CD4536BMS

December 1992

CMOS Programmable Timer

Features

- High Voltage Type (20V Rating)
- 24 Flip-Flop Stage Counts from 20 to 224
- · Last 16 Stages Selectable by BCD Select Code
- Bypass Input Allows Bypassing First 8 Stages
- On-Chip RC Oscillator Provision
- Clock Inhibit Input
- Schmitt Trigger in clock Line Permits Operation with Very Long Rise and Fall Times
- On-Chip Monostable Output Provision
- Typical fCL = 3MHz at VDD = 10V
- Test Mode Allows Fast Test Sequence
- · Set and Reset Inputs
- Capable of Driving Two Low Power TTL Loads, One Lower Power Schottky Load, or Two HTL Loads Over the Rated Temperature Range
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Standardized, Symmetrical Output Characteristics
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Description

CD4536BMS is a programmable timer consisting of 24 ripple binary counter stages. The salient feature of this device is its flexibility. The device can count from 1 to 2^{24} or the first 8 stages can be bypassed to allow an output, selectable by a 4-bit code, from any one of the remaining 16 stages. It can be driven by an external clock or an RC oscillator that can be constructed using on-chip components. Input IN1 serves as either the external clock input or the input to the on-chip RC oscillator. OUT1 and OUT2 are connection terminals for the external RC components. In addition, an on-chip monostable circuit is provided to allow a variable pulse width output. Various timing functions can be achieved using combinations of these capabilities.

A logic 1 on the 8-BYPASS input enables a bypass of the first 8 stages and makes stage 9 the first counter stage of the last 16 stages. Selection of 1 of 16 outputs is accomplished by the decoder and the BCD inputs A, B, C and D. MONO IN is the timing input for the on-chip monostable oscillator. Grounding of the MONO IN terminal through a resistor of $10 k\Omega$ or higher, disables the one-shot circuit and connects the decoder directly to the DECODE OUT terminal. A resistor to VDD and a capacitor to ground from the MONO IN terminal enables the one-shot circuit and controls its pulse width.

A fast test mode is enabled by a logic 1 on 8-BYPASS, SET, and RESET. This mode divides the 24-stage counter into three 8-stage sections to facilitate a fast test sequence.

The CD4536BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4X
Frit Seal DIP H1F
Ceramic Flatpack H6W

Pinout

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V DC Input Current, Any One Input±10mA Operating Temperature Range -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ja}	θ _{jc} 20°C/W
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PI	O) at +125°C	
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Ty	pe D, F, K)	500mW
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package 1	Type D, F, K).	Derate
Linear	ity at 12mW/	°C to 200mW
Device Dissipation per Output Transistor		100mW
For T _A = Full Package Temperature Ra	nge (All Pack	age Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (I	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	.4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	0.5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT =	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	.6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	٧
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	A	1	+25°C	0.7	2.8	٧
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	٧
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	٧
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13.5V, VOL < 1.5V		1, 2, 3	+25°C, +125°C, -55°C	-	4	٧
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	٧

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	2000	ns
Clock to Q1 8-Bypass High	TPLH1		10, 11	+125°C, -55°C	-	2700	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	5000	ns
Clock to Q1 8-Bypass Low	TPLH2		10, 11	+125°C, -55°C	-	6750	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	8000	ns
Clock to Q16	TPLH3	TPLH3		+125°C, -55°C	-	10800	ns
Propagation Delay	TPHL4	VDD = 5V, VIN = VDD or GND	9	+25°C	-	6000	ns
Reset to QN			10, 11	+125°C, -55°C	-	8100	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	.5	-	MHz
Frequency			10, 11	+125°C, -55°C	.37	-	MHz

NOTES:

- 1. VDD = 5V, CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	MITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μА
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	300	μА
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μА
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

			LIM	IITS			
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	٧
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	1000	ns
Clock to Q1 8-Bypass High	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	700	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	1600	ns
Clock to Q1 8-Bypass Low	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	1200	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	3000	ns
Clock to Q16	TPLH3	VDD = 15V	1, 2, 3	+25°C	-	2000	ns
Propagation Delay	TPHL	VDD = 5V	1, 2, 3	+25°C	-	300	
Qn to Qn+1	TPLH	VDD = 10V	1, 2, 3	+25°C	-	150	
		VDD = 15V	1, 2, 3	+25°C	-	100	
Propagation Delay	TPLH	VDD = 5V	1, 2, 3	+25°C	-	600	
Set to Qn		VDD = 10V	1, 2, 3	+25°C	-	250	
		VDD = 15V	1, 2, 3	+25°C	-	160	
Propagation Delay	TPHL4	VDD = 10V	1, 2, 3	+25°C	-	2000	ns
Reset to Qn		VDD = 15V	1, 2, 3	+25°C	-	1500	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Maximum Clock Input	FCL	VDD = 10V	1, 2, 3	+25°C	1.5	-	MHz
Frequency. Unlimited Input Rise or Fall Time		VDD = 15V	1, 2, 3	+25°C	2.5	-	MHz
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	400	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	150	ns
		VDD = 15V	1, 2, 3	+25°C	-	100	ns
Minimum Set Pulse Width	TW	VDD = 5V	1, 2, 3	+25°C	-	400	ns
		VDD = 10V	1, 2, 3	+25°C	-	200	ns
		VDD = 15V	1, 2, 3	+25°C	-	120	ns
Minimum Reset Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	6	μs
Width		VDD = 10V	1, 2, 3	+25°C	-	2	μs
		VDD = 15V	1, 2, 3	+25°C	-	1.5	μs
Minimum Set Recovery	TREM	VDD = 5V	1, 2, 3	+25°C	-	5	μs
Time		VDD = 10V	1, 2, 3	+25°C	-	2	μs
		VDD = 15V	1, 2, 3	+25°C	-	1.6	μs
Minimum Reset Recov-	TREM	VDD = 5V	1, 2, 3	+25°C	-	7	μs
ery Time		VDD = 10V	1, 2, 3	+25°C	-	3	μs
		VDD = 15V	1, 2, 3	+25°C	-	2	μs
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pi	e Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D	Group D		1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	4, 5, 13	1-3, 6-12, 14, 15	16			
Static Burn-In 2 Note 1	4, 5, 13	8	1-3, 6, 7, 9-12, 14-16			
Dynamic Burn- In Note 1	-	1, 2, 6-8, 14, 15	9-12, 16	4, 5, 13	3	
Irradiation Note 2	4, 5, 13	8	1-3, 6, 7, 9-12, 14-16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of $47K \pm 5\%$; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagram

CD4536BMS

TRUTH TABLE

IN	SET	RESET	CLOCK INH	OSC INH	OUT1	OUT2	DECODE OUT
	0	0	0	0	\	_	No Change
	0	0	0	0	7	\	Advance to Next State
Х	1	0	0	0	0	1	1
Х	0	1	0	0	0	1	0
Х	0	0	1	0			No Change
0	0	0	0	Х	0	1	No Change
1	0	0	0	\	7	\	Advance to Next State

0 = Low Level 1 = High Level X = Don't Care

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 6. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (CLOCK TO Q1, 8-BYPASS HIGH)

FIGURE 8. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (CLOCK TO Q16, 8-BYPASS HIGH)

FIGURE 10. TYPICAL RC OSCILLATOR FREQUENCY
DEVIATION AS A FUNCTION OF SUPPLY
VOLTAGE

FIGURE 7. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (CLOCK TO Q1, 8-BYPASS LOW)

FIGURE 9. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE (QN TO QN + 1)

FIGURE 11. TYPICAL RC OSCILLATOR FREQUENCY
DEVIATION AS A FUNCTION OF TIME CONSTANT
RESISTANCE AND CAPACITANCE

Typical Performance Characteristics (Continued)

FIGURE 12. TYPICAL RC OSCILLATOR FREQUENCY
DEVIATION AS A FUNCTION OF AMBIENT
TEMPERATURE (RS = 0)

FIGURE 14. TYPICAL PULSE WIDTH AS A FUNCTION OF EXTERNAL CAPACITANCE (VDD = 5V)

FIGURE 16. TYPICAL PULSE WIDTH AS A FUNCTION OF EXTERNAL CAPACITANCE (VDD = 15V)

FIGURE 13. TYPICAL RC OSCILLATOR FREQUENCY DEVIATION AS A FUNCTION OF AMBIENT TEMPERATURE (RS = $120k\Omega$)

FIGURE 15. TYPICAL PULSE WIDTH AS A FUNCTION OF EXTERNAL CAPACITANCE (VDD = 10V)

FIGURE 17. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

Typical Performance Characteristics (Continued)

FIGURE 18. TYPICAL DYNAMIC POWER DISSIPATION AS A FUNCTION OF INPUT PULSE FREQUENCY

Applications

FIGURE 19. APPLICATION SHOWING USE OF CD4098BMS AND CD4536BMS TO GET DECODE PULSE 8 CLOCK PULSES AFTER RESET PULSE

FIGURE 20. TIME INTERVAL CONFIGURATION USING EXTERNAL CLOCK; SET AND CLOCK INHIBIT FUNCTIONS

FIGURE 21. TIME INTERVAL CONFIGURATION USING EXTERNAL CLOCK; RESET AND OUTPUT MONOSTABLE TO ACHIEVE A PULSE OUTPUT

DECODE OUT SELECTION TABLE

				NUMBER OF STAGE	S IN DIVIDER CHAIN		
D	C	В	Α	8-BYPASS = 0	8-BYPASS = 1		
0	0	0	0	9	1		
0	0	0	1	10	2		
0	0	1	0	11	3		
0	0	1	1	12	4		
0	1	0	0	13	5		
0	1	0	1	14	6		
0	1	1	0	15	7		
0	1	1	1	16	8		
1	0	0	0	17	9		
1	0	0	1	18	10		
1	0	1	0	19	11		
1	0	1	1	20	12		
1	1	0	0	21	13		
1	1	0	1	22	14		
1	1	1	0	23	15		
1	1	1	1	24	16		
0 = Lo	0 = Low Level 1 = High Level						

Functional Block Diagram

CD4536BMS

FUNCTIONAL TEST SEQUENCE

INPUTS				OUTPUTS	COMMENTS
IN 1	SET	RESET	8-BYPASS	DECODE OUT Q1 THRU 24	
1	0	1	1	0	ALL 24 STEPS ARE IN RESET MODE
1	1	1	1	0	Counter is in three 8-stage section in parallel mode
0	1	1	1	0	First "1" to "0" transition of clock
1 0 - - -	1	1	1		255 "1" to "0" transitions are clocked in the counter
0	1	1	1	1	The 255 "1" to "0" transition
0	0	0	0	1	Counter converted back to 24 stages in series mode. Set and Reset must be connected together and simultaneously go from "1" to "0"
1	0	0	0	1	In1 Switches to a "1"
0	0	0	0	0	Counter Ripples from an all "1" state to an all "0" state

Functional Test Sequence

Test Function has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections and 255 counts are loaded in each of the 8-stage sections in parallel. All flip-flops are now at a "1". The counter is now returned to the normal 24 steps in series configuration. One more pulse is entered into In1 which will cause the counter to ripple from an all "1" state to an all "0" state.

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ. Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com