Chapter 1—Introduction

MULTIPLE CHOICE

1.	Since 1983 the standard meter has been defined in terms of which of the following?
	a. □ specific alloy bar housed at Sevres, France
	b. □ wavelength of light emitted by krypton-86
	c. □ distance from the Earth's equator to the
	North Pole
	d. □the distance light travels in a certain fraction
	of a second
	or a second
	ANS: D PTS: 1 DIF: 1
	TOP: 1.1 Standards of Length, Mass, and Time
2.	Since 1967 the standard definition for the second has been based on which of the following?
	a. □ characteristic frequency of the cesium-133
	atom
	b. □ average solar day
	c. □ sidereal day
	d. □ Greenwich Civil Time
	ANS: A PTS: 1 DIF: 1
	TOP: 1.1 Standards of Length, Mass, and Time
2	
3.	In mechanics, physicists use three basic quantities to derive additional quantities. Mass is one of the three
	quantities. What are the other two?
	a. length and force
	b. □ power and force
	c. □length and time
	d. □ force and time
	ANS: C PTS: 1 DIF: 1
	TOP: 1.1 Standards of Length, Mass, and Time
	TOF. 1.1 Standards of Length, Wass, and Time
4.	The prefixes which are abbreviated p, n, and G represent which of the following?
т.	a. $\Box 10^{-2}$, 10^{-6} , and 10^{15}
	b. $\Box 10^{-9}$, 10^6 , and 10^{10}
	$c.\Box 10^{-12}, 10^{-9}, \text{ and } 10^{9}$
	$d.\Box 10^{-15}, 10^{-6}, \text{ and } 10^{12}$
	ANS: C PTS: 1 DIF: 1
	TOP: 1.1 Standards of Length, Mass, and Time
	TOP. 1.1 Standards of Length, Wass, and Time
5.	The ratio M/m of the prefixes M and m has what value?
٥.	a. $\Box 10^3$
	$b.\Box 10^6$
	$c.\Box 10^9$
	$ ext{d.} \Box 10^{18}$

	ANS: C PTS: 1 DIF: 2 TOP: 1.1 Standards of Length, Mass, and Time
6.	One year is about seconds while one day is exactly seconds. a. $\Box 3.16 \ ' \ 10^7, 86\ 400$ b. $\Box 5.26 \ ' \ 10^5, 86\ 400$ c. $\Box 3.16 \ ' \ 10^7, 8\ 640$ d. $\Box 1.04 \ ' \ 10^6, 36\ 000$
	ANS: A PTS: 1 DIF: 2 TOP: 1.1 Standards of Length, Mass, and Time
7.	The nuclei of atoms contain a. □electrons only. b. □neutrons only. c. □protons and electrons. d. □protons and neutrons.
	ANS: D PTS: 1 DIF: 1 TOP: 1.2 The Building Blocks of Matter
8.	When was the existence of the neutron confirmed? a. □in ancient times b. □in 1895 c. □in 1932 d. □in 1969
	ANS: C PTS: 1 DIF: 1 TOP: 1.2 The Building Blocks of Matter
9.	The proton contains which of the following combination of quarks? a. \(\text{two up quarks and one down quark} \) b. \(\text{one up quark and two down quarks} \) c. \(\text{one top quark and two bottom quarks} \) d. \(\text{two top quarks and one bottom quark} \)
	ANS: A PTS: 1 DIF: 2 TOP: 1.2 The Building Blocks of Matter
10.	Which formula is dimensionally consistent with an expression yielding a value for velocity? (a is acceleration, x is distance, and t is time) a. $\Box v/t^2$ b. $\Box vx^2$ c. $\Box v^2/t$ d. $\Box at$
	ANS: D PTS: 1 DIF: 1 TOP: 1.3 Dimensional Analysis
11.	Which expression is dimensionally consistent with an expression that would yield a value for time ⁻¹ ? (v is velocity, x is distance, and t is time)

	$a.\Box v/x$						
	$b.\Box v^2/x$						
	$c.\Box x/t$						
	$d.\Box v^2 t$						
	ANS: A	PTS:	1	DIF:	1	TOP:	1.3 Dimensional Analysis
12.	If the displacement of A, has the dimension a. □ acceleration b. □ length c. □ time d. □ area				locity, v, accord	ding to t	he relation $x = Av$, the constant,
	ANS: C	PTS:	1	DIF:	1	TOP:	1.3 Dimensional Analysis
13.	the units would be: a. □ m.	is often	given in knots.	If a sp	eed of 5 knots	were exp	pressed in the SI system of units,
	b. □ s.						
	c. □ m/s.						
	d. □kg/s.						
	ANS: C	PTS:	1	DIF:	1	TOP:	1.3 Dimensional Analysis
14.	If a is acceleration, vectorect? a. $\Box t = x/v$ b. $\Box a = v^2/x$ c. $\Box v = a/t$ d. $\Box t^2 = 2x/a$	is veloo	city, x is position	on, and	t is time, then	which e	quation is not dimensionally
	ANS: C	PTS:	1	DIF:	1	TOP:	1.3 Dimensional Analysis
15.	Suppose an equation The dimensions of b a. $\Box T^3$, T^4 . b. $\Box 1/T^3$, $1/T^4$. c. $\Box L/T^3$, L/T^4 . d. $\Box L^2 X^3$, $L^2 X^4$.				t, is given by x	$=bt^3+$	$c\ t^4$, where b and c are constants.
	ANS: C	PTS:	1	DIF:	2	TOP:	1.3 Dimensional Analysis
16.	Areas always have d a. □ m², m³ b. □ L², L³ c. □ Both a and b are d. □ No answer is come always."	correct.		volume	es always have	dimensi	ons

17.	Which one of the choices below represents the preferred practice regarding significant figures when
	adding the following: $12.4 + 11 + 67.37 + 4.201$?
	a. □94.971
	b. □94.97
	c. □95.0
	d. □95
	ANS: D PTS: 1 DIF: 1
	TOP: 1.4 Uncertainty in Measurement and Significant Figures
18.	Which one of the choices below represents the preferred practice regarding significant figures when
	multiplying the following: 10.5 ′ 8.8 ′ 3.14?
	a. □ 290
	b. □ 290.136
	c. □ 290.1
	d. □ 300
	ANS: A PTS: 1 DIF: 1
	TOP: 1.4 Uncertainty in Measurement and Significant Figures
19.	Calculate $(0.82 + 0.042)$ ' $(4.4 ' 10^3)$, keeping only significant figures.
	a. □3 800
	b. □ 3 784
	c. □ 3 793
	d. □3 520
	ANS: A PTS: 1 DIF: 1
	TOP: 1.4 Uncertainty in Measurement and Significant Figures
20.	The length and width of a standard sheet of paper is measured, and then the area is found by calculation to
20.	be 93.50 in ² . The number of significant figures in the width measurement must be at least:
	a. \(\sqrt{1}\).
	b.□2.
	c. \(\sigma \).
	d. □4.
	u. □4.
	ANS: D PTS: 1 DIF: 1
	TOP: 1.4 Uncertainty in Measurement and Significant Figures
21.	The number 0.000 17 has how many significant figures?
	$a.\Box 2$
	b. □3
	c
	$d.\Box 6$
	ANS: A PTS: 1 DIF: 2
	TOP: 1.4 Uncertainty in Measurement and Significant Figures

DIF: 1

TOP: 1.3 Dimensional Analysis

PTS: 1

ANS: B

22.	by a six significant figure number yields a number with how many significant figures? a. $\Box 5/6$ b. $\Box 1$ c. $\Box 2$
	d.□11 ANS: C PTS: 1 DIF: 3 TOP: 1.4 Uncertainty in Measurement and Significant Figures
23.	Assume when using a meter stick measuring can be done so that the last significant figure is in the tenth of a millimeter digit. If you are measuring an object with length between 6 and 7 cm, how many significant figures will result if you only use the part of the meter stick between the 1-cm and 9-cm positions? a. \Box 2
	b. □3
	c. \(\prescript{4}
	d. ☐ more than 4
	ANS: B PTS: 1 DIF: 1 TOP: 1.4 Uncertainty in Measurement and Significant Figures
24.	Assume when using a meter stick measuring can be done so that the last significant figure is in the tenth of a millimeter digit. If you are measuring an object with length between 6 and 7 cm, how many significant figures will result if you only use the part of the meter stick between the 82- and 95-cm positions? a. □ 2
	b. □ 3
	c . □4
	d. □ more than 4
	ANS: B PTS: 1 DIF: 2 TOP: 1.4 Uncertainty in Measurement and Significant Figures
25.	Assume when using a meter stick measuring can be done so that the last significant figure is in the tenth of a millimeter digit. If you are measuring an object with length between 25 and 57 cm, how many significant figures will result if you only use the part of the meter stick between the 2- and 95-cm positions? a. \Box 2 b. \Box 3 c. \Box 4 d. \Box more than 4
	d. □ more than 4
	ANS: C PTS: 1 DIF: 2 TOP: 1.4 Uncertainty in Measurement and Significant Figures
26.	How many significant figures does the number 1 700 have?
20.	a. $\Box 2$
	b. □3
	c. \(\prescript{4} \)

	d. □ One cannot tell number is written in be one of the other	n the given form,			
	ANS: D TOP: 1.4 Uncertain	PTS: 1 nty in Measureme	ent and Significant Fig	gures	
27.	the right hand side	nd side is assumed of each of these eduivalent of an	d to have the same nur quations. However, 2 o unlimited number of s	mber of significant figures as the number on of these conversion factors are exact, and thi significant figures when used in calculations	S
	ANS: D	PTS: 1 nty in Measureme	ent and Significant Fig	gures 1.5 Conversion of Units	
28.			me is called the guppy any guppies are in 150	y. Space travelers from Earth have determine) liters? TOP: 1.5 Conversion of Units	ed
29.	On planet Z, the sta	ndard unit of leng	gth is the foose. Ann th	he Astronaut is 5.90 feet tall on earth. She land Rachael is 88 foosi tall. How tall is Rachael	
	ANS: B	PTS: 1	DIF: 2	TOP: 1.5 Conversion of Units	
30.	a speed of 5.00 yard a. □27 500 furlongs b. □13 700 furlongs c. □6 220 furlongs/d d. □2 750 furlongs/d	ds per second. Whe /fortnight /fortnight fortnight fortnight	at is his speed in furlo		at
	ANS: A	PTS: 1	DIF: 2	TOP: 1.5 Conversion of Units	

31.	A cereal box has the is the volume of the a. □0.13 cubic feet b. □0.040 cubic feet c. □0.012 cubic feet d. □0.003 7 cubic feet	box in cubic		m′0.0	070 m. If there a	are 3.28 feet per meter, then	what
	ANS: A	PTS: 1	DIF:	1	TOP:	1.5 Conversion of Units	
32.		light in one y	ear; if the speed		is 3 $'$ 10 8 m/s,	t years. A light year is the about how far is it from our 1.5 Conversion of Units	
33.	A cement truck can a. \Box 1/3 ft ³ /min b. \Box 1.0 ft ³ /min c. \Box 3 ft ³ /min d. \Box 9 ft ³ /min	pour 20 cubio	c yards of cemen	t per ho			
	ANS: D	PTS: 1	DIF:	1	TOP:	1.5 Conversion of Units	
34.	Water flows into a sideep. How long doe a. □32 hours b. □64 hours c. □48 hours d. □24 hours ANS: B				cubic inches)	16 ft wide, 32 ft long and 8.01.5 Conversion of Units	O ft
35.	When NASA was c	ommunicating	g with astronauts	on the ce from	moon, the time Earth to the mo	from sending on the Earth to con. (The speed of radio way	
36.		n is 2.0 ´ 10 ³⁰ ly composed o	kg, and the mass	s of a hy	drogen atom is	$1.67 \cdot 10^{-27}$ kg. If we assum	ıe

	b. □ 3.4 ′ 10 ⁵⁶ atoms						
	c. \square 1.2 ′ 10 ⁵⁷ atoms						
	d. $\Box 2.4 ' 10^{57}$ atoms						
	u. 2.4 10 atoms						
	ANS: C	PTS:	1	DIF:	2	TOP:	1.5 Conversion of Units
37.	The information on a gallon is 231 in^3 . What $a. \square 0.003 6 \text{ in}$						perly applied, is 450 ft ² . One plication?
	b. □ 0.009 0 in						
	c. □ 0.043 in						
	d. □ 0.051 in						
	u.□0.031 III						
	ANS: A	PTS:	1	DIF:	3	TOP:	1.5 Conversion of Units
38.	Assume everyone in there are 270 million weighs 1/16 pound at a. □750 000 tons b. □1.5 million tons	Americ	ans, how man	y tons o	ne soft drink in of aluminum ne	an alur	minum can every two days. If e recycled each year if each can
	c. □ 1.75 million tons						
	d. 3 million tons						
	u. 3 million tons						
	ANS: B TOP: 1.6 Estimates	PTS: and Ord		DIF: ude Cal	2 culations		
39.	A physics class in a 1 a. $\Box 10^2$ b. $\Box 10^3$ c. $\Box 10^4$ d. $\Box 10^5$	arge lec	eture hall has 1	50 stud	ents. The total 1	mass of	the students is about kg.
	ANG	DTC	1	DIE	0		
	ANS: C	PTS:	_	DIF:	2 sulations		
	TOP: 1.6 Estimates	and Ord	uer-or-wragiiiu	ude Car	culations		
40.	An apartment has 110 $a. \square 10^3 \text{ ft}^3$ $b. \square 10^4 \text{ ft}^3$ $c. \square 10^5 \text{ ft}^3$ $d. \square 10^6 \text{ ft}^3$	00 ft ² of	f floor space. V	What is	the approximate	e volum	ne of the apartment?
	ANS: B	PTS:	1	DIF:	2		
	TOP: 1.6 Estimates						
41.	Which point is neares	st the x-	axis?				
	$a.\Box(-3,4)$						
	b. □ (4, 5)						
	c.□(-5, 3)						
	$d.\Box(5, -2)$						

	ANS: D	PTS:	1	DIF:	2	TOP:	1.7 Coordinate Systems
42.	Each edge of a cube the center of the cub		ngth of 25.4 cm	n. What	t is the length of	a diag	onal of the cube going through
	a. □ 25.4 in						
	b. □ 17.3 in						
	c. □ 14.4 in						
	d. □ 10.0 in						
	u. 🗆 10.0 III						
	ANS: B	PTS:	1	DIF:	3	TOP:	1.7 Coordinate Systems
43.	If point A is located	at coord	inates (5, 3) an	d point	B is located at	coordir	nates (-3, 9), what is the distance
	from A to B if the ur						
	a. □ 14 m						
	b. □ 10 m						
	c. □8 m						
	d. □ 17 m						
	u. □17 III						
	ANS: B	PTS:	1	DIF:	2	TOP:	1.7 Coordinate Systems
44.	Δ high fountain of w	vater is i	n the center of	a circul	lar nool of water	r You	walk the circumference of the
тт.					ool and use a protractor to gauge		
	the angle of elevation				_	_	
	a. 17 m	n or the	top of the foun	tanı. 1t	is 33 . How mg	,11 15 1110	o Touritain:
	b.□23 m						
	c. □ 29 m						
	d. □ 34 m						
	ANS: D	PTS:	1	DIF:	3	TOP:	1.8 Trigonometry
45.	A right triangle has s	sides 5.0	m, 12 m, and	13 m. T	The smallest ang	le of th	nis triangle is nearest:
	a. □21°.		· · · · · · · · · · · · · · · · · · ·			,	
	b. □23°.						
	c. □43°.						
		naa thia	is not a misht				
	d. □ Not attainable si	nce uns	is not a right				
	triangle.						
	ANS: B	PTS:	1	DIF:	2	TOP:	1.8 Trigonometry
46.	If $j = 90^{\circ}$ - q, what	is the va	ulue of sin ² i +	sin ² q?	,		
	a. □0		,	i			
	b. □ 1						
	c.□-1						
	d. The answer depe	ends on o					
	•		•				
	ANS: B	PTS:	1	DIF:	2	TOP:	1.8 Trigonometry
47.	A triangle has sides	of lengtl	n 7.0 cm and 25	5 cm. If	the triangle is a	a right t	triangle, which of the following
	could be the length of				6	<i>6</i> .	5 ,
	a. □ 18 cm						

	b. □24 cm								
	c. □27 cm								
	d. □ 32 cm								
	ANS: B	PTS:	1	DIF:	2	TOP:	1.8 Trigonometry		
48.				ack whi	ich is at an angl	le of 10	.0° with respect to the horizontal.		
	How much altitude of a. □86.8 m	ioes it ga	um :						
	b. □88.2 m								
	c. □341 m								
	d. □492 m								
	ANS: A	PTS:	1	DIF:	2	TOP:	1.8 Trigonometry		
49.	Note the expression:	$y = x^2$. V	Which stateme	nt is m	ost consistent w	vith this	expression?		
	$a.\Box$ If y doubles, then						•		
	b. □y is greater than	x.	•						
	$c.\Box$ If x doubles, then	n y doubl	es.						
	$d.\Box$ If x doubles, the	n y quadr	ruples.						
	ANS: D	PTS:	1	DIF:	1	TOP:	Additional Problems		
50.	Note the expression:	$v = A/x^3$. Which stater	ment is	most consistent	t with th	nis expression?		
	Note the expression: $y = A/x^3$. Which statement is most consistent with this expression? a. $\Box y$ is less than A .								
	b. \Box If x is halved, y is	is multipl	lied by eight.						
	c. \Box If x is doubled, y			or of					
	8.		. •						
	$d.\Box y$ is greater than	х.							
	ANS: B	PTS:	1	DIF:	1	TOP:	Additional Problems		
51.	For which of the val	ues belov	$x = x^{3}$						
	$a. \Box x = -1.5$								
	$b.\Box x = 0$								
	$c.\Box x = 1.0$								
	$d.\Box x = 1.5$								
	ANS: A	PTS:	1	DIF:	1	TOP:	Additional Problems		
52.						ne troy o	ounce of gold (volume = 1.611		
	cm ³). What is the thi	ickness o	f the electropl	ated go	old?				
	a. $\Box 2.68 \ \ 10^{-8} \mathrm{m}$								
	b. $\Box 1.34 ' 10^{-9} \mathrm{m}$								
	c. $\Box 1.67 \ ' \ 10^{-6} \mathrm{m}$								
	d. $\Box 3.33 \ ' \ 10^{-7} \ m$								
	ANS: A	PTS:	1	DIF:	2	TOP:	Additional Problems		

53.		ssume tl	nat 30 cm ³ of g	asoline	e is atomized int	o N spł	ne and mix it with air to promote nerical droplets. Each droplet has droplets.
	ANS: D	PTS:	1	DIF:	3	TOP:	Additional Problems
54.		of 2.0 m that of th		rcle has	double the radi	us of th	ne first. The area of the second
	ANS: C	PTS:	1	DIF:	2	TOP:	Additional Problems
55.	Doubling the radius $ \begin{array}{c c} a. \square 2 \\ b. \square 4 \\ c. \square 8 \\ d. \square 8 p \end{array} $ ANS: C	of a sph		DIF:			or of Additional Problems
56.	A room in a house h volume of the room $a \cdot \Box 3 \text{ m}^3$ b. $\Box 30 \text{ m}^3$	as a floo	or area of 120 fo	t². Whi	ch of the follow	ring is r	most likely the approximate
	c. □ 300 m ³						
	d. □3 000 m ³						
	ANS: B	PTS:	1	DIF:	2	TOP:	Conceptual Problems
57.	we expect to be true a. □The equation will b. □The equation will except sometimes in side of the equation c. □The equation will correct. d. □All constants of correct.	for this Il be dim Il be dim Il cases whas mor Il not be	equation? nensionally correspondent the right he than one term dimensionally onality will be	rect. rect and	ound that the ur		nnce. Which of the following can
	ANS: A	PTS:	1	DIF:	1	TOP:	Conceptual Problems

58.	How long has it been that scientists have accepted that the nucleus of the atom consists of neutrons and protons? Think of your answers in terms of order of magnitude.								
	a. □ about a decad	e		-					
	b. □ about a centur	ry							
	c. □ about a thousa	•							
	d. ☐ since Aristotl	e							
	ANS: B	PTS: 1	DIF: 1	1 TOP	: Conceptual Problems				
59.	Consider the sine sine of the angle?	• •	n 30° and 40°.	If the angle were d	oubled, what would happen to the				
	a. ☐ It would doub	le.							
	b. ☐ It would more	than double.							
	c. ☐ It would incre	ase but be less than o	louble.						
	d. ☐ In different ca	d. ☐ In different cases, it could do any of the							
	above.								
	ANS: C	PTS: 1	DIF: 2	2 TOP	: Conceptual Problems				
60.	quantity is known at 20.2. We could would also say it about 200) and 3 a. \square A number wit significant figure.	to have a value between the number as has 3 significant figures, when 1% uncertainty and 3. h 2% uncertainty and 3.	veen 20.4 and 2 20.2 +/- 0.2 a res. If we squa that results?	20.0, and our best ϵ and say that the num	es. For example, suppose a estimate of the value is midrange aber has a 1% uncertainty. We % uncertainty (i.e., 2 parts in				
	-	h 2% uncertainty and	12						
	-	h 1% uncertainty and	12						
	ANS: B	PTS: 1	DIF: 2	2 TOP	: Conceptual Problems				

Chapter 2—Motion in One Dimension

MULTIPLE CHOICE

1.	A change in a physic following? a. $\Box w_i - w_f$ b. $\Box w_f - w_i$ c. $\Box (w_f + w_i)/2$ d. \Box none of the abov		tity w having ir	nitial va	alue w_i and fina	l value	w_f is given by which of the
	ANS: B	PTS:	1	DIF:	1	TOP:	2.1 Displacement
2.	Displacement is which a. □ vector b. □ scalar c. □ magnitude d. □ dimensional						
	ANS: A	PTS:	1	DIF:	1	TOP:	2.1 Displacement
3.	A truck moves 70 m is chosen as the position a. □40 m b. □-40 m c. □280 m d. □-280 m ANS: A		ction, what is t		k's resultant dis	placem	t again a distance of 90 m. If east ent? 2.1 Displacement
4.	Which of the following a. □temperature b. □velocity c. □ acceleration d. □ displacement ANS: A	ng is no	•	DIF:	1	TOP:	2.1 Displacement
5.	In one-dimensional reback to its original per a. □ It is positive. b. □ It is negative. c. □ It is zero. d. □ It can be positive.	lace has	which of the for	eed of a collowing billing.	ng properties?		om one place to another and then 2.2 Velocity
	11110. 11	115.	1	DП.	_	101.	2.2 velocity

6. In one-dimensional motion where the direction is indicated by a plus or minus sign, the average velocity of an object has which of the following properties?

	a. ☐ It is positive.						
	b. ☐ It is negative.						
	c. ☐ It is zero.						
	d. ☐ It can be posi	tive, negative, o	r zero.				
	ANS: D	PTS: 1	DIF:	1	TOP:	2.2 Velocity	
7.						king an additional 50 s. If west age velocity of the object?	is
	d. □ any of the abo	ove					
	ANS: C	PTS: 1	DIF:	1	TOP:	2.2 Velocity	
8.	An object moves chosen as the pos a. □ 0.50 m/s b. □ - 0.50 m/s c. □ 0.73 m/s d. □ 0 m/s					king an additional 50 s. If west	is
	ANS: A	PTS: 1	DIF:	2	TOP:	2.2 Velocity	
9.	A bird, accelerative average velocity? a.□1.7 m/s b.□2.5 m/s c.□3.4 m/s d.□zero ANS: B	•	DIF:		·	ent of 28 m in 11 s. What is the 2.2 Velocity	
10.	A cheetah can rur full speed, with the a.□12.6 s b.□25.2 s c.□6.30 s d.□10.7 s					nr. If both animals are running a atches its prey?	t
	ANS: A	PTS: 1	DIF:	2	TOP:	2.2 Velocity	
11.	A cheetah can ma a gazelle running a. □100 m b. □167 m c. □70.0 m d. □83.0 m					ls. What minimum distance mu	st

	ANS: B	PTS:	1	DIF:	3	TOP:	2.2 Velocity
12.	Jeff throws a ball stra	aight un	For which city	lation i	is the vertical ve	alocity z	varo?
12.	a. □ on the way up	argin up	. Por which sitt	iation	is the vertical ve	elocity Z	cio:
	b. □ at the top	1					
	c. □ on the way back						
	d. □ none of the above	e					
	ANS: B	PTS:	1	DIF:	1	TOP:	2.2 Velocity
13.	A railroad train trave for the next 1 000 m. a. □65.0 m/s b. □61.5 m/s c. □63.7 m/s d. □70.0 m/s					for 1 000	0 m and then travels at 50.0 m/s
	ANS: B	PTS:	1	DIF:	2	TOP:	2.2 Velocity
14.	speed of the Earth in a. □9.28 miles/s b. □18.6 miles/s c. □27.9 miles/s d. □37.2 miles/s	its orbi	t about the sun.				$15 \cdot 10^7$ s in one year, find the
	ANS: B	PTS:	1	DIF:	2	TOP:	2.2 Velocity
15.	A ball is thrown vertiposition), its average a. □19.6 m/s. b. □9.80 m/s. c. □4.90 m/s. d. □not given.		•	m/s. Fo	or its complete t	rip (up a	and back down to the starting
	ANS: D	PTS:	1	DIF:	2	TOP:	2.2 Velocity
16.	Changing the positive which of the following a. □ velocity b. □ average velocity c. □ speed d. □ displacement			ce fran	ne to the opposi	te direct	tion does not change the sign of
	ANS: C	PTS:	1	DIF:	1	TOP:	2.2 Velocity
17.	On a position versus are separated in time a. □ average steepness b. □ average velocity	by the				-	points on the plotted curve that es?

	c. □instantaneous v	elocity					
	d. □ average acceler	ation					
	ANS: B	PTS: 1	DIF	:	1	TOP:	2.2 Velocity
18.	Consider the magnitrip. Which of the fa. b. c. d. none of the above	following is		nc	l the ma	agnitude of the	average velocity, , for the same
	ANS: B	PTS: 1	TOF	:	2.2 Ve	elocity	
19.	A European sports $8.00 \text{ s. If so, what i}$ $a. \square 3.47 \text{ m/s}^2$ $b. \square 6.82 \text{ m/s}^2$ $c. \square 11.4 \text{ m/s}^2$ $d. \square 17.4 \text{ m/s}^2$						ant rate from rest to 100 km/hr in
	ANS: A	PTS: 1	DIF	:	2	TOP:	2.3 Acceleration
20.				ne		00 s of accelera	constant rate from rest to a speed tion? (<i>Hint:</i> First convert the 2.3 Acceleration
21.	An x vs. t graph is the velocity of the a. the slope of the b. the ball has sto c. the acceleration d. the curve is at x	curve is not pped. is constant	We can be positive n-zero.	re		t = 5 s,	earts at the origin and at $t = 5$ s 2.3 Acceleration
22.	A v vs. t graph is deacceleration of the a. \Box the slope of the b. \Box the velocity of c. \Box the curve is not d. \Box the curve is at v	ball is zero. curve is not the ball is not crossing the	We know that at an an-zero. ot changing.	<i>t</i> =			rts at the origin and at $t = 5$ s the 2.3 Acceleration
	1110. 1	110. 1	DII	•	1	101.	2.5 11000101411011

23.	The value of an object's acceleration may be characterized in equivalent words by which of the following?								
	a. □ displacement								
	b. □rate of change	of displacement							
	c. □ velocity								
	d. □ rate of change	of velocity							
	u. Tate of change	or velocity							
	ANS: D	PTS: 1	DIF: 1	TOP: 2.3 Acceleration					
24.	camera records thi		s in contact with the	ll and rebounds at 22.0 m/s. A high-speed wall for 3.50 ms, what is the average accelera-					
	ANS: A	PTS: 1	DIF: 2	TOP: 2.3 Acceleration					
25.	at one point? a. □Its velocity is to b. □Its velocity is to c. □It	more than its accelerates than its accelerates as its accelerate equal to its accelerates accelerate equal to its accelerates accelerate equal to its accelerates accelerates accelerate equal to its accelerates accelerates accelerates accelerates accelerates accelerates accelerates accelerate accelerate equal to its accelerates a	ration. ation. leration.	ich of the following statements is true, at least					
	ANS: D	PTS: 1	DIF: 2	TOP: 2.3 Acceleration					
26.	a. □ the velocity.b. □ the rate of chac. □ the rate of cha	nge of acceleration. nge of displacement the position vs. time	i.						
	ANS: B	PTS: 1	DIF: 2	TOP: 2.3 Acceleration					
27.	a. □ the speed of the b. □ the average vec. □ the acceleration	images is constant, e car locity of the car		moving along a straight road. If the time ng cannot be positive?					
	ANS: C	PTS: 1	DIF: 2	TOP: 2.4 Motion Diagrams					
28.	image to be diminare negative? a. □ the speed of the	ishing. If the directi e car		shows the interval between each successive ear is taken as positive, which of the following					
	b. □the average ve	locity of the car							

c. □the average a		of the car				
ANS: C	PTS:	1	DIF:	2	TOP:	2.4 Motion Diagrams
						hill with a constant acceleration all's velocity at the bottom of th
ANS: D TOP: 2.5 One-	PTS: Dimensional		DIF: onstan	2 at Acceler	ration	
A cart is given a the magnitude of a. □10 m b. □55 m c. □66 m d. □80 m		splacement dur				cceleration of 2.0 m/s ² . What is on?
TOP: 2.5 One-	Dimensional	Motion with C	onstan	t Accele	ation	
						m/s while undergoing a straight alue may be assumed to be
ANS: C TOP: 2.5 One-	PTS: Dimensional		DIF: onstan	2 at Acceler	ration	
drag chute and a	pplying its b	rakes. While re	ducing	g its velo	city back to ze	ve acceleration by releasing a ero, its acceleration along a ergo during this deceleration

33. A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 s. What is the final velocity after 11 s?

	a. □ 1.8 m/s
	b. □ 3.2 m/s
	c. □ 5.1 m/s
	d. □ zero
	ANS: C PTS: 1 DIF: 2
	TOP: 2.5 One-Dimensional Motion with Constant Acceleration
34.	A bird, accelerating from rest at a constant rate, experiences a displacement of 28 m in 11 s. What is its acceleration? a. $\square 0.21 \text{ m/s}^2$ b. $\square 0.46 \text{ m/s}^2$ c. $\square 0.64 \text{ m/s}^2$ d. $\square 0.78 \text{ m/s}^2$
	ANS: B PTS: 1 DIF: 2
	TOP: 2.5 One-Dimensional Motion with Constant Acceleration
35.	A European sports car dealer claims that his product will accelerate at a constant rate from rest to a speed of 100 km/hr in 8.00 s . What distance will the sports car travel during the 8 s acceleration period? (<i>Hint:</i> First convert speed to m/s.) a. $\Box 55.5 \text{ m}$ b. $\Box 77.7 \text{ m}$ c. $\Box 111 \text{ m}$ d. $\Box 222 \text{ m}$
	ANS: C PTS: 1 DIF: 2 TOP: 2.5 One-Dimensional Motion with Constant Acceleration
36.	Norma releases a bowling ball from rest; it rolls down a ramp with constant acceleration. After half a second it has traveled 0.75 m. How far has it traveled after two seconds?
	a. □ 1.2 m
	b. □ 4.7 m
	c. □ 9.0 m
	d. □ 12 m
	U 12 III
	ANS: D PTS: 1 DIF: 2 TOP: 2.5 One-Dimensional Motion with Constant Acceleration
37.	An automobile driver puts on the brakes and decelerates from 30.0 m/s to zero in 10.0 s. What distance does the car travel? a. \Box 150 m b. \Box 196 m c. \Box 336 m d. \Box 392 m
	ANG A DEG 1 DE C
	ANS: A PTS: 1 DIF: 2 TOP: 2.5 One-Dimensional Motion with Constant Acceleration

38. A drag racer starts from rest and accelerates at 10 m/s^2 for the entire distance of 400 m (1/4 mile). What is the velocity of the race car at the end of the run?

	a. □45 m/s	
	b. □ 89 m/s	
	c.□130 m/s	
	d. □ 180 m/s	
	ANS: B PTS: 1 DIF: 2 TOP: 2.5 One-Dimensional Motion with Constant	2 Acceleration
39.	A Cessna aircraft has a lift-off speed of 120 km/hr. If the aircraft is to be airborne after a take-off run of $a.\square 2.31 \text{ m/s}^2$ $b.\square 3.63 \text{ m/s}^2$	What minimum constant acceleration does this require 240 m?
	$c. \square 4.63 \text{ m/s}^2$	
	$d. \square 5.55 \text{ m/s}^2$	
	ANS: A PTS: 1 DIF: 2 TOP: 2.5 One-Dimensional Motion with Constant	2 Acceleration
40.	If the displacement of an object is given in SI units bacceleration are, respectively:	by $Dx = -3 t + 4 t^2$, at $t = 2$ s its velocity and
	a. □ positive, positive.	
	b. □ positive, negative.	
	c. ☐ negative, negative.	
	d. □ negative, positive.	
	ANS: A PTS: 1 DIF: 3	
	TOP: 2.5 One-Dimensional Motion with Constant	Acceleration
41	In the case of constant acceleration the average wal-	situs asuala dha inatantana asua sala situs
41.		ocity equals the histalitaneous velocity:
	a. □ at the beginning of the time interval.	
	b. □ at the end of the time interval.	
	c. □ half-way through the time interval.	
	d. ☐ three-fourths of the way through the time	
	interval.	
	ANS: C PTS: 1 DIF: 2	2
	TOP: 2.5 One-Dimensional Motion with Constant	
42.	acceleration, having started from rest and after a cer students are to find the average velocity. Both studes intermediate answers as well as the final answer pro- to be used in the next step of calculation as they pro-	nts are required to show their work and round any perly to 3 significant figures. Each rounded answer is ceed. For the final answer, Student A uses the formula ormula getting the result 7.29 m/s. Assuming neither
	b. Student B	
	c. ☐ Under significant figure rounding, both	
	answers are equally as good.	
	d. ☐ The described result cannot happen; this is	
	The described result cannot happen, this is	

	physics after all.							
	ANS: C TOP: 2.5 One-Di	PTS: mensional		DIF: Constar	2 nt Accel	eration		
43.	A rock is thrown s displacement after a. □28 m b. □49 m c. □55 m d. □64 m						a cliff. What i	is the rock's
	ANS: B	PTS:	1	DIF:	2	TOP:	2.6 Freely-F	Falling Objects
44.	A rock is thrown s reach before starti a. □9.80 m b. □19.6 m c. □24.5 m d. □30.6 m							
	ANS: D	PTS:	1	DIF:	2	TOP:	2.6 Freely-F	Falling Objects
45.	A rock is thrown s rock's being throw a. □4.00 s b. □5.00 s c. □8.00 s d. □10.0 s ANS: A		eturn to the o			oint? (Accelera	tion due to gr	
46.	Two objects of different ground. If air resists a. The greater materials b. Both objects have conclusion information given	stance is ne ass hits the it the grou ass hits the can be ma	egligible, which ground first. and together. ground first.	ch state			of a 20-m towe	er and fall to the
	ANS: B	PTS:	1	DIF:	2	TOP:	2.6 Freely-F	Falling Objects
47.	A baseball catcher mitt. At what point same time? a. \(\text{midway on the b.} \(\text{at the top of its c.} \) the instant it led. \(\text{the instant befinitt} \)	t in the bale way up s trajectory eaves the care	ll's path does	it experi			•	

	ANS: B	PTS:	1	DIF:	1	TOP:	2.6 Freely-Falling Objects
48.							It hits the ground after falling 8 m/s^2 and assume air resistance
	ANS: B	PTS:	1	DIF:	2	TOP:	2.6 Freely-Falling Objects
49.	A rock, released at reas it hits the ground? a. □15 m/s b. □20 m/s c. □31 m/s d. □39 m/s						s. What is the speed of the rock
	ANS: A	PTS:	1	DIF:	2	TOP:	2.6 Freely-Falling Objects
50.	Omar throws a rock of What is the height of a. □20 m b. □24 m c. □44 m d. □63 m					ver. The	e rock hits the ground after 2.0 s.
	ANS: C	PTS:	1	DIF:	2	TOP:	2.6 Freely-Falling Objects
51.	Gwen releases a rock what is the speed of ta. □28 m/s b. □30 m/s c. □56 m/s d. □784 m/s		_			9.8 m/s ²	² and air resistance is negligible,
	ANS: A	PTS:	1	DIF:	2	TOP:	2.6 Freely-Falling Objects
52.	resistance is negligib a. □12 m/s b. □28 m/s c. □350 m/s d. □784 m/s	le, what	t is the rock's sp	peed ju	st as it hits the g	ground?	
	ANS: B	PTS:	1	DIF:	2	TOP:	2.6 Freely-Falling Objects

	a. □4.0 cm.							
	b. □ 9.8 cm.							
	c. □ 16 cm.							
	d. □ 20 cm.							
		PTS:	1	DIE	2	TOD.	2.6 Encels Felling Ol	
	ANS: D	P15:	1	DIF:	2	TOP:	2.6 Freely-Falling Ob	ojecis
54.	should he drop a see						by 15.0 m/s. How much ly at the bottom of the	
	a. □ 5.05 s							
	b.□3.76 s							
	c. □2.67 s							
	d. □ 1.78 s							
	ANS: D	PTS:	1	DIF:	3	TOP:	2.6 Freely-Falling Ob	jects
55.		straight 1	ıp. The f	irst one hits t			20 m/s. She throws on ow much later is it bef	
	this problem.							
		PTS:		DIF:	3	TOP:	2.6 Freely-Falling Ob	ojects
56.	this problem. ANS: B	PTS:	1 00 m hig	DIF:	would a	n object be mov	ving if it could free fal	•
56.	this problem. ANS: B Mt. Everest is more level after being rel a. □396 m/s b. □120 m/s c. □1 200 m/s	PTS:	1 00 m hig m an 800	DIF:	would a	n object be mov ore air resistand	ving if it could free fal	l to sea
56.	this problem. ANS: B Mt. Everest is more level after being rel a. □396 m/s b. □120 m/s c. □1 200 m/s d. □12 000 m/s ANS: A	PTS: e than 8 0 eased fro PTS:	1 00 m hig m an 800	DIF: gh. How fast v 00-m elevatio	would and on? (Igno	n object be movore air resistance TOP:	ving if it could free fal ee.)	to sea

	a. □ 15 m				
	b. □31 m				
	c.□61 m				
	d. □ 120 m				
	ANS: C	PTS: 1	DIF: 3	TOP: 2.6 Freely-Falling Obje	ects
59.	6.00 seconds. She t	then pulls the parac	chute cord and after a	h gravity to a maximum velocity of 58 a 4.00-second constant deceleration, de t height did the parachutist jump?	
	ANS: A	PTS: 1	DIF: 3	TOP: 2.6 Freely-Falling Obje	ects
60.	A ball is thrown very position), its average a. □19.6 m/s. b. □9.80 m/s. c. □4.90 m/s. d. □ not given.		19.6 m/s. For its cor	nplete trip (up and back down to the st	arting
	ANS: B	PTS: 1	DIF: 2	TOP: 2.6 Freely-Falling Obje	ects
61.	traveling upwards	is - 10.8 m/s ² . On it on is - 8.8 m/s ² . We to that with which in the original speed is the original speed the original speed upong the original speed	ts trip downward the hen the ball reaches tit was thrown? d upward. d upward. pward.	se of air resistance the acceleration whi resistance is in the opposite direction, the level from which it was thrown, ho	and the
	ANS: C	PTS: 1	DIF: 2	TOP: Conceptual Problems	
62.	the acceleration is	changed to a differ quations of kinema is is not a case of c a_2 /2 as the average	ent constant value a_2 tics be used to find the onstant e accelera-	with constant acceleration a_1 for a time for an additional time t_2 . The total elaphe total distance traveled?	
	c. \square Yes, use $a_1 + a_2$	2 as the acceleratio	n and the		
	average time $(t_1 + t_2)$				
	d. ☐ Yes, break the one with the condit and the other with	tions for the first ti	me interval		

	interval the of the first	val, noting that fo e initial velocity i time interval. W From each of the t	s that from the	end				
	ANS: D	PTS:	1	DIF:	2	TOP:	Conceptual Problems	
63.	direction of the time for equal to its a. There is b. It is at c. This or d. This or	of the acceleration or the whole trip to sinstantaneous veries no such time. the halfway point occurs at 2 times, (occurs at 2	t at t. 0.5 t and 1.5 t. 0.707 t and 1.2	e., it is at time, the trip?	- a), and or times	the car comes s, is the average	coeleration a for a time t, then the to a stop in an additional time t e velocity of the car for the trip	
	ANS: C	PTS:		DIF:			Conceptual Problems	
64.	how much $a. \square 0.5 T$ $b. \square < 0.5 T$ $c. \square > 0.5 T$	time has elapsed Γ	when it is half		wn the i	ncline?	o reach the end of the incline is 'Conceptual Problems	Γ
65.	In which o a. □10 step b. □22 step c. □5 steps d. □15 step	of the following cases east followed by east followed by east followed by east followed by	ases is the disp by 3 steps west by 11 steps west 10 steps west by 5 steps west	lacemen	nt's magi	nitude half the	distance traveled?	
	ANS: D	PTS:	1	DIF:	2	TOP:	Conceptual Problems	

Chapter 3—Vectors and Two-Dimensional Motion

MULTIPLE CHOICE

1.	Which type of quantity is characterized by both magnitude and direction?
	a. \square scalar
	b. □ vector
	c. □ trigonometric
	d. □ algebraic variable
	ANS: B PTS: 1 DIF: 1 TOP: 3.1 Vectors and Their Properties
2.	Which of the following is an example of a vector quantity?
	a. \(\text{velocity} \)
	b. temperature
	c. □volume
	d. □mass
	CI I III III I I I I I I I I I I I I I
	ANS: A PTS: 1 DIF: 1
	TOP: 3.1 Vectors and Their Properties
2	
3.	When we subtract a velocity vector from another velocity vector, the result is:
	a. □ another velocity.
	b. □ an acceleration.
	c. □a displacement.
	d. □a scalar.
	ANS: A PTS: 1 DIF: 1 TOP: 3.1 Vectors and Their Properties
4.	When we add a displacement vector to another displacement vector, the result is:
	a. \(\text{a velocity.}\)
	b. □ an acceleration.
	c. another displacement.
	d. a scalar.
	u. □ a scarar.
	ANS: C PTS: 1 DIF: 1
	TOP: 3.1 Vectors and Their Properties
5.	A student adds two vectors with magnitudes of 200 and 40. Which one of the following is the only
	possible choice for the magnitude of the resultant?
	a.□100
	b. □ 200
	c.□260
	d. □40
	ANS: B PTS: 1 DIF: 1 TOP: 3.1 Vectors and Their Properties
	101. 3.1 vectors and then rroperties

6.	Vector points north, and vector points east. If $=$ - , then vector points: a. \square north of east.
	b. □ south of east.
	c.□north of west.
	d. □ south of west.
	ANS: B PTS: 1 DIF: 2 TOP: 3.1 Vectors and Their Properties
7.	The first displacement is 6 m, and the second displacement is 3 m. They <u>cannot</u> add together to give a total displacement of:
	a. □ 2 m.
	b. □ 3 m.
	c. □ 6 m.
	d. □9 m.
	ANS: A PTS: 1 DIF: 1 TOP: 3.1 Vectors and Their Properties
8.	Vector is 3 m long, and vector is 4 m long. The length of the sum of the vectors must be:
	a. □ 5 m.
	b. □ 7 m.
	c. □ 12 m.
	d. □ some value from 1 m to 7 m.
	ANS: D PTS: 1 DIF: 2 TOP: 3.1 Vectors and Their Properties
9.	When three vectors are added graphically and form a closed triangle, the largest enclosed angle between any two of the vectors cannot be greater than:
	$a.\Box 60^{\circ}.$
	b. □90°.
	c. □180°.
	d. □No maximum exists.
	ANS: C PTS: 1 DIF: 2 TOP: 3.1 Vectors and Their Properties
10.	A runner circles a track of radius 100 m one time in 100 s at a constant rate. The greatest change in his velocity from his starting velocity:
	a. occurs one-fourth of the way around the track.
	b. occurs one-half of the way around the track.
	c. □ occurs three-fourths of the way around the track.
	d. ☐ Both a and c are correct.
	ANS: B PTS: 1 DIF: 2 TOP: 3.1 Vectors and Their Properties

	point? a. \(\subseteq 1^{st} \)	resulting velocity vi	ector is draw	11 1101	n the origin, into	which quadrant does this vector
	$b.\Box 2^{nd}$					
	c.□3 rd	1				
	d. □ None, since the y-direction.	e object is now mov	ving in the			
	ANS: B	PTS: 1	DIF:	1	TOP:	3.2 Components of a Vector
12.						g at 10 m/s north. Which of the g this time interval?
	ANS: D	PTS: 1	DIF:	2	TOP:	3.2 Components of a Vector
13.	A hiker walks 200 a. □ north b. □ west c. □ northwest d. □ None of the an		alks 100 m n	orth.	In what direction	is her resulting displacement?
	ANS: D	PTS: 1	DIF:	2	TOP:	3.2 Components of a Vector
14.	this interval, what	is the magnitude of value from 0 to 22 m	its instantan			interval of 20 s. Halfway through
	ANS: B	PTS: 1	DIF:	1	TOP:	3.2 Components of a Vector
15.						en vector is equal to that vector's e angle between vector and <i>x</i> -
	ANS: B	PTS: 1	DIF:	1	TOP:	3.2 Components of a Vector
16.						en vector is equal to that vector e angle between vector and y-

axis?

	a. □ sine				
	b. □ cosine				
	c. □tangent				
	d. □ cotangent				
	ANS: B	PTS: 1	DIF: 2	TOP:	3.2 Components of a Vector
17.		Which operation ponent) ne ossine			vn, and the angle between vector of the vector? (taken with
	ANS: A	PTS: 1	DIF: 2	TOP:	3.2 Components of a Vector
18.	A taxicab moves five all blocks are of equal a. □12 blocks b. □9.8 blocks c. □9.2 blocks d. □8.6 blocks				two blocks due north. Assume ent, start to finish?
	ANS: D	PTS: 1	DIF: 2	TOP:	3.2 Components of a Vector
19.		Which of the following: 10° 8° 3°	-		th of east and ii) 25.0 newtons at the resultant and its angle relative
	ANS: B	PTS: 1	DIF: 2	TOP:	3.2 Components of a Vector
20.	Find the resultant of a. \(\precede 100 \) units 30° nor b. \(\precede 62 \) units 15° nort c. \(\precede 87 \) units 60° nort d. \(\precede 62 \) units 54° nort	rth of west h of west h of west	o vectors: i) 50 u	units due east and ii	100 units 30° north of west.
	ANS: D	PTS: 1	DIF: 2	TOP:	3.2 Components of a Vector
21.	Arvin the Ant is on a westward. What is the a. □70 cm b. □57 cm c. □52 cm	•			northward, and finally 15 cm

	d.□29	cm							
	ANS:	D	PTS:	1	DIF:	2		TOP:	3.2 Components of a Vector
22.					rd, then 25 cm ith respect to h				15 cm westward. What is
	a. □ 59°	N of E							
	b. □29°	N of E							
		N of W							
		N of E							
	ANS:		PTS:	1	DIF:	2		TOP:	3.2 Components of a Vector
23.									the horizontal. If a total of 120
	m of st	ring is reele	d in while	bringi	ng the kite bac	k to t	he ground,	what is	s the horizontal displacement of
	the kite	e in the proc	ess? (Assi	ume the	kite string do	esn't s	sag.)		
	a. □ 100) m							
	b.□84	m							
	c.□77	m							
	d.□92								
	ANS:	D	PTS:	1	DIF:	2		TOP:	3.2 Components of a Vector
24.	Jack pı	ılls a sled ac	cross a lev	el field	by exerting a	force	of 110 N a	ıt an an	gle of 30° with the ground. What
	are the	parallel and	l perpendi	cular c	omponents, res	specti	vely, of thi	s force	with respect to the ground?
	a. □ 64	N, 190 N							
		0 N, 64 N							
		N, 55 N							
		N, 95 N							
	ANS:		PTS:	1	DIF:	2		TOP:	3.2 Components of a Vector
25.	Vector	is 3.0 units	in length	and po	ints along the	positi	ve <i>x-axis</i> : v	vector	is 4.0 units in length and points
	along a	direction 1	•	•	•	•			the resultant when vectors and
	are ado								
	a. □ 7.0								
	b. □ 6.7	,							
	c. □4.7								
	d. □ 2.1								
	ANS:	D	PTS:	1	DIF:	2		TOP:	3.2 Components of a Vector
26.	Vector	is 3.0 units	in length	and po	ints along the	positi	ve <i>x-axis</i> : v	vector	is 4.0 units in length and points
									he resultant with respect to the
		e <i>x-axis</i> ?	oo nom	the pos	ici ve sa casars. vv	1144 15	the directi	on or th	ne resultant with respect to the
	a. □77°								
	b.□13°								
	c. □86°								
	d. □ 103	5°							

	ANS:	D	PTS:	1	DIF:	2	TOP:	3.2 Components of a Vector
27.		How many de	_	line in a directorth of east hav			end up	two miles east and several miles
	ANS:	D	PTS:	1	DIF:	2	TOP:	3.2 Components of a Vector
28.	pushin	g in a differeng at an angle constant N. I. N.	t directi	on. They are p	ushing	north, northeast	, east, s	10.0 N. However, each boy is southeast, and south. (Each boy is ude of the total force on the ball?
	ANS:	C	PTS:	1	DIF:	2	TOP:	3.2 Components of a Vector
29.	of the a. □60 b. □12 c. □0 r d. □12 ANS:	displacement a m, 188 m 0 m, 188 m m, 377 m 0 m, 377 m	PTS:	distance jogged	DIF:	a radius of 60 n 1 on in Two Dime		t, respectively, are the magnitude
30.	movin a. □ At would b. □ 2 r c. □ 0.2 d. □ No	g north, what I a constant rate be zero. m/s², west 25 m/s², south o answer is con	rect.	a the runner's a rerage accelera	verage tion DIF:	acceleration wh	en half	te. If the runner was initially fway around the track?
31.	initial before	angle of 30.0° the third base is the ball's hou. 4 m .2 m	with rea	spect to the hor	rizontal	. The ball is in i	ts traje	al velocity of 29.4 m/s at an ctory for a total interval of 3.00 s sume air resistance negligible.)

	ANS: A PTS: 1 DIF: 2 TOP: 3.4 Motion in Two Dimensions
32.	A baseball thrown from the outfield is released from shoulder height at an initial velocity of 29.4 m/s at an initial angle of 30.0° with respect to the horizontal. If it is in its trajectory for a total of 3.00 s before being caught by the third baseman at an equal shoulder-height level, what is the ball's net vertical displacement during its 3-s trajectory? a. $\Box 11.0$ m b. $\Box 9.80$ m c. $\Box 22.1$ m d. \Box zero
	ANS: D PTS: 1 DIF: 2 TOP: 3.4 Motion in Two Dimensions
33.	A baseball thrown from the outfield is released from shoulder height at an initial velocity of 29.4 m/s at an initial angle of 30.0° with respect to the horizontal. What is the maximum vertical displacement that the ball reaches during its trajectory? a. $\Box 11.0 \text{ m}$ b. $\Box 9.80 \text{ m}$ c. $\Box 22.1 \text{ m}$ d. $\Box 44.1 \text{ m}$ ANS: A PTS: 1 DIF: 2 TOP: 3.4 Motion in Two Dimensions
34.	A baseball is thrown by the center fielder (from shoulder level) to home plate where it is caught (on the fly at an equal shoulder level) by the catcher. At what point is the ball's speed at a minimum? (air resistance is negligible) a. □ just after leaving the center fielder's hand b. □ just before arriving at the catcher's mitt c. □ at the top of the trajectory d. □ speed is constant during entire trajectory ANS: C PTS: 1 DIF: 2 TOP: 3.4 Motion in Two Dimensions
35.	fly at shoulder level) by the catcher. At what point is the magnitude of the acceleration at a minimum? (air resistance is negligible) a. □ just after leaving the center fielder's hand b. □ just before arriving at the catcher's mitt c. □ at the top of the trajectory d. □ acceleration is constant during entire trajectory
	ANS: D PTS: 1 DIF: 1 TOP: 3.4 Motion in Two Dimensions

36.	A baseball is thrown by the center fielder (from shoulder level) to home plate where it is caught (on the fly at shoulder level) by the catcher. At what point does the magnitude of the vertical component of velocity have its minimum value? (air resistance is negligible) a. □ just after leaving the center fielder's hand b. □ just before arriving at the catcher's mitt c. □ at the top of the trajectory d. □ magnitude of vertical component of velocity is constant
	ANS: C PTS: 1 DIF: 1 TOP: 3.4 Motion in Two Dimensions
37.	A helicopter is traveling at 40 m/s at a constant altitude of 100 m over a level field. If a wheel falls off the helicopter, with what speed will it hit the ground? ($g = 9.8 \text{ m/s}^2$ and air resistance negligible) a. $\Box 40 \text{ m/s}$ b. $\Box 50 \text{ m/s}$ c. $\Box 60 \text{ m/s}$ d. $\Box 70 \text{ m/s}$ ANS: C PTS: 1 DIF: 3 TOP: 3.4 Motion in Two Dimensions
38.	A ball is rolled horizontally off a table with an initial speed of 0.24 m/s. A stopwatch measures the ball's trajectory time from table to the floor to be 0.30 s. What is the height of the table? ($g = 9.8 \text{ m/s}^2$ and air resistance is negligible) a. $\Box 0.11 \text{ m}$ b. $\Box 0.22 \text{ m}$ c. $\Box 0.33 \text{ m}$ d. $\Box 0.44 \text{ m}$ ANS: D PTS: 1 DIF: 2 TOP: 3.4 Motion in Two Dimensions
39.	A ball is rolled horizontally off a table with an initial speed of 0.24 m/s. A stop watch measures the ball's trajectory time from table to the floor to be 0.30 s. How far away from the table does the ball land? ($g = 9.8 \text{ m/s}^2$ and air resistance is negligible) a. $\Box 0.055 \text{ m}$ b. $\Box 0.072 \text{ m}$ c. $\Box 1.2 \text{ m}$ d. $\Box 1.9 \text{ m}$ ANS: B PTS: 1 DIF: 2 TOP: 3.4 Motion in Two Dimensions
40.	

b. □ 154 m c. □ 120 m

	a. □ 19/ m				
	ANS: C TOP: 3.4 Mo	PTS: 1 otion in Two Dimensions	DIF: 3		
41.	of 12 m/s. A s	top watch measures the	stone's trajectory tin	from the top edge of a cliff with an initial are from top of cliff to bottom to be all horizontally? ($g = 9.8 \text{ m/s}^2$ and air reference of the second s	
	d. □ 197 m				
	ANS: A	PTS: 1	DIF: 3		
	10P: 3.4 MO	otion in Two Dimensions			
12.	35 m building velocity comp		esistance is negligib	le of 53° above the horizontal from the le, then what is the magnitude of the v	
	a. □9.0 m/s				
	b. □ 18 m/s				
	c. □ 26 m/s				
	d. □ 29 m/s				
	ANS: D TOP: 3.4 Mo	PTS: 1 otion in Two Dimensions	DIF: 2		
43.	35 m building component of a. \Box 7.5 m/s b. \Box 9.0 m/s c. \Box 12 m/s		esistance is negligib	le of 53° above the horizontal from the le, then what is the magnitude of the h	
	d. □ 29 m/s				
		PTS· 1	DIE: 2		
	ANS: B	PTS: 1	DIF: 2		
	ANS: B	PTS: 1 otion in Two Dimensions			
44.	ANS: B TOP: 3.4 Mo A stone is thro 35 m building the ground?	otion in Two Dimensions own with an initial speed	of 15 m/s at an ang	le of 53° above the horizontal from the le, then what is the speed of the rock a	e toj s it
44.	ANS: B TOP: 3.4 Mo A stone is thro 35 m building the ground? a. □15 m/s	otion in Two Dimensions own with an initial speed	of 15 m/s at an ang	le of 53° above the horizontal from the le, then what is the speed of the rock a	e toj s it
44.	ANS: B TOP: 3.4 Mo A stone is thro 35 m building the ground? a. □15 m/s b. □21 m/s	otion in Two Dimensions own with an initial speed	of 15 m/s at an ang	le of 53° above the horizontal from the le, then what is the speed of the rock a	e toj s it
44.	ANS: B TOP: 3.4 Mo A stone is thro 35 m building the ground? a. □15 m/s	otion in Two Dimensions own with an initial speed	of 15 m/s at an ang	le of 53° above the horizontal from the le, then what is the speed of the rock a	e top s it

45.	A stone is thrown with an initial speed of 15 m/s at an angle of 53° above the horizontal from the top of a
	35 m building. If $g = 9.8 \text{ m/s}^2$ and air resistance is negligible, what is the magnitude of the horizontal
	displacement of the rock?
	a. □ 38 m
	b. □ 46 m
	c. □ 66 m
	d. □90 m
	ANS: A PTS: 1 DIF: 3
	TOP: 3.4 Motion in Two Dimensions
46.	A bridge that was 5.0 m long has been washed out by the rain several days ago. How fast must a car be
	going to successfully jump the stream? Although the road is level on both sides of the bridge, the road on
	the far side is 2.0 m lower than the road on this side.
	a. □ 5.0 m/s
	b. □ 7.8 m/s
	c. □ 13 m/s
	d. □ 25 m/s
	ANS: B PTS: 1 DIF: 3
	TOP: 3.4 Motion in Two Dimensions
47.	A rifle is aimed horizontally toward the center of a target 100 m away. If the bullet strikes 10 cm below
	the center, what was the velocity of the bullet? (Ignore air friction.)
	a. □ 300 m/s
	b. □ 333 m/s
	c. □ 500 m/s
	d. □ 700 m/s
	ANG D
	ANS: D PTS: 1 DIF: 3
	TOP: 3.4 Motion in Two Dimensions
40	
48.	A quarterback takes the ball from the line of scrimmage, runs backward for 10 yards, then sideways
	parallel to the line of scrimmage for 15 yards. He then throws a 50-yard forward pass straight downfield
	perpendicular to the line of scrimmage. The receiver is tackled immediately. How far is the football
	displaced from its original position?
	a. □43 yards
	b. □ 55 yards
	c. □ 63 yards
	d. □75 yards
	ANG. A DEG. 1 DEC. 2
	ANS: A PTS: 1 DIF: 2
	TOP: 3.4 Motion in Two Dimensions
40	A decide decide the based immediate the immediate the immediate the immediate the second of the control of the
49.	A track star in the broad jump goes into the jump at 12 m/s and launches himself at 20° above the
	horizontal. How long is he in the air before returning to Earth? $(g = 9.8 \text{ m/s}^2)$
	a. □ 0.42 s
	b.□0.84 s
	c. □ 1.25 s
	d. □ 1.68 s

	ANS: B PTS: 1 DIF: 3 TOP: 3.4 Motion in Two Dimensions
50.	Superguy is flying at treetop level near Paris when he sees the Eiffel Tower elevator start to fall (the cable snapped). His x-ray vision tells him Lois LaTour is inside. If Superguy is 1.00 km away from the tower, and the elevator falls from a height of 240 m, how long does Superguy have to save Lois, and what must be his average speed? a. □ 3.00 s, 333 m/s b. □ 5.00 s, 200 m/s c. □ 7.00 s, 143 m/s d. □ 9.00 s, 111 m/s ANS: C PTS: 1 DIF: 2 TOP: 3.4 Motion in Two Dimensions
51.	A ball is launched from ground level at 30 m/s at an angle of 35° above the horizontal. How far does it go before it is at ground level again? a. \Box 14 m b. \Box 21 m c. \Box 43 m d. \Box 86 m
	ANS: D PTS: 1 DIF: 3 TOP: 3.4 Motion in Two Dimensions
52.	A baseball leaves the bat with a speed of 44.0 m/s and an angle of 30.0° above the horizontal. A 5.0-m-high fence is located at a horizontal distance of 132 m from the point where the ball is struck. Assuming the ball leaves the bat 1.0 m above ground level, by how much does the ball clear the fence? a. $\Box 4.4 \text{ m}$ b. $\Box 8.8 \text{ m}$ c. $\Box 13.4 \text{ m}$ d. $\Box 17.9 \text{ m}$ ANS: C PTS: 1 DIF: 3 TOP: $3.4 \text{ Motion in Two Dimensions}$
53.	Wiley Coyote has missed the elusive road runner once again. This time, he leaves the edge of the cliff at 50.0 m/s horizontal velocity. If the canyon is 100 m deep, how far from his starting point at the edge of the cliff does the coyote land? a.□226 m b.□247 m c.□339 m d.□400 m ANS: A PTS: 1 DIF: 3 TOP: 3.4 Motion in Two Dimensions
54.	A fireman, 50.0 m away from a burning building, directs a stream of water from a fire hose at an angle of

54. A fireman, 50.0 m away from a burning building, directs a stream of water from a fire hose at an angle of 30.0° above the horizontal. If the initial speed of the stream is 40.0 m/s, at what height will the stream of water strike the building?

	a.□9.60 m
	b. □ 13.4 m
	c.□18.7 m
	d. □ 22.4 m
	ANS: C PTS: 1 DIF: 2 TOP: 3.4 Motion in Two Dimensions
	101. 5.4 Motion in 1 wo Dimensions
55.	The highest mountain on Mars is Olympus Mons, rising 22 000 meters above the Martian surface. If we were to throw an object horizontally off the mountain top, how long would it take to reach the surface?
	(Ignore atmospheric drag forces and use $g_{\text{Mars}} = 3.72 \text{ m/s}^2$.)
	a. □ 1.8 minutes
	b. □ 2.4 minutes
	c. □ 3.0 minutes
	d. □ 0.79 minute
	ANS: A PTS: 1 DIF: 3
	TOP: 3.4 Motion in Two Dimensions
56.	Two projectiles are launched at 100 m/s, the angle of elevation for the first being 30° and for the second 60°. Which of the following statements is false?
	a. Both projectiles have the same acceleration
	while in flight.
	b. □ The second projectile has the lower speed at
	maximum altitude.
	c. ☐ Both projectiles have the same range.
	d. ☐ All of the above statements are false.
	ANS: D PTS: 1 DIF: 3
	TOP: 3.4 Motion in Two Dimensions
57.	A projectile is thrown horizontally at 10.0 m/s. The projectile hits the ground 0.510 s later. What is the
	angle of impact the projectile makes with the horizontal ground?
	a. □-30.0°
	$b.\Box$ -26.6 $^{\circ}$
	c. □–27.0°
	d. □–60.0°
	ANG D DEG 1 DIE 0
	ANS: B PTS: 1 DIF: 2
	TOP: 3.4 Motion in Two Dimensions
58.	A projectile is launched at an angle q above the horizontal. Three seconds later the projectile is moving
56.	the same angle q below the horizontal. Which of the following (actual values with units, not just algebraic
	symbols) can be found from the information given?
	athe initial vertical component of the
	projectile's velocity
	b. □ the initial horizontal component of the
	projectile's velocity
	c. □ the initial magnitude of the velocity
	d. None of the above since at least one of the
	u. I work of the above since at least one of the

	above must be g values.	given to find the other	two	
	ANS: A TOP: 3.4 Moti	PTS: 1 on in Two Dimension:	DIF: 3	
59.	elevation at the	instant the first projection of the first projection ward ownward ownward	tile is fired and pass	d projectile is dropped from rest at some higher es the first projectile 3.00 s later. From the ity of the second projectile as it passes by?
	ANS: C	PTS: 1	DIF: 3	TOP: 3.5 Relative Velocity
60.	-	north of east. What is to 67° N of E 67° N of E 22° N of E		gion where the wind is blowing at 120 mph in a direction of the aircraft?
	ANS: A	PTS: 1	DIF: 3	TOP: 3.5 Relative Velocity
61.		e the boat to make a co		is in a river where the current is 2.00 m/s, how f 1 000 m upstream followed by a
	ANS: C	PTS: 1	DIF: 3	TOP: 3.5 Relative Velocity
62.	of 10 m/s due no		er. If no correction i	n-wide river by maintaining a constant velocity is made for the current, how far downstream
	ANS: D	PTS: 1	DIF: 2	TOP: 3.5 Relative Velocity
63.	downstream and a. □the downstream b. □the upstream	l then makes a return t eam trip	rip upstream to the o	m/s relative to the water. The boat makes a trip original starting place. Which trip takes longer?

	d. □The answer can knowing the speed of	,	•			
	ANS: B	PTS:	1	DIF:	2	TOP: 3.5 Relative Velocity
64.	_			_		m. The boat next travels downstream and after ne water is constant, what is the speed of the
	ANS: B	PTS:	1	DIF:	2	TOP: 3.5 Relative Velocity
65.						ative to the earth. Plane B is flying at 500 mph ed of Plane B as observed from Plane A?
	ANS: C	PTS:	1	DIF:	3	TOP: 3.5 Relative Velocity
66.			e to the earth.			ative to the earth. Plane B is flying at 500 mph ection of motion of Plane B as observed from TOP: 3.5 Relative Velocity
67.	A plane is moving d	lue north st to east our ur	, directly towa at 40 mph. H	ards its o	destinat	ion. Its airspeed is 200 mph. A constant breeze take for the plane to travel 200 miles north?
	ANS: B	PTS:	1	DIF:	2	TOP: 3.5 Relative Velocity
68.						ion. Its airspeed is 200 mph. A constant breeze n is the plane pointed?

	ANS: A	PTS: 1	DIF:	2	TOP:	3.5 Relative Velocity
69.	A plane is moving is blowing from we a. □198 mph b. □193 mph c. □188 mph d. □180 mph					l is 200 mph. A constant breeze north?
	ANS: A	PTS: 1	DIF:	2	TOP:	3.5 Relative Velocity
70.	Vectors,, and have magnitude of their a.□25 b.□15 c.□2 d.□3	-	6, 11, and 20. W	hen these ve	ectors are ac	lded, what is the least possible
	ANS: D	PTS: 1	DIF:	2	TOP:	Conceptual Problems
71.		which vector y-components or 2 or 4 or 3	has the greatest	magnitude :	x-compone	at 135°, vector 3 is at 240°, and nt and which vector has the Conceptual Problems
72.	Vector 1 is 7 units is at 150°. Which va Vector 1 b Vector 2 c Vector 3 d None of the vector ponents.	rector has equa	l magnitude con	_	and is at 22	5°. Vector 3 is 3 units long and
	ANS: B	PTS: 1	DIF:	2	TOP:	Conceptual Problems
73.	velocity, with the s	ame speed as lat the instant and the locity is and to be locity is not a	pefore, for anoth n additional time e average accele he average he average	er time inter interval DT	val D T. Fin has elapsed	moves north at a constant ally it moves east again with the d, which of the following are true escribed?

	d. □The average veloacceleration is not ze	•	not and the ave	erage			
	ANS: C	PTS:	1	DIF:	3	TOP:	Conceptual Problems
74.	A projectile is fired flight between the aca					resista	nce, what are possible angles in
	b. □20° and 70° c. □90° and 60° d. □ none of the above	ve					
	ANS: C	PTS:	1	DIF:	2	TOP:	Conceptual Problems

Chapter 4—The Laws of Motion

MULTIPLE CHOICE

1.	Which of the following is an example of the type of force that acts at a distance? a. □ gravitational b. □ magnetic c. □ electrical d. □ all of the above ANS: D PTS: 1 DIF: 1 TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
2.	If we know an object is moving at constant velocity, we may assume: a. □ the net force acting on the object is zero. b. □ there are no forces acting on the object. c. □ the object is accelerating. d. □ the object is losing mass. ANS: A PTS: 1 DIF: 1
3	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law Which of the following expresses a principle, which was initially stated by Galileo and was later
<i>J</i> .	incorporated into Newton's laws of motion? a. □ An object's acceleration is inversely proportional to its mass. b. □ For every action there is an equal but opposite reaction. c. □ The natural condition for a moving object is to remain in motion. d. □ The natural condition for a moving object is to come to rest. ANS: C PTS: 1 DIF: 1
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
4.	What condition must apply to a system's state of motion for it to be regarded as an inertial frame of reference? a. □ in decreasing velocity b. □ in constant velocity c. □ in constant acceleration d. □ in increasing acceleration
	ANS: B PTS: 1 DIF: 1 TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
5.	A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. \Box 35 m/s ² b. \Box 7.0 m/s ²

	$\begin{array}{c} c.\Box 5.0 \text{ m/s}^2\\ d.\Box 0.71 \text{ m/s}^2 \end{array}$
	ANS: D PTS: 1 DIF: 1 TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
6.	An astronaut applies a force of 500 N to an asteroid, and it accelerates at 7.00 m/s ² . What is the asteroid's mass?
	a
	b. □ 135 kg
	c. □ 441 kg d. □ 3 500 kg
	ANS: A PTS: 1 DIF: 1 TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
7.	Two ropes are attached to a 40-kg object. The first rope applies a force of 25 N and the second, 40 N. If the two ropes are perpendicular to each other, what is the resultant acceleration of the object?
	$a. \square 1.2 \text{ m/s}^2$
	$b. \square 3.0 \text{ m/s}^2$
	$ \begin{array}{c} c. \square 25 \text{ m/s}^2 \\ d. \square 47 \text{ m/s}^2 \end{array} $
	$d. \sqcup 4 / m/s^2$
	ANS: A PTS: 1 DIF: 2 TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
8.	Two forces act on a 6.00-kg object. One of the forces is 10.0 N. If the object accelerates at 2.00 m/s ² ,
	what is the greatest possible magnitude of the other force?
	a. 🗆 1.0 N
	b. \(\text{2.0 N} \)
	c. \(\tau 22.0 \text{ N} \)
	d. □ 34.0 N
	ANS: C PTS: 1 DIF: 2
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
9.	The acceleration due to gravity on the Moon's surface is one-sixth that on Earth. An astronaut's life support backpack weighs 300 lb on Earth. What does it weigh on the Moon?
	a. \Box 1 800 lb
	b. □300 lb
	c. □ 135 lb
	d. □ 50 lb
	ANS: D PTS: 1 DIF: 1
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
10.	The acceleration due to gravity on the Moon's surface is one-sixth that on Earth. What net force would be
	required to accelerate a 20-kg object at 6.0 m/s ² on the moon?
	$\begin{array}{c c} a. \square 1.3 \ N \\ b. \square 20 \ N \end{array}$
	U. L. ZU IN

	c. 🗆 33 N
	d. □ 120 N
	ANS: D PTS: 1 DIF: 2
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
11.	If we know that a nonzero net force is acting on an object, which of the following must we assume regarding the object's condition? The object is: a. □ at rest.
	b. ☐ moving with a constant velocity.
	c. □ being accelerated.
	d. □losing mass.
	ANS: C PTS: 1 DIF: 1
	ANS: C PTS: 1 DIF: 1 TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
	101. 4.1 Forces 4.2 Newton's First Law 4.5 Newton's Second Law 4.4 Newton's Finite Law
12.	A 2 000-kg sailboat experiences an eastward force of 3 000 N by the ocean tide and a wind force against its sails with magnitude of 6 000 N directed toward the northwest (45° N of W). What is the magnitude of the resultant acceleration? $a.\square 2.2 \text{ m/s}^2$
	$b.\Box 2.1 \text{ m/s}^2$
	$c.\Box 1.5 \text{ m/s}^2$
	$d. \square 3.0 \text{ m/s}^2$
	ANS: A PTS: 1 DIF: 2 TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
13.	A 2 000-kg sailboat experiences an eastward force of 3 000 N by the ocean tide and a wind force against
10.	its sails with magnitude of 6 000 N directed toward the northwest (45° N of W). What is the direction of
	the resultant acceleration?
	a. □60° N of E
	b. □30° N of W
	c. □30° N of E
	d. \(\tau 74\circ \text{N of W} \)
	u. 🗆 / 🕂 1 (0) γ
	ANS: D PTS: 1 DIF: 2
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
14.	A cart of weight 20 N is accelerated across a level surface at 0.15 m/s^2 . What net force acts on the wagon? $(g = 9.8 \text{ m/s}^2)$
	a. □ 0.92 N
	b.□0.31 N
	c. □ 3.0 N
	d. □ 4.5 N
	ANS: B PTS: 1 DIF: 2
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law

15. A rock is rolled in the sand. It starts at 5.0 m/s, moves in a straight line for a distance of 3.0 m, and then stops. What is the magnitude of the average acceleration?

	$a. \Box 1.8 \text{ m/s}^2$
	$b.\Box 4.2 \text{ m/s}^2$
	$c. \Box 5.4 \text{ m/s}^2$
	$d. \square 6.2 \text{ m/s}^2$
	ANS: B PTS: 1 DIF: 2
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
16.	Rita accelerates a 0.40-kg ball from rest to 9.0 m/s during the 0.15 s in which her foot is in contact with the ball. What average force does she apply to the ball during the kick? a. \square 48 N b. \square 72 N c. \square 24 N d. \square 60 N
	ANS: C PTS: 1 DIF: 2
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
	101. 4.1 Polees 4.2 Newton's Prist Law 4.5 Newton's Second Law 4.4 Newton's Time Law
17.	A 70.0-kg man jumps 1.00 m down onto a concrete walkway. His downward motion stops in 0.0200 seconds. If he forgets to bend his knees, what force is transmitted to his leg bones? a. \Box 15 500 N b. \Box 7 010 N c. \Box 4 900 N d. \Box 3 500 N
	ANS: A PTS: 1 DIF: 3
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
	101. III Totoes II2 Terrents I list Earl II3 Terrents Second Earl III Terrents I linia Earl
18.	The accelerating force of the wind on a small 200-kg sailboat is 707 N northeast. If the drag of the keel is 500 N acting west, what is the acceleration of the boat?
	ANS: B PTS: 1 DIF: 2
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
19.	
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
	101. 4.1 Polees 4.2 Newton's Phst Law 4.5 Newton's Second Law 4.4 Newton's Third Law

20. An automobile of mass 2 000 kg moving at 30 m/s is braked suddenly with a constant braking force of 10 000 N. How far does the car travel before stopping?

a. □45 m
b. □90 m
c.□135 m
d. □ 180 m
on 100 m
ANS: B PTS: 1 DIF: 2
TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
A shot-putter moves his arm and the 7.0-kg shot through a distance of 1.0 m, giving the shot a velocity of 10 m/s from rest. Find the average force exerted on the shot during this time. $a.\Box 175 \text{ N}$ $b.\Box 350 \text{ N}$
c. □ 525 N
d. □700 N
<u> </u>
ANS: B PTS: 1 DIF: 2
TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
A baseball batter hits an incoming 40-m/s fastball. The ball leaves the bat at 50 m/s after a ball-on-bat
contact time of 0.030 s. What is the force exerted on the 0.15-kg baseball?
a. □450 N
b. □ 250 N
c.□90 N
d. □ 50 N
ANS: A PTS: 1 DIF: 2 TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
In the terminology <i>a 500-N block</i> , the <i>500-N</i> refers to the block's:
a. \(\text{mass}. \)
b. \(\text{force}. \)
c. weight.
d. □ None of the above.
ANS: C PTS: 1 DIF: 1
TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
The statement by Newton that "for every action there is an opposite but equal reaction" is regarded as
which of his laws of motion?
a. □ first
b. □ second
c. □third
d. □ fourth
ANS: C PTS: 1 DIF: 1
TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton's Second Law 4.4 Newton's Third Law
A thrown stone hits a window, but doesn't break it. Instead it reverses direction and ends up on the ground
below the window. In this case, we know:

21.

22.

23.

24.

25.

a. □ the force of the stone on the glass > the force

	of the glass on the stone.	
	b. \Box the force of the stone on the glass = the force	
	of the glass on the stone.	
	c. □ the force of the stone on the glass < the force	
	of the glass on the stone.	
	d. □ the stone didn't slow down as it broke the	
	glass.	
	giass.	
	ANS: B PTS: 1 DIF: 2	
	TOP: 4.1 Forces 4.2 Newton's First Law 4.3 Newton	on's Second Law 4.4 Newton's Third Law
26.	· · · · · · · · · · · · · · · · · · ·	
	masses of the Sun and Moon are and . What is the rat	no of the gravitational force from the Sun to that of
	the Moon on the object?	
	a. 🗆	
	b. □	
	c. 🗆	
	$d.\square$	
	ANG C PEG 1 DIE 2	TOD AAN A LTI'II
	ANS: C PTS: 1 DIF: 2	TOP: 4.4 Newton's Third Law
27.	Two blocks, joined by a string, have masses of 6.0 and surface. A 2nd string, attached only to the 9-kg block, blocks accelerate. Find the tension in the string between a.□18 N b.□28 N c.□12 N d.□15 N ANS: C PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws	has horizontal force $= 30 \text{ N}$ applied to it. Both
28.	, , , , , , , , , , , , , , , , , , , ,	
	could also be acting on the object if it is moving with	constant velocity?
	a.□1.0 N	
	b.□19.0 N	
	c.□39.0 N	
	d. □ any of the above	
	ANS: D PTS: 1 DIF: 2	
	TOP: 4.5 Applications of Newton's Laws	
	1011 the rippirounions of the moon's 2000s	
29.	An airplane of mass $1.2 \cdot 10^4$ kg tows a glider of mas	s $0.6 \cdot 10^4$ kg. The airplane propellers provide a net
	forward thrust of 3.6 $^{\prime}$ 10 ⁴ N. What is the glider's according	
	$a. \square 2.0 \text{ m/s}^2$	
	$b. \square 3.0 \text{ m/s}^2$	
	$c.\Box 6.0 \text{ m/s}^2$	
	$d. \square 9.8 \text{ m/s}^2$	
	u. □ 7.0 III/8	

	ANS: A PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
30.	Two blocks of masses 20 kg and 8 kg are connected together by a light string and rest on a frictionless level surface. Attached to the 8-kg mass is another light string, which a person uses to pull both blocks horizontally. If the two-block system accelerates at 0.5 m/s^2 what is the tension in the connecting string between the blocks? a. $\Box 14 \text{ N}$ b. $\Box 6 \text{ N}$ c. $\Box 10 \text{ N}$ d. $\Box 4.0 \text{ N}$ ANS: C PTS: 1 DIF: 2
	TOP: 4.5 Applications of Newton's Laws
31.	Two blocks of masses 20 kg and 8.0 kg are connected together by a light string and rest on a frictionless level surface. Attached to the 8-kg mass is a second light string, which a person uses to pull both blocks horizontally. If the two-block system accelerates at 0.5 m/s^2 , what is the tension in the second string attached to the 8-kg mass? a. $\Box 14 \text{ N}$ b. $\Box 6.0 \text{ N}$ c. $\Box 10 \text{ N}$ d. $\Box 4.0 \text{ N}$ ANS: A PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
32.	A 10-kg mass and a 2.0-kg mass are connected by a light string over a massless, frictionless pulley. If $g = 9.8 \text{ m/s}^2$, what is the acceleration of the system when released? a. $\Box 2.5 \text{ m/s}^2$ b. $\Box 6.5 \text{ m/s}^2$ c. $\Box 7.8 \text{ m/s}^2$ d. $\Box 9.8 \text{ m/s}^2$
	ANS: B PTS: 1 DIF: 3 TOP: 4.5 Applications of Newton's Laws
33.	A 15-kg block rests on a level frictionless surface and is attached by a light string to a 5.0-kg hanging mass where the string passes over a massless frictionless pulley. If $g = 9.8 \text{ m/s}^2$, what is the tension in the connecting string? a. $\Box 65 \text{ N}$ b. $\Box 17 \text{ N}$ c. $\Box 49 \text{ N}$ d. $\Box 37 \text{ N}$ ANS: D PTS: 1 DIF: 3 TOP: 4.5 Applications of Newton's Laws
34.	An elevator weighing 20 000 N is supported by a steel cable. What is the tension in the cable when the elevator is being accelerated upward at a rate of 3.00 m/s^2 ? ($g = 9.80 \text{ m/s}^2$)

	a. □ 13 900 N
	b. □ 23 100 N
	c.□20 000 N
	d. □ 26 100 N
	ANS: D PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
35.	As a basketball player starts to jump for a rebound, he begins to move upward faster and faster until he leaves the floor. During this time that he is in contact with the floor, the force of the floor on his shoes is: a. □ bigger than his weight. b. □ equal in magnitude and opposite in direction to his weight. c. □ less than his weight. d. □ zero. ANS: A PTS: 1 DIF: 2
	TOP: 4.5 Applications of Newton's Laws
36.	
	ANS: D PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
37.	A boxcar of mass 200 tons at rest becomes uncoupled on a 2.5° grade. If the track is considered to be frictionless, what speed does the boxcar have after 10 seconds? a. $\Box 0.37 \text{ m/s}$ b. $\Box 0.59 \text{ m/s}$ c. $\Box 1.3 \text{ m/s}$ d. $\Box 4.3 \text{ m/s}$
	ANS: D PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
38.	As a 3.0-kg bucket is being lowered into a 10-m-deep well, starting from the top, the tension in the rope is 9.8 N. The acceleration of the bucket will be: a. □6.5 m/s² downward. b. □9.8 m/s² downward. c. □zero. d. □3.3 m/s² upward. ANS: A PTS: 1 DIF: 3
	TOP: 4.5 Applications of Newton's Laws

39.	A 5 000-N weight is held suspended in equilibrium by two cables. Cable 1 applies a horizontal force to the right of the object and has a tension, T_1 . Cable 2 applies a force upward and to the left at an angle of 37.0° to the negative x -axis and has a tension, T_2 . What is the tension, T_1 ? a. $\Box 4\ 000\ N$ b. $\Box 6\ 640\ N$ c. $\Box 8\ 310\ N$ d. $\Box 3\ 340\ N$ ANS: B PTS: 1 DIF: 3
	TOP: 4.5 Applications of Newton's Laws
40.	A 5 000-N weight is suspended in equilibrium by two cables. Cable 1 applies a horizontal force to the right of the object and has a tension, T_1 . Cable 2 applies a force upward and to the left at an angle of 37.0° to the negative x -axis and has a tension, T_2 . Find T_2 . a. $\Box 4\ 000\ N$ b. $\Box 6\ 640\ N$ c. $\Box 8\ 310\ N$ d. $\Box 3\ 340\ N$
	ANS: C PTS: 1 DIF: 3 TOP: 4.5 Applications of Newton's Laws
41.	Three identical 6.0-kg cubes are placed on a horizontal frictionless surface in contact with one another. The cubes are lined up from left to right and a force is applied to the left side of the left cube causing all three cubes to accelerate to the right at 2.0 m/s^2 . What is the magnitude of the force exerted on the middle cube by the left cube in this case? a. $\Box 12 \text{ N}$ b. $\Box 24 \text{ N}$ c. $\Box 36 \text{ N}$ d. \Box none of the above ANS: B PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
42.	Three identical 6.0-kg cubes are placed on a horizontal frictionless surface in contact with one another. The cubes are lined up from left to right and a force is applied to the left side of the left cube causing all three cubes to accelerate to the right at 2.0 m/s^2 . What is the magnitude of the force exerted on the right cube by the middle cube in this case? a. $\Box 12 \text{ N}$ b. $\Box 24 \text{ N}$ c. $\Box 36 \text{ N}$ d. \Box none of the above ANS: A PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
43.	A sled weighs 100 N. It is held in place on a frictionless 20° slope by a rope attached to a stake at the top; the rope is parallel to the slope. Find the tension in the rope. a. $\Box 94 \text{ N}$

b. □47 N

	c. □ 37 N d. □ 34 N
	ANS: D PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
14.	A sled weighs 100 N. It is held in place on a frictionless 20° slope by a rope attached to a stake at the top; the rope is parallel to the slope. What is the normal force of the slope acting on the sled?
	d. □34 N
	ANS: A PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
45.	A 500-N tightrope walker stands at the center of the rope such that each half of the rope makes an angle of 10.0° with the horizontal. What is the tension in the rope? a. \Box 1 440 N b. \Box 1 000 N c. \Box 500 N d. \Box 2 900 N
	ANS: A PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
46.	A 500-N tightrope walker stands at the center of the rope. If the rope can withstand a tension of 1 800 N without breaking, what is the minimum angle the rope can make with the horizontal?
	ANS: B PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
1 7.	A 20-kg traffic light hangs midway on a cable between two poles 40 meters apart. If the sag in the cable is 0.40 meters, what is the tension in each side of the cable?
	ANS: C PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
18.	A girl is using a rope to pull a box that weighs 300 N across a level surface with constant velocity. The rope makes an angle of 30° above the horizontal, and the tension in the rope is 100 N. What is the normal force of the floor on the box?
	a. □ 300 N

	b. □ 86 N
	c.□50 N
	d. □ 250 N
	ANS: D PTS: 1 DIF: 2
	TOP: 4.5 Applications of Newton's Laws
49.	A karate master strikes a board with an initial velocity of 10.0 m/s, decreasing to 1.0 m/s as his hand passes through the board. If the time of contact with the board is 0.002 0 s, and the mass of the coordinat-
	ed hand and arm is 1.0 kg, what is the force exerted on the board?
	a. □1 000 N
	b.□1 800 N
	c. □ 2 700 N
	d. □4 500 N
	ANS: D PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
50.	Find the tension in an elevator cable if the 1 000-kg elevator is descending with an acceleration of 1.8 m/s^2 , downward.
	a. □5 700 N
	b. □ 8 000 N
	c. □ 9 800 N
	d. □ 11 600 N
	ANS: B PTS: 1 DIF: 2 TOP: 4.5 Applications of Newton's Laws
51.	A block of mass 5.00 kg rests on a horizontal surface where the coefficient of kinetic friction between the two is 0.200. A string attached to the block is pulled horizontally, resulting in a 2.00-m/s ² acceleration by the block. Find the tension in the string. ($g = 9.80 \text{ m/s}^2$) a. $\Box 0.200 \text{ N}$
	b. □ 9.80 N
	c.□19.8 N
	d. □ 10.0 N
	u. 10.014
	ANS: C PTS: 1 DIF: 2 TOP: 4.6 Forces of Friction
52.	A horizontal force of 750 N is needed to overcome the force of static friction between a level floor and a 250-kg crate. If $g = 9.8 \text{ m/s}^2$, what is the coefficient of static friction?
	b.□0.15
	c 0.28
	d. □0.31
	ANS: D PTS: 1 DIF: 2 TOP: 4.6 Forces of Friction
53.	A horizontal force of 750 N is needed to overcome the force of static friction between a level floor and a 250-kg crate. What is the acceleration of the crate if the 750-N force is maintained after the crate begins to move and the coefficient of kinetic friction is 0.12? a. \Box 1.8 m/s ²

	b. □ 2.5 m/s ²				
	$c.\Box 3.0 \text{ m/s}^2$				
	$d.\square 3.8 \text{ m/s}^2$				
	ANS: A	PTS: 1	DIF: 3	TOP: 4.6 Forces of Friction	
54.	just as the angle			is raised, the box begins to move downward efficient of static friction between box and	d
	ramp?				
	a. □ 0.15				
	b.□0.27				
	c.□0.77				
	d.□0.95				
	ANS: B	PTS: 1	DIF: 2	TOP: 4.6 Forces of Friction	
55.	A 300-kg crate is	s placed on an adjust	able inclined plane A	as one end of the incline is raised, the crate	
<i>JJ</i> .				ne with an acceleration of 0.70 m/s^2 when the	ne.
	incline angle is 2	5° what is the coeff	cient of kinetic friction	on between ramp and crate? $(g = 9.8 \text{ m/s}^2)$	10
	a. □ 0.47	s , what is the coeff.		on occured ramp and crace. (8 7.0 m/s)	
	b. □ 0.42				
	c.□0.39				
	d. □ 0.12				
	u. 🗆 0.12				
	ANS: C	PTS: 1	DIF: 3	TOP: 4.6 Forces of Friction	
56.				the crate slides down the incline with an	
	acceleration of 0.	.70 m/s² when the in	cline angle is 25°, the	n what should the incline angle be for the co	rate
		plane at constant sp	eed? $(g = 9.8 \text{ m/s}^2)$		
	a. □ 12°				
	b.□21°				
	c.□25°				
	d. □ 29°				
	ANS: B	PTS: 1	DIF: 3	TOP: 4.6 Forces of Friction	
57.			initial velocity of 6.0 ar will the puck slide	m/s. If the coefficient of kinetic friction	
	a. □19 m	puck is 0.050, now is	ar will the puck shuc	before stopping:	
	b. □25 m				
	c. □37 m				
	d. □ 57 m				
	u. 🗆 37 III				
	ANS: C	PTS: 1	DIF: 2	TOP: 4.6 Forces of Friction	
58	It is late and Carl	los is sliding down a	rope from his third fl	oor window to meet his friend Juan. As he	
٥٠.				ed and grabs harder on the rope, increasing	the
				ope becomes equal to his weight:	
				Transportation of the months.	
	a. □ Carlos will st	on.			

		continue down at a con	stant		
	velocity.	, 1 1			
	d. ☐ the rope mu	ist break.			
	ANS: C	PTS: 1	DIF:	1	TOP: 4.6 Forces of Friction
59.	The cubes are l causing all thre what is the mag	ined up from left to rigle cubes to accelerate to	nt and a 36-N the right. If	I force the cub	ictionless surface in contact with one another. is applied to the left side of the left cube bes are each subject to a frictional force of 6.0 I cube by the left cube in this case?
	a. □ 12 N				
	b.□24 N				
	c.□36 N				
	d. □ none of the	above			
	ANS: B	PTS: 1	DIF:	3	TOP: 4.6 Forces of Friction
60.	The cubes are l causing all thre	ined up from left to rigle cubes to accelerate to	nt and a 36-N the right. If	I force the cub	ictionless surface in contact with one another. is applied to the left side of the left cube bes are each subject to a frictional force of 6.0 he by the middle cube in this case?
	b. □24 N				
	c. □36 N				
	d. □ none of the	ahove			
	u. Inone of the	above			
	ANS: A	PTS: 1	DIF:	3	TOP: 4.6 Forces of Friction
61.		p a hill, there is a force e of friction is equal to:	of friction be	etween	n the road and the tires rolling on the road. The
	a. □the weight of kinetic friction.	of the car times the coef	fficient of		
	b. □ the normal coefficient of k	force of the road times inetic friction.	the		
	c. □ the normal coefficient of s d. □ zero.	force of the road times tatic friction.	the		
	ANS: C	PTS: 1	DIF:	2	TOP: 4.6 Forces of Friction
62.	As a car moves	forward on a level road	d at constant	velocit	ty, the net force acting on the tires is:
o 	a. □ greater than coefficient of s	the normal force times tatic friction.	the	, 01001	ey, and not rouse wearing on the three is.
	b. □ equal to the coefficient of s	e normal force times the tatic friction.			
	c. the normal kinetic friction.	force times the coeffici	ent of		
	d.□zero.				
	ANS: D	PTS: 1	DIF:	2	TOP: 4.6 Forces of Friction

63.	friction between to a. greater than the times the coefficient of the coefficient of c. less than the nothe coefficient of d. greater than the coefficient of the coef	the icy road and the time normal force of the ent of static friction. Tormal force of the rostatic friction. The normal force of the rostatic friction.	res will usually be: e road ad times e road e road	oad covered with ice and snow, the force of	
	ANS: C	ent of kinetic friction PTS: 1	DIF: 2	TOP: 4.6 Forces of Friction	
64.	books is 0.20 as is	the coefficient betw	een the table and th	N. The coefficient of friction between all the he bottom book. What horizontal push must I top five books off the bottom one?	
	ANS: B	PTS: 1	DIF: 2	TOP: 4.6 Forces of Friction	
65.	A starts to slide at		levation that B start	at can be rotated to different angles of elevation. Its sliding. The respective coefficients for static In that is correct. TOP: 4.6 Forces of Friction	
66.	A 10.0-kg mass is	placed on a 25.0° in	cline and friction ke	teeps it from sliding. The coefficient of static friction is 0.520. What is the frictional force in TOP: 4.6 Forces of Friction	
67.	A 10.0-kg mass is friction in this cas	placed on a 25.0° in e is 0.580, and the co	cline and friction ke pefficient of sliding	neeps it from sliding. The coefficient of static griction is 0.520. The mass is given a shove force while the mass is sliding?	

	ANS: C	PTS:	1	DIF:	3	TOP:	4.6 Forces of Friction
68.	friction in this case is	s 0.580 wn the i	and the coeffic	ient of	sliding friction	is 0.520	ding. The coefficient of static O. The mass is given a shove what is the acceleration of the
	ANS: B	PTS:	1	DIF:	3	TOP:	4.6 Forces of Friction
69.	_		-				e. If a force of 80 N is being e of friction between sled and
	ANS: C	PTS:	1	DIF:	2	TOP:	4.6 Forces of Friction
70.		angle o	of 30.0° with th	e verti			e side by his partner so that the of static equilibrium, what is the
	ANS: D	PTS:	1	DIF:	2	TOP:	4.6 Forces of Friction
71.	_	_	-	cal. In	such a condition	n of stat	by his partner so that the swing tic equilibrium, what is the
	ANS: A	PTS:	1	DIF:	2	TOP:	4.6 Forces of Friction
72.	A 200-N crate rests of the coefficient of star $a. \square 0.11$ $b. \square 0.21$ $c. \square 0.38$ $d. \square 0.47$					slips is	s 25° with the horizontal. What is

	ANS: D	PTS:	1	DIF:	2	TOP:	4.6 Forces of Friction
73.	A 150-N sled is pull kinetic friction betw a. \(\text{0.53} \)			constan	t speed by a for	ce of 10	00 N. What is the coefficient of
	b. □ 0.22						
	c. □ 0.13						
	d. □ 0.33						
	u. 🗆 0.33						
	ANS: B	PTS:	1	DIF:	3	TOP:	4.6 Forces of Friction
74.	Jamal pulls a 150-N	sled up	a 28.0° slope a	t const	ant speed by a f	orce of	100 N. Near the top of the hill he
	releases the sled. Wi	ith what	acceleration de	oes the	sled go down th	ne hill?	
	$a. \square 1.20 \text{ m/s}^2$						
	$b. \square 1.67 \text{ m/s}^2$						
	$c.\square 2.22 \text{ m/s}^2$						
	$d. \square 2.67 \text{ m/s}^2$						
	ANS: D	PTS:	1	DIF:	3	TOP:	4.6 Forces of Friction
			_				
75.	makes an angle of 30 friction?						with constant velocity. The rope 100 N. What is the coefficient of
	a. □ 0.35						
	b.□0.29						
	c.□0.17						
	d. □ 0.20						
	ANS: A	PTS:	1	DIF:	2	TOP:	4.6 Forces of Friction
76.		itic fricti	on between the	e crate a	and the truck be		a crate of delicate lead crystal. If 400, what is the minimum
	ANS: A	PTS:	1	DIF:	3	TOP:	4.6 Forces of Friction
77.	The coefficient of fr accelerates at a cons a. □44 m/s b. □66 m/s c. □89 m/s d. □99 m/s). The car starts from rest and end of the race.
	ANS: C	PTS:	1	DIF:	2.	ТОР·	4.6 Forces of Friction
	1110.	110.	•	υп.	-	101.	1 of east of 1 field off

78.							floor by exerting a force $F =$ of kinetic friction of the floor?
	ANS: B	PTS:	1	DIF:	3	TOP:	4.6 Forces of Friction
79.	A hockey puck movi of friction between the a. □ m= 0.025 b. □ m= 0.033 c. □ m= 0.12 d. □ m= 0.25			a halt	in 75 m on a sm	ooth ic	e surface. What is the coefficient
	ANS: B	PTS:	1	DIF:	2	TOP:	4.6 Forces of Friction
80.		oving at	20.0 m/s down	n a 30.0	0° slope encoun	ters a re	egion of wet snow, of coefficient
	ANS: B	PTS:	1	DIF:	3	TOP:	4.6 Forces of Friction
81.							s m = 0.77. Of the following, rked (with wheels locked)
	ANS: C	PTS:	1	DIF:	2	TOP:	4.6 Forces of Friction
82.	A 9.0-kg hanging we the coefficient of slice. a.□19 N b.□24 N c.□32 N d.□38 N						g block sliding on a flat table. If
	ANS: D	PTS:	1	DIF:	3	TOP:	4.6 Forces of Friction

83.	A 100-N block, on a 30° incline, is being held motionless by friction. The coefficient of static friction between the block and the plane is 0.60. The force due to friction is:							
	$a. \square 0 N.$	en una une prane 15 o.	00. 1110 10100	ade to	o metion is:			
	b. □30 N.							
	c. □ 50 N.							
	d. □ 52 N.							
	ANS: C	PTS: 1	DIF:	2	TOP: 4.6 Forces of Friction			
84.	position. The coplane: a. □is the same a b. □is more than c. □is less than t	_	o down. down. own.		the plane, it slides back down to its starting and the plane is 0.3. The time for the trip up the			
	ANS: C	PTS: 1	DIF:	3	TOP: 4.6 Forces of Friction			
85.	position. The coreaches the start a. □is the same a b. □is less than t c. □is more than	efficient of friction being position on the tras the launching speed the launching speed ompared to the launching speed.	etween the blip down:		the plane, it slides back down to its starting and the plane is 0.3. The speed of the block when it			
	ANS: B	PTS: 1	DIF:	3	TOP: 4.6 Forces of Friction			
86.	a. □ 0.50. b. □ 1.00.	bossible value for the but not quite 1.00. 1.00. PTS: 1	coefficient o		TOP: 4.6 Forces of Friction			
87.	30° below the heapplication sufficient have the greater a. □ the one below b. □ the one above c. □ both give equilibrium. □ both give equilibrium	orizontal to push the cicient to overcome fri acceleration? w the horizontal ve the horizontal ual acceleration nation is needed	box or at an a	angle of	magnitude 200 N may be applied at an angle of of 30° above the horizontal to pull the box, either box. Which application will cause the box to TOP: 4.6 Forces of Friction			
	ANS: B	PTS: 1	DIF:	3	10F: 4.0 FOICES OF FRICTION			

88.		ed of a pickup truck the crate and the bed					
		ng acceleration that i					
	a. □						
	b .□						
	c . □						
	d. 🗆						
	ANS: C	PTS: 1	DIF:	2	TOP:	4.6 Forces of Frie	ction
89.	coefficient of state box and the bed of the boxes start a. □ b. □	acked on top of one a ic friction between the of the truck is. What sliding if?	he boxes is,	and the	e coefficient of s	static friction betw	een the bottom
	c . □						
	d. 🗆						
	ANS: C	PTS: 1	DIF:	2	TOP:	4.6 Forces of Frie	ction
90.	10-kg block accel accelerates in the	t rest on a horizontal lerates when the strir opposite direction. V the 10-kg box is under	ng holding th What is the n	e syste nagnitu	m in compression de of the force f	on is cut and the 2	0-kg box
	ANS: D	PTS: 1	DIF:	2	TOP:	4.6 Forces of Frie	ction
91.	below the horizon a. □ It is less than b. □ It equals W. c. □ It is more than	n W. bove since the coeff	nitude of the		•		ngle of 20°
	ANS: C	PTS: 1	DIF:	2	TOP:	Conceptual Probl	lems
92.	The net force on a	an object is in the po	sitive x-dire	ction. C	Consider the follo	owing statements.	
	direction.	an be moving in the r	negative x-				
		an be speeding up.					
		can be slowing down					
		can be moving in the	positive				
	y-direction.						

	Which of the star	tements are true?		
	$a.\Box(i)$ and (ii)			
	b. □(ii) and (iii)			
	c.□(iii) and (iv)			
	d. □ Choose this a true.	answer if all the states	ments are	
	ANS: D	PTS: 1	DIF: 2	TOP: Conceptual Problems
93.	An object weight weight of the obj		tional constant G v	were half of what it is currently, what would the
	a. □ 100 N			
	b.□50 N			
	c.□25 N			
	d.□200 N			
	ANS: B	PTS: 1	DIF: 1	TOP: Conceptual Problems
94.				ne bottom box is the fifth from the top. What is fourth box from the top on the third box from
	ANS: C	PTS: 1	DIF: 2	TOP: Conceptual Problems
95.		is placed on an inclin frictional force in thi		elination q. The box does not slide. The
	ANS: C	PTS: 1	DIF: 3	TOP: Conceptual Problems

Chapter 5—Energy

MULTIPLE CHOICE

1.	The unit of wor a. \(\text{newton/secc} \) b. \(\text{newton/kild} \) c. \(\text{newton-secc} \) d. \(\text{newton-metric of the conditions} \)	ogram. ond.	ally the same as:		
	ANS: D	PTS: 1	DIF: 1	TOP: 5.1 Work	
2.	Rupel pushes a a. □ 10.0 J b. □ 25.0 J c. □ 125 J d. □ 550 J	box 5.00 m by applying	ng a 25.0-N horizontal f	force. What work does she do?	
	ANS: C	PTS: 1	DIF: 1	TOP: 5.1 Work	
3.				ance of 6.0 m. If a frictional force worker, what net work is done of TOP: 5.1 Work	
4.	A horizontal for done by the 100 a. □405 J b. □500 J c. □900 J d. □4 500 J		l to move a 45-kg cart a	cross a 9.0-m level surface. Wha	at work is
	ANS: C	PTS: 1	DIF: 1	TOP: 5.1 Work	
5.			D.0-kg weight around mone by the rope on the volume of the	y head. The tension in the rope i weight? TOP: 5.1 Work	s 20.0 N. In
6.		by static friction can b			
	a Docitiva				

	b. □ negative.						
	c. □ zero.						
	d. □ Any of the abov	e.					
	ANS: D	PTS: 1	. D	IF:	2	TOP:	5.1 Work
7.	A satellite is held in circumference $80\ 00$ a. $\Box 1.6\ '\ 10^8\ J$. b. $\Box 1.6\ '\ 10^{11}\ J$. c. $\Box 6.4\ '\ 10^{11}\ J$. d. $\Box 0$.					me the	satellite completes an orbit of
	ANS: D	PTS: 1	. D	IF:	2	TOP:	5.1 Work
8.	horizontal surface a frictional force actin	distance dig during to e value to value.	by a rope supplies this motion. How be $-Fd\sin\theta$. How	lying v mu	g a force F at an ach work was do	angle one by f	ong at constant speed on a of elevation θ . The surface has a friction during this motion? The to the correct value?
	ANS: D	PTS: 1	. D	IF:	3	TOP:	5.1 Work
9.	Which of the follow a.□gravity b.□magnetism c.□friction d.□Both choices A	•		ncon	servative force?		
	ANS: C TOP: 5.2 Kinetic E	PTS: 1 nergy and			1 Theorem		
10.	Which of the follow a. □ potential b. □ thermal c. □ bio-chemical d. □ kinetic ANS: D TOP: 5.2 Kinetic E	PTS: 1	. D	OIF:	1	bject's	motion?
11.	field?	ing is that	form of energy	asso	ociated with an o	bject's	location in a conservative force
	a. potential			_			
	b. □thermal						

	c. □ bio-chemical	
	d. □ kinetic	
	ANG A PEG 1 PE 1	
	ANS: A PTS: 1 DIF: 1 TOP: 5.2 Kinetic Energy and the Work-Energy Theorem	
	TOF. 3.2 Killetic Ellergy and the Work-Ellergy Theorem	
12.	2. What is the kinetic energy of a 0.135-kg baseball thrown at 40	0.0 m/s (90.0 mph)?
	a. \square 54.0 J	11
	b. □87.0 J	
	c. □ 108 J	
	d. □216 J	
	ANS: C PTS: 1 DIF: 1	
	TOP: 5.2 Kinetic Energy and the Work-Energy Theorem	
13.	3. A horizontal force of 200 N is applied to a 55-kg cart across a	10-m level surface. If the cart accelerate
10.	2.0 m/s^2 , then what is the work done by the force of friction as	s it acts to retard the motion of the cart?
	a. □- 1 100 J	
	b. □- 900 J	
	c. □- 800 J	
	d. □- 700 J	
	ANS: B PTS: 1 DIF: 2	
	TOP: 5.2 Kinetic Energy and the Work-Energy Theorem	
14.	4. A golf ball hits a wall and bounces back at 3/4 the original spe	eed. What part of the original kinetic ener
1	of the ball did it lose in the collision?	sed. What part of the original kinetic cher
	a. □ 1/4	
	b. □ 3/8	
	c. □ 7/16	
	d. □9/16	
	ANG C PEG 1 DE 2	
	ANS: C PTS: 1 DIF: 2 TOP: 5.2 Kinetic Energy and the Work-Energy Theorem	
	101. 3.2 Kinetic Energy and the Work-Energy Theorem	
15.	5. If both mass and velocity of a ball are tripled, the kinetic energian	gy is increased by a factor of:
	a. □3.	,
	b. □ 6.	
	c. □9.	
	d.□27.	
	ANS: D PTS: 1 DIF: 1	
	TOP: 5.2 Kinetic Energy and the Work-Energy Theorem	
	101. 3.2 Kinetic Energy and the Work-Energy Theorem	
16.	6. A 1 200-kg automobile moving at 25 m/s has the brakes applie	ed with a deceleration of 8.0 m/s ² . How f
	does the car travel before it stops?	
	a. □ 39 m	
	b. □ 47 m	
	c. □ 55 m	
	d. □ 63 m	

	ANS: A PTS: 1 DIF: 2 TOP: 5.2 Kinetic Energy and the Work-Energy Theorem
17.	If during a given physical process the only force acting on an object is friction, which of the following must be assumed in regard to the object's kinetic energy? a. □ It decreases. b. □ It increases. c. □ It remains constant. d. □ It cannot be determined from the information given.
	ANS: D PTS: 1 DIF: 1 TOP: 5.2 Kinetic Energy and the Work-Energy Theorem
18.	A 50.0-kg (including the passenger) sled is subject to a net force of 20.0 N pushing in the direction of the sled's motion as it is moving over a horizontal surface for a distance of 11.0 m after having started from rest. At this point the sled is released as it starts down a 10.0° incline. However, the snow is not very deep, and the sled stops after having moved an additional 35.0 m. What is the work done by friction while the sled is on the incline? a. \Box -220 J b. \Box -3200 J c. \Box -858 J d. \Box -2980 J ANS: B PTS: 1 DIF: 3 TOP: 5.1 Work 5.3 Gravitational Potential Energy
19.	A 10.0-kg sled slides down a snowy hill. At position A it is moving at 1.00 m/s. when it reaches position B it is moving at 3.00 m/s. Finally it passes position C moving at 1.00 m/s again. Position C is 3.00 m lower than position A and 1.00 m lower than position B. The coefficient of kinetic friction varies from place to place in the snow. What is the work done by friction on the sled as it moves from A to C? a. □ b. □ c. □ d. □ Insufficient information is given to solve this problem. ANS: A PTS: 1 DIF: 2 TOP: 5.1 Work 5.3 Gravitational Potential Energy
20.	A very light cart holding a 300-N box is moved at constant velocity across a 15-m level surface. What is the net work done in the process? a. □ zero b. □ 1/20 J c. □ 20 J d. □ 2 000 J ANS: A PTS: 1 DIF: 1 TOP: 5.3 Gravitational Potential Energy

21.	A 7.00-kg bowling ball falls from a 2.00-m shelf. Just before hitting the floor, what will be its kinetic energy? ($g = 9.80 \text{ m/s}^2$ and assume air resistance is negligible) a. \Box 14.0 J b. \Box 19.6 J c. \Box 29.4 J d. \Box 137 J
	ANS: D PTS: 1 DIF: 1 TOP: 5.3 Gravitational Potential Energy
22.	A rock is thrown straight up with an initial velocity of 15.0 m/s. Ignore energy lost to air friction. How high will the rock rise?
	ANS: D PTS: 1 DIF: 2 TOP: 5.3 Gravitational Potential Energy
23.	What is the minimum amount of energy required for an 80-kg climber carrying a 20-kg pack to climb Mt. Everest, 8 850 m high?
24.	A professional skier reaches a speed of 56 m/s on a 30° ski slope. Ignoring friction, what was the minimum distance along the slope the skier would have had to travel, starting from rest? $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
25.	As an object is lowered into a deep hole in the surface of the earth, which of the following must be assumed in regard to its potential energy? a. □ increase b. □ decrease c. □ remain constant d. □ cannot tell from the information given ANS: B PTS: 1 DIF: 1 TOP: 5.3 Gravitational Potential Energy

26. When an object is dropped from a tower, what is the effect of the air resistance as it falls?

	a. □does positive work
	b. □increases the object's kinetic energy
	c. □increases the object's potential energy
	d. □ None of the above choices are valid.
	LIVE D. D. D. D. L.
	ANS: D PTS: 1 DIF: 1
	TOP: 5.3 Gravitational Potential Energy
27.	Samantha pushes a 50-N crate up a ramp 25.0 m in length and inclined at 10° with the horizontal. What potential energy change does the crate experience? a.□13 J b.□55 J c.□120 J d.□220 J
	ANS: D PTS: 1 DIF: 1
	TOP: 5.3 Gravitational Potential Energy
28.	A 15.0-kg crate, initially at rest, slides down a ramp 2.0 m long and inclined at an angle of 20° with the horizontal. If there is no friction between ramp surface and crate, what is the kinetic energy of the crate at the bottom of the ramp? ($g=9.8 \text{ m/s}^2$) a. $\square 220 \text{ J}$ b. $\square 690 \text{ J}$ c. $\square 10 \text{ J}$ d. $\square 100 \text{ J}$
	ANS: D PTS: 1 DIF: 2
	TOP: 5.3 Gravitational Potential Energy
	- · · · · · · · · · · · · · · · · · · ·
29.	A 10.0-kg box starts at rest and slides 3.5 m down a ramp inclined at an angle of 10° with the horizontal. If there is no friction between the ramp surface and crate, what is the velocity of the crate at the bottom of the ramp? $(g = 9.8 \text{ m/s}^2)$ a. $\Box 6.1 \text{ m/s}$ b. $\Box 3.5 \text{ m/s}$ c. $\Box 10.7 \text{ m/s}$ d. $\Box 8.3 \text{ m/s}$
	ANS: B PTS: 1 DIF: 2
	TOP: 5.3 Gravitational Potential Energy
30.	A baseball catcher puts on an exhibition by catching a 0.15-kg ball dropped from a helicopter at a height of 101 m. What is the speed of the ball just before it hits the catcher's glove 1.0 m above the ground? ($g =$
	9.8 m/s ² and ignore air resistance)
	a 44 m/s
	b. □ 38 m/s
	c.□31 m/s
	d. □22 m/s
	ANS: A PTS: 1 DIF: 2 TOP: 5.3 Gravitational Potential Energy

31.	A simple pendulum, 1.00 m in length, is released from rest when the support string is at an angle of 35.0° from the vertical. What is the speed of the suspended mass at the bottom of the swing? ($g = 9.80 \text{ m/s}^2$ and ignore air resistance) a. $\square 0.67 \text{ m/s}$ b. $\square 0.94 \text{ m/s}$ c. $\square 1.33 \text{ m/s}$ d. $\square 1.88 \text{ m/s}$
	ANS: D PTS: 1 DIF: 2 TOP: 5.3 Gravitational Potential Energy
32.	A simple pendulum, 2.0 m in length, is released with a push when the support string is at an angle of 25° from the vertical. If the initial speed of the suspended mass is 1.2 m/s when at the release point, what is its speed at the bottom of the swing? $(g = 9.8 \text{ m/s}^2)$ a. $\Box 2.3 \text{ m/s}$ b. $\Box 2.6 \text{ m/s}$ c. $\Box 2.0 \text{ m/s}$ d. $\Box 0.5 \text{ m/s}$ ANS: A PTS: 1 DIF: 3
22	TOP: 5.3 Gravitational Potential Energy
33.	A simple pendulum, 2.0 m in length, is released by a push when the support string is at an angle of 25° from the vertical. If the initial speed of the suspended mass is 1.2 m/s when at the release point, to what maximum angle will it move in the second half of its swing? a. □ 37° b. □ 30° c. □ 27° d. □ 21° ANS: B PTS: 1 DIF: 3 TOP: 5.3 Gravitational Potential Energy
34.	A hill is 100 m long and makes an angle of 12° with the horizontal. As a 50-kg jogger runs up the hill, how much work does gravity do on the jogger? a. □49 000 J b. □10 000 J c. □-10 000 J d. □zero ANS: C PTS: 1 DIF: 1 TOP: 5.3 Gravitational Potential Energy
35.	A 2.00-kg ball has zero kinetic and potential energy. Ernie drops the ball into a 10.0-m-deep well. Just before the ball hits the bottom, the sum of its kinetic and potential energy is: a.□zero. b.□196 J. c.□-196 J. d.□392 J.

	TOP: 5.3 Gravitational Potential Energy
36.	A 2.00-kg ball has zero potential and kinetic energy. Maria drops the ball into a 10.0-m-deep well. After the ball comes to a stop in the mud, the sum of its potential and kinetic energy is: a.□zero. b.□196 J.
	c. □- 196 J.
	d. □ 392 J.
	ANS: C PTS: 1 DIF: 2
	TOP: 5.3 Gravitational Potential Energy
37.	Two blocks are released from the top of a building. One falls straight down while the other slides down a smooth ramp. If all friction is ignored, which one is moving faster when it reaches the bottom? a. □ The block that went straight down. b. □ The block that went down the ramp. c. □ They both will have the same speed.
	d. ☐ Insufficient information to work the
	problem.
	ANS: C PTS: 1 DIF: 1
	TOP: 5.3 Gravitational Potential Energy
38.	Old Faithful geyser in Yellowstone Park shoots water hourly to a height of 40 m. With what velocity does the water leave the ground? $a. \Box 7.0 \text{ m/s}$ $b. \Box 14 \text{ m/s}$
	c. □ 20 m/s
	d. □ 28 m/s
	u. 120 m/s
	ANS: D PTS: 1 DIF: 2
	TOP: 5.3 Gravitational Potential Energy
39.	An 80 000-kg airliner is flying at 900 km/h at a height of 10.0 km. What is its total energy (kinetic + potential) if the total was 0 when the airliner was at rest on the ground? a. □250 MJ b. □478 MJ c. □773 MJ d. □10 300 MJ
	ANS: D PTS: 1 DIF: 2
	TOP: 5.3 Gravitational Potential Energy
40.	A pole vaulter clears 6.00 m. With what speed does he strike the mat in the landing area? a. \Box 2.70 m/s b. \Box 5.40 m/s c. \Box 10.8 m/s
	d. □21.6 m/s

DIF: 1

PTS: 1

ANS: A

	is the kinetic energy of the la. □zero b. □30 J c. □90 J d. □120 J ANS: C PTS: TOP: 5.3 Gravitational Por	baseball at the h				m/s and initial angle of 30°. What Ignore air friction.
	TOP: 5.3 Gravitational Po		DIF:			
	A hobeled makes a min down			2		
	friction, what is the velocity a. □27 m/s b. □36 m/s c. □45 m/s d. □54 m/s ANS: D PTS: TOP: 5.3 Gravitational Por	at the bottom		ill?	al distan	nce up the hill. If there is no
	A 2 000-kg ore car rolls 50. of the incline, what spring ca. □340 kN/m b. □681 kN/m c. □980 kN/m d. □1 960 kN/m ANS: A PTS:	onstant is requ		top the ore car	in a dist	is a horizontal spring at the end tance of 1.00 m? 5.4 Spring Potential Energy
44.	An amount of work equal to speed" of a 15-g marble? a. □14 m/s b. □15 m/s c. □18 m/s d. □21 m/s ANS: A PTS:		ed to co			spring-gun. What is the "launch" 5.4 Spring Potential Energy
45.	The SI units for k , the spring $a. \Box J.$ $b. \Box J / N.$ $c. \Box kg / s^2.$ $d. \Box$ None of the above.	g constant, are	equival	ent to:		
	ANS: C PTS:	1	DIF:	2	TOP:	5.4 Spring Potential Energy

	8.00 cm to 16.0	CIII!					
	a. □ 100%						
	b. □200%						
	c. □300 %						
	d. □ The correct	answer is no	ot given.				
	ANS: C	PTS:	1	DIF:	2	TOP:	5.4 Spring Potential Energy
47.					n equilibri	um and the po	otential energy stored is 72.0
	What is the spri		in this cas	se?			
	a. □ 10 000 N/m						
	b. □ 5 000 N/m						
	c. □ 1 200 N/m						
	d. □ No answer i	s correct.					
	ANS: A	PTS:	1	DIF:	2	TOP:	5.4 Spring Potential Energy
48.	A Hooke's law s	spring is com	pressed	12.0 cm fron	n equilibri	um, and the p	ootential energy stored is 72.0
	What compressi	ion (as measi	ured from	n equilibrium) would re	esult in 100 Ĵ	being stored in this case?
	a. □ 16.7 cm						
	b. □ 14.1 cm						
	c. □ 13.6 cm						
		s correct.					
	c.□13.6 cm d.□No answer i ANS: B	s correct. PTS:	1	DIF:	3	TOP:	5.4 Spring Potential Energy
49.	d. □ No answer in ANS: B A Hooke's law sedistance d and is	PTS: spring is mous used to laur	unted hor	izontally ove ss m along th	er a friction	nless surface. less surface. V	5.4 Spring Potential Energy The spring is then compress What compression of the sprihe above situation?
49.	d. \square No answer is ANS: B A Hooke's law so distance d and is would result in a. \square 1.41 d b. \square 1.73 d c. \square 2.00 d	PTS: spring is mous used to launthe mass atta	unted hor	izontally ove ss m along th	er a friction	nless surface. less surface. V received in the	The spring is then compress What compression of the spri
49. 50.	d. \square No answer is ANS: B A Hooke's law so distance d and is would result in a. \square 1.41 d b. \square 1.73 d c. \square 2.00 d d. \square 4.00 d ANS: A A Hooke's law so distance d and is would result in a. \square 1.41 d b. \square 1.73 d	PTS: spring is moust the mass attained to laurathe mass attained to laurathe mass attained to laurathe moust the mass attained to laurathe mass attained to laurathe mass attained to laurathe moust be laurathe m	unted hor nch a mas uining dou 1 unted hor nch a mas	izontally over along the second property of the second property over th	er a friction de f	nless surface. Vess surface. Vess surface. TOP: nless surface. Vess surf	The spring is then compress What compression of the spri he above situation? 5.4 Spring Potential Energy The spring is then compress What compression of the spri
	d. \square No answer is ANS: B A Hooke's law so distance d and is would result in a. \square 1.41 d b. \square 1.73 d c. \square 2.00 d d. \square 4.00 d ANS: A A Hooke's law so distance d and is would result in a. \square 1.41 d b. \square 1.73 d c. \square 2.00 d	PTS: spring is moust the mass attained to laurathe mass attained to laurathe mass attained to laurathe moust the mass attained to laurathe mass attained to laurathe mass attained to laurathe moust be laurathe m	unted hor nch a mas uining dou 1 unted hor nch a mas	izontally over along the second property of the second property over th	er a friction de f	nless surface. Vess surface. Vess surface. TOP: nless surface. Vess surf	The spring is then compress What compression of the spri he above situation? 5.4 Spring Potential Energy The spring is then compress What compression of the spri
	d. \square No answer is ANS: B A Hooke's law so distance d and is would result in a. \square 1.41 d b. \square 1.73 d c. \square 2.00 d d. \square 4.00 d ANS: A A Hooke's law so distance d and is would result in a. \square 1.41 d b. \square 1.73 d	PTS: spring is moust the mass attained to laurathe mass attained to laurathe mass attained to laurathe moust the mass attained to laurathe mass attained to laurathe mass attained to laurathe moust be laurathe m	unted hor nch a mas uining dou 1 unted hor nch a mas	izontally over along the second property of the second property over th	er a friction de f	nless surface. Vess surface. Vess surface. TOP: nless surface. Vess surf	The spring is then compress What compression of the spri he above situation? 5.4 Spring Potential Energy The spring is then compress What compression of the spri

	a. □zero
	b. □ 20 N
	c.□30 N
	d. □40 N
	ANS: D PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
52.	Adisa pulls a 40-N crate up a 5.0-m long inclined plane at a constant velocity. If the plane is inclined at an angle of 37° to the horizontal and there is a constant force of friction of 10 N between the crate and the surface, what is the net change in potential energy of the crate?
	ANS: A PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
53.	A 20-N crate starting at rest slides down a rough 5.0-m long ramp, inclined at 25° with the horizontal. 20 J of energy is lost to friction. What will be the speed of the crate at the bottom of the incline?
	ANS: D PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
54.	Preston pushes a wheelbarrow weighing 500 N to the top of a 50.0-m ramp, inclined at 20.0° with the horizontal, and leaves it. Tamara accidentally bumps the wheelbarrow. It slides back down the ramp, during which an 80.0-N frictional force acts on it over the 50.0 m. What is the wheelbarrow's kinetic energy at the bottom at of the ramp? $(g = 9.8 \text{ m/s}^2)$ a. $\Box 4550 \text{ J}$ b. $\Box 6550 \text{ J}$ c. $\Box 8150 \text{ J}$ d. $\Box 13100 \text{ J}$
	ANS: A PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
55.	A pile driver drives a post into the ground. The mass of the pile driver is $2500\mathrm{kg}$ and it is dropped through a height of $8.0\mathrm{m}$ on each stroke. If the resisting force of the ground is $4.0^{'}10^6\mathrm{N}$, how far is the post driven in on each stroke? a. $\Box 4.9\mathrm{cm}$ b. $\Box 9.8\mathrm{cm}$ c. $\Box 16\mathrm{cm}$
	d. □49 cm

	ANS: A PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
56.	A baseball catcher puts on an exhibition by catching a 0.150-kg ball dropped from a helicopter at a height of 100 m above the catcher. If the catcher "gives" with the ball for a distance of 0.750 m while catching it, what average force is exerted on the mitt by the ball? ($g = 9.80 \text{ m/s}^2$) a. $\Box 78 \text{ N}$ b. $\Box 119 \text{ N}$ c. $\Box 197 \text{ N}$ d. $\Box 392 \text{ N}$
	ANS: C PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
57.	A girl and her bicycle have a total mass of 40.0 kg. At the top of the hill her speed is 5.0 m/s, and her speed doubles as she rides down the hill. The hill is 10.0 m high and 100 m long. How much kinetic energy and potential energy is lost to friction? a. □ 2 420 J b. □ 1 500 J c. □ 2 000 J d. □ 3 920 J ANS: A PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
58.	A girl and her bicycle have a total mass of 40 kg. At the top of the hill her speed is 5.0 m/s. The hill is 10 m high and 100 m long. If the force of friction as she rides down the hill is 20 N, what is her speed at the bottom? a. □ 5.0 m/s b. □ 10 m/s c. □ 11 m/s d. □ She stops before she reaches the bottom. ANS: C PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
59.	a. □ 0.29 J b. □ 0.50 J c. □ 0.88 J d. □ 1.0 J
	ANS: A PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
60.	A parachutist of mass 50.0 kg jumps out of an airplane at a height of 1 000 m. The parachute deploys, and she lands on the ground with a speed of 5.0 m/s. How much energy was lost to air friction during this jump?

a. □49 400 J b. □98 700 J

	c.□198 000 J
	d. □489 000 J
	ANS: D PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
1.	above its starting position. Under the same compression d , the spring is now used to launch a mass of 2 How high does this second mass rise?
	a. $\Box h$ b. $\Box h/2$ c. $\Box h/1.41$ d. $\Box h/4$
	ANS: B PTS: 1 DIF: 2 TOP: 5.5 Systems and Energy Conservation
2.	A Hooke's law spring is compressed a distance d and is used to launch a mass m vertically to a height h above its starting position. Under double the compression, the spring is now used to launch the mass. How high does the mass now rise above its starting position? a. $\Box 2 h$ b. $\Box 1.41 h$ c. $\Box 3 h$ d. $\Box 4 h$
	ANS: D PTS: 1 DIF: 2
	TOP: 5.5 Systems and Energy Conservation
3.	A Hooke's law spring is compressed a distance d and is used to launch a particle of mass m vertically to height h above its starting position. Under double the compression, the spring is now used to launch a particle of mass $2m$. How high does the second mass rise above its starting position? a. $\Box h$ b. $\Box 2h$ c. $\Box 3h$ d. $\Box 4h$
	ANS: B PTS: 1 DIF: 2
	TOP: 5.5 Systems and Energy Conservation
4.	The quantity of work equal to one joule is also equivalent to which of the following? a. \square watt b. \square watt $/$ s c. \square watt \times s d. \square watt $/$ s ²
	ANS: C PTS: 1 DIF: 1 TOP: 5.6 Power
	And C 115. 1 Dir. 1 101. 3.010wel
5.	The rate at which work is done is equivalent to which of the following?
	la l'un anggaga un motantial anguary
	a. □ increase in potential energy b. □ thermal energy

	c. □ potential ene	rgy			
	d. □ power				
	ANS: D	PTS: 1	DIF:	1	TOP: 5.6 Power
66.	The unit of power	er, watt, is dimension	ally the same	e as:	
	a. □joule-second				
	b. □joule/second				
	c.□joule-meter.				
	d. □joule/meter.				
	ANS: B	PTS: 1	DIF:	1	TOP: 5.6 Power
67.	A 60-kg woman	runs up a flight of sta	airs having a	rise of	4.0 m in a time of 4.2 s. What average power did
	she supply?				
	a.□380 W				
	b.□560 W				
	c.□620 W				
	d.□670 W				
	ANS: B	PTS: 1	DIF:	2	TOP: 5.6 Power
68.					ng at a constant speed of 22.0 m/s. What is the
		on the automobile at	this speed? (1 hp = 1	746 watts)
	a.□18 600 N				
	b. □410 000 N				
	c. □ 1 020 N				
	d.□848 N				
	ANS: C	PTS: 1	DIF:	2	TOP: 5.6 Power
69.	Vuri a Ruccian i	weightlifter is able to	1ift 250 kg	2 00 m	in 2.00 s. What is his power output?
0).	a. □500 W	weightimer, is able to	7 IIIt 250 kg 2	2.00 111	in 2.00 s. What is his power output:
	b. □ 2.45 kW				
	c. □4.90 kW				
	d. □9.80 kW				
	ANS: B	PTS: 1	DIF:	2	TOP: 5.6 Power
70.	Δ iet engine dev	elons 1.0 ′ 10 ⁵ N of	thrust in mov	ing an	airplane forward at a speed of 900 km/h. What is
70.		oped by the engine?	imust iii iiio v	ing an	an plane forward at a speed of 500 km/n. What is
	_	ped by the engine:			
	a. □ 500 kW				
	b. □ 10 MW				
	c. □25 MW				
	d. □ 50 MW				
	ANS: C	PTS: 1	DIF:	2	TOP: 5.6 Power

71. A speed boat requires 80 kW to move at a constant speed of 15 m/s. What is the resistive force of the water at this speed?

	a.□2 700 N				
	b. □5 300 N				
	c.□6 500 N				
	d.□7 700 N				
	ANS: B	PTS: 1	DIF: 2	TOP: 5.6 Power	
72.	Water flows over a power dissipated by a. □588 MW b. □294 MW c. □147 MW d. □60.0 MW		a Falls at a rate of 1.20	$0~^{\prime}~10^6~{ m kg/s}$ and falls 50.0 m. What i	s the
	ANS: A	PTS: 1	DIF: 3	TOP: 5.6 Power	
73.	A 1 000-kg sports of automobile engine? a.□20.8 kW b.□30.3 kW c.□41.7 kW d.□52.4 kW		m zero to 25 m/s in 7.5	5 s. What is the average power deliv	ered by the
	ANS: C	PTS: 1	DIF: 2	TOP: 5.6 Power	
74.		ant acceleration, the	mass on a horizontal he power delivered to	frictionless surface. As the speed of it by the force:	the mass
	ANS: B	PTS: 1	DIF: 2	TOP: 5.6 Power	
75.	A 100-W light bulb bulb? a.□1 000 J b.□3 600 J c.□3 600 000 J d.□1.34 hp	o is left on for 10.0	hours. Over this perio	od of time, how much energy was us	ed by the
	ANS: C	PTS: 1	DIF: 2	TOP: 5.6 Power	
76.	A 200-hp engine ca a. □200 W b. □74 600 W c. □149 000 W d. □298 000 W	un deliver, in SI un	nits, an average power	of (1 hp = 746 W)	
	ANS: C	PTS: 1	DIF: 1	TOP: 5.6 Power	

77.	The area under the force vs. displacement curve represents:
	a. □ area.
	b. □ force.
	c.□work.
	d. □ coefficient of static friction.
	ANS: C PTS: 1 DIF: 1 TOP: 5.7 Work Done by a Varying Force
78.	A force of 100 N is applied to a 50-kg mass in the direction of motion for a distance of 6.0 m and then the force is increased to 150 N for the next 4.0 m. For the 10 m of travel, how much work is done by the varying force? a. \Box 1 200 J b. \Box 1 500 J c. \Box 2 400 J d. \Box - 1 500 J
	ANS: A PTS: 1 DIF: 2 TOP: 5.7 Work Done by a Varying Force
79.	The net force acting on a 6.0-kg object is given by $F_x = (10 - x)$ N, where F_x is in newtons and x is in meters. How much work is done on the object as it moves from $x = 0$ to $x = 10$ m?
	a. □ 100 J
	b. □ 75 J
	c. □ 50 J
	d. □25 J
	ANS: C PTS: 1 DIF: 3 TOP: 5.7 Work Done by a Varying Force
80.	The net force acting on a 12.6-kg object is given by $F_x = (20 - x)$ N, where F_x is in newtons and x is in meters. How much work is done on the object as it moves from $x = 0$ to $x = 10$ m? a. $\Box 300 \text{ J}$
	b. □ 200 J
	c.□150 J
	d. □ 100 J
	ANS: C PTS: 1 DIF: 3 TOP: 5.7 Work Done by a Varying Force
81.	a. □No, because a moving particle has positive kinetic energy.
	b. □No, because potential energy cannot have a value more negative than the value of the
	positive kinetic energy of the particle.
	c. Only if friction is involved.
	d. □yes

	ANS: D	PTS:	1	DIF:	2	TOP:	Conceptual Problems
82.		h particle has to ets with the grounched at the highest ith the lowest in	he same initia bund? nighest angle of mass. mass.	l kinetic			ach at different angles of e has the greatest kinetic energy
	ANS: B	PTS:	1	DIF:	2	TOP:	Conceptual Problems
83.		h particle has the ground? unched at the lith the highest ith the lowest i	he same initianighest angle of mass. mass. me speed on	of		hich particl	ach at different angles of e has the greatest speed just as it Conceptual Problems
	ANS: C	P15:	1	DIF:	3	TOP:	Conceptual Problems
84.	block is then p which case did a. This proble not indicated with the incline bot kinetic friction b. The case of least decrease c. The case of least decrease d. In both case energy was the	brojected with the last the total meets and the same in the horizontal mechanist and the inclined in total mechanist and the decrease same.	the same speed manical energy solved since it rizontal surface e coefficient of al surface had mical energy. surface had the mical energy. e in mechanic	d v up a v of the was the and f the al	n incline wl block decre	here is slide ase the leas	
	ANS: C	PTS:	1	DIF:	3	TOP:	Conceptual Problems
85.	when it strikes a. □ It should b is thrown. b. □ It should b ball hits. c. □ It should b	the ground be e at the level fine at the ground	low, where she rom where the dilevel where the well where the well ground level.	ball the			thrown from the top of a building its zero value?

 $d.\Box$ It doesn't matter since only differences in potential energy matter in solutions.

ANS: D

PTS: 1

DIF: 2

TOP: Conceptual Problems

Chapter 6—Momentum and Collisions

MULTIPLE CHOICE

1.	A valid unit for mon	nentum is which	of the followi	ng?			
	$a.\Box kg \times m/s^2$						
	$b.\Box kg/m^2$						
	c.□kg×m/s						
	d.□N×m						
	ANS: C	PTS: 1	DIF:	1	TOP:	6.1 Momentum and Impu	ılse
2.	The dimensional equation is which of the a. \Box MLT ⁻¹		antity impuls	e in te	rms of the funda	mental quantities (mass, l	ength
	$b.\Box ML^2T^{-2}$						
	c. \(\text{MLT} \)						
	d. \(\text{MLT}^{-2} \)						
	u. 🗆 IVIL I						
	ANS: A	PTS: 1	DIF:	1	TOP:	6.1 Momentum and Impu	ılse
3.	raft is 4.0 m/s. A mid	cro-sensor systemies an impulse to	n attached to t the raft just p	the edg orior to	ge of the raft me o leaving the raft zontal force by d	immediately after leaving asures the time interval dust surface. If the time intervaliver on the raft? 6.1 Momentum and Imparents	aring val is
	ANS: D	P15: 1	DIF:	2	TOP:	6.1 Momentum and Impo	uise
4.	A 0.12-kg ball is mo of 14 m/s. What is the a. □ 0.39 kg×m/s b. □ 0.42 kg×m/s c. □ 1.3 kg×m/s d. □ 2.4 kg×m/s					erse direction and have a ball?	speed
	ANS: D	PTS: 1	DIF:	2	TOP:	6.1 Momentum and Impu	ulse
5.	The impulse experie a. □velocity. b. □kinetic energy. c. □ momentum. d. □ None of the above	·		o its cl	hange in:		
	ANS: C	PTS: 1	DIF:	1	TOP:	6.1 Momentum and Impu	ulse

6.	length, time) is: a. \(\text{MLT}^{-1}. \) b. \(\text{ML}^2 \text{T}^{-2}. \) c. \(\text{MLT}. \)	equivalence of the qu	nantity "momentum	" in terms of the fundamental quantities (mass,
	d.□MLT ⁻² . ANS: A	PTS: 1	DIF: 1	TOP: 6.1 Momentum and Impulse
7.				he ball's speed just before impact is 6.5 m/s, and of the ball's momentum? TOP: 6.1 Momentum and Impulse
8.	Alex throws a 0.1 just after is 3.5 m/s	5-kg rubber ball dow	onto the floor. Tontact with the floor	the ball's speed just before impact is 6.5 m/s, and for 0.025 s, what is the magnitude of the
	ANS: A	PTS: 1	DIF: 2	TOP: 6.1 Momentum and Impulse
9.	m/s and 4.2 m/s, r		all is in contact with	pall's speeds just before impact and after are 4.5 in the plate for 0.030 s, what is the magnitude of impact?
	ANS: A	PTS: 1	DIF: 2	TOP: 6.1 Momentum and Impulse
10.				es at home plate with a speed of 40 m/s and is n/s. What is the magnitude of change in the ball's TOP: 6.1 Momentum and Impulse

11.		to Lonni	ie with a return	speed			e with a speed of 40 m/s and is in contact with the ball for 0.050
	b.□20 N א						
	c. □400 N %						
	d. □ 9.0 N %						
	ANS: B	PTS:	1	DIF:	2	TOP:	6.1 Momentum and Impulse
12.	A ball with original kinetic energy. The a. □ 0. b. □ - 4.0 kg×m/s. c. □ 8.0 kg×m/s. d. □ - 8.0 kg×m/s.					ces stra	ight back without losing any
	ANS: D	PTS:	1	DIF:	1	TOP:	6.1 Momentum and Impulse
13.		ne glass glass will of the pa oull will	very much if the less. per will be greste be less.	ater.			ely easy to pull the paper out This is because, with a quick pull:
	ANS: C	PTS:	1	DIF:	2	TOP:	6.1 Momentum and Impulse
14.			e water exert o		lass? Assume th	e wate:	eed of 30 m/s, against a car r does not splash back. 6.1 Momentum and Impulse
15.	The units of impulse a. □those of energy. b. □Nxm. c. □kgxm/s. d. □those of force.			ДП.	2	101.	o.1 Womentum and Impuise
	ANS: C	PTS:	1	DIF:	1	TOP:	6.1 Momentum and Impulse
16.	A 75-kg swimmer d raft is 4 m/s, what is a. □ 0.2 m/s b. □ 0.5 m/s c. □ 0.6 m/s					r's spee	ed immediately after leaving the

	d. □4.0 m/s
	ANS: C PTS: 1 DIF: 2 TOP: 6.2 Conservation of Momentum
17.	A cannon of mass 1 500 kg fires a 10-kg shell with a velocity of 200 m/s at an angle of 45° above the horizontal. Find the recoil velocity of the cannon across the level ground. a. \Box 1.33 m/s b. \Box 0.94 m/s c. \Box 2.41 m/s d. \Box 1.94 m/s
	ANS: B PTS: 1 DIF: 2 TOP: 6.2 Conservation of Momentum
18.	The law of conservation of momentum is applicable to systems made up of objects described by which of
	the following?
	a. □ macroscopic b. □ microscopic
	c. □interacting through friction
	d. □ All the above choices are valid.
	ANS: D PTS: 1 DIF: 1 TOP: 6.2 Conservation of Momentum
19.	A machine gun is attached to a railroad flatcar that rolls with negligible friction. If the railroad car has a mass of 6.25 $$ 10 ⁴ kg, how many bullets of mass 25 g would have to be fired at 250 m/s off the back to give the railroad car a forward velocity of 0.5 m/s? a. $\Box 400$ b. $\Box 2\ 000$ c. $\Box 3\ 000$ d. $\Box 5\ 000$
	ANS: D PTS: 1 DIF: 2 TOP: 6.2 Conservation of Momentum
20.	Ann the Astronaut weighs 60 kg. She is space walking outside the space shuttle and pushes a 350-kg satellite away from the shuttle at 0.90 m/s. What speed does this give Ann as she moves toward the shuttle?
	a. □4.0 m/s
	b. □ 5.3 m/s
	c. □ 8.5 m/s
	d. □9.0 m/s
	ANS: B PTS: 1 DIF: 2 TOP: 6.2 Conservation of Momentum

21. A miniature spring-loaded, radio-controlled gun is mounted on an air puck. The gun's bullet has a mass of 5.00 g, and the gun and puck have a combined mass of 120 g. With the system initially at rest, the radio controlled trigger releases the bullet causing the puck and empty gun to move with a speed of 0.500 m/s. What is the bullet's speed?

	a. □4.80 m/s		
	b. □11.5 m/s		
	c. □48.0 m/s		
	d. □ 12.0 m/s		
	ANS: D PTS: 1 DIF: TOP: 6.2 Conservation of Momentum	:	2
	101. 0.2 Conscivation of Momentum		
22.			into a helium nucleus (mass 4.0 units) and a thorium nucleus is $6.0 \cdot 10^5$ m/s, what is the speed of the
	b. □ 3.0 ′ 10 ⁴ m/s		
	c. $\Box 3.6 \cdot 10^4 \text{ m/s}$		
	d. \(\prec{4.1}{10^4} \) m/s		
	u. □ 4.1 10 m/s		
	ANS: A PTS: 1 DIF: TOP: 6.2 Conservation of Momentum	•	2
23.	If the momentum of an object is tripled, its kineti	ic 6	energy will change by what factor?
23.	a. zero		energy will enauge by what factor.
	b. □one-third		
	c. Uthree		
	d. □nine		
	ANS: D PTS: 1 DIF:	:	1
	TOP: 6.2 Conservation of Momentum		
24.	The kinetic energy of an object is quadrupled. Its	m	comentum will change by what factor?
<i>2</i> 4.	a. zero	111. 	ionientum win change by what factor?
	b. two		
	c. eight		
	d. four		
	d. □ Ioui		
	ANS: B PTS: 1 DIF: TOP: 6.2 Conservation of Momentum	:	1
25.	A moderate force will break an egg. However, ar dropped on the grass usually doesn't break. This		egg dropped on the road usually breaks, while one because for the egg dropped on the grass:
	athe change in momentum is greater.		
	b. □ the change in momentum is less.		
	c. the time interval for stopping is greater.		
	d. □ the time interval for stopping is less.		
		1	
	ANS: C PTS: 1 DIF:	:	1
	TOP: 6.2 Conservation of Momentum		
26.	A 70-kg man is standing in a 20-kg boat. The ma	ın s	steps to the right thinking he is stepping out onto the

26. A 70-kg man is standing in a 20-kg boat. The man steps to the right thinking he is stepping out onto the dock. However, the following will actually happen (ignore the friction of the water or air on the boat or the man):

	a. The man only moves a short distance to the right while the boat moves a larger distance to	
	the left.	
	b. The man actually stays still while the boat	
	moves toward the left.	
	c. The boat doesn't move and the man moves to	
	the right.	
	d. None of the above.	
	ANS: A PTS: 1 DIF:	2
	TOP: 6.2 Conservation of Momentum	
27.	the same wall. Which statement is true?	of identical mass is thrown with the same speed toward
	a. The clay experiences a greater change in momentum than the ball.	
	b. □ The ball experiences a greater change in momentum than the clay.	
	c. The clay and the ball experience the same	
	change in momentum.	
	d. It is not possible to know which object has	
	the greater change in momentum.	
	ANS: B PTS: 1 DIF: TOP: 6.2 Conservation of Momentum	2
28.		m above the water. If, 1.0 s after entering the water his
	downward motion is stopped, what average upward	rd force did the water exert?
	a. □ 100 N	
	b. □ 686 N	
	c. □980 N	
	d. □ No answer is correct.	
	ANS: D PTS: 1 DIF: TOP: 6.2 Conservation of Momentum	3
29.	Object 1 has twice the mass of Object 2. Both object lowing statements is true?	ects have the same kinetic energy. Which of the
	a. ☐ Both objects can have the same magnitude	
	of momentum.	
	b. ☐ Object 1 has a momentum of greater	
	magnitude than Object 2.	
	c. □ The magnitude of the momentum of Object	
	2 is four times that of Object 1.	
	d. □ All the statements are false.	
	ANS: B PTS: 1 DIF:	3
	TOP: 6.2 Conservation of Momentum	

30. Object 1 has twice the mass of Object 2. Each of the objects has the same magnitude of momentum. Which of the following statements is true?

	 a. □Both objects can have the same kinetic energy. b. □One object has 0.707 times the kinetic energy of the other. c. □One object has twice the kinetic energy of the other. d. □One object has 4 times the kinetic energy of the other. ANS: C PTS: 1 DIF: 3 TOP: 6.2 Conservation of Momentum	
31.		
	 b. □The one with mass m₃ receives the greatest impulse. c. □The all must receive equal impulses. d. □ Although one or more of the above statements could be true in special cases, they are not always true. 	
	ANS: D PTS: 1 DIF: 2 TOP: 6.2 Conservation of Momentum	
32.	2. A 5.00-g bullet is fired into a 500-g block of wood suspended as a ballistic pendulum. the swings up to a height of 8.00 cm. What was the magnitude of the momentum of the consimmediately after the collision? a. □6.25 × 10 ⁻³ kg·m/s b. □6.25 kg·m/s c. □0.632 kg·m/s d. □0.394 kg·m/s	
	ANS: C PTS: 1 DIF: 2 TOP: 6.2 Conservation of Momentum	
33.	3. A 12.0-g bullet is fired into a 1 100-g block of wood which is suspended as a ballistic prombined mass swings up to a height of 8.50 cm. What was the kinetic energy of the commediately after the collision? a.□1.44 J b.□1.86 J c.□0.632 J d.□0.926 J	
	ANS: D PTS: 1 DIF: 2 TOP: 6.2 Conservation of Momentum	

34.	A 5.00-g bullet is fired into a 900-g bloc mass swings up to a height of 8.00 cm. V					
	collision?					
	a. □ 129 J					
	b. □ 23.3 kJ					
	c.□0.709 J					
	d. □ 0.355 J					
	ANS: A PTS: 1 TOP: 6.2 Conservation of Momentum	DIF:	2			
35.	A man standing on frictionless ice throw	s a 1 00-1	co mass	s at 20.0 m/s a	it an angle of ele	evation of 40.0°
55.	What was the magnitude of the man's m					
	a. □16.8 kg·m/s			, ,	8	
	b. □ 15.3 kg· m/s					
	c. □ 12.9 kg·m/s					
	d. This cannot be answered because the	e mass				
	of the man needs to be known.	2 mass				
	ANS: B PTS: 1	DIF:	2	TO	P: 6.3 Collision	าร
			_			
36.	A 20-g bullet moving at 1 000 m/s is fire m/s. If the block had been originally at r					
	a. □9 m/s					
	b. □ 18 m/s					
	c. □90 m/s					
	d.□900 m/s					
	ANG D DTG 1	DIE	2			
	ANS: B PTS: 1	DIF:	2			
	TOP: 6.3 Collisions 6.4 Glancing Coll	IISIOIIS				
37.	A 20-g bullet moving at 1 000 m/s is fire	ed through	n a one-	kg block of w	wood emerging a	at a speed of 100
	m/s. What is the kinetic energy of the blo					
	moving prior to the collision and was fre					
	a. □ 10 kJ					
	b. □9.8 kJ					
	c. □0.16 kJ					
	d. □ 0.018 kJ					
	ANS: C PTS: 1 TOP: 6.3 Collisions 6.4 Glancing Coll	DIF: lisions	2			
38.	A 20-g bullet moving at 1 000 m/s is fire	ed through	n a one-	-kg block of w	vood emerging a	at a speed of 100
50.	m/s. What is the change in the kinetic en					
	assuming the block is free to move?	orgy or th	ie odne	n block system	ir as a result of t	ne compron
	a. \(\sigma \) J					
	b. □ 9.7 kJ					
	c. □ - 9.7 kJ					
	d. □ - 18 J					
	[u. □ - 10 J					

	ANS: C PTS: 1 DIF: 3 TOP: 6.3 Collisions 6.4 Glancing Collisions
39.	An object of mass m moving at speed v_0 strikes an object of mass $2m$ which had been at rest. The first object bounces backward along its initial path at speed v_0 . Is this collision elastic, and if not, what is the change in kinetic energy of the system? a. \Box The collision is elastic. b. \Box The kinetic energy decreases by mv^2 . c. \Box The kinetic energy decreases by mv^2 . d. \Box The kinetic energy increases by mv^2 .
	ANS: D PTS: 1 DIF: 2 TOP: 6.3 Collisions 6.4 Glancing Collisions
40.	A billiard ball is moving in the x-direction at 30.0 cm/s and strikes another billiard ball moving in the y-direction at 40.0 cm/s. As a result of the collision, the first ball moves at 50.0 cm/s, and the second ball stops. In what final direction does the first ball move? a. \Box in the x-direction b. \Box at an angle of 53.1° ccw from the x-direction c. \Box at an angle of 45.0° ccw from the x-direction d. \Box Such a collision cannot happen.
	ANS: B PTS: 1 DIF: 2 TOP: 6.3 Collisions 6.4 Glancing Collisions
41.	A billiard ball is moving in the x-direction at 30.0 cm/s and strikes another billiard ball moving in the y-direction at 40.0 cm/s. As a result of the collision, the first ball moves at 50.0 cm/s, and the second ball stops. What is the change in kinetic energy of the system as a result of the collision? a. □ 0 b. □ some positive value c. □ some negative value d. □ No answer above is correct. ANS: A PTS: 1 DIF: 2
42.	TOP: 6.3 Collisions 6.4 Glancing Collisions During a snowball fight two balls with masses of 0.4 and 0.6 kg, respectively, are thrown in such a manner that they meet head-on and combine to form a single mass. The magnitude of initial velocity for each is 15 m/s. What is the speed of the 1.0 -kg mass immediately after collision? a. \Box zero b. \Box 3 m/s c. \Box 6 m/s d. \Box 9 m/s
	ANS: B PTS: 1 DIF: 2 TOP: 6.3 Collisions 6.4 Glancing Collisions
43.	A 2 500-kg truck moving at 10.00 m/s strikes a car waiting at a traffic light, hooking bumpers. The two continue to move together at 7.00 m/s. What was the mass of the struck car? $a.\Box 1 730 \text{ kg}$

	b. □ 1 550 kg	
	c. □ 1 200 kg	
	d. □1 070 kg	
	ANS: D PTS: 1 DIF: TOP: 6.3 Collisions 6.4 Glancing Collisions	2
44.	A billiard ball collides in an elastic head-on collision which of the following conditions applies a. □ maintains the same velocity as before b. □ has one half its initial velocity c. □ comes to rest d. □ moves in the opposite direction	on with a second stationary identical ball. After the s to the first ball?
	ANS: C PTS: 1 DIF: TOP: 6.3 Collisions 6.4 Glancing Collisions	1
45.	energy of the system after the collision compared t a. □ the same as b. □ one fourth c. □ twice d. □ four times ANS: A PTS: 1 DIF:	
	TOP: 6.3 Collisions 6.4 Glancing Collisions	
46.	In a two-body collision, if the momentum of the sy describes the kinetic energy after the collision? a. □ must be less b. □ must also be conserved c. □ may also be conserved d. □ is doubled in value	ystem is conserved, then which of the following best
	ANS: C PTS: 1 DIF: TOP: 6.3 Collisions 6.4 Glancing Collisions	1
47.	In a two-body collision, if the kinetic energy of the describes the momentum after the collision? a. □ must be less b. □ must also be conserved c. □ may also be conserved d. □ is doubled in value	e system is conserved, then which of the following best
	ANS: B PTS: 1 DIF: TOP: 6.3 Collisions 6.4 Glancing Collisions	1

48. A railroad freight car, mass 15 000 kg, is allowed to coast along a level track at a speed of 2.0 m/s. It collides and couples with a 50 000-kg loaded second car, initially at rest and with brakes released. What percentage of the initial kinetic energy of the 15 000-kg car is preserved in the two-coupled cars after collision?

	a. □ 14%
	b. □23%
	c. □86%
	d. □ 100%
	ANS: B PTS: 1 DIF: 3
	TOP: 6.3 Collisions 6.4 Glancing Collisions
49.	A miniature, spring-loaded, radio-controlled gun is mounted on an air puck. The gun's bullet has a mass of 5.00 g, and the gun and puck have a combined mass of 120 g. With the system initially at rest, the radio-controlled trigger releases the bullet, causing the puck and empty gun to move with a speed of 0.500 m/s. Of the total kinetic energy of the gun-puck-bullet system, what percentage is in the bullet? a. $\Box 4.0\%$ b. $\Box 50\%$ c. $\Box 96\%$ d. $\Box 100\%$
	ANS: C PTS: 1 DIF: 3 TOP: 6.3 Collisions 6.4 Glancing Collisions
50.	A 20-kg object sitting at rest is struck elastically in a head-on collision with a 10-kg object initially moving at $+3.0$ m/s. Find the final velocity of the 20-kg object after the collision. a. \Box - 1.0 m/s b. \Box - 2.0 m/s c. \Box +1.5 m/s d. \Box +2.0 m/s
	ANS: D PTS: 1 DIF: 3 TOP: 6.3 Collisions 6.4 Glancing Collisions
51.	A 0.10-kg object moving initially with a velocity of $+0.20$ m/s makes an elastic head-on collision with a 0.15-kg object initially at rest. What percentage of the original kinetic energy is retained by the 0.10-kg object? a. $\square 4\%$ b. $\square - 4\%$ c. $\square 50\%$ d. $\square 96\%$
	ANS: A PTS: 1 DIF: 2 TOP: 6.3 Collisions 6.4 Glancing Collisions
52.	Two billiard balls have velocities of 2.0 m/s and - 1.0 m/s when they meet in an elastic head-on collision. What is the final velocity of the first ball after collision? a. \Box - 2.0 m/s b. \Box - 1.0 m/s c. \Box - 0.5 m/s d. \Box +1.0 m/s
	ANS: B PTS: 1 DIF: 2 TOP: 6.3 Collisions 6.4 Glancing Collisions

52	The street and become in the street and a street and the street an
53.	Two objects, one less massive than the other, collide elastically and bounce back after the collision. If the two originally had velocities that were equal in size but opposite in direction, then which one will be
	moving faster after the collision?
	a. □ The less massive one.
	b. □The more massive one.
	c. □ The speeds will be the same after the
	collision.
	d. There is no way to be sure without the actual
	masses.
	ANS: A PTS: 1 DIF: 2
	TOP: 6.3 Collisions 6.4 Glancing Collisions
	1011 old Complete Complete
54.	In a partially elastic collision between two objects with unequal mass:
	a. □ the velocity of one will increase by the
	amount that the velocity of the other decreases.
	b. □ the momentum of one will increase by the
	amount that the momentum of the other
	decreases.
	c. □ the energy of one increases by the amount
	that the energy of the other decreases.
	d. the total momentum of the system will
	decrease.
	ANS: B PTS: 1 DIF: 2
	TOP: 6.3 Collisions 6.4 Glancing Collisions
55.	A 7.0-kg bowling ball strikes a 2.0-kg pin. The pin flies forward with a velocity of 6.0 m/s; the ball
	continues forward at 4.0 m/s. What was the original velocity of the ball?
	a. \(\text{4.0 m/s} \)
	b. □ 5.7 m/s
	c. \(\begin{align*}
	d. □ 3.3 m/s
	ANS: B PTS: 1 DIF: 2
	TOP: 6.3 Collisions 6.4 Glancing Collisions
56.	A 1.00-kg duck is flying overhead at 1.50 m/s when a hunter fires straight up. The 0.010 0-kg bullet is
	moving 100 m/s when it hits the duck and stays lodged in the duck's body. What is the speed of the duck
	and bullet immediately after the hit?
	a.□1.49 m/s
	b. \(\tau 2.48 \text{ m/s} \)
	c.□1.80 m/s
	d. □ 1.78 m/s
	ANS: D PTS: 1 DIF: 3
	TOP: 6.3 Collisions 6.4 Glancing Collisions
	-

57.	a partially inelastic collision. The bat, which is heavier than the baseball, continues to move in the same direction after the hit as Kaitlin "follows through." Is the ball moving faster before or after it was hit? a. □ The ball was moving faster before it was hit. b. □ The ball was moving faster after it was hit. c. □ The ball was moving at essentially the same speed before and after the hit. d. □ There is insufficient information to answer this problem. ANS: D PTS: 1 DIF: 2
	TOP: 6.3 Collisions 6.4 Glancing Collisions
58.	A tennis ball is held above and in contact with a basketball, and then both are simultaneously dropped. The tennis ball bounces off the basketball at a fairly high speed. This is because: a. □ the basketball falls farther than the tennis ball. b. □ the tennis ball is slightly shielded from the Earth's gravitational pull. c. □ the massive basketball transfers momentum to the lighter tennis ball. d. □ the tennis ball has a smaller radius. ANS: C PTS: 1 DIF: 2
	TOP: 6.3 Collisions 6.4 Glancing Collisions
59.	at 5 m/s to his friend, who catches it and throws it back at 5 m/s. When the first skater has caught the returned ball, what is the velocity of each of the two skaters? a. $\Box 0.02$ m/s, moving apart b. $\Box 0.04$ m/s, moving apart c. $\Box 0.02$ m/s, moving towards each other d. $\Box 0.04$ m/s, moving towards each other
	ANS: B PTS: 1 DIF: 2 TOP: 6.3 Collisions 6.4 Glancing Collisions
60.	A 90-kg halfback running north with a speed of 10 m/s is tackled by a 120-kg opponent running south at 4 m/s. The collision is perfectly inelastic. Compute the velocity of the two players just after the tackle. a. □ 3 m/s south b. □ 2 m/s south c. □ 2 m/s north d. □ 3 m/s north ANS: C PTS: 1 DIF: 2 TOP: 6.3 Collisions 6.4 Glancing Collisions
<i>6</i> 1	A neutron in a nuclear reactor makes an electic head on collicion with a carbon atom initially at root. (The

61. A neutron in a nuclear reactor makes an elastic head-on collision with a carbon atom initially at rest. (The mass of the carbon atom is 12 times that of the neutron.) What fraction of the neutron's kinetic energy is transferred to the carbon atom?

	a. □ 14.4%
	$\mathbf{b}.\square 28.4\%$
	c. □41.4%
	d. □56.6%
	ANS: B PTS: 1 DIF: 3 TOP: 6.3 Collisions 6.4 Glancing Collisions
62.	Popeye, of mass 70 kg, has just downed a can of spinach. He accelerates quickly and stops Bluto, of mass 700 kg (Bluto is very dense), who is charging in at 10 m/s. What was Popeye's speed? a. \Box 10 m/s b. \Box 31 m/s c. \Box 50 m/s d. \Box 100 m/s
	ANS: D PTS: 1 DIF: 2
	TOP: 6.3 Collisions 6.4 Glancing Collisions
63.	Mitch throws a 100-g lump of clay at a 500-g target, which is at rest on a horizontal surface. After impact, the target, including the attached clay, slides 2.1 m before stopping. If the coefficient of friction is $m=0.50$, find the speed of the clay before impact. a. $\Box 4.5 \text{ m/s}$ b. $\Box 12 \text{ m/s}$ c. $\Box 27 \text{ m/s}$ d. $\Box 36 \text{ m/s}$ ANS: C PTS: 1 DIF: 3 TOP: 6.3 Collisions 6.4 Glancing Collisions
64.	one on the right is moving at - 4 m/s. What is the velocity of each ball after they collide elastically?
	a. □ Neither is moving.
	b. \Box - 4 m/s, +4 m/s
	$c.\Box +4 \text{ m/s}, -4 \text{ m/s}$
	d. □ - 14 m/s, 14 m/s
	ANS: B PTS: 1 DIF: 2 TOP: 6.3 Collisions 6.4 Glancing Collisions
65.	
	The objects collide and stick together. After the collision, the combined object:
	a. □is moving to the right.
	b. □ is moving to the left.
	c. □is at rest.
	d. □has less kinetic energy than the system had
	before the collision.
	ANS: D PTS: 1 DIF: 2 TOP: 6.3 Collisions 6.4 Glancing Collisions

66.	A 5-kg object is moving to the right at 4 m/s and collides with a 4-kg object moving to the left at 5 m/s. The objects collide and stick together. After the collision, the combined object:
	a. □ has the same kinetic energy that the system had before the collision.
	b. □ has more kinetic energy than the system had before the collision.
	c. □ has no kinetic energy.
	d. □ has less momentum than the system had
	before the collision.
	ANS: C PTS: 1 DIF: 2 TOP: 6.3 Collisions 6.4 Glancing Collisions
67.	If a two-body collision is not head-on, then we may always assume that:
	a. □ momentum is conserved.
	b. □ kinetic energy is conserved.
	c. □ neither momentum nor kinetic energy are conserved.
	d. □both momentum and kinetic energy are
	conserved.
	ANS: A PTS: 1 DIF: 1 TOP: 6.3 Collisions 6.4 Glancing Collisions
68.	In a system with two moving objects, when a collision occurs between the objects:
	a. □the total kinetic energy is always conserved.
	b. ☐ the total momentum is always conserved.
	c. □the total kinetic energy and total momentum
	are always conserved.
	d. □ neither the kinetic energy nor the momen-
	tum is conserved.
	ANS: B PTS: 1 DIF: 1
	TOP: 6.3 Collisions 6.4 Glancing Collisions
60	A 1 11 11 (D 11 111)
69.	A billiard ball (Ball #1) moving at 5.00 m/s strikes a stationary ball (Ball #2) of the same mass. After the
	collision, Ball #1 moves at a speed of 4.35 m/s. Find the speed of Ball #2 after the collision.
	a. □ 1.25 m/s
	b. □ 1.44 m/s
	c. □ 2.16 m/s
	d. □ 2.47 m/s
	ANS: D PTS: 1 DIF: 3
	TOP: 6.3 Collisions 6.4 Glancing Collisions
70.	A baseball infielder, mass 75.0 kg, jumps up with velocity 3.00 m/s and catches a 0.150-kg baseball
70.	moving horizontally at 50.0 m/s. Of the following, which is closest to the final momentum of the system,
	infielder and baseball?
	a. \(\text{225 kg/m/s} \)
	b. □ 228 kg×m/s

	c. □230 kg×m/s						
	d. □233 kg×m/s						
	u. 1255 Kg/m/s						
	ANS: A	PTS: 1	DIF:	3			
	TOP: 6.3 Collisions	6.4 Glancin	g Collisions				
71.	When a collision is p	erfectly inelas	stic, then:				
	a. □ all the kinetic ene	ergy is conser	ved.				
	b. □ all the kinetic ene						
	c. □ the participants st						
	d. □ the total moment						
		20101					
	ANS: C	PTS: 1	DIF:	1			
	TOP: 6.3 Collisions	6.4 Glancin	g Collisions				
72.						er emits gas at a rate of	
				s of 400 g,	including the	CO ₂ cylinder. Starting	from
	rest, what is the car's	initial acceler	ration?				
	$a.\Box 0.90 \text{ m/s}^2$						
	$b.\Box 4.5 \text{ m/s}^2$						
	$c.\Box 9.0 \text{ m/s}^2$						
	$d. \square 36 \text{ m/s}^2$						
	ANS: A	PTS: 1	DIF:	2	TOP:	6.5 Rocket Propulsion	
73.		nt in a 20-s "b	ourn." If the roc			with 50 kg of propellant. ves at 150 m/s after the	
	ANS: C	PTS: 1	DIF:	2	TOP:	6.5 Rocket Propulsion	
74.		nt in a 20-s "b	ourn." The rock			paded with 50 kg of proper the burn. What averag	
	ANS: B	PTS: 1	DIF:	2	TOP:	6.5 Rocket Propulsion	
75.	A helicopter stays alo	oft by puching	. lorgo guantitio	s of air do			
	be pushed downward a.□120 kg b.□245 kg c.□360 kg						air must

	d.□490 kg						
	ANS: B	PTS:	1	DIF:	2	TOP:	6.5 Rocket Propulsion
76.	A model rocket sits time of blast-off, as a. □the fuel pushes ob. □air friction push c. □the downward for the downward momentum of the action of none of the action. □	the ignite on the gro es on the orce of gr entum of	ed fuel goes do ound. escaping fuel avity is less the the fuel.	own, the			e rocket upward. During the short se:
	ANS: D	PTS:	1	DIF:	2	TOP:	6.5 Rocket Propulsion
77.	At liftoff, the engine products at 2 900 m a. $\Box 3.77 \ ' \ 10^7 \ N$ b. $\Box 7.54 \ ' \ 10^8 \ N$ c. $\Box 1.47 \ ' \ 10^8 \ N$ d. $\Box 2.95 \ ' \ 10^8 \ N$						el and exhausted the combustion by the engines?
	ANS: A	PTS:	1	DIF:	2	TOP:	6.5 Rocket Propulsion
78.		able by wond chang ty stays the ty double ty increase	hat factor? As ge. ne same. ss. ses by a factor	of			ket initially at rest changes the as the mass of the rocket and the
	ANS: B	PTS:	1	DIF:	1	TOP:	6.5 Rocket Propulsion
79.	final kinetic energy the rocket and the ma. It is the same. b. It doubles. c. It quadruples. d. It increases by a	of the bunass of the	rnout stage by e fuel, do not o	what f	actor? Assume	all othe	ket initially at rest changes the r variables, such as the mass of
	ANS: C	PTS:	1	DIF:	2	TOP:	6.5 Rocket Propulsion
80.	A rocket of total marest in deep space. Va. □ 1 000 m/s b. □ 2 000 m/s c. □ 3 000 m/s					speed o	of 3 200 m/s after starting from

	d. □4 000 m/s							
	ANS: B	PTS:	1	DIF:	2	TO	OP:	6.5 Rocket Propulsion
81.	Two masses collication in which a. ☐ Yes, if the less initially at rest.	the kinetic	energy is	conserved				asses was at rest. Is there a
	b. ☐ Yes, if the moinitially at rest.	ore massive	particle is	the one				
	c. ☐ Yes, if the two d. ☐ No, kinetic er collision.							
	ANS: D	PTS:	1	DIF:	2	TO	OP:	Conceptual Problems
82.	In an automobile the collision, the passenger is a. □ The air bag do of the passenger is b. □ During the cobag is greater that windshield or das cannot hit the hard c. □ The stopping the hard objects of windshield or das increasing the time thus decreasing the passenger. d. □ The airbag is holds.	passenger secreases the n the collisullision, the n would be shboard so the dojects. Impulse is for the airbagachboard, the ne for the sline average in the average in the sline	tops. momentur ion. force from the force fi he passeng the same fo g. Unlike the air bag giv owing proce- force on the	the air rom the er reither e ves some eess and e	sen the	blow to the	pas	ssenger? Assume as a result of
	ANS: C	PTS:	1	DIF:	2	TO	OP:	Conceptual Problems
83.		-/	1 2/	\mathcal{C}				on. If the particles were moving apart after collision?
	ANS: D	PTS:	1	DIF:	2	TO	OP:	Conceptual Problems
84.	Two masses m_1 at energies compare a. $\Box KE_1 < KE_2$ b. $\Box KE_1 = KE_2$ c. $\Box KE_1 > KE_2$ d. \Box More informa	?		ave mome	nta witl	h equal mag	nitu	des. How do their kinetic

	ANS: C	PTS: 1	DIF:	2	TOP:	Conceptual Problems	
85.	the collision?			it rest.	Is it possible for	both particles to be at res	st after
	a. ☐ If the collision is happens.						
	b. ☐ If the collision is	·					
	c. ☐ This can happen massive particle was		ne more				
	d.□No.						
	ANS: D	PTS: 1	DIF:	1	TOP:	Conceptual Problems	

Chapter 7—Rotational Motion and the Law of Gravity

1. 2 600 rev/min is equivalent to which of the following?

MULTIPLE CHOICE

 $a. \square 2600 \text{ rad/s}$

	b. □ 43.3 rad/s c. □ 273 rad/s
	$d. \Box 60 \text{ rad/s}$
	ANS: C PTS: 1 DIF: 1 TOP: 7.1 Angular Speed and Angular Acceleration
2.	A grindstone spinning at the rate of 8.3 rev/s has what approximate angular speed? a. $\Box 3.2$ rad/s b. $\Box 26$ rad/s c. $\Box 52$ rad/s d. $\Box 81$ rad/s
	ANS: C PTS: 1 DIF: 1 TOP: 7.1 Angular Speed and Angular Acceleration
3.	A 0.12-m-radius grinding wheel takes 5.5 s to speed up from 2.0 rad/s to 11.0 rad/s. What is the wheel's average angular acceleration?
	ANS: C PTS: 1 DIF: 1 TOP: 7.1 Angular Speed and Angular Acceleration
4.	What is the angular speed about the rotational axis of the Earth for a person standing on the surface? a. $\Box 7.3 \text{ '} 10^{-5} \text{ rad/s}$ b. $\Box 3.6 \text{ '} 10^{-5} \text{ rad/s}$ c. $\Box 6.28 \text{ '} 10^{-5} \text{ rad/s}$ d. $\Box 3.14 \text{ '} 10^{-5} \text{ rad/s}$
	ANS: A PTS: 1 DIF: 2 TOP: 7.1 Angular Speed and Angular Acceleration
5.	A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to not need to treat the layering of threads on lower layers. a. \Box 100 b. \Box 1 000 c. \Box 3 140 d. \Box 62 800

	ANS: B PTS: 1 DIF: 2 TOP: 7.1 Angular Speed and Angular Acceleration
6.	A ceiling fan is turned on and reaches an angular speed of 120 rev/min in 20 s. It is then turned off and coasts to a stop in an additional 40 s. The ratio of the average angular acceleration for the first 20 s to that for the last 40 s is which of the following?
	ANS: D PTS: 1 DIF: 2 TOP: 7.1 Angular Speed and Angular Acceleration
7.	A 0.30-m-radius automobile tire rotates how many rad after starting from rest and accelerating at a constant 2.0 rad/s^2 over a 5.0-s interval? a. \Box 12.5 rad b. \Box 25 rad c. \Box 2.0 rad d. \Box 0.50 rad
	ANS: B PTS: 1 DIF: 1 TOP: 7.2 Rotational Motion Under Constant Angular Acceleration
8.	A fan blade, initially at rest, rotates with a constant acceleration of 0.025 rad/s^2 . What is its angular speed at the instant it goes through an angular displacement of 4.2 rad ? a. $\square 0.025 \text{ rad/s}$ b. $\square 0.11 \text{ rad/s}$ c. $\square 0.46 \text{ rad/s}$ d. $\square 1.2 \text{ rad/s}$ ANS: C PTS: 1 DIF: 2 TOP: 7.2 Rotational Motion Under Constant Angular Acceleration
9.	A fan blade, initially at rest, rotates with a constant acceleration of 0.025 rad/s^2 . What is the time interval required for it to reach a 4.2-rad displacement after starting from rest? a. $\Box 1.8 \text{ s}$ b. $\Box 2.0 \text{ s}$ c. $\Box 16 \text{ s}$ d. $\Box 18 \text{ s}$ ANS: D PTS: 1 DIF: 2 TOP: 7.2 Rotational Motion Under Constant Angular Acceleration
10.	A ceiling fan is turned on and reaches an angular speed of 120 rev/min in 20 s. It is then turned off and coasts to a stop in 40 s. In the one minute of rotation, through how many revolutions did the fan turn?

	TOP: 7.2 Rotational Motion Under Constant Angular Acceleration
11.	Starting from rest, a wheel undergoes constant angular acceleration for a period of time <i>T</i> . At what time after the start of rotation does the wheel reach an angular speed equal to its average angular speed for this interval?
	$a. \square 0.25 T$
	$b.\Box 0.50 T$
	$c.\Box 0.67 T$
	$d.\Box 0.71 T$
	ANS: B PTS: 1 DIF: 1 TOP: 7.2 Rotational Motion Under Constant Angular Acceleration
12.	Starting from rest, a wheel undergoes constant angular acceleration for a period of time T . At which of the following times does the average angular acceleration equal the instantaneous angular acceleration?
	a. □ 0.50 T
	b. □ 0.67 T
	c. □0.71 T
	d. all of the above
	ANS: D PTS: 1 DIF: 1 TOP: 7.2 Rotational Motion Under Constant Angular Acceleration
13.	A Ferris wheel starts at rest and builds up to a final angular speed of 0.70 rad/s while rotating through an angular displacement of 4.9 rad. What is its average angular acceleration? a. $\square 0.10 \text{ rad/s}^2$ b. $\square 0.05 \text{ rad/s}^2$ c. $\square 1.8 \text{ rad/s}^2$
	ANS: B PTS: 1 DIF: 2
	ANS: B PTS: 1 DIF: 2 TOP: 7.2 Rotational Motion Under Constant Angular Acceleration
	101. 7.2 Rotational Motion Officer Constant Augusta Acceleration
14.	rate of 0.040 rad/s ² . What is its angular speed after this 7-s interval?
	a. \(\tau 0.20 \text{ rad/s} \)
	b. \(\sigma 0.30 \text{ rad/s} \)
	c. \square 0.46 rad/s d. \square 0.78 rad/s
	$\mathbf{d}. \Box 0. / \mathbf{\delta} \text{ rad/s}$
	ANS: D PTS: 1 DIF: 2 TOP: 7.2 Rotational Motion Under Constant Angular Acceleration
15	A Forris wheel retating initially at an engalor speed of 0.500 rad/s, assolutates even a 7.00 s interval at a
1).	A Ferris wheel, rotating initially at an angular speed of 0.500 rad/s, accelerates over a 7.00-s interval at a rate of 0.040 0 rad/s ² . What angular displacement does the Ferris wheel undergo in this 7-s interval?
	a. \(\text{\tinte\text{\tinte\text{\tintel{\text{\tert{\text{\text{\text{\text{\text{\text{\text{\texi}}\tint{\text{\text{\texit{\text{\text{\texi}\tint{\text{\texi}\text{\texit{\ti}\tintt{\text{\text{\text{\texi}\text{\texit{\text{\texi{\
	b. \(\sigma 2.50 \) rad
	c □ 3 00 rad

ANS: B

d. □ 0.500 rad

PTS: 1 DIF: 2

	ANS: A PTS: 1 DIF: 2 TOP: 7.2 Rotational Motion Under Constant Angular Acceleration
16.	Suppose a wheel is initially rotating at 10.0 rad/s while undergoing constant angular acceleration reaching a speed of 30.0 rad/s after 20.0 seconds have elapsed. How long after the initial time has the wheel undergone half of the angular displacement that it will have gone through during the entire 20.0 second interval? a. $\Box 10.0$ s b. $\Box 12.4$ s c. $\Box 14.2$ s
	d. □ 15.0 s
	ANS: B PTS: 1 DIF: 3 TOP: 7.2 Rotational Motion Under Constant Angular Acceleration
17.	A ventilation fan has blades 0.25 m in radius rotating at 20 rpm. What is the tangential speed of each blade tip?
	ANS: B PTS: 1 DIF: 1 TOP: 7.3 Relations Between Angular and Linear Quantities
18.	A 0.30-m-radius automobile tire accelerates from rest at a constant 2.0 rad/s 2 over a 5.0-s interval. What is the tangential component of acceleration for a point on the outer edge of the tire during the 5-s interval? a. \Box 33 m/s 2 b. \Box 6.7 m/s 2 c. \Box 0.60 m/s 2
	ANS: C PTS: 1 DIF: 1 TOP: 7.3 Relations Between Angular and Linear Quantities
19.	A point on the rim of a 0.30-m-radius rotating wheel has a tangential speed of 4.0 m/s. What is the tangential speed of a point 0.20 m from the center of the same wheel? a. \Box 1.0 m/s b. \Box 1.3 m/s c. \Box 2.7 m/s d. \Box 8.0 m/s
	ANS: C PTS: 1 DIF: 2 TOP: 7.3 Relations Between Angular and Linear Quantities
20.	A 0.15-m-radius grinding wheel starts at rest and develops an angular speed of 12.0 rad/s in 4.0 s. What is the average tangential acceleration of a point on the wheel's edge?

	$d. \Box 14 \text{ m/s}^2$
	u. 🗆 14 m/s
	ANS: A PTS: 1 DIF: 2
	TOP: 7.3 Relations Between Angular and Linear Quantities
21.	The end of the cutting cord on a gas-powered weed cutter is 0.15 m in length. If the motor rotates at the
	rate of 20 rev/s, what is the tangential speed of the end of the cord?
	a. □ 628 m/s
	b. □ 25 m/s
	c. □ 19 m/s
	d. □ 63 m/s
	ANS: C PTS: 1 DIF: 2
	TOP: 7.3 Relations Between Angular and Linear Quantities
22.	A bucket in an old well is hoisted upward by a rope which winds up on a cylinder having a radius of
	0.050 m. How many rev/s must the cylinder turn if the bucket is raised at a speed of 0.15 m/s?
	$a. \Box 3.0 \text{ rev/s}$
	b. □ 1.5 rev/s
	c. □ 0.48 rev/s
	$d. \square 0.24 \text{ rev/s}$
	ANS: C PTS: 1 DIF: 2
	TOP: 7.3 Relations Between Angular and Linear Quantities
	101. 7.5 Relations between Aligurar and Ellicar Quantities
23.	Consider a point on a bicycle wheel as the wheel makes exactly four complete revolutions about a fixed
	axis. Compare the linear and angular displacement of the point.
	a. Both are zero.
	b. □Only the angular displacement is zero.
	c. Only the linear displacement is zero.
	d. Neither is zero.
	u. Neither is zero.
	ANS: C PTS: 1 DIF: 2
	TOP: 7.3 Relations Between Angular and Linear Quantities
24.	Consider a point on a bicycle wheel as the wheel turns about a fixed axis, neither speeding up nor slowing
4.	down. Compare the linear and angular velocities of the point.
	a. Both are constant.
	b. □Only the angular velocity is constant.
	c. Only the linear velocity is constant.
	d. □ Neither is constant.
	ANS: B PTS: 1 DIF: 2
	TOP: 7.3 Relations Between Angular and Linear Quantities
) <i>E</i>	Consider a point on a biassale subsel on the subsel towns about a first suit a
25.	Consider a point on a bicycle wheel as the wheel turns about a fixed axis, neither speeding up nor slowing
	down. Compare the linear and angular accelerations of the point.
	a. Both are zero.
	b. Only the angular acceleration is zero.
	c. □ Only the linear acceleration is zero.

	ANS: B PTS: 1 DIF: TOP: 7.3 Relations Between Angular and Linear (
26.	the Earth is 6.40 ′ 10 ⁶ m. a. □74.0 m/s b. □233 m/s c. □465 m/s d. □73.0 m/s	n for a person at the equator of the Earth. The radius of
	TOP: 7.3 Relations Between Angular and Linear (_
27.	latitude. The radius of the Earth is $6.40 \cdot 10^6$ m. a. $\square 299$ m/s b. $\square 357$ m/s c. $\square 390$ m/s d. $\square 465$ m/s	n for a person at a point on its surface located at 40° N
28.	A ventilation fan has blades 0.25 m long rotating at on the outer tip of a blade? a. $\Box 1.1 \text{ m/s}^2$ b. $\Box 0.87 \text{ m/s}^2$ c. $\Box 0.55 \text{ m/s}^2$ d. $\Box 0.23 \text{ m/s}^2$	t 20 rpm. What is the centripetal acceleration of a point TOP: 7.4 Centripetal Acceleration
29.		est at a constant 2.0 rad/s ² . What is the centripetal
	ANS: C PTS: 1 DIF:	TOP: 7.4 Centripetal Acceleration
30.	A 0.40-kg mass, attached to the end of a 0.75-m strict the maximum tension that the string can withstand is have if the string is not to break? a.□370 m/s b.□22 m/s c.□19 m/s d.□29 m/s	ring, is whirled around in a circular horizontal path. If is 450 N, then what maximum speed can the mass

d. ☐ Neither is zero.

	ANS: D	PTS:	1	DIF:	2	TOP:	7.4 Centripetal Acceleration
31.	A point on the rim of centripetal acceleration $a.\Box 0.01 \text{ m/s}^2$ $b.\Box 0.02 \text{ m/s}^2$ $c.\Box 0.04 \text{ m/s}^2$ $d.\Box 0.08 \text{ m/s}^2$						on of 0.20 m/s ² . Find the eel.
	ANS: C	PTS:	1	DIF:	2	TOP:	7.4 Centripetal Acceleration
32.	A point on the rim of angular speed of the a. □1.0 rad/s b. □2.0 rad/s c. □3.2 rad/s d. □4.0 rad/s		-m-radius rotati	ing whe	eel has a centrip	oetal acc	celeration of 4.0 m/s ² . What is the
	ANS: D	PTS:	1	DIF:	2	TOP:	7.4 Centripetal Acceleration
33.	A point on the rim of angular speed of a polar speed of		75 m from the c		f the disk?		leration of 5.0 m/s ² . What is the 7.4 Centripetal Acceleration
34.	tangential acceleration $a.\Box 1.2 \text{ m/s}^2$ $b.\Box 2.0 \text{ m/s}^2$ $c.\Box 4.0 \text{ m/s}^2$ $d.\Box Cannot determing given.$	e with the	that point expe	rience?	•	·	tal acceleration of 4.0 m/s ² , what
	ANS: D	PTS:	1	DIF:	2	TOP:	7.4 Centripetal Acceleration
35.		hat is th	e centripetal ac	celerat			eed of 12.0 rad/s in a time from the center when the wheel
	ANS: C	PTS:	1	DIF:	2	TOP:	7.4 Centripetal Acceleration

36. The distance from the center of a Ferris wheel to a passenger seat is 12 m. What centripetal acceleration does a passenger experience when the wheel's angular speed is 0.50 rad/s?

D. 19.0 m/s² D. 19.0 m/s² ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration What centripetal force does an 80-kg passenger experience when seated 12 m from the center of a Ferris wheel whose angular speed is 0.50 rad/s? D. 12.0 N D	a. \Box 16.9 m/s ²			
ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration What centripetal force does an 80-kg passenger experience when seated 12 m from the center of a Ferris wheel whose angular speed is 0.50 rad/s? a. □ 484 N b. □ 720 N c. □ 914 N d. □ 1240 N ANS: D PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration A 0.400-kg object is swung in a circular path and in a vertical plane on a 0.500-m-length string. If the angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a. □ 5.60 N b. □ 10.5 N c. □ 19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a. □ 7.9 N b. □ 16 N c. □ 18 N d. □ 83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a. □ 0.18 b. □ 0.30 c. □ 0.28 d. □ 0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) b. □ 32° b. □ 32°	$b.\Box 9.0 \text{ m/s}^2$			
ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration What centripetal force does an 80-kg passenger experience when seated 12 m from the center of a Ferris wheel whose angular speed is 0.50 rad/s? a.□484 N b.□720 N c.□914 N d.□240 N ANS: D PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration A 0.400-kg object is swung in a circular path and in a vertical plane on a 0.500-m-length string. If the angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a.□5.60 N b.□10.5 N c.□16.7 N d.□19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□7.9 N b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) b.□32°	$c.\Box 3.0 \text{ m/s}^2$			
What centripetal force does an 80-kg passenger experience when seated 12 m from the center of a Ferris wheel whose angular speed is 0.50 rad/s? a.□484 N b.□720 N c.□914 N d.□240 N ANS: D PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration A 0.400-kg object is swung in a circular path and in a vertical plane on a 0.500-m-length string. If the angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a.□5.60 N b.□10.5 N c.□16.7 N d.□19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□7.9 N b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°	$d.\Box 6.0 \text{ m/s}^2$			
wheel whose angular speed is 0.50 rad/s? a. □ 484 N b. □ 2720 N c. □ 914 N d. □ 240 N ANS: D PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration A 0.400-kg object is swung in a circular path and in a vertical plane on a 0.500-m-length string. If the angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a.□ 5.60 N b.□ 10.5 N c.□ 16.7 N d.□ 19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□ 7.9 N b.□ 16 N c.□ 18 N d.□ 83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□ 0.28 d.□ 0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) b.□ 32°	ANS: C	PTS: 1	DIF: 2	TOP: 7.4 Centripetal Acceleration
a.□484 N b. □720 N c.□914 N d.□240 N ANS: D PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration A 0.400-kg object is swung in a circular path and in a vertical plane on a 0.500-m-length string. If the angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a.□5.60 N b.□10.5 N c.□16.7 N d.□19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□7.9 N b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when travelling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°				when seated 12 m from the center of a Ferris
b.□720 N c.□914 N d.□240 N ANS: D PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration A 0.400-kg object is swung in a circular path and in a vertical plane on a 0.500-m-length string. If the angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a.□5.60 N b.□10.5 N c.□16.7 N d.□19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□7.9 N b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°		gular speed is 0.50 rag	d/s?	
C.□914 N d.□240 N ANS: D PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration A 0.400-kg object is swung in a circular path and in a vertical plane on a 0.500-m-length string. If the angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a.□5.60 N b.□10.5 N c.□16.7 N d.□19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□7.9 N b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°				
d.□240 N ANS: D PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration A 0.400-kg object is swung in a circular path and in a vertical plane on a 0.500-m-length string. If the angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a.□5.60 N Dif: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? A.□7.9 N B.□16 N B.□16 N A.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) B.□0.18 B.□0.30 C.□0.28 C.□0.28 A.□0.37 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°				
ANS: D PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration A 0.400-kg object is swung in a circular path and in a vertical plane on a 0.500-m-length string. If the angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a 5.60 N b 10.5 N c 16.7 N d 19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? b 16 N c 18 N d 83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a 0.18 b 0.30 c 0.28 d 0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a 0.28° b 0.32°				
A 0.400-kg object is swung in a circular path and in a vertical plane on a 0.500-m-length string. If the angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a. □ 5.60 N b. □ 10.5 N c. □ 16.7 N d. □ 19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a. □ 7.9 N b. □ 16 N c. □ 18 N d. □ 18 N d. □ 18 N d. □ 18 N d. □ 19.6 N A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a. □ 0.18 b. □ 0.30 c. □ 0.28 d. □ 0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a. □ 28° b. □ 32°	d. □ 240 N			
angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a. □ 5.60 N	ANS: D	PTS: 1	DIF: 2	TOP: 7.4 Centripetal Acceleration
angular speed at the bottom is 8.00 rad/s, what is the tension in the string when the object is at the bottom of the circle? a	Δ 0 400-kg obje	ect is swiing in a circu	lar nath and in a verti	cal plane on a 0.500-m-length string. If the
of the circle? a.□5.60 N b.□10.5 N c.□16.7 N d.□19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□7.9 N b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°				
b. □ 10.5 N c. □ 16.7 N d. □ 19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a. □ 7.9 N b. □ 16 N c. □ 18 N d. □ 83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a. □ 0.18 b. □ 0.30 c. □ 0.28 d. □ 0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a. □ 28° b. □ 32°			G, S, WILLU IS 1110 1011515	and the summing which the object is at the obtaining
b.□10.5 N c.□16.7 N d.□19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□7.9 N b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°	a. □ 5.60 N			
c.□16.7 N d.□19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□7.9 N b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°				
d.□19.6 N ANS: C PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□7.9 N b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°	c.□16.7 N			
A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a.□7.9 N b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°				
A 0.30-kg rock is swung in a circular path and in a vertical plane on a 0.25-m-length string. At the top of he path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a. \(\text{\tex	ANS: C	PTS: 1	DIF: 3	TOP: 7.4 Centripetal Acceleration
the path, the angular speed is 12.0 rad/s. What is the tension in the string at that point? a. □ 7.9 N b. □ 16 N c. □ 18 N d. □ 83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a. □ 0.18 b. □ 0.30 c. □ 0.28 d. □ 0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a. □ 28° b. □ 32°				
a. □ 7.9 N b. □ 16 N c. □ 18 N d. □ 83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a. □ 0.18 b. □ 0.30 c. □ 0.28 d. □ 0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a. □ 28° b. □ 32° b. □ 32°				
b.□16 N c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°		<u> </u>		S
c.□18 N d.□83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (g = 9.8 m/s²) a.□0.18 b.□0.30 c.□0.28 d.□0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (g = 9.8 m/s²) a.□28° b.□32°				
d. □83 N ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? ($g = 9.8 \text{ m/s}^2$) a. □0.18 b. □0.30 c. □0.28 d. □0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? ($g = 9.8 \text{ m/s}^2$) a. □28° b. □32°				
ANS: A PTS: 1 DIF: 3 TOP: 7.4 Centripetal Acceleration A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? $(g = 9.8 \text{ m/s}^2)$ a. $\Box 0.18$ b. $\Box 0.30$ c. $\Box 0.28$ d. $\Box 0.37$ ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? $(g = 9.8 \text{ m/s}^2)$ a. $\Box 28^\circ$ b. $\Box 32^\circ$				
A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping? (<i>g</i> = 9.8 m/s²) a. □ 0.18 b. □ 0.30 c. □ 0.28 d. □ 0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? (<i>g</i> = 9.8 m/s²) a. □ 28° b. □ 32°		PTS: 1	DIF: 3	TOP: 7.4 Centripetal Acceleration
coefficient of friction must exist between the road and tires to prevent the car from slipping? ($g = 9.8 \text{ m/s}^2$) a. $\square 0.18$ b. $\square 0.30$ c. $\square 0.28$ d. $\square 0.37$ ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? ($g = 9.8 \text{ m/s}^2$) a. $\square 28^\circ$ b. $\square 32^\circ$	1115. 11	115. 1	DH. 3	101. 7.4 Centifical Receivation
m/s²) a. $\Box 0.18$ b. $\Box 0.30$ c. $\Box 0.28$ d. $\Box 0.37$ ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? ($g = 9.8 \text{ m/s}^2$) a. $\Box 28^\circ$ b. $\Box 32^\circ$	A 1 500-kg car	rounds an unbanked c	urve with a radius of	52 m at a speed of 12 m/s. What minimum
a. $□$ 0.18 b. $□$ 0.30 c. $□$ 0.28 d. $□$ 0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? ($g = 9.8 \text{ m/s}^2$) a. $□$ 28° b. $□$ 32°		iction must exist betw	een the road and tires	s to prevent the car from slipping? $(g = 9.8)$
b. □ 0.30 c. □ 0.28 d. □ 0.37 ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? ($g = 9.8 \text{ m/s}^2$) a. □ 28° b. □ 32°	m/s^2)			
C. □ 0.28 d. □ 0.37 d. □	a.□0.18			
ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? ($g = 9.8 \text{ m/s}^2$) a. $\square 28^\circ$ b. $\square 32^\circ$	b.□0.30			
ANS: C PTS: 1 DIF: 2 TOP: 7.4 Centripetal Acceleration At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? ($g = 9.8 \text{ m/s}^2$) a. $\square 28^\circ$ b. $\square 32^\circ$	c.□0.28			
At what angle (relative to the horizontal) should a curve 52 m in radius be banked if no friction is required to prevent the car from slipping when traveling at 12 m/s? ($g = 9.8 \text{ m/s}^2$) a. $\Box 28^\circ$ b. $\Box 32^\circ$	d.□0.37			
required to prevent the car from slipping when traveling at 12 m/s? ($g = 9.8$ m/s²) a. $\Box 28^{\circ}$ b. $\Box 32^{\circ}$	ANS: C	PTS: 1	DIF: 2	TOP: 7.4 Centripetal Acceleration
required to prevent the car from slipping when traveling at 12 m/s? ($g = 9.8 \text{ m/s}^2$) a. $\Box 28^\circ$ b. $\Box 32^\circ$	At what angle (relative to the horizon	tal) should a curve 52	2 m in radius be banked if no friction is
a. □28° b. □32°				
b. □ 32°		- PP		,
	c.□16°			

42. A t t 43. A t t	between the road and a. □27 m/s b. □17 m/s c. □23 m/s d. □35 m/s ANS: C A roller coaster, load	PTS: led with lip is 24	d a 52-m-radiu prevent the ca 1 passengers, ha m. If the vehic	DIF:	e, banked at a 4 slipping? $(g = 9)$ 2 ss of 2 000 kg; t	.5° angle 0.8 m/s ² TOP:	7.4 Centripetal Acceleration
43. A	between the road and a $\square 27 \text{ m/s}$ b $\square 17 \text{ m/s}$ c $\square 23 \text{ m/s}$ d $\square 35 \text{ m/s}$ ANS: C A roller coaster, load bottom point of the other vehicle by the train a $\square 2.3 \stackrel{?}{} 10^4 \text{ N}$ b $\square 4.7 \stackrel{?}{} 10^4 \text{ N}$ c $\square 3.0 \stackrel{?}{} 10^4 \text{ N}$	PTS: led with lip is 24	prevent the ca 1 passengers, ha m. If the vehic	DIF:	slipping? ($g = 9$) 2 as of 2 000 kg; t	7.8 m/s ² TOP:	7.4 Centripetal Acceleration
43. A	A roller coaster, load bottom point of the of the vehicle by the transport $2.3 \cdot 10^4 \mathrm{N}$ b. $4.7 \cdot 10^4 \mathrm{N}$ c. $3.0 \cdot 10^4 \mathrm{N}$	led with lip is 24	passengers, ha m. If the vehic	s a mas	ss of 2 000 kg; t	the radio	-
t t	bottom point of the of the vehicle by the tra a. $\square 2.3 \cdot 10^4 \text{ N}$ b. $\square 4.7 \cdot 10^4 \text{ N}$ c. $\square 3.0 \cdot 10^4 \text{ N}$	lip is 24	m. If the vehic				us of our moture of the two dr of the
t c					a speed of 18 m.	/s at thi	s point, what force is exerted on
A	ANS: B	PTS:	1	DIF:	3	TOP:	7.4 Centripetal Acceleration
t a t		stant spec	eration is zero.		he acceleration	for this	ground as the bicycle rolls across point at that moment is: 7.4 Centripetal Acceleration
t (Consider a child who a. the tension in the b. the tension in the times her acceleration c. her acceleration d. none of the above	e rope is e rope is on. is downy	equal to her we equal to her many ward at 9.8 m/s	eight. ass	-		swing: 7.4 Centripetal Acceleration
46. V		(in revol	utions/second)		ded for a centrif		produce an acceleration of 1 000

47.	be the ra	dius of curv essness" ins 0 m 0 m	ature of	the flight par				e the aircraft cabin. What mm/s to create a condition of	
	ANS: C	1	PTS:	1	DIF:	2	TOP:	7.4 Centripetal Acceleration	on
48.	future sp clouds in	pace explored the center. It would such the center. It would such the center of the ce	rs. Such All this	a habitat wo would be he	uld have ld in plac	cities, land e by the rot	and lakes o	oposed as living quarters fo n the inside surface and air cylinder about the long axi nal field at the walls of the	and
	ANS: A	1	PTS:	1	DIF:	2	TOP:	7.4 Centripetal Acceleration	on
49.	is the ac a. □ 18.6 b. □ 9.3 c. □ 13.6 d. □ 3.7	celeration of mi/s^2 $10^{-3} mi/s^2$ $10^{-6} mi/s^2$ $10^{-6} mi/s^2$	the Ear	th in its orbit	about th	e Sun?		on is 1 year = $3.15 \cdot 10^7$ s.	
	ANS: I)	PTS:	1	DIF:	2	TOP:	7.4 Centripetal Acceleration	on
50.	direction case as ca. □ is in b. □ is in c. □ is up	with the sa compared to the same did the opposite oward.	me anguathe accerection.	lar speed. The leration in the leration in the leration in the leration in the leration.	ne accele	ration at a p se:	point on the	ext it is rotated in the oppositop of the wheel in the secondary of the wheel in the opposition of the wheel in the secondary of the seco	ond
								•	
51.	course). a. □ east b. □ west c. □ nortl d. □ For	In what dire	ut not eation it is	ast or west east, and for west.	velocity v		is second ha	hand moving clockwise (of and? 7.4 Centripetal Acceleration	

52.							the object's weight is measured lanet X? ($G = 6.67 \cdot 10^{-11} \text{ N} \times$
	ANS: C	PTS:	1	DIF:	3	TOP:	7.5 Newtonian Gravitation
53.	to be 20 N. The radii experience when at t a. $\Box 48 \text{ m/s}^2$ b. $\Box 20 \text{ m/s}^2$ c. $\Box 16 \text{ m/s}^2$ d. $\Box 40 \text{ m/s}^2$	us of the he surfa	planet is 4.0 ′ce of Planet X′	10 ⁶ m.	What free fall	accelera	the object's weight is measured ation will the 0.50-kg object
	ANS: D	PTS:	1	DIF:	2	TOP:	7.5 Newtonian Gravitation
54.		us of the	planet is 4.0 '	$10^6 \text{m}.$	What free fall	accelera	the object's weight is measured ation will the 0.50-kg object e of this planet?
	ANS: D	PTS:	1	DIF:	3	TOP:	7.5 Newtonian Gravitation
55.		accelera	tion due to gra	vity is v			to one Earth radius (4 000 miles). The alue of g at the Earth's surface?
	ANS: D	PTS:	1	DIF:	2	TOP:	7.5 Newtonian Gravitation
56.	gravitational acceler a. \square 29.4 m/s ² b. \square 88.2 m/s ² c. \square 265 m/s ² d. \square 3.27 m/s ²	ation at t	the surface of t	he plan	et? $(g = 9.8 \text{ m/s})$	s^2)	the Earth, what is the
	ANS: A	PTS:	1	DIF:	2	TOP:	7.5 Newtonian Gravitation

57.		adius 20% greater th to gravity at its surfa		but has the same mass as the Earth, what is the			
	$a. \square 14 \text{ m/s}^2$						
	$b. \square 12 \text{ m/s}^2$						
	$c. \square 8.2 \text{ m/s}^2$						
	$d. \square 6.8 \text{ m/s}^2$						
	u. □ 0.8 III/S						
	ANS: D	PTS: 1	DIF: 2	TOP: 7.5 Newtonian Gravitation			
58.		due to gravity at the ude of 3 000 km abo		is 10 m/s ² . What is the acceleration due to s planet?			
	$b. \square 8.0 \text{ m/s}^2$						
	$c. \square 4.4 \text{ m/s}^2$						
		1 1					
	d. ☐ More informa	ation is needed.					
	ANS: D	PTS: 1	DIF: 2	TOP: 7.5 Newtonian Gravitation			
59.		orbiting the Earth at a street the object's mass?		th radii from the center of the Earth has a weight he Earth is 9.8 m/s ²)			
	b. □ 0.306 kg						
	c. □ 0.92 kg						
	d. □ 1.0 kg						
	ANS: C	PTS: 1	DIF: 2	TOP: 7.5 Newtonian Gravitation			
60.	canceled by the g		he Moon. The mass	nere the gravitational attraction of the Earth is of the Moon is 1/81 that of the Earth. How far			
	$a. \square 8/9$ the way to	•					
	b. □9/10 the way to the Moon						
	c. \Box 3/4 the way to						
	$d. \square 80/81$ the way	y to the Moon					
	ANS: B	PTS: 1	DIF: 3	TOP: 7.5 Newtonian Gravitation			
61.	the speed of the s a. \square 2 800 m/s b. \square 4 200 m/s			te of one Earth radius above the surface. What is 10^6 m, and $G = 6.67 \cdot 10^{-11} \text{ N} \times \text{m}^2/\text{kg}^2$.)			
	c. □5 600 m/s						
	d. □ 16 800 m/s						
	ANS: C	PTS: 1	DIF: 2	TOP: 7.5 Newtonian Gravitation			
62.	spewing liquid su		km above the surfac	spacecraft $Voyager\ 1$ showed active volcanoes the of this moon. If the value of g on Io is 2.0 the volcano.			

	b. □ 530 m/s						
	c. □ 790 m/s						
	d. □970 m/s						
	ANS: B	PTS:	1 D	IF: 2	2	TOP:	7.5 Newtonian Gravitation
63.	If the mass of Mars gravitational accele a. $\Box 2.20 \text{ m/s}^2$ b. $\Box 3.73 \text{ m/s}^2$ c. $\Box 4.20 \text{ m/s}^2$ d. $\Box 5.50 \text{ m/s}^2$					•	at of Earth, estimate the
	ANS: B	PTS:	1 Di	 IF: 3	3	TOP:	7.5 Newtonian Gravitation
64.							e escape speed for a spacecraft ad a radius 0.25 that of Earth.
	ANS: A	PTS:	1 D)	IF: 3	3	TOP:	7.5 Newtonian Gravitation
65.	•	is height is	the same as the r	otatio	on rate of the H	Earth, so	n the Earth's center. Their they appear stationary at the at this height?
	ANS: B	PTS:	1 D	IF: 3	3	TOP:	7.5 Newtonian Gravitation
66.	At an altitude of 4 a. \Box g/2. b. \Box g/4. c. \Box g/16. d. \Box not given.	times the r	adius of the earth	, the a	acceleration du	ie to gr	avity is
	ANS: D	PTS:	1 D	IF: 3	3	TOP:	7.5 Newtonian Gravitation
67.	Suppose the gravitate Earth radii is PE_2 . In a. \Box b. \Box c. \Box d. \Box but is not equal	How do the					e Earth radius is PE ₁ and at two compare?
	ANS: C	PTS:	1 D	IF: 2	2	TOP:	7.5 Newtonian Gravitation

68.	An asteroid has a poof 8.0 y. What is its					in) of 1.5 AU and a period of r	evolution
	a. □8.0 AU	greatest	uistance moni t	ile suii	(its aphenon):		
	b. □ 6.5 AU						
	c. □ 4.0 AU						
	d. □2.5 AU						
	ANS: B	PTS:	1	DIF:	3	TOP: 7.6 Kepler's Laws	
69.		om Keplei	•			eight times as far from the Ear he period or revolution of X is	
	b.□2.0						
	c. □4.0						
	d.□22.6						
	ANS: D	PTS:	1	DIF:	2	TOP: 7.6 Kepler's Laws	
70.	At what location do	es an arti	ficial Earth sat	ellite ir	n elliptical orbi	t have its greatest speed?	
	a. ☐ nearest the Eart	h					
	b. ☐ farthest from th	e Earth					
	c. □ between Earth a	and Moon					
	d. □ between Earth a	and Sun					
	ANS: A	PTS:	1	DIF:	1	TOP: 7.6 Kepler's Laws	
71.						nen at a distance of closest approtance from the sun, a distance 2	
	ANS: B	PTS:	1	DIF:	2	TOP: 7.6 Kepler's Laws	
72.	An artificial Earth s location? a. □ nearest the Eart b. □ farthest from th c. □ between Earth a d. □ between Earth a	h e Earth and Moon		rbit has	s its greatest ce	ntripetal acceleration when it is	s at what
	ANS: A	PTS:	1	DIF:	2	TOP: 7.6 Kepler's Laws	
73.	satellite? a. □ greater when th	e orbital r	adius is smalle	er	of the period	of orbital revolution for an Ear	th
	b. □ greater when th						
	c. □ independent of	tne orbita	i radius				

	d. □ determined mair	nly by the satellite's	s mass				
	ANS: B	PTS: 1	DIF:	1	TOP:	7.6 Kepler's Laws	
74.	Of the nine known pplanets in the system a. greatest centripe b. greatest period oc. smallest angular d. smallest tangent	n, Mercury has the: etal acceleration. of revolution.		e innerm	ost is Mercury.	When compared to the other	
	ANS: A	PTS: 1	DIF:	1	TOP:	7.6 Kepler's Laws	
75.	According to Kepler focus of the ellipse. a. nothing b. the Earth c. The comet itself focus. d. The tail of the coellipse.	What is at the othe	er focus of t			lliptical path with the Sun at one	;
	ANS: A	PTS: 1	DIF:	1	TOP:	7.6 Kepler's Laws	
76.		listance from the S	un, then $k =$	= 1. Wha	at, therefore, is	T is measured in years and r in the time (in years) for Mars to nce from the Sun?	
	ANS: A	PTS: 1	DIF:	2	TOP:	7.6 Kepler's Laws	
77.	In order for a satellit a. □go over the Nort b. □be over the equa c. □be over a single d. □emit television s	th and South Poles. ntor. longitude.		rbit mus	t:		
	ANS: B	PTS: 1	DIF:	1	TOP:	7.6 Kepler's Laws	
78.	An asteroid is in orb a. □ one fourth year b. □ 4 years c. □ 8 years d. □ 16 years ANS: C	PTS: 1	rth's distand			is its period of revolution? 7.6 Kepler's Laws	

79.		n distance from the	Sun results in changi	ng the orbital period of revolution by what
	factor?			
	$a.\Box 2^{1/2}$			
	b. □2			
	$c.\square 2^{3/2}$			
	$d.\Box 2^2$			
	ANS: C	PTS: 1	DIF: 2	TOP: 7.6 Kepler's Laws
80.	The Earth's orbit is moving the fastest		in January and farthe	est from the Sun in July. When is the Earth
	a. □ Neither Januar speed of the Earth	y nor July since the is a constant.	e orbital	
	b. □ January			
	c. □July			
		vice a year, in April	and in	
	October.			
	ANS: B	PTS: 1	DIF: 1	TOP: Conceptual Problems
81.	Two objects are in	airoular orbits of a	lifforant radii around	the Cun Which chiest has the highest orbital
01.	speed?	i circular orbits or c	interent raun around	the Sun. Which object has the highest orbital
	a. □The one closes	st to the Sun.		
	b. □ The one farthe			
		around the Sun, all	objects	
		ital speed regardles		
		Sun. It is the greate		
		ng circumference t		
	_	from the Sun to tak		
	complete an orbit.		e longer to	
		e found without kno	owing the	
	relative masses of		owing the	
	ANS: A	PTS: 1	DIF: 2	TOP: Conceptual Problems
82.	For a point on a sp	oinning disc in unif	orm circular motion,	which of the following is not constant?
	a. ☐ Its angular spe			· ·
	b. ☐ Its angular acc	eleration.		
	c. ☐ Its centripetal			
	•	e of its total acceler	ration.	
	ANS: C	PTS: 1	DIF: 2	TOP: Conceptual Problems
				T
83.				com the center r_1 and r_2 , where $r_1 < r_2$. While
				rational speed, which of the following
			ngular speed, angular	acceleration, and tangential speed for these
	points is incorrect	?		
	$\mathbf{a}. \square \mathbf{W}_1 = \mathbf{W}_2$			
	$\mathbf{b}. \square \mathbf{a}_1 = \mathbf{a}_2$			

	d. □ All of the e	equations are correct			
	ANS: C	PTS: 1	DIF:	2	TOP: Conceptual Problems
84.	which turn is th	around a racetrack a ne magnitude of the atest in the turn witl	car's acceleration		curves around the track have different radii. In greatest?
	radius.				
	b. ☐ It is the gre radius.	atest in the turn with	h the smallest		
	c. □The acceler of the constant	ration is zero everyv speed.	where because		
	d. ☐ More informanswer.	mation is needed to	determine the		
	ANS: B	PTS: 1	DIF:	2	TOP: Conceptual Problems

Chapter 8—Rotational Equilibrium and Rotational Dynamics

MULTIPLE CHOICE

1.	_		of 300 N perpendicu ce about an axis throu	lar to the plane of the door, 0.80 m fron 1gh the hinges.	n the
	a. □ 120 N×m	1			
	b. □240 N×m				
	c. □ 300 N×m				
	d. □ 360 N×m				
	ANS: B	PTS: 1	DIF: 1	TOP: 8.1 Torque	
2.	of 1.2 m from the from the pivot. The about the pivot? a.□15 Nxm b.□0 Nxm	pivot causing a ccw	torque, and a force of	s applied perpendicular to the rod at a of 5.2 N is applied at the end of the rod and causes a cw torque. What is the net to	3.0 m
	c.□- 6.3 Nxm				
	d. □ - 0.6 N×m				
	ANS: D	PTS: 1	DIF: 2	TOP: 8.1 Torque	
3.	The force F is nov	w removed and anoth	her force F' is applied	ce F applied perpendicular to the other at the midpoint of the rod. If F' is at an resulting torque is the same as when F v	angle
4.	right weighs 300 l	N. The fulcrum is at a the fulcrum and the	the midpoint of the s	left has a weight of 400 N while the one eesaw. If the child on the left is not at the what is the torque provided by the weight TOP: 8.1 Torque	he end
	AND. C	115. 1	DII'. Z	101. 6.1 101que	
5.	0.050-m radius cy	linder at the top of a		ned to a rope, which in turn, is wound a oes the weight of water and bucket produced m/s ²)	

	a. □34 Nxm						
	b.□17 N×m						
	c.□11 Nxm						
	d. □23 N×m						
	ANS: C	PTS:	1	DIF:	2	TOP:	8.1 Torque
6.	radius cylinder at the cylinder. What minir	top of a	well. A crank ce directed per	with a rpendic	turn ular	ing radius of 0.25 to the crank handl	arn, is wound around a 0.050-m m is attached to the end of the e is required to just raise the tionless bearings, and that $g = 9.8$
	ANS: A	PTS:	1	DIF:	3	TOP:	8.1 Torque
7.	parked with its cente left pier provide? a. $\Box 29.5 \stackrel{?}{\cdot} 10^3 \text{ N}$ b. $\Box 35.5 \stackrel{?}{\cdot} 10^3 \text{ N}$ c. $\Box 65.0 \stackrel{?}{\cdot} 10^3 \text{ N}$ d. $\Box 32.5 \stackrel{?}{\cdot} 10^3 \text{ N}$	PTS:	rity located 12	.0 m fro	om tl	ne right pier. Wha	mobile weighing 15.0 ´ 10³ N is t upward support force does the
8.	at (2.0, 3.0) m. What a. □ 18 m b. □ 2.0 m c. □ 1.2 m d. □ 1.0 m	PTS:	coordinate of	DIF:	ter o	of gravity of this sy	4.0 kg at (2.0, 0.0) m, and 5.0 kg ystem of masses? htter of Gravity 8.4 Examples of
9.		e would	a 20-kg mass	need to	be j		e.0 kg at (2.0, 0.0) m, and 6.0 kg the center of gravity of the

	TOP: 8.2 Torque and the Two Conditions for Equilibrium 8.3 The Center of Gravity 8.4 Examples of Objects in Equilibrium
10.	A hoop of radius 1.0 m is placed in the first quadrant of an xy -coordinate system with its rim touching both the x -axis and the y -axis. What are the coordinates of its center of gravity? a. \Box (1.0, 1.0) m b. \Box (0.7, 0.7) m c. \Box (0.5, 0.5) m d. \Box Since there is nothing at the center of the hoop, it has no center of gravity.
	ANS: A PTS: 1 DIF: 1 TOP: 8.2 Torque and the Two Conditions for Equilibrium 8.3 The Center of Gravity 8.4 Examples of Objects in Equilibrium
11.	Tasha has mass 20 kg and wants to use a 4.0-m board of mass 10 kg as a seesaw. Her friends are busy, so Tasha seesaws by herself by putting the support at the system's center of gravity when she sits on one end of the board. How far is she from the support point? a. \Box 2.0 m b. \Box 1.0 m c. \Box 0.67 m d. \Box 0.33 m
	TOP: 8.2 Torque and the Two Conditions for Equilibrium 8.3 The Center of Gravity 8.4 Examples of Objects in Equilibrium
12.	An 80-kg man is one fourth of the way up a 10-m ladder that is resting against a smooth, frictionless wall. If the ladder has a mass of 20 kg and it makes an angle of 60° with the ground, find the force of friction of the ground on the foot of the ladder.
	ANS: D PTS: 1 DIF: 3 TOP: 8.2 Torque and the Two Conditions for Equilibrium 8.3 The Center of Gravity 8.4 Examples of Objects in Equilibrium
13.	A 100-N uniform ladder, 8.0 m long, rests against a smooth vertical wall. The coefficient of static friction between ladder and floor is 0.40. What minimum angle can the ladder make with the floor before it slips?

DIF: 2

ANS: C

PTS: 1

14.	A meter stick is supported by a knife-edge at the 50-cm mark. Doug hangs masses of 0.40 and 0.60 kg from the 20-cm and 80-cm marks, respectively. Where should Doug hang a third mass of 0.30 kg to keep the stick balanced? a. □ 20 cm b. □ 70 cm c. □ 30 cm d. □ 25 cm ANS: C PTS: 1 DIF: 2 TOP: 8.2 Torque and the Two Conditions for Equilibrium 8.3 The Center of Gravity 8.4 Examples of Objects in Equilibrium
15.	An 800-N billboard worker stands on a 4.0-m scaffold supported by vertical ropes at each end. If the scaffold weighs 500 N and the worker stands 1.0 m from one end, what is the tension in the rope nearest the worker? a. □ 450 N b. □ 500 N c. □ 800 N d. □ 850 N
	ANS: D PTS: 1 DIF: 2 TOP: 8.2 Torque and the Two Conditions for Equilibrium 8.3 The Center of Gravity 8.4 Examples of Objects in Equilibrium
16.	An 800-N billboard worker stands on a 4.0-m scaffold weighing 500 N and supported by vertical ropes at each end. How far would the worker stand from one of the supporting ropes to produce a tension of 550 N in that rope?
	ANS: C PTS: 1 DIF: 2 TOP: 8.2 Torque and the Two Conditions for Equilibrium 8.3 The Center of Gravity 8.4 Examples of Objects in Equilibrium
17.	each end. The support force at the right end is 3 times the support force at the left end. How far from the right end is the woman standing? a. □ 4.0 m b. □ 2.0 m c. □ 2.7 m d. □ 1.6 m ANS: D PTS: 1 DIF: 2
	TOP: 8.2 Torque and the Two Conditions for Equilibrium 8.3 The Center of Gravity 8.4 Examples of Objects in Equilibrium
18.	A uniform, horizontal beam of length 6.0 m and weight 120 N is attached at one end to a wall by a pin connection (so that it may rotate). A cable attached to the wall above the pin supports the opposite end.

	The cable makes an angle of 60° with the horizontal. What is the tension in the cable needed to maintain the beam in equilibrium?
	a. □35 N
	b. □69 N
	c. □60 N
	d. □ 120 N
	ANS: B PTS: 1 DIF: 3 TOP: 8.2 Torque and the Two Conditions for Equilibrium 8.3 The Center of Gravity 8.4 Examples of Objects in Equilibrium
19.	A uniform 1.0-N meter stick is suspended horizontally by vertical strings attached at each end. A 2.0-N weight is suspended from the 10-cm position on the stick, another 2.0-N weight is suspended from the 50 cm position, and a 3.0-N weight is suspended from the 60 cm position. What is the tension in the string attached at the 100-cm end of the stick?
	a. □ 1.9 N
	b. □ 3.0 N
	c. □ 3.5 N
	$\mathrm{d.}\Box4.0~\mathrm{N}$
	ANS: C PTS: 1 DIF: 2
	TOP: 8.2 Torque and the Two Conditions for Equilibrium 8.3 The Center of Gravity 8.4 Examples of
	Objects in Equilibrium
20.	A 2.00-m by 4.00-m uniform sheet of plywood is in a coordinate system with the origin at its center, the x -axis along the longer dimension of the sheet is positive to the right and the y -axis along the shorter dimension is positive upwards. The section of the plywood in the 3rd quadrant is sawed off and the resulting piece is then glued squarely over the 4th quadrant portion of the plywood with glue of negligible weight. What are the x - and y -coordinates of the resulting center of gravity for this arrangement? a. \Box (0 m, 1.0 m) b. \Box (0.50 m, 0 m) c. \Box (1.0 m, -0.50 m) d. \Box (1.0 m, 0 m)
	ANS: B PTS: 1 DIF: 2 TOP: 8.3 The Center of Gravity
21.	A uniform beam of length 3.00 m and weight 100 N is mounted on an axle at one end perpendicular to the length of the beam. A rope is attached to the end of the beam at the other end from the axle, and the beam is lifted by the rope so that the beam makes an angle of 30.0° with the horizontal. If the rope is straight up, what magnitude torque does it supply about the axle? a. $\Box 300 \text{ N} \cdot \text{m}$ b. $\Box 150 \text{ N} \cdot \text{m}$ c. $\Box 130 \text{ N} \cdot \text{m}$ d. $\Box 75.0 \text{ N} \cdot \text{m}$ ANS: C PTS: 1 DIF: 2 TOP: 8.1 Torque 8.2 Torque and the Two conditions for Equilibrium 8.3 Center of Gravity
22.	A uniform beam of length 4.0 m and weight 100 N is mounted on an axle at one end perpendicular to the length of the beam. A rope is attached to the end of the beam at the other end from the axle and the beam

	is lifted by the rope so that the beam makes an angle of 30° with the horizontal. What is the tension in the rope if it is straight up?
	a. □50 N
	b. □87 N
	c. □ 100 N
	d. □200 N
	u. 🗆 200 IV
	ANS: A PTS: 1 DIF: 1 TOP: 8.1 Torque 8.2 Torque and the Two conditions for Equilibrium 8.3 Center of Gravity
23.	The quantity "moment of inertia" (in terms of the fundamental quantities of mass, length, and time) is equivalent to:
	$a. \square ML^2T^{-2}$.
	$b. \square ML.$
	$c.\Box ML^2$.
	$d. \square ML^{-1}T^{-2}$.
	ANS: C PTS: 1 DIF: 1
	TOP: 8.5 Relationship Between Torque and Angular Acceleration
24.	A 4.2-kg mass is placed at (3.0, 4.0) m. Where can an 8.4-kg mass be placed so that the moment of inertia
	about the <i>z</i> -axis is zero?
	$a.\Box$ (- 3.0, - 4.0) m
	b. \Box (-6.0, -8.0) m
	c. □(-1.5, -2.0) m
	d. □ There is no position giving this result.
	ANG D DEG 1 DIF 0
	ANS: D PTS: 1 DIF: 2 TOP: 8.5 Relationship Between Torque and Angular Acceleration
	101. 8.5 Relationship Between Torque and Angular Acceleration
25.	A 4.0-kg mass is placed at (3.0, 4.0) m, and a 6.0-kg mass is placed at (3.0, -4.0) m. What is the moment
	of inertia of this system of masses about the <i>x</i> -axis?
	$a. \Box 160 \text{ kg/m}^2$
	$b.\Box 90 \text{ kg/m}^2$
	$c.\Box 250 \text{ kg/m}^2$
	$d. \square 32 \text{ kg/m}^2$
	ANG. A DEG. 1 DIE. 2
	ANS: A PTS: 1 DIF: 2 TOP: 8.5 Relationship Between Torque and Angular Acceleration
	101. 8.5 Relationship Between Torque and Angular Acceleration
26.	A 4.0-kg mass is placed at (3.0, 4.0) m, and a 6.0-kg mass is placed at (3.0, -4.0) m. What is the moment
	of inertia of this system of masses about the y-axis?
	$a. \Box 160 \text{ kg/m}^2$
	$b. \square 90 \text{ kg/m}^2$
	$c.\Box 250 \text{ kg/m}^2$
	$d. \square 180 \text{ kg/m}^2$
	U. TOO Egraff
	ANS: B PTS: 1 DIF: 2 TOP: 8.5 Relationship Between Torque and Angular Acceleration

27.	of inertia of this system of masses about the <i>z</i> -axis? a. \Box 160 kg×m ²
	$b. \square 90 \text{ kg/m}^2$
	$c. \square 250 \text{ kg/m}^2$
	$d. \Box 180 \text{ kg/m}^2$
	ANS: C PTS: 1 DIF: 2 TOP: 8.5 Relationship Between Torque and Angular Acceleration
28.	If a net torque is applied to an object, that object will experience:
	a. \(\text{a constant angular speed.} \)
	b. □ an angular acceleration.
	c. □a constant moment of inertia.
	d. □ an increasing moment of inertia.
	ANS: B PTS: 1 DIF: 1
	TOP: 8.5 Relationship Between Torque and Angular Acceleration
29.	
	proportional to:
	a. Lits moment of inertia.
	b. the net applied torque.
	c. □ the object's size. d. □ choices a and b above are both valid.
	u. Choices a and b above are both vand.
	ANS: B PTS: 1 DIF: 1
	TOP: 8.5 Relationship Between Torque and Angular Acceleration
30.	A ventilation fan with a moment of inertia of 0.034 kg×m² has a net torque of 0.11 N×m applied to it. What
50.	angular acceleration does it experience?
	$a. \square 5.3 \text{ rad/s}^2$
	$b. \square 4.0 \text{ rad/s}^2$
	$c. \square 3.2 \text{ rad/s}^2$
	$d.\Box 0.31 \text{ rad/s}^2$
	ANS: C PTS: 1 DIF: 1
	TOP: 8.5 Relationship Between Torque and Angular Acceleration
31.	
	net torque must be applied to bring it to rest within 3 s?
	$a. \square 4.5 \stackrel{'}{} 10^{-3} \text{ N} \times \text{m}$
	$b.\Box 7.5 \cdot 10^{-4} \text{ Nxm}$
	$c. \square 3.5 \stackrel{\prime}{.} 10^{-4} \text{ N} \times \text{m}$
	$d. \Box 5.0 \cdot 10^{-4} \text{ Nxm}$
	ANS: C PTS: 1 DIF: 2
	TOP: 8.5 Relationship Between Torque and Angular Acceleration

32.	The Earth moves about the Sun in an elliptical orbit. As the Earth moves closer to the Sun, which of the following best describes the Earth-Sun system's moment of inertia?						
	a. decreases						
	b. increases						
	c. remains constant						
	d. none of the above choices are valid						
	under the above endices are valid						
	ANS: A PTS: 1 DIF: 1 TOP: 8.5 Relationship Between Torque and Angular Acceleration						
33.	A bowling ball has a mass of 7.0 kg, a moment of inertia of 2.8 $^{'}$ 10^{-2} kg×m ² and a radius of 0.10 m. If it rolls down the lane without slipping at a linear speed of 4.0 m/s, what is its angular speed? a. \square 0.80 rad/s						
	$b.\Box 10 \text{ rad/s}$						
	$c. \square 0.050 \text{ rad/s}$						
	$d. \square 40 \text{ rad/s}$						
	ANG D						
	ANS: D PTS: 1 DIF: 1						
	TOP: 8.5 Relationship Between Torque and Angular Acceleration						
34.	A baseball pitcher, loosening up his arm before a game, tosses a 0.15-kg ball using only the rotation of his forearm, 0.32 m in length, to accelerate the ball. If the ball starts at rest and is released with a speed of 12 m/s in a time of 0.40 s, what is the average angular acceleration of the arm and ball? a. $\Box 0.067 \text{ rad/s}^2$ b. $\Box 94 \text{ rad/s}^2$ c. $\Box 15 \text{ rad/s}^2$ d. $\Box 37 \text{ rad/s}^2$						
	u. 🗆 57 Tau/ S						
	ANS: B PTS: 1 DIF: 2 TOP: 8.5 Relationship Between Torque and Angular Acceleration						
35.	A baseball pitcher loosens up his pitching arm. He tosses a 0.15-kg ball using only the rotation of his forearm, 0.32 m in length, to accelerate the ball. What is the moment of inertia of the ball alone as it moves in a circular arc with a radius of 0.32 m?						
	ANS: A PTS: 1 DIF: 2 TOP: 8.5 Relationship Between Torque and Angular Acceleration						
	101. 0.5 Relationship Detween Torque and Angular Acceleration						
36.	A baseball pitcher loosens up his pitching arm. He tosses a 0.15-kg ball using only the rotation of his forearm, 0.32 m in length, to accelerate the ball. If the ball starts at rest and is released with a speed of 12 m/s in a time of 0.40 s, what torque is applied to the ball while being held by the pitcher's hand to produce the angular acceleration?						
	a. □ 1.1 N×m						
	b. □ 11 N×m						
	c. □ 7.2 N×m						
	d. □ 1.4 N×m						

	ANS: D PTS: 1 DIF: 2 TOP: 8.5 Relationship Between Torque and Angular Acceleration
37.	
38.	A bucket of water with total mass 23 kg is attached to a rope, which in turn is wound around a 0.050-m radius cylinder at the top of a well. The bucket is raised to the top of the well and released. The bucket is moving with a speed of 8.0 m/s upon hitting the water surface in the well. What is the angular speed of the cylinder at this instant? a. □ 39 rad/s b. □ 79 rad/s c. □ 120 rad/s d. □ 160 rad/s ANS: D PTS: 1 DIF: 1 TOP: 8.5 Relationship Between Torque and Angular Acceleration
39.	A majorette takes two batons and fastens them together in the middle at right angles to make an "x" shape. Each baton was 0.80 m long and each ball on the end is 0.20 kg. (Ignore the mass of the rods.) What is the moment of inertia if the arrangement is spun around an axis formed by one of the batons? a. □ 0.048 kg×m² b. □ 0.064 kg×m² c. □ 0.19 kg×m² d. □ 0.32 kg×m² ANS: B PTS: 1 DIF: 2 TOP: 8.5 Relationship Between Torque and Angular Acceleration
40.	A majorette takes two batons and fastens them together in the middle at right angles to make an "x" shape. Each baton was 0.80 m long and each ball on the end is 0.20 kg. (Ignore the mass of the rods.) What is the moment of inertia if the arrangement is spun around an axis through the center perpendicular to both rods? a. $\Box 0.064 \text{ kg} \times \text{m}^2$ b. $\Box 0.096 \text{ kg} \times \text{m}^2$ c. $\Box 0.13 \text{ kg} \times \text{m}^2$

	ANS: C PTS: 1 DIF: 2 TOP: 8.5 Relationship Between Torque and Angular Acceleration
41.	A solid cylinder ($I = MR^2/2$) has a string wrapped around it many times. When I release the cylinder, holding on to the string, the cylinder falls and spins as the string unwinds. What is the downward acceleration of the cylinder as it falls? a. $\Box 0$ b. $\Box 4.9 \text{ m/s}^2$ c. $\Box 6.5 \text{ m/s}^2$ d. $\Box 9.8 \text{ m/s}^2$
	TOP: 8.5 Relationship Between Torque and Angular Acceleration
42.	A 40-kg boy is standing on the edge of a stationary 30-kg platform that is free to rotate. The boy tries to walk around the platform in a counterclockwise direction. As he does: a. □ the platform doesn't rotate. b. □ the platform rotates in a clockwise direction just fast enough so that the boy remains stationary relative to the ground. c. □ the platform rotates in a clockwise direction while the boy goes around in a counterclockwise direction relative to the ground. d. □ both go around with equal angular velocities but in opposite directions.
	ANS: C PTS: 1 DIF: 2
	TOP: 8.5 Relationship Between Torque and Angular Acceleration
43.	A rod of length L is hinged at one end. The moment of inertia as the rod rotates around that hinge is $ML^2/3$. Suppose a 2.00-m rod with a mass of 3.00 kg is hinged at one end and is held in a horizontal position. The rod is released as the free end is allowed to fall. What is the angular acceleration as it is released? a. $\Box 3.70 \text{ rad/s}^2$ b. $\Box 7.35 \text{ rad/s}^2$ c. $\Box 2.45 \text{ rad/s}^2$ d. $\Box 4.90 \text{ rad/s}^2$
	ANS: B PTS: 1 DIF: 2
	TOP: 8.5 Relationship Between Torque and Angular Acceleration
44.	Two hoops or rings ($I = MR^2$) are centered, lying on a turntable. The smaller ring has radius = 0.050 m; the larger has radius = 0.10 m. Both have a mass of 3.0 kg. What is the total moment of inertia as the turntable spins? Ignore the mass of the turntable. a. $\Box 0.030 \text{ kg/m}^2$ b. $\Box 0.0075 \text{ kg/m}^2$ c. $\Box 0.038 \text{ kg/m}^2$ d. $\Box 0.075 \text{ kg/m}^2$

45.	An automobile accelerates from zero to 30 m/s in 6.0 s. The wheels have a diameter of 0.40 m. What is the average angular acceleration of each wheel?							
	$a. \square 5.0 \text{ rad/s}^2$							
	$b. \Box 15 \text{ rad/s}^2$							
	$c. \square 25 \text{ rad/s}^2$							
	$d. \square 35 \text{ rad/s}^2$							
	ANS: C PTS: 1 DIF: 2 TOP: 8.5 Relationship Between Torque and Angular Acceleration							
	101. 0.5 Retailonship Between Forque and Fingular Freederation							
46.	An object consists of a rod (of length 3.0 m and negligible moment of inertia) to which four small 2.0-kg masses are attached, one at each end and one at each point on the rod 1.0 m from each end. (The masses are one meter apart.) The moment of inertia of this object about an axis perpendicular to the rod and through one of the inner masses:							
	$a. \Box is 72 \text{ kg/m}^2.$							
	b. \Box is 12 kg/m ² .							
	<u> </u>							
	c. \Box is 4 kg×m ² .							
	d. cannot be uniquely determined until it is							
	stated which inner mass the axis goes through.							
	ANS: B PTS: 1 DIF: 2							
	TOP: 8.5 Relationship Between Torque and Angular Acceleration							
47.	A ventilation fan with a moment of inertia of $0.034~\text{kg/m}^2$ has a net torque of $0.11~\text{N/m}$ applied to it. If it starts from rest, what kinetic energy will it have $8.0~\text{s}$ later? a. $\Box 31~\text{J}$ b. $\Box 17~\text{J}$							
	c.□11 J							
	d. □ 6.6 J							
	ANS: C PTS: 1 DIF: 3							
	TOP: 8.6 Rotational Kinetic Energy							
48.								
	a. □its linear speed but not rotational speed.							
	b. □its rotational speed but not linear speed.							
	c. □ both linear and rotational speeds.							
	d. □ neither linear nor rotational speed.							
	ANS: C PTS: 1 DIF: 1 TOP: 8.6 Rotational Kinetic Energy							
49.	\mathcal{C}'							
	rolls down the lane without slipping at a linear speed of 4.0 m/s, what is its total kinetic energy?							
	a. 🗆 45 J							
	b. □ 32 J							
	c. □ 11 J							

ANS: C PTS: 1 DIF: 2
TOP: 8.5 Relationship Between Torque and Angular Acceleration

	ANS: D PTS: 1 DIF: 2 TOP: 8.6 Rotational Kinetic Energy
50.	A bucket of water with total mass 23 kg is attached to a rope, which in turn is wound around a 0.050-m radius cylinder, with crank, at the top of a well. The moment of inertia of the cylinder and crank is 0.12 kg×m². The bucket is raised to the top of the well and released to fall back into the well. What is the kinetic energy of the cylinder and crank at the instant the bucket is moving with a speed of 8.0 m/s?
51.	A solid sphere of mass 4.0 kg and radius 0.12 m is at rest at the top of a ramp inclined 15°. It rolls to the bottom without slipping. The upper end of the ramp is 1.2 m higher than the lower end. Find the sphere's total kinetic energy when it reaches the bottom.
52.	A solid sphere of mass 4.0 kg and radius 0.12 m starts from rest at the top of a ramp inclined 15°, and rolls to the bottom. The upper end of the ramp is 1.2 m higher than the lower end. What is the linear speed of the sphere when it reaches the bottom of the ramp? (Note: $I = 0.4MR^2$ for a solid sphere and $g = 9.8$ m/s²) a. $\Box 4.7$ m/s b. $\Box 4.1$ m/s c. $\Box 3.4$ m/s d. $\Box 2.4$ m/s ANS: B PTS: 1 DIF: 3 TOP: 8.6 Rotational Kinetic Energy
53.	A solid cylinder of mass 3.0 kg and radius 0.2 m starts from rest at the top of a ramp, inclined 15°, and rolls to the bottom without slipping. (For a cylinder $I = 0.5MR^2$) The upper end of the ramp is 1.2 m higher than the lower end. Find the linear speed of the cylinder when it reaches the bottom of the ramp. ($g = 9.8 \text{ m/s}^2$) a. $\Box 4.7 \text{ m/s}$ b. $\Box 4.3 \text{ m/s}$ c. $\Box 4.0 \text{ m/s}$ d. $\Box 2.4 \text{ m/s}$

d.□78 J

	ANS: C PTS: 1 DIF: 3 TOP: 8.6 Rotational Kinetic Energy
54.	A gyroscope has a moment of inertia of 0.14 kg/m^2 and an initial angular speed of 15 rad/s. Friction in the bearings causes its speed to reduce to zero in 30 s. What is the value of the average frictional torque? $a. \Box 3.3 \ ' \ 10^{-2} \text{ N/m}$ $b. \Box 8.1 \ ' \ 10^{-2} \text{ N/m}$ $c. \Box 14 \ ' \ 10^{-2} \text{ N/m}$ $d. \Box 7.0 \ ' \ 10^{-2} \text{ N/m}$
	ANS: D PTS: 1 DIF: 2 TOP: 8.6 Rotational Kinetic Energy
55.	lubricant is applied to the bearings of the gyroscope so that frictional torque is reduced to $2.00 \cdot 10^{-2}$ Nxm, then in what time interval will the gyroscope coast from 15.0 rad/s to zero? a. $\Box 150 \text{ s}$ b. $\Box 105 \text{ s}$ c. $\Box 90.0 \text{ s}$ d. $\Box 180 \text{ s}$
	ANS: B PTS: 1 DIF: 2 TOP: 8.6 Rotational Kinetic Energy
56.	A cylinder with its mass concentrated toward the center has a moment of inertia of $0.1 MR^2$. If this cylinder is rolling without slipping along a level surface with a linear speed ν , what is the ratio of its rotational kinetic energy to its linear kinetic energy? a. $\Box 1/10$ b. $\Box 1/5$ c. $\Box 1/2$ d. $\Box 1/1$
	ANS: A PTS: 1 DIF: 2 TOP: 8.6 Rotational Kinetic Energy
57.	A solid sphere with mass, M , and radius, R , rolls along a level surface without slipping with a linear speed, v . What is the ratio of rotational to linear kinetic energy? (For a solid sphere, $I = 0.4 \ MR^2$) a. $\Box 1/4$ b. $\Box 1/2$ c. $\Box 1/1$ d. $\Box 2/5$
	ANS: D PTS: 1 DIF: 2 TOP: 8.6 Rotational Kinetic Energy
58.	A rotating flywheel can be used as a method to store energy. If it is required that such a device be able to store up to a maximum of 1.00 $$ 10 ⁶ J when rotating at 400 rad/s, what moment of inertia is required? a. $\Box 50 \text{ kg/m}^2$ b. $\Box 25 \text{ kg/m}^2$ c. $\Box 12.5 \text{ kg/m}^2$

	$d.\Box 6.3 \text{ kg/m}^2$	
	ANS: C PTS: 1 DIF: 2 TOP: 8.6 Rotational Kinetic Energy	
59.	A rotating flywheel can be used as a method to store energy. If it has 1.0 ′ 10 ⁶ J of kinetic energy when rotating at 400 rad/s, and if a frictional torque of 4.0 Nxm acts on the system, in what interval of time would the flywheel come to rest? a.□3.5 min b.□7.0 min c.□14 min d.□21 min ANS: D PTS: 1 DIF: 2	l
	TOP: 8.6 Rotational Kinetic Energy	
60.	An initially installed flywheel can store 10^6 J of kinetic energy when rotating at 300 rad/s. It is replaced by another flywheel of the same size but made of a lighter and stronger material. If its mass is half that the original and it is now capable of achieving a rotational speed of 600 rad/s, what maximum energy c be stored? a. $\Box 40 \stackrel{'}{} 10^5$ J b. $\Box 20 \stackrel{'}{} 10^5$ J c. $\Box 10 \stackrel{'}{} 10^5$ J	of
	ANS: B PTS: 1 DIF: 2 TOP: 8.6 Rotational Kinetic Energy	
61.	A cylinder ($I = MR^2/2$) is rolling along the ground at 7.0 m/s. It comes to a hill and starts going up. Assuming no losses to friction, how high does it get before it stops? a. \Box 1.2 m b. \Box 3.7 m c. \Box 4.2 m d. \Box 5.9 m	
	ANS: B PTS: 1 DIF: 2 TOP: 8.6 Rotational Kinetic Energy	
62.	A meter stick is hinged at its lower end and allowed to fall from a vertical position. If its moment of inertia is $ML^2/3$, with what angular speed does it hit the table? a. $\Box 5.42 \text{ rad/s}$ b. $\Box 2.71 \text{ rad/s}$ c. $\Box 1.22 \text{ rad/s}$ d. $\Box 7.67 \text{ rad/s}$ ANS: A PTS: 1 DIF: 3	
	TOP: 8.6 Rotational Kinetic Energy	

63.	A bus is designed to draw its power from a rotating flywheel that is brought up to its maximum speed (3 000 rpm) by an electric motor. The flywheel is a solid cylinder of mass 500 kg and radius 0.500 m ($I_{\text{cylinder}} = MR^2/2$). If the bus requires an average power of 10.0 kW, how long will the flywheel rotate? a. \Box 154 s b. \Box 308 s c. \Box 463 s
	d. □ 617 s ANS: B PTS: 1 DIF: 2
	TOP: 8.6 Rotational Kinetic Energy
64.	An object of radius R and moment of inertia I rolls down an incline of height H after starting from rest. Its total kinetic energy at the bottom of the incline: a. □ is gR/I. b. □ is I/gH. c. □ is 0.5 Ig/H. d. □ cannot be found from the given information alone. ANS: D PTS: 1 DIF: 2
	TOP: 8.6 Rotational Kinetic Energy
65.	A uniform solid sphere rolls down an incline of height 3 m after starting from rest. In order to calculate its speed at the bottom of the incline, one needs to know: a. □ the mass of the sphere. b. □ the radius of the sphere. c. □ the mass and the radius of the sphere. d. □ no more than is given in the problem. ANS: D PTS: 1 DIF: 2 TOP: 8.6 Rotational Kinetic Energy
66.	Consider the use of the terms "rotation" and "revolution". In physics: a. the words are used interchangeably. b. the words are used interchangeably but "rotation" is the preferred word. c. the words have different meaning. d. "rotation" is the correct word and "revolution" should not be used. ANS: C PTS: 1 DIF: 2 TOP: 8.6 Rotational Kinetic Energy
67.	A solid disk of radius R rolls down an incline in time T. The center of the disk is removed up to a radius of R/2. The remaining portion of the disk with its center gone is again rolled down the same incline. The time it takes is: a. \Box T. b. \Box more than T. c. \Box less than T. d. \Box requires more information than given in the

	problem	to figure ou	t.					
	ANS: B TOP: 8.	6 Rotational	PTS: Kinetic		DIF:	3		
68.	The quarequivaler a. \square MLT b. \square ML 2r d. \square ML 3r	and to: $\Gamma^{-1}.$ $\Gamma^{-3}.$	r mome	ntum" (in term	s of the	e fundamental q	uantitie	es of mass, length, and time) is
	ANS: B		PTS:	1	DIF:	1	TOP:	8.7 Angular Momentum
69.		m rest, what kgxm²/s kgxm²/s gxm²/s		nent of inertia or r momentum w			et torqu	e of 0.11 Nxm applied to it. If it
	ANS: A		PTS:	1	DIF:	2	TOP:	8.7 Angular Momentum
70.	close to h a. □a sma b. □a gre c. □a gre d. □a sma	ner body. Waller rotation ater rotation ater angular aller angular	hich of that rate al rate momen momen	the following r tum ntum	esults?			3 rad/s. She then pulls her arms in
	ANS: B		PTS:	1	DIF:	1	TOP:	8.7 Angular Momentum
71.		factor does		nent of inertia o	change	extended. He drin the process?		s arms in and spins at 6.0 rev/s. 8.7 Angular Momentum
72.							v/s. Aft	ter he draws his arms in, he spins he draws his arms in?
	ANS: A		PTS:	1	DIF:	2	TOP:	8.7 Angular Momentum

73.	A turntable has a m rev/min. A 0.300-kg from the center. Wha. □40.8 rev/min b. □22.7 rev/min c. □33.3 rev/min d. □27.2 rev/min	g ball of putty is o	dropped vertic	cally on	to the turntable		
	ANS: B	PTS: 1	DIF:	2	TOP:	8.7 Angular N	Momentum
74.	A turntable has a m rev/min. A 0.300-kg the center. By what onto the turntable? a.□1.22 b.□1.00 (no change c.□0.820 d.□1.50	g ball of putty is of factor does the an	dropped vertic	cally on	the turntable ar	nd sticks at a p	oint 0.100 m from
	ANS: B	PTS: 1	DIF:	2	TOP:	8.7 Angular N	Momentum
75.	A turntable has a m rev/min. A 0.30-kg the center. By what turntable? a. □0.91 b. □1.0 c. □0.82 d. □1.5 ANS: A	ball of putty is dr	opped vertica	ally on t of the s	the turntable and system change a	d sticks at a po	int 0.10 m from s dropped onto the
76.	The Earth's gravity motion of the satell: Earth (apogee). At tall a. □ the tangential veloc. □ the angular word. □ the kinetic energy ANS: C	the at the point ne these two points: elocities are the same pocities are the same menta are the same	arest the Eart ame. ne. e.	h (perig	gee) to the motion		farthest from the
77.	The Earth's gravity motion at the point At the point closest a. □ the angular speet the linear speed will b. □ the speed will b angular speed will b c. □ the kinetic energy	exerts no torque of nearest the Earth to the Earth: ed will be greatest 1 be the same. The greatest althoughe the same.	on a satellite (perigee) to t t although gh the	orbiting	the Earth in an	elliptical orbit	. Compare the

		oth be greater. one of the above	7P					
	ANS:		PTS:	1	DIF:	2	TOP:	8.7 Angular Momentum
78.		le it shortens. l 3 m 5 m 2 m				e. It is circling a e ball is moving		rev/s. As the rope wraps around m/s?
	ANS:	D	PTS:	1	DIF:	2	TOP:	8.7 Angular Momentum
79.	rad/s. ☐ a. ☐ 10 b. ☐ 50 c. ☐ 72 d. ☐ 89	How far inwar .1 m .0 m .7 m .9 m		e be pulled bet		e centripetal acco	eleratio	with an angular speed of 0.100 on reaches $5g = 49 \text{ m/s}^2$?
	ANS:	C	P15:	1	DIF:	3	TOP:	8.7 Angular Momentum
80.	energy a. □ 0.5 b. □ 0.5	y is: 5 I ² /L. 5 L ² /I. 5 L ² /m.	m and i	moment of iner	tia I is	spinning with a	n angul	ar momentum L. Its kinetic
	ANS:	В	PTS:	1	DIF:	1	TOP:	8.7 Angular Momentum
81.	a. □ 0.5 b. □ (2 c. □ (2	5 I/m. $IK_R)^{1/2}$. $mK_R)^{1/2}$. t given above.	and mo		I has r			y K_R . Its angular momentum is: 8.7 Angular Momentum
82.	same cenergy a. The b. The energy c. The	buter radius R. 2? e both have the hollow one law. e solid one has ore information.	If they e same l has the g s the gree	are both rolling kinetic energy. greater kinetic eater kinetic end ded to choose a	ergy.	same linear spe	ed, whi	solid, have the same mass M and ich one has the greater kinetic
	AIN).	ט	г 13.	1	IJIГ.	1	IUP:	Conceptual Problems

83.	same height, and b	ave both the great eater speed. have both the great eater speed. the same kinetic eater speed the greater speed the greater speed	ne hoop have hich one will er kinetic ater kinetic energy but	the sam	e mass. If both	ncline. Both inclines have the objects start from rest, upon a energy and which one will have the objects.	
	ANS: D	PTS: 1	DIF:	2	TOP:	Conceptual Problems	
84.	the angle between same torque as wa a. □ b. □ c. □ d. □ None of the above	and . If the magn s produced at ang	itudes r and l	F remain	n the same, wha	tation, is given by , where q t other angle q¢will produce	
85.	d. These two force	ude forces are in or as are applied to a control of the following the ne other on a line label of the following the ne other on a line through the at a distance and the other on a copposite side of the over orientations.	opposite direct solid disk, who wing positic circumfer-halfway to d from the half the center d/2 from the half at a the center of	ctions ar hich is r ons for	nd their lines of a mounted on a fri- the forces would	Conceptual Problems action are separated by distarctionless axle. If <i>d</i> is half the ligive the most torque. Conceptual Problems	
86.	30 cm mark. What a. □ W		_		e 40 cm mark w	hen a weight W is placed at	the
	b. □ 2W c. □ W/2						
	d. □ 0.4 W						

ANS: A PTS: 1 DIF: 2 TOP: Conceptual Problems

Chapter 9—Solids and Fluids

MULTIPLE CHOICE

1.	Which state of matter is associated with the very highest of temperatures? a.□liquid b.□plasma c.□gas d.□solid
	ANS: B PTS: 1 DIF: 1 TOP: 9.1 States of Matter 9.3 The Deformation of Solids
2.	A copper wire of length 2.0 m, cross sectional area 7.1 $^{'}$ 10^{-6} m 2 and Young's modulus 11 $^{'}$ 10^{10} N/m 2 has a 200-kg load hung on it. What is its increase in length? ($g = 9.8$ m/s 2) a. \Box 0.50 mm b. \Box 1.0 mm c. \Box 2.5 mm d. \Box 5.0 mm
	ANS: D PTS: 1 DIF: 2 TOP: 9.1 States of Matter 9.3 The Deformation of Solids
3.	In an elastic solid there is a direct proportionality between strain and: a. □elastic modulus. b. □temperature. c. □cross-sectional area. d. □stress. ANS: D PTS: 1 DIF: 1 TOP: 9.1 States of Matter 9.3 The Deformation of Solids
4.	The quantity "stress" expressed in terms of the fundamental quantities (mass, length, time) is equivalent to: a. \Box MLT ⁻¹ . b. \Box ML ⁻¹ T ⁻² . c. \Box M ² L ⁻¹ T ⁻³ . d. \Box a dimensionless quantity.
	ANS: B PTS: 1 DIF: 1 TOP: 9.1 States of Matter 9.3 The Deformation of Solids
5.	The quantity "strain" expressed in terms of the fundamental quantities (mass, length, time) is equivalent to:

	ANS: D PTS: 1 DIF: 1 TOP: 9.1 States of Matter 9.3 The Deformation of Solids
6.	The bulk modulus of a material, as a meaningful physical property, is applicable to which of the following? a. □ only solids b. □ only liquids c. □ only gases d. □ solids, liquids and gases
	ANS: D PTS: 1 DIF: 1 TOP: 9.1 States of Matter 9.3 The Deformation of Solids
7.	A uniform pressure of 7.0 ′ 10^5 N/m² is applied to all six sides of a copper cube. What is the percentage change in volume of the cube? (for copper, $B = 14$ ′ 10^{10} N/m²) a. $\Box 2.4$ ′ 10^{-2} % b. $\Box 0.4$ ′ 10^{-2} % c. $\Box 8.4$ ′ 10^{-2} % d. $\Box 0.5$ ′ 10^{-3} %
	ANS: D PTS: 1 DIF: 2 TOP: 9.1 States of Matter 9.3 The Deformation of Solids
8.	Bar One has a Young's modulus that is bigger than that of Bar Two. This indicates Bar One: a. □is longer than Bar Two. b. □has a greater cross-sectional area than Bar Two. c. □has a greater elastic limit than Bar Two. d. □is made of material that is different from Bar Two. ANS: D PTS: 1 DIF: 1
	TOP: 9.1 States of Matter 9.3 The Deformation of Solids
9.	Consider two steel rods, A and B. B has three times the area and twice the length of A, so Young's modulus for B will be what factor times Young's modulus for A?
	ANS: D PTS: 1 DIF: 2 TOP: 0.1 States of Matter 0.2 The Deformation of Solids
10	TOP: 9.1 States of Matter 9.3 The Deformation of Solids
10.	A tire stops a car by use of friction. What modulus should we use to calculate the stress and strain on the tire?
	a. □ Young's modulus
	b. □ compression modulus
	c. □ shear modulus
	d. □ bulk modulus

					of Solids		
11.	How large a force is a. $\Box 3.1 \ ' \ 10^3 \ N$ b. $\Box 6.3 \ ' \ 10^3 \ N$ c. $\Box 9.4 \ ' \ 10^3 \ N$ d. $\Box 1.3 \ ' \ 10^4 \ N$	necessar	y to stretch a 2	2.0-mm	-diameter steel	wire (Y	$V = 2.0 \cdot 10^{11} \text{ N/m}^2$) by 1.0%?
	ANS: B TOP: 9.1 States of	PTS: Matter 9			2 of Solids		
12.	The standard kilogra is the density of the a. $\Box 21.5 \text{ g/cm}^3$ b. $\Box 19.3 \text{ g/cm}^3$ c. $\Box 13.6 \text{ g/cm}^3$ d. $\Box 10.7 \text{ g/cm}^3$			n cylino	der 39.0 mm in	height a	and 39.0 mm in diameter. What
	ANS: A	PTS:	1	DIF:	2	TOP:	9.2 Density and Pressure
13.	The quantity "pressue quivalent to: a. □MLT ⁻¹ . b. □ML ⁻¹ T ⁻² . c. □M ² L ⁻¹ T ⁻³ . d. □a dimensionless		essed in terms	of the f	fundamental qu	antities	(mass, length, time) is
	ANS: B	PTS:	1	DIF:	1	TOP:	9.2 Density and Pressure
14.	The pressure inside force exerted on a 1 a. \(\text{140 N} \) b. \(\text{1400 N} \) c. \(\text{14000 N} \) d. \(\text{14000 N} \)						Pa). What is the net outward) atm?
	ANS: D	PTS:	1	DIF:	2	TOP:	9.2 Density and Pressure
15.	A stonecutter's chise pressure exerted on a. \$\square\$ 9000 Pa b. \$\square\$ 9000 Pa c. \$\square\$ 450 000 Pa d. \$\square\$ 900 000 Pa			50 cm ²	. If the chisel is	struck	with a force of 45 N, what is the
	ANS: D	PTS:	1	DIF:	2	TOP:	9.2 Density and Pressure

16.	When water freezes automobile engine by						
	$1.0 \cdot 10^5 \text{Pa.}$)	JOCK II the water	in there mozi	o. (The	ount modulus c	91 100 15 2.0	10 Tu, und Tutin –
	a. □ 18 atm						
	b. □ 270 atm						
	c. □ 1 080 atm						
	d. □ 1 800 atm						
	ANS: D	PTS: 1	DIF:	3	TOP:	9.2 Density	and Pressure
17.	The Greenland ice sice is 918 kg/m^3 .) a. $\square 9.0 \cdot 10^5 \text{ Pa}$ (9 a		m thick. Esti	mate the	e pressure unde	erneath the ice	e. (The density of
	b. $\Box 2.5$ ′ 10^6 Pa (25)						
	c. $\Box 4.5$ $$ 10^6 Pa (45)						
	d. $\Box 9.0$ ′ 10^6 Pa (90						
	a. □9.0 10 Pa (90	<i>i</i> aum)					
	ANS: D	PTS: 1	DIF:	2	TOP:	9.2 Density	and Pressure
18.	What is the total mapressure at the surfal a. \Box 5 $$ 10 ¹⁶ kg b. \Box 1 $$ 10 ¹⁸ kg c. \Box 5 $$ 10 ¹⁸ kg d. \Box 1 $$ 10 ²⁰ kg		tmosphere?	(The rad	ius of the Eartl	h is 6.4 ′ 10 ⁶	m, and atmospheric
	ANS: C	PTS: 1	DIF:	2	TOP:	9.2 Density	and Pressure
19.	A solid object is madensity of 6 000 kg/m³ a.□3 000 kg/m³ b.□4 000 kg/m³ c.□5 300 kg/m³ d.□more information	/m ³ . If the object of					
	ANS: B	PTS: 1	DIF:	1	TOP:	9.2 Density	and Pressure
20.	A solid object is madensity of 6 000 kg/m³ a. □3 000 kg/m³ b. □4 000 kg/m³ c. □5 300 kg/m³ d. □ more information	/m ³ . If the object o	ls, one mater contains equa	rial havir Il masses	ng density of 2 s of the materia	000 kg/m ³ anals, what is its	d the other having average density?
	ANS: A	PTS: 1	DIF:	2	TOP:	9.2 Density	and Pressure
21.	The maximum press atmospheres above the basement of the	the outside pressu	re. The pipe	is to run	from the roof	to a storm dra	nin connection in

to be used with a tall building, what is the maximum height, of those given below, for this drainpipe if it

		o clogging at the botto here pressure.where 1		the pipe is in an e	environment that surrounds it
	a. \square	iere pressure: where i	atiii — T a.		
	b. 🗆				
	c. 🗆				
	d. 🗆				
	ANS: A	PTS: 1	DIF: 2	TOP:	9.2 Density and Pressure
22.	building. Unfortu How high above compressed by o a.□ b.□	inately, over time the	drainpipe becomer have to be for	es clogged when it the water near the	wer under the basement of the it passes though the basement. clog to have its volume
	c. □				
	d. □				
	ANS: A TOP: 9.3 The D	PTS: 1 Deformation of Solids	DIF: 3		
23.		abjected to high press			ntical size cubes of aluminum in volume of the aluminum cube
		Deformation of Solids	DIF. Z		
24.	What is the total weight of the air	force on the bottom of	water? (Note the	pressure contribu	round wading pool due to the atmosphere is 1.0
	ANS: A	PTS: 1	DIF: 2		
		tion of Pressure with		are Measurements	S
25.	a. □ depth.b. □ surface area.c. □ liquid density	Fliquid, the hydrostati	c pressure at a gi	ven depth is a fun	oction of:

	ANS: D PTS: 1 DIF: 1 TOP: 9.4 Variation of Pressure with Depth 9.5 Pressure Measurements
26.	A 15 000-N car on a hydraulic lift rests on a cylinder with a piston of radius 0.20 m. If a connecting cylinder with a piston of 0.040-m radius is driven by compressed air, what force must be applied to this smaller piston in order to lift the car?
	ANS: A PTS: 1 DIF: 2 TOP: 9.4 Variation of Pressure with Depth 9.5 Pressure Measurements
27.	By what factor is the total pressure greater at a depth of 850 m in water than at the surface where pressure is one atmosphere? (water density = $1.0 \cdot 10^3 \text{ kg/m}^3$, 1 atmosphere pressure = $1.01 \cdot 10^5 \text{ N/m}^2$, and $g = 9.8 \text{ m/s}^2$) a. $\Box 100$ b. $\Box 83$ c. $\Box 74$ d. $\Box 19$ ANS: B PTS: 1 DIF: 2 TOP: 9.4 Variation of Pressure with Depth 9.5 Pressure Measurements
28.	If the column of mercury in a barometer stands at 72.6 cm, what is the atmospheric pressure? (The density of mercury is $13.6 \ ' \ 10^3 \ \text{kg/m}^3$ and $g = 9.80 \ \text{m/s}^2$) a. $\square 0.968 \ ' \ 10^5 \ \text{N/m}^2$ b. $\square 1.03 \ ' \ 10^5 \ \text{N/m}^2$ c. $\square 0.925 \ ' \ 10^5 \ \text{N/m}^2$ d. $\square 1.07 \ ' \ 10^5 \ \text{N/m}^2$ ANS: A PTS: 1 DIF: 2 TOP: 9.4 Variation of Pressure with Depth 9.5 Pressure Measurements
29.	at the top of both dams. The Dam #2 is twice as high and twice as wide as Dam #1. How much greater is the force of the water on Dam #2 than the force on Dam #1? (Ignore atmospheric pressure; it is pushing on both sides of the dams.) $ \hline a. \Box 2 \\ b. \Box 4 \\ c. \Box 8 \\ d. \Box 16 $
	ANS: C PTS: 1 DIF: 2 TOP: 9.4 Variation of Pressure with Depth 9.5 Pressure Measurements

30. Atmospheric pressure is $1.0 \cdot 10^5 \text{ N/m}^2$, and the density of air is 1.29 kg/m^3 . If the density of air is constant as you get higher and higher, calculate the height of the atmosphere needed to produce this pressure.

	a. □ 7 900 m
	b. □ 77 000 m
	c. □ 1 260 m
	d. □ 10 300 m
	ANS: A PTS: 1 DIF: 2 TOP: 9.4 Variation of Pressure with Depth 9.5 Pressure Measurements
31.	The water behind Grand Coulee Dam is 1 200 m wide and 150 m deep. Find the hydrostatic force on the back of the dam. (Hint: the total force = average pressure ' area) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	ANS: C PTS: 1 DIF: 2
	TOP: 9.4 Variation of Pressure with Depth 9.5 Pressure Measurements
32.	How deep under the surface of a lake would the pressure be double that at the surface? (1 atm = 1.01 ′ 10^5 Pa) a. $\Box 1.00$ m b. $\Box 9.80$ m c. $\Box 10.3$ m d. $\Box 32.2$ m
	ANS: C PTS: 1 DIF: 2 TOP: 9.4 Variation of Pressure with Depth 9.5 Pressure Measurements
33.	A piece of aluminum has density 2.70 g/cm³ and mass 775 g. The aluminum is submerged in a container of oil (oil's density = 0.650 g/cm³). How much oil does the metal displace? a. \Box 287 cm³ b. \Box 309 cm³ c. \Box 232 cm³ d. \Box 1 125 cm³
	ANS: A PTS: 1 DIF: 1 TOP: 9.6 Buoyant Forces and Archimedes's Principle
34.	A piece of aluminum has density $2.70~g/cm^3$ and mass $775~g$. The aluminum is submerged in a container of oil of density $0.650~g/cm^3$. A spring balance is attached with string to the piece of aluminum. What reading will the balance register in grams (g) for the submerged metal? a. $\square 960~g$ b. $\square 775~g$ c. $\square 588~g$ d. $\square 190~g$
	ANS: C PTS: 1 DIF: 3 TOP: 9.6 Buoyant Forces and Archimedes's Principle

35.	A block of wood has density 0.50 g/cm^3 and mass 1500 g . It floats in a container of oil (the oil's density is 0.75 g/cm^3). What volume of oil does the wood displace? a. $\Box 3000 \text{ cm}^3$ b. $\Box 2000 \text{ cm}^3$ c. $\Box 1500 \text{ cm}^3$ d. $\Box 1000 \text{ cm}^3$
	ANS: B PTS: 1 DIF: 2 TOP: 9.6 Buoyant Forces and Archimedes's Principle
36.	What volume of water is displaced by a submerged 2.0-kg cylinder made of solid aluminum? (aluminum density = $2.7 \cdot 10^3 \text{ kg/m}^3$ and water density = $1.0 \cdot 10^3 \text{ kg/m}^3$) a. $\Box 7.4 \cdot 10^{-4} \text{ m}^3$ b. $\Box 1.4 \cdot 10^3 \text{ m}^3$ c. $\Box 9.9 \cdot 10^3 \text{ m}^3$ d. $\Box 6.0 \cdot 10^2 \text{ m}^3$ ANS: A PTS: 1 DIF: 1 TOP: 9.6 Buoyant Forces and Archimedes's Principle
37.	A ping-pong ball has an average density of 0.0840 g/cm ³ and a diameter of 3.80 cm. What force would be
	required to keep the ball completely submerged under water? a. □ 1.000 N b. □ 0.788 N c. □ 0.516 N d. □ 0.258 N ANS: D PTS: 1 DIF: 2 TOP: 9.6 Buoyant Forces and Archimedes's Principle
38.	•
	will float above the surface? (water density = 1.00 g/cm^3) a. $\Box 7.8 \text{ cm}$ b. $\Box 5.0 \text{ cm}$ c. $\Box 2.2 \text{ cm}$ d. $\Box 6.4 \text{ cm}$
	ANS: C PTS: 1 DIF: 2 TOP: 9.6 Buoyant Forces and Archimedes's Principle
39.	The bottom of a flat-bottomed aluminum boat has an area of $4.0~\text{m}^2$ and the boat's mass is $60~\text{kg}$. When set afloat in water, how far below the water surface is the boat bottom? (water density = $1.0~^{'}~10^3~\text{kg/m}^3$) a. $\square 0.060~\text{m}$ b. $\square 0.015~\text{m}$ c. $\square 0.030~\text{m}$ d. $\square 0.075~\text{m}$
	TOP: 9.6 Buoyant Forces and Archimedes's Principle

40.	The bottom of a flat-bottomed aluminum boat has area = 4.0 m^2 and mass = 60 kg . If two fishermen and their fishing gear with total mass of 300 kg are placed in the boat, how much lower will the boat ride in
	the water? (H_2O density = 1.0 ′ 10^3 kg/m ³)
	a. □ 0.15 m
	b.□0.090 m
	c. □ 0.075 m
	d.□0.060 m
	ANG. C DTG. 1 DIE. 2
	ANS: C PTS: 1 DIF: 2 TOP: 9.6 Buoyant Forces and Archimedes's Principle
41.	Legend says that Archimedes, in determining whether or not the king's crown was made of pure gold, measured its volume by the water displacement method. If the density of gold is 19.3 g/cm^3 , and the crown's mass is 600 g , what volume would be necessary to prove that it is pure gold? a. $\Box 31.1 \text{ cm}^3$ b. $\Box 114 ' 10^3 \text{ cm}^3$
	c. $\Box 22.8 \cdot 10^3 \text{ cm}^3$
	$d. \Box 1.81 \cdot 10^{-2} \text{ cm}^3$
	ANS: A PTS: 1 DIF: 2
	TOP: 9.6 Buoyant Forces and Archimedes's Principle
4.0	
42.	A solid rock, suspended in air by a spring scale, has a measured mass of 9.00 kg. When the rock is
	submerged in water, the scale reads 3.30 kg. What is the density of the rock? (water density = $\frac{1.000 \text{ kg/m}^3}{2.000 \text{ kg/m}^3}$)
	1.000 kg/m^3
	a. $\Box 4.55 \cdot 10^3 \text{ kg/m}^3$
	b. $\Box 3.50' 10^3 \text{ kg/m}^3$
	c. $\Box 1.20 \cdot 10^3 \text{ kg/m}^3$
	d. $\Box 1.58 \cdot 10^3 \text{ kg/m}^3$
	ANS: D PTS: 1 DIF: 2
	TOP: 9.6 Buoyant Forces and Archimedes's Principle
	·
43.	As ice floats in water, about 10% of the ice floats above the surface of the water. If we float some ice in a
	glass of water, what will happen to the water level as the ice melts?
	a. The water level will rise 10% of the volume
	of the ice that melts.
	b. The water level will rise, but not as much as
	the 10% indicated in answer a.
	c. The water level will remain unchanged.
	d. □ The water level will become lower.
	ANS: C PTS: 1 DIF: 2 TOP: 9.6 Buoyant Forces and Archimedes's Principle
44.	A large stone is resting on the bottom of the swimming pool. The normal force of the bottom of the pool
	on the stone is equal to the:
	a. □ weight of the stone.
	b. □ weight of the water displaced.
	c. □sum of the weight of the stone and the

	weight of the displaced water.
	d. □ difference between the weight of the stone
	and the weight of the displaced water.
	ANS: D PTS: 1 DIF: 2
	TOP: 9.6 Buoyant Forces and Archimedes's Principle
	101. 7.0 Buoyant 1 ofces and 7 defininedes s 1 finespie
45.	A blimp is filled with 400 m ³ of helium. How big a payload can the balloon lift? (The density of air is
	1.29 kg/m^3 ; the density of helium is 0.18 kg/m^3 .)
	a. □ 111 kg
	b. □ 129 kg
	c. □ 215 kg
	d. □444 kg
	ANS: D PTS: 1 DIF: 2
	TOP: 9.6 Buoyant Forces and Archimedes's Principle
16	A heavily loaded boat is floating in a pond. The boat sinks because of a leak. What happens to the surface
40.	level of the pond?
	a. □ It stays the same.
	b. It goes up.
	c. □ It goes down.
	d. More information is needed to reach a
	conclusion.
	Conclusion.
	ANS: C PTS: 1 DIF: 2
	TOP: 9.6 Buoyant Forces and Archimedes's Principle
47	
47.	
	plugging the leak stops the boat from going under although it is now deeper in the water. What happens to
	the surface level of the pond? a. □ It stays the same.
	b. It goes up.
	c. It goes down.
	d. ☐ More information is needed to reach a
	conclusion.
	ANS: A PTS: 1 DIF: 2
	TOP: 9.6 Buoyant Forces and Archimedes's Principle
48.	A block of wood has specific gravity 0.80. When placed in water, what percent of the volume of the wood
	is above the surface?
	$a. \Box 0$, the block sinks.
	$b.\Box 20\%$
	c. □ 25%
	$d. \square 80\%$
	ANS: B PTS: 1 DIF: 2
	TOP: 9.6 Buoyant Forces and Archimedes's Principle
	· ·

49.	An ideal fluid flows through a pipe made of two sections with diameters of 1.0 and 3.0 inches, respectively. The speed of the fluid flow through the 3.0-inch section will be what factor times that through the 1.0-inch section?
	ANS: D PTS: 1 DIF: 2 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
50.	The flow rate of a liquid through a 2.0-cm-radius pipe is $0.008~0~m^3/s$. The average fluid speed in the pipe is: a. $\square 0.64~m/s$. b. $\square 2.0~m/s$. c. $\square 0.040~m/s$. d. $\square 6.4~m/s$. ANS: D PTS: 1 DIF: 2 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
51.	Think of Bernoulli's equation as it pertains to an ideal fluid flowing through a horizontal pipe. Imagine that you take measurements along the pipe in the direction of fluid flow. What happens to the sum of the pressure and energy per unit volume? a.□It increases as the pipe diameter increases. b.□It decreases as the pipe diameter increases. c.□It remains constant as the pipe diameter increases. d.□No choices above are valid. ANS: C PTS: 1 DIF: 2 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
52.	An ideal fluid, of density 0.85 ′ 10^3 kg/m³, flows at 0.25 kg/s through a pipe of radius 0.010 m. What is the fluid speed? a. $\Box 0.85$ m/s b. $\Box 1.3$ m/s c. $\Box 3.0$ m/s d. $\Box 0.94$ m/s ANS: D PTS: 1 DIF: 2 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
53.	An ideal fluid, of density $0.90 \ ' \ 10^3 \ kg/m^3$, flows at $6.0 \ m/s$ through a level pipe with radius of $0.50 \ cm$. The pressure in the fluid is $1.3 \ ' \ 10^5 \ N/m^2$. This pipe connects to a second level pipe, with radius of $1.5 \ cm$. Find the speed of flow in the second pipe. a. $\Box 54 \ m/s$ b. $\Box 18 \ m/s$ c. $\Box 0.67 \ m/s$ d. $\Box 0.33 \ m/s$

	ANS: C PTS: 1 DIF: 2 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
54.	The flow rate of blood through the average human aorta, of radius 1.0 cm, is about 90 cm³/s. What is the speed of the blood flow through the aorta? a. □ 14 cm/s b. □ 32 cm/s c. □ 37 cm/s d. □ 29 cm/s ANS: D PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
55.	Water (density = 1 $^{'}$ 10 3 kg/m 3) flows at 15 m/s through a pipe with radius 0.040 m. The pipe goes up to the second floor of the building, 3.0 m higher, and the pressure remains unchanged. What is the speed of the water flow in the pipe on the second floor? a. \Box 13 m/s b. \Box 14 m/s c. \Box 15 m/s d. \Box 16 m/s
	ANS: A PTS: 1 DIF: 2 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
56.	Water (density = 1 $^{\prime}$ 10 3 kg/m 3) flows at 10 m/s through a pipe with radius 0.030 m. The pipe goes up to the second floor of the building, 2.0 m higher, and the pressure remains unchanged. What is the radius of the pipe on the second floor? a. \Box 0.046 m b. \Box 0.034 m c. \Box 0.015 m d. \Box 0.012 m
	ANS: B PTS: 1 DIF: 3 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
57.	Air pressure is $1.0 \cdot 10^5$ N/m², air density is 1.3 kg/m³, and the density of soft drinks is $1.0 \cdot 10^3$ kg/m³. If one blows carefully across the top of a straw sticking up 0.100 m from the liquid in a soft drink can, it is possible to make the soft drink rise half way up the straw and stay there. How fast must the air be blown across the top of the straw? a. $\Box 76$ m/s b. $\Box 27$ m/s c. $\Box 19$ m/s d. $\Box 0.99$ m/s ANS: B PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
58.	A hole is poked through the metal side of a drum holding water. The hole is 18 cm below the water surface. What is the initial speed of outflow? a. □ 1.9 m/s

	b. □ 2.96 m/s
	c. □ 3.2 m/s
	d. □ 3.5 m/s
	ANS: A PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
59.	Water comes down the spillway of a dam from an initial vertical height of 170 m. What is the highest possible speed of the water at the end of the spillway? a. □15 m/s b. □25 m/s c. □58 m/s d. □1 370 m/s
	ANS: C PTS: 1 DIF: 2 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
	101. 7.7 Fluids in Motion 7.0 Other Applications of Fluid Dynamics
60.	Water pressurized to 3 $^{'}$ 10 5 Pa is flowing at 5.0 m/s in a pipe which contracts to 1/3 of its former area. What are the pressure and speed of the water after the contraction? (Density of water = 1 $^{'}$ 10 3 kg/m 3 .) a. \Box 2 $^{'}$ 10 5 Pa, 15 m/s b. \Box 3 $^{'}$ 10 5 Pa, 10 m/s c. \Box 3 $^{'}$ 10 5 Pa, 15 m/s d. \Box 4 $^{'}$ 10 5 Pa, 1.5 m/s
	ANS: A PTS: 1 DIF: 2 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
61.	A fountain sends water to a height of 100 m. What must be the pressurization (above atmospheric) of the underground water system? (1 atm = 10^5 N/m ²) a. \Box 1 atm b. \Box 4.2 atm c. \Box 7.2 atm d. \Box 9.8 atm
	ANS: D PTS: 1 DIF: 2 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
62.	The Garfield Thomas water tunnel at Pennsylvania State University has a circular cross-section that constricts from a diameter of 3.6 m to the test section, which is 1.2 m in diameter. If the speed of flow is 3.0 m/s in the large-diameter pipe, determine the speed of flow in the test section.
	ANS: C PTS: 1 DIF: 2 TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics

63. A Boeing-737 airliner has a mass of 20 000 kg. The total area of the wings is 100 m². What must be the pressure difference between the top and bottom of the wings to keep the airplane up?

	a. □ 1 960 Pa
	b. □ 3 920 Pa
	c. □ 7 840 Pa
	d. □ 15 700 Pa
	u. 13 700 Tu
	ANS: A PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
64.	How much air must be pushed downward at 40.0 m/s to keep an 800-kg helicopter aloft?
	$a. \square 98.0 \text{ kg/s}$
	b. □ 196 kg/s
	c. □ 294 kg/s
	d. □ 392 kg/s
	ANS: B PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
<i>C</i> F	A let of mater flowing from a base at 15 m/s is directed assignt a well. If the mass flow in the fluid attracts
65.	j c
	is 2.0 kg/s, what force is the water applying to the wall if backsplash is negligible?
	a. □ 30 N
	b. □ 40 N
	c. □ 65 N
	d. □ 127 N
	ANS: A PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
	1017 ym 1 mas m 110000m ym 0 mas 1 1pp mas 2 ym mas 2
66.	A Venturi tube may be used as the inlet to an automobile carburetor. If the inlet pipe of 2.0 cm diameter
	narrows to 1.0 cm diameter, what is the pressure drop in the constricted section for airflow of 3.0 m/s in
	the 2-cm section? (Assume air density is 1.25 kg/m ³ .)
	a. □ 70 Pa
	b. □ 84 Pa
	c.□100 Pa
	d. □115 Pa
	ANS: B PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
67.	Water is sent from a fire hose at 30 m/s at an angle of 30° above the horizontal. What is the maximum
	height reached by the water?
	a. □ 7.5 m
	b. □ 11 m
	c. □ 15 m
	d. □ 19 m
	ANG D DEG 1 DE 0
	ANS: B PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics

. How much power is theoretically available from a mass flow of 1 000 kg/s of water that falls a vertical distance of 100 m?

	- □000 LW
	a. □980 kW
	b. □98 kW
	c. □4 900 W d. □980 W
	u.⊔980 W
	ANS: A PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
69.	A fluid is drawn up through a tube as shown below. The atmospheric pressure is the same at both ends. Use Bernoulli's equation to determine the speed of fluid flow out of the tank. If the height difference from the top of the tank to the bottom of the siphon is 1.0 m, then the speed of outflow is:
	a.□1.1 m/s
	b. □ 2.2 m/s
	c. □ 4.4 m/s
	d. □ 8.8 m/s
	ANS: C PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
70.	It takes 2.0 minutes to fill a gas tank with 40 liters of gasoline. If the pump nozzle is 1.0 cm in radius,
	what is the average speed of the gasoline as it leaves the nozzle? (1 000 liters = one cubic meter)
	a. □ 0.27 m/s
	b.□1.1 m/s
	c.□11 m/s
	d. □ 64 m/s
	ANS: B PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
71.	Water is being sprayed from a nozzle at the end of a garden hose of diameter 2.0 cm. If the nozzle has an opening of diameter 0.50 cm, and if the water leaves the nozzle at a speed of 10 m/s, what is the speed of the water inside the hose?
	a. □ 0.63 m/s
	b. □ 0.80 m/s
	c. □ 2.5 m/s
	d. □ also 10 m/s
	ANS: A PTS: 1 DIF: 2
	TOP: 9.7 Fluids in Motion 9.8 Other Applications of Fluid Dynamics
72.	A unit for viscosity, the centipoise, is equal to which of the following?
14.	a. $\Box 10^{-3} \text{ N} \text{s/m}^2$
	$\begin{array}{c c} a. \Box 10^{-1} \text{ N/s/m} \\ b. \Box 10^{-2} \text{ N/s/m}^2 \end{array}$
	$ \begin{array}{c c} \textbf{b.} & 10 & \text{N} \text{s/m} \\ \textbf{c.} & 10^{-1} & \text{N} \text{s/m}^2 \end{array} $
	$d.\Box 10^2 \text{ N} \text{s/m}^2$

	ANS: A PTS: 1 DIF: 1 TOP: 9.9 Surface Tension, Capillary Action, and Viscous Fluid Flow
73.	The condition for onset of turbulent flow is that the Reynolds Number reaches what value? a. \Box 1 000 b. \Box 2 000 c. \Box 3 000 d. \Box 4 000
	ANS: C PTS: 1 DIF: 1 TOP: 9.9 Surface Tension, Capillary Action, and Viscous Fluid Flow
74.	A fluid has a density of 1 040 kg/m³. If it rises to a height of 1.8 cm in a 1.0-mm diameter capillary tube, what is the surface tension of the liquid? Assume a contact angle of zero. a. \Box 0.046 N/m b. \Box 0.056 N/m c. \Box 0.092 N/m d. \Box 0.11 N/m ANS: A PTS: 1 DIF: 2 TOP: 9.9 Surface Tension, Capillary Action, and Viscous Fluid Flow
75.	
76.	In order to overcome a surface tension of a fluid, a force of $1.32 \ ' \ 10^{-2} \ N$ is required to lift a wire ring of circumference $12.0 \ cm$. What is the surface tension of the fluid? a. $\Box 0.055 \ N/m$ b. $\Box 0.11 \ N/m$ c. $\Box 0.035 \ N/m$ d. $\Box 0.018 \ N/m$
	ANS: A PTS: 1 DIF: 2 TOP: 9.9 Surface Tension, Capillary Action, and Viscous Fluid Flow
77.	A pipe of diameter three cm is replaced by one of the same length but of diameter six cm. If the pressure difference between the ends of the pipe remains the same, by what factor is the rate of flow of a viscous liquid through it changed? a. \Box 2 b. \Box 4 c. \Box 8 d. \Box 16

	ANS: D TOP: 9.9 Surface 7	PTS: Tension,		DIF: on, and	2 Viscous F	Fluid Flow	
78.		deep and	l is allowed to	stand f			r (viscosity = 1.0 ′ 10 ⁻³ Nx/m ³) the greatest terminal velocity o
	ANS: D	PTS:	1	DIF:	2	TOP:	9.10 Transport Phenomena
79.	Spherical particles of The water is 8.0 cm still in suspension at a. $\Box 4.5 \text{ '} 10^{-6} \text{ m}$ b. $\Box 9.0 \text{ '} 10^{-6} \text{ m}$ c. $\Box 2.3 \text{ '} 10^{-6} \text{ m}$ d. $\Box 5.6 \text{ '} 10^{-6} \text{ m}$	deep and	l is allowed to	e shaker stand f	in a conta or 30 minu	niner of wate utes. What is	r (viscosity = $1.0 \cdot 10^{-3} \text{ N} \text{/s/m}^3$) the radius of the largest particle
	ANS: A	PTS:	1	DIF:	3	TOP:	9.10 Transport Phenomena
80.		what fact	or are the tern ty?			e settling par	e suspension at 8.0 cm from the ticles increased as compared to 9.10 Transport Phenomena
81.	Which of the follow	ing chara	acterizes the n	et force	on a parti	cle falling th	rough a fluid at its terminal
	speed? a. □ It is at a maximu b. □ It is upwards. c. □ It is downwards d. □ It is zero.						
	ANS: D	PTS:	1	DIF:	1	TOP:	9.10 Transport Phenomena
82.	A container is filled filled with oil havin a. \Box a pressure $< P$ b. \Box the same pressure c. \Box a pressure $> P$ d. \Box This is unable to information given.	g specific re <i>P</i>	gravity 0.80,	what n			is <i>P</i> . If the container is instead sults?

A container is filled with water and the pressure at the bottom of the container is P . Then the container is emptied halfway and topped off with oil of density $0.80 \cdot 10^3 \text{ kg/m}^3$, which floats on top of the water. What is the pressure at the bottom of the container now? a. \Box a pressure $< P$ b. \Box the same pressure P c. \Box a pressure $> P$ d. \Box This is unable to be determined with the information given.
ANS: A PTS: 1 DIF: 1 TOP: Conceptual Problems
At a pressure of 1 atmosphere a column of mercury in a barometer is supported to the height $h = 0.76$ m. The density of mercury is $13.6 \cdot 10^3$ kg/m³. A barometer of similar design filled with water would support a column of water how high at a pressure of 1 atmosphere? a. \Box more than ten times h b. \Box about $1.36 h$ c. \Box less than one tenth h d. \Box the same height h
ANS: A PTS: 1 DIF: 2 TOP: Conceptual Problems
When an artery gets a constricted region due to plaque, how does the pressure in this region compare to the pressure in an unconstricted region adjacent? a. □ Since this is a closed system, the pressure is the same in both regions. b. □ In the constricted region the blood moves at a higher speed than in the unconstricted region resulting in an increased pressure. c. □ In the constricted region the blood moves at a higher speed than in the unconstricted region resulting in a decreased pressure. d. □ In the constricted region the blood moves at a lower speed than in the unconstricted region resulting in an increased pressure.
ANS: C PTS: 1 DIF: 2 TOP: Conceptual Problems
An ice cube with a small solid steel sphere frozen inside floats in a glass of water filled to the brim. What happens to the level of water in the glass as a result of the ice melting? a. □ It goes up, overflowing. b. □ It stays the same. c. □ It goes down. d. □ It depends on air pressure, thus the answer is indeterminate. ANS: C PTS: 1 DIF: 2 TOP: Conceptual Problems

DIF: 1

TOP: Conceptual Problems

ANS: A

PTS: 1

Chapter 10—Thermal Physics

MULTIPLE CHOICE

l.	Which best describes the relationship between two systems in thermal equilibrium?
	a. □no net energy is exchanged
	b. \(\text{volumes are equal} \)
	c. masses are equal
	d. □zero velocity
	ANS: A PTS: 1 DIF: 1
	TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
2.	The zeroth law of thermodynamics pertains to what relational condition that may exist between two
	systems?
	a. □ zero net forces
	b. □zero velocities
	c. □ zero temperature
	d. □ thermal equilibrium
	ANS: D PTS: 1 DIF: 1
	TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
3.	If it is given that 546 K equals 273°C, then it follows that 400 K equals:
	a. □ 127°C.
	b. □150°C.
	c. □473°C.
	d. □ 1 200°C.
	ANG. A DEG. 1 DIE. 2
	ANS: A PTS: 1 DIF: 2 TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
	<i>Section</i>
4.	What is the temperature of a system in thermal equilibrium with another system made up of water and
	steam at one atmosphere of pressure?
	a. □0°F
	b. □ 273 K
	c. □ 0 K
	d. □ 100°C
	ANS: D PTS: 1 DIF: 1
	TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
5.	What is the temperature of a system in thermal equilibrium with another system made up of ice and water
۶.	at one atmosphere of pressure?
	at the atmosphere of pressure: $a. \Box 0^{\circ}F$
	u. U I

	b. □ 273 K
	c. □ 0 K
	d. □ 100°C
	ANG. D. DTG. 1 DIE. 1
	ANS: B PTS: 1 DIF: 1 TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
	beares .
6.	Which best describes a system made up of ice, water and steam existing together?
	a. □ absolute zero
	b. □ triple point
	c. □ice point
	d. □steam point
	ANG. D. DTG. 1 DIE. 1
	ANS: B PTS: 1 DIF: 1 TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
	belies
7.	A temperature change from 15°C to 35°C corresponds to what incremental change in °F?
	$a.\Box 20$
	b. □40
	c.□36
	d.□313
	ANG C PEG 1 DIF 0
	ANS: C PTS: 1 DIF: 2 TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
	beares .
8.	A substance is heated from 15°C to 35°C. What would the same incremental change be when registered
	in kelvins?
	a. □20
	b. □40
	c.□36
	d. □313
	ANS: A PTS: 1 DIF: 1
	TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
9.	88°F is how many degrees Celsius?
	a. □31
	b. □49
	c.□56
	d. □ 158
	ANS: A PTS: 1 DIF: 1
	TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
10.	At what temperature is the same numerical value obtained in Celsius and Fahrenheit?

	a. □ - 40°
	a. □ - 40° b. □ 0°
	c. \(\prescript{40^\circ} \)
	d. □- 72°
	ANS: A PTS: 1 DIF: 2 TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature Scales
11.	Normal body temperature for humans is 37°C. What is this temperature in kelvins?
	a. □ 296
	b. □ 310
	c.□393
	d. □ 273
	ANG D DEG 1 DE 0
	ANS: B PTS: 1 DIF: 2
	TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature Scales
12.	Carbon dioxide forms into a solid (dry ice) at approximately - 157°F. What temperature in degrees
12.	Celsius does this correspond to?
	a. □ - 157°C
	b. □ - 93°C
	c.□- 121°C
	d. □- 105°C
	ANG D DEG 1 DE 0
	ANS: D PTS: 1 DIF: 2 TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
	Seules .
13.	An interval of one Celsius degree is equivalent to an interval of:
	a. □one Fahrenheit degree.
	b. □ one kelvin.
	c. □ 5/9 Fahrenheit degree.
	d. □ 5/9 kelvin.
	ANS: B PTS: 1 DIF: 1
	TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales
14.	A temperature of 233 K equals which of the following?
	a. □506°C
	b.□40°C
	c.□-40°F
	d. □40°F
	ANS: C PTS: 1 DIF: 2
	ANS: C PTS: 1 DIF: 2 TOP: 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
	Scales

of the following properties can be used to measure temperature?
color of a glowing object
e length of a solid
volume of gas held at constant pressure
of the above
of the troote
D PTS: 1 DIF: 2 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
essure in a constant-volume gas thermometer extrapolates to zero at what temperature?
C
Z Z
$\mathbf{p}_{\mathbf{a}}$
B PTS: 1 DIF: 1 10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
10.1 Temperature and the Zeroth Law of Thermodynamics 10.2 Thermometers and Temperature
wire, 150 m long at 10°C, has a coefficient of linear expansion of 11 ′ 10 ⁻⁶ /C°. Give its change in
as the temperature changes from 10°C to 45°C.
5 cm
3 cm
cm
cm
C PTS: 1 DIF: 2
10.3 Thermal Expansion of Solids and Liquids
angular steel plate with dimensions of 30 cm $^{\prime}$ 25 cm is heated from 20°C to 220°C. What is its e in area? (Coefficient of linear expansion for steel is 11 $^{\prime}$ 10 $^{-6}$ /C°.)
55 cm ²
cm ²
5 cm ²
C PTS: 1 DIF: 2
10.3 Thermal Expansion of Solids and Liquids
nappens to a given mass of water as it is cooled from 4°C to zero?
pands
ntracts
ither expands, contracts, nor vaporizes.
A PTS: 1 DIF: 2 10.3 Thermal Expansion of Solids and Liquids
orizes either expands, contracts, nor vaporizes. A PTS: 1 DIF: 2

20.	1 11
	proportion of existing substances?
	a. □ 100%
	b. □ most
	c. □few
	d. □ none
	ANS: B PTS: 1 DIF: 1 TOP: 10.3 Thermal Expansion of Solids and Liquids
	101. 10.5 Thermal Expansion of Solids and Exquites
21.	Which best expresses the value for the coefficient of volume expansion, b, for given material as a
	function of its corresponding coefficient of linear expansion, a?
	$\mathbf{a}.\Box \mathbf{b} = \mathbf{a}^3$
	b. □ b = 3a
	$c.\Box b = a^2$
	$\mathbf{d}.\Box \mathbf{b} = 2\mathbf{a}$
	$\mathbf{u}.\Box \mathbf{v} - 2\mathbf{a}$
	ANS: B PTS: 1 DIF: 2
	TOP: 10.3 Thermal Expansion of Solids and Liquids
22.	A steel plate has a hole drilled through it. The plate is put into a furnace and heated. What happens to the
22.	size of the inside diameter of a hole as its temperature increases?
	a. \(\text{increases}\)
	b. decreases
	c. Tremains constant
	d. □ becomes elliptical
	ANS: A PTS: 1 DIF: 1
	TOP: 10.3 Thermal Expansion of Solids and Liquids
23	A brass cube, 10 cm on a side, is raised in temperature by 200°C. The coefficient of volume expansion of
23.	brass is $57 \cdot 10^{-6}$ /C°. By what percentage does volume increase?
	a. 12%
	b. \(\sigma 2.8\% \)
	c. 🗆 1.1%
	d. □ 0.86%
	ANS: C PTS: 1 DIF: 2
	TOP: 10.3 Thermal Expansion of Solids and Liquids
24	A bassach 10 and a citation in the control of 2000C The coefficient of column and in the
24.	
	brass is 57 ′ 10 ⁻⁶ /C°. By what percentage is any one of the 10-cm edges increased in length?
	a. \(\tag{4}\)
	$b.\square 2.8\%$
	c. □ 0.38%
	d. □ 0.29%
	ANS: C PTS: 1 DIF: 2
	TOP: 10.3 Thermal Expansion of Solids and Liquids

25.	An automobile gas tank is filled to its capacity of 15.00 gallons with the gasoline at an initial temperature of 10° C. The automobile is parked in the sun causing the gasoline's temperature to rise to 60° C. If the coefficient of volume expansion for gasoline is $9.6 \cdot 10^{-4}$ /C°, what volume runs out the overflow tube? Assume the change in volume of the tank is negligible. a. $\Box 1.74$ gallons b. $\Box 1.18$ gallons c. $\Box 0.72$ gallons d. $\Box 0.30$ gallons
	TOP: 10.3 Thermal Expansion of Solids and Liquids
26.	What happens to a given volume of water when heated from 0°C to 4°C? a. □density increases b. □density decreases c. □density remains constant d. □vaporizes ANS: A PTS: 1 DIF: 1
	TOP: 10.3 Thermal Expansion of Solids and Liquids
27.	What happens to a volume of water when its temperature is reduced from 8°C to 4°C? a. □density increases b. □density decreases c. □density remains constant d. □vaporizes ANS: A PTS: 1 DIF: 1 TOP: 10.3 Thermal Expansion of Solids and Liquids
28.	The thermal expansion of a solid is caused by: a. □ the breaking of bonds between atoms. b. □ increasing the amplitude of the atoms vibration. c. □ increasing the distance between equilibrium positions for the vibrating atoms. d. □ all of the above. ANS: C PTS: 1 DIF: 1 TOP: 10.3 Thermal Expansion of Solids and Liquids
29.	A steel sphere sits on top of an aluminum ring. The steel sphere (a = $1.10 \cdot 10^{-5}/C^{\circ}$) has a diameter of $4.000 \cdot 0$ cm at 0° C. The aluminum ring (a = $2.40 \cdot 10^{-5}/C^{\circ}$) has an inside diameter of $3.994 \cdot 0$ cm at 0° C. Closest to which temperature given will the sphere just fall through the ring? a. $\Box 462^{\circ}$ C b. $\Box 208^{\circ}$ C c. $\Box 116^{\circ}$ C d. $\Box 57.7^{\circ}$ C

	ANS: C PTS: 1 DIF: 3 TOP: 10.3 Thermal Expansion of Solids and Liquids
30.	Between 0° and 4°C, the volume coefficient of expansion for water: a. □is positive. b. □is zero. c. □is becoming less dense. d. □is negative.
	ANS: D PTS: 1 DIF: 1 TOP: 10.3 Thermal Expansion of Solids and Liquids
31.	A long steel beam has a length of twenty-five meters on a cold day when the temperature is 0°C. What is the length of the beam on a hot day when $T = 40$ °C? ($a_{steel} = 1.1$ ′ 10^{-5} /C°) a. $\Box 25.00044$ m b. $\Box 25.0044$ m d. $\Box 25.044$ m ANS: C PTS: 1 DIF: 2
	TOP: 10.3 Thermal Expansion of Solids and Liquids
32.	Suppose the ends of a 20-m-long steel beam are rigidly clamped at 0°C to prevent expansion. The rail has a cross-sectional area of 30 cm². What force does the beam exert when it is heated to 40°C? ($a_{steel} = 1.1 \text{ '} 10^{-5}/\text{C}^{\circ}$, $Y_{steel} = 2.0 \text{ '} 10^{11} \text{N/m}^2$). a. $\Box 2.6 \text{ '} 10^5 \text{N}$ b. $\Box 5.6 \text{ '} 10^4 \text{N}$ c. $\Box 1.3 \text{ '} 10^3 \text{N}$ d. $\Box 6.5 \text{ '} 10^2 \text{N}$ ANS: A PTS: 1 DIF: 3 TOP: 10.3 Thermal Expansion of Solids and Liquids
33.	At 20°C an aluminum ring has an inner diameter of 5.000 cm, and a brass rod has a diameter of 5.050 cm. Keeping the brass rod at 20°C, which of the following temperatures of the ring will allow the ring to just slip over the brass rod? ($a_{Al} = 2.4 \text{ '} 10^{-5} \text{/C}^{\circ}$, $a_{brass} = 1.9 \text{ '} 10^{-5} \text{/C}^{\circ}$) a. $\Box 111^{\circ}C$ b. $\Box 236^{\circ}C$ c. $\Box 384^{\circ}C$ d. $\Box 437^{\circ}C$ ANS: D PTS: 1 DIF: 2 TOP: 10.3 Thermal Expansion of Solids and Liquids
34.	As a copper wire is heated, its length increases by 0.100%. What is the change of the temperature of the wire? ($a_{Cu} = 16.6 \text{ '} 10^{-6}/\text{C}^{\circ}$) a. $\Box 120.4^{\circ}\text{C}$ b. $\Box 60.2^{\circ}\text{C}$ c. $\Box 30.1^{\circ}\text{C}$

	d. □ 6.0°C	
	ANS: B PTS: 1 DIF: 2 TOP: 10.3 Thermal Expansion of Solids and Liquid	
35.	The coefficient of area expansion is: a. □ half the coefficient of volume expansion. b. □ three halves the coefficient of volume expansion. c. □ double the coefficient of linear expansion. d. □ triple the coefficient of linear expansion. ANS: C PTS: 1 DIF: TOP: 10.3 Thermal Expansion of Solids and Liquid	
36.	At room temperature, the coefficient of linear expana. □ the same as b. □ more than c. □ less than d. □ stronger than ANS: C PTS: 1 DIF: TOP: 10.3 Thermal Expansion of Solids and Liquid	
37.	A pipe of length 10.0 m increases in length by 1.5 cm its coefficient of linear expansion? a.□30 ´ 10⁻⁶/°C b.□17 ´ 10⁻⁶/°C c.□13 ´ 10⁻⁶/°C d.□23 ´ 10⁻⁶/°C ANS: A PTS: 1 DIF: 2 TOP: 10.3 Thermal Expansion of Solids and Liquid	
38.	A material has a coefficient of volume expansion of expansion? a. □120 ′ 10 ° 6 ′ ° C b. □40 ′ 10 ° 6 ′ ° C c. □20 ′ 10 ° 6 ′ ° C d. □180 ′ 10 ° 6 ′ ° C ANS: B PTS: 1 DIF: 2 TOP: 10.3 Thermal Expansion of Solids and Liquid	
39.	What happens to its moment of inertia when a steel a. □It increases. b. □It decreases. c. □It stays the same. d. □It increases for half the temperature increase and then decreases for the rest of the tempera-	lisk is heated?

	ture increase.	
	ANS: A PTS: 1 DIF: 2 TOP: 10.3 Thermal Expansion of Solids and Liquids	
40.	. An ideal gas is confined to a container with adjustable vectors on the constant. By what factor will volume change if absolute $a.\Box 1/9$ $b.\Box 1/3$	
	c.□3.0 d.□9.0	
	ANS: C PTS: 1 DIF: 1 TOP: 10.4 Macroscopic Description of an Ideal Gas	
41.	An ideal gas is confined to a container with constant vol factor will the pressure change if the absolute temperature $a.\Box 1/9$ $b.\Box 1/3$ $c.\Box 3.0$ $d.\Box 9.0$	
	ANS: C PTS: 1 DIF: 1 TOP: 10.4 Macroscopic Description of an Ideal Gas	
42.	An ideal gas is confined to a container with adjustable veconstant. By what factor will the volume change if press a. □ 1/9 b. □ 1/3 c. □ 3.0 d. □ 9.0	
	ANS: B PTS: 1 DIF: 1 TOP: 10.4 Macroscopic Description of an Ideal Gas	
43.	. A 2.00-L container holds half a mole of an ideal gas at a temperature? (<i>R</i> = 0.082 1 Lxatm/molxK) a. □ 1 980 K b. □ 1 190 K c. □ 965 K d. □ 609 K	pressure of 12.5 atm. What is the gas
	ANS: D PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas	
44.	. With volume and molar quantity held constant, by what an ideal gas when the pressure is five times bigger? a. $\Box 0.2$	factor does the absolute temperature change for
	b.□1.0 c.□5.0	
	p. □ J. U	

	d.□25.0
	ANS: C PTS: 1 DIF: 1 TOP: 10.4 Macroscopic Description of an Ideal Gas
45.	With molar quantity and temperature held constant, by what factor does the pressure of an ideal gas change when the volume is five times bigger?
	d. □25.0
	ANS: A PTS: 1 DIF: 1 TOP: 10.4 Macroscopic Description of an Ideal Gas
46.	Two moles of nitrogen gas are contained in an enclosed cylinder with a movable piston. If the molecular mass of nitrogen is 28, how many grams of nitrogen are present?
	ANS: B PTS: 1 DIF: 1 TOP: 10.4 Macroscopic Description of an Ideal Gas
47.	Two moles of nitrogen gas are contained in an enclosed cylinder with a movable piston. If the gas temperature is 298 K, and the pressure is 1.01 $^{'}$ 10 6 N/m 2 , what is the volume? ($R = 8.31$ J/mol \times K) a. $\Box 9.80 ^{'}$ 10 $^{-3}$ m 3 b. $\Box 4.90 ^{'}$ 10 $^{-3}$ m 3 c. $\Box 17.3 ^{'}$ 10 $^{-3}$ m 3 d. $\Box 8.31 ^{'}$ 10 $^{-3}$ m 3
	ANS: B PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas
48.	Boltzmann's constant, k_B , may be derived as a function of R , the universal gas constant, and N_A , Avogadro's number. Which expresses the value of k_B ? a. $\Box N_A R^2$ b. $\Box N_A R$ c. $\Box R/N_A$ d. $\Box N_A/R$
	ANS: C PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas
49.	How many atoms are present in a sample of pure iron with a mass of 300 g? (The atomic mass of iron = 56 and $N_A = 6.02 \cdot 10^{23}$)
	$a. \Box 1.8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	0.10.7 10

	$d. \Box 3.2 \ \ 10^{24}$
	ANS: D PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas
50.	during this heating, what is the final pressure?
	a. □ 4.5 atm b. □ 1.8 atm c. □ 0.14 atm
	d. □ 1.0 atm
	ANS: A PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas
51.	One way to heat a gas is to compress it. A gas at 1.00 atm at 25.0° C is compressed to one tenth of its original volume, and it reaches 40.0 atm pressure. What is its new temperature? a. $\Box 1500 \text{ K}$ b. $\Box 1500^{\circ}$ C c. $\Box 1192^{\circ}$ C d. $\Box 919^{\circ}$ C
	ANS: D PTS: 1 DIF: 3 TOP: 10.4 Macroscopic Description of an Ideal Gas
52.	A pressure of 1.0 $^{'}$ 10 ⁻⁷ mm of Hg is achieved in a vacuum system. How many gas molecules are present per liter volume if the temperature is 293 K? (760 mm of Hg = 1 atm, $R = 0.082$ 1 L×atm/mol×K, and $N_A = 6.02 ^{'}$ 10 ²³) a. \Box 16 $^{'}$ 10 ¹⁸ b. \Box 4.7 $^{'}$ 10 ¹⁶ c. \Box 3.3 $^{'}$ 10 ¹² d. \Box 3.4 $^{'}$ 10 ⁹
	ANS: C PTS: 1 DIF: 3 TOP: 10.4 Macroscopic Description of an Ideal Gas
53.	A helium-filled weather balloon has a 0.90 m radius at liftoff where air pressure is 1.0 atm and the temperature is 298 K. When airborne, the temperature is 210 K, and its radius expands to 3.0 m. What is the pressure at the airborne location?
	ANS: C PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas
54.	One mole of an ideal gas at 1.00 atm and 0.00°C occupies 22.4 L. How many molecules of an ideal gas are in one cm ³ under these conditions?

a. □28.9

	b. □22 400
	$c.\Box 2.69 \cdot 10^{19}$
	$d.\Box 6.02 \cdot 10^{23}$
	ANS: C PTS: 1 DIF: 2
	TOP: 10.4 Macroscopic Description of an Ideal Gas
55.	How many moles of air must escape from a 10-m $^{\prime}$ 8.0-m $^{\prime}$ 5.0-m room when the temperature is raised from 0°C to 20°C? Assume the pressure remains unchanged at one atmosphere while the room is heated. a. \Box 1.3 $^{\prime}$ 10 ³ moles b. \Box 1.2 $^{\prime}$ 10 ³ moles c. \Box 7.5 $^{\prime}$ 10 ² moles d. \Box 3.7 $^{\prime}$ 10 ² moles
	ANS: B PTS: 1 DIF: 3
	TOP: 10.4 Macroscopic Description of an Ideal Gas
56.	Estimate the volume of a helium-filled balloon at STP if it is to lift a payload of 500 kg. The density of air is 1.29 kg/m^3 and helium has a density of 0.178 kg/m^3 . a. $\Box 4 410 \text{ m}^3$ b. $\Box 932 \text{ m}^3$ c. $\Box 450 \text{ m}^3$ d. $\Box 225 \text{ m}^3$
	ANS: C PTS: 1 DIF: 3 TOP: 10.4 Macroscopic Description of an Ideal Gas
57.	Tricia puts 44 g of dry ice (solid CO_2) into a 2.0-L container and seals the top. The dry ice turns to gas at room temperature (20°C). Find the pressure increase in the 2.0-L container. (One mole of CO_2 has a mass of 44 g, $R = 0.082$ 1 L×atm/mol×K. Ignore the initial volume of the dry ice.) a. \Box 6.0 atm b. \Box 12 atm c. \Box 18 atm d. \Box 2.0 atm
	ANS: B PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas
58.	The mass of a hot-air balloon and its cargo (not including the air inside) is 200 kg. The air outside is at a temperature of 10° C and a pressure of $1 \text{ atm} = 10^{5} \text{ N/m}^{2}$. The volume of the balloon is 400 m^{3} . Which temperature below of the air in the balloon will allow the balloon to just lift off? (Air density at 10° C is 1.25 kg/m^{3} .)
	a.□37°C
	b. □69°C
	c. □99°C
	d. □200°C
	ANG. D. DTG. 1 DIE. 2
	ANS: D PTS: 1 DIF: 3 TOP: 10.4 Macroscopic Description of an Ideal Gas

59.	9.0 g of water in a 2.0-L pressure vessel is heated to 500° C. What is the pressure inside the container? ($R = 0.082 \text{ L} \times \text{m/mol} \times \text{K}$, one mole of water has a mass of 18 grams)
	a. \(\tau 7.9 \) atm
	b. □ 16 atm
	c. □ 24 atm
	d. 32 atm
	u. □ 32 um
	ANS: B PTS: 1 DIF: 2
	TOP: 10.4 Macroscopic Description of an Ideal Gas
60.	
	will the bubble's diameter be when it reaches the surface? (Assume constant temperature.)
	a. □ 0.7 cm
	b. □ 1.0 cm
	c.□1.4 cm
	d. □ 1.7 cm
	ANS: C PTS: 1 DIF: 3
	TOP: 10.4 Macroscopic Description of an Ideal Gas
	101. 10.4 Macroscopic Description of an lucar Gas
61.	A tank with a volume of 0.150 m³ contains 27.0°C helium gas at a pressure of 100 atm. How many balloons can be blown up if each filled balloon is a sphere 30.0 cm in diameter at 27.0°C and absolute pressure of 1.20 atm? Assume all the helium is transferred to the balloons. a. □963 balloons b. □884 balloons c. □776 balloons d. □598 balloons ANS: B PTS: 1 DIF: 3 TOP: 10.4 Macroscopic Description of an Ideal Gas
62.	The ideal gas law treats gas as consisting of:
02.	a. atoms.
	b. \(\text{molecules}. \)
	c. Chemicals.
	d. \(\text{bubbles}. \)
	di Daoriesi
	ANS: B PTS: 1 DIF: 1
	TOP: 10.4 Macroscopic Description of an Ideal Gas
63.	The sulfur hexafluoride molecule consists of one sulfur atom and six fluorine atoms. The atomic masses
05.	of sulfur and fluorine are 32.0 u and 19.0 u respectively. One mole of this very heavy gas has what mass?
	a. \(\text{32 g}
	$b.\Box 51 g$
	c. □ 146 g
	d. □608 g
	u. □ 000 g
	ANS: C PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas

	mass of the air in the room at a pressure of 1.0 atm and temperature of 22°C? <i>R</i> = 0.082 Lxatm/molxK a. □ 2.4 kg b. □ 2 400 kg c. □ 72 kg d. □ 700 kg ANS: C PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas Different units can be used for length: m and cm, and of these two, m is the larger by a factor of 100.
	b. □ 2 400 kg c. □ 72 kg d. □ 700 kg ANS: C PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas Different units can be used for length: m and cm, and of these two, m is the larger by a factor of 100.
	c. □72 kg d. □700 kg ANS: C PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas Different units can be used for length: m and cm, and of these two, m is the larger by a factor of 100.
	d. □700 kg ANS: C PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas Different units can be used for length: m and cm, and of these two, m is the larger by a factor of 100.
65	d. □700 kg ANS: C PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas Different units can be used for length: m and cm, and of these two, m is the larger by a factor of 100.
65	TOP: 10.4 Macroscopic Description of an Ideal Gas Different units can be used for length: m and cm, and of these two, m is the larger by a factor of 100.
6 5	TOP: 10.4 Macroscopic Description of an Ideal Gas Different units can be used for length: m and cm, and of these two, m is the larger by a factor of 100.
65.	Different units can also be used for R : (1) J/mol \mathbb{K} , (2) L \mathbb{K} atm/mol \mathbb{K} , and (3) (N/m 2) \mathbb{K} m 3 /mol \mathbb{K} . Which of these units for R is the largest? Hint: When expressing R in each of these units, which expression has the lowest numerical factor? (1L = 10 $^{-3}$ m 3 , 1 atm = 1.01 ′ 10 5 Pa) a. \square 1 b. \square 2 c. \square 3 d. \square They are all equal.
	ANS: B PTS: 1 DIF: 2 TOP: 10.4 Macroscopic Description of an Ideal Gas
66.	Two one-liter containers each contain 10 moles of a gas. The temperature is the same in both containers. Container A holds helium (molecular mass = 4 u), and Container B holds oxygen (molecular mass = 16 u). Which container has the higher pressure and by what factor? a. \Box Container A has 4 times the pressure of Container B. b. \Box Container A has 2 times the pressure of
	Container B.
	c. ☐ Both containers have the same pressure.
	d. ☐ More information is needed to answer this question.
	ANS: C PTS: 1 DIF: 2
	TOP: 10.4 Macroscopic Description of an Ideal Gas
67.	Two ideal gases, X and Y, are thoroughly mixed and at thermal equilibrium in a single container. The
	molecular mass of X is 9 times that of Y. What is the ratio of root-mean-square velocities of the two
	gases, $v_{\rm X, rms}/v_{\rm Y, rms}$?
	$a. \square 9/1$
	b. □ 3/1
	c. □ 1/3 d. □ 1/9
	ANS: C PTS: 1 DIF: 2 TOP: 10.5 The Kinetic Theory of Gases
68.	The absolute temperature of an ideal gas is directly proportional to which of the following properties, when taken as an average, of the molecules of that gas?
	a. □ speed

	b. ☐ momentum	
	c. □ mass	
	d. □ kinetic energy	
	ANS: D PTS: 1 DIF: TOP: 10.5 The Kinetic Theory of Gases	1
69.	What is the root-mean-square speed of chlorine gas J/mol \times , $N_A = 6.02 \ ' \ 10^{23}$, and the molecular mass a. $\Box 1.7 \ ' \ 10^2 \ m/s$ b. $\Box 3.4 \ ' \ 10^2 \ m/s$ c. $\Box 0.8 \ ' \ 10^4 \ m/s$ d. $\Box 1.1 \ ' \ 10^5 \ m/s$	s of $Cl_2 = 71$)
	TOP: 10.5 The Kinetic Theory of Gases	
70.	If the temperature of an ideal gas contained in a boa. The average velocity of the molecules in the box will be increased.	ox is increased:
	 b. □ the average speed of the molecules in the box will be increased. c. □ the distance between molecules in the box will be increased. d. □ all of the above. 	
	ANS: B PTS: 1 DIF: TOP: 10.5 The Kinetic Theory of Gases	2
71.	For an ideal gas of a given mass, if the pressure re a. \(\text{the average kinetic energy of the molecules decreases.} \) b. \(\text{the average kinetic energy of the molecules stays the same.} \) c. \(\text{the average kinetic energy of the molecules} \)	emains the same and the volume increases:
	increases. d. □ Nothing can be determined about the molecular kinetic energy.	
	ANS: C PTS: 1 DIF: TOP: 10.5 The Kinetic Theory of Gases	2
72.	John rapidly pulls a plunger out of a cylinder. As telastically off the plunger are: a. □rebounding at a higher speed than they would have if the plunger weren't removed. b. □rebounding at a lower speed than they would have if the plunger weren't removed. c. □rebounding at the same speed as they would have if the plunger weren't removed.	the plunger moves away, the gas molecules bouncing
	1 1 0 0 mm	

	d. ☐ Whether they speed up or slow down depends on how fast the plunger is removed.	
	ANS: B PTS: 1 DIF: 2 TOP: 10.5 The Kinetic Theory of Gases	
73.	Consider two containers with the same volume and ter of nitrogen and oxygen. Container Two holds "moist" to oxygen molecules, but also contains water vapor. As equal, the weight of the gas in Container One will be: a. □lighter than the gas inside the second container. b. □equal to the weight of the gas in the second container. c. □heavier than the gas inside the second container. d. □ all the above are incorrect because the pressures cannot be equal. ANS: C PTS: 1 DIF: 3 TOP: 10.5 The Kinetic Theory of Gases	air. The "moist" air has the same ratio of nitrogen
74.	Evaporation cools the liquid that is left behind because evaporation: a.□have kinetic energy. b.□have greater than average speed. c.□have broken the bonds that held them in the liquid. d.□create vapor pressure. ANS: B PTS: 1 DIF: 1 TOP: 10.5 The Kinetic Theory of Gases	e the molecules that leave the liquid during
75.	What is the internal energy of 50 moles of Neon gas (ra. $\Box 1.9 \ ' \ 10^5 \ J$ b. $\Box 1.6 \ ' \ 10^5 \ J$ c. $\Box 3.8 \ ' \ 10^3 \ J$ d. \Box It depends on the container size, which is not given. ANS: A PTS: 1 DIF: 2 TOP: 10.5 The Kinetic Theory of Gases	molecular mass = 20 u) at 27°C? (R = 8.31 J/mol¾)
76.	A quantity of a monatomic ideal gas expands to twice the internal energy of the gas were U_0 before the expanda. $\Box U_0$ b. $\Box 2 \ U_0$ c. $\Box 4 \ U_0$ d. \Box The change in temperature must also be known to answer this question.	

	ANS: B PTS: 1 DIF: 2 TOP: 10.5 The Kinetic Theory of Gases
77.	The internal energy of a monatomic ideal gas is equal to which of the following? a. $\Box (3/2)PV$ b. $\Box (3/2)nT/V$ c. $\Box 3 T/P$ d. \Box none of the above ANS: A PTS: 1 DIF: 2
	TOP: 10.5 The Kinetic Theory of Gases
78.	In a physics experiment a pulsed electron beam is fired at a target. Each pulse lasts 60.0 ns, and there are electrons in each pulse. Each electron in a pulse travels with a speed of m/s. What is the impulse delivered to the target during one pulse if all the electrons are reflected elastically by the target? a. $\square N \cdot s$ b. $\square N \cdot s$ c. $\square N \cdot s$ d. $\square The impulse is more than double the largest value given in the other answers. $
	ANS: B PTS: 1 DIF: 2 TOP: 10.5 Kinetic Theory of Gases
79.	A pulsed proton beam is fired at a target. Each pulse lasts 45.0 ns, and there are protons in each pulse, each proton having a speed of m/s. All the protons hit a circular area of , called the beam spot. What is the average pressure on the beam spot during a pulse if all the protons are absorbed by the target?
	ANS: B PTS: 1 DIF: 3 TOP: 10.5 Kinetic Theory of Gases
80.	A single pulse of monoenergetic protons is fired at a small target, and all the protons are absorbed. The speed of each of the protons . The average pressure on the target during this pulse is . The experiment is repeated, but this time the kinetic energy of the protons is doubled, the area of the target is doubled, and the duration of the pulse is doubled although the pulse contains the same number of protons as in the first procedure. What is the average pressure on the target during the second pulse? a. □ b. □ c. □ d. □ ANS: C PTS: 1 DIF: 2 TOP: 10.5 Kinetic Theory of Gases
81.	Metal lids on glass jars can often be loosened by running them under hot water. Why is this? a. □ The hot water is a lubricant.

	heating, and the expands less that c. The metal hexpansion than	as a higher coefficient glass so the metal exp nus loosening the conn	of thermal ands more			
	ANS: C	PTS: 1	DIF: 1	TOP: Co	onceptual Problems	
82.	a. □They only a magnification e water. b. □The bubbles c. □The pressur bubble moves to	pubbles get larger in be ppear to get larger, thi ffect due to looking th s' pressure increases as e in the water decrease oward the surface.	s being a rough the sthey rise. es as the	approach the surfa	ce?	
	ANS: C	PTS: 1	DIF: 2	TOP: Co	onceptual Problems	
83.	happens to the ia. It stays the sedo not involve ib. It increases. c. It decreases. d. This depend	nternal energy of the grame, as the described nternal energy.	changes		olume is halved. What	
84.	happens to the ra. ☐ It does not coindependent of	ems speed of the molecular change since rms speed temperature. but it less than double	cules of the gas as a	result of this temporal	from 0°C to 273°C. What erature increase?	:
85.	mole each of the internal energy a. The He has the Rn has the gb. The Rn has the He has the g		separate container which gas have the nergy, and nergy, and	s and heated to 300	Xe, and Rn. If samples of K, which gas has the gre	

and the Rn has the greatest rms speed.

d. □ All the gases have the same internal energy, and the He has the greatest rms speed.

ANS: D

PTS: 1

DIF: 2

TOP: Conceptual Problems

Chapter 11—Energy in Thermal Processes

MULTIPLE CHOICE

Arrange from smallest to largest: the BTU, the joule, and the calorie. a. □BTU, J, cal b. □J, cal, BTU c. □cal, BTU, J d. □J, BTU, cal
ANS: B PTS: 1 DIF: 1 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
Of the following systems, which contains the most heat? a. □ 100 kg of water at 80°C b. □ 250 kg of water at 40°C c. □ 600 kg of ice at 0°C d. □ Systems do not contain heat. ANS: D PTS: 1 DIF: 1 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
Heat flow occurs between two bodies in thermal contact when they differ in what property? a. □ mass b. □ specific heat c. □ density d. □ temperature ANS: D PTS: 1 DIF: 1
TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
Calories of the food type are equal to which of the following? a. □4.186 J b. □4.186 J c. □1 BTU d. □1054 J ANS: B PTS: 1 DIF: 1
TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
Who demonstrated that when heat is gained or lost by a system during some process, the gain or loss can be accounted for by an equivalent quantity of mechanical work done on the system? a. □Joule b. □Boltzmann c. □Thompson, Count Rumford d. □Kelvin ANS: A PTS: 1 DIF: 1 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat

6.	The first experiment, which systematically demonstrated the equivalence of mechanical energy and heat, was performed by:
	a. Joule.
	b. Boltzmann.
	c. Thompson, Count Rumford.
	d. Kelvin.
	u. Kerviii.
	ANS: A PTS: 1 DIF: 1
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
7.	If heat is flowing from a table to a block of ice moving across the table, which of the following <u>must</u> be
	true?
	a. □ The table is rough and there is friction
	between the table and ice.
	b. □ The ice is cooler than the table.
	c. □ The ice is changing phase.
	d. □ All three are possible, but none is absolutely
	necessary.
	ANS: B PTS: 1 DIF: 1
	ANS: B PTS: 1 DIF: 1 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
	101. 11.1 Heat and internal Energy 11.2 Specific Heat
8.	How many calories are equal to one BTU? (One calorie = 4.186 J, one BTU = 1 054 J.)
0.	a. $\Box 0.252$
	b. \(\tau 3.97 \)
	c. □252
	d. \(\text{397} \)
	u. 🗆 371
	ANS: C PTS: 1 DIF: 2
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
9.	Which of the following statements is true?
	a. □ A hot object contains a lot of heat.
	b. □ A cold object contains only a little heat.
	c. □ Objects do not contain heat.
	d. ☐ Statements a and b are true.
	ANS: C PTS: 1 DIF: 2
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
	101. 11.1 Heat and Internal Energy 11.2 Specific Heat
10.	A 10-kg piece of aluminum (which has a specific heat of 900 J/kg%C) is warmed so that its temperature
10.	increases by 5.0 C°. How much heat was transferred into it?
	a. $\Box 4.5 \cdot 10^4 \mathrm{J}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$c.\Box 1.4 ' 10^5 J$
	$d. \square 2.0 \cdot 10^5 J$
	ANS: A PTS: 1 DIF: 2
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
	101. 1111 Item and Internal Energy 1112 Specific Hour

11.	Sea breezes that occur near the shore are attributed to a difference between land and water with respect to what property?
	* * *
	a. mass density
	b. \(\text{coefficient of volume expansion} \)
	c. specific heat
	d. □ emissivity
	ANS: C PTS: 1 DIF: 1 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
12.	attributed to the difference in which property between water and sand?
	a. □ mass density
	b. □ specific heat
	c. □ temperature
	d. □ thermal conductivity
	ANS: B PTS: 1 DIF: 1
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
	101. 11.1 Heat and internal Energy 11.2 Specific fleat
13.	Marc attaches a falling 500-kg object with a rope through a pulley to a paddle wheel shaft. He places the
	system in a well-insulated tank holding 25 kg of water. When the object falls, it causes the paddle wheel
	to rotate and churn the water. If the object falls a vertical distance of 100 m at constant speed, what is the
	temperature change of the water? (1 kcal = 4 186 J, the specific heat of water is 4 186 J/kg $^{\circ}$ C, and $g = 9.8$
	m/s^2)
	a. □ 19 600 C°
	b. □ 4 700 C°
	c. □4.7 C°
	d. □ 0.8 C°
	u. □ 0.0 C
	ANS: C PTS: 1 DIF: 2
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
14.	An inventor develops a stationary cycling device by which an individual, while pedaling, can convert all
	of the energy expended into heat for warming water. How much mechanical energy is required to increase
	the temperature of 300 g of water (enough for 1 cup of coffee) from 20°C to 95°C? (1 cal = 4.186 J, the
	specific heat of water is 4 186 J/kg%C)
	a. □94 000 J
	b.□22 000 J
	c. □ 5 400 J
	d. □ 14 J
	ANS: A PTS: 1 DIF: 2
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
15.	An inventor develops a stationary cycling device by which an individual, while pedaling, can convert all
	of the energy expended into heat for warming water. What minimum power must be generated if 300 g
	water (enough for 1 cup of coffee) is to be heated in 10 min from 20° C to 95° C? (1 cal = 4.186 J, the
	specific heat of water is 4 186 J/kg%C)
	a. □9 400 W

	b. □ 590 W
	c. □ 160 W
	d. □31 W
	ANS: C PTS: 1 DIF: 2 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
16.	A 3.00-g lead bullet is traveling at a speed of 240 m/s when it embeds in a wood post. If we assume that half of the resultant heat energy generated remains with the bullet, what is the increase in temperature of the embedded bullet? (specific heat of lead = 0.030 5 kcal/kg%C, 1 kcal = 4 186 J)
	ANS: A PTS: 1 DIF: 3
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
17.	
	ANS: B PTS: 1 DIF: 2
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
18.	A solar heated house loses about 5.4 $^{\prime}$ 10 7 cal through its outer surfaces on a typical 24-h winter day. What mass of storage rock is needed to provide this amount of heat if it is brought up to initial temperature of 62°C by the solar collectors and the house is maintained at 20°C? (Specific heat of rock is 0.21 cal/g $^{\circ}$ C.) a. \Box 163 kg b. \Box 1 230 kg c. \Box 6 100 kg d. \Box 12 700 kg
	ANS: C PTS: 1 DIF: 2
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
19.	horizontal. The force of kinetic friction exactly balances the component of gravity down the plane so that the plate, once started, glides down at constant velocity. If 90% of the mechanical energy of the system is absorbed by the aluminum, what is its temperature increase at the bottom of the incline? (Specific heat for aluminum is 900 J/kg%C.)
	a.□0.16 C°
	b. \(\text{D} \) 0.07 C°
	c. □ 0.04 C°

	d. □ 0.03 C°
	ANS: B PTS: 1 DIF: 3 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
20.	A waterfall is 145 m high. What is the increase in water temperature at the bottom of the falls if all the initial potential energy goes into heating the water? ($g = 9.8 \text{ m/s}^2$, $c_w = 4.186 \text{ J/kg}\%\text{C}$)
	a. □ 0.16°C
	b. □ 0.34°C
	c.□0.69°C
	d.□1.04°C
	ANS: B PTS: 1 DIF: 2 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
21.	What is the temperature increase of 4.0 kg of water when heated by an 800-W immersion heater for 10 min? ($c_w = 4.186 \text{ J/kg} \% \text{C}$)
	a.□56°C
	b.□51°C
	c.□29°C
	d. □14°C
	ANS: C PTS: 1 DIF: 2
	TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
22.	A solar heating system has a 25.0% conversion efficiency; the solar radiation incident on the panels is 1 000 W/m ² . What is the increase in temperature of 30.0 kg of water in a 1.00-h period by a 4.00-m ² -area
	collector? ($c_w = 4.186 \text{ J/kg}\%\text{C}$)
	a.□14.3°C
	b. □ 22.4°C
	c. □28.7°C
	d. □44.3°C
	ANS: C PTS: 1 DIF: 2 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
23.	A machine gear consists of 0.10 kg of iron and 0.16 kg of copper. How much total heat is generated in the part if its temperature increases by 35 C°? (Specific heats of iron and copper are 450 and 390 J/kg%C, respectively.)
	a. □910 J
	b.□3 800 J
	c. □4 000 J
	d. □4 400 J
	ANS: B PTS: 1 DIF: 2 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
24.	As I use sandpaper on some rusty metal, the sandpaper gets hot because: a. \(\text{heat} \) heat is flowing from the sandpaper into the metal.

	b. □ heat is flowing from the metal into the sandpaper.
	c. frictional processes increase the internal energy of the sandpaper.
	d. □ heat is flowing from my hand into the sandpaper.
	ANS: C PTS: 1 DIF: 1 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
25.	If a 1000-kg car was moving at 30 m/s, what would be its kinetic energy expressed in the unusual (for kinetic energy) units of calories? (1 cal = 4.186 J) a. $\Box 3.0 \cdot 10^4$ b. $\Box 9.0 \cdot 10^5$ c. $\Box 3.8 \cdot 10^6$
	d. □ 1.1 ′ 10 ⁵ ANS: D PTS: 1 DIF: 2 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
26.	A 2.00-kg copper rod is 50.00 cm long at 23°C. If 40 000 J are transferred to the rod by heat, what is its change in length? $c_{copper} = 387 \text{ J/kg} \times \text{C}$ and $a_{copper} = 17 \text{ '} 10^{-6} / ^{\circ}\text{C}$. a. $\Box 0.022 \text{ cm}$ b. $\Box 0.044 \text{ cm}$ c. $\Box 0.059 \text{ cm}$ d. $\Box \text{More information is needed}$.
	ANS: B PTS: 1 DIF: 3 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
27.	A piece of copper of mass 100 g is being drilled through with a $^{1}/_{2}$ " electric drill. The drill operates at 40.0 W and takes 30.0 s to bore through the copper. If all the energy from the drill heats the copper, find the copper's increase in temperature. $c_{copper} = 387 \text{ J/kg} \% \text{C}$. a. $\Box 40.6 \text{ C}^{\circ}$ b. $\Box 34.7 \text{ C}^{\circ}$ c. $\Box 31.0 \text{ C}^{\circ}$ d. $\Box 27.3 \text{ C}^{\circ}$
	ANS: C PTS: 1 DIF: 2 TOP: 11.1 Heat and Internal Energy 11.2 Specific Heat
28.	A slice of bread contains about 100 kcal. If specific heat of a person were 1.00 kcal/kg%C, by how many °C would the temperature of a 70.0-kg person increase if all the energy in the bread were converted to heat?
	a. □ 2.25°C
	b. 🗆 1.86°C
	c. \(\tau \) 1.43°C
	d. □ 1.00°C

	TOP: 11.1 He	at and Intern	al Energy 1	11.2 Specif	fic Heat			
29.	into a 500-g ca that has a speci $c_{water} = 1.00$ cal	lorimeter con ific heat of 0	ntaining 75 g	g of water a	at 20°C.	The calorimete	25 cal/g%C. John droper is constructed of a hat will be the final te	material
	a.□114°C							
	b.□72°C							
	c.□64°C							
	d.□37°C							
	ANS: D	PTS:	1	DIF:	3	TOP:	11.3 Calorimetry	
30.	aluminum calo	rimeter; the	water and ca of copper ar	lorimeter and aluminu	are initia	lly at 10.0°C. V 092 0 and 0.21	ater contained in a 300 What is the final temp 5 cal/g&C, respective	erature of
	ANS. D	F13.	1	DII'.	3	TOF.	11.5 Calorinieury	
31.	-	g of water.	The water te	mperature	rises fro	m 15°C to 35°C	eaker of negligible heater. Given $c_{\text{Cu}} = 0.10 \text{ cm}$	
	ANS: D	PTS:	1	DIF:	2	TOP:	11.3 Calorimetry	
32.		ne the specif	ic heats of co	offee and r	nilk are		added to 160 g of coff ater and neglect the he	
	ANS: A	PTS:	1	DIF:	2	TOP:	11.3 Calorimetry	
33.	Twenty grams	of a solid at	70°C is plac	e in 100 or	ams of a	a fluid at 20°C	Thermal equilibrium	is reached
	at 30°C. The sp		_	- III 100 gi	OI 6	. 11010 ut 20 C.	Thermal equilibrium	15 Touched
	a. □ is equal to							

ANS: C

PTS: 1

DIF: 2

	 b. □ is less than that of the fluid. c. □ is more than that of the fluid. d. □ cannot be compared to that of a material in a different phase.
	ANS: C PTS: 1 DIF: 2 TOP: 11.3 Calorimetry
34.	Which of the following best describes a substance in which the temperature remains constant while at the same time it is experiencing an inward heat flow? a.□gas b.□liquid c.□solid d.□substance undergoing a change of state
	ANS: D PTS: 1 DIF: 1 TOP: 11.4 Latent Heat and Phase Change
35.	the heat generated goes into melting ice, what quantity of ice is melted? (L_f = 80 kcal/kg, the specific heat of lead = 0.03 kcal/kg%C, and 1 kcal = 4 186 J) a. \Box 1.47 ′ 10 ⁻² kg b. \Box 5.8 ′ 10 ⁻⁴ kg c. \Box 3.2 ′ 10 ⁻³ kg d. \Box 2.6 ′ 10 ⁻⁴ kg
	ANS: D PTS: 1 DIF: 2 TOP: 11.4 Latent Heat and Phase Change
36.	temperature change of the remaining water? (L_{ν} = 540 cal/g) a. \Box +1.8 C° b. \Box - 1.8 C° c. \Box +0.18 C° d. \Box - 0.18 C° ANS: B PTS: 1 DIF: 2
	TOP: 11.4 Latent Heat and Phase Change
37.	Iced tea is made by adding ice to 1.8 kg of hot tea, initially at 80°C. How many kg of ice, initially at 0°C, are required to bring the mixture to 10° C? ($L_f = 3.33$ ′ 10^{5} J/kg, $c_w = 4$ 186 J/kg%C) a. \Box 1.8 kg b. \Box 1.6 kg c. \Box 1.4 kg d. \Box 1.2 kg ANS: C PTS: 1 DIF: 2 TOP: 11.4 Latent Heat and Phase Change

38.	A 50-g cube of ice, initially at 0.0° C, is dropped into 200 g of water in an 80-g aluminum container, both initially at 30°C. What is the final equilibrium temperature? (Specific heat for aluminum is 900 J/kg%C, the specific heat of water is 4 186 J/kg%C, and $L_f = 3.33$ ′ 10^5 J/kg.) a. $\Box 17.9^{\circ}$ C b. $\Box 9.5^{\circ}$ C c. $\Box 12.1^{\circ}$ C d. $\Box 20.6^{\circ}$ C ANS: B PTS: 1 DIF: 3 TOP: 11.4 Latent Heat and Phase Change
39.	
40.	In cloud formation, water vapor turns into water droplets which get bigger and bigger until it rains. This will cause the temperature of the air in the clouds to: a. □ get warmer. b. □ get cooler. c. □ will not affect the temperature of the air in the clouds. d. □ There is no air in clouds. ANS: A PTS: 1 DIF: 2 TOP: 11.4 Latent Heat and Phase Change
41.	I take 1.0 kg of ice and dump it into 1.0 kg of water and, when equilibrium is reached, I have 2.0 kg of ice at 0°C. The water was originally at 0°C. The specific heat of water = 1.00 kcal/kg%C, the specific heat of ice = 0.50 kcal/kg%C, and the latent heat of fusion of water is 80 kcal/kg. The original temperature of the ice was: a. \Box one or two degrees below 0°C. b. \Box - 80°C. c. \Box - 160°C. d. \Box The whole experiment is impossible. ANS: C PTS: 1 DIF: 2 TOP: 11.4 Latent Heat and Phase Change
42.	How much heat energy is required to vaporize a 1.0-g ice cube at 0°C? The heat of fusion of ice is 80 cal/g. The heat of vaporization of water is 540 cal/g, and $c_{\text{water}} = 1.00 \text{ cal/g} \% \text{C}$. a. \Box 620 cal b. \Box 720 cal

	c. □ 820 cal	
	d. □1 kcal	
	ANS: B PTS: 1 DIF: 2 TOP: 11.4 Latent Heat and Phase Change	
43.	How much heat energy must be removed from 100 g of oxy specific heat of oxygen gas is 0.218 cal/g×C, and its heat of	
	a. □ 13 700 cal	
	b. □ 9 560 cal	
	c. □ 4 320 cal	
	d. □2 160 cal	
	ANS: B PTS: 1 DIF: 2 TOP: 11.4 Latent Heat and Phase Change	
14.	100 g of liquid nitrogen at its boiling point of 77 K is stirred water. If the nitrogen leaves the solution as soon as it turns to vaporization of nitrogen is 48 cal/g and that of water is 80 cal/g.	to gas, how much water freezes? The heat
	a. □ none	
	b.□29 g	
	c. □ 68 g	
	d. □ 109 g	
45.	ANS: A PTS: 1 DIF: 2 TOP: 11.4 Latent Heat and Phase Change A 5-g lead bullet traveling in 20°C air at 300 m/s strikes a fl	
	temperature of the lead bullet? (Assume the bullet retains al The specific heat of lead is $0.128 \text{ J/g} \times \text{C}$. The heat of fusion a. $\Box 227^{\circ}\text{C}$	
	a. □ 227 C b. □ 260°C	
	c. □ 293°C	
	d. □ 327°C	
	u. □ 321 C	
	ANS: D PTS: 1 DIF: 3 TOP: 11.4 Latent Heat and Phase Change	
46.	8	
	a. □ One gram of steam at 100°C changing to water at 100°C.	
	b. □ One gram of ice at 0°C changing to water at 0°C.	
	c. □ One gram of water cooling from 100°C to 0°C.	
	d. □ One gram of ice heating from - 100°C to 0°C.	
	ANS: A PTS: 1 DIF: 2 TOP: 11.4 Latent Heat and Phase Change	

47.	¥ 1						an ice cube. By what factor is
	the rate of heat flow	change	i when the bar	s cross	-sectional area i	s double	ed?
	a. □2						
	b. □ 1/2						
	c. □4.0						
	d. □ 1/4						
	ANS: A	PTS:	1	DIF:	1	TOP:	11.5 Energy Transfer
48.							d in a heat sink. By what factor the reservoir and sink is tripled?
	a.□0.33						
	b. □ 1/9						
	c.□3.0						
	d.□9.0						
	ANS: C	PTS:	1	DIF:	1	TOP:	11.5 Energy Transfer
49.	If one's hands are be transfer is what proca. \(\text{conduction} \)		med by holding	g them	to one side of a	flame, t	the predominant form of heat
	b. □ radiation						
	c. convection						
	d. vaporization						
	u. vaporization						
	ANS: B	PTS:	1	DIF:	1	TOP:	11.5 Energy Transfer
50.	When a wool blanke	t is used	l to keep warm	, what	is the primary in	sulatin	g material?
	a. □ wool						
	b. □ air						
	c. □ the trim around						
	d. □ a thin layer of al		foil (usually n	ot			
	apparent) inside the	blanket					
	ANS: B	PTS:	1	DIF:	1	TOP:	11.5 Energy Transfer
51.		war flas	k are silvered	for the	purpose of mini	mizing	heat transfer by what process?
	a. □ conduction						
	b. □ radiation						
	c. □ convection						
	d. □ vaporization						
	ANS: B	PTS:	1	DIF:	1	TOP:	11.5 Energy Transfer
52.	The use of fiberales	e inculat	ion in the outer	· walle	of a building is	intenda	d to minimize heat transfer
34.	through the wall by			walls	or a building is	mende	a to minimize near transfer
	a. \square conduction	what pro	icess:				
	b. \(\sigma\) radiation						
	c. convection						
	C. — COII VCCHOII						

	d. □ vapor	ization						
	ANS: A		PTS:	1	DIF:	1	TOP:	11.5 Energy Transfer
53.	a. □ condu b. □ radiat c. □ conve	ion ion ction			ch us th	arough the vacu	um of s	pace?
	ANS: B	of the abov	PTS:	es are valid 1	DIF:	1	TOP:	11.5 Energy Transfer
54.	a.□condu b.□radiat c.□conve	ion ion ction		processes of he	eat trans	sfer requires the	e presen	ce of a fluid?
	ANS: C		PTS:	1	DIF:	1	TOP:	11.5 Energy Transfer
55.	promote t a. □increa b. □increa c. □increa		neat flow tom thick tom area emperat	r from burner t kness ure			, which	of the following will not
	ANS: A		PTS:	1	DIF:	2	TOP:	11.5 Energy Transfer
56.	the inside	and outsic conductivi 0 J/s J/s J/s	le surfac		is 15 °C			emperature difference between eat flow through this window?
	ANS: B		PTS:	1	DIF:	2	TOP:	11.5 Energy Transfer
57.	space of 5 what is th	5.0 mm. If the rate of he rate of	the temp eat flow	erature differe	nce is 2	20 °C from the i	nside of	a.0 mm thick, separated by an air of the house to the outside air, of for glass is 0.84 J/sxm%C and
	ANS: D		PTS:	1	DIF:	3	TOP:	11.5 Energy Transfer

58.							rs 40 W of power. If it temperature is 2 500 l	
	a. □ 105 W		•				•	
	b.□62 W							
	c.□98 W							
	d.□50 W							
	ANS: C	PTS:	1	DIF:	2	TOP:	11.5 Energy Transfe	er
59.	The emissivit	y of an ideal re	eflector ha	s which of the	he foll	owing values?		
	a. □0							
	b.□1							
	c. \(\Big \) 100							
	d. ☐ infinity							
	ANS: A	PTS:	1	DIF:	1	TOP:	11.5 Energy Transfe	er
60.	material is use temperature d	ed as a heat co	nductor. If the same t	the rods had ime interval	ve the	same geometry	397 J/sxm&C. A rod of and are used between e heat transferred by	the same
	ANS: A	PTS:	1	DIF:	2	TOP:	11.5 Energy Transfe	er
61.	area 600 cm ² . what is the co a. \Box 9.6 ′ 10 ⁻⁵ b. \Box 2.8 ′ 10 ⁻⁶	If the air surrenductivity of to cal/sxm%C cal/sxm%C cal/sxm%C	ounding th	e box is at 2	0°C ar	nd after 4 hours	nickness 1.0 cm and to the ice is completely i	
	ANS: D	PTS:	1	DIF:	3	TOP:	11.5 Energy Transfe	er
62.	a. □ electronsatom.b. □ the greate	that are freer to r specific heat r cross-section	o move fro al area.	om atom to	conduc	ctivity will be in	the rod with: 11.5 Energy Transfe	er
63.	Which type of	f heating cause	es sunburn	?				
	a. □ conductio							
	b. □ convectio	n						

	c. □radiation							
	d. □ all of the above							
	ANS: C	PTS:	1	DIF:	1	TOP:	11.5 Energy Transfer	
64.	In winter, light-color	red cloth	es will keep yo	ou wa	rmer than	dark-colored	clothes if:	
	a. □you are warmer t	than you	r surroundings	S.				
	b. □you are at the same	me temp	erature as you	r				
	surroundings.							
	c. □you are cooler th							
	d. □ you are standing	in sunli	ght.					
	ANS: A	PTS:	1	DIF:	2	TOP:	11.5 Energy Transfer	
65	A a:1	h 20 ama		: 1 .	1 0		unanafan haat fuana a 1009C	
65.							ransfer heat from a 100°C	
	$L_f = 334\ 000\ \text{J/kg.}$	OCK OF IC	e. now much	ice is	meneu pe	r second? (For	r silver, $k = 427 \text{ J/s} \times \text{m} \times \text{C}$. For ice	jе,
	a. $\Box 4.2 \text{ g/s}$							
	b. □ 2.1 g/s c. □ 0.80 g/s							
	d. □ 0.043 g/s							
	ANS: D	PTS:	1	DIF:	3	TOP:	11.5 Energy Transfer	
66.	At high noon, the su	n delive	rs 1 000 W to 6	ach e	allare met	er of a blackto	op road. What is the equilibrium	า
00.	temperature of the he							1
	a. $\Box 75^{\circ}C$	эт аврна	it, assuming its	ciiiis		1! (3 – 3.07	10 W/III AC).	
	b.□84°C							
	c.□91°C							
	d.□99°C							
	ANS: C	PTS:	1	DIF:	2	TOP:	11.5 Energy Transfer	
67.	The surface of the Su	un has a	temperature of	f abou	t 5 800 K.	If the radius	of the Sun is 7 ′ 10 ⁸ m,	
	determine the power							
	a. $\Box 3.95 ' 10^{26} W$		`				,	
	b. □ 5.17 ′ 10 ²⁷ W							
	c. $\Box 9.62 \ \ 10^{28} \ \text{W}$							
	d. $\Box 6.96 \ ' \ 10^{30} \ W$							
	ANS: A	PTS:	1	DIF:	2	TOP:	11.5 Energy Transfer	
68.	The tungsten filamer	nt of a li	ght bulb has ar	n opera	ating temp	erature of abo	out 2 100 K. If the emitting area	ì
							atput of the light bulb? ($s = 5.6$	
	$10^{-8} \text{ W/m}^2 \text{ K}^4$,		,	,,	1		
	a. □ 100 W							
	b. □75 W							
	c. □ 60 W							
	d. □40 W							

4 1: 4 27001						
-		nperature incre	eased to	37°C. The pow	er then	radiated by this object increases
ANS: B	PTS:	1	DIF:	2	TOP:	11.5 Energy Transfer
a.□8 K b.□2 K c.□100% d.□about 68%		·				om an object by a factor of 8? 11.5 Energy Transfer
A metal bar is used heat is transferred a	to condu t a rate o	ct heat. When	the tem	perature at one	end is	100°C and at the other is 20°C, is reduced to 80°C, what will be
heat is transferred a again it has ends at a. \(\text{\tinit}}\text{\ti}\text{\tex{\tex	to condu t a rate o 100°C ar	oct heat. When f 16 J/s. The b and 20°C, at wh	the tem ar is the at rate	aperature at one en stretched uni will heat be tran	end is formly sferred	to twice its original length. If
A storage area, which	ch is mai	ntained at 22°c	C, has a	n outside wall orough the wall	of area is 220 V	. On a day when the outside
	by how many percer a. □ 3.3 b. □ 14 c. □ 37 d. □ 253 ANS: B What temperature in a. □ 8 K b. □ 2 K c. □ 100% d. □ about 68% ANS: D A metal bar is used heat is transferred at the rate of heat transferred at the rate of heat transferred at the rate of heat is transferred at again it has ends at a. □ 4 J/s b. □ 8 J/s c. □ 9 J/s d. □ 12 J/s ANS: D A metal bar is used heat is transferred at again it has ends at a. □ 4 J/s b. □ 8 J/s c. □ 16 J/s d. □ 32 J/s ANS: A A storage area, which temperature is 8.0°C wall? a. □ b. □ c. □ d. □ d. □	by how many percent? a. □ 3.3 b. □ 14 c. □ 37 d. □ 253 ANS: B PTS: What temperature increase is a. □ 8 K b. □ 2 K c. □ 100% d. □ about 68% ANS: D PTS: A metal bar is used to condute heat is transferred at a rate of the rate of heat transfer? a. □ 4 J/s b. □ 8 J/s c. □ 9 J/s d. □ 12 J/s A metal bar is used to condute heat is transferred at a rate of again it has ends at 100°C and a. □ 4 J/s b. □ 8 J/s c. □ 16 J/s d. □ 32 J/s ANS: A PTS: A storage area, which is maintemperature is 8.0°C, the rate wall? a. □ b. □ c. □ d. □ d. □	by how many percent? a. □ 3.3 b. □ 14 c. □ 37 d. □ 253 ANS: B PTS: 1 What temperature increase is necessary to a. □ 8 K b. □ 2 K c. □ 100% d. □ about 68% ANS: D PTS: 1 A metal bar is used to conduct heat. When heat is transferred at a rate of 16 J/s. If the the rate of heat transfer? a. □ 4 J/s b. □ 8 J/s c. □ 9 J/s d. □ 12 J/s ANS: D PTS: 1 A metal bar is used to conduct heat. When heat is transferred at a rate of 16 J/s. The b again it has ends at 100°C and 20°C, at when a. □ 4 J/s b. □ 8 J/s c. □ 16 J/s d. □ 32 J/s ANS: A PTS: 1 A storage area, which is maintained at 22°c temperature is 8.0°C, the rate of energy transferred at □ 100°C and 20°C, at when a. □ 4 J/s b. □ c. □ d. □ b. □ c. □ d. □ d. □ d. □	by how many percent? a. □ 3.3 b. □ 14 c. □ 37 d. □ 253 ANS: B PTS: 1 DIF: What temperature increase is necessary to increase a. □ 8 K b. □ 2 K c. □ 100% d. □ about 68% ANS: D PTS: 1 DIF: A metal bar is used to conduct heat. When the tembeat is transferred at a rate of 16 J/s. If the temperature rate of heat transfer? a. □ 4 J/s b. □ 8 J/s c. □ 9 J/s d. □ 12 J/s ANS: D PTS: 1 DIF: A metal bar is used to conduct heat. When the tembeat is transferred at a rate of 16 J/s. The bar is the again it has ends at 100°C and 20°C, at what rate a. □ 4 J/s b. □ 8 J/s c. □ 16 J/s d. □ 32 J/s ANS: A PTS: 1 DIF: A storage area, which is maintained at 22°C, has a temperature is 8.0°C, the rate of energy transfer the wall? a. □ b. □ c. □ d. □ d. □	by how many percent? a. □ 3.3 b. □ 14 c. □ 37 d. □ 253 ANS: B PTS: 1 DIF: 2 What temperature increase is necessary to increase the power radia. □ 8 K b. □ 2 K c. □ 100% d. □ about 68% ANS: D PTS: 1 DIF: 2 A metal bar is used to conduct heat. When the temperature at one heat is transferred at a rate of 16 J/s. If the temperature of the hott the rate of heat transfer? a. □ 4 J/s b. □ 8 J/s c. □ 9 J/s d. □ 12 J/s A metal bar is used to conduct heat. When the temperature at one heat is transferred at a rate of 16 J/s. The bar is then stretched unit again it has ends at 100°C and 20°C, at what rate will heat be transperded at 16 J/s b. □ 8 J/s c. □ 16 J/s d. □ 32 J/s ANS: A PTS: 1 DIF: 2 A storage area, which is maintained at 22°C, has an outside wall of temperature is 8.0°C, the rate of energy transfer through the wall wall? a. □ b. □ c. □ d. □ b. □ c. □ d. □	by how many percent? a. □ 3.3 b. □ 14 c. □ 37 d. □ □ 253 ANS: B PTS: 1 DIF: 2 TOP: What temperature increase is necessary to increase the power radiated from a. □ 8 K b. □ 2 K c. □ 100% d. □ about 68% ANS: D PTS: 1 DIF: 2 TOP: A metal bar is used to conduct heat. When the temperature at one end is heat is transferred at a rate of 16 J/s. If the temperature of the hotter end the rate of heat transfer? a. □ 4 J/s b. □ 8 J/s c. □ 9 J/s d. □ 12 J/s ANS: D PTS: 1 DIF: 2 TOP: A metal bar is used to conduct heat. When the temperature at one end is heat is transferred at a rate of 16 J/s. The bar is then stretched uniformly again it has ends at 100°C and 20°C, at what rate will heat be transferred a. □ 4 J/s b. □ 8 J/s c. □ 16 J/s d. □ 32 J/s ANS: A PTS: 1 DIF: 2 TOP: A storage area, which is maintained at 22°C, has an outside wall of area temperature is 8.0°C, the rate of energy transfer through the wall is 220 V wall? a. □ b. □ c. □ d. □

74.	inexpensive layer of	of sheathing the inside duced by the	on the inside and outside is and added insul	of the 20°C, lation?	wall which has by what percen	an R-v	tside wall from by adding an alue of . When the temperature the rate of energy transfer
	ANS: C	PTS: 1	L	DIF:	3	TOP:	11.5 Energy Transfer
75.	shell thickness of 1	.8 cm betw of 1.64 , wh	een his core a at will be his	nd skir	n. If his inner co	re is at	the normal 98.6°F, and his skin due to conduction through his
	ANS: D	PTS: 1		DIF:	2	TOP:	11.5 Energy Transfer
76.	He puts on a sweat	er, and his	skin temperati changes from (ore rise	s to 33°C. The	effectiv V/m·K.	en his skin temperature is 30°C. The thermal conductivity between At what rate is he now losing
77.	In a greenhouse, el	ectromagne . What hap the atmostocked by gl into ultrav visible ligh	pens to this repens to this rephere. ass. riolet upon strikin	the formation radiate liking	m of visible ligh d electromagne	nt enter	s the glass panes and is absorbed ation from within the green-
78.	Of the planets with a. □ Venus b. □ Earth	atmospher	es, which is th	ne warr	mest?		

	c. □Mars	
	d. □Jupiter	
	ANS: A PTS: 1 DIF: 1 TOP: 11.6 Global Warming and Greenhouse Gases	
79.	9. Which of the following produces greenhouse gases?	
,,,	a. \(\substact burning fossil fuel \)	
	b. □ digestive processes in cows	
	c. \(\text{automobile pollution} \)	
	d. □ all of the above	
	ANS: D PTS: 1 DIF: 1 TOP: 11.6 Global Warming and Greenhouse Gases	
80.	0. Carbon dioxide and water molecules in the atmosphere will absorb:	
	a. □infrared light.	
	b. □visible light.	
	c. □ultraviolet light.	
	d. □radio waves.	
	ANS: A PTS: 1 DIF: 1 TOP: 11.6 Global Warming and Greenhouse Gases	
81.	1. Pennies used to be made of copper, but now they are made of copper-coated zinc. If one w precise calorimetry experiment to determine the specific heat of the new pennies, what wo be?	
	a. □ It would be that of copper since copper is on the outside.	
	b. □ It would be that of zinc since zinc is in the center.	
	c. ☐ It would be the sum of the copper and zinc specific heats.	
	d. ☐ It would be between that of copper and that of zinc, depending on coating thickness.	
	ANS: D PTS: 1 DIF: 1 TOP: Conceptual Prob	olems
82.	adjacent room feels comfortably warm. Why is this? a. □ It's because the tile is below room temperature while the carpet is at room temperature. b. □ It's because the tile is at room temperature while carpet is normally warmer. c. □ It's because the thermal conductivity of tile is less than that of carpet. d. □ It's because the thermal conductivity of carpet is less than that of tile.	
	ANS: D PTS: 1 DIF: 1 TOP: Conceptual Prob	olems

83.		$T_A = 2 T_B$. Assuming the		i and surface temperatures are different with R ce to be negligible, which star radiates the most
	a. □ Star A	time:		
	b. □ Star B			
		e the same amount of	energy ner	
	unit time.	e the same amount of	energy per	
		mation is needed in or	der to make	
	a determination			
	ANS: A	PTS: 1	DIF: 2	TOP: Conceptual Problems
84.	morning the insenergy per unit from the first ma. Since the in the loss is the second control of the loss had done the loss income the loss had done the loss income the loss	side temperature is the time lost by conduction orning to the second aside temperature stay ame both days.	e same but the outside on through the walls, one? s the same,	the temperature outside is 15°C. The next temperature is now 10°C. How much does the windows, doors, etc., change for the house
	ANS: B	PTS: 1	DIF: 2	TOP: Conceptual Problems
85.	at - 10°C to becupward slope. Va. □ specific hea	coming steam at 110° What do the upward slats of specific heats	C consists of straight	o a piece of ice as it goes from below freezing lines, some horizontal and some with an
	ANS: B	PTS: 1	DIF: 2	TOP: Conceptual Problems

Chapter 12—The Laws of Thermodynamics

MULTIPLE CHOICE

1.	The volume of an ideal gas changes from 0.40 to 0.55 m³ although its pressure remains constant at 50 000 Pa. What work is done on the system by its environment?
	ANS: A PTS: 1 DIF: 2 TOP: 12.1 Work in Thermodynamic Processes
2.	During an isobaric process which one of the following does not change? a. □volume b. □temperature c. □internal energy d. □ pressure ANS: D PTS: 1 DIF: 1 TOP: 12.1 Work in Thermodynamic Processes
3.	Area on a P-V diagram has units associated with: a. □ energy. b. □ momentum. c. □ temperature. d. □ change in temperature. ANS: A PTS: 1 DIF: 1 TOP: 12.1 Work in Thermodynamic Processes
4.	What is the work done on the gas as it expands from pressure P_1 and volume V_1 to pressure P_2 and volume V_2 along the indicated straight line? a. $\Box (P_1 + P_2) (V_1 - V_2)/2$ b. $\Box (P_1 + P_2) (V_1 - V_2)$ c. $\Box (P_1 + P_2) (V_1 - V_2)/2$
	d. \Box (P_1 - P_2) (V_1 + V_2) ANS: A PTS: 1 DIF: 2 TOP: 12.1 Work in Thermodynamic Processes
5.	On a P-V diagram, an process is represented by a horizontal line. a. □isobaric b. □isothermal c. □isovolumetric

	d. □ adiabatic
	ANS: A PTS: 1 DIF: 1 TOP: 12.1 Work in Thermodynamic Processes
6.	In an isobaric process 4.5 ′ 10 ⁴ J of work is done on a quantity of gas while its volume changes from 2.6 m³ to 1.1 m³. What is the pressure during this process? a.□1.2 ′ 10 ⁴ Pa b.□2.4 ′ 10 ⁴ Pa c.□3.0 ′ 10 ⁴ Pa d.□4.1 ′ 10 ⁴ Pa ANS: C PTS: 1 DIF: 2 TOP: 12.1 Work in Thermodynamic Processes
7.	In the first law of thermodynamics, , <i>W</i> is positive when a. □the work is being done on the environment by the system. b. □the work is being done on the system by the environment.
	c. the work is being done on the environment by the system, and the temperature of the system goes up. d. the work is being done on the system by the environment, and the temperature of the system goes up.
	ANS: B PTS: 1 DIF: 1 TOP: 12.2 The First Law of Thermodynamics
8.	A system is acted on by its surroundings in such a way that it receives 50 J of heat while simultaneously doing 20 J of work. What is its net change in internal energy? a. \Box 70 J b. \Box 30 J c. \Box zero d. \Box - 30 J
	ANS: B PTS: 1 DIF: 2 TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
9.	In an isothermal process for an ideal gas system (where the internal energy doesn't change), which of the following choices best corresponds to the value of the work done on the system? a. □ its heat intake b. □ twice its heat intake c. □ the negative of its heat intake d. □ twice the negative of its heat intake
	ANS: C PTS: 1 DIF: 2 TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes

10.	According to the first law of thermodynamics, the sum of the heat gained by a system and the work done on that same system is equivalent to which of the following?
	a. □entropy change
	b. □internal energy change
	c. □temperature change
	d. specific heat
	ANS: B PTS: 1 DIF: 1
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
11.	If an ideal gas does positive work on its surroundings, we may assume, with regard to the gas:
	a. \(\temperature \) increases.
	b. □ volume increases.
	c. □ pressure increases.
	d. □internal energy decreases.
	ANS: B PTS: 1 DIF: 2
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
	101. 12.2 The First Law of Thermodynamics 12.3 Thermal Frocesses
12.	In an isovolumetric process by an ideal gas, the system's heat gain is equivalent to a change in:
	a. \(\text{temperature.}\)
	b. \(\text{volume}. \)
	c. pressure.
	d. internal energy.
	d. Internal chergy.
	ANS: D PTS: 1 DIF: 2
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
10	
13.	
	the work done on the system?
	a. \(\text{zero} \)
	b. □ 5.0 J
	c. □ - 6.7 J
	d. □ 20 J
	ANS: A PTS: 1 DIF: 1
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
	101. 12.2 The First Law of Thermodynamics 12.3 Thermal Frocesses
14.	A closed 2.0-L container holds 3.0 mol of an ideal gas. If 200 J of heat is added, what is the change in
	internal energy of the system?
	a. \(\text{zero}\)
	b. □ 100 J
	c. □ 150 J
	d. □200 J
	u. 🗆 200 3
	ANS: D PTS: 1 DIF: 1
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
15.	The adiabatic index of a gas is given by which of the following?
	$a. \Box C_P/C_V$

	$b.\Box C_V/C_P$
	$c.\Box C_P$ - C_V
	$\mathrm{d}.\Box C_P + C_V$
	ANS: A PTS: 1 DIF: 1 TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
16	An adiabatic expansion refers to the fact that:
10.	a. □ no heat is transferred between a system and
	its surroundings.
	b. □ the pressure remains constant.
	c. □the temperature remains constant.
	d. the volume remains constant.
	d. the volume remains constant.
	ANS: A PTS: 1 DIF: 1
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
17.	A 4-mol ideal gas system undergoes an adiabatic process where it expands and does 20 J of work on its
	environment. What is its change in internal energy?
	a. □- 20 J
	b. □ - 5 J
	c. □zero
	d. □ +20 J
	ANG A DEG 1 DE 2
	ANS: A PTS: 1 DIF: 2
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
18.	A 4-mol ideal gas system undergoes an adiabatic process where it expands and does 20 J of work on its environment. How much heat is received by the system?
	a. \Box - 20 J
	b. zero
	c. □+5 J
	d. □+20 J
	ANS: B PTS: 1 DIF: 1
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
19.	
	initial pressure is P_0 , what is the final pressure?
	$a.\Box 9.0 P_0$
	$b.\Box 6.2P_0$
	$c. \square 3.0 P_0$
	$d.\Box 0.16 P_0$
	ANG D DEG 1 DE 2
	ANS: D PTS: 1 DIF: 2
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes

20. A 5-mol ideal gas system undergoes an adiabatic free expansion (a rapid expansion into a vacuum), going from an initial volume of 10 L to a final volume of 20 L. How much work is done on the system during this adiabatic free expansion?

	a. □ - 50 J	
	b. □- 10 J	
	c. \(\text{zero} \)	
	d. □+50 J	
	u. □ +30 J	
	ANS: C PTS: 1 DIF: 2	
	TOP: 12.2 The First Law of Thermodynamics 12.3 The	ermal Processes
	·	
21.	Which of the following increases the internal energy of a	solid metal rod?
	a. □raising it to a greater height	
	b. □ throwing it through the air	
	c. □ having the rod conduct heat	
	d. □ having the rod absorb heat	
	ANS: D PTS: 1 DIF: 1	
	TOP: 12.2 The First Law of Thermodynamics 12.3 The	ermal Processes
22.		to pressure P_2 and volume V_2 along the
	indicated straight line, it is possible that:	
	- D4. (
	a. □the temperature stays constant.	
	b. the internal energy decreases.	
	c. □the gas is changing state.	
	d. □ all of the above are impossible for this	
	particular graph.	
	ANS: D PTS: 1 DIF: 2	
	TOP: 12.2 The First Law of Thermodynamics 12.3 The	ermal Processes
	· · · · · · ·	
23.	3. Heat is applied to an ice-water mixture to melt some of the	e ice. In this process:
	a. □ work is done by the ice-water mixture.	1
	b. the temperature increases.	
	c. □the internal energy increases.	
	d. all of the above are correct.	
	at all of the doore are correct.	
	ANS: C PTS: 1 DIF: 2	
	TOP: 12.2 The First Law of Thermodynamics 12.3 The	ermal Processes
24.		
	allowed to expand to point B also at A's temperature $2T_0$,	
	internal energy increases by $3P_0V_0/2$ going from point T_0	to point A. How much heat entered the gas from
	point T_0 to point A?	
	2 □0	
	a. \(\begin{align*} 0 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	b. $\square P_0 V_0 / 2$	
	$c.\Box 3 P_0 V_0 / 2$	

	$\mathrm{d.}\Box5P_0V_0/2$
	ANS: C PTS: 1 DIF: 3 TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
	TOF. 12.2 The First Law of Thermodynamics 12.3 Thermal Frocesses
25.	An ideal gas at pressure, volume, and temperature, P_0 , V_0 , and T_0 , respectively, is heated to point A, allowed to expand to point B also at A's temperature $2T_0$, and then returned to the original condition. The internal energy decreases by $3P_0V_0/2$ going from point B to point T_0 . How much heat left the gas from point B to point T_0 ?
	a. □0
	$b.\Box P_0V_0/2$
	$c. \Box 3P_0V_0/2$
	$d. \Box 5P_0V_0/2$
	ANS: D PTS: 1 DIF: 3
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
26.	An ideal gas at pressure, volume, and temperature, P_0 , V_0 , and T_0 , respectively, is heated to point A, allowed to expand to point B also at A's temperature $2T_0$, and then returned to the original condition. The internal energy decreases by $3P_0V_0/2$ going from point B to point T_0 . In going around this cycle once, which quantity equals zero?
	a. □the net change in internal energy of the gas
	b. the net work done by the gas
	c. the net heat added to the gas
	d. □ All three are zero.
	ANS: A PTS: 1 DIF: 2
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
27.	A cylinder containing an ideal gas has a volume of 2.0 m^3 and a pressure of $1.0 \text{ '} 10^5 \text{ Pa}$ at a temperature of 300 K . The cylinder is placed against a metal block that is maintained at 900 K and the gas expands as the pressure remains constant until the temperature of the gas reaches 900 K . The change in internal energy of the gas is $+6.0 \text{ '} 10^5 \text{ J}$. How much heat did the gas absorb?
	$b. \Box 4.0 \stackrel{?}{\cdot} 10^5 \mathrm{J}$
	$c.\Box 6.0 \cdot 10^{5} J$
	$\mathbf{d}.\Box 10 \ 10^{5} \mathbf{J}$
	ANS: D PTS: 1 DIF: 3
	TOP: 12.2 The First Law of Thermodynamics 12.3 Thermal Processes
28.	A thermodynamic process that happens very quickly tends to be:
	a. □isobaric.
	b. □ isothermal.

	c. □isovolumetr	ic.					
	d. □ adiabatic.						
	ANS: D TOP: 12.2 The	PTS: 1 First Law of T	DIF:		nal Processes		
29.	increase. System temperature increase. System 2 is as I a. \(\pi 1.00\)	m 2 is 4.30 mol rease. The ther	les of a diatomic id	leal gas he ed by Syst	ld at constant em 1 is, and t	ne as it undergoes a volume as it also un the thermal energy a What is the ratio?	ndergoes a
	b. □ 0.600 c. □ 1.67 d. □ The volume known before th	•					
	ANS: B	PTS: 1		3	TOP:	12.3 Thermal Proc	esses
30.	temperature includes as it undergoes a	rease. System 2 a temperature i	2 is 3.5 moles of a concrease equal to the	diatomic i e tempera	deal gas held ture increase c	e of 2.22 L as it und at a constant volum of System 1. The pro- eases. What is the ra	e of 2.22 L essure
	ANS: A	PTS: 1	DIF:	2	TOP:	12.3 Thermal Proc	esses
31.	How much there 22.5 K? a. □ 467 J b. □ 1 460 J c. □ 2 050 J d. □ 3 410 J	mal energy mu	st be added to 7.30	moles of	a diatomic ide	eal gas to raise its to	emperature
	ANS: D	PTS: 1	DIF:	2	TOP:	12.3 Thermal Proc	esses
32.	A heat engine exthe engine? a. □15% b. □33% c. □50% d. □60%	xhausts 3 000 J	of heat while perf	orming 1	500 J of usefu	l work. What is the	efficiency of
	ANS: B TOP: 12.4 Hea	PTS: 1 at Engines and	DIF: the Second Law of		ynamics		
33.			en a pair of hot and imum efficiency?	l cold rese	ervoirs with res	spective temperatur	es of 500 K

$\begin{array}{c} b. \square 50\% \\ c. \square 40\% \\ d. \square 30\% \end{array}$
ANS: A PTS: 1 DIF: 2 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
An electrical power plant manages to send 88% of the heat produced in the burning of fossil fuel into the water-to-steam conversion. Of the heat carried by the steam, 40% is converted to the mechanical energy of the spinning turbine. Which of the following choices best describes the overall efficiency of the heat-to-work conversion in the plant (as a percentage)? $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
ANS: C PTS: 1 DIF: 2 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
According to the second law of thermodynamics, which of the following applies to the heat received from a high temperature reservoir by a heat engine operating in a complete cycle? a. \(\) must be completely converted to work b. \(\) equals the entropy increase c. \(\) converted completely into internal energy d. \(\) cannot be completely converted to work ANS: D PTS: 1 DIF: 1 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
The maximum theoretical thermodynamic efficiency of a heat engine operating between hot and cold reservoirs is a function of which of the following? a. \(\text{hot reservoir temperature only} \) b. \(\text{cold reservoir temperature only} \) c. \(\text{both hot and cold reservoir temperatures} \) d. \(\text{None of the above choices are valid.} \)
ANS: C PTS: 1 DIF: 1 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
A heat engine receives 6 000 J of heat from its combustion process and loses 4 000 J through the exhaust and friction. What is its efficiency? a. □ 33% b. □ 40% c. □ 67% d. □ 73% ANS: A PTS: 1 DIF: 2 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics

34.

35.

36.

37.

38. If a heat engine has an efficiency of 30% and its power output is 600 W, what is the rate of heat input from the combustion phase?

	a. □ 1 800 W
	b. □ 2 400 W
	c. □ 2 000 W
	d. □3 000 W
	ANG G PEG 1
	ANS: C PTS: 1 DIF: 2
	TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
39.	A turbine takes in 1 000-K steam and exhausts the steam at a temperature of 500 K. What is the maximum theoretical efficiency of this system?
	$a. \Box 24\%$
	b. □33%
	c. 50%
	d. \(\prescript{67\%}
	u 0770
	ANS: C PTS: 1 DIF: 2
	TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
40.	An electrical generating plant operates at a boiler temperature of 220°C and exhausts the unused heat into a nearby river at 18°C. What is the maximum theoretical efficiency of the plant? (0°C = 273 K) a. \Box 61%
	b. \$\prec{1}{2}\%\$
	c. 🗆 21%
	d. □41%
	ANS: D PTS: 1 DIF: 2 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
41.	An electrical generating plant operates at a boiler temperature of 220°C and exhausts the unused heat into
41.	a nearby river at 19°C. If the generating plant has a power output of 800 megawatts (MW) and if the
	a hearby river at 19°C. If the generating plant has a power output of 800 megawatts (MW) and if the actual efficiency is 3/4 the theoretical efficiency, how much heat per second must be delivered to the
	boiler? $(0^{\circ}\text{C} = 273 \text{ K})$
	a. \Box 5 200 MW
	b. 🗆 1 810 MW
	c. 🗆 3 620 MW
	d. □ 2 620 MW
	ANS: D PTS: 1 DIF: 2
	TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
	1 51 / 12 / 11 cm 2 mg mos and mo social 2 m of 1 mg manner
42.	During each cycle of operation a refrigerator absorbs 55 cal from the freezer compartment and expels 85
	cal to the room. If one cycle occurs every 10 s, how many minutes will it take to freeze 500 g of water,
	initially at 0°C? $(L_v = 80 \text{ cal/g})$
	a. □ 800 min
	b. 4 400 min
	c. □ 120 min
	d. □60 min
	ANS: C PTS: 1 DIF: 3
	TOP: 12.4 Heat Engines and the Second Law of Thermodynamics

43.	3. In which system is heat usually transferred from the cooler part to the warmer part?	
	a. □a stove as it heats up water	
	b. □ a refrigerator that is running	
	c. □ an electric fan that is running	
	d. □ none of the above, because it is impossible	
	to transfer heat in this manner	
	ANS: B PTS: 1 DIF: 1	
	TOP: 12.4 Heat Engines and the Second Law of Thermodynamics	
44.	4. When gasoline is burned, it gives off 46 000 J/g of heat energy. If an automobile uses 13.0 kg of	
	per hour with an efficiency of 21%, what is the average horsepower output of the engine? (1 hp =	= 746 W)
	a. □ 47 hp	
	b. □ 110 hp	
	c. □ 67 hp	
	d. □ 34 hp	
	ANG A PEG 1 PE 2	
	ANS: A PTS: 1 DIF: 3	
	TOP: 12.4 Heat Engines and the Second Law of Thermodynamics	
45.	5. Suppose a power plant uses a Carnot engine to generate electricity, using the atmosphere at 300 I low-temperature reservoir. Suppose the power plant produces 1 ′ 10 ⁶ J of electricity with the hot reservoir at 500 K during Day One and then produces 1 ′ 10 ⁶ J of electricity with the hot reservo	
	K during Day Two. The thermal pollution was:	
	a. □ greatest on Day One.	
	b. □ greatest on Day Two.	
	c. □the same on both days.	
	d. □zero on both days.	
	ANIC. A DTC. 1 DIE. 2	
	ANS: A PTS: 1 DIF: 3 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics	
	10F. 12.4 Heat Engines and the Second Law of Thermodynamics	
46.	6. The efficiency of a Carnot engine operating between 100°C and 0°C is most nearly:	
10.	a. \(\text{\text{\$7\\ a.}}\)	
	b. □ 15%.	
	c. □27%.	
	d. □51%.	
	u. □ 3170.	
	ANS: C PTS: 1 DIF: 2	
	TOP: 12.4 Heat Engines and the Second Law of Thermodynamics	
47.		g towers.
	Approximately how much waste heat (in MJ) is discharged to the atmosphere per second?	
	a. □ 1 200 MJ	
	b. □ 1 900 MJ	
	c. □ 800 MJ	
	d. □ 560 MJ	

	ANS: B PTS: 1 DIF: 2 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
48.	A gasoline engine with an efficiency of 30.0% operates between a high temperature T_1 and a low temperature $T_2 = 320$ K. If this engine operates with Carnot efficiency, what is the high-side temperature T_1 ? a. $\Box 1\ 070\ K$ b. $\Box 868\ K$ c. $\Box 614\ K$ d. $\Box 457\ K$ ANS: D PTS: 1 DIF: 2
	TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
49.	The Carnot cycle consists of a combination of and processes. a. □isobaric, isovolumetric b. □isovolumetric, adiabatic c. □isobaric, isothermal d. □adiabatic, isothermal
	ANS: D PTS: 1 DIF: 2 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
50.	Of the following heat engines, which has the highest efficiency? a. □ Hero's engine b. □ a Carnot engine c. □ a car's gasoline engine d. □ a truck's diesel engine ANS: B PTS: 1 DIF: 1 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
51.	A Carnot engine runs between a hot reservoir at T_h and a cold reservoir at T_c . If one of the temperatures is either increased or decreased by 3.5 K, which of the following changes would increase the efficiency by the greatest amount? a. \Box increasing T_h b. \Box increasing T_c c. \Box decreasing T_c d. \Box cannot be determined from information given ANS: C PTS: 1 DIF: 3 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
52.	On a P-V diagram, if a process involves a closed curve, the area inside the curve represents: a. □ internal energy. b. □ heat. c. □ work. d. □ zero.

	ANS: C PTS: 1 DIF: 1 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
53.	The P-V diagram of a cyclic process shows a curve that encloses an area. The work done by the heat engine, represented by the enclosed area, is positive when the path around the area proceeds in which of the following fashions? a. □ clockwise b. □ counterclockwise c. □ It is always positive. d. □ It is always negative.
	ANS: A PTS: 1 DIF: 2 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
54.	A refrigerator has a coefficient of performance of 4.0. When removing 2.4 $^{\prime}$ 10 ⁴ J from inside the refrigerator, how much energy is sent into the environment? a. $\Box 9.6 \stackrel{\prime}{\cdot} 10^4$ J b. $\Box 3.0 \stackrel{\prime}{\cdot} 10^4$ J c. $\Box 1.8 \stackrel{\prime}{\cdot} 10^4$ J d. $\Box 0.60 \stackrel{\prime}{\cdot} 10^4$ J ANS: B PTS: 1 DIF: 2 TOP: 12.4 Heat Engines and the Second Law of Thermodynamics
55.	Which of the following choices best corresponds to what is required by the second law of thermodynamics for any process taking place in an isolated system? a. □entropy decreases b. □entropy remains constant c. □entropy increases d. □entropy equals work done on the system ANS: C PTS: 1 DIF: 1 TOP: 12.5 Entropy
56.	Which of the following choices is an appropriate unit for measuring entropy changes? $\begin{array}{c} a.\Box J \not K \\ b.\Box N \not K \\ c.\Box J / s \\ d.\Box J / K \end{array}$
57.	ANS: D PTS: 1 DIF: 1 TOP: 12.5 Entropy If one could observe the individual atoms making up a piece of matter and note that during a process of change their motion somehow became more orderly, then one may assume which of the following in regard to the system?
	a. □increases in entropy b. □decreases in entropy c. □gains in thermal energy d. □positive work done on
	ANS: B PTS: 1 DIF: 1 TOP: 12.5 Entropy

58.						000 cal	of heat in the p	rocess. Which of the following
				to this system	1.			
		creased entr	opy					
		st entropy	. 1 .					
		tropy maint						
	d. ⊔wo	ork converte	ed to energy	•				
	ANS:	A	PTS:	1	DIF:	1	TOP:	12.5 Entropy
59.	which a. □ ent b. □ ent	ding to the to of the follo tropy remainstropy increased tropy decreased tropy decreased tropy decreased tropy tropy decreased	wing choice ns constant ases		nics, for	any pro	cess that may o	occur within an isolated system,
		one of the a		e annly				
	u. LIV	one or the a	bove choice	s appry.				
	ANS:	D	PTS:	1	DIF:	1	TOP:	12.5 Entropy
60.	entrop a. □ zei b. □ 58 c. □ 1 2	y? (For ice, ro			cm) whi	le it mel	ts completely to	o water. What is its change in
	ANS:	D	PTS:	1	DIF:	2	TOP:	12.5 Entropy
61.	What is a. □12 b. □6 (c. □3 (•		o atm at the b? (For water,				l until all the water vaporizes.
	ANS:	В	PTS:	1	DIF:	2	TOP:	12.5 Entropy
62.	heat of a. □ 5.5 b. □ 7.7 c. □ 9.9	f fusion of s 53 J/K 72 J/K		(DS) when 62 ′ 10 ⁴ J/kg.)		e of silv	er (108 g) is co	ompletely melted at 961°C? (The
	ANS:	В	PTS:	1	DIF:	2	TOP:	12.5 Entropy
63.	If the t		of the ice,					of 160 m down a mountainside. at 0°C, what is the change in

o K. The cylessure remark of the gas gas. 670 J/K 40 J/K 100 J/K D	inder is placins constant	l gas has ced agains until the J. Find th	st a metal bi temperatur	f 2.0 m ³ lock that e of the	and a pressure is maintained gas reaches 900	12.5 Entropy of 1.0 ′ 10 ⁵ Pa at a temperature at 900 K and the gas expands as 0 K. The change in internal ssociated with the heat transfer
B Inder contain K. The cylessure remander of the gas gas. In J/K I	ning an idea inder is plac ins constant is 6.0 ′ 10 ⁵	l gas has ced agains until the J. Find th	a volume o st a metal b temperatur	f 2.0 m ³ lock that e of the	and a pressure is maintained gas reaches 900	of 1.0 ′ 10 ⁵ Pa at a temperature at 900 K and the gas expands as 0 K. The change in internal
nder contain K. The cylessure rema of the gas gas. 70 J/K 40 J/K 100 J/K D arface of the	ning an idea inder is plac ins constant is 6.0 ′ 10 ⁵	l gas has ced agains until the J. Find th	a volume o st a metal b temperatur	f 2.0 m ³ lock that e of the	and a pressure is maintained gas reaches 900	of 1.0 ′ 10 ⁵ Pa at a temperature at 900 K and the gas expands as 0 K. The change in internal
o K. The cylessure remark of the gas gas. 670 J/K 40 J/K 100 J/K D	inder is plac ins constant is 6.0 ′ 10 ⁵	ced agains until the J. Find th	st a metal bi temperatur	lock that e of the	is maintained gas reaches 900	at 900 K and the gas expands as 0 K. The change in internal
100 J/K D urface of the	PTS:					
D urface of the	PTS:					
ırface of the	PTS:					
		1	DIF:	3	TOP:	12.5 Entropy
89 J/K 27 J/K 52 J/K						
В	PTS:	1	DIF:	3	TOP:	12.5 Entropy
sorder nperature at		of a s	system.			
A	PTS:	1	DIF:	1	TOP:	12.5 Entropy
ents the met J / Dt Q / Dt / Dt			in terms of	the 1 st L	aw of Thermoo	lynamics, which of the following
A	PTS:	1	DIF:	1	TOP:	12.6 Human Metabolism
ed per liter o kJ 0 kJ 2 kJ				f oxyger	releases how	much energy? (4.8 kcal are
	nat total entres and total energy and to	nat total entropy change 89 J/K 27 J/K 62 J/K 97 J/K B PTS: by is a measure of the sorder mperature at ternal energy A PTS: considering human me ents the metabolic rate of the properties of	nat total entropy change occurs with the second of the sec	nat total entropy change occurs when 1 000 3 89 J/K 27 J/K 62 J/K 97 J/K 897 J	nat total entropy change occurs when 1 000 J of heat 89 J/K 27 J/K 62 J/K 97 J/K 89 J/K 97 J/K 89 PTS: 1 DIF: 3 by is a measure of the of a system. Sorder sorder mperature at ternal energy A PTS: 1 DIF: 1 considering human metabolism in terms of the 1st Lents the metabolic rate? J / Dt	27 J/K 62 J/K 97 J/K B PTS: 1 DIF: 3 TOP: by is a measure of the of a system. sorder mperature at ternal energy A PTS: 1 DIF: 1 TOP: considering human metabolism in terms of the 1 st Law of Thermodents the metabolic rate? J/Dt Q/Dt //Dt W/Dt A PTS: 1 DIF: 1 TOP: average diet, the consumption of 10 liters of oxygen releases how ed per liter of oxygen consumed.) 3 kJ 00 kJ 2 kJ

69. A person consumes 2 500 kcal/day while expending 3 500 kcal/day. In a month's time, about how weight would this person lose if the loss were essentially all from body fat? (Body fat has an ener content of about 4 100 kcal per pound.) a.□1 pound b.□2 pounds c.□7 pounds d.□15 pounds ANS: C PTS: 1 DIF: 2 TOP: 12.6 Human Metabolisr 70. A pound of body fat has an energy content of about 4 100 kcal. If a 1 400-kg automobile had an equivalent amount of translational kinetic energy, how fast would it be moving? (0.447 m/s = 1 m l kcal = 4 186 J) a.□3.1 mph b.□14 mph c.□75 mph d.□350 mph ANS: D PTS: 1 DIF: 3 TOP: 12.6 Human Metabolisr 71. On a PV diagram, 2 curves are plotted, both starting at the same point (P₁, V₁) and both ending at same increased volume (V₂). One curve is for an isothermal process; the other is for an adiabatic process curve will always be the upper one. b.□The isothermal process curve will always be the upper one. c.□Since they start at the same point and end at the same volume, they will coincide. d.□The isothermal one will start out higher, but the adiabatic process curve will always be the upper one. c.□Since they start at the same point and end at the same volume, they will coincide. d.□The isothermal one will start out higher, but the adiabatic process curve will always be the upper one. c.□Since they start at the same point and end at the same volume, they will coincide. d.□The isothermal one will start out higher, but the adiabatic process curve will always be the upper one. c.□Since they start at the same point and end at the same volume, they will coincide. d.□The isothermal one will start out higher, but the adiabatic process curve will always be the upper one. c.□Since they start at the same point and end at the same volume, they will be the most probable value. b.□T.5 c.□B d.□.9 ANS: D PTS: 1 DIF: 3 TOP: Conceptual Problems		ANS: B	PTS: 1	DIF:	2	TOP:	12.6 Human Metabo	olism
70. A pound of body fat has an energy content of about 4 100 kcal. If a 1 400-kg automobile had an equivalent amount of translational kinetic energy, how fast would it be moving? (0.447 m/s = 1 m 1 kcal = 4 186 J) a. □ 3.1 mph b. □ 14 mph c. □ 75 mph d. □ 350 mph ANS: D PTS: 1 DIF: 3 TOP: 12.6 Human Metabolism 71. On a PV diagram, 2 curves are plotted, both starting at the same point (P₁, V₁) and both ending at same increased volume (V₂). One curve is for an isothermal process; the other is for an adiabatic p Except for the common starting point, which curve is the upper one? a. □ The isothermal process curve will always be the upper one. b. □ The adiabatic process curve will always be the upper one. c. □ Since they start at the same point and end at the same volume, they will coincide. d. □ The isothermal one will start out higher, but the adiabatic one will eventually cross it. ANS: A PTS: 1 DIF: 1 TOP: Conceptual Problems 72. At the dice factory, sets of novelty dice are created where a side with 7 dots replaces the single do The sides then range from 2 to 7 instead of the usually 1 to 6. Using such dice for a game of craps will be the most probable roll? a. □ 7, this change in dots results in the same most probable value. b. □ 7.5 c. □ 8 d. □ 9	69.	weight would this properties of about 4 a. □1 pound b. □2 pounds c. □7 pounds	person lose if the lo	ss were esse				
equivalent amount of translational kinetic energy, how fast would it be moving? (0.447 m/s = 1 m 1 kcal = 4 186 J) a. □ 3.1 mph b. □ 14 mph c. □ 75 mph d. □ 350 mph ANS: D PTS: 1 DIF: 3 TOP: 12.6 Human Metabolism 71. On a PV diagram, 2 curves are plotted, both starting at the same point (P₁, V₁) and both ending at same increased volume (V₂). One curve is for an isothermal process; the other is for an adiabatic p Except for the common starting point, which curve is the upper one? a. □ The isothermal process curve will always be the upper one. b. □ The adiabatic process curve will always be the upper one. c. □ Since they start at the same point and end at the same volume, they will coincide. d. □ The isothermal one will start out higher, but the adiabatic one will eventually cross it. ANS: A PTS: 1 DIF: 1 TOP: Conceptual Problems 72. At the dice factory, sets of novelty dice are created where a side with 7 dots replaces the single do The sides then range from 2 to 7 instead of the usually 1 to 6. Using such dice for a game of craps will be the most probable roll? a. □ 7, this change in dots results in the same most probable value. b. □ 7.5 c. □ 8 d. □ 9		ANS: C	PTS: 1	DIF:	2	TOP:	12.6 Human Metabo	olism
 71. On a <i>PV</i> diagram, 2 curves are plotted, both starting at the same point (<i>P</i>₁, <i>V</i>₁) and both ending at same increased volume (<i>V</i>₂). One curve is for an isothermal process; the other is for an adiabatic pexcept for the common starting point, which curve is the upper one? a. □ The isothermal process curve will always be the upper one. b. □ The adiabatic process curve will always be the upper one. c. □ Since they start at the same point and end at the same volume, they will coincide. d. □ The isothermal one will start out higher, but the adiabatic one will eventually cross it. ANS: A PTS: 1 DIF: 1 TOP: Conceptual Problems 72. At the dice factory, sets of novelty dice are created where a side with 7 dots replaces the single do The sides then range from 2 to 7 instead of the usually 1 to 6. Using such dice for a game of craps will be the most probable roll? a. □ 7, this change in dots results in the same most probable value. b. □ 7.5 c. □ 8 d. □ 9 	70.	equivalent amount 1 kcal = 4 186 J) a. \square 3.1 mph b. \square 14 mph c. \square 75 mph		etic energy,	how fa	st would it be m	noving? (0.447 m/s =	1 mph,
same increased volume (<i>V</i> ₂). One curve is for an isothermal process; the other is for an adiabatic procest for the common starting point, which curve is the upper one? a. □ The isothermal process curve will always be the upper one. b. □ The adiabatic process curve will always be the upper one. c. □ Since they start at the same point and end at the same volume, they will coincide. d. □ The isothermal one will start out higher, but the adiabatic one will eventually cross it. ANS: A PTS: 1 DIF: 1 TOP: Conceptual Problems 72. At the dice factory, sets of novelty dice are created where a side with 7 dots replaces the single do The sides then range from 2 to 7 instead of the usually 1 to 6. Using such dice for a game of craps will be the most probable roll? a. □ 7, this change in dots results in the same most probable value. b. □ 7.5 c. □ 8 d. □ 9		ANS: D	PTS: 1	DIF:	3	TOP:	12.6 Human Metabo	olism
72. At the dice factory, sets of novelty dice are created where a side with 7 dots replaces the single do The sides then range from 2 to 7 instead of the usually 1 to 6. Using such dice for a game of craps will be the most probable roll? a. □ 7, this change in dots results in the same most probable value. b. □ 7.5 c. □ 8 d. □ 9	71.	same increased vol Except for the com a. The isothermal the upper one. b. The adiabatic p the upper one. c. Since they start the same volume, t d. The isothermal	ume (V_2) . One curve mon starting point, process curve will a cat the same point a hey will coincide.	which curve always be lways be and end at higher, but	otherm	al process; the		
The sides then range from 2 to 7 instead of the usually 1 to 6. Using such dice for a game of craps will be the most probable roll? a. □7, this change in dots results in the same most probable value. b. □7.5 c. □8 d. □9		ANS: A	PTS: 1	DIF:	1	TOP:	Conceptual Problem	ıs
ANS: D PTS: 1 DIF: 3 TOP: Conceptual Problems	72.	The sides then rang will be the most proaction a. □7, this change i most probable value. □7.5 c. □8	ge from 2 to 7 inste- obable roll? n dots results in the	ad of the usu				
		ANS: D	PTS: 1	DIF:	3	TOP:	Conceptual Problem	ıs

73. On a *PV* diagram, 2 curves are plotted, both starting at the same point and both ending at the same final increased volume. One curve is for an isothermal process; the other is for an adiabatic process. What does the area between these two curves represent?

	a. $\Box Q$ absorbed by the isothermal process.					
	b. $\square W$ done by the adiabatic process.					
	c. $\square DU$ for the isothermal process.					
	d. \square Neither Q , W , nor $\square U$ for either of the					
	processes is represented.					
	ANS: A PTS: 1 DIF	:	3		TOP:	Conceptual Problems
74.	Three Carnot engines operate between temperatu	ıre	e rese	rvoirs as f	ollows:	Engine A: $T_b = 1 \ 300 \ \text{K}$, $T_c = 1$
	000 K ; Engine B: $T_h = 1\ 000 \text{ K}$, $T_c = 700 \text{ K}$; Eng					
	the same thermal efficiency?				, ,	
	a. □ A and B					
	b. □B and C					
	c. □ A and C					
	d. □ No two have the same thermal efficiency.					
	·		_		TO D	G 1 D . 11
	ANS: C PTS: 1 DIF	:	2		TOP:	Conceptual Problems
75.	In an isovolumetric process where the pressure in	nc	rease	s are the l	neat ahs	sorbed, work done by the system
· J.	and the change in internal energy of the system p					· · · · · · · · · · · · · · · · · · ·
	a. $\Box Q$ is +, W is +, and DU is +.		5101.0	, 110841110,	01 201	•
	b. $\Box Q$ is +, W is -, and DU is 0.					
	c. $\square Q$ is +, W is 0, and DU is +.					
	$d.\Box Q$ is -, W is 0, and DU is					
	ANS: C PTS: 1 DIF	:	2		TOP:	Conceptual Problems

Chapter 13—Vibrations and Waves

MULTIPLE CHOICE

1.	The SI base units f	or spring constant	are which of the follow	wing?	
	a.□kg×s²				
	$b.\Box kg/m^2$				
	$c.\Box kg/s^2$				
	$d.\Box kgxm^2$				
	ANS: C	PTS: 1	DIF: 1	TOP: 13.1 Hooke's Law	
2.	spring?	uires a force of 150	N to compress it only	$\sqrt{0.010}$ m. What is the spring constant of the	
	a. □ 125 000 N/m				
	b. □ 15 000 N/m				
	c. □ 15 N/m				
	d. □ 1.5 N/m				
	ANS: B	PTS: 1	DIF: 1	TOP: 13.1 Hooke's Law	
3.		zontal frictionless		at $k = 10$ N/m and moves with simple harmon that it is displaced from equilibrium by - 0.0	
	ANS: D	PTS: 1	DIF: 2	TOP: 13.1 Hooke's Law	
4.	Tripling the weighthe spring's lower of a. \(\pi 0.33 \) b. \(\pi 1.0 \) c. \(\pi 3.0 \) d. \(\pi 9.0 \)			will result in a change in the displacement of	f
	ANS: C	PTS: 1	DIF: 1	TOP: 13.1 Hooke's Law	
5.			brium of an object in a	simple harmonic motion will bring about a at factor?	
	ANS: C	PTS: 1	DIF: 1	TOP: 13.1 Hooke's Law	

6.	A tiny spring, with force? a. □4.2 mm b. □6.0 mm c. □7.2 mm d. □9.4 mm	a spring c	onstant of 1.20	0 N/m,	will be stretched	d to wh	at displacement by a 0.005 0-N
	ANS: A	PTS:	1	DIF:	1	TOP:	13.1 Hooke's Law
7.	motion. What is the m from the equilibes a. \Box zero b. \Box 5 m/s ² c. \Box 10 m/s ² d. \Box 20 m/s ²	e magnitud rium positi	de of the accelo	eration	of the mass who	en at its	is set into simple harmonic maximum displacement of 0.10
	ANS: D	PTS:			2		13.1 Hooke's Law
8.		nt 20 N/m	and on the left brium, what is	to a ho	orizontal spring	with sp nstant?	on the right to a horizontal spring bring constant 50 N/m. If this 13.1 Hooke's Law
9.	equilibrium (<i>x</i> = 0) a. □ It will return to b. □ It will move fu velocity. c. □ It will move fu acceleration. d. □ It will move fu acceleration.	and release the equili- rther away rther away	sed? brium position with constant with constant with increasin	ng		the obj	ject is moved away from
10.	ANS: D Which is not an ex a. □ A ball bouncin b. □ A child swingi c. □ A piano string d. □ A car's radio ar forth.	g on the flong on a sw that has be	pproximate sinoor. ing. en struck.	and	armonic motion		13.1 Hooke's Law
	ANS: A	PTS:	1	DIF:	1	TOP:	13.1 Hooke's Law

11.		N to stretch a s		.0 cm and if the	ne spri	ng is then cut in	half, what force does it tak	te to
	a. □ 2.0 N	the harves 3.0	CIII.					
	b. □4.0 N							
	c. □ 8.0 N							
	d.□16 N							
	ANS: B	PTS:	1	DIF:	2	TOP:	13.1 Hooke's Law	
12.		ing three times					ee springs are attached end at will be the spring const	
	$b.\Box 3 k$							
	c. □ <i>k</i> /3							
	d. □ 1.73 <i>k</i>							
	ANS: C	PTS:	1	DIF:	2	TOP:	13.1 Hooke's Law	
13.	vertically from		0-N we	ight is then su	spende	d from the other	, and the combination is h end of the combined sprin	
	ANS: D	PTS:	1	DIF:	2	TOP:	13.1 Hooke's Law	
14.	identical sprin	ngs are also attach other. What	ached in	series fashio	n. Thei	the pair of serie	ries fashion. A second pair es attached springs are atta ng combination of springs	ched in
	ANS: D	PTS:	1	DIF:	3	TOP:	13.1 Hooke's Law	
15.	series with Sp spring constant a. 40 N/m b. 90 N/m c. 50 N/m d. 30 N/m	oring #1, the cont for Spring #2	nnected 2?	l springs have	an effe	ective force cons	constant, but when connectant of 20 N/m. What is th	
	ANS: D	PTS:	1	DIF:	2	TOP:	13.1 Hooke's Law	
16.							5 N/m. What is the potent alf the maximum amplitud	

0 0 - 1					
b.□0.006 0 J					
c.□0.012 J					
d. □ 2.5 J					
ANS: C	PTS: 1	DIF:	2	TOP:	13.2 Elastic Potential Energy
frictionless surf when its displace	ace in simple har		amplitude of	6 0.080 m. V	moving on a horizontal What is its speed at the instant
a. □9.8 m/s					
b. □4.9 m/s					
c. □49 cm/s					
d. □ 24.5 cm/s					
ANS: C	PTS: 1	DIF:	2	TOP:	13.2 Elastic Potential Energy
simple harmoni	c motion. What i				m, is set into an up-and-down ough the equilibrium point? The
a. □ zero					
b. □ 1.4 m/s					
c. □ 2.0 m/s					
$\mathbb{C} \cdot \square \angle \cdot \cup \Pi / S$					
d. □3.4 m/s					
	PTS: 1	DIF:	2	TOP:	13.2 Elastic Potential Energy
d. □ 3.4 m/s ANS: B A mass of 0.40 simple harmoni	kg, hanging from c motion. What i	n a spring with a s	pring consta	nt of 80 N/z moving thro	m, is set into an up-and-down ough a point at 0.05 m dis-
d. □3.4 m/s ANS: B A mass of 0.40 simple harmoni placement? The a. □ zero b. □1.4 m/s c. □1.7 m/s	kg, hanging from c motion. What i	n a spring with a s is the speed of the	pring consta	nt of 80 N/z moving thro om its equil	m, is set into an up-and-down ough a point at 0.05 m dis-
d. □3.4 m/s ANS: B A mass of 0.40 simple harmoni placement? The a. □ zero b. □1.4 m/s c. □1.7 m/s d. □1.2 m/s ANS: D A runaway raili a spring-loaded	kg, hanging from c motion. What is starting displaced PTS: 1	DIF:	pring consta mass when a is 0.10 m from	nt of 80 N/2 moving throom its equil TOP: A level track	m, is set into an up-and-down ough a point at 0.05 m dis-librium position.

	a. □ 3.7 m/s						
	b. □4.7 m/s						
	c. □ 6.0 m/s						
	d. □ 6.3 m/s						
	ANS: C	PTS:	1	DIF:	2	TOP:	13.2 Elastic Potential Energy
22.	spring constant of 40) N/m. T	he block is ini	tially c	lisplaced 4.0 ca	m from th	orizontally aligned spring with a ne equilibrium point and then ock when it passes through the
	ANS: D	PTS:	1	DIF:	2	TOP:	13.2 Elastic Potential Energy
23.	spring constant of 40 released to set up a surface. What is the from the 4.0-cm dispa. □ 0.45 m/s b. □ 0.63 m/s c. □ 0.80 m/s d. □ 1.2 m/s	O N/m. T simple has speed of blacemen	The block is initiated armonic motion of the block when the point?	tially c n. A fr en it pa	displaced 4.0 crictional force of assess through the displaced force of the critical for	m from the of 0.3 N ended he equilib	orizontally aligned spring with a ne equilibrium point and then exists between the block and orium point after being released
	ANS: A	PTS:	1	DIF:	3	TOP:	13.2 Elastic Potential Energy
24.	each oxygen atom all oxygen atom of mas constant is 50 N/m, $\frac{1}{2}$ a. $\square 3.2 \stackrel{?}{10}^{-11}$ m b. $\square 1.6 \stackrel{?}{10}^{-11}$ m c. $\square 1.1 \stackrel{?}{10}^{-11}$ m d. $\square 8.0 \stackrel{?}{10}^{-12}$ m	ternately s $m = 2$. Then what	y approaches, t 67 ' 10 ⁻²⁶ kg h at is the amplit	then meas a vi	oves away from brational energoscillation of o	m the cen gy of 1.6 each oxyg	
	ANS: D	PTS:	1	DIF:	2	TOP:	13.2 Elastic Potential Energy
25.	Suppose a 0.3-kg ma What is the spring co a. □10 N/m b. □20 N/m c. □200 N/m d. □300 N/m ANS: C			been o	compressed 0.1		elastic potential energy of 1 J. 13.2 Elastic Potential Energy
							· 6)

26.	Suppose a 0.3-kg ma How much further m						elastic potential energy of 1.0 J. ential energy?
	a. □ 0.30 m				•	•	.
	b. □ 0.20 m						
	c.□0.17 m						
	d. □ 0.07 m						
	ANS: D	PTS:	1	DIF:	2	TOP:	13.2 Elastic Potential Energy
27.							d 0.10 m has elastic potential un fire the mass if the gun is fired
	b. □ 0.34 m						
	c. □ 0.24 m						
	d. □ 10 m						
	ANS: C	PTS:	1	DIF:	2	TOP:	13.2 Elastic Potential Energy
28.							end of the tracks, 10.0 m lower ompressed in stopping the ore
	ANS: C	PTS:	1	DIF:	2	TOP:	13.2 Elastic Potential Energy
29.		t object,	and the resultin				red. Then another object is inal value. By what factor is the
	ANS: B TOP: 13.3 Compari	PTS: ing Simp		DIF: lotion	2 with Uniform C	Circular	Motion
30.	period of simple hard a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D	monic m PTS:	otion?	DIF:	2		spring coil in order to triple its
	TOP: 13.3 Compari	ing Simp	le Harmonic N	I otion	with Uniform C	Circular	Motion

	maximum displacement?
	a. □ speed
	b. □ acceleration
	c. □ kinetic energy
	d. □ frequency
	ANS: B PTS: 1 DIF: 1
	TOP: 13.3 Comparing Simple Harmonic Motion with Uniform Circular Motion
32.	I release the block; it oscillates with period 0.30 s. The amplitude is: a. □38 cm. b. □19 cm.
	c. □9.5 cm.
	d. □ 4.3 cm.
	ANS: B PTS: 1 DIF: 3
	TOP: 13.3 Comparing Simple Harmonic Motion with Uniform Circular Motion
33.	A mass on a spring vibrates in simple harmonic motion at a frequency of 4.0 Hz and an amplitude of 8.0 cm. If the mass of the object is 0.20 kg, what is the spring constant? a. $\Box 40 \text{ N/m}$ b. $\Box 87 \text{ N/m}$ c. $\Box 126 \text{ N/m}$ d. $\Box 160 \text{ N/m}$
	ANS: C PTS: 1 DIF: 2 TOP: 13.3 Comparing Simple Harmonic Motion with Uniform Circular Motion
34.	For a mass suspended on a spring in the vertical direction, the time for one complete oscillation will depend on:
	a. \Box the value for g (the acceleration due to gravity).
	b. □ the distance the mass was originally pulled down.
	c. the maximum speed of the oscillating mass.
	d. the time doesn't depend on any of the above.
	u. une time doesn't depend on any of the doove.
	ANS: D PTS: 1 DIF: 1 TOP: 13.3 Comparing Simple Harmonic Motion with Uniform Circular Motion
35.	A car with bad shocks bounces up and down with a period of 1.50 s after hitting a bump. The car has a mass of 1 500 kg and is supported by four springs of force constant k . What is k for each spring? a. \Box 6 580 N/m b. \Box 5 850 N/m c. \Box 4 440 N/m d. \Box 3 630 N/m
	ANS: A DTS: 1 DIE: 2
	ANS: A PTS: 1 DIF: 2
	TOP: 13.3 Comparing Simple Harmonic Motion with Uniform Circular Motion

31. Which one of the following quantities is at a maximum when an object in simple harmonic motion is at its

36.	A mass on a spring vibrates in simple harmonic motion at a frequency of 4.0 Hz and an amplitude of 4.0 cm. If a timer is started when its displacement is a maximum (hence $x = 4$ cm when $t = 0$), what is the speed of the mass when $t = 3$ s? a. \Box zero b. \Box 0.006 5 m/s c. \Box 0.015 m/s d. \Box 0.024 m/s ANS: A PTS: 1 DIF: 2 TOP: 13.4 Position, Velocity, and Acceleration as a Function of Time
37.	A mass on a spring vibrates in simple harmonic motion at a frequency of 4.0 Hz and an amplitude of 4.0 cm. If a timer is started when its displacement is a maximum (hence $x = 4$ cm when $t = 0$), what is the acceleration magnitude when $t = 3$ s? a. \Box zero b. \Box 8.13 m/s ² c. \Box 14.3 m/s ² d. \Box 25.3 m/s ² ANS: D PTS: 1 DIF: 2 TOP: 13.4 Position, Velocity, and Acceleration as a Function of Time
38.	A mass on a spring vibrates in simple harmonic motion at a frequency of 4.0 Hz and an amplitude of 8.0 cm. If a timer is started when its displacement is a maximum (hence $x = 8$ cm when $t = 0$), what is the displacement of the mass when $t = 3.7$ s? a. \Box zero b. \Box 0.025 m c. \Box 0.036 m d. \Box 0.080 m ANS: B PTS: 1 DIF: 3 TOP: 13.4 Position, Velocity, and Acceleration as a Function of Time
39.	An object moving in simple harmonic motion has an amplitude of 0.020 m and a maximum acceleration of 40 m/s^2 . What is the frequency of the system? a. $\Box 0.60 \text{ Hz}$ b. $\Box 51 \text{ Hz}$ c. $\Box 7.1 \text{ Hz}$ d. $\Box 16 \text{ Hz}$ ANS: C PTS: 1 DIF: 2
40.	TOP: 13.4 Position, Velocity, and Acceleration as a Function of Time Consider the curve $x = A \sin(kt)$, with $A > 0$. At which point on the graph is it possible that $t = 0$?

a. \square Point t_1 b. \square Point t_2

	c. \square Point t_3
	$d. \square Point t_4$
	ANS: C PTS: 1 DIF: 1 TOP: 13.4 Position, Velocity, and Acceleration as a Function of Time
41.	The motion of a piston in an automobile engine is nearly simple harmonic. If the 1-kg piston travels back and forth over a total distance of 10.0 cm, what is its maximum speed when the engine is running at 3 000 rpm?
	a. □ 31.4 m/s
	b. □ 15.7 m/s
	c. □ 7.85 m/s
	d. □ 3.93 m/s
	ANS: B PTS: 1 DIF: 3 TOP: 13.4 Position, Velocity, and Acceleration as a Function of Time
42.	The position of a 0.64-kg mass undergoing simple harmonic motion is given by $x = (0.160 \text{ m}) \cos (\text{pt/16})$. What is its period of oscillation? a. $\Box 100 \text{ s}$ b. $\Box 32 \text{ s}$ c. $\Box 16 \text{ s}$ d. $\Box 8.0 \text{ s}$
	u. 🗆 0.0 S
	ANS: B PTS: 1 DIF: 2
	TOP: 13.4 Position, Velocity, and Acceleration as a Function of Time
43.	The position of a 0.64-kg mass undergoing simple harmonic motion is given by $x = (0.160 \text{ m}) \cos (\text{pt/16})$. What is the maximum net force on the mass as it oscillates? a. $\Box 3.9 \ ' \ 10^{-3} \ N$ b. $\Box 9.9 \ ' \ 10^{-3} \ N$ c. $\Box 1.3 \ ' \ 10^{-3} \ N$ d. $\Box 6.3 \ N$
	ANS: A PTS: 1 DIF: 3
	TOP: 13.4 Position, Velocity, and Acceleration as a Function of Time
44.	The position of a 0.64-kg mass undergoing simple harmonic motion is given by $x = (0.160 \text{ m}) \cos (\text{pt/}16)$. What is its position at $t = 5.0 \text{ s}$?
	a. □ 0.160 m
	b. □ 0.159 m
	c.□0.113 m
	d. □ 0.089 m
	ANS: D PTS: 1 DIF: 2 TOP: 13.4 Position, Velocity, and Acceleration as a Function of Time
45.	The kinetic energy of the bob on a simple pendulum swinging in simple harmonic motion has its maximum value when the displacement from equilibrium is at what point in its swing?
	a. □ zero displacement

the acceleration due to gravity is one-sixth (1/6) that on the Earth, by what factor would the pendulum frequency be changed? a. □about 2.5 c. □about 0.41 d. □about 0.17 ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum swing by what factor? a. □a.0.33 b.□1.0 c.□3.0 d.□9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum swing by what factor? a.□0.33 b.□1.0 c.□3.0 d.□9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum will cause a change in the frequency of the pendulum swing by what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum length? (g = 9.8 m/s²) a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s		b. \Box 1/4 the amplit						
ANS: A PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 46. If one could transport a simple pendulum of constant length from the Earth's surface to the Moon's, where the acceleration due to gravity is one-sixth (1/6) that on the Earth, by what factor would the pendulum frequency be changed? a about 6.0 b about 0.41 d about 0.17 ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum swing by what factor? a 0.33 b 1.0 c 3.0 d 9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum swing by what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a 1/9 b 0.0 33 c 3.0 d 9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a 1/0.36 m b 1/0.78 m c 0.99 m d 0.24 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a 1.1.14 m/s b 1/13.13 m/s c 2.2.21 m/s d 1/16 m/s		•						
46. If one could transport a simple pendulum of constant length from the Earth's surface to the Moon's, where the acceleration due to gravity is one-sixth (1/6) that on the Earth, by what factor would the pendulum frequency be changed? □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		d. □equal the amp	litude					
the acceleration due to gravity is one-sixth (1/6) that on the Earth, by what factor would the pendulum frequency be changed? a. □about 6.0 b. □about 2.5 c. □about 0.41 d. □about 0.17 ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum swing by what factor? a. □0.33 b. □1.0 c. □3.0 d. □9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum swing by what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a. □1/9 b. □0.33 c. □3.0 d. □9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum service of the pendulum be changed if the period of vibration were to be tripled? a. □1/9 b. □0.33 c. □3.0 d. □9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum service of the pendulum servi		ANS: A	PTS:	1	DIF:	1	TOP:	13.5 Motion of a Pendulum
frequency be changed? a. □about 6.0 b. □about 0.41 d. □about 0.17 ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 47. Tripling the mass of the bob on a simple pendulum will cause a change in the frequency of the pendulum swing by what factor? a. □0.33 b. □1.0 c. □3.0 d. □9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a. □1/9 b. □0.33 c. □3.0 d. □9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a. □0.36 m b. □0.78 m c. □0.99 m d. □2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □1.14 m/s b. □3.13 m/s c. □2.21 m/s d. □1.62 m/s	46.							
b. □ about 2.5 c. □ about 0.41 d. □ about 0.17 ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 47. Tripling the mass of the bob on a simple pendulum will cause a change in the frequency of the pendulum swing by what factor? a. □ 0.33 b. □ 1.0 c. □ 3.0 d. □ 9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a. □ 1/9 b. □ 0.33 c. □ 3.0 d. □ 9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a. □ 0.36 m b. □ 0.78 m c. □ 0.99 m d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.16 m/s		frequency be char	_	ty is one-si	xtn (1/6) tn	iat on the	e Earth, by wha	at factor would the pendulum
e.□about 0.41 d.□about 0.17 ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 47. Tripling the mass of the bob on a simple pendulum will cause a change in the frequency of the pendulum swing by what factor? a.□0.33 b.□1.0 c.□3.0 d.□9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s								
ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum swing by what factor? a.□0.33 b.□1.0 c.□3.0 d.□9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s								
ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum swing by what factor? a.□0.33 b.□1.0 c.□3.0 d.□9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s								
47. Tripling the mass of the bob on a simple pendulum will cause a change in the frequency of the pendulum swing by what factor? a.□0.33 b.□1.0 c.□3.0 d.□9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s		d. □ about 0.17						
swing by what factor? a.□0.33 b.□1.0 c.□3.0 d.□9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s		ANS: C	PTS:	1	DIF:	2	TOP:	13.5 Motion of a Pendulum
a.□0.33 b.□1.0 c.□3.0 d.□9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s	47.			on a simpl	e pendulun	n will ca	use a change in	n the frequency of the pendulum
b.□1.0 c.□3.0 d.□9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s			ctor?					
ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a. □ 1/9 b. □ 0.33 c. □ 3.0 d. □ 9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a. □ 0.36 m b. □ 0.78 m c. □ 0.99 m d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s								
d.□9.0 ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s d.□1.62 m/s								
ANS: B PTS: 1 DIF: 1 TOP: 13.5 Motion of a Pendulum 48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a. □ 1/9 b. □ 0.33 c. □ 3.0 d. □ 9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a. □ 0.36 m b. □ 0.78 m c. □ 0.99 m d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s								
48. By what factor should the length of a simple pendulum be changed if the period of vibration were to be tripled? a. □ 1/9 b. □ 0.33 c. □ 3.0 d. □ 9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a. □ 0.36 m b. □ 0.78 m c. □ 0.99 m d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s		a. □9.0						
tripled? a.□1/9 b.□0.33 c.□3.0 d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s		ANS: B	PTS:	1	DIF:	1	TOP:	13.5 Motion of a Pendulum
a. □1/9 b. □0.33 c. □3.0 d. □9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a. □0.36 m b. □0.78 m c. □0.99 m d. □2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □1.14 m/s b. □3.13 m/s c. □2.21 m/s d. □1.62 m/s	48.	•	ould the ler	ngth of a si	mple pend	ulum be	changed if the	period of vibration were to be
b. □ 0.33 c. □ 3.0 d. □ 9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a. □ 0.36 m b. □ 0.78 m c. □ 0.99 m d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s								
c. □ 3.0 d. □ 9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a. □ 0.36 m b. □ 0.78 m c. □ 0.99 m d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s								
d.□9.0 ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a.□0.36 m b.□0.78 m c.□0.99 m d.□2.4 m DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s								
ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a. □ 0.36 m b. □ 0.78 m c. □ 0.99 m d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s								
49. A simple pendulum has a period of 2.0 s. What is the pendulum length? (g = 9.8 m/s²) a. □ 0.36 m b. □ 0.78 m c. □ 0.99 m d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s			-2TQ	1	DIE	2	TOP:	13.5 Motion of a Pendulum
a. □ 0.36 m b. □ 0.78 m c. □ 0.99 m d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s	10							
b. □ 0.78 m c. □ 0.99 m d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s	49.		m has a pei	riod of 2.0	s. What is	the pend	ulum length? ($g = 9.8 \text{ m/s}^{-}$
c.□0.99 m d.□2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a.□1.14 m/s b.□3.13 m/s c.□2.21 m/s d.□1.62 m/s								
d. □ 2.4 m ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s								
ANS: C PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum 50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s								
50. A simple pendulum of length 1.00 m has a mass of 100 g attached. It is drawn back 30.0° and then released. What is the maximum speed of the mass? a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s								
released. What is the maximum speed of the mass? a. \Box 1.14 m/s b. \Box 3.13 m/s c. \Box 2.21 m/s d. \Box 1.62 m/s		ANS: C	PTS:	1	DIF:	2	TOP:	13.5 Motion of a Pendulum
a. □ 1.14 m/s b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s	50.						ttached. It is d	rawn back 30.0° and then
b. □ 3.13 m/s c. □ 2.21 m/s d. □ 1.62 m/s			maniin	speed o	_ 110 111000	-		
c. □ 2.21 m/s d. □ 1.62 m/s								
d. □ 1.62 m/s								
ANS: D PTS: 1 DIF: 2 TOP: 13.5 Motion of a Pendulum		ANS: D	PTS:	1	DIF:	2	TOP:	13.5 Motion of a Pendulum

51.	A simple pendulum has a mass of 0.25 kg and a length of 1.0 m. It is displaced through an angle of 30° and then released. After a time, the maximum angle of swing is only 10°. How much energy has been lost
	to friction?
	a. \Box 0.29 J
	b. \(\sigma \). 6.65 J
	c. □ 0.80 J
	d. □ 1.0 J
	ANS: A PTS: 1 DIF: 3 TOP: 13.5 Motion of a Pendulum
52.	When car shock absorbers wear out and lose their damping ability, what is the resulting oscillating behavior?
	a. □ underdamped
	b. Critically damped
	c. \square overdamped
	d. □hyperdamped
	ANS: A PTS: 1 DIF: 1 TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength
53.	
	a. \(\text{\text{\text{the distance between crests.}}\)
	b. □ the height difference between a crest and a
	trough.
	c. □ one half the height difference between a
	crest and a trough.
	d. □ how far the wave goes up on the beach.
	ANS: C PTS: 1 DIF: 1
	TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength
54.	As a gust of wind blows across a field of grain, a wave can be seen to move across the field as the tops of the plants sway back and forth. This wave is a:
	a. \(\text{transverse wave.}\)
	b. □longitudinal wave.
	c. polarized wave.
	d. interference of waves.
	d. Interference of waves.
	ANS: B PTS: 1 DIF: 1
	TOP: 13.8 Frequency, Amplitude, and Wavelength
55.	Which of the following is an example of a longitudinal wave?
	a. □ sound wave in air
	b. □ wave traveling in a string
	c. □ both a and b
	d. □ neither a nor b
	ANS: A PTS: 1 DIF: 1 TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength

56.	If the frequency of a traveling wave train is increased by a factor of three in a medium where the speed is constant, which of the following is the result?						
	a. amplitude is one third as big						
	b. □ amplitude is tripled						
	c. wavelength is one third as big						
	d. □ wavelength is tripled						
	ANS: C PTS: 1 DIF: 2						
	TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength						
57.	The wavelength of a traveling wave can be calculated if one knows the:						
	a. □ frequency.						
	b. □ speed and amplitude.						
	c. amplitude and frequency.						
	d. ☐ frequency and speed.						
	ANS: D PTS: 1 DIF: 1						
	TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength						
	101. 15.0 Bumped Osemations 15.7 Waves 15.0 Frequency, Empiredae, and Wavelength						
58.	A traveling wave train has wavelength 0.50 m, speed 20 m/s. Find the wave frequency.						
	a. □ 0.025 Hz						
	b. □ 20 Hz						
	c. □40 Hz						
	d. □ 10 Hz						
	ANS: C PTS: 1 DIF: 1						
	TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength						
59.	A musical tone, sounded on a piano, has a frequency of 410 Hz and a wavelength in air of 0.800 m. What						
	is the wave speed?						
	a. □ 170 m/s						
	b. □ 235 m/s						
	c. □ 328 m/s						
	d. □ 587 m/s						
	ANS: C PTS: 1 DIF: 1						
	TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength						
60.	If a radio wave has speed 3.00 ′ 10 ⁸ m/s and frequency 94.7 MHz, what is its wavelength?						
	a. □ 8.78 m						
	b.□1.20 m						
	c. □ 2.50 m						
	d. □ 3.17 m						
	ANS: D PTS: 1 DIF: 1						
	TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength						
61	Consider the curve $f(x) = A \cos(2px/l)$. The wavelength of the wave will be:						
61.	Consider the curve $f(x) = A \cos(2px/1)$. The wavelength of the wave will be.						

	a. \Box the distance θ to A .
	b. \Box twice the distance θ to A .
	c. \Box the distance x_2 to x_3 .
	d. □ twice the distance x_2 to x_3 .
	ANS: D PTS: 1 DIF: 2 TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength
62.	Bats can detect small objects such as insects that are of a size approximately that of one wavelength. If bats emit a chirp at a frequency of 60 kHz, and the speed of sound waves in air is 330 m/s, what is the smallest size insect they can detect? a. \Box 1.5 mm b. \Box 3.5 mm c. \Box 5.5 mm
	d. □ 7.5 mm
	ANS: C PTS: 1 DIF: 2
	TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength
63.	Waves propagate at 8.0 m/s along a stretched string. The end of the string is vibrated up and down once every 1.5 s. What is the wavelength of the waves that travel along the string?
64.	An earthquake emits both P-waves and S-waves that travel at different speeds through the Earth. A P-wave travels at 8 000 m/s and an S-wave at 4 000 m/s. If P-waves are received at a seismic station 30.0 s before an S-wave arrives, how far is the station from the earthquake center? a. □ 2 420 km
	b. □ 1 210 km
	c. □ 240 km
	d. □ 120 km
	ANS: C PTS: 1 DIF: 2 TOP: 13.6 Damped Oscillations 13.7 Waves 13.8 Frequency, Amplitude, and Wavelength
65.	A long string is pulled so that the tension in it increases by a factor of three. If the change in length is negligible, by what factor does the wave speed change?
	c. \(\sigma 0.58 \)
	d. □0.33

	ANS: B PTS: 1 DIF: 2 TOP: 13.9 The Speed of Waves on Strings
66.	What is the phase difference when two waves, traveling in the same medium, undergo constructive interference? $a.\square 270^{\circ}$
	b. □ 180°
	c. □90°
	d. \(\sigma^\circ\)
	$\mathfrak{u}.\Box \mathfrak{v}$
	ANS: D PTS: 1 DIF: 1 TOP: 13.9 The Speed of Waves on Strings
67.	Tripling both the tension in a guitar string and its mass per unit length will result in changing the wave speed in the string by what factor?
	$a. \square 0.58$
	$b.\Box 1.00$ (i.e., no change)
	c.□1.73
	d. □ 3.00
	LIVE D. DEG. 4. DEG. 6.
	ANS: B PTS: 1 DIF: 2 TOP: 13.9 The Speed of Waves on Strings
68.	Tripling the mass per unit length of a guitar string will result in changing the wave speed in the string by what factor?
	$a.\Box 0.58$
	b. □ 1.00 (i.e., no change)
	c.□1.73
	d. □ 3.00
	ANS: A PTS: 1 DIF: 2
	TOP: 13.9 The Speed of Waves on Strings
69.	A 2.0-m long piano string of mass 10 g is under a tension of 338 N. Find the speed with which a wave travels on this string.
	a. □ 130 m/s
	b. □ 260 m/s
	c. □ 520 m/s
	d. □ 1 040 m/s
	ANS: B PTS: 1 DIF: 2
	TOP: 13.9 The Speed of Waves on Strings
70.	Transverse waves travel with a speed of 200 m/s along a taut copper wire that has a diameter of 1.50 mm. What is the tension in the wire? (The density of copper is 8.93 g/cm ³ .)
	a. □ 1 890 N
	b. □ 1 260 N
	c. □ 631 N
	d. □315 N
	u. U. 313 14

	ANS: C PTS: 1 DIF: 3 TOP: 13.9 The Speed of Waves on Strings
71.	For a wave traveling in a string, by what factor would the tension need to be increased to double the wave speed?
	ANS: C PTS: 1 DIF: 2 TOP: 13.9 The Speed of Waves on Strings
72.	A wave is traveling in a string at 60 m/s. When the tension is then increased 20%, what will be the resulting wave speed? a. \square also 60 m/s b. \square 66 m/s c. \square 72 m/s d. \square 55 m/s
	ANS: B PTS: 1 DIF: 3 TOP: 13.9 The Speed of Waves on Strings
73.	A wave travels in a string at 60 m/s. A second string of 20% greater linear density has the same tension applied as in the first string. What will be the resulting wave speed in the second string? a.□also 60 m/s b.□66 m/s c.□72 m/s d.□55 m/s ANS: D PTS: 1 DIF: 3 TOP: 13.9 The Speed of Waves on Strings
74.	A string is strung horizontally with a fixed tension. A wave of frequency 100 Hz is sent along the string, and it has a wave speed of 50.0 m/s . Then a second wave, one of frequency 200 Hz , is sent along the string. What is the wave speed of the second wave? a. $\square 25.0 \text{ m/s}$ b. $\square 50.0 \text{ m/s}$ c. $\square 70.7 \text{ m/s}$ d. $\square 100 \text{ m/s}$ ANS: B PTS: 1 DIF: 2
	TOP: 13.9 The Speed of Waves on Strings
75.	The superposition principle has to do with which of the following? a. □effects of waves at great distances b. □the ability of some waves to move very far c. □how displacements of interacting waves add together d. □relativistic wave behavior

	TOP: 13.10 Interference of Waves 13.11 Reflection of Waves
76.	Equal wavelength waves of amplitude 0.25 m and 0.15 m interfere with one another. What is the resulting minimum amplitude that can result?
	a. □ 0.15 m
	b. □ 0.10 m
	c. □0 m
	d. □ - 0.40 m
	ANS: B PTS: 1 DIF: 2
	TOP: 13.10 Interference of Waves 13.11 Reflection of Waves
77.	If a wave pulse is reflected from a free boundary, which of the following choices best describes what
	happens to the reflected pulse?
	a. □ becomes inverted
	b. □remains upright
	c. □ halved in amplitude
	d. □ doubled in amplitude
	ANS: B PTS: 1 DIF: 1
	TOP: 13.10 Interference of Waves 13.11 Reflection of Waves
78.	Consider two identical and symmetrical wave pulses on a string. Suppose the first pulse reaches the fixed end of the string and is reflected back and then meets the second pulse. When the two pulses overlap exactly, the superposition principle predicts that the amplitude of the resultant pulses, at that moment, will be what factor times the amplitude of one of the original pulses?
	ANS: A PTS: 1 DIF: 2
	TOP: 13.10 Interference of Waves 13.11 Reflection of Waves
79.	Two water waves meet at the same point, one having a displacement above equilibrium of 60 cm and the other having a displacement above equilibrium of 80 cm. At this moment, what is the resulting displacement above equilibrium?
	a. □ 140 cm
	b. □ 100 cm
	c. □ 70 cm
	d. ☐ Information about the amplitudes needs to
	be given to find an answer.
	ANS: A PTS: 1 DIF: 2 TOP: 13.10 Interference of Waves 13.11 Reflection of Waves
80.	A mass-spring system on a horizontal frictionless surface is set in simple harmonic motion with amplitude

A. The mass is then doubled and the system is again set into simple harmonic motion with the same amplitude. Which of the following is true about the total mechanical energy of the system due to doubling

DIF: 1

ANS: C

the mass?

PTS: 1

	a. □ It has doubled					
	b. ☐ It has quadrup	oled.				
	c. ☐ It has halved.					
	d. ☐ It has not char	nged.				
		•				
	ANS: D	PTS: 1	DIF:	2	TOP:	Conceptual Problems
81.	If a long spring w	ith spring constant k	is cut into 4	4 equal 1	engths, what is	the spring constant of each of
	the 4 shorter sprin			•		
	a. □ It is still k .					
	b. \Box It is $k/4$.					
	c. \Box It is 4 k .					
	d. \Box It is $k/16$.					
	ANS: C	PTS: 1	DIF:	1	TOP:	Conceptual Problems
82.	displacement from a. □the magnitude b. □the magnitude c. □the kinetic ene d. □the total mech	n equilibrium is zero of the velocity of the acceleration ergy anical energy	9?			owing is at a minimum when the
	ANS: B	PTS: 1	DIF:	1	TOP:	Conceptual Problems
83.	the Earth, and the identical pendulur a. on the Earth b. on the Moon c. on Mars d. The period of same on the Earth	a pendulum would a pendulum would by the pendulum's len	gravity on to			ity on Mars is less than that on Where would the period of an
	ANS: A	PTS: 1	DIF:	2	TOP:	Conceptual Problems
84.	into simple harmo		ould be the	spring c		el to a mass, which is then set gle spring which would result in
	ANS: B	PTS: 1	DIF:	2	TOP:	Conceptual Problems

Chapter 14—Sound

MULTIPLE CHOICE

1.	When a sine wave is used to represent a sound wave, the crest corresponds to: a. □rarefaction. b. □condensation. c. □point where molecules vibrate at a right angle to the direction of wave travel. d. □region of low elasticity.
	ANS: B PTS: 1 DIF: 1 TOP: 14.1 Producing a Sound Wave
2.	A sound wave coming from a tuba has a wavelength of 1.50 m and travels to your ears at a speed of 345 m/s. What is the frequency of the sound you hear? a. \Box 517 Hz b. \Box 1/517 Hz c. \Box 230 Hz d. \Box 1/230 Hz ANS: C PTS: 1 DIF: 1 TOP: 14.1 Producing a Sound Wave
3.	A series of ocean waves, 5.0 m between crests, move past at 2.0 waves/s. Find their speed. a. □ 2.5 m/s b. □ 5.0 m/s c. □ 8.0 m/s d. □ 10 m/s ANS: D PTS: 1 DIF: 1 TOP: 14.1 Producing a Sound Wave
4.	Consider a vibrating string that makes a sound wave that moves through the air. As the guitar string moves up and down, the air molecules that are a certain horizontal distance from the string will move: a. □ up and down. b. □ toward and away from the guitar string. c. □ back and forth along the direction of the length of the string. d. □ in circles around the guitar string. ANS: B PTS: 1 DIF: 1
5.	TOP: 14.1 Producing a Sound Wave When a sound wave moves through a medium such as air, the motion of the molecules of the medium is in what direction (with respect to the motion of the sound wave)? a. perpendicular b. parallel c. anti-parallel (in opposite direction)

	d. ☐ Both choices b and c are valid.
	ANS: D PTS: 1 DIF: 1
	TOP: 14.2 Characteristics of Sound Waves
5.	Which of the following ranges corresponds to the longest wavelengths?
	a. □ infrasonic
	b. □ audible
	c. □ultrasonic
	d. □ all have the same wavelengths
	ANS: A PTS: 1 DIF: 1
	TOP: 14.2 Characteristics of Sound Waves
7.	The frequency separating audible waves and ultrasonic waves is considered to be 20 kHz. What
•	wavelength in air at room temperature is associated with this frequency? (Assume the speed of sound to
	be 340 m/s.)
	a. □ 1.7 cm
	b. □ 5.2 cm
	c. □ 34 cm
	d. □ 55 cm
	ANS: A PTS: 1 DIF: 2
	Assuming that the wave speed varies little when sound waves are traveling though a material that
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? $a. \square < 1\%$
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. \square < 1% b. \square 5%
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. \square < 1% b. \square 5% c. \square 10%
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. \square < 1% b. \square 5%
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? $a. \square < 1\%$ $b. \square 5\%$ $c. \square 10\%$ $d. \square 20\%$
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? $a. \square < 1\%$ $b. \square 5\%$ $c. \square 10\%$ $d. \square 20\%$
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves
Э.	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected?
Э.	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for?
Э.	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Э.	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for? a. □ aspirator b. □ accumulator
Э.	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for? a. □ aspirator b. □ accumulator c. □ array
Э.	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for? a. □ aspirator b. □ accumulator
Э.	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for? a. □ aspirator b. □ accumulator c. □ array
Э.	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for? a. □ aspirator b. □ accumulator c. □ array d. □ audible
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for? a. □ aspirator b. □ accumulator c. □ array d. □ audible ANS: A PTS: 1 DIF: 1 TOP: 14.2 Characteristics of Sound Waves
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for? a. □ aspirator b. □ accumulator c. □ array d. □ audible ANS: A PTS: 1 DIF: 1 TOP: 14.2 Characteristics of Sound Waves A sound wave is traveling toward a boundary where the density of the medium decreases by 10%. What
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for? a. □ aspirator b. □ accumulator c. □ array d. □ audible ANS: A PTS: 1 DIF: 1 TOP: 14.2 Characteristics of Sound Waves A sound wave is traveling toward a boundary where the density of the medium decreases by 10%. What percent of the wave intensity is transmitted through the boundary?
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for? a. □ aspirator b. □ accumulator c. □ array d. □ audible ANS: A PTS: 1 DIF: 1 TOP: 14.2 Characteristics of Sound Waves A sound wave is traveling toward a boundary where the density of the medium decreases by 10%. What percent of the wave intensity is transmitted through the boundary? a. □ 22
	suddenly changes density by 10%, what percentage of the incident wave intensity is reflected? a. □ < 1% b. □ 5% c. □ 10% d. □ 20% ANS: A PTS: 1 DIF: 2 TOP: 14.2 Characteristics of Sound Waves A relatively new medical device that uses ultrasonics is referred to by the acronym CUSA. What does the letter A stand for? a. □ aspirator b. □ accumulator c. □ array d. □ audible ANS: A PTS: 1 DIF: 1 TOP: 14.2 Characteristics of Sound Waves A sound wave is traveling toward a boundary where the density of the medium decreases by 10%. What percent of the wave intensity is transmitted through the boundary?

	d. □ 78						
	ANS: D TOP: 14.2 Charact	PTS: eristics o		DIF:	2		
11.	The speed of sound a. □ wavelength b. □ frequency c. □ temperature d. □ amplitude	in air is	a function of w	hich o	ne of the follow	ing?	
	ANS: C	PTS:	1	DIF:	1	TOP:	14.3 The Speed of Sound
12.	The speed of sound a. □ 346 m/s b. □ 356 m/s c. □ 343 m/s d. □ 350 m/s	at 0°C is	s 331 m/s. Wha	at is the	speed of sound	l at 25°0	$C? (0^{\circ}C = 273 \text{ K})$
	ANS: A	PTS:	1	DIF:	2	TOP:	14.3 The Speed of Sound
13.	The density of a cert is the speed of sound $a.\Box 1.4 \ ' \ 10^7 \text{ m/s}$ $b.\Box 5 \ 900 \text{ m/s}$ $c.\Box 3 \ 700 \text{ m/s}$ $d.\Box 3 \ 000 \text{ m/s}$			10 ³ kg	g/m³, and its Yo	ung's m	nodulus is $10 \cdot 10^{10} \text{N/m}^2$. What
	ANS: C	PTS:	1	DIF:	2	TOP:	14.3 The Speed of Sound
14.	How far away is a listrike? ($v_{\text{sound}} = 340$) a. $\Box 113 \text{ m}$ b. $\Box 340 \text{ m}$ c. $\Box 680 \text{ m}$ d. $\Box 1 020 \text{ m}$	-	· ·		thunderclap 3.0	0 s after	r you see the lightning bolt
	ANS: D	PTS:	1	DIF:	2	TOP:	14.3 The Speed of Sound
15.	A sound wave in air a.□- 18°C b.□0°C c.□15°C d.□27°C	has a fro	equency of 500	Hz an	d a wavelength	of 0.68	m. What is the air temperature?
	ANS: C	PTS:	1	DIF:	2	TOP:	14.3 The Speed of Sound
16.	Comparing the spee and highest in a. □ solids, liquids		nd in liquids, g	ases, a	nd solids, the sp	eed of	sound is usually lowest in

		_			
	b. □ gases, liquids				
	c.□liquids, solids				
	d. □ gases, solids				
	ANS: D PTS: 1 DI	F:	1	TOP:	14.3 The Speed of Sound
17.	Tripling the power output from a speaker emitti	ing	a sin	gle frequency will	result in what increase in
	loudness? a. \(\subseteq 0.33 \) dB	\neg			
		+			
	b. \(\Bar{\partial} 3.0 \text{ dB}	+			
	c. 4.8 dB	+			
	d. □9.0 dB				
	ANS: C PTS: 1 DII TOP: 14.4 Energy and Intensity of Sound Way		2		
				10	
18.	What is the intensity level of a sound with inter	ısit	y of :	$5.0 \cdot 10^{-10} \mathrm{W/m^2?}$	$(I_0 = 10^{-12} \mathrm{W/m}^2)$
	a. □74 dB				
	b. □ 54 dB				
	c. □ 2.7 dB				
	d. □27 dB				
	ANS: D PTS: 1 DI	E٠	2		
	TOP: 14.4 Energy and Intensity of Sound Way				
	101. 111 Energy and Intensity of Sound Wa	, 05			
19.	What is the intensity of a sound with a measure	d i	ntens	ity level of 84 dB?	$P(I_0 = 10^{-12} \text{ W/m}^2)$
-,.	a. $\Box 8.4 \cdot 10^{-3} \text{ W/m}^2$				(-0
	b. $\Box 2.5 \cdot 10^{-4} \text{ W/m}^2$				
	c. $\Box 1.2 \ 10^{-5} \ \text{W/m}^2$	+			
	$d.\Box 7.4 \cdot 10^{-4} \text{ W/m}^2$	+			
	u. 🗆 7.4 10 W/III				
	ANS: B PTS: 1 DI	F:	2		
	TOP: 14.4 Energy and Intensity of Sound Wav	ves			
20.	If one-third of the members of a symphony orcl				
	overall intensity of sound by 33%, what will be	th	e red	uction in the decib	el level?
	a. □ 30 dB	4			
	b. □3 dB	4			
	c. □48 dB	4			
	d. □ 1.7 dB				
	ANS: D PTS: 1 DI	F:	2		
	TOP: 14.4 Energy and Intensity of Sound Way		_		
	· · · · · · · · · · · · · · · · ·				
21.	If $I_0 = 10^{-12} \text{ W/m}^2$ is the threshold of hearing, a	SOI	und v	with intensity $I_1 = 1$	10 ⁻¹¹ W/m ² will give a certain
	decibel level. Suppose a new sound has an inter				
	a. □2.0				
	b. □20				
	c. □ 100	7			
	d. □it will square the decibel level				

	ANS: B PTS: 1 DIF: 2 TOP: 14.4 Energy and Intensity of Sound Waves
22.	If the intensity of a sound is increased by a factor of 100, how is the decibel level changed? The new decibel level will be:
	a. □two units greater.
	b. □ double the old one.
	c. □ten times greater.
	d. □twenty units greater.
	ANS: D PTS: 1 DIF: 2
	TOP: 14.4 Energy and Intensity of Sound Waves
23.	What is the intensity of sound from a band with a sound level of 120 dB? $(I_0 = 10^{-12} \text{ W/m}^2)$
	$a.\Box 1 \text{ W/m}^2$
	b. \Box 1.2 W/m ²
	$c.\Box 10 \text{ W/m}^2$
	$d. \Box 12 \text{ W/m}^2$
	ANS: A PTS: 1 DIF: 2 TOP: 14.4 Energy and Intensity of Sound Waves
24.	In the afternoon, the decibel level of a busy freeway is 80 dB with 100 cars passing a given point every minute. Late at night, the traffic flow is only 5 cars per minute. What is the late-night decibel level?
	a. □77 dB
	b. □74 dB
	c. □70 dB
	d. □ 68 dB
	ANS: D PTS: 1 DIF: 3 TOP: 14.4 Energy and Intensity of Sound Waves
25.	What sound level change corresponds to a factor of two change in intensity?
	a. □ 0.5 dB
	b. □2 dB
	c. □3 dB
	d. □5 dB
	ANS: C PTS: 1 DIF: 2 TOP: 14.4 Energy and Intensity of Sound Waves
26.	Tripling the distance between sound source and a listener will change the intensity, as detected by the listener, by what factor?
	a. □ 1/9
	b. □0.33
	c. \(\preceq 3.0 \)
	d. □9.0
	ANS: A PTS: 1 DIF: 1 TOP: 14.5 Spherical and Plane Waves

27.	7. If the distance between a point sound source and a dB detector is increased by a factor of 4 the reduction in intensity level? a.□16 dB b.□12 dB c.□4 dB d.□0.5 dB	, what will be
	ANS: B PTS: 1 DIF: 2 TOP: 14.5 Spherical and Plane Waves	
28.	sound intensity level be a tolerable 100 dB? (Assume spherical spreading of sound.) a. □90 m b. □120 m c. □150 m d. □200 m ANS: D PTS: 1 DIF: 2	irplane will the
	TOP: 14.5 Spherical and Plane Waves	
29.	A very loud train whistle has an acoustic power output of 100 W. If the sound energy sprear spherically, what is the intensity level in dB at a distance of 100 meters from the train? (<i>I</i> ₀ = a. □78.3 dB b. □81.6 dB c. □89.0 dB d. □95.0 dB ANS: C PTS: 1 DIF: 3 TOP: 14.5 Spherical and Plane Waves	
30.). By what amount does the sound intensity decrease when the distance to the source doubles	?
	$a. \Box 1.4 dB$ $b. \Box 2.0 dB$ $c. \Box 4.0 dB$ $d. \Box 6.0 dB$	
	ANS: D PTS: 1 DIF: 2 TOP: 14.5 Spherical and Plane Waves	
31.	20 m/s. If the speed of sound in air is 335 m/s, what will be the apparent frequency of the b observer riding the train? a. □532 Hz b. □530 Hz c. □470 Hz d. □472 Hz	ell to an
	ANS: B PTS: 1 DIF: 2 TOP: 14.6 The Dopple	r Ellect

in air is 340 m/s. a. □ 15.7 m/s					
b. □21.2 m/s					
c. □ 28.0 m/s					
d. □ 37.8 m/s					
ANS: D	PTS: 1	DIF:	3	TOP:	14.6 The Doppler Effect
					er who is at rest. What is the
apparent frequen	cy heard by the lister	ner? (speed of	sound =	340 m/s)	
a.□853 Hz					
b.□872 Hz					
c.□1 150 Hz					
d.□1 170 Hz					
ANS: D	PTS: 1	DIF:	2	TOP:	14.6 The Doppler Effect
A 500-Hz whistl	e is moved toward a	listener at a sr	peed of 1	0.0 m/s. At th	ne same time, the listener mov
					pparent frequency heard by th
	eed of sound is 340 r			,, 1140 15 1110 11	pparent frequency freue by the
a. □473 Hz	cca of boaria is 5 to 1	11/5.)			
b. □485 Hz					
lo □ 522 II.					
c. □ 533 Hz					
c.□533 Hz d.□547 Hz					
	PTS: 1	DIF:	3	TOP:	14.6 The Doppler Effect
d.□547 Hz ANS: B					
d. □ 547 Hz ANS: B As a train starts f		celerates dow	n the tra		14.6 The Doppler Effect ward me faster and faster, the
d. □ 547 Hz ANS: B As a train starts f speed of the sour	from rest and then ac	celerates down	n the tra		
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than to	from rest and then ac nd waves coming tow he normal speed of s	celerates down vard me will b ound in air.	n the tra		
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than the sour b. □ equal to the results.	from rest and then ac nd waves coming tow he normal speed of s normal speed of soun	celerates down ward me will b ound in air.	n the tra		
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than the sour constant of the source c	from rest and then ac nd waves coming tow he normal speed of soun normal speed of soun nt speed faster than the	celerates down ward me will b ound in air.	n the tra		
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than t b. □ equal to the r c. □ some constar speed of sound in	from rest and then ac nd waves coming tow he normal speed of s normal speed of soun nt speed faster than the n air.	celerates down ward me will b ound in air.	n the tra		
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than the sour constant of the source c	from rest and then ac nd waves coming tow he normal speed of s normal speed of soun nt speed faster than the n air.	celerates down ward me will b ound in air.	n the tra		
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than t b. □ equal to the r c. □ some constar speed of sound in	from rest and then ac nd waves coming tow he normal speed of s normal speed of soun nt speed faster than the n air.	celerates down vard me will b ound in air. ad in air. ne normal	n the tra	ck, coming to	
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than the b. □ equal to the recommend of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of speed of sound in d. □ faster and fast the speed of speed of sound in d. □ faster and fast the speed of spe	from rest and then ac and waves coming tow the normal speed of sound speed of sound speed faster than the nair. PTS: 1	celerates down ward me will b ound in air. ad in air. ne normal	n the trace:	ck, coming to	ward me faster and faster, the 14.6 The Doppler Effect
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than the b. □ equal to the recommend of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of sound in d. □ faster and fast the speed of speed of sound in d. □ faster and fast the speed of speed of sound in d. □ faster and fast the speed of spe	from rest and then ac and waves coming tow the normal speed of sound speed of sound speed faster than the nair. PTS: 1	celerates down ward me will b ound in air. ad in air. ne normal	n the trace:	ck, coming to	ward me faster and faster, the
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than t b. □ equal to the r c. □ some constar speed of sound in d. □ faster and fast ANS: B An airplane flyin number will:	from rest and then ac and waves coming tow the normal speed of sound speed of sound speed faster than the nair. PTS: 1	celerates down ward me will b ound in air. ad in air. ne normal	n the trace:	ck, coming to	ward me faster and faster, the 14.6 The Doppler Effect
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than to b. □ equal to the r c. □ some constar speed of sound in d. □ faster and fast ANS: B An airplane flyin number will: a. □ increase.	from rest and then ac and waves coming tow the normal speed of sound speed of sound speed faster than the nair. PTS: 1	celerates down ward me will b ound in air. ad in air. ne normal	n the trace:	ck, coming to	ward me faster and faster, the 14.6 The Doppler Effect
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than t b. □ equal to the r c. □ some constar speed of sound in d. □ faster and fast ANS: B An airplane flyin number will: a. □ increase. b. □ decrease.	From rest and then ac and waves coming tow the normal speed of sound the speed faster than the speed faster. PTS: 1 The speed with a constant speed accounts the speed faster than the speed faster	celerates down ward me will b ound in air. ad in air. ne normal	n the trace:	ck, coming to	ward me faster and faster, the 14.6 The Doppler Effect
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than to b. □ equal to the r c. □ some constar speed of sound in d. □ faster and fast ANS: B An airplane flyin number will: a. □ increase.	From rest and then ac and waves coming tow the normal speed of sound the speed faster than the nair. PTS: 1 ag with a constant speed of sound the speed faster than the nair.	celerates down ward me will b ound in air. ad in air. ne normal	n the trace:	ck, coming to	ward me faster and faster, the 14.6 The Doppler Effect
d. □547 Hz ANS: B As a train starts f speed of the sour a. □ slower than the b. □ equal to the reconstant speed of sound in d. □ faster and fast ANS: B An airplane flyin number will: a. □ increase. b. □ decrease. c. □ stay the same	From rest and then ac and waves coming tow the normal speed of sound the speed faster than the nair. PTS: 1 ag with a constant speed of sound the speed faster than the nair.	celerates down ward me will b ound in air. ad in air. ne normal	n the trace: 1 a warm	TOP:	ward me faster and faster, the 14.6 The Doppler Effect

	a. □ 13.1 m/s					
	b. □ 17.4 m/s					
	c. □21.1 m/s					
	d. □ 26.2 m/s					
	ANS: D	PTS: 1	DIF: 3	TOP:	14.6 The Doppler Effect	
38.	what is the frequen		1, emits a chirp at 50. eived by the bat? (v_{sout}		vall reflects this sound pulse,	
	a. □ 51.5 kHz b. □ 51.2 kHz					
	c. □40.8 kHz					
	d.□50.5 kHz					
	ANS: A	PTS: 1	DIF: 3	TOP:	14.6 The Doppler Effect	
39.	The Donnler shift	of ultrasonic waves	can measure the spe	ed of blood in a	an artery. If the frequency of th	a
٥,٠					of 200 Hz, what is the blood flo	
			body is 1 500 m/s.)	11	,	
	a. □ 1.0 m/s					
	b. □ 1.5 m/s					
	c. □ 2.2 m/s					
	d. □3.3 m/s					
	ANS: B	PTS: 1	DIF: 3	TOP:	14.6 The Doppler Effect	
10	True		- 4marralin a darrum 4h a 1	hishaaa at 25 .	ur/o. The combabind counds its	
40.					m/s. The car behind sounds its at driver of the lead car? (v_{sound}	_
	340 m/s)	irequency of 500 II	z. What is the frequen	ney near a sy th	re differ of the read car. (*sound	
	a. □463 Hz					
	b. □ 540 Hz					
	c. □ 579 Hz					
	d. □ 500 Hz					
	ANS: D	PTS: 1	DIF: 2	TOP:	14.6 The Doppler Effect	
41.	A plane is travelin	ng at Mach 0.950 thr	ough air at a tempera	nture of 0°C. W	That is the plane's speed? (Speed	l
	of sound at 0°C is	331 m/s.)				
	a. □314 m/s					
	b. □ 331 m/s					
	c. □ 348 m/s					
	d. ☐ Mach number	is undefined at 0° C				
	ANS: A	PTS: 1	DIF: 1	TOP:	14.6 The Doppler Effect	
42.	A phase difference	e of 270° correspond	ds to what wavelengt	h difference?		
	a. □3l					
	b. □3l /2					
	c. □31 /4					
	d. □4l /3					

	ANS: C PTS: 1 DIF: 2 TOP: 14.7 Interference of Sound Waves
43.	When two sound waves are out of phase by, destructive interference will occur. $a.\Box 90^{\circ}$
	b. □270°
	c. 540°
	d. \(\tau 720^\circ\)
	u. 🗆 720
	ANS: C PTS: 1 DIF: 2
	TOP: 14.7 Interference of Sound Waves
44.	Two loudspeakers are placed next to each other and driven by the same source at 500 Hz. A listener is positioned in front of the two speakers and on the line separating them, thus creating a constructive
	interference at the listener's ear. What minimum distance would one of the speakers be moved back away from the listener to produce destructive interference at the listener's ear? (The speed of sound = 340 m/s.)
	a. □ 1.36 m
	b. □ 0.68 m
	c. □ 0.34 m
	d. □ 0.17 m
	ANS: C PTS: 1 DIF: 2 TOP: 14.7 Interference of Sound Waves
45.	Two loudspeakers are placed side by side and driven by the same source at 500 Hz. A listener is positioned in front of the two speakers and on the line separating them, thus creating a constructive interference at the listener's ear. If one of the speakers is gradually pushed toward the listener, how far must it be moved to repeat the condition of constructive interference at the listener's ear? (The speed of sound = 340 m/s.)
	a. □ 1.02 m
	b. □ 0.68 m
	c. □ 0.34 m
	d. □ 0.17 m
	ANS: B PTS: 1 DIF: 2 TOP: 14.7 Interference of Sound Waves
46.	When I stand halfway between two speakers, with one on my left and one on my right, a musical note from the speakers gives me constructive interference. How far to my left should I move to obtain destructive interference?
	a. □one-fourth of a wavelength
	b. □ half a wavelength
	c. □one wavelength
	d. □ one and a half wavelengths
	ANS: A PTS: 1 DIF: 2 TOP: 14.7 Interference of Sound Waves
	1 Or. 14.7 interference of Sound waves

47. If the tension on a guitar string is increased by a factor of 3, the fundamental frequency at which it vibrates is changed by what factor?

	a. □9						
	b. □ 3						
	c. 🗆						
	d. □						
	ANS: C	PTS:	1	DIF:	2	TOP:	14.8 Standing Waves
48.	Doubling the tension	in a gu	itar string will	change	its natural freq	uency b	by what factor?
	a. □ 0.71						
	b. □ 1.0						
	c. □ 1.4						
	d. □2.0						
	ANS: C	PTS:	1	DIF:	2	TOP:	14.8 Standing Waves
49.	If I triple the mass pe	er unit le	ength of guitar	string,	its natural frequ	iency cl	hanges by what factor?
	a. □0.58						
	b. □ 1.0						
	c. □ 1.7						
	d. □3.0						
	ANS: A	PTS:	1	DIF:	2	TOP:	14.8 Standing Waves
50.	The lower A on a pia one-half wavelength a. □100 g b. □25 g c. □37 g d. □50 g ANS: D		es the string, w		ne mass of the s	tring?	2.0-m-long string is 304 N and 14.8 Standing Waves
	71115. D	115.	1	Dn.	3	101.	14.0 Standing Waves
51.	If a guitar string has	a funda	mental frequen	cy of 5	00 Hz, what is	the freq	uency of its second overtone?
	a. □ 250 Hz						
	b. □ 750 Hz						
	c. □ 1 000 Hz						
	d. □ 1 500 Hz						
	ANS: D	PTS:	1	DIF:	2	TOP:	14.8 Standing Waves
52.							mass of the 100-m cable is 150 t which this cable can oscillate?
	ANS: A	PTS:	1	DIF:	2	TOP:	14.8 Standing Waves

53. A standing wave is set up in a 200-cm string fixed at both ends. The string vibrates in 5 distinct segments when driven by a 120-Hz source. What is the wavelength?

	a. □ 10 cm						
	b. □20 cm						
	c. □40 cm						
	d. □ 80 cm						
	ANS: D	PTS: 1	1 1	DIF:	2	TOP:	14.8 Standing Waves
54.	A 1.5-m string is held segments. What is the a. □45 Hz b. □90 Hz c. □240 Hz d. □600 Hz						ee, the string vibrates in 4 distinct
	ANS: A	PTS: 1	1 1	DIF:	2	TOP:	14.8 Standing Waves
55.)-Hz sour ed by a fa	rce. In how man				vibrates in 5 distinct segments gments will the string vibrate if
	ANS: D	PTS: 1	1]	DIF:	3	TOP:	14.8 Standing Waves
56.	For a standing wave of a. the distance between the distance between the distance d. the distance between the dista	een adjac een adjac e betweer	cent nodes. cent antinodes. n adjacent node orts.		-	T∩D.	14 & Standing Wayes
	ANS: C	P15: 1	l J	DIF:	2	TOP:	14.8 Standing Waves
57.	twice its length and n	nake it vi th double	brate in the funes the tension a	ndame	ental frequency	once ag	I frequency. I then stretch it to ain. The rubber band is made so length by a factor of 2. The new
	ANS: A	PTS: 1	1 1	DIF:	3	TOP:	14.8 Standing Waves
58.			•	If the	e length of the p		re is 1.00 m and its mass density

	d.□1 280 N							
	ANS: C	PTS:	1	DIF:	2	TOP:	14.8 Standing	g Waves
59.	A child sits on a sw the driving force to a. □0.29 Hz b. □0.48 Hz c. □2.1 Hz d. □3.5 Hz			of leng	th 3.0 m.	With what fre	equency will sh	ne need to apply
	ANS: A TOP: 14.9 Forced	PTS: Vibratio		DIF:	2			
60.	A 2.50-m-long orga wavelength: a. □ 1.25 m. b. □ 5.00 m. c. □ 10.0 m. d. □ 16.25 m.	n pipe is	open at one e	nd and	closed at	the other. Its f	fundamental to	ne has
	ANS: C TOP: 14.10 Standi	PTS: ng Wave		DIF:	2			
61.	What is the lowest to speed of sound in an	PTS:	m/s. 1	DIF:	an organ	pipe 2.00 m i:	n length, closed	d at one end? The
62.	When the standing (N stands for node, a. □ It is open at both b. □ It is closed at both c. □ It is open at one end. d. □ Any of the above ANS: C TOP: 14.10 Standing to the	wave path A for ant h ends. oth ends. end and we could b	tern in a pipe inde.) closed at the coe true.	other DIF:	A, the pip	be has which o	of the following	g set of properties?
63.	What is the first ove sound in air is 340 m a. □42.5 Hz b. □85.0 Hz c. □128 Hz		equency for an	organ j	pipe 2.00	m in length, c	closed at one er	nd? The speed of

	ANS: C PTS: 1 DIF: 2 TOP: 14.10 Standing Waves in Air Columns
64.	A tuning fork is sounded above a resonating tube (one end closed), which resonates at a length of 0.200 m and again at 0.600 m. What is the frequency of the fork when the speed of sound is taken to be 340 m/s? $a. \Box 567 \ Hz$ $b. \Box 425 \ Hz$ $c. \Box 1 \ 700 \ Hz$ $d. \Box 950 \ Hz$
	ANS: B PTS: 1 DIF: 3 TOP: 14.10 Standing Waves in Air Columns
65.	A tuning fork is sounded above a resonating tube (one end closed), which resonates at a length of 0.20 m and again at 0.60 m. If the tube length were extended further, at what point will the tuning fork again create a resonance condition?
66.	For a standing wave in an air column in a pipe that is open at both ends, there must be at least: a. one node and one antinode. b. two nodes and one antinode. c. two antinodes and one node. d. two nodes and two antinodes. ANS: C PTS: 1 DIF: 2 TOP: 14.10 Standing Waves in Air Columns
67.	If two adjacent frequencies of an organ pipe closed at one end are 550 Hz and 650 Hz, what is the length of the organ pipe? ($\nu_{sound} = 340 \text{ m/s}$) a. $\square 0.85 \text{ m}$ b. $\square 1.25 \text{ m}$ c. $\square 1.50 \text{ m}$ d. $\square 1.70 \text{ m}$
	ANS: D PTS: 1 DIF: 2 TOP: 14.10 Standing Waves in Air Columns
68.	A flute behaves like a tube open at both ends. If its length is 65.3 cm, and the speed of sound is 340 m/s, what is its fundamental frequency in Hz? a. \Box 130 Hz b. \Box 159 Hz c. \Box 212 Hz

d.□680 Hz

	d. □260 Hz				
	ANS: D PTS: 1 DIFTOP: 14.10 Standing Waves in Air Columns	ì:	2		
69.	The air in a tube open at both ends is sent into it closed and the air column is again set into its furthe end is closed. a. □ halves				
	b. □ stays the same c. □ doubles d. □ increases by a factor of 1.4				
	ANS: A PTS: 1 DIFTOP: 14.10 Standing Waves in Air Columns	':	2		
70.	What phenomenon is created by two tuning fork a small amount? a.□resonance b.□interference c.□the Doppler effect d.□beats	s, s	side by side, e	mitting f	requencies, which differ by only
	ANS: D PTS: 1 DIF	':	1	TOP:	14.11 Beats
71.	Two vibrating tuning forks, held side by side, w frequencies of the two forks are 342 Hz and 345 a. □ 687 Hz b. □ 343.5 Hz c. □ 339 Hz d. □ 3 Hz				of what value if the individual
	ANS: D PTS: 1 DIF	':	1	TOP:	14.11 Beats
72.	A vibrating guitar string emits a tone simultaneous frequency of 5 Hz results, what is the frequency a. 2 500 Hz b. 505 Hz c. 495 Hz d. Either choice b or c is valid.				
	ANS: D PTS: 1 DIF	':	1	TOP:	14.11 Beats
73.	Two tuning forks sounding together result in a bis 256 Hz, what is the frequency of the other? a. □262 Hz or 250 Hz b. □105 Hz c. □259 Hz or 253 Hz d. □85 Hz	eat	t frequency of	3 Hz. If	the frequency of one of the forks
	ANS: C PTS: 1 DIF	·:	1	TOP:	14.11 Beats

74.	The number of of generated by a ma. □quality b. □interference c. □range d. □attack patter	nusical instru pattern		ive intensi	ities,	is associate	ed with	what property of the tone
	ANS: A	PTS:	1	DIF:	1		TOP:	14.12 Quality of Sound
75.	The term "timbra. □ Any musical wood. b. □ The quality of the mixture of c. □ Instruments d. □ An instrume	of sound from the framework of harmonics. It have value of the framework o	made primai n instrumen ves.	rily of	;?			
	ANS: B	PTS:	1	DIF:	1		TOP:	14.12 Quality of Sound
76.	Of the frequenci a. □33 Hz b. □330 Hz c. □3 300 Hz d. □33 000 Hz ANS: C	PTS:	1		e hui			itive? 14.13 The Ear
77.	In which part of a. □outer ear b. □middle ear c. □inner ear d. □ear canal	the ear is the	e cochlea?					
	ANS: C	PTS:	1	DIF:	1		TOP:	14.13 The Ear
78.	Which of the fol a. □ extremely lo b. □ about that of c. □ normal conv d. □ like a whispe	ud f a power mo ersation		sound leve	el of	intensity 1	W/m ² ?	
	ANS: A	PTS:	1	DIF:	1		TOP:	Conceptual Problems
79.	How far away is observer? a. □ 1 mile b. □ 2 miles c. □ 5 miles d. □ 10 miles	a lightning	bolt if it take	es 10 s for	the	sound of th	e assoc	riated thunder to reach the

	ANS: B	PTS: 1	DIF:	1	TOP: Conceptual Problems
80.		ture decreases, hov	does the reso	onant f	frequency in a pipe closed at one end change?
	a. ☐ It increases.				
	b. ☐ It decreases.				
		nge since one end o	of the pipe is		
	closed.				
		nge because resona	ince is		
	pressure phenome	enon.			
	ANS: B	PTS: 1	DIF:	2	TOP: Conceptual Problems
81.		quency f_0 is thrown an observer below		ards. C	On the buzzer's trip down, what is the frequency
	a. The frequency	y heard is still f_0 .			
	b. □The frequency	y is a constant one	greater than		
	$f_{0.}$				
	c. □The frequency	y is an increasing o	ne greater		
	than $f_{0.}$				
	d. □The frequency	y is a decreasing or	ne less than		
	$f_{0.}$				
	ANS: C	PTS: 1	DIF:	2	TOP: Conceptual Problems
82.	The air in a pipe r	resonates at 150 Hz	and 750 Hz,	one of	of these resonances being the fundamental. If the
					tween the two given ones, and if the pipe is closed
		nany resonances ar	e between the	two g	given ones?
	a. □open: 3; close				
	b. □open: 1; close				
	c. □ open: 2; close				
	d. □ open: 0; close	ed: 2			
	ANS: A	PTS: 1	DIF:	2	TOP: Conceptual Problems

MULTIPLE CHOICE

1.	Doug rubs a piece of fur on a hard rubber rod, giving the rod a negative charge. What happens? a. Protons are removed from the rod. b. Electrons are added to the rod. c. The fur is also charged negatively. d. The fur is left neutral.
	ANS: B PTS: 1 DIF: 1 TOP: 15.1 Properties of Electric Charges
2.	A repelling force must occur between two charged objects under which conditions? a. Charges are of unlike signs. b. Charges are of like signs. c. Charges are of equal magnitude. d. Charges are of unequal magnitude.
	ANS: B PTS: 1 DIF: 1 TOP: 15.1 Properties of Electric Charges
3.	 When a glass rod is rubbed with silk, which of the following statements best describes what happens? a. Electrons are removed from the rod. b. Protons are removed from the silk. c. The silk is charged positively. d. The silk remains neutral.
	ANS: A PTS: 1 DIF: 1 TOP: 15.1 Properties of Electric Charges
4.	A metallic object holds a charge of - 3.8 $^{'}$ 10 ⁻⁶ C. What total number of electrons does this represent? ($e=1.6$ $^{'}$ 10 ⁻¹⁹ C is the magnitude of the electronic charge.) a. 4.2 $^{'}$ 10 ¹⁴ b. 6.1 $^{'}$ 10 ¹³ c. 2.4 $^{'}$ 10 ¹³ d. 1.6 $^{'}$ 10 ¹⁴
	ANS: C PTS: 1 DIF: 2 TOP: 15.1 Properties of Electric Charges
5.	 When charging two objects by rubbing them together: a. Neither may be a conductor. b. They must be made of different material. c. They will sometimes end up with both being positively charged. d. The heat produced by friction is a necessary part of this process.
	ANS: B PTS: 1 DIF: 1 TOP: 15.1 Properties of Electric Charges
6.	About how many electrons are in 30 grams of water (H_2O)? a. 10^{25} b. 10^{23} c. 10^{21}

	d. 10 ¹⁹
	ANS: A PTS: 1 DIF: 3 TOP: 15.1 Properties of Electric Charges
7.	Who was the first to determine the electron's charge? a. Franklin b. Coulomb c. Millikan d. Faraday
	ANS: C PTS: 1 DIF: 1 TOP: 15.1 Properties of Electric Charges
8.	An uncharged conductor is supported by an insulating stand. I pass a positively charged rod near the left end of the conductor, but do not touch it. The right end of the conductor will be: a. negative. b. positive. c. neutral. d. attracted.
	ANS: B PTS: 1 DIF: 1 TOP: 15.2 Insulators and Conductors
9.	Of the following substances, which one contains the highest density of free electrons? a. hard rubber b. iron c. amber d. glass
	ANS: B PTS: 1 DIF: 1 TOP: 15.2 Insulators and Conductors
10.	Which of the following best characterizes electrical conductors? a. low mass density b. high tensile strength c. electric charges move freely d. poor heat conductors
	ANS: C PTS: 1 DIF: 1 TOP: 15.2 Insulators and Conductors
11.	Which of the following best characterizes electrical insulators? a. charges on the surface don't move b. high tensile strength c. electric charges move freely d. good heat conductors
	ANS: A PTS: 1 DIF: 1 TOP: 15.2 Insulators and Conductors
12.	If body M, with a positive charge, is used to charge body N by induction, what will be the nature of the charge left on the latter? a. must be equal in magnitude to that on M b. must be negative c. must be positive

	ANS: B PTS: 1 DIF: 2 TOP: 15.2 Insulators and Conductors
13.	If body P, with a positive charge, is placed in contact with body Q (initially uncharged), what will be the nature of the charge left on Q? a. must be equal in magnitude to that on P b. must be negative c. must be positive d. must be greater in magnitude than that on P
	ANS: C PTS: 1 DIF: 1 TOP: 15.2 Insulators and Conductors
14.	 I wish to use a positively charged rod to charge a ball by induction. Which statement is correct? a. The charge on the ball will be positive. b. The ball must be a conductor. c. The ball must be an insulator that is connected temporarily to the ground. d. The ball is charged as the area of contact between the two increases.
	ANS: B PTS: 1 DIF: 1 TOP: 15.2 Insulators and Conductors
15.	 How can a charged object attract an uncharged object made of non-conducting material? a. The uncharged object must somehow gain a like charge. b. The uncharged object must somehow gain an unlike charge. c. The charges in the uncharged object can become polarized. d. Attraction of an insulator is not possible.
	ANS: C PTS: 1 DIF: 1 TOP: 15.2 Insulators and Conductors
16.	Two point charges are 4 cm apart. They are moved to a new separation of 2 cm. By what factor does the resulting mutual force between them change? a. 1/2 b. 2 c. 1/4 d. 4
	ANS: D PTS: 1 DIF: 1 TOP: 15.3 Coulomb's Law
17.	If the distance between two point charges is tripled, the mutual force between them will be changed by what factor? a. 9.0 b. 3.0 c. 0.33 d. 1/9
	ANS: D PTS: 1 DIF: 1 TOP: 15.3 Coulomb's Law
18.	If the size of the charge value is tripled for both of two point charges maintained at a constant separation, the mutual force between them will be changed by what factor? a. 9.0 b. 3.0 c. 0.33

d. must be greater in magnitude than that on M

	d. 1/9			
	ANS: A	PTS: 1	DIF: 1	TOP: 15.3 Coulomb's Law
19.	The constant k_e , we following? a. N×m/C b. N/C c. N×m ² /C ² d. N/C ²	which appears in Cou	lomb's law formula, is	equivalent dimensionally to which of the
	ANS: C	PTS: 1	DIF: 1	TOP: 15.3 Coulomb's Law
20.			m, have charge values on them? $(k_e = 8.99 ^{\prime} 10)$	of +2.0 and - 4.0 μ C, respectively. What $10^9 \text{ N/m}^2/\text{C}^2$
	ANS: A	PTS: 1	DIF: 2	TOP: 15.3 Coulomb's Law
21.	Four charges are a	at the corners of a squ B +1 Coul	uare, with B and C on o	ppposite
	C +1 Coul	D		
	_		r two corners, have equ n A so that the force or	al charge, while both B and C have a n B is zero?
	ANS: C	PTS: 1	DIF: 3	TOP: 15.3 Coulomb's Law
22.				00 C and charge B is +3.00 C. Charge C arge C is zero. How far from charge A is
	ANS: C	PTS: 1	DIF: 3	TOP: 15.3 Coulomb's Law
23.	a. gravity.b. a phosphoresoc. varying the el		-	is moved up and down by:
	ANS: D	PTS: 1	DIF: 1	TOP: 15.3 Coulomb's Law

24.	In a thundercloud the the bottom of the clo between these two se a. 3.6 ′ 10 ⁴ N b. 3.6 ′ 10 ⁵ N c. 3.6 ′ 10 ⁶ N d. 3.6 ′ 10 ⁷ N	ud. The	se charges are	separat	ed by about 2.0			
	ANS: C	PTS:	1	DIF:	2	TOP:	15.3 Coulomb's La	aw
25.	An electron is sent at acting on the electron $8.99 \cdot 10^9 \mathrm{N \cdot m^2/C^2})$ a. $20 \mathrm{N}$ b. $0.25 \mathrm{N}$ c. $2.0 \cdot 10^{-4} \mathrm{N}$ d. $2.1 \cdot 10^{-6} \mathrm{N}$	high sp	peed toward a git is 3.0 ′ 10 ⁻¹⁴	gold nuc m awa	cleus (charge + y from the gold	79e). W I nucleu	That is the electrical as? ($e = 1.6 \cdot 10^{-19}$ C	force C , $k_e =$
	ANS: A	PTS:	1	DIF:	2	TOP:	15.3 Coulomb's La	aw
26.	Two electrons are sep between them? ($m_e = 10^{-19}$ C) a. 2.3 ′ 10^2 b. 1.3 ′ 10^{20} c. 3.1 ′ 10^{22} d. 4.2 ′ 10^{42}							
	ANS: D	PTS:	1	DIF:	2	TOP:	15.3 Coulomb's La	aw
27.	Two equal charges, eplaced half way between a Q b Q/2 c Q/4 d Q/8							
	ANS: C	PTS:	1	DIF:	2	TOP:	15.3 Coulomb's La	aw
28.	A 6.0 mC charge is presulting force on the a. 9.0 mC b. 9.0 nC c9.0 mC d9.0 nC							
	ANS: A	PTS:	1	DIF:	2	TOP:	15.3 Coulomb's La	aw
29.	A 6.00 mC charge is the resulting force on charge at the origin? a. 6.40 N in the post. b. 6.40 N in the neg	the sec	cond charge is of direction					

	ANS: B	PTS: 1	DIF: 2	TOP: 15.3 Coulomb's Law
30.	Two point charges eathe electric field mid a. 40.5 ′ 10 ⁷ N/C b. 20.3 ′ 10 ⁷ N/C c. 10.1 ′ 10 ⁷ N/C d. zero			rated by a distance of 4.00 cm. What is $(10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)$
	ANS: D	PTS: 1	DIF: 2	TOP: 15.4 The Electric Field
31.				of +2.00 μ C and - 2.00 μ C, respectively harges? ($k_e = 8.99 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)
	ANS: B	PTS: 1	DIF: 2	TOP: 15.4 The Electric Field
32.	Electric field is dime a. Nxm/C b. N/C c. Nxm²/C² d. N/C²	nsionally equivalent	to which of the follo	wing?
	ANS: B	PTS: 1	DIF: 1	TOP: 15.4 The Electric Field
33.	An electron with a ch N/C. What force doe a. 2.3 ′ 10 ⁻²² N b. 1.9 ′ 10 ⁻²¹ N c. 6.4 ′ 10 ⁻¹⁷ N d. 4.9 ′ 10 ⁻¹⁷ N			the presence of an electric field of 400
	ANS: C	PTS: 1	DIF: 2	TOP: 15.4 The Electric Field
34.				n equilateral triangle with sides of 0.10 ated by these two charges? ($k_e = 8.99$)
	ANS: D	PTS: 1	DIF: 3	TOP: 15.4 The Electric Field
35.				drogen atom is $0.51 10^{-10}$ m. What is e electron? ($k_e = 8.99 10^9 \text{Nxm}^2/\text{C}^2$, $e =$

c. 0 N

d. not able to be determined until the second charge is known

- b. 1.0 ′ 10⁶ N/C
- c. $3.2 \cdot 10^2 \text{ N/C}$
- d. 8.8 ' 10⁻⁸ N/C

ANS: A

PTS: 1

DIF: 2

TOP: 15.4 The Electric Field

- 36. Two point charges are placed along a horizontal axis with the following values and positions: $+3.0 \,\mu\text{C}$ at $x = 0 \,\text{cm}$ and $-7.0 \,\mu\text{C}$ at $x = 20 \,\text{cm}$. At what point along the x axis is the electric field zero?
 - a. 8.0 cm
 - b. 44 cm
 - c. 69 cm
 - d. 38 cm

ANS: D

PTS: 1

DIF: 3

TOP: 15.4 The Electric Field

- 37. A proton initially moves left to right long the x axis at a speed of $2.00 \cdot 10^3$ m/s. It moves into an electric field, which points in the negative x direction, and travels a distance of 0.200 m before coming to rest. What acceleration magnitude does the proton experience?
 - a. $6.67 \cdot 10^3 \text{ m/s}^2$
 - b. $1.00 \cdot 10^7 \text{ m/s}^2$
 - c. $9.33 \cdot 10^9 \text{ m/s}^2$
 - d. $2.67 \cdot 10^{11} \text{m/s}^2$

ANS: B

PTS: 1

DIF: 2

TOP: 15.4 The Electric Field

- 38. A proton initially moves left to right long the x axis at a speed of 2.00 \cdot 10³ m/s. It moves into an electric field, which points in the negative x direction, and travels a distance of 0.200 m before coming to rest. If the proton's mass and charge are 1.67 \cdot 10⁻²⁷ kg and 1.60 \cdot 10⁻¹⁹ C respectively, what is the magnitude of the electric field?
 - a. 28.3 N/C
 - b. 13.9 N/C
 - c. 0.104 N/C
 - d. 0.038 N/C

ANS: C

PTS: 1

DIF: 2

TOP: 15.4 The Electric Field

39. Two charges, +Q and -Q, are located two meters apart and there is a point along the line that is equidistant from the two charges as indicated. Which vector best represents the direction of the electric field at that point?

- a. Vector E_A
- b. Vector $E_{\rm B}$
- c. Vector $E_{\rm C}$
- d. The electric field at that point is zero.

40. A charge of +2 C is at the origin. When charge Q is placed at 2 m along the positive x axis, the electric field at 2 m along the negative x axis becomes zero. What is the value of Q?

- a. 3 C
- b. -6 C
- c. -7 C
- d. -8C
- ANS: D
- PTS: 1
- DIF: 2
- TOP: 15.4 The Electric Field
- 41. An electron with a speed of 2.0 $^{'}$ 10^6 m/s moves into a uniform electric field of 500 N/C that is parallel to the electron's motion. How long does it take to bring the electron to rest? ($m_e = 9.11$ $^{'}$ 10^{-31} kg, e = 1.6 $^{'}$ 10^{-19} C)
 - a. 2.3 ′ 10⁻⁸ s
 - b. $3.5 \cdot 10^{-8}$ s
 - c. $1.2 \cdot 10^{-7}$ s
 - d. $2.3 \cdot 10^{-6}$ s
 - ANS: A
- PTS: 1
- DIF: 2
- TOP: 15.4 The Electric Field
- 42. In x-ray machines, electrons are subjected to electric fields as great as 6.0 $^{\prime}$ 10⁵ N/C. Find an electron's acceleration in this field. ($m_e = 9.11 ^{\prime}$ 10⁻³¹ kg, $e = 1.6 ^{\prime}$ 10⁻¹⁹ C)
 - a. $1.1 \cdot 10^{17} \text{ m/s}^2$
 - b. $5.4 \cdot 10^{13} \text{ m/s}^2$
 - c. $4.6 \cdot 10^{10} \,\mathrm{m/s^2}$
 - d. $3.6 \cdot 10^8 \,\mathrm{m/s^2}$
 - ANS: A
- PTS: 1
- DIF: 2
- TOP: 15.4 The Electric Field
- 43. A proton moving at 3.0 $^{\circ}$ 10⁴ m/s is projected at an angle of 30° above a horizontal plane. If an electric field of 400 N/C is acting down, how long does it take the proton to return to the horizontal plane? (Hint: Ignore gravity. $m_{\text{proton}} = 1.67 \,^{\circ}$ 10⁻²⁷ kg, $q_{\text{proton}} = 1.6 \,^{\circ}$ 10⁻¹⁹ C)
 - a. $7.8 \cdot 10^{-7}$ s
 - b. $1.7 \cdot 10^{-6}$ s
 - c. $3.9' \cdot 10^{-6} \text{ s}$
 - d. $7.8 \cdot 10^{-6} \,\mathrm{s}$
 - ANS: A
- PTS: 1
- DIF: 3
- TOP: 15.4 The Electric Field
- 44. An airplane is flying through a thundercloud at a height of 2 000 m. (This is a very dangerous thing to do because of updrafts, turbulence, and the possibility of electric discharge.) If there is a charge concentration of +40 C at height 3 000 m within the cloud and 40 C at height 1 000 m, what is the magnitude of the electric field E at the aircraft? ($k_e = 8.99 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)
 - a. 90 000 N/C
 - b. 180 000 N/C
 - c. 360 000 N/C
 - d. 720 000 N/C
 - ANS: D
- PTS: 1
- DIF: 2
- TOP: 15.4 The Electric Field

45.	Electrons in a partice electric field that with a. 200 N/C b. 1 000 N/C c. 2 000 N/C d. 4 000 N/C	le beam e	ach have a kin ese electrons ir	netic en n a dista	ergy of 3.2 ′ 1 ance of 0.1 m?	0^{-17} J. V $(e = 1.6)$	What is the magnitude of the 10° 10° 19° C)
	ANS: C	PTS:	1	DIF:	2	TOP:	15.4 The Electric Field
46.							s from 0 to 1.60 ′ 10^7 m/s in a and $e = 1.60$ ′ 10^{-19} C)
	ANS: C	PTS:	1	DIF:	2	TOP:	15.4 The Electric Field
47.	The electric field of a. $r^{1/2}$ b. r c. r^2 d. r^3	a point ch	narge has an in	nverse _	beha	vior.	
	ANS: C	PTS:	1	DIF:	1	TOP:	15.4 The Electric Field
48.	The number of elect a. field direction. b. charge density. c. field strength. d. charge motion.	ric field li	ines passing th	nrough	a unit cross sec	tional a	rea is indicative of:
	ANS: C	PTS:	1	DIF:	1	TOP:	15.5 Electric Field Lines
49.		ne that 10) field lines rac	diate ou	it from the $+2.0$		- $4.0 \mu C$, respectively. arge. If so, what might be
	ANS: C	PTS:	1	DIF:	2	TOP:	15.5 Electric Field Lines
50.		Which pa	nir of these cha				oming out, and Charge C has be between them if placed on
	ANS: B	PTS:	1	DIF:	2	TOP:	15.5 Electric Field Lines

51.	Q_1 has 50 electric field lines radiating outward and Q_2 has 100 field lines converging inward. What is the ratio Q_1/Q_2 ? a. 2 b2 c. $1/2$ d $1/2$
	ANS: D PTS: 1 DIF: 2 TOP: 15.5 Electric Field Lines
52.	Relative distribution of charge density on the surface of a conducting solid depends on: a. the shape of the conductor. b. mass density of the conductor. c. type of metal of which the conductor is made. d. strength of the earth's gravitational field.
	ANS: A PTS: 1 DIF: 1 TOP: 15.6 Conductors in Electrostatic Equilibrium
53.	The electric field at the surface of a positively charged conductor has a direction characterized by which of the following? a. tangent to the surface b. perpendicular inward toward the charge c. at a 45° angle to the surface d. perpendicular outward and away from the charge
	ANS: D PTS: 1 DIF: 1 TOP: 15.6 Conductors in Electrostatic Equilibrium
54.	The electric field associated with a uniformly charged hollow metallic sphere is the greatest at: a. the center of the sphere. b. the sphere's inner surface. c. infinity. d. the sphere's outer surface.
	ANS: D PTS: 1 DIF: 1 TOP: 15.6 Conductors in Electrostatic Equilibrium
55.	solid? a. where surface curves inward b. where surface is flat c. where curvature is least d. where curvature is greatest
	ANS: D PTS: 1 DIF: 1 TOP: 15.6 Conductors in Electrostatic Equilibrium
56.	An initially uncharged hollow metallic sphere with radius of 5 cm has a small object with a charge of $+10~\mu\text{C}$ carefully placed at the center of the sphere through a hole in the latter's surface. With the charge in place, what charge is now present on the outside surface of the sphere? a. zero b. $-10~\mu\text{C}$ c. $+4~000~\mu\text{C}$ d. $+10~\mu\text{C}$

	TOP: 15.6 Conductors in Electrostatic Equilibrium
57.	An initially uncharged hollow metallic sphere with radius of 5 cm has a small object with a charge of $+10\mu\text{C}$ carefully placed at the center of the sphere through a hole in the latter's surface. What charge resides inner surface of the sphere? a. $-4000\mu\text{C}$ b. $-10\mu\text{C}$ c. $+10\mu\text{C}$ d. zero
	ANS: B PTS: 1 DIF: 2 TOP: 15.6 Conductors in Electrostatic Equilibrium
58.	We have an initially uncharged hollow metallic sphere with radius of 5.0 cm. I place a small object with a charge of $+10 \mu\text{C}$ at the center of the sphere through a hole in the surface. Find the electric field present at a point 10 cm from the sphere's center. ($k_e = 8.99 ^{'} 10^9 \text{N/m}^2/\text{C}^2$) a. 1.1 $^{'} 10^6 \text{N/C}$ b. 2.3 $^{'} 10^6 \text{N/C}$ c. 9.0 $^{'} 10^6 \text{N/C}$ d. 36 $^{'} 10^6 \text{N/C}$
	ANS: C PTS: 1 DIF: 2 TOP: 15.6 Conductors in Electrostatic Equilibrium
59.	We have a hollow metallic sphere with charge - $5.0 \mu\text{C}$ and radius 5.0cm . We insert a $+10 - \mu\text{C}$ charge at the center of the sphere through a hole in the surface. What charge now rests on the outer surface of the sphere? a. $+5 \mu\text{C}$ b. $+10 \mu\text{C}$ c. $+15 \mu\text{C}$ d. $-5 \mu\text{C}$
	ANS: A PTS: 1 DIF: 3 TOP: 15.6 Conductors in Electrostatic Equilibrium
60.	Two identical spheres each carry a charge of - $40.0 \mu\text{C}$. The spheres are separated by a distance of 1.00 m. What is the electric force between the spheres? ($k_e = 8.99 ^{\circ} 10^9 \text{N} \cdot \text{m}^2/\text{C}^2$) a. 28.8 N (repulsive) b. 14.4 N (repulsive) c. 7.19 N (attractive) d. 43.2 N (attractive)
	ANS: B PTS: 1 DIF: 2 TOP: 15.6 Conductors in Electrostatic Equilibrium
61.	A ping-pong ball covered with a conducting graphite coating has a mass of 5.0 $^{\prime}$ 10 ⁻³ kg and a charge of 4.0 μ C. What electric field directed upward will exactly balance the weight of the ball? ($g = 9.8 \text{ m/s}^2$) a. 8.2 $^{\prime}$ 10 ² N/C b. 1.2 $^{\prime}$ 10 ⁴ N/C c. 2.0 $^{\prime}$ 10 ⁻⁷ N/C d. 5.1 $^{\prime}$ 10 ⁶ N/C

ANS: D PTS: 1 DIF: 3 TOP: 15.6 Conductors in Electrostatic Equilibrium
Two identical balls have the same amount of charge, but the charge on ball A is positive and the charge on ball B is negative. The balls are placed on a smooth, level, frictionless table whose top is insulator. Which of the following is true? a. Since the force on A is equal but opposite to the force on B, they will not move. b. They will move together with constant acceleration. c. Since the force on both balls is negative, they will move in the negative direction. d. None of the above is correct.
ANS: D PTS: 1 DIF: 2 TOP: 15.6 Conductors in Electrostatic Equilibrium
If a conductor is in electrostatic equilibrium near an electrical charge: a. the total charge on the conductor must be zero. b. the electric field inside the conductor must be zero. c. any charges on the conductor must be uniformly distributed. d. the sum of all forces between the conductor and the charge must be zero.
ANS: B PTS: 1 DIF: 1 TOP: 15.6 Conductors in Electrostatic Equilibrium
If a charge $+Q$ is placed inside a hollow isolated conductor that is originally neutral and the charge does not touch that conductor at any time: a. the inside surface of the conductor will become positively charged. b. the outside surface of the conductor will become positively charged. c. both the inner and outer surfaces will remain neutral. d. both the inner and outer surfaces will become negative.
ANS: B PTS: 1 DIF: 2 TOP: 15.6 Conductors in Electrostatic Equilibrium
A thin uncharged conducting spherical shell has a charge q carefully placed at its center through a small hole in the shell. The charge q does not touch the shell. What is the charge on the shell? a. q bq c. 2q d. 0

67.	The combination of two separated point charges of opposite sign but equal magnitude is called an electric: a. monopole. b. dipole. c. quadrapole. d. magnapole.
	ANS: B PTS: 1 DIF: 1 TOP: 15.6 Conductors in Electrostatic Equilibrium
68.	The Millikan oil-drop experiment demonstrated that: a. small oil drops fall slowly through the air. b. light beams can be used to illuminate small oil droplets. c. the electronic charge is quantized. d. falling oil droplets reach terminal speed.
	ANS: C PTS: 1 DIF: 1 TOP: 15.7 The Millikan Oil-Drop Experiment
69.	In the Millikan oil-drop experiment it was found that oil droplets: a. could only have positive net charge. b. could only have negative net charge. c. could only have negative or zero net charge. d. could have positive, negative, or zero net charge.
	ANS: D PTS: 1 DIF: 1 TOP: 15.7 The Millikan Oil-Drop Experiment
70.	In Millikan's oil drop experiment, if the electric field between the plates was of just the right magnitude, it would exactly balance the weight of the drop. Suppose a tiny spherical oil droplet of radius 1.6° 10^{-4} cm carries a charge equivalent to one electron. What electric field is required to balance the weight? (The density of oil is 0.85 g/cm^3 , $e = 1.6^{\circ}$ 10^{-19} C.) a. 1.1° 10^5 N/C b. 2.2° 10^5 N/C c. 4.5° 10^5 N/C d. 8.9° 10^5 N/C
	ANS: D PTS: 1 DIF: 2 TOP: 15.7 The Millikan Oil-Drop Experiment
71.	A charge Q accumulates on the hollow metallic dome, of radius R , of a Van de Graaff generator. A probe measures the electric field strength at various points outside the sphere surface. If the probe is initially at a distance $3R$ from the sphere's center and then is moved to $4R$, by what factor will the electric field reading change? a. $(4/3)^2$ b. $4/3$ c. $3/4$ d. $(3/4)^2$
	ANS: D PTS: 1 DIF: 2 TOP: 15.8 The Van de Graaff Generator
72.	A charge Q accumulates on the hollow metallic dome, of radius R , of a Van de Graaff generator. A probe measures the electric field strength at various points outside the sphere surface. By what factor will the electric field value at the $2R$ distance be changed if the charge value were increased to $(4/3)Q$?

78.	x = 4 m. Of the followa. $x = 1$ m b. $x = 3$ m c. $x = 5$ m	owing points, whi	ed on the x-axis, one at ch has the greatest magnaged agnitude at all three pos		third at
	ANS: C	PTS: 1	DIF: 2	TOP: Conceptual Question	s
79.	the following points a. $x = 1$ m b. $x = 3$ m c. $x = 5$ m	does the electric	e x-axis at $x = 0$, $x = 2$ n field have the greatest r agnitude at all three pos		nich of
	ANS: B	PTS: 1	DIF: 3	TOP: Conceptual Question	s
80.	one another. Which a. One object is po b. One object is po c. One object is ne	of the following ositively charged a sitively charged a	could produce this result and the other is negative and the other is uncharge and the other is uncharge.	ely charge. ged.	y attract
	ANS: D	PTS: 1	DIF: 1	TOP: Conceptual Question	S
81.	the surface is also de	oubled, what happen at the surface as a set change. d E remains the set d E decreases.	pens to the electric flux result of these doubling	he charge is doubled and if the rad F_E out of the surface and the magngs?	
	ANS: C	PTS: 1	DIF: 2	TOP: Conceptual Question	S

DIF: 2

TOP: Conceptual Questions

d. All have equal magnitude forces on them.

PTS: 1

ANS: C

CHAPTER 16—Electrical Energy and Capacitance

MULTIPLE CHOICE

ANS: D PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential	strength
10	strength
 2. A proton (+1.6 ′ 10⁻¹⁹ C) moves 10 cm on a path in the direction of a uniform electric field of 3.0 N/C. How much work is done on the proton by the electrical field? a. 4.8 ′ 10⁻²⁰ J b4.8 ′ 10⁻²⁰ J c. 1.6 ′ 10⁻²⁰ J d. zero 	
ANS: A PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential	
 3. A proton (+1.6 ′ 10⁻¹⁹ C) moves 10 cm along the direction of an electric field of strength 3.0 No electrical potential difference between the proton's initial and ending points is: a. 4.8 ′ 10⁻¹⁹ V. b. 0.30 V. c. 0.033 V. d. 30 V. 	V/C. The
ANS: B PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential	
 4. A 9.0-V battery is connected between two parallel metal plates 4.0 mm apart. What is the mag of the electric field between the plates? a. 2.3 ′ 10³ N/C b. 9.0 N/C c. 2.3 N/C d. 0.75 ′ 10⁻⁶ N/C 	nitude
ANS: A PTS: 1 DIF: 1 TOP: 16.1 Potential Difference and Electric Potential	
5. If an electron is accelerated from rest through a potential difference of 1 200 V, find its approximately velocity at the end of this process. ($e = 1.6 \cdot 10^{-19} \mathrm{C}$; $m_e = 9.1 \cdot 10^{-31} \mathrm{kg}$) a. $1.0 \cdot 10^7 \mathrm{m/s}$ b. $1.4 \cdot 10^7 \mathrm{m/s}$ c. $2.1 \cdot 10^7 \mathrm{m/s}$ d. $2.5 \cdot 10^7 \mathrm{m/s}$	imate
ANS: C PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential	

6.	The unit of electrical potential, the volt, is dimensionally equivalent to: a. J★C. b. J/C. c. C/J. d. F★C.
	ANS: B PTS: 1 DIF: 1 TOP: 16.1 Potential Difference and Electric Potential
7.	The quantity of electrical potential, the volt, is dimensionally equivalent to: a. force/charge. b. force ' charge. c. electric field ' distance. d. electric field/distance.
	ANS: C PTS: 1 DIF: 1 TOP: 16.1 Potential Difference and Electric Potential
8.	A free electron is in an electric field. With respect to the field, it experiences a force acting: a. parallel. b. anti-parallel (opposite in direction). c. perpendicular. d. along a constant potential line.
	ANS: B PTS: 1 DIF: 1 TOP: 16.1 Potential Difference and Electric Potential
9.	A uniform electric field, with a magnitude of 600 N/C, is directed parallel to the positive <i>x-axis</i> . If the potential at $x = 3.0$ m is 1 000 V, what is the potential at $x = 1.0$ m? a. 400 V b. 1600 V c. 2200 V d. 2500 V
	ANS: C PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential
10.	A uniform electric field, with a magnitude of 600 N/C, is directed parallel to the positive <i>x-axis</i> . If the potential at $x = 3.0$ m is 1 000 V, what is the change in potential energy of a proton as it moves from $x = 3.0$ m to $x = 1.0$ m? ($q_p = 1.6 \cdot 10^{-19}$ C) a. 8.0 $\cdot 10^{-17}$ J b. 1.9 $\cdot 10^{-16}$ J c. 0.80 $\cdot 10^{-21}$ J d. 500 J
	ANS: B PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential
11.	An electron in a cathode ray tube is accelerated through a potential difference of 5.0 kV. What kinetic energy does the electron gain in the process? ($e = 1.6 \cdot 10^{-19}$ C) a. $1.6 \cdot 10^{-16}$ J b. $8.0 \cdot 10^{-16}$ J c. $1.6 \cdot 10^{-22}$ J d. $8.0 \cdot 10^{-22}$ J

ANS: B PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential

- 12. In which case does an electric field do positive work on a charged particle?
 - a. A negative charge moves opposite to the direction of the electric field.
 - b. A positive charge is moved to a point of higher potential energy.
 - c. A positive charge completes one circular path around a stationary positive charge.
 - d. A positive charge completes one elliptical path around a stationary positive charge.

ANS: A PTS: 1 DIF: 1
TOP: 16.1 Potential Difference and Electric Potential

- 13. If the distance between two isolated parallel plates that are oppositely charged is doubled, the electric field between the plates is essentially unchanged. However, the:
 - a. potential difference between the plates will double.
 - b. charge on each plate will double.
 - c. force on a charged particle halfway between the plates will get twice as small.
 - d. force on a charged particle halfway between the plates will get four times as small.

ANS: A PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential

- 14. An electron is released from rest at the negative plate of a parallel-plate capacitor. If the distance across the plate is 5.0 mm and the potential difference across the plate is 5.0 V, with what velocity does the electron hit the positive plate? $(m_e = 9.1 \cdot 10^{-31} \text{ kg}, e = 1.6 \cdot 10^{-19} \text{ C})$
 - a. $2.6 \cdot 10^5 \text{ m/s}$
 - b. $5.3 \cdot 10^6 \text{ m/s}$
 - c. $1.0 \cdot 10^6 \text{ m/s}$
 - d. $1.3 \cdot 10^6 \text{ m/s}$

ANS: D PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential

15. An electron with velocity $v = 1.0^{\circ} 10^{6}$ m/s is sent between the plates of a capacitor where the electric field is E = 500 V/m. If the distance the electron travels through the field is 1.0 cm, how far is it deviated (*Y*) in its path when it emerges from the electric field? ($m_e = 9.1^{\circ} 10^{-31}$ kg, $e = 1.6^{\circ} 10^{-19}$ C)

- a. 2.2 mm
- b. 4.4 mm
- c. 2.2 cm
- d. 4.4 cm

ANS: B PTS: 1 DIF: 3

TOP: 16.1 Potential Difference and Electric Potential

- 16. An ion is released from rest and moves due to the force from an electric field from a position in the field having a potential of 14 V to a position having a potential of 8 V. The ion:
 - a. must have a positive charge.
 - b. must have a negative charge.

	c. can have either a positive or a negative charge.d. must be neutral.
	ANS: A PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential
17.	A 9.0-V battery moves 20 mC of charge through a circuit running from its positive terminal to its negative terminal. How much energy was delivered to the circuit? a. 2.2 mJ b. 0.020 J c. 0.18 J d. 4.5 ′ 10 ³ J
	ANS: C PTS: 1 DIF: 2 TOP: 16.1 Potential Difference and Electric Potential
18.	If the distance between two negative point charges is increased by a factor of three, the resultant potential energy is what factor times the initial potential energy? a. 3.0 b. 9.0 c. 1/3 d. 1/9
	ANS: C PTS: 1 DIF: 1 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
19.	Four point charges are on the rim of a circle of radius 10 cm. The charges are (in nC) +0.50, +1.5, -1.0, -0.50. If the electrical potential at the circle's center due to the +0.5 charge alone is 4.5 $^{'}$ 10 ⁴ V, what is the total potential at the center due to the four charges combined? a. 18 $^{'}$ 10 ⁴ V b. 4.5 $^{'}$ 10 ⁴ V c. zero d4.5 $^{'}$ 10 ⁴ V
	ANS: B PTS: 1 DIF: 2 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
20.	Which of the following characteristics are held in common by both gravitational and electrostatic forces when dealing with either point masses or charges? a. inverse square distance law applies b. forces are conservative c. potential energy is a function of distance of separation d. all of the above choices are valid
	ANS: D PTS: 1 DIF: 1 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
21.	Find the electrical potential at 0.15 m from a point charge of 6.0 n C. ($k_e = 8.99$ ′ 10^9 N×m ² /C ²) a. 5.4 ′ 10^4 V b. 3.6 ′ 10^5 V c. 2.4 ′ 10^6 V d. 1.2 ′ 10^7 V

	ANS: B PTS: 1 DIF: 2 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
22.	Two point charges of values +3.4 and +6.6 n C, respectively, are separated by 0.20 m. What is the potential energy of this 2-charge system? ($k_e = 8.99 \cdot 10^9 \text{ Nxm}^2/\text{C}^2$) a. +0.34 J b0.75 J c. +1.0 J d3.4 J
	ANS: C PTS: 1 DIF: 2 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
23.	Two point charges of values +3.4 and +6.6 nC are separated by 0.10 m. What is the electrical potential at the point midway between the two point charges? ($k_e = 8.99 \cdot 10^9 \text{N} \cdot \text{m}^2/\text{C}^2$) a. +1.8 \cdot 10 ⁶ V b0.90 \cdot 10 ⁶ V c. +0.90 \cdot 10 ⁶ V d. +3.6 \cdot 10 ⁶ V
	ANS: C PTS: 1 DIF: 2 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
24.	At what distance from a point charge of 8.0 m C would the electrical potential be 4.2 $^{'}$ 10^4 V? (k_e = 8.99 $^{'}$ 10^9 N×m ² /C ²) a. 0.58 m b. 0.76 m c. 1.7 m d. 2.9 m
	ANS: C PTS: 1 DIF: 2 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
25.	A point charge of +3.0 mC is located at the origin of a coordinate system and a second point charge of -6.0 mC is at $x = 1.00$ m. What is the electric potential at the $x = 0.50$ m point? ($k_e = 8.99$ ′ 10^9 N×m²/C²) a. 16 ′ 10^4 V b. 11 ′ 10^4 V c11 ′ 10^4 V d5.4 ′ 10^4 V
	ANS: D PTS: 1 DIF: 2 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
26.	A point charge of +3.0 mC is located at the origin of a coordinate system and a second point charge of -6.0 mC is at $x = 1.0$ m. At what point on the x axis is the electrical potential zero? a0.25 m b. +0.25 m

31.	When charges q_a , q_b , and q_c are placed respectively at the corners a , b , and c of a right triangle, the potential at the midpoint of the hypotenuse is 20 V. When the charge q_a is removed, the potential at the midpoint becomes 15 V. When, instead, the charge q_b is removed (q_a and q_c both in place), the potential at the midpoint becomes 12 V. What is the potential at the midpoint if both charges q_a and q_c are removed? a. 8 V b. 5 V c. 7 V d. 13 V
	ANS: A PTS: 1 DIF: 3 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
32.	A solid conducting sphere of 10 cm radius has a net charge of 20 nC. If the potential at infinity is taken as zero, what is the potential at the center of the sphere? a. 36 mV b. 360 mV c. $1.8 \text{ '} 10^3 \text{ V}$ d. $>1.8 \text{ '} 10^4 \text{ V}$
	ANS: C PTS: 1 DIF: 3 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
33.	If a doubly-ionized oxygen atom (O^{-2}) is accelerated from rest by going through a potential difference of $20~V$, what will be the change in its kinetic energy? a. $10~eV$ b. $20~eV$ c. $40~eV$ d. none of the above
	ANS: C PTS: 1 DIF: 2 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
34.	An electron in a TV picture tube is accelerated through a potential difference of 10 kV before it hits the screen. What is the kinetic energy of the electron in electron volts? (1 eV = 1.6 $^{'}$ 10 ⁻¹⁹ J) a. 1.0 $^{'}$ 10 ⁴ eV b. 1.6 $^{'}$ 10 ⁻¹⁵ eV c. 1.6 $^{'}$ 10 ⁻²² eV d. 6.25 $^{'}$ 10 ²² eV
	ANS: A PTS: 1 DIF: 1 TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges 16.3 Potentials and Charged Conductors 16.4 Equipotential Surfaces
35.	Electrons in an x-ray machine are accelerated from rest through a potential difference of 50 000 V. What is the kinetic energy of each of these electrons in eV? a. 50 eV b. 80 eV c. 330 eV d. 50 keV
	ANS: D PTS: 1 DIF: 1

TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges | 16.3 Potentials and Charged Conductors | 16.4 Equipotential Surfaces

36. There is a hollow, conducting, uncharged sphere with a negative charge inside the sphere. Consider the electrical potential at the inner and outer surfaces of the sphere. Which of the following is true?

a.	Tho	potential	on the	innor	curfoco	10	grantar
a.	THE	potentiai	on the	IIIIICI	Surrace	19	greater

- b. The potential on the outer surface is greater.
- c. The potentials on both surfaces are zero.
- d. The potentials on both surfaces are equal but not zero.

ANS: D PTS: 1 DIF: 2

TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges | 16.3 Potentials and Charged Conductors | 16.4 Equipotential Surfaces

- 37. At which location will the electric field between the two parallel plates of a charged capacitor be the strongest in magnitude?
 - a. near the positive plate
 - b. near the negative plate
 - c. midway between the two plates at their ends
 - d. midway between the two plates nearest their center

PTS: 1

TOP: 16.6 Capacitance ANS: D PTS: 1 DIF: 1

- 38. The unit of capacitance, the farad, is dimensionally equivalent to which of the following?
 - a. V/C
 - b. VXC
 - c. J/V
 - d. C/V

ANS: D

DIF: 1 TOP: 16.6 Capacitance

- 39. Increasing the voltage across the two plates of a capacitor will produce what effect on the capacitor?
 - a. increase charge
 - b. decrease charge
 - c. increase capacitance
 - d. decrease capacitance

PTS: 1 DIF: 1 TOP: 16.6 Capacitance ANS: A

- 40. A 0.25-7 capacitor is connected to a 400-V battery. Find the charge on the capacitor.
 - a. $1.2 \cdot 10^{-12} \,\mathrm{C}$
 - b. 1.0 ′ 10⁻⁴ C
 - c. 0.040 C
 - d. 0.020 C

ANS: B PTS: 1 DIF: 1 TOP: 16.6 Capacitance

41. A parallel-plate capacitor has a capacitance of 20 μ F. What potential difference across the plates is required to store $7.2 \cdot 10^{-4}$ C on this capacitor?

	b. c.	36 V 2.2 ′ 10 ⁻² V 1.4 ′ 10 ⁻⁸ V 68 V							
	AN	IS: A	PTS:	1	DIF:	2	TOP:	16.6 Capacitano	ce
42.	a. b. c.	leave one pleave both penter both penter both penter for the a	ate and go so lates and go lates from in	traight to the to infinity.			ge, the electric	field lines will:	
	AN	IS: B	PTS:	1	DIF:	1	TOP:	16.6 Capacitano	ce
43.	a. b. c.	20-mF capacit 10 mC 20 mC 40 mC none of the a		d across a 10	00-V pov	ver sup	ply. What is the	e <u>net charge</u> on th	ne capacitor?
	AN	IS: D	PTS:	1	DIF:	1	TOP:	16.6 Capacitano	ce
44.	a. b. c.	.1 1	ield between		te capaci	tor does	s not double wh	nich of the follow	ving?
	AN	IS: C	PTS:	1	DIF:	2	TOP:	16.6 Capacitano	ce
45.	a b. a. b. c.	ereasing the se attery, will pr increase cha decrease cha increase cap decrease cap	roduce what rge arge acitance		_	_	es of a capacitor	, which are disco	onnected from
		NS: D DP: 16.7 The	PTS: Parallel-Pla		DIF: 16.8 Coi		ons of Capacito	ors	
46.	a. b. c.	4.5 <i>n</i> F 4.0 <i>n</i> F 2.2 <i>n</i> F 0.46 <i>n</i> F	of 1.0, 1.5,	and 2.0 <i>m</i> F a	re connec	ted in s	series. Find the	combined capac	itance.
		NS: D DP: 16.7 The	PTS: Parallel-Pla			2 mbinati	ons of Capacito	ors	
47.	a. b. c.	hree 4.0-μF c 12 mF 0.75 mF 8.0 mF 0.46 mF	apacitors are	e connected i	n parallel	, what i	is the combined	l capacitance?	

	ANS: A PTS: 1 DIF: 1 TOP: 16.7 The Parallel-Plate Capacitor 16.8 Combinations of Capacitors
48.	Two capacitors with capacitances of 1.5 and 0.25 mF , respectively, are connected in parallel. The system is connected to a 50-V battery. What charge accumulates on the 1.5- mF capacitor? a. 100 mC b. 75 mC c. 50 mC d. 33 mC
	ANS: B PTS: 1 DIF: 2 TOP: 16.7 The Parallel-Plate Capacitor 16.8 Combinations of Capacitors
49.	Two capacitors with capacitances of 1.0 and 0.50 m F, respectively, are connected in series. The system is connected to a 100-V battery. What charge accumulates on the 1.0- m F capacitor? a. 150 m C b. 100 m C c. 50 m C d. 33 m C
	ANS: D PTS: 1 DIF: 2 TOP: 16.7 The Parallel-Plate Capacitor 16.8 Combinations of Capacitors
50.	Two capacitors with C_A greater than C_B and are connected in series with a battery. Which of the following is true? a. There is more charge stored on C_A . b. There is more charge stored on C_B . c. There is the same charge stored on each capacitor. d. There is the same potential difference across both capacitors.
	ANS: C PTS: 1 DIF: 2 TOP: 16.7 The Parallel-Plate Capacitor 16.8 Combinations of Capacitors
51.	Two capacitors with $C_{\rm A}$ greater than $C_{\rm B}$ are connected in parallel with a battery. Which of the following is true? a. There is more potential difference across $C_{\rm A}$. b. There is more potential difference across $C_{\rm B}$. c. There is the same charge stored on each capacitor. d. There is the same potential difference across both capacitors.
	ANS: D PTS: 1 DIF: 2 TOP: 16.7 The Parallel-Plate Capacitor 16.8 Combinations of Capacitors
52.	What is the equivalent capacitance between points \underline{a} and \underline{b} ? All capacitors are 1.0 \overline{m} F.

a. 4.0 μF
b. 17 μF
c. 0.60 μF
d. 0.25 μF

ANS: C

PTS: 1

DIF: 2

TOP: 16.7 The Parallel-Plate Capacitor | 16.8 Combinations of Capacitors

53. If $C = 36 \mu F$, determine the equivalent capacitance for the combination shown.

- a. 36 μF
- b. 32 μF
- c. 28 μF
- d. $24 \mu F$

ANS: D

PTS: 1

DIF: 2

TOP: 16.7 The Parallel-Plate Capacitor | 16.8 Combinations of Capacitors

54. If $C = 10 \mu F$, what is the equivalent capacitance for the combination shown?

- a. $7.5 \,\mu\text{F}$
- b. $6.5 \,\mu\text{F}$
- c. $7.0 \, \mu F$
- d. $5.8 \,\mu\text{F}$

ANS: D

PTS: 1

DIF: 2

TOP: 16.7 The Parallel-Plate Capacitor | 16.8 Combinations of Capacitors

55. What is the equivalent capacitance of the combination shown?

- a. $29 \mu F$
- b. $10 \mu F$
- c. $40 \mu F$
- d. $25 \mu F$

ANS: B

PTS: 1

DIF: 2

TOP: 16.7 The Parallel-Plate Capacitor | 16.8 Combinations of Capacitors

56. What is the equivalent capacitance of the combination shown?

ANS: D PTS: 1 DIF: 3

TOP: 16.7 The Parallel-Plate Capacitor | 16.8 Combinations of Capacitors

60. A 10.0-mF capacitor is attached to a 20-V power supply. How much energy is stored in the capacitor?

a. $2.0 \cdot 10^{-3} \text{ J}$

b. $1.2 \cdot 10^{-3} \text{ J}$

c. $2.0' 10^{-4} J$

d. $5.2 \cdot 10^{-4} \,\mathrm{J}$

ANS: A PTS: 1 DIF: 2

TOP: 16.9 Energy Stored in a Charged Capacitor

61.	A 0.25-nF capacitor is connected to a 400-V battery. What potential energy is stored in the capacitor? a. 1.2 ′ 10 ⁻¹² J b. 1.0 ′ 10 ⁻⁴ J c. 0.040 J d. 0.020 J
	ANS: D PTS: 1 DIF: 2 TOP: 16.9 Energy Stored in a Charged Capacitor
62.	Two capacitors with capacitances of 1.5 mF and 0.25 mF, respectively, are connected in parallel. The system is connected to a 50-V battery. What electrical potential energy is stored in the 1.5-mF capacitor? a. 0.50 ′ 10 ⁻³ J b. 1.2 ′ 10 ⁻³ J c. 1.9 ′ 10 ⁻³ J d. 10.0 ′ 10 ⁻³ J
	ANS: C PTS: 1 DIF: 2 TOP: 16.9 Energy Stored in a Charged Capacitor
63.	Two capacitors with capacitances of 1.0 <i>n</i> F and 0.50 <i>n</i> F, respectively, are connected in series. The system is connected to a 100-V battery. What electrical potential energy is stored in the 1.0- <i>n</i> F capacitor? a. 0.065 ′ 10 ⁻³ J b. 4.3 ′ 10 ⁻³ J c. 0.80 ′ 10 ⁻³ J d. 5.6 ′ 10 ⁻⁴ J
	ANS: D PTS: 1 DIF: 3 TOP: 16.9 Energy Stored in a Charged Capacitor
64.	If $C_1 = 25 \mu\text{F}$, $C_2 = 20 \mu\text{F}$, $C_3 = 10 \mu\text{F}$, and $DV_0 = 21 \text{V}$, determine the energy stored by C_2 . a. 0.72 mJ b. 0.32 mJ c. 0.40 mJ d. 0.91 mJ
	ANS: D PTS: 1 DIF: 3 TOP: 16.9 Energy Stored in a Charged Capacitor
65.	A parallel-plate capacitor with plate area <i>A</i> and plate separation <i>d</i> has a capacitance of 3.0 with the gap between the plates unfilled. The gap is then filled with two dielectric materials, one with dielectric constant 2.0 and the other one with dielectric constant 4.0. Each slab of dielectric has area <i>A</i> and thickness <i>d</i> /2, the layering of the dielectrics resulting in the gap being completely filled. Which of the following combinations of capacitors will have the same capacitance as the newly filled parallel-plate one? a. a 6.0- capacitor and a 12- capacitor in parallel b. a 6.0- capacitor and a 12- capacitor in series c. a 24- capacitor and a 12- capacitor in parallel d. a 24- capacitor and a 12- capacitor in series
	ANS: D PTS: 1 DIF: 3 TOP: 16.8 Combinations of Capacitors 16.10 Capacitors with Dielectrics

66.	A parallel-plate capacitor with plate area A and plate separation d has a capacitance of 3.0 with the gap between the plates unfilled. The gap is then filled with two dielectric materials, one with dielectric constant 2.0 and the other one with dielectric constant 4.0. Each slab of dielectric has area $A/2$ and thickness d , the placing side-by-side of the dielectrics resulting in the gap being completely filled. Which of the following combinations of capacitors will have the same capacitance as the newly filled parallel-plate one?
	 a. a 3.0- capacitor and a 6.0- capacitor in parallel b. a 3.0- capacitor and a 6.0- capacitor in series c. a 6.0- capacitor and a 12- capacitor in parallel d. a 6.0- capacitor and a 12- capacitor in series
	ANS: A PTS: 1 DIF: 3 TOP: 16.8 Combinations of Capacitors 16.10 Capacitors with Dielectrics
67.	Inserting a dielectric material between two charged parallel conducting plates, originally separated by air and disconnected from a battery, will produce what effect on the capacitor? a. increase charge b. increase voltage c. increase capacitance d. decrease capacitance
	ANS: C PTS: 1 DIF: 1 TOP: 16.10 Capacitors with Dielectrics
68.	A "sandwich" is constructed of two flat pieces of metal (2.00 cm on a side) with a 2.00-mm-thick piece of a dielectric called Rutile ($k = 100$) in between them. What is the capacitance? ($a_0 = 8.85$ ′ 10^{-12} C ² /N×m ²) a. 177 pF b. 885 nF c. 8.85 μ F d. 100 μ F
	ANS: A PTS: 1 DIF: 2 TOP: 16.10 Capacitors with Dielectrics
69.	The dielectric strength of Rutile is 6.0 $^{'}$ 10^6 V/m, which corresponds to the maximum electric field that the dielectric can sustain before breakdown. What is the maximum charge that a 10^{-10} -F capacitor with a 1.0-mm thickness of Rutile can hold? a. 1.7 nC b. $0.60 \mu\text{C}$ c. 0.30 mC d. 6.0 C
	ANS: B PTS: 1 DIF: 3 TOP: 16.10 Capacitors with Dielectrics
70.	A parallel-plate capacitor has dimensions 4.0 cm $^{\prime}$ 5.0 cm. The plates are separated by a 1.0-mm thickness of paper (dielectric constant $k=3.7$). What is the charge that can be stored on this capacitor, when connected to a 1.5-V battery? ($a_0=8.85$ $^{\prime}$ 10^{-12} C 2 /N×m 2) a. 20 $^{\prime}$ 10^{-12} C b. 4.8 $^{\prime}$ 10^{-12} C c. 4.8 $^{\prime}$ 10^{-11} C d. 9.8 $^{\prime}$ 10^{-11} C

71.	How much charge can be placed on a capacitor of plate area 10 cm^2 with air between the plates before it reaches "atmospheric breakdown" where $E = 3.0 \cdot 10^6 \text{ V/m}$? ($e_0 = 8.85 \cdot 10^{-12} \text{ C}^2/\text{Nxm}^2$) a. $2.7 \cdot 10^{-8} \text{ C}$ b. $4.0 \cdot 10^{-7} \text{ C}$ c. $5.3 \cdot 10^{-6} \text{ C}$ d. $6.6 \cdot 10^{-5} \text{ C}$
	ANS: A PTS: 1 DIF: 3 TOP: 16.10 Capacitors with Dielectrics
72.	Very large capacitors have been considered as a means for storing electrical energy. If we constructed a very large parallel-plate capacitor of plate area $1.0~\text{m}^2$ using paper ($k=3.7$) of thickness $1.0~\text{mm}$ as a dielectric, how much electrical energy would it store at a plate voltage of $5~000~\text{V}$? ($e_0 = 8.85~\text{f}~10^{-12}~\text{C}^2/\text{N}\text{xm}^2$) a. $0.41~\text{J}$ b. $90~\text{J}$ c. $9~000~\text{J}$ d. $45~000~\text{J}$
	ANS: A PTS: 1 DIF: 2 TOP: 16.10 Capacitors with Dielectrics
73.	A pair of parallel plates, forming a capacitor, are charged. The plates are pulled apart to double the original separation, the charges on the plates remaining the same. What is the ratio of the final energy stored to the original energy stored? a. 4 b. 2 c. 1 d. 1/2 ANS: B PTS: 1 DIF: 2
74.	TOP: 16.10 Capacitors with Dielectrics A pair of parallel plates, forming a capacitor, are connected to a battery. While the capacitor is still connected to the battery maintaining a constant voltage, the plates are pulled apart to double their original distance. What is the ratio of the final energy stored to the original energy stored? a. 2 b. 1 c. 1/2 d. 1/4
	ANS: C PTS: 1 DIF: 2 TOP: 16.10 Capacitors with Dielectrics
75.	Two parallel-plate capacitors have the same plate area, and the gap between the plates is filled with a dielectric with a dielectric constant equal to 4. The gap in capacitor A is one half that in Capacitor B. What is the ratio of the capacitance of A to B? a. 2 b. 1 c. 1/2 d. The ratio is not given.

DIF: 3

ANS: D PTS: 1 TOP: 16.10 Capacitors with Dielectrics

76.	A capacitor is made by taking two sheets of aluminum foil, each 0.022 mm thick and placing between them a sheet of paper which comes from a ream of 500 sheets, the ream being 5.5 cm thick with sheets measuring 216 mm by 279 mm (the usual 8 1/2 by 11). What is the capacitance of the capacitor made this way if the dielectric constant of the paper is 3.7? ($e_0 = 8.85$ ′ 10^{-12} C ² /N ′ m ²) a. 24 nF b. 48 nF c. 18 nF d. 1.3 nF
	ANS: C PTS: 1 DIF: 2 TOP: 16.10 Capacitors with Dielectrics
77.	A parallel plate capacitor with plate separation d has capacitance C . The gap between its plates is then filled half way with a dielectric with dielectric constant k having thickness $d/2$ resulting in a capacitor with capacitance C . What is the ratio of C to C ? a. b. c. d.
	ANS: C PTS: 1 DIF: 2 TOP: 16.10 Capacitors with Dielectrics
78.	A parallel plate capacitor with plate separation d has capacitance. The gap between its plates is then partially filled with a dielectric with dielectric constant and having a thickness $d/3$. What is the resulting capacitance? a. b. c. d.
	ANS: B PTS: 1 DIF: 3 TOP: 16.10 Capacitors with Dielectrics
79.	Two equal positive charges are separated by <i>d</i> . Then one of the charges is replaced by a negative charge of the same magnitude. Take the potential at infinity to be zero. In which situation is the potential higher midway between the charges; is this value of potential zero? a. the first situation; yes b. the first situation; no c. the second situation; yes d. the second situation; no
	ANS: B PTS: 1 DIF: 2 TOP: Conceptual Questions
80.	Case 1: An electron is released from rest in a uniform electric field. Case 2: A proton is released from rest in a uniform electric field of the same magnitude as in case 1. How does the electric potential energy of the charge-field system behave in these cases? a. In both cases, the potential energy increases. b. In both cases, the potential energy decreases.

c. In case 1 the potential energy increases, but in case 2 it decreases.d. In case 1 the potential energy decreases, but in case 2 it increases.

DIF: 2

ANS: A

PTS: 1

TOP: 16.10 Capacitors with Dielectrics

	ANS: B	PTS: 1	DIF: 2	TOP: Conceptual Questions
81.	moves a distan		on moves a distance d_{pro}	ame uniform electric field. The electron as each particle's kinetic energy
	a. $d_{\text{electron}} < d_{\text{p}}$	proton		
	b. $d_{\text{electron}} > d_{\text{p}}$	proton		
	c. $d_{\text{electron}} = d_{\text{p}}$	oroton		

ANS: C	PTS: 1	DIF: 3	TOP: Conceptual Questions

d. The answer depends on the direction of the electric field.

82. Three capacitors have capacitances $C_1 < C_2 < C_3$. If these capacitors are connected in series, which of the following is true for the resulting equivalent capacitance?

- a. $C_{eq} < C_1$ b. $C_{eq} > C_3$
 - c. $C_{\text{eq}} = (C_1 + C_2 + C_3)/3$ d. None of the above is always correct.
 - ANS: A PTS: 1 DIF: 1 **TOP:** Conceptual Questions

83. A capacitor is attached across a battery and charged. Then the battery is removed leaving the capacitor charged. The positive lead of the capacitor is then connected to one lead of a previously uncharged identical capacitor, and then the other lead of the charged capacitor is connected to the other lead of the second capacitor. How does the energy E_0 stored in the originally charged capacitor compare to the energy $E_{\rm f}$ stored in the connected capacitors?

- a. $E_o < E_f$
- b. $E_{\rm o} = E_{\rm f}$
- c. $E_o = 2E_f$
- d. $E_o = 4E_f$

ANS: C PTS: 1 DIF: 3 **TOP:** Conceptual Questions

CHAPTER 17—Current and Resistance

MULTIPLE CHOICE

1.	The current in an element the screen in 5.0 a. $2.2 \cdot 10^{11}$ electrons. 8.8 $\cdot 10^{13}$ electrons. 2.2 $\cdot 10^{15}$ electrons. 8.8 $\cdot 10^{18}$ electrons.	s? ($e = 1.6$ ′ 10 rons rons	•	sured to be 70 μA . How many electr	ons
	ANS: C	PTS: 1	DIF: 1	TOP: 17.1 Electric Current	
2.	A wire carries a stea wire in this time into a. 200 C b. 20 C c. 2 C d. 0.005 C		.1 A over a period of 20 s	. What total charge passes through the	he
	ANS: C	PTS: 1	DIF: 1	TOP: 17.1 Electric Current	
3.		sitive and negati ge passes throug e right e left he right	ive charge passing through	th a surface to the right, and there is the surface producing the current.	
	ANS: B	PTS: 1	DIF: 2	TOP: 17.1 Electric Current	
4.			bulb attached to a 12.0-V a point in the filament of t	battery in 14.0 s is 30.0 C. On the he bulb per second?	
	ANS: A	PTS: 1	DIF: 2	TOP: 17.1 Electric Current	
5.			bulb attached to a 12.0-V nt during this process?	battery in 14.0 s is 30.0 C. What is	the
	ANS: B	PTS: 1	DIF: 2	TOP: 17.1 Electric Current	
6.		~ ~	bulb attached to a 12.0-V ery during this process?	battery in 14.0 s is 30.0 C.What is t	he

	c. 2 d. 3										
	ANS	S: C		PTS:	1	DIF:	2	TOP:	17.1 Electri	c Current	
7.	a. 1 b. 1 c. 1	lt stag It trip It dec	ys the sa les. reases l	_	of three.	effect does	this ha	ve on the electro	on drift veloc	ity in the wire	?
	ANS TOP		.2 A M	PTS: icroscopic		DIF: ent and Dri		ed			
8.	B, ho a. 1 b. 1 c. 1	$ \begin{array}{l} \text{OW do} \\ v_{dA} = \\ v_{dA} = \\ v_{dA} = \\ \end{array} $	oes the v_{dB}					f the diameter o hat in in Wire E		wice that of Wi	ire
	ANS TOP		.2 A M	PTS: icroscopic \		DIF: ent and Dri		ed			
9.	the r num dens	nass ber <i>N</i> ity of <i>N_A r I</i> <i>N_A r /</i> <i>N_A M</i>	per mol V _A . If we of conduct VM VM	e M of the	metal, the n	number of con electron	onduct per ato	an be found from tion electrons pe om, which of the	er metal atom	, and Avogadr	o's
	ANS TOP		.2 A M	PTS:		DIF: ent and Dri		ed			
10.	char carri a. b. c.	ge de ers? 3.4 ´ 1.7 ´ 1.5 ´	nsity of	$54.24 \cdot 10^{2}$ e value = 1.6 s	8 carriers/m	n ³ , what is t		rries a current o rage drift veloci			
	ANS TOP		.2 A M	PTS: icroscopic \		DIF: ent and Dri		ed			
11.	a. b. c. c.	veloc condi densi	ity of cl actor cre ty of ch	ectric curre harge carrie oss sectiona arge carrier ove choices	ers al area es	trical cond	uctor i	s a function of w	which of the f	following?	
	ANS TOP		.2 A M	PTS: icroscopic \		DIF: ent and Dri		ed			

12.	When an electric current exists within a conducting wire, which of the following statements describes the condition of any accompanying electric field? a. must be zero b. must be parallel to current flow c. must be anti-parallel (opposite direction) to current flow d. must be perpendicular to current flow
	ANS: B PTS: 1 DIF: 1 TOP: 17.2 A Microscopic View: Current and Drift Speed
13.	 When you flip a switch to turn on a light, the delay before the light turns on is determined by: a. the number of electron collisions per second in the wire. b. the drift speed of the electrons in the wire. c. the speed of the electric field moving in the wire. d. none of these, since the light comes on instantly.
	ANS: C PTS: 1 DIF: 2 TOP: 17.2 A Microscopic View: Current and Drift Speed
14.	A high voltage transmission line of diameter 2 cm and length 200 km carries a steady current of 1 000 A. If the conductor is copper with a free charge density of 8 $^{'}$ 10^{28} electrons/m³, how long does it take one electron to travel the full length of the cable? ($e = 1.6$ $^{'}$ 10^{-19} C) a. 8 $^{'}$ 10^{2} s b. 8 $^{'}$ 10^{4} s c. 8 $^{'}$ 10^{6} s d. 8 $^{'}$ 10^{8} s
	ANS: D PTS: 1 DIF: 3 TOP: 17.2 A Microscopic View: Current and Drift Speed
15.	Materials having resistance changes as voltage or current varies are called: a. ohmic. b. inohmic. c. nonohmic. d. deohmic.
	ANS: C PTS: 1 DIF: 1 TOP: 17.4 Resistance, Resistivity, and Ohm's Law
16.	You measure a 25.0-V potential difference across a 5.00-W resistor. What is the current flowing through it? a. 125 A b. 5.00 A c. 4.00 A d. 1.00 A
	ANS: B PTS: 1 DIF: 1 TOP: 17.4 Resistance, Resistivity, and Ohm's Law
17.	The unit of electric current, the ampere, is equivalent to which of the following? a. VXW b. V/W c. Wxm d. V/s

	c. 1.6 V/m d. 1.9 V/m
	ANS: B PTS: 1 DIF: 2 TOP: 17.4 Resistance, Resistivity, and Ohm's Law
29.	Number 10 copper wire (radius = 1.3 mm) is commonly used for electrical installations in homes. What is the voltage drop in 40 m of #10 copper wire if it carries a current of 10 A? (The resistivity of copper is $1.7 \cdot 10^{-8}$ W/m.) a. 1.3 V b. 0.77 V c. 0.50 V d. 0.13 V
	ANS: A PTS: 1 DIF: 3 TOP: 17.4 Resistance, Resistivity, and Ohm's Law
30.	A copper cable needs to carry a current of 200 A with a power loss of only 3.0 W/m. What is the required radius of the copper cable? (The resistivity of copper is 1.7 ′ 10 ⁻⁸ W/m). a. 0.21 cm b. 0.85 cm c. 3.2 cm d. 4.0 cm
	ANS: B PTS: 1 DIF: 2 TOP: 17.4 Resistance, Resistivity, and Ohm's Law
31.	A resistor is made of a material that has a resistivity that is proportional to the current going through it If the voltage across the resistor is doubled, what happens to the current through it? a. It doubles. b. It quadruples. c. It increases by a factor of 2 ^{3/2} . d. It increases by a factor of 2 ^{1/2} .
	ANS: D PTS: 1 DIF: 3 TOP: 17.4 Resistance, Resistivity, and Ohm's Law
32.	A 20-W platinum wire at 20°C with a temperature coefficient of resistivity of 3.9 ′ 10 ⁻³ (°C) ⁻¹ will have what resistance at 100°C? a. 14 W b. 20 W c. 26 W d. 28 W
	ANS: C PTS: 1 DIF: 2 TOP: 17.5 Temperature Variation of Resistance
33.	A metal wire has a resistance of 25.00 Wunder room temperature conditions of 25°C. When the wire is heated to 85°C the resistance increases by 0.75 W. What is the temperature coefficient of resistivity of this metal? a. 5.0 ′ 10 ⁻⁴ (°C) ⁻¹ b. 1.3 ′ 10 ⁻³ (°C) ⁻¹ c. 1.5 ′ 10 ⁻³ (°C) ⁻¹ d. 2.5 ′ 10 ⁻³ (°C) ⁻¹

	ANS: A PTS: 1 DIF: 2 TOP: 17.5 Temperature Variation of Resistance
34	 A metal wire has a resistance of 10.00 Wat a temperature of 20°C. If the same wire has a resistance of 10.55 Wat 90°C, what is the resistance when its temperature is - 20°C? a. 0.70 W b. 9.69 W c. 10.31 W d. 13.8 W
	ANS: B PTS: 1 DIF: 2 TOP: 17.5 Temperature Variation of Resistance
35	 By what factor is the resistance of a copper wire changed when its temperature is increased from 20°C to 120°C? The temperature coefficient of resistivity for copper = 3.9 ′ 10⁻³ (°C)⁻¹. a. 0.72 b. 1.06 c. 1.39 d. 1.44
	ANS: C PTS: 1 DIF: 2 TOP: 17.5 Temperature Variation of Resistance
36	6. A certain material is in a room at 27°C. If the absolute temperature (K) of the material is tripled, its resistance doubles. (Water freezes at 273 K.) What is the value for <i>a</i> , the temperature coefficient of resistivity? a. 1 (°C) ⁻¹ b. 2 (°C) ⁻¹ c. 0.001 7 (°C) ⁻¹ d. 0.038 (°C) ⁻¹
	ANS: C PTS: 1 DIF: 3 TOP: 17.5 Temperature Variation of Resistance
37	 The resistivity of a material is doubled when heated a certain amount. What happens to the resistance of a resistor made of this material when heated the same amount? a. It doubles. b. It quadruples. c. It halves. d. It stays the same.
	ANS: A PTS: 1 DIF: 1 TOP: 17.5 Temperature Variation of Resistance
38	3. A tungsten wire is used to determine the melting point of indium. The resistance of the tungsten wire is 3.000 Wat 20°C and increases to 4.850 Was the indium starts to melt. $a_{\text{tungsten}} = 4.50 \text{ ' } 10^{-3} \text{ (°C)}^{-1}$. What is the melting temperature of indium? a. 132°C b. 157°C c. 351°C d. 731°C
	ANS: B PTS: 1 DIF: 2 TOP: 17.5 Temperature Variation of Resistance

39.	The resistance of a platinum wire is to be calibrated for low-temperature work. A platinum wire with resistance 1.000 W at 20°C is immersed in liquid nitrogen at 77 K (-196°C). If the temperature response of the platinum wire is linear, what is the expected resistance of the platinum wire at -196°C? [$a_{\text{platinum}} = 3.92 \cdot 10^{-3} (^{\circ}\text{C})^{-1}$]. a. 0.153 W b. 0.232 W c. 1.768 W d. 1.847 W
	ANS: A PTS: 1 DIF: 2 TOP: 17.5 Temperature Variation of Resistance
40.	Carbon has a negative temperature coefficient of resistance of -0.5 ′ 10 ⁻³ (°C) ⁻¹ . What temperature increase would result in a resistance decrease of 1% for a carbon resistor? a. 2°C b. 20°C c. 50°C d. 100°C
	ANS: B PTS: 1 DIF: 2 TOP: 17.5 Temperature Variation of Resistance
41.	The temperature coefficient of resistivity is a quantity that is: a. always positive. b. always non-negative. c. sometimes negative. d. represented by the symbol s.
	ANS: C PTS: 1 DIF: 1 TOP: 17.5 Temperature Variation of Resistance
42.	The temperature coefficient of resistivity for a "perfect" ohmic material would be: a. positive and constant. b. zero. c. negative. d. positive and uniformly increasing.
	ANS: B PTS: 1 DIF: 1 TOP: 17.5 Temperature Variation of Resistance
43.	If a 9.0-V battery, with negligible internal resistance, and an 18-Wresistor are connected in series, what is the amount of electrical energy transformed to heat per coulomb of charge that flows through the circuit? a. 0.50 J b. 3.0 J c. 9.0 J d. 72 J
	ANS: C PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
44.	A 60-W light bulb is in a socket supplied with 120 V. What is the current in the bulb? a. 0.50 A b. 2.0 A c. 60 A

	ANS: A TOP: 17.6 Electrical	PTS: 1 Energy and Power	DIF:	1
45.				internal resistance. If you replace the resistor with best he power dissipated in the circuit change?
	ANS: A TOP: 17.6 Electrical	PTS: 1 Energy and Power	DIF:	2
46.	The quantity volt is ed a. Jxm b. JxC c. C/W d. J/C	quivalent to which of	the follo	owing?
	ANS: D TOP: 17.6 Electrical	PTS: 1 Energy and Power	DIF:	1
47.	The unit for rate of enfollowing? a. V/s b. A*W c. V*A d. V/W	ergy transformation, t	the watt	t, in an electric circuit is equivalent to which of the
	ANS: C TOP: 17.6 Electrical	PTS: 1 Energy and Power	DIF:	1
48.	If a 500-W heater carrelement? a. 2 000 V b. 125 V c. 250 V d. 0.008 V	ries a current of 4.00 A	A, what	is the voltage across the ends of the heating
	ANS: B TOP: 17.6 Electrical	PTS: 1 Energy and Power	DIF:	1
49.	a. 85.7 Wb. 42.8 Wc. 31.3 Wd. 11.2 W			is the resistance of the heating element?
	ANS: C TOP: 17.6 Electrical	PTS: 1 Energy and Power	DIF:	2
50.	A 500-W heater carrie electrical energy costs		How m	uch does it cost to operate the heater for 30 min if

d. 7 200 A

	 a. 1.5 cents b. 9.0 cents c. 18 cents d. 36 cents
	ANS: A PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
51.	If a lamp has resistance of 120 W when it operates at 100 W, what is the applied voltage? a. 110 V b. 120 V c. 125 V d. 220 V
	ANS: A PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
52.	If a lamp has a resistance of 120 Wwhen it operates at 100 W, what current does it carry? a. 2.10 A b. 1.2 A c. 0.91 A d. 0.83 A
	ANS: C PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
53.	An electric toaster requires 1 100 W at 110 V. What is the resistance of the heating coil? a. 7.5 W b. 9.0 W c. 10.0 W d. 11.0 W
	ANS: D PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
54.	A light bulb, sold as long-lasting, is rated 100 W at 130 V. The "increased" lifetime comes from using it at 120 V. Assuming negligible change in resistance at the different voltage, what is its power consumption at 120 V? a. 85 W b. 92 W c. 100 W d. 108 W
	ANS: A PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
55.	An electric clothes dryer draws 15 A at 220 V. If the clothes put into the dryer have a mass of 7.0 kg when wet and 4.0 kg dry, how long does it take to dry the clothes? (Assume all heat energy goes into vaporizing water, $L_{\nu} = 2.26$ ′ 10^6 J/kg). a. 55 min b. 34 min c. 20 min d. 16 min
	ANS: B PTS: 1 DIF: 3

TOP: 17.6 Electrical Energy and Power

56.	A steam turbine at an electric power plant delivers 4 500 kW of power to an electrical generator which converts 95% of this mechanical energy into electrical energy. What is the current delivered by the generator if it delivers at 3 600 V? a. 0.66 ′ 10³ A b. 1.0 ′ 10³ A c. 1.2 ′ 10³ A d. 5.9 ′ 10³ A
	ANS: C PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
57.	The heating coil of a hot water heater has a resistance of 20 Wand operates at 210 V. How long a time is required to raise the temperature of 200 kg of water from 15°C to 80°C? (The specific heat for water = 10^3 cal/kg%C and 1.0 cal = 4.186 J). a. 1.7 h b. 3.8 h c. 5.1 h d. 6.9 h
	ANS: D PTS: 1 DIF: 3 TOP: 17.6 Electrical Energy and Power
58.	If electrical energy costs 5.5 cents per kWh, what does it cost to heat 200 kg water from 15°C to 80°C? (The specific heat of water = 10³ cal/kg%C and 1.0 cal = 4.186 J.) a. 48 cents b. 83 cents c. 16 cents d. 80 cents
	ANS: B PTS: 1 DIF: 3 TOP: 17.6 Electrical Energy and Power
59.	A light bulb has resistance of 240 W when operating at 120 V. Find the current in the light bulb. a. 2.0 A b. 1.0 A c. 0.50 A d. 0.20 A
	ANS: C PTS: 1 DIF: 1 TOP: 17.6 Electrical Energy and Power
60.	Ten coulombs of charge start from the negative terminal of a battery, flow through the battery and then leave the positive terminal through a wire, flow through a resistor and then return to the starting point on this closed circuit. In this complete process, the ten coulombs: a. do positive work on the battery. b. receive heat energy from the resistor. c. have a net loss of potential energy. d. have no net change in potential energy.
	ANS: D PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
61.	Which process will double the power given off by a resistor?

	 a. doubling the current while doubling the resistance b. doubling the current by making a resistance half as big c. doubling the current by doubling the voltage d. doubling the current while making the voltage half as big 	
	ANS: B PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power	
62.	Which is a unit of power? a. kWh b. W/s c. A*W d. J/s ANS: D PTS: 1 DIF: 1	
	TOP: 17.6 Electrical Energy and Power	
63.	Which is not a force? a. gravity b. electrical force c. voltage d. friction	
	ANS: C PTS: 1 DIF: 1 TOP: 17.6 Electrical Energy and Power	
64.	A water pump draws about 3.8 A when connected to 240 V. What is the cost (with electrical energy at 9 cents per kWh) of running the pump for 10 h? a. 8.0 cents b. 15 cents c. 82 cents d. 95 cents	
	ANS: C PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power	
65.	A high-voltage transmission line carries 1 000 A at 700 000 V. What is the power carried by the line? a. 700 MW b. 370 MW c. 100 MW d. 70 MW	
	ANS: A PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power	
66.	A high-voltage transmission line carries 1 000 A at 700 kV for a distance of 100 miles. If the resistance in the wire is 1 Wmile, what is the power loss due to resistive losses? a. 10 kW b. 100 kW c. 10 MW d. 100 MW	
	ANS: D PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power	

67.	An electric car is designed to run off a bank of 12-V batteries with total energy storage of 3.0 ′ 10 ⁷ J. If the electric motor draws 6 000 W, what current will be delivered to the motor? a. 500 A b. 400 A c. 200 A d. 100 A
	ANS: A PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
68.	An electric car is designed to run off a bank of 12-V batteries with total energy storage of 3.0 ′ 10 ⁷ J. If the electric motor draws 6 000 W in moving the car at a steady speed of 10 m/s, how far will the car go before it is "out of juice?" a. 25 km b. 50 km c. 100 km d. 150 km
	ANS: B PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
69.	A solar panel measures 80 cm $^{\prime}$ 50 cm. In direct sunlight, the panel delivers 3.2 A at 15 V. If the intensity of sunlight is 1 000 W/m 2 , what is the efficiency of the solar panel in converting solar energy into electrical energy? a. 24% b. 18% c. 12% d. 6.0%
	ANS: C PTS: 1 DIF: 3 TOP: 17.6 Electrical Energy and Power
70.	Suppose that a voltage surge produces 140 V for a moment in a 120-V line. What will temporarily be the output of a 100-W light bulb assuming its resistance does not change? a. 109 W b. 118 W c. 127 W d. 136 W
	ANS: D PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
71.	A resistor is made of a material that has a resistivity that is proportional to the current going through it. If the voltage across the resistor is doubled, what happens to the power dissipated by it? a. It doubles. b. It quadruples. c. It increases by a factor of 2 ^{3/2} . d. It increases by a factor of 2 ^{1/2} .
	ANS: C PTS: 1 DIF: 3 TOP: 17.6 Electrical Energy and Power
72.	An 8.00-Wresistor is dissipating 100 watts. What are the current through it and the difference of potential across it? a. 12.5 A, 28.3 V

	ANS: C PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
73.	A hot water heater operating at 240 V supplies to a quantity of water to warm it to the desired temperature of . What is the cost of the energy if the rate is \$0.131/kWh? a. The mass of the water is needed to answer this question. b. The initial temperature of the water is needed to answer this question. c. The mass of the water, the initial temperature of the water, and the time it took to heat the water is needed to answer this question. d. \$0.330.
	ANS: D PTS: 1 DIF: 2 TOP: 17.6 Electrical Energy and Power
74.	A light bulb with a tungsten filament is attached to a source of variable voltage. As the voltage is increased on the bulb, a. the bulb's resistance decreases. b. the bulb's resistance increases. c. the current in the bulb decreases. d. the power dissipated remains constant.
	ANS: B PTS: 1 DIF: 1 TOP: 17.6 Electrical Energy and Power
75.	Superconductivity was discovered by: a. Volta. b. Ohm. c. Onnes. d. Bednorz and Müller.
	ANS: C PTS: 1 DIF: 1 TOP: 17.7. Superconductors
76.	A superconducting wire's chief characteristic is which of the following? a. an extremely great length b. a large cross sectional area c. an extremely high temperature d. no resistance
	ANS: D PTS: 1 DIF: 1 TOP: 17.7. Superconductors
77.	When a superconductor's temperature drops below the critical temperature, its resistance: a. equals that of a semiconductor of equal dimensions. b. increases by two. c. drops to zero. d. reduces to one half.
	ANS: C PTS: 1 DIF: 1 TOP: 17.7. Superconductors
78.	Consider some material that has been cooled until it has become a superconductor. If it is cooled even further its resistance will: a. increase. b. decrease.

b. 3.54 A, 12.5 Vc. 3.54 A, 28.3 Vd. 28.3 A, 3.54 V

	ANS: D	PTS: 1	DIF: 1	TOP: 17.7. Superconductors	
79.	a. A battery is nb. Electrical chac. The resistance	eeded to keep the curr rges are moving.		is <u>not</u> true?	
	ANS: A	PTS: 1	DIF: 1	TOP: 17.7. Superconductors	
80.				antity of current. If the measured cuuperconductor per second? ($e = 1.60$	
	ANS: A	PTS: 1	DIF: 2	TOP: 17.7. Superconductors	
81.	twice the length. If it takes time T	A voltage source is co	nnected to the wires an	the same material 2 mm in diameter and a current is passed through the was se the 1-mm wire, how long does it	ires.
	ANS: D	PTS: 1	DIF: 3	TOP: Conceptual Questions	
82.		irst wire. What is its r		wice the diameter, and twice the	
	ANS: B	PTS: 1	DIF: 2	TOP: Conceptual Questions	
83.	difference, which		st power; and when co	lually connected across a given pote nnected in series across the same	entia
	ANS: D	PTS: 1	DIF: 2	TOP: Conceptual Questions	
84.		half the resistance of I to the same 120-V ci		at would be its wattage? Assume bo	oth

c. stay constant and non-zero.d. None of the above.

- a. 200 Wb. 50 W
- c. 25 W
- d. More information is needed.

ANS: A PTS: 1 DIF: 2 TOP: Conceptual Questions

- 85. When the voltage across a nonohmic resistor is doubled, the current through it triples. What happens to the power delivered to this resistor?
 - a. This cannot be answered with the information given.
 - b. The power decreases to 2/3 of the original amount.
 - c. The power increases to 1.5 times the original amount.
 - d. The power increases to 6 times the original amount.

ANS: D PTS: 1 DIF: 2 TOP: Conceptual Questions

MULTIPLE CHOICE

1.	The two ends of a 3.0-Wresistor are connected to a 9.0-V battery. What is the current through the resistor? a. 27 A b. 6.3 A c. 3.0 A d. 0.33 A
	ANS: C PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
2.	The two ends of a 3.0-Wresistor are connected to a 9.0-V battery. What is the total power delivered by the battery to the circuit? a. 3.0 W b. 27 W c. 0.33 W d. 0.11 W
	ANS: B PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
3.	The basic function of an electromotive force in a circuit is to do which of the following? a. Convert electrical energy into some other form. b. Convert some other form of energy into electrical. c. Both choices (a) and (b) are valid. d. None of the above choices are valid.
	ANS: B PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
4.	Which voltage is not caused by a source of emf? a. the voltage across a charged capacitor b. the voltage across two copper-iron junctions at different temperatures c. the voltage across the terminals of a dry cell battery d. the voltage from an electric generator
	ANS: A PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
5.	The internal resistances of an ideal voltmeter and an ideal ammeter are respectively (<i>ideal</i> meaning the behavior of the system is not changed when using the meter): a. zero and zero. b. infinite and infinite. c. zero and infinite. d. infinite and zero.
	ANS: D PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
6.	When a 24.0-Wresistor is connected across a 12.0-V battery, a current of 482 mA flows. What is the internal resistance of the battery?

b. $DV_T = (1/DV_1 + 1/DV_2 + 1/DV_3)$ c. $DV_T = DV_1 = DV_2 = DV_3$

d. $DV_T = (1/DV_1 + 1/DV_2 + 1/DV_3)^{-1}$

ANS: A	PTS: 1	DIF: 1

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

- 12. Three resistors with values of R_1 , R_2 and R_3 , respectively, are connected in series. Which of the following expresses the total resistance, R_T , of the three resistors?
 - a. $R_T = R_1 + R_2 + R_3$
 - b. $R_T = (1/R_1 + 1/R_2 + 1/R_3)$
 - c. $R_T = R_1 = R_2 = R_3$
 - d. $R_T = (1/R_1 + 1/R_2 + 1/R_3)^{-1}$

ANS: A PTS: 1 DIF: 1

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

- 13. Three resistors, with values of 2.0, 4.0 and 8.0 W, respectively, are connected in series. What is the overall resistance of this combination?
 - a. 0.58 W
 - b. 1.1 W
 - c. 7.0 W
 - d. 14.0 W

ANS: D PTS: 1 DIF: 1

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

14. Which resistor is in series with resistor *R*?

- a. R_1
- b. R_2
- c. R_3
- d. R_4

ANS: D PTS: 1 DIF: 2

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

- 15. Three resistors, each with resistance R_1 , are in series in a circuit. They are replaced by one equivalent resistor, R. Comparing this resistor to the first resistor of the initial circuit, which of the following is true?
 - a. The current through R equals the current through R_1 .
 - b. The voltage across R equals the voltage across R_1 .
 - c. The power given off by R equals the power given off by R_1 .
 - d. R is less than R_1 .

ANS: A PTS: 1 DIF: 1

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

- 16. If $R_1 < R_2 < R_3$, and if these resistors are connected in series in a circuit, which one dissipates the greatest power?
 - a. R_1
 - b. R_2
 - c. R_3

	d. All are equal in power dissipation.
	ANS: C PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
17.	When a light bulb is turned on, its resistance increases until it reaches operating temperature. What happens to the current in the bulb as it is warming up? a. It stays constant. b. It increases. c. It decreases. d. It increases at first and then decreases.
	ANS: C PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
18.	Resistors of values 8.0 W, 12.0 W, and 24.0 Ware connected in series across a battery with a small internal resistance. Which resistor dissipates the greatest power? a. the 8.0-Wresistor b. the 12.0-Wresistor c. the 24.0-Wresistor d. The answer depends on the internal resistance of the battery.
	ANS: C PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
19.	Three 8.0-Wresistors are connected in parallel. What is their equivalent resistance? a. 0.054 W b. 0.13 W c. 0.38 W d. 2.7 W
	ANS: D PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
20.	Three 4.0-Wresistors are connected in parallel to a 12.0-V battery. What is the current in any one of the resistors? a. 16 A b. 9.0 A c. 3.0 A d. 48 A
	ANS: C PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
21.	Three resistors connected in parallel have individual values of 4.0, 6.0 and 10.0 W, respectively. If this combination is connected in series with a 12-V battery and a 2.0-W resistor, what is the current in the 10-W resistor? $ \begin{array}{c} 2.0 \Omega \\ 12 V \\ \hline \end{array} $ $ \begin{array}{c} 4.0 \Omega \\ \hline \end{array} $ $ \begin{array}{c} 6.0 \Omega \\ \end{array} $ $ \begin{array}{c} 10.0 \Omega \\ \end{array} $
	a. 0.59 A

b. 1.0 A c. 11 A

series with a 4.0-Wresistor. What is the overall resistance of this combination? a. 0.50 W b. 2.0 W		d. 16 A
expresses the value of the total current I_T in the combined system? a. $I_T = I_1 + I_2 + I_3$ b. $I_T = (I/I_1 + I/I_2 + I/I_3)$ c. $I_T = I_1 = I_2 = I_3$ d. $I_T = (I/I_1 + I/I_2 + I/I_3)^{-1}$ ANS: A PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 23. Three resistors connected in parallel have the individual voltages labeled DV_1 , DV_2 and DV_3 , respectively. Which of the following expresses the total voltage DV_T across the three resistors when connected in this manner? a. $DV_T = DV_1 + DV_2 + DV_3$ b. $DV_T = (I/DV_1 + 1/DV_2 + I/DV_3)$ c. $DV_T = DV_1 + DV_2 + DV_3$ d. $DV_T = (I/DV_1 + 1/DV_2 + I/DV_3)^{-1}$ ANS: C PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 24. Three resistors with values R_1 , R_2 and R_3 , respectively, are connected in parallel. Which of the following expresses the total resistance, R_T , of the three resistors when connected in parallel? a. $R_T = R_1 + R_2 + R_3$ b. $R_T = (I/R_1 + I/R_2 + I/R_3)$ c. $R_T = R_1 + R_2 + R_3$ d. $R_T = (I/R_1 + I/R_2 + I/R_3)$ TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 25. Three resistors, with values of 2.0, 4.0 and 8.0 W, respectively, are connected in parallel. What is the overall resistance of this combination? a. 0.58 W b. 1.1 W c. 7.0 W d. 14.0 W ANS: B PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel		
TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 23. Three resistors connected in parallel have the individual voltages labeled DV ₁ , DV ₂ and DV ₃ , respectively. Which of the following expresses the total voltage DV ₇ across the three resistors when connected in this manner? a. DV ₇ = DV ₁ + DV ₂ + DV ₃ b. DV ₇ = (1/DV ₁ + 1/DV ₂ + 1/DV ₃) c. DV ₇ = DV ₁ = DV ₂ = DV ₃ d. DV ₇ = (1/DV ₁ + 1/DV ₂ + 1/DV ₃) ⁻¹ ANS: C PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 24. Three resistors with values R ₁ , R ₂ and R ₃ , respectively, are connected in parallel. Which of the following expresses the total resistance, R ₇ , of the three resistors when connected in parallel? a. R ₇ = R ₁ + R ₂ + R ₃ b. R ₇ = (1/R ₁ + 1/R ₂ + 1/R ₃) c. R ₇ = R ₁ + R ₂ = R ₃ d. R ₇ = (1/R ₁ + 1/R ₂ + 1/R ₃) ⁻¹ ANS: D PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 25. Three resistors, with values of 2.0, 4.0 and 8.0 W, respectively, are connected in parallel. What is the overall resistance of this combination? a. 0.58 W b. 1.1 W c. 7.0 W d. 14.0 W ANS: B PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 26. Two resistors of values 6.0 and 12.0 Ware connected in parallel. This combination in turn is hooked i series with a 4.0-Wresistor. What is the overall resistance of this combination? a. 0.50 W b. 2.0 W	22.	expresses the value of the total current I_T in the combined system? a. $I_T = I_1 + I_2 + I_3$ b. $I_T = (1/I_1 + 1/I_2 + 1/I_3)$ c. $I_T = I_1 = I_2 = I_3$
respectively. Which of the following expresses the total voltage DV_T across the three resistors when connected in this manner? a. $DV_T = DV_1 + DV_2 + DV_3$ b. $DV_T = (1/DV_1 + 1/DV_2 + 1/DV_3)$ c. $DV_T = DV_1 = DV_2 = DV_3$ d. $DV_T = (1/DV_1 + 1/DV_2 + 1/DV_3)^{-1}$ ANS: C PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 24. Three resistors with values R_1 , R_2 and R_3 , respectively, are connected in parallel. Which of the following expresses the total resistance, R_T , of the three resistors when connected in parallel? a. $R_T = R_1 + R_2 + R_3$ b. $R_T = (1/R_1 + 1/R_2 + 1/R_3)$ c. $R_T = R_1 + R_2 + 1/R_3$ d. $R_T = (1/R_1 + 1/R_2 + 1/R_3)^{-1}$ ANS: D PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 25. Three resistors, with values of 2.0, 4.0 and 8.0 W, respectively, are connected in parallel. What is the overall resistance of this combination? a. 0.58 W b. 1.1 W c. 7.0 W d. 14.0 W ANS: B PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 26. Two resistors of values 6.0 and 12.0 Ware connected in parallel. This combination in turn is hooked i series with a 4.0-Wresistor. What is the overall resistance of this combination? a. 0.50 W b. 2.0 W		
 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 24. Three resistors with values R₁, R₂ and R₃, respectively, are connected in parallel. Which of the following expresses the total resistance, R_T, of the three resistors when connected in parallel? a. R_T = R₁ + R₂ + R₃ b. R_T = (1/R₁ + 1/R₂ + 1/R₃) c. R_T = R₁ = R₂ = R₃ d. R_T = (1/R₁ + 1/R₂ + 1/R₃)⁻¹ ANS: D PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 25. Three resistors, with values of 2.0, 4.0 and 8.0 W, respectively, are connected in parallel. What is the overall resistance of this combination? a. 0.58 W b. 1.1 W c. 7.0 W d. 14.0 W ANS: B PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 26. Two resistors of values 6.0 and 12.0 Ware connected in parallel. This combination in turn is hooked i series with a 4.0-Wresistor. What is the overall resistance of this combination? a. 0.50 W b. 2.0 W 	23.	respectively. Which of the following expresses the total voltage DV_T across the three resistors when connected in this manner? a. $DV_T = DV_1 + DV_2 + DV_3$ b. $DV_T = (1/DV_1 + 1/DV_2 + 1/DV_3)$ c. $DV_T = DV_1 = DV_2 = DV_3$
following expresses the total resistance, R_T , of the three resistors when connected in parallel? a. $R_T = R_1 + R_2 + R_3$ b. $R_T = (1/R_1 + 1/R_2 + 1/R_3)$ c. $R_T = R_1 = R_2 = R_3$ d. $R_T = (1/R_1 + 1/R_2 + 1/R_3)^{-1}$ ANS: D PTS: 1 DIF: 1 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 25. Three resistors, with values of 2.0, 4.0 and 8.0 W, respectively, are connected in parallel. What is the overall resistance of this combination? a. 0.58 W b. 1.1 W c. 7.0 W d. 14.0 W ANS: B PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 26. Two resistors of values 6.0 and 12.0 W are connected in parallel. This combination in turn is hooked i series with a 4.0-Wresistor. What is the overall resistance of this combination? a. 0.50 W b. 2.0 W		
TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 25. Three resistors, with values of 2.0, 4.0 and 8.0 W, respectively, are connected in parallel. What is the overall resistance of this combination? a. 0.58 W b. 1.1 W c. 7.0 W d. 14.0 W ANS: B PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 26. Two resistors of values 6.0 and 12.0 W are connected in parallel. This combination in turn is hooked i series with a 4.0-W resistor. What is the overall resistance of this combination? a. 0.50 W b. 2.0 W	24.	following expresses the total resistance, R_T , of the three resistors when connected in parallel? a. $R_T = R_1 + R_2 + R_3$ b. $R_T = (1/R_1 + 1/R_2 + 1/R_3)$ c. $R_T = R_1 = R_2 = R_3$
overall resistance of this combination? a. 0.58 W b. 1.1 W c. 7.0 W d. 14.0 W ANS: B PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 26. Two resistors of values 6.0 and 12.0 Ware connected in parallel. This combination in turn is hooked i series with a 4.0-Wresistor. What is the overall resistance of this combination? a. 0.50 W b. 2.0 W		
 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel 26. Two resistors of values 6.0 and 12.0 Ware connected in parallel. This combination in turn is hooked i series with a 4.0-Wresistor. What is the overall resistance of this combination? a. 0.50 W b. 2.0 W 	25.	overall resistance of this combination? a. 0.58 W b. 1.1 W c. 7.0 W
series with a 4.0-Wresistor. What is the overall resistance of this combination? a. 0.50 W b. 2.0 W		
c. 8.0 W d. 22.0 W	26.	a. 0.50 Wb. 2.0 Wc. 8.0 W
ANS: C PTS: 1 DIF: 2		ANS: C PTS: 1 DIF: 2

	10F. 18.1 Sources of entit 18.2 Resistors in Series 18.3 Resistors in Faranci
27.	Two resistors of values 6.0 and 12.0 Ware connected in parallel. This combination in turn is hooked in series with a 2.0-Wresistor and a 24-V battery. What is the current in the 2-Wresistor? a. 2.0 A b. 4.0 A c. 6.0 A d. 12 A
	ANS: B PTS: 1 DIF: 2 TOP: 18.1 Sources of emf 18.2 Resistors in Series 18.3 Resistors in Parallel
20	Two resistors of values 60 and 120 Were connected in perallal. This combination in turn is booked in

- 28. Two resistors of values 6.0 and 12.0 Ware connected in parallel. This combination in turn is hooked in series with a 4.0-Wresistor and a 24-V battery. What is the current in the 6-Wresistor?
 - a. 2.0 A
 - b. 3.0 A
 - c. 6.0 A
 - d. 12 A
 - ANS: A PTS: 1 DIF: 2

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

29. Which two resistors are in parallel with each other?

- a. R and R_4
- b. R_2 and R_3
- c. R_2 and R_4
- d. R and R_1

ANS: B PTS: 1 DIF: 2

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

- 30. Three resistors, each with resistance R_1 , are in parallel in a circuit. They are replaced by one equivalent resistor, R. Compare this resistor to the first resistor of the initial circuit. Which of the following statements is true?
 - a. The current through R equals the current through R_1 .
 - b. The voltage across R equals the voltage across R_1 .
 - c. The power given off by R equals the power given off by R_1 .
 - d. R is greater than R_1 .

ANS: B PTS: 1 DIF: 1

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

31. Resistors of values 6.0W, 4.0W, 10.0W and 7.0W are combined as shown. What is the equivalent resistance for this combination?

- a. 2.3 W
- b. 3.0 W
- c. 10.7 W
- d. 27 W

ANS: C

PTS: 1

DIF: 2

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

32. What is the equivalent resistance for these 3.00-Wresistors?

- a. 1.33 W
- b. 2.25 W
- c. 3.00 W
- d. 7.50 W

ANS: B

PTS: 1

DIF: 2

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

33. How much current is flowing in one of the 10-Wresistors?

- a. 0.8 A
- b. 2.0 A
- c. 1.6 A
- d. 2.4 A

ANS: A

PTS: 1

DIF: 2

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

34. How much power is being dissipated by one of the 10-Wresistors?

- a. 24 W
- b. 9.6 W
- c. 16 W
- d. 6.4 W
- ANS: D
- PTS: 1
- DIF: 2

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

35. If e=20 V, at what rate is thermal energy being generated in the 20-Wresistor?

- a. 6.5 W
- b. 1.6 W
- c. 15 W
- d. 26 W
- ANS: B
- PTS: 1
- DIF: 3

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

36. If e = 24 V, at what rate is thermal energy generated in the 20-Wresistor?

- a. 13 W
- b. 3.2 W
- c. 23 W
- d. 39 W
- ANS: A
- PTS: 1
- DIF: 3

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

37. If e = 9.0 V, what is the current in the 15-Wresistor?

- a. 0.20 A
- b. 0.30 A
- c. 0 10 A
- d. 0.26 A
- ANS: A
- PTS: 1
- DIF: 2

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

38. Consider the circuit shown in the figure. What power is dissipated by the entire circuit?

- a. 14 W
- b. 28 W
- c. 52 W
- d. 112 W
- ANS: C
- PTS: 1
- DIF: 2

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

- 39. If $R_1 < R_2 < R_3$, and if these resistors are connected in parallel in a circuit, which one has the highest current?
 - a. R₁
 - b. R_2
 - c. R_3
 - d. All have the same current.
 - ANS: A
- PTS: 1
- DIF: 1

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

- 40. Resistors of values 8.0 W, 12.0 W, and 24.0 W are connected in parallel across a fresh battery. Which resistor dissipates the greatest power?
 - a. the 8.0-Wresistor
 - b. the 12.0-Wresistor
 - c. the 24.0-Wresistor
 - d. All dissipate the same power when in parallel.
 - ANS: A
- PTS: 1
- DIF: 2

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

- 41. Resistors having values of , , and are connected in series in the order given. The combination is then connected to a battery with the free end of the 4.0-Wresistor connected to the positive terminal and the free end of the 8.0-Wresistor connected to the negative terminal. When connected, the battery has a terminal voltage of . If the negative battery terminal has an electric potential of , what is the potential at the connection between the 4.0-W and the 8.0-Wresistors?
 - a. 7.2 V
 - b. 7.0 V
 - c. 4.0 V
 - d. 7.4 V
 - ANS: B PTS: 1 DIF: 2
 - TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel
- 42. Resistors having values of , , and are connected in series in the order given. The combination is then connected to a battery with the free end of the 4.0-Wresistor connected to the positive terminal and the free end of the 8.0-Wresistor connected to the negative terminal. When connected, the battery has a terminal voltage of . If the battery is disconnected, its terminal voltage is 9.4 V. What is the internal resistance of the battery?
 - a. 0.4
 - b. 0.8
 - c. 0.05
 - d. 0.02
 - ANS: B PTS: 1 DIF: 2
 - TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel
- 43. Resistors having values of , , and are connected in series in the order given. The combination is then connected to a battery with the free end of the 4.0-Wresistor connected to the positive terminal and the free end of the 8.0-Wresistor connected to the negative terminal. When connected, the battery has a terminal voltage of . If the battery is disconnected, its terminal voltage is 9.4 V. When the battery is connected, what is the power dissipated by the internal resistance?
 - a. 0.2 W
 - b. 0.4 W
 - c. 3 W
 - d. 0.3 W
 - ANS: A PTS: 1 DIF: 3
 - TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel
- 44. To find the equivalent resistance of the combination of resistors shown below by the method of possibly repeated applications of combining resistors in series and /or combining resistors in parallel, the first step would be which of the following?

- a. Combine the 6.0 Wand the 7.0 Win series.
- b. Combine either the 4.0 W and the 10.0 Win parallel or the 7.0 W and the 10.0 Win parallel first, since either could be the first step with the other the second step.
- c. Combine the 4.0 Wand the 10.0 Win series.
- d. Combine the 6.0 W, the 4.0 W, and the 10.0 Win series in a single step.

ANS: C PTS: 1 DIF: 1

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

45. To find the equivalent resistance of the combination of resistors shown across the 28-V battery by the method of possibly repeated applications of combining resistors in series and /or combining resistors in parallel, the first step would be which of the following?

- a. Combine the two 10 Win parallel since they can be done in your head.
- b. Combine, in series, the two 3-Wresistors and the 4-Wresistor in the right-hand branch of the circuit.
- c. Combine the seven resistors (two 5 W, three 3 W, one 2 W and one 4 W) in the outer loop of the circuit in series.

DIF: 1

d. This problem cannot be done by combining series and parallel resistors.

ANS: B PTS: 1

TOP: 18.1 Sources of emf | 18.2 Resistors in Series | 18.3 Resistors in Parallel

46. What is Kirchhoff's 1st equation for this junction?

- a. $I_1 = I_2 + I_3$
- b. $I_2 = I_1 + I_2$
- c. $I_3 = I_1 + I_2$
- d. $I_1 + I_2 + I_3 = 0$

ANS: D PTS: 1 DIF: 1

TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits

47. If I_1 goes to the right through R_1 , I_2 goes to the right through R_2 , and I_3 goes to the right through R_3 , what is the resulting equation resulting from applying Kirchhoff's junction rule at point b?

- a. $I_1 + I_2 + I_3 = 0$
- b. $I_1 + I_2 I_3 = 0$
- c. $I_1 I_2 + I_3 = 0$
- d. $I_1 I_2 I_3 = 0$

ANS: A

PTS: 1

DIF: 1

TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits

48. If I_1 goes to the right through R_1 , I_2 goes to the right through R_2 , and I_3 goes to the right through R_3 , what is the resulting equation resulting from applying Kirchhoff's loop rule for a clockwise loop around the perimeter of the circuit?

- a. $8.0 \text{ V} + I_1 R_1 + I_3 R_3 = 0$
- b. $8.0 \text{ V} + I_1 R_1 I_3 R_3 = 0$
- c. $8.0 \text{ V} I_1 R_1 + I_3 R_3 = 0$
- d. $-8.0 \text{ V} + I_1 R_1 + I_3 R_3 = 0$
- ANS: C
- PTS: 1
- DIF: 2
- TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits
- 49. What is the current through the 2-Wresistor?

- a. 1.0 A
- b. 0.50 A
- c. 1.5 A
- d. 2.0 A
- ANS: A
- PTS: 1
- DIF: 3
- TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits
- 50. What is the current through the 8-Wresistor?

- a. 1.0 A
- b. 0.50 A
- c. 1.5 A
- d. 2.0 A

ANS: C PTS: 1

TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits

51. What is the potential difference between points \underline{a} and \underline{b} ?

- a. 6 V
- b. 8 V
- c. 12 V
- d. 24 V

ANS: C

PTS: 1

DIF: 3

DIF: 3

TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits

52. What is the current flowing through the 2-Wresistor?

- a. 2 A
- b. 3 A
- c. 4 A
- d. 6 A

ANS: C

PTS: 1

DIF: 2

TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits

53. What is the current flowing through the 4-Wresistor?

- a. 1 A
- b. 2 A
- c. 3 A
- d. 6 A

ANS: A

PTS: 1

DIF: 2

TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits

- 54. Four 1.5-volt AA batteries in series power a transistor radio. If the batteries hold a total charge of 240 C, how long will they last if the radio has a resistance of 200 W?
 - a. 1.1 h
 - b. 2.2 h
 - c. 4.1 h
 - d. 13 h
 - ANS: B
- PTS: 1
- DIF: 2
- TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits
- 55. In a circuit, a current of 2.0 A is drawn from a battery. The current then divides and passes through two resistors in parallel. One of the resistors has a value of 64 W and the current through it is 0.40 A. What is the value of the other resistor?
 - a. 8.0 W
 - b. 16 W
 - c. 24 W
 - d. 32 W
 - ANS: B
- PTS: 1
- DIF: 2
- TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits
- 56. In the circuit segment shown if I = 7 mA and $Q = 50 \mu$ C, what is the potential difference, $V_A V_B$?

- a. -40 V
- b. +40 V
- c. +20 V
- d. −20 V
- ANS: D
- PTS: 1
- DIF: 3
- TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits
- 57. If I = 2.0 mA and the potential difference, $V_A V_B = +30$ V in the circuit segment shown, determine the charge and polarity of the capacitor.

- a. 1.5 mC, left plate is positive
- b. 1.5 mC, right plate is positive
- c. 0.50 mC, left plate is positive
- d. 0.50 mC, right plate is positive
- ANS: A
- PTS: 1
- DIF: 3
- TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits
- 58. If one doubles the emfs in a circuit and doubles the resistances in the circuit at the same time, what happens to the currents through the resistors? Assume there are only emfs and resistors in the circuit.
 - a. They stay the same.
 - b. They double.
 - c. They quadruple.

d. They halve.

ANS: A

PTS: 1

DIF: 2

TOP: 18.4 Kirchhoff's Rules and Complex DC Circuits

59. A 10-V-emf battery is connected in series with the following: a $2-\mu F$ capacitor, a 2-Wresistor, an ammeter, and a switch, initially open; a voltmeter is connected in parallel across the capacitor. At the instant the switch is closed, what are the current and capacitor voltage readings, respectively?

- a. zero A, 10 V
- b. zero A, zero V
- c. 5 A, zero V
- d. 5 A, 10 V

ANS: C

PTS: 1

DIF: 2

TOP: 18.5 RC Circuits

60. A 10-V-emf battery is connected in series with the following: a 2-mF capacitor, a 2-Wresistor, an ammeter, and a switch, initially open; a voltmeter is connected in parallel across the capacitor. After the switch has been closed for a relatively long period (several seconds, say), what are the current and capacitor voltage readings, respectively?

- a. zero A, 10 V
- b. zero A, zero V
- c. 5 A, zero V
- d. 5 A, 10 V

ANS: A

PTS: 1

DIF: 2

TOP: 18.5 RC Circuits

61. A circuit contains a 6.0-V battery, a 4.0-Wresistor, a $0.60-\mu F$ capacitor, an ammeter, and a switch all in series. What will be the current reading immediately after the switch is closed?

- a. zero
- b. 0.75 A
- c. 1.5 A
- d. 10 A

ANS: C

PTS: 1

DIF: 2

TOP: 18.5 RC Circuits

62. A circuit contains a 6.0-V battery, a 4.0-Wresistor, a $0.60-\mu F$ capacitor, an ammeter, and a switch in series. What will be the charge on the capacitor 10 min after the switch is closed?

- a. zero
- b. 0.10 *n*C
- c. 3.6 *n*C
- d. 2.4 *n*€
- ANS: C
- PTS: 1
- DIF: 2
- TOP: 18.5 RC Circuits

63. A 1 000-V battery, a 3 000-W resistor, and a $0.50-\mu F$ capacitor are connected in series with a switch. The capacitor is initially uncharged. What is the value of the current the moment after the switch is closed?

- a. 0.39 A
- b. 0.33 A
- c. 0.84 A
- d. 2000 A
- ANS: B
- PTS: 1
- DIF: 2
- TOP: 18.5 RC Circuits

64. A 1 000-V battery, a 3 000-Wresistor and a 0.50-μF capacitor are connected in series with a switch. The time constant for such a circuit, designated by the Greek letter, *t*, is defined as the time required to charge the capacitor to 63% of its capacity after the switch is closed. What is the value of *t* for this circuit?

- a. $6.0 \cdot 10^9 \,\mathrm{s}$
- b. $1.7 \cdot 10^{-10} \,\mathrm{s}$
- c. $1.7 \cdot 10^{-7}$ s
- d. $1.5 \cdot 10^{-3}$ s
- ANS: D
- PTS: 1
- DIF: 2
- TOP: 18.5 RC Circuits

65. A 1 000-V battery, a 3 000-Wresistor, and a 0.50-nF capacitor are connected in series with a switch. The time constant for such a circuit, designated by the Greek letter, t, is defined as the time that the capacitor takes to charge to 63% of its capacity after the switch is closed. What is the current in the circuit at a time interval of t seconds after the switch has been closed?

- a. 0.14 A
- b. 0.21 A
- c. 0.12 A
- d. 0.32 A

ANS: C

PTS: 1

DIF: 3

TOP: 18.5 RC Circuits

- 66. A certain capacitor is charged to 10 V and then, at *t* = 0, allowed to discharge through a certain resistor. There will be a certain time before the voltage across the capacitor reaches 5 V. This time can be decreased for this circuit by increasing:
 - a. the size of the capacitor.
 - b. the size of the resistor.
 - c. the size of the time constant.
 - d. None of the above.

ANS: D

PTS: 1

DIF: 2

TOP: 18.5 RC Circuits

67. A series *RC* circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed?

- a. 0.43 C
- b. 066 C
- c. 0.86 C
- d. 0.99 C

ANS: A

PTS: 1

DIF: 3

TOP: 18.5 RC Circuits

- 68. A voltage source of 10 V is connected to a series RC circuit where R = 2.0 ′ 10^6 W, and $C = 3.0 \,\mu\text{F}$. Find the amount of time required for the current in the circuit to decay to 5% of its original value. Hint: This is the same amount of time for the capacitor to reach 95% of its maximum charge.
 - a. 3.0 s
 - b. 6.0 s
 - c. 9.0 s
 - d. 18 s

ANS: D

PTS: 1

DIF: 3

TOP: 18.5 RC Circuits

- 69. A series *RC* circuit, which is made from a battery, a switch, a resistor, and a 3.0-mF capacitor, has a time constant of 9.0 ms. If an additional 6.0-mF is added in series to the 3.0-mF capacitor, what is the resulting time constant?
 - a. 4.0 ms
 - b. 6.0 ms
 - c. 10 ms
 - d. This cannot be found without the value of the resistance being given.

ANS: B

PTS: 1

DIF: 3

TOP: 18.5 RC Circuits

70.	The following three appliances are connected to a 120-V house circuit: i) toaster, 1 200 W, ii) coffee pot, 750 W, and iii) microwave, 800 W. If all were operated at the same time, what total current would they draw? a. 3.0 A b. 5.0 A c. 10 A d. 23 A
	ANS: D PTS: 1 DIF: 2 TOP: 18.6 Household Circuits 18.7 Electrical Safety
71.	What is the maximum number of 60-W light bulbs you can connect in parallel in a 120-V home circuit without tripping the 30-A circuit breaker? a. 11 b. 35 c. 59 d. 3 600
	ANS: C PTS: 1 DIF: 2 TOP: 18.6 Household Circuits 18.7 Electrical Safety
72.	A hair dryer draws 1 200 W, a curling iron draws 800 W, and an electric light fixture draws 500 W. If all three of these appliances are operating in parallel on a 120-V circuit, what is the total current drawn? a. 19.4 A b. 20.8 A c. 25.4 A d. 36.7 A
	ANS: B PTS: 1 DIF: 2 TOP: 18.6 Household Circuits 18.7 Electrical Safety
73.	Household circuits are wired in a. series b. parallel c. both series and parallel d. neither series nor parallel ANS: B PTS: 1 DIF: 1
	TOP: 18.6 Household Circuits 18.7 Electrical Safety
74.	In applications where electrical shocks may be more likely, such as around water in kitchens and bathrooms, special outlets called GFI's are used. What does GFI stand for? a. get free instantly b. ground-fault interrupter c. give fast interruption d. gravity-free insulator ANS: B PTS: 1 DIF: 1 TOP: 18.6 Household Circuits 18.7 Electrical Safety
75.	Household 120-V outlets are made to accept three-pronged plugs. One of the prongs attaches to the "live" wire at 120 V, and another attaches to the "neutral" wire that is connected to ground. What is

the round third prong for?
a. It serves as a backup to the hot wire.

	b. It lets the appliance run if the neutral wire breaks.c. It connects the case of the appliance directly to ground for safety purposes.d. Nothing electrical, it is for mechanical sturdiness.	
	ANS: C PTS: 1 DIF: 1 TOP: 18.6 Household Circuits 18.7 Electrical Safety	
76.	 76. Three resistors, each of different value, are used in a circuit with a power source. For which of the following resistor combinations is the total power supplied the a. all three resistors in series b. all three resistors in parallel c. two of the resistors in parallel with the third resistor in series with the parad. This cannot be found until it is known which resistor is in series with the parad. 	e greatest?
	ANS: B PTS: 1 DIF: 2 TOP: Cond	ceptual Questions
77.	 77. Kirchhoff's rules are the junction rule and the loop rule. Which of the followin a. Both rules are based on the conservation of charge. b. Both rules are based on the conservation of energy. c. The junction rule is based on the conservation of charge, and the loop rule conservation of energy. d. The junction rule is based on the conservation of energy, and the loop rule conservation of charge. 	is based on the
	ANS: C PTS: 1 DIF: 2 TOP: Cond	ceptual Questions
78.	 78. Using a capacitor and two different value resistors, which of the following concircuit would give the greatest time constant? a. the capacitor in series with both resistors in series with each other b. the capacitor in series with both resistors in parallel with each other c. the capacitor in series with the higher value resistor d. the capacitor in series with the lower value resistor 	nbinations in an RC
	ANS: A PTS: 1 DIF: 2 TOP: Cond	ceptual Questions
79.	 79. Using a resistor and two different value capacitors, which of the following concircuit would give the greatest time constant? a. the resistor in series with both capacitors in series with each other b. the resistor in series with both capacitors in parallel with each other c. the resistor in series with the larger value capacitor d. the resistor in series with the lower value capacitor 	nbinations in an RC
	ANS: B PTS: 1 DIF: 2 TOP: Conc	ceptual Questions
80.	 would give the greatest time constant? a. both capacitors in series placed in series with both resistors in series b. both capacitors in parallel placed in series with both resistors in parallel c. both capacitors in series placed in series with both resistors in parallel d. both capacitors in parallel placed in series with both resistors in series 	
	ANS: D PTS: 1 DIF: 2 TOP: Conc	ceptual Questions

MULTIPLE CHOICE

	 a. opposite magnetic poles repel. b. one magnetic pole cannot create magnetic poles in other materials. c. a magnetic pole cannot be isolated. d. magnetic poles do not produce magnetic fields. 						
	ANS: C	PTS:	1	DIF:	1	TOP:	19.1 Magnets
2.	A <i>soft</i> magnetic mate a. It cannot be mag b. It is easy to mag c. It is hard to mag d. It attracts slowly	netized. netize. netize.		y?			
	ANS: B	PTS:	1	DIF:	1	TOP:	19.1 Magnets
3.	Which of the following a. iron b. cobalt c. nickel d. both b and c	ng is <u>nc</u>	o <u>t</u> a <i>hard</i> magne	etic mat	erial?		
	ANS: A	PTS:	1	DIF:	1	TOP:	19.1 Magnets
4.	following? a. convection curre b. iron ore deposits c. nickel-iron depo d. solar flares	nts with in the c sits in th	nin the liquid in crust ne crust	terior		Č	etic field to which of the
5.	ANS: A The term magnetic d a. angle between E b. Earth's magnetic c. tendency for Ear d. angle between di	arth's m field st th's fiel	on refers to wh nagnetic field a rength at the ed d to reverse its	nd Eartl Juator elf	he following? h's surface	TOP:	19.2 Earth's Magnetic Field
	ANS: D	PTS:	1	DIF:	1	TOP:	19.2 Earth's Magnetic Field
6.	The magnetic field of a. deflection of both b. deflection of chance. ozone in the upp d. solar flares	h charge rged co	ed and uncharg smic rays	_		of the f	following?
	ANS: B	PTS:	1	DIF:	1	TOP:	19.2 Earth's Magnetic Field

1. Electrical charges and magnetic poles have many similarities, but one difference is:

7.	The magnetic pole of following? a. a magnetic north b. a magnetic south c. a magnetic arctid. a magnetic Anta	n pole n pole c pole		geograp	phic North Pole	corresp	onds to which of the
	ANS: B	PTS:	1	DIF:	1	TOP:	19.2 Earth's Magnetic Field
8.	Which of the follow a. Washington stat b. the South Caroli c. the San Francisc d. western Colorad	e ina – Ge co – Oak	orgia border	mallest	(in magnitude)	magnet	ic declination?
	ANS: B	PTS:	1	DIF:	1	TOP:	19.2 Earth's Magnetic Field
9.	The dip angle is: a. another term forb. a measure of thec. close to or at zerd. close to or at zer	tendend ro near t	cy for a compa he equator.	•	int south.		
	ANS: C	PTS:	1	DIF:	1	TOP:	19.2 Earth's Magnetic Field
10.	An electron which n experiences a force of a. 4.8 ′ 10 ⁻¹⁴ N b. 1.9 ′ 10 ⁻¹⁵ N c. 2.2 ′ 10 ⁻²⁴ N d. zero					a unifo	orm magnetic field of 0.40 T
	ANS: D	PTS:	1	DIF:	1	TOP:	19.3 Magnetic Fields
11.	between the particle a. zero b. 180° c. 90° d. 45°	velocity	and field?		-		is maximum at what angle
	ANS: C	PTS:	1	DIF:	1	TOP:	19.3 Magnetic Fields
12.		m the bo	ottom edge to t	he top e	edge of the page		etron is released with an initial of the following describes
	ANS: B	PTS:	1	DIF:	1	TOP:	19.3 Magnetic Fields

13.	*	flected in eld. What ge to top	n a direction to at is the direction edge of the pa	ward thon of th	ne bottom edge		ss this page. The proton's page due to the presence of a
	ANS: B	PTS:	1	DIF:	2	TOP:	19.3 Magnetic Fields
14.	A proton is released A magnetic field of What is the magnitude. 4.8 ′ 10 ⁻²⁵ N b. 1.3 ′ 10 ⁻¹⁹ N c. 3.8 ′ 10 ⁻¹⁴ N d. 7.5 ′ 10 ³ N	1.2 T is	present at an ai	ngle of	30° to the horiz	contal d	n left to right across the page. irection (or positive x axis). (10^{-19}) C)
	ANS: C	PTS:	1	DIF:	2	TOP:	19.3 Magnetic Fields
15.							gnetic field at an angle of 70° . orce acting on the proton? (q_p
	ANS: C	PTS:	1	DIF:	2	TOP:	19.3 Magnetic Fields
16.		direction at this in the surface surface	n due north and nstant?				at this point the Earth's nat is the direction of the force
	ANS: B	PTS:	1	DIF:	1	TOP:	19.3 Magnetic Fields
17.	The right-hand rule aparticle. The right-hand rule are results in positive b. results in negative. can be used for pd. gives the direction	and rule re charge we charg positive	e applied to mo es moving cloc es moving cloc charges only.	ving ch kwise. kwise.	narges:		nagnetic field with a charged
	ANS: D	PTS:	1	DIF:	1	TOP:	19.3 Magnetic Fields
18.	Different units can be multiplicative factor a. 10 ⁴ b. 10 ⁻⁴ c. 0.5 d. These units do n	The cg	gs unit for mag	netic fi	eld, the gauss, i		

	ANS: B	PTS: 1	DIF: 1	TOP:	19.3 Magnetic Fields
19.		d at the equator and fale proton will be toward		der the	influence of gravity, the
	ANS: C	PTS: 1	DIF: 1	TOP:	19.3 Magnetic Fields
20.		ion of the magnetic for	_	which is	s directed toward the right as
	ANS: D	PTS: 1	DIF: 1	TOP:	19.3 Magnetic Fields
21.	a. uncharged.b. stationary.	rection of the magnetic	s possible that the parti	cle is:	
	ANS: D	PTS: 1	DIF: 1	TOP:	19.3 Magnetic Fields
22.	000 V/m and is direc	ted straight down. The	e magnetic field $B = 0.3$	80 T an	ds. The electric field $E = 2$ d is directed to the left. For ly cancel the magnetic force?
	d. 8 000 m/s				
	ANS: A	PTS: 1	DIF: 2		19.3 Magnetic Fields
23.	_	ame charge as the prot			to a uniform magnetic field. e ratio of the magnetic force

- a. 0.5.
- b. 1.
- d. There is no magnetic force in this case.

24.	A proton and a deuteron are moving with equal velocities perpendicular to a uniform magnetic field. A deuteron has the same charge as the proton but has twice its mass. The ratio of the acceleration of the proton to that of the deuteron is: a. 0.5. b. 1. c. 2. d. There is no acceleration in this case.
	ANS: C PTS: 1 DIF: 2 TOP: 19.3 Magnetic Fields
25.	A 2.0-m wire segment carrying a current of 0.60 A oriented parallel to a uniform magnetic field of 0.50 T experiences a force of what magnitude? a. 6.7 N b. 0.30 N c. 0.15 N d. zero
	ANS: D PTS: 1 DIF: 2 TOP: 19.4 Magnetic Force on a Current-Carrying Conductor
26.	A copper wire of length 25 cm is in a magnetic field of 0.20 T. If it has a mass of 10 g, what is the minimum current through the wire that would cause a magnetic force equal to its weight? a. 1.3 A b. 1.5 A c. 2.0 A d. 4.9 A
	ANS: C PTS: 1 DIF: 2 TOP: 19.4 Magnetic Force on a Current-Carrying Conductor
27.	Which of the following devices makes use of an electromagnet? a. loudspeaker b. galvanometer c. both A and B d. None of the above.
	ANS: C PTS: 1 DIF: 1 TOP: 19.4 Magnetic Force on a Current-Carrying Conductor
28.	The force exerted on a current-carrying wire located in an external magnetic field is directly proportional to which of the following? a. current strength b. field strength c. both A and B d. None of the above are valid.
	ANS: C PTS: 1 DIF: 1 TOP: 19.4 Magnetic Force on a Current-Carrying Conductor
29.	The direction of the force on a current carrying wire located in an external magnetic field is which of the following? a. perpendicular to the current b. perpendicular to the field

DIF: 2

TOP: 19.3 Magnetic Fields

ANS: B

PTS: 1

- c. Both choices A and B are valid.
- d. None of the above are valid.

ANS: C PTS: 1 DIF: 1

TOP: 19.4 Magnetic Force on a Current-Carrying Conductor

- 30. A current-carrying wire of length 50 cm is positioned perpendicular to a uniform magnetic field. If the current is 10.0 A and it is determined that there is a resultant force of 3.0 N on the wire due to the interaction of the current and field, what is the magnetic field strength?
 - a. 0.60 T
 - b. 1.5 T
 - c. 1.8 ′ 10⁻³ T
 - d. 6.7′ 10⁻³ T

ANS: A PTS: 1 DIF: 2

TOP: 19.4 Magnetic Force on a Current-Carrying Conductor

- 31. A horizontal wire of length 3.0 m carries a current of 6.0 A and is oriented so that the current direction is 50° S of W. The Earth's magnetic field is due north at this point and has a strength of 0.14 ′ 10⁻⁴ T. What is the size of the force on the wire?
 - a. $0.28 \cdot 10^{-4} \,\mathrm{N}$
 - b. $2.5 \cdot 10^{-4} \text{ N}$
 - c. $1.9 \cdot 10^{-4} \text{ N}$
 - d. 1.6′ 10⁻⁴ N

ANS: D PTS: 1 DIF: 2

TOP: 19.4 Magnetic Force on a Current-Carrying Conductor

- 32. A horizontal wire of length 3.0 m carries a current of 6.0 A and is oriented so that the current direction is 50° S of W. The Earth's magnetic field is due north at this point and has a strength of 0.14 ′ 10⁻⁴ T. What is the direction of the force on the wire?
 - a. out of the Earth's surface
 - b. toward the Earth's surface
 - c. due east
 - d. 40° S of E

ANS: B PTS: 1 DIF: 2

TOP: 19.4 Magnetic Force on a Current-Carrying Conductor

33. A wire is lying horizontally in the north-south direction and the horizontal magnetic field is toward the east. Some positive charges in the wire move north and an equal number of negative charges move south. The direction of the force on the wire will be:

- a. east.
- b. down, into the page.
- c. up, out of the page.
- d. There is no magnetic force.

ANS: B PTS: 1 DIF: 2

TOP: 19.4 Magnetic Force on a Current-Carrying Conductor

34.	There is a current <i>I</i> flowing in a clockwise direction in a square loop of wire that is in the plane of the paper. If the magnetic field <i>B</i> is toward the right, and if each side of the loop has length <i>L</i> , then the net magnetic force acting on the loop is: a. 2 <i>ILB</i> . b. <i>ILB</i> . c. <i>IBL</i> ² .
	d. zero.
	ANS: D PTS: 1 DIF: 2 TOP: 19.4 Magnetic Force on a Current-Carrying Conductor
35.	A circular current loop is placed in an external magnetic field. How is the torque related to the radius of the loop? a. directly proportional to radius b. inversely proportional to radius c. directly proportional to radius squared d. inversely proportional to radius squared
	ANS: C PTS: 1 DIF: 1 TOP: 19.5 Torque on a Current Loop and Electric Motors
36.	A circular loop carrying a current of 1.0 A is oriented in a magnetic field of 0.35 T. The loop has an area of 0.24 m² and is mounted on an axis, perpendicular to the magnetic field, which allows the loop to rotate. If the plane of the loop is oriented parallel to the field, what torque is created by the interaction of the loop current and the field? a. 5.8 Nxm b. 0.68 Nxm c. 0.084 Nxm d. 0.017 Nxm
	ANS: C PTS: 1 DIF: 2 TOP: 19.5 Torque on a Current Loop and Electric Motors
37.	A circular loop carrying a current of 1.0 A is oriented in a magnetic field of 0.35 T. The loop has an area of 0.24 m² and is mounted on an axis, perpendicular to the magnetic field, which allows the loop to rotate. What is the torque on the loop when its plane is oriented at a 25° angle to the field? a. 4.6 Nxm b. 0.076 Nxm c. 0.051 Nxm d. 0.010 Nxm
	ANS: B PTS: 1 DIF: 3 TOP: 19.5 Torque on a Current Loop and Electric Motors
38.	There is a current I flowing in a clockwise direction in a square loop of wire that is in the plane of the paper. If the magnetic field B is toward the right, and if each side of the loop has length L , then the net magnetic torque acting on the loop is:

- a. 2*ILB*.
- b. *ILB*.
- c. IBL^2 .
- d. zero.

ANS: C PTS: 1 DIF: 2

TOP: 19.5 Torque on a Current Loop and Electric Motors

- 39. A rectangular coil (0.20 m ′ 0.80 m) has 200 turns and is in a uniform magnetic field of 0.30 T. If the orientation of the coil is varied through all possible positions, the maximum torque on the coil by magnetic forces is 0.080 Nxm. What is the current in the coil?
 - a. 5.0 mA
 - b. 1.7 A
 - c. 8.3 mA
 - d. 1.0 A

ANS: C PTS: 1 DIF: 3

TOP: 19.5 Torque on a Current Loop and Electric Motors

- 40. A circular coil (radius = 0.40 m) has 160 turns and is in a uniform magnetic field. If the orientation of the coil is varied through all possible positions, the maximum torque on the coil by magnetic forces is 0.16 N/m when the current in the coil is 4.0 mA. What is the magnitude of the magnetic field?
 - a. 0.37 T
 - b. 1.6 T
 - c. 0.50 T
 - d. 1.2 T

ANS: C PTS: 1 DIF: 3

TOP: 19.5 Torque on a Current Loop and Electric Motors

- 41. A proton moving with a speed of 3.0 $^{'}$ 10⁵ m/s perpendicular to a uniform magnetic field of 0.20 T will follow which of the paths described below? ($q_p = 1.6$ $^{'}$ 10⁻¹⁹ C and $m_p = 1.67$ $^{'}$ 10⁻²⁷ kg)
 - a. a straight line path
 - b. a circular path of 1.6 cm radius
 - c. a circular path of 3.1 cm radius
 - d. a circular path of 0.78 cm radius

ANS: B PTS: 1 DIF: 2

TOP: 19.6 Motion of a Charged Particle in a Magnetic Field

- 42. A deuteron, with the same charge but twice the mass of a proton, moves with a speed of 3.0° 10^{5} m/s perpendicular to a uniform magnetic field of 0.20 T. Which of the paths described below would it follow? $(q_p = 1.6^{\circ} 10^{-19})$ C and $m_d = 3.34^{\circ} 10^{-27}$ kg)
 - a. a straight line path
 - b. a circular path of 1.6 cm radius
 - c. a circular path of 3.1 cm radius
 - d. a circular path of 0.78 cm radius

ANS: C PTS: 1 DIF: 2

TOP: 19.6 Motion of a Charged Particle in a Magnetic Field

43.	The path of a charged particle moving parallel to a uniform magnetic field will be a: a. straight line. b. circle. c. ellipse. d. parabola.
	ANS: A PTS: 1 DIF: 1 TOP: 19.6 Motion of a Charged Particle in a Magnetic Field
44.	A proton, which moves perpendicular to a magnetic field of 1.2 T in a circular path of radius 0.080 m, has what speed? $(q_p = 1.6 \text{ '} 10^{-19} \text{ C} \text{ and } m_p = 1.67 \text{ '} 10^{-27} \text{ kg})$ a. 3.4 ' 10^6 m/s b. 4.6 ' 10^6 m/s c. 9.6 ' 10^6 m/s d. 9.2 ' 10^6 m/s
	ANS: D PTS: 1 DIF: 2 TOP: 19.6 Motion of a Charged Particle in a Magnetic Field
45.	Two singly ionized isotopes, X and Y, of the same element move with the same speed perpendicular to a uniform magnetic field. Isotope X follows a path of radius 3.35 cm while isotope Y moves along a path 3.43 cm in radius. What is the ratio of the two isotope masses, $m_{\rm X}/m_{\rm Y}$? a. 0.977 b. 1.02 c. 1.05 d. 0.954
	ANS: A PTS: 1 DIF: 2 TOP: 19.6 Motion of a Charged Particle in a Magnetic Field
46.	If a charged particle is moving in a uniform magnetic field, its path can be: a. a straight line. b. a circle. c. a helix. d. any of the above.
	ANS: D PTS: 1 DIF: 2 TOP: 19.6 Motion of a Charged Particle in a Magnetic Field
47.	When a magnetic field causes a charged particle to move in a circular path, the only quantity listed below which the magnetic force changes significantly as the particle goes around in a circle is the particle's: a. energy. b. momentum. c. radius for the circle. d. time to go around the circle once.
	ANS: B PTS: 1 DIF: 1 TOP: 19.6 Motion of a Charged Particle in a Magnetic Field
48.	In a mass spectrometer, an ion will have a smaller radius for its circular path if: a. its speed is greater. b. its mass is greater.

	c. its charge is greater.d. the magnetic field is weaker.
	ANS: C PTS: 1 DIF: 2 TOP: 19.6 Motion of a Charged Particle in a Magnetic Field
49.	A proton, mass 1.67 ′ 10 ⁻²⁷ kg and charge +1.6 ′ 10 ⁻¹⁹ C, moves in a circular orbit perpendicular to a uniform magnetic field of 0.75 T. Find the time for the proton to make one complete circular orbit. a. 4.3 ′ 10 ⁻⁸ s b. 8.7 ′ 10 ⁻⁸ s c. 4.9 ′ 10 ⁻⁷ s d. 9.8 ′ 10 ⁻⁷ s
	ANS: B PTS: 1 DIF: 3 TOP: 19.6 Motion of a Charged Particle in a Magnetic Field
50.	At the Fermilab accelerator in Weston, Illinois, singly-charged ions with momentum 4.8 $^{'}$ 10^{-16} kg/m/s are held in a circular orbit of radius 1 km by an upward magnetic field. What <i>B</i> -field must be used to maintain the ions in this orbit? ($q_{ion} = 1.6$ $^{'}$ 10^{-19} C) a. 1 T b. 2 T c. 3 T d. 4 T
	ANS: C PTS: 1 DIF: 2 TOP: 19.6 Motion of a Charged Particle in a Magnetic Field
51.	A proton with initial kinetic energy E is moving in circular motion in a uniform magnetic field. When it has completed one eighth of a revolution, what is its kinetic energy? a. 1.4 E b. 0.71 E c. E d. The value is not given.
	ANS: C PTS: 1 DIF: 2 TOP: 19.6 Motion of a Charged Particle in a Magnetic Field
52.	An electron is moving at a speed of 6.0 $^{\prime}$ 10 6 m/s at an angle of 30 $^{\circ}$ with respect to a uniform magnetic field of 8.0 $^{\prime}$ 10 $^{-4}$ T. What is the radius of the resulting helical path? ($m_e = 9.11$ $^{\prime}$ 10 $^{-31}$ kg, $q_e = 1.6$ $^{\prime}$ 10 $^{-19}$ C) a. 8.5 cm b. 4.3 cm c. 3.7 cm d. 2.1 cm
	ANS: D PTS: 1 DIF: 3 TOP: 19.6 Motion of a Charged Particle in a Magnetic Field
53.	A 100-m-long wire carrying a current of 4.0 A will be accompanied by a magnetic field of what strength at a distance of 0.050 m from the wire? (magnetic permeability in empty space $\mu_0 = 4p' \cdot 10^{-7}$ T×m/A) a. 4.0 ′ 10^{-5} T b. 2.0 ′ 10^{-5} T c. 1.6 ′ 10^{-5} T

	ANS: C PTS: 1 DIF: 2 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
54.	The current in a long wire creates a magnetic field in the region around the wire. How is the strength of the field at distance r from the wire center related to the magnitude of the field? a. field directly proportional to r b. field inversely proportional to r c. field directly proportional to r^2 d. field inversely proportional to r^2
	ANS: B PTS: 1 DIF: 1 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
55.	Magnetism had been a known phenomenon for some time before its relation to electric currents was found. That a current in a wire produces a magnetic field was discovered by: a. Maxwell. b. Ampere. c. Oersted. d. Tesla.
	ANS: C PTS: 1 DIF: 1 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
56.	A current in a long, straight wire produces a magnetic field. The magnetic field lines: a. go out from the wire to infinity. b. come in from infinity to the wire. c. form circles that pass through the wire. d. form circles that go around the wire.
	ANS: D PTS: 1 DIF: 1 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
57.	A superconducting wire carries a current of 10^4 A. Find the magnetic field at a distance of 1.0 m from the wire. ($\mu_0 = 4p^{\prime} 10^{-7} \text{ Txm/A}$) a. $2 \cdot 10^{-3} \text{ T}$ b. $8 \cdot 10^{-3} \text{ T}$ c. $1.6 \cdot 10^{-2} \text{ T}$ d. $3.2 \cdot 10^{-2} \text{ T}$
	ANS: A PTS: 1 DIF: 2 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
58.	An incredible amount of electrical energy passes down the funnel of a large tornado every second. Measurements taken in Oklahoma at a distance of 9.00 km from a large tornado showed an almost constant magnetic field of $1.50 \cdot 10^{-8}$ T associated with the tornado. What was the average current going down the funnel? ($\mu_0 = 4p \cdot 10^{-7}$ T×m/A) a. 450 A b. 675 A c. 950 A d. 1 500 A
	ANS: B PTS: 1 DIF: 2 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law

d. zero

59.	A high-voltage power line 20 m above the ground carries a current of 2 000 A. What is the magnetic field due to the current directly underneath the power line? ($\mu_0 = 4p \cdot 10^{-7} \text{ T/m/A}$) a. $20 \mu\text{T}$ b. $35 \mu\text{T}$ c. 14mT d. 0.30T
	ANS: A PTS: 1 DIF: 2 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
60.	Two long parallel wires 20 cm apart carry currents of 5.0 A and 8.0 A in the same direction. Is there any point between the two wires where the magnetic field is zero? a. yes, midway between the wires b. yes, 12 cm from the 5-A wire c. yes, 7.7 cm from the 5-A wire d. no
	ANS: C PTS: 1 DIF: 3 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
61.	Niobium metal becomes a superconductor (with electrical resistance equal to zero) when cooled below 9 K. If superconductivity is destroyed when the surface magnetic field exceeds 0.100 T, determine the maximum current a 4.00-mm-diameter niobium wire can carry and remain superconducting. ($\mu_0 = 4p$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ Txn/A) a. 125 A b. 250 A c. 500 A d. 1000 A
	ANS: D PTS: 1 DIF: 3 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
62.	Two long parallel wires 40 cm apart are carrying currents of 10 A and 20 A in the same direction. What is the magnitude of the magnetic field halfway between the wires? a. 1.0 ′ 10 ⁻⁵ T b. 2.0 ′ 10 ⁻⁵ T c. 3.0 ′ 10 ⁻⁵ T d. 4.0 ′ 10 ⁻⁵ T
	ANS: A PTS: 1 DIF: 2 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
63.	Two long parallel wires 40 cm apart are carrying currents of 10 A and 20 A in the opposite direction. What is the magnitude of the magnetic field halfway between the wires? a. 1.0 ′ 10 ⁻⁵ T b. 2.0 ′ 10 ⁻⁵ T c. 3.0 ′ 10 ⁻⁵ T d. 4.0 ′ 10 ⁻⁵ T
	ANS: C PTS: 1 DIF: 2 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law

64.	Two parallel conductors are carrying currents in the same direction. The currents are non-zero and not necessarily equal. The magnitude of the magnetic field midway between them is 40 mT. If one of the currents then has its direction reversed, what is the resulting magnitude of the magnetic field midway between them? a. a value greater than 40 mT b. 40 mT c. a value less than 40 mT d. It could be any value.
	ANS: A PTS: 1 DIF: 2 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
65.	Two parallel conductors are carrying currents in the opposite direction. The currents are non-zero and not necessarily equal. The magnitude of the magnetic field midway between them is 40 mT. If one of the currents then has its direction reversed, what is the resulting magnitude of the magnetic field midway between them? a. a value greater than 40 mT b. 40 mT c. a value less than 40 mT d. It could be any value.
	ANS: C PTS: 1 DIF: 2 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
66.	A coaxial cable consists of a thin insulated straight wire carrying a current of 2.00 A surrounded by a cylindrical conductor carrying a current of 3.50 A in the opposite direction. The cylindrical conductor has a radius of 0.420 cm. What is the magnitude of the magnetic field between the inner and outer conductors at a distance of 0.300 cm from the central wire? a. b. c. d. ANS: B PTS: 1 DIF: 1 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
67.	A coaxial cable consists of a thin insulated straight wire carrying a current of 2.00 A surrounded by a cylindrical conductor carrying a current of 3.50 A in the opposite direction. The cylindrical conductor has a radius of 0.420 cm. What is the magnitude of the magnetic field outside of the cylindrical conductor 2.00 cm from the central wire? a. b. c. d.
	ANS: D PTS: 1 DIF: 2 TOP: 19.7 Magnetic Field of a Long, Straight Wire and Ampere's Law
68.	Two coaxial cables each consist of a thin insulated straight wire surrounded by a cylindrical conductor of radius 0.900 cm. The cables are positioned 4.00 cm apart with the central wires parallel to one another. Each central wire is carrying a current of 2.20 A in directions antiparallel to one another. Each cylindrical conductor is carrying a current of 3.70 A in directions parallel to one another. What is the magnitude of the magnetic field midway between the cables?

	ANS: D PTS: 1 DIF: 2 TOP: 19.8 Magnetic Force Between Two Parallel Conductors
74.	A solenoid with 500 turns, 0.10 m long, carrying a current of 4.0 A and with a radius of 10^{-2} m will have what strength magnetic field at its center? (magnetic permeability in empty space $\mu_0 = 4p^{\prime} \cdot 10^{-7}$ T×m/A) a. 31 \cdot 10 ⁻⁴ T b. 62 \cdot 10 ⁻⁴ T c. 125 \cdot 10 ⁻⁴ T d. 250 \cdot 10 ⁻⁴ T
	ANS: D PTS: 1 DIF: 2 TOP: 19.9 Magnetic Fields of Current Loops and Solenoids
75.	A current in a solenoid coil creates a magnetic field inside that coil. The field strength is directly proportional to: a. the coil area. b. the current. c. Both A and B are valid choices. d. None of the above choices are valid.
	ANS: B PTS: 1 DIF: 1 TOP: 19.9 Magnetic Fields of Current Loops and Solenoids
76.	A current in a solenoid with <i>N</i> turns creates a magnetic field at the center of that loop. The field strength is directly proportional to: a. number of turns in the loop. b. current strength. c. Both choices A and B are valid. d. None of the above are valid.
	ANS: C PTS: 1 DIF: 1 TOP: 19.9 Magnetic Fields of Current Loops and Solenoids
77.	Superconductors can carry very large currents with no resistance. If a superconducting wire is formed into a solenoid of length 50.0 cm with 500 turns, what is the magnetic field inside the solenoid when the current is 10^4 A? ($\mu_0 = 4p' 10^{-7}$ T×m/A) a. 1.25 T b. 2.50 T c. 6.28 T d. 12.6 T
	ANS: D PTS: 1 DIF: 2 TOP: 19.9 Magnetic Fields of Current Loops and Solenoids
78.	A superconducting solenoid is to be designed to generate a magnetic field of 5.00 T. If the solenoid winding has 1 000 turns/m, what is the required current? ($\mu_0 = 4p' 10^{-7} \text{ Txn/A}$) a. 1 000 A b. 1 990 A c. 3 980 A d. 5 000 A
	ANS: C PTS: 1 DIF: 2 TOP: 19.9 Magnetic Fields of Current Loops and Solenoids

79.	The magnetic domai a. parallel to the m			piece o	of iron are char	acterize	ed by which orientation?
	b. anti-parallel (opp	•		magnet	ic axis		
	c. randomd. perpendicular to	the magne	etic axis				
	ANS: C	PTS: 1		DIF:	1	TOP:	19.10 Magnetic Domains
80.	When an electromaga. It increases.b. It remains the sac. It decreases.d. Since it depends	me.					ength of the magnet? any of the above.
	ANS: A	PTS: 1		DIF:	1	TOP:	19.10 Magnetic Domains
81.		oil. If a the etic field meter torque? il	e same curren naking an ang ame torque.	it is sengle of 30	at through each 0° with the plan	coil, where coil, where	
	ANS: A	PTS: 1		DIF:	2	TOP:	Conceptual Questions
82.		the other thich direct ces are zer toward the away from	two, which can ion are the new to, there is not center wire. the center wire.	arries a et force directi ire.	current 0.5 <i>I</i> , the son the outer value.	out in th wires?	tween these wires is a third e direction opposite from the
	ANS: A	PTS: 1		DIF:	2	TOP:	Conceptual Questions
83.		amps is se nagnetic m me magne	nt through conoment?				turns and sides of length 2L. s sent through coil B, which
	ANS: C	PTS: 1		DIF:	2	TOP:	Conceptual Questions
84.		d 2N turns rough then me magne	. Which sole n? tic field.	noid ha	as the greater m	agnetic	#2 has a length 2 <i>L</i> , crossfield at its center when equal ect.

ANS: C PTS: 1 DIF: 2 TOP: Conceptual Questions

85. A beam of electrons is sent in the positive *x*-direction in a region with a uniform magnetic field *B* in the positive *y*-direction and a uniform electric field *E* in the positive *z*-direction. At which of the following speeds would the electrons be deflected in the positive *z*-direction?

a. v < E/B

b. v = E/B

c. v > E/B

d. There is no speed for which this will happen.

ANS: D PTS: 1 DIF: 3 TOP: Conceptual Questions

CHAPTER 20—Induced Voltages and Inductance

MULTIPLE CHOICE

a. It must increase by 25%.b. It must increase by 33%.c. It must increase by 125%.

1.	A uniform 4.5-T magnetic field passes perpendicularly through the plane of a wire loop $0.10~\text{m}^2$ in area. What flux passes through the loop? a. $5.0~\text{Txm}^2$ b. $0.45~\text{Txm}^2$ c. $0.25~\text{Txm}^2$ d. $0.135~\text{Txm}^2$
	ANS: B PTS: 1 DIF: 1 TOP: 20.1 Induced emf and Magnetic Flux
2.	A uniform 4.5-T magnetic field passes through the plane of a wire loop $0.10~\text{m}^2$ in area. What flux passes through the loop when the direction of the 4.5-T field is at a 30° angle to the normal of the loop plane? a. $5.0~\text{Txm}^2$ b. $0.52~\text{Txm}^2$ c. $0.39~\text{Txm}^2$ d. $0.225~\text{Txm}^2$
	ANS: C PTS: 1 DIF: 2 TOP: 20.1 Induced emf and Magnetic Flux
3.	A loop of area $0.250~\text{m}^2$ is in a uniform $0.020~0\text{-T}$ magnetic field. If the flux through the loop is $3.83~^{'}$ $10^3~\text{T}\cdot\text{m}^2$, what angle does the normal to the plane of the loop make with the direction of the magnetic field? a. 40.0° b. 50.0° c. 37.5° d. This is not possible.
	ANS: A PTS: 1 DIF: 3 TOP: 20.1 Induced emf and Magnetic Flux
4.	A coil in a magnetic field encloses a flux of $0.256\mathrm{T\cdot m^2}$ when the angle between the normal to the coil and the direction of the magnetic field is 70.0° . What flux would go through the coil if the angle were changed to 40.0° ? a. $0.332\mathrm{T\cdot m^2}$ b. $0.198\mathrm{T\cdot m^2}$ c. $0.114\mathrm{T\cdot m^2}$ d. $0.573\mathrm{T\cdot m^2}$
	ANS: D PTS: 1 DIF: 3 TOP: 20.1 Induced emf and Magnetic Flux
5.	A coil is placed in a magnetic field and has a flux F _B through it. The coil is stressed so that its area reduces to 75% of its original value. If the plane of the coil stays the same and the flux through it remains the same, how must the magnetic field change?

	d. It must decrease by 25%.
	ANS: B PTS: 1 DIF: 2 TOP: 20.1 Induced emf and Magnetic Flux
6.	The units T·m²/s are equivalent to: a. W. b. V. c. N/m. d. webers.
	ANS: B PTS: 1 DIF: 1 TOP: 20.2 Faraday's Law of Induction and Lenz's Law
7.	A sensitive ammeter is connected to a wire loop and placed within the magnetic field of a strong horseshoe magnet. The ammeter shows a deflection when: a. the wire is moved parallel to the field. b. the wire is moved perpendicularly to the field. c. neither wire nor magnet is moving. d. the wire's axis is parallel to the field.
	ANS: B PTS: 1 DIF: 1 TOP: 20.2 Faraday's Law of Induction and Lenz's Law
8.	According to Lenz's law the direction of an induced current in a conductor will be that which tends to produce which of the following effects? a. enhance the effect which produces it b. produce a greater heating effect c. produce the greatest voltage d. oppose the effect which produces it
	ANS: D PTS: 1 DIF: 1 TOP: 20.2 Faraday's Law of Induction and Lenz's Law
9.	"GFI" stands for:a. grand flux indicator.b. ground forcing indicator.c. ground fault interrupter.d. gauss-free invention.
	ANS: C PTS: 1 DIF: 1 TOP: 20.2 Faraday's Law of Induction and Lenz's Law
10.	The principle or law that says "an induced emf in a circuit loop produces a current whose magnetic field opposes further change of magnetic flux" is credited to: a. Faraday. b. Lenz. c. Ampere. d. Volta.
	ANS: B PTS: 1 DIF: 1 TOP: 20.2 Faraday's Law of Induction and Lenz's Law
11.	A square coil, enclosing an area with sides 2.0 cm long, is wrapped with 2 500 turns of wire. A uniform magnetic field perpendicular to its plane is turned on and increases to 0.25 T during an

interval of 1.0 s. What average voltage is induced in the coil?

	c. The emf quadruples.d. The emf increases by a factor of 16.
	ANS: C PTS: 1 DIF: 1 TOP: 20.2 Faraday's Law of Induction and Lenz's Law
17.	The operation of a tape player to play music depends on which of the following? a. the Doppler effect b. the photoelectric effect c. the force acting on a current-carrying wire in a magnetic field d. induced current from the motion of a magnet past a wire
	ANS: D PTS: 1 DIF: 1 TOP: 20.2 Faraday's Law of Induction and Lenz's Law
18.	A bar magnet is falling through a loop of wire with constant velocity. The north pole enters first. The induced current will be greatest in magnitude when the magnet is located so that: a. the loop is near either the north or the south pole. b. the loop is near the north pole only. c. the loop is near the middle of the magnet. d. with no acceleration, the induced current is zero.
	ANS: A PTS: 1 DIF: 2 TOP: 20.2 Faraday's Law of Induction and Lenz's Law
19.	A bar magnet is falling through a loop of wire with constant velocity. The north pole enters first. As the south pole leaves the loop of wire, the induced current (as viewed from above) will be: a. clockwise. b. counterclockwise. c. zero. d. along the length of the magnet.
	ANS: A PTS: 1 DIF: 2 TOP: 20.2 Faraday's Law of Induction and Lenz's Law
20.	Two loops of wire are arranged so that a changing current in one will induce a current in the other. If the current in the first is increasing clockwise by 1.0 A every second, the induced current in the second loop will: a. be increasing counterclockwise. b. stay constant. c. increase clockwise also. d. stay zero.
	ANS: B PTS: 1 DIF: 3 TOP: 20.2 Faraday's Law of Induction and Lenz's Law
21.	If a bar magnet is falling through a loop of wire, the induced current in the loop of wire sets up a field which exerts a force on the magnet. This force between the magnet and the loop will be attractive when: a. the magnet enters the loop. b. the magnet is halfway through. c. the magnet is leaving the loop. d. never.
	ANS: C PTS: 1 DIF: 2

22.	If the induced current in a wire loop were such that the flux it produces were in the same direction as the change in external flux causing the current, which of the following conservation laws would end up being violated?								
	a. momentum b. charge c. energy								
	d. angular momentum								
	ANS: C PTS: 1 DIF: 1 TOP: 20.2 Faraday's Law of Induction and Lenz's Law								
23.	A straight wire lies along the <i>y</i> -axis initially carrying a current of 10 A in the positive <i>y</i> -direction. The current decreases and reverses to 10 A in the negative <i>y</i> -direction, the change in current happening at a uniform rate. In the 1st quadrant a square conducting coil has 2 sides parallel to the <i>y</i> -axis and the other 2 sides parallel to the <i>x</i> -axis. The side of the coil nearest and parallel to the straight wire is at a distance equal to the length of one of the sides of the square. As the current is going from 10 A in one direction to 10 A in the other, in which direction is the induced current in this side of the square coil nearest to the straight wire? a. It is in the positive <i>y</i> -direction.								
	b. It is in the negative <i>y</i> -direction.								
	c. At first it is in the positive <i>y</i> -direction, but after the current passes through zero, it is in the negative <i>y</i> -direction.								
	d. At first it is in the negative <i>y</i> -direction but after the current passes through zero, it is in the positive <i>y</i> -direction.								
	ANS: A PTS: 1 DIF: 2 TOP: 20.2 Faraday's Law of Induction and Lenz's Law								
24.	A bar magnet is held above the center of a conducting ring in the horizontal plane. The magnet is dropped so it falls lengthwise toward the center of the ring. Will the falling magnet be attracted toward the ring or be repelled by the ring due to the magnetic interaction of the magnet and the ring? a. It will be attracted. b. It will be repelled.								
	c. It will be attracted only if the north end of the magnet is the leading end as it falls toward								
	the ring.d. It will be attracted only if the south end of the magnet is the leading end as it falls toward the ring.								
	ANS: B PTS: 1 DIF: 2 TOP: 20.2 Faraday's Law of Induction and Lenz's Law								
25.	A 0.200-m wire is moved parallel to a 0.500-T magnetic field at a speed of 1.50 m/s. What emf is induced across the ends of the wire? a. 2.25 V b. 1.00 V c. 0.600 V d. zero								
	ANS: D PTS: 1 DIF: 2 TOP: 20.3. Motional emf								
26.	An airplane with a wingspan of 60.0 m flies parallel to the Earth's surface at a point where the downward component of the Earth's magnetic field is 0.400 ′ 10^{-4} T. If the induced potential between wingtips is 0.900 V, what is the plane's speed? a. 250 m/s								

		3 m/s 5 m/s 7 m/s						
	ANS:	C	PTS:	1	DIF:	2	TOP:	20.3. Motional emf
27.	become rod is of a. the b. the c. the	es positively coriented so that rod is vertical rod is horizor rod is horizor	harged of t: I with that atal with atal with		onal en higher. nd towand towa	of the rod thr ard the north. ard the east.		s it falls, one end of the rod ne Earth's magnetic field. The
	ANS:	C	PTS:	1	DIF:	2	TOP:	20.3. Motional emf
28.	a. is r b. is a	magnetic mate a conductor. an insulator.			duce ed	dy currents in t	he obje	ct if the object:
	ANS:	В	PTS:	1	DIF:	1	TOP:	20.3. Motional emf
29.	region magnitude a. 250 b. 350 c. 550 d. 750	where the mag ude of the indo) mV) mV) mV) mV	gnetic fi uced em	eld of the earth	i is 60 μ ends of	T directed 50°		at a speed of 300 m/s in a the horizontal. What is the
	ANS:	С	PTS:	1	DIF:	3	TOP:	20.3. Motional emf
30.	moving a. nei b. the c. the	downward at	-			is in a magnetid of the rod is p		B pointing north. The wire is ely charged?
	ANS:	В	PTS:	1	DIF:	2	TOP:	20.3. Motional emf
31.		g downward at ? 3 v /R ² v ² /R ²						B pointing north. The wire is what is the current through
	ANS:	D	PTS:	1	DIF:	2	TOP:	20.3. Motional emf
32.	a. the	eration of an e Doppler effect photoelectric	et	motor depends	on whi	ch of the follow	ving eff	Pects?

	ANS: C	PTS: 1	DIF:	1	TOP:	20.4 Generators
33.		or has resistance of 3.0 ligible resistance. Find				f 1.0 V when connected to a motor.
	ANS: D	PTS: 1	DIF:	2	TOP:	20.4 Generators
34.	The basic function of all mechanical energy conditions alternating current of the basic function of alternating current of the basic function of alternating current of the basic function of all mechanical energy conditions are supported by the basic function of all mechanical energy current of the basic function of all mechanical energy current of the basic function of all mechanical energy conditions are supported by the basic function of all mechanical energy conditions are supported by the basic function of all mechanical energy conditions are supported by the basic function of all mechanical energy conditions are supported by the basic function of all mechanical energy conditions are supported by the basic function of all mechanical energy conditions are supported by the basic function of the basic	to mechanical igh or vice versa	is which	ch of the follow	ring con	iversion processes?
	ANS: A	PTS: 1	DIF:	1	TOP:	20.4 Generators
35.	The function of the ea. mechanical energy c. low voltage to hid. alternating curre	to mechanical igh or vice versa	one of	the following c	onversi	ion processes?
	ANS: B	PTS: 1	DIF:	1	TOP:	20.4 Generators
36.	The back emf in an ea. motor speed is z b. current is a maxic. voltage is a max d. motor speed is a	imum imum	ximum	value under wh	nich cor	ndition?
	ANS: D	PTS: 1	DIF:	1	TOP:	20.4 Generators
37.	rate of 20.0 rad/s in t	the presence of a 0.050 the instantaneous emf	0-T ur	niform magnetic	e field t	ing frame, which turns at a hat is perpendicular to the axis the normal to its plane is
	ANS: A	PTS: 1	DIF:	3	TOP:	20.4 Generators
38.	rate of 20.0 rad/s in t	the presence of a 0.050 the instantaneous emf) 0-T ur	niform magnetic	e field t	ing frame, which turns at a hat is perpendicular to the axis the normal to its plane is at a

c. the force acting on a current-carrying wire in a magnetic fieldd. current from the motion of a wire in a magnetic field

	d. 25.0 V						
	ANS: D	PTS:	1	DIF:	3	TOP:	20.4 Generators
39.	of 20.0 rad/s in the p	oresence instanta	of a 0.050 0-T	unifor	m magnetic fiel	d that i	ing frame that turns at a rate is perpendicular to the axis of a normal to its plane is at a
	ANS: B	PTS:	1	DIF:	3	TOP:	20.4 Generators
40.	A motor with a coil the motor when it is a. zero b. 3.0 A c. 6.0 A d. 15 A						90 V. What is the current in V?
	ANS: B	PTS:	1	DIF:	2	TOP:	20.4 Generators
41.		"jamme	d" so that it can running at nor	nnot rot	ate, the current eed?	sudden	it runs at normal speed. If the aly rises to 10.0 A. What is the 20.4 Generators
42.	a. the plane of the b. the plane of the c. the magnetic flud. the plane of the	then: loop is p loop is p ex throug loop ma	parallel to the noterpendicular to the loop is a kes an angle of	nagnetic the maxim maxim f 45° wi	c field. agnetic field. um. th the magnetic	e field.	s of a magnet. The induced
	ANS: A	PTS:	1	DIF:	1	TOP:	20.4 Generators
43.	The "back emf" of a a. occurs when the b. occurs when the c. is biggest when d. is biggest when	motor remotor in the curre	runs backwards s used as a gen ent through the	erator. motor	J		
	ANS: D	PTS:	1	DIF:	1	TOP:	20.4 Generators
44.		veen the	magnetic field	and the	normal to the	plane of	th $B = 0.20$ T. At an instant f the loop is $p/2$ rads and used in the loop?

b. zero

	c. 18 mV d. 30 mV						
	ANS: C	PTS: 1	I	DIF:	3	TOP:	20.4 Generators
45.	•	he magneti	ic field and the	e norma	al to the plane o	of the lo	= 0.13 T. At an instant when pop is ρ rads and is decreasing loop?
	ANS: A	PTS: 1	l	DIF:	3	TOP:	20.4 Generators
46.							sectional area 300 cm ² can be nduced emf is to equal 8.0 V?
	ANS: C	PTS: 1	l	DIF:	2	TOP:	20.4 Generators
47.	In the United States a. 50 b. 60 c. 120 d. 377	s, the value	of Wfor comi	mercial	ly generated po	ower is	in SI units.
	ANS: D	PTS: 1	l	DIF:	2	TOP:	20.4 Generators
48.	When a voltage is a voltage equals the ta. 1 b. p/2 c. p d. 2p						nstant rate, the period of the radians.
	ANS: D	PTS: 1	l	DIF:	1	TOP:	20.4 Generators
49.	A coil is rotated in which angle <i>q</i> is the a. 0° b. 30° c. 45° d. 60°	-	-	-		nf = <i>NI</i>	$BAW\sin q$, where $q = Wt$. At
	ANS: B	PTS: 1	l	DIF:	2	TOP:	20.4 Generators
50.	A motor has an intedraws a current of 4 a. 30 V b. 48 V c. 78 V					tor has	a back emf of 30 V and

	d. 120 V			
	ANS: C	PTS: 1	DIF: 2	TOP: 20.4 Generators
51.		coil with a self-induction coil with a self-induction coil?	tance of 1.5 mH increases	from 0 to 1.0 A in a tenth of a second
	ANS: A	PTS: 1	DIF: 2	TOP: 20.5 Self-Inductance
52.	a. Only the solb. Only the croc. Only the nu	ence of a solenoid increase sectional area is dember of coils per unit mber of coils is increase.	ecreased. length is decreased.	following conditions?
	ANS: D	PTS: 1	DIF: 1	TOP: 20.5 Self-Inductance
53.		n of the following times L/R	istance R, ammeter, batter es, as measured after the s	ry and switch in series, the current is witch is closed?
	ANS: D	PTS: 1	DIF: 2	TOP: 20.5 Self-Inductance
54.	0.25 s. What is t a. 0.045 V b. 0.030 V c. 0.47 V d. 0.019 V	he induced emf during	g this interval?	t current buildup from zero to 10 A in
	ANS: B	PTS: 1	DIF: 2	TOP: 20.5 Self-Inductance
55.	What is the self-changing at a rata. 83 mH b. 45 mH c. 37 mH d. 27 mH		nat experiences a 3.0-V inc	duced emf when the current is
	ANS: D	PTS: 1	DIF: 2	TOP: 20.5 Self-Inductance
56.	By what factor is tripled? a. 1/3 b. 3 c. 6 d. 9	s the self-inductance of	of an air solenoid changed	if only its number of coil turns, N , is
	ANS: D	PTS: 1	DIF: 2	TOP: 20.5 Self-Inductance

57.	By what factor is the tripled? a. 1/3 b. 3 c. 6 d. 9	self-inductance of an a	air solenoid changed i	f only its cross-sectional area, A, is
	ANS: B	PTS: 1	DIF: 1	TOP: 20.5 Self-Inductance
58.	By what factor is the are both tripled? a. 1/3 b. 3 c. 6 d. 9	self-inductance of an a	air solenoid changed it	f its length and number of coil turns
	ANS: B	PTS: 1	DIF: 2	TOP: 20.5 Self-Inductance
59.	the other, the second		p has twice as many to	the primary, will induce a current in urns as the primary loop. As long as andary will be:
	ANS: D	PTS: 1	DIF: 2	TOP: 20.5 Self-Inductance
60.	the other, the second in the primary at this a. 3 A. b. 6 A. c. zero.	ary. The secondary loo	p has twice as many to creasing. The current i	the primary, will induce a current in urns as the primary loop. The current n the secondary must be:
	ANS: D	PTS: 1	DIF: 2	TOP: 20.5 Self-Inductance
61.	t. The induced curren	nt in the loop will deper	nd on the radius of the	ases from zero to 5 T in a certain time t loop, t , the resistance of the loop, t , can be directly proportional to:
	ANS: D	PTS: 1	DIF: 2	TOP: 20.5 Self-Inductance
62.	The unit of inductand a. V·s/A. b. V/m. c. J/C. d. none of the units	ce, the henry, is equival	lent to:	
	ANS: A	PTS: 1	DIF: 2	TOP: 20.5 Self-Inductance

63.	An air-core inductor a. 3.8 mH b. 38 mH c. 0.38 H d. Insufficient inform			an inte	rnal volume of	3.0 cm	³ . What is its inductance?
	ANS: A	PTS:	1	DIF:	2	TOP:	20.5 Self-Inductance
64.	An inductor, battery, open, is now closed, a. zero b. battery voltage d. battery voltage t. d. battery voltage d.	what is livided to imes income	the current's fi by inductance luctance			nected i	n series. If the switch, initially
	ANS: D	PTS:	1	DIF:	1	TOP:	20.6 RL Circuits
65.	In a circuit made up following times after a. zero b. one time constart c. reciprocal of one d. ten time constant	the swint e time co	tch is closed is				in series, at which of the reatest?
	ANS: A	PTS:	1	DIF:	1	TOP:	20.6 RL Circuits
66.	An <i>RL</i> series circuit ammeter and switch. a. $12 \cdot 10^{-3}$ s b. $5.0 \cdot 10^{-3}$ s c. $2.5 \cdot 10^{-2}$ s d. 200 s					1.0-W	resistor, 12-V battery,
	ANS: B	PTS:	1	DIF:	2	TOP:	20.6 RL Circuits
67.	An <i>RL</i> series circuit switch is closed for a a. 2.5 A b. 12 A c. 0.015 A d. 2 400 A		·			•	eter and switch. After the
	ANS: B	PTS:	1	DIF:	2	TOP:	20.6 RL Circuits
68.							he circuit's time constant is es 1.0 A, what is the value of
	ANS: B	PTS:	1	DIF:	2	TOP:	20.6 RL Circuits

69.						nductor. If the switch to the uit to reach 63% of its final
	ANS: A	PTS: 1	DIF:	2	TOP:	20.6 RL Circuits
70.		a 10-mH coil, a 12-Wame constant of this cir		, a 6.0-Wresisto	or, a 9.0	-V battery and a switch, all in
	ANS: D	PTS: 1	DIF:	2	TOP:	20.6 RL Circuits
71.		tch, all in series. What	-	_		n of a 12-Wresistor and a 6.0-reuit?
	ANS: B	PTS: 1	DIF:	3	TOP:	20.6 RL Circuits
72.	An emf of 0.32 V is inductor? a. 0.80 A/s b. 0.13 A/s c. 1.3 A/s d. 0.64 A/s	induced in a 0.40-H in	nductor.	What is the ra	te of ch	ange of current through the
	ANS: A	PTS: 1	DIF:	2	TOP:	20.6 RL Circuits
73.	What is the stored en a. 2.0 ′ 10 ⁻³ J b. 4.0 ′ 10 ⁻³ J c. 8.0 ′ 10 ⁻³ J d. 12 ′ 10 ⁻³ J	nergy in a 0.50-mH coi	il carryi	ng a current of	4.0 A?	
	ANS: B TOP: 20.7 Energy S	PTS: 1 Stored in a Magnetic F	DIF: Field	2		
74.	How is the energy state. a. directly proportions. b. directly proportions. c. directly proportions. d. inversely proportions.	onal to $L^{1/2}$ onal to L	ing ind	uctor related to	its self-	inductance, L ?
	ANS: C TOP: 20.7 Energy S	PTS: 1 Stored in a Magnetic F		1		

75.	How is the energy stored in a current-carrying inductor related to the current value, I ? a. directly proportional to I^2 b. directly proportional to $I^{1/2}$ c. directly proportional to I d. inversely proportional to I
	ANS: A PTS: 1 DIF: 1 TOP: 20.7 Energy Stored in a Magnetic Field
76.	A 12-V battery is connected in series with a switch, 6.0-Wresistor and coil. What energy is stored in the coil when the current is 2.0 A? The time constant is 4.0 ′ 10 ⁻⁴ s. a. 4.8 ′ 10 ⁻³ J b. 9.6 ′ 10 ⁻³ J c. 14 ′ 10 ⁻³ J d. 29 ′ 10 ⁻³ J
	ANS: A PTS: 1 DIF: 2 TOP: 20.7 Energy Stored in a Magnetic Field
77.	resistanceless, a current once started in a loop would continue without loss. If a current of 1.0 ′ 10 ⁴ A were started in a huge toroidal coil of radius 1.0 km and inductance 50 H, how much electrical energy (in kWh) could be stored? a. 300 kWh b. 480 kWh c. 690 kWh d. 840 kWh ANS: C PTS: 1 DIF: 2
	TOP: 20.7 Energy Stored in a Magnetic Field
78.	An RL circuit has $L = 0.40$ H and $R = 5.0$ W. It is connected to a battery with $e = 22$ V at time $t = 0$. Find the energy stored in the inductor when the current in the circuit is 0.50 A. a. 50 mJ b. 1.0 J c. 2.0 J d. 5.0 J
	ANS: A PTS: 1 DIF: 2 TOP: 20.7 Energy Stored in a Magnetic Field
79.	A double loop of wire (making 2 turns) is in the <i>x-y</i> plane centered at the origin. A uniform magnetic field is increasing at a constant rate in the positive <i>z</i> -direction. Viewed from the positive <i>z</i> -axis, in which direction is the induced magnetic field in the loop? a. in the positive <i>z</i> -direction b. in the negative <i>z</i> -direction c. There is no induced field because of the double loop. d. There is no induced field because the rate of change of the magnetic field is constant.
	ANS: B PTS: 1 DIF: 2 TOP: Conceptual Questions
80.	A circular loop of wire has its radius reduced in half in time $\ddot{A}t$. A uniform magnetic field is at an angle of 60° to the plane of the coil, and the magnetic field doubles its intensity in the same time interval $\ddot{A}t$. During this interval, what happens to the flux through the coil?

11 has half the tunegligible resistate by what factor? ctor of 2 ctor of 2 ctor of 4 rabove is complete PTS: 1 stant after an RL rent I _{max} that occurrent I _{max} that occurrent I factor of the PTS: 1 factor of the PTS: 1 factor of the properties	vire from the saurns of solenoid ance is that of the letter correct. I circuit has its sours for this circuit, this cannot be lar, one rectanged.	DIF: 2 switch cocuit? e determ	ool, have the same these solenoids are noids, which soler 2 TC closed, how does a noined.	OP: Conceptual Questions e length and cross-sectional area be each connected to a circuit, an hold gives the greater time OP: Conceptual Questions the current <i>I</i> in it compare to the
11 has half the tunegligible resistate by what factor? ctor of 2 ctor of 2 ctor of 4 rabove is complete PTS: 1 stant after an RL rent I _{max} that occurrent I _{max} that occurrent I factor of the PTS: 1 factor of the PTS: 1 factor of the properties	letely correct. I circuit has its curs for this circuit, this cannot be lar, one rectang	DIF: 2 switch cocuit? e determ	these solenoids are noids, which soler 2 TO closed, how does a nined.	e each connected to a circuit, and noid gives the greater time OP: Conceptual Questions the current <i>I</i> in it compare to the
stant after an RL rent I_{max} that occurs nowing R and L PTS: 1	circuit has its seurs for this circuit, this cannot be	switch creuit? e determ DIF: 2	closed, how does	the current I in it compare to th
rent I_{max} that occurrent I_{max} that occurrent I_{max} and I_{max} PTS: 1 f wire, one circuit	this cannot be lar, one rectang	e determ	nined.	
f wire, one circu	lar, one rectang		2 TC	OP: Conceptual Questions
		oular ar		
s the greatest ind ar one gular one one	duced emf?	magneti		e made from identical lengths oular to the plane of the coils,
PTS: 1	1]	DIF: 3	3 TC	OP: Conceptual Questions
	would have the s	would have the same emf indu	would have the same emf induced.	would have the same emf induced.

b. It decreases.

CHAPTER 21—Alternating Current Circuits and Electromagnetic Waves

1. What is the effective (rms) current value for an AC current with an amplitude of 10 A?

MULTIPLE CHOICE

a. 28 Ab. 3.1 A

	c. 7.1 A d. 14 A			
	ANS: C PTS TOP: 21.1 Resistors in an		DIF: 2	2
2.	angle? a. zero b. 45° c. 90° d. 180° ANS: A PTS	S: 1	resistor	differs in phase with the applied voltage by what
	TOP: 21.1 Resistors in an	n AC Circuit		
3.	The rate of heat dissipation which of the following? a. $0.5 \cdot (I_{rms})^2 R$ b. $(I_{rms})^2 R$ c. $2.0 \cdot (I_{rms})^2 R$ d. $4.0 \cdot (I_{rms})^2 R$	on in an AC circuit	with res	sistance, R , and effective current, I_{rms} , is given by
	ANS: B PTS TOP: 21.1 Resistors in an		DIF:	1
4.	An AC voltage source, wi effective (or rms) current a. 2.8 A b. 4.0 A c. 5.6 A d. 2.0 A		5200 V,	, is connected to a 50-Wresistor. What is the
	ANS: A PTS TOP: 21.1 Resistors in an		DIF: 2	2
5.	An AC voltage source, wi energy dissipated due to h a. 200 W b. 400 W c. 566 W d. 800 W			, is connected to a 50-Wresistor. What is the rate of
	ANS: B PTS TOP: 21.1 Resistors in an		DIF: 2	2
6.	The rms current is equal to	o the direct current	that:	

	 a. produces the same average voltage across a resistor as in an AC circuit. b. dissipates an equal amount of energy in a resistor at the same rate as in an AC circuit. c. provides the same average current in a resistor as in an AC circuit. d. results in the same peak power in a resistor as in an AC circuit.
	ANS: B PTS: 1 DIF: 1 TOP: 21.1 Resistors in an AC Circuit
7.	An AC voltage source, with a peak output of 120 V, results in dissipation of energy in a resistor at rate of 100 W. What is the value of the resistance? a. 144 W b. 120 W c. 100 W d. 72 W
	ANS: D PTS: 1 DIF: 2 TOP: 21.1 Resistors in an AC Circuit
8.	The peak voltage of an AC source is 200 V. What is the rms voltage? a. 282 V b. 200 V c. 141 V d. 100 V
	ANS: C PTS: 1 DIF: 1 TOP: 21.1 Resistors in an AC Circuit
9.	In the typical household AC voltage of 120 V, what is the peak voltage? a. 240 V b. 170 V c. 120 V d. 85 V
	ANS: B PTS: 1 DIF: 1 TOP: 21.1 Resistors in an AC Circuit
10.	The frequency in an AC series circuit is doubled. By what factor does this change the capacitive reactance? a. 1/2 b. 1/4 c. 2 d. 4
	ANS: A PTS: 1 DIF: 1 TOP: 21.2 Capacitors in an AC Circuit
11.	In an AC series circuit the capacitive reactance is 200 W and frequency is 100 Hz. What is the capacitance? a. 3.2 mF b. 6.28 mF c. 8.0 mF d. 50.0 mF
	ANS: C PTS: 1 DIF: 2 TOP: 21.2 Capacitors in an AC Circuit

12.	A 12.0-mF capacitor is connected to an AC 60.0 Hz. What is the rms current in the capa a. 1.41 A b. 0.768 A c. 0.543 A d. 0 A		with an rms voltage of 120 V and a frequency of
	ANS: C PTS: 1 TOP: 21.2 Capacitors in an AC Circuit	DIF:	3
13.	When a 50-mF capacitor is attached to an A mF capacitor is attached to the same source a. 80 O b. 57 O c. 28 O d. 20 O		ce, its capacitive reactance is 40 W. If instead a 100-will be its capacitive reactance?
	ANS: D PTS: 1 TOP: 21.2 Capacitors in an AC Circuit	DIF:	2
14.	In a capacitor in an AC circuit, the voltage: a. leads the current by 90°. b. lags the current by 90°. c. may lead or lag the current depending of d. is in phase with 70.7% of the current.		requency.
	ANS: B PTS: 1 TOP: 21.2 Capacitors in an AC Circuit	DIF:	1
15.	In the inductor of a 60-Hz AC series circuit by what time interval? a. 2.1 ′ 10 ⁻³ s b. 4.2 ′ 10 ⁻³ s c. 8.3 ′ 10 ⁻³ s d. 1.7 ′ 10 ⁻³ s	the po	eak voltage precedes the peak current in each cycle
	ANS: B PTS: 1 TOP: 21.3 Inductors in an AC Circuit	DIF:	2
16.	In an AC series circuit, the voltage in the in what angle? a. zero b. 45° c. 90° d. 180°	iductor	differs in phase with the voltage in the capacitor by
	ANS: D PTS: 1 TOP: 21.3 Inductors in an AC Circuit	DIF:	1
17.	In an AC series circuit the inductive reactar inductance in the circuit? a. 80 mH b. 240 mH	nce is 5	50 Wand the frequency is 100 Hz. What is the

c. 500 mH

	ANS: A TOP: 21	.3 Inductors	PTS: s in an A		DIF:	2				
18.	the: a. back of b. voltag c. time r	emf in the c	coil. e coil. electric			tage source lag			lag is caused by	
	ANS: A TOP: 21	.3 Inductors	PTS: s in an A		DIF:	2				
19.		ve reactance V V V		AC series circ 0 W capacitive			of a 10.	0-Wresisto	or along with 12.0	
	ANS: D		PTS:	1	DIF:	2	TOP:	21.4 The	RLC Series Circu	it
20.		_		n AC series cir and 7.00 Wcaj		t is constructed reactance?	l of a 10).0-Wresist	or along with	
	ANS: A		PTS:	1	DIF:	2	TOP:	21.4 The	RLC Series Circu	it
21.		If an effec A A A				Winductive reaplied, what is the				
	ANS: B		PTS:	1	DIF:	2	TOP:	21.4 The	RLC Series Circu	it
22.				t containing a ce by what fac		pacitor and resi	stance.	Tripling th	ne frequency will	
	ANS: D		PTS:	1	DIF:	1	TOP:	21.4 The	RLC Series Circu	it
23.				t containing a name by what fac		pacitor and resi	stance.	Tripling th	ne frequency will	

d. 740 mH

	ANS: A	PTS: 1	DIF: 1	TOP: 21.4 The RLC Series Circui	t
24.	change the circuit's in a. 1/3 b. 1.0 c. 3.0	es circuit containing a compedance by what fact	tor?	stance. Tripling the frequency will	
	ANS: D	PTS: 1	DIF: 1	TOP: 21.4 The RLC Series Circui	t
25.		esistor and capacitor gi		C voltage source. Separate voltmeter 75 V (rms), respectively. What is th	
	ANS: C	PTS: 1	DIF: 2	TOP: 21.4 The RLC Series Circui	t
26.				ith effective (rms) voltage of 65 V, (rms) voltage of the applied source in	1
	ANS: B	PTS: 1	DIF: 2	TOP: 21.4 The RLC Series Circui	t
27.		-		ith an effective (rms) voltage of 65 nase angle in this circuit?	
	ANS: D	PTS: 1	DIF: 3	TOP: 21.4 The RLC Series Circui	t
28.	In an AC circuit, the a. zero. b. 0.5. c. 0.707. d. 1.0.	ratio of average currer	nt to maximum current	is:	
	ANS: A	PTS: 1	DIF: 2	TOP: 21.4 The RLC Series Circui	t
29.		e circuit is 3 A. Find the circuit is 4 A. Fin		ected in series to a 60-Hz source. the resistor, the inductor, and the	

c. 1.73d. 3.0

	d. 60 V, 80 V, 796	V (all rr	ns)				
	ANS: A	PTS:	1	DIF:	3	TOP:	21.4 The RLC Series Circuit
30.	A series circuit has a phase angle for this a. 60°. b60°. c. 180°. d. not given.	_		nce, cap	oacitive reactand	ce, and	inductive reactance. The
	ANS: D	PTS:	1	DIF:	2	TOP:	21.4 The RLC Series Circuit
31.	In an RLC series cir the resulting capacit a. 24 W b. 12 W c. 48 W d. Additional infor	ive react	ance?			C frequ	ency doubles, what will be
	ANS: B	PTS:	1	DIF:	2	TOP:	21.4 The RLC Series Circuit
32.	In an RLC series cirdoubles, what is the a. 30° b. more than 30° c. less than 30° d. Additional information of the series of the	resulting	g phase angle?			voltage	s is 30°. If the AC frequency
	ANS: B	PTS:	1	DIF:	3	TOP:	21.4 The RLC Series Circuit
33.	In an RLC series cir phase angle between a. 90° b. 0° c90° d. 45°		_	-		y large	value, what value does the
	ANS: A	PTS:	1	DIF:	2	TOP:	21.4 The RLC Series Circuit
34.	In an RLC series cir phase angle between a. 90° b. 0° c90° d. 45°					ry smal	l value, what value does the
	ANS: C	PTS:	1	DIF:	2	TOP:	21.4 The RLC Series Circuit
35.	An AC series circuit reactance. If an effect a. 1 540 W b. 1 300 W c. 1 160 W						and 10.00 W capacitive er output?

c. 150 V, 113 V, 562 V (all rms)

36.	The power dissipated in an AC series circuit increases as the phase angle approaches what value? a. zero b. 45° c. 90° d. 180°
	ANS: A PTS: 1 DIF: 1 TOP: 21.5 Power in an AC Circuit
37.	The power factor in an AC series circuit is equal to which of the following ratios? a. resistance to inductive reactance b. capacitive reactance to inductive reactance c. inductive reactance to capacitive reactance d. resistance to impedance
	ANS: D PTS: 1 DIF: 2 TOP: 21.5 Power in an AC Circuit
38.	A resistor, inductor and capacitor are connected in series, each with effective (rms) voltage of 65 V, 140 V and 80 V, respectively. If the resistor is rated at 24 W, what is the average power dissipated in the circuit? a. 88 W b. 176 W c. 238 W d. 323 W
	ANS: B PTS: 1 DIF: 2 TOP: 21.5 Power in an AC Circuit
39.	What is the average power dissipation in a series <i>RC</i> circuit if $R = 5.00$ kW, $C = 2.00 \mu\text{F}$, and $V = (170 \text{V}) \cos 300t$? a. 2.60 W b. 2.74 W c. 28.2 W d. 157 W
	ANS: A PTS: 1 DIF: 3 TOP: 21.5 Power in an AC Circuit
40.	A 200-Wresistor is connected in series with a 10- μ F capacitor and a 60-Hz, 120-V (rms) line voltage. If electrical energy costs 5.0¢ per kWh, how much does it cost to leave this circuit connected for 24 hours? a. 62¢ b. 31¢ c. 5.2¢ d. 3.1¢
	ANS: D PTS: 1 DIF: 3 TOP: 21.5 Power in an AC Circuit
41.	Resonance occurs in an AC series circuit when which of the following conditions is met?

DIF: 2

d. 1 020 W

PTS: 1

TOP: 21.5 Power in an AC Circuit

ANS: D

	 a. resistance equals capacitive reactance b. resistance equals inductive reactance c. capacitive reactance equals inductive reactance d. capacitive reactance equals zero
	ANS: C PTS: 1 DIF: 1 TOP: 21.6 Resonance in a Series RLC Circuit
42.	An AC series circuit contains a resistor of 20 W, a capacitor of 0.75 <i>n</i> F and an inductor of 120 mH. What frequency should be used to create a resonance condition in the circuit? a. 160 Hz b. 320 Hz c. 640 Hz d. 530 Hz
	ANS: D PTS: 1 DIF: 2 TOP: 21.6 Resonance in a Series RLC Circuit
43.	A series <i>RLC</i> AC circuit is at resonance. It contains a resistor of 30 W, a capacitor of 0.35 <i>n</i> F and an inductor of 90 mH. If an effective (rms) voltage of 150 V is applied, what is the effective (rms) current when the circuit is in resonance? a. 3.3 A b. 5.0 A c. 9.4 A d. 16.1 A
	ANS: B PTS: 1 DIF: 2 TOP: 21.6 Resonance in a Series RLC Circuit
44.	An AC series circuit contains a resistor of 20 W, an inductor of 30 mH and a variable capacitor. If the frequency of the applied voltage is 500 Hz, to what setting should the capacitor be set if resonance is achieved? a. $0.8 \mu\text{F}$ b. $1.6 \mu\text{F}$ c. $2.4 \mu\text{F}$ d. $3.4 \mu\text{F}$
	ANS: D PTS: 1 DIF: 2 TOP: 21.6 Resonance in a Series RLC Circuit
45.	A series <i>RLC</i> circuit in a radio is in resonance with AM 600 kHz. If the radio station is changed to AM 1 200 kHz, by what factor must the capacitance be multiplied to again achieve resonance? a. 4 b. 2 c. 1/2 d. 1/4
	ANS: D PTS: 1 DIF: 2 TOP: 21.6 Resonance in a Series RLC Circuit
46.	Find the resonant frequency for a series <i>RLC</i> circuit where $R = 20.0$ W, $C = 10.0$ μ F, and $L = 4.0$ mH. a. 507 Hz b. 796 Hz c. 1.59 kHz d. 5.00 kHz

	TOP: 21.6 Resonance in a Series RLC Circuit
47.	What is the average power dissipation in an <i>RLC</i> series circuit in which $R = 100$ W, $L = 0.1$ H, and $C = 10 \mu\text{F}$ driven at resonance by a 100-V (rms) source? a. 100 W b. 500 W c. 1 000 W d. 2 W
	ANS: A PTS: 1 DIF: 2 TOP: 21.6 Resonance in a Series RLC Circuit
48.	An AM radio tuning circuit has a coil with an inductance of 6.00 mH and a capacitor set at 7.50 ′ 10 ⁻⁶ mF. What frequency will it detect? a. 550 kHz b. 750 kHz c. 1 060 kHz d. 1 520 kHz
	ANS: B PTS: 1 DIF: 2 TOP: 21.6 Resonance in a Series RLC Circuit
49.	An FM radio tuning circuit has a coil with an inductance of 0.003 0 mH. What is the value of the capacitance if the set is tuned to 98 MHz? a. 1.8 ′ 10 ⁻⁶ nF b. 12 ′ 10 ⁻⁶ nF c. 0.98 ′ 10 ⁻⁶ nF d. 0.88 ′ 10 ⁻⁶ nF
	ANS: D PTS: 1 DIF: 2 TOP: 21.6 Resonance in a Series RLC Circuit
50.	Which of the following combinations of circuit components can be used to make a tuner for a radio, to select the desired frequency? a. fixed inductor, variable resistor b. fixed resistor, variable inductor c. fixed inductor, variable capacitor d. fixed capacitor, variable resistor
	ANS: C PTS: 1 DIF: 1 TOP: 21.6 Resonance in a Series RLC Circuit
51.	 When an RLC series circuit is in resonance, its impedance is: a. zero. b. equal to its resistance. c. a maximum. d. p/2 W.
	ANS: B PTS: 1 DIF: 2 TOP: 21.6 Resonance in a Series RLC Circuit
52.	A series RLC circuit has a inductive reactance of 4 W and a capacitive reactance of 1/4 W. By what factor should the AC frequency be changed to put this circuit into resonance?

DIF: 2

ANS: B

PTS: 1

	a. 4b. 1/4c. 1/2d. This circuit cann	ot be m	ade to achieve	resonar	nce.		
	ANS: B TOP: 21.6 Resonan	PTS:		DIF:	2		
53.	The primary winding input voltage is 120 a. 480 V b. 60 V c. 15 V d. 10 V					s, and th	he secondary has 50. If the
	ANS: C	PTS:	1	DIF:	1	TOP:	21.7 The Transformer
54.	A transformer consists secondary is 3.00 A, a. 0.750 A b. 1.33 A c. 12.0 A d. 48.0 A				and a 2 000-turi	1 secon	dary coil. If the current in the
	ANS: C	PTS:	1	DIF:	2	TOP:	21.7 The Transformer
55.	an ideal transformer, resistance of 100 W. a. 1.0 A b. 1.8 A c. 24 A d. 1 000 A	and the What is	energy transm the rms curren	itted th	rough a long-di long-distance l	istance line?	stepped up to 100 000 V by power line with a total
	ANS: B	PTS:	1	DIF:	2	TOP:	21.7 The Transformer
56.	distance power line,	which h	as a total resist	ance of	f 100 W. What p	percenta	ransmitted through a long- age of the power delivered by ansformer is not used?
	ANS: D	PTS:	1	DIF:	2	TOP:	21.7 The Transformer
57.							enerator to the transmission nany turns must the secondary
	ANS: C	PTS:	1	DIF:	2	TOP:	21.7 The Transformer

	 a. has a turn ratio, N₂/N₁, equal to 1. b. works with direct current. c. experiences no power loss. d. has an output frequency of 60 Hz. 	
	ANS: C PTS: 1 DIF: 1 TOP: 21.7 The Transformer	
59.	Which one of the following scientists made the theoretical prediction that electromagnetic waves trave through a vacuum at the speed of light? a. Hertz b. Faraday c. Maxwell d. Lenz	el
	ANS: C PTS: 1 DIF: 1 TOP: 21.8 Maxwell's Predictions 21.9 Hertz's Confirmation of Maxwell's Predictions	
60.	Which one of the following scientists first built and operated devices that could emit and detect manmade electromagnetic radiation? a. Hertz b. Ampere c. Maxwell d. Lenz	
	ANS: C PTS: 1 DIF: 1 TOP: 21.8 Maxwell's Predictions 21.9 Hertz's Confirmation of Maxwell's Predictions	
61.	Maxwell developed his theory of electromagnetism by combining previous discoveries. He added his own original hypothesis that: a. electric charges produce electric fields. b. moving electric charges produce magnetic fields. c. changing electric fields produce magnetic fields. d. changing magnetic fields produce electric fields.	
	ANS: C PTS: 1 DIF: 1 TOP: 21.8 Maxwell's Predictions 21.9 Hertz's Confirmation of Maxwell's Predictions	
62.	Maxwell guessed that visible light was an electromagnetic wave because of its: a. frequency. b. wavelength. c. speed. d. energy. ANS: C PTS: 1 DIF: 1	
	TOP: 21.8 Maxwell's Predictions 21.9 Hertz's Confirmation of Maxwell's Predictions	
63.	An electromagnetic wave is made up of which of the following oscillating quantities? a. electrons only b. electric fields only c. magnetic fields only d. electric and magnetic fields	
	ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna 21.11 Properties of Electromagnetic Waves	

58. An ideal transformer is one that:

64.	An electromagnetic wave with a peak electric field component of 1.2 $'$ 10 2 N/C has what associated peak magnetic field value? ($e_0 = 8.85$ $'$ 10 $^{-12}$ C 2 /N×m 2 , $m_0 = 4p$ $'$ 10 $^{-7}$ T×m/A and $c = 3.00$ $'$ 10 8 m/s) a. 4.0 $'$ 10 $^{-7}$ T to 3.6 $'$ 10 10 T c. 2.5 $'$ 10 6 T d. 2.8 $'$ 10 $^{-11}$ T
	ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna 21.11 Properties of Electromagnetic Waves
65.	Which condition of motion must be met with regard to a charged particle if it is in the process of emitting electromagnetic radiation? a. moves at constant velocity b. accelerates c. moves at the speed of light d. moves parallel to a uniform magnetic field
	ANS: B PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna 21.11 Properties of Electromagnetic Waves
66.	The electric field, , in an electromagnetic wave is oriented in what direction with respect to its associated magnetic field, ? a. parallel to b. anti-parallel to c. perpendicular to d. at a 45° angle to
	ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna 21.11 Properties of Electromagnetic Waves
67.	An electromagnetic wave with a peak magnetic field component of 1.5 $^{'}$ 10 ⁻⁷ T has an associated peak electric field component of what value? ($m_0 = 4p^{'}$ 10 ⁻⁷ T×m/A, $e_0 = 8.85^{'}$ 10 ⁻¹² C ² /N×m ² and $e_0 = 3.00^{'}$ 10 ⁸ m/s) a. 0.50 $^{'}$ 10 ⁻¹⁵ N/C b. 2.00 $^{'}$ 10 ⁻⁵ N/C c. 2.20 $^{'}$ 10 ⁴ N/C d. 45 N/C
	ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna 21.11 Properties of Electromagnetic Waves
68.	An electromagnetic wave with a peak magnetic field component of 1.5 $^{'}$ 10 ⁻⁷ T carries what average power per unit area? ($m_0 = 4p^{'}$ 10 ⁻⁷ T×m/A, $e_0 = 8.85^{'}$ 10 ⁻¹² C ² /N×m ² and $c = 3.00^{'}$ 10 ⁸ m/s) a. 12 W/m ² b. 2.7 W/m ² c. 3.0 W/m ² d. 1.3 W/m ²
	ANS: C PTS: 1 DIF: 1

TOP: 21.10 Production of Electromagnetic Waves by an Antenna | 21.11 Properties of Electromagnetic Waves 69. A radio wave transmits 1.2 W/m² average power per unit area. What is the peak value of the associated magnetic field? ($m = 4p' \cdot 10^{-7} \text{ Txm/A} \text{ and } c = 3.00' \cdot 10^{8} \text{ m/s}$) a. $1.0 \cdot 10^{-7} \,\mathrm{T}$ b. $8.4 \cdot 10^{-3} \text{ T}$ c. 1.2 T d. 30 T ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna | 21.11 Properties of Electromagnetic Waves 70. How is the direction of propagation of an electromagnetic wave oriented relative to the associated and a. parallel to both and b. perpendicular to both and c. parallel to, perpendicular to d. parallel to, perpendicular to ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna | 21.11 Properties of Electromagnetic Waves 71. What is the maximum value of the electric field E at 1.0 m from a 100-W light bulb radiating in all directions? ($\mu_0 = 4p' 10^{-7} \text{ Txm/A}, c = 3.00' 10^8 \text{ m/s}$) a. 77 V/m b. 2 000 V/m c. 4 000 V/m d. 6 000 V/m ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna | 21.11 Properties of Electromagnetic Waves 72. Determine the amount of energy carried in 1.0 m of a 3.5-mW He-Ne laser beam if the cross-sectional area of the beam is $5.0 \cdot 10^{-6} \,\mathrm{m}^2$. a. 0.012 J b. 4.1 ′ 10⁻⁸ J c. $1.2 \cdot 10^{-11} \,\mathrm{J}$ d. 1.0 J ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna | 21.11 Properties of Electromagnetic Waves 73. The Earth is $1.49 \cdot 10^{11}$ m from the Sun. If the solar radiation at the top of the Earth's atmosphere is 1 340 W/m², what is the total power output of the Sun? a. $7.48 \cdot 10^{27} \text{ W}$ b. $2.34 \cdot 10^{30} \,\mathrm{W}$ c. $6.62 \cdot 10^{26} \text{ W}$ d. $3.74 \cdot 10^{26} \text{ W}$ ANS: C PTS: 1 DIF: 1

TOP: 21.10 Production of Electromagnetic Waves by an Antenna | 21.11 Properties of Electromagnetic Waves

74.	If the radiant energy from the Sun comes in as a plane EM wave of intensity 1 340 W/m², calculate the peak values of <i>E</i> and <i>B</i> . ($\mu_0 = 4p' 10^{-7} \text{ Txm/A}$) a. 330 V/m, 3.0 ′ 10^{-4} T b. 1 010 V/m, 3.35 ′ 10^{-6} T c. 330 V/m, 3.35 ′ 10^{-6} T d. 1 010 V/m, 3.0 ′ 10^{-4} T
	ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna 21.11 Properties of Electromagnetic Waves
75.	Peak values for a neodymium-glass laser are 600 J for 1 nanosecond. If the cross-section of the laser beam is 1 cm ² , what are the maximum values of <i>E</i> and <i>B</i> ? ($\mu_0 = 4p' 10^{-7} \text{ T/m/A}$, $c = 3.00' 10^8 \text{ m/s}$) a. 2′ 10° V/m, 2 T b. 4′ 10° V/m, 7 T c. 2′ 10° V/m, 7 T d. 4′ 10° V/m, 2 T
	ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna 21.11 Properties of Electromagnetic Waves
76.	A solar cell has a light-gathering area of $10~\rm cm^2$ and produces $0.20~\rm A$ at $0.80~\rm V$ (dc) when illuminated with sunlight of intensity $1~000~\rm W/m^2$. What is the efficiency of the solar cell? a. 16% b. 7% c. 23% d. 4%
	ANS: C PTS: 1 DIF: 1 TOP: 21.10 Production of Electromagnetic Waves by an Antenna 21.11 Properties of Electromagnetic Waves
77.	In a space lab a 25- sheet of aluminum foil is subjected to a laser beam of intensity on one side and to a beam of intensity on the opposite side, the radiation in each case hitting with normal incidence. What is the net force on the aluminum foil if both sides are considered to be totally reflective? a. b. c. d.
	ANS: B PTS: 1 DIF: 2 TOP: 21.11 Properties of Electromagnetic Waves
78.	In a space lab a 25- sheet of aluminum foil having mass is subjected to a laser beam of intensity on one side and to a beam of intensity on the opposite side, the radiation in each case hitting with normal incidence. If both of the aluminum foil sides are considered to be totally reflective and the foil is floating in the space lab, what acceleration of the foil will result from the net force from the incident beams? a. b.

	d.
	ANS: D PTS: 1 DIF: 2 TOP: 21.11 Properties of Electromagnetic Waves
79.	In a northern latitude an experiment is performed on 3.50- sheet of roofing material which is placed in sunlight of intensity making normal incidence on its top surface. The ambient temperature surrounding the material on both top and bottom is 275 K. If the material acts as a perfect blackbody and sheds half of the incident radiation by thermal radiation, what equilibrium temperature does is reach? a. 375 K b. 336 K c. 310 K d. 294 K
	ANS: C PTS: 1 DIF: 3 TOP: 21.11 Properties of Electromagnetic Waves
80.	In order of increasing frequency, which of the following is correct? a. visible, radio, ultraviolet and x-ray b. infrared, visible, ultraviolet and gamma c. visible, gamma, ultraviolet and x-ray d. infrared, x-ray, visible and gamma
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
81.	A radar pulse returns $3.0 \cdot 10^{-4}$ seconds after it is sent out, having been reflected by an object. What is the distance between the radar antenna and the object? ($c = 3.00 \cdot 10^8$ m/s) a. $9.0 \cdot 10^4$ m b. $4.5 \cdot 10^4$ m c. $6.0 \cdot 10^4$ m d. $1.0 \cdot 10^4$ m
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
82.	In order to keep its food hot, a restaurant will place it under which type of lamp? a. infrared b. visible light c. ultraviolet d. x-ray
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
83.	Glass panes are opaque to a certain type of radiation, which passes through quartz. What type of radiation is it? This radiation is important in ozone layer reactions. a. microwave b. gamma c. x-ray d. ultraviolet
	ANS: C PTS: 1 DIF: 1

c.

TOP: 21.12 The Spectrum of Electromagnetic Waves

84.	A radio wave signal, which transmits at a frequency of 7.20 MHz, has what wavelength? ($c=3.00^{\circ}10^8\text{m/s}$) a. 41.7 m b. 4.17 m c. 28.8 m d. 2.4 $^{\circ}10^{-2}\text{m}$
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
85.	A radar pulse sent out to an airplane at a distance of 20.0 km will return as an echo to the source in what time interval? $(c = 3.00 \text{ '} 10^8 \text{ m/s})$ a. 33.3 ' 10^{-6} s b. 66.7 ' 10^{-6} s c. 133 ' 10^{-6} s d. 0.033 3 ' 10^{-6} s
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
86.	The human eye is sensitive to light with wavelength down to 390 nm. What is the frequency of radiation at this wavelength? (1 nm = 10^{-9} m and $c = 3.00$ ′ 10^{8} m/s) a. 1.8 ′ 10^{8} Hz b. 8.5 ′ 10^{8} Hz c. 1.1 ′ 10^{11} Hz d. 7.7 ′ 10^{14} Hz
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
87.	An ultraviolet light wave has a wavelength of 300 nm and speed of 2.1 $^{'}$
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
88.	Microwave radiation is useful in which of the following? a. sending phone messages b. cooking food c. aircraft navigation d. All of the above are valid choices.
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
89.	Temperature variation of different parts of a person's body can be detected by analyzing the emission pattern of which type of electromagnetic radiation? a. microwave

	b. infraredc. ultravioletd. x-rays
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
90.	Of the various types of electromagnetic radiation, which is the most penetrating through all forms of matter? a. infrared b. gamma c. visible light d. ultraviolet
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
91.	What value of inductance should be used in a series circuit with a capacitor of 1.8 $'$ 10^{-3} m F when designed to radiate a wavelength of 35 m? ($c = 3.00$ $'$ 10^{8} m/s) a. 3.8 mH b. 2.6 $'$ 10^{-2} mH c. 3.8 $'$ 10^{-3} mH d. 1.9 $'$ 10^{-4} mH
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
92.	As an electromagnetic wave travels through free space, its speed can be increased by: a. increasing its frequency. b. increasing its energy only. c. increasing both its energy and momentum. d. None of the above will increase its speed.
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
93.	An object that is giving off only infrared electromagnetic waves is giving off heat through: a. convection.b. conduction.c. radiation.d. visible light.
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
94.	The electromagnetic radiation that causes tanning: a. can produce cancer. b. rarely passes through glass windows. c. is absorbed by ozone. d. is all of the above.
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
95.	What is the wavelength of 100-MHz television EM waves? ($c = 3 \cdot 10^8 \text{ m/s}$)

	a. 0.3 cm b. 3 m c. 9 km d. 10 m
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
96.	Find the frequency of x-rays of wavelength 10^{-10} m. ($c=3$ ´ 10^8 m/s) a. 3 ´ 10^{18} Hz b. 3 ´ 10^{16} Hz c. 6 ´ 10^9 Hz d. 3 ´ 10^8 Hz
	ANS: C PTS: 1 DIF: 1 TOP: 21.12 The Spectrum of Electromagnetic Waves
97.	In the Doppler effect for electromagnetic waves, which of the following gives the greatest shift in frequency? a. the source moving toward the non-moving observer at speed v b. the observer moving toward the non-moving source at speed v c. the source moving toward the approaching observer, both at speed v/2 d. All of the above give the same shift.
	ANS: C PTS: 1 DIF: 1 TOP: 21.13 The Doppler Effect for Electromagnetic Waves
98.	The Doppler shift for electromagnetic radiation from distant galaxies moving away from the observer is called a: a. red shift. b. blue shift. c. black shift. d. vacuum shift.
	ANS: C PTS: 1 DIF: 1 TOP: 21.13 The Doppler Effect for Electromagnetic Waves
99.	An observer is moving in space toward a distant star at 100 km/s while the star is moving toward the observer at 200 km/s ; the relative velocity being 300 km/s of approach. What relative change in frequency of the light from the star as seen by the observer? (The speed of light in space is $3.00 \cdot 10^5 \text{ km/s}$). a. 0.10% increase b. 0.10% decrease c. 0.067% increase d. 0.033% decrease
	ANS: C PTS: 1 DIF: 1 TOP: 21.13 The Doppler Effect for Electromagnetic Waves
100.	In an <i>RLC</i> circuit, the maximum current is 1 amp. What is the average current? a. A b. A c. (1/2) A d. None of the above.

	ANS: C	PTS: 1	DIF: 1	TOP: Conceptual Questions
101.	In an <i>RC</i> circuit, whi a. 45° b45° c. 135° d135°	ich of the following is	a possible phase angle	?
	ANS: C	PTS: 1	DIF: 1	TOP: Conceptual Questions
102.	capacitance are nowa. It is still positiveb. It could be zero.c. It will be negative	doubled. Which of the	following is now true	the resistance, inductance, and the about the phase angle? than its original value.
	ANS: C	PTS: 1	DIF: 1	TOP: Conceptual Questions
103.		quency and wavelength		velength I ₀ . Which of the following onochromatic light wave in vacuum?
	ANS: C	PTS: 1	DIF: 1	TOP: Conceptual Questions
104.				C_0 . If the resistance value is now in the same resonant frequency as
	ANS: C	PTS: 1	DIF: 1	TOP: Conceptual Questions

MULTIPLE CHOICE

	a. 0.33b. 1.0c. 1.73d. 3.0						
	ANS: D	PTS:	1	DIF:	2	TOP:	22.1 The Nature of Light
2.	Tripling the wavelen of the individually rata. 0.33 b. 1.0 c. 1.73 d. 3.0					ource w	vill change the energy content
	ANS: A	PTS:	1	DIF:	2	TOP:	22.1 The Nature of Light
3.	Photon A has an energy of Photon B? a. 0.50 ′ 10 ⁻¹⁹ J b. 1.0 ′ 10 ⁻¹⁹ J c. 8.0 ′ 10 ⁻¹⁹ J d. 32 ′ 10 ⁻¹⁹ J		.0′10 ⁻¹⁹ J. Ph	oton B	has 4 times the	e freque	ency of Photon A. What is the
	ANS: C	PTS:	1	DIF:	2	TOP:	22.1 The Nature of Light
4.	According to present a. composed of par b. a particle whose c. a wave that move d. none of the above	ticles w quantiz es from	hich can neithe ed energy depe	er be creends on	eated nor destro	yed.	
	ANS: D	PTS:	1	DIF:	2	TOP:	22.1 The Nature of Light
5.	The wave-particle du a. light will act bot b. light will act eith c. light will not act d. light always exis	h like a er like like eit	wave and like a a wave or like a her a wave or a	a partic a partic particl	·le. le. e.	nent:	
	ANS: B	PTS:	1	DIF:	1	TOP:	22.1 The Nature of Light
6.	What is the energy o a. 3.31 ′ 10 ⁻¹⁹ J b. 3.31 ′ 10 ⁻⁴⁷ J c. 1.33 ′ 10 ⁻⁴⁸ J d. 1.33 ′ 10 ⁻²⁴ J	f a phot	on of frequency	y 5.00 ʻ	$10^{14} \text{ Hz?} (h =$	6.626	10 ⁻³⁴ J %)
	ANS: A	PTS:	1	DIF:	2	TOP:	22.1 The Nature of Light

1. According to the photon energy formula, tripling the frequency of the radiation from a monochromatic

source will change the energy content of the individually radiated photons by what factor?

	a. the photoelectricb. diffraction effectc. interference effectd. the prediction b	ets.	ll's electromag	gnetic t	heory.		
	ANS: A	PTS:	1	DIF:	1	TOP:	22.1 The Nature of Light
8.	One phenomenon that a. the photoelectric b. quantization effic. absorption of light.	e effect. ects. ght by an		ve natu	re of light is:		
	ANS: D	PTS:	1	DIF:	1	TOP:	22.1 The Nature of Light
9.	Helium-neon laser I the beam? ($h = 6.62$ a. $3.14 \cdot 10^{-19} \text{ J}$ b. $5.40 \cdot 10^{-19} \text{ J}$ c. $7.62 \cdot 10^{-19} \text{ J}$ d. $1.15 \cdot 10^{-18} \text{ J}$					at is the	energy of a single photon in
	ANS: A	PTS:	1	DIF:	2	TOP:	22.1 The Nature of Light
10.	Newton's theory of with a. particles, waves b. particles, waves c. waves, particles d. waves, particles	bel, refractive, interfere	navior. ve ence ence		while Young o	lemons	trated that light behaved as
	ANS: B	PTS:	1	DIF:	2	TOP:	22.1 The Nature of Light
11.	The photoelectric ef a. Maxwell. b. Einstein. c. Hertz. d. Planck.	fect was	discovered by:				
	ANS: C	PTS:	1	DIF:	1	TOP:	22.1 The Nature of Light
12.	Who formulated the a. Hertz b. Maxwell c. Newton d. Einstein	theory ex	xplaining the p	ohotoel	ectric effect?		
	ANS: D	PTS:	1	DIF:	1	TOP:	22.1 The Nature of Light
13.	A ray of light strike of the ray reflected a. 56° b. 46°		-		_		th the normal. Find the angle

7. One phenomenon that demonstrates the particle nature of light is:

	c. 39° d. 25°
	ANS: D PTS: 1 DIF: 1 TOP: 22.2 Reflection and Refraction
14.	As the angle of incidence is increased for a ray incident on a reflecting surface, the angle between the incident and reflected rays ultimately approaches what value? a. zero b. 45° c. 90° d. 180°
	ANS: D PTS: 1 DIF: 1 TOP: 22.2 Reflection and Refraction
15.	Which of the following describes what will happen to a light ray incident on an air-to-glass boundary? a. total reflection b. total transmission c. partial reflection, partial transmission d. partial reflection, total transmission
	ANS: C PTS: 1 DIF: 1 TOP: 22.2 Reflection and Refraction
16.	Light from a 560-nm monochromatic source is incident upon the surface of fused quartz ($n = 1.56$) at an angle of 60° . What is the angle of reflection from the surface? a. 15° b. 34° c. 60° d. 75°
	ANS: C PTS: 1 DIF: 1 TOP: 22.2 Reflection and Refraction
17.	A line representing a wave front for a wave should be drawn: a. from the source to the receiver. b. from one crest to the preceding crest. c. along one of the crests of the wave. d. in the direction the wave is moving.
	ANS: C PTS: 1 DIF: 1 TOP: 22.2 Reflection and Refraction
18.	When light of one wavelength from air hits a smooth piece of glass at an angle, which of the following will not occur? a. reflection b. refraction c. dispersion d. All of the above will occur.
	ANS: C PTS: 1 DIF: 1 TOP: 22.2 Reflection and Refraction
19.	When viewing your image in a hand-held mirror, if you move the mirror away at a speed v, the image appears to:

	 a. also move away at v. b. move away at 2v. c. move away at v/2. d. not move.
	ANS: B PTS: 1 DIF: 2 TOP: 22.2 Reflection and Refraction
20.	 When light reflects and produces a clear image, this reflection is referred to as: a. specular reflection. b. diffuse reflection. c. retroreflection. d. double reflection.
	ANS: A PTS: 1 DIF: 1 TOP: 22.2 Reflection and Refraction
21.	Water has an index of refraction of 1.333. What is the speed of light through it? ($c = 3.00 \cdot 10^8$ m/s) a. $4.00 \cdot 10^8$ m/s b. $2.25 \cdot 10^8$ m/s c. $4.46 \cdot 10^8$ m/s d. $1.46 \cdot 10^8$ m/s
	ANS: B PTS: 1 DIF: 2 TOP: 22.3 The Law of Refraction
22.	A ray of light strikes a thick sheet of glass ($n = 1.5$) at an angle of 25° with the normal. Find the angle of the refracted ray within the glass with respect to the normal. a. 56° b. 46° c. 25° d. 16°
	ANS: D PTS: 1 DIF: 2 TOP: 22.3 The Law of Refraction
23.	Dez pours carbon tetrachloride ($n = 1.46$) into a container made of crown glass ($n = 1.52$). The light ray in glass incident on the glass-to-liquid boundary makes an angle of 30° with the normal. Find the angle of the corresponding refracted ray. a. 55.5° b. 29.4° c. 31.4° d. 19.2°
	ANS: C PTS: 1 DIF: 2 TOP: 22.3 The Law of Refraction
24.	A monochromatic beam of light in air has a wavelength of 589 nm in air. It passes through glass ($n = 1.52$) and then through carbon disulfide ($n = 1.63$). What is its wavelength in the carbon disulfide? a. 361 nm b. 387.5 nm c. 895 nm d. 960 nm
	ANS: A PTS: 1 DIF: 2 TOP: 22.3 The Law of Refraction
25.	A light ray in air is incident on an air-to-glass boundary at an angle of 30.0° and is refracted in the glass at an angle of 21.0° with the normal. Find the index of refraction of the glass.

	a. 2.13b. 1.74c. 1.23d. 1.40						
	ANS: D	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
26.		beam fi	rst passes throu	igh the			tangular block of clear plastic from the opposite side into air
	ANS: C	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
27.							clear plastic ($n = 1.49$). If the its velocity inside the block?
	ANS: C	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
28.	 A light ray in air enters and passes through a block of glass. What can be stated with regard to its speed after it emerges from the block? a. Speed is less than when in glass. b. Speed is less than before it entered glass. c. Speed is same as that in glass. d. Speed is same as that before it entered glass. 						stated with regard to its
	ANS: D	PTS:	1	DIF:	1	TOP:	22.3 The Law of Refraction
29.	As a monochromatic wavelength? a. increases b. decreases c. remains unchang d. approaches zero	ed	y is transmitted	l throug	gh an air-to-glas	ss boun	dary, what happens to the
	ANS: B	PTS:	1	DIF:	1	TOP:	22.3 The Law of Refraction
30.	refraction increases? a. decreases b. increases c. remains constant d. approaches 3 ´ 1	0^8 m					of the in the glass as the index of
	ANS: A	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
31.	If the speed of light t refraction of this liqu				measured at 1.8	30′10 ⁸	3 m/s, what is the index of

	a. 1.80b. 1.67c. 1.20d. 0.600						
	ANS: B	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
32.	same source when it m/s) a. 671 nm b. 612.5 nm c. 490 nm d. 392 nm	passes t	through a liquid	l where	e the speed of li	ght is 2	t is the wavelength from the .40 $^{\prime}$ 10 ⁸ m/s? ($c = 3.00 ^{\prime}$ 10 ⁸
	ANS: D	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
33.	What is the angle of 1.52) is 25°? a. 16° b. 25° c. 40° d. 43°	inciden	ce on an air-to-	glass b	oundary if the a	angle of	Frefraction in the glass ($n =$
	ANS: C	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
34.	the wavelength redu a. 1.26 b. 1.49 c. 1.14 d. 1.33	ces to 42	29 nm. What is	the liq	uid's index of r	efractio	
	ANS: C	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
35.	Fused quartz has an light for this wavele a. 1.56 ′ 10 ⁸ m/s b. 1.92 ′ 10 ⁸ m/s c. 2.19 ′ 10 ⁸ m/s d. 4.68 ′ 10 ⁸ m/s				•	50-nm s	ource. What is the speed of
	ANS: B	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
36.	If light from a 560-n 1.56) at an angle of a. 192 nm b. 359 nm c. 560 nm d. 874 nm						surface of fused quartz (<i>n</i> = in the quartz?
	ANS: B	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction

37.				of 35.0°. Indices of refraction for the e of refraction for the ray moving
	ANS: B	PTS: 1	DIF: 2	TOP: 22.3 The Law of Refraction
38.				of 35°. Indices of refraction for the e of refraction for the ray moving
	ANS: C	PTS: 1	DIF: 2	TOP: 22.3 The Law of Refraction
39.	index of refraction n ratio of f_1/f_2 ? a. n_1/n_2 b. n_2/n_1 c. 1		ght in material 1 is f_1 a	of refraction n_1 into material 2 with nd in material 2 is f_2 . What is the
	ANS: C	PTS: 1	DIF: 2	TOP: 22.3 The Law of Refraction
40.	toward the surface (sitting on a distant ba. 18.6° b. 37.2° c. 48.6°		to the normal to the su 333)	nat maximum angle can the fish look orface) in order to see a fisherman
	ANS: C	PTS: 1	DIF: 2	TOP: 22.3 The Law of Refraction
41.	makes an angle of 4 in air as it impinges a. 33° b. 45° c. 67° d. 58.5°	.5° with the normal after upon the other side of	er leaving the slab, who the slab?	ith parallel sides. If the ray in air at is the angle of incidence for the ray
	ANS: B	PTS: 1	DIF: 2	TOP: 22.3 The Law of Refraction
42.	For the glass, $n = 1$.		angle is 35°. What is t	e at an angle of 20° with the normal. he angle of incidence at the glass-to-

a. 38.0° b. 35.1°

	c. 22.7° d. 12.3°							
	ANS: C	PTS:	1	DIF:	3	TOP:	22.3 The Law of l	Refraction
43.		= 1.55, and t	he prism	apex angle is			angle of 25.0° with gle of refraction as	
	ANS: B	PTS:	1	DIF:	3	TOP:	22.3 The Law of l	Refraction
44.		ray of light is	incident	t on the air-to-	oil s		and oil, respectively of 37.0° with the r	
	ANS: B	PTS:	1	DIF:	2	TOP:	22.3 The Law of l	Refraction
45.	and 1.466. If a what is the ang a. 18.1° b. 24.2° c. 26.8° d. 37.0°	ray of light is le of the refra	incident	t on the air-to- in the water?	oil s	urface at an angle	of 37.0° with the r	normal,
	ANS: C	PTS:	1	DIF:	2	TOP:	22.3 The Law of l	Refraction
46.	surface, which a. reflection a	of the following transmission with $q_2 = 41.8$	ing will of on with	occur?	= 1.	5) with the ray pe	rpendicular to the g	glass
	ANS: A	PTS:	1	DIF:	1	TOP:	22.3 The Law of l	Refraction
47.	part of the light a. will not cha b. will not cha	passing into ange its speed ange its frequange its wave	the glass l. ency. length.		ith th	e ray perpendicul	ar to the glass surf	ace, the
	ANS: B	PTS:	1	DIF:	1	TOP:	22.3 The Law of l	Refraction
48.	Light in air enterefraction insida. 17.9°			12) at an angle	of i	ncidence of 48.0°.	. What is the angle	of

	b. 19.8°c. 24.7°d. 45.6°				
	ANS: A	PTS: 1	DIF: 2	TOP: 22.3 The Law of Refrac	ction
49.	An underwater scuba sun above the horizo a. 22.0° b. 41.8° c. 48.2° d. 68.0°		at an apparent angle	of 30.0° from the vertical. How far is	s the
	ANS: C	PTS: 1	DIF: 2	TOP: 22.3 The Law of Refrac	ction
50.	A light beam is incided of refraction? (n_{water} a. 76.2° b. 67.5° c. 54.4° d. 48.6°	_	er surface. What is th	e maximum possible value for the a	ngle
	ANS: D	PTS: 1	DIF: 2	TOP: 22.3 The Law of Refrac	ction
51.	the beam is transmitt rays? a. 28° b. 73° c. 107° d. 152°	ted and part is reflect	ted. What is the angl	D) at an angle of incidence of 45°. Pare between the reflected and transmit	ted
	ANS: C	PTS: 1	DIF: 2	TOP: 22.3 The Law of Refrac	ction
52.	The lowest possible a. 0. b. 1. c. 0.707. d. 3 ^{-1/2} .	value for the index o	of refraction is:		
	ANS: B	PTS: 1	DIF: 1	TOP: 22.3 The Law of Refrac	ction
53.	the first layer at an a angle q in air. What a. Some angle less b. 30°. c. Some angle more	ngle of incidence of is the value of q? than 30°.		form thickness. A light ray in air en at the refutually exits the third layer at the refutually	
	ANS: B	PTS: 1	DIF: 3	TOP: 22.3 The Law of Refrac	ction
54.	Of the values listed by a. 1.5 b.	pelow, which is the g	greatest possible valu	ne for the index of refraction?	

	ANS: D	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
55.		rs can b	e used as a retr				mirrors separated by the angle ht strikes both surfaces (one
	ANS: C	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
56.	materials have indice the surface of materi material 2, and materi beam experience the a. material 1 b. material 2 c. material 3	es of ref al 1 at a rial 3, fi smalles	raction,, and n angle of incionally emerging at angle of refra	where dence of into the action?	and . A beam of 35°. The bean e air again. In v	f light : n contii vhich o	t with one another. The starting in air is incident on nues through material 1, if materials 1, 2, or 3, does the e the answer depends
	ANS: C	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
57.	Three slabs of different types of glass of uniform thickness are in contact with one another. The materials have indices of refraction,, and where and . A beam of light starting in air is incident on the surface of material 1 at an angle of incidence of 35°. The beam continues through material 1, material 2, and material 3, finally emerging into the air again. In which of materials 1, 2, or 3, or air (when the beam emerges back into the air) does the beam experience the largest angle of refraction? a. material 1 b. material 2 c. material 3 d. air						
	ANS: D	PTS:	1	DIF:	2	TOP:	22.3 The Law of Refraction
58.	A ray of white light, one of the following a. orange b. violet c. red d. green ANS: B		experiences the		st angle of devia	ation?	ious color components. Which 22.4 Dispersion and Prisms
59.	Dispersion occurs with a some materials but b. a material slows c. a material changed. light has different	oend ligh down se es some	ome wavelengt frequencies m	hs more	e than others. n others.		
	ANS: B	PTS:	1	DIF:	2	TOP:	22.4 Dispersion and Prisms

c. 2.0 d. 2.4

60.	•	colors) is					red light. If a beam of white ngle between the red and blue
	ANS: B	PTS:	1	DIF:	2	TOP:	22.4 Dispersion and Prisms
61.	When white light dolowest speed in the a. blue b. green c. yellow d. red	•	it passes thro	ough a p	orism, which of	the foll	lowing colors moves at the
	ANS: A	PTS:	1	DIF:	2	TOP:	22.4 Dispersion and Prisms
62.	When light passing a. different wavel b. different wavel c. different wavel d. All of the above	engths trav engths hav engths refr	veling at differ ring different	rent spe	eeds.	ect is a	result of:
	ANS: D	PTS:	1	DIF:	1	TOP:	22.4 Dispersion and Prisms
63.	A rainbow is a result a. different color of b. dispersion. c. interference. d. the Huygens Ef	droplets of	water.				
	ANS: B	PTS:	1	DIF:	1	TOP:	22.5 The Rainbow
64.	What is the maximum geometries). a. 90° b. 180° c. 270° d. 360°	ım possibl	e arc that can	be subt	tended by a rair	nbow? (Consider all possible viewing
	ANS: D	PTS:	1	DIF:	1	TOP:	22.5 The Rainbow
65.	Huygens's wave the glass and in air? a. Speed in air is g b. Speed in air is l c. Speed in air equ d. Speed in glass of	greater than ess than in uals that in	n in glass. glass. glass.			rd to th	e relative speeds of light in
	ANS: A	PTS:	1	DIF:	1	TOP:	22.6 Huygens's Principle
66.	In Huygens's const a. act as point sou		_			waves.	

	b. act as particles.c. demonstrate the dual nature of light.d. must be sources of plane waves.
	ANS: A PTS: 1 DIF: 1 TOP: 22.6 Huygens's Principle
67.	Diamond has an index of refraction of 2.419. What is the critical angle for internal reflection inside a diamond that is in air? a. 24.4° b. 48.8° c. 155° d. 131°
	ANS: A PTS: 1 DIF: 2 TOP: 22.7 Total Internal Reflection
68.	A container of flint glass ($n = 1.66$) holds a small quantity of benzene ($n = 1.501$). What is the critical angle for internal reflection of a ray in the glass when it is incident on the glass-to-liquid surface? a. 89.5° b. 64.7° c. 41.1° d. 37.0°
	ANS: B PTS: 1 DIF: 3 TOP: 22.7 Total Internal Reflection
69.	Which of the following describes what will happen to a light ray incident on an air-to-glass boundary at less than the critical angle? a. total reflection b. total transmission c. partial reflection, partial transmission d. partial reflection, total transmission
	ANS: C PTS: 1 DIF: 1 TOP: 22.7 Total Internal Reflection
70.	Which of the following describes what will happen to a light ray incident on a glass-to-air boundary at greater than the critical angle? a. total reflection b. total transmission c. partial reflection, partial transmission d. partial reflection, total transmission
	ANS: A PTS: 1 DIF: 1 TOP: 22.7 Total Internal Reflection
71.	A ray of light travels across a liquid-to-glass interface. If the indices of refraction for the liquid and glass are, respectively, 1.75 and 1.52, what is the critical angle at this interface? a. 30.0° b. 52.2° c. 60.3° d. Critical angle does not exist.
	ANS: C PTS: 1 DIF: 2 TOP: 22.7 Total Internal Reflection

72.	A fiber optic cable ($n = 1.50$) is submerged in water ($n = 1.33$). What is the critical angle for light to stay inside the cable? a. 83.1° b. 62.5° c. 41.8° d. 27.6°
	ANS: B PTS: 1 DIF: 2 TOP: 22.7 Total Internal Reflection
73.	 If total internal reflection occurs at a glass-air surface: a. no light is refracted. b. no light is reflected. c. light is leaving the air and hitting the glass with an incident angle greater than the critical angle. d. light is leaving the air and hitting the glass with an incident angle less than the critical angle.
	ANS: A PTS: 1 DIF: 1 TOP: 22.7 Total Internal Reflection
74.	An optical fiber is made of clear plastic with index of refraction $n=1.50$. For what angles with the surface will light remain within the plastic "guide"? a. $j < 66.6^{\circ}$ b. $j < 57.1^{\circ}$ c. $j < 51.7^{\circ}$ d. $j < 48.2^{\circ}$
	ANS: D PTS: 1 DIF: 2 TOP: 22.7 Total Internal Reflection
75.	A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the surface, from which light emerges from the water? ($n_{\text{water}} = 1.333$). a. 0.57 m b. 0.77 m c. 1.13 m d. 1.43 m
	ANS: C PTS: 1 DIF: 3 TOP: 22.7 Total Internal Reflection
76.	Before light can undergo total internal reflection when incident on material 2 from material 1, what must be true of the indices of refraction? a. $n_1 = n_2$ b. $n_1 < n_2$ c. $n_1 > n_2$ d. Either n_1 or n_2 must be equal to 1.
	ANS: C PTS: 1 DIF: 2 TOP: 22.7 Total Internal Reflection
77.	Fiber optics has to do with: a. the color of fabrics. b. light having fiber characteristics as well as wave and particle characteristics. c. string theory.

	ANS: D PTS: 1 TOP: 22.7 Total Internal Reflection	DIF: 1		
78.	A light ray incident on the interface betweena. only in the glass.b. only in the air.c. in either the glass or the air.d. in the air only if the index of refraction	-		
	ANS: A PTS: 1 TOP: 22.7 Total Internal Reflection	DIF: 1		
79.	Three flat layers of transparent material are refraction n_1 , the middle has n_2 and the bott will a ray of light traverse the three layers in a. b. c. d. There is such an angle, but it is not give	om one has n_3 . If n_1 a single straight l	$n_1 < n_2 < n_3$, at what angle of incide	
	ANS: D PTS: 1	DIF: 1	TOP: Conceptual Questions	
80.	Three flat layers of transparent material are refraction n_1 , the middle has n_2 and the botte the top layer at an angle of incidence, in what is the top layer b. the middle layer c. the bottom layer d. Once the ray enters the touching layers,	om one has n_3 . If n nich layer is the an	$n_1 > n_2 > n_3$, and if a ray of light strigle of refraction the greatest?	
	ANS: A PTS: 1	DIF: 2	TOP: Conceptual Questions	
81.	Three flat layers of transparent material are refraction n_1 , the middle n_2 and the bottom of top layer, at which surface given can total in a. the top surface b. the surface between materials with indict. the surface between materials with indict. Total internal reflection cannot occur at	one n_3 . If $n_1 > n_2 >$ nternal reflection of ces n_1 and n_2 ces n_2 and n_3	> n ₃ , and a ray of light in air strikes occur first?	
	ANS: B PTS: 1	DIF: 2	TOP: Conceptual Questions	
82.	Light of colors 1 and 2 are sent through a prothe following is not true? a. The index of refraction for color 2 is grab. The two colors of light have different from the colors of light for color 2 is greater d. The wavelength for color 1 is different	eater than that for equencies associate than that for color	color 1. ted with them. 1 in this prism.	h o
	ANS: C PTS: 1	DIF: 2	TOP: Conceptual Questions	
83.	White light is sent through a prism, and the the following colors would have the highest a. red			h of

d. none of the above.

b. greenc. yellowd. blue

ANS: D PTS: 1 DIF: 2 TOP: Conceptual Questions

MULTIPLE CHOICE

	a. 2.0 ft b. 3.0 ft c. 4.0 ft d. 5.0 ft						
	ANS: C	PTS: 1	DIF:	1	TOP:	23.1 Flat Mirrors	
2.	a. virtual and magnb. real and magnifie	nification equal to one	_	rom a plane mii	ror?		
	ANS: C	PTS: 1	DIF:	1	TOP:	23.1 Flat Mirrors	
3.	When the reflection a. real and upright. b. real and inverted c. virtual and uprig d. virtual and inverted	l. ;ht.	a plane	mirror, the ima	ige is:		
	ANS: C	PTS: 1	DIF:	1	TOP:	23.1 Flat Mirrors	
4.	 When the reflection of an object is seen in a plane mirror, the distance from the mirror to the image depends on: a. the wavelength of light used for viewing. b. the distance from the object to the mirror. c. the distance of both the observer and the object to the mirror. d. the size of the object. 						
	ANS: B	PTS: 1	DIF:	1	TOP:	23.1 Flat Mirrors	
5.	of the mirror, the req a. is equal to the he b. is equal to one he c. depends on the d	juired length of the mi	rror: an. s from t	he mirror.		I his feet as he stands in front to the mirror.	
	ANS: B	PTS: 1	DIF:	2	TOP:	23.1 Flat Mirrors	
6.	a. is a function of tb. is a function of t	ation for a flat mirror: he object distance. he image distance. he object and image di	istance.				
	ANS: D	PTS: 1	DIF:	1	TOP:	23.1 Flat Mirrors	

1. You stand two feet away from a plane mirror. How far is it from you to your image?

7.	 How large should a wa a. h b. h/2 c. h/4 d. The answer is not 		to view the upper ha	lf of one's height, h?
		PTS: 1	DIF: 2	TOP: 23.1 Flat Mirrors
8.	The real image of an o of 10.0 cm. How far is a. 40.0 cm b. 35.0 cm c. 22.5 cm d. 12.9 cm	•	<u>-</u>	ave mirror, which has a focal length
		PTS: 1 ormed by Concave Mi	DIF: 2 rrors 23.3 Convex M	Airrors and Sign Conventions
9.	A concave mirror form corresponding object i a. 1.43 cm b. 16.7 cm c. 12.4 cm d. 7.14 cm			surface along the principal axis. If the s focal length?
		PTS: 1 ormed by Concave Mi	DIF: 2 rrors 23.3 Convex M	Airrors and Sign Conventions
10.	If a virtual image is for 15 cm, what is the object a. 30 cm b. 10 cm c. 12 cm d. 6.0 cm			a concave mirror with the focal length
	***	PTS: 1 ormed by Concave Mi	DIF: 2 rrors 23.3 Convex M	dirrors and Sign Conventions
11.	If a virtual image is for 15.0 cm, how far is the a. 30.0 cm b. 10.0 cm c. 6.00 cm d. 3.00 cm	•		n a convex mirror of focal length –
		PTS: 1 ormed by Concave Mi	DIF: 2 rrors 23.3 Convex M	Airrors and Sign Conventions
12.	A woman looking in a 28.0 cm from the mirror. a. 18.6 cm b. 44.0 cm c. 48.3 cm d. 56.0 cm			ctual size and right-side up. If she is
	ANS: D	PTS: 1	DIF: 2	

TOP: 23.2 Images Formed by Concave Mirrors | 23.3 Convex Mirrors and Sign Conventions

13.	Which best describes the image of a concave mirror when the object is located somewhere between the focal point and twice the focal point distance from the mirror? a. virtual, upright and magnification greater than one b. real, inverted and magnification less than one c. virtual, upright and magnification less than one d. real, inverted and magnification greater than one
	ANS: D PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
14.	Which of the following best describes the image of a concave mirror when the object is at a distance greater than twice the focal point distance from the mirror? a. virtual, upright and magnification greater than one b. real, inverted and magnification less than one c. virtual, upright and magnification less than one d. real, inverted and magnification greater than one
	ANS: B PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
15.	Which of the following best describes the image of a concave mirror when the object's distance from the mirror is less than the focal point distance? a. virtual, upright and magnification greater than one b. real, inverted and magnification less than one c. virtual, upright and magnification less than one d. real, inverted and magnification greater than one
	ANS: A PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
16.	Which of the following best describes the image of a convex mirror when the object's distance from the mirror is less than the absolute value of the focal point distance? a. virtual, upright and magnification greater than one b. real, inverted and magnification less than one c. virtual, upright and magnification less than one d. real, inverted and magnification greater than one
	ANS: C PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
17.	A convex mirror with focal length of - 20 cm forms an image 12 cm behind the surface. Where is the object located as measured from the surface? a. 7.5 cm b. 15 cm c. 22 cm d. 30 cm
	ANS: D PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
18.	A convex mirror with a focal length of - 20 cm forms an image 15 cm behind the surface. If the object height is 1.2 cm what is the image height? a. 0.30 cm

	c. 0.94 cm d. 3.0 cm
	ANS: A PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
19.	An object placed 12 cm from a concave mirror produces a real image 8.0 cm from the mirror. If the object is now moved to a new position 18.0 cm from the mirror, where is the new image located as measured from the mirror? a. 3.0 cm b. 6.5 cm c. 9.2 cm d. 14.6 cm
	ANS: B PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
20.	An object is held at a distance of 12 cm from a convex mirror creating an image that is 1/3 the object size. What is the focal length of the mirror? a6.0 cm b3.0 cm c9.0 cm d18 cm
	ANS: A PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
21.	When the reflection of an object is seen in a concave mirror the image will: a. always be real. b. always be virtual. c. may be either real or virtual. d. will always be enlarged.
	ANS: C PTS: 1 DIF: 1 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
22.	When the reflection of an object is seen in a convex mirror the image will: a. always be real. b. always be virtual. c. may be either real or virtual. d. will always be enlarged.
	ANS: B PTS: 1 DIF: 1 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
23.	Parallel rays of light that hit a concave mirror will come together: a. at the center of curvature. b. at the focal point. c. at a point half way to the focal point. d. at infinity.
	ANS: B PTS: 1 DIF: 1 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions

b. 0.75 cm

24.	A girl is standing in front of a concave mirror. Consider two rays of light, one from her nose and one from her mouth that are parallel as they are traveling toward the mirror. These rays will come together a. at the focal point. b. at the center of curvature. c. at the image point. d. behind the mirror if she is too close to the mirror.
	ANS: A PTS: 1 DIF: 1 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
25.	A candle is 49.0 cm in front of a convex spherical mirror of radius of curvature 70.0 cm. What are the image distance and the magnification, respectively? a20.4 cm, +0.417 b. +20.4 cm, -0.417 c. +122.5 cm, +2.50 d20.4 cm, -0.417
	ANS: A PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
26.	An object 2 cm high is placed 10 cm in front of a mirror. What type of mirror and what radius of curvature is needed for an image that is upright and 4 cm tall? a. Concave, $R = 20$ cm b. Concave, $R = 40$ cm c. Convex, $R = -10$ cm d. Convex, $R = -20$ cm
	ANS: B PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
27.	An object is 12.0 cm from the surface of a spherical Christmas tree ornament that is 8.00 cm in diameter. What is the magnification of the image? a0.200 b0.500 c. +0.143 d. +0.250
	ANS: C PTS: 1 DIF: 2 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
28.	An object is placed 10 cm in front of a mirror, and an image is formed that has a magnification of 2. Which of the following statements is true? a. The focal length of the mirror is 30 cm. b. The image is real. c. There is not enough information to select the correct answer. d. This is the only true statement.
	ANS: D PTS: 1 DIF: 3 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
29.	An object is placed 10 cm in front of a mirror, and an image is formed that has a magnification of 2. Which of the following statements is false? a. The focal length of the mirror is 20 cm. b. The image is virtual. c. There is enough information to select the correct answer.

	d. This is the only true statement.
	ANS: D PTS: 1 DIF: 3 TOP: 23.2 Images Formed by Concave Mirrors 23.3 Convex Mirrors and Sign Conventions
30.	Ron fills a beaker with glycerin ($n = 1.473$) to a depth of 5.0 cm. If he looks straight down through the glycerin surface, he will perceive the liquid to be what apparent depth? a. 7.4 cm b. 5.0 cm c. 3.4 cm d. 1.0 cm
	ANS: C PTS: 1 DIF: 2 TOP: 23.4 Images Formed by Refraction
31.	A solid glass sphere with a radius of 5.00 cm and index of refraction of 1.52 has a small coin embedded 3.00 cm from the front surface of the sphere. For the viewer looking at the coin through the glass, at what distance from the front surface of the glass does the coin's image appear to be located? a. 2.48 cm b. 3.20 cm c. 5.00 cm d. 6.85 cm
	ANS: A PTS: 1 DIF: 3 TOP: 23.4 Images Formed by Refraction
32.	A glass block, for which $n = 1.52$, has a blemish located 3.2 cm from one surface. At what distance from that surface does the image of the blemish appear to the outside observer? a. 1.6 cm b. 2.1 cm c. 4.9 cm d. 6.4 cm
	ANS: B PTS: 1 DIF: 2 TOP: 23.4 Images Formed by Refraction
33.	A goldfish is swimming in water (<i>n</i> = 1.33) inside a spherical plastic bowl of index of refraction 1.33. If the goldfish is 10 cm from the front wall of the 15-cm radius bowl, where does the goldfish appear to an observer in front of the bowl? a. 6.0 cm behind the plastic b. 7.0 cm behind the plastic c. 8.0 cm behind the plastic d. 9.0 cm behind the plastic
	ANS: D PTS: 1 DIF: 3 TOP: 23.4 Images Formed by Refraction
34.	A container is filled with fluid 1 and the apparent depth of the fluid is 5 cm. The container is next filled with fluid 2, and the apparent depth of this fluid is 4 cm. What is the ratio of the indices of refraction of these fluids? a. $n1/n2 = 5/4$ b. $n1/n2 = 4/5$ c. $n1/n2 = 4/5$ d. More information is needed to find the ratio.
	ANS: B PTS: 1 DIF: 2

TOP: 23.4 Images Formed by Refraction

35.	A container is filled with fluid 1, and the apparent depth of the fluid is 5.00 cm. The container is next filled with fluid 2, and the apparent depth of this fluid is 4.00 cm. If the index of refraction of the first fluid is 1.60, what is the index of refraction of the second fluid? a. 2.00 b. 1.79 c. 1.28 d. More information is needed to find the value.
	ANS: A PTS: 1 DIF: 2 TOP: 23.4 Images Formed by Refraction
36.	An object of length 3.00 cm is inside a plastic block with index of refraction 1.40. If the object is viewed from directly above, what is the length of its image? a. 3.00 cm b. 4.20 cm c. 2.13 cm d. 0.467 cm
	ANS: A PTS: 1 DIF: 2 TOP: 23.4 Images Formed by Refraction
37.	An object of length 3.00 cm is inside a plastic block with index of refraction 1.40. If the object is viewed through the top surface of the block at a non-zero angle from the normal, where is the object relative to its image? a. in the same direction as its image b. above the direction of its image c. below the direction of its image d. More information is needed.
	ANS: C PTS: 1 DIF: 1 TOP: 23.4 Images Formed by Refraction
38.	Atmospheric refraction of light rays is responsible for: a. spherical aberration. b. mirages. c. chromatic aberration. d. light scattering.
	ANS: B PTS: 1 DIF: 1 TOP: 23.5 Atmospheric Refraction
39.	If atmospheric refraction did not occur, how would the apparent time of sunrise and sunset be changed? a. Both would be later. b. Both would be earlier. c. Sunrise would be later and sunset earlier. d. Sunrise would be earlier and sunset later.
	ANS: C PTS: 1 DIF: 1 TOP: 23.5 Atmospheric Refraction

40.		is 40.0 cm, whic 0 cm cm 3 cm				ns of 30.0 cm focal ler image distance and he	
	ANS: B	PTS: 1	DIF:	2	TOP:	23.6 Thin Lenses	
41.	Which of the follow is at a distance less a. inverted, enlarg b. upright, enlarge c. upright, diminis d. inverted, dimin	than one focal leged and real ed and virtual shed and virtual			n convex lens th	nat forms whenever the	e object
	ANS: B	PTS: 1	DIF:	2	TOP:	23.6 Thin Lenses	
42.	Which of the follow magnitude of the ob a. inverted, enlarge b. upright, enlarge c. upright, diminis d. inverted, dimin	oject distance is liged and real ed and virtual shed and virtual				hat forms whenever the?	ie
	ANS: C	PTS: 1	DIF:	2	TOP:	23.6 Thin Lenses	
43.		hat are the value				its axis. The lens has a and magnification?	focal
	ANS: D	PTS: 1	DIF:	2	TOP:	23.6 Thin Lenses	
44.	Sally places an object. What are the rea18 cm and 3.0 b. 18 cm and -0.3 d18 cm and -3.4 ANS: A	spective values		istance	and magnificati	lens has a focal length on? 23.6 Thin Lenses	of 9.0
45.	of 10 cm from the 1 a. 30 cm b. 15 cm c. 10 cm d. 7.5 cm	ens, what is the	ocal length of	the len	s?	real image forms at a	distance
	ANS: D	PTS: 1	DIF:	<i>L</i>	TOP:	23.6 Thin Lenses	

46.					_		. If a real image forms at a nat is the focal length of the
	ANS: A	PTS:	1	DIF:	1	TOP:	23.6 Thin Lenses
47.	on the same side as t a50.0 cm b13.3 cm c10.0 cm d8.00 cm	he objec	ct, what is the f	ocal ler	ngth of the lens	?	pears 10.0 cm from the lens
	ANS: B	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses
48.		cide. Wl	nat is the focal				ntact in an orientation so that ion? (Hint: A thin lens is one
	ANS: A	PTS:	1	DIF:	3	TOP:	23.6 Thin Lenses
49.		coincide	e. What is the fo				n contact in an orientation so bination? {Hint: A thin lens is
	ANS: D	PTS:	1	DIF:	3	TOP:	23.6 Thin Lenses
50.							nds of a 30.0-cm long tube. An posite end is the final image?
	ANS: B	PTS:	1	DIF:	3	TOP:	23.6 Thin Lenses
51.	A projector lens is not The screen is located a. 0.32 m b. 0.54 m c. 0.73 m d. 1.25 m						e of its corresponding object. gth of the lens?

	ANS: C	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses
52.	An object, located 90 the object. What is the a 36 cm b 75 cm c 180 cm d 150 cm				ms an image 60	cm fro	m the lens on the same side as
	ANS: C	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses
53.	running left to right,	the 10-c distance	cm lens being one of 15.0 cm to	n the le	eft. A distance of	of 20.0	ned on a common axis, cm separates the lenses. An here will the final image
	ANS: C	PTS:	1	DIF:	3	TOP:	23.6 Thin Lenses
54.		is posit					ed between them, 5.00 cm orm on the screen. What is the
	ANS: C	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses
55.	the focal length is 10 a. 1.5 b. 2.0 c. 2.5 d. 3.0	cm, wh	at must the ind	lex of r	efraction be?		for both surfaces is 10 cm. If
	ANS: A	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses
56.	What must the index a. 0.333 b. 1.33 c. 2.33 d. 5.00	of refra	ection be so tha	t the fo	cal length is - 1	5.0 cm	
	ANS: C	PTS:		DIF:			23.6 Thin Lenses
57.		radius c	of curvature of	20.0 cm	n, and it is made		ius of curvature of 10.0 cm; material with an index of

ANS: A PTS: 1 DIF: 3 TOP: 23.6 Thin Lenses 8. What is the image distance of an object 1.00 m in front of a converging lens of focal length 20.0 cm? a. +16.7 cm b. +20.0 cm c. +25.0 cm d. +33.3 cm ANS: C PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 9. When an image is inverted compared to the object, it is also: a. virtual. b. reversed left to right. c. enlarged. d. diminished. ANS: B PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 60. A contact lens is made of plastic with an index of refraction 1.50. The lens has an outer radius of curvature of +2.0 cm and an inner radius of curvature of +2.5 cm. What is its focal length? a20 cm c. +10 cm d. +20 cm ANS: D PTS: 1 DIF: 3 TOP: 23.6 Thin Lenses 61. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. An object is placed 50 cm in front of the combination. What is the image distance? a. 40 cm d. 200 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 62. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. A 3.0 cm tall object is placed 50 cm in front of the combination. What is the size of the image? a. 3.8 cm b. 1.9 cm c. 4.0 cm d. 12 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. f/3 d. 3/f ANS: C PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses		c 13.3 cm d. 0.250 cm							
a. +16.7 cm b. +20.0 cm c. +25.0 cm d. +33.3 cm ANS: C PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 59. When an image is inverted compared to the object, it is also: a. virtual. b. reversed left to right. c. enlarged. d. diminished. ANS: B PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 60. A contact lens is made of plastic with an index of refraction 1.50. The lens has an outer radius of curvature of +2.0 cm and an inner radius of curvature of +2.5 cm. What is its focal length? a20 cm b. +6.7 cm c. +10 cm d. +20 cm ANS: D PTS: 1 DIF: 3 TOP: 23.6 Thin Lenses 61. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. An object is placed 50 cm in front of the combination. What is the image distance? a. 40 cm b25 cm c. 67 cm d. 200 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 62. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. A 3.0 cm tall object is placed 50 cm in front of the combination. What is the size of the image? a. 3.8 cm b. 1.9 cm c. 4.0 cm d. 12 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. ff3 d. 3/f		ANS: A	PTS:	1	DIF:	3	TOP:	23.6 Thin Lenses	
59. When an image is inverted compared to the object, it is also: a. virtual. b. reversed left to right. c. enlarged. d. diminished. ANS: B PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 60. A contact lens is made of plastic with an index of refraction 1.50. The lens has an outer radius of curvature of +2.0 cm and an inner radius of curvature of +2.5 cm. What is its focal length? a20 cm b. +6.7 cm c. +10 cm d. +20 cm ANS: D PTS: 1 DIF: 3 TOP: 23.6 Thin Lenses 61. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. An object is placed 50 cm in front of the combination. What is the image distance? a. 40 cm b25 cm c. 67 cm d. 200 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 62. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. A 3.0 cm tall object is placed 50 cm in front of the combination. What is the size of the image? a. 3.8 cm b. 1.9 cm c. 4.0 cm d. 12 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. f/3 d. 3/f	58.	a. +16.7 cm b. +20.0 cm c. +25.0 cm	nge distance o	f an obj	ject 1.00 m in	front	of a converging l	ens of focal length 20	.0 cm?
a. virtual. b. reversed left to right. c. enlarged. d. diminished. ANS: B PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 60. A contact lens is made of plastic with an index of refraction 1.50. The lens has an outer radius of curvature of +2.0 cm and an inner radius of curvature of +2.5 cm. What is its focal length? a20 cm b. +6.7 cm c. +10 cm d. +20 cm ANS: D PTS: 1 DIF: 3 TOP: 23.6 Thin Lenses 61. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. An object is placed 50 cm in front of the combination. What is the image distance? a. 40 cm b25 cm c. 67 cm d. 200 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 62. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. A 3.0 cm tall object is placed 50 cm in front of the combination. What is the size of the image? a. 3.8 cm b. 1.9 cm c. 4.0 cm d. 12 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. f/3 d. 3/f		ANS: C	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses	
60. A contact lens is made of plastic with an index of refraction 1.50. The lens has an outer radius of curvature of +2.0 cm and an inner radius of curvature of +2.5 cm. What is its focal length? a20 cm b. +6.7 cm c. +10 cm d. +20 cm ANS: D PTS: 1 DIF: 3 TOP: 23.6 Thin Lenses 61. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. An object is placed 50 cm in front of the combination. What is the image distance? a. 40 cm b25 cm c. 67 cm d. 200 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 62. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. A 3.0 cm tall object is placed 50 cm in front of the combination. What is the size of the image? a. 3.8 cm b. 1.9 cm c. 4.0 cm d. 12 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. f/3 d. 3/f	59.	a. virtual.b. reversed letc. enlarged.	ft to right.	ompare	d to the object	, it is	also:		
curvature of +2.0 cm and an inner radius of curvature of +2.5 cm. What is its focal length? a 20 cm b. +6.7 cm c. +10 cm d. +20 cm ANS: D PTS: 1 DIF: 3 TOP: 23.6 Thin Lenses 61. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. An object is placed 50 cm in front of the combination. What is the image distance? a. 40 cm b25 cm c. 67 cm d. 200 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 62. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. A 3.0 cm tall object is placed 50 cm in front of the combination. What is the size of the image? a. 3.8 cm b. 1.9 cm c. 4.0 cm d. 12 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. f/3 d. 3/f		ANS: B	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses	
 61. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. An object is placed 50 cm in front of the combination. What is the image distance? a. 40 cm b25 cm c. 67 cm d. 200 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 62. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. A 3.0 cm tall object is placed 50 cm in front of the combination. What is the size of the image? a. 3.8 cm b. 1.9 cm c. 4.0 cm d. 12 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. f/3 d. 3/f 	60.	curvature of +2 a 20 cm b. +6.7 cm c. +10 cm							of
placed 50 cm in front of the combination. What is the image distance? a. 40 cm b25 cm c. 67 cm d. 200 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 62. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. A 3.0 cm tall object is placed 50 cm in front of the combination. What is the size of the image? a. 3.8 cm b. 1.9 cm c. 4.0 cm d. 12 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. f/3 d. 3/f		ANS: D	PTS:	1	DIF:	3	TOP:	23.6 Thin Lenses	
 62. A 100-cm focal length thin lens is placed in contact with one of 66.7 cm focal length. A 3.0 cm tall object is placed 50 cm in front of the combination. What is the size of the image? a. 3.8 cm b. 1.9 cm c. 4.0 cm d. 12 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. f/3 d. 3/f 	61.	placed 50 cm in a. 40 cm b25 cm c. 67 cm						focal length. An obje	ect is
object is placed 50 cm in front of the combination. What is the size of the image? a. 3.8 cm b. 1.9 cm c. 4.0 cm d. 12 cm ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. f/3 d. 3/f		ANS: D	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses	
 63. Three thin lenses, each of focal length f, are placed in contact. What is the resulting focal length of the combination? a. f b. 3f c. f/3 d. 3/f 	62.	object is placed a. 3.8 cm b. 1.9 cm c. 4.0 cm							m tall
combination? a. <i>f</i> b. 3 <i>f</i> c. <i>f</i> /3 d. 3/ <i>f</i>		ANS: D	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses	
ANS: C PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses	63.	combination? a. <i>f</i> b. 3 <i>f</i> c. <i>f</i> /3	es, each of foo	cal leng	th f, are placed	l in co	ontact. What is the	ne resulting focal leng	th of the
		ANS: C	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses	

64. An image is formed using a convex lens, the image being 15 cm past the lens. A second lens is placed 25 cm past the first lens and another image is formed, this time 10 cm past the second lens. Which of the following statements is true? a. The last image is inverted with regard to the original object. b. The last image must be larger than the object. c. The first image is virtual. d. None of the above statements is true. ANS: D PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 65. An image is formed using a convex lens, the image being 15 cm past the lens. A second lens is placed 25 cm past the first lens and another image is formed, this time 10 cm past the second lens. Which of the following statements is always true? Both of the lenses have positive focal lengths. b. The first lens is diverging, and the second is converging. c. The first lens is converging, and the second is diverging. d. None of the above statements is true. ANS: A PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 66. An object is placed 25 cm to the left of a lens of focal length 20 cm. 75 cm to the right of this lens is a plane mirror. Where does the final image form? a. 25 cm to the right of the mirror b. 25 cm to the left of the mirror c. 50 cm to the left of the lens d. 100 cm to the left of the lens ANS: C PTS: 1 DIF: 3 TOP: 23.6 Thin Lenses 67. A lens has a focal length of 60 cm in air. If this lens were immersed in water, what focal length would result? The index of refraction of the lens is 1.500 and that of water is 1.333. The focal length of a thin lens with index n_1 submerged in a liquid with index n_2 is given by the modified lens maker's formula: 240 cm a. b. 68 cm c. 53 cm d. 15 cm ANS: A PTS: 1 DIF: 3 TOP: 23.6 Thin Lenses 68. A concave mirror with focal length 24.0 cm is placed 40.0 cm to the left of the object. A convex lens of focal length 12.0 cm is placed 40.0 cm to the right of the object. Where is the image formed by both the mirror and the lens? a. 20.0 cm to the right of the object b. 30.0 cm to the right of the lens c. 60.0 cm to the right of the object d. 12.0 cm to the right of the lens ANS: B PTS: 1 DIF: 2 TOP: 23.6 Thin Lenses 69. An object is placed 40.0 cm to the right of a concave mirror with focal length 24.0 cm and 10.0 cm to the left of a lens with focal length -20.0 cm. Where is the image formed by both the mirror and the lens? a. 6.67 cm to the right of the object b. 6.67 cm to the right of the lens

		40.0 cm to the rig 20.0 cm to the rig	_						
	AN	S: D	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses	
70.	20.0 a. b. c.		0 cm to ght of the ft of the ft of the	the right of the ne mirror mirror lens				and a mirror of focal length rmed by the mirror?	_
	AN	S: D	PTS:	1	DIF:	2	TOP:	23.6 Thin Lenses	
71.	20.0 a. b. c.	ens of 12.0-cm food cm is placed 50. 15.0 cm to the let 17.1 cm to the let 10.0 cm to the let 10.0 cm to the let	.0 cm to ft of the ft of the ght of the	the right of the elens elens ne mirror				and a mirror of focal length ge formed?	_
	AN	S: A	PTS:	1	DIF:	3	TOP:	23.6 Thin Lenses	
72.	with a. b. c.	ich of the followi h wavelength? spherical aberrati mirages chromatic aberra light scattering	ion	ets is the result	of the	fact that the	e index of re	efraction of glass will vary	
		S: C P: 23.7 Lens and	PTS: Mirror		DIF:	1			
73.	optiocc a. b.		ent that					ld be reasonably close to the one of the following effects	
		S: A P: 23.7 Lens and	PTS: Mirror		DIF:	1			
74.	refr a. b. c.	used combination faction glass, is us spherical aberrati mirages chromatic aberra light scattering	ed to re ion					from a different index of ng effects?	
		S: C P: 23.7 Lens and	PTS: Mirror		DIF:	1			
75.		lucing the lens apowing effects?	erture si	ize is a scheme	one ca	an use to rec	duce the occ	currence of which of the	

	 a. spherical aberration b. mirages c. chromatic aberration d. light scattering
	ANS: A PTS: 1 DIF: 1 TOP: 23.7 Lens and Mirror Aberrations
76.	Use of a parabolic mirror, instead of one made of a circular arc surface, can be used to reduce the occurrence of which of the following effects? a. spherical aberration b. mirages c. chromatic aberration d. light scattering
	ANS: A PTS: 1 DIF: 1 TOP: 23.7 Lens and Mirror Aberrations
77.	A thin lens has a focal length of 10.00 cm for red light. If the index of refraction for the lens material tends to decrease with increasing wavelength, what is the focal length of the lens for blue light? a. also 10.00 cm b. less that 10.00 cm c. more than 10.00 cm d. It depends on whether the lens is converging or diverging.
	ANS: B PTS: 1 DIF: 2 TOP: 23.7 Lens and Mirror Aberrations
78.	 An eyeglass lens is cut with one surface having a radius R₁ and the other surface having a radius R₂, with R₁ < R₂. Both positive radii are measured from the same side with R₁ being the side closer to the eye. Is this convex-concave lens a converging lens or a diverging lens? a. This is a converging lens. b. This is a diverging lens. c. This can be either a converging or diverging lens, as more information is needed for a final determination. d. This is neither, since a lens cannot be made this way.
	ANS: B PTS: 1 DIF: 2 TOP: Conceptual Questions
79.	A concave mirror has radius R. When an object is located a distance 2R from the lens, which describes the image formed? a. real, inverted, diminished b. real, inverted, enlarged c. virtual, upright, diminished d. real, inverted, of equal size
	ANS: A PTS: 1 DIF: 2 TOP: Conceptual Questions
80.	A convex lens has a focal length of magnitude F. At which of the following distances from this lens would a real object give an inverted virtual image? a. 1/2 F b. 2F c. Any value greater than 2F. d. This cannot be done with a convex lens.
	ANS: D PTS: 1 DIF: 3 TOP: Conceptual Questions

- 81. A real object is place a distance d from a converging lens. The object is then moved to a distance 2d from the converging lens. Which of the following statements is false?
 - a. The image in the first case with the object at distance d can be the larger one.
 - b. The image in the second case with the object at distance 2d can be the larger one.
 - c. If both images are real, the image in the second case is smaller.
 - d. If the image in the first case is real, the image in the second case is upright.

ANS: D PTS: 1 DIF: 2 TOP: Conceptual Questions

- 82. A real object is place to the left of a converging lens and an image forms. Then, to the right of the converging lens a diverging lens is placed. A real, inverted final image forms to the right of the diverging lens. Which of the following could give this result?
 - a. An upright virtual image caused by the first lens forms between the two lenses.
 - b. An inverted real image caused by the first lens forms between the two lenses.
 - c. A real, upright image was formed by the first lens to the right of where the diverging lens is to be placed.
 - d. A real, inverted image was formed by the first lens to the right of where the diverging lens is to be placed.

ANS: D PTS: 1 DIF: 2 TOP: Conceptual Questions

MULTIPLE CHOICE

1.	Interference effects observed in the early 1800s were instrumental in supporting a concept of the existence of which property of light? a. polarization b. particle nature c. wave nature d. electromagnetic character
	ANS: C PTS: 1 DIF: 1 TOP: 24.2 Young's Double-Slit Experiment
2.	If a wave from one slit of a Young's double-slit set-up arrives at a point on the screen one wavelength behind the wave from the other slit, what is observed at that point? a. dark fringe b. bright fringe c. multi-colored fringe d. gray fringe, neither dark nor bright
	ANS: B PTS: 1 DIF: 1 TOP: 24.2 Young's Double-Slit Experiment
3.	A Young's double slit has a slit separation of 2.50° m on which a monochromatic light beam is directed. The resultant bright fringes on a screen 1.00 m from the double slit are separated by 2.30° 10^{-2} m. What is the wavelength of this beam? (1 nm = 10^{-9} m) a. 373 nm b. 454 nm c. 575 nm d. 667 nm
	ANS: C PTS: 1 DIF: 2 TOP: 24.2 Young's Double-Slit Experiment
4.	Two narrow slits are 0.025 mm apart. When a laser shines on them, bright fringes form on a screen that is a meter away. These fringes are 3.0 cm apart. What is the separation between the second order bright fringe and the central fringe? a. 8.6 cm b. 6.0 cm c. 5.3 cm d. 2.6 cm
	ANS: B PTS: 1 DIF: 2 TOP: 24.2 Young's Double-Slit Experiment
5.	In order to produce a sustained interference pattern by light waves from multiple sources, which of the following conditions must be met? a. Sources are coherent. b. Sources are monochromatic. c. Both choices above are valid. d. None of the choices above are valid.
	ANS: C PTS: 1 DIF: 1

TOP: 24.2 Young's Double-Slit Experiment

6.	In a Young's double-slit interference apparatus, by what factor is the distance between adjacent light and dark fringes changed when the separation between slits is doubled? a. 1/4 b. 1/2 c. 1 d. 2
	ANS: B PTS: 1 DIF: 1 TOP: 24.2 Young's Double-Slit Experiment
7.	In a Young's double-slit interference apparatus, the distance from the slits to the screen is doubled. The distance between adjacent light and dark fringes changes by a factor of: a. 1/4. b. 1/2. c. 1. d. 2.
	ANS: D PTS: 1 DIF: 1 TOP: 24.2 Young's Double-Slit Experiment
8.	In a Young's double-slit interference apparatus, by what factor is the distance between adjacent light and dark fringes changed when the wavelength of the source is doubled? a. 1/4 b. 1/2 c. 1 d. 2
	ANS: D PTS: 1 DIF: 1 TOP: 24.2 Young's Double-Slit Experiment
9.	A Young's double-slit apparatus is set up so that a screen is positioned 1.6 m from the double slits, and the spacing between the two slits is 0.040 mm. What is the distance between alternating bright fringes on the screen if the light source has a wavelength of 630 nm? (1 nm = 10^{-9} m) a. 0.016 m b. 0.025 m c. 0.032 m d. 0.047 m
	ANS: B PTS: 1 DIF: 2 TOP: 24.2 Young's Double-Slit Experiment
10.	A Young's double-slit apparatus is set up. A screen is positioned 1.60 m from the double slits, and the spacing between the two slits is $0.040~0$ mm. The distance between alternating bright fringes is 1.42 cm. What is the light source wavelength? (1 nm = 10^{-9} m) a. 710 nm b. 490 nm c. 280 nm d. 355 nm
	ANS: D PTS: 1 DIF: 2 TOP: 24.2 Young's Double-Slit Experiment

11.	A Young's double-slit apparatus is set up where a screen is positioned 0.80 m from the double slits. If the distance between alternating bright fringes is 0.95 cm, and the light source has a wavelength of 580 nm, what is the separation of the double slits? $(1 \text{ nm} = 10^{-9} \text{ m})$ a. $2.8 \cdot 10^{-5} \text{ m}$ b. $4.9 \cdot 10^{-5} \text{ m}$ c. $5.6 \cdot 10^{-5} \text{ m}$ d. $6.0 \cdot 10^{-5} \text{ m}$
	ANS: B PTS: 1 DIF: 2 TOP: 24.2 Young's Double-Slit Experiment
12.	A Young's double-slit apparatus is set up. The source wavelength is 430 nm, and the double-slit spacing is 0.040 mm. At what distance from the double slits should the screen be placed if the spacing between alternating bright fringes is to be 2.4 cm? $(1 \text{ nm} = 10^{-9} \text{ m})$ a. 1.6 m b. 2.2 m c. 2.4 m d. 2.9 m
	ANS: B PTS: 1 DIF: 2 TOP: 24.2 Young's Double-Slit Experiment
13.	A light source simultaneously emits light of two wavelengths, 480 nm and 560 nm, respectively. The source is used in a double-slit interference experiment where the slit spacing is a 0.040 mm, and the distance between double slits and the screen is 1.2 m. What is the separation between the second-order bright fringes of the two wavelengths as they appear on the screen? $(1 \text{ nm} = 10^{-9} \text{ m})$ a. 0.16 cm b. 0.32 cm c. 0.48 cm d. 0.64 cm
	ANS: C PTS: 1 DIF: 2 TOP: 24.2 Young's Double-Slit Experiment
14.	Waves from a radio station with a wavelength of 600 m arrive at a home receiver a distance 50 km away from the transmitter by two paths. One is a direct-line path and the second by reflection from a mountain directly behind the receiver. What is the minimum distance between the mountain and receiver such that destructive interference occurs at the location of the listener? Assume no phase change on reflection. a. 150 m b. 300 m c. 450 m d. 600 m
	ANS: A PTS: 1 DIF: 2 TOP: 24.2 Young's Double-Slit Experiment
15.	Two beams of coherent light are shining on the same piece of white paper. With respect to the crests and troughs of such waves, darkness will occur on the paper where: a. the crest from one wave overlaps with the crest from the other. b. the crest from one wave overlaps with the trough from the other. c. the troughs from both waves overlap. d. darkness cannot occur as the two waves are coherent.
	ANS: B PTS: 1 DIF: 1

TOP: 24.2 Young's Double-Slit Experiment

16. After light from a source passes through two slits, a first order bright spot is seen on the wall at point P. Which distance is equal to the wavelength of the light?

- a. the extra distance one beam must travel
- b. the distance between beams as they leave the slit
- c. the distance of point P from the central point of the interference pattern
- d. the distance between slits

ANS: A PTS: 1 DIF: 1

TOP: 24.2 Young's Double-Slit Experiment

- 17. If the 2nd order fringe in Young's double-slit experiment occurs at an angle of 45.0° , what is the relationship between the wavelength I and the distance between slits, d?
 - a. d = 1.411
 - b. d = 2.001
 - c. d = 2.831
 - d. d = 4.001

ANS: C PTS: 1 DIF: 2

TOP: 24.2 Young's Double-Slit Experiment

- 18. A Young's interference experiment is conducted with blue-green argon laser light (l = 515 nm). The separation between the slits is 0.50 mm, and the interference pattern appears on a screen 3.3 m away. What is the spacing between the bright fringes? ($l = 10^{-9}$ m)
 - a. 1.7 mm
 - b. 3.4 mm
 - c. 5.1 mm
 - d. 6.8 mm

ANS: B PTS: 1 DIF: 2

TOP: 24.2 Young's Double-Slit Experiment

- 19. That light can undergo interference is evidence that it:
 - a. has electric properties.
 - b. is made of corpuscles.
 - c. behaves like a wave.
 - d. has a phase of 180°.

ANS: C PTS: 1 DIF: 1

TOP: 24.2 Young's Double-Slit Experiment

- 20. In a Young's experiment, the paths from the slits to a point on the screen differ in length causing constructive interference at the point. Which of the following path difference would cause this constructive interference?
 - a. 5ë/2
 - b. 3ë/4
 - c. 4ë
 - d. None of the above.

	ANS: C PTS: 1 DIF: 1 TOP: 24.2 Young's Double-Slit Experiment
21.	In a Young's experiment, the paths from the slits to a point on the screen differ in length, causing destructive interference at the point. Which of the following path difference would cause this destructive interference? a. 5ë/2 b. 3ë/4 c. 4ë d. None of the above.
	ANS: A PTS: 1 DIF: 1 TOP: 24.2 Young's Double-Slit Experiment
22.	Laser light sent through a double slit produces an interference patter on a screen 3.00 m from the slits. If the second order maximum occurs at an angle of 12.0°, at what angle does the eighth order maximum occur? a. No eighth order maximum occurs. b. 48.0° c. 56.3° d. Not enough information is given.
	ANS: C PTS: 1 DIF: 3 TOP: 24.2 Young's Double-Slit Experiment
23.	In a Young's double-slit experiment, how many maxima occur between the 4 th order maxima? a. 6 b. 7 c. 8 d. Three more than the number of minima.
	ANS: B PTS: 1 DIF: 2 TOP: 24.2 Young's Double-Slit Experiment
24.	The blue tint of a coated camera lens is largely caused by what effects? a. diffraction b. refraction c. polarization d. interference
	ANS: D PTS: 1 DIF: 1 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
25.	What is the minimum thickness of a glycerin film (<i>n</i> = 1.47) on which light of wavelength 600 nm shines that results in constructive interference of the reflected light? Assume the film is surrounded front and back by air. a. 75 nm b. 102 nm c. 150 nm d. 204 nm
	ANS: B PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films

26.	Light of wavelength 500 nm shines on a soap bubble film (<i>n</i> = 1.46). For what soap film thickness, other than the minimum thickness, will constructive interference occur? a. 63 nm b. 86 nm c. 172 nm d. 257 nm
	ANS: D PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
27.	A silicon monoxide thin film $(n = 1.45)$ of thickness 90.0 nm is applied to a camera lens made of glass $(n = 1.55)$. This will result in a destructive interference for reflected light of what wavelength? a. 720 nm b. 558 nm c. 522 nm d. 450 nm
	ANS: C PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
28.	The dark spot observed in the center of a Newton's rings pattern is attributed to which of the following? a. polarization of light when reflected b. polarization of light when refracted c. phase shift of light when reflected d. phase shift of light when refracted
	ANS: C PTS: 1 DIF: 1 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
29.	What wavelength monochromatic source in the visible region (390 to 710 nm) can be used to constructively reflect off a soap film ($n = 1.46$) if the film is 77 nm thick? a. 409 nm b. 430 nm c. 450 nm d. 558 nm
	ANS: C PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
30.	What wavelength monochromatic source in the visible region (390 to 710 nm) can be used to constructively reflect off a soap film ($n = 1.46$) if the film is 240 nm thick? a. 467 nm b. 562 nm c. 587 nm d. 480 nm
	ANS: A PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
31.	A silicon monoxide ($n = 1.45$) film of 100 nm thickness is used to coat a glass camera lens ($n = 1.56$). What wavelength of light in the visible region (390 to 710 nm) will be most efficiently transmitted by this system? (1 nm = 10^{-9} m) a. 400 nm b. 492 nm

	c. 624 nm d. 580 nm
	ANS: D PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
32.	A silicon monoxide ($n = 1.45$) film of 270 nm thickness is used to coat a glass camera lens ($n = 1.56$). What wavelength of light in the visible region (390 to 710 nm) will be most efficiently transmitted by this system? (1 nm = 10^{-9} m) a. 409 nm b. 492 nm c. 522 nm d. 638 nm
	ANS: C PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
33.	A beam of light of wavelength 650 nm is incident along the normal to two closely spaced parallel glass plates. For what air gap separation between the plates will the transmitted beam be of maximum intensity? $(1 \text{ nm} = 10^{-9} \text{ m})$ a. 81 nm b. 163 nm c. 325 nm d. 488 nm
	ANS: C PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
34.	Two closely spaced parallel glass plates are separated by 750 nm. What wavelength light source in the visible region (390 nm to 710 nm) will experience maximum transmission through the two plates? a. 500 nm b. 429 nm c. 600 nm d. 684 nm
	ANS: A PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
35.	Two flat glass plates are in contact along one end and are separated by a sheet of paper 4.0° 10 ⁻⁶ m thick at the other end. The top plate is illuminated by a monochromatic light source of wavelength 490 nm. How many dark parallel bands will be evident across the top plate? (1 nm = 10^{-9} m) a. 7 b. 9 c. 13 d. 17
	ANS: D PTS: 1 DIF: 3 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
36.	Two flat glass plates are in contact along one end and are separated by a sheet of tissue paper at the other end. A monochromatic source of wavelength 490 nm illuminates the top plate. If 21 dark bands are counted across the top plate, what is the paper thickness? $(1 \text{ nm} = 10^{-9} \text{ m})$ a. $2.7 \cdot 10^{-6} \text{ m}$ b. $3.4 \cdot 10^{-6} \text{ m}$ c. $4.9 \cdot 10^{-6} \text{ m}$

	ANS: C PTS: 1 DIF: 3 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
37.	When light shines on a lens placed on a flat piece of glass, interference occurs which causes circular fringes called Newton's rings. The two beams that are interfering come: a. from the top and bottom surface of the lens. b. from the top surface of the lens and the top surface of the piece of glass. c. from the bottom surface of the lens and the top surface of the piece of glass. d. from the top and bottom surface of the flat piece of glass.
	ANS: C PTS: 1 DIF: 1 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
38.	The center spot of Newton's rings is dark. This destructive interference occurs because: a. the two beams travel distances that are different by half a wavelength. b. both waves change phase by 180° as they are reflected. c. one beam changes phase by 180° when it is reflected. d. both waves have a trough.
	ANS: C PTS: 1 DIF: 1 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
39.	When light passes from a material with a high index of refraction into material with a low index of refraction: a. none of the light is reflected. b. some light is reflected without a change of phase. c. some light is reflected with a 180° change of phase. d. the light that is not reflected has a 180° change of phase.
	ANS: B PTS: 1 DIF: 1 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
40.	Light is reflecting off a wedge-shaped thin piece of glass producing bright and dark interference fringes. If a certain location has a bright fringe, a nearby point will have a dark fringe if the thickness of the glass increases by: a. 1/8 of a wavelength of the light. b. 1/4 of a wavelength of the light. c. 1/2 of a wavelength of the light. d. one wavelength of the light.
	ANS: B PTS: 1 DIF: 1 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
41.	Upon reflection, light undergoes a 180° phase change: a. always. b. if the incident medium has the higher index of refraction. c. if the incident medium has the lower index of refraction. d. whenever the incident angle is less than the critical angle.
	ANS: C PTS: 1 DIF: 1 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
42.	A soap bubble ($n = 1.35$) is floating in air. If the thickness of the bubble wall is 300 nm, which of the following wavelengths of visible light is strongly reflected?

d. 5.8 ′ 10⁻⁶ m

	ANS: B PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
48.	A surface is coated with a material having index of refraction 1.50. If light in air has a wavelength of 450 nm and is normally incident on this surface, and it is found through interference effects with this light that the surface is 10 wavelengths thick, which of the following is the thickness of the surface? a. 1.5 im b. 3.0 im c. 4.5 im d. 6.8 im
	ANS: B PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
49.	 "Perfect mirrors" are made by a. coating a glass surface with an extremely pure layer of silver or aluminum. b. coating a glass surface with an extremely pure layer of silver or aluminum and then coating the metal surface with a quarter-wavelength thickness of the dielectric magnesium fluoride. c. stacking thin layers of different dielectric materials on a glass surface. d. heating an ordinary mirror almost to its melting point.
	ANS: C PTS: 1 DIF: 1 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
50.	 Dielectric mirrors are made to have extremely high reflectance a. by stacking thin layers of a single dielectric material on a glass backing so that the reflections from the surfaces of the layers undergoconstructive interference. b. by stacking thin layers of a single dielectric material on a glass backing so that the reflections from the surfaces of the layers undergo destructive interference. c. by stacking thin layers of different dielectric materials on a glass backing so that the reflections from the surfaces of the layers undergo constructive interference. d. by stacking thin layers of different dielectric materials on a glass backing so that the reflections from the surfaces of the layers undergo destructive interference.
	ANS: C PTS: 1 DIF: 2 TOP: 24.3 Change of Phase Due to Reflection 24.4 Interference in Thin Films
51.	A Fraunhofer diffraction pattern is created by monochromatic light shining through which of the following? a. single slit b. double slit c. triple slit d. more than 3 slits
	ANS: A PTS: 1 DIF: 1 TOP: 24.6 Diffraction 24.7 Single-Slit Diffraction
52.	Light of wavelength 540 nm is incident on a slit of width 0.150 mm, and a diffraction pattern is produced on a screen that is 2.00 m from the slit. What is the width of the central bright fringe? (1 nm = 10^{-9} m) a. 0.720 cm

c. 360° d. 540°

	ANS: C PTS: 1 TOP: 24.8. The Diffraction Grating	DIF:	2
58.	A diffraction grating with 10 000 lines/cm 510 nm at what angle? (1 nm = 10 ⁻⁹ m) a. 0.51° b. 0.62° c. 15.3° d. 31°	will ex	hibit the first order maximum for light of wavelength
	ANS: D PTS: 1 TOP: 24.8. The Diffraction Grating	DIF:	2
59.	What is the highest order maximum for wa 600 lines per mm? a. 3 b. 4 c. 6 d. 7	velengt	h 450 nm that can be obtained with a grating with
	ANS: A PTS: 1 TOP: 24.8. The Diffraction Grating	DIF:	2
60.	At what angle will the highest order maxim 600 lines per mm? a. 36° b. 54° c. 81° d. 90°	num apj	pear for a wavelength 450 nm using a grating with
	ANS: B PTS: 1 TOP: 24.8. The Diffraction Grating	DIF:	3
61.	A wavelength of 573 nm yields a first order second order maximum appear for this wave a. 17.5° b35° c. 70° d. No second order maximum exists in the	elength	num at 35° with a grating. At what angle will the n?
	ANS: D PTS: 1 TOP: 24.8. The Diffraction Grating	DIF:	3
62.	A diffraction grating has 4000 lines/cm. W. a. 4.0 im b. 2.5 im c. 400 nm d. 250 nm	hat is tl	ne slit separation?
	ANS: B PTS: 1 TOP: 24.8. The Diffraction Grating	DIF:	2
63.	At what angle will the second order maxim grating with 10 000 lines per cm?	um occ	eur for a wavelength of 400 nm using a diffraction

d. 687 nm

	 a. 15.5° b. 24° c. 53° d. No second order maximum will occur in this case.
	ANS: C PTS: 1 DIF: 2 TOP: 24.8. The Diffraction Grating
64.	A beam of unpolarized light in air strikes a flat piece of glass at an angle of incidence of 54.2°. If the reflected beam is completely polarized, what is the index of refraction of the glass? a. 1.60 b. 1.39 c. 1.52 d. 2.48
	ANS: B PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves
65.	Polarization of light can be achieved using a dichroic material like Polaroid by which of the following processes? a. reflection b. double refraction c. selective absorption d. scattering
	ANS: C PTS: 1 DIF: 1 TOP: 24.9 Polarization of Light Waves
66.	A beam of polarized light of intensity I_0 passes through a sheet of ideal polarizing material. The polarization axis of the beam and the transmission axis of the sheet differ by 30°. What is the intensity of the emerging light? a. $0.87 I_0$ b. $0.75 I_0$ c. $0.50 I_0$ d. $0.25 I_0$
	ANS: B PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves
67.	When the sun is located near one of the horizons, an observer looking at the sky directly overhead will view partially polarized light. This effect is due to which of the following processes? a. reflection b. double refraction c. selective absorption d. scattering
	ANS: D PTS: 1 DIF: 1 TOP: 24.9 Polarization of Light Waves
68.	An unpolarized beam of light is incident on a pane of glass ($n = 1.56$) such that the reflected component coming off the glass is completely polarized. What is the angle of incidence in this case? a. 32.7° b. 41.0° c. 49.0° d. 57.3°

	ANS: D PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves
69.	At what angle is the sun above the horizon if its light is found to be completely polarized when it is reflected from the top surface of a slab of glass $(n = 1.65)$? a. 31.2° b. 44.4° c. 58.8° d. 66.6°
	ANS: A PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves
70.	Polaroid sunglasses help when skiing on snow on a sunny day by reducing the sunlight from the snow. This light from the snow has been polarized by: a. selective absorption. b. reflection. c. double refraction. d. scattering.
	ANS: B PTS: 1 DIF: 1 TOP: 24.9 Polarization of Light Waves
71.	The intensity of unpolarized light passing through a single sheet of polarizing material changes by a factor of: a. 1. b. 0.5 . c. $\cos q$ d. $\cos^2 q$
	ANS: B PTS: 1 DIF: 1 TOP: 24.9 Polarization of Light Waves
72.	Unpolarized light of intensity I_0 passes through two sheets of ideal polarizing material. If the transmitted intensity is $0.25 I_0$, what is the angle between the polarizer and the analyzer? a. 60° b. 45° c. 30° d. 22.5°
	ANS: B PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves
73.	The blue light from the sky has been polarized by: a. selective absorption. b. reflection. c. double refraction. d. scattering. ANS: D PTS: 1 DIF: 1 TOP: 24.9 Polarization of Light Waves
74.	A material is optically active if it: a. absorbs light passing through it. b. transmits all light passing through it.

	c. exhibits interference.d. rotates the plane of polarization of the light passing through it.								
	ANS: D PTS: 1 DIF: 1 TOP: 24.9 Polarization of Light Waves								
75.	How far above the horizon is the moon when its image reflected in calm water is completely polarized? ($n_{\text{water}} = 1.333$) a. 53.12° b. 18.44° c. 22.20° d. 36.88°								
	ANS: D PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves								
76.	Sunlight reflected from a smooth ice surface is completely polarized. Determine the angle of incidence. $(n_{ice} = 1.309)$ a. 25.60° b. 47.89° c. 52.62° d. 56.26°								
	ANS: C PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves								
77.	If the polarizing angle for diamond is 67.5°, what is the index of refraction of this material? a. 2.00 b. 2.20 c. 2.41 d. 2.65								
	ANS: C PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves								
78.	The critical angle for sapphire surrounded by air is 34.4° . Calculate the polarizing angle for sapphire. a. 60.5° b. 59.7° c. 58.6° d. 56.3°								
	ANS: A PTS: 1 DIF: 3 TOP: 24.9 Polarization of Light Waves								
79.	Unpolarized light is passed through polarizer 1. The light then goes though polarizer 2 with its plane of polarization at 45.0° to that of polarizer 1. What fraction of the intensity of the original light gets though the second polarizer? a. 0.707 b. 0.500 c. 0.250 d. 0.125								
	ANS: C PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves								

80.	Unpolarized light is passed through polarizer 1. The light then goes though polarizer 2 with its plane of polarization at 45.0° to that of polarizer 1. Polarizer 3 is placed after polarizer 2. Polarizer 3 has its plane of polarization at 45° to the plane of polarization of polarizer 2 and at 90° to that of polarizer 1. What fraction of the intensity of the original light gets though the last polarizer? a. 0.707 b. 0.500 c. 0.250 d. 0.125
	ANS: D PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves
81.	Plane polarized light is sent through two consecutive polarizers, the first having its plane of polarization in the same direction as the incident light and the second having its plane at 90° to the original plane of polarization. A third polarizer, with plane of polarization at 30° to the original plane of polarization, is placed between the two other polarizers. What fraction of the original intensity now gets through? a. 0 b. 0.56 c. 0.25 d. 0.19
	ANS: D PTS: 1 DIF: 3 TOP: 24.9 Polarization of Light Waves
82.	LCD stands for: a. linearly collimated diffraction. b. longitudinally combined depolarization. c. liquid crystal display. d. lighted compact disk.
	ANS: C PTS: 1 DIF: 1 TOP: 24.9 Polarization of Light Waves
83.	A beam of plane polarized light is incident on 3 polarizers, the first with an axis at 30° to the original plane of polarization, the second at 60° to the original plane of polarization, and the third at 90° to the original plane of polarization. What angle does the plane of polarization of the transmitted light make with the original plane of polarization of the original beam? a. 30° b. 90° c. 180° d. The answer is not given.
	ANS: B PTS: 1 DIF: 2 TOP: 24.9 Polarization of Light Waves
84.	In a Young's double-slit experiment, both the wavelength and the slit separation are increased by 50%. What happens to the distance between two adjacent bright fringes? a. It increases by 50%. b. It decreases by 50%. c. The distance stays the same. d. The distance increases by a 100% or more.
	ANS: C PTS: 1 DIF: 2 TOP: Conceptual Questions

	ANS: A	PTS: 1	DIF: 2	TOP: Conceptual Questions
36.	What happens toa. The separatib. The separatic. The separati	on the fringe separation on stays the as it is on decreases because on increases because	on, and what can be used the same experiment inc se the frequency of the late the wavelength of the	then the apparatus is submerged in water. It is a considered to explain the change, if any? I dependent of the medium. I decreases in the water. I light decreases in the water. I light decreases in the water.
	ANS: D	PTS: 1	DIF: 2	TOP: Conceptual Questions
37.	wavelength of li for the same wave a. Both grating b. Grating #1 r. c. Grating #2 r.	ght, both gratings givelength of light. gs must also give second conust give a second conust	ive first order maxima. Voond order maxima. order maximum.	grating #2 does. When used with a certain Which of the following statements is true haximum.
	ANS: B	PTS: 1	DIF: 3	TOP: Conceptual Questions
,	regarding the ph a. No phase ch b. A 180° phas c. A 180° phas	ase change upon ref lange occurs at eithe e change occurs at t e change occurs at t	flection in the case?	t at the outside surface.
		PTS: 1	DIF: 2	TOP: Conceptual Questions
	ANS: D			

85. In a Young's double-slit experiment, what happens to the angular separation between the fringes when the wavelength is increased at the same time that the slit separation is decreased?

CHAPTER 25—Optical Instruments

MULTIPLE CHOICE

d. 9.0

1.	length of 1.0 cm? a. 0.10 b. 0.1 c. 10 d. 1.0	or a ca	mera iens tnat	nas an a	aperture-openin	ig diam	eter of 0.10 cm and a focal
	ANS: C	PTS:	1	DIF:	1	TOP:	25.1 The Camera
2.		•	U				mount of lighting on the r speed at this setting?
	ANS: A	PTS:	1	DIF:	2	TOP:	25.1 The Camera
3.	Quadrupling the aper a. 1/16 b. 1/4 c. 4 d. 16	rture dia	ameter of a cam	nera len	s will change th	ne <i>f</i> -nun	mber by what factor?
	ANS: B	PTS:	1	DIF:	2	TOP:	25.1 The Camera
4.	Tripling the focal len number by what factor a. 1/9 b. 1/3 c. 3 d. 9		telephoto lens	, while	keeping the apo	erture s	ize constant, will change the f-
	ANS: C	PTS:	1	DIF:	2	TOP:	25.1 The Camera
5.	Doubling the aperture what factor? a. 0.25 b. 0.5 c. 2.0 d. 4.0	e diame	eter of a camera	ı lens w	ill change the l	ight int	ensity admitted to the film by
	ANS: D	PTS:	1	DIF:	2	TOP:	25.1 The Camera
6.	Tripling the focal len intensity admitted to a. 0.11 b. 0.33 c. 3.0				holding apertu	re size o	constant, will change the light

	ANS: A	PTS:	1	DIF:	2	TOP:	25.1 The Camera
7.	Tripling the <i>f</i> -number factor? a. 1/9 b. 1/3 c. 3 d. 9	r of a ca	imera lens will	change	the light intens	sity adn	nitted to the film by what
	ANS: A	PTS:	1	DIF:	2	TOP:	25.1 The Camera
8.		ber for t	the second pict	ure. By	what factor wi		umination for both pictures, equired time of exposure
	ANS: D	PTS:	1	DIF:	2	TOP:	25.1 The Camera
9.	A camera uses a: a. converging lens a b. converging lens a c. diverging lens to d. diverging lens to	to form form a	an imaginary i real image.				
	ANS: A	PTS:	1	DIF:	1	TOP:	25.1 The Camera
10.	Changing the <i>f</i> -number of the light hitting the a. 8. b. 4. c. 1/4. d. 1/8.			e stops	by going from	f/5.6 to	f/16 will change the intensity
	ANS: D	PTS:	1	DIF:	2	TOP:	25.1 The Camera
11.	of the image formed a. 26.3 cm b. 1.9 cm c. 1.4 cm d. 67.2 cm	on film'	?				al length lens. What is the size
	ANS: C	PTS:	1	DIF:	2	TOP:	25.1 The Camera
12.	A low <i>f</i> -number: a. allows a smallerb. allows using a fac. causes less sphered. is not related to a	ster shu	tter speed. rration.	ıs.			
	ANS: A	PTS:	1	DIF:	1	TOP:	25.1 The Camera

13.	A camera has a lens a. 17.5 mm b. 35 mm c. 70 mm d. 140 mm	of focal	length 70 mm	and a s	speed of <i>f</i> /2.0. V	Vhat is	the diameter of the lens?
	ANS: B	PTS:	1	DIF:	2	TOP:	25.1 The Camera
14.	A camera is used to the film is 3.2 mm in a. 3.2 mm b. 720 mm c. 360 mm d. 1130 mm						meter of 0.51°. The image on
	ANS: C	PTS:	1	DIF:	2	TOP:	25.1 The Camera
15.	A converging lens wa. farsightedness b. glaucoma c. nearsightedness d. astigmatism	rill be pı	rescribed by the	e eye do	octor to correct	which o	of the following?
	ANS: C	PTS:	1	DIF:	1	TOP:	25.2 The Eye
16.	The ciliary muscle is a. iris b. lens c. pupil d. retina	s instrun	nental in chang	ing the	shape of which	ı eye pa	art?
	ANS: B	PTS:	1	DIF:	1	TOP:	25.2 The Eye
17.	The ciliary muscle of a. eye is focused on b. eye is focused on c. subject being vid. subject being vid.	n a dista n a near ewed is	int object by object well illuminate	d	ch condition?		
	ANS: A	PTS:	1	DIF:	1	TOP:	25.2 The Eye
18.	The pupil of the eye a. eye is focused or b. eye is focused or c. object viewed is d. object viewed is	n a dista n a near dimly i	int object by object lluminated	which	condition?		
	ANS: C	PTS:	1	DIF:	1	TOP:	25.2 The Eye
19.	A diverging lens wil a. myopia b. presbyopia c. hyperopia d. astigmatism	l be pre	scribed by the e	eye doc	tor to correct w	hich of	the following?
	ANS: A	PTS:	1	DIF:	1	TOP:	25.2 The Eye

20.	Which term below isa. myopiab. presbyopiac. hyperopiad. astigmatism	dentifies	the eye defect	charac	terized by an ir	nability	to see distant objects clearly?
	ANS: A	PTS:	1	DIF:	1	TOP:	25.2 The Eye
21.	Which term identified a. myopia b. presbyopia c. hyperopia d. astigmatism	es the de	fect where the	lens pr	oduces a line ir	nage of	a point source?
	ANS: D	PTS:	1	DIF:	1	TOP:	25.2 The Eye
22.	Which eye defect is a. myopia b. presbyopia c. hyperopia d. astigmatism	correcte	d by a lens hav	ing dif	ferent curvature	es in tw	o perpendicular directions?
	ANS: D	PTS:	1	DIF:	2	TOP:	25.2 The Eye
23.	A lens with a focal la. 10.0 diopters b. 0.1 diopters c. 1 diopters d10.0 diopters	ength of	10 cm has wh	at powe	er?		
	ANS: A	PTS:	1	DIF:	2	TOP:	25.2 The Eye
24.	Two thin lenses in c powers of 50 and -30 a. 10 diopters b. 20 diopters c. 80 diopters d10 diopters		rs, respectively		is their combin	ed pow	ng a common axis. They have er? 25.2 The Eye
							•
25.	The "normal" eye ha problem will the eye a. myopia b. presbyopia c. hyperopia d. astigmatism				iven individual	's near	point is 73 cm, for what
	ANS: C	PTS:	1	DIF:	1	TOP:	25.2 The Eye
26.	You are designing e you prescribe so tha a 18 cm b. 18 cm c. 39 cm						That focal length lens should in front of the eye?

	ANS: C	PTS:	1	DIF:	2	TOP:	25.2 The Eye
27.	A given individual is lens should be used to a100 cm b33.3 cm c20 cm d. 75 cm		-	-	when they are l	beyond	100 cm. What focal length
	ANS: A	PTS:	1	DIF:	2	TOP:	25.2 The Eye
28.	While a camera hasa. pupil.b. cornea.c. retina.d. optic nerve.	film wh	ere the image is	s forme	ed, the eye form	s the in	nage on the:
	ANS: C	PTS:	1	DIF:	1	TOP:	25.2 The Eye
29.	The eye changes its a. using the iris to b. using the ciliary c. Both a & b are c d. The eye does no	change t muscle orrect.	the size of the p to change the f		ngth of the lens		
	ANS: C	PTS:	1	DIF:	1	TOP:	25.2 The Eye
30.	In the normal eye the a. when viewing of b. when viewing of c. when viewing of d. only when a personal transfer of the control	ojects at bjects at bjects at	the near point. infinity. a distance of 2	0 ft.	he lens will rela	ıx:	
	ANS: B	PTS:	1	DIF:	1	TOP:	25.2 The Eye
31.	If a person has hypera. may have an unub. cannot see near c. cannot relax the d. cannot form ima	usually lobjects of ciliary 1	ong eyeball. clearly. nuscle adequate	ely.			
	ANS: B	PTS:	1	DIF:	1	TOP:	25.2 The Eye
32.	A farsighted person a. diverging only. b. both converging c. diverging only. d. both converging	and cyl	indrical.	·			05 0 FH - 7
	ANS: D	PTS:	1	DIF:	1	TOP:	25.2 The Eye
33.	If a person is farsigh a. take an object at b. take an object at	the nea	r point and form	n an in			

d. 70 cm

		bject at infinity		_		point.	
	ANS: B	PTS:	1	DIF:	1	TOP:	25.2 The Eye
34.	b. the shapec. there is to	curs because: annot accommo or size of the e oo much pressu s partially or to	eye is not in the fl	normal. luid in the ey	eball.		
	ANS: C	PTS:	1	DIF:	1	TOP:	25.2 The Eye
35.	-	and contact lens on? oters oters oters	-	-		_	oint). If the patient has no ens required to correct th
	ANS: B	PTS:	1	DIF:	2	TOP:	25.2 The Eye
36.		a near point of n, what is the ne					ng through lenses of foc
	ANS: B	PTS:	1	DIF:	2	TOP:	25.2 The Eye
37.	a. They areb. They arec. They hav	en that need gla almost always almost always e considerable on't go for the	nearsighte farsighted accommo	ed. dation powe		cals. Why?	
	ANS: C	PTS:	1	DIF:	2	TOP:	25.2 The Eye
38.	with one anota.a. more thanb. less than	ses have powers ther, the resulting the both P_1 and P_2 both P_1 and P_2 .	ng power i 2.		n diopte	ers. If these le	nses are placed in contac
	ANS: D	PTS:	1	DIF:	2	TOP:	25.2 The Eye
39.	Bifocal inserta. 2.3 diopte b. 3.3 diopte c. 4.3 diopte	ts are added to t ers ers	hese lense	es to allow v	sion at i	30 cm. What i	diopters for distant visions the power of the insert

	ANS: B	PTS: 1	DIF: 3	TOP: 25.2 The Eye
40.	A thin lens of focal lenses a. 1/2 diopter b. 15 diopters c. 25 diopters d. 40 diopters	•	in contact with a 2	0-diopter thin lens. What is the power of
	ANS: C	PTS: 1	DIF: 2	TOP: 25.2 The Eye
41.		on being accomplished rrection?		nt vision and +3.20 diopters for near distant vision lens. What is the net power
	ANS: A	PTS: 1	DIF: 3	TOP: 25.2 The Eye
42.				distance from the eye of the viewer (25 onstructed of a lens of focal length of 5.0 TOP: 25.3 The Simple Magnifier
	ANS: C	P15: 1	DIF: 2	TOP: 25.3 The Simple Magnifier
43.	A magnifying lens we point is 25 cm). a. 1.4 b. 2.5 c. 11 d. 3.5	vith a focal length of 10	0 cm has what max	imum magnification? (Assume the near
	ANS: D	PTS: 1	DIF: 2	TOP: 25.3 The Simple Magnifier
44.	A magnifying lens werelaxed? a. 7.14 b. 1.3 c. 1.8 d. 2.3 ANS: B	vith a focal length of 20 PTS: 1	0 cm has what mag DIF: 2	TOP: 25.3 The Simple Magnifier
45.	a. converging lensb. converging lens	to form a real image. to form a virtual image o form a virtual image. o form a real image.		
	ANS: B	PTS: 1	DIF: 1	TOP: 25.3 The Simple Magnifier

46.		length 5.0 cm is use e lens should the obje		g glass. To obtain	maximum magnification, how
	ANS: B	PTS: 1	DIF: 2	TOP:	25.3 The Simple Magnifier
47.	a. The lens is cb. The dioptricc. The magnifiedd. The focal lens	power of the lens is peation is greatest when	positive. In the eye focuses be negative.	s at the near point.	
	ANS: D	PTS: 1	DIF: 2	10P:	25.3 The Simple Magnifier
48.		eximate magnification and 4.5 cm, respectively. PTS: 1			objective and eyepiece focal nases of 40 cm?
		Compound Microsco			
49.	eyepiece lens of				length 0.60 cm and an What is the maximum
	ANS: D TOP: 25.4 The	PTS: 1 Compound Microsco	DIF: 3		
50.	Doubling the foc magnification by a. 1/4 b. 1/2 c. 2 d. 4	al length of the object what factor?	tive lens of a cor	mpound microscop	e will change the
	ANS: B TOP: 25.4 The	PTS: 1 Compound Microsco	DIF: 2		
51.	a. uses a real inb. uses a real inc. uses a virtua	croscope has an eyepinage from the objection age from the objection image from the objection ima	ve as the object ave as the object active as the object	and forms a virtual ct and forms its ow	image. on real image.
	ANS: B	PTS: 1	DIF: 2		

TOP: 25.4 The Compound Microscope

c. 1250

52.		in no cha on doub on quad	al length doublange in the magles. ruples.	ed, wha	at will happen to		f double the focal length while verall magnification of the
	ANS: D TOP: 25.4 The Co	PTS: mpound		DIF:	2		
53.	A telescope has an of What is the angular a. 15 b. 67 c. 75 d. 230					nd an ey	yepiece of focal length 3.0 cm.
	ANS: B	PTS:	1	DIF:	2	TOP:	25.5 The Telescope
54.	because: a. their images are b. their images are c. their images are d. their images are	too brig too dim inverted not in c	tht. l. olor.			ised for	terrestrial observation
	ANS: C	PTS:	1	DIF:	1	TOP:	25.5 The Telescope
55.	A refracting astrono 0.10 cm, respectivel a. 67 b. 130 c. 200 d. 380						focal lengths 20.0 cm and ent?
	ANS: C	PTS:	1	DIF:	2	TOP:	25.5 The Telescope
56.		_	•				al length 20 m and an Mars as seen through this
	ANS: C	PTS:	1	DIF:	2	TOP:	25.5 The Telescope
57.	The Palomar reflect magnification achie a. 625 b. 800						cal length. What is the

	d. 2500						
	ANS: D	PTS:	1	DIF:	2	TOP:	25.5 The Telescope
58.	length f_e . A second telescope. Which are the first tell b. The second c. Both telescond	ond telescope h telescope g escope gives telescope give opes give the	has objective gives the greate	and eyer magragnification.	epiece lenses affication and ation of the s fication of the	s with tripled by what freecond. The first.	has an eyepiece with focal e the focal length of the first Factor?
	ANS: C	PTS:	1	DIF:	2	TOP:	25.5 The Telescope
59.	Light with a wa Rayleigh's crite a. 8.0 ′ 10 ⁻⁵ ra b. 2.7 ′ 10 ⁻⁹ ra c. 1.8 ′ 10 ⁻⁴ ra d. 5.9 ′ 10 ⁻⁷ ra	rion to deter ad ad ad					e diameter of 0.70 cm. Use = 10 ⁻⁹ m)
	ANS: A TOP: 25.6 Res	PTS: olution of Si		DIF: Sircular			
60.	What is the reso wavelengths of a. 1.10 b. 355 c. 426 d. 710					able of jus	t distinguishing between two
	ANS: B TOP: 25.6 Res	PTS: olution of Si		DIF: Circular			
51.	of wavelength 5	180 nm is use 3 ′ 10 ⁻⁴ rad. I the minimum ad ad ad	ed to illuminate If the present l	the ob	ject. It is det ere replaced b	ermined the	a monochromatic light source nat the minimum angle of the an aperture of diameter 0.90 10^{-9} m)
	ANS: D TOP: 25.6 Res	PTS: olution of Si		DIF: Circular			
62.	source of wavel	ength 580 nr	n is used to illu	ıminate	the object.	It is detern	where a monochromatic light nined that the minimum angle by an violet source of

wavelength 420 nm, what would the minimum angle of resolution now become? (1 nm = 10^{-9} m) a. $1.7 \cdot 10^{-4}$ rad b. $1.0 \cdot 10^{-4}$ rad c. $0.83 \cdot 10^{-4}$ rad d. $0.50 \cdot 10^{-4}$ rad

63.	An individual's eye pupil changes from a diameter of 3.4 mm to 1.4 mm as the illumination is increased. By what factor does the minimum angle of resolution change? a. 0.48 b. 0.69 c. 2.1 d. 2.4
	ANS: D PTS: 1 DIF: 2 TOP: 25.6 Resolution of Single-Slit and Circular Apertures
64.	If different filters are used with an astronomical telescope, which of the following would give the best resolution? a. red b. yellow c. green d. All yield the same resolution.
	ANS: C PTS: 1 DIF: 2 TOP: 25.6 Resolution of Single-Slit and Circular Apertures
65.	What resolving power must a diffraction grating have in order to distinguish wavelengths of 635.40 nm and 636.60 nm? (1 nm = 10 ⁻⁹ m) a. 318 b. 530 c. 636 d. 848
	ANS: B PTS: 1 DIF: 2 TOP: 25.6 Resolution of Single-Slit and Circular Apertures
66.	The pupil of a cat's eye narrows to a slit of width 0.7 mm in daylight. Assuming a wavelength of 500 nm, what is the angular resolution? $(1 \text{ nm} = 10^{-9} \text{ m})$ a. $0.7 \cdot 10^{-3} \text{ rad}$ b. $6 \cdot 10^{-3} \text{ rad}$ c. $0.7 \cdot 10^{-4} \text{ rad}$ d. $6 \cdot 10^{-4} \text{ rad}$
	ANS: A PTS: 1 DIF: 2 TOP: 25.6 Resolution of Single-Slit and Circular Apertures
67.	Assuming a wavelength of 653 nm, what angular resolution could this telescope achieve by Rayleigh's criterion? (1 nm = 10 ⁻⁹ m) a. 3.7 ′ 10 ⁻⁶ rad b. 4.5 ′ 10 ⁻⁶ rad c. 2.7 ′ 10 ⁻⁶ rad d. 3.3 ′ 10 ⁻⁷ rad
	ANS: D PTS: 1 DIF: 2 TOP: 25.6 Resolution of Single-Slit and Circular Apertures

ANS: C PTS: 1 DIF: 3
TOP: 25.6 Resolution of Single-Slit and Circular Apertures

68.	A binary star system in the constellation Orion has an angular separation between the stars of $5*10^{-5}$ radians. Assuming a wavelength of 500 nm, what is the smallest aperture (diameter) telescope that wil just resolve the two stars? (1 nm = 10^{-9} m) a. 1 cm b. 1.2 mm c. 1.2 cm d. 4 cm
	ANS: C PTS: 1 DIF: 2 TOP: 25.6 Resolution of Single-Slit and Circular Apertures
69.	Find the radius of a star image formed on the retina of the eye if the aperture diameter (the pupil) at night is 0.70 cm and the length of the eye is 3.1 cm. Assume the wavelength of starlight in the eye is 500 nm. $(1 \text{ nm} = 10^{-9} \text{ m})$ a. $2.7 \cdot 10^{-4}$ m b. $5.4 \cdot 10^{-4}$ m c. $3.1 \cdot 10^{-5}$ m d. $2.7 \cdot 10^{-6}$ m
	ANS: D PTS: 1 DIF: 3 TOP: 25.6 Resolution of Single-Slit and Circular Apertures
70.	What must be the resolving power of a grating allowing a spectral line at 785.40 nm to be distinguished from another line differing by 0.37 nm? (1 nm = 10 ⁻⁹ m) a. 2100 b. 46 c. 4500000 d. 230
	ANS: A PTS: 1 DIF: 2 TOP: 25.6 Resolution of Single-Slit and Circular Apertures
71.	How many lines in a grating must be illuminated to obtain a resolving power of 300 in a third-order spectrum? a. 900 b. 100 c. 300 d. 10
	ANS: B PTS: 1 DIF: 2 TOP: 25.6 Resolution of Single-Slit and Circular Apertures
72.	Which of the following primarily determines the resolution of a telescope? a. the barrel length b. the focal length of the objective c. the diameter of the objective d. the diameter of the eyepiece
	ANS: C PTS: 1 DIF: 1 TOP: 25.6 Resolution of Single-Slit and Circular Apertures
73.	The Michelson interferometer is a device that may be used to measure: a. magnifying power of lenses.b. light wavelength.c. atomic masses.

	ANS: B PTS: 1 DIF: 1 TOP: 25.7 The Michelson Interferometer
74.	The Michelson interferometer can make precise length measurements using which of the following phenomena? a. force b. interference c. magnification d. resolving power
	ANS: B PTS: 1 DIF: 1 TOP: 25.7 The Michelson Interferometer
75.	When using 536-nm light, how far is the adjustable mirror of a Michelson interferometer moved when 200 fringe shifts are counted? a. 1.34 ′ 10 ⁻⁶ m b. 2.68 ′ 10 ⁻⁵ m c. 5.36 ′ 10 ⁻⁵ m d. 1.34 ′ 10 ⁻⁴ m
	ANS: B PTS: 1 DIF: 2 TOP: 25.7 The Michelson Interferometer
76.	A fringe shift occurs for every wavelength movement of the adjustable mirror in a Michelson interferometer. a. whole b. half c. quarter d. eighth
	ANS: C PTS: 1 DIF: 1 TOP: 25.7 The Michelson Interferometer
77.	Using a camera with a fixed focal length lens, how will decreasing the f-number affect the depth of field and the intensity of the light reaching the ccd (or film)? a. The depth of field will increase as will the intensity of light reaching the ccd. b. The depth of field will increase but the intensity of light reaching the ccd will decrease. c. The depth of field will decrease as will the intensity of light reaching the ccd. d. The depth of field will decrease but the intensity of light reaching the ccd will increase.
	ANS: D PTS: 1 DIF: 2 TOP: Conceptual Questions
78.	A person can see well in the distance, but cannot do so at an arm's-length distance. To correct this, lenses that are having a power could be used. a. thicker at their center than at the edges, positive b. thicker at their center than at the edges, negative c. thinner at their center than at the edges, positive d. thinner at their center than at the edges, negative
	ANS: A PTS: 1 DIF: 2 TOP: Conceptual Questions
79.	The eye parts iris, retina, cornea, and ciliary muscle, play roles related to,,, and in a camera.

d. electron charge.

ANS: C	PTS: 1	DIF: 3	TOP: Conceptual Questions
b. Because thc. In brighter	e power (in diopters light, the longer wa	e fine print in dimmer lights) of the eye increases as velengths dominate. of the eye increases.	ht than in brighter light. the light intensity increases.
ANS: D	PTS: 1	DIF: 3	TOP: Conceptual Questions

a. the aperture, the lens, the ccd, focusingb. the aperture, the ccd, the lens, focusing

c. the lens, the aperture, focusing, the ccdd. the lens, focusing, the ccd, the aperture

MULTIPLE CHOICE

1.	 Which characterizes the main result of the Michelson-Morley experima. verified the existence of ether involved measuring the speed of sound from a moving source detected no difference in the speed of light regardless of speed of observer was designed purposely to verify Einstein's theory of relativity 	
	ANS: C PTS: 1 DIF: 1 TO	P: 26.2 The Speed of Light
2.	 2. The experiment that dispelled the idea that light travels in the ether is a. Michelson-Morley experiment. b. Hafele and Keating experiment. c. Fitzgerald-Kennedy experiment. d. twin paradox. 	called the:
	ANS: A PTS: 1 DIF: 1 TO	P: 26.2 The Speed of Light
3.	 3. The Michelson-Morley experiment was designed to make use of Earth relative to the luminiferous ether. a. sound waves b. interference fringes c. electromagnetic wind d. none of the above 	to find the motion of the
	ANS: B PTS: 1 DIF: 1 TO	P: 26.2 The Speed of Light
4.	 4. The significant result of the Michelson-Morley experiment was that it a. the ether moved with the sun. b. the ether moved with the Earth. c. the speed of the ether wind was greater than expected. d. no effect. 	found:
	ANS: D PTS: 1 DIF: 2 TO	P: 26.2 The Speed of Light
5.	 5. Einstein's theory of relativity is based in part on which one of the followa. Mass and energy are equivalent. b. Space and time are absolutes. c. Energy is conserved only in elastic collisions. d. Speed of light in a vacuum is same for all observers regardless of 	
	ANS: D PTS: 1 DIF: 1 TOP: 26.3 Einstein's Principle of Relativity	
6.	 6. According to a postulate of Einstein, which of the following describes as one observes processes taking place in various inertial frames of real. Laws are same only in inertial frames with zero velocity. b. Laws are same only in inertial frames moving at low velocities. c. Laws are same only in inertial frames moving at near speed of light. d. Laws are same in all inertial frames. 	ference?

	ANS: D PTS: 1 DIF: 1 TOP: 26.3 Einstein's Principle of Relativity
7.	I am stationary in a reference system but if my reference system is <u>not</u> an inertial reference system, then, relative to me, a system that is an inertial reference system must: a. remain at rest. b. move with constant velocity. c. be accelerating. d. be none of the above.
	ANS: C PTS: 1 DIF: 2 TOP: 26.3 Einstein's Principle of Relativity
8.	The speed of light is equal to: a. 5.28 ′ 10 ⁷ miles per hour. b. one meter per nanosecond. c. one light-year per year. d. none of the above.
	ANS: C PTS: 1 DIF: 1 TOP: 26.3 Einstein's Principle of Relativity
9.	That the speed of light in a vacuum has the same value for all inertial frames is: a. inconsistent with the results of the Michelson-Morley experiment.b. consistent with the results of the Michelson-Morley experiment.c. not related to the results of the Michelson-Morley experiment.d. not true.
	ANS: B PTS: 1 DIF: 1 TOP: 26.3 Einstein's Principle of Relativity
10.	A mass is bouncing on the end of a spring with a period T when measured by a ground observer. What would the period of oscillation be (as measured by the same observer) if the mass and spring were moving past the ground observer at a speed of $0.80\ c$? a. $0.44\ T$ b. $0.60\ T$ c. $1.0\ T$ d. $1.7\ T$
	ANS: D PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
11.	The observed relativistic length of a super rocket moving by the observer at $0.70\ c$ will be what factor times that of the measured rocket length if it were at rest? a. 0.45 b. 0.71 c. 0.82 d. 1.4
	ANS: B PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
12.	The relativistic effect of time dilation has been verified by which of the following? a. the discovery of black holes b. muon experiments

	c. twin experimentsd. red shift in distant galaxies
	ANS: B PTS: 1 DIF: 1 TOP: 26.4 Consequences of Special Relativity
13.	According to the special theory of relativity, which of the following happens to the size of the time interval between two events occurring in an inertial frame of reference as the frame's velocity with respect to the observer increases? a. interval increases b. interval decreases c. interval remains constant d. interval vanishes to zero when velocity equals half speed of light
	ANS: A PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
14.	Doubling the momentum of: a. a particle doubles its relativistic total energy. b. a particle quadruples its relativistic total energy. c. a photon doubles its relativistic total energy. d. a photon quadruples its relativistic total energy.
	ANS: C PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
15.	According to the special theory of relativity, which of the following happens to the length of an object, measured in the dimension parallel to the motion of its inertial frame of reference, as the velocity of this frame increases with respect to a stationary observer? a. length increases b. length decreases c. length remains constant d. length vanishes to zero when velocity equals half speed of light
	ANS: B PTS: 1 DIF: 1 TOP: 26.4 Consequences of Special Relativity
16.	According to the special theory of relativity, if a 30-year old astronaut sent on a space mission is accelerated to speeds close to that of light, and then returns to earth after 20 years as measured on earth, what would be his biological age upon returning? a. less than 50 years b. 50 years c. more than 50 years d. exactly 100 years
	ANS: A PTS: 1 DIF: 1 TOP: 26.4 Consequences of Special Relativity
17.	The period of a pendulum is 2.0 s in a stationary inertial frame of reference. What is its period when measured by an observer moving at a speed of 0.60 c with respect to the inertial frame of reference? a. 1.2 s b. 1.6 s c. 2.5 s d. 3.3 s
	u. 5.5 s

TOP: 26.4 Consequences of Special Relativity

18.	The period of an oscillating weight on a spring in an inertial frame of reference is 0.80s . What would be its speed if it were to move by an observer who measures its period as 1.2s ? ($c = 3.00 \text{f} 10^8 \text{m/s}$) a. $1.1 \text{f} 10^8 \text{m/s}$ b. $2.2 \text{f} 10^8 \text{m/s}$ c. $2.5 \text{f} 10^8 \text{m/s}$ d. $2.9 \text{f} 10^8 \text{m/s}$
	ANS: B PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
19.	A tuning fork has a frequency of 400 Hz and hence a period of $2.50 imes 10^{-3}$ s. If the tuning fork is in an inertial frame of reference moving by the observer at speed of $0.750 c$, what is the frequency of the fork as measured by the observer? (Assume that measurements are strictly by optical means and that the speed of sound waves in air is not pertinent here). a. 265 Hz b. 302 Hz c. 454 Hz d. 605 Hz
	ANS: A PTS: 1 DIF: 3 TOP: 26.4 Consequences of Special Relativity
20.	A ground observer measures the period of a pendulum moving as a part of an inertial frame of reference to be 2.30 s as the inertial frame moves by at a velocity of 0.600 c. What would the observed period be of the same pendulum if its inertial frame were at rest with respect to the observer? a. 4.25 s b. 2.07 s c. 3.03 s d. 1.84 s
	ANS: D PTS: 1 DIF: 3 TOP: 26.4 Consequences of Special Relativity
21.	A space probe has an 18.0-m length when measured at rest. What length does an observer at rest measure when the probe is going by at a speed of $0.700c$? a. $25.2\mathrm{m}$ b. $12.9\mathrm{m}$ c. $12.6\mathrm{m}$ d. $9.18\mathrm{m}$
	ANS: B PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
22.	A rocket ship is 80.0 m in length when measured before leaving the launching pad. What would its velocity be if a ground observer measured its length as 60.0 m while it is in flight? ($c = 3.00 ^{\circ} 10^8 \text{m/s}$) a. $0.980 ^{\circ} 10^8 \text{m/s}$ b. $1.15 ^{\circ} 10^8 \text{m/s}$ c. $1.33 ^{\circ} 10^8 \text{m/s}$ d. $1.98 ^{\circ} 10^8 \text{m/s}$
	ANS: D PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity

23.	An earth observer sees a spaceship at an altitude of 980 m moving downward toward the earth at a speed of $0.800\ c$. What is the spaceship's altitude as measured by an observer in the spaceship? a. $1\ 630\ m$ b. $1\ 270\ m$ c. $893\ m$ d. $588\ m$
	ANS: D PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
24.	How fast would a rocket have to move past a ground observer if the latter were to observe a 4.0% length shrinkage in the rocket length? $(c=3.00\ '\ 10^8\ m/s)$ a. $0.12\ '\ 10^8\ m/s$ b. $0.28\ '\ 10^8\ m/s$ c. $0.84\ '\ 10^8\ m/s$ d. $1.2\ '\ 10^8\ m/s$
	ANS: C PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
25.	An astronaut at rest has a heart rate of 65 beats/min. What will her heart rate be as measured by an earth observer when the astronaut's spaceship goes by the earth at a speed of 0.60 <i>c</i> ? a. 39 beats/min b. 52 beats/min c. 108 beats/min d. 81 beats/min
	ANS: B PTS: 1 DIF: 3 TOP: 26.4 Consequences of Special Relativity
26.	The astronaut whose heart rate on Earth is 60 beats/min increases his velocity to $v = 0.80 c$. Now what is his heart rate as measured by an Earth observer? a. 36 beats/min b. 48 beats/min c. 75 beats/min d. 100 beats/min
	ANS: A PTS: 1 DIF: 3 TOP: 26.4 Consequences of Special Relativity
27.	A meter stick moving in a direction parallel to its length appears to be only 40.0 cm long to an observer. What is the meter stick's speed relative to the observer? ($c = 3.00 \text{ '} 10^8 \text{ m/s}$) a. $1.19 \text{ '} 10^8 \text{ m/s}$ b. $2.52 \text{ '} 10^8 \text{ m/s}$ c. $2.75 \text{ '} 10^8 \text{ m/s}$ d. $2.93 \text{ '} 10^8 \text{ m/s}$
	ANS: C PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
28.	From a stationary position, I observe a moving boxcar, which has a mirror along the front wall, but it is open at the back of the boxcar. I send a flash of light from my flashlight and time the flash of light

is open at the back of the boxcar. I send a flash of light from my flashlight and time the flash of light as it goes to the front of the boxcar and returns to the back of the boxcar. A passenger in the boxcar also times the round trip of the flash of light. Compare the times recorded on our watches.

a. The time recorded on his watch is longer.

29.
30.
31.
32.
30.

	TOP: 26.4 Consequences of Special Relativity
33.	A knight on horseback holds a 10-m lance. The horse can run at 0.70 c. (It wins most of its races!) How long will the lance appear to a person that is standing still on the ground as the horse runs past? a. 7.1 m b. 10 m c. 14 m d. 15 m
	ANS: A PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
34.	At what speed would a clock have to be moving in order to run at a rate that is one-third the rate of a clock at rest? a. $0.79 c$ b. $0.89 c$ c. $0.94 c$ d. $0.97 c$
	ANS: C PTS: 1 DIF: 3 TOP: 26.4 Consequences of Special Relativity
35.	A muon formed high in the Earth's atmosphere travels at a speed $0.990 c$ for a distance of 4.60 km before it decays. What is the muon's lifetime as measured in its reference frame? a. $1.55 \cdot 10^{-5} \text{ s}$ b. $2.18 \cdot 10^{-6} \text{ s}$ c. $3.04 \cdot 10^{-6} \text{ s}$ d. $4.65 \cdot 10^{-6} \text{ s}$
	ANS: B PTS: 1 DIF: 3 TOP: 26.4 Consequences of Special Relativity
36.	A muon formed high in Earth's atmosphere travels at a speed 0.990 0 c for a distance (as we see it) of 4 600 m before it decays. How far does the muon travel as measured in its frame? a. 4 554 m b. 2 596 m c. 1 298 m d. 649 m
	ANS: D PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
37.	Muons at speed 0.999 4 c are sent round and round a circular storage ring of radius 500 m. If a muon at rest decays into other particles after an average $T=2.2\ '\ 10^{-6}$ s, how many trips around the storage ring do we expect the 0.999 4 c muons to make before they decay? a. 0.2 b. 2 c. 4 d. 6 ANS: D PTS: 1 DIF: 3
	TOP: 26.4 Consequences of Special Relativity

DIF: 3

ANS: A

PTS: 1

38.	If astronauts could travel at $v = 0.95 c$, we on Earth would say it takes $(4.2/0.95) = 4.4$ years to reach Alpha Centauri, 4.2 lightyears away. The astronauts disagree. How much time passes on the astronaut's clocks? a. 1.4 years b. 1.9 years c. 2.4 years d. 3.0 years
	ANS: A PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
39.	Our best measurements from Earth indicate that the star system Alpha Centauri is 4.2 lightyears away. Suppose some of our astronauts traveled there at a speed $v = 0.95\ c$. What would the astronauts measure as the distance to Alpha Centauri? a. 4.0 lightyears b. 2.7 lightyears c. 1.9 lightyears d. 1.3 lightyears
	ANS: D PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
40.	A spaceship of triangular shape, having a length twice its width, is capable of relativistic speeds. How fast would it have to move so that to a stationary observer its length would equal its width? a. $0.500 c$ b. $0.750 c$ c. $0.866 c$ d. This is not possible.
	ANS: C PTS: 1 DIF: 2 TOP: 26.4 Consequences of Special Relativity
41.	A proton with mass $1.67 \cdot 10^{-27} \text{kg}$ moves with a speed of $0.600 c$ in an accelerator. What is its relativistic momentum? ($c = 3.00 \cdot 10^8 \text{m/s}$) a. $0.530 \cdot 10^{-19} \text{kg} \times \text{m/s}$ b. $2.40 \cdot 10^{-19} \text{kg} \times \text{m/s}$ c. $3.76 \cdot 10^{-19} \text{kg} \times \text{m/s}$ d. $6.67 \cdot 10^{-19} \text{kg} \times \text{m/s}$
	ANS: C PTS: 1 DIF: 2 TOP: 26.5 Relativistic Momentum
42.	An electron of mass 9.11 ′ 10^{-31} kg moves with a speed of 0.600 c . What is its momentum? ($c=3.00$ ′ 10^8 m/s) a. 1.34 ′ 10^{-22} kg×m/s b. 2.05 ′ 10^{-22} kg×m/s c. 4.12 ′ 10^{-22} kg×m/s d. 6.03 ′ 10^{-22} kg×m/s
	ANS: B PTS: 1 DIF: 2 TOP: 26.5 Relativistic Momentum
43.	Including relativistic effects, doubling the speed of a object:

b. more than doubles its momentum.

	ANS: B PTS: 1 DIF: 2 TOP: 26.5 Relativistic Momentum
44.	As the speed of an object increases, its relativistic momentum: a. stays the same as its classical momentum. b. increases more than its classical momentum. c. increases less than it classical momentum. d. does not change since momentum is a conserved quantity.
	ANS: C PTS: 1 DIF: 2 TOP: 26.5 Relativistic Momentum
45.	An electron of mass $9.11 \cdot 10^{-31}$ kg has a momentum of $3.64 \cdot 10^{-22}$ kg·m/s. What is its speed? a. $0.467 c$ b. $0.632 c$ c. $0.800 c$ d. It cannot have this momentum since it would require a speed greater than c .
	ANS: C PTS: 1 DIF: 3 TOP: 26.5 Relativistic Momentum
46.	At what speed is the momentum of an object double that found classically? a. $c/2$ b. $3c/4$ c. $0.866c$ d. $2c$
	ANS: C PTS: 1 DIF: 2 TOP: 26.5 Relativistic Momentum
47.	Spacecraft A is traveling at in the positive <i>x</i> -direction, and Spacecraft B is traveling in the negative <i>x</i> -direction with a velocity of , both velocities with respect to an Earth-based observer at rest. What is the magnitude of the velocity of Spacecraft A as observed from Spacecraft B? a. b. c. d.
	ANS: B PTS: 1 DIF: 2 TOP: 26.6 Relative Velocity in Special Relativity
48.	Spacecraft A is traveling at in the positive <i>x</i> -direction with respect to the Earth frame. An observer in Spacecraft C measures the velocity of Spacecraft A as . What is the speed of Spacecraft C with repect to the Earth's frame, assuming that A and C are moving along the same line of motion? a. b. c. d.
	ANS: C PTS: 1 DIF: 2 TOP: 26.6 Relative Velocity in Special Relativity

c. less than doubles its momentum.d. has no effect on its momentum.

49.	Spaceship #1 is moving at a speed of to the right, and Spaceship #2 is moving to the left also at , both speeds measured with respect to the Earth. What is the speed of #1 as measured by an observer on #2? a. b. c. d.
	ANS: B PTS: 1 DIF: 2 TOP: 26.6 Relative Velocity in Special Relativity
50.	A spaceship traveling away from the Earth at fires a deep-space probe in the forward direction. If the speed of the probe relative to the Earth is , what is its speed relative to the spaceship? a. b. c. d.
	ANS: C PTS: 1 DIF: 2 TOP: 26.6 Relative Velocity in Special Relativity
51.	In a test of equipment the following procedure is carried out. Spacecraft #1 is traveling at $0.75\ c$ and fires a laser pulse in the forward direction at Spacecraft #2, which is testing its device that measures the speed of laser pulses as they pass by the spacecraft. Spacecraft #2 is traveling at $0.95\ c$ in a direction away from Spacecraft #1. The device is working properly, and the speed of the pulse as it passes is successfully measured. What is the speed of the laser pulse measured in this case? a. $0.80\ c$ b. $0.70\ c$ c. c d. This is a question that cannot be answered without knowing in which reference frames the
	speeds given in the problem. If you agree, then this is the answer that you should choose.
	ANS: C PTS: 1 DIF: 1 TOP: 26.6 Relative Velocity in Special Relativity
52.	An object moves by an observer at $0.500\ c$ (1/2 the speed of light). The total energy of the object will be what factor times that of the rest energy? a. 0.600 b. 0.970 c. 1.15 d. 1.67
	ANS: C PTS: 1 DIF: 2 TOP: 26.7 Relativistic Energy and the Equivalent of Mass and Energy
53.	The total energy of a particle: a. is not related to its relativistic momentum. b. increases with increasing relativistic momentum. c. decreases with increasing relativistic momentum. d. is a constant. ANS: B PTS: 1 DIF: 1
	TOP: 26.7 Relativistic Energy and the Equivalent of Mass and Energy
54.	What is the total energy of a proton moving at a speed of 2.00 $^{\prime}$ 10^{8} m/s? (proton mass is 1.67 $^{\prime}$ 10^{-27} kg and $c = 3.00 ^{\prime}$ 10^{8} m/s)

	ANS: D	PTS:	1	DIF:	1	TOP:	26.8 General Relativity
76.	The gravitational fie a. the inertial mass b. an accelerated f c. an event horizon d. a clock running	rame of n.					
	ANS: B	PTS:	1	DIF:	1	TOP:	26.8 General Relativity
77.		ts length	as 50 m. A tin				ngth at rest is 100 m, but the ceship would be measured by
	ANS: D	PTS:	1	DIF:	2	TOP:	Conceptual Questions
78.	length at a speed whobserver. What wou a. between 12 and b. 10 m c. 8 m d. less than 8 m	nere its lo ild the m 13 m	ength contraction easured width	on resulting the second of the	Its in a 40-m le	ngth me	ving in a direction along its easured by a stationary
	ANS: B	PTS:	1	DIF:	1	TOP:	Conceptual Questions
79.		hich of t calculati	he speeds listed on?	d below	does the classi		ulated kinetic energy for a culation give a greater value
	ANS: D	PTS:	1	DIF:	2	TOP:	Conceptual Questions
80.	If the nonzero mom a. It also doubles. b. It increases, mo c. It stays the same d. It increases, but	re than c	loubling. otal energy is a				ens to its total energy?
	ANS: D	PTS:	1	DIF:	2	TOP:	Conceptual Questions
81.	Which form of relata. Special relativitb. General relativitc. Both special reld. Neither applies	y applie ty applie ativity a	s. es. nd general rela	tivity a _l	oply.		either one.
	ANS: B	PTS:	1	DIF:	1	TOP:	Conceptual Questions

MULTIPLE CHOICE

	 a. blackbody radiation b. the photoelectric effect c. line spectra emitted by hydrogen gas d. all of the above
	ANS: D PTS: 1 DIF: 1 TOP: 27.1 Blackbody Radiation and Planck's Hypothesis
2.	As the temperature of a radiation emitting blackbody becomes higher, what happens to the peak wavelength of the radiation? a. increases b. decreases c. remains constant d. is directly proportional to temperature
	ANS: B PTS: 1 DIF: 1 TOP: 27.1 Blackbody Radiation and Planck's Hypothesis
3.	A quantum of radiation has an energy of 2.0 keV. What is its frequency? ($h = 6.63$ ′ 10^{-34} Jxs and 1 eV = 1.60 ′ 10^{-19} J) a. 3.2 ′ 10^{17} Hz b. 4.8 ′ 10^{17} Hz c. 6.3 ′ 10^{17} Hz d. 7.3 ′ 10^{17} Hz
	ANS: B PTS: 1 DIF: 2 TOP: 27.1 Blackbody Radiation and Planck's Hypothesis
4.	If a quantum of radiation has an energy of 2.0 keV, what is its wavelength? ($h = 6.63 ' 10^{-34} J \gg$, 1 eV = 1.60 $' 10^{-19} J$, $c = 3.00 ' 10^8 m/s$, and 1 nm = $10^{-9} m$) a. 0.32 nm b. 0.41 nm c. 0.62 nm d. 1.02 nm
	ANS: C PTS: 1 DIF: 2 TOP: 27.1 Blackbody Radiation and Planck's Hypothesis
5.	According to Wien's displacement law, if the absolute temperature of a radiating blackbody is tripled, then the peak wavelength emitted will change by what factor? a. 1/3 b. 1 c. 3 d. 9
	ANS: A PTS: 1 DIF: 1 TOP: 27.1 Blackbody Radiation and Planck's Hypothesis

1. Planck's quantum theory is compatible with the experimental data related to which of the following?

6.	What is the surface temperature of a distant star (which emits light as if it were a blackbody) where the peak wavelength is 480 nm? (Hint: The surface of the human body at 35° C has a peak wavelength of 941 im). (1 nm = 10^{-9} m = 10^{-3} im) a. 4510 K b. 5100 K c. 6040 K d. 6350 K
	ANS: C PTS: 1 DIF: 2 TOP: 27.1 Blackbody Radiation and Planck's Hypothesis
7.	Classical theories predict that most of the energy from a blackbody should be radiated: a. as thermal radiation in the infrared region.b. at the wavelength given by Wien's displacement law.c. as ultraviolet light.d. a blackbody should not radiate.
	ANS: C PTS: 1 DIF: 1 TOP: 27.1 Blackbody Radiation and Planck's Hypothesis
8.	The ultraviolet catastrophe predicts that: a. all objects should radiate extreme amounts of ultraviolet light. b. as an object gets hotter its light will change from dull red to blue white. c. a black body can absorb an infinite amount of radiation if the radiation is in the ultraviolet region. d. the radiated energy approaches zero as the wavelength approaches zero. ANS: A PTS: 1 DIF: 1
	TOP: 27.1 Blackbody Radiation and Planck's Hypothesis
9.	Star A has the peak of its blackbody radiation at \ddot{e}_A . Star B has its peak at \ddot{e}_B , which is one-fourth that of \ddot{e}_A . If Star A's surface temperature is T_A , how does the surface temperature T_B of Star B compare? a. $T_B = 16 T_A$ b. $T_B = 4 T_A$ c. $T_B = T_A/4$ d. $T_B = T_A/16$
	ANS: B PTS: 1 DIF: 2 TOP: 27.1 Blackbody Radiation and Planck's Hypothesis
10.	If a blackbody is at 2000° C, what will be the peak wavelength emitted? a. 1.67 im b. 1.45 im c. 1.27 im d. 580 nm
	ANS: C PTS: 1 DIF: 2 TOP: 27.1 Blackbody Radiation and Planck's Hypothesis
11.	Blue light will not eject electrons from a certain metal; however, which one of the following may possibly eject electrons from that metal? a. infrared b. ultraviolet c. red d. green

	ANS: B PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
12.	Light of wavelength 6.5 ′ 10^{-7} m has an energy of: $(h = 6.63 \text{ ' } 10^{-34} \text{ J} \times, c = 3.00 \text{ ' } 10^8 \text{ m/s})$ a. $3.1 \text{ ′ } 10^{-19} \text{ J}$ b. $3.3 \text{ ′ } 10^{-19} \text{ J}$ c. $1.5 \text{ ′ } 10^{-19} \text{ J}$ d. $1.7 \text{ ′ } 10^{-19} \text{ J}$
	ANS: A PTS: 1 DIF: 2 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
13.	If a monochromatic light beam with quantum energy value of 3.0 eV incident upon a photocell where the work function of the target metal is 1.60 eV, what is the maximum kinetic energy of ejected electrons? a. 4.6 eV b. 4.8 eV c. 1.4 eV d. 2.4 eV
	ANS: C PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
14.	Which of the following devices represent(s) a practical application of the photoelectric effect? a. hologram b. photocell c. both of the above choices d. none of the above choices
	ANS: B PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
15.	According to Einstein, what is true of the stopping potential for a photoelectric current as the wavelength of incident light becomes shorter? a. increases b. decreases c. remains constant d. stopping potential is directly proportional to wavelength
	ANS: A PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
16.	According to Einstein, as the wavelength of the incident monochromatic light beam becomes shorter, the work function of a target material in a phototube: a. increases. b. decreases. c. remains constant. d. is directly proportional to wavelength.
	ANS: C PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
17.	What is the frequency of monochromatic light where the photon energy is 5.5 $^{\prime}$ 10^{-19} J? ($h = 6.63$ $^{\prime}$ 10^{-34} J%) a. 2.2 $^{\prime}$ 10^{14} Hz

	ANS: B PTS: 1 DIF: 3 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
23.	If barium has a work function of 2.60 eV, what is its cutoff wavelength when used as a phototube target? ($h = 6.63 \cdot 10^{-34} \text{J} \times \text{s}$, $c = 3.00 \cdot 10^8 \text{m/s}$, $1 \text{eV} = 1.60 \cdot 10^{-19} \text{J}$ and $1 \text{nm} = 10^{-9} \text{m}$) a. 398 nm b. 478 nm c. 497 nm d. 596 nm
	ANS: B PTS: 1 DIF: 3 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
24.	What is the energy of a photon whose frequency is 6.0 $'$ 10^{20} Hz? ($h = 6.63$ $'$ 10^{-34} J $ \approx $ and $1 \text{ eV} = 1.60$ $'$ 10^{-19} J $ \approx $ and $1 \text{ eV} = 1.60$ $'$ J $ \approx $ and $1 \text{ eV} = 1.60$ $'$ J $ \approx $ and $1 \text{ eV} = 1.60$ $'$ Algorithms and $1 $
	ANS: B PTS: 1 DIF: 2 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
25.	An ultraviolet light beam having a wavelength of 130 nm is incident on a molybdenum surface with work function of 4.2 eV. What is the stopping potential? ($h = 6.63$ ′ 10^{-34} Jxs, $c = 3.00$ ′ 10^{8} m/s, 1 eV = 1.6 ′ 10^{-19} J, and 1 nm = 10^{-9} m) a. 1.3 V b. 3.5 V c. 5.4 V d. 11.9 V
	ANS: C PTS: 1 DIF: 2 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
26.	Blue light (I = 460 nm) is incident on a piece of potassium ($f = 2.20 \text{ eV}$). What is the maximum kinetic energy of the ejected photoelectrons? ($h = 6.63 \cdot 10^{-34} \text{ J/s}$, $c = 3.00 \cdot 10^8 \text{ m/s}$, 1 eV = 1.60 $\cdot 10^{-19} \text{ J}$, and 1 nm = 10^{-9} m) a. 1.0 eV b. 0.50 eV c. 0.25 eV d. 4.9 eV
	ANS: B PTS: 1 DIF: 2 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
27.	Light of wavelength 480 nm is incident on a metallic surface with a resultant photoelectric stopping potential of 0.55 V. What is the work function of the metal? ($h = 6.63$ ′ 10^{-34} J×s, $c = 3.00$ ′ 10^{8} m/s, 1 eV = 1.60 ′ 10^{-19} J, and 1 nm = 10^{-9} m) a. 2.04 eV b. 3.19 eV c. 2.59 eV d. 0.55 eV
	ANS: A PTS: 1 DIF: 2

TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light

28.	Which of the following statements best describes the relation between the quantum theory and the photoelectric effect experiment? a. Quantum theory explains the photoelectric effect. b. The photoelectric effect contradicts quantum theory. c. Quantum theory has no bearing on the photoelectric effect. d. The photoelectric effect explains quantum theory.
	ANS: A PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
29.	A sodium vapor lamp has a power output of 300 W. If 590 nm is the average wavelength of the source, about how many photons are emitted per second? ($h = 6.63 \cdot 10^{-34} \text{J} \times \text{s}$, $c = 3.00 \cdot 10^{8} \text{m/s}$, and 1 nm = 10^{-9}m) a. 10^{17} b. 10^{21} c. 10^{25} d. 10^{29}
	ANS: B PTS: 1 DIF: 2 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
30.	Of the following photons, which has the highest energy? a. infrared b. microwave c. visible d. ultraviolet
	ANS: D PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
31.	According to Einstein, increasing the brightness of a beam of light without changing its color will increase: a. the number of photons. b. the energy of each photon. c. the speed of the photons. d. the frequency of the photons.
	ANS: A PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
32.	A photon absorbed by an electron will give up more energy to the electron if the photon: a. is not spread out over many electrons.b. is moving faster.c. is moving slower.d. has a higher frequency.
	ANS: D PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
33.	Which change will not change the kinetic energy of the most energetic electrons emitted in the photoelectric effect? a. changing the brightness of the light b. changing the frequency of the light

	c. changing the metal the light is hittingd. All of the above will change the electron's kinetic energy.
	ANS: A PTS: 1 DIF: 2 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
34.	A helium-neon laser emits red light having a wavelength of 632.8 nm and a power of 0.50 mW. How many photons are emitted each second? ($h = 6.63 \cdot 10^{-34} \text{J} \gg$, $c = 3.00 \cdot 10^8 \text{m/s}$, and 1 nm = 10^{-9}m) a. 1.6 \cdot 10 ¹⁵ b. 3.3 \cdot 10 ¹⁶ c. 4.8 \cdot 10 ¹⁷ d. 2.6 \cdot 10 ¹⁸
	ANS: A PTS: 1 DIF: 2 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
35.	How much energy (in eV) does a photon of red light (I = 700 nm) have? ($h = 6.63$ ′ 10^{-34} Jxs, $c = 3.00$ ′ 10^{8} m/s, 1 eV = 1.60 ′ 10^{-19} J, and 1 nm = 10^{-9} m) a. 3.11 eV b. 2.26 eV c. 1.78 eV d. 1.24 eV
	ANS: C PTS: 1 DIF: 2 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
36.	What is the maximum velocity of a photoelectron emitted from a surface with work function 5.00 eV when illuminated by 200 nm ultraviolet light? ($m_{\text{electron}} = 9.11 \text{ '} 10^{-31} \text{ kg}$, $h = 6.63 \text{ '} 10^{-34} \text{ J/s}$, $1 \text{ eV} = 1.60 \text{ '} 10^{-19} \text{ J}$, and $1 \text{ nm} = 10^{-9} \text{ m}$) a. 800 000 m/s b. 653 000 m/s c. 431 000 m/s d. 212 000 m/s
	ANS: B PTS: 1 DIF: 3 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
37.	Of the following energies for photons, which is the least energy that could result in photoelectron production if the work function is 3.00 eV? a. 1.50 eV b. 2.90 eV c. 3.50 eV d. 6.01 eV
	ANS: C PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light
38.	Who was the first to successfully explain the photoelectric effect? a. Planck b. Young c. Bohr d. Einstein
	ANS: D PTS: 1 DIF: 1 TOP: 27.2 The Photoelectric Effect and the Particle Theory of Light

39.	Sources of red, blue, more photons per sea. the red source b. the blue source c. the yellow source d. They all emit the	cond?			ght with a powe	er of 50	mW. Which source emits
	ANS: A TOP: 27.2 The Pho	PTS: otoelectr			1 cle Theory of L	ight	
40.	What is the minimum $50\ 000\ \text{V?}\ (h = 6.63)$ a. $12.4\ '\ 10^{-12}\ \text{m}$ b. $16.5\ '\ 10^{-12}\ \text{m}$ c. $19.8\ '\ 10^{-12}\ \text{m}$ d. $24.9\ '\ 10^{-12}\ \text{m}$	m x-ray ′ 10 ⁻³⁴	wavelength product $J\gg$, $c=3.00$	oduced 10 ⁸ m/s	when electrons a , and a eV = 1.	are acc 60 ′ 10	celerated through a potential of Γ^{19} J)
	ANS: D	PTS:	1	DIF:	2	TOP:	27.3 X-Rays
41.	If the minimum x-ra accelerated in order ' 10 ⁻¹⁹ J) a. 33 300 V b. 46 200 V c. 75 000 V d. 92 100 V	y wavel to gener	ength produced rate this radiation	1 is 13.5 on? (<i>h</i> =	5 ′ 10 ⁻¹² m, thre = 6.63 ′ 10 ⁻³⁴ J	ough w	hat potential are the electrons $1.00 \cdot 10^8 \text{m/s}$, and $1 \text{eV} = 1.60 \text{m/s}$
	ANS: D	PTS:	1	DIF:	2	TOP:	27.3 X-Rays
42.	X-ray production oc a. photons hitting a b. electrons hitting c. photons hitting a d. electrons hitting	a metal, a metal a metal,	emitting electron, emitting phote emitting x-rays	ons ons	ally		
	ANS: B	PTS:	1	DIF:	1	TOP:	27.3 X-Rays
43.	Changing the acceler change: a. the work function b. the wavelength of c. the wavelength of d. Both b and c are	on of the of all the of the m	material. e x-rays produc iinimum wavelo	ed.			the target material must
	ANS: C	PTS:	1	DIF:	1	TOP:	27.3 X-Rays
44.	J ₈) a. 1.2 ′ 10 ¹⁹ Hz b. 1.1 ′ 10 ¹⁹ Hz c. 2.4 ′ 10 ¹⁹ Hz d. 2.2 ′ 10 ¹⁹ Hz						machine? ($h = 6.63 \cdot 10^{-34}$
	ANS: D	PTS:	1	DIF:	<i>L</i>	TOP:	27.3 X-Rays

45.	_	shortest wavelength, ose $(\ddot{e}_{min,lv}, f_{max,lv})$ at the	ë _{min,hv} , a he lowe	and the maximu r voltage?	elerating voltages, one de am frequency, f _{max,hv} , at t	
	ANS: C	PTS: 1	DIF:	2	TOP: 27.3 X-Rays	
46.	The spacing between a of 3.14 ′ 10 ⁻¹¹ m x-ray a. 57° b. 2.9° c. 90° d. 10°				at angle from the surfac	e will a beam
	ANS: B TOP: 27.4 Diffraction	PTS: 1 n of X-Rays by Cryst	DIF:	2		
47.	An important use of x-a. the observation of b. determining the str c. production of posi d. observation of the	Compton scattering. ructure of the DNA ructures.	nolecul	e.		
	ANS: B TOP: 27.4 Diffraction	PTS: 1 n of X-Rays by Cryst	DIF:	1		
48.					= 0.500 ´ 10 ⁻¹⁰ m, a first te d between crystal plan	
	ANS: A TOP: 27.4 Diffraction	PTS: 1 n of X-Rays by Cryst	DIF:	2		
49.	Bragg reflection result second-order maximum a. 7.1° b. 14.2° c. 28.4° d. 29.4°		imum a	at 14.2°. In this	s case, at what angle wo	uld the
	ANS: D TOP: 27.4 Diffraction	PTS: 1 n of X-Rays by Cryst	DIF:	2		
50.	Who conceived the idea. Roentgen b. von Laue c. W. L. Bragg	ea of using a crystal f	or obse	erving diffraction	on of x-rays?	

	ANS: B TOP: 27.4 Diffracti	PTS: 1 ion of X-Rays by Cryst	DIF: 1 tals	
51.	a. from the reflectib. from the normalc. from the direction	in $\dot{e} = m\ddot{e}$, how is \dot{e} means or crystal plane to the reflecting crystal on of the incident beam to the direction of the	al plane	
	ANS: A TOP: 27.4 Diffracti	PTS: 1 ion of X-Rays by Crys	DIF: 1 tals	
52.	a. the maiden nameb. the producer of the	e of the wife of a preside the x-ray diffraction phe discovered that salt for	notographs that led to the	ne DNA structure.
	ANS: B TOP: 27.4 Diffracti	PTS: 1 ion of X-Rays by Crys	DIF: 1 tals	
53.	electron? a. Momentum is cob. Energy is conserc. Momentum and	onserved.	rved.	then an x-ray photon collides with an
	ANS: C	PTS: 1	DIF: 1	TOP: 27.5 The Compton Effect
54.	is the wavelength of		0.0° relative to the inci	from free electrons in carbon. What dent beam? ($h = 6.63 \cdot 10^{-34} \text{ J/s}$, $m_e =$
	ANS: B	PTS: 1	DIF: 2	TOP: 27.5 The Compton Effect
55.	scattering angle become scattered wavelength a. increases b. decreases c. remains constant	omes larger, what happ ns?	ens to the magnitude of	ent upon a carbon block, as the of difference between the incident and
	ANS: A	PTS: 1	DIF: 2	TOP: 27.5 The Compton Effect
56.	Which process cannot a. Compton effect b. pair production c. the photoelectric	ot occur if only one ph	oton is involved?	

d. W. H. Bragg

	ANS: A	PTS: 1	DIF: 2	TOP: 27.5 The Compton Effect
57.	What is the energy of 3.00 ′ 10 ⁸ m/s, and 1 a. 1.02 ′ 10 ⁶ eV b. 5.12 ′ 10 ⁵ eV c. 2.46 ′ 10 ⁻¹³ eV d. 8.19 ′ 10 ⁻¹⁴ eV	f a photon with the Co l eV = $1.60 \cdot 10^{-19}$ J)	ompton wavelength (0.	002 43 nm)? ($h = 6.63 \text{ '} 10^{-34} \text{ J} \text{ s}, c =$
	ANS: B	PTS: 1	DIF: 2	TOP: 27.5 The Compton Effect
58.		1 kg, and $c = 3.00$ ′ 10		that can occur? ($h = 6.63$ ' 10^{-34} J·s,
	ANS: B	PTS: 1	DIF: 3	TOP: 27.5 The Compton Effect
59.	wavelength of a mova. directly proportionb. directly proportionc. inversely proportion	ring particle? onal to its energy onal to its momentum	Ū	tatements is applicable to the
	ANS: D TOP: 27.6 The Dua	PTS: 1 l Nature of Light and	DIF: 1 Matter	
60.	According to de Brog wavelength changes a. 1/9 b. 1/3 c. 3 d. 9	_	n of a moving particle i	is tripled, the corresponding
	ANS: B TOP: 27.6 The Dua	PTS: 1 l Nature of Light and	DIF: 1 Matter	
61.	What is the de Brogle m/s? ($h = 6.63$ ′ 10^{-3} a. 2.0 ′ 10^{-13} m b. 0.33 ′ 10^{-13} m c. 1.3 ′ 10^{-13} m d. 0.66 ′ 10^{-13} m		$roton (m = 1.67 ' 10^{-27})$	kg) moving at a speed of 6.0 ′ 10 ⁶
	ANS: D TOP: 27.6 The Dua	PTS: 1 l Nature of Light and	DIF: 2 Matter	
62.	The de Broglie wave 10^{-34} J/s) a. 15 m/s	length of a 0.060 kg g	golf ball is $4.28 \cdot 10^{-34}$	m. What is its speed? ($h = 6.63$)

d. x-ray production

	b. 26 m/sc. 31 m/sd. 48 m/s
	ANS: B PTS: 1 DIF: 2 TOP: 27.6 The Dual Nature of Light and Matter
63	 The electron microscope's main advantage over the optical microscope is which of the following? a. greater ease of portability b. dispenses with need for a lens c. higher power lens used d. higher resolution possible
	ANS: D PTS: 1 DIF: 1 TOP: 27.6 The Dual Nature of Light and Matter
64	Starting from rest, an electron accelerates through a potential difference of 40 V. What is its de Broglie wavelength? ($h = 6.63 \cdot 10^{-34} \text{ J/s}$, $m_e = 9.11 \cdot 10^{-31} \text{ kg}$, and $1 \text{ eV} = 1.60 \cdot 10^{-19} \text{ J}$) a. $1.1 \cdot 10^{-10} \text{ m}$ b. $1.5 \cdot 10^{-10} \text{ m}$ c. $1.9 \cdot 10^{-10} \text{ m}$ d. $2.3 \cdot 10^{-10} \text{ m}$
	ANS: C PTS: 1 DIF: 3 TOP: 27.6 The Dual Nature of Light and Matter
65	If an electron has a measured wavelength of $0.850 \cdot 10^{-10}$ m, what is its kinetic energy? $(h = 6.63 \cdot 10^{-34} \text{J} \times 1 \text{eV} = 1.6 \cdot 10^{-19} \text{J}$, and $m_{\rm e} = 9.11 \cdot 10^{-31} \text{kg})$ a. 55.0eV b. 104eV c. 147eV d. 209eV
	ANS: D PTS: 1 DIF: 3 TOP: 27.6 The Dual Nature of Light and Matter
66	Due to the dual nature of light and matter, either can act in an experiment as if it is a wave or a particle. In which experiment is the wave aspect exhibited for matter? a. the Davisson and Germer experiment b. the photoelectric effect c. pair production d. Compton scattering
	ANS: A PTS: 1 DIF: 1 TOP: 27.6 The Dual Nature of Light and Matter
67	. An electron microscope operates with electrons of kinetic energy 50.0 keV. What is the wavelength of these electrons? Assume this speed is not relativistic. ($h=6.63\ '\ 10^{-34}\ J$ xs, $c=3.00\ '\ 10^{8}\ m/s$, 1 eV = 1.60 $'\ 10^{-19}\ J$, and $m_e=9.11\ '\ 10^{-31}\ kg$) a. 9.28 $'\ 10^{-10}\ m$ b. 7.14 $'\ 10^{-11}\ m$ c. 5.49 $'\ 10^{-12}\ m$ d. 2.75 $'\ 10^{-13}\ m$
	ANS: C PTS: 1 DIF: 2

TOP: 27.6 The Dual Nature of Light and Matter

68.	The "seeing" ability or resolution of radiation is determined by its wavelength. If the size of an atom is approximately 10^{-10} m, how fast must an electron travel to have a wavelength smaller than that of an atom? ($m_e = 9.11 \cdot 10^{-31}$ kg and $h = 6.63 \cdot 10^{-34}$ Jxs) a. $7.3 \cdot 10^6$ m/s b. $3.4 \cdot 10^6$ m/s c. $1.0 \cdot 10^6$ m/s d. $5.4 \cdot 10^5$ m/s
	ANS: A PTS: 1 DIF: 3 TOP: 27.6 The Dual Nature of Light and Matter
69.	That light has a dual nature is referring to light: a. having high- or low-energy photons. b. acting as waves and particles. c. having energy and momentum. d. undergoing pair production.
	ANS: B PTS: 1 DIF: 1 TOP: 27.6 The Dual Nature of Light and Matter
70.	What is the energy of a photon that has the same wavelength as a 12-eV electron? ($h = 6.63 \cdot 10^{-34} \text{J} \times \text{s}$) a. 5.6 $\cdot 10$ -16 eV b. 12 eV c. 24 eV d. 3.5 keV
	ANS: D PTS: 1 DIF: 3 TOP: 27.6 The Dual Nature of Light and Matter
71.	If the measured momentum of an electron is 3.20 $^{'}$ 10^{-27} kg×m/s with an uncertainty of 1.6 $^{'}$ 10^{-29} kg×m/s, what is the minimum uncertainty in the position? ($h = 6.63$ $^{'}$ 10^{-34} J×s) a. 2.6 $^{'}$ 10^{-8} m b. 3.3 $^{'}$ 10^{-6} m c. 0.63 $^{'}$ 10^{-4} m d. 1.1 $^{'}$ 10^{-3} m
	ANS: B PTS: 1 DIF: 2 TOP: 27.7 The Wave Function 27.8 The Uncertainty Principle
72.	According to Heisenberg, as the uncertainty in the measurement of a particle's momentum is reduced by a factor of 2, by what factor is the uncertainty in that same particle's position changed? a. 1/2 b. 1 c. 2 d. 4
	ANS: C PTS: 1 DIF: 1 TOP: 27.7 The Wave Function 27.8 The Uncertainty Principle
73.	The wave function as derived in Schrödinger's equation is best described as being a measure of which of the following? a. photon beam frequency

	ANS: D PTS: 1 DIF: 1 TOP: 27.7 The Wave Function 27.8 The Uncertainty Principle
74.	A proton (mass = $1.67 \cdot 10^{-27}$ kg) has a kinetic energy of 1.00 MeV. If its momentum is measured with an uncertainty of 1.00% , what is the minimum uncertainty in its position? ($h = 6.63 \cdot 10^{-34}$ Jx and $1 \cdot 10^{-19}$ J) a. $9.08 \cdot 10^{-13}$ m b. $2.28 \cdot 10^{-13}$ m c. $9.08 \cdot 10^{-14}$ m d. $5.64 \cdot 10^{-14}$ m
	ANS: B PTS: 1 DIF: 3 TOP: 27.7 The Wave Function 27.8 The Uncertainty Principle
75.	The uncertainty principle was derived by whom? a. Schrödinger b. Heisenberg c. de Broglie d. Compton
	ANS: B PTS: 1 DIF: 1 TOP: 27.7 The Wave Function 27.8 The Uncertainty Principle
76.	The Heisenberg uncertainty principle places restriction on the precision of simultaneously measuring both position and momentum. This principle can also be applied to the simultaneous measurement of two other variables, which are: a. force and color. b. energy and time interval. c. mass and charge. d. torque and frequency.
	ANS: B PTS: 1 DIF: 1 TOP: 27.7 The Wave Function 27.8 The Uncertainty Principle
77.	Of photons of red, yellow, light, and blue light, which photons have the greatest energy? a. red b. yellow c. green d. blue
	ANS: D PTS: 1 DIF: 1 TOP: Conceptual Questions
78.	Surface #1 has work function, and when bombarded with photons of wavelength emits photoelectrons with maximum energy. Surface #2 has work function, and when bombarded by photons of wavelength emits photoelectrons with maximum energy. If, then which of the following must be true? a. b. c. for surface #1 is greater than for surface #2. d. for surface #2 is greater than for surface #1.

b. photon wavelengthc. particle wavelengthd. probability

79.	The Compton waveler shift, $\ddot{A}\ddot{e}$, in wavelen a. $\ddot{A}\ddot{e} > 2 \ h/m_e c$ b. $\ddot{A}\ddot{e} = 2 \ h/m_e c$ c. $\ddot{A}\ddot{e} = h/m_e c$ d. $< h/m_e c$			002 43	nm. In Compto	n scatte	ering, what is the greatest
	ANS: B	PTS:	1	DIF:	2	TOP:	Conceptual Questions
80.	If a ¹ H nucleus, a ² H de Broglie waveleng a. ¹ H b. ² H c. ³ H d. All three have the	th?				nomenti	um, which one has the greatest
	ANS: D	PTS:	1	DIF:	2	TOP:	Conceptual Questions
81.	A proton and an elect and (ii) which has the a. (i) the electron, (ib. (i) the proton, (ii c. (i) the electron, (d. (i) the proton, (iii)	e greate ii) Eithe) Either ii) the e	r kinetic energy er one can have one can have t lectron	y? the gre	eater kinetic en	ergy.	Which has the greater speed,
	ANS: C	PTS:	1	DIF:	2	TOP:	Conceptual Questions

DIF: 2

TOP: Conceptual Questions

ANS: D

PTS: 1

MULTIPLE CHOICE

a. line emission

	b. line absorptionc. continuousd. monochromatic
	ANS: C PTS: 1 DIF: 1 TOP: 28.1 Early Models of the Atom 28.2 Atomic Spectra
2.	When a high voltage is applied to a low-pressure gas causing it to glow, it will emit which type of spectrum? a. line emission b. line absorption c. continuous d. monochromatic
	ANS: A PTS: 1 DIF: 1 TOP: 28.1 Early Models of the Atom 28.2 Atomic Spectra
3.	When a cool gas is placed between a glowing wire filament source and a diffraction grating, the resultant spectrum from the grating is which one of the following? a. line emission b. line absorption c. continuous d. monochromatic
	ANS: B PTS: 1 DIF: 1 TOP: 28.1 Early Models of the Atom 28.2 Atomic Spectra
4.	What is the wavelength of the line in the Balmer series of hydrogen that is comprised of transitions from the $n=4$ to the $n=2$ level? ($R=1.097\ '\ 10^7\ m^{-1}$ and $1\ nm=10^{-9}\ m$) a. 380 nm b. 486 nm c. 523 nm d. 630 nm
	ANS: B PTS: 1 DIF: 2 TOP: 28.1 Early Models of the Atom 28.2 Atomic Spectra
5.	 An alpha particle is: a. a neutral helium atom. b. any positively charged nucleus. c. an x-ray. d. None of the above.
	ANS: D PTS: 1 DIF: 1 TOP: 28.1 Early Models of the Atom 28.2 Atomic Spectra
6.	According to the Rutherford model of the atom, most of the volume of an atom: a. is empty space.

1. When a wire carries high current causing it to glow, it will emit which type of spectrum?

	d. excluded electrons.
	ANS: A PTS: 1 DIF: 1 TOP: 28.1 Early Models of the Atom 28.2 Atomic Spectra
7.	In contrast to Thomson's model of the atom, Rutherford's model: a. had the positive charge spread uniformly through the atom. b. had the positive charge concentrated in a small region. c. was first to explain atoms emitting discrete frequencies. d. eliminated radiation from accelerating charges.
	ANS: B PTS: 1 DIF: 1 TOP: 28.1 Early Models of the Atom 28.2 Atomic Spectra
8.	The Lyman series of hydrogen is made up of those transitions made from higher levels to $n=1$. If the first line in this series has a wavelength of 122 nm, what is the wavelength of the second line? a. 49 nm b. 103 nm c. 364 nm d. 486 nm
	ANS: B PTS: 1 DIF: 2 TOP: 28.3 The Bohr Model
9.	The ionization energy for the hydrogen atom is 13.6 eV . What is the energy of a photon that is emitted as a hydrogen atom makes a transition between the $n=4$ and $n=2$ states? a. 0.85 eV b. 2.55 eV c. 3.40 eV d. 6.80 eV
	ANS: B PTS: 1 DIF: 2 TOP: 28.3 The Bohr Model
10.	Of the various wavelengths emitted from a hydrogen gas discharge tube, those that are associated with transitions from higher levels down to the $n=1$ level produce which of the following? a. infrared b. visible c. mixture of infrared and visible d. ultraviolet
	ANS: D PTS: 1 DIF: 2 TOP: 28.3 The Bohr Model
11.	Of the various wavelengths emitted from a hydrogen gas discharge tube, those associated with transitions from higher levels down to the $n = 2$ level produce which of the following? a. infrared b. visible c. mixture of visible and ultraviolet d. ultraviolet
	ANS: C PTS: 1 DIF: 2 TOP: 28.3 The Bohr Model
12.	What is the wavelength of the line in the Paschen series of hydrogen that is comprised of transitions from the $n=4$ to the $n=3$ levels? ($R=1.097\ '\ 10^7\ m^{-1}$ and $1\ nm=10^{-9}\ m$) a. 1 282 nm b. 1 875 nm

b. was occupied by the nucleus.c. contained positive charges.

	ANS: B	PTS:	1	DIF:	2	TOP:	28.3 The Bohr Model
13.	The ionization energy a. 2.72 eV b2.72 eV c. 0.544 eV d0.544 eV	y of the h	nydrogen atom	is 13.6	ieV. What is th	e energ	gy of the $n = 5$ state?
	ANS: D	PTS:	1	DIF:	2	TOP:	28.3 The Bohr Model
14.	The ionization energy corresponding to a tra a. 2.9 eV b. 3.5 eV c. 4.0 eV d. 7.9 eV		•			e energ	gy of a photon emitted
	ANS: A	PTS:	1	DIF:	2	TOP:	28.3 The Bohr Model
15.	If the radius of the eleradius for the $n = 5$ lea. 0.106 nm b. 0.265 nm c. 0.846 nm d. 1.32 nm	evel? (As	ssume the Boh	r mode	l is valid).	atoms	is 0.052 9 nm, what is its
	ANS: D	PTS:	1	DIF:	2	TOP:	28.3 The Bohr Model
16.	The Paschen series of the shortest waveleng a. 365 nm b. 820 nm c. 1 094 nm d. 313 nm						higher levels to $n = 3$. What is 0^{-9} m)
	ANS: B	PTS:	1	DIF:	3	TOP:	28.3 The Bohr Model
17.	The Lyman series of the longest waveleng a. 91.4 nm b. 122 nm c. 273 nm d. 456 nm						igher levels to $n = 1$. What is 0^{-9} m)
	ANS: B	PTS:	1	DIF:	2	TOP:	28.3 The Bohr Model
18.							elength of a photon having 10^{-19} J, and $1 \text{ nm} = 10^{-9}$ m)

c. 1 923 nmd. 2 251 nm

	ANS: A	PTS: 1	DIF:	2	TOP:	28.3 The Bohr Model
19.	The four visible cold a. that start in the g b. that end up in the c. that start in the le d. that end up in the	ground state. e ground state. evel with $n = 2$.	gen atom	s are produced	by elect	rons:
	ANS: D	PTS: 1	DIF:	2	TOP:	28.3 The Bohr Model
20.	The visible lines froma. Lyman series.b. Balmer series.c. Paschen series.d. Brackett series.	m hydrogen are all m	embers o	of the:		
	ANS: B	PTS: 1	DIF:	2	TOP:	28.3 The Bohr Model
21.	from the Lyman seri a. only the first line b. all the lines of the c. only the first line	ne from the Balmer series. This will be true to e of the Balmer series followed of the Balmer series followed by the Balmer se	for: s and the owed by s followe	first line of the only the first line d by any of the	Lyman ne of the lines of	e Lyman series. f the Lyman series.
	ANS: B	PTS: 1	DIF:	2	TOP:	28.3 The Bohr Model
22.	b. the ground statec. it requires 13.6 e	es not predict that: will give off the line of hydrogen is spher eV to ionize hydrogen radius of a hydrogen	ically sy 1.	mmetric.	S.	
	ANS: B	PTS: 1	DIF:	2	TOP:	28.3 The Bohr Model
23.	_	energy. energy. radius. t angular momentum.				
	ANS: A	PTS: 1	DIF:	2	TOP:	28.3 The Bohr Model
24.	a. is equal to the kib. is twice the kinec. is half the kinetic	in the potential energy inetic energy of the elec- tic energy of the elec- c energy of the electra nes the kinetic energy	lectron. tron.		olute va	alue of the potential energy:
	ANS: B	PTS: 1	DIF:	2	TOP:	28.3 The Bohr Model
25.	a. both the radius ab. both the radius ac. the radius double	oves from the $n = 1$ to and the angular moment and the angular momens and the angular momens are and the angular momens by a factor of 4, a	entum do entum in omentum	ouble. crease by a fact n increases by a	factor o	

	ANS: D	PTS: 1	DIF: 2	TOP: 28.3 The Bohr Model
26.	bound to a proton, he electron? a. They would be the theorem of the control of t	ow would the energy le	evels in the Bohr mode s those for the electron	mass of the electron. If a muon were el compare to those for a bound
	•	1/207) times as much a		n.
	ANS: C	PTS: 1	DIF: 2	TOP: 28.3 The Bohr Model
27.		the ground state absorb zation energy of hydro		To what level is the electron
	ANS: C	PTS: 1	DIF: 2	TOP: 28.3 The Bohr Model
28.	the energy and wave	length of the photon. ($^{\prime}$ 10^{8} m/s, 1 eV = 1.60	The ionization energy	ition from $n = 3$ to $n = 2$. Calculate of hydrogen is 13.6 eV, and $h = 6.63$ 10^{-9} m)
	ANS: A	PTS: 1	DIF: 2	TOP: 28.3 The Bohr Model
29.	The speed of the electric at a proportional to <i>n</i> . b. proportional to <i>n</i> . c. inversely proportional to <i>n</i> . d. inversely proportional to <i>n</i> .	n^2 . tional to n .	y of hydrogen is:	
	ANS: C	PTS: 1	DIF: 2	TOP: 28.3 The Bohr Model
30.	Which of the following most energy emitted a. $n_i = 80$, $n_f = 2$ b. $n_i = 3$, $n_f = 95$ c. $n_i = 2$, $n_f = 1$ d. $n_i = 1$, $n_f = 3$	•	gen from an initial sta	tte (n_i) to a final state (n_f) results in the
	ANS: C	PTS: 1	DIF: 3	TOP: 28.3 The Bohr Model
31.	The Bohr model of the a. principal b. orbital c. orbital magnetic d. All of the above.	he hydrogen atom acco	ounts for which quantu	nm number?
	ANS: A	PTS: 1	DIF: 1	TOP: 28.3 The Bohr Model

32.	verification predicted ab a. the color b. their ma	of many data ab out He ⁺ and Li ² r of the light the ss. andance in natur	oout atoms such to in this manner by will emit.	as He ⁺			n and experimental ties that can successfully be
	ANS: A	PTS:	1	DIF:	1	TOP:	28.3 The Bohr Model
33.	moves from This occurs a. there are b. the wave c. there are	the $n = 1$ level	to the $n = 2$ level many wavelength ectron becomes wavelengths, a	el, the control the in the street of the str	ircumference for the new orbit. mes as long.	or its or	etrons, when an electron bit becomes 4 times greater.
	ANS: C	PTS:	1	DIF:	2	TOP:	28.3 The Bohr Model
34.	What is the (is 13.6 eV). a. 13.6 eV b. 54.4 eV c. 92.9 eV d. 112.4 eV		o change an He	e ⁺ ion in	to an He ⁺⁺ ion?	? (The id	onization energy of hydrogen
	ANS: B	PTS:	1	DIF:	2	TOP:	28.3 The Bohr Model
35.	single photo	n accomplishes 1.6 ′ 10 ⁻¹⁹ J, ar	this task, what	wavele			e of a lithium atom. If a $.63 \cdot 10^{-34} \text{J}$ %, $c = 3.00 \cdot 10^{8}$
	ANS: D	PTS:	1	DIF:	2	TOP:	28.3 The Bohr Model
36.	4, there will a. one b. two c. four d. five ANS: C	n mechanical m be how many d PTS: Quantum Mech	ifferent permitt	ed orbi	tal quantum nu		e principal quantum number is ?
37.	The quantum	n mechanical m	odel of the hyd	rogen a	tom requires th		e orbital quantum number of tic quantum numbers?

	ANS: D PTS: 1 DIF: 2 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
38.	The quantum mechanical model of the hydrogen atom requires that if the orbital magnetic quantum number is 3, there will be how many permitted spin magnetic quantum numbers? a. two b. three c. four d. seven
	ANS: A PTS: 1 DIF: 2 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
39.	How many possible substates are available in a hydrogen atom where the principal quantum number is 3? a. 6 b. 9 c. 18 d. 36
	ANS: C PTS: 1 DIF: 3 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
40.	The quantum mechanical model of the hydrogen atom requires that if the principal quantum number = 5, there will be how many permitted orbital quantum numbers? a. 3 b. 5 c. 10 d. 25
	ANS: B PTS: 1 DIF: 2 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
41.	The quantum mechanical model of the hydrogen atom requires that if the orbital quantum number = 7, there will be how many permitted orbital magnetic quantum numbers allowed? a. 6 b. 7 c. 11 d. 15
	ANS: D PTS: 1 DIF: 2 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
42.	The quantum mechanical model of the hydrogen atom requires that if the principal quantum number = 4, there will be permitted how many orbital magnetic quantum numbers? a. 4 b. 6 c. 8 d. 7
	ANS: D PTS: 1 DIF: 3 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom

d. nine

43.	The quantum mechanical model of the hydrogen atom requires that if the orbital quantum number = 5, there are permitted how many possible substates? a. 8 b. 18 c. 22 d. 32
	ANS: C PTS: 1 DIF: 3 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
44.	If the principal quantum number for hydrogen is 5, which one of the following is not a permitted orbital magnetic quantum number for that atom? a. 6 b2 c. 0 d. 3
	ANS: A PTS: 1 DIF: 1 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
45.	The quantum number that can have only two possible values is the: a. principal quantum number. b. orbital quantum number. c. orbital magnetic quantum number. d. spin magnetic quantum number.
	ANS: D PTS: 1 DIF: 1 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
46.	The quantum mechanical model of the hydrogen atom suggests a visual picture of the electron as which of the following? a. raisin in pudding b. probability cloud c. planetary orbiting body d. light quantum
	ANS: B PTS: 1 DIF: 1 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
47.	The quantity, where \emptyset is the wave function, represents the probability per unit volume of finding an electron in that volume. a. $\emptyset^{1/2}$ b. \emptyset c. $\emptyset^{3/2}$ d. \emptyset^2
	ANS: D PTS: 1 DIF: 1 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
48.	In a plot of probability of finding the electron in the hydrogen ground state versus the distance from the nucleus, the maximum occurs: a. at a_0 , the first Bohr radius. b. at slightly less than a_0 . c. at slightly more than a_0 . d. at $2 a_0$.

	ANS: A PTS: 1 DIF: 1 TOP: 28.4 Quantum Mechanics and the Hydrogen Atom
49.	The restriction that no more than one electron may occupy a given quantum state in an atom was first stated by which of the following scientists? a. Bohr b. de Broglie c. Heisenberg d. Pauli
	ANS: D PTS: 1 DIF: 1 TOP: 28.5 The Exclusion Principle and the Periodic Table
50.	How many electrons are in bromine's (atomic number 35) next to outer shell (n = 3)? a. 2 b. 4 c. 8 d. 18
	ANS: D PTS: 1 DIF: 2 TOP: 28.5 The Exclusion Principle and the Periodic Table
51.	Imagine that an electron had a spin of $5/2$ so that its spin quantum number, m_s , could have the following six values: $m_s = +5/2$, $+3/2$, $+1/2$, $-1/2$, $-3/2$, and $-5/2$. If this were true, the first element with a filled shell would be: a. He with 2 electrons. b. Be with 4 electrons. c. C with 6 electrons. d. O with 8 electrons.
	ANS: C PTS: 1 DIF: 3 TOP: 28.5 The Exclusion Principle and the Periodic Table
52.	The ground state electronic configuration for aluminum is $1s^22s^22p^63s^23p^1$. In which shell is the last $(3p^1)$ electron? a. K b. L c. M d. N
	ANS: C PTS: 1 DIF: 1 TOP: 28.5 The Exclusion Principle and the Periodic Table
53.	The ground state electronic configuration for aluminum is 1s ² 2s ² 2p ⁶ 3s ² 3p ¹ . What is the orbital quantum number of the last (3p ¹) electron? a. 0 b. 1 c. 2 d. 3 ANS: B PTS: 1 DIF: 2 TOP: 28.5 The Exclusion Principle and the Periodic Table
54.	The x-rays that occur when a high energy electron beam is incident on a metal target will show what type of spectrum?

	a. continuousb. linec. continuousd. absorption	spectrum sup	erimposed	with a line	spectru	ım	
	ANS: C	PTS:	1	DIF:	1	TOP:	28.6 Characteristic X-Rays
55.		value for the	energy of a				which of the following gives of the element oxygen for
	ANS: C	PTS:	1	DIF:	2	TOP:	28.6 Characteristic X-Rays
56.	Which of the fold the wavelength of a. Bohr b. Compton c. Moseley d. Pauli						mber of a given element and
	ANS: C	PTS:	1	DIF:	1	TOP:	28.6 Characteristic X-Rays
57.							s is replaced by another ngth of the K-alpha x-ray line
	ANS: A	PTS:	1	DIF:	2	TOP:	28.6 Characteristic X-Rays
58.	Which part of that a. The incident	ne process pro t electron los t electron kno n an energy l	oduces the observed the observed the odd of the observed	characteris etron out o etal atom i	tic x-ray	y spectra? The metal aton	are incident on a metal target
	ANS: C	PTS:	1	DIF:	2	TOP:	28.6 Characteristic X-Rays
59.	Characteristic x-a. outer electrons. inner electrons. nuclear electrons. d. buckytubes.	on transitions on transitions tron states.	•				
	ANS: B	PTS:	1	DIF:	1	TOP:	28.6 Characteristic X-Rays
60.							now many different energies returns to the ground state?

	c. 3′ 10 ¹⁹ d. 6′ 10 ²⁰
	ANS: C PTS: 1 DIF: 2 TOP: 28.7 Atomic Transitions and Lasers
66.	 Which of the following conditions must be satisfied for laser action? a. A ruby or similar crystalline material must be used. b. A population inversion must occur. c. The photons must be red. d. A binary system must be used.
	ANS: B PTS: 1 DIF: 1 TOP: 28.7 Atomic Transitions and Lasers
67.	In neon, the 20.66-eV level can undergo lasing action to the 18.70-eV level. What is the energy of the resulting photons? a. 20.66 eV b. 18.70 eV c. 39.36 eV d. 1.96 eV
	ANS: D PTS: 1 DIF: 1 TOP: 28.7 Atomic Transitions and Lasers
68.	Consider the hydrogen atom, singly ionized helium atom, and the doubly ionized lithium atom. Arrange these atoms from highest energy ground state to lowest energy ground state. a. H, He ⁺ , Li ⁺⁺ b. Li ⁺⁺ , He ⁺ , H c. H, Li ⁺⁺ , He ⁺ d. Since each of these atoms has only one electron, they all have the same energy ground state.
	ANS: A PTS: 1 DIF: 2 TOP: Conceptual Questions
69.	In the $n = 4$ shell, how many distinct values of are possible? a. 4 b. 8 c. 9 d. The correct value is not given.
	ANS: D PTS: 1 DIF: 2 TOP: Conceptual Questions
70.	Selenium has atomic number 34. In its ground state, how many electrons are in its $n = 2$ shell? a. 2 b. 8 c. 10 d. 16
	ANS: B PTS: 1 DIF: 2 TOP: Conceptual Questions
71.	If a hydrogen atom, originally in its ground state of energy –13.6 eV, absorbs a photon of energy 15.0 eV, what is the resulting kinetic energy of the electron if the proton has negligible kinetic energy? a. Such a photon cannot be absorbed in this case. b. –1.4 eV c. 1.4 eV

d. 15.0 eV

ANS: C

PTS: 1

DIF: 2

TOP: Conceptual Questions

72. For the n = 4 shell, what are the lowest values possible for and respectively?

a. 0, 0

b. -4, -4

c. 0, –3

d. -3, -3

ANS: C

PTS: 1

DIF: 2

TOP: Conceptual Questions

MULTIPLE CHOICE

1.	The nucleus of an atom is made up of which of the following? a. electrons and protons b. electrons and neutrons c. protons, electrons and neutrons d. protons and neutrons
	ANS: D PTS: 1 DIF: 1 TOP: 29.1 Some Properties of Nuclei
2.	The experiment, which gave the first evidence for the existence of the atomic nucleus, involved which of the following? a. x-ray scattering b. radioactive dating c. cosmic ray detection d. alpha scattering
	ANS: D PTS: 1 DIF: 1 TOP: 29.1 Some Properties of Nuclei
3.	The atomic number of a given element is equivalent to which of the following? a. proton number in the nucleus b. neutron number in the nucleus c. sum of the protons and neutrons in the nucleus d. number of electrons in the outer shells
	ANS: A PTS: 1 DIF: 1 TOP: 29.1 Some Properties of Nuclei
4.	Rutherford's experiments involving the use of alpha particle beams directed onto thin metal foils demonstrated the existence of which of the following? a. neutron b. proton c. nucleus d. positron
	ANS: C PTS: 1 DIF: 1 TOP: 29.1 Some Properties of Nuclei
5.	The atomic mass number of a nucleus is equivalent to which of the following numbers? a. number of neutrons present b. number of protons present c. difference in neutron and proton numbers d. sum of neutron and proton numbers
	ANS: D PTS: 1 DIF: 1 TOP: 29.1 Some Properties of Nuclei
6.	The ratio of the numbers of neutrons to protons in the nucleus of naturally occurring isotopes tends to vary with atomic number in what manner? a. increases with greater atomic number

	 b. decreases with greater atomic number c. is maximum for atomic number = 60 d. remains constant for entire range of atomic numbers
	ANS: A PTS: 1 DIF: 1 TOP: 29.1 Some Properties of Nuclei
7.	The beta radiation first classified by Rutherford was in fact which of the following? a. helium nuclei b. high energy quanta c. electrons d. positrons
	ANS: C PTS: 1 DIF: 1 TOP: 29.1 Some Properties of Nuclei
8.	The alpha radiation first classified by Rutherford was in fact which of the following? a. helium nuclei b. high energy quanta c. electrons d. positrons
	ANS: A PTS: 1 DIF: 1 TOP: 29.1 Some Properties of Nuclei
9.	The gamma radiation first classified by Rutherford was in fact which of the following? a. helium nuclei b. high energy quanta c. electrons d. positrons
	ANS: B PTS: 1 DIF: 1 TOP: 29.1 Some Properties of Nuclei
10.	The isotope 64 Zn has a nuclear radius of 4.8 ′ 10^{-15} m. Approximately what is the nuclear radius of the isotope 27 Al? a. 2.0 ′ 10^{-15} m b. 2.7 ′ 10^{-15} m c. 3.6 ′ 10^{-15} m d. 4.0 ′ 10^{-15} m
	ANS: C PTS: 1 DIF: 2 TOP: 29.1 Some Properties of Nuclei
11.	The isotope ⁶⁴ Zn has a nuclear radius of 4.8 ′ 10 ⁻¹⁵ m. Which of the following is the mass number of an isotope for which the nuclear radius is 7.2 ′ 10 ⁻¹⁵ m? a. 144 b. 96 c. 125 d. 216
	ANS: D PTS: 1 DIF: 2 TOP: 29.1 Some Properties of Nuclei
12.	If there are 146 neutrons in ²³⁸ U, how many neutrons are found in the nucleus of ²³⁵ U?

c. 12.7 km

	TOP: 29.1 Some P	roperties of Nu	clei				
18.	What energy must be combined to form a 665 u; helium, 4.002 a. 20.7 MeV added b. 20.7 MeV given c. 28.3 MeV given d. 28.3 MeV added	helium atom? 2 602 u; also, 1 d off off	(Atomic masses	for each		n atoms and two neu 007 825 u; neutron,	
	ANS: C	PTS: 1	DIF:	3	TOP:	29.2 Binding Energ	y
19.	What is the binding regarding atomic ma 1.007 825 u; neutron a. 7.3 MeV b. 7.7 MeV c. 7.9 MeV d. 8.3 MeV	asses will be ne	eeded: ¹⁹⁷ Au, 19	6.966 54	3 u; hydrogen	The following inform,	mation
	ANS: C	PTS: 1	DIF:	3	TOP:	29.2 Binding Energ	у
20.	The binding energy a. the energy need b. the average ener c. the energy need d. the mass of the	ed to remove orgy with which ed to separate a	ne of the nucleon any nucleon is all the nucleons	bound in			
	ANS: C	PTS: 1	DIF:	1	TOP:	29.2 Binding Energ	y
21.	The mass of ²³⁸ U is a. the proton and r. b. there are several c. of the binding e. d. uranium is radio	neutron have di l isotopes of ur nergy of uraniu	fferent masses. anium.	f ¹ H mass	s. This is prim	arily because:	
	ANS: C	PTS: 1	DIF:	2	TOP:	29.2 Binding Energ	y
22.	If the stable nuclei a nuclei does not follow influenced by: a. the volume of the b. the size of the nuclei does not follow influenced by: b. the Coulomb rep. d. the proton-neutron	ow the line $N =$ ne nucleus. nuclear surface. nuclear.	Z. This is predi	_		ne curve formed by the the binding energy	
	ANS: C	PTS: 1	DIF:	2	TOP:	29.2 Binding Energ	y
23.	The fact that the bin nucleus indicates that a. the strong nucle b. nucleons don't inc. all nuclei have t	at: ar force saturat nove througho	es. ut the nucleus.	not depei	nd very strong	ly on the volume of t	the

PTS: 1 DIF: 3

d. 6.40 km

ANS: C

	d.	the radius of a nu	cleus is	directly propo	rtional	to the number	of nucle	eons.
	AN	JS: A	PTS:	1	DIF:	2	TOP:	29.2 Binding Energy
24.	nuc a. b. c.	lculate the binding cleus is 3.016 05 u 2.24 MeV/nucleo 2.45 MeV/nucleo 2.66 MeV/nucleo 2.86 MeV/nucleo	(m _p = n n n n					hat the mass of the tritium 0.5 MeV/c^2)
	AN	IS: C	PTS:	1	DIF:	2	TOP:	29.2 Binding Energy
25.	pro a. b. c.	element is emittin stective shielding the alpha, beta and ga gamma, beta and beta, gamma and alpha, gamma and	ney will amma alpha alpha	-			der the	m in terms of the thickness of
	AN	IS: A	PTS:	1	DIF:	1	TOP:	29.3 Radioactivity
26.	it is a. b. c. d.	radioactive materia s observed to have 1/2 hour 1 hour 3 hours 8 hours		vity of 125 dec		e, what is its ha	f-life?	ecays/sec. If three hours later 29.3 Radioactivity
27.	appa. b. c. d.	of fossil bone is four proximate age of the 7 640 years 17 200 years 22 900 years 45 800 years		? (half-life of ¹		730 years)		of a living animal, what is the 29.3 Radioactivity
28.	The ato a. b. c. d.	ere are samples of ms. Sample X has X has a greater ra X has a smaller ra The rates of X an The rate depends	two dif a half-l te than ate than d Y are on ator	ferent isotopes ife twice that of Y. Y. equal. nic number, no	, X and of Y. Ho ot half-l	Y. Both contains which does do their dec	in the sa ay rates	ame number of radioactive s compare?
	AN	IS: B	PTS:	1	DIF:	2	TOP:	29.3 Radioactivity
29.	Car pre a. b.		yet in th	he building's w	ooden	framing compa	red to t	oximately what proportion of he number which were

d. 0.696

	ANS: D	PTS:	1	DIF:	2	TOP:	29.3 Radioactivity
30.	A pure sample of ²²⁶ lyears, what is the act a. 6.7 ′ 10 ⁹ decays b. 8.7 ′ 10 ¹⁰ decays c. 9.4 ′ 10 ¹⁰ decays d. 13 ′ 10 ¹⁰ decays	ivity of /yr s/yr s/yr		atoms o	of the isotope. In	f the ha	lf-life of 226 Ra = 1.6 $^{'}$ 10 3
	ANS: B	PTS:	1	DIF:	2	TOP:	29.3 Radioactivity
31.	A pure sample of ²²⁶ l years, what is the deca. 2.7 ′ 10 ⁻¹² Cib. 3.4 ′ 10 ⁻¹⁰ Cic. 7.4 ′ 10 ⁻⁸ Cid. 9.6 ′ 10 ⁻⁶ Ci	Ra conta cay rate	ains 2.0 ′ 10 ¹⁴ ; of this sample	atoms o	of the isotope. In $= 3.7 \cdot 10^{10} \text{ dec}$	f the ha	lf-life of 226 Ra = 1.6 $^{'}$ 10 3
	ANS: C	PTS:	1	DIF:	3	TOP:	29.3 Radioactivity
32.	Tritium has a half-lift sample diminishes to a. 21 years b. 29 years c. 57 years d. 86 years		•		ears will elapse	when t	he radioactivity of a tritium
	ANS: B	PTS:	1	DIF:	2	TOP:	29.3 Radioactivity
33.	Tritium has a half-lift after 9 years? a. 0.55 b. 0.60 c. 0.73 d. 0.84	e of 12.	3 years. What j	proport	ion of its origin	al radio	pactivity will a sample have
	ANS: B	PTS:	1	DIF:	3	TOP:	29.3 Radioactivity
34.	Approximately how 10 ⁻⁶ Ci and a half-lift a. 1.3 ′ 10 ⁸ b. 7 ′ 10 ⁸ c. 3 ′ 10 ¹⁰ d. 8 ′ 10 ¹²					ım sam	ple with an activity of 0.4 '
	ANS: D	PTS:	1	DIF:	3	TOP:	29.3 Radioactivity
35.	Approximately how to be reduced to 0.00 a. 3 b. 6 c. 8 d. 60				lapse if the acti	vity of	a radioactive isotope sample is

	ANS: C	PTS:	1	DIF:	2	TOP:	29.3 Radioactivity
36.	Over the course of 3 a. 4.1 hrs b. 12.8 hrs c. 24.0 hrs d. 68.6 hrs	hours, 1	5% of a radioa	active n	naterial decays.	What i	s its half-life?
	ANS: B	PTS:	1	DIF:	3	TOP:	29.3 Radioactivity
37.	$1 Bq = \underline{\hspace{1cm}} Ci'$ a. 1 b. 10^6 c. $2.7 \cdot 10^{-11}$ d. $3.7 \cdot 10^{10}$?					
	ANS: C	PTS:	1	DIF:	1	TOP:	29.3 Radioactivity
38.		a sampl nd nd d					vith low-energy electron tivity in decays/second? (1
	ANS: B	PTS:	1	DIF:	2	TOP:	29.3 Radioactivity
39.	The half-life of radio produce a sample of a. 8.0 ′ 10 ⁸ b. 1.2 ′ 10 ⁹ c. 2.1 ′ 10 ¹⁰ d. 3.4 ′ 10 ¹¹						of ⁹⁹ Tc nuclei necessary to
	ANS: B	PTS:	1	DIF:	2	TOP:	29.3 Radioactivity
40.	The half-life of ¹⁸ N is a. 0.43 s ⁻¹ b. 1.1 s ⁻¹ c. 1.7 ′ 10 ⁻¹¹ Ci d. The decay constant						
	ANS: B	PTS:	1	DIF:	2	TOP:	29.3 Radioactivity
41.	Tritium (3 H) has a half activity of a 1.0-gram 10^{-13} J, and $m_{t} = 3.01$ a. 1.1 ′ 10^{15} Bq b. 3.2 ′ 10^{15} Bq c. 3.6 ′ 10^{14} Bq d. 1.3 ′ 10^{16} Bq	n sample	of 12.3 years and e of tritium? (I	d releas $N_A = 6.0$	ses 0.018 6 Me ³ 02 ′ 10 ²³ mol ⁻¹ ,	V energ 1 year	gy per decay. What is the $= 3.16 \cdot 10^7 \text{ s}$, $1 \text{ MeV} = 1.6 \cdot $
	ANS: C	PTS:	1	DIF:	2	ТОР.	29.3 Radioactivity

42.	Tritium (3 H) has a has at which energy is refundation of 10 7 s, 1 MeV = 1.6 a. 1.1 Wb. 9.6 Wc. 3.2 Wd. 0.33 W	eleased f	for a 1.0-gram s	sample				
	ANS: A	PTS:	1	DIF:	3	TOP:	29.3 Radioac	etivity
43.	Uranium-238 decays a. beta b. alpha c. gamma d. positron	s to Tho	rium-234 by er	mitting '	which of the fo	llowing	;?	
	ANS: B	PTS:	1	DIF:	1	TOP:	29.4 The Dec	cay Processes
44.	When radium-224 era. lead-213 b. actinium-215 c. radon-220 d. bismuth-215	mits an a	alpha particle, t	the rem	aining daughte	r nucleu	as is which of t	the following?
	ANS: C	PTS:	1	DIF:	1	TOP:	29.4 The Dec	cay Processes
45.	Chromium-55 (54.94 u). How much energ a. 5.59 MeV b. 2.61 MeV c. 1.40 MeV d. 0.70 MeV						of manganese-	-55 (54.938 0
	ANS: B	PTS:	1	DIF:	2	TOP:	29.4 The Dec	cay Processes
46.	Of the main types of the most penetrating a. alpha b. beta (electron) c. gamma d. beta (positron)	_	on emitted from	natura	ılly radioactive	isotope	s, which of the	e following is
	ANS: C	PTS:	1	DIF:	1	TOP:	29.4 The Dec	cay Processes
47.	The beta emission properties. Atomic mass characteristics. Atomic number c. Atomic number d. Atomic mass characteristics.	anges by changes changes anges by	y one. by two. by one. y two.					-
	ANS: C	PTS:	1	DIF:	1	TOP:	29.4 The Dec	cay Processes
48.	The alpha emission ja. Atomic mass incb. Atomic number	creases b	by one.	aughter	nucleus differi	ng in w	hat manner fro	om the parent?

	ANS: B	PTS:	1	DIF:	1	TOP:	29.4 The Decay Processes
49.	The existence of the beta decay process? a. conservation of a con	energy moment nd b are	um e valid.	d to acc	count for which	a basic c	conservation laws during the
	ANS: C	PTS:	1	DIF:	1	TOP:	29.4 The Decay Processes
50.	A radioactive isotope a. Atomic number b. Atomic number c. Atomic mass nu d. None of the above	increase decrease mber de	es by one. es by one. ecreases by one	•	will change in	what re	espect?
	ANS: D	PTS:	1	DIF:	1	TOP:	29.4 The Decay Processes
51.	A radioactive isotope a. Atomic number b. Mass number de c. Both choices a a d. None of the above	decreases creases nd b are	es by four. by four. e valid.	article w	vill change in v	what res	pect?
	ANS: B	PTS:	1	DIF:	1	TOP:	29.4 The Decay Processes
52.	What particle is emit 11 and 10) a. alpha b. beta (electron) c. beta (positron) d. gamma quantum		en ²⁰ Na decays	to ²⁰ Ne'	? (atomic numb	pers of I	Na and Ne are, respectively,
	ANS: C	PTS:	1	DIF:	2	TOP:	29.4 The Decay Processes
53.	What particle is emit and 92) a. alpha b. beta (electron) c. beta (positron) d. gamma quantum		en ²⁴⁰ Pu decays	to ²³⁶ U	? (atomic numb	pers of l	Pu and U are, respectively, 94
	ANS: A	PTS:	1	DIF:	1	TOP:	29.4 The Decay Processes
54.	The original nucleus decay scheme of the a. alpha decay follob. two gamma decac. a beta (electron) d. a beta (electron)	origina owed by ays decay f	I nucleus? two beta (elected) followed by an	tron) de alpha de	ecays	es of th	e same element for which
	ANS: A	PTS:	1	DIF:	2	TOP:	29.4 The Decay Processes

c. Atomic number increases by one.d. Atomic mass decreases by two.

55.	5. The neutron is radioactive and can beta decay to form a proton. This can occur primarily because:a. the proton has less mass than a neutron.b. there are several hydrogen isotopes.c. of the binding energy of hydrogen.d. the neutron is neutral.							
	ANS: A	PTS:	1	DIF:	1	TOP:	29.4 The Decay Processes	
56.	In the beta decay of a. energy conserva b. charge conserva c. conservation of d. all of the above.	tion. tion. the num			eutrino was req	uired to	maintain:	
	ANS: A	PTS:	1	DIF:	1	TOP:	29.4 The Decay Processes	
57.	An alpha particle (m MeV. How fast is that a. 2.40 ′ 10 ⁷ m/s b. 1.55 ′ 10 ⁷ m/s c. 3.70 ′ 10 ⁶ m/s d. 1.85 ′ 10 ⁶ m/s	ass = 6. e alpha	68 ′ 10 ⁻²⁷ kg) i particle moving	is emitt g in m/s	ed from a radio s? (1 MeV = 1.6	oactive 1	nucleus with an energy of 5.00 ³ J)	
	ANS: B	PTS:	1	DIF:	2	TOP:	29.4 The Decay Processes	
58.	A 1-gram sample of 12.5% that of preser a. 4 460 years b. 8 600 years c. 13 150 years d. 17 200 years	wood is at-day or PTS:	ganic material,	what i	t site. If the Cars the age of the	wood?	activity of the sample is $(T_{1/2} \text{ for }^{14}\text{C is 5 730 years})$ 29.4 The Decay Processes	
59.		r a posit	eron. earbon dating.					
	ANS: D	PTS:	1	DIF:	1	TOP:	29.4 The Decay Processes	
60.	Each of the three nate for which one? a. ²³⁸ U b. ²³⁵ U c. ²³² Th d. ²³⁷ Np	turally c	occurring radioa	active s	eries start with	one of	the following isotopes except	
	ANS: D	PTS:	1	DIF:	1	TOP:	29.5 Natural Radioactivity	

61.	they reach the stab	ole end product. Ea or 0 (for beta decay	ch decay, therefore,). The radium isotop	emitting alpha particles or beta particles or beta particles in a mass number change of the e 226Ra is in one of these series. When the experience of the ex	either 4
	ANS: A	PTS: 1	DIF: 3	TOP: 29.5 Natural Radio	oactivity
62.	followed by two notations: ^{238}U b. ^{236}U c. $^{234}Th (Z = 90 t)$	egative beta decays	s. At this point, wha	ive series, decays first by alpha dec t is the resulting isotope?	ay
	ANS: D	PTS: 1	DIF: 2	TOP: 29.5 Natural Radio	oactivity
63.		wing describes the r? MeV 05 MeV MeV		mic nuclear reaction with $Q=-2.0$ nergy needed in the reactant nuclei	
	ANS: B	PTS: 1	DIF: 1	TOP: 29.6 Nuclear Reac	etions
64.	which of the followa. reaction is excb. reaction is endc. atomic number	wing statements be othermic lothermic r of each reactant r		greater than that of product particle ditions of the reaction?	s, then
	ANS: A	PTS: 1	DIF: 1	TOP: 29.6 Nuclear Reac	etions
65.	A proton is capture mass number of the a. nitrogen-15 b. oxygen-17 c. oxygen-15 d. fluorine-15		o atom which in turn	n emits a deuteron. What is the elem	nent and
	ANS: C	PTS: 1	DIF: 2	TOP: 29.6 Nuclear Reac	etions
66.	What is the Q-value 931.5 MeV/c²) a. 8.5 MeV b. 7.6 MeV c. 5.2 MeV d. 4.7 MeV	ue for the reaction v	where the products a	are 0.005 0 u less than the reactants	? (1 u =
	ANS: D	PTS: 1	DIF: 2	TOP: 29.6 Nuclear Reac	etions

	 a. the total charge involved. b. energy associated with the change in mass. c. energy associated with momentum conservation. d. the exothermic endothermy. 							
	ANS: B	PTS:	1	DIF:	1	TOP:	29.6 Nuclear Reactions	
68.	In the reaction, who a. 102, 42 b. 101, 42 c. 102, 44 d. not given	at is the r	mass number ar	nd atom	nic number of t	he prod	uct designated by X?	
	ANS: A	PTS:	1	DIF:	2	TOP:	29.6 Nuclear Reactions	
69.							$002\ 602\ u$, of the nitrogen is $4\ 102\ u$. (1 u = $931.5\ MeV/c^2$)	
	ANS: C	PTS:	1	DIF:	3	TOP:	29.6 Nuclear Reactions	
70.		n, the rel	lative mass nur				of this reaction? (Hint: Once ield the result to 3 significant	
	ANS: B	PTS:	1	DIF:	2	TOP:	29.6 Nuclear Reactions	
71.	Which of the follow a. rem b. roentgen c. rad d. RBE	ving is no	ot a unit of radi	ation do	ose?			
	ANS: D TOP: 29.7 Medica	PTS: l Applica			1			
72.	To what is the radia a. helium introduc b. heating c. induced radioac d. ionization	tion	age in biologic	cal orga	nisms primaril	y due?		
	ANS: D TOP: 29.7 Medica		1 ations of Radia		1			
73.	Genetic radiation da a. another name fo							

67. The Q of a nuclear reaction is equal to:

	b. any radiation damage to a cell.c. radiation damage affecting reproductive cells.d. measured in roentgens.							
	ANS: C PTS: 1 DIF: 1 TOP: 29.7 Medical Applications of Radiation							
74.	A rad is that amount of radiation that: a. produces 2.08 ′ 10 ⁹ ion pairs per cm ³ in air under standard conditions. b. deposits 8.76 ′ 10 ⁻³ J of energy into 1 kg of air. c. deposits 10 ⁻² J of energy into 1 kg of absorbing material. d. is also known as a rem.							
	ANS: C PTS: 1 DIF: 2 TOP: 29.7 Medical Applications of Radiation							
75.	Sample #1 is made from an isotope with decay constant and sample #2 is made from an isotope with decay constant, where. Which of the following statements must be true? a. The activity of sample #1 is greater than that of sample #2. b. The activity of sample #2 is greater than that of sample #1. c. The half-life exhibited for sample #1 is greater than that of sample #2. d. The half-life exhibited for sample #2 is greater than that for sample #1							
	ANS: C PTS: 1 DIF: 2 TOP: Conceptual Questions							
76.	Two different nuclei emit alpha particles, the energy released in each of these decays being the same. Which of the following has the highest resulting kinetic energy? a. The lighter daughter nucleus. b. The heavier daughter nucleus. c. The alpha particle from the lighter nucleus. d. The alpha particle from the heavier nucleus.							
	ANS: D PTS: 1 DIF: 2 TOP: Conceptual Questions							
77.	 7. A particle is fired at a target nucleus in which a reaction that could occur has a negative Q value. Which of the following statements is true? a. The kinetic energy of the bombarding particle can be any amount for the reaction to occur. b. The kinetic energy of the bombarding particle must be equal to the absolute value of the Q value for the reaction to occur. c. The kinetic energy of the bombarding particle was greater than the absolute value of the Q value if the reaction occurred. d. The Q value has nothing to do with whether or not the reaction can occur. 							
	ANS: C PTS: 1 DIF: 1 TOP: Conceptual Questions							
78.	The isotope ¹⁴ C cannot be used in dating old samples of which of the following? a. charcoal from a fire b. a bronze implement from a cave c. a bone buried in mud d. All of the above can be dated using ¹⁴ C.							
	ANS: B PTS: 1 DIF: 1 TOP: Conceptual Questions							
79.	Which of the following is not true for both the photon and the neutrino.a. Both are uncharged.b. Both have spin .							

c. Both can carry different amounts of momentum.d. Choose this answer if all of the above are true.

DIF: 2 ANS: B PTS: 1

TOP: Conceptual Questions

CHAPTER 30—Nuclear Energy and Elementary Particles

MULTIPLE CHOICE

Nuclear fission was first observed by:
 a. Hahn and Strassman.

	b. Meitner and Frisch.c. Einstein and Fermi.d. Dirac and Heisenberg.							
	AN	IS: A	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
2.	a. b. c.	e average mass pe hydrogen iron uranium krypton	er nucleo	on is greatest in	which	of the followin	ig elem	ents?
	AN	IS: A	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
3.	 3. A capture by a target nucleus of uranium-235 is most apt to occur for which type of "bullet" partia. low velocity alpha particle b. low velocity proton c. high velocity neutron d. low velocity neutron 							ich type of "bullet" particle?
	AN	IS: D	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
4.	 In order to be useful in sustaining a reaction, the neutrons in a fission reactor must be: a. released from the reactor. b. warmed to a higher temperature. c. accelerated. d. decelerated. 							ctor must be:
	AN	IS: D	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
5.	 In a nuclear reactor which uses the fission process, which of the following is the most likely result in the event of a cooling system failure followed by a nuclear accident? a. proliferation of plutonium fuel b. accumulation of critical mass of fissionable material c. spread of radioactive material into the environment d. reduction of ozone in upper atmosphere 							ng is the most likely result in
	AN	IS: C	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
6.	225							

	ANS: B	PTS:	1	DIF:	2	TOP:	30.1 Nuclear Fission
7.	What characteristic nuclear fission read a. low atomic mab. metallic c. non-metallic d. high atomic ma	etor? ss	red in the eleme	ents co	ntained in mode	erator n	naterials when used in a
	ANS: A	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
8.	The water surround a. coolant b. moderator c. Both choices a d. None of the ch	bove are	valid.	clear fi	ssion reactor se	rves wl	nat purpose(s)?
	ANS: C	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
9.					•		f neutrons from each fission sired that the K-ratio have
	ANS: C	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
10.	In a fission reaction ¹⁴¹ Ba and ⁹² Kr alon a. 1 b. 2 c. 3 d. 5	n, a ²³⁵ U r g with ho	nucleus capture ow many neutro	s a neu	tron. This resul	ts in the	e creation of the products
	ANS: C	PTS:	1	DIF:	2	TOP:	30.1 Nuclear Fission
11.	In a fission reaction ⁹⁵ Y and two neutro 67; and 1 u = 931.5 a. 123 MeV b. 174 MeV c. 199 MeV d. 218 MeV	ns? (atom	ic masses: 235U	s a neu J, 235.0	tron. What ener 143 9; ¹³⁹ I, 138.9	gy is re 935 0; ⁹	eleased if the products are ¹³⁹ I ⁵ Y, 94.913 4; neutron, 1.008
	ANS: B	PTS:	1	DIF:	2	TOP:	30.1 Nuclear Fission
12.		product fr	ragments is 8.5	MeV v			mate average binding energy om is 7.7 MeV, what

	ANS: A	PTS:	1	DIF:	2	TOP:	30.1 Nuclear Fission
13.	Which of the following power plant where the author of the presence of respectively. The presence of the percentage of t	ne fuel e moderati control r f ²³⁵ U re	lements are a raing material ods elative to 238U	nixture	of ²³⁵ U and ²³⁸ U	J?	ons will occur in a nuclear
	ANS: D	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
14.	Which of the following a. nuclear meltdown b. explosive release c. the explosion of d. All of the above	n at a me of radi	uclear power page oactivity and somb	lant team fr			
	ANS: C	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
15.	Calculate the energy energy released per fa. 1.2 ′ 10 ⁵ kWxh b. 7.7 ′ 10 ⁶ kWxh c. 11 ′ 10 ⁶ kWxh d. 22 ′ 10 ⁶ kWxh					39 und	ergoes complete fission. The
	ANS: D	PTS:	1	DIF:	2	TOP:	30.1 Nuclear Fission
16.		ared to					tend to have an excess of y would one expect from
	ANS: B	PTS:	1	DIF:	2	TOP:	30.1 Nuclear Fission
17.	Where is the largest a. Canada b. Siberia c. Africa d. none of the above	• •	d source of ura	nium?			
	ANS: D	PTS:	1	DIF:	1	TOP:	30.1 Nuclear Fission
18.	A plasma can be con a. high temperature b. liquid in form c. made of charged d. made of light ele	e particle	Ç	bottle"	because it has v	vhich o	f the following properties?
	ANS: C	PTS:	1	DIF:	1	TOP:	30.2 Nuclear Fusion
19	The advantage of a f	usion re	actor when cor	nnared	to a fission read	etor is v	which of the following?

		Both choices abo None of the abov						
	ANS	S: C	PTS:	1	DIF:	1	TOP:	30.2 Nuclear Fusion
20.	fuel a. b. c.	self-sustained conmaterial be subjection confined for sufficiently be at sufficiently All of the above of	ected to cient ti high de high te	which of the forme period ensity mperature		•		ich must be met is that the
	ANS	S: D	PTS:	1	DIF:	1	TOP:	30.2 Nuclear Fusion
21.	the a. b. c.	en comparing progreater binding engreater in production greater in reactant equal in both pronone of the above	nergy po t nuclei t nuclei duct an	er nucleon? i d reactant nucle		in an exotherm	al nucle	ear fusion process, which has
	ANS	S: A	PTS:	1	DIF:	1	TOP:	30.2 Nuclear Fusion
22.	dens If th a. b. c.	sity and confinem	ent tim	e of the plasma	fuel, ir	n order that the	process	conditions, as related to s produces a net power output. nement time change?
	ANS	S: B	PTS:	1	DIF:	1	TOP:	30.2 Nuclear Fusion
23.	proc 031: a. b. c.	culate the energy ducts are ⁴ He and ; also 1 u = 931.5 2.95 MeV 4.81 MeV 8.63 MeV 17.2 MeV	³ H. (ato	omic masses: 6I	ng fusio Li, 6.01	on reaction who 5 12; neutron,	ere reac 1.008 6	tants are ⁶ Li and a neutron; 7; ⁴ He, 4.002 60; ³ H, 3.016
	ANS	S: B	PTS:	1	DIF:	2	TOP:	30.2 Nuclear Fusion
24.	is m a. b. c.		drogen n atoms into th	fuel s of their electro eir elementary	ons particle	sub-parts	equired	in order that what condition
	ANS	S: D	PTS:	1	DIF:	1	TOP:	30.2 Nuclear Fusion

a. The fuel is cheaper.b. There is less radioactive waste material.

25.	The formation of a star requires the consideration of the effects of gravity and the energy from nuclear reactions and a star will form only when both the temperature and density are sufficiently high. In the birth of a star: a. gravity produces the initial required high temperature and density. b. nuclear reactions produce the initial high temperature. c. nuclear reactions produce the initial required high density. d. nuclear reactions produce the initial required high temperature and density.							
	ANS: A	PTS:	1	DIF:	1	TOP:	30.2 Nuclear Fusion	
26.	The reason that a the because: a. the temperature is the density is not c. there is insufficied. the deuterium in	is not hi t high er ent deut	gh enough. nough. erium in the oc	ean.	nnot be mainta	ined in	the oceans of the earth is	
	ANS: A	PTS:	1	DIF:	1	TOP:	30.2 Nuclear Fusion	
27.	1 m ³ of water and the	en reacte	ed, how much e	energy	could be obtain	ed? (Ea	rium could be extracted from ach D-D fusion liberates 3.65 ater has a mass of 18 g, and	
	ANS: D	PTS:	1	DIF:	2	TOP:	30.2 Nuclear Fusion	
28.	How much kinetic en 10 ⁻¹⁴ m of another de a. 30 keV b. 50 keV c. 70 keV d. 140 keV						have to approach within 1.0 ′ 1.6 ′ 10 ⁻¹⁶ J)	
	ANS: D	PTS:	1	DIF:	2	TOP:	30.2 Nuclear Fusion	
29.	How fast is an ion of $100 \cdot 10^6 \text{ K}$? ($k_B = 1$ a. $1.12 \cdot 10^6 \text{ m/s}$ b. $0.93 \cdot 10^5 \text{ m/s}$ c. $0.46 \cdot 10^5 \text{ m/s}$ d. $2.32 \cdot 10^4 \text{ m/s}$						plasma with a temperature of	
	ANS: A	PTS:	1	DIF:	3	TOP:	30.2 Nuclear Fusion	
30.	In the proton-proton a. heavy hydrogen. b. tritium. c. helium-3. d. helium-4.		ne eventual pro	duct is:	:			
	ANS: D	PTS:	1	DIF:	1	TOP:	30.2 Nuclear Fusion	

31.	Assuming the Lawson density at 10 ⁸ K? a. 10 ⁶ /cm ³ b. 10 ²² /cm ³ c. 10 ⁻⁶ /cm ³ d. More information		deuterium-triti	um interaction,, wh	nat is the minimum plasma ion
	ANS: D	PTS: 1	DIF: 1	TOP:	30.2 Nuclear Fusion
32.	Which particle in the a. electron b. photon c. neutron d. proton	free state is least s	table?		
	ANS: C TOP: 30.3 Elementa	PTS: 1 ary Particles and the	DIF: 1 e Fundamenta	l Forces	
33.	What is meant by a para. It is too small to sub. It is subatomic. c. It is not composed. It has no charge.	see.			
	ANS: C TOP: 30.3 Elementa	PTS: 1 ary Particles and th	DIF: 1 e Fundamenta	l Forces	
34.	Which of the following a. the neutron b. the meson c. the electron d. All of the above.	ng particles is (are)) considered to	be elementary?	
	ANS: C TOP: 30.3 Elementa	PTS: 1 ary Particles and th	DIF: 1 e Fundamenta	l Forces	
35.	Which of the following a. strong nuclear b. weak nuclear c. electromagnetic d. gravitational				
	ANS: D TOP: 30.3 Elementa	PTS: 1 ary Particles and the	DIF: 1 e Fundamenta	l Forces	
36.	Which force can act ofa. only gravitationalb. only electricalc. only magneticd. All of the above.		parable to the	distance between p	lanets?
	ANS: D TOP: 30.3 Elementa	PTS: 1 ary Particles and the	DIF: 1 e Fundamenta	l Forces	
37.	Which of the following	ng particles has no	t been observe	d experimentally?	

	 a. photon b. graviton c. antiproton d. Z⁰ boson
	ANS: B PTS: 1 DIF: 1 TOP: 30.3 Elementary Particles and the Fundamental Forces
38.	The weak force that acts between an electron and a quark is caused by the exchange of: a. photons. b. gluons. c. gravitons. d. W^+ , W^- , or Z^0 bosons.
	ANS: D PTS: 1 DIF: 1 TOP: 30.3 Elementary Particles and the Fundamental Forces
39.	Theoretical physicists have had the least success in combining which force with the electromagnetic force? a. strong nuclear force b. weak nuclear force c. gravitational force d. electrical Coulomb force
	ANS: C PTS: 1 DIF: 1 TOP: 30.3 Elementary Particles and the Fundamental Forces
40.	Theoretical physicists have had the greatest success in combining which force with the electromagnetic force? a. strong nuclear force b. weak nuclear force c. gravitational force d. the force caused by the exchange of gluons
	ANS: B PTS: 1 DIF: 1 TOP: 30.3 Elementary Particles and the Fundamental Forces
41.	The Dirac theory predicted that a positron would be: a. a negative electron in a negative energy state. b. a particle with same mass as an electron but with opposite charge. c. a particle with negative mass. d. All of the above.
	ANS: B PTS: 1 DIF: 1 TOP: 30.4 Positrons and Other Antiparticles
42.	A positron and an electron differ in: a. charge. b. mass. c. spin. d. energy.
	ANS: A PTS: 1 DIF: 1 TOP: 30.4 Positrons and Other Antiparticles
43.	The size and sign of the charge on an electron is the same as that for:

	c. an antineutron.d. an antineutrino.
	ANS: B PTS: 1 DIF: 1 TOP: 30.4 Positrons and Other Antiparticles
44.	The medical diagnostic technique PET stands for: a. proton energizing test. b. phosphorus electron tracing. c. precision electronic tracking. d. positron emission tomography.
	ANS: D PTS: 1 DIF: 1 TOP: 30.4 Positrons and Other Antiparticles
45.	Which particle was the last to be discovered? a. electron b. neutrino c. neutron d. proton
	ANS: B PTS: 1 DIF: 1 TOP: 30.4 Positrons and Other Antiparticles
46.	Calculate the range of the force that might be produced by the virtual exchange of a proton. Assume $DE \times Dt = h/2p$. $(m_p = 1.67 \ ' \ 10^{-27} \ kg, \ c = 3.00 \ ' \ 10^8 \ m/s, \ and \ h/2p = 1.05 \ ' \ 10^{-34} \ J \times)$ a. $6.7 \ ' \ 10^{-25} \ m$ b. $2.1 \ ' \ 10^{-16} \ m$ c. $6.0 \ ' \ 10^{-8} \ m$ d. $1.5 \ ' \ 10^{-15} \ m$
	ANS: B PTS: 1 DIF: 2 TOP: 30.4 Positrons and Other Antiparticles
47.	The virtual exchange of photons can produce: a. a repulsive force. b. an attractive force. c. either a repulsive or an attractive force. d. neither a repulsive nor an attractive force.
	ANS: C PTS: 1 DIF: 1 TOP: 30.4 Positrons and Other Antiparticles
48.	The pion ($m_p = 140 \text{ MeV/c}^2$) is thought to be the particle exchanged in the nuclear force. What is the maximum range of this particle if its "time of existence" is as long as can be allowed by the uncertainty principle DE x D $t = h/2p$? ($h/2p = 1.05$ ′ 10^{-34} J x s, $c = 3.00$ ′ 10^8 m/s, and $1 \text{ eV} = 1.6$ ′ 10^{-19} J) a. $1.2 \cdot 10^{-15}$ m b. $1.4 \cdot 10^{-15}$ m c. $2.0 \cdot 10^{-15}$ m d. $7.5 \cdot 10^{-15}$ m
	ANS: B PTS: 1 DIF: 3

a. a positron.b. an antiproton.

TOP: 30.4 Positrons and Other Antiparticles

49.	The attractive force between protons and neutrons in the nucleus is brought about by the exchange of a virtual pi-meson ($m_p = 140 \text{ MeV/c}^2$). Estimate the longest time a ρ can exist in accordance with the uncertainty principle DE \times D $t = h/2\rho$. ($h/2\rho = 1.05$ ′ 10^{-34} J×s, $1 \text{ eV} = 1.6$ ′ 10^{-19} C) a. 3.3 ′ 10^{-18} s b. 2.4 ′ 10^{-21} s c. 4.7 ′ 10^{-24} s d. 6.9 ′ 10^{-27} s
	ANS: C PTS: 1 DIF: 3 TOP: 30.4 Positrons and Other Antiparticles
50.	"MeV/c²" is a unit for: a. energy. b. mass. c. momentum. d. nuclear force.
	ANS: B PTS: 1 DIF: 1 TOP: 30.4 Positrons and Other Antiparticles
51.	Which of these particles has the most mass? a. pion b. muon c. electron d. positron
	ANS: A PTS: 1 DIF: 2 TOP: 30.5 Classification of Particles
52.	According to present theories, there is a neutrino for all the following particles except: a. the neutral pion. b. the electron. c. the muon. d. the tau lepton.
	ANS: A PTS: 1 DIF: 1 TOP: 30.5 Classification of Particles
53.	Which of the following is not true of electron neutrinos?a. They are spinless.b. They are chargeless.c. They are massless (or nearly so).d. They are leptons.
	ANS: A PTS: 1 DIF: 1 TOP: 30.5 Classification of Particles
54.	In the decay of the muon into an electron, a neutrino, and an antineutrino, the antineutrino is a(n) antineutrino. a. electron b. muon c. tau d. gluon

	ANS: A TOP: 30.5 Classific	PTS: 1 cation of Particles	DIF:	2		
55.	Which of the followi a. the muon b. the pion c. the kaon d. All of the above					
	ANS: A TOP: 30.5 Classific	PTS: 1 cation of Particles	DIF:	1		
56.	If protons have a half 10^{10} year existence of a. $10/31$ b. $21/31$ c. $5 \cdot 10^{-7}$ d. less than any of the second	f the universe?	hat fract	ion of th	e original prot	ons have decayed during the
	ANS: D	PTS: 1	DIF:	2	TOP:	30.6 Conservation Laws
57.	A neutron and a proto a. charge. b. half-life. c. mass. d. baryon number.	on have the same:				
	ANS: D	PTS: 1	DIF:	1	TOP:	30.6 Conservation Laws
58.	What quantity is cona. baryon number b. charge c. lepton number d. All of the above.		ng reacti	on?		
	ANS: D	PTS: 1	DIF:	2	TOP:	30.6 Conservation Laws
59.	What quantity is conta. baryon number b. charge c. lepton number d. All of the above.		ng reacti	on?		
	ANS: D	PTS: 1	DIF:	2	TOP:	30.6 Conservation Laws
60.	A photon hits an electrollision. These may a. neutron and neut b. neutron and antin c. photon and neutrol.	be: crino. neutrino. crino.	on is cre	ated. Son	ne uncharged	particles must have left the
	ANS: A	PTS: 1	DIF:	2	TOP:	30.6 Conservation Laws

61.	A negative muon de particle must be a(n) a. positron. b. antineutrino. c. neutrino. d. photon.	-	orm an electro	n and a	mu neutrino ai	nd one a	additional particle. The other
	ANS: B	PTS:	1	DIF:	2	TOP:	30.6 Conservation Laws
62.	If a negative muon departicle may be a(n): a. positron. b. antineutrino. c. mu neutrino. d. electron.	•	o form an electr	on-anti	ineutrino pair a	nd one	other particle, the other
	ANS: C	PTS:	1	DIF:	2	TOP:	30.6 Conservation Laws
63.	If a photon produces a. muon. b. antineutrino. c. neutrino. d. photon.	an elec	tron-positron p	air and	one other parti	cle, the	other particle may be a(n):
	ANS: D	PTS:	1	DIF:	2	TOP:	30.6 Conservation Laws
64.	Which of the follows a. b. c. d. ANS: A	ing parti		annot o		TOP:	30.6 Conservation Laws
65.	Which of the follow	ing parti	cle reactions ca	an occu	ır?		
	a. b. c. d.	D					
	ANS: A	PTS:	I	DIF:	2	TOP:	30.6 Conservation Laws
66.	Which of the follows a. b. c. d.	ing deca	ys violates con	servati	on of lepton nu	mber?	
	ANS: D	PTS:	1	DIF:	2	TOP:	30.6 Conservation Laws
67.	A proton and antipro (particles + energy) a. 800 GeV b. 400 GeV c. zero d. 1 600 GeV			ergy 400	0 GeV collide h	nead-on	. What is the total energy

	ANS: A	PTS: 1	DIF: 1	TOP: 30.6 Conservation Laws
68.	Which of the follows a. lepton number b. baryon number c. meson number d. energy	ing is not conserved?		
	ANS: C	PTS: 1	DIF: 1	TOP: 30.6 Conservation Laws
69.	occurs because stran a. is conserved in t b. is conserved in t c. is conserved in t		and decay. of in their decay. heir production.	but they decay relatively slowly. This
	ANS: B	PTS: 1	DIF: 2	TOP: 30.6 Conservation Laws
70.	The strangeness of a a. +1. b. 0. c1. d2.	n anti-proton is:		
	ANS: B	PTS: 1	DIF: 1	TOP: 30.6 Conservation Laws
71.		t occur because it doe		proton and a neutron to produce a S^0
	ANS: C	PTS: 1	DIF: 2	TOP: 30.6 Conservation Laws
72.	The S ⁺ , S ⁰ , and S ⁻ all produce which of the a. S ⁻ and S ⁰ b. S ⁺ and anti-S ⁰ c. anti-S ⁺ and S ⁰ d. anti-S ⁻ and S ⁰	I have strangeness of e following particles?	(-1). The collision of a	n anti-proton and a neutron may
	ANS: C	PTS: 1	DIF: 2	TOP: 30.6 Conservation Laws
73.	If a K ⁰ meson at rest a bubble chamber? (a. 9.3 cm b. 1.1 cm c. 53 cm d. 42 cm		0 s, how far will a K^{0} n	neson moving at $0.96\ c$ travel through
	ANS: A	PTS: 1	DIF: 3	TOP: 30.6 Conservation Laws
74.	Which of the follow	ing particles is made o	of two or more smaller	particles?

	b. photonc. protond. None of the above	ve.				
	ANS: C	PTS: 1	DIF:	2	TOP:	30.8 Quarks and Color
75.	According to the star a. spin. b. baryon number. c. charge. d. All of the above		-	ntiquark may h	ave the	same:
	ANS: A	PTS: 1	DIF:	2	TOP:	30.8 Quarks and Color
76.	According to the star same: a. charge. b. baryon number. c. strangeness. d. All of the above			ases in which a	quark a	and its anti-quark have the
	ANS: C	PTS: 1	DIF:	2	TOP:	30.8 Quarks and Color
77.	If two quarks in an a color: a. red. b. blue. c. anti-purple. d. anti-green.	nti-proton h	ave the color anti-	red and anti-blu	ue, the t	third quark must have the
	ANS: D	PTS: 1	DIF:	2	TOP:	30.8 Quarks and Color
78.	The spin of all quark a. 0. b. 1/2. c. 1. d. 1/3 or 2/3.	s is:				
	ANS: B	PTS: 1	DIF:	2	TOP:	30.8 Quarks and Color
79.	The charge of some a. 0. b. 1/2 (1.6 ′ 10 ⁻¹⁹) c. 1/3 (1.6 ′ 10 ⁻¹⁹) d. 1 (1.6 ′ 10 ⁻¹⁹) C	C. C.	iti-quarks is:			
	ANS: C	PTS: 1	DIF:	1	TOP:	30.8 Quarks and Color
80.						+ S ⁻ . If the quark composition quark composition of the S ⁻ ?

a. electron

	ANS: A	PTS:	1	DIF:	3	TOP:	30.8 Quarks and Color
81.	Mesons are compose a. two, two b. two, three c. three, two d. three, three	d of	quarks,	and ba	nryons are comp	osed of	f quarks.
	ANS: B	PTS:	1	DIF:	2	TOP:	30.8 Quarks and Color
82.	Mesons are always contains a two quarks, one look a quark of one contains an up or down quark. Two of the above	being clolor and lark and	assified as a qu an antiquark o l a down or up	f the ar	nticolor.	n antiqu	ıark.
	ANS: D	PTS:	1	DIF:	2	TOP:	30.8 Quarks and Color
83.	The weak force is me a. the W ⁺ boson. b. the W ⁻ boson. c. the Z ⁰ boson. d. All of the above. ANS: D	ediated l		DIF:	1		
	TOP: 30.9 Electrow	eak The	eory and the St	andard	Model		
84.	The particle thought a. the graviton. b. the gluon. c. the particle. d. the Higgs boson. ANS: D		-	e masse			
	TOP: 30.9 Electrow						
85.	The cosmic background a. 0.000 3 K b. 0.03 K c. 3 K d. 300 K	ınd radi	ation appears c	ompati	ble with a black	kbody s	ource at what temperature?
	ANS: C TOP: 30.10 The Co	PTS: smic Co		DIF:	1		
86.	The Big Bang occurr a. about 15 to 20 bi b. about 5 to 7 thou c. about 4 to 6 billio d. infinitely far in the	llion ye sand ye on years	ars ago.				
	ANS: A TOP: 30.10 The Co	PTS: smic Co		DIF:	1		
87.	The microwave back a. represents the lef			ig Ban	g.		

	b. was discovered by Penzias and Wilson.c. had its slight non-uniformity measured by COBE.d. All of the above.
	ANS: D PTS: 1 DIF: 1 TOP: 30.10 The Cosmic Connection
88.	The stars farther than 20 000 LY from the center of the Milky Way are traveling too fast to be bound to the galaxy by the observed mass of the galaxy. Which of the following are currently being investigated as possible explanations of this? a. neutrino mass b. WIMPs c. Newtonian dynamics are not quite correct. d. all of the above
	ANS: D PTS: 1 DIF: 1 TOP: 30.11 Unanswered Questions in Cosmology
89.	What is the particle referred to as a WIMP? a. the result of a neutrino oscillation b. a hypothetical particle left over from the Big Bang c. a hypothetical particle in the MOND theory d. none of the above
	ANS: B PTS: 1 DIF: 1 TOP: 30.11 Unanswered Questions in Cosmology
90.	 What is the "cosmological constant?" a. The universe has existed forever and on the average (over billions of cubic light years) does not change. b. This is the ratio between "dark energy" and "dark matter." c. This is a quantity also referred to as "quintessence." d. This is a self-admitted blunder in his theory of general relativity by Einstein, that might not be a blunder after all
	ANS: D PTS: 1 DIF: 1 TOP: 30.11 Unanswered Questions in Cosmology
91.	When considering the law of conservation of lepton number for a reaction, how many different lepton numbers must be checked? a. 1 b. 2 c. 3 d. 6
	ANS: C PTS: 1 DIF: 2 TOP: Conceptual Questions
92.	If the lifetime of a particle is roughly inversely proportional to the relative strength of the force involved, then for the strong, electromagnetic, and weak forces, arrange the forces according to their resulting lifetimes ranging from shortest to longest lifetimes. a. strong, electromagnetic, weak b. weak, electromagnetic, strong c. weak, strong, electromagnetic d. strong, weak, electromagnetic
	ANS: A PTS: 1 DIF: 2 TOP: Conceptual Questions

93.	The law of conserve following interactions. strong b. electromagnetic. weak d. All three of the	ons?	Ū			not con	nserved for which of the
	ANS: C	PTS:	1	DIF:	1	TOP:	Conceptual Questions
94.	Which, if any, is ar a. the proton b. the particle c. the muon d. All three are no						
	ANS: C	PTS:	1	DIF:	1	TOP:	Conceptual Questions
95.	 95. Baryons are composed of 3 quarks. If all 3-quark compositions of particles could happen, what would be the highest possible charge for such a particle? a. 1 e b. 2 e c. 3 e d. There is no upper limit, though the charge is usually less than 3 e. 						
	ANS: B	PTS:	1	DIF:	2	TOP:	Conceptual Questions