Отчёт по лабораторной работе №4

Дисциплина: архитектура компьютера

Горобцова Арина Романовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Основы работы с mc	7
	3.2 Структура программы на языке ассемблера NASM	8
	3.3 Подключение внешнего файла	11
	3.4 Выполнение заданий для самостоятельной работы	14
4	Выводы	20

Список иллюстраций

3.1	Открытый тс	7
3.2	Создание каталога	8
3.3	Перемещение между директориями	8
3.4	Создание файла	8
3.5	Открытие файла для редактирования	9
3.6	Редактирование файла	9
3.7	Открытие файла для просмотра	10
3.8	Компиляция файла и передача на обработку компоновщику	10
3.9	Исполнение файла	10
3.10	Копирование файла	11
3.11	Копирование файла	12
3.12	Редактирование файла	12
3.13	Исполнение файла	13
3.14	Отредактированный файл	13
3.15	Исполнение файла	14
3.16	Копирование файла	14
3.17	Редактирование файла	15
3.18	Исполнение файла	15
3.19	Копирование файла	17
3.20	Редактирование файла	18
	Исполнение файла	18

Список таблиц

1 Цель работы

Целью данной лабораторной работы является приобретение практических навыков работы в Midnight Commander, освоение инструкций языка ассемблера mov и int.

2 Задание

- 1.Основы работы с тс
- 2.Структура программы на языке ассемблера NASM
- 3.Подключение внешнего файла
- 4.Выполнение заданий для самостоятельной работы

3 Выполнение лабораторной работы

3.1 Основы работы с тс

Открываю Midnight Commander, введя в терминал mc и перехожу в каталог ~/work/arch-pc/lab05, используя файловый менеджер mc(рис. 3.1).

Рис. 3.1: Открытый тс

С помощью функциональной клавиши F7 создаю каталог lab05 (рис. 3.2).

Рис. 3.2: Создание каталога

Перехожу в созданный каталог (рис. 3.3).

Рис. 3.3: Перемещение между директориями

В строке ввода прописываю команду touch lab5-1.asm, чтобы создать файл, в котором буду работать (рис. 3.4).

Рис. 3.4: Создание файла

3.2 Структура программы на языке ассемблера NASM

С помощью функциональной клавиши F4 открываю созданный файл для редактирования во встроенном редакторе (рис. 3.5).

Рис. 3.5: Открытие файла для редактирования

Ввожу в файл код программы для запроса строки у пользователя (рис. 3.6). Далее выхожу из файла (Ctrl+X), сохраняя изменения (Y, Enter). Далее проверяю с помощью утилиты ls правильность выполнения команды.

Рис. 3.6: Редактирование файла

С помощью функциональной клавиши F3 открываю файл для просмотра, что-

бы проверить, содержит ли файл текст программы (рис. 3.7).

Рис. 3.7: Открытие файла для просмотра

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-1.asm. Создался объектный файл lab5-1.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab5-1 lab5-1.o. Создался исполняемый файл lab5-1. (рис. 3.8).

```
argorobcova@dk8n76 ~/work/arch-pc/lab05 $ nasm -f elf lab5-1.asm argorobcova@dk8n76 ~/work/arch-pc/lab05 $ ls lab5-1.asm lab5-1.asm.save lab5-1.o argorobcova@dk8n76 ~/work/arch-pc/lab05 $ ld -m elf_i386 lab5-1.o argorobcova@dk8n76 ~/work/arch-pc/lab05 $ ls a.out lab5-1.asm lab5-1.asm.save lab5-1.o argorobcova@dk8n76 ~/work/arch-pc/lab05 $
```

Рис. 3.8: Компиляция файла и передача на обработку компоновщику

Запускаю исполняемый файл. Программа выводит строку "Введите строку:" и ждет ввода с клавиатуры, я ввожу свои ФИО, на этом программа заканчивает свою работу (рис. 3.9).

```
argorobcova@dk8n76 ~/work/arch-pc/lab05 $ ./lab5-1
Введите строку:
Горобцова Арина Романовна
```

Рис. 3.9: Исполнение файла

3.3 Подключение внешнего файла

Скачиваю файл in_out.asm со страницы курса в ТУИС. Он сохранился в каталог "Загрузки". С помощью функциональной клавиши F5 копирую файл in_out.asm из каталога Загрузки в созданный каталог lab05 (рис. 3.10).

Рис. 3.10: Копирование файла

С помощью функциональной клавиши F5 копирую файл lab5-1 в тот же каталог, но с другим именем, для этого в появившемся окне mc прописываю имя для копии файла (рис. 3.11).

Рис. 3.11: Копирование файла

Изменяю содержимое файла lab5-2.asm во встроенном редакторе, чтобы в программе использовались подпрограммы из внешнего файла in_out.asm.(рис. 3.12).

```
.dk.sci.pfu.edu.ru/home/a/r/argorobcova/work/arch-pc/lab05/lab5-2.asm Изменён
; Программа вывода сообщения на экран и ввода строки с клавиатуры
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data ; Секция инициированных данных
msg: DB 'Введите строку: ',0h ; сообщение
SECTION .bss ; Секция не инициированных данных
buf1: RESB 80 ; Буфер размером 80 байт
SECTION .text ; Код программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
mov eax, ms\underline{g} ; запись адреса выводимого сообщения в 'EAX'
call sprint; вызов подпрограммы печати сообщения
mov ecx, buf1 ; запись адреса переменной в {}^{\backprime}\text{EAX}{}^{\backprime}
mov edx, 80 ; запись длины вводимого сообщения в 'EBX
call sread ; вызов подпрограммы ввода сообщения
call quit ; вызов подпрограммы завершения
^G Справка
            ^О Записать ^F Поиск
```

Рис. 3.12: Редактирование файла

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-2.asm. Создался объектный файл lab5-2.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab5-2 lab5-2.o Создался исполняемый файл lab5-2. Запускаю исполняемый файл (рис. 3.13).

```
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ nasm -f elf lab5-2.asm
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ ld -m elf_i386 -o lab5-2 lab5-2.o
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ ls
a.out in_out.asm.save lab5-1.asm lab5-2 lab5-2.o
in_out.asm lab5-1 lab5-1.o lab5-2.asm
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ ./lab5-2
Введите строку: Горобцова Арина Романовна
```

Рис. 3.13: Исполнение файла

Открываю файл lab5-2.asm для редактирования в nano функциональной клавишей F4. Изменяю в нем подпрограмму sprintLF на sprint. Сохраняю изменения и открываю файл для просмотра, чтобы проверить сохранение действий (рис. 3.14).

```
.dk.sci.pfu.edu.ru/home/a/r/argorobcova/work/arch-pc/lab05/lab5-2.asm Изменён
; Программа вывода сообщения на экран и ввода строки с клавиатуры
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data ; Секция инициированных данных
msg: DB 'Введите строку: ',0h ; сообщение
SECTION .bss ; Секция не инициированных данных
buf1: RESB 80 ; Буфер размером 80 байт
SECTION .text ; Код программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
mov eax, msg ; запись адреса выводимого сообщения в 'EAX'
call sprint ; вызов подпрограммы печати сообщения
mov ecx, buf1 ; запись адреса переменной в 'EAX'
mov edx, 80 ; запись длины вводимого сообщения в 'EBX
call sread ; вызов подпрограммы ввода сообщения
call quit ; вызов подпрограммы завершения
            ^О Записать ^F Поиск
                                     ^G Справка
```

Рис. 3.14: Отредактированный файл

Снова транслирую файл, выполняю компоновку созданного объектного файла, запускаю новый исполняемый файл (рис. 3.15).

```
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ nasm -f elf lab5-2.asm
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ ld -m elf_i386 -o lab5-2 lab5-2.o
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ ls
a.out in_out.asm.save lab5-1.asm lab5-2 lab5-2.o
in_out.asm lab5-1 lab5-1.o lab5-2.asm
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ ./lab5-2
Введите строку: Горобцова Арина Романовна
```

Рис. 3.15: Исполнение файла

Разница между первым исполняемым файлом lab5-2 и вторым lab5-2-1 в том, что запуск первого запрашивает ввод с новой строки, а программа, которая исполняется при запуске второго, запрашивает ввод без переноса на новую строку, потому что в этом заключается различие между подпрограммами sprintLF и sprint.

3.4 Выполнение заданий для самостоятельной работы

1.Создаю копию файла lab5-1.asm с именем lab5-1-1.asm с помощью функциональной клавиши F5 (рис. 3.16).

Рис. 3.16: Копирование файла

С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 3.17).

```
Lab5-1-1.asm [----] 20 L:[ 3+23 26/26] *(1521/1521b) <EOF> [*][X]
msgLen: EQU $-msg ; Длина переменной 'msg'
SECTION .bss ; Секция не инициированных данных
bufl: RESB 80 ; Буфер размером 80 байт
SECTION .text ; Код программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла 1 - стандартный вывод
mov ecx,msg ; Адрес строки 'msg' в 'ecx'
mov edx,msgLen ; Размер строки 'msg' в 'edx'
int 80h ; Вызов ядра
mov eax, 3 ; Системный вызов для чтения (sys_read)
mov ebx, 0 ; Дескриптор файла 0 - стандартный ввод
mov ecx, bufl ; Адрес буфера под вводимую строку
mov edx, 80 ; Длина вводимой строки
int 80h ; Вызов ядра
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла 'l' - стандартный вывод
mov ecx,bufl ; Адрес строки bufl в есх
mov edx,bufl ; Размер строки bufl в есх
mov edx,bufl ; Размер строки bufl
int 80h ; Вызов ядра
mov eax,1 ; Системный вызов для выхода (sys_exit)
mov ebx,0 ; Выход с кодом возврата 0 (без ошибок)
int 80h ; Вызов ядра
mov ebx,0 ; Выход с кодом возврата 0 (без ошибок)
int 80h ; Вызов ядра
11 Помощь 2 Сохран 3 Блок 43 замена 5 Копия 6 Пер~ть 7 Поиск 8 Уда~ть 9 МенюМС 10 Выход
```

Рис. 3.17: Редактирование файла

2.Создаю объектный файл lab5-1-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-1-1, запускаю полученный исполняемый файл. Программа запрашивает ввод, ввожу свои ФИО, далее программа выводит введенные мною данные (рис. 3.18).

```
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ nasm -f elf lab5-1-1.asm
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ ld -m elf_i386 -o lab5-1-1 lab5-1-1.c
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ ./lab5-1-1
Введите строку:
Горобцова Арина Романовна
Горобцова Арина Романовна
argorobcova@dk3n35 ~/work/arch-pc/lab05 $
```

Рис. 3.18: Исполнение файла

Код программы из пункта 1:

SECTION .data ; Секция инициированных данных

msg: DB 'Введите строку:',10

msgLen: EQU \$-msg; Длина переменной 'msg'

SECTION .bss ; Секция не инициированных данных

buf1: RESB 80; Буфер размером 80 байт

SECTION .text ; Код программы

GLOBAL _start; Начало программы

_start: ; Точка входа в программу

mov eax,4; Системный вызов для записи (sys_write)

mov ebx,1; Описатель файла 1 - стандартный вывод

mov ecx,msg; Адрес строки 'msg' в 'ecx'

mov edx,msgLen; Размер строки 'msg' в 'edx'

int 80h; Вызов ядра

mov eax, 3; Системный вызов для чтения (sys_read)

mov ebx, 0; Дескриптор файла 0 - стандартный ввод

mov ecx, buf1 ; Адрес буфера под вводимую строку

mov edx, 80; Длина вводимой строки

int 80h; Вызов ядра

mov eax,4; Системный вызов для записи (sys_write)

mov ebx,1; Описатель файла '1' - стандартный вывод

mov ecx,buf1; Адрес строки buf1 в есх

mov edx,buf1; Размер строки buf1

int 80h; Вызов ядра

mov eax,1; Системный вызов для выхода (sys exit)

mov ebx,0; Выход с кодом возврата 0 (без ошибок)

int 80h; Вызов ядра

3.Создаю копию файла lab5-2.asm с именем lab5-2-1.asm с помощью функциональной клавиши F5 (рис. 3.19).

Рис. 3.19: Копирование файла

С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 3.20).

```
Tab5-2-1.asm [-M--] 41 L:[ 1+17 18/20] *(1145/1147b) 0010 0x00A [*][X]
%include 'in_out.asm'
SECTION .data; Секция инициированных данных
msg: DB 'Bведите строку: ',0h; сообщение
SECTION .bss; Секция не инициированных данных
buf1: RESB 80; Буфер размером 80 байт
SECTION .text; Код программы
_start; Точка входа в программу
mov eax, msg; запись адреса выводимого сообщения в 'EAX'
call sprint; вызов подпрограммы печати сообщения
mov ecx, buf1; запись адреса переменной в 'EAX'
mov edx, 80; запись дляны вводимого сообщения в 'EBX'
call sread; вызов подпрограммы ввода сообщения
mov eax,4; Системный вызов для записи (sys_write)
mov eax,1; Описатель файла '1' - стандартный вывод
mov ecx,buf1; Адрес строки buf1 в есх
int 80h; Вызов ядра
call quit; вызов подпрограммы завершения

1Помощь 2Сохрам 3Блок 4Замена 5Копия 6Пер~ть 7Поиск 8Уда~ть 9МенюМС 10Выход
```

Рис. 3.20: Редактирование файла

4.Создаю объектный файл lab5-2-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-2-1, запускаю полученный исполняемый файл. Программа запрашивает ввод без переноса на новую строку, ввожу свои ФИО, далее программа выводит введенные мною данные (рис. 3.21).

```
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ nasm -f elf lab5-2-1.asm
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ ld -m elf_i386 -o lab5-2-1 lab5-2-1.c
argorobcova@dk3n35 ~/work/arch-pc/lab05 $ ./lab5-2-1
Введите строку: Горобцова Арина Романовна
Горобцова Арина Романовна
argorobcova@dk3n35 ~/work/arch-pc/lab05 $
```

Рис. 3.21: Исполнение файла

Код программы из пункта 3:

%include 'in_out.asm'

SECTION .data ; Секция инициированных данных

msg: DB 'Введите строку:',0h; сообщение

SECTION .bss ; Секция не инициированных данных

buf1: RESB 80; Буфер размером 80 байт

SECTION .text ; Код программы

GLOBAL _start; Начало программы

_start: ; Точка входа в программу

mov eax, msg; запись адреса выводимого сообщения в EAX

call sprint ; вызов подпрограммы печати сообщения

mov ecx, buf1; запись адреса переменной в EAX

mov edx, 80; запись длины вводимого сообщения в EBX

call sread; вызов подпрограммы ввода сообщения

mov eax,4; Системный вызов для записи (sys_write)

mov ebx,1; Описатель файла '1' - стандартный вывод

mov ecx,buf1; Адрес строки buf1 в есх

int 80h; Вызов ядра

call quit; вызов подпрограммы завершения

4 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки работы в Midnight Commander, а также освоила инструкции языка ассемблера mov и int.