15
$$\sin\theta_1 + 15\sin\theta_2 = 12$$
 $\sin\theta_1 + \sin\theta_2 = 4/5$ — (2)

 $2 - 2\cos\theta_1\cos\theta_2 + 2\sin\theta_1 \sin\theta_2 = \frac{16}{25} + \frac{1}{36}$
 $2 - \cos(\theta_1 + \theta_2) - \cos(\theta_1 - \theta_2)$
 $+ \cos(\theta_1 - \theta_2) - \cos(\theta_1 + \theta_2) = \frac{16}{25} + \frac{1}{36}$
 $2\cos(\theta_1 + \theta_2) = 2 - \frac{16}{25} - \frac{1}{36}$
 $\cos(\theta_1 + \theta_2) = 0.66611$
 $\theta_1 + \theta_2 = 48.2323^\circ$
Substitute in (1)

 $\cos(48.2323 - \theta_2) + \cos\theta_2 = 1/6$
 $-2\sin(48.2323 - \theta_2) + \cos\theta_2 = 1/6$
 $\sin(2\theta_2 - 48.2323) = -0.20335$
 $\sin(2\theta_2 - 48.2323) = -0.20335$

0 2 = 12.35°

20 + 15 cos
$$\theta_3$$
 - 15 cos θ_4 = 7.5

15 cos θ_3 - 15 cos θ_4 = 12.5

 $cos \theta_3$ - $cos \theta_4$ = 5/6 - 3

15 sin θ_3 + 15 sin θ_4 = 12

 $sin \theta_3$ + 15 sin θ_4 = 12

 $sin \theta_3$ + 15 sin θ_4 = 4/5 - 4

Square and add 3 and 4.

2 - 2 cos θ_3 cos θ_4 + 2 sin θ_3 sin θ_4 = $\frac{2.5}{36}$ + $\frac{16}{2.5}$

2 - $cos (\theta_3 + \theta_4)$ - $cos (\theta_3 - \theta_4)$ - $cos (\theta_3 + \theta_4)$ = $\frac{2.5}{36}$ + $\frac{16}{2.5}$

2 - $\frac{2.5}{36}$ - $\frac{16}{2.5}$ = 2 cos $(\theta_3 + \theta_4)$
 $cos (\theta_3 + \theta_4)$ = $\frac{2.5}{36}$ + $\frac{16}{36}$
 $cos (\theta_3 + \theta_4)$ = $\frac{2.5}{36}$ + $\frac{16}{36}$
 $cos (\theta_3 + \theta_4)$ + $\frac{2.5}{36}$ + $\frac{2.5}{36}$

Ain
$$(70.563-04)$$
 + Air $\theta_{4} = 4/5$

2 Ain $\frac{10.563}{2}$ LOS $\frac{70.563-204}{2} = 4/5$

LOS $\frac{70.563-204}{2} = 0.692527$

35.2815- $\theta_{4} = \frac{10.88^{\circ}}{2}$
 $\theta_{3} = 81.44$

convention of the take of, D2, D2, D4 — anticlockwise position and front arm angles w.r.t base arm angles then

then

$$\theta_1 = 144.12^{\circ}$$
 $\theta_2 = 228.23^{\circ}$
 $\theta_3 = 81.44^{\circ}$
 $\theta_4 = 109.44^{\circ}$