

Graph Theory

子图

 $G=\langle V, E \rangle$, $G'=\langle V', E' \rangle$

- (1) V ' ⊆V 且E ' ⊆E ,则称G' 为G的子图,记为G'⊆G , 称G为G'的母图;
- (2) 若G′⊆G且V′=V,则称G′为G的生成子图;
- (3) 若V′⊂V或E′⊂E, 称G′为G的真子图;
- (4) V′(V′⊂V且V′≠Ø)的导出子图,记作G[V′];
- (5) E'(E'⊂E且E'≠Ø)的导出子图,记作G[E'].

例:子图

例: 画出K4的所有非同构的生成子图

m	0	1	2	3	4	5	6	
	0 0	o o	·					

补图

设 $G=\langle V,E\rangle$ 为n阶无向简单图,以V为顶点集,以所有使G成为完全图 K_n 的添加边组成的集合为边集的图,称为G的补图,记作 \overline{G} .

若 $G\cong \overline{G}$,则称G是自补图.

G

 \overline{G}

2、图的连通性

概念:

通路,回路,简单通路,简单回路(迹)初级通路(路径),初级回路(圈)

点连通,连通图,点割集,割点,边割集,割边

点连通度,边连通度

弱连通图,单向连通图,强连通图

二部图 (二分图)

通路与回路

给定图 $G=\langle V, E \rangle$ (无向或有向的),G中顶点与边的交替序列 $\Gamma = v_0 e_1 v_1 e_2 \cdots e_I v_I$ 称为从 v_0 到 v_1 的通路,其中 v_{i-1} , v_i 是 e_i 的端点.;若 $v_0=v_I$, Γ 为回路。 Γ 中的边数称为通路的长度.

- 简单通路与简单回路: 所有边各异。
- 初级通路(路径)与初级回路(圈): Γ 中所有顶点各异 ($v_0=v_1$ 除外),所有边也各异
- 复杂通路与复杂回路: 有边重复出现。

几点说明

表示法

- ① 定义表示法
- ② 只用边表示法
- ③ 只用顶点表示法(在简单图中)
- ④ 混合表示法

环(长为1的圈)的长度为1 两条平行边构成的圈长度为2 无向简单图中,圈长≥3 有向简单图中圈的长度≥2

通路与回路的长度

定理 在n 阶图G中,若从顶点 v_i 到 v_j ($v_i \neq v_j$)存在通路,则从 v_i 到 v_j 存在长度小于或等于n-1 的通路.

推论 在n 阶图G中,若从顶点 v_i 到 v_j ($v_i \neq v_j$) 存在通路,则从 v_i 到 v_j 存在长度小于或等于n-1的初级通路(路径).

定理 在一个n 阶图G中,若存在 v_i 到自身的回路,则一定存在 v_i 到自身长度小于或等于 n 的回路.

推论 在一个n 阶图G中,若存在 v_i 到自身的简单回路,则一定存在长度小于或等于n 的初级回路.

顶点的连通性

 $G=\langle V,E\rangle$ 为无向图,若 v_i 与 v_j 之间有通路,则称 v_i 与 v_j 是 连通的,记为 $v_i\sim v_j$ 。

注: ~是V上的等价关系 $R=\{\langle u,v\rangle | u,v \in V$ 且 $u\sim v\}$

图的连通性

- ① 若 $\forall u,v \in V$, $u \sim v$,则称G是连通的;
- ② $V/R=\{V_1,V_2,...,V_k\}$,称 $G[V_1],G[V_2],...,G[V_k]$ 为连通分支,其个数称为连通分支数,记为p(G)。

短程线与距离

- ① u与v之间的短程线: u~v, u与v之间长度最短的通路
- ② u与v之间的距离: d(u,v)——短程线的长度

d(u,v)的性质

$$d(u,v) \ge 0$$
, $u \ne v$ 时 $d(u,v) = \infty$
 $d(u,v) = d(v,u)$

 $d(u,v)+d(v,w)\geq d(u,w)$

图的运算

删除顶点及删除边

G-v ——从G中将v及关联的边去掉

G-V'——从G中删除V'中所有的顶点

G-e ——将e从G中去掉

G-E'——删除E'中所有边

点割集与边割集

点割集与割点

$$G=, V'\subset V$$
 V' 为点割集—— $p(G-V')>p(G)$,且对任意 $V''\subset V'$ 均有 $p(G-V'')=p(G)$. v 为割点—— $\{v\}$ 为点割集

边割集与割边

$$G=,E'\subseteq E$$

 E' 是边割集—— $p(G-E')>p(G)$ 且有极小性
 e 是割边(桥)—— $\{e\}$ 为边割集

例:

- (1) $\{v_1,v_4\}$, $\{v_6\}$ 是点割集, v_6 是割点. $\{v_2,v_5\}$ 是点割集吗?
- (2) $\{e_1,e_2\}$, $\{e_1,e_3,e_5,e_6\}$, $\{e_8\}$ 等是边割集, e_8 是桥。 $\{e_7,e_9,e_5,e_6\}$ 是边割集吗?

点连通度

G为连通非完全图

- (1) 点连通度— $\kappa(G) = \min\{ |V'| | V' > D \leq 1 \}$ 规定
 - $\kappa(K_n) = n-1$
 - 若G非连通, $\kappa(G)=0$
 - (2) 若 $\kappa(G)$ ≥k,则称G为 k-连通图

例:

图中,κ=1,它是1-连通图。

边连通度

设G为连通图

边连通度—— $\lambda(G) = \min\{|E'| \mid E'$ 为边割集}

- 规定: 若G非连通,则 $\lambda(G) = 0$

若 $\lambda(G)$ ≥r,则称G是r 边-连通图

例:

图中, $\lambda=1$,它是 1边-连通图。

κ, λ, δ之间的关系 定理 $κ(G) \le λ(G) \le δ(G)$

证明思路:

- (1) $\lambda(G) \leq \delta(G)$
- (2) $\kappa(G) \leq \lambda(G)$

有向图的连通性

D=<V,E>为有向图

$$v_i \rightarrow v_j \ (v_i \, \text{可达} \, v_j)$$
: 存在从 $v_i \, \text{到} v_j \, \text{有通路}$ $v_i \leftrightarrow v_j \ (v_i \, \text{与} v_j \, \text{相互可达})$: $v_i \rightarrow v_j \, \text{且} v_j \rightarrow v_i$

性质

- \rightarrow 具有自反性 $(v_i \rightarrow v_i)$ 、传递性
- ↔具有自反性、对称性、传递性

v_i 到 v_i 的短程线与距离

类似于无向图中,只需注意距离表示法的不同 (无向图中 $d(v_i,v_j)$,有向图中 $d< v_i,v_j>$)及 $d< v_i,v_j>$ 无对称性

有向图的连通性

注: 强连通⇒单向连通⇒弱连通

例 1 2 1 2 2 1 2 2 4 3 4 3 3 4 3 3 3 3 4 9 连通

有向图的连通性判别法

- (1) D强连通当且仅当D中存在经过每个顶点至少一次的回路;
- (2) D单向连通当且仅当D中存在经过每个顶点至少一次的通路。

二部图

设 $G=\langle V,E\rangle$ 为一个无向图,若能将 V分成 V_1 和 V_2 ($V_1\cup V_2=V$, $V_1\cap V_2=\varnothing$),使得 G 中的每条边的两个端点都是一个属于 V_1 ,另一个属于 V_2 ,则称 G 为二部图 (或称二分图、偶图等),称 V_1 和 V_2 为互补顶点子集,常将二部图G记为 $\langle V_1,V_2,E\rangle$.

特殊地,若G是简单二部图, V_1 中每个顶点均与 V_2 中所有的顶点相邻,则称G为完全二部图,记为 $K_{r,s}$,其中 $r=|V_1|$, $s=|V_2|$. 注意,n 阶零图为二部图.

二部图的判别法

定理 无向图G=<V,E>是二部图当且仅当G中无奇圈。

例:由定理可知下列各图都是二部图,哪些是完全二部图?

3、图的矩阵表示

概念:

关联矩阵, 邻接矩阵, 可达矩阵

无向图的关联矩阵(对图无限制)

无向图 $G=\langle V,E\rangle$,|V|=n,|E|=m,令 m_{ij} 为 v_i 与 e_j 的关联次数,称 $(m_{ij})_{n\times m}$ 为G 的关联矩阵,记为M(G).

性质

(1)
$$\sum_{i=1}^{n} m_{ij} = 2$$
 $(j = 1, 2, ..., m)$

(2)
$$\sum_{i=1}^{m} m_{ij} = d(v_i)$$
 (i = 1,2,...,n)

$$(3) \sum_{i,j} m_{ij} = 2m$$

(4) 平行边的列相同

例

G

$$\mathbf{M}(\mathbf{G}) = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$