Algebraic Identities Part 4

Rasmus Söderhielm

November 2021

1 Problems

A Let $a, b, c \in \mathbb{R}$ where $a \neq b$. If $c^3 = b^3 + b^3 + 3abc$, prove that c = a + b.

Proof.

Theorem 1. Let $a,b,c \in \mathbb{R}$ If $a^3+b^3+c^3=3abc \Leftrightarrow a=b=c$ or a+b+c=0

$$b^{3} + b^{3} + 3abc = c^{3}$$

 $b^{3} + b^{3} - c^{3} = -3abc$
 $-a^{3} - b^{3} + c^{3} = 3abc$

Using theorem 1 we can conclude

$$-a = -b = c \qquad \qquad or \qquad \qquad -a - b + c = 0$$
 which is false since
$$c = a + b$$

$$a \neq b$$