Formularium Wiskunde

Ian Claesen

8 december 2024

Inhoudsopgave

1	Algebra	2
	1.1 Volgorde van Bewerking	2
	1.2 Absolute Waarde	2
2	Machten en wortels	2
	2.1 Machten met Gehele Exponenten	2
	2.2 Vierkantswortel in \mathbb{R}	2
	2.3 N-de machtswortel in \mathbb{R}	2
	2.4 $\frac{m}{n}$ -de machtswortel in \mathbb{R}	3
3	Veeltermen	3
	3.1 Vierkantsvergelijking	3
	3.2 Merkwaardige Producten en Ontbinding in Factoren	3
	3.3 Euclidische Deling	4
	3.4 Schema van Horner	4
4	Complexe getallen	5
	4.1 Rechthoekige coordinaten	5
	4.2 Poolcoördinaten	5
5	Goniometrie	6
_	5.1 De Goniometrische Cirkel	6
	5.2 formules uit de goniometrie	6
	5.3 Omgekeerde formules van Simpson	8
	5.4 Formules van Simpson	8
	5.5 Belangrijke goniometrische waarden	9
	5.6 Cyclometrische formules	9
6	Meetkunde	10
7	Diversen	11
"	7.1 Wiskundige Symbolen (ISO 31/XI)	
	1.1 WISKURUIGE SYRIDORER (15O 51/A1)	11

1 Algebra

1.1 Volgorde van Bewerking

Haakjes wegwerken, machtsverheffen, worteltrekken, vermenigvuldigen en delen, optellen en aftrekken.

1.2 Absolute Waarde

De absolute waarde van een getal a wordt genoteerd als |a| en is altijd positief.

$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

2 Machten en wortels

2.1 Machten met Gehele Exponenten

$$\forall a \in \forall n \in \mathbb{N}_0 : a^n = \underbrace{a.a. \dots .a}_{n \text{ factoren}}$$

$$\forall a \in \mathbb{R} : a^1 = a$$

$$\forall a \in \mathbb{R}_0 : a^0 = 1$$

$$\forall a \in \mathbb{R}_0, \forall n \in \mathbb{N} : a^{-n} = \frac{1}{a^n}$$

$$(a.b)^n = a^n$$

$$(a.b)^n = a^n$$

$$(a.b)^n = a^n \cdot b^n$$

2.2 Vierkantswortel in \mathbb{R}

$$\forall a \in \mathbb{R}^+, \forall b \in \mathbb{R} :$$

$$b = \sqrt{a} \Leftrightarrow b^2 = a \land (b \ge 0)$$

$$\forall a, b \in \mathbb{R}^+ :$$

$$\sqrt{a^2} = a$$

$$(\sqrt{a})^2 = a$$

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}.$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \land b \ne 0$$

$$\forall a \in \mathbb{R} :$$

$$\sqrt{a^2} = |a| \implies \begin{cases} \sqrt{a^2} = a & \text{als } a \ge 0, \\ \sqrt{a^2} = -a & \text{als } a \le 0. \end{cases}$$

2.3 N-de machtswortel in \mathbb{R}

$$n \ even \Rightarrow \sqrt[n]{a^n} = |a| \to \begin{cases} \sqrt[n]{a^n} = a & \land a \ge 0 \\ \sqrt[n]{a^n} = -a & \land a \le 0 \end{cases}$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$\sqrt[n]{a^n} = a$$

$$(\sqrt[n]{a})^n = a$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{a}$$

$$\sqrt[n]{a} = \sqrt[n]{a} \cdot \sqrt[n]{a}$$

2.4 $\frac{m}{n}$ -de machtswortel in \mathbb{R}

$\forall a \in \mathbb{R}_0^+, \forall m \in \mathbb{Z}, \forall n \in \mathbb{N}_0 : a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$\forall a, b \in \mathbb{R}_0^+, \forall m, n \in \mathbb{Q} :$ $a^m.a^n = a^{m+n}$ $\frac{a^m}{a^n} = a^{m-n}$ $(a^m)^n = a^m.n$ $(a.b)^m = a^m.b^m$ $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
	$(a.b)^m = a^m.b^m$ $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

3 Veeltermen

3.1 Vierkantsvergelijking

Een vierkantsvergelijking is van de vorm: $ax^2 + bx + c = 0$, $met D = b^2 - 4ac$

$x \in \mathbb{R}$	$x \in \mathbb{C}$
$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$	$x_{1,2} = \frac{-b \pm i\sqrt{-D}}{2a}$
$P = \frac{c}{a} = x_1 \cdot x_2 , S = -\frac{b}{a} = x_1 + x_2$	
$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) = a(x^{2} - Sx + P)$	

3.2 Merkwaardige Producten en Ontbinding in Factoren

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$(a + b)^{n} = a^{n} + C_{n}^{1}a^{n-1}b + C_{n}^{2}a^{n-2}b^{2} + \dots + C_{n}^{n-1}a^{2}b^{n-1} + b^{n} \quad \land \quad C_{n}^{p} = \frac{n!}{(n-p)!p!}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{2n+1} + b^{2n+1} = (a + b)(a^{2n} - a^{2n-1}b + a^{2n-2}b^{2} - a^{2n-3}b^{3} + \dots - ab^{2n-1} + b^{2n})$$

3.3 Euclidische Deling

We gaan de derdegraadsveelter
m $2x^3+3x^2-4x+5$ delen door de eerstegraadsveelter
mx+2met behulp van de praktische werkwijze van lange de
ling.

$$\begin{array}{c|ccccc}
2x^3 + 3x^2 - 4x + 5 & x + 2 \\
\hline
-2x^3 - 4x^2 + 0x + 0 & 2x^2 \\
\hline
-1x^2 - 4x + 5 & \\
+1x^2 + 2x + 0 & -x \\
\hline
-2x + 5 & \\
2x + 4 & -2 & \\
\hline
9 & \\
\end{array}$$

We kunnen de deling als volgt uitdrukken:

$$2x^3 + 3x^2 - 4x + 5 = (x+2)(2x^2 - x - 2) + 9$$

De rest is 25, wat een graad heeft die kleiner is dan de graad van de deler x + 2.

3.4 Schema van Horner

$$\frac{(3x^3 - 5x^2 + 10x - 52)}{(x-2)}$$

4 Complexe getallen

4.1 Rechthoekige coordinaten

Bewerking	Formule		
Optelling/Aftrekking	$(a+j.b) \pm (c+j.d) = (a+c) \pm j(b+d)$		
Vermenigvuldiging	$(a+j.b) \cdot (c+j.d) = (ac-bd) + j(ad+bc)$		
Deling	$\frac{(a+j.b)}{(c+j.d)} = \frac{(a+j.b)\cdot(c-j.d)}{(c+j.d)\cdot(c-j.d)} = \left(\frac{ac+bd}{c^2+d^2}\right) + j\left(\frac{bc-ad}{c^2+d^2}\right)$		
Toegevoegde van $\overline{(a+j.b)} = (a-j.b)$			
	$\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}, \overline{Z_1 \cdot Z_2} = \overline{Z_1} \cdot \overline{Z_2}$		
Inverse	$z = a + bi \implies z^{-1} = \frac{a - bi}{a^2 + b^2}$		
Wortel	$\sqrt{a} \wedge a < 0 \implies \sqrt{a} = \pm i\sqrt{-a}$		
	$\sqrt{a+bi} = x+yi \iff (x+yi)^2 = a+bi$		
Macht	$(a+bi)^0=1 \forall n \in \mathbb{N}_0:$		
	$(a+bi)^n = (a+bi) \cdot (a+bi) \cdots (a+bi)$		
Machten of i	$i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$		

4.2 Poolcoördinaten

$$z = a + i.b = r\left(\cos(\varphi) + i.\sin(\varphi)\right) = r\angle\varphi, \quad \tan(\varphi) = \frac{b}{a}, \quad r = \sqrt{a^2 + b^2}$$

Bewerking	Formule		
Vermenigvuldiging	$z_1 \cdot z_2 = r_1 \cdot r_2 \angle \varphi_1 + \varphi_2$		
Deling	$\frac{z_1}{z_2} = \frac{r_1 \angle \varphi_1}{r_2 \angle \varphi_2} = \frac{r_1}{r_2} \angle \varphi_1 - \varphi_2$		
Inverse	$z^{-1} = \frac{1}{r} \angle - \varphi$		
Macht	$z^n = r^n \left[\cos \left(n \cdot \varphi \right) + i \sin \left(n \cdot \varphi \right) \right] n \in \mathbb{N}$		
Wortel	$\sqrt{r(\cos\varphi + i\sin\varphi)} = \pm\sqrt{r}\left(\cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right)$		
$\sqrt[n]{r\left(\cos\varphi + i\sin\varphi\right)} = \sqrt[n]{r}\left(\cos\frac{\varphi + k\cdot 2\pi}{n} + i\sin\frac{\varphi + k\cdot 2\pi}{n}\right) \wedge k = 0, 1, \cdots, n - 1$			

5 Goniometrie

5.1 De Goniometrische Cirkel

5.2 formules uit de goniometrie

$\sin \beta = \frac{b}{a}$	$\cos \beta = \frac{c}{a}$	$\tan \beta = \frac{b}{c}$
$\csc \beta = \frac{a}{b}$	$\sec \beta = \frac{a}{c}$	$\cot \beta = \frac{c}{b}$
$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$	$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$	$\cot \alpha = \frac{1}{\tan \alpha}$
$\sec \alpha =$	$=\frac{1}{\cos\alpha}$ $\csc\alpha$	$=\frac{1}{\sin \alpha}$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

$$\tan^2 \alpha + 1 = \sec^2 \alpha$$

$$1 + \cot^2 \alpha = \csc^2 \alpha$$

gelijkehoeken	supplementairehoeken	complementairehoeken
$\sin\left(\alpha + k2\pi\right) = \sin\alpha$	$\sin\left(\pi - \alpha\right) = \sin\alpha$	$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$
$\cos\left(\alpha + k2\pi\right) = \cos\alpha$	$\cos(\pi - \alpha) = -\cos\alpha$	$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$
$\tan\left(\alpha + k2\pi\right) = \tan\alpha$	$\tan (\pi - \alpha) = -\tan \alpha$	$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$
$\cot\left(\alpha + k2\pi\right) = \cot\alpha$	$\cot(\pi - \alpha) = -\cot\alpha$	$\cot\left(\frac{\pi}{2} - \alpha\right) = \tan\alpha$
$\sec\left(\alpha + k2\pi\right) = \sec\alpha$	$\sec(\pi - \alpha) = -\sec\alpha$	$\sec\left(\frac{\pi}{2} - \alpha\right) = \csc\alpha$
$\csc\left(\alpha + k2\pi\right) = \csc\alpha$	$\csc(\pi - \alpha) = \csc\alpha$	$\csc\left(\frac{\pi}{2} - \alpha\right) = \sec\alpha$

tegengesteldehoeken	antisupplementairehoeken	anticomplementairehoeken
$\sin\left(-\alpha\right) = -\sin\alpha$	$\sin\left(\pi + \alpha\right) = -\sin\alpha$	$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$
$\cos\left(-\alpha\right) = \cos\alpha$	$\cos(\pi + \alpha) = -\cos\alpha$	$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$
$\tan\left(-\alpha\right) = -\tan\alpha$	$\tan\left(\pi + \alpha\right) = \tan\alpha$	$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$
$\cot\left(-\alpha\right) = -\cot\alpha$	$\cot(\pi + \alpha) = \cot\alpha$	$\cot\left(\frac{\pi}{2} + \alpha\right) = -\tan\alpha$
$\sec\left(-\alpha\right) = \sec\alpha$	$\sec(\pi + \alpha) = -\sec\alpha$	$\sec\left(\frac{\pi}{2} + \alpha\right) = -\csc\alpha$
$\csc\left(-\alpha\right) = -\csc\alpha$	$\csc(\pi + \alpha) = -\csc\alpha$	$\csc\left(\frac{\pi}{2} + \alpha\right) = \sec\alpha$

• De sinusregel:

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

• De cosinusregel:

$$a^{2} = b^{2} + c^{2} - 2bc \cos \hat{A}$$
$$b^{2} = c^{2} + a^{2} - 2ca \cos \hat{B}$$
$$c^{2} = a^{2} + b^{2} - 2ab \cos \hat{C}$$

$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$	$\sin 2\alpha = 2\sin \alpha \cos \alpha$
	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$
$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$	$=1-2\sin^2\alpha (*)$
	$=2\cos^2\alpha-1(**)$
$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$	$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$

$$\begin{array}{|c|c|c|c|} \sin^2\alpha = \frac{1-\cos 2\alpha}{2} & (*) & \sin 2\alpha = \frac{2\tan\alpha}{1+\tan^2\alpha} & \sin\alpha = \frac{2t}{1+t^2} & \wedge & \tan\frac{\alpha}{2} = t \\ \cos^2\alpha = \frac{1+\cos 2\alpha}{2} & (**) & \cos 2\alpha = \frac{1-\tan^2\alpha}{1+\tan^2\alpha} & \cos\alpha = \frac{1-t^2}{1+t^2} \\ \sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}} & \tan2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha} & \tan\alpha = \frac{2t}{1-t^2} \\ \cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}} & \tan\alpha = \frac{2t}{1-t^2} \end{array}$$

5.3 Omgekeerde formules van Simpson

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \qquad \sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin \alpha \cos \beta$$
$$\sin(\alpha + \beta) - \sin(\alpha - \beta) = 2\cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \qquad \cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos \alpha \cos \beta$$
$$\cos(\alpha + \beta) - \cos(\alpha - \beta) = -2\sin \alpha \sin \beta$$

5.4 Formules van Simpson

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right) \left|\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)\right|$$
$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right) \left|\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)\right|$$

5.5 Belangrijke goniometrische waarden

Angle	0°	30°	45°	60°	90°	180°	270°	360°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\tan \alpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	/	0	/	0

5.6 Cyclometrische formules

$$\begin{split} y &= \mathrm{Bgsin} x \Leftrightarrow \left(x = \sin y \ \land y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \ x \in [-1, 1]\right) \\ y &= \mathrm{Bgcos} x \Leftrightarrow \left(x = \cos y \ \land y \in [0, \pi], \ x \in [-1, 1]\right) \\ y &= \mathrm{Bgtan} \ x \Leftrightarrow \left(x = \tan y \ \land y \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[, \ x \in\right) \end{split}$$

$$\sin \left(\operatorname{Bgsin} x \right) = x \forall x \in [-1,1] \qquad \cos \left(\operatorname{Bgtan} x \right) = \frac{1}{\sqrt{1+x^2}} \forall x \in \\ \cos \left(\operatorname{Bgcos} x \right) = x \forall x \in [-1,1] \qquad \sin \left(\operatorname{Bgtan} x \right) = \frac{x}{\sqrt{1+x^2}} \forall x \in \\ tg \left(\operatorname{Bgtan} \right) = x \forall x \in \\ \operatorname{Bgsin} x + \operatorname{Bgcos} x = \frac{\pi}{2} \forall x \in [-1,1] \\ \operatorname{cot} g \left(\operatorname{Bgcot} x \right) = x \forall x \in \\ \operatorname{Bgcot} x + \operatorname{Bgtan} x = \frac{\pi}{2} \forall x \in \\ \operatorname{cos} \left(\operatorname{Bgsin} x \right) = \sqrt{1-x^2} \forall x \in [-1,1] \\ \operatorname{Bgcot} \left(-x \right) = -\operatorname{Bgtan} x \forall x \in \\ \operatorname{Bgsin} \left(-x \right) = -\operatorname{Bgcot} x \forall x \in \\ \operatorname{Bgsin} \left(-x \right) = -\operatorname{Bgcos} x \forall x \in [-1,1] \\ \operatorname{Bgcos} \left(-x \right) = -\operatorname{Bgcos} x \forall x \in [-1,1] \\ \operatorname{Bgcos} \left(-x \right) = \pi - \operatorname{Bgcos} x \forall x \in [-1,1] \\ \end{array}$$

6 Meetkunde

Afstand 2 punten	ten $ P_1(x_1, y_1), P_2(x_2, y_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$				
	$ P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2) =$				
	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$				
Midden v/e lijnstuk $co(M) = (\frac{(x_1+x_2)}{2}, \frac{(y_1+y_2)}{2})$					
Zwaartepunt v/e driehoek $co(Z) = (\frac{(x_1+x_2+x_3)}{3}, \frac{(y_1+y_2+y_3)}{3})$					
Vergelijking v/e rechte dr punt met rico m $y - y_1 = m(x - y_1)$					

Vergelijking v/e rechte dr punt met rico m	$y - y_1 = m(x - x_1)$
Vergelijking v/e rechte dr punt met rico m	$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$
Vergelijking v/e rechte dr snijpunt met x-as (r,0) en y-as (0,s)	$\frac{x}{r} + \frac{y}{s} = 1$
Hoek tussen twee rechten a,b met rico m1,m2	$\cos(\hat{ab}) = \frac{ 1+m_1m_2 }{\sqrt{1+m_1^2}\sqrt{1+m_2^2}}$
Afstand tussen rechte a-¿ux+vy+w=0 en $P(x1,y1)$	$d(P,a) = \frac{ ux_1 + vy_1 + w }{\sqrt{u^2 + v^2}}$

7 Diversen

7.1 Wiskundige Symbolen (ISO 31/XI)

$x \in A$	is een element van de verzameling
$x \not\in A$	is geen element van de verzameling
$\left\{x_1,x_2,\ldots,x_n\right\}$	de verzameling door opsomming
$\{x \in A p(x)\}$	de verzameling waar de elementen voldoen aan de eigenschap $p(x)$
Ø	de lege verzameling
N	de natuurlijke getallen $(0,1,2,\dots)$
\mathbb{Z}	de gehele getallen $(\ldots, -2, -1, 0, 1, 2, \ldots)$
Q	de rationale getallen (breuken van \mathbb{Z})
\mathbb{R}	de reële getallen
\mathbb{C}	de complexe getallen
$B \subseteq A$	B behoort tot A (kan er mee samenvallen)
$B \subset A$	B behoort strikt tot A
$A \cup B$	samenvoeging van A en B (unie)
$A \cap B$	doorsnede van A en B (de gemeenschappelijke elementen)
$A \setminus B$	A verschilt B , wat tot A behoort en niet tot B
$C_U A$	het complement van A in het universum U
(a,b)	het geordend paar
(a_1, a_2, \dots, a_n)	een geordend n -tal
$A \times B$	de productverzameling van A en B
#	rangnummer of aantal

7.2 Logische symbolen

$p \wedge q$	conjunctie, de beweringen p en q zijn geldig
$p \lor q$	disjunctie, de bewering p of q is geldig
$\neg p$	negatie, de bewering p is niet geldig
$p \Rightarrow q$	implicatie, als p dan q
$p \Leftrightarrow q$	equivalentie, de beweringen p en q zijn gelijkwaardig
$\forall x$	universele kwantor, voor alle elementen geldt
$\exists x$	existentiële kwantor, er zijn elementen die voldoen aan