Physics 422	
Fall 2018	
Homework assignemnt	1
Due: 9/4/2018	

Name	(Print):	
	,	

1. Consider the pattern

	· ·	♦ ⊕	· · · · · · · · · · · · · · · · · · ·
\odot \bigcirc	♦ ⊕	\odot \bigcirc	♦ ⊕
♦ ⊕	· ·	♦ ⊕	· · · · · · · · · · · · · · · · · · ·
\odot \bigcirc		\odot \bigcirc	♦ ⊕
	· ·	♦ ⊕	· · · · · · · · · · · · · · · · · · ·
\odot \bigcirc	♦ ⊕	\odot \bigcirc	♦ ⊕

Indicate the following:

- ullet a rectangular unit cell
- a primitive unit cell
- the basis of this "crystal" (how many symbols are in the basis)
- 2. a) What are the number of nearest neighbors to each lattice point in the simple cubic, BCC, and FCC lattices.
 - b) If the conventional unit cell has sides of length a, what are the distances between nearest neighbors in each case?

3. This figure shows a "plan view" of a structure of cubic ZnS (zincblende) looking down the z axis. The numbers attached to atoms represent the heights of the atoms above the z=0 plane as expressed in units of a (unlabeled atoms are at z=0 and z=a).

- a) What is the Bravais Lattice type?
- b) Describe the basis.
- c) Given that a = 0.541 nm, calculate the nearest neighbor Zn-Zn, Zn-S, and S-S distances.
- 4. The packing fraction is the percent of the volume of a unit cell that is occupied by atoms. Imagine a FCC lattice with a one atom basis. Determine the packing fraction of this crystal by modelling the atoms as hard spheres that touch nearest neighbours.