . It is natural to wonder if there is a theory axiomatizing

$$Local \cap V$$

which it is also of presheaf type and Morita-equivalent to a theory extending the theory \mathbb{L} .

From perfect to local MV-algebras

$$Perfect = Local \cap V(S_1^{\omega})$$

We proved that $\mathbb P$ is a theory of presheaf type which is Morita-equivalent to the theory $\mathbb L$. It is natural to wonder if there is a theory axiomatizing

Local
$$\cap$$
 V

which it is also of presheaf type and Morita-equivalent to a theory extending the theory \mathbb{L} .

Local \cap MV

Theorem

The geometric theory of local MV-algebras is not of presheaf type.

Local MV-algebras in a proper variety V

Komori's theorem

An arbitrary proper subvariety of MV-algebras is of the form

$$V = V(\lbrace S_i \rbrace_{i \in I}, \lbrace S_j^{\omega} \rbrace_{j \in J})$$

where $S_i = \Gamma(\mathbb{Z}, i)$ are simple MV-algebras, $S_j^{\omega} = \Gamma(\mathbb{Z} \times_{lex} \mathbb{Z}, (j, 0))$ are called Komori chains and I and J are finite subset of \mathbb{N} .

We set:

- n = 1.c.m.(I, J) (invariant w.r.t. the generators)
- \mathbb{T}_V : theory of the variety V
- $\mathbb{L}oc_V$: theory of local MV-algebra in V

First axiomatization for $\mathbb{L}oc_V$:

- ullet axioms of \mathbb{T}_V
- $\sigma_n : \top \vdash_{\times} ((n+1)x)^2 = 0 \lor ((n+1)x)^2 = 1$

We call J_1 the Grothendieck topology associated with this axiomatization.

MANYVAL15

The Grothendieck topology J_1

The covering are finite multicompositions of diagrams of this form.

Proposition

The Grothendieck topology J_1 is subcanonical.

Definition

A Grothendieck topology J on a category $\mathcal C$ is subcanonical if the arrows in a J-covering of an element $c \in \mathcal C$ form a limit diagrams with respect to the diagram consisting of all morphisms between them over c.

Cartesianization and finitely presentable models

Theorem

Every cartesian sequent that is provable in the theory $\mathbb{L}oc_V$ is also provable in the theory \mathbb{T}_V .

Proposition

The radical of every algebra $\mathcal A$ in the variety V is a defined by the following equation.

$$Rad(A) = \{x \in A \mid ((n+1)x)^2 = 0\}$$

By using this we can obtain the following result.

Proposition

Every finitely presentable model of $\mathbb{L}oc_V$ is finitely presentable in V.

Rigidity and theories of presheaf type

Definition

A Grothendieck topology J on a category C is rigid if every object $c \in C$ has a J-covering generated by J-irreducible objects.

Given a rigid topology J on a small category $\mathcal C$ we have an equivalence

$$\mathsf{Sh}(\mathcal{C},J)\cong [\mathcal{D}^{op},\mathsf{Set}]$$

where \mathcal{D} is the full subcategory of \mathcal{C} of the \emph{J} -irreducible objects.

Theorem (Caramello)

Let \mathbb{T}' be a quotient of a theory of presheaf type \mathbb{T} corresponding to a Grothendieck topology J on the category $f.p.\mathbb{T}$ -mod(\mathbf{Set}) op under the Duality Theorem for subtoposes. Suppose that \mathbb{T}' is itself of presheaf type. Then every finitely presentable \mathbb{T}' -model is finitely presentable also as a \mathbb{T} -model if and only if the topology J is rigid.

It follows that the theory $\mathbb{L}oc_V$ is of presheaf type if and only if the associated Grothendieck topology is rigid.

Local MV-algebras of finite rank

A local MV-algebra ${\cal A}$ is said to be of *finite rank* if there is an isomorphism

$$\phi_{\mathcal{A}}: \mathcal{A}/\mathsf{Rad}(\mathcal{A}) o \mathcal{S}_{\mathsf{m}}$$

and m is the rank of A. For every $d \in S_m$, $\phi_A^{-1}(d)$ is called radical class of A.

Theorem (Di Nola-Esposito-Gerla)

Every local MV-algebra in V has finite rank and its rank divides the rank of one of the generators of V.

Second axiomatization for $\mathbb{L}oc_V$:

- ullet axioms of \mathbb{T}_V
- $\rho_n : \top \vdash_{\mathsf{x}} \bigvee_{d=0}^n \mathsf{x} \in \mathit{Fin}_d$, where Fin_d is the formula describing $\phi^{-1}(d)$

Proposition

The following sequents are provable in \mathbb{T}_V .

$$x \in Fin_d \land y \in Fin_b \vdash_{x,y} x \oplus y \in Fin_{d \oplus b}$$

 $x \in Fin_d \vdash_x \neg x \in Fin_{n-d}$

Main result

Theorem

The theory $\mathbb{L}oc_V$ is of presheaf type.

Proof. We call J_2 the topology associated with the second axiomatization which is obtained by finite multicompositions of diagrams of this form

where \mathcal{A} is a finitely presentable algebra in V. If we choose at each step one of the generators of the algebra \mathcal{A} , the codomain algebras of the resulting diagram are local MV-algebras. Hence J_2 is rigid and $\mathbb{L}oc_V$ is of presheaf type.

Representation result

The two axiomatizations for $\mathbb{L}oc_V$ are equivalent whence $J_1 = J_2$. This implies that J_1 is rigid and therefore the following result.

Theorem

Every finitely generated MV-algebra in V is a finite product of local MV-algebras.

Representation theorem for algebras of finite ranks

Theorem (Di Nola-Esposito-Gerla)

Every local MV-algebra in V is of finite rank and its rank divides one of the ranks of the generators of V. Further, any local MV-algebra of finite rank is of the form

$$\Gamma(\mathbb{Z} \times_{lex} G, (k, g))$$

where G is an ℓ -group, $g \in G$ and k is the rank of the algebra.

Extension of the theory $\mathbb L$

Let $\mathbb{G}_{(I,J)}$ be the theory whose signature is the one of ℓ -groups to which we add an arbitrary constant and a 0-ary predicate R_k for each divisor k of the least common multiple of the numbers in I and J. The axioms of this theory are

- ullet axioms of ${\mathbb L}$
- $(\top \vdash R_1)$;
- $(R_k \vdash R_{k'})$, for each k' which divides k;
- $(R_k \wedge R_{k'} \vdash R_{l.c.m.(k,k')})$, for any k, k';
- $(R_k \vdash_g g = 0)$, for every $k \in \delta(I) \setminus \delta(J)$;
- $(R_k \vdash \bot)$, for any $k \notin \delta(I) \cup \delta(J)$.

where we indicate with $\delta(I)$ and $\delta(J)$ respectively the sets of divisors of the numbers in I and J.

The theory $\mathbb{G}_{(I,J)}$ is of presheaf type and the models of $\mathbb{G}_{(I,J)}$ in **Set** can be identified with the triples (G,g,k), where G is an ℓ -group, $g\in G$ and $k\in \delta(I)\cup \delta(J)$.

New Morita-equivalences

Let $V = V(\{S_i\}_{i \in I}, \{S_j^{\omega}\}_{j \in J})$ be an arbitrary proper subvariety of MV-algebras.

Theorem

The categories of set-based models of the theories $\mathbb{L}oc_V$ and $\mathbb{G}_{(I,J)}$ are equivalent.

 $\bullet \ \Lambda_{(I,J)}: \mathbb{L}oc_{V}\text{-}\mathrm{mod}(\mathbf{Set}) \to \mathbb{G}_{(I,J)}\text{-}\mathrm{mod}(\mathbf{Set})$

$$\Lambda_{(I,J)}(\mathcal{A}) := (G,g,k)$$

for every $\mathcal{A} \simeq \Gamma(\mathbb{Z} \times_{\mathit{lex}} G, (k, g))$ local MV-algebra $\mathbb{L}\mathit{oc}_V$ -mod(Set)

 $\bullet \ \mathit{M}_{(I,J)}: \mathbb{G}_{(I,J)}\text{-}\mathsf{mod}(\mathsf{Set}) \to \mathbb{L}\mathit{oc}_V\text{-}\mathsf{mod}(\mathsf{Set})$

$$M_{(I,J)}(G,g,k) := \Gamma(\mathbb{Z} \times_{lex} G,(k,g))$$

for every set-based model of $\mathbb{G}_{(I,J)}$

References

O. Caramello and A. C. Russo,

The Morita-equivalence between MV-algebras and abelian ℓ -groups with strong unit

Journal of Algebra, 422, 752-787 (2015).

O. Caramello and A. C. Russo,

A topos-theoretic perspective on the equivalence between abelian $\ell\text{-groups}$ and perfect MV-algebras

arXiv:math.CT/1409.4730 (2014).