RELACIONES DE EQUIVALENCIA

Def

Sea $R \subseteq A \times A$ una relación binaria

- 1. R se llama **reflexiva** o decimos que verifica la propiedad reflexiva sii $\forall x \in A, xRx$ (RF)
- 2. R se llama **simétrica** o decimos que verifica la propiedad simétrica sii $\forall x, y \in A, xRy \Longrightarrow yRx \text{ (SM)}$
- 3. R se llama **transitiva** o decimos que verifica la propiedad transitiva sii $\forall x, y, z \in A, xRy, yRz \Longrightarrow xRz$ (TR)

■ Ej.

 $\overline{\text{Sea}} \ A = \{1, 2, 3\}$

1. $R_1 = \{(1,1), (1,2), (2,3), (2,2)\}$

no es reflexiva

$$R_2 = \{(1,1), (2,2), (3,3), (3,2)\}$$

es reflexiva

2. $R_1 = \{(1,2), (2,1), (2,2), (2,3)\}$

no es simétrica

$$R_2 = \{(1,2), (2,1), (2,2), (2,3), (3,2)\}$$

es simétrica

3. $R_1 = \{(1,2), (2,3), (2,2)\}$ no es transitiva

$$R_2 = \{(1,1), (2,3), (1,3), (2,2), (3,2), (1,2), (3,3)\}$$
 es transitiva

■ Def.

 $R \subseteq A \times A$ es una **relación de equivalencia** sii es reflexiva, simétrica y transitiva.

■ Ej.

 $\overline{\text{Sea}} \ A = \{1, 2, 3\}$

- 1. $R = \{(1,1), (2,2), (3,3), (3,1), (1,3)\}$ es una relación de equivalencia.
- 2. $A = \{X | X \neq \emptyset, X \subseteq \mathbb{N}\}$

$$XR \ Y \Longleftrightarrow X \cap Y \neq \emptyset$$

a) R es reflexiva:

$$XRX \Longleftrightarrow X \cap X = X \neq \emptyset \ \forall X \in A$$

b) R es simétrica:

$$XRY \iff X \cap Y \neq \emptyset \iff Y \cap X \neq \emptyset \iff YRX$$

c) R no es transitiva:

$$XRY,\ YRZ \Longrightarrow XRZ$$
 Contraejemplo: $X = \{1,2\}$ $Y = \{2,4\}$ $Z = \{4,5\}$ $X \cap Y = \{2\} \neq \emptyset \Longleftrightarrow XRY$ $Y \cap Z = \{4\} \neq \emptyset \Longleftrightarrow YRZ$ pero $X \cap Z = \emptyset \Longleftrightarrow X$ RZ

Clases de Equivalencia.

■ Def.

Sea R una relación de equivalencia sobre A. $\forall x \in A$, la clase de equivalencia de x se define como

$$[x]_R = \{ y \in A | xRy \}$$

Si $b \in [a]_R$, b se dice que es un **representante** de la clase de equivalencia. Todos los elementos de la clase de equivalencia son representantes de la misma.

■ Ej.1

R relación de equivalencia sobre \mathbb{Z} :

$$aRb \iff a = b \lor a = -b$$

$$[a]_R = \{a, -a\}$$

$$[0]_R = \{0\}$$

 $[7]_R = \{7, -7\}$ 7 y -7 son ambos representantes de [7].

■ Ej.2

 \overline{R} relación de equivalencia sobre \mathbb{Z} :

$$R = \{(a, b) | a \equiv_m b\}$$
 $a \equiv_m b \iff m / (a - b)$

$$[a]_m = \{.., a - 2m, a - m, a, a + m, a + 2m, ..\}$$

$$m-1$$
 clases equiv.: $[0]_m, [1]_m, \ldots, [m-1]_m$

Todo $n \in \mathbb{N}$ pertenece a **una y sólo una** de las clases ya que $n = m \cdot q + r$ y $0 \le r < m$ es **único**. $[n]_m = [r]_m \quad (n - r = m \cdot q)$

Si
$$m = 4$$
 $[0]_4 = \{\dots, -8, -4, 0, 4, 8, \dots\}$
 $[1]_4 = \{\dots, -7, -3, 1, 5, 9, \dots\}$
 $[2]_4 = \{\dots, -6, -2, 2, 6, 10, \dots\}$
 $[3]_4 = \{\dots, -5, -1, 3, 7, 11, \dots\}$

Hay cuatro clases de equivalencia:

$$[4]_4 = [0]_m$$

$$[5]_4 = [1]_m$$

$$[23]_4 = [3]_m \quad (23 = 4 \cdot 5 + 3)$$

$$[14]_4 = [2]_m \quad (14 = 4 \cdot 3 + 2)$$

■ Teorema

Sea R una relación de equivalencia sobre A. Son equivalentes:

- 1. aRb
- 2. [a] = [b]
- 3. $[a] \cap [b] \neq \emptyset$

$$a \mathbb{R}b \iff [a] \neq [b] \iff [a] \cap [b] = \emptyset$$

Dem.

- $1) \Longrightarrow 2) \Longrightarrow 3) \Longrightarrow 1)$
 - 1) \Longrightarrow 2) $[a] \subseteq [b]$ $[a] = \{y \in A | aRy\}$ $\forall x \in [a] \quad aRx \Longrightarrow xRa, \text{ tambi\'en } aRb \Longrightarrow xRb \Longrightarrow bRx \Longrightarrow x \in [b]$ Sim Tr Sim

$$b] \subseteq [a] \\ \forall x \in [b], \quad bRx, aRb \Longrightarrow aRx \Longrightarrow x \in [a] \\ \text{Tr}$$

- 2) \Longrightarrow 3) $[a] = [b] \Longrightarrow [a] \cap [b] = [a] \neq \emptyset$ pues $a \in [a]$ ya que aRa por la propiedad reflexiva.
- 3) \Longrightarrow 1) $[a] \cap [b] \neq \emptyset \implies \exists x, x \in [a] \cap [b] \implies x \in [a], x \in [b] \implies aRx, bRx \implies aRx, xRb \implies aRb$ Sim Tr

■ <u>Def.</u>

Sea R relación de equivalencia sobre A. El Conjunto Cociente de A con respecto a R se define como

$$A/R = \{[a]|a \in A\}$$

- Ej. $\overline{aRb} \iff a \equiv_m b$ $\mathbb{Z}/\equiv_m = \{[0], [1], \dots, [m-1]\} = \mathbb{Z}/(m)$

 $xRy \iff x, y$ tienen los mismos divisores primos.

$$6 = 2 \cdot 3 \qquad \qquad 40 = 2^3 \cdot 5$$

$$10 = 2 \cdot 5 441 = 3^2 \cdot 7^2$$

$$12 = 2^2 \cdot 3 \qquad \qquad 1323 = 3^3 \cdot 7^2$$

$$18 = 2 \cdot 3^2$$

$$21 = 3 \cdot 7$$

$$[6] = \{6, 12, 18\}$$
 $[10] = \{10, 40\}$ $[21] = \{21, 441, 1323\}$

$$[6] = [12] = [18]$$
 $[10] = [40]$ $[21] = [441] = [1323]$

$$A/R = \{[6], [10], [21]\}$$

■ Def.

Sea $A \neq \emptyset$ un conjunto y $\mathcal{C} \subseteq \mathcal{P}(\mathcal{A})$. Decimos que \mathcal{C} es una **partición** de A sii:

1.
$$C \neq \emptyset$$
 for all $C \in \mathcal{C}$.

2.
$$C, C' \in \mathcal{C}, C \neq C' \Longrightarrow C \cap C' = \emptyset$$

3.
$$\bigcup_{C \in \mathcal{C}} C = A$$

■ Teorema

R relación de equivalencia sobre $A, A \neq \emptyset$. A/R es una partición de A. \mathcal{C} partición de $A \Longrightarrow \exists R$ sobre A relación equiv. única t.q. $A/R = \mathcal{C}$.

Dem.

 \Longrightarrow)

En el teorema anterior hemos demostrado:

$$[a] \neq [b] \iff [a] \cap [b] = \emptyset$$

$$a \in [a] \ \forall a \in A \implies \bigcup_{a \in A} [a] = A$$

luego A/R es una partición of A.

 \Longleftarrow

Sea \mathcal{C} una partición de A.

Definimos: $xRy \iff C_x = C_y$ donde C_x es el único elemento de \mathcal{C} tal que $x \in C_x$ (si $C_x \neq C_y$, $C_x \cap C_y = \emptyset$)

 ${\cal R}$ es trivialmente reflexiva, simétrica y transitiva.

$$xRx \iff C_x = C_x$$

$$xRy \iff C_x = C_y \implies C_y = C_x \iff yRx$$

$$xRy, yRz \iff C_x = C_y, C_y = C_z \implies C_x = C_z \iff xRz$$

$$[x]_R = \{y \in A | xRy\} = \{y \in A | C_x = C_y\} \stackrel{?}{=} C_x$$

Demostremos $[x] \subseteq C_x$ y $C_x \subseteq [x]$.

Sea
$$y \in [x], xRy \Longrightarrow C_x = C_y$$
. Como $y \in C_y = C_x, y \in C_x$

Sea
$$y \in C_x$$
, como $y \in C_y$, $C_x \cap C_y \neq \emptyset \implies C_x = C_y \implies xRy \implies y \in [x]$.

Luego
$$A/R = \{[x]|x \in A\} = \bigcup C_x = \mathcal{C}.$$

R es única.

Sea R' otra relación de equivalencia tal que $A/R'=\mathcal{C}=A/R.$

$$xR'y \iff [x]_{R'} = [y]_{R'} \iff C_x = C_y \iff xRy$$

 C_x es el único elemento $C \in \mathcal{C}$ tal que $x \in C$.

En el ejemplo anterior:

 $\mathcal{C} = \{\{6,12,18\},\{10,40\},\{21,441,1323\}\}$ es una partición de A.

