



## FIGURE 2A

## CHIR 12.12 light chain:

leader:

MALPAOLLGLLMLWVSGSSG

variable:

DIVMTQSPLSLTVTPGEPASISCRSSQSLLYSNGYNYLDWYLQKPGQSPQVLISLGSNR ASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQARQTPFTFGPGTKVDIR

constant:

RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

## FIGURE 2B

#### CHIR-12.12 heavy chain:

leader:

**MEFGLSWVFLVAILRGVOC** 

variable:

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYEESNRY HADSVKGRFTISRDNSKITLYLQMNSLRTEDTAVYYCARDGGIAAPGPDYWGQGTLVTV SS

constant:

ASTKGPSVFPLAPASKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

#### alternative constant region:

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNHYTOKSLSLSPGK

# FIGURE 3A

DNA sequence of light chain of CHIR-12.12:

5'atggcgctccctgctcagctcctggggctgctaatgctctgggtctctggatccagtggggatattgtgatgactcagtctccac tctccctgaccgtcacccctggagagccggcctccatctcctgcaggtccagtcagagcctcctgtatagtaatggatacaactat ttggattggtacctgcagaagccagggcagtctccacaggtcctgatctcttttgggttctaatcgggcctccggggtccctgacag gttcagtggcagtggatcaggcacagattttacactgaaaatcagcagagtggaggctgaggatgttggggtttattactgcatgc aagctcgacaaactccattcactttcggccctgggaccaaagtggatatcagacgaactgtggctgcaccatctgtcttcatcttcc cgccatctgatgagcagttgaaatctggaactgcctctgttgtgtgcctgctgaataacttctatcccagagaggccaaagtacagt ggaaggtggataacgcctccaatcgggtaactcccaggagagtgtcacagagcaggacagcagcaaggacagcacctacagcc tcagcagcaccctgacgctgagcaaagcagcaaagcagcacaaagtctacgcctgagcctgagcccgaggcctgagcccaaaggacagcaccaaagggcctgagcccggcccgtcacaaagagcttcaacaggggagagggtttag3'

# FIGURE 3B

DNA sequence of heavy chain of CHIR-12.12 (including introns):

gcgtggtccagcctgggaggtccctgagactctcctgtgcagcctctggattcaccttcagtagctatggcatgcactgggtccg ${\tt ccaggctccaggcaagggctggagtggcagttatatcatatgaggaaagtaatagataccatgcagactccgtgaagg}$ gccgattcaccatctccagagacaattccaagatcacgctgtatctgcaaatgaacagcctcagaactgaggacacggctgtgtattactgtgcgagagatgggggtatagcagcacctgggcctgactactggggccagggaaccctggtcaccgtctcctcagcaagtacca agggcccatccg tottcccctggcgcccgctagca agagcacctctggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccagcggcgtgcacaccttcccggctgtcctacagtcctcaggactctactccctcagcagcgtggtgaccgtgccctccagcagcttgggcacccagacctacatctgcaacgtaggtgcccctaacccaggccctgcacacaaaggggcaggtgctgggctcagacctgccaagagccatatccgggaggaccctgeccet gaceta agecea acceca a aggcea a actete cacte cete agete ggaca cette tete ce cagatte cagta actete agete gacac accete to the contract of the contract agent agete aget ${\tt ccaatettetetetgeagageceaaatettgtgacaaaacteacacatgeceacgtgeceaggtaagecageceaggectege}$ cct ccagc tcaag gcgg gacag gtgccctag ag tagcct gcatccag gggacag gccccagccg ggtgct gacacgtccacctccate tette et cage accet gaac te et ggggggac eg te agtet te et et te ecce caa aa acce aa ggac accet cat gate te experience accet en experience en experience en experience accet en experience en expcggacccctgaggtcacatgcgtggtggtggacgtgagccacgaagaccctgaggtcaagttcaactggtacgtggacggcgtgg aggtg cata at gccaa gacaa agccgcg gg aggag cagtacaa cagcacgt accgt gt gg tcagcgt cct caccgt cct accgt consideration of the considgcaccaggactggctgaatggcaaggagtacaagtgcaaggtctccaacaaagccctcccagcccccatcgagaaaaccatctccaaagccaaaggtgggacccgtggggtgcgagggccacatggacagaggccggctcggccaccctctgccctgagagt gaccgctgtaccaacctctgtccctacagggcagccccgagaaccacaggtgtacaccctgccccatcccgggaggagatg accaagaaccagg teagect gacet get caa agget tetate ceage gacate geeg t ggag t ggag ag caat gg caat ggagccggagaacaactacaagaccacgcctcccgtgctggactccgacggctccttcttcctctatagcaagctcaccgtggaca agag cagg tgg cag cagg ggaa cgt ctt ct cat gct ccgt gat gcat gagg ct ctg caca accact a cac gcag aagag cct common commontccctgtctccgggtaaatga3'

# FIGURE 4A

## CHIR-5.9 light chain:

leader:

MALLAQLIGLIMLWVPGSSG

variable:

AIVMTQPPLSSPVTLGQPASISCRSSQSLVHSDGNTYLNWLQQRPGQPPRLLIYKFFRR LSGVPDRFSGSGAGTDFTLKISRVEAEDVGVYYCMQVTQFPHTFGQGTRLEIK

constant:

RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQ DSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

# FIGURE 4B

# CHIR-5.9 heavy chain:

leader:

MGSTAILALLLAVLQGVCA

variable:

EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTR YSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARGTAAGRDYYYYYGMDVWGQG TTVTVSS

#### constant:

ASTKGPSVFPLAPASKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

alternative constant region:

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS SGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELL GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

## FIGURE 5A

# Coding sequence for short isoform of human CD40:

- 1 atggttegte tgeetetgea gtgegteete tggggetget tgetgaeege tgteeateea
- 61 gaaccaccca etgeatgeag agaaaaacag tacctaataa acagteagtg etgttetttg
- 121 tgccagccag gacagaaact ggtgagtgac tgcacagagt tcactgaaac ggaatgcctt
- 181 ccttgcggtg aaagcgaatt cctagacacc tggaacagag agacacactg ccaccagcac
- 241 aaatactgcg accccaacct agggcttcgg gtccagcaga agggcacctc agaaacagac
- 301 accatetgea cetgtgaaga aggetggeac tgtacgagtg aggeetgtga gagetgtgte
- 361 etgeaceget eatgetegee eggetttggg gteaageaga ttgetaeagg ggtttetgat
- 421 accatetgeg agecetgeec agteggette ttetecaatg tgteatetge tttegaaaaa
- 481 tgtcaccett ggacaaggte eecaggateg getgagagee etggtggtga tecceateat
- 541 cttcgggatc ctgtttgcca tcctcttggt gctggtcttt atcaaaaagg tggccaagaa
- 601 gccaaccaat aa

## FIGURE 5B

# Encoded short isoform of human CD40:

- 1 mvrlplqcvl wgclltavhp epptacrekq ylinsqccsl cqpgqklvsd cteftetecl
- 61 pcgesefldt wnrethchqh kycdpnlglr vqqkgtsetd tictceegwh ctseacescv
- 121 lhrscspgfg vkqiatgvsd ticepcpvgf fsnvssafek chpwtrspgs aespggdphh
- 181 Irdpvchplg aglyqkggqe anq

## FIGURE 5C

# Coding sequence for long isoform of human CD40:

- 1 atggttcgtc tgcctctgca gtgcgtcctc tgggggctgct tgctgaccgc tgtccatcca
- 61 gaaccaccca ctgcatgcag agaaaaacag tacctaataa acagtcagtg ctgttctttg
- 121 tgccagccag gacagaaact ggtgagtgac tgcacagagt tcactgaaac ggaatgcctt
- 181 cettgeggtg aaagegaatt cetagacace tggaacagag agacacactg ceaceageac
- 241 aaatactgcg accecaacct agggettegg gtecageaga agggeacete agaaacagae
- 301 accatetgea cetgtgaaga aggetggeae tgtacgagtg aggeetgtga gagetgtgte
- 361 etgeaceget eatgetegee eggetttggg gteaageaga ttgetaeagg ggtttetgat
- 421 accatetgeg agecetgece agteggette ttetceaatg tgteatetge tttegaaaaa
- 481 tgtcaccett ggacaagetg tgagaccaaa gacetggttg tgcaacagge aggcacaaac
- 541 aagactgatg ttgtctgtgg tccccaggat cggctgagag ccctggtggt gatccccatc
- 601 atcttcggga tcctgtttgc catcctcttg gtgctggtct ttatcaaaaa ggtggccaag
- 661 aagccaacca ataaggcccc ccaccccaag caggaacccc aggagatcaa ttttcccgac
- 721 gatetteetg geteeaacae tgetgeteea gtgeaggaga etttacatgg atgecaaceg
- 781 gtcacccagg aggatggcaa agagagtcgc atctcagtgc aggagagaca gtga

## FIGURE 5D

# Encoded long isoform of human CD40:

- 1 mvrlplqcvl wgclltavhp epptacrekq ylinsqccsl cqpgqklvsd cteftetecl
- 61 pcgesefldt wnrethchqh kycdpnlglr vqqkgtsetd tictceegwh ctseacescv
- 121 lhrscspgfg vkqiatgvsd ticepcpvgf fsnvssafek chpwtscetk dlvvqqagtn
- 181 ktdvvcgpqd rlralvvipi ifgilfaill vlvfikkvak kptnkaphpk qepqeinfpd
- 241 dlpgsntaap vqetlhgcqp vtqedgkesr isvqerq

# FIGURE 6

