MATH 560, Homework 9

Colin Roberts
November 11, 2017

Solutions

Problem 1. (§6.3 Problem 20. (a)) For the following sets of data that follows, use the least squares approximation to find the best fits with both (i) a linear function and (ii) a quadratic function. Compute the error *E* in both cases.

$$\{(-3,9), (-2,6), (0,2), (1,1)\}$$

Proof. (i) First, for the linear function, we have

$$A = \begin{bmatrix} -3 & 1 \\ -2 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \qquad \text{and} \qquad y = \begin{bmatrix} 9 \\ 6 \\ 2 \\ 1 \end{bmatrix}.$$

It follows that

$$A^*A = \begin{bmatrix} -3 & -2 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ -2 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 14 & -4 \\ -4 & 4 \end{bmatrix}$$

and

$$(A^*A)^{-1} = \frac{1}{20} \begin{bmatrix} 2 & 2 \\ 2 & 7 \end{bmatrix}.$$

Then we get that

$$\begin{bmatrix} c \\ d \end{bmatrix} = x_0 = \frac{1}{20} \begin{bmatrix} 2 & 2 \\ 2 & 7 \end{bmatrix} \begin{bmatrix} -3 & -2 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ \frac{5}{2} \end{bmatrix}.$$

So the line $y = -2t + \frac{5}{2}$ is the line of best fit. The error

$$E = \|Ax_0 - y\|^2 = \left\| \begin{bmatrix} -3 & 1 \\ -2 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ \frac{5}{2} \end{bmatrix} - \begin{bmatrix} 9 \\ 6 \\ 2 \\ 1 \end{bmatrix} \right\|^2 = 1.$$

(ii) For the quadratic function we have,

$$A = \begin{bmatrix} (-3)^2 & -3 & 1\\ (-2)^2 & -2 & 1\\ 0^2 & 0 & 1\\ 1^2 & 0 & 1 \end{bmatrix}$$

Problem 2. (§6.4 Problem 17 (a)-(d) Read (e) and (f).) Let T and U be self-adjoint linear operators on an n-dimensional inner product space V, and let $A = [T]_{\beta}$, where β is an orthonormal basis for V. Prove the following results.

- (a) *T* is positive definite [semidefinite] if and only if all of its eigenvalues are positive [nonnegative].
- (b) *T* is positive definite if and only if

$$\sum_{i,j} A_{ij} a_j \overline{a_i} > 0 \text{ for all nonzero } n\text{-tuples } (a_1, a_2, ..., a_n).$$

- (c) T is positive semidefinite if and only if $A = B^*B$ for some square matrix B.
- (d) If *T* and *U* are positive semidefinite operators such that $T^2 = U^2$, then T = U.
- (e) If T and U are positive definite operators such that TU = UT, then TU is positive definite.
- (f) *T* is positive definite [semidefinite] if and only if *A* is positive definite [semidefinite].

:

Proof.

(a) First, suppose that T is positive definite [semidefinite] but that some eigenvalue is negative [non-positive]. Of course, we can say that the eigenvalues are real since T is self adjoint and that the orthornormal basis β consists of eigenvectors. Now we have $x = a_1v_1 + \cdots + a_nv_n$ with $v_i \in \beta$ and not all $a_i = 0$. Then with $A = [T]_{\beta}$

$$\langle Ax, x \rangle = \langle \lambda_1 a_1 v_1 + \dots + \lambda_n a_n v_n, a_1 v_1 + \dots + a_n v_n \rangle$$

$$\iff = \lambda_1 |a_1|^2 + \dots + \lambda_n |a_n|^2 > 0 \qquad \text{if } T \text{ is positive definite}$$

$$\iff = \lambda_1 |a_1|^2 + \dots + \lambda_n |a_n|^2 \geq 0 \qquad \text{if } T \text{ is positive semidefinite}.$$

Now the last two statements imply that $\lambda_1, ..., \lambda_n$ 0 if T is positive definite and $\lambda_1, ..., \lambda_n \ge 0$ if T is positive semidefinite.

Using the same x, we show the converse by noticing $[T]_{\beta}x = \lambda_1 a_1 v_1 + \cdots + \lambda_n a_n v_n$ with $\lambda_i > 0$ $[\lambda_i \ge 0]$. Now

$$\langle Ax, x \rangle = \lambda_1 a_1^2 + \dots + \lambda_n a_n^2 > 0$$
 if $\lambda_i > 0$
= $\lambda_1 a_1^2 + \dots + \lambda_n a_n^2 \ge 0$ if $\lambda_i \ge 0$

It follows that *T* is positive definite [semidefinite] if all of its eigenvalues are positive [nonnegative].

- (b) Let $x = a_1 v_1 + \dots + a_n v_n$ with $v_i \in \beta$. Then note that $\sum_{i,j} A_{ij} a_j \overline{a_i} = \langle Ax, x \rangle$. Now if $\sum_{i,j} A_{ij} a_j \overline{a_i} > 0$ then $\langle Ax, x \rangle > 0$ and $A = [T]_{\beta}$ is positive definite. Analogously, if $\langle Ax, x \rangle > 0$ then $\sum_{i,j} A_{ij} a_j \overline{a_i} > 0$.
- (c) Suppose T is positive semidefinite and thus since T is also self adjoint we have that $Av_i = \lambda_i v_i$ with $\lambda_i \ge 0$. Now define B so that $Bv_i = \sqrt{\lambda_i} v_i$. It follows that we have for $x = a_1 v_1 + \cdots + a_n v_n$ we have

$$\langle B^*Bx, x \rangle = \langle Bx, Bx \rangle$$

= $\lambda_1 |a_1|^2 + \dots + \lambda_n |a_n|^2$
= $\langle Ax, x \rangle$.

Hence, $A = B^*B$.

For the converse, if $A = B^*B$, then for the same x,

$$\langle Ax, x \rangle = \langle B^*Bx, x \rangle$$
$$= \langle Bx, Bx \rangle$$
$$= ||Bx||^2 \ge 0.$$

Hence *A* is positive semidefinite.

(d) Suppose T and U are positive semidefinite and satisfy $T^2 = U^2$. Then we have that $T = B^*B$ and $U = C^*C$ by (c). It then follows for $x = a_1v_1 + \cdots + a_nv_n$ with $v_i \in \beta$,

$$\langle T^2 x, x \rangle = \langle U^2 x, x \rangle$$

$$\iff \langle (B^* B)^2 x, x \rangle = \langle (C^* C)^2 x, x \rangle$$

$$\iff \langle B^* B x, (B^* B)^* x \rangle = \langle C^* C x, (C^* C)^* x \rangle$$

$$\iff \langle B^* B x, B^* B x \rangle = \langle C^* C x, C^* C x \rangle$$

$$\iff ||Tx||^2 = ||Ux||^2.$$

Since T and U are positive semidefinite, it must be that Tx = Ux since for the last equality the only other possibility is Tx = -Ux, which contradicts T and U being positive semidefinite. Hence, T = U.

Problem 3. (§6.5 Problem 14.) Prove that if *A* and *B* are unitarily equivalent matrices, then *A* is positive definite [semidefinite] if and only if *B* is positive definite [semidefinite].

:

Proof. Suppose *A* and *B* are unitarily equivalent matrices, which means we can write $A = U^*BU$ for *U* a unitary matrix. Then, suppose that *A* is positive definite [semidefinite]. It follows for $x \in V$ that

$$0 < \langle Ax, x \rangle$$
 if *A* is positive definite or $0 \le \langle Ax, x \rangle$ if *A* is positive semidefinite

and

$$\langle Ax, x \rangle = \langle U^*BUx, x \rangle$$

= $\langle BUx, Ux \rangle$.

Note that $Ux \neq 0 \in V$ and specifically ||Ux|| = ||x||. Denote x' = Ux and we have that $\langle Bx', x' \rangle > 0$ if A is positive definite and $\langle Bx', x' \rangle \geq 0$ if A is positive semidefinite. Thus we have shown B is positive definite [semidefinite].

For the converse, we suppose that *B* is positive definite [semidefinite] and repeat the above proof with $B = U'^* AU'$ with $U' = U^*$. It is exactly analogous.

Problem 4. (§6.5 Problem 21.) Let A and B be $n \times n$ matrixes that are unitarily equivalent.

- (a) Prove that $tr(A^*A) = tr(B^*B)$.
- (b) Use (a) to prove that

$$\sum_{i,j=1}^{n} |A_{ij}|^2 = \sum_{i,j=1}^{n} |B_{ij}|^2.$$

(c) Use (b) to show that the matrices

$$\begin{bmatrix} 1 & 2 \\ 2 & i \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} i & 4 \\ 1 & 1 \end{bmatrix}$$

are *not* unitarily equivalent.

:

Proof.

(a) Suppose that A and B are unitarily equivalent and specifically we have $A = U^*BU$. We have

$$A^*A = (U^*BU)^*(U^*BU) = U^*B^*UU^*BU = U^*B^*B^*U.$$

Finally, by properties of the trace we have

$$tr(A^*A) = tr(U^*B^*BU) = tr(U^*UB^*B) = tr(B^*B).$$

(b) We have

$$\operatorname{tr}(A^*A) = \sum_{i=1}^n (A^*A)_{ii} = \sum_{i,k=1}^n (A^*_{ik})(A_{ki}) = \sum_{i,j=1}^n |A_{ij}|^2.$$

Then we apply (a) and we find

$$\sum_{i,j=1}^{n} |A_{ij}|^2 = \sum_{i,j=1}^{n} |B_{ij}|^2.$$

(c) We have for the first matrix

$$a = |1|^2 + |2|^2 + |2|^2 + |i|^2 = 10.$$

For the second matrix we have

$$b = |i|^2 + |4|^2 + |1|^2 + |1|^2 = 19.$$

Thus the two matrices are *not* unitarily equivalent.

Problem 5. (§6.6 Problem 2.) Let $V = \mathbb{R}^2$, $W = \text{span}(\{(1,2)\})$, and β be the standard ordered basis for V. Compute $[T]_{\beta}$, where T is the orthogonal projection of V on W. Do the same for $V = \mathbb{R}^3$ and $W = \text{span}(\{(1,0,1)\})$.

:

Proof. With β the standard basis we find $[T]_{\beta}$ by projecting the standard vectors onto $W = \text{span}(\{(1,2)\})$. So we have

$$\frac{(1,0)\cdot(1,2)}{\|(1,2)\|^2}(1,2) = \left(\frac{1}{5},\frac{2}{5}\right)$$
$$\frac{(0,1)\cdot(1,2)}{\|(1,2)\|^2}(1,2) = \left(\frac{2}{5},\frac{4}{5}\right)$$

.

This tells us that

$$[T]_{\beta} = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{1}{5} & \frac{4}{5} \end{bmatrix},$$

where the left column is the first projection and the right column is the second.

Now with $W = \text{span}(\{(1, 0, 1)\})$, we have

$$\begin{split} &\frac{(1,0,0)\cdot(1,0,1)}{\|(1,0,1)\|^2}(1,0,1) = \left(\frac{1}{2},0,\frac{1}{2}\right) \\ &\frac{(0,1,0)\cdot(1,0,1)}{\|(1,0,1)\|^2}(1,0,1) = (0,0,0) \\ &\frac{(0,0,1)\cdot(1,0,1)}{\|(1,0,1)\|^2}(1,0,1) = \left(\frac{1}{2},0,\frac{1}{2}\right). \end{split}$$

And we have that

$$[T]_{\beta} = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

Problem 6. (§6.6 Problem 3 (b).) For the following matrix A

- (1) Verify that L_A possesses a spectral decomposition.
- (2) For each eigenvalue of L_A , explicitly define the orthogonal projection on the corresponding eigenspace.
- (3) Verify your results using the spectral theorem.

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

:

Proof.

(i) First we find the eigenvalues which are solutions to $\lambda^2 + 1 = 0$. Namely, $\lambda_1 = i$ and $\lambda_2 = -i$. Then we have that the eigenvectors are $\nu_1 = (i, 1)$ and $\nu_2 = (-i, 1)$. This yields

$$\begin{split} \frac{(1,0)\cdot(i,1)}{\|(i,1)\|^2}(i,1) &= \frac{i}{2}(i,1) \\ \frac{(0,1)\cdot(i,1)}{\|(i,1)\|^2}(i,1) &= \frac{1}{2}(i,1), \end{split}$$

implying that

$$T_1 = \frac{1}{2} \begin{bmatrix} -1 & i \\ i & 1 \end{bmatrix}.$$

Similarly,

$$\frac{(1,0)\cdot(-i,1)}{\|(i,1)\|^2}(-i,1) = \frac{-i}{2}(-i,1)$$
$$\frac{(0,1)\cdot(-i,1)}{\|(i,1)\|^2}(-i,1) = \frac{1}{2}(-i,1),$$

giving

$$T_2 = \frac{1}{2} \begin{bmatrix} -1 & -i \\ i & 1 \end{bmatrix}.$$

Now we verify that

$$A = \lambda_1 T_1 + \lambda_2 T_2 = \frac{1}{2} \left(i \begin{bmatrix} -1 & i \\ -i & 1 \end{bmatrix} - i \begin{bmatrix} -1 & -i \\ i & 1 \end{bmatrix} \right) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

Hence we have shown that L_A has a spectral decomposition.

- (ii) We have T_1 and T_2 above for λ_1 and λ_2 respectively.
- (iii) To verify we notice that $E_{\lambda_1} \oplus E_{\lambda_2} = V$, and that $E_{\lambda_1} = E_{\lambda_2}^{\perp}$ (showing (a) and (b)). Now $T_1 T_2 = 0$, $T_1^2 = T_1$, and $T_2^2 = T_2$ since T_i is a projection matrix, which shows (c). Finally, for (d) we have $I = T_1 + T_2$ and we showed (e) in part (i) of this proof. So we have verified the spectral theorem.

Problem 7. (§6.7 Problem 2 (a),(b).) Let $T: V \to W$ be a linear transformation of rank r, where V and W are finite-dimensional inner product spaces. In each of the following, find orthonormal bases $\{v_1, v_2, ..., v_n\}$ for V and $\{u_1, u_2, ..., u_m\}$ for W, and the nonzero singular values $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r$ of T such that $T(v_i) = \sigma_i u_i$ for $1 \le i \le r$.

- (a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x_1, x_2) = (x_1, x_1 + x_2, x_1 x_2)$.
- (b) $T: P_2(R) \to P_1(R)$, where T(f(x)) = f''(x), and the inner products are defined as in Example 1.

:

Proof. (a) We can let the matrix $A = [T]_{\beta}$ with β the standard basis. Then

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

We know that the eigenvectors of A^*A will generate a basis for W. We have

$$A^*A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}.$$

This implies that the eigenvectors corresponding to A^*A are $v_1 = (1,0)$ and $v_2 = (0,1)$. So we then let

$$V^* = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Now

$$AA^* = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix},$$

which has eigenvalues $\lambda_1=3$, $\lambda_2=2$, and $\lambda_3=0$ with corresponding normalized eigenvectors $u_1=\frac{1}{\sqrt{3}}(1,1,1)$, $u_2=\frac{1}{\sqrt{2}}(0,-1,1)$, and $u_3=\frac{1}{\sqrt{6}}(-2,1,1)$. It follows that

$$U = \begin{bmatrix} 0 & \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}.$$

Now we note that $\sigma_1 = \sqrt{2}$ and $\sigma_2 = \sqrt{3}$ and check this by confirming $Av_1 = (1,1,1) = \sigma_1 u_1$ and $Av_2 = (0,1,-1) = \sigma_2 u_2$.

(b) Again, let $A = [T]_{\beta}$ with β the standard basis. Now we have

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

So we get that

$$A^*A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix},$$

which has eigenvalues $\lambda_1=0$, $\lambda_2=0$, and $\lambda_3=4$ corresponding to eigenvectors $v_1'=(1,0,0)$, $v_2'=(0,1,0)$, and $v_3'=(0,0,1)$. So we write

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Next we have

$$AA^* = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix},$$

which has eigenvalues $\lambda_1=0$ and $\lambda_2=4$ corresponding to eigenvectors $u_1'=(1,0)$ and $u_2'=(0,1)$. Then we write

$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Now, translating these vectors to the corresponding vectors for $P_3(\mathbb{R})$ and $P_2(\mathbb{R})$ we find

$$v_1 = \sqrt{\frac{5}{8}}(3x^2 - 1)$$

$$v_2 = \sqrt{\frac{3}{2}}x$$

$$v_3 = \frac{1}{\sqrt{2}}$$

$$u_1 = \sqrt{\frac{3}{2}}x$$

$$u_2 = \frac{1}{\sqrt{2}}.$$
and

We verify by noting that $\sigma_1 = 4$ and $T(v_1) = \sigma_1 u_1$ and else $T(v_2) = T(v_3) = 0$.

Problem 8. (§6.7 Problem 4 (a).) Find a polar decomposition for the following matrices.

(a)
$$\begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}$$
.

:

Proof. First we find the eigenvectors of A^*A . We have

$$A^*A = \begin{bmatrix} 5 & -3 \\ 3 & 5 \end{bmatrix},$$

which has eigenvalues $\lambda_1=8$ and $\lambda_2=2$ with corresponding eigenvectors $v_1=\frac{1}{\sqrt{2}}(-1,1)$ and $v_2=\frac{1}{\sqrt{2}}(1,1)$. So $\sigma_1=\sqrt{8}$ and $\sigma_2=\sqrt{2}$ and

$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}.$$

Then

$$u_{1} = \frac{1}{\sigma_{1}} A \nu_{1} = \frac{1}{4} \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
$$u_{2} = \frac{1}{\sigma_{2}} A \nu_{2} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

and

$$U = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

So we have

$$W = UV^* = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix},$$
$$P = V\Sigma V^* = \frac{1}{2} \begin{bmatrix} \frac{3}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ \frac{1}{2\sqrt{2}} & \frac{3}{2\sqrt{2}} \end{bmatrix}.$$

Of course, this is for A = WP.