

19 BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENTAMT

® Offenlegungsschrift ® DE 197 10 615 A 1

fi) Int. Cl.⁶: C 08 F 4/69 C 08 F 10/00

② Aktenzeichen:

197 10 615.3

② Anmeldetag:

14. 3.97

43 Offenlegungstag:

17. 9.98

(7) Anmelder:

Studiengesellschaft Kohle mbH, 45481 Mülheim,

(4) Vertreter:

Patentanwälte von Kreisler, Selting, Werner et col., 50667 Köln

② Erfinder:

Döhring, Arno, 45470 Mülheim, DE; Göhre, Jan, 45470 Mülheim, DE; Weber, Jan Christoph, 45470 Mülheim, DE

66) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

07 42 046 A2

Chemical Abstracts:

Vol. 126, 1997, Ref. 251211;

Vol. 126, No. 4, 1997, Ref. 47320q;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Organochrom-Verbindungen enthaltende Katalysatoren und ihre Verwendung in der Alkenpolymerisation

Neue Donorligand-substituierte n⁵-Organyl-Chrom-Komplexe, die in Mischung mit Lewis-Säuren wie Methylaluminoxan hochaktive Polymerisationskatalysatoren für α-Alkene und deren Gemische sowie für Mischungen aus α-Alkenen und ungesättigten Alkenen mit gespannter Doppelbindung bilden.

Beschreibung

Die Erfindung betrifft eine Klasse von Organochrom-Katalysatoren, die durch Reaktion von Donorligand-substituierten η^5 -Organyl-Chrom-Komplexen mit Lewis-Säuren gebildet werden, und die eine hohe katalytische Aktivität bei der Polymerisation und Copolymerisation von Alkenen aufweisen.

Es ist bekannt, daß Übergangsmetallverbindungen mit Amido-substituierten Cyclopentadienylliganden, vor allem mit Ti (z. B. IX), in Anwesenheit von Methylaluminoxan (MAO) die Alkenpolymerisation katalysieren (K.B. Sinclair und R.B. Wilson, Chem. Ind. 857 (1994); Dow Chemicals, Eur. Pat. 416,815 (1991); Exxon Chemicals, Eur. Pat. 420,436 (1991)], jedoch wurde über entsprechende Systeme mit einem Donorligand der 15. Gruppe (N, P, As, Sb, Bi) des Periodensystems als Substituent bisher noch nicht berichtet.

Es wurde nun überraschenderweise gefunden, daß Organochrom-Verbindungen der allgemeinen Formel (I) in Gegenwart von Lewis-Säuren wie Organylverbindungen des Bors oder Aluminiums, wie z. B. Methylaluminoxan, zur Polymerisation und Copolymerisation von Alkenen eingesetzt werden können,

I

wobei \mathbb{R}^1 ein delokalisiertes η^5 -koordiniertes π -System wie Cyclopentadienyl, Indenyl, Fluorenyl enthält, wobei X ein elektronegatives Atom oder Gruppe, wie Halogenid oder Amid, oder eine Organylgruppe, wie Alkyl oder Aryl, oder CrX2 ein metallacyclisches Fragment, wie

CrCH₂C₂H₄CH₂

45

50

55

65

wobei Y ein Donoratom der 15. Gruppe (N, P, As, Sb, Bi) des Periodensystems ist, wobei Z ein Atom der 14. Gruppe (C, Si, Ge, Sn, Pb) des Periodensystems ist;

wobei R' H, Alkyl- oder Organylgruppen ist, wobei R" H, Alkyl- oder Organylgruppen, ist,

und $n \ge 1$ ist.

Exemplarische Beispiele sind die Verbindungen (II)-(VIII); in Tabelle 1 sind die Substituenten R1 R', R" sowie X, Y und Z definiert (Cy steht für cyclohexyl). Die Molekülstruktur der neuen Verbindung VI wurde röntgenographisch bestimmt und in Abb. 1 dargestellt.

2

Tabelle 1

Typische Organochrom-Verbindungen

Verbindung	X	Y	Z	n	R^1	R'	R''	
Nr.								
п	Cl	N	С	2	C ₅ Me ₄	H	Me	40
ш	C ₂ H ₄ ^{<u>a</u>}	N	С	2	C ₅ Me ₄	Н	Me	
IV	Cl	N	С	2	Indenyl	Н	Me	45
v	I	N	С	2	C ₅ Me ₄	Н	Me	
VI	Cl	P	С	2	C ₅ H ₄	Н	Cyclohexyl	50
VII	Me	P	С	2	C ₅ H ₄	Н	Cyclohexyl	
VIII	Cl	N	Si	1	C ₅ H ₄	. Me	Et	55

$${}^{\underline{a}}\mathbf{CrCH}_{\underline{2}}\mathbf{C}_{\underline{2}}\mathbf{H}_{\underline{4}}\mathbf{C}\mathbf{H}_{\underline{2}} = \mathbf{CrX}_{\underline{2}}$$

Die Organochrom-Verbindungen werden in hoher Ausbeute durch Reaktion eines Cr-Trihalogenids mit einem Metallsalz des entsprechenden Donorligand-substituierten η^5 -Organyl-Derivates erhalten, z. B.

65

35

wobei die resultierenden Cr-Dihalogenid-Derivate als Ausgangsverbindungen für die Herstellung weiterer Beispiele eingesetzt werden können, z. B.

$$_{5}$$
 II + $_{\text{Li}}$ \longrightarrow III + 2 LiCl

10

20

45

Aktivierung dieser Verbindungen mit Lewis-Säuren führt zu hochaktiven Katalysatoren für die Alkenpolymerisation und -copolymerisation. Als Alkene werden α-Alkene bevorzugt, während bei der Copolymerisation mit gespannten Alkenen Ethen bevorzugt wird. Beispiele 8–13 befassen sich mit Ethen, Beispiele 14 und 15 mit Propen und Beispiel 16 mit der Copolymerisation. Die Reaktion kann in aromatischen Lösungsmitteln (Toluol) oder gesättigten Kohlenwasserstoffen (n-Heptan), bei Raumtemperatur (20–30°C) und geringen Drücken (2 bar) durchgeführt werden. Die volle katalytische Aktivität wird überraschenderweise bereits bei einem molaren Verhältnis Al: Cr von 45–300: 1 erreicht. Im Vergleich dazu benötigten das System auf Ti-Basis IX und die Zr-haltigen ansa-Metallocene, z. B. X [M. Aulbach und F. Küber, Chem. unser. Zeit 28, 197 (1994)], Al: Metall-Verhältnisse von ca. 10⁴: 1.

Die neuen Cr-Verbindungen, besonders bevorzugt die Verbindung VII, katalysieren in Gegenwart von MAO die Polymerisation von Ethen zu hochlinearem Polyethylen, das eine bimodale Molekulargewichtsverteilung aufweist (Tabelle 3). Des weiteren lassen sich auch homologe Alkene wie Propen polymerisieren (ataktisches Polypropylen) sowie beispielsweise Ethen mit Norbornen copolymerisieren. Im letztgenannten Fall entsteht ein nahezu rein alternierendes Copolymer (XI), das laut ¹³C-NMR 43% Norbornen und 57% Ethen enthält und am bicyclischen Ring ausschließlich exokonfiguriert ist.

 \mathbf{XI}

Beispiele

Beispiel 1

Darstellung von (Me₂NC₂H₄C₅Me₄)CrCl₂ (II)

5

15

30

40

45

50

55

60

 $Me_2NC_2H_4C_5Me_4Li$ (1.25 g, 6.3 mmol) in THF (20 ml) wurde bei Raumtemperatur unter Rühren zu einer Lösung von $Cr(THF)_3Cl_3$ (2.36 g, 6.3 mmol) in THF (50 ml) getropft. Die entstandene blaue Lösung wurde weitere 15 h gerührt und anschließend im Vakuum zur Trockene eingeengt. Der Rückstand wurde mit siedendem Toluol extrahiert. Aus dem Extrakt fiel das Produkt bei $-70^{\circ}C$ in Form dunkelblauer Nadeln aus. Ausbeute: 1.70 g (86% der Theorie). Analytische Daten: ber. für $C_{13}H_{22}Cl_2CrN$: C 49.5, H 7.0, Cr 16.5, Cl 22.5, N 4.4 %; gef. C 49.5, H 6.9, Cr 16.5, Cl 22.6, N 4.4%. MS (100°C): m/e 314 (6%, M^+), 278 (10%).

Beispiel 2

Darstellung von $(Me_2NC_2H_4C_5Me_4)CrCH_2C_2H_4CH_2$ (III)

Zu einer Lösung von IV (1.43 g, 4.5 mmol) in THF (50 ml) wurde bei -20° C in Diethylether gelöstes 1,4-Dilithiumbutan (16.0 ml einer 0.32 molaren Lsg., 5.1 mmol), mit THF (20 ml) verdünnt, getropft. Das Reaktionsgemisch wurde 15 h bei -10° C gerührt und die entstandene grüne Lösung im Vakuum zur Trockene eingeengt. Der Rückstand wurde bei 0° C mit Pentan extrahiert. Aus dem auf 20 ml eingeengten Extrakt fiel das Produkt bei -70° C in Form dunkelgrüner Nadeln aus. Ausbeute: 1.04 g (77% der Theorie). Die Verbindung ist bei Raumtemperatur stabil. Analytische Daten.: ber. für $C_{17}H_{30}$ CrN: C 68.0, H 10.1, Cr 17.3, N 4.7%; gef.: C 67.9, H 10.0, Cr 17.4, N 4.6%. MS (50°C): m/e 272 (21%), M*- $C_{2}H_{4}$), 244 (100%).

Beispiel 3

Darstellung von (1-Me2NC2H4indenyl)CrCl2 (IV)

 $1\text{-Me}_2NC_2H_4$ indenylK (3.88 g, 17.2 mmol) in THF (50 ml) wurde bei Raumtemperatur unter Rühren zu einer Lösung von Cr(THF) $_3Cl_3$ (6.45 g, 17.1 mmol) in THF (100 ml) getropft. Die entstandene grünblaue Lösung wurde weitere 17 h gerührt und anschließend im Vakuum zur Trockene eingeengt. Der Rückstand wurde mit siedendem Toluol extrahiert. Aus dem Extrakt fiel das Produkt bei $-70^{\circ}C$ in Form dunkelgrüner Nadeln aus. Ausbeute: 3.86 g (73% der Theorie). Analytische Daten: ber. für $C_{13}H_{16}Cl_2CrN$: C 50.5, H 5.3, Cr 16.8, Cl 22.9, N 4.5%; gef. C 50.6, H 5.3, Cr 16.7, Cl 22.9, N 4.5%. MS (100°C): m/e 308 (10%, M*), 122 (9%).

Beispiel 4

Darstellung von (Me₂NC₂H₄C₅Me₄)Crl₂ (V)

 $(Me_2NC_2H_4C_5Me_4)CrCl_2$ (II, 1. 23 g, 3.9 mmol) in THF (100 ml) wurde bei 45°C mit KI (3.1 g, 18.7 mmol) 72 h gerührt. Die Lösung wurde eingeengt und die Verbindung aus Heptan/Toluol (1:9) umkristallisiert. Aus dem Extrakt fiel das Produkt in Form hellblauer Nadeln aus. Ausbeute: 1.52 g (83% der Theorie). Analytische Daten: ber. für $C_{13}H_{22}Cr$ I_2N : C 31.4, H 4.5, Cr 10.9, I 51.0, N 2.8%; gef. C 30.9, H 4.8, Cr 11.6, I 49.1, N 3.2%. MS (100°C): m/e 498 (M*), 371 (M*-1).

Beispiel 5

Darstellung von (Cy₂PC₂H₄C₅H₄)CrCl₂ (VI)

Zu einer Lösung von Cr(THF)₃ Cl₃ (2.6 g, 6.7 mmol) in THF (50 ml) wurden LiPCy₂C₂H₄C₅H₄ (2.8 g 6.7 mmol) in THF (20 ml) bei Raumtemperaturgegeben und 5 min gerührt. Die entstandene blaue Lösung wurde eingeengt und aus siedendem Aceton umkristallisiert. Ausbeute: Blaue Nadeln, 82% der Theorie. Analytische Daten: ber. C 55.4, H 7.3, Cl 17.2, Cr 12.6, P 7.5, gef. C 55.2, H 7.3, Cl 17.1, Cr 12.7, P 7.7, Kristallstruktur: Abb. 1

Beispiel 6

Darstellung von (Cy₂PC₂H₄C₅H₄)CrMe₂ (VII)

Zu einer Lösung von (Cy₂PC₂H₄C₅H₄)CrCl₂ (VI, 1.1 g, 2.6 mmol) in THF (50 ml) wurden bei -20°C Methyllithium (5.2 mmol in Diethylether) in THF (20 ml) verdünnt innerhalb von 2 h zugetropft. Anschließend wurde das Reaktionsgemisch 15 h bei -10°C gerührt. Dabei verfärbte sich die Lösung von violett nach Dunkelgrün. Nach Entfernen aller flüchtigen Bestandteile bei -10°C wurde der Rückstand bei -30°C mit Pentan extrahiert. Aus dem Extrakt fiel die Verbindung bei -30 °C in Form dunkelgrüner Nadeln aus. Ausbeute: 40% der Theorie. Analytische Daten: MS (EI, 70eV): 371 (M⁺), 338.

Beispiel 7

Darstellung von (Et₂NSiMe₂C₅H₄) CrCl₂ (VIII)

Eine Lösung von LiEt₂NSiMe₂C₅H₄ (3.5 g 17.2 mmol) in Toluol (50 ml) wurde bei 20°C zu einer Suspension von Cr(THF)₃Cl₃ (6.6 g 17.5 mmol) in THF (100 ml) gegeben, wobei eine tiefblaue Lösung entstand. Nach 2 h Rühren wurde das Lösungsmittel abkondensiert und der ölige Rückstand mit Pentan (200 ml) extrahiert. Die Verbindung fiel in Form schwarzer Kristalle aus. Ausbeute: 3.1 g (56% der Theorie).

Analytische Daten: Kristallstruktur; die Verbindung ist dimer.

Katalytische Alkenpolymerisation

Im folgenden werden Beispiele für die Polymerisation von Ethen (8–13), von Propen (14, 15) und für die Copolymerisation von Ethen mit Norbornen (16) aufgeführt. Für die Versuche 8–10, 12, 13 wurde ein Glasautoklav, ausgestattet mit einem Glasflügelrührer, bei einer Rührerdrehzahl von 1200 U/min verwendet. Der Versuch 4 wurde bei ca. 50 bar in einem Stahlautoklaven durchgeführt, der ebenfalls einen Flügelrührer besaß. Für die Versuche 14–16 wurde ein einfacher Stahlautoklav mit Magnetrührkern eingesetzt.

Die Ethenpolymerisation

20

Beispiele 8-13

Die Reaktionsbedingungen sind in Tabelle 2 zusammengefaßt, und die physikalischen Eigenschaften des erhaltenen Polyethylens sind in Tabelle 3 aufgeführt. Bemerkenswert ist die hohe Aktivität der Cr-Katalysatoren, das geringe MAO: Cr-Verhältnis und die hohe Linearität des Polyethylens.

Die Propenpolymerisation

Beispiel 14

30

Katalysator, $(Me_2NC_2H_4C_5Me_4)CrCl_2$ (II), 0.0033 mmol; Cokatalysator, MAO; Al: Cr, 100: 1; Lösungsmittel, Toluol; Temp., 23/33°C; t, 60 min; p, 9 bar; Polymer, 2.91 g; TON/h, 20.996; katalytische Aktivität [kg PP/mol Cr · h], 882.

Beispiel 15

35

Katalysator, $(Me_2NC_2H_4C_5Me_4)CrCl_2$ (II), 0.0031 mmol; Cokatalysator, MAO; Al: Cr, 100: 1; Lösungsmittel, n-Heptan; Temp., 23/35°C; t, 60 min; p, 9 bar; Polymer, 4.53 g; TON/h 34.793; katalytische Aktivität [kg PP/mol Cr · h], 1.461

In beiden Fällen entsteht ein viskoses Polymer, das in Diethylether und Chloroform vollständig löslich ist. Das ¹³C-NMR-Spektrum bestätigt die ataktische Konformation des Polypropylens.

Beispiel 16

Die Copolymerisation von Ethen mit Norbornen

45

Katalysator, (Me₂NC₂H₄C₅Me₄)CrCH₂C₂H₄CH₂ (III)

50 0.0017 mmol); Cokatalysator MAO; Al: Cr = 2000: 1; Temp., 40-80°C; t, 12 min, p, 21 bar (C₂H₄); Polymer: 44.6 g; katalytische Aktivität [kg Polymer/mol Cr·h], 131. 177. Anhand der Signalintensitäten im ¹³C-NMR- Spektrum (1,2,4-Trichlorbenzol/CHD₂CHD₂, 395 K) zeigt sich, daß ein alternierendes Polymer gebildet wurde, das 43% Norbornen und 57% Ethen enthält. Glastemperatur: 131°C.

55

60

65

Tabelle 2 Die Cr-katalysierte Ethenpolymerisation

Beispiele	8	9	10	11	12	13
Cr-Verbindung	П	Ш	IV	V	VII	VIII
Lösungsmittel	Toluol	Toluol	Toluol	Toluol	Toluol	Toluol
Temp. (°C)	25-33	25-41	28-42	19-67	27-69	26-29
p (bar)	2	2	2	50-44	2	2
t (min)	18	7	13	60	7	47
Polyethylen (g)	5.2	5.8	18.8	4.4	25.6	12.2
TON/h	206.349	538.033	416.552	43.221	700.037	11.678
Aktivität	5.778	15.065	11.718	1.212	19.763	328
(kg PE/mol [Cr]·h)					:	
		<u> </u>	•		-	

Cokatalysator MAO, Lösungsmittel Toluol, Al: Cr = 100:1

Tabelle 3 Physikalische Eigenschaften des Polyethylens

Beispiel	Krist. (%)	T _m (°C)	Struktur	$M_{ m W}$	M _w /M _n
8	71	127	linear	2.9 x 10 ⁵	5.0
9	66	126	linear	2.2 x 10 ⁵	3.9
10	74	-	linear	-	-

Patentansprüche

1. Polymerisationskatalysator, enthaltend mindestens eine Organochrom-Verbindung der allgemeinen Formel I

55

65

30

35

40

45

50

1

60 R^1 ein delokalisiertes η^5 -koordiniertes π -System enthält,

X ein elektronegatives Atom, Halogen, Amid, Organylgruppen oder CrX2 ein metallacyclisches Fragment,

Y ein Donoratom der 15. Gruppe (N, P, As, Sb, Bi) des Periodensystems, Z ein Atom der 14. Gruppe (C, Si, Ge, Sn, Pb) des Periodensystems;

R' H, Alkyl- oder Organylgruppen,

R" H, Alkyl- oder Organylgruppen,

ausgenommen Organochromverbindungen, in denen gleichzeitig

R1 = Cyclopentadienyl oder = Indenyl und Y = Nund Z = Cund R' = Hund R'' = Methyl10 $X = Cl \text{ oder } CrX_2 = CrCH_2C_2H_4CH_2$ 15 und n = 2 sind. 2. Polymerisationskatalysator nach Anspruch 1, wobei die Organochromverbindungen mit Lewis-Säuren gemischt 3. Polymerisationskatalysator nach Anspruch 2, wobei die Lewis-Säure Methylaluminoxan ist. 4. Polymerisationskatalysator nach Anspruch 1, wobei das Molverhältnis von Al: Cr im Katalysator zwischen 20 5. Polymerisationskatalysator nach Ansprüchen 1-4, wobei das delokalisierte η^5 -koordiniertes π -System Cyclopentadienyl oder Indenyl ist. 6. Polymerisationskatalysator nach Anspruch 1, wobei $R^1 = \eta^5 - C_5H_4$, $X = CH_3$, Y = P und Z = C ist. 7. Verfahren zur Polymerisation von α-Alkenen durch Einwirken eines Polymerisationskatalysators nach einem 25 oder mehreren der Ansprüche 1-6 auf α-Alkene. 8. Verfahren zur Copolymerisation von Alkenen durch Einwirken eines Polymerisationskatalysators nach einem oder mehreren der Ansprüche 1-6 auf eine Mischung von Alkenen und ungesättigten Alkenen mit gespannter Dop-9. Verfahren nach Anspruch 8, wobei der Polymerisationskatalysator auf eine Mischung von Ethylen und ein Alken 30 mit gespannter Doppelbindung einwirkt. Hierzu 1 Seite(n) Zeichnungen 35 40 45 50 55

- Leerseite -

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 197 10 615 A1 C 08 F 4/69**17. September 1998

Abbildung 1

2549.CDR