

ZS110A 入门指南 发布 *1.0.0*

目录

1	概述	1
	1.1	文档目的
	1.2	术语说明
	1.3	参考文档
	1.4	版本历史
2	ZS11)A 简介
	2.1	开发板硬件资源介绍
	2.2	饮件资源介绍 : : : : : : : : : : : : : : : :
	2.3	开发板概况
3	开发3	·境搭建
	3.1	开发工具 : : : : : : : : : : : : : : : :
	3.2	周试工具 5
4	在线i	10
5	固件炉	写 15
	5.1	· - 配置
	5.2	

概述

1.1 文档目的

方便开发人员快速入门,熟悉开发环境的搭建、烧写和调试。

1.2 术语说明

表 1.1: 术语说明

术语	说明
BLE	蓝牙低功耗技术
IOT	物联网
SDK	软件开发套件
KEIL	一款单片机开发工具
DAPLINK	ARM 官方推出的开源仿真器
GATT	通用属性配置文件
PROFILE	本文特指通用属性配置文件

1.3 参考文档

• http://www.keil.com/support/man/docs/uv4/

1.4 版本历史

表 1.2: 版本历史

日期	版本	注释	作者
2018-08-30	1.0	初始版本	ZS110A 项目组

ZS110A 简介

ZS110A 是基于炬芯科技新一代的低功耗蓝牙芯片 ATB110X 的软件开发套件,供用户快速评估学习蓝牙、IoT 等功能开发。

2.1 开发板硬件资源介绍

- 板载蓝牙天线
- 1路 MIC
- 5路 PWM
- 4个 PWM 灯,一个电源指示灯
- 矩阵按键 *6、AD 按键 *3
- 1 个 USB 口
- 1个红外发射头,1个红外接收头
- 板载 daplink
- 1 个 reset 键,一个电源开关,一个电源选择开关
- 两种供电方式: usb、电池

2.2 软件资源介绍

ZS110A 提供完整功能的 SDK 框架供用户参考开发,并提供大量的使用示例和参考代码。

- 蓝牙语音遥控器示例
- 蓝牙 profile 示例
- 蓝牙主机、主从示例
- 各个驱动模块示例

2.3 开发板概况

开发板由核心板和底板构成,如图所示:

图 2.1: 开发板概况图

在使用前,需要对开发板进行一些检查并连接串口:

- Daplink: 短接 SWCLK、SWDIO。
- 电源: 电源开关选择 ON, 电源选择开关选择 USB&Li。
- UART: GPIO2 接串口 TX, GPIO3 接串口 RX (UART0)。

开发环境搭建

3.1 开发工具

ZS110A 方案开发使用 Keil uVision5 (V5.21 及以上版本)

3.2 调试工具

ZS110A 开发板上集成了基于 LPC11U35 实现的 DAPLink (cmsis-dap), 支持以下功能:

- Debug ARM Cortex-M SOC
- usb-serial

使用 usb 线连接开发板和 PC 后, PC 上的设备管理器增加 3 个设备,如图所示:

- Mbed Serial Port
- HID-complicant device
- USB 大容量存储设备

图 3.1: 设备管理器信息

USB 大容量存储设备的磁盘卷标名为"DAPLINK",如图所示:

图 3.2: USB 大容量存储设备

说明: 若未检测到 med Serial Port,需安装驱动 mbedWinSerial_16466
(路径: scripts\support\actions\utils\mbed_driver\),安装驱动时需要接上开发板。

使用 DAPLink 调试前需要在 Keil 中完成以下配置:

- 1. 打开 Keil Options/Debug 界面,如图所示
- Use: 选择 CMSIS-DAP Debugger
- 设置 debug 参数
 - 1. Load Application at Startup: 不勾选。
 - 2. Run to main: 不勾选。

图 3.3: Keil Options/Debug 配置

- 2. 打开 Keil Options/Debug/Settings 界面,如图所示
- 若设备已连接,且系统未处于休眠状态:
 - 1. Debug 界面内发现 DAPLINK;
 - 2. Debug 界面内发现 Target 设备。
- Connect & Reset Options: 不勾选 Reset after Connect。

3.2. 调试工具 7

图 3.4: Keil Options/Debug/Settings 配置

- 3. 打开 Keil Options/Utilities 界面,如图所示
- 选择 Use Target Driver For Flash Programming
- 勾选 Use Debug Driver
- 不勾选 Update Target before Debugging

图 3.5: Keil Options/Utilities 配置

3.2. 调试工具 9

在线调试

Keil 支持在线调试功能,通过点击"start/stop debug"即可启动在线调试。在启动调试之前,需要增改一些配置,下面以 helloworld 程序 (路径: samples\peripheral\ helloworld) 为例说明如何在 Keil 下进行调试。

1. 增加一个 ram 工程

用 Keil 打开 Manage Project Items,在 Project Targets 一栏添加一个 ram 工程,如图所示

图 4.1: 增加一个 ram 工程

随后选择该工程,如图所示:

图 4.2: 选择 ram 工程

- 2. 配置 ram 工程
- 新建 debug.ini 文件

在 helloworld 工程目录下新建一个名为 debug.ini 的配置文件,文件内容如下:

```
FUNC void CloseWatchDog (void)
{
    _WDWORD(0x4000401C, 0x20);
}
FUNC void Setup (void)
{
    SP = _RDWORD(0x20001000);
    PC = _RDWORD(0x20001004);
}
CloseWatchDog();
LOAD .\Objects\helloworld.axf INCREMENTAL
Setup();
g,main
```

说明: helloworld.axf 是当前工程编译产生的.axf 文件。

- 设置 debug 参数
 - 1. Load Application at Startup: 不勾选。
 - 2. Run to main: 停在 main 入口: 不勾选。
 - 3. Initialization File: 载入 debug.ini 文件

图 4.3: 设置 debug 参数

• 删除编程算法

打开 Keil Options/Utilities/Settings, 删除已有的烧写算法。点击 remove, 如图所示:

图 4.4: 修改编程算法地址

3. 编译

点击下图中的任意一个编译按钮,即可完成编译。

图 4.5: 编译

4. 设置断点

为方便的控制程序的运行,可在 app_main 入口处设置一个断点,如下图所示:

图 4.6: 设置断点

5. 启动调试

点击"start/stop debug"启动调试,点击调试工具栏中的按钮单步调试。

图 4.7: 启动调试

固件烧写

编译成功后,在 Keil 工具界面点击"Load"即可完成烧写。

5.1 配置

- 1. 拷贝 KEIL FLM
 - 将 scripts\support\actions\utils\keil_flash\ATB110X_SPI0.FLM 拷贝到目录 C:\Keil\ARM\Flash\(请根据自己 Keil 实际安装路径进行调整)。
- 2. 选择 flash 工程,如图所示:

图 5.1: 选择 flash 工程

说明: flash 是程序烧到 flash 的默认工程名,其他工程名亦可。

- 3. 根据 3.2 调试工具一节配置 Keil。
- 4. 打开 Keil Options/Utilities/Settings,如图所示。
- Download Function: 选择" Erase Sectors", "Program", "Verify"。
- RAM for Algorithm: 起始地址 0x20000000, size 0x4000。
- Programming Algorithm:

点击"remove"删除默认的"New Device 256kB Flash"(如果有的话), 然后点击"Add"选择 ATB110X-SPI0。然后编辑 Address Range: start 配置为 0x200000000, size 采用默认值。如图所示。

图 5.2: Options/Utilities/Settings 配置

图 5.3: 增加 flash 编程算法

5.2 烧写

下面以 sample/peripheral/helloworld 工程程序为例,介绍固件的烧写。helloworld 示例程序代码如下:

```
void app_main(void)
{
    while (1) {
        printk("Hello World!\n");
            k_sleep(1000);
    }
}
```

完成 5.1 节配置,点击下图中的编译按钮编译成功后,点击 Keil 工程中的 LOAD 即可完成烧写。

图 5.4: 编译烧写方法

烧录完成后,按下 reset 按键,系统将重启,串口将循环输出 Hello World!:

5.2. 烧写

Hello	World!			
Hello	World!			
Hello	World!			

List of Figures

2.1	卅发板概况图	4
3.1	设备管理器信息	6
3.2	USB 大容量存储设备	6
3.3	Keil Options/Debug 配置	7
3.4	Keil Options/Debug/Settings 配置	8
3.5	Keil Options/Utilities 配置	9
4.1	增加一个 ram 工程	11
4.2	选择 ram 工程	11
4.3	设置 debug 参数	12
4.4	修改编程算法地址	13
4.5	编译	13
4.6	设置断点	14
4.7	启动调试	14
5.1	选择 flash 工程	15
5.2	Options/Utilities/Settings 配置	16
5.3	增加 flash 编程算法	17
5.4	编译烧写方法	17

List of Tables

1.1	术语说明																			1
1.2	版本历史																			2