# STAT 3100 Lecture Note

Week Twelve (Nov 29 & Dec 1, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Dec/01 00:29:22

# Asymptotic properties of MLE (con'd)

# Asymptotic efficiency of MLE (CB Thm 10.1.12 & Ex. 10.7)

- $\sqrt{n}(\hat{\theta}_{ML} \theta_0) \xrightarrow{d} \mathcal{N}(0, 1/I_1(\theta_0))$ , provided that  $\hat{\theta}_{ML}$  is the MLE for  $\theta_0$ , we have the previous four regularity conditions (for the consistency of MLE) plus the following two more (CB Sec 10.6.2):
  - For each  $x \in \text{supp}(X)$ ,  $f(x \mid \theta)$  is three time continuously differentiable with respect to  $\theta$ ; and  $\int f(x \mid \theta) dx$  can be differentiated three times under the integral sign;
  - for each  $\theta \in \Theta$ , there exists  $c(\theta) > 0$  and  $M(x, \theta)$  such that  $\left| \frac{\partial^3}{\partial \theta^3} \ln f_X(x \mid \theta) \right| \leq M(x, \theta)$  for all  $x \in \operatorname{supp}(X)$  and  $\theta \in (\theta c(\theta), \theta + c(\theta))$ .
- In practice,
  - $-nI_1(\theta_0) = I_n(\theta_0) \approx I_n(\hat{\theta}_{\mathrm{ML}}) \approx \hat{I}_n(\hat{\theta}_{\mathrm{ML}})$ 

    - \* (Expected) Fisher information (number)  $I_n(\theta_0) = -\mathbb{E}\{H(\theta_0; \mathbf{X})\}$ \* Observed Fisher information (number)  $\hat{I}_n(\hat{\theta}_{\mathrm{ML}}) = -\frac{\partial^2}{\partial \theta^2} \ln L(\theta; \mathbf{x})\big|_{\theta = \hat{\theta}_{\mathrm{ML}}} = -H(\hat{\theta}_{\mathrm{ML}}; \mathbf{x})$
  - Hence  $\operatorname{var}(\hat{\theta}_{\mathrm{ML}}) \approx 1/I_n(\theta_0) \approx 1/I_n(\hat{\theta}_{\mathrm{ML}}) \approx 1/\hat{I}_n(\hat{\theta}_{\mathrm{ML}})$

#### Delta method

• (CB Thm 5.5.24, delta method) If  $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$ ,  $\tau$  is NOT a function of n, and  $\tau'(\theta) \neq 0$ ,

$$\sqrt{n}\{\tau(\hat{\theta}_n) - \tau(\theta)\} \xrightarrow{d} \mathcal{N}(0, \{\tau'(\theta)\}^2 \sigma^2).$$

- Hence  $\operatorname{var}\{\tau(\hat{\theta}_n)\} \approx \{\tau'(\hat{\theta}_n)\}^2 \sigma^2/n \text{ if } \tau'(\theta) \neq 0$
- (CB Thm 5.5.26, second-order delta method) If  $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$ ,  $\tau$  is NOT a function of n,  $\tau'(\theta) = 0$ , and  $\tau''(\theta) \neq 0$ , then

$$n\{\tau(\hat{\theta}_n) - \tau(\theta)\} \xrightarrow{d} \frac{\tau''(\theta)\sigma^2}{2}\chi^2(1).$$

- Hence  $\operatorname{var}\{\tau(\hat{\theta}_n)\} \approx \{\tau''(\hat{\theta}_n)\}^2 \sigma^4/(2n^2)$  if  $\tau'(\theta) = 0$  but  $\tau''(\theta) \neq 0$ 

## CB Example 10.1.17 & Ex. 10.9

- iid  $X_1, \ldots, X_n \sim p(x \mid \lambda) = \lambda^x \exp(-\lambda)/x!, x \in \mathbb{Z}^+, \lambda > 0$ . To estimate  $\Pr(X_i = 0) = \exp(-\lambda)$ .
  - a. Consider  $T_n = n^{-1} \sum_i \mathbf{1}_{\{0\}}(X_i)$  and MLE  $W_n = \exp(-\bar{X}_n)$ . Compute ARE $(T_n, W_n)$ , the ARE of  $T_n$  with respect to  $W_n$ .
  - b. Find the UMVUE for  $Pr(X_i = 0)$ , say  $U_n$ , and then calculate  $ARE(U_n, W_n)$ .
    - Hint:  $\sqrt{n}(U_n W_n) \xrightarrow{p} 0$  (derived from S. Portnoy, The Annals of Statistics, 1977, 5, pp. 522-529, Theorem 1) and  $\sum_{i=1}^{n} X_i \sim \text{Poisson}(n\lambda)$

# Approximation to the variance of $\hat{\theta}_n$

- Why?
  - Reflect the variation or dispersion of  $\hat{\theta}_n$
  - Help approximate the distribution of  $\hat{\theta}_n$  (and further construct the confidence region for  $\theta$ ) if assuming normality
- How?
  - Utilizing the asymptotic variance of  $\hat{\theta}_n$
  - Resampling methods, e.g., bootstraping

# CB Example 10.1.17 & Ex. 10.9 (con'd)

• iid  $X_1, \ldots, X_n \sim p(x \mid \lambda) = \lambda^x \exp(-\lambda)/x!, x \in \mathbb{Z}^+, \lambda > 0$ . Define  $\theta = \Pr(X_i = 2 \mid \lambda) = \lambda^2 \exp(-\lambda)/2$ . Approximate the variance of  $\hat{\theta}_{\mathrm{ML}} = \bar{X}_n^2 \exp(-\bar{X}_n)/2$  by delta methods.

### **CB** Example 10.1.15

• Holding iid  $X_i \sim \text{Bernoulli}(p)$ , the variance of Bernoulli(p) is  $\tau(p) = p(1-p)$  whose MLE is  $\tau(\hat{p}_{\text{ML}}) = \bar{X}_n(1-\bar{X}_n)$ . Approximate  $\text{var}\{\tau(\hat{p}_{\text{ML}})\}$  by delta methods.

# Bootstraping the variance of $\hat{\theta}_n$ (CB Sec. 10.1.4)

- Nonparametric bootstrap:
  - 1. For j in 1 : B, do steps 2–3.
  - 2. Draw the jth resample  $\mathbf{x}_{j}^{*}$  of size n from the original sample  $\mathbf{x} = \{x_{1}, \dots, x_{n}\}$ , with replacement, i.e., create a new iid sample  $\mathbf{x}_{j}^{*}$  from  $F_{n}$  (the empirical cdf of the original sample)
  - 3. Let  $\hat{\theta}_{i}^{*} = \hat{\theta}(x_{j}^{*})$ .
  - 4.  $\operatorname{var}(\hat{\theta}) \approx \text{the sample variance of } \{\hat{\theta}_1^*, \dots, \hat{\theta}_B^*\}.$
- (Optional, see, e.g., www.stat.columbia.edu/~bodhi/Talks/Emp-Proc-Lecture-Notes.pdf) Empirical process: theoretical foundation for nonparametric bootstrap
  - (Glivenko-Cantelli)  $\sup_{x \in \mathbb{R}} |F_n(x) F(x)| \xrightarrow{\text{a.s.}} 0$
  - (Donsker)  $\sqrt{n}(F_n F) \xrightarrow{d} BB \circ F$ , i.e.,  $E[g\{\sqrt{n}(F_n F)\}] \to E[g(BB \circ F)]$  for all bounded, continuous and real-valued g
    - \* BB is a Gaussian process (specifically, standard Brownian bridge process on [0,1]), i.e.,
      - BB(0) = BB(1) = 0 but BB(t)  $\sim \mathcal{N}(0, t(1-t))$  for  $t \in (0, 1)$ ;
      - · fixing  $t_1, \ldots, t_p \in (0,1)$ ,  $[BB(t_1), \ldots, BB(t_p)]^{\top}$  is of multivariate normal with cov(BB(s), BB(t)) = min(s, t) st;
      - · BB(t) is continuous in t.
- Parametric bootstrap:
  - 1. For j in 1 : B, do steps 2–3.
  - 2. Draw the jth resample  $x_i^*$  of size n from a fitted model  $f(x \mid \hat{\theta})$ .
  - 3. Let  $\hat{\theta}_i^* = \hat{\theta}(\boldsymbol{x}_i^*)$ .
  - 4.  $var(\hat{\theta}) \approx the sample variance of {\{\hat{\theta}_1^*, \dots, \hat{\theta}_R^*\}}.$

#### CB Example 10.1.15

• Holding iid  $X_i \sim \text{Bernoulli}(p)$ , the variance of Bernoulli(p) is  $\tau(p) = p(1-p)$  for which the MLE is  $\tau(\hat{p}_{\text{ML}}) = \bar{X}_n(1-\bar{X}_n)$ . Approximate  $\text{var}\{\tau(\hat{p}_{\text{ML}})\}$  by the bootstrap.

```
options(digits = 4)
set.seed(1)
B = 1e4L
```

```
n = 30
x = rbinom(n, 1, prob = .7)
theta_ml = mean(x)
tau_theta_star_np = numeric(B)
tau_theta_star_p = numeric(B)
# Nonparametric bootstrap
for (j in 1:B){
  x_star = sample(x, size = n, replace = T)
  tau_theta_star_np[j] = mean(x_star)*(1-mean(x_star))
var(tau_theta_star_np)
# Parametric bootstrap
for (j in 1:B){
  x_star = rbinom(n, size = 1, prob = theta_ml)
  tau_theta_star_p[j] = mean(x_star)*(1-mean(x_star))
var(tau_theta_star_p)
# Estimate via the first-order delta method
theta_ml*(1-theta_ml)*(1-2*theta_ml)^2/n
# Estimate via the second-order delta method
2*theta ml^2*(1-theta ml)^2/n^2
```

# Large-sample hypothesis testing

#### Recall the LRT

- $H_0: \theta \in \Theta_0$  v.s.  $H_1: \theta \in \Theta_1$ , where  $\Theta = \Theta_0 \cup \Theta_1$
- LRT statistic

$$\lambda(\boldsymbol{x}) = \frac{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} L(\boldsymbol{\theta}; \boldsymbol{x})}{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}; \boldsymbol{x})} = \frac{L(\hat{\boldsymbol{\theta}}_{0, \text{ML}}; \boldsymbol{x})}{L(\hat{\boldsymbol{\theta}}_{\text{ML}}; \boldsymbol{x})}$$

- $-\hat{\boldsymbol{\theta}}_{0,\mathrm{ML}}$ : constrained MLE for  $\boldsymbol{\theta} \in \boldsymbol{\Theta}_0$
- $-\hat{\boldsymbol{\theta}}_{\mathrm{ML}}$ : unconstrained MLE for  $\boldsymbol{\theta} \in \boldsymbol{\Theta}$
- $\{x : \lambda(x) \leq c_{\alpha}\}$ : rejection region of level  $\alpha$  LRT
  - $-c_{\alpha}$  is such defined that  $\sup_{\theta \in \Theta_{0}} \Pr(\lambda(\mathbf{X}) \leq c_{\alpha} \mid \theta) = \alpha$

#### Asymptotic distribution of LRT statistic (CB Thm 10.3.1 & 10.3.3)

• Under  $H_0$ , as  $n \to \infty$ ,

$$-2 \ln \lambda(\mathbf{X}) \xrightarrow{d} \chi^2(\nu),$$

where  $\nu =$  difference of numbers of free parameters in  $\Theta_0$  and  $\Theta$ .

• (CB Thm 10.3.3)  $\{x: -2 \ln \lambda(x) \ge \chi^2_{\nu,1-\alpha}\}$ : asymptotic rejection region of level  $\alpha$  LRT  $-\chi^2_{\nu,1-\alpha}$  is the  $1-\alpha$  quantile of  $\chi^2(\nu)$ .

#### CB Example 10.3.4

• iid  $X_1, \ldots, X_n \sim \Pr(X_i = j) = p_j, j = 1, \ldots, 5$ . Specify the  $1 - \alpha$  LRT rejection region for  $H_0: p_1 = p_2 = p_3$  and  $p_4 = p_5$  vs.  $H_1:$  Otherwise.

## Wald test (CB pp. 493)

- $H_0: \theta = \theta_0$  versus  $H_1: \theta \neq \theta_0$ 
  - Wald statistic:  $(\hat{\theta}_n \theta_0) / \sqrt{\operatorname{var}(\hat{\theta}_n)}$  (if  $(\hat{\theta}_n \theta_0) / \sqrt{\operatorname{var}(\hat{\theta}_n)} \xrightarrow{d} \mathcal{N}(0, 1)$  under  $H_0$  as  $n \to \infty$ )
    - \* Asymptotically equivalent to LRT for this two sided test if  $\hat{\theta}_n = \hat{\theta}_{ML}$
    - \* Substitute  $\widehat{\text{var}}(\hat{\theta}_n)$  for  $\text{var}(\hat{\theta}_n)$  if  $\text{var}(\hat{\theta}_n)$  is well approximated by  $\widehat{\text{var}}(\hat{\theta}_n)$
  - Level  $\alpha$  rejection region:  $\{ \boldsymbol{x} : |\hat{\theta}_n \theta_0| / \sqrt{\operatorname{var}(\hat{\theta}_n)} \ge \Phi_{1-\alpha/2}^{-1} \}$

# Score test (CB pp. 494)

- $H_0: \theta = \theta_0 \text{ vs. } H_1: \theta \neq \theta_0$ 
  - Score statistic:  $S(\theta_0; \mathbf{X}) / \sqrt{I_n(\theta_0)} \stackrel{d}{\to} \mathcal{N}(0, 1)$  under  $H_0$  as  $n \to \infty$ )
  - Level  $\alpha$  rejection region:  $\{\boldsymbol{x}: |S(\theta_0;\boldsymbol{x})|/\sqrt{I_n(\theta_0)} \geq \Phi_{1-\alpha/2}^{-1}\}.$
- If  $\Theta_0$  contains more than one points, then substitute  $\hat{\theta}_{0,\text{ML}}$  for  $\theta_0$ . So the score test at most involves the constrained MLE.

### CB Examples 10.3.5 & 10.3.6

• iid  $X_1, \ldots, X_n \sim \text{Bernoulli}(p), p \in (0,1)$ . Derive LRT, Wald and score tests for  $H_0: p = p_0$  versus  $H_1: p \neq p_0.$ 

### Asymptotic confidence regions

- Constructed by reverting rejection regions
- Examples
  - $-1 \alpha$  LRT confidence region for  $\theta$ :  $\{\theta : -2\ln\{L(\theta; \boldsymbol{x})/L(\hat{\theta}_{\mathrm{ML}}; \boldsymbol{x})\} < \chi^2_{1,1-\alpha}\}$
  - 1  $\alpha$  Wald confidence region for  $\theta$ :  $\{\theta: |\hat{\theta}_n \theta|/\sqrt{\operatorname{var}(\hat{\theta}_n)} < \Phi_{1-\alpha/2}^{-1}\}$  1  $\alpha$  score confidence region for  $\theta$ :  $\{\theta: |S(\theta; \boldsymbol{x})|/\sqrt{I_n(\theta)} < \Phi_{1-\alpha/2}^{-1}\}$

### CB Examples 10.4.2, 10.4.3 & 10.4.5

• iid  $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ , construct  $1 - \alpha$  confidence intervals for p.

#### Take-home exercises (NOT to be submitted; to be potentially covered in labs)

- CB Ex. 10.17(a-c), 10.36, 10.38
- HMC Ex. 6.3.16-6.3.18