Problem Statement

Identification: Can the causal effect of *X* on *Y* be uniquely estimated given the distribution and model structure?

$$pr\{y|do(x)\} = \sum_{u} pr(y|x,u)pr(u)$$

Case 1: Single proxy variable with known error mechanism

Required: pr(w|u)

Use matrix adjustment to estimate pr(y|x, u) and pr(u).

Case 2: Multiple proxy variables.

Required: One proxy variable should only be connected to U.

- 1. Choose one of the proxy variables as the "indicator variable", W.
- 2. Use eigen value decomposition to estimate pr(w|u).
- 3. Follow the method of first case.

Case 3: Linear SEM

Estimate:
$$\beta_{xy.u} = \frac{\sigma_{xy.u}}{\sigma_{xx.u}}$$

Required: The contribution of U's variance to W's variance:

$$\alpha_{wu}^2 \sigma_{uu} = \sigma_{ww} - \sigma_{\epsilon_w, \epsilon_w}$$

- 1. If single proxy variable, needs $\alpha_{wu}^2 \sigma_{uu}$.
- 2. If multiple proxy variables, $\alpha_{wu}^2 \sigma_{uu}$ can be computed.

Case 4: Linear SEM with instrumental variables

Estimate: $\beta_{xy.u} = \frac{\sigma_{yz.u}}{\sigma_{xz.u}}$

THEOREM 2. Suppose that:

- (i) a nonempty set {Z₁, Z₂} of distinct variables satisfies one of the following conditions: (i-a) both Z₁ and Z₂ are conditional instrumental variables given a univariate U relative to (X, Y), (i-b) Z₁ is a conditional instrumental variable given U relative to (X, Y), and Z₂ = X and U satisfies the back door criterion relative to (X, Y), (i-c) Z₁ is a conditional instrumental variable given U relative to (X, Y), and U d-separates Z₂ from {X, Y};
- (ii) U d-separates $\{Z_1, Z_2\}$ from an observed variable W.

Then the total effect τ_{yx} of X on Y is identifiable and is given by the formula (11).