ĐIỀU KHIỂN LOGIC VÀ PLC

Dương Minh Đức

Bộ môn Tự động hóa Công nghiệp – Viện Điện

Duc.duongminh@hust.edu.vn

Nội dung

- 1. Cơ sở cho Điều khiển logic
- 2. Tổng hợp và tối thiểu hóa mạch logic tổ hợp
- 3. Tổng hợp mạch logic tuần tự
- 4. Tổng quan về PLC
- 5. Kỹ thuật lập trình PLC

Nội dung

1. Cơ sở cho Điều khiển logic

- 2. Tổng hợp và tối thiểu hóa mạch logic tổ hợp
- 3. Tổng hợp mạch logic tuần tự
- 4. Tổng quan về PLC
- 5. Kỹ thuật lập trình PLC

1. Cơ sở cho điều khiển logic

- 1.1. Khái niệm về điều khiển logic
- 1.2. Đại số logic
- 1.3. Biểu diễn hàm logic

1. Cơ sở cho điều khiển logic

1.1. Khái niệm về điều khiển logic

- 1.2. Đại số logic
- 1.3. Biểu diễn hàm logic

- Điều khiển logic giải quyết các vấn đề
 - Hệ thống có các chế độ làm việc khác nhau, tuân theo lệnh điều khiển từ bên ngoài
 - Chuyển từ chế độ này sang chế độ khác theo một trình tự, điều kiện xác định
 - Đảm bảo trình tự thời gian và sự tương tác giữa các bộ phận
 - Phản ứng tức thời trước một số sự kiện

- Các lĩnh vực nghiên cứu điều khiển logic
 - Khoa học máy tính (Computer Science)
 - Lập trình (Programming)
 - Mô phỏng (Simulation)
 - Truyền thông (Communication)
 - Các hệ thống điều khiển công nghiệp (Industrial Control)

- Mô hình hóa hệ thống điều khiển logic
 - Đại số logic (Boolean Algebra)
 - Automat hữu hạn (Finite State Machine)
 - Statechart
 - GRAFCET
 - Petri net

1. Cơ sở cho điều khiển logic

1.1. Khái niệm về điều khiển logic

1.2. Đại số logic

1.3. Biểu diễn hàm logic

- Các sự vật hiện tượng thường được biểu hiện ở hai mặt đối lập:
 - Trong cuộc sống: đúng/sai, có/không, tốt/xấu, sạch/bẩn, đỗ/trượt,
 - Trong kỹ thuật: đóng/cắt, bật/tắt, chạy/dừng
- Để biểu diễn (lượng hóa) trạng thái đối lập: 0
 và 1.
- Đại số logic (Đại số Boolean) để nghiên cứu các sự vật, hiện tượng có 2 trạng thái đối lập

- Biến logic: $x \in [0, 1]$
- Hàm logic : $f(x_1, x_2, ..., x_n) \in [0, 1]$ với $x_1, x_2, ..., x_n \in [0, 1]$
 - Ví dụ: Hàm 1 biến f(x): f(x) = x $f(x) = \overline{x}$ $f(x) = x + \overline{x}$ $f(x) = x.\overline{x}$

Hàm 2 biến
$$f(x_1,x_2)$$
: $f(x_1,x_2) = x_1 + x_2$

$$f(x_1,x_2) = x_1 + x_2$$

$$f(x_1,x_2) = x_1 + x_2$$

$$f(x_1,x_2) = x_1 + x_2$$

Các phép toán logic cơ bản

Phép nghịch đảo: NOT

• Bảng giá trị:

\mathcal{X}	$f(x) = \overline{x}$
1	0
0	1

• Ký hiệu

Các phép toán logic cơ bản

– Phép cộng: **OR**

• Bảng giá trị:

X	у	f(x,y) = x + y
0	0	0
0	1	1
1	0	1
1	1	1

Ký hiệu

- Các phép toán logic cơ bản
 - Phép nhân: **AND**
 - Bảng giá trị:

X	y	f(x,y) = xy
0	0	0
0	1	0
1	0	0
1	1	1

• Ký hiệu

16

Các tính chất của các phép toán logic

- Giao hoán :
$$x+y = y+x$$

 $xy=yx$
- Kết hợp: $x+y+z = (x+y)+z=x+(y+z)$
 $xyz = (xy)z=x(yz)$
- Phân phối: $x(y+z)=xy+xz$
 $x+yz = (x+y)(x+z)$

– Luật De Morgan:

$$\frac{x_1 + x_2 + \ldots + x_n}{x_1 \cdot x_1 \cdot x_1 \cdot x_1} = \overline{x_1 \cdot x_2 \cdot \ldots \cdot x_n}$$

$$\frac{x_1 + x_2 + \ldots + x_n}{x_1 \cdot x_1 \cdot x_1 \cdot x_1} = \overline{x_1 \cdot x_2 \cdot \ldots \cdot x_n}$$

1.2. Đại số logic Một số hệ thức cơ bản thường gặp

1	x+0=x $x.1=x$
2	x.0 = 0 $x+1 = 1$
3	x+x = x $x.x = x$
4	$x + \overline{x} = 1$
	$x.\overline{x} = 0$
5	x+xy = x $x.(x+y) = x$
6	$xy + x\overline{y} = x$
	$(x+y)(x+\overline{y})=x$

Chú ý: Tính đối ngẫu (duality) của các hệ thức logic

1. Cơ sở cho điều khiển logic

- 1.1. Khái niệm về điều khiển logic
- 1.2. Đại số logic
- 1.3. Biểu diễn hàm logic

1.3. Biểu diễn hàm logic

Bảng chân lý

x ₁	x ₂	X ₃	$f(x_1, x_2, x_3)$
0	0	0	1
0	0	1	0
0	1	0	"x"
0	1	1	"x"
1	0	0	0
1	0	1	1
1	1	0	"x"
1	1	1	1

Dấu "x" là giá trị hàm không xác định, có thể nhận giá trị 0 hoặc 1

1.3. Biểu diễn hàm logic

Bảng Các nô (Carnough map)

- Biểu diễn hàm logic n biến cần thành lập một bảng có 2ⁿ ô,
 mỗi ô tương ứng với 1 tổ hợp biến.
- Các ô cạnh nhau hoặc đối xứng nhau chỉ cho phép khác nhau về giá trị của 1 biến.
- Trong các ô ghi giá trị của hàm tương ứng với giá trị của tố hợp biến đó.

Ví dụ:

x1	x2	f(x1,x2)
0	0	1
0	1	0
1	0	0
1	1	1

x1	x2	х3	f(x1,x2,x3)
0	0	0	1
0	0	1	0
0	1	0	"x"
0	1	1	"x"
1	0	0	0
1	0	1	1
1	1	0	"x"
1	1	1	1

								_		ХЗ	3	
								X.	4			
		x3x4 x1x2		00			01		11		10	
		00										
		01										
x2	2	11										
x1	•	10										
_	_							•		•	х3	
									x4			
	-				т	X.	5			- _T	x5	_
		x3x4x5	5	000	001		011	040	110		101	100
	-	x1x2		000	001	-	011	010	110	111	101	100
		00										
		01										
	x2	11										
x1	Ī	10				TI	DH-VD-I	RK				

1.3. Biểu diễn hàm logic

• Sơ đồ rơ le – tiếp điểm

Thiết bị	Loại	Ký hiệu
Nút ấn	Thường mở	٤\
	Thường đóng	f-}
Công tắc	Thường mở	<i>_</i> ⁄⁄_
hành trình	Thường đóng	4
Ro le	Cuộn dây	
	Tiếp điểm thường mở	_/_
	Tiếp điểm thường đóng	7

Biểu diễn hàm logic

- Sơ đồ rơ le tiếp điểm
 - Hai dây thể hiện nguồn cấp
 - Lựa chọn ký hiệu biến tương ứng với thiết bị vật lý (nút ấn, công tắc hành trình hay tiếp điểm rơ le)
 - Biến ở trạng thái thường: tiếp điểm thường mở
 - Biến ở trạng thái đảo: tiếp điểm thường đóng
 - Cộng logic: đấu song song
 - Nhân logic: đấu nối tiếp
 - Đầu ra: cuộn dây rơ le đấu nối tiếp với tổ hợp biểu diễn các biến đầu vào

1.3. Biểu diễn hàm logic

• Sơ đồ rơ le – tiếp điểm

Ví dụ:

$$Y = f(x_1, x_2) = x_1.x_2 + \overline{x_1}.\overline{x_2}$$

