Laboratorul 7

- 1. Pentru un vector de date satistice \mathbf{x} și un nivel de semnificație \mathbf{a} (date ca input) scrieți funcții care returnează valorile intervalelor de încredere bilaterale pentru:
 - i) medie, când abaterea standard s este dată (ca input);
 - ii) medie, când abaterea standard nu este dată;
 - iii) abatere standard:
 - iv) proporție, când datele statistice x sunt booleene.
- 2. Atribuiți lui m, fără a afișa, valoarea unui număr aleator uniform distribuit în intervalul [150, 170]. Generați un vector \mathbf{x} de $n \in \{100, 500, 1000\}$ date statistice pentru caracteristica \hat{i} nălțime (în cm) a unei populații, care urmează distribuția normală $N(m, \sigma^2)$, unde $\sigma > 0$ este ales corespunzător cerințelor de mai jos.
- a) Atribuiți lui σ , fără a afișa, valoarea unui număr aleator uniform distribuit în intervalul [5, 20]. Determinați intervale de încredere bilaterale cu nivelul de încredere 95% pentru:
 - a₁) înălțimea medie a populației;
 - **a**₂) abaterea standard a înălţimii populaţiei;
 - a₃) proporția persoanelor din populație care au înălțimea între 155 (cm) și 165 (cm).
- **b**) Știind că abaterea standard a înălțimii este $\sigma = 10$ (cm), testați următoarele ipoteze cu nivelul de semnificație (probabilitatea de risc) 5%:
 - b₁) înălțimea medie a populației este 160 cm;
 - **b₂**) înălțimea medie a populației este cel puțin egală cu 155 cm;
 - $\mathbf{b_3}$) înălțimea medie a populației este strict mai mică decât 165 cm.