

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Primer Semestre de 2019

Tarea 3

Introducción a la Geometría Algebraica — MAT 2335 Fecha de Entrega: 2019/04/26

${\bf \acute{I}ndice}$

Problema 2.4	2
Problema 2.5	2
Problema 2.6	2
Problema 2.8	2
Problema 2.15	3
Problema 2.17	3
Problema 2.24	3
Problema 2.33	4
Problema 2.35	4
Problema 2.38	5
Problema 2.41	6
Problema 2.47	6
Problema 2.49	6
Problema 2.55	8

Notas

En esta tarea se usará la notación $\overline{a} = (a_1, \dots, a_n)$

Problema 2.4:

Sea $V \subset \mathbb{A}^n$ una variedad no vacía. Muestre que los siguientes son equivalentes:

- (I) V es un punto
- (II) $\Gamma(V) = k$
- (III) $\dim_k \Gamma(V) < \infty$

Solución problema 2.4:

Problema 2.5:

Sea F un polinomio irreducible en k[x,y], y suponga que F es mónico en y: $F = y^n + a_1(x)y^{n-1} + \ldots$ con n > 0. Sea $V = V(F) \subset \mathbb{A}^2$. Muestre que el homorfismo natural de k[x] a $\Gamma(V) = k[x,y]/(F)$ es inyectivo, para que k[x] pueda considerarse un subanillo de $\Gamma(V)$; muestre que los residuos $\overline{1}, \overline{y}, \ldots, \overline{y}^{n-1}$ generan $\Gamma(V)$ sobre k[x] como un modulo.

Solución problema 2.5:

Problema 2.6:

Sea $\varphi: V \to W, \psi: W \to Z$. Demuestre que $\widetilde{\psi \circ \varphi} = \widetilde{\varphi} \circ \widetilde{\psi}$. Muestre que la composición de mapeos polinomiales es un mapeo polinomial.

Solución problema 2.6:

Problema 2.8:

- (a) Muestre que $\{(t, t^2, t^3) \in \mathbb{A}^3 : t \in k\}$ es una variedad.
- (b) Muestre que $V(xz-y^2,yz-x^3,z^2-x^2y)\subset \mathbb{A}^3_{\mathbb{C}}$ es una variedad. ($Hint:y^3-x^4,z^3-x^5,z^4-y^5\in I(V)$). Encuentre un mapeo polinomial desde $\mathbb{A}^1_{\mathbb{C}}$ a V.)

Solución problema 2.8:

Problema 2.15:

Sean $P = (a_1, \ldots, a_n), Q = (b_1, \ldots, b_n)$ puntos distintos de \mathbb{A}^n . La recta a través de P y Q es definida como $\{(a_1 + t(b_1 - a_1), \ldots, a_n + t(b_n - a_n)) : t \in k\}$

- (a) Muestre que si L es una recta a través de P y Q, y T es un cambio de coordenadas afín, entonces T(L) es la recta a través de T(P) y T(Q).
- (b) Muestre que una recta es una subvariedad lineal de dimensión 1, y que una subvariedad lineal de dimensión 1 es una recta a través de dos puntos.
- (c) Muestre que, en \mathbb{A}^2 , una recta es lo mismo que un hiperplano.
- (d) Sean $P, P' \in \mathbb{A}^2$, L_1, L_2 dos rectas distintas a través de P, L'_1, L'_2 dos rectas distintas a través de P'. Muestre que existe un cambio de coordenadas afín T de \mathbb{A}^2 tal que T(P) = P' y $T(L_i) = L'_i, i = 1, 2$.

Solución problema 2.15:

Problema 2.17:

Sea $V = V(y^2 - x^2(x+1)) \subset \mathbb{A}^2$, y $\overline{x}, \overline{y}$ los residuos de x, y en $\Gamma(V)$; sea $z = \overline{x}/\overline{y} \in k(V)$. Encuentre los conjuntos de polos de z y de z^2 .

Solución problema 2.17:

Problema 2.24:

Sea $V = \mathbb{A}^1, \Gamma(V) = k[x], K = k(V) = k(x).$

- (a) Para cada $a \in k = V$, muestre que $\mathcal{O}_a(V)$ es un DVR con parámetro de uniformización t = x a.
- (b) Muestre que $\mathcal{O}_{\infty} = \{F/G \in k(x) : \deg(G) \ge \deg(F)\}$ también es un DVR, con parámetro de uniformización t = 1/x.

Solución problema 2.24:

Problema 2.33:

Separe $y^3 - 2xy^2 + 2x^2y + x^3$ en factores lineales en $\mathbb{C}[x,y]$.

Solución problema 2.33: Se nota que $p(x,y) = y^3 - 2xy^2 + 2x^2y + x^3$ es un polinomio homogéneo, por ende factorizarlo en $\mathbb{C}[x,y]$ es equivalente a factorizar p(x,1) en $\mathbb{C}[y]$. Como \mathbb{C} es cerrado, y p(x,1) es de grado 3, tiene 3 raíces χ_1, χ_2, χ_3 y $p(x,1) = (x-\chi_1)(x-\chi_2)(x-\chi_3)$. Con esto se tiene que $p(x,y) = (x-y\chi_1)(x-y\chi_2)(x-y\chi_3)$, consiguiendo lo pedido.

Problema 2.35:

- (a) Muestre que d+1 monomios de grado d en R[x,y], y $1+2+\cdots+(d+1)=\frac{(d+1)(d+2)}{2}$ monomios de grado d en R[x,y,z].
- (b) Sea $V(d, n) = \{\text{polinomios homógeneos de grado } d \text{ en } k[x_1, \dots, x_n]\}, k$ un cuerpo. Muestre V(d, n) es un espacio vectorial, y que los monomios de grado d forman una base. Entonces dim V(d, 1) = 1; dim V(d, 2) = d + 1; dim V(d, 3) = (d + 1)(d + 2)/2.
- (c) Sea L_1, L_2, \ldots y M_1, M_2, \ldots secuencias de polinomios lineales homógeneos no cero en k[x,y], y asume que ningún $L_i = \lambda M_j, \lambda \in k$. Sea $A_{ij} = L_1 L_2 \ldots L_i M_1 M_2 \ldots M_j, i, j \geq 0$ $(A_{00} = 1)$. Muestre que $\{A_{ij} : i + j = d\}$ es base para V(d,2).

Solución problema 2.35:

- (a) Se nota que un monomio en R[x,y] es de la forma x^iy^j , por lo que los monomios de grado d cumplen que i+j=d, claramente i fija a j, e i tiene d+1 posibles valores, por lo que hay d+1 monomios de grado d. Similarmente a lo anterior un monomio en R[x,y,z] es de la forma $x^iy^jz^k$, donde los monomios de grado d cumplen i+j+k=d, con i,j fijando k, también se nota que dado un i fijo j tiene d+1-i posibles valores, por lo que la cantidad de monomios sería $sum_{i=0}^{d+1}(d+1-i)=\sum_{j=0}^{d+1}j=(d+1)(d+2)/2$.
- (b) Sea $p \in V(d, n)$, como es homogéneo $p(\overline{x}, 1) \in k[x_1, \dots, x_{n-1}]$ y tiene grado d, se sabe que los polinomios de grado a lo más d son un espacio vectorial sobre k y cada $p \in V(d, n)$ tiene un elemento correspondiente en este espacio vectorial, por lo que solo es necesario demostrar clausura. Sean $p, q \in V(d, n)$ luego $p(\overline{x}, 1) + q(\overline{x}, 1) \in k[x_1, \dots, x_{n-1}]$ es un polinomio de grado d ya que deg(p+q) = max(deg(p), deg(q)) y deg p = deg q = d con lo que tenemos que V(d, n) es un e.v. sobre k. Claramente los monomios son l.i., y cada polinomio homogéneo de grado d se escribe en monomios de grado d. Con lo que tenemos lo pedido.

(c) Se nota que solo es necesario demostrar que los A_{ij} son l.i., ya que claramente son d+1 y en (b) se vio que la dimensión de V(d,2) es d+1. Se enumeran los A_{ij} que cumplen i+j=d de la siguiente forma $A_{i(d-i)}$ donde $i \in \{0,\ldots,d\}$. Por inducción en i, se toma A_{0d} y $A_{1(d-1)}$, se asume que son l.d., entonces existe λ tal que:

$$A_{0d} = \lambda A_{1(d-1)}$$

$$M_1 \dots M_d = \lambda L_1 M_1 \dots M_{d-1}$$

Se divide por $M_1
ldots M_{d-1}$, por lo que $M_1 = \lambda L_1$, lo que es una contradicción. Sean i = k, se asume que $A_{k(d-k)}$ se puede escribir como una combinación lineal de los $A_{i(d-i)}$ con $0 \le i < k$:

$$A_{k(d-k)} = \sum_{j=0}^{k-1} \alpha_j A_{j(d-j)}$$

$$L_1 \dots L_k M_1 \dots M_{d-k} = \sum_{j=0}^{k-1} \alpha_j L_1 \dots L_j M_1 \dots M_{d-j}$$

Se nota que ambos lados son divisibles por $M_1
ldots M_{d-k}^1$, y se divide por esto. Se ve que los $A_{i(d-i)}$ con $i \in \{0, \dots, d\}$ son divisibles por M_{d-k+1} , con lo que lo que se tenía antes se puede escribir de la siguiente forma:

$$L_1 \dots L_k = \sum_{j=0}^{k-1} \alpha_j L_1 \dots L_j M_{d-k+1} \dots M_{d-j}$$

$$L_1 \dots L_k = M_{d-k+1} \left(\sum_{j=0}^{k-1} L_1 \dots L_j M_{d-k+2} \dots M_{d-j} \right)$$

Por lo que $M_{d-k+1} \mid L_1 \dots L_k$, se recuerda que M_{d-k+1} es lineal por lo que es irreducible, luego $M_{d-k+1} \mid L_i$ con $i \in \{1, ..., k\}$, pero es no posible por enunciado, por lo que se tiene una contradicción. Con esto se nota que los $A_{i(d-i)}$ son l.i., con lo que se tiene lo pedido.

Problema 2.38:

Muestre que si $k \subset R_i$, y cada R_i es finito-dimensional sobre k; entonces dim $(\prod R_i) = \sum \dim R_i$

$$1d-i > d-k$$

5

Solución problema 2.38: Se nota que ya que cada R_i es finito-dimensional sobre k, existe una base $(a_{i,1}, \ldots, a_{i,n_i})$. Ahora, sea $\overline{x} \in \prod R_i$, entonces cada uno de sus componentes x_i se puede escribir en la base correspondiente. Sean R, R' finito-dimensionales sobre k, luego sea $(x,0), (0,x') \in R \times R'$, claramente son l.i., por lo que un elemento de $R \times R'$ se escribe en base a un elemento en cada espacio vectorial, y cada uno de esos elementos se escribe con su base correspondiente (las cuales son l.i. ya que los mismos elementos son l.i.), por lo que la base de $R \times R'$ es la unión de las bases de cada uno, con lo que dim $R \times R' = \dim R + \dim R'$. Usando esto inductivamente sobre la cantidad de R_i se tiene lo pedido.

Problema 2.41:

Sean I, J ideales en un anillo R. Suponga que I es finitamente generado y $I \subset \operatorname{rad}(J)$. Muestre que $I^n \subset J$ para algún n.

Solución problema 2.41: Sea $I=(a_1,\ldots,a_k)$, luego los $a_i\Longrightarrow a_i\in\operatorname{rad} J$, por lo que existe un n_i tal que $a_i^{n_i}\in J$, sea $n=\max_i\{n_i\}$, luego $a_i^n\in J$ con $i=1,\ldots,k$. Sea $a\in I^{kn}$, luego a se escribe en base a monomios de la forma $a_1^{\alpha_1}a_2^{\alpha_2}\ldots a_k^{\alpha_k}$ donde $kn=\sum \alpha_i$, se nota que a_i^n divide a cada monomio para algún i (si no $\alpha_i< n$ para todos los i, con lo que su suma sería menor a kn), por lo que cada uno de los monomios pertenece a J, y como generan I^{kn} , se tiene que $I^{kn}\subset J$.

Problema 2.47:

Suponga que R es un anillo que contiene a k, y R es finito-dimensional sobre k. Muestre que R es isomorfo al producto directo de anillos locales.

Solución problema 2.47:

Problema 2.49:

- (a) Sea N un submódulo de M, $\pi: M \to M/N$ el homorfismo natural. Suponga que $\varphi: M \to M'$ es un homorfismo de R-módulos, y $\varphi(N) = 0$. Muestre que hay un homorfismo único $\overline{\varphi}: M/N \to M'$ such tal que $\overline{\varphi} \circ \pi = \varphi$.
- (b) Si N y P son submódulos de un módulo M, con $P \subset N$, entonces hay homorfismos naturales de M/P a M/N y de N/P a M/P. Muestre que la secuencia resultante

$$0 \to N/P \to M/P \to M/N \to 0$$

es exacta ("El segundo Teorema de Isomorfismo de Noether").

- (c) Sean $U \subset W \subset V$ espacios vectoriales, con V/U finito-dimensional. Entonces dim $V/U = \dim V/W + \dim W/U$.
- (d) Si $J \subset I$ son ideales en un anillo R, hay una secuencia exacta de R-módulos:

$$0 \to I/J \to R/J \to R/I \to 0$$

(e) Si \mathcal{O} es un anillo local con ideal maximal \mathfrak{m} , hay una secuencia exacta natural de \mathcal{O} -módulos

$$0 \to \mathfrak{m}^n/\mathfrak{m}^{n+1} \to \mathcal{O}/\mathfrak{m}^{n+1} \to \mathcal{O}/\mathfrak{m}^{n+1} \to 0$$

Solución problema 2.49: Nota: Para efectos de esta pregunta \overline{a} es el residuo de a.

(a) Sea $\overline{\varphi}: M/N \to M'$ tal que $\overline{x} \mapsto \varphi(x)$, hay que demostrar que es morfismo, o sea que esta bien definido y que $\overline{\varphi}(\overline{\lambda a} + \overline{b}) = \lambda \overline{\varphi}(\overline{a}) + \overline{\varphi}(\overline{b})$. Sean $a, b \in M$ tal que $\overline{a} = \overline{b}$, entonces se nota que $a - b \in N$, por lo que $\varphi(a - b) = 0$, o sea $\varphi(a) = \varphi(b)$, con lo que tenemos que está bien definida. Ahora se ve lo segundo:

$$\overline{\varphi}(\overline{\lambda a + b}) = \varphi(\lambda a + b)$$

$$= \lambda \varphi(a) + \varphi(b)$$

$$= \lambda \overline{\varphi}(\overline{a}) + \overline{\varphi}(\overline{b})$$

Por lo que $\overline{\varphi}$ esta bien definida. Falta demostrar que $\overline{\varphi}$ es único, sean $\overline{\varphi_1}, \overline{\varphi_2}$ tal que $\varphi = \overline{\varphi_1} \circ \pi = \overline{\varphi_2} \circ \pi$. Se nota que π es sobreyectiva, entonces dado $y \in M/N$ existe $x \in M$ tal que $\pi(x) = y$. Luego $\overline{\varphi_1} \circ \pi(x) = \overline{\varphi_2} \circ \pi(x)$, específicamente $\overline{\varphi_1}(y) = \overline{\varphi_2}(y)$, ya que y es arbitrario, esto se cumple para todo y, con lo que $\overline{\varphi_1} = \overline{\varphi_2}$. Con lo que se tiene lo pedido.

(b) Se nota que lo que hay que demostrar es que $\ker \varphi_1 = \{0\}$, $\operatorname{Im} \varphi_1 = \ker \varphi_2$, $\operatorname{Im} \varphi_2 = M/N$ donde φ_1 es el morfismo natural de N/P a M/P y φ_2 es el morfismo natural de M/P a M/N. En orden, se recuerda que $N \subset M$, por lo que $N/P \subset M/P$ por lo que φ_1 es la identidad restringida a N/P, con lo que $\ker \varphi_1 = \{0\}$. Para la segunda igual basta notar que $\operatorname{Im} \varphi_1 = N/P$, ya que si $\overline{a} \in N/P$ entonces $a \in N$, por lo que $\varphi_2(\overline{a}) = 0$, con lo que $\ker \varphi_2 \supseteq N/P$, ahora si $\overline{a} = 0$ en $M/N \implies a \in N$, por lo que $\overline{a} \in N/P \implies \ker \varphi_2 = \operatorname{Im} \varphi_1$. Para la última, claramente $\operatorname{Im} \varphi_2 \subseteq M/N$, sea $\overline{a} \in M/N \land \overline{a} \neq 0$ entonces $a \notin N \implies a \notin P$, por lo que $\overline{a} \neq 0$ en M/P y claramente es pre-imagen. Con lo que tenemos todo lo pedido.

(c) Se comienza notando que ya que V/U finito-dimensional W/U, V/W son finito-dimensionales, luego por (b) se tiene que la siguiente secuencia es exacta:

$$0 \to W/U \to V/U \to V/W \to 0$$

Luego por proposición vista en clase se tiene lo pedido.

- (d) Se recuerda que dado un ideal I de un anillo R, R se puede ver como un I-módulo, similarmente para un ideal $J \subset I$, por lo que por (b) existe la secuencia exacta, donde I, R son J-módulos.
- (e) Se puede notar que es suficiente mostar que $\forall n : \mathfrak{m}^{n+1} \subset \mathfrak{m}^n$. Luego por inducción, el caso base es trivial ya que \mathfrak{m} es maximal. Ahora, sea $a \in \mathfrak{m}^{n+1}$, entonces $a = a_1 a_2 \dots a_{n+1}$ donde $a_i \in \mathfrak{m}$, luego $a_{n+1} \in \mathcal{O}$ y $a_1 a_2 \dots a_n \in \mathfrak{m}^n$, por lo que por propiedad de ideales $a \in \mathfrak{m}^n$. Con esto se usa (d) y se tiene lo pedido.

Problema 2.55:

Sea $F = x^n + a_1 x^{n-1} + \cdots + a_n$ un polinomio mónico en R[x]. Muestre que R[x]/(F) es un R-módulo libre con base $\overline{1}, \overline{x}, \dots, \overline{x}^{n-1}$, donde \overline{x} es el residuo de x.

Solución problema 2.55: