2018年度資源管理研修(初級)

プログラム・概要

https://github.com/ichimomo/Shigen-kensyu-2018

$13:30 \sim 15:10$

水産資源データの解析

中央水産研究所資源研究センター 資源管理グループ 市野川 桃子

水産資源データの解析:流れ

- 1. 資源管理の目的と科学者の役割
- 2. 水産資源解析フローチャート
- 3. Rと水産資源解析
 - Rの概要/ 実例

1.資源管理の目的と科学者の役割

資源管理の目的:水産資源の持続的利用

科学者の役割

データや経験にもとづいた適切な科学的アドバイス

たとえば...

資源量を推定して 現状を説明する 最近、魚が獲れなくなっているみたいなんです。 今、海の中にどのくらい魚がいるか 分かりますか?

● 今までに獲った魚の量 (漁獲量)

では、資源量を推定してみましょう。

獲った魚の大きさ を教えてください。

資源の利用者

研究者 (水産研究・教育機構など)

10年前は10万トンの魚がいましたが、 今は2万トンまで減っています(資源量)。 毎年、資源の約40%を 漁獲していました(漁獲の強さ)。

FRAニュース vol. 56. 「水産資源の評価と管理目標」より

科学者の役割

データや経験にもとづいた適切な科学的アドバイス

たとえば...

目標に応じた管理計画を提案する

FRAニュース vol. 56. 「水産資源の評価と管理目標」より

科学者の役割

データや経験にもとづいた適切な科学的アドバイス

たとえば...

- ・成熟年齢を考慮すると何歳くらいから獲りはじめるのがよいか? (網目の大きさ)
- 魚の季節回遊や産卵時期を考えると、漁期はいつが良い?
- 保護区を設定する場合、どこに置くのが効率的か?
- 資源は減っている?増えている?
- 減っているなら努力量を削減したほうが良いか?
- 毎年のTACをどのくらいにしたらよいか?

1. 資源管理の目的と科学者の役割

水産政策の改革の中との関連

http://www.jfa.maff.go.jp/j/kikaku/kaikaku/attach/pdf/suisankaikaku-11.pdf

1. 資源管理の目的と科学者の役割

国際的にみて遜色のない科学的・効果的な評価方法・管理

目標管理基準値の設定

- 評価方法:リスク・不確実性の評価
 - 推定値の信頼区間の計算(点でなく「区間」で見る)
 - 将来予測における「確率的な」加入変動を考慮し、「リスク」を推定 (不確実性が高い場合には「リスク」をできるだけ回避する)

- 国際基準に沿った管理目標・管理ルールの設定
 - 国連海洋法条約・持続可能な開発目標(SDGs)→ MSY
- L. 資源管理の目的と科学者の役割

ビッグデータの活用

資源評価対象魚種は有用資源全体をカバー

- 巨大なデータの整理・利活用の知識
 - データベースの利用、専門ソフトウェアによる統計解析
 - 機械学習など新たな解析手法の導入

- データや知見が不十分な条件下での資源評価
- 1. 資源管理の目的と科学者の役割

科学者の役割は ますます大きく、複雑・高度に(複合科学)

社会・経済 水産・生物 統計・数理 資源

一人が全部を知る必要はない

- それぞれの分野がどのよう な考え方をもとにしている か?
- わからないときに誰に聞け ばいいのか?
- 誰がどの分野が得意か?

を把握するのが大事

1. 資源管理の目的と科学者の役割

そうでないと...

社会· 経済

水産・ 生物

統計· 数理

資源

一人が全部を知る必要はない

- それぞれの分野がどのよう な考え方をもとにしている か?
- わからないときに誰に聞け ばいいのか?
- 誰がどの分野が得意か?

を把握するのが大事

1. 資源管理の目的と科学者の役割

- 自分が何を知りたいのか?
- そのためにはそのときにはどのよう な知識が必要か?
- 研修で解説されているのはどのあたりの内容か?

核となる技術は4つ

- 1. データの整理・可視化
- 2. 最尤法によるパラメータ推定
- 3. 時空間データの取り扱い
- 4. 確率的な動態シミュレーション

個体群動態モデルを用い た資源量推定

> 資源量指数の 把握

資源量指数の標準化

時空間モデリング

データの整理・可視化

市野川

- Rを使うと便利にできる
- 大規模データの整理
- for ループを使った複数枚のグラフ の自動描画
- ビッグデータの活用

生物学的特性の把握 (成長式・再生産関 係の推定)

効率的なデータの 整理・可視化

管理基準値の推定・選択

個体群動態モデルを用い た資源量推定

資源量指数の標準化

時空間モデリング

管理戦略評価 (MSE)

最小二乗法やAIC等を 用いたパラメータ推定

最尤法による パラメータ推定

生物学的特性の把握 (成長式・再生産関 係の推定)

岡村

(最尤法などを使った) パラメータ推定の概念

観察対象を直接観察できず、データだけが与 えられる

もとの形を想像するモデルを作る

じっさいのデータとモデルとの違いが最小(または「似ている度」 が最大)となるモデル・パラメー タを選ぶ

(最尤法などを使った) パラメータ推定の概念

単回帰・重回帰モデル 一般化線形(混合・加法)モデル 資源評価モデル・成長式・など

最小二乗法 (残差の2乗和 を最小にする) 最尤法 (尤度を 最大化する)

ベイズ推定

AICなどを最小化する(モデル選択)

データの取得モデル構造の決定

パラメータ推定・ モデル選択

2. 水産資源解析ン

単回帰分析でのパラメータ推定(最小二乗法)

データ Y=成長量 X=水温

最小二乗法でのパラメータ推定

2. 水産資源解析フローチャート

最小二乗法でのパラメータ推定

最尤法でのパラメータ推定

データ Y=成長量、X=水温

モデル

Yは期待値が a + b X である正規分布に従う

「似ている度(尤度)」が 最大になるようにa, bを決 める

データ&モデル&目的関数が何か? を意識することが大事

単回帰・重回帰モデル 一般化線形(混合・加法)モデル 資源評価モデル・成長式・など

最小二乗法 (残差の2乗和 を最小にする) 最尤法 (尤度を 最大化する)

ベイズ推定

AICなどを最小化する (モデル選択)

データの取得モデル構造の決定

パラメータ推定・ モデル選択

2. 水産資源解析ン

時空間データの可視化

西嶋

年ごとのCPUEの平均

資源の利用者

漁期や保護区は

いつ・どこに?

資源量指数の標準化

時空間モデリング

時空間データの 可視化

これらの図の作り方はこちら↓ (2015年度資源管理研修) http://cse.fra.affrc.go.jp/ichimomo/fish/kensyu2015/kensyu2015.html

時空間データの可視化

時空間モデリング

- VASTという最新手法があり、今の「国際水準」の最先端
- 西嶋さんのところでちょっと紹介

確率的なシミュレーション

- どう管理すればよいか?
- どのような目標を選ぶべきか?

資源状態の良し悪しを判断する基準=管理基準値

(目標をどう決めるべきかなどの議論の記録)

シミュレーションと管理基準値・管理方策

実際に資源量推定で用いるモデルは非常に複雑(年齢構造・加入のランダム変動)→漁獲量が最大になるBmsyはシミュレーションによって探索的に決定

本研修でカバーしていない範囲

個体群動態モデルを 使った資源量推定

- 概要(2017年度資源管理研修)
 - http://cse.fra.affrc.go.jp/ichimomo/fish/kensyu2017/ichinokawa2.pdf
- デルリー法(2017年度資源管理研修)
 - http://cse.fra.affrc.go.jp/ichimomo/fish/kensyu2017/nishijima.pdf
- プロダクションモデル (2013年度資源管理研修)
 - http://cse.fra.affrc.go.jp/ichimomo/fish/ichinokawa_R.pdf
- VPA (2015年度資源管理研修)
 - http://cse.fra.affrc.go.jp/ichimomo/fish/kensyu2015/kensyu2015.html
- 統合モデル (統合モデル検討会)
 - http://cse.fra.affrc.go.jp/ichimomo/ss-kento/ss-kentos.html

本研修でカバーしていない範囲

生物学的特徴の把握

水産資源解析マニュアル

2014.4掲載

水産資源解析を学ぶ方のために、標本調査、魚の成長、生残率と死亡率、資源量推定、加入当たり漁獲量と加入当たり産卵親魚量、再生産曲線などの概要と計算のためのエクセル・ファイルのワークシートの使用方法などを紹介しています。

はじめに

目次	エクセルファイル
1. 水産資源解析とは - 水産資源解析の入口から出口 - 🔼	
2. 生活史モデル - 資源の回遊を想定する - 📙	
3. 標本調査 - 何尾の魚を測定すれば良いか- 🕒	(3-sampling.xls)
4. 魚の成長 -体長組成と成長曲線- 📙	(4-growth.xls)
5. 生残率と死亡率 - 魚の生き死に- 🔊	(5-survival.xls)
6. 資源量推定 -魚の量を知る- 🖲	(6-vpa.xls)
7.加入当たり漁獲量と加入当たり産卵親魚量 -魚を上手に利用する- 🚨	(7-ypr_spr_2.xls)
8. 再生産関係 - 親子の関係を知る - 📙	(8-r_bh.xls) 📧
9. 種苗放流と漁獲制限 - 放流と獲り控え - 📙	(9-iafse.xls) 🗷
10. プロダクションモデル - 漁獲量と努力量から - 📙	(10-sf_pm.xls)

https://www.fra.affrc.go.jp/kseika/guide_and_manual/afr/index.html

3. Rと水産資源解析

Rについて

- 統計言語であるSの思想に基づいて開発されたフリーの ソフトウェア
- ウェブから誰でも無料で入手できる(http://www.r-project.org/)
- 多様なプラットフォームに対応
 - Unix系OS、Mac OS X, Windows
- Rプログラムの作成支援:Rstudio (https://www.rstudio.com/)

Rの特徴

- 大量のデータの取扱い
- •描画機能
- forループを用いた単純作業の繰り返し
- 豊富なパッケージ群を用いた高度な解析の実施
 - パッケージ:共通の目的を達成するための関数群

Rの「パッケージ」システム

- 一定のフォーマットを満たすような 自作のパッケージが多くの人によっ て開発され、様々な媒体を通じて配 布
- パッケージは誰でも使える
- 生態学・漁業資源学の論文で用いられている統計解析手法は、多くの場合、Rによりパッケージ化されている

3. Rと水産資源解析 37

資源解析のためのパッケージ

• http://derekogle.com/fishR/packages というサイトで代表的なパッケージが紹介されています

General Packages

- FSA: Fisheries Stock Assessment
- DLMtool: Data-Limited Methods Toolkit Implementation of management procedures for data-limited fisheries
- fishmethods: Fisheries Methods and Models in R
- fishdynr: Fisheries Science Related Population Dynamics Models
- FLR: Fisheries Library in R
- TropFishR: Tropical Fisheries Analysis with R collection of fisheries models based on the the FAO Manual "Introduction to tropical fish stock assessment" by P. Sparre and S.C. Venema. Focus is the analysis of length-frequency data and data poor fisheries.

資源解析のためのパッケージ

More Focused Packages

- ALKr age-length keys
- AnglerCreelSurveySimulation simulate creel survey data
- Bioenergetics 4.0 a shiny app for bioenergetics modeling
- Bioenergetics at ISEMP bioenergetics modeling as part of the Integrated Status and Monitoring Program
- CatDyn population parameters from catch dynamics data
- cuttlefish.model Perform LPUE standardization and stock assessment of the English Channel cuttlefish stock using a two-stage biomass model
- fecR Calculates fishing effort following the DG MARE Ad-Hoc Workshops on Transversal Variables in Zagreb (2015) and Nicosia (2016)
- FSAWs construct and validate standard weight (Ws) equations
- fishMod fits models to catch and effort data
- fishmove predict fish movement parameters
- hafroAssmt fisheries stock assessment at Hafro, the Marine Research Institute in Iceland
- kobe methods for summarising results from stock assessments and Management

3. Rと水産資源解析

Rの実例

- 大量のデータを読み込み、簡単に集計・整形
- "for" ループを使って簡単に複数のグラフを出力

• <u>1-Ichinokawa/kensyu_Ichinokawa.pdf</u>で, ここで紹介したRコード&解 説が見れます

3. Rと水産資源解析

まとめ

- 1. 資源管理の目的と科学者の役割
 - 持続的利用の目的のために、データに基づいた科学的なアドバイスを おこなう
 - 「水産政策の改革」の中でより重要に、高度化・複雑化しているが、 全体像の把握がまず重要
- 2. 水産資源解析フローチャート
 - データ整理・最尤法・空間データ解析・シミュレーションなどの基本 的ツールと資源解析手法との関係
- 3. Rと水産資源解析
 - Rを使えばいろいろできます!