Skewed regression and the PC prior for the skewness

Outline

- Introduction
- Probit and skew probit regression
- Issues
 - Standardizing Issue 1
 - What is an intercept? Issue 2
 - Skewness parameter Issue 3
- PC prior for the skewness
- Numerical studies
 - Binary regression skewness identification
 - Intercept reformulation

Introduction

- Symmetric $\xrightarrow{\text{skewness parameter}}$ Non-symmetric
- A continuous random variable X, follows a skew-normal (SN) distribution with location, scale and skewness(shape) parameters ξ, ω and α , respectively, if the probability density function (pdf) is as follows:

$$g(x) = \frac{2}{\omega} \phi\left(\frac{x-\xi}{\omega}\right) \Phi\left[\alpha\left(\frac{x-\xi}{\omega}\right)\right],$$

with $E[X] = \xi + \omega \delta \sqrt{2/\pi}$ and $V[X] = \omega^2 (1 - 2\delta^2/\pi)$, where $\delta = \alpha/\sqrt{1 + \alpha^2}$.

Skew probit regression

$$y_i \sim \text{Binomial}(N_i, p_i)$$

 $p_i = G(\eta_i), i = 1, ..., n$

where $G(\cdot)$ is the CDF of the Skew-Normal that depends on (ξ, ω, α) .

What are others (most) doing?

- $\xi = 0, \omega = 1$ like in the probit case
- What is the implication?

$$E[X] = \alpha \sqrt{\frac{2}{\pi(1+\alpha^2)}},$$

and variance

$$V[X] = 1 - \frac{2\alpha^2}{\pi(1+\alpha^2)},$$

5/18

Anchored link function

$$E[X] = 0, V[X] = 1$$

$$F(y|\alpha) = \int_{-\infty}^{y} f(x|\alpha) \, dx$$

where

$$f(x|\alpha) = \frac{2}{\omega(\alpha)} \phi\left(\frac{x - \xi(\alpha)}{\omega(\alpha)}\right) \Phi\left[\alpha\left(\frac{x - \xi(\alpha)}{\omega(\alpha)}\right)\right],$$
$$\xi(\alpha) = -\omega\alpha\sqrt{\frac{2}{\pi(1 + \alpha^2)}},$$

and

$$\omega(\alpha) = \sqrt{\left(1 - \frac{2\alpha^2}{\pi(1 + \alpha^2)}\right)^{-1}}.$$

6/18

Identifiability

Most have remarked that when there is no continuous covariate then the intercept and skewness parameters are unidentifiable.

 Solution? Cannot do skew probit regression without continuous covariates.

What is an intercept?

$$\eta_i = \beta_0 + \beta' X_i + \sum_{k=1}^K f^k(Z_i),$$
(1)

Consider probit regression with one centered covariate *X*,

Probit regression:

$$p = \text{Prob}[Y = 1] = \Phi(\beta_0 + \beta_1 X).$$

Now if $\beta_1 X = 0$, then

$$q = \text{Prob}[Y = 1] = \Phi(\beta_0),$$

What is an intercept?

Consider skew probit regression with one centered covariate X,

• Skew probit regression:

$$p = \text{Prob}[Y = 1] = F(\beta_0 + \beta_1 X | \alpha).$$

So if $\beta_1 X = 0$ then

$$q = \text{Prob}[Y = 1] = F(\beta_0 | \alpha)$$

So redefine

$$\beta_0 = F^{-1}(q|\alpha)$$

Priors for α

$$g(x) = \frac{2}{\omega} \phi\left(\frac{x-\xi}{\omega}\right) \Phi\left[\alpha\left(\frac{x-\xi}{\omega}\right)\right], \quad \alpha \in \Re$$

KLD between $SN(\alpha)$ and N

$$KLD(\alpha) = \int f(x|\alpha) \log \frac{f(x|\alpha)}{f(x|\alpha=0)} dx$$

$$\approx c_1 \alpha^6 + c_2 \alpha^8 + c_3 \alpha^{10}.$$
(2)

So the estimator of α would be $n^{\frac{1}{6}}$ consistent? Rather consider $\gamma=\alpha^3$.

KLD between $SN(\alpha)$ and N

$$\mathsf{KLD}(\alpha) = \int f(x|\alpha) \log \frac{f(x|\alpha)}{f(x|\alpha=0)} dx$$

$$\approx c_1 \alpha^6 + c_2 \alpha^8 + c_3 \alpha^{10}. \tag{2}$$

So the estimator of α would be $n^{\frac{1}{6}}$ consistent? Rather consider $\gamma = \alpha^3$.

What does this mean?

KLD between $SN(\alpha)$ and N

$$\mathsf{KLD}(\alpha) = \int f(x|\alpha) \log \frac{f(x|\alpha)}{f(x|\alpha=0)} dx$$

$$\approx c_1 \alpha^6 + c_2 \alpha^8 + c_3 \alpha^{10}. \tag{2}$$

So the estimator of α would be $n^{\frac{1}{6}}$ consistent? Rather consider $\gamma = \alpha^3$.

What does this mean?

PC prior for $\alpha/\gamma/\gamma_1$

$$\gamma_1 = \frac{(4-\pi)\left(\sqrt{\frac{2\delta^2}{\pi}}\right)^3}{2(1-\frac{2\delta^2}{\pi})^{\frac{3}{2}}},$$
 (3)

where $\delta = \frac{\alpha}{\sqrt{1+\alpha^2}}$ and $-0.99527 < \gamma_1 < 0.99527$.

PC prior for γ_1

13/18

$PC \ prior \ for \ \alpha$

Bernoulli regression

Here we focus our attention on samples of size 200 of binary trials, and the scenario's we consider are:

We consider the PC prior as well as the Gaussian prior for the skewness parameter.

Results for binary trials

Figure: 95% credible intervals for γ_1 with $n_i = 1$ and $\gamma_1 = -\frac{2}{3}$ (left) or $\gamma_1 = 0$ (middle). Coverage probabilities for γ_1 under scenario 1 as N_i increases (right)

Old vs new intercept

$$q = 0.4, \beta_1 = 0.1, \gamma_1 = -\frac{2}{3} \rightarrow \beta_0 = -0.125$$

