

AGRICULTURAL RESEARCH INSTITUTE
PUSA

×

BEILSTEINS HANDBUCH DER ORGANISCHEN CHEMIE

VIERTE AUFLAGE

DIE LITERATUR BIS 1. JANUAR 1910 UMFASSEND

HERAUSGEGEBEN VON DER

DEUTSCHEN CHEMISCHEN GESELLSCHAFT

BEGONNEN VON

BERNHARD PRAGER UND PAUL JACOBSON

FORTGEFÜHRT VON

FRIEDRICH RICHTER

ACHTZEHNTER BAND

HETEROCYCLISCHE REIHE

VERBINDUNGEN MIT 1 CYCLISCH GEBUNDENEM SAUERSTOFFATOM OXY-OXO-VERBINDUNGEN, CARBONSÄUREN, SULFONSÄUREN, AMINE usw.

Published and distributed in the Public Interest by Authority of the Alien Property Custodian under License No. A-3.

Photo-Lithoprint Reproduction

EDWARDS BROTHERS, INC.

PUBLISHERS
ANN ARBOR, MICHIGAN
1943

BERLIN

VERLAG VON JULIUS SPRINGER

1934

17549

Mitarbeiter:

GÜNTHEB AMMERLAHN
ERNST BEHRLE
GREGOR BRILLANT
GEORG COHN
GUSTAV HAAS
FRITZ HÖHN
KONRAD ILBERG
BENNO KÜHN
KORNELIA LORIA
ELISABETH MATERNE
KARL OTT
OTTO SACHTLEBEN
DORA STERN
MARIE STOJANOVÁ
EUGEN WEEGMANN

Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten.

Copyright 1934 by Julius Springer in Berlin.

Printed in Germany.

Copyright vested in the Alien Property Custodian, 1942, pursuant to law.

Inhalt.

Dritte Abteilung.

Heterocyclische Verbindungen.

(Fortsetzung.)

1. Verbindungen mit 1 cyclisch gebundenem Sauerstoffatom (Heteroklasse 1 0) 1).

(Schluß.)

III. Oxo-Verbindungen.

(Schluß.)

		Seite			G - 14 -
	F. Oxy-oxo-Verbindungen.	Seite		Oxy-oxo-Verbindungen C ₁₆ H ₁₄ O ₃	Seite
	1. Oxy-oxo-Verbindungen mit	1		(z. B. Oxydiphenylbutyrolacton)	
	3 Sauerstoffatomen.			usw	56
a)	(z. B. Oxybutyrolacton, Oxyvalerolacton)	1	i)	Oxy-oxo-Verbindungen $C_nH_{2n-20}O_3$ (z. B. Oxyflavon, Phenylumbelliforon)	58
L)	Oxy-oxo-Verbindungen C _n H _{2n-4} O ₃	•	k)	Oxy-oxo-Verbindungen CnH2n-22O3	65
נט	(z. B. Oxyjonolacton)	6		Oxy-oxo-Verbindungen C _n H _{2n-24} O ₃	-
c)	Oxy-oxo-Verbindungen CnH2n-6O3			(z. B. Oxybenzoxanthon)	66
d)	(z. B. Oxymethylfurfurol) Oxy-oxo-Verbindungen C _n H _{2n-10} O ₃ (z. B. Oxyphthalid, Oxyphenyl-	10	m)	Oxy-oxo-Verbindungen $C_n H_{2n-26} O_3$ (z. B. Resorcinbenzein, Dioxytriphenylessigsäurelacton)	68
	butyrolacton)	17	n)	Oxy-oxo-Verbindungen Cn H _{2n-28} O ₃	
e)	Oxy-oxo-Verbindungen $C_nH_{2n-12}O_3$	24		(z. B. Cőroxonol)	74
	Oxy-oxo-Verbindungen C ₂ H ₆ O ₃ (z.B. Oxychromon, Umbelliferon)	24	0)	Oxy-oxo-Verbindungen $C_nH_{2n-30}O_3$ (z. B. Oxydibenzofluoron)	77
	Oxy-oxo-Verbindungen $C_{10}H_8O_3(z.B.$, ,Dehydroacetylresacetophenon'', Homoumbelliferon)	30	p)	$\begin{array}{c} \textbf{0xy-oxo-Verbindungen} \ C_n H_{2n-34} O_3 \\ \textbf{(Benzocöroxonole)} \ \cdot \ \cdot \ \cdot \ \cdot \ \cdot \end{array}$	78
	Oxy-oxo-Verbindungen $C_{11}H_{10}O_3$. Oxy-oxo-Verbindungen $C_{18}H_{18}O_3$. Oxy-oxo-Verbindungen $C_{18}H_{18}O_3$	35 38		2. Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen.	
'n	(z. B. Desmotroposantonin) Oxy-oxo-Verbindungen C _n H _{2n-14} O ₃ (z. B. Benzfuroin)	38 43	a)		
g)				lacton)	78
h)	Oxy-oxo-Verbindungen $C_nH_{2n-18}O_8$ Oxy-oxo-Verbindungen $C_{18}H_8O_3$	44	b)	0xy-oxo-Verbindungen $C_nH_{2n-4}O_4$ (z. B. Apfelsäureanhydrid)	80
	(z. B. Oxyfluoron, Oxyxanthon).	44	c)	Oxy-oxo-Verbindungen CnH2n-6O4	83
	Oxy-oxo-Verbindungen C ₁₄ H ₁₀ O ₃	1		Oxy-oxo-Verbindungen $C_nH_{2n-8}O_4$	86
	(z. B. Dioxydiphenylessigsäurelac-		-		00
	ton, Oxyphenylphthalid, Oxymethylfluoron)	47	e)	0xy-exo-Verbindungen C _n H _{2n-10} O ₄ (z. B. Normekonin mit Mekonin; Dihydroäsculetin, Dioxyphenyl-	
	Oxy-oxo-Verbindungen C ₁₈ H ₁₈ O ₂ (z. B. Oxyphenylhydrocumarin)	51		butyrolacton)	87

¹⁾ Verbindungen, die Schwefel, Selen oder Tellur als Ringglieder enthalten sind den entsprechenden Sauerstoff-Verbindungen systematisch sugeordnet. Vgl. Bd. I, S. 3, § 5.

		Seite			Seite
I)	Oxy-oxo-Verbindungen $C_nH_{2n-12}O_4$		i)	Oxy-oxo-Verbindungen CnH _{2n-20} O ₅	180
	(z. B. Oxyphthalsaureanhydrid;			Trioxyflavone C ₁₅ H ₁₀ O ₅ (z. B. Api-	
	Dioxycumarine wie Asculetin und	94		genin, Galangin)	180
	Daphnetin)	94		Genistein C ₁₅ H ₁₀ O ₅ usw	190
g)	Oxy-oxo-Verbindungen C _n H _{2n-14} O ₄			Oxy-oxo-Verbindungen C ₁₆ H ₁₈ O ₅	400
	(z. B. "Dehydrodiacetylresaceto-	106		(z. B. Brasilein)	192
L)		100		Oxy-oxo-Verbindungen C ₁₇ H ₁₄ O ₅ und	196
n)	Oxy-oxo-Verbindungen $C_nH_{2n-16}O_4$ (z. B. Oxy- α - und - β -lapachon).	100	6)	$C_{18}H_{16}O_5$	
				Oxy-oxo-Verbindungen $C_nH_{2n-24}O_5$	
IJ	Oxy-oxo-Verbindungen C _n H _{2n-18} O ₄ [3-Oxy-naphthalsäure]-anhydrid	111	•,	(z. B. Styrogallol)	198
	$C_{12}H_6O_4$	111	mì	Oxy-oxo-Verbindungen C _n H _{2n-26} O ₅	
	Oxy-oxo-Verbindungen C ₁₈ H ₈ O ₄ (Di-		,	(z. B. Benzolpyrogallolphthalein,	
	oxyxanthone wie Euxanthon) .	112		Orcinaurin)	199
	Oxy-oxo-Verbindungen $C_{14}H_{10}O_4$		n)	Oxy-oxo-Verbindungen Cn H _{2n-28} O ₅	201
	(z. B. Phthalidylresorcin)	117	o)	Oxy-oxo-Verbindungen Cn H _{2n-80} O ₅	202
	Oxy-oxo-Verbindungen C ₁₅ H ₁₂ O ₄			Oxy-oxo-Verbindungen Cn H _{2n-32} O ₅	
1.5	Oxy-oxo-Verbindungen C ₁₆ H ₁₄ O ₄ usw.		q)	Oxy-oxo-Verbindungen CnH2n-34O5	203
	Oxy-oxo-Verbindungen C _n H _{2n-20} O ₄	124			
	Oxy-oxo-Verbindungen $C_{15}H_{10}O_4$ (z. B. Dioxyflavone wie Chrysin;			4. Oxy-oxo-Verbindungen mit	
	Dioxyphenylcumarin, Dioxyben-			6 Sauerstoffatomen.	
	zalcumaranon)	124	a)	Oxy-oxo-Verbindungen C _n H _{2n-2} O ₆	
	Oxy-oxo-Verbindungen $C_{16}H_{12}O_4usw$.	134		(z. B. Lactone der Glykonsäure, Mannonsäure, Galaktonsäure)	203
I)	Oxy-oxo-Verbindungen $C_n H_{2n-22} O_4$				200
	(z. B. Morphenolchinon)	137	יט	Oxy-oxo-Verbindungen $C_nH_{2n-4}O_6$ (z. B. Glykuron)	207
m)	Oxy-oxo-Verbindungen $C_nH_{2n-24}O_4$		(9	Oxy-oxo-Verbindungen $C_nH_{2n-16}O_6$	
	(z. B. Oxybrasanchinon)	139		Oxy-oxo-Verbindungen $C_nH_{2n-18}O_6$	
n)	Oxy-oxo-Verbindungen $C_nH_{2n-26}O_4$		u)	(z. B. Tetraoxyxanthon, Cyano-	
	(z. B., Oxynaphthoflavonol", Ben-			maclurin, Hydrochinonsuccinein)	208
	zolresorcinphthalein, Phenol- phthalein, o-Kresolphthalein)	141	e)	Oxy-oxo-Verbindungen CnH2n-20O6	
v)	Oxy-oxo-Verbindungen $C_nH_{2n-28}O_4$		'	Oxy-oxo-Verbindungen C ₁₅ H ₁₀ O ₆	
	Oxy-oxo-Verbindungen $C_nH_{2n-30}O_4$	101		(z. B. Tetraoxyflavone wie Scutel-	
P)	(z. B. Benzoingelb)	154		larein, Luteolin, Kämpferol, Fise-	940
a)	Oxy-oxo-Verbindungen Cn H _{2n-32} O ₄			tin)	210
1)	/ TO TO! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	155		(z. B. Hämatein)	224
r)	Oxy-oxo-Verbindungen CnH2n-36O4		ļ	Oxy-oxo-Verbindungen C ₁₇ H ₁₄ O ₆	228
- 1	Oxy-oxo-Verbindungen CnH _{2n-38} O ₄		f)	Oxy-oxo-Verbindungen CnH2n-24 O6	
-,	ony one volumental online 100 of) ′	(z. B. Oxystyrogallol)	
	3. Oxy-oxo-Verbindungen mit		g)	Oxy-oxo-Verbindungen CnH2n-26O6	
	5 Sauerstoffatomen.			(z. B. Brenzcatechinphthalein)	
a)	Oxy-oxo-Verbindungen C _n H _{2n-2} O ₅		h)	Oxy-oxo-Verbindungen Cn H _{2n-28} O ₆	
-	(z. B. Lactone der Ribonsäure,			(z. B. Diresoreinphthalein, Cöru-	202
	Arabonsäure, Xylonsäure, Rham-			lin)	
	nonsäure; Metasaccharin, Saccha-	457	1)	Oxy-oxo-Verbindungen C _n H _{2n-30} O ₆	234
	rin C ₆ H ₁₀ O ₈ , Chitose)	157		(Violein, Cörulein)	201
u,	0xy-oxo-Verbindungen C _n H _{2n-4} O ₅ (z. B. Anhydride der Weinsäure		1	5. Oxy-oxo-Verbindungen mit	
	und Traubensäure, Chinid)	162		7 Sauerstoffatomen.	
e)	Oxy-oxo-Verbindungen C _n H _{2n-6} O ₅		a)	Oxy-oxo-Verbindungen CnH2n-2O7	
	Oxy-oxo-Verbindungen $C_nH_{2n-10}O_5$		1	(Lactone der Heptonsäuren)	235
	Oxy-oxo-Verbindungen $C_nH_{2n-12}O_5$	101		Oxy-oxo-Verbindungen CnH _{2n-4} O ₇	
v	(z. B. Norhemipinsäureanhydrid)	167		Oxy-oxo-Verbindungen $C_nH_{2n-16}O_7$	
n	Oxy-oxo-Verbindungen $C_nH_{2n-14}O_5$		d)	Oxy-oxo-Verbindungen CnH _{2n-18} O ₇	
	Oxy-oxo-Verbindungen $C_nH_{2n-16}O_5$		1 ->	(z. B. Catechon)	237
	Oxy-oxo-Verbindungen $C_nH_{2n-18}O_5$		e)	Oxy-oxo-Verbindungen $C_nH_{2n-20}O_7$ Oxy-oxo-Verbindungen $C_{1n}H_{10}O_7$	239
/	(z. B. Gentisein, Phthalidylpyro-			(z. B. Morin, Quercetin)	239
	gallol, Trioxyflavanon)	173		Oxy-oxo-Verbindungen C ₁₆ H ₁₂ O ₇ usw.	

INHALT VON BAND XVIII

		Seite			Seite
g)	Oxy-oxo-Verbindungen C_nH_{2n-24} O7 Oxy-oxo-Verbindungen C_nH_{2n-26} O7 Oxy-oxo-Verbindungen C_nH_{2n-28} O7	254	e)	$ \begin{array}{lll} \textbf{0xy-oxo-Verbindungen} & C_nH_{2n-20}O_8\\ \textbf{(z. B. Queroetagetin, Gossypetin,}\\ \textbf{Myricetin)} & \dots & \dots & \dots \end{array} $	256
-,	6. Oxy-oxo-Verbindungen mit 8 Sauerstoffatomen.		d)	Oxy-oxo-Verbindungen $C_n H_{2n-26} O_8$	260
	$\begin{array}{cccc} \textbf{Oxy-oxo-Verbindungen} & C_nH_{2n-2}O_8 \\ \textbf{(Lactone der Octonsäuren)} & . & . & . \\ \end{array}$	255		7. Oxy-oxo-Verbindungen mit 9 Sauerstoffatomen.	
b)	Oxy-oxo-Verbindungen C _n H _{2n-18} O ₈ (z. B. Pyrogallolsuccinein)	256			260
	IV.	Carb	onsäi	iren.	
	A. Monocarbonsäuren.		11.	Monocarbonsäuren C _n H _{2n-26} O ₃	
1.	Monocarbonsäuren $C_nH_{2n-2}O_3$ (z.B.		12.	(z. B. Hydrofluoransäure) Monocarbonsäuren C _n H _{2n-30} O ₈	
	Glycidsäure, Epihydrincarbon- säure, Dimethyltetrahydrobrenz-			B. Diearbonsäuren.	
	schleimsäure, Cinensäure)	261			
2.	Monocarbonsäuren C _n H _{2n-4} O ₈ (z.B. Campholenoxydsäure)	269	1.	Dicarbonsäuren C _n H _{2n-4} O ₅ (z. B. Äthylenoxyddicarbonsäure, Tetra-	
2.	Monocarbonsäuren C _n H _{2n-6} O ₃			hydrofurandicarbonsaure, Balbi-	040
•	Brenzschleimsäure C ₅ H ₄ O ₃	272			318
	Funktionelle Derivate (z. B. Brenz- schleimsäure-äthylester, Difurfu-		Z.	Dicarbonsäuren C _n H _{2n-6} O ₅ (z. B. Dihydrofurandicarbonsäure, Can-	
	roylresorcin, Furfuroylchlorid, Py-		_	tharidinsaure)	323
	romucamid, Furfuroylglycin, Furfuroylhydrazin)	274	8.	Dicarbonsäuren C _n H _{2n-8} O ₅ (z. B. Furandicarbonsäure, Pyrandicar-	
	Substitutionsprodukte (z. B. Tri-	214		bonsäure, Methronsäure, Carbo-	
	chlorbrenzschleimsäure)	282		pyrotritarsäure, Furfurylbern-	
	Derivat der Furan-monothiocarbon-	000		steinsäure)	327
	säure-(2)	289	4.	Dicarbonsäuren $C_nH_{2n-10}O_5$ (z. B. Furfurylidenmalonsäure)	337
	vate	289	5.	Dicarbonsauren C _n H _{2n-12} O ₅	34 0
	phen-carbonsaure-(2)	291		Dicarbonsauren C _n H _{2n-14} O ₅	
	Derivate der Furan-carbonsäure-(3)		7.	Dicarbonsăuren $C_nH_{2n-16}O_5$ (z. B. Phenythronsăure)	
	$C_5H_4O_3$ [z. B. Thiophen-carbon-säure-(3)]	292	8.	Dicarbonsäuren C _n H _{2n-20} O ₅ (z. B.	010
	Carbonsäuren C ₆ H ₆ O ₈ (z. B. Methyl-			Xanthylmalonsäure)	
	brenzschleimsäure)	293		Dicarbonsäuren C _n H _{2n-24} O ₅	
	Carbonsäuren C ₇ H ₈ O ₃ (z. B. Furfurylessigsäure, Pyrotritarsäure)	295		Dicarbonsäuren $C_nH_{2n-28}O_5$ Dicarbonsäuren $C_nH_{2n-32}O_5$	343 343
	Carbonsäuren C ₈ H ₁₀ O ₃ und C ₉ H ₁₂ O ₃		11.	Dicarponoacted On 112n-52 O5	U-2U
4.	Monocarbonsäuren $C_nH_{2n-8}O_3$ (z.B. Furfurylidenessigsäure)	300	,	C. Tricarbonsäuren.	
5.	Monocarbonsäuren C _n H _{2n-10} O ₃	000		Furantricarbonsaure usw	344
	(z. B. Phenylglycidsäure, Hydro-			D. Tetracarbonsäuren.	
	cumarilsaure)	302		Furantetracarbonsaure	344
	Monocarbonsäuren $C_nH_{2n-12}O_8$ (z. B. Cumarilsäure)	307		E. Oxy-carbonsäuren.	
7.	Monocarbonsäuren $C_nH_{2n-14}O_8$ (z. B. Phenuvinsäure)	311		1. Oxy-carbonsäuren mit	
8.	Monocarbonsäuren C _n H _{2n-16} O ₈	011	->	4 Sauerstoffatomen.	244
	(z. B. Furfurylidenphenylessig-	040	-		344 345
	saure)	312		Oxy-carbonsauren $C_nH_{2n-6}O_4$ (z. B.	UTU
y.	Monocarbonsäuren C _n H _{2n-18} O ₈ (z. B. Diphenylenoxydcarbon-		را	Oxymethylbrenzschleimsäure)	345
	säure, Xanthylessigsäure)	313	d)	Oxy-carbonsauren C _n H _{2n-10} O ₄	34 6
10.	Monocarbonsäuren Cn H _{2n-22} O ₃ (Di-	042	e)	Oxy-carbonsäuren C _n H _{2n-12} O ₄	9.45
	phenylfurancarbonsäure)	316	l	(z. B. Oxymethylcumarilsaure) .	347

	Seite	1	Seite
1)	Oxy-carbonsäuren $C_nH_{2n-14}O_4$ 351		Oxo-carbonsauren $C_0H_{14}O_4$ (z. B.
	Oxy-carbonsäuren $C_nH_{2n-18}O_4$ 352		Homoterpenylsäure) 390
Ď)	Oxy-carbonsäuren $C_nH_{2n-20}O_4$ 352	1	Oxo-carbonsăuren $C_{10}H_{16}O_4$ usw 392
i)	Oxy-earbonsäuren $C_nH_{2n-26}O_4$ 352	(0	Oxo-carbonsäuren $C_nH_{2n-6}O_4$ 394 Oxo-carbonsäuren $C_5H_4O_4$ (z. B.
	2. Oxy-carbonsäuren mit 5 Sauerstoffatomen.	!	Aconsăure)
•)	Oxy-carbonsäuren $C_n H_{2n-12} O_5(z.B.$		Mucolactonsaure) 396
•	Dioxymethylcumarilsaure) 354	:	Oxo-carbonsăuren $C_7H_8O_4$ (z. B. Terebilensăure)
	Oxy-carbonsäuren C _n H _{2n-14} O ₅ 356	1	Oxo-carbonsaure C ₂ H ₁₀ O ₄ 398
	Oxy-carbonsauren $C_n H_{2n-20} O_5$ 357	i	Oxo-carbonsäuren C.H.O 399
a)	Oxy-carbonsäuren $C_nH_{2n-26}O_5$ (z. B. Fluorescin)		Oxo-carbonsăuren $C_{10}H_{14}O_4$ (z. B. π - und w-Camphansäure) 399
	3. Oxy-carbonsäuren mit	1	Oxo-carbonsăuren C ₁₁ H ₁₆ O ₄ und
	6 Saverstoffatomen.		$C_{12}H_{18}O_4$ 403
a)	Oxy-carbonsäuren C _n H _{2n-2} O ₆ (Chi-	c)	Oxo-carbonsäuren C _n H _{2n-8} O ₄ 404
-,	tarsaure und Chitonsaure) 359		Oxo-carbonsăuren $C_6H_4O_4$ (z. B.
b)	Oxy-carbonsäuren $C_nH_{2n-4}O_6$ 360		"Cumalinsäure", Formylbrenz-
c)	Oxy-carbonsäuren $C_nH_{2n-8}O_6$ 360	i	schleimsäure)
d)	Oxy-carbonsäuren $C_nH_{2n-10}O_6$ 361	İ	Oxo-carbonsäuren $C_7H_6O_4$ (z. B. Furfuroylessigsäure) 408
	Oxy-carbonsäuren $C_nH_{2n-18}O_6$ 361	1	Oxo-carbonsäuren C ₈ H ₈ O ₄ (z. B. Iso-
	Oxy-carbonsäuren $C_nH_{2n-20}O_6$ 361		dehydracetsäure, Dimethylpyron-
g)	Oxy-carbonsäuren $C_nH_{2n-26}O_6$ 362		carbonsaure) 409
	4. Oxy-carbonsäuren mit 7 Sauerstoffatomen.		Oxo-carbonsăuren $C_9H_{10}O_4$ (z. B. Dehydrodiacetyllävulinsäure) 413
٠,		1	Oxo-carbonsauren C ₁₀ H ₁₂ O ₄ (z. B.
•,	Oxy-carbonsäuren $C_nH_{2n-2}O_7$ (Chitoheptonsäure)		Cantharsaure)
b)	Oxy-carbonsäuren C _n H _{2n-4} O ₇ (z.B.		$C_{13}H_{18}O_4 \dots
~,	"Isozuckersäure") 364	a	Oxo-carbonsäuren $C_nH_{2n-10}O_4$
e)	Oxy-carbonsäuren C _n H _{2n-8} O ₇ 366	۳,	(z. B. Furfurylidenlävulinsäure) . 416
d)	Oxy-carbonsäuren C _n H _{2n-20} O ₇ 366	l e)	Oxo-carbonsäuren C _n H _{2n-12} O ₄ (z.B.
e)	Oxy-carbonsäuren C _n H _{2n-26} O ₇	,	Phthalidcarbonsäure, Phthalidyl-
	(z. B. Gallin) 368		essigsäure, Phenylparaconsäure). 418
	5. Oxy-carbonsäuren mit	f)	0 xo-carbonsäuren $C_nH_{2n-14}O_4$ (z.B.
	9 Šauerstoffatomen.		Chromoncarbonsäure, Cumarin-
	Tetraoxyxanthendicarbonsäure 368		carbonsäure, Phthalylessigsäure) 428
		1	Oxo-carbonsäuren $C_nH_{2n-16}O_4$ 436
	6. Oxy-carbonsäuren mit 10 Sauerstoffatomen.	1	Oxo-carbonsäuren $C_nH_{2n-18}O_4$ 437
	Pentaoxyxanthendicarbonsäureusw. 369	1)	Oxo-carbonsäuren C _n H _{2n-20} O ₄ (z.B. Xanthoncarbonsäure, Phthalidyl-
	7. Oxy-carbonsäuren mit		benzoesäure, Hydrodiphthalyl-
	11 Šauerstoffatomen.		lactonsaure)
	Dioxypyrantetrahydridtetracarbon-	K)	Oxo-carbonsäuren C _n H _{2n-22} O ₄ (z.B. Diphenylaconsäure)
	saure usw 370	n	Oxo-carbonsäuren C _n H _{2n-24} O ₄ (z.B.
	F. Oxo-carbonsäuren.		Diphenylpyroncarbonsaure) 447
	 Oxo-carbonsäuren mit Sauerstoffatomen. 	m)	Oxo-carbonsäuren $C_nH_{2n-28}O_4$ (z.B. Diphenylphthalidearbonsäure) 448
		n)	Oxo-carbonsäuren C _n H _{2n-30} O ₄ 449
•)	Oxo-carbonsäuren $C_nH_{2n-4}O_4$ 370		Oxo-carbonsäuren $C_nH_{2n-32}O_4$ 450
	Oxo-carbonsäuren $C_6H_6O_4$ (z. B. Paraconsäure)	',	
	Oxo-carbonsäuren $C_6H_8O_4$ (z. B.		2. Oxo-carbonsäuren mit
	Valerolactoncarbonsaure) 371		5 Sauerstoffatomen.
	Oxo-carbonsäuren $C_7H_{10}O_4$ (z. B.	8)	Oxo-carbonsäuren $C_nH_{2n-6}O_5$ 450
	Pilopsäure, Terebinsäure) 374		Carboxytetronsäure $C_5H_4O_5$ 450
	Oxo-carbonsauren C ₈ H ₁₂ O ₄ (z. B. Homopilopsaure, Terpenylsaure), 382		Oxo-carbonsäuren C ₅ H ₅ O ₅ (z. B. Anhydrotricarballylsäure) 451
			A AAAAA T MAA U WAA WAA WAA WAA WAA WAA WAA WAA WAA

	Se	ite			Seite
	Oxo-carbonsäuren $C_8H_{10}O_5$ 4 Oxo-carbonsäuren $C_9H_{12}O_5$ (z. B.	54		 Oxo-carbonsäuren mit 8 Sauerstoffatomen. 	
	Anhydrocamphoronsäure) 4	56	a)	Oxo-carbonsäuren $C_nH_{2n-8}O_8$	509
	Oxo-carbonsauren C ₁₀ H ₁₄ O ₅ (z. B.	E14	b)	Oxo-carbonsäuren $C_n \mathbf{H}_{2n-10} O_8$	509
	Homoterpenoylameisensäure) 4	99	c)	Oxo-carbonsäuren C _n H _{2n-12} O ₈	511
D)	Oxo-carbonsäuren $C_nH_{2n-8}O_5$ (z. B. Komensäure, Anhydroaconitsäure,	}	d)	Oxo-carbonsäuren $C_nH_{2n-16}O_8$	511
		61	e)	Oxo-carbonsäuren C _n H _{2n-22} O ₈	512
e)		67			
•		68		6. Oxo-carbonsäuren mit	
•	Oxo-carbonsäuren $C_nH_{2n-14}O_5$ (z.			9 Sauerstoffatomen. Oxalcitronensäurelacton usw	549
٠,	B. Anhydrohemimellitsäure, Carb-	1		Oxalcitrollensaurelactor usw	012
	oxybenzotetronsäure, "Phthalid-			7. Oxo-carbonsäuren mit	
	oxalsäure") 4	68		10 Sauerstoffatomen.	~
I)	Oxo-carbonsäuren C _n H _{2n-16} O ₅ (z.B.	70		Pyrontetracarbonsäure usw	514
->	• •	76		8. Oxo-carbonsäuren mit	
	Oxo-carbonsäuren $C_nH_{2n-20}O_5$ 4'	11		11 Sauerstoffatomen.	
n)	Oxo-carbonsäuren $C_n H_{2n-22} O_5$ (z.B. Diphthalyllactonsäure) 4	78		Dioxofurantetrahydridtetracarbon-	
iì	Oxo-carbonsäuren C _n H _{2n-24} O ₅ (z.B.	10		säure	515
•,	Pulvinsäure mit Vulpinsäure) 4	80		G. Oxy-oxo-carbonsäuren.	
k)	Oxo-carbonsäuren C _n H _{2n-30} O ₅ 4	1		• · · · · · · · · · · · · · · · · · · ·	
•	Oxo-carbonsäuren CnH _{2n-32} O ₅ 4	1		 Oxy-oxo-carbonsäuren mit Sauerstoffatomen. 	
,	3. Oxo-carbonsäuren mit		a)	Oxy-oxo-carbonsauren C _n H _{2n-4} O ₅	
	6 Sauerstoffatomen.	1		(z. B. Oxyparaconsäure, Oxyisoterebinsäure, Oxyterpenylsäure).	515
•)	Oxo-carbonsäuren C _n H _{2n-6} O ₆ (z.B.		h)	Oxy-oxo-earbonsäuren C _n H _{2n-6} O ₅	0.0
-,	Cinchonsaure, Camphoransaure). 4	83	٠,	(z. B. Oxycamphansäure)	521
b)	Oxo-carbonsäuren C _n H _{2n-8} O ₆ (z. B.		c)	Oxy-oxo-carbonsäuren C _n H _{2n-8} O ₅	523
	Succinylmalonsäure) 4	89		Oxy-oxo-carbonsäuren CnH2n-12O5	
c)	Oxo-carbonsäuren $C_n H_{2n-10} O_6 (z.B.$		•	(z. B. Oxydihydroisocumarincar-	
	Chelidonsäure, "Campherylmalon-	00		bonsaure)	524
41	säure")4	80	e)	Oxy-oxo-carbonsäuren $C_nH_{2n-14}O_5$ (z. B. Umbelliferoncarbonsäure).	597
u)	Oxo-carbonsäuren $C_n H_{2n-14} O_6(z; B)$. Phthaliddicarbonsäure, Phthalyl-		Ð	Oxy-oxo-carbonsäuren C _n H _{2n-20} O ₅	021
	diessigsäure) 4	96	1)	(z. B. Oxyfluoroncarbonsäure).	532
e)	Oxo-carbonsäuren CnH2n-16O6(z.B.		g)	Oxy-oxo-carbonsäuren C _n H _{2n-22} O ₅	,
•	Phthalylmalonsäure) 4	98	0,	(z. B. "Hydrodicumarinsaure") .	534
	Oxo-carbonsäuren $C_n \mathbf{H}_{2n-18} \mathbf{O}_6$ 4	98	h)	Oxy-oxo-carbonsäuren C _n H _{2n-24} O ₅	534
g)	Oxo-carbonsauren Cn H2n-22O6 (z.B.	00	i)	Oxy-oxo-carbonsäuren CnH _{2n-28} O ₅	536
		99	k)	Oxy-oxo-carbonsäuren $C_nH_{2n-32}O_5$	53 8
	Oxo-carbonsäuren $C_nH_{2n-24}O_6$ 50	1		0.00	
	20.0	00		2. Oxy-oxo-carbonsäuren mit 6 Sauerstoffatomen.	
	Oxo-carbonsäuren C _n H _{2n-80} O ₆ 50		ره	Oxy-oxo-carbonsäuren C _n H _{2n-4} O ₆	
1)	Oxo-carbonsäuren $C_nH_{2n-40}O_6$ 50	01	۵,	(z. B. Saccharon)	538
	4. Oxo-carbonsäuren mit		b)	Oxy-oxo-carbonsäuren C _n H _{2n-6} O ₆	
	7 Sauerstoffatomen.		,	(z. B. Anhydrocitronensäure)	539
٠,		09	e)	Oxy-oxo-carbonsauren CnH2n-8O6	
	Oxo-carbonsäuren $C_nH_{2n-8}O_7$ 50 Oxo-carbonsäuren $C_nH_{2n-10}O_7(z.B.$	- 1		(z. B. Dioxypyronearbonsäure) .	540
v)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03	d)	Oxy-oxo-carbonsäuren C _n H _{2n-12} O ₆	
e)		00		(z. B. Normekoninessigsäure)	041
		08	e)	Oxy-oxo-carbonsäuren C _n H _{2n-14} O ₆ (z. B. Äsculetincarbonsäure, Anhy-	
		08		drocochenillesäure)	543
•		09	n	Oxy-oxo-carbonsäuren CnH2n-16O6	
-		1		Oxy-oxo-earbonsäuren C _n H _{2n-20} O ₆	
9)			3,		

		Seite	1		seite
h)	Oxy-oxo-carbonsauren CnH2n-22O6	547		Oxy-oxo-carbonsäuren C _n H _{2n-80} O ₇	
j	Oxy-oxo-carbonsäuren C _n H _{2n-24} O ₆	549	m)	Oxy-oxo-carbonsäuren C _n H _{2n} -84 O ₇	900
K)	Oxy-oxo-earbonsäuren $C_nH_{2n-26}O_6$ Oxy-oxo-earbonsäuren $C_nH_{2n-80}O_6$	548		4. Oxy-oxo-carbonsäuren mit 8 Sauerstoffatomen.	
m)	Oxy-oxo-carbonsäuren C _n H _{2n-32} O ₆ Oxy-oxo-carbonsäuren C _n H _{2n-40} O ₆	549	a)	Oxy-oxo-carbonsauren $C_nH_{2n-4}O_8$	561
-,	3. Oxy-oxo-carbonsäuren mit			Oxy-oxo-carbonsäuren C _n H _{2n-10} O ₈ Oxy-oxo-carbonsäuren C _n H _{2n-16} O ₈	561 562
	7 Sauerstoffatomen.			Oxy-oxo-carbonsäuren C _n H _{2n-18} O ₈	562
•	$\begin{array}{ll} \textbf{0xy-oxo-carbons\"{a}uren} & C_nH_{2n-4}O_7 \\ \textbf{(Lactone der Zuckers\"{a}uren)} & . & . & . \\ \end{array}$	550	f)	Oxy-oxo-carbonsäuren $C_nH_{2n-20}O_8$ Oxy-oxo-carbonsäuren $C_nH_{2n-22}O_8$	563 563
b)		551	g)	$\begin{array}{l} \textbf{Oxy-oxo-earbons\"{a}uren} & \mathrm{C_nH_{2n-80}O_8} \\ \textbf{(Phthalidylidendisalicyls\"{a}ure)} & . & . \\ \end{array}$	564
	Oxy-oxo-carbonsäuren $C_nH_{2n-8}O_7$ Oxy-oxo-carbonsäuren $C_nH_{2n-10}O_7$	552	V	5. Oxy-oxo-carbonsäuren mit 9 Sauerstoffatomen.	
0)	Oxy-oxo-earbonsauren $C_nH_{2n-1}O7$ Oxy-oxo-earbonsauren $C_nH_{2n-1}O7$ Oxy-oxo-earbonsauren $C_nH_{2n-1}O7$	553		Oxyvalerolactontricarbonsäure, Luteosäure usw	564
g)	Oxy-oxo-carbonsäuren $C_nH_{2n-16}O_7$ Oxy-oxo-carbonsäuren $C_nH_{2n-22}O_7$	556		6. Oxy-oxo-carbonsäuren mit 11 Sauerstoffatomen.	
I)	Oxy-oxo-carbonsauren CnH _{2n-24} O ₇	557		Furylcyclohexanolontricarbonsäure- essigsäure	566
	v.	Sulfi	nsäu	ren.	
Fur	ansulfinsäure usw				566
	VI.	Sulfe	onsäu	iren.	
	A. Monosulfonsäuren.		(b)	Sulfonsäuren der Monooxo-Verbin-	
1.	Monosulfonsäuren CnH2nO4S (Di-			dungen $C_nH_{2n-18}O_2$ (z. B. Xanthondisulfonsäure)	574
	$\begin{array}{lll} \textbf{Monosulfonsäuren} & C_n H_{2n} O_4 S & (Dimethylfurantetrahydridsulfonsäure) & . & . & . & . & . & . \\ \end{array}$	567		dungen C _n H _{2n-18} O ₂ (z. B. Xanthondisulfonsäure) Sulfonsäuren der Monooxo-Verbin-	574
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	567		dungen $C_nH_{2n-18}O_2$ (z. B. Xanthondisulfonsäure)	
2.	$\begin{array}{llll} \textbf{Monosulfonsäuren} & C_nH_{2n}O_4S & (Dimethylfurantetrahydridsulfonsäure) & . & . & . & . & . \\ \textbf{Monosulfonsäuren} & C_nH_{2n-4}O_4S & & & & \\ \textbf{(z.B. Furan-bezw. Thiophensulfonsäure)} & . & . & . & . & . & . \\ \end{array}$	567 567	e)	dungen C _n H _{2n-18} O ₂ (z. B. Xanthondisulfonsäure) Sulfonsäuren der Monooxo-Verbindungen C _n H _{2n-20} O ₂ (z. B. Phenylcumarinsulfonsäure) Sulfonsäuren der Monooxo-Verbin-	574
2.	$\label{eq:monosulfons} \begin{array}{llll} \textbf{Monosulfonsäuren} & C_nH_{2n}O_4S & (Dimethylfurantetrahydridsulfonsäure) & . & . & . & . & . & . \\ \textbf{Monosulfonsäuren} & C_nH_{2n-4}O_4S & & & & \\ \textbf{(z.B. Furan-bezw. Thiophensulfonsäure)} & . & . & . & . & . & . \\ \textbf{Monosulfonsäuren} & C_nH_{2n-8}O_4S & & & . & . \\ \end{array}$		e)	dungen C _n H _{2n-18} O ₂ (z. B. Xanthondisulfonsäure)	574
2.	$\label{eq:monosulfons} \begin{array}{llll} \textbf{Monosulfonsäuren} & C_nH_{2n}O_4S & (Dimethylfurantetrahydridsulfonsäure) & . & . & . & . & . & . \\ \textbf{Monosulfonsäuren} & C_nH_{2n-4}O_4S & & & & \\ \textbf{(z.B. Furan-bezw. Thiophensulfonsäure)} & . & . & . & . & . & . \\ \textbf{Monosulfonsäuren} & C_nH_{2n-8}O_4S & & & . & . \\ \end{array}$	567	e)	dungen C _n H _{2n-18} O ₂ (z. B. Xanthondisulfonsäure)	574
2.	$\label{eq:monosulfonsauren} \begin{array}{lll} \textbf{Monosulfonsauren} & C_nH_{2n}O_4S & (Dimethylfurantetrahydridsulfonsaure) & & & & \\ & & & & & & \\ \textbf{Monosulfonsauren} & C_nH_{2n-4}O_4S & \\ \textbf{(z.B. Furan-bezw. Thiophensulfonsaure)} & & & & & \\ \textbf{Monosulfonsauren} & C_nH_{2n-8}O_4S & \\ \textbf{(Cumaransulfonsaure)} & & & & & \\ \end{array}$	567	e)	dungen C _n H _{2n-18} O ₂ (z. B. Xanthondisulfonsäure)	57 4 575
2.	$\label{eq:monosulfons} \begin{array}{llll} \textbf{Monosulfonsäuren} & C_nH_{2n}O_4S & (Dimethylfurantetrahydridsulfonsäure) & . & . & . & . & . & . \\ \textbf{Monosulfonsäuren} & C_nH_{2n-4}O_4S & & & & & . & . & . & . \\ \textbf{(z.B. Furan-bezw. Thiophensulfonsäure)} & . & . & . & . & . & . & . \\ \textbf{Monosulfonsäuren} & C_nH_{2n-8}O_4S & & & & . & . & . \\ \textbf{(Cumaransulfonsäuren.} & \textbf{B. Disulfonsäuren.} \end{array}$	567 570	e)	dungen C _n H _{2n-18} O ₂ (z. B. Xanthondisulfonsäure)	57 4 575
2.	Monosulfonsäuren C _n H _{2n} O ₄ S (Dimethylfurantetrahydridsulfonsäure)	567 570	e) f)	dungen CnH _{2n-18} O ₂ (z. B. Xanthondisulfonsäure)	57 4 575
2.	Monosulfonsäuren C _n H _{2n} O ₄ S (Dimethylfurantetrahydridsulfonsäure)	567 570 571	e) f)	dungen CnH _{2n-18} O ₂ (z. B. Xanthondisulfonsäure)	574 575 575
2.	Monosulfonsäuren C _n H _{2n} O ₄ S (Dimethylfurantetrahydridsulfonsäure)	567 570 571	e) f)	dungen CnH _{2n-18} O ₂ (z. B. Xanthondisulfonsäure) Sulfonsäuren der Monooxo-Verbindungen CnH _{2n-20} O ₂ (z. B. Phenylcumarinsulfonsäure) Sulfonsäuren der Monooxo-Verbindungen CnH _{2n-22} O ₂ 2. Sulfonsäuren der Dioxo-Verbindungen. Sulfotetronsäure, Sulfocamphersäurenhydrid usw. E. Oxy-oxo-sulfonsäuren. 1. Sulfonsäuren der Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen. Oxy-sulfophenyl-fluoron usw	574 575 575
2.	Monosulfonsäuren C _n H _{2n} O ₄ S (Dimethylfurantetrahydridsulfonsäure)	567 570 571	e) f)	dungen CnH _{2n-18} O ₂ (z. B. Xanthondisulfonsäure)	574 575 575
8.	Monosulfonsäuren C _n H _{2n} O ₄ S (Dimethylfurantetrahydridsulfonsäure)	567 570 571 572	e) f)	dungen CnH _{2n-18} O ₂ (z. B. Xanthondisulfonsäure) Sulfonsäuren der Monooxo-Verbindungen CnH _{2n-20} O ₂ (z. B. Phenylcumarinsulfonsäure) Sulfonsäuren der Monooxo-Verbindungen CnH _{2n-22} O ₂ 2. Sulfonsäuren der Dioxo-Verbindungen. Sulfotetronsäure, Sulfocamphersäurenhydrid usw. E. Oxy-oxo-sulfonsäuren. 1. Sulfonsäuren der Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen. Oxy-sulfophenyl-fluoron usw	574 575 575
2. 8.	Monosulfonsäuren C _n H _{2n} O ₄ S (Dimethylfurantetrahydridsulfonsäure)	567 570 571 572	e) f)	dungen CnH2n-18O2 (z. B. Xanthondisulfonsäure) Sulfonsäuren der Monooxo-Verbindungen CnH2n-20O2 (z. B. Phenylcumarinsulfonsäure) Sulfonsäuren der Monooxo-Verbindungen CnH2n-22O2 2. Sulfonsäuren der Dioxo-Verbindungen. Sulfotetronsäure, Sulfocamphersäurenhydrid usw. E. Oxy-oxo-sulfonsäuren. 1. Sulfonsäuren der Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen. Oxy-sulfophenyl-fluoron usw. 2. Sulfonsäuren der Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen. Dihydroäsculetinsulfonsäure usw. 3. Sulfonsäuren der Oxy-oxo-Ver-	574 575 575
2. 8.	Monosulfonsäuren C _n H _{2n} O ₄ S (Dimethylfurantetrahydridsulfonsäure)	567 570 571 572	e) f)	dungen CnH _{2n-18} O ₂ (z. B. Xanthondisulfonsäure) Sulfonsäuren der Monooxo-Verbindungen CnH _{2n-20} O ₂ (z. B. Phenylcumarinsulfonsäure) Sulfonsäuren der Monooxo-Verbindungen CnH _{2n-22} O ₂ 2. Sulfonsäuren der Dioxo-Verbindungen. Sulfotetronsäure, Sulfocamphersäurenhydrid usw. E. Oxy-oxo-sulfonsäuren. 1. Sulfonsäuren der Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen. Oxy-sulfophenyl-fluoron usw. 2. Sulfonsäuren der Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen. Dihydroäsculetinsulfonsäure usw.	574 575 575 576
2. 8. a)	Monosulfonsäuren C _n H _{2n} O ₄ S (Dimethylfurantetrahydridsulfonsäure)	567 570 571 572 573	e) f)	dungen CnH2n-18O2 (z. B. Xanthondisulfonsäure) Sulfonsäuren der Monooxo-Verbindungen CnH2n-20O2 (z. B. Phenylcumarinsulfonsäure) Sulfonsäuren der Monooxo-Verbindungen CnH2n-22O2 2. Sulfonsäuren der Dioxo-Verbindungen. Sulfotetronsäure, Sulfocamphersäurenhydrid usw. E. Oxy-oxo-sulfonsäuren. 1. Sulfonsäuren der Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen. Oxy-sulfophenyl-fluoron usw. 2. Sulfonsäuren der Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen. Dihydroäsculetinsulfonsäure usw. 3. Sulfonsäuren der Oxy-oxo-Verbindungen mit 5 Sauerstoffatomen.	574 575 575 576

		Scite	_		Scite
	5. Sulfonsäuren der Oxy-oxo-Ver-		2.	Sulfonsäuren der Dicarbonsäuren.	
t	indungen mit 7 Sauerstoffatomen.	į		Xanthendicarbonsäuresulfonsäure	583
	Morinsulfonsäure	579			
τ	. Sulfonsäuren der Carbonsäuren.		G.	Sulfonsäuren der Oxo-carbonsäuren.	
		1		Thiopyron-bis-carbonsäureäthyl-	
1.	Sulfonsäuren der Monocarbonsäuren.	570		ester-disulfonsäure	583
	Sulfobrenzschleimsäure usw	579			
	v	II. A	min	•	
		II. A			
	A. Monoamine.	1	aj	Aminoderivate der Monooxy-Verbin-	
1.	Monoamine $C_nH_{2n+1}ON$ (Epihy-			dungen $C_nH_{2n-20}O_2$ (z. B. Thiophengrün)	507
_	drinamin)	583		Aminoderivate der Monooxy-Verbin-	001
2.	Monoamine C _n H _{2n-3} ON (z. B. Fur-		e)	dungen $C_nH_{2n-24}O_2$ (z. B. Tetra-	
	furylamin)	584		methylrosamin)	598
3.	Monoamine C _n H _{2n-7} ON (Amino-		n	Aminoderivate der Monooxy-Verbin-	.,
	cumarane)	585	•,	dungen $C_nH_{2n-32}O_2$	598
4.	Monoamine $C_nH_{2n-9}ON$ (z. B.	700			
_	Aminoathyl-cumaron)	1		2. Aminoderivate der	
	Monoamine $C_nH_{2n-11}ON$	587		${\it Dioxy-Verbindungen}.$	
6.	Monoamine $C_nH_{2n-15}ON$ (z. B.			Dierythrosimin usw	599
_	Aminodiphenylenoxyd)	587		3. Aminoderivate der	
7.	Monoamine $C_nH_{2n-27}ON$ (Amino-	-00		Trioxy-Verbindungen.	
	dibenzoxanthen)	588		Pentosimine usw	800
8.	Monoamine $C_nH_{2n-31}ON$ (z. B.	700		Tentoonnine usw	000
	Phenyl-aminophenyl-xanthen).	,		4. Aminoderivate der	
	Monoamine $C_nH_{2n-35}ON$			${\it Tetraoxy-Verbindungen}.$	
10.	Monoamine $C_nH_{2n-39}ON$	590		Hexosimine usw	601
	R. Diamine.			F. Oxa-amine.	
1	B. Diamine.	i		F. Oxo-amine.	
1.	Diamine C _n H _{2n-14} ON ₂ (z. B. Di-	i		1. Aminoderivate der	
1.	Diamine C _n H _{2n-14} ON ₂ (z. B. Diaminodiphenylenoxyd, Diamino-	591	a)	 Aminoderivate der Monooxo-Verbindungen. 	
	Diamine C _n H _{2n-14} ON ₂ (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	. 1	a)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbin-	
2.	$\begin{array}{llll} \textbf{Diamine} & C_n H_{2n-14} ON_2 & (z. \ B. \ Diaminodiphenylenoxyd, & Diaminodimethylxanthen) & . & . & . & . \\ \textbf{Diamine} & C_n H_{2n-18} ON_2 & . & . & . & . \\ \end{array}$	593	a)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbin- dungen C _n H _{2n-2} O ₂ (z. B. Ami-	
2. 3.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	593 593	a)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbin-	601
2. 3. 4.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	593 593 594		 Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen C_nH_{2n-2}O₂ (z. B. Aminobutyrolacton, Anilinovalero- 	601
2. 3. 4. 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	593 593 594 594		1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen C _n H _{2n-2} O ₂ (z. B. Aminobutyrolacton, Anilinovalerolacton)	
2. 3. 4. 5.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	593 593 594 594	b)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen C _n H _{2n-2} O ₂ (z. B. Aminobutyrolacton, Anilinovalerolacton)	
2. 3. 4. 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	593 593 594 594	b)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen C _n H _{2n-2} O ₂ (z. B. Aminobutyrolacton, Anilinovalerolacton)	604
2. 3. 4. 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	593 593 594 594 594	b) e)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen C _n H _{2n-2} O ₂ (z. B. Aminobutyrolacton, Anilinovalerolacton)	604
2. 3. 4. 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	593 593 594 594 594	b) e)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton)	604 605
2. 3. 4. 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	593 593 594 594 594	b) c) d)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton)	604 605
2. 3. 4. 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	593 593 594 594 594	b) c) d)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2 Aminoderivate der Monooxo-Verbindungen CnH2n-8O2 Aminoderivate der Monooxo-Verbindungen CnH2n-8O2	604 605
2. 3. 4. 5.	Diamine C _n H _{2n-14} ON ₂ (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	593 593 594 594 594	b) c) d)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2 Aminoderivate der Monooxo-Verbindungen CnH2n-8O2 Aminoderivate der Monooxo-Verbindungen CnH2n-8O2	604 605 606
2. 3. 4. 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	593 593 594 594 594 594	b) c) d) e)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton)	604 605 606
2. 3. 4. 5.	Diamine C _n H _{2n-14} ON ₂ (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	593 593 594 594 594 594	b) c) d) e)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2	604 605 606
2. 3. 4. 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	593 593 594 594 594 594	b) c) d) e)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton)	604 605 606
2. 3. 4. 5.	Diamine C _n H _{2n-14} ON ₂ (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	593 593 594 594 594 594	b) c) d) e)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2	604 605 606
2. 3. 4. 5. 6.	Diamine C _n H _{2n-14} ON ₂ (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	593 593 594 594 594 594	b) c) d) e)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2	604 605 606 606
2. 3. 4. 5. 6.	Diamine CnH2n-14 ON2 (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	593 593 594 594 594 595	b) c) d) e) f)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2	604 605 606 606 608
2. 3. 4. 5. 6.	Diamine CnH2n-14 ON2 (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	593 593 594 594 594 595	b) c) d) e) f)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2 Aminoderivate der Monooxo-Verbindungen CnH2n-10O2 (z. B. Aminophtalid, "Santoninamin"). Aminoderivate der Monooxo-Verbindungen CnH2n-12O2 (z. B. Aminophtalid, "Santoninamin"). Aminoderivate der Monooxo-Verbindungen CnH2n-12O2 (z. B. Aminocumarin). Aminoderivate der Monooxo-Verbindungen CnH2n-16O2 Aminoderivate der Monooxo-Verbindungen CnH2n-16O2 Aminoderivate der Monooxo-Verbindungen CnH2n-16O2 Aminoderivate der Monooxo-Verbindungen CnH2n-18O2 (z. B. Aminodungen CnH2n-18O2 (z. B. Amino	604 605 606 606 608
2. 3. 4. 5. 6.	Diamine CnH2n-14 ON2 (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	593 593 594 594 594 595	b) c) d) e) f)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2 Aminoderivate der Monooxo-Verbindungen CnH2n-8O2 Aminoderivate der Monooxo-Verbindungen CnH2n-10O2 (z. B. Aminophthalid, "Santoninamin") Aminoderivate der Monooxo-Verbindungen CnH2n-12O2 (z. B. Aminocumarin)	604 605 606 606 608 612
2. 3. 4. 5. 6.	Diamine CnH2n-14 ON2 (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	593 593 594 594 594 595	b) c) d) e) f) f)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2 Aminoderivate der Monooxo-Verbindungen CnH2n-8O2 Aminoderivate der Monooxo-Verbindungen CnH2n-10O2 (z. B. Aminophthalid, "Santoninamin") Aminoderivate der Monooxo-Verbindungen CnH2n-12O2 (z. B. Aminocumarin)	604 605 606 606 612 613
2. 3. 4. 5. 6.	Diamine CnH2n-14 ON2 (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	593 593 594 594 594 595	b) c) d) e) f) f)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2	604 605 606 606 612
2. 3. 4. 5. 6.	Diamine CnH2n-14 ON2 (z. B. Diaminodiphenylenoxyd, Diaminodimethylxanthen)	593 593 594 594 594 595 595	b) c) d) e) f) f)	1. Aminoderivate der Monooxo-Verbindungen. Aminoderivate der Monooxo-Verbindungen CnH2n-2O2 (z. B. Aminobutyrolacton, Anilinovalerolacton). Aminoderivate der Monooxo-Verbindungen CnH2n-4O2 (z. B. Aminocampholacton, Pinolnitrolamin). Aminoderivate der Monooxo-Verbindungen CnH2n-6O2 Aminoderivate der Monooxo-Verbindungen CnH2n-8O2 Aminoderivate der Monooxo-Verbindungen CnH2n-10O2 (z. B. Aminophthalid, "Santoninamin") Aminoderivate der Monooxo-Verbindungen CnH2n-12O2 (z. B. Aminocumarin)	604 605 606 608 612

		Scite	Seite
k)	Aminoderivate der Monooxo-Verbindungen C _n H _{2n-26} O ₂ (z. B. Amino-		2. Aminoderivate der Oxy-oxo-Ver- bindungen mit 4 Sauerstoffatomen.
	phenyl-fluoron, Bis-aminophenyl- phthalid, Dimethylanilinphtha-	045	a) Aminoderivate der Oxy-oxo-Verbin- dungen C _n H _{2n-10} O ₄ (z. B. Amino-
	lein)	017	mekonin) 627
	 Aminoderivate der Dioxo-Verbindungen. 		b) Aminoderivate der Oxy-oxo-Verbin- dungen C _n H _{2n-16} O ₄ 628
a)	Aminoderivate der Dioxo-Verbin-		c) Aminoderivate der Oxy-oxo-Verbindungen C _n H _{2n-18} O ₄ 628
	dungen $C_nH_{2n-4}O_3$ (z. B. Acetylanilino-brenzweinsäure-anhydrid)	619	d) Aminoderivate der Oxy-oxo-Verbin-
b)	Aminoderivate der Dioxo-Verbin-		dungen $C_nH_{2n-20}O_4$ 628 e) Aminoderivate der Oxy-oxo-Verbin-
	dungen C _n H _{2n-6} O ₃ (z. B. Dianilinomaleinsäureanhydrid)	620	dungen $C_nH_{2n-22}O_4$ 629
e)	Aminoderivate der Dioxo-Verbin-		f) Aminoderivate der Oxy-oxo-Verbindungen C _n H _{2n-26} O ₄ (z. B. Di-
a'	dungen C _n H _{2n-8} O ₃ Aminoderivate der Dioxo-Verbin-	621	amino-phenolphthalein) 629
u j	dungen Cn H _{2n-12} O ₃ (z. B. Amino-		H. Amino-carbonsäuren.
۵)	phthalsaureanhydrid) Aminoderivate der Dioxo-Verbin-	621	1. Aminoderivate der Monocarbonsäuren.
e,	dungen $C_nH_{2n-18}O_3$	622	a) Aminoderivate der Monocarbon-
I)	Aminoderivate der Dioxo-Verbindungen C _n H _{2n-22} O ₃	600	säuren $C_nH_{2n-6}O_3$ (z. B. C-Thienyl-glycin) 630
	G. 13 23 25 C	022	b) Aminoderivate der Monocarbon-
	3. Aminoderivate der Trioxo-Verbindungen.		säuren C _n H _{2n-8} O ₃ 631 e) Aminoderivate der Monocarbon-
	Anilino-dioxo-phenylimino-furan-		säuren $C_nH_{2n-12}O_3$ (z. B. Aminothionaphthencarbonsäure) 631
	tetrahydrid	622	d) Aminoderivate der Monocarbon-
	G. Oxy-oxo-amine.		säuren $C_nH_{2n-16}O_3$ 632 2. Aminoderivate der
	!. Aminoderivate der Oxy-oxo-Ver- bindungen mit 3 Sauerstoffatomen.		Dicarbonsäuren.
a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	622	Aminoderivate der Furandicarbon- säure usw 632
b)	Aminoderivate der Oxy-oxo-Verbin-		J. Amino-oxy-carbonsäuren.
	dungen $C_nH_{2n-4}O_3$ (z. B. Aminotetronsaure)	623	Aminooxythionaphthencarbonsäure usw 632
e)	Aminoderivate der Oxy-oxo-Verbin- dungen C _n H _{2n-6} O ₃ (Aminopyro-		K. Amino-oxo-carbonsäuren.
3 5	mekonsäure)	623	Aminophenylparaconsäure usw 633
•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	623	L. Amino-oxy-oxo-carbonsäuren. Aminokomensäure usw 635
e)	Aminoderivate der Oxy-oxo-Verbindungen C _n H _{2n-12} O ₃ (z. B. Amino-		M. Aminosulfonsäuren.
•	methoxycumarin)	624	Benzidinsulfon-sulfonsäure usw 635
I)	Aminoderivate der Oxy-oxo-Verbindungen C _n H _{2n-18} O ₃ (z. B. Amino-		N. Amino-oxy-sulfonsäuren.
	oxyphenylphthalid)	625	Tetramethylrosaminsulfonsäure usw. 636
g)	Aminoderivate der Oxy-oxo-Verbin- dungen C _n H _{2n-26} O ₃ (z. B. Di-		0. Amino-oxo-sulfonsäuren.
	methylanilin-phenol-phthalein) .	626	Amino-sulfophenyl-fluoronimid 637
	VIII.	Hydr	roxylamine.
	A. Hydroxylaminoderivate der		B. Oxy-hydroxylamine.
	Stammkerne.		Trimethylbrasileinhydroxylamin 638
	Dihydrocarvoxyd-hydroxylamin, Cumaranonoxim usw	637	C. Oxo-hydroxylamine.
			Hydroxylaminocampholacton, Hydroxylaminodihydroxylamin yeyr 639

IX. Hydrazine.

A. Hydrazinoderivate der	D. Oxy-oxo-hydrazine.	Seite
Stammkerne.	1	642
Cumaranonsemicarbazon, Hydrazi- nodiphenylenoxyd usw 63		
B. Oxy-hydrazine.	Phenylhydrazino-cumarin-carbon-	
Phenylhydrazino-furyl-resorcin 64	an and the lactor	643
C. Oxo-hydrazine.	F. Hydrazino-oxy-oxo-carbonsäuren.	
Phenylhydrazino-valerolacton, Hydrazinocumarin usw 64	Phenylhydrazino-dioxy-cumarin- carbonsäureäthylester	643
X. Azo-V	Verbindungen.	
A. Mono-azo-derivate der Stammkerne.	E. Azoderivate der	
Diphenylenoxyd-azo-phenol usw 643	Oxy-oxo-Verbindungen.	
B. Bis-azo-derivate der Stammkerne. Bis-benzolazo-dinaphthylenoxyd usw 64:	Benzolazo-desmotroposantonin, Bis- benzolazo-euxanthon, Bis-benzol- azo-chrysin, Bis-benzolazo-genti- sin usw	648
454	Sill usw	
C. Azoderivate der Oxy-Verbindungen.	F. Azoderivate der	
Benzolazo-oxy-thionaphthen, Bis- benzolazo-catechin usw 64	Oxy-oxo-carbonsäuren.	
beilzolazo-eaceimi usw	Azomekonindiessigsäure	651
D. Azoderivate der Oxo-Verbindungen.	G. Azoderivate der Amine.	
Azophthalid, Benzolazocumarin, Cumarinazonaphthol usw 64		651
XI. Diazo-	Verbindungen.	
Cumarindiazoniumhydroxyd usw		651
хи.	Triazene.	
Nitrophenyl-cumarinyl-triazen usw		652
XIII. C-Phosp	hor-Verbindungen.	
Diäthylthienylphosphin, Thienylphosphinsä		653
	uic usw	01717
XIV. C-Magnes	ium-Verbindungen.	
Thienylmagnesiumjodid		654
XV. C-Quecksi	lber-Verbindungen.	•
Quecksilberdicineolyl, Hydroxymercuri-cine	eol, Thienylquecksilberhydroxyd, Bis-hydr-	654
	-	
Alphabetisches Register für Bd. XVIII Berichtigungen, Verbesserungen, Zusä		658 700

Verzeichnis der Abkürzungen für Literatur-Quellen.

Abkürsung	Titel	Vollständig bearbeitet bis
A	LIEBIGS Annalen der Chemie	871, 124
A. ch.	Annales de Chimie et de Physique	[8] 18, 574
Am.	American Chemical Journal	42, 541
Am. Soc.	Journal of the American Chemical Society	81, 1374
Ann.d.Physik	Annalen der Physik und Chemie (POGGENDORFF-WIEDE-	F43 00 4004
	MANN-DRUDE-WIEN und PLANCK)	[4] 30, 1024
Ar.	Archiv für Pharmazie	247, 657
Ar. Pth.	Archiv für Experimentelle Pathologie und Pharmakologie	62, 92 42, 4918
B. Bio. Z.	Berichte der Deutschen Chemischen Gesellschaft Biochemische Zeitschrift	23, 328
Bio. Z. Bl.	Bulletin de la Société Chimique de France	[4] 5, 1158
B. Ph. P.	Beiträge zur Chemischen Physiologie und Pathologie	11, 514
Bulet.	Buletinul Societații de Sciinte din Bucuresci	11, 011
C.	Chemisches Zentralblatt	1909 II, 2216
Chem. N.	Chemical News	100, 328
Ch. I.	Chemische Industrie	32, 840
Ch. Z.	Chemiker-Zeitung	88, 1364
C. r.	Comptes rendus de l'Académie des Sciences	149, 1422
D.	DINGLERS Polytechnisches Journal	•
D. R. P.	Patentschrift des Deutschen Reiches	Soweit im Chemisch. Zentralbl. bis 1. I.
		1910 referiers
El. Ch. Z.	Elektrochemische Zeitschrift	16, 280
Fr.	Zeitschrift für Analytische Chemie (Fresenius)	48 , 762
Frdl.	FRIEDLÄNDERS Fortschritte der Teerfarbenfabrikation.	
~	Berlin. Von 1888 an	
<i>G</i> .	Gazzetta Chimica Italiana	39 II, 556
GildemHoffm.	E. GILDEMEISTER, FR. HOFFMANN, Die atherischen Ole,	
	2. Aufl. von E. Gildemeister. 3 Bände. Miltitz	
a	bei Leipzig (1910—1916)	
Gm.	L. GMELINE Handbuch der Organischen Chemie, 4. Aufl.	
	5 Bände und 1 Supplementband. Heidelberg (1848	
GmelKraut	bis 1868) GMELIN-KRAUTS Handbuch der Anorganischen Chemie.	
GinetMituu	Herausgegeben von C. Friedheim † und Fr. Peters.	
	7. Aufl. Heidelberg. Von 1907 an	
Groth, Ch. Kr.	P. Groth, Chemische Krystallographie. 5 Teile. Leipzig.	
G7000, O10. 117.	(1906—1919)	
Н.	Zeitschrift für Physiologische Chemie (HOPPE-SEYLER)	63, 484
Helv.	Helvetica Chimica Acta	00, 101
J.	Jahresbericht über die Fortschritte der Chemie	
J. pr.	Journal für Praktische Chemie	[2] 81, 96
J. Th.	Jahresbericht über die Fortschritte der Tierchemie	1,,
L. V. St.	Landwirtschaftliche Versuchastationen	71, 482
М.	Monatshefte für Chemie	30, 758
Of. Fi.	Öfversigt af Finska Vetenskaps-Societetens Förhandlingar	
Öf. Sv.	Ofversigt af Kongl. (Svenska) Vetenskaps - Akademiens	
D 0 "	Förhandlingar	
P. C. H.	Pharmazeutische Zentralhalle	50, 1100
P. Ch. S.	Proceedings of the Chemical Society	00 000
Ph. Ch.	Zeitschrift für Physikalische Chemie	69, 685
R. ·	Recueil des travaux chimiques des Pays-Bas	28, 456
R. A. L. Schultz Tab	Atti della Reale Accademia dei Lincei (Rendiconti)	[5] 18 II, 667
Schultz, Tab. Soc.	G. SCHULTZ, Farbstofftabellen. Berlin (1920)	05 9940
Z.	Journal of the Chemical Society of London	95, 2219
Z. a. Ch.	Zeitschrift für Chemie	AK 990
Z. Ang.	Zeitschrift für Anorganische Chemie	65, 232
Z. B.	Zeitschrift für Angewandte Chemie Zeitschrift für Biologie	22, 2592 53, 318
Z. El. Ch.	Zeitschrift für Elektrochemie	15, 988
Z. Kr.	Zeitschrift für Krystallographie und Mineralogie	47, 208
ж.	Journal der Russischen Physikalisch-chemischen Ge-	Soweit im Chemisch.
	sellschaft	Zentralbl. bis 1, I.
		1910 referiert.

Weitere Abkürzungen.

absol.	= absolut	lin. =	linear
ac.	= alicyclisch		= meta-
äther.	= ätherisch		Minute
AGFA	Aktien-Gesellschaft für Ani		Gramm-Molekül (Mole-
AUFA	linfabrikation		kulargewicht in Gramm)
akt.	= aktiv	MolGew. =	Molekulargewicht
alkal.	= alkalisch		Molekularrefraktion
alkoh.	= alkoholisch		= meso-
	= angular	n (in Verbindung	- meso-
ang. Anm.	= Anmerkung		Brechungsindex
Ann. ar.	= aromatisch	n. (in Verbindung	Dicenungamuez
	= asymmetrisch		normal
$\begin{array}{c} \textbf{asymm.} \\ \textbf{AtGew.} \end{array}$	= Atomgewicht		ortho-
Atm.	= Atmosphäre		optisch aktiv
Aufl.	= Auflage	•	= para-
B.	= Bildung		- para- - primär
BASF	= Badische Anilin- und Soda		♣
DAGE	fabrik		Produkt
Bd.	= Band		Prozent
	= band = berechnet		
ber.			= prozentig = racemisch
bezw.	= beziehungsweise		
ca.	== circa == Dichte		= Reduktionsvermögen = siehe
D		_	
\mathbf{D}_{16}^{4}	= Dichte bei 16°, bezogen auf		= Seite
D	Wasser von 4º	_	siehe auch
Darst.	= Darstellung		sekundär
Dielektr.	D: 1 14 : 24 4 - 17 4		siehe oben
Konst.	= Dielektrizitäts-Konstante		spezifisch
E	= Erstarrungspunkt		Supplement
Einw.	= Einwirkung		Stunde, Stunden
Ergw.	= Ergänzungswerk (des Beil	_	stündig
77	STEIN-Handbuches)		siehe unten
\mathbf{F}	= Schmelzpunkt		= symmetrisch
gem.	= geminal		System-Nummer 1)
Hptw.	= Hauptwerk (des BELLSTEIN		= Temperatur
	Handbuches)		tertiär
inakt.	= inaktiv		Teil, Teile, Teilen
K bezw. k	= elektrolytische Dissoziations	_	Vorkommen
	konstante		verdünnt -
konz.	= konzentriert		vergleiche auch
korr.	= korrigiert		· vicinal
Кр	= Siedepunkt		- Volumen
Kp750	= Siedepunkt unter 750 mm		= wäßrig
	Druck	Zers. =	= Zersetzung

¹⁾ Vgl. dazu dieses Handbuch, Bd. I, S. XXIV.

Übertragung der griechischen Buchstaben in Zahlen.

Zusammenstellung der Zeichen für Maßeinheiten.

```
m, cm, mm
                    =
                         Meter, Zentimeter, Millimeter
                         Quadratmeter, Quadratzentimeter, Quadratmillimeter
Kubikmeter, Kubikzentimeter, Kubikmillimeter
m<sup>2</sup>, cm<sup>2</sup>, mm<sup>2</sup>
                    =
m3, cm3, mm3
                    =
 t, kg, g, mg
                         Tonne, Kilogramm, Gramm, Milligramm
                    =
Mol
                         Gramm-Molekül (Mol.-Gew. in Gramm)
                    __
                         Liter
h
                         Stunde
min
                         Minute
                         Sekunde
Sec
                         Grad
grad
                         Celsiusgrad
oabsol.
                         Grad der absoluten Skala
cal
                         Grammcalorie (kleine Calorie)
kcal
                         Kilogrammcalorie (große Calorie)
Atm.
                         760 mm Hg
                         gcm/sec<sup>2</sup>
10<sup>6</sup> dyn
dyn
megadyn
bar
                         dyn/cm<sup>2</sup>
                        10<sup>6</sup> bar
10<sup>-7</sup> mm
10<sup>-6</sup> mm
megabar
Å
m\mu
                         10-3 mm
Amp.
                         Ampère
Milliamp.
                         Milliampère
Amp.-h
                         Ampère-Stunde
                         Watt
kW
                        Kilowatt
Wh
                         Wattstunde
kWh
                        Kilowattstunde
Coul.
                        Coulomb
Ω
                        Ohm
rez. Ohm
                        reziproke Ohm
                         Volt
Joule
                        Joule
```

DRITTE ABTEILUNG.

HETEROCYCLISCHE VERBINDUNGEN.

(FORTSETZUNG.)

1. Verbindungen mit 1 cyclisch gebundenem Sauerstoffatom (Heteroklasse 1 0)¹).

(SCHLUSS.)

III. Oxo-Verbindungen.

(SCHLUSS.)

F. Oxy-oxo-Verbindungen.

- 1. Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen.
 - a) Oxy-oxo-Verbindungen $C_n H_{2n-2} O_3$.
- 1. β -Oxy-butyrolacton $C_4H_6O_3=\frac{HO\cdot HC-CH_2}{H_2C\cdot O\cdot CO}$. B. Durch Kochen von $\beta.\gamma$ -Dibrom-buttersäure mit Wasser (Fichter, Sonneborn, B. 35, 942). Durch Erhitzen von $\beta.\gamma$ -Dioxy-buttersäure im Vakuum, neben anderen Produkten (Carré, C. r. 146, 1283; Bl. [4] 3, 835). Farblose Flüssigkeit. Kp₁₂: 174—175°; in jedem Verhältnis löslich in Wasser, Alkohol und Aceton (C.). Verhalten beim Erhitzen im Vakuum: F., S.; C. Liefert beim Kochen mit Barytwasser das Bariumsalz der $\beta.\gamma$ -Dioxy-buttersäure (F., S.).
- $\beta\text{-Bensoyloxy-butyrolacton} \ \ C_{11}H_{10}O_4 = \frac{C_0H_5\cdot CO\cdot O\cdot HC CH_2}{H_2C\cdot O\cdot CO}. \quad B. \quad \text{Aus β-Oxy-butyrolacton und Benzoylchlorid in Pyridin (Carré).} Blättchen (aus Alkohol). F: 101°.$

¹⁾ Verbindungen, die Schwefel, Selen oder Tellur als Ringglied enthalten, sind den entsprechenden Sauerstoff-Verbindungen systematisch zugeordnet. Vgl. Bd. I, S. 3, § 5.

2. $0xy-oxo-Verbindungen C_6H_aO_3$.

1. γ -Oxy- γ -methyl-butyrolacton, γ -Oxy- γ -valerolacton, cyclo-Form der Lävulinsäure $C_5H_8O_3= {H_2C-CH_2 \atop OC\cdot O\cdot C(CH_3)\cdot OH}$ Lävulinsäure ist gemäß ihrer acyclischen Formel $CH_3\cdot CO\cdot CH_2\cdot CH_3\cdot CO_2H$ Bd. III, S. 671 eingeordnet.

y-Acetoxy-y-methyl-butyrolacton, y-Acetoxy-y-valerolacton, "Acetyllävulinsaure" $C_7H_{10}O_4 = H_2C - CH_2$ säure" $C_7H_{10}O_4 = \frac{H_2C - CH_3}{OC \cdot O \cdot C(CH_3) \cdot O \cdot CO \cdot CH_3}$. B. Bei mehrstündigem Erhitzen von Lävulinsäure mit 1½ Mol. Gew. Essigsäureanhydrid im Druckrohr auf 100° (Beedt, A. 236, 228). Aus Lävulinsäure und etwas mehr als 1 Mol. Gew. Essigsäureanhydrid bei Gegenwart von Acetylchlorid (Thiele, Tischbein, Lossow, A. 319, 184; vgl. B., A. 256, 321). Aus lävulinsaurem Silber und Acetylchlorid in wasserfreiem Äther bei höchstens 0° (B., A. 256, 338). Aus y-Chlor-y-valerolacton (Bd. XVII, S. 236) und Silberacetat in wasserfreiem Äther bei höchstens 0° (B., A. 256, 338). Aus α-Angelicalacton (Bd. XVII, S. 252) und Essigsäure bei gewöhnlicher Temp., schneller bei 100° (B., A. 256, 322). — Prismen (aus Alkohol), Nadeln (aus heißem Ligroin). Monoklin prismatisch (Fock, A. 256, 339; Z. Kr. 17, 377; vgl. Groth, Ch. Kr. 3, 390). F: 78—79°; Kp₁₅: 140° (B., A. 236, 229). Sehr leicht löslich in Chloroform, leicht in heißem, ziemlich leicht in kaltem Alkohol, schwer in Ligroin (B., A. 256, 321). — Spaltet bei Destillation unter Atmosphärendruck Essigsäure ab unter Bildung von α -Angelicalacton und β -Angelicalacton (Bd. XVII, S. 253) (B., A. 256, 322; vgl. Th., Tl., L., A. 319, 180). Wird durch kalte Sodalösung nicht verändert (B., A. 236, 229). Beim Zusammenreiben von 10 g, "Acetyllävulinsäure" mit 20 cm Phenylhydrazin (Volhard, A. 267, 106) oder bei längerem Stehenlassen von "Acetyllävulinsäure" mit 2 Mol.-Gew. Phenylhydrazin in essigsaurer Lösung (B., A. 256, 325) erhält man das Phenylhydrazon des Lävulinsäurephenylhydrazids (Bd. XV, S. 346).

2. β -Oxy- γ -methyl-butyrolacton(?), β -Oxy- γ -valerolacton(?) $C_5H_8O_3 = H_2C$ —CH·OH OC·O·CH·CH₃ (?). Zur Konstitution vgl. Firme, A. 334, 71.

a) β -Oxy- γ -valerolacton(?) von Fittig, Schaak. B. Entsteht neben Lävulinsäure und anderen Produkten beim Kochen von α -oxy- β -butylen- α -carbonsaurem Calcium (Bd. III, S. 378) mit verd. Salzsäure (1 Vol. konz. Säure + 2 Vol. Wasser) (Fittig, Schaak, A. 299, 45). — Farblose, dicke Flüssigkeit. Leicht löslich in Wasser und Chloroform, schwerer in Ather (F., Sch.). — Bei der Destillation geht die Hauptmenge unzersetzt zwischen 240° und 265° über (F., Lepère, A. 334, 100). Gibt mit Kalkmilch das Salz der β . γ -Dioxy-n-valeriansäure (?) von F., Sch. (Bd. III, S. 400). Geht durch längeres Kochen mit Salzsäure in Lävulinsäure über (F., Sch.; F., L.).

b) β-Oxy-γ-valerolacton(?) von Fittig, Lepère. B. Durch Kochen von α-Oxy-γ-valerolacton (s. u.) mit verd. Salzsäure unter Rückfluß (Fittig, Lepère, A. 334, 92). Aus dem Calciumsalz der α.γ-Dioxy-n-valeriansäure (Bd. III, S. 400) beim Kochen mit Salzsäure (1 Vol. konz. Säure + 2 Vol. Wasser) unter Rückfluß (F., L.). — Farblose, dicke Flüssigkeit. Kp: 253°. Sehr leicht löslich in Wasser, weniger in Äther. — Destilliert unzersetzt. Liefert durch Behandlung mit anorganischen Basen die Salze der $\beta.\gamma$ -Dioxy-n-valeriansäure (?) von F., L. (Bd. III, S. 400). Beim Kochen mit konz. Salzsäure entsteht Lävulinsäure.

3. $\alpha - Oxy - \gamma - methyl - butyrolacton$, $\alpha - Oxy - \gamma - valerolacton$ $C_5H_8O_3 = HO \cdot HC - CH_3$

 $OC \cdot O \cdot CH \cdot CH_2$. B. Durch allmähliches Versetzen einer gekühlten ätherischen Lösung von Aldoleyanhydrin (Bd. III, S. 400) mit etwa dem gleichen Volumen konz. Salzsäure (Fittig, Lepère, A. 834, 88, 90). — Farblose Flüssigkeit. Sehr leicht löslich in Wasser, schwerer in Äther und Chloroform. — Destilliert unzersetzt zwischen 245° und 260°. Geht durch Behandlung mit Basen in die Salze der α.γ-Dioxy-n-valeriansäure über. Geht durch Kochen mit verd. Salzsäure in das vorhergehende Lacton über, durch Kochen mit stärkerer Salzsäure entsteht Lävulinsäure.

4. γ - Oxymethyl - butyrolacton, δ - Oxy - γ - valerolacton $C_8H_8O_8 = H_2C - CH_2$ $OC \cdot O \cdot CH \cdot CH_a \cdot OH$. Beim Ansäuern der alkal. Lösung von $\gamma \cdot \delta$ -Dioxy-n-valeriansäure (Bd. III, S. 400) (Fittig, Urban, A. 268, 34). Aus δ-Chlor-γ-valerolacton (Bd. XVII, S. 236) durch Kochen mit wäßrig-alkoholischer Natronlauge und Ansäuern der Lösung mit Salzsäure (Leuchs, Möbis, B. 42, 1234). Bei längerem Kochen des δ-Brom-γ-valerolactons mit Wasser (F., U., A. 268, 61). — Farblose Flüssigkeit. Bleibt bei —166 flüssig (F., U.). Kp: 300—301° (F., U.); Kp₁₁: 165—166° (L., M.). Leicht löslich in Wasser und organischen Läungsmitteln schwar in Athen sehr wenig in Patrolather (F. II. I. M.) Wird nischen Lösungsmitteln, schwer in Ather, sehr wenig in Petroläther (F., U.; L., M.). Wird

durch Kaliumcarbonat aus der wäßr. Lösung ausgeschieden (F., U.). Die wäßr. Lösung zeigt nach kurzem Kochen sowie nach längerem Stehen in der Kälte saure Reaktion (F., U.). Beim Kochen mit Kalkmilch oder Barytwasser entstehen die Salze der $\gamma.\delta$ -Dioxy-n-valeriansäure (F., U.).

α-Brom-γ-[4-brom-phenoxymethyl]-butyrolacton, α-Brom-δ-[4-brom-phenoxy]-γ-valerolacton $C_{11}H_{10}O_3Br_2=\frac{BrHC-CH_2}{O\dot{C}\cdot O\cdot\dot{C}H\cdot CH_2\cdot O\cdot C_6H_4Br}$. B. Man erhitzt α-Brom-δ-[4-brom-phenoxy]-γ-valerolacton-α-carbonsāure (Syst. No. 2624) unter 15—20 mm Druck erst auf 150°, dann (nach Beginn der Kohlendioxydentwicklung) längere Zeit auf 140° (E. Fischer, Krämer, B. 41, 2733). — Nadeln oder Prismen (aus Alkohol). F: 128° (korr.). Ziemlich leicht löslich in heißem Alkohol und kaltem Benzol, schwer in heißem Wasser. — Gibt mit flüssigem Ammoniak bei 25° sowie beim Erhitzen mit wäßr. Ammoniak auf 100° α-Amino-δ-[4-brom-phenoxy]-γ-valerolacton (Syst. No. 2644).

3. Oxy-oxo-Verbindungen $C_6H_{10}O_8$.

- 1. β Oxy γ dthyl butyrolacton, β Oxy γ caprolacton $C_0H_{10}O_3 = H_2C CH \cdot OH$ $OC \cdot O \cdot CH \cdot C_3H_3$
- a) Lacton der $\beta.\gamma$ -Dioxy-n-capronsäure. B. Man zersetzt das Bariumsalz der $\beta.\gamma$ -Dioxy-n-capronsäure (Bd. III, S. 401) mit Salzsäure, äthert aus und kocht den Ätherrückstand mit Wasser unter Zusatz von etwas Salzsäure auf (Firtig, Hiller, A. 268, 40). Bleibt bei —18° flüssig. Destilliert nicht ganz unzersetzt. Mit Wasser und Äther mischbar. Geht beim Kochen mit Wasser zum Teil in $\beta.\gamma$ -Dioxy-n-capronsäure über; gibt beim Kochen mit Kalk- oder Barytwasser deren Salze.
- b) Lacton der Iso- $\beta.\gamma$ -dioxy-n-capronsäure. B. s. bei Iso- $\beta.\gamma$ -dioxy-n-capronsäure, Bd. III, S. 402. Entsteht aus dem Bariumsalz dieser Säure durch Zersetzung mit Salzsäure analog dem vorbeschriebenen Lacton (F., H., A. 268, 42). Farblos, dickflüssig. Erstarrt nicht beim Abkühlen; mit Wasser und Äther mischbar. Liefert beim Kochen mit Kalkoder Barytwasser die Salze der Iso- $\beta.\gamma$ -dioxy-n-capronsäure.
- 2. β -Oxy- α . α -dimethyl-butyrolacton $C_6H_{10}O_3=\frac{(CH_3)_2C\cdots CH\cdot OH}{OC\cdot O\cdot CH_2}$. B. Durch Erhitzen von β -Brom- α . α -dimethyl-butyrolacton (Bd. XVII, S. 240) mit einer wäßr. Lösung von 2 Mol.-Gew. Kaliumcarbonat, neben Dimethylallylalkohol (Courtot, Bl. [3] 35, 660). Stark hygroskopische Nadeln. F: 31°. Kp₁₅: 163°.
- 3. α - $O\dot{\alpha}y$ - β . β -dimethyl-butyrolacton $C_6H_{10}O_3= \begin{array}{c} HO\cdot HC-C(CH_3)_3 \\ O\dot{C}\cdot O\cdot CH_2 \end{array}$. B. Man läßt Blausäure auf β -Oxy- α . α -dimethyl-propionaldehyd (Bd. I, S. 833) einwirken und verseift das Reaktionsprodukt durch Erhitzen mit Salzsäure (GLASER, M. 25, 47). Hygroskopische Nädelchen. F: 55°. Kp₁₁: 115—117°. Leicht löslich in Wasser, Äther, Alkohol, Benzol, Chloroform und Schwefelkohlenstoff. Gibt beim Kochen mit Kalkwasser das Calciumsalz der α . γ -Dioxy- β - β -dimethyl-propan- α -carbonsäure. Liefert beim Erhitzen mit Essigsäureanhydrid und Natriumacetat das Acetylderivat.

α-Acetoxy- β . β -dimethyl-butyrolacton $C_8H_{12}O_4= CH_3 \cdot CO \cdot O \cdot HC$ — $C(CH_2)_8$ $OC \cdot O \cdot CH_2$. B. Aus α-Oxy- β . β -dimethyl-butyrolacton beim Erhitzen mit Essigsäureanhydrid und entwässertem Natriumacetat (G., M. 25, 50). — Farblose Flüssigkeit. Kp₁₁: 122—125°.

4. $0xy-oxo-Verbindungen C_7H_{12}O_3$.

1. β-Oxy-γ-isopropyl-butyrolacton, Oxyisoheptolacton C₇H₁₂O₃ = H₂C—CH·OH
OC·O·CH·CH(CH₂)₂
B. Man oxydiert β.γ-Isoheptensäure (Bd. II, S. 445) in alkal. Lösung mit Kaliumpermanganat und erhitzt das Reaktionsprodukt mit verd. Salzsäure (Fittig, Silberstein, A. 283, 270, 271). Entsteht neben γ-Isopropyl-Δαβ-crotonlacton (Bd. XVII, S. 255) bei 24-stdg. Kochen von β.γ-Dibrom-isoamylessigsäure (Bd. II, S. 343) mit 20—50 Tln. Wasser am Rückflußkühler (Fittig, Wolff, A. 288, 181). — Nadeln und Tafeln (aus Äther). Monoklin (prismatisch?) (Stuber, A. 283, 271; vgl. Groth, Ch. Kr. 3, 483). F: 111,5—112° (F., W.), 112° (F., Si.). Leicht löslich in Alkohol, Chloroform (F., Si.) und Wasser, schwer in Ather (F., W.). — Spaltet beim Erhitzen Wasser ab unter Bildung von γ-Isopropyl-1*

4

 Δ α,β-crotonlacton (F., Si.). Gibt beim Kochen mit Kalkmilch oder Barytwasser die Salze der β . γ -Dioxy- δ -methyl-n-capronsäure (Bd. III, S. 403) (F., Si.).

- 2. γ -[α -Oxy-isopropyl]-butyrolacton $C_7H_{12}O_3 = \frac{H_2C_-CH_2}{OC\cdot O\cdot CH\cdot C(CH_3)_2\cdot OH}$ Die unter diesem Namen von Semmler, B. 25, 3514 beschriebene Verbindung (vgl. auch Pringsheim, Bondi, B. 58 [1925], 1411, 1416) ist von Tiemann, Semmler, B. 30, 439; 31, 2311 als $\delta.\delta$ -Dimethyl-lävulinsäure (Bd. III, S. 698) erkannt worden.
- 3. α -Oxy- β -methyl- γ -āthyl-butyrolacton, α -Oxy- β -methyl- γ -caprolacton $C_7H_{12}O_3 = OC \cdot O \cdot CH \cdot C_9H_s$.

 β -Brom-α-oxy- β -methyl- γ -äthyl-butyrolaeton, β -Brom-α-oxy- β -methyl- γ -caprolaeton $C_7H_{11}O_3Br = HO \cdot HC - CBr \cdot CH_3$ $O_0^{\dagger} \cdot O \cdot (H \cdot C_2H_5 \cdot B)$ $B. Entsteht neben α-Methyl-<math>\beta$ -äthyl-acrolein(†) und Ameisensäure beim Aufbewahren von β - γ -Dibrom-α-oxy- β -methyl-n-capronsäure (Bd. III, S. 345) mit Sodalösung (Johanny, M. 15, 422). — Täfelchen (aus Chloroform). F: 82—83°. Monoklin (Stengel, M. 15, 423).

- 4. α Oxy α.γ.γ trimethyl butyrolacton C₇H₁₈O₃ = (HO)(CH₂)C—CH₂

 B. Aus 2.4-Dimethyl-penten-(1)-ol-(4)(Bd. I, S. 447) durch Oxydation mit Kaliumpermanganat und Ansäuern der filtrierten Lösung mit verd. Schwefelsäure (Franke, Kohn, M. 28. 1004). Durch Kondensation von Diacetonalkohol (Bd. I, S. 836) (K., M. 29, 510) oder besser seiner Natriumdisulfitverbindung (K., M. 30, 402) mit Cyankalium in konz. Lösung und Erhitzen des Reaktionsproduktes mit rauchender Salzsäure auf dem Wasserbade (K., M. 29, 510, 516; 30, 402). Durch 6—8-stdg. Einleiten von salpetriger Säure in die Lösung des Lactams der α-Oxy-γ-amino-α.γ-dimethyl-n-valeriansäure (Syst. No. 3239) in Salpetersäure (D: 1,3) (Heintz, A. 192, 356; vgl. K., M. 30, 404).— Blättrige Krystalle (aus Åther), Tafeln (aus Benzol). F: 64° (Fr., K.), 63—66° (K., M. 29, 516), 66—68° (K., M. 30, 403). Kp₁₀: 110° bis 112°; Kp₇₄₅: 230—232° (K., M. 30, 402). Leicht löslich in Wasser, Alkohol, Äther (H.) und in Benzol, sehr wenig in Ligroin (K., M. 30, 403).
- 5. β -Oxy-a.a. γ -trimethyl-butyrolacton, β -Oxy-a.a-dimethyl- γ -valerolacton $C_7H_{12}O_3 = \begin{pmatrix} (CH_3)_2C & CH \cdot OH \\ OC \cdot O \cdot CH \cdot CH_3 \end{pmatrix}$. B. Durch Erhitzen von β -Brom-a.a-dimethyl- γ -valerolacton (Bd. XVII, S. 242) mit Kaliumcarbonat-Lösung, neben 2-Methyl-penten-(2)-ol-(4) (Courtot, Bl. [3] 35, 663, 664). Krystalle (aus Petroläther). F: 80°. Leicht löslich in Alkohol, Äther und Benzol.
- 6. β Oxy $\alpha.\alpha.\beta$ trimethyl butyrolacton $C_7H_{12}O_3 = (HO)(CH_3)C$ — $C(CH_3)_8$.

 B. Man oxydiert $\alpha.\alpha$ -Dimethyl- α -isopropenyl-essigsäure (Bd. II, S. 450) mit Kaliumpermanganat bei 40—50°, treibt nebenbei entstandenes Methylisopropylketon mit Wasserdampf über, säuert die zurückbleibende Lösung an, äthert aus und erhitzt den Ätherrückstand auf 100°; durch Behandlung mit Kaliumdicarbonat entzieht man ihm etwas Trimethyläpfelsäure (Courtor, Bl. [3] 35, 303). Krystalle (aus Äther). F: 103°. Leicht löslich in Alkohol, unlöslich in Petroläther.
- 7. γ Oxy $\alpha.\alpha.\beta$ trimethyl butyrolacton $C_7H_{12}O_3 = {CH_3 \cdot HC C(CH_2)_3 \over HO \cdot HC \cdot O \cdot CO}$ ist desmotrop mit δ -Oxo- $\beta.\gamma$ -dimethyl-butan- β -carbonsäure, Bd. III, S. 703.
- γ Äthoxy $\alpha.\alpha.\beta$ trimethyl butyrolacton $C_9H_{16}O_3 = \frac{CH_3 \cdot HC C(CH_3)_8}{C_2H_5 \cdot O \cdot HC \cdot O \cdot CO} \cdot B$. Durch Kochen von δ -Oxo- $\beta.\gamma$ -dimethyl-butan- β -carbonsäure mit Alkohol in Gegenwart von Schwefelsäure (Blaise, Courtor, Bl. [3] 35, 999). Flüssigkeit. Kp₁₁: 107°.
- γ -Acetoxy-α.α. β -trimethyl-butyrolacton $C_9H_{14}O_4=\frac{CH_3\cdot HC\cdots C(CH_3)_8}{CH_3\cdot CO\cdot O\cdot HC\cdot O\cdot CO}$. B. Aus δ -Oxo- β . γ -dimethyl-butan- β -carbonsāure und Essigsāureanhydrid (BL., C., Bl. [3] 35, 999). Flüssigkeit. Kp₁₁: 135°.

 γ - Anilinoformyloxy - $\alpha.\alpha.\beta$ - trimethyl - butyrolacton $C_{14}H_{17}O_4N = CH_3 \cdot HC$ — $C(CH_3)_2$ B. Aus δ-Oxo- $\beta.\gamma$ -dimethyl-butan- β -carbonsäure und Phenylisocyanat in sehr wenig Äther (BL., C., C. r. 141, 41; Bl. [3] 35, 999). — Nadeln (aus Petroläther). F: 133—134°.

5. Oxy-oxo-Verbindungen C₈H₁₄O₈.

- 1. β -Oxy- γ -isobutyl-butyrolacton $C_8H_{14}O_3=\frac{H_8C$ — $CH \cdot OH$ OC·O·CH·CH $_3$ ·CH(CH $_3$).

 8. Man oxydiert β . γ -Isooctensäure (Bd. II, S. 451) mit Kaliumpermanganat und erhitzt das Reaktionsprodukt mit verd. Salzsäure (Fittig, de Vos, A. 283, 292). Zerfließliche Nadeln (aus Äther durch Ligroin). F: 33—34°; leicht löslich in Wasser, Alkohol und Äther (F., de V.). Geht bei langsamer Destillation zum Teil in γ -Isobutyl- Δ (α . β -crotonlacton (Bd. XVII, S. 256) über (F., de V.; vgl. Thiele, Wedemann, A. 347, 137).
- $\begin{array}{ll} 2. & \text{α-Oxy-γ-methyl-α-propyl-butyrolacton, α-Oxy-α-propyl-γ-valerolacton } \\ C_8H_{14}O_3 = & \begin{array}{c} (HO)(CH_3\cdot CH_1\cdot CH_2)C CH_2 \\ OC\cdot O\cdot CH\cdot CH_3 \end{array} \end{array}$

OC·O·CH·CH₂Br

B. Aus α.β.ζ.η-Tetrabrom-δ-oxy-heptan-δ-carbonsāure (Bd. III, S. 351) beim Aufbewahren (Schatzki, Ж. 17, 75; B. 18 Ref., 219). — Nadeln (aus Äther). F: 42—43°. Erstarrt nach dem Schmelzen bei 30°. Leicht löslich in Alkohol, Äther und Benzol.

- 3. γ Methyl α $[\beta$ oxy propyl] bityrolacton, α $[\beta$ oxy propyl] v-valerolacton $C_8H_{14}O_3 = \begin{array}{c} CH_3 \cdot CH(OH) \cdot CH_2 \cdot HC CH_2 \\ OC \cdot O \cdot CH \cdot CH_3 \cdot B. \end{array}$ Durch Kochen von "Nonodilacton" (Syst. No. 2760) mit der berechneten Menge Barytwasser (Fittig, Hjelt, A. 216, 70). Wurde nicht ganz rein erhalten. Dicke Flüssigkeit, die bei —13° nicht erstarrt. Sehr leicht löslich in Wasser, ziemlich schwer in Äther. Nicht destillierbar. Mit Wasserdampf wenig flüchtig.
- 4. β Oxy α . γ . γ trimethyl δ valerolacton $C_8H_{14}O_3 = OC O CH_2$ oder β Oxy α . α . γ . γ tetramethyl butyrolacton $C_8H_{14}O_3 = OC CH \cdot OH OC CH_3$.

 Man kocht die aus β . β -Dimethyl α -isopropyl-trimethylenglykol α -isobutyrat (Bd. II, S. 292) mit Kaliumpermanganat in schwefelsaurer Lösung erhalten erbindung $C_{12}H_{22}O_5$ (Bd. III, S. 404) mit Kalilauge, säuert mit verd. Schwefelsaure an und behandelt das Reaktionsprodukt mit Wasserdampf (Lesch, Michel, M. 26, 440). Krystalle. F: 66—67°. Sublimierbar. Gibt beim Kochen mit Kalkmilch das Calciumsalz der β . δ -Dioxy- α . γ -trimethyloder β . γ -Dioxy- α . α . γ -trimethyl-n-valeriansäure (Bd. III, S. 404).
- 5. β -Oxy- δ . ζ -oxido-caprylaldehyd(?), 5.7-Epoxy-octanol-(3)-al-(1)(?)^1) $C_8H_{14}O_3 = OHC \cdot CH_1 \cdot CH(OH) \cdot CH_2 \cdot HC \cdot CH_3 \cdot CH \cdot CH_3 \cdot (?)$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. Bd. I, S. 825.
- 6. $\alpha \cdot 0$ x y $\cdot \beta \cdot \beta \cdot d$ im a th y $|\cdot \gamma \cdot i$ so propyl butyrolacton $C_0H_{16}O_3 = HO \cdot HC C(CH_3)_3$ OC · O · CH · CH(CH_3)_3
 Von Säuren (Kohn, M., 19, 520) oder beim Erwärmen mit viel Wasser (Claisen, A. 306, 329).
 Prismen (aus Äther). Rhombisch bisphenoidisch (Munteanu-Murgooi, C. 1899 II, 415; vgl. Groth, Ch. Kr. 3, 517). F: 92,5° (K.), 95° (Cl.). Schwer löslich in Wasser, leicht in Alkohol

¹⁾ Zur Beseichnung "Epoxy" vgl. B. 65 [1932] Abt. A, S. 15, Nr. 24.

und Äther (K.). — Oxydation mit KMnO₄ liefert neben Isobuttersäure Isobuttyrylameisensäure (Bd. III, S. 682) (K.). — Das Acetylderivat krystallisiert in Nadeln vom Schmelzpunkt 59° (K.).

Das Imid $C_9H_{17}O_2N = \frac{HO \cdot HC - C(CH_3)_2}{HN \cdot C \cdot O \cdot CH \cdot CH(CH_3)_2}$ ist desmotrop mit Isobutyraldoleyan-hvdrin, Bd. III, S. 404.

7. Verbindung $C_{30}H_{58}O_3$, Lacton der Lanocerinsäure. B. Beim Erhitzen der Lanocerinsäure (Bd. III, S. 411) mit verd. Mineralsäuren (Darmstädter, Lifschütz, B. 29, 1474; vgl. B. 28, 3133). — F: 86°. Leicht löslich in Kohlenwasserstoffen in der Kälte, in Alkohol, Äther, Aceton und Eisessig in der Siedehitze.

b) Oxy-oxo-Verbindungen $C_nH_{2n-4}O_3$.

- 1. $0xy-oxo-Verbindungen C_4H_4O_8$.
- 1. 3-Oxy-2-oxo-furan-dihydrid-(2.5), α -Oxy- $\Delta^{\alpha,\beta}$ -crotonlacton $C_4H_4O_3=HC$ — $C\cdot OH$ $H_*\dot{C}\cdot O\cdot \dot{C}O$
- 4-Chlor-3-phenoxy-2-oxo-furan-dihydrid-(2.5), β -Chlor- α -phenoxy- $\Delta^{\alpha,\beta}$ -croton-lacton $C_{10}H_7O_3Cl=\frac{ClC-C\cdot O\cdot C_6H_5}{H_2C\cdot O\cdot CO}$. B. Bei allmählichem Eintragen von überschüssigem Zinkstaub in eine abgekühlte Lösung von Mucophenoxychlorsäure-bromid (Bd. VI, S. 171) in Eisessig (Hill, Cornelison, Am. 16, 295). Sechsseitige Tafeln oder Prismen (aus Alkohol). F: 67—68°. Schwer löslich in kaltem Alkohol und Ligroin, leicht in Äther, Chloroform, Benzol und Schwefelkohlenstoff.
- 4-Brom-3-phenoxy-2-oxo-furan-dihydrid-(2.5), β -Brom- α -phenoxy- $\Delta^{\alpha,\beta}$ -croton-lacton $C_{10}H_7O_3$ Br = $\frac{BrC}{H_1C\cdot O\cdot CO}$. B. Bei allmählichem Eintragen von überschüssigem Zinkstaub in ein abgekühltes Gemisch aus 1 Tl. Mucophenoxybromsäure-bromid (Bd. VI, S. 172) und 2 Tln. Eisessig (Hill, Cornelison, Am. 16, 292). Krystalle (aus Alkohol). Flüchtig mit Wasserdampf. Sehr wenig löslich in kaltem Alkohol und Ligroin, leicht löslich in Äther, Chloroform und Benzol.
- 2. 4-Oxy-2-oxo-furan-dihydrid-(2.5), β -Oxy- $\Delta^{\alpha,\beta}$ -crotonlacton (Tetronsdure) $C_4H_4O_3= \begin{array}{c} HO \cdot C =-CH \\ H_2C \cdot O \cdot CO \end{array}$ ist desmotrop mit 2.4-Dioxo-furantetrahydrid, Bd. XVII, 8. 403.
- 4-Benzoyloxy-2-oxo-furan dihydrid (2.5), β -Benzoyloxy $\Delta^{\alpha,\beta}$ crotonlacton, C-Benzoyl-tetronsäure $C_{11}H_8O_4= \begin{array}{c} C_6H_5\cdot CO\cdot O\cdot C \longrightarrow CH \\ H_2C\cdot O\cdot CO \end{array}$. B. Beim Schütteln von Tetronsäure in wäßr. Lösung mit Benzoylchlorid und Soda (Wolff, Schwabe, A. 291, 237). Blättchen oder Prismen (aus Chloroform + Ligroin). F: 120°. Ziemlich leicht löslich in Alkohol, Chloroform und Benzol, schwer in Ligroin.
- 3. 5-Oxy-2-oxo-furan-dihydrid-(2.5), γ-Oxy-Δ^{α.β}-crotonlacton C₄H₄O₃ = HC=CH ist desmotrop mit Maleinaldehydsäure OHC·CH:CH·CO₂H, Bd. III, 8. 727. HO·HC·O·CO ist desmotrop mit Maleinaldehydsäure OCH·CCl:CCl·CO₂H (Bd. III, 8. 727) und Mucobromsäure usw. kommt vielleicht die cyclische Formulierung HalgC=CHalg in Betracht.
- 3.4 Dichlor 5 methoxy 2 oxo furan dihydrid (2.5), $\alpha.\beta$ -Dichlor γ -methoxy-ClC = CCl $\Delta^{\alpha.\beta}$ -crotonlacton, Mucochlorsäure-pseudomethylester $C_5H_4O_5Cl_3=CH_2\cdot O\cdot HC\cdot O\cdot CO$ B. Aus Mucochlorsäure (Bd. III, S. 727) beim Kochen mit Methylalkohol in Gegenwart einiger

Tropfen konz. Schwefeleture (Simonis, B. 34, 509, 518). — Blättchen, die sich bei Zimmertemperatur verflüssigen. Reizt die Augenschleimhäute.

- 3.4 Dichlor 5 \ddot{a} thoxy 2 oxo furan dihydrid (2.5), $\alpha.\beta$ Dichlor γ \ddot{a} thoxy- $\alpha^{\alpha.\beta}$ -crotonlacton, Mucochlors \ddot{a} ure-pseudo \ddot{a} thylester $C_6H_6O_3Cl_2 = C_2H_5\cdot O\cdot HC\cdot O\cdot CO$ B. Analog Mucochlors \ddot{a} ure-pseudo methylester (8., B. 34, 509, 519). Flüssig. Reizt die
- Augenschleimhäute.

 3.4-Dichlor-5-propyloxy-2-oxo-furan-dihydrid-(2.5), $\alpha.\beta$ -Dichlor- γ -propyloxy- $\Delta^{\alpha.\beta}$ orotonlacton, Mucochlorsäure pseudopropylester $C_7H_8O_3Cl_2 =$
- CIC—CCI

 CH₂·CH₂·CH₂·O·HC·O·CO

 519). Flüssig. Reizt die Schleimhäute.
- 3.4 Dichlor 5 allyloxy 2 oxo furan dihydrid (2.5), $\alpha.\beta$ Dichlor γ allyloxy- $\Delta^{\alpha.\beta}$ crotonlacton, Mucochlorsäure pseudoallylester $C_7H_6O_3Cl_2=CCl_2$
- CH₂:CH·CH₂·O·HC·O·CO.

 B. Analog Mucochlorsäure-pseudomethylester (S., B. 34, 509, 519). Flüssig. Reizt die Schleimhäute. Zersetzt sich leicht.
- 3.4 Dibrom 5 methoxy 2 oxo furan dihydrid (2.5), $\alpha.\beta$ -Dibrom γ -methoxy-BrC CBr $\Delta^{\alpha.\beta}$ -crotonlacton, Mucobromsäure-pseudomethylester $C_5H_4O_3Br_3={}_{CH_3}\cdot \underbrace{O\cdot HC\cdot O\cdot CO}_{CH_3}\cdot \underbrace{O\cdot HC\cdot O\cdot C$
- B. Man kocht Mucobromsäure (Bd. III, S. 728) mit Methylalkohol unter Zusatz einiger Tropfen konz. Schwefelsäure (Simonis, B. 34, 509, 517). Man führt Mucobromsäure durch Erwärmen mit überschüssigem Thionylchlorid in das nicht näher beschriebene Mucobromsäure-chlorid über und erwärmt dieses gelinde mit Methylalkohol (Meyer, M. 25, 492). Tafeln (aus Alkohol). F: 51° (S.). Kp: 249—251° (M.). Leicht löslich in Alkohol (S.), wenig löslich in Wasser (M.).
- 3.4 Dibrom 5 äthoxy 2 oxo furan dihydrid (2.5), $\alpha.\beta$ Dibrom γ äthoxy-BrC CBr $\Delta^{\alpha.\beta}$ -crotonlacton, Mucobromsäure-pseudoäthylester $C_6H_6O_3Br_2 = \frac{C_2H_3\cdot O\cdot H_0^2\cdot O\cdot CO}{C_2H_3\cdot O\cdot H_0^2\cdot O\cdot CO}$
- B. Beim Sättigen der absolut-alkoholischen Lösung von Mucobromsäure (Bd. III, S. 728) mit Chlorwasserstoff (Jackson, Hill, B. 11, 1672; Hi., Am. 3, 43). Beim Erwärmen der absolut-alkoholischen Lösung von Mucobromsäure mit konz. Schwefelsäure (Hill, Am. 3, 43). Beim Kochen von Mucobromsäure-bromid mit absol. Alkohol (Hi., Am. 3, 46). Krystalle (aus Alkohol). Monoklin (Mabery, Am. 3, 44). F: 50—51° (J., Hi.; Hi.). Siedet bei 255—260° unter teilweiser Zersetzung (Hi.). Sehr leicht löslich in Alkohol, Äther und Chloroform (J., Hi.). Beim Behandeln mit Kaliumnitrit in Alkohol scheidet sich das Kaliumsalz des Nitromaleinsäure-monoäthylesters (Bd. II, S. 758) aus (Hi., Sanger, B. 15, 1910; Hi., Black, Am. 32, 232).
- 3.4-Dibrom-5-propyloxy-2-oxo-furan-dihydrid-(2.5), $\alpha.\beta$ -Dibrom- γ -propyloxy- $\Delta^{\alpha.\beta}$ orotonlacton, Mucobromsäure pseudopropylester $C_7H_8O_2Br_2=$
- BrC——CBr CH₃·CH₂·CH₂·O·HC·O·CO

 B. Beim Kochen von Mucobromsäure (Bd. III, S. 728) mit
 CH₃·CH₂·CH₂·O·HC·O·CO

 überschüssigem Propylalkohol in Gegenwart von etwas konz. Schwefelsäure (Simonis, B. 34, 509, 518). — Rechteckige Tafeln. F: 31,5°.
- 3.4 Dibrom 5 allyloxy 2 oxo furan dihydrid (2.5), α.β-Dibrom γ allyloxy Δ^{α.β} crotonlacton, Mucobromsäure pseudoallylester C₇H₆O₃Br₂ =

 BrC CBr R. Pain Verban von Mucobromsäure (Rd. III. S. 798) mit
- CH₄:CH·CH₂·O·HC·O·CO

 Beim Kochen von Mucobromsäure (Bd. III, S. 728) mit CH₄:CH·CH₂·O·HC·O·CO

 Allylalkohol in Gegenwart von etwas konz. Schwefelsäure (S., B. 34, 509, 519). Prismen. F: 41°.
- 2. $0xy-oxo-Verbindungen C_8H_6O_8$.
- 1. $2 Oxy 5 oxo 2 methyl furan dihydrid (2.5), <math>\gamma Oxy \gamma methyl \Delta^{\alpha,\beta}$ crotoniacton, cyclo Form der β Acetyl acrylsäure (Bd. III, S. 731) $C_5H_4O_4 = {\rm HC CH \over OC \cdot O \cdot C(CH_a) \cdot OH}$

- 2-Acetoxy-5-oxo-2-trichlormethyl-furan-dihydrid-(2.5), γ -Acetoxy- γ -trichlormethyl- $\Delta^{\alpha,\beta}$ -crotonlacton (Acetyltrichlorphenomalsäure) $C_7H_5O_4Cl_3=HC$ —CH B. Aus β -[Trichloracetyl]-acrylsäure (Bd. III, S. 732) durch $O_0^L \circ O_0^L \circ O_0^$
- 2. $4-Oxy-2-oxo-3-methyl-furan-dihydrid-(2.5), \beta-Oxy-\alpha-methyl-$\Delta^{\alpha,\beta}-crotonlacton~(\alpha-Methyl-tetronsäure, ,,Tetrinsäure") C₅H₆O₃ = HO·C=C·CH₃ ist desmotrop mit 2.4-Dioxo-3-methyl-furantetrahydrid, Bd. XVII, S. 412. HaC·O·CO$
- 4-Methoxy-2-oxo-3-methyl-furan-dihydrid-(2.5), β -Methoxy- α -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton, α -Methyl-tetronsäure-methyläther $C_6H_8O_3=\frac{CH_3\cdot O\cdot C-C\cdot CH_3}{H_2C\cdot O\cdot CO}$.
- B. Aus α-methyl-tetronsaurem Silber und Methyljodid in Benzol (Conrad, Gast, B. 31. 2731). Flüssig. Kp: 215—220°. Wird beim Eindampfen mit Salzsäure wieder in α-Methyltetronsäure zurückverwandelt.
- 4-Äthoxy-2-oxo-3-methyl-furan-dihydrid-(2.5), β-Äthoxy-α-methyl- $\Delta^{\alpha,\beta}$ -croton-lacton, α-Methyl-tetronsäure-äthyläther $C_7H_{10}O_3=\frac{C_2H_5\cdot O\cdot C}{H_2\cdot O\cdot CO}$. B. Bei Einw. von alkoh. Salzsäure auf α-Methyl-tetronsäure (Bd. XVII, S. 412) (Moscheles, Cornelius, B. 21, 2604). Beim Behandeln von α-methyl-tetronsaurem Silber mit Äthyljodid (Freer, Am. 13, 313). Krystalle. F: 30° (M., C.). Kp₇₀: 180° (M., C.); Kp₅₀: 176—178° (F.). Wenig löslich in Wasser, leicht löslich in Alkohol und Äther (M., C.). Wird durch längere Einw. von Kalilauge zu α-Methyl-tetronsäure verseift (F.). Auch mit Chlorwasserstoff oder Bromwasserstoff tritt Verseifung ein (M., C.).
- 4 Acetoxy 2 oxo 3 methyl furan dihydrid (2.5), β Acetoxy α methyl- $\Delta^{\alpha,\beta}$ -crotonlacton, O-Acetyl- α -methyl-tetronsäure $C_7H_8O_4 = \begin{array}{c} CH_3 \cdot CO \cdot O \cdot C = C \cdot CH_3 \\ H_2C \cdot O \cdot CO \end{array}$ R. Bei gelindem Erwärmen von α Methyl tetronsäure (Rd. XVII. S. 442) mit Essignäure
- B. Bei gelindem Erwärmen von α-Methyl-tetronsäure (Bd. XVII, S. 412) mit Essigsäureanhydrid (Freer, Am. 13, 314). — Öl. Kp₅₈: 178—179°.
- 4-Benzoyloxy-2-oxo-3-methyl-furan-dihydrid-(2.5), β -Benzoyloxy- α -methyl- $C_6H_5\cdot CO\cdot O\cdot C = C\cdot CH_3$ $A^{\alpha,\beta}$ -crotonlacton, O-Benzoyl- α -methyl-tetronsäure $C_{12}H_{10}O_4 = H_2C\cdot O\cdot CO$

Das Molekulargewicht ist kryoskopisch in Benzol bestimmt (FREER, Am. 17, 794). — B. Aus α-methyl-tetronsaurem Natrium, verteilt in absol. Äther, und Benzoylchlorid auf dem Wasserbad (FREER, Am. 17, 794). — Tafeln (aus Aceton), Nädelchen (aus Chloroform + Ligroin). F: 128° (F.), 132° (Wolff, Schwabe, A. 291, 237 Anm.). Schwer löslich in Wasser (F.). — Löst sich schwer in kochendem Alkohol unter Bildung von etwas Äthylbenzoat (F.).

3. Oxy-oxo-Verbindungen $C_6H_8O_3$.

- 1. 4-Oxy-2-oxo-3-āthyl-furan-dihydrid-(2.5), β -Oxy- α -āthyl- $\Delta^{\alpha,\beta}$ -croton-lacton (α -Athyl-tetronsāure, ,,Pentinsāure") $C_8H_8O_3 = \frac{HO \cdot C C \cdot C_2H_5}{H_2C \cdot O \cdot CO}$ ist desmotrop mit 2.4-Dioxo-3-āthyl-furantetrahydrid, Bd. XVII, S. 416.
- 4-Äthoxy-2-oxo-3-äthyl-furan-dihydrid-(2.5), β -Äthoxy- α -äthyl- $\Delta^{\alpha,\beta}$ -croton-lacton, α -Äthyl-tetronsäure-äthyläther $C_8H_{12}O_3= \begin{array}{c} C_2H_5 \cdot O \cdot C = C \cdot C_2H_6 \\ H_2 \dot C \cdot O \cdot \dot CO \end{array}$. Das Molekulargewicht ist kryoskopisch in Eisessig bestimmt (Moscheles, Cornelius, B. 22, 243). B. Bei 8-tägigem Aufbewahren von α -Äthyl-tetronsäure (Bd. XVII, S. 416) mit alkoh. Salzsäure bei 50—60° (Wedel, A. 219, 114). Flüssig.
- 2. 3 Oxy 5 oxo 2.2 dimethyl-furandihydrid, $\beta Oxy \gamma \gamma dimethyl A^{\alpha,\beta}-crotonlaeton (\gamma,\gamma-Dimethyl-tetronsäure) C_8H_8O_3 = \frac{HC}{OC \cdot O \cdot C(CH_3)_2} \text{ ist desmotrop mit 3.5-Dioxo-2.2-dimethyl-furantetrahydrid, Bd. XVII, S. 416.}$

4. Oxy-oxo-Verbindungen C₇H₁₀O₈.

- 1. 4-Oxy-2-oxo-3-propyl-furan-dihydrid-(2.5), β -Oxy- α -propyl- $\Delta^{\alpha,\beta}$ -crotonlacton (α -Propyl-tetronsäure, "Hexinsäure") $C_7H_{10}O_3=H_0\cdot C=C\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3$ ist desmotrop mit 2.4-Dioxo-3-propyl-furantetrahydrid, Bd. XVII, 8. 420.
- 2. 4-Oxy-2-oxo-3-isopropyl-furan-dihydrid-(2.5), β -Oxy- α -isopropyl- $\Delta^{\alpha,\beta}$ -crotonlacton (α -Isopropyl-tetronsäure, "Isohexinsäure") $C_7H_{10}O_3 = H_0C \cdot CH(CH_2)_2$ ist desmotrop mit 2.4-Dioxo-3-isopropyl-furantetrahydrid, Bd. XVII, S. 420.
- 5. 4-0xy-2-oxo-3-isobutyl-furan-dihydrid-(2.5), β -0xy- α -isobutyl- $\Delta^{\alpha,\beta}$ -crotonlacton (α -Isobutyl-tetronsäure, "Heptinsäure", "Isoheptinsäure") $C_0H_{10}O_3=\frac{HO\cdot C-C\cdot CH_2\cdot CH(CH_3)_3}{H_3C\cdot O\cdot CO}$ ist desmotrop mit 2.4-Dioxo-3-isobutyl-furantetrahydrid, Bd. XVII, S. 424.

6. Oxy-oxo-Verbindungen CoH14Os.

- 1. 4-Oxy-2-oxo-3-isoamyl-furan-dihydrid-(2.5), β -Oxy- α -isoamyl- $\Delta^{\alpha,\beta}$ -crotonlacton (α -Isoamyl-tetronsäure, "Isoctinsäure") $C_9H_{14}O_3=HO\cdot C=C\cdot CH_2\cdot CH_2\cdot CH(CH_3)_3$ ist desmotrop mit 2.4-Dioxo-3-isoamyl-furantetrahydrid, Bd. XVII, S. 426.
- 2. Lacton der 1.2-Dioxy-4-methyl-cyclohexyl-essigsäure C₉H₁₄O₃, s. nebenstehende Formel. B. Man erhitzt 1.2-Dioxy-4-methyl-cyclohexylessigsäure (Bd. X, S. 372) CH₃·HC CH₃·CH₃
- 3. Lacton der α-[3.4-Dioxy-cyclopentyl]-isobuttersäure (?), Lacton der Dioxycamphoceansäure, Oxycamphoceanlacton C₂H₁₄O₃, s. nebenstehende Formel. B.
 Neben Camphoceansäure (Bd. X, S. 614) bei der Destillation der Ho·Hc·CH₂
 Dioxycamphoceansäure (Bd. X, S. 372) im Vakuum (JAGELEI, B. 32, 1507). Nadeln.
 F: 58°. Kp_{13·5}: 165°. Leicht löslich in Wasser und Alkohol, schwer in Äther. Wird durch Kaliumpermanganat sofort oxydiert.

7. Oxy oxo-Verbindungen $C_{10}H_{16}O_{3}$.

- 1. Lacton der niedrigschmelzenden 1.1.2-Trimethyl-cyclopentandiol-(2.3)-essigsäure (3). Lacton der niedrigschmelzenden Dioxydihydro β campholensäure $C_{10}H_{16}O_{3}$, s. nebenstehende Formel. B. s. im Artikel der niedrigschmelzenden Dioxydihydro β campholensäure (Bd. X, S. 374). Schuppen (aus Wasser). F: 144°; Kp: 273—275°; schuppen (aus Wasser, leicht in den übrigen Lösungsmitteln, außer in Ligroin (Tiemann, B. 28, 2174; 30, 411). Wird von Salpetersäure (D: 1,27) zu Nitro-dihydro- β -campholenolacton (S. 263) oxydiert (T., B. 30, 412).
- 2. Lacton der 1-Methyl-3-[methoäthylol-(3¹)]-cyclopentanol-(3)-carbon-säure (2), Lacton der Dioxydthydropulegensäure C₁₀H₁₆O₃, s. untenstehende Formel. Zur Konstitution vgl. Wallach, A. 327, 150. B. Aus Pulegensäure (Bd. IX, S. 68) in alkal. Lösung durch Behandeln mit 4°/oiger Kaliumpermanganatlösung in der Kälte und Ansäuern H₃C·CH(CH₃)/CH—CO der filtrierten Lösung mit Schwefelsäure (Wallach, A. 289, 354; 300, 264; W., Kempe, A. 329, 86). Aus Pulegensäure durch Einw. von Chromsäure in warmer schwefelsaure Lösung (W., A. 289, 355). Durch Behandeln eines bei Einw. von Kaliumhypobromit auf Pulegensäure entstehenden Bromlactons (vgl. im Artikel Pulegenolid, Bd. XVII, S. 302) mit Silberoxyd (W., A. 300, 262, 265). Aus Dioxydihydropulegensäure-methylester (Bd. X, S. 374) durch kurzes Erwärmen mit Natriummethylatlösung und Ansäuern (W., Meyer, Collmann,

- A. 327, 127). Krystalle (aus Chloroform durch Ligroin). F: 129—130°; Kp₂₀: 185°; leicht löslich in Wasser und Alkohol (W., A. 289, 354). Ist sehr beständig gegen Oxydationsmittel (W., A. 289, 355). Gibt durch Erwärmen mit Phosphorpentachlorid, Kochen des Reaktionsproduktes mit überschüssiger Natriummethylatlösung, Ansäuern mit Schwefelsäure und Vakuumdestillation Pulegenolid (Bd. XVII, S. 302) (W., A. 300, 265). Zerfällt beim Erwärmen mit 79°/oiger Schwefelsäure in Kohlensäure und rechtsdrehendes Pulenon (Bd. VII, S. 30) (W., A. 289, 355; C. 1902 I, 1294; W., K., A. 329, 86).
- 3. Lacton der 1.1.3-Trimethyl-cyclohexandiol-(2.3)-carbonsäure-(2) (?), Lacton der Dioxydihydro-β-cyclogeraniumsäure, Oxyjonolacton C₁₀H₁₆O₃, s. nebenstehende Formel. B. Man oxydiert 50 g β-Jonon (Bd. VII, S. 167) in 2 Liter Eiswasser mit 100 g Kaliumpermanganat, entfernt unangegriffenes Jonon durch Dampfdestillation, säuert H₃C(CH₃-C(CH₃)) C·OH (?) die (von neutralen Oxydationsprodukten durch Ausäthern befreite) alkal. Lösung an und äthert aus; das nach dem Verdunsten des Äthers zurückbleibende Produkt wird mit Natriumdicarbonatlösung behandelt; die filtrierte Lösung gibt an Äther Oxyjonolacton ab (Tiemann, B. 31, 857, 872; vgl. Semmler, Die äther. Öle, Bd. I [Leipzig 1906], S. 687). Krystalle (aus Wasser), die sich beim Aufbewahren gelb färben; F: ca. 130°; kaum löslich in Wasser, leicht in Alkohol, Chloroform und Benzol; löst sich langsam in Natronlauge und wird aus dieser Lösung durch Säure wieder abgeschieden (T., B. 31, 858). Gibt bei der Einw. von Bromwasserstoffsäure ein nicht näher beschriebenes Bromlacton C₁₀H₁₆O₂Br, das beim Kochen mit Alkalilauge Dioxydihydro-β-cyclogeraniumsäure (Bd. X, S. 373) liefert (T., B. 31, 858).
- 4. 6.8 0xido p menthanol (1) on (2), 6.8 Epoxy p menthanol (1) on (2) 1) $C_{10}H_{10}O_3$, Formel I.

I.
$$(HO)(CH_3)C < CH \cdot CH_2 > CH \cdot C(CH_3)_2$$
 II. $(CH_3 \cdot O)(CH_3)C < CH \cdot CH_3 > CH \cdot C(CH_3)_2$

Oxim des Methyläthers, Pinolisonitrosomethylat $C_{11}H_{19}O_3N$, Formel II. B. Beim Erwärmen von Pinolisonitrosochlorid (Bd. XVII, S. 265) oder Pinolnitrosochlorid (Bd. XVII, S. 45) mit Methylalkohol (Wallach, A. 306, 281). — Nadeln. F: 138°.

Oxim des Äthyläthers, Pinolisonitrosoäthylat C₁₂H₂₁O₃N, Formel III. B. Analog Pinolisonitrosomethylat (W., A. 306, 282). — Prismen. F: 100°.

$$(C_{2}H_{\delta}\cdot O)(CH_{3})C < CH_{3} CH_{2} > CH \cdot C(CH_{3})_{2} CH_{3} C$$

- 5. Lacton der Dioxycarbonsäure C₁₀H₁₈O₄ (Bd. X, S. 373, No. 3), C₁₀H₁₆O₃, vielleicht Formel IV oder V. Unbestimmt, ob strukturisomer oder stereoisomer mit der unter No. 6 beschriebenen Verbindung. B. Neben dem isomeren Lacton (s. u.) und anderen Verbindungen durch Oxydation der rechtsdrehenden Fencholsäure (Bd. IX, S. 32) in alkal. Lösung mit Kaliumpermanganat bei gewöhnlicher Temperatur, Ansäuern mit Schwefelsäure und Dampfdestillation (Wallach, A. 369, 86, 89, 94). Prismatische Krystalle (aus Wasser). F: 189° bis 190°. Leicht löslich in Chloroform, Essigester, Benzol, schwer in Äther und Wasser, unlöslich in Ligroin. Wird beim Erwärmen mit wenig überschüssiger Natriumäthylatlösung in die Dioxycarbonsäure C₁₀H₁₈O₄ übergeführt.
- 6. Lacton der Dioxycarbonsäure C₁₀H₁₈O₄ (Bd. X, S. 373, No. 4), C₁₀H₁₆O₃, vielleicht Formel IV oder V. Unbestimmt, ob strukturisomer oder stereoisomer mit der unter No. 5 beschriebenen Verbindung. B. s. im vorhergehenden Artikel. Nadeln (aus Ligroin). F: 70° bis 71°; leicht löslich in Äther, ziemlich leicht in Wasser, schwer in Ligroin (W., A. 369, 86, 91, 94). Liefert beim Erwärmen mit Natronlauge die Dioxycarbonsäure C₁₀H₁₈O₄.

c) Oxy-oxo-Verbindungon C_nH_{2n-6}O₃.

- 1. Oxy-oxo-Verbindungen $C_8H_4O_8$.
- $\begin{array}{ll} \textbf{1.} & \textbf{3-Oxy-2-oxo-[1.2-pyran], 3-Oxy-pyron-(2) (Isobrenzschleimsäure)} \\ \textbf{C_5H_4O_3} & = \frac{\textbf{HC} \cdot \textbf{CH} : \textbf{C} \cdot \textbf{OH}}{\textbf{HC} \textbf{O} \textbf{CO}} & \text{ist desmotrop mit 2.3-Dioxo-[1.4-pyran]-dihydrid, Bd. XVII, 8. 438.} \\ \end{array}$

¹⁾ Zur Bezeichnung "Epoxy" vgl. B. 65 [1932] Abt. A, S. 15, Nr. 24.

- 3 Methoxy pyron (2), Isobrenzschleimsäure methyläther $C_6H_6O_3 = HC \cdot CH : C \cdot O \cdot CH_3$ HC O COB. Man versetzt eine Lösung von 1 Mol.-Gew. Isobrenzschleimsäure in Methylalkohol mit 1 Mol.-Gew. Natriummethylat, fügt auf einmal 1 Mol.-Gew. Dimethylsulfat zu und beendigt die Reaktion auf dem Wasserbad (Chavanne, C. r. 137, 992; A. ch. [8] 3, 526). Farblose Nadeln (aus Äther). F: 60°. Kp₃₀: 130—135°. Leicht löslich in Wasser und Alkohol, weniger in Äther, sehr wenig in Petroläther. Sehr hygroskopisch; färbt sich am Licht rasch gelb. Reduziert Kaliumpermanganatlösung und ammoniakalische Silbernitratlösung sofort. Wird selbst durch verdünnte wäßrige Ätzalkalien weitgehend zersetzt. Wird durch $25°_0$ ige Schwefelsäure und konz. Salzsäure nicht verändert. Reagiert mit Benzoylchlorid selbst in der Siedehitze nicht.
- **3 Å**thoxy pyron (2), Isobrenzschleimsäure äthyläther $C_7H_8O_3 = HC \cdot CH : C \cdot O \cdot C_2H_5$. B. Analog dem Methyläther (s. o.) (Chavanne, C. r. 137, 992; A. ch. [8] 3, 526). F: 52°. Sehr leicht löslich in Alkohol und Wasser, weniger in Äther, schwer in Petroläther.
- 3 Benzyloxy pyron (2), Isobrenzschleimsäure benzyläther $C_{12}H_{10}O_3 = HC \cdot CH : C \cdot O \cdot CH_2 \cdot C_6H_5$. B. Aus isobrenzschleimsaurem Natrium in alkoh. Suspension durch Erwärmen mit Benzylchlorid (CH., C. r. 137, 992; A. ch. [8] 3, 524). Prismen (aus Äther). F: 71°. Unlöslich in Wasser, löslich in organischen Mitteln außer Ligroin. Färbt sich am Licht rasch gelb. Wird durch konz. Salzsäure verseift.
- $\begin{array}{l} \textbf{3-Acetoxy-pyron-(2), O-Acetyl-isobrenzschleimsäure, Isopyromucylacetat} \\ \textbf{HC}\cdot \textbf{CH}: \textbf{C}\cdot \textbf{O}\cdot \textbf{CO}\cdot \textbf{CH}_3 \\ \textbf{-} & \textbf{HC}\cdot \textbf{CH}: \textbf{C}\cdot \textbf{O}\cdot \textbf{CO}\cdot \textbf{CH}_3 \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} & \textbf{-} \\ \textbf{-} & \textbf{-} &$

Verbindung C₁₁H₈O₄. Das Molekulargewicht ist kryoskopisch in Eisessig bestimmt (CH., A. ch. [8] 3, 535).—B. Durch 3—4-stdg. Erhitzen von Isopyromucylacetat auf 210° (CH.).—Krystalle (aus Alkohol). F: 103—104°. Löslich in Äther und siedendem Alkohol, sehr wenig löslich in kaltem Alkohol, unlöslich in siedendem Wasser.

3-Benzoyloxy-pyron-(2), O-Benzoyl-isobrenzschleimsäure, Isopyromucyl-HC·CH:C·O·CO·C₆H₅. B. Aus äquimolekularen Mengen Isobrenzschleimsäure und Benzoylchlorid bei 100° (CHAVANNE, C. r. 134, 1511; Bl. [3] 29, 402; A. ch. [8] 3, 536). — Prismen (aus Alkohol). F: 85°. Destilliert im Vakuum nicht unzersetzt. Löslich in organischen Mitteln, sehr wenig löslich in Wasser. Wird durch Sodalösung erst in der Hitze langsam verseift; verhält sich gegen Alkohol + Chlorwasserstoff, Phenylhydrazin und Anilin wie das Acetat (s. o.).

Phosphorsäure-diisopyromucylester, Diisopyromucylphosphat $C_{10}H_7O_8P=(O_3C_8H_3\cdot O)_2PO\cdot OH$. B. Durch Einw. von Wasser auf Triisopyromucylphosphat (s. u.) (Chavanne, C. r. 134, 1440; Bl. [3] 29, 398; A. ch. [8] 3, 529). — Wasserfreie Krystalle (aus wasserfreiem Essigester), F: 1549, oder Krystalle mit 1 H_2O (aus wasserhaltigem Essigester oder Aceton), F: 110—1129, die bei 70° im Vakuum das Wasser unter teilweiser Zersetzung abgeben. Löslich in Wasser und Alkohol, unlöslich in Ather. Wird durch kurzes Kochen mit n-Schwefelsäure zu Isobrenzschleimsäure und (nicht näher beschriebenem) Monoisopyromucylphosphat verseift.

Phosphorsäure-triisopyromucylester, Triisopyromucylphosphat $C_{1b}H_9O_{10}P = (O_2C_bH_3\cdot O)_9PO$. B. Durch Einw. von 20 g Phosphorpentachlorid auf eine Lösung von 45 g Isobrenzschleimsäure in Chloroform oder Äther (Chavanne, C. r. 134, 1439; Bl. [3] 29, 397; A. ch. [8] 3, 527). Durch Einw. von 1 Mol. Gew. Phosphoroxychlorid auf 3 Mol. Gew. wasserfreies isobrenzschleimsaures Natrium in Chloroform (Ch.). — Prismen (aus Chloroform oder wasserfreiem Essigester). F: 138°. Unlöslich in Wasser und Äther, löslich in Chloroform, Benzol, Eisessig und Essigester. Wird durch kaltes Wasser langsam, durch siedendes Wasser rasch in Isobrenzschleimsäure und Diisopyromucylphosphat gespalten.

4 oder 5-Brom-3-acetoxy-pyron-(2), O-Acetyl-4 oder 5-brom-isobrenzschleim-HC·CBr:C·O·CO·CH₃ $\frac{\text{BrC·CH:C·O·CO·CH}_3}{\text{oder}} \frac{\text{BrC·CH:C·O·CO·CH}_3}{\text{HC-O-CO}} . B. \text{ Aus 4 oder 5-brom-isobrenzschleimsaure (Bd. XVII, S. 439) durch Erhitzen mit Acetylchlorid im geschlossenen Rohr auf 100° oder durch Kochen mit Acetylbromid (Ch., C. r. 136, 50; Bl. [3] 29, 405; A. ch. [8] 3, 544, 574). — Blättchen. Sintert bei 70° und schmilzt bei 76°. Leicht löslich in Alkohol, schwer in Wasser.$

4 oder 5 - Brom - 3 - benzoyloxy - pyron - (2), O-Benzoyl-4 oder 5 - brom-isobrenz-BrC·CBr:C·O·CO·C₆H₅ oder BrC·CH:C·O·CO·C₆H₅. B. Durch Sochen äquimolekularer Mengen 4 oder 5 - Brom-isobrenzschleimsäure und Benzoylchlorid (CH., C. r. 136, 50; Bl. [3] 29, 405; A. ch. [8] 3, 545, 574). — Krystalle (aus Alkohol). F: 123°. Leicht löslich in heißem, wenig in kaltem Alkohol, unlöslich in Wasser.

2. 3- Oxy -4- oxo - [1.4- pyran], 3- Oxy - pyron - (4) (Pyromekonsäure) $C_5H_4O_5=\frac{HC\cdot CO\cdot C\cdot OH}{HC-O-CH}$ ist desmotrop mit 3.4-Dioxo-[1.4-pyran]-dihydrid, Bd. XVII, S. 435.

 $\textbf{3-Methoxy-pyron-(4), Pyromekonsäure-methyläther } C_6H_6O_3 = \frac{HC \cdot CO \cdot C \cdot O \cdot CH_3}{HC - O - CH}.$

B. Aus Pyromekonsäure und Diazomethan in äther. Lösung (Peratoner, Spallino, C. 1905 II, 679; G. 36 I, 2, 18). — Krystalle (aus 2 Tln. Ligroin + 1 Tl. Benzol), Schuppen (durch Sublimation im Vakuum bei 100—110°). F: 85°. Sehr leicht löslich in kaltem Wasser, heißem Benzol und Äther, löslich in siedendem Ligroin. — Liefert beim Erhitzen mit CaO Ameisensäure und Acetolmethyläther (Bd. I, S. 822). Beim Erhitzen mit wäßr. Ammoniak auf dem Wasserbad entsteht 4-Oxy-3-methoxy-pyridin (Syst. No. 3134) (P., Tamburello, C. 1905 II, 681; G. 36 I, 6, 52).

 $\textbf{3-$\ddot{A}$ thoxy-pyron-(4), Pyromekonsäure-\ddot{a} thyläther $C_7H_8O_3$ = $\frac{HC\cdot CO\cdot C\cdot O\cdot C_2H_5}{HC-O\cdot CH}.$

B. Durch Eintragen von Pyromekonsäure in eine äther. Lösung von Diazoäthan (Peratoner, Spallino, C. 1905 II, 678; G. 36 I, 2, 15). Aus 5-Äthoxy-pyron-(4)-carbonsäure-(2) (Syst. No. 2624) durch langsames Erhitzen zum Schmelzen (239—240°) in kleinen Portionen (Oliveri-Tortorioi, G. 32 I, 57). — Farbloses Öl von angenehmem Geruch. Kp: 220° bis 221° (O.-T.). Bildet in einer Kältemischung eine viscose Masse (O.-T.). Löslich in den meisten organischen Solvenzien. — Leicht veränderlich, besonders am Licht. Färbt Eisenchlorid erst nach erfolgter Zersetzung. Beständig gegen Salpetersäure und gegen Brom in Chloroform-Lösung (O.-T.). Wird von Alkalien unter intensiver Gelbfärbung gelöst (O.-T.). Liefert bei der Spaltung mit CaO bezw. Ba(OH)₂ 1 Mol Acetoläthyläther (Bd. I, S. 822) und 2 Mol Ameisensäure (O.-T.; P., Sp.).

3-Acetoxy-pyron-(4), O-Acetyl-pyromekonsäure $C_7H_6O_4=\frac{HC\cdot CO\cdot C\cdot O\cdot CO\cdot CH_3}{HC-O-CH}$.

B. Beim Kochen von Pyromekonsäure mit Acetylchlorid (Ost, J. pr. [2] 19, 187). — Prismen (aus absol. Alkohol). F: 91°. Leicht löslich in Wasser, Alkohol und Chloroform. Gibt mit Eisenchlorid keine Färbung. Spaltet beim Erhitzen mit Wasser rasch Essigsäure ab.

2-Brom-3-methoxy-pyron-(4), 2-Brom-pyromekonsäure-methyläther $C_6H_5O_3Br=HC\cdot CO\cdot C\cdot O\cdot CH_3$. B. Aus 2-Brom-pyromekonsäure (Bd. XVII, S. 437) und Diazomethan in äther. Lösung (Compagno, R. A. L. [5] 17 I, 78; G. 38 II, 132). — Nadeln (aus Benzol + Petroläther). F: 99°. Löslich in Wasser und organischen Solvenzien.

3. 3-Oxy-2¹-oxo-2-methyl-furan, 3-Oxy-2-formyl-furan, 3-Oxy-furfurol, $\beta\text{-}Oxy\text{-}furfurol\ C_5H_4O_3 = \begin{matrix} HC & C\cdot OH \\ HC\cdot O\cdot C\cdot CHO \end{matrix}. B. Bei der Oxydation von Furfurol mit Wasserstoffperoxyd (Cross, Bevan, Heiberg, Soc. 75, 749; vgl. Cr., Be., Briggs, B. 33, 3132). Wurde nur als Phenylhydrazon (s. u.) isoliert. — Gibt mit Phenolen in Gegenwart von Kondensationsmitteln charakteristische Farbenreaktionen (Cr., Be., Br.).$

Phenylhydrazon $C_{11}H_{10}O_2N_2 = HO \cdot C_4H_2O \cdot CH : N \cdot NH \cdot C_6H_5$. B. Man fällt das bei der Oxydation von Furfurol mit Wasserstoffperoxyd erhaltene Produkt nach Entfernen der sauren Bestandteile mit Phenylhydrazinacetat in der Kälte (Cr., Be., H., Soc. 75, 749). — Orangeroter Niederschlag.

- 4. 5-Oxy-21-oxo-2-methyl-furan, 5-Oxy-2-formyl-furan, 5-Oxy-furfurol, HC—CH $\delta - Oxy - furfurol \quad C_5H_4O_5 = \frac{110}{\text{HO} \cdot \text{C} \cdot \text{O} \cdot \text{C} \cdot \text{CHO}} \quad \text{ist} \quad \text{desmotrop mit } 5.2^1 - \text{Dioxo-2-methyl-}$ furan-dihydrid-(4.5), Bd. XVII, S. 440.
- 2. Oxy-oxo-Verbindungen C.H.O.
- 1. 3 0xy 4 0x0 2 methyl [1.4 pyran], 3 0xy 2 methyl pyron (4)(Maltol) $C_0H_4O_3 = \frac{H_0O_0O_0}{H_0O_0O_0C} \cdot CH_3$ HC·CO·C·OH ist desmotrop mit 3.4-Dioxo-2-methyl-[1.4-pyran]dihydrid, Bd. XVII, S. 444.

8-Methoxy-2-methyl-pyron-(4), Maltolmethyläther $C_7H_8O_3 = \frac{HC \cdot CO \cdot C \cdot O \cdot CH_6}{HC - O \cdot C \cdot CH_8}$.

- B. Beim Eintragen von Maltol in eine äther. Diazomethanlösung (Peratoner, Tamburello, C. 1905 II, 680; G. 36 I, 41). Farbloses Öl. Kp₁₅: 114° (P., T., C. 1905 II, 680; G. 36 I, 42). Bei der Spaltung durch Erdalkalien entstehen Acetolmethyläther (Bd. I, S. 822), Ameisensäure und Essigsäure (P., T., C. 1905 II, 680; G. 36 I, 43). Liefert beim Erhitzen mit wäßr. Ammoniak 4-Oxy-3-methoxy-2-methyl-pyridin (Syst. No. 3134) (P., T., C. 1905 II, 681; G. 36 I, 6, 54).
- 8 Benzoyloxy 2 methyl pyron (4), Maltolbenzoat $C_{12}H_{10}O_4 =$ $\mathbf{HC} \cdot \mathbf{CO} \cdot \mathbf{C} \cdot \mathbf{O} \cdot \mathbf{CO} \cdot \mathbf{C_4} \mathbf{H_5}$. B. Man gibt Benzoylchlorid zu einer stark gekühlten Lösung von HC-O-C·CH₂ Maltol in n-Natronlauge (KILIANI, BAZLEN, B. 27, 3118) oder in Pyridin (FEUERSTEIN, B. 34, 1805). — Nadeln (aus verd. Alkohol). F: 114—115° (F.), 115—116° (K., B.). Merklich löslich in Wasser, leichter in Alkohol (K., B.).
- 3 Anilinoformyloxy 2 methyl pyron (4), Carbanilsäureester des Maltols HC·CO·C·O·CO·NH·C₆H₅ $C_{18}H_{11}O_4N = \overline{H\overset{\parallel}{C}-O-\overset{\parallel}{C}\cdot CH_3}$ B. Aus Maltol und Phenylisocyanat in Chloroform (Peratoner, Tamburello, C. 1905 II, 680; G. 36 I, 42). — Nadeln (aus Essigester). F: 149-150°. Sublimierbar.
- 2. 6-Oxy-4-oxo-2-methyl-[1.4-pyran], 6-Oxy-2-methyl-pyron-(4) HO·C-O-C·CH_a oder 4-Oxy-2-oxo-6-methyl-[1.2-pyran], 4-Oxy-

6-methyl-pyron-(2) $C_0H_0O_3 = 0$ (Triacetsäurelacton) ist desmotrop mit 4.6-Dioxo-2-methyl-[1.4-pyran]-dihydrid, Bd. XVII, S. 442.

6-Methoxy-2-methyl-pyron-(4) $C_7H_8O_8 = \frac{H_0 \cdot G_0}{CH_3 \cdot O \cdot C \cdot O - C \cdot CH_8}$ oder 4-Methoxy-

6-methyl-pyron-(2) $C_7H_8O_3 = \frac{HC: C(O \cdot CH_3) \cdot CH}{OC - O - C \cdot CH_3}$, Triacetsäurelacton-methyläther.

B. Aus Triacetsäurelacton (Bd. XVII, S. 442) und Diazomethan in Äther (Tamburello, C. 1905 I, 348; T., CARAPELLE, G. 37 I, 566). Aus dem Silbersalz des Triacetsäurelactons in trocknem Methylalkohol durch Kochen mit trocknem Methylodid (Sproxton, Soc. 89, 1189). — Farblose Nadeln (aus Petroläther oder trocknem Äther). F: 81° (Sr.), 81—82° (T.). Löslich in Alkohol und Äther (T.). Löslich in Wasser; wird durch Wasser teilweise schon in der Kälte, beim Kochen vollständig in Triacetsäurelacton verwandelt (Sr.).

HC · CO · CH

6-Äthoxy-2-methyl-pyron-(4) $C_8H_{10}O_3 = \frac{HC \cdot CO \cdot CH}{C_2H_5 \cdot O \cdot C - O - C \cdot CH_3}$ oder 4 - Äthoxy-6-methyl-pyron-(2) $C_8H_{10}O_3 = \frac{HC \cdot C(O \cdot C_2H_5) \cdot CH}{OC - O - C \cdot CH_3}$, Triacetsäurelacton - äthyläther.

B. Aus Triacetsäurelacton und Diazoäthan in Äther (Tamburello, C. 1905 I, 348; T., Carapelle, G. 37 I, 567) oder aus dem Silbersalz des Lactons durch Äthyljodid (T.; T., C. val. Sproymon, Sec. 20, 4489), F. 50, 200 (T.) C.; vgl. Sprokton, Soc. 89, 1188). — F: 59—60° (T.).

Anhydrid des Triacetsäurelactons $C_{12}H_{10}O_5 = \frac{HC \cdot CO \cdot CH \ HC \cdot CO \cdot CH}{CH_3 \cdot C - O - C - O - C \cdot CH_3}$ OC - CH - CO - CH - CO. B. Man erhitzt Triacetsäurelacton mit Essigsäureanhydrid $O \cdot C(CH_a) : CH \quad HC : C(CH_a) \cdot O$

und einer Spur Acetylchlorid und destilliert dann im Vakuum (Diecemann, Breest, B. 37, 3390). — Dickflüssiges Öl. Kp₁₆: 172—174°. Wird durch Alkali leicht in Triacetsäurelacton verwandelt.

- x-Brom-[6-methoxy-2-methyl-pyron-(4)] oder x-Brom-[4-methoxy-6-methylpyron-(2)] C,H,O,Br, Brom-triacetsäurelacton-methyläther. B. Aus x-Brom-triacetsäurelacton (Bd. XVII, S. 443) und Diazomethan (Tamburello, C. 1905 I, 348; T., Carapelle, G. 37 I, 567). — Schuppen (aus Benzol). F: 153—154°.
- 3. 2³ CH 2^{2} - Oxy - 2^{1} - oxo - 2 - dthyl - furan, 2 - Oxyacetyl - furan $C_{6}H_{6}O_{3}$ =
- 2 Rhodanacetyl thiophen, ω Rhodan α acetothienon $C_2H_4ONS_2$ = $\overrightarrow{HC} \cdot S \cdot \overrightarrow{C} \cdot CO \cdot CH_2 \cdot S \cdot CN \cdot B. \ Aus \ 2 - Bromacetyl-thiophen (Bd. XVII, S. 288) und \ Kaliumrhodanid$ in Alkohol (Brunswig, B. 19, 2893). — Farblose Blättchen (aus Äther). F: 88°. Wenig löslich in Wasser und Ligroin, ziemlich leicht in Alkohol, Äther und Benzol, sehr leicht in Chloroform.
- 4. 5^1 -Oxy- 2^1 -oxo-2.5-dimethyl-furan, 5-Oxymethyl-2-formyl-furan, 5-Formyl-furfurylalkohol, 5-Oxymethyl-furfurol, 8-Oxymethyl-furfurol $C_6H_6O_3 = \frac{1}{HO \cdot CH_2 \cdot \dot{C} \cdot O \cdot \dot{C} \cdot CHO}$. Zur Konstitution vgl. Fenton, Robinson, Soc. 95, 1339; BLANKSMA, C. 1910 I, 539. — B. Aus Fructose (DÜLL, LINTNER, Ch. Z. 19, 166, 216; KIERMAYER, Ch. Z. 19, 1003; VAN EKENSTEIN, BLANKSMA, C. 1909 I, 1509), Sorbose (D., L., Ch. Z. 19, 217), in geringer Menge auch aus Glykose oder Galaktose (V. E., Bl.) beim Erhitzen mit Oxalsaure in wäßr. Lösung unter Druck. Durch Erhitzen von Chitose (Syst. No. 2548) in wäßr. Lösung mit Oxalsäure (BL., C. 1910 I, 539). Beim Erhitzen von Saccharose in 30% ager wäßr. Lösung mit 0,3% Oxalsäure unter 3 Atmosphären Druck im Dampftopf (Kiermayer, Ch. Z. 19, 1003). Entsteht in geringer Menge bei der technischen Inversion der Saccharose durch Erhitzen mit verd. Säuren und findet sich daher im Kunsthonig (v. E., B.; Keiser, C. 1909 II, 68). Durch Erhitzen von Inulin (Syst. No. 4773) in 10% iger wäßriger Lösung mit 0,2% Oxalsäure unter 3 Atmosphären Druck im Dampftopf (D., L., Ch. Z. 19, 166, 216). Bei der Hydrolyse des Caragheen-Mooses (Syst. No. 4769) durch verd. Schwefelsäure (MÜTHER, Tollens, B. 37, 303). Aus 5-Brommethyl-furfurol (Bd. XVII, S. 290) in 50% igem Alkohol beim Vermischen mit alkoh. Silbernitrat-Lösung oder beim Kochen mit Wasser in Gegenwart von Bariumcarbonat (Fenton, Gostling, Soc. 75, 430; F., Robinson, Soc. 95, 1338). — Farbloser Sirup, der sich an der Luft gelb färbt. Erstarrt bei längerem Stehen in Eis unter Bildung farbloser Kryställchen, die bei 31,5° schmelzen (MIDDENDORP, R. 38 [1919], 6, 11). Last sich nur im Vakuum von 1 mm unzersetzt destillieren (MI.; vgl. KI.). Kp₁: 114—116° (MI.). Löslich in Wasser, Alkohol, Essigester, weniger löslich in Ather (KI.). — Reduziert Fehlingsche Lösung und ammoniakalische Silberlösung (KI.; F., Go.). Gibt bei der Oxydation mit ammoniakalischer Silberlösung 5-Oxymethyl-brenzschleimsäure (Syst. No. 2614) (KI.; Bl.). Wird durch Erwärmen mit Salpetersäure (D: 1,3) zu Dehydroschleimsäure (Syst. No. 2595) oxydiert (BL.). Beim Erhitzen mit 10% jeger wäßriger Oxalsäure unter 3 Atmosphären entsteht Lävulinsäure (D., L.; KI.). Geht beim Aufbewahren über Schwefelsäure sowie bei der Destillation unter gewöhnlichem oder vermindertem (20 mm) Druck in Bis-[5-formylfurfuryl]-äther (S. 15) über (Ki.). — 5-Oxymethyl-furfurol gibt mit Resorcin in konz. Salzsäure eine rote Färbung (v. E., Bl.; Kei.); hierauf beruht die Reaktion von Seliwanow zum Nachweis von Ketohexosen (v. E., Bl.; Ville, Derrien, Bl. [4] 5, 895, 901; vgl. auch Middendorf, R. 38, 49, 70) und die Reaktion von Fiehe (C. 1908 II, 906) zur Unterscheidung von Kunst- und Naturhonig (v. E., Bl.). 5-Oxymethyl-furfurol färbt sich in alkoh. Lösung mit Thymol und etwas Schwefelsäure scharlachrot, mit Phloroglucin tiefrot (KI.). Mit Anilinacetat gibt es eine erst gelbe, dann orangerote Färbung (v. E., Bl.). Auf der Gegenwart von 5-Oxymethyl-furfurol beruhen auch die Farbreaktionen von BAUDOUIN zum Nachweis von Sesamöl (rote Färbung beim Schütteln von Sesamöl mit konz. Salzsäure und Saccharose) (v. E., Bl.) und von Molisch-Udbanszky zum Nachweis von Hexosen (Violettfärbung mit β-Naphthol und konz. Schwefelsäure) (v. E., BL.), ferner die Rotfärbung, die beim Versetzen von Kunsthonig mit Aceton und konz. Salzsäure aufer die Konarding, die beim versetzen von Kunsthonig mit Aceton und konz. Salzsäure aufer it (Mi., R. 38, 56, 70; vgl. Jägerschmid, C. 1909 I, 1044), die Blaufärbung beim Erhitzen von Saccharose mit alkoh. Diphenylaminlösung und verd. Salzsäure (Mi., R. 38, 58, 70; vgl. Rothenfusser, C. 1909 II, 934) und die intensiv blauviolette Färbung, die beim Erhitzen von Saccharoselösung mit Narkotin und konz. Schwefelsäure entsteht (Mi., R. 38, 64, 70; vgl. Wangerin, C. 1903 II, 772).

- 5 Acetoxymethyl furfurol, [5 Formyl furfuryl] acetat $C_9H_9O_4 = HC$ —CH $CH_9 \cdot CO \cdot O \cdot CH_9 \cdot C \cdot O \cdot C \cdot CHO$ B. Aus 5-Brommethyl-furfurol (Bd. XVII, S. 290) in Eisessig durch Silberacetat (Fenton, Gostling, Soc. 79, 810). Prismen (aus Petroläther). F: 55°.
- 5 Benzoyloxymethyl furfurol, [5 Formyl furfuryl] benzoat $C_{13}H_{10}O_4 = HC CH$ $C_6H_5 \cdot CO \cdot O \cdot CH_2 \cdot C \cdot O \cdot C \cdot CHO$ B. Aus 5-Oxymethyl-furfurol, gelöst in verd. Natronlauge, durch Schütteln mit Benzoylchlorid (Kiermayer, Ch. Z. 19, 1004). Aus 5-Brommethylfurfurol (Bd. XVII, S. 290) und Silberbenzoat in Aceton (Fenton, Gostling, Soc. 79, 811). Nadeln (aus verd. Alkohol), Prismen (aus Petroläther). F: 55° (Ki.), 56—57° (F., G.), 57—57,5° (Keiser, C. 1909 II, 68). Nicht unzersetzt destillierbar (Ki.). Leicht löslich in Essigester, Benzol und Alkohol (Ki.).
- Bis-[5-formyl-furfuryl]-äther $C_{12}H_{10}O_5=O\left[\frac{HC-CH}{-CH_2}\cdot \overset{\shortparallel}{C}\cdot O\cdot \overset{\shortparallel}{C}\cdot CHO\right]_2$. B. Aus 5-Oxymethyl-furfurol beim Stehenlassen über konz. Schwefelsäure oder bei der Destillation (Kiermayer, Ch. Z. 19, 1004). Nadeln (aus Alkohol). F: 112°. Schwer löslich in siedendem Wasser und Äther, fast unlöslich in Benzol und Eisessig. Reduziert in heißer wäßriger Lösung ammoniakalische Silberlösung und Fehlingsche Lösung. Gibt mit essigsaurem Anilin eine karmoisinrote Färbung; gibt in alkoh. Lösung mit Thymol und etwas Schwefelsäure Rotfärbung, mit α -Naphthol Violettfärbung.
- 5 Acetoxymethyl furfurylidendiacetat, 5 Diacetoxymethyl furfurylacetat HC—CH $C_{12}H_{14}O_7 = CH_3 \cdot CO \cdot O \cdot CH_2 \cdot C \cdot O \cdot C \cdot CH(O \cdot CO \cdot CH_3)_2$ Essigsäureanhydrid und einem Tropfen konz. Schwefelsäure (Blanksma, <math>C. 1909 II, 1220). Krystalle (aus Petroläther). F: 73°. Schwer löslich in Wasser und Petroläther, leicht in Alkohol, sehr leicht in Äther.
- Bis-[5-phenyliminomethyl-furfuryl]-äther, Dianil des Bis-[5-formyl-furfuryl]-äthers $C_{24}H_{20}O_3N_2=O\begin{bmatrix}HC--CH\\CH_2&C\cdot O\cdot C\cdot CH:N\cdot C_6H_5\end{bmatrix}_s$. B. Aus Bis-[5-formyl-furfuryl]-äther (s. o.) durch Verreiben mit 2 Mol.-Gew. Anilin (KIERMAYER, Ch. Z. 19, 1005). Farblose Blätter (aus Alkohol). F: 124°. Unlöslich in Wasser.
- 5 Oximinomethyl furfurylalkohol, 5 Oxymethyl furfuraldoxim $C_8H_7O_2N = HC CH$ $HO \cdot CH_2 \cdot C \cdot O \cdot C \cdot CH : N \cdot OH$ Existiert in zwei stereoisomeren Formen.
- a) 5-Oxymethyl-furfur-syn-aldoxim $C_0H_7O_3N=\frac{HO\cdot CH_2\cdot C_4H_2O\cdot CH}{N\cdot OH}$. B. Durch mehrwöchiges Stehenlassen der durch Versetzen von 5-Oxymethyl-furfurol mit salzsaurem Hydroxylamin und konzentrierter wäßriger Sodalösung erhaltenen klaren, 5-Oxymethyl-furfur-anti-aldoxim enthaltenden Lösung (Kiermayer, Ch. Z. 19, 1004). Farblose Blättehen (aus Wasser), Nadeln (aus Chloroform). F: 108°. Geht beim Erhitzen auf 115° bis 120° in 5-Oxymethyl-furfur-anti-aldoxim über.
- b) 5-Oxymethyl-furfur-anti-aldoxim $C_6H_7O_3N=\frac{HO\cdot CH_1\cdot C_4H_2O\cdot CH}{HO\cdot N}$. B. Man versetzt 1 Mol.-Gew. 5-Oxymethyl-furfurol mit etwas mehr als 2 Mol.-Gew. salzsaurem Hydroxylamin und dann mit der berechneten Menge konzentrierter wäßriger Sodalösung und schüttelt die erhaltene Lösung mehrfach mit Ather aus (K., Ch. Z. 19, 1004). Beim $\frac{1}{3}$ -stdg. Erhitzen des 5-Oxymethyl-furfur-syn-aldoxims (s. o.) auf 115—120° (Kr.). Krystalle (aus Chloroform). F: 77—78°. Leicht löslich in Wasser, Alkohol und Ather, schwer in Benzol, Chloroform und Ligroin.
- Bis-[5-oximinomethyl-furfuryl]-äther, Dioxim des Bis-[5-formyl-furfuryl]-äthers $C_{18}H_{18}O_5N_8 = O\begin{bmatrix} HC CH \\ -CH_2 \cdot C \cdot O \cdot C \cdot CH : N \cdot OH \end{bmatrix}_2$. B. Man versetzt eine Lösung von 1 Mol.-Gew. Bis-[5-formyl-furfuryl]-äther in heißem $50^\circ/_0$ igem Alkohol mit 2 Mol.-Gew. salzsaurem Hydroxylamin und der berechneten Menge Soda und erhitzt $2^1/_2$ Stdn. (Kirkmanzer, Ch. Z. 19, 1005). Krystalle. F: 167—168°. Löslich in Essigester und Aceton, in verd. Alkohol leichter löslich als in absol., kaum löslich in Ather, Benzol und Chloroform.

5 - Oxymethyl - furfurol - phenylhydrazon $C_{13}H_{12}O_3N_3=HC$ ——CH

HO·CH₂·C·O·C·CH:N·NH·C₆H₅

B. Aus 5-Oxymethyl-furfurol in wäßr. Lösung und HO·CH₂·C·O·C·CH:N·NH·C₆H₅

Phenylhydrazin (MÜTHER, TOLLENS, B. 37, 303) oder essigsaurem Phenylhydrazin (KIER-MAYER, Ch. Z. 19, 1004). — Goldgelbe Krystalle (aus Alkohol oder Benzol). F: 138° (K.), 140—141° (M., T.). Läßt sich nicht destillieren (K.). Wird durch verd. Salzsäure schon in der Kälte teilweise gespalten (K.).

5 - Oxymethyl - furfurol - [4 - nitro - phenylhydrazon] $C_{13}H_{11}O_4N_3 = HC - CH$

HO·CH₂·C·O·C·CH:N·NH·C₆H₄·NO₂

4-Nitro-phenylhydrazin (van Ehenstein, Blanksma, C. 1909 I, 1509). — Dunkelrote Krystalle (aus Alkohol). F: 185° (Zers.).

Bis - phenylhydrazon des $Bis - [5 - formyl - furfuryl] - äthers <math>C_{24}H_{22}O_8N_6 = O\begin{bmatrix} HC - CH \\ -CH_2 \cdot C \cdot O \cdot C \cdot CH : N \cdot NH \cdot C_8H_5 \end{bmatrix}_2$. B. Aus Bis - [5 - formyl - furfuryl] - äther (S. 15) und Phenylhydrazin (Kiermayer, Ch. Z. 19, 1005). — Gelbliche Krystalle (aus Alkohol). F: 139°. Schwer löslich in Alkohol.

3. Oxy-oxo-Verbindungen C2H8O3.

- 1. 3-Oxy-4-oxo-2.6-dimethyl-[1.4-pyran], 3-Oxy-2.6-dimethyl-pyron-(4) $\begin{array}{c} \text{HC} \cdot \text{CO} \cdot \text{C} \cdot \text{OH} \\ \text{C}_7\text{H}_8\text{O}_3 = \\ \text{CH}_3 \cdot \text{C}_7 \text{C} \cdot \text{CH}_3 \end{array} \\ \text{ist desmotrop mit 3.4-Dioxo-2.6-dimethyl-[1.4-pyran]-dihydrid,} \\ \text{Bd. XVII, S. 447.} \end{array}$
- 3-Acetoxy-2.6-dimethyl-pyron-(4) $C_9H_{10}O_4 = \frac{HC \cdot CO \cdot C \cdot CO \cdot CO \cdot CH_3}{CH_3 \cdot C O C \cdot CH_3}$. B. Aus 3-Oxy-2.6-dimethyl-pyron-(4) (Bd. XVII, S. 447) und Acetanhydrid beim Erhitzen auf 130° (Tickle, Collie, Soc. 81, 1006). Prismen (aus Essigester). F: 98°. Flüchtig mit Wasserdampf. Ist gegen Lackmus neutral. Gibt mit Eisenchlorid keine Färbung.
- 2. 4¹-Oxy-5-oxo-2-methyl-4-äthyliden-furandihydrid, γ -Methyl- α -[α -oxy-äthyliden]- $\Delta^{\beta,\gamma}$ -crotonlacton. Enolform des Acetylangelicalactons $C_7H_8O_3=CH_3\cdot C(OH):C$ —CH s. bei der desmotropen Ketoform, 5.4¹-Dioxo-2-methyl-4-äthylfuran-dihydrid-(4.5), Bd. XVII, S. 448.

Carbanilsäureester $C_{14}H_{13}O_4N=\frac{C_6H_5\cdot NH\cdot CO\cdot O\cdot C(CH_3)\cdot C-CH}{OC\cdot O\cdot C\cdot CH_5}\cdot B$. Äquimolekulare Mengen der Enolform des Acetylangelicalactons (Bd. XVII, S. 448) und Phenylisocyanat werden unter Luftabschluß 14 Tage stehengelassen (Knorr, A. 303, 141). — Krystallpulver (aus Benzol durch Ligroin). F: 102°. Leicht löslich in Alkohol, Äther und Chloroform, ziemlich leicht in Benzol, fast unlöslich in Ligroin. — Gibt keine Eisenchloridreaktion. Wird beim Schmelzen unter Bildung der Ketoform des Acetylangelicalactons (Bd. XVII, S. 448) und von Phenylisocyanat gespalten. Auch beim Kochen mit Alkohol, nicht aber mit Benzol oder Äther erfolgt Spaltung.

- 4. $2^1 \cdot 0 \times y \cdot 2^3 \cdot 0 \times 0 \cdot 2 \cdot [2^2 \cdot 2^2 \cdot dimetho-propyl]$ -furan, $\beta \cdot 0 \times y \cdot \alpha \cdot \alpha \cdot dimethyl-\beta \cdot [\alpha \cdot furyl]$ -propionaldehyd, Furfurisobutyraldol $C_9H_{12}O_3 = HC CH$ HC O · C · CH(OH) · C(CH₃)₂ · CHO

 butyraldehyd (Lieben, Lindauer, M. 22, 311). Zerfällt bei der Destillation.
- 5. Lacton der Borneol-glykolsäure-(3) C₁₂H₁₈O₃, H₂C-C(CH₂)-CH-O s. nebenstehende Formel. B. Beim Behandeln von Campheryl-(3)-glyoxylsäure (Bd. X, S. 796) mit überschüssigem Natrium-amalgam; man säuert an und schüttelt mit Äther aus (TINGLE, H₂C-CH-CH-CH(OH)·CO Soc. 57, 654; Am. Soc. 23, 368). Amorphe Masse (aus Äther). F: 75—76°. Sehr leicht löslich in Benzol.

d) Oxy-oxo-Verbindungen $C_nH_{2n-10}O_3$.

1. Oxy-oxo-Verbindungen $C_8H_6O_3$.

- 1. 3-Oxy-2-oxo-cumaran, Lacton der 2-Oxy-mandelsäure bezw. 2.3-Dioxy-cumaron $C_8H_8O_3=C_8H_4$ CH(OH) CO bezw. C_8H_4 CO Dezw. C_8H_4 CO Dezw. C_8H_4 CO Dezw. CO Dezw
- 3 Oxy 2 acetimino thionaphthendihydrid $C_{10}H_9O_2NS = C_6H_4 \xrightarrow{CH(OH)} C:N\cdot CO\cdot CH_3$ ist desmotrop mit 3-Oxy-2-acetamino-thionaphthen, Syst. No. 2642.
- 2. 5-Oxy-2-oxo-cumaran, Lacton der Homogentisinsäure HoCH2C₈H₆O₃, s. nebenstehende Formel. B. Beim kurzen Erhitzen von Homogentisinsäure (Bd. X, S. 407) über ihren Schmelzpunkt (Wolkow, Baumann, H. 15, 253). Prismen (aus Wasser). F: 191°. Sublimierbar. Sehr schwer löslich in kaltem Wasser, schwer in siedendem Chloroform und in Benzol.
- 3. 6-Oxy-3-oxo-cumaran, 6-Oxy-cumaranon $C_aH_aO_3$, s. nebenstehende Formel, ist desmotrop mit 3.6-Dioxy-cumaron, Bd. XVII, B. 156.
- 4. 3-Oxy-1-oxo-phthalan, 3-Oxy-phthalid $C_8H_6O_3 = C_6H_4 \stackrel{CH(OH)}{CO}O$ ist desmotrop mit Phthalaldehydsäure $C_6H_4 \stackrel{CHO}{CO_2H}$, Bd. X, S. 666.
- 3 Methoxy phthalid, Phthalaldehydsäure pseudomethylester $C_9H_8O_3 = C_9H_4 \underbrace{CH(0\cdot CH_3)}_{CO}O$. B. Beim Kochen von Phthalaldehydsäure (Bd. X, S. 666) mit Methylalkohol (Meyer, M. 25, 497). Aus 3-Brom-phthalid (Bd. XVII, S. 312) und Methylalkohol (RACINE, A. 239, 84). Krystalle (aus verd. Alkohol). F: 44° (R.). Siedet bei $242-245^{\circ}$ unter geringer Zersetzung (M.).
- 3 Äthoxy phthalid , Phthalaldehydsäure pseudoäthylester $C_{10}H_{10}O_3 = C_6H_4$ CO C_2H_5 O. B. Beim Erhitzen von Phthalaldehydsäure (Bd. X, S. 666) mit Alkohol (Racine, A. 239, 83) in Gegenwart von Schwefelsäure (Meyer, M. 25, 498). Bei der Einw. von Alkohol auf 3-Brom-phthalid (Bd. XVII, S. 312) (R.). Nadeln (aus verd. Alkohol). F: 66° (R.), 64° (M.). Siedet nahezu unzersetzt bei 255—260° (M.). Bildet mit 2-Nitroso-benzoesäure-äthylester feste Lösungen (Bruni, R. A. L. [5] 11 II, 192). Reduziert ammoniakalische Silberlösung (R.). Wird durch Kochen mit Wasser oder längeres Erwärmen mit Wasser auf 90° verseift (M.). Liefert beim Kochen mit Kaliumcyanid in 90° (gem Alkohol (Graebe, Julilard, A. 242, 219 Anm.; Gr., Landriset, B. 24, 2296) oder in absol. Alkohol (Goldschmiedt, Egger, M. 12, 62) Diphthalyl (Syst. No. 2769).
- 3-Acetoxy-phthalid, [Phthalidyl-(3)]-acetat $C_{10}H_8O_4 = C_8H_4 \xrightarrow{CH(0 \cdot CO \cdot CH_3)} O$.

 B. Beim Erhitzen von Phthalaldehydsäure (Bd. X, S. 666) mit Essigsäureanhydrid im geschlossenen Rohr auf ca. 200° (Racine, A. 239, 84). Beim Erhitzen von 3-Brom-phthalid (Bd. XVII, S. 312) mit wasserfreiem Natriumacetat (R., C. r. 106, 949). Nadeln (aus Chloroform). F: 60—63°; etwas löslich in heißem Wasser, leicht in Alkohol, Äther und Chloroform; beständig gegen Wasser; wird von Alkalien in Essigsäure und Phthalaldehydsäure zerlegt (R., A. 239, 84).

Phthalaldehydsäure - [phthalidyl - (3)] - ester $C_{16}H_{10}O_{5} = C_{6}H_{4}$ CH(0·Co· $C_{6}H_{4}$ ·CHO) O. B. Neben dem nicht näher beschriebenen Phthalaldehydsäurechlorid bei Einw. von Thionylchlorid auf Phthalaldehydsäure (Bd. X, S. 666) (MEYER, M. 25, 499). — Krystallpulver (aus Eisessig). Schmilzt bei 202—210°. Unlöslich in Wasser und kaltem Alkohol. — Geht beim Erhitzen mit Wasser auf 160° größtenteils in Phthalaldehydsäure über.

Di-[phthalidyl-(3)]-äther $C_{16}H_{10}O_5 = \begin{bmatrix} OC < C_6H_4 > CH - \end{bmatrix}_2 O$. B. Beim Erhitzen von Phthalaldehydsäure (Bd. X, S. 666) auf 240—250° (Graebe, Stabil, B. 31, 371 Anm.). In geringer Menge beim Erwärmen von 3-Brom-phthalid (Bd. XVII, S. 312) mit Wasser, neben Phthalaldehydsäure (Racine, A. 239, 81). Beim Erhitzen von 1 Mol Phthalaldehydsäure

mit 1 Mol 3-Brom-phthalid (R., A. 239, 90). Neben anderen Produkten beim Erhitzen von Phthalonsäure (Bd. X, S. 857) auf 220—240° (G., Trümpy, B. 31, 371). — Nadeln (aus Eisessig). F: 221°; unlöslich in Wasser; reduziert ammoniakalische Silberlösung nicht (R.). Gibt beim Erwärmen mit Alkalilauge Phthalaldehydsäure (R.).

4-Nitro-3-methoxy-phthalid, [3-Nitro-2-formyl-benzoe-02N säure]-pseudomethylester CoH7O5N, s. nebenstehende Formel. B. Durch Erhitzen von 3-Nitro-2-formyl-benzoesäure (Bd. X, S. 670) mit Methylalkohol im Druckrohr auf 100° (Wegscheider, Kuśy v. Dúbrav, M. 24, 828). — Prismatische Krystalle (aus Methylalkohol). F: 106—108°. — Wird durch Kochen mit Wasser teilweise verseift.

Bis-[4-nitro-phthalidyl-(3)]-äther $C_{16}H_8O_9N_2 = \begin{bmatrix} OC & C_6H_3(NO_9) \\ O & O \end{bmatrix}$ CH- $\begin{bmatrix} OC & O \\ O & O \end{bmatrix}$ O. B. Bei der Nitrierung von Phthalaldehydsäure (Bd. X, S. 666) durch Kaliumnitrat und Schwefelsäure, neben anderen Produkten (W., K. v. D., M. 24, 811, 822). — Krystalle (aus Eisessig). F: 248—251°.

- 6 Nitro 3 methoxy phthalid, [5 Nitro 2 formylbenzoesäure]-pseudomethylester $C_9H_7O_5N$, s. nebenstehende Formel. B. Durch Erhitzen von 5-Nitro-2-formyl-benzoesäure O_2N CO0 (Bd. X, S. 670) mit Methylalkohol (W., K. v. D., M. 24, 823). Krystalle (aus Benzol). F: $101-103^\circ$. Wird beim Kochen mit Wasser größtenteils verseift.
- 6-Nitro-3-äthoxy-phthalid, [5-Nitro-2-formyl-benzoesäure]-pseudoäthylester $C_{10}H_9O_5N=O_2N\cdot C_6H_3$ CH(O·C₂H₅) O. B. Beim Kochen von 5-Nitro-2-formyl-benzoesäure (Bd. X, S. 670) mit Alkohol (Wegscheider, Bondi, M. 26, 1057). Nadelförmige Krystalle (aus Benzol + Petroläther). F: 95°.

Bis-[6-nitro-phthalidyl-(3)]-äther $C_{16}H_8O_9N_2=\begin{bmatrix}OC < C_6H_3(NO_9) \\ O \end{bmatrix}$ CH- $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ CH

- 5. 5-Oxy-1-oxo-phthalan, 5-Oxy-phthalid C₈H₆O₃, s. nebenstehende Formel ¹). B. Man stellt durch Einleiten von Ammoniak in geschmolzene 4-Oxy-phthalsäure (Bd. X, S. 499) [4-Oxy-phthalsäure]-imid (Syst. No. 3240) dar, reduziert es mit Zinn und Salzsäure, fällt das gelöste Zinn durch Zink und gibt dann Natriumnitrit hinzu; die hierbei ausfallende Nitrosoverbindung erwärmt man mit Natronlauge und fällt dann mit Salzsäure (Rźz, A. 233, 235). Nädelchen. Erweicht bei 210° und schmilzt bei 222°. Sublimiert unzersetzt. Löslich in viel heißem Wasser, schwer löslich in kaltem Alkohol, Äther und Chloroform.
- 6. G-Oxy-1-oxo-phthalan, 6-Oxy-phthalid C₈H₆O₃, s. nebenstehende Formel.
- 6-Methoxy-phthalid $C_9H_8O_3 = CH_3 \cdot O \cdot C_6H_3 < CH_2 > O$. B. Aus 6-Methoxy-phthalid-carbonsäure-(3) (Syst. No. 2624) durch Erhitzen auf 180—185° (Fritsch, A. 296, 355). Nadeln (aus Alkohol). F: 120°. Leicht löslich in heißem Wasser und Alkohol, schwer in Äther und Benzol. Gibt durch Oxydation mit alkal. Permanganatlösung 4-Methoxy-phthalsäure (Bd. X, S. 499).
- 6-Äthoxy-phthalid $C_{10}H_{10}O_3=C_2H_5\cdot O\cdot C_6H_3 < CH_2>O$. B. Beim Erhitzen von 6-Äthoxy-phthalid-carbonsäure-(3) (Syst. No. 2624) auf 180—185° (Fritsch, A. 296, 355). Nadeln (aus Alkohol). F: 87°. Leicht löslich in heißem Wasser und Alkohol, schwer in Äther und Benzol. Liefert bei der Oxydation mit alkal. Permanganatlösung 4-Äthoxy-phthalsäure (Bd. X, S. 500).
- 4.5.7-Tribrom-6-oxy-phthalid C₈H₂O₂Br₃, s. nebenstehende Formel. B. Aus 3.4.6-Tribrom-5-oxy-2-brommethyl-benzoesäure (Bd. X, S. 216) durch Einw. von Sodalösung oder durch Kochen mit wäßr. Aceton (ZINCKE, FISCHER, A. 350, 261). Nadeln (aus Eisessig oder Alkohol). F: 207°; unlöslich in heißem Alkohol und heißem Eisessig, ziemlich schwer in Benzol

¹) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von LEVY, STEPHEN, Soc. 1931, 868.

- (Z., F.). Liefert bei der Einw. von trocknem Brom bei 180—185° 3.3.4.5.7-Pentabrom-6-oxy-phthalid (s. u.), mit feuchtem Brom bei 170—175° [3.5.6-Tribrom-4-oxy-phthalsäure]-anhydrid (Z., Buff, A. 361, 239, 241). Natriumsalz. Nadeln. Ziemlich schwer löslich in Wasser (Z., F.).
- 4.5.7-Tribrom-6-acetoxy-phthalid $C_{10}H_5O_4Br_3 = CH_3 \cdot CO \cdot O \cdot C_8Br_8 < \frac{CH_2}{CO} > O$. B. Aus 4.5.7-Tribrom-6-oxy-phthalid durch Essigsäureanhydrid in Gegenwart von konz. Schwefelsäure (ZINCKE, FISCHER, A. 350, 261). Nadeln (aus Eisessig). F: 222—223°. Schwer löslich in Alkohol, leichter in Eisessig und Benzol.
- 3.4.5.7-Tetrabrom-6-oxy-phthalid C₉H₁O₃Br₄, s. nebenstehende Formel. B. Durch Erhitzen von 5 g 3.4.6-Tribrom-5-oxy-2-methylbenzoesäure (Bd. X, S. 216) mit 2 ccm Brom und 0,5 ccm Wasser im Druckrohr auf 130—140°, neben viel 3.4.6-Tribrom-5-oxy-2-formylbenzoesäure (Bd. X, S. 951) (ZINCK, BUFF, A. 361, 228). Wurde nicht ganz rein erhalten. Krystallwarzen (aus Benzol + Benzin). F: 196°. Liefert mit Alkalilauge oder Sodalösung 3.4.6-Tribrom-5-oxy-2-formyl-benzoesäure. Beim Erwärmen mit Methylalkohol und etwas Schwefelsäure entsteht 4.5.7-Tribrom-6-oxy-3-methoxy-phthalid (Syst. No. 2531).
- 3.3.4.5.7-Pentabrom-6-oxy-phthalid C₈HO₃Br₅, s. nebenstehende Formel. B. Aus 4.5.7-Tribrom-6-oxy-phthalid und Brom bei 180—185° (ZINCKE, BUFF, A. 361, 239). Entsteht auch beim Erhitzen von 3.4.6-Tribrom-5-oxy-2-methyl-benzoesäure (Bd. X, S. 216) mit feuchtem Brom auf höhere Temperatur (Z., B., A. 361, 239). Blättchen (aus Benzol + Benzin). F: 178—179°. Leicht löslich in den gebräuchlichen organischen Lösungsmittelm außer Benzin. Liefert mit verd. Alkalilauge 3.5.6-Tribrom-4-oxy-phthalsäure (Bd. X, S. 501). Gibt beim Kochen mit Methylalkohol 3.5.6-Tribrom-4-oxy-phthalsäure-dimethylester.
- 3.3.4.5.7 Pentabrom 6 acetoxy phthalid $C_{10}H_3O_4Br_5 = CH_3 \cdot CO \cdot O \cdot C_6Br_3 < CO^2 > O$. B. Aus 3.3.4.5.7-Pentabrom-6-oxy-phthalid und Essigsäure-anhydrid in Gegenwart von Schwefelsäure (Z., B., A. 361, 240). Nadeln (aus Eisessig). F: 158°. Leicht löslich in Alkohol, Benzol und Eisessig.

2. Oxy-oxo-Verbindungen $C_9H_8O_3$.

- 1. Lacton der α.β Dioxy β phenyl propionsäure C₂H₈O₃ = OC·CH(OH)·CH·C₆H₅. Die von H. Erdmann, D. R. P. 107 228; C. 1900 I, 887 so formulierte O———
 Verbindung C₂H₆O₃ muß auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von Dieckmann, B. 43, 1035 als β-Phenylglycidsäure C₆H₅·HC————CH·CO₃H angesehen werden und ist demgemäß unter Syst. No. 2576 eingeordnet.
- 2. Lacton der β Oxy β [3 oxy phenyl] propionsäure $C_0H_0O_3 = OC \cdot CH_3 \cdot CH \cdot C_0H_4 \cdot OH$.

Lacton der β-Oxy-β-[6-nitro-3-methoxy-phenyl]-propionsäure, β-[6-Nitro-3-methoxy-phenyl]-β-milchsäurelacton
C₁₀H₂O₈N, s. nebenstehende Formel. B. Beim Auflösen von β-Bromβ-[6-nitro-3-methoxy-phenyl]-propionsäure (Bd. X, S. 244) in der gerade
genügenden Menge alkoh. Ammoniak (Εισμενισκύν, Εικησκίν, Α. 262,
175). — Säulen (aus Essigester). Schmilzt unter Grünfärbung bei 124—125°. Schwer löslich
in Ather und Ligroin, sehr leicht in Alkohol, Chloroförm und Benzol. — Löst sich bei Wasserbadtemperatur in konz. Kalilauge unter Bildung des Kaliumsalzes der β-Oxy-β-[6-nitro3-methoxy-phenyl]-propionsäure (Bd. X, S. 425) und liefert beim Erwärmen mit Ammoniak
deren Amid.

3. 6-Oxy-2-oxo-chroman, 6-Oxy-3.4-dihydro-cumarin, HO CH₂ CH₃ 6-Oxy-hydrocumarin C₅H₅O₃, s. nebenstehende Formel. B. Man behandelt Hydro-o-cumarsaure (Bd. X, S. 241) in Natronlauge mit Kaliumpersulfat und erwärmt die Lösung nach Zusatz von rauchender Salzsaure (Neubauer, Fiatow, H. 52, 392). Aus 2.5-Dioxy-zimtsaure (Bd. X, S. 435) durch Reduktion mit

Natriumamalgam und Ansäuern der Lösung (N., F.). — Krystalle (aus heißem Wasser). F: 163°. Schwer löslich in Äther. Reduziert ammoniakalische Silberlösung.

- 4. 1-Oxy-3-oxo-1-methyl-phthalan, 3-Oxy-3-methyl-phthalid, cyclo-Form der 2-Acetyl-benzoesäure (Bd. X, S. 690) $C_9H_8O_3=C_9H_4\underbrace{COC(CH_2)(OH)}_{CC(CH_2)(OH)}$ 0.
- 3-Methoxy-3-nitromethyl-phthalid $C_{10}H_2O_5N=C_6H_4$ $C(CH_2\cdot NO_2)$ $(O\cdot CH_3)$ O. B. Das Kaliumsalz entsteht durch Einw. von methylalkoh. Kali auf 3-Nitromethylen-phthalid (Bd. XVII, S. 334); man zersetzt das Salz mit Salzsäure (Gabriel, B. 36, 576). Nädelchen (aus Wasser). F: 110—111°. Die eitronengelbe Lösung in konz. Schwefelsäure färbt sich auf Zusatz von Phenol grünblau, dann beim Verdünnen mit Wasser granatrot. Geht durch Erwärmen mit verd. Kalilauge in ω -Nitro-acetophenon-carbonsäure-(2) (Bd. X, S. 694) über. $KC_{10}H_8O_5N$. Nadeln. Löslich in Wasser.
- 5. 5-Oxy-3-oxo-1-methyl-phthalan, 6-Oxy-3-methyl-HO phthalid C₂H₂O₂, s. nebenstehende Formel.
- 6-Oxy-3-trichlormethyl-phthalid C₀H₅O₅Cl₃, s. nebenstehende Formel. B. Durch Erhitzen von Chloral und 3-Oxy-benzoesäure mit konz. Schwefelsäure auf 60—70° (FRITSCH, A. 296, 344). — Krystalle (aus Äther, Aceton oder Chloroform). F: 197—198°.
- 6-Methoxy-3-trichlormethyl-phthalid $C_{10}H_7O_3Cl_3 = CH_3 \cdot O \cdot C_6H_3 \cdot CH(CCl_3) \cdot O$. B. Durch Kondensation āquimolekularer Mengen von Chloralhydrat und 3-Methoxy-benzoesäure-äthylester mit Hilfe von konz. Schwefelsäure (Fr., A. 296, 352). Prismen (aus Äther). F: 135°. Liefert durch Erhitzen mit wäßr. Alkalien 6-Methoxy-phthalid-carbonsāure-(3) (Syst. No. 2624).
- 6-Äthoxy-3-trichlormethyl-phthalid $C_{11}H_{\bullet}O_3Cl_3 = C_2H_5 \cdot O \cdot C_{\bullet}H_3 \cdot CH(CCl_3) \cdot O$. B. Durch Kondensation von 3-Äthoxy-benzoesäure-äthylester und Chloralhydrat mit Hilfe von konz. Schwefelsäure (Fr., A. 296, 352). Prismen (aus Äther). F: 118°. Gibt beim Erwärmen mit Alkalilauge 6-Äthoxy-phthalid-carbonsäure-(3) (Syst. No. 2624).
- 3. Oxy-oxo-Verbindungen $C_{10}H_{10}O_3$.
- 1. $1-\alpha-Furyl-cyclohexen-(3)-ol-(3)-on-(5)$, HC-CH [$\alpha-Furyl]-dihydroresorcin$ $C_{10}H_{10}O_3$, s. nebenstehende Formel, ist desmotrop mit 1- α -Furyl-cyclohexandion-(3.5), Bd. XVII, S. 465.
 - 2. β -Oxy- γ -phenyl-butyrolacton $C_{10}H_{10}O_{3} = \frac{H_{1}C}{OC \cdot O \cdot CH \cdot C_{4}H_{5}}$.
- a) Lacton der in freiem Zustande beständigen $\beta.\gamma$ -Dioxy- γ -phenyl-buttersäure. B. s. im Artikel $\beta.\gamma$ -Dioxy- γ -phenyl-buttersäure (Bd. X, S. 432). Nadeln mit $^{1}/_{2}$ H₂O (aus Äther). F: 76°; leicht löslich in Alkohol, Chloroform und in heißem Wasser, ziemlich schwer in Äther; das entwässerte Lacton ist flüssig; das Lacton wird durch Aufkochen mit Wasser nicht in die Säure übergeführt (FITTIG, OBERMÜLLER, A. 268, 45).
- b) Lacton der in freiem Zustande unbeständigen $\beta.\gamma$ -Dioxy- γ -phenylbuttersäure. B. s. im Artikel $\beta.\gamma$ -Dioxy- γ -phenylbuttersäure (Bd. X. S. 432). Krystalle (aus Äther). Monoklin prismatisch (†) (Lincx, A. 268, 83; vgl. Groth, Ch. Kr. 4, 628). F: 92° (BOUGAULT, A. ch. [8] 15, 495), 93—94° (Firtig, Obermüller, Schiffer, A. 268, 83). Leicht löslich in Alkohol, Chloroform, Benzol, schwer in Äther; löst sich in warmer Sodalösung und wird durch Salzsäure unverändert abgeschieden (F., O., Sch.).
- 3. α -Oxy- γ -phenyl-butyrolacton $C_{10}H_{10}O_3 = \frac{HO \cdot HC CH_2}{OC \cdot O \cdot CH \cdot C_8H_5}$ B. Durch Reduktion von Benzoylbrenztraubensäure (Bd. X, S. 814) mit Natriumamalgam und Ansäuern der Lösung mit Salzsäure (Erlenmennen jun., B. 35, 3768). Durch Reduktion von β -Benzoyl-milchsäure (Bd. X, S. 959) mit Natriumamalgam in der Kälte in nahezu neutraler Lösung und Ansäuern des Reaktionsgemisches mit Salzsäure (Bougault, A. ch. [8] 15, 497). Bei der Reduktion von β -Brom- α -oxy- γ -phenyl-butyrolacton (S. 21) mit $2^1/_2$ 0/ $_0$ igem Natriumamalgam in Wasser unter Kühlung, neben der Verbindung $C_{10}H_{10}O_2$ (S. 21); zur Trennung übersättigt man die vom Quecksilber getrennte Lösung mit Schwefelsäure, schüttelt mit Äther

aus, verdunstet, und kocht den Rückstand mit Petroläther; α -Oxy- γ -phenyl-butyrolacton bleibt ungelöst (Kopisch, B. 27, 3112). — Nadeln (aus Ather), Krystalle (aus Benzol oder Chloroform + Ligroin). F: 125° (K.; E.; B.). Leicht löslich in Alkohol, ziemlich löslich in siedendem Benzol, schwer in kaltem Wasser (B.). — Geht durch Kochen mit verd. Salzsäure in B-Benzovl-propionsäure (Bd. X, S. 696) über (E.).

HO·HC-CHBr β -Brom- α -oxy- γ -phenyl-butyrolacton $C_{10}H_{\bullet}O_{\bullet}Br =$ OC · O · CH · C'H' β.γ-Dibrom-α-οχγ-γ-phenyl-buttersäure (Bd. X, S. 268) durch Auflösen in warmem Wasser (Fittig, Petrow, A. 299, 26) oder durch Behandlung mit kalter Sodalösung (Thiele, Sulzberger, A. 319, 201). Beim Kochen von 1 Tl. β.γ-Dibrom-α-οχγ-γ-phenyl-buttersäure-nitril (Bd. X, S. 268) mit 20 Tln. 20% jeger Salzsäure (E. Fischer, Stewart, B. 25, 2556). — Darst. Man löst 50 g β.γ-Dibrom-α-οχγ-γ-phenyl-buttersäure-nitril in 200 ccm heißem Eisessig, setzt ein noch heißes Gemisch von 75 cm³ Schwefelsäure und 200 ccm Wasser zu und kocht 2 Stdn.; nach dem Erkalten versetzt man mit dem ca. 11/2-fachen Volumen kaltem Wasser und krystallisiert das sich anfangs ölig ausscheidende, später erstarrende Lacton aus Wasser um (Th., Su.). — Nadeln (aus Wasser). F: 137° (F., Sr.), 137,5—138° (Th., Su.). Löst sich in 10 Tln. siedendem Wasser, leicht löslich in Alkohol, schwer in Äther und heißem Chloroform, ziemlich schwer in Petroläther (F., Sr.). — Durch Behandeln mit Natriumamalgam und Ansäuern der Reaktionsflüssigkeit erhält man α -Oxy- γ -phenyl-butyrolacton (S. 20) und die Verbindung $C_{10}H_{10}O_3$ (s. u.) (Kopison, B. 27, 3112). Beim Kochen mit Barytwasser entsteht $\alpha.\beta.\gamma$ -Trioxy- γ -phenyl-buttersäure (Bd. X, S. 496) (F., Sr.). Bei kurzem Kochen mit viel überschüssigem Ammoniak entsteht die Verbindung $C_{10}H_{11}O_3N$ (s. u.) (Ko.). Beim Erhitzen mit 2 Tln. Anilin auf dem Wasserbad erhält man β -Brom- $\alpha.\gamma$ -dioxy- γ -phenyl-buttersäure-anilid C_{10} - (Bd. XII, S. 507) (Ko.). Beim Aufbewahren der äther. Lösung mit Phenylhydrazin in der Kälte bildet sich β -Brom- α . γ -dioxy- γ -phenyl-buttersäure-phenylhydrazid (Bd. XV, S. 328) (Ko.). Erhitzen der wäßr. Lösung mit Phenylhydrazin auf dem Wasserbad liefert die Ver- $C_6H_5 \cdot CH(OH) \cdot HC \cdot CH(OH) \cdot CO$

bindung $C_0H_5 \cdot CH(OH) \cdot HO \cdot CH(OH) \cdot CO$ (Syst. No. 3636) (Ko.).

Verbindung $C_{10}H_{10}O_2$. B. s. im Artikel α -Oxy- γ -phenyl-butyrolacton, S. 20. — Nadeln (aus Petrolather). F: 87—88°; leicht löslich in Alkohol, Äther und Petrolather (Ko-

Verbindung $C_{10}H_{11}O_3N$. B. Man kocht β -Brom- α -oxy- γ -phenyl-butyrolacton 2 Minuten mit viel überschüssigem Ammoniak (Ko., B. 27, 3110). — Prismen und Platten (aus Wasser). Bräunt sich gegen 200° und schmilzt gegen 215° unter Zersetzung. Leicht löslich in heißem Wasser und Alkohol, unlöslich in Ather. Spaltet beim Kochen mit Kalilauge kein Ammoniak ab.

 β -Brom- α -acetoxy- γ -phenyl-butyrolaeton $C_{18}H_{11}O_4Br = CH_8 \cdot CO \cdot O \cdot HC - CHBr$ OC.O.CH.C.H.

B. Aus β-Brom-α-oxy-γ-phenyl-butyrolacton (s. o.) und Essigsäureanhydrid bei Gegenwart von wenig Schwefelsäure (Thiele, Sulzberger, A. 319, 202). — Nädelchen (aus Alkohol). Monoklin prismatisch (Gossner, A. 319, 202; vgl. Groth, Ch. Kr. 4, 649). F: 64,5°. Leicht löslich in den gewöhnlichen organischen Lösungsmitteln, nicht in Wasser.

HO·HC——CHI β -Jod- α -oxy- γ -phenyl-butyrolacton $C_{10}H_9O_3I =$ Bei OC · O · CH · CAH

Zusatz von Jod-Jodkalium-Lösung zu einer Lösung von α -Oxy- β -benzal-propionsäure (Bd. X, S. 308) bei Gegenwart von überschüssigem Natriumdicarbonat (BOUGAULT, A. ch. [8] 14, 157, 180). — Gelbliche Krystalle. Färbt sich bei 125° und schmilzt bei 132° unter Zersetzung. Kaum löslich in Wasser, ziemlich löslich in Alkohol, Äther, Benzol, Chloroform, schwer in Schwefelkohlenstoff, fast unlöslich in Petroläther.

chwefelkohlenstoff, fast unlöslich in Petrolather.

4. γ -[4-Oxy-phenyl]-butyrolacton $C_{10}H_{10}O_3 = {H_2C - CH_2 \over OC \cdot O \cdot CH \cdot C_0H_4 \cdot OH}$. γ -[4-Methoxy-phenyl]-butyrolacton $C_{11}H_{12}O_3 = {H_2C - CH_2 \over OC \cdot O \cdot CH \cdot C_0H_4 \cdot O \cdot CH_3}$. B. Beim $OC \cdot O \cdot CH \cdot C_0H_4 \cdot O \cdot CH_3$.

Behandeln einer eisessigsauren alkoholischen Lösung des β -Brom- γ -[4-methoxy-phenyl]-butyrolsctons (s. u.) mit Natriumamalgam (Firrig, Politis, A. 255, 298). — Blättchen (aus Wasser). F: 53,5°. Leicht löslich in Äther, Schwefelkohlenstoff und Chloroform, sehr schwer in Ligroin.

β-Brom-γ-[4-methoxy-phenyl]-butyrolacton C₁₁H₁₁O₂Br = H₂C—CHBr OC·O·CH·C₄H₄·O·CH₅

B. Man versetzt eine Suspension von 1 Mol β-Anisal-propionsäure (Bd. X, S. 308) in Schwefel-keil OC with A Mol Phone (Bd. X, S. 308) in Schwefel-k kohlenstoff bei 0° mit 1 Mol Brom, gelöst in Schwefelkohlenstoff, verdunstet die Lösung

und läßt das Reaktionsprodukt mehrere Tage stehen (Fittig, Politis, A. 255, 296). Blattchen (aus Eisessig). Monoklin prismatisch (Liwen, A. 255, 297; vgl. Groth, Ch. Kr. 4, 626). F: 118,5°.

β-Jod-γ-[4-methoxy-phenyl]-butyrolacton $C_{11}H_{11}O_3I = H_3C$ —CHI
OC·O·CH· C_6H_4 ·O·CH₃

B. Bei Zusatz von Jod-Jodkalium-Lösung zu einer Lösung von β-Anisal-propionsäure bei Gegenwart von überschüssigem Natriumdicarbonat (Bougault, C. r. 146, 412; A. ch. [8] 14, 157, 174). — Gelbliche Krystalle. F: 125°. Sehr schwer löslich in Alkohol, schwer in Äther, etwas leichter in Benzol.

5. 7-Oxy-2-oxo-4-methyl-chroman, 7-Oxy-4-methyl-3.4-dihydro-cumarin, 7-Oxy-4-methyl-hydrocumarin $_{\rm HO}$.

3.4 - Dibrom - 7 - methoxy - 2-oxo - 4 - methyl-chroman, Dibromid des 4 - Methyl - umbelliferon - methyläthers $C_{11}H_{10}O_2Br_2$, s. nebenstehende Formel. B. Aus 4-Methylumbelliferon methyläther (S. 32) und Brom in Chloroform (v. Pechmann, Cohen, B. 17, 2134). — Nadeln (aus Eisessig). F: 233—235°. Unlöslich in Wasser, etwas löslich in Alkohol, Ather, Chloroform und Eisessig.

3.4.8-Tribrom-7-oxy-2-oxo-4-methyl-chroman, Dibromid des 8-Brom-4-methyl-umbelliferons $C_{10}H_7O_3Br_3$, s. nebenstehende Formel. Zur Konstitution vgl. v. Pechmann, Cohen, B. 17, 2133; Fries, Lindemann, A. 404 [1914], 53, 63. — B. Bei der Einw. von überschüssigem Brom auf 4-Methyl-umbelliferon (S. 31) in alkoh. (WITTEN-BERG, J. pr. [2] 24, 126) oder essigsaurer (MICHAEL, Am. 5, 438) Lösung. — Blättchen (aus Alkohol). F: 240° (M.), 250° (Zers.) (W.). Sehr wenig löslich in Alkohol, etwas mehr in heißem Eisessig (M.). Wird durch verd. Sodalösung violett gefärbt (v. Pechmann, Cohen, B. 17, 2134). — Liefert beim Kochen mit alkoh. Kali 7-Brom-6-oxy-3-methyl-cumaron-carbon**sa**ure-(2) HO·C₆H₂Br< C(CH₃) C·CO₂H (Syst. No. 2614) (v. P., C.).

6. 1-Oxy-3-oxo-1-methyl-isochroman, cyclo-Form der 2-Acetyl-phenylessigsäure (Bd. X, S. 705) $C_{10}H_{10}O_3=C_0H_4$ $C(CH_3)(OH)\cdot \dot{O}$.

4.4.1.1.1.Pentachlor-1-oxy-3-oxo-1-methyl-isochroman, 4.4-Dichlor-1-oxy-3-oxo-1-trichlormethyl-isochroman, cyclo-Form der [2-Trichloracetyl-phenyl]-dichloressigsäure $C_{10}H_5O_3Cl_5 = C_6H_4$ CCl_3 — CO $C(CCl_3)(OH) \cdot O$ s. Bd. X, S. 705.

Acetylderivat $C_{12}H_7O_4Cl_5 = C_6H_4$ $C(CCl_3)(O \cdot CO \cdot CH_3) \cdot O$. B. Beim Erhitzen der cyclo-Form der [2-Trichloracetyl-phenyl]-dichloracetyl-phenyl] dichloracetyl-phenyl] dichloracetyl-phenyl

cyclo-Form der [2-Trichloracetyl-phenyl]-dichloressigsaure (Bd. X, S. 705) mit Acetylchlorid auf 120—1300 (Zincke, Egly, A. 300, 202). — Prismen (aus Benzol). F: 170°. Ziemlich schwer löslich in Alkohol und heißem Benzin, leichter in Benzol.

4. Oxy-oxo-Verbindungen C11H12O2.

1. β -Oxy- γ -benzyl-butyrolacton, β -Oxy- δ -phenyl- γ -valerolacton $C_{11}H_{12}O_3=H_1C$ — $CH\cdot OH$ $OC \cdot O \cdot CH \cdot CH_2 \cdot C_6H_5$. B. Beim Erhitzen von $\beta.\gamma$ -Dioxy- δ -phenyl-n-valeriansäure (Bd. X, S. 433) für sich auf 100° oder mit salzsäurehaltigem Wasser (FITTIG, MAYER, A. 208, 52; 283, 338, 339). — Tafeln (aus Chloroform + Ligroin). F: 61,5°; leicht löslich in Chloroform und Benzol, fast unlöslich in Ligroin (F., M., A. 268, 53).

4-0xy-2-oxo-4.7-dimethyl-chroman, 4-0xy-4.7-dimethyl-3.4-dihydro-cumarin, 4-Oxy-4.7-dimethyl-hydrocumarin C₁₁H₁₂O₂, s. nebenstehende Formel. CH₂. 4-m-Kresoxy-4.7-dimethyl-8.4-dihydro-cumarin, 4-m-Kresoxy-4.7-dimethyl-

 $C(CH_2)(O \cdot C_0H_4 \cdot CH_2) \cdot CH_2$ $\label{eq:hydrocumarin} \textbf{hydrocumarin} \ \textbf{C}_{18}\textbf{H}_{18}\textbf{O}_{3} = \textbf{C}\textbf{H}_{3}\!\cdot\!\textbf{C}_{6}\textbf{H}_{3}$ B. Man versetzt 15 g ço m-Kresol und 13 g Acetessigester unter guter Kühlung mit 10 ccm konz. Schwefelsäure und gießt nach ca. 4 Tagen in Eiswasser; das daneben entstandene 4.7-Dimethyl-cumarin entfernt man durch fraktionierte Krystallisation aus Alkohol (FRIES, KLOSTERMANN, A. 362, 13). — Prismen (aus Alkohol). F: 220°. Siedet ohne Zersetzung. Ziemlich leicht löslich in Alkohol, Eisessig, Benzol und Äther in der Siedehitze, weniger löslich in Benzin. — Liefert beim Erwärmen mit konz. Säuren 4.7-Dimethyl-cumarin und m-Kresol.

5. Oxy-oxo-Verbindungen $C_{12}H_{14}O_3$.

- 1. $\alpha-[\alpha-Oxy-dthyt]-\gamma-phenyt-butyrolacton$ $C_{12}H_{14}O_3=CH_3\cdot CH(OH)\cdot HC$ CH_2 B. Beim Behandeln von α -Phenacyl-acetessigsäure-äthylester (Bd. X, S. 820) in wäßrig-alkoholischer Lösung mit Natriumamalgam, wobei die Flüssigkeit durch Essigsäure neutral oder schwach alkalisch gehalten wird (Weltner, B. 17, 69). CH01. Unlöslich in Alkalicarbonatlösung; löslich in Alkaliauge unter Bildung von Salzen der entsprechenden, nicht näher beschriebenen Dioxysäure.
- 2. β Oxy α.α dimethyl β phenyl butyrolacton C₁₂H₁₄O₃ = (HO)(C₂H₂)C C(CH₂)₂. B. In kleiner Menge durch Einw. von Alkalicarbonat auf β.γ-Dibrom-α.α-dimethyl-β-phenyl-buttersäure (Bd. IX, S. 565), neben γ-Phenyl-isopren (Courtor, Bl. [3] 35, 987). Krystalle (aus Äther + Petroläther). F: 115°. Löslich in Benzol.
- 3. γ Oxy α . α dimethyl β phenyl butyrolacton $C_{12}H_{14}O_3 = C_6H_5 \cdot HC C(CH_3)_2$ ist desmotrop mit γ -Oxo- α . α -dimethyl- β -phenyl-buttersaure, Bd. X, S. 717.
- 4. 3 Oxy 1 oxo 4.4.7 trimethyl isochroman,

 Jonegenalid C₁₂H₁₄O₃, s. nebenstehende Formel, ist desmotrop
 mit 5-Methyl-2-[oxo-tert.-butyl]-benzoesäure, Bd. X, S. 719.
- 5. 5-Oxy-3-oxo-1.1-diāthyl-phthalan, 6-Oxy-3.3-di-athyl-phthalid C₁₂H₁₂O₂, s. nebenstehende Formel. B. Man diazotiert 6-Amino-3.3-diāthyl-phthalid in salzsaurer Lösung mit Natrium-nirit und erwärmt die Diazoniumchloridlösung auf dem Wasserbad (BAUER, B. 41, 505).

 Nadeln (aus verd. Alkohol). F: 129,5—130,5°. Leicht löslich in Alkohol und Aceton, weniger löslich in Benzol, schwer in Wasser.
- 6-Methoxy-3.3-diāthyl-phthalid $C_{13}H_{16}O_3=CH_3\cdot O\cdot C_6H_3 < CO_3 > 0$. B. Aus 6-Oxy-3.3-diāthyl-phthalid und Dimethylsulfat in alkal. Lösung (B., B. 31, 506). Tafeln (aus verd. Alkohol). F: 79—80°. Leicht löslich in Alkohol, Äther, Aceton und Chloroform, wenig in Petroläther, fast unlöslich in Wasser. Gibt beim Schmelzen mit Kali 3-Oxybenzoesäure.
- 6-Bensoyloxy-3.3-diāthyl-phthalid $C_{10}H_{16}O_4 = C_0H_0 \cdot C_0 \cdot C_0H_3 \cdot C_0 \cdot C_0H_0 \cdot C_0 \cdot C_0H_0 \cdot C_0 \cdot C_0H_0 \cdot C_0
- 5.7-Dinitro-6-oxy-3.3-diāthyl-phthalid C₁₂H₁₂O₂N₂, s. nebenstehende Formel. B. Beim Eintragen von 6-Oxy-3.3-diāthyl-phthalid in Salpeterschwefelsäure oder in rauchende Salpetersäure (B., B. 41, 506). Schwach braungelb gefärbte Nadeln (aus Alkohol). F: 169°. Leicht löslich in Äther, Alkohol und Eisessig, schwer in Ligroin. Die Lösungen in Äther und Alkohol sind gelb, die Lösungen in Ligroin und Eisessig farblos. Löslich in Alkalien, Ammoniak und Alkalicarbonaten mit gelber Farbe.
- 5.7 Dinitro 6 methoxy 3.8 diāthyl phthalid $C_{12}H_{14}O_7N_2 = CH_2 \cdot O \cdot C_6H(NO_2) < CO O B$. Aus 6-Methoxy-3.3-diāthyl-phthalid durch rauchende Salpetersäure (B., B. 41, 506). Krystalle (aus Alkohol). F: 131°. Leicht löslich in Aceton und Äther, löslich in Alkohol und Eisessig, schwer löslich in Ligroin.

6. Oxy-oxo-Verbindungen $C_{18}H_{16}O_3$.

- 1. β Oxy α . α dimethyl γ benzyl butyrolacton, β Oxy α . α dimethyl- δ -phenyl- γ -valerolacton $C_{13}H_{16}O_3 = OC \cdot O \cdot CH \cdot CH_2 \cdot C_6H_5$. B. Man oxydiert α . α -Dimethyl- γ -benzyl-vinylessigsäure (Bd. IX, S. 630) mit Kaliumpermanganat bei 40° , säuert mit Salzsäure an und behandelt mit Wasserdampf; daneben entstehen Dimethylmalonsäure und Benzoesäure (Blaise, Courtot, Bl. [3] 35, 367, 370). Krystalle (aus Benzol + Petroläther). F: 100°. Löslich in Alkohol und Äther.
- 2. 1¹-Oxy-3-oxo-1.4.4.7-tetramethyl-isochroman, 3-Oxo-4.4.7-trimethyl-1-oxymethyl-isochroman, Dehydroirenoxylacton, "Trioxydehydroiren" C₁₃H₁₆O₃, s. nebenstehende Formel. Zur Konstitution vgl. Tiemann, B. 31, 809 Anm. B. Man versetzt eine Lösung von Chromtrioxyd in Essigsäure allmählich mit einer Lösung von Iren (Bd. V, S. 506) in Eisessig und erwärmt nach mehreren Stunden 5—10 Minuten auf 50—60° (Tiemann, Krüger, B. 26, 2683). Rhomboeder (aus Benzol). F: 154—155°; nicht flüchtig mit Wasserdampf; unlöslich in kaltem Ligroin, leicht löslich in siedendem Alkohol, Äther, Chloroform und Benzol; löst sich in Soda (T., K.). Kaliumpermanganat oxydiert in alkal. Lösung zunächst zu Iregenondicarbonsäure C₁₃H₁₄O₅ (Bd. X, S. 872), dann zu Iregenontricarbonsäure C₁₃H₁₄O₅ (Bd. X, S. 929), zuletzt zu Joniregentricarbonsäure C₁₂H₁₄O₆ (Bd. IX, S. 983) (T., K.).
- 7. Hydrosantonid $C_{18}H_{20}O_3=(CH_3)_3C_{13}H_{13}O(:0)\cdot OH^{\,1})$. B. Beim Erhitzen von Hydrosantonsäure¹) (Bd. X, S. 948) mit der 4-fachen Menge Eisessig im Druckrohr auf 140° bis 150° (Cannizzaro, Valente, Atti della R. Accad. dei Lincei, Memorie della cl. di sc. fis., mat. e nat. [3] 2, 553; G. 8, 317). Krystalle (aus Äther). Rhombisch bisphenoidisch (STRÜVER, G. 8, 344; Z. Kr. 2, 612; vgl. Groth, Ch. Kr. 5, 474). F: 155—156°; löslich in Äther (Can., Val.). Wird von alkoh. Kalilauge in Hydrosantonsäure übergeführt (Can., Val.).

Acetylhydrosantonid $C_{17}H_{22}O_4 = (CH_3)_2C_{13}H_{13}O(:O)\cdot O\cdot CO\cdot CH_3$. B. Bei gelindem Erwärmen von Hydrosantonsäure (Bd. X, S. 948) mit überschüssigem Acetylchlorid am Rückflußkühler (Cannizzaro, G. 6, 343). Beim Erwärmen von Hydrosantonid mit Essigsäureanhydrid und Acetylchlorid (Can., Valente, Atti della R. Accad. dei Lincei, Memorie della cl. di sc. fis., mat. e nat. [3] 2, 553; G. 8, 317). — Nadeln (aus Äther). F: 204—204,5°; wenig löslich in Äther, fast unlöslich in Wasser (Can.). — Gibt beim Erhitzen mit alkoholischem Ammoniak im geschlossenen Rohr auf 120—130° Hydrosantonsäureamid(?) (Bd. X, S. 949) und Acetamid (Can.).

Benzoylhydrosantonid $C_{22}H_{24}O_4=(CH_3)_2C_{13}H_{13}O(:O)\cdot C\cdot C\cdot C_6H_5$. B. Beim Erhitzen von Hydrosantonsäure mit Benzoylchlorid auf dem Wasserbad (Cannizzaro, G. 6, 344). — Nädelchen (aus Äther). F: 156,5—157°. — Wird von Alkalien schwer, von Wasser überhaupt nicht zersetzt.

e) Oxy-oxo-Verbindungen $C_nH_{2n-12}O_3$.

1. Oxy-oxo-Verbindungen C.H.O.3.

1. 6-Oxy-4-oxo-[1.4-chromen]. 6-Oxy-chromon C₂H₆O₃, HO s. nebenstehende Formel. B. Durch Kochen von 6-Äthoxy-chromon mit Jodwasserstoffsäure (D: 1,96) (David, v. Kostanecki, B. 35, 2549). — Nädelchen (aus verd. Alkohol). F: 243—244°. Die Lösung in konz. Schwefelsäure fluoresciert hellgrün.

¹⁾ Die von Francesconi, Santonina e suci derivati [Rom 1904], S. 53 für Hydrosantonid H₂C·C(CH₃)·CH·CH₂·C O ist durch die nach dem Literatur-HO·HC·C(CH₃)·CH·CH₂·C·CH(CH₃)·CO

Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Untersuchungen von Clemo, Haworth, Walton, Soc. 1929, 2368; 1930, 1110; CL., Ha., Soc. 1930, 2579; RUZICKA, EICHENBERGER, Helv. chim. Acta 13, 1117; TSCHITSCHIBABIN, SCHTSCHUKIMA, B. 63, 2793; WEDEKIND, TETTWEILER, B. 64, 387, 1796 über die Konstitution des Santonins unhaltbar geworden; dasselbe gilt für die in Bd. X, S. 948 aufgeführte Hydrosantonsäure.

- 6-Äthoxy-chromon $C_{11}H_{10}O_3=C_2H_5\cdot O\cdot C_6H_3$ $O\cdot C_6H_3$
- 6-Acetoxy-chromon $C_{11}H_8O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot CH_3 \cdot CH$. Beim kurzen Kochen von 6-Oxy-chromon mit Essigsäureanhydrid und entwässertem Natriumacetat (D., v. K., B. 35, 2549). Nadeln (aus verd. Alkohol). F: 126—127°.
- 2. 7-Oxy-4-oxo-[1.4-chromen], 7-Oxy-chromon C₂H₆O₃, s. nebenstehende Formel. B. Durch längeres Kochen von 7-Äthoxy-chromon mit Jodwasserstoffsäure (D: 1,9) (v. Kostanecki, Paul, Tambor, B. 34, 2479). Nadelbüschel (aus Wasser). F: 218°. Die Lösung in konz. Schwefelsäure fluoresciert violettblau.
- 7-Methoxy-chromon $C_{10}H_8O_3 = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_3$. B. Durch Erhitzen von 7-Methoxy-chromon-carbonsäure-(2) (Syst. No. 2624) über den Schmelzpunkt (v. Kostanecki, de Ruijter de Wildt, B. 35, 865). Nadeln (aus Wasser). F: 110°.
- 7-Äthoxy-chromon $C_{11}H_{10}O_3 = C_2H_5 \cdot O \cdot C_6H_3 \cdot O C_H$. B. Durch Schmelzen von 7-Äthoxy-chromon-carbonsäure-(2) (Syst. No. 2624) (v. Kostanecki, Paul, Tambor, B. 34, 2478). Nadeln (aus verd. Alkohol). F: 120—121°. Die Lösung in konz. Schwefelsäure fluoresciert violettblau.
- 3. 3-Oxy-2-oxo-[1.2-chromen], 3-Oxy-cumarin $C_9H_6O_3 = C_6H_4$ CH: C·OH ist desmotrop mit 2.3-Dioxo-chroman, Bd. XVII, S. 487.
- 3-o-Kresoxy-cumarin $C_{16}H_{12}O_3=C_6H_4\cdot CH_3$ $CH:C\cdot O\cdot C_6H_4\cdot CH_3$. B. Bei 6-stündigem Erhitzen des Natriumsalzes der o-Tolylätherglykolsäure mit Salicylaldehyd und überschüsssigem Essigsäureanhydrid auf 150—160° (Curatolo, Persio, G. 24 I, 45). Blättchen (aus Alkohol). F: 100—101°. Sehr leicht löslich in Alkohol und Äther, unlöslich in Wasser. Beim Kochen mit konz. Kalilauge entsteht Cumarsäure (Bd. X, S. 288).
- 3-m-Kresoxy-cumarin $C_{16}H_{12}O_3=C_6H_4$ $CH:C\cdot O\cdot C_6H_4\cdot CH_3$ B. Aus m-Tolyläther-glykolsäure und Salicylaldehyd analog der des 3-o-Kresoxy-cumarins (C., P., G. 24 I, 45). Blättchen (aus Alkohol). F: 106—107°. Sehr leicht löslich in Alkohol und Ather, unlöslich in Wasser.
- 3-p-Kresoxy-cumarin $C_{16}H_{12}O_3 = C_6H_4$ $CH: C\cdot O\cdot C_6H_4\cdot CH_3$ B. Aus p-Tolyläther-glykolsäure und Salicylaldehyd analog der des 3-o-Kresoxy-cumarins (C., P., G. 24 I, 45). F: 113—114°.
- 3-Phenylsulfon-cumarin $C_{16}H_{10}O_4S=C_6H_4$ CH: $C\cdot SO_2\cdot C_6H_5$. B. Beim Erhitzen von Phenylsulfon-essigsäure-äthylester oder Phenylsulfon-essigsäure-amid mit Salicylaldehyd in alkoh. Lösung in Gegenwart von etwas Natriumäthylat (Tronger, Lux, Ar. 247, 643). Farblose Stäbchen oder Blättchen (aus Alkohol). F: 219°.
- 8 [4 Chlor phenylsulfon] cumarin $C_{15}H_{\bullet}O_{\bullet}ClS = C_{\bullet}H_{\bullet} Ch: C \cdot SO_{3} \cdot C_{6}H_{4}Cl$.

 B. Beim Erhitzen von [4 Chlor phenylsulfon] essigsäure äthylester oder [4 Chlor phenylsulfon] essigsäure amid mit Salicylaldehyd in alkoh. Lösung in Gegenwart von etwas Natriumäthylat (T., L., Ar. 247, 643). Stäbchen (aus Alkohol). F: 243°.
- 8-[4-Brom-phenylsulfon]-cumarin $C_{15}H_{\bullet}O_{4}BrS = C_{6}H_{\bullet}C_{0}C_{0}C_{0}$. B. Beim Erhitzen von [4-Brom-phenylsulfon]-essigsäure-äthylester oder [4-Brom-phenylsulfon]-essigsäure-amid mit Salicylaldehyd in alkoh. Lösung in Gegenwart von etwas Natriumäthylat (T., L., Ar. 247, 643). Stäbehen (aus Alkohol). F: 244°.

 $\textbf{3-[4-Jod-phenylsulfon]-cumarin} \ \ C_{16}H_{\bullet}O_{\bullet}IS = C_{0}H_{\bullet}\overset{CH:C\cdot SO_{3}\cdot C_{6}H_{\bullet}I}{O-CO}. \ \ \textit{B.} \ \ \text{Beim}$ Erhitzen von [4-Jod-phenylsulfon]-essigsäure-äthylester, dargestellt durch Erwärmen von

Erhitzen von [4-Jod-phenylsulfon]-essigsäure-äthylester, dargestellt durch Erwärmen von 4-jod-benzolsulfinsaurem Natrium mit Chloressigsäure-äthylester, oder von [4-Jod-phenylsulfon]-essigsäure-amid mit Salicylaldehyd in alkoh. Lösung in Gegenwart von etwas Natrium-äthylat (T., L., Ar. 247, 643). — Stäbchen (aus Alkohol). F: 248°.

- 4. 4-Oxy-2-oxo-[1.2-chromen], 4-Oxy-cumarin (Benzotetronsäure) $C_9H_6O_3=C_6H_4 {\color{red}C(OH):CH}\choose {\color{red}O-co}}$ ist desmotrop mit 2.4-Dioxo-chroman, Bd. XVII, S. 488.
- 4-Äthoxy-cumarin, Benzotetronsäure-äthyläther $C_{11}H_{10}O_3 = C_6H_4$ $C(O \cdot C_2H_5)$: CH. B. Beim Erhitzen des Silbersalzes der Benzotetronsäure mit überschüssigem Äthyljodid (Anschütz, A. 367, 198). Aus Benzotetronsäurechlorid (Bd. XVII, S. 331) oder Benzotetronsäurebromid (Bd. XVII, S. 332) und Natriumäthylat (A.). Gelbliche Blättchen (aus Äther). F: 136°. Kp₁₄: 174°. Leicht löslich in heißem Alkohol, Äther, Benzol, schwer in Petroläther, unlöslich in Wasser; unlöslich in kalter konzentrierter Alkalilauge; wird beim Kochen langsam gelöst unter Bildung von Benzotetronsäure.
- 4-Acetoxy-cumarin, O-Acetyl-benzotetronsäure $C_{11}H_8O_4=C_6H_4$ $C_{11}G_{12}G_{13}G_{14}G_{15}G_{$
- 6.8 Dichlor 4 äthoxy cumarin, 6.8 Dichlor bensotetronsäure- äthyläther $C_{11}H_8O_3Cl_3$, s. nebenstehende Formel. B. Bei 20 stündigem Erhitzen des Silbersalzes der 6.8 Dichlor benzotetronsäure mit Äthyljodid im geschlossenen Rohr auf 110° (A., A. 368, 29). Nadeln (aus Alkohol). F: 159°. Leicht löslich in Benzol und Äther, schwerer in Petroläther.
- 6.8-Dibrom-4-äthoxy-cumarin, 6.8-Dibrom-benzotetronsäureäthyläther $C_{11}H_8O_3Br_8$, s. nebenstehende Formel. B. Beim 12-stündigen Erhitzen des Silbersalzes der 6.8-Dibrom-benzotetronsäure mit Äthyljodid im geschlossenen Rohr auf 110—120° (A., A. 368, 34). Hellgelbe Nadeln (aus Alkohol). F: 202°. Leicht löslich in Äther, Eisessig, Benzol, schwer in Petroläther.
- 5. 6-Oxy-2-oxo-[1.2-chromen], 6-Oxy-cumarin C₉H₆O₃, so nebenstehende Formel. B. Beim Erhitzen von 10 g Hydrochinon 12 g Äpfelsäure und 20 g konz. Schwefelsäure auf 150—160°; man fällt mit Wasser (v. Pechmann, Welsh, B. 17, 1649). Beim Erhitzen von 6-Methoxy-cumarin mit Jodwasserstoffsäure (D: 1,27) (Biginelli, G. 24 II, 501). Nadeln (aus salzsäurehaltigem Wasser). F: 248—250° (v. P., W.), 249° (B.). Schwer löslich in Wasser, leicht in Alkohol und Eisessig (v. P., W.).
- 6-Methoxy-cumarin C₁₀H₈O₃ = CH₃·O·C₆H₃·O·C₆H₃·O·C₆H₃. B. Beim Kochen von 2 Tln. 5-Methoxy-salicylaldehyd (Bd. VIII, S. 244) mit 3 Tln. wasserfreiem Natriumacetat und 5 Tln. Essigsäureanhydrid (Tiemann, Müller, B. 14, 1996). Beim Erhitzen von 6-Methoxy-cumarin-carbonsäure·(4) (Syst. No. 2624) mit Eisenpulver auf 260—270° (Biginelli, G. 24 II, 500). Tafelförmige Blättchen (aus Wasser). F: 103° (T., M.), 102—103° (B.). Riecht in der Wärme deutlich nach Cumarin; fast unlöslich in kaltem Wasser, wenig löslich in heißem, leicht in Alkohol und Äther (T., M.).
- 6-Acetoxy-cumarin $C_{11}H_8O_4=CH_3\cdot CO\cdot O\cdot C_0H_3\cdot CH\cdot CH$. Beim Kochen von 6-Oxy-cumarin mit Essigsäureanhydrid (v. Pechmann, Welsh, B. 17, 1649). Nadeln (aus verd. Alkohol). F: 147°. Unlöslich in Wasser, leicht löslich in Alkohol, Äther, Benzol und Chloroform.
- **x-Nitro-6-methoxy-cumarin** $C_{10}H_7O_5N=CH_2\cdot O\cdot C_6H_2(NO_2) < CH: CH$. Durch Nitrierung von 6-Methoxy-cumarin (BIGINELLI, G. 27 II, 352). Gelbe Nadeln (aus Alkohol). F: 155—156°.

7 - Oxy - 2 - oxo - [1.2 - chromen], 7 - Oxy - cumarin, Umbelliferon C₂H₅O₃, s. nebenstehende Formel; nach diesem Schema werden in diesem Handbuch auch die vom Namen "Umbelliferon" Ho. 20 abgeleiteten Namen beziffert. – V. und B. Findet sich häufig in Umbelliferen (SOMMER, Ar. 148, 13; ZWENGER, A. 115, 17). Frei in Radix Sumbuli (TSCHIRCH, ≥c**h** KNITL, Ar. 237, 270); wird bei der trocknen Destillation des äther. Extraktes von Rad. Sumbuli erhalten (SOMMER, Ar. 148, 2). Frei und gebunden im Galbanum (CONRADY, Ar. 232, 105, 128); wird durch trockne Destillation des alkoh. Extrakts von Galbanum erhalten (So., Ar. 148, 8; Hlasiwetz, Grabowski, A. 139, 100), sowie durch längeres Erhitzen einer mit Chlorwasserstoff gesättigten, konzentrierten alkoholischen Lösung von Galbanum im Druckrohr auf 100° (MÖSSMER, A. 119, 260). Frei und gebunden im Sapagenharz (HOHENADEL, Ar. 233, 266); wird durch trockne Destillation von Sapagengummi erhalten (So., Ar. 148, 12). Umbelliferon entsteht ferner durch trockne Destillation des alkoh. Extraktes von Asa foetida (So., Ar. 148, 11) oder durch Behandlung von Asa foetida mit konz. Schwefelsäure (So., Ar. 148, 15). Durch trockne Destillation des alkoh. Extrakts von Rad. Levistici, Rad. Angelicae, Rad. Mei (So., Ar. 148, 12; J. 1859, 574) und von Rad. Imperatoriae (So., Ar. 148, 12), durch trockne Destillation von Gummi Opoponax (So., Ar. 148, 12). Umbelliferon entsteht bei der trocknen Destillation des alkoh. Extrakts von Cortex Mezerei (Seidelbast) (ZWENGER, A. 115, 11, 15). — In kleiner Menge bei 5—6-stündigem Erhitzen von 1 Tl. Resorcin mit 1 Tl. Zinkehlorid auf 135—145° (GRIMAUX, Bl. [3] 13, 900). Beim Erhitzen äquimolekularer Mengen von Äpfelsäure und Resorcin mit der doppelten Gewichtsmenge konz. Schwefelsäure (v. Pechmann, B. 17, 932; Bizzarri, G. 15, 33). Bei mehrtägigem Aufbewahren der Natriumverbindung des Formylessigsäureäthylesters mit Resorcin in alkoh. Lösung (v. P.E., A. 264, 284). Beim Erhitzen von Ferulasäure (Bd. X, S. 436) und Resorcin mit 55% giger Schwefelsäure im Rohr (Tschirch, Polášek, Ar. 235, 128). Beim Erhitzen von Umbelliferonmethyläther mit Jodwasserstoffsäure (Barth, Herzig, M. 10, 164). Bei kurzem Erhitzen von Umbelliferon-acetat mit verd. Kalilauge auf etwa 50° (Posen, B. 14, 2745). Durch Erhitzen von Umbelliferon carbonsäure-(3) (Syst. No. 2624) über den Schmelzpunkt (v. Pe., Graeger, B. 34, 386). — Nadeln (aus Wasser). Ist bei gewöhnlicher Temperatur geruchlos; bei höherer Temperatur tritt Geruch nach Cumarin auf (So.). F: 223—224° (TIEMANN, REIMER, B. 12, 994), 225° (v. Pe., B. 17, 933), 228° (v. Pe., Graeger). Sublimierbar (So.). Fast unlöslich in kaltem Wasser, löslich in ca. 100 Tln. siedendem Wasser, schwer löslich in Äther, leicht in Alkohol (Tie., Rei., B. 12, 994) und Chloroform; löslich in Salzsäure und Essigsäure (So.). Die farblose wäßrige Lösung fluoresciert blau (So.). Leicht löslich in Alkalien; diese Lösung ist in größerer Verdünnung farblos und zeigt eine intensive blaue Fluorescenz (v. Pr., B. 17, 933; vgl. So.). Auch eine Lösung von Umbelliferon in schwach ammoniakalischem Wasser fluoresciert stark blau; sie absorbiert fast vollständig die ultravioletten Strahlen, während sie die sichtbaren Strahlen durchläßt (WALTER, Ann. d. Physik [4] 17, 369 Anm.). Umbelliferon löst sich farblos in kalter konzentrierter Schwefelsäure und zeigt in dieser Lösung blaue Fluorescenz (So.; Conrady, Ar. 232, 112); beim Verdünnen mit Wasser verschwindet diese allmählich (So.). Setzt man der nicht fluorescierenden Lösung in rauchender Schwefelsäure konz. Schwefelsäure zu, so erscheint sofort die Fluorescenz der Lösung in gewöhnlicher wasserhaltiger Schwefelsäure (R. Meyer, B. 36, 2970). Umbelliferon gibt beim Eintragen von Natrium in die alkoh. Lösung ein gelbes, krystallinisches Natriumsalz (Kunz-Krause, B. 31, 1190). — Reduziert in der Hitze Silbernitrat- und Goldchloridlösung (So.; Zw.). Geht beim Behandeln mit Natriumamalgam in alkal. Lösung in 2.4-Dioxy-hydrozimtsäure über (Hl., Grab., A. 139, 101). Liefert in heißer wäßriger Lösung mit Bromwasser x.x.x-Tribromumbelliferon (Posen, B. 14, 2746; vgl. Mössmer, A. 119, 261). Beim Eintragen von Umbelliferon in ein Gemisch aus rauchender Schwefelsäure und entröteter rauchender Salpetersäure entsteht 3.6.8(?)-Trinitro-umbelliferon (Posen; vgl. Clayton, Soc. 97 [1910], 1396). Die Lösung von Umbelliferon in kalter Alkalilauge ist kurze Zeit beständig; erwärmt man die Lösung einige Zeit auf 60—70°, so entsteht 2.4-Dioxy-zimtsäure (Tie., Rei.; Posen). Kochen der Lösung in starker Kalilauge führt zu Resorcin (HL., B. 4, 552). Bei der Kalischmelze werden Resorcin und Resorcin-carbonsäure (4) erhalten (Tie., Rei.; Tie., Parrisius, B. 13, 2359). Beim Kochen von Umbelliferon mit Methyljodid und methylalkoholischer Kalilauge entsteht Umbelliferon-methyläther (Tie., Rei.). Beim Erhitzen mit Essigsäureanhydrid oder Acetylchlorid entsteht Umbelliferon-acetat (HL.; Tie., Rei.).

7-Methoxy-cumarin, Umbelliferon-methyläther $C_{10}H_8O_3$, s. nebenstehende Formel. V. In den Blättern des Bruchkrautes (Herniaria hirsuta L.) (Barth, Herzig, M. 10, 162). — B. Man kocht

eine Lösung von 4 Tln. Umbelliferon und 1,4 Tln. Kali in 100 Tln. Methylalkohol mit 10 Tln. Methyljodid (Tiemann, Reimer, B. 12, 996). Entsteht ferner durch trockne Destillation des Silbersalzes der 7-Methoxy-cumarin-carbonsäure-(4) (Syst. No. 2624) (v. Pechmann, Graeger, B. 34, 383). — Blättchen (aus Wasser oder verd. Methylalkohol). Riecht beim Erhitzen stark cumarinartig (T., R.). F: 1140 (T., R.), 117—1180 (Ba., H.). 1 Liter Wasser von gewöhnlicher Temperatur löst 0,133 g (Ba., H.); leicht löslich in Alkohol und Äther; leicht löslich in konz. Schwefelsäure mit blauer Fluorescenz (T., R.). Umbelliferon-methyläther löst sich in Alkalilauge und wird aus dieser Lösung nach stundenlangem Kochen durch Säure unverändert gefällt (T., R.). Beim Erhitzen von Umbelliferon-methyläther mit 5—6 Tln. alkoh. Kali im geschlossenen Rohr auf 150—160° entsteht 2-Oxy-4-methoxy-zimtsäure (Ba., H.). Läßt man 5 g Umbelliferon-methyläther mit einer Lösung von 4 g Ätzkali in 50 ccm Methylalkohol und 10 g Methyljodid 12—18 Stunden in der Kälte stehen, so erhält man die α-Form der 2.4-Dimethoxy-zimtsäure (WILL, B. 16, 2115; W., Beck, B. 19, 1778). Dampft man Umbelliferon-methyläther mit einer Lösung von 2 Mol.-Gew. Atznatron zur Trockne, erhitzt den Rückstand mit 2 Mol.-Gew. Methyljodid in methylalkoholischer Lösung 3 Stunden in Druckrohr auf 100° und verseift den entstandenen Methylester durch Kochen mit alkoh. Kali, so erhält man die β-Form der 2.4-Dimethoxy-zimtsäure (T., W., B. 15, 2079, 2080).

- 7-Äthoxy-cumarin, Umbelliferon-äthyläther $C_{11}H_{10}O_3 = C_2H_5 \cdot O \cdot C_6H_3 \cdot O \cdot C_6$.

 B. Bei 2—3-stündigem Kochen von 25 g Umbelliferon mit 8,65 g Kali, 30 g Äthyljodid und Alkohol (Will, Beck, B. 19, 1779). Blättchen. F: 88°. Leicht löslich in Alkohol, Benzol und Eisessig. Nicht flüchtig mit Wasserdampf.
- 7 Methoxy cumarin oxim, Umbelliferon methyläther oxim $C_{10}H_9O_3N=CH:CH$ CH:CH $O-C:N\cdot OH$ $O-C:N\cdot OH$ $O-C:N\cdot OH$ $O-C:N\cdot OH$ $O-C:N\cdot OH$
 Nadeln (aus Wasser). F: 138°. Leicht löslich in siedendem Wasser, Alkohol und Äther.
- 7-Methoxy-cumarin-phenylhydrazon, Umbelliferon-methyläther-phenylhydrazon $C_{16}H_{14}O_2N_2=CH_3\cdot O\cdot C_6H_3$ CH:CH CH:CH B. Bei 14-tägigem Erhitzen von 2-Thio-umbelliferon-methyläther mit Phenylhydrazin in Alkohol (Aldringen, B. 24, 3466). Gelbe Nadeln (aus Alkohol). F: 115°. Löslich in Alkohol, Äther und Benzol.
- 3 Brom 7 methoxy cumarin, 3 Brom umbelliferon-methyläther C₁₀H₂O₃Br, s. nebenstehende Formel. B. Man trägt allmählich die Lösung von 5 g Brom in Schwefelkohlenstoff in eine Lösung von 5 g Umbelliferon-methyläther in 1 l Schwefelkohlenstoff ein, verdunstet den Schwefelkohlenstoff und krystallisiert den Rückstand aus Alkohol um (Will, Beck, B. 19, 1782). 1-adeln (aus Alkohol). Riecht beim Erhitzen cumarinartig. F: 154—154,5°. Ziemlich löslich in heißem Alkohol und Äther, sehr schwer löslich in kaltem Alkohol, unlöslich in Wasser. Die verdünnte alkoholische Lösung zeigt grüne Fluorescenz. Liefert mit konzentriertem alkoholischem Kali bei Siedehitze 6-Methoxy-cumarilsäure (Syst. No. 2614).
- 3-Brom -7-äthoxy-cumarin, 3-Brom -umbelliferon-äthyläther $C_{11}H_{\phi}O_{3}Br=C_{2}H_{\delta}\cdot O\cdot C_{\delta}H_{3}\underbrace{CH:CBr}_{O-CO}$. B. Analog 3-Brom-umbelliferon-methyläther (W., B., B. 19, 1784). Tafeln. Riecht beim Erhitzen cumarinartig. F: 115,5°. Ziemlich leicht löslich in siedendem Alkohol und Äther. Die verdünnte alkoholische Lösung fluoresciert intensiv violett.

- **x.x** Dibrom 7 methoxy cumarin, x.x Dibrom umbelliferon methyläther $C_{10}H_2O_3Br_2$. B. Aus Umbelliferon-methyläther und überschüssigem Brom in Eisessig (W., B., B. 19, 1785). Nadeln (aus Alkohol). F: 249—251°. Sehr schwer löslich in Alkohol.
- x.x-Dibrom-7-äthoxy-cumarin, x.x-Dibrom-umbelliferon-äthyläther $C_{11}H_8O_3Br_2$. B. Analog x.x-Dibrom-umbelliferon-methyläther (W., B., B. 19, 1786). — F: 216°.
- X.X.X-Tribrom-7-oxy-cumarin, X.X.X-Tribrom-umbelliferon C₉H₂O₃Br₃. B. Man versetzt eine heiße, wäßrige Umbelliferonlösung mit Bromwasser (POSEN, B. 14, 2746; vgl. MÖSSMER, A. 119, 261). Krystalle (aus verd. Alkohol). F: 194°; löslich in Alkohol, Äther und Benzol (P.). Die alkoh. Lösung hat eine grünlichgelbe Fluorescenz (M.; P.). Die alkalische Lösung zersetzt sich schon in der Kälte (P.).
- 8.6.8 (P)-Trinitro-7-oxy-cumarin, 3.6.8 (P)-Trinitro-umbelliferon C₂H₂O₂N₃, s. nebenstehende Formel¹). B. Man trägt allmählich Umbelliferon in ein Gemisch von 22 Tln. rauchender Schwefelsäure und 15 Tln. entröteter rauchender Salpetersäure ein, fällt die Lösung (P)O₂N mit Wasser und krystallisiert den Niederschlag aus Benzol um (Posen, B. 14, 2747). Gelbe Nadeln mit 1C₂H₄ (aus Benzol). Verliert an der Luft allmählich Benzol; bei 100° entweicht alles Benzol. F: 216°. Löslich in heißem Wasser und Alkohol. Zersetzt sich in alkal. Lösung.
- 7-Methoxy-2-thio-cumarin, 2-Thio-umbelliferon-methyläther C₁₀H₈O₂S, s. nebenstehende Formel. B. Aus Umbelliferon-methyläther und Phosphorpentasulfid bei 120° (ALDRINGEN, B. 24, 3465). Gelbe Nadeln (aus verd. Alkohol). F: 114°. Löslich in Alkohol, Äther, Benzol, fast unlöslich in Wasser.
- 7. 8-Oxy-2-oxo-[1.2-chromen], 8-Oxy-cumarin C₉H₆O₃, s. nebenstehende Formel. B. Beim Erhitzen von 1 Mol.-Gew. Brenzcatechin mit 1 Mol.-Gew. Äpfelsäure und der doppelten Gewichtsmenge konz. Schwefelsäure; man gießt die Flüssigkeit unter Kühlung in die 6-fache Menge Ho Wasser, fügt vorsichtig Barytwasser hinzu und dampft das mit Kohlendioxyd behandelte Filtrat ein; der Rückstand wird mit absol. Alkohol ausgezogen (Bizzabei, G. 15, 34). Nadeln (aus verd. Alkohol). Schmilzt unter Zersetzung gegen 280—285°. Sehr wenig löslich in kaltem Wasser, leicht in kochendem, löslich in Alkohol und Essigsäure, unlöslich in Äther, Chloroform und Benzol; löslich in Kalilauge. Wird von Salpetersäure blutrot gefärbt. In der wäßr. Lösung erzeugt Eisenchlorid eine tiefgrüne Färbung.
- 8. 2-Oxy-3¹-oxo-3-methyl-cumaron, 2-Oxy-3-formyl-cumaron $C_9H_6O_3=C_6H_4 < C(CHO) > C \cdot OH$.
- 2-Oxy-3'-oxo-8-methyl-thionaphthen, 2-Oxy-3-formyl-thionaphthen, 2-Oxy-thionaphthen-aldehyd-(3) $C_9H_6O_2S = C_6H_4 < C(CHO) > C \cdot OH$ ist desmotrop mit 2.3'-Dioxo-3-methyl-thionaphthendihydrid, Bd. XVII, S. 489.
- 9. 1^1 -Oxy-3-oxo-1-methylen-phthalan, 3-Oxymethylen-phthalid $C_9H_6O_3=C_9H_4$ - C_1 : CH-OH) 0 ist desmotrop mit 3.11-Dioxo-1-methyl-phthalan, Bd. XVII, S. 490.
- 3-Methoxymethylen-phthalid $C_{10}H_8O_3 = C_0H_4 \cdot C(:CH \cdot O \cdot CH_3) \cdot O$. B. Durch Sättigen der methylalkoholischen Lösung von 3.1¹-Dioxo-1-methyl-phthalan mit Chlorwasserstoff (Gabriel, B. 40, 75). Nadeln (aus heißem Alkohol). F: 75°.
- 3-Phenoxymethylen-phthalid $C_{15}H_{10}O_3 = C_6H_4$ $C(:CH\cdot O\cdot C_6H_5)$ O. B. Entsteht beim Kochen von 1 Tl. Phthalsäureanhylio 1 Tl. Phenoxyessigsäure und 0,1 Tl. entwässertem Natriumacetat (Gabriel, B. 14, 922; Privatmitteilung). Nadeln (aus Alfohol). F: 142—143,5°. Geht bei längerem Kochen mit Kalilauge in ω -Phenoxy-acetophenon-carbonsäure-(2) (Bd. X, S. 956) über.
- **3-p-Kresoxymethylen-phthalid** $C_{16}H_{12}O_3 = C_6H_4$ $C(:CH \cdot O \cdot C_6H_4 \cdot CH_3) > 0$. B. Beim Kochen von Phthalsäureanhydrid mit p-Kresoxyessigsäure und entwässertem Natriumacetat

¹⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von CLAYTON, Soc. 97, 1396.

(Gabriel, B. 14, 924; Privatmitt.). — Gelbliche Blättchen und Nadeln (aus Alkohol). F: 173—174°. Schwer löslich in siedendem Alkohol.

Bis-[phthalidyliden-methyl]-äther $C_{18}H_{10}O_5 = \left(OC < \begin{matrix} C_6H_4 \\ O \end{matrix} > C:CH \right)_2O$. B. Durch Erwärmen von 3.1^1 -Dioxo-1-methyl-phthalan mit rauchender Jodwasserstoffsäure und etwas Jodphosphonium auf $50-60^\circ$ (Gabriel, B. 40, 74). — Sternförmig gruppierte Nadeln (aus siedendem Alkohol). Schmilzt bei 240° unter Schäumen und Bräunung. Die rotgelbe Lösung in Alkalilauge wird beim Erwärmen hellgelb.

2. Oxy-oxo-Verbindungen $C_{10}H_8O_3$.

- 1. 3-Oxy-5-oxo-2-phenyl-furan-dihydrid-(2.5), $\beta-Oxy-\gamma-phenyl-\Delta^{\alpha,\beta-crotonlacton}$ $C_{10}H_{8}O_{3}= \frac{HC}{OC\cdot O\cdot CH\cdot C_{6}H_{5}}$ ist desmotrop mit 3.5-Dioxo-2-phenyl-furantetrahydrid, Bd. XVII. 8. 492.
- 2. 4-Oxy-2-oxo-3-phenyl-furan-dihydrid-(2.5), β -Oxy- α -phenyl- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{10}H_8O_8 = \begin{array}{c} HO \cdot C = C \cdot C_0H_5 \\ H_2\dot{C} \cdot O \cdot \dot{C}O \end{array}$ ist desmotrop mit 2.4-Dioxo-3-phenyl-furantetrahydrid, Bd. XVII, S. 492.
- 3. 6-Oxy-4-oxo-2-methyl-[1.4-chromen], 6-Oxy2-methyl-chromen C₁₀H₈O₃, s. nebenstehende Formel. B. Durch
 längeres Kochen von 2.5-Diäthoxy-benzoylaceton mit starker Jodwasserstoffsäure (Crivelli, v. Kostanecki, B. 33, 2513). Blaßgelbe Prismen (aus Alkohol). F: 247°. Die Lösung in konz. Schwefelsäure ist farblos und fluoresciert grünlichblau.
- **6-Acetoxy-2-methyl-chromon** $C_{12}H_{10}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot CH_3$. Nadeln (aus verd. Alkohol). F: 99° (Cr., v. K., B. 33, 2514).
- 4. 7-Oxy-4-oxo-2-methyl-[1.4-chromen], 7-Oxy-2-methyl-chromon (ursprünglich als., De hydroacetylresaceto-phenon" bezeichnet) C₁₀H₈O₃, s. nebenstehende Formel. B. Beim Kochen von 2.4-Diäthoxy-benzoylaceton mit konz. Jodwasserstoffsäure, neben 7-äthoxy-2-methyl-chromon (s. u.); man trägt das Reaktionsprodukt in Natriumsulfitlösung ein, zieht den Niederschlag mit sehr verd. Alkohol aus, läßt krystallisieren und versetzt zur Lösung des 7-Oxy-2-methyl-chromons mit Natronlauge; 7-Äthoxy-2-methyl-chromon bleibt ungelöst (Block, v. Kostanecki, B. 33, 473). Beim Kochen von 7-Äthoxy-2-methyl-chromon mit konz. Jodwasserstoffsäure (B., v. K., B. 33, 474). Beim Kochen von 7-Oxy-2-methyl-3-acetyl-chromon(S.107) mit Sodalösung (Tahara, B.25, 1302; v. K., Różycki, B.34, 107). Krystallkruste (aus Alkohol). F: 250° (T.), 249—250° (B., v. K.). Fast unlöslich in heißem Wasser, ziemlich leicht in heißem Alkohol und Eisessig (T.), sehr schwer in Äther (v. K., R.). Die farblose Lösung in konz. Schwefelsäure fluoresciert blauviolett (B., v. K.). Eisenchlorid färbt die alkoh. Lösung nicht (v. K., R.). Durch längeres Kochen mit alkoh. Kali erfolgt Spaltung in Resacetophenon, Essigsäure und etwas β-Resorcylsäure (T.).
- 7-Äthoxy-2-methyl-chromon $C_{12}H_{12}O_3 = C_2H_3 \cdot O \cdot C_6H_3 \subset CO \cdot CH_3$. B. Durch Kochen von 7-Oxy-2-methyl-chromon mit Kali und Äthyljodid in Alkohol (v. Kostanecki, Różycki, B. 34, 108). Eine weitere Bildung siehe im Artikel 7-Oxy-2-methyl-chromon (s. o.). Spieße (aus verd. Alkohol). F: 123—124°; die Lösung in konž. Schwefelsäure

fluoresciert violettblau (Bloch, v. K., B. 33, 473). — Beim Kochen mit alkoh. Natriumäthylatlösung entsteht Resacetophenon-4-äthyläther (Bd. VIII, S. 268) (B., v. K.).

- 7-Acetoxy-2-methyl-chromon $C_{12}H_{10}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot O C \cdot CH_3$. B. Durch kurzes Kochen von 7-Oxy-2-methyl-chromon mit Essigsäureanhydrid und entwässertem Natriumacetat (v. Kostanecki, Różycki, B. 34, 108). Kryställchen (aus verd. Alkohol). Erstart bei 94—95°.
- 5. 7-Oxy-2-oxo-3-methyl-[1.2-chromen], 7-Oxy-3-methyl-cumarin, 3-Methyl-umbelliferon C₁₀H₆O₃, s. nebenstehende Formel. B. Aus dem Natriumsalz des α-Formyl-propionsäure-äthylester und Resorcin in alkoh. Lösung; man säuert nach 3-tägigem Stehen schwach an (Michael, B. 38, 2099). Prismatische Nadeln (aus Alkohol). F: 217—219°. Sohwer löslich in heißem Wasser, ziemlich leicht in kaltem Alkohol. Löslich in Alkalien mit blauer Fluorescenz; wird aus der alkal. Lösung durch Säuren unverändert gefällt.
- 6. 6-Oxy-2-oxo-4-methyl-[1.2-chromen], 6-Oxy-4-methyl-cumarin C₁₀H₈O₃, s. nebenstehende Formel. B. Aus Hydrochinon und Acetessigester durch konz. Schwefelsäure unter zeitweiliger Kühlung mit Wasser (Borsche, B. 40, 2732). Schwach gelbliche Kryställchen (aus 50%) gigem Alkohol). F: 243°. Liefert beim Erwärmen mit Zinkstaub und Natronlauge auf dem Wasserbade 2.5-Dioxy-β-methyl-zimtsäure.
- **6-Acetoxy-4-methyl-cumarin** $C_{12}H_{10}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot COH_3 \cdot COH_3 \cdot B$. Beim Kochen von 6-Oxy-4-methyl-cumarin mit der 5-fachen Menge Essigsäureanhydrid (B., B. 40, 2733). Nadeln (aus verd. Alkohol). F: 137—138°.
- 5.7 Dibrom 6 oxy 4 methyl cumarin C₁₀H₆O₃Br₂, s. nebenstehende Formel. B. Beim Versetzen einer warmen Lösung von 6-Oxy 4 methyl cumarin und Natriumacetat in Eisessig mit einer Brom Essigsäurelösung (B., B. 40, 2733). Krystalle (aus verd. Alkohol). F: 202—203°.
- 5-Nitro-6-cxy-4-methyl-cumarin C₁₀H₁O₅N, s. nebenstehende Formel ¹). B. Zu einer Lösung von 5 g 6-Oxy-4-methyl-cumarin in 50 g konz. Schwefelsäure fügt man unter guter Kühlung eine Mischung von 2 g Salpetersäure (D: 1,5) und 5 g konz. Schwefelsäure; daneben entsteht 5.7-Dinitro-6-oxy-4-methyl-cumarin (B., B. 40, 2733). Gelbliche Nädelchen (aus verd. Alkohol). Färbt sich oberhalb 200° dunkel und zersetzt sich bei ca. 210°.
- 5-Nitro-6-benzoyloxy-4-methyl-cumarin $C_{17}H_{11}O_6N = C_6H_5\cdot CO\cdot O\cdot C_6H_2(NO_2) \stackrel{C(CH_3):CH}{\bigcirc CO}$. B. Aus 5-Nitro-6-oxy-4-methyl-cumarin in absol. Alkohol und Benzoylchlorid in Gegenwart von Natriumäthylat (B., B. 40, 2733). Nadeln (aus siedendem Alkohol). F: 166—167°.
- 5.7-Dinitro-6-oxy-4-methyl-cumarin $C_{10}H_{\dot{b}}O_{7}N_{2}$, s. nebenstehende Formel. B. Wird Hauptprodukt bei der Nitrierung des 6-Oxy-4-methyl-cumarins (vgl. 5-Nitro-6-oxy-4-methyl-cumarin), wenn man zu viel Salpetersäure anwendet oder nicht sorgfältig genug kühlt (B., B. 40, 2734). Orangegelbe Nadeln (aus warmer Essigsäure). F: 219°. Ziemlich leicht löslich in warmer Essigsäure, fast unlöslich in siedendem Alkohol; löslich in ätzenden oder kohlensauren Alkalien mit blauvioletter Farbe.
- 7. 7-Oxy-2-oxo-4-methyl-[1.2-chromen], 7-Oxy-4-methyl-cumarin, 4-Methyl-umbelliferon C₁₀H₈O₃, s. nebenstehende Formel. B. Bei etwa 1-stdg. Erhitzen von 60 g Resorcin mit 60 g bei 150° getrockneter Citronensäure und 150 g konz. Schwefelsäure auf 180° (Wittenberg, J. pr. [2] 24, 125; vgl. Fraude, B. 14, 2558; v. Pechmann, B. 17, 931). Beim Aufbewahren von Resorcin mit Natriumacetessigester in alkoh. Lösung (Michael, J. pr. [2] 35, 454). Beim Eingießen eines äquimolekularen Gemisches von Resorcin und Acetessigester in die 4-bfache Menge konz. Schwefelsäure unter Kühlung (v. P., Duisberg, B. 16, 2122). Beim Erhitzen von Resorcin und Acetessigester mit Zinkchlorid auf 150° (Schmid, J. pr. [2] 25, 82; M., Am. 5, 434) oder mit Phosphoroxychlorid (W., J. pr. [2] 26, 67).

¹⁾ Zu dieser Formulierung vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von FRIES, LINDEMANN, A. 404, 57.

Durch 10-stdg. Stehenlassen einer bei 0° hergestellten Lösung äquimolekularer Mengen Diacetessigester und Resorcin in der 5-fachen Menge konz. Schwefelsäure (v. P., Haner, B. 24, 356). Durch ½, stdg. Erwärmen einer Lösung von Acetylmalonsäureditthylester und Resorcin in konz. Schwefelsäure auf 30—40° (v. P., Ha., B. 34, 357). Beim Erhitzen von Umbelliferonessigsäure-(4) (Syst. No. 2624) über den Schmelzpunkt (M., J. pr. [2] 37, 470; v. P., A. 261, 167, 169; vgl. Dev, Soc. 107 [1915], 1610). Man diazotiert 7-Amino-4-methyl-umbelliferon (Syst. No. 2643) in stark schwefelsaurer Lösung mit Natriumnitrit und erhitzt sodann zum Kochen (v. P., Schwarz, B. 32, 3698). — Nadeln (aus Alkohol). Krystallisiert aus Wasser mit 1 H₂O; verliert das Krystallwasser bei 110° (v. P., A. 261, 169) oder über Schwefelsäure (SCHMD). F: 185° (W. J. pr. [2] 24, 126), 185—186° (v. P., A. 261, 169). Destilliert in kleinen Mengen unzersetzt (v. P., Duis.). Fast unlöslich in kaltem, schwer löslich in kochendem Wasser (W., J. pr. [2] 24, 126), in Chloroform und Äther, leicht in Alkohol und Eisessig; wenig löslich in kohlensauren Alkalien, leicht in Ammoniak und kaustischen Alkalien; scheidet sich beim Kochen der ammoniakalischen Lösung unverändert aus (v. P., Duis.), B. 16, 2123). Die farblosen Lösungen in Alkalilauge (W., J. pr. [2] 24, 126) und in konz. Schwefelsäure (v. P., Duis.) zeigen blaue Fluorescenz. 4-Methyl-umbelliferon gibt keine Färbung mit Eisenchlorid (v. P., Duis.). — Reduziert beim Kochen ammoniakalische Silberlösung (v. P., Duis.). Liefert bei der Reduktion mit Natriumamalgam in alkal. Lösung das Bis-[7-oxy-4-methyl-umbelliferons (S. 22) (v. P., Cohen, B. 17, 2133; Fries, Lindemann, A. 404 [1914], 53, 63). Gibt, mit 1 Mol.-Gew. Salpetersäure in Eisessig (v. P., C., B. 17, 2136) oder in konz. Schwefelsäure (v. P., Obermiller, B. 84, 666) unter Kühlung behandelt, 8-Nitro-4-methyl-umbelliferon. (E. 22) (v. P., Cohen, B. 17, 2137). Zersetzt sich beim Kochen mit konz. Kalilauge unter Abspaltung von Resorcin (v. P., Duis.) W., J

- 7-Methoxy-4-methyl-cumarin, 4-Methyl-umbelliferon-methyläther $C_{11}H_{10}O_3 = C(CH_3) \cdot C_6H_3 \cdot O \cdot O \cdot C_6H_3 \cdot O \cdot O \cdot C_6H_3 \cdot$
- 7 Acetoxy 4 methyl cumarin, 4 Methyl umbelliferon acetat $C_{12}H_{16}O_4=CH_3\cdot CO\cdot O\cdot C_6H_3\cdot CH$ CH₃·CO·O·C₆H₃·CH

 B. In geringer Menge durch längeres Kochen von Resacetophenon mit Essigsäureanhydrid und Natriumacetat, neben 7-Oxy-2-methyl-3-acetyl-chromon (,,Dehydrodiacetylresacetophenon", 8. 107) und anderen Produkten (Tahara, B. 25, 1305; vgl. v. Kostanecki, Różvoki, B. 34, 105). Beim Kochen von 4-Methyl-umbelliferon mit Essigsäureanhydrid (Wittenberg, J. pr. [2] 24, 127; v. Pechmann, Duisberg, B. 16, 2124) in Gegenwart von Natriumacetat (Michael, Am. 5, 435). Nadeln (aus Alkohol oder Äther). F: 150° (W.; v. P., D.). Schwer löslich in Wasser, ziemlich leicht in Alkohol (W.).
- 3 Chlor 7 oxy- 4 -methyl cumarin, 3 Chlor 4 methyl-umbelliferon C₁₀H₂O₂Cl, s. nebenstehende Formel. B. Durch Zugeben von 160—170 cm³ konz. Schwefelsäure bei 0—5° zu einer Mischung von 22 g Resorcin und 33 g α-Chlor-acetessigsäure-äthylester und Ausfällen der Lösung nach 24-stdg. Stehen mit Wasser (v. Pechmann, Hanke, B. 34, 357). Kryställchen (aus verd.

Alkohol) mit ½ H₂O, die bei 105—110° wasserfrei werden und bei 236° schmelzen. Ziemlich schwer löslich. Die gelben Lösungen in Alkalien fluorescieren grünblau, die Lösung in viel konz. Schwefelsäure blauviolett. — Durch Kochen mit der 5-fachen Menge 10°/oiger Natronlauge entsteht 6-Oxy-3-methyl-cumaron-carbonsäure-(2) (Syst. No. 2614); beim Kochen mit Soda, Ammoniak oder etwas weniger als 3 Mol.-Gew. Natronlauge entsteht daneben 6-Oxy-3-methyl-cumaron (Bd. XVII, S. 122).

- 8-Chlor-7-benzoyloxy-4-methyl-cumarin, 3-Chlor-4-methyl-umbelliferon-benzoat $C_{17}H_{11}O_4Cl = C_6H_5\cdot CO\cdot O\cdot C_6H_3\cdot CO$. B. Aus 3-Chlor-4-methyl-umbelliferon und Benzoylchlorid nach Schotten-Baumann (v. P., H., B. 34, 358). Blättchen (aus Alkohol). F: 163°.
- 6 (P) Nitro 7 methoxy 4 methyl cumarin, 6 (P) Nitro 4-methyl-umbelliferon-methyläther $C_{11}H_2O_5N$, s. nebenstehende Formel. B. Durch Eintragen von Salpeterschwefelsäure in eine Lösung von 4 Methyl umbelliferon methyläther in konz. Schwefelsäure, neben 8-Nitro-4-methyl-umbelliferon-methyläther; man trennt die Verbindungen durch Nitrobenzol-Alkohol, in dem die 8-Nitroverbindung leichter löslich ist (v. PECHMANN, OBERMILLER, B. 34, 671).

 Blaßgelbe Nadeln. F: 281—282°.
- 8-Nitro-7-oxy-4-methyl-cumarin, 8-Nitro-4-methyl-umbelliferon C₁₀H₇O₅N, s. nebenstehende Formel. B. Bei Zusatz von 1 Mol.-Gew. rauchender Salpetersäure zu einem gut gekühlten Gemisch aus 1 Tl. 4-Methyl-umbelliferon und 3 Tln. Eisessig (v. Pech-O₅N MANN, Cohen, B. 17, 2136). Bei Zusatz von Salpeterschwefelsäure (1 Mol.-Gew. HNO₃) zu einer Lösung von 4-Methyl-umbelliferon in konz. Schwefelsäure unterhalb 0° (v. P., OBER-MILLER, B. 34, 666). Hellgelbe Nädelchen (aus Nitrobenzol) vom Schmelzpunkt 228—229° (v. P., O.). Citronengelbe Prismen (aus 2 Tln. Nitrobenzol + 1 Tl. Alkohol) vom Schmelzpunkt 255° (v. P., O.). Unlöslich in Wasser, schwer in Alkohol, Benzol und Eisessig (v. P., C.). Leicht löslich in ätzenden und kohlensauren Alkalien mit gelber Farbe ohne Fluorescenz (v. P., O.). Durch längeres Erhitzen mit konz. Ammoniak im geschlossenen Rohr auf höchstens 80—85° entsteht 2-Nitro-resorcin (v. P., O.).
- 8-Nitro-7-methoxy-4-methyl-cumarin, 8-Nitro-4-methyl-umbelliferon-methyläther $C_{11}H_{\bullet}O_{\delta}N=CH_{3}\cdot O\cdot C_{\delta}H_{\bullet}(NO_{2})$ C(CH₃): CH O Durch 2-stdg. Erhitzen von 8-Nitro-4-methyl-umbelliferon mit äquimolekularen Mengen Methyljodid und Natriummethylat in methylalkoholischer Lösung im Druckrohr auf 100° (v. Pechmann, Obermiller, B. 34, 670). Eine weitere Bildung siehe im Artikel 6(?)-Nitro-4-methyl-umbelliferon-methyläther. Gelbliche Kryställchen (aus Eisessig). F: 230°. Gibt bei der Reduktion mit Zinnchlorür und Salzsäure 8-Amino-4-methyl-umbelliferon-methyläther (Syst. No. 2644).
- 8-Nitro-7-acetoxy-4-methyl-cumarin, $C_{12}H_9O_9N=CH_3\cdot CO\cdot O\cdot C_6H_2(NO_9)$ COCCH₃):CH Oferon 15 Minuten mit Essigsäureanhydrid und Natriumacetat (v. P., O., B. 34, 672). Blättchen (aus verd. Essigsäure). F: 165—166°. Sohwer löslich in Alkohol. Liefert bei der Reduktion mit Zinnchlorür und Salzsäure in Eisessig 8-Acetamino-4-methyl-umbelliferon (Syst. No. 2644).
- 6 (?).8-Dinitro-7-oxy-4-methyl-cumarin, 6 (?).8-Dinitro-4-methyl-umbelliferon C₁₀H₆O₇N₃, s. nebenstehende Formel. B.
 Man versetzt eine Suspension von 4-Methyl-umbelliferon in Eisessig mit überschüssiger rauchender Salpetersäure und erwärmt schließlich einige Zeit auf dem Wasserbad (v. PECHMANN, COHEN, B. 17, 2137). Goldgelbe Nadeln (aus verd. Alkohol). F: 220°. Leicht löslich in Alkohol und Eisessig, schwer in Chloroform, Schwefelkohlenstoff und Benzol.
- 8. 7-Oxy-2-oxo-5-methyl-[1.2-chromen], 7-Oxy-5-methyl-cumarin, 5-Methyl-umbelliferon, Homoumbelliferon $C_{10}H_{2}O_{3}$, s. nebenstehende Formel. B. Entsteht beim Erhitzen von 1 Mol.-Gew. Äpfelsäure mit 1 Mol.-Gew. Orein und der doppelten

Gewichtsmenge konz. Schwefelsäure (v. Pechmann, Welsh, B. 17, 1649). — Gelbliche Tafeln (aus Aceton). F: 248°. Unlöslich in Wasser, Chloroform und Benzol, löslich in Alkohol, Aceton und Eisessig. Die Lösungen in Alkalien und in konz. Schwefelsäure fluorescieren blau. — Zerfällt beim Schmelzen mit Kali in Orcylaldehyd und Essigsäure.

- 7-Acetoxy-5-methyl-cumarin, 5-Methyl-umbelliferon-acetat, Homoumbelliferon-acetat $C_{12}H_{10}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_2(CH_3) \cdot O CO \cdot B$. Bei 5-stdg. Kochen von 1 Tl. Orcylaldehyd mit 1 Tl. wasserfreiem Natriumacetat und 5 Tln. Essigsäureanhydrid (Tiemann, Helenberg, B. 12, 1002). Durch Kochen von Homoumbelliferon mit Essigsäureanhydrid (v. Pechmann, Welsh, B. 17, 1650). Nadeln (aus Wasser). F: 126°; schwer löslich in heißem Wasser, leicht in Alkohol und Äther; die wäßr. Lösung zeigt auf Zusatz von Kali eine blaue Fluorescenz (T., H.).
- 9. 4-Oxy-2-oxo-6-methyl-[1.2-chromen], $4-Oxy-CH_{2}$ CH. CH3. s. nebenstehende Formel, ist desmotrop mit 2.4-Dioxo-6-methyl-chroman, Bd. XVII, S. 493.
- 4-Äthoxy-6-methyl-cumarin, 6-Methyl-benzotetronsäure-äthyläther $C_{12}H_{12}O_3 = CH_3 \cdot C_6H_3 \cdot C_6H_3 \cdot C_6 \cdot B$. Beim Erhitzen des Silbersalzes der 6-Methyl-benzotetronsäure mit Äthyljodid im Druckrohr (Anschütz, A. 367, 252). Nadeln (aus Alkohol). F: 195°.
- 10. 6¹-Oxy-2-oxo-6-methyl-[1.2-chromen], 6-Oxy-Ho CH_2 CH methyl-cumarin $C_{10}H_2O_3$, s. nebenstehende Formel. B. Bei 2-stdg. Kochen von 3 g 6-Chlormethyl-cumarin (Bd. XVII, S. 337) mit ca. 200 g Wasser (Stoermer, Oetker, B. 37, 195). Nädelchen (aus Wasser). F: 150°.
- 6-Acetoxymethyl-cumarin $C_{12}H_{10}O_4=CH_2\cdot CO\cdot O\cdot CH_2\cdot C_6H_2\cdot C_6H_2\cdot C_6H_2\cdot C_6H_2\cdot C_6H_3\cdot CO\cdot O\cdot CH_2\cdot C_6H_3\cdot CO\cdot O\cdot CH_2\cdot C_6H_3\cdot CO\cdot O\cdot CH_2\cdot C_6H_3\cdot CO\cdot O\cdot CH_3\cdot C_6H_3\cdot CO\cdot O\cdot CH_3\cdot C_6H_3\cdot CO\cdot O\cdot CH_3\cdot C_6H_3\cdot CO\cdot O\cdot CH_3\cdot
- 11. 4-Oxy-2-oxo-7-methyl-[1.2-chromen], 4-Oxy-7-methyl-cumarin (7-Methyl-benzotetronsäure) C₁₀H₃O₃, cH₃.

 S. nebenstehende Formel, ist desmotrop mit 2.4-Dioxo-7-methyl-chroman, CH₃.
- 4 Methoxy 7 methyl cumarin, 7 Methyl benzotetronsäure methyläther $C_{11}H_{10}O_3 = CH_3 \cdot C_6H_3 \cdot C_6H_3 \cdot CO$. B. Beim Erhitzen des Silbersalzes der 7-Methyl-benzotetronsäure mit Methyljodid im geschlossenen Rohr (Anschütz, A. 367, 237). Nädelchen (aus Alkohol). F: 162°.
- 4-Äthoxy-7-methyl-cumarin, 7-Methyl-benzotetronsäure-äthyläther $C_{12}H_{12}O_3=C(O\cdot C_2H_5)$: CH CH₃·C₆H
- 4-Propyloxy-7-methyl-cumarin, 7-Methyl-bensotetronsäure-propyläther $C_{13}H_{14}O_3 = CH_3 \cdot C_6H_3 \cdot CH_2 \cdot CH_3 \cdot CH_$
- 4-Acetoxy-7-methyl-cumarin, O-Acetyl-7-methyl-bensotetronsäure $C_{12}H_{10}O_4 = CH_3 \cdot C_6H_3 \cdot C_6$

12. 4-Oxy-6¹-oxo-6-āthyl-cumaron, 4-Oxy-6-acetyl-cumaron C₁₀H₅O₃, s. nebenstehende Formel. B. Bei langsamer Destillation von β-Furfuryliden-lävulinsäure (Syst. No. 2619) im Kohlensäure strom; man schüttelt das in verd. Natronlauge gelöste Destillat mit Ather aus und fällt aus der alkal. Lösung das 4-Oxy-6-acetyl-cumaron durch Kohlensäure (Kehrer, Kleereg, B. 26, 347). — Weiße Flocken. F: 190°. Löst sich in konz. Schwefelsäure zu einer gelben Flüssigkeit, die durch Wasser wieder entfärbt wird.

13. Lacton der 1.3-Dioxy-hydrin-den-carbonsäure-(1) C₁₀H₈O₃, Formel I.

Lacton der 2.2.3-Trichlor-1.3-dioxy-hydrinden-carbonsäure - (1) C₁₀H₅O₂Cl₃,

Formel II. B. Man löst 1 Tl. 1.2-Dichlor-3-oxy-inden-carbonsäure-(3) (Bd. X, S. 325) in 10 Tln. Eisessig, sättigt die Lösung mit Chlor und läßt 24 Stdn. stehen; man verdunstet den Eisessig bei gewöhnlicher Temperatur, rührt den öligen Rückstand mit Wasser an, bis er fest geworden ist, und bringt ihn nach dem Trocknen durch siedenden Petroläther in Lösung; ungelöst bleibt eine aus Benzol in Nadeln krystallisierende Verbindung C₁₀H₅O₃Cl₄ vom Schmelzpunkt 167° (ZINCKE, ENGELHARDT, A. 283, 345, 358). — Prismen (aus Ather + Benzin). F: 87°. Leicht löslich in Alkohol und Äther. — Geht beim Erhitzen für sich, beim Kochen mit Wasser oder Acetylchlorid in 1.2-Dichlor-3-oxo-inden über. Bei der Einw. von Sodalösung entsteht 2.2-Dichlor-1-oxy-3-oxo-hydrinden-carbonsäure-(1) (Bd. X, S. 965).

3. Oxy-oxo-Verbindungen $C_{11}H_{10}O_3$.

- 1. 4-Oxy-2-oxo-3-benzyl-furan-dihydrid-(2.5), β -Oxy- α -benzyl- $\Delta^{\alpha,\beta}$ -crotonlacton (α -Benzyl-tetronsäure, "Phenyltetrinsäure") $C_{11}H_{10}O_3 = HO \cdot C = C \cdot CH_2 \cdot C_6H_6$ ist desmotrop mit 2.4-Dioxo-3-benzyl-furantetrahydrid, Bd. XVII, 8. 495.
- 2. 3-Oxy-5-oxo-2-methyl-4-phenyl-furandihydrid-(2.5), $\beta-Oxy-\gamma-methyl-\alpha-phenyl-\Delta^{\alpha,\beta}-crotonlacton$ ($\gamma-Methyl-\alpha-phenyl-tetronsdure$) $C_{11}H_{10}O_3 = \begin{array}{c} C_0H_3 \cdot C C \cdot OH \\ OC \cdot O \cdot CH \cdot CH_3 \end{array}$ ist desmotrop mit 3.5-Dioxo-2-methyl-4-phenyl-furantetra-hydrid, Bd. XVII, S. 495.
- β-Bensoyloxy γ-methyl α-phenyl $Δ^{α,β}$ crotonlacton, O Bensoyl γ-methyl-α-phenyl-tetronsäure $C_{18}H_{14}O_4 = {C_6H_8 \cdot C = C \cdot O \cdot CO \cdot C_6H_5 \over OC \cdot O \cdot CH \cdot CH_3}$. B. Aus γ-Methyl-α-phenyl-tetronsäure mit Benzoylchlorid in Pyridin (DIMBOTH, FEUCHTER, B. 36, 2256). Krystalle (aus Äther). F: 100°.
- 3. 6-Oxy-4-oxo-2-dthyl-[1.4-chromen], 6-Oxy-HO
 2-dthyl-chromon C₁₁H₁₀O₂, s. nebenstehende Formel. B. Durch
 ca. 2-stündiges Erhitzen von 2.5-Diäthoxy-ω-propionyl-acetophenon
 (Bd. VIII, S. 407) mit Jodwasserstoffsäure (D: 1,96) (v. Kostanecki, Tambor, B. 34, 1694). —
 Spieße (aus verd. Alkohol). F: 165°. Die Lösung in konz. Schwefelsäure fluoresciert grünlichblau.
- 6-Methoxy-2-āthyl-chromon $C_{12}H_{12}O_3 = CH_2 \cdot O \cdot C_6H_2 \cdot O \cdot C_9H_5$. B. Durch Erwärmen von 6-Oxy-2-āthyl-chromon mit Methyljodid und Kali in Methylalkohol (v. K.,

- T., B. 34, 1695). Täfelchen (aus verd. Alkohol). F: 87—88°. Die Lösung in konz. Schwefelsäure fluoresciert grünlichblau.
- 6-Äthoxy-2-äthyl-chromon $C_{18}H_{14}O_{3}=C_{2}H_{5}\cdot O\cdot C_{6}H_{3}\cdot O\cdot C_{5}H_{5}$. B. Analog 6-Methoxy-2-äthyl-chromon (v. K., T., B. 34, 1695). Säulen (aus Ligroin). F: 65—66°. Die Lösung in konz. Schwefelsäure fluoresciert grünlichblau. Wird durch Erhitzen mit Natriumalkoholatlösung in Chinacetophenon-5-äthyläther (Bd. VIII, S. 272) und Propionsäure gespalten.
- **6-Acetoxy-2-**äthyl-chromon $C_{13}H_{12}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot CH_6 \cdot C_2H_5$. Blättchen (aus verd. Alkohol). F: 92—93° (v. K., T., B. 34, 1694).
- 4. 7-Oxy-4-oxo-2-āthyl-[1.4-chromen], 7-Oxy-2-āthyl-chromon C₁,H₁₀O₂, s. nebenstehende Formel. B. Durch längeres Kochen von 7-Āthoxy-2-āthyl-chromon mit konz. Jodwasserstoffsäure (v. K., T., B. 34, 1697). Prismen (aus verd. Alkohol). F: 186°. Die Lösung in konz. Schwefelsäure fluoresciert violettstichig-blau.
- 7-Äthoxy-2-äthyl-ehromon $C_{18}H_{14}O_3=C_2H_5\cdot 0\cdot C_6H_3\cdot O_{-C}\cdot C_8H_5\cdot B$. Durch 2-stündiges Kochen von 2.4-Diäthoxy- ω -propionyl-acetophenon (Bd. VIII, S. 407) mit starker Jodwasserstoffsäure, neben 7-Oxy-2-äthyl-ehromon und einem roten Farbstoff (v. K., T., B. 34, 1696). Nadeln mit 1 H_2O (aus verd. Alkohol). F: 83—84°. Die Lösung in konz. Schwefelsäure fluoresciert violettstichig-blau. Wird von siedender Natriumäthylatlösung in Resacetophenon-4-äthyläther (Bd. VIII, S. 268) und Propionsäure gespalten.
- 7-Acetoxy-2-äthyl-chromon $C_{13}H_{12}O_4 = CH_3 \cdot CO \cdot C \cdot C_6H_3 \cdot CO \cdot C_6H_5$. Saulen (aus verd. Alkohol). F: 67—68° (v. K., T., B. 34, 1697).
- 5. $7-Oxy-2-oxo-3-\ddot{a}thyl-[1.2-chromen]$, $7-Oxy-3-\ddot{a}thyl-cumarin$, 3-Athyl-umbelliferon $C_{11}H_{10}O_3$, s. nebenstehende Formel. B. Durch Erwärmen der β -Athyl-apfelsäure von HO CO FICHTER, GOLDHABER (Bd. III, S. 450) mit Resorcin und konz. Schwefelsäure (FICHTER, GOLDHABER, B. 37, 2382). Nadeln (aus Wasser). F: 123—124°. Die wäßr. Lösung zeigt hellblaue Fluorescenz; noch stärker fluoresciert die Lösung in konz. Schwefelsäure. Reduziert ammoniakalische Silberlösung und FERLINGsche Lösung in der Wärme.
- 6. 7-Oxy-4-oxo-2.3-dimethyl-[1.4-chromen]. 7-Oxy-2.3-dimethyl-chromon C₁₁H₁₀O₃, s. nebenstehende Formel. B. Durch Kochen von 7-Äthoxy-2.3-dimethyl-chromon mit konz. Jodwasserstoffsäure (v. Kostanecki, Lloyd, B. 34, 2948). Prismen (aus Alkohol). F: 262°. In konz. Schwefelsäure mit violettblauer, in Natronlauge mit bläulicher Fluorescenz löslich.
- 7-Methoxy-2.3-dimethyl-chromon (,,Dehydromethylacetylpäonol") C₁₂H₁₂O₃ = CH₂·O·C₅H₂·O·C₆H₃. B. Bei 3-ständigem Kochen von 2-Oxy-4-methoxy-propiophenon mit Essigsäureanhydrid und Natriumacetat (v. Kostanecki, Lloyd, B. 34, 2949). Bei der Einw. von Methyljodid auf das Kaliumsalz des 2-Oxy-4-methoxy-benzoylacetons (Nagal, B. 25, 1288; vgl. v. K., Ll., B. 34, 2944). Beim Erhitzen einer methylalkoholischen Lösung von 7-Oxy-2.3-dimethyl-chromon mit Methyljodid und Kali (v. K., Ll., B. 34, 2948). Nadeln (aus Alkohol). F: 126—127° (v. K., Ll.), 126° (N.). Leicht löslich in Alkohol und Ather, schwer in Wasser (N.). In konz. Schwefelsäure mit volettblauer Fluorescenz löslich (v. K., Ll.). Gibt mit Halogenwasserstoffsäuren krystallisierte, leicht zersetzliche Additionsprodukte (N.). Zerfällt beim Kochen mit Natronlauge in Essigsäure und 2-Oxy-4-methoxy-propiophenon (N.; Tahara, B. 25, 1297; v. K., Ll.).
- 7-Åthoxy-2.3-dimethyl-chromon $C_{18}H_{14}O_8=C_2H_8\cdot O\cdot C_6H_8 < \begin{array}{c} CO\cdot C\cdot CH_8\\ O-C\cdot CH_8 \end{array}$. B. Durch 3-stündiges Kochen von 10 g 2-Oxy-4-åthoxy-propiophenon (Bd. VIII, S. 279) mit 20 g Essigsäureanhydrid und 10 g entwässertem Natriumacetat (v. Kostanbori, Lloyd, B. 34, 2947). Durch 1-stündiges Kochen von α -Methyl- α -[2.4-diåthoxy-benzoyl]-aceton (Bd. VIII, S. 407) mit Jodwasserstoffsäure (v. K., Ll.). Säulen (aus Alkohol). F: 124°. In konz. Schwefelsäure mit violettblauer Fluorescenz löslich.

7-Acetoxy-2.8-dimethyl-chromon $C_{13}H_{12}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot C \cdot CH_3$. (aus verd. Alkohol). F: 116° (v. K., Lt., B. 34, 2948).

- 7. Anhydro-[5.7-dioxy-2.4-dimethyl-benzopyranol] $C_{11}H_{10}O_3$, Formel I, s. Bd. XVII, S. 177.
- 8. Anhydro-[7.8-dioxy-2.4-dimethyl-benzopyranol] $C_{11}H_{10}O_3$, Formel II, s. Bd. XVII, S. 178.

- 9. 6-Oxy-2-oxo-3.4-dimethyl-[1.2-chromen], 6-Oxy-3.4-dimethyl-cumarin $C_{11}H_{10}O_3$, Formel III. B. Aus Hydrochinon und α -Methyl-acetesigeäure-äthylester in Gegenwart von konz. Schwefelsäure unter zeitweiliger Kühlung mit Wasser (Borsche, B. 40, 2732). Blättehen (aus verd. Alkohol). F: $235-236^\circ$.
- 10. 7-Oxy-2-oxo-3.4-dimethyl-[1.2-chromen], 7-Oxy-3.4-dimethyl-cumarin, 3.4-Dimethyl-umbelliferon
 C₁₁H₁₀O₂, s. nebenstehende Formel. B. Aus Resorcin und α-Methylacetessigsäure-āthylester in Gegenwart von konz. Schwefelsäure (v. Pechmann, Duisberg,
 B. 16, 2127). Durch Erhitzen von 3-Methyl-umbelliferon-essigsäure-(4) (Syst. No. 2624) auf
 200° (v. P., B. 24, 4104). Nadeln (aus Methylalkohol). F: 256°; die Lösungen in verd.
 Alkalien und in konz. Schwefelsäure fluorescieren deutlich blau (v. P., D.).
- 11. 5-Oxy-2-oxo-4.7-dimethyl-[1.2-chromen], 5-Oxy-4.7-dimethyl-cumarin C₁₁H₁₀O₃, s. nebenstehende Formel 1).

 B. Durch Behandeln eines Gemisches von Acetessigsäureäthylester und Oroin mit konz. Schwefelsäure (v. Pechann, Cohen, B. 17, 2188; vgl. Wittenberg, J. pr. [2] 26, 69). Beim Erhitzen C₂H₃·O₂C·C·C·CO C(CH₃) C·C·C·Ch₃ der Verbindung nebenstehender Formel (Syst. No. 2625) mit 93°/oiger Schwefelsäure auf 140—160° (COLLIE, Chrystall, Soc. 91, 1803). Nadeln mit 1 H₂O (aus Alkohol) (Col., Ch.). F: 248—250° (v. P., Coh.), 250° (Col., Ch.). Sublimierbar (v. P., Coh.). Fast unlöslich in Wasser, leicht löslich in Alkohol und Eisessig, schwer in Chloroform und Benzol (v. P., Coh.). Löslich in verd. Alkalien; die Lösungen fluorescieren nicht (v. P., Coh.); in Schwefelsäure ohne Fluorescenz löslich (Col., Ch.). Wird durch Eisenchlorid nicht gefärbt (W.). Liefert beim Koohen mit Barytwasser das Bariumsalz der nicht näher beschriebenen 2.6-Dioxy-4.β-dimethyl-zimtsäure (Col., Ch.). Ch.)

Methyläther $C_{12}H_{12}O_3 = CH_3 \cdot O \cdot C_6H_2(CH_2) \cdot C_6H_2(CH_3) \cdot C_6H_3$. Bei der Einw. von Dimethylsulfat auf 5-Oxy-4.7-dimethyl-cumarin (Collie, Chrystall, Soc. 91, 1805). — Nadeln. F: 146°. Löst sich in Alkali erst nach langem Kochen. — Heiße 93°/oige Schwefelsäure regeneriert 5-Oxy-4.7-dimethyl-cumarin.

Acetylderivat C₁₃H₁₂O₄ = CH₃·CO·O·C₆H₂(CH₂): CH
O——CO

5-Oxy-4.7-dimethyl-cumarin mit Essigsäureanhydrid (WITTENBERG, J. pr. [2] 26, 71; COLLIE, CHENSTALL, Soc. 91, 1805). — Nädelchen (aus Alkohol). F: 200° (W.), 198° (COLLIE, CH.), 195° (V. PECHMANN, COHEN, B. 17, 2189). Unlöslich in Wasser, schwer löslich in Äther, leicht in Alkohol, Eisessig, Chloroform und Benzol (v. P., COH.).

8-Chlor-5-oxy-4.7-dimethyl-cumarin C₁₁H_sO₂Cl, s. nebenstehende Formel. B. Durch 2¹/₂-stündige Einw. von 90 ccm konz. Schwefelsäure auf ein Gemisch von 12 g Orcin und 16 g α-Chlor-acetessigsäure-äthylester bei niederer Temperatur (v. PECHMANN, HANKE, B. 34, 359). — Nadeln (aus Alkohol). F: 295°. Löslich in Alkalien und konz. Schwefelsäure mit gelber Farbe ohne Fluorescenz.

 $\begin{array}{c} \textbf{Acetylderivat}\, C_{13} H_{11} O_4 Cl = C H_3 \cdot CO \cdot O \cdot C_8 H_3 (C H_3) < \begin{matrix} C(C H_3) : CCl \\ O & CO \end{matrix}. \\ \textbf{Nadeln (aus Alkohol)}. \\ \textbf{F: 160°; leicht löslich in Aceton, schwer in Alkohol (v. P., H., B. 34, 359)}. \end{array}$

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Hand buchs [1. I. 1910] erschienenen Arbeit von CHARRAVAETI, Journ. of the Indian chem. Soc. 8, 407 vgl. auch DEY, Soc. 107, 1637.

12. 3-Oxy-7¹-oxo-5-methyl-7-āthyl-cumaron, 3-Oxy-5-methyl-7-acetyl-cumaron bezw. 3.7¹-Dioxo-5-methyl-7-āthyl-cumaran, 5-Methyl-7-acetyl-cumaranon $C_{11}H_{10}O_3$, Formel I bezw. II.

3-Oxy-5-methyl-7-chloracetyl-cumaron bezw. 5-Methyl-7-chloracetyl-cumaranon $C_{11}H_9O_3Cl = CH_2Cl\cdot CO\cdot C_4H_4(CH_3) \stackrel{C(OH)}{\bigcirc} CH$ bezw. $CH_2Cl\cdot CO\cdot C_4H_4(CH_2) \stackrel{CO}{\bigcirc} CH_2$. B. Durch Kochen von 2.6-Bis-chloracetyl-p-kresol mit krystallisierem Natriumacetat in Alkohol (Fries, Fince, B. 41, 4279). — Gelbe Kryställchen (aus Eisessig). F: 173°. Ziemlich schwer löslich in Alkohol, Benzol, Eisessig, sehr wenig in Benzin; löslich in Alkali und konz. Schwefelsäure unter Veränderung mit blutroter Farbe.

4. Oxy-oxo-Verbindungen $C_{12}H_{12}O_8$.

- 1. α -Oxy- γ -styryl-butyrolacton, α -Oxy- δ -benzal- γ -valerolacton $C_{12}H_{12}O_3=HO\cdot HC$ — CH_2
 - OC · O · CH · CH · CH · C₆H₅
- $\begin{array}{l} \beta\text{-Jod-}\alpha\text{-oxy-}\gamma\text{-styryl-butyrolacton, }\beta\text{-Jod-}\alpha\text{-oxy-}\delta\text{-benzal-}\gamma\text{-valerolacton} \\ C_{13}H_{11}O_{3}I = \begin{matrix} HO\cdot HC & CHI \\ O\dot{C}\cdot O\cdot \dot{C}H\cdot CH: CH\cdot C_{6}H_{5} \end{matrix} \quad B. \quad \text{Bei der Einw. von Jod-Jodkalium-Lösung auf eine Lösung von Cinnamalmilchsäure (Bd. X, S. 326) bei Gegenwart von überschüßigem Natriumdicarbonat (Bougault, A. ch. [8] 14, 157, 182). Gelbliche Krystalle. F: 122°. \end{array}$
- 2. 7-Oxy-4-oxo-2-propyl-[1.4-chromen], 7-Oxy2-propyl-chromon C₁₂H₁₂O₃, s. nebenstehende Formel.

 B. Durch 2—3-stündiges Kochen von 2.4-Diāthoxy-ω-butyrylacetophenon (Bd. VIII, S. 408) mit konz. Jodwasserstoffsäure, neben einem roten Farbstoff (v. Kostanecki, Tambor, B. 34, 1698). Nadeln (aus Benzol oder Alkohol). F: 148°. Die Lösung in Natronlauge fluoresciert blauviolett, die Lösung in konz. Schwefelsäure bläulich.

7-Acetoxy-2-propyl-chromon $C_{14}H_{14}O_4 = CH_3 \cdot CO \cdot C \cdot C_6H_3 \cdot CH_2 \cdot CH_3 \cdot$

3. Anhydro-[5.7-dioxy-2.3.4-trimethyl-benzopyranol] C₁₂H₁₂O₃, Formel III, s. Bd. XVII, S. 178.

III.
$$0: \begin{array}{c|c} & \text{IV.} & \text{O:} \\ & \text{C:} \text{CH}_3 \\ & \text{O:} \end{array} \begin{array}{c} \text{C:} \text{CH}_3 \\ & \text{C:} \text{CH}_3 \\ & \text{O:} \end{array} \begin{array}{c} \text{C:} \text{CH}_3 \\ & \text{C:} \text{CH}_3 \\ & \text{O:} \end{array} \begin{array}{c} \text{C:} \text{CH}_3 \\ & \text{C:} \text{CH}_3 \\ & \text{O:} \end{array} \begin{array}{c} \text{C:} \text{CH}_3 \\ & \text{C:} \text{CH}_3 \\ & \text{O:} \end{array} \begin{array}{c} \text{C:} \text{CH}_3 \\ & \text{C:} \text{CH}_3 \\ & \text{O:} \end{array}$$

- 4. Anhydro-[7.8-dioxy-2.3.4-trimethyl-benzopyranol] $C_{18}H_{12}O_{2}$, Formel IV, s. Bd. XVII, S. 179.
- 5. Oxy-oxo-Verbindungen $C_{16}H_{18}O_8$.
- 1. Lacton der $\alpha [1.7 Dioxy 5.8 climethyl 1.2.3.4 tetrahydro naphthyl (2)] propionsäure,

 Desmotroposantonin C₁₆H₁₈O₃, s. nebenstehende Formel 1).

 Zur Stereoisomerie der Desmotroposantonine vgl. Andreocci,

 R. A. L. [5] 8 I, 83, 85.$

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. l. 1910] erschienenen Arbeiten von CLEMO, HAWORTH, WALTON, Soc. 1980, 1110 und TSCHIERBIN. SCHISCHUKINA, B. 63, 2793. Dementsprechend ist der Desmotropo-, Isodesmotropo- und Lävodesmotropo-santoninsäure (Bd. X, S. 441) die Konstitution einer α-[1.7-Dioxy-5.8-dimethyl-1.2.3.4-tetrahydro-naphthyl-(2)]-propionsäure suzuerteilen.

a) Gewöhnliches Desmotroposantonin C₁₅H₁₈O₂ = (CH₃)₂C₁₃H₁₁O₄ OH. B. Bei mehrtägigem Aufbewahren von Santonin (Bd. XVII, S. 499) mit rauchender Salzsäure (Andersoch, G. 23 II, 469; vgl. Weddenkud, B. 31, 1677; W., O. Schmidt, B. 36, 1391 Anm.). Bei der Einw. von Bromwasserstoffsäure auf Santonin in Eisessig in der Kälte (Angell, Marko, Atti della R. Accad. dei Linest, Memorie d. cl. di sc. fis., mat. e nat. [5] 6, 390 Anm. 1). Durch Erhitzen von Santonin, Isodesmotroposantonin (S. 40) oder Lävodesmotroposantonin (S. 41) mit Schwefelsäure (D: 1,44) auf 100° (Bargellin, Mannino, G. 39 II, 103, 104). — Nadeln (aus Alkohol). Schmiltt, rasch erhitzt, bei 260° (A., G. 23 II, 470). Ist in Alkohol, Ather, kochendem Wasser und Esigsäure viel weniger Idelich als Santonin (A., G. 25 I, 469); unlöelich in kaltem Wasser; unlöslich in Salzsäure und in Soda, löslich in Atzalkalien (A., G. 23 II, 470, 472). [a]³; +112,7° (in Alkohol; c = 0,35) (A., G. 23 II, 471). Gibt nach dem Erhitzen mit Schwefelsäure und Wasser mit einigen Tropfen Eisenchlorid eine violette Färbung (Bertolo, G. 29 II, 102). — Bei mehrstundigem Erhitzen mit 40 Tln. 72%/iger Essigsäure und überabüsigem Zinkstaub auf dem Wasserbade entsteht desmotroposantoning Säure (Bd. X, S. 322) (A., G. 23 II, 477). Bei der Einw. von Salptersäure entstehen je nach den Bedingungen eine chinitrolartige Verbindung C₁H₁₁O₁N, (s. u.), eine chinolartige Verbindung C₁H₁₁O₁N, (N.) (Troxydesmotroposantonin) (S. 40) oder eine Verbindung vom Schmelzpunkt 145° (Nadeln aus verd. Essigsäure; sehr leicht löslich in Alkohol und Essigester, etwas in Wasser) (A., R. A. L. [5] 5 II, 309; Ba., R. A. L. [5] 16 II, 263; G. 37 II, 417; Ba., Daconto, G. 38 II, 42). Erhitzt man Desmotroposantonin kurze Zeit mit Kalium-hydroxyd und etwas Wasser auf 210—220°, so erhält man Isodesmotroposantoninsäure (Bd. X, S. 441) (A., G. 23 II, 483, 484). Beim Schmelzen mit Kali bei ca. 360° entsetht 1.4-Dimethyl-naphthol-(2) (Be., R. A. L. [5] 11 II, 490; G. 32 II, 374). Beim Lösen in

Chinitrolartige Verbindung aus gewöhnlichem Desmotroposantonin $C_{15}H_{16}O_7N_2$, s. nebenstehende Formel. B. Aus 10 g gewöhnlichem Desmotroposantonin und 150 cm³ Salpetersäure (D: 1,23) bei gewöhnlicher Temperatur oder unter Kühlung (BARGELLINI, DACONTO, G. 38 II, 44; vgl. B., G. 37 II, 417; R. A. L. [5] 16 II, 262).

— Farbloses amorphes Pulver. Schmilzt bei etwa 120° unter Zersetzung; zersetzt sich beim Aufbewahren an der Luft (B., D.). — Bei der Einw. von Wasser, Alkalien, Methylalkohol oder Äthylalkohol entsteht Nitrodesmotroposantonin (S. 40) (B., D.). Beim Erwärmen mit Salpetersäure (D: 1,23) auf dem Wasserbad bildet sich die chinolartige Verbindung $C_{15}H_{17}O_6N$ (,,Nitrooxydesmotroposantonin"; S. 105) (B., D.).

Methyläther $C_{12}H_{20}O_3=(CH_2)_3C_{13}H_{11}O_2\cdot O\cdot CH_3$. B. Aus Desmotroposantonin, Natriummethylat und Methyljodid in der Kälte, neben wenig Isodesmotroposantonin-methyläther (S. 40) (Anderocci, G. 25 I, 472). Beim Erhitzen von Isodesmotroposantonin (S. 40) mit Natriummethylat und Methyljodid am Rückflußkühler unter 1 Atm. Überdruck, neben Isodesmotroposantonin-methyläther und einer bei ca. 200° schmelzenden Verbindung (A., G. 25 I, 480). — Nadeln (aus Äther). F: 152—153°. Fast unlöslich in Wasser, löslich in warmem Alkohol und Äther; unlöslich in kalten Alkalien. [α] $_{5}^{m}$: +91,9° (in Alkohol; α) can be the Methyläther-desmotroposantoninsäure.

Äthyläther $C_{17}H_{29}O_3 = (CH_3)_2C_{13}H_{11}O_3 \cdot O \cdot C_2H_5$. B. Aus Desmotroposantonin, Natriumäthylat und Äthyljodid in der Kälte, neben wenig Isodesmotroposantonin-äthyläther (S. 41) (A., G. 25 I, 474). In geringer Menge neben Isodesmotroposantonin-äthyläther beim Erhitzen von Isodesmotroposantonin mit Natriumäthylat und Äthyljodid am Rückflußkühler unter Druck (A., G. 25 I, 481, 482). — Nadeln (aus Äther). F: 168°. Löslich in warmem Äther, Alkohol und Essigester; unlöslich in kalten wäßrigen Alkalien. [α] $_{0}^{\infty}$: +114,2° (in Alkohol; \circ = 1,2).

Bensyläther $C_{22}H_{24}O_3 = (CH_2)_2C_{12}H_{11}O_3 \cdot O \cdot CH_2 \cdot C_6H_5$. B. Aus Desmotroposantonin, Natriumāthylat und Bensylchlorid in der Kälte (A., G. 25 I, 475), neben Isodesmotroposantonin-bensyläther (S. 41) (Castoro, G. 25 II, 352). — Nadeln. F: 181—182° (C.), 182° (A., G. 25 I, 475). Löslich in warmen Alkabolol und Ather, unlöslich in Wasser; unlöslich in kalten Alkalien; $[\alpha]_0$: +102,6° (in Alkohol; c = 0,2) (A.).

Acetat, Acetyldesmotroposantonin $C_{17}H_{*0}O_4 = (CH_2)_2C_{12}H_{11}O_2 \cdot O \cdot CO \cdot CH_2$. B. Beim Kochen von Desmotroposantonin mit der 10-fachen Menge Acetanhydrid und der doppelten Menge geschmolzenem Natriumacetat (Andreccci, G. 23 II, 475). — Nadeln (aus Ather) (A.) mit gelbgrüner Triboluminescenz; die Krystallform ist anscheinend rhombisch, aber verschieden von der der bei 154° schmelzenden Isomeren, Acetyliso- und Acetylävo-desmotroposantonin (S. 41, 42) (MILLOSEVICH, R. A. L. [5] 13 I, 81, 85). F: 156° (A., G. 23 II, 475). Löslich in Alkohol und Essigsäure; $[\alpha]_0^6$: $+92.5^\circ$ (in Alkohol; c=1,3) (A., G. 23 II, 475); $[\alpha]_0^6$: $+93.6^\circ$ (in Eisessig; c=10) (A., R. A. L. [5] 8 I, 81; G. 29 I, 514). — Vereinigt sich mit Acetylisodesmotroposantonin (LEVI-MALVANO, MANNINO, R. A. L. [5] 18 II, 146; vgl. R.~A.~L.~[5] 17 II, 491) sowie mit Acetyllävodesmotroposantonin (A., R.~A.~L.~[5] 81, 81; G. 29 I, 513; vgl. LEVI-MALVANO, MANNINO, R.~A.~L.~[5] 17 II, 488) zu Molekülverbindungen (S. 41 und S. 42). Beim Verseifen mit Kali entsteht Desmotroposantonin (A., G. 23 II, 476).

Nitrodesmotroposantonin C₁₈H₁₇O₅N, s. nebenstehende Formel. B. Aus Desmotroposantonin und Salpetersäure (D: 1,25) unter Kühlung (Andreocci, R. A. L. [5] 5 II, 311; C.

1897 I, 169; vgl. Bargellini, Daconto, G. 38 II, 42). Bei 5—10 Minuten langem Erwärmen von 5 g der chinitrolartigen Verbindung C₁₈H₁₆O₇N₂ (S. 39) mit 30 cm² Methylalkohol auf 50—60° (Bargellini, Daconto, G. 38 II, 42, 45). Bei längerem Durchleiten von SO₂ durch eine siedende Länge er verbindung C. H. O. N. (Nitropydermotroposantonin und Salpetersäure CH₃)

durch eine siedende Lösung der chinolartigen Verbindung C₁₂H₁₇O₄N (,,Nitrooxydesmotroposantonin") (S. 105) in verd. Essigsäure (B., D.). — Gelbe Krystalle (aus Alkohol oder 50%/oiger Essigsäure). Rhombisch bisphenoidisch (Rosatt, G. 38 II, 46; R. A. L. [5] 18 I, 129; vgl. Groth, Ch. Kr. 5, 476). F: 189—190° (B., D.), 191° (Zers.) (A.). Leicht löslich in Alkohol (B., D.), löslich in Essigsäure (A.); löslich in kalter Natriumcarbonatlösung mit blutroter Farbe (A.). $[\alpha]_0^{a_1}$: +115,4° (in Alkohol; c = 1,5) (B., D.). — Beim Erwärmen mit Salpetersäure (D: 1,23) auf dem Wasserbad bildet sich "Nitrooxydesmotroposantonin" (B., D.). Beim Kochen mit Acetanhydrid und geschmolzenem Natriumacetat entsteht das Acetat (B., D.).

Acetat $C_{17}H_{19}O_9N=(O_2N)(CH_2)_2C_{19}H_{10}O_2\cdot O\cdot CO\cdot CH_9$. B. Bei 2-stdg. Kochen von 6 g Nitrodesmotroposantonin (s. o.) mit 12 g geschmolzenem Natriumacetat und 60 g Acetanhydrid am Rückflußkühler (B., D., G. 38 II, 48). — Farblose Nadeln (aus Alkohol). F: 166° bis 167°. $[\alpha]_{\rm p}^{\rm o}$: +111,8° (in Alkohol; c = 1,2).

b) Isodesmotroposantonin $C_{15}H_{16}O_3 = (CH_2)_3C_{12}H_{11}O_2 \cdot OH$. B. Man erhitzt 5 g Desmotroposantonin (S. 39) mit 5 g Kaliumhydroxyd und 5 g Wasser kurze Zeit auf 210° bis 220°, nimmt die Schmelze in Wasser auf, fällt mit verd. Schwefelsäure und kocht den Niederschlag mit Wasser (Andrescot, G. 23 II, 484; 25 I, 476). Beim Erhitzen von 1 Tl. Desmotroposantonin mit 20 Tln. einer 0,2 Tle. Natrium enthaltenden alkoholischen Natriumäthylat-Lösung unter Druck am Rückflußkühler; man löst in Wasser und fällt mit Salzsäure āthylat-Lösung unter Druck am Rückflußkühler; man löst in Wasser und fällt mit Salzsäure (A., G. 25 I, 474). — Nadeln (aus Äther oder Chloroform). Ist schwach triboluminesoent (A., G. 29 I, 518). Schmilzt nicht unzersetzt bei 187—188° (A., G. 23 II, 484; 25 I, 477), 189° (A., G. 29 I, 518). In Alkohol, Essigsäure, Essigsester und Chloroform in der Wärme leichter löslich als in der Kälte, schwer löslich in Äther und kochendem Wasser (A., G. 23 II, 484; 25 I, 477). [α]_b. + 129,7° (in Alkohol; c = 2,8) (A., G. 25 I, 477). Gibt nach dem Erhitzen mit Schwefelsäure und Wasser mit einigen Tropfen Eisenchlorid eine violette Färbung (Bertolo, G. 29 II, 102). — Bei der Einw. von Zinkstaub und Essigsäure entsteht l-santonige Säure (Bd. X, S. 319) (A., G. 23 II, 488). Erhitzen mit Schwefelsäure (D: 1,44) auf 100° führt zu Desmotroposantonin (S. 39) (Bargellin, Mannino, G. 39 II, 104). Beim Schmelzen mit Kali bei 360° wird 1.4-Dimethyl-naphthol-(2) gebildet (Br., G. 33 II, 374). Beim Lösen mit Kali bei 360° wird 1.4-Dimethyl-naphthol-(2) gebildet (Br., G. 82 II, 374). Beim Lösen in Barytwasser erhält man Isodesmotroposantoninsäure (Bd. X, S. 441) 1) (A., G. 28 II, 486). Beim Erhitzen mit methylalkoholischem Natriummethylat und Methyljodid am Rückflußkühler unter 1 Atm. Überdruck entstehen Isodesmotroposantonin-methyläther, Desmotroposantonin-methyläther und eine bei ca. 200° schmelzende Verbindung (A., G. 25 I. 480). — Physiologische Wirkung: Lo Monaco, R. A. L. [5] 5 I, 369.

Methyläther $C_{16}H_{20}O_3=(CH_4)_3C_{13}H_{11}O_3\cdot O\cdot CH_3$. Beim Erhitzen von Isodesmotroposantonin mit methylalkoholischem Natriummethylat und Methyljodid am Rückflußkühler unter 1 Atm. Überdruck, neben Desmotroposantonin-methyläther (S. 39) und geringen Mengen einer bei ca. 200° schmelzenden Verbindung; man entfernt letztere durch Ather;

¹⁾ Vgl. die Anm. auf S. 38.

die Isomeren trennt man durch wiederholtes Krystallisieren aus 75% jegem Alkohol, wobeisich der Isodesmotroposantonin-methyläther zuerst ausscheidet (Andreocci, G. 25 I, 480). Beim Erhitzen von Desmotroposantonin (S. 39) mit Methyljodid und methylalkoholischem Natriummethylat am Rückflußkühler unter 1 Atm. Überdruck, neben Desmotroposantonin-methyläther (A., G. 25 I, 472). — Nadeln (aus Alkohol). F: 111—112°. Löslich in Methylund Äthylalkohol, Äther, Chloroform, Essigester, unlöslich in Wasser; unlöslich in kalten Alkalien, löslich in kochenden unter Bildung von (nicht isolierter) Methyläther-isodesmotroposantoninsäure. [α]^π₂: +118,2° (in Alkohol; c = 3,8).

Äthyläther C₁₇H₂₂O₂ = (CH₃)₂C₁₃H₁₁O₂·O·C₂H₅. B. Beim Erhitzen von Isodesmotroposantonin oder Desmotroposantonin mit alkoh. Natriumäthylat und Äthyljodid am Rückflußkühler unter Druck, neben Desmotroposantonin-äthyläther (S. 39) (A., G. 25 I, 474, 481, 482). — Prismen (aus Alkohol + Äther). Monoklin sphenoidisch (Brugmatelli, G. 25 I, 482; Z. Kr. 27, 81; vgl. Groth, Ch. Kr. 5, 477). Die Krystalle phosphorescieren mit gelbem Licht beim Zerbrechen (A., G. 25 I, 482; Br., Z. Kr. 27, 89). F: 82°; sehr leicht löslich in Alkohol, Äther und Chloroform, löslich in Ligroin, fast unlöslich in Wasser; unlöslich in Alkalien in der Kälte (A.). [\alpha]₅°: +129,6° (in Alkohol; c=6) (A.). — Beim Schmelzen mit Lävodesmotroposantonin-äthyläther (s. u.) oder beim Auskrystallisieren eines in Alkohol gelösten äquimolekularen Gemisches der beiden Äthyläther entsteht der Äthyläther des "racem." Desmotroposantonins (S. 42) (A., Bertolo, B. 31, 3132; G. 28 II, 540; R. A. L. [5] 7 II, 325).

Bensyläther $C_{22}H_{24}O_3=(CH_3)_2C_{12}H_{11}O_2\cdot O\cdot CH_2\cdot C_6H_5$. B. Beim Erwärmen von Isodesmotroposantonin mit alkoh. Natriumäthylat und Benzylchlorid auf dem Wasserbad (A., G. 25 I, 484; Castoro, G. 25 II, 354). Aus Desmotroposantonin (S. 39) mit alkoh. Natriumäthylat und Benzylchlorid in der Wärme, neben Desmotroposantonin-benzyläther (C.). — Nadeln. F: 81—82° (C.), 82° (A.). Sehr leicht löslich in kaltem Äther, löslich in warmem Alkohol, mäßig in kaltem Alkohol, unlöslich in Wasser (C.). $[\alpha]_D^{n_1}: +136,5^{\circ}$ (in Alkohol; c=2,1) (A.; C.).

Acetat, Acetylisodesmotroposantonin $C_{17}H_{20}O_4=(CH_3)_3C_{13}H_{11}O_3\cdot O\cdot CO\cdot CH_2\cdot B$. Beim Kochen von Isodesmotroposantonin mit 10 Tln. Acetanhydrid und 2 Tln. geschmolzenem Natriumacetat (A., G. 23 II, 485). — Prismen (aus Äther). Rhombisch bisphenoidisch (Millosevich, R. A. L. [5] 13 I, 80; vgl. Groth, Ch. Kr. 5, 477). Ist nicht triboluminescent (A., G. 29 I, 517; Mi., R. A. L. [5] 13 I, 84). F: 154° (A., G. 23 II, 486). Löslich in Alkohol und Äther (A., G. 23 II, 486). [α] $_{5}^{m}$: +122,4° (in Alkohol; c = 1,4) (A., G. 23 II, 486). — Vereinigt sich mit Acetyllävodesmotroposantonin (8. 42) zu "racem." Acetyldesmotroposantonin (8. 42) (A., Bertolo, G. 28 II, 540; R. A. L. [5] 7 II, 325; vgl. Levi-Malvano, Mannino, R. A. L. [5] 17 II, 487), mit Acetyldesmotroposantonin (8. 40) zu einer Molekülverbindung (s. u.) (L.-Mall., Manl, R. A. L. [5] 18 II, 146; vgl. R. A. L. [5] 17 II, 491). Beim Verseifen mit Kali entstehen Isodesmotroposantonin und Essigsäure (A., G. 23 II, 486).

Molekülverbindung aus Acetylisodesmotroposantonin und Acetyldesmotroposantonin. B. Beim Auskrystallisieren eines in Alkohol gelösten äquimolekularen Gemisches von Acetyldesmotroposantonin und Acetylisodesmotroposantonin (Levi-Malvano, Mannino, R. A. L. [5] 18 II, 146; vgl. R. A. L. [5] 17 II, 491). — Prismen (aus Alkohol). [α]_D: $+108^{\circ}$ (in Alkohol; c=1,9) (L.-Mal., Man., R. A. L. [5] 18 II, 146).

c) Lävodesmotroposantonin C₁₈H₁₈O₂ = (CH₃)₂C₁₈H₁₁O₃·OH. B. Aus Santonin durch mehrtägiges Stehenlassen mit 35 Tln. Schwefelsäure (D: 1,44) bei 10—20° (Bargellini, Mannino, G. 39 II, 103) oder durch analoge Behandlung mit Schwefelsäure (D: 1,5) (Ba., Shivestei, G. 39 II, 347). — Prismen (aus Alkohol). Ist stark triboluminescent (Andrescei, G. 29 I, 518). F: 194°; leicht löslich in Alkohol, Essigsäure und Chloroform in der Wärme, schwer in kochendem Wasser und in Äther; fast unlöslich in Alkalicarbonaten in der Kälte; [a]5: —140,3° (in Alkohol; c = 1,6) (A., Beetolo, B. 31, 3131; G. 28 II, 534; R. A. L. [5] 7 II, 321). Gibt nach dem Erhitzen mit Schwefelsäure und Wasser mit einigen Tropfen Eisenchloridlösung eine violette Färbung (Be., G. 29 II, 102). — Beim Erwärmen mit überschüssigem Zinkstaub und 40 Tln. Essigsäure auf dem Wasserbad entsteht d-santonige Säure (Bd. X, S. 317) (A., Be.). Beim Erhitzen mit Schwefelsäure (D: 1,44) auf 100° bildet sich Desmotroposantonin (S. 39) (Ba., Ma.). Beim Erwärmen mit Salpetersäure (D: 1,23) auf dem Wasserbade entsteht ,,Nitrooxydesmotroposantonin (S. 105) (Ba., Dacontro, Ma., G. 38 II, 51). Lävodesmotroposantonin liefert beim Schmelzen mit Kali bei 360° 1.4-Dimethyl-naphthol-(2) (Be., G. 32 II, 374). Beim Lösen in Barytwasser entsteht Lävodesmotroposantoninsäure (Bd. X, S. 441)²) (A., Be.).

Äthyläther $C_{17}H_{23}O_3=(CH_3)_2C_{13}H_{11}O_3\cdot O\cdot C_2H_5$. B. Durch Einw. von Äthyljodid und alkoh. Natriumäthylat auf Lävodesmotroposantonin (Andresocci, Bertolo, B. 31,

¹⁾ Vgl. die Anm. auf S. 38.

3132; R. A. L. [5] 7 II, 323; G. 28 II, 536). — Prismen (aus Petroläther). Ist stark triboluminescent (A., G. 29 I, 517). F: 82°; sehr leicht löslich in den gewöhnlichen organischen Lösungsmitteln außer in Petroläther, unlöslich in Wasser und Alkalien in der Kälte; [\alpha]\); —129,3° (in Alkohol; c = 4,4) (A., B.). — Beim Zusammenschmelzen mit Isodesmotroposantonin-äthyläther (S. 41) oder beim Auskrystallisieren eines in Alkohol gelösten äquimolekularen Gemisches der beiden Äthyläther entsteht der Äthyläther des "racem." Desmotroposantonins (s. u.) (A., B.). Liefert mit Zinkstaub + Essigsäure Äthyläther-dsantonigsäure (Bd. X, S. 318) (A., B.).

Acetat, Acetyllävodesmotroposantonin $C_{17}H_{20}O_4 = (CH_3)_2C_{13}H_{11}O_3 \cdot O \cdot CO \cdot CH_3$. B. Beim Erhitzen von Lävodesmotroposantonin mit 10 Tln. Essigsäureanhydrid und 2 Tln. geschmolzenem Natriumacetat (Andreocci, Bertolo, B. 31, 3132; R. A. L. [5] 7 II, 324; G. 28 II, 537). — Prismen (aus Alkohol). Rhombisch bisphenoidisch (Millosevich, R. A. L. [5] 13 I, 80; vgl. Groth, Ch. Kr. 5, 477). F: 154° (A., B.). Löslich in Alkohol und Essigsäure, fast unlöslich in Wasser und Alkalien in der Kälte (A., B.). [α] $_{5}$: —122,9° (in Alkohol; c = 1,8) (A., B.); [α] $_{5}$: —119,0° (in Eisessig; c = 10) (A., R. A. L. [5] 8 I, 81; G. 29I, 544). — Vereinigt sich mit Acetylisodesmotroposantonin zu "racem." Acetyldesmotroposantonin (s. u.) (A., Bertolo, G. 28 II, 540; R. A. L. [5] 7 II, 325; vgl. Levi-Malvano, Mannino, R. A. L. [5] 17 II, 487). Durch Vereinigung mit Acetyldesmotroposantonin entsteht eine Molekülverbindung (A., R. A. L. [5] 8 I, 81; G. 29 I, 513; vgl. Levi-Malvano, Mannino, R. A. L. [5] 17 II, 488). Beim Kochen mit verd. Acetyllävodesmotroposantonin (A., B.).

Molekülverbindung aus Acetyllävodesmotroposantonin und Acetyldesmotroposantonin. B. Durch Zusammenschmelzen oder Krystallisieren eines Gemisches von Acetyldesmotroposantonin (S. 40) und Acetyllävodesmotroposantonin aus Alkohol (Andreocci, R. A. L. [5] 8 I, 81; G. 29 I, 513; vgl. Levi-Malvano, Mannino, R. A. L. [5] 17 II, 488). — Farblose Prismen (aus Alkohol). Monoklin sphenoidisch (Millosevich, R. A. L. [5] 18 I, 82; vgl. Groth, Ch. Kr. 5, 478). F: 142°. Die Krystalle zeigen ziemlich starke gelbgrüne Triboluminescenz (Mi., R. A. L. [5] 18 I, 85). Löst sich weniger leicht in Essigsäure als die Komponenten (A.). [2]5: —12,8° (in Eisessig; c = 7,8) (A.). — Beim Erwärmen mit wenig Schwefelsäure in wäßrig-essigsaurer Lösung entsteht ein Gemisch von Desmotroposantonin und Lävodesmotroposantonin (A.).

d) "racem." Desmotroposantonia C₁₂H₁₃O₂ = (CH₂)₂C₁₃H₁₁O₂·OH. B. Durch Kochen von "racem." Acetyldesmotroposantonin (s. u.) mit verd. Kalilauge und Fällen mit verdünnter, kalter Schwefelsäure (Andreccu, Bertolo, B. 31, 3132; R. A. L. [5] 7 II, 325; G. 28 II, 539; B. 31, 3132). — Nadeln (aus Alkohol). F: 198° (A., B., R. A. L. [5] 7 II, 325; G. 28 II, 539; B. 31, 3132). Löslich in Alkohol, Essigsäure und Chloroform (A., B., B. 31, 3132). Gibt nach dem Erhitzen mit Schwefelsäure und Wasser mit einigen Tropfen Eisenchloridlösung eine violette Färbung (B., G. 29 II, 102). — Bei der Einw. von Zinkstaub und Essigsäure wird dl-santonige Säure (Bd. X, S. 321) gebildet (A., B., R. A. L. [5] 7 II, 325; G. 28 II, 539; B. 31, 3133). Durch Schmelzen mit Kali bei 360° erhält man 1.4-Dimethyl-naphthol·(2) (B., G. 32 II, 374).

Äthyläther $C_{17}H_{22}O_3 = (CH_3)_2C_{12}H_{11}O_2 \cdot O \cdot C_2H_5$. B. Durch Zusammenschmelzen von Isodesmotroposantonin-äthyläther (S. 41) mit Lävodesmotroposantonin-äthyläther (S. 41) oder beim Auskrystallisieren eines in Alkohol gelösten äquimolekularen Gemisches der beiden Äthyläther (Andreocci, Bertolo, B. 31, 3132; R. A. L. [5] 7 II, 325; G. 28 II, 540). — Prismen. F: 106°.

Acetat, "racem." Acetyldesmotroposantonin $C_{17}H_{30}O_4=(CH_2)_2C_{12}H_{11}O_2\cdot O\cdot CO\cdot CH_2$. B. Durch Vereinigung des Acetylisodesmotroposantonins (S. 41) mit dem Acetyllävodesmotroposantonin (s. o.) (Andresocci, Bertolo, B. 31, 3132; G. 28 II, 540; R. A. L. [5] 7 II, 325; vgl. auch Levi-Malvano, Mannino, R. A. L. [5] 17 II, 487). — Anscheinend trikline Krystalle ohne Triboluminescenz (Millosevich, R. A. L. [5] 18 I, 81). F: 145° (A., B., G. 28 II, 540; R. A. L. [5] 7 II, 326; Mi.). — Beim Kochen mit verd. Kalilauge entsteht das "racem." Desmotroposantonin (A., B., R. A. L. [5] 7 II, 325; G. 28 II, 539; B. 31, 3132).

Über eine Verbindung C₁₅H₁₈O₂, in der vielleicht ein neues Desmotroposantonin vorliegt, s. bei Artemisin, Syst. No. 4865.

2. Desmotropochromosantonin $C_{18}H_{18}O_3$, s. nebenstehende Formel ¹). B. Bei einmonatiger Behandlung von Chromosantonin (Bd. XVII, S. 508) mit konz. Salzature im Dunkeln bei gewöhnlicher Temperatur (MONTEMARTINI, G. 32 I, 343). — Gelbliche Krystalle (aus Alkohol). Geht bei mehrmaligem Umkrystallisieren in gewöhnliches Desmotroposan-

¹⁾ So formuliert auf Grund einer Privatmitteilung von WEDEKIND. Vgl. den Artikel Desmotroposantonin (S. 38).

tonin (S. 39) über. — Beim Erhitzen mit Acetanhydrid und geschmolzenem Natriumacetat entsteht das Acetat.

Acetat $C_{17}H_{20}O_4 = C_{15}H_{17}O_2 \cdot O \cdot CO \cdot CH_3$. B. Beim Erhitzen von Desmotropochromosantonin mit 10 Tln. Acetanhydrid und 2 Tln. geschmolzenem Natriumacetat (M., G. 32 I, 344). — Gelbe Nadeln (aus Ather). F: 156°.

f) Oxy-oxo-Verbindungen $C_n H_{2n-14} O_3$.

1. Oxy-oxo-Verbindungen $C_{12}H_{10}O_3$.

Oxydation Benzoesäure und viel Teer (LAW, Soc. 89, 1446).

1. [α-Oxy-benzyl]-α-furyl-keton, Phenyl-furfuroyl-carbinol, Benzfuroin HC—CH

C₁₂H₁₀O₃ = HC — CH

C₁₂H₁₀O₃ = Zur Konstitution vgl. Werner, Detscheff,

B. 38, 71. — B. Bei 15—20 Minuten langem Kochen von 18 Tln. Furfurol mit 20 Tln. Benzaldehyd, 60 Tln. Alkohol, 80 Tln. Wasser und 4 Tln. Kaliumcyanid (E. Fischer, A. 211, 228). — Prismen (aus Alkohol). F: 137—139°; destilliert unzersetzt; leicht löslich in heißem Alkohol, Chloroform und Benzol, schwer in Wasser und Ligroin, leicht in alkoholischer Kalilauge mit dunkelroter Farbe (F.). — Beständig gegen starke Säuren (F.). Oxydiert sich in alkal. Lösung an der Luft langssm unter Bildung von Benzoesäure (F.). Beim Kochen mit verd. Salpetersäure oder Chromsäure entsteht Benzaldehyd (F.). Wird von Fehlingscher Lösung zu Benzfuril (Bd. XVII, S. 516) oxydiert (F.). Liefert bei der elektrolytischen

 $\begin{array}{ll} \text{syn} \cdot [\alpha \cdot \text{Oxy - benzyl}] \cdot \alpha \cdot \text{furyl - ketoxim}, \ \alpha \cdot \text{Benzfuroinoxim} \ C_{12}H_{11}O_3N = \\ OC_4H_3 \cdot C \cdot CH(OH) \cdot C_6H_5 \ _1). \ B. \ \text{Entsteht neben anti-} [\alpha \cdot \text{Oxy-benzyl}] \cdot \alpha \cdot \text{furyl-ketoxim} \ (\beta \cdot \text{Benz-N}) \cdot OH \end{array}$

furoinoxim) (s. u.) aus Benzfuroin und Hydroxylamin in kalter, alkalischer, wäßrig-alkoholischer Lösung (Werner, Detscheff, B. 38, 82). — Prismatische Kryställchen (aus heißem Alkohol). F: 160°. — Bei der Einw. von Benzolsulfochlorid in alkal. Lösung entstehen Benzaldehyd und Brenzschleimsäurenitril (Syst. No. 2574).

syn-[α -Oxy-benzyl]- α -furyl-ketoximacetat, α -Benzfuroinoximacetat $C_{14}H_{13}O_4N=OC_4H_3\cdot C(:N\cdot O\cdot CO\cdot CH_3)\cdot CH(OH)\cdot C_6H_5$. B. Aus α -Benzfuroinoxim und Essigsäureanhydrid bei gewöhnlicher Temperatur (W., D., B. 38, 83). — Krystalle (aus Benzol). F: 115°. — Zersetzt sich beim Erwärmen mit Alkohol unter Rückbildung des Oxims.

anti - [α - Oxy - benzyl] - α - furyl - ketoxim, β - Benzfuroinoxim $C_{12}H_{11}O_3N = OC_4H_3 \cdot C \cdot CH(OH) \cdot C_6H_5$ ₁₎. B. s. bei α -Benzfuroinoxim. — Kryställchen mit Krystalläther

HO·N (aus Äther). Zerfällt bei 35° unter Aufschäumen und verwandelt sich dabei in ein weißes, bei 90° schmelzendes Pulver; verwittert an der Luft; leicht löslich in Alkohol, Äther, Benzol (W., D., B. 38, 32).

(W., D., B. 38, 82). Verbindung $C_{19}H_{16}O_4N_2$. B. Aus β -Benzfuroinoxim und Phenylisocyanat in Äther (W., D., B. 38, 84). — Krystalle (aus verd. Alkohol). F: 138°.

anti-[α -Oxy-benzyl]- α -furyl-ketoximacetat, β -Benzfuroinoximacetat $C_{14}H_{13}O_4N=OC_4H_3\cdot C(:N\cdot O\cdot CO\cdot CH_3)\cdot CH(OH)\cdot C_6H_5$. B. Aus β -Benzfuroinoxim und Essigsäureanhydrid bei gewöhnlicher Temperatur (W., D., B. 38, 83). — Nadelförmige Krystalle (aus Benzol). F: 96°.

γ-Methyl-α-anisal- $\mathcal{A}^{\beta,\gamma}$ -crotonlacton $C_{13}H_{12}O_3=CH_3\cdot O\cdot C_8H_4\cdot CH: C_4HO_3\cdot CH_3$. B. Aus α-Angelicalacton (Bd. XVII, S. 252) und Anisaldehyd durch Kondensation mittels einiger Tropfen Diāthyl- oder Triāthylamin (Thiele, Tischbein, Lossow, A. 319, 185). — Gelbe Nadeln (aus Methylalkohol). F: 98,5—99°. — Gibt beim Kochen mit Soda in wäßrigalkoholischer Lösung α-Anisal-lävulinsäure.

¹⁾ Möglicherweise sind die Konfigurationsformeln der Benzfuroinoxime zu vertauschen; vgl. hierzu die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von Meisenheimer, Meis, B. 57, 292.

3. 4¹-Oxy-5-oxo-2-phenyl-4-äthyliden-furandihydrid, γ-Phenyl-α-fα-oxy-āthyliden]- $\Delta^{\beta,\gamma}$ -crotonlacton $C_{12}H_{10}O_3= \begin{array}{c} CH_2\cdot C(OH):C-CH\\ OC\cdot O\cdot C\cdot C_6H_5 \end{array}$ ist desmotrop mit

y-Phenyl-α-acetyl- $\Delta^{\beta,\gamma}$ -crotonlacton, Bd. XVII, S. 513.

4¹- Bensoyloxy - 5 - oxo - 2 - phenyl - 4 - äthyliden - furandihydrid, γ - Phenyl- α - [α - bensoyloxy - äthyliden] - $\Delta^{\beta,\gamma}$ - crotonlacton $C_{19}H_{14}O_4=CH_8\cdot C(O\cdot CO\cdot C_0\cdot H_8)\colon C\longrightarrow CH$ $OC\cdot O\cdot C\cdot C_0\cdot H_8$ B. Man löst γ -Phenyl- α -acetyl- $\Delta^{\beta,\gamma}$ -crotonlacton (Bd. XVII, $OC\cdot O\cdot C\cdot C_0\cdot H_8$)

OC· O· C· C₆H₅

S. 513) in Pyridin, tröpfelt unter Kühlung Benzoylchlorid zu und gießt nach einigen Stunden in eiskalte verdünnte Schwefelsäure (Borsche, Fels, B. 39, 1817). — Nadeln (aus Alkohol). F: 160—161°. — Liefert beim Erwärmen mit Phenylhydrazin das Phenylhydrazon des ν-Phenyl-α-acetyl-Δ^{β,γ}-crotonlactons (Bd. XVII, S. 514).

2. $0xy-0xo-Verbindungen C_{18}H_{12}O_{3}$.

- 1. 4" Oxy 2 oxo [dibenzo 1'.2':3.4; 1''.2'':5.6 (1.2 pyran)] tetrahydrid (3'.4'.5'.6'), 7 Oxy [benzo-1'.2':3.4 cumarin] tetrahydrid (3'.4'.5'.6'), 3.4 Tetra-methylen-umbelliferon C₁₈H₁₂O₂, s. nebenstehende Formel. B. Aus Cyclohexanon-(2)-carbonsäure-(1)-äthylester und Resorcin durch Kondensation mittels konz. Schwefelsäure (DIECEMANN, A. 317, 109). Kryställchen (aus Alkohol). F: 203—204°. Schwer löslich in Alkohol, Äther, Benzol und Chloroform; löslich in Sodalösung. Die Lösungen in Alkali und Ammoniak sowie in konz. Schwefelsäure fluorescieren blau.
- 2. 7-Oxy-2-oxo-4'-methyl-[cyclopenteno-1'.2':3.4-chromen], 7-Oxy-4'-methyl-[cyclopenteno-1'.2':3.4-cumarin], 3.4-[β-Methyl-trimethylen]-umbelliferon

 C₁₃H₁₂O₂, s. nebenstehende Formel. B. Durch Kondensation von
 3-Methyl-cyclopentanon-(5)-carbonsäure-(1)-āthylester und Resorcin mittels konz. Schwefelsäure (DIECKMANN, A. 317, 89). Krystallisiert aus verd. Äthylalkohol oder Methylalkohol mit 1 Mol Krystallwasser. Erweicht wasserhaltig unscharf bei a. 120°, schmilzt wasserfrei bei 180°. Schwer löslich in Äther, ziemlich leicht in Alkohol; löslich in Natronlauge. Fluoresciert blau in konz. Schwefelsäure sowie in alkalischer, besonders in ammoniakalischer Lösung.

Acetylderivat $C_{15}H_{14}O_4 = C_{15}H_{11}O_3 \cdot O \cdot CO \cdot CH_3$. B. Aus $3.4 \cdot [\beta$ -Methyl-trimethylen]-umbelliferon bei $^{1}/_{g}$ -stdg. Kochen mit überschüssigem Essigsäureanhydrid (DIECEMANN, A. 317, 90). — Nadeln (aus Alkohol). F: 133—134°.

g) Oxy-oxo-Verbindung $C_nH_{2n-16}O_3$.

3-0xy-naphthalid $C_{13}H_3O_3$, s. nebenstehende Formel, ist desmotrop mit Naphthaldehyd-(1)-carbonsäure-(8) (Naphthalaldehydsäure), Bd. X, 8. 746.

8-Acetoxy-naphthalid $C_{16}H_{10}O_4 = C_{10}H_6$ $CH(0 \cdot CO \cdot CH_2)$ O. B. Aus 1 Tl. Naphthaladehydsäure und 2 Tln. Essigsäureanhydrid bei 180° (Graebe, Geeller, A. 276, 15). — Krystalle (aus Alkohol). F: 140°.

h) Oxy-oxo-Verbindungen $C_nH_{2n-18}O_3$.

1. $0xy-oxo-Verbindungen C_{13}H_8O_3$.

1. 4 - Oxy - 2 - oxo - 6.7-benzo - [1.2 - chromen], 4 - Oxy - 6.7-benzo-cumarin (,,2.3-Naphthotetronsaure") C₁₈H₄O₃, s. nebenstehende Formel, ist desmotrop mit 2.4-Dioxo-6.7-benzo-chroman, Bd. XVII, S. 524.

- 2. 6-Oxy-fluoron C₁₂H₈O₃, s. nebenstehende Formel. B. Entsteht in unreinem Zustand aus Methylendiresorcin durch Erhitzen mit konz. Schwefelsäure auf 140—150° oder mit Zinkchlorid und etwas Aluminiumchlorid auf 130—140° und Behandlung der Schmelze mit Wasser (Möhlau, Koch, B. 27, 2888). Entsteht in reiner Form, wenn man 3.6-Dioxy-xanthon (S. 117) in Wasser mit Natriumamalgam behandelt, den mit Essigsäure erhaltenen Niederschlag in Eisessig mit überschüssigem Eisenchlorid versetzt, filtriert, zum Filtrat Kochsalzlösung hinzufügt, die Fällung mit Sodalösung aufnimmt und die Lösung heiß mit Essigsäure ansäuert (Kehrmann, A. 372 [1910], 350). Ziegelrotes, blauschimmerndes krystallinisches Pulver (Ke.). Färbt sich bei 275° dunkel; schmilzt noch nicht bei 320° (Ke.). Schwer löslich in Alkohol und Benzol, etwas löslich in siedendem Wasser; löslich in Alkalien mit orangegelber Farbe und intensiv grüner Fluorescenz (Ke.). Löslich in konz. Schwefelsäure mit grünlichgelber Farbe (Ke.; vgl. M., B., 31, 147 Anm.). Gibt bei der Zinkstaubdestillation Xanthen (M., Koch).
- 3. 1-Oxy-9-oxo-xanthen, 1-Oxy-xanthon C₁₃H₈O₃, s. nebenstehende Formel. Zur Konstitution vgl. Dreher, v. Kostanecki, B. 26, 71. B. Bei 2-stdg. Erhitzen eines vorher zusammengeschmolzenen Gemenges von 20 g Resorcin und 20 g Salicylsäure mit 15 g Zinkchlorid zum Schmelzen; die Schmelze wird in ¹/₄ l heißes Wasser gebracht, das Ungelöste wiederholt mit kalter verdünnter Natronlauge behandelt, dann mit Salzsäure zerlegt und aus Alkohol umkrystellisiert (MICHARI, Am. 5, 91). 1-Oxy-xanthon entsteht durch Destillation von Resorcin mit Salicylsäure und Essigsäureanhydrid, neben geringen Mengen von 3-Oxy-xanthon (v. K., NESLER, B. 24, 1895, 3981). Beim Schmelzen der durch Erhitzen von Salicylsäure mit Resorcin auf 195—200° erhaltenen Verbindung vom Schmelzpunkt 133—134° ("2-Salicoylresorcin", Bd. VIII, S. 422, Z. 12 v. o.)¹) mit Zinkchlorid (MI., Am. 5, 92). Beim Erhitzen von Salicylsäure mit β-Resorcylsäure und Essigsäureanhydrid (Graber, A. 254, 290). Durch Erwärmen von 2 g 1-Methoxy-xanthon in 20 cm³ Toluol mit 3 g wasserfreiem Aluminium-chlorid (Ullmann, Panchaud, A. 350, 114). Hellgelbe Nadeln (aus Alkohol). F: 147° (U., P.), 146—147° (MI.), 146° (Gr.; v. K., N.). Wenig löslich in siedendem Wasser (MI.). Beim Destillieren über Zinkstaub wird Xanthen gebildet (Gr.; D., v. K.). Zerfällt beim Schmelzen mit Atzkali in Resorcin und Salicylsäure (MI.). Beim vorsichtigen Schmelzen mit Natron bei 250—270° entsteht zunächst, 2-Salicoyl-resorcin" (F: 133°)¹) (Gr.). Verbindet sich weder mit Hydroxylamin, noch mit Phenylhydrazin (Gr.). Färbt chromgebeizte Wolle und Baumwolle ockergelb (Möhlau, Steimmig, C. 1904 II, 1353). Na C₁₃H₁O₃ (bei 100°). B. Durch Eingießen einer alkoh. Lösung von 1-Oxy-xanthon in überschüssige wäßrige Natronlauge (MI., Am. 5, 93). Blaßgelbe Nadeln. Fast unlöslich in Wasser. Na C₁₃H₁O₃ + Na OH (bei 110°). B. Beim Eingießen einer siedenden Lösung von 1 Mol 1-Oxy-xanthon in Alkohol in eine Lösung von 3 Mol Natriumäthylat in 80°/qigem Alkohol (MI., Am. 5, 92). Citronengelbe Na
- 1-Methoxy-xanthon $C_{14}H_{10}O_3 = C_4H_4 < O > C_4H_3 \cdot O \cdot CH_3$. B. Man erwärmt 1,9 g 6-Chlor-2-methoxy-benzoesäure (Bd. X, S. 104) in Gegenwart von 0,1 g Kupfer mit 3,8 g Phenol und einer Lösung von 0,5 g Natrium in 10 cm³ Methylalkohol, bis der Methylalkohol verjagt ist, erhitzt die Mischung dann auf 180—190° und erwärmt die entstandene (nicht rein isolierte) 2-Methoxy-6-phenoxy-benzoesäure mit 8 cm² konz. Schwefelsäure 40—50 Minuten auf dem Wasserbad (Ullmann, Panchaud, A. 350, 113). Nadeln (aus Benzol oder Toluol + Ligroin). F: 138°. Leicht löslich in Alkohol mit schwach blauer Fluorescenz, leicht löslich in Eisessig und Benzol, schwer in siedendem Ligroin.
- 1-Acetoxy-xanthon $C_{16}H_{10}O_4 = C_6H_4 < {}^{\hbox{\scriptsize CO}}_{\hbox{\scriptsize O}} > C_6H_3 \cdot O \cdot {}^{\hbox{\scriptsize CO}} \cdot CH_3$. B. Aus 1-Oxy-xanthon durch 3-stdg. Erhitzen mit 3 Tln. Essigsäureanhydrid und 1 Tl. geschmolzenem Natriumacetat auf 110° (MICHABL, Am. 5, 94). Prismatische Nadeln (aus Alkohol). F: 167—168° (MI.), 167° (GRAEBE, A. 254, 290; v. Kostanecki, Nessler, B. 24, 1896). Schwer löslich in kaltem, leicht in heißem Alkohol (MI.).
- 1-Benzoyloxy-xanthon $C_{20}H_{12}O_4 = C_6H_4 < \stackrel{CO}{O} > C_6H_3 \cdot O \cdot CO \cdot C_6H_5$. B. Durch Schütteln des in Natronlauge suspendierten Natriumsalzes des 1-Oxy-xanthons mit Benzoylchlorid (KÖNIG, v. KOSTANECKI, B. 27, 1996). Nadeln (aus Alkohol). F: 206,5°.

¹⁾ Diese Verbindung ist nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von KAUFFMANN, PANNWITZ, B. 45, 774 Anm. als identisch mit Resorcinmonosalicylat (F: 141°, 137°) (Bd. X, S. 82) erklärt worden. Es erscheint jedoch nicht ausgeschlossen, daß beim Erhitzen von Salicylaßure mit Resorcin unter Umständen auch 2-Salicoyl-resorcin entstaht, das von ATKINSON, HEILBEON, Soc. 1926, 2688 durch eine einwandfreie Synthese gewonnen wurde.

- XX-Dibrom-1-oxy-xanthon C₁₂H₆O₂Br₂. B. Aus 1-Oxy-xanthon, gelöst in Eisessig, mit Brom (König, v. Kostanecki, B. 27, 1994). Gelbe Nadeln (aus Eisessig). F: 222°. Schwer löslich in Alkohol und Wasser. Bildet beim Versetzen mit Alkalien ein intensiv gelbes, wasserunlösliches Natriumsalz.
- 4. 2-Oxy-9-oxo-xanthen, 2-Oxy-xanthon C₁₃H₈O₃, s. nebenstehende Formel. B. Bei der Destillation eines Gemenges aus Salicylsäure und Hydrochinon mit Essigsäureanhydrid (v. Kostanecki, Ruttishauser, B. 25, 1648). Durch Erwärmen von 2-Methoxy-xanthon mit Aluminiumchlorid (Ullmann, Denzler, B. 39, 4334) in Xylol (U., Kipper, B. 38, 2123). Gelbliche Nadeln (aus verd. Alkohol), Krystalle (aus Benzol). F: 240° (U., Ki.), 237° (korr.) (U., D.), 231° (v. K., R.). Leicht löslich in siedendem Benzol und Alkohol, unlöslich in Ligroin und Wasser; löslich in stark verdünnter wäßriger Natronlauge mit gelber Farbe (U., Ki.). Löslich in konz. Schwefelsäure mit gelber Farbe und grünlicher Fluorescenz (v. K., R.; R. Meyer, Ph. Ch. 24, 493). Natriumsalz. Goldgelbe Nadeln. Leicht löslich in Wasser (v. K., R.); sehr wenig löslich in starker Natronlauge (U., Ki.).
- 2-Methoxy-xanthon $C_{14}H_{10}O_3 = C_6H_4 \subset_Q^{CO} \subset_cH_3 \cdot O \cdot CH_3$. B. Beim Erwärmen der durch Kondensation von 2-Chlor-benzoesäure mit Hydrochinon-monomethyläther in alkal. Lösung bei Gegenwart von Kupfer entstehenden, nicht näher beschriebenen 4'-Methoxy-diphenyläther-carbonsäure-(2) mit der 10-fachen Menge konz. Schwefelsäure auf dem Wasserbad (Ulimann, Slokasow, B. 38, 2119). Beim Erwärmen von 5-Methoxy-2-phenoxy-benzoesäure mit konz. Schwefelsäure auf dem Wasserbad (U., Kipper, B. 38, 2122). Man diazotiert 2'-Amino-2.5-dimethoxy-benzophenon in schwefelsaurer Lösung und erhitzt die erhaltene Diazoniumsalzlösung auf 100° (U., Denzler, B. 39, 4334). Man erhitzt 1 Mol 2-Oxy-xanthon mit 1 Mol Atzkali und etwas mehr als 1 Mol Methyljodid in methylslkoholischer Lösung im geschlossenen Rohr einige Stunden auf 100° (Dreher, v. Kostanecki, B. 26, 77). Nadeln (aus Alkohol). F: 131° (U., S.), 131,5° (Dr., v. Ko.). Ziemlich leicht löslich in Alkohol, Benzol, Eisessig; die alkoh. Lösung fluoresciert blau (U., Ki.), die gelbe Lösung in konz. Schwefelsäure grün (U., Ki.), gelbgrün (Dr., v. Ko.). Liefert beim Erwärmen mit Aluminiumchlorid 2-Oxy-xanthon (U., Ki.; U., D.).
- 2-Acetoxy-xanthon $C_{1b}H_{10}O_4 = C_0H_4 < \overset{CO}{O} > C_0H_3 \cdot 0 \cdot CO \cdot CH_2$. B. Durch kurzes Kochen von 2-Oxy-xanthon mit Essigsäureanhydrid und entwässertem Natriumscetat (v. Kostanecki, Rutishauser, B. 25, 1649). Nadeln (aus verd. Alkohol). F: 161°.
- 2-Bensoyloxy-xanthon $C_{20}H_{12}O_4 = C_0H_4 < \stackrel{CO}{O} > C_0H_2 \cdot O \cdot CO \cdot C_0H_5$. B. Durch Schütteln von 2-Oxy-xanthon in Natronlauge mit Benzoylchlorid (König, v. Ko., B. 27, 1996). Nadeln (aus Alkohol). F: 151°.
- x.x-Dibrom-2-oxy-xanthon $C_{13}H_6O_3Br_3$. B. Aus 2-Oxy-xanthon, gelöst in Eisessig, mit Brom (Kö., v. Ko., B. 27, 1994). Schwach gelbliche Nadeln (aus Eisessig). F: 207°. Schwer löslich in Alkohol. Natriumsalz. Intensiv gelb. Sehr leicht löslich in Wasser, schwer in kalter Natronlauge.
- 5. 3-Oxy-9-oxo-xanthen, 3-Oxy-xanthon C₁₃H₈O₃, s. nebenstehende Formel. Zur Konstitution vgl. Dreher, v. Kostanecki, B. 26, 71. B. Entsteht in sehr geringer Menge neben 1-Oxy-xanthon bei der Destillation von Resorcin mit Salicylsäure und Essigsäureanhydrid (v. Kostanecki, Nessler, B. 24, 1895, 3981). Durch Kochen von 3-Methoxy-xanthon in Toluol mit etwas Aluminiumchlorid (Ulimann, Wagner, A. 355, 370) oder durch Erhitzen von 3-Methoxy-xanthon mit der doppelten Menge Aluminiumchlorid auf 180° (U., Denzler, B. 39, 4335). Farblose Nadeln. F: 242° (v. K., N.), 243° (U., W.). Leicht löslich in Alkohol, ziemlich leicht in Eisessig, schwer in Äther, sehr wenig in Benzol (U., De.). Löslich in verd. Natronlauge und konz. Schwefelsäure (U., De.; U., W.). Fluoresciert in alkal. Lösung sowie in konz. Schwefelsäure schwach blau (R. Meyer, Ph. Ch. 24, 493; vgl. U., W.; U., De.). Liefert bei der Destillation über Zinkstaub Xanthen (De., v. K.).
- 3-Methoxy-xanthon $C_{14}H_{10}O_3=C_6H_4 < {\tiny CO} > C_6H_3 \cdot O \cdot CH_2$. B. Beim Erwärmen von 5-Methoxy-diphenyläther-carbonsäure-(2) (Bd. X, S. 380) mit konz. Schwefelsäure auf 100° (ULIMANN, WAGNER, A. 355, 369). Man diazotiert 2'-Amino-2.4-dimethoxy-benzophenon in schwefelsaurer Lösung und erhitzt die Diazoniumsalzlösung zum Sieden (U., DENZLER, B. 39, 4335). Durch Erhitzen von 1 Mol 3-Oxy-xanthon mit 1 Mol Atzkali und etwas mehr als 1 Mol Methyljodid in methylalkoholischer Lösung im Druckrohr auf 100° (DREHER, V. KOSTANECKI, B. 26, 77). Blättchen (aus 50°/oigem Alkohol). F: 128° (U., Dr.),

- 128,5° (Dr., v. K.), 129° (U., W.). Leicht löslich in Alkohol, Benzol, Eisessig, sehr wenig in Ligroin (U., Dr.). Die Lösung in konz. Schwefelsäure fluoresciert bläulich (U., W.; Dr., v. K.). Gibt beim Erhitzen mit Aluminiumchlorid 3-Oxy-xanthon (U., Dr.; U., W.).
- **3-Acetoxy-xanthon** $C_{15}H_{10}O_4 = C_6H_4 < {CO \atop O} > C_6H_3 \cdot O \cdot CO \cdot CH_3$. B. Aus 3-Oxy-xanthon durch kurzes Kochen mit Essigsäureanhydrid und entwässertem Natriumacetat (v. Kostanecki, Rutishauser, B. **25**, 1651). Seideglänzende Nadeln (aus verd. Alkohol). F: 1570 bis 158°.
- 3-Benzoyloxy-xanthon $C_{20}H_{12}O_4 = C_0H_4 < {CO \choose O} > C_0H_3 \cdot O \cdot CO \cdot C_0H_5$. B. Durch Schütteln von 3-Oxy-xanthon in Natronlauge mit Benzoylchlorid (König, v. Kostanecki, B. 27, 1996). — Nädelchen. F: 147°.
- x.x-Dibrom-3-oxy-xanthon $C_{13}H_6O_3Br_2$. B. Aus 3-Oxy-xanthon mit Brom in Eisessig (Kö., v. Ko., B. 27, 1994). Nadeln (aus Eisessig). F: 269—270°. Schwer löslich in Alkohol; löslich in verd. Alkalien mit gelber Farbe.
- 6. 4-Oxy-9-oxo-xanthen, 4-Oxy-xanthon $C_{13}H_9O_3$, s. nebenstehende Formel. B. Neben anderen Produkten bei der Destillation eines Gemenges aus Salicylsäure und Brenzcatechin mit Essigsäureanhydrid Gemenges aus Salicylsäure und Brenzcatechin mit Essigsäureanhydrid (v. Kostanecki, Rutishauser, B. 25, 1649). Man trägt unter Kühlung oh 4 g Aluminiumchlorid in die Benzol-Lösung des aus 3 g 2-[2-Methoxy-phenoxy]-benzoesäure und 3 g Phosphorpentachlorid erhaltenen Chlorids ein und erhitzt noch 20 Minuten; daneben entsteht 4-Methoxy-xanthon (Ullmann, Slokasow, B. 38, 2118). — Nadeln (aus verd. Alkohol). F: 241° (U., S.), 242° (Pfeiffer, A. 398 [1913], 171). Sublimiert sehr leicht (v. K., R.). Leicht löslich in Alkohol, Äther, Eisessig, löslich in siedendem Benzol, schwer löslich in Ligroin und Wasser; die eitronengelbe Lösung in konz. Schwefelsäure fluoresciert schwach grün (U., S.). Löslich in verd. Natronlauge mit schwach gelber Farbe (v. K., R.) ohne Fluorescenz (R. Meyer, Ph. Ch. 24, 493). — Natriumsalz. Citronengelbe Nadeln (v. K. R.) (v. K., R.).
- **4-Methoxy-xanthon** $C_{14}H_{10}O_3 = C_6H_4 < \stackrel{CO}{\bigcirc} C_6H_3 \cdot O \cdot CH_3$. B. Durch mehrstündiges Erhitzen von 1 Mol 4-Oxy-xanthon mit 1 Mol Atzkali und etwas mehr als 1 Mol Methyljodid in methylalkoholischer Lösung im Druckrohr auf 100° (Dreher, v. Kostanecki, B. 26, 77). Eine weitere Bildung s. bei 4-Oxy-xanthon. — Nadeln (aus Alkohol). F: 173° (Ullmann, Slokasow, B. 38, 2119), 173—174° (Gomberg, West, Am. Soc. 34 [1912], 1563). Leicht löslich in Benzol und Äther, löslich in heißem Alkohol und siedendem Ligroin.
- 4-Acetoxy-xanthon $C_{18}H_{10}O_4 = C_6H_4 < \stackrel{CO}{\bigcirc} C_6H_3 \cdot O \cdot CO \cdot CH_3$. B. Durch kurzes Kochen von 4-Oxy-xanthon mit Essigsäureanhydrid und entwässertem Natriumacetat (v. Kostanecki, Rutishauser, B. 25, 1650). — Mikroskopische Krystalle (aus verd. Alkohol). F: 137—138°.
- **4-Benzoyloxy-xanthon** $C_{30}H_{13}O_4 = C_0H_4 < C_0 > C_0H_3 \cdot O \cdot CO \cdot C_0H_5$. B. Durch Schütteln von 4-Oxy-xanthon mit Benzoylchlorid und Natronlauge (König, v. Kostanecki, B. 27, 1996). — Nadeln. F: 172°.
- x.x-Dibrom-4-oxy-xanthon C₁₃H₆O₃Br₂. B. Aus 4-Oxy-xanthon in Eisessig mit Brom (Kö., v. Ko., B. 27, 1994). Nadeln. F: 274—276°. Schwer löslich in Alkohol; löslich in Alkalien mit gelber Farbe.
- 7. 4 Oxy 2 oxo 7.8 benzo [1.2 chromen], 4-Oxy-7.8-benzo-cumarin (,,2.1-Naphthotetronsäure") C₁₂H₂O₃, s. nebenstehende Formel, ist desmotrop mit 2.4-Dioxo-7.8-benzo-chroman, Bd. XVII, S. 524.

2. Oxy-oxo-Verbindungen C14H10O8.

- 1. 3 Oxy 2 oxo 3 phenyl-cumaran, Lacton der $2 \cdot \alpha Dioxy diphenyl-essigsäure$ $C_{14}H_{10}O_3 = C_6H_4 < C(C_6H_5)(OH) < CO$.

 3-Äthoxy-2-oxo-3-phenyl-cumaran, Lacton der 2-Oxy- α -äthoxy-diphenylessigsäure $C_{16}H_{14}O_3 = C_6H_4 < C(C_6H_5)(O \cdot C_9H_5) < CO$. B. Durch kurzes Kochen von 3-Brom-

2-oxo-3-phenyl-cumaran (Bd. XVII, S. 361) mit 70°/øigem Alkohol (Bistrzycki, Flatau, B. 30, 128). — Prismen (aus verd. Alkohol). Erweicht bei 82° und schmilst bei 85—86°. Leicht löslich in Benzol, Chloroform, Äther und heißem verdünntem Alkohol, ziemlich schwer in Ligroin. Leicht löslich in heißer verdünnter Kalilauge; beim Ansäuern der alkal. Lösung fällt 2-Oxy-α-äthoxy-diphenylessigsäure aus.

2. 4-Oxy-2-oxo-3-phenyl-cumaran, Lacton der 2.6-Dioxy-Ho diphenylessigsdure C₁₄H₁₀O₅, s. nebenstehende Formel. B. Entsteht in geringer Menge neben dem Lacton der 2.4-Dioxy-diphenylessigsdure durch Erhitzen von Mandelsäure mit Resoroin und 73% iger Schwefelsäure (SIMONIS, B. 31, 2826). — Krystalle (aus verd. Alkohol). Rhombisch (SI.). F: 125°. Leicht löslich in Alkohol und Eisessig, etwas schwerer in Benzol. Löst sich mit roter Farbe in konz. Schwefelsäure.

x-Brom-4-oxy-2-oxo-3-phenyl-cumaran C₁₄H₉O₃Br = HO·C₆H₂Br CH(C₆H₅) CO.

B. Durch Einw. von Brom auf das Lacton der 2.6-Dioxy-diphenylessigsäure in Benzol (SI., B. 31, 2828). — F: 142°.

- 3. 5 Oxy 2 oxo 3 phenyl cumaran, Lacton der 2.5 Dioxy-diphenylessigsäure C₁₄H₁₀O₃, s. nebenstehende Formel. B. Aus 5 g Mandelsäure und 7 g Hydrochinon durch Erhitzen mit 20 g 73°/oiger Schwefelsäure (BISTEZYCKI, FLATAU, B. 80, 130). Durch Verschmelzen von Mandelsäure mit Hydrochinon bei 200—300° (H. v. Liebig, J. pr. [2] 78, 96). Warzenförmige Krystallaggregate (aus Benzol). F: 153—154° (B., F.), 157° (v. L.). Leicht löslich in Alkohol, Eisessig, Aceton, ziemlich schwer in Benzol (B., F.). Konzentrierte Schwefelsäure färbt erst gelb. dann braun (v. L.).
- 4. 6-Oxy-2-oxo-3-phenyl-cumaran, Lacton der 2.4-Dioxy-diphenylessigsäure C₁₄H₁₀O₃, s. nebenstehende Formel. B. Durch Erhitzen von Mandelsäure mit Resorcin und T3°/ojiger Schwefelsäure, neben dem Lacton der 2.6-Dioxy-diphenylessigsäure (Simonis, B. 31, 2826). Aus Resorcin und Mandelsäure durch Verschmelzen bei 200-300° (H. v. Liebto, J. pr. [2] 78, 96). Tafeln (aus verd. Alkohol). Triklin pinakoidal (S1.; vgl. Groth, Ch. Kr. 5, 120). F: 183° (S1.; v. L.). Leicht löslich in Alkohol und Eisessig, etwas schwerer in Benzol (S1.), unlöslich in Wasser (v. L.). Färbt sich mit konz. Schwefelsäure erst rosa, dann rot und lila, schließlich wieder rot (v. L.).
- x-Brom-6-oxy-2-oxo-8-phenyl-cumaran $C_{14}H_{9}O_{3}Br = HO \cdot C_{6}H_{2}Br \xrightarrow{CH(C_{6}H_{5})}CO$.

 B. Durch Einw. von 1 Mol Brom auf 1 Mol des in Benzol gelösten Lactons der 2.4-Dioxy-diphenylessigsäure (s. o.) (Simonis, B. 31, 2828). F: 145°.
- 3.x Dibrom 6 oxy 2 oxo 3 phenyl sumaran $C_{14}H_8O_3Br_3 = HO \cdot C_6H_3Br \xrightarrow{CBr(C_6H_5)} CO$. B. Durch Einw. von 2 Mol Brom auf 1 Mol des Lactons der 2.4-Dioxy-diphenylessigsäure in warmem Benzol (Si., B. 31, 2828). Wird von Wasser, Alkoholen usw. leicht zersetzt.
- 5. 1-0xy-3-oxo-1-phenyl-phthalan, 3-0xy-3-phenyl-phthalid, cyclo-Form der 2-Benzoyl-benzoesdure (Bd. X, S. 747) $C_{14}H_{10}O_{8}=C_{6}H_{4}\overbrace{C(C_{4}H_{8})(OH)}^{CO}O$.
- 3-Methoxy-8-phenyl-phthalid, [2-Benzoyl-benzoesäure]-pseudomethylester $C_{15}H_{18}O_3=C_6H_4$ $C_{C_6H_5}(O\cdot C_{H_2})$ O. Zur Konstitution vgl. H. Meyer, M. 28, 1235 l). B. Man löst 2-Benzoyl-benzoesäure bei 30—35° in Thionylchlorid, saugt das überschüssige Thionylchlorid rasch ab und übergießt den Rückstand sofort mit Methylalkohol; man gießt nach $\frac{1}{2}$ -stdg. Stehenlassen in verd. Sodalösung, nimmt das ausfallende Öl mit Ather oder Chloroform auf und verrührt den nach Verdampfen hinterbleibenden Rückstand mit 80°/sigem Methylalkohol (H. M., M. 25, 478). Man löst 2-Benzoyl-benzoesäure in 40° warmem Phosphortrichlorid und behandelt den nach Entfernung der phosphorigen Säure und des überschüssigen Phosphortrichlorids hinterbleibenden farblosen Sirup mit Methylalkohol (H. M., M. 25, 481). Säulen (aus einem Gemisch von Äther, Petroläther und Chloroform). Monoklin

¹⁾ Vgl. dazu auch die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von EGERER, H. MEYER, M. 34, 69 und von v. Auwers, Heinze, B. 52, 586, 588.

- (Bier, M. 25, 479). F: 80—81°; Kp: 345—348° (H. M., M. 25, 480). Leicht löslich in Alkoholen, Äther, Aceton, Chloroform, unlöslich in Wasser; löst sich in konz. Schwefelsäure mit gelber Farbe; wird von konz. Schwefelsäure rascher verseift als der isomere 2-Benzoylbenzoesäure-methylester (H. M., M. 25, 482). Verhält sich bei der Reduktion mit Zink und Essigsäure sowie bei der Umsetzung mit konzentriertem wäßrigem Ammoniak und Phenylhydrazin wie der isomere 2-Benzoyl-benzoesäure-methylester (H. M., M. 25, 1183, 1186).
- 3-Acetoxy-3-phenyl-phthalid $C_{16}H_{12}O_4 = C_6H_4 \frac{CO}{C(C_6H_5)(O \cdot CO \cdot CH_3)} O$. Vgl. Essigsäure-[2-benzoyl-benzoesäure]-anhydrid $C_6H_5 \cdot CO \cdot C_6H_4 \cdot CO \cdot O \cdot CO \cdot CH_3$, Bd. X, S. 749. 4.5.6.7-Tetrachlor-3-methoxy-3-phenyl-phthalid, [3.4.5.6-Tetrachlor-2-benzoyl-benzoy
- benzoesäure]-pseudomethylester $C_{15}H_8O_3Cl_4 = C_8Cl_4 C(C_6H_8)(O \cdot CH_3)$ O. B. Aus 3.4.5.6.7-Pentachlor-3-phenyl-phthalid (Bd. XVII, S. 361) bei anhaltendem Kochen mit einem großen Überschuß von Methylalkohol oder mit methylalkoholischer Natriummethylatlösung (H. MEYER, M. 25, 1191). Kryställchen (aus Chloroform + Methylalkohol). F: 154°.
- 6-Nitro-3-methoxy-3-phenyl-phthalid, [5-Nitro- O_2N - O_2
- 6. 3-Oxo-1-[4-oxy-phenyl]-phthalan, 3-[4-Oxy-phenyl]-phthalid C₁₄H₁₀O₃ = C₆H₄ CO CO B. Man trägt allmählich ein Gemisch von 5 g Phthalaldehydsäure und 4 g Phenol in 20 g auf —10° abgekühlte 73°/oige Schwefelsäure ein und läßt 12 Stdn. bei 0° stehen (BISTRZYCKI, OEHLERT, B. 27, 2632). Aus 4'-Oxy-benzophenon carbonsäure-(2) durch Reduktion mit Zink und Salzsäure in alkoh. Lösung (H. MEYER, M. 20, 362). Nädelchen (aus verd. Alkohol). F: 148—151° (BI., OE.), 157—160° (H. M.). Leicht löslich in den üblichen Solvenzien, besonders leicht in Alkohol, unlöslich in Wasser; löslich in konz. Schwefelsäure (BI., OE.). Bei der Zinkstaub-Destillation entsteht Anthracen (BI., OE.). Liefert beim gelinden Kochen mit Zinkstaub und 10°/oiger Natronlauge 4'-Oxy-diphenylmethan-carbonsäure-(2) (Bd. X, S. 345) (BI., YSSEL DE SCHEPPER, B. 31, 2792). Gibt beim Bromieren in warmem Eisessig 3-[3.5-Dibrom-4-oxy-phenyl]-phthalid (BI., OE.). Liefert bei der Nitrierung je nach den Versuchsbedingungen 3-[3-Nitro-4-oxy-phenyl]-phthalid (BI., OE.) oder 3-[3.5-Dinitro-4-oxy-phenyl]-phthalid (BI., Y. DE SCH.). Gibt in alkal. Lösung beim Erwärmen mit Hydroxylamin-hydrochlorid 2-Oxy-3-[4-oxy-phenyl]-phthalimidin C₆H₄ CH(C₆H₄·OH) N·OH (Syst. No. 3239) (R. MEYER, KISSIN, B. 42, 2835). Liefert beim Erhitzen mit Methyljodid und Kaliumhydroxyd in Methylalkohol 3-[4-Methoxy-phenyl]-phthalid (BI., Y. DE SCH.). Gibt beim Kochen mit Essigsäureanhydrid und entwässertem Natriumacetat 3-[4-Acetoxy-phenyl]-phthalid (BI., OE.). Liefert beim Zusammenschmelzen mit 4-Amino-phenol 2.3-Bis-[4-oxy-phenyl]-phthalimidin (Syst. No. 3239) (H. M.; vgl. auch Orndorff, Murray, Am. Soc. 39 [1917], 691; Or., Yang, Am. Soc. 45, [1923], 1926).
- 3-[4-Methoxy-phenyl]-phthalid $C_{15}H_{12}O_3 = C_6H_4 \underbrace{CH(C_6H_4 \cdot O \cdot CH_3)}_{CH(C_6H_4 \cdot O \cdot CH_3)}O$. B. Beim Behanden einer alkoh. Lösung von 2-Anisoyl-benzoesäure mit Zink und Salzsäure (Nourrisson, B. 19, 2105; Bl. [2] 46, 206). Durch Erhitzen von 3-[4-Oxy-phenyl]-phthalid mit Methyljodid und Kaliumhydroxyd in Methylalkohol (BISTRZYCKI, YSSEL DE SCHEPPER, B. 31, 2791). Nadeln (aus Alkohol). F: 116—117° (N.; B., Y. DE SCH.). Unlöslich in Wasser, sehr leicht löslich in heißem Alkohol, Chloroform und Eisessig (N.). Unlöslich in kalter, löslich in warmer Natronlauge (N.).
- 3-[4-Acetoxy-phenyl]-phthalid $C_{16}H_{12}O_4 = C_6H_4 CH(C_6H_4 O \cdot CO \cdot CH_3) O$. B. Durch kurzes Kochen gleicher Teile 3-[4-Oxy-phenyl]-phthalid und entwässertem Natriumacetat mit wenig Essigsäureanhydrid (BISTRZYCKI, OEHLERT, B. 27, 2637). Krystalle (aus absol. Alkohol). F: 125—126,5° (BI., OE.), 125—126° (H. MEYER, M. 20, 363).
- 3-[8.5-Dibrom-4-oxy-phenyl]-phthalid $C_{14}H_8O_3Br_2 = C_6H_4$ $CH(C_6H_2Br_3\cdot OH) > 0$.

 B. Beim Bromieren von 3-[4-Oxy-phenyl]-phthalid in wenig warmem Eisessig (B1., OE., BEILSTEINS Handbuch. 4. Aufl. XVIII.

- B. 27, 2636). Blättchen (aus absol. Alkohol). F: 223—224°. Schwer löslich in Alkohol, Eisessig und Benzol.
 - 3 [2 oder 8 Nitroso 4 oxy phenyl] phthalid $C_{14}H_9O_4N =$

C₆H₄ CH[C₆H₃(NO)·OH] O. Das unter dieser Formel von LIMPRICHT (A. 300, 236) beschriebene Produkt kann nach O. Fischer (J. pr. [2] 92 [1915], 57) diese Zusammensetzung nicht gehabt haben. Es ist wahrscheinlich mit der nachfolgend beschriebenen Verbindung identisch (Redaktion dieses Handbuchs).

- $\textbf{3-[3-Nitro-4-oxy-phenyl]-phthalid} \quad C_{14}H_9O_5N = C_8H_4\underbrace{CH[C_8H_3(NO_9)\cdot OH]} > 0.$ B. Durch allmähliches Eintragen von 2 Mol Salpetersäure (D: 1,45) in eine stark gekühlte konzentrierte Lösung von 1 Mol 3-[4-Oxy-phenyl]-phthalid in Eisessig (BISTRZYCKI, OEHLERT, B. 27, 2636). — Gelbe Blättchen (aus verd. Alkohol). F: 152—153° (B., Or.). Schwer löslich in Wasser, leicht in der Hitze in den meisten organischen Solvenzien (B., OE.). -- Wird durch Zinn und Salzsäure zu 3-[3-Amino-4-oxy-phenyl]-phthalid (Syst. No. 2644) reduziert (B., YSSEL DE SCHEPPER, B. 31, 2801).
- $\textbf{3-[3.5-Dinitro-4-oxy-phenyl]-phthalid} \ C_{14}H_8O_7N_3=C_6H_4 CH[C_6H_2(NO_2)_2\cdot OH] O.$ B. Durch Einw. von 2 Mol Salpetersäure (D: 1,50) auf 1 Mol 3-[4-Oxy-phenyl]-phthalid in wenig Eisessig (BISTRZYCKI, YSSEL DE SCHEPPER, B. 31, 2801). — Gelbe mikroskopische Prismen. F: 187°. Ziemlich schwer löslich in heißem Alkohol, Eisessig und Chloroform, sehr wenig in Benzol.
- 7. 3-Oxy-9-oxo-1-methyl-xanthen. 3-Oxy-1-methyl-xanthon C₁₄H₁₀O₃, s. nebenstehende Formel. Zur Konstitution vgl. Dreher, v. Kostanecki, B. 26, 71. B. Durch Destillation von Orcin mit Salicylsäure und Essigsäureanhydrid, neben 1-Oxy-3-methyl-xanthon (v. Kostanecki, Nessler, B. 24, 1895). — Nadeln (aus verd. Alkohol). F: 285°. Löslich in Alkalien mit gelber Farbe.
- 3-Acetoxy-1-methyl-xanthon $C_{16}H_{12}O_4 = C_6H_4 < \begin{array}{c} CO \\ O \end{array} > C_6H_2(CH_3) \cdot O \cdot CO \cdot CH_3$. B. Durch kurzes Kochen von 3-Oxy-1-methyl-xanthon mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., N., B. 24, 3981). — Nadeln (aus verd. Alkohol). F: 127°.
- 8. 8-Oxy-9-oxo-2-methyl-xanthen, 8-Oxy-2-methyl- Ho xanthon C₁₄H₁₀O₃, 8. nebenstehende Formel. B. Durch Destillation von Resoroin mit p-Kresotinsäure und Essigsäureanhydrid (v. Kostanecki, B. 27, 1990). — Gelbe Blättchen. F: 135°.
- 9. 1-Oxy-9-oxo-3-methyl-xanthen, 1-Oxy-3-methyl-xanthon $C_{14}H_{10}O_3$, s. nebenstehende Formel. Zur Konstitution vgl. Dreher, v. Kostanecki, B. 26, 71. — B. Durch Zusammenschmelzen von 10 g Salicylsäure mit 10 g Orcin und 8 g Zinkchlorid (MICHAEL, Am. 5, 95). Durch Destillation von Orcin mit Salicylsäure und Essigsäureanhydrid, neben 3-Oxy-1-methyl-xanthon (v. Kostanecki, Nessler, B. 24, 1894). — Strohgelbe Nadeln (aus Alkohol). F: 1400 (M.; v. K., N.). Schwer löslich in kaltem Alkohol, unlöslich in Wasser (M.). — Zerfällt beim Schmelzen mit Ätzkali in Salicylsäure und Orcin (M.). — NaC₁₄H₂O₃ + 1¹/₂H₂O. Gelbe Nadeln (M.).
- 1-Acetoxy-8-methyl-xanthon $C_{16}H_{12}O_4 = C_6H_4 < {CO \atop O} > C_6H_2(CH_3) \cdot O \cdot CO \cdot CH_3$. B. Beim Erhitzen gleicher Teile 1-Oxy-3-methyl-xanthon und geschmolzenem Natriumacetat mit 4 Tln. Essigsäureanhydrid (M., Am. 5, 96). — Weiße Nadeln (aus Alkohol). F: 151—152° (M.), 152° (v. K., N., B. 24, 1894). Wenig löslich in kaltem Alkohol, unlöslich in Wasser (M.).
- 10. 8-Oxy-9-oxo-3-methyl-xanthen, 8-Oxy-3-methyl-Ho xanthon C₁₄H₁₀O₃, s. nebenstehende Formel. B. Durch Destillation von Resorcin mit m-Kresotinsäure und Essigsäureanhydrid (v. Kosta-NECKI, B. 27, 1990). — Blaßgelbe Blättchen. F: 176°.
- 11. 1-Oxy-9-oxo-4-methyl-xanthen, 1 - Oxy - 4 - methyl - xanthon $C_{14}H_{10}O_3$, Formel I. B. Beim Destillieren von Kresorcin mit Salicylsäure und Essigsäureanhydrid (V. KOSTANECKI, B. 27, 1991). — Gelbe Nadeln (aus Alkohol). F: 112°.

12. 8-Oxy-9-oxo-4-methyl-xanthen, 8-Oxy-4-methyl-xanthon C₁₄H₁₀O₃, Formel II (S. 50). B. Beim Destillieren von Resorcin mit o-Kresotinsäure und Essigsäure-anhydrid (v. Kostanecki, B. 27, 1990). — Gelbe Nadeln. F: 152°.

13. 1-Oxy-2 oder 4-methylfluoron C₁₄H₁₀O₃, Formel I oder II.

B. Durch Erwärmen einer Lösung von I.

2-Methyl-phloroglucinundSalicylaldehyd in Eisessig mit konz. Salzsäure und Aus-

kochen des entstandenen salzsauren Salzes mit Wasser (Weidel, Wenzel, M. 21, 69). Das salzsaure Salz entsteht ferner beim Erwärmen von 4-Methyl-phloroglucin-carbonsäure-(2) (Bd. X, S. 494) in Eisessig mit Salicylaldehyd und konz. Salzsäure (Schreier, Wenzel, M. 25, 312). — Ockerfarbene Nädelchen. Zersetzt sich oberhalb 220° (Wei., Wen.). Löslich in siedendem Methylalkohol, sonst schwer löslich (Wei., Wen.).

Salzsaures Salz, 1.3-Dioxy-2 oder 4-methyl-xanthyliumchlorid, 1.3-Dioxy-2 oder 4-methyl-xanthoxoniumchlorid [C₁₄H₁₁O₃]Cl. Zur Konstitution vgl. Bd. XVII, S. 117. Rote oder violette, metallisch glänzende Krystalle (Weil, Wen.; Sch., Wen.).

14. 6-Oxy-9-methyl-fluoron ¹) C₁₄H₁₀O₃, s. nebenstehende Formel. B. Man versetzt eine Lösung von Resorcin in verd. Salzsäure mit Acetsldehyd, erhitzt das weiße, krystallinische Kondensationsprodukt mit Zinkchlorid und etwas Aluminiumchlorid auf 150—170°, löst das Reaktionsprodukt in Alkalilauge und fällt mit Salzsäure (Möhlau, Koch, B. 27, 2893). Man erhitzt Resacetophenon mit Resorcin und Zinntetrachlorid auf 160—180°, löst die Schmelze in Eisessig und zersetzt das auskrystallisierte Zinntetrachlorid-Doppelealz in wäßrig-alkoholischer Lösung durch Natriumacetat (Kehrmann, A. 372 [1910], 345). — Blauschimmernde Krystalle, zerrieben ein ziegelrotes Pulver. Sintert bei 229° unter Dunkelfärbung und schmilzt bei 238° unter Zersetzung (Ke.). Die Lösung in Alkalien ist je nach der Konzentration gelb, orange oder rot und fluoresoiert grün (Ke.). Auch die Lösung in konz. Schwefelsäure fluoresciert grün (M., B. 31, 147 Anm.).

Salze, 3.6-Dioxy-9-methyl-xanthyliumsalze, 3.6-Dioxy-9-methyl-xanthoxoniumsalze [C₁₄H₁₁O₃]Ac. Zur Konstitution vgl. Bd. XVII, S. 117. — Chlorid [C₁₄H₁₁O₃]Cl. Rotgelbe Nadeln mit blauem Metallglanz. In siedendem, etwas verdünntem Alkohol mit gelber Farbe löslich; löslich in konz. Schwefelsäure mit gelber Farbe und blaugrüner Fluorescenz (KE). — Zinntetrachlorid-Doppelsalz 2[C₁₄H₁₁O₃]Cl + SnCl₄. Dunkelrote,

blauglänzende Krystallkörner (aus Eisessig) (KE.).

3. Oxy-oxo-Verbindungen $\mathrm{C_{15}H_{12}O_{3}}.$

1. 6-Oxy-4-oxo-2-phenyl-chroman, 6-Oxy-flavanon $^{\text{HO}}$ $^{\text{CO}}$ $_{\text{CH}_2}$ $^{\text{CO}}$ $_{\text{C}}$ $_{\text{C}_1}$ $^{\text{C}_1}$ $^{\text{H}_{12}}$ $^{\text{O}}$ $^{\text{C}_3}$ s. nebenstehende Formel.

6-Methoxy-flavanon C₁₆H₁₄O₃ = CH₃·O·C₆H₃CO·CH₂
O—CH·C₆H₅.

B. Aus Chinaceto-phenon-5-methyläther (Bd. VIII, S. 271) und Benzaldehyd in wäßrig-alkoholischer Natronlauge (v. Kostanecki, Lampe, B. 37, 774). — Nadeln (aus Alkohol). F: 141—142° (v. Ko., La.). Die verdünnte alkoholische Lösung fluoresciert bläulich (v. Ko., La.). — Liefert in alkoh. Lösung mit Amylnitrit und Salzsäure 6-Methoxy-3-oximino-flavanon (S. 129) (v. Ko., La.). Kondensiert sich mit Benzaldehyd beim Einleiten von Chlorwasserstoff in die alkoh. Lösung unter Bildung von wenig 6-Methoxy-3-benzal-flavanon (S. 76) und viel 6-Methoxy-3-[α-chlorbenzyl]-flavanon (S. 73) (Auwers, Arndt, B. 42, 2711).

6-Äthoxy-flavanon (S. 73) (Auwers, Arrell, D. 2., CO·CH₂
6-Äthoxy-flavanon C₁₇H₁₆O₃ = C₂H₅·O·C₆H₃·O·C₆H₃·O·C₆H₅
O·CH·C₆H₅
B. Aus Chinacetophenon-5-āthylāther (Bd. VIII, S. 272) und Benzaldehyd in wäßrig-alkoholischer Natronlauge (v. Kostanecki, Levi, Tambor, B. 32, 330). — Nadeln (aus Alkohol durch Wasser). F: 103° (v. Ko., Le., T.). Die verdünnte alkoholische Lösung fluoresciert blau (v. Ko., Le., T.). — Gibt in Eisessig bei längerer Einw. von Amylnitrit und Salzsäure 6-Äthoxy-flavonol (S. 129) (v. Ko., Lampe, B. 37, 777). Kondensiert sich mit Benzaldehyd in Gegenwart von heißer alkoholischer Salzsäure zu 6-Äthoxy-3-benzal-flavanon (S. 76) (Katschalowski, v. Ko., B. 37, 3170).

¹⁾ Die in Bd. VI, S. 811 als "Acetfluorescein" aufgeführte Verbindung C₂₄H₁₈O₅ ist nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von Kehrmann, A. 372, 347 ebenfalls als 6-Oxy-9-methyl-fluoron erkannt worden.

- 6-Äthoxy-flavanon-oxim $C_{17}H_{17}O_3N = C_2H_5 \cdot O \cdot C_6H_3 \cdot \underbrace{C(:N \cdot OH) \cdot CH_2}_{CH \cdot C_6H_5}$. B. Durch kurzes Kochen von 6-Äthoxy-flavanon mit Hydroxylamin-hydrochlorid und Soda in Alkohol (v. Kostanecki, B. 33, 1483). Nadeln (aus Alkohol). F: 185—186°.
- (v. Kostanecki, B. 33, 1403). Haddin (Single Co-CHBr 3-Brom-6-äthoxy-flavanon C₁₇H₁₅O₃Br = C₂H₅·O·C₆H₃·O·C₆H₅. Zur Stellung des Bromatoms vgl. Katschalowski, v. Kostanecki, B. 37, 3169. B. Durch Einw. von Brom auf 6-Äthoxy-flavanon in Schwefelkohlenstoff (v. Ko., Levi, Tambor, B. 32, 330). Blättchen (aus verd. Alkohol). F: 98—99° (v. Ko., Le., T.). Wird von wäßrig-alkoholischer Kalilauge in 6-Äthoxy-flavon (S. 58) übergeführt (v. Ko., Le., T.).
- 2. 7-Oxy-4-oxo-2-phenyl-chroman, 7-Oxy-flavanon C₁₈H₁₂O₂, s. nebenstehende Formel.
- 7-Methoxy-flavanon $C_{16}H_{14}O_3 = CH_3 \cdot O \cdot C_6H_2$ CO·CH₂
 O—CH·C₆H₅
 B. Bei 24-stündigem Kochen der Lösung von 5 g 2'-Oxy-4'-methoxy-chalkon (Bd. VIII, S. 333) in 250 cm³ Alkohol mit 150 cm³ 10°/oiger Schwefelsäure (v. Kostanecki, Stoppani, B. 37, 1180). Nadeln (aus Alkohol). F: 91°. Löst sich in konz. Schwefelsäure mit grünlichgelber, in alkoh. Natronlauge mit orangegelber Farbe.
- 3. 4-Oxo-2-[3-oxy-phenyl]-chroman, 3'-Oxy-flavanon CH₁₅H₁₂O₂, s. nebenstehende Formel.
- C₁₅H₁₂O₃, 8. nedenstenende 2 American Constant Co
- 4. 4-Oxo-2-[4-oxy-phenyl]-chroman, 4'-Oxyflavanon C₁₅H₁₂O₃, s. nebenstehende Formel.
- Havanon $C_{16}H_{12}O_3$, S. Hossian $C_{16}H_{14}O_3 = C_6H_4$ $CO \cdot CH_2$ $CO \cdot CH_2$
- 5. 6 Oxy 2 oxo 4 phenyl chroman, 6 Oxy 4 phenyl 3.4 dihydro cumarin, 6 Oxy 4 phenyl hydrocumarin C₁₅H₁₂O₅, s. nebenstehende Formel. B. Bei 3 stündigem Erwärmen von 5 g Zimtsäure, 5 g Hydrochinon, 7 cm² Eisessig und 7 cm² konz. Schwefelsäure auf dem Wasserbade (Liebermann, Hartmann, B. 25, 958). Nadeln (aus Benzol). F: 133°.
- 6. 7-Oxy-2-oxe-4-phenyl-chroman, 7-Oxy-4-phenyl-3.4-dihydro-cumarin, 7-Oxy-4-phenyl-hydrocumarin, 4-Phenyl-3.4-dihydro-umbelliferon C₁₈H₁₃O₃, s. nebenstehende Formel. B. Beim Aufbewahren einer vorsichtig mit konz. Schwefelsäure + Eisessig versetzten Lösung von Allozimtsäure (Liebbermann, Hartmann, B. 24, 2585) oder Cimtsäure (L., H., B. 25, 258) und Resorcin in Eisessig. Man läßt eine alkoh. Lösung von 4-Phenyl-umbelliferon (S. 60) 2 Tage lang bei ca. 50—60° mit Natriumamalgam stehen (L., H., B. 25, 2130). Farblose Nadeln (aus verd. Alkohol). F: 137° (L., H., B. 25, 2131). Unlöslich in Wasser, fast unlöslich in Petroläther, sehr leicht löslich in den meisten anderen Lösungsmitteln (L., H., B. 24, 2586).
- 7. 8-Oxy-2-oxo-4-phenyl-chroman, 8-Oxy-4-phenyl-3.4-dihydro-cumarin, 8-Oxy-4-phenyl-hydrocumarin C₁₈H₁₂O₂, s. nebenstehende Formel. B. Aus Allozimtsäure und Brenz-catechin in Eisessig bei Einw. von konz. Schwefelsäure, analog der vorhergehenden Verbindung (Liebermann, Hartmann, B. 25, 958). F: 133°. Unlöslich in Wasser.
- 8. 6 oder 7- Oxy-1-oxo-3-phenyl-isochroman, 6 oder 7-Oxy-3-phenyl-3.4-dihydro-isocumarin $C_{15}H_{12}O_3$, Formel I oder II.

6 oder 7-Äthoxy-1-oxo-3-phenyl-isochroman, 6 oder 7-Äthoxy-3-phenyl-3.4-dihydro-isocumarin $C_{17}H_{16}O_3=C_2H_5\cdot O\cdot C_6H_3$ $CH_2\cdot CH\cdot C_6H_5$. B. Man reduziert 4' oder 5'-Äthoxy-desoxybenzoin-carbonsäure-(2') (Bd. X, S. 973, Zeile 1 v. o.) mit Natriumamalgam und fällt die dabei entstehende, leicht Wasser abspaltende α' -Oxy-4 oder 5-äthoxy-dibenzyl-carbonsäure-(2) (Bd. X, S. 446) mit Salzsäure (Onnerz, B. 34, 3744). — Täfelchen (aus verd. Alkohol). F: 83—84°. Leicht löslich außer in Ligroin und Wasser.

4-Brom-6 oder 7-äthoxy-1-oxo-3-phenyl-isochroman, 4-Brom-6 oder 7-äthoxy-3-phenyl-3.4-dihydro-isocumarin $C_{17}H_{15}O_3Br=C_2H_5\cdot O\cdot C_6H_2\cdot CO-O$. B. Aus 4 oder 5-Äthoxy-stilben-carbonsäure-(2) (Bd. X, S. 359) durch Brom in Eisessig (Onnertz, B. 34, 3741). — Nadeln (aus Alkohol). F: 103°.

- 9. 3-Oxy-2-oxo-5-methyl-3-phenyl-cumaran, Lacton CH_3 C(OH) C_0H_5 der $G.a-Dioxy-3-methyl-diphenylessigsdure <math>C_{15}H_{12}O_3$, s. nebenstehende Formel.
- 3-Äthoxy-2-oxo-5-methyl-3-phenyl-cumaran, Lacton der 6-Oxy- α -äthoxy-3-methyl-diphenylessigsäure $C_{17}H_{16}O_3=CH_3\cdot C_6H_3\cdot C_6H_3\cdot C_6H_5\cdot C_8H_5\cdot C_9$ CO. B. Durch $^{1}_{/2}$ -stündiges Kochen von 3-Brom-2-oxo-5-methyl-3-phenyl-cumaran (Bd. XVII, S. 365) mit 60 /oigem Alkohol (Cramer, B. 31, 2819). Prismen (aus absol. Alkohol). F: 122°.
- 10. 3-Oxy-2-oxo-6-methyl-3-phenyl-cumaran, Lacton der 2.a-Dioxy-4-methyl-diphenylessigsäure CH₃. COC₁₈H₁₂O₂, s. nebenstehende Formel.
- 3-Åthoxy-2-oxo-6-methyl-3-phenyl-cumaran, Lacton der 2-Oxy- α -äthoxy-4-methyl-diphenylessigsäure $C_{17}H_{16}O_3=CH_3\cdot C_0H_3\cdot C_0H_3\cdot C_0H_5\cdot C_0H_5\cdot C_0$. B. Durch Kochen von 3-Brom-2-oxo-6-methyl-3-phenyl-cumaran (Bd. XVII, S. 365) mit 93% igem Alkohol (CRAMER, B. 31, 2821). Prismen (aus absol. Alkohol). F: 91—93%.

Monobromderivat $C_{15}H_{11}O_3Br = (CH_3)(HO)C_6HBr CH(C_6H_5)$ CO. B. Durch Einw. von 1 Mol Brom auf 1 Mol des Lactons der Dioxy-methyl-diphenylessigsäure in kaltem Benzol (Simonis, B. 31, 2829). — Schwach bräunliche Krystalle. F: 185°.

Dibromderivat $C_{15}H_{10}O_8Br_2 = (CH_3)(HO)C_6Br_2 CH(C_6H_5)$ CO. B. Durch langeres Erwärmen von 1 Mol des Lactons der Dioxy-methyl-diphenylessigsäure mit 2 Mol Brom in Benzol (S., B. 31, 2830). — Braungelbe Nadeln (aus Alkohol). F: 205°.

- 12. 4 oder 6-Oxy-2-oxo-6 oder 4-methyl-3-phenyl-cumaran, Lacton der 2.6-Dioxy-4-methyl- oder der 4.6-Dioxy-2-methyl-diphenylessigsäure $C_{12}H_{12}O_{2}$, Formel II oder I (s. No. 11). B. Entsteht in geringerer Menge neben seinem Isomeren (No. 11) beim Erwärmen von Mandelsäure mit Orein und 73% ger Schwefelsäure (Simonis, B. 31, 2829). F: 172%. Die Lösung in konz. Schwefelsäure ist rubinrot.
- 13. 1-Oxy-3-oxo-1-benzyl-phthalan, 3-Oxy-3-benzyl-phthalid, cyclo-Form der 2-Phenacetyl-benzoesäure (Bd. X, S. 756) $C_{15}H_{12}O_{3}=C_{0}H_{4}$ $O(OH)(CH_{2}\cdot C_{0}H_{5})$ 0.

8-Äthoxy-8-[α -brom-bensyl]-phthalid $C_{17}H_{18}O_8Br = C_6H_4 CO C_2H_5)CH_{Br}C_6H_6)$ 0. B. Beim Kochen von 3-Brom-3-[α -brom-benzyl]-phthalid (Bd. XVII, S. 366) mit Alkohol (Gabriel, B. 17, 2527). — Krystalle. F: 149°.

3-Oxy-3-[α -nitro-benzyl]-phthalid $C_{15}H_{11}O_5N=C_6H_4$ $C(OH)[CH(NO_2)\cdot C_6H_5]>0$. Als Derivate hiervon sind vielleicht die Verbindung $Na_2C_{15}H_5O_8N+2^2/_2H_2O$ (Bd. XVII, S. 378) und das "[3-Benzal-phthalid]-dinitrür" $C_{15}H_{10}O_6N_2$ (Bd. XVII, S. 377) aufzufassen.

14. 5 oder 6 - Oxy - 3 - oxo - 1 - benzyl-phthalan, 6 oder 5 - Oxy - 3 - benzyl-phthalid $C_{15}H_{15}O_3$, Formel I oder Formel II.

6 oder 5-Äthoxy-3-benzyl-phthalid $C_{17}H_{16}O_3=C_2H_5\cdot O\cdot C_6H_3$ $CH(CH_2\cdot C_6H_5)$ O. B. Man führt 6 oder 5-Äthoxy-3-benzal-phthalid (S. 62) durch Lösen in heißer Alkalilauge in 4 oder 5-Äthoxy-desoxybenzoin-carbonsäure-(2) (Bd. X, S. 972) über, schüttelt die verd. Lösung mit Natriumamalgam und fällt durch Ansäuern die unbeständige α -Oxy-4 oder 5-Äthoxy-dibenzyl-carbonsäure-(2) (Bd. X, S. 446), die besonders beim Erwärmen in 6 oder 5-Äthoxy-3-benzyl-phthalid übergeht (Onnertz, B. 34, 3740). — Mikroskopische Prismen (aus Alkohol). F: 87—88°. Unlöslich in Wasser, schwer löslich in Ligroin, sonst leicht löslich.

15. 3-Oxo-1-[4-oxy-2-methyl-phenyl]-phthalan, 3-[4-Oxy-CeH4CCH>0 2-methyl-phenyl]-phthalid ClbH12O3, s. nebenstehende Formel.

Zur Konstitution vgl. Bistrzycki, Yssel de Schepper, B. 31, 2792.—B.

Man trägt ein Gemisch von Phthalaldehydsäure und m-Kresol vorsichtig in stark gekühlte 73% jege Schwefelsäure ein und läßt 12 Stdn. bei 0° stehen (Bi., Oehlert, B. 27, 2637).— Mikrokrystallinisch. F: 169—170°; leicht OH löslich in Alkohol und Eisessig (Bi., Oe.).— Liefert beim Kochen mit Zinkstaub und Natronlauge 4'-Oxy-2'-methyl-diphenylmethan-carbonsäure-(2) (Bi., Y. de Sch.).

16. 1-Oxy-3-oxo-1-p-tolyl-phthalan, 3-Oxy-3-p-tolyl-phthalid, cyclo-Form der 2-p-Toluyl-benzoesdure (Bd. X, S. 759) $C_{15}H_{12}O_3 = C_6H_4 \underbrace{CO}_{CO}CO \underbrace{CO}_{CO}CO \underbrace{CO}_{CO}O$.

3-Methoxy-3-p-tolyl-phthalid, 2-p-Toluyl-benzoesäure-pseudomethylester $C_{16}H_{14}O_3=C_6H_4$ $C(O\cdot CH_3)(C_6H_4\cdot CH_3)>0$. Zur Konstitution vgl. H. Meyer, M. 28, 1236; Egerer, H. M., M. 34 [1913], 69, 80. — B. Man stellt aus 2-p-Toluyl-benzoesäure und Thionylchlorid das flüssige, nicht näher beschriebene [2-p-Toluyl-benzoesäure]-pseudochlorid (3-Chlor-3-p-tolyl-phthalid) dar und verrührt es mit Methylalkohol (H. M., M. 25, 1187). — Krystalle (aus 95% gigem Methylalkohol). F: 71—72°; ist etwas schwerer löslich als der normale 2-p-Toluyl-benzoesäure-methylester; gibt mit konz. Schwefelsäure eine intensiv gelbe Färbung (H. M., M. 25, 1187).

3-Acetoxy-3-p-tolyl-phthalid $C_{17}H_{14}O_4 = C_6H_4 \underbrace{C(O \cdot CO \cdot CH_2)(C_6H_4 \cdot CH_2)}O$. Vgl. Essigsäure-[2-p-toluyl-benzoesäure]-anhydrid $CH_3 \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot CO \cdot CO \cdot CH_2$, Bd. X, S. 759.

17. 6-Oxy-1.8-dimethyl-fluoron C₁₅H₁₃O₃, s. nebenstehende Formel. B. Bei 1-stdg. Erhitzen von 10 g Methylendiorcin (Bd. VI, S. 1174) mit 20 g Zinkchlorid und 4 g Aluminiumchlorid auf 150—170° (Möhlau, Koch, B. 27, 2890). — Dunkelbraune Holokorid in Wasser und den meisten organischen Mitteln, leicht löslich in Alkohol und Alkalilaugen; die verdünnte alkalische Lösung zeigt gelbgrüne Fluorescenz (M., K.). Die Lösung in konz. Schwefelsäure fluoresciert grün (M., B. 31, 147 Anm.).

18. 1-Oxy-2.4-dimethyl-fluoron C₁₅H₁₂O₃, s. nebenstehende Formel. B. Man erwärmt eine Lösung von Dimethylphloroglucin und Salicylaldehyd in Eisessig mit konz. Salzsäure und zerlegt das ausgeschiedene salzsaure Salz durch Waschen mit Wasser (Weidell, Wenzel, M. 21, 65). Man kondensiert 2.4-Dioxy-6-methoxy-1.3-dimethyl-benzol mit Salicylaldehyd in Eisessig durch konz. Salzsäure bei Zimmertemperatur

und erwärmt das entstandene, nicht rein dargestellte 1-Methoxy-2.4-dimethyl-fluoron mit konz. Salzsäure in Eisessig (Liebschütz, Wenzel, M. 25, 324). — Feurigrote Nadeln (aus Methylalkohol). F: 275° (W., W.). Unlöslich in Wasser, sehr wenig löslich in Äthylalkohol, Äther, Aceton, Benzol, Xylol, leichter in heißem Methylalkohol und heißem Eisessig (W., W.). — Gibt bei der Reduktion mit Natriumamalgam 1.3-Dioxy-2.4-dimethyl-xanthen (Bd. XVII, S. 161) (L., W.). Liefert mit Brom ein Monobromderivat C₁₅H₁₁O₃Br (s. u.) (L., W.). Gibt beim Kochen mit Methyljodid und methylalkoholischer Natriummethylatlösung 1-Oxo-2.2.4-trimethyl-1.2-dihydro-fluoron (Bd. XVII, S. 526) (W., W.), während bei der Methylierung mit Diazomethan 1-Methoxy-2.4-dimethyl-fluoron erhalten wird (L., W.).

Salzsaures Salz, 1.3-Dioxy-2.4-dimethyl-xanthyliumchlorid, 1.3-Dioxy-2.4-dimethyl-xanthoxoniumchlorid $[C_{15}H_{13}O_3]Cl$. Zur Konstitution vgl. die Angaben in Bd. XVII, 8. 117. — Granatrote Pyramiden. Zersetzt sich beim Erhitzen, ohne zu schmelzen (W., W.).

2 - Brom - 1 - 0x0 - 2.4 - dimethyl - 1.2 - dihydro - fluoron (?) $C_{15}H_{11}O_3Br$, Formel I. B. Aus 1 Mol 1-Oxy-2.4-dimethyl-fluoron und 1 Mol Brom in wäßr. kaliumbromidhaltiger Lösung (Liebschütz, Wenzel, M. 25, 323, 328). — Hellrote Krystelle (aus Xylol), granatrote Prismen (aus Eisessig). Zersetzt sich zwischen 170° und 180°. Sehr leicht löslich in Eisessig, Xylol, ziemlich löslich in Benzol und Alkohol. Unlöslich in kalten Alkalien. Reagiert mit Brom unter Bildung eines Bromids $C_{15}H_{11}O_3Br_3$, das mit Methylalkohol die Verbindung der Formel II (?) liefert.

I.
$$CH = CCO CBr \cdot CH_3$$
 (?)

II. $CH(O \cdot CH_3) CBr \cdot CO CBr \cdot CH_3$ (?)

Dibrom-dioxo-dimethyl-tetrahydroxanthydrol-methyläther(?) C₁₅H₁₄O₄Br₅, Formel II. B. Aus 1-Oxy-2.4-dimethyl-fluoron durch Behandlung mit Brom und Methylalkohol oder aus 2-Brom-1-oxo-2.4-dimethyl-1.2-dihydro-fluoron(?) durch sukzessive Behandlung mit Brom und Methylalkohol (L., W., M. 25, 329). — Fast farblose, tafelförmige Krystalle (aus Methylalkohol). F: 117—118°. Zersetzt sich am Tageslicht unter Rotfärbung.

Dibrom-dioxo-dimethyl-tetrahydroxanthydrol-āthylāther(†) III. CH(O·C₂H₅) CO CBr·CH₃ C₁₇H₁₆O₄Br₂, Formel III. B. Aus 1-Oxy-2.4-dimethyl-fluoron und Brom in absol. Alkohol (L., W., M. 25, 330). — Hellgelbe regelmāßige Sechsecke (aus Alkohol) vom Schmelzpunkt 102—104° oder Nadeln vom Schmelzpunkt 99—100°. Lichtempfindlich.

- 1-Acetoxy-2.4-dimethyl-fluoron $C_{17}H_{14}O_4 = C_6H_4 \underbrace{CH}_O C_6(CH_3)_2(:0) \cdot O \cdot CO \cdot CH_3$.

 B. Man erhitzt 100 g Essigsäureanhydrid mit 1 g geschmolzenem Natriumacetat zum Kochen, trägt 5 g 1-Oxy-2.4-dimethyl-fluoron (S. 54) ein und kocht kurze Zeit (W., W., M. 21, 67).

 Goldgelbe Nadeln (aus Essigester). F: 208—210°.
- 19. 1-Oxy-9-oxo-2.4-dimethyl-xanthen, 1-Oxy-2.4-dimethyl-xanthon $C_{15}H_{15}O_3$, Formel IV. B. Bei der Destillation eines Gemisches von überschüssigem m-Xylorein mit Salicylsäure und Essigsäureanhydrid (Dreher, v. Kostanecki, B. 26, 74). Gelbe Nadeln (aus Alkohol). F: 160° (unscharf).

- 20. 8-Oxy-9-oxo-2.6-dimethyl-xanthen, 8-Oxy-2.6-dimethyl-xanthon C₁₅H₁₂O₃, Formel V. B. Durch Destillation von Orein mit p-Kresotinsäure und Essigsäureanhydrid (v. Kostanecki, B. 27, 1990). Gelbe Nadeln. F: 169°.
- 21. 1-Oxy-9-oxo-3.5-dimethyl-xanthen, 1-Oxy-3.5-dimethyl-xanthon $C_{15}H_{12}O_3$, Formel VI. B. Durch Destillation von Orcin mit o-Kresotinsäure und Essigsäureanhydrid (v. K., B. 27, 1990). Gelbe Nadeln. F: 145°.
- 22. 1-Oxy-9-oxo-3.6-dimethyl-xanthen, 1-Oxy-3.6-dimethyl-xanthen C_{1s}H₁₂O₂, s. nebenstehende Formel.

 B. Durch Destillation von Orein mit m-Kresotinsäure und Essigsäureanhydrid (v. K., B. 27, 1990). Blaßgelbe Nadeln. F: 139°.

4. Oxy-oxo-Verbindungen C16H14O2.

HO·HC—CH·C₆H₅
OC·O·CH·C₆H₅ 1. α - Oxy - β . γ - diphenyl - butyrolation $C_{16}H_{14}O_3 =$

in 4 diastereoisomeren Formen auftreten, die sämtlich bekannt sind. Form a. B. Entsteht neben der bei 170° schmelzenden Form b und α-Oxy-β-phenyl-Form a. B. Entsteht neben der bei 170° schmeizenden Form b und α-Oxy-β-pnenylpropionsäure bei der Reduktion von α-Oxo-β-γ-diphenyl-butyrolacton (Bd. XVII, S. 527) mit
Natriumamalgam unter Zusatz von soviel Salzsäure, daß die Flüssigkeit stets schwach alkalisch
bleibt; man säuert die filtrierte Lösung mit Salzsäure an, kocht einmal auf, kühlt rasch ab,
bringt die anfangs sirupös ausfallende Substanz durch wiederholtes Behandeln mit Äther
zum Krystallisieren und gewinnt daraus die bei 127° schmelzende Form a (ERLENMEYER jun.,
Lux, B. 31, 2224). — Nadeln (aus Chloroform durch Ligroin). F: 127°. Schwer löslich in
Wasser, Äther, Ligroin, leichter in warmem Alkohol, Benzol, Chloroform. — Wird durch
Natronlauge oder Barytwasser leicht zu der entsprechenden α.γ-Dioxy-β.γ-diphenyl-buttersäure aufgespalten. Beim Kochen mit Eisessig entsteht β, γ -Diphenyl- $\Delta^{\alpha, \beta}$ -crotonlacton (Bd. XVII, S. 378), beim Kochen mit Salzsäure γ -Oxo- β, γ -diphenyl-buttersäure. Form b. B. s. o. bei der Form a; aus der salzsauren Lösung krystallisiert der Rest der

Form a und ein Teil der Form b aus; man trennt die Krystalle durch mechanisches Auslesen; der Rest der Form b verbleibt neben α-Oxy-β-phenyl-propionsäure in Lösung und kann ihr nach Sättigung mit Soda durch Äther entzogen werden (E., L., B. 31, 2225). — Krystallisiert aus Alkohol in derben Krystallen (E., L.; E., B. 38, 3121). Monoklin prismatisch (Bruhns, B. 31, 2226; vgl. *Groth, Ch. Kr.* 5, 203). F: 170° (E., L.). Besitzt dieselbe Löslichkeit und

zeigt das gleiche chemische Verhalten wie die Form a (É., L.). Form c. B. Entsteht neben der bei 171° schmelzenden Form d sowie anderen Produkten, wenn man in die wäßr. Lösung des γ -oxy- α -oxo- β . γ -diphenyl-buttersauren Natriums unter Einleiten von Kohlendioxyd Natriumamalgam einträgt; nach 2-tägiger Einw. säuert man an, erhitzt die Lösung einige Zeit und läßt erkalten, wobei die Formen c und d des α -Oxy- β . γ -diphenyl-butyrolactons flockig ausfallen; man trennt sie von den übrigen Reaktionsprodukten, die zum Teil als ölige, halbfest werdende Masse mit ausfallen, durch Dekantieren, dann voneinander durch Lösen in heißem Chloroform, in dem die Form c löslich, die Form d fast unlöslich ist (E., B. 38, 3121). — Krystallpulver (aus heißem Chloroform oder aus Chloroform durch Ligroin). F: 127°. Löslich in heißem Chloroform. — Gibt beim Kochen mit verd. Salzsäure γ -Oxo- β . γ -diphenyl-buttersäure.

Form d. B. s. o. bei der Form c. — Nädelchen (aus Alkohol). F: 171°; fast unlöslich in Chloroform (E., B. 38, 3121). — Gibt beim Kochen mit verd. Salzsäure γ-Oxo-β.γ-diphenylbuttersäure.

 β -Brom - α -oxy- β . γ -diphenyl-butyrolacton $C_{16}H_{18}O_{5}Br = HO \cdot HC - CBr \cdot C_{6}H_{5}$ B. Neben $\beta.\gamma$ -Dibrom- α -oxy- $\beta.\gamma$ -diphenyl-buttersäure beim Bromieren von α -Oxy- $\beta.\gamma$ -diphenylvinylessigsäure (Bd. X, S. 361) in Chloroform-Lösung (Erlenmener jun., Arbenz, A. 388, 232). — Nadeln. F: 105° (Zers.). — Liefert beim Erwärmen mit verd. Alkohol α-Οxo-β.γ-diphenyl-butyrolacton (Bd. XVII, S. 527).

2. 1-Oxy-3-oxo-1-[3.4-dimethyl-phenyl]-phthalan. 3-Oxy- CoH₄ COH₂ O 3-[3.4-dimethyl-phenyl]-phthalid, cyclo-Form der 2-[3.4-Dimethyl-phenyl]-phthalid, cyclo-Form der 2-[3.4-Dimethyl-phenyl]-phthalid, cyclo-Form der 2-[3.4-Dimethyl-phenyl]-phthalid, cyclo-Form der 2-[3.4-Dimethyl-phenyl]-phthalid, cyclo-Form der 2-[3.4-Dimethyl-phenyl]-phthalan. methyl - benzoyl] - benzoesaure (Bd. X, S. 768) C₁₆H₁₄O₃, s. nebenstehende Formel.

3 - Acetoxy - 3 - [8.4 - dimethyl - phenyl] - phthalid C₁₈H₁₆O₄ = C₆H₄ C_{(O}·CO·CH₃)[C₈H₃(CH₃)₂] O. Vgl. Essigsäure-[2-(3.4-dimethyl-benzoyl)-benzoesäure]-anhydrid (CH₂)₂C₆H₃·CO·C₆H₄·CO·O·CO·CH₂, Bd. X, S. 768.

5. Oxy-oxo-Verbindungen $C_{17}H_{16}O_8$.

 $HO \cdot HC \longrightarrow CH \cdot CH_2 \cdot C_6H_5$ 1. α -Oxy- γ -phenyl- β -benzyl-butyrolacton $C_{17}H_{16}O_2 =$ OC · O · CH · C.H.

B. Wird in 4 diastereoisomeren Formen durch Reduktion der beiden stereoisomeren Formen des α -Oxo- γ -phenyl- β -benzyl-butyrolactons (Bd. XVII, S. 529) mit Natriumamalgam und Aufkochen der mit Salzsäure angesäuerten Lösung gewonnen (ERLENMEYER jun., B. 35, 1938, 1940).

Form a und b. Aus der bei 134° schmelzenden Form: Konzentrisch gruppierte Nadeln, F: 109-110° und Krystalldrusen, F: 155-156°.

Form c und d. Aus der bei 137° schmelzenden Form: Nadeln, F: 110° und Nadeln, F: 155°.

 α -Oxy- β -phenyl- γ -benzyl-butyrolacton, α -Oxy- β , δ -diphenyl- γ -valerolacton $C_{17}H_{16}O_3 = HO \cdot HC - CH \cdot C_6H_5$ OC · O · CH · CH₂ · C₆H₅

Form a. B. Entsteht neben der diastereoisomeren Form b aus α-Oxo-β-phenyl-γ-benzylbutyrolacton (Bd. XVII, S. 530) durch Reduktion mit Natriumamalgam und Aufkochen der mit Salzsäure angesäuerten Lösung; man trennt die beiden Formen durch kaltes Chloroform, in dem die Form a sich viel leichter als die Form b löst (ERLENMEYER jun., B. 35, 1939; E., Reis, A. 333, 277). — Nadeln (aus Chloroform). F: 113°. Leicht löslich in Alkohol, Benzol, Chloroform schon in der Kälte, schwer löslich in Äther, sehr wenig in Wasser, unlöslich in Ligroin. — Liefert bei der Einw. von Essigsäureanhydrid + konz. Schwefelsäure das Acetylderivat des bei 153° schmelzenden Stereoisomeren (s. u.).

Form b. B. s. o. bei der Form a. Entsteht außerdem neben α -Oxy- β . δ -diphenyl- β -butylen-a-carbonssure bei der Reduktion des α -Oxo- β -phenyl-y-benzyl-butyrolactons mit Zinkstaub und Eisessig (E., B. 35, 1941; E., Reis, A. 333, 280). — Sechsseitige Prismen (aus Chloroform). F: 153°. Leicht löslich in Alkohol, Benzol, Chloroform, schwer in Äther, unlöslich in Ligroin.

Acetylderivat $C_{19}H_{18}O_4 = CH_3 \cdot CO \cdot O \cdot HC - CH \cdot C_6H_5$ Acetylderivat $C_{10}H_{18}O_4 = \frac{OC \cdot O \cdot CH \cdot CH_2 \cdot C_6H_5}{OC \cdot O \cdot CH \cdot CH_2 \cdot C_6H_5}$. B. Entsteht aus beiden stereoisomeren α -Oxy- β -phenyl- γ -benzyl-butyrolactonen bei der Einw. von Essigsäureanhydrid + konz. Schwefelsäure (E., B. 35, 1939; E., Reis, A. 333, 279). — Nadeln (aus Chloroform). F: 142°. — Liefert durch Erwärmen mit Natronlauge und Ansäuern der Lösung die Form b des α -Oxy- β -phenyl- γ -benzyl-butyrolactons.

lacton, cyclo-Form der Dihydrocornicularsäure (Bd. X, S. 768) $C_{17}H_{16}O_3=C_6H_5\cdot HC$ — CH_2 3. γ -Oxy- α -phenyl- γ -benzyl-butyrolacton, γ -Oxy- α . δ -diphenyl- γ -valero-

OC.O.C(OH).CH2.C6H2

 γ -Acetoxy- α -phenyl- γ -benzyl-butyrolacton, γ -Acetoxy- α . δ -diphenyl- γ -valerolacton $C_{10}H_{10}O_4 = \begin{array}{c} C_0H_0 \cdot HC - CH_1 \\ C_1O_4 \cdot C_1O_4$ lacton $C_{10}H_{10}O_4 = \frac{C_6H_5 \cdot HC - CH_2}{OC \cdot O \cdot C(O \cdot CO \cdot CH_3) \cdot CH_2 \cdot C_6H_5}$. Zur Konstitution vgl. Thiele, Steaus, A. 319, 214. — B. Entsteht beim Behandeln von Dihydrocornicularsäure (Bd. X, S. 768) mit Essigsäureanhydrid, neben Dihydrocornicularlacton $C_{17}H_{14}O_2$ (Bd. XVII, S. 385) (SPIEGEL, A. 219, 29) und einem stereoisomeren (?), bei 128,5° schmelzenden Lacton $C_{17}H_{14}O_2$ (Bd. XVII, S. 385) (Th., Sr., A. 319, 225). Entsteht in fast quantitativer Ausbeute, wenn man Dihydrocornicularsaure mit Essigsaureanhydrid bei Gegenwart von konz. Schwefelsaure in der Kälte behandelt (TH., ST.). — Prismen oder Spieße (aus Alkohol). F: 105° bis 106° (TH., ST.). Ziemlich leicht löslich in Chloroform, Benzol und heißem Alkohol, ziemlich schwer in Schwefelkohlenstoff, Ligroin und kaltem Alkohol (TH., ST.); unlöslich in Alkalien (Sr.). — Spaltet bei 170—200° langsam Essigsäure ab und liefert dabei neben dem Lacton $\underline{C_{17}H_{14}O_{1}} \text{ vom Schmelzpunkt } 128,5^{\circ} \text{ α-Phenyl-γ-benzyl-$\Delta^{\alpha,\beta}$-crotonlacton (Bd. XVII, S. 384)}$ (TH., ST.). Bei mehrstundigem Kochen mit Essigsaureanhydrid entsteht Dihydrocornicularlacton (TH., ST.).

6. Oxy-oxo-Verbindungen $C_{18}H_{18}O_{3}$.

1. 6 - Oxy - 4 - oxo - 2 - [4 - isopropyl - phenyl] - HOChroman, 6 - Oxy - 4' - isopropyl - flavanonChapter of the chroman of the ch

B. Durch Einw. von heißer 50% iger Natronlauge auf Chinacetophenon-5-methyläther und Cuminol in Alkohol (v. Kostanecki, B. 40, 3669). — Farblose Blättchen (aus Alkohol). F: 90°. Die Lösung in Alkohol fluoresciert violett. Die Lösung in alkoh. Natronlauge ist rot, die Lösung in konz. Schwefelsäure orange.

8-Brom-6-methoxy-4', isopropyl-flavanon $C_{19}H_{19}O_3Br =$

CH₂·O·C₆H₃·O·C₆H₄·CH(CH₂)₂. B. Durch Einw. von Brom auf 6-Methoxy-4'-iso-propyl-flavanon in Schwefelkohlenstoff (v. Kostanboki, B. 40, 3670). — Farblose Nadeln (aus Eisessig). F: 125—127°.

2. $7-Oxy-4-oxo-2-[4-isopropyl-phenyl]-chroman, 7-Oxy-4'-isopropyl-plavanon <math>C_{18}H_{18}O_3$, $H_{18}O_3$,

s. nebenstenende Formei.

7-Methoxy-4'-isopropyl-flavanon C₁₉H₂₀O₃ = CH₃·O·C₆H₃·O·CH₂
O—CH·C₆H₄·CH(CH₃)₃

B. Durch Kochen der alkoh. Lösung von 2'-Oxy-4'-methoxy-4-isopropyl-chalkon (Rd. VIII, S. 337) mit verd. Salzsäure (v. Kostanecki, B. 40, 3671). — Prismen (aus Alkohol). F: 75°.

— Durch Einw. von Amylnitrit und Salzsäure in heißem Alkohol entsteht das nicht näher beschriebene 7-Methoxy-3-oximino-4'-isopropyl-flavanon, das schon bei längerem Stehen-

7. α - 0 xy - β - phenyl - γ - [4 - isopropyl - phenyl] - butyrolacton $C_{10}H_{20}O_3 = HO \cdot HC - CH \cdot C_4H_5$

lassen der Reaktionsflüssigkeit in 7-Methoxy-4'-isopropyl-flavonol übergeht.

OC·O·CH·C₈H₄·CH(CH₃)₃ B. Aus dem bei 186° schmelzenden α -Oxo- β -phenyl- γ -[4-isopropyl-phenyl]-butyrolacton (Bd. XVII, S. 531) durch Reduktion mit Natrium-amalgam und Ansäuern der Lösung (Erlenmeyer jun., B. 36, 920, 2347; E., Kehren, A. 333, 242). — Krystalle (aus Alkohol). Rhombisch. F: 169°. Leicht löslich in Alkohol, Benzol und Chloroform, schwer in Äther und Ligroin.

i) Oxy-oxo-Verbindungen $C_nH_{2n-20}O_3$.

- 1. Oxy-oxo-Verbindungen $C_{15}H_{10}O_3$.
- 1. 3-Oxy-4-oxo-2-phenyl-[1.4-chromen]. 3-Oxy-2-phenyl-chromon, 3-Oxy-flavon, Flavonol $C_{15}H_{10}O_3=C_6H_4$ $CO\cdot C\cdot OH$ ist desmotrop mit 3.4-Dioxoflavan, Bd. XVII, 8. 527.
- 2. 6-Oxy-4-oxo-2-phenyl-[1.4-chromen]. 6-Oxy-HO CH 2-phenyl-chromon, 6-Oxy-flavon C₁₈H₁₀O₃, s. nebenstehende Formel. B. Durch mehrstündiges Kochen von 6-Äthoxy-flavon mit Jodwasserstoffsäure (v. Kostanecki, Levi, Tambor, B. 32, 331). Durch Kochen von 2.5-Diāthoxy-ω-benzoyl-acetophenon (Bd. VIII, S. 435) mit Jodwasserstoffsäure (Crivelli, v. K., B. 33, 2514). St. wach gelbliche Nadeln (aus verd. Alkohol). F: 231—232° (v. K., L., T.). Leicht löslich in verd. Natronlauge mit grünlichgelber Farbe (v. K., L., T.). Konz. Schwefelsäure färbt die Krystalle gelb und liefert eine fast farblose, schwach grünlich fluorescierende Lösung (v. K., L., T.).
- 6-Äthoxy-flavon $C_{17}H_{14}O_3=C_2H_5\cdot O\cdot C_6H_2$ $O-C\cdot C_6H_5$ B. Durch Einw. von wäßrig-alkoholischer Kalilauge auf 3-Brom-6-äthoxy-flavanon (S. 52) (v. K., L., T., B. 32, 330). Nadeln (aus verd. Alkohol oder Ligroin), Prismen (aus Benzol). F: 146—147°. Konz. Schwefelsäure färbt die Krystalle gelb und gibt eine gelbliche, grünlich fluorescierende Lösung. Durch Kochen mit alkoh. Natriumäthylat entstehen Chinacetophenon-5-äthyläther (Bd. VIII, S. 272) und Benzoesäure.
- 6-Acetoxy-flavon $C_{17}H_{12}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot \bigcup_{\substack{1 \ O \ C} \cdot C_6H_5}^{CO \cdot CH}$. B. Durch kurzes Kochen von 6-Oxy-flavon mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., L., T., B. 32, 332). Nadeln (aus verd. Alkohol). F: 157—158°.
- 3. 7-Oxy-4-oxo-2-phenyl-[1.4-chromen], 7-Oxy2-phenyl-chromon, 7-Oxy-flavon C₁₈H₁₀O₃, s. nebenstehende
 Formel. B. Durch mehrstündiges Kochen von pulverisiertem
 7-Äthoxy-flavon mit Jodwsserstoffsäure (D: 1,7) (EMILEWICZ, v. KOSTANECKI, B. 31, 703).
 Durch Oxydation von 7-Oxy-2-phenyl-benzopyranol-(2)-carbonsäure-(4) (Syst. No. 2615)
 mit Chromsäure in Eisessig (Bülow, Wagner, B. 36, 1949; vgl. Decker, v. Fellenberg,

- A. 356, 297 Anm.). Nadeln (aus verd. Alkohol). F: 240° (E., v. K.; B., W.). Löslich in verd. Natronlauge mit schwach gelber Farbe ohne Fluorescenz (E., v. K.). Löst sich in konz. Schwefelsäure fast farblos mit bläulicher Fluorescenz (E., v. K.; B., W.).
- 7-Methoxy-flavon $C_{16}H_{12}O_3 = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_5$. B. Durch Einw. von wäßrig-alkoholischer Kalilauge auf 4'-Methoxy-2'-acetoxy-chalkon-dibromid (Bd. VIII, S. 324) (EMILEWICZ, v. KOSTANECKI, B. 32, 312). Nadeln (aus Alkohol). F: 110—111°. Die Lösung in konz. Schwefelsäure fluoresciert blau.
- 7-Äthoxy-flavon C₁₇H₁₄O₃ = C₂H₅·O·C₆H₃·O·C₆H₃·D·C₆H₅. B. Aus 4'-Äthoxy-2'-acetoxy-chalkon-dibromid (Bd. VIII, S. 324) durch Einw. von wäßrig-alkoholischer Kalilauge (EMILEWICZ, v. KOSTANECKI, B. 31, 699). Durch 2-stdg. Kochen von 2.4-Diāthoxy-ω-benzoylacetophenon (Bd. VIII, S. 435) mit Jodwasserstoffsäure (v. K., Różycki, B. 34, 3726). Nadeln. F: 138—139° (E., v. K.). Mit konz. Schwefelsäure färben sich die Krystalle gelb, während die Lösung blau fluoresciert (E., v. K.). Bei der Kalischmelze entstehen Resacetophenon-4-āthyläther (Bd. VIII, S. 268) und Benzoesäure sowie Resorcinmonoāthyläther, Kohlendioxyd und Acetophenon (E., v. K.). Durch Kochen mit Natriumalkoholat erfolgt quantitativer Zerfall in Benzoesäure und Resacetophenon-4-āthyläther (E., v. K.).
- 7-Acetoxy-flavon $C_{17}H_{12}O_4 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot C_6H_5$ Kochen von 7-Oxy-flavon mit Essigsäureanhydrid und entwässertem Natriumacetat (E., v. K., B. 31, 704). Nadeln. F: 129—130°.
- 4. 4-Oxo-2-[3-oxy-phenyl]-[1.4-chromen]. 2-[3-Oxy-phenyl]-chromon, 3'-Oxy-pavon C₁₅H₁₀O₃, s. nebenstehende Formel. B. Durch mehrstündiges Kochen von 2-Methoxy-3'-āthoxy-dibenzoylmethan (Bd. VIII, S. 435) mit starker Jodwasserstoffsäure (v. Kostanecki, Tambor, B. 84, 1692). Prismen (aus verd. Alkohol). F: 208°. Natriumsalz. Hellgelbe Nadeln. Unlöslich in starker Natronlauge.
- 3'-Äthoxy-flavon $C_{17}H_{14}O_3=C_6H_4$ $O-C_2H_5$ $O-C_2H_5$
- 5. 4-Oxo-2-[4-oxy-phenyl]-[1.4-chromen], 2-[4-Oxy-phenyl]-chromon, 4'-Oxy-flavon C₁₅H₁₀O₃, s. nebenstehende Formel. B. Durch mehrstündiges Kochen von 2.4'-Diäthoxy-dibenzoylmethan (Bd. VIII, S. 435) mit Jodwasserstoffsäure (D: 1,9) (Grossmann, v. Kostanecki, B. 33, 2516). Nadeln (aus Pyridin und Alkohol). F: 268°. Sehr wenig löslich selbst in heißem Alkohol. Leicht löslich in verd. Natronlauge mit gelber Farbe. Die Lösung in konz. Schwefelsäure fluoresciert zunächst schwach grünlichblau, später intensiv violettstichigblau.
- 4'-Äthoxy-flavon $C_{17}H_{14}O_3 = C_6H_4 CO \cdot CH$ Wärmen von 2.4'-Diäthoxy-dibenzoylmethan (Bd. VIII, S. 435) mit Jodwasserstoffsäure (D: 1,7) (Ge., v. K., B. 33, 2516). Nadeln (aus Alkohol). F: 139—140°. Die Lösung in konz. Schwefelsäure ist anfangs gelblich und fluoresciert grünlichblau; später wird sie farblos und fluoresciert dann intensiv violettblau.
- **4'-Acetoxy-flavon** $C_{17}H_{12}O_4 = C_6H_4 < \begin{array}{c} \text{CO} \cdot \text{CH} \\ \text{O} \overset{\parallel}{\text{C}} \cdot \text{C}_6H_4 \cdot \text{O} \cdot \text{CO} \cdot \text{CH}_3 \end{array}$ Nadeln (aus verd. Alkohol). F: 137° (Gr., v. K., B. 33, 2516).
- 6. Anhydro [7.8 dioxy 2 phenyl benzopyranol]
 C₁₈H₁₀O₃, s. nebenstehende Formel. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. im Artikel 7.8-Dioxy-2-phenyl-benzopyranol-(2), Bd. XVII, S. 181.

- 7. 7-Oxy-2-oxo-4-phenyl-[1.2-chromen]. 7-Oxy-4-phenyl-cumarin, 4-Phenyl-umbelliferon C₁₅H₁₀O₃, s. Ho. Oco nebenstehende Formel. B. Aus Benzoylessigester (v. Pechmann, Duisberg, B. 16, 2126) oder aus Benzoylacetessigester (v. P. Hanke, B. 34, 356; vgl. Bülow, B. 36, 193) und Resorcin in Gegenwart von konz. Schwefelsäure. Aus äquimolekularen Mengen Benzoacetedinitril (Bd. X, S. 681) und Resorcin in Gegenwart von Chlorwasserstoff (v. Meyer, J. pr. [2] 67, 342; vgl. Sonn, B. 51 [1918], 821). Blättchen (aus verd. Alkohol). F: 244° (v. P., D.), 242—243° (v. M.). Die alkal. Lösung zeigt sehr schwache gelögrüne Fluorescenz (v. P., H.). Die Lösung in konz. Schwefelsäure fluoresciert bläulich (v. P., D.). Natriumamalgam reduziert zu 7-Oxy-4-phenyl-hydrocumarin (S. 52) (Liebermann, Hartmann, B. 25, 2130).
- 7 Acetoxy 4 phenyl cumarin, 4 Phenyl umbelliferon acetat $C_{17}H_{18}O_4=CC_3\cdot CO\cdot C\cdot C_6H_3\cdot CO$. B. Aus 4-Phenyl-umbelliferon durch Acetylierung (Komarowski, v. Kostanecki, B. 27, 1999; v. Pechmann, Hanke, B. 34, 357). Bei 24-stündigem Kochen von 2.4-Dioxy-benzophenon mit Essigsäureanhydrid und geschmolzenem Natriumacetat (Kom., v. Kost., B. 27, 1999). Nadeln (aus verd. Alkohol). F: 123° (Kom., v. Kost.), 121—122° (v. P., H.).
- 7-Benzoyloxy-4-phenyl-cumarin, 4-Phenyl-umbelliferon-benzoat $C_{32}H_{14}O_4 = C_6H_5 \cdot CO \cdot O \cdot C_6H_5 \cdot CO$. Nådelchen (aus Alkohol). F: 136°; leicht löslich in heißem Eisessig, Chloroform und Benzol (v. P., H., B. 34, 357).
- 8. 6 oder 7 Oxy 1 oxo 3-phenyl-isochromen, 6 oder I. Ho. CH C. C_6H_5 T. C_0 C_0

6 oder 7-Äthoxy-3-phenyl-isocumarin $C_{17}H_{14}O_3 = C_2H_5 \cdot O \cdot C_6H_3 \cdot CO \cdot O \cdot B$.

Durch Vakuumdestillation des 4-Brom-6 oder 7-Äthoxy-3-phenyl-3.4-dihydro-isocumarins (S. 53) (Onnertz, B. 34, 3742). — Blätter (aus Alkohol). F: 144—145°. Unlöslich in Wasser, schwer löslich in Ligroin, leicht in heißem Alkohol, Äther, Eisessig, kaltem Benzol, Chloroform und Schwefelkohlenstoff. — Beim Erwärmen mit Kalilauge entsteht 4' oder 5'-Äthoxydesoxybenzoin-carbonsäure-(2') (Bd. X, S. 973).

- 2-Anisoyl-cumaron $C_{16}H_{18}O_3 = C_6H_4 < CH > C \cdot CO \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus 4'-Methoxy-2-acetoxy-chalkon-dibromid (Bd. VIII, S. 324) durch alkoholisch-wäßrige Kalilauge (Z., v. K., B. 41, 1338). Aus (rohem) Cumarilsäurechlorid und Anisol in Gegenwart von Aluminium-chlorid (Z., v. K.). Spieße (aus Alkohol). F: 103—104°. Die Lösung in konz. Schwefelsäure ist intensiv gelb.
- **2-[4-Acetoxy-benzoyl]-cumaron** $C_{17}H_{12}O_4 = C_6H_4 < \begin{array}{c} CH \\ O \end{array} > C \cdot CO \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$. Nadeln (aus verd. Alkohol). F: 116—117° (Z., v. K., B. 41, 1339).
- 10. 6 Oxy 3 oxo 2 benzal cumaran, 6 Oxy 2 benzal cumaran, $6 Oxy 10 C_{15}H_{10}O_{2}$, s. nebenstehende Formel.
- 6-Methoxy-2-beneal-cumaranon $C_{16}H_{12}O_3 = CH_3 \cdot O \cdot C_6H_3 < CO > C \cdot CH \cdot C_6H_5$. Zur Konstitution vgl. Feuerstein, v. Kostanecki, B. 81, 1759. B. Aus ω -Brom-resaceto-

- 11. 3 Oxo 2 salicylal cumaran, 2 Salicylal CO OH cumaranon C₁₅H₁₀O₃, s. nebenstehende Formel. B. Aus äquimolekularen Mengen Cumaranon (Bd. XVII, S. 118) und Salicylaldehyd durch Erhitzen in alkoh. Lösung mit konz. Salzsäure (Stoemmer, Bartsch, B. 33, 3178). Gelbliche feinkrystallisierte Masse (aus verd. Alkohol). F: 208° (Zers.). Löslich in Äther und heißem Alkohol. In Alkalien mit intensiv roter Farbe löslich.
- 3-Oxo-2-salicylal-thionaphthendihydrid $C_{15}H_{10}O_2S = C_6H_4 < CO > C:CH \cdot C_6H_4 \cdot OH$.

 B. Beim Erwärmen von 3-Oxy-thionaphthen mit Salicylaldehyd in Eisessig oder Alkohol unter Zusatz einiger Tropfen Salzsäure (Friedländer, M. 30, 350). Orangegelbe Nadeln (aus Alkohol). F: 200°. Ziemlich leicht löslich in siedendem Alkohol. Löslich in verd. Natronlauge mit carminroter Farbe.
- 12. 3 Oxo 2 [3 oxy benzal] cumaran $C_{15}H_{10}O_{3}$, s. ohnebenstehende Formel (systematische Stammverbindung des 3-Oxo-2-[3-oxy-benzal]-thionaphthendihydrids).
- 3 Oxo 2 [3 oxy benzal] thionaphthendihydrid $C_{15}H_{10}O_2S = C_6H_4 < C_0 > C:CH \cdot C_6H_4 \cdot OH$. B. Beim Erwärmen von 3-Oxy-thionaphthen mit 3-Oxy-benzaldehyd in Eisessig oder Alkohol unter Zusatz einiger Tropfen Salzsäure (F., M. 30, 351). Citronengelbe Nädelchen (aus Solventnaphtha). F: 212°. Löslich in verd. Natronlauge mit hellgelber Farbe.
- 13. 3-Oxo-2-[4-oxy-benzal]-cumaran, 2-[4-Oxy-benzal]-cumaranon C₁₈H₁₀O₃, s. nebenstehende Formel. B. Aus šquimolekularen Mengen Cumaranon und 4-Oxy-benzaldehyd durch Erhitzen in alkoh. Lösung mit konz. Salzsäure (Stoermer, Bartsch, B. 33, 3178). Grünlichgelbe krystallinische Masse. F: 242° (Zers.).
- 2-Anisal-cumaranon C₁₆H₁₂O₃ = C₆H₄ CO C:CH·C₆H₄·O·CH₃. B. Durch Einw. von alkoholisch-wäßriger Kalilauge auf 4-Methoxy-2'-acetoxy-chalkon-dibromid (Bd. VIII, S. 324) (Herstein, v. Kostanecki, B. 32, 319). Gelbe Nadeln (aus Alkohol). F: 133,5° bis 134,5°. Konz. Schwefelsäure färbt die Krystalle rot und erzeugt eine orangefarbene Lösung. Beim Kochen mit Natriumalkoholat entsteht eine grüne Lösung, aus der Wasser ein alkaliunlösliches Harz fällt.
- 3 Oxo 2 [4 oxy benzal] thionaphthendihydrid $C_{16}H_{10}O_4S = C_6H_4 < C_5 > C:CH \cdot C_6H_4 \cdot OH$. B. Beim Erwärmen von 3-Oxy-thionaphthen mit 4-Oxy-benzaldehyd in Eisessig oder Alkohol unter Zusatz einiger Tropfen Salzsäure (FRIEDLÄNDER, M. 30, 351). Orangegelbe Nädelchen (aus Solventnaphtha). F: 262°. Löslich in verd. Natronlauge mit orangeroter Farbe.
- 14. 2-Oxo-3-salicylal-cumaran, Lacton der 2.2'-Dioxystilben-a-carbonsdure C₁₈H₁₀O₃, s. nebenstehende Formel. 2-Oxo-3-[2-methoxy-bensal]-cumaran, Lacton der 2-Oxy-
- 2'-methoxy-stilben- α -carbonsäure $C_{16}H_{13}O_3=C_6H_4$ C_0 C_0
- 15. 2-Oxo-3-[3-oxy-benzal]-cumaran, Lacton der 2.3'Dioxy-stilben-a-carbonsäure C₁₈H₁₀O₃, s. nebenstehende Formel.

 2-Oxo-3-[8-methoxy-benzal]-cumaran, Lacton der 2-Oxy-
- 3'- methoxy stilben α carbonsäure $C_{16}H_{12}O_3 = C_6H_4 < \frac{C}{O} > CO$ $CH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Neben 2-Oxy-3'-methoxy-stilben- α -carbonsäure beim Erhitzen von 2-oxy-phenylessigsaurem

Natrium mit 3-Methoxy-benzaldehyd und Essigsäureanhydrid auf 1000 (CZAPLICKI, v. KOSTA-NECKI, LAMPE, B. 42, 835, 836). Beim Schmelzen der 2-Oxy-3'-methoxy-stilben-α-carbonsaure (Cz., v. K., L.). — Gelbe Prismen (aus Alkohol). F: 118—119°. Löst sich in konz. Schwefelsaure mit gelber Farbe. — Liefert beim Kochen mit alkoh. Kali 2-Oxy-3'-methoxy-stilben-

- 16. 2-Oxo-3-[4-oxy-benzal]-cumaran. Lacton der 2.4'- Dioxy stilben a carbonsäure C₁₅H₁₀O₃, s. nebenstehende Formel.
- säure beim Erhitzen von 2-oxy-phenylessigsaurem Natrium mit 4-Methoxy-benzaldehyd und Essigsäureanhydrid auf 100° (CZAPLICKI, v. KOSTANECKI, LAMPE, B. 42, 835, 836). Beim Schmelzen der 2-Oxy-4'-methoxy-stilben-α-carbonsäure (Cz., v. K., L.). — Gelbe Nadeln (aus Alkohol). F: 132°. Die Lösung in konz. Schwefelsäure ist orange. — Liefert beim Kochen mit alkoh. Kali 2-Oxy-4'-methoxy-stilben-α-carbonsäure.
- 17. 5 oder 6 0xy 3 0xo 1 b enzal p h thalan, 6 oder 5 0xy 3 b enzal -

6 oder 5-Äthoxy-3-benzal-phthalid $C_{17}H_{14}O_3 = C_2H_5 \cdot O \cdot C_6H_3 \cdot C(:CH \cdot C_6H_5) = 0$. B. orbitet 40 \times 14 Natural 14 \times 15 Natural 14 \times 16 Natural 15 Natural 15 Natural 16 Natu Man erhitzt 10 g [4-Äthoxy-phthalsäure]-anhydrid (S. 95) mit 10 g Phenylessigsäure und etwa 0,3 g getrocknetem Natriumacetat bis zum Aufhören der Kohlendioxydentwicklung (6—7 Stdn.) auf 200° (Onnertz, B. 34, 3737). — Krystalle (aus Alkohol). F: 133—134°. Unlöslich in Wasser, schwer löslich in Ligroin, löslich in warmem Alkohol, Eisessig und Äther, leicht löslich in kaltem Benzol und Chloroform. — Wird durch alkoh. Kalilauge oder besser durch Natriumäthylat in 5-Äthoxy-1.3-dioxo-2-phenyl-hydrinden (Bd. VIII, S. 348) umgelagert. Liefert beim Erwärmen mit wäßr. Kalilauge 4 oder 5-Äthoxy-desoxybenzoin-carbonsäure-(2) (Bd. X, S. 972).

- 2. Oxy-oxo-Verbindungen C₁₆H₁₀O₈.
- 1. δ -Oxo-3-phenyl-2-[4-oxy-phenyl]-furan-dihydrid-(4.5), β -Phenyl- γ -[4-oxy-phenyl]- $\Delta^{\beta,\gamma}$ -crotonlacton $C_{16}H_{12}O_3 = H_2C C \cdot C_6H_5$ 5 Oxo 3 phenyl 2 [4 methoxy phenyl] furan dihydrid (4.5), β -Phenyl- γ -[4-methoxy-phenyl]- $\Delta^{\beta,\gamma}$ -crotonlacton $C_{17}H_{14}O_3 = H_2C C \cdot C_6H_4 \cdot O \cdot CH_5$ Behandeln von β -Phenyl- β -anisoyl-propionsäure (Bd. X, S. 974) mit Esigsäureanhydrid und 1—2 Tropfen konz. Schwefelsäure (ERLENMEYER jun., B. 38, 3127). Bei der Reduktion von α -Oxo- β -phenyl- γ -[4-methoxy-phenyl]-butyrolacton (S. 135) mit Zinkstaub und Eisvon α -Oxo- β -phenyl- γ -[4-methoxy-phenyl]-butyrolacton (S. 135) mit Zinkstaub und Eisessig, neben anderen Verbindungen (E., B. 36, 2524; 38, 3126; ERLENMEYER, LATTERMANN, A. 333, 272). Entsteht auch aus β -Phenyl- γ -[4-methoxy-phenyl]- $\Delta^{\alpha,\beta}$ -crotonlacton beim Erwärmen mit Essigsäureanhydrid oder bei der Einw. von Anilin in alkoh. Lösung (E., L.). — Tafeln (aus Chloroform). F: 122° (E., B. 36, 2524; 38, 3126; E., L.). — Liefert bei der Verseifung β -Phenyl- β -anisoyl-propionsäure (E., B. 36, 2524; E., L.). Kondensiert sich mit Benzaldehyd in Alkohol bei Gegenwart von Piperidin zu β -Phenyl- γ -[4-methoxy-phenyl]- α -benzal- $\Delta^{\beta,\gamma}$ -crotonlacton (S. 77) (E., B. 86, 2525; E., L.).
- 2. $2 Oxy 5 oxo 2.3 diphenyl-furandihydrid, <math>\gamma Oxy \beta.\gamma diphenyl \Delta^{\alpha,\beta}$ - crotoniacton, cyclo - Form der β - Benzoyl - zimtsäure (Bd. X, S. 777) HC=C·C₄H₅ $C_{16}H_{18}O_3 =$ $OC \cdot O \cdot C(C^{\bullet}H^{2}) \cdot OH$
- 2 Methoxy 5 oxo 2.3 diphenyl furandihydrid, γ Methoxy β . γ diphenyl- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{17}H_{14}O_3 = \frac{HC = C \cdot C_6H_6}{OC \cdot O \cdot C(C_6H_5) \cdot O \cdot CH_3}$. B. Aus γ Brom β . γ diphenyl- $\Delta^{\alpha,\beta}$ -crotonlacton (Bd. XVII, S. 379) beim gelinden Erwärmen mit Methylalkohol (Thiele,

- STRAUS, A. 319, 175). Krystalle (aus Methylalkohol). F: 102.5° . Leicht löslich in organischen Lösungsmitteln, außer Petroläther. Reduziert ammoniakalische Silberlösung nicht. Durch methylalkoholisches Kali erfolgt Aufspaltung zu β -Benzoyl-zimtsäure (Bd. X, S. 777).
- $\begin{array}{ll} \textbf{2-Acetoxy-5-oxo-2.3-diphenyl-furandihydrid}, & \gamma-\textbf{Acetoxy-}\beta.\gamma-\textbf{diphenyl-}\\ \Delta^{\alpha,\beta}\text{-crotonlacton} & C_{18}H_{14}O_4 = \begin{array}{ll} HC = C \cdot C_6H_5 \\ OC \cdot O \cdot C(C_6H_5) \cdot O \cdot CO \cdot CH_3 \end{array}. & B. & Beim Schütteln der Lösung \end{array}$
- des γ -Brom- β . γ -diphenyl- $\Delta^{\alpha,\beta}$ -crotonlactons in absol. Äther mit Silberacetat (Th., St., A. 319, 175). Nädelchen (aus Methylalkohol). F: 116°. Sehr leicht löslich in Benzol, schwerer in Methylalkohol, schwer in Schwefelkohlenstoff. Reduziert nicht ammoniakalische Silberlösung und färbt sich nicht mit alkoh. Kali.
- 3. 5-Oxo-3-phenyl-2-[4-oxy-phenyl]-furan-dihydrid-(2.5), β -Phenyl- γ -[4-oxy-phenyl]- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{16}H_{12}O_3 = \frac{HC = C \cdot C_6H_5}{OC \cdot O \cdot CH \cdot C_6H_4 \cdot OH}$.
- 5-Oxo-3-phenyl-2-[4-methoxy-phenyl]-furan-dihydrid-(2.5), β-Phenyl- γ -[4-methoxy-phenyl]- $\Lambda^{\alpha,\beta}$ -crotonlacton $C_{17}H_{14}O_3=\frac{HC-C\cdot C_8H_8}{OC\cdot O\cdot CH\cdot C_8H_4\cdot O\cdot CH_3}$. B. Beim Behandeln von α-Oxy-β-phenyl- γ -[4-methoxy-phenyl]-vinylessigsäure (Bd. X, S. 449) mit Essigsäureanhydrid und 1—2 Tropfen konz. Schwefelsäure (Eblenmeyer jun., B. 38, 3127). Bei der Reduktion von α-Oxo- β -phenyl- γ -[4-methoxy-phenyl]-butyrolacton (S. 135) mit Zinkstaub und Eisessig, neben anderen Verbindungen (E., B. 36, 2524; 38, 3126; Eblenmeyer, Lattermann, A. 333, 272). Krystalle. F: 105° (E., B. 36, 2524; 38, 3126; E., L.). Lagert sich beim Erhitzen mit Essigsäureanhydrid sowie in alkoh. Lösung bei Gegenwart von Anilin in β -Phenyl- γ -(4-methoxy-phenyl]- $\Delta^{\beta,\gamma}$ -crotonlacton um (E., L.). Gibt bei der Verseifung mit heißer Natronlauge β -Phenyl- β -anisoyl-propionsäure (Bd. X, S. 974) (E., B. 36, 2524; E., L.).
- 4. 7-Oxy-4-oxo-2-benzyl-[1.4-chromen], 7-Oxy-2-benzyl-chromon C₁₆H₁₂O₃, s. nebenstehende Formel.

 B. Durch längeres Erhitzen von 7-Äthoxy-2-benzyl-chromon oder 2.4-Diäthoxy-ω-phenacetyl-acetophenon mit Jodwasserstoffsäure (Hannach, v. Kostanecki, B. 35, 867). Säulen (aus Alkohol). F: 183°. Die Lösung in verd. Natronlauge fluoresciert bläulich. Die Lösung in konz. Schwefelsäure zeigt nach einiger Zeit eine schwach violettblaue Fluorescenz.
- 7-Äthoxy-2-benzyl-chromon $C_{18}H_{16}O_3=C_2H_5\cdot O\cdot C_6H_3$ CO·CH $O-C\cdot CH_2\cdot C_6H_5$. B. Durch Eintragen von 2.4-Diäthoxy- ω -phenacetyl-acetophenon in siedende Jodwasserstoffsäure (D: 1,96) (H., v. K., B. 35, 867). Nadeln (aus verd. Alkohol). F: 154°. Die Lösung in konz. Schwefelsäure fluoresciert violettblau. Wird von siedender Natriumäthylatlösung in Resacetophenon-4-äthyläther (Bd. VIII, S. 268) und Phenylessigsäure gespalten.
- 7-Acetoxy-2-benzyl-chromon C₁₈H₁₄O₄ = CH₃·CO·O·C₆H₃·CO·CH₄·C₆H₅.

 men (aus verd. Alkohol). F: 114⁰ (H., v. K., B. 35, 868).
- 5. Anhydro [5.7 dioxy 4 methyl 2 phenyl benzopyranol] C₁₆H₁₂O₃, Formel I. Vgl. hierzu Bd. XVII, S. 181.

- 6. Anhydro [7.8 dioxy 4 methyl 2 phenyl benzopyranol] $\rm C_{16}H_{12}O_{3}$, Formel II. Vgl. hierzu Bd. XVII, S. 182.
- 7. 7-Oxy-4-oxo-5-methyl-2-phenyl-[1.4-chromen],
 7-Oxy-5-methyl-2-phenyl-chromon,
 7-Oxy-5-methylflavon C₁₆H₁₃O₃, s. nebenstehende Formel. B. Neben 7-Methoxy5-methyl-flavon beim Kochen von 4.6-Dimethoxy-2-methyl-\omega-benzoylacetophenon (Bd. VIII, S. 438) mit konz. Jodwasserstoffsäure (Tambor, B. 41, 795).

64

Nädelchen (aus Alkohol). F: 297°. Leicht löslich in verd. Natronlauge mit schwach gelber Farbe; die farblose Lösung in konz. Schwefelsäure fluoresciert blau. — Gibt mit Dimethylsulfat und Alkali 7-Methoxy-5-methyl-flavon.

- 7-Methoxy-5-methyl-flavon $C_{17}H_{14}O_3=(CH_2\cdot O)(CH_2)C_0H_4$ $O-C_0\cdot C_0H_5$. B. Beim Kochen von 4.6-Dimethoxy-2-methyl- ω -benzoyl-acetophenon mit konz. Jodwasserstoffsäure, neben 7-Oxy-5-methyl-flavon (T., B. 41, 795). Nädelchen (aus Alkohol). F: 115°. Unlöslich in Alkali.
- 7-Acetoxy-5-methyl-flavon $C_{18}H_{14}O_4 = (CH_3 \cdot CO \cdot O)(CH_3)C_eH_3 \stackrel{CO \cdot CH}{\frown} U \cdot C_eH_5$. Nådelchen aus (verd. Alkohol). F: 147° (T., B. 41, 796).
- 8. 3-Oxy-4-oxo-6-methyl-2-phenyl-[1.4-chromen], 3-Oxy-6-methyl-2-phenyl-chromon, 3-Oxy-6-methyl-flavon, 6-Methyl-flavonol $C_{16}H_{12}O_{5}$, s. nebenstehende Formel, ist desmotrop mit 3.4-Dioxo-6-methyl-flavan, Bd. XVII, S. 528.
- 3 Bensoyloxy 6 methyl flavon, 6 Methyl flavonol benzoat $C_{23}H_{16}O_{4}=CH_{3}\cdot C_{6}H_{3}$ $O_{-}\overset{\square}{\cup}\cdot C_{6}H_{5}$. B. Aus 6-Methyl-flavonol und Benzoylchlorid in Pyridin (Auwers, Müller, B. 41, 4239). Nadeln (aus Methylalkohol). F: 167—168°. Löslich in konz. Schwefelsäure mit schwach gelber Farbe.
- 9. 5-Oxy-4-oxo-7-methyl-2-phenyl-[1.4-chromen],
 5-Oxy-7-methyl-2-phenyl-chromon, 5-Oxy-7-methylflavon C₁₆H₁₅O₃, s. nebenstehende Formel. B. Durch 4-stdg.
 Kochen von 2.6-Dimethoxy-4-methyl-ω-benzoyl-acetophenon
 (Bd. VIII, S. 438) mit Jodwasserstoffsåure (D: 2,00) (Ludwinowsky, Tambor, B. 89, 4041).

 Gelbe Nadeln (aus Alkohol). F: 143°. Die Lösung in konz. Schwefelsåure ist gelb.

 Natriumsalz. Gelb, schwer löslich.
- 5-Acetoxy-7-methyl-flavon $C_{18}H_{14}O_4 = (CH_3 \cdot CO \cdot O)(CH_3)C_6H_3 \cdot CO \cdot CH_5$. Nadeln (aus sehr verd. Alkohol). F: 132° (L., T., B. 39, 4041).
- 10. 3 Oxo 5 methyl 2 salicylal cumaran, 5 Methyl 2 salicylal cumaranon C₁₆H₁₈O₃, s. nebenstehende Formel. B. Aus 5-Methyl-cumsranon und Salicylaldehyd in siedender alkoholisch-wäßriger Salzsäure (Stoermer, B. Bartsch, B. 33, 3178, 3181). Gelbbraune Nadeln. Erweicht bei 222° und schmilzt bei 225—226° (Auwers, Müller, B. 41, 4238).
- 11. 3-Oxo-5-methyl-2-[4-oxy-benzal]-cumaran, CH₃ CO
 5-Methyl-2-[4-oxy-benzal]-cumaranon C₁₆H₁₂O₃,
 s. nebenstehende Formel. B. Aus 5-Methyl-cumaranon und
 4-Oxy-benzaldehyd in siedender wäßrig-alkoholischer Salzsäure (Stoermer, Bartsch, B.
 38, 3178, 3181). Leuchtend gelbe Nädelchen. F: 254—255° (Auwers, Müller, B. 41, 4238). Leicht löslich in heißem Eisessig, schwer in Chloroform, sehr wenig in Benzol und Alkohol, fast unlöslich in Ligroin; wird von Alkalien mit braunroter Farbe aufgenommen (Au., M.).
- 12. 3 Oxo 6 methyl 2 salicylal cumaran, 6-Methyl-2-salicylal-cumaranon C₁₆H₁₂O₃, s. nebenstehende Formel. B. Aus 6-Methyl-cumaranon und Salicylal-cumaranon - 13. 3-Oxo-6-methyl-2-[4-oxy-benzal]-cumaran, 6-Methyl-2-[4-oxy-benzal]-cumaranon C_{1e}H_{1s}O₂, cH₃. Occ.CH OH s. nebenstehende Formel. B. Aus 6-Methyl-cumaranon und 4-Oxy-benzaldehyd in siedender alkoholisch-wäßriger Salzsäure (Stoermer, Bartsch, B. 33, 3178, 3181). Gelblichbraun. Zersetzt und verflüchtigt sich bei 212°, fast ohne zu schmelzen. Die alkal. Lösung ist intensiv rot.

14. 3-Oxo-7-methyl-2-salicylal-cumaran, 7-Methyl-	co	он
2-salicylal-cumaranon C ₁₈ H ₁₈ O ₂₁ s. nebenstehende Formel. B.		<i>i</i> -\
	O C:CH	`\/
wäßriger Salzsäure (Stoermer, Bartsch, B. 33, 3178, 3180). — Gelbe	CH3	
Nadeln (aus Alkohol). Zersetzt sich bei 196°. In Alkalien mit intens	iv roter Farbe le	öslich.

15. 3-Oxo-7-methyl-2-[4-oxy-benzal]-cumaran,
7-Methyl-2-[4-oxy-benzal]-cumaranon C₁₆H₁₂O₃,
8. nebenstehende Formel. B. Aus 7-Methyl-cumaranon und
4-Oxy-benzaldehyd in siedender alkoholisch-wäßriger Salzsäure CH₃
(STOERMER, BARTSCH, B. 33, 3178, 3180). — Gelbe Blättchen. Zersetzt sich zwischen 210° und 215°.

3. 6-0xy-4-oxo-2-[4-isopropyl-phenyl]-[1.4-chromen], 6-0xy-2-[4-isopropyl-phenyl]-chromon, 6-0xy-4'-isopropyl-flavon C₁₈H₁₆O₃, s. nebenstehende Formel. B. Aus 6-Methoxy-4'-isopropyl-flavon durch Kochen mit starker Jodwasserstoffsäure (v. Kostanecki, B. 40, 3670). — Blaßgelbe Spieße (aus verd. Alkohol). F: 182—183°. Löslich in verd. Natronlauge mit gelber Farbe. Die gelbliche Lösung in konz. Sohwefelsäure fluoresciert bläulichgrün.

6-Methoxy-4'-isopropyl-flavon $C_{19}H_{18}O_3=CH_3\cdot O\cdot C_6H_3\cdot O\cdot C_6H_4\cdot CH(CH_3)_2$. B. Durch Einw. von starker Kalilauge auf die wäßrig-alkoholische Lösung von 3-Brom-6-methoxy-4'-isopropyl-flavanon (v. K., B. 40, 3670). — Blättchen (aus verd. Alkohol). F: 135°. Die Lösung in konz. Schwefelsäure fluoresciert hellgrün. — Wird durch Kochen mit Jodwasserstoffsäure entmethyliert.

- 4. δ -0xo- β -[2-oxy-4-methyl-phenyl]- δ -[3.6-dimethyl-cumaranyl-(2)]- β -butylen, 3.6-Dimethyl-2-[β -(2-oxy-4-methyl-phenyl)-crotonoyl]-cumaran $C_{31}H_{32}O_3$, s. nebenstehende Formel.
- 3.6 Dimethyl 2 $[\beta$ (2 methoxy 4 methyl phenyl) crotonoyl] cumaran (?) $C_{22}H_{24}O_3 = CH_3 \cdot C_6H_3 \cdot CH_5 \cdot CH \cdot CO \cdot CH \cdot C(CH_3) \cdot C_6H_3 \cdot CH_3 \cdot O \cdot CH_3 \cdot (?)$. B. Beim Kochen von Bis-[3.6-dimethyl-cumaranyl-(2)]-keton(?) (Syst. No. 2747) mit Methyljodid und Natriumäthylat in alkoh. Lösung (FRIES, KLOSTERMANN, A. 362, 20). Tafeln (aus Methylalkohol). F: 165°. Leicht löslich in Chloroform und Benzol, löslich in warmem Alkohol und Eisessig. Konz. Schwefelsäure löst mit braunroter Farbe.
- 3.6 · Dimethyl 2 · [β · (2 · äthoxy 4 · methyl · phenyl) · crotonoyl] · cumaran (?) $C_{23}H_{26}O_3 = CH_3 \cdot C_6H_3 \cdot CH_1(CH_3) \cdot CH_2(CH_3) \cdot C_6H_3(CH_3) \cdot O \cdot C_2H_5$?) · B. Beim Kochen von Bis-[3.6-dimethyl-cumaranyl-(2)] · keton(?) (Syst. No. 2747) mit Äthyljodid und Natriumäthylat in alkoh. Lösung (F., K., A. 362, 21). Prismen (aus Alkohol). F: 156°.

k) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_3$.

1. 6-0 x y - 3'- o x o - [indeno - 1'.2': 2.3 oder 2'.1': 2.3 - cumaron] 1), 6-0 x y - 2.3 (CO) - oder 2 (CO).3 - benzoylen-cumaron $C_{15}H_8O_3$, Formel I oder II. B. Durch Zufügen einer konzentrierten alkoholischen Lösung von ca. $1^1/_2$ Mol Resorcin und

4 Mol Natriumäthylat zu einer siedenden alkoh. Lösung von 1 Mol 1.2-Dichlor-3-oxo-inden (Bd. VII, S. 384) (LIEBERHANN, B. 32, 923). — Rote Nädelchen (aus Alkohol), die sich beim Erhitzen schwärzen. Löslich in kalter Sodalösung mit blauer Farbe.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1—3. BEILSTEINs Handbuch. 4. Aufl. XVIII.

66

Acetylderivat $C_{17}H_{10}O_4=C_{15}H_7O_2\cdot O\cdot CO\cdot CH_8$. B. Beim Erhitzen des 6-Oxy-2.3-benzoylen-cumarons mit Essigsäureanhydrid und entwässertem Natriumacetat (LIEBERMANN, B. 32, 923; WIEDERMANN, Dissertation [Berlin 1900], S. 83). — Hellrote, verfilzte Nadeln. F: 190—1920 (L.). Unlöslich in wäßr. Alkali, löslich in alkoh. Kalilauge mit roter Farbe (L.).

2. Oxy-oxo-Verbindungen $C_{17}H_{12}O_3$.

1. $3 - Oxy - 5 - oxo - 4 - phenyl - 2 - benzal - furandihydrid, \beta - Oxy - \alpha - phenyl - \gamma - benzal - \Delta^{\alpha,\beta}$ -crotonlacton, Pulvinon $C_{17}H_{12}O_3 = \begin{array}{c} C_6H_5 \cdot C = C \cdot OH \\ OC \cdot O \cdot C : CH \cdot C_6H_5 \end{array}$ ist desmotrop mit $\beta - Oxo - \alpha - phenyl - \gamma - benzal - butyrolacton, Bd. XVII, S. 535.$

Acetylderivat $C_{19}H_{14}O_4 = C_{17}H_{11}O_3 \cdot O \cdot CO \cdot CH_3$. B. Beim Kochen von 1 Tl. Pulvinon mit 5 Tln. Essigsäureanhydrid und etwas Zinkchlorid (CLAISEN, EWAN, A. 284, 281). — Blaßgelbe Nadeln (aus Methylalkohol). F: 137—139°. Leicht löslich in heißem Alkohol.

2. γ-Oxo-γ-[1-oxy-naphthyl-(2)]-α-[α-furyl]-α-propylen, [1-Oxy-naphthyl-(2)]-[β-(α-furyl)-vinyl]-keton, 2-[Furfuryliden-acetyl]-naphthol-(1) C₁₇H₁₂O₃, s. nebenstehende Formel. B. Aus Furfurol und HC—CH—HO 2-Acetyl-naphthol-(1)(Bd.VIII, S. 149)(Alperin, v.Kostanecki, HC·O·C·CH:CH·CO·C

Acetylderivat $C_{19}H_{14}O_4 = C_{17}H_{11}O_2 \cdot O \cdot CO \cdot CH_3$. Gelbliche Spieße (aus Alkohol). F: 116—117° (A., v. K., B. **32**, 1039).

l) Oxy-oxo-Verbindungen $C_n H_{2n-24} O_3$.

1. Oxy-oxo-Verbindungen C₁₂H₁₀O₈.

1. G'-Oxy-9-oxo-[benzo-1'.2':3.4-xanthen]¹), 6'-Oxy[benzo-1'.2':3.4-xanthon]¹) C₁₇H₁₀O₃, s. nebenstehende Formel.

B. Bei der Destillation eines Gemenges aus Salicylsäure und 1.5-Dioxy-naphthalin mit Essigsäureanhydrid (v. Kostanecki, B. 25, 1646).

— Gelbe Nadeln (aus Alkohol). F: 270°. Löst sich in konz. Schwefelsäure mit gelber Farbe und grünlicher Fluorescenz. — Natriumsalz. Orangegelb. Leicht löslich in verd. Alkohol, schwer in Wasser.

Acetylderivat $C_{19}H_{19}O_4 = CH_3 \cdot CO \cdot O \cdot C_{10}H_5 < \bigcirc C_6H_4$. B. Durch kurzes Kochen von 6'-Oxy-[benzo-1'.2':3.4-xanthon] mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., B. 25, 1646). — Nadeln. F: 216°.

2. $5'-Oxy-9-oxo-[benzo-1'.2':1.2-xanthen]^1)$, $5'-Oxy-[benzo-1'.2':1.2-xanthon]^1)$ $C_{17}H_{10}O_3$, Formel I, oder $4'-Oxy-9-oxo-[benzo-1'.2':2.3-xanthen]^1)$, $4'-Oxy-[benzo-1'.2':2.3-xanthon]^1)$ $C_{17}H_{10}O_3$, Formel II. B. Durch Destillation

I.
$$\mathbf{H}_0$$
 \mathbf{H}_0

eines Gemenges aus Salicylsäure und 2.7-Dioxy-naphthalin mit Essigsäureanhydrid (v. Kostanecki, B. 25, 1646). — Blättchen (aus Alkohol). F: 290°. Löst sich in konz. Schwefelsäure mit gelber Farbe und schwach grünlicher Fluorescenz. — Natriumsalz. Goldgelbe Blättchen. Ziemlich leicht löslich in siedendem Wasser.

Acetylderivat $C_{19}H_{12}O_4 = CH_3 \cdot CO \cdot O \cdot C_{10}H_5 < \bigcirc C_6H_4$. Nadeln. F: 206° (v. K., B. 25, 1647).

3. $7 - 0xy - 9 - oxo - \{benzo - 1'.2': 1.2 - xanthen\}^1 \}$, $7 - 0xy - \{benzo - 1'.2': 1.2 - xanthon\}^1 \}$ $C_{17}H_{10}O_3$, Formel I (8. 67) oder $7 - 0xy - 9 - oxo - \{benzo - 1'.2': 2.3 - xanthen\}^1 \}$.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

7-Oxy-[benzo-1'.2':2.3-xanthon] 1) $C_{17}H_{10}O_3$, Formel II. B. Man verfährt wie bei der Darstellung des folgenden Methyläthers, verwendet aber etwas mehr Aluminiumchlorid

und erhitzt länger (ULLMANN, KIPPER, B. 38, 2124). — Bräunliche Nadeln (aus verd. Alkohol). F: 287—290°. Löslich in Alkohol und Eisessig mit schwach gelber Farbe; die Lösung in verd. Natronlauge ist gelb. Löslich in konz. Schwefelsäure mit gelber Farbe und blaugrüner Fluorescenz. — Natriumsalz. Gelbe Nadeln.

Methyläther $C_{18}H_{12}O_3=C_{10}H_6 < \bigcirc C_0 > C_6H_3 \cdot O \cdot CH_3$. B. Man löst 0,75 g 5-Methoxy-2- β -naphthoxy-benzoesäure (Bd. X, S. 386) in 10 cm³ Benzol, fügt 0,5 g Phosphorpentachlorid, nach beendigter Chlorwasserstoff-Entwicklung 1,5 g Aluminiumchlorid hinzu, erwärmt $^3/_4$ Stdn. und zersetzt vorsichtig mit Eiswasser (U., K., B. 38, 2124). — Nadeln (aus verd. Alkohol). F: 256°. Leicht löslich in siedendem Alkohol und Eisessig, löslich in Åther und Benzol. Die gelbe Lösung in konz. Schwefelsäure fluoresciert grün.

2. Oxy-oxo-Verbindungen $C_{18}H_{12}O_3$.

1. 3-Oxy-2-oxo-3-phenyl-4.5-benzo-cumaran, Lacton der Oxy-phenyl-[2-oxy-naphthyl-(1)]-essigsäure $C_{18}H_{18}O_{3}$, s. nebenstehende Formel.

 $C_{18}H_{12}O_3$, s. nebenstehende Formel. 3-Methoxy-2-oxo-3-phenyl-4.5-benzo-cumaran, Lacton der Methoxy - phenyl - [2 - oxy - naphthyl - (1)] - essigsäure

- C₁₀H₁₄O₃ = C₁₀H₆ C(C₆H₆)(O·CH₃) CO. B. Beim Kochen des Lactons der Phenyl-[2-oxynaphthyl-(1)]-bromessigsäure (Bd. XVII, S. 389) mit Methylalkohol, dem einige Tropfen Wasser zugesetzt sind, neben anderen Produkten (Simonis, B. 31, 2824). Gelbe Prismen (aus Methylalkohol). F: 136°. Leicht löslich, außer in Wasser.
- 3-Äthoxy-2-oxo-3-phenyl-4.5-benzo-cumaran, Lacton der Äthoxy-phenyl-[2-oxy-naphthyl-(1)]-essigsäure $C_{20}H_{16}O_3=C_{10}H_6$ $C(C_6H_5)(O\cdot C_2H_5)$ CO. B. Entsteht neben zwei tiefgelben, bei 187° bezw. 223° schmelzenden Verbindungen, welche konz. Schwefelsäure rot färben, durch Kochen des Lactons der Phenyl-[2-oxy-naphthyl-(1)]-bromessigsäure mit Alkohol (S., B. 31, 2824). F: 145°. Die Lösung in konz. Schwefelsäure ist blau.
- 3-Phenoxy-2-oxo-3-phenyl-4.5-benzo-cumaran, Lacton der Phenoxy-phenyl-[2-oxy-naphthyl-(1)]-essigsäure $C_{24}H_{16}O_3 = C_{10}H_6 \underbrace{C(C_6H_5)(O\cdot C_6H_5)}_{O}$ CO. B. Durch Erhitzen äquimolekularer Mengen des Lactons der Phenyl-[2-oxy-naphthyl-(1)]-bromessigsäure und Phenol (S., B. 31, 2825). Krystalle (aus viel siedendem Benzol). F: 160°. Leicht löslich in Alkohol, Äther und Eisessig.
- 3-Bensyloxy-2-oxo-3-phenyl-4.5-benzo-cumaran, Lacton der Bensyloxy-phenyl-[2-oxy-naphthyl-(1)]-essigsäure $C_{15}H_{18}O_3=C_{10}H_6$ $C(C_6H_5)(O\cdot CH_1\cdot C_6H_5)$ CO. B. Durch Kochen des Lactons der Phenyl-[2-oxy-naphthyl-(1)]-bromessigsäure mit Benzylalkohol, dem einige Tropfen Wasser zugesetzt sind (S., B. 31, 2825). Krystalle (aus Äther-Alkohol). F: 181°.
- 2. 1-Oxy-3-oxo-1- α -naphthyl-phthalan, 3-Oxy-3- α -naphthyl-phthalid, cyclo-Form der 2- α -Naphthoyl-benzoesäure (Bd. X, S. 782) $C_{18}H_{11}O_3=C_4H_4\overbrace{C(C_{10}H_7)(OH)}^{CO}O$.
- 3-Methoxy-3- α -naphthyl-phthalid, [2- α -Naphthoyl-benzoesäure]-pseudomethylester $C_{19}H_{14}O_3=C_6H_4$ CO O. Zur Konstitution vgl. H. Meyer, M. 28, 1236; EGERER, H. Meyer, M. 34 [1913], 69. B. Man erwärmt 2- α -Naphthoyl-benzoesäure (Bd. X, S. 782) mit Phosphortrichlorid oder -pentachlorid und behandelt das entstandene

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

(nicht näher beschriebene) Säurechlorid mit Methylalkohol (Goldschmiedt, Lipschitz, M. 25, 1174). — Krystalle (aus Methylalkohol). Monoklin (Peliean, M. 25, 1174). F: 1340 bis 1370 (G., L.). Löst sich in konz. Schwefelsäure mit violetter Farbe (G., L.).

Bis-[8- α -naphthyl-phthalidyl-(8)]-äther $C_{36}H_{32}O_{\delta} = \left[0C < \begin{matrix} C_{6}H_{4} \\ 0 \end{matrix} > C(C_{10}H_{7}) \right]_{\bullet}O$. Über eine Verbindung CasHarOs, der vielleicht diese Konstitution zukommt, s. Bd. X, S. 783.

3. 3-Oxo-1-[2-oxy-naphthyl-(1)]-phthalan, 3-[2-Oxynaphthyl-(1)]-phthalid $C_{18}H_{19}O_3$, s. nebenstehende Formel. B. Durch Einw. $73^{\circ}/_{\circ}$ iger Schwefelsäure auf ein Gemisch von Phthalaldehydsäure und β -Naphthol (BISTRZYCKI, YSSEL DE SCHEPPER, B. 31, 2802). — Körnige Kryställchen (aus Alkohol). F: 234—235°. Ziemlich leicht löslich in heißem Alkohol, schwer in Eisessig und Benzol.

4. 3-Oxo-1-[4-oxy-naphthyl-(1)]-phthalan, 3-[4-Oxy-naph-thyl-(1)]-phthalid C₁₈H₁₄O₈, s. nebenstehende Formel. B. Durch Einw. 73°/ojger Schwefelsäure auf ein Gemisch von Phthalaldehydsäure und α-Naphthol (BISTEZYCKI, YSSEL DE SCHEPPER, B. 31, 2802). — Nädelchen (aus verd. Allechel) El. 202 Alkohol). F: 222-223°. Leicht löslich in heißem Alkohol, viel schwerer in Eisessig und Benzol.

3. Oxy-oxo-Verbindungen C₁₉H₁₄O₃.

1. 4 - 0xo - 2 - [3 - oxy - phenyl] - 7.8 - benzo - chroman,3'-Oxy-7.8-benzo-flavanon C₁₀H₁₄O₂, s. nebenstehende Formel.

3'-Methoxy-7.8-benzo-flavanon (,,3'-Methoxy- α -naphthoflavanon") $C_{20}H_{16}O_3=C_{10}H_0$ — $CH\cdot C_6H_4\cdot O\cdot CH_3$ B. Beim

Kochen einer alkoh. Lösung des [3-Methoxy-styryl]-[1-oxy-naphthyl-(2)]-ketons (Bd. VIII, S. 365) mit Salzsäure (v. Kostanscki, B. 41, 785). — Nadeln (aus Schwefelkohlenstoff + Ligroin). F: 130°.

4-0xo-2-[4-oxy-phenyl]-7.8-benzo-chroman,4'-Oxy-7.8-benzo-flavanon C19H14O2, s. nebenstehende Formel.

4'-Methoxy-7.8-benso-flavanon(,,4'-Methoxy- α -naphthoflavanon'') $C_{30}H_{16}O_3 = C_{10}H_4 \cdot C_0 \cdot CH_2 \cdot C_0 \cdot CH_3

Durch Kochen einer alkoh. Lösung von [4-Methoxy-styryl]-[1-oxy-naphthyl-(2)]-keton (Bd. VIII, S. 365) mit Salzsäure (v. Kostanecki, B. 41, 783). — Nadeln (aus Schwefelkohlenstoff). F: 148°. — Liefert beim Behandeln mit Amylnitrit und Salzsäure 4'-Methoxy-3-oximino-7.8-benzo-flavanon (S. 142).

m) Oxy-oxo-Verbindungen $C_n H_{2n-26} O_3$.

1. Oxy-oxo-Verbindungen C₁₉H₁₈O₂.

1. 6 - Oxy - 9 - phenyl - fluoron, Resorcinbenzein $C_{j_0}H_{13}O_3$, s. nebenstehende Formel. Zur Zusammensetzung und C(C6H5): C₁₉H₁₈O₂, 8. nebenstenende Formel. Zur Zusammensetzung und Konstitution vgl. Kehrmann, Dengler, B. 41, 3440; Ke.,

Konstitution vgl. Kehrmann, Dengler, B. 41, 3440; Ke.,

A 372 [1910], 294, 305; Pope, Howard, Soc. 97 [1910], 1025; v. Liebig, J. pr. [2] 85 [1912], 97, 254; Gomberg, West, Am. Soc. 34 [1912], 1568; P., Soc. 105 [1914], 251; Ke.,

Loth, B. 47 [1914], 2271; v. L., B. 47 [1914], 2592; R. Meyer, Gerloff, B. 57 [1924],

594; Orndorff, Gibbs, Shapiro, Am. Soc. 48 [1926], 1328. — B. Durch mehrstündiges

Erhitzen von 1 Mol.-Gew. Benzotrichlorid mit 2 Mol.-Gew. Resorcin auf 180—190° (Doebner,

1918 A 2018 P. 1918 P HO. A. 217, 234; Kz., D., B. 42, 873). Beim mehrstündigen Erhitzen von 1 Tl. Benzoesaure mit A. 217, 234; KE., D., B. 42, 873). Beim mehrstündigen Erhitzen von 1. II. Benzoesaure mit 2 Tln. Resorcin und ¹/₂ Tl. Zinkehlorid auf 170—180° (G. Cohn, J. pr. [2] 48, 387; vgl. Zulkowski, M. 5, 222). Beim Erhitzen von 2.4-Dioxy-benzophenon (Bd. VIII, S. 312) mit Resorcin und Zinkehlorid (Komabowski, v. Kostanbokki, B. 27, 1998). Entsteht in geringer Menge neben anderen Produkten beim Erhitzen von Resorcin mit Benzil bei Gegenwart von trocknem Natriumsulfat auf 180—220° (v. L., J. pr. [2] 72, 141, 143; 78, 535). Man diazotiert 6-Amino-9-phenyl-fluoron (Syst. No. 2643) in schwefelsaurer Lösung und erhitzt die Diazolösung zum Sieden (Ke., D., B. 41, 3445). — Ziegelrote Krystalle. F: 333° (Ke., D., B. 42, 874). Die konzentrierten alkalischen Lösungen sind orangerot, reflektieren blau und fluorescieren kaum; die verdünnteren sind in dicker Schicht bei durchfallendem Licht gelb, in dünner Schicht rosarot und fluorescieren grün (KE., D., B. 42, 874). Die alkoh. Lösung wird auf Zusatz von etwas konz. Salzsäure rein goldgelb (KE., D., B. 42, 874). — Beim Kochen der alkoh. Lösung mit Zinkstaub und Salzsäure entsteht 3.6-Dioxy-9-phenyl-xanthen (Bd. XVII, S. 169) (D.; vgl. v. L., J. pr. [2] 78, 538, 543). Mit Brom erhält man je nach den Bedingungen Di- oder Tetrabromresorcinbenzein (C.; R. MEYER, GERLOFF, B. 57 [1924], 598). Nitrierung: C. Beim Kochen mit alkoh. Kali entstehen 3.6-Dioxy-9-phenyl-xanthen und 2.4-Dioxy-benzo-phenon (v. L., J. pr. [2] 78, 541; vgl. v. L., J. pr. [2] 85 [1912], 248, 254; B. 47 [1914], 2597; P., Soc. 105 [1914], 256, 260). Einwirkung von Phosphorpentachlorid und Umsetzung des entstehenden Chlorids mit Dimethylamin, Diäthylamin oder aromatischen Aminen zu roten bis blauvioletten Farbstoffen (Rosindaminen): Höchster Farbw., D.R.P. 51348, 52030; Frdl. 2, 64, 65; vgl. P., H., Soc. 99 [1911], 550, 552. Einwirkung von Essigsäureanhydrid + konz. Schwefelsäure: v. L., J. pr. [2] 78, 541; 85 [1912], 250, 252. Beim Kochen mit Essigsäureanhydrid und Natriumacetat in Gegenwart von Zinkstaub entsteht 3.6-Diacetoxy-9-phenyl-xanthen (v. L., J. pr. [2] 78, 542; vgl. v. L., J. pr. [2] 85 [1912], 255; B. 47 [1914], 2597; P., Soc. 105 [1914], 258). Liefert mit Dimethylsulfat in Nitrobenzol bei 150° das methylschwefelsaure Salz des 6-Methoxy-9-phenyl-fluorons (KE., D., B. 42, 874). — Ba(C₁₉H₁₁O₃), B. Beim Kochen von Resorcinbenzein mit Barytwasser (v. L., J. pr. [2] 78, 539; vgl. P., Soc. 105 [1914], 257). — Hydrochlorid C₁₀H₁₃O₃+ HCl. B. Durch Zusatz von konz. Salzsäure zu einer alkoh. Suspension von Resorcinbenzein (KE., D., B. 42, 874; vgl. v. L., J. pr. [2] 78, 540; P., Soc. 105 [1914], 257). Gelbe Krystalle.

Dibromresorcimbenzein C₁₉H₁₉O₄Br₂ = C₁₉H₁₀O₃Br₂ + H₂O. Zur Zusammensetzung und Konstitution vgl. R. Meyer, Gerloff, B. 57 [1924], 595, 598. — B. Man löst 1 Mol Resorcinbenzein, verteilt in Eisessig, durch Zusatz von einigen Tropfen rauchender Bromwasserstoffsaure und fügt rasch eine Lösung von 2 Mol Brom im doppelten Vol. Eisessig hinzu (G. Cohn, J. pr. [2] 48. 390). — Rotgelbes Pulver. In der Kälte schwer löslich in Alkohol und Aceton, unlöslich in Äther, Chloroform, Schwefelkohlenstoff und Benzol (C.). Wird beim Erhitzen auf 250° nicht verändert (C.).

Tetra bromres orcin benzein C₁₉H₁₀O₄Br₄. Zur Zusammensetzung und Konstitution vgl. R. Meyer, Gerloff, B. 57 [1924], 595, 598. — B. Man suspendiert 2 g Resorcinbenzein in 20—25 cm³ Eisessig, bringt es durch Zusatz von ½ cm³ konz. Bromwasserstoffsäure in Lösung und fügt eine Lösung von ½ cm³ Brom in ca. 4 cm³ Eisessig hinzu (G. Cohn, J. pr. [2] 48, 392). — Braune Nadeln (aus Anilin) mit blauem, oder Blättchen (aus Eisessig) mit grünem Reflex. Sintert bei 290—300° (C.). Schwer löslich in Alkohol; ziemlich schwer löslich in verd. Natronlauge (C.).

Pentabromresorcinbenzein C₁₉H₂O₄Br₅. Zur Zusammensetzung und Konstitution vgl. R. Meyer, Gerloff, B. 57 [1924], 595, 598. — B. Beim Kochen von Tetrabromresorcinbenzein (s. o.) mit der 10-fachen Menge Eisessig und einem geringen Überschuß von Brom (G. Cohn, J. pr. [2] 48, 393). — Braune Nadeln (aus Eisessig). Noch schwerer löslich als Tetrabromresorcinbenzein (C.).

- 6 Methoxy 9 phenyl fluoron $C_{20}H_{14}O_{3}$, s. nebenstehende Formel. B. Das methylschwefelsaure Salz entsteht durch Erhitzen von Resorcinbenzein (S. 68) in Nitrobenzol mit Dimethylsulfat; man führt das methylschwefelsaure Salz in das Chlorid über und hydrolysiert dieses durch Kochen mit viel Wasser (Kehrmann, Denoller, B. 42, 874). Rote Nadelbüschel (aus Alkohol). F: 202°. Unlöslich in Wasser; unlöslich in Laugen. Leicht löslich in verd. Mineralsäure unter Bildung orangegelber Salze. Die goldgelbe Lösung in konz. Schwefelsäure fluoresciert hellgrün; beim Zusatz von Eis erfolgt keine Farbänderung. Liefert mit Dimethylsulfat das methylschwefelsaure Salz des 3.6-Dimethoxy-9-phenyl-xanthydrols (Bd. XVII, S. 185). Chlorid. Blau reflektierende, rotgelbe Prismen (aus verd. Salzsäure). 2 $C_{20}H_{14}O_{3}$ + 2 HCl + PtCl₄. Orangeroter krystallinischer Niederschlag.
- 2. 3-Oxy-4-oxo-2-phenyl-7.8-benzo-[1.4-chromen], 3-Oxy-2-phenyl-7.8-benzo-chromon, 3-Oxy-7.8-benzo-flavonol (,,\alpha-Naphthoflavonol") C₁₀H₁₀O₂, s. nebenstehende Formel, ist desmotrop mit 3.4-Dioxo-7.8-benzo-flavan, Bd. XVII, S. 542.

Acetylderivat $C_{51}H_{14}O_4 = C_{10}H_6 < CO \cdot C \cdot O \cdot CO \cdot CH_5$. Bei kurzem Kochen von 7.8-Benzo-flavonol mit Essigsäureanhydrid und entwässertem Natriumacetat (Woker, B. 39, 1652). — Blättchen (aus Alkohol). F: 194—195°.

- 70
- 3. 4-Oxo-2-[2-oxy-phenyl]-7.8-benzo-[1.4-chromen], 2-[2-Oxy-phenyl]-7.8-benzo-chromon, 2'-Oxy-7.8-benzo-flavon $C_{10}H_{13}O_{3}$, s. nebenstehende Formel.

O C-CH OH

2'-Äthoxy-7.8-benzo-flavon(,,2'-Äthoxy-\alpha-naphthoflavon")

C₂₁H₁₆O₃ = C₁₀H₆CO·CH O—C·C₆H₄·O·C₂H₅. B. Durch Schütteln von in Alkohol suspendiertem α.β-Dibrom-γ-οχο-α-[2-āthoxy-phenyl]-γ-[1-acetoxy-naphthyl-(2)]-propan (Bd. VIII, S. 360) mit starker Kalilauge (Alperin, v. Kostanecki, B. 32, 1038). — Gelbliche Nadeln (aus Alkohol). F: 160°. Konz. Schwefelsäure färbt die Krystalle orange und gibt eine hellorangefarbene, intensiv grün fluorescierende Lösung. — Durch Kochen mit alkoh. Natriumāthylat entstehen 2-Aceto-naphthol-(1) und Salicylsäure.

4. 4-Oxo-2-[4-oxy-phenyl]-7.8-benzo-[1.4-chromen],
2-[4-Oxy-phenyl]-7.8-benzo-chromon, 4'-Oxy7.8-benzo-flavon C₁₈H₁₂O₃, s. nebenstehende Formel. B. Durch
Kochen von 4'-Methoxy-7.8-benzo-flavon mit Jodwasserstoffsäure
(Keller, v. Kostanecki, B. 32, 1036). — Nädelchen (aus viel
Eisessig). F: 315-316°. Konz. Schwefelsäure färbt die Krystalle gelb und liefert eine gelb-

liche, stark hellgrün fluorescierende Lösung. Leicht löslich in verd. Natronlauge mit gelber

- Farbe.

 4'-Methoxy-7.8-benzo-flavon (,,4'-Methoxy- α -naphthoflavon") $C_{20}H_{14}O_3 = CO \cdot CH$ $C_{10}H_6 \underbrace{CO \cdot CH}_{O-\overset{!!}{C} \cdot C_6H_4 \cdot O \cdot CH_3}$. B. Durch Einw. von alkoh. Kalilauge auf $\alpha.\beta$ -Dibrom- γ -oxo- α -[4-methoxy-phenyl]- γ -[1-acetoxy-naphthyl-(2)]-propan (Bd. VIII, S. 360) (KE., v. Ko., B. 32, 1035). Hellgelbe Nadeln (aus viel Alkohol). F: 181°. Konz. Schwefelsäure färbt die Krystalle orange und gibt eine gelbe, grün fluorescierende Lösung. Durch Spaltung mit alkoh. Natriumäthylat entstehen 2-Aceto-naphthol-(1) und Anissäure.
- 4'-Acetoxy-7.8-benzo-flavon (,,4'-Acetoxy- α -naphthoflavon") $C_{21}H_{14}O_4=C_{10}H_{6}C_{0}-C_{0}C_{1}$. B. Bei kurzem Kochen von 4'-Oxy-7.8-benzo-flavon mit Essigsäureanhydrid und entwässertem Natriumacetat (Keller, Dissertation [Bern 1899], S. 45). Nadeln (aus Eisessig + Alkohol). F: 215° (Ke.; Ke., v. Kostanecki, B. 32, 1037).
- 2. Oxy-oxo-Verbindungen $C_{20}H_{14}O_3$.
- 1. 4-Oxy-2-oxo-3.3-diphenyl-cumaran, Lacton der Ho
 2.6-Dioxy-triphenylessigsäure C₃₀H₁₄O₃, s. nebenstehende Formel.

 B. Durch Erhitzen von Benzil und Resorcin mit trocknem Natriumsulfat auf 180—220°, neben anderen Produkten (v. Liebig, J. pr. [2] 72,
 146; 76, 368). Blättchen mit Krystallbenzol (aus heißem Benzol). F: 264°. Löslich in heißer Kalilauge.
- 2. 5-Oxy-2-oxo-3.3-diphenyl-cumaran, Lacton der HO C(C₆H₅)₂
 2.5-Dioxy-triphenylessigsäure C₂₀H₁₄O₃, s. nebenstehende
 Formel. B. Aus Hydrochinon und Benzilsäure durch Zusammenschmelzen (v. Liebig, B. 41, 1647). F: 200—201°. Gibt mit konz. Schwefelsäure eine gelbe Färbung.
- 3. 6-Oxy-2-oxo-3.3-diphenyl-cumaran, Lacton der 2.4 Dioxy triphenylessigsäure C₂₀H₁₄O₃, s. nebenstehende Formel. B. Neben anderen Produkten beim Erhitzen von Resorcin mit Benzil, zweckmäßig bei Gegenwart von wasserfreiem Natriumsulfat, auf 180—220° (v. Liebig, B. 36, 3046; J. pr. [2] 72, 110, 141; vgl. auch v. L., J. pr. [2] 76, 367). Bei 1¹/₃—2-stdg. Erhitzen von Benzilsäure mit Resorcin auf 180—200° (v. L., B. 41, 1646). Beim Erhitzen der 2.4-Dioxy-triphenylessigsäure (Bd. X, S. 453) auf 120—130° (v. L., J. pr. [2] 72, 147). Farblose Blättchen (aus siedendem Benzol) oder Rhomboeder (aus sehr konz. Lösung in Alkohol). F: 168°; leicht löslich in heißem Benzol und Toluol; in den übrigen Lösungsmitteln schon in der Kälte leicht löslich (v. L., J. pr. [2] 72, 148). Sehr wenig löslich in Ammoniak und Sodalösung, leicht in kalter Natronlauge und Kalilauge (v. L., B. 36, 3047; J. pr. [2] 72, 148). Beim Erhitzen unter gewöhnlichem Druck wird Diphenylmethan abgespalten (v. L., B. 36, 3049; J. pr. [2] 72, 148). Bei der Oxydation mit Chromsäure oder Kaliumpermanganat entstehen Benzophenon und Benzoesäure (v. L., B. 36, 3050; J. pr. [2] 72, 112). Gibt in siedendem Eisessig mit Bleidioxyd eine Verbindung C₃₀H₁₂O₄ (S. 71) (v. L., J. pr. [2] 72, 165).

Konz. Schwefelsäure wird durch das Lacton gelb, nach längerem Stehen und beim Erhitzen rot gefärbt (v. L., J. pr. [2] 72, 148). Wird schon beim Schütteln mit kalter konzentrierter Schwefelsäure in 6-Oxy-2-oxo-3.3-diphenyl-cumaran-sulfonsäure-(5) (Syst. No. 2633) übergeführt (v. L., A. 360, 223). Spaltet beim Erwärmen mit konz. Schwefelsäure von 100° an Kohlenoxyd ab (BISTRZYCKI, v. SIEMIRADZKI, B. 39, 61). Liefert ein Monoacetyl- und ein Monobenzoylderivat (s. u.) (v. L., J. pr. [2] 72, 149, 151). Gibt beim Schütteln mit Dimethylsulfat und 33% jer Kalilauge 2.4-Dimethoxy-triphenylessigsäure (Bd. X, S. 454), 2.4-Dimethoxy-triphenylessigsäure (Bd. X, S. 454), 2.4-Dimethoxy-triphenylessigsäure-methylester (Bd. X, S. 454) und 6-Methoxy-2-oxo-3.3-diphenyl-cumaran (s. u.) (v. L., B. 37, 4037; J. pr. [2] 72, 152).

Verbindung C₂₀H₁₂O₄. B. Beim allmählichen Eintragen von Bleidioxyd in eine kochende Eisessig-Lösung des Lactons der 2.4-Dioxy-triphenylessigsäure (v. LIEBIG, J. pr. [2] 72, 165). — Roter Niederschlag. Schmilzt oberhalb 290°. Schwer löslich in Alkohol und Methylalkohol, sehr leicht löslich in kaltem Benzol, Aceton, Chloroform, Essigester.

und Methylalkohol, sehr leicht löslich in kaltem Benzol, Aceton, Chloroform, Essigester.

Schwer löslich in Alkalien.

- 6-Methoxy-2-oxo-3.3-diphenyl-cumaran, Lacton der 2-Oxy-4-methoxy-triphenylessigsäure $C_{21}H_{16}O_3 = CH_3 \cdot O \cdot C_6H_3 \underbrace{C(C_6H_5)_2}_{O} CO$. B. Neben 2.4-Dimethoxytriphenylessigsäure und deren Methylester (Bd. X, S. 454) beim Schütteln des Lactons der 2.4-Dioxy-triphenylessigsäure mit Dimethylsulfat und 33%/oiger Kalilauge (v. Liebig, B. 37, 4037; J. pr. [2] 72, 152). — Krystalle (aus Alkohol). F: 180—181° (v. L., J. pr. [2] 72, 153). Löst sich langsam in siedender Kalilauge; gibt mit kalter konzentrierter Schwefelsäure keine Färbung (v. L., J. pr. [2] 72, 153). — Liefert mit konz. Schwefelsäure bei 100° 6-Methoxy-2-oxo-3.3-diphenyl-cumaran-sulfonsäure-(5) (Syst. No. 2633) (v. L., A. 360, 238)
- 6 Äthoxy-2-oxo-3.3 diphenyl-cumaran, Lacton der 2 Oxy 4 äthoxy-triphenylessigsäure $C_{22}H_{18}O_3 = C_2H_5 \cdot O \cdot C_6H_3 \stackrel{C(C_6H_5)_2}{\circ} CO$. B. Neben 2.4-Diāthoxy-triphenylessigsäure und deren Äthylester (Bd. X, S. 454, 455) beim Behandeln des Lactons der 2.4-Dioxy-triphenylessigsäure (S. 70) mit Diāthylsulfat und Kalilauge (v. LIEBIG, Lactor) auf Lactor der 2.4-Dioxy-triphenylessigsäure J. pr. [2] 72, 154, 155). Beim Erhitzen von 3 g des Lactons der 2.4-Dioxy-triphenylessigsäure mit 5 g Äthyljodid, 5 g gepulvertem Kali und 15 cm³ absol. Alkohol im Einschlußrohr auf dem Wasserbad (v. L.). — Blättchen (aus Alkohol). F: 151—152°. Färbt sich mit konz. Schwefelsäure nicht.
- 6-Acetoxy-2-oxo-8.3-diphenyl-cumaran, Lacton der 2-Oxy-4-acetoxy-triphenylessigsäure $C_{22}H_{16}O_4=CH_3\cdot CO\cdot O\cdot C_6H_8$ $C(C_6H_5)_9$ CO. B. Aus dem Lacton der 2.4-Dioxy-triphenylessigsäure mit Acetylchlorid (v. Liebig, J. pr. [2] 72, 149). — Nadeln (aus Alkohol). F: 1610. Leicht löslich in heißem Alkohol und heißem Ligroin.

Verbindung mit dem Lacton der 2.4-Dioxy-triphenylessigsaure C₂₂H₁₆O₄+ $C_{30}H_{14}O_{3}(?)$. Blättchen. F: 120° (v. L., J. pr. [2] 72, 150).

6-Benzoyloxy-2-oxo-8.3-diphenyl-cumaran, Lacton der 2-Oxy-4-benzoyloxytriphenylessigsäure $C_{27}H_{18}O_4 = C_6H_5 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot B$. Man schüttelt eine äther. Lösung des Lactons der 2.4-Dioxy-triphenylessigsäure mit Benzoylchlorid und verd. Kalilauge (v. Liebig, J. pr. [2] 72, 151). — Nadeln (aus Ligroin) oder oktaedrische Krystalle (aus Benzol). F: 208°. Leicht löslich in Benzol, heißem Alkohol und heißem Ligroin.

Bis - [2 - oxo - 3.3 - diphenyl - cumaranyl- (6)] - äther $C_{40}H_{26}O_5 = \begin{bmatrix} OC & C_0H_5 \end{pmatrix}_2 & C_0H_3 - \end{bmatrix}_2O$. B. Durch Erhitzen von Benzil und Resorcin mit trocknem Natriumsulfat auf 180—220°, neben anderen Produkten (v. Liebig, J. pr. [2] 72, 145, 169; vgl. v. L., J. pr. [2] 76, 367). — Blättchen (aus Alkohol). F: 224°. Sehr wenig löslich in Alkohol, leicht in Ather, sehr leicht in Benzol. Unlöslich in wäßr. Alkalilösungen, löslich in heißem alkoh. Kali. Bei der trocknen Destillation entstehen Diphenylmethan und ein grün fluorescierendes Produkt.

5-Brom-6-oxy-2-oxo-3.3-diphenyl-cumaran, Lacton der Brom-2.4-dioxy-triphenylessigsäure $C_{10}H_{13}O_2Br$, s. nebentelende Formel. B. Aus 2,5 g des Natriumsalzes der 6-Oxy-2-oxo-C(C6H5)2 3.3-diphenyl-cumaran-sulfonsaure-(5) (Syst. No. 2633) und 3,4 g Brom in 7,5 cm³ Eisessig (V. Liebig, A. 360, 259). — F: 184°.

5-Nitro-6-oxy-2-oxo-3.3-diphenyl-cumaran, Lacton der O_2N $C(C_6H_5)_2$ 5-Nitro-2.4-dioxy-triphenylessigsäure $C_{20}H_{13}O_5N$, s. nebenstehende Formel. B. Aus 5 g des Kaliumsalzes der 6-Oxy-2-oxo-3.3-diphenyl-cumaran-sulfonsäure-(5) (Syst. No. 2633) und 2 cm³ konz. Salpetersäure in 10 cm³ Eisessig (v. Liebig, A. 360, 260). — Krystalle (aus Alkohol). F: 1830.

7-Oxy-2-oxo-3.3-diphenyl-cumaran, Lacton der C(C6H5)2 2.3-Dioxy-triphenylessigsäure C₂₀H₁₄O₃, s. nebenstehende Formel.

B. Aus Brenzcatechin und Benzilsäure beim Zusammenschmelzen ბი (v. Liebic, B. 41, 1648). — Krystalle (aus Alkohol). F: 136°. Färbt

sich mit konz. Schwefelsäure gelb.

5. 3-Oxo-1-phenyl-1-[4-oxy-phenyl]-phthalan, 3-Phenyl-3-[4-oxy-phenyl]-phthalid $C_{50}H_{14}O_{5}$, s. nebenstehende Formel. B. Man erhitzt 1 Tl. Phenol mit 2 Tln. 2-Benzoyl-benzoesäure (Bd. X, S. 747) und 3 Tln. Zinntetrachlorid 1—1\(^1\)/2 Stdn. lang auf 115—120\(^0\), wäscht die Schmelze mit heißem Wasser und löst sie in Natronlauge; die alkal. Lösung fällt man mit konz. Salmiaklösung, löst den Niederschlag in

Alkohol, entfärbt die Lösung durch Tierkohle und fällt mit Wasser (v. Pechmann, B. 18, 1613). Man schmilzt 2-Benzoyl-benzoesaure mit dem gleichen Gewicht Phenol zusammen und versetzt unter Kühlung tropfenweise mit konz. Schwefelsaure (BAEYER, A. 354, 171).

— Prismen (aus Essigsaure). F: 167° (B.). Löslich in konz. Alkalien ohne Färbung, in verd. Alkalien, Soda und Ammoniak mit gelber Farbe (B.). - Beim Kochen mit Zinkstaub und konz. Natronlauge entsteht 4'-Oxy-triphenylmethan-carbonsaure-(2) (Bd. X, S. 369) (v. P.). Wird von konz. Schwefelsaure bei 100° leicht gespalten in Phenol und 2 Benzoyl benzoesäure (v. P.). Zerfällt beim Schmelzen mit 4 Tln. Kali in Benzoesäure und p-Oxy-benzophenon (Bd. VIII, S. 158) (v. P.). Gibt in alkal. Lösung mit Hydroxylamin die Verbindung nebenstehender Formel (Syst. No.

3239) (R. MEYER, KISSIN, B. 42, 2836).

C(CaHs)(CaH4 · OH)

3 - Phenyl - 3 - [4 - acetoxy - phenyl] - phthalid $C_{22}H_{16}O_4 =$ C_6H_4 $C(C_6H_6)(C_6H_4)O\cdot CO\cdot CH_3)$ 0. B. Durch 1-stdg. Kochen von 1 Tl. 3-Phenyl--CO 3-[4-oxy-phenyl]-phthalid (s. o.) mit 5 Tln. Essigsaureanhydrid und 1 Tl. Natriumacetat (v. Pechmann, B. 13, 1615). — Kugelförmige Krystallaggregate (aus Alkohol). F: 135—136°.

3 - Phenyl - 3 - [x.x - dibrom - 4 - oxy - phenyl] - phthalid $C_{so}H_{1s}O_{s}Br_{s} =$ C_0H_4 $C(C_0H_5)(C_0H_2Br_2\cdot OH)$ 0. B. Beim Zusatz einer Lösung von 3 Tln. Brom in 3 Tln. Eisessig zu einer Lösung von 1 Tl. 3-Phenyl-3-[4-oxy-phenyl]-phthalid (s. o.) in 5 Tln. Alkohol (v. Pechmann, B. 13, 1615). Beim Behandeln von 3-Phenyl-3-[4-oxy-phenyl]phthalid mit Brom in Eisessig bei 60° (ACREE, SLAGLE, Am. 42, 138). — Spieße. F: 196° (v. P.), 199° (A., S.). — Zerfällt beim Erwärmen mit konz. Schwefelsäure auf 120—130° unter Bildung von Dibromphenol und Anthrachinon (v. P.). Löslich in Alkalien mit blauvioletter Farbe, die aber sofort verschwindet (v. P.).

Methyläther $C_{21}H_{14}O_3Br_2 = C_6H_4 C(C_6H_6)(C_6H_2Br_2 \cdot O \cdot CH_3) O$. B. Beim Behandeln von 3-Phenyl-3-[x.x-dibrom-4-oxy-phenyl]-phthalid (8. o.) mit Diazomethan oder mit Methyljodid und alkoh. Natronlauge (ACREE, SLAGLE, Am. 42, 138). — Pulver (aus Eisessig).

- CO -Acetylderivat $C_{22}H_{14}O_4Br_8 = C_6H_4 \underbrace{C(C_6H_5)(C_6H_2Br_2 \cdot O \cdot CO \cdot CH_3)} > O$. Prismen (aus Alkohol). F: 170-1720 (v. PECHMANN, B. 13, 1616).

6. 6-Oxy-9-benzyl-fluoron, Resorcinphenyl- $C(CH_2 \cdot C_6H_5) \leq$ acetein C₂₀H₁₄O₂, s. nebenstehende Formel. B. Bei 8 bis 10-stdg. Erhitzen von 50 g Resorcin mit 30 g Phenylessigsäure und 20 g Zinkchlorid auf 170—180° (G. Conn., J. pr. [2] 48, 397). — Braune Platten mit grünem Reflex (aus Alkohol + Eisessig). F: 266—268°. Unlöslich in Ather, Ligroin und Benzol, schwer löslich in Alkohol, Eisessig und Aceton, leicht in Anilin und Pyridin. Die verdünnte alkalische Lösung fluoresciert intensiv grün.

Verbindung $C_{34}H_{30}O_6(?)$. B. Beim $^{1}/_{2}$ -stdg. Erhitzen von Resorcinphenylacetein mit der 5—10-fachen Menge Essigsäureanhydrid (C., J. pr. [2] 48, 399). — Nadeln (aus Eisessig). Schmilzt unter Zersetzung bei 150°. Sehr leicht löslich in Chloroform und Aceton, leicht in heißem Eisessig, Benzol, Alkohol und Ather, sehr schwer in Ligroin und Petrolather.

Tetra brom resorcin phenyla cetein $C_{ac}H_{10}O_{b}Br_{4}(?)$. B. Aus 3 g Resorcin phenyla cetein, verteilt in 10 cm³ Eisessig, und 2 cm³ Brom in 4 cm³ Eisessig (C., J. pr. [2] 48, 400).

— Gelbes Krystall pulver. F: 236°. Ziemlich löslich in Anilin und Pyridin, sehr schwer in den übrigen Lösungsmitteln.

Penta bromresorcinphenyla cetein C₂₀H₂O₃Br₅(?). B. Beim Kochen von 3,5 g Tetrabromresorcinphenyla cetein mit 1,5 cm³ Brom in 15 cm³ Eisessig bis zur völligen Lösung (C., J. pr. [2] 48, 402). — Rote Nadeln.

Tetranitroresorein phenylacetein $C_{20}H_{10}O_{11}N_4(?)$. B. Beim Eintragen von Resoreinphenylacetein in eiskalte Salpetersäure (D: 1,52) (C., J. pr. [2] 48, 403). — Gelbes, undeutlich krystallinisches Pulver. Ziemlich leicht löslich in Alkohol, schwer in Eisessig, unlöslich in Ligroin und Benzol.

3. Oxy-oxo-Verbindungen $C_{21}H_{16}O_3$.

- 1. 6-Oxy-2-oxo-4-methyl-3.3-diphenyl-cumaran,
 Lacton der 4.6-Dioxy-2-methyl-triphenylessigsäure
 C₃₁H₁₆O₃, s. nebenstehende Formel. B. Aus Orcin und Benzilsäure
 durch Zusammenschmelzen (v. Liebig, B. 41, 1648). Krystalle
 mit Krystallbenzol (aus Benzol). F: 177° (nach dem Trocknen bei 100°).
- 2. 3-Oxo-1-phenyl-1-[6-oxy-3-methyl-phenyl]-phthalan, 3-Phenyl-3-[6-oxy-3-methyl-phenyl]-phthalid C₂₁H₁₆O₃, s. nebenstehende Formel. B. Aus gleichen Teilen p-Kresol und 2-Benzoyl-benzoesäure (Bd. X, S. 747) bei all-mählichem Zusatz von konz. Schwefelsäure unter Kühlung (BAEYER, A. 354, 174). Prismen (aus Essigsäure). F: 226°. Sehr wenig löslich in Wasser und kalter Sodalösung; farblos löslich in Alkalilaugen. Löslich in konz. Schwefelsäure mit grüner Farbe. Natriumsalz. Schwer löslich in Natronlauge.

4. Oxy-oxo-Verbindungen $C_{22}H_{18}O_3$.

- 1. 6-Oxy-4-oxo-2-phenyl-3-benzyl-chroman, 6-Oxy-3-benzyl-flavanon $C_{22}H_{18}O_3$, s. nebenstehende Formel.
- 6-Methoxy-4-oxo-2-phenyl-3-[α -chlor-benzyl]-chroman, 6-Methoxy-3-[α -chlor-benzyl]-flavanon $C_{23}H_{19}O_3Cl=CH_3\cdot O\cdot C_6H_3\cdot C_6H_5\cdot C_6H_5$. B. Beim Einleiten von Chlorwasserstoff in eine alkoh. Lösung von 6-Methoxy-flavanon (S. 51) und Benzaldehyd, neben wenig 6-Methoxy-3-benzal-flavanon (S. 76) (Auwers, Arnot, B. 42, 2711). Nadeln (aus Alkohol). F: 189°.
- 2. 3-Oxy-4-oxo-2-[4-isopropyl-phenyl]7.8-benzo-[1.4-chromen], 3-Oxy-2-[4-iso-propyl-phenyl]-7.8-benzo-chromon, 3-Oxy-4'-isopropyl-7.8-benzo-flavon, 4'-Isopropyl-7.8-benzo-flavonol (,,Isopropyl-α-naphtho-flavonol") C₁₂H₁₈O₃, s. nebenstehende Formel, ist desmotrop mit 3.4-Dioxo-4'-isopropyl-7.8-benzo-flavan, Bd. XVII, S. 544.

Acetylderivat $C_{24}H_{20}O_4 = C_{10}H_6 < \begin{array}{c} \text{CO}\cdot\text{C}\cdot\text{CO}\cdot\text{CO}\cdot\text{CH}_3\\ \text{O}-\text{C}\cdot\text{C}_8H_4\cdot\text{CH}(\text{CH}_3)_2 \end{array}$. Nädelchen (aus verd. Alkohol). F: 157° (v. Kostanecki, B. 40, 3677).

Zur Konstitution vgl. Garner, Am. 32, 600. Das Mol.-Gew. ist ebullioskopisch in Benzol bestimmt (G.). — B. Entsteht neben anderen Produkten beim Erhitzen von Benzoin (Jena, A. 155, 79; Limpricht, Schwaner, B. 4, 336) oder Benzoinacetat (J.; L., A. 155, 92) mit alkoh. Kalilauge. Durch Einw. von Natrium auf Benzoin in absolut-alkoholischer Lösung (G., Am. 32, 592). Durch Kondensation von Benzoin und Zimtaldehyd in absolut-alkoholischer, etwas Natriumäthylat enthaltender Lösung (G., Am. 32, 603). — Prismen (aus Alkohol). F: 195° (G.), 200° (J.). Löslich in heißem Benzol, Alkohol, Äther, Eisessig, Chloroform, unlöslich in heißem Ligroin (G.). Unlöslich in wäßrigen, löslich in alkoholischen Alkalilösungen; wird aus diesen Lösungen durch Säuren ausgefällt (G.). Gibt mit konz. Schwefelsäure eine tiefgelbe, beim Erhitzen eine dunkelrote Färbung (G.). Verdünnte alkoholische Lösungen werden durch Eisenchlorid tiefrot gefärbt (G.). — Liefert bei der Oxydation mit Kaliumpermanganat in alkal. Lösung oder mit warmer Salpetersäure (D: 1,33) 5-Oxo-2.3-diphenyl-2-benzoyl-furantetrahydrid (Bd. XVII, S. 545) (G.). Chromsäure oxydiert zu Benzoesäure und Kohlendioxyd (G.).

Wird durch alkoh. Salzsäure bei Gegenwart von Luft teilweise in Zimtsäureäthylester und Benzil übergeführt (G.).

Acetylderivat $C_{25}H_{21}O_4 = \frac{H_1C - C_1H_5}{CH_3 \cdot CO \cdot O \cdot H_1^{\prime} \cdot O \cdot C_1C_6H_5} \cdot B$. Beim Erhitzen von 5-Oxy-2.3-diphenyl-2-benzoyl-tetrahydrofuran mit Acetylchlorid (Limpricht, Schwanert, B. 4, 337) oder mit Essigsäureanhydrid und Natriumacetat (Ganner, Am. 32, 602). — Platten (aus Alkohol). F: 145° (L., Sch.; G.). Löslich in kaltem Benzol, Äther, Essigester, heißem Alkohol und Eisessig, unlöslich in Ligroin (G.). Gibt mit konz. Schwefelsäure eine tiefrote Färbung (G.). Wird durch alkoh. Kalilauge verseift (G.).

n) Oxy-oxo-Verbindungen $C_nH_{2n-28}O_3$.

1. 9-0xy-10-oxo-cöroxan, Cöroxonol $C_{20}H_{12}O_3$, s. nebenstehende Formel. Zur Bezeichnung und Bezifferung vgl. Decker, A. 848, 212. — B. Die Salze des Cöroxonols (Cöroxoniumsalze) entstehen: Neben Cöroxenol (Bd. XVII, S. 395) aus 9-[2-Carboxy-phenyl]-xanthen (Syst. No. 2584) durch Einw. von konz. Schwefelsäure bei gewöhnlicher Temperatur, schneller bei 100° (DECKER, FERRARIO, A. 848, 227). Bei der Oxydation von Coroxenol durch Luft, Arsensäure, Chromsäure oder Ferricyankalium (D., F., A. 348, 226) oder bei der Oxydation von Cöroxen (Bd. XVII, S. 89) mit Chromsäure in Eisessig-Lösung, mit Arsensäure, mit Salpetersäure oder mit Bleidioxyd in siedender Essigsäure unter Zusatz von etwas Schwefelsäure (D., F., A. 848, 228). Aus 1-Phenoxy-anthrachinon beim Erhitzen mit 65—70% iger Schwefelsäure auf 160—180% (Decker, Laube, A. 848, 232; Bayer & Co., D. R. P. 186882; C. 1907.II, 1031) oder beim Kochen mit Zinkchlorid in Eisessig unter Einleiten von Chlorwasserstoff (D., L., A. 348, 233). Aus einer Lösung von Fluoran (Syst. No. 2751) in 5 Tln. konz. Schwefelsäure durch Einw. von 5 Tln. rauchender Schwefelsäure (von $60^{\circ}/_{\circ}$ Anhydridgehalt) bei höchstens 40° (D., F., A. 348, 215). Neben erheblichen Mengen von Sulfonsäuren beim Erhitzen von Fluoran mit 70-80% iger Schwefelsäure auf 150-160% (D., F., A. 348, 214). Die freie Base entsteht aus den Cöroxoniumsalzen beim Behandeln mit Wasser oder Alkalien (D., F., A. 348, 220). — Stark lichtbrechende, violett schimmernde Krystalle (aus Benzol, Ather, Chloroform, Essigsäure oder Aceton). Schmilzt bei schnellem Erhitzen bei 179—180° unter Schwarzfärbung; färbt sich bei langsamem Erhitzen violett, wird bei 140° dunkel und bei 160° beinahe schwarz (D., F., A. 348, 216). Sehr wenig löslich in Ligroin und Petrol-äther (D., F., A. 348, 216), unlöslich in Wasser und Alkalien (B. & Co.). Färbt sich beim Er-wärmen in Lösungsmitteln leicht violett (D., F., A. 348, 216). Die schwach gefärbte Lösung in Praisertung wird durch Syungs wor Minaralakungs oder durch Frankrungs von gefärbte (D. in Essigsäure wird durch Spuren von Mineralsäuren oder durch Erwärmen rot gefärbt (D., F., A. 848, 217). — Wird am Licht und an der Luft allmählich dunkel (D., F., A. 848, 216). Bei der Reduktion in alkoh. Lösung mit Zinkstaub und Ammoniak erhält man Cöroxenol (D., F., A. 348, 217). Dieses entsteht auch bei der Reduktion der Salze in mineralsaurer Lösung mit Zink, Zinnehlorür oder Jodwasserstoffsäure sowie in essigsaurer Lösung mit Zinkstaub (D., F., A. 348, 220, 225). Wird die Reduktion in Gegenwart von Essigsäureanhydrid durchgeführt, so entsteht Cöroxenolacetat (Bd. XVII, S. 145) (D., F., A. 848,

anhydrid durchgeführt, so entsteht Cöroxenolacetat (Bd. XVII, S. 145) (D., F., A. 348, 226). Beim Kochen mit absol. Alkohol entsteht Cöroxonol-äthyläther (S. 75) (D., F., A. 348, 218; B. & Co.). Cöroxonol liefert beim Umkrystallisieren aus Aceton 9-Acetonyl-cöroxon (Bd. XVII, S. 547) (Decker, v. Fellenberg, Ferrario, A. 356, 318). Salze, Cöroxoniumsalze [C₂₀H₁₁O₂]Ac. Zur Formulierung der Salze vgl. die Angaben über Pyryliumsalze, Bd. XVII, S. 117. — Chlorid [C₂₀H₁₁O₃]Cl. Rote Nadeln (aus salzsäure-haltiger Essigsäure). F: 185° (D., F., A. 348, 220). Leicht löslich in salzsäurehaltigem Wasser. — Bromid [C₂₀H₁₁O₂]Br. Rote Nädelchen (aus Essigsäure). F: ca. 115° (D., F., A. 348, 222). — [C₂₀H₁₁O₂]Br + 2 Br. Ziegelrote Krystalle (aus bromhaltiger Essigsäure); verliert im Exsicator Brom (D., F., A. 348, 222). — Jodid [C₂₀H₁₁O₂]I. Kaffeebraune violettschimmernde Krystalle. Wird beim Lösen in Eisessig unter gleichzeitiger Bildung von Polyjodiden zu Cöroxenol reduziert (D., F., A. 348, 222). — Sulfat. Rote Krystalle (D., F., A. 348, 223). — Chromat. Schwer löslicher, dunkelroter Niederschlag; verpufft beim Erhitzen; zersetzt sich an der Luft (D., F., A. 348, 223). — Nitrat. Rote Krystalle (D., F., A. 348, 223). — Pikrat. Rotes Krystalleulver. Wird beim Lösen in Alkohol in seine Komponenten zerlegt (D., F., A. 348, 223). — [C₂₀H₁₁O₂]Cl+HgCl₂. Blauviolette Krystalle. Schmilzt bei 228° nach vorangegangener Zersetzung (D., F., A. 348, 221). — [C₂₀H₁₁O₂]Cl+FeCl₃. Tiefrote Krystalle (aus salzsäurehaltigem Eisessig). F: 233° (D., F., A. 348, 221; B. & Co.). — 2[C₂₀H₁₁O₂]Cl+PtCl₄. Rötlicher Niederschlag. Zersetzt sich bei 315° (D., F., A. 348, 221). Schwer löslich in Wasser, leichter in Alkohol und Eisessig.

Cöroxonol-methyläther $C_{21}H_{14}O_3=C_{20}H_{11}O_2\cdot O\cdot CH_3$. B. Durch Aufkochen des Cöroxonols oder eines Cöroxonolalkyläthers mit Methylalkohol (Decker, v. Fellenberg, FERBARIO, A. 356, 317). — Nadeln. F: 133°.

Cöroxonol-äthyläther $C_{22}H_{16}O_3=C_{20}H_{11}O_2\cdot O\cdot C_2H_5$. B. Bei 1-stdg. Kochen des Cöroxonols mit absol. Alkohol (Decker, Ferrario, A. 348, 218; Bayer & Co., D.R.P. 186882; C. 1907 II, 1031). — Violettschimmernde Krystalle (aus absol. Alkohol). F: 145 bis 146° (D., F.), 145° (B. & Co.). Gibt mit Säuren die entsprechenden Cöroxoniumsalze (D., F.).

Cöroxonol-propyläther $C_{23}H_{18}O_3 = C_{20}H_{11}O_3 \cdot O \cdot CH_2 \cdot CH_2 \cdot CH_3$. B. Beim Kochen von Cöroxonol mit Propylalkohol (Decker, v. Fellenberg, Ferrario, A. 356, 318). — Krystalle. F: 1510.

Cöroxonol - isobutyläther $C_{24}H_{20}O_3=C_{20}H_{11}O_2\cdot O\cdot CH_2\cdot CH(CH_3)_2$. B. Beim Kochen von Cöroxonol mit Isobutylalkohol (D., v. Fel., Fer., A. 356, 318). — Krystalle. F: 132°.

9-Oxy-10-oxo-cörthian, Cörthionol $C_{20}H_{12}O_2S$, s. nebenstehende Formel. Zur Bezeichnung und Bezifferung vgl. Decker, A. 348, 211, 212. — B. Das Sulfat entsteht bei 30-stdg. Erhitzen von 1-Phenylthio-anthrachinon (Bd. VIII, S. 342) mit 70% iger Schwefelsäure auf 160° oder kürzeres Erhitzen auf 180° (Decker, Würsch, A. 348, 239; Bayer & Co., D.R.P. 186882; C. 1907 II, 1031). Die freie Base entsteht aus den mineralsauren Lösungen der Salze durch Verdünnen mit viel Wasser oder durch 14 Neutralisieren mit Alkalien (D., W.). — Schwach gelbliche Prismen (aus Benzol). Schmilzt nach vorangegangener Dunkelfärbung bei 220° unter Zersetzung (D., W.). Die Salze (Cörthioniumsalze) besitzen eine tiefere Farbe und geben intensiver gefärbte Lösungen als die entsprechenden Cöroxoniumsalze (D., W.). — Sulfat. Schwarzvioletter schwer löslicher Niederschlag (D., W.). — [C₂₀H₁₁OS]Cl+FeCl₃. Violettschwarze Krystalle. Schmilzt bei ca. 227° unter Zersetzung (D., W.). Zersetzt sich zum Teil beim Umkrystallisieren aus Essigsäure und wenig Salzsäure. Wird durch Wasser in Eisenchlorid und Cörthionol zerlegt.

2. Oxy-oxo-Verbindungen $C_{21}H_{14}O_3$.

1. Oxy - oxo - Verbindung $C_{21}H_{14}O_3$, s. nebenstehende Ho Formel.

Eine Verbindung $C_{21}H_{16}O_4$, die vielleicht als Hydrat dieser Verbindung snzusehen ist, s. Bd. XVII, S. 186, 187.

2. Oxy-oxo-Verbindung $C_{21}H_{14}O_3$, Formel I. Eine Verbindung $C_{21}H_{16}O_4$, die vielleicht als Hydrat dieser Verbindung anzusehen ist, s. Bd. XVII, S. 187.

I.
$$0: \begin{bmatrix} C(C_0H_5) & CH \\ \vdots & CC_0H_5 \end{bmatrix}$$
 II. $0: \begin{bmatrix} C(C_0H_5) & CH \\ \vdots & CC_0H_5 \end{bmatrix}$

3. Oxy-oxo-Verbindung $C_{21}H_{14}O_3$, Formel II. Eine Verbindung C₂₁H₁₆O₄, die vielleicht als Hydrat dieser Verbindung anzusehen ist, s. Bd. XVII, S. 187.

4. 1-Oxy-3-oxo-1-[fluorenyl-(2)]-phthalan, 3-Oxy-3-[fluorenyl-(2)]-phthalid, $cyclo-Form\ der\ 2-[Fluoren-carboyl-(2)]-benzoesäure\ (Bd.\ X,\ S.\ 788)$ $C_{21}H_{14}O_3,\ s.\ nebenstehende\ Formel.$ $3-Methoxy-3-[fluorenyl-(2)]-phthalid, \{2-[Fluoren-carboyl-(2)]-benzoesäure\}-pseudomethylester$ $C_{22}H_{16}O_3=OC < C_6H_4 > C(O\cdot CH_3)\cdot C_6H_3 > CH_2 < C_6H_4. \ B.\ Durch\ Erwärmen\ der\ 2-[Fluoren-carboyl-(2)]-benzoesäure\ mit\ überschüssigen\ Thionylchlorid,\ Entfernen\ des\ überschüssigen\ Thionylchlorids\ im\ Vakuum\ und\ Versetzen\ des\ Rückstands\ mit\ Methylalkohol\ (Golder)$ Thionylchlorids im Vakuum und Versetzen des Rückstands mit Methylalkohol (GOLD-SCHMIEDT, LIPSCHITZ, B. 36, 4038). — Blättchen (aus Methylalkohol). F: 200-2020. Löslich in konz. Schwefelsäure mit blauvioletter Farbe. Wird durch 10% ige Kalilauge leichter als der isomere Ester (Bd. X, S. 788) verseift.

- 5. 9 Oxy 10 oxo 14 methyl c"oroxan, $14 Methyl-c\~oroxonol$ $C_{81}H_{14}O_{8}$, s. nebenstehende Formel. B. Durch längeres Kochen von 1-p-Kresoxy-anthrachinon (Bd. VIII, S. 339) mit 65—70% iger Schwefelsäure und Zersetzen des entstandenen Oxoniumsalzes mit Wasser (DECKER, v. Fellenberg, Stern, A. 356, 320, 321). — Kryställchen CH₈ (aus Benzol + Petroläther). F: 176°. Unlöslich in Wasser, sonst leicht löslich. Liefert mit Säuren dunkelrote Oxoniumsalze. — [C₂₁H₁₈O₂]Cl + FeCl₃. Rotbraune, metallisch schimmernde Kryställchen (aus Eisessig). F: 232,5-235,5°.

HO

- 14-Methyl-cöroxonol-äthyläther $C_{23}H_{18}O_3=C_{21}H_{18}O_2\cdot O\cdot C_3H_5$. B. Durch Kochen von 14-Methyl-cöroxonol mit Alkohol (D., v. F., Sr., A. 356, 322). Nadeln. F: 139°.
- 9-Oxy-10-oxo-14-methyl-cörthian, 14-Methyl-cörthionol $C_{21}H_{14}O_2S$, s. nebenstehende Formel. B. Durch Erhitzen von 1-p-Tolylthio-anthrachinon (Bd. VIII, S. 342) mit 85% giger Schwefelsäure auf 180° und Zersetzen des entstandenen Thioniumsalzes mit Wasser (DECKER, v. Fellenberg, Würsch, A. 356, 327, 328). — Fast farbloses krystalli- CH3 nisches Pulver (aus Benzol). F: 235°. Die stark verd. Lösungen der Salze sind grün, in dicker Schicht kupferrot. - Liefert bei der Reduktion 14-Methyl-corthion (Bd. XVII, S. 396). — [C₂₁H₁₃OS]Cl + FeCl₃. Krystalle (aus Eisessig). F: 240°.

3. Oxy-oxo-Verbindungen $C_{22}H_{16}O_{3}$.

- 1. 6 Oxy 4 oxo 2 phenyl 3 benzal chroman, Ho. <math>6 Oxy 3 benzal flavanon $C_{12}H_{16}O_3$, s. nebenstehende Formel.
- 6-Methoxy-3-benzal-flavanon $C_{23}H_{18}O_3$, s. nebenstehende $CH_3 \cdot O_3$ Formel. B. Entsteht in geringer Menge neben 6 Methoxy-3-[α-chlor-benzyl]-flavanon (S. 73) beim Einleiten von Chlorwasserstoff in eine alkoh. Lösung von 6-Methoxy-flavanon (S. 51) und Benzaldehyd (Auwers, Arnot, B. 42, 2711). — Gelbe Krystalle (aus Alkohol). F: 118—119°. Löslich in konz. Schwefelsäure mit rotbrauner Farbe.
- 6-Äthoxy-3-benzal-flavanon $C_{24}H_{20}O_3$, s. nebenstehende Formel, B. Beim Einleiten von Chlorwasserstoff in eine CaHS · O alkoh. Lösung von 6-Äthoxy-flavanon (S. 51) und Benzaldehyd (Katschalowsky, v. Kostanecki, B. 37, 3170). — Gelbe Blättchen (aus Alkohol). F: 106°. Die Lösung in konz. Schwefelsäure ist rot.
- 2. Oxy-oxo-Verbindung C₃₂H₁₆O₃, s. nebenstehende HO Formel. Eine Verbindung C₃₂H₁₆O₃, der vielleicht diese Konstitution zukommt, s. Bd. XVII, S. 189.
- 3. 9-Oxy-10-oxo-4.14-dimethyl-cöroxan, 4.14-Dimethyl-cöroxonol $C_{22}H_{16}O_3$, Formel I. B. Durch Kondensation von 2.7-Dimethyl-fluoran (Formel II) (Syst. No. 2751) mit rauchender Schwefelsäure von 20% Anhydridgehalt und Behandlung des Konden-

sationsproduktes mit Wasser und Ammoniak (Decker, v. Fellenberg, Ferrario, A. 356, 323). — Krystalle (aus Benzol). F: 170°. Unlöslich in Wasser, sonst leicht löslich. Löslich in Anilin mit blauer, in Mineralsäuren mit roter Farbe. — Sulfat. Dunkelrote Krystalle. Schwer löslich in konz. Schwefelsäure. — [C22H15O2]Cl+FeCl3. Purpurrot. F: 210⁵.

- 4.14 Dimethyl cöroxonol methyläther $C_{23}H_{18}O_3=C_{22}H_{15}O_2\cdot O\cdot CH_3$. B. Aus 4.14 Dimethyl cöroxonol beim Kochen mit absol. Methylalkohol (D., v. Fel., Feb., A. 356, 324). — Farblose Krystalle. F: 105°.
- 4.14 Dimethyl cöroxonol äthyläther $C_{24}H_{20}O_3 = C_{22}H_{15}O_2 \cdot O \cdot C_2H_5$. B. Durch Kochen von 4.14-Dimethyl-cöroxonol mit Alkohol (D., v. Fel., Fer., A. 856, 324). — Krystelle. F: 145°.

- 4. Oxy-oxo-Verbindungen $C_{23}H_{18}O_3$.
- 1. 2-Oxy-5-oxo-2.3-diphenyl-4-benzal-furantetrahydrid, y-Oxy-\(\beta\).y-diphenyl- α -benzal-butyrolacton, cyclo - Form der α - Desyl - zimtsäure (Bd. X, S. 789) $C_{13}H_{18}O_{3} = C_{6}H_{5} \cdot CH \cdot C_{6}H_{5$ OC.O.C(C'H')·OH
- γ Acetoxy $\beta.\gamma$ diphenyl α benzal butyrolacton $~C_{2\delta}H_{20}O_4=C_6H_{\delta}\cdot CH:C$ $CH\cdot C_6H_{\delta}$
- $OC \cdot O \cdot C(C_6H_5) \cdot O \cdot CO \cdot CH_3$. B. Aus α -Desyl-zimtsäure und Acetanhydrid bei Gegenwart geringer Mengen Schwefelsaure (THIELE, STRAUS, A. 319, 169). — Farblose, irisierende Täfelchen (aus Alkohol). F: 128—128,5°. Leicht löslich in den meisten organischen Lösungsmitteln, schwerer in Alkohol und Schwefelkohlenstoff. — Methylalkoholisches Kali regeneriert α-Desvl-zimtsäure.
- 2. 2-Oxy-5-oxo-3.4-diphenyl-2-benzyl-furandihydrid. γ -Oxy- α . β -diphenyl- γ -benzyl- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{23}H_{18}O_3 = \begin{array}{c} C_6H_5 \cdot C & C \cdot C_6H_5 \\ Od & Odo W \cdot CH \cdot CH \end{array}$ ist des- $OC \cdot O \cdot C(OH) \cdot CH_{\bullet} \cdot C_{\bullet}H_{\bullet}$ motrop mit $\alpha.\beta$ -Diphenyl- β -phenacetyl-acrylsäure $C_6H_5 \cdot CH_2 \cdot CO \cdot C(C_6H_5) \cdot C(C_6H_5) \cdot CO_2H$, Bd. X, S. 788.
- 2-Acetoxy-5-oxo-8.4-diphenyl-2-[α -nitro-benzyl]-furandihydrid, γ -Acet $oxy - \alpha.\beta$ - diphenyl - γ - $[\alpha$ - nitro - benzyl] - $\Delta^{\alpha.\beta}$ - eroton actor $C_{25}H_{12}O_6N =$ $C_6H_5 \cdot C = C \cdot C_6H_5$
- $OC \cdot O \cdot C(O \cdot CO \cdot CH_3) \cdot CH(NO_2) \cdot C_6H_5$ B. Bei 4-stdg. Erhitzen von Oxy-diphenyl[α -nitro-benzyl]-maleid (Bd. X, S. 789) mit der 5-fachen Menge Acetylchlorid im Einschlußrohr auf 100° (G. COHN, B. 24, 3867). -- Blättchen (aus Alkohol). F: 166°. Schwer löslich in heißem Alkohol.

o) Oxy-oxo-Verbindungen $C_nH_{2n-30}O_3$.

- 1. 6-0xy-1.2;7.8-dibenzo-fluoron $C_{21}H_{12}O_3$, s. nebenstehende Formel. B. Beim Lösen von Methylendinaphthoresorein (Bd. VI, S. 1182) in konz. Schwefelsäure (Kahl., B. 31, 147). —
 Dunkelgelbes oder braunes, körnig krystallinisches Pulver (aus Eisessig). Sehr wenig löslich in Wasser und Alkohol, unlöslich in Äther, Aceton und Benzol. Die gelbe Lösung in Eisessig fluoresciert grün. In kohlensauren und ätzenden Alkalien mit gelbroter Farbe und starker gelbgrüner Fluorescenz, in konz. Schwefelsäure mit rötlichgelber Farbe und intensiv grüner Fluorescenz löslich.
- 2. 5-0xo-3-phenyl-2-[4-oxy-phenyl]-4-benzal-furandihydrid, β -Phenyl- γ -[4-oxy-phenyi]- α -benzal- $\mathcal{A}^{\beta,\gamma}$ -crotoniacton $C_{2n}H_{1n}O_n=$ $C_6H_5 \cdot CH : C - C \cdot C_6H_5$ OC.O.C.C.H.OH.
- 5-Oxo-3-phenyl-2-[4-methoxy-phenyl] 4-benzal-furandihydrid, β -Phenyl- γ -[4-methoxy-phenyl] α -benzal $\Delta^{\beta\cdot\gamma}$ -crotonlacton $C_{24}H_{18}O_3=C_6H_5\cdot CH:C-C_6H_5$
- $O_{\mathbf{C}}^{\mathbf{H}_{\mathbf{5}}} \cdot \mathbf{C}_{\mathbf{H}_{\mathbf{5}}} \cdot \mathbf{C}_{\mathbf{5}} + \mathbf{H}_{\mathbf{5}} \cdot \mathbf{C}_{\mathbf{5}} + \mathbf{C}_{\mathbf{5}} \cdot \mathbf{C}_{\mathbf{5$ F: 195°.

p) Oxy-oxo-Verbindungen $C_n H_{2n-34} O_3$.

Oxy-oxo-Verbindungen $C_{24}H_{14}O_{3}$.

- 1. 9-Oxy-10-oxo-12.13-benzo-cöroxan, 12.13-Benzo-cöroxonol, a-Benzocöroxonol C₂₄H₁₄O₃, s. nebenstehende Formel.

 B. Durch Erhitzen von 1-a-Naphthoxy-anthrachinon (Bd. VIII, S. 340) mit 70°/oiger Schwefelsäure auf 150° und Behandeln des entstandenen a-Benzocöroxoniumsulfats mit Alkalilauge (LAUBÉ, B. 39, 2246; BAYER & Co., D. R. P. 186882; C. 1907 II, 1031). Die wäßr.-Lösungen der Salze sind purpurrot (L.). Chlorid. Leicht löslich in Wasser (L.). Polyjodid. Braun, sehr wenig löslich (L.). Basisches Sulfat. Blaue Flocken (L.). Sulfat. Leicht löslich in 10°/oiger Schwefelsäure (L.). Nitrat. Dunkelblauer, schwer löslicher Niederschlag (L.). [C₂₄H₁₃O₂]Cl+FeCl₃. Rotbraunes Pulver (aus Eisessig). Zersetzt sich bei 240°; löslich in Eisessig mit dunkelroter Farbe (L.).
- α-Benzocöroxonol-äthyläther $C_{36}H_{18}O_3=C_{24}H_{13}O_3\cdot O\cdot C_2H_5$. B. Durch Kochen von α-Benzocöroxonol mit Alkohol (Laube, B. 39, 2246). Blättchen (aus Alkohol). F: 197° bis 198°.
- 2. 9-Oxy-10-oxo-14.15-benzo-cöroxan, 14.15-Benzo-cöroxonol, β-Benzocöroxonol C₃₄H₁₄O₃, s. nebenstehende Formel.

 B. Durch Erhitzen von 1-β-Naphthoxy-anthrachinon (Bd. VIII, S. 340) mit 65—70% giger Schwefelsäure auf 130—150% und Behandeln des entstandenen β-Benzocöroxoniumsulfats mit Wasser oder Alkalilauge (Decker, Laubé, A. 348, 234, 236; Laubé, B. 35, 2247; Bayer & Co., D. R. P. 186882; C. 1907 II, 1031). Farblose Krystalle (aus Alkohol). F: 186% bis 187% (B. & Co.). Leicht löslich in Alkohol (B. & Co.), löslich in Benzol (D., L.). Verändert sich an der Luft, namentlich beim Erwärmen (D., L.). Die wäßr. Lösungen der Salze sind violettrot (L.). Die violette Lösung in rauchender Schwefelsäure wird beim Erwärmen auf 100% brauntot (L.). Chlorid. Dunkelrote, leicht lösliche Nadeln (D., L.). Jodid. Dunkelviolettes, unlösliches Krystallpulver (D., L.). Sulfat. Schwer löslich (D., L.). Nitrat. Dunkelrote, leicht lösliche Nadeln (D., L.). [C₂₄H₁₃O₂]Cl+FeCl₃. Krystalle (aus Eisessig). F: 240% (L.). Löslich in Eisessig mit violettroter Farbe.

β-Βenzocöroxonol-äthyläther $C_{26}H_{18}O_3=C_{24}H_{13}O_3\cdot O\cdot C_2H_5$. B. Beim Kochen von β-Benzocöroxonol mit Alkohol (Decker, Laubé, A. 348, 236). — Fast farblose Krystalle (aus Alkohol). F: 193—194° (D., L.; L., B. 39, 2247).

2. Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_nH_{2n-2}O_4$.

1. $\alpha.\beta$ -Dioxy-butyrolacton $C_4H_6O_4=\frac{HO\cdot HC-CH\cdot OH}{H_6\dot{C}\cdot O\cdot \dot{C}O}$.

a) Lactone der Erythronsäuren C₄H₆O₄,
Formel I und II.

a) Lacton der linksdrehenden Ery- I.

thronsäure, Lacton der d-Erythronsäure,
Konfiguration entsprechend Formel I. B. Beim

Eindampfen der wäßr. Lösung der linksdrehenden Erythronsäure (Bd. III, S. 411) (Ruff, B. 32, 3679). — Prismen (aus Alkohol). F: 103° (korr.). [α]₀°: —73,3° (in Wasser; c = 8,0).

- β) Lacton der rechtsdrehenden Erythronsäure, Lacton der l-Erythronsäure, Konfiguration entsprechend Formel II. B. Beim Eindampfen der wäßr. Lösung der rechtsdrehenden Erythronsäure (Bd. III, S. 412) (Ruff, B. 34, 1369). $F: 104^{\circ}$ (korr.). [α] $^{\circ}_{0}: +71,7^{\circ}$ (in Wasser; p=2,8).
- γ) Lacton der inaktiven Erythronsäure, Lacton der di-Erythronsäure, Formel I + Formel II. B. Man dampft die wäßr. Lösung von di-Erythronsäure (Bd. III, S. 412) unter 15 mm Druck bei 100° zum Sirup ein und extrahiert mit Essigester (Nef. A.

357, 248). Durch Einw. von Bariumpermanganat auf Δαβ-Crotonlacton (Bd. XVII, S. 249) in Wasser oder wäßr. Aceton bei 0° bezw. —5° (Lespieau, C. r. 141, 43; Bl. [4] 1, 1114). — Nadeln (aus Benzol), monokline (Wyrouboff, zitiert bei L., C. r. 141, 43; Bl. [4] 1, 1115; Iddings, zitiert bei N.; I., Z. Kr. 47, 683; Groth, Ch. Kr. 3, 770) etwas zerfließliche (L., Bl. [4] 1, 1115) Prismen (aus Aceton oder Essigester). F: 89—90° (korr.) (Ruff, B. 34, 1370), 90,5—91,5° (L., Bl. [4] 1, 1115), 92—93° (Anderson, Am. 42, 429), 92—95° (N.). Kp₁₄: 195—200° (geringe Zersetzung) (N.). Leicht löslich in Wasser, weniger in Alkohol, unlöslich in Äther (L., C. r. 141, 43; Bl. [4] 1, 1115). — Wird durch Erwärmen mit Salpetersäure zu Mesoweinsäure (Bd. III, S. 528) oxydiert (A.). Liefert bei der Reduktion mit Natriumamalgam in schwach saurer Lösung natürlichen inaktiven Erythrit (Bd. I, S. 525) (L., C. r. 144, 145; Bl. [4] 1, 1116.

Dibensoylderivat $C_{18}H_{14}O_6 = \frac{C_6H_5 \cdot CO \cdot O \cdot HC - CH \cdot O \cdot CO \cdot C_6H_5}{H_1C \cdot O \cdot CO}$. B. Aus dl-Erythronsäurelacton und Benzoylchlorid bei 100° (Nef. A. 357, 250). — Krystalle (aus heißem Äther). F: 118°. Unlöslich in Wasser und Sodalösung.

- b) Lacton der l-Threonsäure C₄H_eO₄, Konfiguration entsprechend Formel III. B. Aus [l-Threonsäure]-phenylhydrazid durch Hydrolyse III. H₂C C—C CO Säure (D: 1,228) auf 50—60° fast quantitativ zu l-Weinsäure oxydiert.
- 2. $\alpha.\beta$ -Dioxy- γ -methyl-butyrolacton, $\alpha.\beta$ -Dioxy- γ -valerolacton $C_\delta H_\delta O_4 = HO \cdot HC$ —CH·OH

OC · O · CH · CH₃

- a) $\alpha.\beta-Dioxy-\gamma-valerolacton$ aus akt. Methyltetrose (Bd. I, S. 856). B. Durch Oxydation von akt. Methyltetrose mit Brom (Ruff, B. 35, 2365). Nadeln. F: 120—121° (korr.). Leicht löslich in Alkohol und Essigester, schwer in Benzol und Chloroform. Die wäßr. Lösung reagiert sauer; läßt sich unverändert aus Wasser umkrystallisieren. [α]_D: —47,5° (in Wasser; p=5,9).
- b) $\alpha.\beta$ -Dioxy- γ -valerolacton aus β -Angelicalacton (Bd. XVII, S. 253). B. Aus β -Angelicalacton durch Oxydation mit 5% of ger Permanganatlösung in Gegenwart von Magnesiumsulfat bei 0% (Thiele, Tischbein, Lossow, A. 319, 194). Nadeln (aus Essigester). F: 100%. Leicht löslich in Wasser, Alkohol und Essigester. Reduziert ammoniakalischalkalische Silberlösung nicht. Liefert beim Erwärmen mit Barytwasser das Bariumsalz der entsprechenden $\alpha.\beta.\gamma$ -Trioxy-n-valeriansäure.

Diacetylderivat $C_9H_{12}O_6=$ $\frac{CH_3\cdot CO\cdot O\cdot HC - CH\cdot O\cdot CO\cdot CH_3}{OC\cdot O\cdot CH\cdot CH_3}.$ B. Durch Einw. von Acetylchlorid auf $\alpha.\beta$ -Dioxy- γ -valerolacton (aus β -Angelicalacton) bei gelinder Wärme (Th., Tr., L., A. 319, 195). — Nädelchen (aus Alkohol). F: 94—95°. Leicht löslich in Benzol und heißem Wasser, schwerer in Alkohol.

- 3. β -Oxy- γ -[α -oxy-āthyl]-butyrolacton, $\beta.\delta$ -Dioxy- γ -caprolacton, Digitoxonsāurelacton $C_6H_{10}O_4= {H_1C-CH\cdot OH \over OC\cdot O\cdot CH\cdot CH(OH)\cdot CH_3}$. B. Aus [$\beta.\gamma.\delta$ -Trioxy-n-capronsāure]-phenylhydrazid (Bd. XV, S. 329) durch Kochen mit Barytwasser; man āthert aus, sāttigt mit Kohlendioxyd und dampft die vom Bariumcarbonat abfiltrierte Lösung ein (KILIANI, B. 42, 2610). Sirup.
- 4. Oxy-oxo-Verbindungen $C_8H_{14}O_4$.

Bis - [4 - nitro - benzoyl] - derivat $C_{22}H_{20}O_{10}N_3 = O_2N \cdot C_6H_4 \cdot CO \cdot O \cdot HC - CH \cdot O \cdot CO \cdot C_6H_4 \cdot NO_2$ OC · O · CH · CH₂ · CH(CH₃)₂

B. Aus α.β-Dioxy-γ-isobutyl-butyrolacton und p-Nitro-benzoylchlorid in trocknem Aceton und wenig Pyridin (Th., W., A. 347, 138).

2. α -Oxy- γ -methyl- α -[β -oxy-propyl]-butyrolacton, α -Oxy- α -[β -oxy-propyl]- γ -valerolacton $C_8H_{14}O_4= CH_2 CH(OH) \cdot CH_2 (HO)C$ —CH₂

OC·O·CH·CH₃

Von konz. Schwefelsäure auf α -Oxy-diallylessigsäure (Bd. III, S. 390) (Bullitsch, Ж. 19, 99; J. pr. [2] 39, 91). — Gelber Sirup. Leicht löslich in Wasser und Alkohol, weniger in Äther.

b) Oxy-oxo-Verbindungen $C_n H_{2n-4} O_4$.

1. Oxy-oxo-Verbindungen C₄H₄O₄.

- 1. 4 Oxy 2.3 dioxo furantetrahydrid, β Oxy α oxo butyrolacton $C_4H_4O_4= {H_0 \cdot HC CO \over H_0 \cdot C \cdot O \cdot CO}$
- 4-Oxy-2-oxo-3-imino-furantetrahydrid, β -Oxy- α -imino-butyrolaeton $C_4H_5O_3N=HO\cdot HC$ —C:NH ist desmotrop mit 4-Oxy-2-oxo-3-amino-furan-dihydrid-(2.5), α -Amino-tetronsaure, Syst. No. 2644.
- $\begin{array}{l} \textbf{4-Benzoyloxy-2-oxo-3-benzimino-furantetrahydrid, } \boldsymbol{\beta-Benzoyloxy-\alpha-benzimino-butyrolacton bezw. 4-Benzoyloxy-2-oxo-3-benzamino-furan-dihydrid-(2.5), } \boldsymbol{\beta-Benzoyloxy-\alpha-benzamino-} \\ \textbf{oxy-} \boldsymbol{\alpha-benzamino-} \Delta^{\alpha,\beta} \textbf{crotonlacton} & C_{18}H_{13}O_5N \\ & & & & & & & & & & & & \\ H_{2}\dot{C}\cdot O\cdot \dot{C}O \end{array}$
- C₆H₅·CO·O·C—C·NH·CO·C₆H₅ bezw. O.N Dibenzoyl [α amino tetronsäure]. B. Aus α-Amino-tetronsäure (Syst. No. 2644) in alkal. Lösung beim Schütteln mit überschüssigem Benzoylchlorid, neben α-Benzamino-tetronsäure (Wolff, Lüttrringhaus, A. 312, 142). Nadeln (aus Alkohol oder Benzol). F: 164°. Leicht löslich in Chloroform und heißem Benzol, sehr wenig in Wasser, Alkohol und Äther. Gibt keine Eisenchloridreaktion. Wird von Sodalösung in der Wärme sehr leicht zu α-Benzamino-tetronsäure verseift.
- 2. 5-Oxy-2.3-dioxo-furantetrahydrid, γ -Oxy- α -oxo-butyrolacton bezw. 3.5-Dioxy-2-oxo-furan-dihydrid-(2.5), $\alpha.\gamma$ -Dioxy- $\Delta^{\alpha.\beta}$ -crotonlacton H_2C —CO HC—C·OH HC—C·OH Als Derivate hiervon sind vielleicht anzusehen: Mucooxychlorsāure OHC·CCl:C(OH)·CO₂H (Bd. III, S. 877), Mucooxybromsāure (Bd. III, S. 877) nebst ihren Derivaten, darunter auch Mucophenoxychlorsāure OHC·CCl:C(O·C₆H₆)·CO₂H (Bd. VI, S. 170) und Mucophenoxybromsāure (Bd. VI, S. 171).
- 4-Chlor-5-methoxy-2-oxo-3-p-tolylimino-furantetrahydrid, β -Chlor- γ -methoxy- α -p-tolylimino-butyrolacton bezw. 4-Chlor-5-methoxy-2-oxo-3-p-toluidino-furandihydrid-(2.5), β -Chlor- γ -methoxy- α -p-toluidino- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{12}H_{12}O_3NCl = ClHC$ $C: N \cdot C_6H_4 \cdot CH_3$ ClC $C: N \cdot C_6H_4 \cdot CH_3$ ClC
- CIHC—C: N·C₆H₄·CH₃
 CIC—C·NH·C₆H₄·CH₃
 CH₂·O·HC·O·CO
 CH₃·O·HC·O·CO
 chlorsäure pseudomethylester (S. 6) und 2 Mol p-Toluidin in Alkohol im Kältegemisch (Simonis, B. 34, 517, 518). Nadeln. F: 118°.
- 4-Chlor-5-äthoxy-2-oxo-3-[2.4-dimethyl-phenylimino]-furantetrahydrid, β -Chlor- γ -äthoxy- α -[2.4-dimethyl-phenylimino]-butyrolaeton bezw. 4-Chlor-5-äthoxy-2-oxo-3-[asymm.-m-xylidino]-furan-dihydrid-(2.5), β -Chlor- γ -äthoxy- α -[asymm.-m-xylidino]- $\Delta^{\alpha,\beta}$ -erotonlaeton $C_{14}H_{16}O_3NCl=CHC-C:N\cdot C.H_4(CH_4)_0$ ClC— $C\cdot NH\cdot C_8H_3(CH_2)_2$

α - [asymm. - m - xylidino] - 21 - - Growline Gardy $C_1 H_1 C_2 H_3 (CH_3)_2$ ClC $C \cdot NH \cdot C_8 H_3 (CH_2)_2$ bezw. $C_2 H_5 \cdot O \cdot HC \cdot O \cdot CO$ bezw. $C_2 H_5 \cdot O \cdot HC \cdot O \cdot CO$ Mucochlorsāure - pseudoāthylester (S. 7) und 0,6 g asymm. m - Xylidin in Alkohol im Kältegemisch (S., B. 34, 517, 519). — Gelbliche Prismen (aus Åther). F: 114°.

4-Brom-5-methoxy-2-oxo-3-phenylimino-furantetrahydrid, β -Brom- γ -methoxy- α -phenylimino-butyrolacton bezw. 4-Brom-5-methoxy-2-oxo-3-anilino-furandihydrid-(2.5), β -Brom- γ -methoxy- α -anilino- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{11}H_{10}O_3NBr=BrHO-C:N\cdot C_6H_5$ BrC-C·NH· C_6H_5 Br. Aus 1 Mol Mucobrom-

CH₂·O·HĆ·O·ĆO

CH₂·O·HĆ·O·ĆO

Săure-pseudomethylester (S. 7) und 2 Mol Anilin in Alkohol im Kāltegemisch (S., B. 34, 517, 518). — Nadeln (aus verd. Alkohol). F: 117°. Leicht löslich.

4-Brom-5-äthoxy-2-oxo-8-phenylimino-furantetrahydrid, β -Brom- γ -äthoxy- α -phenylimino-butyrolaeton bezw. 4-Brom-5-äthoxy-2-oxo-3-anilino-furandihydrid-(2.5), β -Brom- γ -äthoxy- α -anilino- $\Delta^{\alpha,\beta}$ -crotonlaeton $C_{18}H_{18}O_8NBr=BrHC-C:N\cdot C_6H_8$

Bruc—U:N·U₆H₅
bezw.

C₂H₅·O·HC·O·CO

Săure-pseudoăthylester (S. 7) und 2 Mol Anilin in Alkohol im Kāltegemisch (S., B. 34, 517). — Prismen (aus verd. Alkohol). F: 114°. Leicht löslich außer in Wasser und Ligroin. — Beim Kochen mit Säuren wird Anilin abgespalten.

4-Brom-5-propyloxy-2-oxo-3-phenylimino-furantetrahydrid, β -Brom- γ -propyloxy- α -phenylimino-butyrolacton bezw. 4-Brom-5-propyloxy-2-oxo-3-anilino-furandihydrid-(2.5), β -Brom- γ -propyloxy- α -anilino- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{13}H_{14}O_3NBr=BrHC-C:N\cdot C_6H_5$ bezw.

BrC=C·NH·C₆H₅

BrC=C·NH·C₆H₅

Br. Aus

CH₃·CH₂·CH₂·O·HC·O·CO

1 Mol Mucobromsäure-pseudopropylester (8. 7) und 2 Mol Anilin in Alkohol im Kältegemisch (8. , B. 34, 517, 518). — Prismen (aus verd. Alkohol). F: 80°.

3. 3-Oxy-2.5-dioxo-furantetrahydrid, Äpfelsäureanhydrid $C_4H_4O_4=H_2C$ — $CH\cdot OH$ $OC\cdot O\cdot OC$

[O-Acetyl-äpfelsäure]-anhydrid $C_6H_6O_5=\frac{H_2C--CH\cdot O\cdot CO\cdot CH_3}{OC\cdot O\cdot CO}$. B. Man läßt überschüssiges Acetylchlorid auf trockne l-Äpfelsäure zuerst in der Kälte einwirken und erhitzt dann am Rückflußkühler im Wasserbade (Anschütz, Bennert, B. 14, 2791; A. 254,

hitzt dann am Rückflußkühler im Wasserbade (Anschütz, Bennert, B. 14, 2791; A. 254, 166; Colson, C.r. 116, 819; Guye, C.r. 116, 1134; vgl. Perkin, B. 14, 2548). — Krystalle (aus Chloroform). F: 59° (C.), 58° (G.), 53—54° (A., B.). Kp₁₄: 160—162° (A., B.). Schwer löslich in absol. Äther, ziemlich löslich in Benzol und besonders in Chloroform (G.). Ist in geschmolzenem Zustande (C.) und in Chloroformlösung (G.) linksdrehend. — Zerfällt bei der Destillation unter gewöhnlichem Druck in Essigsäure und Maleinsäureanhydrid (A., B.). Zerfließt an feuchter Luft zu Acetyl-l-āpfelsäure (A., B.; G.). Diese entsteht auch beim Umkrystallisieren des Anhydrids aus feuchtem Chloroform (G.). Reagiert nicht mit Pyridin (Wohl,Obsterlin, B. 34, 1143).

[O-Propionyl-äpfelsäure]-anhydrid $C_7H_8O_8 = \frac{H_2C - CH \cdot O \cdot CO \cdot C_2H_5}{OC \cdot O \cdot CO}$. B. Aus l-Äpfelsäure und Propionylchlorid analog der vorhergehenden Verbindung (Guye, C. r. 116, 1135). — Krystalle (aus Ohloroform). F: 88—89°. In Chloroform linksdrehend. — Geht in feuchtem Chloroform in Propionyl-l-äpfelsäure über.

2. 4-0xy-2.6-dioxo-pyrantetrahydrid, [β -0xy-glutarsäure]-anhydrid $C_5H_6O_4=\frac{H_2C\cdot CH(OH)\cdot CH_2}{OC-O}$

3. Oxy-oxo-Verbindungen $C_6H_8O_4$.

1. 5-Oxy-2.4-dioxo-3.3-dimethyl-furantetrahydrid, $\gamma-Oxy-\beta-oxo-\alpha.\alpha-dimethyl-butyrolacton$, cyclo-Form der $\alpha-Glyoxyl-isobuttersäure$ $C_6H_6O_4= \begin{array}{c} OC-C(CH_9)_2\\ HO\cdot HC\cdot O\cdot CO \end{array}$ s. Bd. III, S. 753.

 $\gamma\text{-Acetoxy-}\beta\text{-oxo-}\alpha.\alpha\text{-dimethyl-butyrolacton }C_8H_{10}O_5 = \frac{OC - C(CH_9)_8}{CH_3 \cdot CO \cdot O \cdot HC \cdot O \cdot CO}.$

- B. Beim Erhitzen der γ .δ-Dioxo- β -methyl-butan- β -carbonsäure (Bd. III, S. 753) oder ihrer Cycloform, des γ -Oxy- β -oxo- α . α -dimethyl-butyrolactons (Bd. III, S. 753), mit Essigsäure-anhydrid und Eisessig auf 90—100° entstehen zwei in Alkali unlösliche Formen, die sich durch Äther trennen lassen (Conrad, Ruppert, B. 80, 860). a) Prismen (aus Alkohol). F: 114°. Leicht löslich in Äther. b) Prismen (aus Alkohol oder Essigester). F: 154°. Schwer löslich in Äther.

4. $0xy-oxo-Verbindungen C_7H_{10}O_4$.

- 1. 4-Oxy-2.6-dioxo-3.5-dimethyl-pyrantetrahydrid, β -Oxy-a.a'-dimethyl-ylutarsäure]-anhydrid $C_7H_{10}O_4 = \begin{array}{c} CH_3 \cdot HC \cdot CH(OH) \cdot CH \cdot CH_3 \\ OC O CO \end{array}$
- $\begin{array}{ll} [\beta\text{ Acetoxy }\alpha.\alpha'\text{ dimethyl glutarsäure] anhydrid} & \mathrm{C_9H_{12}O_5} = \mathrm{CH_3 \cdot HC \cdot CH(O \cdot CO \cdot CH_3) \cdot CH \cdot CH_3} \end{array}$

OC——O——CO
a) Niedrigerschmelzende Form. B. Aus der festen β -Oxy- α . α' -dimethyl-glutar-säure (Bd. III, S. 457) und Acetylchlorid (Reformatski, \mathcal{H} . 28, 155; 30, 457; B. 28, 3264; C. 1898 II, 886). — Nadeln (aus Essigester oder Benzol). F: 109—110° (R., \mathcal{H} . 30, 458). — Wird durch kaltes Wasser in die β -Acetoxy- α . α' -dimethyl-glutarsäure vom Schmelzpunkt 120—121° übergeführt (R., \mathcal{H} . 30, 458).

b) Höherschmelzende Form. B. Aus der flüssigen β -Oxy- α . α '-dimethyl-glutarsäure (Bd. III, S. 457) und Acetylchlorid (R., \Re . 30, 464; C. 1898 II, 886). — Krystalle (aus Benzol). F: 131,5—132,5°. Sehr wenig löslich in Benzol. — Liefert mit Wasser die β -Acetoxy- α . α '-dimethyl-glutarsäure vom Schmelzpunkt 82,5—85,5°.

2. 4-Oxy-2.5-dioxo-3.3.4-trimethyl-furantetrahydrid, Trimethyläpfelsäureanhydrid $C_7H_{10}O_4= \frac{(HO)(CH_3)C-C(CH_3)_2}{OC\cdot O\cdot CO}$

[O-Acetyl-trimethyläpfelsäure]-anhydrid $C_9H_{12}O_5=\frac{(CH_3\cdot CO\cdot O)(CH_3)C--C(CH_3)_2}{OC\cdot O\cdot CO}$.

B. Aus Trimethyläpfelsäure (Bd. III, S. 457) und Acetylchlorid bei Zimmertemperatur (Auwers, v. Campenhausen, B. 29, 1545; Komppa, Bergroth, B. 29, 1623; K., C. 1898 II, 1168) oder bei kurzem Kochen (K., B.; K.). — Nadeln (aus siedendem Ligroin). F: 67—68° (Au., v. C.), 68° (K., B.; K.). Leicht löslich in den üblichen Mitteln außer in Wasser und Ligroin (Au., v. C.).

5. Oxy-oxo-Verbindungen $C_8H_{12}O_4$.

- 1. α -Methyl- γ -oxymethyl- α -acetyl-butyrolacton, δ -Oxy- α -methyl- α -acetyl- γ -valerolacton $C_8H_{12}O_4 = {(OH_3 \cdot CO)(CH_3)C CH_2 \over OC \cdot O \cdot CH \cdot CH_2 \cdot OH}$
- α-Methyl-γ-äthoxymethyl-α-acetyl-butyrolacton, δ-Äthoxy-α-methyl-α-acetyl-γ-valerolacton $C_{10}H_{16}O_4= \frac{(CH_3\cdot CO)(CH_3)C--CH_3}{OC\cdot O\cdot CH\cdot CH_2\cdot O\cdot C_3H_5}$. B. Aus Epichlorhydrin und Natrium-α-methyl-acetessigester in Alkohol (W. Traube, Lehmann, B. 84, 1982). Öl. Kp₃₅: 202°.

 $C_{10}H_{14}O_{5} = \frac{(CH_{3})_{2}C - C(CH_{3}) \cdot CH_{2} \cdot O \cdot CO \cdot CH_{3}}{1}$ itamalsäurel-anhydrid $0c \cdot 0 \cdot c0$ neben [α.α.β-Trimethyl-paraconsäure]-anhydrid (Syst. No. 2619) bei ¹/s-stdg. Kochen von α.α.β-trimethyl-itamalsaurem Barium (Bd. III, S. 462) mit Essigsäureanhydrid (Noves, Am. 33. 364). — Ol. Siedet unter 20 mm Druck zwischen 1850 und 1950.

6. Oxy-oxo-Verbindungen C₉H₁₄O₄.

1. $4 - Oxy - 2.6 - dioxo - 3.3.5.5 - tetramethyl - pyrantetrahydrid, [<math>\beta$ - Oxy - $\alpha.\alpha.\alpha'.\alpha'$ - tetramethyl - glutarsäure] - anhydrid $C_9H_{14}O_4 =$ $(CH_3)_2C \cdot CH(OH) \cdot C(CH_2)_2$

- $[\beta Acetoxy \alpha.\alpha.\alpha'.\alpha' tetramethyl glutarsäure] anhydrid <math>C_{11}H_{16}O_5 =$
- $(CH_3)_{\mathfrak{g}}$ C· $CH(O \cdot CG \cdot CH_3) \cdot C(CH_3)_{\mathfrak{g}}$. B. Durch Einw. von Acetylchlorid auf β -Oxy- α . α' . α' -tetramethyl-glutarsäure (Bd. III, S. 464) in der Wärme (Blaise, C. r. 126, 1810; Michailenko, **Ж. 30, 471;** C. 1898 II, 885; B., MARCILLY, Bl. [3] 31, 118). — Prismen (aus Petroläther-Benzol) oder Nädelchen (aus wasserfreiem Äther). F: 90° (B.), 89—90° (B., Ma.), 88—89° (MI.). Beim Kochen mit Wasser wird β-Acetoxy-α.α.α'.α'-tetramethyl-glutarsäure gebildet (MI.; B., Ma.). Reaktion mit Anilin in Benzol-Lösung: B.
- 2. 2^1 Oxy 5.4^1 dioxo 2 methyl 4.4 diathyl-furantetrahydrid, γ -Oxy $methyl-\alpha-acetyl-\alpha-butyrolacton, \delta-Oxy-\alpha-athyl-\alpha-acetyl-\gamma-valerolacton\\ C_0H_{14}O_4 = (CH_3 \cdot CO)(C_2H_5)C - CH_3 \cdot CO)(C_3H_5)C - CH_5 \cdot CO)(C_3H_5)C -$ CC.O.CH.CH.OH
- B. Aus Epichlor-OC · O · CH · CH · O · C · H · hydrin und Natrium-α-āthyl-acetessigester in Alkohol (W. TRAUBE, LEHMANN, B. 34, 1983). — Ol. Kp₂₅: 210°.
- 7. Lacton der 1.1.2-Trimethyl-cyclopentandiol-(2.3)-glykolsäure-(3), Lacton der 1.2.α-Trioxy-2.3.3-trimethyl-cyclopentylessigsäure C₁₀H₁₀O₄, s. nebenstehende Formel. B. Durch Oxydation von Campholenolacton (Bd. XVII, S. 301) mit 2º/oiger Kaliumpermanganat-Lösung in eiskalter wäßriger Suspension und Einleiten von Kohlendioxyd in die farblos gewordene Lösung (BέHAL, Bl. [3] 27, 405). — Krystalle (aus Benzol). F: 128°. Löslich in Wasser, sehr leicht löslich in Äther. — Liefert bei der Oxydation mit Kaliumpermanganat - Lösung Oxalsäure, 3.3 - Dimethyl-hexanon-(2)-säure-(6) (Bd. III, S. 708) und etwas β.β-Dimethyl-lävulinsäure (Bd. III, 8. 702).
- 8. [9-0xy-hexadecan- $\alpha.\pi$ -dicarbonsäure]-anhydrid $C_{18}H_{22}O_4 =$ $\mathbf{H_2C \cdot [CH_2]_6 \cdot CH(OH) \cdot [CH_2]_7 \cdot CH_2}$ $[\theta$ - Acetoxy - hexadecan - $\alpha.\pi$ - dicarbonsaure] - anhydrid $C_{30}H_{34}O_{5}$ $\mathbf{H_2C} \cdot [\mathbf{CH_2}]_{\mathfrak{g}} \cdot \mathbf{CH(O} \cdot \mathbf{CO} \cdot \mathbf{CH_3}) \cdot [\mathbf{CH_2}]_{7} \cdot \mathbf{CH_3}$ Eine Verbindung, der vielleicht diese Konsti-tution zukommt, s. Bd. III, S. 468, Zeile 3 v. o.

c) Oxy-oxo-Verbindungen $C_nH_{2n-6}O_4$.

1. 3-0xy-2.5-dioxo-furandihydrid, Oxymaleinsäureanhydrid C₄H₂O₄ == HO-C·OH ist desmotrop mit 2.3.5-Trioxo-furantetrahydrid, Oxalessigsäureanhydrid, 00.0.00 Bd. XVII, S. 554.

Äthoxymaleinsäureanhydrid $C_0H_0O_4=\frac{HC-C\cdot O\cdot C_2H_5}{OC\cdot O\cdot CO}$. B. Aus Äthoxyfumarsäure und Essigsäureanhydrid (Michael, Bucher, B. 29, 1792). — Flüssig. — Gibt mit Wasser Äthoxymaleinsäure.

Acetoxymaleinsäureanhydrid C₆H₄O₅ = $\frac{\text{HC} = \text{C} \cdot \text{O} \cdot \text{CO} \cdot \text{CH}_3}{\text{OC} \cdot \text{O} \cdot \text{CO}}$. B. Beim Erhitzen von Acetylendicarbonsäure mit Essigsäureanhydrid im geschlossenen Rohr auf 100° (MICHAEL, BUCHER, B. 28, 2511). Beim Erwärmen von Oxymaleinsäure (Bd. III, S. 778) mit Acetylchlorid oder Essigsäureanhydrid (M., B., B. 29, 1792). Durch Lösen von [O.O-Diacetyld-weinsäure]-anhydrid (S. 162) in auf 0° bis —5° abgekühltem wasserfreiem Pyridin oder in Pyridin + Eisessig in der Wärme und Erwärmen einer Suspension des entstandenen Pyridinsalzes des Oxymaleinsäureanhydrids (Syst. No. 3051) in 10 Tln. Benzol mit 2 Mol Acetylchlorid (Wohl, Oesterlin, B. 34, 1144, 1147). — Prismen (aus Benzol durch Petroläther). F: 89—91° (M., B., B. 28, 2511), 91—92° (W., Oe.). — Liefert mit kaltem Wasser Essigsäure und Oxymaleinsäure (Bd. III, S. 778), mit Alkohol Essigester und Oxylessigester (M., B., B. 28, 2511; M., B. 39, 205). Wird durch Erwärmen mit einem Gemisch von Eisessig und Pyridin in das Pyridinsalz des Oxymaleinsäureanhydrids übergeführt (W., Oe.).

Phenoxychlormaleinsäureanhydrid $C_{10}H_5O_4Cl=\frac{ClC=-C\cdot O\cdot C_4H_5}{OC\cdot O\cdot CO}$. B. Beim Sublimieren von Phenoxy-chlormaleinsäure (Bd. VI, S. 169) im Kohlensäurestrom (Sawyer, Proceedings of the American Academy of Arts and Sciences 29, 248). — Sublimiert in Tafeln. F: 97°. Leicht löslich in Wasser, Alkohol, Äther, Chloroform und Benzol, schwer in Schwefelkohlenstoff und Ligroin.

2. Oxy-oxo-Verbindungen C4H4O4.

- 1. 2.6-Dioxy-4-oxo-3-methyl-pyran, 2.6-Dioxy-3-methyl-pyron $C_4H_4O_4=HC\cdot CO\cdot C\cdot CH_4$ $HO\cdot \overset{\circ}{C}-O-\overset{\circ}{C}\cdot OH$
- 2.6-Disulfhydryl-4-oxo-3-methyl-thiopyran, 2.6-Dimercapto-4-oxo-3-methyl-penthiophen, 2.6-Dimercapto 3 methyl 1 thio pyron $C_0H_0OS_3=HC\cdot CO\cdot C\cdot CH_3$ ist desmotrop mit 4-Oxo-2.6-dithion-3-methyl-thiopyrantetrahydrid, Bd. XVII, 8. 555.
- 2.6 Bis acetylmercapto 4 oxo 8 methyl-thiopyran, 2.6 Bis acetylmercapto 4 oxo 8 methyl penthiophen, 2.6 Bis acetylmercapto 3 methyl 1 thio pyron $HC \cdot CO \cdot C \cdot CH_2$ $C_{10}H_{10}O_2S_3 = CH_3 \cdot CO \cdot S \cdot C S C \cdot S \cdot CO \cdot CH_2$ Natriumsalzes des 2.6 Dimercapto 3 methyl 1 thio pyrons mit Essigsäureanhydrid (A., B. 38, 2896). Rote Nadeln (aus Ligroin). F: 85,5—86°. Leicht löslich in allen Lösungsmitteln außer in Wasser und Petroläther. Leicht verseifbar.
- 2. 3'-Oxy-3.4-dioxo-3-āthyliden-furantetrahydrid bezw. 4-Oxy-2.3'-dioxo-3-āthyl-furan dihydrid (2.5) (a Acetyl tetronsāure) $C_0H_0O_4 = 0C C \cdot C(OH) \cdot OH_0$ Bezw. $C \cdot CO \cdot CH_0$ ist desmotrop mit 2.4.3'-Trioxo-3-āthyl-furantetrahydrid, Bd. XVII, S. 556.

3. Oxy-oxo-Verbindungen $C_7H_8O_4$.

- 1. 2.6-Dioxy-4-oxo-3.5-dimethyl-pyran, 2.6-Dioxy-3.5-dimethyl-pyron $C_7H_8O_4 = \frac{CH_2 \cdot C \cdot CO \cdot C \cdot CH_3}{HO \cdot C O C \cdot OH}.$
- 2.6-Disulfhydryl-4-oxo-3.5-dimethyl-thiopyran, 2.6-Dimercapto-4-oxo-3.5-dimethyl-penthiophen, 2.6-Dimercapto 3.5-dimethyl-1-thio-pyron $C_7H_8OS_3 = CH_3 \cdot C \cdot CO \cdot C \cdot CH_3$ ist desmotrop mit 4-Oxo-2.6-dithion-3.5-dimethyl-thiopyrantetrahydrid, Bd. XVII, S. 556.

- 2.6-Bis-benzylmercapto-4-oxo-3.5-dimethyl-thiopyran, 2.6-Bis-benzylmercapto-4-oxo-3.5-dimethyl-penthiophen, 2.6-Bis-benzylmercapto-3.5-dimethyl-1-thiopyran $C_{21}H_{20}OS_3 = C_4H_5 \cdot CH_2 \cdot S \cdot CH_2 \cdot C \cdot C \cdot CH_2$ 2.6-Dimercapto-3.5-dimethyl-1-thio-pyrons und Benzylchlorid beim Kochen in alkoh. Lösung (A., B. 38, 2894). Nadeln (aus Ligroin). F: 65,5—66°. Leicht löslich in allen Lösungsmitteln außer in kaltem Wasser, Petroläther und Ligroin.
- 2.6-Bis-acetylmercapto-4-oxo-3.5-dimethyl-thiopyran, 2.6-Bis-acetylmercapto-4-oxo-3.5-dimethyl-penthiophen, 2.6-Bis-acetylmercapto-3.5-dimethyl-1-thio-pyron $CH_3 \cdot C \cdot CO \cdot C \cdot CH_3$ $CH_3 \cdot C \cdot CO \cdot C \cdot CH_4$ $CH_3 \cdot C \cdot CO \cdot C \cdot CH_4$ $CH_3 \cdot C \cdot CO \cdot C \cdot CH_4$ $CH_3 \cdot C \cdot CO \cdot C \cdot CH_4$ $CH_3 \cdot C \cdot CO \cdot C \cdot CH_4$ $CH_3 \cdot C \cdot CO \cdot C \cdot CH_4$ $CH_3 \cdot C \cdot CO \cdot C \cdot CH_4$ $CH_3 \cdot CO \cdot S \cdot CO \cdot CH_4$ $CH_3 \cdot CO \cdot S \cdot CO \cdot CH_4$ $CH_3 \cdot CO \cdot S \cdot CO \cdot CH_4$ $CH_3 \cdot CO \cdot S \cdot CO \cdot CH_4$ $CH_3 \cdot CO \cdot S \cdot CO \cdot CH_4$ $CH_3 \cdot CO \cdot CO \cdot CH_4$ $CH_3 \cdot CO \cdot S \cdot CO \cdot CH_4$ $CH_3 \cdot CO \cdot CO$
- 2.6-Bis-benzoylmercapto-4-oxo-3.5-dimethyl-thiopyran, 2.6-Bis-benzoylmercapto-4-oxo-3.5-dimethyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-dimethyl-1-thio-pyron $C_{31}H_{16}O_3S_3=\frac{C_8H_6\cdot CO\cdot C\cdot C\cdot CH_3}{C_8H_6\cdot CO\cdot S\cdot C-S-C\cdot S\cdot CO\cdot C_6H_6}$. B. Aus dem Natriumsalz des 2.6-Dimercapto-3.5-dimethyl-1-thio-pyrons in wäßr. Lösung beim Eintröpfeln von Benzoylchlorid (A., B. 38, 2895). Krystalle (aus Ligroin). F: 105°.
- 2. Anhydrid der 1.1-Dimethyl-cyclopropanol-(2)-dicarbonsäure-(2.3), Oxycaronsäureanhydrid $C_7H_8O_4=(CH_3)_1C\frac{CH_3}{C(OH)\cdot CO}O$.

Methoxycaronsäureanhydrid $C_8H_{10}O_4=(CH_3)_2C\frac{CH}{C(O\cdot CH_3)\cdot CO}O$. B. Bei der Destillation der Methoxycaronsäure (Bd. X, S. 458) (Perkin, Thorpe, Soc. 79, 761). — Flüssigkeit. Kp_{23} : 169°.

Äthoxycaronsäureanhydrid $C_9H_{12}O_4 = (CH_9)_8C < CH_{C(O \cdot C_2H_5) \cdot CO} O$. B. Aus der Äthoxycaronsäure (Bd. X, S. 458) bei der Destillation oder besser beim Erhitzen mit Acetanhydrid (P., Th., Soc. 79, 760). — Öl. Kp₅₀: 160—165°. — Liefert beim Kochen mit Wasser Äthoxycaronsäure.

4. 2.6-Dioxy-4-oxo-3.5-diäthyl-pyran, 2.6-Dioxy-3.5-diäthyl-pyron $C_bH_{12}O_4=\frac{C_2H_5\cdot C\cdot CO\cdot C\cdot C_2H_5}{HO\cdot C-O-C\cdot OH}$.

2.6-Disulfhydryl-4-oxo-3.5-diäthyl-thiopyran, 2.6-Dimercapto-4-oxo-3.5-diäthyl-penthiophen, 2.6-Dimercapto-3.5-diäthyl-1-thio-pyron $C_9H_{12}OS_3=C_9H_5\cdot C\cdot CO\cdot C\cdot C_2H_5$ ist desmotrop mit 4-Oxo-2.6-dithion-3.5-diāthyl-thiopyrantetrahydrid, HS·C-S-C·SH Bd. XVII, S. 557.

5. Oxy-oxo-Verbindungen $C_{10}H_{14}O_4$.

- 1. $4-Oxy-2.3^{s}-dioxo-3-[3^{1}.3^{1}-dimetho-butyl]-furan-dihydrid-(2.5), \beta-Oxy-\alpha-[\gamma-oxo-\alpha.\alpha-dimethyl-butyl]-\Delta^{\alpha.\beta}-crotonlacton (\alpha-[\gamma-Qxo-\alpha.\alpha-dimethyl-butyl]-tetronsäure)$ $C_{10}H_{14}O_{4} = \frac{HO \cdot C = C \cdot C(CH_{3})_{2} \cdot CH_{2} \cdot CO \cdot CH_{3}}{H_{2}C \cdot O \cdot CO} \text{ ist desmotrop mit}$ $2.4.3^{s}\cdot \text{Trioxo-}3\cdot[3^{1}.3^{1}\cdot \text{dimetho-butyl}]\cdot \text{furantetrahydrid, Bd. XVII, S. 557.}$

Beim Schütteln einer sodaalkalischen Lösung von α-[γ-Oxo-α.α-dimethyl-butyl]-tetronsäure mit Benzoylchlorid (Wolff, A. 322, 362). — Prismen (aus Chloroform + Ligroin). F: 96°. Leicht löslich in Chloroform und Benzol, weniger löslich in Alkohol und Äther, unlöslich in Ligroin und verd. Natronlauge. — Wird durch heiße Natronlauge in die Komponenten gespalten.

2. $[\pi$ -Oxy-camphersäure]-anhydrid $C_{10}H_{14}O_4$, Formel I.

[π -Acetoxy-camphersäure]-anhydrid $C_{12}H_{16}O_8$, Formel II. B. Bei mehrstündigem Kochen von π -Oxy-camphersäure (Bd. X, S. 462) mit Acetylchlorid (KIPPING, Soc. 69, 940).

— Tafeln (aus Äther). Monoklin (sphenoidisch) (Pope, Soc. 69, 941; Z. Kr. 31, 120; vgl. Groth, Ch. Kr. 3, 734). F: 86—87°; zeigt zuweilen den Schmelzpunkt 89—90° (K.). Leicht löslich in Chloroform, Benzol und heißem Äther, schwer in siedendem Petroläther, sehr wenig löslich in kaltem Wasser (K.).

d) Oxy-oxo-Verbindungen $C_nH_{2n-8}O_4$.

- 1. 3^1 -Oxy-2.6-dioxo-3-methylen-[1.2-pyran]-dihydrid-(3.6), Oxymethylenglutaconsäureanhydrid (Isocumalinsäure) $C_6H_4O_4=HC:CH\cdot C:CH\cdot OH$ of desmotrop mit 2.6.31-Trioxo-3-methyl-[1.2-pyran]-dihydrid-(3.6), Bd. XVII, S. 559.
- 2. 5^{1} -0 xy-4.6-dioxo-2-methyl-5-äthyliden-[1.4-pyran]-dihydrid bezw. 6-0 xy-4.5¹-dioxo-2-methyl-5-äthyl-[1.4-pyran] bezw. 4-0 xy-2.3¹-dioxo-6-methyl-3-äthyl-[1.2-pyran] (Dehydracetsäure) $C_{0}H_{0}O_{0}=CH_{0}CH$

OC-O-C·CH₃ HO·C-O-C·CH₃ OC-O-C·CH₃ ist desmotrop mit 4.6.5¹-Trioxo-2-methyl-5-äthyl-[1.4-pyran]-dihydrid, Bd. XVII, S. 559.

Möglicherweise sind die Bd. XVII, S. 563 aufgeführten Verbindungen CoH10O4 ("Dehydracetsäuremethyläther"), $C_{10}H_{12}O_4$ ("Dehydracetsäureäthyläther") und $C_8H_9O_7P$ ("Dehydracetsäurephosphat") als Derivate einer der obigen Enolformen anzusehen.

3. [1.2-Dimethyl-cyclohexen-(3)-ol-(6)-dicarbonsäure-(1.2)]-anhydrid,

3. [1.2-Dimethyl-cyclohexen-(3)-ol-(6)-dicarbonsäure-(1.2)]-anhydrid, Hydratocantharsäureanhydrid $C_{10}H_{12}O_4 = \frac{HC - CH - C(CH_3) \cdot CO}{H_2C \cdot CH(OH) \cdot C(CH_3) \cdot CO}O$.

Acetylderivat, "Isocantharidin"¹) $C_{12}H_{14}O_5 = \frac{HC - CH - C(CH_3) \cdot CO}{H_2C \cdot CH(O \cdot CO \cdot CH_3) \cdot C(CH_3) \cdot CO}O$.

B. Bei 3-stdg. Erhitzen von 1 Tl. Cantharsäure (Syst. No. 2619) mit 4—5 Tln. Acetylchlorid im Druckrohr auf 135° (Anderlini, Ghira, G. 21 II, 58; B. 24, 1998). — Krystalle (aus Alkohol). Monoklin prismatisch (Negri, G. 21 II, 59; B. 24, 1998; Z. Kr. 23, 200; vgl. Groth, Ch. Kr. 5, 455). F: 75—76° (A., G.), 76° (H. Meyer, M. 19, 718). Leicht löslich in Alkohol, Äther und Benzol (A., G.). — Bei 3-stdg. Kochen mit Wasser entsteht 6-Acetoxy-1.2-dimethyl-cyclohexen-(3)-dicarbonsäure-(1.2) ("Isocantharidinsäure") (Bd. X. S. 463) 1.2-dimethyl-cyclohexen-(3)-dicarbonsāure-(1.2) ("Isocantharidinsāure") (Bd. X, S. 463) (A., G.); erhitzt man 30 Stdn., so wird diese Säure vollständig in Cantharsäure übergeführt (H. M.). Beim Kochen mit Bariumacetatlösung entsteht das Bariumsalz der "Isocantharidinsäure" (H. M.). Bei kurzem Erwärmen mit verd. Mineralsäuren wird Cantharsäure gebildet (H. M.).

e) Oxy-oxo-Verbindungen $C_n H_{2n-10} O_4$.

- 1. $Oxy-oxo-Verbindungen C_8H_6O_4$.
- 1. 4.6-Dioxy-3-oxo-cumaran, 4.6-Dioxy-cumaranon C₈H₆O₄, s. nebenstehende Formel, ist desmotrop mit 3.4.6-Trioxy-cumaron, Bd. XVII, S. 176.
- 2. 6.7-Dioxy-3-oxo-cumaran, 6.7-Dioxy-cumaranon C₈H₆O₄, s. nebenstehende Formel, ist desmotrop mit 3.6.7-Trioxy-cumaron, Bd. XVII, S. 176.
- 3. 3.6 Dioxy 1 oxo phthalan, 3.6 Dioxy phthalid $C_8H_8O_4 =$ CH(OH) O ist desmotrop mit 5-Oxy-2-formyl-benzoesaure, Oxy-phthalaldehydsaure, Bd. X, S. 951.
- 4.5.7-Tribrom-3.6 dioxy phthalid C₈H₃O₄Br₃, s. nebenstehende Formel, ist desmotrop mit 3.4.6-Tribrom-5-oxy-2-formyl-benzoesäure, Tribrom-oxy-phthalalde-hydsäure, Bd. X, S. 951.

- 4.5.7-Tribrom-6-oxy-3-methoxy-phthalid, Tribrom-oxy-phthalaldehydsäurepseudomethylester $C_9H_5O_4Br_3 = HO \cdot C_6Br_3 < CH(O \cdot CH_3) = B$. Beim kurzen Erwärmen von Tribrom-oxy-phthalaldehydsäure oder von 3.4.5.7-Tetrabrom-6-oxy-phthalid (S. 19) mit Methylalkohol in Gegenwart von etwas konz. Schwefelsäure auf dem Wasserbad (ZINOKE, BUFF, A. 361, 232). — Nadeln (aus Eisessig oder Benzol). F: 232—233°. Schwer löslich in Eisessig, Benzol und Alkohol in der Kälte, leichter in der Wärme. Leicht löslich in Sedermed Alle. in Soda und Alkali.
- 4.5.7-Tribrom-8.6-dimethoxy-phthalid, Tribrom-methoxy-phthalaldehydsäurepseudomethylester $C_{10}H_7O_4Br_3 = CH_3 \cdot O \cdot C_6Br_3 \stackrel{CH(O \cdot CH_3)}{CO} O$. B. Beim Kochen von

¹⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] hat GADAMER, Ar. 255, 282 bewiesen, daß Isocantharidin nicht die ihm bis dahin zugeschriebene Zusammensetzung C10H12O4, sondern die oben angegebene Zusammensetzung und Konstitution besitzt und daher nicht mehr als Isomeres des Cantharidins aufzufassen ist.

Tribrom-methoxy-phthalaldehydsäure-methylester (Bd. X, S. 952) mit Methylalkohol (Z., B., A. 361, 233). Aus dem Silbersalz des Tribrom-oxy-phthalaldehydeaure-pseudomethylesters beim Behandeln mit Methyljodid (Z., B.). - Nadeln (aus Methylalkohol). F: 184-185°. Leicht löslich in Eisessig und Benzol. - Liefert bei vorsichtiger Verseifung Tribrom-methoxy-phthalaldehydsäure.

4.5.7 - Tribrom - 6 - methoxy - 8 - acetoxy - phthalid $C_{11}H_7O_2Br_2$ $CH_2 \cdot O \cdot C_4Br_2 = CH(O \cdot CO \cdot CH_2) = O$. B. Aus Tribrom-methoxy-phthalaldehydsäure, Tribrom--- CO methoxy-phthalaldehydsäure-methylester oder -pseudomethylester durch Erhitzen mit Essigsäureanhydrid und etwas konz. Schwefelsäure (Z., B., A. 361, 236). — Prismen (aus Benzol-Benzin), Nadeln (aus Eisessig). F: 188—189°. Ziemlich leicht löslich in Eisessig und Benzol, sohwer in Benzin.

4.5.7 - Tribrom - 3 - methoxy - 6 - acetoxy - phthalid $C_{11}H_7O_8Br_8 =$ $CH_3 \cdot CO \cdot O \cdot C_6Br_3 = OH(O \cdot CH_3) = O.$ Aus Tribrom - oxy - phthalaldehydsäure-pseudo-B. methylester durch Acetylierung mit Essigsäureanhydrid und Schwefelsäure oder mit Acetylchlorid (Z., B., A. 361, 232). — Nadeln (aus Eisessig). F: 179—180°. Ziemlich löslich in Eisessig, Benzol und Alkohol.

4.5.7-Tribrom-3.6-diacetoxy-phthalid $C_{12}H_7O_6Br_3 =$ $CH_3 \cdot CO \cdot O \cdot C_6Br_3 \underbrace{CH(O \cdot CO \cdot CH_3)}_{CO} = O. \quad B. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 \underbrace{CH(O \cdot CO \cdot CH_3)}_{CO} = O. \quad B. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 \underbrace{CH(O \cdot CO \cdot CH_3)}_{CO} = O. \quad B. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 \underbrace{CH(O \cdot CO \cdot CH_3)}_{CO} = O. \quad B. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 \underbrace{CH(O \cdot CO \cdot CH_3)}_{CO} = O. \quad B. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 \underbrace{CH(O \cdot CO \cdot CH_3)}_{CO} = O. \quad B. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 \underbrace{CH(O \cdot CO \cdot CH_3)}_{CO} = O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 \underbrace{CH(O \cdot CO \cdot CH_3)}_{CO} = O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 \underbrace{CH(O \cdot CO \cdot CH_3)}_{CO} = O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 \underbrace{CH(O \cdot CO \cdot CH_3)}_{CO} = O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 - O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 - O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 - O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 - O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 - O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot C_6Br_3 - O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot O. \quad Aus \quad Tribrom \cdot oxy \cdot phthalaldehydsaure \quad (Bd. \ X, CO \cdot O \cdot O. \quad Aus \quad CO \cdot O. \quad Au$ S. 951) mit Essigsäureanhydrid und etwas Schwefelsäure (Z., B., A. 361, 231). — Blättchen (aus Benzol-Benzin). F: 177-178°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln außer in Benzin.

HO

4. 4.5-Dioxy-1-oxo-phthalan. 4.5 - Dioxy - phthalid C.H.O. Formel I.

I. Ho 4.5-Dimethoxy-phthalid, Pseudomekonin $C_{10}H_{10}O_4$, Formel II; die Stellungsbezsichnung gilt auch für die in diesem Handbuch gebrauchten, vom Namen "Pseudomekonin" abgeleiteten Namen. — B. Bei der Reduktion von Pseudoopiansäure (Bd. X, S. 990) mit $2^{1}/_{2}^{0}/_{0}$ igem Natriumamalgam in verd. sodaalkalischer Lösung (Perkin, Soc. 57, 1072). Durch allmählichen Zusatz von Zinkstaub zu einer siedenden Lösung von Hemipinsäureanhydrid (S. 167) in Eisessig (Salomon, B. 20, 889). Beim Erwärmen von 2-Nitroso-4.5-dimethoxy-phthalimidin $(CH_3 \cdot O)_2C_6H_2 < \frac{CH_2}{CO} > N \cdot NO$ (Syst. No. 3240) mit verd. Natronlauge (S., B. 20, 884). — Darst. Man kocht 1 Tl. Hemipinsaureimid (Syst. No. 3241) mit 13/4 Tln. Zinn und kons. Salzsaure bis zur Lösung, entfernt das gelöste Zinn durch Einhängen von Zinkstreifen und gibt zur filtrierten Lösung 0,36 Tle. Natriumnitrit; man säuert dann mit Salzsäure an, filtriert den entstandenen Niederschlag ab, wäscht ihn mit Wasser und erwärmt ihn schwach mit sehr verd. Natronlauge; die alkal. Lösung wird durch Salzsäure gefällt (S., B. 20, 885).

— Nadeln (aus Wasser). F: 123—124° (S.). Schwer löslich in kaltem Wasser, leicht in Alkohol, Äther und Benzol (S.). — Wird durch Kochen mit Braunstein und verd. Schwefelsäure nicht verändert (S.). Beim Erwärmen mit roter rauchender Salpetersäure auf dem Wasserbad entsteht. 7. Nitro-praudomekonin: Erhitzen mit Salpetersäure (D. 144) auf 150—155° liefert entsteht 7-Nitro-pseudomekonin; Erhitzen mit Salpetersäure (D: 1,14) auf 150—155° liefert daneben noch 6-Nitro-hemipinsäure (Bd. X, S. 549) (S.). Wird durch Schmelzen mit Kaliumoyanid nicht verändert (Bowman, B. 20, 891). Durch Auflösen in Alkalien und Versetzen der Lösung mit Säure erhält man Pseudomekoninsäure (Bd. X, S. 494) (P.).

x-Brom-4.5-dimethoxy-phthalid, x-Brom-pseudomekonin $C_{10}H_{2}O_{4}Br$. B. Aus Pseudomekonin und Brom in der Kälte (Salomon, B. 20, 887). — Flockige Masse (aus Benzol durch Ligroin). F: 141-1420.

7-Nitro-4.5-dimethoxy-phthalid, 7-Nitro-pseudomekonin $C_{10}H_0O_6N$, s. nebenstehende Formel¹). B. Beim Erwärmen von Pseudomekonin mit rauchender Salpetersäure (Salomon, B. 20, 886). — Gelbliche Nadeln (aus verd. Alkohol). F: 166°. Schwer löslich in CHa·O CHa · O kaltem Wasser, leicht in heißem verdünntem Alkohol. — Beim Erwärmen OaN mit Eisenfeile und Essigsäure entsteht 7-Amino-pseudomekonin (Syst. No. 2644).

¹⁾ So formuliert auf Grund der Arbeit von GREENWOOD, ROBINSON, Soc. 1982, 1871, 1373.

- 5. 4.6-Dioxy-1-oxo-phthalan, 4.6-Dioxy-phthalid C, H,O, HO s. nebenstehende Formel.
- **4.6-Dimethoxy-phthalid** $C_{10}H_{10}O_4 = (CH_3 \cdot O)_2C_0H_3 < \frac{CH_2}{CO} > O$. B. Ho. Aus 4.6-Dimethoxy-phthalid-carbonsaure-(3) (Syst. No. 2625) durch Erhitzen auf 180—185° (Fritzen, A. 296, 355). — Blaßgelbe Nadeln. F: 166—167°. Schwer löslich in heißem Wasser, leichter in Alkohol.
- **4.6-Diathoxy-phthalid** $C_{12}H_{14}O_4 = (C_2H_5 \cdot O)_2C_6H_2 < \frac{CH_2}{CO} > O$. B. Analog 4.6-Dimethexy-phthalid (Fr., A. 296, 355). — Blaßgelbe Nadeln. F: 179°. Schwer löslich in heißem Wasser, leichter in Alkohol. Zeigt in Benzollösung gelbgrüne Fluorescenz.
- 6. 5.6 Dioxy 1 oxo phthalan.
- II. $\frac{\text{CH}_3 \cdot \text{O}}{\text{CH}_3 \cdot \text{O}} = \frac{6}{7} = \frac{\text{CH}_2}{3} = 0$ 5.6-Dioxy-phthalid C.H.O., Formel I. HO. 5.6 - Dimethoxy - phthalid, Meta- I. mekonin $C_{10}H_{10}O_4$, Formel II; die Stel-HO. lungsbezeichnung gilt auch für die in diesem
- Handbuch gebrauchten, vom Namen "Metamekonin" abgeleiteten Namen. B. Durch Erhitzen von 5.6-Dimethoxy-phthalid-carbonsäure-(3) über den Schmelzpunkt (Perkin, Soc. 81, 1027). Bei der Oxydation von Brasilin-trimethyläther (Bd. XVII, S. 196) mit Kalium-dichromat und verd. Schwefelsäure, neben anderen Produkten (Gilbody, Perkin, Soc. 81, 1042). — Nadeln (aus Wasser oder Alkohol). F: 155—156° (P.). Unlöslich in kaltem, löslich in heißer Wasser, schwer löslich in Äther (P.). — Leicht löslich in heißer Kalilauge als Kaliumsalz der nicht näher beschriebenen Metamekoninsäure HO·CH₂·C₆H₂(O·CH₂)₃·CO₉H, welche aber bei der Abscheidung durch Säuren bald wieder in das Lacton übergeht (P.). Oxydation mit Kaliumpermanganat in alkal. Lösung in der Wärme liefert quantitativ Metahemipinsaure (Bd. X, S. 552) (P.).
- 7. 6.7 Dioxy 1-oxo phthalan, 6.7 Dioxy phthalid, Normekonin $C_sH_sO_4$, s. nebenstehende Formel; die Stellungsbezeichnung gilt auch für die in diesem Handbuch gebrauchten, vom Namen "Normekonin" abgeleiteten Namen.
- 6-Oxy-7-methoxy- oder 7-Oxy-6-methoxy-phthalid, Normekonin-monomethyläther $C_9H_8O_4=(CH_3\cdot O)(HO)C_6H_8 < CO>0$. B. Beim Erhitzen von Mekonin (s. u.) mit konz. Salzsäure oder Jodwasserstoffsäure auf 100° oder 110° (MATTHIESSEN, FORSTER, Soc. 21, 360; A. Spl. 5, 333). Man erhitzt Mekonin oder Narkotin (Syst. No. 4475) mit Kali auf 200-210°, löst die Schmelze in Wasser und säuert mit Schwefelsäure an (Beckett, WRIGHT, Soc. 29, 307). Bei etwa 3-stdg. Erhitzen von 5 Tln. Mekonin mit 3 Tln. Kaliumcyanid auf 180° (Bowman, B. 20, 890). — Prismen. Monoklin prismatisch (Lang, Soc. 21, 365; vgl. Groth, Ch. Kr. 4, 711). F: 125° (korr.) (BE., W.), 126° (Bo.). Leicht löslich in heißem Alkohol und Benzol, weniger in heißem Wasser, wenig löslich in Äther (Bo.); leicht löslich in Natronlauge und Kalilauge, weniger in Ammoniak und Sodaldsung (Bo.). Gibt mit Eisenchlorid eine blaue Färbung (BE., W.). — Reduziert Silbersalze in der Kälte (MA., F.). Liefert beim Schmelzen mit der 6—7-fachen Menge Kali bei 230—240° Protocatechusäure (BE., W.). — $\operatorname{Ca(C_9H_7O_4)_2}$. Weißer Niederschlag (Bo.). — $\operatorname{Ba(C_9H_7O_4)_2}$. Weißer Niederschlag (Bo.).
- **6.7-Dimethoxy-phthalid, Mekonin** $C_{10}H_{10}O_4$, s. nebenstehende Formel; die Stellungsbezeichnung gilt auch für die in diesem Handbuch gebrauchten, vom Namen, Mekonin" abgeleiteten Namen. — V. Findet sich in geringer Menge im Opium (COUERBE, A. 2, 272; 5, 180; PELLETIEB, A. 5, 154; vgl. DUBLANC, A. 8, 127); zur Gewinnung aus der wäßt. Infusion von Opium vgl. Anderson, A. 86, 179; 98, 44. Findet CH₃·O sich ferner in der Wurzel von Hydrastis canadensis (Freund, B. 22, 459). — B. Durch Reduktion von Opiansäure (Bd. X, S. 990) mit Natriumamalgam in warmer wäßriger Lösung und nachfolgendes Ansäuern (MATTHIESSEN, FORSTER, Soc. 16, 349; A. Spl. 2, 379). Durch Reduktion von Opiansaure mit Zink und Schwefelsaure (Ma., Fo., Soc. 16, 350; A. Spl. 2. 379). Durch Schmelzen von Opiansäure mit Kali und Ansäuern der Schmelze mit Salzsäure (Ma., Fo., Soc. 16, 347; A. Spl. 1, 332; BECKETT, WRIGHT, Soc. 29, 281; J. 1876, 806). Bei der Reduktion einer äther. Lösung von 3-Chlor-mekonin (S. 90) mit Zink und Salzsäure (Prinz, J. pr. [2] 24, 371). Durch Digerieren von 6.7-Dimethoxy-3-trichlormethyl-phthalid mit 20% iger Natronlauge bei 50% und Erhitzen der entstandenen Säure (Fritzen, A. 301, 360). Bei der Oxydation von Narkotin (Syst. No. 4475) mit Salpetersäure (Anderson, A. 86, 187, 190). Aus Narkotin oder Gnoskopin (Syst. No. 4475) beim Kochen mit verd. Essigsäure (Rabe, B. 40, 3283, 3286). Durch Schmelzen von Narkotin oder Gnoskopin mit der

2-3-fachen Menge Harnstoff bei etwa 220°; man säuert die wäßr. Lösung der Schmelze mit Schwefelsäure oder Salzsäure an und extrahiert sodann mit Äther (Frenchs, Ar. 241,

260, 268). Beim Schmelzen von Hydrastin (Syst. No. 4475) mit Harnstoff (FREB.). Nadeln (aus Wasser). Schmeckt bitter (An., A. 98, 45). F: 102-102,50 (BE., WRIGHT), 102,5° (Prinz; Wegscheider, M. 8, 351 Anm.). Sublimierbar (An., A. 98, 45). Löslich in Alkohol und Äther; löslich in 700 Tln. Wasser von 15,5° und in 22 Tln. von 100° (An., A. 98, 45). Bildet mit Schwefelsäure in der Kälte eine farblose Lösung, die beim Erwärmen intensiv purpurrot wird (An., A. 98, 46). Verbrennungswärme bei konstantem Druck 1136,5 kcal/Mol, bei konstantem Volumen 1136,2 kcal/Mol (LEROY, C. r. 130, 508; A. ch. [7] 21, 129). — Geht bei der Oxydation mit Kaliumpermanganat in alkal. Lösung in Hemipinsaure (Bd. X, S. 543) über (Freund). Liefert beim Erwarmen mit Braunstein und verd. Schwefelsäure glatt Opiansäure (Salomon, B. 20, 888). Beim Einleiten von Chlor in die wäßr. Lösung oder beim Überleiten von Chlor über geschmolzenes Mekonin entsteht 4-Chlor-mekonin (An., A. 98, 47). Mit Bromwasser liefert Mekonin in wäßr. (An.) oder essigsaurer Lösung (Free.) 4-Brom-mekonin. Jod wirkt auf Mekonin nicht ein; läßt man eine wäßr. Lösung von Mekonin mit Chlorjod in der Wärme stehen, so wird 4-Jod-mekonin erhalten (An., A. 98, 49). Mekonin liefert beim Erwärmen mit konz. Salpetersäure 4-Nitro-mekonin (An., A. 98, 46). Geht beim Auflösen in Barytwasser in das Bariumsalz der Mekoninsäure (Bd. X, S. 494) über (Hessert, B. 11, 240; Prinz). Geschwindigkeit der Hydrolyse durch 0,02n-Natronlauge bei 25°: Hjelt, Ch. Z. 18, 3. Liefert bei der Kalischmelze zunächst Normekonin-monomethyläther und dann Protocatechusäure (BE., WRIGHT). Beim Erhitzen mit konz. Salzsaure oder Jodwasserstoffsaure auf 100° oder 110° entsteht Normekoninmonomethylather (Ma., Fo., Soc. 21, 360; A. Spl. 5, 333). Erhitzen mit Kaliumcyanid auf

890). Gibt beim Kochen mit Anilin und salzsaurem Anilin 7-Oxy-6-methoxy-2-phenyl-phthalimidin (s. nebenstehende Formel; Syst. No. 3240) (MEYER, TURNAU, M. 80, 494).

180° führt zu Normekonin-monomethyläther (Bowman, B. 20,

CH2 N·C6H5 CHa · O · HO CH3 · O ·

3-Chlor-6.7-dimethoxy-phthalid, Pseudochlorid der Opiansäure, 3-Chlor-mekonin C₁₀H₂O₄Cl, s. nebenstehende Formel. Zur Konstitution vgl. KIRPAL, B. 60 [1927], 382. — B. Aus Opiansaure (Bd. X. S. 990) und Phosphorpentachlorid (PRINZ, J. pr. [2] 24, 371; WEGSCHEIDER, M. 13, 708; vgl. K.). Aus Opiansäure durch Thionylchlorid bei Zimmertemperatur (H. MEYER, M. 22, 783). — Farblose Nädelchen (aus Petroläther). F: 94° (K.).

CH₃·O

4-Chlor-6.7-dimethoxy-phthalid, 4-Chlor-mekonin $C_{10}H_{0}O_{4}C!$, s. nebenstehende Formel¹). B. Durch Einleiten von Chlor in eine kalte wäßrige Lösung von Mekonin (Anderson, A. 98, 47). Beim Überleiten von Chlor über geschmolzenes Mekonin (A.). — Nadeln (aus Alkohol). F: 175° (A.), 182° (Frerichs, Ar. 241, 261). Sublimiert unzersetzt; kaum löslich in kaltem Wasser, leicht in Alkohol und Äther (A.).

CH2 CH8 · O CH₈·O

4 - Brom - 6.7 - dimethoxy - phthalid, 4 - Brom - mekonin $C_{10}H_0O_4Br$, s. nebenstehende Formel 1). B. Beim allmählichen Versetzen einer wäßrigen (Anderson, A. 98, 48) oder essigsauren (Frerichs, Ar. 241, 261) Lösung von Mekonin mit Bromwasser. — Nadeln (aus Alkohol). F: 171° (F.), 176—177° (Salomon, B. 20, 888). Wenig löslich in Wasser, reichlicher in Alkohol und Äther (A.).

4-Jod-6.7-dimethoxy-phthalid, 4-Jod-mekonin $C_{10}H_{0}O_{4}I$, s. nebenstehende Formel¹). B. Durch Versetzen einer wäßr. Mekoninlösung mit Chlorjod (Anderson, A. 98, 49). — Nadeln (aus Alkohol). F: 112°. Kaum löslich in Wasser, reichlicher in Alkohol und Äther.

4-Nitro-6.7-dimethoxy-phthalid, 4-Nitro-mekonin $C_{10}H_{\bullet}O_{\bullet}N$, s. nebenstehende Formel¹). B. Durch Erwärmen von Mekonin mit konz. Salpetersäure (Anderson, A. 98, 46). — Nadeln und Prismen (aus Alkohol). F: 160°; wenig löslich in siedendem Wasser, viel leichter in siedendem Alkohol, löslich in Ather; löst sich in siedenden Alkalien unter Zersetzung (A.). — Bei der Reduktion mit Eisenfeile und 50% iger Essigsäure entsteht 4-Amino-mekonin (Syst. No. 2644) (Salomon, B. 20, 887).

2. Oxy-oxo-Verbindungen C.H.O.

1. 5.7-Dioxy-2-oxo-chroman, 5.7-Dioxy-3.4-dihydrocumarin, 5.7-Dioxy-hydrocumarin C.H.O., s. nebenstehende

¹⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von PERKIN, ROBINSON, Soc. 99, 780, 783.

- 3.4-Dibrom-5.7-dimethoxy-3.4-dihydro-cumarin, Citroptendibromid $C_{11}H_{10}O_4Br_2$ CHBr·CHBr $C_{11}H_{10}O_4Br_2$ CHBr·CHBr $C_{11}H_{10}O_4Br_2$ $C_{11}H_{10}O_4Br_2$ $C_{12}H_{10}O_4Br_2$ $C_{13}H_{10}O_4Br_2$ $C_{14}H_{10}O_4Br_2$ $C_{15}H_{10}O_4Br_2$ $C_$
- 3. 6.7-Dioxy-1-oxo-isochroman, 6.7-Dioxy-3.4-dihydro-isocumarin C₉H₈O₄, s. nebenstehende Formel. B. Bei 5-stdg. Erhitzen von 1 g 6.7-Methylendioxy-3.4-dihydro-isocumarin (Syst. No. 2959) mit 40 cm³ Wasser und 10 cm³ Salzsäure (D: 1,168) im geschlossenen Rohr auf 170—175°; man schüttelt die filtrierte Lösung mit Äther aus (Perkin, Soc. 57, 1028). Warzen (aus Wasser). Erweicht bei 210° und schmilzt bei 220—225°. Leicht löslich in Wasser, mäßig in Alkohol, schwer in Chloroform und Benzol. Die wäßr. Löcung wird durch Eisenchlorid intensiv grün gefärbt; Natriumdicarbonat wandelt diese Färbung in Violett und dann in Rot um.
- 6.7-Dimethoxy-3.4-dihydro-isocumarin $C_{11}H_{12}O_4 = (CH_3 \cdot O)_2C_6H_2 \cdot CH_2 \cdot CH_2 \cdot B$. Beim Erhitzen von 2-Nitroso-6.7-dimethoxy-3.4-dihydro-isochinolon (Nitrosocorydaldin, Syst. No. 3240) mit Natronlauge; man säuert mit Salzsäure an (Dobbie, Lauder, Soc. 75, 674). Krystalle (aus Wasser). F: 138—139°. Schwer löslich in kaltem Wasser, löslich in Alkohol, Äther und Benzol. Liefert bei der Oxydation mit Kaliumpermanganat Metahemipinsäure (Bd. X, S. 552).
- 4. 4.5 Dioxy 3 oxo 1 methyl phthalan, 6.7 Dioxy 3 methyl phthalid, 3 Methyl normekonin $C_9H_8O_4$, s. nebenstehende Formel.

- 6.7 Dimethoxy 3 methyl phthalid, 3 Methyl mekonin

 C₁₁H₁₂O₄ = (CH₃·O)₂C₆H₂ CH(CH₃) O. B. Aus Opiansäure (Bd. X, S. 990) und Methylmagnesiumjodid in Äther; man zersetzt das Reaktionsprodukt mit Eis und verd. Salzsäure (SIMONIS, MARBEN, MERMOD, B. 38, 3983). Prismen (aus Wasser). F: 101°.
- 6.7 Dimethoxy 3 trichlormethyl phthalid, 3 Trichlormethyl mekonin $C_{11}H_0O_4Cl_3 = (CH_3\cdot O)_2C_6H_2 \cdot CH(CCl_3)$ O. B. Bei 4—5-tägigem Stehenlassen molekularer Mengen von 2.3-Dimethoxy-benzoesäure-methylester und Chloralhydrat mit der 5-fachen Menge konz. Schwefelsäure in verschlossenem Gefäß (Fritsch, A. 301, 356). Nadeln (aus Alkohol). F: 104°. Leicht löslich in Alkohol, Äther und Benzol, sehr wenig in Ligroin. Geht beim Digerieren mit 20°/0iger Natronlauge bei 50° in eine Säure über, die beim Erhitzen Mekonin liefert.
- 4-Brom-6.7-dimethoxy-3-methyl-phthalid, 4-Brom-3-methyl-mekonin $C_{11}H_{11}O_4$ Br, s. nebenstehende Formel. B. Durch Behandeln von Bromopiansäure (Bd. X, S. 995) mit Methylmagnesiumjodid und Zersetzung des Reaktionsproduktes (MERMOD, SIMONIS, B. 41, 984). Aus 3-Methyl-mekonin durch Brom in heißer wäßriger Lösung (M., S.). Blättchen (aus verd. Alkohol). F: 77°.
 - CH3·O CH(CH3) O
- 5. 5.7-Dioxy-3-oxo-1-methyl-phthalan. 4.6-Dioxy-Ho. 3-methyl-phthalid $C_0H_0O_4$, s. nebenstehende Formel. 4.6-Dimethoxy-3-trichlormethyl-phthalid $C_{11}H_0O_4Cl_3 = \frac{CO}{HO}$
- (CH₃·O)₂C₆H₂ CO CH(CCl₃) O. B. Bei der Kondensation von 3.5-Dimethoxy-benzoesäure-āthylester (Bd. X, S. 405) mit Chloralhydrat in Gegenwart von ca. 85% giger Schwefelsäure (Fritsch, A. 296, 351, 352). Prismen (aus Äther). F: 125%.

4.6 - Diäthoxy - 3 - trichlormethyl - phthalid $C_{13}H_{13}O_4Cl_2 = (C_2H_3\cdot O)_2C_0H_2 \underbrace{CO}_{CH(CCl_2)}O$. B. Analog 4.6-Dimethoxy-3-trichlormethyl-phthalid (Feitsch, A. 296, 351, 352). — Prismen (aus Äther). F: 113°.

3. Oxy-oxo-Verbindungen $C_{10}H_{10}O_4$.

1. α.β-Dioxy-γ-phenyl-butyrolacton C₁₀H₁₀O₄ = $\frac{\text{HO·HC--CH·OH}}{\text{OC·O·CH·C}_6\text{H}_5}. \quad B. \text{ Beim}$ Eindampfen der wäßr. Lösung der α.β.γ-Trioxy-γ-phenyl-buttersäure (Bd. X, S. 496)
(E. FISCHER, STEWART, B. 25, 2557). Man oxydiert γ-Phenyl-Δα.β-crotonlacton (Bd. XVII, S. 335), gelöst in viel Alkohol, mit 5% jeer Permanganatlösung in Gegenwart von Magnesiumsulfat bei 0% (Thiele, Sulzerger, A. 319, 206). — Nadeln (aus Wasser oder Äther). F: 115—117% (F., St.), 115,5—116% (Th., S.). Sehr leicht löslich in Alkohol und heißem Wasser, ziemlich sohwer in Äther (F., St.). — Bei der Reduktion der stets sohwach sauer gehaltenen, verdünnten alkoholischen Lösung mit 2½ jeem Natriumamalgam unter starker Kühlung entsteht Phenyltetrose (Bd. VIII, S. 399) (F., St.). Beim Erwärmen der wäßr. Lösung mit überschüssigem Phenylhydraxin erhält man α.β.γ-Trioxy-γ-phenyl-buttersäurephenylhydraxid (Bd. XV, S. 330) (F., St.; Th., S.).

 $\alpha.\beta$ - Dioxy - γ - [x - nitro - phenyl] - butyrolacton $C_{10}H_0O_0N = HO \cdot HC - CH \cdot OH$

Bei allmählichem Eintragen von 1 Tl. α.β-Dioxy-γ-phenylbutyrolacton in 4 Tle. Salpetersäure (D: 1,5) unter Kühlung (Kopisch, B. 27, 3110). — Nadeln (aus Wasser). F: ca. 185° (unter schwacher Gasentwicklung). Löst sich in Alkalien; beim Kochen dieser Lösung fällt ein gelber krystalliner Niederschlag aus, der in Alkalien und Säuren unlöslich ist.

2. α -Oxy- γ -[4-oxy-phenyl]-butyrolacton $C_{10}H_{10}O_4 = \frac{HO \cdot HC - CH_2}{OC \cdot O \cdot CH \cdot C_6H_4 \cdot OH}$

 β - Jod - α - oxy - γ - [4 - methoxy - phenyl] - butyrolaeton $C_{11}H_{11}O_4I = HO \cdot HC - CHI$

B. Bei der Einw. von Jod-Jodkalium-Lösung auf eine Lösung von Anisalmilchaäure (Bd. X, S. 439) in Natriumdicarbonat (Bougault, A. ch. [8] 14, 157, 182). — Krystalle. F: 122°. Schwer löslich in Alkohol und Äther, fast unlsölich in kaltem Benzol.

3. 4.5 - Dioxy - 3 - oxo - 1 - āthyl - phthalan, 6.7 - Dioxy - 3-āthyl-phthalid, 3-Āthyl-normekonin $C_{10}H_{10}O_4$, s. nebenstehende Formel.

$$\begin{array}{c|c} \textbf{HO} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ &$$

6.7 - Dimethoxy - 8 - äthyl - phthalid, 8 - Äthyl - mekonin

C₁₂H₁₄O₄ = (CH₃·O)₂C₆H₂CH₂CH₂O₃O₄O₄ B. Aus Opiansäure (Bd. X, S. 990) und Äthylmagnesiumjodid in Äther; man zersetzt das Reaktionsprodukt durch eiskaltes Wasser und verd. Mineralsäure (Mermod, Simonis, B. 39, 898). — Prismen (aus Alkohol). F: 98°.

4-Brom-6.7-dimethoxy-8-äthyl-phthalid, 4-Brom-3-äthyl-mekonin C₁₂H₁₂O₄Br, s. nebenstehende Formel. B. Durch Behandeln cH₂·O von Bromopiansäure (Bd. X, S. 995) mit Äthylmagnesiumjodid und Zersetzen des Reaktionsproduktes (MERMOD, SIMONIS, B. 41, 984). Aus 3-Äthyl-mekonin und Brom in heißer wäßriger Lösung (M., S.). — Blättehen. F: 79°.

 $\begin{array}{c} CH_3 \cdot O \\ \\ CH_3 \cdot O \\ \\ \\ CH(C_2H_5) \\ \end{array}$

4(?)-Nitro-6.7-dimethoxy-3-äthyl-phthalid, 4(?)-Nitro-8-äthyl-mekonin $C_{13}H_{13}O_6N$, s. nebenstehende Formel. B. Aus 3-Äthyl-mekonin und rauchender Salpetersäure (M., S., B. 41, 984). — Blaßgelbe Blättchen oder Tafeln (aus Alkohol). F: 103,5°. Unlöslich in Äther, löslich in den meisten Lösungsmitteln. Löslich in siedenden Alkalien mit gelber Farbe.

4. Oxy-oxo-Verbindungen $C_{11}H_{12}O_4$.

1. $4-0xy-3^1.5^1$ -dioxo - 6 - methyl - 8.5 - didthyl - 2 - methylen - [1.2 - pyran], 4 - 0xy - 6 - methyl - 2 - methylen - 3.5 - diacetyl - [1.2 - pyran] $C_{11}H_{12}O_4$ =

CH₂·CO·C·C(OH):C·CO·CH₂ ist desmotrop mit 4.3¹.5¹-Trioxo-6-methyl-3.5-diāthyl-2-me-CH. · C — O — C : CH. thylen-[1.4-pyran]-dihydrid, Bd. XVII, S. 566.

- 2. α.β-Dioxy-γ-benzyl-butyrolacton, α.β-Dioxy-δ-phenyl-γ-valerolacton H0·HC—CH·OH B. Beim Behandeln von γ -Benzyl- $\Delta^{\alpha,\beta}$ -crotoniacton OC · O · CH · CH · CaH, (Phenylangelicalacton) (Bd. XVII, S. 340) in Alkohol mit $2^1/2^0$ /oiger Permanganatlösung in Gegenwart von Magnesiumsulfat bei einer —20 nicht übersteigenden Temp. (Thiele, Wede-MANN, A. 847, 134). — Nadelchen (aus Chloroform). F: 124°. Löslich in heißem Wasser, Alkohol, Ather, Essigester und Aceton, unlöslich in Petroläther. — Geht beim Kochen mit Barytwasser in das Bariumsalz der $\alpha.\beta.\gamma$ -Trioxy- δ -phenyl-n-valeriansäure über.
- $\alpha.\beta$ -Diacetoxy- γ -bensyl-butyrolacton, $\alpha.\beta$ -Diacetoxy- δ -phenyl- γ -valerolacton $CH_2 \cdot CO \cdot O \cdot HC CH \cdot O \cdot CO \cdot CH_2$ B. Aus $\alpha.\beta$ -Dioxy- δ -phenyl- γ -valerolacton OC · O · CH · CH₂ · C₆H₅ und Acetylchlorid (TH., W., A. 347, 135). — Dickes Öl.
- $\alpha.\beta$ -Bis-[4-nitro-benzoyloxy]-y-benzyl-butyrolacton, $\alpha.\beta$ -Bis-[4-nitro-benzoylα.β-Bis-[4-nitro-densoyloxy]-γ-σωνς. oxy]-δ-phenyl-γ-valerolacton $C_{23}H_{16}O_{16}N_2 = O_2N \cdot O_6H_4 \cdot CO \cdot O \cdot HC$ $CH \cdot O \cdot CO \cdot C_6H_4 \cdot NO_2$ $B. \text{ Beim Behandeln von } \alpha.\beta \cdot \text{Dioxy-δ-phenyl-}$
- OC · O · CH · CH₂ · C₆H₅ y-valerolacton, gelöst in wenig trocknem Aceton und Pyridin, mit p-Nitro-benzoylchlorid (TH., W., A. 347, 136). — Nadeln (aus Toluol + Petroläther). F: 130°.
- 3. 4.5-Dioxy-3-oxo-1-propyl-phthalan, 6.7-Dioxy-3-propyl-phthalid, 3-Propyl-normekonin C₁₁H₁₂O₄, s. nebenstehende Formel.
 - -- CH(CH2 · CH2 · CH3)
- 6.7 Dimethoxy 3 propyl phthalid, 3 Propyl-- COmekonin $C_{13}H_{16}O_4 = (CH_2 \cdot O)_3C_6H_2 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot O$. Aus Opiansāure (Bd. X, S. 990) und Propylmagnesiumjodid in Äther; man zersetzt das Reaktionsprodukt durch eiskaltes Wasser und verd. Mineralsaure (Mermod, Simonis, B. 39, 899). — Nadeln (aus Alkohol). F: 76°.
- 4. 4.5-Dioxy-3-oxo-1-isopropyl-phthalan, 6.7-Dioxy-3-isopropyl-phthalid, 3-Isopropyl-normekonin HO. -CO\ C₁₁H₁₂O₄, s. nebenstehende Formel. 6.7 - Dimethoxy - 3 - isopropyl - phthalid, 3 - Isopropyl-_- CO-mekonin $C_{13}H_{16}O_4 = (CH_3 \cdot O)_2C_6H_3$ $CH[CH(CH_3)_3] O.$ B. Aus Opiansäure (Bd. X, S. 990)
- und Isopropylmagnesiumjodid in Äther; man zersetzt das Reaktionsprodukt durch eiskaltes Wasser und verd. Mineralsäure (MERMOD, SIMONIS, B. 39, 899). — Nadeln (aus verd. Alkohol). F: 61,5°.
- 5. Panicolsäureanhydrid $C_{13}H_{16}O_4 = CH_3 \cdot O \cdot C_{10}H_{13} < \frac{CO}{CO} > O$. B. Beim Erhitzen von Panicolsaure (Bd. X, S. 497) auf 120-130° (Kassner, Ar. 226, 1012; B. 22 Ref., 506). - F: 190°.
- 6. Oxy-oxo-Verbindungen $C_{15}H_{20}O_4$.
- 1. Isophotosantonsäurelacton $C_{15}H_{20}O_4=C_{15}H_{19}O(:O)_2\cdot OH^1$). B. Durch Erhitzen von Isophotosantonsäure (Bd. X, S. 986) auf 100° (Cannizzaro, Fabris, R. A. L. [4] 2 I, 450; B. 19, 2261). — F: 163—164° (C., F.). $[\alpha]_0^n$: +124,2° (in Alkohol; c=2,4) (C., F.).
- 1) Die von Francesconi, Venditti, G. 32 I, 297 für das Lacton der Isophotosantonsäure HO·CH₂·CH(CH₃)·C:CH·CH — angegebene Konstitution ist nach dem Literatur- $OHC \cdot CH(CH_2) \cdot \dot{C} : CH \cdot \dot{C}H \cdot CH(CH_2) \cdot \dot{C}O$ Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] durch die Untersuchungen von CLEMO, HAWORTH, WALTON, Soc. 1929, 2868; 1980, 1110; CL., HA:, Soc. 1980, 2579; RUZIOKA, EICHENBERGER, Helv. chim. Acta 18, 1117; TSCHITSCHIBABIN, SCHTSCHURINA, B. 63, 2793; Wederind, Tettweiler, B. 64, 387, 1796 über die Konstitution des Santonins unhaltbar geworden; dasselbe gilt für die in Bd. X. S. 986 aufgeführte Isophotosantonsäure,

Acetat $C_{17}H_{22}O_5=C_{15}H_{19}O(:O)_2\cdot O\cdot CO\cdot CH_3$. B. Neben anderen Produkten bei Einw. des Lichtes auf die Lösung von 10 g Santonin (Bd. XVII, S. 499) in 1 l wasserhaltiger Essigsäure (Villavecchia, R. A. L. [4] 1, 722; B. 18, 2859). Beim Erhitzen von Isophotosantonsäure mit Essigsäureauydrid und geschmolzenem Natriumacetat (Cannizzaro, Fabris, R. A. L. [4] 2 I, 451; B. 19, 2262). — Nadeln (aus Alkohol). F: 182—183° (VI.), 183° (C., Fa.; Francesconi, Venditti, G. 32 I, 312). Löslich in Alkohol und Äther (Fr., Ve.). $[\alpha]_{ii}^{ii}: +59°$ (in Alkohol; c=0.9) (C., Fa.)

Oxim $C_{15}H_{21}O_4N = C_{15}H_{10}O(:O)(:N\cdot OH)\cdot OH$. B. Bei der Einw. von Acetylchlorid auf Isophotosantonsäure-oxim in der Kälte unter Durchleiten eines trocknen Luftstromes (Fr., Vr., G. 32 I, 315). — Nadeln (aus Essigester). F: 220° (Zers.). — Gibt beim Erhitzen mit verd. Salzsäure Isophotosantonsäure und salzsaures Hydroxylamin.

Acetylderivat des Oxims $C_{17}H_{32}O_5N=C_{15}H_{30}O_3N(O\cdot CO\cdot CH_3)$. B. Beim Lösen des Isophotosantonsäure-oxims in wenig Acetanhydrid (Fr., Ve., G. 32 I, 317). — Krystalle (aus Acetanhydrid). F: 170°. Löslich in Alkohol, Essigsäure, Essigester und Acetanhydrid.

Phenylhydrazon $C_{21}H_{26}O_3N_2=C_{15}H_{19}O(:O)(:N\cdot NH\cdot C_6H_5)\cdot OH$. B. Aus dem Lacton der Isophotosantonsäure in Essigsäure und Phenylhydrazin (Fr., Ve., G. 32 I, 318). — Strohfarbene Krystalle (aus Essigester). F: 239° (Zers.).

2. Oxy-dihydrosantonin C₁₅H₂₀O₄, Formel I.

Chlor-oxy-dihydrosantonin, Santonin-chlorhydrin $C_{16}H_{19}O_4Cl$, Formel II¹). B. Beim Schütteln von Santonin (Bd. XVII, S. 499) mit Chlorwasser (Wedekind, Koch, B. 38, 434, 1848; vgl. Sestini, Bl. [2] 5, 202). — Farblose Blättchen (aus Alkohol + wenig Wasser); zersetzt sich bei 235°; leicht löslich in Alkohol, Aceton, Pyridin, Chloroform, Eisessig und heißem Benzol, schwer in Wasser, Ligroin, Äther; unzersetzt löslich in konz. Schwefelsäure und Salzsäure; löslich in warmer Natronlauge; $[\alpha]_0^{\infty}$: —54,75° (in 96°/eigem Alkohol; c = 2) (W., K.).

— Färbt sich am Licht nicht gelb (W., K., B. 38, 1848; vgl. Sz.). Bildet beim Erhitzen mit Natriumsulfitlösung im geschlossenen Rohr auf 140—150° (nicht rein erhaltenes) santoninsulfonsaures Natrium (W., Ar. 244, 632). Beim Erhitzen mit alkoh. Kali unter Druck auf 100° oder mit überschüssiger Natriumacetatlösung im Bombenrohr auf 110—115° entsteht Santoninoxyd (Syst. No. 2763) (W., K., B. 38, 1849; vgl. W., Tettweller, B. 64 [1931], 389). Reagiert mit Hydroxylamin und Phenylhydrazin (W., K., B. 38, 1848). — Zur pharmakologischen Wirkung vgl. Straub, Ar. 244, 638.

f) Oxy-oxo-Verbindungen $C_n H_{2n-12} O_4$.

1. Oxy-oxo-Verbindungen C₈H₄O₄.

1. 4-Oxy-1.3-dioxo-phthalan, [3-Oxy-phthalsäure]-anhydrid HO C₈H₄O₄, s. nebenstehende Formel. B. Aus 3-Oxy-phthalsäure (Bd. X, S. 498) beim Erhitzen auf etwa 150° (Jacobsen, B. 16, 1965; Remsen, Stokes, Am. 6, 282; Bentley, Robinson, Weizmann, Soc. 91, 106, 111) oder beim Kochen mit Acetylchlorid (Onnertz, B. 34, 3747). — F: 145—148° (J.; Re., St.), 145—146° (O.). Über den Schmelzpunkt vgl. auch: B., Ro., W.

[3-Methoxy-phthalsäure]-anhydrid $C_9H_6O_4 = CH_3 \cdot O \cdot C_6H_3 < CO > O$. B. Neben anderen Produkten bei der Oxydation von 1-Oxy-5-methoxy-naphthalin (Bd. VI, S. 980) mit Kaliumpermanganat in sehr verd. Natronlauge (Bentley, Robinson, Weilmann, Soc. 91, 109). — Prismen (aus Toluol). F: 160—161°. Sehr wenig löslich in kaltem Wasser; löslich in heißem Wasser unter Bildung von 3-Methoxy-phthalsäure (Bd. X, S. 498).

¹⁾ So formuliert auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von WEDEKIND, TETTWEILER, B. 64, 387. Die Verbindung wurde früher als Monochlorsantonin C₁₈H₁₇O₂Cl + H₂O beschrieben.

- 2. 5 Oxy 1.3 dioxo phthalan, [4 Oxy phthalsäure] HO. anhydrid C₃H₄O₄, s. nebenstehende Formel. B. Beim Erhitzen von 4-Oxyphthalsäure (Bd. X, S. 499) auf etwa 200° (Baeyer, B. 10, 1082; Bentley, Weizmann, Soc. 91, 101), am besten im Wasserstoff- oder Kohlendioxydstrom (Wegscheider, Piesen, M. 23, 401). Sublimiert unzersetzt in federartig vereinigten Nadeln. F: 165—166° (Ba.; Weg., P.), 171—173° (Be., Wei.). Leicht löslich in Alkohol, Aceton, Äther, fast unlöslich in Benzol, Chloroform und Schwefelkohlenstoff (Ba.). Beim Erhitzen …it Phenol und konz. Schwefelsäure auf 115° entsteht das (nicht näher beschriebene) 5-Oxy-phenolphthalein (in Alkalien löslich mit roter Farbe) (Ba.). Löst sich in kaltem Wasser langsam, in heißem sofort unter Bildung von 4-Oxy-phthalsäure (Ba.; Be., Wei.).
- [4-Methoxy-phthalsäure]-anhydrid C₉H₆O₄ = CH₃·O·C₆H₈<CO >O. B. Beim Erhitzen von 4-Methoxy-phthalsäure (Bd. X, S. 499) auf den Schmelzpunkt (Jacobsen, B. 16, 1964; vgl. Baudisch, W. H. Perrin, Soc. 95, 1883). Sublimiert in langen Nadeln. F: 87° (J.), 93° (Schall, B. 12, 829), 93—96° (Frlund, Göbel, B. 30, 1392; vgl. Pschorr, Seydel, Stöhrer, B. 35, 4401), 97° (Fritsch, A. 296, 358), 98—99° (Bentley, Weizmann, Soc. 91, 103). Leicht löslich in Alkohol und heißem Benzol, sehr wenig in kaltem, langsam löslich in siedendem Wasser unter Bildung von 4-Methoxy-phthalsäure (Be., W.).
- [4-Äthoxy-phthalsäure]-anhydrid $C_{10}H_8O_4=C_2H_5\cdot O\cdot C_3H_2<\frac{CO}{CO}>0$. B. Beim Erhitzen von 4-Äthoxy-phthalsäure (Bd. X, S. 500) auf 220° (Fritsch, A. 286, 25). F: 118° (F., A. 296, 358 Anm.). Liefert bei der Kondensation mit Glykokoll [4-Äthoxy-phthalsäure]-imid-N-essigsäure (Syst. No. 3240), mit Alanin [4-Äthoxy-phthalsäure]-imid-N- α -propionsäure (Syst. No. 3240) (Kusel, B. 37, 1973, 1978).
- [3.5.6-Tribrom-4-oxy-phthalsäure]-anhydrid C₈HO₄Br₈, s. nebenstehende Formel. B. Beim Erhitzen von 10 g 3.4.6-Tribrom-5-oxy-o-toluylsäure (Bd. X, S. 216) mit 6 cm³ Brom und 0,5 g Wasser im Einschmelzrohr auf 200° (ZINCKE, BUFF, A. 361, 241). Bei der Einw. von trockenem Brom auf 3.4.6-Tribrom-5-oxy-2-formyl-benzoesäure (Bd. X, S. 951) (Z., B.). Bei der Einw. von feuchtem Brom auf 4.5.7-Tribrom-6-oxy-phthalid (S. 18) bei 170—175° (Z., B.). Nadeln mit 1 Mol Essigsäure (aus Eisessig), Prismen (aus Tetrachloräthan). F: 220°. Leicht löslich in heißem Eisessig und Alkohol, schwer in Äther und Chloroform. Die Lösung in Alkohol ist gelblich und fluoresciert bei starker Verdünnung. Geht beim Kochen mit Wasser langsam in Lösung unter Bildung von 3.5.6-Tribrom-4-oxy-phthalsäure. Verbindung mit Anilin C₈HO₄Br₃ + C₆H₇N. Hellgelbes Krystallpulver.
- [3.5.6 Tribrom 4 acetoxy phthalsäure] anhydrid $C_{10}H_3O_5Br_3 = CH_3 \cdot CO \cdot C \cdot C_6Br_3 < \frac{CO}{CO} > O$. B. Beim Behandeln von [3.5.6-Tribrom-4-oxy-phthalsäure]-anhydrid (s. o.) mit Essigsäureanhydrid und Schwefelsäure (ZINOKE, BUFF, A. 361, 243). Nadeln (aus Eisessig). F: 226°. Schwer löslich in Alkohol, ziemlich leicht in Eisessig und Benzol.

 $\label{eq:monomethylacetal} \begin{tabular}{ll} Monomethylacetal und Dimethylacetal des [3.5.6-Tribrom-4-oxy-phthalsäure]-anhydrids $C_9H_5O_5Br_3 = HO\cdot C_6Br_3 - COHO(O\cdot CH_3) - O$ und $C_{10}H_7O_5Br_3 = HO\cdot C_8H_3 - COHO(O\cdot CH_3) - O$ und $C_{10}H_7O_5Br_3 = HO\cdot C_8H_3 - COHO(O\cdot CH_3) - O$ und $C_{10}H_7O_5Br_3 = HO\cdot C_8H_3 - COHO(O\cdot CH_3) - O$ und $C_{10}H_7O_5Br_3 = HO\cdot C_8H_3 - O$ und $C_{10}H_7O_5H_3 - O$ und $C_{10}H$

 $HO \cdot C_6Br_3 = C(O \cdot CH_3)_2 = O$ sind desmotrop mit Mono- bezw. Dimethylester der 3.5.C-Tribrom-4-oxy-phthalsäure $HO \cdot C_6Br_3(CO_2H) \cdot CO_2 \cdot CH_3$ bezw. $HO \cdot C_8Br_3(CO_3 \cdot CH_3)_2$, Bd. X, S. 501.

4.6.7 - Tribrom - 5 - oxy - 3 - oxo - 1 - phenylimino - phthalan, 4.5.7 - Tribrom - 6 - oxy - 3 - phenylimino - phthalid, 3.5.6 - Tribrom - 4 - oxy - phthals \(\frac{a}{a}\) ure - isoanil - (1) oder 2 - Phenyl-4.6.7 - tribrom - 5 - oxy - 1.3 - dioxo - isoindolin, [3.5.6 - Tribrom - 4 - oxy - phthals \(\frac{a}{a}\) ure | 3 - oxy - phthals \(\frac{a}{a}\) ure

I.
$$\frac{Br}{Br}$$
 $CC(:N \cdot C_0H_5)$ O II. $\frac{Br}{Br}$ CO $N \cdot C_0H_5$

heißem Eisessig mit Anilin (ZINCKE, BUFF, A. 361, 244). — Hellgelbe Nadeln (aus Eisessig + Wasser). F: 247—248°. Ziemlich leicht löslich in kaltem Alkohol, Eisessig und Benzol. Bildet orangegelbe Alkalisalze. — Bei der Einw. von überschüssiger verdünnter Natronlauge

entsteht [3.5.6-Tribrom-4-oxy-phthalsäure]-anilid-(1) (Bd. XII, S. 512). — Verbindung mit Anilin $C_{14}H_{\bullet}O_{\circ}NBr_{\circ}+C_{\circ}H_{7}N$. Gelbes krystallinisches Pulver (aus heißem Benzol). F:

Acetylderivat $C_{1g}H_{g}O_{4}NBr_{g}=C_{1d}H_{g}O_{2}NBr_{g}\cdot O\cdot CO\cdot CH_{g}$. B. Beim Erhitzen der vorangehenden Verbindung mit Essigsäureanhydrid und Natriumacetat (Z., B., A. 361, 245). — Nadeln (aus Eisessig). F: 224—225°. Unlöslich in Alkali.

4.6.7 - Tribrom - 5 - oxy - 8 - oxo - 1 - phenylhydrazonophthalan, 4.5.7 - Tribrom - 6 - oxy - 8 - phenylhydrasono-phthalid C₁₄H₇O₅N₅Br₅, s. nebenstehende Formel. B. Bei kurzem Erwärmen von [3.5.6-Tribrom-4-oxy-phthalsäure]-anhy-drid (S. 95) oder von 3.3.4.5.7-Pentabrom-6-oxy-phthalid (S. 19) CO. C(:N·NH·CaHa) Řг mit Phenylhydrazin und Eisessig (ZINCKE, BUFF, A. 361, 246). — Gelbliche Nadeln (aus Eisessig). F: 265-266° (Zers.). Schwer löslich in den meisten Lösungsmitteln.

2. Oxy-oxo-Verbindungen CoHaOa.

- 1. 3.7-Dioxy-4-oxo-[1.4-chromen], 3.7-Dioxy-chromon C.OH CaHaOa, s. nebenstehende Formel, ist desmotrop mit 7-Oxy-3.4-dioxochroman, S. 102.
- $\textbf{8.7-Dimethoxy-chromon} \ \ C_{11}H_{10}O_{4} = CH_{5}\cdot O\cdot C_{6}H_{5} \underbrace{\begin{array}{c} CO\cdot C\cdot O\cdot CH_{3}\\ CH \end{array}}_{CH}. \ \ \ Zur \ \ Konstitution$ vgl. Feuerstein, v. Kostanecki, B. 32, 1025. — B. Beim Erwärmen von 3.7-Dioxy-chromon (S. 102) mit Natriumäthylat und Methyljodid in absolut-alkoholischer Lösung auf dem Wasserbad (Schall, Dralle, B. 25, 19). — Farblose Schuppen (aus Alkohol). F: 169—170° (Sch., D.). Mäßig löslich in kaltem Alkohol und Eisessig (Sch., D.). Die farblose Lösung in konz. Schwefelsäure fluoresciert violettblau (F., v. K.). — Bei der Oxydation mit Kaliumpermanganat in essignaurer Lösung entsteht 4-Methoxy-salicylsäure (Bd. X, S. 379) (Sch., D.). Wird durch Kochen mit alkoh. Natriumathylat unter Bildung von Fisetoldimethylather (Bd. VIII, S. 395) und Ameisensäure gespalten (F., v. K.).
- $\textbf{8.7-Diäthoxy-ohromon} \ \ C_{19}H_{14}O_4 = C_9H_5 \cdot O \cdot C_6H_5 \\ \bigcirc \begin{matrix} CO \cdot C \cdot O \cdot C_9H_5 \\ O \begin{matrix} U \\ UH \end{matrix} \end{matrix}.$ Spieße. F: 125° (FRURESTEIN, V. KOSTANECKI, B. 33, 473 Anm.). — Gibt beim Kochen mit Natriumalkoholat Fisetoldiäthyläther (Bd. VIII, S. 396) und Ameisensäure (F., v. K., B. 33, 473 Anm.; C. 1900 I, 605).
- $\textbf{8.7-Diacetoxy-chromon} \quad C_{13}H_{10}O_6 = CH_3 \cdot CO \cdot O \cdot C_6H_3 < \begin{matrix} CO \cdot C \cdot O \cdot CO \cdot CH_3 \\ O CH \end{matrix}.$ kurzem Kochen von 3.7-Dioxy-chromon (S. 102) mit überschüssigem Essigsäureanhydrid und entwässertem Natriumacetat (SCHALL, DRALLE, B. 25, 21). — Nadeln (aus 50% eiger Essigsaure). F: 148-149°. Ziemlich leicht löslich in heißem Eisessig, schwer in siedendem Wasser.
- $\textbf{3.7-Dibensoyloxy-chromon} \quad C_{\textbf{33}}H_{14}O_{\textbf{6}} = C_{\textbf{6}}H_{\textbf{5}} \cdot CO \cdot O \cdot C_{\textbf{6}}H_{\textbf{5}} \underbrace{\begin{array}{c} CO \cdot C \cdot O \cdot CO \cdot C_{\textbf{6}}H_{\textbf{5}} \\ O CH \end{array}}_{CH}$ B. Aus 3.7-Dioxy-chromon (S. 102) und Benzoesäureanhydrid (SCHALL, B. 27, 528). — F: 205-206°.
- 2. 5.7-Dioxy-4-oxo-[1.4-chromen], 5.7-Dioxy-chromon $C_0H_0O_4$, s. nebenstehende Formel. B. Durch Kochen von 5.7-Dimeth-HO ·co~cH oxy-chromon (s. u.) mit Jodwasserstoffsäure (D: 1,9) (v. Kostanecki, DE RULITER DE WILDT, B. 85, 863). — Täfelchen (aus Alkohol). F: 273°. 5-Oxy-7-methoxy-chromon C₁₀H₈O₄, s. nebenstehende Formel. HO B. Durch mehrstündiges Kochen einer methylalkoholischen Lösung von 5.7-Dioxy-chromon (s. o.) mit Methyljodid und Kalilauge (v. K.,

CHa · O ·

5.7-Dimethoxy-chromon $C_{11}H_{10}O_4 = (CH_2 \cdot O)_2C_6H_2$ B. Durch Erhitzen von 5.7-Dimethoxy-chromon-carbonsaure-(2) (Syst. No. 2625) über den Schmelzpunkt (v. K., DE R. DE W., B. 35, 863). — Nadeln mit 1 H₂O (aus Wasser). Schmilzt wasserfrei bei 1316 bis 132°.

DE R. DE W., B. 85, 864). — Nadeln (aus Alkohol). F: 117—118°.

- 7 Methoxy 5 acetoxy chromon C₁₂H₁₀O₅, s. nebenstehende CH₃·CO·O Formel. B. Durch kurzes Kochen von 5-Oxy-7-methoxy-chromon (S. 96) mit Essigsäureanhydrid und Natriumacetat (v. K., DE R. DE W., CH₃·O· C
- 3. 7.8-Dioxy-4-oxo-[1.4-chromen], 7.8-Dioxy-chromon C₉H₆O₄, s. nebenstehende Formel. B. Durch Kochen von 7.8-Dimethoxy-chromon (s. u.) mit Jodwasserstoffsäure (D: 1,9) (DAVID, v. KOSTANECKI, B. 36, 128). Nadeln mit 2H₂O (aus Wasser). Schmilzt wasserfrei bei 262°. Orangegelb löslich in Alkalien.
- 7.8-Dimethoxy-chromon $C_{11}H_{10}O_4 = (CH_3 \cdot O)_2C_6H_3 \cdot O CH$. B. Beim Erhitzen von 7.8-Dimethoxy-chromon-carbonsäure-(2) (Syst. No. 2625) über den Schmelzpunkt (D., v. K., B. 36, 128). Nadeln mit 1 H_2O (aus sehr verd. Alkohol). Schmilzt wasserfrei bei 124°. Färbt sich mit konz. Schwefelsäure gelb.
- 7.8-Diacetoxy-chromon $C_{13}H_{10}O_6 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \stackrel{CO \cdot CH}{\bigcirc -CH}$. B. Durch kurzes Kochen von 7.8-Dioxy-chromon (s. o.) mit Essigsäureanhydrid und entwässertem Natriumacetat (D., v. K., B. 36, 129). Blättchen (aus verd. Alkohol). F: 110°.
- 4. 3.6-Dioxy-2-oxo-[1.2-chromen]. 3.6-Dioxy- HO. CH Cumarin C₉H₆O₄, s. nebenstehende Formel, ist desmotrop mit 6-Oxy-2.3-dioxo-chroman, S. 101.
- 5. 5.7-Dioxy-2-oxo-[1.2-chromen]. 5.7-Dioxy-cumarin
 C₉H₆O₄, s. nebenstehende Formel. B. Beim Erhitzen von 5.7-Diacetoxycumarin (s. u.) mit verd. Schwefelsäure (GATTERMANN, A. 357, 346;
 vgl. E. SCHMIDT, Ar. 242, 294). Gelbliche Nadeln (aus Wasser).
 Schmilzt oberhalb 250° unter partieller Zersetzung (G.). Eisenchlorid färbt die wäßr. Lösung
 erst grün, dann unter Abscheidung eines Niederschlages rot (G.). Liefert beim vorsichtigen
 Schmelzen mit Ätzkali Phloroglucin und Essigsäure (SCH.).
- 5.7-Dimethoxy-cumarin, Citropten, Limettin C₁₁H₁₀O₄, s. charconnebenstehende Formel. Zur Konstitution vgl. Tilden, Burrows, Burrows, Soc. 81, 508. Vorkommen. Im Citronenöl (Boissenot, Journ. de pharmacie 15 [1829], 324; A. ch. [2] 41, 434; Blanchett, Eell., A. ch. [3] 40, 38; A. 88, 346; Crismer, Bl. [3] 6, 31; E. Schmidt, Ar. 242, 289). Im Limettöl (aus den Schalen von Citrus Limetta) (Tilden, Beck, Soc. 57, 323; T., Soc. 61, 344). B. Man rührt die schmierigen Rückstände der Citronenöldestillstion mit Äther an und krystallisiert das abgeschiedene Citropten aus Aceton + Methylalkohol, dann aus verd. Alkohol unter Anwendung von Tierkohle (Sch., C. 1901 II, 809; Ar. 242, 290). Entsteht in sehr geringer Menge beim Erhitzen von 5.7-Dioxy-cumarin (s. o.) mit Methyljodid und methylalkoholischer Kalilauge (Sch., Ar. 242, 294). Prismen oder Nadeln (aus Alkohol). F: 147,5° (T.), 146—147° (Sch., Ar. 242, 290). Destilliert teilweise unzersetzt bei 200° (T.). Sehr schwer löslich in Wasser und Petroläther, leicht in heißem Alkohol, Benzol und Eisessig (T.). Die verd. Lösungen fluorescieren violett (T.). Unlöslich in kalter verdünnter Kalilauge (Sch., Ar. 242, 291). Durch Oxydation mit überschüssigem Kaliumpermanganat erhält man Oxalsäure und sehr wenig Essigsäure (T.). Wird beim Behandeln mit 5% ier Chromsäure vollständig zu Kohlendioxyd und Essigsäure verbrannt (T.). Gibt mit Chlor je nach den Bedingungen Mono-, Di- oder Trichlorcitropten (T., Bu.; T.), mit Brom Dibromcitropten (T.), mit warmer wäßriger Salpetersäure Nitrocitropten (T.). Liefert beim Kochen mit verd. Kalilauge (Sch., C. 1901 II, 810) oder mit alkoh. Natriumäthylatlösung (T., Bu.) 4.6-Dimethoxy-cumarsäure (Bd. X, S. 508). Zerfällt beim Schmelzen mit Kali unter Bildung von Phloroglucin und Essigsäure (T.,
- 5.7-Diacetoxy-cumarin $C_{18}H_{10}O_6=(CH_3\cdot CO\cdot O)_2C_6H_2$ CH:CH CH:CH $CO\cdot O)_2C_6H_2$ $CO\cdot O$ $CO\cdot O$
- 6 oder 8-Chlor-5.7-dimethoxycumarin, Chlorcitropten C₁₁H₂O₄Cl, Formel I oder II. B. Beim Einleiten I. von Chlor in eine kalte Eisessig-Lösung von Citropten, bis der entstehende

BEILSTEINs Handbuch. 4. Aufl. XVIII.

Niederschlag sich wieder aufzulösen beginnt (TILDEN, BURROWS, Soc. 81, 510; vgl. T., Soc. 61, 349). — Nadeln (aus Essigsäure). F: 242° (T., B.). Wird durch Kalilauge nicht angegriffen (T., B.).

- 8.6- oder 8.8-Dichlor-5:7-dimethoxy-cumarin, Dichlorcitropten C₁₁H₂O₂Cl₂ = (CH₃·O)₂C₆HClCO CH:CCl B. Aus Citropten in Eisessig und Chlor in Gegenwart von etwas Jod (TILDEN, BURROWS, Soc. 81, 510). - F: 2750. - Bei Einw. von Alkali entsteht 5 oder 7-Chlor-4.6-dimethoxy-cumarilsäure (Syst. No. 2615).
- 3.6.8 Trichlor 5.7 dimethoxy cumarin, Trichlorcitropten $C_{11}H_2O_4Cl_2$ $(CH_3 \cdot O)_2C_6Cl_2 \cdot O - CO$ B. Beim Einleiten von Chlor in eine eisessigsaure Lösung von Citropten bis zur Sättigung (Th.Den, Soc. 61, 348). — Nadeln (aus Methylalkohol). F: 188,5°.
- 3.6- oder 3.8-Dibrom-5.7-dimethoxy-cumarin. Dibromcitropten $C_{11}H_8O_4Br_8 =$ $(CH_3 \cdot O)_2C_6HBr < CH : CBr \\ O - CO$ B. Beim Eintragen einer Lösung von Citropten in eine Lösung von überschüssigem Brom in Benzol, Toluol oder Eisessig (TILDEN, Soc. 61, 348; vgl. TILDEN, Beck, Soc. 57, 324). — Schuppen oder Prismen (aus Chloroform). Schmilzt bei 257° unter Zersetzung (T.). — Liefert beim Chlorieren ein bei 202° schmelzendes Chlordibrom-citropten C₁₁H₇O₄ClBr₂(T.). Beim Kochen mit 10°/₀iger Kalilauge entsteht 5 oder 7-Brom-4.6-dimethoxy-cumarilsaure (Syst. No. 2615) (T., Burrows, Soc. 81, 509).
- $3.6.8 \text{-Tribrom-5.7-diacetoxy-cumarin} \quad C_{18}H_7O_6Br_8 \ = \ (CH_8 \cdot CO \cdot O)_8C_6Br_8 \\ \underbrace{CH : CBr}_{O-CO}.$ B. Man erhitzt 5 g Dibromeitropten mit 5 g Brom, 2 g Jod und 3 cm² Wasser im Einschlußrohr auf 110° und kocht das erhaltene Produkt mit Essigsäureanhydrid (TILDEN, BURROWS, Soc. 81, 510). — Prismen (aus Essigsaure). F: 244°.
- x-Nitro-5.7-dimethoxy-cumarin, Nitrocitropten C₁₁H₂O₆N. B. Beim gelinden Erwärmen von Citropten mit einem Gemisch aus 1 Vol. konz. Salpetersäure (D: 1,4) und 8 Vol. Wasser (TILDEN, Soc. 61, 350). — Gelbe Prismen (aus Methylalkohol).
- 6. 6.7-Dioxy-2-oxo-[1.2-chromen], 6.7-Dioxy-cumarin, Asculetin C₂H₆O₄, s. nebenstehende Formel; die Stellungsbezeichnung. HO. gilt auch für die in diesem Handbuch gebrauchten, vom Namen "Asculetin" abgeleiteten Namen.— V. In der Rinde der Roßkastanie (Äsculus Hippocastanum) (Rochleder, J. 1863, 589). Im Samen von Euphorbia Lathyris (Tahara, B. 23, 3347). — B. Durch 4—5-stdg. Erhitzen von Oxyhydrochinonaldehyd (Bd. VIII, S. 388) mit Essigsäureanhydrid und entwässertem Natrumaectat auf 170—180° und Verseifen der erhaltenen Diacetylverbindung (Gattermann, Köbner, B. 32, 288). Durch trockne Destillation von Äsculetin-carbonsäure-(3) (Syst. No. 2625) (v. Pechmann, v. Krafft, B. 34, 426). Beim Behandeln von Äsculin (S. 99) mit verdünnten Säuren (Zwenger, A. 90, 68) oder mit Emulsin (Rochleder, Schwarz, A. 88, 356). -- Darst. Man kocht Asculin einige Zeit mit konz. Salzsäure, fällt die Lösung mit Wasser, löst den Niederschlag in warmem Alkohol und fällt mit Bleiacetat; die Bleiverbindung des Asculetins wird mit Alkohol und heißem Wasser gewaschen, in kochendem Wasser suspendiert und durch Schwefelwasserstoff zerlegt (Zw.). — Nadeln mit 1 H₂O (aus Wasser) (Zw.). Verliert bei 100° das Krystallwasser, wird gelb und schmilzt oberhalb 270° unter Zersetzung (Zw.). Fast unlöslich in Äther, sehr wenig löslich in kaltem Wasser, leichter in siedendem, leicht in warmem Alkohol; die kochend gesättigte Lösung ist gelbich und fluoresciert sehr schwach blau (Zw.). Leicht löslich in verd. Alkalien mit gelber Farbe (Zw.). Elektrocapillare Funktion: Gopy, A. ch. [8] 8, 319. Eisenchlorid bewirkt in der wäßr. Lösung eine intensiv grüne Färbung; Bleiacetat bildet einen gelben Niederschlag (Zw.). — Wird von Salpetersäure zu Oxalsäure oxydiert (Zw.). Reduziert in der Wärme Silberlösung und Fehlungsche Lösung (Zw.). Bei der Reduktion mit Natriumamalgam und siedendem Wasser in einer Kohlendioxydatmosphäre entstehen "Hydroäsculetin" (s. nebenstehende Formel, Syst. No. 2843) und 3.4-Dihydro-äsculetin (S. 91) (R., Z. 1867, 532; LIEBERMANN, WIEDERMANN, B. 34, 2614; LIE., LINDENBAUM, B. 35, 2919). Beim Eintragen von Natrium in die alkoh. Lösung von Asculetin bildet sich ein gelbes, HO. CH:

(Kunz-Krause, B. 31, 1190). Beim Schmelzen mit Kali erhält man Protocatechusäure, Oxalsäure und Ameisensäure (H. Schuff, B. 3, 367; 4, 473; A. 161, 78). Einw. von siedender konzentrierter Kalilauge: R., J. 1867, 752. Einw. von siedendem Barytwasser: R., J. 1856,

krystallinisches Natriumsalz, dessen wäßr. Lösung schön blau fluoresciert

678. Einw. von Magnesia in siedender wäßriger Lösung: Schl., B. 13, 1951. Beim Eintragen von Brom in eine Lösung von Äsculetin in heißem Eisessig entsteht x.x.x-Tribromäsculetin (S. 100) (Liebermann, Knietsch, B. 13, 1592; Lie., Mastbaum, B. 14, 475). Äsculetin liefert beim Kochen mit Natriumdisulfitlösung 3.4-Dihydro-äsculetin-sulfonsäure-(3 oder 4) (Syst. No. 2633) (Lie., W., B. 34, 2609; vgl. R., J. 1863, 589; Z. 1867, 530; Schl., A. 161, 83; Lie., Kn., B. 13, 1595). Beim Erhitzen von Äsculetin mit Methyljodid und methylalkoholischer Kalilauge entsteht ein Gemisch von Äsculetin-7-methyläther (s. u.) und Äsculetin-dimethyläther (s. u.) (Tiemann, Will., B. 15, 2075, 2076). Beim Erhitzen mit Essigsäureanhydrid und Natriumacetat erhält man Äsculetin-diacetat (S. 100) (Lie., Kn., B. 13, 1591; vgl. Nachbaue, A. 107, 248; Schl., A. 161, 79). — PbC, H₄O₄. Hellgelber Niederschlag (R., Schw., A. 88, 356; Zw.).

Verbindung $C_{21}H_{16}O_2N_2$. B. Aus Äsculetin und Anilin bei 200° (H. Schiff, B. 4, 473; 13, 1953; A. 161, 80). — Amorphes, braunes Pulver. Löslich in Alkohol mit roter Farbe. — $2C_{21}H_{16}O_2N_2 + 2HCl + PtCl_4$ (Soh., B. 13, 1953).

Äsculin $C_{15}H_{16}O_9 = C_9H_5O_3 \cdot O \cdot C_6H_{11}O_5$ s. in der 4. Hauptabteilung, Kohlenhydrate.

7-Oxy-6-methoxy-cumarin, Äsculetin-6-methyläther, CH3-O CH Scopoletin, Chrysatropasäure, Gelseminsäure C₁₈H₈O₄, s. nebenstehende Formel. Zur Konstitution vgl. Moore, Soc. 99 [1911], 1044. — V. In der Wurzel von Scopolia japonica (ELJEMAN, R. 3, 171; Henschee, Ar. 226, 203). In Atropa Belladonna (Kunz, Ar. 228, 723; J. 1885, 1810). In den Blättern und dem Holz von Fabiana imbricata (Kunz-Krause, Ar. 237, 13). In der Wurzel von Gelsemium sempervirens (E. Schmidt, Ar. 236, 324; vgl. Wormley, J. 1870, 884; Sonnenschein, Robbins, B. 9, 1182). In der Rinde von Prunus serotina (Power, Moore, Soc. 95, 243, 250, 256). Im Jalapenharz (Power, Rogerson, C. 1909 II, 984). — B. Beim Kochen von Scopolin (s. u.) mit verdünnter Schwefelsäure (E., R. 3, 179). — Nadeln oder Prismen. F: 198° (E., R. 3, 172), 202—203° (Sch.), 204° (P., M.). Sublimiert in feinen Nadeln (E., R. 3, 172). Unlöslich in Schwefelkohlenstoff und Benzol, schwer löslich in kaltem Wasser und Äther, etwas leichter in Chloroform, leicht in heißem Alkohol und Eisessig (E., R. 3, 171). Löslich in Alkalien; reagiert schwach sauer (E., R. 3, 172). Die Lösungen in Wasser und Alkohol zeigen besonders nach Zusatz von wenig Alkali prächtig blaue Fluorescenz (Sch.). — Reduziert bei Siedehitze Fehlingsche Lösung und ammoniakalische Silberlösung (Sch.). Beim Auflösen von Natrium in der alkoh. Lösung der Säure entstehen gelbe, in Wasser leicht lösliche Natriumsalze (Ku.-Ke., B. 31, 1192). Wird von Jodwasserstoffsäure in Methyljodid und Äsculetin zerlegt (Sch.). Eisenchloridlösung färbt die wäßr. Lösung grün; Kaliumpermanganat färbt grün, auf Zusatz von verd. Schwefelsäure indigblau; konz. Salpetersäure löst mit gelbroter, auf Zusatz von Ammoniak in Blutrot übergehender Farbe (Sch.).

Als Glykosid des Scopoletins ist vielleicht aufzufassen Scopolin, s. in der 4. Hauptabteilung, Kohlenhydrate.

6-Oxy-7-methoxy-cumarin, Äsculetin-7-methyläther
C₁₀H₈O₄, s. nebenstehende Formel. Zur Konstitution vgl. Moore,
Soc. 99 [1911], 1044; BARGELLINI, MONTI, G. 45 I [1915], 92.

B. Neben Asculetin-dimethyläther beim Erhitzen von 1 Mol Asculetin mit 2 Mol Methyljodid in methylalkoholischer Kalilauge (Tiemann, Will, B. 15, 2075). — Nadeln. F: 184°. Unlöslich in Ligroin und kaltem Wasser, etwas löslich in heißem Wasser, leicht in Alkohol, Ather und Benzol. Löslich in Alkalien und daraus durch Säuren fällbar. Die wäßr. Lösung wird durch Eisenchlorid nicht gefärbt.

6.7 - Dimethoxy - cumarin, Äsculetin - dimethyläther C₁₁H₁₀O₄ = CH:CH (CH₃·O)₂C₆H₂ O. B. Neben Äsculetin-7-methyläther beim Erhitzen von 1 Mol Äsculetin mit 2 Mol Methyljodid und methylalkoholischer Kalilauge (Tiemann, Will, B. 15, 2075). Bei der trocknen Destillation des Silbersalzes der 6.7-Dimethoxy-cumarin-carbonsäure-(4) (Syst. No. 2625) im Wasserstoffstrom (v. Pechmann, v. Krafft, B. 34, 426). — Nädelchen (aus Wasser). F: 141—142° (v. P., v. K.), 144° (T., W.). Fast unlöslich in Ligroin, leicht löslich in Alkohol, Äther und Benzol (T., W.). Unlöslich in kalten verdünnten Alkalien, löslich in heißen Alkalien; wird aus der heißen alkalischen Lösung durch Salzsäure unverändert abgeschieden (T., W.). — Liefert durch Eindampfen mit etwas Natronlauge zur Trockne und Erhitzen des Rückstandes mit Methyljodid und Methylalkohol im Einschlußrohr auf 100° 2.4.5-Trimethoxy-zimtsäure-methylester (Bd. X, S. 508) (T., W.).

6 oder 7-Oxy-7 oder 6-äthoxy-cumarin, Äsculetin-6 oder 7-äthyläther $C_{11}H_{10}O_4 = (C_2H_5\cdot O)(HO)C_6H_8 \underbrace{CH:CH}_{O-CO}$. B. Neben Äsculetin-diäthyläther beim Kochen von Äsculetin-

100

mit Äthyljodid in alkoh. Kalilauge (WILL, B. 16, 2107). — Krystalle. F: 143°. Leicht löslich in Alkohol, Äther und Benzol, mäßig in heißem Wasser, unlöslich in kaltem Wasser. Die alkoh. Lösung fluoresciert blau. Leicht löslich in kalten verdünnten Alkalien und in Ammoniak.

- 6.7 Diäthoxy cumarin, Äsculetin diäthyläther $C_{18}H_{14}O_4=(C_8H_6\cdot O)_8C_6H_2$ CH: CH (C₈H₆· O)₈C₆H₂ O. B. Neben Äsculetin-6 oder 7-äthyläther beim Kochen von Äsculetin mit Äthyljodid und alkoh. Kalilauge (W., B. 16, 2107). Blättchen (aus stark verd. Alkohol). F: 109°. Leicht löslich in Alkohol, Äther, Schwefelkohlenstoff und Benzol. Die alkoh. Lösung fluoresciert blau. Unlöslich in kalter verdünnter Kalilauge; löst sich aber beim Erwärmen und wird aus dieser Lösung durch Salzsäure unverändert gefällt.
- 6-Methoxy-7-acetoxy-cumarin, Äsculetin-6-methyläther-7-acetat C₁₂H₁₀O₅, s. nebenstehende Formel. B. Beim Kochen von Äsculetin-6-methyläther (S. 99) mit Essigsäure-anhydrid (Power, Moore, Soc. 95, 256). Blättehen (aus Essigsäureanhydrid). F: 176° bis 177°.
- 6.7 Diacetoxy cumarin, Äsculetin diacetat C₁₈H₁₆O₆ = CH:CH CH:CH (CH₃·CO·O)₈C₆H₈CO·CO. B. Durch Behandeln von Äsculetin (S. 98) mit Essigsäureanhydrid und Natriumacetat (Liebermann, Knietsch, B. 13, 1591; vgl. Nachbaue, A. 107, 248; H. Schiff, A. 161, 79). Durch 4—5-stdg. Erhitzen von Oxyhydrochinonaldehyd (Bd. VIII, S. 388) mit Essigsäureanhydrid und Natriumacetat auf 170—180° (Gattermann, Köbner, B. 32, 288). Bei der Einw. von Essigsäureanhydrid und Natriumacetat auf das Natriumsalz der 3.4-Dihydro-äsculetin-sulfonsäure-(3 oder 4) (Syst. No. 2633) (Liebermann, Wiedermann, B. 34, 2609). Prismen (aus Alkohol): F: 133—134° (L., Kn.; G., Kö.).
- 3-Brom-6.7-diäthoxy-cumarin, 3-Brom-äsculetin-diäthyläther $C_{13}H_{13}O_4$ Br, s. nebenstehende Formel. B. Aus 1 Mol Äsculetin-diäthyläther (s. o.) und 1 Mol Brom in Schwefelkohlenstoff (Will, B. 16, 2118). Nadeln. F: 169°. Liefert beim Kochen mit alkoh. Kali 5.6-Diäthoxy-cumarilsäure (Syst. No. 2615).
- x.x-Dibrom-6.7-dioxy-cumarin, x.x-Dibrom-äsculetin $C_9H_4O_4Br_2$. B. Beim Behandeln von Dibromäsculin mit konz. Schwefelsäure (Liebermann, Knietsch, B. 13, 1592). Gelbliche Nadeln (aus Alkohol). F: 233°. Etwas löslich in Wasser.
- Diacetylderivat $C_{12}H_2O_5Br_3 = C_9H_2O_3Br_3(O\cdot CO\cdot CH_3)_3$. B. Durch Acetylierung von x.x-Dibrom-äsculetin (L., K., B. 13, 1595). Nadeln (aus Alkohol). F: 177°.
- x.x.x-Tribrom-6.7-dioxy-cumarin, x.x.x-Tribrom-äsculetin C₂H₂O₄Br₂. B. Durch Eintragen von 3 Mol Brom in eine heiße essigsaure Lösung von 1 Mol Äsculetin (LIEBERMANN, KNIETSCH, B. 13, 1592; LIE., MASTBAUM, B. 14, 475). Gelbe Nadeln (aus Alkohol). F: 240° (Zers.).

Diacetylderivat $C_{19}H_7O_6Br_8=C_9HO_9Br_8(O\cdot CO\cdot CH_9)_8$. Beim Behandeln von x.x.x-Tribrom-äsculetin mit Essigsäureanhydrid und Natriumacetat (Liebermann, Knietsch, B. 13, 1592). Bei der Bromierung von Äsculetin-diacetat in Eisessig (L., K.). — Nadeln (aus Alkohol). Schmilzt unter Zersetzung bei 180—182°. Unlöslich in Wasser. t

7.8-Dioxy-2-oxo-[1.2-chromen], 7.8-Dioxy-cumarin, Daphnettn C,H,O,, s. nebenstehende Formel; die Stellungsbezeichnung gilt auch für die in diesem Handbuch gebrauchten, vom Namen., Daphnetin" abgeleiteten Namen. — B. Beim Kochen von Daphnin (S. 101) mit verdünnten Mineralsäuren oder beim Behandeln desselben mit Emulsin (Zwenger, A. 115, 8). Beim Erhitzen äquimolekularer Mengen Äpfelsäure und Pyrogallol mit konz. Schwefelsäure (v. Pechmann, B. 17, 934). Durch Erhitzen von Pyrogalloladehyd (Bd. VIII, S. 388) mit Essigsäureanhydrid und Natriumacetat auf 170° bis 180° und Erwärmen des erhaltenen Daphnetin-diacetats mit 50°/siger Schwefelsäure (Gattermann, Köbner, B. 32, 287). — Gelbliche Nädeln oder Prismen (aus verd. Alkohol). Riecht in der Wärme cumarinartig (v. P.). F: 255—256° (v. P.). Sublimierbar (Zw.). Löslich in kochendem Wasser, noch leichter in heißem verdünntem Alkohol oder Eisessig, äußerst wenig in Äther, fast unlöslich in Schwefelkohlenstoff, Chloroform und Benzol (v. P.). Löslich in Alkalien und Alkalicarbonaten mit rotgelber Farbe; die Lösungen zersetzen sich beim Stehenlassen oder Kochen (v. P.). Reduziert Silbernitratlösung und alkal. Kupferlösung schon in der Kälte (v. P.). Gibt mit Kalkwasser, Barytwasser und Bleizoetat gelbe Niederschläge (Zw.; v. P.). Beim Eintragen von Natrium in die alkoh. Lösung von Daphnetin erhält

man ein Natriumsalz, dessen wäßr. Lösung fluoresciert (Kunz-Krause, B. 31, 1190). Die wäßr. Lösung gibt mit Eisenchlorid eine grüne Färbung, die auf Zusatz von Soda rot wird (v. P.). Färbt sich durch Kochen mit Disulfit bis zur Lösung und Zusatz von Eisenchlorid (v. P.). Fartt sich durch Kochen mit Disulfit bis zur Lösung und Zusatz von Eisenchlorid intensiv blau (v. PECHMANN, COHEN, B. 17, 2188); versetzt man die Disulfitlösung mit Ammoniak und Ferricyankalium, so erhält man eine rotgelbe Lösung (v. P., C.). — $KC_9H_5O_4+C_9H_4O_4$. Hellgelbe Nadeln; wird durch siedendes Wasser zersetzt (A. G. PERKIN, WILSON, Soc. 83, 135). — $KC_9H_5O_4$. Granatrote Nadeln; löslich in Wasser mit orangegelber Farbe; wird durch siedendes Wasser nicht zersetzt (P., W.). — $PbC_9H_4O_4$ (bei 100^9). Hellgelber Niederschlag (Zw.). — Verbindung mit Kaliumacetat $C_9H_6O_4+KC_2H_3O_3$. Hellgelbe Nadeln; wird durch siedendes Wasser zersetzt (P., W.).

Daphnin $C_{18}H_{16}O_{9} = C_{9}H_{8}O_{3} \cdot O \cdot C_{6}H_{11}O_{8}$ s. in der 4. Hauptabteilung, Kohlenhydrate.

7-Oxy-8-äthoxy-cumarin, Daphnetin - 8-äthyläther C₁₁H₁₀O₄, s. nebenstehende Formel. Zur Konstitution vgl. Wrself, Sturm, B. 63 [1930], 1300. — B. Entsteht neben Daphnetin-diathyläther beim Kochen von 6 Tln. Daphnetin mit 4 Tln. Ätzkali, 9 Tln. Äthyljodid und Alkohol (Will, Jung, B. 17, 1083). — Blättchen (aus verd. Alkohol). F: 155° (Wi., J.). Sehr wenig löslich in kaltem Wasser, leicht in Alkohol, Äther, Benzol und in Natronlauge. Die Lösungen fluorescieren nur sehr schwach (WI., J.).

7.8 - Diäthoxy - cumarin, Daphnetin - diäthyläther $C_{12}H_{14}O_4$ =

(C₃H₅·O)₃C₆H₂CO—CO B. Neben Daphnetin-8-äthyläther beim Kochen von 6 Tln. Daphnetin mit 9 Tin. Äthyljodid und 4 Tin. Ätzkali in alkoh. Lösung (Will, Jung, B. 17, 1083, 1084). — Nadeln (aus Alkohol). F: 72°. Unlöslich in Wasser, leicht löslich in Alkohol, Ather und Benzol. Unzersetzt löslich in kalter konzentrierter Schwefelsaure. Löst sich in verdünnter Kalilauge erst beim Kochen; wird aus dieser Lösung durch Säuren unverändert gefällt.

7.8 - Diacetoxy - cumarin, Daphnetin - diacetat $C_{13}H_{10}O_6 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \cdot CO \cdot O$. B. Beim Erwärmen von Daphnetin mit B. Beim Erwärmen von Daphnetin mit Acetylchlorid auf

100° (STÜNKEL, B. 12, 112). Beim Erhitzen von Daphnetin mit Essigsäureanhydrid (St.) und Natriumacetat (v. PECHMANN, B. 17, 935). Beim Erhitzen von 2 g Pyrogallolaldehyd (Bd. VIII, S. 388) mit 10 g Essigsäureanhydrid und 3 g wasserfreiem Natriumacetat auf 170° bis 180° (GATTERMANN, KÖBNER, B. 32, 287). — Nadeln (aus verd. Alkohol). F: 129—130° (St.), 128—129° (v. P.; G., K.). Äußerst leicht löslich in Äther, Chloroform, Eisessig und Benzol, schwieriger in Alkohol (St.). — Beim Erwärmen mit einer Lösung von in sehr verd. Alkohol auf 100° entsteht eine bei ca. 290° schmelzende sehr wenig lösliche Verbindung (ST.).

7.8 - Dibenzoyloxy - cumarin, Daphnetin - dibenzoat $C_{22}H_{14}O_6 = (C_0H_5\cdot CO\cdot O)_2C_0H_2\underbrace{CH:CH}_{CO}$. B. Beim Erhitzen von Daphnetin mit Benzoylchlorid (Stünkel, B. 12, 113; v. Pechmann, B. 17, 935). — Warzen. F: 152° (v. P.), 149—150° (St.). Unlöslich in Ather, schwer löslich in siedendem Alkohol, leicht in Eisessig, Chloroform und Benzol (St.; v. P.).

3 - Brom - 7.8 - diathoxy - cumarin, 3 - Brom - daphnetindiäthyläther C₁₃H₁₃O₄Br, s. nebenstehende Formel. B. Beim Ver-CaHs · O· setzen einer Lösung von Daphnetin-diäthyläther in Schwefelkohlen-

stoff mit einer Lösung von Brom in Schwefelkohlenstoff (Will, Jung, C₂H₅·0 B. 17, 1084). — Faserige Krystalle (aus Alkohol). F: 115°. Schwer löslich in kaltem Alkohol, leichter in Ather und Benzol. Unlöslich in verd. Natronlauge. — Beim Kochen mit alkoh. Kali entsteht 6.7-Diathoxy-cumarilsaure (Syst. No. 2615).

6-Oxy-2.3-dioxo-chroman bezw. 3.6-Dioxy-2-oxo-[1.2-chromen],

3.6-Dioxy-cumarin $C_9H_6O_4$, Formel I bezw. II. B. Beim Kochen von 2-Phenyl-4-[2.5-diacetoxy-benzal]-oxazolon- (5) (Formel III) (Syst. No. 4300) mit konz. Natronlauge im Wasser-

stoffstrom (Neubauer, Flatow, H. 52, 384; vgl. Erlenmeyer, A. 337, 267). — Krystallwasserhaltige Blättchen (aus Wasser), wasserfreie Nadeln (aus siedendem Wasser). Das Krystallwasser entweicht bei 100° (N., F.). F: über 220° (N., F.). Gibt mit Eisenchlorid, besonders in alkoh. Lösung, Grünfärbung (N., F.). — Reduziert ammoniakalische Silberlösung in der Wärme (N., F.). Natriumamalgam reduziert zu β -[2.5-Dioxy-phenyl]-milchsäure (Bd. X, S. 495) (N., F.).

Verbindung C₂H₃O₄Br₂ = C₂H₅O₄ + 2HBr (†). B. Neben x.x-Dibrom-3.7-dioxy-chromon (s. u.) beim Versetzen einer siedenden Lösung von 3.7-Dioxy-chromon in Eisessig mit einer siedenden 6,5% igen Lösung von Brom in Eisessig (Schall, Dralle, B. 25, 22, 25). — Bräunliche Nädelchen (aus Eisessig). Erweicht bei 225—227° unter Bräunung. In Eisessig leichter löslich als x.x-Dibrom-3.7-dioxy-chromon.

x.x.-Dibrom-7-oxy-3.4-dioxo-chroman bezw. x.x-Dibrom-8.7-dioxy-chromon $C_0H_4O_4Br_2$. B. Entsteht neben der Verbindung $C_0H_8O_4Br_2$ (s. o.) beim Versetzen einer siedenden Lösung von 3.7-Dioxy-chromon in Eisessig mit einer siedenden 6,5% [Genalian Lösung von Brom in Eisessig (Schall, Dralle, B. 25, 22). — Fleischfarbene Spieße (aus Eisessig). F: 235%.

x.x.x-Tribrom-7-qxy-3.4-dioxo-chroman bezw. x.x.x-Tribrom-3.7-dioxy-chromon $C_0H_3O_4Br_3$. B. Aus 1 Mol 3.7-Dioxy-chromon und ca. 2 Mol Brom in siedendem Eisessig (Schall, Dralle, B. 25, 23). — Fleischfarbene Prismen (aus sehr verd. Alkohol). Schmilzt unter Bräunung bei 257—258°. Schwer löslich in kaltem Alkohol und Eisessig.

10. 4.6-Dioxy-51-oxo-5-methyl-cumaron, 4.6-Dioxy-5-formyl-cumaron $C_0H_0O_4$, Formel III.

7-Nitro-6-oxy-4-methoxy-5-formyl-cumaron $C_{10}H_7O_8N$, Formel IV 1). B. Neben der entsprechenden Carbonsaure (Syst. No. 2615) bei der Oxydation von Nitrobergapten

(Formel V, Syst. No. 2808) mit Salpetersäure (D: 1,48) (POMERANZ, M. 14, 31). — Gelbrote Krystalle (aus Eisessig). Färbt sich gegen 200° dunkelbraun und zersetzt sich bei höherer Temperatur.

11. 6-Oxy-1.3-dioxo-4-methyl-phthalan, [5-Oxy-3-methyl-phthalsäure]-anhydrid, β -Coccinsäureanhydrid $C_0H_0O_4$, s. nebenstehende Formel. B. Aus Cochenillesäure (Bd. X, S. 581) bei wiederholtem Sublimieren oder bei längerem Erhitzen auf 250—260° (Liebermann, Voswinckel B. 30, 1733, 1743). — Krystalldrusen (aus Benzol). F: 166—168°. Löst sich beim Kochen mit Wasser unter Bildung von β -Coccinsäure (Bd. X, S. 511).

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von THOMS, BAETCEE, B. 45, 3705.

- [4.6-Dibrom-5-oxy-3-methyl-phthalsäure]-anhydrid C₂H₄O₄Br₂, CH₃
 s. nebenstehende Formel. B. Neben anderen Produkten durch Erwärmen einer alkal. Lösung von ,,α-Oxybromcarmin" (Bd. X, S. 1003) oder von β-Bromcarmin (Bd. VIII, S. 414) mit Kaliumpermanganat, Ansäuern und Erwärmen (WILL, LEYMANN, B. 18, 3185, 3189). Neben anderen Produkten Br beim Kochen von α-Bromcarmin (Bd. VIII, S. 297) mit Sodalösung, Ansäuern und Erwärmen des Äther-Extrakts auf dem Wasserbad (v. MILLER, ROHDE, B. 26, 2663). Krystalle (aus Alkohol). F: 195° (W., L.), 196—196,5° (v. M., R.). Sublimiert zum Teil unzersetzt (v. M., R.). Unlöslich in Wasser (W., L.), ziemlich schwer löslich in Äther (v. M., R.). Löslich in Alkalien (W., L.).
- [4.6 Dibrom 5 methoxy 3 methyl phthalsäure] anhydrid $C_{10}H_6O_4Br_2 = CH_3 \cdot O \cdot C_6Br_2(CH_3) < \frac{CO}{CO} > O$. B. Beim Erhitzen von 4.6-Dibrom-5-methoxy-3-methylphthalsäure (Bd. X, S. 511) auf 100° (Will, Leymann, B. 18, 3191). Krystalle. F: 144°. Unlöslich in Wasser, leicht löslich in Alkohol und Äther.

3. Oxy-oxo-Verbindungen C₁₀H₈O₄.

- 1. 2.5-Dioxo-3-[2-oxy-phenyl]-furantetrahydrid, [2-Oxy-phenylbern-steinsäure]-anhydrid $C_{10}H_8O_4=\frac{H_2C-CH\cdot C_8H_4\cdot OH}{OC\cdot O\cdot CO}$. B. Beim Erhitzen von 2-Oxy-phenylbernsteinsäure (Bd. X, S. 514) im Vakuum auf 150° (Bredt, Kallen, A. 293, 368). Nådelchen (aus Äther). F: 134°. Kp₁₄: 220° (unter teilweiser Zersetzung). Schwerer löslich in Alkohol und Äther als die Säure. Löst sich in kaltem Wasser langsam, in heißem Wasser rasch unter Rückbildung der Säure.
- [2 Acetoxy phenylbernsteinsäure] anhydrid $C_{12}H_{10}O_5 := H_1C CH \cdot C_0H_4 \cdot O \cdot CO \cdot CH_3$. Beim Erwärmen von [2-Oxy-phenylbernsteinsäure]-OC·O·CO anhydrid (s. o.) mit der mehrfachen Menge Acetylchlorid (B., K., A. 293, 369). Krystalle (aus Äther). F: 90°. Leicht löslich in Chloroform, schwer in Äther.
- 2. 5.7-Dioxy-4-oxo-2-methyl-[1.4-chromen], 5.7-Di-oxy-2-methyl-chromon C₁₀H₈O₄, s. nebenstehende Formel.

 B. Durch 2—3-stündiges Kochen von 2.4.6-Trimethoxy-benzoylaceton (Bd. VIII, S. 493) mit konz. Jodwasserstoffsäure (Jochum, v. Kosta-necki, B. 37, 2100). Täfelchen (aus Alkohol). F: 290°. Leicht löslich in verd. Natronlauge mit gelber Farbe.
- 5.7 Diacetoxy 2 methyl chromon C₁₄H₁₃O₆ = (CH₃·CO·O)₂C₆H₂CO·CH₃.

 B. Beim Kochen von 5.7-Dioxy-2-methyl-chromon mit Essigsäureanhydrid und entwässertem Natriumacetat (J., v. K., B. 37, 2101). Nadeln (aus Benzol-Ligroin oder verd. Alkohol). F: 149°.
- 3. 7.8-Dioxy-4-oxo-2-methyl-[1.4-chromen], 7.8-Di-oxy 2-methyl-chromon C₁₀H₃O₄, s. nebenstehende Formel.

 B. Durch längeres Kochen von 7.8-Dimethoxy-2-methyl-chromon (s. u.)
 mit Jodwasserstoffsäure (BLUMBERG, v. KOSTANECKI, B. 36, 2192).

 Ho
 Nadeln mit ¹/₃ H₃O (aus Wasser). Schmilzt wasserfrei bei 243°. In Natronlauge mit intensiv gelber Farbe löslich. Eisenchlorid färbt die alkoh. Lösung grün. Konz. Schwefelsäure färbt die Kryställchen gelb und erzeugt eine schwach grünlichgelbe Lösung.
- 7.8-Dimethoxy-2-methyl-chromon $C_{12}H_{12}O_4=(CH_3\cdot O)_2C_6H_2\cdot CO\cdot CH$ $O-C\cdot CH_3$ B. Durch kurzes Kochen von 2.3.4-Trimethoxy-benzoylaceton (Bd. VIII, S. 492) mit Jodwasserstoffsäure (B., v. K., B. 36, 2192). Durch Methylieren von 7.8-Dioxy-2-methyl-chromon mit Methyljodid und alkoh. Kali (B., v. K.). Nadeln mit 1 H_2O (aus Wasser). Schmilzt wasserfrei bei 102°.
- 7.8-Diacetoxy-2-methyl-chromon $C_{14}H_{12}O_6 = (CH_3 \cdot CO \cdot O)_2C_4H_2 \cdot CO \cdot CH_3$. B. Durch kurzes Erhitzen von 7.8-Dioxy-2-methyl-chromon mit Essigsäureanhydrid und entwässertem Natriumacetat (B., v. K., B. 36, 2192). Nadeln (aus verd. Alkohol). F: 120°.

4. 5.7-Dioxy-2-oxo-3-methyl-[1.2-chromen], 5.7-Dioxy-3-methyl-cumarin $C_{10}H_sO_4$, s. nebenstehende Formel.

HO CH COCHS

5.7-Dimethoxy-8-methyl-cumarin $C_{12}H_{12}O_4 =$

(CH₃·O)₂C₆H₂·CH:C·CH₃. B. Beim Erhitzen des Silbersalzes der 4.6-Dimethoxy-cumarsäure (Bd. X, S. 508) mit Methyljodid und Methylalkohol (TILDEN, BURROWS, Soc. 81, 511). — Nadeln (aus Aceton). F: 189°. Löst sich in siedendem Alkali; wird aus der Lösung durch Säuren unverändert gefällt.

- 4 Brom 5.7 dimethoxy 3 methyl cumarin $C_{12}H_{11}O_4Br = (CH_3 \cdot O)_2C_6H_2 \cdot O_{-} \cdot CO$. B. Aus 5.7-Dimethoxy-3-methyl-cumarin und Brom in Essigsaure (T., B., Soc. 81, 512). Nadeln (aus Essigsaure). F: 260°.
- 5. 5.7-Dioxy-2-oxo-4-methyl-[1.2-chromen], 5.7-Dioxy-4-methyl-cumarin C₁₀H₈O₄, s. nebenstehende Formel. B. Durch Zusatz von konz. Schwefelsäure zu einem Gemisch aus Phloroglucin und Acetessigester (Pechmann, Cohen, B. 17, 2189). Nadeln (aus Alkohol). F: 282—284°. Leicht löslich in Alkohol und Eisessig, schwer in Wasser, Chloroform und Benzol, fast unlöslich in Äther. Leicht löslich in Alkalien. Die Lösungen fluorescieren nicht. Die wäßr. Lösung wird durch Eisenchlorid nicht gefärbt.
- 5.7-Diacetoxy-4-methyl-cumarin $C_{14}H_{12}O_6 = (CH_2 \cdot CO \cdot O)_2C_0H_2 < C(CH_2) : CH$ (aus Alkohol). F: 138—140° (v. Pechmann, Cohen, B. 17, 2190). Unlöslich in Wasser, schwer löslich in Äther, leicht, in Alkohol, Chloroform und Eisessig.
- 6. 6.7-Dioxy-2-oxo-4-methyl-[1.2-chromen], 6.7-Di-HO.

 oxy 4 methyl cumarin, 4 Methyl deculetin C₁₀H₂O₄, HO.

 s. nebenstehende Formel. B. Aus Oxyhydrochinontriacetat (Bd. VI,
 S. 1089) und Acetessigester mittels kalter konzentrierter Schwefelsäure oder siedender, alkoholischer Zinkchloridlösung (v. Pechmann, v. Krafft, B. 34, 423; vgl. Organic Syntheses, Collective Volume I [New York 1932], S. 352). Gelbstichige Nadeln (aus verd. Alkohol), die bei 250° sintern und bei 269—270° schmelzen. Löslich in heißem Wasser, Alkohol, Eisessig, konz. Schwefelsäure und verd. Alkalien mit blauer Fluorescenz. Eisenchlorid färbt die Lösungen grasgrün. Kocht man 2 Minuten mit Disulfitlösung und fügt dann einen Tropfen Eisenchlorid-Lösung hinzu, so entsteht eine blaue Färbung, die auf Zusatz von Ammoniak in Rot übergeht.
- 7. 7.8-Dioxy-2-oxo-4-methyl-[1.2-chromen], 7.8-Dioxy-4-methyl-cumarin, 4-Methyl-daphnetin C₁₀H₂O₄, s. nebenstehende Formel. B. Durch Zusatz von konz. Schwefelsäure zu einem Gemisch aus Pyrogallol und Acetessigester (Wittenberg, Ho J. pr. [2] 26, 68; v. Pechmann, Duisberg, B. 16, 2127). Nadeln (aus Wasser). F: 235° (W.; v. P., D.). Unlöslich in kaltem Wasser, löslich in heißem Wasser und in Alkohol (W.; v. P., D.). Die Lösung in wäßr. Alkohol wird durch Eisenchlorid intensiv grün gefärbt (W.; v. P., D.). Kocht man mit Natriumdisulfitlösung, bis alles gelöst ist, so entsteht auf Zusatz von Eisenchlorid eine intensiv blaue, auf Zusatz von Ammoniak und Ferricyankalium eine rotgelbe Färbung (v. Pechmann, Cohen, B. 17, 2188). Liefert mit Brom einen gelben, beizenziehenden Farbstoff (Anthracengelb) (Bayer & Co., D. R. P. 52927; Frdl. 2, 486; Schultz, Tab. No. 773).

Diacetylderivat $C_{14}H_{19}O_6=C_{10}H_6O_2(O\cdot CO\cdot CH_8)_9$. B. Durch Kochen von 4-Methyldaphnetin mit Essigsäureanhydrid (WITTENBERG, J. pr. [2] 26, 69). — Krystalle (aus Alkohol). F: 176°. Schwer löslich in kaltem Alkohol, leicht in heißem; unlöslich in Alkalien.

8-Chlor-7.8-dioxy-4-methyl-cumarin, 8-Chlor-4-methyl-daphnetin C₁₀H₂O₂Cl, s. nebenstehende Formel. B. Durch 24-stündige Einw. von 140 cm³ konz. Schwefelsäure auf ein mit etwas Äther versetztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogallol und 17 gα-Chlor-setztes, auf 0° abgekühltes Gemisch von 25 g Pyrogal

Dimethyläther $C_{13}H_{11}O_4Cl = (CH_3\cdot O)_2C_6H_3\cdot CCl$. B. Beim Behandeln von 3-Chlor-4-methyl-daphnetin mit Methyljodid und Natriummethylat in methylalkoholischer Lösung (v. P., H., B. 34, 360). — Nädelchen (aus Alkohol). F: 172—173°. Schwer löslich in den gewöhnlichen Lösungsmitteln. — Liefert beim Kochen mit Alkalien 6.7-Dimethoxy-3-methyl-cumaron-carbonsäure-(2) (Syst. No. 2615).

Diacetylderivat $C_{14}H_{11}O_6Cl = (CH_3 \cdot CO \cdot O)_2C_6H_2 < \begin{array}{c} C(CH_3) \cdot CCl \\ O - \\ CO \end{array}$. B. Aus 3-Chlor-4-methyl-daphnetin mit Essigsäureanhydrid und Natriumacetat (v. P., H., B. 34, 360). — Säulen (aus Alkohol oder Eisessig). F: 197°.

Dibenzoylderivat $C_{24}H_{15}O_6Cl = (C_0H_5\cdot CO\cdot O)_3C_0H_2\cdot CCH_2\cdot CO \cdot D)_3C_0H_2\cdot CO \cdot D$. B. Aus 3-Chlor-4-methyl-daphnetin mit Benzoylchlorid und Natronlauge (v. P., H., B. 34, 360). — Nädelchen (aus Alkohol oder Eisessig). Beginnt bei 166° zu schmelzen, die Schmelze ist aber erst bei 181—183° völlig durchsichtig.

8. 5.7-Dioxy-1-oxo-4-methyl-isochromen, 5.7-Dioxy-4-methyl-isocumarin C₁₀H_sO₄, s. nebenstehende Formel. B. Durch Eintragen von 3.5-Dioxy-benzoesäure-acetonylester (Bd. X, S. 405) in kalte konzentrierte Schwefelsäure (Fritsch, D. R. P. 73700; Frdl. 3, 970). — F: 258°.

Diäthyläther $C_{14}H_{16}O_4 = (C_2H_5\cdot O)_2C_6H_2 < CO \longrightarrow 0$. B. Durch Eintragen von 3.5-Diāthoxy-benzoesāure-acetonylester (Bd. X, S. 406) in kalte konzentrierte Schwefelsäure (F., D. R. P. 73700; Frdl. 3, 970). — F: 131°.

4. Oxy-oxo-Verbindungen C₁₅H₁₈O₄.

1. Verbindung C18H18O4, Formel I.

Chinolartige Verbindung aus gewöhnlichem Desmotroposantonin bezw. Nitrodesmotroposantonin (,,Nitrooxydesmotroposantonin") $C_{15}H_{17}O_6N$, Formel H^1). B. Aus gewöhnlichem Desmotroposantonin (S. 39) durch Einw. von Salpetersäure (D: 1,40)

bei gewöhnlicher Temperatur (Andrecci, R. A. L. [5] 5 II, 312) oder von Salpetersäure (D: 1,23) beim Erwärmen auf dem Wasserbade (Bargellini, Daconto, G. 38 II, 49; vgl. B., G. 37 II, 418; R. A. L. [5] 16 II, 263). Entsteht auch aus der entsprechenden chinitrolartigen Verbindung C₁₈H₁₆O₂N₂ (s. im Artikel gewöhnliches Desmotroposantonin) oder aus Nitrodesmotroposantonin (S. 40) beim Erwärmen mit Salpetersäure (D: 1,23) auf dem Wasserbade (B., D.). — Prismen (aus Eisessig). Wird gegen 200° goldgelb, beginnt gegen 220° sich zu zersetzen und ist bei 237—240° völlig zersetzt (B., D.). Löslich in kochendem Eisessig, wenig löslich in warmem Alkohol und Essigester, unlöslich in Äther und Wasser; unlöslich in kalten Alkalien (A.). Löslich in konz. Schwefelsäure unter Rotfärbung (B., D.). — Bei längerem Durchleiten von SO₂ durch eine siedende Lösung in verd. Essigsäure wird Nitrodesmotroposantonin erhalten (B., D.). Beim Kochen mit 2 Tln. Natriumacetat und 10 Tln. Acetanhydrid entsteht das entsprechende Acetat (B., D.).

Acetylderivat $C_{17}H_{19}O_7N = O_8N \cdot (CH_3)_2C_{18}H_{10}O(:O)_8 \cdot O \cdot CO \cdot CH_8$. B. Beim Kochen von 1 Tl. "Nitrooxydesmotroposantonin" mit 2 Tln. Natriumacetat und 10 Tln. Acetanhydrid (B., D., G. 38 II, 50). — Nadeln (aus Alkohol). F: 186—188°.

¹) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von Clemo, Haworth, Walton, Soc. 1930, 1110 und Techtschibabin, Schtschukina. B. 63, 2793 über die Konstitution des Desmotroposantonins.

Chinitrolartige Verbindung aus gewöhnlichem Desmotroposantonin $C_{15}H_{16}O_7N_9$, Formel I, s. S. 39.

Chinolartige Verbindung aus Lävodesmotroposantonin $C_{15}H_{17}O_6N$, Formel II. B. Beim Erwärmen von Lävodesmotroposantonin (S. 41) mit Salpetersäure (D: 1,23) auf

dem Wasserbade (Bargellini, Daconto, Mannino, G. 38 II, 51). — Nädelchen (aus Essigsäure). F: 218—220° (Zers.). Wenig löslich in den gewöhnlichen organischen Solvenzien, löslich in konz. Schwefelsäure unter Rotfärbung. Linksdrehend.

- 2. γ-Oxysantonin, Artemisin C₁₅H₁₈O₄, s. nebenstehende Formel. Diese Formel ist dem Artemisin, das unter Syst. No. 4865 behandelt wird, auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von Tettweiler, Engel, Wedering, A. 492, 105, zuzuerteilen.
- 3. δ -Oxysantonin, Isoartemisin $C_{15}H_{18}O_4 = (CH_3)_2C_{13}H_{11}O(:O)_3 \cdot OH$. Die von Wederind, Koch, B. 38, 1849 unter dieser Formel beschriebene Verbindung ist auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Wederind, Tettweiler, B. 64, 387 als Santoninoxyd $C_{15}H_{18}O_4$ aufzufassen und ist dementsprechend unter Syst. No. 2763 behandelt.
- 4. α -Oxysantonin $C_{15}H_{18}O_4=(CH_3)_2C_{18}H_{11}O(:O)_3\cdot OH$. (Die Stellung der OH-Gruppe ist nicht bekannt). B. Findet sich im Harn von mit Fleisch gefütterten Hunden, denen täglich 1—2 g Santonin (Bd. XVII, S. 499) eingegeben werden; man verdunstet den Harn auf dem Wasserbade, zieht den Rückstand mit Alkohol aus, verdunstet die alkoh. Lösung, versetzt den Rückstand mit schwefelsäurenhaltigem Wasser und schüttelt wiederholt mit Äther aus (Jafff, H. 22, 539; vgl. Lo Monaco, G. 27 II, 87). Tafeln (aus Alkohol). Rhombisch (Hecht, H. 22, 542). F: 286° (Gasentwicklung); fast unlöslich in Äther, sehr wenig löslich in Wasser und kaltem Eisessig, leicht löslich in warmem Eisessig; 100 Tle. absol. Alkohol lösen bei 20° 0,235 Tle., 100 Tle. Chloroform lösen 0,184 Tle. (J.). Kryoskopisches Verhalten in Phenol: J. $[\alpha]_0$: ca. —115° (in Alkohol; c = 0,2) (J.). Beim Kochen mit verd. Salpetersäure entstehen Oxalsäure und Cyanwasserstoffsäure (J.). Einw. von Natriumamalgam: J. Geht beim Erhitzen mit verd. Alkalien lassam in Lösung unter Bildung der Alkalisalze der α -Oxysantoninsäure (Bd. X, S. 1002) (J.). Bei mehrstündigem Kochen mit Essigsäureanhydrid bildet sich das Acetat (Lo M.). Mit Phenylhydrazin in essigsaurer Lösung erhält man das Phenylhydrazon (Lo M.).

Acetat $C_{17}H_{20}O_5 = (CH_3)_3C_{13}H_{11}O(:O)_3\cdot O\cdot CO\cdot CH_3$. B. Bei mehrstündigem Kochen von α -Oxysantonin (s. o.) mit Essigsäureanhydrid (Lo Monaco, G. 27 II, 92). — Blättchen (aus verd. Alkohol). F: 164—165°. Leicht löslich in Alkohol, Chloroform und siedendem Ather, schwer in Petroläther, unlöslich in Wasser. — Beim Kochen mit Kalilauge entsteht α -Oxysantonin.

Phenylhydrason $C_{11}H_{24}O_3N_3=(CH_3)_2C_{13}H_{11}O(:O)(:N\cdot NH\cdot C_6H_5)\cdot OH$. B. Aus $\alpha\cdot Oxysantonin$ (s. o.) und Phenylhydrazin in essigsaurer Lösung durch mehrstündiges Kochen (Lo Monaco, G. 27 II, 91). — Gelbe Blättchen (aus absol. Alkohol). F: 264—265° (Zers.). Wenig löslich in kochendem Alkohol und den übrigen organischen Lösungsmitteln.

5. β -Oxysantonin $C_{15}H_{18}O_4$ s. Bd. XVII, S. 503.

g) Oxy-oxo-Verbindungen C_nH_{2n-14}O₄.

1. 4-0xy-2.5-dioxo-3-phenyl-furandihydrid, [α' -0xy- α -phenyl-maleinsäure]-anhydrid $C_{10}H_{6}O_{4}=\frac{HO\cdot C}{O\dot{C}\cdot O\cdot \dot{C}O}$.

[α'-Äthoxy-α-phenyl-maleinsäure]-anhydrid $C_{12}H_8O_4 = \frac{C_2H_5 \cdot O \cdot C - C_2 \cdot C_6H_5}{OC \cdot O \cdot OO}$ Man erwärmt [α'-Äthoxy-α-phenyl-maleinsäure]-imid (Syst. No. 3240) mit Sodalösung und

fällt dann mit Salzsäure (Volhard, Henke, A. 282, 66, 81). — Nadeln (aus Alkohol). F: 97° bis 98°. Unlöslich in kaltem Wasser. — Beim Erhitzen mit rauchender Jodwasserstoffsäure auf 165° entsteht Phenylbernsteinsäure.

2. Oxy-oxo-Verbindungen $C_{11}H_8O_4$.

- 1. 2.6-Dloxy-4-oxo-3-phenyl-pyran, 2.6-Dloxy-3-phenyl-pyron $C_{11}H_8O_4=HC\cdot CO\cdot C\cdot C_4H_5$ $HO\cdot \overset{\circ}{C}=0=\overset{\circ}{C}\cdot OH$
- $\begin{array}{ll} \textbf{2.6-Disulfhydryl-4-oxo-8-phenyl-thiopyran,} & \textbf{2.6-Dimercapto-4-oxo-8-phenyl-penthiophen,} & \textbf{2.6-Dimercapto-8-phenyl-1-thio-pyron} & \textbf{C}_{11}\textbf{H}_{8}\textbf{OS}_{3} = & & & \textbf{HC}\cdot\textbf{CO}\cdot\textbf{C}\cdot\textbf{C}_{6}\textbf{H}_{5} & \textbf{ist} \\ \textbf{desmotrop mit 4-Oxo-2.6-dithion-3-phenyl-thiopyrantetrahydrid,} & \textbf{Bd.} & \textbf{XVII}, & \textbf{S.} & \textbf{569}. \end{array}$
- 2. 4-Oxy-2.5-dioxo-3-benzal-furantetrahydrid, $[\alpha$ -Oxy- γ -phen $\acute{y}l$ -itaconsdure]-anhydrid, Benzaläpfelsäureanhydrid $C_{11}H_6O_4= {H_0\cdot HC-C:CH\cdot C_6H_5 \over OC\cdot O\cdot CO}$:
- 4-Acetoxy-2.5-dioxo-8-benzal-furantetrahydrid, [α-Acetoxy-γ-phenyl-itacon-CH₃·CO·O·HC—C:CH·C₆H₅
 säure]-anhydrid C₁₃H₁₀O₅ = OC·O·CO . B. Aus Benzaläpfelsäure
 (Bd. X, 8. 523) und dem doppelten Gewicht Essigsäureanhydrid in Gegenwart eines Tropfens Schwefelsäure (Thiele, Tischbein, Lossow, A. 319, 190). Nadeln (aus Ligroin + sehr wenig Benzol). F: 116,5—117°. Geht beim Erwärmen mit Alkalien in Benzaläpfelsäure tiber.
- 3. 4-Oxy-2.3¹-dioxo-3-äthyl-[1.2-chromen]. 4-Oxy-3-acetyl-cumarin (3-Acetyl-benzotetronsäure) $C_{11}H_8O_4=C_6H_4$ $C_{10}H_{10}C_{10}$ ist desmotrop mit 2.4.3¹-Trioxo-3-āthyl-chroman, Bd. XVII, S. 569.
- 6.8-Dijod-4-äthoxy-3-acetyl-cumarin, 6.8-Dijod-1. C(0·C₂H₅) C·CO·CH 3-acetyl-benzotetronsäure-äthyläther C₁₃H₁₀O₄I₂, s. nebenstehende Formel. B. Aus dem Silbersalz des 6.8-Dijod-2.4-dioxo-3-acetyl-chromans (Bd. XVII, S. 569) beim Kochen mit Äthyljodid (Anschütz, A. 368, 41). F: 125°.

3. Oxy-oxo-Verbindungen $C_{12}H_{10}O_4$.

- 1. 2.6-Dioxy-4-oxo-3-methyl-5-phenyl-pyran, 2.6-Dioxy-3-methyl-5-phenyl-pyron $C_{12}H_{10}O_4=\frac{C_8H_5\cdot C\cdot CO\cdot C\cdot CH_4}{HO\cdot C\cdot O-C\cdot OH}$.
- $\begin{array}{lll} \textbf{2.6-Disulfhydryl-4-oxo-3-methyl-5-phenyl-thiopyran,} & \textbf{2.6-Dimercapto-4-oxo-3-methyl-5-phenyl-penthiophen,} & \textbf{2.6-Dimercapto-3-methyl-5-phenyl-1-thio-pyron} \\ \textbf{C_{12}H_{10}OS_3} &= \begin{array}{lll} \textbf{C_6H_5\cdot C\cdot CO\cdot C\cdot CH_3} \\ \textbf{HS\cdot C-S-C\cdot SH} \end{array} & \text{ist} & \text{desmotrop mit 4-Oxo-2.6-dithion-3-methyl-5-phenyl-thiopyrantetrahydrid,} & \textbf{Bd. XVII, S. 569.} \end{array}$
- 2. 7 Oxy 4.3¹ dioxo 2 methyl 3 āthyl [1.4 chromen], 7 Oxy-2-methyl-3-acetyl-chromon ("Dehydrodiacetylresacetophenon") C₁₂H₁₀O₄, s. nebenstehende Formel. Zur Konstitution vgl. v. Kostanecki, Różyoki, B. 34, 106; v. K., Illoyd, B. 34, 2946 Anm. B. Ho. Co. Co. Ch₂ Różyoki, B. 34, 106; v. K., Illoyd, B. 34, 2946 Anm. B. Ho. Co. Co. Ch₃ Das Acetat ("Acetyldehydrodiacetylresacetophenon", S. 108) entsteht durch 3-stdg. gelindes Kochen von 1 Tl. Resacetophenon (Bd. VIII, S. 266) mit 1 Tl. wasserfreiem Natriumacetat und 2 Tln. Essigsäureanhydrid; man verseift es durch längeres Stehenlassen mit verd. Ammoniak (Tahara, B. 25, 1302; v. K., R.). Nadeln mit 1 H₂O (aus Alkohol) (v. K., R.). Wird im Exsiccator langsam, bei 100° rasch wasserfrei (v. K., R.). F: 182—184° (v. K., R.), 182° (T.). Leicht löslich in Alkohol, schwere in Äther, schwer in

Wasser (T.) und kaltem Benzol (v. K., R.). Leicht löslich in Ammoniak, Alkalien und Alkalicarbonaten (T.). — Läßt sich leicht methylieren (T.; v. K., R.). Beim Kochen mit Sodalösung entsteht 7-Oxy-2-methyl-chromon ("Dehydroacetylresacetophenon", S. 30) (T.; v. K., R.; vgl. auch v. K., L., B. 34, 2946 Anm.).

7-Methoxy-4.8¹-dioxo-2-methyl-3-äthyl-[1.4-chromen], 7-Methoxy-2-methyl-3-acetyl-chromon ("Dehydrodiacetylpāonol") C₁₃H₁₂O₄=CH₃·O·C₆H₃·O·C₆C·CO·CH₂

Zur Konstitution vgl. v. Kostanecki, Różycki, B. 34, 102; v. K., Lloyd, B. 34, 2946

Anm. — B. Neben 4-Methyl-3-acetyl-umbelliferon-methyläther ("Isodehydrodiacetylpāonol") bei 16-stdg. Kochen von 1 Tl. Pāonol (Bd. VIII, S. 267) mit 2 Tln. Essigsäureanhydrid und 1 Tl. entwässertem Natriumacetat am Rückflußkühler (Nagai, B. 25, 1284; Tahara, B. 25, 1304; v. K., R., B. 34, 102). Durch Methylierung von 7-Oxy-2-methyl-3-acetyl-chromon (S. 107) (T., B. 25, 1302; v. K., R.). — Blättchen (aus Alkohol). F: 160°; sehr schwer löslich in siedendem Wasser und kaltem Alkohol, schwer in heißem Benzol, leicht in Chloroform (N.). — Liefert beim Kochen mit Soda 7-Methoxy-2-methyl-chromon ("Dehydroacetylpāonol", S. 30) (N.; v. K., R.). Beim Erhitzen mit Salzsäure auf 160° entsteht 7-Oxy-2-methyl-chromon ("Dehydroacetylresacetophenon", S. 30) (T.). Beim Erwärmen mit alkoh. Kalilauge erhält man 2-Oxy-4-methoxy-benzoylaceton ("Hydroxyacetylpāonol", Bd. VIII, S. 404) und Essigsäure (N.; v. K., L.).

7-Äthoxy-4.8¹-dioxo-2-methyl-3-äthyl-[1.4-chromen], 7-Äthoxy-2-methyl-3-acetyl-chromon $C_{14}H_{14}O_4=C_2H_5\cdot O\cdot C_8H_3$ $CO\cdot C\cdot CO\cdot CH_3$ B. Durch Kochen einer alkoh. Lösung des 7-Oxy-2-methyl-3-acetyl-chromons (S. 107) mit Äthyljodid und Kaliumhydroxyd unter Rückfluß (v. Kostanecki, Różycki, B. 34, 107). — Gelbliche Blättchen (aus verd. Alkohol). F: 130°.

7-Acetoxy-4.3¹-dioxo-2-methyl-3-äthyl-[1.4-chromen], 7-Acetoxy-2-methyl-3-acetyl-chromon (,,Acetyldehydrodiacetylresacetophenon") $C_{14}H_{12}O_5 = CH_2 \cdot CO \cdot C \cdot CO \cdot CH_3$. Zur Konstitution vgl. v. Kostanecki, Różycki, B. 34, 105; v. K., Lloyd, B. 34, 2946 Anm. — B. Siehe im Artikel 7-Oxy-2-methyl-3-acetyl-chromon. Entsteht auch durch kurzes Kochen von 7-Oxy-2-methyl-3-acetyl-chromon mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., R., B. 34, 106). — Prismen (aus Alkohol). F: 127° (Tahara, B. 25, 1301; v. K., R.). Schwer löslich in kaltem Alkohol und in Äther, leicht in heißem Alkohol und Eisessig (T.).

7-Methoxy-2-methyl-3-acetyl-chromon-phenylhydrason ("Dehydrodiacetyl-päonolphenylhydrason") $C_{19}H_{18}O_3N_2 = CH_3 \cdot O \cdot C_6H_3 \cdot C(:N \cdot NH \cdot C_6H_5) \cdot C \cdot CO \cdot CH_3$. B. Aus 7-Methoxy-2-methyl-3-acetyl-chromon in Eisessig mit Phenylhydrazin (Tahara, B. 25, 1298). — Prismen (aus Eisessig). F: 213°. Sehr schwer löslich in siedendem Alkohol, unlöslich in Wasser und Äther. — Einw. von siedender alkoholischer Kalilauge: T., B. 25, 1299.

- 3. 7 Oxy 2.3^1 dioxo 4 methyl 3 dthyl [1.2-chromen], 7-Oxy-4-methyl-3-acetyl-cumarin, 4-Methyl-3-acetyl-umbelliferon $C_{12}H_{10}O_4$, s. neben- Ho 00 stehende Formel.
- 7-Methoxy-4-methyl-3-acetyl-cumarin, 4-Methyl-3-acetyl-umbelliferonmethyläther ("Isodehydrodiacetylpāonol") $C_{13}H_{12}O_4=$ CH₂·O·C₆H₃·C(CH₃):C·CO·CH₃. Zur Konstitution vgl. Tahara, B. 25, 1304. B.

Entsteht neben 7-Methoxy-2-methyl-3-acetyl-chromon (s. o.) beim Kochen von Päonol (Bd. VIII, S. 267) mit Essigsäureanhydrid und entwässertem Natriumacetat (NAGAI, B. 25, 1284, 1290). — Gelbliche Nadeln (aus verd. Essigsäure). F: 130° (N.). — Liefert beim Kochen mit alkoh. Kalilauge (N.) oder bei der Einw. von alkoh. Ammoniak (T.) 4-Methyl-umbelliferon-methyläther.

4. $4-Oxy-2.3^1$ - dioxo - 6 - methyl - 3 - dthyl - [1.2-chromen], 4-Oxy-6-methyl-3-acetyl-cumarin (6 - Methyl - 3 - acetyl - benzotetronsäure) $C_{12}H_{12}O_4$, s. nebenstehende Formel, ist desmotrop mit $2.4.3^1$ -Trioxo-6-methyl-3-āthyl-chroman, Bd. XVII, S. 570.

- 5. $4 Oxy 2.3^1 dioxo 7 methyl 3 athyl [1.2 chromen]$, $4 Oxy 7 methyl 3 acetyl cumarin (7 Methyl 3 acetyl benzotetronsäure) C1.2H.<math>_{10}O_4$, s. nebenstehende Formel, ist desmotrop mit 2.4.3\frac{1}{2}\tau_1 \text{Trioxo.7} methyl 3-\text{athyl-chroman}, Bd. XVII, S. 571.
- 4-Methoxy-7-methyl-3-acetyl-cumarin, 7-Methyl-3-acetyl-benzotetronsäuremethyläther $C_{13}H_{13}O_4 = CH_3 \cdot C_6H_3 \cdot C_6U \cdot CH_3 \cdot CO \cdot CH_3$. B. Beim Erhitzen des Silbersalzes der 7-Methyl-3-acetyl-benzotetronsäure mit Methyljodid im Druckrohr auf 100—110° (Anschütz, Wagner, A. 367, 235). Hellgelbe Nadeln (aus Alkohol). F: 138°.
- 4-Äthoxy-7-methyl-3-acetyl-cumarin, 7-Methyl-3-acetyl-benzotetronsäure-äthyläther $C_{14}H_{14}O_4 = CH_3 \cdot C_0H_3 \cdot C_0 \cdot CH_3 \cdot C_0 \cdot CH_3 \cdot B$. Analog der vorhergehenden Verbindung. Braungelbe Nadeln (aus Alkohol). F: 133° (A., W., A. 367, 236).
- 4-Propyloxy-7-methyl-3-acetyl-cumarin, 7-Methyl-3-acetyl-bensotetronsäure-propyläther $C_{15}H_{16}O_4=CH_2\cdot C_6H_3\cdot C_6H_3\cdot C_6U\cdot C_3H_7):C\cdot CO\cdot CH_3$. B. Analog der des Methyläthers (s. o.). Dunkelgelbe Nadeln. F: 135° (A., W., A. 367, 236).
- 4. 7.8 Dioxy 2 oxo 4'-methyl-[cyclopenteno 1'.2':
 3.4 chromen], 7.8 Dioxy 4'-methyl-[cyclopenteno 1'.2': 3.4 cu marin], 3.4 [β Methyl-trimethylen] daphnetin C₁₂H₁₂O₄, s. nebenstehende Formel. B. Aus 3 Methyl-cyclopentanon (5) carbonsāure (1) āthylester (Bd. X, S. 605) und Pyrogallol durch Einw. von konz. Schwefelsäure (DIECEMANN, A. 317, 91). Krystalle mit 1 H₂O (aus verd. Alkohol). Wird bei 120° wasserfrei. F: 207—210°. Löslich in Alkalien und in überschüssiger Sodalösung. Wird aus der Lösung in Alkali durch Kohlensäure unverändert abgeschieden.

h) Oxy-oxo-Verbindungen C_n H_{2n-16}O₄.

1. Cyclo-Form der 5- oder 4-0xy-8-formyl- oc ch-oh naphthoesäure-(1), cyclo-Form der 0xy- I. naphthalaldehydsäure, 3.6-oder 3.7-Dioxy-naphthalid $C_{12}H_{4}O_{4}$, Formel I oder II.

Diacetylderivat, 3.6- oder 3.7-Diacetoxy-naphthalid $C_{10}H_{12}O_5=C_{12}H_0O_2(O\cdot CO\cdot CH_2)_3$. B. Man läßt auf 5-Brom-acenaphthen-chinon (Bd. VII, S. 746) konz. Kalilauge bei 150° einwirken und behandelt die entstehende (nicht ganz rein erhaltene) Oxynaphthalaldehydsäure mit Essigsäureanhydrid (Graebe, Guinsbourg, A. 327, 90). — Nadeln (aus Eisessig). F: 183°.

2. Oxy-oxo-Verbindungen $C_{13}H_{10}O_4$.

- 1. γ -Oxo- γ -[2.4-dioxy-phenyl]- α -[α -furyl]- α -propylen, α -[2.4-Dioxy-benzoyl]- β -[α -furyl]-athylen, 2.4-Dioxy- ω -furfuryliden-acetophenon, $\frac{HC}{HC}-CH$ Furfurylidenresacetophenon $C_{13}H_{10}O_4=\frac{HC}{HC}\cdot O\cdot C\cdot CH: CH\cdot CO\cdot C_0H_1(OH)_2$
- 2-Oxy-4-methoxy- ω -furfuryliden-acetophenon, HC_CH
 Furfurylidenpäonol $C_{14}H_{12}O_4$, s. nebenstehende Formel.

 B. Das Natriumsalz entsteht beim Versetzen einer warmen alkoholischen Lösung von Päonol (Bd. VIII, S. 267) und Furfurol mit heißer 50% iger Natronlauge; man zersetzt es mit verd. Salzsäure (COURANT, v. KOSTANEOKI, B. 39, 4032). Ockergelbe Nadeln (aus Alkohol). F: 112°. Löst sich beim Erwärmen mit verd. Natronlauge orangefarben unter Bildung des Natriumsalzes. Färbt sich beim Betupfen mit konz. Schwefelsäure rot; löst sich in konz. Schwefelsäure mit gelber Farbe; nach einiger Zeit ist die Lösung im durchfallenden Licht rot, im auffallenden Licht grün. Beim Kochen der alkoh. Lösung mit

konz. Salzsäure entsteht &-[2-Oxy-4-methoxy-phenacyl]-lävulinsäure (Bd. X, S. 1023). — Natriumsalz. Gelbe Krystalle. Ziemlich schwer löslich.

- $\begin{array}{ll} 2. & \gamma-Oxo-\gamma-[2.5-dioxy-phenyl]-\alpha-[\alpha-furyl]-\alpha-propylen, & \alpha-[2.5-Dioxy-benzoyl]-\beta-[\alpha-furyl]-dthylen, & 2.5-Dioxy-\omega-furfuryliden-acetophenon, \\ & HC-CH \\ & H_{\rm C}^{\rm H}\cdot {\rm CH}\cdot {\rm CH}\cdot {\rm CO}\cdot {\rm C}_{\rm c}H_{\rm s}({\rm OH})_{\rm s} \end{array}.$
- 2-Oxy-5-methoxy- ω -furfuryliden-acetophenon, Furfuryliden-chinacetophenon-5-methyläther $C_{14}H_{12}O_4$, s. nebenstehende Formel. B. Analog der vorhergehenden Verbindung. Orangerote Nadeln. F: 75° (COURANT, v. KOSTAMEORI, B. 39, 4033). Löst sich in kalter Natronlauge mit gelber Farbe; die Lösung in konz. Schwefelsäure ist gelbrot. Wird durch Salzsäure in der Hitze zu δ -[2-Oxy-5-methoxy-phenacyl]-lävulinsäure (Bd. X, S. 1023) aufgespalten.
 - 3. Oxy-oxo-Verbindung $C_{13}H_{10}O_4 = (HO)_2C_{13}H_2O_3$. Dimethyläther, Yangonin $C_{18}H_{14}O_4 = (CH_3 \cdot O)_2C_{13}H_2O_3$ s. Syst. No. 4865.
- 3. Oxy-oxo-Verbindungen C₁₄H₁₂O₄.
- 1. 2.5-Dioxo-3-isopropyliden-4-salicyliden-furantetrahydrid, Isopropyliden-salicyliden-bernsteinsäureanhydrid, a.a-Dimethyl-5-[2-oxy-phenyl]-fulgid $C_{14}H_{12}O_4 = \frac{HO \cdot C_6H_4 \cdot CH \cdot C C \cdot C(CH_2)_2}{OC \cdot O \cdot CO}$.

Isopropyliden-[2-methoxy-benzyliden]-bernsteinsäureanhydrid, $\alpha.\alpha$ -Dimethyl- δ -[2-methoxy-phenyl]-fulgid $C_{1\delta}H_{14}O_4 = \begin{array}{c} CH_3 \cdot O \cdot C_6H_4 \cdot CH : C - C : C(CH_3)_3 \\ OC \cdot O \cdot CO \\ OC \cdot O \cdot O \cdot O \\ OC \cdot O \cdot O \\ OC \cdot O \cdot O \cdot O \\ OC \cdot O \cdot O \cdot O \\ OC \cdot O \cdot O \cdot O \\ OC$

Lösen von Isopropyliden-[2-methoxy-benzyliden]-bernsteinsäure (Bd. X, S. 525) in Acetylchlorid (Stobbe, Lenzner, B. 39, 766). — Gelbe CS_2 -haltige Krystalle (aus Schwefelkohlenstoff), die an der Luft schnell verwittern. F: 97,5°; leicht löslich in Aceton, Benzol, Chloroform und Petroläther, schwerer in Äther und Schwefelkohlenstoff (St., L.). Absorptionsspektrum in Chloroform: St., L.; St., A. 380, 4. Wird beim Abkühlen auf —180° farblos, beim Erwärmen auf 68—90° goldgelb; diese Farbänderungen gehen bei gewöhnlicher Temperatur wieder zurück (St., A. 380, 19).

2. 2.5 - Dioxo - 3 - isopropyliden-4-[4-oxy-benzyliden] - furantetrahydrid, Isopropyliden-[4-oxy-benzyliden]-bernsteinsäureanhydrid, α - α -Dimethyl- δ -[4-oxy-phenyl]-fulgid $C_{14}H_{12}O_4= \frac{HO\cdot C_4H_4\cdot CH:C--C:C(CH_2)_2}{OC\cdot O\cdot CO}$

Isopropyliden-anisyliden-bernsteinsäureanhydrid, $\alpha.\alpha$ -Dimethyl- δ -[4-methoxy-CH₃·O·C₆H₄·CH:C—C:C(CH₃)₂ phenyl]-fulgid $C_{15}H_{14}O_4=\frac{CH_3\cdot O\cdot C_6H_4\cdot CH:C-C:C(CH_3)_2}{OC\cdot O\cdot CO}$. B. Aus Isopropyliden-anisyliden-bernsteinsäure (Bd. X, S. 526) beim Lösen in Acetylchlorid (Stobbe, Lenzner, B. 39, 763). — Gelbe Krystalle (aus Petroläther). Monoklin prismatisch (Toborffy, Z. Kr. 45, 158; vgl. Groth, Ch. Kr. 5, 494, 502). F: 114,5°; leicht löslich in Benzol, Chloroform und Aceton, schwerer in Äther (St., L.). Absorptionsspektrum in Chloroform: St., L.; St., A. 380, 4. Wird beim Abkühlen auf —80° schwefelgelb, beim Erwärmen auf 78—110° citronengelb; diese Farbänderungen gehen bei gewöhnlicher Temperatur wieder zurück (St., A. 380, 19).

4. Oxy-oxo-Verbindungen C15H14O4.

1. 3 - Oxy - 2 - [β,γ - oxido - isoamyl] - naphtho - 0.
chinon-(1.4), Anhydrodioxydihydrolapachol C₁₅H₁₄O₄,
s. nebenstehende Formel. B. Entsteht in geringer Menge beim
Kochen von Dioxydihydrolapachol (Bd. VIII, S. 494) mit mäßig
verdünnter Schwefelsäure, neben viel 4.7 - Dioxo - 2 - isopropyl5.6-benzo-cumaron-dihydrid-(4.7) (,,Isopropylfuran-α-naphthochinon", Bd. XVII, S. 525) und
wenig Oxy-α-lapachon (S. 111) (Hooker, Soc. 69, 1370, 1372 und 1372 Anm.). Entsteht ebenfalls in geringer Menge beim Kochen von Dioxydihydrolapachol mit Eisessig unter Zusatz
von konz. Schwefelsäure, neben viel ,,Isopropylfuran-α-naphthochinon" und wenig Acetoxy-

α-lapachon (s. u.) (H., Soc. 69, 1371, 1378). — Gelbe Nädelchen (aus Alkohol). F: 190,5° bis 191°. Unzersetzt löslich in Alkalien mit carmoisinroter Farbe. Die orangerote Lösung in konz. Schwefelsäure zersetzt sich beim Stehen.

2. 3 - Oxy - 5.8 - dioxo - 2.2 - dimethyl - 6.7 - benzo-chroman - dihydrid - (5.8), Oxy - α - lapachon C₁₅H₁₄O₄, s. nebenstehende Formel. B. Entsteht in geringer Menge beim Kochen von Dioxydihydrolapachol (Bd. VIII, S. 494) mit mäßig verdünnter Schwefelsäure, neben viel "Isopropylfuran-α-naphtho-okuran - Okuran - Okura

chinon" (Bd. XVII, S. 525) und wenig Anhydrodioxydihydrolapachol (Hooker, Soc. 69, 1370, 1372 und 1372 Anm.). Acetoxy-α-lapachon (s. u.) erhält man beim Kochen von Dioxydihydro-lapachol mit Eisessig und konz. Schwefelsäure; zur Verseifung verreibt man es mit 38°/oiger Schwefelsäure, kocht 6 Minuten und kühlt rasch ab (H., Soc. 69, 1374). — Gelbe Krystallrosetten (aus Alkohol). Schmilzt gegen 187°. — Geht durch Kochen mit 1°/oiger Natronlauge in Dioxydihydrolapachol über. Beim Kochen mit Schwefelsäure entsteht "Isopropylfuran-α-naphthochinon".

3-Acetoxy-5.8-dioxo-2.2-dimethyl-6.7-benzo-chroman-dihydrid-(5.8), Acetoxy- α -lapachon $C_{17}H_{16}O_5=C_{18}H_{13}O_3(O\cdot CO\cdot CH_3)$. B. Siehe im vorangehenden Artikel. Entsteht ferner aus Oxy- α -lapachon (s. o.) beim Kochen mit Essigsäureanhydrid und wasserreiem Natriumacetat (Hooker, Soc. 69, 1374). — Blaßgelbe Nadeln (aus Alkohol). F: 179,5° (H., Soc. 69, 1372). — Wird von 1°/oiger Natronlauge zu Dioxydihydrolapachol aufgespalten. Verd. Schwefelsäure spaltet in Essigsäure und Oxy- α -lapachon. Die Lösung in konz. Schwefelsäure zersetzt sich bei längerem Stehen.

3. 9-Oxy-1.3-dioxo-2.4-dimethyl-xanthen-tetrahydrid, 1.3-Dioxo-2.4-dimethyl-tetrahydrid, 1.3-Dioxo-2.4-dimethyl-tetrahydroxanthydrol C₁₆H₁₄O₄, s. nebenstehende Formel.

Verbindungen, die vielleicht als Dibrom-dioxo-CH₃

dimethyl-tetrahydroxanthydrol-alkyläther aufzufassen sind, s. S. 55.

4. 3-Oxy-5.6-dioxo-2.2-dimethyl-7.8-benzo-chroman-dihydrid-(5.6), Oxy-β-lapachon G_{1z}H₁₄O₄, s. nebenstehende Formel. Zur Konstitution vgl. Hooker, Soc. 69, 1368, 1381.

B. Aus Lomatiol (Bd. VIII, S. 427) durch kurze Einw. von konz. Schwefelsäure (Rennie, Soc. 67, 785, 792). Aus Dioxydihydrolapachol (Bd. VIII, S. 494) beim Lösen in konz. Schwefelsäure, neben "Isopropylfuran-α-naphthochinon" und "Isopropylfuran-β-naphthochinon" (Bd. XVII, S. 525) (H., Soc. 69, 1368). Man läßt Dioxydihydrolapachol mit konz. Salzsäure (D: 1,20) ca. 1 Stde. stehen (H., Soc. 61, 649).

Boc. 69, 1381 Anm.). Unlöslich in kalten verdünnten Alkalien; beim Kochen entsteht Dioxydihydrolapachol (H., Soc. 61, 650).

Brom -oxy - β - lapachon $C_{18}H_{13}O_4Br$, s. nebenstehende Formel. Zur Konstitution vgl. Hooker, Soc. 69, 1368. — B. Man läßt Bromdioxydihydrolapachol (Bd. VIII, S. 495) mit Salzsäure (D: 1,20) $2^{1}/_{9}$ Stdn. stehen (Hooker, Gray, Soc. 63, 430, 432). — Orangerote Schuppen (aus Alkohol). Schmilzt gegen 247° unter Zersetzung. Schwer löslich in Alkohol. — Geht durch Kochen mit $1^{9}/_{9}$ iger Kalilauge wieder in Bromdioxydihydrolapachol über.

i) Oxy-oxo-Verbindungen C_nH_{2n-18}O₄.

1. [3-0xy-naphthalsäure]-anhydrid C₁₂H₆O₄, s. nebenstehende Formel. B. Man trägt 10 g Natriumsalz der 3-Sulfo-naphthalsäure (Bd. XI, 8. 409) in eine Schmelze von 50 g Ätzkali und 1,5 g Wasser bei 180° ein, erwärmt etwa 15 Minuten auf 220°, löet nach dem Erkalten in Wasser und übersättigt mit Salzsäure (Anselm, Zuckmaybe, B. 32, 3288). In entsprechender Weise bei der Kalischmelze von [4-Chlor-naphthalsäure]-anhydrid oder [4-Brom-naphthalsäure]-anhydrid (Crompton, Cyriax, Chem. N. 98, 279; Graebe, Guinsboubg, A. 327, 87; vgl. Dziewoński, Galitzerówna, Kocwa, C. 1926 II, 2816; Dz., Zakrzewska-Baranowska, C. 1927 II, 426). Aus [3-Amino-naphthalsäure]-anhydrid (Syst. No. 2643) durch Verkochen der diazotierten Verbindung mit Wasser (A., Z., B. 32, 3290). — Gelbe Nadeln (aus Alkohol). Hellgelbe Nadeln mit ½ C₂H₄O₂ (aus Eisessig). F: 287° (A., Z.), 279—280° (Dz., Ga., K.). Fast unlöslich in Wasser und Benzol (A., Z.). Löst sich in Alkalien zuerst mit gelber Farbe;

mit mehr Alkali entstehen farblose Salze der 3-Oxy-naphthalsäure (Bd. X, S. 526) (A., Z.). — Bei kurzem Erhitzen von [3-Oxy-naphthalsäure]-anhydrid mit rauchender Schwefelsäure (25%), SO₃) auf ca. 115% wird [3-Oxy-naphthalsäure]-anhydrid-sulfonsäure-(x) (Syst. No. 2633) erhalten (A., Z.). Gibt beim Erhitzen mit alkoh. Ammoniak im Einschlußrohr auf 100% 3-Oxy-naphthalimid (Syst. No. 3240) (A., Z.). Liefert beim Erhitzen mit einer alkoh. Hydroxylaminhydrochloridlösung unter Zusatz von entwässertem Natriumacetat 3.N-Dioxy-naphthalimid (Syst. No. 3240) (A., Z.). Beim Kochen mit Eisessig und Phenylhydrazin wird 3-Oxy-N-anilinonaphthalimid (Syst. No. 3240) erhalten (A., Z.).

- [3-Methoxy-naphthalsäure]-anhydrid C₁₈H₈O₄, s. nebenstehende Formel. B. Durch 6-stündiges Erhitzen von 10 g [3-Öxy-naphthalsäure]-anhydrid mit 20 g Methyljodid, 70 cm³ 5º/oiger Natriummethylat-Lösung und 70 cm³ absol. Methylalkohol (ANSELM, ZUCKMAYER, B. 32, 3294).—Gelbliche Nadeln (aus Essigester). F: 244°. Sohwer löslich in Alkohol, etwas leichter in Essigester, leicht in heißem Benzol und Eisessig, unlöslich in Wasser.
- [3-Acetoxy-naphthalsäure]-anhydrid C₁₄H₅O₅, s. nebenstehende Formel. B. Beim Kochen von [3-Oxy-naphthalsäure]-anhydrid mit oc co Essigsäureanhydrid und Eisessig (A., Z., B. 32, 3290). — Blättchen (aus Essigester), Nädelchen (aus Alkohol oder Benzol). F: 216°. Unlöslich in Wasser, schwer löslich in heißem Alkohol, ziemlich löslich in Benzol.

Monoxim des [3-Oxy-naphthalsäure]-anhydrids $C_{12}H_7O_4N$, Formel I oder II, bezw. seine Derivate sind isomer mit. 3.N-Dioxy-naphthalimid, Formel III (Syst. No. 3240) bezw. dessen Derivaten.

Monophenylhydrazon des [3 - Oxy - naphthalsäure] - anhydrids $C_{18}H_{12}O_{2}N_{2}$, Formel IV oder V, ist isomer mit 3 - Oxy - N - anilino - naphthalimid, Formel VI, Syst. No. 3240.

2. Oxy-oxo-Verbindungen $C_{18}H_8O_4$.

1. 1.3-Dioxy-9-oxo-xanthen, 1.3-Dioxy-xanthon $C_{13}H_0O_4$, Formel VII. B. Entsteht neben zwei Verbindungen $C_{20}H_{10}O_5$ (Formel VIII und IX) (Syst. No. 2836) bei der Destillation von Phloroglucin mit Salicylsäure und Essigsäureanhydrid (v. Kostaneoki,

NESSLEB, B. 24, 1896, 3981; v. K., SEIDMANN, B. 25, 1656). — Gelbliche Nadeln (aus verd. Alkohol). F: 247° (v. K., N.), 259° (NISHIKAWA, ROBINSON, Soc. 121 [1922], 842). Löslich in Alkalien mit gelber Farbe; leicht löslich in Ammoniak (v. K., N.). Die alkoh. Lösung wird durch Eisenchlorid braun gefärbt.

- 1-Oxy-3-methoxy-xanthon C₁₄H₁₀O₄, s. nebenstehende Formel.

 B. Durch mehrstündiges Erhitzen von 1 Mol 1.3-Dioxy-xanthon mit
 1 Mol Ätzkali und etwas mehr als 1 Mol Methyljodid in methylalkoholischer Lösung im geschlossenen Rohr auf 100° (Dreher, v. KostaNECKI, B. 26, 78). Nadeln (aus Eisessig). F: 145°. Schwer löslich in Alkohol. —
 Natriumsalz. Gelb. Schwer löslich.
- 1.3-Diacetoxy-xanthon $C_{17}H_{12}O_6 = C_6H_4 < {}^{CO}_O > C_6H_2(O \cdot CO \cdot CH_3)_2$. B. Beim Kochen von 1.3-Dioxy-xanthon mit Essigsäureanhydrid und entwässertem Natriumacetat (v. Kostaneoki, Nessler, B. 24, 3981). Nadeln. F: 144°.

x.x-Dibrom-1.3-dioxy-xanthon $C_{13}H_6O_4Br_2$. B. Bei langsamem Zusatz von Brom zur Lösung von 1.3-Dioxy-xanthon in Elsessig (König, v. Kostanecki, B. 27, 1995). — Gelbliche Nadeln. F: 245°.

2. 1.6 - Dioxy - 9 - oxo - xanthen, 1.6 - Dioxy - xanthon, Isoeuxanthon $C_{13}H_8O_4$, s. nebenstehende Formel. Zur Konstitution vgl. v. Kostanschi, B. 27, 1991. — B. Beim Destillieren von 1 Tl. wasserfreier β -Resorcylsäure (Bd. X, S. 377) mit $1^1/_2$ Tln. Essigsäureanhydrid (Bistrzycki, v. Kostanschi, B. 18, 1986), neben sehr geringen Mengen 3.6-Dioxy-xanthon (R. Meyer, Conzetti,

 $\mathbf{Ho} \overset{[7]{\text{CO}}}{\underset{[6]{\text{Ho}}}{|5|}} \overset{\mathbf{OH}}{\underset{[5]{\text{CO}}}{|1|}}$

säureanhydrid (Bistrzycki, v. Kostanecki, B. 18, 1986), neben Ho. sehr geringen Mengen 3.6-Dioxy-xanthon (R. Meyer, Conzetti, B. 30, 971). Durch Destillation von β-Resorcylsäure mit Resorcin und Essigsäureanhydrid (v. K., B. 27, 1991). — Gelbliche Nadeln (aus verd. Alkohol). F: 243° (B., v. K.), 245—246° (korr.) (Graebe, A. 254, 302). Unlöslich in Wasser, ziemlich leicht löslich in Äther, leicht in Alkohol mit gelber Farbe; die alkoh. Lösung wird durch Eisenchlorid graugrün gefärbt. — Geht durch Schmelzen mit Kali in 2.4.2′.6′-Tetraoxy-benzophenon (Bd. VIII, S. 496) über (Gr.).

1-Oxy-6-methoxy-xanthon, Isoeuxanthon-6-methyläther $C_{14}H_{10}O_4$, s. nebenstehende Formel. B. Durch Methylieren von 1.6-Dioxy-xanthon (v. Kostanecki, B. 27, 1992). — Ledergelbe Blättchen (aus verd. Alkohol). F: 143—144°. — Gibt in alkoh. Lösung beim Versetzen mit verd. Natronlauge ein intensiv gefärbtes Natriumsalz.

1.6 - Diathoxy - xanthon, Isoeuxanthon - diathyläther $C_{17}H_{16}O_4 = C_2H_5 \cdot O \cdot C_6H_3 < O \cdot C_6H_3 \cdot O \cdot C_2H_5$. Zur Konstitution vgl. v. Kostanecki, B. 27, 1991; vgl. auch Perkin, Soc. 67, 993. — B. Beim Destillieren von 4 Athyläther- β -resorcyl-

vgl. auch Perkin, Soc. 67, 995. — B. Beim Destillieren von 4-Äthyläther- β -resorcylsäure (Bd. X, S. 379) mit Essigsäureanhydrid (Perkin, Soc. 67, 996). — Fast farblose Nadeln (aus Alkohol). F: 185°. Mäßig löslich in Alkohol; unlöslich in Alkalien.

6 - Methoxy - 1 - acetoxy - xanthon, Isoeuxanthon-6-methyläther-1-acetat $C_{16}H_{12}O_5$, s. nebenstehende Formel. B. Durch Acetylierung von 1-Oxy-6-methoxy-xanthon (v. Kostanecki, B. 27, 1992). — Blättchen (aus verd. Alkohol). F: 150°.

1.6 - Diacetoxy - xanthon, Isoeuxanthon - diacetat $C_{17}H_{12}O_6 = CH_3 \cdot CO \cdot O \cdot C_6H_3 < CO \cdot C_6H_3 \cdot O \cdot CO \cdot CH_3$. B. Durch Erhitzen von 1 Tl. Isoeuxanthon mit $1^{1}/_{2}$ Tln. Essigsäureanhydrid und $3/_{4}$ Tln. Natriumacetat auf 150° (Graebe, A. 254, 302). — Undeutlich krystallinisch. F: 124—130°.

x.x.x. Tetrabrom - 1.6 - dioxy - xanthon, x.x.x. Tetrabrom - isoeuxanthon $C_{13}H_4O_4Br_4$. B. Aus 1.6-Dioxy-xanthon und Brom in Eisessig (v. Kostanecki, König, B. 27, 1995). — Gelbliche Nädelchen (aus Eisessig). F: 280°. Löslich in Alkohol.

3. 1.7 - Dioxy - 9 - oxo - xanthen, 1.7 - Dioxy - xanthon, Euxanthon C₁₈H₂O₄, s. nebenstehende Formel. Zur Konstitution vgl. v. Kostanecki, B. 27, 1992; Ullmann, Panchaud, A. 350, 109. — B. Durch Sublimation von Euxanthinsäure oder ihren Salzen (Syst. No. 4777a) (Stenhouse, A. 51, 429; Erdmann, J. pr. [1] 33, 205). Durch kurzes Erhitzen von Euxanthinsäure auf 160°

[1] 33, 205). Durch kurzes Erhitzen von Euxanthinsäure auf 160° bis 180° (E., J. pr. [1] 33, 206). Entsteht aus Euxanthinsäure noch nach folgenden Verfahren: beim Lösen in kalter konzentrierter Schwefelsäure (E., J. pr. [1] 33, 209; BAEYER, A. 155, 259); beim Einleiten von trocknem Chlorwasserstoff in eine heiße absolut-alkoholische Lösung (E., J. pr. [1] 33, 207); beim Erhitzen mit 2°/_ciger Schwefelsäure auf 140° (Spiegel, B. 15, 1965); beim Erhitzen mit Wasser auf 120—125° (Thierfelder, H. 11, 391). Durch Erhitzen von Euxanthon-dimethyläther in Benzol mit Aluminiumchlorid (Ullmann, Panchaud, A. 350, 117). Aus Euxanthonsäure (Bd. VIII, S. 497) beim Schmelzen oder beim Kochen mit ammoniakhaltigem Wasser (Baey., A. 155, 261). Bei 4-stdg. Kochen von 6 g Hydrochinon-oarbonsäure-(2) mit 5 g β-Resorcylsäure (Bd. X, S. 377) und 12 g Essigsäure-anhydrid (Ge., A. 254, 298). Durch Kondensation von Hydrochinon-carbonsäure-(2) mit Resorcin bei Gegenwart von Essigsäureanhydrid (v. Kostanecki, Nessler, B. 24, 3983). Darstellung aus Indischgelb: Gr., A. 254, 291; Th., H. 11, 390. — Gelbe Nadeln (aus Toluol), blaßgelbe Nadeln oder Blättchen (aus Alkohol). F: 236—237° (Bistrzycki, v. K., B. 18, 1987), 236—238° (Mann, Tollens, A. 290, 159), 240° (korr.) (Gr., A. 254, 299; U., P., A. 350, 117). Sublimiert unter teilweiser Zersetzung (E., J. pr. [1] 33, 206). Wenig löslich in Wasser und Äther (St.), leicht in siedendem Alkohol (E., J. pr. [1] 33, 205). — Beim Erhitzen mit gelber Farbe; unlöslich in verd. Ammoniak (E., J. pr. [1] 33, 205). — Beim Erhitzen

von Euxanthon mit Zinkstaub werden Benzol, Phenol, etwas Diphenyl(?) und Xanthen (Bd. XVII, S. 73) gebildet (Wichelhaus, Salzmann, B. 10, 1398; vgl. Baey., A. 155, 258; Gr., EBBARD, B. 15, 1678). Beim Erhitzen mit Wasser und Natriumamalgam und nachherigen Ansäuern fällt eine schwarzviolette Verbindung C₁₆H₁₆O₇ aus (Mann, Tollens, A. 290, 162; vgl. Barv., A. 155, 259; W., S., B. 10, 1398). Bei kurzem Erwärmen von Euxanthon mit Salpetersaure (D: 1,31) bis zum Beginn der Reaktion entsteht x.x.x-Trinitro-euxanthon (S. 116) (E., J. pr. [1] 87, 399, 407; A. 60, 244; vgl. BAEY., A. 155, 263). Beim Erwärmen von Euxanthon mit Salpetersäure (D: 1.35) auf dem Wasserbad und Einengen der Flüssigkeit erhält man 2.4.6-Trinitro-resorcin und Oxalsäure (E., J. pr. [1] 37, 399, 409; Gr., A. 254, 294). Liefert beim Schmelzen mit Kali zunächst Euxanthonsäure, dann Resorcin und Hydrochinon (BAEY., A. 155, 259; GR., A. 254, 295, 300). Liefert beim Erhitzen mit Methyljodid und Ätzkali in methylalkoholischer Lösung (v. K., B. 27, 1992) oder bei der Einw. von Diazomethan (Herzie, Klimosch, M. 80, 532) Euxanthon-7-methyläther. Beim Schütteln mit Dimethylsulfat und verd. Natronlauge entstehen Euxanthon-7-methyläther und Euxanthondimethyläther (Graebe, Aders, A. 818, 365). Euxanthon verbindet sich weder mit Hydroxylamin, noch mit Phenylhydrazin (Spiegler, B. 17, 808). Euxanthon färbt chromierte Wolle und Baumwolle lebhaft gelb und seifenecht an (Möhlau, Steimmig, C. 1904 I, 1352). Euxanthon erscheint bei peroraler Verabreichung an Kaninchen zu einem kleinen Teil im Harn als Euxanthinsäure (v. K., B. 19, 2919). — Na₂C₁₃H₆O₄ (bei 110—120°). Krystalle (Mann, Tollens, A. 290, 160). — K₂C₁₃H₆O₄ (M., T.). — MgC₁₃H₆O₄. Dottergelb (Bist., v. K., B. 18, 1987). Fast unlöslich in Wasser, unlöslich in Alkohol (Gr., Eb., B. 15, 1678). — $CaC_{13}H_6O_4$ (bei 110—120°). Niederschlag (M., T.). — $Ba(C_{13}H_7O_4)_3$. Roter krystallinischer Niederschlag (M., T.). — $BaC_{13}H_6O_4$. Rotgelber Niederschlag (M., T.).

Isocuxanthinsaure C₁₉H₁₆O₁₀, s. nebenstehende Formel. B. Entsteht neben Euxanthinsaure aus Acetobromglykuronsaurelacton Ho-(Syst. No. 2823) und Euxanthonkalium in ab-

 $-CH \cdot [CH(OH)]_3 \cdot CH \cdot CO_2H$

solut-methylalkoholischer Lösung (Neuberg, Neimann, H. 44, 120). — Hellgelbe Nädelchen. F: 157—159°. [α]_D: —87,4° (in 70°/_oigem Alkohol). Spaltbar durch Emulsin und Kefirlactase.

HO2C·CH·[CH(OH)]3·CH·O Euxanthinsäure $C_{19}H_{16}O_{10}$, s. nebenstehende Formel, s. Syst. No. 4777a.

7-Oxy-1-methoxy-xanthon, Euxanthon-1-methyläther

C₁₄H₁₀O₄, s. nebenstehende Formel. B. Beim Erwärmen von
Euxanthon-dimethyläther mit 20 Tln. 90% iger Schwefelsäure auf
dem Wasserbade (Graebe, Aders, A. 318, 367). — Krystalle (aus
Alkohol oder Chloroform). F: 240% (Ge., A.), 235—238% (Herzig, Klimosch, M. 30, 538).
Leicht löslich in Alkohol und Chloroform (Ge., A.). Löslich in verd. Alkali (Ge., A.) mit intensiv gelber Farbe (H., K., B. 41, 3895). — Reagiert nicht mit Diazomethan (H., K., M. 30, 538).

1-Oxy-7-methoxy-xanthon, Euxanthon-7-methyläther C₁₄H₁₀O₄, s. nebenstehende Formel. B. Durch mehrstündiges Erhitzen von 1 Mol Euxanthon mit 1 Mol Atzkali und etwas mehr als 1 Mol Methyljodid in methylalkoholischer Lösung im geschlossenen Rohr auf 100° (v. Kostanecki, B. 27, 1992). Beim Schütteln der Lösung von Euxanthon in überschüssiger verdünnter Natronlauge mit Dimethylsulfat; daneben entsteht etwas Euxanthon-dimethyläther (Graeff, Aders, A. 318, 365). Aus Euxanthon und Diazomethan (Herzig, Klimosch, M. 30, 532). — Dunkelgelbe Tafeln (aus Alkohol). F: 130,5° (Gr., A.), 129—130° (H., Kl.), 129° (v. Ko.). Leicht löslich in Äther, Chloroform und heißem Alkohol (Gr., A.). — Das Natriumsalz gibt beim Erwärmen mit Dimethylsulfat auf dem Wasserbade Euxanthon-dimethyläther (Gr., A.). — NaC₁₄H₉O₄ (bei 100°). Gelber Niederschlag. Unlöslich in Alkali; verliert beim Auswaschen mit Wasser alles Alkali (Gr., A.; v. Ko.).

1.7 - Dimethoxy - xanthon, Euxanthon - dimethyläther $C_{18}H_{18}O_4$ = CH₃·O·C₆H₃<CO >C₆H₃·O·CH₃. B. Durch mehrstündiges Erhitzen von 1 Mol Euxanthon mit 2 Mol Ätzkali und etwas mehr als 2 Mol Methyljodid in methylalkoholischer Lösung im zugeschmolzenen Rohr auf 100° (Graebe, Ebrard, B. 15, 1677), neben etwas Euxanthon-7-methyläther (Gr., Aders, A. 318, 367). Beim Erwärmen des bei 100° getrockneten Natriumsalzes des Euxanthon-7-methyläthers mit Dimethylsulfat auf dem Wasserbade (GR., A.). Man erhitzt ein Gemisch von 0,5 g in Methylalkohol gelöstem Natrium, 0,05 g Kupferpulver, 2,5 g Hydrochinonmonomethyläther und 1,9 g 6-Chlor-2-methoxy-benzoesäure auf 210—240° und erwärmt die entstandene (nicht rein isolierte) 2-Methoxy-6-[4-methoxyphenoxyl-benzoesäure mit konz. Schwefelsäure 25 Minuten auf dem Wasserbade (ULLMANN,

Panchaud, A. 350, 115). — Farblose Nadeln (aus Ligroin). F: 149,5° (Gr., A.; U., P.). Sehr leicht löslich in Alkohol und Benzol, weniger in Ligroin (Gr., A.). — Beim Verseifen mit 90°/0 iger Schwefelsäure entsteht Euxanthon-1-methyläther (Gr., A.). Gibt beim Erhitzen in Benzol oder Toluol mit Aluminiumchlorid Euxanthon (U., P.).

7 - Oxy - 1 - äthoxy - xanthon, Euxanthon - 1 - äthyläther

C₁₅H₁₂O₄, s. nebenstehende Formel. B. Durch 3-stdg. Erhitzen von
1Tl. Euxanthon-diäthyläther mit 20 Tln. konz. Schwefelsäure auf dem
Wasserbad (Herzig, M. 12, 167). — Farblose Nadeln (aus Alkohol).

F: 223—225° (H.). Löslich in verd. Alkalien sowie in Schwefelsäure und Salzsäure mit intensiv gelber Farbe (H., Klimosch, B. 41, 3895). — Euxanthon-1-äthyläther reagiert nicht mit Diazomethan (H., K., M. 30, 538). Die Kaliumverbindung wird durch Zinkstaub nicht entfärbt; sie liefert beim Behandeln mit Äthyljodid oder Diäthylsulfat Euxanthon-diäthyläther (H., K., B. 41, 3895). — KC₁₅H₁₁O₄. Gelbe Krystalle. Läßt sich aus Wasser fast ohne hydrolytische Spaltung umkrystallisieren; erst beim Einleiten von Kohlensäure in die wäßr. Lösung wird Euxanthon-1-äthyläther regeneriert (H., K., B. 41, 3895). — Hydrochlorid. B. Aus Euxanthon-1-äthyläther beim Erkalten der warmen salzsauren Lösung oder beim Einleiten von Chlorwasserstoff in die Eisessig-Lösung (H., K., B. 41, 3895). Orangegelbe Nadeln. Spaltet an der Luft allmählich, bei 100° oder beim Versetzen mit Wasser momentan Chlorwasserstoff ab unter Rückbildung des Euxanthon-1-äthyläthers. — 2C₁₆H₁₁O₄ + 2 HCl + SnCl₄. Gelbe Nadeln. Bei 100° beständig (H., K., B. 41, 3896). Unlöslich in konz. Salzsäure. Zerfällt bei Einw. von kaltem Wasser quantitativ in Euxanthon-1-äthyläther, Salzsäure und Zinnsäure.

- 1-Oxy-7-äthoxy-xanthon, Euxanthon-7-äthyläther

 C₁₅H₁₃O₄, s. nebenstehende Formel. B. Aus Euxanthon, alkoh. Kali
 und Athyljodid (Herzig, M. 12, 163; vgl. Graebe, Ebrard, B.
 15, 1677). Durch 4-stdg. Erhitzen von Euxanthon-diäthyläther
 mit alkoh. Kali im zugeschmolzenen Rohr auf 130—150° (H., M. 12, 166). Gelbe Nadeln
 (aus Alkohol). F: 144—145° (H.). Unlöslich in wäßr. Kalilauge (H.). Liefert in absolutalkoholischer Lösung bei wiederholtem Behandeln mit dem gleichen Gewicht Ätzkali und
 der entsprechenden Menge Äthyljodid Euxanthon-diäthyläther (H.).
- 1.7 Diäthoxy xanthon, Euxanthon diäthyläther $C_{17}H_{10}O_4 = C_2H_5 \cdot O \cdot C_0H_3 \cdot O \cdot C_2H_5$. B. Beim Erhitzen von 1 Mol Euxanthon mit 2 Mol Ätzkali und etwas mehr als 2 Mol Äthyljodid in alkoh. Lösung im Einschlußrohr auf 100° (Graebe, Ebrard, B. 15, 1677; vgl. Herzig, M. 12, 163). Aus Euxanthon-7-āthyläther, gelöst in absol. Alkohol, durch wiederholtes Behandeln mit dem gleichen Gewicht Ätzkali und der entsprechenden Menge Äthyljodid (H., M. 12, 165). Farblose Nadeln (aus Alkohol), farblose Säulen (aus Chloroform). F: 126° (Gr., E.), 124—126° (H.). Gibt beim Erhitzen mit alkoh. Kali im zugeschmolzenen Rohr auf 130—150° Euxanthon-7-āthylāther (H.). Liefert beim Erhitzen mit 20 Tln. konz. Schwefelsäure auf dem Wasserbad Euxanthon-1-āthylāther (H.).

7-Äthoxy-1-acetoxy-xanthon, Euxanthon-7-äthyläther-1-acetat $C_{17}H_{14}O_{5}$, s. nebenstehende Formel. B. Durch Acetylierung von Euxanthon-7-äthyläther mit Essigsäureanhydrid und Natriumacetat (HERZIG, M. 12, 166).

— Farblose Nadeln (aus absol. Alkohol). F: 180—182°.

C3H2·O·CO·CH3

1-Äthoxy-7-acetoxy-xanthon, Euxanthon-1-äthyläther -7-acetat C₁₇H₁₄O₅, s. nebenstehende Formel. B. CH₃·CO·O.

Durch Acetylierung von Euxanthon-1-äthyläther mit Essigsäureanhydrid und Natriumacetat (Herzig, M. 13, 419).

Farblose Nadeln (aus Alkohol). F: 164—166°. Schwer löslich in kaltem Alkohol.

- 1.7 Discetoxy xanthon, Euxanthon discetat $C_{17}H_{12}O_6 = CH_3 \cdot CO \cdot C \cdot C_6H_3 \cdot CO \cdot CO \cdot CH_2$. B. Aus Euxanthon durch Erhitzen mit Acetylchlorid auf 100° oder durch 3-stdg. Kochen mit Essigsäureanhydrid (Wichelhaus, Salzmann, B. 10, 1402). Gelbliche Prismen (aus Benzol). F: 185°. Wenig löslich in Xther, löslich in Alkohol, Chloroform und Benzol, unlöslich in Wasser.
- 1.7 Dibensoyloxy xanthon \circ Euxanthon dibensoat $C_{57}H_{16}O_{6} = C_{6}H_{5}\cdot CO\cdot O\cdot C_{6}H_{5}\cdot O\cdot CO\cdot C_{6}H_{5}\cdot O\cdot CO\cdot C_{6}H_{5}$. Bei 3—4-stdg. Erhitzen von Euxanthon mit überschüßigem Benzoylehlorid auf 180° (Graebe, Ebrard, B. 15, 1678). Braungelbe Kryställchen (aus Anilin). F: 214°. Unlöslich in Alkohol, Äther, Chloroform und Benzol, leicht löslich in siedendem Anilin.

- 1.7-Dioxy-xanthon-oxim, Euxanthon-oxim $C_{13}H_9O_4N=HO\cdot C_6H_2 \xrightarrow{C(:N\cdot OH)} C_9H_2\cdot OH$. B. Aus Euxanthonsäure (Bd. VIII, S. 497) durch Behandeln mit überschüssigem Hydroxylaminhydrochlorid und Natriumcarbonat in verdünntalkoholischer Lösung (Herzig, M. 18, 417). Farblose Nadeln (aus verd. Alkohol oder Eisessig). Schmilzt unter Bräunung bei 233—235°. Fast unlöslich in Wasser.
- x.x-Dichlor-1.7-dioxy-xanthon, x.x-Dichlor-euxanthon $C_{13}H_{\bullet}O_{\bullet}Cl_{\bullet}$. B. Durch Auflösen von x.x-Dichlor-euxanthinsäure (Syst. No. 4777a) in konz. Schwefelsäure (Erdmann, J. pr. [1] 37, 397). Gelbe federartige Kryställchen (aus Alkohol).
- x.x-Dibrom-1.7-dioxy-xanthon, x.x-Dibrom-euxanthon C₁₃H₆O₄Br₂. B. Aus Euxanthon in Eisessig durch langsamen Zusatz von Brom (König, v. Kostanecki, B. 27, 1995). Durch Auflösen von x.x-Dibrom-euxanthinsäure (Syst. No. 4777a) in konz. Schwefelsäure (Eedmann, J. pr. [1] 37, 397). Gelbe Nadeln. F: 280° (Kö., v. Ko.).
- X.X-Dibrom-1-oxy-7-methoxy-xanthon, x.X-Dibrom-euxanthon-7-methyläther C₁₄H₈O₄Br₂. B. Durch Einw. von Brom auf Euxanthon-7-methyläther in Eisessig (König, v. Kostanecki, B. 27, 1995). Durch mehrstündiges Erhitzen von x.X-Dibrom-euxanthon mit Methyljodid und Ätzkali in methylalkoholischer Lösung auf 100—110° (Kö., v. Ko.).— Gelbe Nadeln. F: 196°. Liefert mit Natronlauge ein unlösliches, intensiv gelbes Salz.
- x.x-Dibrom-1-oxy-7-äthoxy-xanthon, x.x-Dibrom-euxanthon-7-äthyläther C₁₅H₁₆O₄Br₉. B. Aus Euxanthon-7-äthyläther und Brom in Eisessig (Herzig, M. 16, 319). Gelbe Nadeln (aus Eisessig). F: 205—207°.
- x.x-Dibrom-7-äthoxy-1-acetoxy-xanthon, x.x-Dibrom-euxanthon-7-äthyläther-1-acetat $C_{17}H_{12}O_5Br_5 = C_2H_5 \cdot O \cdot C_{13}H_4O_5Br_5 \cdot O \cdot CO \cdot CH_2$. B. Durch Kochen von x.x-Dibrom-euxanthon-7-äthyläther mit Easigsäureanhydrid und Natriumacetat (Henzig, M. 16, 319). Gelbliche Nadeln oder Blättchen (aus Alkohol). F: 186—190°. Läßt sich zu x.x-Dibrom-euxanthon-7-äthyläther verseifen.
- x.x.x Trinitro 1.7 dioxy xanthon, x.x.x Trinitro euxanthon $C_{12}H_5O_{12}N_3 = C_{12}H_5O_4(NO_2)_3$. B. Bei kurzem Erwärmen von Euxanthon mit Salpetersäure (D: 1,31) bis zum Beginn der Reaktion (Erdmann, J. pr. [1] 37, 399, 408; vgl. Baryer, A. 155, 263). Gelbe Nadeln. Wird bei anhaltender Einw. von siedender Salpetersäure in 2.4.6-Trinitro-resorein übergeführt (E.; vgl. Graffer, A. 254, 293). $NH_4C_{12}H_4O_{10}N_3$. Schwarzrote Körner. Leicht löslich in überschüssiger Ammoniumcarbonatlösung (E.).
- 4. 2.3 Dioxy 9 oxo xanthen, 2.3 Dioxy xanthon

 C₁₃H₈O₄, s. nebenstehende Formel. B. Aus 2.3 Diacetoxy-xanthon durch

 Verseifung (Liebermann, Lindenbaum, B. 37, 2735). Gelbe Nadeln

 (aus Alkohol). F: 294°. Leicht löslich in Alkohol, Eisessig, Benzol und Aceton, schwer in Ather, Ligroin und Chloroform, unlöslich in Wasser. Die Lösungen sind fast farblos. In Alkali mit intensiv gelber Farbe löslich. Die Lösung in konz. Schwefelsäure fluoresciert. Färbt Beizen kaum an.
- 2.3-Diacetoxy-xanthon $C_{17}H_{12}O_6 = C_6H_4 < \stackrel{CO}{O} > C_6H_3(O \cdot CO \cdot CH_5)_2$. B. Durch Oxydation von 2.3-Diacetoxy-xanthen mit Chromsäure in Eisessig (Lie., Lin., B. 37, 2735). Nadeln (aus Alkohol). F: 186°. Wird durch Behandeln mit kalter konzentrierter Schwefelsäure oder durch Kochen mit verd. Alkali leicht zu 2.3-Dioxy-xanthon verseift.
- 5. 2.7 Dioxy 9 oxo xanthen, 2.7 Dioxy xanthon, HO OH β-Isoeuxanthon C₁₂H₂O₄, s. nebenstehende Formel. Zur Konstitution vgl. Baever, A. 372 [1910], 139. B. Beim Erhitzen von 2.7-Diamino-xanthon (Syst. No. 2643) mit verd. Salzsäure auf 220—260° (Graer, B. 16, 863; A. 254, 300; Arbenz, A. 257, 86). Gelbe Nadeln (aus Alkohol oder Äther). Schmilzt oberhalb 330° (Gr.). Sublimierbar (Gr.). Leicht löslich in Alkohol und Äther (Gr.). Löslich in Alkalien mit gelber Farbe (Gr.).
- 2.7 Diacetoxy xanthon $C_{17}H_{12}O_6 = CH_2 \cdot CO \cdot O \cdot C_6H_2 < {CO \choose O} \cdot C_6H_2 \cdot O \cdot CO \cdot CH_2$. B. Durch Erhitzen von 2.7-Dioxy-xanthon mit Essigsäureanhydrid auf 150° (Grand, A. 254, 301). Farblose Nadeln (aus Alkohol). F: 175°.
- 6. 3.4 Dioxy 9 oxo xanthen, 3.4 Dioxy xanthon C₁₂H₂O₄, s. nebenstehende Formel. B. Beim Erhitzen von 2.3.4.2'-Tetra-oxy-benzophenon auf 200—240° oder besser mit Wasser auf 180—220° (GRABBE, EICHENGRÜM, B. 24, 969; A. 269, 310). Hellgelbe Nadeln mit 3 H₂O (aus verd. Alkohol). Verliert das Krystallwasser bei 100°; die wasserfreie Substanz schmilzt bei 240° (G., El.). Leicht löslich in Alkohol, sehr wenig in Wasser; löslich

in Alkalien mit blutroter Farbe (G., El.). — Färbt mit Tonerde gebeizte Baumwolle gelb an (G., El.; Liebermann, Lindenbaum, B. 37, 2736).

- 8.4-Dimethoxy-xanthon $C_{18}H_{12}O_4 = C_6H_4 < {}^{\hbox{\scriptsize CO}} > C_6H_8 (O \cdot {\rm CH}_3)_2$. B. Aus 2'-p-Toluol-sulfamino-2.3.4-trimethoxy-benzophenon (Bd. XIV, S. 284) durch Erwärmen mit konz. Schwefelsäure, Versetzen der verd. Lösung mit Natriumnitrit und Erwärmen der Diazonium-salzlösung zum Sieden (Ullmann, Denzler, B. 39, 4337). Gelbliche Nadeln (aus Benzolligroin). F: 155°. Leicht löslich außer in Ligroin. Die Lösung in konz. Schwefelsäure ist gelb und fluoresciert schwach grün.
- **3.4-Diacetoxy-xanthon** $C_{17}H_{12}O_6 = C_6H_4 < {CO \atop O} > C_6H_2(O \cdot CO \cdot CH_3)_3$. B. Aus 3.4-Dioxy-xanthon durch Essigsāureanhydrid (Graebe, Eichengrün, B. 24, 969; A. 269, 310 Anm.). F: 161°.
- x-Brom-3.4-dioxy-xanthon C₁₈H₇O₄Br. B. Bei kurzem Aufkochen einer Eisessig-Lösung von 2.3.4.2'-Tetraoxy-benzophenon mit Brom (G., El., B. 24, 970; A. 269, 312).

 Fast farblose Nadeln (aus Alkohol). Schmilzt noch nicht bei 360°. Löslich in Kalilauge mit blutroter Farbe. Wird durch konz. Schwefelsäure selbst bei 100° nicht verändert.
- x.x.x-Tribrom-3.4-dioxy-xanthon C₁₃H₅O₄Br₃. B. Bei längerem Kochen von 2.3.4.2'-Tetrsoxy-benzophenon mit überschüssigem Brom in Eisessig (G., El., B. 24, 970; A. 269, 312). Fast farblos. Schmilzt noch nicht bei 360°. Aus der roten Lösung in Kalilauge scheidet sich beim Stehenlassen ein tiefrotes Salz aus.
- 7. 3.6-Dłoxy-9-oxo-xanthen, 3.6-Dłoxy-xanthon

 C₁₃H₈O₄, s. nebenstehende Formel. B. Aus 2.4.2'.4'-Tetraoxy-benzophenon durch 1—2-stündiges Erhitzen auf 220—230° (R. Meyer,
 Conzetti, B. 30, 971) oder besser durch 3—4-stündiges Erhitzen mit Wasser auf 190—200°

 (R. M., C., B. 32, 2103). Farblose Nädelchen (aus verd. Alkohol). Sublimiert, in kleinen
 Mengen vorsichtig erhitzt, in farblosen Prismen (R. M., C., B. 32, 2104). Zersetzt sich, ohne
 zu schmelzen, zwischen 300° und 350° (R. M., C., B. 30, 971), oberhalb 350° (Kehrmann,
 A. 372 [1910], 349). Sehr leicht löslich in Alkohol, Eisessig und Aceton, ziemlich leicht in
 Chloroform, fast unlöslich in Benzol, Toluol und Wasser (R. M., C., B. 32, 2104). Die gelblich gefärbte Lösung in konz. Schwefelsäure fluoresciert schwach blau (R. M., C., B. 32,
 2104; R. M., Ph. Ch. 24, 493). Die schwach gelb gefärbte alkal. Lösung fluoresciert intensiv
 blauviolett (R. M., C., B. 30, 971; R. M.); behandelt man diese Lösung mit Natriumamalgam,
 so verschwindet die blaue Fluorescenz, die Flüssigkeit färbt sich dunkelgelb und fluoresciert
 nach dem Verdünnen mit Wasser intensiv moosgrün (R. M., C., B. 32, 2104; vgl. Bistrzycki,
 v. Kostanscki, B. 18, 1987). Fluorescenzspektrum des 3.6-Dioxy-xanthons in alkoh. Lösung:
 Stark, R. M., C. 1907 I, 1526.
- 8.6 Discetoxy xanthon $C_{17}H_{12}O_6 = CH_3 \cdot CO \cdot C \cdot C_6H_2 \cdot CO \cdot C_6H_3 \cdot O \cdot CO \cdot CH_3$. B. Beim Kochen von 3.6-Dioxy-xanthon mit Essigsäureanhydrid und Natriumacetat (R. Meyer, Conzerti, B. 32, 2105). Farblose Nadeln (aus Alkohol). F: 200—202°. Ziemlich schwer löslich in der Kälte in Alkohol, Eisessig, Aceton und Benzol, unlöslich in Wasser. Wird durch konz. Schwefelsäure oder verd. Alkali verseift.
- X.X.X.X-Tetrabrom-8.6-dioxy-xanthon C₁₃H₄O₄Br₄. B. Durch Einw. von Brom auf 3.6-Dioxy-xanthon in Eisessig (R. MXYER, CONZETTI, B. 32, 2105). Farblose Nadeln (aus Essignaure). Schmilzt bei 280—290° unter Zersétzung. Ziemlich leicht löslich in heißem Eisessig und Alkohol, fast unlöslich in heißem Benzol und Toluol. In konz. Schwefelsaure erst in der Wärme und ohne Fluorescenz löslich. Die farblosen alkalischen Lösungen fluorescieren blauviolett. Gibt mit Natriumamalgam in alkal. Lösung ein grün fluorescierendes Produkt.

3. Oxy-oxo-Verbindungen $C_{14}H_{10}O_4$.

1. 4.5-Dioxy-3-oxo-1-phenyl-phthalan, 6.7-Dioxy-3-phenyl-phthalid, 3-Phenyl-normekonin $C_{14}H_{10}O_4$, s. nebenstehende Formel.

6.7 - Dimethoxy - 8 - phenyl - phthalid, 8 - Phenyl - mekonin

C₁₆H₁₆O₄ = (CH₂·O)₈C₆H₂ COH(C₅H₅) O. B. Man tragt in eine ather. Phenylmagnesium jodid-Lösung tropfenweise unter Eiskühlung eine Lösung von Opiansaure (Bd. X, S. 990) in absol. Ather ein und zersetzt das Reaktionsprodukt mit Eis und verd. Salzsaure (Mermod, Smonts, B. 41, 983). — Prismen (aus absol. Alkohol). F: 112°. Sohwer löslich in Ather, unlöslich in

Wasser und Ligroin. Wird durch kochende Alkalien aufgespalten; beim Ansäuern tritt wieder Ringschluß ein. Die farblose Lösung in konz. Schwefelsäure färbt sich beim Erwärmen purpurrot. Die dunkelblaue Lösung in rauchender Schwefelsäure wird bei Zusatz von Eis dunkelrot.

- 2. 1-Oxy-3-oxo-1-[4-oxy-phenyl]-phthalan, 3-Oxy-3-[4-oxy-phenyl]-phthalid, cyclo-Form der 2-[4-Oxy-benzoyl]-benzoesdure $C_{14}H_{10}O_4=C_4H_4$ $C_{10}H_{10}O_{10}$ $C_{14}H_{10}O_{10}$ $C_{14}H_{10}O_{10}$
- 3-Methoxy-3-[4-oxy-phenyl]-phthalid, [2-(4-Oxy-benzoyl)-benzoesäure]-pseudomethylester $C_{16}H_{12}O_4=C_6H_4$ $C(0\cdot CH_8)(C_6H_4\cdot OH)$ O. Zur Konstitution vgl. H. Meyer, M. 28, 1236; Egerer, H. M., M. 34 [1913], 69; v. Auwers, Heinze, B. 52 [1919], 586. B. Man behandelt reine 2-[4-Oxy-benzoyl]-benzoesäure (Bd. X, S. 970) bei Zimmertemperatur mit Thionylchlorid und verrührt das entstandene Säurechlorid mit Methylalkohol (H. Meyer, M. 25, 1188). Krystalle (aus Methylalkohol oder Essigsäure). F: 134—135° (H. M.). Löst sich in konz. Schwefelsäure mit intensiv orangegelber Farbe (H. M.).
- 8-Methoxy-3-[4-methoxy-phenyl]-phthalid, [2-Anisoyl-benzoesäure]-pseudomethylester $C_{16}H_{14}O_4 = C_6H_4 \underbrace{C(O \cdot CH_3)(C_6H_4 \cdot O \cdot CH_3)}_{C(O \cdot CH_3)}O$. Zur Konstitution vgl. H. Meyer, M. 28, 1236; Egerer, H. M., M. 34 [1913], 69; v. Auwers, Heinze, B. 52 [1919], 586. B. Durch Einex von Methylalkohol auf das beim Behandeln von 2-Anisoyl-benzoesäure (Bd. X, S. 970) mit Thionylchlorid entstehende Säurechlorid (H. Meyer, Turnau, M. 30, 487). Krystalle (aus Methylalkohol). F: 84°. Färbt sich mit konz. Schwefelsäure bräunlich.
- 3. 3-Oxo-1-[2.4-dioxy-phenyl]-phthalan. 3-[2.4-Dioxy-C₆H₄< CO phenyl]-phthalid, 4-[Phthalidyl-(3)]-resorcin C₁₄H₁₀O₄, s. nebenstehende Formel. Zur Konstitution vgl. BISTEZYOKI, YSSEL DE SCHEPPER, B. 31, 2792. B. Man trägt allmählich ein Gemisch von Phthalaldehydsäure (Bd. X, S. 666) und Resorcin in auf —10° abgekühlte 58°/ajge Schwefelsäure ein, läßt 12 Stunden bei 0° stehen und fügt unter Umrühren Wasser hinzu (BISTEZYOKI, OEHLEET, B. 27, 2637). Farblose Nädelchen mit 1 H₂O (aus verd. Alkohol). Verliert bei 120° das Krystallwasser und schmilzt bei 130° (B., OE.). Ziemlich leicht löslich in den üblichen organischen Lösungsmitteln, unlöslich in Wasser (B., OE.).
- 8-[2-Oxy-4-methoxy-phenyl]-phthalid $C_{18}H_{18}O_4$, s. nebenstehende Formel. B. Man löst 2'-Oxy-4'-methoxy-benzophenon-carbonsäure-(2) (Bd. X, S. 1007) in verd. Sodalösung, fügt unter Umrühren überschüssiges Natriumamalgam hinzu, läßt über Nacht stehen, verdünnt mit Wasser und säuert die Lösung mit verd. Salzsäure an (Perkin, Robinson, Soc. 93, 511). Farblose Prismen (aus Essigester und etwas Petroläther). F: 175°. Löst sich in konz. Schwefelsäure mit gelber Farbe. Gibt in Gegenwart von Alkali mit Chloressigsäure 5-Methoxy-2-[phthalidyl-(3)]-phenoxyessigsäure.
- 3 [4 Methoxy 2 carboxymethoxy phenyl] phthalid, C₆H₄ < CO > 0

 5-Methoxy-2-[phthalidyl-(3)]-phenoxyessigsäure C₁,H₁₄O₆, s. nebenstehende Formel. B. Man hält die siedende Mischung von 2 g
 3-[2-Oxy-4-methoxy-phenyl]-phthalid, 10 g Chloressigsäure und 10 g
 Wasser durch Zusatz von 40% jeger Kalilauge dauernd deutlich alkalisch, verdünnt nach beendeter lebhafter Reaktion und säuert an (P., R., Soc. 93, 511). Krystalle (aus Essigester und etwas Petroläther). F: 188%. Leicht löslich in Natriumcarbonatlösung. Die gelbe Lösung in konz. Schwefelsäure entfärbt sich schnell.
- 3 [x.x Dibrom 2.4 dioxy phenyl] phthalid $C_{14}H_8O_4Br_8 = C_6H_4 \underbrace{CH_{[C_6HBr_3(OH)_3]}}_{CO}O$. B. Durch Bromieren von 3-[2.4-Dioxy-phenyl]-phthalid (s. o.) in warmer konzentrierter essigsaurer Lösung (BISTEZYCKI, OEHLERT, B. 27, 2638). Nädelchen. Schmilzt bei 197,5—199,5° unter Zersetzung.
- 4. 1.7-Dioxy-9-oxo-3-methyl-xanthen, 1.7-Dioxy-3-methyl-xanthon, 3-Methyl-euxanthon $C_{14}H_{10}O_4$, s. nebenstehende Formel. B. Bei mehrstündigem Erhitzen von 1 Mol Orcin mit 1 Mol Hydrochinon-carbonssure-(2) (Bd. X, S. 384) und Zinkehlorid auf 115° (v. Kostanecki, B. 27, 1993). Gelbe Nadeln (aus Alkohol). F: 252°. Sublimierbar. Sehr leicht löelich in heißem Alkohol.

Discotylderivat $C_{18}H_{14}O_6 = CH_2 \cdot CO \cdot O \cdot C_8H_2 < \underset{O}{CO} > C_8H_2(CH_2) \cdot O \cdot CO \cdot CH_2$. B. Durch Kochen von 3-Methyl-euxanthon mit Essigsäureanhydrid und Natriumacetat (v. K., B. 27. 1993). — Nadeln. F: 163°.

4. Oxy-oxo-Verbindungen C₁₅H₁₂O₄.

1. 5.7-Dioxy-4-oxo-2-phenyl-chroman, 5.7-Dioxyflavanon C₁₅H₁₂O₄, s. nebenstehende Formel.

5.7-Dimethoxy-flavanon $C_{17}H_{16}O_4 =$

7.8-Dimethoxy-flavanon $C_{12}H_{16}O_4 =$

(CH₃·O)₂C₆H₂CO·CH₂ B. Durch 24-stündiges Kochen einer alkoh. Lösung von 2'-Oxy-4'.6'-dimethoxy-chalkon (Bd. VIII, S. 434) mit verd. Salzsäure (v. Kostanecki, Lampe, Tambor, B. 37, 2803). — Nadeln (aus Alkohol). F: 146—147°. Löslich in alkoh. Natronlauge mit gelber, in konz. Schwefelsäure mit blaßgelber Farbe.

8.6.8 - Tribrom - 5.7 - dimethoxy - fiavanon $C_{17}H_{13}O_4Br_3$, s. nebenstehende Formel. B. Aus 5.7-Dimethoxy-flavanon und Brom in Chloroform (v. Kostanechi, Lampe, B. 87, 3167). — Prismen (aus Benzol). F: 174—175° (Zers.). — Bei Zusatz von starker Kalilauge zu der Lösung in siedendem Alkohol entsteht 6.8-Dibrom-5.7-dimethoxy-flavon (S. 125).

CH₃·O ĊH ·C6H5

7.8-Dioxy-4-oxo-2-phenyl-chroman, 7.8-Dioxyflavanon C₁₅H₁₂O₄, s. nebenstehende Formel.

(CH₈·O)₂C₆H₂ CO·CH₂

(CH₈·O)₂C₆H₃

O—CH·C₆H₅

B. Durch Versetzen der alkoh. Lösung von Gallacetophenon3.4-dimethyläther (Bd. VIII, S. 393) und Benzaldehyd mit 50% iger Natronlauge und
Fällen der erhaltenen kirschroten Lösung mit Wasser (WOKER, v. KOSTANEOKI, TAMBOR, B. 36, 4243). Durch 24-stündiges Kochen einer alkoh. Lösung von 2'-Oxy-3'.4'-dimethoxy-chalkon (Bd. VIII, S. 434) mit verd. Schwefelsäure (Dobezynski, v. Ko., B. 37, 2807). — Nadeln (aus Methylaikohol). F: 115°; löslich in konz. Schwefelsäure mit gelber Farbe (W., v. Ko., T.). - Liefert beim Behandeln mit Anisaldehyd in heißer alkoholischer Salzsaure 7.8-Dimethoxy-3-anisal-flavanon (S. 202); mit Veratrumaldehyd entsteht 7.8-Dimethoxy-3-veratral-flavanon (8. 233) (Katschalowsky, v. Ko., B. 37, 3171).

CO · CHBr $\textbf{3-Brom-7.8-dimethoxy-flavanon} \quad C_{17}H_{18}O_4Br = (CH_8 \cdot O)_2C_8H_2 < CH_8 \cdot O_{17}C_8H_2 < CH_8 Aus 7.8-Dimethoxy-flavanon und Brom in Schwefelkohlenstoff-Lösung (Worden, v. Kosta-NECKI, TAMBOR, B. 36, 4243). — Nadeln (aus Alkohol). F: 110°. — Gibt mit alkoh. Kalilauge 7.8-Dimethoxy-flavon (S. 126).

3. 6 - Oxy - 4 - oxo - 2 - [2 - oxy - phenyl] - chroman, 6.2'-Dioxy-flavanon C₁₅H₁₂O₄, s. nebenstehende Formel. со~^{сн*} о́н

6.2'-Dimethoxy-flavanon $C_{17}H_{16}O_4 = CH_3 \cdot O \cdot C_4H_3 \cdot O \cdot CH_3$ Co · CH₃

O — CH · C₆H₄ · O · CH₃

Versetzen einer alkoh. Lösung von Chinaceetophenon-5-methyläther (Bd. VIII, S. 271) und Salicylaldehyd-methyläther mit heißer 50% giger Natronlauge (Katschalowsky, v. Kostaneoki, B. 37, 2348). — Säulen (aus Alkohol). F: 120°; die Lösung in konz. Schwefelsäure ist rot (KA., v. Ko., B. 37, 2348). — Liefert mit Piperonal in heißer alkoholischer Salzsäure 6.2'-Dimethoxy-3-piperonyliden-flavanon (Syst. No. 2966) (Ka., v. Ko., B. 37, 3171).

Versetzen einer warmen Lösung von Chinacetophenon-5-äthyläther (Bd. VIII, S. 272) und Salicylaldehyd-athylather in Alkohol mit 50% iger Natronlauge (v. Kostanecki, Seifart, B. 38, 2509). — Spieße (aus Alkohol). F: 100—101°. Die alkoh. Lösung fluoresciert bläulich. Konz. Schwefelsäure färbt die Krystalle dunkel und gibt eine orangefarbene Lösung. Die Lösung in alkoh. Kali ist gelblichrot.

Zur Konstitution vgl. Katschalowsky, v. Kostanecki, B. 37, 3169. — B. Aus 6.2'-Diathoxy-flavanon und Brom in Schwefelkohlenstoff (v. Ko., Seifart, B. 33, 2510). — Nadeln (aus Alkohol). F: 101—102° (v. Ko., S.). — Liefert in heißer alkoholischer Lösung mit konz. Kalilauge 6.2'-Diäthoxy-flavon (v. Ko., S.).

- 4. 6 Oxy 4 oxo 2 [3 oxy phenyl] chroman, HO CH₂ OH $6.3'-Dioxy-flavanon <math>C_{15}H_{12}O_4$, s. nebenstehende Formel.
- 6.8'-Dimethoxy-flavanon $C_{17}H_{16}O_4 = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_4 \cdot O \cdot CH_5$ Versetzen einer Lösung von Chinacetophenon-5-methyläther und 3-Methoxy-benzaldehyd in Alkohol mit heißer 50% iger Natronlauge (v. Kostanecki, Ottmann, B. 37, 958). Täfelchen (aus Alkohol). F: 104°. Löslich in Alkohol mit blauer Fluorescenz, in konz. Schwefelsäure mit orangeroter Farbe.
- 6.3'-Diäthoxy-flavanon $C_{10}H_{20}O_4 = C_2H_5 \cdot O \cdot C_6H_2 \cdot O \cdot C_8H_4 \cdot O \cdot C_2H_5$. B. Beim Versetzen einer alkoh. Lösung von 3-Äthoxy-benzaldehyd und Chinacetophenon-5-äthyläther mit heißer 50% gier Natronlauge (Blumstein, v. Kostanecki, B. 33, 1478). Nadeln (aus Alkohol). F: 96—97%. Die verdünnte alkoholische Lösung fluoresciert bläulich.
- Alkohol). F: 96—97°. Die veruning alkoholische Zoulog.

 3-Brom-6.3'-diäthoxy-flavanon C₁₉H₁₉O₄Br = C₂H₅·O·C₆H₃·O·C₆H₄·O·C₅H₅·Diäthoxy-flavanon und Brom in Schwefelkohlenstoff (Bl., v. K., B. 33, 1479).

 Nadeln (aus Alkohol). F: 112—113°. Beim Versetzen der warmen alkoholischen Lösung mit starker Kalilauge entsteht 6.3'-Diäthoxy-flavon.
- 5. 6-Oxy-4-oxo-2-[4-oxy-phenyl]-chroman, HO CH₂ CH₂ CH_2 OH CH-OH
- 6.4'-Dimethoxy-flavanon $C_{17}H_{16}O_4 = CH_2 \cdot O \cdot C_6H_3 \cdot O CH \cdot C_6H_4 \cdot O \cdot CH_3$ B. Beim Versetzen einer warmen alkoholischen Lösung von Chinacetophenon-5-methyläther (Bd. VIII, S. 271) und Anisaldehyd mit heißer 50% iger Natronlauge (v. Kostanecki, Stoppani, B. 37, 782). Nadeln (aus Alkohol). F: 160%. Löslich in konz. Schwefelsäure mit gelber Farbe. Die alkoh. Lösung fluoresciert blau.
- Die alkoh. Lösung Huoresciert Discu.

 4'-Methoxy-6-äthoxy-flavanon C₁₈H₁₈O₄ = C₂H₅·O·C₆H₅·O·C₆H₆·O·CH₂

 Beim Versetzen einer warmen alkoholischen Lösung von Chinacetophenon-5-äthyläther und Anisaldehyd mit 50°/₀iger Natronlauge (v. Kostanecki, Oderfeld, B. 32, 1927). Nadeln (aus Alkohol). F: 131—132°. Die alkoh. Lösung fluoresciert bläulich. Löst sich in konz. Schwefelsäure mit gelblichroter, in alkoh. Kalilauge mit roter Farbe.
- Oxim $C_{10}H_{10}O_4N = C_2H_5 \cdot 0 \cdot C_0H_3 \cdot 0 CH \cdot C_0H_4 \cdot 0 \cdot CH_3$. B. Durch kurzes Kochen der alkoh. Lösung von 4'-Methoxy-6-āthoxy-flavanon mit salzsaurem Hydroxylamin in Gegenwart von Natriumcarbonat (v. K., B. 33, 1483). Nadeln (aus Alkohol). F: 190° bis 191°. Ziemlich schwer löslich in Alkohol.
- Oximacetat $C_{50}H_{21}O_5N = C_2H_5 \cdot O \cdot C_6H_3 \cdot \frac{C(:N \cdot O \cdot CO \cdot CH_3) \cdot CH_2}{O}$. B. Bei kurzem Kochen von 4'-Methoxy-6-äthoxy-flavanon-oxim mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., B. 38, 1484). Nadeln (aus Alkohol). F: 168°.
- 8-Brom-4'-methoxy-6-äthoxy-flavanon $C_{18}H_{17}O_4Br = C_2H_5\cdot O\cdot C_6H_3$ CO·CHBr. Zur Konstitution vgl. Katschalowsky, v. Kostanecki, B. 37, 3169. B. Aus 4'-Methoxy-6-äthoxy-flavanon und Brom in Schwefelkohlenstoff (v. Ko., Oderfeld, B. 32, 1927). Nadeln (aus Alkohol). F: 140—141°. Beim Versetzen der alkoh. Lösung mit 30% jeger Kalilauge entsteht 4'-Methoxy-6-äthoxy-flavon.
- 6. $7 Oxy 4 oxo 2 [2 oxy phenyl] chroman, 7.2'-Dioxy-flavanon <math>C_{15}H_{12}O_4$, s. nebenstehende Formel.
- 7.2'-Dimethoxy-flavanon $C_{17}H_{16}O_4 = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot CH_2$ Versetzt eine alkoh. Lösung von 2'-Oxy-2.4'-dimethoxy-chalkon (Bd. VIII, S. 432) solange mit verd. Salzsäure, bis eine Trübung entsteht, und erhitzt sodann 24 Stdn. auf dem Wasserbad (v. Kostanecki, v. Szlagier, B. 37, 4157). Nadeln (aus Alkohol). F: 102°. Löst sich in konz. Schwefelsäure und alkoh. Natronlauge mit gelber Farbe.

12. 3 - Oxo - 1 - [4.6 - dioxy - 2 - methyl - phenyl] - phthalan, C₆H₄ < CO O 3-[4.6 - Dioxy - 2 - methyl - phenyl] - phthalid C₁₂H₁₂O₄, s. nebenstehende Formel. Zur Konstitution vgl. BISTREYCKI, YSSEL DE SCHEPPER, B. 31, 2792.

B. Man trägt allmählich ein Gemisch aus Phthalaldehydsäure und Orcin auf —10° abgekühlte 73°/sige Schwefelsäure ein, läßt 12 Stdn. bei 0° stehen und fügt unter Umrühren Wasser hinzu (B., Oehlert, B. 27, 2638).

Blättchen. Schmilzt bei 241—242° unter Zersetzung (B., Oe.).

und Alkohol 5-[3.5-Dimethoxy-benzyl]-cumaran (Bd. XVII, S. 161).

5. Oxy-oxo-Verbindungen $C_{16}H_{14}O_4$.

1. α - Oxy - β - phenyl - γ - [4 - oxy - phenyl] - butyrolacton $C_{16}H_{14}O_4 = HO \cdot HC - CH \cdot C_6H_5$

OC · O · CH · C, H, · OH

- $\begin{array}{lll} \alpha Oxy \beta phenyl \gamma [4 methoxy phenyl] butyrolacton & C_{17}H_{16}O_4 = \\ HO \cdot HC & CH \cdot C_6H_5 & Existient in 2 stereoisomeren Formen. \end{array}$
- a) Höherschmelzende Form. B. Neben der niedrigerschmelzenden Form bei der Reduktion von α -Oxo- β -phenyl- γ -[4-methoxy-phenyl]-butyrolacton (S. 135) mit Natriumamalgam; man säuert nach dem Filtrieren mit Salzsäure an, schüttelt wiederholt mit Äther aus, trocknet mit entwässertem Natriumsulfat und destilliert den Äther ab; es scheidet sich zunächst die niedrigerschmelzende Form aus (ERLENMEYER, LATTERMANN, A. 333, 270).

 -- Krystalle (aus Chloroform). F: 155°. Löslich in Alkohol, Chloroform, unlöslich in Ligroin. In Äther viel sohwerer löslich als das Isomere.
- b) Niedrigerschmelzende Form. B. s. die höherschmelzende Form. Krystalle (aus Chloroform). F: 123° (E., L., A. 333, 270). Löslich in Alkohol und Chloroform, unlöslich in Ligroin (E., L.). Lagert sich beim Kochen mit verd. Salzsäure in β -Phenyl- β -anisoyl-propionsäure (Bd. X, S. 974) um (E., L.).

Acetylderivat $C_{19}H_{18}O_5=\frac{CH_3\cdot CO\cdot O\cdot HC-CH\cdot C_0H_5}{OC\cdot O\cdot CH\cdot C_0H_4\cdot O\cdot CH_3}$. B. Bei der Einw. von Essigsäureanhydrid auf die niedrigerschmelzende Form des α -Oxy- β -phenyl- γ -[4-methoxy-phenyl]-butyrolactons in Gegenwart von etwas konz. Schwefelsäure (E., L., A. 333, 271). — Nadeln (aus Alkohol). F: 117°. — Liefert beim Erwärmen mit Natronlauge das Lacton vom Schmelzpunkt 123° zurück.

- 6. Oxy-oxo-Verbindungen $C_{17}H_{16}O_4$.
- 1. 4-Oxo-2.6-bis-[2-oxy-phenyl]-pyrantetrahydrid, 2.6-Bis-[2-oxy-phenyl]-tetrahydropyron $C_{17}H_{16}O_4 = H_{16}O_4 H_{16}O_4 H_{16}O_4 H_{16}O_4 H_{16}O_4$

 $\begin{array}{ll} \textbf{phenylf-tetrahydropyron} & C_{17}H_{16}O_4 = \frac{H_2C \cdot CO \cdot CH_2}{HO \cdot C_6H_4 \cdot HC - O - CH \cdot C_6H_4 \cdot OH} \\ \textbf{2.6 - Bis - [2 - methoxy - phenyl] - tetrahydropyron} & C_{16}H_{20}O_4 = \\ & H_2C \cdot CO \cdot CH_2 & P_{10} \cdot C_{10}H_{20}O_4 = \\ & C_{10}H_{20}O_4 \cdot C_{10}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G \cdot C_{20}H_{20}O_4 = \\ & H_{20}C \cdot CO \cdot CH_2 & P_{20}G$

. B. Durch Erhitzen von 2.6-Bis-[2-methoxy-CH₂·O·C₆H₄·HC—O—CH·C₆H₄·O·CH₂
phenyl]-tetrahydropyron-dicarbonsäure-(3.5) (Syst. No. 2626) auf dem Wasserbad (Petrenko-Kritschenko, B. 31, 1510) oder bequemer durch Eindampfen der ammoniakalischen Lösung dieser Säure (P.-K., B. 32, 811; J. pr. [2] 60, 147). — Krystalle (aus Alkohol). F: 173°; unlöslich in Wasser, schwer löslich in Alkohol und Ligroin, etwas leichter in Benzol (P.-K., B. 31, 1511; J. pr. [2] 60, 147). — Wird von Essigsäureanhydrid nicht angegriffen (P.-K., B. 31, 1511). Geht beim Erwärmen in alkoh. Lösung mit etwas Salzsäure in Bis-[2-methoxy-benzal]-aceton (Bd. VIII, S. 352) über (P.-K., B. 31, 1511).

2.6 - Bis - [2 - \ddot{a} thoxy - phenyl] - tetrahydropyron $C_{21}H_{24}O_4 = H_2\ddot{C} \cdot CO \cdot CH_2$

 $H_1 \cup U \cup U \cap B$. B. Durch Eindampfen der ammoniakalischen $C_2H_5 \cup C_6H_4 \cup H \cup C_6H_4 \cup C_6H_5 \cup C_6H_5$. Lösung von 2.6-Bis-[2-āthoxy-phenyl]-tetrahydropyron-dicarbonsäure-(3.5) (P.-K., B. 32, 811; J. pr. [2] 60, 149). — Krystalle (aus Alkohol). F: 126°. Unlöslich in Wasser. — Geht beim Erwärmen in alkoh. Lösung mit einigen Tropfen Salzsäure in Bis-[2-āthoxy-benzal]-aceton über.

2.6 - Bis - [2 - propyloxy - phenyl] - tetrahydropyron $C_{23}H_{26}O_4 = H_3C \cdot CO \cdot CH_2$

B. In ein Gemisch von CH₂·CH₂·CH₂·O·C₆H₄·HC—O—CH·C₆H₄·O·CH₂·CH₂·CH₃

2 Mol nicht näher beschriebenem Salicylaldehyd-propyläther, 1 Mol Aceton-dicarbonsäure und einem gleichen Gesamtvolumen Essigsäure leitet man unter Kühlung bis zur Sättigung Chlorwasserstoff ein und läßt 6 Stdn. stehen; die sich ausscheidende 2.6-Bis-[2-propy]oxyphenyl]-tetrahydropyron-dicarbonsăure-(3.5) [Krystalle; F: 123° (Zers.); unlöslich in Wasser, leicht löslich in Alkohol; die alkoh. Lösung gibt mit Eisenchlorid eine violette Färbung] löst man in Ammoniak und dampft zur Trockne ein (Posnjakow, Ж. 33, 667; C. 1902 I, 205). — Krystalle (aus Alkohol). F: 112-113°.

2.6 - Bis - [2 - methoxy - phenyl] - tetrahydropyron - oxim $C_{19}H_{21}O_4N = H_2O \cdot C(:N \cdot OH) \cdot OH_2$

H₂U·U(:N·UH)·UH₂

CH₂·O·C₆H₄·HC——O——CH·C₆H₄·O·CH₃

B. Durch kurzes Erwärmen von 2.6-Bis-CH₂·O·C₆H₄·HC——O——CH·C₆H₄·O·CH₃

[2-methoxy-phenyl]-tetrahydropyron mit Hydroxylamin in verd. Alkohol (Petrenko-Kritschenko, Rosenzweig, B. 32, 1747; Ж. 31, 563; C. 1899 II, 476). — F: 202⁰; unlöslich in Wasser, schwer löslich in heißem Alkohol (P.-K., R.). Bildet mit vielen Krystallisationsmitteln Doppelverbindungen (P.-K., B. 33, 746; K. 31, 903; C. 1900 I, 607).

2.6 - Bis - [2 - \ddot{a} thoxy - phenyl] - tetrahydropyron - oxim $C_{21}H_{2L}O_4N =$ $\mathbf{H}_{\bullet}\mathbf{C}\cdot\mathbf{C}(:\mathbf{N}\cdot\mathbf{OH})\cdot\mathbf{CH}_{\bullet}$

2.6 - Bis - [2 - propyloxy - phenyl] - tetrahydropyron - oxim $C_{23}H_{29}O_4N = H_2C \cdot C(:N \cdot OH) \cdot CH_2$

CH₂·CH₂·CH₃·O·C₆H₄·HC O-CH·C₆H₄·O·CH₂·CH₃·CH₃·B. Aus 2.6-Bis-[2-propolary-phenyl]-tetrahydropyron und Hydroxylamin in Alkohol (Posnjakow, Ж. 33, 668; C. 1902 I, 206). — Krystalle. F: 170°. Unlöslich in Wasser, löslich in Alkohol. Bildet keine Additionsysphindung mit Alkohol. Mit Essission (Posnjakov, M. 34) Additionsverbindung mit Alkohol. Mit Essigsäure, Chloroform und Athylenglykol entstehen krystallinische Additionsverbindungen von schwankender Zusammensetzung.

2. γ - [4 - Oxy - phenyl] - α - [4 - oxy - benzyl] - butyrolacton $C_{17}H_{16}O_4 = HO \cdot C_0H_4 \cdot CH_2 \cdot HC - CH_3$ OC · O · CH · C · H · OH

OC · O · CH · C · H · O · CH · B. Beim Behandeln einer Lösung von β -Brom- γ -[4-methoxy-phenyl]- α -anisyl-butyrolacton in Eisessig mit Natriumamalgam (Firrig, Politis, A. 255, 306). — Prismen (aus Eisessig). F: 83°. Leicht löslich in Äther, Chloroform und Schwefelkohlenstoff. — Liefert beim Kochen mit Barytwasser das nicht näher beschriebene Bariumsalz der γ -Oxy- γ -[4-methoxy-phenyl]α-[4-methoxy-benzyl]-buttersäure.

 β -Brom- γ -[4-methoxy-phenyl]- α -[4-methoxy-benzyl]-butyrolacton, β -Brom- γ -[4-methoxy-phenyl]- α -anisyl-butyrolacton $C_{19}H_{19}O_4Br=$ CH. O. C.H. CH. HC CHBr

OC·O·CH·C₆H₄·O·CH₃

B. Man übergießt α -Anisyl- β -anisal-propionsäure (Bd. X, S. 449) mit Brom in Schwefelkohlenstoff bei 0° und läßt die entstandene Additionsverbindung über Kali stehen (F., P., A. 255, 305). — Nadeln (aus Eisessig). F: 136°. Unlöslich in kalter Sodalösung.

 $\alpha.\beta\text{-Dibrom-}\gamma\text{-}[4\text{-methoxy-phenyl}]\text{-}\alpha\text{-}[\alpha\text{-brom-4-methoxy-benzyl}]\text{-butyrolacton}$ $C_{19}H_{17}O_4Br_3 = \underbrace{CH_3\cdot O\cdot C_0H_4\cdot CHBr\cdot BrC}_{CHBr} \underbrace{CHBr}_{R} \underbrace{Man}_{A} \underbrace{hehandelt}_{A} \underbrace{Mol}_{A}$

 $O_{19}H_{17}O_{4}DF_{3} = OC \cdot O \cdot CH \cdot C_{6}H_{4} \cdot O \cdot CH_{3}$ 8. Man behandelt 1 Mol α . β -Dianisal-propionsäure (Bd. X, S. 452) mit 2 Mol Brom in Chloroform; bei der freiwilligen Verdunstung des Chloroforms geht das entstandene Bromadditionsprodukt in das Lacton über (F., P., A. 255, 302). — Krystalle (aus Chloroform). Schmilzt bei 140° unter Zersetzung. Unlöslich in kalter Sodalösung.

 $\begin{array}{lll} \beta\text{-Jod-}\gamma\text{-[4-methoxy-phenyl]-}\alpha\text{-[4-methoxy-benzyl]-butyrolacton,} & \beta\text{-Jod-}\\ \gamma\text{-[4-methoxy-phenyl]-}\alpha\text{-anisyl-butyrolacton} & C_{10}H_{10}O_4I = \\ CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot HC - CHI & CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot HC - CHI & CH_3\cdot O\cdot C_6H_4\cdot CH_3\cdot HC - CHI & CH_3\cdot O\cdot C_6H_4\cdot CH_3\cdot HC - CHI & CH_3\cdot CH_3\cdot HC - CHI & CH_3\cdot CH_3\cdot HC - CHI & CH_3\cdot C$

OC·O·CH·C₆H₄·O·CH₃

B. Bei der Einw. von Jod-Jodkalium-Lösung auf eine Lösung von α -Anisyl- β -anisal-propionsäure (Bd. X, S. 449) in Natriumdicarbonat-Lösung (Bougault, A. ch. [8] 14, 157, 174). — Gelbliche Krystalle. F: 115°. Sehr wenig löslich in Alkohol, schwer in Äther.

3. $\alpha.\beta-Dioxy-\alpha-phenyl-\gamma-benzyl-butyrolacton, \quad \alpha.\beta-Dioxy-\alpha.\delta-diphenyl-\gamma-valerolacton \ C_{17}H_{16}O_4 = \frac{(HO)(C_6H_5)C--CH\cdot OH}{OC\cdot O\cdot CH\cdot CH_5\cdot C_6H_5}. \quad B. \quad \text{Aus } \alpha\text{-Phenyl-}\gamma\text{-benzyl-}$

 $\Delta^{\alpha,\beta}$ -crotonlacton (Bd. XVII, S. 384) durch Oxydation mit $2^1/{}_3^0/_0$ iger Permanganatlösung in Gegenwart von Magnesiumsulfat (Thuele, Straus, A. 319, 221).— Nadeln (aus Chloroform). F: 138°. Sehr leicht löslich in Alkohol, schwerer in Benzol, Chloroform und Wasser, fast unlöslich in Schwefelkohlenstoff und Petroläther.

 $\alpha.\beta - \textbf{Diacetoxy} - \alpha - \textbf{phenyl} - \gamma - \textbf{benzyl} - \textbf{butyrolacton}, \quad \alpha.\beta - \textbf{Diacetoxy} - \alpha.\delta - \textbf{diphenyl} - \gamma - \textbf{valerolacton} \quad \textbf{C}_{31} \textbf{H}_{30} \textbf{O}_{6} = (\textbf{CH}_{3} \cdot \textbf{CO} \cdot \textbf{O}) (\textbf{C}_{6} \textbf{H}_{5}) \textbf{C} - \textbf{CH} \cdot \textbf{O} \cdot \textbf{CO} \cdot \textbf{CH}_{3} \cdot \textbf{C} + \textbf{CH}_{3} \cdot \textbf{C$ γ - valerolacton $C_{11}H_{20}O_6 = OC \cdot O \cdot CH \cdot CH_2 \cdot C_6H_5$ B. Aus $\alpha.\beta$ -Dioxy- $\alpha.\delta$ -diphenyl- γ -valerolacton und Acetanhydrid bei Gegenwart von wenig Schwefelsäure (TH., St., A. 319, 221). — Prismen (aus Methylalkohol). F: 137°. Sehr leicht löslich in Chloroform und Benzol, schwer in Alkohol und Schwefelkohlenstoff.

7. 7.8 - Dioxy - 4 - 0x0 - 2 - [4 - isopropyl - phonyl] chroman, 7.8 - Dioxy - 4'-isopropyl-flavanon Ho- $C_{18}H_{18}O_4$, s. nebenstehende Formel.

7.8-Dimethoxy-4'-isopropyl-flavanon $C_{20}H_{22}O_4 =$

 $(CH_3 \cdot O)_2C_6H_2 \overbrace{\begin{array}{c} CO \cdot CH_2 \\ i \end{array}}^{CO \cdot CH_2}$ $(CH_3 \cdot O)_2C_6H_2$ O— $CH \cdot C_6H_4 \cdot CH(CH_3)_2$. B. Durch 48-stdg. Erhitzen einer alkoh. Lösung von 2'-Oxy-3'.4'-dimethoxy-4-isopropyl-chalkon (Bd. VIII, S. 438) mit verd. Salzsäure (v. Kostanecki, B. 40, 3673). — Körnige Kryställchen (aus Alkohol). F: 92°.

k) Oxy-oxo-Verbindungen $C_nH_{2n-20}O_4$.

1. Oxy-oxo-Verbindungen $C_{15}H_{10}O_4$.

1. 5.7 - Dioxy - 4 - oxo - 2 - phenyl - [1.4 - chromen],
5.7 - Dioxy - 2 - phenyl - chromon, 5.7 - Dioxy - flavon,
Chrysin C₁₅H₁₀O₄, s. nebenstehende Formel. Die vom Namen
"Chrysin" abgeleiteten Namen werden in diesem Handbuch
nach nebenstehendem Schema beziffert. — Zur Konstitution vgl.
v. Kostanecki, B. 26, 2903. — V. In den Knospen verschiedener Pappelarten, besonders in den frischen Herbst- oder Winterknospen der nordamerikanischen Ärt Populus monilifera s. balsamifera (Piocard, B. 6, 884). — B. Durch mehrstündiges Kochen von 2.4.6-Trimethoxy-ω-benzoyl-acetophenon (Bd. VIII, S. 503) mit konz. Jodwasserstoffsäure (Emilewicz, v. Kostanecki, Tambor, B. 32, 2449). Durch mehrstündiges Erwärmen von 6.8-Dibrom-chrysin-5.7-dimethyläther (S. 125) mit konz. Jodwasserstündiges Erwärmen von 6.8-Dibrom-chrysin-5.7-dimethyläther (S. 125) mit konz. Jodwasserstoffsäure (v. Kostanecki, Lampe, B. 87, 3168). — Darst. Man versetzt den alkoh. Auszug von 100 Tln. frischer Pappelknospen mit der alkoh. Lösung von 12 Tln. krystallisiertem Bleizucker bei 70°, filtriert nach 24 Stunden, entbleit das Filtrat durch Schwefelwasserstoff und destilliert den Alkohol ab; das ausgeschiedene Harz löst man in wenig kochendem Alkohol und reinigt das auskrystallisierte Chrysin durch Auskochen erst mit wenig absol. Alkohol.

dann mit Äther, Schwefelkohlenstoff und Benzin; man erhitzt es nun zum Schmelzen, löst in Alkohol und entfernt Beimengungen durch einige Tropfen Bleiessig (Pr., B. 6, 884). — Hellgelbe Tafeln. F: 275° (PI., B. 6, 885). Sublimiert unzersetzt in Nadeln (PI., B. 6, 885). Unlöslich in Wasser, kaum löslich in Schwefelkohlenstoff, Chloroform und Benzin, ziemlich reichlich in kochendem Eisessig und Anilin, weniger in Äther; löslich in 180 Tln. kaltem und in ca. 50 Tln. heißem Alkohol (Pr., B. 6, 885). Leicht löslich in Alkalien mit intensiv gelber Farbe (Pr., B. 6, 885). Die alkoh. Lösung wird durch Eisenchlorid schmutzig violett gefärbt; sie gibt mit Bleiacetat einen Niederschlag, der im Überschuß des Fällungsmittels und ebenso in wenig Essigsäure leicht löslich ist (Pl., B. 6, 885). — Chrysin gibt mit Brom 6.8-Dibrom-chrysin, mit Jod unter Zusatz von etwas Jodsäure 6.8-Dijod-chrysin (Pl., B. 6, 886, 887). Liefert mit Salpetersäure 6.8-Dinitro-chrysin (S. 126) (Darier, B. 27, 21; vgl. Pr., B. 6, 888; 7, 888), Oxalsaure und Benzoesaure (Pr., B. 6, 888; 7, 888). Zerfallt beim Kochen mit konz. Kalilauge in Acetophenon, Essigsäure, Benzoesäure und Phloroglucin (Pl., B. 7, 888). — Besitzt beizenfärbende Eigenschaften (Möhlau, Steinnig, Ziecht. f. Farben- u. Textilindustrie 8, 367; C. 1904 II, 1353; A. G. PERKIN, Soc. 81, 1176).

5-Oxy-7-methoxy-flavon, Chrysin-7-methyläther, Tektochrysin $C_{16}H_{13}O_4$, s. nebenstehende Formel. Zur Konstitution vgl. v. Kostanschi, B. 26, 2901, 2904. — V. In den Pappel-CHa · O knospen (Piccard, B. 6, 891, 1160). — B. Entsteht beim Behandeln von Chrysin mit Atzkali und Methyljodid und wird von unverändertem Chrysin durch Chloroform, in dem es zum Unterschied von diesem sehr leicht löslich ist, getrennt (Pr., B. 10, 176). -Schwefelgelbe Krystalle (aus Benzol). Monoklin prismatisch (Pr., B. 6, 891; FOOK, B. 33, 1990 Anm. 1; vgl. Groth, Ch. Kr. 5, 647). F: 163° (Pr., B. 7, 891), 164° (Pr., B. 10, 177). Schwer löslich in Alkohol, leicht in Benzol und Schwefelkohlenstoff, sehr leicht in Chloroform (PI., B. 10, 177). Gibt man zur alkoh. Lösung vorsichtig Natronlauge bis zur beginnenden Trübung, so entsteht ein in Wasser fast unlösliches Natriumsalz, das beim Kochen mit Wasser unter Bildung von Chrysin-7-methyläther gespalten wird (v. Kostanecki, B. 26, 2903; vgl. Pi., B. 10, 178). Wird beim Kochen mit Kalilauge viel schwerer als Chrysin unter Bildung von Acetophenon, Essigsaure und Benzoesaure aufgespalten (Pr., B. 7, 891).

5-Oxy-7-äthoxy-flavon, Chrysin-7-äthyläther $C_{17}H_{14}O_4$, s. nebenstehende Formel. Zur Konstitution vgl. v. Kostanecki, B. 26, 2901, 2904. — B. Aus Chrysin analog dem Chrysin-7-methyläther (Piccard, B. 10, 176). — Nadeln. F: 146° (Pi.).

CaH5 · O

5-Oxy-7-isoamyloxy-flavon, Chrysin-7-isoamyläther C₂₀H₂₀O₄, s. nebenstehende Formel. Zur Konstitution vgl. v. Kostanecki, B. **26**, 2901, 2904. — B. Aus Chrysin analog dem Chrysin-7-methyläther (Рюсавр, B. 10, 176). — Nadeln. F: 125° (PI.).

HO C5H11 · O

7-Methoxy-5-acetoxy-flavon, Chrysin-7-methyläther-5-acetat $C_{10}H_{14}O_{5}$, s. nebenstehende Formel. B. Aus Chrysin-CHR · CO · O 7-methyläther in üblicher Weise (v. Kostanecki, B. 26, 2903). -Nadeln (aus Alkohol). F: 149°.

5.7 - Diacetoxy - flavon, Chrysin - 5.7 - diacetat $C_{19}H_{14}O_6 = (CH_3 \cdot CO \cdot O)_3C_9H_2 \cdot CO \cdot CH_3$.

B. Durch Kochen von Chrysin mit B. Durch Kochen von Chrysin mit Essigsäureanhydrid und entwässertem Natriumacetat (PICCARD bei v. KOSTANECKI, B. 26, 2902). — Nadeln (aus Alkohol). F: 185° (v. K.). In heißem Alkohol ziemlich leicht löslich.

6.8 - Dibrom - 5.7 - dioxy - flavon, 6.8 - Dibrom - chrysin $C_{\chi e}H_{\theta}O_{\chi}Br_{\theta}$, s. nebenstehende Formel. B. Durch Vermischen einer alkoh. Chrysinlösung mit überschüssigem Brom (PICCARD, B. 6, 886). — HO. Hellgelbe verfilzte Masse.

6.8 - Dibrom - 5 - oxy - 7 - methoxy-flavon, 6.8 - Dibrom - chrysin - 7 - methyläther $C_{16}H_{10}O_{4}Br_{3}=(CH_{3}\cdot O)(HO)C_{6}Br_{3} \underbrace{O-C\cdot C_{6}H_{5}}$ B. Durch Eindampfen einer alkoh. Lösung von Chrysin-7-methyläther mit überschüssigem Brom (Pi., B. 6, 892).

6.8 - Dibrom - 5.7 - dimethoxy - flavon, 6.8 - Dibrom - chrysin - 5.7 - dimethyläther COCH $\mathrm{C}_{17}\mathrm{H}_{18}\mathrm{O}_{4}\mathrm{Br}_{3} = (\mathrm{CH}_{8} \cdot \mathrm{O})_{8}\mathrm{C}_{6}\mathrm{Br}_{8} \underbrace{\mathrm{O-C}_{0}\mathrm{H}_{5}}_{\mathrm{C}_{6}\mathrm{H}_{5}}$ B. Durch Zufügen von konz. Kalilauge zur siedenden alkoholischen Lösung des 3.6.8-Tribrom-5.7-dimethoxy-flavanons (S. 119) (v. Kosta-NECKI, LAMPE, B. 37, 3168). — Nädelchen (aus Eisessig-Alkohol). F: 253°. — Bei mehrstündigem Erwärmen mit konz. Jodwasserstoffsäure entsteht Chrysin.

6.8 - Dibrom - 5 - oxy - 7 - isoamyloxy - flavon, 6.8 - Dibrom - chrysin-7 - isoamyläther $C_{so}H_{1s}O_4Br_s = (C_sH_{11} \cdot O)(HO)C_6Br_s O C \cdot C_6H_s$ B. Durch Eindampfen von Chrysin-7-isoamylather und Brom in Chloroform (PICCARD, B. 10, 177). — Nadeln.

6.8-Dijod-5.7-dioxy-flavon, 6.8-Dijod-chrysin $C_{18}H_8O_4I_4$, s. nebenstehende Formel. B. Durch Versetzen einer alkoh. Chrysinlösung mit Jod und etwas Jodsäure (Pr., B. 6, 887). — Gelbe Nadeln. HO Zersetzt sich schon bei 100°.

Ho NO. Ċ · C₆H ₅

6.8 - Dinitro - 5.7 - dioxy - flavon, 6.8 - Dinitro - chrysin $C_{js}H_{s}O_{s}N_{s}$, s. nebenstehende Formel. B. Bei 20—30 Minuten langem Kochen von Chrysin mit Salpetersäure (D: 1,35) (DARIEE, B. 27, 21; vgl. Piccard, B. 6, 888). - Rosenrote Blättchen (aus Alkohol). F: 272°; sehr schwer löslich in Wasser, schwer in Alkohol, leicht in Natronlauge (D.). — Liefert beim Kochen mit Salpetersäure Benzoesäure und Oxalsäure

НŌ O2N Ö∙CeH5 HO. O2N

(D.). — $K_2C_{15}H_6O_8N_2 + H_2O$ (bei 100°) (D.). — $CaC_{15}H_6O_8N_2$ (bei 140°) (D.). 6.8-Dinitro-5.7-diacetoxy-flavon, 6.8-Dinitro-chrysin-5.7-diacetat $C_{19}H_{12}O_{10}N_2 =$ CO·CH $(CH_{\textbf{3}} \cdot CO \cdot O)_{\textbf{2}} C_{\textbf{6}} (NO_{\textbf{2}})_{\textbf{3}} \underbrace{O - \overset{\text{i.i.}}{C} \cdot C_{\textbf{6}} H_{\textbf{5}}}_{\textbf{i.i.}}$ B. Aus 6.8-Dinitro-chrysin und Essigsäureanhydrid

bei 130-135° (Darier, B. 27, 22). - Gelbe Nadeln (aus Benzol). F: 229°. Unlöslich in

Alkohol.

2. 7.8-Dioxy-4-oxo-2-phenyl-[1.4-chromen], 7.8-Dioxy-2-phenyl-chromon, 7.8-Dioxy-flavon C₁₈H₁₀O₄, s. neben-∠Ċ · CeHs stehende Formel. B. Beim Kochen von 7.8-Dimethoxy-flavon (s. u.) mit konz. Jodwasserstoffsäure (WOKEB, V. KOSTANECKI, TAMBOR, B. HO
36, 4242). — Gelbliche Nadeln (aus 50% jegem Alkohol). F: 239%. Leicht löslich in Alkalien mit gelber Farbe. Löslich in konz. Schwefelsäure mit grüngelber Farbe. Färbt mit Aluminiumoxyd gebeizte Baumwolle rein gelb.

7.8-Dimethoxy-flavon $C_{17}H_{14}O_4 = (CH_3 \cdot O)_3C_6H_3$ $CO \cdot CH$ $C \cdot C_6H_5$ $C \cdot C_6H_5$ Kalilauge (W., v. K., T., B. 36, 4244). — Nadeln (aus Alkohol). F: 151°. — Wird beim Kochen mit konzentrierter alkoholischer Natriumäthylatlösung in Gallacetophenon-3.4-dimethylåther und Benzoesäure zerlegt.

7.8-Diacetoxy-flavon $C_{19}H_{14}O_6 = (CH_3 \cdot CO \cdot O)_2C_6H_3 \cdot CO \cdot CH_3 \cdot O - C \cdot C_6H_5$. B. Aus 7.8-Dioxy-flavon durch Acetylierung (W., v. K., T., B. 36, 4242). — Nadeln (aus Alkohol). F: 193°.

3. 6-Oxy-4-oxo-2-[2-oxy-phenyl]-[1.4-chromen], HO. CH OH G-Oxy-2-[2-oxy-phenyl]-chromon, 6.2-Dioxy-flavon C₁₈H₁₀O₄, s. nebenstehende Formel. B. Durch mehrstündiges Kochen von 6.2'-Diäthoxy-flavon (s. u.) mit konz. Jodwasserstoffsäure (v. Kostanecki, Seifart, B. 33, 2512). — Gelbliche Nadeln (aus Alkohol). F: 304—305°. Die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert grün.

6.2'-Diäthoxy-flavon $C_{10}H_{18}O_4 = C_2H_5 \cdot O \cdot C_0H_3$ CO·CH $C_2H_4 \cdot O \cdot C_2H_5$ B. Durch Einw. von konz. Kalilauge auf 3-Brom-6.2'-diāthoxy-flavanon (8. 119) in Alkohol (v. K., 8., B. 33, 2510). — Nadeln (aus Benzol-Ligroin). F: 106°. Die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert grünlich. — Wird von alkoh. Natriumäthylatlösung in Chinacetophenon-5-āthylāther und Äthylāthersalicylsaure sowie wenig 5-Athylāther-gentisinsaure gespalten.

alten. $\mathbf{6.2'}\text{-Diacetoxy-flavon} \quad \mathbf{C_{10}H_{14}O_6} = \mathbf{CH_3 \cdot CO \cdot O \cdot C_6H_3} \underbrace{\mathbf{CO \cdot CH}}_{\mathbf{O} - \mathbf{C \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3}}$ men (aus verd, Alkohol). F: 148-1490 (v. K., S., B. 38, 2512)

4. 6-Oxy-4-oxo-2-[3-oxy-phenyl]-[1.4-chromen], Ho 6-Oxy-2-[3-oxy-phenyl]-chromon, 6.3'-Dioxy-flavon $C_{16}H_{10}O_4$, s. nebenstehende Formel. B. Durch mehrstündiges Kochen OH von 6.3'-Diathoxy-flavon (8. 127) mit konz. Jodwasserstoffsäure (Blumstein, v. Kosta-NECKI, B. 88, 1480). — Nädelchen (aus Alkohol). F: 300°. Die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert sehr schwach grünlich.

- 8.3'-Diacetoxy-flavon $C_{19}H_{14}O_6 = C\hat{H}_2 \cdot CO \cdot O \cdot C_6H_3 \cdot O \cdot C \cdot C_9H_4 \cdot O \cdot CO \cdot CH_3$ Durch kurzes Kochen von 6.3'-Dioxy-flavon mit Essigsäureanhydrid und entwässertem Natriumacetat (BL., v. K., B. 33, 1480). Nadeln (aus Alkohol). F: 169—170°.
- 5. 6-Oxy-4-oxo-2-[4-oxy-phenyl]-[1.4-chromen], HO. COCH
 6-Oxy-2-[4-oxy-phenyl]-chromon, 6.4'-Dioxy-flavon
 C18H10O4, s. nebenstehende Formel. B. Durch Kochen von
 4'-Methoxy-6-šthoxy-flavon (s. u.) mit konz. Jodwasserstoffsäure (v. Kostanecki, Oderfeld, B. 32, 1929). Nådelchen (aus Alkohol). Verkohlt bei 320°, ohne zu schmelzen. Ziemlich schwer löslich in Alkohol. Die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert schwach grünlich. Die Lösung in verd. Natronlauge ist gelblichgrün.
- 4'-Methoxy-6-äthoxy-flavon $C_{18}H_{16}O_4 = C_2H_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_4 \cdot O \cdot CH_3$ 3-Brom-4'-methoxy-6-äthoxy-flavanon (S. 120) durch alkoh. Kalilauge (v. K., O., B. 32, 1928). Gelbliche Nadeln mit $1H_2O$ (aus verd. Alkohol), die bei 80° wasserfrei werden und bei 134— 135° schmelzen. Die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert grün. Bei der Aufspaltung mit alkoh. Natriumäthylatlösung entstehen Chinacetophenon-5-äthyläther und Anissäure.
- 6.4'-Diäthoxy-flavon $C_{19}H_{18}O_4 = C_2H_5 \cdot 0 \cdot C_6H_3 \cdot 0 C_6H_4 \cdot 0 \cdot C_2H_5$. B. Durch Kochen von 6.4'-Dioxy-flavon mit Äthylbromid und Ätzkali in alkoh. Lösung (v. K., O., B. 32, 1929). Nädelchen (aus verd. Alkohol). F: 143°. Die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert grün.
- 6.4'-Diacetoxy-flavon $C_{19}H_{14}O_6 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot C_6H_4 \cdot O \cdot CO \cdot CH_2$. Nadeln (aus Eisessig-Alkohol). F: 207° (v. K., O., B. 32, 1929).
- 6. 7-Oxy-4-oxo-2-[2-oxy-phenyl]-[1.4-chromen],
 7-Oxy-2-[2-oxy-phenyl]-chromon, 7.2'-Dioxy-flavon
 C₁₅H₁₀O₄, s. nebenstehende Formel. B. Durch Kochen von 7.2'-Diäthoxy-flavon mit konz. Jodwasserstoffsäure (v. Kostanecki, v. Salis, B. 32, 1033). —
 Nädelchen (aus Alkohol). F: 320°. Die Lösung in Natronlauge ist gelb. Verhält sich gegen konz. Schwefelsäure wie 7.2'-Diäthoxy-flavon.
- 7.2'-Diäthoxy-flavon $C_{18}H_{18}O_4=C_2H_5\cdot 0\cdot C_8H_3$ CO·CH

 7.2'-Diäthoxy-flavon $C_{18}H_{18}O_4=C_2H_5\cdot 0\cdot C_8H_3$ CO·CH

 O—C·C $_6H_4\cdot 0\cdot C_2H_5$ handelt 2.4'-Diäthoxy-2'-acetoxy-chalkon (Bd. VIII, S. 432) in Schwefelkohlenstofflösung mit 1 Mol Brom und versetzt die lauwarme alkoholische Lösung des entstandenen amorphen Dibromids mit konz. Kalilauge (v. K., v. S., B. 32, 1031). Prismen (aus Alkohol). F: 125°; konz. Schwefelsäure färbt die Krystalle gelb und gibt dann eine gelbe, später fast farblose, stark hellblau fluorescierende Lösung (v. K., v. S.). Bei der Aufspaltung durch alkoh. Natriumäthylatlösung entstehen Resacetophenon-4-äthyläther und Äthyläthersalicylsäure neben kleinen Mengen 4-Äthyläther- β -resorcylsäure (v. K., Seifart, B. 33, 2511).
- 7.2'-Diacetoxy-flavon $C_{18}H_{14}O_6 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$ Durch kurzes Kochen von 7.2'-Dioxy-flavon mit Essigsäureanhydrid und entwässertem Natriumacetat (v. Kostanecki, v. Salis, B. 32, 1034). Spieße (aus verd. Alkohol). F: 105°.
- 7. 7-Oxy-4-oxo-2-[3-oxy-phenyl]-[1.4-chromen],
 7-Oxy-2-[3-oxy-phenyl]-chromon, 7.3-Dioxy-flavon
 C_{1t}H₁₀O₄, s. nebenstehende Formel. B. Durch mehrstündiges Kochen
 von 7.3'-Diāthoxy-flavon mit Jodwasserstoffsäure (D: 1,96) (v. Harpe, v. Kostanecki,
 B. 38, 325). Nadeln (aus verd. Alkohol), die bei 100° unter Abgabe von 1 H₂O matt werden.
 F: 277—278°. Leicht löslich in Alkohol. Löslich in Natronlauge mit blaßgelber Farbe. Die farblose Lösung in konz. Schwefelsäure fluoresciert blau.

3'-Oxy-7-äthoxy-flavon $C_{17}H_{14}O_4=C_2H_5\cdot O\cdot C_6H_3$ $C_0\cdot C_1$. B. Durch 2-stündiges Kochen von 7.3'-Diäthoxy-flavon (s. u.) mit konz. Jodwasserstoffsäure, neben 7.3'-Dioxy-flavon (S. 127) (v. H., v. K., B. 33, 324). — Blättchen (aus Pyridin + Alkohol). F: 263—264°. Sehr wenig löslich in heißem Alkohol. Die Lösung in konz. Schwefelsäure fluoresciert zuerst blau, dann blaugrün.

7.3'-Diäthoxy-flavon $C_{10}H_{18}O_4 = C_2H_5 \cdot O \cdot C_0H_3 \cdot O - C_1 \cdot C_2H_4 \cdot O \cdot C_2H_5$. B. Durch Einw. von alkoholisch-wäßriger Kalilauge auf 3.4'-Diäthoxy-2'-acetoxy-chalkon-dibromid (Bd. VIII, S. 425) (v. H., v. K., B. 33, 323). — Nadeln (aus verd. Alkohol). F: 153—154°. Die schwach gelbe Lösung in konz. Schwefelsäure fluoresciert blaugrün, später hellgrün. — Die Spaltung mit alkoh. Natriumäthylatlösung ergibt Resacetophenon-4-äthyläther und 3-Äthoxy-benzoesäure.

7-Äthoxy-3'-acetoxy-flavon $C_{19}H_{16}O_5 = C_2H_5 \cdot O \cdot C_6H_2 \cdot O \cdot C_6H_4 \cdot O \cdot CO \cdot CH_6$ Nadeln (aus verd. Alkohol). Wird bei 80° matt und schmilzt bei 126—127° (v. H., v. K., B. 38, 325).

B. 33, 325).

7.8'-Diacetoxy-flavon C₁₉H₁₄O₆ = CH₂·CO·O·C₆H₃·CO·CH
O—C·C₆H₄·O·CO·CH₂
Nadeln
(aus Alkohol). F: 152—153° (v. H., v. K., B. 33, 325).

8. 7-Oxy-4-oxo-2-[4-oxy-phenyl]-[1.4-chromen],
7-Oxy-2-[4-oxy-phenyl]-chromon, 7.4'-Dioxy-flavon
C₁₅H₁₀O₄, s. nebenstehende Formel. B. Durch Kochen von
4'-Methoxy-7-šthoxy-flavon (s. u.) mit konz. Jodwasserstoffsäure (v. Kostanberk, Osius, B. 32, 325). — Blaßgelbes Krystallpulver (aus Alkohol). F: 315°. Löst sich in Natronlauge mit gelber Farbe und schwach grünlicher Fluorescenz. Konz. Schwefelsäure färbt die Verbindung gelb und gibt eine fast farblose, intensiv blau fluorescierende Lösung.

4'-Methoxy-7-äthoxy-flavon $C_{18}H_{16}O_4=C_3H_5\cdot 0\cdot C_6H_3\cdot 0\cdot C_6H_4\cdot 0\cdot CH_3$. B. Durch Einw. von alkoholisch-wäßriger Kalilauge auf 4-Methoxy-4'-äthoxy-2'-acetoxy-chalkondibromid (Bd. VIII, S. 426) (v. K., O., B. 32, 323). — Täfelchen (aus Benzol). F: 144—145°. Die schwach gelbliche Lösung in konz. Schwefelsäure fluoresciert intensiv blau. — Bei der Spaltung mit Natriumäthylat entstehen Resacetophenon-4-äthyläther und Anissäure.

7.4' - Diacetoxy - flavon $C_{19}H_{14}O_6 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot CH_4 \cdot O \cdot CO \cdot CH_3$ Nadeln (aus Alkohol). F: 182—183° (v. K., O., B. 32, 325).

9. 4 - Oxo - 2 - [3.4 - dioxy - phenyl] - [1.4 - chromen],
2 - [3.4 - Dioxy - phenyl] - chromon, 3.4 - Dioxy - flavon
C₁₀H₁₀O₄, s. nebenstehende Formel. B. Durch Erwärmen von 3'.4'-Diomethoxy-flavon mit konz. Jodwasserstoffsäure (Berstein, Fraschina, v. Kostanecki, B. 38, 2180). — Hellgelbe Drusen (aus Alkohol). F: 243°. Leicht löslich in verd. Natronlauge mit orangegelber Farbe. Färbt Aluminiumbeize hellgelb, Eisenbeize grau bis schwarz. Konz. Schwefelsäure färbt die Krystalle intensiv gelb und löst sie langsam mit grünlichgelber Farbe.

3'.4'-Dimethoxy-flavon $C_{17}H_{14}O_4 = C_6H_4$ $C_0 \cdot C_1H_2(O \cdot CH_3)_3$ B. Durch Einw. von alkoholisch-wäßriger Kalilauge auf 3-Brom-3'.4'-dimethoxy-flavanon (S. 121) (B., F., v. K., B. 38, 2179). — Nadeln (aus Alkohol). F: 154—155°. Die verdünnte alkoholische Lösung fluoresciert intensiv violett. Löst sich in konz. Schwefelsäure mit gelber Farbe.

3'.4' - Diacetoxy - flavon $C_{19}H_{14}O_6 = C_6H_4 < CO \cdot CH \cdot O - C \cdot C_6H_3(O \cdot CO \cdot CH_3)_2$. Nadeln (aus Alkohol). F: 171° (B., F., v. K., B. 38, 2180).

10. 6-Oxy-3.4-dioxo-2-phenyl-chroman, 6-Oxy-3.4-dioxo-flavan bezw. 3.6-Dioxy-2-phenyl-chromon, 3.6-Dioxy-flavon, 6-Oxy-flavonol $C_{14}H_{16}O_4$, Formel I bezw. II. B. Man kocht 6-Methoxy-flavonol mit konz. Jodwaeserstoffsäure (v. Kosta-

NECKI, LAMPE, B. 37, 777). — Nadeln (aus 50%/qigem Alkohol). F: 233—234°. Leicht löslich in Natronlauge mit grüngelber Farbe. Färbt Baumwolle auf Tonerde- und Eisenbeize an.

- 6-Methoxy-3.4-dioxo-flavan bezw. 3-Oxy-6-methoxy-flavon, 6-Methoxy-flavon, 6-Methoxy-flavonol $C_{16}H_{12}O_4 = CH_3 \cdot O \cdot C_6H_3 \cdot C_6H_5$ bezw. $CH_3 \cdot O \cdot C_6H_3 \cdot C_6H_5
- 3.6 Dimethoxy flavon, 6 Methoxy flavonol methyläther $C_{17}H_{14}O_4 = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_5$. B. Beim Kochen von 6-Methoxy-flavonol in Methylalkohol mit Kaliumhydroxyd und Methyljodid (v. K., L., B. 37, 778). Nadeln (aus Alkohol). F: 128—129°.
- 6-Äthoxy-3.4-dioxo-flavan bezw. 3-Oxy-6-äthoxy-flavon, 6-Äthoxy-flavonol $C_{17}H_{14}O_4=C_2H_5\cdot O\cdot C_6H_3$ CO·CO bezw. $C_2H_5\cdot O\cdot C_6H_3$ CO·COH CO·COH bezw. $C_2H_5\cdot O\cdot C_6H_3$ CO·COH Bezw. $C_2H_5\cdot O\cdot C_6H_3$ CO·COH Bei 24-stdg. Stehenlassen einer Eisessiglösung von 6-Äthoxy-flavanon (S. 51) mit Amylnitrit und Salzsäure (v. K., L., B. 37, 777). Gelbe Spieße (aus Alkohol). F: 177—178°.
- 6 Methoxy 3 acetoxy flavon, 6 Methoxy flavonol acetat $C_{18}H_{14}O_5 = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_5$. B. Durch kurzes Kochen von 6-Methoxy-flavonol mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., L., B. 37, 777). Nadeln (aus Alkohol). F: 164—166°.
- 6 Äthoxy 3 acetoxy flavon, 6 Äthoxy flavonol acetat $C_{19}H_{16}O_5 = C_2H_5 \cdot O \cdot C_6H_8 \cdot O \cdot C_6H_5$. Nadeln (aus verd. Alkohol). F: 133—134° (v. K., L., B. 37, 777).
- 3.6 Diacetoxy flavon, 6 Acetoxy flavonol acetat $C_{19}H_{14}O_6 = CH_3 \cdot CO \cdot O \cdot C_6H_3 < \frac{CO \cdot C \cdot O \cdot CO \cdot CH_3}{O C \cdot C_6H_5}$. Nadeln (aus Alkohol). F: 195—196° (v. K., L., B. 37, 778).
- 6-Methoxy-4-oxo-3-oximino-flavan, 6-Methoxy-3-oximino-flavanon $C_{16}H_{13}O_4N=CH_3\cdot O\cdot C_6H_3\cdot CO\cdot C:N\cdot OH$. B. Aus 6-Methoxy-flavanon (S. 51) in Alkohol durch Amylnitrit und Salzsäure (D: 1,19) (v. K., L., B. 37, 775). Gelbe Nadeln (aus Benzol). F: 160° (Zers.). Löst sich in Natronlauge mit gelber, in konz. Schwefelsäure mit roter Farbe. Beim Kochen der Eisessiglösung mit 10°/ajger Schwefelsäure entsteht 6-Methoxy-flavonol (s. o.).
- 11. 7-Oxy-3.4-dioxo-2-phenyl-chroman, 7-Oxy-3.4-dioxo-flavan bezw. 3.7-Dioxy-2-phenyl-chromon, 3.7-Dioxy-flavon, 7-Oxy-flavonol $C_{15}H_{16}O_4$, Formel I bezw. II. B. Aus 7-Methoxy-flavonol durch Erhitzen mit Jodwasserstoffsäure

(v. Kostanecki, Stoppani, B. 37, 1182). — Gelbliche prismatische Nadeln. F: 257—259°. Die Lösung in verd. Natronlauge ist grünlichgelb. Verhält sich gegen konz. Schwefelsäure wie 7-Methoxy-flavonol. Färbt Baumwolle auf Tonerdebeize blaßgelb.

7-Methoxy-3.4-dioxo-flavan bezw. 3-Oxy-7-methoxy-flavonol C₁₆H₁₂O₄ = CH₂·O·C₆H₃ CO·C₀ bezw. CH₃·O·C₆H₃ O—C·C₆H₅ B. Durch Kochen der essigsauren Lösung von 7-Methoxy-3-oximino-flavanon mit 10°/₀iger Schwefelsäure (v. K., St., B. 87, 1181). — Nadeln (aus Alkohol). F: 180°. Unlöslich in verd. Natrolauge. Wird durch konz. Schwefelsäure gelb gefärbt und mit gelber Farbe und bläulicher Fluorescenz gelöst. Färbt Baumwolle auf Tonerdebeize hellgelb. — Natriumsalz. Gelb. Schwer löslich.

- 7 Methoxy 3 acetoxy flavon, 7 Methoxy flavonol acetat $C_{18}H_{14}O_5 =$ CO·C·O·CO·CH₃. Nadeln (aus Alkohol) (v. K., St., B. 37, 1181). F: 176° $\mathbf{CH_3} \cdot \mathbf{O} \cdot \mathbf{C_6H_3} \underbrace{\mathbf{O} - \mathbf{C} \cdot \mathbf{C_6H_5}}_{\mathbf{O}}$ (v. Auwers, Pohl, A. 405 [1914], 247, 271).
 - 3.7 Diacetoxy flavon, 7 Acetoxy flavonol acetat $C_{19}H_{14}O_6 =$
- Essigsäureanhydrid und entwässertem Natriumacetat (v. K., St., B. 37, 1182). — Nadeln (aus verd. Alkohol). F: 157°.
- 7-Methoxy-4-oxo-3-oximino-flavan, 7-Methoxy-3-oximino-flavanon $C_{14}H_{13}O_4N=$ $\begin{array}{c} \text{CH}_3 \cdot \text{O} \cdot \text{C}_6\text{H}_3 & \text{CO} \cdot \text{C} : \text{N} \cdot \text{OH} \\ \text{O} - \text{CH} \cdot \text{C}_6\text{H}_5 & \text{O} \end{array}$ B. Aus 7-Methoxy-flavanon mit Amylnitrit und konz. Salzsäure in siedendem Alkohol (v. K., St., B. 37, 1181). — Blättchen (aus Benzol). F: 1880 (Zers.). Löst sich in Natronlauge mit blaßgelber, in konz. Schwefelsäure mit orangegelber Farbe. — Wird in essigsaurer Lösung durch verd. Schwefelsäure zu 7-Methoxy-flavonol (S. 129) verseift. Färbt Kobaltbeize orange, Uranbeize gelb an.
- 12. 3.4-Dioxo-2-[3-oxy-phenyl]-chroman, 3'-Oxy-3.4-dioxo-flavan bezw. 3-Oxy-2-[3-oxy-phenyl]-chromon, 3.3'-Dioxy-flavon, 3'-Oxy-flavonol $C_{15}H_{10}O_4$, Formel I bezw. II. B. Durch CO C_{10} OH mehrstündiges Kochen von 3'-Methoxy- I. flavonol mit konz. Jodwasserstoffsäure (GUTZEIT, v. KOSTANECKI, B. 33, 935). — Hellgelbe Nadeln (aus Alkohol). F: 237°. Leicht löslich in verd. Natronlauge mit grünlichgelber Farbe. Färbt Tonerdebeize hellgelb an. Die Lösung in konz. Schwefelsäure ist schwach grünlichgelb.
- 3'-Methoxy-3.4-dioxo-flavan bezw. 3-Oxy-3'-methoxy-flavon, 3'-Methoxy-flavon, CO·CO bezw. C_6H_4 O— C_7 bezw. C_6H_4 O— C_7 C_7 C_8 Durch Kochen einer Eisessiglösung von 3'-Methoxy-3-oximino-flavanon mit 10% iger Schwefelsäure (G., v. K., B. 38, 934). Blaßgelbe Täfelchen (aus Alkohol). F: 134°. Die Lösung in konz. Schwefelsäure ist schwach grünlichgelb. Beim Erwärmen mit Natronlauge enterabt ein intensity gelbes sehr wenig lösliches Natronlauge. entsteht ein intensiv gelbes, sehr wenig lösliches Natriumsalz. Färbt Tonerdebeize hellgelb an.
- 3'- Methoxy 3 acetoxy flavon, 3'- Methoxy flavonol acetat $C_{18}H_{14}O_8 =$ $CO \cdot C \cdot O \cdot CO \cdot CH_3$ $C_{6}H_{4} < \underbrace{O - C \cdot C_{6}H_{4} \cdot O \cdot CH_{3}}_{O - C \cdot C_{6}H_{4} \cdot O \cdot CH_{3}}. \text{ Nadeln (aus verd. Alkohol)}. \quad F: 117 - 118^{o} (G., v. K., B. 38, 934).$
- 3.3'- Diacetoxy flavon, 3'- Acetoxy flavonol acetat $C_{19}H_{14}O_6 = C_6H_4 \cdot C_{10}C_6H_3$. Nadeln (aus verd. Alkohol). F: 166° (G., v. K., B. 38, 935).
- 3'- Methoxy 4 oxo 3 oximino flavan, 3'- Methoxy 3 oximino flavanon CO·C:N·OH $C_{16}H_{13}O_4N = C_6H_4$ O-CH OR B. Durch Versetzen einer siedenden alkoholischen Lösung von 3'-Methoxy-flavanon mit Amylnitrit und Salzsäure (G., v. K., B. 38, 934). — Nädelchen (aus Benzol). F: 159-160° (Zers.). Die Lösung in verd. Natronlauge ist gelb. Färbt Kobaltbeize orangegelb an.
- 13. 3.4-Dioxo-2-[4-oxy-phenyl]-chroman, 4'-Oxy-3.4-dioxo-flavan bezw. 3-Oxy-2-[4-oxy-phenyl]-chromon, 3.4'-Dioxy-flavon, 4'-Oxy-flavonol C₁₅H₁₀O₄, Formel III bezw. IV. B. Durch Kochen von 4'-Methoxy-flavonol mit Jodwasserstoff-

säure (D: 1,96) (Edelstein, v. Kostanecki, B. 38, 1509). — Hellgelbe Nadeln (aus Alkohol). F: 276°. Leicht löslich in verd. Natronlauge mit gelber Farbe und hellgrüner Fluorescenz. Färbt Tonerdebeize gelb an.

4'-Methoxy-3.4-dioxo-flavan bezw. 3-Oxy-4'-methoxy-flavon, 4'-Methoxyflavonol $C_{16}H_{12}O_4 = C_6H_4 C_6H_4 \cdot O \cdot CH_3$ bezw. $C_6H_4 \cdot$ lauge entsteht ein intensiv gelbes, schwer lösliches Natriumsalz.

4'- Methoxy - 3 - acetoxy - flavon, 4'- Methoxy - flavonol - acetat $C_{18}H_{14}O_5 = C_8H_4 < \begin{array}{c} CO \cdot C \cdot O \cdot CO \cdot CH_3 \\ O - C \cdot C_0H_4 \cdot O \cdot CH_3 \end{array}$ Nadeln (aus verd. Alkohol). F: 138—139° (E., v. K., B. 38, 1509).

3.4' - Diacetoxy - flavon, 4' - Acetoxy - flavonol - acetat $C_{10}H_{14}O_6 = C_6H_4 C_{0} - C_0 C_0 C_0 C_{10}$. Spieße (aus verd. Alkohol). F: 158° (E., v. K., B. 38, 1509).

4'-Methoxy-4-oxo-3-oximino-flavan, 4'-Methoxy-3-oximino-flavanon $C_{18}H_{13}O_4N = C_0 \cdot C : N \cdot OH$ $C_6H_4 \cdot O - CH \cdot C_8H_4 \cdot O \cdot CH_3$ B. Aus 4'-Methoxy-flavanon (S. 52) in siedendem Alkohol mit Amylnitrit und Salzsäure (E., v. K., B. 38, 1508). — Gelbes, krystallinisches Pulver (aus verd. Alkohol). Die Lösung in verd. Natronlauge ist gelb. — Beim Kochen mit Eisessig und $10^9/6$ iger Schwefelsäure entsteht 4'-Methoxy-flavonol.

14. 5.7-Dioxy-2-oxo-4-phenyl-[1.2-chromen], 5.7-Dioxy-4-phenyl-cumarin C₁₅H₁₀O₄, s. nebenstehende Formel. B. Durch 2-stdg. Erhitzen von Benzoylessigester mit Phloroglucin, Zinkchlorid und etwas Eisessig auf dem Wasserbad (v. Kostaneoki, Weber, B. 26, Ho. 2907). Aus 5.7-Dimethoxy-4-phenyl-cumarin (s. u.) und siedender Jodwasserstoffsäure (Pollak, M. 18, 743). Aus 7-Methoxy-5-acetoxy-4-phenyl-cumarin (s. u.) durch Kochen mit Jodwasserstoffsäure (Kp: 127°) am Rückflußkühler (Ciamician, Silber, B. 27, 421). — Nadeln (aus verd. Alkohol). F: 234—235° (v. K., W.), 233—234° (C., S.), 227—229° (P.). Sehr leicht löslich in Alkohol (v. K., W.). Reduziert ammoniakalische Silberlösung nicht (v. K., W.). Löst sich in Natronlauge mit intensiv gelber Farbe (v. K., W.).

5-Oxy-7-methoxy-4-phenyl-cumarin $C_{10}H_{12}O_4$, s. nebenstehende Formel. Zur Konstitution vgl. Pollak, M. 22, 996. — B. Durch Kochen von 7-Methoxy-5-acetoxy-4-phenyl-cumarin mit Kalilauge und Ansäuern der erhaltenen Lösung mit verd. Schwefelsäure (C., S., B. 27, 420). — Farblose Krystalle (aus Alkohol) (Bruni, G. 27 I, 574). F: 207° (C., S.).

5.7-Dimethoxy-4-phenyl-cumarin $C_{17}H_{14}O_4 = (CH_3 \cdot O)_2C_6H_2 \cdot CO_4 \cdot CO_5$. B. Aus 2-Oxy-4.6-dimethoxy-benzophenon durch Kochen mit Essigsäureanhydrid und Natriumacetat (POLLAK, M. 18, 743). — Nadeln (aus Alkohol). F: 166—167°. — Wird durch Kochen mit Jodwasserstoffsäure in 5.7-Dioxy-4-phenyl-cumarin übergeführt.

7-Methoxy-5-acetoxy-4-phenyl-cumarin C₁₈H₁₄O₅, s. nebenstehende Formel. B. Entsteht neben 4-Methoxy-2.6-diacetoxy-benzophenon beim Kochen von 2.6-Dioxy-4-methoxy-benzophenon mit Essigsäureanhydrid und Natriumacetat (Ciamician, Silber, B. 27, 419).

— Farblose Nadeln (Bruni, G. 27 I, 574). F: 142° (C., S.), 143° (B.).

— Wird durch Jodwasserstoffsäure in 5.7-Dioxy-4-phenyl-cumarin übergeführt (C., S.).

5.7-Diacetoxy-4-phenyl-cumarin $C_{19}H_{14}O_6 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \cdot CO \cdot O_{19}C_6H_2 \cdot O_{19}C_6$

15. 7.8-Dioxy-2-oxo-4-phenyl-[1.2-chromen], 7.8-Dioxy-4-phenyl-cumarin, 4-Phenyl-daphnetin C₁₈H₁₀O₄, s. nebenstehende Formel. B. Aus Pyrogallol und Benzoylessigester in Gegenwart von konz. Schwefelsäure (v. Kostanecki, Weber, B. 26, 2906). — Nadeln mit 1 H₂O (aus verd. Alkohol). Schmilzt wasserfrei bei 190—192°. Sehr leicht löslich in Alkohol, sehr schwer in kochendem Wasser. Löst sich in Natronlauge mit roter Farbe. Reduziert ammoniakalische Silberlösung. Färbt Tonerdebeize gelb an.

Diacetylderivat $C_{19}H_{14}O_6 = (CH_3 \cdot CO \cdot O)_3C_6H_2 < C(C_6H_5) \cdot CH$ netin durch Kochen mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., W., B. 26, 2906). — Nadeln (aus verd. Alkohol). F: 133—134°.

16. 5.7 - Dioxy-1-oxo-4-phenyl-isochromen, 5.7 - Dioxy-4-phenyl-isocumarin C₁₅H₁₀O₄, s. nebenstehende Formel. B. Durch Einw. von kalter konzentrierter Schwefelsäure auf 3.5-Dioxy-benzoesäure-phenacylester (Fritzeh, D. R. P. 73700; Frdl. 3, 970). — F: 293°.

O C OO OH

stehende Formel.

2 - Veratroyl - cumaron C₁₇H₁₄O₄ =

C_eH₄ CH C·CO·C_eH₃(O·CH₂)₂. B. Aus 3'.4'-Dimethoxy-2-acetoxy-chalkon-dibromid (Bd. VIII, S. 426) beim Behandeln mit alkoh. Kalilauge (Zwayer, v. Kostanecki, B. 41, 1340). Durch Einw. von Cumarilsäurechlorid (Syst. No. 2577) auf Veratrol bei Gegenwart von Aluminiumchlorid (Zw., v. K., B. 41, 1340). — Rhomboederähnliche, farblose Krystalle (aus Äther). F: 90—91°. Die Krystalle färben sich mit konz. Schwefelsäure rot; die Schwefelsäurelösung ist orange.

18. 4.6-Dioxy-3-oxo-2-benzal-cumaran, 4.6-Dioxy-2-benzal-cumaranon $C_{12}H_{10}O_4$, s. nebenstehende Formel. 4.6 - Dimethoxy - 2 - benzal - cumaranon $C_{12}H_{14}O_4$ =

HO C: CH · C*H*

(CH₃·O)₂C₆H₃<CO>C:CH·C₆H₅. Zur Konstitution vgl. FRUER-

STEIN, V. KOSTANECKI, B. 31, 1759; V. K., TAMBOB, B. 32, 2265. — B. Aus ω -Chlor-2-oxy-4.6-dimethoxy-acetophenon und Benzaldehyd in Gegenwart von etwas Natronlauge (FRIED-LÄNDER, SCHNELL, B. 30, 2154). Aus 4.6-Dimethoxy-cumaranon (Bd. XVII, S. 176) und Benzaldehyd in Gegenwart von etwas Natronlauge (FR., Son., B. 30, 2154). — Fast farblose Nadeln (aus Alkohol). F: 150—152°. Unlöslich in Wasser, ziemlich schwer löslich in verd. Alkohol. Unlöslich in Alkalien. Die orangegelbe Lösung in konz. Schwefelsäure wird beim Verdünnen mit Wasser farblos.

5 oder 7-Brom-4.6-dimethoxy-2-benzal-cumaranon C₁₇H₁₃O₄Br, Formel I oder II. B. Durch Einw. von konzentrierter alkoholischer Kalilauge auf 3'-Brom-4'.6'-oder 2'.4'-di-

methoxy-2'oder 6'-acetoxy-chalkon-dibromid (Bd. VIII, S. 425) (v. Kostanecki, Tambor, B. 32, 2264). — Nädelchen (aus viel Benzol). F: 223°. Löst sich orangefarben in konz. Schwefelsäure.

5 oder 7 - Brom - 4.6 - diäthoxy - 2 - benzal - cumaranon $C_{18}H_{17}O_4Br = (C_8H_5\cdot O)_8C_6HBr < {}^{CO}_O$ C: $CH\cdot C_6H_5$. B. Durch Einw. von konzentrierter alkoholischer Kalilauge auf 3'-Brom-4'.6'- oder 2'.4'-diäthoxy-2' oder 6'-acetoxy-chalkon-dibromid (Bd. VIII, S. 425) (v. K., T., B. 32, 2266). — Gelbliche Nadeln (aus Benzol). F: 205°. Löst sich orangefarben in konz. Schwefelsäure.

19. 6.7-Dioxy-3-oxo-2-benzal-cumaran, 6.7-Dioxy2-benzal-cumaranon (Benzalanhydroglykopyrogallol)

C₁₅H₁₀O₄, s. nebenstehende Formel. Zur Konstitution vgl. KesselKaul, v. Kostanecki, B. 29, 1888; Woker, v. Kostanecki, Ho

Tambor, B. 36, 4235. — B. Man versetzt āquimolekulare Mengen ω-Chlor-2.3.4-trioxyscetophenon und Benzaldehyd in 50% igem Alkohol mit konz. Kalilauge bis zur alkalischen
Reaktion (Friedländer, Rüdt, B. 29, 879; Cassella & Co., D. R. P. 89602; Frdl. 4, 362).

Man erwärmt äquimolekulare Mengen 6.7-Dioxy-cumaranon (Bd. XVII, S. 176) und Benzaldehyd in verd. Alkohol mit überschüssiger starker Salzsäure oder Schwefelsäure (F., R., B.
29, 879). Aus 6.7-Dioxy-cumaranon und Benzaldehyd bei Gegenwart von verd. Kalilauge
(Ke., v. Ko., B. 29, 1890). — Gelbe Blättohen mit 1 H₂O (aus verd. Alkohol) (Ke., v. Ko.).

F: 221° (Ke., v. Ko.). Löslich in konz. Schwefelsäure mit orangegelber Farbe (Ke., v. Ko.).

Die gelbrote Lösung in sehr verd. Alkalilauge wird durch etwas konz. Kalilauge rotviolett
(F., R.). Die alkoh. Lösung wird durch konz. Salzsäure intensiv rot (Friedländer, Löwy, B.
29, 2432). — Beim Erhitzen mit konz. Alkalilauge wird Acetophenon abgespalten (F., R.;

F., L.). Gibt auf Tonerdebeize gelbe, auf Chrombeize braune Töne (F., R.). — Ba(C₁₅H₂O₄)₂.
Dunkelviolette Nadeln (F., L.). — Verbindung mit Kaliumacetat C₁₅H₁₀O₄ + KO₂H₂O₄.
Crangegelbe Nadeln (aus Alkohol). Enthält anscheinend Krystallalkohol (Freein, Wilson, Soc. 83, 137).

Monomethyläther $C_{16}H_{18}O_6 = (CH_3\cdot O)(HO)C_6H_3 < O O \cdot CH\cdot C_6H_5$. B. Beim Erwärmen von 6.7-Dioxy-2-benzal-cumaranon in methylalkoholischer Lösung mit Methyljodid und Natronlauge auf dem Wasserbad (Friedländer, Löwy, B. 29, 2432). — Hellgelbe Nadeln (aus Alkohol). F: 158°. Löslich in konz. Schwefelsäure mit orangegelber, in Natronlauge mit gelbbrauner Farbe.

Dimethyläther $C_{17}H_{14}O_4 = (CH_8 \cdot O)_2C_6H_2 < \stackrel{CO}{\bigcirc} C: CH \cdot C_6H_6$. B. Aus 6.7-Dioxy-2-benzal-cumaranon beim Erwärmen mit überschüssigem Methyljodid und methylalkoholischer Natronlauge im Druckrohr auf 100—120° (F., L., B. 29, 2433). — Hellgelbe Nadeln (aus Alkohol). F: 148—149,5°. Unlöslich in Alkalien. Löslich in konz. Schwefelsäure unter Orangefärbung.

Diäthyläther $C_{19}H_{18}O_4 = (C_2H_5\cdot O)_2C_6H_2 < C_0$ C:CH·C₆H₅. B. Beim Erwärmen von 1 Mol 6.7-Dioxy-2-benzal-cumaranon mit etwas mehr als 2 Mol Äthyljodid, 2 Mol Kaliumhydroxyd und Alkohol (Kesselkaul, v. Kostanecki, B. 29, 1889). — Gelbe Nadeln (aus Alkohol). F: 115°. Destilliert unzersetzt. Konz. Schwefelsäure färbt die Krystalle orange.

Diacetylderivat $C_{10}H_{14}O_6 = (CH_3 \cdot CO \cdot O)_2C_0H_3 \subset C_0 \subset C:CH \cdot C_0H_5$. B. Durch Erwärmen von 6.7-Dioxy-2-benzal-cumaranon mit Essigsäureanhydrid (Friedländer, Rüdt, B. 29, 880) und entwässertem Natriumacetat (Kesselkaul, v. Kostanecki, B. 29, 1889). — Nadeln (aus Essigsäure). F: 198—199° (F., R.), 201° (Ke., v. Ko.).

Dibenzoylderivat $C_{20}H_{16}O_6 = (C_6H_5 \cdot CO \cdot O)_2C_6H_2 \underbrace{CO}_{O} \cdot C: CH \cdot C_6H_5$. B. Durch Schütteln der kalten alkalischen Lösung von 6.7-Dioxy-2-benzal-cumaranon mit Benzoylchlorid (FRIEDLÄNDER, LÖWY, B. 29, 2432). — Nadeln (aus Eisessig). F: 192,5—194°.

- 6.7-Dioxy-2-[2-chlor-benzal]-cumaranon C₁₅H₂O₄Cl, s. nebenstehende Formel. B. Aus 6.7-Dioxy-cumaranon und 2-Chlor-benzaldehyd in siedendem Alkohol bei Gegenwart von rauchender Salzsäure (FEUERSTEIN, BRASS, B. 37, 825). Gelbe Ho Blättehen mit grünem Schimmer (aus verd. Alkohol). F: 253°. Löst sich in Alkali mit kirschroter, in konz. Schwefelsäure mit rotgelber Farbe. Färbt Tonerdebeize orange, Eisenbeize braun, gechromte Seide intensiv orange.
- 6.7 Dioxy 2 [x.x dichlor benzal] cumaranon $C_{1b}H_8O_4Cl_2 = (HO)_8C_6H_2 < {}^{CO}_{O} > C: CH \cdot C_6H_8Cl_2$. B. Aus ω -Chlor-2.3.4-trioxy-acetophenon und x.x-Dichlor-benzaldehyd bei Gegenwart von Kalilauge (Friedländer, Löwy, B. 29, 2434). Gelbe Nadeln. Schmilzt bei etwa 210° unter Zersetzung. Das Acetylderivat schmilzt bei 189—191° unter Zersetzung.
- 6.7-Dioxy-2-[3-nitro-bensal]-cumaranon $C_{15}H_9O_6N=(HO)_2C_9H_2 \stackrel{CO}{\bigcirc} C:CH\cdot C_9H_4\cdot NO_3$. B. Aus 6.7-Dioxy-cumaranon und 2-Nitro-benzaldehyd in siedendem Alkohol bei Gegenwart von rauchender Salzsäure (Fzuerstein, Brass, B. 37, 824). Gelbe Nadeln. F: 278°. Leicht löslich in Alkohol, Eisessig. Löst sich in Alkalien mit violetter, in konz. Schwefelsäure mit roter Farbe. Färbt Beizen matter und unreiner als 6.7-Dioxy-2-[3-nitro-benzal]-cumaranon.
- 6.7-Dioxy-2-[8-nitro-bensal]-cumaranon $C_{15}H_{\bullet}O_{\bullet}N=$ $(HO)_{a}C_{\bullet}H_{a} < {\overset{CO}{O}} > C: CH \cdot C_{\bullet}H_{4} \cdot NO_{2}.$ B. Aus ω -Chlor-2.3.4-trioxy-acetophenon und 3-Nitro-benzaldehyd bei Gegenwart von starker Kalilauge (Friedländer, Löwx, B. 29, 2434). Aus 6.7-Dioxy-cumaranon und 3-Nitro-benzaldehyd in siedendem Alkohol bei Gegenwart von rauchender Salzsäure (Fruerstein, Brass, B. 37, 824). Gelbe Nadeln (aus $90^{\circ}/_{\circ}$ iger Essigsäure). F: 274° (Fru., B.). Löst sich in konz. Schwefelsäure mit roter, in Alkalien mit rot-violetter Farbe; färbt gechromte Seide rotbraun, Baumwolle auf Tonerdebeize orange, auf Eisenbeize grünstichig braun (Fru., B.). Das Acetylderivat schmilzt bei 218—219° unter Zersetzung (Fr., L.).
- 6.7-Dioxy-2-[4-nitro-bensal]-cumaranon $C_{15}H_0O_6N = (HO)_2C_0H_2 \stackrel{CO}{\bigcirc} C: CH \cdot C_0H_4 \cdot NO_2$. B. Aus 6.7-Dioxy-cumaranon und 4-Nitro-benzaldehyd in siedender alkoholischer Lösung bei Gegenwart von rauchender Salzsäure (Feuerstein, Brass, B. 37, 823). Goldbronzene Nadeln (aus verd. Alkohol). Schmilzt nicht bis 360°. Leicht löslich in heißem Wasser und Alkohol. Löst sich in Alkali mit tief indigoblauer, in konz. Schwefelsäure mit roter Farbe. Färbt gechromte Seide braun, Baumwolle auf Eisenbeize braun, auf Tonerdebeize rotbraun.

21. 3 - Oxo - 2 - [3.4 - dioxy - benzal] - cumaran, CO OH 2 - [3.4 - Dioxy - benzal] - cumaranon C₁₈H₁₀O₄, s. nebenstehende Formel. Zur Konstitution vgl. Feuerstein, v. Kostanecki, B. 31, 1759. — B. Aus Cumaranon (Bd. XVII, S. 118) und Protocatechualdehyd in alkoh. Lösung bei Gegenwart von konz. Salzsäure (Friedländer, Neudörfer, B. 30, 1082). — Bräunlichgelbe Nädelchen (aus verd. Alkohol). F: 224°; löst sich in Soda und verd. Natronlauge mit braunroter, in konz. Natronlauge mit blauvioletter, in konz. Schwefelsäure mit orangeroter Farbe; färbt Tonerdebeize orange, Eisen- und Chrombeizen braun (Fr., N.). — Die Acetylverbindung schmilzt bei 134° (Fr., N.).

3 - Oxo - 2 - [3.4 - dioxy - benzal] - thionaphthendihydrid C₁₅H₁₀O₃S, s. nebenstehende Formel. B. Aus 3-Oxy-thionaphthen (Bd. XVII, S. 119) und Protocatechualdehyd in Eisessig in Gegenwart von konz. Salzsäure (FRIEDLÄNDER, M. 30, 351). — Bräunlichorangegelbe Nadeln. Schmilzt oberhalb 280°. Sehr schwer löslich in den gebräuchlichen Mitteln, leichter in siedendem Nitrobenzol. Konz. Schwefelsäure löst mit kirschroter Farbe.

22. 2-Oxo-3-[3.4-dioxy-benzal]-cumaran, Lacton der 2.3'.4'-Trioxy-stilben- α -carbonsäure $C_{15}H_{10}O_4$, c:ch OH s. nebenstehende Formel.

2-Oxo-3-veratral-cumaran, Lacton der 2-Oxy-3'.4'-dimethoxy-stilben- α -carbon-säure $C_{17}H_{14}O_4=C_6H_4$ $C_{17}C_{$

essigsaurem Natrium mit Veratrumaldehyd und Essigsäureanhydrid auf 100° (СZAPLICKI, v. KOSTANECKI, LAMPE, B. 42, 835, 836). — Orangegelbe prismatische Nadeln (aus Alkohol). F: 99—100°. Die Lösung in konz. Schwefelsäure ist orange. — Kochen mit alkoh. Kalilauge bewirkt Aufspaltung zu 2-Oxy-3'.4'-dimethoxy-stilben-α-carbonsäure.

23. 3 - Oxy - 3 - benzoyl - phthalid $C_{15}H_{10}O_4 = C_6H_4 < \widehat{C(OH)}(CO \cdot C_6H_5) > 0$, s. Bd. X, S. 830.

24. 4 - Oxy - 2.3^1 - dioxo - 3 - dthyl - 6.7 - benzo[1.2-chromen], 4-Oxy-3-acetyl-6.7-benzo-cumarin
C_{1t}H₁₀O₄, s. nebenstehende Formel, ist desmotrop mit 2.4.3¹-Trioxo-3-äthyl-6.7-benzo-chroman, Bd. XVII, S. 572.

25. 4-Oxy-2.3¹-dioxo-3-äthyl-7.8-benzo-[1.2-chromen], 4-Oxy-3-acetyl-7.8-benzo-cumarin $C_{15}H_{10}O_4$, s. nebenstehende Formel, ist desmotrop mit 2.4.3¹-Trioxo-3-āthyl-7.8-benzo-chroman, Bd. XVII, S. 572.

4-Äthoxy-3-acetyl-7.8-benzo-cumarin $C_{17}H_{14}O_4 = C_{10}H_6$ $C(O \cdot C_2H_5): C \cdot CO \cdot CH_3$ Aus dem Silbergelz des 2.4.31 Trioro 2 stabul 7.8 hours also a constant C_{17}

B. Aus dem Silbersalz des 2.4.3¹-Trioxo-3-äthyl-7.8-benzo-chromans mit Äthyljodid (Anschütz, A. 368, 47). — Gelbe Nadeln (aus Eisessig). F: 183°.

2. Oxy-oxo-Verbindungen $C_{16}H_{12}O_4$.

1. 4.5-Dioxo-3-phenyl-2-[4-oxy-phenyl]-furantetrahydrid, α -Oxo- β -phenyl- γ -[4-oxy-phenyl]-butyrolacton $C_{15}H_{12}O_4 = \begin{array}{c} OC - CH \cdot C_6H_5 \\ OC \cdot O \cdot CH \cdot C_6H_4 \cdot OH \end{array}$

 α - Oxo - β - phenyl - γ - [4 - methoxy - phenyl] - butyrolacton $C_{12}H_{14}O_4 =$

OC \cdot CH \cdot C₆H₅

B. Aus Anisaldehyd und Phenylbrenztraubensäure durch Kondensation mittels gesättigter Salzsäure (ERLENMEYER jun., LATTERMANN, A. 333, 268). — Krystalle (aus Alkohol). F: 191°; ziemlich löslich in Alkohol, Chloroform, Benzol; Eisenchlorid färbt die alkoh. Lösung grün (E., L.). — Liefert beim Erhitzen über den Schmelzpunkt 4-Methoxy-stilben (E., L.). Durch Reduktion mit Natriumamalgam und Ansäuern der Reak-4-Methoxy-stilben (E., L.). Durch Reduktion mit Natriumamalgam und Ansäuern der Reaktionsflüssigkeit erhält man zwei stereoisomere α-Oxy-β-phenyl-γ-[4-methoxy-phenyl]-butyrolactone (S. 122) (E., L.). Bei der Reduktion mit Zinkstaub und Eisessig entstehen β-Phenyl-γ-[4-methoxy-phenyl]-Δ^{β-γ}-crotonlacton (S. 62), β-Phenyl-γ-[4-methoxy-phenyl]-Δ^{α,β}-crotonlacton (S. 63) und wenig α-Oxy-β-phenyl-γ-[4-methoxy-phenyl]-vinylessigsäure (E., L.; vgl. E., B. 36, 2524; 38, 3126).

Verbindung C₁₉H₁₆O₅. Zur Frage der Konstitution vgl. Hall, Hynes, Lapworth, Soc. 107 [1915], 135. — B. Aus α-Oxo-β-phenyl-γ-[4-methoxy-phenyl]-butyrolacton und siedendem Essigsäureanhydrid (Erlenmeyer, Lattermann, A. 333, 269). — Nadeln (aus Chloroform). F. 1469. Löslich in Alkohol. Benzol und Chloroform

Chloroform). F: 116°. Löslich in Alkohol, Benzol und Chloroform.

Verbindung C₂₄H₁₈O₅. Zur Frage der Konstitution vgl. Hall, Hynes, Lapworth, Soc. 107 [1915], 135. — B. Aus α-Oxo-β-phenyl-γ-[4-methoxy-phenyl]-butyrolacton mit Benzoylchlorid und Natronlauge (Erlenmeyer, Lattermann, A. 333, 269). — Nadeln (aus Alkohol). F: 170°. Löslich in Alkohol, Benzol und Chloroform.

2. 4.5 - Dioxo - 2 - phenyl - 3 - [4 - oxy - phenyl] - furantetrahydrid, α - Oxo

2. 4.3-Dioro-z-phenyt-3-[4-oxy-phenyt]-furtherranyarii. α -Oxo- γ -phenyt- β -[4-oxy-phenyt]-butyrolacton $C_{16}H_{12}O_4 = \begin{array}{c} OC & -CH \cdot C_6H_4 \cdot OH \\ OC \cdot O \cdot CH \cdot C_6H_5 \cdot OH \cdot OCH \cdot C_6H_5 \cdot OCH \cdot C_6H_5 \cdot OCH \cdot C_6H_6 \cdot OCH \cdot C_6H_4 \cdot OCH_3 \cdot OCH \cdot C_6H_4 \cdot OCH_3 \cdot OCH \cdot C_6H_6 \cdot$ OC · O · CH · C6H5 Gegenwart von gesättigter Salzsäure (ERLENMEYER, WITTENBERG, A. 337, 300). — Prismen mit 1 C_2H_6O (aus Alkohol). F: 180°. Leicht löslich in Äther, Chloroform und Benzol, ziemlich leicht in Alkohol, schwer in Ligroin und Wasser.

3. **Verbindung** $C_{1e}H_{12}O_4$, Formel I oder II. Diese Formeln sind vielleicht für Resacetein (Bd. XVII, S. 193) in Betracht zu ziehen.

I. O: OH OH II. CH3

4. 7 - Oxy - 4 - oxo - 5 - methyl - 2 - [3 - oxy - phenyl] - CH3

[1.4 - chromen], 7 - Oxy - 5 - methyl - 2 - [3 - oxy - phenyl] - CH3

[1.4 - chromen], 8. Aus 4.6-Dimethoxy-2-methyl-\omega-[3 - methoxy-1] - methoxy-2-methyl-\omega-[3 - methoxy-1] - methoxy-1 -(TAMBOR, B. 41, 796). — Nadeln (aus Alkohol). F: 260°. Die Lösung in konz. Schwefelsäure ist gelb.

5. 5 - Oxy - 4 - oxo - 7 - methyl - 2 - [2 - oxy - phenyl]- [1.4 - chromen], 5 - Oxy - 7 - methyl - 2 - [2 - oxy - phenyl]- chromon, 5.2 - Dioxy - 7 - methyl - flavon $C_{16}H_{12}O_4$, s. nebenstehende Formel. B. Durch Kochen von 2.6-Dimethoxy - 4 - methyl - CH_3 stehende Formel. B. Durch Kochen von 2.6-Dimethoxy-4-metnylω-[2-methoxy-benzoyl]-acetophenon (Bd. VIII, S. 504) mit Jodwasserstoffsäure (D: 2.0)
(Тамвов, B. 41, 788). — Grünlichgelbe Nadeln (aus Alkohol). F: 300—301°. Schwer löslich in Alkohol. Löst sich in alkoh. Natronlauge und in konz. Schwefelsäure mit gelber Farbe.

5-Oxy-2'-methoxy-7-methyl-flavon C₁₇H₁₄O₄ = (HO)(CH₃)C₆H₂ O—C·C₆H₄·O·CH₃.

B. Durch Erhitzen von 5.2'-Dioxy-7-methyl-flavon in Methylalkohol mit Methyljodid und Atzkali (T., B. 41, 789). — Gelbe Nädelchen (aus Alkohol). F: 156°. — Natriumsalz. Gelb. Schwer löslich.

5.2'-Diacetoxy-7-methyl-flavon $C_{20}H_{16}O_6 = (CH_3)(CH_3 \cdot CO \cdot O)C_6H_2 \cdot C_0 \cdot CH_3$. Prismen (aus Alkohol). F: 108° (T., B. 41, 788).

6. 5 - Oxy - 4 - oxo - 7 - methyl - 2 - [3 - oxy - phenyl] -[1.4-chromen], 5-Oxy-7-methyl-2-[3-oxy-phenyl]-chromon, 5.3-Dioxy-7-methyl-flavon $C_{14}H_{12}O_4$, s. neben-OH **≻cH** CH5. stehende Formel. B. Aus 2.6-Dimethoxy-4-methyl-ω-[3-meth-OXY-benzoyl]-acetophenon (Bd. VIII, S. 504) beim Kochen mit Jodwasserstoffsäure (D: 2,0) (TAMBOB, B. 41, 790). — Nadeln (aus verd. Alkohol). F: 227°. Löst sich in konz. Schwefelsäure mit gelber Farbe.

5-Oxy-3'-methoxy-7-methyl-flavon C₁₇H₁₄O₄ = (HO)(CH₂)C₂H₂ CO·CH

B. Aus 5.3'-Dioxy-7-methyl-flavon in Methylalkohol mit Methyljodid und Ätzkali (T., B.

41, 790). — Gelbe Nadeln (aus Alkohol). F: 146°. Die Lösung in konz. Schwefelsäure ist gelb. — Natriumsalz. Gelb. Schwer löslich.

5.8'-Diacetoxy-7-methyl-flavon $C_{20}H_{16}O_6 =$ CO·CH $(CH^{s})(CH^{s} \cdot CO \cdot O)C^{g}H^{s} \underbrace{O - \overset{C}{C} \cdot C^{g}H^{4} \cdot O \cdot CO \cdot CH^{s}}_{\square}.$ B. Aus 5.3'-Dioxy-7-methyl-flavon (s. o.) durch kurzes Kochen mit Essigsäureanhydrid und entwässertem Natriumacetat (T., B. 41, 790). - Gelbe Prismen (aus verd. Alkohol). F: 137°.

5 - Oxy - 4 - oxo - 7 - methyl - 2 - [4 - oxy - phenyl] -[1.4-chromen], 5-Oxy-7-methyl-2-[4-oxy-phenyl]-chromon, 5.4'-Dioxy-7-methyl-flavon C₁₀H₁₂O₄, s. nebenstehende Formel. B. Durch Kochen von 2.6-Dimethoxy-CO~CH 4-methyl-w-[4-methoxy-benzoyl]-acetophenon (Bd. VIII, S. 504) mit Jodwasserstoffsäure (D: 2,0) (Tambor, B. 41, 791). — Blabgelbe, verfilzte Nadeln (aus Alkohol). F: 295°. Die Lösung in konz. Schwefelsäure ist gelb.

ang in konz. Schwefelsäure ist geib. 5-Oxy-4'-methoxy-7-methyl-flavon $C_{17}H_{14}O_4 = (HO)(CH_0)C_0H_1 < CO \cdot CH_1 - C \cdot C_0H_4 \cdot O \cdot CH_3$ B. Aus 5.4'-Dioxy-7-methyl-flavon durch Erwärmen mit Methyljodid und Alkali in methyl-

alkoholischer Lösung (T., B. 41, 791). — Gelbe Nadeln (aus Alkohol). F: 274°. Löst sich in konz. Schwefelsäure mit gelber Farbe. - Natriumsalz. Gelb. Unlöslich.

5.4'-Diacetoxy-7-methyl-flavon $C_{20}H_{16}O_6=$ $(CH_3)(CH_3\cdot CO\cdot O)C_6H_2 O - C\cdot C_6H_4\cdot O\cdot CO\cdot CH_3$ Verfilzte Nadeln (aus Alkohol). F: 148° bis 149° (T., B. 41, 791).

8. 6.7 - Dioxy - 3 - oxo - 2 - [4 - methyl - benzal] cumaran, 6.7-Dioxy-2-[4-methyl-benzal]-cuma- HO. $ranon \ C_{16}H_{14}O_4$, s. nebenstehende Formel. B. Aus 6.7-Dioxy-cumaranon (Bd. XVII, S. 176) und p-Toluylaldehyd in siedendem Alkohol bei Gegenwart von rauchender Salzsäure (FEUERSTEIN, BRASS, B. 37, 825). — Grüngelbe Krystallschuppen. F: 276°. Schwer löslich in Äther und Benzol, leicht in Wasser und Alkohol. Löst sich in verd. Natronlauge und in konz. Schwefelsäure mit roter Farbe. Färbt Baumwolle auf Eisenbeize olivgrün, auf Tonerdebeize grünstichig gelb, Seide auf Chrombeize grünstichig orange.

3. Oxy-oxo-Verbindungen C18H18O4.

1. 7-Oxy-3.4-dioxo-2-[4-isopropyl-phenyl]-chroman, 7-Oxy-3.4-dioxo-4'-isopropyl-flavan bezw. 3.7-Dioxy-2-[4-isopropyl-phenyl]-chromon. 3.7-Dioxy-4'-isopropyl-flavon, 7-Oxy-4'-isopropyl-flavonol C16H16O4, Formel I

bezw. II. B. Aus 7-Methoxy-4'-isopropyl-flavonol durch Kochen mit starker Jodwasser-stoffsäure (v. Kostanboki, B. 40, 3672). — Blättchen (aus verd. Alkohol). F: 243°. Die grünlichgelbe Lösung in verd. Natronlauge zeigt grünliche Fluorescenz, die schwächer gefärbte Lösung in konz. Schwefelsäure fluoresciert stark bläulich. Färbt Tonerdebeize blaßgelb an.

7-Methoxy-8.4-dioxo-4'-isopropyl-flavan bezw. 8-Oxy-7-methoxy-4'-isopropylflavon, 7 - Methoxy - 4' - isopropyl - flavonol $C_{10}H_{18}O_4 =$ $\begin{array}{ll} \text{pl.} & \text{-flavonol} & \text{U_{10}H}_{18} \text{U_4} = \\ \text{bezw. CH_3} \cdot \text{O} \cdot \text{C_6H_3$} & \text{O} - \ddot{\text{C}} \cdot \text{C_6H_4$} \cdot \text{CH(CH_3)_3} \end{array}$ CH₃·O·C₆H₃CO·CO CH₄·CH(CH₃),

Einw. von Amylnitrit und Salzsäure auf 7-Methoxy-4'-isopropyl-flavanon (S. 58) in heißer alkoholischer Lösung und längeres Stehenlassen der Flüssigkeit (v. K., B. 40, 3672). — Gelbliche Blättchen. F: 201°. Ziemlich schwer löslich in Alkohol. Die Lösung in konz. Schwefelsäure fluoresciert grünlichblau. Färbt Tonerdebeize gelblich an. — Natriumsalz. Gelb. Schwer löslich.

7-Methoxy-3-acetoxy-4'-isopropyl-flavon, 7-Methoxy-4'-isopropyl-flavonol-acetat $C_{21}H_{20}O_5 = CH_2 \cdot O \cdot C_6H_2 \cdot O \cdot CH_2 \cdot C_6H_4 \cdot CH(CH_2)_2$ Spieße (aus verd. Alkohol). F: 163—164° (v. K., B. 40, 3672).

3.7 - Diacetoxy - 4'-isopropyl - flavon, 7 - Acetoxy - 4'-isopropyl - flavonol - acetat C₂₂H₂₀O₆ = CH₃·CO··C··C·₆H₃·CO··C··C··CH₃

O— C··C·₆H₄··CH(CH₃).

B. Aus 7-Oxy-4'-isopropyl-flavonol durch Kochen mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., B. 40, 3673).

Nadeln (aus verd. Alkohol). F: 124°.

2. Verbindung $C_{18}H_{16}O_4$, Formel I oder II. Vielleicht kommt eine dieser Formeln dem Orcacetein (Bd. XVII, S. 200) zu.

4. $3-0xy-5.2^1$ -dioxo-4-methyl-2-äthyl-2.3-diphenyl-furantetrahydrid, $\beta-0xy-\alpha$ -methyl- $\beta.\gamma$ -diphenyl- γ -acetyl-butyrolacton $C_{10}H_{18}O_4=CH_3-C(C_0H_5)\cdot OH$

OC·O·C(C,H,)·CO·CH,

 β - Acetoxy - α - methyl - β . γ - diphenyl - γ - acetyl - butyrolacton $C_{21}H_{20}O_5 = CH_3 \cdot HC - C(C_8H_8) \cdot O \cdot CO \cdot CH_2$. B. Aus β . γ -Oxido- α -methyl- β . γ -diphenyl- γ -acetyl-butter-

OC·O·C(C_eH_s)·CO·CH₃
säure (Syst. No. 2619) und Essigsäureanhydrid in Gegenwart einiger Tropfen konz. Schwefelsäure (Japp, Michir, Soc. 83, 299). — Vier- oder sechsseitige Prismen (aus Benzol + Ligroin). F: 140°. — Beim Erwärmen mit alkoh. Kali entsteht α-Desyl-propionsäure (Bd. X, S. 770).

l) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_4$.

1. 3-0xy-4.5-oxido-9.10-dioxo-phenanthrendihydrid, 3-0xy-4.5-oxido-phenanthrenchinon, Morphenolchinon $C_{14}H_4O_4$, s. nebenstehende Formel. B. Durch Oxydation von Morphenolacetat (Bd. XVII, S. 135) mit Chromsäure und Eisessig und Verseifung des entstandenen Acetats mit Natronlauge oder Sodalösung (Vongerichten, B. 31, 55; 33, 356). — Orangerote Warzen (aus Eisessig). Die Lösung in konz. Schwefelsäure ist braun (V., B. 33, 357).

anthren - carbonsäure - (9) $C_{17}H_{12}O_4$, Formel IV. HO OH CH₂·O O·CH₃
B. Neben 8-Brom-3.4-dimethoxy-phenanthren bei der Destillation von 8-Brom-3.4-dimethoxy-phenanthren-carbonsäure-(9) im Vakuum (Pschorr, B. 39, 3120). — Blaßgelbe Nadeln (aus Alkohol). F: 160° (korr.). — Löst sich in warmer Natronlauge unter Bildung von 8-Oxy-3.4-dimethoxy-phenanthren-carbonsäure-(9).

3. Oxy-oxo-Verbindungen C17H12O4.

1. 2.6-Dioxy-4-oxo-3.5-diphenyl-pyran, 2.6-Dioxy-3.5-diphenyl-pyron $C_{17}H_{12}O_4 = \begin{array}{c} C_0H_5 \cdot C \cdot CO \cdot C \cdot C_0H_5 \\ HO \cdot C - O - C \cdot OH \end{array}$

- 2.6-Disulfhydryl-4-oxo-3.5-diphenyl-thiopyran, 2.6-Dimercapto-4-oxo-3.5-diphenyl - penthiophen, 2.6 - Dimercapto - 8.5 - diphenyl - 1 - thio - pyron $C_{17}H_{12}OS_4 =$ $C_6H_5 \cdot C \cdot CO \cdot C \cdot C_6H_5$ ist desmotrop mit 4-Oxo-2.6-dithion-3.5-diphenyl-thiopyrantetrahydrid, HS·C-S-C·SH Bd. XVII, S. 573.
- 2.6 Bis methylmercapto 4 oxo 3.5 diphenyl thiopyran, 2.6-Bis-methylmercapto-4-oxo-3.5-diphenyl-penthiophen, 2.6-Bis-methylmercapto-3.5-diphenyl-1-thio- $C_6H_5 \cdot C \cdot CO \cdot C \cdot C_6H_5$ pyron $C_{19}H_{16}OS_3 = \frac{C_6H_5}{CH_3} \cdot S \cdot C - S - C \cdot S \cdot CH_3$. B. Beim Erwärmen von 10 g 2.6-Dimercapto-3.5-diphenyl-1-thio-pyron mit 8 g Methyljodid und einer Lösung von 1,7 g Natrium in 100 g Methylalkohol auf dem Wasserbad (APITZSCH, B. 37, 1607; 38, 2891). — Farblose Krystalle. F: 1670. Leicht löslich in kaltem Chloroform, Benzol und Schwefelkohlenstoff, ziemlich löslich in Äther, Alkohol und Eisessig.
- 2.6-Bis-äthylmercapto-4-oxo-3.5-diphenyl-thiopyran, 2.6-Bis-äthylmercapto-4-oxo-3.5-diphenyl-penthiophen, 2.6-Bis-äthylmercapto-3.5-diphenyl-1-thio-pyron $C_6H_5 \cdot C \cdot CO \cdot C \cdot C_6H_5$ B. Beim Kochen von 7.5 g des Natriumsalzes $C_{s1}H_{s0}OS_s = C_2H_5 \cdot S \cdot C - S - C \cdot S \cdot C_2H_5$ des 2.6-Dimercapto-3.5-diphenyl-1-thio-pyrons mit 30 g Äthylbromid und 50 cm³ Alkohol bis zur Entfärburg (A., B. 37, 1606; 38, 2891). — Krystalle (aus Benzol-Petroläther). F: 141,5° bis 142°. Leicht löslich in kaltem Chloroform, Benzol und Schwefelkohlenstoff, ziemlich löslich in Alkohol, Ather und Eisessig.
- 2.6-Bis-propylmercapto-4-oxo-3.5-diphenyl-thiopyran, 2.6-Bis-propylmercapto-4-oxo-3.5-diphenyl-penthiophen, 2.6-Bis-propylmercapto-3.5-diphenyl-1-thio-pyron $C_6H_5 \cdot C \cdot CO \cdot C \cdot C_6H_5$ $C_{23}H_{24}OS_3 = CH_3 \cdot CH_2 \cdot CH_2 \cdot S \cdot C - S - C \cdot S \cdot CH_2 \cdot CH_3 \cdot CH_$ 0,5 g Natrium in 50 g Propylalkohol (A., B. 37, 1607; 38, 2891). — Fast farblose Krystalle (aus Benzol + Petroläther). F: 88°. Leicht löslich in kaltem Chloroform, Benzol und Schwefelkohlenstoff, ziemlich löslich in Alkohol, Äther und Eisessig.
- 2.6-Bis-benzylmercapto-4-oxo-3.5-diphenyl-thiopyran, 2.6-Bis-benzylmercapto-4-0 \angle 0-3.5-diphenyl-penthiophen, 2.6-Bis-benzylmercapto-3.5-diphenyl-1-thio-pyron $C_6H_5\cdot C\cdot CO\cdot C\cdot C_6H_5$ B. Beim Erwärmen von 3 g 2.6-Di- $C_{a1}H_{a4}OS_3 =$ C₃₁H₂₄OS₃ = C₆H₅·CH₂·S·C-S-C·S·CH₂·C₆H₅. B. Beim Erwärmen von 3 g 2.6-Dimercapto-3.5-diphenyl-1-thio-pyron mit 2,5 g Benzylchlorid und einer Lösung von 0,5 g Natrium in 30 cm³ Alkohol auf dem Wasserbad (A., B. 37, 1607; 38, 2891). — Krystalle (aus heißem Benzol und Petroläther), schief abgeschnittene Prismen mit Krystallalkohol (aus Alkohol). F: 131°. Leicht löslich in kaltem Chloroform, Benzol und Schwefelkohlenstoff, ziemlich löslich in Alkohol, Äther und Eisessig.
- 2.6-Bis-benzoylmercapto-4-oxo-3.5-diphenyl-thiopyran, 2.6-Bis-benzoylmer- ${\tt capto-4-oxo-3.5-diphenyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-diphenyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-diphenyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-diphenyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-diphenyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-diphenyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-diphenyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-diphenyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-diphenyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-diphenyl-penthiophenyl-penthiophen, 2.6-Bis-benzoylmercapto-3.5-diphenyl-penthiophenyl-pent$ $C_6H_5 \cdot C \cdot CO \cdot C \cdot C_6H_5$ $\textbf{1-thio-pyron} \ \ C_{31}H_{20}O_3S_3 = \\ C_0H_5 \cdot CO \cdot S \cdot C - S - C \cdot S \cdot CO \cdot C_6H_5$ Beim Schütteln von 2.6-Dimercapto-3.5-diphenyl-1-thio-pyron mit Benzoylchlorid und Natronlauge (A., B. 37, 1607; 38, 2891). — Gelbe Nadeln. F: 1420. Sehr leicht löslich in Chloroform, Benzol und Schwefelkohlenstoff, ziemlich löslich in Äther und kaltem Alkohol.
- 2.6-Bis-anilinoformylmercapto-4-oxo-3.5-diphenyl-thiopyran, 2.6-Bis-anilinoformylmercapto-4-oxo-3.5-diphenyl-penthiophen, 2.6-Bis-anilinoformylmercapto- $\textbf{3.5-diphenyl-1-thio-pyron} \quad C_{31}H_{22}O_{3}N_{2}S_{3} = \\ C_{6}H_{5}\cdot NH\cdot CO\cdot S\cdot C-S-\overset{\top}{C}\cdot S\cdot CO\cdot NH\cdot NH\cdot CO\cdot S\cdot C-S-\overset{\top}{C}\cdot$ B. Aus 2.6-Dimercapto-3.5-diphenyl-1-thio-pyron und Phenylisocyanat in Benzol (APITZSCH, BAUER, B. 41, 4046). — Krystalle (aus Essigester und Äther). Färbt sich bei 100° rot und schmilzt bei 135° unter Aufschäumen. Leicht löslich in Aceton, Essigester, Methylalkohol, Chloroform und Alkohol, schwer in Benzol, sehr wenig in Äther, unlöslich in Ligroin. Wird
- Verbindung $C_{51}H_{32}O_3S_9(?) =$ Verbindung $C_{51}\Pi_{52}C_{5}S_{5}(1) = C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5}$ $C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5}$ $C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5}$ $C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5}$ $C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5}$ $C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5}$ $C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5}$ $C_{6}H_{5} \cdot C \cdot CO \cdot C \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C_{6}H_{5} \cdot C \cdot CO \cdot C_{6}H_{5} \cdot CO \cdot C_{6}H_{5} \cdot C \cdot CO$ $\mathbf{H}\mathbf{S}\cdot\ddot{\mathbf{C}}-\mathbf{S}-\ddot{\ddot{\mathbf{C}}}\cdot\mathbf{S}$ $\mathbf{S}\cdot\ddot{\ddot{\mathbf{C}}}-\mathbf{S}-\ddot{\ddot{\mathbf{C}}}\cdot\mathbf{S}$ $\mathbf{S}\cdot\ddot{\ddot{\mathbf{C}}}\cdot\mathbf{S}$ vielleicht diese Konstitution zukommt, s. Bd. XVII, S. 573.

durch Alkalien leicht gespalten.

2. 6.7 - Dioxy - 3 - oxo - 2 - cinnamal - cumaran, 6.7-Dioxy-2-cinnamal-cumaranon C₁₇H₁₈O₄, s. HO. nebenstehende Formel. B. Aus äquimolekularen Mengen von Zimtaldehyd und 6.7-Dioxy-cumaranon (Bd. XVII, 8. 176) in alkoh. Lösung durch Zutropfen von verd. Natronlauge (Haller, v. Kostanecki, B. 30, 2951) oder durch Zusatz von rauchender Salzsäure bei Siedetemperatur (Fedenstein, Brass, B. 37, 826). — Gelbe Schüppchen. F: 236° (F., B.). Sehr leicht löslich in Wasser, Alkohol, Äther (F., B.). Die Lösung in verd. Natronlauge ist tief violett, die Lösung in konz. Schwefelsäure karmoisinrot (F., B.). Färbt Baumwolle auf Tonerdebeize lebhaft orange, auf Eisenbeize rein braun, Seide auf Chrombeize rotstichig braun (F., B.).

Diäthyläther $C_{21}H_{20}O_4 = (C_2H_5 \cdot O)_2C_6H_2 < CO > C:CH \cdot CH:CH:CH \cdot C_6H_5$. B. Beim Kochen von 6.7-Dioxy-2-cinnamal-cumaranon mit Äthyljodid in alkalisch-alkoholischer Lösung (Haller, v. Kostanecki, B. 30, 2952). — Gelbe Nadeln (aus verd. Alkohol). F: 123°.

Diacetylderivat $C_{21}H_{16}O_6 = (CH_3 \cdot CO \cdot O)_2C_6H_2 < \begin{array}{c} CO \\ O \end{array} > C: CH \cdot CH : CH \cdot C_6H_5.$ Beim Erhitzen von 6.7-Dioxy-2-cinnamal-cumaranon mit Essigsäureanhydrid und Natriumacetat (HALLER, Dissertation [Zürich 1898], S. 42). — Gelbe Nadeln (aus Alkohol), die sich am Licht in eine farblose Verbindung verwandeln (HALLER, v. KOSTANECKI, B. 30, 2951). F: 176° (H., v. K.).

6.7 - Dioxy - 3 - oxo - 2 - [4 - nitro - cinnamal] - cumaran $C_{17}H_{11}O_6N = (HO)_2C_6H_2 \stackrel{CO}{\bigcirc} C: CH \cdot CH \cdot CH \cdot C_6H_4 \cdot NO_2$. B. Aus 6.7-Dioxy-cumaranon (Bd. XVII, S. 176) und 4-Nitro-zimtaldehyd in siedendem Alkohol bei Gegenwart von rauchender Salzsäure (FEUER-STEIN, Brass, B. 37, 826). — Dunkelrote, blauviolett schimmernde Blättchen. F: ca. 265°. Löslich in Wasser, Alkohol und Äther. Die Lösung in Alkali ist dunkelgrün, die Lösung in konz. Schwefelsäure karmoisinrot. Färbt gechromte Seide tiefbraun, Baumwolle auf Tonerdebeize rot, auf Eisenbeize braunviolett an.

4. 2.4-Dioxo-6-phenyl-3-[α -oxy-benzyl]-[1.2-pyran]-dihydrid $C_{18}H_{14}O_4=C_6H_6\cdot CH(OH)\cdot HC\cdot CO\cdot CH$ $\begin{array}{c} C_6H_5\cdot CH(OH)\cdot HC\cdot CO\cdot CH\\ OC-O-\overset{..}{C}\cdot C_6H_5 & oder \ \ 4-0\ xy-2-0\ xo-6-phenyl-3-benzoyl-[1.2-pyran]-\\ dihydrid\ C_{18}H_{14}O_4 = & & & & & \\ C_6H_5\cdot CO\cdot HC\cdot CH(OH)\cdot CH\\ & & & & & & \\ OC-&O-\overset{..}{C}\cdot C_6H_5 & & \\ & & & & \\ C_6H_5\cdot CO\cdot HC\cdot CH(OH)\cdot CH\\ & & & & \\ C_6H_5\cdot CO\cdot HC\cdot CH(OH)\cdot CH\\ & & & & \\ C_6H_5\cdot CO\cdot HC\cdot CH(OH)\cdot CH\\ & & & \\ C_6H_5\cdot CO\cdot HC\cdot CH(OH)\cdot CH\\ & & & \\ C_6H_5\cdot CO\cdot HC\cdot CH(OH)\cdot CH\\ & & & \\ C_6H_5\cdot CO\cdot HC\cdot CH(OH)\cdot CH\\ & \\ C_6H_5\cdot CO\cdot HC\cdot CH(OH)\cdot CH$

m) Oxy-oxo-Verbindungen C_nH_{2n-24}O₄.

1. Oxy-oxo-Verbindungen $C_{16}H_8O_4$.

1. 3-Oxy-1'.4'-dioxo-brasandihydrid, 3-Oxy-brasanchinon C₁₅H₈O₄, s. nebenstehende Formel. B. Aus Resorcin
und 2.3-Dichlor-naphthochinon-(1.4) bei Gegenwart von Natriumäthylat in siedender alkoholischer Lösung (LIEBERMANN, B. 32,
924). — Rötliche Nadeln (aus Eisessig). F: 320° (v. KostaNECKI, LAMPE, B. 41, 2374). Sublimierbar (v. K., La.). Sehr wenig löslich in Alkohol; in Alkalien mit blauer Farbe löslich (Lie.). Löst sich in konz. Schwefelsäure mit bläulichgrüner Farbe (v. K., La.). — Gibt bei der Destillation über Zinkstaub Brasan (Bd. XVII, S. 84) (v. K., La.). Liefert beim Behandeln mit Dimethylsulfat und Alkali 3-Methoxy-brasanchinon (v. K., La.).

3-Methoxy-brasanchinon $C_{17}H_{10}O_4 = C_{16}H_7O_3 \cdot O \cdot CH_3$. B. Durch Behandeln von 3-Oxy-brasanchinon mit Dimethylsulfat und Alkali (v. Kostanecki, Lampe, B. 41, 2375). — Goldglänzende Blättchen (aus Pyridin). F: 290° (v. K., La., B. 41, 2375). Bei vorsichtigem Erhitzen unzersetzt destillierbar (v. K., La., B. 41, 2375). Die Lösung in konz. Schwefelsäure ist bläuligheren (v. K.) 41, 2375). ist bläulichgrün (v. K., La., B. 41, 2375). — Geht durch Kochen mit Jodwasserstoffsäure in 3-Oxy-brasan (Bd. XVII, S. 138) über (v. K., La., B. 41, 2375). Liefert beim Behandeln mit Salpetersäure (D: 1,5) 2(?).4(?)-Dinitro-3-methoxy-brasanchinon (v. K., La., B. 41, 2801). Gibt durch Reduktion und gleichzeitige Acetylierung 3-Methoxy-1'.4'-diacetoxy-brasan (Bd. XVII, S. 184) (v. K., La., B. 41, 2801).

- 3-Acetoxy-brasanchinon $C_{18}H_{10}O_5=C_{18}H_2O_3\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen von 3-Oxy-brasanchinon mit Essigsäureanhydrid und entwässertem Natriumacetat (HOYER, Dissertation [Berlin 1901], S. 27). Gelbe Nadeln (aus Eisessig). F: 289° (LIEBERMANN, B. 32, 924). Schwer löslich (L.).
- 2(?)4(?)-Dinitro-3-methoxy-brasanchinon $C_{17}H_8O_8N_8$, S. nebenstehende Formel. B. Durch Einw. von Salpetersäure (D: 1,5) auf 3-Methoxy-brasanchinon (v. Kostanecki, Lampe, B. 41, 2801). Krystalle (aus Eisessig). F: 253—254° (Zers.).

 Verpufft beim Erhitzen auf dem Platinblech.
- 2. 7 Oxy 4.5(CO) benzoylen cumarin, δ Lacton der [2.4 Dioxy anthron (9) yliden (10)] essigsäure (,m. Oxyanthracumarin'') C₁₆H₈O₄, s. nebenstehende Formel. B. Bei 2—3-stdg. Erwärmen von 1 Mol 3.5-Dioxy-benzoesäure und 1 Mol Zimtsäure mit konz. Schwefelsäure (v. Kostanecki, B. 20, 3142). Colebe Nädelchen (aus Eisessig). F: 325° (v. K.). Löslich in Eisessig, unlöslich oder schwer löslich in anderen Lösungsmitteln; löslich in Kalilauge und in Barytwasser (v. K.). Liefert bei der Destillation mit Zinkstaub Anthracen (v. K., Lloyd, B. 36, 2196).
- 7-Acetoxy-4.5(CO)-benzoylen-cumarin $C_{18}H_{10}O_5=C_{16}H_7O_3\cdot O\cdot CO\cdot CH_3$. B. Bei kurzem Kochen von 7-Oxy-4.5(CO)-benzoylen-cumarin mit Essigsäureanhydrid und Natriumacetat (v. Kostanecki, B. 20, 3142). Blaßgelbe, verfilzte Nadeln (aus Eisessig). F: 255°.
- 2. 3-0 xy-1'.4'-dioxo-1-methyl-brasandihydrid, 3-0 xy- O CH3
 1-methyl-brasanchinon C₁₇H₁₀O₄, s. nebenstehende Formel.

 B. Aus äquimolekularen Mengen 2.3-Diohlor-naphthochinon-(1.4)
 und Orcin bei Gegenwart von 4 Mol Natriumäthylat in siedendem Alkohol (Grafmann, v. Kostanecki, B. 42, 822). Rote
 Nadeln (aus Eisessig). F: 315°. Sublimierbar. Löslich in konz. Schwefelsäure und in verd.
 Natronlauge mit blauer Farbe. Durch Reduktion mit Zinkstaub bei Gegenwart von Acetanhydrid und Natriumacetat entsteht 3.1'.4'-Triacetoxy-1-methyl-brasan (Bd. XVII, S. 185).
 Durch energisches Behandeln mit Dimethylsulfat und Alkali erhält man 3-Methoxy-1-methyl-brasanchinon.
- 3-Methoxy-1-methyl-brasanchinon $C_{18}H_{18}O_4=C_{16}H_6O_3(CH_8)\cdot O\cdot CH_8$. B. Durch energische Methylierung von 3-Oxy-1-methyl-brasanchinon mit Dimethylsulfat und Alkali (G., v. K., B. 42, 824). Orangegelbe Nadeln (aus Pyridin). F: 240°. Unzersetzt destillierbar. Löst sich in konz. Schwefelsäure mit blauer Farbe. Liefert, mit Zinkstaub bei Gegenwart von Acetanhydrid und Natriumacetat erhitzt, 3-Methoxy-1'.4'-diacetoxy-1-methyl-brasan (Bd. XVII, S. 185).
- **3-Acetoxy-1-methyl-brasanchinon** $C_{19}H_{19}O_5 = C_{16}H_6O_8(CH_8)\cdot O\cdot CO\cdot CH_2$. B. Durch Kochen von 3-Oxy-1-methyl-brasanchinon mit Acetanhydrid und Natriumacetat (G., v. K., B. **42**, 823). Goldglänzende Blättchen (aus Chloroform + Alkohol). F: 278°.
- 3. Oxy-oxo-Verbindungen $C_{18}H_{12}O_4$.
- 1. 4.6 Dioxo 2 phenyl 5 [a oxy benzal] [1.4 pyran] dihydrid bezw. 6-Oxy-4-oxo-2-phenyl-5-benzoyl-[1.4-pyran] bezw. 4-Oxy-2-oxo-6-phenyl-3-benzoyl-[1.2-pyran] $C_{18}H_{18}O_4 = \frac{C_6H_5 \cdot C(OH) : C \cdot CO \cdot CH}{OC_{18}O_{$

C₆H₅·CO·C·CO·CH

C₆H₅·CO·C:C(OH)·CH

HO·C-O-C·C₆H₅

bezw.

OC-O-C·C₆H₅

OC-O-C·C₆H₅

OC-O-C·C₆H₅

OC-O-C·C₆H₆

ist desmotrop mit 4.6-Dioxo-2-phenyl-5-benzoyl-[1.4-pyran]-dihydrid, Bd. XVII, S. 575.

Möglicherweise sind die Verbindungen C₁₆H₁₁O₃Cl und C₂₀H₁₆O₄ (Bd. XVII, S. 576) als

Derivate einer der obigen Enolformen anzusehen.

2. 2.5 - Dioxo - 3 - benzal - 4 - [4 - oxy - benzal] - furantetrahydrid, Benzal [4-oxy - benzal] - bernsteinsäureanhydrid, α -Phenyl - δ -[4-oxy - phenyl] - fulgid $C_{18}H_{18}O_4 = \frac{C_6H_5 \cdot CH \cdot C_6 - C_5 \cdot CH \cdot C_6H_4 \cdot OH}{OC \cdot OCO}$

Benzal-anisal-bernsteinsäureanhydrid. α -Phenyl- δ -[4-methoxy-phenyl]-fulgid $C_{18}H_{14}O_{4} = \begin{array}{c} C_{6}H_{5} \cdot CH : C - C : CH \cdot C_{6}H_{4} \cdot O \cdot CH_{3} \\ O_{18}H_{14}O_{4} = \\ O_{18}H_{14}O_{4} = \\ O_{18}H_{18}O_{4} = \\ O_{1$ $0 \cdot 0 \cdot 0 \cdot 0$ steinsäure mit Acetylchlorid (Stobbe, Kautzsch, Badenhausen, B. 39, 764). — Hellorangefarbene Krystalle (aus Äther oder Petroläther). Monoklin(?) (Toborffy, Z. Kr. 45, 162). F: 144—147° (St., K., B.). Absorptionsspektrum: St., A. 380 [1911], 4. Ist schwach phototrop (St., A. 359, 26). Wird beim Abkühlen auf —80° chromgelb, beim Erwärmen auf 74—140° hanne diese Feb. braun; diese Farbänderungen gehen bei gewöhnlicher Temperatur wieder zurück (St., A. 380 [1911], 20).

4. 4-0x0-2-[3.4-dioxy-phenyl]-7.8-benzo-chroman, 3'.4'-Dioxy-7.8-benzo-flavanon $C_{10}H_{14}O_4$, s. nebenstehende Formel.

8'.4' - Dimethoxy - 7.8 - benzo - flavanon $C_{21}H_{12}O_4 =$ CO·CH₂
C₁₀H₄CO·CH₃
O—CH·C₆H₂(O·CH₃)₂
B. Durch 24-stdg. Erhitzen von [3.4-Dimethoxy-styryl][1-oxy-naphthyl-(2)]-keton in wenig Alkohol mit Salzaäure (BIGLER, v. KOSTANECKI, B.
39, 4035). — Nadeln (aus Alkohol). F: 135°. Die Lösung in konz. Schwefelsäure ist orange.

n) Oxy-oxo-Verbindungen $C_n H_{2n-26} O_4$.

1. Oxy-oxo-Verbindungen C10H10O4.

1. 3.4-Dioxo-2-[3-oxy-phenyl]-7.8-benzo-chroman, 3'-Oxy-3.4-dioxo-7.8-benzo-flavan bezw. 3-Oxy-2-[3-oxy-phenyl]-7.8-benzo-chromon,

I.
$$\begin{array}{c|c} O & CH - \\ \hline \\ CO & CO \\ \hline \\ CO & C \cdot OH \\ \hline \\ O & C \cdot OH \\ \hline$$

3.3'-Dioxy-7.8-benzo-flavon, 3'-Oxy-7.8-benzo-flavonol $(,,3'-Oxy-\alpha-naph thoflavonol')$ $C_{18}H_{12}O_4$, Formel I bezw. H. B. Durch Kochen von 3'-Methoxy-3.4-dioxo-7.8-benzo-flavan mit starker Jodwasserstoffsäure (v. Kostanecki, B. 41, 786). — Blaßgelbe Nadeln (aus Alkohol), die lufttrocken 1 Mol Krystallalkohol enthalten. F: 248°. Löslich in konz. Schwefelsäure mit blaßgelber Farbe und sohwacher grünlicher Fluoresenz. Löslich in konzungsweigen Schwefelsäure mit blaßgelber Farbe und sohwacher grünlicher Fluoresenz. Löslich in warmer verdünnter Natronlauge mit gelber Farbe; die sehr stark verdünnte alkalische Lösung fluoresciert schwach grünlich. Färbt Tonerdebeize hellgelb an. — Natriumsalz. Gelbe Nädelchen.

 $\label{eq:condition} \begin{subarray}{ll} \bf 3'-Methoxy-3.4-dioxo-7.8-benzo-flavan\ bezw.\ 3-Oxy-3'-methoxy-7.8-benzo-flavon,\\ \bf 3'-Methoxy-7.8-benzo-flavonol\ C_{20}H_{14}O_4 = C_{10}H_6 \\ \hline O-CH\cdot C_6H_4\cdot O\cdot CH_3 \\ \hline \end{subarray} \bezw.$

CO·C·OH

Co—C·C₀H₄·O·CH₃

B. Durch Kochen einer Eisessiglösung von 3'-Methoxy-4-oxo3-oximino-7.8-benzo-flavan mit 10°/₀iger Schwefelsäure (v. K., B. 41, 786). — Gelbe Nadeln
(aus Alkohol oder wenig Benzol). F: 185°. Löslich in konz. Schwefelsäure mit hellgelber
Farbe. — Wird durch Kochen mit starker Jodwasserstoffsäure in 3'-Oxy-3.4-dioxo-7.8-benzo
Company of the Com flavan übergeführt. Färbt Tonerdebeize hellgelb an. — Natriumsalz. Gelb. Schwerlöslich.

8'-Methoxy-8-acetoxy-7.8-benzo-flavon, 3'-Methoxy-7.8-benzo-flavonol-acetat $C_{22}H_{16}O_5 = C_{10}H_6 \underbrace{CO \cdot C \cdot O \cdot CO \cdot CH_3}_{O - C \cdot C_6H_4 \cdot O \cdot CH_3}.$ Farblose Nadeln (aus verd. Alkohol). F: 165° (v. K., B. 41, 786).

3'-Methoxy-4-oxo-3-oximino-7.8-benzo-flavan, 3'-Methoxy-3-oximino-7.8-benzo-flavanon $C_{20}H_{15}O_4N=C_{10}H_6$ $O_-CH\cdot C_0H_4\cdot O\cdot CH_3$ B. Durch Einw. von Amylnitrit und Salzsäure auf 3'-Methoxy-7.8-benzo-flavanon (8. 68) in warmer alkoholischer Landschaft auch Grandschaft Lösung (v. K., B. 41, 785). — Gelbes krystallinisches Pulver (aus verd. Alkohol). F: 151°

(Zers.). Löslich in verd. Natronlauge mit blaßgelber Farbe. — Durch Kochen der Eisessiglösung mit 10° /oiger Schwefelsäure entsteht 3'-Methoxy-3.4-dioxo-7.8-benzo-flavan. Färbt Kobaltbeize orange an.

2. 3.4-Dioxo-2-[4-oxy-phenyl]-7.8-benzo-chroman, 4'-Oxy-3.4-dioxo-7.8-benzo-flavan bezw. 3-Oxy-2-[4-oxy-phenyl]-7.8-benzo-chromon, 3.4'-Dioxy-7.8-benzo-flavonol(,4'-Oxy- α -naphthoflavonol()) $C_{19}H_{12}O_4$, Formel I bezw. II. B. Durch Kochen von 4'-Methoxy-3.4-dioxo-

7.8-benzo-flavan mit starker Jodwasserstoffsäure (v. Kostanecki, B. 41, 784). — Hellgelbe Täfelchen (aus Alkohol). F: 293°. Ziemlich schwer löslich in heißem Alkohol. Löst sich in konz. Schwefelsäure mit blaßgelber Farbe und intensiver hellgrüner Fluorescenz. Löslich in verd. Natronlauge mit gelber Farbe und grünlicher Fluorescenz. Färbt Tonerdebeize hellgelb an.

4'-Methoxy-3.4-dioxo-7.8-benzo-flavan bezw. 3-Oxy-4'-methoxy-7.8-benzo-flavon, 4'-Methoxy-7.8-benzo-flavonol $C_{20}H_{14}O_4=C_{10}H_6$ $C_0\cdot CO$ bezw. $C_0\cdot CH\cdot C_0H_4\cdot O\cdot CH_3$

CO·C·OH

C₁₀H₆ O·C·C₄H₄·O·CH₃

B. Durch Kochen einer Eisessiglösung von 4'-Methoxy-4-oxo,
3-oximino-7.8-benzo-flavan mit 10%/oiger Schwefelsäure (v. K., B. 41, 784). — Gelbe Nadeln.

F: 249°. Sehr schwer löslich in Alkohol. Löslich in konz. Schwefelsäure mit intensiver hellgrüner Fluorescenz. — Durch Kochen mit starker Jodwasserstoffsäure entsteht 4'-Oxy-3.4-di-

oxo-7.8-benzo-flavan. Färbt Tonerdebeize hellgelb an. — Natriumsalz. Gelb. Unlöslich. 4'-Methoxy-3-acetoxy-7.8-benzo-flavon, 4'-Methoxy-7.8-benzo-flavonol-acetat $C_{22}H_{16}O_5 = C_{10}H_6 < \begin{array}{c} \text{CO} \cdot \text{CO} \cdot \text{CO} \cdot \text{CH}_3 \\ \text{O} - \begin{array}{c} \text{C} \cdot \text{C}_6H_4 \cdot \text{O} \cdot \text{CH}_3 \end{array}$ Farblose Nädelchen (aus Alkohol). F: 196° (v. K., B. 41, 784).

3.4 '-Diacetoxy-7.8-benzo-flavon, 4'-Acetoxy-7.8-benzo-flavonol-acetat $C_{23}H_{16}O_6 = C_{10}H_6 \bigcirc U$ ' Co·C·O·CH₃. Farblose Nädelchen (aus verd. Alkohol). F: 181° (v. K., B. 41, 785).

4'- Methoxy - 4 - oxo - 3 - oximino - 7.8 - benzo - flavan, 4'- Methoxy - 3 - oximino - 7.8 - benzo - flavanon $C_{20}H_{15}O_4N = C_{10}H_6 - CH \cdot C_0H_4 \cdot O \cdot CH_5$. B. Durch Einw. von Amylnitrit und Salzsäure auf 4'-Methoxy - 7.8 - benzo - flavanon (S. 68) in warmer alkoholischer Lösung (v. K., B. 41, 783). — Gelbe Nadeln (aus Benzol). F: 169—170° (Zers.). — Liefert beim Kochen in Eisessiglösung mit $10^0/_0$ iger Schwefelsäure 4'-Methoxy - 3.4-dioxo - 7.8 - benzo-

flavan. Färbt Kobaltbeize orange, Uran-, Cadmium- und Bleibeize gelb an.

3. 3 - Oxo - 2 - [3.4 - dioxy - benzal] - 6.7 - benzocumaran, 2 - [3.4 - Dioxy - benzal] - 6.7 - benzocumaranon C₁₉H₁₂O₄, s. nebenstehende Formel. Zur Konstitution vgl. Feuerstein, v. Kostanecki, B. 31, 1759.

B. Durch Erwärmen von 3-Oxy-6.7-benzo-cumaron (Bd. XVII,

1. 400) — 12 Destenstehendeliched in allech Länung hei Gazanwart von kong Salgesupe

S. 128) mit Protocatechualdehyd in alkoh. Lösung bei Gegenwart von konz. Salzsäure (Ullmann, B. 30, 1469). — Gelbe Krystalle (aus Äther + Ligroin); sintert bei 225—230° und schmilzt bei 240° unter Zersetzung; die Lösung in konz. Schwefelsäure ist orangegelb; färbt Tonerdebeize orange, Eisenbeize dunkelbraun, Chrombeize rötlichbraun an (U.). Das Natriumsalz löst sich in Wasser mit violetter Farbe (U.).

2. Oxy-oxo-Verbindungen $C_{20}H_{14}O_4$.

1. 6.7 - Dioxy - 2 - oxo-3.3 - diphenyl-cumaran, Lacton der 2.3.4 - Trioxy - triphenylessigsäure C₂₀H₁₄O₄, s. nebenstehende Formel. B. Durch Zusammenschmelzen von Pyrogallol und Benzilsäure (H. v. Liebig, B. 41, 1648). — Krystalle (aus Benzol). Ho F: 184°. Leicht löslich in heißer Sodalösung. Färbt sich mit starker Schwefelsäure schwach ross.

2. 3-Oxo-1-phenyl-1-[2.4-dioxy-phenyl]-phthalan, 3-Phenyl-3-[2.4-dioxy-phenyl]-phthalid, Lacton der $2'.4'.\alpha$ -Trioxy-triphenylmethan-carbon-säure-(2), Benzolresorcinphthalein $C_{20}H_{14}O_4$, s. nebenstehende Formel. B. Durch 1-stündiges Erhitzen von 2 Tin. 2-Benzoyl-benzoe-

säure-(2), Benzolresorcinphthalein C₂₀H₁₄O₄, s. nebenstehende Formel. B. Durch 1-stündiges Erhitzen von 2 Tln. 2-Benzoyl-benzoesäure mit 1 Tl. Resorcin auf 195—200°, neben Benzolresorcinphthaleinanhydrid C₄₀H₂₆O₇ (s. u.) und einer in Alkalien mit roter Farbe und grüner Fluorescenz löslichen Substanz (v. PECHMANN, B. 14, 1860; vgl. BAEYER, A. 372 [1910], 92). — Farblose Prismen mit 1 Mol CHCl₃ (aus Chloroform), die sich schwer in Chloroform lösen und bei 113—114° sc Verliert das Krystallchloroform beim Kochen mit Wasser (v. P.). Sch bei 198—199° (B.). Etwas löslich in heißem Wasser, leicht in den meisten sußer Liggein (v. P.) Löglich in Alkalien mit orangersoter Farbe (v. P.).

Chloroform), die sich schwer in Chloroform lösen und bei 113—114° schmelzen (v. P.; B.). Verliert das Krystallchloroform beim Kochen mit Wasser (v. P.). Schmilzt chloroformfrei bei 198—199° (B.). Etwas löslich in heißem Wasser, leicht in den meisten anderen Lösungsmitteln außer Ligroin (v. P.); löslich in Alkalien mit orangeroter Farbe (B.). — Bei längerem Erhitzen auf 200° tritt Zersetzung ein unter Bildung der oben erwähnten, in Alkalien grün fluorescierenden Substanz (v. P.). Beim Behandeln mit Zinkstaub in ammoniakalischer Lösung entsteht 2'.4'-Dioxy-triphenylmethan-carbonsäure-(2) (v. P.). Liefert bei der Einw. von 2 Mol Brom in Eisessig Benzoldibromresorcinphthalein; bei der Einw. eines großen Überschusses von Brom tritt Spaltung in 2-Benzoyl-benzoesäure und 2.4.6-Tribrom-resorcin ein (v. P.). Beim Erwärmen mit konz. Schwefelsäure entsteht Anthrachinon (v. P.). Durch Kochen mit Eisessig-Schwefelsäure entsteht Benzolresorcinphthalein-anhydrid (v. P.). Beim Kochen mit mäßig konzentrierter Alkalilauge tritt Spaltung in Resorcin und 2-Benzoyl-benzoesäure ein (v. P.).

Benzolresorcinphthalein-diacetat $C_{24}H_{18}O_6 = C_6H_4 \underbrace{C(C_6H_5)[C_6H_3(O\cdot CO\cdot CH_3)_2]}{C(C_6H_5)[C_6H_3(O\cdot CO\cdot CH_3)_2]}O$.

B. Durch Kochen von 1 Tl. Benzolresorcinphthalein mit 2—3 Tln. Essigsäureanhydrid (v. Pechmann, B. 14, 1861). — Prismen (aus Alkohol). F: 137°.

Benzolresorcinphthalein-anhydrid $C_{40}H_{26}O_7=\{(HO)C_{20}H_{12}O_2\}_2O$. B. Durch Kochen einer essigsauren Lösung von Benzolresorcinphthalein mit konz. Schwefelsäure oder eines Gemisches von 2-Benzoyl-benzoesäure und Resorcin mit Eisessig und konz. Schwefelsäure (v. P., B. 14, 1862). — Farblose Nadeln. F: 285 6 (Bräunung). Unlöslich in den gewöhnlichen Lösungsmitteln, leicht löslich in heißem Nitrobenzol. Langsam löslich in Alkalien unter Übergang in Benzolresorcinphthalein. Verhält sich gegen konz. Schwefelsäure und gegen überschüssiges Brom wie Benzolresorcinphthalein. Liefert mit Essigsäureanhydrid eine Diacetylverbindung.

Diacetylverbindung des Benzolresorcinphthalein-anhydrids $C_{44}H_{30}O_9 = C_{40}H_{24}O_5$ (O·CO·CH₃)₂. B. Beim Kochen von Benzolresorcinphthalein-anhydrid (s. o.) mit Essigsäure-anhydrid (v. P., B. 14, 1863). — Farblose Schuppen. F: 245°.

3-Phenyl-3-[3.5-dibrom-2.4-dioxy-phenyl]-phthalid, Lacton der 3'.5'-Dibrom-2'.4'. α -trioxy-triphenylmethan-carbonsäure-(2), Benzoldibromresorcinphthalein $G_{20}H_{12}O_4Br_2$, s. nebenstehende Formel. B. Durch Versetzen einer essigsauren Lösung von Benzolresorcinphthalein mit 2 Mol Brom (v. P., B. 14, 1861). — Farblose Krystalle (aus Alkohol). F: 219°.

3. 3-Oxo-1.1-bis-[4-oxy-phenyl]-phthalan, 3.3-Bis-[4-oxy-phenyl]-phthalid, Lacton der 4'.4''. α -Trioxy-triphenylmethan-carbonsäure-(2), Phenolphthalein $C_{20}H_{14}O_4$, s. nebenstehende Formel. Die vom Namen "Phenolphthalein" abgeleiteten Namen werden in diesem Handbuch nach nebenstehendem Schema beziffert (vgl. Thiel, Müller, B. 55 [1922], 1312).

B. Durch Erhitzen von Phthalsäureanhydrid mit Phenol auf HO. 15 OH 115—120° in Gegenwart von Zinntetrachlorid (Baeyer, A. 202, 68) oder von konz. Schwefelsäure (Baey., B. 4, 659; 9, 1230; A. 202, 69; vgl. Baey., A. 212, 349; R. Meyer, B. 24, 1416), im letzten Fall neben Fluoran (Syst. No. 2751). Durch Erwärmen von 3.3-Bis-[4-amino-phenyl]-phthalid (Syst. No. 2643) mit Kaliumnitrit in saurer Lösung (Baey., B. 12, 643; A. 202, 68). — Darst. Zu einer heiß bereiteten und auf 115° abgekühlten Lösung von 250 g Phthalsäureanhydrid in 200 g konz. Schwefelsäure setzt man 500 g geschmolzenes Phenol und erhitzt 10—12 Stunden auf 115—120°; die heiße Schmelze wird in kochendes Wasser gegossen und bis zum Verschwinden des Phenolgeruchs mit Wasser ausgekocht; der in Wasser unlösliche Rückstand wird mit warmer, sehr verdünnter Natronlauge ausgezogen, die Lösung mit Essigsäure gefällt und nach dem Zusatz einiger Tropfen Salzsäure 24 Stunden stehen gelassen; man kocht das abgeschiedene Rohprodukt mit absol. Alkohol unter Zusatz von Tierkohle, filtriert, engt das Filtrat ein, entfernt durch Zusatz

von Wasser harzige Beimengungen und erhitzt die milchige Flüssigkeit auf dem Wasserbad bis zur Abscheidung des Phenolphthaleins in krystallinischer Form (Barr., A. 202, 69, 70). Zur Reinigung von rohem Phenolphthalein mit Hilfe von Methylalkohol vgl. McCov, Am. 31, 507.

Farblose Krystalle. Rhombisch pyramidal (Orndorff, Barrett, Am. Soc. 46 [1924], 2485). F: 250—253° (Baryer, A. 202, 72), 254° (Acree, Slagle, Am. 42, 134). Läßt sich unter 15—18 mm Druck sublimieren (Scharwin, Kusnezow, B. 36, 2023). Leicht löslich in heißem Alkohol, etwas löslich in heißem Wasser (Bary., A. 202, 72). Die gesättigte wäßrige Lösung ist ca. 8·10⁻⁴ n (McCov, Am. 31, 511), 4·10⁻⁴ n (J. M. Kolthoff, Saure-Basen-Indicatoren [Berlin 1932], S. 190). Ist in Ather in amorphem Zustand leicht, in krystallisiertem Zustand schwer löslich (Bary., A. 202, 72). Brechungsvermögen der alkoh. Lösung: Anderlini, G. 25 II, 141, 142, 143. Absorptionsspektrum in konz. Schwefelsäure: K. H. Meyer, Hantzsch, B. 40, 3487. Absorptionsspektrum des Dinatriumsalzes in wäßr. Lösung: R. MEYER, MARX, B. 40, 3604; 41, 2448; WIELAND, B. 41, 3498; vgl. auch Bary., A. 854. 156, 157. Fluorescenzspektrum in alkoh. Lösung: STARK, R. MEYEE, Physikalische Zeitschr. 8, 251; C. 1907 I, 1526. Phenolphthalein reagiert als sehr schwache (BAEY., A. 202, 73) zweibasische Säure (Wegscheider, Z. El. Ch. 14, 510; Euler, af Ugglas, C. 1909 II, 1187; Ph. Ch. 68, 508; R. MEYER, SPENGLER, B. 38, 1321; ACREE, SLAGLE, Am. 42, 135). Messungen zur Bestimmung der Acidität: Hildebrand, Z. El. Ch. 14, 351; Weg., Z. El. Ch. 14, 510; vgl. THIEL, Der Stand der Indicatorenfrage, Ahrenssche Sammlung chemischer und chemischtechnischer Vorträge, Bd. XVI [1911], S. 332; Kolthoff, Säure-Basen-Indicatoren [Berlin 1932], S. 227. Phenolphthalein ist leicht löslich in Alkalilaugen und Alkalicarbonatlösungen; die Lösungen sind in konz. Zustand in dicker Schicht rot, in dünner violett (BAEY., A. 202, 73). Löslich in Ammoniak, Kalkwasser und Barytwasser mit violetter Farbe (BAEY., A. 202, 73, 74). Zur Konstitution der in der alkal. Lösung des Phenolphthaleins vorhandenen farbigen Salze [Deutung als Salze der 4"-Oxy-fuchson-carbonsaure-(2") O:C_eH₄:C(C_eH₄·OH)·C_eH₄·CO₂H] vgl.: Bernthsen, Ch. Z. 16, 1957; Dehnst, Ch. Z. 17, 654; Friedländer, B. 26, 174; FRIEDL., STANGE, B. 26, 2258; R. MEYER, Jahrbuch der Chemie 1899, 402; GREEN, Zischr. f. Farben- u. Textilchemie 1, 413; C. 1902 II, 683; STEGLITZ, Am. Soc. 25, 1112; GB., PERKIN, Chem. N. 89, 141; Soc. 85, 400; McCoy, Am. 31, 517; GB., KING, B. 39, 2365; 40, 3728; Journ. Soc. chem. Ind. 27, 4; BAEY., A. 354, 157; K. H. MEYER, HANTZSCH. B. 40, 3480; R. MEYER, MARK, B. 40, 3605; 41, 2451; GB., Chem. N. 98, 253; 99, 311; Journ. Soc. chem. Ind. 28, 638; C. 1909 I, 1874; 1909 II, 1455; ACREE, Am. 39, 528, 649; STIEGLITZ, Am. 39, 651; ACREE, SLAGLE, Am. 39, 789; 42, 119; vgl. ferner Thiel, Der Stand der Indicatorenfrage, S. 405; Kolthoff, l. c. S. 222, 226. Zur Kenntnis farbiger zweibasischer Alkalisalze vgl. R. Meyer, Spengler, B. 38, 1320, 1326; R. Meyer, Marx, B. 41, 2446; Fleig, C. 1909 II, 363\(^1\). Die alkal. Lösung von Phenolphthalein wird durch starke Säuren sofort entfärbt (Baey, A. 202, 73). Phenolphthalein wurde zuerst von Luck, Fr. 16, 333 als Indicator in der Maßanaluse empfohlen. Das Ilmschlagsintervall liegt bei Fr. 16, 333 als Indicator in der Maßanalyse empfohlen. Das Umschlagsintervall liegt bei $p_H=8,3-10,0$ (Sörensen, Bio. Z. 21, 254), 8,0-9,8 (Kolthoff, l.c., S. 119). Empfindlichkeit als Indicator: Friedenthal, Z. El. Ch. 10, 116; Salessky, Z. El. Ch. 10, 206; Fels, Z. El. Ch. 10, 212; Salm, Z. El. Ch. 10, 344; Scholtz, Z. El. Ch. 10, 549; McCoy, Am. 31, 512; Neenst, B. 42, 3178; Handa, B. 42, 3179; vgl. Sörensen, Bio. Z. 21, 248. Die alkal. Lösungen von Phenolphthalein werden durch überschüssige Alkalilauge entfärbt (BARY., A. 202, 73). Deutung dieses Vorgangs als Bildung von Salzen der 4'.4"-Dioxy-triphenylcarbinolcarbonsaure-(2): Baby., A. 202, 73; Green, Zischr. f. Farben- u. Textilchemie 1, 413; C. 1902 II, 683; Gr., Per., Chem. N. 89, 141; Soc. 85, 400; McCoy, Am. 31, 518; R. Meyer, SPENGLER, B. 38, 1324; GB., KING, Journ. Soc. chem. Ind. 27, 4; K. H. MEYER, HANTZSCH, B. 40, 3481; ACREE, Am. 39, 528. Verhalten überalkalisierter Lösungen des Phenolphthaleins beim Erwärmen, beim Verdünnen mit Wasser oder beim Zusatz von Säuren: BAEY., A. 202, 73; GR., Ztschr. f. Farben- u. Textilchemie 1, 413; GR., PERKIN, Chem. N. 89, 141; Soc. 85, 399; McCoy, Am. 31, 520; Winther, Ph. Ch. 56, 728; Margosches, Z. Ang. 20, 181, 226. Über das Verblassen der Farbe alkalischer oder ammoniakalischer Phenolphthaleinlösungen bei tiefen Temperaturen vgl.: Piotet, C.r. 115, 816; Nichols, Meritt, C. 1904 I, 1426; Euler, AF UGGLAS, Ph. Ch. 68, 509. Anderung der Farbe alkalischer oder ammoniakalischer Phenolphthaleinlösungen unter dem Einfluß von Lösungsmitteln wie Methylalkohol, Äthylalkohol, Ather, Aceton: Menschutkin, B. 16, 319; Waddell, Chem. N. 77, 131; Hibsch, B. 35, 2874; Schmatolla, B. 35, 3905; R. Meyer, Spengler, B. 36, 2951; McCoy, Am. 31, 508; SCHOLTZ, Z. El. Ch. 10, 551; R. COHN, Z. Ang. 19, 1389; HILDEBRAND, Z. El. Ch. 14, 352; Am. Soc. 80, 1914; EULER, AF UGGLAS, Ph. Ch. 68, 510; ORNDORFF, BLACK, Am. 41, 364. Einfluß

¹⁾ Vgl. hierzu die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von R. MEYEE, POSNEE, B. 44, 1955; KOBEB, MARSHALL, Am. Soc. 38, 63; BASSETT, HALTON, Soc. 123, 1294; BASSETT, BAGNALL, Soc. 125, 1366; Underwood, BARKER, Am. Soc. 52, 4083.

von Neutralsalzen auf die Farbe alkalischer oder ammoniakalischer Phenolphthaleinlösungen: KÜSTER, Z. a. Ch. 13, 144; van Cleeff, R. 20, 198; Schmatcha, B. 35, 3905; v. Szyszkowski, Ph. Ch. 58, 423; Michaells, Rona, Z. El. Ch. 14, 253. Verhalten der roten Lösung in Alkalicarbonat in Gegenwart von Dicarbonat: KÜSTER, Z. a. Ch. 13, 141; GIRAUD, Bl. [3] 29, 594. Phenolphthalein löst sich bei längerem Kochen in Borarlösung (Classen, Löß, B. 28, 1604). Phenolphthalein löst sich leicht in kalter konzentrierter Schwefelsäure mit gelbroter Farbe und wird aus dieser Lösung durch Wasser unverändert gefällt (BAEY., A. 202, 72, 77). Addiert bei —30° unter Rotfärbung ca. 1—2 Mol Chlorwasserstoff, der beim Erwärmen oder Zersetzen mit Wasser unter Rückbildung von Phenolphthalein abgespalten wird (K. H. MEYER, HANTZSCH, B. 40, 3479, 3482).

Phenolphthalein liefert durch Kochen mit Zinkstaub und Alkalilauge 4'.4"-Dioxytriphenylmethan-carbonsaure-(2) (Phenolphthalin) (BAEYER, B. 4, 659; 9, 1233; A. 202, 80). Bei der Einw. von Brom in Eisessig auf eine siedende alkoholische Lösung von Phenolphthalein entsteht 3'.5'.3".5"-Tetrabrom-phenolphthalein (S. 149) (BAEY., B. 9, 1231; A. 202, 78). Jod gibt mit Phenolphthalein unter verschiedenen Reaktionsbedingungen 3'.5'.3".5"-Tetrajod-phenolphthalein (S. 151) (Classen, Löb, B. 28, 1603; Cl., D. R. P. 85930, 86069, 88390; Frdl. 4, 1090, 1093, 1094; Kalle & Co., D. R. P. 143596; Frdl. 7, 631; C. 1903 II, 403). Durch Behandeln von Phenolphthalein mit 2 Mol Salpetersäure in Gegenwart von Eisessig unterhalb 10° (HALL, Chem. N. 67, 93) oder durch tropfenweisen Zusatz von Salpetersäure (D: 1,45) zu einer wäßrig alkoholischen Lösung von Phenolphthalein (ERRERA, BERTE, G. 26 I, 265) oder durch Einw. von 2 Mol Salpetersäure (D: 1,48) in konz. Schwefelsäure auf Phenolphthalein bei Gegenwart von Eisessig (Clayton Aniline Co., D. R. P. 52211; Frdl. 2, 90; GATTERMANN, B. 32, 1131) erhält man 3',3''-Dinitrophenolphthalein (S. 152) (Thiel, Diehl, Sitzungsber. d. Ges. zur Beförderung der gesamten Naturwissenschaften zu Marburg 62 [1927], 538; C. 1927 II, 2672; Greenbaum, American Journ. of Pharmacy 100 [1928], 378; C. 1928 II, 985). Beim Nitrieren von Phenolphthalein mit 4 Mol Salpetersäure in Gegenwart von konz. Schwefelsäure erhält man 3'.5'.3".5". Tetranitro-phenolphthalein (S. 152) (Clayton Aniline Co., D. R. P. 52211; Hall; vgl. Thiel, DIRHL). Durch Erhitzen von Phenolphthalein mit Phosphorpentachlorid auf 120-1256 wird 3.3-Bis-[4-chlor-phenyl]-phthalid (Bd. XVII, S. 392) gebildet (BAEY., B. 9, 1232; 12, 645; A. 202, 75). Durch Erhitzen mit Schwefel und Schwefelalkali auf 280-300° entsteht ein direkt färbender Baumwollfarbstoff (Soc. franç. de couleurs d'aniline de Pantin, D.R.P. 114268; Frdl. 6, 710; C. 1900 II, 931). Beim Erhitzen mit konz. Schwefelsäure auf 100° entsteht eine (nicht näher beschriebene) Sulfonsäure; bei weiterem Erhitzen auf ca. 200° erhält man 1-Oxy-anthrachinon und 2-Oxy-anthrachinon (BAEY., A. 202, 73, 77, 135; vgl. BAEY., CARO, B. 7, 969). Phenolphthalein zerfällt beim Schmelzen mit Atzkali in 4.4'-Dioxy-benzophenon und Benzoesäure (BAEY., BURKHARDT, B. 11, 1299; A. 202, 126; BAEY., B. 12, 645; ŽINCKE, BIRSCHEL, A. 362, 226 Anm. 7). Nach Baeyer, Burkhardt, B. 11, 1298; A. 202, 112 entsteht bei 3-stündigem Erhitzen von Phenolphthalein mit der 10-fachen Menge wäßrigem Ammoniak auf 160-170° das Imid des 3.3-Bis-[4-oxy-phenyl]-phthalimidins C_8H_4 C(:NH) NH (Syst. No. 3240); nach H. MEYER, M. 20, 358 (vgl. auch Errera, Gasparini, G. 24 I, 75; Oddo, Vassallo, G. 42 II [1912], 208, 209, 226, 229; Od., G. 43 II [1913], 176; Od., Curti, G. 54 [1924], 580) bildet sich durch Einw. von Ammoniak sowohl bei gewöhnlicher Temperatur wie auch unter Druck bei 1700 in wäßriger oder alkoholischer -C(:NH)-- CO -Lösung 3.3-Bis-[4-oxy-phenyl]-phthalimidin C_6H_4 $C(C_6H_4$ $OH)_2$ NH (Syst. No. 3240). Durch kurzes Erwärmen einer alkal. Lösung von Phenolphthalein mit salzsaurem Hydroxyl-- CO amin entsteht 2-Oxy-3.3-bis-[4-oxy-phenyl]-phthalimidin C_0H_4 $O(C_0H_4$ $OH)_2$ OH (Syst. No. 3240) (FRIEDLENDER, B. 26, 174; vgl. Orndorff, Murray, Am. Soc. 39 [1917], 689; Orn., Yang, Am. Soc. 45 [1923], 1926). Leitet man in eine mit 100% jeer Schwefelsäure versetzte Lösung von Phenolphthalein in Methylalkohol unter Erwärmen auf dem Wasserbad Chlorwasserstoff ein und läßt die Lösung in eiskaltes Ammoniak eintropfen, so erhält man 4"-Oxy-fuchson-carbonsaure-(2')-methylester (chinoiden Phenolphthalein-monomethylather, Bd. X, S. 982) (Green, King, B. 40, 3726). Dieselbe Verbindung läßt sich auch durch Kochen von Phenolphthalein mit Dimethylsulfat erhalten (K. H. MEYER, HANTZSCH, B. 40, 3484). Durch Kochen einer wäßr. Lösung des Dinatriumsalzes des Phenolphthaleins mit Methyljodid und Methylalkohol am Rückflußkühler entstehen lactoider Phenolphthalein-monomethyläther (S. 146) und lactoider Phenolphthalein-dimethyläther (S. 146) (R. Meyer, Speng-LER, B. 38, 1328; vgl. Gr., K., B. 40, 3729). Kocht man dagegen Phenolphthalein mit überschüssigem Methyljodid und überschüssiger wäßriger oder methylalkoholischer Natronlauge bezw. Natriummethylatlösung am Rückflußkühler, so erhält man nur den lactoiden Dimethyläther des Phenolphthaleins (R. MEYER, SPEN., B. 38, 1327, 1328; vgl. HERZIG, H. MEYER,

BEILSTEINS Handbuch. 4. Aufl. XVIII.

M. 17, 430; BAEY., A. 202, 75; GBANDE, G. 26 I, 225). Dieser entsteht auch bei der Umsetzung von Phenolphthalein mit Diazomethan in Äther (Her., Pollak, M. 23, 710). Durch Erhitzen des trocknen Dikaliumsalzes des Phenolphthaleins mit überschüssigem Äthylbromid in trocknem Benzol im geschlossenen Rohr auf 100° entsteht der chinoide Phenolphthalein-diäthyläther (Bd. X, S. 983); arbeitet man statt in Benzol in alkoh. Lösung, so erhält man den lactoiden Phenolphthalein-diäthyläther (S. 147) (R. Meyer, Marx, B. 40, 3603; 41, 2446; vgl. Nietzki, Burckhardt, B. 30, 175). Dieser entsteht ferner beim Kochen von Phenolphthalein mit Äthyljodid und alkoh. Kali (R. Meyer, Marx, B. 41, 2447) bezw. Natriumäthylatlösung (Haller, Guyot, C. r. 120, 298). Phenolphthalein spaltet bei längerem Erhitzen mit Resorcin auf 180—200° Phenol ab und geht in Fluorescein (Syst. No. 2835) über (R. Meyer, Protenhauer, B. 38, 3961). Durch Erhitzen von Phenolphthalein mit überschüssigem Essigsäureanhydrid bildet sich Phenolphthalein-diacetat (S. 147) (Baeyer, B. 9, 1232; A. 202, 74, 75). Mit Benzoylchlorid und Kalilauge entsteht Phenolphthalein mit Anilin und salzsaurem Anilin bildet sich 2-Phenyl-3.3-bis-[4-oxy-phenyl]-phthalimidin (Syst. No. 3240) (Albert, B. 26, 3077).

Phenolphthalein besitzt abführende Wirkung (Fleig, C. r. 148, 367; C. 1908 II, 1374; vgl. Fränkel, Die Arzneimittel-Synthese, 5. Aufl. [Berlin 1921], S. 743). Verhalten im tierischen Organismus: Kastle, C. 1908 I, 1559; Fleig, C. 1909 I, 929. — Zur Prüfung

auf Reinheit vgl. Deutsches Arzneibuch, 6. Ausgabe [Berlin 1926], S. 525.

Verbindung mit Perchlorsäure $C_{20}H_{14}O_4 + HclO_4 + H_2O$. B. Durch 2-tägiges Aufbewahren von Phenolphthalein mit 71% jeger wäßriger Perchlorsäure bei +10% (K. A. Hofmann, Kirmeuther, B. 42, 4862). Rhombenförmige, im durchfallenden Licht rubinrot, im auffallenden Licht hellblau glänzende Krystalle. Wird durch Wasser sofort in die Komponenten gespalten; auch absol. Alkohol, Eisessig, Essigester und absol. Äther geben fast farblose Lösungen. — Na₂C₂₀H₁₂O₄¹). B. Durch Behandeln von überschüssigem Phenolphthalein mit Natronlauge und Eindampfen der filtrierten Flüssigkeit (R. Meyer, Marx, B. 41, 2446; vgl. R. Mey., Spengler, B. 38, 1320, 1326; Fleig, C. 1909 II, 363). Fast schwarze, metallisch glänzende Masse oder dunkelgranatrotes Pulver. Zersetzt sich bei 300% (Maquennescher Block) (Fl.). Löslich in Wasser und Alkohol mit roter Farbe, unlöslich in äther, Chloroform, Aceton und Benzol (Fl.). — K₂C₂₀H₁₂O₄¹). B. analog der des Natriumsalzes. Tiefrote hygroskopische Masse; in Wasser mit roter Farbe löslich (R. Mey., Marx, B. 41, 2446). — C₂₀H₁₄O₄ + AlCl₃. B. Aus Phenolphthalein und der berechneten Menge Aluminiumchlorid in Nitrobenzol beim Eingießen in viel Schwefelkohlenstoff (K. H. Meyer, Hantzsch, B. 40, 3483). Zinnoberrotes Pulver, das beim Erhitzen verkohlt, ohne zu schmelzen. — C₂₀H₁₄O₄ + SnCl₄ + C₆H₅ NO₂. B. analog der vorhergehenden Verbindung (K. H. Meyer, Hantzsch, B. 40, 3483). Rotes, sehr hygroskopisches Pulver. F: 78—79%. Verliert beim Erwärmen im Vakuum allmählich das Nitrobenzol. — Verbindung mit Methylamin C₂₀H₁₄O₄ + 2CH₅N. Farblose Masse. Löslich in Wasser mit roter Farbe (Gibbs, Am. Soc. 28, 1405).

Funktionelle Derivate des Phenolphthaleins.

Lactoider Phenolphthalein - monomethyläther $C_{21}H_{16}O_4 =$

C₀H₄·C(C₆H₄·OH)(C₆H₄·O·CH₃) O. B. Beim Kochen einer wäßr. Lösung des Dinatriumsalzes des Phenolphthaleins mit Methyljodid und Methylalkohol am Rückflußkühler, neben dem lactoiden Phenolphthalein-dimethyläther (R. Meyer, Spengler, B. 38, 1328). — Farblose Nadeln (aus Benzol, Benzol + Äther oder aus Xylol). Schmilzt bei 148—149°, erstarrt nach dem Schmelzen glasartig und schmilzt dann bei 80° (Green, King, B. 40, 3729). Löst sich in wenig Natronlauge mit gelber Farbe; durch Zusatz von mehr Natronlauge wird die Lösung farblos (Thiel, Diehl, Sitzungsber. d. Ges. zur Beförderung der gesamten Naturwissenschaften zu Marburg 62 [1927], 478, 510, 542; C. 1927 II, 2870; vgl. G., K.; Acree, Am. 39, 532). Löslich in konz. Schwefelsäure mit rotgelber Farbe (R. M., Sr.). — Färbt sich bei Bingerem Erhitzen auf ca. 100° rot und wird beim Abkühlen wieder farblos (R. M., Sr.). Liefert beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung in Gegenwart von 100°/ojer Schwefelsäure auf dem Wasserbad und Eingießen der Lösung in eiskaltes Ammoniak chinoiden Phenolphthalein-dimethyläther (Bd. X, S. 982) (G., K.).

Chinoider Phenolphthalein - monomethyläther $C_{21}H_{16}O_4=O:C_6H_4:C(C_6H_4\cdot OH)\cdot C_6H_4\cdot CO_3\cdot CH_3$ s. Bd. X, S. 982.

Lactoider Phenolphthalein-dimethyläther, $C_{12}H_{18}O_4 = C_6H_4$ $C(C_6H_4 \cdot O \cdot CH_9)_8$ O. B. Aus Phthalsäureanhydrid und Anisol in Gegenwart von Aluminiumchlorid, neben 2-Anisoylbenzoesäure (Grande, G. 26 I, 223; vgl. H. Meyer, Turnau, M. 30, 486). Beim Kochen

¹⁾ Vgl. die Fußnote auf S. 144.

von Phenolphthalein mit Methyljodid in wäßriger oder methylalkoholischer Natronlauge bezw. methylalkoholischer Natriummethylatlösung am Rückflußkühler (R. Meyer, Spengler, B. 38, 1327, 1328; vgl. Gra.; Herzig, H. Meyer, M. 17, 430; Baeyer, A. 202, 75). Neben dem lactoiden Phenolphthalein-monomethyläther beim Kochen einer wäßr. Lösung des Dinatriumsalzes des Phenolphthaleins mit Methyljodid und Methylalkohol am Rückflußkühler (R. Meyer, Sp.). Aus Phenolphthalein und Diazomethan in Ather (Her., Pollar, M. 23, 710). — Farblose Blättchen (aus Alkohol). F: 97—99° (Her., H. Meyer), 100° (R. Meyer, Sp.), 101—102° (Gra.). Unlöslich in Wasser, wenig löslich in Chloroform, Schwefelkohlenstoff und kaltem Alkohol, leichter in warmem Alkohol (Gra.). Absorptionsspektrum in konz. Schwefelsäure: K. H. Meyer, Hantzsch, B. 40, 3487. Löst sich in konz. Schwefelsäure mit roter Farbe und wird aus dieser Lösung beim Verdünnen mit Wasser unverändert gefällt (Her., H. Meyer, Gra.). Addiert bei —30° ca. 1—2 Mol Chlorwasserstoff, der beim Erwärmen oder Zersetzen mit Wasser vollständig abgespalten wird (M., Ha.). Löst sich etwas in warmer verdünnter Kalilauge; beim Erwärmen mit 30°/0; ger wäßriger oder mit konzentrierter alkoholischer Kalilauge auf dem Wasserbad entsteht das Kaliumsalz der 4'.4''-Dimethoxy-triphenylcarbinol-carbonsäure-(2) (Gra.). Durch Reduktion mit Zinkstaub in Alkali wird 4'.4''-Dimethoxy-triphenylmethan-carbonsäure-(2) (Bd. X, S. 455) erhalten (Her., H. Meyer; vgl. Gra.). Durch Einleiten von Chlorwasserstoff in die methylalkoholische Lösung in Gegenwart von 100°/0 gier Schwefelsäure entsteht das methylschwefelsaure Salz des chinoiden Phenolphthalein-dimethyläthers (Bd. X, S. 982) (Green, King, B. 40, 3731). — C22 H18 O4 + AlCl2. Zinnoberrotes Pulver, das beim Erhitzen verkohlt (M., Ha.). — C22 H18 O4 + SnCl4. Rote Krystalle mit grünem Oberflächenschimmer; F: 128—129°; löslich in Chloroform mit roter, in Alkohol mit orangegelber Farbe (M., Ha.).

Chinoider Phenolphthalein - dimethyläther $C_{22}H_{18}O_4 = O:C_6H_4:C(C_0H_4\cdot O\cdot CH_3)\cdot C_6H_4\cdot CO_2\cdot CH_3$ s. Bd. X, S. 982.

Lactoider Phenolphthalein - monoäthyläther $C_{22}H_{18}O_4 =$

C₆H₄ C(C₆H₄·OH)(C₆H₄·O·C₂H₅) O. B. Durch Erhitzen von 2-[4-Äthoxy-benzoyl]-benzoesäure (Bd. X, S. 970) mit Phenol in Gegenwart von Aluminiumchlorid auf 136—140° (GRANDE, Annali di chimica e di farmacol. [4] 14, 331; J. 1891, 1546). — Nicht rein erhalten. Farblose Krystalle. Erweicht gegen 70° und schmilzt bei 85°. Leicht löslich in Alkohol, Äther und Chloroform. Löslich in konz. Schwefelsäure mit roter Farbe.

Lactoider Phenolphthalein-diäthyläther $C_{24}H_{22}O_4 = C_6H_4 \cdot C(C_6H_4 \cdot O \cdot C_2H_6)_2 \cdot O$.

B. Aus Phthalylchlorid und Phenetol in Gegenwart von Aluminiumchlorid (Haller, Guyot, C. r. 120, 297). Durch Erhitzen des Dikaliumsalzes des Phenolphthaleins mit Äthylbromid in alkoh. Lösung (R. Meyer, Marx, B. 41, 2446; vgl. Nietzki, Burckhardt, B. 30, 175). Durch Kochen von Phenolphthalein mit Äthyljodid und alkoh. Kali (R. Meyer, Marx, B. 41, 2447) bezw. Natriumäthylatlösung (H., G.) am Rückflußkühler. Beim Umkrystallisieren des chinoiden Phenolphthalein-diäthyläthers (Bd. X, S. 983) aus Alkohol oder Benzin (R. Meyer, Marx, B. 40, 3604; 41, 2446). — Farblose Blättchen (aus Alkohol). F: 118—120° (R. Meyer, Marx), 122° (H., G.). Leicht löslich in Benzol, schwerer in Alkohol und Äther (H., G.). Löst sich in konz. Schwefelsäure mit roter Farbe und wird durch Wasser wieder unverändert ausgefällt (H., G.).

Chinoider Phenolphthalein-diäthyläther $C_{24}H_{22}O_4=O:C_6H_4:C(C_6H_4\cdot O\cdot C_2H_5)\cdot C_6H_4\cdot CO_2\cdot C_2H_5$ s. Bd. X, S. 983.

Phenolphthalein-dibenzyläther $C_{24}H_{26}O_4 = C_6H_4 \underbrace{C(C_6H_4 \cdot O \cdot CH_2 \cdot C_6H_5)_2}O$. B. Durch Erhitzen von Phenolphthalein mit alkoh. Natriumäthylatlösung und Benzylchlorid am Rückflußkühler (Haller, Guyot, C. r. 116, 481). — Farblose (Ha., G., C. r. 116, 660; 120, 297 Anm.) Blättchen. F: 149° (Herzig, H. Meyer, M. 17, 433), 150°; leicht löslich in Benzol, schwer in Alkohol und Äther (Ha., G., C. r. 116, 481). Unlöslich in Alkalien (H. Meyer, M. 20, 337).

Phenolphthalein-diacetat $C_{24}H_{18}O_6 = C_6H_4 C(C_6H_4 \cdot O \cdot CO \cdot CH_3)_2 O$. B. Beim Erhitzen von Phenolphthalein mit Essigsäureanhydrid (BAEYER, B. 9, 1232; A. 202, 74, 75). — Farblose Tafeln (aus Methylalkohol). Tetragonal trapezoedrisch (BoDEWIG, Z.Kr. 1, 72; vgl. Groth, Ch. Kr. 5, 301). Die Krystalle zeigen Circularpolarisation ($\alpha_0 = \pm 19,7^\circ$ für 1 mm Plattendicke) (Bo.). F: 143° (BAEY.). — Wird durch Lösen in Schwefelsäure in Phenolphthalein und Essigsäure gespalten (BAEY.).

Phenolphthalein-diisovalerianat $C_{20}H_{30}O_6 =$

 C_6H_4 $C[C_6H_4 \cdot 0 \cdot CO \cdot CH_5 \cdot CH(CH_3)_3]_2$ O. B. Aus Phenolphthalein durch Behandeln mit Isovaleriansäure und Phosgen in Gegenwart von Pyridin, durch Erhitzen mit Isovaleriansäure-

anhydrid oder mit einem Ester der Isovaleriansäure in Gegenwart von etwas Ätznatron auf 200° oder durch Einw. von Isovalerylchlorid oder -bromid in der Wärme oder in Gegenwart von Pyridin oder Alkalien (Knoll & Co., D. R. P. 212892; C. 1909 II, 945). — Krystalle (aus Alkohol). F: 110°. Leicht löslich in Benzol und Chloroform. Unlöslich in Natronlauge: beim Erwärmen mit Natronlauge tritt Zersetzung unter Rotfärbung ein.

Phenolphthalein-dibenzoat $C_{84}H_{12}O_6 = C_8H_4 \cdot C(C_8H_4 \cdot O \cdot CO \cdot C_8H_5)_2 = O$. B. Durch Einw. von Benzoylchlorid auf Phenolphthalein in überschüssigem Alkali (BISTRZYCKI, NENCKI, B. 29, 132). — Farblose Prismen mit Krystallbenzol (aus Benzol + Ligroin). Verwittert im Vakuum oder beim Trocknen bei erhöhter Temperatur. Schmilzt benzolfrei bei 169°. Leicht löslich in Aceton, Benzol und heißem Eisessig, schwer in heißem Alkohol, fast unlöslich in Ligroin. Unlöslich in verd. Kalilauge.

– CO -Phenolphthalein - dicinnamat $C_{38}H_{26}O_6 = C_6H_4 C(C_6H_4 \cdot O \cdot CO \cdot CH \cdot CH \cdot C_6H_5)_5 O$.

B. Durch Erhitzen von Phenolphthalein mit Zimtsäure, Phosphoroxychlorid und Benzol auf dem Wasserbad (Knoll & Co., D. R. P. 212892, 216799; C. 1909 II, 945; 1910 I, 311). Krystalle (aus Eisessig, Benzol oder Aceton). F: ca. 181º.

Phenolphthalein-bis-phenylcarbamat, Dicarbanilsäureester des Phenolphtha--CO leins $C_{24}H_{24}O_6N_3 = C_6H_4 \underbrace{C(C_6H_4 \cdot O \cdot CO \cdot NH \cdot C_6H_5)_2}O$. B. Durch Erhitzen von Phenolphthalein mit Phenylisocyanat auf 130° (HALLER, GUYOT, C. r. 116, 480). — Farblose Nadeln (aus Benzol). F: 135°. — Wird durch Alkalien in Phenolphthalein und N.N'-Diphenyl-harnstoff zersetzt.

-CO-Phenolphthalein-disalicylat $C_{34}H_{22}O_8 = C_6H_4 \underbrace{C(C_6H_4 \cdot O \cdot CO \cdot C_6H_4 \cdot OH)_2}O$. B. Durch Erwärmen von Phenolphthalein mit Salicylsäure, Phosphoroxychlorid und Benzol auf dem Wasserbad (KNOLL & Co., D. R. P. 212892; C. 1909 II, 945). — Krystalle (aus Eisessig). F: 195—198°. Leicht löslich in Aceton, Benzol und Chloroform, sehr wenig in Alkohol, Ather und Ligroin.

--CO-Phenolphthalein-dibenzolsulfonat $C_{33}H_{23}O_8S_2 = C_6H_4 \underbrace{C(C_6H_4 \cdot O \cdot SO_2 \cdot C_6H_5)_2}O$. B. Durch Einw. von Benzolsulfochlorid auf Phenolphthalein in schwach alkalischer Lösung (Georgesco, Bulet. 8, 671; C. 1900 I, 543). — Farblose Krystalle (aus Alkohol). F: 112° bis 113°. Schwer löslich in Alkohol. Unlöslich in Alkalien.

Phenolphthalein-oxim $C_{20}H_{15}O_4N = C_6H_4 < C(C_6H_4 \cdot OH)_2 > 0$, sein 4'.4"-Dimethyläther, Triäthyläther und Tribensyläther. Vgl. hierzu 2-Oxy-3.3-bis-[4-oxy-phenyl]-phthalimidin $C_6H_4 < CO > N_4 \cdot OH > N_5 \cdot OH > N_6 \cdot$ [4-oxy-phenyl]-phthalimidin $C_0H_0 \longrightarrow C(C_0H_0 \longrightarrow N \rightarrow OH)$ und seine Äther, Syst. No. 3240.

Phenolphthalein-diacetat-oximacetat $C_mH_{11}O_2N=$

C₆H₄ C(C₆H₄·O·CO·CH₂) O. Die von R. MEYER, KISSIN, B. 42, 2832 unter dieser Formel beschriebene Verbindung C₅₆H₅₁O₇N ist nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von Örndorff, Yang, Am. Soc. 45, 1927 als 3-Acetoxy-2.3-bis-[4-acet--CO- $\text{oxy-phenyl]-phthalimidin} \quad C_6H_4 - C(C_0H_4 \cdot O \cdot CO \cdot CH_3) / O \cdot CO \cdot CH_3) \sim N \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3 \quad \text{ergential}$ kannt worden und dementsprechend Syst. No. 3240 abgehandelt.

Phenolphthalein-dibenzoat-oximbenzoat $C_{41}H_{27}O_7N =$

C₆H₄ C(C₆H₄·O·CO·C₆H₅) O. Die von R. MEYER, KISSIN, B. 42, 2832 unter dieser Formel beschriebene Verbindung C₄H₂₇O₇N vom Schmelzpunkt 175° konnte nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von Orndorff, Yang, Am. Soc. 45, 1930 nicht mehr erhalten werden.

Substitutionsprodukte des Phenolphthaleins.

4.5.6.7-Tetrachlor-8.8-bis-[4-oxy-phenyl]-phthalid, 4.5.6.7-Tetrachlor-phenolphthalein $C_{80}H_{10}O_4Cl_4 = C_6Cl_4 \underbrace{C(C_0H_4 \cdot OH)_3}O$. B. Durch Erhitzen von Tetrachlorphthalsaureanhydrid mit Phenol in Gegenwart von rauchender Schwefelsaure (15% Anhydridgehalt) auf 145—150°, neben 3'.4'.5'.6'-Tetrachlor-fluoran (Syst. No. 2751) (Orndorff, Black, Am. 41, 360). — Farblose Platten (aus Methylalkohol). Wahrscheinlich monoklin (Gill, Am. 41, 362). Schmilzt noch nicht bei 300°. Löslich in Alkohol, Aceton, Ather und Eisessig, schwer löslich in Chloroform, Benzol und Schwefelkohlenstoff, sehr wenig in heißem Wasser. Löst sich in kalter konzentrierter Schwefelsäure mit gelbroter Farbe und wird durch

Wasser wieder unverändert ausgefällt. Konzentrierte ätzalkalische und sodaalkalische Lösungen sind rot, in dünner Schicht purpurrot gefärbt; verdünnte alkalische Lösungen sind violettrot. Die violettroten alkalischen Lösungen werden durch Säuren sofort entfärbt. Verwendung als Indicator: O., B. Verdünnte alkalische Lösungen werden durch viel überschüssiges Alkali entfärbt. — Wirkt als mildes Purgativ.

Lactoider 4.5.6.7-Tetrachlor-phenolphthalein-monomethyläther $C_{21}H_{12}O_4Cl_4 = C_6Cl_4 C(C_6H_4 \cdot OH)(C_6H_4 \cdot O \cdot CH_3)$ O. B. Durch 3-stündiges Kochen einer Lösung von 9,1 g 4.5.6.7-Tetrachlor-phenolphthalein in absol. Methylalkohol mit einer Lösung von 0,92 g Natrium in absol. Methylalkohol und überschüssigem Methyljodid am Rückflußkühler (O., B., Am. 41, 377). — Farblose Krystalle (aus verd. Aceton). F: 295° (Zers.) (O., MURRAY, Am. Soc. 39 [1917], 689). Sehr leicht löslich in Benzol, Chloroform, Aceton und Essigsäure; löst sich in konz. Schwefelsäure mit gelbroter Farbe und wird durch Wasser wieder unverändert ausgefällt (O., B.). — Wird durch alkoh. Kalilauge nicht verseift (O., B.).

Lactoider 4.5.6.7 - Tetrachlor - phenolphthalein - dimethyläther $C_{12}H_{14}O_4Cl_4 = C_6Cl_4 C(C_6H_4\cdot 0\cdot CH_3)_2$ O. B. Man versetzt eine Lösung von 9,1 g 4.5.6.7-Tetrachlorphenolphthalein in absol. Methylalkohol mit einer absoluten methylalkoholischen Lösung von ca. 1 g Natrium und mit überschüssigem Methyljodid, kocht 120 Stunden unter Rückfluß und fügt in dem Maße, wie die Rotfärbung der Lösung verschwindet, weitere Mengen Natriummethylatlösung und Methyljodid hinzu, bis ein neuer Zusatz von Natriummethylat keine oder nur noch schwache Färbung hervorruft (O., B., Am. 41, 374). — Farblose Nadeln (aus Alkohol). Triklin (Gull, Am. 41, 375). F: 152—153°. Unlöslich in wäßr. Alkalilösungen, farblos löslich in konzentrierter alkoholischer Kalilauge; löst sich in konz. Schwefelsäure mit roter, in dünner Schicht purpurner Farbe und wird durch Wasser unverändert aus der Lösung gefällt.

4.5.6.7 - Tetrachlor - phenolphthalein - diacetat $C_{34}H_{14}O_{6}Cl_{4} = C_{6}Cl_{4} C(C_{6}H_{4}\cdot O\cdot CO\cdot CH_{3})_{2}O$. B. Durch 1-stündiges Kochen von 10 g 4.5.6.7-Tetrachlor-phenolphthalein mit 10 g frisch geschmolzenem Natriumacetat und 50 g Essigsäureanhydrid (O., B., Am. 41, 372). — Farblose Krystalle (aus absol. Alkohol). Monoklin (GILI, Am. 41, 373). F: 205—206°. Löslich in Benzol, Alkohol und Eisessig. — Wird durch wäßr. Alkalilauge in der Kälte langsam, durch alkoh. Alkalilauge schnell verseift.

Lactoider 3'.3"- Dibrom - phenolphthalein - dimethyläther $C_{22}H_{16}O_4Br_2 = C_6H_4-C(C_6H_3Br\cdot O\cdot CH_3)_2$ O. B. Beim Versetzen einer alkoh. Lösung des lactoiden Phenolphthalein-dimethyläthers mit einer essigsauren Lösung von Brom (Grande, G. 26 I, 230). Aus o-Brom-anisol und Phthalylchlorid in Gegenwart von Aluminiumchlorid (G., G. 27 II, 68). — Farblose Nadeln (aus Alkohol). F: 160—161° (G., G. 26 I, 230). 100 Tle. gesättigte Benzollösung enthalten bei 17° 16,4—17,2 Tle. Substanz (G., G. 27 II, 69). Leicht löslich in Äther, Schwefelköhlenstoff, Chloroform und Toluol, löslich in warmem Methylalkohol und Äthylalkohol; löst sich in konz. Schwefelsäure mit roter Farbe; unlöslich in verd. Kalilauge (G., G. 26 I, 231).

3.3-Bis-[3.5-dibrom-4-oxy-phenyl]-phthalid, 3'.5'.3".5"-Tetrabrom-phenol-phthalein C₂₀H₁₀O₄Br₄=C₆H₄C_{(C(c,H₁Br₃·OH)₈}O. B. Durch Eintragen einer Mischung von 10 Tln. Brom und 10 Tln. Eisessig in eine siedende Lösung von 5 Tln. Phenolphthalein in 20 Tln. Alkohol (Baever, B. 9, 1231; A. 202, 78).—Farblose Nadeln (aus Alkohol, Eisessig oder Äther). Schmilzt unter Zersetzung bei ca. 220—230° ¹) (Baev.). Sehr schwer löslich in Alkohol und Eisessig; in amorphem Zustand leicht löslich in Äther (Baev.). Absorptionsspektrum des Dinatriumsalzes in wäßr. Lösung: R. Meyer, Marx, B. 41, 2449. Löst sich in der berechneten Menge Alkalilauge mit violetter Farbe; die Lösung wird durch überschüssiges Alkali entfärbt (Baev.). Zeitlicher Verlauf dieser Entfärbung: K. H. Meyer, Hantzsch, B. 40, 3487.— Zur Konstitution der farbigen Salze vgl. die im Artikel Phenolphthalein auf S. 144 angeführte Literatur. Löst sich schwer in kalter konzentrierter Schwefelsäure mit hellroter Farbe und wird aus dieser Lösung durch Wasser unverändert ausgefällt (Baev.).— Gibt bei der Oxydation mit Salpetersäure oder Chromsäure in konz. Schwefelsäure 3.5.3'.5'-Tetrabrom-diphenochinon-(4.4') (Baev., Schraube, B. 11, 1301; Baev.;

¹⁾ Einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von Thiel, Diehl, Süzungaber. d. Ges. zur Beförderung der gesamten Naturwissenschaften su Marburg 62, 537; C. 1927 II, 2672 zufolge, besitzt 3'.5'.3".5"-Tetrabromphenolphthalein den Schmelzpunkt 293° (korr.).

BAEY., Privatmitteilung). Liefert beim Behandeln mit Zinkstaub und Natronlauge 3'.5'.3".5"-Tetrabrom-4'.4"-dioxy-triphenylmethan-carbonsäure-(2) (Tetrabrom-phenolphthalin) (BAEY.). Bei allmählichem Zusatz von Salpetersäure (D: 1,45) zu einer heißen alkoholischen Lösung von Tetrabromphenolphthalein wird 5'.5"-Dibrom-3'.3"-dinitrophenolphthalein (S. 152) erhalten (Errera, Berte, G. 26 I, 266). Beim Kochen von Tetrabromphenolphthalein mit der 10-fachen Menge konz. Schwefelsäure entsteht als Hauptprodukt 2.6-Dibrom-phenol neben etwas 1.3-Dibrom-2-oxy-anthrachinon; letzteres entsteht els Hauptprodukt bei 6—8-stdg. Erhitzen mit der 20-fachen Menge konz. Schwefelsäure auf 140—150° (Baey.). Durch 3-stdg. Erhitzen von Tetrabromphenolphthalein mit der 10-fachen Menge wäßr. Ammoniaks auf 160—180° erhielten Errera, Gasparini (G. 24 I, 77) 3.3-Bis-[3.5-dibrom-4-oxy-phenyl]-phthalimidin (Syst. No. 3240), BARYER, BURKHARDT (B. 11, 1298; A. 202, 114) dagegen das Imid des 3.3-Bis-[3.5-dibrom-4-oxy-phenyl]-phthal--C(:NH)imidins C₆H₄ C(C₆H₂Br₂·OH)₂ NH (Syst. No. 3240). Durch kurzes Erwärmen der alkal. Lösung von Tetrabromphenolphthalein mit salzsaurem Hydroxylamin auf dem Wasserbade bildet sich 2-Oxy-3.3-bis-[3.5-dibrom-4-oxy-phenyl]-phthalimidin neben wenig N-[3.5-Dibrom-4-oxy-phenyl]-phthalimid $C_6H_4 < {CO \atop CO} > N \cdot C_6H_4Br_2 \cdot OH$ (Syst. No. 3210); letztere Verbindung entsteht als Hauptprodukt bei Anwendung von überschüssigem salzsaurem Hydroxylamin (H. Meyer, M. 21, 263; vgl. Friedländer, Stange, B. 26, 2260). — Ag₂C₂₀H₈O₄Br₄. Hellblau; zersetzt sich bei 100°; ziemlich widerstandsfähig gegen Luft und Licht (R. Mry., MARX, B. 40, 1439).

Lactoider 3'.5'.3".5"-Tetrabrom-phenolphthalein-dimethyläther $C_{22}H_{14}O_4Br_4 =$ -co - C_6H_4 $C(C_6H_2Br_3 \cdot O \cdot CH_3)_2$ O. B. Durch Schütteln einer Lösung von 3'.5'.3''.5''-Tetrabrom-phenolphthalein in überschüssiger Kalilauge mit Dimethylsulfat (H. MEYER, B. 40, 2432). — Farblose Krystalle (aus Alkohol oder Eisessig). F: 205—206°. Schwer löslich in Alkoholen, leicht in heißem Eisessig.

Lactoider 8'.5'.3".5"-Tetrabrom-phenolphthalein-monoäthyläther $C_{11}H_{14}O_4Br_4 =$ - CO -C₆H₄ C(C₆H₂Br₃·OH)(C₆H₂Br₂·O·C₂H₅) O. B. Durch Kochen einer Lösung des chinoiden Tetrabromphenolphthalein-diäthyläthers (Bd. X, S. 983) in Alkohol mit wenig verd. Schwefelsäure (Nієтхкі, Викскнакот, В. 30, 178). — Farblose Nadeln (aus Chloroform). F: 237°. Löst sich in verd. Alkalilauge farblos.

Chinoider Tetrabromphenolphthalein-monoäthyläther $C_{22}H_{14}O_4Br_4=O:C_6H_2Br_2:C(C_6H_2Br_2\cdot OH)\cdot C_6H_4\cdot CO_2\cdot C_2H_5$ s. Bd. X, S. 983.

Lactoider 3'.5'.3".5"-Tetrabrom-phenolphthalein-diäthyläther $C_{24}H_{18}O_4Br_4=$ C₈H₄ C₁C₁C₂H₅D₂O. B. Aus 3'.5'.3".5"-Tetrabrom-phenolphthalein durch Einw. von Äthylbromid und Alkali (Nietzki, Burckhardt, B. 30, 179) oder von Diäthylsulfat und überschüssiger Kalilauge (H. Meyer, B. 40, 2432). Entsteht nach R. Meyer, Marx, B. 40, 1439, 1440; 41, 2447 aus dem chinoiden Tetrabromphenolphthalein-diäthyläther (Bd. X, S. 983) durch längeres Aufbewahren, durch Schmelzen, Lösen in verd. Alkohol oder Petroläther sowie beim Erwärmen mit verd. Schwefelsäure (vgl. dagegen N., B., B. 30, 472. H. Meyer, B. 40, 2431) — Farblose Nadeln, F. 475° (N., B.: R. Meyer, Marx). 178; H. MEYER, B. 40, 2431). — Farblose Nadeln. F: 175° (N., B.; R. MEY., MARX).

Chinoider Tetrabromphenolphthalein-diäthyläther $C_{24}H_{18}O_4Br_4 = 0:C_0H_2Br_2:$

 $C(C_0H_2Br_2\cdot O\cdot C_2H_5)\cdot C_0H_4\cdot CO_2\cdot C_2H_5$ s. Bd. X, S. 983.

Lactoides 8'.5'.3''.5''-Tetrabrom-phenolphthalein-äthyläther-acetat $C_{14}H_{16}O_{1}Br_{4}=$ -CO C_0H_0 $C(C_0H_2Br_2 \cdot O \cdot C_2H_5)(C_0H_2Br_2 \cdot O \cdot CO \cdot CH_3) > 0$. B. Durch Erhitzen des lactoiden 3'.5'.3''.5''-Tetrabrom-phenolphthalein-monoāthyläthers mit Essigsäureanhydrid (Nietzei, BURCKHARDT, B. 30, 178). — Farblose Nadeln mit Krystallessigsäure (aus Eisessig), die erst bei 140° entweicht. F: 110-111°.

3'.5'.3".5" - Tetrabrom - phenolphthalein - diacetat $C_{24}H_{14}O_8Br_4 =$ --CO-

 C_6H_4 $C(C_6H_2Br_2 \cdot O \cdot CO \cdot CH_2)_3$ O. B. Durch Kochen von 3'.5'.3''.5''-Tetrabrom-phenolphthalein mit Essigsäureanhydrid (BARYER, A. 202, 80). — Kugelige Aggregate (aus Alkohol). F: 134°. Destilliert bei vorsichtigem Erhitzen unzersetzt. — Wird durch Kochen mit Kali leicht verseift.

8'.5'.8".5" - Tetrabrom - phenolphthalein - oxim $C_{20}H_{11}O_4NBr_4 =$ $-\mathbf{C}(:\mathbf{N}\cdot\mathbf{OH})$ C_6H_4 $C(C_6H_4Br_3 \cdot OH)_2$ O. Vgl. hierzu 2-Oxy-3.3-bis-[3.5-dibrom-4-oxy-phenyl]-phthalimidin C₆H₄ C(C₆H₂Br₂·OH)₂ N·OH, Syst. No. 3240.

4.5.6.7-Tetrachlor-8.3-bis-[8.5-dibrom-4-oxy-phenyl]-phthalid, 4.5.6.7-Tetrachlor-3.5'.3".5"-tetrabrom-phenolphthalein C₂₀H₆O₄Cl₄Br₄=C₆Cl₄C(C₆H₂Br₂·OH)₈O.

B. Durch Einw. von Brom in Eisessig auf eine Lösung von 4.5.6.7-Tetrachlor-phenolphthalein in siedendem Alkohol (Orndorff, Black, Am. 41, 379). — Farblose Krystalle (aus Benzol). Triklin (Gill, Am. 41, 381). Schmilzt noch nicht bei 300°. Löslich in Alkohol und Benzol. Gibt mit konz. Schwefelsäure eine gelbrote Färbung. Löst sich in Alkalilaugen, Alkalicarbonatlösungen, Ammoniak und Barytwasser mit blauer Farbe. Zur Konstitution der farbigen Salze vgl. O., B. und die im Artikel Phenolphthalein auf S. 144 angeführte Literatur. Die alkal. Lösung wird durch Überschuß von Alkali entfärbt. — (NH₄)₂C₂₀H₄O₄Cl₄Br₄. B. Beim Überleiten von trocknem Ammoniak über 4.5.6.7-Tetrachlor-3'.5'.3'.5''-tetrabromphenolphthalein (O., B.). Blau. Gibt an der Luft allmählich alles Ammoniak ab. — Ag₅C₂₀H₄O₄Cl₄Br₄. B. Entsteht, wenn man 7,72 g 4.5.6.7-Tetrachlor-3'.5'.3''.5''-tetrabromphenolphthalein in absolut-alkoholischer Lösung mit einer absol.-alkoh. Lösung von 0,46 g Natrium versetzt, die Lösung zur Trockne verdampft und die wäßr. Lösung des Rückstandes mit Silbernitrat fällt (O., B.). Blaue amorphe Masse.

Lactoider 4.5.6.7-Tetrachlor-8'.5'.3''.5''-tetrabrom-phenolphthalein-dimethyläther $C_{22}H_{10}O_4Cl_4Br_4=C_6Cl_4$ $C(C_6H_2Br_3\cdot O\cdot CH_3)_2$ 0. B. Durch längeres Erhitzen von 4.5.6.7-Tetrachlor-3'.5'.3''.5''-tetrabrom-phenolphthalein mit Natriummethylatlösung und überschüssigem Methyljodid in absol. Methylalkohol (O., B., Am. 41, 387). — Farblose Nadeln (aus Benzol). Wahrscheinlich triklin (GILL, Am. 41, 388). F: 265—266°. Löslich in Äther, Benzol und Eisessig, schwer löslich in Alkohol. Unlöslich in kalter konzentrierter Schwefelsäure. Unlöslich in verdünnten wäßrigen Alkalien. — Wird durch alkoh. Kalilauge nicht verseift.

Lactoider 4.5.6.7-Tetrachlor-3'.5'.3''.5''-tetrabrom-phenolphthalein-diäthyläther $C_{24}H_{14}O_4Cl_4Br_4 = C_6Cl_4 C(C_6H_2Br_2 \cdot O \cdot C_2H_5)_2 O$. B. Analog der vorhergehenden Verbindung (O., B., Am. 41, 389). — Farblose Nadeln (aus Benzol). Wahrscheinlich rhombisch (GILL, Am. 41, 389). F: 201—202°. Schwer löslich in Äthylalkohol.

4.5.6.7-Tetrachlor-3'.5'.3''.5''-tetrabrom-phenolphthalein-diacetat $C_{24}H_{10}O_6Cl_4Br_4=C_6Cl_4C(C_6H_2Br_2\cdot O\cdot CO\cdot CH_3)_2$ O. B. Beim Erhitzen von 4.5.6.7-Tetrachlor-3'.5'.3''.5''-tetrabrom-phenolphthalein mit Natriumacetat und Essigsäureanhydrid (O., B., Am. 41, 383). — Farblose Krystalle (aus Benzol oder absol. Alkohol). Wahrscheinlich monoklin (GILL, Am. 41, 383). F: 190—191°. Leicht löslich in Alkohol und Benzol. Löst sich in konz. Schwefelsäure mit gelbroter Farbe. — Wird durch Alkalien verseift.

3.3-Bis-[3.5-dijod-4-oxy-phenyl]-phthalid, 3'.5'.3".5"-Tetrajod-phenolphthalein C₂₀H₁₀O₄I₄ = C₆H₄ C(C₆H₁I₂·OH)₂O. B. Bei der Jodierung von Phenolphthalein in alkalischer oder ammoniakalischer Lösung, in Barytwasser, in alkoh. Lösung in Gegenwart von Quecksilberoxyd oder in Boraxlösung (Classen, Löb, B. 28, 1603; Cl., D. R. P. 85930, 86069, 88390; Frdl. 4, 1090, 1093, 1094; vgl. Orndorff, Mahood, Am. Soc. 40 [1918], 941). Durch Elektrolyse einer alkal. Lösung von Phenolphthalein in Gegenwart von Kalium-jodid (Cl., L.; Cl., D. R. P. 85930). Durch Einw. von Chlorjod auf Phenolphthalein in essigsaurer Lösung oder von Chlorjod-Salzsäure auf das Dinatriumsalz des Phenolphthaleins in wäßr. Lösung (Kalle & Co., D. R. P. 143596; C. 1903 II, 403). — Farbloses Krystallpulver. Geruchlos; beständig gegen Licht und Feuchtigkeit (Cl., D. R. P. 85930). Zersetzt sich gegen 220° (Cl., L.; Greenbaum, American Journ. of Pharmacy 100 [1928], 375; C. 1928 II, 984), gegen 270—272° (O., Ma.). Unlöslich in Wasser, schwer in Alkohol, etwas leichter in Eisessig, Chloroform und Äther (Cl., L.). Löst sich-leicht in Alkalien mit rötlichblauer Farbe (Cl., L.; O., Ma.). Zur Konstitution der farbigen Salze vgl. die im Artikel Phenolphthalein auf 8. 144 angeführte Literatur. — Das blaue Natriumsalz geht beim Behandeln mit Alkalilauge in das farblose Natriumsalz der 3'.5'.3''.5''.Tetrajod-4'.4''-dioxy-triphenylcarbinol-carbonsäure-(2) (Bd. X, S. 533) über (Cl., L.; vgl. O., Ma.). — Tetrajodphenolphthalein wurde unter dem Namen "Nosophen" als Ersatzmittel für Jodoform vorgeschlagen (vgl. Cl., D. R. P. 86069; vgl. Frankel, Die Arzneimittel Synthese 5. Aufl. [Berlin 1921], S. 601). — Na₂C₂₀H₂O₄I₄ (bei 100° getrocknet). Blaues Pulver; sehr leicht löslich in Wasser, schwerer in Alkohol mit blauer Farbe (Cl., D. R. P. 87785; Frdl. 4, 1092; vgl. Cl., L.; Herzig, H. Meyer, unlöslich in Wasser (Cl., D. R. P. 88390; vgl. Cl., L.). — HgC₂₀H₄O₄I₄. Hell-

braunes Pulver (CL., D. R. P. 87785; vgl. CL., L.: — $\operatorname{Bi}_{2}(C_{80}H_{8}O_{4}I_{4})_{3}$. Hellbraunes Pulver (CL., D. R. P. 87785; vgl. CL., L.). — $\operatorname{HO} \cdot \operatorname{BiC}_{20}H_{8}O_{4}I_{4}$. Hellbraunes Pulver; wurde unter dem Namen "Eudoxin" als Darm-Antiseptikum vorgeschlagen (CL., D. R. P. 87785; vgl. Fränker, S. 669). — $\operatorname{Fe}_{2}(C_{20}H_{8}O_{4}I_{4})_{3}$. Braunes Pulver; unlöslich in Wasser (CL., D. R. P. 87785; vgl. CL., L.).

3.3 - Bis - [3 - nitro - 4 - oxy - phenyl] - phthalid, 3'.3" - Dinitro - phenolphthalein $C_{20}H_{12}O_8N_3 = C_0H_4 C[C_0H_3(NO_2)\cdot OH]_2 O^1)$. B. Durch tropfenweises Hinzufügen von ca. 15 cm³ Salpetersäure (D: 1,45) zu einer warmen alkoholischen Lösung von 5 g Phenolphthalein (Errera, Berth, G. 26 I, 265). Bei allmählichem Versetzen einer Lösung von 1 Mol Phenolphthalein in der 10-fachen Gewichtsmenge Essigsäure mit einer essigsauren Lösung von 2 Mol Salpetersäure unterhalb 10° (Hall, Chem. N. 67, 93) oder einer Lösung von 10 g Phenolphthalein in 100 g Eisessig mit einer Mischung von 7 g Salpetersäure (D: 1,48) und 21 g konz. Schwefelsäure unterhalb 20° (Gattermann, B. 32, 1131; Clayton Aniline Co., D. R. P. 52211; Frdl. 2, 90). — Gelbe Krystalle (aus Alkohol oder Eisessig). F: 195° (G.), 196° (H.; Clayton Aniline Co.), 197° (E., B.). Unlöslich in Wasser (E., B.), wenig löslich in Alkohol und Essigsäure (H.). Löslich in Alkalien mit orangegelber Farbe (G.; vgl. H.; E., B.). — Liefert bei der Reduktion mit Zinnchlorür und Salzsäure oder mit alkoh. Kaliumhydrosulfidlösung 3'.3"-Diamino-phenolphthalein (Syst. No. 2644) (G.; vgl. E., B.). Beim Behandeln mit Salpetersäure (D: 1,48) in konz. Schwefelsäure bei ca. 20—30° bildet sich 3'.5'.3".5"-Tetranitro-phenolphthalein (Clayton Aniline Co.).

Lactoider 3'.3" - Dinitro - phenolphthalein - monomethyläther $C_{s1}H_{14}O_{s}N_{s} = C_{s}H_{4} C_{[C_{s}H_{s}(NO_{s})\cdot OH][C_{s}H_{s}(NO_{s})\cdot O\cdot CH_{s}]} O$. B. Bei der Einw. von überschüssigem Methyljodid auf das Silbersalz des 3'.3"-Dinitro-phenolphthaleins, suspendiert in viel Alkohol, neben dem lactoiden 3'.3"-Dinitro-phenolphthalein-dimethyläther; man trennt die beiden Ather durch Sodslösung, in der sich nur der Monomethyläther löst (Errera, Berté, G. 26 I, 270, 271). — Gelb, amorph. F: 90—92°.

Lactoider 8'.3" - Dinitro - phenolphthalein - dimethyläther $C_{22}H_{16}O_8N_2 = C_6H_4 \cdot \frac{C_{12}H_3(NO_3)\cdot O\cdot CH_3}{C_{12}H_3(NO_3)\cdot O\cdot CH_3} = 0$. B. s. im vorangehenden Artikel. — Gelbe Nädelohen (aus Benzol + Petroläther). F: 130—132°; unlöslich in Wasser und Petroläther, leicht in Benzol und Aceton, schwerer in Alkohol; unlöslich in Alkalilaugen und Alkalicarbonatlösungen (E., B., G. 26 I, 271).

- 3.3-Bis-[5-brom-3-nitro-4-oxy-phenyl]-phthalid, 5'.5"-Dibrom-3'.3"-dinitro-phenolphthalein $C_{20}H_{10}O_8N_2Br_2=C_6H_4$ $C[C_6H_2Br(NO_2)\cdot OH]_2$ 0. B. Bei Zusatz von ca. 15 cm³ Salpetersäure (D: 1,45) zu einer heißen alkoholischen Lösung von 5 g 3'.5''.5"-Tetrabrom-phenolphthalein (E., B., G. 26 I, 266). Gelbe mikroskopische Prismen (aus Alkohol). F: 235—236°. Unlöslich in Petroläther, sehr wenig löslich in Wasser, wenig in Alkohol, leichter in Benzol und Chloroform. Löst sich in wäßr. Alkalien mit gelbroter Farbe.
- 5'.5" Dibrom 3'.3" dinitro phenolphthalein diacetat $C_{34}H_{14}O_{10}N_{2}Br_{3} = C_{6}H_{4} C[C_{6}H_{2}Br(NO_{2}) \cdot O \cdot CO \cdot CH_{3}]_{2}$ O. B. Beim Kochen von 5'.5"-Dibrom-3'.3"-dinitro-phenolphthalein mit Essigsäureanhydrid oder Acetylchlorid (E., B., G. 26 I, 268). Gelbes amorphes Pulver. F: ca. 145°. Unlöslich in Wasser und Petroläther, sehr leicht löslich in Benzol und Aceton, schwerer in Alkohol.
- 3.3-Bis-[3.5-dinitro-4-oxy-phenyl]-phthalid, 3'.5'.3''.5''-Tetranitro-phenol-phthalein $C_{20}H_{10}O_{12}N_4=C_6H_4$ $C[C_6H_3(NO_3)_2\cdot OH]_3\cdot O^2$. B. Durch Zusatz von 4 Mol HNO3 zu einer Lösung von 1 Mol Phenolphthalein in der 5-fachen Gewichtsmenge konz.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von Oddo, B. 47, 969; G. 43 II, 180, 187; 44 I, 391; Thiel, Diehl, Sitzungsber. d. Ges. zur Beförderung der gesamten Naturwissenschaften zu Marburg 62, 538; C. 1927 II, 2672 und Greenbaum, American Journ. of Pharmacy 100, 378; C. 1928 II, 985.

²⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I 1910] erschienenen Arbeit von THIEL. DIEHL, Sitzungeber. d. Ges. zur Beförderung der gesamten Naturwissenschaften zu Marburg 62, 541; C. 1927 II, 2672.

Schwefelsäure bei 20—30° (Hall, Chem. N. 67, 94; vgl. Clayton Aniline Co., D. R. P. 52211; Frdl. 2, 89). Beim Behandeln von 1 Tl. 3'.3''-Dinitro-phenolphthalein mit 0,6 Tln. Salpetersäure (D: 1,48) in konz. Schwefelsäure bei ca. 20—30° (Clayton Aniline Co.). — Blaßelbe Krystalle (aus Essigsäure). F: 244—245° (H.), 244,5° (Clayton Aniline Co.). Schwer löslich in den gewöhnlichen Lösungsmitteln (H.). Die bei 15—20° gesättigte Lösung in Eisessig enthält 1,06°/0 Substanz (Clayton Aniline Co.). Leicht löslich in Alkalien (H.).

3. Oxy-oxo-Verbindungen C₂₂H₁₈O₄.

1. 3-Oxo-1.1-bis-[4-oxy-3-methyl-phenyl]-phthalan, 3.3-Bis-[4-oxy-3-methyl-phenyl]-phthalid, 3'.3"-Dimethyl-phenolphthalein, o-Kresol-phthalein, C. H. O. s. polyopetalyond Formal, R. Duych 8, 40 stdg.

phthalein C_{ss}H₁₈O₄, s. nebenstehende Formel. B. Durch 8–10-stdg. Erhitzen von 2 Iln. o-Kresol mit 3 Iln. Phthalsäureanhydrid in Gegenwart von 2 Tln. Zinntetrachlorid auf 120-1250, neben anderen Produkten (Fraude, B. 12, 237; Barver, Frau., A. 202, 154).

— Krystalle (aus verd. Alkohol). F: 213—214°; leicht löslich in Alkohol, Äther und Eisessig, schwer in Benzol, etwas löslich in heißem Wasser (Frau.; B., Frau.). Löst sich in Alkaliange mit blaustichig violetter Farbe; durch einen großen Überschuß von Alkali wird die Lösung entfärbt (B., FRAU.). Löslich in alkoh. Ammoniak mit blaßgelber, in konz. Schwefelsäure mit orangeroter Farbe; wird aus der schwefelsauren Lösung durch Wasser unverändert ausgefällt (B., FRAU.). Lichtabsorption in verdünnter alkalischer Lösung und in konz. Schwefelsäure: B., Frau. - Durch mehrstündiges Kochen mit Zinkstaub in stark alkalischer Lösung entsteht 4'.4" - Dioxy -3'.3''-dimethyl-triphenylmethan-carbonsäure-(2) (o-Kresolphthalein) (Frau.; B., Frau.). Bei der Einw. von 1 Tl. Brom auf 1 Tl. o-Kresolphthalein, gelöst in 10 Tln. Alkohol, entsteht Dibrom-o-kresolphthalein; versetzt man dagegen eine Lösung von 1 Tl. o-Kresolphthalein in 10 Tln. Alkohol mit einem Gemisch von 6 Tln. Brom und 6 Tln. Eisessig, so erhält man 5'-Brom-4'-oxy-3'-methyl-benzophenon-carbonsäure-(2) [in Bd. X, S. 974 als x'-Brom-4'-oxy-3'-methyl-benzophenon-carbonsäure-(2) angeführt] (Frau.; B., FRAU.). Beim Einleiten von salpetriger Säure in die äther. Lösung von o-Kresolphthalein (Frau.) oder bei tropfenweisem Zusatz von konz. Salpetersäure zu einer Lösung von o-Kresolphthalein in der 80-100-fachen Menge konz. Schwefelsäure (FRAU.; B., FRAU.) entsteht Dinitro-o-kresolphthalein. Durch kurzes Erwärmen der alkal. Lösung von o-Kresolphthalein mit salzsaurem Hydroxylamin auf dem Wasserbad wird 2-0xy-3.3-bis-[4-oxy-3-methylphenyl]-phthalimidin (Syst. No. 3240) erhalten (Friedlander, Stange, B. 26, 2263; vgl. Frie, B. 26, 174). Beim Erhitzen von 2 Tln. o-Kresolphthalein mit 1 Tl. Phthalsaureanhydrid und 100 Tln. konz. Schwefelsäure bildet sich 3-Oxy-2-methyl-anthrachinon (B., Frau.; vgl. MITTER, SEN, Journ. Indian chem. Soc. 5 [1928], 634).

Diacetylderivat $C_{26}H_{12}O_6 = C_6H_4 \underbrace{C[C_6H_3(CH_3)\cdot O\cdot CO\cdot CH_2]_2}O$. B. Durch mehrstündiges Kochen von o-Kresolphthalein mit überschüssigem Essigsäureanhydrid (Fraude, B. 12, 238; Barver, Fraude, A. 202, 156). — Farblos, amorph. F: 73—75°. Leicht löslich in Alkohol, Äther und Aceton.

Dibenzoylderivat $C_{3e}H_{3e}O_6 = C_eH_4 \overline{C[C_eH_3(CH_3)\cdot O\cdot CO\cdot C_eH_5]_2}O$. B. Durch mehrstündiges Erhitzen von o-Kresolphthalein mit überschüssigem Benzoylchlorid (Fraude, B. 12, 238; Baeyer, Fraude, A. 202, 157). — Prismen mit Krystallbenzol (aus Benzol). Verliert das Krystallbenzol beim Trocknen. F: 195—196°.

 $\begin{array}{lll} \textbf{Oxim} & \textbf{C}_{23}\textbf{H}_{19}\textbf{O}_4\textbf{N} = \textbf{C}_6\textbf{H}_4 \overbrace{\textbf{C}[\textbf{C}_6\textbf{H}_3(\textbf{C}\textbf{H}_3) \cdot \textbf{O}\textbf{H}]_3} \textbf{O}. & \textbf{Vgl. hierzu 2-Oxy-3.3-bis-[4-oxy-3-methyl-phenyl]-phthalimidin } \textbf{C}_6\textbf{H}_4 \underbrace{\textbf{C}[\textbf{C}_6\textbf{H}_3(\textbf{C}\textbf{H}_3) \cdot \textbf{O}\textbf{H}]_2} \textbf{N} \cdot \textbf{O}\textbf{H}, \text{ Syst. No. 3240}. \end{array}$

5'.5"-Dibrom -3'.3"-dimethyl-phenolphthalein, Dibrom-o-kresolphthalein C₃₂H₁₆O₄Br₂, s. nebenstehende Formel. B. Durch Zusatz von 1 Tl. Brom zu einer Lösung von 1 Tl. o-Kresolphthalein in 10 Tln. Alkohol). F. 255°. Löst sich in Alkalien und Alkalicarbonaten mit blauer Farbe, die auf Zusatz von überschüssigem Alkali verschwindet. Löst sich in kohz. Schwefelsäure mit rosa Farbe. Lichtabsorption in Schwefelsäure: B. F. — Durch Kochen mit Zinkstaub in alkal. Lösung entsteht 5'.5"-Dibrom-4'.4"-dioxy-3'.3"-dimethyl-triphenylmethan-carbonsäure-(2) (Dibrom-o-kresolphthalin). Liefert beim Erhitzen mit Phthalsäureanhydrid und überschüssiger konzentrierter Schwefelsäure auf 150° 4-Brom-3-oxy-2-methyl-anthrachinon.

5'.5''- Dinitro - 8'.8''- dimethyl - phenolphthalein, Dinitro - o - kresolphthalein $C_{22}H_{16}O_8N_2=C_6H_4$ $C[C_6H_2(NO_2)(CH_3)\cdot OH]_2$ O. B. Beim Einleiten von nitrosen Gasen in eine äther. Lösung von o-Kresolphthalein (F., B. 12, 240). Bei tropfenweisem Zusatz von konz. Salpetersäure zu einer Lösung von o-Kresolphthalein in 80—100 Tln. konz. Schwefelsäure (F.; BAEVER, F., A. 202, 163). — Gelbe Krystalle. F: 240°. Löslich in Natronlauge mit rotbrauner Farbe.

2. 3-Oxo-1.1-bis-[3-oxy-4-methyl-phenyl]-phthalan,
3.3-Bis-[3-oxy-4-methyl-phenyl]-phthalid C₂₂H₁₈O₄,
s. nebenstehende Formel. B. Man diazotiert 3.3-Bis-[3-amino-4-methyl-phenyl]-phthalid (Syst. No. 2643) mit Amylnitrit in alkoholisch-schwefelsaurer Lösung und erwärmt das erhaltene Bis-diazoniumsulfat mit Wasser auf etwa 60° (BAEYER, A. 354, 185; vgl. Limpriicht, A. 299, 294). — Farblose Prismen (aus Essigsäure). F: 206°; bildet mit Chloroform, Benzol und anderen Lösungsmitteln Krystallverbindungen; farblos löslich in Alkalien (B.).

o) Oxy-oxo-Verbindungen C_nH_{2n-28}O₄.

1. Oxy-oxo-Verbindungen $C_{21}H_{14}O_4$.

1. Oxy-oxo-Verbindung $C_{21}H_{14}O_4$, s. nebenstehende Formel. Verbindungen, die wahrscheinlich als Dimethyläther $C_{23}H_{16}O_4$ und als Dimethyläther-oxim $C_{23}H_{19}O_4N$ aufzufassen sind, s. Bd. XVII, S. 206, 207.

2. 6.7-Dioxy-2-phenyl-3.4(CO)-benzoylen-cumaran C₃₁H₁₄O₄, Formel I. 2.3-Dibrom-6.7-dioxy-2-phenyl-3.4(CO)-benzoylen-cumaran, Benzoingelb-dibromid C₂₁H₁₂O₄Br₂, Formel II. B. Aus Benzoingelb (S. 155) und Brom in Chloroform (Graebe, B. 31, 2977). — Rote Krystalle (aus Eisessig). Färbt sich bei 150° gelbrot und

schmilzt bei 221—222° unter Zersetzung. Löslich in heißem Eisessig. Die Lösung in Alkalien ist rot. Wird von Alkohol unter Bildung einer grünbraunen Lösung zersetzt.

2. 6-0 xy -4-0 xo -2 - phenyl -3 - [4-0 xy - benzal] - chroman, 6-0 xy -3 - [4-0 xy - benzal] - flavanon $C_{m}H_{16}O_{4}$, s. nebenstehende Formel.

6-Äthoxy-3-anisal-flavanon C₂₅H₂₂O₄, s. nebenstehende Formel. B. Durch Sättigen einer heißen alkoholischen Lösung äquimolekularer Mengen Anisaldehyd und 6-Äthoxy-flavanon (S. 51) mit Chlorwasserstoff (Katschalowsky, v. Kostanbenki, B. 37, 3170). — Hellgelbe Spieße. F: 157°. Die Lösung in konz. Schwefelsäure ist fuchsinrot.

p) Oxy-oxo-Verbindungen C_nH_{2n-30}O₄.

1. [Acenaphthen-(1)]-[6-oxy-cumaron-(2)]-indigo¹) $C_{so}H_{10}O_4$, s. nebenstehende Formel (systematische Stammverbindung des [Acenaphthen-(1)]-[6-methylmercapto-thionaphthen-(2)]-indigos).

[Acenaphthen - (1)] - [6 - methylmercapto - thionaphthen - (2)] - indigo ¹) C₂₁H₁₂O₂S₂, s. nebenstehende Formel.

B. Man erhitzt 3 - Oxy - 6 - methylmercapto - thionaphthen
(Bd. XVII, S. 157) mit Acenaphthenchinon in Alkohol bei Gegenwart von Soda (Ges. f. ohem. Ind., D. R. P. 210905; C. 1909 II, 245). — Rotorange. Ziemlich wenig löslich in heißem Benzol. Löslich mit grünblauer Farbe in konz. Schwefelsäure. Färbt aus violetter Küpe ungebeizte Baumwolle orange.

¹⁾ Zu dieser Benennungsart vgl. JACOBSON bei FRIEDLÄNDER, B. 41, 773.

2. Oxy-oxo-Verbindungen $C_{21}H_{12}O_4$.

1. 6.7-Dioxy-2-phenyl-3.4(CO)-benzoylen-cumaron, Benzoingelb C₁₁H₁₂O₄, s. nebenstehende Formel. B. Durch 24-stdg. Einw. von Benzoin auf Gallussäure in Gegenwart von konz. Schwefelsäure bei 0° bis 5° (BASF, D. R. P. 95739; Frdl. 5, 328; GRAEBE, B. 31, 2976). — Gelbe Nadeln (aus Alkohol + Essigsäure). Zersetzt sich bei 250° unter Verkohlung und Sublimation von Benzoesäure (G.). Schwer löslich in den gewöhnlichen Lösungsmitteln (G.), leicht löslich in Alkohol, Eisessig und Nitrobenzol, unlöslich in Wasser (BASF). Die Lösung in konz. Schwefelsäure ist gelb und zeigt intensive grüne Fluorescenz; löst sich in Natriumcarbonatlösung schwierig mit gelber, in Natronlauge leicht mit roter Farbe (BASF; G.). — Liefert bei der Zinkstaubdestillation Anthracen (G.). Mit Brom in Chloroform entsteht Benzoingelbdibromid (S. 154)(G.). Wird beim Erwärmen mit Salpetersäure (D: 1,3) in Benzoesäure und Phthalsäure zerlegt (G.). Zersetzt sich in der Natronschmelze bei 200—250° unter Bildung von Benzoesäure (G.). Reagiert nicht mit Hydroxylamin (G.). Liefert beim Kochen mit Nitrobenzol oder Naphthalin eine Verbindung (C₂₁H₁₀O₃)_x (s. u.) (G.). — PbC₂₁H₁₀O₄ (bei 150°). Roter Niederschlag. Unlöslich in Alkohol und Wasser (G.).

Verbindung $(C_{21}H_{10}O_3)_x$. B. Durch Kochen von Benzoinge!b (s. o.) mit Nitrobenzol oder Naphthalin (Graebe, B. 31, 2978). — Gelbbraune Nadeln. Etwas löslich in siedendem Phenol mit orangeroter Farbe, unlöslich in den anderen organischen Lösungsmitteln und in Alkalien. Löst sich in konz. Schwefelsäure mit blauer Farbe und intensiver roter Fluorescenz.

Benzoingelb-diacetat $C_{25}H_{16}O_6=C_{21}H_{10}O_2(O\cdot CO\cdot CH_3)_2$. Gelbe Nadeln. F: 237° (BASF, D. R. P. 95739; Frdl. 5, 328; Graebe, B. 31, 2976). — Liefert beim Kochen mit alkoh. Ammoniak Benzoingelb zurück (G.).

2. 3-Oxy-3-[fluorenonyl-(2)]-phthalid. cyclo-Form der 2-[Fluorenon-carboyl-(2)]-benzoesäure (Bd. X, S. 842) $\mathrm{C_{21}H_{12}O_4}$, Formel I.

3-Methoxy-3-[fluorenonyl-(2)]-phthalid, 2-[Fluorenon-carboyl-(2)]-benzoesäurepseudomethylester $C_{22}H_{14}O_4$, Formel II. Zur Konstitution vgl. H. Meyer, M. 28, 1236; EGERER, H. MEYER, M. 34 [1913], 69. — B. Durch Behandeln des aus 2-[Fluorenon-car-

boyl-(2)]-benzoesäure (Bd. X, S. 842) und Thionylchlorid bezw. Phosphortrichlorid oder Phosphorpentachlorid erhältlichen Chlorids mit Methylalkohol (Goldschmiedt, Lipschttz, M. 25, 1170). — Krystalle (aus Eisessig). F: 184—186°; schwer löslich in Methylalkohol; löslich in konz. Schwefelsäure mit roter Farbe (G., L.).

q) Oxy-oxo-Verbindungen $C_nH_{2n-32}O_4$.

Oxy-oxo-Verbindungen $C_{24}H_{16}O_4$.

1. 2.5 - Dioxo - 4 - diphenylmethylen - 3 - salicylal - furantetrohydrid, Diphenylmethylen - salicylal - bernsteinsäureanhydrid, $\alpha.\alpha$ - Diphenyl - δ -[2-oxy-phenyl]-fulgid $C_{14}H_{16}O_4 = \frac{(C_6H_5)_2C:C--C:CH\cdot C_6H_4\cdot OH}{OC\cdot O\cdot CO}$.

 $\begin{array}{ll} \textbf{Diphenylmethylen-[2-methoxy-benzal]-bernsteins \"{a}ureanhydrid,} & \alpha.\alpha-\textbf{Diphenyl-benzal}-bernsteins \ddot{a}ureanhydrid,} & \alpha.\alpha-\textbf{Diphenyl-benzal}-be$

Übergießen von α.α-Diphenyl-δ-[2-methoxy-phenyl]-fulgensaure (Bd. X, S. 534) mit Acetylchlorid (Stobbe, Benary, B. 39, 767). — Kirschrote Krystalle. Rhombisch bipyramidal (Tobobffy, Z. Kr. 45, 170; vgl. Groth, Ch. Kr. 5, 507). Schmilzt nach vorherigem Erweichen bei 200°; leicht löslich in Chloroform, schwer in Benzol und Äther; in konz. Schwefelsäure mit olivgrüner Farbe löslich (St., B.). Absorptionsspektrum in Chloroform: St., A. 380 [1911], 5. Zeigt bei kurzem Belichten eine sehr starke Farbvertiefung, die in der Dunkel-

heit wieder verschwindet (St., A. 359, 26). Wird beim Abkühlen auf —80° orangerot, beim Erwärmen auf 80—170° dunkelrot; diese Farbänderungen gehen bei gewöhnlicher Temperatur wieder zurück (St., A. 380, 21, 22).

 $\begin{array}{ll} \textbf{Diphenylmethylen-[2-\ddot{a}thoxy-benzal]-bernsteins\"{a}ureanhydrid}, & \alpha.\alpha-\textbf{Diphenyl-\ddot{b}-[2-\ddot{a}thoxy-phenyl]-fulgid} & C_{26}H_{26}O_4 & = & (C_6H_5)_2C:C---C:CH\cdot C_6H_4\cdot O\cdot C_2H_5\\ & O_C^{\dagger}\cdot O\cdot CO & . \end{array} \\ \begin{array}{ll} B. & \text{Beim} \\ \end{array}$

Übergießen von α.α-Diphenyl-δ-[2-āthoxy-phenyl]-fulgensäure (Bd. X, S. 534) mit Acetylchlorid (Stobbe, Nettel, B. 39, 769). — Zinnoberrote Prismen. Triklin pinakoidal (Toborffy, Z. Kr. 45, 171; vgl. Groth, Ch. Kr. 5, 507). F: 181°; leicht löslich in Chloroform, Benzol, Methylalkohol und Äthylalkohol; wird von Alkalien und von Piperidin verseift (St., N.). Zeigt bei kurzem Belichten eine schwache Farbvertiefung, die im Dunkeln wieder verschwindet (St., A. 359, 27).

2. 2.5 - Dioxo - 4 - diphenylmethylen - 3 - [4 - oxy - benzal]-furantetrahydrid, Diphenylmethylen-[4-oxy-benzal]-bernsteinsäureanhydrid. a.a-Diphenyl- δ -[4-oxy-phenyl]-fulgid $C_{24}H_{16}O_4=\frac{(C_6H_5)_2C:C--C:CH\cdot C_6H_4\cdot OH}{OC\cdot O\cdot CO}$

Diphenylmethylen-anisal-bernsteinsäureanhydrid, $\alpha.\alpha$ -Diphenyl- δ -[4-methoxy-phenyl]-fulgid $C_{25}H_{18}O_4= \frac{(C_6H_5)_2C:C--C:CH\cdot C_6H_4\cdot O\cdot CH_3}{OC\cdot O\cdot CO}$. B. Beim Auflösen von $\alpha.\alpha$ -Diphenyl- δ -[4-methoxy-phenyl]-fulgensäure (Bd. X, S. 535) in kaltem Acetylchlorid (Stobbe, Nettel, B. 39, 766). — Orangerote Blättchen (aus Schwefelkchlenstoff) oder Nadeln. Rhombisch (Toborffy, Z. Kr. 45, 171). F: 194° (St., N.). Absorptionsspektrum in Chloroform: St., A. 380 [1911], 5. Zeigt bei kurzem Belichten eine starke Farbvertiefung, die im Dunkeln wieder verschwindet (St., A. 359, 27). Wird beim Abkühlen auf -80° hellorangerot, beim Erwärmen auf $70-130^\circ$ kirschrot; diese Farbänderungen gehen bei gewöhnlicher Temperatur wieder zurück (St., A. 380, 21, 22). — Gegen Wasser sehr beständig; wird von Alkalien und von Piperidin leicht verseift (St., N.).

- 3. 3.3-Bis-[4-oxy-phenyl]-naphthalid, Lacton der 8-[4.4'.a-Trioxy-benzhydryl]-naphthoesdure-(1), Phenolnaphthalein C₂₄H₁₆O₄, s. nebenstehende Formel. B. Durch Erhitzen von 20 g Naphthalsäureanhydrid (Bd. XVII, S. 521) mit 80 g Phenol in Gegenwart von 50 g Aluminiumchlorid auf 160° (JAUBEET, B. 28, 992). Mikrokrystallinisches farbloses Pulver (aus Alkohol). Schmilzt oberhalb 200° unter Zersetzung. Scheidet sich aus Äther amorph ab. Unlöslich in Wasser, leicht löslich in Alkohol, Äther und Eisessig. Löslich in Alkalien mit fuchsinroter Farbe. Gibt beim Erhitzen mit Phosphorpentachlorid auf 150° eine (nicht analysierte) in Nadeln krystallisierende Verbindung C₂₄H₁₄O₂Cl₂ vom Schmelzpunkt 180°. Liefert mit Hydroxylamin 2-Oxy-3.3-bis-[4-oxy-phenyl]-naphthalimidin (Syst. No. 3240).
- 4. $5\text{-}0xo\text{-}2.2\text{-}bis\text{-}[1\text{-}oxy\text{-}naphthyl\text{-}(x)]\text{-}furandihydrid}$, $\gamma.\gamma$ -Bis- $[1\text{-}oxy\text{-}naphthyl\text{-}(x)]\text{-}\Delta^{\alpha.\beta}\text{-}crotonlacton}$ $C_{24}H_{15}O_4 = HC = CH$ $OC \cdot O \cdot OC(C_{10}H_4 \cdot OH)_2 \cdot B.$ Entsteht neben β -[1-Oxy-naphthyl-(x)]-acrylsäure(?) (Bd. X, S. 972) durch 4-stdg. Erhitzen von 1 Mol Maleinsäureanhydrid mit 2 Mol α -Naphthol in Gegenwart von Zinkchlorid auf 160°; man zieht die erkaltete Schmelze mit wenig heißem Alkohol aus und gießt die Lösung in Wasser (Burck-Hardt, B. 18, 2867). Violette mikroskopische Tafeln. Wird bei 105° braun und schmilzt bei 118—120°. Unlöslich in Schwefelkohlenstoff und Benzol, löslich in Äther, Eisessig, Chloroform und Alkohol. Die alkoh. Lösung ist rot; auf Zusatz von Ammoniak nimmt sie eine intensiv grünrote Fluorescenz an.

r) Oxy-oxo-Verbindungen $C_n H_{2n-36} O_4$.

0 xy-oxo-Verbindung $C_{26}H_{16}O_4$, s. nebenstehende Formel, Resorcinanthrachinon. B. Durch Eintragen von 7 g Zinkchlorid in ein auf 180° erhitztes Gemisch von 20 g Anthrachinon und 22 g Resorcin und 6-stdg. Erhitzen der Masse auf 200—210° (SCHARWIN, KUSNEZOW, B. 36, 2022; vgl. DRICHLER, D. R. P. 108836;

C. 1900 I, 1212). — Amorphes dunkelbraunes Pulver (aus verd. Alkohol). Leicht löslich in Methylalkohol, Äthylalkohol, Aceton und Eisessig, schwerer in Äther und Chloroform, sehr schwer löslich in Benzol, unlöslich in Ligroin, etwas löslich in Wasser; die Löslichkeit in Wasser wird durch Gegenwart von Säuren stark erhöht (Sch., K.). Die Lösungen besitzen gelbbraune Farbe und grünliche Fluorescenz (Sch., K.). Löslich in konz. Schwefelsäure mit olivgrüner Farbe (Sch., K.). Leicht löslich in Alkalien; die Lösung in sehr konzentrierter heißer Kalilauge ist violett (Sch., K.). — Spaltet sich beim Erhitzen unter vermindertem Druck (15—18 mm) in seine Komponenten (Sch., K.).

Diacetylderivat $C_{30}H_{30}O_6=C_{36}H_{14}O_3(O\cdot CO\cdot CH_3)_3$. B. Durch Einw. von Acetylchlorid auf Resorcinanthrachinon in Pyridinlösung in der Kälte (Sch., K., B. 36, 2023). Durch 2-stdg. Kochen von Resorcinanthrachinon mit der 5-fachen Menge Essigsäureanhydrid (Sch., K.). — Braunliches amorphes Pulver (aus verd. Alkohol). Leicht löslich in Alkohol und Eisessig, schwerer in Benzol und Äther, unlöslich in Petroläther. Die essigsauren und alkoholischen Lösungen fluorescieren grünlich. Unlöslich in Alkalien, wird aber von siedenden konzentrierten Laugen verseift.

s) Oxy-oxo-Verbindungen $C_nH_{2n-38}O_4$.

3-0 x o - 1.1-bis-[1-o xy-naphthyl-(x)]-phthalan, 3.3-Bis-[1-o xy-naphthyl-(x)]-phthalid, α -Naphtholphthalein $C_{28}H_{18}O_4=C_6H_4$ $C(C_{10}H_6\cdot OH)_2$ O^1). B. Durch Erwärmen von Phthalylchlorid mit α -Naphthol auf dem Wasserbad, neben anderen Produkten (Grabowski, B. 4, 661, 725; vgl. Sörensen, Palitzsch, Bio. Z. 24 [1910], 382). — Krystallisiert aus Benzol mit Krystallbenzol, das beim Trocknen im Vakuum bei 100—110° entweicht; sohmilzt benzolfrei bei 253—255° (Maquennescher Block) (S., P.). Löslich in Alkalien mit blauer Farbe (G.).

3. Oxy-oxo-Verbindungen mit 5 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_nH_{2n-2}O_5$.

1. $\alpha.\beta$ -Dioxy- γ -oxymethyl-butyrolacton, $\alpha.\beta.\delta$ -Trioxy- γ -valerolacton $C_{\delta}H_{\delta}O_{\delta} = \frac{HO \cdot HC - CH \cdot OH}{OC \cdot O \cdot CH \cdot CH_{2} \cdot OH}$

Eindampfen einer wäßr. Lösung von 1-Ribonsäure (Bd. III, S. 473) (E. FISCHER, PILOTY, B. 24, 4217). — Prismen (aus Essigester). F: 72—76° (E. F., P.), 80° (van Ekenstein, Blanksma, C. 1908 I, 119), 84—86° (Simon, Hasenfbatz, C. r. 179 [1924], 1166; H., C. r. 184 [1927], 212). Sehr leicht löslich in Wasser, Alkohol und Aceton, sehr schwer in Äther, ziemlich schwer in Essigester (E. F., P.). [a]: —18° (in Wasser; c = 9,3) (E. F., P.). — Geht beim Erhitzen mit Wasser und Pyridin im Druckrohr auf 130—135° in 1-Arabonsäure über (E. F., P.). Wird von Salpetersäure (D: 1,2) auf dem Wasserbad zu Ribotrioxyglutarsäure (Bd. III, S. 552) oxydiert (E. F., P.). Mit Natriumamalgam in schwefelsaurer Lösung entsteht 1-Ribose (E. F., P.).

b) Arabonsäure- γ -lactone $C_5H_8O_5=$

I.
$$HO \cdot CH_2 \cdot C - C - C - CO$$
 und II. $HO \cdot CH_2 \cdot C - C - C - CO$.

Zur Frage der Konstitution dieser Verbindung vgl. die nach dem Literatur-Schlußtermin der
 Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von CSÁNYI, B. 52, 1788; SCHULENBURG, B. 53, 1445; MOIR, Trans. Royal Soc. of South Africa 13, 131; C. 1929 II, 2106; THIRL, Ph. Ch. Bodenstein-Festband 1931, 355; C. 1932 I, 226.

- a) γ -Lacton der d-Arabonsäure (Konfiguration entsprechend Formel I). B. Durch mehrstündiges Erwärmen von d-Arabonsäure (Bd. III, S. 473) auf dem Wasserbad (Ruff, B. 32, 556). Nadeln (aus Aceton). Sintert bei 94° und schmilzt bei 98—99° (korr.). [α] $_{\rm c}^{\rm m}$: +73,7° (in Wasser; p = 10).
- β) γ-Lacton der l-Arabonsäure (Konfiguration entsprechend Formel II). B. Entsteht durch Eindampfen der wäßr. Lösung von l-Arabonsäure (Bd. III, S. 473) und Stehenlassen des erhaltenen Sirups über Schwefelsäure im Vakuum (BAUER, J. pr. [2] 30, 380; 34, 48; vgl. Kiliani, B. 20, 345; E. Fischer, Piloty, B. 24, 4219; Chavanne, A. ch. [8] 3, 562). Nadeln (aus heißem trocknem Aceton). Beginnt bei 86° zu erweichen und schmilzt bei 95–98° (E. F., P.), bei 90° (Ch.). [α]_D: —73,9° (in Wasser; p = 9,4) (E. F., P.). Die Drehung sinkt innerhalb von 40 Tagen von $[\alpha]_D$: —70,8° auf $[\alpha]_D$: —51,5° (Drehung des Gleichgewichtsgemisches Säure \rightleftharpoons Lacton) (Böddener, Tollens, B. 43 [1910], 1648). Liefert beim Erhitzen mit trocknem Kaliumdisulfat Brenzschleimsäure und Isobrenzschleimsäure (Ch.).
- γ) γ-Lacton der dl-Arabonsäure (Formel I + II). B. Man zerlegt das Calciumsalz der dl-Arabonsäure (Bd. III, S. 474) mit Oxalsäure und dampft die erhaltene Lösung der dl-Arabonsäure auf dem Wasserbad ein (Ruff, B. 33, 558). Nadeln (aus Aceton). F: 115—116° (korr.). Sehr leicht löslich in Wasser und Alkohol.

legen von l-xylonsaurem Zink oder des Doppelsalzes $Cd(C_5H_9O_6)_2 + CdBr_2 + 2H_2O$ (Bd. III, S. 475) mit Schwefelwasserstoff und Eindunsten der erhaltenen sirupösen l-Xylonsäure (Clowes, Tollens, A. 310, 176). — Krystalle (aus Aceton). F: $90-92^{\circ}$ (C., T.), $99-102^{\circ}$ (Weerman, R. 37 [1918], 40), $99-103^{\circ}$ (Nef. A. 403 [1914], 253). [α]_D: $+74,4^{\circ}$ (in Wasser; α = 0,8) (C., T.); [α]_D: $+89,6^{\circ}$ (in Wasser; α = 4) (N.).

dampfen der wäßr. Lösung von d-Lyxonsäure (Bd. III, S. 476) (E. Fischer, Bromberg, B. 29, 582; Wohl, List, B. 30, 3107). Man zerlegt das Cadmiumdoppelsalz der l-Xylonsäure 1) mit Schwefelwasserstoff, dampft das neutralisierte Filtrat ein, erhitzt den Rückstand mit der 4-fachen Menge Pyridin 3½ Stdn. im Druckrohr auf 135° und trennt die unveränderte l-Xylonsäure als Cadmiumdoppelsalz ab (E. F., B.). — Prismen (aus 200 Tln. heißem Essigester). F: 114—115° (korr.) (E. F., B.), 112° (W., L.). Fast unlöslich in Äther (E. F., B.), sehr leicht löslich in Wasser (E. F., B.; W., L.). [\alpha]_0^\infty: +82,4° (in Wasser; \alpha =9,8) (E. F., B.). — Wird beim Erhitzen mit Pyridin und Wasser im Druckrohr auf 135° teilweise in l-Xylonsäure verwandelt (E. F., B.). Bei der Reduktion mit Natriumamalgam in schwach schwefelsaurer Lösung entsteht d-Lyxose (E. F., B.).

2. Oxy-oxo-Verbindungen $C_6H_{10}O_5$.

 $\begin{array}{ll} 1. & \alpha.\beta - Dioxy - \gamma - [\alpha - oxy - \ddot{\alpha}thyl] - butyrolacton, & \alpha.\beta.\delta - Trioxy - \gamma - caprolacton \\ C_6H_{10}O_5 &= \begin{array}{ll} HO \cdot HC - CH \cdot OH \\ OC \cdot O \cdot CH \cdot CH(OH) \cdot CH_3 \end{array} \end{array}$

steht durch Oxydation von Isodulcit (Bd. I, S. 870) mit überschüssigem Bromwasser und Eindampfen der wäßr. Lösung (Will, Peters, B. 21, 1813; Rayman, B. 21, 2048; Schnelle, Tollens, A. 271, 68). — Darst. durch Oxydation von Rhamnose mit Bromwasser: E. Fischer, Herborn, B. 29, 1962. — Nadeln (aus Wasser)²). F: 150—151° (Sch., T.),

¹⁾ Nach der neueren Nomenklatur als d-Xylonsäure zu bezeichnen.

Die krystallographischen Angaben von Will, Peters, B. 22, 1703 und Groth, Ch. Kr.
 443 kommen nach den Arbeiten von Jackson, Hudson, Am. Soc. 52, 1270; Wright, Am. Soc. 52, 1276, die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910]

148° (WI., P.), 140—142° (R.). Leicht löslich in Wasser und Alkohol, schwer in Äther (WI., P.; R.). 100 Tle. Aceton lösen bei 20° 3,85 Tle. (E. F., H.). $[\alpha]_{\mathbb{D}}$: — 39,1° (in Wasser; p=9,7) (R.); $[\alpha]_{\mathbb{D}}^n$: —38,1° (in Wasser; c=5,7); die Drehung sinkt innerhalb von 3 Tagen auf $[\alpha]_{\mathbb{D}}^n$: —37,5° (SCH., T.). — Reduziert Silberlösungen unter Spiegelbildung (R.). Beim Erhitzen mit Pyridin und Wasser unter Druck auf 150—155° entsteht 1-Isorhamnonsäure (Bd. 111, S. 477) (E. F., H.). Liefert mit Formaldehyd und konz. Salzsäure Methylen-rhamnonsäure-lacton (Weber, T., B. 30, 2512; A. 299, 324).

Artikel Isorhamnonsäure (Bd. III, S. 477). — Krystalle (aus 200 Tln. heißem Aceton), die zur Analyse bei 100° getrocknet wurden. F: 152—154° (korr.) (E. FISCHER, HEBBORN, B. 29, 1963). Sehr leicht löslich in Wasser unter teilweiser Hydrolyse, ziemlich leicht in Methylalkohol, unlöslich in Äther. Zeigt in wäßr. Lösung (p = 8,9) unmittelbar nach der Herstellung $[\alpha]_0^n$: —62,0°, nach 20 Minuten $[\alpha]_0$: —46°, nach 24 Stdn. den konstanten Endwert $[\alpha]_0$: —5,2°. — Gibt beim Erwärmen mit Salpetersäure (D: 1,2) auf 50—55° Xylotrioxyglutarsäure (Bd. III, S. 553). Bei Reduktion mit Natriumamalgam entsteht 1-Isorhamnose.

c) γ -Lacton der d-Rhodeonsäure und γ -Lacton der l-Fuconsäure $C_6H_{10}O_5=0H_{10}O_5$

- a) γ -Lacton der d-Rhodeonsäure (Konfiguration entsprechend Formel I). B. Beim Eindampfen einer wäßr. Lösung von Rhodeonsäure (Bd. III, S. 477) (Votoček, Zeitschr. f. Zuckerind. in Böhmen 27, 18; C. 1902 II, 1361). Nadeln. F: 105,5°. Leicht löslich in Wasser. Die wäßr. Lösung (p = 6,7) zeigt nach einem Tag [α]_D: —76,3°, nach Verlauf einiger Tage [α]_D: —29,1°. Wird durch Natriumamalgam zu Rhodeose (Bd. I, S. 876) reduziert.
- β) γ-Lacton der l-Fuconsäure (Konfiguration entsprechend Formel II). B. Beim Eindampfen der wäßr. Lösung von Fuconsäure (Bd. III, S. 477) (MUTHER, TOLLENS, B. 37, 308). F: 106—107°. [α]_D: +78,3° (in Wasser; c = 3,2).
- d) Derivat eines $\alpha.\beta$ -Dioxy- γ - $[\alpha$ -oxy- $\ddot{\alpha}$ thyl]-butyrolactons, dessen Konfiguration nicht bekannt ist.
- β -Oxy- α -methoxy- γ -[α -oxy- α -methoxy- γ -caprolacton (?), Lacton der Digitalonsäure $C_7H_{12}O_5=CH_{12}O_5$
- OC·O·CH·CH(OH)·CH₃ (?). Zur Konstitution vgl. Kiliani, B. 55 [1922], 91. B. Beim Verdampfen der wäßr. Lösung von Digitalonsäure $CH_3 \cdot CH(OH) \cdot CH(OH) \cdot CH(OH) \cdot CH(O \cdot CH_3) \cdot CO_2H(?)$ [in Bd. III, S. 480 auf Grund früherer Konstitutionsauffassung als Heptantetrol-(3.4.5.6 oder 2.3.4.6)-säure-(1) aufgeführt] (K., Ar. 230, 256). Rhombisch (Haushoffer, B. 25, 2117). Reduziert Fehlingsche Lösung nicht (K., B. 35, 2117). Beim Erwärmen mit Silberoxyd entsteht Essigsäure (K., B. 25, 2117). Gibt bei der Oxydation mit konz. Salpetersäure den Methyläther einer Trioxyglutarsäure (in Bd. III, S.554 auf Grund früherer Konstitutionsauffassung als $\alpha.\beta.\beta'$ -Trioxy-adipinsäure aufgeführt) (K., B. 49 [1916], 709 Anm. 1; Ar. 254 [1916], 281 Anm. 3; B. 55 [1922], 91).
- 2. α -Oxy- γ -[α . β -dioxy- α thyl]-butyrolacton, α . δ . ϵ -Trioxy- γ -caprolacton, Lacton der Metasaccharinsäure, Metasaccharin $C_0H_{10}O_5=HO\cdot HC$ — CH_2
- B. s. bei Metasaccharinsäure (Bd. III, S. 477). Rhomoc' OC·O·CH·CH(OH)·CH₂·OH
 bisch bisphenoidisch (Haushofer, B. 16, 2627; Z. Kr. 9, 526; vgl. Groth, Ch. Kr. 3, 442). Beginnt bei 135° zu erweichen und schmilzt bei 141—142° (Killani, B. 16, 2628). Leicht löslich in Wasser und Alkohol, schwer in Äther (K., B. 16, 2628; Nef, A. 357, 309). [α]₅⁶: —48,4° (in Wasser; p = 1,1) (K., B. 16, 2627). Bei der Oxydation mit Salpetersäure (D: 1,2) entsteht Metasaccharonsäure HO₂C·CH(OH)·CH(OH)·CH₂·CH(OH)·CO₂H (Bd. III, S. 554) (K., B. 18, 644; K., Loeffler, B. 38, 2668 Anm. 1). Liefert beim Kochen mit Jodwasserstoffsäure und rotem Phosphor γ-Caprolacton CH₃·CH₂·CH·CH₂·CH₂·CO·O (K... B. 18, 642). Über die Einw. von Phenylhydrazin vgl.: K., Sanda, B. 26, 1653; Nef, A.

857, 304; K., EISENLOHR, B. 42, 2608 Anm. 4; N., A. 376 [1910], 73; K., B. 44 [1911], 109. Verbindung C₃₄H₃₀O₂N₄(?). B. Beim Erhitzen von Metasaccharin und Phenylisocyanat im geschlossenen Rohr auf 165° (Tesmer, B. 18, 2608). — Amorphes Pulver. F: 210°. Leicht löslich in den meisten Lösungsmitteln.

3. α-Oxy-α-[α.β-dioxy-āthyl]-butyrolacton oder α.β-Dioxy-α-[β-oxy-āthyl]butyrolacion, Lacton der Parasaccharinsäure, Parasaccharin C.H.1005 = $\mathbf{H_{2}C}$ $\mathbf{C}(\mathbf{OH}) \cdot \mathbf{CH}(\mathbf{OH}) \cdot \mathbf{CH_{2}} \cdot \mathbf{OH}$ oder $\mathbf{HO} \cdot \mathbf{HC}$ $\mathbf{C}(\mathbf{OH}) \cdot \mathbf{CH_{2}} \cdot \mathbf{CH_{3}} \cdot \mathbf{OH}$ B. Nach KILIANI. H.C.O.CO

LOEFFLER, B. 37, 1199 entsteht Parasaccharin durch Eindampfen der wäßr. Lösung der Parassocharinsaure HO·CH₂·CH₂·C(OH)(CO₂H)·CH(OH)·CH₂·OH (Bd. III, S. 479). — Krystallkuchen (K., L., B. 37, 3613). Schwer löslich in Äther (K., B. 41, 162). — Durch Einw. von verd. Salpetersäure (D: 1,2) bei 45-55° erhält man Parasaccharon (Syst. No. 2625) und wenig Oxalsäure (K., Naegell, B. 35, 3533; K., L., B. 87, 3613). Bei der Oxydation mit Silberoxyd entstehen Kohlendioxyd und Glykolsäure neben geringen Mengen einer Säure, deren Calciumsalz in farblosen Tafeln krystallisiert (K., Sanda, B. 26, 1654). Bei der Reduktion mit Jodwasserstoffsäure und Phosphor bildet sich α-Athyl-butyrolacton (K., S.).

Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] gibt Ner, A. 876, 53, 75 an, daß das vorstehend beschriebene Khilanische Parasaccharin mit β -d-Galaktometasaccharin identisch sei. Nach Killani, B. 44 [1911], 113 ist das von ihm früher beschriebene Parasaccharin ein Gemenge gewesen.

4. $\alpha.\beta$ -Dioxy- α -methyl- γ -oxymethyl-butyrolacton, $\alpha.\beta.\delta$ -Trioxy- α -methylγ-valerolacton, Lacton der Saccharinsdure, Saccharin CeH100s = $(CH_{\bullet})(HO)C - CH \cdot OH$

B. Bildet sich bei Einw. von Kalkhydrat auf Invertzucker $OC \cdot O \cdot CH \cdot CH^{2} \cdot OH$ und kommt daher in den Produkten der Zuckerfabrikation vor (v. Lippmann, B. 13, 1826). Weitere Bildungen s. bei Glykosaccharinsäure (Bd. III, S. 478). — Prismen. Rhombisch bisphenoidisch (Des Cloizeaux, C. r. 89, 922; Bl. [2] 35, 439; Z. Kr. 4, 637; Beugnatelli, Z. Kr. 29, 54; Fock, A. 359, 318; vgl. Groth, Ch. Kr. 3, 426, 441). F: 160—161° (Scheibler, B. 13, 2214; Herrmann, Tollens, B. 18, 1334; Rimbach, Heiten, A. 359, 318). Flüchtig; nicht süß, besitzt bitteren Nachgeschmack (Philigor, C. r. 89, 920; B. 13, 196). Leicht löslich in siedendem, schwer in kaltem Wasser (P., C. r. 89, 920; Bl. [2] 35, 439; B. 13, 196). 100 Tle. Wasser lösen 13 Tle. bei 150 (P., C. r. 89, 920; B. 13, 196); schwer löslich in siedendem Äther (Nef. A. 357, 310); kann der konzentrierten wäßrigen Lösung selbst in Gegenwart von Soda durch Äther entzogen werden (Kilani, B. 15, 701). [α] $_0^{p,s}$: $+93,8^{\circ}$ (in Wasser; c=12) (Sch., B. 13, 2216); [α] $_0$: $+93,1^{\circ}$ (in Wasser; c=3,7) (Herr., T.). [α] $_0^{p,s}$: $+93,8^{\circ}$ (in Wasser; p=1,5), p=1,5, für verschiedene Lichtarten und Konzentrationen: R., HEI., A. 359, 320. Verbrennungswarme: 656,9 kcal/Mol (Stohmann, Langbein, J. pr. [2] 45, 313). Elektrolytische Dissoziationskonstante k bei 25°: 1,1×10⁻⁶ (Walden, B. 24, 2028). — Saccharin liefert beim Erwärmen mit Silberoxyd und Wasser Ameisensäure, Essigsäure und Glykolsäure (K., B. 15, 701), bei der Oxydation mit konz. Salpetersäure Oxalsäure und Saccharon (Syst. No. 2625) (K., A. 218, 363), bei der Oxydation mit Konz. Salpetersaure Oxalsaure und Saccharon (Syst. No. 2625) (K., A. 218, 363), bei der Oxydation mit Kaliumpermanganat Kohlendioxyd und Essigsäure (K., B. 15, 702; vgl. P., C. r. 90, 1142; Bl. [2] 36, 226; J. 1880, 1025). Reduziert selbst beim Kochen in Gegenwart von etwas verd. Schwefelsäure Fehlingsche Lösung nicht (P., C. r. 90, 1142; B. 13, 1364; J. 1880, 1025). Beim Kochen von Saccharin mit konz. Jodwasserstoffsäure und Phosphor entstehen α-Methyl-γ-valerolacton (K., A. 218, 371) und Methylpropylessigsäure (Liebermann, Scheibler, B. 16, 1821). Beim Erhitzen mit Kali auf 205—220° entstehen Ameisensäure und Milchsäure (Herr., T.). Mit Jod-Jodkaliumlösung und Natronlauge bildet sich Jodoform (Herr., T.) bei längerem Kochen der wäßr. Lösung mit Calciumcarbonat oder rascher mit Kalkwasser entsteht das Calciumsalz der Glykosaocharinsäure (K., B. 15, 2956; vgl. P., C. r. 90, 1142; Bl. [2] 36, 226). Bleibt bei 20-stdg. Kochen mit Salzsäure (D: 1,19) fast unverändert (Herr., T.). Liefert mit Formaldehyd und Salzsäure eine Verbindung $C_{18}H_{20}O_{10}$ (s. u.) (Weber, Tollens, B. 30, 2513; A. 299, 333). Gärt nicht mit Bierhefe (P., C. r. 89, 920; 90, 1142; Bl. [2] 36, 226; B. 13, 1364).

Verbindung C₂₄H₂₀O₂N₄(?). B. Bei zweistündigem Erhitzen von Saccharin mit Phenylisocyanat im Druckrohr auf 165° (Tesmer, B. 18, 2607). — Nadeln (aus Aceton). Schmilzt unter Zersetzung bei 230—240°. Schwer löslich in Benzol und Alkohol, etwas leichter in Aceton, sehr leicht in heißem Anilin. — Wird von Barytwasser im Druckrohr bei 160-1700 glatt in Kohlensäure, Anilin und Saccharinsäure zerlegt.

Verbindung C₁₅H₂₀O₁₀, vielleicht Trimethylendisaccharin C₁₂H₁₆(CH₂)₂O₁₀. B. Durch längeres Erwärmen gleicher Teile von Saccharin, 40% iger Formaldehydlösung und Salzsäure (D: 1,19) auf dem Wasserbad (Weber, Tollens, B. 30, 2513; A. 299, 333).

— Täfelchen (aus Aceton). F: 139—140°. Löst sich in 1020 Tln. Wasser von 20°, in ca. 90 Tln. Wasser von 100°; leicht löslich in Aceton, ziemlich schwer in Alkohol. [α]_D: —22,8° (in Aceton; c = 5.9).

5. α -Oxy- α . γ -bis-oxymethyl-butyrolacton, α . δ -Dioxy- α -oxymethyl- γ -valerolacton, Lacton der Isosaccharinsdure, Isosaccharin $C_6H_{10}O_5=(HO\cdot CH_1)(HO)C$ — CH_2

OC·O·CH·CH₂·OH.

B. s. bei Isosaccharinsäure (Bd. III, S. 479). — Monoklin OC·O·CH·CH₂·OH.

B. s. bei Isosaccharinsäure (Bd. III, S. 479). — Monoklin sphenoidisch (Haushoffer, Z. Kr. 8, 382; J. 1883, 1364; vgl. Groth, Ch. Kr. 3, 442). F: 95°; flüchtig (Cuisinier, Bl. [2] 38, 512). Äußerst leicht löslich in Wasser (Killani, B. 18, 632), löslich in Methylalkohol, Äthylalkohol und Glycerin (C.), schwer löslich in Äther (Nef. A. 357, 310). [α]_D: +63,0° (in Wasser; p = 10) (C.). Konz. Essigsäure erhöht das Drehungsvermögen (C.). Einw. von alkal. Kupferlösung auf das Drehungsvermögen: Grossmann, C. 1907 I, 25. Elektrolytische Dissoziationskonstante k bei 25°: 1,15×10⁻⁶ (Walden, B. 24, 2028). — Reduziert Ferlingsche Lösung nicht (C.). Verhalten beim Kochen mit Jodwasserstoffsäure und Phosphor s. bei Isosaccharinsäure, Bd. III, S. 479.

Verbindung $C_{34}H_{30}O_9N_4$ (?). B. Beim Erhitzen von Isosaccharin mit Phenylisocyanat im Druckrohr auf 165° (Tesmer, B. 18, 2609). — Amorphes Pulver. F: 181°. Leicht löslich

in den meisten Lösungsmitteln.

6. 3.4.5¹-Trioxy-2¹-oxo-2.5-dimethyl-furantetrahydrid, 3.4-Dioxy-5-oxy-methyl-2-formyl-furantetrahydrid, 3.4-Dioxy-5-oxy-methyl-tetrahydro-HO·HC—CH·OH

furfurol, Chitose $C_6H_{10}O_5 = \frac{1}{HO \cdot CH_2 \cdot HC \cdot O \cdot CH \cdot CHO}$. Zur Konstitution vgl. E. Fischer,

ANDREAE, B. 36, 2589; VAN EKENSTEIN, BLANKSMA, B. 48 [1910], 2360; LEVENE, Bio. Z. 124 [1921], 47, 77; HAWORTH, HIRST, NICHOLSON, Soc. 1927, 1515. — B. Aus salzsaurem Glykosamin durch Einw. von Nitrit (Ledderhose, H. 4, 154; Tiemann, B. 17, 245; E. Fischer, Tiemann, B. 27, 139; E. F., Andreae, B. 36, 2587). — Flocken (aus Alkohol + Äther). Unbeständig an der Luft (T.). Ist in wäßr. Lösung rechtsdrehend (Led.; T.; vgl. Irvine, Soc. 95, 567). — Reduziert Fehlingsche Lösung (Led.; T.). Durch Oxydation mit Brom entsteht Chitonsäure (Syst. No. 2616) (E. F., T.). Beim Erhitzen mit Oxalsäure in wäßr. Lösung erhält man 5-Oxymethyl-furfurol (Blanksma, C. 1910 I, 539). Ist nicht gärfähig (Led.; T.; E. F., A.).

Methylchitosid $C_7H_{12}O_5 = C_6H_2O_5$ ·CH₃. B. Aus Chitose und $1^{1/2}{}^{0}/_{0}$ Chlorwasserstoff enthaltendem Methylalkohol durch 50-stdg. Erhitzen unter Druck (Neuerra, Wolff, Neimann, B. 35, 4021). — Krystalle mit $2H_1O$ (?) (aus Methylalkohol). F: 169°. Leicht löslich in Wasser, schwer in Alkohol und Aceton. — Wird durch $15^{0}/_{0}$ ige Salzsäure, nicht durch

Fermente hydrolysiert.

Tribenzoylchitose $C_{27}H_{22}O_8 = \frac{C_6H_5\cdot CO\cdot O\cdot HC - CH\cdot O\cdot CO\cdot C_6H_5}{C_6H_5\cdot CO\cdot O\cdot CH_2\cdot HC\cdot O\cdot CH\cdot CHO}$. B. Aus Chitose beim Behandeln mit Benzoylchlorid und Natronlauge (Neu., W., Nei., B. 35, 4022). — Nadeln mit 1 $H_2O(?)$ (aus $75^0/_0$ igem Alkohol)¹). F: 116°. Unlöslich in Wasser und Äther, löslich in warmem Alkohol. Optisch inaktiv. Reduziert Fehlingsche Lösung nicht.

Chitosoxim $C_6H_{11}O_5N=C_6H_{10}O_4(:N\cdot OH)$. — $C_6H_{10}O_4(:N\cdot OH)+3PbO+H_2O(?)$. B. Durch Schütteln von Glykosaminoxim (Bd. IV, S. 331) mit n-Salzsäure und der entsprechenden Menge Silbernitrit und Behandeln des erhaltenen Reaktionsproduktes mit ammoniakalischem Bleiessig (Neu., W., Nei., B. 35, 4021). Pulver. Verglimmt beim Erhitzen unter lebhaftem Sprühen.

7. α -Oxy- β . β -bis-oxymethyl-butyrolacton $C_6H_{10}O_5 = \frac{HO \cdot HC - C(CH_2 \cdot OH)_2}{OC \cdot O \cdot CH_2}$

B. Bei 20-stdg. Erhitzen von 27 g Brenztraubensäure mit 90 g 40% jeer Formaldehydlösung, 1200 g Wasser und 70 g in 250 cm³ Wasser gelöschtem Kalk auf 100°; man filtriert, entfernt aus dem Filtrat den Kalk durch Oxalsäure und dampft ein (Hosaeus, A. 276, 80). — Prismen (aus Alkohol). F: 184°. Sehr leicht löslich in Wasser.

- 8. Antiaronsäurelacton $C_9H_{10}O_5$. B. s. bei Antiaronsäure (Bd. III, S. 480). Monokline (Kiliani, Ar. 234, 450; B. 46 [1913], 669) Krystalle. Beginnt bei 168° zu erweichen und sintert gegen 180°; $[\alpha]_0^{\infty}$: —30° (in Wasser; p=3,2) (K., Ar. 234, 450).
- 3. α -Oxy- γ -[α . β -dioxy-propyl]-butyrolacton, α . δ . ϵ -Trioxy- γ -önantholacton, Lacton der Digitoxosecarbonsäure $C_7H_{12}O_6=HO\cdot HC$ — CH_2

 $OC \cdot O \cdot CH \cdot CH(OH) \cdot CH(OH) \cdot CH_3$. B. s. bei der Digitoxosecarbonsäure (Bd. III, S. 480).

¹) Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] stellen ZAWJALOW, JANISCHEWSKI, Jahrb. der Univ. Sofia 8, 135; C. 1930 I, 2570 Tribenzoylchitose vom Schmelzpunkt 120° dar, die in heißem Wasser, Alkohol und Äther löslich ist.

— Krystalle (aus 50% digem Alkohol). F: 153—154% (KILIANI, B. 31, 2456). [α]_D: —12,5% (in Wasser; c = 12), —15,7% (in Wasser; c = 4) (K., B. 55 [1922], 89). Reagiert neutral; beim Kochen der wäßr. Lösung mit Calciumcarbonat entsteht das Calciumsalz der Digitoxosecarbonsäure (K., B. 31, 2456).

4. γ-0xymethyl-α-[β.γ-dioxy-propyl]-butyrolacton, δ-0xy-α-[β.γ-dioxy-propyl]-γ-valerolacton C₈H₁₄O₅ = HO·CH₂·CH(OH)·CH₂·HC—CH₂
OC·O·CH·CH₂·OH.

Man erhitzt γ-Brommethyl-α-[β.γ-dibrom-propyl]-butyrolacton (Bd. XVII, S. 244) mit Barytwasser, macht aus dem erhaltenen Bariumsalz durch Schwefelsäure γ.δ.γ'.δ'-Tetra-oxy-dipropylessigsäure (Bd. III, S. 481) frei und erhitzt diese in wäßr. Lösung (Firrig, O—OC—OC—CO—OC—CO—OC—CO—OC—CH₂Br·HC—CH₂—C-CH₂·CH·CH₂Br (Syst. No. 2760) mit Baryt und kocht das Reaktionsprodukt (wahrscheinlich das Bariumsalz der Bis-[β.γ-dioxy-propyl]-malonsäure, Bd. III, S. 586) mit Wasser (F., HJ., A. 216, 67).

— Dickflüssiges Öl.

b) Oxy-oxo-Verbindungen $C_nH_{2n-4}O_5$.

- 1. 3.4-Dioxy-2.5-dioxo-furantetrahydrid, Weinsäureanhydrid und Traubensäureanhydrid $C_4H_4O_5=\frac{HO\cdot HC\cdots CH\cdot OH}{OC\cdot O\cdot CO}$.
- a) *[d-Weinsäure]-anhydrid.* Vgl. hierüber die Artikel "Isotartridsäure" und "Weinsäureanhydrid", Bd. III, S. 507.

[O.O-Diacetyl-d-weinsäure]-anhydrid $C_8H_8O_7 = \frac{CH_3 \cdot CO \cdot O \cdot HC - CH \cdot O \cdot CO \cdot CH_3}{OC \cdot O \cdot CO}$.

B. Durch anhaltendes Kochen von d-Weinsäure mit Acetylchlorid (Ph.z. J. 1861, 368:

- B. Durch anhaltendes Kochen von d-Weinsäure mit Acetylchlorid (PΠz, J. 1861, 368; PERKIN, Soc. 20, 149; A. Spl. 5, 287). Darst, Durch Übergießen von 100 g fein gepulverter d-Weinsäure mit einem Gemisch von 200 cm³ Essigsäureanhydrid und 3 cm³ konz. Schwefelsäure und kurzes Aufkochen der Mischung (WOHL, Oesterlin, B. 34, 1144). Nadeln (aus Benzol). F: 126—127° (PERKIN), 125—129° (ANSCHÜTZ, PICTET, B. 13, 1178), 135° (PILZ; WO., OE.). Sublimiert bei 135° (PILZ). Zersetzt sich beim Sieden (PILZ; vgl. PE.). Absorbiert an der Luft Feuchtigkeit unter Bildung von Diacetyl-d-weinsäure (Bd. III, S. 509) (PE.; PICTET, J. 1882, 855). Leicht löslich in Alkohol und Äther (PILZ), etwas löslich in Benzol (PE.). [α]_D: +58,69° (in Benzol; c = 2,1), + 63,08° (in Benzol; c = 1,0); [α]_D: +59,70° (in Aceton; c = 11,7); [α]_D: +62,04° (in Aceton; c = 4,4) (PICTET). Liefert bei längerem Stehenlassen mit überschüssigem Anilin bei mäßiger Wärme [Monoacetyl-d-weinsäure]-dianilid (COHEN, HARRISON, Soc. 71, 1060). Gibt beim Erhitzen mit Anilin auf 150° Acetanilid, d-Tartranilid und Phenyliminosuccinanil bezw. Anilinomaleinsäureanil (Syst. No. 3237) (Co., HA.; CHATTAWAY, PARKES, Soc. 123 [1923], 665). Geht durch Eintragen in auf —5° abgekühltes, wasserfreies Pyridin in das Pyridinsalz des Oxymaleinsäureanhydrids (Syst. No. 3051) über, während mit wasserhaltigem Pyridin saures diacetylweinsaures Pyridin (Syst. No. 3051) über, während mit wasserhaltigem Pyridin saures diacetylweinsaures Pyridin (Syst. No. 3051) entsteht (Wo., OE.).
- [O.O Diisobutyryl d weinsäure] anhydrid $C_{12}H_{16}O_7 = (CH_3)_2CH \cdot CO \cdot CHC CH \cdot O \cdot CO \cdot CH(CH_3)_2$. B. Durch Kochen von 1 Tl. d-Weinsäure mit 3 Tln. Isobutyrylchlorid (Freundler, A. ch. [7] 3, 482). Nadeln (aus Benzol) F: 1159.
- mit 3 Tln. Isobutyrylchlorid (FREUNDLER, A. ch. [7] 3, 482). Nadeln (aus Benzol). F: 115°. [O.O Dibenzoyl d weinsäure] anhydrid $C_{18}H_{12}O_7 =$

C₀H₅·CO·O·HC—CH·O·CO·C₀H₅

OC·O·CO

(PICTET, J. 1882, 855). — Nadeln. F: 174° (Anschütz, Pict at, B. 13, 1178; P.). Schwer löslich in Chloroform und Benzol, sehr schwer in Äther, unlöslich in kaltem Wasser; löst sich in heißem Wasser unter Bildung von Dibenzond der general (Pd. IV. S. 470)(P). I für ich ich in heißem

Wasser unter Bildung von Dibenzoyl-d-weinsäure (Bd. IX, S. 170)(P.). Löst sich in Ammoniak; aus dieser Lösung wird durch Salzsäure eine bei etwa 140° schmelzende Substanz gefällt (A., P.). $[\alpha]_0^{16}$: +142,9° (in Aceton; c = 4,6), +143,2° (in Aceton; c = 1,6) (P.).

[O.O - Diphenacetyl - d - weinsäure] - anhydrid $C_{90}H_{18}O_7 =$ $C_aH_a \cdot CH_a \cdot CO \cdot O \cdot HC \longrightarrow CH \cdot O \cdot CO \cdot CH_a \cdot C_aH_a$ B. Beim Kochen von 1 Tl. d-Weinsäure $OC \cdot O \cdot CO$

mit 3 Tln. Phenylessigsäurechlorid (Freundler, A. ch. [7] 3, 484). — Tafeln. F: 117,5°; unlöslich in Benzol, löslich in Alkohol, Aceton und Chloroform (F., A. ch. [7] 3, 485). [α]₀: $+77,1^{\circ}$ (in Chloroform; c=1,6), $+57,6^{\circ}$ (in Aceton; c=2,2) (F., A. h. [7] 4, 249; vgl. 3, 485).

+77,1° (in Chloroform; c=1,0, +0.5). (in Chloroform; c=1,0, +0.5) $0\dot{c} \cdot 0 \cdot \dot{c} 0$

mit Zimtsäurechlorid (Freundler, A. ch. [7] 3, 486). — Nadeln (aus Benzol oder Chloroform). Schmilzt bei 147—148° und zersetzt sich bei etwas höherer Temperatur. [α]₀: +203,2° (in Aceton; c = 3.1), $+232.8^{\circ}$ (in Chloroform; c = 1.39).

b) Traubensäureanhydrid.

[O.O - Diacetyl - traubensäure] - anhydrid $C_gH_gO_7$ =

CH*CO·O·HC—CH·O·CO·CH3 B. Aus Traubensäure und Acetylchlorid (PERKIN, $0\dot{q} \cdot 0 \cdot \dot{q} 0$

Soc. 20, 150; A. Spl. 5, 289). — Krystalle. F: 126° (PE.), 122—123° (Anschütz, Piotet, B. 13, 1178). — Wird durch Wasser in nicht genauer untersuchte Diacetyltraubensäure übergeführt (Pr.).

2. Oxy-oxo-Verbindungen $C_7H_{10}O_5$.

- 1. γ-Lacton der Chinasäure, Chinid C₇H₁₀O₅, s. $\text{Ho} \cdot \text{Hc} < \stackrel{\text{CH}(\text{OH}) \cdot \text{CH}_2}{\text{CH}_2} > \stackrel{\text{C}}{\text{C}} \cdot \text{OH}$ nebenstehende Formel.
- a) Inaktives Chinid. Das Molekulargewicht ist kryoskopisch in Urethan bestimmt (Eljkman, B. 24, 1298). Zur Konstitution und Konfiguration vgl. H. O. L. Fischer, Dangschat, B. 65 [1932], 1009, 1014. — V. Chinid wurde aus einem technischen Produkt isoliert, das sich beim Trocknen von Köpfen und Blättern der Zuckerrübe an den kälteren Stellen der Trockenvorrichtung absetzte (v. Lippmann, B. 34, 1159).

 — B. Beim Erhitzen von I-Chinasaure (Bd. X, S. 535) auf 220—250°; man krystallisiert das Produkt erst aus Alkohol und dann aus Wasser um (Hesse, A. 110, 335). — Salmiakähnliche Krystalle (aus Alkohol). F: 200° (v. L.), 198° (Eljeman, B. 24, 1297). Leicht löslich in kaltern Wasser, schwerer in verd. Alkohol (H.). Inaktiv (El.). Reagiert neutral (El.). — Gibt bei Behandlung mit Basen inaktive Chinasaure (Bd. X, S. 538) (H.; El.; v. L.).

b) Linksdrehendes Chinid.

Linksdrehendes Chinid-triacetat, linksdrehendes Triacetylchinid $C_{13}H_{16}O_8 =$ $(CH_3 \cdot CO \cdot O)_3C_6H_7 \subset O$. Das Molekulargewicht ist kryoskopisch in Eisessig bestimmt (ERWIG,

Koenies, B. 22, 1460). — B. Man kocht 10 g l-Chinasaure mit 70 cm³ Essigsaureanhydrid mehrere Stunden am Rückflußkühler, verjagt das überschüssige Essigsäureanhydrid durch Destillation, schließlich durch wiederholtes Abdampfen des Rückstandes mit absol. Alkohol und wäscht dann mit wenig kaltem Äther (E., K., B. 22, 1458). — Prismen (aus Alkohol). Rhombisch (Muthmann, B. 22, 1459). Fchmeckt bitter (Gorter, C. 1908 I, 868; A. 359, 223). F: 132° (E., K.), 133—134° (G.). Am leichtesten löslich in siedendem Alkohol, leicht auch in siedendem Wasser, schwer in kaltem Wasser, Alkohol, Äther, kaum in Schwefelkohlenstoff und in kalter Sodalösung (E., K.). [\alpha]": —13,4° (in Aceton; p = 10) (H. O. L. Fischer, B. 54 [1921], 782). — Wird durch Kalilauge zu chinasaurem Kalium verreite (E. K.) verseift (E., K.).

Chinid-tribenzoat, Tribenzoylchinid $C_{28}H_{22}O_8 = (C_6H_5 \cdot CO \cdot O)_8C_6H_7 \langle \begin{matrix} O \\ CO \end{matrix}$. Das Molekulargewicht ist kryoskopisch in Phenol bestimmt (ECHTERMEIER, Ar. 244, 53). — B. Aus 5 g l-Chinasaure, gelöst in der 5-fachen Menge Pyridin, und 15 g Benzoylchlorid, neben etwas Tetrabenzoyl-l-chinasaure (E.). — Krystalle (aus Alkohol). F: 148°. Löslich in Äther und heißem Alkohol, unlöslich in kaltem Wasser und Sodalösung.

Derivat eines Chinasaure-lactons, über dessen konstitutive und konfigurative Beziehung zu Chinid nichts bekannt ist.

Isotriacetylchinid $C_{18}H_{16}O_8 = (CH_2 \cdot CO \cdot O)_3C_6H_{10}C_{10}$. Das Molekulargewicht ist kryoskopisch in Eisessig bestimmt (Erwig, Kornigs, B. 22, 1461). — B. Man erhitzt 1 Tl. l-Chinasaure mit 10 Tln. Essigsaureanhydrid oder das isomere Chinidtriacetat mit Essigsaureanhydrid im geschlossenen Rohr auf ca. 240° (E., K., B. 22, 1460). — Krystalle (aus heißem Alkohol). Monoklin (MUTHMANN, B. 22, 1461). F: 139° (E., K.). Verhält sieh gegen Lösungsmittel wie das Isomere (E., K.). — Wird durch Kochen mit Kalilauge verseift (E., K.).

Oxy-oxo-Verbindung C₇H₁₀O₅.
 Verbindung C₇H₂O₅Br aus Shikimisäuredibromid s. Bd. X, S. 457.

c) Oxy-oxo-Verbindungen C_nH_{2n-6}O₅.

1. 3.4-Dioxy-2.5-dioxo-furandihydrid, Dioxymaleinsäureanhydrid $C_4H_2O_5=\frac{HO\cdot C==C\cdot OH}{OC\cdot O\cdot CO}$.

Diacetoxymaleinsäureanhydrid $C_8H_6O_7=\frac{1}{OC}\cdot O\cdot CO$. B. Beim Kochen von wasserfreier Dioxymaleinsäure mit überschüssigem Acetylchlorid oder Essigsäureanhydrid (Fenton, Soc. 69, 550, 552). — Tafeln (aus absol. Äther). F: 98°. Sehr schwer löslich in kaltem Wasser, ziemlich schwer in Äther, leichter in Alkohol oder Eisessig.

Dibensoyloxymaleinsäureanhydrid $C_{18}H_{10}O_7 = \begin{array}{c} C_6H_5 \cdot CO \cdot O \cdot C = C \cdot O \cdot CO \cdot C_6H_5 \\ OC \cdot O \cdot CO \end{array}$. B.

wasserfreier Dioxymaleinsäure beim Erhitzen mit überschüssigem Benzoylchlorid

Aus wasserfreier Dioxymaleinsäure beim Erhitzen mit überschüssigem Benzoylchlorid (F., Soc. 69, 551). — Nadeln (aus Benzol). F: 167—168°. Leicht löslich in warmem Alkohol, Äther und Benzol, kaum löslich in siedendem Wasser.

2. [1.3-Dioxy-hexahydroisophthalsaure]-anhydrid $C_8H_{10}O_5=$

 H_2C CH_4 COH_1 COH_2 COH_3 COH_3

hexahydroisophthalsaure zur Trockne (MERLING, A. 278, 54). — Prismen (aus Eisessig). F: 174—176°. Löslich in Alkohol, sehr leicht in Wasser.

d) Oxy-oxo-Verbindungen $C_n H_{2n-10} O_5$.

3.6.7-Trioxy-1-oxo-phthalan, 3.6.7-Trioxy-phthalid C₂H₂O₅, Formel I, ist desmotrop mit 5.6-Dioxy-2-formyl-benzoesaure (Noropiansaure), Formel II, Bd. X, 8. 990.

7-Oxy-8.6-dimethoxy-phthalid, Methyläthernoropian-säure-pseudomethylester C₁₀H₁₀O₅, s. nebenstehende Formel.

B. Beim Kochen von Methyläthernoropiansäure (Bd. X, 8. 990)
mit Methylakhohol (Liebermann, B. 30, 693). — F: 67—71°.

Löslich in verd. Sodalösung; kann aus dieser Lösung unverändert wieder ausgefällt werden.

8.6.7 - Trimethoxy - phthalid, Opiansäure - pseudomethylester $C_{11}H_{12}O_5 = (CH_2 \cdot O)_2C_6H_2 \cdot CO \cdot CO$. B. Bei 2-stdg. Kochen von 25 g Opiansäure (Bd. X, S. 990) mit 500 cm³ Methylalkohol (Liebermann, Kleemann, B. 20, 882; Wegscheider, M. 18, 257). — Prismen (aus Äther), Tafeln (aus Methylalkohol und Essigester beim Verdunsten). Monoklin prismatisch (Köchlin, M. 13, 260; vgl. Groth, Ch. Kr. 4, 718). F: 103—103,5° (W.), 102° (Lie., Kl.). Kp₅₃: 238—239° (W.). Leicht löslich in Alkohol, Benzol, Eisessig, Essigester, Chloroform und Aceton, schwer in Schwefelkohlenstoff, sehr schwer in Petroläther; 100 Tle. Äther lösen in der Kälte etwa 0,7 Tle., in der Wärme etwa 1,5 Tle.; 100 Tle. Methylalkohol lösen in der Kälte etwa 3 Tle., in der Wärme etwa 15 Tle. (W.). Verbrennungswärme bei konstantem Volumen: 1262,1 kcsl/Mol (Lieboy, C. r. 130, 509; A. ch. [7] 21, 134). — Liefert beim Nitrieren mit Acetylnitrat in wenig Tetrachlorkohlenstoff bei Zimmer-

temperatur oder mit rauchender Salpetersäure bei 50° Nitroopiansäure-pseudomethylester (S. 166) (W., MÜLLEB, CHIARI, M. 29, 718). Wird schon durch kurzes Kochen mit Wasser völlig verseift (Liu., Kl.; W.).

7-Oxy-6-methoxy-3-äthoxy-phthalid, Methyläthernoropiansäure-pseudoäthylester $C_{11}H_{12}O_5$, s. nebenstehende Formel. B. Beim Kochen von Methyläthernoropiansäure mit absol. Alkohol (Liebermann, B. 30, 692). — Nädelchen (aus Benzol + Ligroin). F: 104—106°. Regeneriert beim Abdampfen mit Wasser die Säure. In kalter verdünnter Sodalösung leicht löslich unter teilweiser Rückbildung der Säure. — Natriumsalz. Schwer löslich in konz. Sodalösung, leicht in Wasser.

6.7 - Dimethoxy - 3 - äthoxy - phthalid, Opiansäure - pseudoäthylester $C_{12}H_{14}O_5 = (CH_3 \cdot O)_2C_6H_2 - \frac{CH(O \cdot C_2H_5)}{CO}O$. B. Bei längerem Stehenlassen einer alkoh. Lösung von Opiansäure im Dunkeln, schneller bei Belichtung (Ciamician, Silber, B. 36, 1581, 4271). Beim Kochen von Opiansäure mit Alkohol (Liebkemann, Kleemann, B. 20, 881). Beim Sättigen einer warmen alkoholischen Lösung von Opiansäure mit Schwefeldioxyd (Wöhler, A. 50, 6). — Prismen. F: 92,2° (Anderson, A. 86, 194), 92° (Lie., Kl.). Unlöslich in Wasser, leicht löslich in Alkohol und Äther (A.). — Gibt durch Nitrierung mit Acetylnitrat in Tetrachlorkohlenstoff bei gewöhnlicher Temperatur oder mit rauchender Salpetersäure bei 50° Nitroopiansäure-pseudoäthylester (Wegscheider, Müller, Chiari, M. 29, 723). Wird durch Kochen mit Wasser verseift (Wö.; Lie., Kl.). Liefert beim Kochen mit Kaliumcyanid in absol. Alkohol Tetramethoxydiphthalyl (s. nebenstehende Formel; Syst. No. 2843) neben anderen Produkten (Goldschmedt, M. 29, 53).

Opiansäure-pseudopropylester $C_{13}H_{16}O_5 = (CH_3 \cdot O)_2C_6H_2 \underbrace{CH(O \cdot CH_3 \cdot CH_2 \cdot CH_3)}_{CO}O$.

B. Beim Kochen von Opiansäure mit Propylalkohol (Liebermann, Kleemann, B. 20, 882). — F: 103°.

Opiansäure - pseudo - tert. - amylester $C_{15}H_{20}O_5 = (CH_3 \cdot O)_2C_6H_3 \underbrace{CH[O \cdot C(CH_3)_3 \cdot C_2H_5]}_{CO}O$. B. Durch Kochen von Opiansäure mit tert. - Amylakohol am Rückflußkühler (Goldschmidt, D. R. P. 97560; C. 1898 II, 527). — Tafelförmige Krystalle (aus siedendem Ligroin). F: 81°. Unlöslich in Wasser, löslich in Alkohol und Äther, leicht löslich in Chloroform, Aceton und Benzol. — Zersetzt sich beim Kochen mit Wasser.

Opiansäure-pseudogeranylester $C_{50}H_{26}O_5 = (CH_3 \cdot O)_2C_0H_2 \underbrace{CH(O \cdot C_{10}H_{17})}_{CO}O$. B. Man erhitzt 20 g Geraniol und 20 g Opiansäure 20—30 Minuten auf 130—135°, trägt die erkaltete Schmelze in 100 cm³ 5°/0ige Sodalösung ein und krystallisiert das Rohprodukt aus Ligroin um (Erdmann, B. 31, 358). — Prismen (aus Ligroin), Nadeln (aus Alkohol). F: 48,5°. Sehr leicht löslich in heißem Alkohol, Äther und Benzol, schwer in Ligroin. — Wird beim Koohen mit Wasser nur langsam zersetzt, kann daher durch Behandlung mit Wasserdampf von flüchtigen Verbindungen befreit werden.

6.7-Dimethoxy-8-acetoxy-phthalid $C_{12}H_{12}O_6 = (CH_3 \cdot O)_2C_6H_2 \cdot CH(O \cdot CO \cdot CH_3) \cdot O$.

B. Bei mehrstündigem Erhitzen von 1 Tl. Opiansäure mit 4—5 Tln. Essigsäureanhydrid und 1 Tl. entwässertem Natriumscetat (Lirbermann, Kleemann, B. 19, 2287). — Nadeln (aus Wasser). F: 120—121°. Unlöslich in kalten Alkalien.

6.7 - Dimethoxy - 3 - propionyloxy - phthalid $C_{13}H_{14}O_6 = (CH_8 \cdot O)_2C_6H_2 \xrightarrow{CH(O \cdot CO \cdot C_3H_5)} O$. B. Analog 6.7-Dimethoxy-3-acetoxy-phthalid (L., K., B. 19, 2289). — Nadeln. F: 111°.

Bis-[6.7-dimethoxy-phthalidyl-(3)]-äther,
,,Opiansäure anhydrid" $C_{20}H_{16}O_{3}$, s. nebenstehende Formel. Zur Konstitution vgl. Wegschender,
hende Formel. Zur Konstitution vgl. Wegschender,
beim Erhitzen über den Schmelzpunkt (Matthessen, Wright, A. Spl. 7, 65), bei 6-stdg.
Erhitzen auf 180—190° (Wegschender, M. 4, 262), bei 2-stdg. Erhitzen im trocknen Luftstrom auf 160° (Liebermann, B. 19, 2286). Man erwärmt Opiansäure mit Phosphorpentachlorid und Phosphoroxychlorid, gießt in Ligroin und läßt die entstandene Substanz im Vakuum stehen (Lie., B. 19, 2287). — Nadeln (aus Aceton). F: 234° (Lie.). Sehr leicht löslich in Chloroform, Essigester, leicht in Benzol, Eisessig und heißem Amylalkohol, ziemlich löslich

in heißem Alkohol, schwer in Äther, unlöslich in kaltem Wasser; unlöslich in kalten Alkalien (WE.). Löst sich unzersetzt in kalter konzentrierter Salpetersäure (WE.). — Liefert mit Brom Bromopiansäure (Bd. X. S. 995) und Bis-[4-brom-6.7-dimethoxy-phthalidyl-(3)]-äther (WE.; vgl. WE., Sp., M. 37, 296). Wandelt sich beim Kochen mit ziemlich konzentrierter Kalilauge in Opiansäure um (WE.). Durch Schmelzen mit Kali und Ansäuern der Schmelze erhält man Mekonin (S. 89) und Hemipinsäure (Bd. X, S. 543) (WE.).

- 4-Brom-3.6.7-trimethoxy-phthalid, Bromopiansäure-pseudomethylester $C_{11}H_{11}O_5Br$, s. nebenstehende Formel. B. Beim Kochen von Bromopiansäure mit Methylalkohol und konz. Schwefelsäure (H. Meyer, M. 26, 1297). Man läßt Thionyl-chlorid auf Bromopiansäure einwirken und setzt das Reaktions-produkt mit Methylalkohol um (H. M.). Nadeln (aus Methylalkohol oder Benzol). F: 109° bis 110°.
- 4-Brom-6.7-dimethoxy-3-ëthoxy-phthalid, Bromopiansäure-pseudoäthylester $C_{12}H_{13}O_6Br = (CH_3\cdot O)_2C_6HBr \xrightarrow{CH(O\cdot C_2H_5)} O$. Zur Konstitution vgl. Wegscheider,

SPÄTH, M. 37 [1916], 298. — B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von Bromopiansäure (Tust, B. 25, 1996). — Nädelchen (aus Alkohol). F: 78°; leicht löslich in Alkohol, Äther, Chloroform und Benzol (T.).

Bis-[4-brom-6.7-dimethoxy-phthalidyl-(3)]äther, ,,[Brom-opiansäure]-anhydrid"

C₂₀H₁₆O₃Br₈, s. nebenstehende Formel. Zur Konstitution vgl. Wegscheider, Späth, M. 37 [1916],
296. — B. Bei Einw. von Brom auf ,,Opiansäure-anhydrid", neben Bromopiansäure (We., M. 4, 269). — Krystalle (aus Xylol). F: 250—251°; sehr leicht löslich in Chloroform, leicht in Essigester, Benzol und heißem Eisessig, ziemlich schwer in Alkohol und Schwefelkohlenstoff, schwer in Methylalkohol und Äthylalkohol, fast unlöslich in Petroläther und siedendem Wasser (We.). — Längeres Kochen mit Kalilauge führt zu Bromopiansäure (We.).

- 4-Nitro-3.6.7-trimethoxy-phthalid, Nitroopiansäure-pseudomethylester $C_{11}H_{11}O_7N$, s. nebenstehende Formel. Das Molekulargewicht ist kryoskopisch in Phenol bestimmt (Wegscheider Kuńy v. Dubrav, v. Rušnov, M. 24, 800). B. Aus Opiansäuremethylester mit Salpeterschwifelsäure bei —17° CH3·O (Wegscheider, Chiari, M. 29, 729). Aus Opiansäure-pseudomethylester mit Acetylnitrat in Tetrachlorkohlenstoff bei Zimmertemperatur oder mit rauchender Salpetersäure bei 50° (Wei, M., Ch., M. 29, 718, 719, 720). Bei längerem Erhitzen von Nitroopiansäure mit Methylalkohol auf 100° (Wei, K. v. D., v. Ru., M. 24, 796). Beim Einleiten von Chlorwasserstoff in eine methylalkoholische Lösung von Nitroopiansäure beim Kochen mit Methyljodid (H. Meyer, M. 26, 1298). Nadeln (aus Methylalkohol). F: 181,5—182,5°; 1 g löst sich in ca. 125 g heißem Methylalkohol; leicht löslich in Aceton und heißem Benzol (Wei, K. v. D., v. Ru.). Ist gegen Kaliumpermanganat sehr beständig (Wei, K. v. D., v. Ru.). Wird durch Eindampfen mit Wasser zu Nitroopiansäure verseift (Wei, K. v. D., v. Ru.). Kochen mit alkoh. Kali führt zu einer gelben Substanz vom Schmelzpunkt 260°, die sich in konz. Schwefelsäure mit blauer Farbe löst (Wei, K. v. D., v. Ru.).
- 4-Nitro-6.7-dimethoxy-3-äthoxy-phthalid, Nitroopiansäure-pseudoäthylester $C_{18}H_{18}O_7N = (CH_3 \cdot O)_8C_6H(NO_8) \xrightarrow{CH(O \cdot C_8H_6)} O$. Zur Konstitution vgl. Wegschender, Späth, M. 37 [1916], 302. B. Aus Opiansäure-pseudoäthylester mit Acetylnitrat in Tetrachlorkohlenstoff bei Zimmertemperatur oder mit rauchender Salpetersäure bei 50° (We., Müller, Chiari, M. 29, 723). Bei 18-stdg. Erhitzen von Nitroopiansäure mit Alkohol im geschlossenen Rohr auf 100° (We., Kuśy v. Dúbrav, v. Rušnov, M. 24, 803). Beim Kinleiten von Chlorwasserstoff in die erwärmte alkoholische Lösung von Nitroopiansäure (Prinz, J. pr. [2] 24, 358). Durch Umsetzung von nitroopiansaurem Silber mit Äthyljodid und Umkrystallisieren des Reaktionsproduktes aus Alkohol (We., K. v. D., v. Ru., M. 24, 803; vgl. We., Sp., M. 37, 300). Nadeln (aus Schwefelkohlenstoff). F: 96° (P.). Löslich in Schwefelkohlenstoff und in heißem Benzol, sehr leicht löslich in Äther (P.). Wird von Wasser verseift (P.).
- 4 Nitro 6.7 dimethoxy 3 acetoxy phthalid $C_{18}H_{11}O_{9}N = (CH_{3}\cdot O)_{8}C_{9}H(NO_{8}) \underbrace{CH(O\cdot CO\cdot CH_{2})}_{CO}O$. B. Aus Nitroopianssure durch Erhitzen mit

Essigsäureanhydrid und entwässertem Natriumacetat (LIEBERMANN, KLEEMANN, B. 19, 2288). — Krystalle (aus verd. Alkohol). Wird von Soda in der Kälte nicht gelöst, beim Kochen in Essigsäure und Nitroopiansäure gespalten.

Bis-[4-nitro-6.7-dimethoxy-phthalidyl-(3)]
äther, "[Nitro-opiansäure]-anhydrid"

C₃₀H₁₆O₁₃N₃, s. nebenstehende Formel. Zur Konstitution vgl. Wegscheder, Müller, A. 433 [1923],
39; Faltis, Kloiber, Gutilohn, Attia, M. 53/54 CH₃·O

O·CH₃

[1929], 625. — B. Neben Nitroopiansäure aus Opiansäure in heißem Eisessig und rauchender Salpetersäure (We., M., Chiari, M. 29, 742; vgl. Prinz, J. pr. [2] 24, 361; We., M.). Aus "Opiansäureanhydrid" (S. 165) mit Salpeterschwefelsäure (We., M. 4, 270; vgl. We., M.). — Nadeln (aus Eisessig). F: 248—249° (We.), 252° (P.).

e) Oxy-oxo-Verbindungen $C_n H_{2n-12} O_5$.

1. Oxy-oxo-Verbindungen $C_8H_4O_5$.

- 1. 4.5 Dioxy 1.3 dioxo phthalan, [3.4 Dioxy phthal-săure]-anhydrid, Norhemipinsăureanhydrid $C_8H_4O_5$, s. nebenstehende Formel. B. Bei 1-stündigem Erhitzen von entwässerter Norhemipinsäure (Bd. X, S. 543) auf 205—210° (Freund, Horst, B. 27, 338). Săulen mit $2H_2O$. Verliert das Krystallwasser bei 105°. F: 238°. Löslich in viel Wasser mit grüner Fluorescenz, wenig in Toluol und Xylol, fast unlöslich in Benzol. Starke Säure. $Ba(C_8H_2O_5)_2 + 4H_2O$. Hellgelbe Säulen.
- [3.4 Dimethoxy phthalsäure] anhydrid, Hemipinsäureanhydrid $C_{10}H_8O_5 = (CH_3 \cdot O)_2C_6H_3 < CO > O$. B. Bei 1-stündigem Erhitzen von Hemipinsäure auf ca. 180° (Beckett, Wright, Soc. 29, 173, 282; J. 1876, 807). Aus Hemipinsäure durch Einw. von 2 Mol Phosphorpentachlorid (Prinz, J. pr. [2] 24, 370; vgl. Freund, Horst, B. 27, 333). Aus Hemipinsäure bei kurzer Einw. eines Gemisches gleicher Volumina Methylalkohol und konz. Schwefelsäure bei gelinder Wärme (Wegscheider, M. 18, 649). Beim Erhitzen von Hemipinsäure-methylester (1) oder Hemipinsäure-methylester (2) im Kohlensäurestrom auf 200—220° (Wegscheider, M. 3, 368, 371; 16, 94). Nadeln (aus Xylol). F: 169° (We., M. 3, 351 Anm. 3), 166—167° (korr.) (Be., We., Soc. 29, 282; J. 1876, 307). Sehr leicht löslich in heißem Benzol, leicht in heißem Alkohol, löslich in Chloroform, ziemlich schwer löslich in Äther, schwer in Schwefelkohlenstoff, unlöslich in Petroläther (We., M. 3, 372). Hemipinsäure-anhydrid gibt beim Behandeln mit Zinkstaub in siedendem Eisessig Pseudomekonin (S. 88) (Salomon, B. 20, 889). Wird durch Kochen mit Wasser in Hemipinsäure übergeführt (We., M. 18, 649). Liefert bei gelindem Erwärmen mit 6°/oigem Ammoniak Hemipinsäure-amid-(2) und wenig Hemipinsäure-amid-(1) (Hoogewerff, van Dorp, R. 14, 271). Bei 2-stündigem Kochen mit 20 Tin. Methylalkohol entsteht Hemipinsäure-methylester-(2) (We., M. 16, 86; vgl. Kahn, B. 36, 2533). Liefert mit Natriummethylat in Gegenwart von Methylalkohol der Benzol Hemipinsäure-methylester-(2) und weniger Hemipinsäure-methylester-(1) (We., M. 18, 420, 431). Liefert mit Anisol in Benzól in Gegenwart von AlCl₂ in der Wärme 3.4-Dimethoxy-2-anisoyl-benzoesäure (Bistreycki, Yssel de Schepper, B. 31, 2796).
- [8 oder 4-Oxy-4 oder 3-chlormethoxy-phthalsäure]-anhydrid, [4 oder 3-Chlormethyläther-norhemipinsäure]-anhydrid $C_0H_5O_5Cl = (ClOH_2 \cdot O)(HO)C_0H_2 < {CO \atop CO}>O$. B. Wurde einmal erhalten durch 5-stündiges Erhitzen von Hemipinsäure mit 5 oder Phosphorpentachlorid im Druckrohr auf 170—175° und Behandeln des Reaktionsproduktes mit kaltem Wasser (Fraund, Horst, B. 27, 333, 334). Krystalle. F: 130—135°.
- [3.4 Bis chlormethoxy phthalsäure] anhydrid, [3.4 Bis chlormethyläthernorhemipinsäure]-anhydrid $C_{10}H_6O_5Cl_2=(CH_3Cl\cdot O)_2C_6H_2 < CO > 0$. B. Bei 5-stündigem Erhitzen von Hemipinsäure mit 5 Mol Phosphorpentachlorid im Druckrohr auf 170—175°; man gießt in Wasser, preßt die gefällte Masse ab, wäscht sie mit Äther und krystallisiert sie aus Benzol um (Fraund, Horst, B. 27, 334). Täfelchen (aus siedendem Benzol). Erweicht bei 160° und schmilzt bei 166°. Zerfällt bei längerem Kochen mit Wasser in Norhemipinsäure, Formaldehyd und Chlorwasserstoff.

4.5 - Dimethoxy-3 - oxo - 1 - benzylimino - phthalan, 6.7 - Dimethoxy - 8 - benzylimino - phthalid, N - Benzyl-[hemipinsäure-isoimid-(1)] C₁₇H₁₈O₄N, s. nebenstehende Formel. B. Aus Hemipinsäure-benzylamid-(1) (Bd. XII,

CHa · O CH₃·O C(:N · CH2· CaHs)

S. 1064) und Acetylchlorid analog N-Benzyl-[hemipinsäure-isoimid-(2)] (VAN DER MEULEN, R. 15, 286). — Tafeln (aus Äther). F: 80—82°.

4.5 - Dimethoxy - 1 - oxo - 8 - benzylimino - phthalan, 4.5 - Dimethoxy - 8 - bensylimino - phthalid, N - Bensylhemipinsäure-isoimid-(2)] $C_{17}H_{18}O_4N$, s. nebenstehende Formel. B. Das Hydrochlorid entsteht bei 7 Minuten langem

$$\begin{array}{c|c} CH_3 \cdot O \\ CH_3 \cdot O \cdot & CH_2 \cdot C_0H_5 \\ \hline & CO \end{array} > O$$

Erhitzen von 2,5 g Hemipinsäure-benzylamid-(2) mit 15 g Acetylchlorid auf 60°; man fällt durch Schwefelkohlenstoff, filtriert, löst das Salz in trocknem Äther und zersetzt es mit einem geringen Überschuß wäßriger Kalilauge (v. d. M., R. 15, 284). — Nadeln. F: 99—100°. — Geht schon an feuchter Luft in Hemipinsäure-benzylamid-(2) über.

N - Benzyl - hemipinsäureimid, 2 - Benzyl - 4.5 - dimethoxy - 1.8 - dioxo - isoindolin ${\rm C_{17}H_{15}O_4N = (CH_3 \cdot O)_2C_6H_2 < }_{\rm CO}^{\rm CO} > {\rm N \cdot CH_2 \cdot C_6H_5} \ \ {\rm s. \ \, Syst. \ \, No. \ \, 3241.}$

4.5-Dimethoxy-8 oder 1-oxo-1 oder 3-hydrazono-phthalan, 6.7 oder 4.5-Dimethoxy-8-hydrazono-phthalid $C_{10}H_{10}O_4N_2$, Formel I oder II. Vielleicht besitzt das Hemipinhydrazid (Bd. X, S. 549) eine durch diese Formeln ausgedrückte Konstitution.

I.
$$CH_3 \cdot O$$

$$CH_3 \cdot$$

7 - Brom - 4.5 - dimethoxy 3 - oxo - 1 - oximino - phthalan, 4 - Brom - 6.7 - dimethoxy - 8 - oximino-phthalid C₁₀H₈O₅NBr, Formel III. Vielleicht besitzt die Ver-

[6 - Nitro - 8.4 - dimethoxy - phthalsäure] - anhydrid, [6 - Nitro - hemipinsäure] - anhydrid C₁₀H,O₇N, Formel IV. B. Bei 1—2-stündigem Erhitzen von 6-Nitro-hemipinsäure (Bd. X, S. 549) auf 160—165° (GRÜNE, B. 19, 2304; vgl. LIEBERMANN, B. 19, 2286), zweckmäßig im Kohlensäurestrom (Wegscheider, Strauch, M. 29, 569). Bei längerem Erhitzen von 6-Nitro-hemipinsäure-methylester-(2) auf 135° (We., St., M. 29, 568). — Prismen oder Tafeln (aus Benzol). F: 154—155° (We., St.). Leicht löslich in Benzol (We., Klemenc, M. 31, 739). — Gibt beim Kochen mit Methylalkohol 6-Nitro-hemipinsäure-methylester-(1) (We., V. P. PINKOV, M. 29, 550). vgl. We. und weniger 6-Nitro-hemipinsaure-methylester-(2) (WE., v. Rušnov, M. 29, 550; vgl. WE., MÜLLER, M. 33 [1912], 902).

[5.6 - Dinitro - 8.4 - dimethoxy - phthalsäure] - anhydrid, [5.6 - Dinitro - hemipinsăure]-anhydrid $C_{10}H_6O_9N_2=(CH_3\cdot O)_2C_6(NO_2)_3<\frac{CO}{CO}>0$. B. Beim Schmelzen von Dinitrohemipinsäure (Bd. X, S. 550) im Kohlensäurestrom (Wegscheider, Klemenc, M. 31, 729). — Krystalle (aus Benzol-Petroläther). F: 113-114°.

2. 4.6-Dioxy-1.3-dioxo-phthalan, [3.5-Dioxy-phthalsdure]anhydrid C₈H₄O₅, s. nebenstehende Formel. [3.5 - Dimethoxy - phthalsaure] - anhydrid $C_{10}H_8O_5 =$

(CH₃·O)₂C₆H₃<CO>O. B. Durch Erhitzen von 3.5-Dimethoxy-phthalsäure im indifferenten Gasstrom über den Schmelzpunkt (Farrson, A. 296, 357). Wird besser durch Kochen von 3.5-Dimethoxy-phthalsaure mit Phosphortrichlorid gewonnen; man entfernt das überschüssige Phosphortrichlorid im Vakuum und extrahiert den Rückstand mit Benzol (F.). — Krystalle (aus Benzol + Benzin). F: 147°. Leicht löslich in Ather, Benzol und Chloroform, schwer in Benzin.

[3.5-Diäthoxy-phthalsäure]-anhydrid $C_{12}H_{12}O_5 = (C_2H_5 \cdot O)_2C_5H_2 < \frac{CO}{CO} > 0$. Analog [3.5-Dimethoxy-phthalsäure]-anhydrid (Fritsch, A. 296, 357). — Krystalle (aus Benzol durch Benzin). F: 130°. Leicht löslich in Ather, Benzol und Chloroform, schwer in Benzin.

3. 4.7-Dioxy-1.3-dioxo-phthalan, [3.6-Dioxy-phthalsure]-anhydrid C₈H₄O₅, s. nebenstehende Formel. B. Aus 3.6-Dioxy-phthalsure durch Sublimation im Vakuum bei 220—230° (Thiele, Günther, A. 349, 60).—Schwefelgelbe Blättchen oder Nadeln mit 1½ H₂O. Wasserfreie, schwach grüngelbe Körner (aus Benzol).—Gibt bei vorsichtiger Oxyderm mit Salpetersure and handen im Expire (Chinon-dioxydensure (23)) aphydrid (Rd. XVII. S. -00 dämpfen im Exsiccator [Chinon-dicarbonsäure-(2.3)]-anhydrid (Bd. XVII, S. 579).

[8.6 - Dimethoxy - phthalsäure] - anhydrid C₁₀H₈O₅ = (CH₃·O)₂C₆H₂<CO CO B. Durch Oxydation von 1.2.5.8-Tetramethoxy-naphthalin mit 2°/₀iger Kaliumpermanganat-Lösung, Ansäuern der Lösung und Kochen des Reaktionsproduktes mit Wasser, neben 3.6-Dimethoxy-phthalsäure (Bd. X, S. 551) (Perkin, Weizmann, Soc. 89, 1659). Beim Kochen von [3.6-Dimethoxy-phthalsäure]-imid (Syst. No. 3241) mit Alkohol und Salzsäure (Thiele, Günther, A. 349, 64). — Hellgelbes Krystallpulver (aus Essigsäureanhydrid). F: 260—261° (P., W.), 259° (Th., G.). Schwer löslich in Wasser und den meisten organischen Lösungsmitteln; die Lösung in Essigester fluoresciert blau (P., W.), ebenso die alkoholisch-essigsaure Lösung (Th., G.). Löslich in Alkalien erst beim Erwärmen (Th., G.).

- [8.6-Diacetoxy-phthalsäure]-anhydrid $C_{12}H_3O_7 = (CH_3 \cdot CO \cdot O)_2C_6H_2 < \frac{CO}{CO} > 0$. B. Aus 3.6-Dioxy-phthalsäure oder ihrem Anhydrid, Essigsäureanhydrid und Schwefelsäure (Thiele, Günther, A. 349, 61). Krystalle (aus Benzol + Ligroin). Wird beim Umkrystallisieren aus 96%/ajgem Alkohol teilweise zersetzt. F: 158%.
- 4. 5.6 Dioxy 1.3 dioxo phthalan, [4.5 Dioxy phthal-säure]-anhydrid, Normetahemipinsäureanhydrid C₈H₄O₅, s. nebenstehende Formel. B. Beim Erhitzen von Normetahemipinsäure (Bd. X, S. 552) auf 150° (Rossin, M. 12, 497; Brück, B. 34, 2744). Sublimiert in Nadeln (R.; Freund, A. 271, 385). F: 247,5° (R.), 250—252° (B.).
- [4.5-Dimethoxy-phthalsäure]-anhydrid, Metahemipinsäureanhydrid $C_{10}H_8O_5 = (CH_2 \cdot O)_8C_0H_2 < CO_0 > O$. B. Beim Sublimieren von Metahemipinsäure (Bd. X, S. 552) (GOLDSCHMIEDT, M. 6, 380). Sublimiert in Nadeln und Blättchen. F: 175° (G., M. 9, 773).

2. Oxy-oxo-Verbindungen $\mathrm{C_9H_6O_5}$.

5.6.7 - Trimethoxy - cumarin $C_{12}H_{12}O_5 = (CH_3 \cdot O)_3C_0H < CH_1 \cdot CH_2 \cdot CH_3

2. 6.7.8 - Trioxy - 2 - oxo - [1.2 - chromen], 6.7.8 - Trioxy - cumarin $\mathrm{C_9H_6O_6}$, Formel I.

7.8-Dioxy-6-methoxy-cumarin, Fraxetin $C_{10}H_8O_5$, Formel II. B. Beim Erwärmen von Fraxin (Syst. No. 4776) mit verd. Schwefelsäure (Salm-Horstmar, J. 1859, 576). —

I.
$$HO \cdot CH \subset CH$$
O CO
II. $HO \cdot CO \cap CO$
O CO

Tafeln (aus Alkohol). F: 227° (KÖRNER, BIGINELLI, G. 21 II, 452). Löslich in 10000 Tln. kaltem und in 300 Tln. siedendem Wasser, etwas leichter in Alkohol, schwer löslich in Äther; löslich in Salzsäure; gibt mit Eisenchlorid eine grünlichblaue Färbung; bildet mit den Erdalkalien in Wasser unlösliche Verbindungen (S.-H.).

6.7.8 - Trimethoxy - cumarin, Fraxetin - dimethyläther $C_{12}H_{12}O_5 = (CH_2 \cdot O)_3C_0H < CH \cdot CH$. B. Beim Kochen von Fraxetin mit Methyljodid in Gegenwart von methylalkoholischem Kali (Körner, Biginelli, G. 21 II, 453). — Tafeln (aus verd. Alkohol). Rhombisch bipyramidal (Boeris, G. 21 II, 453; vgl. Groth, Ch. Kr. 4, 623). F: 103—104° (K., B.).

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von WESSELY, DEMMER, B. 61, 1281.

3. $0xy-0xo-Verbindungen C_{10}H_8O_5$.

1. 5.7-Dioxy-2.4-dioxo-3-methyl-chroman bezw. 4.5.7-Trioxy-2-oxo-3-methyl-[1.2-chromen], 4.5.7-Trioxy-3-methyl-cumarin $C_{10}H_8O_5$, Formel I bezw. II.

5.7 - Dimethoxy - 2.4 - dioxo - 3 - methyl - chroman bezw. 4 - Oxy - 5.7 - dimethoxy - 3 - methyl - cumarin $C_{12}H_{13}O_5 = (CH_3 \cdot O)_2C_6H_2 \underbrace{CO \cdot CH \cdot CH_3}_{CO}$ bezw.

(CH₃·O)₂C₆H₂COH):C·CH₃. B. Durch Erhitzen von 4-Brom-5.7-dimethoxy-3-methylcumarin (S. 104) mit Alkali (TILDEN, BURROWS, Soc. 81, 512). — Nadeln (aus verd. Alkohol). F: 248°.

5.7 - Dimethoxy - 4 - acetoxy - 3 - methyl - cumarin $C_{14}H_{14}O_6 = (CH_3 \cdot O)_2C_6H_2 < CO \cdot CO \cdot CH_3):C \cdot CH_3$. B. Beim Erhitzen von 4-Oxy-5.7-dimethoxy-3-methyl-cumarin mit Essigsäureanhydrid (TILDEN, BURROWS, Soc. 81, 512). — F: 134°.

2. 5.6.7 - Trioxy - 2 - oxo - 4 - methyl - [1.2 - chromen], 5.6.7 - Trioxy - 4 - methyl - cumarin $C_{10}H_8O_5$, s. nebenstehende Formel. B. Beim Kochen von 5.6.7 - Trimethoxy - 4 - methyl - cumarin mit Jodwasserstoffsäure (Kp: 127°) (BIGINELLI, G. 23 II, 614). — Schüppchen (aus Alkohol). F: 244—246°.

6 - Oxy - 5.7 - dimethoxy - 4 - methyl - cumarin $C_{12}H_{12}O_5 = (CH_3 \cdot O)_2(HO)C_6H \cdot O_{12}CO$. B. Bei allmählichem Eintragen von 80 g konz. Schwefelsäure in eine warme Lösung von 10 g 1.2.3.5-Tetraoxy-benzol-1.3-dimethyläther (Bd. VI, S. 1154) in 50 g Acetessigester; man gießt nach zwei Stunden auf Eis (BIGINELLI, G. 23 II, 609). — Tafeln (aus Alkohol). F: 191—191,5°.

5.6.7-Trimethoxy-4-methyl-cumarin $C_{13}H_{14}O_5 = (CH_3 \cdot O)_5C_6H < C(CH_3): CH$ Kaliunjodid-Verbindung entsteht bei 5-stdg. Kochen von 4 g 6-Oxy-5.7-dimethoxy-4-methylcumarin mit 1 g Ätzkali und 2,5 g Methyljodid in methylalkoholischer Lösung unter einem
Überdruck von 15—20 cm Quecksilber; man zersetzt die Verbindung durch Behandlung
mit Wasser (BIGINELLI, G. 23 II, 611). — Prismen (aus Alkohol). Triklin pinakoidal (BOERIS,
G. 23 II, 615; vgl. Groth, Ch. Kr. 4, 633). F: 113—113,5°; sehr leicht löslich in Alkohol
(BI.). — $2C_{12}H_{14}O_5 + KI$. Prismen (aus absol. Alkohol). Monoklin (Sansoni, G. 23 II, 612).

Verbindung C₁₉H₁₆O₉. B. Bei 8-stdg. Kochen von 6 g 5.6.7-Trimethoxy-4-methylcumarin mit 25—30 cm³ Jodwasserstoffsäure (D: 1,96) (BIGINELLI, G. 23 II, 615). — Tafeln (aus Alkohol). Monoklin (Sansoni, G. 23 II, 614; vgl. Groth, Ch. Kr. 4, 633 Fußnote). F: 253—254°.

3. 5.6.7-Trioxy-1-oxo-4-methyl-isochromen, 5.6.7-Trioxy-4-methyl-isocumarin C₁₀H₈O₅, s. nebenstehende Formel.

B. Bei 1-tägigem Aufbewahren von entwässertem Gallacetol (Bd. X, Ho.)

C(CH₈) C_H

4. 4.5 - Dioxy-3.12-dioxo-1-propyl-phthalan, 6.7-Dioxy-3-acetonyl-phthalid, 3-Acetonyl-Hoodenormekonin $C_{11}H_{10}O_{5}$, s. nebenstehende Formel.

 $\textbf{6.7-Dimethoxy-8-acetonyl-phthalid, 8-Acetonyl-mekonin (,,Mekonindimethyl-keton") $C_{13}H_{14}O_5 = (CH_3 \cdot O)_3C_6H_2 \underbrace{CH(CH_3 \cdot CO \cdot CH_2)}_{CO}O.$$$ B. Neben ,,Dimekonindimethyl-keton" $\left[(CH_3 \cdot O)_3C_6H_2 \underbrace{CH}_{CO}O^{-CH_2}\right]_3CO$$$ (Syst. No. 2843) bei 1-tägigem Aufbewahren einer $CH_3 \cdot O(CH_3)_3C_6H_3 \cdot CH_3 \cdot O(CH_3)_3CO \cdot O(CH_$

Lösung von 10 g Opiansäure (Bd. X, S. 990) und 6 g Aceton in 750 g Wasser mit 30 cm³ 10% jeer Natronlauge; man säuert mit Salzsäure an und krystallisiert die Ausscheidungen fraktioniert aus Alkohol um; zunächst scheidet sich "Dimekonindimethylketon" aus (Goldschmedt, M. 12, 475; vgl. v. Hemmelmayr, M. 14, 391). Durch Kochen von Opiansäure mit Aceton und konz. Barytwasser und Ansäuern des Reaktionsproduktes (v. He., M. 14, 393; Bruns, Ar. 243, 52). — Nadeln (aus verd. Alkohol). F: 117° (Go.), 118° (v. He.). Schwer löslich in Wasser, leicht löslich in Alkohol (Br.); schwer löslich in kalter Kalilauge, unlöslich in kalter Sodalösung (Go.). — Liefert bei der Oxydation mit Kaliumpermanganat-Lösung Opiansäure, Essigsäure und Ameisensäure (v. He.). Verbraucht bei der Titration unter langsamer Neutralisation 1 Äquivalent Alkali (Fulda, M. 20, 703). Beim Kochen der alkoh. Lösung mit Pottasche erhält man ein intensiv gelbes Kaliumsalz, das beim Erhitzen mit Methyljodid und Methylakohol auf 110°, "Mekonindimethylketonmethylester" (Bd. X, S. 1004) liefert (Fu.).

Phenylhydrazon $C_{19}H_{20}O_4N_2 = (CH_3 \cdot O)_2C_6H_2 \cdot CH_{19}

- 4-Brom-6.7-dimethoxy-3-acetonyl-phthalid, 4-Brom-3-acetonyl-mekonin $C_{13}H_{12}O_8Br$, s. nebenstehende Formel. B. Beim Kochen von "Mekonindimethylketon" mit Bromwasser (v. HEMMELMAYR, M. 14, 396).
 — Nadeln (aus Wasser). F: 124°.
- 4 Nitro 6.7 dimethoxy 3 acetonyl phthalid, 4 Nitro 3 acetonyl mekonin $C_{13}H_{13}O_7N$, s. nebenstehende Formel. B. Durch Kondensation von Nitroopiansäure mit Aceton in Gegenwart von Barytwasser, nebenwenig Opianindigo
- $\begin{array}{c} \text{CH}_3 \cdot \text{O} \\ \text{CH}_3 \cdot \text{O} \\ & \\ \text{O}_2 \text{N} \end{array} \begin{array}{c} \text{CH}(\text{CH}_2 \cdot \text{CO} \cdot \text{CH}_3) \\ \text{O}_2 \text{N} \end{array}$

HO₂C·(CH₃·O)₂C₆H $<\frac{\text{CO}}{\text{NH}}>$ C:C< $\frac{\text{CO}}{\text{NH}}>$ C₆H(O·CH₃)₂·CO₂H (Syst. No. 3705) (Book, B. 35, 1498; 36, 2208). — Gelbliche Nädelchen (aus Wasser). F: 175° (B., B. 35, 1499). — Bei der Reduktion mit Zinn und Salzsäure können entstehen: 7-Oxy-6-methoxy-chinaldin (Syst. No. 3137), 7-Oxy-6-methoxy-5-oxymethyl-3.4-dihydro-chinaldin (Syst. No. 3159), 7-Oxy-6-methoxy-5-formyl-3.4-dihydro-chinaldin (Syst. No. 3240), 7-Oxy-6-methoxy-chinaldin-carbon-säure-(5) (Syst. No. 3352), 4.7-Dioxy-6-methoxy-1.2.3.4-tetrahydro-chinaldin-carbonsäure-(5) (Syst. No. 3359) und 4.7-Dioxy-6-methoxy-3.4-dihydro-chinaldin-carbonsäure-(5) (Syst. No. 3360) (B., B. 35, 1500; 36, 2211).

Oxim $C_{18}H_{14}O_7N_2 = (CH_3 \cdot O)_2C_6H(NO_2)$ $CH[CH_2 \cdot C(:N \cdot OH) \cdot CH_3]$ O. B. Beim Erhitzen von 4-Nitro-3-acetonyl-mekonin in alkoh. Lösung mit salzsaurem Hydroxylamin und entwässertem Natriumacetat auf dem Wasserbad (B., B. 36, 2209). — Gelbliche Nadeln (aus Alkohol). F: 170°.

Phenylhydrazon $C_{19}H_{19}O_6N_3 = (CH_3 \cdot O)_2C_6H(NO_2) - CH[CH_2 \cdot C(:N \cdot NH \cdot C_6H_5) \cdot CH_3] = O$.

B. Beim Erhitzen von 4-Nitro-3-acetonyl-mekonin mit Phenylhydrazin in Alkohol (B., B. 36, 2209). — Rotgelbe, verfilzte Nadeln (aus Alkohol). F: 184°.

Semicarbazon $C_{14}H_{16}O_7N_4 = (CH_3 \cdot O)_2C_6H(NO_2) - CH[CH_2 \cdot C(:N \cdot NH_2) \cdot CH_3] > O$. B. Bei kurzem Kochen von 4-Nitro-3-acetonyl-mekonin in wäßrig-alkoholischer Lösung mit-salzsaurem Semicarbazid und entwässertem Natriumacetat (Book, B. 36, 2209). — Gelbliche Nädelchen (aus Alkohol). F: 218°.

5. 4.5-Dioxy-3.1²-dioxo-1-butyl-phthalan, 6.7-Dioxy-3-[β -oxo-butyl]-phthalid, 3-[β -0xo-butyl]- HO normekonin $C_{12}H_{12}O_{5}$, s. nebenstehende Formel.

6.7-Dimethoxy-3-[β -oxo-butyl]-phthalid, 3-[β -Oxo-butyl]-mekonin (,,M ekonin-methyläthylketon") $C_{14}H_{16}O_5=(CH_3\cdot O)_2C_6H_2-CO-(CH_3\cdot CO\cdot C_2H_5)$ 0. B. Aus Opiansäure und Methyläthylketon in Gegenwart von verd. Natronlauge bei 35°; man säuert mit Salzsäure an (Luksch, M. 25, 1052). — Nädelchen (aus Alkohol). F: 128—132°. Leicht löslich in Chloroform und Eisessig, schwer in kaltem Alkohol und in Äther, kaum löslich in kaltem Wasser; löslich in siedender Alkalicarbonatlösung. — Wird durch Kalilauge in der Wärme in Opiansäure und Methyläthylketon gespalten.

Oxim $C_{14}H_{17}O_5N = (CH_3 \cdot Q)_2C_6H_2 - CH[CH_2 \cdot C(:N \cdot OH) \cdot C_2H_5] = 0$. Beim Kochen einer alkoh. Lösung von "Mekoninmethyläthylketon" mit salzsaurem Hydroxylamin (L.,

6. Oxy-oxo-Verbindungen C₁₈O₁₄O₅.

M. 25, 1056). — Krystalle. Schmilzt bei 109-1120.

- 1. 4.5 Dioxy 3.12 dioxo 1 n amyl phthalan, 6.7 Dioxy 3 $[\beta$ oxo n amyl] phthalid, 3- $[\beta$ Oxo n amyl] normekonin $C_{12}H_{14}O_5$, s. nebenstehende Formel.
- 6.7 Dimethoxy 3 $[\beta$ oxo n amyl] phthalid, 3 $[\beta$ Oxo n amyl] mekonin ("Mekonin methyl propylketon") $C_{15}H_{18}O_5 =$
- (CH₃·O)₂C₆H₂·CH(CH₄·CO·CH₂·CH₂·CH₃)·O. B. Aus Opiansaure und Methylpropylketon in verd. Natronlauge bei 35°; man sauert mit Salzsaure an (Luksch, M. 25, 1054). Nadeln (aus Alkohol). Schmilzt bei 91—95°. Leicht löslich in warmem Wasser, Alkohol, Ather, Benzol, Chloroform und Eisessig.

Oxim $C_{15}H_{10}O_5N = (CH_3 \cdot O)_2C_6H_2 - CH[CH_2 \cdot C(:N \cdot OH) \cdot CH_2 \cdot CH_2 \cdot CH_3] - O.$ B. Beim Kochen der alkoh. Lösung von "Mekoninmethylpropylketon" mit salzsaurem Hydroxylamin (L., M. 25, 1056). — Krystalle (aus Alkohol). Schmilzt bei 153—157°.

- 2. 4.5-Dioxy-3.12-dioxo-1-isoamyl-phthalan, 6.7 Dioxy 3 $[\beta$ oxo isoamyl] phthalid, 3- $[\beta$ -Oxo-isoamyl]-normekonin $C_{13}H_{14}O_5$, s. nebenstehende Formel.
- 6.7 Dimethoxy 3 $[\beta$ oxo isoamyl] phthalid, 3 $[\beta$ Oxo isoamyl] mekonin, ("Mekoninmethylisopropylketon") $C_{15}H_{18}O_5 =$
- (CH₃·O)₂C₆H₂ CH[CH₂·CO·CH(CH₃)₃] O. B. Aus Opiansäure und Methylisopropylketon in verd. Natronlauge bei 35°; man säuert mit Salzsäure an (Luksch, M. 25, 1055).

 F: 88—91°. Leicht löslich in heißem Wasser und Alkohol, in kaltem Äther und Benzol.

 Liefert mit konzentriertem wäßrigem Ammoniak 5.6-Dimethoxy-2-[α-oxy-γ-oxo-δ-methyl-n-amyl]-benzoesäure-amid (Bd. X, S. 1018).

Oxim ("Mekoninmethylisopropylketoxim vom Schmelzpunkt 110°") $C_{15}H_{19}O_5N = (CH_3 \cdot O)_3C_6H_3 \overline{CH[CH_3 \cdot C(:N \cdot OH) \cdot CH(CH_2)_8]} O$. B. Beim Aufbewahren der alkoh. Lösung von "Mekoninmethylisopropylketon" mit Hydroxylamin in Gegenwart von Salzsäure oder Natronlauge (Luksch, M. 25, 1057). — Nadeln (aus Alkohol). F: 110°. Löslich in kaltem Aceton, Chloroform und Eisessig, in der Wärme löslich in Wasser, Alkohol und Benzol, unlöslich in Ather. Löst sich in Alkalien, Carbonaten und Dicarbonaten in der Wärme. — Geht beim Erhitzen auf den Schmelzpunkt oder bei längerem Erwärmen auf 100° in das Oxim von Schmelzpunkt 223° (Bd. X, S. 1004) über.

"Mekoninmethylisopropylketoxim vom Schmelzpunkt 223°" $C_{15}H_{19}O_5N=(CH_3\cdot O)_2C_6H_2(CO_2H)\cdot CH\cdot CH\cdot C(:N\cdot OH)\cdot CH(CH_3)_2$ s. Bd. X, S. 1004.

f) Oxy-oxo-Verbindungen $C_nH_{2n-14}O_5$.

- 1. 2.5-Dioxo-3-[2.4-dioxy-phenyl]-furandihydrid, [2.4-Dioxy-phenylmaleinsäure]-anhydrid $C_{10}H_6O_5$, s. nebenstehende Formel.
- [2.4 Diacetoxy phenylmaleinsäure] anhydrid $C_{14}H_{10}O_7 = HC = C \cdot C_6H_3(O \cdot CO \cdot CH_3)_2$. B. Durch Lösen von 2.4-Dioxy-phenylmaleinsäure in warmem $C \cdot O \cdot CO$. Essigsäureanhydrid unter Zusatz von etwas Natriumacetat (v. Pechmann, Graeger, B. 34, 384). Nadeln (aus Benzol + Ligroin). F: 121—122°. Leicht löslich in warmem Alkohol.
- 2. 2.5-Dioxo-3-[3.4-dioxy-benzal]-furantetrahydrid, [3.4-Dioxy-benzalbernsteinsäure]-anhydrid, [γ -(3.4-dioxy-benzalbernsteinsäure]-anhydrid $C_{11}H_8O_8$, s. nebenstehende Formel.

Veratralbernsteinsäureanhydrid, [γ - (3.4 - Dimethoxy - phenyl) - itaconsäure] - H_2C — $C:CH\cdot C_8H_3(O\cdot CH_3)_8$ P. Paire Kochen von u. [2.4 Dimethox anhydrid $C_{13}H_{12}O_5 = \frac{1}{OC} \cdot O \cdot OO$ B. Beim Kochen von γ-[3.4-Dimeth-

oxy-phenyl]-itaconsaure mit Acetylchlorid (Stobbe, Leuner, A. 380 [1911], 78). — Gelbe Prismen oder orangerote benzolhaltige Nadeln (aus Benzol). Die orangeroten Nadeln werden bei 80° unter Verlust des Benzols gelb und schmelzen dann bei 167°. Leicht löslich in Chloroform und Eisessig, schwer in Schwefelkohlenstoff und Petroläther.

g) Oxy-oxo-Verbindungen $C_n H_{2n-16} O_5$.

2.5 - Dioxo - 3 - isopropyliden - 4 - [3.4 - dioxy - benzyliden]-furantetrahydrid, Isopropyliden-[3.4-di- ± 0.0 $\pm 0.$ oxy-benzyliden]-bernsteinsäureanhydrid, α.α-Dimethyl- δ -[3.4-dioxy-phenyl]-fulgid $C_{14}H_{12}O_5$, s. nebenstehende Formel.

Isopropyliden-veratryliden-bernsteinsäureanhydrid, $\alpha.\alpha$ -Dimethyl- δ -[3.4-dimethoxy-phenyl]-fulgid $C_{16}H_{16}O_5=\frac{(CH_3\cdot O)_2C_6H_3\cdot CH:C--C:C(CH_3)_2}{Od-O-dO}$. B. Durch Auf- $OC \cdot O \cdot CO$

lösen von $\alpha.\alpha$ -Dimethyl- δ -[3.4-dimethoxy-phenyl]-fulgensäure (Bd. X, S. 563) in kaltem Acetylchlorid, neben einer dunkelgelben krystellinischen Verbindung vom Schmelzpunkt 1770 (Stobbe, LENZNER, A. 380 [1911], 30). — Gelbe, schlecht entwickelte trikline(?) (TOBORFFY, Z. Kr. 45, 158) Schuppen (aus Petroläther). F: 127,5° (St., L.). Leicht löslich in Aceton, Benzol und Chloroform, schwerer in Alkohol und Äther (St., L.). Absorptionsspektrum: St., A. 380, 4. Wird beim Abkühlen auf —80° schwefelgelb, beim Erwärmen auf 90—120° chromgelb; diese Farbänderungen gehen bei gewöhnlicher Temperatur wieder zurück (St., A. **380**, 19).

h) Oxy-oxo-Verbindungen $C_n H_{2n-18} O_5$.

OH 1. 1.3.7-Trioxy-9-oxo-xanthen, 1.3.7-Trioxy-xanthon, Gentisein C₁₈H₈O₅, s. nebenstehende Formel. B. Beim HO ./7 Kochen von Gentisin (s. u.) mit Jodwasserstoffsäure (D: 1,7) (v. KOSTANECKI, M. 12, 207). Beim Destillieren von 1 Mol Gentisinsäure mit 1 Mol Phloroglucin und der zur Lösung nötigen Menge Essigsäureanhydrid (v. K., TAMBOB, M. 15, 4). — Strohgelbe Nädelchen mit 2 H₂O (aus alkoholhaltigem Wasser). Verliert das Krystallwasser bei 100° (v. K.). F: 315° (v. K.; v. K., T.). Sehr leicht löslich in Alkohol; löslich in Alkali mit gelber Farbe (v. K.). — Gibt beim Erhitzen mit etwas mehr als 2 Mol Methyljodid und 2 Mol Ätzkali in methylalkoholischer Lösung auf 100° Gentisein-3.7-dimethyläther (v. K., Schmidt, M. 12,

318, 319). Färbt Tonerdebeize hellgelb an (v. K., T.). 1.7-Dioxy-3-methoxy-xanthon, Gentisin, Gentiseinон 3-methyläther (Gentianin) C₁₄H₁₀O₅, s. nebenstehende Formel. Zur Konstitution vgl. Shinoda, C. 1927 I, 1476; Soc. HO 1927, 1983. — V. In der Wurzel des Enzians (Gentiana lutes) (TROMMSDORFF, A. 21, 134; LECONTE, A. 25, 202; BAUMERT, A. 62, 106). — B. Durch mehrstündiges Erhitzen von 1 Mol Gentisein mit 1 Mol Ätzkali und etwas mehr als 1 Mol Methyljodid im geschlossenen Rohr auf 100° (v. Kostanecki, Tambor, M. 15, 7). Durch vorsichtiges Destillieren einer

Lösung äquimolekularer Mengen 5-Methyläther-gentisinsäure (Bd. X, S. 385) und Phloroglucin in Essigsäureanhydrid, neben Gentisein und Gentisein 3.7-dimethyläther (S. 174) (v. K., Ta., M. 16, 922). — Darst. Die gepulverte Enzianwurzel wird einige Tage lang mit kaltem Wasser behandelt, dann abgepreßt, getrocknet und mit starkem Alkohol ausgekocht; der alkoh. Auszug wird bis zum Sirup verdampft, hierauf mit Wasser vermischt und der Niederschlag nach dem Wassen mit Äther wiederholt aus Alkohol umtwestelligiest (P. Zup Beisigung beabt men des Centisin mit wiel Alkohol auf setzt Keligiert (P. Zup Beisigung beabt men des Centisin mit wiel Alkohol auf setzt Keligiert (P. Zup Beisigung beabt men des Centisin mit wiel Alkohol auf setzt Kelig krystallisiert (B.). Zur Reinigung kocht man das Gentisin mit viel Alkohol auf, setzt Kalilauge bis zur Lösung hinzu, filtriert und fügt zum Filtrat etwas Essigsäure (Hlasiwetz, HABERMANN, A. 175, 63). — Blaßgelbe Nadeln. F: 267° (v. K., Ta.). Sublimiert bei 300°

bis 340° unter beträchtlicher Zersetzung (B.). Löslich in 3630 Tln. Wasser von 16° (B.). 110 Tle. 40 vol.-% jegen Alkohols lösen in der Kälte 0,22 Tle., bei Siedehitze 1,6 Tle.; 110 Tle. Äther lösen 0,05 Tle. (L.). Leicht löslich in Alkalien mit goldgelber Farbe (L.; B.). — Wird von Natriumamalgam in eine Verbindung C₁₂H₁₀O₄ (s. u.) übergeführt (HL., HA., A. 180, 347). Zerfällt beim Schmelzen mit Kali in Essigsäure, Phloroglucin und Gentisinsäure (HL., HA., A. 175, 64; 180, 343). Verbindet sich mit Basen; die Salze werden zum Teil schon durch Kohlensäure zerlegt (L.). Gibt beim Erhitzen mit etwas mehr als 2 Mol Methyljodid und 2 Mol Ätzkali in methylalkoholischer Lösung auf 100° Gentisein - 3.7 - dimethyläther (v. K., Schmidt, M. 12, 318). Gibt beim Kochen mit Acetylchlorid Gentisindiacetat (HL., HA., A. 175, 74), beim Schütteln mit Benzoylchlorid in alkal. Lösung Gentisindibenzoat (v. K., Ta., M. 15, 8). — Na C₁₄ H₂ O₅ + 2 H₂ O (bei 180°). Goldgelbe Nadeln oder Prismen (HLASIWETZ, HABERMANN, A. 175, 74). — KC₁₄ H₂ O₅ + BaO (B., A. 62, 118). — C₁₄ H₁₀O₅ + 2 PbO (B.).

Verbindung $C_{13}H_{10}O_4$. B. Man behandelt Gentisin mit Natriumamalgam, bis die anfangs tiefgrüne Lösung sich ziemlich entfärbt hat, und fällt dann mit verd. Schwefelsäure (Hlasiwetz, Habermann, A. 180, 347). — Kirschroter amorpher Niederschlag. Löst sich in

Ammoniak mit roter Farbe; wird aus dieser Lösung durch Säuren wieder gefällt.

1-Oxy-3.7-dimethoxy-xanthon, Gentisein - 3.7-dimethyläther C₁₅H₁₂O₅, s. nebenstehende Formel. B. Aus CH₃·O. CO Gentisin oder Gentisein durch mehrstündiges Erhitzen mit 2 Mol Ätzkali und etwas mehr als 2 Mol Methyljodid in methylalkoholischer Lösung im geschlossenen Rohr auf 100° (v. Kostanecki, Schmidt, M. 12, 318, 319). Entsteht neben Gentisein und Gentisin beim Destillieren von 5-Methyläther-gentisinsäure (Bd. X, S. 385) mit Phloroglucin und Essigsäureanhydrid (v. K., Tambor, M. 16, 922). — Hellgelbe Nadeln (aus Eisessig). F: 167° (v. K., Sch.; v. K., T.). Schwer löslich in Alkohol (v. K., Sch.). Gibt in alkoh. Lösung mit verd. Alkalien schwer lösliche, intensiv gelbe Salze (v. K., Sch.). — Wird durch Natriumamalgam nicht reduziert (v. K., Sch.). Liefert beim Behandeln mit Essigsäureanhydrid und entwässertem Natriumacetat Gentisein-3.7-dimethyläther-1-acetat (v. K., Sch.).

3.7-Dimethoxy-1-acetoxy-xanthon, Gentisein-3.7-dimethyläther-1-acetat $C_{17}H_{14}O_6$, s. nebenstehende Formel. B. Aus Gentisein-3.7-dimethyläther durch Erhitzen mit Essigsäureanhydrid und Natriumacetat (v. Kostanecki, Schmidt, M. 12, 320). — Nadeln (aus Alkohol). F: 189°.

3-Methoxy-1.7-diacetoxy-xanthon, Gentisein3-methyläther - 1.7 - diacetat, Gentisin - diacetat CH₃·CO·O·O·CH₃
Cl₁₈H₁₄O₇, s. nebenstehende Formel. B. Durch Kochen von Gentisin mit Acetylchlorid (HLASIWETZ, HABERMANN, A. 175, 74). — Kryställchen (aus Alkohol). F: 196—196,5° (HL., HA.; v. KOSTANECKI, TAMBOB, M. 15, 8).

1.3.7 - Triacetoxy - xanthon, Gentisein - triacetat $C_{19}H_{14}O_8 = CH_3 \cdot CO \cdot O \cdot C_6H_3 < CO \cdot C_6H_3(O \cdot CO \cdot CH_3)_3$. B. Durch kurzes Kochen von Gentisein mit Essigsäureanhydrid und entwässertem Natriumacetat (v. Kostankoki, M. 12, 209; v. K., Tambor, M. 16, 923). — Nadeln (aus Eisessig). F: 226°.

3-Methoxy-1.7-dibenzoyloxy-xanthon, Gentisein-3-methyläther-1.7-dibenzoat, Gentisin-diben-zoat C₂₈H₁₈O₇, s. nebenstehende Formel. B. Durch Schütteln von Gentisin mit Benzoylchlorid in alkal.

Lösung (v. Kostanecki, Tambob, M. 15, 8). — Nadeln (aus Alkohol). F: 192°.

x.x-Dinitro-1.7-dioxy-3-methoxy-xanthon, x.x-Dinitro-gentisin $C_{14}H_8O_8N_8=(CH_3\cdot O)(HO)_2C_{13}H_3O_3(NO_3)_3$. B. Durch Auflösen von Gentisin in Salpetersäure (D: 1,43) und allmähliches Zusetzen von Wasser (BAUMERT, A. 62, 122). — Grünes Pulver. Die im Väkuum getrocknete Verbindung enthält $1H_2O$, das bei 100° entweicht. — Wird durch Koohen mit Kalilauge und Neutralisieren der erhaltenen Lösung mit Schwefelsäure in eine rotgelbe Verbindung übergeführt.

2. $0xy-oxo-Verbindungen C_{14}H_{10}O_5$.

1. 4.6-Dioxy-3-oxo-2-[4-oxy-phenyl]-cumaran, 4.6-Dioxy-2-[4-oxy-phenyl]-cumaranon $C_{14}H_{10}O_{5}$, s. nebenstehende Formel. Diese Konstitution wurde vor dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1.I.1910]

dem Genistein zugeschrieben, das von Baker, Robinson, Soc. 1926, 2713; 1928, 3115 als 5.7-Dioxy-3-[4-oxy-phenyl]-chromon $C_{15}H_{10}O_5$ erkannt und als solches S. 190 eingeordnet ist.

2. 6-Oxy-2-oxo-3-[2.4-dioxy-phenyl]-cumaran, Lacton der 2.4.2'.4'-Tetraoxy-diphenylessigsäure C₁₄H₁₀O₅, s. nebenstehende Formel. B. Beim Erwärmen von 100 g Resorcin, 50 g Chloralhydrat und 20 g Kaliumdisulfat in 1 l Wasser auf dem Wasserbade (HEWITT, POPE, Soc. 69, 1266; 71, 1086). Aus dem Bariumsalz der 2.4.2'.4'-Tetraoxy-diphenylessigsäure (Bd. X, S. 565) beim Erhitzen der angesäuerten wäßrigen Lösung (H., P., Soc. 69, 1268). — Nadeln (aus Alkohol). Die Lösung in Alkalien ist purpurfarben, wird aber beim Erwärmen orange und zeigt grüne Fluorescenz (H., P., Soc. 69, 1267). Aus der frisch bereiteten Lösung in Alkalien fällen Säuren das Lacton (H., P., Soc. 69, 1268). Löst sich in konz. Schwefelsäure beim Erwärmen mit blauer Farbe (H., P., Soc. 71, 1087). — Gibt beim Kochen mit Bariumcarbonat und Wasser das Bariumsalz der 2.4.2'.4'-Tetraoxy-diphenylessigsäure (H., P., Soc. 69, 1268). Gibt in absolut-alkoholischer Lösung auf Zusatz von Natriumäthylat einen roten krystallinischen Niederschlag der Formel Na₃C₁₄H₇O₅ (H., P., Soc. 71, 1089).

Triacetat $C_{20}H_{16}O_8 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot \frac{CH[C_6H_3(O \cdot CO \cdot CH_3)_2]}{O}$ CO. B. Durch 1-stündiges Kochen von 1 Tl. des Lactons der 2.4.2'.4'-Tetraoxy-diphenylessigsäure mit 10 Tln. Essigsäureanhydrid am Rückflußkühler (Hewitt, Pope, Soc. 71, 1087). — Tafeln (aus Eisessig). F: 160,5° (korr.) (H., P., Soc. 71, 1087). Unlöslich in Wasser und Petroläther, kaum löslich in Alkohol, Äther und Toluol, löslich in Eisessig, Chloroform und Aceton (H., P., Soc. 69, 1267). Löst sich in konz. Schwefelsäure mit grüner Farbe (H., P., Soc. 71, 1088). — Gibt bei der Oxydation mit Kaliumpermanganat in Eisessig eine Verbindung vom Schmelzpunkt 210° (MICHAEL, RYDER, Am. 9, 136).

Tribenzoat $C_{35}H_{32}O_8 = C_6H_5 \cdot CO \cdot O \cdot C_6H_3 \underbrace{CH[C_6H_3(O \cdot CO \cdot C_6H_5)_2]}_O CO$. B. Durch Erhitzen des Lactons der 2.4.2'.4'-Tetraoxy-diphenylessigsäure mit der 5-fachen Menge Benzoylchlorid auf 120° oder durch Schütteln der Lösung des Lactons in Pyridin oder in Natronlauge mit Benzoylchlorid (H., P., Soc. 71, 1088). — Fast farblose Krystalle (aus Alkohol). F: 165°. Löslich in konz. Schwefelsäure mit Indigofarbe, die beim Erwärmen rein blau wird.

- 3. 6.7-Dioxy-3-[2-oxy-phenyl]-phthalid, 3-[2-Oxy-phenyl]-normekonin $C_{14}H_{10}O_5$, Formel I und 6.7-Dioxy-3-[4-oxy-phenyl]-phthalid, 3-[4-Oxy-phenyl]-normekonin $C_{14}H_{10}O_5$, Formel II.
- 6.7 Dimethoxy 3 oxyphenyl phthalid, 3 Oxyphenyl mekonin $C_{16}H_{14}O_5$, Formel III und IV. B. Ein Gemisch von 3-[2-0xy-phenyl]-mekonin und 3-[4-0xy-phenyl]-mekonin entsteht, wenn man allmählich ein Gemisch von 5 g Opiansäure (Bd. X, S. 990)

und 3,3 g Phenol in 20 g auf —10° abgekühlte 73°/oige Schwefelsäure einträgt, das Gemisch 12 Stunden im Eisschrank stehen läßt und unter Umrühren mit Wasser übergießt (BISTEZYCKI, OEHLERT, B. 27, 2639; B., YSSEL DE SCHEPPER, B. 31, 2792; vgl. BRUBAKER, ADAMS, Am. Soc. 49 [1927], 2280, 2295). — Das so erhaltene Gemisch krystallisiert aus verd. Alkohol in Nädelchen. Es schmilzt nach vorherigem Erweichen zwischen 160° und 170°; es ist leicht löslich in Alkohol und Eisessig, unlöslich in Wasser (B., OE.).

- x.x-Dibrom-6.7-dimethoxy-3-[2 oder 4-oxy-phenyl]-phthalid, x.x-Dibrom-3-[2 oder 4-oxy-phenyl]-mekonin $C_{16}H_{12}O_5Br_2$. B. Durch Bromieren einer warmen konzentrierten Lösung von 3-Oxyphenyl-mekonin in Eisessig (BISTRZYCKI, OEHLERT, B. 27, 2640). Farblose Nädelchen (aus Eisessig). F: 195,5—196,5°.
- x-Nitro-6.7-dimethoxy-3-[2 oder 4-oxy-phenyl]-phthalid, x-Nitro-3-[2 oder 4-oxy-phenyl]-mekonin $C_{16}H_{13}O_7N=C_{16}H_{13}O_5\cdot NO_2$. B. Man versetzt eine stark gekühlte konzentrierte Lösung von 3-Oxyphenyl-mekonin in Eisessig allmählich mit Salpetersäure (D: 1,45) und gießt das Gemisch nach $\frac{1}{2}$ -stündigem Stehenlassen auf Eis (B., Oz., B. 27, 2639). F: 177,5—179°. Sehr leicht löslich in Alkohol und Eisessig.

- 4.5 Dimethoxy 3 [4 methoxy phenyl] phthalid, 3 [4 Methoxy phenyl] pseudomekonin C₁₇H₁₆O₅, Formel II. B. Durch Einw. von Zinkstaub und Natronlauge auf 5.6.4'-Trimethoxy-benzophenon-carbonsäure-(2) (Bd. X, S. 1031) (BISTRZYCKI, YSSEL DE SCHEPPER, B. 31, 2797). Farblose Nadeln. F: 111—113°. Leicht löslich in Alkohol, Äther, Benzol und Chloroform.
- 5. 3-Oxo-1-[2.3.4-trioxy-phenyl]-phthalan, 3-[2.3.4-Trioxy-phenyl]-phthalid, 4-[Phthalidyl-(3)]-pyrogallol C₁₄H₁₀O₅, s. nebenstehende Formel. B. Durch allmähliches Eintragen eines Gemisches von Phthalaldehydsäure (Bd. X, S. 666) und Pyrogallol in auf —10° abgekühlte 73°/eige Schwefelsäure; man läßt das Gemisch 12 Stdn. im Eisschrank stehen und übergießt es dann mit Wasser (BISTRZYCKI, OEHLERT, B. 27, 2638). Blättchen mit 1 H₂O. Krystallwasserfreie Nädelchen (aus Benzol + Ligroin). Die wasserhaltige Verbindung verliert das Krystallwasser bei 100° und schmilzt dann bei 175—177°. Ziemlich leicht löslich in Eisessig.
- 6. 2.6.7-Trioxy-9-methyl-fluoron C₁₄H₁₀O₅, s. nebenstehende Formel. B. Man löst 4 g Oxyhydrochinon und 2 cm³
 Paraldehyd in 40 cm³ 90% igem Alkohol, fügt 40 cm³ 15% ige
 Schwefelsäure hinzu und läßt mehrere Tage stehen; das ausgeschiedene Sulfat zerlegt man durch Lösen in Alkohol und Fällen mit Wasser (Liebermann, Lindenbaum, B. 37, 1177, 2731). Dunkelrote Nadeln. Mäßig löslich in Alkohol, sehr schwer in Wasser. Die Lösungen in Alkohol und in konz. Schwefelsäure sind gelb und fluorescieren gelbgrün. Die alkal. Lösung ist fuchsinrot. Färbt Aluminiumbeize orangegelb, Eisenbeize braunviolett an.
- 2.6.7 Triacetoxy 9 methyl fluoron $C_{80}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_8O_6H_2 \stackrel{C(CH_3)}{\bigcirc} C_6H_8(:O) \cdot O \cdot CO \cdot CH_3$. B. Aus 2.6.7-Trioxy-9-methyl-fluoron durch Erhitzen mit Essigsäureanhydrid und Natriumacetat (Lie., Lin., B. 37, 2731). Hellgelbe Nadeln (aus Eisessig). F: 225—228°. Zeigt auch in alkoh. Lösung keine Fluorescenz.
- 3. Oxy-oxo-Verbindungen $C_{15}H_{12}O_{5}$.
- 1. 3.5.7-Trioxy-4-oxo-2-phenyl-chroman, 3.5.7-Trioxy-flavanon $C_{15}H_{12}O_{5}$, Formel III.

III. HO CO CH OH IV. CH₃·CO·O CBr·OcH₃
$$CH_3$$
·CO·O CBr·OcH₃

2.8-Dibrom-8-methoxy-5.7-diacetoxy-flavanon $C_{20}H_{16}O_7Br_2$, Formel IV, s. S. 186.

5.7.4'-Trimethoxy-flavanon $C_{18}H_{18}O_5 = (CH_3 \cdot O)_2C_6H_2 \cdot O_{-}CH_{\cdot} \cdot CO \cdot CH_2$ Bei 24-stdg. Kochen einer Lösung von 5 g 2'-Oxy-4.4'.6'-trimethoxy-chalkon (Bd. VIII, S. 503) in 250 cm³ Alkohol mit 100 cm³ 10% (giger Schwefelsäure (v. Kostanecki, Lampe, Tambor, B. 37, 2097). — Säulen (aus Alkohol). F: 125°. Die Lösung in alkoh. Natronlauge ist gelb, die Lösung in konz. Schwefelsäure ist blaßgelb.

3.6.8 - Tribrom - 5.7.4′ - trimethoxy - flavanon $C_{18}H_{18}O_5Br_3 = CO \cdot CHBr$ (CH₃·O)₂C₆Br₂ O - CH·C₆H₄·O·CH₅. B. Durch Bromieren von 1 Mol 5.7.4′-Trimethoxy-flavanon mit 3 Mol Brom in Chloroform (Bregge, v. Kostanecki, B. 38, 932). — Kryställchen (aus Alkohol). Schmilzt bei '145° unter Gasentwicklung. — Liefert beim Behandeln mit alkeh. Kali 6.8-Dibrom-5.7.4′-trimethoxy-flavon.

3. 7.8-Dioxy-4-oxo-2-f2-oxy-phenylj-chroman, 7.8.2'-Trioxy-flavanon $C_{15}H_{12}O_{5}$, s. nebenstehende Formel. H_{0}

7.8.2'-Trimethoxy-flavanon $C_{18}H_{18}O_5 = H_0$ 7.8.2'-Trimethoxy-flavanon $C_{18}H_{18}O_5 = H_0$ (CH₃·O)₂C₆H₂·O·CH₂

O—CH·C₆H₄·O·CH₃

B. Aus Salicylaldehyd-methyläther und Gallacetophenon-3.4-dimethyläther (Bd. VIII, S. 393) in siedender alkoholischer Lösung durch Hinzufügen von 50°₀iger Natronlauge, neben 2'-Oxy-2.3'.4'-trimethoxy-chalkon (Cohen, v. Kostanecki, B. 37, 2629). Aus 2'-Oxy-2.3'.4'-trimethoxy-chalkon durch 24-stdg. Kochen mit alkoholisch-wäßriger Salzsäure (C., v. K.). — Prismen (aus Alkohol). F: 112°. Die Lösungen in alkoh. Natronlauge und in konz. Schwefelsäure sind orangegelb. — Gibt in siedender alkoholischer Lösung mit Amylnitrit und Salzsäure 7.8.2'. Trimethoxy-3.0ximinoin siedender alkoholischer Lösung mit Amylnitrit und Salzsäure 7.8.2'-Trimethoxy-3-oximinoflavanon (S. 218).

4. 7.8-Dioxy-4-oxo-2-[3-oxy-phenyl]-chroman,
7.8.3'-Trioxy-flavanon C₁₅H₁₂O₅, s. nebenstehende Formel.

HO. CH. OH. O. CH. 7.8.3'-Trimethoxy-flavanon $C_{18}H_{18}O_5 =$

 $(CH_3 \cdot O)_2C_0H_2 \underbrace{CO \cdot CH_2}_{O-CH \cdot C_0H_4 \cdot O \cdot CH_3}$ B. Durch 24-stdg. Kochen einer alkoh. Lösung von 2'-Oxy-3.3'.4'-trimethoxy-chalkon (Bd. VIII, S. 503) mit verd. Salzsäure (v. Kostanecki, Schleifenbaum, B. 37, 2632). - Nadeln (aus Alkohol). F: 79°. Die Lösung in konz. Schwefelsäure ist gelblich, die Lösung in alkoh. Natronlauge orangegelb. — Gibt in siedender alkoholischer Lösung mit Amylnitrit und Salzsäure 7.8.3'-Trimethoxy-3-oximino-flavanon (S. 219).

7.8-Dioxy-4-oxo-2-[4-oxy-phenyl]-chroman, 7.8.4' - Trioxy - flavanon $C_{18}H_{12}O_5$, s. nebenstehende Formel.

7.8.4'- Trimethoxy - flavanon $C_{18}H_{18}O_5 = HO$ (CH₃·O)₂C₈H₂ CO·CH₂

(CH₃·O)₂C₈H₂ O—CH·C₈H₄·O·CH₃

methoxy-chalkon (Bd. VIII, S. 503) mit alkoholisch-wäßriger Salzsäure (v. Kostanecki, Schreiber, B. 38, 2750). — Nadeln (aus Schwefelkohlenstoff). F: 115°. Liefert mit alkoh. Natronlauge eine orangerote Lösung; beim Eintragen in konz. Schwefelsäure färben sich die Kyntallelpen congesten und geben eine orangegeben der alkoholischen Kryställchen orangerot und geben eine orangegelbe Lösung. — Gibt in siedender alkoholischer Lösung mit Amylnitrit und rauchender Salzsäure 7.8.4'-Trimethoxy-3-oximino-flavanon (S. 219).

6. 6-Oxy-4-oxo-2-[2.4-dioxy-phenyl]-chro-HO.

man, 6.2'.4'-Trioxy-flavanon C₁₅H₁₅O₅, s. nebenstehende Formel.

nel. $6.2'.4'\text{-Trimethoxy-flavanon} \quad C_{18}H_{18}O_5 = CH_3 \cdot O \cdot C_6H_3 \cdot \underbrace{CO \cdot CH_2}_{CH \cdot C_6H_3(O \cdot CH_3)_3}$ Aus 2'-Oxy-2.4.5'-trimethoxy-chalkon (Bd. VIII, S. 501) durch Kochen mit Essigsäure-anhydrid und Natriumacetat, neben 2.4.5'-Trimethoxy-2'-acetoxy-chalkon (Bonifazi, v. Kostanecki, Tambor, B. 39, 89). Durch 2-stdg. Kochen einer alkoh. Lösung von 2'-Oxy-2.4.5'-trimethoxy-chalkon mit Salzsäure (B., v. K., T.). — Gelbliche Prismen (aus Alkohol). F: 160°. Die Lösung in konz. Schwefelsäure ist fuchsinrot. — Gibt in siedender alkoholischer

7. 6-Oxy-4-oxo-2-[3.4-dioxy-phenyl]-chro-man, 6.3'.4'-Trioxy-flavanon C₁₅H₁₂O₅, s. nebenstehende Formel.

Lösung mit Amylnitrit und Salzsäure 6.2'.4'-Trimethoxy-3-oximino-flavanon (S. 220).

 $\begin{array}{lll} \textbf{8'-Methoxy-6.4'-diathoxy-flavanon} & C_{20}H_{22}O_5 = \\ & C_2H_5 \cdot O \cdot C_6H_3 & CO \cdot CH_2 \\ & O - CH \cdot C_8H_3(O \cdot CH_3) \cdot O \cdot C_3H_5 & B. & Aus & Chinacetophenon \cdot 5 - athylather \\ (Bd. VIII, 8. 272) & und & Vanillinathylather in warmer & alkoholischer Lösung durch & Versetzen \\ \end{array}$ BEILSTEINs Handbuch. 4. Aufl. XVIII.

mit Natronlauge (v. Kostanecki, Schmidt, B. 33, 327). — Farblose Nadeln (aus Alkohol). F: 127—128°. Die alkoh. Lösung fluoresciert grünlich. Die Lösung in konz. Schwefelsäure ist rot, die Lösung in alkoh. Kalilauge orangerot.

3 - Brom - 3' - methoxy - 6.4' - diathoxy - flavanon $C_{90}H_{91}O_8Br =$ CO·CHBr

C₂H₅·O·C₆H₃

O—CH·C₆H₃(O·CH₃)·O·C₂H₅

V. Kostanecki, B. 37, 3169. — B. Aus 3'-Methoxy-6.4'-diathoxy-flavanon und Brom in Schwefelkohlenstoff (v. Kostanecki, Schmidtt, B. 38, 327). — Nadeln (aus Alkohol). Schmidtt bei 133° unter Gasentwicklung (v. K., Sch.). — Liefert in alkoh. Lösung durch Versetzen mit starker Kalilauge 3'-Methoxy-6.4'-diäthoxy-flavon (S. 184) (v. K., Sch.).

8. 7-Oxy-4-oxo-2-[2.4-dioxy-phenyl]-chro-man, 7.2'.4'-Trioxy-flavanon C₁₅H₁₂O₅, s. nebenstehende HO.

7.2'.4' - Trimethoxy - flavanon $C_{18}H_{18}O_5 = CO \cdot CH_2$ $CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot CH_2$ $O - CH \cdot C_6H_3(O \cdot CH_3)_2$ Natronlauge mit gelber, in konz. Schwefelsäure mit roter Farbe. — Liefert in siedender alkoholischer Lösung mit Amylnitrit und Salzsäure 7.2'.4'-Trimethoxy-3-oximino-flavanon (S. 221).

9. 7-Oxy-4-oxo-2-[3.4-dioxy-pheny/]-chroman,
7.3'.4'- Trioxy - flavanon (Butin) C₁₅H₁₂O₅, s. nebenstehende Formel. V. Neben Butein (Bd. VIII, S. 501)
als Glykosid in den Blüten von Butea frondosa (Perkin, Hummel, Soc. 85, 1460). — B. Beim Kochen eines wäßr. Auszuges der Blüten von Butea frondosa mit wenig Schwefelsäure (P., H.). Entsteht auch bei längerem Kochen von Butein, gelöst in 50% jegem Alkohol, mit Schwefelsäure (P., H.). — Farblose Nadeln (aus Alkohol), blaßgelbe, ½ H₂O enthaltende Nadeln (aus verd. Alkohol), blaßgelbe, 2 H₂O enthaltende Blättchen (aus siedendem Wasser). Wird bei 160° wasserfrei und schmilzt bei 224—226°. Leicht löslich in Alkohol, löslich in Ather und Eisessig, schwer löslich in heißem Wasser, fast unlöslich in Benzol. Färbt sich beim Behandeln mit kalter konzentrierter Schwefelsaure zunächst tiefrot, geht aber bald mit blaßgelber Farbe in Lösung. Butin löst sich in kalter verdünnter Kalilauge mit schwach orangeroter Farbe; es wird aus dieser Lösung durch Säuren wieder unverändert gefällt. — Beim Kochen der verdünnten alkalischen Lösung wird Butein erhalten; beim Erhitzen mit Ätzkali und wenig Wasser auf 200-220° entstehen Resorcin und Protocatechusäure. Bei der Methylierung erhält man Butintrimethyläther und Buteintrimethyläther. — Butin gibt in alkoh. Lösung mit Bleiacetat einen fast farblosen Niederschlag, mit Eisenchlorid eine tief grüne Lösung.

S. 501) (Perkin, Hummel, Soc. 85, 1466). Aus Buteintrimethyläther durch Digerieren mit alkoh. Schwefelsäure (P., H.) oder durch Kochen mit Alkohol und konz. Salzsäure (v. Kostanecki, Nitkowski, B. 38, 3587). — Farblose Tafeln (aus Schwefelköhlenstoff). F: 120° bis 121° (v. K., N.), 119—121° (P., H.). — Verwandelt sich beim Kochen mit wäßrig-alkoholischer Kalilauge in Buteintrimethyläther (P., H.). Liefert in heißer alkoholischer Lösung mit Amylnitrit und starker Salzsäure 7.3'.4'-Trimethoxy-3-oximino-flavanon (S. 223) (v. K., N.).

mit Amylnitrit und starker Salzsaure 7.3'.4'-Trimethoxy-3-oximino-flavanon (S. 223)(V. K., N.).

3'.4'-Dimethoxy-7-äthoxy-flavanon $C_{19}H_{20}O_b = C_2H_5 \cdot O \cdot C_6H_3 \cdot O - CH \cdot C_6H_3(O \cdot CH_3)_2$ 3.4-dimethoxy-4'-āthoxy-chalkon (Bd. VIII, S. 502) 24 Stdn. mit 10°/oiger Schwefelsäure, entzieht dem Reaktionsgemisch mit 60°/oigem Alkohol eine farblose Verbindung und kocht diese mehrere Stunden mit absol. Alkohol (V. KOSTANECKI, LAMPE, TAMBOR, B. 37, 788).

— Farblose Prismen (aus Alkohol). F: 110°. Löst sich in alkoh. Kali mit orangegelber, in konz. Schwefelsäure mit orangeroter Farbe. — Liefert in siedender alkoholischer Lösung mit Amylnitrit und starker Salzsäure 3'.4'-Dimethoxy-7-äthoxy-3-oximino-flavanon (S. 223).

 $7.8'.4'-Triacetoxy-flavanon \ (Butin-triacetat) \ C_{21}H_{18}O_8 = \\ CH_3 \cdot CO \cdot O \cdot C_6H_8 \cdot \underbrace{CO \cdot CH_2}_{O-CH \cdot C_6H_3(O \cdot CO \cdot CH_3)_2}_{O-CH \cdot C_6H_3(O \cdot CO \cdot CH_3)_2}. \ Das \ Molekulargewicht ist kryoskopisch in$

Naphthalin bestimmt (PERKIN, HUMMEL, Soc. 85, 1462). — B. Man vermischt eine Lösung von 2 g Butin in 30 g Pyridin mit 10 g Acetylchlorid und gießt das Reaktionsprodukt nach 1-stdg. Stehenlassen in Wasser (P., H.). — Farblose Blättchen (aus Aceton + Alkohol). F: 123-125°. Leicht löslich in heißem Alkohol.

7.8'.4'-Tribenzoyloxy-flavanon (Butin-tribenzoat) $C_{ss}H_{ss}O_{s} =$ $C_6H_5 \cdot CO \cdot C_6H_3 = CH \cdot C_6H_3(O \cdot CO \cdot C_6H_5)_3$. Das Molekulargewicht ist kryoskopisch in Naphthalin bestimmt (P., H., Soc. 85, 1463). — B. Man vermischt eine Lösung von 2 g Butin in 30 g Pyridin mit 23 g Benzoylchlorid und gießt nach 1-stdg. Stehenlassen in Wasser (P., H.). - Farblose Nadeln (aus Benzol + Alkohol). F: 155-157°. Schwer löslich in Alkohol.

10. 5-f3.4.5-Trioxy-benzoylj-cumaran $C_{15}H_{12}O_5$, s. nebenstehende Formel.

CH: 5 - [3.4.5 - Trimethoxy - bensoyl] - cumaran $C_{18}H_{18}O_5 = {}^{HO} \cdot (CH_3 \cdot O)_3C_6H_3 \cdot CO \cdot C_6H_3 \underbrace{CH_3}_{O} > CH_2$. B. Man versetzt ein mit ĊН₂ Schwefelkohlenstoff überschichtetes Gemisch von Cumaran und Trimethyläthergallussäure-chlorid (Bd. X., S. 487) allmählich mit Aluminiumchlorid und zersetzt das Reaktionsprodukt nach 48-stdg. Aufbewahren mit Eis (v. Kostanecki, Lampe, Marschalk, B. 40, 3668). Nadeln (aus Alkohol). F: 110—111°. Färbt sich mit konz. Schwefelsäure erst orange und geht dann mit gelber Farbe in Lösung.

4.6-Dioxy-3-oxo-5-methyl-2-[4-oxy-phenyl]-cumaran, 4.6-Dioxy-5-methyl-2-[4-oxy-phenyl]-cumaranon C₁₅H₁₂O₅, Formel I.

- 4 Oxy 6 methoxy 5 methyl 2 [4 methoxy phenyl] cumaranon $C_{17}H_{16}O_{5}$ Formel II. Diese Konstitution wurde vor dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] dem Dimethyläther des Methylgenisteins zugeschrieben, der von BAKER, ROBINSON, Soc. 1926, 2719 als 5-Oxy-7.4'-dimethoxy-6-methyl-isoflavon C₁₈H₁₆O₅ erkannt und als solches S. 193 eingeordnet ist.
- 12. 4.5 Dioxy 3 oxo 1 [4 oxy 2 methylphenylj-phthalan, 6.7-Dioxy-3-[4-oxy-2-methyl-phenylj-phthalid, 3-[4-Oxy-2-methyl-phenylj-CHICaHa(CHa) · OH1/ normekonin C₁₅H₁₂O₅, s. nebenstehende Formel.
- 6.7 Dimethoxy 3 [4 oxy 2 methyl phenyl] phthalid, 8-[4-Oxy-2-methylphenyl]-mekonin $C_{17}H_{16}O_5 = (CH_3 \cdot O)_2C_6H_2 \cdot CH[C_6H_3(CH_3) \cdot OH] \cdot O$. Zur Konstitution vgl. Bistrzycki, Yssel de Schepper, B. 31, 2792; Brubaker, Adams, Am. Soc. 49 [1927], 2289, 2291. — B. Man trägt allmählich ein Gemisch von Opiansäure (Bd. X, S. 990) und m-Kresol in auf —10° abgekühlte 73°/gige Schwefelsäure ein, läßt 12 Stdn. im Eisschrank stehen und übergießt unter Umrühren mit Wasser (BISTRZYCKI, OEHLEBT, B. 27, 2640); man löst in Eisessig, läßt die Lösung eine Woche lang stehen und krystallisiert die abgeschiedenen Krystalle erst aus Essigsäure, dann wiederholt aus einem Gemisch von 28% jeer Essigsäure und Toluol um (Br., A.). — F: 191,5—192,5° (Br., A.).
- 4. Oxy-oxo-Verbindungen $C_{16}H_{14}O_{5}$.
- 1. 6-Oxy-3-methyl-5-[3.4-dioxy-benzoyl]-cumaran $C_{10}H_{14}O_{5}$, s. nebenstehende Formel. CH · CHa

HO

 $\begin{array}{lll} \textbf{6-Methoxy-3-methyl-5-veratroyl-cumaran} & C_{19}H_{20}O_5 = \\ (CH_2\cdot O)_3C_9H_3\cdot CO\cdot C_6H_3(O\cdot CH_3) & CH_2\cdot CH_2 & B. & Aus & 6-Methoxy-3-methyl-cumaran \\ \end{array}$ (Bd. XVII, S. 115) und Veratroylchlorid (Bd. X, S. 397), suspendiert in Schwefelkohlenstoff, durch allmähliches Versetzen mit Aluminiumchlorid; man läßt 48 Stdn. stehen und zersetzt mit Eis (v. Kostanecki, Lampe, B. 41, 1334). — Fast farblose Kryställchen (aus verd. Alkohol). F: 119-120°. Färbt sich durch Benetzen mit konz. Schwefelsäure schwach orange; die Lösung in konz. Schwefelsäure ist gelb. — Beim Kochen der alkoh. Lösung mit Zinkstaub und Alkali entsteht das zugehörige Carbinol, das aber nur ölig erhalten wurde.

2. 6-Oxy-2-oxo-4-methyl-3-[4.6-dioxy-2-methyl-CH₂ CH2 pheny!]-cumaran, Lacton der 4.6.4'.6'-Tetraoxytehenty - dimethyl - diphenylessigsdure C₁₈H₁₄O₅, s. nebenstehende Formel. B. Aus 4.6.4'.6'-Tetraoxy-2.2'-dimethyl-HO O diphenylessigsdure (Bd. X, S. 565) durch Erhitzen im Leuchtgasstrom auf 150° (Hewitt, Dixon, Soc. 78, 400). — Fast farblos. F: 263° (korr.). · OH

B. Bei 1-stdg. Kochen von 1 Tl. 6-Oxy-2-oxo-4-methyl-3-[4.6-dioxy-2-methyl-phenyl]-

cumaran mit 5 Tln. Essigsäureanhydrid (H., D., Soc. 73, 401). — Farblose Prismen (aus Essigester). F: 189° (korr.). Unlöslich in Wasser, schwer löslich in Kohlenwasserstoffen, löslich in Schwefelkohlenstoff, Eisessig, Essigester und Benzoesäureäthylester.

Tribenzoylderivat $C_{37}H_{36}O_8 = C_8H_5 \cdot \text{CO} \cdot \text{C}_6H_3 \cdot \text{CH}[\text{C}_6H_2(\text{CH}_3)(\text{O} \cdot \text{CO} \cdot \text{C}_6H_5)_2]} = \text{CO}. B. \text{ Beim Kochen von 1 Tl. 6-Oxy-}$ --0--2-oxo-4-methyl-3-[4.6-dioxy-2-methyl-phenyl]-cumaran mit 10 Tln. Benzoylchlorid (H., D., Soc. 73, 401). — Krystallinisches Pulver (aus Essigester + Alkohol). Ohne bestimmten Schmelzpunkt; sintert bei etwa 200°. Unlöslich in Wasser, Alkohol und Petroläther, etwas löslich in Eisessig und Benzol, leicht löslich in Aceton, Essigester, warmem Benzoesaureäthylester und Chloroform.

OH 5. 1.6.8-Trioxy-2.4.5.7-tetramethyl-fluoron $C_{17}H_{16}O_5$, s. nebenstehende Formel. B. Durch Erhitzen von Methylen-bisdimethylphloroglucin (Bd. VI, S. 1204) mit konz. Schwefelsäure HO. CH3 auf dem Wasserbad (Wenzel, Schreier, M. 25, 670). Aus 2.4.6-Trioxy-3.5-dimethyl-benzaldehyd und 2.4-Dimethyl-phloro-CHa glucin, gelöst in Eisessig, durch Erhitzen mit konz. Schwefelsäure auf 140—150° oder durch Erhitzen mit konz. Salzsäure (W., Sch., M. 25, 666, 668). — Blutrote Nädelchen (aus Resorcin), dunkelrote Tafeln (aus Eisessig). Verkohlt beim Erhitzen, ohne zu schmelzen. Sehr wenig löslich in Alkohol und Eisessig. — Gibt beim Schütteln in wäßr. Suspension mit Natrium-amalgam 1.3.6.8-Tetraoxy-2.4.5.7-tetramethyl-xanthen. Beim Bromieren in methyl-alkoholischer Suspension entstehen die Verbindung C₁₈H₁₆O₆Br₄ (s. u.) und x-Brom-1.6.8-tri-oxy-2.4.5.7-tetramethyl-fluoron (s. u.). Beim Kochen mit Essigsäureanhydrid und Natriumacetat wird 1.3.6.8-Tetraacetoxy-2.4.5.7-tetramethyl-xanthydrol (Bd. XVII, S. 214) erhalten. Hydrochlorid. Rote, sehr wenig lösliche Nädelchen. Zersetzt sich beim Erhitzen, ohne zu schmelzen. Spaltet bei andauerndem Kochen mit Alkohol Chlorwasserstoff vollständig ab. — C₁₇H₁₆O₅ + H₂SO₄. Rote violettschimmernde Nädelchen (aus konz. Schwefelsäure). Zersetzt sich beim Erhitzen unter Verkohlung. Unlöslich in organischen Lösungsmitteln; leicht löslich in warmer konzentrierter Schwefelsäure; wird aus dieser Lösung durch Eisessig gefällt. Wird durch Kochen mit Alkohol nicht verändert. Durch Einw. von Wasser wird Schwefelsäure abgespalten.

Verbindung $C_{18}H_{16}O_6Br_4$, s. nebenstehende Formel. B. Durch Eintragen von Brom in eine Suspension von 1.6.8-Trioxy-2.4.5.7-tetramethylfluoron in Methylalkohol, neben x-Brom-1.6.8-trioxy-2.4.5.7-tetramethyl-fluoron (W., Sch., M. 25, CH₃ CH₃ Br 679). — Farblose Krystalle (aus Eisessig), die sich an der Luft dunkel färben. F: 155—160°. ĊHa Leicht löslich in Eisessig und Benzol, löslich in Essigester, schwer löslich in Äthyl- und Methylalkohol.

x-Brom-1.6.8-trioxy-2.4.5.7-tetramethyl-fluoron C₁₇H₁₅O₅Br. B. Beim Bromieren des Sulfats des 1.6.8-Trioxy-2.4.5.7-tetramethyl-fluorons (W., Sch., M. 25, 681). — Dunkelrote Nädelchen.

i) Oxy-oxo-Verbindungen $C_n H_{2n-20} O_5$.

1. Oxy-oxo-Verbindungen $C_{15}H_{10}O_{5}$.

1. 5.7-Dioxy-4-oxo-2-[2-oxy-phenyl]-[1.4-chromen], 5.7-Dioxy-2-[2-oxy-phenyl]-chromon, 5.7.2'-Trioxy-flavon $C_{15}H_{10}O_5$, s. nebenstehende Formel. B. Durch mehrstündiges Kochen von 2.4.6-Trimethoxy- ω -[2-āthoxy-HO benzoyl]-acetophenon mit Jodwasserstoffsäure (v. Kostanecki, Webel, B. 34, 1455).—Nädelchen (aus Eisessig). F: 281°. Löslich in Alkohol, schwerer löslich in Eisessig. Die Lösung in Alkalien ist grünlichgelb. Konz. Schwefelsäure färbt die Kryställchen gelb und erzeugt eine grünlichgelbe, schwach grünlich fluorescierende Lösung.

5 - Oxy - 7.2' - dimethoxy - flavon C₁₇H₁₄O₅, s. nebenstehende Formel. B. Durch Kochen von 5.7.2' Trioxy-flavon mit Methyljodid und alkoh. Kali, neben kleineren Mengen einer blaßgelben, in Alkohol schwerer löslichen Verbindung (v. K., W., B. 34, 1456). — Blaßgelbe Nädelchen (aus Alkohol). F: 154—156°.

W., B. 34, 1400). — Diangello Tuaccioni, CO·CH

5.7-Dimethoxy-2'-äthoxy-flavon C₁₈H₁₈O₅ = (CH₃·O)₂C₆H₂ O C·C₆H₄·O·C₂H₅

Durch vorsichtiges Kochen von 2.4.6-Trimethoxy-ω-[2-āthoxy-benzoyl]-acetophenon mit Jodwasserstoffsāure (v. K., W., B. 34, 1457). — Nadeln (aus Alkohol). F: 164—165°.

5 - Oxy - 7.2' - diäthoxy - flavon $C_{19}H_{18}O_5$, s. nebenstehende Formel. B. Beim Kochen einer alkoh. Lösung von 5.7.2'-Trioxy-flavon mit Kaliumhydroxyd und Äthyljodid (v. K., W., B. 34, 1456). — Blaßgelbe Nadeln (aus Alkohol). F: 108—110°.

7.2'-Dimethoxy-5-acetoxy-flavon $C_{19}H_{16}O_6$, Formel I. Nadeln (aus verdünntem Alkohol). F: 96—97° (v. K., W., B. 34, 1456).

I.
$$CH_3 \cdot CO \cdot O$$

$$CH_3 \cdot O \cdot O$$

$$C_2H_5 \cdot O \cdot O$$

$$C_2H_5 \cdot O \cdot O$$

7.2' - Diäthoxy - 5 - acetoxy - flavon $C_{21}H_{20}O_6$, Formel II. Nädelchen (aus verd. Alkohol). F: 120—122° (v. K., W., B. 34, 1456).

Alkonol). F: 120—122 (v. 13., ..., 2... C., 12... CO·CH 5.7.2' - Triacetoxy - flavon $C_{21}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \cdot O - C \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$ Nadeln (aus Alkohol). F: 178° (v. K., W., B. 34, 1456).

2. 5.7-Dioxy-4-oxo-2-[3-oxy-phenyl]-[1.4-chromen],
5.7-Dioxy-2-[3-oxy-phenyl]-chromon, 5.7.3'-Trioxyflavon C₁₅H₁₀O₅, s. nebenstehende Formel. B. Aus 2.4.6-Trimethoxy-ω-[3-āthoxy-benzoyl]-acetophenon durch mehrstündiges Kochen
mit Jodwasserstoffsäure (D: 1,96) (v. Kostanecki, Steuermann, B. 34, 112). Aus 5.7-Dimethoxy-3'-āthoxy-flavon (s. u.) durch mehrstündiges Kochen mit konz. Jodwasserstoffsäure (v. K., St., B. 34, 111). — Nädelchen (aus verd. Alkohol). F: 299°. Leicht löslich in
Alkohol. Löst sich in Natronlauge mit hellgelber, in konz. Schwefelsäure mit grünlichgelber
Farbe. Eisenchlorid färbt die alkoh. Lösung rot.

5.7-Dimethoxy-3'-äthoxy-flavon $C_{19}H_{18}O_5=(CH_3\cdot O)_2C_6H_2$ CO·CH

5.7-Dimethoxy-3'-äthoxy-flavon $C_{19}H_{18}O_5=(CH_3\cdot O)_2C_6H_2$ O— $C\cdot C_6H_4\cdot O\cdot C_2H_5$ Durch Eintragen von 2.4.6-Trimethoxy- ω -[3-āthoxy-benzoyl]-acetophenon in warme Jodwasserstoffsäure (D: 1,7) (v. K., Sr., B. 34, 111). — Körnige Kryställchen oder Nadeln (aus Alkohol). F: 151—152°. Färbt sich mit konz. Schwefelsäure gelb und gibt eine grünlichgelbe, schwach grün fluorescierende Lösung. — Durch mehrstündiges Kochen mit konz. Jodwasserstoffsäure entsteht 5.7.3'-Trioxy-flavon (s. o.).

5.7.3' - Triacetoxy - flavon $C_{s_1}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \cdot O - \ddot{C} \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$ Nadeln (aus Alkohol). F: 165—166° (v. K., St., B. 34, 112).

Nadeln (aus Alkohol). F: 165—166° (v. K., St., B. 34, 112).

3. 5.7-Dioxy-4-oxo-2-[4-oxy-phenyl]-[1.4-chromen], 5.7-Dioxy-2-[4-oxy-phenyl]-chromon, 5.7.4'-Trioxy-flavon, Apigenin C₁₈H₁₀O₈, s. nebenstehende Formel. Die vom Namen "Apigenin" Ho abgeleiteten Namen werden in diesem Handbuch nach nebenstehendem Schema beziffert. — V. Findet sich in geringer Menge im Wau (A. G. PERKIN, HORSFALL, Soc. 77, 1315). — B. Aus Apiin (vgl. 4. Hauptabteilung unter Kohlenhydrate) durch Kochen mit Säuren (LINDENBORN, Dissertation [Würzburg 1867]; Vongerichten, B. 9, 1124; vgl. Vong., B. 33, 2335; Conti, Testoni, G. 31 I, 74). Durch Spaltung von Apigenin-7-glykosid (vgl. 4. Hauptabteilung unter Kohlenhydrate) mit Emulsin oder 15°/oiger Schwefelsäure (Vong., A. 318, 127, 135). Aus Apigenin-

4'-methyläther beim Erhitzen mit Jodwasserstoffsäure (A. G. P., Soc. 77, 431). Aus Apigenintrimethyläther durch mehrstündiges Kochen mit konz. Jodwasserstoffsäure (Czajkowski, v. Kostanecki, Tambor, B. 33, 1992). Durch längeres Kochen von 6.8-Dibrom-apigenintrimethyläther (S. 183) mit konz. Jodwasserstoffsäure (Breger, v. K., B. 38, 932). Aus 2.4.6-Trimethoxy-ω-[4-methoxy-benzoyl]-acetophenon durch mehrstündiges Kochen mit Jodwasserstoffsäure (D: 1,96) (Cz., v. K., Ta., B. 33, 1992). — Darstellung aus Apiin: Cz., v. K., Ta., B. 33, 1995. — Blättchen (aus Alkohol). F: 347°; leicht löslich in Natronlauge mit hellgelber Farbe; die gelbliche Lösung in konz. Schwefelsäure fluoresciert schwach grünlich, später bläulich (Cz., v. K., Ta.). Gibt in alkoh. Lösung mit Ferrichlorid braunschwarze, mit Ferrosulfat braunrote Färbung (A. G. P., Soc. 71, 807). — Bei der Einw. von Brom auf Apigenin in Essigsäure bildet sich x.x.Dibrom-apigenin (A. G. P., Soc. 71, 808). Beim Kochen von Apigenin mit verd. Salpetersäure entsteht neben x-Nitro-apigenin 3.5-Dinitro-4-oxybenzoesäure (A. G. P., Soc. 77, 417). Bei energischerer Nitrierung von Apigenin erhält man x.x.x-Trinitro-apigenin vom Schmelzpunkt 245—246° (Zers.) und x.x.x.x-Tetranitro-apigenin (A. G. P., Soc. 77, 418, 419). Beim Kochen mit 50°/oiger Kalilauge entstehen Phloroglucin und 4-Oxy-acetophenon (A. G. P., Soc. 71, 809). Durch 3—4-stdg. Kochen von 1 g Apigenin mit 0,6 g Kaliumhydroxyd und 2 g Methyljodid in methylalkoholischer Lösung erhält man Apigenin-7.4′-dimethyläther (Oz., v. K., Ta.; vgl. A. G. P., Soc. 71, 812). Bei 3-stdg. Erwärmen von 6 g Apigenin mit 40 g Methyljodid und 60 cm³ 10°/oiger alkoh. Kalilauge erhielten Contt, Testoni (G. 31 I, 77), Tetramethylapigenin" (S. 197). Apigenin färbt chromierte Wolle seifenecht gelb (Möhlau, Stemmig, Ziechr. f. Farben- u. Textilindustrie 3, 367; C. 1904 II, 1353; vgl. A. G. P., Soc. 81, 1176).

5.7-Dioxy-4'-methoxy-flavon, Apigenin-4'-methyläther, Acacetin $C_{16}H_{18}O_5 = CO \cdot CH$ CO · CH

Zur Konstitution vgl. auch Robinson, Venkataraman, Soc. 1926, 2348. — V. und B. In den Blättern von Robinia Pseudacacia; der wäßr. Extrakt wird mit basischen Bleiacetat gefällt und der Niederschlag mit verd. Schwefelsäure zersetzt (A. G. Perrin, Soc. 77, 430). Durch Kochen von Apiinmethyläther (vgl. 4. Hauptabteilung unter Kohlenhydrate) mit verd. Salzsäure (Vongerichten, B. 33, 2908). — Nädelchen (aus Alkohol). F: 256—257°; leicht löslich in heißem Alkohol, unlöslich in Äther (Vong.). Färbt sich mit Soda intensiv gelb (Vong.). — Durch Kochen mit 30°/ $_{o}$ iger Kalilauge entstehen Anissäure, Phloroglucin und 4-Methoxy-acetophenon(?) (Vong.). Gibt beim Schmelzen mit Kaliumhydroxyd Phloroglucin und 4-Oxy-benzoesäure (A. G. P.). Wird durch Jodwasserstoffsäure unter Bildung von Apigenin verseift (A. G. P.).

7-Oxy-5.4'-dimethoxy-flavon, Apigenin-5.4'-dimethyläther C₁₇H₁₄O₅, s. nebenstehende Formel. B. Durch
Kochen von Apigenin-5.4'-dimethyläther-7-glykosid (vgl.
4. Hauptabteilung unter Kohlenhydrate) mit Salzsäure (Vong.,
B. 33, 2909). — Nädelchen (aus verd. Alkohol). F: 264°. Leicht löslich in Natronlauge
und siedender Sodalösung.

5-Oxy-7.4'-dimethoxy-flavon, Apigenin-7.4'-dimethyläther C₁₇H₁₄O₅, s. nebenstehende Formel. B. Durch 3—4-stdg. Kochen einer methylalkoholischen Lösung von 1 g Apigenin (S. 181) mit 0,6 g Kaliumhydroxyd und 2 g Methyljodid (Czajkowski, v. Kostanecki, Tambor, B. 33, 1993; vgl. A. G. Perkin, Soc. 71, 812). — Hellgelbe Nadeln. F: 171—172° (A. G. P.), 170—171° (Cz., v. K., T.). Schwer löslich in Alkohol (A. G. P.). Die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert grünlich (Cz., v. K., T.). — Beim Erwärmen mit alkoh. Kalilauge auf 160°—170° entsteht Anissäure (A. G. P.).

5.7.4′ - Trimethoxy - flavon, Apigenin - trimethyläther $C_{18}H_{16}O_5 = (CH_3 \cdot O)_2C_6H_3 \cdot O - C_1C_6H_4 \cdot O \cdot CH_3$. B. Durch kurzes Erwärmen von 2.4.6-Trimethoxy- ω - [4 - methoxy - benzoyl] - acetophenon mit Jodwasserstoffsäure (D: 1,7) (Czajkowski, v. Kostanecki, Tambor, B. 33, 1991). — Nadeln (aus Alkohol). F: 156°. Leicht löslich in Benzol. Die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert grünlich.

5-Oxy-7.4'-diāthoxy-flavon, Apigenin-7.4'-diāthylāther C₁₈H₁₈O₈, s. nebenstehende Formel. B. Durch Kochen von Apigenin (S. 181) mit Äthyljodid und Natriumāthylat in Alkohol (Czajkowski, v. Kostankoki, Tambor, B. 33, 1994; vgl. A. G. Perkin, Soc. 71, 814). — Gelbe Nadeln. F: 161—162° (A. G. P.), 163—164° (Cz., v. K., T.). Schwer löslich in Alkohol (A. G. P.). — Gibt beim Erwärmen mit alkoh. Kalilauge 4-Äthoxy-benzoesäure (A. G. P.).

7.4'- Dimethoxy - 5 - acetoxy - flavon, Apigenin -7.4'-dimethyläther-5-acetat $C_{19}H_{16}O_{6}$, s. nebenstehende Formel. B. Bei 1-stdg. Kochen von 1 Tl. Apigenin-7.4'-dimethyläther mit 1 Tl. wasserfreiem Natriumacetat CHa · CO · O · O · CHa CHa · O und 6 Tln. Essigsäureanhydrid (A. G. Perkin, Soc. 71, 812). — Farblose Nadeln (aus Alkohol). F: 193—194° (Czajkowski, v. Kostanecki, TAMBOR, B. 33, 1994), 195-1960 (A. G. P.).

5.4'-Dimethoxy-7-acetoxy-flavon, Apigenin-5.4'-dimethyläther-7-acetat $C_{19}H_{16}O_{6}$, Formel I. F: 204° (Vongerichten, B. 33, 2909).

7.4'-Diäthoxy-5-acetoxy-flavon, Apigenin-7.4'-diäthyläther-5-acetat $C_{21}H_{40}O_4$, Formel II. Täfelchen (aus Aceton). F: 148—149,5° (CZAJKOWSKI, V. KOSTANECKI, TAMBOB,

Oxy - diacetoxy - flavon, Apigenin - x.x - diacetat $C_{19}H_{14}O_7 = C_{15}H_7O_8(OH)(O\cdot CO\cdot CH_9)_8$. B. Aus Apigenin und Essigsäureanhydrid, neben Apigenintriacetat (Conti, Testoni, G. 31 I, 76). — Gelbliche Nadeln (aus Alkohol). F: 201°.

F: 198-200° (Vong.), 195-198° (A. G. Perkin, Soc. 77, 431). Leicht löslich in Benzol (Vong.), löslich in Alkohol (Vong.; A. G. P.).

5.7.4'- Triacetoxy - flavon, Apigenin - triacetat $C_{ex}H_{16}O_{8} =$ COCH

 $(CH_3 \cdot CO \cdot O)_3 C_6 H_3 \leftarrow CO \cdot CH$ O- $C \cdot C_6 H_4 \cdot O \cdot CO \cdot CH_3$ B. Aus Apigenin durch Kochen mit Essigsäureanhydrid und entwässertem Natriumscetat (Czajkowski, v. Kostanecki, Tambor, B. 33, 1993). — Farblose Nadeln (aus Alkohol). F: 181—1820 (Cz., v. K., Ta.), 1860 (CONTI, TESTONI, G. 31 I, 75).

5.7.4' - Tribenzoyloxy - flavon, Apigenin - tribenzoat $C_{36}H_{22}O_8 =$

CO·Ch (CoH6·CO·O)3CoH2 CO·CH CO·CH4·O·CO·CoH5 B. Aus Apigenin durch Benzoylchlorid und Kalilauge (A. G. Perkin, Soc. 71, 809). — Farblose Nadeln. F: 210—212°. Schwer löslich in Alkohol.

6.8 - Dibrom - 5.7.4' - trimethoxy - flavon, 6.8 - Dibrom - apigenin - trimethyläther $C_{18}H_{14}O_{8}Br_{2} = (CH_{8} \cdot O)_{8}C_{6}Br_{2} \underbrace{O - C \cdot C_{6}H_{4} \cdot O \cdot CH_{8}}_{O - C}$ CO·CH B. Durch Behandeln von 3.6.8-Tribrom-5.7.4'-trimethoxy-flavanon (S. 176) mit alkoh. Kali (Breger, v. Kostanecki, B. 38, 932). - Nadeln (aus Eisessig). F: 245°. - Bei längerem Kochen mit konz. Jodwasserstoffsäure entsteht Apigenin.

 $x.x - Dibrom - 5.7.4' - trioxy - flavon, <math>x.x - Dibrom - apigenin C_{15}H_5O_5Br_2 =$ C₁₅H₅O₂Br₂(OH)₃. B. Durch Einw. von Brom auf Apigenin in Essigsaure (A. G. Perkin, Soc. 71, 808). — Hellgelbe Nadeln. Schmilzt oberhalb 290°. Schwer löelich in kochendem Nitrobenzol. Mit blaßgelber Farbe in verd. Alkali löslich.

x-Nitro-5.7.4'-trioxy-flavon, x-Nitro-apigenin $C_{15}H_5O_7N=C_{15}H_4O_2(NO_2)(OH)_5$. B. Man kocht 3 g Apigenin mit 12 g Salpetersäure (D: 1,42) und 60 cm³ Wasser 20 Minuten (A. G. P., Soc. 77, 417). — Orangegelbe Nadeln (aus Nitrobenzol + Eisessig). F: 302° (Zers.). In verd. Alkali mit Orangefarbe löslich.

x.x. Trinitro - 5.7.4'- trioxy - flavon vom Schmelspunkt 296°, x.x. Trinitro - apigenin vom Schmelspunkt 296° $C_{15}H_2O_{11}N_3 = C_{15}H_4O_2(NO_2)_3(OH)_3$. B. Aus 1 g Apigenin in 5 cm³ Eisessig mit 4 cm³ Salpetersaure (D: 1,42) unter Erhitzen (A. G. P., Soc. 77, 418). — Gelbe Nadeln (aus Nitrobenzol + Alkohol). F: 296° (Zers.). Schwer löslich in den meisten Solvenzien.

x.x.x-Trinitro-5.7.4'-trioxy-flavon vom Schmelspunkt 245—246°, x.x.x-Trinitroapigenin vom Schmelspunkt $245-246^\circ$ $C_{15}H_7O_{11}N_2=C_{18}H_4O_2(NO_4)_3(OH)_3$. B. Durch Nitrieren von Apigenin (S. 181) mit Salpetersäure (D: 1,52) (A. G. P., Soc. 77, 419). — Orangefarbene Blättchen. Sintert bei 240° und schmilzt bei 245—246° unter Zersetzung. Schwer löslich in den üblichen Solvenzien. Die Alkalisalze sind schwer löslich.

x.x.x.x-Tetranitro-5.7.4'-trioxy-flavon, x.x.x.Tetranitro-apigenin $C_{15}H_5O_{13}N_4-C_{15}H_3O_5(NO_2)_4(OH)_3$. B. Aus 1 g Apigenin und einem Gemisch von 12 cm³ Salpetersäure (D: 1,54) und 12 cm³ konz. Schwefelsäure (A. G. P., Soc. 77, 419). Aus Vitexin (Syst. No. 4865) durch verd. Salpetersäure (A. G. P., Soc. 73, 1025; vgl. auch Barger, Soc. 89, 1222). — Fast farblose Nadeln (aus Nitrobenzol + Alkohol). F: 243—244° (Zers.); schwer löslich in den üblichen Lösungsmitteln (A. G. P., Soc. 77, 420). — Verbindung mit Nitrobenzol $C_{15}H_6O_{13}N_4+C_6H_5O_2N$. Orangefarbene Nadeln. Sintert bei 150° und schmilzt bei 238—240° (A. G. P., Soc. 73, 1025).

4. 6-Oxy-4-oxo-2-[3.4-dloxy-phenyl]-[1.4-chro-men], 6-Oxy-2-[3.4-dloxy-phenyl]-chromon, 6.3'.4'Trioxy-flavon C₁₅H₁₀O₃, s. nebenstehende Formel. B. Durch
Kochen von 3'.Methoxy-6.4'-dläthoxy-flavon oder 6-Äthoxy-3'.4'-methylendioxy-flavon
(Syst. No. 2965) mit konz. Jodwasserstoffsäure (v. Kostanecki, Schmidt, B. 33, 330).—
Gelbliche Krystallkrusten (aus verd. Alkohol). F: 328° (Zers.). In verd. Natronlauge mit orangeroter Farbe leicht löslich.— Gibt auf Tonerdebeize rein gelbe Färbungen.

3'- Methoxy - 6.4' - diäthoxy - flavon $C_{20}H_{20}O_5 = C_2H_5 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_2H_5$. B. Durch Einw. von alkoh. Kalilauge auf 3-Brom-3'-methoxy-6.4'-diäthoxy-flavanon (S. 178) (v. K., Sch., B. 33, 328). — Nadeln (aus Alkohol). F: 168°. Die alkoh. Lösung fluoresciert blau.

6.3'.4' - Triacetoxy - flavon $C_{21}H_{16}O_8 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot O - C \cdot C_6H_3 \cdot O \cdot CO \cdot CH_3 \cdot B$. Beim Kochen von 6.3'.4'-Trioxy-flavon mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., Sch., B. 33, 330). – Nädelchen. F: 208–209°. In Alkohol ziemlich schwer löslich.

5. 7-Oxy-4-oxo-2-[3.4-dioxy-phenyl]-[1.4-chro-nen], 7-Oxy-2-[3.4-dioxy-phenyl]-chromon, 7.3'.4'Trioxy-flavon C₁₅H₁₀O₅, s. nebenstehende Formel. B. Durch
längeres Kochen von 3'-Methoxy-2.4.4'-triäthoxy-dibenzoylmethan mit konz. Jodwasserstoffsäure (v. Kostanecki, Różycki, B. 34, 3725). — Krystallwasserhaltige Nadeln (aus sehr verd. Alkohol), gelbliche Krystallkrusten (aus Eisessig). F: 326—327°. In Natronlauge mit gelber Farbe leicht löslich. Eisenchlorid färbt die alkoh. Lösung grün. Die grünlichgelbe Lösung in konz. Schwefelsäure fluoresciert schwach grünlich. – Färbt Tonerdebeize lichtgelb.

Lösung in konz. Schweieisaure indiceolory schwarz $_{5}$ — $_{13}$ CO·CH 7.3'.4'-Triacetoxy-flavon $C_{21}H_{16}O_8 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot O - C \cdot C_6H_3(O \cdot CO \cdot CH_3)_2$ Nadeln (aus Alkohol). F: 209—210° (v. K., R., B. 34, 3726).

6. 7-Oxy-4-oxo-2-[3.5-dioxy-phenyl]-[1.4-chro-men], 7-Oxy-2-[3.5-dioxy-phenyl]-chromon, 7.3'.5'Trioxy-flavon C₁₅H₁₀O₈, s. nebenstehende Formel. B. Durch längeres Erhitzen von 7.3'.5'-Trimethoxy-flavon mit konz. Jodwasserstoffsäure (v. Kostanecki, Weinstock, B. 35, 2886).—

OH Aus Nädelchen bestehende Krystallkrusten (aus Alkohol), wasserhaltige Nädelchen (aus verd. Alkohol). F: 329°. Ziemlich leicht löslich in heißem Alkohol. Die Lösung in Natronlauge ist grünlichgelb; die schwach gelbe Lösung in konz. Schwefelsäure fluoresciert grünlich.

7.3'.5'-Trimethoxy-flavon $C_{18}H_{16}O_5=CH_3\cdot O\cdot C_8H_3\cdot CO\cdot CH_3$. B. Man kocht 3'.5'-Dimethoxy-2.4-diäthoxy-dibenzoylmethan längere Zeit mit Jodwasserstoffsäure und behandelt das Reaktionsprodukt mit Dimethylsulfat und Kalilauge (v. K., W., B. 35, 2886). — Nadeln (aus Alkohol). F: 181—182°.

2886). — Nadeln (aus Alkohol). F: 181—182°.

7.3'.5' - Triacetoxy - flavon C₂₁H₁₆O₈ = CH₃·CO·O·C₆H₃ CO·CH
O—C·C₆H₃(O·CO·CH₃)₂

Nadeln (aus Alkohol). F: 187° (v. K., W., B. 35, 2887).

7. 5.7-Dioxy-3.4-dioxo-2-phenyl-chroman, 5.7-Dioxy-3.4-dioxo-flavan bezw. 3.5.7-Trioxy-2-phenyl-chromon, 3.5.7-Trioxy-flavon, 5.7-Dioxy-H0

flavonol $C_{18}H_{10}O_5$, Formel I bezw. II, Galangin. Für die vom Namen "Galangin" abgeleiteten Namen wird in diesem Handbuch die eingezeichnete Bezifferung gebraucht. —

- V. Im alkoh. Extrakt der Galangawurzel, neben Kämpferid (S. 215) (Jahns, B. 14, 2807) und Galangin-3-methyläther (Testoni, G. 30 II, 327). B. Aus Galangin-5.7-dimethyläther durch mehrstündiges Kochen mit konz. Jodwasserstoffsäure (v. Kostanecki, Lampe. Tambor, B. 37, 2805). Darstellung s. bei Kämpferid. Krystallisiert aus absol. Alkohol in hellgelben, sechsseitigen Tafeln oder (bei langsamer Abscheidung) mit ½ Mol Krystallalkohol in flachen Säulen, die an der Luft bald verwittern (J.), aus verd. Alkohol in gelblichen Nadeln mit 1 H₂O (J.; v. K., L., Ta.), aus Benzol in Schuppen mit ½ C₆H₈, die bei 100° ihr Krystallbenzol verlieren (Te., G. 30 II, 338). F: 214—215° (J.), 217—218° (v. K., L., Ta.), 219—221° (Te.). Sublimiert teilweise unzersetzt (J.). Fast unlöslich in Wasser, leicht löslich in Ather, schwer löslich in siedendem Chloroform und in Benzol; 1 Tl. krystallwasserhaltiges Galangin löst sich in 68 Tln. kaltem 90°/0 igem Alkohol und in 34 Tln. absol. Alkohol (J.). Löst sich mit gelber Farbe in Alkalilauge, in geringem Maße auch in Sodalösung (J.). Löst sich in rauchender Schwefelsäure (J.) und in konz. Schwefelsäure mit gelber Farbe (J.; v. K., L., Ta.); letztere Lösung fluoresciert nicht (J.); nach kurzem Aufbewahren fluoresciert die stark verdünnte Lösung bläulich (v. K., L., Ta.). Galangin gibt mit Eisenchlorid eine grüne Färbung, reduziert Silber- und alkal. Kupferlösung (J.). Wird beim Kochen mit verd. Schwefelsäure nicht verändert (J.). Gibt beim Kochen mit Salpetersäure (D: 1,18) und ebenso beim Schmelzen nicht verändert (J.). Gibt beim Kochen mit Salpetersäure (D: 1,18) und ebenso beim Schmelzen nicht verändert (J.). Gelbe Nadeln. Wird durch siedendes Wasser zersetzt (A. G. Perkein, Wilson, Soc. 83, 135). PbC₁₅H₈O₈ (bei 120—130°). B. Durch Fällen einer heißen alkoh. Galanginlösung mit alkoh. Bleizuckerlösung (J.). Orangegelb, amorph.
- 5.7-Dioxy-3-methoxy-flavon, 5.7-Dioxy-flavonol-methyläther, Galangin-3-methyläther $C_{16}H_{12}O_5 = (HO)_2C_6H_2$ $O-C\cdot C_6H_5$. Zur Konstitution vgl. A. G. Perkin, Allison, Soc. 81, 472. V. Im alkoh. Extrakt der Galangawurzel, neben Galangin und Kämpferid (S. 215) (Te., G. 30 II, 336). Hellgelbe quadratische Tafeln (aus Methylalkohol). Schmilzt gegen 300°; löslich in konz. Kalilauge mit intensiv gelber Farbe; aus der Lösung in Natronlauge fällt sogleich das Natriumsalz in gelben Nadeln aus; die gelbe Lösung in konz. Schwefelsäure zeigt grüne Fluorescenz (Te.). Gibt mit Jodwasserstoffsäure Galangin (Te.). Liefert bei der Oxydation mit Salpetersäure oder Permanganat Benzoesäure und Oxalsäure (Te.). Beim Durchsaugen von Luft durch die alkal. Lösung entstehen Benzoesäure und Phloroglucin (A. G. P., A.).
- 5.7 Dimethoxy 3.4 dioxo flavan bezw. 3-Oxy-5.7-dimethoxy-flavon, 5.7-Dimethoxy flavonol $C_{17}H_{14}O_{5} = (CH_{3}\cdot O)_{2}C_{6}H_{2}$ bezw. bezw.
- (CH₈·O)₂C₆H₂CO·C·OH (CH₈·O)₂C₆H₂CO-C·C₆H₅, Galangin - 5.7 - dimethyläther. B. Durch Kochen einer essigsauren Lösung von 5.7-Dimethoxy-3-oximino-flavanon mit 10°/₀iger Schwefelsäure (v. Kostaneckt, Lampe, Tambor, B. 37, 2804). — Blaßgelbe Prismen (aus Alkohol). F: 177° bis 178°. Unlöslich in verd. Natronlauge. Die grünlichgelbe Lösung in konz. Schwefelsäure fluoresciert grünlich. — Färbt Tonerdebeize blaßgelb an. — Natriumsalz. Gelb. Schwer löslich.
- 5.7-Dimethoxy-3-acetoxy-flavon, 5.7-Dimethoxy-flavonol-acetat, Galangin-5.7-dimethyläther-8-acetat $C_{16}H_{16}O_6 = (CH_3 \cdot O)_2C_6H_3 \cdot O C \cdot C_6H_5$. Nadeln (aus verd. Alkohol). F: 192—193° (v. K., L., Ta., B. 37, 2804).
- 3-Methoxy-5.7-diacetoxy-flavon, 5.7-Diacetoxy-flavonol-methyläther, Galangin-3-methyläther-5.7-diacetat $C_{20}H_{16}O_7=(CH_3\cdot CO\cdot O)_2C_6H_2$ $O-C\cdot C\cdot CH_3$ B. Bei ca. 3-stdg. Erhitzen von 2 g Galangin-3-methyläther mit 20 cm³ Essigsäureanhydrid (Testoni, G. 30 II, 337). Gelbliche Blättchen (aus Alkohol). F: 175—176°. Addiert 1 Mol Brom unter Bildung von 2.3-Dibrom-3-methoxy-5.7-diacetoxy-flavanon.
- 3.5.7 Triacetoxy flavon, 5.7 Diacetoxy flavonol acetat, Galangin triacetat $C_{21}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_3 \subset CO \cdot C \cdot O \cdot CO \cdot CH_3$. B. Durch Kochen von Galangin mit wasserfreiem Natriumacetat und Essigsäureanhydrid (Jahns, B. 14, 2808). Nadeln (aus Alkohol). F: 140—142°; löslich in Alkohol (J.; v. Kostanecki, Lampe, Tambor, B. 37, 2806), unlöslich in Wasser; unlöslich in verd. Kalilauge (J.).
- 5.7-Dimethoxy-4-oxo-8-oximino-flavan, 5.7-Dimethoxy-8-oximino-flavanon $C_{17}H_{15}O_5N = (CH_5 \cdot O)_5C_6H_2 < \begin{array}{c} CO \cdot C : N \cdot OH \\ O CH \cdot C_6H_5 \end{array}$. B. Durch Versetzen einer siedenden alkoholischen

Lösung von 5.7-Dimethoxy-flavanon (S. 119) mit Amylnitrit und Salzsäure (v. Kostanecki, Lampe, Tambor, B. 37, 2804). — Blaßgelbe Nadeln (aus Benzol). F: 175—177° (Zers.). Die Lösung in verd. Natronlauge ist gelblich. — Färbt Kobaltbeize orangegelb an.

2.3 - Dibrom - 3 - methoxy - 5.7 - diacetoxy - flavanon $C_{30}H_{16}O_7Br_2 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \cdot CG_5H_5$. B. Aus 3-Methoxy-5.7-diacetoxy-flavon durch Addition von 1 Mol Brom (Testoxi, G. 30 II, 337). — Gelbe Nadeln (aus Eisessig). F: 202°.

x.x-Dibrom-5.7-dioxy-3.4-dioxo-flavan bezw. x.x-Dibrom - 3.5.7-trioxy-flavon, x.x-Dibrom-5.7-dioxy-flavonol, x.x-Dibrom-galangin $C_{16}H_8O_bBr_9$. B. Durch Eintröpfeln von 1 Tl. Brom in eine Lösung von 2 Tln. Galangin in Eisessig (Jahns, B. 14, 2809). — Gelbe Nadeln. Unlöslich in Wasser, schwer löslich in Alkohol. Leicht löslich in Kalilauge mit gelber Farbe.

8. 7.8-Dioxy-3.4-dioxo-2-phenyl-chroman, 7.8-Dioxy-3.4-dioxo-flavan bezw. 3.7.8-Trioxy-2-phenyl-chromon, 3.7.8-Trioxy-flavon, 7.8-Dioxy-flavonol Cl₁₅H₁₀O₅, Formel I bezw. II. B. Durch längeres Kochen von 7.8-Dimethoxy-flavonol mit konz. Jodwasserstoffsäure (Dobrzyński, v. Kostanecki, B. 87, 2808). — Ho Ho Ho

Blaßgelbe Nadeln (aus verd. Alkohol oder viel Wasser). F: 249°. Löst sich in Alkalien mit rotgelber, in konz. Schwefelsäure mit gelber Farbe. — Färbt Tonerdebeize kräftig orangegelb an.

7.8 - Dimethoxy - 3.4 - dioxo - flavan bezw. 3-Oxy-7.8-dimethoxy-flavon, 7.8-Dimethoxy-flavonol $C_{17}H_{14}O_5 = (CH_3 \cdot O)_2C_6H_2 \underbrace{CO \cdot CO}_{CH \cdot C_6H_5}$ bezw.

CO·C·OH
(CH₃·O)₂C₆H₂·C_OC·C·OH
0—C·C₆H₅.

B. Durch Kochen von 7.8-Dimethoxy-3-oximino-flavanon mit Eisessig und 10% giger Schwefelsäure (D., v. K., B. 37, 2808). — Blaßgelbe Nadeln (aus Alkohol). F: 203°. Die Lösung in konz. Schwefelsäure ist grünlichgelb. — Färbt Tonerdebeize blaßgelb an.

7.8 - Dimethoxy - 3 - acetoxy - flavon, 7.8 - Dimethoxy - flavonol - acetat $C_{19}H_{16}O_6 = (CH_3 \cdot O)_2C_6H_2 < CO \cdot CO \cdot CO \cdot CH_3
O - C \cdot C_6H_5$. Täfelchen (aus Alkohol). F: 185° (D., v. K., B. 37, 2808).

3.7.8 - Triacetoxy - flavon, 7.8 - Diacetoxy - flavonol - acetat $C_{21}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \cdot CO \cdot CO \cdot CH_3$. Nadeln (aus Alkohol). F: 210° (D., v. K., B. 37, 2809).

7.8-Dimethoxy-4-oxo-3-oximino-flavan, 7.8-Dimethoxy-3-oximino-flavanon $C_{17}H_{16}O_5N=(CH_3\cdot O)_8C_6H_2\underbrace{O-CH\cdot C_8H_5}_{O-CH\cdot C_8H_5}$ B. Durch Zufügen von Amylnitrit und rauchender Salzsäure zu einer 70° warmen alkoholischen Lösung von 7.8-Dimethoxy-flavanon (S. 119) (D., v. K., B. 37, 2807). — Nadeln (aus Benzol). F: 166° (Zers.). Die Lösung in verd. Natronlauge ist gelb. — Gibt beim Kochen mit Eisessig und $10^9/_0$ iger Schwefelsäure 7.8-Dimethoxy-flavonol. — Färbt Kobaltbeize bräunlichgelb an.

9. 6-Oxy-3.4-dioxo-2-[2-oxy-phenyl]-chroman, 6.2'-Dioxy-3.4-dioxo-flavan bezw. 3.6-Dioxy-2-[2-oxy-phenyl]-chromon, 3.6.2'-Trioxy-flavon, 6.2'-Dioxy-flavonol $C_{15}H_{10}O_5$, Formel III bezw. IV. B. Beim Kochen von 6.2'-Dimethoxy-

flavonol (s. u.) mit konz. Jodwasserstoffsäure (Katschalowsky, v. Kostanecki, B. 37, 2349). — Blaßgelbe Nadeln (aus verd. Alkohol). F: 242—243°. Löst sich in konz. Schwefelsäure mit gelber Farbe. Leicht löslich in Natronlauge mit hellgelber Farbe. — Färbt Baumwolle auf Tonerdebeize intensiv gelb, auf Eisenbeize braun.

6.2'-Dimethoxy-3.4-dioxo-flavan bezw. 8-Oxy-6.2'-dimethoxy-flavon, 6.2'-Dimethoxy-flavonol $C_{17}H_{14}O_5 = CH_3 \cdot O \cdot C_6H_8 < \begin{array}{c} CO \cdot CO \\ O - CH \cdot C_6H_4 \cdot O \cdot CH_3 \end{array}$ bezw.

CH₃·O·C₆H₃CO·C·OH O—C·C₆H₄·O·CH₃. B. Beim Kochen der Eisessiglösung von 6.2'-Dimethoxy3-oximino-flavanon mit 10% iger Schwefelsäure (KA., v. Ko., B. 37, 2348). — Prismen (aus Alkohol). F: 187—188°. Unlöslich in kalter Natronlauge; löst sich beim Erwärmen mit gelber Farbe. In konz. Schwefelsäure mit gelber Farbe löslich. — Färbt Tonerdebeize schwach gelb an. - Natriumsalz. Gelb.

6.2'- Dimethoxy - 8 - acetoxy - flavon, 6.2'- Dimethoxy - flavonol - acetat $C_{19}H_{16}O_6$ $\begin{array}{c} \text{CH}_{3} \cdot \text{O} \cdot \text{C}_{6} \text{H}_{3} \\ \text{O} - \text{C} \cdot \text{C}_{6} \text{H}_{4} \cdot \text{O} \cdot \text{CH}_{3} \\ \text{O} - \text{C} \cdot \text{C}_{6} \text{H}_{4} \cdot \text{O} \cdot \text{CH}_{3} \\ \end{array}. \quad \begin{array}{c} \text{Prismatische Nadeln (aus verd. Alkohol). } \text{F: } 121 - 122^{\circ} \\ \end{array}$ (KA., v. Ko., B. 37, 2349).

6.2'-Dimethoxy-4-oxo-3-oximino-flavan, 6.2'-Dimethoxy-3-oximino-flavanon $C_{17}H_{16}O_{5}N=CH_{3}\cdot O\cdot C_{6}H_{3}\cdot CO\cdot C:N\cdot OH$ $O-CH\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$ Aus 6.2' - Dimethoxy - flavanon (S. 119), Amylnitrit und Salzsäure in siedendem Alkohol (Ka., v. Ko., B. 37, 2348). — Gelbe Nadelchen (aus Alkohol). F: 164—1660 (Zers.). Die Lösung in konz. Schwefelsäure ist rot. — Gibt beim Kochen mit Eisessig und 10% aiger Schwefelsäure 6.2'-Dimethoxy-flavonol.

10. 6-Oxy-3.4-dioxo-2-[3-oxy-phenyl]-chroman, 6.3'-Dioxy-3.4-dioxo-flavan bezw. 3.6-Dioxy-2-[3-oxy-phenyl]-chromon, 3.6.3'-Trioxy-flavon, 6.3'-Dioxy-flavonol $C_{15}H_{10}O_{8}$, Formel I bezw. H. B. Durch mehrstündiges Kochen

von 6.3'-Dimethoxy-flavonol mit starker Jodwasserstoffsäure (v. Kostanecki, Ottmann, B. 37, 960). — Hellgelbe Nädelchen (aus Alkohol). F: 300° (Zers.). Ziemlich schwer löslich in Alkohol. Die Lösung in verd. Natronlauge ist grünlichgelb. Löst sich in konz. Schwefelsäure mit blaßgelber Farbe. — Färbt Tonerdebeize hellgelb, Eisenbeize schwach braun an.

 $\textbf{6.3'-Dimethoxy-8.4-dioxo-flavan bezw. 3-Oxy-6.3'-dimethoxy-flavon, 6.3'-Dimethoxy-flavonol } \underbrace{C_{17}H_{14}O_{\delta} = CH_{3}\cdot O\cdot C_{6}H_{3}}_{CD-CH} \cdot \underbrace{C_{17}H_{14}\cdot O\cdot CH_{3}}_{CD-CH} \cdot \underbrace{C_{17$

CH₃·O·C₆H₃·O·CH₃

CH₃·O·C₆H₄·O·CH₃

B. Beim Kochen der Eisessiglösung von 6.3'-Dimethoxy3-oximino-flavanon mit 10°/_oiger Schwefelsäure (v. K., O., B. 37, 959). — Hellgelbe prismatische Nadeln (aus viel Alkohol). F: 144°. Unlöslich in verd. Natronlauge; löslich in konz. Schwefelsäure mit blaßgelber Farbe. — Färbt Tonerdebeize hellgelb an. — Natrium-salz. Gelb. Schwer löslich.

3.6.3'- Triacetoxy - flavon, 6.3'- Diacetoxy - flavonol - acetat $C_{21}H_{16}O_8 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot C \cdot CO \cdot CH_3$. Nadeln (aus verd. Alkohol). F: 126– Nadeln (aus verd. Alkohol). F: 126-1270 (v. K., O., B. 37, 960).

6.3'-Dimethoxy-4-oxo-3-oximino-flavan, 6.3'-Dimethoxy-3-oximino-flavanon

C₁₇H₁₈O₅N = CH₃·O·C₆H₃·O·CH₃·O·CH₃

O—CH·C₆H₄·O·CH₃

B. Aus 6.3'-Dimethoxy-flavanon (S. 120) mit Amylnitrit und konz. Salzsäure in Alkohol bei 55° (v. K., O., B. 37, 958). — Gelbe Nadeln (aus verd. Alkohol). F: 153—154° (Zers.). — Beim Kochen der Eisessiglösung mit 10°/0 iger Schwefelsäure entsteht 6.3'-Dimethoxy-flavonol.

11. 6-Oxy-3.4-dioxo-2-[4-oxy-phenyl]-chroman, 6.4'-Dioxy-3.4-dioxo-flavan bezw. 3.6-Dioxy-2-[4-oxy-phenyl]-chromon, 3.6.4'-Trioxy-flavon,

6.4'-Dioxy-flavonol C₁₅H₁₀O₅, Formel III bezw. IV. B. Durch Kochen von 6.4'-Dimethoxy-flavonol mit starker Jodwasserstoffsäure (v. Kostanecki, Stoppani, B. 37, 784). — Hellgelbe Nadeln (aus Alkohol). F: 340° (Zers.). Schwer löslich in Alkohol. Leicht löslich in Natronlauge mit grünlichgelber Farbe und grünlicher Fluorescenz; die gelbe Lösung in konz. Schwefelsäure fluoresciert hellgrün. — Färbt Tonerdebeize hellgelb, Eisenbeize schwach braun an.

 $\label{eq:continuous} \begin{array}{ll} \textbf{6.4'-Dimethoxy-8.4-dioxo-flavan bezw. 3-Oxy-6.4'-dimethoxy-flavon, 6.4'-Dimethoxy-flavonol } & C_{17}H_{14}O_5 = CH_3 \cdot O \cdot C_6H_3 \\ & CO \cdot CO \\ & CH \cdot C_6H_4 \cdot O \cdot CH_3 \end{array} \\ \begin{array}{ll} \text{bezw.} \\ \text{bezw.} \end{array}$

 $\text{CH}_{\textbf{3}} \cdot \text{O} \cdot \text{C}_{\textbf{6}} \text{H}_{\textbf{3}} < \underbrace{\text{CO} \cdot \text{C} \cdot \text{OH}}_{\text{O} - \text{C}} \cdot \text{C}_{\textbf{6}} \text{H}_{\textbf{4}} \cdot \text{O} \cdot \text{CH}_{\textbf{3}}}_{\text{C}}. \quad B. \quad \text{Durch Kochen der Eisessiglösung von 6.4'-Dimeth-$

oxy-3-oximino-flavanon mit 10°/siger Schwefelsäure (v. K., St., B. 87, 783). — Gelbliche Nadeln (aus Alkohol). F: 184—185°. Ziemlich schwer löslich in Alkohol. Löslich in konz. Schwefelsäure mit gelber Farbe und hellgrüner Fluorescenz. — Färbt Tonerdebeize hellgelb. — Natriumsalz. Gelb. Sehr schwer löslich.

- 6.4'-Dimethoxy-3-acetoxy-flavon, 6.4'-Dimethoxy-flavonol-acetat $C_{19}H_{16}O_6 = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_4 \cdot O \cdot CH_3$. Nadeln (aus verd. Alkohol). F: 131—132° (v. K., St., B. 37, 783).
- B. 37, 784).
- 6.4'-Dimethoxy-4-oxo-3-oximino-flavan, 6.4'-Dimethoxy-3-oximino-flavanon C₁₇H₁₆O₅N = CH₃·O·C₆H₃·CO·C: N·OH

 in the control of the methoxy-flavonol.
- 12. 7-Oxy-3.4-dioxo-2-[2-oxy-phenyl]-chroman, 7.2'-Dioxy-3.4-dioxo-flavan bezw. 3.7-Dioxy-2-[2-oxy-phenyl]-chromon, 3.7.2'-Trioxy-flavon, 7.2'-Dioxy-flavonot $C_{15}H_{10}O_5$, Formel I bezw. II. B. Durch Kochen von 7.2'-Dimethoxy-II. Ho. CO COH OH OH OF CONTROL III. HO. CO COH OH

flavonol mit konz. Jodwasserstoffsäure (v. Kostanecki, v. Szlagier, B. 37, 4158). — Gelbliche Nadeln (aus Wasser). F: 271°. Die Lösung in verd. Natronlauge ist gelblich mit starker hellgrüner Fluorescenz; die schwach gelbe Lösung in konz. Schwefelsäure fluoresciert hellblau. — Färbt Tonerdebeize gelb, Eisenbeize braun an.

Tarbi Toheruebeize gelb, Elsenbeize braun an. 7.2'-Dimethoxy-3.4-dioxo-flavan bezw. 3-Oxy-7.2'-dimethoxy-flavon, 7.2'-Dimethoxy-flavonol $C_{17}H_{14}O_5 = CH_3 \cdot O \cdot C_6H_3 \cdot O - CH \cdot C_6H_4 \cdot O \cdot CH_3$ bezw. CO·C·O·O·H $CO \cdot C \cdot OH \cdot C_6H_3 \cdot O \cdot C_6H_4 \cdot O \cdot CH_3 \cdot D$ $CO \cdot C_6H_3 \cdot O \cdot C_6H_4 \cdot O \cdot CH_3 \cdot D$ Durch Kochen einer Eisessiglösung von 7.2'-Dimethoxy-3-oximino-flavanon mit $10^9/_0$ iger Schwefelsäure (v. K., v. Szl., B. 37, 4157). — Blaßgelbe, gestreifte Tafeln (aus Alkohol). F: 203°. Die gelbe Lösung in warmer verdünnter Natronlauge scheidet beim Erkalten das schwer lösliche, hellgelbe Natriumsalz ab die gelbe verdünnter scheidet beim Erkalten das schwer lösliche, hellgelbe Natriumsalz ab; die gelbe verdünnte Lösung in konz. Schwefelsäure fluoresciert nach kurzem Aufbewahren stark hellblau.

7.2'-Dimethoxy-3-acetoxy-flavon, 7.2'-Dimethoxy-flavonol-acetat $C_{19}H_{16}O_{6}$ $CH_{3} \cdot O \cdot C_{6}H_{3} \cdot O \cdot C_{6}H_{4} \cdot O \cdot CH_{3}$. Prismen (aus verd. Alkohol). F: 138—139° (v. K., v. Szl., P. 27. 4450) B. 37, 4158).

7.2'-Dimethoxy-4-oxo-3-oximino-flavan, 7.2'-Dimethoxy-3-oximino-flavanon $C_{17}H_{15}O_5N=CH_3\cdot O\cdot C_6H_3\cdot O\cdot C_6H_4\cdot O\cdot CH_3$ B. Aus 7.2'-Dimethoxy-flavanon (S. 120) mit Amylnitrit und Salzsäure in Alkohol (v. K., v. Szl., B. 37, 4157). — Täfelchen (aus Alkohol). F: 195° (Zers.). Die Lösung in verd. Natronlauge ist blaßgelb. — Liefert beim Kochen mit Eisessig + $10^{\circ}/_{\circ}$ iger Schwefelsäure 7.2'-Dimethoxy-flavonol.

13. 7-Oxy-3.4-dioxo-2-[3-oxy-phenyl]-chroman, 7.3'-Dioxy-3.4-dioxo-plavan bezw. 3.7-Dioxy-2-[3-oxy-phenyl]-chromon, 3.7.3'-Trioxy-flavon. 7.3'-Dioxy-flavonol $C_{15}H_{10}O_5$, Formel ΠI bezw. IV. B. Durch Kochen von 7.3'-Dimeth-

oxy-flavonol mit konz. Jodwasserstoffsäure (v. Kostanecki, Widmer, B. 37, 4160). — Nädelchen (aus Alkohol). F: 298—300°. Die Lösung in verd. Natronlauge ist hellgelb mit schwacher grünlicher Fluorescenz; die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert nach kurzem Aufbewahren schwach bläulichgrün. — Färbt Tonerdebeize gelb, Eisenbeize braun an.

- 7.3'-Dimethoxy-3.4-dioxo-flavan bezw. 3-Oxy-7.3'-dimethoxy-flavon, 7.3'-Di- $\begin{array}{ll} \text{methoxy-flavonol} & C_{17}H_{14}O_5 = CH_3 \cdot O \cdot C_6H_3 \\ \hline O - CH \cdot C_6H_4 \cdot O \cdot CH_3 \end{array} \text{bezw.}$
- CH₃·O·C₆H₄·O·CH₃

 CO·C·OH

 CH₃·O·C₆H₄·O·CH₃

 B. Durch Kochen einer Eisessiglösung von 7.3′-Di
 CO·C₆H₄·O·CH₃

 B. Durch Kochen einer Eisessiglösung von 7.3′-Di
 CO·C₆H₄·O·CH₃

 CO·C₆H₄·O·CH₃

 B. Durch Kochen einer Eisessiglösung von 7.3′-Di
 CO·C₆H₄·O·CH₃

 CO·C₆H₄·O·CH₃

 B. Durch Kochen einer Eisessiglösung von 7.3′-Dimethoxy-3-oximino-flavanon mit 10% iger Schwefelsäure (v. K., W., B. 37, 4160). — Nadeln (aus Alkohol). F: 170%. Die Lösung in konz. Schwefelsäure ist blaßgelb mit hellgrüner Fluorescenz. — Färbt Tonerdebeize blaßgelb. — Natriumsalz. Gelb. Schr schwer löslich.
- 7.3'- Dimethoxy 3 acetoxy flavon, 7.3'-Dimethoxy-flavonol-acetat $C_{19}H_{18}O_{6}$ == $CH_3 \cdot O \cdot C_6H_3 \leftarrow CO \cdot C \cdot O \cdot CO \cdot CH_3 - CO \cdot C_6H_4 \cdot O \cdot CH_3$. Nadeln (aus verd. Alkohol). F: 165° (v. K., W., B. 37, 4160).
- 8.7.8' Triacetoxy flavon , 7.8' Diacetoxy flavonol acetat $C_{21}H_{16}O_8 =$ $CH_3 \cdot CO \cdot O \cdot C_6H_3 < \frac{CO \cdot C \cdot O \cdot CO \cdot CH_3}{O - C \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3}.$ Nadeln (aus Alkohol). F: 169° (v. K., W., B. 37. 4161).
- 7.8'-Dimethoxy-4-oxo-8-oximino-flavan, 7.8'-Dimethoxy-3-oximino-flavanon Co·C: N·OH $C_{17}H_{15}O_5N = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_4 \cdot O \cdot CH_3$ $C_{17}H_{15}O_5N = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_4 \cdot O \cdot CH_3$ $C_{17}H_{15}O_5N = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot CH_3 \cdot C_6H_4 \cdot O \cdot CH_3$ $C_{17}H_{15}O_5N = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot CH_3 \cdot C_6H_4 \cdot O \cdot C_6H_4 \cdot$
- 14. 7-Oxy-3.4-dioxo-2-[4-oxy-phenyl]-chroman, 7.4'-Dioxy-3.4-dioxoflavan bezw. 3.7-Dioxy-2-[4-oxy-phenyl]-chromon, 3.7.4'-Trioxy-flavon, 7.4'-Dioxy-flavonol C₁₅H₁₀O₅, Formel I bezw. II. B. Durch Kochen von 7.4'-Dimethoxy-

flavonol mit konz. Jodwasserstoffsäure (Juppen, v. Kostanecki, B. 37, 4162). — Hellgelbe Nadeln (aus verd. Alkohol). F: 310°. Die gelbe Lösung in verd. Natronlauge fluoresciert grün; die Lösung in konz. Schwefelsäure ist blaßgelb mit intensiv blaugrüner Fluorescenz. — Färbt Tonerdebeize gelb, Eisenbeize braun an.

methoxy-flavonol $C_{17}H_{14}O_{5} = CH_{3} \cdot O \cdot C_{6}H_{3} \cdot O \cdot C_{6}H_{4} \cdot O \cdot CH_{3}$ bezw. $CO \cdot C \cdot OH \quad CO \cdot C_{6}H_{4} \cdot O \cdot CH_{3} \cdot O \cdot C_{6}H_{4} \cdot O \cdot CH_{4} \cdot O \cdot$ 7.4'-Dimethoxy-3.4-dioxo-flavan bezw. 8-Oxy-7.4'-dimethoxy-flavon, 7.4'-Di-

- flavanon mit Eisessig + 10% iger Schwefelsäure (J., v. K., B. 37, 4162). Hellgelbe Nadeln. F: 196—197°. Ziemlich schwer löslich in Alkohol. Die gelbliche Lösung in konz. Schwefelsäure fluoresciert intensiv hellgrün. Natriumsalz. Gelb. Sehr schwer löslich.
- 7.4'- Dimethoxy-8-acetoxy-flavon, 7.4'- Dimethoxy-flavonol-acetat $C_{19}H_{16}O_6=$ $\begin{array}{c} \text{CH}_3 \cdot \text{O} \cdot \text{C}_6 \\ \text{H}_3 \cdot \text{O} \cdot \text{C}_6 \\ \text{O} - \text{C} \cdot \text{C}_6 \\ \text{H}_4 \cdot \text{O} \cdot \text{CH}_3 \end{array}. \quad \text{Täfelchen (aus Alkohol)}. \quad \text{F: 193-194° (J., v. K., B.} \end{array}$ 37, 4162).
- 3.7.4' Triacetoxy flavon, 7.4' Diacetoxy flavonol acetat $C_{21}H_{16}O_8 =$ $\begin{array}{c} \text{CH}_3 \cdot \text{CO} \cdot \text{O} \cdot \text{C}_6\text{H}_3 & \text{CO} \cdot \text{CO} \cdot \text{CH}_3 \\ \text{O} - \overset{\bullet}{\text{C}} \cdot \text{C}_6\text{H}_4 \cdot \text{O} \cdot \text{CO} \cdot \text{CH}_3 \end{array}. \text{ Nadeln (aus verd. Alkohol). } \text{F: 153° (J., v. K.,} \end{array}$ B. 87, 4163).
- $7.4'-Dimethoxy-4-oxo-8-oximino-flavan, \\ C_{17}H_{15}O_5N = CH_2 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_4 \cdot O \cdot CH_3. \\ C_{17}H_{15}O_5N = CH_2 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_4 \cdot O \cdot CH_3. \\ C_{17}H_{15}O_5N = CH_2 \cdot O \cdot C_6H_3 \cdot O \cdot CH_3 \cdot O \cdot CH_3 \cdot O \cdot CH_3. \\ C_{17}H_{15}O_5N = CH_2 \cdot O \cdot C_6H_3 \cdot O \cdot CH_3 \cdot O \cdot$ liefert beim Kochen mit Eisessig + 10% iger Schwefelsäure 7.4'-Dimethoxy-flavonol; färbt Kobaltbeize orange an (J., v. K., B. 37, 4162).

15. 3.4-Dioxo-2-[3.4-dioxy-phenyl]-chroman, 3'.4'-Dioxy-3.4-dioxo-flavan bezw. 3-Oxy-2-[3.4-dioxy-phenyl]-chromon, 3.3'.4'-Trioxy-flavon, 3'.4'-Dioxy-flavonol $C_{15}H_{10}O_{5}$, Formel I bezw. II. B. Durch Kochen von 3'.4'-Dimeth-

oxy-flavonol mit konz. Jodwasserstoffsäure (Berstein, Fraschina, v. Kostanecki, B. 38, 2181). — Gelbe Nadeln (aus Alkohol). F: 303° (Zers.). Konzentrierte Schwefelsäure löst mit grünlichgelber Farbe. Die Lösung in verd. Natronlauge ist gelbrot. — Färbt Eisenbeize grau bis schwarz, Tonerdebeize orangegelb an.

 $\label{eq:continuous} 3'.4'-Dimethoxy-8.4-dioxo-flavan bezw. 3-Oxy-8'.4'-dimethoxy-flavon, 3'.4'-Dimethoxy-flavonol $C_{17}H_{14}O_5 = C_0H_4 \underbrace{CO \cdot CO}_{CH \cdot C_4H_3(O \cdot CH_3)_2}$ bezw.$

CO·C·OH C_6H_4 CO·C₆ H_3 CO·C·O₆
3'.4'-Dimethoxy-3-acetoxy-flavon, 3'.4'-Dimethoxy-flavonol-acetat $C_{19}H_{16}O_6 = C_6H_4 \underbrace{CO \cdot C \cdot C \cdot CO \cdot CH_3}_{O - C \cdot C_6H_3(O \cdot CH_3)_2}_{O - C \cdot C_6H_3(O \cdot CH_3)_2}$. Nadeln (aus verd. Alkohol). F: 130—131° (B., F., v. K., B. 38, 2181).

3.3'.4' - Triacetoxy - flavon, 3'.4' - Diacetoxy - flavonol - acetat $C_{21}H_{16}O_8 = C_6H_4 C_{0-}$

3'.4'-Dimethoxy-4-oxo-3-oximino-flavan, 3'.4'-Dimethoxy-3-oximino-flavanon $C_{17}H_{16}O_5N=C_6H_4$ $C_0-CH\cdot C_6H_3(O\cdot CH_3)_2$ Salzsäure auf eine siedende alkoholische Lösung von 3'.4'-Dimethoxy-flavanon (S. 121) (B., F., v. K., B. 38, 2180). — Nadeln (aus wenig Benzol). Zersetzt sich bei 159° unter Gasentwicklung. Leicht löslich in verd. Natronlauge mit gelber Farbe. — Gibt beim Kochen mit Eisessig + 10°/oiger Schwefelsäure 3'.4'-Dimethoxy-flavonol. Färbt Kobaltbeize orange.

16. 5.7 - Dioxy - 4 - oxo - 3 - [4 - oxy - phenyl] - [1.4 - chromen], 5.7 - Dioxy - 3 - [4 - oxy - phenyl] - chromon, 5.7.4' - Trioxy - isoflavon, Genistein C₁₈H₁₀O₅, s. nebenstehende Formel 1). Nach diesem Schema werden in diesem Handbuch auch die vom Namen "Genistein" abgeleiteten Namen beziffert. — V. Kommt neben Luteolin (S. 211) in Genista tinctoria vor; aus dem wäßr. Extrakt werden dansuf Genistein den vor

Luteolin (S. 211) in Genista tinctoria vor; aus dem wäßr. Extrakt wird Luteolin durch Bleiaoetat, darauf Genistein durch Ammoniak gefällt (A. G. PERKIN, NEWBURY, Soc. 75, 832). —
Farblose Nadeln (aus verd. Alkohol). Schwer löslich in kaltem Alkohol oder Eisessig, sehr
wenig in Wasser. — Gibt beim Kochen mit Kalilauge Phloroglucin und 4-Oxy-phenylessigsäure. Färbt Tonerdebeize schwach gelb, Eisenbeize braun, Chrombeize grünlichgelb an.

5 - Oxy - 7.4' - dimethoxy - isoflavon, Genistein - 7.4'-dimethyläther C₁₇H₁₄O₅, s. nebenstehende Formel s.

B. Aus Genistein durch Kochen mit überschüssigem CH₃·O·OH

Methyljodid und methylalkoholischem Kali, neben wenig CH₃·O·OH

6-Methyl-genistein-7.4'-dimethyläther (S. 193) (A. G. PERKIN, NEWBURY, Soc. 75, 833). — Farblose Blättchen (aus Alkohol). F: 137—139°; leicht löslich in Alkohol (A. G. P., N.).

Liefert mit alkoh. Kalilauge 4-Methoxy-phenylessigsäure und Phloroglucinmonomethyläther (A. G. P., HORSPALL, Soc. 77, 1311).

³) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von BAKER, ROBINSON, Soc. 1928, 3115.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von BAKER, ROBINSON, Soc. 1926, 2713; 1928, 3115 und Walz, A. 489, 125, 143.

5 - Oxy - 7.4' - diäthoxy - isoflavon, Genistein - 7.4'-diäthyläther $C_{15}H_{18}O_{5}$, s. nebenstehende Formel 1).

B. Aus Genistein mit alkoh. Kalilauge und Äthyljodid (A. G. Perkin, Horspall, Soc. 77, 1313). — Farblese Nadeln (aus Alkohol). F: 132—134°. — Gibt mit alkoh. Kalilauge 4-Äthoxy-phenylessigsäure und wahrscheinlich Phloroglucinmonoäthyläther.

7.4'-Dimethoxy-5-acetoxy-isoflavon, Genistein-7.4'-dimethyläther-5-acetat C₁₉H₁₆O₆, s. nebenstehende Formel¹). B. Aus Genistein-7.4'-dimethyläther durch Kochen mit Essigsäureanhydrid und Natriumacetat (A. G. PERKIN, NEWBURY, Soc. 75, 835; A. G. PERKIN, HORSFALL, Soc. 77, 1310). — Farblose Nädelchen (aus Alkohol). F: 202—204°.

7.4'-Diäthoxy-5-acetoxy-isoflavon, Genistein-7.4'-diäthyläther-5-acetat $C_{11}H_{10}O_{8}$, s. nebenstehende Formel'). B. Durch Acetylierung von Genistein-7.4'-diäthyläther (A. G. PERKIN, HORSFALL, Soc. 77, 1313). — Nadeln. F: 168—170°.

5.7.4'-Triacetoxy-isoflavon, Genistein-triacetat $C_{21}H_{10}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \cdot \underbrace{CO \cdot C \cdot C_6H_4 \cdot O \cdot CO \cdot CH_2}_{CH} 1)$. B. Aus Genistein durch Kochen mit Essigsäureanhydrid (A. G. Perkin, Newbury, Soc. 75, 833). — Farblose Nadeln (aus Alkohol).

Schmilzt bei 197-2010. Schwer löslich in Alkohol.

x.x.x.x - Tetrabrom - 5.7.4' - trioxy - isoflavon, x.x.x.x - Tetrabrom - genistein $C_{15}H_4O_5Br_4 = C_{12}H_2O_5Br_4(OH)_3$. B. Aus Genistein und Brom in Eisessig (A. G. Perkin, Newbury, Soc. 75, 834). — Farblose Nadeln (aus Eisessig oder Nitrobenzol). Schmilzt oberhalb 290°.

17. 6.7-Dioxy-3-oxo-2-salicylal-cumaran, 6.7-Dioxy-2-salicylal-cumaran, 6.7-Dioxy-2-salicylal-cumaranon C_{1t}H₁₀O₅, s. nebenstehende Formel. Zur Konstitution vgl. Kesselkaul, v. Kostanecki, B. Ho. 29, 1888; Woker, v. Ko., Tambor, B. 36, 4235. — B. Aus ω-Chlor-2.3.4-trioxy-acetophenon (Bd. VIII, S. 394) und Salicylaldehyd, gelöst in verd. Alkohol, mittels etwas konz. Kalilauge (Friedländer, Löwy, B. 29, 2433). — Gelbe Nadeln (aus verd. Alkohol). F: 214—216°; unlöslich in Wasser, Äther und Benzol; löst sich in Natronlauge violettrot, in konz. Schwefelsäure orange (F., L.).

Triacetylderivat $C_{21}H_{16}O_6 = (CH_3 \cdot CO \cdot O)_2C_6H_2 < \frac{CO}{O} > C: CH \cdot C_6H_4 \cdot O \cdot CO \cdot CH_2$. Nadeln. F: 160° (FRIEDLÄNDER, LÖWY, B. 29, 2433).

18. 6.7-Dioxy-3-oxo-2-[3-oxy-benzal]-cumaran, 6.7-Dioxy-2-[3-oxy-benzal]-cumaranon $C_{15}H_{10}O_5$, 8. nebenstehende Formel. Zur Konstitution vgl. Kesselkaul, v. Kostanecel, B. 29, 1888; Woker, v. Ko., Tambor, B. 36, 4235. — B. Aus ω -Chlor-2.3.4-trioxy-acetophenon und 3-Oxy-benzaldehyd in verd. Alkohol mittels etwas konz. Kalilauge (Friedländer, Löwy, B. 29, 2433). — Gelbe Nadeln (aus Alkohol). F: 221—223° (Fr., L.).

Triacetylderivat $C_{21}H_{16}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_3 < {CO \choose O} > C : CH \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$. Nadeln. F: 166—167° (Friedländer, Löwy, B. 29, 2433).

Tribenzoylderivat $C_{36}H_{22}O_8 = (C_6H_5 \cdot CO \cdot O)_2C_6H_3 < {CO \over O} > C:CH \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_5.$ Nadeln. F: 173°; fast unlöslich in Alkohol, etwas leichter löslich in Eisessig (Fr., L., B. 29, 2434).

19. 6.7-Dioxy-3-oxo-2-[4-oxy-benzal]-cumaran,
6.7-Dioxy-2-[4-oxy-benzal]-cumaranon C₁₅H₁₀O₅,
8. nebenstehende Formel. Zur Konstitution vgl. Kesselkaull,
v. Kostanecki, B. 29, 1888; Woker, v. Ko., Tambor, B.
36, 4235. — B. Aus ω-Chlor-2.3.4-trioxy-acetophenon und 4-Oxy-benzaldehyd in verd.
Alkohol mittels etwas konz. Kalilauge (Friedländer, Löwy, B. 29, 2434). — Gelberhomboedrische Krystalle. F: 220° (Fr., L.).

¹⁾ Vgl. die Fußnote 2 auf 8. 190.

- 6.7-Dioxy-2-anisal-cumaranon $C_{16}H_{12}O_5=(HO)_2C_6H_2 < {}^{CO}_O>C:CH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 6.7-Dioxy-cumaranon (Bd. XVII, S. 176) und Anisaldehyd in siedendem Alkohol Gegenwart von rauchender Salzsäure (FEUERSTEIN, Brass, B. 37, 825). Goldgelbe Nädelchen. F: 252°. Löst sich in konz. Schwefelsäure mit eosinroter, in verd. Natronlauge mit kirschroter Farbe. Wird von heißem konzentriertem Alkali unter Bildung von Anisaldehyd zersetzt. Färbt Tonerdebeize grünstichig gelb, Eisenbeize olivgrün an.
- 6.7 Diacetoxy 2 [4 acetoxy benzal] cumaranon $C_{21}H_{10}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_2 < \frac{CO}{O} > C: CH \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$. Nadeln. F: 199—201° (Friedländer, Löwy, B. 29, 2434).
- 20. 6-Oxy-3-oxo-2-[3.4-dioxy-benzal]-cumaran, GOOXy-2-[3.4-dioxy-benzal]-cumaranon C₁₅H₁₀O₅, s. nebenstehende Formel. Zur Konstitution vgl. FEUERSTEIN, v. KOSTANECKI, B. 31, 1759. B. Durch Kondensation von 6-Oxy-cumaranon (Bd. XVII, S. 156) mit Protocatechualdehyd in konzentrierter alkoholischer Lösung mittels rauchender Salzsäure (Brüll, Friedländer, B. 30, 299). Hellgelbe Nädelchen (aus Wasser oder verd. Alkohol). Die Lösung in konz. Schwefelsäure ist orangerot, nach Zusatz von Wasser gelb; die Lösung in Natronlauge ist rotviolett (B., Fr.). Gibt mit Chlorwasserstoff ein rotes, durch Wasser zersetzbares Additionsprodukt (B., Fr.). Färbt Tonerdebeize orangegelb, Eisen- und Chrombeize braun an (B., Fr.).
- 6-Methoxy-2-veratral-cumaranon $C_{18}H_{16}O_5=CH_3\cdot O\cdot C_6H_3<0\cdot CH_3\cdot O\cdot C_6H_3<0\cdot CH_3$. B. Aus 6-Methoxy-cumaranon und Veratrum-aldehyd in alkoh. Lösung bei Gegenwart von etwas Natronlauge (Blom, Tambor, B. 38, 3590). Aus 3.4.4'-Trimethoxy-2'-acetoxy-chalkon-dibromid (Bd. VIII, S. 499) mit alkoh. Kali (B., T., B. 38, 3591). Hellgelbe Nädelchen (aus viel Alkohol). F: 189°. Färbt sich beim Betupfen mit konz. Schwefelsäure dunkelrot und geht mit orangeroter Farbe in Lösung.
- 6 Äthoxy 2 veratral cumaranon $C_{19}H_{18}O_5 = C_2H_5\cdot O\cdot C_6H_2 < {}^{CO}_{0}>C: CH\cdot C_6H_3(O\cdot CH_3)_2$. B. Durch Einw. von konzentrierter alkoholischer Kalilauge auf 3.4-Dimethoxy-4'-äthoxy-2'-acetoxy-chalkon-dibromid (Bd. VIII, S. 499) (v. Kostanecki, Różycki, B. 32, 2258). Gelbe Nadeln (aus Alkohol). F: 148—149°. Löslich in konz. Schwefelsäure mit gelbroter Farbe.
- 6 Äthoxy 2 [8 methoxy 4 äthoxy benzal] cumaranon $C_{30}H_{20}O_5 = C_2H_5 \cdot O \cdot C_6H_3 < {}^{CO}_{} > C \cdot CH \cdot C_6H_3 (O \cdot CH_3) \cdot O \cdot C_2H_5$. B. Durch Einw. von konzentrierter alkoholischer Kalilauge auf 3-Methoxy-4.4'-diāthoxy-2'-acetoxy-chalkon-dibromid (Bd. VIII, S. 499) (v. K., R., B. 32, 2260). Gelbe Nadeln (aus Alkohol). F: 133—135°.
- 6 Acetoxy 2 [3.4 diacetoxy benzal] cumaranon $C_{21}H_{16}O_8 = CH_3 \cdot CO \cdot O \cdot C_6H_3 < {CO \atop O} > C \cdot CH \cdot C_6H_3 (O \cdot CO \cdot Cl_{-3})_2$. B. Aus 6-Oxy-2-[3,4-dioxy-benzal]-cumaranon (s. o.) und Essigsäureanhydrid (Brüll, Friedländer, B. 30, 300). Farblose Nadeln. F: 168°.

2. Oxy-oxo-Verbindungen $C_{16}H_{12}O_{5}$.

1. Oxy-oxo-Verbindung C16H12O5.

Verbindung $C_{20}H_{20}O_5$, Formel I, Anhydro-[5.7-dioxy-4-methyl-2-(2.4-diäthoxyphenyl)-benzopyranol]. Vgl. hierzu Bd. XVII, S. 215.

2. Oxy-oxo-Verbindung C16H12O5.

Verbindung $C_{50}H_{50}O_5$, Formel II, Anhydro-[6.7-dioxy-4-methyl-2-(2.4-diäthoxy-phenyl)-benzopyranol]. Vgl. hierzu Bd. XVII, S. 216.

3. Oxy-oxo-Verbindung C10H110s.

Verbindung C₂₀H₂₀O₅, Formel I, Anhydro-[7.8-dioxy-4-methyl-2-(2.4-diäth-oxy-phenyl)-benzopyranol]. Vgl. hierzu Bd. XVII, 8, 216.

4. Anhydro - [7 - oxy - 4 - methyl - 2 - (2.3.4 - trioxy - phenyl) - benzo - pyranol] $C_{16}H_{13}O_{5}$, Formel II oder III. Vgl. hierzu Bd. XVII, S. 217.

Anhydro-[7-oxy-4-methyl-2-(2.8.4-trimethoxy-phenyl)-benzopyranol] $C_{10}H_{10}O_{5}$, Formel IV. Vgl. hierzu Bd. XVII, S. 217.

5. 7-Oxy-4-oxo-5-methyl-2-[3.4-dioxy-phenyl] - CH₃
[1.4-chromen], 7-Oxy-5-methyl-2-[3.4-dioxy-phenyl]-chromon, 7.3'.4'-Trioxy-5-methyl-flavon
C₁₆H₁₇O₄, 8. nebenstehende Formel. B. Aus 4.6-Dimethoxy2-methyl-\omega-[3.4-dimethoxy-benzoyl]-acetophenon bei 1-stdg. Kochen mit Jodwasserstoffsäure (D: 2,0) (Tambob, B. 41, 797). — Grünlichgelbe Nädelchen (aus verd. Alkohol). F: 258°.
Löst sich in konz. Schwefelsäure mit grünlichgelber Farbe.

7.3'.4' - Triacetoxy - 5 - methyl - flavon $C_{32}H_{13}O_{8} = CH_{3} \cdot CO \cdot CC_{8}H_{2}(CH_{2}) \cdot O_{-}C \cdot CC_{8}H_{3}(O \cdot CO \cdot CH_{3})_{2}$. Nådelchen (aus Alkohol). F: 188° (T., B. 41, 798).

6. 5-Oxy-4-oxo-7-methyl-2-[3.4-dioxy-phenyl][1.4-chromen], 5-Oxy-7-methyl-2-[3.4-dioxy-phenyl]-chromon, 5.3'.4'-Trioxy-7-methyl-flavon
C₁₆H₁₉O₅, s. nebenstehende Formel. B. Durch Kochen von
2.6-Dimethoxy-4-methyl-\omega-[3.4-dimethoxy-benzoyl]-acetophenon mit Jodwasserstoffsäure
(D: 2,0) (TAMBOR, B. 41, 792). — Hellgelbe Nädelchen (aus verd. Alkohol). F: 270°. Löst sich in konz. Schwefelsäure mit hellgelber, in Natronlauge mit intensiv gelber Farbe und färbt Tonerdebeize grünlichgelb an.

5 - Oxy - 3'.4'- dimethoxy - 7 - methyl - flavon $C_{18}H_{16}O_5 = CO \cdot CH$ $CO \cdot CH$ $CO \cdot CH$ $CO \cdot CH_3 \cdot B. \quad Aus \quad 5.3'.4' - Trioxy - 7 - methyl - flavon \quad (s. o.)$ beim Kochen mit Methyljodid und Alkali in alkoh. Lösung (T., B. 41, 792). — Gelbe Nådelchen (aus Alkohol). F: 147°. Die Lösung in konz. Schwefelsäure ist gelb. — Natriumsalz. Gelb. Unlöslich.

 $5.3'.4' - \text{Triacetoxy} - 7 - \text{methyl - flavon} \quad C_{32}H_{18}O_8 = \\ \text{CH}_3 \cdot \text{CO} \cdot \text{O} \cdot \text{C}_6H_3(\text{CH}_2) \\ O - C \cdot \text{C}_6H_3(\text{O} \cdot \text{CO} \cdot \text{CH}_3)_2}. \quad \text{Nådelchen (aus Alkohol)}. \quad \text{F: } 169^{\circ} \quad \text{(T., } B. \quad 41, 792).}$

7. 5.7-Dioxy-4-oxo-6-methyl-3-[4-oxy-phenyl]- [1.4-chromen], 5.7-Dioxy-6-methyl-3-[4-oxy-othenyl]-chromon, 5.7.4'-Trioxy-6-methyl-isoflavon, 6-Methyl-genistein $C_{10}H_{12}O_5$, s. nebenstehende Formel.

5 - Oxy - 7.4' - dimethoxy - 6 - methyl - isoflavon,
6 - Methyl - genistein - 7.4' - dimethyläther C₁₈H₁₆O₅, s. CH₃

nebenstehende Formel 1). B. Neben Genistein - 7.4' - dimethyläther (S. 190) durch Kochen von Genistein mit OH₃·O·CH

überschüssigem Methyljodid und methylalkoholischem Kali (A. G. Perkin, Horsfall, Soc. 77, 1311; vgl. A. G. P., Newbury, Soc. 75, 835). — F: 200—202°; schwer löslich in

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von Baker, Robinson, Soc. 1926, 2719.

Alkohol (A. G. P., H.). — Gibt mit alkoh. Kali bei 150—160° 4-Methoxy-phenylessigsäure und 2.4-Dioxy-6-methoxy-toluol, nachgewiesen als 3.5-Bis-benzolazo-2.4-dioxy-6-methoxy-toluol (Bd. XVI, S. 206) (A. G. P., H.).

7.4'-Dimethoxy-5-acetoxy-6-methyl-isoflavon, CH₃·CO·O
6-Methyl-genistein-7.4'-dimethyläther-5-acetat
C₂₀H₁₈O₆, s. nebenstehende Formel. Nadeln. F: 212—214°; schwer löslich in Alkohol (A. G. Perkin, Horsfall, Soc. CH₃·O·O·CH₃
77. 1312).

8. 6.7-Dioxy-3-phenacyl-phthalid, 3-Phenacyl-normekonin $C_{16}H_{12}O_5$, s. nebenstehende Formel.

6.7-Dimethoxy-3-phenacyl-phthalid, 8-Phenacyl-mekonin ("Mekonin methyl phenyl keton") $C_{18}H_{16}O_5 =$

(CH₃·O)₂C₆H₂ CH(CH₂·CO·C₆H₅) O. B. Bei 1-tägigem Aufbewahren einer Lösung von 8 g Acetophenon und 10 g Opiansäure (Bd. X, S. 990) in 750 g Wasser mit 30 cm³ 10% iger Natronlauge (Goldschmedt, M. 12, 476). — Blättchen (aus Alkohol). F: 127—128°; unlöslich in kalter Kalilauge (G.). — Verbraucht bei der Titration unter langsamer Neutralisation 1 Äquivalent Alkali (Fulda, M. 20, 704). Zerfällt beim Kochen mit verd. Kalilauge in Acetophenon und Opiansäure (v. Hemmelmayr, M. 13, 664).

Monooxim C₁₈H₁₇O₅N. B. Man erhitzt "Mekoninmethylphenylketon" mit methylalkoholischer Hydroxylaminlösung im geschlossenen Rohr auf 150° (v. H., M. 13, 670). — Nadeln. F: 146°. Leicht löslich in Alkohol. — Geht beim Umkrystallisieren aus Alkohol in ein Isomeres [Krystalle; triklin (asymmetrisch?) (Becke, M. 13, 672; vgl. Groth, Ch. Kr. 5, 254); F: 198°; leicht löslich in Alkohol] über.

Mono-phenylhydrazon $C_{24}H_{22}O_4N_2 = CO$

 $(CH_3 \cdot O)_2C_6H_2 - CH_2 \cdot C(:N \cdot NH \cdot C_6H_6) \cdot C_6H_5) = O$. B. Man erhitzt äquimolekulare Mengen "Mekoninmethylphenylketon" und Phenylhydrazin im geschlossenen Rohr mehrere Stunden auf 150—160° (v. H., M. 13, 666). — Fast farblose Nadeln (aus Alkohol). F: 143° bis 144°.

Bis-phenylhydrazon $C_{30}H_{28}O_3N_4$. B. Man erhitzt "Mekoninmethylphenylketon" mit etwas mehr als 2 Mol Phenylhydrazin im geschlossenen Rohr auf 130° (v. H., M. 13, 669). — Sintert bei 176° und schmilzt gegen 187° unter Zersetzung. Schwer löslich in Alkohol und Äther.

9. Brasilein C₁₆H₁₂O₅, s. nebenstehende Formel. Zur Konstitution vgl. W. H. Perkin, Robinson, Soc. 93, 497; Engels, W. H. Perkin, Robinson, Soc. 93, 1130; W. H. Perkin, Rây, Robinson, Soc. 1928, 1507. — B. Bei 1—2-tägigem Aufbewahren von Brasilin (Bd. XVII, S. 194) in alkal. Lösung an der Luft (Liebermann, Burg, B. 9, 1886; vgl. Benedikt, A. 178, 102). Durch Versetzen einer heißen wäßrigen Ho. Chi Brasilindsung mit alkoh. Jodlösung (L., Burg, B. 9, 1886). Aus Brasilin durch Oxydation mit Natriumjodat in Wasser (P. Mayer, C. 1904 II, 228). Man trägt 1 Mol gepulvertes Kaliumnitrit in eine 10—16°/6; ge Lösung von Brasilin in Eisessig unter Kühlung ein und läßt mehrere Stunden stehen (Schall, Dralle, B. 23, 1433; Sch., B. 35, 2306). — Darst. Man verdünnt die Lösung von 10 g Brasilin in möglichst wenig Alkohol mit 400 g Äther, gibt 5 g konz. Salpetersäure hinzu, läßt 1¹/2 Tag stehen, destilliert dann ²/3 des Äthers ab und läßt den Rest an der Luft verdunsten; die ausgeschiedenen Krystalle werden mit kaltem Wasser und dann mit siedendem Alkohol gewaschen (Buchka, Erck, B. 18, 1142). Man löst 50 g Brasilin in möglichst wenig warmem Alkohol, vermischt mit 4 l heißem Wasser, kühlt auf 60—70° ab, fügt die Lösung von 33,8 g Jod in 42,5 cm³ Alkohol zu und läßt über Nacht stehen (Eng., W. H. Pe., Ro., Soc. 93, 1131). Darstellung aus Blauholzextrakt: Hummel, A. G. Pe., Soc. 41, 373; B. 15, 2337, 2343. — Rötlichbraune Tafeln mit grauem Metallglanz. Krystallisiert mit 1 H₂O, das bei 130—140° entweicht (Hu., A. G. Pe.). Sehr schwer löslich in kaltem Wasser, etwas leichter in heißem; die Lösung ist hellrosa und zeigt orangerote Fluorescenz (Hu., A. G. Pe.). Brasilein muß auf Grund des Üherganges in rechtsdrehendes Brasilin tetraacetat (Bd. XVII, S. 197) optisch aktiv sein (vgl. Herzig, Pollak, Kluger, M. 27, 754). Löslich in Alkalien mit hochroter Farbe, die an der Luft langsam in Braun übergeht (Hu., A. G. Pe.). Gibt mit Mineralsäuren Additionsprodukte (Herzig, Pollak, M. 23, 170). — Beim Erhitzen von Brasilein mit konz

Rohr auf 100° entsteht Isobrasileinchlorid (Bd. XVII, S. 201), beim Erhitzen mit überschüssiger rauchender Bromwasserstoffsäure im geschlossenen Rohr auf 100° Isobrasileinbromid (Bd. XVII, S. 202) (Hu., A. G. Pe.). Löst sich in kalter konzentrierter Schwefelsäure unter Bildung von Isobrasileindisulfat (Bd. XVII, S. 202) (Hu., A. G. Pe.). Brasilein gibt bei der Oxydation mit Wasserstoffperoxyd in Eisessig α-Oxy-β'-[2.5-dioxy-phenoxy]-β-[5-oxy-chinonyl-(2)]-isobuttersäure (Bd. X, S. 1037) (Eng., W. H. Pe., Ro., Soc. 93, 1125, 1155). Zur Einw. von Hydroxylamin vgl.: Sch., D., B. 23, 1436; Sch., B. 35, 2306; Eng., W. H. Pe., Ro., Soc. 93, 1116. Bei der Methylierung mit Dimethylsulfat in Gegenwart von Kalilauge entstehen neben nicht näher beschriebenem Brasileinmonomethyläther Brasileindimethyläther, Brasileintrimethyläther und Tetramethyldihydrobrasileinol (Bd. XVII, S. 218) (Eng., W. H. Pe., Ro., Soc. 93, 1117, 1131). Brasilein liefert beim Erhitzen mit Essigsäureanhydrid und Natriumacetat (He., M. 19, 743) oder beim Kochen mit Essigsäureanhydrid unter Zusatz von etwas Zinkstaub und Zinkchlorid (Sch., D., B. 23, 1434) das Triacetat des Brasileins (?) (vgl. dagegen Eng., W. H. Pe., Ro., Soc. 93, 1116). Reduziert man Brasilein mit Zinkstaub und Eisessig und acetyliert das Reaktionsprodukt mit Essigsäureanhydrid und Natriumacetat, so entsteht die Verbindung C₂₄H₂₀O₈ (s. u.) (He., Po., M. 23, 165) und in geringer Menge rechtsdrehendes Brasilintetraacetat (Bd. XVII, S. 197) (He., Po., B. 36, 3952; He., Po., Galitzenstein, M. 25, 884; vgl. He., Po., Kluuer, M. 27, 754). Einw. von Phenylhydrazin auf Brasilein: Sch. D., B. 23, 1436; vgl. Eng., W. H. Pe., Ro., Soc. 93, 1116. Gibt einen violettschwarzen Eisenlack und einen rotbraunen Tonerdelack (Sch., D., B. 25, 18).

(C₁₆H₁₁O₅)₂FeO₂(?). B. Man versetzt eine kalte wäßrige Lösung von Brasilin mit Eisenchlorid und leitet einige Stunden Luft durch (Sch., D., B. 25, 18). Violettschwarzer Niederschlag. — C₁₆H₁₂O₅ + HCl. B. Aus Brasilein und Chlorwasserstoff in Gegenwart von Alkohol (He., Po., M. 23, 170). Rötliche Blättchen. — C₁₆H₁₂O₅ + H₂SO₄. B. Aus der Verbindung C₂₂H₁₈O₇ (s. u.) durch konz. Schwefelsäure in Eisessig (He., Po., M. 23, 170; Herzig, Pollak, Galitzenstein, M. 25, 885). Krystallinisch. Läßt sich durch Kochen mit Natriumacetat, Zinkstaub und Eisessig und Kochen der Reaktionslösung mit Essigsäureanhydrid in die Verbindung C₂₄H₂₆O₈ (s. u.) überführen (He., Po., G., M. 25, 887).

Is obrasileinsalze [C₁₆H₁₁O₄]Ac s. Bd. XVII, S. 201.

Triacetylderivat des Brasileins (1) C₂₂H₁₆O₈ = C₁₆H₂O₂(O·CO·CH₃)₃ (bei 140°). Kann nach Engels, W. H. Perkin, Robinson, Soc. 93, 1116 kein Derivat des Brasileins sein. — B. Beim Kochen von Brasilein mit Essigsäureanhydrid und Natriumacetat (Herzig, M. 19, 743). Bei 1—2-stündigem Kochen von Brasilein mit Essigsäureanhydrid

Triacetylderivat des Brasileins (?) C₂₂H₁₈O₈ = C₁₆H₂O₃(O·CO·CH₃)₃ (bei 140°). Kann nach Engels, W. H. Perkin, Robinson, Soc. 93, 1116 kein Derivat des Brasileins sein. — B. Beim Kochen von Brasilein mit Essigsäureanhydrid und Natriumacetat (Herzig, M. 19, 743). Bei 1—2-stündigem Kochen von Brasilein mit Essigsäureanhydrid unter Zusatz von wenig Zinkstaub und einem Körnchen geschmolzenem Zinkchlorid (Schall, Dealle, B. 23, 1434). — Gelbliche Blättchen (aus Wasser). Erweicht nach vorangehender Braunfärbung bei 202° und schmilzt bei 204—207° (Sch., D.). F: 205—207° (He.). Krystallisiert aus Eisessig mit 2 Mol C₂H₄O₂ (Sch., D.). Zeigt in Lösung grüne Fluorescenz (He.).

Verbindung $C_{12}H_{18}O_7 = C_{16}H_2O(O \cdot CO \cdot CH_3)_3$. Das Molekulargewicht ist kryoskopisch in Phenol bestimmt (Herzig, Pollak, Kluger, M. 27, 755 Anm.). — B. Man mischt 20 g Brasilein mit 20 g Natriumacetat und 150 g Zinkstaub und kocht mit 400 g Essigsäureanhydrid (He., Po., Galitzenstein, M. 25, 884; vgl. He., Po., M. 23, 168). — Farblose Blättchen (aus Alkohol). Bräunt sich bei 170° und schmilzt bei 190—195° (He., Po.). Optisch inaktiv (He., Po., Kl., M. 27, 755). Läßt sich nicht weiter acetylieren (He., Po.). Gibt bei der Verseifung mit Alkali amorphe Produkte (He., Po.). Mit konz. Schwefelsäure in Eisessig entsteht das Additionsprodukt von Brasilein und Schwefelsäure $C_{16}H_{12}O_5 + H_2SO_4$ (8. 0.) (He., Po.; vgl. He., Po., G.).

Verbindung $C_{24}H_{20}O_8 = C_{16}H_8(O \cdot CO \cdot CH_3)_4$. Das Molekulargewicht ist kryoskopisch in Phenol bestimmt (Herzig, Pollar, M. 22, 212). Bestimmung der Acetylzahl: He., Po. — B. Durch Acetylieren des Produkts, welches man aus Brasilein durch Reduktion mit Zinkstaub in Eisessig erhält, mit Natriumacetat und Essigsäureanhydrid (He., Po., M. 22, 211). Aus dem Sulfat des Brasileins $C_{16}H_{12}O_5 + H_2SO_4$ durch Kochen mit Natriumacetat, Zinkstaub und Eisessig und Kochen der Reaktionslösung mit Essigsäureanhydrid (He., Po., Galltzenstein, M. 25, 887). — Blättchen (aus Eisessig). F: 210—211° (He., Po.), 212—214° (He., Po., G.). Sehr schwer löslich in Alkohol (He., Po.). Optisch inaktiv (He., Po., Kluger, M. 27, 756).

Brasilein-dimethyläther C₁₈H₁₆O₅, s. nebenstehende Formel. B. Neben Brasilein-trimethyläther (S. 196), Tetramethyldihydrobrasileinol (Bd. XVII, S. 218) und nicht näher beschriebenem Brasileinmonomethyläther bei der Methylierung von Brasilein mit Dimethylsulfat und konz. Kalilauge (ENGELS, W. H. PERKIN, ROBINSON, Soc. 93, 1132). — Rote Krystallmasse (aus Eisessig). Löslich in Alkali.—Läßt sich weiter methylieren. Durch konz. Schwefelsäure

13*

in Eisessig entsteht 5'.6'-Dioxy-7-methoxy-indeno-2'.1':3.4-benzopyryliumsulfat (Bd. XVII, 8. 202).

Brasilein-trimethyläther $C_{10}H_{18}O_5$, s. nebenstehende Formel. CHa-O O B. Man löst 115 g Brasilein unter Zusatz von 200 g Eis in 550 cm³ Wasser und 185 cm³ 43º/eiger Kalilauge, fügt 210 cm³ Dimethylsulfat und weitere 130 cm3 Kalilauge zu, läßt 4 Stunden stehen, CH: filtriert und löst das gleichzeitig entstandene Tetramethyldihydrobrasileinol (Bd. XVII, S. 218) durch Auskneten mit Ather (E., W. H. Pe., R., Soc. 93, 1131, 1133). — Gelbe Prismen (aus Alko-O.CH. hol). Monoklin prismatisch (JERUSALEM, Soc. 93, 1134; vgl. Groth, Ch. Kr. 5, 649). F: 177-178°. Leicht löslich in Alkohol, Chloroform, Benzol und Eisessig, schwer in Alkohol und Petroläther. Mitunter wird eine bei 159° schmelzende Form erhalten. — Wasserstoffperoxyd oxydiert Brasileintrimethyläther in Eisessig zu dem Lacton der a-Methoxy-\(\beta'\)-[2-oxy-5-methoxy-phenoxy]- β -[2.5-dioxy-4-me- $_{\text{CH}_3}$ -0. ·O·CH2·C(O·CH2)·CH2· thoxy-phenyl]-isobuttersäure der nebenstehen-O.CHa den Formel (Syst. No. 2843). Addiert 1 Mol Hydroxylamin unter Bildung von Trimethylbrasileinhydroxylamin (s. nebenstehende Formel; Syst. No. 2651). Beim Kochen mit Kalilauge entsteht Trimethyldihydrobrasileinol (Bd. XVII, S. 218). Konz. Schwefelsäure in Eisessig erzeugt 5'-Oxy-7.6'-dimethoxy-indeno-2'.1':3.4-benzopyryliumsulfat (Bd. XVII, S. 202). — Formiat C₁₉H₁₉O₅ + CH₂O₂'). B. Beim Lösen von Brasilein-trimethyläther in warmer Ameisensäure (D: 1,022) (E., W. H. PE., R., Soc. 93, 1136). Rote Prismen. Wird durch Wasser oder viel siedenden Alkohol zersetzt. Trimethylbrasileinhydroxylamin $C_{10}H_{11}O_{6}N$ s. Syst. No. 2651.

3. 5.7-Dioxy-2-oxo-4-[β -(4-oxy-phenyl)-HO CH1 CH2 CH2 CeH4 OH āthyl]-[1.2-chromen], 5.7-Dioxy-4-[β -(4-oxyphenyl)-athyl]-cumarin C17H14O4, s. neben-HO stehende Formel. B. 5.7-Diacetoxy-4- $[\beta$ -(4-acetoxyphenyl)-āthyl]-cumarin entsteht beim Erhitzen von Phloretin (Bd. VIII, S. 498) mit Essigsaureanhydrid und Natriumacetat; man verseift es durch Kochen mit Jodwasserstoffsäure (Kp: 127⁵) (Ciamician, Silber, B. 27, 1632; 28, 1395). — Gelbliche Nadeln (aus Eisessig). F: 213°.

5.7 - Diacetoxy - 4 - $[\beta$ - (4 - acetoxy - phenyl) - \ddot{a} thyl] - cumarin $C_{33}H_{30}O_3 = C(C_{10}) CH_2 \cdot CH_3 \cdot CH_3 \cdot C_{10}H_{4} \cdot O \cdot CO \cdot CH_3) \cdot CH_3 CO. B. s. im vorangehenden Artikel. — Nadeln (aus Alkohol). F: 173°; schwer löslich in Alkohol (C., S., B. 27, 1632; 28, 1395).

4. $0xy-oxo-Verbindungen C_{18}H_{16}O_{5}$.

1. 7.8-Dioxy-3.4-dioxo-2-[4-isopropyl-phenyl]-chroman, 7.8-Dioxy-3.4-dioxo-4'-isopropyl-flavan bezw. 3.7.8-Trioxy-2-[4-isopropyl-phenyl]chromon, 3.7.8-Trioxy-4'-isopropyl-flavon, 7.8-Dioxy-4'-isopropyl-flavonol

C₁₈H₁₆O₅, Formel I bezw. II. B. Aus 7.8-Dimethoxy-4'-isopropyl-flavonol durch Kochen mit starker Jodwasserstoffsäure (v. Kostanecki, B. 40, 3675). — Blättchen (aus Alkohol). F: 265°. Leicht löslich in verd. Natronlauge mit rotgelber Farbe. — Färbt Tonerdebeize gelb an.

7.8 - Dimethoxy - 3.4 - dioxo - 4'-isopropyl - flavan bezw. 3 - Oxy - 7.8 - dimethoxy-4'-isopropyl - flavon, 7.8 - Dimethoxy - 4'-isopropyl - flavonol $C_{50}H_{50}O_5=$ CO · CO .00.0.0H

(CH₃·O)₂C₆H₂ CO·CO bezw. (CH₃·O)₂C₆H₃ CO·C·OH

7.8-Dimethoxy-3-oximino-4'-isopropyl-flavanon durch Einw. von Mineralsäuren (v. K., B.

40, 3674). — Blaßgelbe Nadeln (aus Alkohol). F: 162°. Die Lösung in kons. Schwefelsäure ist grünlichgelb. — Färbt auf Tonerdebeize hellgelb. — Natriumsalz. Intensiv gelb. Sehr schwer löslich.

¹⁾ Zur Frage der Formulierung vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von W. H. PERKIN, RAY, ROBINSON, Soc. 1928, 1506.

7.8 - Dimethoxy - 8 - acetoxy - 4'-isopropyl - flavon, 7.8 - Dimethoxy - 4'-isopropyl flavonol-acetat $C_{22}H_{22}O_{6} = (CH_{2}\cdot O)_{2}C_{6}H_{2} \stackrel{CO \cdot C \cdot O \cdot CO \cdot CH_{2}}{O - C \cdot C_{6}H_{4} \cdot CH(CH_{2})_{2}}$. Nadeln (aus verd. Alkohol). F: 152° (v. K., B. 40, 3675).

3.7.8-Triacetoxy-4'-isopropyl-flavon, 7.8-Diacetoxy-4'-isopropyl-flavonol-acetat $C_{34}H_{22}O_8 = (CH_8 \cdot CO \cdot O)_2C_8H_2 \cdot CO \cdot CO \cdot CH_3$. Nadeln (aus verd. Alkohol). F: 152° (v. K., B. 40, 3675).

7.8-Dimethoxy-4-oxo-8-oximino-4'-isopropyl-flavan, 7.8-Dimethoxy-8-oximino-4'-isopropyl-flavanon $C_{30}H_{21}O_5N=(CH_3\cdot O)_2C_0H_2$ CO·C: N·OH

4'-isopropyl-flavanon $C_{30}H_{21}O_5N=(CH_3\cdot O)_2C_0H_2$ CH·C $_6H_4\cdot CH(CH_3)_2$ Einw. von Amylnitrit und Salzsäure auf 7.8-Dimethoxy-4'-isopropyl-flavanon (S. 124) in siedender alkoholischer Lösung (v. K., B. 40, 3674). — Krystallinische Masse (aus Benzol). F: 173° (Zers.). Leicht löslich in verd. Natronlauge mit gelblicher Farbe. — Geht durch Einw. von Mineralsäuren sehr leicht in 7.8-Dimethoxy-4'-isopropyl-flavonol (S. 196) über. — Färbt Kobaltbeize gelb an.

2. 4.5.7-Trioxo-6.8.8-trimethyl-2-[4-oxy-phenyl]-[1.4-chromen]-tetra-hydrid-(5.6.7.8), 4'-Oxy-4.5.7-trioxo-6.8.8-trimethyl-flaven-tetra-

hydrid-(5.6.7.8) bezw. 5-Oxy-4.7-dioxo-6.8.8-trimethyl-2-[4-oxy-phenyl]-[1.4-chromen]-dihydrid-(7.8). 5.4'-Dioxy-4.7-dioxo-6.8.8-trimethyl-flaven-dihydrid-(7.8) $C_{18}H_{16}O_{5}$, Formel I bezw. II.

4'-Methoxy-4.5.7-trioxo-6.8.8-trimethyl-flaven-tetrahydrid-(5.6.7.8) bezw. 5-Oxy-4'-methoxy-4.7-dioxo-6.8.8-trimethyl-flaven-dihydrid-(7.8) $C_{19}H_{18}O_5=CH_3\cdot HC$ —CO— $C\cdot CO\cdot CH$ $CH_2\cdot C:C(OH)\cdot C\cdot CO\cdot CH$

CH₂·HC—CO—C·CO·CH

OC·C(CH₃)₂·C—O—C·C₆H₄·O·CH₂

Dezw.

OC·C(CH₃)₂·C—O—C·C₆H₄·O·CH₃

Tetra methyla pigenin". B. Bei 3-stündigem Erhitzen von 6 g Apigenin (S. 181) mit 60 cm³ 10^9 /giger alkoholischer Kalilauge und 40 g Methyljodid im Wasserbad (Conti, Tristoni, G. 31 I, 77). — Gelbe Nadeln (aus Alkohol). F: 185° . — Gibt mit Salpetersäure (D: 1,20) Anissäure.

k) Oxy-oxo-Verbindungen $C_nH_{2n-22}O_5$.

1. Oxy-oxo-Verbindungen $C_{16}H_{10}O_{8}$.

1. 1.3 - Dioxo - 4 - [3.4 - dioxy - benzal] - isochroman, [3'.4'-Dioxy-stilben-2.a-dicarbonsaure]-anhydrid $C_{14}H_{10}O_5$, Formel III.

[2'-Nitro-3'.4'-dimethoxy-stilben-2.α-dicarbonsäure] - anhydrid C₁₈H₁₈O₇N, Formel IV. B. In geringer Menge beim Erhitzen von homophthalsaurem Natrium und 2-Nitro-3.4-dimethoxy-benzaldehyd mit Essigsäureanhydrid, neben 2'-Nitro-3'.4'-dimethoxy-stilben-2.α-dicarbonsäure (Pschore, B. 39, 3116). — Gelbe Stäbchen (aus Eisessig). F: 217° (korr.). Löslich in Eisessig; unlöslich in kaltem Ammoniak.

2. Oxy-oxo-Verbindung C14H10O1, Formel V.

Verbindung $C_{20}H_{10}O_{5}N$, Formel VI. Diese Formel könnte vielleicht dem Anhydro-[8-nitroso-7-oxy-4-methyl-2-(2.4-diāthoxy-phenyl)-benzopyranol] (Bd. XVII, S. 194) zu-kommen.

2. α - 0 x o - β - phenyl- γ - [4 - o xy - phenyl] - β - a cetyl-butyrolacton $C_{10}H_{14}O_{\delta}=OC_{10}-C(C_{0}H_{\delta})\cdot CO\cdot CH_{\delta}$

OC · O · CH · CaHa · OH

 α - Oxo - β - phenyl - γ - [4 - methoxy - phenyl] - β - acetyl - butyrolacton $C_{19}H_{16}O_{5}=OC-C(C_{6}H_{5})\cdot CO\cdot CH_{3}$. Möglicherweise besitzt die S. 135 behandelte, aus α -Oxo- β -phenyl- γ -[4-methoxy-phenyl]-butyrolacton mit Essigsäureanhydrid erhaltene Verbindung $C_{19}H_{16}O_{5}$ diese Konstitution; vgl. indessen Hall, Hynes, Lapworth, Soc. 107 [1915], 135.

1) Oxy-oxo-Verbindungen $C_nH_{2n-24}O_5$.

1. Oxy-oxo-Verbindungen $C_{16}H_8O_5$.

1. 7.8 - Dioxy - 4.5(CO) - benzoylen - cumarin, Lacton der [2.3.4-Trioxy-anthron - (9) - yliden - (10)] - essigsäure, Styrogallol ("o·Dioxyanthracumarin") C₁₆H₆O₅, s. nebenstehende Formel. B. Bei 2—3-stündigem Erhitzen eines Gemisches aus 10 Tln. Zimtsäure, 17 Tln. Gallussäure und 150 Tln. konz. Schwefelsäure auf 45—55° (JACOBSEN, JULIUS, B. 20, 2588; JA., D. R. P. 40375; Frdl. 1, 569; vgl. v. Kostanecki, B. 20, 3140, 3143). — Hellgelbe Nadeln (aus Alkohol). Schmilzt noch nicht bei 350° (JA., Ju.). Sublimiert fast unzersetzt in gelben Nadeln (JA., Ju.). Schwer löslich in kochendem Alkohol, Eisessig und Anilin, fast unlöslich in anderen Lösungsmitteln (JA., Ju.). Löst sich in Alkalien mit grüner Farbe, die beim Erwärmen über Blau und Violett schließlich in Rot übergeht (JA., Ju.). — Wird von verd. Salpetersäure zu Phthalsäure oxydiert (JA., Ju.). Liefert beim Kochen mit Essigsäureanhydrid und Natriumacetat ein Diacetylderivat (v. K.; vgl. JA., Ju.). Färbt gebeizte Zeuge ähnlich wie Nitroalizarin (JA., Ju.). — KC₁₆H₇O₅. Purpurrote Nadeln. Löslich in siedendem Wasser mit roter Farbe (A. G. Perkin, Wilson, Soc. 83, 139).

Diacetylderivat $C_{20}H_{12}O_7 = C_{16}H_6O_3(O\cdot CO\cdot CH_3)_2$. B. Beim Kochen von Styrogallol mit Essigsäureanhydrid und Natriumacetat (v. Kostanecki, B. 20, 3143; vgl. Jacobsen, Julius, B. 20, 2589). — Nädelchen (aus Eisessig). F: 260° (v. K.).

2. [5.6 - Dioxy - phenanthren - dicarbonsaure - (1.10)] - anhydrid $C_{16}H_8O_5$, s. nebenstehende Formel.

co

[5.6 - Dimethoxy - phenanthren - dicarbonsäure - (1.10)] - anhydrid C₁₈H₁₂O₅ = $(CH_3 \cdot O)_2C_{14}H_6 < \frac{CO}{CO} > 0$. Man reduziert 2-Nitro-3.4-di- Hō oʻH

methoxy-α-[2-carboxy-phenyl]-zimtsäure mit Eisensulfat und Ammoniak, diazotiert die entstandene (unreine) Aminoverbindung nach Zusatz von Schwefelsäure und erwärmt die so erhaltene Diazoniumsulfatlösung; das erhaltene Gemisch von freier Säure + Anhydrid wird durch Erhitzen mit Eisessig in reines Anhydrid übergeführt (PSCHORR, B. 39, 3116).— Gelbe Nadeln (aus Eisessig). F: 283—284° (korr.). Die Lösung in Eisessig fluoresciert grün. Löst sich beim Erwärmen mit 15°/siger Natronlauge; beim Ansäuern dieser Lösung fällt ein Gemisch der freien Säure und des Anhydrids aus.

2. 2.5-Dioxo-3.4-bis-[4-oxy-benzal]-furantetrahydrid, Bis-[4-oxy-benzal]-bernsteinsäureanhydrid, $\alpha.\delta$ -Bis-[4-oxy-phenyl]-fulgid $C_{10}H_{10}O_{\delta}=HO\cdot C_{0}H_{4}\cdot CH:C$ — $C:CH\cdot C_{0}H_{4}\cdot OH$

oc.o.co

Dianisalbernsteinsäureanhydrid, $\alpha.\delta$ -Bis-[4-methoxy-phenyl]-fulgid $C_{50}H_{16}O_{\delta} = CH_{2} \cdot O \cdot C_{6}H_{4} \cdot CH : C - C : CH \cdot C_{6}H_{4} \cdot O \cdot CH_{3}$. Beim Kochen von $\alpha.\delta$ -Bis-[4-methoxy-phenyl]-fulgid $C_{50}H_{16}O_{\delta} = CH_{16}O_{16}$

phenyl]-fulgensäure (Bd. X, S. 572) mit Acetylchlorid (Stobbe, A. 380 [1911], 73). — Gelbe Nadeln (aus Schwefelkohlenstoff). F: 170—171°; leicht löslich in Chloroform und Benzol, ziemlich schwer in Äther, unlöslich in Petroläther; färbt sich am Licht orange (St., A. 380, 73). Die gelbe alkoh. Lösung wird durch etwas Natronlauge sofort entfärbt (St., A. 380, 73). Absorptionsspektrum: St., A. 380, 4. Wird beim Abkühlen auf —80° etwas heller, beim Erhitzen auf 70—115° dunkelbraun; diese Farbänderungen gehen bei gewöhnlicher Temperatur wieder zurück (St., A. 380, 20).

m) Oxy-oxo-Verbindungen $C_n H_{2n-26} O_5$.

1. Oxy-oxo-Verbindungen $C_{19}H_{12}O_5$.

1. 2.6.7 - Trioxy - 9 - phenyl - fluoron C₁₉H₁₂O₅, HO C(C₈H₅) OH s. nebenstehende Formel. B. Die Verbindung mit Schwefel-HO. O :0 säure entsteht beim Erwärmen von 1 Mol Benzaldehyd mit 2 Mol Oxyhydrochinon in wäßrig-alkoholischer Lösung bei Gegenwart von Schwefelsäure auf dem Wasserbad; man macht das Reaktionsgemisch schwach alkalisch, säuert mit Schwefelsäure an und erwärmt einige Zeit (LIEBERMANN, LINDENBAUM, B. 37, 1173). — Orangerote Krystalle. Schmilzt noch nicht bei 300°. Schwer löslich in den gewöhnlichen Lösungsmitteln. Die alkoh. Lösung fluoresciert gelbgrün. Die Lösung in Alkalilauge ist carminrot. — Färbt Tonerdebeize rotorange, Eisenbeize grauviolett an. — Kaliumsalz. Kantharidenglänzende Nadeln. In Wasser mit Purpurfarbe löslich. — Verbindung mit Schwefelsäure C₁₉H₁₂O₅ + H₂SO₄. Wird durch heißes Wasser zersetzt. — Verbindung mit Schwefelsäure und Essigester C₁₉H₁₂O₅ + H₂SO₄ + C₄H₈O₃. Goldglänzende Blättchen. Gibt bei 105° den Essigester ab.

Triacetylderivat $C_{25}H_{18}O_8 = (CH_3 \cdot CO \cdot O)_2C_6H_2 \underbrace{C(C_6H_5)}_{O} C_6H_2(:O) \cdot O \cdot CO \cdot CH_3$. B. Aus 2.6.7-Trioxy-9-phenyl-luoron mit Essigaureanhydrid und Natriumacetat (Lie., Lin., B. 37, 1174). — Orangegelbe Nadeln (aus Alkohol). F: 230—233°. Unlöslich in Alkohol. Wird durch konz. Schwefelsäure sofort zerlegt.

2.6.7 - Trioxy - 9 - [3 - brom - phenyl] - fluoron $C_{19}H_{11}O_5Br = (HO)_2C_6H_4Br) \bigcirc C_6H_4(:O)\cdot OH$. B. Die Verbindung mit Schwefelsäure entstelt beim Erwärmen von 3-Brom-benzaldehyd mit Oxyhydrochinon und Schwefelsäure in alkoholisch-wäßriger Lösung; man zersetzt sie durch siedendes Wasser (Heintschel, B. 38, 2879). — Ziegelrote, kantharidenglänzende Prismen. — Verbindung mit Schwefelsäure $C_{19}H_{11}O_5Br + H_2SO_4 + 3H_2O$. Braune, metallglänzende Nadeln.

Triacetylderivat $C_{25}H_{17}O_8Br = (CH_3 \cdot CO \cdot O)_2C_6H_2 \underbrace{C(C_6H_4Br)}_{O} C_6H_2(:O) \cdot O \cdot CO \cdot CH_3$. Brāunliche Nadeln (aus Benzol-Ligroin). F: 242° (H., B. 38, 2879).

2.6.7 - Trioxy - 9 - [3 - nitro - phenyl] - fluoron $C_{19}H_{11}O_7N = (HO)_2C_6H_2\cdot NO_2)$ $C_6H_2(:O)\cdot OH$. B. Die Verbindung mit Schwefelsäure entsteht beim Erwärmen von 1 Mol 3-Nitro-benzaldehyd mit 2 Mol Oxyhydrochinon und Schwefelsäure in verd. Alkohol; man zersetzt sie durch siedendes Wasser (H., B. 38, 2878). — Rotbraune Prismen. Schmilzt oberhalb 300°. Schwer löslich in Eisessig, Alkohol und Aceton mit gelbgrüner Fluorescenz, unlöslich in Benzol und Ligroin. Löslich in Alkalien mit blauroter Farbe. — Verbindung mit Schwefelsäure $C_{19}H_{11}O_7N + H_2SO_4 + H_2O$. Braune Nadeln. Wird durch Wasser zerlegt.

Triacetylderivat $C_{28}H_{17}O_{10}N = (CH_3 \cdot CO \cdot O)_2C_6H_2 \underbrace{C(C_6H_4 \cdot NO_2)}_O C_6H_2(:O) \cdot O \cdot CO \cdot CH_2$. Orangegelbe Nadeln (aus Alkohol). F: 184° (H., B. 38, 2879).

2. 3.4 - Dioxo - 2 - [3.4 - dioxy - phenyl] - 7.8 - benzo - chroman, 3'.4' - Dioxy - 3.4 - dioxo - 7.8 - benzo - 8 -

 $(,3'.4'-\text{Dio}xy-\alpha-\text{naphthoflavonol''})$ $C_{15}H_{12}O_{5}$, Formel I bezw. II. B. Durch Kochen von 3'.4'-Dimethoxy-7.8-benzo-flavonol mit starker Jodwasserstoffsäure (Bigler, v. Kostanecki, B. 39, 4036). — Wasserhaltige, gelbe Nadeln (aus Alkohol). Verliert beim Liegen an der Luft das Krystallwasser. F: 286°. Die Lösung in Natronlauge ist orange, die Lösung in konz. Schwefelsäure gelb mit grüner Fluorescenz. — Färbt Tonerdebeize bräunlichgelb an.

200

essigsauren Lösung von 3'.4'-Dimethoxy-3-oximino-7.8-benzo-flavanon mit 10°/oiger Schwefelsäure (B., v. K., B. 39, 4036). — Gelbe Nädelchen (aus Alkohol). F: 224°. Die Lösung in konz. Schwefelsäure ist gelb und fluoresciert grün. — Gibt beim Kochen mit Jodwasserstoffsäure 3'.4'-Dioxy-7.8-benzo-flavonol (S. 199). — Natriumsalz. Gelb. Schwer löslich.

3'.4'-Dimethoxy-3-acetoxy-7.8-benzo-flavon, 3'.4'-Dimethoxy-7.8-benzo-flavon nol-acetat $C_{10}H_{10}O_6=C_{10}H_4$ $C_{0}\cdot C_{0}\cdot C_{0}\cdot C_{0}\cdot C_{0}\cdot C_{0}$. B. Beim Erhitzen von 3'.4'-Dimethoxy-7.8-benzo-flavonol mit Essigsäureanhydrid und Natriumacetat (BIGLER, Dissertation [Bern 1908], 8. 41). — Nadeln. F: 191—192°; die alkoh. Lösung zeigt bläuliche Fluorescenz (B.; B., v. Kostanecki, B. 39, 4036).

8.3'.4'-Triacetoxy-7.8-benzo-flavon, 3'.4'-Diacetoxy-7.8-benzo-flavonol-acetat $C_{28}H_{18}O_8 = C_{10}H_6 \underbrace{\begin{array}{c} CO \cdot C \cdot O \cdot CH_3 \\ O - C \cdot C_6H_3(O \cdot CO \cdot CH_3)_2 \end{array}}_{C \cdot C_6H_3(O \cdot CO \cdot CH_3)_2}$. B. Beim Erhitzen von 3'.4'-Dioxy-7.8-benzo-flavonol mit Essigsäureanhydrid und Natriumacetat (Bigler, Dissertation [Bern 1908], S. 44). — Nadeln (aus Alkohol). F: 215° (B.; B., v. Kostanecki, B. 39, 4037).

3'.4'-Dimethoxy-4-oxo-8-oximino-7.8-benzo-flavan, 3'.4'-Dimethoxy-8-oximino-7.8-benzo-flavanon $C_{11}H_{17}O_5N=C_{10}H_4$ C_{10}

2. 3-0xo-1-phenyl-1-[2.3.4-trioxy-phenyl]-phthalan, 3-Phenyl-3-[2.3.4-trioxy-phenyl]-phthalid, Lacton der 2'.3'.4'.\alpha-Tetraoxy-triphenylmethan-carbonsäure-(2), Benzolpyrogallolphthalein C₂₀H₁₄O₅, s. nebenstehende Formel. B. Bei 1-stündigem Erhitzen von 1 Tl. Pyrogallol mit 2 Tln. 2-Benzoyl-benzoesäure auf 195—200° (v. PECH-MANN, B. 14, 1860, 1864). — Krystallisiert aus Eisessig mit 1 Mol C₂H₄O₂ in Täfelchen, die bei 120—130° die Essigsäure verlieren und dann bei 189—190° schmelzen. Leicht löslich in den meisten Lösungsmitteln, etwas in kochendem Wasser, unlöslich in Ligroin. Die Lösung in Alkalien ist grün und wird beim Aufkochen sofort braun. Löst sich in konz. Schwefelsäure mit brauner Farbe. Die alkoh. Lösung wird durch wenig Eisenchlorid blau gefärbt; bald jedoch tritt Entfärbung und Ausscheidung schwarzer Flocken ein. Bildet mit Salzsäure eine blaugrüne Verbindung. — Liefert beim Kochen mit Zinkstaub und Ammoniak eine nicht näher beschriebene Trioxytriphenylmethancarbonsäure. Beim Erhitzen mit konz. Schwefelsäure entsteht Anthrachinon.

Triacetylderivat $C_{36}H_{30}O_8 = C_6H_4 \overline{C(C_9H_8)[C_8H_8(O\cdot CO\cdot CH_3)_8]}O$. B. Beim Kochen von Benzolpyrogallolphthalein mit Essigsäureanhydrid (v. P., B. 14, 1864). — Nädelchen (aus Essigsäureanhydrid). F: 231°. Fast unlöslich in allen Lösungsmitteln.

3. Oxy-oxo-Verbindungen $C_{22}H_{18}O_{\delta}$.

1. 5 oder 6-Oxy-3-oxo-1.1-bis-[4-oxy-3-methyl-phenyl]-phthalan, 5 oder 6-Oxy-3.3-bis-[4-oxy-3-methyl-phenyl]-phthalid, 5 oder 6-Oxy-3'.3''-dimethyl-phenolphthalein $C_{11}H_{11}O_{12}$, Formel 1 oder II. B. Beim Schmelzen

von 4-Oxy-phthalsaure und o-Kresol mit Borsaure (Bentley, Gardner, Weizmann, Soc. 91, 1638). — Nadeln (aus verd. Essigsaure). F: 245—247°. Löslich in Alkalien mit violetter Farbe.

2. 6 - Oxy - 1.8 - dimethyl - 9 - [4.6 - dioxy - 2 - methyl-phenyl]-fluoron(?), Orcinaurin C₂₂H₁₈O₅, s. nebenstehende Formel. B. Bei 2-stündigem Erwärmen eines Gemisches von 1 Tl. Ameisensäure mit 1 Tl. wasserfreiem Orcin und 2 Tln. Zinkchlorid auf 100° (NENCKI, J. pr. [2] 25, 277). Neben anderen Produkten beim Erwärmen einer Lösung von 10 g Orcin in 20 cm³ gesättigter Kochsalzlösung mit 80 cm³ 10°/0iger Natronlauge und 6—8 cm³ Chloroform zum HO.

OH

HOOO OH

CH3

CH3

CH3

CH3

gelinden Sieden (Schwarz, B. 13, 546; vgl. Grimaux, Bl. [3] 5, 465). — Rotbraune Krystallkörner. Schmilzt noch nicht bei 300° (G.). Unlöslich in Äther, Chloroform, Benzol, Ligroin, schwer löslich in Wasser, Alkohol und kaltem Eisessig (Sch.). Verbindet sich leicht mit Mineralsäuren zu gelben Verbindungen, die durch Einw. von Wasser oder durch Erwärmen zerlegt werden (Sch.). Orcinaurin ist eine schwache Säure; die Salze der Alkalien und Erdalkalien krystallisieren in roten Nadeln mit gelbem Metallglanz; sie lösen sich in Wasser; die Lösungen fluorescieren grüngelb; das Ammoniumsalz verliert beim Abdampfen alles Ammoniak (Sch.). — Orcinaurin wird in alkoholisch-alkalischer Lösung durch Natrium-amalgam oder Zinkstaub in ein farbloses Reduktionsprodukt übergeführt, das sich schon an der Luft wieder zu Orcinaurin oxydiert (Sch.). Zur Acetylierung vgl. Sch.; N. — Verbindung mit Essigsäure C₂₂H₁₈O₅ + 3C₂H₄O₃ (Sch.; G.). Dunkelrote Nadeln oder Blättchen (Sch.).

Tetrabrom-orcinaurin C₂₂H₁₀O₅Br₄. B. Durch Versetzen einer heißen Lösung von 1 Mol Orcinaurin in Eisessig oder absol. Alkohol mit einer Lösung von 4 Mol Brom in Eisessig (SCHWARZ, B. 13, 554; vgl. GRIMAUX, Bl. [3] 5, 467). — Rotbraune Blättchen. Löslich in Alkohol. — Natriumsalz. Mattrote Nadeln mit Krystallwasser. Unlöslich in Natronlauge (SCH.).

Trijod-orcinaurin $C_{12}H_{16}O_{5}I_{3}$. B. Man übergießt Orcinaurin-natrium mit einer verdünnten alkalischen Jodlösung und setzt Essigsäure zu (Schwarz, B. 13, 556; vgl. Grimaux, Bl. [3] 5, 467). — Rote Krystalle. — Natriumsalz. Rote Nadeln. Löslich in heißem Wasser oder verd. Alkohol mit kirschroter Farbe; unlöslich in Natronlauge (Sch.).

2.4.5.7 - Tetranitro - 6 - oxy - 1.8 - dimethyl - 9 - [3.5 - dinitro - 4.6 - dioxy - 2 - methylphenyl] - fluoron (?), Hexanitro - orcinaurin $C_{22}H_{13}O_{17}N_6 = (HO)(CH_3)(NO_2)_2C_6 \underbrace{C[C_6(NO_2)_2(CH_3)(OH)_2]}_{O}C_6(NO_2)_2(CH_3)(:0)$. B. Durch Erwärmen von 1 Tl. trockenem Orcinnatrium mit 8—10 Tln. Salpetersäure (D: 1,4), Auflösen des hierbei entstandenen Nitrats in heißem Wasser und Versetzen der Lösung mit verd. Salpetersäure bis zur beginnenden Trübung (SCHWARZ, B. 13, 558, 560; vgl. GRIMAUX, Bl. [3] 5, 467). — Goldrote wasserhaltige Blättchen oder rote wasserfreie Blättchen. — Läßt sich mit Zinn und Salzsäure zu einer Aminoverbindung reduzieren (SCH., B. 13, 565). Einw. von Ammoniak: SCH., B. 13, 562; vgl. GR., Bl. [3] 5, 467. Einw. von Cyankalium: SCH., B. 13, 566. — NaC₁₂H₁₁O₁₇N₆. Rotglänzende Blättchen (SCH., B. 13, 561). — AgC₂₂H₁₁O₁₇N₆. Rotglänzende Blättchen (SCH., B. 13, 561). — AgC₂₂H₁₁O₁₇N₆. Rotglänzende Blättchen (SCH., B. 13, 561). — C₂₃H₁₂O₁₇N₆ + HNO₃. Gelbrotes Krystall-pulver. Explodiert, ohne zu schmelzen, bei 180°; unlöslich in Benzol, schwer löslich in Ather, löslich in Alkohol; wird durch Wasser zersetzt (SCH., B. 13, 559).

n) Oxy-oxo-Verbindungen C_nH_{2n-28}O₅.

1. Oxy-oxo-Verbindungen $C_{21}H_{14}O_5$.

1. Oxy - oxo - Verbindung $C_{13}H_{14}O_5$.

Verbindung $C_{23}H_{18}O_5$, Formel I, I. Anhydro - [5.7 - dioxy - 2 - phenyl - 4 - (3.5 - dimethoxy - phenyl) - benzo - pyranol]. Vgl. hierzu Bd. XVII, 8. 227.

2. Oxy-oxo-Verbindung C₂₁H₁₄O₅.

Verbindung $C_{23}H_{18}O_5$, Formel II, Anhydro-[7.8-dioxy-2-phenyl-4-(3.5-dimethoxy-phenyl)-bensopyranol]. Vgl. hierzu Bd. XVII, S. 228.

3. Oxy-oxo-Verbindung Ca1H14O5.

Verbindung C_nH₁₆O_sN, Formel III oder IV. Diese Formeln könnten vielleicht dem 8-Nitroso-5.7-dioxy-2.4-diphenyl-benzopyranol-(2)(?) (Bd. XVII, S. 187) zukommen.

2. $0xy-oxo-Verbindungen C_{22}H_{16}O_5$.

1. 7.8 - Dioxy - 4 - oxo - 2 - phenyl - 3 - [4 - oxy-benzal] - chroman, 7.8 - Dioxy - 3 - [4 - oxy-benzal] - flavanon C₂₂H₁₆O₅, s. nebenstehende Formel.

7.8 - Dimethoxy - 3 - anisal - flavanon $C_{25}H_{22}O_5 = HO$ $(CH_3 \cdot O)_2C_6H_2 = CO \cdot C: CH \cdot C_6H_4 \cdot O \cdot CH_3$ $O = CH \cdot C_6H_5$ Anisaldehyd in heißer alkoholischer Salzsäure (Katschalowsky, v. Kostanecki, B. 37, 3171). — Täfelchen. F: 18.°. Die Lösung in konz. Schwefelsäure ist orange.

2. 6 - Oxy - 4 - oxo - 2 - phenyl - 3 - [3.4 - dioxy - benzal] - chroman, 6-Oxy - 3-[3.4 - dioxy - benzal] - flavanon C₂₂H₁₆O₅, s. nebenstehende Formel.

6 - Äthoxy - 3 - veratral - flavanon $C_{26}H_{24}O_5 = 0$ O $CH \cdot C_6H_5$ $C_2H_5 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_5$. B. Aus 6-Äthoxy-flavanon (S. 51) und Veratrum-aldehyd in heißer alkoholischer Salzsäure (Katschalowsky, v. Kostanecki, B. 37, 3170). — Gelbe Säulen. F: 145—146°. Die Lösung in konz. Schwefelsäure ist violett.

o) Oxy-oxo-Verbindungen $C_n H_{2n-30} O_5$.

 $\begin{array}{ll} \alpha \cdot 0 \times o \cdot \beta - ph \cdot nyl \cdot \gamma \cdot [4 \cdot o \times y - ph \cdot nyl] \cdot \beta \cdot b \cdot nzoyl \cdot butyrolacton & C_{23}H_{16}O_5 = OC - C(C_0H_5) \cdot CO \cdot C_0H_5 \\ OC \cdot O \cdot CH \cdot C_8H_4 \cdot OH & & & & & & & & & \\ \end{array}$

p) Oxy-oxo-Verbindungen $C_n H_{2n-32} O_5$.

2.5-Dioxo-4-diphenylmethylen-3-[3.4-dioxy-benzal]-furantetrahydrid, Diphenylmethylen-[3.4-dioxy-benzal]-bernsteinsäureanhydrid, $\alpha.\alpha$ -Diphenyl- δ -[3.4-dioxy-phenyl]-fulgid $C_{34}H_{16}O_{5} = \frac{(C_{6}H_{5})_{8}C:C-C:CH\cdot \bigcirc OH}{OC\cdot O\cdot OO}$.

Diphenylmethylen - veratral - bernsteinsäureanhydrid, $\alpha.\alpha$ - Diphenyl- δ - [3.4-dimethoxy-phenyl]-fulgid $C_{36}H_{30}O_5=\frac{(C_6H_5)_2C:C--C:CH\cdot C_6H_3(O\cdot CH_3)_2}{OC\cdot O\cdot CO}$. B. Aus Diphenylmethylen-veratral-bernsteinsäure mit kaltem Acetylchlor:d (Stobbe, A. 380 [1911], 108). — Rubinrote Tafeln (aus Äther, Schwefelkohlenstoff oder Benzol). Monoklin prismatisch (Toborffy, Z. Kr. 45, 172; vgl. Groth, Ch. Kr. 5, 508). F: 164,5° (St., A. 380, 108). Leicht löslich in Chloroform, schwer in Alkohol und Äther (St., A. 380, 109). Zeigt Pleochroismus (St., A. 380, 109). Löst sich in konz. Schwefelsäure mit violetter Farbe (St., A. 380, 109). Ist stark phototrop (St., A. 359, 27). Absorptionsspektrum in Chloroform: St., A. 380, 5. Wird beim Abkühlen auf — 80° kupferrot, beim Erwärmen auf 67—98° granatrot; diese Farbänderungen gehen bei gewöhnlicher Temperatur wieder zurück (St., A. 380, 21). — Liefert bei mäßigem Erwärmen mit Chromtrioxyd und Eisessig Benzophenon und Veratrumaldehyd (St., A. 380, 109).

q) Oxy-oxo-Verbindungen $C_nH_{2n-34}O_5$.

Lacton der 3-[4.α-Dioxy-benzhydryl]-naphthochinon-(1.4)-carbon-

vielleicht diese Konstitution zukommt, s. Bd. VIII, S. 533.

4. Oxy-oxo-Verbindungen mit 6 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_nH_{2n-2}O_6$.

- 1. Oxy-oxo-Verbindungen $C_6H_{10}O_6$.
- 1. $\alpha.\beta.\gamma$ -Trioxy- δ -oxymethyl- δ -valerolacton, $\alpha.\beta.\gamma.\varepsilon$ -Tetraoxy- δ -capro $lacton \ C_0H_{10}O_0 = \frac{HO \cdot HC \cdot CH(OH) \cdot CH \cdot OH}{OC - O - CH \cdot CH_2 \cdot OH}.$

$$\delta\text{-Lacton der }d\text{-Glykonsäure }C_6H_{10}O_6= \begin{matrix} H & H & OH & H \\ H & OH & H \\ OH & H & OH \end{matrix}$$

 $\alpha.\beta.\gamma$ - Trimethyläther, 2.3.4 - Trimethyl - d - glykonsäure - δ - lacton $C_9H_{16}O_6=$

auf Grund früherer Konstitutionsauffassung als 2.3.5-Trimethyl-d-glykose aufgeführt) mit Bromwasser (Purdie, Bridgett, Soc. 83, 1040). — Ol. Kp₁₁: ca. 160⁰ (Pur., B.). [α]_D: +76,5° (in etwa 4°/0iger wäßrig-alkoholischer Lösung); die Drehung dieser Lösung sinkt in 15 Stdn. auf $[\alpha]_D$: +53,20 (PUR., B.).

 $\alpha.\beta.\gamma.\varepsilon$ -Tetramethyläther, 2.3.4.6-Tetramethyl-d-glykonsäure- δ -lacton $C_{10}H_{18}O_{6}=$

O.CH₃ H

C C C CO. Zur Konstitution vgl. Charlton, Haworth,

H₃ H O.CH₃ $CH_3 \cdot O \cdot CH_2 \cdot C - C - C -$

PEAT, Soc. 1926, 98 Anm., 99; HIRST, Soc. 1926, 351; HA., HI., MILLER, Soc. 1927, 2436.

— B. Durch Oxydation von 2.3.4.6-Tetramethyl-d-glykose (in Bd. I, S. 897 auf Grund früherer Konstitutionsauffassung als 2.3.5.6-Tetramethyl-d-glykose aufgeführt) mit Bromwasser (Purdie, Irvine, Soc. 83, 1033). — Unmittelbar nach Bereitung der Lösung beträgt $[\alpha]_0$: $+100,7^0$ (in verdünntem Alkohol; c=2,4); die Drehung sinkt nach 3 Tagen auf $[\alpha]_0$: $+39,5^0$ (Pur., I.).

- 2. $\alpha.\beta-Dioxy-\gamma-[\alpha.\beta-dioxy-\ddot{a}thyl]-butyrolacton$, $\alpha.\beta.\delta.\varepsilon-Tetraoxy-\gamma-capro$ lacton $C_6H_{10}O_6 = HO \cdot HC - CH \cdot OH OCH \cdot CH(OH) \cdot CH_2 \cdot OH$

anhaltendem Erhitzen von d-Glykonsäure auf 100°; man läßt den erhaltenen Sirup 8-14 Tage über Schwefelsäure stehen (E. Fischer, B. 23, 2625). — Nadeln (aus wenig warmem Wasser), die noch eine Spur freie Säure enthalten (E. F.). Schmilzt bei 130-135° (E. F.). Leicht löslich in heißem Alkohol (E. F.). $[\alpha]_p$: $+68,2^o$ (in Wasser; p=8,4) (E. F.) 1). Schmeckt süß (E. F.).

b) γ -Lactone der Gulonsäuren $C_{\bullet}H_{10}O_{\bullet} =$

- α) γ-Lacton der d-Gulonsäure 1) (Konfiguration entsprechend Formel I). B. s. bei d-Gulonsäure, Bd. III, S. 546. Darst. Man versetzt eine gut gekühlte, durch Schwefelsäure stets schwach sauer gehaltene Lösung von 20 g des Lactons der d-Zuckersäure (Syst. No. 2626) in 150 g Wasser dreimal mit je 100 g 2½/30/6 igem Natriumamalgam, hierauf hält man die Lösung stets schwach alkalisch und fügt innerhalb 4 Stdn. weitere 400 g Natriumamalgam zu; man filtriert und dampft das mit Schwefelsäure neutralisierte Filtrat bis zur beginnenden Krystallisation von Natriumsulfat ein, fügt darauf 10 g konz. Schwefelsäure hinzu und gießt die Lösung in die 8-fache Menge heißen absoluten Alkohol; man filtriert, dampft das Filtrat auf ½ seines Volumens ein, verdünnt mit Wasser und übersättigt nach dem Wegkochen des Alkohols mit Barythydrat; die alkal. Lösung neutralisiert man durch Kohlendioxyd, dampft das Filtrat zum Sirup ein und löst in kaltem Wasser; aus der Lösung fällt man das Barium durch Schwefelsäure genau aus und verdampft das Filtrat (E. Fischer, Photy, B. 24, 525). Prismen und Tafeln (aus Wasser). Rhombisch bisphenoidisch (Link, H. 15, 73; vgl. Groth, Ch. Kr. 3, 444). F: 178—180° (Thierfelder, H. 15, 74), 180—181° (F., P.). Leicht löslich in Wasser, sehr schwer in kaltem Alkohol (Th.). [α]; +56,1° (in Wasser; p = 2,1) (Th.); [α]; +55,1° (in Wasser; p = 10,2) (F., P.). Salpetersäure (D: 1,15) oxydiert beim Erhitzen zu Zuckersäure (F., P.). Wird von Natriumamalgam und Schwefelsäure zu d-Gulose † reduziert (F., P.).
- β) γ-Lacton der l-Gulonsäure 4) (Konfiguration entsprechend Formel II). B. Man versetzt eine Lösung von 100 g Xylose in 200 g Wasser mit der berechneten Menge Blausäure und einigen Tropfen Ammoniak, läßt das Gemisch 2 Tage lang unter Kühlung stehen und kocht es dann mit einer Lösung von 200 g krystallisiertem Bariumhydroxyd in 1200 g Wasser; man fällt das Barium mit Schwefelsäure und verdampft das Filtrat (E. Fischer, Stahel, B. 24, 529). Prismen (aus heißem Wasser oder aus 60% gigem Alkohol). Rhombisch bisphenoidisch (Haushofer, B. 24, 530; vgl. Groth, Ch. Kr. 3, 444). Sintert bei 179° und achmilzt bei 185° (korr.) (Fi., St.). Sehr leicht löslich in heißem Wasser, ziemlich schwer in heißem absolutem Alkohol (Fi., St.). [α]₀²: —55,3° (in Wasser; p = 10,0) (Fi., St.). Verbrennungswärme: Fogh, Bl. [3] 7, 395. Wird von Natriumamalgam und Schwefelsäure zu 1-Gulose 5) reduziert (Fi., St.).
 - c) γ -Lactone der Mannonsduren $C_6H_{10}O_6 =$

a) γ -Lacton der d-Mannonsäure (Konfiguration entsprechend Formel III). B. s. bei d-Mannonsäure, Bd. III, S. 547. — Krystalle (aus Essigester) (Nef. A. 857, 270), Nadeln (aus heißem Alkohol) (E. FISCHEE, HIBSCHEBEGER, B. 22, 3221). Schmilzt schaft bei 151°; [a];: +61,8° (in 4°/siger wäßr. Lösung) (Nef. A. 403 [1914], 316; Hedenburg, Am. Soc. 37 [1915], 354; vgl. F., H.). Sehr leicht löslich in Wasser, schwer löslich in heißem Alkohol (F., H.). Verbrennungswärme: Fogh, Bl. [3] 7, 395. Reagiert neutral (F., H.). — Reduziert Femilingsche Lösung nicht (F., H.). Wird durch Salpetersäure (D: 1,2) zu d-Mannosuckersäure oxydiert (E. FISCHER, B. 24, 539), durch Natriumamalgam in möglichst neutraler Lösung zu d-Mannose reduziert (F., B. 22, 2204). Beim Kochen der wäßr. Lösung mit Carbonaten entstehen die entsprechenden d-mannonsauren Salze (F., H.). Beim Erhitzen mit Chinolin und etwas Wasser auf 140° wird teilweise d-Glykonsäure gebildet (F., B. 23, 801).

¹⁾ Das von SCHNELLE, TOLLENS, A. 271, 77 angegebene Drehungsvermögen bezieht sich den nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1 I. 1910] erschienenen Arbeiten von Nef. A. 403, 328; vgl. HAWORTH, NICHOLSON, Soc. 1926, 1900 zufolge nicht auf reines γ-Lacton, sondern auf ein Gemisch von γ- und δ-Lacton.

²⁾ Ist nach der neuen Nomenklatur als 1-Gulonsäure zu bezeichnen.

s) Ist nach der neuen Nomenklatur als l-Gulose zu bezeichnen.

⁴⁾ Ist nach der neuen Nomenklatur als d-Gulonsäure su bezeichnen.

⁵) Ist nach der neuen Nomenklatur als d-Gulose zu bezeichnen.

- β) γ-Lacton der l-Mannonsäure (Konfiguration entsprechend Formel IV, S. 204). B. s. bei l-Mannonsäure, Bd. III, S. 547. — Nadeln oder rhombische (Haushoffer, B. 19, 3035) a. bei I-Mannonsaure, Bd. 111, S. 547. — Nadein oder rhombische (Haushoffer, B. 19, 3039) Prismen (aus Wasser). Schmilzt scharf bei 150,5—151° (Upson, Sands, Whitnah, Am. Soc. 50 [1928], 520; vgl. Killani, B. 19, 3034; Clowes, Tollens, A. 310, 173). Leicht löslich in Wasser, schwer in Alkohol (K., B. 19, 3034). [α]₀: —51,8° (in Wasser) (U., S., W.; vgl. K., B. 19, 3034). Verbrennungswärme: Fogh, Bl. [3] 7, 395. Reagiert neutral (K., B. 19, 3034). — Wird von Salpetersäure (D: 1,2) zu l-Mannozuckersäure oxydiert (K., B. 20, 341). Bei der Reduktion mit Natriumamalgam in schwach schwefelsaurer Lösung entsteht l-Mannose (E. FISCHER, B. 23, 373). Beim Kochen mit Jodwasserstoffsäure und etwas Phosphor entstehen n-Capronsaure und y-Caprolacton (K., B. 20, 339). Die wäßr. Lösung liefert beim Kochen mit Carbonaten Salze der l-Mannonsaure (K., B. 20, 3035).
- γ) γ-Lacton der dl-Mannonsäure (Formel I + Formel II). B. s. bei dl-Mannonsäure, Bd. III, S. 548. Prismen. Beginnt bei 149° zu sintern und schmilzt bei 155° (E. Fischer, B. 23, 376). Sehr leicht löslich in heißem Wasser, ziemlich schwer in heißem Alkohol; schmeckt süß (F., B. 23, 377). — Geht beim Erhitzen mit Chinolin und Wasser auf 140° zum Teil in dl-Glykonsäure über (F., B. 23, 2618). Bei der Reduktion mit Natriumamalgam in schwach schwefelsaurer Lösung entsteht dl-Mannose (F., B. 23, 381).

d)
$$\gamma$$
-Lactone der Galaktonsäuren $C_6H_{10}O_6=$

I. $H_0\cdot CH_2\cdot C = 0$ $C = CO$ und II. $H_0\cdot CH_2\cdot C = C = CO$ $C =$

a) y-Lacton der d-Galaktonsäure (Konfiguration entsprechend Formel I). B. Man verdunstet eine wäßr. Lösung von d-Galaktonsäure über Schwefelsäure zum Sirup, löst diesen in warmen absolutem Alkohol, verdunstet die filtrierte Lösung bei 40° und frocknet den Rückstand über Schwefelsäure (Schnelle, Tollens, A. 271, 82; vgl. Kiliani, B. 18, 1553; E. Fischer, B. 23, 935). — Nädelchen mit 1 H₂O, die bei 64—65° (Sch., T.), bei 66° (Clowes, E. FISCHER, B. 23, 935). — Nädelchen mit 1 H₂O, die bei 64—65° (SCH., T.), bei 66° (CLOWES, TOLLENS, A. 310, 167; Nef, A. 403 [1914], 276) schmelzen. [a]_n: —65,5° (10 Minuten nach Auflösung; in Wasser; p = 7), —64,3° (nach 3 Tagen) (SCH., T.). Verliert beim Erwärmen im Luftstrom das Krystallwasser (SCH., T.). Die wasserfreie Verbindung schmilzt bei 90° bis 92° (SCH., T.), 92° (PRYDE, Soc. 123 [1923], 1812), 108—111° (Nef, A. 403 [1914], 276, 278), 112° (Levene, Meyer, J. biol. Chem. 46 [1921], 307). [a]_p: —67,9° (in Wasser) (CL., T.), —70,0° (in Wasser; c = 0,8; für einige Tage unverändert) (P.). [a]^m: —76,8° (in Wasser) (N.). Mutarotation [a]_p: —73,0° (in Wasser; c = 1,1), —63,7° (nach 16 Tagen) (L., M.). Durch Eindampfen von d-Galaktonsäure auf dem Wasserbad, Trocknen des erhaltenen Sirups im Vakuum bei 100° und Umkrystallisieren aus Alkohol oder viel Essigester erhielten

Sirups im Vakuum bei 100° und Umkrystallisieren aus Alkohol oder viel Essigester erhielten Ruff, Franz, B. 35, 948 das Lacton der d-Galaktonsäure in wasserfreien Nadeln, die bei 134—136° (korr.) schmelzen; vgl. dagegen Nef, A. 403 [1914], 276, 278. $[\alpha]_n^n$: —77,6° (für die wasserfreie Verbindung gleich nach der Auflösung in Wasser; p=8,2), —67,9°

(für die wasserfreie Verbindung gleich nach der Auflösung in Wasser; p = 8,2), —67,9° (nach einigen Tagen) (R., F.). — Beim Erhitzen mit Acetylchlorid im geschlossenen Rohr auf dem Wasserbad entsteht die Verbindung C₁₂H₁₆O₂Cl [s. u.) (R., F.). Verbindung C₁₂H₁₆O₂Cl [,,Triacetylchlorgalaktonsäurelacton"(?)]. B. Bei 5-stdg. Erhitzen des d-Galaktonsäurelactons von Ruff, Franz (s. o.) mit Acetylchlorid im Druckrohr auf 100° (R., F.). — Rhombisch bisphenoidische (Jaeger, Z. Kr. 38, 94) Prismen (aus Äther). Sintert bei 95—96° und schmilzt bei 98° (korr.) (R., F.). Leicht löslich in Essigester, Eissesig, Chloroform, Methylalkohol und Äther, schwer löslich in Alkohol und Wasser (R., F.). $[\alpha]_0^n: -224^o$ (in Eisessig; p=7) (R., F.). Liefert beim Kochen mit Cadmiumcarbonat wieder das Lacton der Galaktonsäure (R., F.). Spaltet in wäßr. Lösung leicht Chlor ab, in alkoh. Lösung nur teilweise. Beim Behandeln mit Ammoniak in kalter alkoh. Lösung entsteht Galaktonsäureamid-monochlorhydrin (Bd. III, S. 478) (R., F.).

Tetraacetylderivat $C_{14}H_{18}O_{10} = CH_3 \cdot CO \cdot O \cdot HC - CH \cdot O \cdot CO \cdot CH_3$ OC · O · CH · CH(O · CO · CH₂) · CH₂ · O · CO · CH₂ B. Durch Erhitzen von d-Galaktonsäure bezw. deren Lactonhydrat mit Acetanhydrid auf dem Wasserbad (Paal, Weidenkaff, B. 39, 2830). — Zähes Gummi. Leicht löslich in Alkohol, Ather und Benzol, fast unlöslich in Wasser. $[\alpha]_0^{10}$: -1,0° (in Benzol; p = 15). $[\alpha]_{0}^{n}$: -8.5° (in Benzol; p = 21), wenn bei der Darstellung nur auf 50-60° erhitzt wurde. Gibt mit Phenylmagnesiumbromid $\omega.\omega$ -Diphenyl-d-galaktohexit (Bd. VI, S. 1204) und eine bei 93—97° schmelzende, krystallinische Substanz.

β) γ-Lacton der dl-Galaktonsäure (Formel I + Formel II). B. Beim Eindampfen einer wäßr. Lösung der dl-Galaktonsäure (E. FISCHER, B. 25, 1252). — Prismen (aus Aceton). F: 122—125°. Sehr leicht löslich in Wasser, ziemlich schwer in Aceton. — Gibt mit Salpetersäure Schleimsäure. Wird von Natriumamalgam und Schwefelsäure zu dl-Galaktose reduziert.

2. $\alpha\beta$ -Dioxy- γ -[$\alpha\beta$ -dioxy-propyl]-butyrolacton, $\alpha\beta.\delta.\epsilon$ -Tetraoxy- $\gamma\text{-\"onantholacton }C_7H_{13}O_6 = \frac{\text{HO}\cdot\text{HC}-\text{CH}\cdot\text{OH}}{\text{OC}\cdot\text{O}\cdot\text{CH}\cdot\text{CH}(\text{OH})\cdot\text{CH}(\text{OH})\cdot\text{CH}_3}$

a)
$$\gamma$$
-Lacton der l -Rhamno- α -hexonsäure $C_7H_{12}O_6 = \begin{tabular}{c|c} \hline OH OH H & H OH \\ \hline H & H & OH \\ \hline H & H & OH \\ \hline H & H \\ \hline \end{tabular}$

B. s. bei Rhamno-α-hexonsäure, Bd. III, S. 550. – Nädelchen (aus Alkohol + Äther). Sintert B. 8. bei Knamno-α-nexonsaure, Bd. 111, S. 550. — Nädelchen (aus Aikonol + Ather). Suntert bei 162° und schmilzt bei 168° (E. Fischer, Tafel, B. 21, 1659). Sehr leicht löslich in Wasser und Alkohol, sehr schwer in Äther (F., T.). [α]_i^m: +83,8° (in Wasser; c = 10) (E. Fischer, Piloty, B. 23, 3104). — Geht beim Erhitzen mit Pyridin und Wasser im Autoklaven auf 150° bis 155° zum Teil in Rhamno-β-hexonsäure über (E. Fischer, Morrell, B. 27, 387). Salpetersäure (D: 1,2) oxydiert bei 40—45° zu Schleimsäure (F., M.). Wird von Natriumamalgam und Schwefelsäure zu l-Rhamno-α-hexose reduziert (F., P.). Gibt beim Erwärmen mit Isatin und konz. Schwefelsäure auf 115—130° eine weinrote Lösung (Yoder, Tollens, B. 34, 3461). B. 34, 3461).

B. s. bei Rhamno-β-hexonsäure, Bd. III, S. 551. — Krystallkrusten (aus Aceton). Schmilzt zwischen 134 und 138° (E. FISCHER, MORRELL, B. 27, 389). Sehr leicht löslich in Wasser und Alkohol. [α][∞]: +43,3° (in Wasser; p = 9,9). — Geht beim Erhitzen mit Pyridin und Wasser im geschlossenen Rohr auf 150—155° zum Teil in Rhamno-α-hexonsäure über. Salpetersäure (D: 1,2) oxydiert bei 45—50° zu l-Taloschleimsäure (Bd. III, S. 577). Wird durch Natriumamalgam und Schwefelsäure zu Rhamno-β-hexose reduziert.

Zur Konfiguration vgl. Freudenberg, Raschig, B. 60 [1927], 1633; 62 [1929], 373. — B. Aus Fucchexonsäure (Bd. III, S. 551) beim Eindampfen der wäßr. Lösung (Mayer, Tollens, B. 40, 2436). — Tafeln (aus Alkohol). Sintert bei 152° und schmilzt bei 160°; langsam löslich in Wasser; $[\alpha]_0$: +33,3° (in Wasser; c=1,6; 8 Tage nach der Auflösung) (M., T.), +37,6° (Tollens, Rorive, B. 42, 2009). — Bei der Oxydation mit Salpetersäure (D:1,15) erhält man Oxalsäure und eine andere Säure, deren Calciumsalz in Essigsäure löslich ist (M., T.).

3. Oxy-oxo-Verbindungen C₈H₁₄O₆.

1. α -Oxy- γ -oxymethyl- α - $[\beta,\gamma$ -dioxy-propyl]-butyrolacton (?) $C_8H_{14}O_6 = H0 \cdot CH_2 \cdot CH(OH) \cdot CH_2 \cdot (HO)C - CH_2$

OC·O·CH·CH₂·OH^(?) (vgl. auch No. 2). B. s. bei 4-Methyl-

säure-heptanpentol-(1.2.4.6.7)(?), Bd. III, S. 551. — Süß schmeckender Sirup (Fokin, Ж. 22, 530; J. pr. [2] 48, 529).

2. α -Oxy- γ -oxymethyl- α -[β . γ -dioxy-propyl]-butyrolacton oder α . β -Dioxy- γ - methyl - α - [α . β - dioxy - propyl] - butyrolacton $C_8H_{14}O_8 =$ HO·CH₂·CH(OH)·CH₂·(HO)C——CH₂

OC.O.CH.CH.OH oder

CH₃·CH(OH)·CH(OH)·(HO)C——CH·OH
OC·O·CH·CH₃ (vgl. auch No. 1). Zur Konstitution vgl. Fokin,

Ж. 22, 535; J. pr. [2] 48, 533. — B. s. bei 4-Methylsäure-heptanpentol-(1.2.4.6.7 oder 2.3.4.5.6), Bd. III, S. 552. — Sirup. Bleibt bei —20° flüssig (Вилтясн, Ж. 19, 77; J. pr. [2] 39, 68). Leicht löslich in Wasser und Alkohol, unlöslich in Äther, Chloroform und Schwefelkohlenstoff (B.).

b) Oxy-oxo-Verbindungen $C_nH_{2n-4}O_6$.

3.4.2¹-Trioxy-5.2³-dioxo-2-äthyl-furantetrahydrid, $\alpha.\beta$ -Dioxy- γ -[α -oxy- β -oxo-äthyl]-butyrolacton, $\alpha.\beta.\delta$ -Trioxy- ϵ -oxo- γ -caprolacton $C_eH_eO_6=HO\cdot HC$ —— $CH\cdot OH$

OC.O.CH.CH(OH).CHO.

Lacton der d - Glykuronsäure, d - Glykuron $C_6H_8O_6$, vielleicht om m om om

Wasser), Tafeln (aus Essigester + etwas absol. Alkohol). Monoklin bisphenoidisch (Grünling, B. 15, 1966; Z. Kr. 7, 586; J. 1883, 1094; vgl. Groth, Ch. Kr. 3, 427, 444). Bräunt sich je nach der Art des Erhitzens schon bei 150° oder erst gegen 170° und schmilzt zwischen 170—175° (Mann, Tollens, A. 290, 156). Sintert bei raschem Erhitzen gegen 170° und schmilzt unter Gasentwicklung und Bräunung zwischen 175° und 178° (E. Fischer, Piloty, B. 24, 523). F: 175° (Neuberg, B. 33, 3317), 167° (Zers.) (Spiegel, B. 15, 1966). Sehr leicht löslich in Wasser, unlöslich in Alkohol (Schmiedeberg, Meyer, H. 3, 438). [α]: +18,2° (in Wasser; c = 10) (Mann, To.). [α]: +19,3° (in Wasser; 8—14°/₀ige Lösung) (Thierfelder, H. 11, 398). — Zeigt gegenüber Fehlingscher Lösung die gleiche Reduktionskraft wie d-Glykose (Th., H. 11, 400). Geht beim Kochen mit Wasser teilweise in Glykuronsäure über (Th., H. 11, 393). Bei der Behandlung mit Acetylbromid entsteht Aceto-

bromglykuronsäurelacton $Br\dot{C}H \cdot CH(O \cdot CO \cdot CH_3) \cdot \dot{C}H \cdot CH(O \cdot CO \cdot CH_3) \cdot \dot{C}H \cdot CO$ (vgl. 4. Haupt-

abteilung unter Kohlenhydrate) (Neuberg, Neimann, H. 44, 117). Gibt mit einer konz. Lösung von Thiosemicarbazid in heißem Wasser sofort quantitativ das schwer lösliche Thiosemicarbazon (S. 208) (Neu.). Zur quantitativen Bestimmung von d-Glykuron vgl. ferner die Angaben bei d-Glykuronsäure. — Schmeckt süß (Sp.; vgl. Th., H. 11, 393).

Oxim $C_6H_9O_6N = \frac{\text{HO}\cdot\text{HC}-\text{CH}\cdot\text{OH}}{\text{OC}\cdot\text{O}\cdot\text{CH}\cdot\text{CH}(\text{OH})\cdot\text{CH}:\text{N}\cdot\text{OH}}$. B. Aus d-Glykuron und

Hydroxylamin in alkoh. Lösung durch Kochen (Giemsa, B. 33, 2997) oder durch 2-tägiges Stehenlassen bei 40° (Neuberg, B. 33, 3319). — Krystalle (aus Alkohol). F: 151° (unter Aufschäumen) (N.), 149° (Zers.) (G.). Schwer löslich in Alkohol und Äther; in kaltem Wasser zu 21,2°/ $_0$ löslich (G.). [α] $_D$: +14,4° (in Wasser) (G.). — Spaltet beim Eindampfen mit Kali Blausäure ab (N.). Liefert beim Erwärmen mit Kalilauge ein Kaliumsalz von der Drehung [α] $_D$: +11,7° (in Wasser) (G.).

Phenylhydrazon $C_{12}H_{16}O_5N_2 = \frac{HO \cdot HC - CH \cdot OH}{OC \cdot O \cdot CH \cdot CH(OH) \cdot CH : N \cdot NH \cdot C_6H_5}$. B. Beim Erwärmen von d-Glykuron mit Phenylhydrazin in Alkohol (GIEMSA, B. 33, 2998). — Gelbliche Nadeln (aus absol. Alkohol). F: 160°. Unlöslich in Wasser, fast unlöslich in kaltem Alkohol und Äther.

4-Brom-phenylhydrazon $C_{12}H_{13}O_5N_2Br = HO \cdot HC - CH \cdot OH$

OC.O.CH.CH(OH).CH:N.NH.C₆H₄Br

4-Brom-phenylhydrazin in Alkohol (Gimsa, B. 33, 2998; vgl. Neuberg, B. 33, 3318).—
Tafeln (aus Alkohol). F: 142° (Zers.); unlöslich in kaltem Wasser, schwer löslich in Äther (G.).— Liefert ein Kaliumsalz [KC₁₃H₁₂O₅N₂Br; Nadeln (aus Alkohol); schwer löslich in Wasser und Alkohol, sehr wenig in Äther; rechtsdrehend] (G.).

 $\textbf{N.N-Diphenyl-hydrazon} \ \, \textbf{C}_{18}\textbf{H}_{18}\textbf{O}_{5}\textbf{N}_{2} = \frac{\textbf{HO} \cdot \textbf{HC} - \textbf{CH} \cdot \textbf{OH}}{\textbf{OC} \cdot \textbf{O} \cdot \textbf{CH} \cdot \textbf{CH} (\textbf{OH}) \cdot \textbf{CH} : \textbf{N} \cdot \textbf{N} (\textbf{C}_{6}\textbf{H}_{5})_{2}} \cdot B. \\ \textbf{Beim Erwärmen von d-Glykuron und N.N-Diphenyl-hydrazin in verd. Alkohol auf dem Wasserbad (Neuberg, B. 33, 3318). — Nadeln (aus Alkohol). F: 150°. Sehr schwer löslich$

in den meisten organischen Lösungsmitteln. N - Phenyl - N - benzyl - hydrazon $C_{19}H_{20}O_5N_2 = HO \cdot HC - CH \cdot OH$

OC·O·CH·CH(OH)·CH:N·N(C_6H_5)·CH₂·C₆H₅.

B. Man erwärmt d-Glykuron mit N-Phenyl-N-benzyl-hydrazin in Alkohol 10 Minuten auf 80° (GIEMSA, B. 33, 2997). — Nadeln (aus 90°/gigem Alkohol). F: 141° (Zers.). Löslich in kaltem Wasser zu $0.1^{\circ}/_{0}$. — Liefert ein

Kaliumsalz $KC_{10}H_{10}O_{5}N_{9}$, das in büschelförmigen Nadeln krystallisiert, bei 176—178° schmilzt und $[\alpha]_{0}$: —20,3° (in Wasser) zeigt.

Semicarbazon $C_7H_{11}O_6N_3=\frac{HO\cdot HC--CH\cdot OH}{O\dot{C}\cdot O\cdot CH\cdot CH(OH)\cdot CH:N\cdot NH\cdot CO\cdot NH_3}$. B. Beim Erhitzen von d-Glykuron und Semicarbazid in Alkohol (GIEMSA, B. 33, 2997). — Nadeln (aus Wasser). Schmitzt bei langsamem Erhitzen bei 188—189° unter Zersetzung (G., H. 41, 548; vgl. Fromm, H. 41, 244). Schwer löslich in Alkohol und Äther; in kaltem Wasser zu 0,57°/ $_0$ löslich (G., B. 33, 2997). — Liefert mit Kalilauge ein Kaliumsalz ([α] $_0$: —20,8°; in Wasser) (G., B. 33, 2997).

Thiosemicarbason $C_7H_{11}O_5N_3S = OC \cdot OCH \cdot CH(OH) \cdot CH : N \cdot NH \cdot CS \cdot NH_3$ einer heißen, konzentrierten wäßrigen Lösung von Thiosemicarbazid und d-Glykuron

Aus einer heißen, konzentrierten wäßrigen Lösung von Thiosemicarbazid und d-Glykuron (Neuberg, B. 33, 3318). — Nadeln (aus Wasser). F: 223° (N.). Fast unlöslich in kaltem Wasser (N.). — Reduziert ammoniakalische Silber-Lösung schon in der Kälte, alkal. Quecksilber-Lösung und Fehlungsche Lösung erst in der Wärme (N.). Die von überschüssigem Ammoniak befreite ammoniakalische Lösung gibt mit Silbernitrat einen weißen, nach dem Trocknen gelben bis bräunlichen Niederschlag, das Silbersalz des Glykuronsäurethiosemicarbazids AgO·OC·[CH(OH)4]·CH:N·N:C(SAg)·NH2 (Neuberg, Neimann, B. 35, 2056).

c) Oxy-oxo-Verbindungen C_nH_{2n-16}O₆.

9-0xy-1.3.6.8-tetraoxo-2.4.5.7-tetramethyl-xanthen-oktahydrid, 1.3.6.8-Tetraoxo-2.4.5.7-tetramethyl-oktahydroxanthydrol $C_{17}H_{18}O_6$, s. nebenstehende Formel.

stehende Formel.

Eine Verbindung C₁₈H₁₆O₆Br₄, die vielleicht als Tetrabrom - tetraoxo-tetramethyl-oktahydroxanthydrol-methyläther aufzufassen ist, s. S. 180.

d) Oxy-oxo-Verbindungen C_nH_{2n-18}O₆.

1. 3.4.5.6-Tetraoxy-9-oxo-xanthen, 3.4.5.6-Tetraoxy-xanthen (Anhydro-pyrogallolketon) C₁₃H₆O₆, Formel I. B. Entsteht neben Benzoesäure beim Schmelzen von Gallein (Formel II bezw. III, Syst. No. 2843) mit Kali (BUCHKA, A. 209, 270). —

Hellbraunes Krystallpulver. Unlöslich in Chloroform und Benzol, schwer löslich in heißem Wasser, löslich in Alkohol und Aceton; löslich in Natronlauge mit gelbbrauner Farbe. — Wird in essigsaurer Lösung durch Natriumamalgam reduziert. Wird von Phosphorpentachlorid schwer angegriffen.

3.4.5.6-Tetraacetoxy-xanthon $C_{21}H_{16}O_{10} = (CH_2 \cdot CO \cdot O)_2C_6H_2 < {CO \choose O} > C_6H_2(O \cdot CO \cdot CH_2)_2$.

B. Durch Kochen von Anhydropyrogallolketon mit geschmolzenem Natriumacetat und Essigsäureanhydrid (B., A. 209, 271). — Würfel (aus Benzol). F: 237°.

2. 5.6 - Dioxy - 3 - oxo - 1 - [2.4 - dioxy - phenyl] - phthalan, 5.6 - Dioxy - 3 - [2.4 - dioxy - phenyl] - phthalid C₁₄H₁₀O₆, Formel IV.

5.6 - Dimethoxy - 8 - [2 - oxy - 4 - methoxy - phenyl] - phthalid, 8 - [2 - Oxy - 4 - methoxy - oxy - 4 - methoxy - oxy - 4 - methoxy - oxy - 0xy -

phenyl]-metamekonin C₁₇H₁₆O₆, Formel V. B. Man reduziert 4.5-Dimethoxy-2-[2-oxy-4-methoxy-benzoyl]-benzoesaure (Bd. X, S. 1042) mit Natriumamalgam in schwach alkalisch

gehaltener Lösung und säuert nach Beendigung der Reaktion an (Perkin, Robinson, Soc. 93, 513). — Krystalle (aus Essigester). F: 206—207°. Die Lösung in konz. Schwefelsäure ist orangerot. — Beim Kochen mit Chloressigsäure in Gegenwart von Kalilauge entsteht das Lacton der Dihydrobrasilinsäure.

5.6 - Dimethoxy - 3 - [4 - methoxy - 2 - carboxymethoxy-phenyl] - phthalid, 3 - [4 - Methoxy - 2 - carboxymethoxy-phenyl] - metamekonin, Dihydrobrasilinsäurelacton C₁₉H₁₈O₈, s. nebenstehende Formel. B. Aus Brasilinsäure (Bd. X, S. 1042) durch Reduktion mit Natriumamalgam in alkal. Lösung und nachfolgendes Ansäuern (PERKIN, Soc. 81, 1038).

Man kocht 5.6-Dimethoxy - 3 - [2 - oxy - 4 - methoxy - phenyl] - phthalid

Lösung und nachfolgendes Ansäuern (Perkin, Soc. 81, 1038).

Mankocht 5.6-Dimethoxy-3-[2-oxy-4-methoxy-phenyl]-phthalid

mit etwas Wasser und überschüssiger Chloressigsäure ½, Stde. unter zeitweiligem Zusatz
von soviel konz. Kalilauge, daß die Lösung dauernd deutlich alkalisch ist, und macht dann
sauer (Perkin, Robinson, Soc. 93, 514). — Nadeln (aus verd. Essigsäure). F: 227° (P.;
P., R.). Sehr schwer löslich in heißem Wasser, schwer in kaltem Eisessig, Benzol und Petroläther, leicht in heißem Alkohol (P.). Löst sich in Schwefelsäure mit carminroter Farbe, die
bald in Hellgelb übergeht; aus der gelben Lösung scheiden sich nach einigen Tagen farblose
Krystalle ab, die in Wasser sehr leicht löslich sind, von kalter verdünnter Sodalösung nicht
verändert werden und bei 1-stdg. Erhitzen in wäßr. Lösung im Einschlußrohr auf 160° in
das Lacton der Dihydrobrasilinsäure und Schwefelsäure zerfallen (P.). Wird von Kaliumpermanganat beim Kochen langsam oxydiert (P.). — AgC₁₉H₁₇O₈. Weiß, amorph (P.).

Dinitro-dihydrobrasilinsäurelacton $C_{18}H_{16}O_{12}N_2 = C_{19}H_{16}O_8(NO_3)_2$. B. Aus dem Lacton der Dihydrobrasilinsäure in Schwefelsäure durch Erwärmen mit konz. Salpetersäure (Perkin, Soc. 81, 1039). — Nadeln (aus Eisessig). Sehr schwer löslich in Wasser. Zersetzt sich beim Erhitzen unter Verpuffung.

3. Oxy-oxo-Verbindungen $C_{15}H_{12}O_6$.

1. 5.7-Dioxy-3-oxo-2-[2.4-dioxy-phenyl]-chroman, 5.7.2'.4'-Tetraoxy-3-oxo-flavan bezw. 3.5.7-Trioxy-2-[2.4-dioxy-phenyl]-[1.4-chromen], 3.5.7.2'.4'-Pentaoxy-flaven $C_{15}H_{11}O_6$, Formel I bezw. II, Cyanomaclurin.

V. und Darst. Findet sich neben Morin im Holz von Artocarpus integrifolia und wird erhalten, wenn man das Holz mit der 10-fachen Gewichtsmenge siedendem Wasser extrahiert, durch Fällen mit Bleiacetat von Morin trennt, das überschüssige Blei durch Schwefelwasserstoff fällt und das Filtrat eindampft; man entfernt durch Fällen mit Natriumchlorid ein zähes braunes Produkt und extrahiert das fast farblose Filtrat mit Essigester (Perkin, Cope, Soc. 67, 939). — Prismen (aus Wasser oder Essigester). Beginnt bei 200° sich zu schwätzen (P., C.). Eisenchlorid färbt die wäßt. Lösung violett (P., C.). Beim Erwärmen mit verd. Alkali färbt sich die Lösung tief indigblau, dann grün und schließlich braungelb (P., C.). Wird durch Bleiacetat nicht gefällt (P., C.). — Liefert beim Schmelzen mit Ätzkali und wenig Wasser bei 200—220° Phloroglucin und β-Resorcylsäure (Perkin, Soc. 87, 716). Gibt in Pyridin mit Acetylchlorid unter Kühlung Pentaacetylcyanomaclurin (Bd. XVII, S. 215) (P.).

(Bd. XVII, S. 215) (P.).

2. 5.7 - Dioxy - 4 - oxo - 2 - [2.4 - dioxy - phenyl] - HO chroman, 5.7.2'4' - Tetraoxy - flavanon C₁₅H₁₂O₄, s. nebenstehende Formel.

HO CH₂ OH HO CH₂ OH

5.7.2′.4′ - Tetramethoxy - flavanon C₁₉H₂₀O₆ =

(CH₃·O)₂C₆H₂·O—CH·C₆H₃(O·CH₃)₂

B. Durch 24-stdg. Erwärmen von 2-Oxy-4.6-dimethoxy-ω-[2.4-dimethoxy-benzal]-acetophenon (Bd. VIII, S. 543) mit Alkohol und Salzsäure auf dem Wasserbad (v. Kostanecki, Lampe, Tambor, B. 39, 626). — Nadeln (aus Alkohol oder Schwefelkohlenstoff). F: 167—168°. Löst sich in alkoh. Natronlauge und in konz. Schwefelsäure mit gelber Farbe.

¹⁾ So formuliert auf Grund einer Privatmitteilung von FREUDENBERG; vgl. auch FREUDENBERG, B. 58 [1920], 1423.

3. 5.7 - Dioxy - 4 - oxo - 2 - [3.4 - dioxy - phenyl]-chroman, 5.7.3'.4' - Tetraoxy - flavanon $C_{16}H_{19}O_6$, 8. nebenstehende Formel.

5.7.3'.4' - Tetramethoxy - flavanon $C_{19}H_{20}O_{6} =$

 $(CH_3 \cdot O)_2C_6H_2$ $CO \cdot CH_2$ Aus 2-Oxy-4.6-dimethoxy-ω-[3.4-dimethoxybenzal]-acetophenon (Bd. VIII, S. 545) in alkoh. Lösung durch Kochen mit verd. Salzsäure (v. Kostaneoki, Lampe, Tambor, B. 37, 1403). — Nadeln (aus Alkohol). F: 159—160°. Löslich in alkoh. Natronlauge mit gelber, in konz. Schwefelsäure mit blaßgelber Farbe.

3.6.8 - Tribrom - 5.7.3'.4' - tetramethoxy - flavanon $C_{19}H_{17}O_6Br_3 =$

CO·CHBr (CH₃·O)₂C₆Br₂CO·CHBr (CH₃·O·CH₃). B. Durch Einw. von Brom auf 5.7.3'.4'-Tetramethoxy-flavanon in Chloroform (Fainberg, v. Kostanecki, B. 37, 2626). — Nadeln (aus Benzol + Alkohol). F: 200° (Zers.). — Liefert mit alkoh. Kalilauge 6.8-Dibrom-5.7.3'.4'-tetramethoxyflavon (S. 213).

flavon (8. 213). 4. $7.8 - Dioxy - 4 - oxo - 2 - [3.4 - dioxy - phenyl] - CH_2$ OH chroman, 7.8.3'.4' - Tetraoxy - flavanon $C_{15}H_{12}O_6$, 8. Ho.

7.8.3'.4' - Tetramethoxy - flavanon $C_{19}H_{20}O_6 =$

CO·CH. $(CH_3 \cdot O)_2C_6H_2 \leftarrow CO \cdot CH_2$ $O = CH \cdot C_6H_3(O \cdot CH_3)_2$ stoff). F: 144°. Die Lösung in konz. Schwefelsäure ist orange, die Lösung in alkoh. Natronlauge orangegelb.

4. $\gamma \cdot \gamma \cdot \text{Bis-[2.5-dioxy-phenyl]-butyrolacton}$, Hydrochinonsuccinein $C_{16}H_{14}O_6 = \begin{array}{c} H_2C - CH_2 \\ OC \cdot O \cdot C[C_6H_3(OH)_2]_2 \end{array}$. B. Beim Kochen von Bernsteinsäureanhydrid (Bd. XVII, S. 497) mit 2 Mol Hydrochinon (R. Meyer, Witte, B. 41, H2C - CH2) 2457). — Farblose Nadeln (aus Alkohol oder Eisessig). 00.0 . c 2457). — Farblose Nadein (aus Aixono) oder Estable, F: 217°. — Liefert mit Essigsaureanhydrid und Natrium-CH₃ CO O C₆H₃ C6H3 · O · CO · CH3 acetat die Verbindung C₂₀H₁₆O₇ der nebenstehenden Formel (Syst. No. 2831).

e) Oxy-oxo-Verbindungen $C_n H_{2n-20} O_6$.

1. Oxy-oxo-Verbindungen $C_{15}H_{10}O_{6}$.

1. 5.6.7 - Trioxy - 4 - oxo - 2 - [4 - oxy - phenyl] - [1.4 - chromen], 5.6.7 - Trioxy - 2 - [4 - oxy - phenyl] - Hochromon, 5.6.74' - Tetraoxy - flavon, Scutellarein Ho. COCH C₁₅H₁₀O₆, s. nebenstehende Formel 1). B. Durch Einw. von 30—40°/oiger Schwefelsäure auf Soutellarin (s. in der 4. Hauptabteilung unter Kohlenhydrate) (GOLDSCHMIEDT, M. 22, 693). — Gelbe Krystalle. Schmilzt oberhalb 300°. Löslich in Alkohol; löslich in Kalilauge mit gelber Farbe. Die alkoh. Lösung gibt mit Eisenchlorid eine rotbraune, mit Barytwasser eine smaragdgrüne Färbung; Bleiacetat gibt einen gelbroten Niederschlag. — Wird durch schmelzendes Alkali in 4-Oxy-benzoesäure und eine Substanz, die einen mit Salzsäure befeuchteten Fichtenspan rot färbt, gespalten.

2. 5.7 - Dioxy - 4 - oxo - 2 - [2.4 - dioxy - phenyl] -[1.4-chromen], 5.7-Dioxy-2-[2.4-dioxy-phenyl]-chromon, 5.7.2'.4'-Tetraoxy-flavon, Lotoflavin $_{\rm Ho}$. $_{\rm Lib}^{\rm H}_{\rm 10}^{\rm O}_{\rm 6}$, s. nebenstehende Formel*). B. Aus Lotusin (s. in der со СН ОН

1) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von Goldschmiedt, Zerner, M. 31 [1910], 475; Bargellini, G. 45 I [1915], 69; 49 II [1919], 54; Robinson, Schwarzenbach, Soc. 1930, 824; Wessely, Moser, M. 56 [1930], 97; Hattori, C. 1932 I, 2044.

a) Die angegebene Konstitution wurde nach dem Literatur-Schlußtermin der 4. Aufl. dieses

Handbuchs [1. I. 1910] von Cullinane, Algab, Ryan, C. 1929 II, 1919; Cu., Philpott, Soc. 1929, 1761 durch eine Synthese bestätigt (vgl. aber Robinson, Venkataraman, Soc. 1929, 62).

- 4. Hauptabteilung unter Kohlenhydrate) neben Blausäure und d-Glykose durch hydrolytische Spaltung mittels warmer verdünnter Salzsäure oder mittels des Enzyms "Lotase" (Dunstan, Henry, Proc. Roy. Soc. London 67, 224; 68, 374; C. 1901 II, 593). Gelbe Krystalle. Leicht löslich in Alkohol oder heißem Eisessig, auch in wäßr. Alkalien. Kali wirkt ein unter Bildung von Phloroglucin und β -Resorcylsäure. Die Methylierung liefert nicht näher untersuchte Trimethyläther.
- 3. 5.7 Dioxy 4 oxo 2 [3.4 dioxy phenyl] [1.4 chromen], 5.7 Dioxy 2 [3.4 dioxy phenyl] chromon, 5.7.3'.4' Tetraoxy flavon, Luteolin (Digitoflavon) $C_{18}H_{10}O_{6}$, s. nebenstehende Formel. Die vom Namen "Luteolin" abgeleiteten Namen werden in diesem Handbuch nach nebenstehendem Schema

beziffert. — V. In sehr geringer Menge im Wau (Reseda luteola) (Moldenhauer, A. 100, 180; Schützenberger, Paraf, C. r. 52, 92; J. 1861, 707). Im Färberginster (Genista tinctoria) (Perrin, Newbury, Soc. 75, 830). In den Digitalisblättern (Fleischer, P. C. H. 40, 27; B. 32, 1184; Kilani, O. Mayer, B. 34, 3577). — B. Durch Kochen von 2.4.6-Trimethoxy-ω-[3.4-dimethoxy-benzoyl]-acetophenon mit Jodwasserstoffsäure (D: 1,96) (v. Kostanecki, Röyveki, Tambor, B. 33, 3416). Neben anderen Produkten durch Kochen von 2.4.6-Trimethoxy-w-[3.4-methylendioxy-benzoyl]-acetophenon (Syst. No. 2843) mit konz. Jodwasserstoffsäure (v. K., Róż., T., B. 33, 3414). Durch mehrstündiges Kochen von Luteolin-5.7.3'-trimethyläther-4'-äthyläther mit Jodwasserstoffsäure (D: 1,9), neben 5.3'-4'-Trioxy-7-methoxy-flavon (Diller, v. Kostanecki, B. 34, 1452). Neben anderen Produkten durch Kochen von Luteolin-5.7-dimethyläther-3'-4'-methylenäther (Syst. No. 2966) mit konz. Jodwasserstoffsäure (v. K., Róż., T., B. 33, 3414). Durch 4—5-stdg. Kochen von 6.8-Dibrom-luteolintetramethyläther (S. 213) mit konz. Jodwasserstoffsäure (Fainberg, v. K., B. 37, 2627). — Darst. aus Wau: Rochleder, J. 1866, 654; J. pr. [1] 99, 434. Darst. aus Wau: Extrakt: Pe., Soc. 69, 207; Pe., Horsfall, Soc. 77, 1315. — Gelbe Nadeln mit 1 H.O (aus Alkohol + viel siedendem Wasser) (v. K., Róż., T.). Verliert das Krystallwasser vollständig erst bei 150° (Fl., B. 32, 1185; v. K., Róż., T.). F: 327—329° (Pe., Ho., Soc. 77, 1320), 328—329,5° (v. K., Róż., T.). Sublimierbar (Mo.). Löslich in 14000 Tln. kaltem und in 5000 Tln. kochendem Wasser, in 37 Tln. Alkohol und in 625 Tln. Ather (Mo.). Löslich in Alkalien und Alkalicarbonaten mit tiefgelber Farbe; beim Verdunsten der ammoniskalischen Lösung bleibt freies Luteolin zurück (Mo.). Verbindet sich mit Mineralsäure (Pe., Soc. 69, 207, 1442). Gibt mit wenig Eisenchlorid eine grüne und mit mehr Eisenchlorid eine braunrote Färbung (Mo., A. 100, 187). — Wird von Salpetersäure leicht zu Oxalsäure oxydiert (Mo.). Beim Schmelzen mit Kali ents

NaC₁₅H₉O₆ + C₁₆H₁₀O₆. (Pe., Ho., Soc. 77, 1323). — KC₁₅H₉O₆. Gelbe Nadeln (Pe., Ho.). — C₁₅H₁₀O₆ + HCl + H₂O. Ockerfarbene Nadeln. Wird durch Wasser zerlegt (Pe., Soc. 69, 208). — C₁₅H₁₀O₆ + HBr + H₂O. Gleicht dem Hydrochlorid (Pe., Soc. 69, 208). — C₁₅H₁₀O₆ + HI. Orangefarbene Platten (Pe., Soc. 69, 1442; Pe., N., Soc. 75, 832). — C₁₅H₁₀O₆ + H₂SO₄. Orangerote Nadeln. Wird durch Wasser völlig in seine Komponenten zerlegt (Pe., Soc. 69, 207).

5.3'.4' - Trioxy - 7 - methoxy - flavon, Luteolin - HO
7-methyläther C₁₆H₁₂O₈, s. nebenstehende Formel. B. Aus
Luteolin-5.7.3'-trimethyläther-4'-äthyläther durch Kochen
mit Jodwasserstoffsäure (D: 1,9) oder besser durch Erhitzen
mit gleichen Raumteilen Jodwasserstoffsäure (D: 1,96) und Eisessig (DILLER, v. KOSTANECKI,
B. 34, 1452). — Blättchen (aus viel Alkohol). F: 270°. Schwer löslich in Alkohol. — Färbt
Beizen an.

5.7.8' - Trioxy - 4' - methoxy - flavon, Luteolin - 4'-methyläther $C_{10}H_{19}O_6$, s. nebenstehende Formel ¹). B. Aus dem in der Petersilie vorkommenden, nicht rein isolierten Glykosid "Oxyapiinmethyläther" (s. in der 4. Hauptabteilung

¹⁾ Die schon von Vongerichten, B. 33, 2336 angenommene Konstitution wurde nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von ORSTERLE, KURNY, Ar. 253, 388 und LOVECY, ROBINSON, SUGASAWA, Soc. 1930, 817 durch Synthese bestätigt.

unter Kohlenhydrate) durch Erwärmen mit Salzsäure (D: 1,04) (Vongerichten, B. 33, 2339). — Nadeln (aus Alkohol). F: 250°. Ziemlich schwer löslich in Alkohol, fast unlöslich in Äther. Die gelbe Lösung in konz. Schwefelsäure fluoresciert schwach grün. Löslich in Alkalien, Alkalicarbonaten und Ammoniak. Eisenchlorid färbt die alkoh. Lösung schwarzbraun. — Geht durch Kochen mit Jodwasserstoffsäure in Luteolin über. Durch Kochen mit 35°/ciger Kalilauge erhält man Phloroglucin und eine bei 94—95° schmelzende Substanz (Acetoisovanillon?), die sich mit Eisenchlorid nicht färbt und beim Schmelzen mit Ätzkali Protocatechusäure liefert.

- 5.8'- Dioxy 7.4'- dimethoxy flavon, Luteolin-7.4'-dimethyläther C₁₇H₁₄O₆, s. nebenstehende Formel.

 B. In geringer Menge bei 2-tägigem Kochen von 5 g
 Luteolin mit 3 g Kaliumhydroxyd und 12 g Methyljodid
 in methylalkoholischer Lösung (Perkin, Horsfall, Soc. 77, 1321). Fast farblose Nadeln.
 F: 224—225°. Gibt bei der Zersetzung mit alkoh. Kalilauge bei 160° Isovanillinsäure.
- 5 Oxy 7.3'.4' trimethoxy flavon, Luteolin-7.3'.4'-trimethyläther $C_{18}H_{16}O_{6}$, s. nebenstehende Formel. B. Bei 24-stdg. Kochen von 1 Tl. Luteolin mit 10 Tln. Kaliumhydroxyd und überschüssigem Methyljodid in methylalkoholischer Lösung, neben 6 oder 8-Methyl-luteolin-7.3'.4'-trimethyläther (8. 225) (Perkin, Soc. 69, 211; P., Horsfall, Soc. 77, 1316, 1319). Citronengelbe Nadeln (aus Alkohol). F: 161—163° (P., H.). Ziemlich schwer löslich in Alkohol; unlöslich in wäßr. Alkali (P., H.). Durch Zersetzung mit alkoh. Kali entstehen Veratrumsäure und Phloroglucin-monomethyläther (P., H.).
- 5.7.3'-Trimethoxy-4'-äthoxy-flavon, Luteolin-5.7.3'-trimethyläther-4'-äthyläther $C_{20}H_{20}O_6$, s. nebenstehende Formel. B. Durch Eintragen von 2.4.6-Trimethoxy- ω -[3-methoxy-4-äthoxy-benzoyl]-acetophenon in Jodwasserstoffsäure (D: 1,7) (DILLER, v. KOSTANECKI, B. 34, 1451). Nadeln (aus Xylol). F: 222—222,5°. In viel Alkohol mit bläulicher Fluorescenz löslich.
- 5 Oxy 7.3'.4' triäthoxy flavon, Luteolin 7.3'.4' triäthyläther $C_{21}H_{22}O_{6}$, s. nebenstehende Formel. B. Entsteht aus Luteolin durch Kochen mit Athyljodid und alkoh. Kalilauge (Perkin, Soc. 69, 800; C2H5 O C
- 5.7.3'.4' Tetraäthoxy flavon, Luteolin tetraäthyläther $C_{23}H_{36}O_6=$ $CO\cdot CH$ $CO\cdot CH$ $CO\cdot CH_3$ $CO\cdot CH_4$ $CO\cdot CH_5$ $CO\cdot CH_5$

Oxyapiınmethyläther $C_{27}H_{30}O_{15}$, Formel I, s. in der 4. Hauptabteilung unter Kohlenhydrate.

- 7.3'.4'-Trimethoxy-5-acetoxy-flavon, Luteolin-7.3'.4'-trimethyläther-5-acetat $C_{20}H_{15}O_{7}$, Formel II. B. Aus Luteolin-7.3'.4'-trimethyläther durch Acetylierung (Perkin, Horsfall, Soc. 77, 1319). Farblose Prismen. Leicht löslich in Alkohol. F: 156—158°.
- 7.3'.4'-Triäthoxy-5-acetoxy-flavon, Luteolin-7.3'.4'-triäthyläther-5-acetat C₂₅H₂₄O₇, s. nebenstehende Formel. B. Aus Luteolin-7.3'.4'-triäthyläther mit Essigsäureanhydrid und Natriumacetat (PERKIN, Soc. 69, 800). Nadeln oder Blättchen (aus Alkohol). F: 183—185° (Henrig, M. 17, 423), 185—186° (P.). Schwer löslich in Alkohol (P.). Die Lösungen fluorescieren stark blau (H.).

4'-Methoxy-5.7.3'-triacetoxy-flavon, Lute-olin-4'-methyläther-5.7.3'-triacetat $C_{22}H_{18}O_9$, s. nebenstehende Formel. B. Aus Luteolin-4'-methylather mit Essigsäureanhydrid und Natriumacetat (Vongerichten, B. 33, 2340). — Farblose Nadeln (aus Alkohol). F: 195°. Ziemlich schwer löslich in Alkohol, leicht in Benzol.

5.7.8'.4' - Tetraacetoxy - flavon, Luteolin - tetraacetat $C_{23}H_{18}O_{10} = CO \cdot CH$

(CH₃·CO·O)₂C₆H₂CO·CH₂CO·CH₃CO·CO·CH₃)₂

8. Durch Kochen von Luteolin mit Essigsäureanhydrid und entwässertem Natriumacetat (Perkin, Soc. 69, 209). — Nadeln (aus Alkohol). Erweicht bei 212° und schmilzt bei 220—222° (Vongerichten, B. 33, 2341). F: 222—224° (v. Kostanecki, Różycki, Tambor, B. 33, 3416), 222—225° (P., Horsfall, Soc. 77, 1320), 223—226° (Herzig, B. 29, 1013; M. 17, 422). Schwer löslich in Alkohol (P., Soc. 69, 210).

5 - Oxy - 7.3'.4' - tribenzoyloxy - flavon,
Luteolin-7.3'.4'-tribenzoat C₃₆H₂₁O₈, s. nebenstehende Formel. B. Aus Luteolin mit Benzoylchlorid und viel Sodalösung (FLEISCHER, B. 32,
1186) oder mit Benzoylohlorid und Pyridin (PERKIN, Soc. 81, 1174). — Farblose Nädelchen.
F: 219° (F.), 217—218° (P.). Unlöslich in Wasser, sehr schwer löslich in Alkohol (F.) und
Benzol (P.). — Liefert beim Erhitzen mit Benzoesäureanhydrid Luteolintetrabenzoat (P.).

4' - Methoxy - 5.7.3' - tribensoyloxy - flavon,
Luteolin - 4' - methyläther - 5.7.3' - tribensoat
C₂₇H₂₄O₂, s. nebenstehende Formel. B. Durch Benzoylieren von Luteolin-4'-methyläther nach SchottenBAUMANN (Vongeriohten, B. 33, 2340). — Nadeln. F: 235°. Schwer löslich in Alkohol, leichter in Benzol.

5.7.3'.4' - Tetrabenzoyloxy - flavon, Luteolin - tetrabenzoat $C_{43}H_{36}O_{10} = CO \cdot CH$ ($C_6H_5 \cdot CO \cdot O)_2C_6H_3 \cdot CO \cdot C_6H_3(O \cdot CO \cdot C_6H_5)_2$ B. Aus Luteolin mit Benzoylchlorid und 10% iger Natronlauge (Perkin, Soc. 69, 210) oder mit Benzoylchlorid und Pyridin (Killani, O. Mayer, B. 34, 3578). Durch 11/4-stdg. Erhitzen von Luteolin mit Benzoesäureanhydrid auf 150% (Vongerichten, B. 33, 2341). Aus Luteolin-7.3'.4'-tribenzoat durch Erhitzen mit Benzoesäureanhydrid (P., Soc. 81, 1174) oder durch Behandlung mit Benzoylchlorid und Pyridin (K., O.M.). - Farblose Nadeln (aus Benzol). F: 200—201% (P., Soc. 69, 210). Schwer löslich in Benzol (P., Soc. 69, 210).

flavon, Luteolin -7.3'.4' - tribenzolsulfonyloxy flavon, Luteolin -7.3'.4' - tribenzolsulfonyloxy flavon, Luteolin -7.3'.4' - tribenzolsulfonat

C₃₃H₄₂O₁₂S₃, s. nebenstehende Formel. B.
Durch Schütteln von Luteolin mit Benzolsulfochlorid und Sodalösung (Fleischer, B. 32, 1187). — Nädelchen (aus Chloroform +
Äther). F: 189°.

6.8 - Dibrom - 5.7.3'.4' - tetramethoxy - flavon, 6.8 - Dibrom-luteolin - tetramethyläther C₁₅H₁₆O₅Br₂, 8. nebenstehende Formel. B. Durch Einw. von alkoh. Kalilauge auf 3.6.8-Tribrom-5.7.3'.4'-tetramethoxy-flavanon (S. 210) (FAINBERG, v. Kostamecki, B. 37, 2626). —

Nadeln (aus Eisessig + Alkohol). F: 261—262°. Fast unlöslich in Alkohol und Benzol. — Beim Kochen mit konz. Jodwasserstoffsäure entsteht Luteolin.

x.x - Dibrom - 5.7.8'.4' - tetraoxy - flavon, x.x - Dibrom - luteolin $C_{15}H_8O_8Br_2=C_{15}H_4O_5Br_3(OH)_4$. B. Bei 2-tägigem Stehenlassen von Luteolin mit 2 Mol Brom in Essigsäure (Perkin, Soc. 69, 209). — Citronengelbe Nadeln (aus Essigsäure). F: 303°. Schwer löslich in Alkohol und Essigsäure.

Tetraacetat C₂₃H₁₆O₁₀Br₃ = C₁₂H₄O₂Br₂(O·CO·CH₃)₄. B. Durch Kochen von x.x-Dibrom-luteolin mit Essigsäureanhydrid und wasserfreiem Natriumacetat (P., Soc. 69, 210).

— Farblose Nadeln. F: 218—220°. Sehr schwer löslich in Alkohol.

4. 7 - Oxy - 4 - oxo - 2 - [3.4.5 - trioxy - pheny!][1.4 - chromen], 7 - Oxy - 2-[3.4.5 - trioxy - pheny!]chromon, 7.3'.4'.5'-Tetraoxy-flavon C₁₈H₁₀O₄, s. nebennoxy-ω-[2.4-diāthoxy-benzoyl]-acetophenon bezw. 7.3'.4'.5'-Tetraoh
methoxy-flavon mit Jodwasserstoffsäure (D: 1,96) (v. Kostanecki, Plattner, B. 35, 2546).

Fast farblose Nadeln mit 1 H₂O (aus verd. Alkohol). Schmilzt wasserfrei bei 340° unter

214

Zersetzung. Ziemlich leicht löslich in heißem Alkohol. Die Lösung in Natronlauge ist orangerot. Die gelbliche Lösung in konz. Schwefelsäure fluoresciert schwach grünlichgelb. - Färbt Tonerdebeize gelb an.

erdebeize gelb an. $7.8'.4'.5' \cdot \text{Tetramethoxy-flavon} \quad C_{19} H_{18} O_6 = CH_3 \cdot O \cdot C_6 H_5 \cdot O \cdot C_6 H_6 (O \cdot CH_9)_3$ Durch Einw. von Dimethylsulfat und Kalilauge auf 7.3'.4'.5'-Tetraoxy-flavon (v. K., P., B. 35, 2545). — Nadeln. F: 191—192°. Ziemlich schwer löslich in siedendem Alkohol. Die alkoh. Lösung fluoresciert violett, die gelbliche Lösung in konz. Schwefelsaure schwach grünlich.

7.8'.4'.5' - Tetraacetoxy - flavon $C_{22}H_{18}O_{10} =$

CH₃·CO·O·C₆H₃CO·CH

CH₃·CO·C₆H₃(O·CO·CH₃)₃

B. Durch kurzes Kochen von 7.3'.4'.5'-TetraCH₃·CO·O·C₆H₃(O·CO·CH₃)₃

Durch kurzes Kochen von 7.3'.4'.5'-TetraCH₃·CO·C₆H₃(O·CO·CH₃)₃

Durch kurzes Kochen von 7.3'.4'.5'-TetraCH₃·CO·C₆H₃(O·CO·CH₃)₃

CH₃·CO·C₆H₃(O·CO·CH₃)₃

CH₃·CO·CO·CH₃(O·CO·CH₃)₃

CH₃·CO·CO·CH₃(O·CO·CH₃)₃

CH₃·CO·CO·CH₃(O·CO·CO·CH₃)₃

CH₃·CO·CO·CH₃(O·CO·CO·CH₃)₃ oxy-flavon mit Essigsaureanhydrid und Natriumacetat (v. K., P., B. 35, 2546). — Blättchen (aus Alkohol). F: 215°.

5. 5.7-Dioxy - 3.4-dioxo - 2-[2-oxy-phenyl]-chroman, 5.7.2'-Trioxy-3.4-dioxo - flavan bezw. 3.5.7-Trioxy - 2-[2-oxy-phenyl]-chromon, 3.5.7.2'-Tetraoxy-flavon, 5.7.2'-Trioxy-flavonol $C_{15}H_{10}O_{4}$, Formel I bezw. II,

Datiscetin 1). B. Man hydrolysiert das aus den Wurzeln von Datisca cannabina erhältliche Glykosid Datiscin (s. in der 4. Hauptabteilung unter Kohlenhydrate) durch siedende verdünnte Schwefelsäure und krystallisiert das abgespaltene Datiscetin solange aus Eisessig, dann aus verd. Alkohol um, bis es im Zeiselschen Apparat kein Alkyljodid mehr entwickelt (Korczyński, Marchlewski, C. 1906 II, 1265; M., K., Bio. Z. 3, 296; vgl. Stenhouse, A. 98, 170). — Fast farblose Nadeln (aus Alkohol). F: 268—269°; ziemlich leicht löslich in organischen Lösungsmitteln (M., K.), äußerst leicht löslich in Äther, leicht in Alkohol, fast unlöslich in Wasser (Sr.). Leicht löslich in Alkalien mit gelber Farbe (Sr.; K., M.). Löslich in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz (M., K.). — Gibt beim Erwärmen mit Alkalien Phenol und Salicylsäure (M., K.), beim Schmelzen mit Kali Salicylsäure (Sr.). — $PbC_{15}H_8O_6$. Gelber Niederschlag (Sr.).

8.5.7.2'-Tetraacetoxy-flavon, 5.7.2'-Triacetoxy-flavonol-acetat, Datiscetin-tetra $acetat \ C_{22}H_{18}O_{10} = (CH_3 \cdot CO \cdot O)_2C_6H_3 \\ -O - C \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3.$ CO·C·O·CO·CH_a B. Durch Kochen von Datiscetin mit Essigsäureanhydrid und entwässertem Natriumacetat (Korczyński, March-LEWSKI, C. 1906 II, 1265; M., K., Bio. Z. 3, 298). — Nadeln (aus Åther). F: 138°.

3.5.7.2'-Tetrabenzoyloxy-flavon, b.7.2 -Tribenzoyloxy-flavon, co· $C_0 \cdot C_0 \cdot$ 3.5.7.2'-Tetrabenzoyloxy-flavon, 5.7.2'-Tribenzoyloxy-flavonol-benzoat, Datis-Datiscetin und Benzoylchlorid in Pyridin (K., M., C. 1906 II, 1265; M., K., Bio. Z. 3, 298).

— Nadeln (aus verd. Aceton). F: 190—191°. Schwer löslich in Essigsäure, Alkohol und Äther.

3.5.7.2'-Tetrabenzolsulfonyloxy-flavon, 5.7.2'-Tribenzolsulfonyloxy-flavonol-

benzolsulforat, Datiscetin-tetrabenzolsulfonat C. H. O. S. =

 $(C_6H_6 \cdot SO_2 \cdot O)_3C_6H_2 < C_0 \cdot C \cdot O \cdot SO_2 \cdot C_6H_6$ $O = C \cdot C_6H_4 \cdot O \cdot SO_2 \cdot C_6H_5$ Aus Datiscetin und Benzolsulfochlorid in Gegenwart von Pyridin (M., K., C. 1907 I, 1260; II, 700; Bio. Z. 3, 299). — Nadeln (aus Eisessig). F: 188°. Sehr schwer löslich in Alkohol und in Äther.

6. 5.7 - Dioxy - 3.4 - dioxo - 2 - [4 - oxy - pheny] - chroman, 5.7.4' - Trioxy - 3.4 - dioxo - flavan bezw. 3.5.7 - Trioxy - 2 - [4 - oxy - pheny] - chromon,

3.5.7.4'-Tetraoxy-flavon, 5.7.4'-Trioxy-flavonol CitHioO6, Formel III bezw. IV, Kämpferot (Robigenin, Rhamnolutin). Für die vom Namen, Kämpferol" abgeleiteten

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] er-chienenen Arbeiten von Laskikwicz, Marchlawski, B. 47, 1599; Kalpp, ROBINSON, Soc. 127, 1971.

Namen wird in diesem Handbuch die eingezeichnete Bezifferung gebraucht. — V. Im Javaindigo aus Indigofera arreota (A. G. Perkin, Soc. 91, 435). In den Kreuzbeeren, den Früchten von Rhamnus catharticus (Tschirch, Polacco, Ar. 238, 466; vgl. Oesch, A. G. Pe., Soc. 105 [1914], 2355). In den Blüten von Delphinium consolida und Delphinium zalil als Glykosid, das durch Kochen mit verd. Schwefelsaure gespalten wird (A. G. Pe., Wilkinson, Soc. 81, 585; vgl. A. G. PE., PILGRIM, Soc. 78, 267). In den Blüten von Prunus spinosa als Glykosid, das durch Kochen mit verd. Salzsäure gespalten wird (A. G. Pr., Phipps, Soc. 85, 57). — B. Durch Kochen von Kämpferol-4'-methyläther (Kämpferid) (s. u.) mit konz. Jodwasserstoffsäure (v. Kostanecki, Różycki, B. 34, 3723 Anm.). Bei längerem Erhitzen von Kämpferol-5.7.4'-trimethyläther (S. 216) mit konz. Jodwasserstoffsäure (v. K., Lampe, Tambor, B. 37, 2098). Aus Kampferitrin (s. in der 4. Hauptabteilung unter Kohlenhydrate) durch Hydrolyse mit verd. Schwefelsäure (A. G. Pr., Soc. 91, 438). Aus Robinin (s. in der 4. Hauptabteilung unter Kohlenhydrate) durch Zersetzung mit Säure (A. G. PE., Soc. 81, 473; vgl. E. Schmidt, C. 1901 II, 121; Waljaschko, M. 36, 426, 431; C. 1904 I, 1609; Ar. 242, 386, 391; 247, 447). — Gelbliche Nädelchen mit 1 H₂O (aus Alkohol) (v. K., R.). F: 276—278° (A. G. PE., Soc. 81, 475), 276—277° (A. G. PE., Wi.), 275° (v. K., L., Ta.), 271° (v. K., R.). Unlöslich in Wasser und Benzol, schwer löslich in Chloroform, löslich in siedendem Eisessig, leicht löslich in Alkohol, Äther und Aceton (TSCH., Po.). Löslich in Alkalien mit schwach gelber Farbe (A. G. Pr., Soc. 81, 475). Die gelbe Lösung in konz. Schwefelsäure fluoresciert nach einiger Zeit blau (v. K., R.; v. K., L., Ta.). Löslich in konz. Salpetersäure mit kirschroter Farbe (Tsch., Po.). Liefert Salze mit Alkalien, desgleichen mit Mineralsäuren in Gegenwart von Essigsäure (A. G. Pe., WI.). Gibt mit Eisenchlorid eine mt Mineraisauren in Gegenwart von Essigsaure (A. G. P.E., WI.). Gibt mit Eisenchiorid eine schwarzgrüne Färbung (Tsch., Po.). — Reduziert Fehlingsche Lösung stark und gibt mit ammoniakalischer Silbernitratlösung einen Silberspiegel (Tsch., Po.). Liefert mit Brom in Essigsäure 6.8.3'-Tribrom-kämpferol (S. 217) (A. G. P., WI.). Gibt beim Erwärmen mit ca. 12% iger Salpetersäure auf dem Wasserbad 3-Nitro-4-oxy-benzoesäure, 2.4-Dinitro-phenol und Oxalsäure (Wa., Ar. 247, 461). Gibt beim Schmelzen mit Alkali 4-Oxy-benzoesäure und Phloroglucin (A. G. P.E., WI.). Gibt mit Methyljodid und Kaliumhydroxyd in Methyl-säure und Phloroglucin (A. G. P.E., WI.). Gibt mit Methyljodid und Kaliumhydroxyd in Methyl-siure of S. 225) und andere Produkte mit säure und Phloroglucin (A. G. Pz., Wi.). Gibt mit Methyljodid und Kaliumhydroxyd in Methylalkohol 6 oder 8-Methyl-kämpferol-3.7.4'-trimethyläther (S. 225) und andere Produkte, mit Dimethylsulfat und Kaliumhydroxyd in Methylalkohol eine Verbindung C₁₇H₁₄O₆ (S. u.) eine Verbindung C₂₇H₂₆O₁₈ (S. u.) (Wa., Ar. 247, 451). Färbt Wolle auf Tonerdebeize goldgelb, auf Chrombeize braungelb, auf Zinnbeize eitronengelb, auf Eisenbeize olivbraun (A. G. Pz., Soc. 81, 475; A. G. Pz., Wi.); färbt mit Tonerde gebeizte Baumwolle gelb an (v. K., L., Ta.). — Salze: A. G. Pz., Wi. KC₁₅H₂O₆. Wird durch Wasser unter Abscheidung des freien Farbstoffs zersetzt. — Hydrochlorid Zersetzt sich bei 100°. — Hydrobromid. Zersetzt sich bei 100°. — C₁₅H₁₀O₆ + HI. Beständiger als Hydrochlorid und Hydrobromid. — C₁₅H₁₀O₆ + H₂SO₄. Orangerote Nadeln. Verbindung C₁₇H₁₄O₆. B. Aus Kämpferol und Dimethylsulfat in Gegenwart von Kaliumhydroxyd und Methylalkohol, neben anderen Produkten (Wallaschko, Ar. 247, 458). — Gelbe Nadeln (aus Methylalkohol). F: 142—143°. Sehr schwer löslich in Methylalkohol.

alkohol.

Verbindung $C_{30}H_{30}O_6$. B. Durch erschöpfende Methylierung von Kämpferol mit Dimethylsulfat in Gegenwart von Kaliumhydroxyd und Methylalkohol, neben anderen

Produkten (Wa., Ar. 247, 460). — Fast farbiose Prismen. F: 155—156°. Verbindung C₃₇H₃₄O₁₃. B. Durch erschöpfende Methylierung von Kämpferol mit Dimethylsulfat in Gegenwart von Kaliumhydroxyd und Methylalkohol, neben anderen Produkten (WA., Ar. 247, 459). — Gelbe Nadeln mit 1/3 H₂O (aus Methylalkohol). F: 144—145°. Wird bei 106° wasserfrei. Sehr schwer löslich in Methylalkohol.

Verbindung C₁₁H₂₁O₅. B. Aus Kämpferol, Athyljodid und Kaliumhydroxyd in absol.

Alkohol (Wa., Ar. 247, 451). — Blaßgelbe Nadeln (aus Alkohol). F: 103—104°.

5.7-Dioxy-4'-methoxy-3.4-dioxo-flavan bezw. 3.5.7-Trioxy-4'-methoxy-flavon, 5.7-Dioxy-4'-methoxy-flavonol C₁₆H₁₁O₆, Formel I bezw. II, Kämpferol-4'-methyl-

äther, Kämpferid 1) — V. Neben Galangin in der Galangawurzel, Radix Galangae (von Alpinia officinarum Hance) (Jahns, B. 14, 2385). — Darst. Die Wurzel wird mit 90% igem Alkohol ausgezogen, der alkoh. Auszug verdunstet und der Rückstand wiederholt mit Ather ausgeschüttelt; man destilliert die äther. Lösung ab und gibt zum Rückstand etwas Wasser; die nach einigen Tagen ausgeschiedenen Krystalte wäscht man mit Chloroform und 50% igem

¹⁾ Die schon von HERSTEIN, V. KOSTANECKI, B. 32, 318 angenommene Konstitution wurde nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von HEAP, ROBINSON, Soc. 1926, 2336 durch eine Synthese bestätigt.

Alkohol, krystallisiert sie zweimal aus 90% jegem Alkohol um und löst sie in 30—40 Tln. heißem 75% jegem Alkohol; beim Erkalten krystallisiert Kämpferid; das Filtrat gibt auf Zusatz von 0,2 Gew.-Tln. heißem Wasser eine Ausscheidung von Galangin und Kämpferid; das Kämpferid wird wiederholt aus 90% jegem Alkohol umkrystallisiert und von einer hochschmelzenden Verbindung durch Lösen in möglichst wenig kaltem absolutem Alkohol befreit (J.). Darst. aus Galangawurzel-Extrakt: Clamcian, Silbers, B. 32, 861; Testoni, G. 30 II, 331.— Gelbe Nadeln mit 1 H20 (aus 90% jegem Alkohol), die das Krystallwasser bei 130—140% verlieren (J.). Krystallisiert aus Methylalkohol in goldgelben Nadeln mit 1 CH40, die bei 100% den Methylalkohol verlieren und eine matte strohgelbe Farbe annehmen (C., S.). Geruchund geschmacklos (C., S.). F: 227—229% (C., S.), 221—222% (J.). Sublimiert teilweise unzersetzt (J.). Unlöslich in Wasser, wenig löslich in siedendem Chloroform und Benzol, löslich in Ather und Eisessig (J.). Löst sich in ca. 400 Tln. kaltem 90% jegem Alkohol, leichter in siedendem (J.). Löst sich mit intensiv gelber Farbe in Alkalien, wenig in Sodalösung (J.). Verbindet sich mit Basen (J.). — Löst sich in konz. Schwefelsäure mit gelber Farbe; beim Stehenlassen tritt eine blaue Fluorescenz auf (J.; vgl. C., S.). Löst sich in rauchender Schwefelsäure mit grauer Farbe, die auf Zusatz von überschüssiger Säure in Weinrot übergeht (J.). Die alkoh. Lösung wird durch Eisenchlorid olivgrün gefärbt (J.). — Reduziert Silbernitratlösung und alkal. Kupferlösung (J.). Bei der Oxydation mit Salpetersäure (D: 1,18) entstehen Anissäure und Oxalsäure (J.). Gibt mit Brom in Eisessig 6.8-Dibrom-kämpferol-4'-methyläther (S. 217) (J.). Liefert beim Schmelzen mit Kali Phloroglucin, Oxalsäure und Ameisensäure (J.). Wird beim Kochen mit verd. Säuren nicht verändert (J.). Gibt mit Methyljödid und Kaliumhydroxyd in siedendem Methylalkohol 6 oder 8-Methyl-kämpferol-3.7.4'-trimethyläther (S. 225) und andere Produkte (Cramcian, Silber, B. 32, 863; Testoni, G.

Kämpferol-methyläther, Rhamnocitrin $C_{16}H_{18}O_6 = C_{18}H_{8}O_5 \cdot O \cdot CH_8$. Zur Zusammensetzung und Konstitution vgl. Oesch, A. G. Perkin, Soc. 105 [1914], 2352. — V. In den Kreuzbeeren, den Früchten von Rhamnus catharticus (Tschirch, Polacco, Ar. 238, 460). — Darst. Man schüttelt den wäßr. Auszug der Früchte mit Ather aus, verdunstet diesen und behandelt den Rückstand mit Alkohol, in dem Rhamnocitrin unlöslich ist (T., P.). — Goldgelbe Nädelchen. F: 221—222°. Unlöslich in Wasser, Äther, Benzol und Chloroform, sehr schwer löslich in heißem Alkohol, leichter in Aceton und Eisessig. Löslich in Alkalien und Ammoniak mit goldgelber Farbe, in konz. Schwefelsäure mit meergrüner Fluorescenz, in Salpetersäure mit braunroter Farbe. — Reduziert Fehlingsche Lösung beim Kochen und gibt mit ammoniakalischer Silberlösung einen Silberspiegel. Färbt Tonerdebeize hellgelb, Eisenbeize gründraun an.

 $\begin{array}{ll} \textbf{5.7.4'-Trimethoxy-8.4-dioxo-flavan} & \text{bezw.} & \textbf{8-Oxy-5.7.4'-trimethoxy-flavon,} \\ \textbf{5.7.4'-Trimethoxy-flavonol} & C_{18}H_{16}O_6 = (CH_8\cdot O)_2C_6H_2 & CO\cdot CO \\ \hline & O-CH\cdot C_8H_4\cdot O\cdot CH_3 \end{array} \\ \text{bezw.}$

CO·C·OH
(CH₃·O)₂C₆H₂·O·C·OH
, Kämpferol·5.7.4'-trimethyläther. B. Beim Kochen der Eisessiglösung von 5.7.4'-Trimethoxy-3-oximino-flavanon (S. 217) mit 10°/oiger Schwefelsäure (v. Kostanbecht, Lampe, Tambor, B. 37, 2098). — Gelbliche Nadeln mit 1 H₂O (aus Alkohol). F: 151—152°. Unlöslich in verd. Natronlauge. Färbt sich mit konz. Schwefelsäure orangegelb und löst sich mit gelber Farbe und hellgrüner Fluorescenz. — Natriumsalz. Gelb. Schwer löslich.

5 - Oxy - 4' - methoxy - 3.7 - diäthoxy - flavon,
5 - Oxy - 4' - methoxy - 7- äthoxy - flavonol - äthyläther,
Kämpferol - 4' - methyläther - 3.7 - diäthyläther C₂₀H₂₀O₄,
s. nebenstehende Formel. B. Durch Äthylierung von
Kämpferid mit Äthyljodid und alkoh. Kalilauge (Testori, G. 80 II, 334). — Gelbe Nadeln (aus Methylalkohol). F: 137—139°. Leicht löslich in organischen Mitteln, unlöslich in Wasser; löslich in warmer alkoholischer Kalilauge, aus der sich beim Abkühlen das Kaliumsalz abscheidet. — Gibt bei der Spaltung mit Alkali Phloroglucinmonoathyläther und Anissäure.

5.7.4'- Trimethoxy - 8 - acetoxy - flavon, 5.7.4'- Trimethoxy - flavonol - acetat, Kämpferol-5.7.4'-trimethyläther-3-acetat $C_{50}H_{18}O_7=(CH_3\cdot O)_2C_6H_3\cdot C_0-\overset{CO\cdot C\cdot O\cdot CO\cdot CH_3}{O-\overset{C}{\cup}\cdot C_9H_4\cdot O\cdot CH_3}$ Nadeln (aus verd. Alkohol). F: 190—191° (v. Kostanecki, Lampe, Tambor, B. 37, 2098).

4'-Methoxy-8.5.7-triscetoxy-flavon, 4'-Methoxy-5.7-diacetoxy-flavonol-acetat, Kämpferol - 4' - methyläther - 8.5.7 - triscetat $C_{22}H_{18}O_{9}=$

CO·C·CO·CH₃

(CH₃·CO·O)₂C₆H₂

O—C·C₆C₆H₄·O·CH₃

B. Durch Kochen von Kämpferid mit Essigsäureanhydrid (Clamician, Silber, B. 32, 862; Testoni, G. 30 II, 332) und wasserfreiem Natriumacetat (Jahns, B. 14, 2388). — Fast farblose Nadeln (aus Alkohol). F: 193—195° (C., S.;
Te.). Unlöslich in Wasser, schwer löslich in Alkohol (J.).

Kämpferol - methyläther - triacetat, Rhamnocitrin - triacetat $C_{22}H_{18}O_{2}=C_{12}H_{2}O_{2}(O\cdot CH_{2})_{3}$. Zur Konstitution vgl. Oesch, A. G. Perkin, Soc. 105 [1914], 2352. — B. Durch Erhitzen von Rhamnocitrin (S. 216) mit getrocknetem Natriumacetat und Essigsäureanhydrid (Tschirch, Polacco, Ar. 238, 462). — Nädelchen. F: 199° bis 200° (Tsch., Po.).

3.5.7.4′-Tetraacetoxy-flavon, 5.7.4′-Triacetoxy-flavonol-acetat, Kämpferoltetraacetat $C_{22}H_{18}O_{10}=(CH_3\cdot CO\cdot O)_2C_6H_2\cdot CO\cdot CO\cdot CH_3$ Kämpferol mit wasserfreiem Natriumacetat und Essigsäureanhydrid (Tschirch, Polacco, Ar. 238, 467; A. G. Perkin, Wilkinson, Soc. 81, 587; Waljaschko, Ar. 247, 449). — Prismatische Nadeln (aus Alkohol). Beginnt bei 116° zu schmelzen, ist bei 120° völlig flüssig, wird bei weiterem Erhitzen wieder fest und schmilzt dann abermals bei 181—182° (A. G. Pe., Wil; Oesch, A. G. Pe., Soc. 105 [1914], 2353; vgl. dagegen Wal). F: 181° (v. Kostanecki, Różycki, B. 34, 3723 Anm.; v. Ko., Lampe, Tambor, B. 37, 2099), 182° (Wal), 182—183° (Tsch., Po.). Ziemlich leicht löslich in heißem, schwer in kaltem Alkohol, unlöslich in Wasser (Wal).

Kämpferol - 4' - methyläther - dibenzoat, Kämpferid - dibenzoat $C_{30}H_{20}O_8 = C_{15}H_{7}O_3(O \cdot CH_2)(O \cdot CO \cdot C_6H_5)_2$. B. Durch Erhitzen von Kämpferid mit Benzoesäureanhydrid (Jahns, B. 14, 2388). — Gelbliche Nadeln (aus Benzol + absol. Alkohol). F: 185—186°. Unlöslich in Wasser, kaum löslich in Alkohol.

5.7.4'-Trimethoxy-4-oxo-8-oximino-flavan, 5.7.4'-Trimethoxy-8-oximino-flavanon $C_{18}H_{17}O_6N=(CH_3\cdot O)_2C_6H_2$ CO·C:N·OH
flavanon (S. 176) mit Amylnitrit und Salzsäure in siedendem Alkohol (v. Kostanecki, Lampe, Tambor, B. 37, 2097). — Blaßgelbe Nadeln (aus Alkohol). F: 189—190° (Zers.). — Löst sich in verd. Natronlauge mit hellgelber, in konz. Schwefelsäure mit braunroter Farbe. — Gibt beim Kochen mit Eisessig und $10^0/_0$ iger Schwefelsäure 5.7.4'-Trimethoxy-flavonol (S. 216). Färbt Kobaltbeize orangegelb an.

6.8-Dibrom-5.7-dioxy-4'-methoxy-8.4-dioxo-flavan bezw. 6.8-Dibrom-8.5.7-trioxy-4'-methoxy-flavon, 6.8-Dibrom-5.7-dioxy-4'-methoxy-flavonol $C_{1e}H_{10}O_{6}Br_{2}=CO\cdot CO$ $(HO)_{3}C_{6}Br_{3} < CO\cdot COH$ $O-CH\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$ $k \ddot{a}mp ferol-4'-methyl \ddot{a}ther. B. Durch Zutröpfeln von 1 Tl. Brom zu einer Lösung von 2 Tln. K \ddot{a}mp ferid in Eisessig (Jahns, B. 14, 2389). — Gelbe Nadeln. F: 224—225° (Zers.). Schwer löslich in Alkohol.$

6.8.3'-Tribrom-5.7.4'-trioxy-8.4-dioxo-flavan bezw. 6.8.3'-Tribrom-8.5.7.4'-tetraoxy-flavon, 6.8.3'-Tribrom-5.7.4'-trioxy-flavonol $C_{15}H_7O_6Br_3$, Formel I bezw. II,

6.8.8'-Tribrom-kämpferol. B. Aus Kämpferol und Brom in Essigsäure (A. G. Perkin, Wilkinson, Soc. 81, 587). — Hellgelbe Nadeln. F: 275—277°. Schwer löslich in heißer Essigsäure; löslich in Alkalien mit orangegelber Farbe.

7. 7.8-Dioxy-3.4-dioxo-2-[2-oxy-phenyl]-chroman, 7.8.2'-Trioxy-3.4-dioxo-flavan bezw. 3.7.8-Trioxy-2-[2-oxy-phenyl]-chromon, 3.7.8.2'-Tetraoxy-flavon, 7.8.2'-Trioxy-flavonol $C_{16}H_{10}O_6$, Formel I bezw. II.

I. HO.
$$\stackrel{\text{HO}}{\smile}$$
 $\stackrel{\text{O}}{\smile}$ $\stackrel{\text{OH}}{\circ}$ $\stackrel{\text{O}}{\smile}$ $\stackrel{\text{OH}}{\circ}$ $\stackrel{\text{O}}{\smile}$ $\stackrel{\text{O}}{\smile}$ $\stackrel{\text{O}}{\circ}$ $\stackrel{\text{O}}{\circ}$ $\stackrel{\text{O}}{\circ}$ $\stackrel{\text{O}}{\circ}$

B. Durch Kochen von 7.8.2'-Trimethoxy-flavonol mit konz. Jodwasserstoffsäure (Cohen, v. Kostanecki, B. 87, 2630). — Blaßgelbe Nadeln. F: 298° (Zers.). Leicht löslich in verd. Natronlauge mit rotgelber Farbe. — Färbt Tonerdebeize intensiv orangegelb, Eisenbeize braun bis schwarz.

 $7.8.2'\text{-Trimethoxy-8.4-dioxo-flavan bezw. } 3\text{-Oxy-7.8.2'-trimethoxy-flavon,} \\ 7.8.2'\text{-Trimethoxy-flavonol } C_{16}H_{16}O_6 = (CH_3\cdot O)_2C_6H_2 \underbrace{\begin{array}{c} CO\cdot CO \\ O-CH\cdot C_6H_4\cdot O\cdot CH_3 \end{array}}_{\text{-}} \text{bezw.} \\ \end{array}$

(CH₃·O)₂C₆H₄·O·CH₃· B. Durch Kochen einer essigsauren Lösung von 7.8.2'-Trimethoxy-3-oximino-flavanon mit 10°/oiger Schwefelsäure (C., v. K., B. 37, 2630).

— Spieße (aus Alkohol). F: 212—214°. Die gelbe Lösung in verd. Natronlauge scheidet beim Erkalten das gelbe, schwer lösliche Natriumsalz ab. Die Lösung in konz. Schwefelsäure ist grünlichgelb. — Färbt Tonerdebeize nur schwach gelb an.

7.8.2'- Trimethoxy - 3 - acetoxy - flavon, 7.8.2'- Trimethoxy - flavonol - acetat $C_{20}H_{18}O_7 = (CH_3 \cdot O)_2C_6H_2 \underbrace{CO \cdot C \cdot O \cdot CH_3}_{O - C \cdot C_6H_4 \cdot O \cdot CH_3}$. Nadeln (aus verd. Alkohol). F: 138—139° (C., v. K., B. 37, 2630).

7.8.2'-Trimethoxy-4-oxo-3-oximino-flavan, 7.8.2'-Trimethoxy-3-oximino-flavanon $C_{18}H_{17}O_6N=(CH_3\cdot O)_2C_6H_3\cdot CO\cdot C:N\cdot OH$ Amylnitrit und Salzsäure zu einer siedenden alkoholischen Lösung von 7.8.2'-Trimethoxy-flavanon (C., v. K., B. 37, 2629). — Gelbe Tafeln (aus Alkohol). F: 170° (Zers.). Die Lösung in verd. Natronlauge ist gelb. Konz. Schwefelsäure färbt die Krystalle rot, die Lösung ist gelb. — Gibt beim Kochen mit verd. Schwefelsäure und Essigsäure 7.8.2'-Trimethoxy-flavonol.

8. 7.8-Dioxy-3.4-dioxo-2-[3-oxy-phenyl]-chroman, 7.8.3'-Trioxy-3.4-dioxo-flavan bezw. 3.7.8-Trioxy-2-[3-oxy-phenyl]-chromon, 3.7.8.3'-Tetraoxy-flavon, 7.8.3'-Trioxy-flavonol $C_{15}H_{10}O_4$, Formel III bezw. IV. B. Durch Kochen von

7.8.3'-Trimethoxy-flavonol mit konz. Jodwasserstoffsäure, neben harzigen Produkten (v. Kostanecki, Schleifenbaum, B. 37, 2633). — Blaßgelbe, wasserhaltige Nadeln (aus verd. Alkohol). F: 260°. Löst sich in konz. Schwefelsäure mit grünlichgelber, in Alkalien mit bräunlichgelber Farbe. — Färbt Baumwolle auf Tonerdebeize orangegelb, auf Eisenbeize braun bis schwarz an.

 $7.8.8'\text{-Trimethoxy-8.4-dioxo-flavan bezw. } 3\text{-Oxy-7.8.8'-trimethoxy-flavon,} \\ 7.8.8'\text{-Trimethoxy-flavonol } C_{18}H_{16}O_6 = (CH_3\cdot O)_2C_6H_2 \\ CO\cdot CO \\ O-CH\cdot C_6H_4\cdot O\cdot CH_2 \\ CO\cdot CO \\ O-CH\cdot C_6H_4\cdot O\cdot CH_3 \\ CO\cdot CO cdot CO \\ CO\cdot CO\cdot CO$

CO·C·OH
(CH₃·O)₂C₆H₂·O·C·C₆H₄·O·CH₂

B. Durch Kochen einer essigsauren Lösung von 7.8.3'-Trimethoxy-3-oximino-flavanon mit 10°/ojeer Schwefelsäure (v. K., Schl., B. 37, 2632). — Blaßgelbe Nadeln. F: 188—189°. Schwer löslich in Alkohol. In kalter Natronlauge unlöslich; beim Erwärmen entsteht ein gelbes Natriumsalz. Die Lösung in konz. Schwefelsäure ist hellgelb. — Färbt Tonerdebeize blaßgelb an.

7.8.8'- Trimethoxy - 3 - acetoxy - flavon, 7.8.8'- Trimethoxy - flavonol - acetat $C_{20}H_{18}O_7 = (CH_3 \cdot O)_2C_0H_2 \subset C_0 \cdot CC_0 \cdot CH_3$. Nadeln (aus verd. Alkohol). F: 165° (v. K., SCHL., B. 37, 2633).

3.7.8.3' - Tetraacetoxy - flavon, **7.8.3' - Triacetoxy - flavonol - acetat** $C_{33}H_{18}O_{10} = (CH_3 \cdot CO \cdot O)_5C_6H_2 \underbrace{CO \cdot C \cdot CO \cdot CH_3}_{O - \overset{\circ}{C} \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3}_{O - \overset{\circ}{C} \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3}_{O - \overset{\circ}{C} \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3}$ Nadeln (aus verd. Alkohol). F: 166—167° (v. K., Schl., *B.* 37, 2633).

7.8.3'-Trimethoxy-4-oxo-3-oximino-flavan, 7.8.3'-Trimethoxy-3-oximino-flavanon $C_{18}H_{17}O_6N = (CH_3 \cdot O)_2C_6H_2$ O— $CH \cdot C_6H_4 \cdot O \cdot CH_3$ B. Aus 7.8.3'-Trimethoxy-flavanon (S. 177) mit Amylnitrit und Salzsäure in siedender alkoholischer Lösung (v. K., SCHL., B. 37, 2632). — Blaßgelbe Nadeln (aus Alkohol). F: 168° (Zers.). Leicht löslich in verd. Natronlauge mit gelblicher Farbe. — Gibt beim Kochen der essigsauren Lösung mit verd. Schwefelsäure 7.8.3'-Trimethoxy-flavonol. Färbt Baumwolle auf Kobaltbeize bräunlichgelb an.

9. 7.8-Dioxy-3.4-dioxo-2-[4-oxy-phenyl]-chroman, 7.8.4'-Trioxy-3.4-dioxo-flavan bezw. 3.7.8-Trioxy-2-[4-oxy-phenyl]-chromon, 3.7.8.4'-Tetraoxy-flavon, 7.8.4'-Trioxy-flavonol $C_{15}H_{10}O_{8}$, Formel I bezw. II. B. Durch längeres Kochen

I. HO.
$$0$$
 CH. OH II. HO. 0 CO COH OH

von 7.8.4'-Trimethoxy-flavonol mit konz. Jodwasserstoffsäure; zur Reinigung kocht man das rohe 7.8.4'-Trioxy-flavonol mit Essigsäureanhydrid und entwässertem Natriumacetat und verseift das entstandene 7.8.4'-Triacetoxy-flavonol-acetat durch kurzes Erwärmen mit Jodwasserstoffsäure (v. Kostanecki, Schreiber, B. 38, 2751). — Hellgelbe Nädelchen mit 1 H₂O (aus Alkohol), die bei 130° das Krystallwasser abgeben. F: 319° (Zers.). Löst sich in verd. Natronlauge mit orangeroter Farbe, in konz. Schwefelsäure mit gelber Farbe und schwacher grünlicher Fluorescenz. — Färbt Tonerdebeize orangegelb an.

 $7.8.4'\text{-Trimethoxy-}3.4\text{-dioxo-flavan bezw. }3\cdot \text{Oxy-}7.8.4'\text{-trimethoxy-flavon,}$ $7.8.4'\text{-Trimethoxy-flavonol }C_{18}H_{16}O_{6} = (CH_{3}\cdot O)_{2}C_{6}H_{2} \\ \begin{array}{c} \text{CO}\cdot \text{CO} \\ \text{O-CH}\cdot C_{6}H_{4}\cdot \text{O}\cdot \text{CH}_{3} \end{array} \text{bezw.}$

CO·C·OH

(CH₃·O)₂C₆H₂

O—C·C₆H₄·O·CH₃

B. Durch Kochen einer essigsauren Lösung von 7.8.4′-Trimethoxy-3-oximino-flavanon mit 10% giger Schwefelsäure (v. K., Schr., B. 38, 2750).

Blaßgelbe Nadeln (aus Alkohol). F: 198°. — Liefert beim Erwärmen mit Natronlauge ein schwer lösliches, intensiv gelbes Natriumsalz. Die Lösung in konz. Schwefelsäure ist hellgelb. — Färbt Tonerdebeize hellgelb an.

7.8.4' - Trimethoxy - 3 - acetoxy - flavon, 7.8.4' - Trimethoxy - flavonol - acetat $C_{30}H_{18}O_7 = (CH_3 \cdot O)_2C_6H_2 \subset \buildrel \$

3.7.8.4'-Tetrascetoxy-flavon, 7.8.4'-Triacetoxy-flavonol-acetat $C_{23}H_{18}O_{10} = (CH_3 \cdot CO \cdot O)_3C_6H_2 \cdot CO \cdot CO \cdot CH_3$. B. Durch Kochen von 7.8.4'-Trioxy-flavonol mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., Schr., B. 38, 2751). — Nadeln (aus verd. Alkohol). F: 175°.

Nadein (aus verd. Alkonoi). F: 175°.

7.8.4′-Trimethoxy-4-oxo-3-oximino-flavan, 7.8.4′-Trimethoxy-3-oximino-flavanon $C_{18}H_{17}O_6N = (CH_3 \cdot O)_2C_6H_2 \cdot CO \cdot C: N \cdot OH$ Amylnitrit und rauchender Salzsäure zu einer siedenden alkoholischen Lösung von 7.8.4′-Trimethoxy-3-oximino-flavanon $C_{18}H_{17}O_6N = (CH_3 \cdot O)_2C_6H_2 \cdot CO \cdot C: N \cdot OH$ Amylnitrit und rauchender Salzsäure zu einer siedenden alkoholischen Lösung von 7.8.4′-Trimethoxy-3-oximino-flavanon $C_{18}H_{17}O_6N = (CH_3 \cdot O)_2C_6H_2 \cdot CO \cdot C: N \cdot OH$

Amylnitrit und rauchender Salzsäure zu einer siedenden alkoholischen Lösung von 7.8.4'-Trimethoxy-flavanon (S. 177) (v. K., Schr., B. 38, 2750). — Gelbliche Blättchen (aus Benzol). F: 152° (Zers.). Die Lösung in verd. Natronlauge ist gelb. — Geht durch Kochen mit Eisessig + 10°/oiger Schwefelsäure in 7.8.4'-Trimethoxy-flavonol über. Färbt Kobaltbeize bräunlichgelb an.

10. 6-Oxy-3.4-dioxo-2-[2.4-dioxy-phenyl]-chroman, 6.2'.4'-Trioxy-3.4-dioxo-flavan bezw. 3.6-Dioxy-2-[2.4-dioxy-phenyl]-chromon,

3.6.2'.4'-Tetraoxy-flavon. 6.2'.4'-Trioxy-flavonol $C_{15}H_{10}O_6$, Formel III bezw. IV. B. Durch Kochen von 6.2'.4'-Trimethoxy-flavonol mit starker Jodwasserstoffsäure (BONIFAZI,

v. Kostanecki, Tambor, B. 89, 90). — Blaßgelbe Nadeln mit 1 H₂O (aus verd. Alkohol). Wird bei 130° wasserfrei, schmilzt bei 285°. Die Lösung in verd. Natronlauge ist grünlichgelb mit grünlicher Fluorescenz; die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert schwach grün. — Färbt Tonerdebeize gelb, Eisenbeize olivbraun bis fast schwarz an.

 $\begin{array}{ll} \textbf{6.2'.4'-Trimethoxy-8.4-dioxo-flavan bezw. 8-Oxy-6.2'.4'-trimethoxy-flavon,} \\ \textbf{6.2'.4'-Trimethoxy-flavonol} & C_{18}H_{16}O_6 = CH_3\cdot O\cdot C_6H_3 \\ \hline & O-CH\cdot C_6H_3(O\cdot CH_2)_2 \end{array} \quad \begin{array}{ll} \text{bezw.} \\ \text{bezw.} \end{array}$

CO·C·OH

CH₃·O·C₆H₃CO·C₆H₃(O·CH₃).

B. Durch kurzes Kochen von 6.2'.4'-Trimethoxy-3-oximino-flavanon mit Eisessig + 10°/₀iger Schwefelsäure (B., v. K., T., B. 39, 90).

Blaßgelbe Spieße (aus Benzol oder Alkohol). F: 193°. Die grünlichgelbe Lösung in konz. Schwefelsäure entfärbt sich nach einigem Stehen fast völlig und fluoresciert dann hellgrün. Färbt Tonerdebeize hellgelb an. — Natriumsalz. Hellgelb. Sehr schwer löslich.

 $\begin{array}{lll} \textbf{6.2'.4'-Trimethoxy-3-acetoxy-flavon}, & \textbf{6.2'.4'-Trimethoxy-flavonol-acetat} \\ \textbf{C}_{50}\textbf{H}_{18}\textbf{O}_7 = \textbf{C}\textbf{H}_3 \cdot \textbf{O} \cdot \textbf{C}_6\textbf{H}_3 < \begin{matrix} \textbf{CO} \cdot \textbf{C} \cdot \textbf{O} \cdot \textbf{CO} \cdot \textbf{CH}_3 \\ \textbf{O} - \begin{matrix} \textbf{C} \cdot \textbf{C}_6\textbf{H}_3 (\textbf{O} \cdot \textbf{CH}_3)_2 \end{matrix} \\ \textbf{CO} \cdot \textbf{C} \cdot \textbf{C}_6\textbf{H}_3 (\textbf{O} \cdot \textbf{CH}_3)_2 \end{matrix} \\ \textbf{Prismatische Nadeln (aus verd. Alkohol)}. \\ \textbf{F: 162° (B., v. K., T., B. 39, 90)}. \end{array}$

8.6.2'.4'-Tetraacetoxy-flavon, 6.2'.4'-Triacetoxy-flavonol-acetat $C_{23}H_{18}O_{10} = CH_3 \cdot CO \cdot C \cdot C_6H_3 \cdot CO \cdot C \cdot CO \cdot CH_3$ Erhitzen mit Essigsäureanhydrid und entwässertem Natriumacetat (B., v. K., T., B. 39, 91). — Nadeln (aus verd. Alkohol). F: 163°.

6.2'.4'-Trimethoxy-4-oxo-3-oximino-flavan, 6.2'.4'-Trimethoxy-3-oximino-flavanon $C_{18}H_{17}O_6N=CH_3\cdot O\cdot C_6H_3\cdot CO\cdot C:N\cdot OH$ Amylnitrit und Salzsäure zu 6.2'.4'-Trimethoxy-flavanon (S. 177) in heißem Alkohol (B., v. K., T., B. 39, 89). — Gelbe Nadeln (aus verd. Alkohol). F: 173—175° (Zers.). Die Lösung in Natronlauge ist gelb. — Geht durch Kochen mit Eisessig und $10^0/_0$ iger Schwefelsäure in 6.2'.4'-Trimethoxy-flavonol über. Färbt Kobaltbeize orange, Uran-, Cadmium- und Bleibeize gelb, Kupferbeize braun an.

11. $6-Oxy-3.4-dioxo-2-[3.4-dioxy-phenyl]-chroman, 6.3'.4'-Trioxy-3.4-dioxo-flavan bezw. 3.6-Dioxy-2-[3.4-dioxy-phenyl]-chromon, 3.6.3'.4'-Tetraoxy-flavon, 6.3'.4'-Trioxy-flavonol <math>C_{16}H_{10}O_6$, Formel I bezw. II.

B. Man erhitzt 6.3'.4'-Trimethoxy-flavonol mit Jodwasserstoffsäure, acetyliert das Reaktionsprodukt durch Kochen mit Essigsäureanhydrid und entwässertem Natriumacetat und verseift das Acetat mit Jodwasserstoffsäure (v. Kostanecki, Kugler, B. 37, 781). — Gelbe Nadeln (aus Alkohol). F: 335° (Zers.). Die alkoh. Lösung fluoresciert grünlich. Die Lösung in Natronlauge ist rotgelb. Wird durch konz. Schwefelsäure orange gefärbt und mit gelber Farbe und grünlicher Fluorescenz gelöst. — Färbt Baumwolle auf Tonerdebeize orangegelb, auf Eisenbeize olivbraun an.

 $\begin{array}{lll} \textbf{6.8'.4'-Trimethoxy-8.4-dioxo-flavan} & \text{bezw. 8-Oxy-6.8'.4'-trimethoxy-flavon,} \\ \textbf{6.8'.4'-Trimethoxy-flavonol} & \text{$C_{13}H_{16}O_6 = CH_3 \cdot O \cdot C_6H_3 / CO \cdot CO} \\ \textbf{0-CH} \cdot \text{$C_6H_3(O \cdot CH_3)_2$} & \text{bezw.} \\ \end{array}$

CO·C·OH

CH₃·O·C₆H₃(O·CH₃)₂

B. Beim Kochen der Eisessiglösung von 6.3'.4'-Trimethoxy-3-oximino-flavanon mit 10°/_oiger Schwefelsäure (v. Ko., Ku., B. 37, 780). — Gelbliche Nadeln (aus Alkohol). F: 189—190°. Die alkoh. Lösung und die gelbe Lösung in konz. Schwefelsäure fluorescieren grünlich. — Färbt Baumwolle auf Tonerdebeize gelb. — Natriumsalz. Gelb. Sehr schwer löslich in Wasser.

6.3'.4'- Trimethoxy-3-acetoxy-flavon, 6.3'.4'- Trimethoxy-flavonol-acetat $C_{50}H_{16}O_7 = CH_3 \cdot O \cdot C_6H_3 < CO \cdot C \cdot O \cdot CO \cdot CH_3 > O - C \cdot C_6H_3(O \cdot CH_3)_2$. Nadeln (aus verd. Alkohol). F: 140—141° (v. Ko., Ku., B. 37, 780).

8.6.3'.4'-Tetraacetoxy-flavon, 6.3'.4'-Triacetoxy-flavonol-acetat $C_{23}H_{18}O_{10} = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CO \cdot CO \cdot CH_3$.

B. Aus 6.3'.4'-Trioxy-flavonol durch kurzes Kochen mit Essigsäureanhydrid und entwässertem Natriumacetat (v. Ko., Ku., B. 37, 781). — Nadeln (aus viel Alkohol oder aus Eisessig-Alkohol). F: 197—198°. Schwer löslich in Alkohol.

6.3'.4'-Trimethoxy-4-oxo-3-oximino-flavan, 6.3'.4'-Trimethoxy-3-oximino-flavanon $C_{18}H_{17}O_6N=CH_3\cdot O\cdot C_6H_3\cdot O\cdot C_6H_3\cdot O\cdot CH_3\cdot O$

12. $7-0xy-3.4-dioxo-2-[2.4-dioxy-phenyl]-chroman, 7.2'.4'-Trioxy-3.4-dioxo-flavan bezw. 3.7-Dioxy-2-[2.4-dioxy-phenyl]-chromon, 3.7.2'.4'-Tetraoxy-flavon, 7.2'.4'-Trioxy-flavonol <math>C_{15}H_{10}O_{6}$, Formel I bezw. II,

Resomorin. Für die vom Namen "Resomorin" abgeleiteten Namen wird in diesem Handbuch die eingezeichnete Bezifferung gebraucht.— B. Durch Kochen von 7.2′.4′-Trimethoxy-flavonol mit konz. Jodwasserstoffsäure (v. Kostanecki, Lampe, Triulzi, B. 39, 94).— Läßt sich nur schwer krystallisiert erhalten. Leicht löslich in starkem Alkohol; scheidet sich aus sehr verd. Alkohol gallertartig aus. — Färbt Tonerdebeize gelb, Eisenbeize olivbraun an.

8.7.2'.4'-Tetraacetoxy-flavon, 7.2'.4'-Triacetoxy-flavonol-acetat, Resomorintetraacetat $C_{23}H_{18}O_{10}=CH_3\cdot CO\cdot C\cdot C\cdot C_6H_3$ $CO\cdot C\cdot C\cdot CO\cdot CH_3$ $CO\cdot C\cdot C\cdot CH_3$. B. Aus Resomorin durch kurzes Kochen mit Essigsäureanhydrid und entwässertem Natriumacetat (v. K., L., Tr., B. 39, 95). — Nadeln (aus verd. Alkohol). F: 129—130°.

7.2'.4'-Trimethoxy-4-oxo-8-oximino-flavan, 7.2'.4'-Trimethoxy-8-oximino-flavanon $C_{18}H_{17}O_6N=CH_3\cdot O\cdot C_6H_3\cdot O\cdot C_6H_3\cdot O\cdot CH\cdot OH$. B. Aus 7.2'.4'-Trimethoxy-flavanon (S. 178) in heißem Alkohol mit Amylnitrit und Salzsäure (v. K., L., Tr., B. 39, 94). — Gelbe Krystalle (aus Alkohol). F: 172° (Zers.). Löslich in verd. Natronlauge mit gelber Farbe. — Geht durch kurzes Kochen mit Eisessig + $10^9/_0$ iger Schwefelsäure in 7.2'.4'-Trimethoxy-flavonol tiber. Färbt Kobaltbeize gelb an.

13. 7-Oxy-3.4-dioxo-2-[3.4-dioxy-phenyl]-chroman, 7.3'.4'-Trioxy-3.4-dioxo-flavan bezw. 3.7-Dioxy-2-[3.4-dioxy-phenyl]-chromon,

3.7.3'.4'-Tetraoxy-flavon, 7.3'.4'-Trioxy-flavonol C₁₈H₁₀O₆. Formel III bezw. IV, Fisetin. Für die vom Namen "Fisetin" abgeleiteten Namen wird in diesem Handbuch

die eingezeichnete Bezifferung gebraucht. — V. und B. Im Holz von Rhus Cotinus (Fisetholz) in Form eines an eine Gerbsaure gebundenen Glykosids (Fustin, s. in der 4. Hauptabteilung unter Kohlenhydrate), das beim Erwärmen mit Mineralsäuren Fisetin abspaltet (SCHMID. B. 19, 1736; vgl. Koon, B. 5, 285). Frei und als Glykosid im Holz von Rhus rhodanthema (A. G. Perkin, Soc. 71, 1194). Frei in den Blättern und Blüten von Rhus Toxicodendron (Giftsumach) (ACREE, SYME, Am. 36, 308). Im Holz von Quebracho Colorado (Argentinien), isoliert aus dem Extrakt des Holzes nach Kochen mit verd. Schwefelsäure (A. G. Pr., Gunnell, Soc. 69, 1304). In den Früchten von Celastrus scandens (Wells, Reeder, Chem. N. 96, 199). Entsteht beim Kochen von Fisetin-7.3'.4'-trimethyläther oder von Fisetin-7.3'.4'-trimethyläther-3-acetat mit konz. Jodwasserstoffsäure (v. Kostanecki, Nitkowski, B. 38, 3589). Durch Kochen von Fisetin-3'.4'-dimethyläther-7-äthyläther mit konz. Jodwasserstoffsäure (v. K., Lampe, Tambor, B. 37, 790). — Darst. Man kocht Fisetholz mit sodahaltigem Wasser aus, verdunstet die Lösung bis zum spez. Gewicht 1,04 und kocht das nach dem Erkalten abgeschiedene braungrüne Pulver 6 Stdn. mit starkem Alkohol und etwas Eisessig; man konzent.iert die alkoh. Lösung und fällt sie mit alkoh. Bleiacetatlösung, bis der Niederschlag anfängt orangerot zu werden, entbleit das Filtrat durch Schwefelwasserstoff, engt auf die Hälfte ein und versetzt mit dem doppelten Volumen heißem Wasser; das ausgeschiedene Fisetin wird durch wiederholtes Lösen in siedendem Alkohol und Fällen mit dem gleichen Volumen heißem Wasser gereinigt (Sch.). — Hellgelbe Nadeln mit 1 H₂O (aus verd. Alkohol) (v. K., L., T.), tiefgelbe Prismen mit 4 H₂O (aus Essigsaure) (Son.). Wird bei 110° wasserfrei (Son.). F: 330° (Zers.) (v. K., L., T.). Fast unlöslich in kaltem Wasser, leicht löslich in Alkohol, Aceton und Essigester, schwer in Ather, Benzel, Petroläther und Chloroform (Sch.). Die Lösung in verdünnter alkoholischer Alkalilauge fluoresciert dunkelgrün (Sch.). — Reduziert in der Wärme FEHLINGsche Lösung und Silberlösung unter Spiegelbildung (SCH.). Gibt bei der Oxydation mit rauchender Salpetersäure Oxalsäure und Pikrinsäure (SCH.). Bei Einw. von Luft auf die alkal. Lösung entstehen Protocatechusäure und Resorcin (Herzig, M. 12, 182). Liefert beim Schmelzen mit Kali Phloroglucin und Protocatechusäure (Sch.; vgl. He., M. 12, 183). Färbt sich mit konz. Schwefelsäure orange und gibt eine gelbe, grünlich fluorescierende Lösung (v. K., L., T.). Liefert mit konz. Schwefelsäure in Eisessig ein Additionsprodukt (A. G. Pe., Pate, Soc. 67, 648). Beim Erwärmen mit konz. Schwefelsäure entsteht Fisetinsulfonsäure-(x) (Syst. No. 2633) (He., M. 17, 427). In der alkoh. Lösung erzeugt Bleiacetat einen orangeroten Niederschlag, der sich leicht in Essigsäure löst (Sch.). Eisenchlorid bewirkt eine schwarzgrüne Färbung und auf Zusatz von wenig Ammoniak einen schwarzen Niederschlag (Sch.). Fisetin gibt beim Kochen mit Methyljodid und Kaliumhydroxyd in Methylalkohol (Sch.) sowie bei Behandlung mit Diazomethan (HE., Klimosch, M. 30, 535) Fisetinskohol (Sch.) sowie bei beinsigting int Diszometham (H.S., Klimosch, M. 30, 300) riscontectramethyläther. — Tonerdebeize wird bei kurzem Ausfärben gelb, bei längerer Einw. orangegelb angefärbt (v. K., L., T.). — $KC_{15}H_{1}O_{6}$. B. Aus Fisetin in Alkohol und Kaliumacetat (A. G. PE., Soc. 75, 441). Gelbe Nadeln. Etwas löslich in Alkohol. — Verbindungen mit Chlorwasserstoff, Bromwasserstoff und Jodwasserstoff. Orangefarbene Nadeln (A. G. PE., PA., Soc. 67, 649). — $C_{15}H_{10}O_{6}+H_{2}SO_{4}$ (bei 110°). B. Beim Eintragen von konz. Schwefelsäure in einen kochenden Brei von Fisetin und Eisessig (A. G. PE., PA., $C_{15}H_{10}O_{15}H_{10}$). Schwefelsäure in einen kochenden Brei von Fisetin und Eisessig (A. G. PE., PA., $C_{15}H_{10}O_{1$ Soc. 67, 648). Scharlachrote Nadeln. Wird durch Wasser zerlegt.

7.3'.4'-Trimethoxy-3.4-dioxo-flavan bezw. 3-Oxy-7.3'.4'-trimethoxy-flavon, 7.3'.4'-Trimethoxy-flavonol $C_{18}H_{16}O_6=CH_3\cdot O\cdot C_6H_3$ $CO\cdot CO$ bezw. $CO\cdot C\cdot OH$ $CO\cdot C\cdot OH$ $CO\cdot C\cdot OH$ bezw. $CO\cdot C\cdot OH$ $CO\cdot C\cdot OH$ Fisetin-7.3'.4'-trimethyläther. B. Durch Kochen von 7.3'.4'-Trimethoxy-3-oximino-flavanon mit Eisessig + 10°/0 iger Schwefelsäure (v. Kostanecki, Nitkowski, B. 38, 3588). — Hellgelbe Nadeln (aus Alkohol). F: 186°. Die alkoh. Lösung fluoresciert grünlich. Löst sich in konz. Schwefelsäure mit gelber Farbe und schwacher grünlicher Fluorescenz. — Beim Kochen mit starker Jodwasserstoffsäure entsteht Fisetin. Färbt Tonerdebeize hellgelb an.

 $3'.4' - \text{Dimethoxy} - 7 - \text{ithoxy} - 3.4 - \text{dioxo} - \text{flavan bezw.} \quad 3 - \text{Oxy} - 3'.4' - \text{dimethoxy} - 7 - \text{ithoxy} - \text{flavonol} \quad C_{19}H_{18}O_6 = \\ C_2H_5 \cdot O \cdot C_6H_3 & CO \cdot CO \\ C_2H_5 \cdot O \cdot C_6H_3 & CO \cdot COH_3)_2 & \text{bezw.} \quad C_2H_5 \cdot O \cdot C_6H_3 & CO \cdot COH_3)_3, \quad \text{Fisetin-}$

- 8'.4'-dimethyläther-7-äthyläther. B. Beim Kochen der Eisessiglösung von 3'.4'-Dimethoxy-7-äthoxy-3-oximino-flavanon mit 10°/0 iger Schwefelsäure (v. Kostanecki, Lampe, Tambor, B. 37, 789). Hellgelbe Nadeln (aus Alkohol). F: 193—194°. Die gelbe Lösung in konz. Schwefelsäure fluoresciert grünlich. Färbt Tonerdebeize hellgelb an. Natriumsalz. Gelb. Schwer löslich.
- 3.7.3'.4'-Tetraäthoxy-flavon, 7.3'.4'-Triäthoxy-flavonol-äthyläther, Fisetintetraäthyläther $C_{23}H_{26}O_6=C_2H_5\cdot O\cdot C_4H_3\cdot CO\cdot C\cdot C\cdot C_2H_5$.

 B. Man kocht Fisetin mit überschüssigem Äthyljodid und Kaliumhydroxyd in absol. Alkohol 4 Stdn. (Schmid, B. 19, 1745). Nadeln (aus Alkohol). F: 106—107°; destilliert nicht unzersetzt; leicht löslich in Alkohol, Äther und Benzol (Sch.). Bei der Oxydation mit Kaliumpermanganat in Essigsäure entstehen 3.4-Diäthoxy-benzoesäure und 2-Oxy-4-äthoxy-phenylglyoxylsäure (Herzig, M. 15, 694). Beim Erwärmen mit konz. Schwefelsäure bildet sich Fisetin-sulfonsäure-(x) (Syst. No. 2633) (H., M. 17, 426). Gibt beim Kochen mit alkoh. Kali Fisetoldiäthyläther (Bd. VIII, S. 396) und 3.4-Diäthoxy-benzoesäure (H., M. 12, 184).
- 3'.4'- Dimethoxy-7- äthoxy-3- acetoxy-flavon, 3'.4'- Dimethoxy-7- äthoxy-flavonol- acetat, Fisetin-3'.4'- dimethyläther-7- äthyläther-3- acetat $C_{21}H_{20}O_7=C_2H_5\cdot O\cdot C_6H_3$ (CO·CO·CO·CH₃). Nadeln (aus verd. Alkohol). F: 162—163° (v. Kostanecki, Lampe, Tambor, B. 37, 789).
- 3.7.8'.4'-Tetraacetoxy-flavon, 7.8'.4'-Triacetoxy-flavonol-acetat, Fisetin-tetraacetat C₂₃H₁₈O₁₀ = CH₃·CO·O·C₆H₃ CO·C·O·CO·CH₃

 O—C·C₆H₃(O·CO·CH₃).

 B. Durch Kochen von Fisetin mit Essigsäureanhydrid und entwässertem Natriumacetat (SCHMID, B. 19, 1742; v. Kostanecki, Lampe, Tambor, B. 37, 791). Nadeln (aus Alkohol). F: 200—201°; sehr schwer löslich in Alkohol, etwas leichter in Benzol und Essigester, leicht in Chloroform (SCH.).
- 3.7.3'.4'-Tetrabenzoyloxy-flavon, 7.3'.4'-Tribenzoyloxy-flavonol-benzoat, Fisetin-tetrabenzoat $C_{43}H_{26}O_{10}=C_6H_5\cdot CO\cdot O\cdot C_6H_3\cdot O-\overset{\circ}{C}\cdot C_6H_3(O\cdot CO\cdot C_6H_5)_2$. B. Aus 1 Tl. Fisetin und 7 Tln. Benzoesäureanhydrid bei 170° (SCHMID, B. 19, 1745). Nadeln (aus Chloroform und Alkohol). F: 184—185°. Sehr schwer löslich in heißem Alkohol, leichter in Essigester, sehr leicht in Chloroform.
- 7.8'.4'-Trimethoxy-4-oxo-3-oximino-flavan, 7.8'.4'-Trimethoxy-3-oximino-flavanon $C_{18}H_{17}O_6N=CH_2\cdot O\cdot C_6H_2\cdot CO\cdot C:N\cdot OH$ flavanon (8. 178) in heißem Alkohol mit Amylnitad konz. Salzsäure (v. Kostanecki, Nitkowski, B. 38, 3588). Nadeln (aus Benzol). F: 183° (Zers.). Löslich in verd. Natronlauge mit gelblicher Farbe. Gibt beim Kochen mit Eisessig + $10^{\circ}/_{\circ}$ iger Schwefelsäure 7.3'.4'-Trimethoxy-flavonol. Färbt Kobaltbeize gelb an.
- 3'.4'-Dimethoxy-7-äthoxy-4-oxo-8-oximino-flavan, 3'.4'-Dimethoxy-7-äthoxy-3-oximino-flavanon $C_{10}H_{10}O_0N=C_2H_5\cdot O\cdot C_0H_3$ $CO\cdot C:N\cdot OH$ B. Aus 3'.4'-Dimethoxy-7-äthoxy-flavanon (S. 178) mit Amylnitrit und Salzsäure in siedendem Alkohol (v. Kostanecki, Lampe, Tambob, B. 37, 788). Gelbliche Nadeln (aus Benzol). F: 175° bis 176° (Zers.). Leicht löslich in verd. Natronlauge mit hellgelber Farbe; färbt sich mit konz. Schwefelsäure dunkelrot und gibt eine gelbrote Lösung. Gibt mit Eisessig und $10^0/_0$ iger Schwefelsäure 3'.4'-Dimethoxy-7-äthoxy-flavonol (S. 222). Färbt Kobaltbeize orange, Uran-, Zink- und Bleibeize schwach hellgelb.

14. 5.7-Dioxy-2.4-dioxo-3-[4-oxy-phenyl]-chroman bezw. 2.5.7-Trioxy-3-[4-oxy-phenyl]-chromon, 2.5.7.4'-Tetraoxy-isoflavon $C_{1t}H_{10}O_{4}$, Formel I bezw. II. Diese Formeln wurden früher dem Scutetlarein zuerteilt, das nach dem

Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] als 5.6.7.4'-Tetraoxy-flavon erkannt und demgemäß S. 210 eingeordnet worden ist.

15. 5.7 - Dioxy - 2 - oxo - 4 - [3.4 - dioxy - phenyl] - [1.2 - chromen], 5.7 - Dioxy -4-[3.4-dioxy-phenyl]-cumarin C1xH10O4, Formel III.

5.7-Diacetoxy-4-[8.4-diacetoxy-phenyl]-cumarin $C_{22}H_{18}O_{10}$, Formel IV. Zur Konstitution vgl. Chamichan, Silber, B. 28, 1393. — B. Bei 5-stdg. Kochen von 10 g Maclurin (Bd. VIII, S. 538) mit 60 g Essigsäureanhydrid und 50 g geschmolzenem Natriumacetat (C., S., B. 27, 1629). — Nadeln (aus Alkohol). F: 181—182°; unlöslich in Wasser, schwer löslich in Alkohol (C., S., B. 27, 1629).

16. 6.7 - Dioxy - 3 - oxo - 2 - [3.4 - dioxy - benzal] - cumaran, 6.7 - Dioxy - 2 - [3.4 - dioxy - benzal] - cumaranon $C_{1s}H_{10}O_6$, s. nebenstehende Formel.

6.7 - Dimethoxy - 2 - [8.4 - dioxy - bensal] - cumaranon $^{\rm HO}$ $^{\rm C_{17}H_{14}O_6} = (^{\rm CH_3 \cdot O)_2C_6H_2} < ^{\rm CO}_{\rm O} > ^{\rm C:CH \cdot C_6H_3(OH)_2}$. B. Aus 6.7 - Dimethoxy - cumaranon (Bd. XVII. S. 177) und Protocatechualdehyd in siedendem Alkohol in Gegenwart von Salzsäure (A. G. Perkin, Wilson, Soc. 88, 138). — Orangerote Nadeln (aus verd. Alkohol). — KC₁₇H₁₂O₆. Orangerote, körnige Fällung.

2. Oxy-oxo-Verbindungen C₁₆H₁₈O₆,

1. Oxy-oxo-Verbindung $C_{16}H_{19}O_6$, Formel V oder VI oder VII, nebst Trimethyläther $C_{16}H_{19}O_6$, Trimethyläther-monoxim $C_{19}H_{19}O_6N$ und Trimethyläther-bis-phenylhydrason $C_{31}H_{20}O_4N_4$ s. Bd. XVII, S. 229, 230.

VI.
$$00 < 0H < 0 < 0 < 0H$$
 OO OH (?)

VII. HO C(C(CH₃) $< CH$ HO OH (?)

HO C(C(CH₃) $< CH$ HO OH (?)

2. Gallacetein C₁₈H₁₈O₆, Formel VIII oder IX, und seinen Trimethyläther C₁₈H₁₈O₆ s. Bd. XVII, S. 230, 231.

3. 5.7-Dioxy-4-oxo-6 oder 8-methyl-2-[3.4-dioxy-phenyl]-[1.4-chromen], 5.7-Dioxy-6 oder 8-methyl-2-[3.4-dioxy-phenyl]-chromon, 5.7.3'.4'-Tetra-oxy-6 oder 8-methyl-flavon, 6 oder 8-Methyl-luteolin $C_{16}H_{12}O_6$, Formel I oder II.

- B. Aus 6 oder 8-Methyl-luteolin-7.3'.4'-trimethyläther (s. u.) durch Jodwasserstoffsäure (Perkin, Horsfall, Soc. 77, 1318). Blättchen. F: cs. 307—309°. Bei der Alkalischmelze bildet sich Protocatechusäure. Liefert ein in farblosen Nadeln krystallisierendes, in Alkohol wenig lösliches Acetylderivat vom Schmelzpunkt 239—240° (bei raschem Erhitzen).
- 5-Oxy-7.8'.4'-trimethoxy-6 oder 8-methyl-flavon, 6 oder 8-Methyl-luteolin-7.8'.4'-trimethyläther $C_{19}H_{18}O_{8}$, Formel III oder IV. B. Durch 24-stdg. Kochen von 1 Tl. Luteolin und 10 Tln. Kaliumhydroxyd in Methylalkohol mit überschüssigem Methyljodid,

neben Luteolin-7.3'.4'-trimethyläther (Perkin, Soc. 69, 211; P., Horsfall, Soc. 77, 1316). Entsteht auch bei analoger Behandlung von Luteolin-4'-methyläther (S. 211) (Vongerichten, B. 33, 2340). — Nadeln (aus Alkohol). F: 185—189° (V.), 191—192° (P.; P., H.). Natriummethylat färbt die alkoh. Lösung intensiv gelb (V.). — Gibt mit alkoh. Kalilauge bei 160° Veratrumsäure und 2.4-Dioxy-6-methoxy-1-methyl-benzol (P., H.).

7.3'.4'-Trimethoxy-5-acetoxy-6 oder 8-methyl-flavon, 6 oder 8-Methyl-luteolin-7.3'.4'-trimethyläther-5-acetat $C_{21}H_{20}O_7$, Formel V oder VI. B. Beim Kochen von

6 oder 8-Methyl-luteolin-7.3'.4'-trimethyläther mit Essigsäureanhydrid und Natriumacetat (V., B. 33, 2340). — Nadeln (aus Alkohol). F: 174—175° (V.), 175—176° (P., H., Soc. 77, 1317). Die alkoh. Lösung fluoresciert bläulich (V.).

4. 5.7 - Dioxy - 3.4 - dioxo - 6 oder 8 - methyl - 2 - [4 - oxy - phenyl] - chroman, 5.7.4 - Trioxy - 3.4 - dioxo - 6 oder 8 - methyl - flavan bezw. 3.5.7 - Trioxy - 6 oder 8-methyl-2-[4-oxy-phenyl]-chromon, 3.5.7.4′- Trioxy -6 oder 8-methyl-flavon, 5.7.4′- Trioxy -6 oder 8-methyl-flavonol $\operatorname{C}_{16}\operatorname{H}_{12}\operatorname{O}_{6}=$ (HO)₂(CH₃)C₆H $\operatorname{O-CH}\cdot\operatorname{C}_{6}\operatorname{H}_{4}\cdot\operatorname{OH}$ bezw. (HO)₂(CH₃)C₆H $\operatorname{O-C}\cdot\operatorname{C}_{6}\operatorname{H}_{4}\cdot\operatorname{OH}$, 6 oder 8-Me-

thyl-kämpferol.

5-Oxy-3.7.4'- trimethoxy-6 oder 8- methyl-flavon, 5-Oxy-7.4'- dimethoxy-6 oder 8-methyl-flavonol-methyläther, 6 oder 8-Methyl-kämpferol-3.7.4'-trimethyläther $C_{19}H_{18}O_{6}$, Formel VII oder VIII. B. Durch 24-stdg. Kochen von 3 g Kämpferol, gelöst in 25 cm³ absol. Methylalkohol, mit dem Doppelten der berechneten Menge Methyljodid

und Kaliumhydroxyd, neben anderen Produkten (Waljaschko, Ar. 247, 453). Durch Erwärmen von Kämpferid (S. 215) mit der berechneten Menge Kaliumhydroxyd und überschüssigem Methyljodid in methylalkoholischer Lösung am Rückflußkühler, neben anderen Produkten (Ciamician, Silber, B. 32, 863; vgl. W.). — Strohgelbe Blättehen (aus Methylalkohol). F: 178° (C., S.; Testoni, G. 30 II, 333), 175—176° (W.). Schwer löslich in Methylalkohol, und Äthylalkohol. alkohol und Athylalkohol (W.).

5. Oxy-oxo-Verbindung $C_{16}H_{12}O_6$, Formel I (S. 226).

Trimethylbrasilon $C_{10}H_{10}O_6$, Formel II (S. 226). Zur Konstitution vgl.: Perkin, Rây, Robinson, Soc. 1927, 2096; 1928, 1507; Pfeiffer, Oberlin, B. 60 [1927], 2145; Pfei., Angern, BEILSTEINS Handbuch. 4. Aufl. XVIII.

HAACK, WILLEMS, B. 61 [1928], 839, 1924. Über frühere Konstitutionsauffassungen vgl. Perkin, Soc. 81, 1019; Per., Robinson, Soc. 98, 498; 95, 382. — B. Bei allmählichem Zusatz

$$I. \quad _{O \cdot CH_2 \cdot CO \cdot CH_2} \quad .OH \qquad \quad II. \quad _{CH_3 \cdot O \cdot CH_2 \cdot CO \cdot CH_2} \quad .O \cdot CH_3$$

einer Lösung von 30 g Chromsäure in wenig Wasser zu einer Lösung von 50 g Brasilin-trimethyläther (Bd. XVII, S. 196) in 250 g Eisessig unterhalb 25° (GILBODY, PERKIN, Soc. 81, 1041; vgl. Gil., Per., Chem. N. 79, 94; v. Kostanecki, Lampe, B. 35, 1670; Herzig, Pollak, M. 23, 173). Entsteht auch aus Brasilin-trimethyläther-acetat (Bd. XVII, S. 197) durch Einw. von Chromsäure in Eisessig in der Kälte (v. Ko., La.; vgl. Herzig, M. 16, 913; Her., Pol., M. 23, 167, 171). Beim Behandeln von 12 g Tetramethyldihydrobrasileinol (Bd. XVII, S. 218) in 60 cm³ Eisessig mit 12 g Chromsäure in 20 cm³ Wasser in der Kälte, neben anderen Produkten (Engels, Per., Robinson, Soc. 93, 1144). — Farblose Krystalle (durch wiederholtes Umkrystallisieren aus verschiedenen Lösungsmitteln) vom Schmelzpunkt 160° (En., Per., Ro., Soc. 93, 1144), 160—162° (Her., Pol., B. 36, 1221; vgl. Her., Pol., M. 23, 172, 174), 165° (Zers.) (v. Ko., La.). Gilbody, Perkin, Soc. 81, 1041 (vgl. Per., Soc. 81, 1017 Anm.; B. 36, 841; En., Per., Ro., Soc. 93, 1144; Her., Pol., B. 36, 1221; Per., Rây, Ro., Soc. 1928, 1510; Pfel., An., Haack, Will., B. 61 [1928], 841, 842] erhielten nach einmaligem Umkrystallisieren aus Alkohol oder Essigsäure ein bei 184-1870 schmelzendes Präparat, dessen Schmelzpunkt nach dem Umkrystallisieren aus Benzol auf 167º sank. Fast unföslich in Wasser, Alkohol, Ather, Chloroform, Benzol und Eisessig in der Kälte, löslich in Alkohol, Benzol und Eisessig in der Wärme (GIL., PER., Soc. 81, 1041). Ist optisch inaktiv (HER., Pol., Kluger, M. 27, 756). Konz. Schwefelsäure färbt die Krystalle orange und gibt eine gelbe Lösung (v. Ko., La.). Unlöslich in kalten Alkalien (HER., Pol., M. 23, 174; Gil., Per., Soc. 81, 1041). — Geht beim Erhitzen über den Schmelzpunkt cder beim Kochen mit Alkalien in α-Anhydrotrimethylbrasilon (Bd. XVII, S. 204) über (Per., Soc. 81, 1017, 1018; Gil., Per., Soc. 81, 1043; v. Ko., La.; vgl. Her., Pol., M. 23, 174, 175). Durch Behandeln mit kalter Salpetersäure werden Nitrooxydihydrotrimethylbrasilon (Bd. X, S. 380) und 5-Nitro-4-methoxy-salicylsäure erhalten (Per., Soc. 81, 1020; GIL., Per., Soc. 81, 1048, 1056; Bollina, v. Ko., Tambor, B. 35, 1676; v. Ko., Paul, B. 35, 2608; vgl. Per., B. 35, 2946). Durch kurzes Erhitzen mit starker Jodwasserstoffsäure erhält man zunächst 3.4'.6'.7'-Tetraoxy-brasan (Bd. XVII, S. 203), das weiter zu 3.6'.7'-Trioxy-brasan (Bd. XVII, S. 184) reduziert wird (v. Ko., Lloyd, B. 36, 2193; vgl. Bo., v. Ko., Ta., B. 35, 1675). Bei 10 Minuten langer Einw. von kalter konzentrierter Schwefelsäure entsteht Pseudotrimethylbrasilon (Syst. No. 2616), bei längerer Einw. bildet sich daneben β -Anhydrotrimethylbrasilon (Bd. XVII, S. 203) (Her., Pol., B. 37, 631, 632). \(\beta\)-Anhydrotrimethylbrasilon wird auch bei der Einw. von konz. Schwefelsäure auf in Alkohol suspendiertes Trimethylbrasilon erhalten (Her., Pol., M. 23, 176; v. Ko., Ll.). Liefert mit Hydroxylamin Trimethylbrasilon-monoxim (HEB., Pol., B. 36, 398). Bei der Einw. von Methyljodid und Kaliumhydroxyd erhält man α-Anhydrotrimethylbrasilon-methyläther (Bd. XVII, S. 205) (Her., Pol., M. 23, 178; vgl. Her., Pol., M. 27, 757; PER., Ro., Soc. 95, 390). Beim Kochen mit Essigsäureanhydrid in Gegenwart M. 27, 757; FER., RO., Soc. 86, 590). Beim Rochen mit Essigsaureannydrid in Gegenwart von Natriumacetat (Per., Soc. 81, 1018; Gil., Per., Soc. 81, 1045; Her., Pol., M. 23, 175; v. Ko., La.) oder bei längerem Kochen mit Essigsäureanhydrid allein (Her., Pol., M. 23, 175) entsteht α-Anhydrotrimethylbrasilon-acetat (Bd. XVII, S. 205). Mit Phenylhydrazin in Eisessig entsteht beim Erhitzen auf dem Wasserbad hauptsächlich eine Verbindung C₂₅H₂₂O₄N₂ oder C₂₅H₂₄O₄N₃ (s. u.) (Her., Pol., B. 38, 2166); erhitzt man sofort auf die Siedetemperatur des Eisessigs, so erhält man Desoxytrimethylbrasilon (Bd. XVII, S. 183) (Her., Pol., B. 38, 2166; vgl. Per., Soc. 81, 1018; Gil., Per., Soc. 81, 1046; Per., Rây, Ro. Soc. 1937, 2004; Per. Or B. 60, 11927; 2142) Ro., Soc. 1927, 2094; PFEI., OB., B. 60 [1927], 2142).

Verbindung C₂₅H₂₂O₄N₂, vielleicht Formel III (vgl. Per., Ro., Soc. 93, 499) oder C₂₅H₂₄O₄N₃, vielleicht Formel IV oder V (vgl. Per., Rây, Ro., Soc. 1928, 1508, 1509). B. Durch Erhitzen von Trimethylbrasilon mit der 4-fachen Menge Phenylhydrazin und der 10-fachen Menge Eisessig auf dem Wasserbad (Her., Pol., B. 38, 2166). Durch Kochen von Tri-

methylbrasilon-monoxim mit der 5-fachen Menge Phenylhydrazin und der 10-fachen Menge Eisessig am Rückflußkühler (HEB., Pol., B. 39, 266). — Gelbe Nädelchen (aus Essigester).

F: 239—242° (Her., Pol., B. 38, 2166).

Verbindung C₂₇H₂₆O₅N₂(?). B. Aus der Verbindung C₂₅H₂₂O₄N₂ oder C₂₅H₂₄O₄N₂
(S. 226) durch Behandeln mit Essigsäureanhydrid und Natriumacetat in Gegenwart von Zinkstaub oder durch direkte Reduktion mit Zinkstaub und Eisessig und darauffolgende Acetylierung des erhaltenen Produkts (HER., Pol., B. 89, 266, 267). — Farblose Krystalle (aus Alkohol). F: 214—217°. — Wird durch Verseifung mit 10°/0iger alkoh. Schwefelsäure und folgende Behandlung mit Eisenchlorid in das Ausgangsmaterial zurückverwandelt.

Trimethylbrasilon-monoxim $C_{19}H_{19}O_6N = (CH_3 \cdot O)_3C_{16}H_9O_2(:N \cdot OH)$. Durch Erwärmen gleicher Mengen von Trimethylbrasilon und salzsaurem Hydroxylamin in verd. alkoholischer Lösung auf dem Wasserbad (HERZIG, POLLAK, B. 36, 398). — Krystalle.

Trimethylbrasilon - monoximacetat (P) $C_{21}H_{21}O_7N = (CH_3 \cdot O)_2C_{16}H_2O_2(: N \cdot O \cdot CO \cdot CH_3)$ (?). B. Durch kurzes Kochen von Trimethylbrasilon-monoxim mit Essigsäureanhydrid und Natriumacetat (Heb., Pol., B. 36, 398). — Farblose Blättchen (aus Alkohol). F: 179° bis 182°.

Bromtrimethylbrasilon $C_{19}H_{17}O_6Br=(CH_3\cdot O)_2C_{16}H_6O_3Br$. B. Durch Oxydation von Brombrasilin-trimethyläther (Bd. XVII, S. 197) mit Chromsäure (Her., Pol., B. 36, 398). — Nadeln (aus Eisessig). Zersetzt sich bei 225° unter Bräunung. — Gibt mit Essigsäureanhydrid und Natriumacetat Brom-α-anhydrotrimethylbrasilon-acetat (Bd. XVII, S. 205).

6. Hämatein C₁₆H₁₂C₆, s. nebenstehende Formel. Zur Konstitution vgl. Engels, W. H. Perkin, Robinson, Soc. 93, 1120. B. Das Ammoniumsalz entsteht durch Einw. von Luft auf eine ammonia-E. ERDMANN, SCHULTZ, A. 216, 236; HUMMEL, A. G. PEREIN, Soc. 41, 367; B. 15, 2337; EN., W. H. PER., Ro., Soc. 93, 1120, 1140) oder durch Erhitzen auf 130° (HESSE, A. 109, 337, 338). Hämatein

entsteht ferner aus Hämatoxylin durch Einw. von Jod in Gegenwart von Quecksilberoxyd (Weselsky, A. 174, 100) oder durch Einw. von Natriumjodat (P. Mayer, C. 1904 II, 228). Beim Eintragen von 1 Mol Kaliumnitrit in eine eisgekühlte Lösung von 1 Mol Hämatoxylin in Eisessig (Schall, Dealle, B. 23, 1433 Anm. 2). Läßt sich ferner durch Fermentation des Blauholzes (Kernholz von Hāmatoxylon campechianum L.) und Ausziehen mit Äther gewinnen HALBERSTADT, v. Reis, B. 14, 611). — Darst. Man leitet durch eine Lösung von 15 g fein gepulvertem Hämatoxylin in 150 cm³ Wasser und 15 cm³ konz. Ammoniak 6 Stdn. unter Kühlung einen schnellen Luftstrom und gießt die Lösung in 250 cm³ 10°/oige warme Essigsäure (En., W. H. Per., Ro.). Zur Darstellung aus Blauholzextrakt nach demselben Verfahren vgl. Hum., A. G. Per.— Silberglänzende Krystalle. Läßt sich ohne Zersetzung auf 180° bis 200° erhitzen (HAL., v. Reis). 100 Tle. Wasser lösen bei 20° 0,060 Tlc.; 100 Tle. Äther Bern bei 20° 0,07 Tle. sehrere lösen bei 20° 0,060 Tlc.; 100 Tle. Äther lösen bei 20° 0.013 Tle.; schwer löslich in Alkohol und Essigsäure, unlöslich in Chloroform und Benzol (Hal., v. Reis). Löst sich in Wasser mit roter (E. Erd., Schultz; vgl. O. L. EED.), in Alkohol mit rotbrauner (O. L. EED.), in Äther mit gelber Farbe (O. L. ERD.; HAL., v. REIS). Leicht löslich in Alkalien; die Lösung in sehr verd. Natronlauge ist hellrot, in überschüssiger Natronlauge bläulichpurpurn; Ammoniak löst mit braunvioletter Farbe; die alkal. Lösungen färben sich an der Luft allmählich rot und schließlich braun (Hum., A. G. Per.; vgl. O. L. ERD.). Reichlich löslich in konz. Salzsäure (E. ERD., SCHULTZ) mit carminroter Farbe (Hum., A. G. Per.). Gibt mit Blei- und Kupfersalzen blaue Niederschläge (O. L. ERD.). — Liefert beim Erhitzen mit konz. Salzsäure im geschlossenen Rohr auf 100° sowie beim Lösen in kalter konzentrierter Schwefelsäure die entsprechenden Isohämateinsalze (Bd. XVII, S. 222) (Hum., A. G. Per.; vgl. E. Erd., Schultz). Durch Reduktionsmittel, wie Schwefelwasserstoff (O. L. Erd.), Ammoniumsulfid (Hum., A. G. Per.), Zink und Schwefelsäure oder Zinnchlorür und Natronlauge (E. Erd., Schultz), wird die Lösung des Hämateins entfärbt; beim Stehenlassen an der Luft tritt die Färbung wieder auf. Löst sich leicht in Alkalidisulfitlösungen unter Bildung von farblosen, in Wasser sehr leicht löslichen Additionsprodukten, die durch Einw. von Säuren Hämatein zurückliefern (E. Erd., Schultz). Bei der Methylierung mit Dimethylsulfat und Kalilauge entstehen Hämatein-tetramethyläther und Pentamethyldihydrohämateinol (Bd. XVII, S. 231) (En., W. H. Peb., Ro.). — Färbt eisengebeizte Seide blauschwarz (Haack, D. R. P. 166087; Frdl. 8, 843; C. 1906 I, 620). Mit organischen Säuren (Essigsäure, Oxalsäure) in Gegenwart von Metalloxyden entstehen Doppelverbindungen, die als Farbstoffe verwandt werden können (HAACE). Zur Verwendung von Hämatein (bezw. Blauholz) in der Färberei vgl.: H. Ruppe, Die Chemie der natürlichen Farbstoffe, 1. Tl. [Braunschweig 1900], S. 120 und 2. Tl. [Braunschweig 1909], S. 215; Fierz-David, Künstliche organische Farbstoffe [Berlin 1926], S. 10; Zübelen in Ullmanns Enzyklopädie der technischen Chemie, 2. Aufl., Bd. V [Berlin-Wien 1930], S. 116; Schultz, Tab. No. 938.

(NH₄)₅C₁₆H₁₀O₆. Violette Prismen. Löslich in Wasser mit intensiver Purpurfarbe, in Alkohol mit braunroter Farbe; gibt mit den meisten Metallsalzen farbige Niederschläge (O. L. Erd.). Sehr zersetzlich; verliert bei 130° alles Ammoniak (Hesse). — NaC₁₆H₁₁O₆ (A. G. Per., Soc. 75, 443). — KC₁₆H₁₁O₆. B. Durch Einw. von Kaliumacetat auf Hämatein in alkoh. Lösung (A. G. Per.; vgl. O. L. Erd.). Schwarze Körner; wenig löslich in Alkohol mit roter Farbe, etwas leichter in Wasser mit rotvioletter Farbe (A. G. Per.).

Hämatein-tetramethyläther $C_{20}H_{30}O_{6}=C_{16}H_{8}O_{2}(O\cdot CH_{8})_{4}$. B. Bei der Methylierung von Hämatein durch Dimethylsulfat und Kalilauge, neben Pentamethyldihydrohämateinol (Bd. XVII, S. 231); man trennt durch fraktionierte Krystallisation aus kaltem Essigester oder siedendem Petroläther, worin Hämatein-tetramethyläther schwerer löslich ist (Engels, W. H. Perkin, Robinson, Soc. 93, 1140). — Gelbe Prismer (aus Alkohol oder Essigester). Schmilzt bei 210° zu einem roten, zersetzlichen Öl. Leicht löslich in siedendem Alkohol und heißem Essigester, schwer löslich in Benzol, fast unlöslich in Petroläther. — Beim Erwärmen mit verd. Kalilauge entsteht Tetramethyldihydrohämateinol (Bd. XVII, S. 231). Löst sich in kalter konzentrierter Schwefelsäure mit roter Farbe; durch Erwärmen mit Schwefelsäure, Eingießen der Lösung in Wasser und Lösen des entstandenen Niederschlages in heißer alkoholischer Salzsäure erhält man 5'-Oxy-7.8.6'-trimethoxy-indeno-2'.1':3.4-benzopyryliumehlorid (Bd. XVII, S. 223).

3. Oxy-oxo-Verbindungen $C_{17}H_{14}O_6$.

1. 5.7 - Dioxy - 4 - oxo - 3 - āthyl - 2 - [3.4 - dioxy - phenyl] - [1.4 - chromen], 5.7 - Dioxy - 3 - āthyl - 2 - [3.4 - dioxy - phenyl] - chromon, 5.7.3'.4' - Tetraoxy - 3 - āthyl-flavon, 3 - Āthyl-luteolin C₁₇H₁₄O₆, s. nebenstehende Formel. B. Durch mehrstündiges Kochen von 2.4.6-Trimethoxy-a-[3 - methoxy - 4 - āthoxy - benzoyl] - butyrophenon (Bd. VIII, S. 562) mit konz. Jodwasserstoffsäure (v. Kostanecki, Różycki, B. 34, 3720). — Nadeln (aus sehr verd. Alkohol). F: 286—287°. In Alkalien mit gelber Farbe leicht löslich. Konz. Schwefelsäure färbt die Krystalle gelb und erzeugt eine gelbgrüne Lösung.

Tetraacetylderivat $C_{25}H_{22}O_{10} = (CH_2 \cdot CO \cdot O)_2C_6H_2 < CO \cdot C \cdot C_2H_5$ Nadeln (aus verd. Alkohol); F: 129—130° (v. K., R., B. 34, 3721).

2. 5.7 - Dioxy - 3.4 - dioxo - 6 oder 8 - åthyl - 2 - [4 - oxy - phenyl] - chroman, 5.7.4' - Trioxy - 3.4 - dioxo - 6 oder 8 - åthyl - flavan bezw. 3.5.7 - Trioxy-6 oder 8-åthyl-2-[4-oxy-phenyl]-chromon, 3.5.7.4'-Tetraoxy-6 oder 8-åthyl-flavon, 5.7.4' - Trioxy - 6 oder 8 - åthyl - flavonol $C_{17}H_{14}O_6 = (HO)_1(C_2H_5)C_6H$ CO·CO

(HO)_2(C_2H_5)C_6H

O-CH·C_6H_4·OH

Bezw. (HO)_1(C_2H_5)C_6H

O-C·C_6H_4·OH

Roll thyl-kdmmfenel

5-Oxy-4'-methoxy-8.7-diāthoxy-6 oder 8-āthyl-flavon, 5-Oxy-4'-methoxy-7-āthoxy-6 oder 8-āthyl-flavonol-āthylāther, 6 oder 8-Āthyl-kāmpferol-4'-methyl-āther-8.7-diāthylāther $C_{12}H_{14}O_4$, Formel I oder II.

I.
$$C_2H_5$$
. C_2H_5 . C_2H_5 . C_3H_5 . C

B. Bei der Äthylierung von Kampferid (S. 215) mit Äthyljodid und alkoh. Kalilauge, neben Kampferol-4'-methyläther-3.7-diathyläther (Testoni, G. 30 II, 334, 335). — Gelbe Nadeln (aus Petroläther). F: 125—126°.

f) Oxy-oxo-Verbindungen $C_nH_{2n-24}O_6$.

1. Oxy-oxo-Verbindungen C₁₆H₈O₆.

1. 5'.4''.5''-Trioxy - 4.7 - dioxo - [dibenzo - 1'.2':2.3; 1''.2'':5.6 - cumaron]-dihydrid-(4.7)¹), 3.6'.7'-Trioxy-1'.4'-dioxo-brasandihydrid, 3.6'.7'-Trioxy-brasanchinon $C_{16}H_6O_6$, Formel I.

5'.4".5" - Trimethoxy - 4.7 - dioxo - [dibenso - 1'2': 2.3;1".2": 5.6 - cumaron] - dihydrid-(4.7)¹, 3.6'.7'-Trimethoxy-brasanchinon (von Perrin, Robinson Trimethoxy-β-brasanchinon genannt) C₁₉H₁₄O₆, Formel II. B. Durch Oxydation von 4'-Oxy-3.6'.7'-trimethoxy-brasan (Bd. XVII, S. 203) mit Chromtrioxyd und Eisessig (v. Kostanecki, Lloyd, B. 36, 2200). Durch Behandeln von 1'-Nitro-3.6'.7'-trimethoxy-4'-acetoxy-brasan (Bd. XVII, S. 204) mit Zinkstaub und Salzsäure in siedender alkoholischer Lösung, Verdünnen mit Wasser und darauffolgendes Versetzen mit konz. Natriumnitrit-Lösung (Perrin, Robinson, Soc. 95, 398). — Orangerote Nadeln oder tiefrote Fasern (aus Eisessig). F: 261—262° (P., R.), 260° (v. K., Ll.). Löst sich in konz. Schwefelsäure mit grüner Farbe (v. K., Ll.). —Liefert mit Salpetersäure (D: 1,5) 2(?).4(?).5 oder 8(?)-Trinitro-3.6'.7'-trimethoxy-brasanchinon (v. Kostanecki, Lampe, B. 41, 2800). Wird durch Erhitzen mit Jodwasserstoffsäure zu 3.6'.7'-Trioxy-brasan (Bd. XVII, S. 184) reduziert (v. K., Ll.). Bei der Destillation über Zinkstaub entsteht Brasan (Bd. XVII, S. 84) (v. K., Ll.). Beim Erhitzen mit Zinkstaub, Essigsäureanhydrid und Natriumacetat entsteht 3.6'.7'-Trimethoxy-1'.4'-diacetoxy-brasan (Bd. XVII, S. 224) (v. K., Ll.).

3.6'.7'-Triacetoxy-brasanchinon $C_{22}H_{14}O_9 = C_{16}H_5O_3(O\cdot CO\cdot CH_3)_3$. B. Durch Oxydation von in Eisessig gelöstem 3.4'.6'.7'-Tetraacetoxy-brasan (Bd. XVII, S. 204) mit Chromsäure (v. Kostanecki, Lloyd, B. 36, 2200). — Gelbe Nädelchen (aus Eisessig). F: 281°. Die Lösung in konz. Schwefelsäure ist grün. — Liefert beim Erhitzen mit Zinkstaub, Essigsäureanhydrid und Natriumacetat 3.1'.4'.6'.7'-Pentaacetoxy-brasan (Bd. XVII, S. 224).

2(P).4(P).5 oder 8(P) - Trinitro - 3.6'.7' - trimethoxy - brasanchinon $C_{19}H_{11}O_{18}N_3 = C_{14}H_2O_3(NO_3)_3(O\cdot CH_2)_3$. B. Durch Eintragen von 3.6'.7'-Trimethoxy-brasanchinon in Salpetersäure (D: 1,5) (v. Kostanecki, Lampe, B. 41, 2800). — Orangegelbe Nadeln (aus Eisessig). F: 275° (Zers.). Verpufft heftig beim Erhitzen auf dem Platinblech.

2. 5'.4''.5'' - Trioxy - 6.7 - dioxo - [dibenzo - 1'.2':2.3; 1".2'':4.5 - cumaron]-dihydrid-(6.7)\(^1\)) $C_{16}H_6O_6$, Formel III.

5'.4".5"- Trimethoxy - 6.7 - dioxo - [dibenso - 1'.2': 2.3; 1".2": 4.5 - cumaron]-dihydrid - (6.7)¹) (von Perkin, Robinson Trimethoxy - α-brasanchinon genannt) C₁₀H₁₄O₆, Formel IV. B. Durch Behandeln von Nitro-α-anhydrotrimethylbrasilon-acetat (Bd. XVII, 8. 206) mit Zinkstaub und Salzsäure in siedendem Alkohol, Verdünnen mit Wasser und Zusatz von Eisenchlorid, Chromtrioxyd oder Natriumnitrit (Perkin, Robinson, Soc. 95, 395). Durch Oxydation von α-Anhydrotrimethylbrasilon (Bd. XVII, 8. 204) mit Kaliumhypobromit in verdünnter alkalischer Lösung bei 0° (P., R.). — Braunes Krystallpulver (aus Eisessig). Schmilst nicht bis 300°. Sehr schwer löslich in den meisten Lösungsmitteln. Löst sich in konz. Schwefelsäure mit intensiv karmeisinroter Farbe und wird beim Verdünnen mit Wasser unverändert gefällt. — Liefert beim Kochen mit Zinkstaub, Essigsäureanhydrid und Eisessig in Gegenwart von etwas Zinkchlorid 5'.4".5"-Trimethoxy -6.7 -diacetoxy-2.3;4.5-dibenzo-cumaron (Bd. XVII, 8. 225). Beim Kochen mit 3.4-Diamino-toluol in Gegenwart von Eisessig und Natriumacetat entsteht das entsprechende Chinoxalinderivat (Syst. No. 4540).

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Trimethoxy- α -brasanchinhydron $C_{38}H_{30}O_{12}=C_{19}H_{14}O_6+C_{19}H_{16}O_6$. B. Beim Behandeln von 7 g α -Anhydrotrimethylbrasilon (Bd. XVII, S. 204) in Eisessig mit 4 g Chromtrioxyd in wenig Wasser in der Kälte (P., R., Soc. 95, 396). — Tiefgrüne krystallinische Masse (aus Eisessig).

HC CO 3. Lucton der [2.3.4.7 - Tetraoxy - anthron - (9)-yliden-(10)]-essigsäure. Oxystyrogallol C_{1.}H₆O₆, s. nebenstehende Formel. B. Beim Erhitzen von 17 g p-Cumarsäure mit 12 g Gallussäure in Gegenwart von konz. Schwefelsäure auf 60° (SLAMA, C. 1899 II, 967). — Unlöslich in den gewöhnlichen ·OH ·OH Lösungsmitteln. Löslich in konz. Schwefelsäure mit roter, in Kelilauge und Ammoniak mit grüner Farbe.

Friacetylderivat $C_{22}H_{14}O_9 = C_{16}H_{1}O_3(O \cdot CO \cdot CH_2)_2$. F: ca. 250° (im Vakuum) (8., C. 1899 II. 967).

2. Oxy-oxo-Verbindungen $C_{18}H_{12}O_6$.

- 1. 4.6 Dioxo 2 [4 oxy phenyl] 5 [4 oxy benzoyl] pyrandihydridHO · C₆H₄ · CO · HC · CÖ · CH OC-O-C C₆H₄·OH bezw. desmotrope Formen. $C_{18}H_{18}O_6 =$
- 4.6 Dioxo 2 [4 methoxy phenyl] 5 anisoyl pyrandihydrid $C_{20}H_{16}O_6 =$ OC-O-C·C₆H₄·O·CH₃ bezw. desmotrope Formen. B. Hinterbleibt bei CH3 · O · C6H4 · CO · HC · CO · CH

der Rektifikation des rohen Anisoylessigsäure-äthylesters (Bd. X, S. 954) (Schoonjans, C. 1897 II, 616). — Goldgelbe Blättchen (aus heißem Chloroform und Alkohol). Leicht löslich in Chloroform, schwer in heißem Alkohol, unlöslich in allen übrigen Lösungsmitteln. Wird von konz. Schwefelsäure mit gelbroter Farbe gelöst; diese Lösung wird beim Erhitzen braun mit grüner Fluorescenz, dann farblos. Die alkoh. Lösung wird durch Eisenchlorid purpurrot. Löslich in Ammoniak; wird beim Verdunsten des Ammoniaks unverändert abgeschieden. Die ammoniakalische, mit Salpetersäure genau neutralisierte Lösung gibt mit Salbernitrau einen gelblichen, lichtbeständigen Niederschlag.

2. 1.4 - Dioxo - 3 - $[\alpha - oxy - \beta - oxo - \beta - (2-formyl-phenyl) - athyl]-isochroman,$ ω - 0xy - 2 - formy! - ω - [1.4 - dioxo - isochromany!-(3)]-acetophenon $C_{18}H_{18}O_{6}$ = ÇO·CH·CH(ÖH)·CO·C₄H₄·CHO $\mathbf{C_6H_4} \mathbf{<_{CO \cdot \dot{O}}}$ B. Bei der Einw. eines Gemisches von Salpeter-

säure (D: 1,48) und Eisessig auf Bisdiketohydrinden bei 0° (Voswinckel, B. 42, 466). — Prismen (aus siedendem Chloroform), Täfelchen (aus Eisessig). F: 211°. Unzersetzt sublimierbar. Sehr wenig löslich in Benzol, Äther und Chloroform; löslich in Alkalicarbonaten und

bar. Sehr wenig losiich in Benzol, Ather und Chloroform; iosiich in Arkancaronaten und Ammoniak mit gelbbrauner, in Alkalilaugen zunächst mit gelbbrauner Farbe, die bei weiterem Zusatz von Alkali in Indigoblau übergeht. — Durch kurze Einw. von Natronlauge entsteht eine isomere Verbindung C₁₈H₁₂O₆ (s. u.). Bei längerer Einw. von Natronlauge unter Luftzutritt bilden sich Kohlensäure, Phthalsäure und Phthalonaldehydsäure.

Verbindung C₁₈H₁₂O₆. B. Durch Einfiltrieren der frisch bereiteten Lösung von ω-Oxy-2-formyl-ω-[1.4-dioxo-isochromanyl-(3)]-acetophenon (s. o.) in überschüssiger 1n-Natronlauge in verd. Salzsäure (V., B. 42, 468). — Prismen mit 2 H₂O (aus siedendem Eisessig). F: 240°. Ziemlich schwer löslich in siedendem Eisessig. Löslich in Alkalilaugen zunächst, mit naten und in Ammoniak mit rotbrauner Farbe. Löst sich in Alkalilaugen zunächst mit braunroter Farbe, die bei weiterem Zusatz von Alkali in Indigoblau übergeht. — Beim Be-

handeln mit Dimethylsulfat entsteht der Monomethyläther $C_{10}H_{14}O_6$ (s. u.).

Verbindung $C_{19}H_{14}O_6$. B. Durch Behandeln der alkal. Lösung von ω -Oxy-2-formyl- ω -[1.4-dioxo-isochromanyl-(3)]-acetophenon mit Dimethylsulfat (V., B. 42, 469). — Prismen

(aus Methylalkohol). Zersetzt sich oberhalb 240° allmählich unter Bräunung. Fällt aus der braunen Lösung in Alkalicarbonaten bei Zusatz von Säuren unverändert aus.

Verbindung C₂₀H₁₄O₇. B. Durch Kochen von ω-Oxy-2-formyl-ω-[1.4-dioxo-iso-chromanyl-(3)]-acetophenon mit Essigsäureanhydrid und einer geringen Menge frisch geschmolzenem Kaliumacetat (V., B. 42, 469). — Prismen oder Säulen. F: 315°. Gibt mit Natronlauge erst nach längerem Kochen Blaufärbung.

Verbindung C. H. O. B. Durch Kochen von oder Saulen.

Verbindung $C_{23}H_{16}O_7$. B. Durch Kochen von ω -Oxy-2-formyl- ω -[1.4-dioxo-isochromanyl-(3)]-acetophenon mit Benzoylchlorid und einer geringen Menge frisch geschmolzenem

Zinkehlorid (V., B. 42, 469). — Nadeln (aus Chloroform-Ligroin). F: 268°. Löst sich in Natronlauge erst nach längerem Kochen mit blauer Farbe.

Verbindung $C_{46}H_{43}ON_{10}$. B. Bei gelindem Erwärmen von 1 g ω -Oxy-2-formyl- ω -[1.4-dioxo-isochromanyl-(3)]-acetophenon mit 1,5 g Phenylhydrazin und 20 cm³ Wasser (V., B. 42, 470). — Leuchtend rote Nadeln mit starkem Metallglanz (aus Ligroin). F: 209°. Unlöslich in warmer Natronlauge.

g) Oxy-oxo-Verbindungen C_nH_{2n-26}O₆.

1. Oxy-oxo-Verbindungen C19H12O6.

1. 2.6.7 - Trioxy - 9 - [2 - oxy - phenyl] - fluoron
C₁₀H₁₂O₆, s. nebenstehende Formel. B. Aus 1 Mol Salicylaldehyd und 2 Mol Oxyhydrochinon in alkohelisch-schwefelsaurer Lösung, neben 2.3 - Dioxy-xanthen (Bd. XVII, S. 161) (LIEBERMANN, LINDENBAUM, B. 37, 2728, 2734). — Rotbraune, cantharidenglänzende Nadeln. Sehr leicht löslich in Wasser. — Sulfat. Granatrote Krystalle.

Tetraacetylderivat $C_{27}H_{20}O_{10} = C_{19}H_{8}O_{2}(O \cdot CO \cdot CH_{3})_{4}$. B. Aus 2.6.7-Trioxy-9-[2-oxyphenyl]-fluoron beim Behandeln mit Essigsäureanhydrid und Natriumacetat (Lie., Lin., B. 37, 2734). — Orangerote Nadeln (aus Benzol-Ligroin). F: 223—224°.

2.6.7-Trioxy-9-[5-nitro-2-oxy-phenyl]-fluoron $C_{19}H_{11}O_8N$, s. nebenstehende Formel. B. Aus 5-Nitro-salicylaldehyd und Oxyhydrochinon in alkoholisch-schwefelsaurer Lösung (Heintschel, B. 38, 2880). — Cantharidenglänzende Prismen oder Würfel. — $C_{19}H_{11}O_8N + H_2SO_4 + 2H_2O$. Braune Nadeln.

Tetraacetylderivat $C_{27}H_{19}O_{12}N=C_{19}H_7O_3(NO_2)(O\cdot CO\cdot CH_3)_4$. Orangerote Nadeln (aus verd. Essigsäure). F: 193° (H., B. 38, 2881).

2. 2.6.7 - Trioxy - 9 - [4 - oxy - phenyl] - fluoron
C₁₉H₁₂O₆, s. nebenstehende Formel. B. Aus. 1 Mol p-Oxybenzaldehyd und 2 Mol Oxyhydrochinon in alkoholischschwefelsaurer Lösung (LIEBERMANN, LINDINBAUM, B. 37, 2733). — Orangerote Nadeln.
— Sulfat. Intensiv gelber Niederschlag.

Tetraacetylderivat $C_{27}H_{20}O_{10}=C_{18}H_8O_2(O\cdot CO\cdot CH_3)_4$. B. Beim Behandeln von 2.6.7 - Trioxy - 9 - [4 - oxy - phenyl] - fluoron mit Essigsäureanhydrid und Natriumacetat (Lie., Lin., B. 37, 2734). — Orangegelbe Nadeln. F: 242—243°.

2. Oxy-oxo-Verbindungen $C_{20}H_{14}O_{6}$.

1. 3-Oxo-1.1-bis-[2.4-dioxy-phenyl]-phthalan, 3.3-Bis-[2.4-dioxy-phenyl]-phthalid $C_{sp}H_{14}O_{s}$, Formel I. Verbindungen, die vielleicht als Derivate hiervon anzusehen sind, sind bei Dinitrofluorescein, Dibromdinitrofluorescein und Tetranitrofluorescein (Syst. No. 2835) eingeordnet.

2. 3-Oxo-1.1-bis-[3.4-dioxy-phenyl]-phthalan, 3.3-Bis-[3.4-dioxy-phenyl]-phthalid. Brenzcatechinphthalein C₁₀H₁₄O₆, Formel II. B. Bei 3 bis 4-stdg. Erhitzen von 3 Tln. Phthalsäureanhydrid mit 2 Tln. Brenzcatechin und 3 Tln. Zink-chlorid auf 140—150° (Baeyer, Kochendörfer, B. 22, 2196; R. Meyer, Pfotenhauer, B. 40, 1443). — Krystalle (aus Benzol). Sintert zwischen 80° und 90°; besitzt keinen scharfen Schmelspunkt (R. M., Pf., B. 40, 1444). Flüchtig mit Wasserdampf (R. M., Pf., B. 40, 1444). Ziemlich schwer löslich in kaltem Wasser, leicht in Alkohol (B., K.). Mit roter Farbe löslich in kalter konzentrierter Schwefelsäure (B., K.). Die Lösung in Alkalien ist blau (B., K.) und zeigt keine Fluorescenz (R. Meyer, Ph. Ch. 24, 484). Die Lösung in Alkalicarbonaten ist violett (B., K.). Die wäßr. Lösung färbt Lackmus deutlich rot (R. M., Pf., B. 40, 1444). — Liefert bei längerem Erhitzen mit Resorcin auf 210—220° Fluorescein (R. M., Pf., B. 38,

8.3 - Bis - [4 - oxy - 8 - methoxy - phenyl] - phthalid, Guajacolphthalein C₂₂H₁₈O₆, Formel III (S. 231). B. Bei 3—4 - stdg. Erhitzen von 15 g Phthalsäureanhydrid mit 25 g Gujacol und 30 g Zinntetrachlorid auf 110—115° (BAEYER, KOCHENDÖRFER, B. 22, 2199). — Grangelbe Flocken. Fast unlöslich in kaltem Wasser. Unverändert löslich in kalter konzentrierter Schwefelsäure mit kirschroter Farbe. Die Lösung in Alkalien und Alkalicarbonaten ist violett.

8.8-Bis-[8.4-dimethoxy-phenyl]-phthalid $C_{24}H_{21}O_6 = C_6H_4(O\cdot CH_2)_2|_2 O$.

B. Aus 1 Mol Phthalylchlorid und 2 Mol Veratrol in Petroläther in Gegenwart von Aluminiumchlorid (Perkin, Weizmann, Soc. 89, 1657). — Nadeln (aus Eisessig). F: 155°. Unlöslich in Wasser, Sodalösung und Kalilauge, löslich in konz. Schwefelsäure mit tiefroter Farbe.

3.8 - Bis - [8.4 - diacetoxy - phenyl] - phthalid, Brenzcatechinphthalein-tetraacetat $C_{28}H_{28}O_{10} = C_{6}H_{4} - C[C_{6}H_{2}(O \cdot CO \cdot CH_{2})_{2}]_{2} - O$, B. Beim Kochen von Brenzcatechinphthalein mit Essigsäureanhydrid und etwas entwässertem Natriumacetat (R. MEYER, PFOTENHAUER, B. 40, 1444). — Nadeln (aus Essigester). F: 155—156°. — Wird durch kalte konzentrierte Schwefelsäure sowie durch wäßrige oder alkoholische Natronlauge verseift.

3.8 - Bis - [8 - methoxy-4-bensoyloxy-phenyl]-phthalid, Guajacolphthalein-dibensoat $C_{16}H_{26}O_{6}$, s. nebenstehende Formel. B. Beim Schütteln von Guajacolphthalein mit Benzoylchlorid und 10% ger Natronlauge (BAEYER, KOCHENDÖRFER, B. 22, 2199).— Gelbliche Würfel (aus Alkohol). — Wird von alkoh. Kali leicht, von konz. Natronlauge erst nach längerem Kochen verseift.

$$\begin{array}{c} CO \\ CH_{8} \cdot O \cdot \\ C_{0}H_{5} \cdot CO \cdot O \cdot \\ \end{array} \begin{array}{c} CO \\ O \cdot O \cdot CH_{8} \\ O \cdot CO \cdot C_{0}H_{5} \end{array}$$

8.8 - Bis - [8.4 - dibensoyloxy - phenyl] - phthalid, Brenzcatechinphthalein-tetrabensoat $C_{48}H_{80}O_{10} = C_6H_4 \underbrace{C[C_6H_5(O\cdot CO\cdot C_6H_5)_4]_2}O$. B. Beim Schütteln von Brenzcatechinphthalein mit Benzoylchlorid und 10% jeger Natronlauge (B., K., B. 22, 2197). — Nadeln (aus Alkohol + Essigester). F: 201—202°. Sehr schwer löslich in Alkohol, leicht in Essigester.

3.3-Bis-[3.4-bis-(3-nitro-benzoyloxy)-phenyl]-phthalid, Brenzcatechinphthaleintetrakis-[3-nitro-benzoat] $C_{48}H_{26}O_{18}N_4 = C_6H_4 C[C_6H_4(O\cdot CO\cdot C_6H_4\cdot NO_3)_3]_5 O.$ B. Beim Schütteln von Brenzcatechinphthalein mit 3-Nitro-benzoylchlorid und $10^0/_0$ iger Natronlauge (B., K., B. 22, 2198). — Krystalle (aus Alkohol und Essigester). Färbt sich leicht rötlich.

h) Oxy-oxo-Verbindungen $C_nH_{2n-28}O_6$.

1. Lacton der 1-0xy-3-oxo-2-[2-oxy-1.3-dioxo-hydrindyl-(2)]-hydrinden-carbonsäure-(1), Lacton der 1.2'-Dioxy-3.1'.3'-trioxo-dihydrindyl-(2.2')-carbonsäure-(1) $C_{10}H_{10}O_{0}$, Formel I.

I.
$$0\overset{C_6H_4 \cdot C(O + CH_3) \cdot CO}{C_6H_4 \cdot CO} \circ II. 0\overset{C_6H_4 \cdot C(O \cdot CH_3) \cdot CO}{OC \cdot C_6H_4 \cdot CO} \circ II.$$

Lacton der 2'-Oxy-1-methoxy-3.1'.8'-trioxo-dihydrindyl-(2.2')-carbonsäure-(1) $C_{20}H_{12}O_4$, Formel II. B. Durch Schütteln von [β -Brom- α .y-diketo- β -hydrindyl]-indon-carbonsäure (Bd. X, S. 891) mit absol. Methylalkohol (STADLER, B. 35, 3962). — F: 198°.

Lacton der 2'-Oxy-1-āthoxy-3.1'.3'-trioxo-dihydrindyl-(2.2')-carbonsäure-(1) $C_{21}H_{14}O_{6}$, Formel III. B. Durch Schütteln von [β-Brom-α.γ-diketo-β-hydrindyl]-indon-carbonsäure (Bd. X, S. 891) mit absol. Alkohol (Sr., B. 35, 3962). — Tafeln (aus Chloroform). F: 138°. — Bei der Reduktion mit Jodwasserstoffsäure und rotem Phosphor entsteht Bisdiketohydrinden. Liefert beim Erhitzen auf 280° sowie beim Erwärmen mit konz. Schwefelsäure 9.10-Dioxy-naphthacenchinon. Geht beim Erhitzen mit Alkali in [α.γ-Diketo-β-hydrindyl]-indon-carbonsäure über.

III.
$$\begin{array}{c} C_0H_4 \cdot C(O \cdot O_2H_5) \cdot CO \\ OC & CH & CO \end{array}$$
 IV. $\begin{array}{c} C_0H_4 \cdot C(O \cdot OH_3) \cdot CO \\ OB_1 & OC & OB_2 \end{array}$

Lacton der 2-Brom-2'-oxy-1-methoxy-3.1'.3'-trioxo-dihydrindyl-(2.2')-carbon-säure-(1) $C_{20}H_{11}O_6Br$, Formel IV. B. Durch Bromieren des Lactons der 2'-Oxy-1-methoxy-

3.1'.3'-trioxo-dihydrindyl-(2.2')-carbonsäure-(1) in Eisessig (St., B. 35, 3963). — Nadeln (aus Eisessig). F: 198°.

Lacton der 2-Brom-2'-oxy-1-äthoxy-3.1'.3'-trioxodihydrindyl-(2.2')-carbonsäure-(1) $C_{21}H_{13}O_{6}$ Br, s. nebenstehende Formel. B. Durch Bromieren des Lactons der 2'-Oxy-1-äthoxy-3.1'.3'-trioxo-dihydrindyl-(2.2')-carbonsäure-(1) in Eisessig (St., B. 35, 3964). — Nadeln (aus Eisessig). F: 211°.

2. Oxy-oxo-Verbindungen C₂₀H₁₂O₆.

1. γ-Lacton der 2-[1.3.6.8.9-Pentaoxy-fluorenyl-(9)]-benzoesäure, γ-Lacton des 1.3.6.8.9-Pentaoxy-9-[2-carboaxy-phenyl]-fluorens, Diresorcin-phthalein C₁₀H₁₂O₆, Formel I. B. Bei 6-stdg. Erhitzen von 10 Tln. 3.5.3′.5′-Tetraoxy-diphenyl mit 7,5 Tln. Phthalsäureanhydrid und 12 Tln. Zinntetrachlorid auf 110—115° (Link, B. 13, 1654; vgl. Benedikt, Julius, M. 5, 181). Neben geringen Mengen 1.8-Dioxy-3.6-bis-[3.5-dioxy-phenyl]-fluoran(?) (Formel II, Syst. No. 2843) bei 2-stdg. Erhitzen von

1 Mol 3.5.3'.5'-Tetraoxy-diphenyl mit 1 Mol Phthalsäureanhydrid in Gegenwart von konz. Schwefelsäure auf 120° (B., J., M. 5, 182; vgl. R. Meyer, K. Meyer, B. 44 [1911], 2679). — Nadeln mit 3¹/₂ H₂O (aus Wasser) (B., J.). Beginnt bei 245° sich zu schwärzen, ohne zu schmelzen (L.). Löslich in Alkalien mit indigoblauer Farbe (L.; B., J.). — Liefert bei der Reduktion mit Zinkstaub und Natronlauge Diresoreinphthalin (Bd. X, S. 574) (L.; B., J.). Zur Bromierung vgl.: B., J.; R. M., K. M., B. 44 [1911], 2680, 2683. Beim Erhitzen mit 3.5.3'.5'-Tetraoxy-diphenyl entsteht 1.8-Dioxy-3.6-bis-[3.5-dioxy-phenyl]-fluoran(?) (B., J.).

2. 2.3.12.13-Tetraoxy-10-oxo-cöroxan, 2.3.12.13-Tetraoxy-cöroxon bezw. 2.3.10.12.13-Pentaoxy-cöroxen, 2.3.12.13-Tetraoxy-cöroxenol $C_{20}H_{12}O_{6}$, Formel III bezw. IV, Cörulin. Zur Konstitution vgl. Obndorff, Brewer, Am. 23, 430; 26, 157. — B. Bei der Reduktion von Cörulein (S. 234) mit Zinkstaub und Ammoniak (Baeyer,

B. 4, 557). Aus Gallin (Syst. No. 2617) durch Einw. von konz. Schwefelsäure in der Kälte (Buchka, A. 209, 274). — Rotbraune Flocken. Leicht löslich in Alkohol, Äther und Eisessig mit gelbgrüner Fluorescenz (Bu.). Löslich in konz. Schwefelsäure mit roter Farbe (Bu.). — Oxydiert sich an der Luft sehr leicht zu Cörulein (Bar.; Bu.).

2.3.10.12.13 - Pentaacetoxy - coroxen $C_{30}H_{23}O_{11} = OC_{30}H_7(O \cdot CO \cdot CH_3)_5$, s. Bd. XVII, S. 228.

3. 7.8-Dioxy-4-oxo-2-phenyl-3-[3.4-dioxy-benzal]-chroman, 7.8-Dioxy-3-[3.4-dioxy-benzal]-flavanon $C_{12}H_{16}O_6$, Formel V.

7.8-Dimethoxy-3-veratral-flavanon $C_{20}H_{24}O_6$, Formel VI. B. Aus 7.8-Dimethoxy-flavanon und Veratrumaldehyd in alkoh. Salzsäure (Katschalowsky, v. Kostanecki, B. 37, 3171). — Hellgelbe Täfelchen. F: 196°. Löslich in konz. Schwefelsäure mit roter Farbe.

i) Oxy-oxo-Verbindungen C_nH_{2n-30}O₆.

Oxy-oxo-Verbindungen C₂₀H₁₀O₆.

1. 2.3.7-Trioxy-1(CO).9-oder 8(CO).9-benzoylen-fluoron, Violein C₂₀H₁₀O₄, Formel I oder II. B. Durch 2-stdg. Erwärmen von 1 Tl. 2.3.6.7-Tetraoxy-fluoran (Formel III,

Syst. No. 2843) mit 7—8 Tln. konz. Schwefelsäure auf 120° und Eingießen der dunkelvioletten Lösung in Wasser (Thiele, Jaeger, B. 34, 2619). — Dunkles Pulver. Löslich mit violetter Farbe in viel Nitrobenzol, Eisessig und Anilir. Bildet mit Alkalien indigoblaue Salze.

- **2.6.7-Triacetylderivat** $C_{20}H_{16}O_{9}=C_{20}H_{1}O_{5}(O\cdot CO\cdot CH_{3})_{3}$. B. Beim Kochen von Violein mit Essigsäureanhydrid (Th., J., B. 84, 2620). Braunviolettes Pulver (aus Essigester + Äther). Leicht löslich mit rotvioletter Farbe in Eisessig, Aceton, Chloroform urd Essigester, sehr wenig in Äther.
- 2. 4.5.6-Trioxy-1(CO).9 oder 8(CO).9-benzoylen-fluoron, Cörulein C₅₀H₁₀O₆, Formel IV oder V. Zur Konstitution vgl. Orndorff, Brewer, Am. 23, 430; 26, 141, 154.— B. Durch Erhitzen von 1 Tl. Gallein (Syst. No. 2843) mit 20 Tln. konz. Schwefelsäure auf 200° und Eingießen in viel Wasser (Baeyer, B. 4, 556). Bei der Oxydation von Cörulin

(S. 233) an der Luft (Buchka, A. 209, 274). — Warzen (aus konz. Schwefelsäure); bläulichschwarze Masse, die beim Reiben Metallglanz annimmt (Baey.). Äußerst wenig löslich in Wasser, Alkohol und Äther, leichter in Eisessig mit schmutzig grüner Farbe (Baey.; Bu.). Löslich in Alkalien mit grüner, in konz. Schwefelsäure mit olivbrauner Farbe (Baey.; Bu.). Leicht löslich in Anilin mit indigoblauer Farbe (Baey.). Löst sich in Pyridin mit grünlichblauer Farbe; diese geht auf Zusatz von überschüssiger Essigsäure in Purpurrot über; die Lösung in Chinolin ist in der Hitze purpurrot und wird beim Abkühlen grünlichblau, beim Verdünnen mit Chinolin grün (O., Br., Am. 26, 142). — Wird von Zinkstaub und Ammoniak in Cörulin übergeführt (Baey.; Bu.). Bei der Zinkstaubdestillation wird 9-Phenyl-anthracen gebildet (Bu.). Leitet man in die wäßr. Suspension von Cörulein Schwefeldioxyd, so geht es in Lösung, fällt aber beim Kochen wieder aus (O., Br., Am. 26, 142). Mit Alkalidisulfiten bildet Cöruleins s. Heller, Langkoff, C. 1906 II, 681; Decker, Fellenberg, A. 364, 40. Cörulein färbt Tonerdebeize grün, Eisenbeize braun an (Baey.). Es findet, namentlich auch in Form seiner Disulfitverbindungen, als Beizenfarbtoff Verwendung (vgl. Schultz, Tab. No. 601). — Verbindung mit Methylamin C₂₀H₁₀O₆ + 2CH₂N. Dunkelgrüne Masse (Gibbs, Am. Soc. 28, 1417).

Schwer löslicher Cörulein-monomethyläther $C_{21}H_{12}O_6=C_{20}H_2O_5(O\cdot CH_2)$. B. Aus Cörulein durch Kochen mit Ätzkali und Methyljodid in methylalkoholischer Lösung; man destilliert Alkohol und Methyljodid ab und trennt den Rückstand durch $1^0/_0$ ige Kalilauge in einen alkalilöslichen und alkaliunlöslichen Teil; letzterer besteht wahrscheinlich aus (nicht näher beschriebenem) Cöruleintrimethyläther; in der alkal. Lösung befinden sich zwei Monomethyläther, die sich durch Alkohol trennen lassen (Orndorff, Brewer, Am. 26, 144). — Dunkelgefärbte Krystalle. Zersetzt sich beim Erhitzen, ohne zu schmelzen. Löslich in Alkohol, Anilin, Aceton und Kalilauge mit olivbrauner Farbe.

Leichter löslicher Cörulein-monomethyläther $C_{21}H_{12}O_5=C_{22}H_2O_5(0\cdot CH_3)$. B. s. im vorangehenden Artikel. — Krystalle (aus Alkohol). Löslich in Aceton und Pyridin mit purpurroter, in Alkohol und Anilin mit grünlichblauer, in Kalilauge mit hellgrüner Farbe (O., B., Am. 26, 145).

Cörulein-monoäthyläther $C_{22}H_{14}O_6=C_{20}H_4O_5(O\cdot C_2H_5)$. B. Beim Kochen von Cörulein mit Äthyljodid und alkoh. Kalifauge (O., B.; Am. 26, 145). — Krystalle (aus Alkohol).

4.5.6 - Triacetoxy -1(CO).9 oder 8(CO).9 - benzoylen - fluoron, Cörulein - triacetat $C_{26}H_{16}O_9 = C_{20}H_7O_8(O\cdot CO\cdot CH_3)_3$. B. Beim Kochen von Cörulein mit Essigsäureanhydrid (BUOHKA, A. 2009, 273) in Gegenwart von Natriumacetat (Orndorff, Rrewer, Am. 26, 142). Beim Erwärmen von 2.3.10.12.13 - Pentaacetoxy-cöroxen (Bd. XVII, S. 228) mit Eisessig und Kaliumdichromat auf 65—70° (Bu., A. 209, 276; vgl. O., Br.). — Rote Nadeln (aus Eisessig). Löslich in Aceton, Alkohol, Chloroform und Benzol (Bu.). Äußerst leicht zersetzlich; zersetzt sich schon beim Abdampfen der Lösungen auf dem Wasserbad (Bu.). — Liefert mit Schwefeldioxyd in essigsaurer Lösung ein farbloses Additionsprodukt, das beim Erwärmen Schwefeldioxyd verliert und das Triacetat regeneriert (Bu.). Mit Zinkstaub und Essigsäure ntsteht ein äußerst unbeständiges Reduktionsprodukt, das rasch wieder in das Triacetat übergeht (Bu.).

5. Oxy-oxo-Verbindungen mit 7 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_nH_{2n-2}O_7$.

- 1. Oxy-oxo-Verbindungen $C_7H_{12}O_7$.
- 1. $\alpha.\beta$ -Dioxy- γ -[$\alpha.\beta.\gamma$ -trioxy-propyl]-butyrolacton, $\alpha.\beta.\delta.\epsilon.\zeta$ -Pentaoxy- γ -önantholacton $C_7H_{12}O_7 = \begin{array}{c} HO \cdot HC \longrightarrow CH \cdot OH \\ OC \cdot O \cdot CH \cdot CH(OH) \cdot CH(OH) \cdot CH_9 \cdot OH \end{array}$
- a) γ Lacton der d Glyko α heptonsäure $C_7H_{12}O_7 = H_1H_2 + H_3H_3 = H_3H_3$

H H H H H H H H H H H H H HO.CH₂ C -

ÖH ÖH H ÖH ÖH

Zur Geschwindigkeit der Lactonbildung aus der freien Säure vgl. Hjelt, B. 29, 1862. —

Zur Darstellung vgl. Philippe, A. ch. [8] 26 [1912], 331; Glaser, Zuckermann, H. 166 [1927], 105. — Rhombische Krystalle (Haushoffer, B. 19, 770). Erweicht bei 145—1480 (Khiani, B. 19, 770), schmilzt bei 1480 (Levene, Meyer, J. biol. Chem. 60 [1924], 178), bei 156—1570 (Ph.). Leicht löslich in Wasser, schwieriger in Alkohol, unlöslich in Äther (K., B. 19, 770). [α]_i.: —55,30 (in Wasser; p = 3,4) (K., B. 19, 770); [α]_i.: —52,20 (in Wasser; c = 10) (van Ekenstein, Jorissen, Reicher, Ph. Ch. 21, 383), —51,50 (gleich nach der Auflösung; in Wasser; c = 7,5), —49,80 (nach 1 Stde.) (Weber, Tollens, A. 299, 328). Verbrennungswärme 726 kcal/Mol (Fogh, C. r. 114, 921). — Durch Oxydation mit Salpetersäure erhält man eine Pentaoxypimelinsäure (d-Glyko-α-pentaoxypimelinsäure, Bd. III, S. 589), deren Lactonsäure bei 1430 schmilzt und optisch inaktiv ist (K., B. 19, 1917; E. Fischer, A. 270, 66, 91; vgl. K., B. 55 [1922], 2818; 58 [1925], 2354 Anm. 29). Bei der Reduktion mit Natriumamalgam in schwach schwefelsaurer Lösung entsteht d-Glyko-α-heptose (Bd. I, S. 934) (Fi., A. 270, 72), während beim Kochen mit konz. Jodwasserstoffsäure und rotem Phosphor Önanthsäure und γ-Önantholacton (Bd. XVII, S. 241) erhalten werden (K., B. 19, 1128). Mit Formaldehyd in Gegenwart von Salzsäure entsteht das Lacton der Dimethylen-d-glyko-α-heptonsäure (Syst. No. 3030) (W., T., B. 30, 2512; A. 299, 329).

b) γ - Lacton der d - Glyko - β - heptonsäure $C_7H_{12}O_7 =$

OH OH H OH H
Zur Darstellung vgl. Kiliani, B. 58 [1925], 2353. — Nadeln (aus absol. Alkohol). F: 151° bis 152° (E. Fischer, A. 270, 85), 161—162° (Philippe, A. ch. [8] 26 [1912], 329). Äußerst löslich in Wasser, schwer in kaltem Alkohol (E. F., A. 270, 85). [α][∞]: —82,1° (nach 20 Minuten; in Wasser; p = 10), —67,7° (nach 24 Stdn.; in Wasser; p = 10) (E. F., A. 270, 85), —67,6° (Endwert nach einer Stunde; in Wasser; c = 2,8) (Weber, Tollens, A. 299, 329). Zur Drehung vgl. Rehorst, A. 503 [1933], 151, 162. — Durch Erhitzen mit wäßr. Pyridin im Druckrohr auf 140° entsteht d-Glyko-α-heptonsäure (E. F., A. 270, 87). Gibt mit Salpetersäure eine Pentaoxypimelinsäure (d-Glyko-β-pentaoxypimelinsäure, Bd. III, S. 589), deren Lactonsäure bei 177° unter Zersetzung schmilzt und optisch aktiv ist (E. F., A. 270, 67, 90). Mit Natriumamalgam und verd. Schwefelsäure erhält man d-Glyko-β-heptose (E. F., A. 270, 87), bei weiterer Einw. d-Glyko-β-heptit (Bd. I, S. 548) (Рн., С. г. 147, 1481).

- α) γ-Lacton der d-Manno-α-heptonsdure (Konfiguration entsprechend Formel I, nach Peiroz, J. biol. Chem. 23 [1915], 327). B. Beim Verdunsten der wäßr. Lösung von d-Manno-α-heptonsäure (Bd. III, S. 573) (E. Fischer, Hirschberger, B. 22, 372). Weitere Bildungen s. bei d-Mannoheptonsäure, Bd. III, S. 573. Nadeln (aus Alkohol + Äther). Schmeckt süß (E. F., Passmore, B. 23, 2228) F: 148—150°; sehr leicht löslich in Wasser, ziemlich schwer in absol. Alkohol, unlöslich in Äther (E. F., H.). [α]: +74,2° (in Wasser; c = 10) (E. F., P.). Wird von Natriumamalgam in schwefelsaurer Lösung zu d-Manno-α-heptose (Bd. I, S. 935) reduziert (E. F., P.).
- β) γ-Lacton der l-Manno-α-heptonsäure (Konfiguration entsprechend Formel II, nach Peirce, J. biol. Chem. 23 [1915], 327). B. Beim Eindampfen der wäßr. Lösung von l-Manno-α-heptonsäure (Bd. III, S. 574) (Smith, A. 272, 184). F: 153—155°. Sehr leicht löslich in Wasser, sehwer in absol. Alkohol, unlöslich in Ather. $[\alpha]_D^{m_1}: +75.2°$ (in Wasser; p=5,3). Wird von Natriumamalgam in schwefelsaurer Lösung zu l-Manno-α-heptose (Bd. I, S. 935) reduziert.
- γ) γ -Lacton der dl-Manno- α -heptonsäure (Formel I + II). B. Beim Eindampfen einer wäßr. Lösung von gleichen Teilen der Lactone der d- und l-Manno- α -heptonsäure (Smtth, A. 272, 185). Nadeln (aus Wasser). Schmilzt gegen 85°. Ziemlich leicht löslich in kaltem Wasser, ziemlich schwer in heißem absolutem Alkohol. Schmeckt süß.
 - d) γ Lacton der d Gala α heptonsäure $C_7H_{12}O_7=$

HO · CH₂ · C — C — C — C — CO. Zur Konfiguration vgl. Peirce, J. biol. Chem. 28 [1915],

- OH H H OH OH

 327; HUDSON, KOMATSU, Am. Soc. 41 [1919], 1141. B. Beim Erhitzen von d-Galaα-heptonsäure (Bd. III, S. 574) auf 145° oder beim Kochen ihrer wäßrigen Lösung (KILIANI,
 B. 21, 917). Bei wiederholtem Eindampfen von d-Gala-α-heptonsäure mit starkem Alkohol
 (E. FISCHER, A. 288, 142). Nadeln (aus Methylalkohol). Erweicht gegen 142° und schmilzt
 bei langsamem Erhitzen bei 151° (korr.); sehr leicht löslich in Wasser, sohwer in Alkohol
 (E. F.). [α]^m: —52,2° (in Wasser; p=10) (E. F.). Bei der Reduktion mit Natriumamalgam
 entsteht d-Gala-α-heptose (Bd. I, S. 935) (E. F.).

 γ - Lacton der d - Fructoheptonsäure $C_7H_{12}O_7=H_{12}O_7=H_{13}O_7=H_{12}O_7=H_{13}O_7=$

HO CH₃ C C C C(OH)(CH₃ OH) OO Zur Konfiguration vgl. Killani, B. 61 [1928],

- 1165 Anm. 19; Nef. A. 376 [1910], 55 Anm. B. Beim Eindampfen der wäßr. Lösung von d-Fructoheptonsäure (Bd. III, S. 575) (Killani, B. 19, 1914; K., Döll, B. 23, 451; vgl. hierzu K., B. 61 [1928], 1164). Tafeln oder Prismen (aus Alkohol). Erweicht bei 126° und ist bei 130° völlig geschmolzen; äußerst leicht löslich in Wasser; in wäßr. Lösung rechtsdrehend (K., B. 19, 1915). Liefert mit Natriumamalgam und verd. Schwefelsäure eine Heptose (E. FISCHER, B. 23, 937).
- 2. $\alpha.\beta$ -Dioxy- γ -[$\alpha.\beta.\gamma$ -trioxy-butyl]-butyrolacton, $\alpha.\beta.\delta.\epsilon.\zeta$ -Pentaoxy- γ -caprylolacton $C_8H_{14}O_7 = {HO \cdot HC CH \cdot OH \over OC \cdot O \cdot CH \cdot [CH(OH)]_s \cdot CH_s}$

 γ -Lacton der l-Rhamno- $\alpha.\alpha$ -heptonsäure $C_bH_{14}O_7 =$

OH OH H H OH CH3·C—C—C—C—CH(OH)—CO. B. Beim Eindampfen der wäßr. Lösung von l-Rhamnoн н он н

α.α-heptonsäure (Bd. III, S. 575) (E. Fischer, Piloty, B. 28, 3106). — Nädelchen (aus

absol. Alkohol). F: 160°. Sehr leicht löslich in Wasser, ziemlich leicht in Methyl- und Äthylalkohol, unlöslich in Äther. $[\alpha]_0^m$: +55,6° (in Wasser; c = 10). — Wird von Natriumamalgam in schwach saurer Lösung zu l-Rhamno- α . α -heptose (Bd. I, S. 936) reduziert.

b) Oxy-oxo-Verbindungen $C_nH_{2n-4}O_7$.

3.4.2¹.2² - Tetraoxy - 5.2³ - dioxo - 2-propyl - furantetrahydrid, $\alpha\beta$ - Dioxy - γ - [$\alpha\beta$ - dioxy - γ - oxo - propyl] - butyrolacton, $\alpha\beta$. δ . ϵ - Tetraoxy - ζ - oxo - γ - δ nantholacton $C_7H_{10}O_7 = {HO \cdot HC - CH \cdot OH \over OC \cdot O \cdot CH \cdot CH(OH) \cdot CH(OH) \cdot CHO}$.

$$\textit{l-Manno-hepturons} \\ \textit{dure-y-lacton} \quad C_7 \\ H_{10} \\ O_7 \\ = \\ \underbrace{\text{OHC} \\ \dot{C} \\$$

OH H H OH OH CALLANI, B. 55 [1922], 86. — B. Entsteh neben d-Gala-α-penta-oxypimelinsäure (Bd. III, S. 589) als Hauptprodukt (Kiliani, B. 22, 522; E. Fischer, A. 288, 155), wenn man d-Gala-α-heptonsäure (Bd. III, S. 574) mit 1½ Tin. Salpetersäure (D: 1,2) erwärmt und die Flüssigkeit einige Tage über Ätzkalk stehen läßt (K., B. 22, 1385). — Prismen oder Tafeln (aus Wasser). F: 205—206° (Zers.) (K., B. 23, 1385). — Reduziert Fehllingsche Lösung (K., B. 22, 1385). Wird von Bromwasser zu d-Gala-α-penta-oxypimelinsäure oxydiert (K., B. 22, 1386). Gibt mit essigsaurem Phenylhydrazin ein Phenylhydrazon (K., B. 22, 1385).

Phenylhydrason $C_{18}H_{16}O_6N_3=\frac{HO\cdot HC--CH\cdot OH}{OC\cdot O\cdot CH\cdot CH(OH)\cdot CH(OH)\cdot CH:N\cdot NH\cdot C_6H_5}$ Aus $\alpha.\beta.\delta.e$ -Tetraoxy- ζ -oxo- γ -önantholacton und essigsaurem Phenylhydrazin in wäßr. Lösung (Killani, B. 22, 1385). — Blaßgelbe Säulen. Schmilzt unter Zersetzung bei 166°. Schwer löslich.

c) Oxy-oxo-Verbindungen $C_nH_{2n-16}O_7$.

Vitexin C₁₅H₁₄O₇, vielleicht Formel I oder II, s. Syst. No. 4865.

d) Oxy-oxo-Verbindungen $C_nH_{2n-18}O_7$.

1. 3'.4'.5'.3".4"-Pentaoxy-2-oxo-[dibenzo-1'.2':3.4;1".2":5.6-(1.2-pyran)]1), Lacton der 4.5.6.2'.3'.4'-Hexaoxy-diphenyl-carbonsäure-(2) C₁₂H₂O₇, s. nebenstehende Formel. Zur Konstitution vgl. Perkin, Nierenstein, Soc. 87, 1424; N., B. 43 [1910], 2017. — B. Aus Ellagsäure (Syst. No. 2843) durch Schmelzen mit 5 Thn. Kali und Ansäuern des Reaktionsprodukts (Oser, Kalmann, M. 2, 50). Durch kurzes Kochen von Ellagsäure mit sehr konz. Kalilauge und Ansäuern der Lösung (Babth, Goldschmiedt, B. 12, 1247; P., N., Soc. 87, 1423). Durch Reduktion von Ellagsäure mit Natriumamalgam und Ansäuern der Lösung (N., B. 41, 1649). Entsteht aus Luteosäure (Syst. No. 2626), wenn man sie in Pyridin-Lösung mit Jodwasserstoffsäure (D: 1,96) versetzt und dem zerstreuten Tageslicht aussetzt (N., B. 41, 3018). — Mikroskopische Prismen oder Nädelchen (aus Wasser). Schmilzt noch nicht bei 360° (N., B. 43 [1910], 2017). Fast unlöslich in kaltem, ziemlich schwer in heißem Wasser; sohwer löslich in Äther, Chloroform, Schwefelkohlenstoff und Benzol, sehr leicht in Alkohol (Ba., Go.). — Gibt bei der Destillation mit Zinkstaub Fluoren (O., Böcker, J. 1879, 684;

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

BA., Go.; P., N.). Liefert beim Kochen mit Acetylchlorid ein Pentaacetylderivat (P., N.). — Die wäßr. Lösung des Lactons färbt sich auf Zusatz von wenig Kaliumhydroxyd gelbbraun; die Färbung geht besonders beim Schütteln sehr schnell über Dunkelgelbrot in Carmin über (BA., Go.; vgl. O., K.). Durch Einleiten von Kohlendioxyd in die alkal. Lösung wird die rote Farbe nicht verändert; durch Ansäuern mit Mineralsäuren schlägt sie jedoch in Gelb um (O., K.). In alkoh. Lösung entsteht durch Alkalien ein grüner Niederschlag, der sich auf Zusatz von Wasser mit carminroter Farbe löst (BA., Go.). In ganz verd. Lösungen entsteht durch Eisenchlorid eine blaugrüne Färbung, in konz. Lösungen ein blauschwarzer, in viel Wasser löslicher Niederschlag; Ferrosulfat bewirkt eine blaue Färbung (BA., Go.).

Pentaacetylderivat $C_{23}H_{18}O_{12}=C_{18}H_3O_2(O\cdot CO\cdot CH_3)_5$. B. Bei 2-stdg. Kochen des Lactons mit Essigsäureanhydrid (Perker, Nierenstein, Soc. 87, 1424). — Farblose prismatische Nadeln. F: $224-226^{\circ}$.

Pentabenzoylderivat $C_{48}H_{28}O_{12}=C_{13}H_3O_3(O\cdot CO\cdot C_6H_5)_5$. B. Aus dem Lacton durch Behandeln mit Benzoylchlorid in Pyridinlösung (P., N., Soc. 87, 1424; N., B. 41, 1650). — Farblose Platten (aus Nitrobenzol + Alkohol). F. 257—259° (P., N.), 260—262° (N., B. 41, 1650).

2. 5.6 - Dioxy - 3 - oxo - 1 - [2.3.4 - trioxy - phenyl] - phthalan, 5.6 - Dioxy - 3 - [2.3.4 - trioxy - phenyl] - phthalid $C_{14}H_{10}O_2$, Formel I.

5.6 - Dimethoxy - 3 - [3.4 - dimethoxy - 2 - carboxymethoxy - phenyl] - phthalid, 3 - [3.4 - Dimethoxy - 2 - carboxymethoxy - phenyl] - metamekonin, Dihydrohämatoxylinsäurelacton C₂₀H₂₀O₉, Formel II. F. Aus Hämatoxylinsäure (Bd. X, S. 1048) durch Reduktion mit Natriumamalgam und darauffolgendes Ansäuern (Perkin, Yates, Soc. 81, 244). Man schmilzt 3 g [4.5-Dimethoxy-phthalsäure]-anhydrid (S. 169) und 4 g Pyrogalloltrimethyläther zusammen, fügt bei 150° 8 g Aluminiumchlorid zu. zersetzt die ausgeschiedene Aluminiumchlorid-Verbindung mit Wasser und äthert aus; die äther. Lösung zieht man mit Sodalösung aus, behandelt die alkal. Lösung mit Natrium-

(Perkin, Yates, Soc. 81, 244). Man schmilzt 3 g [4.5-Dimethoxy-phthalsaure]-anhydrid (S. 165) und 4 g Pyrogalloltrimethyläther zusammen, fügt bei 150° 8 g Aluminiumchlorid zu zersetzt die ausgeschiedene Aluminiumchlorid-Verbindung mit Wasser und äthert aus; die äther. Lösung zieht man mit Sodalösung aus, behandelt die alkal. Lösung mit Natriumamalgam, säuert an, löst den braunen Niederschlag in Pottaschelösung, kocht mit überschüssiger Chloressigsäure und säuert wiederum an (P., Robinson, Soc. 93, 515). — Farblose Nadeln (aus Essigsäure). F: 192—193° (P., Y.), 192° (P., R.). Leicht löslich in heißem Eisessig, mäßig löslich in Methylalkohol, schwer in heißem Wasser, fast unlöslich in Benzol, Chloroform und Petroläther, unlöslich in kaltem Wasser (P., Y.). Löslich in konz. Schwefelsäure mit roter Farbe, die beim Aufbewahren lachsfarbig wird und dann beim Erwärmen über Rot und Violett in Braun übergeht (P., R.; vgl. P., Y.). — AgC₂₀H₁₉O₂. Weiß, amorph. Sehr wenig löslich in Wasser (P., Y.).

3. 3.7 - Dioxy - 5.8 - dioxo - 2 - [3.4 - dioxy - phenyl] - chroman - dihydriu - (5.8), 3.7.3'.4' - Tetraoxy - 5.8 - dioxo - flavan - dihydrid - (5.8), Catechon $C_{15}H_{12}O_{7}$, Formel III.

3-O \pm y-7.3'.4'-trimethoxy-5.8-dioxo-flavan-dihydrid-(5.8)¹), Catechon-trimethyläther $C_{18}H_{18}O_{7}$, Formel IV. Das Molekulargewicht ist ebullioskopisch in Äthylenbromid bestimmt (Karnowski, Tambor, B. 35, 2409). — B. Entsteht neben geringen Mengen Veratrumaldehyd und Veratrumsäure (v. Kostanecki, Lampe, B. 39, 4017) durch Oxydation von 4 g [d-Catechin]-tetramethyläther (Bd. XVII, S. 211) mit 2 g Chromtrioxyd in Eisessig

(v. Ko., Tambor, B. 35, 1869; Freudenberg, Fikentscher, Wenner, A. 442 [1925], 321). — Orangefarbene Nadeln (aus Eisessig oder viel Alkohol). Schmilzt bei 210° unter Gasentwicklung (v. Ko., T.). Die Lösung in konz. Schwefelsäure ist zunächst violett, dann schmutzig rot (v. Ko., T.). Fällt aus der violetten Lösung in Natronlauge bei sofortigem Ansäuern unverändert aus (v. Ko., L., B. 39, 4013). — Gibt bei der Oxydation mit kalter

¹⁾ So formuliert auf Grund einer Privat-Mitteilung von FREUDENBERG [1932].

Kaliumpermanganat-Lösung Veratrumsäure (v. Ko., L., B. 39, 4012). Beim Eintragen von Catechontrimethyläther in Salpetersäure (D: 1,3) entsteht N.trocatechon-trimethyläther (Kab., T.; v. Ko., L., B. 39, 4013).

3.7.3'.4'-Tetramethoxy-5.8-dioxo-flavan-dihydrid-(5.8), Catechon-tetramethyläther $C_{19}H_{20}O_7=C_{15}H_8O_3(O\cdot CH_3)_4$. B. Durch Oxydation von [d-Catechin]-pentamethyläther (Bd. XVII, S. 212) in Eisessig mit Chromsäure (v. Kostanecki, Lampe, B. 39, 4013). — Gelbe Nädelchen (aus Alkohol). F: 174—175°.

6'-Nitro-3-oxy-7.8'.4'-trimethoxy-5.8-dioxoflavan-dihydrid-(5.8), Nitrocatechon-trimethyläther C₁₈H₁₇O₂N, s. nebenstehende Formel. B. Durch Eintragen von Catechontrimethyläther in Salpetersäure (D: 1,3) (Karnowski, Tambor, B. 35, 2409; v. Kostanecki, Lampe, B. 39, 4013). — Gelbe Nadeln

(aus Eisessig-Alkohol). Schmilzt bei 1410 unter Gasentwicklung (KAR., T.). - Liefert bei der Oxydation mit kalter Kaliumpermanganat-Lösung 6-Nitro-veratrumsäure (v. Ko., L.).

e) Oxy-oxo-Verbindungen $C_n H_{2n-20} O_7$.

1. Oxy-oxo-Verbindungen $C_{15}H_{10}O_{7}$.

1. 5.7-Dioxy-3.4-dioxo-2-[2.4-dioxy-phenyl]-chroman, 5.7.2'.4'-Tetraoxy-3.4-dioxo-flavan bezw. 3.5.7-Trioxy-2-[2.4-dioxy-phenyl]-chromon, 3.5.7.2'.4'-Pentaoxy-flavon, 5.7.2'.4'-Tetraoxy-flavonol C15H1007, Formel I bezw. II, *Morin* (Morinsäure). Für die vom Namen "Morin" abgeleiteten Namen wird in diesem Handbuch die eingezeichnete Bezifferung gebraucht. — V. Im Gelbholz (von Chlorophora tinctoria = Maclura tinctoria, Morus tinctoria) (WAGNER, J. pr. [1] 51, 84; J. 1850,

528). In. Holz von Artocarpus integrifolia (Perkin, Cope, Soc. 67, 937). — B. Aus Morin-7.2'.4'-trimethyläther (S. 240) durch Kochen mit Jedwasserstoffsäure (D: 1,9) (v. Kostanecki, Lampe, Tambor, B. 39, 627). Aus 6.8.3'.5'-Tetrabrom-morin-3-äthyläther (S. 242) durch Jodwasserstoffsäure (Herzig, M. 18, 707). — Darst. Man behandelt den bei der Verarbeitung des wäßr. Gelbholzauszuges erhaltenen Niederschlag von Morin und Morinkalk (s. bei Maclurin, Bd. VIII, S. 539) in heißem Wasser mit Salzsäure, löst dann in heißem Alkohol und versetzt die filtrierte Lösung mit $^{1}_{10}$ Vol. Wasser; beim Erkalten krystallisiert Morin aus; aus dem Filtrat kann man durch fraktioniertes Fallen mit Wasser weiteres Morin gewinnen (Hlasiwetz, Pfaundler, A. 127, 352; Benedikt, Hazura, M. 5, 167; vgl. Löwe, Fr. 14, 119). Zur Reinigung stellt man das Hydrobromid dar, wäscht dieses mit Essigsäure und zerlegt es durch heißes Wasser (PE., PATE, Soc. 67, 650). — Nadeln (aus Alkohol) (HL., PF., zeriegt es durch neines Wasser (FE., PATE, Soc. 67, 650). — Nadeln (aus Alkohol) (HL., PF., A. 127, 353). Fast farblos (HE., M. 18, 701). Schmeckt schwach bitter (Wa., J. pr. [1] 51, 86). Krystallisiert aus Wasser mit 2 oder 1 H₂O, aus verd. Alkohol mit 1 H₂O (Lö., Fr. 14, 120; BE., HA., M. 5, 174). F: 285° (HE., M. 18, 707), 290° (Zers.) (v. K., La., T., B. 39, 627). 1 Tl. löst sich in 4000 Tln. Wasser bei 20° und in 1060 Tln. Wasser bei 100° (Wa., J. pr. [1] 51, 86; J. 1850, 529). Leicht löslich in Alkohol, weniger leicht in Äther, unlöslich in Schwefelkohlenstoff (HL., PF., A. 127, 353). Löst sich in konz. Schwefelsäure mit blaßgelber Farbe und starker bläulichgrüner Fluorescenz (HE., M. 18, 711; v. K., La., T., B. 39, 627). Sehr leicht löslich in Alkalien mit tiefgelber Farbe (HL., PF., A. 127, 353). Die alkoh. Lösung wird durch Eisenchlorid tief olivgrün gefärht (HL., PF., A. 127, 353). — Die ammoniakalische Lösung reduziert chlorid tief olivgrün gefärbt (HL., Pr., A. 127, 353). — Die ammoniakalische Lösung reduziert Silberlösung in der Kälte und Fehlingsche Lösung beim Erwärmen (HL., Pr., A. 127, 353). Morin liefert bei der trocknen Destillation Resorcin und wenig "Paramorin" (S. 240) (BE., B. 8, 605). Gibt bei der Oxydation mit Salpetersäure Oxalsäure und 2.4-Dioxy-benzoessäure (Be., Ha., M. 5, 170). Reduktion mit Natriumamalgam: Hl., Pf., J. pr. [1] 94, 70; J. 1864, 557; Be., Ha., M. 5, 169; vgl. Willstätter, Mallison, A. 408 [1915], 27. Morin liefert beim Erwärmen mit konz. Schwefelsäure eine Monosulfonsäure (Syst. No. 2633) (Be., Ha., M. 5, 670). Beim Schmelzen von Morin mit Atzkali entstehen Phloroglucin und Resorcin neben etwas Oxalsäure (HL., Pr., J. pr. [1] 94, 73; J. 1864, 558; BE., HA., M. 5, 167). Morin gibt bei 4-tägigem Kochen mit überschüssigem Methyljodid und methylalkoholischer Kalilauge Morin-3.7.2'.4'-tetramethyläther (Bablich, Pr., Soc. 69, 796). Liefert bei 24-stdg. Einw.

von überschüssigem Diazomethan ein Gemisch von Morin-3.7.2'.4'-tetramethyläther und Morinpentamethyläther (He., Klimosch, M. 30, 533). Gibt mit Dimethylsulfat und einem großen Überschuß von Natronlauge Morinpentamethyläther (He., Hofmann, B. 42, 155). Die äthylslkoholische Lösung liefert mit Brom 6.8.3'.5'-Tetrabrom-morin-3-äthyläther (Be., Ha., M. 5, 667). Morin wird durch alkoh. Salzsaure oder Bromwasserstoffsäure nicht äthyliert (He., M. 18, 712). Färbt mit Tonerde gebeizte Fasern intensiv gelb (Be., Ha., M. 5, 165); färbt Wolle auf Tonerde- und Zinnbeize gelb, auf Chrombeize olivgelb, auf Eisenbeize olivbraun an (Pe., Wilkinson, Soc. 81, 588, 590). Beim Vermischen von alkoh. Morinlösung mit Aluminiumsalzlösungen tritt auch in außerordentlich großer Verdünnung eine grüne Fluorescenz auf; sie kann sowohl zum Nachweis von Morin als auch von Aluminium dienen (Goppelsbouer, J. pr. [1] 101, 411; Fr. 7, 195; Verh. d. Naturf.-Ges. zu Basel 19, Heft 2, S. 55; C. 1908 I, 761).

Ammoniumsalz. Nadeln (Perkin, Wood, Chem. N. 77, 127). — Na $C_{15}H_{\bullet}O_{7}$. Orangefarbene Nadeln (Pe., Wood, Chem. N. 77, 127; Pe., Soc. 75, 437). — K $C_{15}H_{\bullet}O_{7}$. Orangefarbene Nadeln (Pe., Wood, Chem. N. 77, 127; Pe., Soc. 75, 436; vgl. Hlasiwetz, Pfaundler, J. pr. [1] 94, 67; J. 1864, 557). — Mg($C_{15}H_{\bullet}O_{7}$). Orangefarbene Nadeln (Pe., Wood, Chem. N. 77, 127; Pe., Soc. 75, 437). — Calciumsalz. Gelber Niederschlag (Hl., Pe., J. pr. [1] 94, 68; J. 1864, 557). — Ba($C_{15}H_{\bullet}O_{7}$). Orangefarbene Krystalle (Pe., Soc. 75, 437). — Zinksalz. Citronengelbe Nadeln. Unlöslich in Wasser, löslich in heißem Alkohol (Hl., Pf., J. pr. [1] 94, 68; J. 1864, 557). — $C_{15}H_{10}O_{7} + PbO + H_{\bullet}O$. B. Durch Eingießen von alkoh. Bleizuckerlösung in alkoh. Morinlösung (Löwe, Fr. 14, 123). Gelber Niederschlag, Gießt man umgekehrt die Morinlösung in überschüssige heiße, alkoholische Bleizuckerlösung, so entsteht ein orangeroter Niederschlag der ungefähren Zusammensetzung $C_{15}H_{10}O_{7} + 2PbO$ (Lö.). — $C_{18}H_{10}O_{7} + HCl$ (Pe., Pate, Soc. 67, 650). — $C_{15}H_{10}O_{7} + HBr$. Orangefarbene Nadeln. Unlöslich in Essigsäure; wird durch Wasser zerlegt (Pe., Pa., Soc. 67, 649). — $C_{15}H_{10}O_{7} + HBr$. Orangefarbene Nadeln. Unlöslich in Essigsäure in eine kochende Lösung von Morin in Eisessig (Pe., Pa., Soc. 67, 649; Pe., Cope, Soc. 67, 938). Orangerote Krystallmasse. Wird durch Wasser in Morin und Schwefelsäure zerlegt (Pe., Pa., Soc. 67, 649).

"Paramorin" $C_{13}H_8O_5(?)$. B. Entsteht in kleiner Menge beim Destillieren von 1 Tl. Morin mit 4—5 Tln. Sand; das Destillat wird aus Wasser umkrystallisiert, wobei zuerst Paramorin auskrystallisiert, während Resorein in Lösung bleibt (Benedikt, B. 8, 606). — Gelbliche Nadeln. Verflüchtigt sich zum Teil unzersetzt. Sehr leicht löslich in Äther und in siedendem Wasser. Die Lösung in Alkalien ist gelb. Wird von Eisenehlorid nur wenig gefärbt. Löst sich ohne Färbung in konz. Schwefelsäure. — Reduziert Fehlingsche Lösung. Die alkoh. Lösung gibt mit alkoh. Bleizuckerlösung nur einen geringen farblosen, krystallinischen Niederschlag.

x.x.x-Trioxy-x.x-dimethoxy-flavon, Morin-dimethyläther $C_{17}H_{16}O_7 = C_{15}H_{4}O_5(O \cdot CH_{4})_2$. B. Entsteht neben 2.4-Dimethoxy-benzoesäure bei 2-stdg. Erhitzen von Morin-3.7.2'.4'-tetramethyläther mit überschüssiger alkoh. Kalilauge im Druckrohr auf 150—170° (Bablich, Perkin, Soc. 69, 797). — Gelbe Nadeln (aus Alkohol). F: 225—227°.

5-Oxy-7.2'.4'-trimethoxy-8.4-dioxo-flavan bezw. 8.5-Dioxy-7.2'.4'-trimethoxy-flavon, 5-Oxy-7.2'.4'-trimethoxy-flavonol $C_{18}H_{14}O_7$, Formel I bezw. II, Morin-

7.2'.4'-trimethyläther. B. Durch kurzes Kochen von 5.7.2'.4'-Tetramethoxy-3-oximino-flavanon mit Eisessig + 10°/oiger Schwefelsäure (v. Kostanecki, Lampe, Tambob, B. 39, 627). — Nadeln (aus Benzol). F: 165°. Die schwach gelbe Lösung in konz. Schwefelsäure fluoresciert stark grün; in Natronlauge mit gelber Farbe leicht löslich. — Färbt Tonerdebeize hellgelb an. Wird von siedender Jodwasserstoffsäure (D: 1,9) zu Morin verseift.

5-Oxy-8.7.2'.4'-tetramethoxy-flavon, 5-Oxy-7.2'.4'-trimethoxy-flavonol-methyläther, Morin-3.7.2'.4'-tetramethyläther $C_{19}H_{18}O_{7}$, s. nebenstehende Formel. B. Bei 4-tägigem Kochen von Morin mit überschüssigem Methyljodid und methylalkoholischer Kalilauge (Bablich, Perkin, Soc. 69, 796). Aus Morin und überschüssigem Diazomethan bei 24-stdg. Einw., neben Morin-pentamethyläther (Herzig, Klimosch, M. 30, 533). — Hellgelbe Nadeln (aus Alkohol). F: 131—132° (B., P.). Wird von alkoh. Kali bei 150—170° in Morindimethyläther und 2.4-Dimethoxy-benzoesäure zerlegt (B., P.). Ist durch Diazomethan nicht weiter methylierbar (H., K.).

3.5.7.2'.4'-Pentamethoxy-flavon, 5.7.2'.4'-Tetramethoxy-flavonol-methyläther, Morin-pentamethyläther $C_{30}H_{30}O_7 = (CH_3 \cdot O)_3C_6H_3 \cdot C \cdot C \cdot C \cdot CH_3$. B. Aus Morin mit Dimethylsulfat und einem großen Überschuß von Natronlauge (Herzig, Hofmann, B. 42, 155). Durch 24-stdg. Einw. von überschüssigem Diazemethan auf Morin, neben Morin, 27.2'.4' teteramethyläther (He. Kurnegur, M. 20, 52). Forblock Nodelle (our Alleche) 3.7.2'.4'-tetramethyläther (НЕ., Кымовон, М. 30, 533). — Farblose Nadeln (aus Alkohol). F: 154—157° (НЕ., Но.). Die farblose alkoholische Lösung färbt sich mit Kalilauge gelb (HE., Ho.). Löst sich in Schwefelsäure und Salzsäure mit gelber Farbe; die salzsaure Lösung scheidet beim Stehen einen gelben Niederschlag ab, der im Vakuum Salzsäure abgibt und mit Wasser Morinpentamethyläther zurückbildet; Zinntetrachlorid gibt einen gelben Niederschlag (HE., Ho.). — Gibt mit alkoh. Kalilauge auf dem Wasserbad 2-Oxy-4.6. \(\omega\)-trimethoxyacetophenon und 2.4-Dimethoxy-benzoesäure (HE., Ho.).

5 - Oxy - 3.7.2'.4' - tetraäthoxy - flavon, 5-Oxy-7.2'.4'-triathoxy-flavonol-athylather, Morin-3.7.2'.4'-tetraëthyläther $C_{23}H_{20}O_7$, s. C_{2H_5} o C_{2H_5} o C_{2H_5} nebenstehende Formel. B. Durch Erwärmen von Morin-3.7.2'.4'-tetraëthyläther-5-acetat mit alkoh. Kali und Eingießen der Lösung in verd. Salzsäure (Perkin, Phipps, Soc. 85, 61). — Blaßgelbe Nadeln (aus Methylalkohol). F: 1260 bis 128°. Schwer löslich in Methylalkohol.

3.7.2'.4' - Tetramethoxy - 5 - acetoxy - flavon, CH3 · CO · O 7.2'.4' - Trimethoxy-5-acetoxy-flavonol-methyläther, Morin-3.7.2.4-tetramethyläther-5-acetat $C_{31}H_{30}O_8$, s. nebenstehende Formel. B. Durch Kochen von Morin-3.7.2'.4'-tetramethyläther mit Essigsäureanhydrid und wasserfreiem Natriumacetat (Bablich, Perkin, Soc. 69, 797). — Farblose Nadeln (aus Alkohol). F: 167°. Wenig löslich in Alkohol.

8.7.2'.4'- Tetraäthoxy - 5 - acetoxy-flavon, 7.2'.4'- Triathoxy-5-acetoxy-flavonol-athyl-Morin - 3.7.2'.4' - tetraäthyläther -5-acetat C₂₅H₂₈O₈, s. nebenstehende Formel. B. Man behandelt Morin mit Athyljodid und alkoh. Kalilauge und erwärmt die entstandene harzige Masse mehrere Stunden mit Essigsäureanhydrid (Perkin, Phipps, Soc. 85, 61). — Farblose Nadeln (aus Methylalkohol). F: 121-123°. Leicht löslich in heißem Alkohol.

5 - Oxy - 3.7.2'.4' - tetrascetoxy flavon, 5 - Oxy - 7.2'.4' - triacetoxy -CO CO CO CH3 flavonol-acetat, Morin-3.7.2'.4'-tetra-acetat C₂₃H₁₈O₁₁, s. nebenstehende Formel. B. Durch Einw. von Essigsäureanhydrid auf Monokaliummorin (S. 240) bei gewöhnlicher Temperatur (Perkin, Soc. 75, 448). — Farblose Nadeln. F: 142—145°. Schwer löslich in Alkohol.

5.7.2'.4'- Tetramethoxy - 4 - oxo - 3 - oximinoflavan, 5.7.2'.4'- Tetramethoxy - 8 - oximino flavanon C₁₀H₁₉O₇N, s. nebenstehende Formel. B.

Durch Behandeln von 5.7.2'.4'-Tetramethoxyflavanon (8. 209) mit Amylnitrit und Salzsäure (v. Kostanecki, Lampe, Tambor, B. 39, 626). — Blaßgelbe Nadeln (aus Alkohol). Zersetzt sich bei 199°. Die Lösung in Natronlauge ist blaßgelb. — Färbt Kobaltbeize gelb an. Geht durch kurzes Kochen mit Eisessig + 10°/ojger Schwefelsäure in Morin-7.2'.4'-trimethyläther über.

6.8.3'.5'- Tetrabrom - 5.7.2'.4'- tetraoxy - 3.4 - dioxo - flavan bezw. 6.8.3'.5' - Tetrabrom -3.5.7.2.'4'-pentaoxy-flavon, 6.8.3'.5'-Tetrabrom-5.7.2'.4'-tetraoxy-flavonol $C_{18}H_{\bullet}O_{7}Br_{\bullet}$, Formel I bezw. II, 6.8.3'.5'-Tetrabrom-morin. B. Aus Morin und Brom in

Essigsäure (Bablion, Perkin, Soc. 69, 794; vgl. Hlasiwetz, Pfaundler, J. pr. [1] 94, 69; J. 1864, 557). Aus 6.8.3'.5'-Tetrabrom-morin-3-äthyläther durch Erhitzen mit konz. Salzsäure oder besser mit Zinnehlorür und Salzsäure (Benedikt, Hazura, M. 5, 669). — Nadeln mit 2¹/₈ H₂O (aus verd. Alkohol); wird bei 110⁰ wasserfrei und schmilzt bei 258⁰ (Be., Ha., M. 5, 669; Herzig, M. 18, 707). Ist in konz. Schwefelsäure (He., M. 18, 711) sowie in Alkalien (Be., Ha., M. 5, 670) mit gelber Farbe löslich. — Wird durch alkoh. Salzsäure oder Bromwasserstoffsäure nicht äthyliert (He., M. 18, 713). — Färbt Seide und Wolle aus schwach sauren Bädern gelb (Be., Ha., M. 5, 670). Zieht auch auf Beizen (He., M. 18, 711). — KC₁₅H₅O₇Br₄. B. Aus Tetrabrom-morin in alkoh. Lösung durch Einw. von Kaliumacetat (P., Soc. 75, 437). Gelbe Nadeln. — K₂C₁₅H₄O₇Br₄. B. Aus Tetrabrom-morin mit überschüssigem Kaliumacetat (P., Soc. 75, 437). Orangefarbenes Pulver.

6.8.3'.5'-Tetrabrom-5.7.2'.4'-tetraoxy-3-ëthoxy-flavon, 6.8.3'.5'-Tetrabrom - 5.7.2'.4'-tetraoxy-flavonol-ëthylëther, 6.8.3'.5'-Tetrabrom-morin-3-ëthylëther, 6.8.3'.5'-Tetrabrom-morin-3-ëthylëther C₁₇H₁₀O₇Br₄, s. nebenstehende Formel.

B. Beim Bromieren von Morin in Alkohol (Benedikt, Br. Hazura, M. 5, 667). Durch Zusatz von Brom zu einer Suspension von 6.8.3'.5'-Tetrabrom-morin in Alkohol (Herzig, M. 18, 713). — Farblose Krystalle mit 4 H₂O (aus verd. Alkohol). Verliert über Schwefelsäure (B., Ha., M. 5, 668), in Vakuum oder bei 100° (He., M. 18, 709) 2 H₂O. Bräunt sich bei 100°, schmilzt bei 135° unter Zersetzung (B., Ha., M. 5, 668). Löst sich in konz. Schwefelsäure mit schwarzbrauner Farbe, die beim Erwärmen erst veilchenblau, dann grünblau wird (He., M. 18, 711); die Lösung in verd. Alkalien ist farblos (B., Ha., M. 5, 669). — Geht beim Erhitzen mit konz. Salzsäure oder besser mit Zinnehlorür und Salzsäure in 6.8.3'.5'-Tetrabrom-morin über (B., Ha., M. 5, 669). Wird durch Jodwasserstoffsäure in Morin verwandelt (He., M. 18, 707). Färbt Beizen nicht an (He., M. 18, 711).

6.8.3'.5' - Tetrabrom - 3 - äth - oxy-5.7.2'.4'-tetraacetoxy-flavon, 6.8.3'.5' - Tetrabrom - 5.7.2'.4'-te-traacetoxy-flavonol - äthyläther, 6.8.3'.5' - Tetrabrom - morin - 3-äthyläther - 5.7.2'.4'-tetraacetat $C_{23}H_{18}O_{11}Br_4$, s. nebenstehende Formel. B. Durch 4-stdg. Kochen von 6.8.3'.5'-Tetrabrommorin-3-äthyläther mit der 10-fachen Menge Essigsäureanhydrid (Herzig, M. 18, 709). — F: 116—120°.

6.8.3.'5' - Tetrabrom - 3.5.7.2'.4' - pentaacetoxy - flavon, 6.8.3'.5' - Tetrabrom - 5.7.2'.4' - tetraacetoxy - flavonol - acetat, 6.8.3'.5' - Tetrabrom - morin - pentaacetat $C_{25}H_{16}O_{12}Br_4$, s. nebenstehende Formel. B. Durch 1-stündiges Kochen von 6.8.3'.5'-Tetrabrom - CO CO CO CH₃ CH₃ CO O Br

Kochen von 6.8.3'.5'-Tetrabrommorin mit 3 Tln. Essigsäureanhydrid und 1 Tl. wasserfreiem Natriumacetat (Bablich, Perkin,

Soc. 69, 795). — Farblose Nadeln (aus Alkohol). F: 192—193° (B., P.), 192—194° (Herzig, M. 18, 707).

2. 5.7-Dioxy-3.4-dioxo-2-[3.4-dioxy-phenyl]-chroman, 5.7.3'.4'-Tetra-oxy-3.4-dioxo-flavan bezw. 3.5.7-Trioxy-2-[3.4-dioxy-phenyl]-chromon, 3.5.7.3'.4'-Pentaoxy-flavon, 5.7.3'.4'-Tetraoxy-flavonol C₁₆H₁₀O₇, Formel I bezw. II, Quercetin (Meletin, Sophoretin). Für die vom Namen "Quercetin" abgeleiteten Namen wird in diesem Handbuch die eingezeichnete Bezifferung gebraucht. Das Molekulargewicht ist ebullioskopisch in Alkohol bestimmt (Herzig, Bach, M. 12, 173). Zur

Konstitution vgl. Herzig, M. 15, 687, 696. — Vorkommen. Findet sich in verschiedenen Teilen zahlreicher Pflanzen, teils in ungebundenem Zustand, teils als Bestandteil von Glykosiden. So z. B. wurde freies Quercetin gefunden: in den äußeren Schalen der Zwiebeln von Allium Ceps (A. G. Perkin, Hummel, Soc. 69, 1295); im Kraut des gemeinen Knöterichs (Polygonum Persicaria) (Horst, Ch. Z. 25, 1056); im Rhizom von Podophyllum peltatum und Podophyllum Emodi (Podwyssotzki, Arch. exp. Pathol. Pharmakol. 13, 31; B. 15, 378; Dunstan, Henry, Soc. 73, 211, 219); in sehr geringer Menge im Catechu aus Acacia Catechu (Löwe, Fr. 12, 127; vgl. auch A. G. Perkin, Soc. 71, 1136); in den Blättern von Ailanthus glandulosa (A. G. Pe., Wood, Soc. 73, 381); in den Früchten von Rhamnus catharticus (Kreuzbeeren) (Krassowski, X. 40, 1521; C. 1909 I, 772) und Rhamnus infectorius bezw. tinctorius (Gelbbeeren) (Bolley, A. 115, 58; A. G. Pe., Geldard, Soc. 67, 501; vgl.

Wehmer, Die Pflanzenstoffe, 2. Aufl. Bd. II [Jena 1931], S. 735); in den Beeren von Hippophaë rhamnoides (Bolley, D. 162, 145; J. 1861, 709); im Heidekraut (Calluna vulgaris) (ROCH-LEDER, J. pr. [1] 98, 379; Z. 1866, 347; J. 1866, 654; A. G. PE., NEWBURY, Soc. 75, 837). An Zuckerarten gebunden ist Quercetin Bestandteil von Glykosiden (s. in der 4. Hauptabteilung). Mit 1 Mol Rhamnose bildet es Queroitrin (RIGAUD, A. 90, 289; HLASIWETZ, PFAUND-LER, A. 127, 366; LIEBERMANN, HAMBURGER, BEREND, B. 12, 1182; HERZIG, v. SMOLUCHOWSKI, M. 14, 55); als solches kommt es vor: in der Rinde von Quercus tinctoria (CHEVREUL, Leçons de chimie appliquée à la teinture, t. II [Paris 1830], 30-e leçon, p. 162; Bolley, A. 37, 101; RI.); in der Stammrinde des Apfelbaums Pirus Malus (Rochleder, J. pr. [1] 100, 247; Z. 1867, 238); in geringer Menge in den Blättern von Fraxinus excelsior (GINTL, J. pr. [1] 104, 497; Z. 1868, 732; J. 1868, 801; GINTL, REINITZER, M. 3, 762). Mit d-Glykose bildet Quercetin die Glykoside Quercimeritrin und Isoquercitrin, die in geringer Menge in den Blüten der Baumwollstaude Gossypium herbaceum vorkommen (A. G. Pr., Soc. 95, 2184). Mit 1 Mol Rhamnose und 1 Mol d-Glykose bildet Quercetin das Glykosid Rutin (= Cappernrutin = Fagopyrumrutin = Sophorin = Globulariacitrin = Violaquercitrin = Osyritrin = Myrticolorin (Zwenger, Dronke, A. 128, 153; Schunck, Soc. 53, 266; Stein, J. pr. [1] 85, 360; Spiess, Sostmann, Ar. 172, 77; Foerster, B. 15, 215; Schunck, Soc. 67, 31; A. G. Perkin, Soc. 71, 1133; 81, 477; Smith, Soc. 78, 699; E. Schmidt, Waljaschko, C. 1901 II, 121; Tiemann, Ar. 241, 300; E. Schm., Ar. 242, 210; 246, 214; WALJ., Ar. 242, 230; BRAUNS, Ar. 242, 550, 558; WUNDERLICH, Ar. 246, 231, 244, 258); als solches kommt es vor: in den Blättern von Osyris compressa (A. G. Pr., Soc. 71, 1133); in den Blättern und Blüten des Buchweizens (Fagopyrum esculentum = Poly-71, 1753); in den Blattern und Bluten des Buchweizens (ragopyrum eschientum = Polygonum Fagopyrum) (Schunck, Soc. 53, 265; Wunderlich, Ar. 246, 244); in den Blütenknospen ("Kappern") der echten Kapper (Capparis spinosa) (Rochleder, Hlasiwetz, A. 82, 200; J. pr. [1] 56, 99; Hl., A. 96, 124; Zwenger, Dronke, A. 123, 153; Brauns, Ar. 242, 558); in den uhentwickelten Blütenknospen ("chinesische Gelbbeeren in Körnern") der Sophora japonica (Stein, J. pr. [1] 58, 399; 85, 351; 88, 280; J. 1853, 535; 1862, 498; 1863, 593; Z. 1862, 359; 1863, 250; Spiess, Sostmann, Ar. 172, 76; Foerster, B. 15, 215; SCHUNCK, Soc. 67, 31; BRAUNS, Ar. 242, 551); in den Blättern der Raute (Ruta graveolens) (Weiss, Pharmaceutisches Centralblatt 1842, 903; Zwenger, Dronke, A. 123, 153; Waljaschko, Ar. 242, 231); in den Blüten des Stiefmütterchens (Viola tricolor) (A. G. Pe., Soc. 81, 478; E. Schm., Ar. 248, 218; Wunderlich, Ar. 246, 231); in den Blättern des Eucalyptus macrorhyncha (Smith, Soc. 73, 699; A. G. Pe., Soc. 81, 479); in den Blättern von Globularia Alypum (Tiemann, Ar. 241, 301; Wunderlich, Ar. 246, 259). Ferner kommt glykosidisch gebundenes Quercetin vor: im indischen Farbstoff "Asbarg" aus den Blüten von Delphinium Zalil (A. G. Pe., Plicrim, Soc. 73, 273); in den Blütenblättern des Goldlacks (Cheiranthus Cheiri) (A. G. Pe., Hummel, Soc. 69, 1568); in den Blütenblättern des Goldlacks (Cheiranthus Cheiri) (A. G. Pe., Hummel, Soc. 69, 1568); in den Kraut des Mauernfoffers (Sedum acro) (Myllig Ar. 201, 107); in den Blüten des Weißdargs Kraut des Mauerpfeffers (Sedum acre) (MYLIUS, Ar. 201, 107); in den Blüten des Weißdorns (Crataegus Oxyacantha) (A. G. Pr., Hummel); in den Blüten des weißen Klees (Trifolium repens) (A. G. Pe., Phipps, Soc. 85, 58); in den Blättern von Rhus rhodanthema (A. G. Pe., Soc. 73, 1018); in den Blüten von Thespesia Lampas (A. G. PE., Soc. 95, 1859); in den Blättern des Chinesischen Teestrauchs (Camellia theifera = Thea sinensis) (HLASIWETZ, MALIN, J. pr. [1] 101, 112; Z. 1867, 272); in den Blüten des wohlriechenden Veilchens (Viola odorata) (A. G. PE., Ph., Soc. 85, 58); im Kraut des Stiefmütterchens (Viola tricolor) (Mandelin, J. 1883, 1369; E. Schm., Ar. 246, 217). Gleichzeitig frei und glykosidisch gebunden kommt Quercetin vor: spurenweise in den Blättern der Sauerkirsche (Cerasus acida = Prunus Cerasus) (Rochleder, J. pr. [1] 107, 386; J. 1869, 778); in den völlig entwickelten Blättern, in den Blüten sowie in den Kotyledonen reifer Samen der Roßkastanie (Aesculus Hippocastanum) (ROCHL., J. pr. [1] 77, 34; J. 1859, 523; vgl. auch A. 112, 112); in den Blättern des Weinstocks (Vitis vinifera) (Neurauer, Fr. 12, 41, 42, 48). Bei den folgenden Vorkommen ist unbekannt, ob freies oder gebundenes Quercetin vorliegt: im Hopfen (Humulus Lupulus) (WAGNER, D. 154, 68; J. 1859, 585); in sehr geringer Menge in den die Samen von Rumex obtusifolius umgebenden "Kelchblättern" (A. G. Pr., Soc. 71, 1199); in den Blüten des Schlehdorns (Prunus spinosa) (A. G. Pr., Phipps, Soc. 85, 58); in den Blättern des Blauholzbaums (Haematoxylon campechianum) (A. G. Pr., Soc. 77, 426); in den Blättern von Coriaria myrtifolia (A. G. Pr., Soc. 77, 428); in sehr geringer Menge auch in den Blättern von Rhus Metopium (A. G. Pr., Soc. 77, 428); wahrscheinlich in geringer Menge in den Blüten von Hibiscus Sabdariffa (A. G. Pr., Soc. 95, 1858); in den Blüten der Cornelkirsche (Cornus Mas) (STEIN, J. pr. [1] 85, 352); in den Blättern von Ledum palustre (Rochl., J. pr. [1] 98, 380; Z. 1866, 347); in den Blättern der Wolfsbeere (Arctostaphylos Uva-ursi) (A. G. Pe., Soc. 77, 424); im Catechu von Uncaria Gambir (A. G. Pe., Soc. 71, 1135). Vorkommen von Quercetin in Form seiner Mono- und Dimethyläther s. bei diesen (Rhamnetin S. 245, Isorhamnetin S. 246 und Rhamnazin S. 246) sowie in Syst. No. 4865.

Bildung. Aus seinen Glykosiden durch Hydrolyse mit siedender verdünnter Schwefelsäure (Literaturzitate wie oben bei den einzelnen Glykosiden). Aus seinen Äthern durch Kochen mit Jodwasserstoffsäure, z. B. aus Rhamnetin (Hebrig, M. 9, 560), aus Isorhamnetin (A. G. Pe., Pilgeim, Soc. 73, 270), aus Rhamnezin (A. G. Pe., Geldard, Soc. 67, 499), aus dem 5.7.3.4. Tetramethyläther (S. 247) (v. Kostamecki, Lampe, Tambor, B. 37, 1404).

— Darstellung. Man wäscht gepulverte Quercitronrinde mit Kochsalz-Lösung, extrahiert sie dann mit verd. Ammoniak in der Kälte, neutralisiert den Auszug mit verd. Schwefelsäure, kocht das angesäuerte Filtrat und filtriert das gefällte Quercetin noch warm ab (W. H. Perkin,

zitiert bei A. G. PERKIN, PATE, Soc. 67, 646).

Citronengelbe Nādelchen (aus verd. Alkohol). Enthält 2 Mol Krystallwasser (E. Schmidt, Waljaschko, C. 1901 II, 121), das bei 95—97° entweicht (Waljaschko, Ar. 242, 233). Während das bei gewöhnlicher Temperatur im Vakuum entwässerte Quercetin sein Krystallwasser beim Stehen an der Luft vollständig wieder aufnimmt, ist dies bei dem bei höherer Temperatur getrockneten Produkt nicht oder nur in sehr geringem Umfang der Fall (Brauns, Ar. 242, 550). In trocknem Zustand geschmacklos (Rigaud, A. 90, 294), jedoch in Lösung intensiv bitter (Stein, J. pr. [1] 85, 364; Z. 1862, 367). Schmilzt wasserfrei bei 313—314°(Zers.) (v. Kostanecki, Lampe, Tambor, B. 37, 1404; vgl. Wa.). Fast unlöslich in kaltem, sehr wenig löslich in heißem Wasser (Rigaud), Äther (Bolley, A. 115, 57), und Chloroform (A. G. Perkin, Pate, Soc. 67, 647), leicht löslich in Eisessig und siedendem Alkohol (Wa.); 1 Tl. löst sich in 18,2 Tln. siedendem und in 229,2 Tln. kaltem absolutem Alkohol (Stein, J. pr. [1] 85, 364; Z. 1862, 367; J. 1862, 499). Sehr leicht löslich mit goldgelber Farbe in verdünnten wäßrigen Alkalien (Rigaud; Wa.). Mit konz. Schwefelsäure erhält man eine gelbe, schwach grün fluorescierende Lösung (Krassowski, K. 40, 1522; C. 1909 I, 773). Quercetin addiert in Eisessig-Lösung anorganische Säuren (A. G. Pr., Pate; A. G. Pr., Soc. 69, 1441). Gibt in alkoholischer und wäßriger Lösung mit Eisenchlorid eine intensiv dunkelgrüne Färbung, die beim Erwärmen dunkelrot wird (Rigaud; Wa.). Beim Versetzen einer alkoh. Lösung mit Bleizuckerlösung entsteht eine ziegelrote bis orangerote Fällung (Bolley, A. 115, 58; D. 162, 145; Wa.).

Quercetin reduziert leicht Silberlösung (Bolley, A. 115, 58; Waljaschko, Ar. 242, 232), alkalische Kupferlösung beim Erhitzen (Zwenger, Dronke, A. 123, 153; Z. 1862, 501; vgl. Stern, J. pr. [1] 85, 364; Z. 1862, 366; Wa.). Mit Kaliumchlorat und verd. Salzsäure entsteht Protocatechusäure (Herzig, M. 6, 874). Bei der Einw. von Natriumamalgam auf eine heiße alkalische Lösung von Quercetin werden Phloroglucin, eine Verbindung C₇H₂O₂(?) (S. 245) und eine Verbindung C₁₂H₁₂O₅(?) gebildet; bei der Einw. von Natriumamalgam auf eine mit Salzsäure angesäuerte alkoholische Lösung von Quercetin entsteht eine rote Substanz¹), die leicht wieder in Quercetin zurückverwandelt werden kann (HLASIWETZ, PFAUNDLER, J. pr. [1] 94, 85; J. 1864, 561; vgl. STEIN, J. pr. [1] 85, 368; 88, 293; 89, 491; Z. 1862, 370; 1863, 256, 467). Bei Zusatz von 2 Mol Brom zu 1 Mol Quercetin in Eisessig-Suspension erhalt man 6.8-Dibrom-quercetin (S. 249) (Lieber-MANN, B. 17, 1683; Hr., M. 6, 865; vgl. Hr., M. 15, 685). Durch Einw. von überschüssigem Brom auf trocknes Quercetin und Acetylierung des Reaktionsprodukts erhält man 6.8.x. Tribrom-quercetin-penta(?) acetat vom Schmelzpunkt 251—253° (Hr., M. 6, 870). Bei andauerndem Schmelzen von Quercetin mit Atzkali entstehen Phloroglucin und Protocatechusäure (HL., Pr., J. pr. [1] 94, 80, 83; J. 1864, 561; Hr., M. 15, 697). Über Zwischenprodukte der Kalischmelze ("Quercetinsäure", "Paradatiscetin", "Quercimerinsäure" und andere Produkte) s. HL., A. 112, 97; HL., Pr., J. pr. [1] 94, 79, 82, 91; J. 1864, 560, 563; vgl. Hr., M. 15, 697; A. G. PERKIN, Soc. 95, 2185 Anm. Auch beim Kochen von Quercetin mit alkoh. Kalilauge am Rückflußkühler oder beim Stehenlassen mit wäßr. Kalilauge an der Luft werden Protocatechusäure und Phloroglucin gebildet (HE., M. 6, 872). Uber die Einw. von Ammoniak auf Quercetin vgl. Schützenberger, Paraf, Z. 1862, 41; J. 1862, 500. Queroetin gibt bei der Einw. von Methyljodid und methylalkoholischer Kalilauge Quercetin-3.7.3'.4'-tetramethyläther (HE., M. 5, 83). Beim Kochen von Quercetin mit Äthyljodid und alkoh. Kalilauge entstehen Quercetin-3.7.3'.4'-tetraathyläther, eine in mit Athyljodid und sixon. Kallauge entstenen Guercetin-3.7.3.4-tetraathylatier, eine in gelben Prismen krystallisierende Verbindung vom Schmelzpunkt 116° und eine gelbliche krystallinische Verbindung vom Schmelzpunkt 110° (Wa.). Quercetin liefert mit Dimethylsulfat und methylalkoholischer Kalilauge Quercetin-3.7.3'.4'-tetramethyläther neben geringen Mengen eines bei 240° schmelzenden Quercetin-x-methyläthers und mattgelber, bei 175° schmelzender Nadeln (Wa.; Wunderlich, Ar. 246, 249; vgl. He., M. 33 [1912], 685; Gomm, Nierenstein, Am. Soc. 58 [1931], 4408). Bei Verwendung eines großen Überschusses zun Albei und Dimethyllste abeidet sich aus der Realtingeführigheit sich in der Realtingeführigheit sich der Realtingeführighe von Alkali und Dimethylsulfat scheidet sich aus der Reaktionsflüssigkeit nach längerem Stehen Quercetinpentamethylather ab (HE., HOFMANN, B. 42, 157). Freies Quercetin wird durch Acetanhydrid bei mehrtägigem Stehen in der Kälte nicht angegriffen; in Gegenwart von Natriumacetat oder bei Einw. von Acetanhydrid auf Quercetin-Salze in der Kälte entsteht

¹⁾ Vgl. hierzu die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von WILLSTÄTTER, MALLISON, C. 1914 II, 1359; A. 408, 27, 148; MALKIN, NIERENSTEIN, Am. Soc. 52, 2864; KONDO, C. 1932 II, 1182.

Quercetin-3.7.3'.4'-tetraacetat (A. G. Perkin, Soc. 75, 449; vgl. Kubota, A. G. Pe., Soc. 127 [1925], 1890, 1894); beim Kochen von Quercetin mit Acetanhydrid und Natriumacetat wird Quercetin-pentaacetat gebildet (Liebermann, Hamburger, B. 12, 1184; He., M. 5, 88; Lie., B. 17, 1682; Schunck, Soc. 67, 31; vgl. Wa.; v. Kostanecki, Lampe, Tambor, B. 37, 1405). Quercetin färbt Wolle auf Tonerdebeize gelb, auf Chrombeize rotbraun, auf Zinnbeize orange, auf Eisenbeize olivschwarz (A. G. Pe., Wilkinson, Soc. 81, 590).

NaC₁₅H₉O₇. Dem Kaliumsalz sehr ähnlich (A. G. Perkin, Soc. 75, 438). — KC₁₅H₉O₇. Aus Quercetin in alkoh. Lösung mit Kaliumacetat (A. G. Pe., Soc. 75, 438, 444). Orange-B. Aus Queroeim in aikon. Losung mit Rahumacetat (A. G. FE., Soc. 125, 258, 244). Orange-gelbe Nädelchen. Fast unlöslich in kaltem Wasser und Alkohol; wird von siedendem Wasser pydrolysiert. — Zinksalz. B. Durch mehrstündiges Kochen einer alkoholisch-salzsauren Queroetinlösung mit metallischem Zink (HLASIWETZ, PFAUNDLER, J. pr. [1] 94, 97). — C₁₂H₁₀O₇+HCl. Dem Hydrobromid sehr ähnlich (A. G. PE., PATE, Soc. 67, 648; A. G. PE., Soc. 69, 1441). — C₁₅H₁₀O₇+HBr (bei 100°). B. Durch Zusatz von rauchender Bromwasserstoffsäure zu einem Gemisch von Queroeim und Eisessig (A. G. PE., Pa.). Orange-like in Eisessig wird durch Wasser respectat. gelbe Nadeln. Schwer löslich in Eisessig; wird durch Wasser zersetzt. — $C_{15}H_{10}O_7 + H_2SO_4$ (bei 100°). B. Man gibt einige Tropfen Schwefelsäure zu einer gesättigten Lösung von Quercetin in siedendem Eisessig (A. G. Pe., Pa.). Orangefarbene Nadeln. Schwer löslich in siedendem Eisessig; wird durch Wasser quantitativ in die Komponenten zerlegt.

Verbindung C₇H₈O₃(?). B. Neben anderen Produkten bei Behandlung von Quercetin mit Natriumamalgam in heißer verdünnter Natronlauge (HLASIWETZ, PFAUNDLER, J. pr. [1] 94, 85; J. 1864, 561). — Körnige Krystalle. F: ca. 130°. Sehr leicht löslich in allen Lösungsmitteln. Reagiert schwach sauer. Reduziert Silberlösung und alkal. Kupferlösung in der Wärme. Gibt mit Eisenchlorid eine grüne Färbung, die auf Zusatz von Soda purpurviolett wird. Gibt beim Schmelzen mit Kali Protocatechusäure.

5.3'.4'-Trioxy-7-methoxy-8.4-dioxo-flavan bezw. 8.5.3'.4'-Tetraoxy-7-methoxy-flavon, 5.3'.4'-Trioxy-7-methoxy-flavonol $C_{16}H_{12}O_7$, Formel I bezw. II, Quercetin-7-methyläther, Rhamnetin (β -Rhamnetirin). Zur Konstitution vgl. Herzig, M.

15, 696; A. G. Perkin, Allison, Soc. 81, 469; Oesch, A. G. Perkin, Soc. 105 [1914], 2354. - V. Findet sich in geringer Menge in freiem Zustand, in größerer Menge an Rhamninose gebunden als Glykosid (Xanthorhamnin, s. in der 4. Hauptabteilung unter Kohlenhydrate) in den Früchten des Kreuzdorns (Rhamnus catharticus) (Kreuzbeeren) (WALJASCHKO, KRASSOWSKI, Ж. 40, 1505; Кв., Ж. 40, 1526, 1533; С. 1909 I, 772; vgl. Тясніясн, Родассо, Ar. 238, 471; OE., A. G. PE.); desgl. in den Früchten von Rhamnus infectorius bezw. tinctorius (Gelbbeeren) (W., Kr.; Kr.; vgl. Kane, J. pr. [1] 29, 481; Gellatly, J. 1858, 474; Schützenberger, C. r. 67, 177; J. 1868, 774). — Darst. Man erhitzt eine Lösung von 100 g Xanthorhamnin in 700 g Wasser mit einem Gemisch von 30 g konz. Schwefelsäure und 60 g Wasser 1—2 Stdn. (Liebermann, Hörmann, B. 11, 955, 1618; A. 196, 313). Man extrahiert Gelbbeeren mit Alkohold. destilliert den Alkohol ab, löst den Rückstand in Wasser, zersetzt die gelösten Glykoside mit verd. Schwefelsäure, filtriert den Niederschlag ab, wäscht ihn mit Wasser und kocht ihn mit Alkohol aus (Herzig, M. 9, 549; vgl. M. 10, 567). Man digeriert Gelbbeeren mit der 10-fachen Menge Wasser bei 40°, wäscht den entstandenen gelben Niederschlag mit Wasser, trocknet bei 100°, entfernt Rhamnazin durch Behandeln mit Toluol und krystallisiert den Rückstand aus viel siedendem Alkohol um (A. G. Pr., Geldard, Soc. 67, 500). Darstellung aus Kreuzbeeren: Tschiech, Polacoo, Ar. 238, 460, 471. — Gelbe Nädelchen (aus Alkohol oder Phenol). Geruch- und geschmacklos (Kr.). Schmilzt oberhalb 300° (Kr.). Nur spurenweise löslich in siedendem Wasser (Lie., Hö., A. 196, 314) sowie in heißem Alkohol, Eisessig und Aceton (Tsch., Po.), reichlich in heißem Phenol (Lie., Hö.). Leicht löslich in Alkalien mit gelber Farbe (Lie., Hö.). Die verd. Lösung in konz. Schwefelsäure ist gelb und fluoresciert grünblau (KR.). Bleiacetat bewirkt in der alkoh. Lösung eine orangerote, Kalk- und Barytwasser rotbraune Fällungen (Lie., Hö.). Die alkoh. Lösung gibt mit Eisenchlorid eine braungrüne Färbung (Lie., Hö.). — Reduziert Femingsche Lösung beim Erwärmen, Silbernitrat-lösung schon in der Kälte (Lie., Hö.). Rhamnetin wird von Jodwasserstoffsäure in Quercetin übergeführt (Hz., M. 9, 560). Gibt bei der Zersetzung durch verdünnte wäßrige Kalilauge unter Durchsaugen von Luft oder bei längerem Kochen mit alkoh. Kalilauge Phloroglucinmonomethyläther (A. G. Pr., Allison, Soc. 81, 470). Liefert beim Behandeln mit Natriumamalgam oder beim Schmelzen mit Kali Phloroglucin und Protocatechusäure (Smorawski, B. 12, 1595). Verbindet sich mit Schwefelsäure, aber nicht mit Halogenwasserstoffsäuren (A. G. Ph., Path, Soc. 67, 650; A. G. Ph., Soc. 69, 1441). Farbt Baumwolle auf Tonerdebeize gelb, auf Eisenbeize schwarz (Lie., Hö., A. 196, 314). Farbt Wolle auf Tonerdebeize braunorange, auf Chrombeize rotbraun, auf Zinnbeize orange, auf Eisenbeize olivschwarz (A. G. Pr.,

ALLISON, Soc. 81, 471; A. G. PE., WILKINSON, Soc. 81, 590). — $KC_{16}H_{11}O_7 + C_{16}H_{12}O_7$. B. Beim Einengen einer alkoh. Lösung von Rhamnetin und Kaliumacetat (A. G. PE., Soc. 75, 439). Orangefarbene Nadeln. — $KC_{16}H_{11}O_7$. B. Bei der Zersetzung von Rhamnetintetraacetat in alkoh. Lösung mit Kaliumacetat (A. G. PE., WILSON, Soc. 83, 136). Orangegelbe Nadeln. Wird durch siedendes Wasser leicht zersetzt. — $C_{16}H_{12}O_7 + H_2SO_4$. B. Man tröpfelt solange Schwefelsäure in ein siedendes Gemisch von Rhamnetin und Eisessig, bis alles in Lösung gegangen ist, filtriert die ausgeschiedenen Krystalle und wäscht sie mit einem Gemisch von Eisessig mit $25^{\circ}/_{\circ}$ Essigsäureanhydrid (A. G. PE., PATE, Soc. 67, 651). Orangefarbene prismatische Nadeln. Zerfällt schon an feuchter Luft in seine Komponenten.

5.7.4'-Trioxy-3'-methoxy-8.4-dioxo-flavan bezw. 3.5.7.4'-Tetraoxy-3'-methoxy-flavon, 5.7.4'-Trioxy-3'-methoxy-flavonol $C_{16}H_{12}O_7$, Formel I bezw. II, Quercetin-3'-methyläther, Isorhamnetin. V. Kommt glykosidisch gebunden im indischen Farb-

stoff "Asbarg" aus den Blüten von Delphinium Zalil vor (A. G. Perkin, Pilgrim, Soc. 73, 268, 271); desgl. in den Blütenblättern des Goldlacks (Cheiranthus Cheiri) (A. G. Pe., Hummel, Soc. 69, 1569); in den Blättern (Sennesblättern) einiger Cassiaarten (z. B. der peruanischen Cassia angustifolia sowie der Cassia acutifolia) (Tschirch, Hiepe, Ar. 238, 439; vgl. Tutin, Soc. 103 [1913], 2020). — B. Durch Kochen wäßt. Auszüge von "Asbarg" (A. G. Pe., Pi.) oder Goldlackblättern (A. G. Pe., Hu.) mit verd. Schwefelsäure. — Gelbe Nädelchen (aus Alkohol). F: 302° (Tu.). Sehr wenig löslich in siedendem Alkohol und Essigsäure (A. G. Pe., Pi.). Löslich in verd. Alkalilauge mit gelber Farbe (A. G. Pe., Hu.). Die alkoh. Lösung gibt mit Bleiacetat einen orangeroten Niederschlag, mit Eisenchlorid eine grünschwarze Färbung (A. G. Pe., Pi.). — Isorhamnetin gibt bei der Oxydation Vanillinsäure und Phloroglucin (A. G. Pe., Pi.). Durch Behandlung mit Jodwasserstoffsäure wird Quercetinerhalten (A. G. Pe., Pi.). Beim Schmelzen mit Kali entstehen Protocatechusäure und Phloroglucin (A. G. Pe., Pi.). Liefert beim Methylieren mit Methyljodid in methylakhoholischer Kalilauge Quercetin-3.7.3'.4'-tetramethyläther, beim Acetylieren Quercetin-3'-methyläther-3.5.7.4'-tetraacetat (A. G. Pe., Pi.).

Quercetin-x-methyläther $C_{16}H_{18}O_7$. B. Als Nebenprodukt bei der Darstellung von Quercetin-3.7.3'.4'-tetramethyläther aus Quercetin mit Dimethylsulfat und methylalkoholischem Kali (Wunderlich, Ar. 246, 249; Waljaschko, Ar. 242, 241). — Blaßgelbes mikrokrystallinisches Pulver mit 2 H_2O (aus verd. Alkohol). Wird bei 110° wasserfrei (Wu.). F: 238° (Wu.), 240° (Wa.). Gibt in verdünnt-alkoholischer Lösung mit Eisenchlorid eine olivgrüne Färbung, mit Bleiacetat einen rotgelben Niederschlag, mit konz. Kalilauge ein unlösliches Produkt (Wu.). — Liefert beim Kochen mit Essigsäureanhydrid und Natriumacetat ein farbloses Acetylderivat vom Schmelzpunkt 156—157° (Wu.).

5.4'-Dioxy-7.8'-dimethoxy-8.4-dioxo-flavan bezw. 8.5.4'-Trioxy-7.8'-dimethoxy-flavonol $C_{17}H_{14}O_{7}$, Formel III bezw. IV, Quercetin-7.8'-dimethyläther, Rhamnazin. Zur Konstitution vgl. A. G. Perkin, Allison, Soc. 81,

469. — V. und B. Findet sich glykosidisch gebunden in den Früchten von Rhamnus infectorius bezw. tinctorius (Gelbbeeren); fällt beim Erwärmen des kalt bereiteten wäßrigen Extraktes der Beeren auf 40° aus (A. G. PE., GELDARD, Soc. 67, 500). Findet sich im rohen Rhamnetin und wird diesem durch Kochen mit dem 10-fachen Volumen Toluol entzogen (A. G. PE., GE.). — Blaßgelbe Nadeln (aus Toluol). Krystallisiert aus Essigsäure mit 1 Mol Essigsäure in gelben Nadeln (A. G. PE., GE., Soc. 67, 428). Schmilzt nicht ganz unzersetzt bei 214° bis 215° (A. G. PE., GE.). Mäßig löslich in siedendem Toluol und Essigsäure, sehr schwer in Alkohol (A. G. PE., GE.). Löslich in Alkalien mit orangeroter Farbe (A. G. PE., GE.). Gibt in alkoh. Lösung mit Bleiacetat einen orangeroten Niederschlag, mit Eisenchlorid eine olivgrüne Färbung (A. G. PE., GE.). — Liefert mit Brom Dibrom-rhamnazin (S. 250) (A. G. PE., GE.). (GE.). Wird von Jodwasserstoffsäure in Quercetin und 2 Mol Methyljodid gespalten (A. G. PE., GE.). Göbt beim Schmelzen mit Ätzkali Phloroglucin und Protocatechusäure, bei längerem Kochen mit alkoh. Kalilauge Vanillin, Vanillinsäure und Phloroglucinmonomethyläther; der letztere entsteht rascher beim Durchsaugen von Luft durch die Lösung in wäßt. Kalilauge (A. G. PE., MAETIN, Soc. 71, 820; A. G. PE., ALL.). Gibt bei der Methylierung Quercetin-3.7.3'.4'-tetramethyläther (A. G. PE., MA.). Liefert bei der Einw. von

Essigsäureanhydrid Rhamnazintriacetat (S. 248), bei der Einw. von Benzoylchlorid Rhamnazintribenzoat (S. 249) (A. G. PE., GE.). Färbt Wolle auf Tonerdebeize orangegelb, auf Chrombeize goldgelb, auf Zinnbeize citronengelb, auf Eisenbeize olivbraun (A. G. PE., ALL.). — KC₁₇H₁₈O₇ + C₁₇H₁₄O₇. B. Durch Einw. von Kaliumacetat auf Rhamnazin in alkoh. Lösung (A. G. PE., Soc. 75, 439). Gelbe Nadeln. — C₁₇H₁₄O₇ + H₂SO₄. B. Durch Zusatz von Schwefelsäure zu einer siedenden Lösung von Rhamnazin in Eisessig (A. G. PE., PATE, Soc. 67, 651). Scharlachfarbene Nadeln. Mäßig löslich in kaltem Essigsäureanhydrid. Sehr unbeständig; wird schon durch Eisessig zerlegt.

5 - Oxy - 8.7.8'.4' - tetramethoxy - flavon, Quercetin - 3.7.3'.4' - tetramethyläther C₁₅H₁₅O₇, s. nebenstehende Formel. B. Aus Quercetin mit

Dimethylsulfat. und methylalle letter aus description in the control of the contro O·CH3 Dimethylsulfat und methylalkoholischem Kali (Waljaschko, Ar. 242, 241; B. 42, 727; WUNDERLICH, Ar. 246, 248; vgl. HERZIG, M. 33 [1912], 685; GOMM, NIERENSTEIN, Am. Soc. 53 [1931], 4408). Durch Einw. von Methyljodid und methylalkoholischer Kalilauge auf 53 [1931], 4408). Durch Einw. von Methyljodid und methylalkoholischer Kahlauge auf Quercetin (Herzig, M. 5, 83), Rhamnetin (He., M. 9, 552) oder Rhamnazin (A. G. Perkin, Martin, Soc. 71, 819). Aus Xanthorhamnin-Kalium (s. in der 4. Hauptabteilung unter Kohlenhydrate) durch Erhitzen mit überschüssigem methylschwefelsaurem Kalium in wenig Methylalkohol im Druckrohr auf 120—130° (Liebermann, Hörmann, A. 196, 318; He., M. 6, 889). — Gelbe Nadeln (aus Alkohol). F: 156—157° (He., M. 5, 83; L., Hö.). Sehr wenig löslich in Alkohol (He., M. 5, 83). — Liefert beim Erhitzen mit alkoh. Kalilauge Veratrumsäure (He., M. 5, 83) und Phloroglucinmonomethyläther (A. G. Pe., Allison, Soc. 21, 474). Soc. 81, 471).

5.7.3'.4'-Tetramethoxy-3.4-dioxo-flavan bezw. 3-Oxy-5.7.3'.4'-tetramethoxy-5.7.3'.4'-Tetramethoxy-flavonol $C_{19}H_{18}O_7 = (CH_3 \cdot O)_2C_6H_2 \cdot \frac{CO \cdot CO}{O - CH \cdot C_6H_3(O \cdot CH_3)_3}$

bezw. (CH₃·O)₂C₆H₂CO·C·OH

bezw. (CH₃·O)₂C₆H₃C·CH₃)₂, Quercetin - 5.7.3'.4' - tetramethyläther. B.

Aus 5.7.3'.4'-Tetramethoxy-3-oximino-flavanon (S. 249) beim Kochen mit Eisessig und 10°/oiger Schwefelsäure (v. Kostanecki, Lampe, Tambon, B. 37, 1404). — Nadeln (aus Alkohol). F: 197—198°. Löst sich in konz. Schwefelsäure mit gelber Farbe und grüner. Fluorescenz. — Beim Kochen mit Jodwasserstoffsäure entsteht Quercetin. Färbt Tonerdebeize gelb an.

3.5.7.8'.4'-Pentamethoxy-flavon, 5.7.8'.4'-Tetramethoxy-flavonol-methyläther, Quercetin-pentamethyläther $C_{20}H_{20}O_7 = (CH_3 \cdot O)_2C_6H_2 \cdot O - C \cdot C_6H_3(O \cdot CH_3)_3$. B. Aus

Quercetin mit einem großen Überschuß von Alkali und Dimethylsulfat bei längerem Aufbewahren (Herzig, Hofmann, B. 42, 157). Durch Verreiben des trocknen Kaliumsalzes des Quercetin-3.7.3'.4'-tetramethyläthers mit einem geringen Überschuß von Dimethylsulfat (Waljaschko, Ar. 242, 242; B. 42, 727; vgl. Herzig, M. 38 [1912], 685; Gomm, Nierenstein, Am. Soc. 53 [1931], 4410). — Farblose Prismen mit 1 H₂O (aus Methylalkohol). Wird bei 105° wasserfrei (W.). F: 148° (W.), 148—150° (He., Ho.), 151—152° (Go., N.). — Gibt mit alkoh. Kalilauge auf dem Wasserbad 2-Oxy-4.6.ω-trimethoxy-acetophenon und Veratrumsăure (HE., Ho.).

5-Oxy-7.3'.4'-triäthoxy-3.4-dioxo-flavan bezw. 8.5-Dioxy-7.3'.4'-triäthoxyflavon, 5-Oxy-7.3'.4'-triäthoxy-flavonol $C_{ij}H_{ij}O_{j}$, Formel I bezw. II, Quercetin-7.3'.4'-triäthyläther. B. Durch 3-stdg. Kochen der alkoh. Lösung des beim Verseifen

von Quercetin-3.7.3'.4'-tetraäthyläther-5-acetat (S. 248) entstehenden Gemisches von Quercetin-di- und triāthylāther mit Kaliumhydroxyd und Athyljodid (Waljaschko, Ar. 242, 238). — Gelbe Nadeln (aus Alkohol). F: 123—124°. — $K_sC_{s1}H_{s0}O_7$. Gelbe Nadeln. Wird durch Wasser zersetzt.

5 - Oxy - 8.7.3'.4' - tetraäthoxy - flavon, 5-Oxy-7.8'.4'-triäthoxy-flavonol-äthyläther, Quercetin-3.7.3'.4'-tetraäthyläther C₂₃H₂₆O₇,
s. nebenstehende Formel. B. Man kocht 12 g
Quercetin, 8 g Ätzkali und die äquimolekulare Menge Äthyljodid in 300 cm³ absol. Alkohol
4–5 Stdn. und gibt dann innerhalb der nächsten 4–5 Stdn. noch zweimal je 4 g Ätzkali und die entsprechende Menge Athyljodid zu (HERZIG, M. 5, 75; 9, 541). — Gelbe Nadeln.

F: 120—122° (He.), 121° (Waljaschko, Ar. 242, 237). Ziemlich schwer löslich in kaltem Alkohol (He.), unlöslich in Wasser (W.). — Bei der Zersetzung mit alkoh. Kalilauge entsteht Phloroglucinmonoathyläther (A. G. Perkin, Allison, Soc. 81, 471). — Kaliumsalz. Gelbe Nadeln. Wird durch Wasser zersetzt (W.).

8.7.3'.4'-Tetramethoxy-5-acetoxy-flavon, 7.3'.4'-Trimethoxy-5-acetoxy-flavonol-methyläther, Quercetin - 3.7.3'.4'- tetramethyläther-5-acetat C₁₁H₂₀O₂, s. nebenstehende Formel. B. Bei 3—4-stdg. Kochen von Quercetin-3.7.3'.4'-tetramethyläther mit 8—10 Tln. Essigsäure-anhydrid und etwas Natriumacetat (Herzig, M. 5, 86). — Nadeln (aus absol. Alkohol). F: 167—169° (He., M. 5, 86), 171—172° (Krassowski, Ж. 40, 1532; C. 1909 I, 772). Schwer Belich in kalter absolutem Alkohol (He., M. 5, 86) mit hellblauer Fluorescenz (Kr.). Löst sich in kalter konzentrierter Schwefelsäure mit gelber Farbe; durch nicht zu langes (Kr.) Erwärmen der Lösung auf 50—60° und Verdünnen mit Wasser wird Quercetin-3.7.3'.4'-tetramethyläther wiedergewonnen (He., M. 9, 540).

3.7.3'.4'-Tetraäthoxy-5-acetoxy-flavonol-āthyläther, Quercetin-3.7.3'.4'-tetraäthyläther-5-acetat C_{2:}H_{3:}O_{2:}S. nebenstehende Formel. B. Durch 1-stdg. Kochen von 1 Tl. Quercetin-3.7.3'.4'-tetraäthyläther mit 10 Tln. Essigsäureanhydrid und 1 Tl. wasserfreiem Natriumacetat am Rückflußkühler (Herzig, M. 9, 542; Waljascheo, Ar. 242, 239). — Nadeln (aus 70—80°/qigem Alkohol). F: 151—153° (He.), 152—153° (Wa.). Ziemlich schwer löslich in kaltem absolutem Alkohol (He.); die Lösung in verd. Alkohol zeigt schwache blaue Fluorescenz (Wa.). — Bei vorsichtigem Erhitzen mit Schwefelsäure wird Quercetin-3.7.3'.4'-tetraäthyläther wiedergewonnen (Wa.).

7.8' - Dimethoxy - 3.5.4' - triacetoxy-flavon, 7.8'-Dimethoxy - 5.4'-diacetoxy-flavonol-acetat, Quercetin-7.8'-dimethyl-äther - 3.5.4' - triacetat, Rhamnasin - tri-acetat C₂₂H₂₀O₁₀, s. nebenstehende Formel.

B. Bei 1-stdg. Kochen von Rhamnazin (S. 246) mit Essigsäureanhydrid und wasserfreiem Natriumacetat (A. G. Perkin, Geldard, Soc. 67, 498). — Farblose Nadeln (aus Alkohol). F: 154—155°.

5 - Oxy - 3.7.3'.4' - tetrascetoxy - HO
flavon, 5 - Oxy - 7.3'.4' - triscetoxy - flavonol - scetat, Quercetin - 3.7.3'.4' - tetrascetat C₁₃H₁₈O₁₁, s. nebenstehende CH₃·CO·O·O·CH₃
formel. B. Durch Einw. von Essigsureanhydrid auf Quercetinsalze in der Kälte (A. G. Perkin, Soc. 75, 449; vgl. Kubota, A. G. Perkin, Soc. 127 [1925], 1890, 1894). — Farblose Nadeln. F: 193—194° (A. G. Pe.), 188—190° (Ku., A. G. Pe.)

8'- Methoxy - 3.5.7.4' - tetraacetoxy - flavon, 3'- Methoxy - 5.7.4' - triacetoxy-flavonol - acetat, Quercetin - 3'- methyläther - 3.5.7.4' - tetraacetat, Isorhamnetin-tetraacetat C₂₄H₂₀O₁₁, s. nebenstehende
Formel. B. Durch Erhitzen von Isorhamnetin (S. 246) mit Essigsäureanhydrid
und entwässertem Natriumacetat (A. G. OH₃·CO·O·O·CH₃

PERKIN, HUMMEL, Soc. 69, 1569; A. G. PE.,

PROCESSE STATE OF
Kochen von Quercetin mit Essigsäureanhydrid und Natriumacetat (Liebermann, Hamburger, B. 12, 1184; Herzig, M. 5, 88; Lie., B. 17, 1682; Schunck, Soc. 67, 31). — Farblose Nadeln (aus Alkohol). F: 189—191° (He.), 191—192° (Waljaschko, Ar. 242, 234), 192—193° (Krassowski, K. 40, 1523; C. 1909 I, 772), 193—194° (v. Kostanecki, Lampe, Tambor, B. 37, 1405), 195° (Sch.). Leicht löslich in heißem Alkohol und Eisessig, fast unlöslich in Wasser (Wa.: Kr.).

7-Methoxy-3.5.3'.4'-tetrapropionyloxy-flavon, 7-Methoxy-5.3'.4'-tripropionyloxy-flavonol-propionat, Quercetin-7-methyläther-3.5.3'.4'-tetrapropionat, Rhamnetin-tetrapropionat C₂₈H₂₈O₁₁, 8. C₂H₅·CO·O nebenstehende Formel. B. Beim Kochen von Rhamnetin mit Propionsäureanhydrid und Natriumpropionat (Lie., Hörmann, B. 11, 1620; A. 196, 320). — Fast farblose Nadeln (aus Alkohol). Schmilzt unscharf bei 158—162°.

5(P) - Oxy - 7 - methoxy - 3(P).3'.4'-tribenzoyloxy - flavon, Rhamnetin - tribenzoat C₃₇H₃₄O₁₀, s. nebenstehende Formel. B. Aus Rhamnetin und Benzoesäureanhydrid bei 150° (Lie., Hö., B. 11, 1620; A. 196, 321).

— Fast farblose Nädelchen (aus Eisessig).

F: 210—212°. Schwer löslich in Alkohol und Chloroform, leicht in Eisessig.

7.3'-Dimethoxy-3.5.4'-tribenzoyloxy-flavon, 7.3'-Dimethoxy-5.4'-dibenzoyloxy-flavonol-benzoat, Quercetin-7.3'-dimethyläther-8.5.4'-tribenzoat, Rhamnazintribenzoat C₂₈H₂₆O₁₀, s. nebenstehende C₆H₅·CO·O CoroceH₅ Pormel. B. Aus Rhamnazin durch Behandlung mit Benzoylchlorid und 10% jeger Natronlauge (A. G. Perkin, Geldard, CH₃·O·CO·CeH₅ O·CH₃·O·CO·CeH₅ Soc. 67, 498). — Farblose Nädelchen (aus Essigsäure). F: 204—205°. Sehr schwer löslich in Essigsäure.

8.5.7.8'.4'-Pentabensoyloxy-flavon, 5.7.8'.4'-Tetrabensoyloxy-flavonol-bensoat, Quercetin-pentabensoat $C_{50}H_{30}O_{12}=(C_6H_5\cdot CO\cdot O)_2C_6H_3$ $O-C_6\cdot C_6H_5(O\cdot CO\cdot C_6H_5)_2$ B. Aus Quercetin durch Behandlung mit Benzoylchlorid und $10^0/_0$ iger Natronlauge (Wunderlich, Ar. 246, 246). — Farblose Nadeln (aus heißem Aceton). F: 188—190°.

Tricarbanilsäureester des Quercetins $C_{36}H_{25}O_{10}N_3=C_{15}H_7O_5(O\cdot CO\cdot NH\cdot C_6H_5)_2$. B. Aus Quercetin und Phenylisocyanat im geschlossenen Rohr bei 160° (Tesmer, B. 18, 2609). — Amorph. F: 200—205°. Unlöslich.

5.7.3'.4'-Tetramethoxy-4-oxo-3-oximino-flavan, 5.7.3'.4'-Tetramethoxy-3-oximino-flavanon $C_{19}H_{19}O_7N = (CH_2 \cdot O)_2C_6H_3 \cdot CO \cdot C: N \cdot OH$ 5.7.3'.4'-Tetramethoxy-flavanon (S. 210) durch Behandlung mit Amylnitrit und starker Salzsäure in siedendem Alkohol (v. Kostanboki, Lampe, Tambob, B. 37, 1404). — Etwas gelbliche Nadeln (aus Benzol). F: 183°. In konz. Schwefelsäure mit roter Farbe löslich. — Liefert beim Kochen mit Eisessig und $10^{\circ}/_{\circ}$ iger Schwefelsäure Quercetin-5.7.3'.4'-tetramethyläther.

6.8 - Dibrom - 5.7.3'.4'- tetraoxy-3.4 - dioxo - flavan bezw. 6.8 - Dibrom - 3.5.7.3'.4'- pentaoxy - flavon, 6.8 - Dibrom - 5.7.3'.4' - tetraoxy - flavonol $C_{18}H_2O_7Br_2$, Formel I

bezw. II, 6.8-Dibrom-quercetin. B. Durch Zusatz von 2 Mol Brom zu 1 Mol Quercetin oder Quercitrin in Eisessig-Suspension (Liebermann, B. 17, 1683; Herzig, M. 6, 865). — Citronengelbe Nadeln. F: 233—235° (He., M. 15, 685), 236—237° (L.). Sohwer löslich in absol. Alkohol (L.). — Gibt an verd. Kalilauge alles Brom als Bromwasserstoffsäure ab (He., M. 6, 869). Liefert mit Brom Tribromphloroglucin (He., M. 6, 868). — KC₁₈H₇O₇Br₂. Gelbes Pulver (A. G. Perkin, Soc. 75, 438).

7.8'-Dimethyläther, Dibrom-rhamnazin $C_{17}H_{19}O_7Br_9$, Formel I bezw. II. B. Bei 48-stdg. Aufbewahren von Rhamnazin mit Brom in Eisessig-Suspension oder bei 6-stdg.

Erhitzen von Rhamnazin mit Brom und Schwefelkohlenstoff auf 100° (A. G. PERKIN, GELDARD, Soc. 67, 499). — Blaßgelbe Nadeln (aus Eisessig). Zersetzt sich bei 250°, ohne zu schmelzen. Sehr schwer löslich in Alkohol und Essigsäure.

8.7.3'.4'- Tetraäthyläther $C_{23}H_{24}O_7Br_2$, s. nebenstehende Formel. B. Durch Zusatz von 3 Mol Brom zu einer Lösung von 1 Mol Quercetin-3.7.3'.4'-tetraäthyläther in Eisessig in der Kälte (HERZIG, M. 15, 685). — Gelbe Nadeln (aus Eisessig). Schmilzt unscharf bei 169-173°. Wird beim Kochen mit alkoh. Kalilauge nicht angegriffen.

8.7.8'.4' - Tetraäthyläther - 5 - acetat C₂₅H₂₆O₅Br₂, s. nebenstehende Formel. B. Bei 1-stdg. Kochen von 1 Tl. 6.8-Dibrom-quercetin-3.7.3'.4'-tetraäthyläther mit 1 Tl. Zinkchlorid und 10 Tln. Essigsäureanhydrid (He., M. 16, 317). — Gelbliche Nadeln (aus Alkohol). F: 154—157°.

CHa · CO · O Br·

6.8.x-Tribrom-5.3'.4'-trioxy-7-methoxy-3.4-dioxo-flavan bezw. 6.8.x-Tribrom-3.5.8'.4' tetraoxy - 7 methoxy - flavon, 6.8.x - Tribrom - 5.3'.4' trioxy - 7 methoxy - flavonol $C_{16}H_9O_7Br_3 = C_{15}H_6O_6Br_3 \cdot 0 \cdot CH_3$, 6.8.x - Tribrom - quercetin - 7 - methyläther, Tribrom-rhamnetin. B. Bei Zusatz von 14 Tln. Brom zu 10 Tln. in gekühltem Eisessig verteiltem Rhamnetin (Liebermann, Hörmann, B. 11, 1620; A. 196, 321). — Gelbe Nadeln cons Allenball Lieblich Brownell, in the flavor of Nicorial Property of the constant of the constan (aus Alkohol). Löslich in Benzol, leicht löslich in heißem Alkohol und Eisessig.

Tetraacetylderivat $C_{p4}H_{17}O_{11}Br_{3}=C_{15}H_{2}O_{2}Br_{3}(0\cdot CH_{3})(0\cdot CO\cdot CH_{3})_{4}$. B. Durch Kochen von Tribromrhamnetin mit Essigsäureanhydrid und enwässertem Natriumacetat (Lie., Hö., B. 11, 1621; A. 196, 322). — Farblose Nadeln (aus Alkohol). F: 211—212°. Leicht löslich in siedendem Alkohol.

3. 7.8-Dioxy-3.4-dioxo-2-[3.4-dioxy-phenyl]-chroman, 7.8.3'.4'-Tetraoxy-3.4-dioxo-flavan bezw. 3.7.8-Trioxy-2-[3.4-dioxy-phenyl]-chromon. 3.7.8.3'.4'-Pentaoxy-flavon, 7.8.3'.4'-Tetraoxy-flavonol $C_{18}H_{10}O_{7}$, Formel III bezw. IV. B. Durch Kochen des Tetramethyläthers (s. u.) mit Jodwasserstoffsäure (v. Kosta-

NECKI, RUDSE, B. 38, 938). — Hellgelbe Nädelchen mit 1 H₂O (aus verd. Alkohol). F: 308° (Zers.). Die Lösung in konz. Schwefelsäure ist intensiv gelb, die Lösung in verd. Natronlauge ist rotgelb. — Färbt Tonerdebeize gelb bis orange, Eisenbeize grau bis schwarz an.

7.8.3'4'-Tetramethoxy-3.4-dioxo-flavan bezw. 8-Oxy-7.8.3'.4'-tetramethoxy-flavon, 7.8.3'.4'-Tetramethoxy-flavonol $C_{19}H_{18}O_7=$ CO·CO

CO·CO

bezw. (CH₃·O)₂C₆H₂

CO·C·OH

bezw. (CH₃·O)₂C₆H₂

CO·C·OH

Kochen von 7.8.3'.4'-Tetramethoxy-3-oximino-flavanon in Eisessig mit 10°/,iger Schwefelsäure (v. K., R., B. 38, 937).—Hellgebbe Nadeln (asus Alkohol Oder Eisessig-Alkohol). F: 217°.

Schwer löslich in Alkohol, leicht in heißem Eisessig. Die Lösung in konz. Schwefelsäure ist intensiv gelb. Das gelbe Natriumsalz ist schwer löslich. Färbt Tonerdebeize hellgelb an.

7.8.8'.4'-Tetramethoxy-8-acetoxy-flavon, 7.8.8'.4'-Tetramethoxy-flavonolacetat $C_{s1}H_{s0}O_s = (CH_s \cdot O)_sC_6H_s \cdot O - C \cdot C_6H_3(O \cdot CH_s)_s$. B. Durch Acetylierung von 7.8.3'.4'-Tetramethoxy-flavonol (v. K., R., B. 38, 937). — Nadeln (aus verd. Alkohol). F: 176°.

8.7.8.3'.4'-Pentaacetoxy-flavon, 7.8.3'.4'-Tetraacetoxy-flavonol-acetat $C_{23}H_{20}O_{13}=(CH_3\cdot CO\cdot O)_2C_0H_3\cdot CO\cdot CO\cdot CH_3$.

B. Durch Acetylierung von 7.8.3'.4'-Tetra-oxy-flavonol (v. K., R., B. 38, 938). — Nädelchen (aus Alkohol). F: 172—173°.

7.8.3'.4' - Tetramethoxy - 4 - oxo - 8 - oximino - flavan, 7.8.3'.4' - Tetramethoxy-8-oximino-flavanon $C_{19}H_{19}O_7N = (CH_3 \cdot O)_2C_0H_2 \cdot C_0 \cdot C: N \cdot OH$ von Amylnitrit und Salzsaure auf 7.8.3'.4'-Tetramethoxy-flavanon (S. 210) in siedendem Properties of the contraction Alkohol (v. K., R., B. 38, 937). — Blaßgelbe Nadeln (aus Alkohol). F: 172° (Zers.). Die Lösung in verd. Natronlauge ist gelb. — Färbt Kobaltbeize orange an.

4. 5.6 - Dioxy - 3 - [2.4 - dioxy benzoyl]-phthalid C₁₅H₁₀O₇, Formel I.

5.6 - Dimethoxy-3 - [2 - oxy-4-methoxy - benzoyl] - phthalid, 3 - [2 - Oxy-4 - methoxy - benzoyl] - metamekonin

CH₃·O· HO.

4 - metnoxy - Denzoyi - metamekonin

C₁₈H₁₆O₇, Formel II. B. Aus 2-Oxy4.4'.5'-trimethoxy-benzoin-carbonsăure-(2')

(Bd. X, S. 1049) beim Digerieren mit

Eisessig-Salzsäure (W. H. Perkin jun., Robinson, Soc. 95, 404). — Krystalle (aus Alkohol).

F: 181° Sehr wenig löslich in Alkohol. Löslich in Kalilauge, unlöslich in Sodalösung. Eisenchlorid färbt die alkoh. Lösung rötlichviolett.

5.6 - Dimethoxy - 3 - [2.4 - dimethoxy - benzoyl] - phthalid, 3 - [2.4 - Dimethoxybenzoyl]-metamekonin $C_{19}H_{18}O_7 = (CH_3 \cdot O)_2C_6H_2 < \frac{CO}{CH} > O \\ CO \cdot C_6H_3(O \cdot CH_3)_2$. B. Man versetzt 5.6-Dimethoxy-3-[2-oxy-4-methoxy-benzoyl]-phthalid, gelöst in Methylalkohol, mit Dimethylsulfat und Kalilauge, verdünnt mit Wasser und säuert mit Salzsäure an (PE. jun., Ro., Soc. 95, 405). — Krystalle (aus Methyläthylketon und wenig Petroläther). F: 200°. Schwer löslich in Methylalkohol, Äthylalkohol, Eisessig, Aceton, fast unlöslich in Petroläther. Die purpurrote Lösung in Schwefelsäure wird bald carminrot und fluoresciert dann grün. Unlöslich in Sodalösung und in verdünnter wäßriger Kalilauge. Aus der Lösung in alkoh. Kalilauge kann man 2.4.4'.5'-Tetramethoxy-benzoin-carbonsäure-(2') (CH3. O)₂C₃H₃·CO·CH(OH)·C₆H₂(O·CH₃)₃·CO₂H gewinnen, die sich leicht wieder zu 5.6-Dimethoxy-3-[2.4-dimethoxy-benzoyl]-phthalid lactonisiert und bei der Oxydation mit Kalium-permanganat in schwach alkal. Lösung Dimethyläther- β -resorcylsäure und Metahemipinsäure

2. $0xy-0xo-Verbindung C_{16}H_{12}O_7$, Formel III.

Tetramethylhämatoxylon C₂₀H₂₀O₇, Formel IV. Zur Konstitution vgl.: Pfeiffer, Haack, Willems, B. 61 [1928], 295; Pfei., Angern, Haack, Will., B. 61, 839. — B. Bei allmählichem Zusatz einer Lösung von 6 g Chromsäure in wenig Wasser zu einer Lösung von 10 g Hämatoxylin-tetramethyläther (Bd. XVII, S. 220) in 50 g Eisessig unterhalb 30° (Perkin, Soc. 81, 1057, 1060; vgl. Gilbody, Perkin, Chem. N. 79, 94; v. Kostanecki, Rost, B. 36, 2203). Entsteht auch aus Hämatoxylin-tetramethyläther-acetat durch Oxydation mit Chromsaure in Eisessig (HERZIG, POLLAK, B. 36, 3713; vgl. HER., M. 16, 909). dation mit Chromsäure in Eisessig (Herzig, Pollar, B. 36, 3713; vgl. Her., M. 16, 909).

Krystalle (aus Alkohol), die bei 176° unter Zersetzung schmelzen; der Schmelzpunkt hängt von der Art des Erhitzens ab (Pfel., An., Haack, Will., B. 61, 843; vgl. Per., Soc. 81, 1060, 1065; v. Ko., Rost; Her., Pol., B. 36, 1222). Schwer löslich in den meisten Lösungsmitteln außer Toluol und Esigsäure; löslich in konz. Schwefelsäure mit orangeroter Farbe (Per., Soc. 81, 1061). — Durch 7—8-stdg. Erwärmen mit verd. Salpetersäure auf 40—45° oder durch kurzes Aufbewahren mit konz. Salpetersäure unterhalb 25° bilden sich Nitrooxydihydrotetramethylhämatoxylon (Bd. X, S. 466) und 3.4-Dimethoxy-2-[carboxymethoxy]-benzoesäure (Bd. X, S. 466) (Per., Soc. 81, 1058, 1063). Beim Erwärmen mit konz. Salpetersäure in Gegenwart von Eisessig auf dem Wasserbad wird Nitrooxydihydrotetramethylhämatoxylonnitrat (s. Formel VI in Bd. XVII, S. 222) (Syst. No. 2843) erhalten (Her., Pol., R. 36, 339), vol. Her., Pol., R. 36, 2320). Bei kurzer Einw., von kalter kon. (Her., Pol., B. 36, 399; vgl. Her., Pol., B. 36, 2320). Bei kurzer Einw. von kalter konzentrierter Schwefelsäure entsteht Pseudotetramethylhämatoxylon (Syst. No. 2617); bei längerer Einw. bildet sich daneben β -Anhydrotetramethylhämatoxylon (Bd. XVII, S. 224) (Her., Pol., B. 37, 632, 633). β-Anhydrotetramethylhämatoxylon entsteht auch durch Einw. von konz. Schwefelsäure auf in wenig Alkohol suspendiertes Tetramethylhämatoxylon

(v. Ko., Rost). Geht bei der Einw. von Alkalien in α-Anhydrotetramethylhämatoxylon (Bd. XVII, S. 225) über (PER., Ro., Soc. 93, 502; vgl. HEB., M. 16, 909, 910; HER., Pol., 86, 3713). Liefert mit Hydroxylamin Tetramethylhamatoxylon-monoxim (Her., Pol., B. 36, 3714). Durch Einw. von Methyljodid und Kali entsteht α-Anhydrotetramethylhamatoxylon-methylather (Bd. XVII, S. 225) (Her., Pol., B. 38, 3714). Durch kurzes Kochen mit Essigsaureanhydrid und entwässertem Natriumscetat bildet sich α-Anhydrotetramethylhāmatoxylon-acetat (Per., Soc. 81, 1058, 1062; v. Ko., Rost; Her., Pol., B. 36, 3714). Durch Einw. von Phenylhydrazin in Eisessig bei Wasserbadtemperatur wird Desoxytetramethylhāmatoxylon (Bd. XVII, S. 203) erhalten (Her., Pol., B. 38, 2167). Läßt man dagegen Tetramethylhāmatoxylon mit Phenylhydrazin in Eisessig 6—7 Tage stehen und erwärmt dann auf dem Wasserbad, so erhält man eine Verbindung $C_{36}H_{24}O_5N_2$ (?) (s. u.) (Heb., Pol., B. 39, 265).

Verbindung $C_{se}H_{24}O_{s}N_{s}(?)$. B. Man läßt Tetramethylhämatoxylon mit 5 Tln. Phenylhydrazin und 10 Tln. Eisessig 6—7 Tage stehen und erwärmt dann auf dem Wasserbad (Heb., Pol., B. 39, 265). Durch Kochen von Tetramethylhämatoxylon-monoxim mit 5 Tln. Phenylhydrazin und 10 Tln. Eisessig (Heb., Pol., B. 39, 266). — Gelbe Nädelchen (aus Essigester). F: 234—237° (Heb., Pol., B. 39, 265). — Beim Behandeln mit Essigsäureanhydrid und Natriumacetat in Gegenwart von Zinkstaub entsteht die Verbindung $C_{22}H_{22}O_2N_2(?)$ (s. u.) (HEB., Pol., M. 27, 746).

Verbindung C₂₈H₂₈O₆N₃(?). B. Aus der Verbindung C₂₆H₂₄O₅N₂(?) (s. o.) durch Behandeln mit Essigsäureanhydrid und Natriumacetat in Gegenwart von Zinkstaub (Her., Pol., M. 27, 746). — Farblose Nadeln (aus Alkohol). F: 188—192°.

Tetramethylhämatoxylon-monoxim $C_{so}H_{s_1}O_sN = (CH_s \cdot O)_4C_{16}H_8O_5(:N \cdot OH)$. B. Aus Tetramethylhämatoxylon und salzsaurem Hydroxylamin (Hell., Pol., B. 36, 3714). Liefert beim Kochen mit Phenylhydrazin in Eisessig die Verbindung C₂₆H₂₄O₅N₂(?) (s. o.) (HEB., Pol., B. 39, 266).

Tetramethylhämatoxylon-monoximacetat(?) $C_{22}H_{23}O_8N = (CH_2 \cdot O)_4C_{16}H_6O_2(:N \cdot O \cdot CO \cdot CH_2)$ (?). Schmilzt bei 179—183° unter Aufschäumen (Her., Pol., B. 36, 3714).

3. 6.8 - Dioxy - 1.3.2¹.5¹ - tetraoxo - 4.4.7 - trimethyl - 2.5 - dibutyl - xanthen tetrahydrid-(1.2.3.4), 6.8-Dioxy-1.3-dioxo-4.4.7-trimethyl-2.5-dibutyryl-1.2.3.4-tetrahydro-xanthen bezw. 1.6.8-Trioxy-3.21.51-trioxo-4.4.7-trimethyl-2.5-dibutyl-xanthen-dihydrid-(3.4), 1.6.8-Trioxy-3-oxo-4.4.7-trimethyl-2.5-dibutyryl-3.4-dihydro-xanthen CathanO2, Formel I bezw. II, Dihydroflavaspidsäurexanthen. B. Bei 1/2 stdg. Erhitzen von 1 Tl. Flavaspid-

Erhitzen von 1 Tl. Aspidin (Bd. VIII, S. 566) mit 1 Tl. Jodwasserstoffsaure (D: 1,7) in 20 Tln. Eisessig im Wasserbad, neben einer Verbindung C₂₁H₂₄O₆(?) und anderen CH₂ CH₂ CO C C(OH) C CH₂ CH₃ Produkten (B., A. 329, 325, 332).

| CH₃ CH₂ CO C C(CH₃)₂ O OH Fast farblose Krystalle (aus Xylol). F: 259—260°. Sehr sehwer löslich

CO · CH2 · CH2 · CH2

in Alkohol, Äther, Benzol und Aceton, leichter in Eisessig und Xylol in der Wärme. Leicht löslich in kalten wäßrigen Alkalien mit gelber Farbe ohne Fluorescenz; löslich in alkoh. Ammoniak mit hellroter Farbe und intensiv gelber Fluorescenz. Löst sich in konz. Salpetersäure mit feuerroter Farbe. — Bei längerem Digerieren mit Zinkstaub und Natronlauge erhält man Buttersäure und eine Verbindung $C_{20}H_{22}O_6$ (s. u.).

Verbindung $C_{20}H_{22}O_6$. Das Molekulargewicht ist kryoskopisch in Naphthalin bestimmt (Boehm, A. 829, 314).— B. Bei längerem Digerieren von Dihydroflavaspidsäurexanthen mit Zinkstaub und Natronlauge, neben Buttersäure (B.). – Farblose Nadeln mit 1 Mol Aceton (aus Aceton). F: 213—215°. Ziemlich löslich in Alkohol und Äther. Löst sich in alkoh. Ammoniak mit gelber Farbe, die durch Grün in Schwarzgrün übergeht. — Spaltet beim Digerieren mit konz. Schwefelsäure Buttersäure ab. Liefert ein alkaliunlösliches, krystallisierbares, in alkoh. Lösung grüngelb fluorescierendes Benzoylderivat vom Schmelzpunkt 186—187°.

6.8 - Dioxy - 1 - methoxy - $8.2^{1}.5^{1}$ - trioxo - 4.4.7 - trimethyl - 2.5 - dibutyl - xanthen dihydrid - (8.4). Dihydroflavaspidsäurexanthen - monomethyläther CostlanO2, s. nebenstehende Formel. B. Beim

Kochen von Flavaspidsäure (Bd.

deren Produkten (B., A. 329,
316, 317, 319). — Goldgelbe
Nadeln (aus Eisessig). F: 249—250°. Etwas löslich in heißem Alkohol; die alkoh. Lösung fluoresciert gelb. Die Lösung in Eisessig ist rot und fluoresciert eosinartig. Löslich in heißem alkoholischem Ammoniak mit gelber Fluorescenz. Ätzalkalien lösen mit gelber Farbe ohne Fluorescenz.

6.8 - Dioxy - 1 - $\frac{1}{2}$ -

Blättchen und Prismen (aus Eisessig). F: 236°. Sehr schwer löslich in den gewöhnlichen Lösungsmitteln. Die Lösung in heißem Eisessig ist rot. Leicht löslich in Alkalien. Löst sich in alkoh. Ammoniak mit eosinartiger Fluorescenz.

f) Oxy-oxo-Verbindungen $C_n H_{2n-24} O_7$.

1. Oxy-oxo-Verbindungen C₁₆H₈O₇.

1. 5'.6'.4".5"-Tetraoxy-4.7-dioxo-/dibenzo-1'.2':2.3; 1".2":5.6-cumaron]dihydrid-(4.7)1), 3.4.6'.7'-Tetraoxy-1'.4'-dioxo-brasandihydrid, 3.4.6'.7'-Tetraoxy-brasanchinon C16H8O2, Formel I.

5'.6'.4''.5''-Tetramethoxy - 4.7 - dioxo - [dibenzo - 1'.2':2.8; 1''.2'':5.6 - cumaron]-5.6.4.5. Tetramethoxy - 4.7 - dioxo - [dibenzo - 1.2.2.38; 1.2.2.35] cumaron]-dihydrid-(4.7)¹), 3.4.6'.7'-Tetramethoxy-brasanchinon C₂₀H₁₆O₇, Formel II. B. Beim Behandeln von 4'-Oxy-3.4.6'.7'-tetramethoxy-brasan (β-Anhydrotetramethylhāmatoxylon, Bd. XVII, S. 224) mit Chromsāure in Eisessig (v. Kostanecki, Rost, B. 36, 2205). — Bordeaux-rote Nadeln (aus Eisessig-Alkohol). F: 264°. Löst sich in konz. Schwefelsäure mit olivgrüner Farbe. — Bei der Destillation über Zinkstaub entsteht als Hauptprodukt Naphthalin. Beim Behandeln mit Zinkstaub, Eisessig und Essigsäureanhydrid bildet sich 3.4.6'.7'-Tetramethoxy-1'.4'-diacetoxy-brasan (Bd. XVII, S. 232).

2. 5'.6'.4".5"-Tetraoxy-6.7-dioxo-[dibenzo-1'.2':2.3; 1".2":4.5-cumaron]dihydrid-(6.7)1) C₁₆H₈O₇, Formel III.

5'.6'.4''.5''- Tetramethoxy - 6.7- dioxo - [dibenso - 1'.2':2.3; 1''.2'':4.5 - cumaron]-dihydrid - (6.7)¹), von Perkin, Robinson Tetramethoxy - α-brasanchinon genannt C₂₀H₁₆O₇, Formel IV. B. Durch Kochen einer alkoh. Lösung von Nitro-α-anhydrotetramethylhämatoxylon-acetat (Bd. XVII, S. 226) mit Zink und Salzsäure, Verdünnen mit Wasser und Zusatz von Natriumnitrit-Lösung (Perkin, Robinson, Soc. 95, 399). — Dunkelbraune mikroskopische Prismen (aus Alkohol). Sehr wenig löslich in den meisten Lösungsmitteln, neighter in heißer Fesigestuse. Die Lösung in Schwafelstung ist tieferiolett. leichter in heißer Essigsaure. Die Lösung in Schwefelsaure ist tiefviolett. — Liefert bei kurzem Digerieren mit salzaurem 3.4-Diamino-toluol in Gegenwart von Essigsaure und Natriumscetat das entsprechende Chinoxalin-Derivat (Syst. No. 4540).

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

2. 2.5-Dioxo-3.4-bis-[3.4-dioxy-benzal]-furantetrahydrid, Bis-[3.4-dioxy-benzal]-bernsteinsäureanhydrid, a.d.Bis-[3.4-dioxy-phenyll-fulgid

$$C_{18}H_{18}O_{7} = HO \cdot \bigcirc CH : C - C : CH \cdot \bigcirc OH.$$

$$OC \cdot O \cdot CO$$

Diveratralbernsteinsäureanhydrid, $\alpha.\delta$ -Bis-[8.4-dimethoxy-phenyl]-fulgid (CH₃·O)₂C₆H₃·CH:C—C:CH·C₆H₃(O·CH₃)₈ Point Kochen von $\alpha.\delta$ Bis-B. Beim Kochen von α.δ-Bis-00.0.00

[3.4-dimethoxy-phenyl]-fulgensäure (Bd. X, S. 588) mit Acetylchlorid (Stobbe, A. 380, 77). — Rote pleochroitische Tafeln (aus Benzol). Monoklin prismatisch (St., A. 380, 77; Toborffy, Z. Kr. 45, 163; vgl. Groth, Ch. Kr. 5, 503). F: 172—173°; leicht löslich in Chloroform, schwerer in Eisessig, Benzol, Alkchol und Schwefelkohlenstoff, sehr schwer in Äther (St., A. 380, 77). Absorptionsspektrum in Chloroform: St., A. 380, 4. Wird beim Abkühlen auf —80° hellrot, beim Érwärmen auf 76—165° dunkelviolett; diese Farbänderungen gehen bei gewöhnlicher Temperatur wieder zurück (St., A. 380, 20, 22).

g) Oxy-oxo-Verbindungen $C_n H_{2n-26} O_7$.

2.6.7 - Trioxy - 9 - [3.4 - dioxy - phenyl] - fluoron $C_{10}H_{12}O_7$, OH s. nebenstehende Formel. B. Aus Protocatechualdehyd und Oxy-OH hydrochinon in verd. Alkohol in Gegenwart von Schwefelsäure (LIEBERMANN, LINDENBAUM, B. 37, 2732). — Orangerote Nadeln. Schmilzt oberhalb 300°. Sehr schwer löslich in den meisten Lösungs-HO mitteln. Die alkoh. Lösung fluoresciert gelbgrün, die alkal. Lösung ist rot und fluoresciert schwach rot. $-2C_{19}H_{18}O_7 + H_2SO_4 + H_3O$.

Orangerote cantharidenglänzende Blättehen. Schwer löslich in kaltem Alkohol. Spaltet beim Kochen mit Wasser die Schwefelsäure quantitativ ab.

OH

2.6.7-Triacetoxy-9-[3.4-diacetoxy-phenyl]-fluoron $C_{29}H_{39}O_{19}=(CH_3\cdot CO\cdot O)_2C_6H_3\cdot C_{13}H_4O_3(O\cdot CO\cdot CH_3)_3$. Orangegelbe Nadeln (aus absol. Alkohol). F: 227—231° (Lie., Lin., B. 37, 2733).

h) Oxy-oxo-Verbindungen $C_nH_{2n-28}O_7$.

Oxy-oxo-Verbindungen $C_{20}H_{12}O_7$.

1. **2.3.9.12.13-Pen**taoxy-10-oxo-cöroxan, **2.3.12.13-Tetraoxy-cöroxonol** C₂₀H₁₂O₇, Formel I.

Anhydroverbindung, Cörulein C₂₀H₁₀O₆, Formel II oder III, s. S. 234.

3.4.9.13.14-Pentaoxy-10-oxo-cöroxan, 3.4.13.14-Tetraoxy-cöroxonol C₂₀H₁₂O₇, Formel IV.

Anhydroverbindung, Violein C₂₀H₁₀O₈, Formel V oder VI, s. S. 234.

6. Oxy-oxo-Verbindungen mit 8 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_nH_{2n-2}O_8$.

1. $\alpha.\beta$ - Dioxy - γ - [$\alpha.\beta.\gamma.\delta$ - tetraoxy - butyl] - butyrolacton, $\alpha.\beta.\delta.\epsilon.\zeta.\eta$ - Hexa-oxy - γ - caprylolacton $C_8H_{14}O_8 = \frac{HO \cdot HC - CH \cdot OH}{OC \cdot O \cdot CH \cdot [CH \cdot OH]_2 \cdot CH_4 \cdot OH}$

a) γ - Lacton der d - Glyko - $\alpha.\alpha$ - octonsäure $C_8H_{14}O_8 =$

H H OH H H

HO CH2 — C — C — C — C — C — CH(OH) CO. Zur Konfiguration vgl. Anderson, Am. Soc.

33 [1911], 1513. — B. s. bei d-Glyko-α.α-octonsäure, Bd. III, S. 588. — Krystalle (aus heißem Methylalkohol) (E. Fischer, A. 270, 93). Krystallisiert mit 1 H₂O aus Wasser (Philippe, A. ch. [8] 26 [1912], 342). Schmilzt wasserfrei gegen 165—166° (Ph.), bei 145—147° (E. F.). Sehr leicht löslich in Wasser, schwer in absol. Alkohol; [α]^m: +45,9° (in Wasser; p = 10,4) (E. F.); [α]^m: +48,8° (in Wasser; p = 10); nach 24 Stdn. beträgt [α]₀: +47,5° (Ph.). Verbrennungswärme bei konstantem Volumen: 837,5 kcal/Mol (Fogh, Cr. 114, 922). — Durch Reduktion mit Natriumamalgam in Schwefelsäure entsteht d-Glyko-α.α-octose (Bd. I, S. 937) (E. F.). Liefert beim Erwärmen mit Phenylhydrazin in konzentrierter wäßriger Lösung auf dem Wasserbad das gegen 215° schmelzende [d-Glyko-α.α-octonsäure]-phenylhydrazid (E. F.).

b) γ -Lacton der d-Glyko-a. β -octonsäure $C_8H_{14}O_8=H_{14}O_8$

HO·CH₂·C—C—C—C·CH(OH)·CO. B. s. bei d-Glyko-α.β-octonsäure, Bd. III, S. 588. — OH OH H OH

Prismen (aus Wasser), Nadeln (aus Methyl- oder Äthylalkohol). F: 186—188° (E. FISCHER, A. 270, 100); 195—197° (Philippe, A. ch. [8] 26 [1912], 358). Sehr leicht löslich in warmem Wasser, ziemlich schwer in heißem Alkohol; [z] $_{0}^{m}$: +23,6° (in Wasser; p = 10) (E. FISCHER, A. 270, 100). [α] $_{0}^{m}$: +24,1° (in Wasser; p = 8) (Ph.). Liefert beim Erwärmen mit Phenylhydrazin das bei 170—172° unter Zersetzung schmelzende [d·Glyko- α . β -octorsäure]-phenylhydrazid (E. F.).

c) γ -Lacton der d-Manno-a.a-octonsäure $C_8H_{14}O_8$ =-

OH OH H H OH OH

OH OH H H OH OH

28 [1915], 327. — B. s. bei d-Manno-octonsäure, Bd. III, S. 588. — Krystalle (aus Alkohol). Schmilzt zwischen 167° und 170°; sehr leicht löslich in Wasser, ziemlich leicht in heißem Alkohol; [\alpha]_{\beta}^{\beta}: —43,6° (in Wasser; p = 11) (E. FISCHER, PASSMORE, B. 23, 2234). — Wird von Natriumamalgam in verd. Schwefelsäure zu d-Mannooctose (Bd. I, S. 937) reduziert (F., P.). Schmeckt süß (F., P.).

d) γ -Lacton der d - Gala - à.a - octonsäure $C_8H_{14}O_8 = H_{14}O_8$

HO CH2 C C C CH(OH) CO Zur Konfiguration vgl. Peirce, J. biol. Chem.

28 [1915], 327; Anderson, Am. Soc. 33 [1911], 1514. — B. s. bei d-Gala- α . α -octonsäure, Bd. III, S. 588. — Krystalle (aus heißem Wasser). Schmilzt zwischen 225° und 228° (korr.); löslich bei 20° in ca. 20 Tln. Wasser, sehr wenig löslich in absol. Alkohol, recht leicht in heißem Wasser; [α] $_0^{n}$: + 64° (in Wasser; p = 4,6) (E. Fischer, A. 288, 149). — Liefert bei der Reduktion mit Natriumamalgam in verd. Schwefelsäure d-Gala- α -octose (Bd. I, S. 937) (F.).

2. $\alpha.\beta$ -Dioxy- γ -[$\alpha.\beta.\gamma.\delta$ -tetraoxy-n-amyl]-butyrolacton, $\alpha.\beta.\delta.\epsilon.\zeta.\eta$ -Hexa-oxy- γ -pelargolacton $C_9H_{16}O_8 = O_{c}^{\dagger}O_{c}^{\dagger}O_{c}^{\dagger}H_{16}^{\dagger}C_{H}^{\dagger}$

OXy-γ-perarg cracton C₉H₁₆O₈ = OC·O·CH·[CH(OH)]₄·CH₃· γ-Lacton der l-Rhamno-α.α.α-octonsäure C₉H₁₆O₈ = OH OH H H OH OH CH(OH)·CH(OH)·CO. Zur Konfiguration vgl. Anderson, Am. Soc. H H OH OH H

88 [1911], 1514. — B. s. bei Rhamnooctonsäure, Bd. III. S. 588. — Nadeln. F: 171—172°; leicht löslich in Wasser und Alkohol, ziemlich schwer in Aceton; $[\alpha]_0^{\rm p}$: $-50.8^{\rm e}$ (in Wasser; p = 4.8) (E. Fischer, Piloty, B. 23, 3109, 3827). — Durch Reduktion mit Natriumamalgam in verd. Schwefelsäure entsteht Rhamnooctose (Bd. I, S. 937) (F., P., B. 23, 3110).

b) Oxv-oxo-Verbindungen $C_n H_{2n-18} O_8$.

1. 3'.4'.5'.3".4".5"- oder 3'.4'.5'.6'.3",4"- Hexaoxy-2-oxo-[dibenzo-1'.2': 3.4; 1".2":5.6-(1.2-pyran)]1), d-Lacton der 4.5.6.2'.3'.4'.5'-oder 3.4.5.6.2'.3'.4'-Heptaoxy-diphenyl-carbonsaure-(2) C12H2O2, Formel I oder II. B. Man kocht

Flavellagsäure (Formel III, Syst. No. 2843) mit $50^{\circ}/_{0}$ iger Kalilauge, verdünnt mit Wasser und neutralisiert mit Schwefelsäure (Perkin, Soc. 89, 253). — Fast farblose Nadeln mit 1 $\rm H_{2}O$. Wird bei 160° wasserfrei. Schmilzt wahrscheinlich erst oberhalb 360°. Leicht löslich in Pyridin, schwer in den übrigen gebräuchlichen Lösungsmitteln. Löslich in Alkali mit orangegelber Farbe; die Lösung wird an der Luft blauviolett. Salpetersäure gibt eine orangerote, Ferrichlorid eine blaugrüne Färbung. Bleiacetat liefert einen orangegelben Niederschlag.

Hexaacetylderivat $C_{as}H_{ao}O_{14} = C_{13}H_{a}O_{2}(O\cdot CO\cdot CH_{a})_{6}$. B. Beim Kochen des δ -Lactons der 4.5.6.2'.3'.4'.5'- oder 3.4.5.6.2'.3'.4'-Heptaoxy-diphenyl-carbonsäure-(2) mit Essigsäureanhydrid, F. 232—234°. Ziemlich schwer löslich in den meisten Lösungsmitteln.

Hexabensoylderivat $C_{58}H_{23}O_{14}=C_{13}H_{2}O_{2}(O\cdot CO\cdot C_{6}H_{5})_{6}$. B. Aus dem δ -Lacton der 4.5.6.2'.3'.4'.5'- oder 3.4.5.6.2'.3'.4'- Heptaoxy-diphenyl-carbonsäure-(2) und Benzoylchlorid in Pyridin (P., Soc. 89, 255). — Farblose Prismen (aus Benzol + Alkohol). F: 261—263°.

2. $\gamma \cdot \gamma$ -Bis-[2.3.4-trioxy-phenyl]-butyrolacton(?), Pyrogallol succine in $C_{16}H_{14}O_{6} = \frac{H_{2}C - CH_{3}}{OC \cdot O \cdot C[C_{6}H_{3}(OH)_{3}]_{3}}$ (?). B. Neben anderen Produkten bei mehrstündigem

Erhitzen von 10 g Bernsteinsäureanhydrid mit 20 g Pyrogallol und 8—10 g geschmolzenem Chlorzink auf ca. 170° (v. Georgievics, M. 20, 450, 454). — Rotbraunes Pulver. Zersetzt sich völlig beim Erhitzen auf 180°. Fast unlöslich in allen Solvenzien; unter Veränderung löslich in Pyridin. Löslich in Alkalien mit blauer Farbe. — Verbindung mit Salzsäure C₁₈H₁₆O₈ + HCl. B. Beim Kochen des Succineins mit Alkohol und etwas konz. Salzsäure (v. G.). Metallisch glänzende Krystalle, die bei 105–110° Chlorwasserstoff quantitativ abspalten. - Verbindung mit Schwefelsäure. Dunkelblaue Krystalle. Wird durch Wasser zersetzt.

c) Oxy-oxo-Verbindungen $C_nH_{2n-20}O_8$.

1. Oxy-oxo-Verbindungen $C_{15}H_{10}O_8$.

1. 5.6.7-Trioxy-3.4-dioxo-2-[3.4-dioxy-phenyl]-chroman, 5.6.7.3'.4'-Pentaoxy - 3.4 - dioxo - flavan bezw. 3.5.6.7-Tetraoxy - 2-[3.4-dioxy-phenyl]chromon, 3.5.6.7.3'.4' - Hexaoxy - flavon, 5.6.7.3'.4' - Pentaoxy - flavonol

C₁₅H₁₀O₈, Formel IV bezw. V, Quercetagetin³). Zur Zusammensetzung vgl. Perkin, Chem. N. 85, 164. — V. In den Blüten verschiedener Tagetesarten, namentlich Tagetes patula (LATOUR, MAGNIER DE LA SOURCE, Bl. [2] 28, 337). — Darst. Man extrahiert die Blüten mit 85° laigem

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl Bd. XVII, S. 1-3. 2) Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von BAKER, NODZU, ROBINSON, Soc. 1929, 74.

Alkohol, versetzt die Lösung mit $^{1}/_{5}$ Vol. Wasser, destilliert den Alkohol ab, entzieht dem ausgefallenen Produkt Harze usw. mit Chloroform und kocht den Rückstand mit Alkohol aus; weitere Reinigung durch Tierkohle und wiederholte Krystallisation aus verd. Alkohol (L., M. de La S.). — Gelbe Krystalle (aus verd. Alkohol). F: 318–320° (P.). — Beim Schmelzen mit Kali entsteht Protocatechusäure (P.). — $C_{15}H_{10}O_{8}+H_{2}SO_{4}$. Orangefarbene Nadeln $(P.). - KC_{15}H_{9}O_{8}(P.).$

 $\textbf{Hexascetylderivat} \quad C_{27} H_{22} O_{14} = (CH_3 \cdot CO \cdot O)_3 C_6 H < \begin{matrix} CO \cdot C \cdot O \cdot CO \cdot CH_3 \\ O - \overset{\circ}{C} \cdot C_2 H_3 (O \cdot CO \cdot CH_3)_2 \end{matrix}. \quad \text{Nadeln.}$ F: 203-2050 (PERKIN, Chem. N. 85, 165).

2. 5.7.8-Trioxy-3.4-dioxo-2-[3.4-dioxy-phenyl]-chroman, 5.7.8.3'.4'-Pentaoxy-3.4-dioxo-flavan bezw. 3.5.7.8-Tetraoxy-2-[3.4-dioxy-phenyl]-chromon, 3.5.7.8.3'.4'-Hexaoxy-flavon, 5.7.8.3'.4'-Pentaoxy-flavonol $C_{18}H_{10}O_8$, Formel I bezw. II, Gossypetin'). V. Findet sich glykosidisch gebunden in den

I.
$$\frac{HO}{OH}$$
 $\frac{O}{OH}$ $\frac{O}{$

Blüten von Hibiscus Sabdariffa (PERKIN, Soc. 95, 1855), ebenfalls als Glykosid (Gossypitrin) in den Blüten von Gossypium herbaceum (P., Soc. 75, 826; 95, 2189). — Daret. Man extrahiert die Blüten von Gossypium herbaceum mit kochendem Alkohol, dampft stark ein, behandelt mit Wasser und hierauf mit Äther; die wäßr. Lösung kocht man kurze Zeit mit etwas Schwefelsäure, löst die entstandene Fällung in wenig Alkohol, gießt in Äther und wäscht die filtrierte äther. Lösung mehrfach mit Wasser; dann dampft man den Äther ab und krystallisiert aus verd. Alkohol um (P., Soc. 75, 826). — Gelbe Nadeln (aus verd. Alkohol). Schmilzt zwischen 295° und 300° (P., Soc. 95, 1857). Leicht löslich in Alkohol, schwer in Wasser; die orangerote Lösung in Alkalien wird beim Schütteln oder Verdünnen mit Wasser erst grün, dann braun; Lösung in Alkalien wird beim Schuttein oder verdunnen mit wasser erst grun, dann oraun; alkoh. Eisenchlorid-Lösung erzeugt eine olivgrüne Färbung, alkoh. Bleiacetat einen roten Niederschlag (P., Soc. 75, 826). — Gibt bei der Kalischmelze Phloroglucin und Protocatechusäure (P., Soc. 75, 827). — Hydrochlorid. Orangerote Nadeln. — Hydrojodid. Orangerote Nadeln. — Sulfat. Orangerote Nadeln. — Kaliumsalz. Orangegelber krystallinischer Niederschlag. Unlöslich in kaltem Alkohol, sehr wenig löslich in Wasser.

Hexaacetylderivat $C_{27}H_{22}O_{14} = (CH_3 \cdot CO \cdot O)_3C_6H \cdot \frac{CO \cdot C \cdot O \cdot CO \cdot CH_3}{O - C \cdot C_6H_3(O \cdot CO \cdot CH_3)_2}$. B. Bei 6-stdg. Kochen von Gossypetin mit Essigsäureanhydrid (Perkin, Soc. 75, 827). — Farblose Nadeln (aus Alkohol + Essigsäure). F: 229—230° (P., Soc. 95, 1856). Leicht löslich in Eisessig, ziemlich schwer in Alkohol (P., Soc. 75, 827).

Gossypitrin $C_{21}H_{20}O_{13} = C_{15}H_{2}O_{8} \cdot C_{6}H_{11}O_{5}$ s. in der 4. Hauptabteilung, Kohlenhydrate.

3. 5.7-Dioxy-3.4-dioxo-2-[3.4.5-trioxy-phenyl]-chroman, 5.7.3'.4'.5'-Pentaoxy-3.4-dioxo-flavan bezw. 3.5.7-Trioxy-2-[3.4.5-trioxy-phenyl]-chromon, 3.5.7.3'.4'.5'-Hexaoxy-flavon, 5.7.3'.4'.5'-Pentaoxy-flavonol $C_{18}H_{10}O_8$, Formel III bezw. IV, Myricetin. Für die vom Namen "Myricetin" abgeleiteten

III.
$$\frac{10}{100}$$
 $\frac{10}{100}$ $\frac{10}{100}$

Namen wird in diesem Handbuch die eingezeichnete Bezifferung gebraucht. — V. Frei und als Glykosid (Myricitrin, s. in der 4. Hauptabteilung, Kohlenhydrate) in der Rinde von Myrica Nagi (M. sapida) (Perkin, Hummel, Soc. 69, 1287), in den Blättern von Myrica Gale (Gagelstrauch), Hämatoxylon campechianum (Blauholzbaum), Coriaria myrtifolia (Lederbaum) (P., Soc. 77, 426, 428, 429), in den Gallen von Pistacia Terebinthus und in den Blättern von Pistacia Lentiscus (P., Soc. 73, 375, 385). In den Blättern und Stengeln von

¹⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von BAKER, NODZU, ROBINSON, Soc. 1929, 74.

Rhus Coriaria (P., Allen, Soc. 69, 1299; P., Wood, Soc. 73, 383), in den Blättern von Rhus Cotinus (P., Soc. 71, 1136; 73, 1016) und von Rhus Metopium (P., Soc. 77, 427). — Darst. Man kocht 1 kg der zerkleinerten Rinde von Myrica Nagi zweimal mit je 10 l Wasser 6 Stdn., fällt aus den vereinigten Filtraten durch 60 g Bleizucker zunächst Gerbstoffe und dann durch mehr Bleiacetat das Myricetin; man zerlegt den Niederschlag durch verd. Schwefelsäure und nimmt das freie Myricetin in Äther auf (P., H.). — Hellgelbe Nadeln mit 1 H₂O (aus verd. Alkohol); wird bei 160° wasserfrei (P., Soc. 81, 204). F. ca. 357° (P., Soc. 81, 204). Unlöslich in Chloroform und Eisessig, sehr schwer löslich in kochendem Wasser (P., H.). Die Lösung in verd. Kalilauge ist grün und wird an der Luft erst tiefblau, dann violettrot (P., H.). Unzersetzt löslich in kalter konzentrierter Schwefelsäure mit tiefroter Farbe (P., H.). Die alkoh. Lösung wird durch Eisenchlorid braunschwarz gefärbt (P., H.). — Bei der Einw. von Brom auf Myricetin in Schwefelkohlenstoff entsteht 6.8.2'.6'-Tetrabrom-myricetin monoäthyläther (P., Phipps, Soc. 85, 62). Beim Schmelzen mit Kali entstehen Gallussäure und Phloroglucin (P., H.). Bei der Methylierung wurde der Myricetin-3.7.3'.4'.5'-pentamethyläther, bei der Äthylierung der Myricetin-hexafthyläther erhalten (P., Soc. 81, 205, 206). Myricetin liefert bei 1-stdg. Kochen mit 1 Tl. Natriumacetat und 3 Tln. Essigsäureanhydrid Myricetin-hexasacetat (P., H.). — Hydrochlorid. Zersetzt sich bei 100° in seine Komponenten (P., H.). — C₁₅H₁₀O₈ + HBr. Orangerote Nadeln. Wird durch Wasser hydrolysiert (P., H.). — C₁₅H₁₀O₈ + H₂SO₄. Orangegelbe Nadeln. Wird durch Wasser hydrolysiert (P., H.). — KC₁₁H₂O₈. B. Aus Myricetin und Kaliumacetat in Alkohol (P., Soc. 81, 207). Orangerote Krystalle. Wird bei 100° dunkelgrün. Wird durch heißes Wasser zerlegt.

5-Oxy-3.7.3'.4'.5'-pentamethoxy-flavon, 5-Oxy-7.3'.4'.5'- tetramethoxy-flavonol - methyläther, Myricetin-3.7.3'.4'.5'-pentamethyläther C₁₀H₂₀O₈, s. nebenstehende Formel. B. Man löst 4 g Myricetin in siedendem Methylalkohol, der einen Überschuß von Methyljodid enthält, und fügt im Verlauf von 36 Stdn. tropfenweise eine Lösung von 8 g Ätzkali in Methylalkohol zu (Perkin, Soc. 81, 205). — Fast farblose Nadeln (aus Alkohol). F: 138—139°. Schwer löslich in kaltem Alkohol. — Liefert mit alkoh. Kalilauge bei 170° Trimethyläthergallussäure und Phloroglucinmonomethyläther. — Kaliumsalz. Gelb. Wird durch Wasser leicht zersetzt.

3.5.7.3'.4'.5'-Hexaäthoxy-flavon, 5.7.3'.4'.5'-Pentaäthoxy-flavonol-äthyläther, Myricetin-hexaäthyläther $C_{27}H_{34}O_8 = (C_2H_5 \cdot O)_2C_6H_2 \underbrace{CO \cdot C \cdot O \cdot C_2H_5}_{O - C \cdot C_6H_2(O \cdot C_2H_5)_3}$. B. Man löst 5 g Myricetin in einer siedenden Mischung von Alkohol und Äthyljodid und gibt innerhalb von 12 Stdn. tropfenweise eine Lösung von 9,5 g Ätzkali in Alkohol zu (P., Soc. 81, 206). — Farblose Nadeln (aus Alkohol). F: 149—151°. Schwer löslich in kaltem, leicht in heißem Alkohol. — Durch Einw. von alkoh. Kalilauge bei 170° entsteht Triäthyläthergallussäure

5 - Acetoxy - 3.7.3'.4'.5' - pentamethoxy - flavon, 5-Acetoxy-7.3'.4'.5' - tetramethoxy - flavonol-methyläther, Myricetin-3.7.3'.4'.5'-pentamethyläther-5-acetat $C_{23}H_{22}O_{9}$, s. nebenstehende Formel. B. Aus Myricetin-3.7.3'.4'.5'-pentamethyläther durch Acetylierung (Perkin, Soc. 81, 205). — Nadeln (aus Alkohol). F: 167—170°.

und wahrscheinlich Phloroglucindiäthyläther.

- 3.5.7.3'.4'.5'-Hexaacetoxy-flavon, 5.7.3'.4'.5'-Pentaacetoxy-flavonol-acetat, Myricetin-hexaacetat $C_{27}H_{22}O_{14}=(CH_2\cdot CO\cdot O)_2C_6H_2\cdot CO\cdot CO\cdot CO\cdot CH_3$ B. Bei 1-stdg. Kochen von 1 Tl. Myricetin mit 1 Tl. entwässertem Natriumacetat und 3 Tln. Essigsäureanhydrid (Perkin, Hummel, Soc. 69, 1291). Nadeln (aus Alkohol). F: 211—212° (P., Soc. 81, 204; vgl. auch P., Wood, Soc. 73, 375). Sehr schwer löslich in Alkohol, leichter in Essigsäure (P., H.).
- 3.5.7.3'.4'.5'-Hexabenzoyloxy-flavon, 5.7.3'.4'.5'-Pentabenzoyloxy-flavonolbenzoat, Myricetin hexabenzoat $C_{57}H_{34}O_{14} = (C_6H_5\cdot CO\cdot O)_2C_6H_2 CO\cdot C\cdot C\cdot C_6H_5$. B. Bei 4-stdg. Erhitzen von Myricetin mit überschüssigem Benzoesäureanhydrid auf 160—170° (Perkin, Hummel, Soc. 69, 1291). Nadeln (aus Alkohol). Schwer löslich in Alkohol; leicht in Essigsäure.

6.8.2'.6'-Tetrabrom-5.7.3'.4'.5'-pentaoxy-3.4-dioxo-flavan bezw. 6.8.2'.6'-Tetrabrom-3.5.7.3'.4'.5'-pentaoxy-flavon, 6.8.2'.6'-Tetrabrom-3.7.3'.4'.5'-pentaoxy-flavonol $C_{18}H_{\bullet}O_8Br_4$, Formel I bezw. II, 6.8.2'.6'-Tetrabrom-myricetin. B. Aus

Myricetin und 4 Mol Brom in Schwefelkohlenstoff bei 1000 (Perkin, Hummel, Soc. 69, 1293). — Braunrote, prismatische Nadeln (aus verd. Essigsäure). F: 235—240° (Zers.); leicht löslich in Essigsäure, weniger in Alkohol; die alkoh. Lösung wird durch Eisenchlorid tiefblau gefärbt (P., H.). — Geht bei Einw. von kochender Jodwasserstoffsäure in Myricetin über (P., Soc. 81, 204).

Monoäthyläther C₁₇H₁₀O₃Br₄, s. nebenstehende Formel.

B. Man gibt zu einer Lösung von 1,9 g Myricetin in 20 cm³
Br. Alkohol 3,4 g Brom; nach 48-stdg. Stehen fällt man durch wenig Wasser 6.8.2'.6'. Tetrabrom-myricetin und aus dem Filtrat durch CO CO C2H5 C · C6Br2(OH)2 mehr Wasser den Äthyläther aus (PERKIN, PHIPPS, Soc. 85, 62). — Br Farblose Nadeln (aus verd. Alkohol). Wird bei 110° rot, sintert bei 132°, schmilzt unter Zersetzung bei 146°. Leicht löslich in Alkohol.

4. 5.6.7-Trioxy-4-oxo-3-[3.4.5-trioxy-phenyl]-[1.4-chromen], 5.6.7-Trioxy-3-[3.4.5-trioxy-phenyl]-chromon, 5.6.7-3'.4'.5'-Hexaoxy-isoflavon C₁₅H₁₀O₈, Formel III.

5.7.3'-Trioxy-6.4'.5'-trimethoxy-isoflavon¹), Irigenin C₁₈H₁₆O₈, Formel IV. B. Bei 5—6-stdg. Erhitzen von 30 Tln. Iridin (s. in der 4. Hauptabteilung, Kohlenhydrate) mit 3 Tln. konz. Schwefelsäure, 35 Tln. Wasser und 45 Tln. Alkohol im Rohr im Wasserbad (DE LAIRE, TIEMANN, B. 26, 2011). — Rhomboeder (aus verd. Alkohol). F: 186°. Schwer löslich in Wasser, fast unlöslich in Äther und Ligroin, leicht löslich in warmem Alkohol, Chloroform und Benzol. Wird von Eisenchlorid tief violett gefärbt. — Beim Erhitzen von 15 g Irigenin mit 30 g Wasser und 90 g Kalilauge (D: 1,33) im geschlossenen Gefäß im Wasserbad erhält man Iretol (Bd. VI, S. 1154), Iridinsäure O·CH₈ (Bd. X, S. 492) und Ameisensäure. ·O·CHa CH2 · O

Iridin $C_{24}H_{26}O_{18}$, s. nebenstehende Formel, s. in der 4. Hauptabteilung, Kohlenhydrate.

5 - Oxy - 6.3'.4' - trimethoxy - 7.5' - diacetoxy-isoflavon', Irigenin-diacetat C₂₈H₂₀O₁₀, s. nebenstehende Formel. B. Bei kurzem Kochen einer alkoh. Lösung des Triacetats mit Sodalösung (DE LAIRE, TIEMANN, B. 26, 2014). — Nadeln (aus Chloroform). F: 169°. Leicht löslich in Chloroform.

6.8'.4' - Trimethoxy - 5.7.5'-triacetoxy - isofia von¹), Irigenin-triacetat $C_{44}H_{21}O_{11}$, s. nebenstehende Formel. B. Bei 3-stdg. Erhitzen von 5 Tln. Irigenin mit 5 Tln. geschmolzenem Natriumacetat und 10 Tln.

0.00.CH : CH3 · CO · O CH2 · O CH3.CO.O. Essigsaureanhydrid im geschlossenen Rohr auf 150° (DE LAIRE, TIEMANN, B. 26, 2013). — Prismen (aus verd. Essigsaure). F: 127—128° (BAKER,

C6H11O5 · O ·

CH₃·O CH3 · CO · O ·

HO

Soc. 1928, 1028). Sehr leicht löelich in Chloroform, leicht in heißem Alkohol, wenig in Äther, unlöslich in Benzol und Wasser (Dr L., T.). Beim Versetzen der Chloroformlösung mit Ligroin fallen bei 82° schmelzende chloroformhaltige Blättchen aus (DE L., T.).

5-Oxy-6.8'.4'-trimethoxy-7.5'-dibenzoyloxyisoflavon¹), Irigenin-dibensoat C₃₂H₃₄O₁₀, s. nebenstehende Formel. B. Bei rascher Einw. von Benzoylchlorid auf Irigenin in verd. Alkalilauge bei niederer CoH5.CO.O. Temperatur (DE LAIRE, TIEMANN, B. 26, 2013; BAKER,

Soc. 1928, 1024, 1028). — Nicht rein erhalten. Nadelbüschel (aus Alkohol). F: 155—160° (B.).

óн

O·CO·CHa

·O·CH3

¹) Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von BAKER, Soc. 1928, 1023, 1024.

d) Oxy-oxo-Verbindungen $C_nH_{2n-26}O_8$.

 $\begin{array}{lll} \textbf{3.0-1.1-bis-[2.3.4-trioxy-phenyl]-phthalan,} & \textbf{3.3-Bis-[2.3.4-trioxy-phenyl]-phthalalon,} & \textbf{3.3-Bis-[2.3.4-trioxy-phenyl]-phthalalon,} & \textbf{CO} \\ \textbf{Down thalid, Pyrogallolphthalalon} & \textbf{Co} \\ \textbf{Down thalid, Pyrogallolphthalalon,} & \textbf{Co} \\ \textbf{Down thalid, Pyrogallolphthalalon,} & \textbf{Co} \\ \textbf{Down thalid, Pyrogallolphthalalon,} & \textbf{Down thalalon,} & \textbf{Down thalalon,} \\ \textbf{Down thalid, Pyrogallolphthalalon,} & \textbf{Down thalalon,} & \textbf{Down thalalon,} & \textbf{Down thalalon,} \\ \textbf{Down thalalon,} & \textbf{D$

3.3 - Bis - [2.3.4 - trimethoxy - phenyl] - phthalid $C_{26}H_{26}O_8 = C_6H_4\underbrace{C[C_6H_2(O\cdot CH_3)_3]_2}O$. B. Aus Phthalylchlorid und Pyrogalloltrimethyläther in Petroläther in Gegenwart von Aluminiumchlorid (Perkin, Weizmann, Soc. 89, 1657). — Farblose Nadeln (aus Eisessig). F: 79°.

7. Oxy-oxo-Verbindungen mit 9 Sauerstoffatomen.

a) Oxy-oxo-Verbindungen $C_nH_{2n-2}O_9$.

 γ - Lacton der d - Manno - nononsäure $C_9H_{16}O_9=H$ H он он н H

d-Manno-nononsäure (E. FISCHER, PASSMORE, B. 23, 2236). — Nadeln (aus Alkohol) von süßem Geschmack. F: 175—177°. Leicht löslich in Wasser, ziemlich leicht in heißem Alkohol. [α] $_{0}^{\infty}$: —41,0° (in Wasser; c = 10). — Wird von $2^{1}/_{2}^{0}/_{0}$ igem Natriumamalgam in schwefelsaurer Lösung zu d-Mannononose reduziert.

b) Oxy-oxo-Verbindungen $C_n H_{2n-12} O_{\theta}$.

 $5.6.7.3^1.3^2.3^3.3^4$ - Heptaoxy - 1 - oxo - 3 - butyl - isochromen, 5.6.7 - Trioxy - 3 - [$\alpha.\beta.\gamma.\delta$ - tetraoxy - butyl] - isocumarin $\mathrm{C_{13}H_{14}O_{9}}$, Formel I.

5.7-Dioxy-6-methoxy-3-[α.β.γ.δ-tetraoxy-butyl]-isocumarin, Bergenin C₁₄H₁₆O₉, Formel II. Zur Konstitution vgl. Tschitschibabin, Kirssanow, Korolew, Woroshtzow, A. 469 [1929], 98. — V. Findet sich in den Wurzelstöcken von Saxifraga siberica(?) und Saxifraga crassifolia (Badan) (Garreau, Machelart, C. r. 91, 942). — Darst. Man extrahiert die Wurzelstöcke von Saxifraga siberica(?) mit Äther und kocht den Rückstand mit 90°/gigem Alkohol aus; beim Einengen des alkoh. Auszuges scheidet sich das Bergenin krystallinisch aus (Ga., Ma., C. r. 91, 941). — Prismen mit 1 H₄O (aus Wasser oder verd. Alkohol) (Ssadikow, Guthner, Bio. Z. 190 [1927], 347; T., Ki., Ko., W.; vgl. Morelle, C. r. 93, 646). Schmeckt bitter (Ga., Ma.). Verliert das Krystallwasser langsam bei 100°, schneller im Vakuum, noch schneller bei 130° (T., Ki., Ko., W.; vgl. Ga., Ma.). Schmilzt bei 130° (Mo.), 138—139° (Ss., Gu.), erstarrt dann wieder und schmilzt erneut bei 230° (Mo.; Ss., Gu.). D: 1,5445 (Mo.). Ist wasserhaltig sehr schwer löslich in Wasser, schwer in Alkohol, wasserfrei sehr leicht löslich in Wasser, ziemlich löslich in Alkohol; aus diesen Lösungen scheidet sich bald das Hydrat ab (T., Ki., Ko., W.). [α]₀: —47,4° (in Wasser; p = 1); [α]₀: —37,3° (in Alkohol; p = 1) (T., Ki., Ko., W.; vgl. Mo.). Liefert mit Alkalien in Wasser leicht lösliche Salze (Ga., Ma.; T., Ki., Ko., W.). — Reduziert Fehlingsche Lösung erst in der Wärme (T., Ki., Ko., W.; vgl. Ga., Ma.).

c) Oxy-oxo-Verbindungen $C_nH_{2n-20}O_9$.

4.5.6.4'.5'.6'- Hexaoxy-diphenylmethan-dicarbon-săure-(2.2')-anhydrid, [2.2'-Methylen-di-gallus-Hoodesaure]-anhydrid $C_{1s}H_{19}O_{9}$, s. nebenstehende Formel. Hoodesaure]-anhydrid $C_{1s}H_{19}O_{9}$, s. nebenstehende Formel. Hoodesaure]-one Uber eine Verbindung, die vielleicht diese Konstitution besitzt, s. Bd. X, S. 594.

IV. Carbonsäuren.

A. Monocarbonsäuren.

1. Monocarbonsäuren $C_nH_{2n-2}O_3$.

1. Athylenoxydcarbonsäure, Oxidopropionsäure, Glycidsäure $C_3H_4O_3 = H_2C_O$ CH·CO₂H. B. Man behandelt Acrylsäure mit unterchloriger Säure und schüttelt das entstandene Gemisch von α -Chlor-hydracrylsäure und β -Chlor-milchsäure mit alkoh. Kali (Melikow, B. 13, 271, 2153; \mathcal{H} . 13, 212). Beim Behandeln des Natriumsalzes der β -Chlor-milchsäure mit alkoh. Natriumäthylat-Lösung (Erlenmeyer, B. 13, 458). — Die freie Säure ist flüssig und reagiert stark sauer (M., B. 13, 272). In allen Verhältnissen mit Wasser, Alkohol und Ather mischbar (M., B. 13, 272). Der Dampf riecht stechend und greift die Schleimhäute an (M., B. 13, 272). — Sowohl die freie Säure wie ihre Salze gehen beim Erwärmen mit Wasser leicht in Glycerinsäure bezw. deren Salze über (M., B. 13, 273, 957). Verbindet sich sehr leicht mit rauchender Salzsäure zu β -Chlor-milchsäure (M., B. 13, 273). Beim Erhitzen mit konzentriertem wäßrigem Ammoniak (E., B. 13, 1077) entsteht dl-Isoserin. — NH₄C₃H₃O₃. Prismen (aus Alkohol) (M., \mathcal{H} . 13, 215). — Natriumsalz. Nadeln (aus Alkohol-Åther). Schwer löslich in kaltem Alkohol, leichter in heißem (E., B. 13, 459). — KC₃H₄O₃ + $\frac{1}{2}$ H₂O. Nadeln (aus Alkohol). Beginnt oberhalb 80° sich zu zersetzen (M., B. 13, 272; \mathcal{H} . 13, 214). Leicht löslich in Wasser und heißem Alkohol, schwer in kaltem Alkohol. — AgC₃H₄O₃. Tafeln (aus heißem Wasser). Verpufft beim Erhitzen; zersetzt sich beim Kochen mit Wasser teilweise unter Bildung eines Silberspiegels (M., B. 13, 272; \mathcal{H} . 13, 217). — Calciumsalz. Leicht löslich in Wasser; wird durch Alkohol in amorphen Flocken gefällt (M., B. 13, 273; \mathcal{H} . 13, 216). — Zn(C₂H₃O₃) + H₂O (über Schwefelsäure). Wird aus der wäßr. Lösung durch Ather-Alkohol in zähen Flocken gefällt (M., \mathcal{H} . 13, 215).

Äthylester $C_5H_8O_8 = H_2C_{\overbrace{O}}CH \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von glycidsaurem Silber mit Äthyljodid und absol. Äther (Melikow, Zelinsky, B. 21, 2052). — Flüssig. Kp: 161° bis 163°. Nicht mischbar mit Wasser. $D_1^{n,s}$: 1,0933.

2. Carbonsäuren C₄H₆O₃.

1. Propylenoxyd - γ - carbonsäure, β.γ - Oxido - buttersäure, Epihydrin-carbonsäure C₄H₆O₃ = H₂C OCH·CH₂·CO₂H. B. Beim Erhitzen von Epicyanhydrin (s. u.) mit überschüssiger verdünnter Schwefelsäure im Einschlußrohr auf 130° (Pazschke, J. pr. [2] 1, 99). Beim Kochen von Epicyanhydrin mit rauchender Salzsäure (Hartenstein, J. pr. [2] 7, 299). — Nadeln (aus Wasser). F: 225° (P.; H.). Leicht löslich in heißem Wasser, wenig in kaltem (P.; H.). — Reagiert nicht mit Acetylchlorid, Natriumdisulfit, Chlorwasserstoffsäure, Natriumanalgam oder Zinn und Salzsäure (H.). Beim Erhitzen mit rauchender Jodwasserstoffsäure im Einschlußrohr auf 160° entsteht Buttersäure (H.). — AgC₄H₅O₃. Niederschlag (P.). — Bleisalz. Blättchen (P.).

Äthylester $C_6H_{10}O_3 = H_2C_{\bigcirc \bigcirc \bigcirc}CH \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. Über eine Verbindung, der wohl mit Unrecht diese Formel zugeschrieben wird, vgl. Kelly, Bl. [2] 30, 494.

 $\beta.\gamma$ -Oxido-butyronitril, γ -Cyan-propylenoxyd, Epicyanhydrin $C_4H_5ON=CH_2CO$ -CH-CH₂·CN. B. Aus Epichlorhydrin und Cyankalium in alkoholischer oder

wäßriger Lösung (Pazschke, J. pr. [2] 1, 97; Habtenstein, J. pr. [2] 7, 297). — Prismen. F: 162°. Wenig löslich in kaltem, leicht in heißem Wasser und in Alkohol. — Wird von Säuren zu $\beta.\gamma$ -Oxido-buttersäure verseift.

- 2. α -Methyl-äthylenoxyd- α -carbonsäure, Propylenoxyd- β -carbonsäure, α . β -Oxido-isobuttersäure, α -Methyl-glycidsäure $C_1H_1O_3=H_1C_{\frown}C(CH_2)\cdot CO_3H$.
- a) Inaktive α -Methyl-glycidsäure $C_4H_6O_3=H_2C_{\odot}C(CH_3)\cdot CO_3H$. B. Bei allmählichem Zusatz von alkoh. Kali zu einer Lösung von 1 Vol. β -Chlor- α -oxy-isobuttersäure in 5 Vol. absol. Alkohol (Melikow, \mathcal{H} . 16, 530; B. 17 Ref., 420; A. 234, 212). Dickflüssig. Leicht löslich in Wasser, Alkohol und Äther. Liefert mit konz. Salzsäure β -Chlor- α -oxy-isobuttersäure, mit Ammoniak α -Oxy- β -amino-isobuttersäure, mit Wasser α -Methyl-glycerinsäure. $KC_4H_5O_2+\frac{1}{2}H_2O$. Blättchen. Schwer löslich in kaltem, sehr leicht in heißem Alkohol und in Wasser. $AgC_4H_5O_3$. Nadeln (aus Wasser). Schwer löslich in kaltem Wasser. Scheidet beim Kochen mit Wasser einen Silberspiegel ab.

Äthylester $C_6H_{10}O_3=H_2C_{\bigcirc\bigcirc}C(CH_3)\cdot CO_2\cdot C_2H_3$. B. Beim Erhitzen des Silbersalzes der inakt. α -Methyl-glycidsäure mit Äthyljodid und absol. Äther (Melikow, Zelinsky, B. 21, 2053). — Flüssig. Kp: 162—164°. D°: 1,0686; D¹¹5: 1,0546. Unlöslich in Wasser.

 $β.β'.β'-Trichlor-α.β-oxido-isobutyramid, β-Chlor-α-dichlormethyl-glycidsäure-amid <math>C_4H_4O_2NCl_3=ClHC C(CHCl_2)\cdot CO\cdot NH_3$. B. Beim Übergießen von β.β.β'.β'-Te-trachlor-α-oxy-isobuttersäure-amid mit Sodalösung (Levy, Cubchop, A. 254, 110). Aus symm. Tetrachlordiacetyl und Ammoniak in wäßrig-alkoholischer Lösung (Levy, Witte, A. 254, 95; L., A. 254, 374). — Nädelchen (aus Wasser). F: 127° (L., C.; L., W.). Leicht flüchtig (L., C.). Leicht löslich in Chloroform, Alkohol, Äther und Benzol, ziemlich leicht in siedendem Wasser, fast unlöslich in Ligroin (L., C.).

N.N'-Bis- $[\beta, \beta', \beta'$ -trichlor- α, β -oxido-isobutyryl]-äthylendiamin $C_{10}H_{10}O_4N_1Cl_5 = [ClHC_{\bigcirc}\cdot C(CHCl_2)\cdot CO\cdot NH\cdot CH_3-]_3$. Eine Verbindung, der vielleicht diese Konstitution zukommt. s. Bd. IV, S. 250.

- b) Rechtsdrehende α Methyl glycidsdure $C_4H_4O_3=H_2C_{\overbrace{O}}C(CH_3)\cdot CO_2H$.

 B. Durch Behandeln von rechtsdrehender β -Brom- α -oxy-isobuttersäure mit alkoh. Kalilauge bei 0° (KAY, Soc. 95, 562). Sirup. Das Kaliumsalz scheint mit heißem Wasser eine (nicht isolierte) aktive α -Methyl-glycerinsäure zu geben. $KC_4H_5O_2$. Blättchen (aus absol. Alkohol). Ziemlich löslich in heißem absolutem Alkohol. [α] $_{b}^{n}$: —17,6° (in Wasser; p=10).
- 3. α -Methyl-äthylenoxyd- α -carbonsäure, Propylenoxyd- α -carbonsäure, $\alpha.\beta$ -Oxido-buttersäure $C_4H_4O_2=CH_3\cdot HC$ CO2H.
- a) Feste $\alpha.\beta$ -Oxido-buttersdure, β -Methyl-glycidsdure. B. Durch Zusatz von alkoh. Kalilauge zu einer alkoh. Lösung der α -Chlor- β -oxy-buttersäure vom Schmelzpunkt 62—63° (Melikow, B. 16, 1270; \mathcal{K} . 16, 520; B. 17 Ref., 420; A. 234, 204). Prismen (aus Äther). F: 84° (M.). Sehr leicht löslich in Wasser, Alkohol und Äther (M.). Neutralisationswärme: Pissarshewski, \mathcal{K} . 29, 343; C. 1897 II, 170. Elektrolyse des Kaliumsalzes in wäßr. Lösung: P., \mathcal{K} . 29, 338; C. 1897 II, 339. Gibt bei δ —8-stdg. Erhitzen mit Wasser die bei 74—75° schmelzende inaktive $\alpha.\beta$ -Dioxy-buttersäure (M.). Beim Behandeln mit kaltgesättigter Salzsäure entsteht die β -Chlor- α -oxy-buttersäure vom Schmelzpunkt 85—86° (M.) Liefert mit konzentriertem wäßrigem Ammoniak bei 100° Oxyaminobuttersäure (Bd. IV. S. 515) (M.). $KC_4H_4O_3 + 1^1/_3H_4O$. Pulver. Leicht löslich in Wasser, schwer in kaltem, Alkohol (M.). Verliert das Krystallwasser über konz. Schwefelsäure. $AgC_4H_5O_3$. Prismen (aus heißem Wasser). Schwer löslich in kaltem Wasser (M.).

Äthylester $C_6H_{10}O_3 = CH_3 \cdot HC - CH \cdot CO_3 \cdot C_3H_5$. B. Beim Erwärmen des Silbersalzes der β -Methyl-glycidsäure mit Äthyljodid und absol. Äther (Melikow, Zelinsky, B. 21, 2054). — Flüssigkeit von angenehmem Geruch. Kp: 172—174°. D°: 1,0658; D¹¹¹: 1,0534. Unlöslich in Wasser.

b) Flüssige $\alpha.\beta$ -Oxido-buttersäure, β -Methyl-isoglycidsäure. B. Durch Eintragen von heißer alkohol. Kalilauge in eine alkoh. Lösung des Kaliumsalzes der α -Chlor- β -oxy-buttersäure vom Schmelzpunkt 80,5° (Melikow, Petrenko-Kritschenko, A. 266, 365). — Flüssig. — Das Kaliumsalz gibt mit konz. Salzsäure die β -Chlor- α -oxy-buttersäure vom Schmelzpunkt 125°. — $KC_4H_5O_2+H_2O$. Prismen. F: 82°. Leicht löslich in Wasser und in absol. Alkohol. — $AgC_4H_5O_3$. Nadeln. Schwer löslich in kaltem Wasser.

- c) Derivat einer $\alpha.\beta$ -Oxido-buttersäure, dessen sterische Zugehörigkeit nicht bekannt ist.
- α -Methyl-äthylensulfid- α -carbonsäure-methylester, säure-methylester $C_8H_8O_2S=CH_3\cdot HC_{\overline{S}}CH\cdot CO_2\cdot CH_3$. Uber eine Verbindung, der möglicherweise diese Konstitution zukommt, vgl. Bd. II, S. 411.

3. Carbonsäuren C₅H₈O₃.

- $\begin{array}{ll} \textbf{1. Furantetrahydrid-carbons\"aure-(2), Tetrahydrofuran-carbons\"aure-(2),} \\ \textbf{Tetrahydrobrenzschleims\"aure} \ \ \textbf{C}_{5}\textbf{H}_{8}\textbf{O}_{3} = \frac{\textbf{H}_{2}\textbf{C}-\textbf{C}\textbf{H}_{2}}{\textbf{H}_{4}\textbf{C}\cdot\textbf{O}\cdot\dot{\textbf{C}}\textbf{H}\cdot\textbf{C}\textbf{O}_{2}\textbf{H}}. \end{array}$
- 2.3.4.5-Tetrachlor-tetrahydrobrensschleimsäure-äthylester, Brensschleimsäure-äthylester-tetrachlorid $C_7H_8O_3Cl_4=\frac{ClHC-CHCl}{ClHC\cdot O\cdot CCl\cdot CO_2\cdot C_2H_5}$. B. Entsteht neben etwas 5-Chlor-brenzschleimsäure-äthylester beim Einleiten von Chlor in abgekühlten Brenzschleimsäureäthylester (Malaguti, A. ch. [2] 64, 282; Hill, Jackson, Am. 12, 25). Öl. Kp₁₅: 152—153° (H., J., Am. 12, 25). D^{10,15}: 1,496 (M.). Liefert mit alkoh. Alkalilauge 3.4-Dichlor-brenzschleimsäure (Denaro, G. 16, 334; H., J., Am. 12, 38).
- 2.3.4.5 Tetrabrom tetrahydrobrensschleimsäure, Brensschleimsäure tetrabromid C₅H₄O₃Br₄ = BrHC.—CHBr

 BrHC·O·CBr·CO₂H·B. Aus Brenzschleimsäure und trocknem Bromdampf (Tönnies, B. 11, 1086). Krystalle (aus Äther + Ligroin). Schmilzt bei 159—160° unter Zersetzung (T.). Unlöslich in kaltem Wasser; wird von heißem Wasser heftig zersetzt unter Entwicklung von Kohlendioxyd und Bromwasserstoff (T.). Leicht löslich in Alkohol und Äther, schwer in Chloroform und Ligroin (T.). Reduktionsmittel erzeugen Brenzschleimsäure (T.). Verdünnte Chromsäurelösung oxydiert zu α.α'-Dibrom-bernsteinsäure, Kohlendioxyd und Bromwasserstoff (T.). Beim Behandeln mit konzentrierter alkoholischer Natronlauge entstehen 5-Brom-brenzschleimsäure, 3.4-Dibrom-brenzschleimsäure und 3.5-Dibrombrenzschleimsäure, daneben in kleiner Menge flüssige Dibromfurane (vgl. Bd. XVII, S. 28) und α-Brom-Δ^{α,β}-crotonlacton (Bd. XVII, S. 250) (Hill, Sanger, A. 232, 70; vgl. Hill, Cornelison, Am. 16, 279).
- 2.3.4.5-Tetrabrom-tetrahydrobrensschleimsäure-äthylester, Brensschleimsäure-äthylester-tetrabromid $C_7H_8O_8Br_4={BrHC-CHBr \over BrHC\cdot O\cdot CBr\cdot CO_8\cdot C_8H_5}$. B. Aus Brensschleimsäure-äthylester und trocknem Bromdampf (Tönnies, B. 11, 1086). Krystalle. Schmilzt bei 46—48° und zersetzt sich bei höherer Temperatur unter Entwicklung von Brom und Bromwasserstoff. Reduktionsmittel erzeugen Brenzschleimsäure-äthylester.
- 2.3.4.5 Tetrabrom tetrahydrobrensschleimsäure amid, Brensschleimsäure-amid-tetrabromid $C_5H_5O_2NBr_4=\frac{BrHC-CHBr}{BrHC\cdot O\cdot CBr\cdot CO\cdot NH_2}$. B. Durch Eintragen von 1 Tl. Brenzschleimsäure-amid in 3,6 Tle. Brom bei 0 $^{\circ}$ (Saunders, Am. 15, 133). Krystalle (aus Essigester). Schmilzt unter Zersetzung gegen 121 $^{\circ}$. Unlöslich in Wasser, fast unlöslich in Ather, Chloroform und Eisessig. Beim Behandeln mit Zinkstaub und Alkohol wird Brenzschleimsäure-amid regeneriert. Mit alkoh. Natronlauge entsteht 3.4-Dibrom-brenzschleimsäure.

Thiophentetrahydrid-carbonsäure-(2), Tetrahydrothiophen-carbonsäure-(2) $C_8H_8O_8S=\frac{H_8C-CH_2}{H_8C\cdot S\cdot CH\cdot CO_8H}$. B. Beim Erhitzen einer alkal. Lösung von Thiophen-carbonsäure-(2) mit Natriumamalgam (Ernst, B. 20, 518). — Unangenehm riechende Blätter (aus Wasser). F: 51° (E.). Destilliert nicht unzersetzt; mit Wasserdampf flüchtig (E.). Sehr leicht löslich in Wasser und Alkohol, etwas weniger in Äther (E.). Verbrennungswärme bei

konstantem Volumen: 753,3 kcal/Mol, bei konstantem Druck: 754,8 kcal/Mol (Stohmann, Klebeb, J. pr. [2] 43, 12). Elektrolytische Dissoziationskonstante k bei 25°: $1,15\times10^{-4}$ (Badeb, Ph. Ch. 6, 313). — Reduziert bei Siedehitze ammoniakalische Silberlösung (E.). Entwickelt beim Erwärmen mit konz. Schwefelsäure Kohlenaxyd (E.). Gibt mit Isatin und Schwefelsäure die Indopheninreaktion (E.). — Ag $C_5H_7O_2S$. Harziger Niederschlag, der sich allmählich in Krystallkörner umwandelt; schwer löslich in Wasser (E.). — $Ca(C_5H_7O_2S)_2+3H_2O$. Krystallinisch; löslich in Wasser (E.).

sich bei etwa 190° (St., B. 33, 840). Ziemlich leicht löslich in Wasser. Tetrahydrothiophen - carbonsäure - (2) - methylester $C_0H_{10}O_2S = H_2C - CH_3$. Flüssig. Kp: 206° (Ernst, B. 20, 519). $H_2C \cdot S \cdot CH \cdot CO_2 \cdot CH_3$

Tetrahydrothiophen-carbonsäure-(2)-äthylester $C_7H_{12}O_2S = H_2C$ — CH_2 $H_2C \to CH_3$ Flüssig (Ernst, B. 20, 519).

2. $\alpha.\alpha'-Dimethyl-äthylenoxyd-\alpha-carbonsäure$, $\alpha.\beta-Oxido-\alpha-methyl-buttersäure$, $\alpha.\beta-Dimethyl-glycidsäure$ $C_5H_8O_3=CH_3\cdot HC_{-O}$ $C(CH_3)\cdot CO_2H$. B. Durch Einw. von alkoh. Kali auf die β -Chlor- α -oxy- α -methyl-buttersäure vom Schmelzpunkt 75° (Melikow, A. 234, 228; M., Petrenko-Kritschenko, A. 257, 118) oder die α -Chlor- β -oxy- α -methyl-buttersäure vom Schmelzpunkt 111,5° (M., A. 234, 228). — Nadeln. F: 62°; leicht löslich in Wasser, Alkohol und Äther (M.). — Verbindet sich mit Wasser bei 100° zu der hochschmelzenden $\alpha.\beta$ -Dimethyl-glycerinsäure (M.). Liefert mit bei 0° gesättigter Salzsäure die β -Chlor- α -oxy- α -methyl-buttersäure vom Schmelzpunkt 75° (M.). — $KC_5H_7O_3+^1/2H_9O$. Blättchen (aus Alkohol). Leicht löslich in Wasser und heißem Alkohol (M.). — $AgC_5H_7O_3$. Täfelchen (aus Wasser). Schwer löslich in kaltem, leichter in heißem Wasser; liefert beim Kochen mit Wasser einen Silberspiegel (M.). — $Ca(C_5H_7O_3)_2$. Gummiartig (M.). — $Ba(C_5H_7O_3)_2$. Weiße Flocken (M.).

Äthylester $C_7H_{12}O_3 = CH_3 \cdot HC_{\bigcirc \bigcirc} C(CH_3) \cdot CO_2 \cdot C_2H_5$. B. Aus dem Silbersalz der $\alpha.\beta$ -Dimethyl-glycidsäure und Äthyljodid in Gegenwart von absol. Äther (Melikow, Zelinsky, B. 21, 2054). — Flüssig. Kp: 177—178°. D°: 1,0377; D¹5: 1,0250. — Wird durch Kalilauge schon in der Kälte sehr leicht verseift.

3. $\alpha.\alpha$ -Dimethyl-äthylenoxyd- α' -carbonsäure, $\alpha.\beta$ -Oxido-isovaleriansäure $\beta.\beta$ -Dimethyl-glycidsäure $C_gH_gO_3=(CH_3)_2C$ — $CH\cdot CO_2H$. B. Man läßt zu einer absolut-alkoholischen Lösung von α -Chlor- β -oxy-isovaleriansäure überschüssige $20^0/_0$ ige alkoh. Kalilauge zutropfen, kocht das Gemisch 1—2 Stdn. und zersetzt das entstandene Kaliumsalz mit verd. Schwefelsäure (Prentice, A. 292, 282). Der Äthylester entsteht aus Aceton und Chloressigester in Äther in Gegenwart von Natriumamid; man verseift ihn mit absolut-alkoholischer Natronlauge (Claisen, B. 38, 706). — Sirup. Leicht löslich in Wasser, Alkohol und Äther (P.). Reagiert stark sauer (P.). — Na $C_gH_7O_3$. Blättchen (C.). — K $C_gH_7O_3$ + $\frac{1}{2}H_2O$ (über Schwefelsäure). Zerfließliche Tafeln (aus absol. Alkohol + absol. Äther) (P.). — Ag $C_gH_7O_3$. Täfelchen (aus Wasser). Leicht löslich in heißem Wasser, unlöslich in Alkohol (P.).

Äthylester $C_7H_{19}O_3=(CH_3)_2C_{\bigcirc}CH\cdot CO_2\cdot C_2H_5$. B. s. im vorangehenden Artikel. — Fruchtartig riechende Flüssigkeit. Kp: 180—182°; Kp₁₀: 67—69° (CLAISEN, B. 38, 706; vgl. Darzens, C. r. 139, 1216). D¹⁵: 1,016 (CL.). — Liefert bei der Kondensation mit Natriumnalonester γ . γ -Dimethyl-butyrolacton- α . β -dicarbonsäure-diäthylester (Syst. No. 2621) (Haller, Blanc, C. r. 142, 1471).

4. Carbonsäuren $C_6H_{10}O_3$.

1. 5-Methyl-furantetrahydrid-carbonsäure-(2), 5-Methyl-tetrahydrofuran-carbonsäure-(2), 5-Methyl-tetrahydrobrenzschleimsäure $C_6H_{10}O_3=H_1C-CH_1$

CH, HC · O · CH · CO, H

- 2.3.4.5 Tetrabrom 5 methyl tetrahydrobrenzschleimsäure, 5 Methyl brenzschleimsäure-tetrabromid $C_8H_6O_3Br_4 = \frac{B_rHC CHBr}{CH_3 \cdot BrC \cdot O \cdot CBr \cdot CO_2H}$. B. Aus 5-Methylbrenzschleimsäure und Brom in Chloroform unter starker Kühlung (Hill, Jennings, Am. 15, 184). Nadeln. Schmilzt gegen 95° unter Zersetzung. Sehr schwer löslich in Schwefelkohlenstoff und Ligroin, etwas leichter in Chloroform und Benzol. Bei der Einw. von Natriumacetat in Eisessig entsteht 3 oder 4-Brom-5-methyl-brenzschleimsäure.
- 2. α -Äthyl-trimethylenoxyd- α -carbonsäure, α . γ -Oxido- α -äthyl-buttersäure $C_6H_{10}O_3=H_2C\cdot CH_2\cdot C(C_2H_5)\cdot CO_2H$. B. Durch Einw. von $50^0/_0$ iger Kalilauge auf γ -Chlor- α -oxy- α -äthyl-buttersäure-äthylester (MAIRE, Bl. [4] 3, 284). Flüssigkeit. Kp₁₆: 136°.
- 3. α -Methyl- α -äthyl-äthylenoxyd- α' -carbonsäure, $\alpha.\beta$ -Oxido- β -methyl-n-valeriansäure, β -Methyl- β -äthyl-glycidsäure $C_6H_{10}O_3=(C_2H_5)(CH_3)C_{-O}$ -CH· CO_2 H. B. Der Äthylester entsteht aus Methyläthylketon und Chloressigester in Äther in Gegenwart von Natriumamid; man verseift ihn mit alkoh. Natriumäthylat-Lösung (CLAISEN, B. 38, 707; NEUSTÄDTER, M. 27, 889). Öl. Zerfällt beim Koohen mit Wasser in Kohlendioxyd und Methyläthylacetaldehyd; daneben entsteht eine zähe Flüssigkeit, die beim Destillieren in Methyläthylacetaldehyd, Kohlendioxyd und Wasser zerfällt (vielleicht $\alpha.\beta$ -Dioxy- β -methyl-valeriansäure?) (N.). Natriumsalz. Krystalle (aus 90%0 gigem Alkohol).

Äthylester $C_8H_{14}O_3 = (C_9H_5)(CH_3)C_{-}C_9C_9C_9H_5$. B. s. im vorangehenden Artikel. — Ätherisch riechende Flüssigkeit. Kp: 197—199°; Kp₁₀: 84—86° (Claisen, B. 38, 707); Kp₁₁: 83—84° (Neustädter, M. 27, 889). D¹⁵: 1,001 (Cl..).

4. Trimethyläthylenoxydcarbonsäure, $\alpha.\beta$ - Oxido - $\alpha.\beta$ - dimethyl-buttersäure, Trimethylglycidsäure $C_{\epsilon}H_{10}O_{3}=(CH_{3})_{2}C_{\frown\bigcirc\bigcirc}C(CH_{3})\cdot CO_{2}H$.

Äthylester $C_8H_{14}O_3 = (CH_3)_2C_{\bigcirc O} - C(CH_3) \cdot CO_2 \cdot C_2H_5$. B. Aus Aceton und α -Chlorpropionsäure-äthylester in Gegenwart von Natriumäthylat (Darzens, C. r. 141, 767). — Farblose Flüssigkeit. Kp_{20} : 80—82°. — Liefert durch Verseifung und Kohlendioxyd-Abspaltung Methylisopropylketon.

5. Carbonsäuren $C_7H_{12}O_3$.

- 1. 2.5-Dimethyl-furantetrahydrid-carbonsäure-(2), 2.5-Dimethyl-tetrahydrofuran-carbonsäure-(2), 2.5-Dimethyl-tetrahydrobrenzschleimsäure H_1C-CH_2 $C_7H_{11}O_3 = CH_3\cdot HC\cdot O\cdot C(CH_3)\cdot CO_2H$ Calcium 6 Stdn. mit 50 cm³ konz. Salzsäure und 50 cm³ Wasser und extrahiert die Säure mit Äther (Fittig, de Haven-Boyd, A. 303, 178). Flüssig. Kp: 228°. Ziemlich flüchtig. Leicht löslich in Wasser und en gewöhnlichen organischen Lösungsmitteln. AgC₇H₁₁O₃. Sehr wenig löslich in Wasser. Ca(C₇H₁₁O₃)₂ + 2H₂O. 100 Tle. wäßr. Lösung enthalten bei 20° 15,48 Tle. wasserfreies Salz. Ba(C₇H₁₁O₃)₂. Sehr leicht löslich in Wasser.
- 2. 2.5-Dimethyl-furantetrahydrid-carbonsäure-(3), 2.5-Dimethyl-tetrahydrofuran carbonsäure (3), Tetrahydropyrotritarsäure $C_7H_{12}O_3 = H_2C CH \cdot CO_3H$ $CH_1 \cdot HC \cdot O \cdot CH \cdot CH_4$

Oktabrom - tetrahydropyrotritarsäure, Tetrabrompyrotritarsäure-tetrabromid $C_7H_4O_3Br_8$. B. Beim Eintragen von x.x.x.x-Tetrabrom-pyrotritarsäure (S. 298) in Brom (DIETRICH, PAAL, B. 20, 1080). — Prismen (aus Benzol-Ligroin). F: 179—180°. Unlöslich in Wasser und Ligroin, schwer löslich in heißem Benzol, Chloroform und Schwefelkohlenstoff. leicht in Eisessig. — Wird von Natriumamalgam und Essigsäure in Pyrotritarsäure (S. 297) verwandelt.

3. α -Methyl- α -propyl-āthyleno α yd- α '-carbonsāure, $\alpha.\beta$ -Oxido- β -methyl-n-capronsdure, β -Methyl- β -propyl-glycidsāure $C_7H_{12}O_3$ = $(CH_1 \cdot CH_2 \cdot CH_3)(CH_2)C$ -O-CH·CO₂H. B. Durch Kondensation von Methylpropylketon mit Chloressigester in Äther in Gegenwart von Natriumamid und Verseifung des entstandenen Äthylesters (Claisen, B. 38, 708). — NaC₇H₁₁O₂. Blättchen.

Äthylester $C_9H_{16}O_3 = (CH_3 \cdot CH_2 \cdot CH_3)(CH_3)C_{-0}CH \cdot CO_3 \cdot C_3H_5$. B. s. im vorangehenden Artikel. — Flüssigkeit. Kp: 211—212°; Kp_{11-12} : 91—92°; D^{15} : 0,985 (CL., B. 38, 708).

4. $\alpha.\alpha$ -Diāthyl-āthylenoxyd- α' -carbonsāure, $\alpha.\beta$ -Oxido- β -āthyl-n-valeriansaure, $\beta.\beta$ -Diāthyl-glycidsāure $C_7H_{11}O_3=(C_2H_5)_2C_{\frown O}$ -CH·CO₂H. B. Durch Kondensation von Diāthylketon mit Chloreseigester in Äther in Gegenwart von Natriumamid und Verseifung des entstandenen Äthylesters (Claisen, B. 38, 708). — NaC₇H₁₁O₃. Blättchen.

Äthylester $C_8H_{16}O_3 = (C_8H_5)_2C_{\bigcirc O}$ CH·CO₂·C₂H₅. B. s. im vorangehenden Artikel. — Kp: 211—212°; Kp₁₁—18: 91—92°; D¹⁵: 0,993 (CL., B. 38, 708).

- 5. $\alpha.\alpha'$ -Dimethyl- α -dihyl-dthylenoxyd- α' -carbonsdure, $\alpha.\beta$ -Oxido $-\alpha.\beta$ -dinethyl n-valeriansdure, $\alpha.\beta$ -Dimethyl β -dthyl glycidsdure $C_7H_{12}O_3=CH_3 > C_{-0}$ - $C<_{CO_2}^{CH_3}$
- $\alpha.\beta$ -Oxido- $\alpha.\beta$ -dimethyl-n-valeriansäure-äthylester, $\alpha.\beta$ -Dimethyl- β -äthylglycidsäure-äthylester $C_9H_{16}O_2=\frac{CH_3}{C_2H_5}>C_{-}O$ - $C<\frac{CH_3}{CO_2}\cdot C_3H_5$. B. Aus Methyläthylketon und α -Chlor-propionsäure-äthylester in Gegenwart von Natriumäthylat (Darzens, C. r. 141, 767). Flüssigkeit. Kp₃₂: 90—93°. Liefert durch Verseifung und Kohlendioxyd-Abspaltung asymm. Methyl-āthyl-aceton.
- 6. $\alpha.\alpha'$ -Dimethyl- α -propyl-āthylenoxyd- α' -carbonsāure, $\alpha.\beta$ -Oxido- $\alpha.\beta$ -dimethyl-n-capronsāure, $\alpha.\beta$ -Dimethyl- β -propyl-glycidsāure $C_8H_{14}O_8={}_{CH_2}\cdot{}_{CH_2}\cdot{}_{CH_2}\cdot{}_{CO_2}\cdot{}_{CO_2}\cdot{}_{H}\cdot$

Äthylester $C_{10}H_{16}O_3 = \frac{CH_3 \cdot CH_2 \cdot CH_3}{CCH_2 \cdot CH_3} > C \frac{CCH_3}{O} \cdot C < \frac{CH_3}{CO_3} \cdot C_2H_5$. B. Aus Methylpropylketon und α -Chlor-propionsäure-äthylester in Gegenwart von Natriumäthylat (Darzens-C. r. 141, 767). — Flüssigkeit. Kp₁₆: 100—102°. — Liefert durch Verseifung und Kohlendioxyd, Abspaltung asymm. Methyl-propyl-aceton.

7. 2.6.6-Trimethyl-pyrantetrahydrid-carbonsäure-(2), 2.6.6-Trimethyltetrahydropyran-carbonsäure-(2), α -Cinensäure $C_0H_{10}O_3=$

H₂C·CH₃·CH₃

(CH₃)·CO₂H

(Bd. III, S. 404) durch Destillation unter vermindertem Druck oder durch 3-stdg. Erhitzen mit Wasser auf 150—155° im Druckrohr (Rupe, Ronus, B. 34, 2200). Aus Cineolsäure (S. 322) durch 3-stdg. Erhitzen mit 10 Thn. Wasser im Autoklaven auf 160—165° (Ru., C. 1898 II, 1055; B. 38, 1133), auch durch 5-stdg. Kochen mit Ameisensäure (D: 1,22) oder 20°/₀iger Schwefelsäure (Ru., Altenburg, B. 41, 3955). Das Nitril entsteht durch 24-stdg. Erwärmen von 2-Methyl-heptanol-(2)-on-(6) mit dem gleichen Vol. wasserfreier Blausäure im geschlossenen Rohr auf 50—60°; man verseift es durch 12-stdg. Kochen mit methylalkoholischem Kali + Athylalkohol zum Amid und dieses durch Kochen mit verdünnter wäßriger Natronlauge zur Säure (Ru., Schlochoff, B. 38, 1506; Ru., Liechtenhan, B. 41, 1281). — Flächenreiche Krystalle (aus Petroläther) (Ru.) oder Krystalle mit 1 H₂O (aus verd. Alkohol bei langsamem Verdunsten), das im Vakuum langsam entweicht (Ru., A.). Die wasserhaltigen Krystalle sind triklin (Zyndel, B. 41, 3956). Schmilzt wasserfrei bei 83—84° (Ru.), wasserhaltig bei 76° (Ru., A.). Kp: 245—247°; Kp₁₄: 127,5—129,5°; flüchtig mit Wasserdampf (Ru.). Schwer löslich in kaltem, ziemlich leicht in siedendem Wasser, leicht in den meisten organischen Mitteln (Ru.). Elektrische Leitfähigkeit: Labhard, B. 33, 1135, 1420. — Beim Aufbewahren mit Bromwasserstoff in Eisessig erhält man ε oder α-Brom-α oder ε-oxy-α.ε-dimethyl-hepten-(2)-ol-(6)-säure-(1 oder 7) (Bd. III, S. 384) (Ru.). Geht bei 3-stdg. Erhitzen mit 10 Tin. 10°/₀iger Schwefelsäure auf 150—155° in geschlossenem Rohr (Ru., Ro.) oder bei 2-stdg.

Kochen mit $30^{\circ}/_{0}$ iger Schwefelsäure (Ru., A.) in β -Cinensäure (s. u.) über; durch Einw. von kalter konzentrierter Schwefelsäure entstehen $\alpha.\alpha$ -Dimethyl- δ -acetyl-n-valeriansäure, das Lacton der 1.3-Dimethyl-cyclohexanol-(3)-carbonsäure-(1) (Bd. XVII, S. 259) und etwas 2.2.6-Trimethyl-tetrahydropyran (Bd. XVII, S. 16) (Ru., Li.). — $AgC_9H_{15}O_3$. Sehr lichtempfindliche Nadeln. Leicht löslich in Wasser (Ru.). — $Ca(C_9H_{15}O_3)_2 + 2H_2O$. Mikrokrystallinisch; wird bei 150° wasserfrei (Ru.). Löslich in 460 Tln. Wasser von 17° (Ru., Ro.).

β-Cinensāure C₉H₁₆O₃ = OC₈H₁₅·CO₂H. B. Aus α-Cinensāure durch 3-stdg. Erhitzen mit 10 Tln. 10°/₀iger Schwefelsäure im Druckrohr auf 150—155° (RUPE, RONUS, B. 34, 2204) oder durch 2-stdg. Kochen mit 30°/₀iger Schwefelsäure (Ru., Altenburg, B. 41, 3956). Aus Cineolsäure (S. 322) durch 3—4-stdg. Erhitzen mit 10 Tln. 10°/₀iger Schwefelsäure im Druckrohr auf 160—165° (Ru., Ro.) oder durch ca. 5-stdg. Kochen der Lösung in 30°/₀iger Schwefelsäure (Ru., A.). — Geruchloses Öl. Kp₁₂: 124,5—125° (korr.); Kp₁₀: 122—123° (korr.) (Ru., Ro.). D³° : 1,0385; n⁵° : 1,4508 (Ru., A.). Ziemlich schwer löslich in Wasser, aber etwas hygroskopisch (Ru., Ro.). Elektrische Leitfähigkeit: Labhardt, B. 34, 2202. — Durch 2-stdg. Erwärmen mit kaltgesättigter wäßr. Bromwasserstoffsäure im geschlossenen Rohr auf 56° erhält man ε oder α-Brom-α oder ε-οχy-α.ε-dimethyl-önanthsäure (Ru., A.). — Cu(C₉H₁₅O₂)₂ (bei 100°). Amorph, türkisfarben (Ru., Ro.). — AgC₉H₁₆O₂. Im trocknen Zustand lichtbeständig; schwer löslich in heißem, unlöslich in kaltem Wasser (Ru., A.). — Ca(C₉H₁₅O₂)₂ +2H₂O. Nädelchen. Löslich in 74,4 Tln. Wasser von 17° (Ru., Ro.).

 β -Cinensäure-methylester $C_{10}H_{18}O_3 = OC_8H_{15}\cdot CO_2\cdot CH_3$. B. Aus der Säure mit Methylalkohol und Chlorwasserstoff (RUPE, ALTENBURG, B. 41, 3953). — Kp_{11} : 89°.

- β -Cinensaure-athylester $C_{11}H_{20}O_3 = OC_8H_{15} \cdot CO_2 \cdot C_2H_5$. Kp_{12} : 92—93° (R., A., B. 41, 3954).
- α-Cinensäure-methylester $C_{10}H_{18}O_3=OC_8H_{15}\cdot CO_2\cdot CH_3$. B. Aus dem Silbersalz der α-Cinensäure und Methyljodid (Rupe, B. 33, 1135). Flüssig. Kp₁₄: 86—89°. Riecht schwach campherartig.
- α-Cinensäure -äthylester $C_{11}H_{20}O_3 = OC_8H_{15} \cdot CO_2 \cdot C_2H_5$. B. Aus α-Cinensäure mit Alkohol und Chlorwasserstoff in der Kälte (RUPE, B. 33, 1135). Aus dem Silbersalz und Äthyljodid (RUPE, RONUS, B. 34, 2205). Öl von angenehmem Geruch. Kp_{10} : 89—90° (korr.) (Ru., Ro.).
- α-Cinensäure-amid $C_8H_{17}O_2N = OC_8H_{15} \cdot CO \cdot NH_2$. B. Durch 12-stdg. Kochen von α-Cinensäure-nitril mit methylalkoholischem Kali + Äthylalkohol (RUPE, SCHLOCHOFE, B. 38, 1506; R., LIECHTENHAN, B. 41, 1281). Nadeln (aus verd. Alkohol). F: 86—87°; leicht löslich in Alkohol, Äther, Aceton, ziemlich schwer in Wasser und Ligroin (R., SCH.).
- α-Cinensäure-nitril $C_9H_{15}ON=OC_8H_{15}\cdot CN$. B. Durch 24-stdg. Erwärmen von 2-Methyl-heptanol-(2)-on-(6) mit dem gleichen Vol. wasserfreier Blausäure im geschlossenen Rohr auf 50—60° (Rupe, Schlochoff, B. 38, 1505; R., Liechtenhan, B. 41, 1281). Kp₉: 74,5°.
- 8. \$\alpha\$- Methyl-\$\alpha\$-isohexyl-\$\text{athylenoxyd-}\alpha'\$- carbons \text{aure}, \$\alpha \beta\$-0xido-\$\beta \Cappa\$-dimethyl-n-capryls \text{aure}, \$\beta\$- Methyl-\$\beta\$-isohexyl-glycids \text{aure} \$C_{10}H_{18}O_3 = \frac{CH_3}{(CH_3)_2CH} \cdot \frac{CH_3}{[CH_2]_3} \rightarrow C\frac{TC}{O} CH \cdot CO_2H.\$

Äthylester $C_{19}H_{29}O_3 = OC_9H_{17} \cdot CO_2 \cdot C_2H_5$. B. Aus Methylisohexylketon und Chloressigsäureäthylester durch Natriumäthylat (DARZENS, C. r. 139, 1214). — Kp₅₀: 151—152°. — Durch Verseifung und Abspaltung von Kohlendioxyd aus der entstandenen Glycidsäure erhält man 2.6-Dimethyl-heptanal-(1).

9. Carbonsäuren $C_{11}H_{20}O_3$.

1. α -Methyl- α -n-heptyl-āthylenoxyd- α' -carbonsāure, $\alpha.\beta$ -Oxido- β -methyl-caprinsāure, β - Methyl- β - n- heptyl- glycidsāure $C_{11}H_{10}O_3=CH_3\cdot [CH_3\cdot [CH_3]_6>C-O$ CH $\cdot CO_3H$.

Äthylester $C_{18}H_{24}O_5 = OC_{10}H_{10} \cdot CO_2 \cdot C_2H_5$. Aus Methyl-n-heptyl-keton und Chloressigsäureäthylester durch Natriumäthylat (Darzens, C. r. 139, 1214). — Kp₁₀: 155—156°. — Durch Verseifung und Abspaltung von Kohlendioxyd aus der entstandenen Glycidsäure erhält man 2-Methyl-nonanal-(1).

2. $\alpha.\alpha'$ -Dimethyl- α -n-hexyl- α -dihylenoxyd- α' -carbonsaure, $\alpha.\beta$ -Oxido- $\alpha.\beta$ -dimethyl - pelargonsaure, $\alpha.\beta$ - Dimethyl - β -n-hexyl - glycidsaure $C_{11}H_{20}O_3 = CH_3 \cdot [CH_3]_5 > C - C \cdot CO_3H$.

Äthylester $C_{13}H_{24}O_5 = OC_{10}H_{10} \cdot CO_2 \cdot C_2H_5$. B. Aus Methyl-n-hexyl-keton und α -Chlor-propionsäure-äthylester in Gegenwart von Natriumäthylat (Darzens, C. r. 141, 767). — Kpss: 152°. — Liefert durch Verseifung und Kohlendioxydabspaltung asymm. Methyl-n-hexyl-aceton.

10. $\alpha.\alpha'$ -Dimethyl- α -n-heptyl-āthylenoxyd- α' -carbonsäure, $\alpha.\beta$ -0 xido- $\alpha.\beta$ -dimethyl-caprinsäure, $\alpha.\beta$ -Dimethyl- β -n-heptyl-glycidsäure $C_{13}H_{23}O_3 = \frac{CH_3}{CH_3} > C = \frac{CC}{O} = C < \frac{CH_3}{CO_2H}$.

Äthylester $C_{14}H_{19}O_3 = OC_{11}H_{31} \cdot CO_3 \cdot C_2H_5$. B. Aus Methyl-n-heptyl-keton und α -Chlor-propionsäure-äthylester in Gegenwart von Natriumäthylat (Darzens, C. r. 141, 767). — Kp_{1e}: 148—150°. — Liefert durch Verseifung und Kohlendioxydabspaltung asymm. Methyl-n-heptyl-aceton.

11. α -Methyl- α -n-nonyl-äthylenoxyd- α' -carbonsäure, $\alpha.\beta$ -Oxido- β -methyl-laurinsäure, β -Methyl- β -n-nonyl-glycidsäure $C_{13}H_{24}O_3=CH_3\cdot [CH_3]_8>CC_0$ CH· CO_2 H.

Äthylester $C_{15}H_{28}O_3 = OC_{12}H_{23} \cdot CO_2 \cdot C_2H_5$. B. Aus Methyl-n-nonyl-keton und Chloressigsäureäthylester durch Natriumäthylat (Darzens, C. r. 139, 1214; D. R. P. 174279; C. 1906 II, 1298). — Kp_{16} : 165—170°. — Die durch Verseifung entstehende Säure gibt beim Erhitzen Methyl-n-nonyl-acetaldehyd.

12. α α' -Dimethyl- α -n-nonyl-āthylenoxyd- α' -carbonsäure, $\alpha.\beta$ -Oxido- $\alpha.\beta$ -dimethyl-laurinsäure, $\alpha.\beta$ -Dimethyl- β -n-nonyl-glycidsäure $C_{14}H_{36}O_3=\frac{CH_3}{CH_3}>C-\frac{CH_3}{O}$ - $C<\frac{CH_3}{CO_2H}$.

Äthylester $C_{18}H_{30}O_3 = OC_{13}H_{25} \cdot CO_2 \cdot C_2H_5$. B. Aus Methyl-n-nonyl-keton und α -Chlor-propionsäure-äthylester in Gegenwart von Natriumäthylat (Darzens, C. r. 141, 767). — Kp₁₅: 174—175°. — Liefert durch Verseifung und Kohlendioxydabspaltung asymm. Methyl-n-nonyl-aceton.

- 13. $\theta.\iota$ -Oxido-stearinsäure $C_{18}H_{34}O_3=CH_3\cdot[CH_2]_7\cdot HC\lesssim CH\cdot[CH_2]_7\cdot CO_2H$.
- a) Präparat von Albitzki. B. Aus den durch Einw. von unterchloriger Säure auf Elaidinsäure und Isoölsäure entstehenden Produkten durch Behandlung mit Bariumhydroxyd (Albitzki, K. 31, 76; C. 1899 I, 1069). F: 57—60°. Geht bei der Behandlung mit Kalilauge oder verd. Schwefelsäure in die hochschmelzende $\theta.\iota$ -Dioxy-stearinsäure über.
- b) Präparat von Saizew und Le Sueur. Die Konstitution einer $\vartheta.\iota$ -Oxido-stearinsäure wurde von Le Sueur, Soc. 79, 1315 der im folgenden beschriebenen Verbindung beigelegt, welche aber von Le Sueur, Withers, Soc. 105 [1914], 2803 als 8-Oxo-hexadecancarbonsäure-(1) (vgl. Ergw., Bd. III, S. 252) erkannt worden ist. B. Entsteht aus der inakt. hochschmelzenden $\vartheta.\iota$ -Dioxy-stearinsäure durch Destillation im Vakuum (A. Saizew, J. pr. [2] 33, 313), ferner neben anderen Produkten durch Schmelzen mit Kaliumhydroxyd unterhalb 270° (Le Sueur, Soc. 79, 1323). Blättchen (aus verd. Alkohol). F: 77—79° (S.), 78,5—79° (Le S.). Sehr leicht löslich in Chloroform, Äther, Essigester, Aceton und heißem Alkohol, leicht löslich in heißem, schwer in kaltem Petroläther (Le S.). Verändert sich nicht beim Kochen mit 2°/oiger Kalilauge oder 10°/oiger Schwefelsäure, such nicht beim Erhitzen mit Barytwasser im geschlossenen Rohr auf 143° (Le S.). NaC₁₈H₃₃O₃ (bei 100°) (S.). Blättchen (aus Alkohol). Unlöslich in Aceton, schwer löslich in Alkohol und kaltem Wasser, leicht in heißem Wasser (Le S.). AgC₁₈H₃₃O₃ (S.).
- 14. $\mu.\nu$ -Oxido-behensāure $C_{22}H_{43}O_3 = CH_3 \cdot [CH_2]_7 \cdot HC CH \cdot [CH_2]_{11} \cdot CO_2H$.
- a) Höherschmelzende Form. B. Durch Einw. von 2 Mol alkoholischer oder wäßriger Natronlauge auf die aus Brassidinsäure dargestellte ν oder μ-Chlor(Brom)-μ oder ν-oxy-behensäure (Bd. III, S. 368) (Warmbrunn, Stutzer, B. 36, 3605). Man bringt die niedrigschmelzende μ.ν-Dioxy-behensäure (Bd. III, S. 410) mit Bromwasserstoff-Eisessig in Reaktion und behandelt das erhaltene Produkt mit Bariumhydroxyd in alkoholisch-wäßriger Lösung (Albitzki, J. pr. [2] 67, 300). Krystallwarzen (aus Alkohol). F: 71° (W., St.). Gibt, mit

verd. Kalilauge im geschlossenen Rohr auf 170° erhitzt, die hochschmelzende $\mu.\nu$ -Dioxybehensäure (Bd. III, S. 410) (W., St.). — Natriumsalz. Amorph. Leicht löslich in heißem Wasser und heißem Alkohol, unlöslich in Äther (W., St.). — Kaliumsalz. Amorph. Leicht löslich in heißem Wasser und heißem Alkohol, unlöslich in Äther (W. St.)

löslich in heißem Wasser und heißem Alkohol, unlöslich in Äther (W., St.).

b) Niedrigerschmelzende Form. B. Durch Einw. von 2 Mol alkoholischer oder wäßriger Natronlauge auf die aus Erucasäure dargestellte ν oder μ-Chlor(Brom)-μ oder ν-οχγ-behensäure (Bd. III, S. 368) (Warmbrunn, Stutzer, B. 36, 3605). — Pulver (aus Äther). F: 64°. Leicht löslich in Alkohol, Äther, Petroläther, Essigester und Benzol, unlöslich in Wasser. — Geht beim Erhitzen mit wäßr. Alkali im Druckrohr in die niedrigschmelzende μ.ν-Dioxy-behensäure (Bd. III, S. 410) über. Gibt mit Chlorwasserstoff die aus Erucasäure entstehende ν oder μ-Chlor-μ oder ν-οχy-behensäure, mit Bromwasserstoff die entsprechende ν oder μ-Brom-μ oder ν-οχy-behensäure. Durch Einw. von alkoh. Ammoniak auf das Natriumsalz bei 140° erhält man eine μ oder ν-Οχy-ν oder μ-amino-behensäure (Bd. IV, S. 520). Mit Essigsäureanhydrid entsteht eine bei 63° schmelzende Verbindung. — Natrium- und Kaliumsalz sind amorph, leicht löslich in heißem Wasser und heißem Alkohol, unlöslich in Äther. — Kupfersalz. Grünlich; löslich in kaltem Äther und heißem Alkohol, unlöslich in Wasser.

 μ oder ν - Brom - μ . ν - oxido - behensäure $C_{22}H_{41}O_3Br = CH_2 \cdot [CH_2]_7 \cdot HC - CBr \cdot [CH_2]_{11} \cdot CO_2H$ oder $CH_3 \cdot [CH_2]_7 \cdot BrC - CH \cdot [CH_2]_{11} \cdot CO_3H$. B. Aus Dibromoxybehensäure (Bd. II, S. 476) durch alkoh. Natronlauge (HAASE, STUTZER, B. 36, 3603). — Nadeln. F: 44°. Leicht löslich in Alkohol, Ather, Petroläther, Chloroform und Ligroin, unlöslich in Wasser. — Gibt mit Bromwasserstoff Dibromoxybehensäure, mit Wasser μ oder ν -Brom- μ . ν -dioxy-behensäure (Bd. III, S. 876). — Natriumsalz. Pulver. Leicht löslich in Wasser und Alkohol, unlöslich in Äther. — Kupfersalz. Blaugrün. Leicht löslich in Äther, sehr wenig in kaltem Alkohol, unlöslich in Wasser.

2. Monocarbonsäuren $C_n H_{2n-4} O_3$.

1. 2 - Methyl-furan-dihydrid-(4.5) - carbonsäure-(3), 2 - Methyl-4.5 - dihydro-furan-carbonsäure-(3) (Methyldehydropentoncarbon
H₂C—C·CO₂H
Säure) C₆H₈O₃ = H₂C·O·C·CH₃
B. Der Äthylester entsteht neben anderen Produkten
bei der Einw. von Äthylenbromid auf Acetessigester; man verseift ihn durch Kochen mit
alkoh. Kali (Freer, Perkin jun., Soc. 51, 822; Marshall, Perkin jun., Soc. 59, 855, 878).

Tafeln (aus Benzol). Schmilzt bei 150° unter Zerfall in Kohlendioxyd und 2-Methyl-furandihydrid-(4.5) (Bd. XVII, S. 21) (M., P. jun.) Wenig löslich in kaltem Wasser und
Petroläther, leicht in Alkohol, Äther und Benzol (M., P. jun.).

Kaliumpermanganat-Lösung (M., P. jun.). Zerfällt beim Kochen mit Wasser unter Kohlendioxydentwicklung und Bildung von Acetopropylalkohol (M., P. jun.).

2. Carbonsăuren $C_7H_{10}O_3$.

1. 2-Methyl-pyran-dihydrid-(5.6)-carbonsäure-(3), 2-Methyl-5.6-dihydro-pyran-carbonsäure-(3) (Methyldehydrohexoncarbonsäure) C₇H₁₀O₃ = H₂C·CH₂·C·CO₂H

H₂C·CH₃·C·CO₂H

B. Der Äthylester entsteht bei Einw. von Trimethylenbromid auf Acetessigester in Gegenwart alkoh. Natriumäthylatlösung; man verseift ihn durch Kochen mit alkoh. Kalilauge (Perkin jun., Soc. 51, 709, 715). Neben 5.6-Dihydro-pyran-[carbonsäure-(3)-äthylester]-[essigsäure-(2)-äthylester] (S. 325) entsteht der Äthylester beim Kochen eines Gemisches von Acetondicarbonsäurediäthylester und Trimethylenbromid mit alkoh. Natriumäthylatlösung (P. jun., Soc. 51, 739). Der Athylester entsteht ferner bei der Destillation von 5.6-Dihydro-pyran-[carbonsäure-(3)-äthylester]-essigsäure-(2) (P. jun., Soc. 51, 746). — Darst. Die erkaltete Lösung von 23 g Natrium in 250 g absol. Alkohol wird unter Kühlung alimählich mit 130 g Acetessigester und dann mit 202—205 g Trimethylenbromid versetzt und 1½ Stdn. lang gekocht; man fügt nun abermals unter Kühlung eine Lösung von 23 g Natrium in 250 g absol. Alkohol zu und kocht 1 Stde. lang; dann wird der Alkohol abdestilliert, der Rückstand mit Wasser versetzt und wiederholt mit Ather ausgeschüttelt; der in den Äther übergegangene Anteil wird fraktioniert (Kipping, P. jun., Soc. 55, 331). Der erhaltene Äthylester wird durch 6-stdg. Kochen mit 2 Mol alkoh. Kali verseift (P. jun., Soc. 51, 715). — Farblose Nadeln (aus Benzol oder Benzin). Schmilzt bei 119° und zerfällt bei etwas höherer Temperatur in

Kohlendioxyd und 2-Methyl-5.6-dihydro-pyran (Bd. XVII, S. 21) (P. jun., Soc. 51, 715). Kleine Mengen lassen sich bei raschem Erhitzen fast unzersetzt destillieren (P. jun., Soc. 51, 715). Leicht löslich bei Siedehitze in Alkohol, Äther, Chloroform, Benzol, Ligroin und Wasser (P. jun., Soc. 51, 716). — Zerfällt bei längerem Kochen mit Wasser in Kohlendioxyd und δ-Aoeto-n-butylalkohol (P. jun., Soc. 51, 717). Mit überschüssigem Brom entsteht ein flüssiges, nicht näher untersuchtes Tetrabromderivat (P. jun., Soc. 51, 716). — Cu(C₇H₂O₃)₂ + H₂O. Hellgrüner, amorpher Niederschlag. Unlöslich in Wasser (P. jun., Soc. 51, 717). — AgC₇H₂O₃. Blättchen (aus Wasser). Ziemlich leicht löslich in heißem Wasser (P. jun., Soc. 51, 717).

Äthylester C₂H₁₄O₃ = OC₅H₆(CH₂)·CO₂·C₂H₅. B. Aus dem Silbersalz der 2-Methyl-5.6-dihydro-pyran-carbonsäure-(3) durch 4-stdg. Kochen in absolut-ätherischer Lösung mit überschüssigem Äthyljodid (Perkin jun., Soc. 51, 713). Weitere Bildungen s. bei der Säure. — Farbloses, campherähnliches Öl. Ersterrt bei 0° krystallinisch und schmilzt bei 9° (P. jun., Soc. 51, 711). Kp₇₆₀: 226,5—227° (P. jun., Soc. 51, 713). Dⁿ: 1,0744; Dⁿ: 1,0696; Dⁿ: 1,0660; Dⁿ: 1,0626 (P. jun., Soc. 51, 713); D^{n,n}: 1,0605 (Gladstone, Soc. 59, 293). n^{n,n}: 1,4772 (Gl.). Molekularrefraktion und -dispersion: Gl. Magnetisches Drehungsvermögen: P. jun., Soc. 51, 713. — Durch Versetzen einer Lösung des Esters in Chloroform mit Phosphorpentachlorid und Zersetzung mit Wasser entsteht eine bei 2½—215° bei 200 mm siedende Verbindung C₂H₁₈O₃Cl (P. jun., Soc. 51, 714). Konz. Bromwasserstoffsäure bewirkt schon in der Kälte Spaltung in Kohlendioxyd und 6-Brom-hexanon-(2) (P. jun., Soc. 51, 725; Kiffing, P. jun., Soc. 55, 332).

 $\begin{array}{ll} 2. & \textbf{2.5-Dimethyl-furan-dihydrid-(4.5)-carbons\"{a}ure-(3)}, & \textbf{2.5-Dimethyl-4.5-dihydro-furan-carbons\"{a}ure-(3)} & \textbf{C}_7\textbf{H}_{10}\textbf{O}_3 = \frac{\textbf{H}_2\textbf{C}--\textbf{C}\cdot\textbf{CO}_3\textbf{H}}{\textbf{CH}_3\cdot\textbf{H}\dot{\textbf{C}}\cdot\textbf{O}\cdot\ddot{\textbf{C}}\cdot\textbf{CH}_3} & \\ & \textbf{CH}_3\cdot\textbf{H}\dot{\textbf{C}}\cdot\textbf{O}\cdot\ddot{\textbf{C}}\cdot\textbf{CH}_3 & \\ \end{array}$

5¹-Chlor-2.5-dimethyl-furan-dihydrid-(4.5)-carbonsäure-(3), 2-Methyl-5-chlor-methyl-4.5-dihydro-furan-carbonsäure-(3) $C_7H_9O_3Cl = H_2C - C \cdot CO_2H - CH_2Cl \cdot HC \cdot O \cdot C \cdot CH_3$. B. Aus dem Äthylester (s. u.) durch alkoh. Kali (Haller, March, C. r. 137, 14; Bl. [3] 31, 446). — Farblose Krystalle. F: 108—109°. Sehr leicht löslich in Äther.

Äthylester $C_9H_{13}O_2Cl = OC_4H_3(CH_3)(CH_2Cl) \cdot CO_3 \cdot C_2H_5$. B. Man sättigt eine Lösung von δ -Chlor- α -acetyl- γ -valerolacton (Bd. XVII, S. 421) in Alkohol mit trocknem Chlorwasserstoff und läßt das Reaktionsprodukt 48 Stdn. stehen (Haller, March, C. r. 137, 13; Bl. [3] 31, 445). Durch 48-stdg. Kochen von 28 g 2-Chlormethyl-2.3-dihydro-furan-[carbon-säure-(4)-šthylester]-[essigsäure-(5)-šthylester] (S. 325) mit 100 g Wasser in Gegenwart von 6,9 g Kaliumcarbonat (H., M., C. r. 137, 12; Bl. [3] 31, 444). — Krystalle. F: 57—58°. Kp₁₇: 141—143°. Leicht löslich in Alkohol und Äther.

3. Carbonsäuren C₈H₁₂O₃.

- 1. β [5 Methyl tetrahydrofuryliden (2)] propionsäure, "Valacten-propionsäure" $C_8H_{18}O_3 = H_2C CH_2$. B. Wird neben anderen Verbindungen erhalten durch Erwärmen von γ -Valerolacton (Bd. XVII, S. 235) mit Bernsteinsäurediäthylester und alkoholfreiem Natriumäthylat auf dem Wasserbad (Fittig, Salomon, Wernher, A. 331, 191). Kp: 253—255° (Zers.); Kp₃₀: 143,5—144°. Mit Äther, Alkohol, Ligroin und Wasser in jedem Verhältnis mischbar. AgC₈H₁₁O₃. Ca(C₈H₁₁O₃)₂ (bei 160°). Ba(C₈H₁₁O₃)₂ (bei 160°).
- 2. 1.a Oxido cyclohexylessigsäure, $\beta.\beta$ Pentamethylen glycidsäure $C_8H_{18}O_3=H_4C<\underset{CH_4}{CH_4}.\underset{CH_3}{CH_4}>C\underset{O}{\longrightarrow}CH\cdot CO_3H.$

Äthylester $C_{10}H_{10}O_3 = OC_7H_{11} \cdot CO_8 \cdot C_8H_8$. B. Man trägt in ein auf 0° abgekühltes Gemisch von je 1 Mol Cyclohexanon und Chloressigester langsam 1 Mol trockenes Natrium- athylat ein, läßt das Gemisch 48 Stdn. bei gewöhnlicher Temperatur stehen, erhitzt es dann 6 Stdn. auf dem Wasserbad und zersetzt es durch Wasser (Darrens, Leffburg, C. r. 142, 714). — Farblose, etwas viscose Flüssigkeit von schwachem Geruch nach faulenden Früchten und Skatol. Kp₁₇: 128—129°. — Läßt sich leicht zur freien Säure verseifen, die bei der Destillation im Vakuum glatt in Kohlendioxyd und Hexahydrobenzaldehyd zerfällt.

4. Carbonsäuren C.H.O.

1. $1.\alpha$ -Oxido- α -methyl-cyclohexylessigsäure, α -Methyl- β , β -pentamethylenglycidsäure $C_0H_{14}O_3=H_2C<\frac{CH_2}{CH_2}\cdot CH_2>C<\frac{CH_2}{OO_2}C<\frac{CH_3}{CO_2H}$.

Äthylester $C_{11}H_{18}O_3=OC_7H_{10}(CH_2)\cdot CO_3\cdot C_2H_3$. B. Durch langsames Eintragen von 1 Mol trocknem Natriumäthylat in ein unter 0° abgekühltes Gemisch von je 1 Mol Cyclohexanon und α -Chlor-propionsäure-äthylester und 48-stdg. Stehenlassen der Mischung (Darzens, C. r. 144, 1123). — Farblose ölige Flüssigkeit von schwach fruchtartigem, mehr unangenehmem Geruch. Kp40: 154-156°. — Die durch Verseifen leicht erhältliche freie Säure zerfällt bei der Destillation im Vakuum in Kohlendiovyd und Havahydrasertonbenon Saure zerfällt bei der Destillation im Vakuum in Kohlendioxyd und Hexahydroacetophenon.

2. 1.a - Oxido - 2 - methyl - cyclohexylessigsäure, $\beta.\beta$ - [a - Methyl - penta $methylen \emph{J-glycideäure} \ \ C_9H_{14}O_3 = H_2C < \underbrace{CH_3 \cdot CH(CH_3)}_{OH_2} > C \underbrace{-O}_{O}CH \cdot CO_9H.$

Äthylester $C_{11}H_{18}O_3 = OC_7H_{10}(CH_2) \cdot CO_2 \cdot C_2H_5$. B. Durch Kondensation von 1-Methylcyclohexanon-(2) mit Chloressigester in Gegenwart von trocknem Natriumäthylat (DARZENS, LEFÉBURE, C. r. 142, 715). — Unangenehm riechende Flüssigkeit. Kp₁₅: 129—131°. — Liefert bei der Verseifung die freie Säure, die sich bei der Destillation im Vakuum in Kohlendioxyd und 2-Methyl-hexahydrobenzaldehyd zersetzt.

1.a - Oxido - 3 - methyl - cyclohexylessigsäure, $\beta.\beta$ - β - Methyl - penta $methylen \textit{J-glycidsäure} \ C_9 H_{14} O_9 = H_2 O < \underbrace{CH(CH_9) \cdot CH_9}_{CH_2} \cdot \underbrace{CH_2 \cdot CH_3}_{CH_2} > C \underbrace{-O}_{O} \cdot CH \cdot CO_9 H.$

Äthylester $C_{11}H_{10}O_3 = OC_7H_{10}(CH_2) \cdot CO_2 \cdot C_2H_5$. B. Durch Kondensation von 1-Methylcyclohexanon-(3) mit Chloreseigester in Gegenwart von trocknem Natriumäthylat (Darrens, Lefébure, C. r. 142, 715). — Kp₂₀: 140—143°. — Liefert bei der Verseifung die freie Säure, die sich bei der Destillation im Vakuum in Kohlendioxyd und 3-Methyl-hexahydrobenzaldehyd zersetzt.

4. 1.a - Oxido - 4 - methyl - cyclohexylessigsäure, $\beta \cdot \beta$ - $\beta \cdot \gamma$ - Methyl - penta-4. 1.a - Oxido - 4 - methyt - cycloredy $CCH_3 \cdot CH_4 \cdot CH_5 \cdot C$

Äthylester $C_{11}H_{10}O_3 = OC_7H_{10}(CH_2) \cdot CO_3 \cdot C_3H_5$. B. Durch Kondensation von 1-Methylcyclohexanon-(4) mit Chloressigester in Gegenwart von trocknem Natriumäthylat (Darzens, Lepérbure, C. τ . 142, 715). — Flüssigkeit. Kp₁₈: 133°. — Liefert bei der Verseifung die freie Säure, die sich bei der Destillation im Vakuum in Kohlendioxyd und 4-Methyl-hexahydrobenzaldehyd zersetzt.

5. Carbonsäuren C₁₀H₁₆O₈.

1. 1.a-Oxido-2.a-dimethyl-cyclohexylessigsäure, a-Methyl- β . β -fa-methyl-pentamethylen]-glycidsäure $C_{10}H_{10}O_3=H_2C<\underset{CH_2}{CH_2}$ CH_2 CH_2 CH_3 CH_4 .

Äthylester $C_{12}H_{20}O_3 = OC_7H_2(CH_2)_3 \cdot CO_2 \cdot C_2H_5$. Durch Kondensation von 1-Methylcyclohexanon-(2) mit α -Chlor-propionsäure-äthylester in Gegenwart von Natriumäthylat (Dabzens, C.r. 144, 1124). — Kp_{15} : 127—129°. — Die durch Verseifung erhältliche freie Saure zerfallt bei der Destillation im Vakuum in Kohlendioxyd und 2-Methyl-hexahydroacetophenon.

2. 1.a-Oxido-3.a-dimethyl-cyclohexylessigs \overline{u} ure, \overline{u} -Methyl- β . β - $[\beta$ -methylpentamethylen]-glycidsäure $C_{10}H_{16}O_3 = H_2C < \frac{CH(CH_3) \cdot CH_2}{CH_3} > C < \frac{CH_3}{O} \cdot C < \frac{CH_4}{CO_2H}$.

Äthylester $C_{12}H_{20}O_3=OC_7H_6(CH_2)_2\cdot CO_3\cdot C_2H_5$. Durch Kondensation von 1-Methylcyclohexanon-(3) mit α -Chlor-propionsaure-athylester in Gegenwart von Natriumathylat (Darzens, C. r. 144, 1124). — Kp₃₃: 143—144°. — Die bei der Verseifung entstehende freie Säure zerfällt bei der Destillation im Vakuum in Kohlendioxyd und 3-Methyl-hexahydroacetophenon.

3. 1.a-Oxido-4.a-dimethyl-cyclohexylessigsäure, a-Methyl- β . β -fy-methyl-pentamethylen]-glycidsäure $C_{10}H_{14}O_3=CH_3\cdot HC < CH_2\cdot CH_2\cdot CH_2 > C < CO_2H_2$.

Äthylester $C_{12}H_{20}O_2 = OC_7H_3(CH_2)_2 \cdot CO_2 \cdot C_2H_3$. B. Durch Kondensation von 1-Methylcyclohexanon-(4) mit α -Chlor-propionsaure-athylester in Gegenwart von Natriumäthylat (Darzens, C. r. 144, 1124). — Kp₁₃: 129—130°. — Die bei der Verseifung entstehende freie Saure zerfallt bei der Destillation im Vakuum in Kohlendioxyd und 4-Methyl-hexahydroacetophenon.

4. 1.2-Oxido -2.3.3-trimethyl-cyclopentylessig-saure, 2.3-Oxido - 1.1.2-trimethyl-cyclopentan-essigsaure-(3), Campholenoxydsaure C₁₀H₁₆O₃, s. nebenstehende Formel. B. Aus Campholenolacton (Bd. XVII.

8. 301) durch Erhitzen mit Alkalilauge (BÉHAL, BLAISE, Bl. [3] 15, 28; TIEMANN, B. 30, 417). Aus Brom-dihydro-β-campholenolacton (Bd. XVII, S. 262) beim Erhitzen mit all sholischer oder wäßriger Natronlauge (BÉ., Bl. [3] 27, 404), beim Übergießen mit konz. Kailauge oder beim Kochen mit Barytwasser (T., B. 30, 415). Entsteht neben anderen Produkten beim Kochen von Nitro-dihydro-β-campholenolacton (Bd. XVII, S. 263) mit Natronlauge (BÉ., BL., Bl. [3] 15, 28; T., B. 30, 417). — Farblose Nadeln (aus Chloroform + Ligroin). F: 126° (rasch erhitzt) (BÉ., BL.), 128—129° (T.). Unlöslich in Wasser, schwer löslich in Ligroin, leicht löslich in Alkohol, Äther, Benzol und Chloroform (BÉ., BL.; T.). — Geht bei der Destillation oder beim Kochen mit Säuren in Campholenolacton über (T.). Sehr beständig gegen alkal. Kaliumpermanganat-Lösung (BÉ., Bl. [3] 27, 407). Chromsäuregemisch oxydiert zu γ.γ-Dimethyl-γ-acetyl-buttersäure (T.). — Natriumsalz. Schwer löslich in Natronlauge (T.). — Ag C₁₀H₁₅O₃ (T.).

Campholenoxydsäure-methylester $C_{11}H_{18}O_3 = OC_8H_{18} \cdot CH_2 \cdot CO_3 \cdot CH_3$. B. Aus dem Natriumsalz der Campholenoxydsäure durch 10-stdg. Erhitzen mit Methyljodid in alkoh. Lösung (Béhal, Bl. [3] 27, 410). — Flüssig. Kp₃₃: 135—138°. D°: 1,068.

Campholenoxydsäure-äthylester $C_{12}H_{20}O_3=OC_8H_{18}\cdot CH_3\cdot CO_3\cdot C_8H_5$. B. Aus dem Natriumsalz der Campholenoxydsäure durch Erhitzen mit Äthyljodid in alkoh. Lösung (Bébal, Bl. [3] 27, 410). — Flüssig. Kp₂₅: 147—148°; D°: 1,037 (Bé., Bl. [3] 27, 410). — Liefert bei der Reduktion β -Campholandiol (Bd. VI, S. 750) (Bé., C. r. 138, 281; Bl. [3] 31, 183). Gibt bei 60-stdg. Erhitzen mit alkoh. Ammoniak im geschlossenen Rohr auf 110° Campholenoxydsäure-amid (Bé., Bl. [3] 27, 410). Liefert bei Einw. von 3 Mol Methylmagnesiumjodid Oxydimethyl- β -campholenol (Bd. XVII, S. 111) (Bé., Bl. [3] 31, 466).

Campholenoxydsäure-benzylester $C_{17}H_{22}O_3 = OC_8H_{12} \cdot CH_2 \cdot CO_2 \cdot CH_3 \cdot C_6H_5$. B. Aus dem Natriumsalz der Campholenoxydsäure durch Erhitzen mit Benzylchlorid in alkoh. Lösung (Béhal, Bl. [3] 27, 411). — Krystalle. F: 46—47°.

Campholenoxydsäure-amid C₁₀H₁₇O₂N = OC₈H₁₃·CH₂·CO·NH₂. B. Durch 60-stdg. Erhitzen von Campholenolacton (Bd. XVII, S. 301) oder von Campholenoxydsäure-äthylester mit alkoh. Ammoniak im geschlossenen Rohr auf 110° (BÉHAL, Bl. [3] 27, 409). — Krystalle (aus Alkohol). F: 236°. Sublimiert bereits bei 234°. Fast unlöslich in Äther, Chloroform und Benzol, schwer löslich in absol. Alkohol, löslich in Wasser.

5. 1.4-Oxido-4-methoäthyl-cyclohexan-carbon-săure-(1), 1.4-Oxido-hexahydrocuminsäure C₁₀H₁₆O₃, HO₂C·C CH₂·CH₂

3. Monocarbonsäuren $C_nH_{2n-6}O_3$.

1. Carbonsăuren $C_5H_4O_8$.

1. Furan - carbonsäure - (2), Furan - CH α -carbonsäure, Brenzschleimsäure $C_2H_4O_3=$ CO_4H_5 CO_4H_5 . Stellungsbezeichnung s. in neben- CC_4H_5 CC_4H_5 bezw. Stellungsbezeichnung s. in neben- CC_4H_5 CC_4H_5 bezw. Stellungsbezeichnung s. in neben- CC_4H_5 bezw. Stellungsbeze

Bildung. Brenzschleimsäure entsteht beim Erhitzen von l-Arabonsäure in wäßr. Lösung mit Pyridin unter Druck auf 140—150°, neben anderen Produkten (E. Fischer, Piloty, B. 24, 4216). Aus dem γ-Lacton der l-Arabonsäure (S. 158) durch Erhitzen mit Kaliumdisulfat, neben Isobrenzschleimsäure (Bd. XVII, S. 438) (Chavanne, A. ch. [8] 3, 560, 563). Aus d-Zuckersäure beim Erhitzen mit konz. Salzsäure auf 150° unter Druck, neben Dehydroschleimsäure (S. 328) und etwas Diphenylenoxyd (Sohst, Tollens, A. 245, 19, 22). Aus d-Zuckersäure durch Erhitzen mit Kaliumdisulfat, neben Isobrenzschleimsäure (Chav., A. ch. [8] 3, 564). Bei der trocknen Destillation der Schleimsäure (Scheels; Houtou-Labhllardière, A. ch. [2] 9, 365, 366; Schwanert, A. 116, 266), neben Isobrenzschleimsäure (Limpeicht, A. 165,

257. 298), Dehydroschleimsäure und Diphenylenoxyd (Klinkhardt, J. pr. [2] 25, 42, 45; ZENONI, G. 20, 518). Durch Destillation von Schleimsäure mit Kaliumdisulfat, neben viel Isobrenzschleimsäure (Chav., Bl. [3] 29, 337). Durch Erhitzen von Schleimsäurediäthylester (Malaguti, A.ch. [2] 63,87). Durch Erhitzen von Schleimsäurediäthylester mit Kaliumdisulfat, neben Isobrenzschleimsäure (CHAV., A. ch. [8] 3, 564). Durch Oxydation von Furfuralkohol (Bd. XVII, S. 112) mit Permanganat-Lösung in der Kälte oder mit ammoniakalischer Silberlösung bei gelindem Erwärmen (E. Erdmann, B. 35, 1858). Neben Furfuralkohol beim Behandeln von Furfurol (Bd. XVII, S. 272) mit wäßr. (H. Schiff, A. 239, 374; 261, 255; vgl. auch v. Wissell, Tollens, A. 272, 306) oder alkoh. Kalilauge (Ulrich, Chem. N. 8, 116; J. 1860, 269; Limpricht, A. 165, 279; Bieler, Tollens, A. 258, 119), auch mit alkoh. Natronlauge (Hill, Am. 3, 37) oder mit Natriumamalgam (Schmelz, Beil-STEIN, A. Spl. 3, 275). Aus Furfurol entsteht Brenzschleimsäure ferner durch Kochen der wäßr. Lösung mit frisch gefälltem Silberoxyd (Schwanert, A. 116, 257), durch Behandlung mit Silbernitrat und Barytwasser in der Kälte (Delepine, Bonner, C. r. 149, 40; Bl. [4] 5, 883) oder mit alkal. Permanganatlösung bei höchstens 200 (Volhard, A. 261, 379; Freund-LEE, Bl. [3] 17, 610). Brenzschleimsäure findet sich im Harn von Kaninchen, die mit Furfurol unter Zusatz von Natriumcarbonat gefüttert werden (JAFFE, COHN, B. 20, 2312). Sie wird auch von Hunden ausgeschieden, die ausschließlich mit Brot ernährt werden (J., C., B. 20, 2312). Sie wurde ferner neben N.N'-Difurfuroyl-ornithin in den Exkrementen von Hühnern nachgewiesen, denen man Furfurol eingegeben hat (J., C., B. 21, 3462). Brenzschleimsäure entsteht auch bei der trocknen Destillation von Dehydroschleimsäure (Heinzelmann, A. 193, 192; KLINKHARDT, J. pr. [2] 25, 42, 45) oder Isozuckersäure (S. 364) (TIEMANN. B. 17, 249).

Darst. Man gibt allmählich bei 20° 10,5 g Kaliumpermanganat in 400 g Wasser zu einem Gemisch aus 9,6 g Furfurol, 26 g Kaliumhydroxyd und 400 g Wasser, kocht auf, neutralisiert das eingedampfte Filtrat mit Salzsäure und schüttelt die Brenzschleimsäure mit Äther aus; man krystallisiert die Säure aus Wasser unter Zusatz von Tierkohle um und reinigt durch Sublimation bei 50—60 mm Druck (Volhard, A. 261, 379, 380). Man verrührt 150 g Calciumhydroxyd mit ½ l Wasser, etwas Eis und 100 g Furfurol und setzt allmählich unter Rühren eine Lösung von 110 g Kaliumpermanganat in 2 l Wasser zu, wobei man die Temperatur auf etwa 10° hält; dann erhitzt man kurze Zeit auf dem Wasserbad, säuert das Filtrat mit Salzsäure (Kongopapier) schwach an und dampft bis zur Krystallisation ein (Frankland, Aston, Soc. 79, 515; vgl. dazu Pickard, Neville, Soc. 79, 847 Anm.). Darstellung aus Furfurol und Natronlauge: Hill, Jennings, Am. 15, 166 Anm.; vgl. auch Organic Syntheses, Coll. Vol. I [New York 1932], S. 270.

Physikalische Eigenschaften. Längliche Blättchen (aus heißem Wasser), Nadeln (durch Sublimation). Monoklin prismatisch(?) (Negri, G. 26 I, 73; vgl. Groth, Ch. Kr. 5, 498). F: 132—133° (Heinzelmann, A. 193, 192), 133° (Chavanne, C. r. 133, 167), 133° (korr.) (Hill, Am. 8, 38), 133—134° (Tiemann, B. 17, 250; Bieler, Tollens, A. 258, 120), 134,3° (korr.) (Schwanert, A. 116, 261). Erstarrt bei 127,7° (korr.) (Schw.). Sublimiert zum Teil bei 100° (Schw.; Tie.; vgl. auch Houtou-Labillardière, A. ch. [2] 9, 368), leichter unter 50—60 mm Druck bei 130—140° (Volhard, A. 261, 380). Kp: 230—232° (Freundler, Bl. [3] 17, 610). Brenzschleimsäure löst sich in 4 Tln. kochendem Wasser (Trommsdorff, Gm. 2, 474), in 26 Tln. Wasser von 15° (Hou.-Lab.); 100 g Wasser von 0° lösen 2,7 g Säure (Chav., C. r. 133, 167). In Alkohol leichter löslich als in Wasser (Scheele; Hou.-Lab.; Schw.); leicht löslich in Äther (Tie.). Brechungsvermögen in wäßriger und alkoholischer Lösung: Gennari, G. 24 I, 248, 253, 254; Kanonnikow, Ж. 15, 461; B. 16, 3050; J. pr. [2] 31, 342, 347. Absorption im Ultraviolett: Hartley, Dobbie, Soc. 73, 600. Verbrennungswärme bei konstantem Volumen: 494,4 kcal/Mol (Berthelot, Rivals, A. ch. [7] 7, 35). Wärmetönung bei der Neutralisation mit Kalilauge: Chav., A. ch. [8] 3, 514. Elektrolytische Dissoziationskonstante k bei 25°: 7,07×10-4 (Ostwald), Ph. Ch. 3, 385; vgl. auch Chav., A. ch. [8] 3, 517). Elektrocapillare Funktion: Gouy, A. ch. [8] 8, 334.

Chemisches Verhalten. Bei monatelangem Belichten von Brenzschleimsäure in Gegenwart von Wasser wird unter CO₂-Abspaltung Maleinaldehydsäure gebildet (CIAMICIAN, SILBER, B. 46 [1913], 1563). Brenzschleimsäure zerfällt beim Erhitzen im Druckrohr auf 275° fast quantitativ in Furan und Kohlendioxyd (Freundler, C. r. 124, 1158; Bl. [3] 17, 613). Bei der Destillation von brenzschleimsaurem Barium mit Natronkalk erhält man Furan (Limpricht, B. 3, 90; A. 165, 281) und Cyclopropen(?) (Bd. V, S. 61) (Freu., C. r. 124, 1157; Bl. [3] 17, 611, 612, 614). Brenzschleimsäure wird durch verd. Schwefelsäure und Bleidioxyd oder Kaliumchromat unter Entwicklung von Kohlendioxyd zersetzt (Li., A. 165, 283). Mit kalter Kaliumhypobromitlösung erhält man Maleinaldehydsäure (Frentr, B. 38, 1272). Über erfolglose Versuche zur Reduktion von Brenzschleimsäure mit Natriumamslgam, Aluminium, Zink und Zinn in alkalischer sowie in saurer Lösung vgl.: Schmelz, Beilstein, A. Spl. 3, 280; Stalmann, Kolbe, Z. 1867, 47; Yoder, Tollens, B. 34, 3461, 3462

Anm. Einwirkung von konz. Jodwasserstoffsäure auf Brenzschleimsäure bei 140°: WICHELHAUS, A. 152, 274; Li., A. 165, 280. Leitet man Chlor in eine warme wäßrige Lösung der Brenzschleimsäure, so wird Kohlendioxyd abgespalten; beim Verdunsten der Reaktions-Flüssigkeit scheidet sich Mucochlorsaure (Bd. III, S. 727) aus (Schmelz, Beilstein, A. Spl. 3, 279; vgl. Bennett, HILL, B. 12, 656; HILL, Am. 3, 166). Auch beim Behandeln von Brenzschleimsäure mit konz. Salzsaure und Mangandioxyd wird Mucochlorsaure gebildet (Hill, Palmer, Am. 9, 160 Anm.; DUNLAP, Am. 19, 641). Bei längerer Einw. von trocknem Bromdampf auf trockne Brenzschleimsäure bei gewöhnlicher Temperatur erhält man Brenzschleimsäure-tetrabromid (S. 263) (Tönnies, B. 11, 1086) und etwas 5-Brom-brenzschleimsäure (S. 284) (Hill, Sanger, A. 232, 67). Bei der Einw. von etwas mehr als 1 Mol Bromdampf auf Brenzschleimsäure auf dem Wasserbad entsteht 5-Brom-brenzschleimsäure, bei raschem Bromzusatz außerdem 3.5-Dibrom-brenzschleimsäure (HILL, SANGER, A. 232, 46). Erhitzen von Brenzschleimsäure mit 3 Mol Brom im Wasserbad führt zu 3.5-Dibrom-brenzschleimsäurebromid und etwas 5-Brom-brenzschleimsäure-bromid neben anderen Produkten (HILL, SANGER, A. 232, 73). In Eisessiglösung liefert Brenzschleimsäure mit Brom neben anderen Produkten 5-Brom-brenzschleimsäure (ALL, B. 16, 1130). Einw. von 2 Mol Brom auf Brenzschleimsäure in kalter wäßriger Lösung ergibt bei Extraktion mit Äther Maleinaldehydsäure in geringer und unsicherer Ausbeute (Li., A. 165, 285; FECHT, B. 38, 1272); dampft man die Reaktionsflüssigkeit ein, so erhält man Fumarsäure (Lt., A. 165, 285, 289; vgl. auch BAEYER. B. 10, 1362). Unter nicht genau ermittelten Bedingungen erhielt LIMPRICHT (A. 165, 291) bei der Einw. von 2 Mol Brom auf Brenzschleimsäure in Gegenwart von Wasser in der Kälte mitunter eine Verbindung C₄H₃O₂Br(s. u.). Behandelt man Brenzschleimsäure in kalter wäßriger Suspension mit 3 Mol Brom, so erhält man neben Mucobromsaure (Bd. III, S. 728) die in Form ihres Oxims (Bd. III, S. 728) isolierte Brommaleinaldehydsaure (Hill, Allen, Am. 19, 652). Bei Anwendung von 4 Mol Brom in Gegenwart von Wasser und folgendem Erhitzen des Reaktionsgemisches wird nur Mucobromsäure erhalten (SCHMELZ, BEILST., A. Spl. 3, 276; Li., A. 165, 293; Jackson, Hill, B. 11, 1671; Hill, Am. 3, 41). Durch Eintragen trockner Brenzschleimsäure in 3 Tle. rauchende Schwefelsäure (D: 1,95) wird Brenzschleimsäure-sulfonsäure-(5) (Syst. No. 2634) gebildet (Hill, Palmer, Am. 10, 373; vgl. auch Schwanert, A. 116, 268). Eine Lösung von Brenzschleimsäure in 3 Tln. rauchender Schwefelsäure liefert mit rauchender Salpetersäure (D: 1,51) unterhalb 40° 5-Nitro-brenzschleimsäure (S. 287) und 2.5-Dinitro-furan (ĤI., PA., Am. 10, 381; HI., WHITE, Am. 27, 194, 197). Beim Destillieren von Brenzschleimsäure mit Chlorzink-Ammoniak und CaO bei höchstens 280° entstehen Furan (Bd. XVII, S. 27) und Pyrrol (Canzoneri, Oliveri, G. 16, 487). Bei längerem Erhitzen von Brenzschleimsäure mit Anilin, ZnCl₂ und CaO im Druckrohr auf ca. 300⁶ wird α-Naphthylamin gebildet (Can., Oll., G. 16, 493). — Die wäßr. Lösung von Brenzschleimsäure gibt mit Eisenchlorid zuerst Rotfärbung, nach kurzer Zeit einen rotgelben Niederschlag (Tiemann, B. 17, 250). Die mit wenig Isatin versetzte Lösung in konz. Schwefelsäure färbt sich beim Erwärmen violettblau (V. Meyer, B. 16, 1477; Yoder, Tollens, B. 34, 3461).

Ammoniumsalz. Angaben darüber s. Houtou-Labillardière, A. ch. [2] 9, 369; Schwanert, A. 116, 282. — NaC₅H₃O₃. Schuppen (aus Alkohol durch Äther) (Schmelz, Beilstein, A. Spl. 3, 285). In Alkohol schwerer löslich als das Kaliumsalz (Hou.-Lab.). — KC₅H₃O₃. Blätter (aus Alkohol), Schuppen und Nadeln (aus Alkohol-Äther). Sehr leicht löslich in Wasser und verd. Alkohol, schwer in absol. Alkohol (Ulrich, Chem. N. 3, 116; Schm., B.). — Cu(C₅H₃O₃)₂ + 3 H₂O. Grüne Krystalle. In heißem Wasser löslicher als in kaltem (Schm., B.). — AgC₅H₃O₃. Blättchen (Schw.). — Ca(C₅H₃O₃)₂. Krystallpulver (aus Alkohol-Äther). Leicht löslich in Wasser und Alkohol (Schw.). — Pb(C₅H₃O₃)₂ + H₂O. Krystalle. Ziemlich schwer löslich in kaltem Wasser, leichter in heißem (Schm., B.). — Äthylaminsalz. Hygroskopische Krystalle. Schmilzt unterhalb 100° (Wallach, A. 214, 230). — Phenylhydrazinsalz. F: 117° (Chayanne, C. r. 133, 169).

Verbindung $C_4H_3O_2Br$. B. Wurde einige Male erhalten beim Eintragen von 2 Mol Brom in eine wäßr. Suspension von Brenzschleimsäure unter Kühlung und starkem Schütteln (LIMPRICHT, A. 165, 291). — Nadeln (durch Destillation mit Wasserdampf). Riecht campherähnlich. F: 84°. Leicht flüchtig. Unlöslich in Wasser, leicht löslich in Alkohol und Äther. — Wird durch alkoh. Kali bei 180° nicht verändert. Natriumamalgam erzeugt in alkoholischer, mit H_2SO_4 angesäuerter Lösung eine Verbindung $C_4H_4O_2$ [farbloses, benzolähnlich riechendes flüchtiges Öl; leicht löslich in Alkohol und Äther; wird durch konz. Salzsäure nicht verändert; reagiert weder mit Alkalien, noch mit Alkalidisulfit].

Funktionelle Derivate der Brenzschleimsäure.

Brenzschleimsäure-methylester $C_5H_6O_3 = OC_4H_2 \cdot CO_3 \cdot CH_2$. B. Aus Brenzschleimsäure in methylalkoholischer Lösung durch Chlorwasserstoff (Gennari, G. 24 I, 249). — Angenehm riechende, farblose Flüssigkeit, die am Licht gelb wird. Kp: 181,3° (korr.);

 $D_i^{n,4}$: 1,1786; $n_{\alpha}^{n,4}$: 1,4824; $n_{ii}^{n,4}$: 1,4871; $n_{\gamma}^{n,4}$: 1,5111 (G.). — Liefert bei der Nitrierung mit Salpetersäure (D: 1,51) und Essigsäureanhydrid 5-Nitro-brenzschleimsäure-methylester (S. 287) (Marquis, C. r. 137, 520; Bl [3] 31, 1280; A. ch. [8] 4, 260).

Brenzschleimsäure-äthylester $C_7H_8O_3=OC_4H_3\cdot CO_2\cdot C_2H_5$. B. Durch Sättigen einer Lösung von Brenzschleimsäure in absol. Alkohol mit Chlorwasserstoff (SCHWANEET, A. 116, 267; Marquis, A. ch. [8] 4, 255; vgl. Malaguti, A. ch. [2] 64, 279). Durch Erhitzen von 3 Th. Brenzschleimsäure mit 5 Th. absol. Alkohol und 3 Th. Schwefelsäure (D: 1,84) (Hill, Jackson, Am. 12, 24). — Blätter oder Prismen. F: 34—35° (Canzoneri, Oliveri, G. 14, 174), 34° (Mal.; Hill, Am. 3, 38; Curtius, Leimbach, J. pr. [2] 65, 24). Kp₇₆₄: 193° (Cu., Lei.); Kp₇₆₆: 196,75° (kort.) (Mar.); Kp₇₆₆: 195° (kort.) (Hill). D₁^{6,5}: 1,1174; $\mathbf{n}_{0}^{\mathbf{x},\mathbf{s}}$: 1,4752; $\mathbf{n}_{0}^{\mathbf{x},\mathbf{s}}$: 1,4797; $\mathbf{n}_{0}^{\mathbf{x},\mathbf{s}}$: 1,5014 (überschmolzen) (Gennari, G. 24 I, 253). — Leitet man trocknes Chlor über Brenzschleimsäure-äthylester bei 0°, bis keine Gewichtszunahme mehr erfolgt, so erhält man Brenzschleimsäure-äthylester-tetrachlorid und etwas 5-Chlorbrenzschleimsäure-äthylester (Hill, J., Am. 12, 24; vgl. Malaguti, A. ch. [2] 64, 282). Läßt man bei 145° so lange trockenes Chlor einwirken, bis die Gewichtszunahme dem Ersatz von 1 Atom Wasserstoff entspricht, und verseift das ölige Reaktionsprodukt mit alkoh. Natronlauge, so erhält man 5-Chlor-brenzschleimsäure (Hill, J., Am. 12, 26). Behandelt man das durch Einw. von Chlor bei 145° erhaltene Reaktionsprodukt bei 120° nochmals mit Chlor und zersetzt das nunmehr 5-Chlor-brenzschleimsäure-äthylester-tetrachlorid enthaltende Reaktionsgemisch mit alkoh. Natronlauge, so erhält man 3.4.5-Trichlor-brenzschleimsäure in geringer Ausbeute (HILL, J., Am. 12, 119). Durch Einw. von 1 Mol trocknem Brom auf den Athylester in Eisessig, Chloroform oder Schwefelkohlenstoff und Behandlung des Reaktionsprodukts mit alkoh. Kali werden 5-Brom-brenzschleimsäure, 3.4-Dibrombrenzschleimsäure und 3.5-Dibrom-brenzschleimsäure erhalten (Hill, Sanger, A. 232, 64; vgl. auch R. Schott, Tassinari, G. 8, 298; B. 11, 842, 1840; Canzoneri, Oliveri, G. 14, 174; Hill, S., B. 17, 1762). Läßt man eine Lösung von Brenzschleimsäure-äthylester in Essigsäureanhydrid zu einem Gemisch aus Essigsäureanhydrid und rauchender Salpetersäure (D: 1,51) unterhalb —5° tropfen, gießt dann auf Eis und zersetzt das abgeschiedene ölige Produkt mit Pyridin, so erhält man 5-Nitro-brenzschleimsäure-äthylester (S. 288) (MAE., C. r. 135, 506; 137, 520; Bl. [3] 31, 1278; A. ch. [8] 4, 256). Der Äthylester liefert beim Erhitzen mit Hydrazinhydrat am Rückflußkühler Furfuroylhydrazin und wenig N.N.'-Difurfuroyl-hydrazin (FREUNDLER, Bl. [3] 17, 423; Cu., Lei.). Durch Behandeln mit Athylmagnesium jodid in Äther und Zersetzung des Reaktionsproduktes mit essigsäurehaltigem Wasser entsteht (nicht ganz rein erhaltenes) Diäthyl-α-furyl-carbinol, das im Vakuumexsiccator oder beim Erwärmen in γ-[α-Furyl]-β-amylen (Bd. XVII, S. 48) übergeht (Hale, McNally, Pater, Am. 35, 72). Beim Behandeln mit Phenylnagnesiumbromid in Äther und Zersetzung des Reaktionsprodukts mit essigsäurehaltigem Wasser erhält man Diphenyl-α-furyl-carbinol (Bd. XVII, S. 137) und mit Benzylmagnesiumchlorid analog Dibenzyl-α-furyl-carbinol (Bd. XVII, S. 137) (Halis, Mon., P.). — Die mit Isatin versetzte Lösung von Brenzschleimsäure-äthylester in konz. Schwefelsäure färbt sich bei 125-140° violettblau (YODER, Tollens, B. 34, 3461).

Brenzschleimsäure-propylester $C_8H_{10}O_3 = OC_4H_3 \cdot CO_2 \cdot CH_2 \cdot CH_3 \cdot C$

Brenzschleimsäure-isopropylester $C_8H_{10}O_3 = OC_4H_3 \cdot CO_2 \cdot CH(CH_3)_2$. B. Analog der vorhergehenden Verbindung (Gennari, G. 24 I, 251). — Flüssig. Bräunt sich am Licht. Kp: 198,6° (korr.). $D_4^{a,7}$: 1,0655. $n_5^{a,7}$: 1,4642; $n_7^{a,7}$: 1,4682.

. Brenzschleimsäure-isobutylester $C_9H_{12}O_3=OC_4H_3\cdot CO_2\cdot CH_2\cdot CH(CH_3)_3$. B. Analog den vorhergehenden Verbindungen (Gennari, G. 24 I, 251). — Farblose Flüssigkeit. Bräunt sich am Licht und an der Luft. Kp: 220,8—222,6° (korr.). $D_4^{n,s}$: 1,0383. $n_{\alpha}^{n,s}$: 1,4637; $n_{\alpha}^{n,s}$: 1,4676.

Brenzschleimsäure-phenylester $C_{11}H_8O_3=OC_4H_3\cdot CO_2\cdot C_6H_5$. B. Aus Brenzschleimsäure-chlorid, Phenol und Kalilauge (Baum, B. 37, 2951). — Prismen (aus Alkohol). F: 41,5°. Sehr leicht löslich in Äther und Benzol, unlöslich in Wasser; löst sich bei 21° in 2,005 Thn. absol. Alkohol.

Difurfuroylresorein, Resorein - dipyromucat $C_{10}H_{10}O_5 = (OC_4H_2 \cdot CO \cdot O)_2C_9H_4$. B. Aus Brenzschleimsäure-chlorid und Resorein in Pyridin unter Kühlung (Baum, B. 37, 2952). — Rechteckige Tafeln (aus Alkohol). F: 128—129°. Leicht löslich in Äther, unlöslich in Wasser. 1 Tl. löst sieh bei 18° in 180,5 Tln. absol. Alkohol.

9-Oxy-10-furfuroyloxy-phenanthren, Phenanthrenhydrochinon-monopyromucat $C_{19}H_{18}O_4 = HO \cdot C - C_6H_4$. B. Entsteht sehr langsam aus Phenanthrenchinon und Furfurol in wasserfreiem Benzol im Sonnenlicht (KLINGEB, A. 382 [1911], 220). — Säulen (aus Eisessig). Tetragonal (Johnson, C. 1907 I, 1587; Groth, Ch. Kr. 5, 494, 501). F: 193°.

Difurfuroyl - [d - weinsäure] - dimethylester $C_{18}H_{14}O_{10} = [OC_4H_2 \cdot CO \cdot O \cdot CH(CO_2 \cdot CH_3)-]_s$. B. Durch Erhitzen von Brenzschleimsäure-chlorid mit Dimethyl-d-tartrat am Rückflußkühler auf etwa 156° (Frankland, Aston, Soc. 79, 520). — Krystalle (aus Schwefelkohlenstoff). F: 131°.

Difurfuroyl - [d - weinsäure] - diäthylester $C_{18}H_{18}O_{10} = [OC_4H_3\cdot CO\cdot O\cdot CH(CO_3\cdot C_2H_5)-]_2$. B. Analog der vorhergehenden Verbindung. — Platten (aus Chloroform). F: 76°; $D_1^{a,b}$: 1,1914; sehr leicht löslich in Alkohol und Äther, weniger in Chloroform, Benzol und CS_2 , unlöslich in Petroläther; $[\alpha]_0^{10}: -67,7^0$ (Fr., A., Soc. 79, 518).

3-Furfuroyloxy-pyron-(3), O-Furfuroyl-isobrenzschleimsäure, Isopyromucyl-pyromucat $C_{10}H_{8}O_{5}=\frac{HC\cdot CH:C\cdot O\cdot CO\cdot C_{4}H_{8}O}{HC-O-CO}$. B. Durch 3-stdg. Erwärmen von äquimolekularen Mengen Isobrenzschleimsäure (Bd. XVII, S. 438) und Brenzschleimsäure-chlorid auf 150° (Chavanne, C. r. 134, 1512; A. ch. [8] 3, 537). — Nadeln (aus verd. Alkohol). F: 99°. Löslich in organischen Lösungsmitteln, unlöslich in Wasser.

Brenzschleimsäure-anhydrid $C_{10}H_6O_5=(OC_4H_8\cdot CO)_2O$. B. Beim Behandeln von Brenzschleimsäure-chlorid mit wäßr. Methylamin-Lösung in Gegenwart von Soda (BAUM, B. 34, 2505). Aus Brenzschleimsäure-chlorid und Pyridin in Äther bei nachfolgendem Behandeln mit Wasser (B.). In besserer Ausbeute durch Einw. von Brenzschleimsäure-chlorid auf das Natrium- oder Silber-Salz der Brenzschleimsäure (B.). — Nadeln (aus Alkohol). F: 73°. Kp: 325° (nicht unzersetzt). Leicht löslich in Äther und Alkohol. — Ist beständig gegen Wasser, Sodalösung und Alkalilaugen in der Kälte.

Brenzschleimsäure - chlorid, Furfuroylchlorid (Furoylchlorid), Pyromucylchlorid C₅H₂O₃Cl = OC₄H₃·COCl. B. Durch Erhitzen von Brenzschleimsäure mit Phosphorpentachlorid ohne Lösungsmittel auf ca. 160° (Liès-Bodaet, C. r. 43, 393; A. 100, 327), vorteilhafter beim Arbeiten in Chloroforn-Lösung bei Wasserbadtemperatur (Frankland, Aston, Soc. 79, 516; vgl. auch Chavanne, C. r. 134, 1439). Durch Erwärmen von Brenzschleimsäure mit der 5-fachen Menge Thionylchlorid auf dem Wasserbad (Baum, B. 37, 2951). Neben N.N'-Diäthyl-furfurenylamidin (S. 279) beim Behandeln von 20 g brenzschleimsaurem Äthylamin mit 80 g Phosphorpentachlorid und Destillieren des Reaktionsprodukts (Wallach, A. 214, 230). — Farblose Flüssigkeit; erstarrt in der Kälte zu Prismen, die bei —2° schmelzen (Chav.). Kp₁₀: 66° (Fr., A.); Kp: 170° (L.-Bo.), 173° (Baum). — Ist lichtempfindlich (Fr., A.). Greift die Augen an (L.-Bo.), stärker als Benzoylchlorid (Baum). Wird auch von siedendem Wasser nur sehr langsam angegriffen (Fr., A.). Mit Ammoniak entsteht das Amid (L.-Bo.). Verwendung als Acylierungsmittel: Baum.

Brenzschleimsäure-amid, Pyromucamid $C_4H_4O_3N = OC_4H_3 \cdot CO \cdot NH_4$. B. Beim Behandeln von Brenzschleimsäure-chlorid mit Ammoniak (Liès-Bodart, C. r. 43, 393; A. 100, 237). Beim Leiten von trocknem Ammoniak in eine Lösung von Brenzschleimsäure-chlorid in wasserfreiem Äther (Ciamician, Dennstedt, G. 11, 293). Durch $^1/_5$ -stdg. Erhitzen von Brenzschleimsäure-methylester mit überschüssigem, konzentriertem wäßrigem Ammoniak im Druckrohr auf 100° (Freundler, Bl. [3] 17, 422). Aus dem Äthylester und konzentriertem wäßrigem Ammoniak beim Erhitzen unter Druck (Schwanert, A. 116, 282). Bei der trocknen Destillation von norisozuckersaurem Ammonium oder Isozuckersäure diamid (S. 366) (Tiemann, Haarmann, B. 19, 1277). — Warzige Krystalle, Nadeln (durch Sublimation). Sublimiert teilweise schon bei 100° (Sch.). F: 142—143° (Ci., De.), 141—142° (Wallach, A. 214, 227). — Trägt man 1 Tl. Brenzschleimsäure-amid in kleinen Mengen und unter Rühren in 3,6 Tle. Brom unterhalb 0° ein, so erhält man Brenzschleimsäure-amid-tetrabromid (S. 263) (Saunders, Am. 15, 133; vgl. auch Fr.). Versetzt man eine Lösung von Brenzschleimsäure-amid in Bromwasser (oder in Chlorwasser) mit Alkali- oder Erdalkalilauge, so tritt

eine blaue oder purpurne Färbung auf, mit Barytwasser ein dunkelblauer Niederschlag (Sau.). Wendet man Anilin statt Alkali an, so wird ein rötlicher, unbeständiger Niederschlag (F: ca. 78°) gebildet; mit überschüssigem Phenylhydrazin entsteht eine rote Verbindung $C_{11}H_{11}O_2N_3$ (Blättchen aus Alkohol oder Aceton; färbt sich bei 150—160° dunkel) (Sau.). Einw. von Alkalihypobromit auf Brenzschleimsäure-amid bei 70—80°: FB.

Brenzschleimsäure-methylamid C₆H₇O₅N = OC₄H₃·CO·NH·CH₃. B. Aus Furfuriminomethyläther (S. 278) durch 6-stdg. Erhitzen mit Methyljodid auf 100° (Wheeler, Atwater, Am. 28, 145). — Krystalle (aus Ligroin). F: 64°. Kp: 250—253°.

Brensschleimsäure-äthylamid $C_7H_9O_2N = OC_4H_9 \cdot CO \cdot NH \cdot C_2H_5$. B. Durch Erhitzen von Brenzschleimsäure-äthylester mit wäßr. Äthylaminlösung auf 100° (WALLACH, A. 214, 229). — Schwer bewegliche, fast geruchlose Flüssigkeit. Kp: 258° (korr.).

Brenzschleimsäure-anilid C₁₁H₂O₂N = OC₄H₂·CO·NH·C₆H₅. B. Aus dem Anilinsalz der Brenzschleimsäure durch Erhitzen mit überschüssigem Anilin (SCHIFF, A. 239, 367 Anm.). Aus Brenzschleimsäure-chlorid und Anilin in Gegenwart von Kalilauge (BAUM, B. 37, 2954). Durch Einw. von Phosphorpentachlorid auf das Oxim des 2-Benzoylfurans (Bd. XVII, S. 348) in Chloroform und Zersetzung des Reaktionsproduktes mit Wasser (MARQUIS, Bl. [3] 23, 35; A. ch. [8] 4, 279). Aus Brenzschleimsäure-azid und Anilin in Äther (CURTIUS, LEIMBACH, J. pr. [2] 65, 35). — Nädelchen (aus Äther), Prismen (aus Benzol), Nadeln und Blättchen (aus Alkohol). F: 123,5° (SCH.; C., L.; B.). 1 Tl. löst sich in 8,688 Tln. absol. Alkohol von 30° (B.); leicht löslich in kaltem Chloroform und Aceton, in heißem Alkohol, Eisessig und Benzol, sehr wenig in Wasser, unlöslich in Ligroin (C., L.). — Spaltet beim Erhitzen mit Barytwasser auf 180° Anilin ab (M.).

Brenzschleimsäure-o-toluidid $C_{12}H_{11}O_2N = OC_4H_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus Brenzschleimsäure-chlorid und o-Toluidin in Gegenwart von Kalilauge (BAUM, B. 37, 2955). — Nadeln (aus Alkohol-Ligroin). F: 62°. Schwer löslich in Ligroin, unlöslich in Wasser, sonst leicht löslich.

Brenzschleimsäure-m-toluidid $C_{12}H_{11}O_2N = OC_4H_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus Brenzschleimsäure-chlorid und m-Toluidin in Gegenwart von Kalilauge (BAUM, B. 37, 2955). — Prismen (aus Alkohol). F: 87°. Sehr leicht löslich in Äther. 1 Tl. löst sich bei 15° in 2,913 Tln. absol. Alkohol.

Brenzschleimsäure-p-toluidid $C_{12}H_{11}O_2N = OC_4H_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus p-Toluidin in Pyridin und Brenzschleimsäure-chlorid in Äther unter starker Kühlung (Baum, B. 37, 2954). — Prismen (aus Alkohol). Sehr leicht löslich in Äther, löslich in Ligroin. 1 Tl. löst sich bei 18,5° in 8,939 Tln. absol. Alkohol.

Furfuroylaminoessigsäure, Furfuroylglycin, Pyromucursäure ("Pyromycursäure") $C_7H_7O_4N = 0C_4H_3 \cdot CO \cdot NH \cdot CH_3 \cdot CO_2H$. B. Tritt im Harn von Kaninchen und Hunden auf, die mit Furfurol gefüttert werden (Jaffé, Cohn, B. 20, 2312). Aus Glycin und Brenzschleimsäure-ohlorid in schwach alkalischer Lösung (Baum, B. 37, 2956). – Prismen (aus Alkohol). F: 165° (J., C.; B.). 1 Tl. löst sich bei 20,5° in 31,5 Tln. Wasser (B.). Zerfällt beim Kochen mit Barytwasser in Glycin und Brenzschleimsäure. — Ba($C_7H_6O_4N$) $_3+1^1/_2H_3O$. Blättchen. — Harnstoffsalz $CH_4ON_3+C_7H_7O_4N$. B. Wurde aus dem Harn von mit Fleisch gefütterten Hunden nach Eingabe von Furfurol isoliert (Jaffé, Cohn, B. 20, 2313). Nadeln. F: 120°. Sehr leicht löslich in Wasser und Alkohol, schwer in Äther. Zersetzt sich beim Erhitzen über den Schmelzpunkt. Wird durch Erwärmen mit Bariumcarbonat in die Komponenten zerlegt.

Äthylester $C_0H_{11}O_4N = OC_4H_3 \cdot CO \cdot NH \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Man sättigt eine Lösung von Furfuroylaminoessigsäure in Alkohol bei etwa 60° mit Chlorwasserstoff (Baum, B. 37, 2956). — Nadeln (aus Wasser). F: 77°. Leicht löslich in Alkohol, Äther und Benzol, schwer in Ligroin. 1 Tl. löst sich bei 17,5° in 43,3 Tln. Wasser.

α-Furfuroylamino-propionsäure, Furfuroylalanin $C_aH_0O_4N=OC_4H_3\cdot CO\cdot NH\cdot CH(CH_2)\cdot CO_2H$. B. Aus Alanin und Brenzschleimsäure-chlorid in Gegenwart von Alkali (ΒΑυμ, B. 37, 2957). — Sechsseitige Tafeln. F: 169°. Unlöslich in Äther und Ligroin, sehr wenig löslich in kaltem Alkohol. 1 Tl. löst sich in 121,4 Tln. Wasser von 14°. — $AgC_3H_aO_4N$. Lichtempfindliche Prismen. Ziemlich schwer löslich in kaltem Wasser. — $Ba(C_3H_3O_4N)_2$ (bei 100°). Mikrokrystalline Krusten. Sehr leicht löslich in Wasser und Alkohol.

Äthylester $C_{10}H_{12}O_4N = OC_4H_3 \cdot CO \cdot NH \cdot CH(CH_3) \cdot CO_2 \cdot C_2H_5$. B. Aus Furfuroylslanin und Alkohol durch Chlorwasserstoff (BAUM, B. 37, 2958). — Sechsseitige Prismen (aus Wasser). F: 71—72°. Leicht löslich in Alkohol, Äther und Benzol, schwerer in Ligroin. 1 Tl. löst sich bei 17° in 60,09 Tln. Wasser.

 α - Furfuroylamino - phenylessigsäure, α - Phenyl- pyromucursäure ("Phenyl-pyromycursäure") $C_{12}H_{11}O_4N=OC_4H_3\cdot CO\cdot NH\cdot CH(C_6H_5)\cdot CO_2H.$ B. Aus α -Amino- α -phenyl-essigsäure und Brenzschleimsäure-chlorid bei Gegenwart von Natriumdicarbonat

in Wasser (Baum, B. 37, 2960). — Nadeln (aus Wasser). F: 178—179°. Ziemlich löslich in Alkohol, Äther, Benzol und Chloroform, unlöslich in Ligroin. 1 Tl. löst sich in 713 Tln. Wasser von 17°. — $Ba(C_{12}H_{10}O_4N)_8$. Dreikantige Prismen.

In alkalischer Lösung rechtsdrehende Furfuroylamino-bernsteinsäure, Furfuroyl-1-asparaginsäure C₂H₂O₅N = OC₄H₃·CO·NH·CH(CO₂H)·CH₂·CO₂H. B. Aus l-Asparaginsäure und Brenzschleimsäure-chlorid bei Gegenwert von Natriumdicarbonat in Wasser (BAUM, B. 37, 2958). — Prismen (aus Wasser). F: 162—163°. Leicht löslich in Alkohol, schwer in Äther und Benzol. 1 Tl. löst sich bei 19,5° in 11,25 Tln. Wasser. [a]₀²: +43,2° [9,2°/₀ige Lösung in 2 Mol n-Kalilauge]. — BaC₅H₇O₆N (bei 100°). Amorph. Unlöslich in Alkohol, leicht löslich in Wasser.

In alkalischer Lösung rechtsdrehendes α -Furfuroylamino - bernsteinsäure- α' -amid, Furfuroyl-1-asparagin $C_0H_{10}O_5N_3=OC_4H_3\cdot CO\cdot NH\cdot CH(CO_4H)\cdot CH_2\cdot CO\cdot NH_2$. B. Aus 1-Asparagin und Brenzschleimsäure-chlorid bei Gegenwart von Natriumdicarbonat in Wasser (BAUM, B. 37, 2959). — Prismen (aus Wasser). F: 172—173°. Unlöslich in Alkohol, Ather und Ligroin. 1 II. löst sich in 93,71 Tln. Wasser von 16°. $[\alpha]_n^n$: +19,8° [7,4% ige Lösung in 1 Mol n-Kalilauge]. — $Cu(C_0H_2O_5N_2)_2+H_2O$. Prismen. Ziemlich schwer löslich in kaltem Wasser. — $AgC_0H_0O_5N_2$. Nadeln: Schwer löslich in Alkohol, ziemlich schwer in Wasser. — $Ba(C_0H_0O_5N_2)_2+2H_2O$. Leicht löslich in Wasser und Alkohol.

 $\alpha.\beta$ -Bis-furfuroylamino-äthan, N.N'-Difurfuroyl-äthylendiamin $C_{12}H_{12}O_4N_2=[OC_4H_3\cdot CO\cdot NH\cdot CH_5-]_2$. B. Aus Brenzschleimsäure-chlorid und Äthylendiamin in Gegenwart von $3^0/_0$ iger Kalilauge (Baum, B. 37, 2954). — Prismen (aus Alkohol). F: 200°. Schwer löslich in kaltem Alkohol, leicht in Äther. 1 Tl. löst sich bei 15,5° in 238 Tln. absol. Alkohol.

 $\alpha.\delta$ -Bis-furfuroylamino-n-valeriansäure, N.N'-Difurfuroyl-ornithin $C_{15}H_{16}O_6N_8=OC_4H_3\cdot CO\cdot NH\cdot [CH_2]_3\cdot CH(CO_3H)\cdot NH\cdot CO\cdot C_4H_3O$. B. Findet sich neben Brenzschleimsäure in den Exkrementen von Hühnern nach peroraler oder subcutaner Verabreichung von Furfurol (JAFFÉ, COHN, B. 21, 3462). — Nadeln oder Prismen. F: 186°. Schwer löslich in kaltem Wasser und Äther, leichter in Essigester, leicht in heißem Wasser und Alkohol. — Zerfällt beim Kochen mit Barytwasser oder mit konz. Salzsäure in Brenzschleimsäure und d-Ornithin.

N-Äthyl-brensschleimsäureamidchlorid $C_7H_9ONCl_9 = OC_4H_2 \cdot CCl_2 \cdot NH \cdot C_2H_5$. Ist einer Arbeit von Hantzsch, B. 64 [1931], 667 zufolge als Hydrochlorid des N-Äthyl-brenzschleimsäureimidchlorids (s. u.) aufzufassen.

Brenzschleimsäure - iminomethyläther, Furfuriminomethyläther $C_9H_7O_8N=OC_4H_3\cdot C(:NH)\cdot O\cdot CH_2$. B. Aus Brenzschleimsäure-nitril analog dem Äthyläther (s. u.) (Wheeler, Atwater, Am. 23, 145). — Farbloses, eigentümlich riechendes Öl. Kp₆: 52° bis 57°; Kp₇₆₅: 169—172°. — Liefert bei 6-stdg. Erhitzen mit Methyljodid auf 100° Brenzschleimsäure-methylamid.

Brenzschleimsäure-iminoäthyläther, Furfuriminoäthyläther $C_7H_9O_2N = OC_6H_3$: $C(:NH)\cdot O\cdot C_8H_5$. B. Das Hydrochlorid entsteht beim Einleiten von Chlorwasserstoff in ein äquimolekulares Gemisch von Brenzschleimsäure-nitril und absol. Alkohol; man zersetzt es durch 33% jege Kaliumcarbonat-Lösung (Pinner, B. 25, 1415). — Farblose Flüssigkeit. Kp: 180—181° (P., B. 25, 1416), 180° (P., A. 298, 27). Kryoskopisches Verhalten in Naphthalin: Auwers, Ph. Ch. 30, 543. $D_4^{r,s}$: 1,0782 (Brühl, Ph. Ch. 22, 390). $n_{\alpha}^{r,s}$: 1,4884; $n_{0}^{r,s}$: 1,4930; $n_{\gamma}^{r,s}$: 1,5151 (Br.). — Furfuriminoäthyläther wird durch Hydrazin in Gegenwart von Alkohol in der Kälte in "Furylhydrazidin" (S. 281) und "Difurylhydrazidin" (S. 281) übergeführt; bei Anwesenheit von wenig überschüssigem Hydrazin wird weiter 3.6-Di- α -furyl-1.2.4.5-tetrazin-dihydrid (1.2) (Syst. No. 4707), bei Anwesenheit von Alkali und 4—6 Wochen langem Aufbewahren 3.5-Di- α -furyl-1.2.4-triazol-dihydrid (Syst. No. 4679) gebildet (P., Caro, B. 28, 465; P., A. 298, 27, 29, 31, 33). — $C_7H_9O_2N + HCl$. Krystallkörner. Schmilzt bei 106° unter Zerfall in Brenzschleimsäure-amid und Athylchlorid (P.).

N-Äthyl-brensschleimsäureimidchlorid $C_7H_8ONCl = OC_4H_3 \cdot CCl : N \cdot C_9H_6$. Zur Konstitution vgl. Hantzsch, B. 64 [1931], 667. — B. Das Hydrochlorid entsteht aus Brenzschleimsäure-äthylamid und Phosphorpentachlorid (Wallach, A. 214, 229). — $C_7H_8ONCl + HCl$. Krystalle.

Brensschleimsäure-nitril, 2-Cyan-furan, α -Furyl-cyanid $C_5H_5ON=OC_4H_5\cdot CN$. B. Aus Furfuraldoxim durch Kochen mit Essigsäureanhydrid (Douglas, B. 25, 1313; Pinner, B. 25 1415) oder durch Destillation mit Bleioxyd und Sand (Borsche, B. 39,

2503). Aus Brenzschleimsäure-amid durch Destillation mit P_9O_5 (Clamician, Dennstedt, G. 11, 294; B. 14, 1058) oder beim Erwärmen mit Phosphorpentachlorid (Wallach, A. 214, 227). — Farblose, nach Bittermandelöl riechende, süßlich schmeckende Flüssigkeit. Bräunt sich an der Luft (C., De.). Kp: 146—148° (W.); Kp_{757,8}: 147° (C., De.). Sehr wenig löslich in Wasser, mischbar mit Alkohol und Äther (C., De.).

Brenzschleimsäure - amidin, Furfurenylamidin $C_5H_6ON_2 = OC_4H_3 \cdot C(:NH) \cdot NH_2$. B. Das salzsaure Salz entsteht aus salzsaurem Furfuriminöäthyläther und alkoh. Ammoniak (Pinner, B. 25, 1416). — Das freie Furfurenylamidin zerfällt sofort unter Bildung von Brenzschleimsäure-amid. — $C_5H_6ON_2 + HCl + H_2O$. Prismen. F: 72°. Sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther. Beim Kochen mit Essigsäureanhydrid und Natriumacetat wird 2-Methyl-4.6-di- α -furyl-1.3.5-triazin (Syst. No. 4679) gebildet. Setzt man zu einer konzentrierten, mit 4 Mol 15°/ $_0$ iger Natronlauge versetzten Lösung von salzsaurem Furfurenylamidin eine 20°/ $_0$ ige Lösung von Phosgen in Toluol, bis CO $_2$ entwickelt wird, so erhält man 6-Oxo-2.1-di- α -furyl-1.3.5-triazindihydrid (Syst. No. 4681). Läßt man salzsaures Furfurenylamidin mit der äquivalenten Menge Natronlauge und etwas überschüssigem Acetessigester stehen, so scheidet sich 6-Oxo-4-methyl-2- α -furyl-pyrimidindihydrid (Syst. No. 4548) ab. Analoge Verbindungen entstehen mit Methylacetessigester, Benzoylessigester und Benzylacetessigester. Beim Stehenlassen der wäßr. Lösung mit Oxalessigsäurediäthylester und Natronlauge erhält man N-[Äthoxalyl-acetyl]-furfurenylamidin (s. u.) und 6-Oxo-2- α -furyl-pyrimidindihydrid-carbonsäure-(4) (Syst. No. 4602).

N.N'-Diäthyl-furfurenylamidin $C_0H_{14}ON_2 = OC_4H_3 \cdot C(:N \cdot C_2H_5) \cdot NH \cdot C_2H_5$. B. Beim Behandeln von 20 g brenzschleimsaurem Äthylamin mit 80 g Phosphorpentachlorid entsteht ein phosphorhaltiges Reaktionsprodukt, das beim Destillieren Brenzschleimsäure-chlorid und N.N'-Diäthyl-furfurenylamidin liefert (Wallach, A. 214, 230). — Flüssig. Siedet gegen 240°. Löslich in Chloroform. — $2C_9H_{14}ON_2 + 2HCl + PtCl_4$. Blättchen.

N-[Äthoxalyl-acetyl]-furfurenylamidin $C_{11}H_{12}O_5N_2 = OC_4H_3 \cdot C(:NH) \cdot NH \cdot CO \cdot CH_2 \cdot CO \cdot CO_2 \cdot C_2H_5$ bezw. $OC_4H_3 \cdot C(NH_2): N \cdot CO \cdot CH_2 \cdot CO \cdot CO_2 \cdot C_2H_5$. B. Man läßt eine mit 1 Mol 15°/oiger Natronlauge versetzte Lösung von 1 Tl. salzsaurem Furfurenylamidin in 2 Tln. Wasser mit 1 Mol Oxalessigsäurediäthylester etwa 3 Tage stehen (PINNER, B. 25, 1419). — Prismen (aus Aceton). Schmilzt gegen 190° unter Zersetzung. Schwer löslich in Alkohol und kaltem Aceton. — Beim Erwärmen mit Natronlauge entsteht 6-Oxo-2- α -furyl-pyrimidin-dihydrid-carbonsäure-(4) (Syst. No. 4602).

Brenzschleimsäure-hydroxylamid, Furfurhydroxamsäure, N-Furfuroyl-hydroxylamin $C_5H_5O_3N = OC_4H_3 \cdot CO \cdot NH \cdot OH$ bezw. $OC_4H_3 \cdot C(OH): N \cdot OH$. B. Aus Brenzschleimsäure-äthylester und Hydroxylamin in absolut-alkoholischer Lösung; man fällt mit Kupferacetat und zersetzt das Kupfersalz in alkoh. Suspension durch Schwefelwasserstoff (Pickard, Neville, Soc. 79, 847). Man versetzt 2,8 g Furfurol mit 45 cm³ 2n-Kalilauge und 5 g Benzolsulfhydroxamsäure (Bd. XI, S. 51), fällt mit Kupferacetat, versetzt mit wenig Wasser und verd. Salzsäure bis nahezu alles Kupfersalz gelöst ist, filtriert, wäscht das Filtrat mit Äther, extrahiert es sodann wiederholt mit Essigester und verdampft die Extrakte (Rimini, R. A. L. [5] 10 I, 359; G. 31 II, 90). — Nadeln (aus Wasser). F: 124° (P., N.), 128° (R.). Unlöslich in Äther (R.). — Ziemlich beständig gegen siedende Salzsäure (P., N.).

Furfurhydroxamsäure-benzoat, O-Benzoyl-N-furfuroyl-hydroxylamin $C_{12}H_0O_4N = OC_4H_2 \cdot CO \cdot NH \cdot O \cdot CO \cdot C_6H_5$ bezw. $OC_4H_3 \cdot C(OH) : N \cdot O \cdot CO \cdot C_6H_5$. B. Durch Schütteln der wäßr. Lösung der Furfurhydroxamsäure mit Benzoylchlorid in Gegenwart von Natriumacetat (P., N., Soc. 79, 848). — Nadeln (aus Alkohol). F: 1349. Löst sich in Sodalösung. — Die wäßr. Lösung des Natriumsalzes gibt beim Kochen CO_2 ab.

O.N-Difurfuroyl-hydroxylamin $C_{10}H_7O_5N=0C_4H_3\cdot CO\cdot NH\cdot O\cdot CO\cdot C_4H_2O$ bezw. $OC_4H_3\cdot C(OH):N\cdot O\cdot CO\cdot C_4H_2O$. B. Man versetzt eine Lösung von salzsaurem Hydroxylamin mit Soda und dann portionsweise unter Kühlung mit Brenzschleimsäure-chlorid (BAUM, B. 37, 2952). — Prismen (aus Alkohol). F: 180°. Leicht löslich in Äther, ziemlich schwer in kaltem Alkohol; löst sich in 424 Tln. Wasser von 18°.

Brenzschleimsäure-hydrazid, Furfuroylhydrazin $C_5H_6O_2N_2 = OC_4H_3 \cdot CO \cdot NH \cdot NH_2$. B. Furfuroylhydrazin entsteht, wenn man Brenzschleimsäure-äthylester mit etwas mehr als der äquimolekularen Menge Hydrazinhydrat einige Stunden am Rückflußkühler (Freundler, Bl. [3] 17, 423) oder im Wasserbad (Curtius, Leimbach, J. pr. [2] 65, 24, 26) erhitzt;

als Nebenprodukt entsteht N.N'-Difurfuroyl-hydrazin (s. u.) (C., L.). — Prismen oder Nädelchen (aus Alkohol). F: 80° (Braunfärbung) (C., L.). Siedet (nur zum Teil unzersetzt) bei 279° (C., L.). Leicht löslich in kaltem Wasser, Alkohol und Chloroform, sehr leicht in heißem Benzol und Toluol (C., L.). — Beständig im Exsiccator, bräunt sich aber beim Aufbewahren an der Luft; geht bei andauerndem Erhitzen über den Schmelzpunkt, zum Teil auch beim Destillieren in N.N'-Difurfuroyl-hydrazin über; dieses entsteht fast quantitativ aus dem Hydrazid bei Einw. von alkoh. Jodlösung sowie aus dem salzsauren Salz beim Erhitzen im Vakuum (C., L.). Reduziert ammoniakalische Silberlösung schon in der Kälte, Kupfersulfatlösung beim Erwärmen (C., L.). Wird durch längeres Kochen mit nicht zu verdünnten Säuren oder Alkalien in die Komponenten gespalten (C., L.). Mit Natriumnitrit und Essigsäure entsteht das Azid (S. 281) (F.; C., L.). Liefert mit Aldehyden und Ketonen die entsprechenden Hydrazone (C., L.). — C₂H₄O₂N₂ + HCl. B. Aus dem Hydrazid beim Verreiben mit konz. Salzsäure oder beim Sättigen der äther. Lösung mit Chlorwasserstoff (C., L.). Tafeln (aus Wasser), Nädelchen (aus Alkohol). F: 178°. Unlöslich in Äther, Benzol und Chloroform. — NaC₅H₅O₂N₂. B. Beim Kochen einer Lösung von Brenzschleimsäure-hydrazid in trocknem Benzol oder Toluol mit der berechneten Menge Natrium (C., L.). Beim Versetzen einer Lösung des Hydrazids in sehr wenig Alkohol mit einer Lösung von Natrium in gleichen Vol. Alkohol und Äther (C., L.). Luftbeständige Krystallmasse. Leicht löslich in Wasser und Alkohol.

Brenzschleimsäure - phenylhydrazid, N - Phenyl - N'-furfuroyl - hydrazin, β -Furfuroyl-phenylhydrazin $C_{11}H_{10}O_2N_2=OC_4H_3\cdot CO\cdot NH\cdot NH\cdot C_6H_6$. B. Aus Brenzschleimsäure und Phenylhydrazin beim Erhitzen im Ölbad (Zenoni, G. 20, 519). Durch Lösen von Brenzschleimsäure-anhydrid in warmem Phenylhydrazin (Baum, B. 34, 2506); besser aus Brenzschleimsäure-chlorid und Phenylhydrazin in Pyridin (B., B. 37, 2953). — Nadeln (aus Benzol oder Alkohol). F: 144° (B., B. 37, 2953), 142—143° (Z.). 1 Tl. löst sich in 27,77 Tln. absol. Alkohol von 17°.

Brensschleimsäure-isopropylidenhydrazid, Aceton-furfuroylhydrazon $C_8H_{10}O_2N_2 = OC_4H_3 \cdot CO \cdot NH \cdot N : C(CH_3)_2$. B. Beim Übergießen von Brenzschleimsäure-hydrazid mit Aceton (Curtius, Leimbach, J. pr. [2] 65, 29). — Täfelchen (aus Benzol). F: 72°. Sehr leicht löslich in Wasser, Alkohol, Chloroform, Aceton und heißem Benzol, schwer löslich in Äther, unlöslich in Ligroin.

Brenzschleimsäure-benzalhydrazid, Benzaldehyd-furfuroylhydrazon $C_{12}H_{10}O_2N_3=OC_4H_3\cdot CO\cdot NH\cdot N:CH\cdot C_6H_5$. B. Beim Schütteln einer wäßr. Lösung von Brenzschleimsäure-hydrazid mit Benzaldehyd (C., L., J. pr. [2] 65, 30). — Nadeln (aus Eisessig). F: 219° (unter Braunfärbung). Leicht löslich in heißem Alkohol, schwer in heißem Benzol, Chloroform, Aceton, unlöslich in Äther, Ligroin und kaltem Alkohol. In konz. Säuren leicht löslich; verd. Säuren bewirken bei längerem Erhitzen Spaltung.

Brenzschleimsäure - [β - acetyl - hydrazid], N - Acetyl - N' - furfuroyl - hydrazin $C_7H_8O_3N_2 = OC_4H_3 \cdot CO \cdot NH \cdot NH \cdot CO \cdot CH_3$. B. Beim Lösen von Brenzschleimsäure-hydrazid in etwas überschüssigem Essigsäureanhydrid (C., L., J. pr. [2] 65, 28). — Blättchen (aus Alkohol). F: 153,5°. Leicht löslich in kaltem Wasser und Eisessig, heißem Chloroform und Aceton, unlöslich in Äther, Benzol und Ligroin.

Brensschleimsäure - [β -benzoyl-hydrasid], N-Benzoyl-N'-furfuroyl-hydrasin $C_{12}H_{10}O_2N_2 = OC_4H_3\cdot CO\cdot NH\cdot NH\cdot CO\cdot C_6H_5$. B. Durch kurzes Kochen einer mit wäßr. Natronlauge alkalisch gemachten Lösung von Brenzschleimsäure-hydrazid und Benzoyl-chlorid in Alkohol (C., L., J. pr. [2] 65, 29). — Blättchen (aus Eisessig). F: 226°. Löslich in heißem Eisessig, sehr wenig löslich in heißem Alkohol und Äther, unlöslich in Wasser, Benzol, Ligroin, Chloroform und Aceton.

Acetessigsäureäthylester - furfuroylhydrazon $C_{11}H_{14}O_4N_3 = OC_4H_3 \cdot CO \cdot NH \cdot N$: $C(CH_3) \cdot CH_2 \cdot CO_3 \cdot C_3H_5$. B. Durch Erhitzen äquimolekularer Mengen Brenzschleimsäurehydrazid und Acetessigester im Wasserbad (C., L., J. pr. [2] 65, 30). — Nädelchen (aus Alkohol). F: 234°. Unlöslich in Wasser, Äther, Benzol und Ligroin, leicht löslich in heißem Eisessig sowie heißem Alkohol und Aceton.

N.N'-Difurfuroyl-hydrazin $C_{10}H_8O_4N_8=[OC_4H_8\cdot CO\cdot NH-]_8$. B. Aus Brenzschleimsäure-hydrazid durch Einw. von alkoh. Jodlösung oder bei andauerndem Erhitzen über den Schmelzpunkt, in geringer Menge auch beim Destillieren oder beim Erhitzen mit überschüssigem Brenzschleimsäure-äthylester (C., L., J. pr. [2] 65, 31). Aus salzsaurem Brenzschleimsäure-hydrazid durch Erhitzen auf 145° im Vakuum (C., L.). — Nadeln (aus Eisessig), Prismen (durch Sublimation im Vakuum). F: 232°. Leicht löslich in heißem Alkohol und Chloroform, unlöslich in Wasser und Ligroin, sonst sehr wenig löslich.

Brenzschleimsäure - imid - hydraxid bezw. Brenzschleimsäure - amid - hydraxon $C_5H_7ON_2=OC_4H_2\cdot C(:NH)\cdot NH\cdot NH_2$ bezw. $OC_4H_3\cdot C(NH_2):N\cdot NH_2$, Furfurenylamidraxon 1),

¹⁾ Zur Bezeichnung -amidrazon vgl. Bd. IX, S. 328 Anm.

in der Originalliteratur "Furfurylhydrazidin" bezw. "Furylhydrazidin" genannt. B. Entsteht neben "Difurylhydrazidin" und 3.6-Di-α-furyl-1.2.4.5-tetrazin-dihydrid-(1.2) (Syst. No. 4707) bei 24-stdg. Aufbewahren von 1 Mol Hydrazinsulfat mit der äquivalenten Menge 33%-giger Kalilauge, etwas weniger als 1 Mol Furfuriminoāthylāther und wenig Alkohol; man versetzt das Filtrat mit Kalilauge, schüttelt mit Äther aus, entzieht der äther. Lösung das Hydrazidin mit verd. Essigsäure oder Salzsäure und zersetzt das Salz durch Alkali (PINNER, CABO, B. 28, 466; P., A. 298, 27). — Wurde in freiem Zustand nicht ganz rein erhalten; scheidet sich ölig aus und erstarrt unter Zersetzung innerhalb 12 Stdn. (P., C.; P.). — Liefert beim Eindampfen mit Hydrazin 3.6-Di-α-furyl-1.2.4.5-tetrazin-dihydrid-(1.2) (P., C.; P.). Beim Behandeln mit salpetriger Säure erhält man 5-α-Furyl-tetrazol (Syst. No. 4696) (P., C.; P.). — Pikrat C₅H₁ON₃ + C₆H₃O₇N₃. Gelbe Prismen (aus Wasser). F: 164°; schwer löslich in kaltem, leichter in heißem Wasser, löslich in Alkohol (P., C.; P.).

ω-Benzal-furfurenylamidrazon $C_{12}H_{11}ON_3 = OC_4H_3 \cdot C(:NH) \cdot NH \cdot N : CH \cdot C_6H_5$ bezw. $OC_4H_3 \cdot C(NH_4) : N \cdot N : CH \cdot C_6H_5$. B. Man versetzt eine äther Lösung von "Furfurylhydrazidin" (s. o.) mit Benzaldehyd und läßt 48 Stdn. stehen (PINNER, CARO, B. 28, 467; P., A. 298, 28). — Prismen (aus Alkohol). F: 142°. Unlöslich in Wasser, schwer löslich in Äther, leicht in heißem Alkohol.

N-[α -Imino-furfuryl]-N'-furfuroyl-hydrazin bezw. N-[α -Amino-furfuryliden]-N'-furfuroyl-hydrazin $C_{10}H_{9}O_{3}N_{3}=OC_{4}H_{3}\cdot C(:NH)\cdot NH\cdot NH\cdot CO\cdot C_{4}H_{3}O$ bezw. $OC_{4}H_{3}\cdot C(NH_{2}):N\cdot NH\cdot CO\cdot C_{4}H_{3}O$ bezw. weitere desmotrope Formen, Furfuroyl-furfurenyl-amidrazon 1), "Furoylfurfurhydrazidin", "Furoylfurylhydrazidin". B. Das salzsaure Salz scheidet sich aus, wenn man eine Lösung von "Difurylhydrazidin" (s. u.) in 3°/oiger Salzsäure mit 2 Mol Natriumnitrit versetzt und über Nacht stehen läßt; den abfiltrierten Niederschlag löst man in Wasser und fällt mit Kaliumcarbonat (Pinner, Caro, B. 28, 469; P., A. 298, 30). — Prismen (aus Alkohol). — Zerfällt bei 120° in Wasser und 5.5·Di- α -furyl-1.2.4-triazol (Syst. No. 4679). Leicht löslich in Säuren, auch in verd. Essigsäure.

N.N'-Bis-[\$\alpha\$-imino-furfuryl]-hydraxin bezw. Bis-[\$\alpha\$-amino-furfuryliden]-hydraxin, symm. Diamino-di-\$\alpha\$-furyl-aximethylen \$C_{10}H_{10}O_2N_4 = [OC_4H_3\cdot C(:NH)\cdot NH-]_2\$ bezw. [OC_4H_3\cdot C(NH_4): N-]_2\$ bezw. weitere desmotrope Formen, ,,Difurfurylhydrazidin", ,,Difurylhydrazidin". \$B\$. Entsteht neben ,,Furylhydrazidin" (s. o.) und 3.6-Di-\$\alpha\$-furyl-1.2.4.5-tetraxin-dihydrid-(1.2) (Syst. No. 4707) beim Behandeln von Furfurimino\textuplsther mit Hydrazin, am besten, wenn man auf 2 Mol Furfurimino\textuplsther 1\frac{1}{2}\$ Mol Hydrazin-sulfat und die entsprechende Menge 33\frac{0}{0}_0\text{iger Kalilauge anwendet und das Reaktionsgemisch etwa 4—5 Tage stehen l\textuple{B}\$\text{is}\$ (den getrockneten Niederschlag extrahiert man mit Aceton, l\text{\text{\text{ost}}\$ den Acetonauszug in verd. Essigs\text{\text{uru}\$ aur und f\text{\text{\text{ill}}\$ die filtrierte L\text{\text{\text{osung}}\$ durch Kaliumcarbonat (PINNEB, Caro, \$B\$. 28, 467, 468; P., \$A\$. 298, 29). — Gelbe Prismen (aus Alkohol). Leicht l\text{\text{\text{\text{ost}}\$ den Schmelzen in 3.5-Di-\$\text{\text{\text{ost}}\$ uryl-1.2.4-triazol (Syst. No. 4679) \text{\text{\text{uber}}\$; dieses entsteht auch durch Einw. von S\text{\text{\text{uru}}\$ n. E. beim Kochen mit Eisessig (P., \$C\$.; P.). Wird durch salpetrige S\text{\text{\text{uru}}\$ in ,,Furoylfurylhydrazidin" (s. o.) \text{\text{\text{uber}}\$ durch schmelzt bei 238\text{\text{\text{uber}}\$ unter Zersetzung (P., \$C\$.; P.).

 $\mathbf{N}^{\alpha}.\mathbf{N}^{\beta'}$ -Diphenyl- \mathbf{N}^{β} -furfuryliden-furfurenylhydrazidin 1) (,,Dehydrofurfuralphenylhydrazon") $\mathbf{C}_{32}\mathbf{H}_{18}\mathbf{O}_{2}\mathbf{N}_{4} = \mathbf{OC}_{4}\mathbf{H}_{3}\cdot\mathbf{C}(:\mathbf{N}\cdot\mathbf{NH}\cdot\mathbf{C}_{6}\mathbf{H}_{5})\cdot\mathbf{N}(\mathbf{C}_{6}\mathbf{H}_{5})\cdot\mathbf{N}:\mathbf{CH}\cdot\mathbf{C}_{4}\mathbf{H}_{3}\mathbf{O}.$ Entsteht neben 2.3-Diphenyl-1.4-difurfuryliden-tetrazan (Bd. XVII, S. 284) aus Furfurolphenylhydrazon (Bd. XVII, S. 282) mit Amylnitrit in trocknem Äther beim Erhitzen unter Rückfluß (Minunni, G. 27 II, 232, 234, 261). — Nadeln (aus Alkohol-Benzol). Bräunt sich an der Luft. Schmilzt zwischen 155,5 und 161° je nach der Art des Erhitzens. Sehr leicht löslich in Chloroform, leicht in Benzol, schwer in Alkohol und Eisessig.

Brensschleimsäure-axid $C_5H_3O_5N_3=OC_4H_3\cdot CO\cdot N_3$. B. Aus je 1 Mol Brenzschleimsäure-hydrazid und Natriumnitrit in gekühlter essigsaurer Lösung (Freundler, Bl. [3] 17, 423; Curtius, Lembach, J. pr. [2] 65, 32). — Tafeln (aus verdunstendem Äther). F: 62,5°; zersetzt sich in der Capillare von 110° an; verpufft bei 182—183° (C., L.). Greift die Schleimhäute an (C., L.). Leicht löslich in Alkohol, Äther, Chloroform, Aceton, Eisessig, Benzol und Ligroin, unlöslich in Wasser (C., L.). — In feuchtem Zustand zersetzlich

¹⁾ Zur Bezeichnung -hydrazidin vgl. Bd. IX, S. 328 Anm.

(C., L.). Liefert mit Hydrazinhydrat das Hydrazid (C., L.). Beim Erhitzen mit Methyloder Athylalkohol entstehen die entsprechenden α-Furyl-carbamidsäure-ester (Bd. XVII, S. 248) (Fa.; C., L.). Bei mehrtägigem Stehenlassen mit Anilin in Äther erhält man Brenzschleimsäure-anilid (S. 277) (C., L.).

Substitutionsprodukte der Brenzschleimsäure.

3-Chlor-brenzschleimsäure $C_5H_3O_3Cl = \frac{HC--CCl}{H_C^+O_C^+CO_3H}$. B. Bei 8—10-stdg. Kochen einer stets ammoniakalisch gehaltenen Lösung von 3.5-Dichlor-brenzschleimsäure mit Zinkstaub (Hill, Jackson, Am. 12, 32). Bei 3-stdg. Erhitzen von 3.4-Dichlor-brenzschleimsäure mit überschüssigem 1% igem Natriumamalgam (H., J., Am. 12, 33). — Tafeln oder Prismen (aus heißem Wasser). F: 145—146°. Die gesättigte wäßrige Lösung enthält bei 19,8° 0,8% Säure. Leicht löslich in Alkohol, Äther, heißem Benzol und heißem Chloroform. — Wird durch Kochen mit verd. Salpetersäure zu Chlorfumarsäure oxydiert. Beim Erhitzen mit Wasser und überschüssigem Brom entsteht Mucochlorbromsäure (Bd. III, S. 728). — $Ca(C_8H_2O_3Cl)_3 + 3H_2O$. Prismen. Verliert das Krystallwasser bei 105°. 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 19,5° 3,1°/ $_0$ wasserfreies Salz. — $Ba(C_5H_2O_3Cl)_3 + H_2O$. Prismen (aus Wasser). Verliert das Krystallwasser bei 100°. 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 19,1° 2,0°/ $_0$ wasserfreies Salz.

Äthylester $C_7H_7O_3Cl = OC_4H_2Cl \cdot CO_2 \cdot C_4H_5$. B. Beim Erhitzen von 3-Chlor-brenzschleimsäure mit absol. Alkohol und konz. Schwefelsäure auf 100° (H., J., Am. 12, 36). — Prismen. F: 29—30°. Kp_{764} : 217° (korr.).

5-Chlor-brenzschleimsäure $C_5H_3O_3Cl = \frac{HC - CH}{Cl \cdot C \cdot CO_2H}$. B. Man leitet 1 Mol

Chlor in auf 145° erhitzten Brenzschleimsäure-äthylester, gießt das Reaktionsprodukt allmählich in überschüssige alkoholische Natronlauge und zerlegt das ausgeschiedene chlorbrenzschleimsaure Salz durch Salzsäure; beigemengte Säuren kann man aus der wäßrig-ammoniakalischen Lösung der Säure durch Bariumchlorid ausfällen (H., J., Am. 12, 26). — Blättchen. F: 176° bis 177°. Leicht lösich in Alkohol, Äther, heißem Wasser und heißem Benzol. Die gesättigte wäßrige Lösung enthält bei 19,5° 0,28°/ $_0$ Säure. — Wird durch Bromwasser oder beim Kochen mit verd. Salpetersäure zu Fumarsäure oxydiert. — $KC_5H_2O_3Cl$. Nadeln oder Tafeln. — $AgC_5H_2O_3Cl$. Nadeln oder Tafeln. — $AgC_5H_2O_3Cl$. Nadeln. — $Ca(C_5H_3O_3Cl)_2 + 3H_2O$. Prismen. Die gesättigte wäßrige Lösung enthält bei 19,5° 1,12°/ $_0$ wasserfreies Salz. — $Ba(C_5H_2O_3Cl)_2 + H_3O$. Blättchen. Die gesättigte wäßrige Lösung enthält bei 19,5° 5,67°/ $_0$ wasserfreies Salz.

Äthylester $C_7H_7O_3Cl = OC_4H_2Cl\cdot CO_2\cdot C_2H_8$. B. Beim Erhitzen von 5-Chlor-brenzschleimsäure mit absol. Alkohol und konz. Schwefelsäure auf 100° (H., J., Am. 12, 30). — Erstarrt und schmilzt bei 1—2°. Kp_{768} : 216—218° (korr.).

Amid C₂H₄O₂NCl = OC₄H₂Cl·CO·NH₂. B. Aus dem nicht näher beschriebenen 5-Chlor-brenzschleimsäure-chlorid mit festem Ammoniumcarbonat (H., J., Am. 12, 30). — Nadeln (aus Wasser). F: 154—155°. Leicht löslich in heißem Wasser.

3.4-Dichlor-brensschleimsäure C₅H₂O₃Cl₃ = $\frac{\text{CIC} - \text{CCl}}{\text{HC} \cdot \text{O} \cdot \text{C} \cdot \text{CO}_2 \text{H}} \quad B. \quad \text{Beim Behandeln}$ von 1 Mol Brenzschleimsäure-äthylester-tetrachlorid (S. 2C3) mit etwas mehr als 3 Mol alkoh. Kali (Denabo, G. 16, 334; vgl. Hill, Jackson, Am. 12, 38). — Nadeln. F: 167—168° (D.), 168—169° (H., J.). Die gesättigte wäßrige Lösung enthält bei 19,5° 0,27°/₀ Säure (H., J.). Leicht löslich in Alkohol, Ather, heißem Benzol und heißem Wasser, schwer in kaltem Benzol oder Chloroform (H., J.). — Beim Behandeln der wäßr. Suspension von 3.4-Dichlor-brenzschleimsäure mit Brom bei gewöhnlicher Temperatur entsteht α,β-Dichlor-Δαβ-orotonlacton (Bd. XVII, S. 250) (H., Cornelison, Am. 16, 286). Wird beim Kochen mit Bromwasser zu Mucochlorsäure (Bd. III, S. 727) oxydiert (H., J.). Beim Kochen mit verd. Salpetersäure erhält man Mucochlorsäure und Dichlormaleinsäure (H., J.). Beim Behandeln mit überschüssigem 1°/₀igem Natriumamalgam bei 100° entsteht 3-Chlor-brenzschleimsäure (H., J.). — KC₂HO₂Cl₂. Ziemlich schwer lösliche Prismen (H., J.). — AgC₂HO₂Cl₂. Nadeln. Krystallisiert unzersetzt aus heißem Wasser (H., J.). — Ca(C₂HO₂Cl₂)₂ + 4 H₂O. Nadeln. Die gesättigte wäßr. Lösung enthält bei 19,5° 0,46°/₀ wasserfreies Salz (H., J.).

Äthylester $C_7H_6O_3Cl_2 = OC_4HCl_2 \cdot CO_3 \cdot C_2H_5$. B. Beim Erhitzen von 3.4-Dichlorbrenzschleimsäure mit absol. Alkohol und konz. Schwefelsäure auf 100° (H., J., Am. 12, 42). — Nadeln (aus Alkohol). F: 63—64°.

Amid $C_gH_gO_gNCl_g = OC_gHCl_g \cdot CO \cdot NH_g$. B. Beim Behandeln von 3.4-Dichlor-brenz-schleimsäure-äthylester mit konzentriertem wäßrigem Ammoniak (H., J., Am. 12, 42). — Nadeln (aus Wasser). F: 176—177°. Schwer löslich in heißem Wasser.

8.5-Dichlor-brenzschleimsäure $C_5H_2O_3Cl_2 = \frac{HC - CCl}{ClC \cdot O \cdot C \cdot CO_5H}$. B. Entsteht in kleiner

Menge, wenn man Brenzschleimsäure bei 100° mit Chlor sättigt, dann destilliert und die zwischen 196° und 220° übergehende Fraktion mit kaltem Wasser behandelt (Hill, Jackson, Am. 12, 45). Entsteht neben 4.5-Dichlor-brenzschleimsäure, wenn man Brenzschleimsäure-chlorid bei 0° mit Chlor sättigt, das Additionsprodukt unter gewöhnlichem Druck destilliert und mit kaltem Wasser behandelt (H., J., Am. 12, 47). Neben 5-Chlor-brenzschleimsäure und 4.5-Dichlor-brenzschleimsäure durch fraktioniertes Destillieren von Brenzschleimsäure athylester-tetrachlorid (S. 263) unter gewöhnlichem Druck und Verseifen der entstandenen Athylester mit alkoh. Natronlauge (H., J., Am. 12, 46). Durch Behandeln von 5-Chlor-brenzschleimsäure-äthylester mit Chlor in der Kälte, Destillieren des Additionsproduktes unter gewöhnlichem Druck und Verseifen des entstandenen Äthylesters (H., J., Am. 12, 47).

— Prismen (aus Chloroform). Schmilzt bei 155—156° und sublimiert unzersetzt bei höherer Temperatur. 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 19,5° 0,27°/₀ Säure. Leicht löslich in Alkohol und Äther, in heißem Chloroform und Benzol. — Liefert beim Erhitzen mit Brom und Wasser Chlorfumarsäure. Beim Kochen der ammoniakalischen Lösung mit Zinkstaub entsteht 3-Chlor-brenzschleimsäure. — Ca(C₅HO₃Cl₂)₂ + 3 H₂O. Prismen (aus Wasser). Die gesättigte wäßrige Lösung enthält bei 19,5° 0,23°/₀ wasserfreies Salz. — Ba(C₅HO₃Cl₂)₂ + 4 H₂O. Prismen (aus Wasser). Die gesättigte wäßrige Lösung enthält bei 19,5° 0,43°/₀ wasserfreies Salz.

Äthylester $C_7H_6O_3Cl_2 = OC_4HCl_2 \cdot CO_2 \cdot C_2H_5$. B. Durch Einw. von Äthyljodid auf das Silbersalz der 3.5-Dichlor-brenzschleimsäure (H., J., Am. 12, 50). — Öl . F: 2—3°. Kp₁₆: 116—118°.

Amid $C_5H_2O_2NCl_2 = OC_4HCl_2 \cdot CO \cdot NH_2$. B. Beim Erhitzen von 3.5-Dichlor-brenzschleimsäure-äthylester mit konzentriertem wäßrigem Ammoniak auf 100° (H., J., Am. 12, 50). – Nadeln oder Prismen. F: 153–154°. Schwer löslich in kaltem, leichter in heißem Wasser.

4.5-Dichlor-brenzschleimsäure $C_5H_2O_3Cl_2 = \frac{ClC - CH}{ClC \cdot O \cdot C \cdot CO_2H}$. Zur Konstitution

vgl. Hill, Cornelison, Am. 16, 195. — B. s. im Artikel 3.5-Dichlor-brenzschleimsäure. — Nadeln (aus Wasser). F: 197—198° (Hill, Jackson, Am. 12, 113). Die gesättigte wäßrige Lösung enthält bei 19,5° 0,13°/ $_{0}$ Säure (H., J., Am. 12, 113). Leicht löslich in Alkohol und Ather (H., J., Am. 12, 113). — Liefert beim Kochen mit Brom und Wasser Chlorfumarsäure (H., J., Am. 12, 115). Gibt mit kalter rauchender Schwefelsäure 4.5-Dichlor-brenzschleimsäure-sulfonsäure-(3) (Syst. No. 2634) (H., J., Am. 12, 116). Beim Erhitzen mit konz. Salzsäure auf dem Wasserbad entsteht α -Chlor- $\Delta^{\alpha,\beta}$ -crotonlacton (Bd. XVII, S. 250) (H., J., Am. 12, 118). — Ca($C_5HO_3Cl_2$) + $4H_2O$. Prismen (aus Wasser). Die gesättigte wäßrige Lösung enthält bei 19,5° 6,85°/ $_{0}$ wasserfreies Salz (H., J., Am. 12, 114). — Ba($C_5HO_3Cl_2$) + $4H_2O$. Prismen (aus Wasser). Die gesättigte wäßrige Lösung enthält bei 19,5° 1,58°/ $_{0}$ wasserfreies Salz (H., J., Am. 12, 114).

Äthylester $C_7H_6O_3Cl_4 = OC_6HCl_2 \cdot CO_3 \cdot C_2H_5$. Prismen. F: 72—73°; Kp_{16} : 122,5° (Hill, Jackson, Am. 12, 115). Leicht löslich in heißem, schwer in kaltem Alkohol.

3.4.5-Trichlor-brenzschleimsäure $C_5HO_3Cl_3 = \frac{ClC - CCl}{ClC \cdot O \cdot C\cdot CO_2H}$. B. Man leitet in Brenzschleimsäure-äthylester bei 145° Chlor bis zur Aufnahme von 1 At.-Gew. ein, läßt auf 120° erkalten und setzt das Einleiten von Chlor bis zur Sättigung fort; das entstandene 5-Chlor-brenzschleimsäure-äthylester-tetrachlorid versetzt man mit alkoh. Natronlauge und zerlegt das ausgefällte Natriumsalz durch verd. Salzsäure (Hill, Jackson, Am. 12, 119). — Nadeln (aus Wasser). F: 172—173° (H., J.). Die gesättigte wäßrige Lösung enthält bei 19,5° 0,13°/ $_0$ Säure (H., J.). Leicht löslich in Alkohol und Äther, schwer in kaltem Benzol (H., J.). — Bei der Einw. von Bromwasser erhält man 3.4.5-Trichlor-2-brom-furan (Bd. XVII, S. 28) und etwas Dichlormaleinsäure (H., J.). Salpetersäure wirkt selbst in der Hitze nur langsam ein und erzeugt Dichlormaleinsäure (H., J.). Beim Kochen mit 50°/ $_0$ iger Schwefelsäure entsteht $\alpha.\beta$ -Dichlor- $\Delta^{\alpha.\beta}$ -crotonlacton (Bd. XVII, S. 250) (H., Cornelison, Am. 16, 286). — $KC_5O_3Cl_3$. Nadeln (H., J.). — AgC $_5O_3Cl_3$. Nadeln (aus heißem Wasser) (H., J.). — Ca($C_5O_3Cl_3$) +4 H $_5O$. Blättohen (aus heißem Wasser). Die gesättigte wäßrige Lösung enthält bei 19,5° 0,64°/ $_0$ wasserfreies Salz (H., J.). — Ba($C_5O_3Cl_3$) +4 H $_5O$. Nadeln (aus heißem Wasser). Die gesättigte wäßrige Lösung enthält bei 19,5° 0,27°/ $_0$ wasserfreies Salz (H., J.).

Äthylester $C_7H_5O_3Cl_2 = OC_4Cl_2 \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von 3.4.5-Trichlorbrenzschleimsäure mit absol. Alkohol und konz. Schwefelsäure auf 100° (Hill, Jackson, Am. 12, 123). — Prismen (aus Alkohol). F: 62—63°. Leicht löslich in heißem, weniger in kaltem Alkohol.

Amid $C_5H_2O_2NCl_3 = OC_4Cl_3 \cdot CO \cdot NH_2$. B. Aus dem (nicht näher beschriebenen) 3.4.5-Trichlor-brenzschleimsäure-chlorid und festem Ammoniumcarbonat (H., J., Am. 12, 123). — Nadeln. F: 160—161°. Schwer löslich in heißem Wasser.

3-Brom-brensschleimsäure $C_5H_3O_3Br = \frac{HC - CBr}{HC \cdot O \cdot C \cdot CO_2H}$. B. Beim Eintragen von 1 Tl. Zinkstaub in eine kalte Lösung von 2 Th. 3.4- oder 3.5-Dibrom-brenzschleimsäure in 4 Tln. konz. Ammoniak und 14 Tln. Wasser (Hill, Sanger, B. 17, 1762; A. 232, 58). Man reinigt die Säure über den Äthylester (Canzoneri, Oliveri, G. 17, 43). — Verfilzte Nadeln (aus Wasser). F: 128—129° (H., S.). Unzersetzt flüchtig bei höherer Temperatur (H., S.). 100 Tle. der bei 20° gesättigten wäßrigen Lösung enthalten 1,25 Tle. Säure (H., S.). Leicht löslich in Alkohol und Äther, etwas schwerer in Chloroform und-Benzol, schwer in Schwefelschlenstoff und Ligroin (H., S.). — Durch verd. Salpetersäure wird Bromfumarsäure gebildet (H., S.). Trocknes Brom erzeugt 3.5-Dibrom-brenzschleimsäure (H., S.). Beim Erwärmen mit überschüssigem Brom und Wasser entsteht Mucobromsäure (Bd. III, S. 728) (H., S.). — Salze: H., S. — NaC₅H₂O₃Br. Kugelförmige Aggregate. Leicht löslich in Wasser. — KC₅H₂O₃Br. Täfelchen. — AgC₅H₂O₃Br. Krystallinischer Niederschlag. — Ca(C₅H₂O₃Br)₂ + 3H₂O. Nadeln. 100 Tle. der wäßr. Lösung enthalten bei 20° 1,73 Tle. wasserfreies Salz. — Ba(C₅H₂O₃Br)₂ + H₂O. Unregelmäßige Blättohen. 100 Tle. der wäßr. Lösung enthalten bei 20° 2,09 Tle. wasserfreies Salz.

Äthylester $C_7H_7O_3Br = OC_4H_2Br \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von 5 Tln. 3-Brombrenzschleimsäure mit 5 Tln. absol. Alkohol und 3 Tln. konz. Schwefelsäure auf dem Wasserbad (Hill, Sanger, A. 232, 61). Durch Einw. von Äthyljodid auf das Silbersalz der 3-Brombrenzschleimsäure (H., S.). — Prismen. F: 28—29°. Kp_{788} : 235—236° (korr.).

Amid C₅H₄O₂NBr = OC₄H₂Br·CO·NH₂. B. Aus 3-Brom-brenzschleimsäure-äthylester und konzentriertem wäßrigem Ammoniak bei| gewöhnlicher Temperatur (H., S., A. 232, 62). — Nadeln (aus Wasser). F: 155—156°. Leicht löslich in Alkohol, Äther und siedendem Chloroform, schwer in Schwefelkohlenstoff und Benzol, fast unlöslich in Ligroin.

HC ---- CH 5-Brom-brenzschleimsäure $C_5H_3O_3Br =$ B. Neben 3.4-Dibrom-BrC·O·C·CO₂H brenzschleimsäure durch Behandeln von Brenzschleimsäure-äthylester mit der äquimolekularen Menge Brom in essigsaurer Lösung und Eintragen des erhaltenen Produkts in alkoh. Kalilauge (R. Schiff, Tassinari, B. 11, 842, 1840; G. 8, 297; Canzoneri, Oliveri, G. 14, 174). -Darst. Man läßt 36 g Bromdampf auf 20 g Brenzschleimsäure bei 100° einwirken und krystallisiert das Reaktionsprodukt aus heißem Wasser um; beigemengte 3.5-Dibrom-brenzschleimsäure entfernt man durch Lösen in Ammoniak und Fällen mit Bariumchlorid (Hill, Sanger. A. 282, 46). — Blättchen (aus Wasser). F: 183—184° (H., S.), 185—186° (C., O.). Die bei 16,5° gesättigte wäßrige Lösung enthält 0,22°/₀ Säure (H., S.). Leicht löslich in Alkohol und Äther, schwer in Chloroform und Benzol, unlöslich in Ligroin (H., S.). — Gibt mit kalter konzentrierter Salpetersäure Maleinsäure, beim Erhitzen mit verd. Salpetersäure hauptsächlich Fumarsäure und wenig Maleinsäure (H., S.). Liefert mit trocknem Bromdampf 5-Brombrenzschleimsäure-tetrabromid (S. 263) (H., S.). Leitet man in eine Suspension von 1 Tl. Säure in 30 Tln. Wasser Bromdampf ein, so entsteht fast nur Fumarsäure (H., B. 16, 1131; H., S.). Setzt man flüssiges Brom zur wäßr. Suspension der Säure, so erhält man Fumarsäure, die beiden α.α'-Dibrom-bernsteinsäuren und die hochschmelzende Form des 2.5-Dibrom-furan tetrabromids (Bd. XVII, S. 10) (H.; H., S.). — Salze: H., S. — NaC₅H₂O₃Br. Nadeln. — KC₅H₂O₃Br. Prismen. Leicht löslich in Wasser. — AgC₅H₂O₃Br. Täfelchen (aus siedendem Wasser). Schwer löslich in siedendem Wasser. — Ca(C₅H₂O₃Br)₃ + 3H₂O. Prismen. 100 Tle. der bei 20° gesättigten wäßrigen Lösung enthalten 1,06 Tle. wasserfreies Salz. — $Ba(C_5H_4O_3Br)_2 + 4H_4O$. Blättchen. 100 Tle. der bei 18° gesättigten wäßr. Lösung enthalten 3,37 Tle. wasserfreies Salz.

Äthylester C₇H₂O₈Br = OC₄H₂Br·CO₂·C₂H₅. B. Man erwärmt 4 Tle. 5-Brom-brenzschleimsäure mit 4 Tln. absol. Alkohol und 3 Tln. konz. Schwefelsäure auf dem Wasserbad (Hill, Sanger, A. 232, 51). Durch Einw. von Äthyljodid auf das Silbersalz der 5-Brom-brenzschleimsäure (H., S.). — Prismen. F: 17°. Kp₇₆₇: 235° (korr.). D²⁰: 1,528.

Amid C₅H₄O₂NBr = OC₄H₂Br·CO·NH₂. B. Beim Erhitzen von 5-brom-brenzschleimsaurem Ammonium im Ammoniakstrom (Canzoneri, Oliveri, G. 15, 114). Beim Erhitzen von 5-Brom-brenzschleimsäure-äthylester mit konzentriertem wäßrigem Ammoniak im Druckrohr auf 100° (Hill, Sanger, A. 232, 52). — Nædeln (aus siedendem Wasser). F: 144° bis 145° (H., S.), 146° (C., O.). Schwer löslich in kaltem Wasser, Schwefelkohlenstoff und Benzol, leicht in Alkohol, Äther, Chloroform und in heißem Benzol (H., S.).

3.4-Dichlor-5-brom-brenzschleimsäure $C_5HO_5Cl_2Br = \frac{ClC - CCl}{BrC \cdot O \cdot C \cdot CO_2H}$. B. Aus 3.4-Dichlor-brenzschleimsäure und dampfförmigem Brom in der Kälte (Hill, Jackson, Am. 12, 125). — Prismen (aus Wasser). F: 185—186°. Leicht löslich in Alkohol und Äther, schwer in kaltem Benzol.

3.4-Dibrom-brenzschleimsäure C₅H₂O₃Br₂ = $\frac{\text{BrC} - \text{CBr}}{\text{HC} \cdot \text{O} \cdot \text{C} \cdot \text{CO}_2\text{H}}$ 5-Brom-brenzschleimsäure, 3.5-Dibrom-brenzschleimsäure und sehr geringen Mengen anderer Produkte, wenn man Brenzschleimsäure-tetrabromid (S. 263) in einen großen Überschuß sehr konzentrierter alkoholischer Natronlauge unter Abkühlen einträgt (Hill, Sanger, B. 17, 1759; A. 232, 67, 82; vgl. Tönnies, B. 11, 1088). Eine weitere Bildung s. im Artikel 5-Brom-brenzschleimsäure. — Schuppen (aus Wasser). F: 191—192° (Canzoneri, Oliveri, G. 14, 177; H., S.). 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 20° 0,22 Tle. Säure (H., S.). Leicht löslich in Alkohol und Äther, schwer in Schwefelkohlenstoff und Ligroin (H., S.). Löst sich in Benzol leichter als 5-Brom-brenzschleimsäure (C., O., G. 14, 177). — Gibt beim Kochen mit verd. Salpetersäure Mucobromsäure (Bd. III, S. 728) und Dibrommaleinsäure (H., S.). Wird durch Zinkstaub und Ammonisk zu 3-Brom-brenzschleimsäure reduziert (H., S.). Trocknes dampfförmiges Brom erzeugt schon in der Kälte 3.4.5-Tribrom-brenzschleimsäure (H., S.). Versetzt man eine Suspension von 5 g Säure in 100 cm³ Wasser rasch mit 1,2 cm³ flüssigem Brom bei 16° und schüttelt die Mischung gut durch, so erhält man α.β-Dibrom-Δαβ-crotonlacton (Bd. XVII, S. 251) und Mucobromsäurebromid (Bd. III, S. 730) (H., Coenelison, Am. 16, 204). Führt man aber das Brom langsam mittels eines Luftstroms zu der in Wasser fein verteilten Säure zu, so entsteht neben geringen Mengen α.β-Dibrom-Δαβ-crotonlacton Tetrabromfuran (Bd. XVII, S. 28) (H., S.). Beim Destillieren mit trocknem Calciumhydroxyd entsteht 3.4-Dibrom-furan (Bd. XVII, S. 28) (C., O., G. 15, 115). — Salze: H., S. — NaC₅HO₂Br₅ + 2 H₂O. Nadeln. Nicht sehr leicht löslich in Wasser. — AgC₅HO₃Br₉, +5 H₂O. Nadeln. 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 20° 1,16 Tle. wasserfreies Salz. — Ba(C₅HO₃Br₉)₂ + 5 H₂O. Nadeln. 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 20° 0,35 Tle. wasserfreies Salz.

Äthylester C₇H₆O₂Br₂ = OC₄HBr₂·CO₂·C₂H₅. B. Beim Erhitzen von 5 Tln. 3.4-Dibrom-brenzschleimsäure mit 5 Tln. absol. Alkohol und 3 Tln. konz. Schwefelsäure auf dem Wasserbad (HILL, Sanger, A. 232, 85). Bei der Einw. von Äthyljodid auf das Silbersalz der 3.4-Dibrom-brenzschleimsäure (H., S.). — Nadeln (aus Alkohol). F: 67—68°. Leicht löslich in Äther, Benzol, Chloroform, Schwefelkohlenstoff und Ligroin, ziemlich schwer in kaltem Alkohol.

Amid C₅H₃O₂NBr₂ = OC₄HBr₃·CO·NH₃. B. Beim Erhitzen von 3.4-Dibrom-brenzschleimsäure-äthylester mit konzentriertem wäßrigem Ammoniak auf 100° (H., S., A. 232, 86). — Nadeln (aus verd. Alkohol). F: 195—196°. Schwer löslich in siedendem Wasser, leicht in Alkohol, ziemlich schwer in Äther, Chloroform und Benzol, spurenweise löslich in Schwefelkohlenstoff und Ligroin.

3.5-Dibrom-brenzschleimsäure C₃H₂O₃Br₂ = HC—CBr

5-Brom-brenzschleimsäure, 3.4-Dibrom-brenzschleimsäure und sehr geringen Mengen anderer Produkte, wenn man Brenzschleimsäure-tetrabromid (S. 263) in einem großen Überschuß sehr konzentrierter alkoholischer Natronlauge unter Abkühlen einträgt (HILL, Sanger, B. 17, 1759; A. 232, 67; vgl. Tönnies, B. 11, 1088). — Darst. Man vermischt 1 Mol Brenzschleimsäure mit 3 Mol Brom, erwärmt, bis aller Bromwasserstoff entfernt ist, wäscht das Reaktionsprodukt, das im wesentlichen aus 3.5-Dibrom-brenzschleimsäure-bromid besteht, mit kaltem Wasser und kocht es dann mit Wasser; man löst die entstandene 3.5-Dibrom-brenzschleimsäure in verd. Ammoniak und fällt sie als Bariumsalz aus (H., S., B. 17, 1760; A. 232, 73). — Prismen (aus Wasser). F: 167—168° (H., S.). 100 Tle. der gesättigten wäßr. Lösung enthalten bei 20° 0,28 Tle. Säure (H., S.). Sehr schwer löslich in Ligroin und Schwefelkohlenstoff, leicht in Alkohol, Äther und siedendem Chloroform, ziemlich leicht in Benzol (H., S.). — Wird beim Erwärmen mit verd. Salpetersäure zu Bromfumarsäure oxydiert (H., S.). Liefert mit etwas mehr als 2 Mol Brom in Wasser (H., S.) oder in verd. Sodalösung (H., Cornelison, Am. 16, 278) Brommaleinsäure-dibromid. Gibt bei der Einw. von rauchender Schwefelsäure Brommaleinsäure (H., Palmer, Am. 10, 422). Liefert mit Zinkstaub und Ammoniak 3-Brom-brenzschleimsäure (H., S.). Beim Kochen mit konz. Bromwasserstoffsäure entsteht β-Brom-Δ^{α,β}-crotonlacton (Bd. XVII, S. 251) (H., C., Am. 16, 211). — Salze: H., S. — NaC₅HO₅Br₅ + 2H₂O. Nadeln. Nicht sehr leicht löslich in kaltem Wasser.

— $KC_5HO_2Br_2$. Nadeln. In kaltem Wasser nicht sehr leicht löslich. — $AgC_5HO_3Br_2$. Nadeln. — $Ca(C_5HO_3Br_2)_2 + 3H_2O$. Prismen. 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 17°0,30 Tle. wasserfreies Salz. — $Ba(C_5HO_3Br_2)_2 + 4H_2O$. Nadeln. 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 16°0,10 Tle. wasserfreies Salz.

Athylester $C_7H_8O_3Br_8 = OC_4HBr_2 \cdot CO_3 \cdot C_2H_5$. B. Beim Erwärmen von 5 Tln. 3.5-Dibrom-brenzschleimsäure mit 5 Tln. absol. Alkohol und 3 Tln. konz. Schwefelsäure (HILL, Sanger, A. 232, 77). Bei der Einw. von Athyljodid auf das Silbersalz der 3.5-Dibrom-brenzschleimsäure (H., S.). — Prismen (aus Alkohol). F: 57—58°. Kp₇₆₅: 271—272° (korr.) (Zers.). Schwer löslich in kaltem Alkohol und Schwefelkohlenstoff, leicht in Ather, Chloroform, Benzol und Ligroin.

Bromid C₅HO₂Br₃ = OC₄HBr₃·COBr. B. Man vermischt 1 Mol Brenzschleimsäure mit 3 Mol Brom, erhitzt das Gemisch bis zum Aufhören der Bromwasserstoff-Entwicklung auf dem Wasserbad und unterwirft das Reaktionsprodukt der fraktionierten Destillation unter vermindertem Druck (Hill, Sanger, A. 232, 73, 78). — Prismen (aus Ligroin). F: 45° bis 46°. Kp₃₄: 153—155°. Leicht löslich in Alkohol, Äther, Chloroform oder Benzol, etwas schwerer in Ligroin. — Wird von kaltem Wasser nur langsam in Bromwasserstoff und 3.5-Dibrom-brenzschleimsäure zerlegt.

Amid C₅H₃O₂NBr₃ = OC₄HBr₃·CO·NH₂. B. Durch Einw. von wäßr. Ammoniak auf 3.5-Dibrom-brenzschleimsäure-bromid (Hill., Sanger, A. 232, 79). — Nadeln (aus Wasser). F: 175—176° (H., San.). Leicht löslich in Alkohol, ziemlich leicht in Äther, Chloroform oder siedendem Benzol, schwer in Wasser, fast unlöslich in Schwefelkohlenstoff und Ligroin (H., San.). — Beim Behandeln mit Brom und Kalilauge entsteht 3.5-Dibrom-brenzschleimsäure-nitril (Saunders, Am. 15, 131).

8.5 - Dibrom - brenzschleimsäure - nitril, 3.5 - Dibrom - 2 - cyan - furan C₅HONBr₂ = HC—CBr

BrG·O·C·CN

B. Aus 3.5-Dibrom-brenzschleimsäure-amid durch Behandeln mit Brom und Alkalilauge (SAUNDERS, Am. 15, 131). Beim Erhitzen von 3.5-Dibrom-brenzschleimsäure-amid mit Phosphorpentachlorid auf ca. 200° (S.). — Blättchen (aus Alkohol). F: 88°. Kp: 225°. Sublimierbar. Flüchtig mit Wasserdampf. Kaum löslich in Wasser, leicht in Äther und heißem Alkohol. — Liefert bei mehrtägigem Aufbewahren mit konz. Salzsäure 3.5-Dibrom-brenzschleimsäure-amid. Beim Erkitzen mit konz. Salzsäure im Einschlußrohr auf 100° entsteht 3.5-Dibrom-brenzschleimsäure.

5-Chlor-3.4-dibrom-brenzschleimsäure $C_5HO_3ClBr_2=\frac{BrC-CBr}{ClC\cdotO\cdot C\cdot CO_2H}$. B. Durch Behandeln von 3.4-Dibrom-brenzschleimsäure äthylester (S. 285) mit Chlor und Zersetzen des Reaktionsprodukts mit alkoh. Natronlauge (Hill, Jackson, Am. 12, 126). — F: 193—194°. Leicht löslich in Alkohol und Äther, schwer in kaltem Benzol.

3.4.5-Tribrom-brenzschleimsäure $C_5HO_3Br_3 = \frac{BrC--CBr}{BrC\cdot O\cdot C\cdot CO_3H}$. B. Beim Behandeln von 5-Brom-brenzschleimsäure-tetrabromid (S. 263) mit alkoh. Natronlauge, neben 2.3.4-Tribrom-furan (Bd. XVII, S. 28) (Hill, Sanger, B. 17, 1763; A. 232, 90). Entsteht auch bei der Einw. von trocknem dampfförmigem Brom auf 3.4-Dibrom-brenzschleimsäure (H., S.). — Nadeln (aus heißem Wasser). F: 218—219° (H., S.). 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 19° 0,07 Tle. Säure (H., S.). Leicht löslich in Alkohol und Ather, ziemlich schwer in Benzol und Chloroform, fast unlöslich in Schwefelkohlenstoff und Ligroin (H., S.). — Beim Kochen mit mäßig verdünnter Salpetersäure (H., S.) oder beim Behandeln mit rauchender Schwefelsäure bei gewöhnlicher Temperatur (H., Palmer Am. 10, 423) entsteht Dibrommaleinsäure. Liefert beim Erhitzen mit verd. Schwefelsäure, (D: 1,43) auf 130° oder beim Kochen mit konz. Bromwasserstoffsäure $\alpha.\beta$ -Dibrom- $\Delta^{\alpha.\beta}$ -crotonlacton (Bd. XVII, S. 251) (Hull, Cornelison, Am. 16, 200). Beim Behandeln mit Brom und Wasser entsteht Tetrabromfuran (Bd. XVII, S. 28) neben einer geringen Menge Dibrommaleinsäure (H., S.). — Salze: H., S. — NaC₅O₃Br₃ + H₂O. Nadeln. Nicht sehr leicht löslich in kaltem Wasser. — KC_8O_3 Br₃ + H₂O. Nadeln. Ziemlich schwer löslich in kaltem Wasser. — AgC_8O_3 Br₃. Krystallinischer Niederschlag. — $Ca(C_5O_3$ Br₃)₂ + 4 H₂O. Nadeln. 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 20° 0,56 Tle. wasserfreies Salz. — Ba(C₅O₃Br₃)₂ + 3 H₂O. Nadeln. 100 Tle. der gesättigten wäßrigen Lösung enthalten bei 20° 0,20 Tle. wasserfreies Salz.

Äthylester $C_7H_5O_3Br_5=OC_4Br_5\cdot CO_2\cdot C_3H_5$. B. Beim Erhitzen von 1 Tl. 3.4.5-Tribrom-brenzschleimsäure mit 2 Tln. absol. Alkohol und 1 Tl. konz. Schwefelsäure (Hill, Sanger, A. 232, 95). Durch Einw. von Äthyljodid auf das Silbersalz der 3.4.5-Tribrom-brenzschleimsäure (H., S.). — Prismen (aus Alkohol). F: 104° . Leicht löslich in Äther, Chloroform, Schwefelkohlenstoff oder Benzol, schwerer in Ligroin und in kochendem Alkohol.

Amid C₅H₂O₂NBr₃ = OC₄Br₃·CO·NH₂. B. Beim Erhitzen von 3.4.5-Tribrom-brenzschleimsäure-äthylester mit konzentriertem wäßrigem Ammoniak im Einschlußrohr auf 100° (H., S., A. 232, 95). — Nadeln (aus Alkohol). F: 222—223°. Fast unlöslich in Schwefelkohlenstoff und Ligroin, ziemlich schwer löslich in Äther, Chloroform und Benzol, leicht in heißem Alkohol.

5-Nitro-brensschleimsäure¹) C₅H₂O₈N = HC—CH
O₂N·C·O·C·CO₂H

von Dehydroschleimsäure (S. 328) mit Salpeterschwefelsäure auf dem Wasserbad (KLINK-HARDT, J. pr. [2] 25, 51). Bei der Oxydation von 5-Nitro-2-[β-nitro-vinyl]-furan (Bd. XVII, S. 47) mit Chromsäuregemisch (PRIERS, B. 18, 1363). Bei gelindem Erwärmen von Brenzschleimsäure-sulfonsäure-(5) (Syst. No. 2634) mit konz. Salpetersäure (HILL, PALMER, Am. 10, 380), neben 5-Nitro-furan-sulfonsäure-(2) (Syst. No. 2629) (HILL, WHITE, Am. 27, 196) und 2.5-Dinitro-furan (Bd. XVII, S. 29) (H., PA.; H., W.). Der Äthylester entsteht durch Zusatz einer Lösung von Brenzschleimsäure-äthylester in Essigsäureanhydrid zu einem Gemisch von Essigsäureanhydrid und hoch konzentrierter Salpetersäure (D: 1,51) bei —5° und Behandeln des sich ausscheidenden öligen Reaktionsprodukts mit Pyridin; man verseift den Ester durch Erhitzen mit Wasser im Druckrohr auf 180°, durch Behandlung mit alkoh. Natriumäthylat-Lösung oder durch Kochen mit verd. Schwefelsäure (Marquis, C. r. 135, 506; 137, 520; Bl. [3] 31, 1278; A. ch. [8] 4, 256). — Hellgelbe Tafeln (aus Wasser), Prisnen (aus Salpetersäure). F: 182—183° (H., Pa.), 183° (KL.), 184° (Ps.), 185° (korr.) (M.). Sublimiert fast unzersetzt (Pr.). Leicht löslich in Alkohol und Äther (KL.), löslich in siedendem Wasser, sehr wenig löslich in Benzol, unlöslich in Chloroform (M.). — Liefert bei der Reduktion mit Zinn und Salzsäure Bernsteinsäure, Kohlendioxyd und Ammoniak (KL.). Beim Erwärmen mit Salpeterschwefelsäure auf 60° entsteht 2.5-Dinitro-furan (H., W.). Wird durch Barytwasser unter Bildung von Bariumnitrit und einem dunkelbraunen, flockigen Niederschlag zersetzt (H., W.). Liefert mit Anilin in äther. La leing das Anilinsalz (s. u.) (H., W.). Bei 48-stdg. Aufbewahren von 1 Mol 5-Nitro-brenzschleimsäure in Natriumacetat-Lösung mit 2 Mol Anilinhydrochlorid entstehen unter Kohlendioxyd-Entwicklung die Verbindungen (Pr.). — Ca(C₅H₁O₅N₁), Nadeln. Leicht löslich in Akatem Wasser (KL.). — Be(C₅H₁O₅N₁, Hallgelbe Blättchen.

Verbindung C₁₈H₁₈O N₂. B. Neben der Verbindung C₁₇H₁₃O₃N₃ (s. u.) bei 48-stdg. Stehenlassen einer Lösung von 1 Mol 5-Nitro-brenzschleimsäure in Natriumacetat-Lösung mit 2 Mol Anilinhydrochlorid; wird von der Verbindung C₁₇H₁₈O₃N₃ durch Chloroform, in dem nur letztere löslich ist, getrennt (HILL, WHITE, Am. 27, 201). — Dunkelrote Krystalle (aus Eisessig), die beim Zerreiben ein gelbes Pulver geben. F: 232° (bei schnellem Erhitzen). Unlöslich in den meisten Lösungsmitteln. Löslich in alkoh. Kalilauge mit carminroter, in konz. Schwefelsäure mit orangegelber Farbe. Die Lösung in konz. Schwefelsäure wird durch Zusatz von Eisenchlorid oder Kaliumdichromat tief grünlichblau. — Bei der Reduktion mit Zink und Essigsäure entstehen Ammoniak, Anilin und Succinanil (Syst. No. 3201).

Verbindung $C_{17}H_{13}O_3N_3$. B. s. bei der vorangehenden Verbindung $C_{16}H_{13}ON_3$. — Carminrote Nadeln (aus Eisessig). Schmilzt, langsam erhitzt, bei 218° ; doch tritt schon früher Zersetzung ein; schwer löslich in Alkohol und Ather, leicht in Chloroform, Benzol und heißem Eisessig (H., W., Am. 27, 203).

Verbindung C₁₈H₁₇O N₃. B. Neben der Verbindung C₁₉H₁₇O₃N₃ (s. u.) bei 48-stdg. Stehenlassen einer Lösung von 1 Mol 5-Nitro-brenzschleimsäure in Natriumacetatlösung mit 2 Mol salzsaurem p-Toluidin (H., W., Am. 27, 204). — Prismen (aus Eisessig). F: 250° (bei schnellem Erhitzen). — Bei Reduktion mit Zink und Essigsäure entstehen Ammoniak, p-Toluidin und N-p-Tolyl-succinimid (Syst. No. 3201).

Verbindung $\hat{C}_{19}H_{17}O_3N_3$. B. s. bei der vorangehenden Verbindung $C_{19}H_{17}ON_3$. — Rote Nadeln (aus Eisessig). Zersetzt sich beim Erhitzen (H., W., Am. 27, 205).

5-Nitro-brensschleimsäure-methylester $C_6H_5O_5N=\frac{H_0-UH}{O_2N\cdot \ddot{U}\cdot O\cdot \ddot{U}\cdot CO_3\cdot CH_3}$. B. Durch Nitrieren von Brenzschleimsäure-methylester mit Salpetersäure (D:1,51) in Essigsäure-anhydrid (Marquis, C. r. 137, 520; Bl. [3] 31, 1280; A. ch. [8] 4, 260). Durch 5—6-stdg.

¹⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von RINKES, R. 49 1169; 50, 590; FREURE, JOHNSON, Am. Soc. 58, 1142.

Kochen von 5-Nitro-brenzschleimsäure mit 1% jeger methylalkoholischer Salzsäure (M.). — Gelbliche Blättchen. F: 78,5%. Leichter löslich in Alkohol als der Äthylester.

- 6-Nitro-brenzschleimsäure-äthylester $C_7H_7O_5N=\frac{HC-UR}{O_2N\cdot \dot{\mathbb{C}}\cdot O_3\cdot C_2H_5}$. B. s. im Artikel 5-Nitro-brenzschleimsäure. Entsteht auch beim Einleiten von Chlorwasserstoff in eine absolut-alkoholische Lösung von 5-Nitro-brenzschleimsäure unter Erwärmen am Rückflußkühler (KLINKHARDT, J. pr. [2] 25, 52). Blättchen. F: 101° (KL.). Löslich in siedendem, sehr wenig löslich in kaltem Alkohol, schwer in Äther und Benzol (Marquis, Bl. [3] 31, 1278; A. ch. [8] 4, 257). Liefert bei der Oxydation mit Natriumperoxyd Natriumnitrit und Fumarsäure (M., C. r. 137, 520; Bl. [3] 31, 1281; A. ch. [8] 4, 263). Geht durch Reduktion mit Aluminiumamalgam in 5-Amino-brenzschleimsäure-äthylester (Syst. No. 2619) über (M., C. r. 136, 1454; Bl. [3] 31, 1284; A. ch. [8] 4, 265).
- 5-Nitro-brenzschleimsäure-chlorid $C_5H_2O_4NCl = \frac{HC-CH}{O_2N \cdot C \cdot O \cdot C \cdot COCl}$. B. Beim Erwärmen von 5-Nitro-brenzschleimsäure mit Phosphorpentachlorid auf dem Wasserbad (Marquis, C. r. 137, 520; Bl. [3] 31, 1280; A. ch. [8] 4, 261). Fettige Blättchen (aus Chloroform). F:38°. Leicht löslich in Chloroform und Äther, unlöslich in Petroläther. Wird durch kaltes Wasser nur langsam zersetzt.
- 5-Nitro-brenzschleimsäure-amid $C_5H_4O_4N_2=\frac{HC-CH}{O_3N\cdot C\cdot O\cdot C\cdot CO\cdot NH_2}$ B. Durch Einleiten von trocknem Ammoniak in die äther. Lösung von 5-Nitro-brenzschleimsäure-chlorid (M., C. r. 137, 520; Bl. [3] 31, 1280; A. ch. [8] 4, 261). Krystalle (aus Alkohol). F: 161°. Ziemlich löslich in Alkohol, schwer in Wasser, sehr wenig löslich in Äther.
- 5-Nitro-brenzschleimsäure-anilid $C_{11}H_8O_4N_2=\frac{HC-CH}{O_2N\cdot C\cdot O\cdot NH\cdot C_6H_5}$. B. Aus 5-Nitro-brenzschleimsäure-chlorid und Anilin in Gegenwart von wasserfreiem Äther (M., C. r. 137, 520; Bl. [3] 31, 1281; A. ch. [8] 4, 262). Citronengelbe Nadeln (aus Alkohol). F: 180°. Schwer löslich in kaltem Alkohol, fast unlöslich in Äther, unlöslich in Wasser.
- 5 Nitro brenzschleimsäure p toluidid $C_{12}H_{10}O_4N_2 = HC$ —CH $O_2N \cdot C \cdot O \cdot C \cdot CO \cdot NH \cdot C_4H_4 \cdot CH_3$ in wasserfreiem Ather (M., C. r. 137, 521; Bl. [3] 31, 1281; A. ch. [8] 4, 262). Gelbe Prismen.

 F: 162°. Etwas löslicher in Alkohol als das Anilid.
- 3-Chlor-5-nitro-brenzschleimsäure $C_5H_2O_5NCl = \frac{HC-CCl}{O_2N\cdot \overset{\circ}{C}\cdot O\cdot \overset{\circ}{C}\cdot CO_2H}$. B. Beim Erwärmen von 3-Chlor-brenzschleimsäure-sulfonsäure-(5) (Syst. No. 2634) mit rauchender Salpetersäure auf dem Wasserbad (Hill, Hendrikson, Am. 15, 148). Nadeln oder Prismen mit 1 H_5O (aus Wasser). Wird bei 75° wasserfrei und schmilzt dann bei 140—141°. Schwer löslich in kaltem Wasser.
- 8.4-Dichlor-5-nitro-brenzschleimsäure $C_5HO_5NCl_2 = \frac{CIC CUI}{O_2N \cdot C \cdot O \cdot C \cdot CO_2H}$. B. Man behandelt 3.4-Dichlor-brenzschleimsäure-sulfonsäure-(5) (Syst. No. 2634) mit einem Gemisch von konz. Schwefelsäure und rauchender Salpetersäure (Hill, Jackson, Am. 12, 126). Prismen (aus Wasser). F: 189—190°. Leicht löslich in Alkohol, Äther und in heißem Benzol.
- 3-Brom-5-nitro-brenzschleimsäure $C_5H_1O_5NBr = \frac{HC CBr}{O_2N \cdot C \cdot O \cdot C \cdot CO_2H}$. B. Beim Eintragen von 1 Tl. 3-Brom-brenzschleimsäure-sulfonsäure-(5) (Syst. No. 2634) in 3 Tle. rauchende Salpetersäure (Hill, Palmer, Am. 10, 385). Nadeln mit 1 H₂O (aus Wasser). Wird bei 100° wasserfrei und schmilzt dann bei 159—160°. Leicht löslich in Alkohol, Äther und in heißem Benzol, reichlich in heißem Wasser.
- 3.4-Dibrom-5-nitro-brenzschleimsäure $C_5HO_5NBr_3=\frac{BrC-CBr}{O_2N\cdot C\cdot O\cdot C\cdot CO_2H}$. B. Beim Eintragen von 3.4-Dibrom-brenzschleimsäure-sulfonsäure-(5) in rauchende Salpetersäure, neben 3.4-Dibrom-2.5-dinitro-furan (Bd. XVII, S. 29) (Hill, Palmer, Am. 10, 390). Gelbe Nadeln (aus Wasser). F: 204—205°. Schwer löslich in kaltem Wasser, reichlich in Alkohol, Äther und Benzol.

Derivat der Furan-monothiocarbonsäure-(2).

Furan-thiocarbonsäure-(2)-amid, Furan- α -thiocarbonsäure-amid, Thiobrens-schleimsäure-amid $C_5H_5ONS = {HC-CH \atop HC-CH \atop HC-CS-NH_2} {bezw. \atop HC-CCS-NH_2} {HC-CH \atop HC-CCS-NH_2} B. Man leitet trocknen Schwefelwasserstoff in eine Lösung von 1 Tl. Brenzschleimsäure-nitril in einem Gemisch von 1 Tl. Alkohol + 2 Tln. Äther ein (Douglas, B. 25, 1314). — Krystalle. F: 127°. Leicht löslich in heißem Wasser, Alkohol und Äther.$

Thiophen-carbonsäure-(2) und ihre Derivate.

Thiophen - carbonsäure - (2), Thiophen - α - carbonsäure, ,, α - Thiophensäure" HC-CH HC·S·C·CO₂H. B. Beim Erhitzen von 1 Tl. Schleimsäure mit 2 Tln. Barium- $C_5H_4O_2S =$ sulfid im Einschlußrohr auf 200—210° (Paal, Tafel, B. 18, 458). Der Äthylester entsteht beim Erhitzen von 2.5-Dibrom-thiophen mit überschüssigem Chlorameisensäureäthylester und 1¹/₂⁰/₀igem Natriumamalgam, neben Thiophen-dicarbonsäure-(2.5)-diäthylester (S. 331) (Bonz, B. 18, 2306), ferner beim Erhitzen von 2-Jod-thiophen (Nahnsen, B. 17, 2192; vgl. Curtius, Thyssen, J. pr. [2] 65, 6) oder von 2.5-Dijod-thiophen (N., B. 18, 2304) mit Chlorameisensäureäthylester und 1% jegem Natriumamalgam; man verseift den Athylester durch Kochen mit konzentrierter wäßriger oder alkoholischer Kalilauge (N., B. 17, 2193; 18, 2304). Thiophen-carbonsäure-(2) bildet sich beim Erwärmen von 2-Äthyl-thiophen (Bd. XVII, S. 39) mit alkal. Kaliumpermanganat-Lösung, neben α-Thienylglyoxylsäure (S. 407) (EGLI, B. 18, 546). Beim Erwärmen von 2-Acetyl-thiophen (Bd. XVII, S. 287) mit alkal. Permanganat-Lösung, neben α-Thienylglyoxylsäure (Peter, B. 17, 2645; 18, 542; vgl. Ernst, B. 20, 518). Durch Oxydation von 2-Propionyl-thiophen (Bd. XVII, S. 295) mit alkal. Permanganat - Lösung (Krekeler, B. 19, 677; Ernst, B. 20, 518; Curtius, Thyssen, J. pr. [2] 65, 6). Beim Kochen von α.α. Dithienyl (Syst. No. 2673) mit verd. Kalium-permanganat - Lösung (Eberhard, B. 27, 2919). — Darst. Man trägt 11,5 g 2-Acetylthiophen in eine Lösung von 12 g Natriumhydroxyd in 1 l Wasser ein, setzt portionsweise 40 g Natriumpermanganat in 1 l Wasser zu, läßt über Nacht stehen und erhitzt auf dem Wasserbad bis zum Verschwinden der grünen Farbe; man setzt zum Filtrat Salzsure, bis die Beschten und schwach selben ein eine Lösung von eine Farbe; man setzt zum Filtrat Salzsure, bis die Reaktion nur noch schwach alkal. ist, engt auf etwa 250 cm³ ein, fügt nach dem Erkalten ein Gemisch von 9 g 30% igem Wasserstoffperoxyd und 8 g Wasser zu, erwärmt nach einigen Stunden auf dem Wasserbad und säuert mit Salzsäure an (VOERMAN, R. 26, 295). — Nadeln (aus Wasser). Die Dämpfe reizen zum Husten (N., B. 17, 2194). Bildet mit Thiophencarbonsaure-(3) Mischkrystalle (Voe.). F: 128,50 (Stohmann, Kleber, J. pr. [2] 43, 9), 126,5° (N., B. 17, 2646 Anm. 1), 126,2° (Vox.). Sublimierbar; siedet fast unzersetzt bei 260° (korr.) (N., B. 17, 2194). Sehr leicht löslich in Äther, Alkohol und heißem Wasser, ziemlich löslich in Chloroform, schwer in Petroläther (PA., TA.). Die gesättigte wäßrige Lösung enthält bei 24,9° 0,75% (VOE.), bei 21° 0,57% Säure (V. MEYER, A. 236, 208). Verbrennungswärme bei konstantem Volumen: 645,4 kcal/Mol, bei konstantem Druck: 646,3 kcal/Mol (Stoh., Kl., J. pr. [2] 43, 12). Elektrolytische Dissoziationskonstante k bei 25°: 3,02·10⁻⁴ (Ostwald, Ph. Ch. 3, 384), 3,29·10⁻⁴ (Bader, Ph. Ch. 6, 313), 3,16·10⁻⁴ (Voe.). — Wird von Natriumamalgam in alkal. Lösung in Tetrahydrothiophen-carbonsäure-(2) (S. 263) übergeführt (Ernst). Liefert beim Behandeln mit Brom x.x-Dibrom-thiophen-carbonsäure-(2) (Bo., B. 18, 2308). Gibt beim Erhitzen mit konz. Salpetersäure 4-Nitro-thiophen-carbonsäure-(2) (RÖMER, B. 20, 116; vgl. STEINKOPF, MÜLLER, A. 448 [1926], 210; RINKES, R. 51 [1932], 1134). Bei der trocknen Destillation des Calciumsalzes entsteht Di-α-thienyl-keton (Syst. No. 2743) (GATTERMANN, B. 18, 3014); beim Destillieren des Calciumsalzes mit Calciumhydroxyd erfolgt Spaltung in Kohlendioxyd und Thiophen (PA., TA.). Thiophen-carbonsaure-(2), die man in Form des Natrium-Salzes Kaninchen subcutan injiziert, geht in den Harn als α-Thenoylglycin (S. 290) über (Jaffé, Levy, B. 21, 3458). Gibt beim Erhitzen mit Isstin und konz. Schwefelsäure eine blaue Lösung (N., B. 17, 2194). — AgC₅H₃O₂S. Blättchen oder Nadeln. Schwer löslich in kaltem, leichter in heißem Wasser (N., B. 17, 2194). 100 Tle. Wasser lösen bei 11° 0,195 Tle. Salz (V. M.). — Ca(C₅H₂O₂S)₅ + 3H₂O. Nadeln (N., B. 17, 2194). 100 Tle. Wasser von 18,5° lösen 18,49 Tle. des wasserfreien Salzes (V. M.). — Ba(C₅H₃O₂S)₂ + 2 H₂O. Krystalle (N., B. 17, 2195). 100 Tle. Wasser von 14,5° lösen 22 10 Tle. wasserfreien Salz (V. M.). (N., B. 17, 2195). 100 Tle. Wasser von 14,5° lösen 22,19 Tle. wasserfreies Salz (V. M.). Zinksalz. 100 Tle. Wasser lösen bei 15° 14,03 Tle. wasserfreies Salz (V. M.). — Bleisalz. 100 Tle. Wasser lösen bei 18,5° 0,491 Tle. wasserfreies Salz (V. M.).

Funktionelle Derivate der Thiophen-carbonsäure-(2)

Thiophen-α-carbonsäure-äthylester C₇H₈O₂S = SC₄H₈·CO₂·C₂H₅. B. Aus Thiophen-α-carbonsäure-chlorid und Alkohol (Nahnsen, B. 17, 2195). Durch Einleiten von BEILSTEINs Handbuch. 4. Aufl. XVIII.

Chlorwasserstoff in die siedende alkoholische Lösung der Säure (Curtius, Thyssen, J. pr. [2] 65, 7). — Flüssig; riecht wie Benzoesäureäthylester (N.). Kp: 218° (korr.) (N.); Kp₂₅: 115° (C., Th.). D₁^{6,5}: 1,1623 (v. Auwers, Kohlhaas, J. pr. [2] 108 [1924], 322; vgl. N.).

Thiophen - α - carbonsäure - chlorid C_5H_3 OClS = SC_4H_3 ·COCl. B. Aus Thiophen- α -carbonsäure und Phosphorpentachlorid (Nahnsen, B. 17, 2195). — Flüssigkeit vom durchdringenden Geruch des Benzoylchlorids. Kp: 190°.

Thiophen- α -carbonsäure-amid $C_5H_5ONS=SC_4H_3\cdot CO\cdot NH_2$. B. Aus Thiophen- α -carbonsäure-chlorid und Ammoniumcarbonat (Nahnsen, B. 17, 2196; V. Meyer, A. 236, 210). In geringer Menge bei mehrstündigem Erhitzen des Ammoniumsalzes der Thiophen- α -carbonsäure auf 240° (N.). Beim Behandeln von 2-Cyan-thiophen mit konz. Schwefelsäure (Hantzsch, B. 24, 48). — Krystallpulver (aus Äther). F: 174° (V. M.), 175° (H.), 180° (N.). Nicht sehr leicht löslich in kochendem Äther (V. M.).

Thiophen- α -carbonsäure-anilid $C_{11}H_9ONS = SC_4H_3 \cdot CO \cdot NH \cdot C_6H_5$. B. Aus Thiophen und Phenylisocyanat in Gegenwart von Aluminiumchlorid (Leuckart, Schmidt, B. 18, 2340). Bei mehrtägigem Stehenlassen von Thiophen- α -carbonsäure-azid mit kaltem Anilin (Curtius, Thyssen, J. pr. [2] 65, 15). — Blättchen. F: 140° (L., Sch.; C., Th.).

N-Phenyl-N'- α -thenoyl-harnstoff $C_{12}H_{10}O_2N_2S=SC_4H_3\cdot CO\cdot NH\cdot CO\cdot NH\cdot C_6H_5$. B. Aus Thiophen- α -carbonsäure-amid und Phenylisocyanat (V. Meyer, A. 236, 210). — Nadeln (aus Alkohol). F: 206°. Sehr schwer löslich in kaltem Alkohol.

α-Thenoylaminoessigsäure, α-Thenoylglycin, ,,α-Thiophen ursäure" $C_7H_7O_3NS = SC_4H_3 \cdot CO \cdot NH \cdot CH_2 \cdot CO_2H$. B. Findet sich im Harn von Kaninchen, denen thiophen-α-carbonsaures Natrium (JAFFÉ, Levy, B. 21, 3458), α-Thiophenaldehyd (Bd. XVII, S. 285) oder β-[α-thienyl]-acrylsaures Natrium (S. 301) (Cohn, H. 17, 281) subcutan injziert wurde. — Prismen (aus Wasser). F: 171—172° (J., L.; C.). Sehr schwer löslich in Äther, ziemlich schwer in kaltem Wasser, leicht in Alkohol (J., L.). — Wird durch Kochen mit Barytwasser glatt in Glycin und Thiophen-α-carbonsäure zerlegt (J., L.). — AgC₇H₆O₃NS. Nadeln. Sehr schwer löslich in Wasser (J., L.). — Ca(C₇H₆O₃NS)₂ + 5(?)H₂O. Blättchen oder Nadeln. Äußerst leicht löslich in Wasser (J., L.). — Ba(C₇H₆O₃NS)₂ + 2H₂O. Nadeln. Leicht löslich in Wasser, fast unlöslich in Alkohol (J., L.). — Harnstoffsalz CH₄ON₂ + C₇H₇O₃NS. B. Findet sich im Harn von Hunden nach subcutaner Injektion von α-Thiophenaldehyd, neben α-Thiophenursäure (C.). Nadeln. F: 136° (C.).

Thiophen- α -carbonsäure-iminoäthyläther $C_7H_9ONS = SC_4H_3 \cdot C(:NH) \cdot O \cdot C_2H_5$. B. Das Hydrochlorid entsteht beim Einleiten von trocknem Chlorwasserstoff in eine alkoh. Lösung von Thiophen- α -carbonsäure-nitril (Douglas, B. 25, 1312). — Gelbliches Öl. — Beim Erwärmen mit Hydroxylaminhydrochlorid in konzentrierter, wäßrig-alkoholischer Lösung entsteht Äthyl- $[\alpha$ -thienylformhydroximsäure]. — $C_7H_9ONS+HCl$. Krystalle.

Thiophen-α-carbonsäure-nitril, 2-Cyan-thiophen, α-Thienylcyanid $C_5H_3NS = SC_4H_3 \cdot CN$. B. Bei mäßigem Erwärmen von α-Thiophen-syn-aldoxim (Bd. XVII, S. 285) mit konz. Sodalösung (Hantzsch, B. 24, 47). Aus α-Thiophen-syn-aldoxim-acetat (s. im Artikel α-Thiophen-syn-aldoxim) beim Behandeln mit Soda oder bei längerem Aufbewahren im Vakuum (H.). Beim Kochen von α-Thienylglyoxylsäure (S. 407) mit einer konz. Lösung von überschüssigem Hydroxylaminhydrochlorid (Douglas, B. 25, 1311). Beim Kochen von α-Thienylglyoxylsäure-oxim (S. 407) mit angesäuertem Wasser oder besser mit Hydroxylaminhydrochlorid (H.). Beim Behandeln von α-Thienylglyoxylsäure-oximacetat (S. 407) mit Sodalösung, Eisessig, Essigsäureanhydrid oder Alkohol bei gewöhnlicher Temperatur (H.). Entsteht in geringer Menge bei der Destillation von Thiophen-α-carbonsäure-amid mit Phosphorpentasulfid (V. Meyer, A. 236, 212). — Öl. Kp: 192° (D.). Mit Wasserdampf flüchtig (D.). — Liefert mit konz. Schwefelsäure Thiophen-α-carbonsäure-amid (H.).

Thiophen- α -carbonsäure-amidoxim $C_5H_6ON_2S = SC_4H_3 \cdot C(:NH) \cdot NH \cdot OH$ bezw. $SC_4H_3 \cdot C(NH_2):N \cdot OH$. B. Aus Thiophen- α -carbonsäure-nitril und Hydroxylamin (V. Meyer, A. 236, 212; Douglas, B. 25, 1313). — Säulen (aus Benzol). F: 91—92° (V. M.).

Äthyl-[α -thienylformhydroximsäure] $C_7H_9O_2NS = SC_4H_3 \cdot C(O \cdot C_2H_5) : N \cdot OH$. B. Bei $1^1/_2$ -stdg. Erwärmen von 1 Tl. Thiophen- α -carbonsäure-iminoäthyläther mit $1^1/_2$ Tln. Hydroxylaminhydrochlorid in konzentrierter, wäßrig-alkoholischer Lösung (Douglas, B. 25, 1312). — Krystalle (aus Wasser). F: 67°.

Thiophen- α -carbonsäure-hydrazid, α -Thenoylhydrazin $C_5H_6ON_2S=SC_4H_3$ CO·NH·NH₂. B. Man trägt in 5 g siedendes Hydrazinhydrat tropfenweise 10 g Thiophen- α -carbonsäure-äthylester ein und kocht noch einige Stunden (Curtus, Thyssen, J. pr. [2] 65, 7). — Nadeln (aus Wasser). F: 136°. Sehr leicht löslich in heißem Alkohol, leicht in heißem Wasser und Benzol, sehr wenig in kaltem Äther und Ligroin. Löslich in 40 Tln. Wasser bei 18–19°. — Wird durch siedende konzentrierte Säuren und Alkalien hydrolysiert. — NaC₅H₅ON₂S. Gelbe Flocken (durch Natriumäthylat und Äther). Zersetzt sich gegen 260°. — C₅H₆ON₂S + HCl. Nädelchen (aus Alkohol). F: 247° (Zers.). Leicht löslich in Wasser und siedendem Alkohol, unlöslich in Äther und Benzol.

Thiophen- α -carbonsäure-isopropylidenhydrazid, Aceton- α -thenoylhydrazon $C_8H_{10}ON_2S=SC_4H_3\cdot CO\cdot NH\cdot N:C(CH_3)_2$. B. Beim Auflösen von Thiophen- α -carbonsäurchydrazid in wenig mehr als der berechneten Menge Aceton (C., Th., J. pr. [2] 65, 11). — Krystalle (aus absol. Alkohol). F: 108°. Leicht löslich in Äther, Alkohol und warmem Benzol, unlöslich in Wasser und Ligroin. — Wird durch warmes Wasser, Säuren und Alkalien leicht gespalten.

Thiophen - α - carbonsäure - benzalhydrazid, Benzaldehyd - α - thenoylhydrazon $C_{12}H_{10}ON_2S=SC_4H_3\cdot CO\cdot NH\cdot N:CH\cdot C_6H_5$. B. Aus Thiophen - α -carbonsäure - hydrazid und Benzaldehyd durch Schütteln mit Wasser (C., Th., J. pr. [2] 65, 9). — Nadeln (aus verd. Alkohol). F: 177°. Leicht löslich in heißem Alkohol, Benzol, Chloroform, Aceton und Eisessig, unlöslich in Wasser und Ligroin.

Thiophen- α -carbonsäure-salicylalhydrazid, Salicylaldehyd- α -thenoylhydrazon $C_{12}H_{10}O_2N_2S=SC_4H_3\cdot CO\cdot NH\cdot N:CH\cdot C_6H_4\cdot OH$. B. Beim Auflösen von Thiophen- α -carbonsäure-hydrazid in einem kleinen Überschuß von Salicylaldehyd (C., Th., J. pr. [2] 65, 10). — Gelbliche Nadeln (aus Alkohol). F: 176°. Leicht löslich in absol. Alkohol, Chloroform und siedendem Äther, unlöslich in Wasser und kaltem Äther.

Thiophen- α -carbonsäure-[β -acetyl-hydrazid], N-Acetyl-N'- α -thenoyl-hydrazin $C_7H_8O_4N_2S=SC_4H_3\cdot CO\cdot NH\cdot NH\cdot CO\cdot CH_3$. B. Beim Erwärmen äquimolekularor Mengen Thiophen- α -carbonsäure-hydrazid und Essigsäureanhydrid bis zur Lösung (C., Th., J. pr. [2] 65, 11). — Krystalle (aus verd. Alkohol). F: 172°. Leicht löslich in warmem Wasser, Benzol und Alkohol, unlöslich in Äther und Ligroin.

Thiophen- α -carbonsäure-[β -benzoyl-hydrazid], N-Benzoyl-N'- α -thenoyl-hydrazin $C_{12}H_{10}O_2N_2S=SC_4H_3\cdot CO\cdot NH\cdot NH\cdot CO\cdot C_6H_5$. B. Bei tropfenweisem Zusatz von Natronlauge und Benzoylchlorid zu der wäßr. Lösung von Thiophen- α -carbonsäure-hydrazid (C., Th., J. pr. [2] 65, 12). — Schwammige Krystallmasse (aus Alkohol). Leicht löslich in warmem Alkohol, schwer in Wasser und Ligroin.

Acetessigester- α -thenoylhydrazon $C_{11}H_{14}O_3N_3S = SC_4H_3 \cdot CO \cdot NH \cdot N : C(CH_3) \cdot CH_5 \cdot CO_3 \cdot C_2H_5$. B. Beim Erwärmen äquimolekularer Mengen Thiophen- α -carbonsäure-hydrazid und Acetessigester bis zur Lösung (C., Th., $J.\ pr.\ [2]\ 65$, 10). — Schwammige Krystallmasse (aus verd. Alkohol). F: 112°. Leicht löslich in Alkohol, ziemlich löslich in warmem Wasser und Äther.

N.N'-Di- α -thenoyl-hydrazin $C_{10}H_8O_2N_2S_2=[SC_4H_2\cdot CO\cdot NH-]_2$. B. Aue Thiophen- α -carbonsäure-hydrazid und Jod in siedendem Alkohol (C., Th., J.pr. [2] 65, 13). — Sohwammige Krystalle (aus wäßr. Alkohol). F: 262°. Leicht löslich in warmem Alkohol und Aceton, schwer in siedendem Wasser, unlöslich in Benzol und Äther.

Thiophen - α - carbonsäure - azid $C_5H_3ON_3S = SC_4H_3\cdot CO\cdot N_3$. B. Aus salzsaurem Thiophen- α -carbonsäure-hydrazid und Natriumnitrit-Lösung unter guter Kühlung (C., Th., J. pr. [2] 65, 14). — Gelbe, blättrige Krystallmasse. Greift die Schleimhäute stark an. F: 37°. Verpufft beim Erhitzen auf dem Platinblech. Leicht löslich in Äther, ziemlich löslich in Wasser.

Substitutionsprodukte der Thiophen-carbonsäure-(2).

- 5-Chlor-thiophen-carbonsäure-(2) $C_8H_3O_2ClS = \frac{HC-CH}{ClC\cdot S\cdot C\cdot CO_2H}$. B. Durch schwaches Erwärmen von 3 g 5-Chlor-2-acetyl-thiophen (Bd. XVII, S. 287) mit einer Lösung von 8 g Kaliumpermanganat und 12 g Natriumhydroxyd in 300 cm³ Wasser auf dem Wasserbad (Gattermann, Römer, B. 19, 694). Nadeln (aus Wasser). F: 140°. Sublimierbar. Ziemlich schwer löslich in heißem Wasser.
- 5-Brom-thiophen carbonsaure (2) $C_5H_3O_2BrS = \frac{HC--CH}{BrC\cdot S\cdot C\cdot CO_2H}$. B. Durch schwaches Erwärmen von 9 g 5-Brom-2-acetyl-thiophen (Bd. XVII, S. 288) mit einer Lösung 19*

von' 19 g Kaliumpermanganat und 35 g Natriumhydroxyd in 800 cm³ Wasser auf dem Wasserbad (G., R., B. 19, 690). — Nadeln (aus Wasser). F: 139,5°. Sublimierbar. Fast unlöslich in kaltem Wasser, mäßig löslich in heißem, leicht in Alkohol und Äther.

x.x-Dibrom-thiophen-carbonsäure-(2) $C_5H_2O_3Br_2S=SC_4HBr_2\cdot CO_2H$. B. Beim Behandeln von Thiophen- α -carbonsäure mit überschüssigem Brom (Bonz, B. 18, 2308). — Nadeln (aus Alkohol). F: 222°. Ziemlich schwer flüchtig mit Wasserdampf. Sublimiert bei vorsichtigem Erhitzen. Fast unlöslich in kaltem Wasser, leicht löslich in Alkohol und Äther. — Gibt beim Erwärmen mit konz. Schwefelsäure und Isatin eine schmutzig grüne Färbung, die rasch in Braun übergeht. — $KC_5HO_2Br_2S$ (bei 130°). Undeutlich krystallinisch. Sehr leicht löslich in Wasser. — $AgC_5HO_4Br_2S$. Käsiger Niederschlag, der allmählich krystallinisch wird. — $Ba(C_5HO_2Br_2S)_2 + 3^{1}/_2H_2O$. Nädelchen. Schwer löslich in kaltem Wasser.

Methylester C₆H₄O₂Br₂S = SC₄HBr₂·CO₂·CH₂. *B. Beim Erhitzen des Silbersalzes der x.x-Dibrom-thiophen-carbonsaure-(2) mit Methyljodid und Äther am Rückflußkühler (B., B. 18, 2313). — Nädelchen (aus Alkohol). F: 80°.

Chlorid C₅HOClBr₂S = SC₄HBr₂·COCl. B. Beim Erhitzen von x.x-Dibrom-thiophen-carbonsäure-(2) mit Phosphorpentachlorid (B., B. 18, 2312). — Nadeln. F: 35,5°.

Amid C₅H₂ONBr₂S = SC₄HBr₂·CO·NH₂. B. Beim Erwärmen eines Gemenges von x.x-Dibrom-thiophen-carbonsäure-chlorid und Ammoniumcarbonat auf dem Wasserbad (B., B. 18, 2312). — Nädelchen (aus Wasser). F: 165,5°. Ziemlich schwer löslich in kochendem Wasser, leicht in Alkohol und Äther.

5-Jod-thiophen-carbonsäure-(2) $C_2H_3O_2IS = \frac{HC - CH}{IC \cdot S \cdot C \cdot CO_2H}$. B. Durch schwaches Erwärmen von 11 g 5-Jod-2-acetyl-thiophen (Bd. XVII, S. 288) mit einer Lösung von 22 g Kaliumpermanganat und 40 g Natriumhydroxyd in 1 l Wasser auf dem Wasserbad (Gattermann, Römer, B. 19, 693). — Nadeln (aus Wasser). F: 131°. Sublimiert in Tafeln. — $NH_4C_5H_2O_2IS$. Nadeln. Schwer löslich in kaltem Wasser.

4-Nitro-thiophen-carbonsäure-(2)¹) $C_3H_2O_4NS = O_2N \cdot C - CH HC \cdot S \cdot C \cdot CO_2H$. B. Man trägt Thiophen- α -carbonsäure in kleinen Portionen in konz. Salpetersäure bei 50° ein und hält die Lösung 5—10 Minuten lang in schwachem Sieden (Römer, B. 20, 116). — Krystallisiert in zwei Formen: Farblose Nadeln vom Schmelzpunkt 145—146°; derbe Krystalle vom Schmelzpunkt 125°; beide Formen lassen sich ineinander überführen. Leicht löslich in Alkohol. — Beim Kochen des Silbersalzes mit Äthyljodid und Alkohol entsteht der Äthylester (Nädelchen; F: 70—71°). Versetzt man die alkoh. Lösung mit einer Spur Natronlauge, so färbt sie sich fuohsinrot; bei Zusatz von überschüssigem Alkali verschwindet die Färbung. — $AgC_5H_2O_4NS$. Nadeln.

2. Furan-carbonsaure-(3), Furan- β -carbonsaure $C_8H_4O_3 = \frac{HC - C \cdot CO_2H}{HC \cdot O \cdot CH}$ [systematische Stammverbindung der Thiophen-carbonsaure-(3)].

Thiophen - carbonsäure - (3), Thiophen - β - carbonsäure, ,, β - Thiophensäure ' $HC - C \cdot CO_2H$ $HC - C \cdot CO_2H$. B. Bei der Oxydation von 3-Methyl-thiophen (Bd. XVII, S. 38) $HC \cdot S \cdot CH$. B. Bei der Oxydation von 3-Methyl-thiophen (Bd. XVII, S. 38) (Muhlert, B. 18, 3003; Damsky, B. 19, 3284) oder von 3-Athyl-thiophen (Bd. XVII, S. 40) (D.) mit alkal. Kaliumpermanganat-Lösung. — Darst. Man ohloriert kochendes 3-Methyl-thiophen unter Zusatz von $10^{\circ}/_{\circ}$ Phosphorpentachlorid im direkten Sonnenlicht, bis 2 Atome Chlor eingeführt sind, erhitzt das Produkt mit Calciumcarbonat und Wasser 4 Stdn. im Ölbad auf 130°, destilliert den entstandenen Aldehyd mit Wasserdampf über, reinigt ihn über die Disulfitverbindung, oxydiert ihn mit alkal. Permanganat-Lösung und behandelt die entstandene Säure zur Reduktion der beigemengten, im Kern chlorierten Säure mit Natriumamalgam (Voerman, R. 26, 297). — Nadeln (aus Wasser). Monoklin prismatisch (Jabsee, R. 26, 304; Z. Kr. 45, 410). Bildet mit Thiophen-a-earbonsäure Mischkrystalle (V.). F: 136° (M.), 138,4° (V.). Leicht flüchtig mit Wasserdampf (M.). Unzersetzt sublimierbar (M.). Die gesättigte wäßrige Lösung enthält bei 25° 0,43°/ $_{\circ}$ Säure (D.; V.). Elektrolytische Dissoziationskonstante k bei 25°: 7,8×10-6 (Lován, Ph. Ch. 19, 458; V.). — Gibt mit Isatin und konz. Schwefelsäure die Indophenin-Reaktion (M.). — AgC₅H₂O₂S. Nadeln und Blätter. Schwer löslich in Wasser (M.). — Ca(C₅H₂O₂S)₂ + aq.

So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs
 I. I. 1910] erschienenen Arbeiten von STEINKOPF, MÜLLER, A. 448, 210; RINKER, R. 51, 1134.

Nadeln. Enthält nach dem Trocknen über Calciumchlorid ¹/₂ H₂O (M.). 100 Tle. Wasser lösen bei 14,5° 7,92 Tle. wasserfreies Salz (D.). — Bariumsalz. 100 Tle. Wasser lösen bei 17° 11,54 Tle. wasserfreies Salz (D.).

Thiophen- β -carbonsäure-amid $C_8H_8ONS = SC_4H_4 \cdot CO \cdot NH_4$. B. Man erwärmt Thiophen- β -carbonsäure mit Phosphorpentachlorid, destilliert das Phosphoroxychlorid ab und verreibt das zurückbleibende Öl mit festem Ammoniumcarbonat (Damsky, B. 19, 3285). — Nadeln (aus Äther). F: 177,5—178°. Sehr schwer löslich in Äther.

N-Phenyl-N'- β -thenoyl-harnstoff $C_{13}H_{10}O_2N_2S = SC_4H_2 \cdot CO \cdot NH \cdot CO \cdot NH \cdot C_6H_5$. B. Bei gelindem Erwärmen von Thiophen- β -carbonsäure-amid mit etwas mehr als der berechneten Menge Phenylisocyanat (D., B. 19, 3285). — Nadeln. F: 206°. Schwer löslich in Alkohol.

2. Carbonsauren CaHaO3.

- 1. α -Furylessigsaure $C_0H_0O_3=\frac{HC-CH}{HC\cdot O\cdot C\cdot CH_2\cdot CO_2H}$ (systematische Stammverbindung der α -Thienylessigsaure).
- $\alpha\text{-Thienylessigsäure }C_6H_6O_2S=\frac{HC-CH}{HC\cdot S\cdot C\cdot CH_2\cdot CO_2H}. B. \text{ Beim Kochen von }\alpha\text{-Thienylessigsäure }(S. 345) \text{ mit konz. Jodwasserstoffsäure und rotem Phosphor (Ernst, B. 19, 3281).}-Farblose Krystalle. F: 76°. Löslich in heißem Wasser, Alkohol und Äther. -AgC_6H_5O_2S. Niederschlag. -Ba(C_6H_5O_2S)_2 (bei 130°). Krystalle. Löslich in Wasser.}$
- 2. 3-Methyl-furan-carbonsaure-(2) C₆H₆O₃ = HC—C·CH₃ HC·O·C·CO₂H [systematische Stammverbindung der 3-Methyl-thiophen-carbonsaure-(2)].
- 3-Methyl-thiophen-carbonsäure-(2) C₆H₆O₂S = HC—C·CH₂
 HC·S·C·CO₂H. B. Durch Eintragen von 5 g Aluminiumchlorid in ein Gemisch aus 3 g 3-Methyl-thiophen (Bd. XVII, S. 38), 10 g Schwefelkohlenstoff und 5 g Carbamidsäurechlorid und Verseifung des entstandenen Amids mit konzentriertem alkoholischem Kali (Zelinsky, B. 20, 2024; Gattermann, Z., A. 244, 58). Durch 36-stdg. Kochen eines Gemisches von (nicht näher beschriebenem) jodiertem 3-Methyl-thiophen, Chlorameisensäureäthylester und Natriumamalgam und Verseifung des entstandenen Äthylesters mit siedender alkoholischer Kalilauge (Levi, B. 19, 657). Neben Thiophen-dicarbonsäure-(2.3) (Gerlach, A. 267, 155) bei der Oxydation von 3-Methyl-2-acetyl-thiophen (Bd. XVII, S. 295) in alkal. Lösung mit Kaliumpermanganat (Demutth, B. 19, 680). Farblose Nadeln (aus Wasser oder 60% gigem Alkohol). F: 144° (L.; D.), 143° (Z.; Ga., Z.), 140° (Ge.). Schwer löslich in kaltem, leichter in heißem Wasser, leicht löslich in Alkohol und Äther (Ge.; L.). AgC₆H₅O₂S. Farblose glasglänzende Krystalle (aus Wasser). Verliert das Krystallwasser bei 140° (L.; D.). Ba(C₆H₅O₂S)₂ + 5 H₂O. Krystallblättchen. Verliert das Krystallwasser bei 140° (L.). Pb(C₆H₅O₂S)₃. Farbloses Pulver. Löslich in viel heißem Wasser (Ge.).

Chlorid $C_6H_5OClS = SC_4H_2(CH_2)\cdot COCl$. B. Aus 3-Methyl-thiophen-carbonsaure-(2) und Phosphorpentachlorid (Levi, B. 19, 659). — Farblose Flüssigkeit. Riecht ähnlich wie Benzoylchlorid. Kp: $218-220^\circ$.

Amid C₂H₂ONS = SC₄H₂(CH₂)·CO·NH₂. B. s. bei 3-Methyl-thiophen-carbonsäure-(2). Entsteht auch beim Mischen von 3-Methyl-thiophen-carbonsäure-(2)-chlorid mit überschüssigem Ammoniumcarbonat (Levi, B. 19, 659). — Nadeln (aus Wasser). F: 122—123° (L.), 119° (ZELINSKY, B. 20, 2024; GATTERMANN, Z., A. 244, 59).

- 3. 2-Methyl-furan-carbonsäure-(3) C₆H₆O₃ = HC—C·CO₂H HC·O·C·CH₃. B. Man erhitzt α-[β-Chlor-āthyliden]-acetessigsäure-āthylester (Bd. III, S. 737) mit alkoh. Ammoniak auf 150° und verseift den entstandenen Äthylester mit alkoh. Kalilauge (Plancher, Albini, R. A. L. [5] 13 I, 42). Fast farblose Krystalle (aus Wasser). F: 102—103°. Löslich in Alkohol, Äther, Petroläther und Eisessig.
- 4. 4 oder 2 Methyl furan carbonsäure (2 oder 4) C₆H₆O₅ = CH₂·C CH HO₅C·C CH | HC·O·C·CO₅H | E·O·C·CCH₃ [systematische Stammverbindung der 4 oder 2 · Methyl-thiophen-carbonsäure (2 oder 4)].

4 oder 2 - Methyl - thiophen - carbonsäure - (2 oder 4) $C_6H_6O_2S = \frac{CH_3 \cdot C - CH}{HC \cdot S \cdot C \cdot CO_2H}$

oder . HC·S·C·CH₃ B. Entsteht neben Thiophen-dicarbonsäure-(2.4) bei 2—3-tägigem Stehenlassen von je 1 g 2.4-Dimethyl-thiophen (Bd. XVII, S. 41) mit einer Lösung von 12 g Natriumhydroxyd und 5,7 g Kaliumpermanganat in 800 g Wasser; man trennt beide Säuren durch Destillation mit Wasserdampf, wobei sich nur die Monocarbonsäure verflüchtigt (Zelinsky, B. 20, 2021). — Nadeln (aus Wasser). F: 118—119°. Sublimierbar. Schwer löslich in kaltem Wasser, leicht in Äther. — Ag C₆H₅O₂S. — Ca(C₆H₅O₂S)₂ + 2½ H₂O. Blättchen.

5. 5 - Methyl - furan - carbonsäure - (2), 5 - Methyl - brenzschleimsäure, $\frac{HC - CH}{CH \cdot C \cdot O \cdot C \cdot CO_2 H}.$ B. Beim Aufkochen

von 10 g 5-Methyl-furfurol (Bd. XVII, S. 289) mit 50 g Silberoxyd und 800 g Wasser (Hill, Jennings, Am. 15, 167). — Darst. Man suspendiert 75 g Silberoxyd in einer Lösung von 15 g Natriumhydroxyd in 1 l Wasser, gibt 30 g 5-Methyl-furfurol zu und kocht eine halbe Stunde unter Rückfluß (HI., SAWYER, Am. 20, 171; HI., SYLVESTER, Am. 32, 187). — Tafeln oder Nadeln (aus Wasser). F: 108—109°; sublimiert leicht (HI., J.). Schr leicht löslich in heißem Wasser; bei 20° enthält die gesättigte wäßrige Lösung 1,89°/0 (HI., J.). Leicht löslich in Alkohol, Ather und Chloroform, schwerer in Benzol, fast unlöslich in Schwefelkohlenstoff (Hr., J.). — Beim Einleiten eines mit 2 Mol Brom gesättigten Luftstroms in eine kalte wäßrige Suspension von 5-Methyl-brenzschleimsäure entsteht β -Acetyl-acrylsäure (HI., HENDRIXSON, B. 28, 452; HI., J., Am. 15, 172). Bei der Einw. von 2 Mol Brom in Chloroform unter Kühlung mit Kältegemisch wird 5-Methyl-brenzschleimsäure-tetrabromid gebildet (HI., J., Am. 15, 184). In siedender Chloroform-Lösung erhält man beim Eintragen von 2 Mol Brom als Hauptprodukt 5-Brommethyl-brenzschleinsäure (HI., J., Am. 15, 180). Durch Eintragen von 1,5 Mol Brom bei höchstens 17° in die essigsaure Lösung von 5-Methyl-brenzschleimsäure entsteht 3 oder 4 · Brom · 5 · methyl · brenzschleimsäure (HI., J., Am. 15, 176). Setzt man 1 Gew.-Tl. 5-Methyl-brenzschleimsäure 15—20 Stdn. den Dämpfen von 3 Gew.-Tln. Brom aus, so entsteht 3 oder 4 - Brom - 5 - brommethyl - brenzschleimsäure (HI., J., Am. 15, 182). Beim Behandeln von 5-Methyl-brenzschleimsäure mit Phosphorpentachlorid oder Phosphortrichlorid erhält man 5-Methyl-brenzschleimsäure-chlorid (Hr., Sa., Am. 20, 171). 5-Methylbrenzschleimsäure gibt beim Eintragen in rauchende Schwefelsäure unter Kühlung 5-Methylbrenzschleimsäure-sulfonsäure-(3) (Syst. No. 2634) (H1., J., Am. 15, 174; H1., SYLVESTER, Am. 32, 188). Die mit wenig Isatin versetzte Lösung in konz. Schwefelsäure färbt sich beim Erwärmen chromgrün (Bieler, Tollens, A. 258, 125). — Salze: Hi., J. — NaC₆H₅O₃. Nadeln (aus verd. Alkohol). Schr leicht löslich in Wasser. — KC₆H₅O₃. Prismen. Sehr leicht löslich in Wasser. — AgC₆H₅O₃. Nadeln (aus heißem Wasser). Schwer löslich in Wasser. — Ca(C₆H₅O₃)₂ + 2 H₂O. Farblose Nadeln. Bei 20,2° enthält die gesättigte wäßrige Lösung 12,7°/₀ wasserfreies Salz. — Ba(C₆H₅O₃)₂. Farblose Krystalle. Die wäßr. Lösung enthält bei 19,6° 22,6°/₀, bei 99° 20,85°/₀ wasserfreies Salz.

Äthylester $C_8H_{10}O_3 = OC_4H_2(CH_3) \cdot CO_2 \cdot C_2H_5$. B. Beim Sättigen einer Lösung von 5-Methyl-brenzschleimsäure ir absol. Alkohol mit Chlorwasserstoff (Hill, Jennings, Am. 15, 170). — Flüssig. Kp_{766} : 213—214° (korr.).

Chlorid C₆H₅O₂Cl = OC₄H₂(CH₃)·COCl. B. Aus 5-Methyl-brenzschleimsäure durch Einw. von Phosphorpentachlorid oder Phosphortrichlorid (HILL, SAWYER, Am. 20, 171). — Nadeln. F: 28°; Kp₁₆: 93—94°; Kp₇₅₆: 202° (H., S., Am. 20, 171). — Liefert beim Behandeln mit etwa 2,5 Mol Brom bei 140—150° im Sonnenlicht 5-Dibrommethyl-brenzschleimsäurebromid (H., S., B. 27, 1569; H., S., Am. 20, 173).

Amid $C_8H_7O_2N = OC_4H_2(CH_3)\cdot CO\cdot NH_3$. B. Bei 2-tägigem Stehenlassen von 5-Methylbrenzschleimsäure-äthylester mit konzentriertem wäßrigem Ammoniak (Hill, Jennings, Am. 15, 170). — Farblose Prismen (aus Wasser). F: 131°. Leicht löslich in Alkohol, löslich in Benzol und Ligroin in der Hitze, wenig in der Kälte.

 $\label{eq:continuous} \text{3 oder 4-Brom-5-methyl-brenzschleimsäure} \quad C_{e}H_{s}O_{s}\text{Br} = \frac{HC-CBr}{CH_{s}\cdot \overset{\circ}{C}\cdot O\cdot \overset{\circ}{C}\cdot CO_{s}H} \text{ oder }$

DIU—UH
CH₂ $\overset{\circ}{C} \cdot O \cdot \overset{\circ}{C} \cdot CO_2H$ 8. Man trägt 1,5 Mol Brom in eine Lösung von 1 Mol 5-Methyl-brenzschleimsäure in der 1½-fachen Gewichtsmenge Eisessig bei höchstens 17° ein (Hill, Jennings, Am. 15, 176). — Farblose Nadeln. F: 150—151°. Leicht löslich in Alkohol, Äther, Chloroform, schwerer in Benzol, schwer löslich in Schwefelkohlenstoff und Ligroin. Die gesättigte wäßrige Lösung enthält bei 21,4° 0,28°/₀ Säure. — Leitet man einen mit Bromdampf gesättigten Luftstrom durch die wäßr. Suspension, so entsteht α oder β-Brom-β-acetyl-acrylsäure (Bd. III,

S. 734). — KC₆H₄O₃Br. Nadeln. Sehr leicht löslich in Wasser. — AgC₆H₄O₃Br. Nadeln (aus heißem Wasser). — Ca(C₆H₄O₃Br)₂ + 3 H₂O. Nadeln (aus Wasser). Die wäßr. Lösung enthält bei 20° 0,41°/ $_{0}$ wasserfreies Salz. — Ba(C₆H₄O₃Br)₂ + 4 H₂O. Nadeln (aus Wasser). Die gesättigte wäßr. Lösung enthält bei 20,2° 0,59°/0 wasserfreies Salz.

5-Brommethyl-brenzschleimsäure $C_6H_5O_3Br =$ Beim CH₂Br·C·O·C·CO₂H Eintragen von 2 Mol Brom, das mit dem gleichen Gewicht Chloroform verdünnt wurde, in eine siedende Lösung von 5-Methyl-brenzschleimsäure in der 6-fachen Menge Chloroform (HILL, JENNINGS, Am. 15, 180). — Schiefe Platten (aus Chloroform oder Benzol). F: 147° bis 148°. Leicht löslich in Alkohol, Äther, Aceton und Eisessig, etwas schwerer in heißem Benzol und Chloroform, fast unlöslich in Schwefelkohlenstoff. — Beim Erhitzen mit Wasser entsteht 5-Oxymethyl-brenzschleimsäure (S. 345).

3 oder 4 - Brom - 5 - brommethyl - brenzschleimsäure $C_4H_4O_5Br_2 =$ BrC—CH HC---CBr

CH₂Br·C·O·C·CO₂H oder CH₂Br·C·O·C·CO₂H.

B. Man setzt 1 Gew.-Tl. 5-Methyl-brenz-schleimsäure 15—20 Stdn. den Dämpfen von 3 Gew.-Tln. Brom aus (Hill, Jennings, Am. 15, 182). Beim Behandeln von 3 oder 4 - Brom - 5 - methyl - brenzschleimsäure mit Brom in siedendem Chloroform (H., J.). — Tafeln (aus Toluol). Schmilzt bei 175° unter Zersetzung. Leicht löslich in Alkohol, Äther, Eisessig, schwer löslich in siedendem Benzol und Chloroform, fast unlöslich in Schwefelkohlenstoff und Ligroin. - Beim Erwärmen mit Wasser entsteht 3 oder 4-Brom-5-oxymethyl-brenzschleimsäure (S. 346).

 $\textbf{5-Dibrommethyl-brenzschleims\"{a}ure} \ C_6H_4O_3Br_2 = \frac{HC--CH}{CHBr_2\cdot \overset{''}{C}\cdot O\cdot \overset{''}{C}\cdot CO_3H}. \ \ B. \ \ Durch$ Behandlung von 5-Brommethyl-brenzschleimsäure mit einem großen Überschuß von Brom in siedender Chloroform-Lösung in (durch einen Hohlspiegel) konzentriertem Sonnenlicht (Hill, Sawyer, Am. 20, 172; vgl. H., S., B. 27, 1569). — Grünliche Prismen (aus Benzol). F: 153°. Leicht löslich in Äther, Chloroform und Benzol, sehr wenig in Ligroin, fast unlöslich in Schwefelkohlenstoff. - Wird durch Kochen mit Wasser oder Alkohol unter Bromwasserstoff-Entwicklung zersetzt.

HC --- CH Bromid $C_6H_3O_2Br_3 = \frac{1}{CHBr_2 \cdot C \cdot O \cdot C \cdot COBr}$. B. Beim Behandeln von 1 Mol 5-Methylbrenzschleimsäure-chlorid mit etwa 2,5 Mol Brom bei 140—150° in (durch einen Hohlspiegel) konzentriertem Sonnenlicht (Hill, Sawyer, B. 27, 1569; H., S., Am. 20, 173). — Prismen (aus Ligroin). F: 102°. Leicht löslich in Chloroform, Benzol, Schwefelkohlenstoff und heißem Ligroin. — Beim Kochen mit Wasser, zweckmäßig unter Durchleiten von Wasserdampf, erhält man 5-Formyl-brenzschleimsäure (S. 408) und wenig Tetrabrommethan.

5-Methyl-thiophen-carbonsäure-(2) $C_6H_6O_2S = \frac{1}{CH_3 \cdot C \cdot S \cdot C \cdot CO_2H}$. B. Bei der Oxydation von 2.5-Dimethyl-thiophen (Bd. XVII, S. 41) mit alkal. Kaliumpermanganat-Lösung (Paal, B. 18, 2253). Durch 36-stdg. Kochen eines Gemisches aus 15 g (nicht näher beschriebenem) jodiertem 2-Methyl-thiophen, 9 g Chlorameisensäureäthylester und 450 g 1%-gigem Natriumamalgam unter Rückfluß und Kochen des entstandenen Äthylesters mit alkoh. Kalilauge (Levi, B. 19, 656). — Farblose Nadeln (aus Wasser). F: 137% (L.). Sublimiert bei etwa 120% in Nadeln (P.). Etwas flüchtig mit Wasserdampf (P.). Sehr leicht löslich in heißem Wasser, Alkohol und Äther (P.; L.). — Wird von alkal. Kaliumpermanganat-Lösung zu Thiophen-dicarbonsäure-(2.5) oxydiert (L.). Gibt mit Isatin und Schwefelsäure keine Färbung (P.). — AgC₆H₅O₂S. Käsiger Niederschlag (L.). — Ca(C₆H₅O₂S)₂ + 3½-4 H₂O. Blättehen (L.) Blättchen (L.).

3. Carbonsäuren C₂H₂O₃.

1. β - $[\alpha$ - Furyl] - propionsäure, Furfurylessigsäure $C_7H_8O_3=HC-CH$ B. Aus Furfurylidenessigsäure (S. 300) und Natriumamalgam HC.O.C.CH.CH.CO.H in wäßr. Lösung (Baeyer, B. 10, 357; Marchwald, B. 20, 2812; Sudborough, Gittins, Soc. 95, 320). Beim Destillieren von Furfurylmalonsäure (S. 332) (M., B. 21, 1083). Durch Destillation von [α-Furyl]-bernsteinsäure (S. 332) unter stark vermindertem Druck (Sandelin, B. 31, 1121). — Krystalle (aus Petroläther). F: 50—51° (B., B. 10, 357), 57—58° (Su., G.), 58,5° (Sa.). Kp: 229° (M., B. 20, 2812). Löslich in Wasser und Äther (B., B. 10, 357). Färbt sich mit Solvakur gelb (B. 20, 2812). sich mit Salzsaure gelb (B., B. 10, 358). — Behandelt man die Saure in waßr. Lösung erst

mit Brom und dann mit Silberoxyd, so entsteht Furonsäure (Bd. III, S. 826) (B., B. 10, 696). Geschwindigkeit der Veresterung mit Methylalkohol in Gegenwart von Chlorwasserstoff: Su., G., Soc. 95, 319.

Amid C₇H₂O₂N = OC₄H₃·CH₃·CH₃·CO·NH₂. B. Durch mehrstündiges Erhitzen des Ammoniumsslzes der Furfurylessigsäure im geschlossenen Rohr auf 220° (MARCKWALD, B. 20, 2812). — Nadeln (aus Benzol-Ligroin). F: 98°. Siedet fast unzersetzt bei 270°. Ziemlich leicht löslich in Wasser, Alkohol, Äther und Benzol, unlöslich in Ligroin.

- $\alpha.\beta$ Dibrom β [5 brom furyl (2)] propionsäure $C_7H_8O_8Br_8 = HC$ —CH
- B. Man gießt 2 Mol trocknes Brom in eine Suspension Br $CO \cdot C \cdot C$ HBr $\cdot CO_2$ H von 1 Mol Furfurylidenessigsäure in der 10-fachen Gewichtsmenge Schwefelkohlenstoff und erwärmt einige Zeit (Gibson, Kahnweiler, Am. 12, 316). Prismen (aus Benzol oder Schwefelkohlenstoff). Unlöslich in Wasser, schwer löslich in Schwefelkohlenstoff und Benzol in der Kälte, leichter in der Wärme, leicht löslich in Alkohol und Äther. Zerfällt beim Erhitzen auf 130° in α-Brom- β -[5-brom-furyl-(2)]-acrylsäure (S. 301) und Bromwasserstoff. Beim Eintragen von Zinkstaub in die alkoh. Lösung entsteht β -[5-Brom-furyl-(2)]-acrylsäure (S. 301). Zerfällt beim Erwärmen mit Wasser auf 40° in Kohlendioxyd und β -Brom-α-[5-brom-furyl-(2)]-āthylen (Bd. XVII, S. 47).
- 2. $5-\ddot{A}thyl$ -furan-carbonsäure-(2) $C_7H_8O_3 = \frac{HC-CH}{C_2H_5 \cdot \overset{"}{C} \cdot O \cdot \overset{"}{C} \cdot CO_2H}$ [systematische Stammverbindung der 5- $\ddot{A}thyl$ -thiophen-carbonsäure-(2)].
- 5-Äthyl-thiophen-carbonsäure-(2) C₇H₈O₂S = HC—CH
 C₂H₅·C·S·C·CO₂H

 ester entsteht beim Kochen von 27 g 5-Jod-2-äthyl-thiophen (Bd. XVII, S. 40), 13 g Chlorameisensäureäthylester und 800 g 1% gem Natriumamalgam; man verseift ihn durch Kochen mit alkoh. Kali (Schleicher, B. 18, 3018). Farblose Krystalle (aus verd. Alkohol). F: 71°. Schwer löslich in kaltem Wasser, leicht in Alkohol und Äther. Wird durch alkal. Kaliumpermanganat-Lösung zu Thiophen-dicarbonsäure-(2.5) (S. 330) oxydiert. AgC₇H₇O₂S. Käsiger Niederschlag. Löslich in heißem Wasser. Ca(C₇H₇O₂S)₂ + 2¹/₂ H₂O. Seideglänzende Nadeln.
- 3. 2.4-Dimethyl-furan-carbonsäure-(3) C₇H₈O₃ = CH₃·C.—C·CO₂H HC·O·C·CH₃. B. Man versetzt 10 g Isodehydracetsäure (S. 409) mit 10 g Brom und 50 g Wasser und destilliert das abgesaugte Reaktionsprodukt mit Wasserdampf (Feist, B. 26, 755). Aus 4-Methyl-furan-carbonsäure-(3)-essigsäure-(2) (S. 332) durch Erhitzen über den Schmelzpunkt oder durch Kochen mit Wasser (Feist, Molz, B. 32, 1767; F., B. 35, 1551). Der Äthylester entsteht neben 2.5-Dimethyl-pyrrol-carbonsäure-(3)-äthylester und einer Verbindung C₇H₁₄O₄ (Bd. III, S. 653) beim Einleiten von Ammoniak in die äther. Lösung eines Gemisches von Acetessigester und Chloraceton; er wird durch Kochen mit alkoh. Kali verseift (F., B. 35, 1539, 1545). Nadeln (aus Wasser). F: 122°; sublimiert leicht in Blättchen; flüchtig mit Wasserdampf; leicht löslich in Alkohol, Äther (F., B. 26, 755) und heißem Wasser (F., B. 35, 1551). Elektrolytische Dissoziationskonstante k: 1,1×10⁻⁵ (Miolati, B. 26, 756). Liefert bei der Einw. von Bromwasser 5-Brom-4-methyl-furan-dicarbonsäure-(2.3)(?) (S. 331) (Treffiljew, Mangubi, Ж. 41, 881; C. 1909 II, 1874). Die Dämpfe färben einen mit Salzsäure befeuchteten Fichtenspan blaßgrün (F., B. 26, 755). Beim Erhitzen mit Zinkstaub entwickeln sich Dämpfe, die einem mit konz. Salzsäure befeuchteten Fichtenspan eine intensiv dunkelrote Färbung verleihen, die bald in Violett übergeht (F., B. 26, 756). AgC₇H₇O₃. Käsiger, lichtempfindlicher Niederschlag. Fast unlöslich in Wasser (F., B. 35, 1551). Ba(C₇H₇O₃)₂ + 6 H₂O. Krystallwarzen (F., B. 35, 1551).

Äthylester $C_9H_{19}O_3=OC_4H(CH_9)_2\cdot CO_2\cdot C_2H_5$. B. s. im vorangehenden Artikel. — Nicht rein erhalten. Kp_{10} : 97° (Feist, B. 35, 1545).

- 4. 3.5-Dimethyl-furan-carbonsäure-(2) $C_7H_8O_3 = \frac{HC-C\cdot CH_8}{CH_3\cdot C\cdot O\cdot C\cdot CO_2H}$ [systematische Stammverbindung der 3.5-Dimethyl-thiophen-carbonsäure-(2)].
- 3.5-Dimethyl-thiophen-carbonsäure-(2) $C_7H_8O_2S = \frac{HC-C\cdot CH_8}{CH_8\cdot C\cdot S\cdot C\cdot CO_3H}$. B. Beim Verseifen von 3.5-Dimethyl-thiophen-carbonsäure-(2)-amid (S. 297) mit alkoh. Kalilauge (Gattermann, Zelinsky, A. 244, 60). Nadeln (aus verd. Alkohol). F: 171—172°.

Amid C₇H₉ONS = SC₄H(CH₃)₂·CO·NH₂. B. Durch Eintragen von Aluminiumchlorid in ein Gemisch von 2.4-Dimethyl-thiophen (Bd. XVII, S. 40) und Carbamidsäurechlorid in Schwefelkohlenstoff (Gattermann, Zelinsky, A. 244, 59). — Nadeln (aus Wasser). F: 115—116°.

5. 2.5 - Dimethyl - furan - carbonsäure - (3), Pyrotritarsäure, Uvinsäure $HC \longrightarrow C \cdot CO_2H$ $C_7H_8O_2 = CH_2 \cdot C \cdot O \cdot C \cdot CH_2$. B. In geringer Menge bei der trocknen Destillation von Weinschaft $CH_2 \cdot C \cdot O \cdot C \cdot CH_3$

säure, neben Brenztraubensäure und anderen Produkten (WISLICENUS, STADNICKI, A. 146, 306). Bei anhaltendem Erhitzen von Brenztraubensäure unter Rückfluß auf etwas über 170°, neben anderen Produkten (Böttinger, B. 9, 671; A. 188, 303; Wolff, A. 317, 23). Bei 6-stdg. Kochen von 5 Tln. Brenztraubensäure mit 3 Tln. krystallisiertem Barythydrat in wäßr. Lösung, neben anderen Produkten (Böttinger, A. 172, 241; 208, 125). Mehr Pyrotritarsäure entsteht beim Erhitzen von Brenztraubensäure mit Essigsäureanhydrid und Natriumacetat (Bö., B. 13, 1969). Durch 36-stdg. Erwärmen von Brenztraubensäure mit wasserfreiem bernsteinsaurem Natrium auf 110° (FITTIG, PARKER, A. 267, 212). Der Athylester entsteht aus α-Acetonyl-acetessigsäure-äthylester (Bd. III, S. 754) durch Einw. von rauchender Salzsäure (PAAL, B. 17, 2765) oder, neben anderen Produkten, durch Einw. von Hydrazinhydrat auf die alkoh. Lösung (Korschun, B. 37, 2188). Der Äthylester entsteht ferner beim Kochen von Diacetbernsteinsäure-diäthylester mit verd. Schwefelsäure bis zur Beendigung der CO₁-Entwicklung, neben Carbopyrotritarsäure bezw. deren Monoäthylester (HARROW, A. 201, 145); man verseift den Pyrotritarsäure-äthylester durch Kochen mit Natronlauge (HAR.) oder durch kurzes Erhitzen mit alkoh. Kalilauge (PAAL). Pyrotritarsäure entsteht aus der Ketoform sowie auch aus der Enolform des Acetylangelicalactons (Bd. XVII, S. 448) durch Behandlung mit konz. Schwefelsäure (Knorr, A. 303, 140, 144). Bei vorsichtigem Erhitzen von Methronsäure (S. 333) (Polonowsky, A. 246, 14; Fittig, Hantzsch, B. 21, 3189; Fl., v. EYNERN, A. 250, 189) oder Carbopyrotritarsäure (HAR., A. 201, 158) über den Schmelzpunkt. Beim Destillieren des Silbersalzes des Carbopyrotritarsäure-monoäthylesters erhält man Pyrotritarsäure-äthylester (Knore, Cavallo, B. 22, 154). — Darst. Man erhitzt 1 Tl. Brenztraubensäure mit 1 Tl. trocknem Natriumacetat und 2 Tln. Essigsäureanhydrid 3 Stdn. lang auf 140°, gießt in Wasser, kocht die Flüssigkeit so lange mit Soda, bis alles Ol verschwunden ist, und säuert mit Schwefelsäure an (Bö., B. 13, 1969).

Krystallisiert aus heißem Wasser in farblosen Nadeln, aus Ather in Saulen. F: 134,5° (Wislicenus, Stadnicki, A. 146, 308), $134-135^{\circ}$ (Fittig, Hantzsch, B. 21, 3189), 135° (HARROW, A. 201, 148), 135-135,50 (KORSCHUN, B. 37, 2189). Sublimiert schon unterhalb des Schmelzpunktes in farblosen Nädelchen; mit Wasserdampf flüchtig (WI., St.; BÖTTINGER, A. 172, 242; Har.). Löslich in 400 Tln. siedendem Wasser, fast unlöslich in kaltem Wasser; leicht löslich in Alkohol, sehr leicht in Äther (WI., St.; vgl. Polonowsky, A. 246, 15). Unverändert löslich in kalter konzentrierter Schwefelsäure (Po.). — Pyrotritarsäure liefert bei rascher Destillation 2.5-Dimethyl-furan und Tetramethyluvinon C₁₄H₁₂O₄ (Syst. No. 2765) (Dietrich, Paal, B. 20, 1085). Wird von Chromsäuregemisch zu CO₂ und Essigsäure oxydiert (Bö., A. 172, 246). Verdünnte Salpetersäure oxydiert zu CO₂ und Oxalsäure (Bö., A. 172, 246), konz. Salpetersäure zu Essigsäure und Oxalsäure (Po.). Wird von Reduktionsmitteln nicht angegriffen (Wi., St., A. 146, 314; Bö., A. 172, 248; Paal, B. 17, 2766; D., Paal, B. 20, 4078). Satzt ment trocken Democratica Euro 24 Stell halfelden Firm and Democratica Europe 24 Stell halfelden Europe 25 Stell halfelden 25 Stell halfelden Europe 25 Stell halfelden Europe 25 Stell halfelden Europe 25 Stell halfelden 25 Stell halfelden 25 Stell halfelden 25 Stell halfelden 25 Stellen 25 B. 20, 1078). Setzt man trockne Pyrotritarsäure 24 Stdn. bei 15° der Einw. von Bromdampf aus, so erhalt man x.x.x.x-Tetrabrom-pyrotritarsaure (D., Paal, B. 20, 1078; Trefiljew, B. 41, 2546). Pyrotritarsaure liefert beim Erhitzen mit Wasser auf 150—160° Acetonylaceton (Paal, B. 17, 2766; 18, 58). Wird beim Schmelzen mit Atzkali nicht verändert (Bö., A. 208, 127). Bei der Einw. von Phosphorpentachlorid entsteht das entsprechende Säurechlorid, das beim Behandeln mit Wasser in Salzsäure und Pyrotritarsäure zerfällt (WI., Sr., A. 146, 313); beim Erhitzen von Pyrotritarsäure mit Phosphorpentachlorid und Phosphoroxychlorid auf 160—170° im Druckrohr entsteht eine Verbindung C7H4O2Cl2 (S. 298) (D., Paal, B. 20, 1082). Acetylchlorid wirkt bei 100° auf Pyrotritarsäure nicht ein (Bö., B. 18, 1969), ebensowenig Essigsäureanhydrid bei 270° (Paal, B. 17, 2766; D., Paal). — Erwärmt man etwas Pyrotritarsäure mit 2 Tropfen rauchender Salzsäure und fügt dann 6 Tropfen konz. Schwefelsäure hinzu, so entsteht eine kirschrote Färbung (HAR.).

NaC₇H₇O₃ + 2 H₂O. Farblose Krystalle (aus Wasser) (Harbow, A. 201, 149). — AgC₇H₇O₃. Prismen (BÖTTINGER, A. 172, 243), Nadeln (aus heißem Wasser) (FITTIG, v. EYNERN, A. 250, 191). Färbt sich am Licht gelb (Ha.). Färbt sich bei 80° sohwach gelbrot (FI., v. EY.) und zersetzt sich wenig oberhalb 100° unter Bildung von Pyrotritarsäure und metallischem Silber (Ha.). — Ca(C₇H₇O₃)₂ + 2 H₂O. Prismen (aus kaltem Wasser). Ziemlich sohwer löslich in kaltem Wasser (FITTIG, v. EYNERN, A. 250, 191; FI., FEIST, A. 250, 192). — Ca(C₇H₇O₃)₂ + 4 H₂O. Nadeln (aus heißem Wasser). Ziemlich sohwer löslich in kaltem Wasser (BÖ., A. 247, 255; FI., FEIST). Verliert das Krystallwasser bei 120° (BÖ., A. 172, 244). — Ba(C₇H₇O₃)₂ + 4 H₂O. Fettglänzende Blätter (BÖ., A. 247, 256; FI., v. EY.);

platte Nadeln (aus heißem Wasser) (F1., FEIST). Verliert das Krystallwasser bei 120° (F1., FEIST). Ziemlich leicht löslich in heißem, schwer in kaltem Wasser (F1., v. EY.). — Zn(C₇H₇O₈)₂ + 8 H₂O. Charakteristische Drusen. In kaltem Wasser leichter löslich als in siedendem (Bö., A. 172, 244).

Verbindung C₇H₈O₂Cl₂. B. Bei 1¹/₂—2-stdg. Erhitzen von 1 Tl. Pyrotritarsäure mit 4 Tln. Phosphorpentachlorid und 2 Tln. Phosphoroxychlorid im zugeschmolzenen Rohr auf 160—170⁵; man gießt in Eiswasser und extrahiert die Verbindung mit Äther (Dietrich, Paal, B. 20, 1082). — Gelbes, stechend riechendes Öl. Destilliert selbst im Vakuum nicht unzersetzt. Mischt sich mit Lösungsmitteln, außer mit Wasser. — Wandelt sich an feuchter Luft unter teilweiser Zersetzung in Pyrotritarsäure um. Unlöslich in kalter Natronlauge; löst sich darin beim Kochen unter völliger Zersetzung. Liefert in alkoh. Lösung beim Behandeln mit Kaliumjodid in Gegenwart von fein verteiltem Kupfer oder Silber Pyrotritarsäure-äthylester.

Pyrotritarsäure-methylester $C_8H_{10}O_3 = OC_4H(CH_3)_8 \cdot CO_2 \cdot CH_3$. B. Bei der Destillation des Silbersalzes des Carbopyrotritarsäure-monomethylesters (S. 335) (KNORR, CAVALLO, B. 22, 156). — Kp₇₅₉: 198^o (korr.).

Pyrotritarsäure äthylester C₉H₁₂O₃ = OC₄H(CH₃)₂·CO₂·C₂H₅. B. Aus dem Silbersalz der Pyrotritarsäure und Äthyljodid (Harrow, A. 201, 51). Beim Behandeln der aus Pyrotritarsäure und Phosphorpentachlorid entstehenden Verbindung C₇H₄O₂Cl₂ (s. o.) in alkoh. Lösung mit Kaliumjodid in Gegenwart von fein verteiltem Kupfer oder Silber (Dietrich, Paal, B. 20, 1082). Durch trockne Destillation des Silbersalzes des Carbopyrotritarsäuremonoäthylesters (S. 335) (Knorr, Cavallo, B. 22, 154). Weitere Bildungen ɛ. bei Pyrotritarsäure. — Anisähnlich riechendes Öl. Kp: 208—209° (Ha.), 214° (korr.) (K., C.). D^{3x,1}₄: 1,0478 (Brühl, J. pr. [2] 50, 142). n^{2x,1}_α: 1,4650; n^{2x,1}_γ: 1,4686; n^{2x,1}_γ: 1,4854 (Brühl). Läßt sich leicht zu Pyrotritarsäure verseifen (Paal, B. 17, 2765; Ha.).

X.X.X.Tetrabrom-pyrotritarsäure C₇H₄O₃Br₄ = C₆H₃OBr₄·CO₂H. B. Man setzt Pyrotritarsäure in dünnen Schichten 24 Stdn. lang im Exsiccator bei 15° der Einw. von Bromdampf aus (Dietrich, Paal, B. 20, 1078; vgl. Trefiljew, B. 41, 2546). — Chloroform-haltige Nadeln oder Spieße (aus Chloroform + Ligroin), die an der Luft unter Verlust von Chloroform matt werden; bei mehrtägigem Stehen in der Mutterlauge wandeln sie sich in große rhomboedrische chloroformfreie Krystalle um (D., P.). Krystallisiert aus Benzol in benzolhaltigen Prismen (D., P.). F: 161—162° (D., P.). Unlöslich in Wasser und Ligroin, leicht löslich in Alkohol, Äther, Eisessig, Chloroform, Schwefelkohlenstoff, Aceton und Benzol (D., P.). — Wird durch Natriumainalgam und Essigsäure in Pyrotritarsäure zurückverwandelt (D., P.). Liefert beim Eintragen in überschüssiges Brom Tetrabrompyrotritarsäure-tetrabromid (S. 265), beim Erhitzen mit überschüssigem Brom im zugeschmolzenen Rohr auf 100° x.x.x.x.x-Pentabrom-pyrotritarsäure (s. u.) (D., P.). Sehr unbeständig gegen Basen; verliert beim Lösen in Soda alles Brom als NaBr; ähnlich wirken Anilin und Phenylhydrazin (D., P.). Liefert mit Alkohol und Chlorwasserstoff keinen Ester (D., P.).

x.x.x.x-Pentabrom-pyrotritarsäure $C_7H_3O_3Br_5 = C_6H_2OBr_5\cdot CO_2H$. B. Aus x.x.x.x-Tetrabrom-pyrotritarsäure durch 1-stdg. Erhitzen mit überschüssigem Brom im zugeschmolzenen Rohr auf 100° (Dietrich, Paal, B. 20, 1082). — Blättchen (aus verd. Essigsäure). Erweicht bei 190° und schmilzt bei 197° . Leicht löslich in den üblichen Lösungsmitteln, außer in Wasser und Ligroin.

2.5-Dimethyl-thiophen-carbonsäure-(3) $C_7H_8O_3S = \frac{HC - C \cdot CO_2H}{CH_3 \cdot C \cdot S \cdot C \cdot CH_3}$. B. Durch 3-tägiges Kochen von 2.5-Dimethyl-thiophen-carbonsäure-(3)-aniid (s. u.) mit alkoh. Kallauge (Kitt, B. 28, 1811). — Farblose Nädelchen (aus Wasser). F: 117—118°. — Bromwasser erzeugt 4-Brom-2.5-dimethyl-thiophen-carbonsäure-(3).

Amid C₇H₂ONS = SC₄H(CH₃)₂·CO·NH₂. B. Man trägt allmählich 5 g Aluminium-chlorid in ein Gemisch von 4 g 2.5-Dimethyl-thiophen (Bd. XVII, S. 41), 4 g Carbamidsäure-chlorid und 60 g Schwefelkohlenstoff ein (KITT, B. 28, 1810). — Farblose Schüppchen (aus Benzol). F: 133—134°.

- 4-Brom-2.5-dimethyl-thiophen-carbonsäure-(3) $C_7H_7O_2BrS = {BrC C \cdot CO_2H \over CH_3 \cdot C \cdot S \cdot C \cdot CH_3}$ B. Aus 2.5-Dimethyl-thiophen-carbonsäure-(3) und Bromwasser (Kitt, B. 28, 1813). Krystalle (aus Benzol). F: 188—189°.
- 6. x.x-Dimethyl-furan-carbonsäure-(2), x.x-Dimethyl-brenzschleim-säure $C_7H_6O_5 = OC_4H(CH_5)_5$: CO_3H . B. Durch Oxydation des im Nelkenöl enthaltenen x.x-Dimethyl-furfurols (Bd. XVII, S. 296) mit Silberoxyd (Masson, $C.\tau$. 149, 796). Krystalle (aus Benzol). F: 129—130°.

4. Carbonsäuren $C_8H_{10}O_3$.

1. 5-Propyl-furan-carbonsäure-(2) $C_8H_{10}O_3 = \frac{HC-CH}{CH_3 \cdot CH_2 \cdot CH_2 \cdot C \cdot O \cdot C \cdot CO_2H}$ [systematische Stammverbindung der 5-Propyl-thiophen-carbonsäure-(2)].

5-Propyl-thiophen-carbonsäure-(2) $C_8H_{10}O_2S = \frac{HC-CH}{CH_3 \cdot CH_2 \cdot CH_2 \cdot C \cdot S \cdot C \cdot CO_2H}$ B. Durch mehrtägiges Erhitzen von 20 g 5-Jod-2-propyl-thiophen (Pd. XVII, S. 42) mit 10 g Chlorameisensäureäthylester und 500 g 1%-jegem Natriumamalgam und Verseifen des entstandenen Äthylesters mit alkoh. Kalilauge (RUFFI, B. 20, 1743). — Nädelchen (aus Wasser), Lamellen (aus verd. Alkohol). F: 57%.

2. 2-Methyl-5-äthyl-furan-carbonsäure-(3) $C_3H_{10}O_3 = \frac{HC - C \cdot CO_2H_1}{C_2H_5 \cdot C \cdot O \cdot C \cdot CH_3}$

B. Beim Erhitzen von Methylmethronsäure (S. 336) auf 240—250° (FITTIG, DIETZEL, A. 250, 205). — Nadeln (aus Wasser) oder Prismen. F: 98°. Sublimiert von 100° an. Mit Wasserdampf flüchtig. Schwer löslich in kaltem Wasser, leicht in Alkohol, Äther, Ligroin, Chloroform, Eisessig und Benzol. — Liefert bei längerem Kochen unter Kohlendioxydabspaltung 2-Methylstäthyl-furan (Bd. XVII, S. 43). Wird durch heiße verd. Mineralsäure verändert. Beim Kochen mit konzentrierter wäßriger oder alkoholischer Kalilauge entsteht Essigsäure. — AgC₈H₉O₃. Prismen (aus heißem Wasser). Schwärzt sich bei 100°. — Ca(C₈H₉O₃)₂ + 4 H₂O. Perlmutterglänzende Tafeln. Verliert das Krystallwasser bei 100°. Unlöslich in Alkohol. — Ba(C₈H₉O₃)₂ + 4 H₂O. Prismen oder Tafeln. Rhombisch pyramidal (LINCK, A. 250, 207; vgl. Groth, Ch. Kr. 5, 498). Verliert bei 80° das Krystallwasser und färbt sich orange.

Äthylester $C_{10}H_{14}O_3 = OC_4H(CH_3)(C_2H_5) \cdot CO_2 \cdot C_2H_5$. B. Aus 2-Methyl-5-äthyl-furancarbonsäure-(3) durch Sättigen der alkoh. Lösung mit Chlorwasserstoff (FITTIG, DIETZEL, A. 250, 209). — Anisähnlich riechendes Öl. Kp: 218—219°. Flüchtig mit Wasserdampf. Leicht löslich in den gebräuchlichen Lösungsmitteln, außer Wasser. — Wird durch Wasser sehr langsam und unvollständig, durch alkoh. Kali sehr rasch verseift.

- 3. 3.4.5 Trimethyl furan carbonsäure (2) $C_8H_{10}O_3 = \frac{CH_3 \cdot C C \cdot CH_3}{CH_3 \cdot C \cdot C \cdot C \cdot CO_2H}$ [systematische Stammverbindung der 3.4.5-Trimethyl-thiophen-carbonsäure-(2)].
- 3.4.5 Trimethyl thiophen carbonsäure (2) $C_8H_{10}O_2S = \frac{CH_3 \cdot C C \cdot CH_3}{CH_3 \cdot C \cdot S \cdot C \cdot CO_2H}$. B. Durch Verseifen von 3.4.5-Trimethyl-thiophen-carbonsäure (2)-amid (s. u.) (Gattermann, Zelinsky, A. 244, 60). Nadeln (aus Alkohol). F: 207—208°.

Amid $C_3H_{11}ONS = SC_4(CH_3)_3 \cdot CO \cdot NH_2$. B. Durch Eintragen von Aluminiumchlorid in ein Gemisch von 2.3.4-Trimethyl-thiophen (Bd. XVII, S. 43), Carbamidsäurechlorid und Schwefelkohlenstoff (G., Z., A. 244, 60). — Krystalle (aus Wasser). F: 146—147°.

5. α -Äthyl- β -[α -furyl]-propionsäure, α -Furfuryl-buttersäure $C_9H_{11}O_3=\frac{HC-CH}{HC\cdot O\cdot C\cdot CH_2\cdot CH(C_2H_5)\cdot CO_2H}^2$). B. Durch Reduktion von α -Äthyl- β -[α -furyl]-acrylsäure (S. 302) in wäßr. Suspension mit Natriumamalgam (BAEYER, TÖNNIES, B. 10, 1364; T., B. 12, 1200). — Farbloses Öl. — Geht beim sukzessiven Behandeln in wäßr. Suspension mit Brom und Silberoxyd in "Butyrofuronsäure") (Bd. III, S. 828) über (T., B. 12, 1201).

¹⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] wurde von REICHSTEIN, GRÜSSNER, Helv. chim. Acta 16, 6 diese Konstitution bewiesen.

³) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von Carter, Am. Soc. 50, 2299.

³⁾ Für "Butyrofuronsäure" wurde nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von CARTER, Am. Soc. 50, 2301 die Konstitution einer γ-Ο xo-α-heptylen-α.ε-dicarbonsäure HO₂C·CH:CH·CO·CH₂·C(C₂H₅)·CO₂H bewiesen.

4. Monocarbonsäuren $C_nH_{2n-8}O_3$.

1. β -[α -Furyl]-acrylsäure, Furfurylidenessigsäure ("Furfuracrylsäure") $C_7H_6O_3=\frac{HC}{HC\cdot O\cdot C\cdot CH\cdot CH\cdot CO_sH}$.

a) Stabile β-[α-Furyl]-acrylsäure C₇H₆O₃ = OC₄H₃·CH:CH·CO₂H. B. Beim Kochen von Furfurol mit wasserfreiem Natriumacetat und Essigsäureanhydrid (Baeyer, B. 10, 357). Beim Erhitzen von β-[α-Furyl]-acrolein (Bd. XVII, S. 305) mit Silberoxyd und Wasser auf dem Wasserbad (Schmidt, B. 13, 2344). Neben Glycin beim Kochen von Furfurylidenacetyl-glycin (s. u.) mit starkem Barytwasser (Jaffé, Cohn, B. 20, 2315). Neben labiler β-[α-Furyl]-acrylsäure (S. 301) bei kurzem Kochen von 10 g Furfurylidenmalonsäure (S. 337) mit 16 g Essigsäureanhydrid (Liebermann, B. 27, 284, 286; vgl. Marckwald, B. 21, 1081). Beim Erhitzen äquimolekulærer Mengen Furfurol, Malonsäure und alkoh Ammoniak auf dem Wesserbad (Knoenenager, R. 31, 2644). Die mit 0.05—0.08 g und alkoh. Ammoniak auf dem Wasserbad (Knoevenagel, B. 31, 2614). Die mit 0,05-0,08 g Jod versetzte Lösung von 0,8 g labiler Furfuracrylsäure in 10 cm³ Benzol scheidet an der Sonne rasch die stabile Saure aus (L., B. 28, 1444). — Darst. Man erhitzt 1 Tl. Furfurol mit 2 Tln. wasserfreiem Natriumacetat und 2 Tln. Essigsäureanhydrid 11 Stdn. auf ca. 150° (MAROKWALD, B. 20, 2812; vgl. Gibson, Kahnweiler, Am. 12, 314). — Nadeln (aus Wasser). Ist vollkommen geruchlos (J., C.). F: 141° (L., B. 27, 286), 140° (J., C.; M., B. 20, 2812). Sublimierbar (M., B. 20, 2812). Sublimiert im Hochvakuum bei ca. 1120 (L., RIBER, B. 33, 2402). Siedet bei raschem Erhitzen bei 255—265° in kleiner Menge unzersetzt (L., B. 27, 287); Kp: 286° (M., B. 20, 2812; 21, 1398 Anm.). Leicht mit Wasserdampf flüchtig (B.). Löslich in ca. 500 Tln. kaltem Wasser, leichter in heißem (B.). 100 cm³ der gesättigten Lösung in Benzol enthalten bei 19° 1,14 g Säure (L., B. 27, 286; vgl. B. 28, 132). Sehr schwer löslich in Schwefelkohlenstoff und Ligroin, ziemlich leicht in Alkohol, leicht in Äther, Eisessig und Benzol (M., B. 20, 2812). Wird von konz. Salzsäure mit grüner Farbe gelöst (B.). Löslich in konz. Schwefelsäure mit grünbrauner Farbe (Sch.). Verbrennungswärme bei konstantem Volumen: 757,3 kcal/Mol (STOHMANN, B. 28, 134). Elektrolytische Dissoziationskonstante k bei 25°: 3,25·10⁻⁵ (St.). Das Piperidinsalz ist in Benzol viel leichter löslich als das Salz der labilen β -[α -Furyl]-acrylsäure (L., B. 28, 131). — Bei langsamer Destillation größerer Mengen oder beim Kochen unter Rückfluß entsteht α-Furyl-athylen (Bd. XVII, S. 47) (L., B. 27, 286). β -[α -Furyl]-acrylsäure gibt bei der Reduktion mit Natriumamalgam in wäßr. Lösung β -[α -Furyl]-propionsäure (S. 295) (B.). Liefert mit trocknem Brom in Schwefelkohlenstoff a.ß-Dibrom-ß-[5-brom-furyl-(2)]-propionsäure (S. 296) (G., Ka.). Zerfällt beim Schmelzen mit Kali in Essigsäure und Brenzschleimsäure (M., B. 20, 2812). Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von β -[α -Furyl]-acrylsäure entsteht Hydrochelidonsäure-diäthylester (Bd. III, S. 806) (M., B. 20, 2813; vgl. Volhard, A. 253, 235). Geschwindigkeit der Veresterung mit methylalkoholischer Salzsäure: Sudborough, Roberts, Soc. 87, 1847. — $AgC_7H_5O_9$. Niederschlag. Fast unlöslich in Wasser (J., C.). — Bariumsalz. In Wasser und Alkohol sehr leicht löslich (J., C.).

Methylester $C_8H_8O_3 = OC_4H_3 \cdot CH : CH \cdot CO_2 \cdot CH_3$. B. Beim Behandeln des Silbersalzes der stabilen Form der $\beta \cdot [\alpha \cdot Furyl]$ -acrylsäure mit überschüssigem Methyljodid (Gibson, Kahnweiler, Am. 13, 315). — Krystalle. F: 27°. Kp_{774} : 227—228°; Kp_{15} : 112°. Leicht löslich in Alkohol, Äther, Ligroin und Benzol.

Äthylester $C_9H_{10}O_3=OC_4H_3\cdot CH\cdot CH\cdot CO_3\cdot C_2H_5$. B. Entsteht in schlechter Ausbeute bei 4-stdg. Erhitzen von 4 Tln. β -[α -Furyl]-acrylsäure mit 4 Tln. Alkohol und 1 Tl. konz. Schwefelsäure auf dem Wasserbad (Marchwald, B. 21, 1404). — Darst. Man versetzt 6 Mol auf 0° gekühlten Essigester mit 1 Atom Natrium und dann tropfenweise mit 1 Mol Furfurol; sobald alles gelöst ist, läßt man die Lösung einige Stunden bei Zimmertemperatur stehen und fügt dann 1 Mol Eisessig und schließlich Wasser zu (Claisen, B. 24, 144). — Flüssig. Kp: 228° bis 230° (M.), 233—236° (Cl.). Unlöslich in Wasser, mischbar mit Alkohol und Äther (M.). — Gibt bei der Verseifung stabile β -[α -Furyl]-acrylsäure (M.; Cl.).

Amid $C_7H_7O_2N = OC_4H_2 \cdot CH \cdot CH \cdot CO \cdot NH_2$. B. Aus β -[α -Furyl]-acrylsäure-methylester und konzentriertem wäßrigem Ammoniak im Einschlußrohr bei 100° (Gibson, Kahnweiler, Am. 12, 315). — Schuppen (aus Wasser). F: 168—169°. Wenig löslich in kaltem Wasser.

Furfurylidenacetyl-glycin ("Furfuracrylursäure")C₂H₂O₄N = OC₄H₃·CH:CH·CO·NH·CH₂·CO₂H. B. Tritt im Harn von mit Brot und Milch gefütterten Hunden auf, denen eine ca. 7° (age Furfurol-Lösung subcutan injiziert wird (Jaffé, Cohn, B. 20, 2315). Erscheint auch im Harn von Kaninchen, denen β -[a-furyl]-acrylsaures Natrium subcutan injiziert wird (J., C.). — Nadeln (aus Wasser). Bräunt sich bei ca. 208° und schmilzt bei 213—215°. Sehr schwer löslich in Wasser, schwer in Äther, ziemlich leicht in Alkohol.

Löst sich in Salzsäure mit dunkelgrüner Farbe. — Zerfällt beim Kochen mit starkem Barytwasser in Glycin und β -[α -Furyl]-acrylsäure. — AgC₀H₂O₄N. Nadeln.

- b) Labile β -[α -Furyl]-acrylsäure, Allo- β -[α -furyl]-acrylsäure $C_7H_0O_3$ = $OC_4H_3 \cdot CH \cdot CO_2H$. B. Neben der stabilen Form bei kurzem Kochen von 10 g Furfurylidenmalonsäure (S. 337) mit 16 g Essigsäureanhydrid (Liebermann, B. 27, 286). Man reinigt die Säure durch Krystallisation ihres Piperidinsalzes aus Benzol (L., B. 28, 131). Prismen und Tafeln. Monoklin prismatisch (Fock, B. 28, 1443 Anm. 2; Z. Kr. 29, 286; vgl. Groth, Ch. Kr. 5, 499). F: 103— 104° (L., B. 28, 131). Sublimiert im Hochvakuum bei 95° (L., Riber, B. 38, 2402). Leicht löslich in heißem, wenig in kaltem Wasser (L., B. 28, 132). 100 Tle. der gesättigten Lösung in Benzol enthalten bei 19° 6 Tle. Säure (L., B. 28, 132). Lagert sich beim Sieden in die stabile Form um unter teilweisem Zerfall in α -Furyl-äthylen und Kohlendioxyd (L., B. 28, 132). Wandelt sich in Benzol-Lösung bei Gegenwart von etwas Jod im Sonnenlicht rasch in die stabile Form um (L., B. 28, 1444). Das Piperidinsalz ist in Benzol viel weniger löslich als das Salz der stabilen β -[α -Furyl]-acrylsäure (L., B. 28, 131). Geschwindigkeit der Veresterung mit methylalkoholischer Salzsäure: Sudborough, Roberts, Soc. 87, 1847.
- c) Substitutions produkte und Schwefelanaloga der β -fa-Furylj-acrylsäuren $C_7H_6O_3=OC_4H_3\cdot CH\cdot CO_2H$.
- α-Chlor- β -[α-furyl]-acrylsäure $C_7H_5O_3Cl = OC_4H_3 \cdot CH \cdot CCl \cdot CO_2H$. B. Bei mehrtägigem Erhitzen von α-Chlor- β -[α-furyl]-acrolein (Bd. XVII, S. 305) mit frisch gefälltem, feuchtem Silberoxyd (ΜΕΗΝΕ, B. 21, 426). Krystallbüschel (aus Wasser). Schmilzt nach vorangehendem Sintern bei ca. 142°. Löslich in heißem Wasser, Alkohol und Äther, unlöslich in Ligroin.

 $\beta\text{-[5-Brom-furyl-(2)]-acrylsäure}^1) \ C_7H_5O_3\text{Br} = \frac{\text{HC}-\text{CH}}{\text{Br}^{\circ}\text{C}\cdot\text{O}\cdot\text{CH}\cdot\text{CH}\cdot\text{CO}_2\text{H}}. \quad B. \ \text{Beim}$ Eintragen von Zinkstaub in eine alkoh. Lösung von $\alpha.\beta\text{-Dibrom-}\beta\text{-[5-brom-furyl-(2)]-propionsäure}$ (S. 296) (Gibson, Kahnweiler, Am. 12, 319). — Prismen. F: 176—177°. Leicht löslich in Alkohol und Äther, schwer in kaltem Benzol und kaltem Chloroform, unlöslich in Ligroin. — NaC₇H₄O₃Br. Nadeln. Leicht löslich in Wasser. — AgC₇H₄O₃Br. Amorpher Niederschlag. Fast unlöslich in Wasser. — Ca(C₇H₄O₃Br)₂ + 3H₂O. Tafeln. Schwer löslich in kaltem Wasser. — Ba(C₇H₄O₃Br)₂ + H₃O. Nadeln. Schwer löslich in kaltem Wasser.

Äthylester $C_9H_9O_3Br = OC_4H_2Br \cdot CH \cdot CH \cdot CO_3 \cdot C_3H_5$. B. Bei 2—3-stdg. Erhitzen von 5 Tln. β -[5-Brom-furyl-(2)]-acrylsäure mit 6,5 Tln. absol. Alkohol und 3 Tln. konz. Schwefelsäure auf dem Wasserbad (G., K., Am. 12, 322). — Prismen (aus Ligroin). F: 42°. Kp₁₄: 151—152°. Leicht löslich in Alkohol, Äther, Chloroform, Benzol und Ligroin.

α-Brom-β-[5-brom-furyl-(2)]-acrylsäure $C_7H_4O_3Br_2=\frac{HC-CH}{Br_0^2\cdot O\cdot C\cdot CH:CBr\cdot CO_3H}$. Beim Erhitzen von α.β-Dibrom-β-[5-brom-furyl-(2)]-propionsäure (S. 296) auf 130° (G., K., Am. 12, 323). — Nadeln (aus verd. Alkohol). F: 178—179°. Unlöslich in Wasser, sehr schwer löslich in kaltem Chloroform und Schwefelkohlenstoff, reichlich löslich in Alkohol und Äther. — KC₂H₂O₂Br₂. Nadeln. Wenig löslich in kaltem Wasser. — AgC₇H₂O₂Br₂. Amorpher Niederschlag. Schwer löslich in siedendem Wasser. — Ba(C₇H₃O₃Br₂)₂ + 2H₂O. Schuppen. Sehr schwer löslich in kochendem Wasser.

Äthylester $C_9H_8O_3Br_9=OC_4H_9Br\cdot CH:CBr\cdot CO_2\cdot C_2H_5$. B. Bei 3-stdg. Erhitzen von 4 Tln. α -Brom- β -[5-brom-furyl-(2)]-acrylsäure mit 40 Tln. absol. Alkohol und 3 Tln. konz. Schwefelsäure auf dem Wasserbad (G., K., Am. 12, 324). — Nadeln (aus Ligroin). F: 55—56°. Leicht löslich in Alkohol, Äther, Chloroform, Benzol, Ligroin und Schwefelkohlenstoff.

β-[α-Thienyl] - acrylsäure, [α-Thenyliden] - essigsäure $C_7H_6O_2S=HC-CH$ B. Man erhitzt 3 Tle. α-Thiophenaldehyd (Bd. XVII, S. 285) HC·S·C·CH:CH·CO₂H B. Man erhitzt 3 Tle. α-Thiophenaldehyd (Bd. XVII, S. 285) Hit 10 Tln. Essigsäureanhydrid und 4 Tln. wasserfreiem Natriumacetat ca. 7 Stdn. zum gegelinden Sieden (Biedermann, B. 19, 1855). — Nadeln (aus Wasser). F: 138° (B.), 144—145° (Cohn, H. 17, 283). Fast unlöslich in kaltem Wasser, löslich in siedendem, leicht löslich in den üblichen organischen Lösungsmitteln (B.). — $AgC_7H_5O_2S$. Niederschlag (B.).

¹⁾ Die schon von GIBSON, KAHNWEILER, Am. 12, 325 angenommene Konstitution ist nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von GILMAN, WRIGHT, R. 49, 195 durch eine einwandfreie Synthese bestätigt worden.

2. Carbonsauren C.H.O.

- 1. β -fa-Furyl]-methacrylsäure, α -Furfuryliden-propionsäure $C_8H_8O_3=HC--CH$ B. Durch Oxydation von a-Furfuryliden-propionaldehyd $HC \cdot O \cdot C \cdot CH : C(CH_3) \cdot CO_2H$ (Bd. XVII, S. 307) mit Silberoxyd (Schmidt, B. 14, 575). — Blättchen (aus heißem Wasser). Sublimiert in Nadeln. F: 107°. Löslich in konz. Schwefelsäure mit roter Farbe.
- 2. \(\beta [5-Methyl-furyl-(2)] acrylsäure, \([5-Methyl-furfuryliden] essig-\) **Relative $C_8H_8O_3 = \frac{110^{-1}}{HO_2C \cdot CH \cdot CH \cdot C \cdot O \cdot C \cdot CH_3}$. Bei mehrstündigem Kochen von 5-Methylfurfurol (Bd. XVII, S. 289) mit Essigsäureanhydrid und wasserfreiem Natriumacetat (MAQUENNE. A. ch. [6] 22, 87). — Nadeln. F: 157°. Sehr wenig löslich in kaltem Wasser, leichter in neißem, leicht lö lich in Alkohol und Äther.
- 3. α -Äthyl- β -[α -furyl]-acrylsäure, α -Furfuryliden-buttersäure HC —CH $\operatorname{C}_0H_{10}O_3=\frac{\operatorname{HC}\cdot\operatorname{O}\cdot\operatorname{C}\cdot\operatorname{CH}:\operatorname{C}(\operatorname{C}_2H_5)\cdot\operatorname{CO}_2H}{\operatorname{HC}\cdot\operatorname{O}\cdot\operatorname{C}\cdot\operatorname{CH}:\operatorname{C}(\operatorname{C}_2H_5)\cdot\operatorname{CO}_2H}^1$). B. Bei 12-stdg. allmählichem Erwärmen eines Gemenges von Furfurel mit Natriumbutyrat und Buttersäureanhydrid von 100° auf 180° (BAEYER, TÖNNYES, B. 10, 1364). Nadeln. $F\colon 87-88°$ (B., T.). Natriumamalgam reduziert z i α -Äthyl- β -[α -furyl]-propionsäure (S. 299) (B., T.; TÖNNYES, B. 12, 1200).

5. Monocarbonsäuren C_nH_{2n-10}O₃.

1. Carbonsäuren C₀H₈O₃.

- 1. δ - $[\alpha$ -Furyl]- α . γ -butadien- α -carbonsäure, γ -Furfuryliden-crotonsäure: HC-CH $C_{\nu}H_{\delta}O_{3} = HC \cdot O \cdot C \cdot CH \cdot CH \cdot CH \cdot CO_{2}H$. B. Durch 5-sidg. Kochen von 1 Tl. β - $[\alpha$ -Furyl]acrolein (Bd. XVII, S. 305), 1 Tl. geschmolzenem essigsaurem Natrium und 2 Tln. Essigsaureanhydrid (Röhmfr, B. 31, 284). — Blaßgelbe Nadeln (aus Wasser). F: 153—154°. Leicht löslich in den gewöhnlichen Lösungsmittein.
- γ-Chlor-δ-[α-furyl]-α.γ-butaðien-α-carbonsäuro, γ-Chlor-γ-furfuryliden-croton-säure $C_0H_7O_3Cl = OC_4H_3\cdot CH:CCl\cdot CH:CH\cdot CO_2H$. B. Bei 3-stdg. Kochen von 4 Tln. α-Chlor-β-[α-furyl]-acrolein (Bd. XVII, S. 305) mit 3 Tln. wasserfreiem Natriumacetat und 5 Tln. Escigsäureanhydrid (ΜΕΗΝΕ, B. 21, 427). Hellgelbe Nädelchen (aus vcrd. Alkohol). F: 168°. Löslich in Alkohol, Äther, Benzol und Chloroform, unlöslich in Ligroin. $Cu(C_0H_0O_3Cl)_2$. Grüner Niederschlag. Schwer löslich in heißem Wasser, löslich in Ammoniak mit tiefblauer Farbe.
- 2. α -Pheny: $-\ddot{\alpha}$ thylenoxyd- α' -carbonsäure, $\alpha.\beta$ -Oxido- β -phenyl-propionsäure, β -Phenyl-glycidsäure $C_9H_8O_3=C_eH_5\cdot HC-\frac{CH\cdot CO_2H}{C}$.
- $\textbf{b)} \quad \textit{Linksdrehende} \quad \beta \textit{Phenyl-glycidsäure} \quad C_9 H_8 O_3 = C_6 H_5 \quad HC \underbrace{O} C H \cdot CO_2 H.$ L. Das Natriumsalz entsteht durch Einw. von Natronlauge auf rechtsdrehende α-Chlor- β -oxy- β -phenyl-propionsäure (Bd. X, S. 249) (ERLENMEYER jun., B. 39, 789) oder auf rechtsdrehe ide α -Brom- β -oxy- β -phenyl-propionsäure (Bd. X, S. 249) (Erl. jun., A. 271, 160). — Durch Einw. von Chlorwasserstoff auf das Natriumsalz entsteht linksdrehende β -Chlora-oxy- β -phenyl-propionsäure (Bd. X, S. 256) (Erl. jun., B. 39, 790). — Natriumsalz. $[\alpha]_{\rm p}$: -157,9° (ERL. jun., B. 39, 790).
- b) Inakt. β -Phenyl-glycidsäure $C_9H_8O_3 = C_6H_5 \cdot HC_{O}$ -CH $\cdot CO_2H$. Zur Konfiguration vgl. Boeseken, R. 41 [1922], 199, 205. — B. Beim Behandeln von inakt. α -Chlor- β -oxy β -phenyl-propionsäure (Bd. X, S. 250) mit alkoh. Kali- oder Natronlauge (Glaser, A. 147, 98; vg¹. Erlenmeyer sen., B. 13, 306; Erl. jun., A. 271, 150) oder mit wäßr. Natron-

¹⁾ So formuliert auf Grund der nach dem Literatur Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von CARTER, Am. Soc. 50, 2299.

lauge (Erl. sen., Lipp, A. 219, 182; Lipp, B. 16, 1286). Aus inskt. α-Brom-β-oxy-β-phenyl-propionsäure (Bd. X., S. 250) durch Behandeln mit alkoh. Kali- oder Natronlauge (Glasber, A. 147, 99) oder mit überschüssiger Sodalösung (Erl. sen., B. 13, 308). Aus inskt. α-J.-J. β-oxy-β-phenyl-propionsäure (Bd. X., S. 252) bei gelinden Erwärmen mit der äquimolekularen Menge Soda in Wasser (Erl. sen., A. 289, 280). Beim Eintragen von inskt. β-Chlor-α-oxy-β-phenyl-propionsäure (Bd. X., S. 257) in überschüssige Natronlauge (1:3) (Erl. jun., A. 271, 153). Neben Phenylbrenztraubensäure und viel Harz aus der höherschmelzenden Form der inskt. β-Brom-α-oxy-β-phenyl-propionsäur- (Bd. X., S. 257) mit alkol. Kalilauge (Plouk, B. 16, 2821; vgl. Erl., jun., A. 271, 149). Der Äthylester entsteht neben dem Natrianisalz durch Eintragen von Natriam in die äther. Lösung von Chloressigsäureäthylester und Zusatz von Benzaldehyd und etwas absol. Alkohol zu dem Gemisch; man verseitt den Ester mit Natronlauge (Erl., jun., A. 271, 161). — Darst. Aus Zimtsäure durch Behandlung mit unterbromiger Säure, Zusatz von Kullauge und Zersetzen des entstandenen Kaliumsslzes mit verd. Schwefelsäure bei 0° (H. Erdmann, D. R. P. 107228; Frdl. 5, 881; DIECKMANN, B. 43 [1910], 1035). — Prismen. F: 83—84° (Zers.) (H. Erd.); D.). 1st bei gewöhnlicher Temperatur vollkommen beständig (D.). Schwer löslich in Wasser (H. Erd.). – Liefert beim Erhitzen Phenylacetaldehyd (H. Erd.). Beim Erhitzen mit verd. Schwefe saure entstehen Phenylacetaldehyd und die beiden inakt. β-Phenyl-glycerinsäuren vom Schmelzpunkt 120° bis 121° und 141° (Bd. X, S. 426, 427) (Erd. sen., L.; t.; vgl. Plöcht. B. Mayer, B. 30, 1601, 1607; Rheer, B. 41, 2413). Bei Einw. von trocknem Chlorwasserstoff auf das mit absol. Äther oder Chloroform übergossene Natriumsalz der Säure entsteht inakt. β-Chlor-α-oxy-β-phenyl-propionsäure (Erl. jun., B. 33, 3002). Bei der Einw. von Ammoniak auf das Natriumsalz entsteht β-Phenyl-isoserin (Bd. XIV, S. 624) (Erl. jun., A. 271, 155; R. 39, 792). Das Natriumsalz r

β-Phenyl-glycidsäure-äthylester $C_{11}H_{12}O_3 = C_6H_5 \cdot HC_{-2} \cup CH \cdot CO_2 \cdot C_2H_6$. B. Durch Einw. von Äthyljodid auf das Silbersalz der β-Phenyl-glycidsäure (Glaser, A. 147, 104). Neben inakt. α-Chlor-β-oxy-β-phenyl-propionsäure-dimethylamid und β-Dimethylamino-α-oxy-β-phenyl-propionsäure-dimethylamid beim Erhitzen von (nicht näher beschriebenem) inakt. ι -Chlor-β-oxy-β-phenyl-propionsäure-äthylester mit Dimethylamin in Benzol (Fourneau, B!. [4] 1, 553, 556; vgl. Knoop, B. 52, 2266; Oesterlin, C. 1929 II, 1398). Eine weitere Bildung s. im vorangehenden Artikel. — Flüssig. Siedet nicht unzersetzt bei 279,5° (korr.) (G.). — Wird beim Kochen mit Barytwasser zersetzt unter Bildung von Barium-carbonat (G.). Liefert bei Behandlung mit Natriumamalgam inakt. β-Oxv-β-phenyl-propionsäure (Bd. X, S. 249) (Plöchl, B. 16, 2823). Geht bei der Einw. von überschüssigem Dimethylamin vollständig in β-Dimethylamino-α-oxy-β-phenyl-propionsäure-dimethylamid (Bd. XIV, S. 624) über (F.).

Anthroxanaldehyd $C_6H_4 \subset N$ (Syst. No. 4279) (Schillinger, Wleügel, B. 16, 2222). Liefert beim Behandeln mit rauchender Salzsäure β -Chlor- α -oxy- β -[2-nitro-phenyl]-

propionsäure (L.), beim Aufbewahren mit rauchender Bromwasserstoffsäure inakt. 3-Broma-oxy-\(\beta\)-[2-nitro-phenyl]-propionsaure (Bd. X, S. 258), Indigo, eine Verbindung C₂H₂O₂NBr(?) (s. u.) und andere Produkte (M.; vgl. L.). Liefert mit Anilin in Gegenwart von Sodalösung β -Anilino-α-oxy- β -[2-nitro-phenyl]-propionsäure (Bd. XIV, S. 625) (E., G.). — NH₄C₂H₄O₂N + H₂O. Krystalle. Sehr schwer löslich in Wasser oder Alkohol (M.). — AgC₂H₄O₂N. Weißer, krystallinischer Niederschlag (B.). — $Ba(C_9H_4O_5N)_2 + H_2O$. Nädelchen (aus Wasser). Unlöslich in absol. Alkohol (E., G.).

Verbindung $C_8H_6O_2NBr(?)$, vielleicht α -Brom- α -[2-nitro-phenyl]-äthylen $O_9N \cdot C_8H_6 \cdot CBr$: $CH_8 \cdot CBr$

Chloroform, Ather und Schwefelkohlenstoff, leichter in Alkohol.

 β - [2 - Nitro - phenyl] - glycidsäure - methylester $C_{10}H_{\bullet}O_{5}N = O_{2}N \cdot C_{6}H_{\bullet} \cdot HC$ CH $\cdot CO_{2} \cdot CH_{3}$. B. Man sättigt die methylalkoholische Lösung von β -[2-Nitro-phenyl]-glycidsäure mit Chlorwasserstoff, läßt erkalten und erhitzt kurze Zeit zum Sieden (EINHOEN, GERNSHEIM, A. 284, 136). — Nädelchen (aus Ligroin). F: 65°.

 β -[4-Nitro-phenyl]-glycidsäure $C_0H_2O_0N = O_0N \cdot C_0H_4 \cdot HC_{\bigcirc \bigcirc \bigcirc}CH \cdot CO_0H$. B. Entsteht neben (nicht näher beschriebenem) ω -Chlor-4-nitro-styrol und α -Chlor- β -oxy- β -[4-nitrophenyl]-propionsaure bei der Einw. von Natriumhypochlorit (erhalten durch Einleiten von Chlor in Sodalösung) auf 4-nitro-zimtsaures Natrium (ERLENMEYER sen., B. 14, 1868). Aus 1 Mol α-Chlor-β-oxy-β-[4-nitro-phenyl]-propionsäure beim Erwärmen mit 1 Mol Sodalösung oder beim allmählichen Versetzen mit 2 Mol alkoh. Kali (LIPP, B. 19, 2644). Entsteht auch glatt beim Behandeln von β -Chlor- α -oxy- β -[4-nitro-phenyl]-propionsaure mit alkoh. Kali (L.). — Blättchen. Schmilzt unter völliger Zersetzung bei 186—188° (L.). Schwer löslich in kochendem Wasser und in kaltem Alkohol (L.). — Geht durch Kochen mit verd. Schwefelsaure in β -[4-Nitro-phenyl]-glycerinsaure (Bd. X, S. 428) über (L.). Verbindet sich mit rauchender Salzsäure zu β -Chlor- α -oxy- β -[4-nitro-phenyl]-propionsäure (L.).

 $\begin{array}{ll} \beta\text{-[5-Chlor-2-nitro-phenyl]-glyoidsäure} & C_0H_6O_5NCl = \\ O_2N\cdot C_6H_3Cl\cdot HC \overbrace{O} CH\cdot CO_2H. & B. & \text{Man schüttelt [5-Chlor-2-nitro-α-oxy-benzyl]-aceton} \end{array}$ mit einer 70—80° warmen Natriumhypochloritlösung, kühlt schnell ab, sobald die Chloroform-Entwicklung aufgehört hat, filtriert, übersättigt das Filtrat mit Schwefeldioxydlösung und läßt 12 Stdn. stehen (Eichengrün, Einhorn, A. 262, 148; Einh., Gernsheim, A. 284, 133, 140). Bei der Oxydation der Acetaldehydverbindung des 5-Chlor-2-nitro-β-oxy-hydrozimtaldehyds (Bd. VIII, S. 109) mit Natriumhypochloritlösung (Eich., Einh., A. 262, 168). — Tafelchen (aus verd. Alkohol). Monoklin prismatisch (EICH., EINH., A. 262, 149; Z. Kr. 23, 470; vgl. Groth, Ch. Kr. 4, 587). F: 156° (Zers.); unlöslich in Ligroin, leicht löslich in Alkohol, Äther, Chloroform und Aceton, schwer in warmem Wasser (Eich., Einh., A. 262, 149). Löst sich in konz. Schwefelsäure und in heißer Kalilauge mit roter Farbe (Eich., Einh., A. 262, 149). -KC₂H₂O₃NCl. Nadeln (aus verd. Alkohol). Sehr leicht löslich in Wasser, unlöslich in absol. Alkohol (Eich., Einh., A. 262, 150). — Silbersalz. Nädelchen. Sehr wenig löslich in Wasser (Eich., Einh., A. 262, 151). — Kupfersalz. Hellgrüne Warzen. Leicht löslich in Ammoniak mit dunkelblauer Farbe (Eich., Einh., A. 262, 151). — Calciumsalz. Schwer löslich in heißem Wasser (Eich., Einh., A. 262, 151). — Bariumsalz. Nädelchen (aus heißem Wasser). Unlöslich in absol., leicht löslich in verd. Alkohol (Eich., Einh., A. 262, 151).

Äthylester $C_{11}H_{10}O_5NCl = O_2N \cdot C_6H_3Cl \cdot HC - CH \cdot CO_2 \cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von β -[5-Chlor-2-nitro-phenyl]-glycidsäure (Eighengrün, Einhorn, A. 262, 151). — Warzen (aus Ligroin). F: 110°. Leicht löslich in den gebräuchlichen Lösungsmitteln außer in Wasser.

 $\beta\text{-[5-Brom-2-nitro-phenyl]-glycidsäure }C_0H_0O_5NBr=O_2N\cdot C_6H_3Br\cdot HC_OCH\cdot CO_2H.$ Bei der Oxydation der Acetaldehydverbindung des 5-Brom-2-nitro-β-oxy-hydrozimtaldehyds (Bd. VIII, S. 109) mit Natriumhypochloritlösung (Εινησεικ, Gernsheim, A. 284, 152). Man schüttelt [5-Brom-2-nitro-α-oxy-benzyl]-aceton mit einer 70—80° warmen Natriumhypochloritlösung, bis alles gelöst ist, kühlt schnell ab, filtriert und übersättigt das Filtrat mit Schwefeldioxydlösung (Er., G., A. 284, 147). Beim Behandeln von α-Chlor-β-oxy-β-[5-brom-2-nitro-phenyl]-propionsäure (Bd. X, S. 254) mit alkoh. Kali (El., G., A. 284, 149). — Täfelchen (aus verd. Alkohol). F: 156° (Zers.). Leicht löslich in Alkohol, Äther, Chloroform, Aceton und warmem Benzol, unlöslich in Ligonin. — Kaliumsalz, Nadeln (aus verd. Alkohol). Leicht löslich in Wasselz, auf verd. Kaliumsalz. Nadeln (aus verd. Alkohol). Leicht löslich in Wasser, sehr wenig in Alkohol.

3. Cumaran - carbonsäure - (2), Hydrocumarilsäure $C_9H_8O_3 = C_9H_4 < C_9H_8 > C_9H_9 < C_9H_8$. Beim Behandeln von Cumarilsäure (S. 307) in alkal. Lösung mit Natriumamalgam (Firrig, Ebert, A. 216, 166; Stoermer, König, B. 39, 493). — Blättohen (aus Wasser). F: 116,5° (F., E.; St., K.). Siedet unter teilweiser Zersetzung bei 298,5—300,5° (F., E.). Mit Wasserdampf viel flüchtiger als Cumarilsäure (F., E.). Ziemlich leicht löslich in Wasser, sehr leicht in Alkohol und Äther (F., E.). — Liefert beim Glühen mit Kalk etwas Phenol (F., E.). — AgC₉H₇O₃. Krystalle (aus Wasser). Sehr wenig löslich in siedendem Wasser (F., E.). — Ca(C₉H₇O₃)₂ + 2H₂O. Tafeln. Ziemlich leicht löslich in kaltem Wasser (F., E.). — Ba(C₉H₇O₃)₂ + 2H₂O. Tafeln, die erst bei 125° völlig wasserfrei werden; leicht löslich in Wasser (F., E.).

Äthylester $C_{11}H_{12}O_3 = C_6H_4 < CH_2 > CH \cdot CO_2 \cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in die alkoholische Lösung von Hydrocumarilsäure (Fittig, Ebert, A. 216, 168). — Krystallmasse. F: 23° (F., E.; Stoermer, König, B. 39, 493). Kp: 273° (F., E.; St., K.).

Amid C₉H₉O₂N = C₆H₄ CH₂ CH·CO·NH₂. B. Durch Schütteln von (nicht näher beschriebenem) Hydrocumarisaure-methylester mit konz. Ammoniak (Stoermer, König, B. 39, 496). — Blättchen. F: 148—149°. — Bei der Umsetzung mit Natriumhypochlorit entsteht Cumaron (Bd. XVII, S. 54) (größtenteils in Form von Cumaronharz).

Anilid $C_{15}H_{13}O_2N = C_6H_4 < CH_2 > CH \cdot CO \cdot NH \cdot C_6H_5$. B. Durch Einw. von Anilin auf Hydrocumarilsäure-azid in Benzol (St., K., B. 39, 495). — Schuppen (aus verd. Alkohol). F: 104°.

Hydrazid, Hydrocumarilylhydrazin $C_9H_{10}O_2N_2 = C_6H_4 \stackrel{CH_3}{\smile} CH \cdot CO \cdot NH \cdot NH_2$.

B. Durch 2-stdg. Kochen von Hydrocumarilsäure-thylester mit Hydrazinhydrat (St., K., B. 39, 493). — Nadeln (aus Alkohol). F: 148°. Leicht sublimierbar. Ziemlich leicht löslich in Äther; in Wasser und anderen Solvenzien viel leichter löslich als Cumarilsäure-hydrazid. — Bei der Einw. von Jod oder von 1 Mol salpetriger Säure bildet sich N.N'-Bis-[hydrocumarilyl]-hydrazin. Bei der Einw. von 2 Mol salpetriger Säure entsteht Hydrocumarilsäure-azid.

N.N'-Bis-[hydrocumarilyl]-hydrasin $C_{18}H_{16}O_4N_2 = \left[C_6H_4 \stackrel{CH_2}{\circlearrowleft}CH\cdot CO\cdot NH-\right]_8$. B. Durch Einw. von Jod oder von 1 Mol salpetriger Säure auf Hydrocumarilsäure-hydrazid (St., K., B. 39, 493). — Nädelchen. F: 229—230°. Unlöslich in Wasser, ziemlich leicht in heißem Alkohol.

Hydrocumarilsäure-azid $C_9H_7O_2N_3 = C_6H_4$ CH_2 $CH \cdot CO \cdot N_3$. B. Aus 1 Mol Hydrocumarilsäure-hydrazid und 2 Mol Natriumnitrit in verdünnter essigsaurer Lösung bei 0^o (Sr., K., B. 39, 494). — Voluminöse Flocken. Schmilzt bei 32^o und verpufft beim Erhitzen auf dem Platinblech. Sehr leicht löslich in Äther, Alkohol und Benzol, unlöslich in Wasser.

2. Carbonsäuren C10H10O3.

- 1. α -Methyl- α' -phenyl-āthylenoxyd- α -carbonsäure, α -Phenyl-propylenoxyd- β -carbonsäure, $\alpha.\beta$ -Oxido- β -phenyl-isobuttersäure, α -Methyl- β -phenyl-glycidsäure $C_{10}H_{10}O_3=C_eH_5\cdot HC\frac{C}{O}\cdot C(CH_3)\cdot CO_2H$.
- α-Methyl-β-phenyl-glycidsäure-äthylester $C_{18}H_{14}O_3=C_6H_5\cdot HC_0$ - $C(CH_3)\cdot CO_2\cdot C_8H_5$. B. Aus α-Chlor-propionsäure-äthylester und Benzaldehyd bei Einw. von Natriumäthylat (Darzens, C. r. 142, 215). Kp₁₈: 153—154°. Die durch Verseifung des Esters erhaltene Säure zerfällt bei der Destillation im Vakuum in Methylbenzyl-keton und Kohlendioxyd.
- 2. α -Methyl- α -phenyl-āthylenoxyd- α -carbonsāure, β -Phenyl-propylenoxyd- α -carbonsāure, α . β -Oxido- β -phenyl-buttersāure, β -Methyl- β -phenyl-glycidsāure $C_{10}H_{10}O_3 = \frac{CH_3}{C_6H_5} > C$ — $CH \cdot CO_2H$. B. Der Äthylester entsteht durch Zusatz eines geringen Überschusses von Natriumamid zu einem Gemisch äquimolekularer Mengen Acetophenon und Chloressigester in Äther; man verseift ihn mit Natriumāthylatlösung unter Zusatz der entsprechenden Menge Wasser (CLAISEN, B. 38, 702). Beim Ansäuern der wäßr. Lösung des Natriumsalzes entsteht die freie Säure als krystallinischer Niederschlag, der

sofort in Kohlendioxyd und α -Phenyl-propionaldehyd zerfallt. — Na $C_{10}H_{\bullet}O_{3}$. Blättchen (aus Wasser durch Alkohol). F: 256° (Zers.). — AgC₁₀H₂O₂. Pulvriger Niederschlag. — Bariumsalz. Prismen. Wird durch warmes Wasser zersetzt.

 $\textbf{Methylester} \ C_{11}H_{12}O_3 = \underbrace{CH_3}_{C_0H_5} > C \underbrace{CH \cdot CO_2 \cdot CH_3}_{O}. \ B. \ \text{Durch Zusatz eines geringen}$ Überschusses von Natriumamid zu einem Gemisch äquimolekularer Mengen Acetophenon und Chloressigsäure-methylester in Äther (CL., B. 38, 702). — Flüssig. Kp: 269—272°; $\mathbf{Kp_{11}}$: 141—143°. $\mathbf{D^{15}}$: 1,129.

Äthylester $C_{12}H_{14}O_3 = \frac{CH_2}{C_6H_5} > C - CH \cdot CO_2 \cdot C_2H_5$. B. Man versetzt ein Gemisch äquimolekularer Mengen Acetophenon und Chloressigester mit der berechneten Menge Natriumäthylat unter guter Kühlung, läßt die Mischung 12 Stdn. bei Zimmertemperatur stehen und erhitzt sie schließlich 5—6 Stdn. auf 100° (Darzens, C. r. 139, 1215, 1216). Eine weitere Bildung s. im Artikel β-Methyl-β-phenyl-glycidsäure. — Schwach fruchtartig riechende Flüssigkeit. Kp: 272—275° (unter teilweiser Zersetzung); Kp₁₂: 147—149° (Claisen, B. 38, 702); Kp₁₀: 153–159° (D.). D¹⁵: 1,096 (Cl.). — Liefert beim Einleiten von Bromwasserstoff β -Brom- α -oxy- β -phenyl-buttersäure-äthylester (Bd. X, S. 269) (CL.). Beim Behandeln mit

sehr konzentriertem wäßrigem Ammoniak entstehen β -Methyl- β -phenyl-glycidsäure-amid und eine Verbindung $C_{10}H_{11}O_2N$ (s. u.) (CL.).

Verbindung $C_{10}H_{11}O_2N$. B. Neben β -Methyl- β -phenyl-glycidsäure-amid aus β -Methyl- β -phenyl- β -phenyl-glycidsäure-amid aus β -Methyl- β -phenyl- β -phenyl- β -phenyl-glycidsäure-amid aus β -Methyl- β -phenyl-
β-Methyl-β-phenyl-glycidsäure-amid $C_{10}H_{11}O_2N = CH_3 > C_0H_5$ CH·CO·NH₂. B. Neben einer isomeren Verbindung $C_{10}H_{11}O_2N$ (s. o.) aus β-Methyl-β-phenyl-glycidsäure-athylester durch sehr konzentriertes wäßriges Ammoniak (Claisen, B. 38, 703). — Nadeln (aus heißem Wasser). F: 168°.

3. Carbonsäuren $C_{11}H_{12}O_3$.

- 1. α -Methyl- α -benzyl- α thylenoxyd- α '-carbons α ure, α . β -Oxido- γ -phenylisovaleriansäure, β -Methyl- β -benzyl-glycidsäure $C_{11}H_{12}O_3 =$
 - β Methyl β benzyl glycidsäure äthylester $C_{13}H_{16}O_3 =$
- CH₃>C CH·CO₂·C₂H₅. B. Aus Methyl-benzyl-keton und Chloressigester in Gegenwart von Natriumäthylat (Darzens, C. r. 139, 1216; D. R. P. 174239, 174279; C. 1906 II, 1297, 1298). — Kp₁₆: 175—180°. — Die durch Verseifung erhältliche Säure gibt beim Erhitzen im Vakuum Methyl-benzyl-acetaldehyd.
- 2. α -Methyl- α -p-tolyl- \ddot{a} thylenoxyd-lpha'-carbons \ddot{a} ure, α .eta-Oxido-eta-p-tolylbuttersäure, β - Methyl - β - p - tolyl - glycidsäure $C_{11}H_{12}O_3 =$ $CH_3 \cdot C_6H_4 > C = O - CH \cdot CO_2H$.
- β Methyl β p tolyl glycidsäure äthylester $C_{13}H_{16}O_3 =$ $\frac{\mathrm{CH_3}\cdot\mathrm{C_6H_4}}{\mathrm{CH_3}\cdot\mathrm{C_6H_4}}>\mathrm{C} \xrightarrow{\mathrm{CO}}\mathrm{CH}\cdot\mathrm{CO_3}\cdot\mathrm{C_3H_5}. \quad B. \quad \text{Aus Methyl-p-tolyl-keton und Chloressigsäure-}$

äthylester in Gegenwart von Natriumäthylat (Darzens, C. r. 189, 1216; D. R. P. 174239, 174279; C. 1906 II, 1297, 1298). — Kp₁₆: 160—164°. — Die durch Verseifung erhältliche Säure gibt beim Erhitzen mit Wasser p-Methyl-hydratropaaldehyd.

3. α -Athyl- α -phenyl- α thylenoxyd- α -carbons α ure, α . β -Oxido- β -phenyln - valeriansaure, β - Athyl - β - phenyl - glycidsaure $C_{11}H_{12}O_3 =$

 $\beta\text{-$\ddot{A}$thyl-$\beta$-phenyl-glycidsäure-$\ddot{a}$thylester} \quad C_{13}H_{16}O_3 = \frac{C_2H_5}{C_6H_5} > C - CH \cdot CO_2 \cdot C_2H_5.$ B. Aus Äthyl-phenyl-keton und Chloressigester bei Gegenwart von Natriumamid in absol. Äther (Claisen, B. 38, 706). — Öl. Kp13: 148—1500. D15: 1,072.

4. $\alpha.\alpha'$ - Dimethyl - α - phenyl - āthylenoxyd - α' - carbonsäure, $\alpha.\beta$ - Oxido- $\begin{array}{l} \textbf{a-methyl-\beta-phenyl-butters \"{a}ure, a.\beta-D \~{i}methyl-\beta-phenyl-glycids \"{a}ure} \\ \textbf{C}_{11}\textbf{H}_{12}\textbf{O}_{3} = \frac{\textbf{CH}_{3}}{\textbf{C}_{6}\textbf{H}_{5}} > \textbf{C} \underbrace{-\textbf{O}}{\textbf{C}} \textbf{C} \underbrace{-\textbf{C}_{3}\textbf{H}}_{12}\textbf{C}_{1}. \end{array}$

- α.β Dimethyl β phenyl glycidsäure äthylester $C_{18}H_{16}O_8 = \frac{CH_3}{C_6H_5} > C \frac{CG_3}{CO_3} \cdot C_8H_5$. B. Aus Acetophenon und α-Chlor-propionsäure-äthylester in Gegenwart von Natriumäthylat (Darzens, C. r. 141, 767). Kp₃₅: 151—154°. Diedurch Verseifung erhältliche Säure liefert beim Erhitzen im Vakuum unter Abspaltung von Kohlendioxyd α-Methyl-α-phenyl-aceton.
- 5. 3.6-Dimethyl-cumaran-carbonsäure-(2), 3.6-Dimethyl-cumaran-carbonsäure-(2), 3.6-Dimethyl-2.3 dihydro cumarilsäure C₁₁H₁₂O₃, s. nebenstehende Formel. B. Bei allmählichem Eintragen von 75 g 8°/ojgem Natriumamalgam in eine siedende Lösung von 5 g 3.6-Dimethyl-cumarilsäure (S. 310) in 1/2 l Wasser (FRIES, FICKEWIRTH, A. 362, 52). Krystalle (aus Benzin). F: 95°. Sehr leicht löslich in Alkohol, Eisessig und Benzol, schwerer in Benzin und Petroläther. Liefert bei der Destillation mit Natronkalk im Vakuum 3.6-Dimethyl-cumaran (Bd. XVII, S. 53).

4. Carbonsäuren $C_{12}H_{14}O_3$.

- 1. α -Methyl- α -[4-āthyl-phenyl]-āthylenoxyd- α -carbonsāure, β -[4-Āthyl-phenyl]-propylenoxyd- α -carbonsāure, α . β -Oxido- β -[4-āthyl-phenyl]-buttersäure, β -Methyl- β -[4-āthyl-phenyl]-glycidsāure $C_{12}H_{14}O_3=C_2H_5\cdot C_6H_4$ >C-O>CH·CO₂H.
- β Methyl β [4 äthyl phenyl] glycidsäure äthylester $C_{14}H_{18}O_{3} = C_{14}H_{18} \cdot C_{0}H_{18} \cdot C_{0}H_$
- 2. α -Propyl- α -phenyl-äthylenoxyd- α '-carbonsäure, $\alpha.\beta$ -Oxido- β -phenyl- α -capronsäure, β -Propyl- β -phenyl-glycidsäure $C_{12}H_{14}O_3=CH_3\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_$
- β- Propyl β- phenyl glycidsäure äthylester $C_{14}H_{18}O_{2} = CH_{3} \cdot CH_{2} \cdot CH_{2} \cdot CH_{3} \cdot CO_{2} \cdot C_{2}H_{5}$. B. Aus Propyl-phenyl-keton und Chloressigester in Gegenwart von Natriumäthylat (Darzens, C. r. 139, 1216). Kp₁₈: 155—158°. Die durch Verseifung erhältliche Säure liefert bei der Destillation im Vakuum unter Kohlendioxyd-Abspaltung α-Phenyl-n-valeraldehyd.
- 3. $\alpha.\alpha'-Dimethyl-\alpha-p-tolyl-\ddot{\alpha}thylenoxyd-\alpha'-carbons\"{a}urc, \quad \alpha.\beta-Oxido-\alpha-methyl-\beta-p-tolyl-butters\"{a}ure, \quad \alpha.\beta-Dimethyl-\beta-p-tolyl-glycids\"{a}ure$ $C_{11}H_{14}O_3=\frac{CH_3}{CH_3}\cdot C_{6}H_{4}>C \xrightarrow{O} C<\frac{CH_3}{CO_{1}H}.$
- $\alpha.\beta$ Dimethyl β p tolyl glycidsäure äthylester $C_{14}H_{18}O_5 = CH_3 \cdot C_6H_4 \cdot C_6H_4 \cdot C_6H_4 \cdot C_6H_5 \cdot C_9 \cdot C_2H_5 \cdot B$. Aus p-Methyl-acetophenon und α-Chlor-propion-säure-äthylester in Gegenwart von Natriumäthylat (Darzens, C.r. 141, 767). Kp₁₈: 160° bis 162°. Die durch Verseifung erhältliche Säure zerfällt leicht unter Bildung von α-Methyl-α-p-tolyl-aceton.

6. Monocarbonsäuren C_nH_{2n-12}O₈.

1. Cumaron-carbonsäure-(2), Cumarilsäure C₂H₆O₃, s. nebenstehende Formel; die Stellungsbezeichnung gilt auch für die in diesem Handbuch gebrauchten, vom Namen "Cumarilsäure" abgeleiteten Namen. — B. Beim Erhitzen von 3-Chlor-cumarin oder 3-Bromcumarin mit alkoh. Kalilauge (Perkin, Soc. 24, 45; Z. 1871, 178). Bei der Oxydation von 2-Acetyl-cumaron mit Kaliumpermanganat (Stoermer, B. 30, 1711). — Darst. Man trägt Cumarindibromid in überschüssige, heiße alkoholische Kalilauge ein, erwärmt noch kurze Zeit, verdünnt dann mit Wasser, destilliert den Alkohol ab und zerlegt den Rückstand mit

Salzsäure (Fittig, Ebert, A. 216, 163). — Nadeln (aus Wasser). F: 192—193° (P.), 190° bis 191° (F., E.). Sublimierbar (P.). Destilliert fast unzersetzt bei 310—315° (F., E.). Verflüchtigt sich sehr schwer mit Wasserdämpf (F., E.). Leicht Relich in Alkohol, löslich in siedendem Wasser, schwer in Chloroform und Schwefelkohlenstoff (P.). Die wäßr. Lösung schmeckt bitter (P.). — Wird von Kaliumpermanganat total verbrannt (F., E.). Wird von Natriumamalgam in Hydrocumarilsäure übergeführt (F., E.; St., König, B. 39, 493). Zerfällt beim Schmelzen mit Kali in Essigsäure und Salicylsäure (F., E.). Wird durch Destillation mit Kalk in Kohlendioxyd und Cumaron gespalten (F., E.). Bei der Einw. von Brom auf das in Wasser gelöste oder in äther suspendierte Kaliumsalz entseht 2.3.7(?)-Tribrom-cumaron (St., Calov, B. 34, 772). Cumarilsäure liefert beim Erwärmen auf dem Wasserbad mit Phosphorpentachlorid (St., C.) in Schwefelkohlenstoff (ZWAYER, v. KOSTANECKI, B. 41, 1338) Cumarilsäure-chlorid. — KC₂H₅O₃. Prismen. Schwer löslich in kaltem, leichter in heißem Alkohol (P.). — AgC₂H₅O₃. Krystallpulver. Schwer löslich in siedendem Wasser (F., E.). — Ba(C₂H₅O₃)₂ + 4 H₂O. Blättchen (aus siedendem Wasser). Sehr schwer löslich in kaltem Wasser (F., E.).

Cumarilsäure-äthylester $C_{11}H_{10}O_3=C_4H_4< {CH\atop O}>C\cdot CO_2\cdot C_3H_5$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von Cumarilsäure (Hantzsch, B. 19, 2401). — F: 27°. Kp₇₈₀: 274°.

Cumarilsäure-phenylester $C_{15}H_{10}O_3 = C_0H_4 < {\text{CH} \atop \text{O}} > C \cdot CO_3 \cdot C_0H_5$. B. Beim Erwärmen von Cumarilsäure-chlorid mit Phenol und verd. Natronlauge (STOERMER, CALOV, B. 34, 773). — Nadeln (aus Alkohol). F: 101°.

Cumarilsäure-chlorid, Cumarilylchlorid $C_0H_5O_2Cl=C_6H_4 < {CH \atop O} > C \cdot COCl$. B. Durch Erwärmen von 10 g Cumarilsäure mit 13—14 g Phosphorpentachlorid auf dem Wasserbad und Destillieren des Reaktionsprodukts (Stoermer, Calov, B. 34, 773; vgl. ZWAYER, v. Kostanecki, B. 41, 1338). — Der Geruch erinnert an den des Bittermandelöls (St., C.). F: 52°; Kp: 264—265° (St., C.). — Zersetzt sich mit Wasser erst beim Erwärmen (St., C.).

Cumarilsäure-amid $C_0H_7O_2N = C_0H_4 < {CH \atop O} > C \cdot CO \cdot NH_2$. B. Man schüttelt Cumarilsäure-äthylester in alkoh. Lösung mit konz. Ammoniak (Stoermer, Calov, B. 84, 773). — Blättchen. F: 159°.

Cumarilsäure-anilid $C_{15}H_{11}O_5N=C_6H_4<{CH\over O}>C\cdot CO\cdot NH\cdot C_6H_5$. B. Aus Cumarilsäure-chlorid und Anilin (Sr., C., B. 34, 773). — Gelbliche Nädelchen. F: 159°.

Cumarilsäure-nitril, 2-Cyan-cumaron $C_9H_8ON = C_6H_4 < {CH \choose O} > C \cdot CN$. B. Durch Erhitzen von Cumarilsäure-amid mit Phosphorpentoxyd auf 110—120° (Sr., C., B. 34, 773). — Nadeln (aus verd. Alkohol). Riecht stark nach Zimt. F: 36°.

Cumarilsäure - hydrasid, Cumarilylhydrasin $C_9H_8O_2N_8=C_9H_4< C_0H_5$ C·CO·NH·NH₂. B. Durch 1-stdg. Erwärmen von 5 g in wenig absol. Alkohol gelöstem Cumarilsäure-äthylester mit 4 g 50% gier Hydrazinhydratlösung (Sr., C., B. 34, 773). — Nadeln (aus verd. Alkohol). F: 172°. Unlöslich in Äther und Benzol, sehr wenig löslich in kaltem Wasser, leicht in Alkohol.

Cumarilsäure-axid $C_9H_5O_2N_3=C_6H_4 < {CH \atop O} > C \cdot CO \cdot N_3$. B. Man versetzt eine Lösung von Cumarilsäure-högdrassigner mit der berechneten Menge Natriumnitrit uster guter Kühlung und fügt Essigsäure zu (Sr., C., B. 34, 774). — Blättchen (aus verd. Alkohol). F: 109°. Löslich in Alkohol, Äther und Benzol. Verpufft schwach beim Erhitzen auf dem Platinblech.

5-Chlor-cumarileäure C₉H₈O₉Cl, s. nebenstehende Formel. B. Cl. OH
Beim Erhitzen von 1 Mol 5-Chlor-salicylaldehyd mit 1 Mol Chloressigsäure und 2 Mol Ätzkali in wäßrig-alkoholischer Lösung im Druckrohr
auf 200°, neben 5-Chlor-cumaron (Stormer, A. 312, 326). — Nadeln. F: 258°. Sublimierbar.
Löslich in Alkohol, Äther und Chloroform.

5-Brom-cumarilaäure C₂H₃O₂Br, s. nebenstehende Formel. B. Br CH Beim Erhitzen von 1 Mol 5-Brom-salicylaldehyd mit 1 Mol Chloressigsäure und 2 Mol Ätzkali in alkoholisch-wäßriger Lösung im Druckrohr auf 198—200°, neben 5-Brom-cumaron (Stoermer, A. 312, 324). Durch Behandeln von 3.6-Dibrom-cumarin mit alkoholischer oder wäßriger Kalilauge (Perkin, Soc. 24, 40, 48; Z. 1871, 179). Durch Kochen von 6-Brom-cumarin-dibromid mit alkoh. Kalilauge (Simonis,

WENZEL, B. 33, 1966, 2327). — Nadeln. F: 252° (S., W., B. 33, 2327), 253° (St.). Sublimierbar (St.). Leicht löslich in Alkohol, Äther und heißem Wasser (St.). — Liefert bei der Destillation mit Kalk 5-Brom-cumaron (S., W., B. 33, 1966).

5.7-Dibrom-cumarilsäure C₂H₂O₃Br₂, s. nebenstehende Formel.

B. Durch kurzes Kochen von 3.6.8-Tribrom-cumarin mit verd.

Kalilauge (SIMONIS, WENZEL, B. 33, 423). Durch Einw. von alkoh.

Kalilauge auf 6.8-Dibrom-cumarin-dibromid (S., W., B. 33, 1965).

Nadeln (aus Eisessig + Wasser). F: 276° (S., W., B. 33, 423, 1965). Leicht löslich in heißem Alkohol und Benzol (S., W., B. 33, 423). — Liefert bei der Destillation 5.7-Dibrom-cumaron (S., W., B. 33, 424). — Salze: S., W., B. 33, 423. — NaC₂H₂O₃Br₂ + H₂O. Nadeln. Löslich in Wasser. — KC₂H₃O₂Br₂ + H₂O. Blättchen (aus Wasser). Schuppen (aus Alkohol). Das bei 120° getrocknete Salz ist sehr hygroskopisch. — Cu(C₂H₃O₂Br₂)₂ + 4H₂O. Wasserhaltig blau, wasserfrei grün. — Ba(C₂H₃O₃Br₂)₂ + 4H₂O. Löslich in heißem Wasser.

Methylester $C_{10}H_6O_3Br_2 = C_6H_2Br_2 < CH_2 > C \cdot CO_2 \cdot CH_3$. B. Durch 4-stdg. Erhitzen von 5 g entwässertem 5.7-dibrom-cument Kalium mit 2.5 g Methyljodid und ca. 20 cm³ Methylalkohol im Druckrohr auf 160° (S., W., B. 33, 424). — Nadeln (aus Methylalkohol). F: 151°. Siedet unzersetzt oberhalb 360°. Sublimiert in Prismen.

2. Carbonsäuren C10H8O3.

1. 3-Methyl-cumaron-carbonsāure-(2), 3-Methyl-cumarilsāure $C_{10}H_{\bullet}O_{\bullet}=C_{\bullet}H_{\bullet}$ $C(CH_{\bullet})$ $C\cdot CO_{\bullet}H$. B. Der Äthylester entsteht, wenn man āquimolekulare Mengen α -Chlor-acetessigsāure-āthylester und trocknes Phenolnatrium mischt und den entstandenen (nicht nāher beschriebenen) α -Phenoxy-acetessigsāure-āthylester unter Abkühlen in konz. Sohwefelsāure löst; man verseift ihn durch gelindes Erwärmen mit wāßrig-alkoholischer Kalilauge (Hantzsch, B. 19, 1292). Beim Erhitzen von 4-Methyl-cumarin-dibromid oder von 3-Brom-4-methyl-cumarin mit 30°/oiger Kalilauge (Peters, Simonis, B. 41, 832). — Nadeln (aus verd. Alkohol). F: 188—189° (H.), 188° (P., S.). Sublimiert bei vorsichtigem Erhitzen größtenteils unzersetzt (H.). — Zerfällt bei raschem Erhitzen (H.) oder beim Erhitzen des Kaliumsalzes mit Ätzkalk (P., S.) unter Bildung von 3-Methyl-cumaron. — NH $_{\bullet}C_{10}H_{\uparrow}O_{3}+H_{\bullet}O$. Nadeln. Mäßig löslich in kaltem Wasser (H.). — KC $_{10}H_{\uparrow}O_{3}+H_{\bullet}O$. Nadeln. Wird bei 110° wasserfrei (H.). — Cu($C_{10}H_{\uparrow}O_{3}$) $_{3}+3H_{\bullet}O$. Grünliche Nadeln (P., S.). — Ag $C_{10}H_{\uparrow}O_{3}$. Prismen (aus siedendem Wasser) (H.). — Ba($C_{10}H_{\uparrow}O_{3}$) $_{2}+3H_{\bullet}O$. Krystalle (aus heißem Wasser). Verliert das Krystallwasser bei 130° (H.).

Methylester $C_{11}H_{10}O_3 = C_4H_4 \stackrel{C(CH_3)}{\bigcirc} C \cdot CO_2 \cdot CH_3$. B. Bei 4-stdg. Erhitzen des entwässerten Kaliumsalzes der 3-Methyl-cumarilsäure mit Methyljodid und Methylalkohol im Druckrohr auf 160° (Peters, Simonis, B. 41, 832). — Nadeln (aus heißem Wasser). F: 70°.

Äthylester $C_{18}H_{12}O_3 = C_6H_4$ $C(CH_3)$ $C \cdot CO_3 \cdot C_2H_5$. B. s. im Artikel 3-Methylcumarilsäure. — Tafeln (aus Benzol). Rhombisch (Sebaldt, Z. Kr. 33, 602). F: 51°; Kp: 290° (Hantzsch, B. 19, 1293). — Gibt mit alkoh. Ammoniak bei 250—300° 3-Methylcumarilsäure-amid (H., B. 19, 2401). Beim Erhitzen mit Phosphorpentasulfid entsteht 3-Methylmonothiocumarilsäure-O-äthylester (H., B. 19, 2400).

Amid $C_{10}H_{\bullet}O_{\bullet}N = C_{\bullet}H_{\bullet} C(CH_{\bullet}) C \cdot CO \cdot NH_{\bullet}$. B. Beim Erhitzen von 3-Methylcumarilsäure äthylester mit alkoh. Ammoniak, zweckmäßig in Gegenwart von etwas Zinkchlorid im Einschlußrohr auf 250—300° (Hantzsch, B. 19, 2401). — Nadeln (aus Wasser). F: 145°.

5-Brom-3-methyl-cumarilsäure $C_{10}H_2O_3Br$, s. nebenstehende Bromel. B. Beim Behandeln von 3.6-Dibrom-4-methyl-cumarin mit 30% iger Kalilauge (Peters, Simonis, B. 41, 834). — Gelbe Nadeln (aus Benzol). F: 155%. Schwer löslich in Wasser, Ligroin und Benzol, leichter in Alkohol und Äther. — $KC_{10}H_4O_3Br+2H_2O$. Nadeln. — $Cu(C_{10}H_4O_3Br)_2+2H_2O$. Hellgrüne Nadeln.

5.7 - Dibrom - 3 - methyl - cumarilsäure $C_{10}H_6O_3Br_2$, s. nebenstehende Formel. B. Beim Behandeln von 3.6.8-Tribrom-4-methylcumarin mit 30% giger Kalilauge (P., S., B. 41, 835). — Gelbe Flocken. F: 96%. Löslich in Alkohol, Äther und Benzol. — $Cu(C_{10}H_5O_3Br_2)_2 + 2H_2O$. Grünliche Nadeln.

5-Nitro-3-methyl-cumarilsäure $C_{10}H_2O_5N$, s. nebenstehende O_2N . COHs Formel. B. Der Äthylester entsteht durch gelindes Erwärmen von α-Chlor-acetessigsäure-äthylester mit wasserfreiem 4-Nitro-phenol-natrium und Eintragen des entstandenen Produkts in konz. Schwefelsäure; man verseift ihn durch alkoh. Kalilauge (Nuth, B. 20, 1333). — Gelbe Nadeln (aus Äther). F: 178°. Kaum löslich in kaltem Wasser, mäßig in Alkohol und Äther. — $AgC_{10}H_4O_5N + \frac{1}{2}H_2O$. Nadeln (aus Wasser).

Athflester $C_{12}H_{11}O_2N = O_2N \cdot C_0H_2 \stackrel{C(CH_2)}{\bigcirc} C \cdot CO_2 \cdot C_2H_5$. B. s. im vorangehenden Artikel. — Nadeln. F: 74°; leicht löslich in den gewöhnlichen Lösungsmitteln (N., B. 20, 1333).

- 8 Methyl monothiocumarilsäure O äthylester $C_{12}H_{12}O_2S = C_6H_4 \stackrel{C(CH_2)}{\longrightarrow} C \cdot CS \cdot O \cdot C_2H_5$. B. Beim Erhitzen von 3-Methyl-cumarilsäure-äthylester mit Phosphorpentasulfid (Hantzsch, B. 19, 2400). Gelbe Nadeln (aus Alkohol). F: 90—91°. Ziemlich schwer löslich in kaltem Alkohol, leicht in Äther. Liefert mit alkoh. Kalilauge 3-Methyl-cumarilsäure und Kalilaugeliid.
- 2. 5-Methyl-cumaron-carbonsdure-(2), 5-Methyl- CH_3 - CH_3 - CH_4 - CH_3 - CH_4 - $CH_$
- 5 Chlormethyl cumarilsäure äthylester $C_{12}H_{11}O_3Cl = CH_2Cl\cdot C_4H_3 < {}^{CH}_3 > C\cdot CO_2\cdot C_2H_3$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von 5-Äthoxymethyl-cumarilsäure (S. 349) (Stoermer, Oetker, B. 37, 199). Prismen (aus Benzol). F: 65—66°. Leicht löslich in den meisten Lösungsmitteln.
- 3. 6-Methyl-cumaron-carbonsdure-(2), 6-Methyl-cumariledure C₁₀H₂O₃, s. nebenstehende Formel. B. Man führt 7-Methyl-cumarin (Bd. XVII, S. 337) in das nicht näher beschriebene Dibromid (F: 110—112°) über und behandelt dieses mit alkoh. Kalilauge (v. Auwers, A. 408 [1915], 278; vgl. Stoermer, A. 312, 282). Nadeln. F: 193—194° (v. Au.). Liefert bei der Destillation mit Natronkalk 6-Methyl-cumaron (St.).

3. Carbonsäuren $C_{11}H_{10}O_3$.

1. 3.5-Di.nethyl-cumaron-carbonsäure-(2), 3.5-Di-CH₂ ccH₃.

methyl-cumarileäure C₁₁H₁₀O₃, s. nebenstehende Formel. B. Der Äthylester entsteht beim Behandeln von α-Chlor-acetessigsäure-äthylester mit trocknem p-Kresolnatrium und Eintragen des entstandenen Produkts in konz. Schwefelsäure; man verseift ihn durch gelindes Erwärmen mit wäßrig-alkoholischer Kalilauge (Hantzsch, Lang, B. 19, 1299). Beim Eintragen von 3-Brom-4.6-dimethyl-cumarin in heiße alkoholische Kalilauge (H., L.). — Prismen oder Tafeln (aus Alkohol). F: 224—225°. — Bei der trocknen Destillation des Natriumsalzes mit Kalk entsteht 3.5-Dimethyl-cumaron.

Äthylester $C_{18}H_{14}O_3 = CH_3 \cdot C_0H_3 \cdot C_0CH_3 \cdot C_2H_3$. B. s. im vorangehenden Artikel. — F: 55°; Kp_{788} : 298—300° (Hantzsch, Lang, B. 19, 1300).

2. 3.6-Dimethyl-cumaron-carbonsäure-(2), 3.6-Dimethyl-cumarilsäure C₁₁H₁₀O₃, s. nebenstehende Formel. B. CH₃. CCH₃ CCH₃ Beim Kochen von 3-Brom-4.7-dimethyl-cumarin mit alkoh. Kalilauge (Fries, Fickewirth, A. 362, 50). — Tafeln (aus Alkohol). Schweitzt bei ca. 212° unter geringer Zersetzung. Ziemlich leicht löslich in heißem Alkohol, Eisessig und Chloroform, löslich in Benzol, schwer löslich in Benzin. — Liefert bei der Destillation mit Natronkalk 3.6-Dimethyl-cumaron. Bei der Reduktion mit 8°/oigem Natriumamalgam entsteht 3.6-Dimethyl-2.3-dihydro-cumarilsäure.

Äthylester $C_{12}H_{14}O_3 = CH_2 \cdot C_0H_3 \underbrace{C(CH_3)}_{O} C \cdot CO_2 \cdot C_2H_5$. B. Beim Sättigen einer alkoh. Lösung von 3.6-Dimethyl-cumarilsäure mit Chlorwasserstoff (F., Fr., A. 362, 51). — Nädelchen (aus Petroläther). F: 38°.

4. 2-Phenyl-pyran-dihydrid-(5.6)-carbonsaure-(3), 2-Phenyl-5.6-dihydro-pyran-carbonsaure-(3) (Phenyldehydrohexoncarbonsaure) $C_{12}H_{12}O_3 = \frac{H_2C \cdot CH_2 \cdot C \cdot CO_2H}{H_2C \cdot O_2 \cdot C \cdot C_4H_8}$. B. Der Äthylester entsteht durch Erwärmen von Natrium-

Benzoylessigester mit Trimethylenbromid in alkoh. Lösung; man verseift ihn durch Kochen mit konzentrierter alkoholischer Kalilauge (Perkin, B. 16, 1790; Soc. 51, 726; Kipping, P., Soc. 57, 308). — Prismen (aus Ather). Monoklin prismatisch (Haushofer, Soc. 51, 729; vgl. Groth, Ch. Kr. 4, 650). Schmilzt bei 142—144° unter Kohlendioxyd-Entwicklung (P.). Fast unlöslich in kaltem Wasser, leicht löslich in Alkohol, Ather, Chloroform, Schwefelkohlenstoff, Benzol und Petroläther (P.). Krystallisiert aus Wasser in Nadeln vom Schmelz-punkt 149—150° (P.). — Zerfällt beim Erhitzen über den Schmelzpunkt in Kohlendioxyd und 2-Phenyl-pyran-dihydrid-(5.6) (Bd. XVII, S. 64) (P.). Bei längerem Kochen mit Wasser entsteht δ -Benzoyl-butylalkohol (P.; K., P.). Liefert beim Aufbewahren mit konzentrierter wäßriger Bromwasserstoffsäure (D: 1,83) δ -Brom valerophenon (Bd. VII, S. 328) (P.). — AgC₁₂H₁₁O₂. Nadeln (aus siedendem Wasser) (P.).

Äthylester $C_{16}H_{16}O_3 = \frac{H_2C \cdot CH_2 \cdot C \cdot CO_2 \cdot C_2H_5}{H_2C - O - C \cdot C_6H_5}$. B. s. im vorangehenden Artikel. — Darst. Eine Lösung von 6 g Natrium in 72 g absol. Alkohol versetzt man allmählich mit 50 g Benzoylessigester, dann mit 52,5 g Trimethylenbromid und erwärmt ca. 1 Stde. auf dem Wasser-

bad; dann kühlt man ab, gießt allmählich die Lösung von 6 g Natrium in absol. Alkohol zu und erwärmt wieder 2 Stdn. auf dem Wasserbad; man destilliert den Alkohol ab und schüttelt den Rückstand nach Zusatz von etwas Wasser mit Äther aus (KIPPING, PERKIN, Soc. 57, 308). — Prismen (aus Ather). Monoklin prismatisch (Haushoffer, Soc. 51, 728; vgl. Groth, Ch. Kr. 4, 651). F: 59-60°; destilliert fast unzersetzt; leicht löslich in den gewöhn-

lichen Lösungsmitteln (P., B. 16, 1791; Soc. 51, 727).

2 - [4 - Nitro - phenyl] - 5.6 - dihydro - pyran - carbonsäure - (3) $C_{12}H_{11}O_{k}N =$ H.C. O. C.C. H. NO. mit der Natriumverbindung des 4-Nitro-benzoylessigsäure-äthylesters in alkoh. Lösung im Einschlußrehr auf 100°; man verseift ihn durch Behandeln mit kalter alkoholischer Kalilauge (PERKIN, Soc. 51, 735). — Nadeln (aus Benzol), die bei 172° schmelzen. Fast unlöslich in kaltem Wasser, leicht löslich in Alkohol, Äther, Benzol und Petroläther. Die frisch gefällte Säure löst sich nicht unbeträchtlich in siedendem Wasser und krystallisiert daraus in Nadeln, die bei 183° schmelzen. — Verliert oberhalb 200° Kohlendioxyd. — AgC₁₂H₁₀O₅N. Gelbe Nadeln (aus heißem Wasser).

Äthylester $C_{14}H_{15}O_5N = \frac{H_1C \cdot CH_2 \cdot C \cdot CO_2 \cdot C_2H_5}{H_2C - O - C \cdot C_3H_4 \cdot NO_2}$. B. s. im vorangehenden Artikel. — Gelbe Tafeln (aus Äther). Monoklin prismatisch (HAUSHOFEB, Soc. 51, 736; vgl. Groth, Ch. Kr. 4, 651). F: 62-63°; leicht löslich in Alkohol, Äther und Benzol, schwer in Petrolather (PERKIN, Soc. 51, 735).

7. Monocarbonsäuren $C_nH_{2n-14}O_3$.

1. Carbonsauren C12H10O2.

B. Bei kurzem Kochen von γ-Phenyl-α-acetyl-Δ^{pr}-crotonlacton (Bd. XVII, S. 513) mit Salzsäure (Paal, B. 17, 2762; vgl. Borsche, Spannagel, A. 381, 305). Durch längeres Kochen von α-Phenacyl-acetessigsäure-äthylester mit verd. Salzsäure und Verseifung des entstandenen Äthylesters mit alkoh. Kalilauge (P., B. 17, 2764; vgl. Weltter, B. 17, 69). — Nadeln (aus Benzol und Petroläther). F: 180—181° (P.). Sublimiert schon von 100° an in Nadeln; leicht löslich in Alkohol, Äther, Chloroform, Schwefelkohlenstoff und Benzol, schwer in kochendem Petroläther (P.). — Wird von alkal. Kaliumpermanganat-Lösung glatt zu Benzoesäure oxydiert (P.). Wird durch Natriumamalgam nicht verändert (P.). Zerfällt bei längerem Kochen mit Salzsäure oder Jodwasserstoffsäure in Kohlendioxyd und 2-Methyl-5-nhenyl-furan (Bd. XVII. S. 67); dieselbe Spaltung erfolgt bei der Destillation 2-Methyl-5-phenyl-furan (Bd. XVII, S. 67); dieselbe Spaltung erfolgt bei der Destillation mit Zinkstaub oder beim Erhitzen mit Wasser im Druckrohr auf 240-250° (P.). — Ammoniumsalz. Nadeln. Verliert über Schwefelsäure das Ammoniak (P.). — KC19 H. O3. Blätter. Sehr leicht löslich in Wasser (P.). — Silbersalz. Krystallinisch (P.). — Calciumsalz. Nadeln. Schwer löslich in kaltem Wasser (P.).

Verbindung $C_{14}H_{13}O_4$. B. Beim Kochen von 2-Methyl-5-phenyl-furan-carbonsaure-(3) mit überschüssigem Essigsaureanhydrid (Paal, B. 17, 2763). — Durchsichtige Tafeln (aus Äther). Schmilzt unscharf bei 80—83°. Leicht löslich in Alkohol, Äther und Benzol, schwer in Petroläther. — Wird durch Kochen mit Wasser nicht zersetzt. Löst sich leicht in kalter

Alkalilauge unter Rückbildung von 2-Methyl-5-phenyl-furan-carbonsäure-(3).

- 2 Methyl 5 phonyl furan carbonsäure (8) äthylester $C_{14}H_{14}O_{2}$
- HC— $C \cdot CO_2 \cdot C_2H_5$ $C_6H_5 \cdot C \cdot O \cdot C \cdot CH_3$ B, s. o. bei der Säure. — Öl. Flüchtig mit Wasserdampf (PAAL, $C_6H_5 \cdot C \cdot O \cdot C \cdot CH_3$ B. 17, 2764; vgl. Weltner, B. 17, 69).
 - 2 Methyl 5 phenyl furan carbonsäure (3) methylamid $C_{13}H_{13}O_2N =$
- HC—C·CO·NH·CH₃

 C₆H₅·C·O·C·CH₃

 (Bd. XVII, S. 352) durch Behandlung mit Phosphorpentachlorid in Ather und Zersetzung des Resktionsprodukts mit Wasser (March, C. r. 134, 845; A. ch. [7] 26, 363). Nadeln (aus Ather). F: 147—148°.
- 2. 2-Methyl-5-phenyl-furan-carbonsdure-(4), Phenuvinsdure C₁₂H₁₀O₃ = HO₃C·C CH
 C₂H₅·C·O·C·CH₃
 essigsäure-āthylester in alkoh. Lösung mit Chloraceton und Erhitzen des Reaktionsprodukts mit verd. Salzsäure (Colefat, Soc. 59, 191, 193) oder aus Acetonyl-benzoyl-essigsäure-āthylester durch Destillation bei gewöhnlichem Druck oder bei 20 mm Druck sowie beim Kochen mit verd. Salzsäure (Borsche, Fels, B. 39, 1923, 1927); man verseift den Äthylester durch Erwärmen mit alkoh. (Co.) oder wäßriger (Bo., Fe.) Kalilauge. Man erhält Phenuvinsäure auch bei der Destillation von 5-Phenyl-furan-carbonsäure-(4)-essigsäure-(2) (Phenythronsäure) (S. 341) (Fittig, Schloesser, A. 250, 220; vgl. Bo., Fe., B. 39, 1924). Nadeln (aus verd. Alkohol). F: 144—145° (Fi., Sch.), 147—148° (B., Fe.). Sehr schwer löslich in siedendem Wasser, leicht in Alkohol, Ligroin und Benzol (Fi., Sch.). Liefert beim Kochen mit konz. Salzsäure 2-Methyl-5-phenyl-furan (Bd. XVII, S. 67) und 1-Phenyl-cyclopenten-(1)-on-(3) (Bo., Menz, B. 41, 195). AgC₁₂H₂O₂. Amorpher Niederschlag (Fi., Sch.). Ca(C₁₂H₂O₂)₂ + 2H₄O. Nadeln. In heißem Wasser nicht viel leichter löslich als in kaltem (Fi., Sch.). Ba(C₁₂H₂O₃)₃ + H₄O. Nadeln. Leicht löslich in Wasser; verliert das Krystall-wasser bei 140° und zersetzt sich bei 160° (Fi., Sch.).
- Äthylester $C_{14}H_{14}O_3 = \frac{C_2H_5 \cdot O_2C \cdot C CH}{C_6H_5 \cdot C \cdot O \cdot C \cdot CH_3}$. B. s. im vorangehenden Artikel. Öl. Kp₂₀: 193—194° (Borsche, Fels, B. 39, 1923).
- 2. α Phenyl β [α furyl] propions aure $C_{13}H_{12}O_3 = HC$ —CH $HC \cdot O \cdot C \cdot CH_3 \cdot CH(C_6H_5) \cdot CO_3H$
- $\alpha.\beta$ Dibrom α phenyl β [α furyl] propionitril $C_{13}H_{0}ONBr_{2}=OC_{2}H_{2}\cdot CHBr\cdot CBr(C_{2}H_{3})\cdot CN$. B. Aus α -Phenyl- β -[α -furyl]-acrylsāure-nitril (8. u.) und Brom in Schwefelkohlenstoff (Frost, A. **250**, 159). Orangefarbene Tafeln. F: 113—114°.
- $\alpha.\beta$ Dibrom α [4 brom phenyl] β [α -furyl] propionitril $C_{13}H_{8}ONBr_{8} = OC_{4}H_{2}$. CHBr·CBr($C_{8}H_{4}Br$)·CN. B. Aus α -[4-Brom-phenyl]- β -[α -furyl] acrylsaure-nitril (8. 313) und Brom (Frost, A. 250, 162). Braune Nadeln. Schmilzt unter Zersetzung bei ca. 212°.

8. Monocarbonsäuren C_nH_{2n-16}O₈.

- 1. α -Phenyi- β -[α -furyi]-acryisäure, β -[α -Furyi]-atropasäure, Furfuryliden-phenylessigsäure $C_{18}H_{10}O_{5}=\frac{HC-CH}{HC\cdot O\cdot C\cdot CH\cdot C(C_{6}H_{5})\cdot CO_{2}H}$. B. Bei 6-stdg. Kochen von 10 g phenylessigsaurem Natrium und 6 g Furfurol mit 24 g Essigsäure-anhydrid (Röhmer, B. 31, 282). Nadeln (aus Wasser). F: 143—144°. Leicht löslich in Alkohol, Äther, Aceton und heißem Wasser.
- α-Phenyl-β-[α-furyl]-acrylsäure-nitril, Furfuryliden-phenylacetonitril C_{13} H₂ON = OC₄H₂·CH:O(C₆H₅)·CN. B. Aus Benzylcyanid und Furfurol in Gegenwart von alkoh. Natriumäthylatlösung (Frost, A. 250, 159). Nadeln (aus Alkohol). F: 42–43° (F.). Liefert bei der Einw. von Natrium in Alkohol Benzylfurfuryl (Bd. XVII, S. 68) und β-Phenyl-γ-[α-furyl]-propylamin (Syst. No. 2640) (Freund, Immerwahr, B. 23, 2847).
- α [4 Chlor phenyl] β [α furyl] acrylsäure nitril, 4 Chlor α furfuryliden-phenylacetonitril $C_{13}H_6ONCl = OC_4H_8 \cdot CH \cdot C(C_6H_4Cl) \cdot CN$. B. Aus Furfurol und 4 Chlor-benzylcyanid in absolut-alkoholischer Lösung bei Gegenwart von Natriumäthylat (v. WALTHER.

WETZLICH, J. pr. [2] 61, 190). — Blaßgelbé Nadeln (aus verd. Alkohol). F: 80°. Ziemlich löslich in Alkohol.

- α -[4-Brom-phenyl]- β -[α -furyl]-acrylsäure-nitril, 4-Brom- α -furfuryliden-phenylacetonitril $C_{13}H_8ONBr=OC_4H_3\cdot CH:C(C_6H_4Br)\cdot CN.$ B. Aus 4-Brom-benzylcyanid durch Behandein mit Furfurol in Gegenwart von alkoh. Natriumäthylat-Lösung (Frost, A. 250, 161). Nädelchen. F: 65°.
- α -[4-Nitro-phenyl]- β -[α -furyl]-acrylsäure-nitril, 4-Nitro- α -furfuryliden-phenylacetonitril $C_{13}H_5O_3N_2=OC_4H_3\cdot CH:C(C_6H_4\cdot NO_9)\cdot CN$. B. Beim Versetzen einer Lösung berechneter Mengen 4-Nitro-benzylcyanid und Furfurol in warmem Alkohol mit wenig Natriumäthylat (Freund, Immerwahr, B. 23, 2853). Nadeln (aus Alkohol). F: 171° bis 173°. Schwer löslich in heißem Alkohol, Ather und Benzol.

2. Carbonsäuren C14H12O2.

- 1. \[a-Methyl-\alpha-[\alpha-naphthyl]-\alphathylenoxyd-\alpha'-carbons\alphaure, \beta-[\alpha-Naphthyl]-propylenoxyd-\alpha-carbons\alphaure, \[a.\beta-Oxido-\beta-[\alpha-naphthyl]-butters\alphaure, \\beta-Methyl-\beta-[\alpha-naphthyl]-glycids\alphaure \] C_{14}H_{12}O_3 = \begin{cmatrix} \cdot{CH_3} \\ C_{10}H_7 \end{cmatrix} CH \cdot CO_4H. \]
- β-Methyl-β-[α-naphthyl]-glycidsäure-äthylester $C_{16}H_{16}O_3 = CH_3 C_{10}H_7 C_{-0}CH \cdot CO_3 \cdot C_2H_5$. B. Aus Methyl-α-naphthyl-keton und Chloressigester in Gegenwart von Natriumäthylat (Darzens, C. r. 145, 1342). Geruchlose dickliche Flüssigkeit. Kp₄: 165—170°. Die beim Verseifen resultierende freie Säure geht bei der Destillation im Vakuum unter Verlust von Kohlendioxyd in Methyl-α-naphthyl-acetaldehyd über.
- 2. a-Methyl-a-[β -naphthyl]-āthylenoxyd-a'-carbonsāure, β -[β -Naphthyl]-propylenoxyd a carbonsāure, a. β -Oxido β -[β -naphthyl]- buttersāure, β -Methyl- β -[β -naphthyl]-glycidsāure $C_{14}H_{12}O_3=\frac{CH_3}{C_{10}H_7}>C$ -CH·CO₂H.
- β- Methyl β- [β- naphthyl] glycidsäure äthylester $C_{16}H_{16}O_3 = CH_3 > C O$ CH·CO₃· C_3H_8 . B. Aus Methyl-β-naphthyl-keton und Chloressigester in Gegenwart von Natriumäthylat (Darzens, C. r. 145, 1343). Geruchlose Flüssigkeit. Kp₈: 175—180°. Die beim Verseifen resultierende freie Säure liefert bei der Destillation im Vakuum unter Verlust von Kohlendioxyd Methyl-β-naphthyl-acetaldehyd.

9. Monocarbonsäuren C_nH_{2n-18}O₃.

1. Carbonsäuren $C_{13}H_8O_3$.

- 1. 4.5 Benzo cumaron carbonsäure (2), [Naphtho-2'.1':2.3 furan] carbonsäure (5) \(^1\)\)\ C₁₃H₈O₈, s. nebenstehende Formel. B. Man führt 5.6-Benzo-cumarin (Bd. XVII, S. 359) in das Dibromid über und behandelt dieses mit heißer alkoholischer Krystalle (STOERMER, GIESERE, B. 30, 1703; St., A. 312, 309). Krystalle (aus verd. Alkohol). F: 191—192°. Leicht löslich in Alkohol, Äther und Benzol. Beim Erhitzen mit Natronkalk entsteht 4.5-Benzo-cumaron (Bd. XVII, S. 70) (St.).
- 2. Diphenylenoxyd carbonsäure (2) C₁₃H₈O₃, s. nebenstehende Formel ²), B. Durch Diazotierung von salzsaurem 2-Aminodiphenylenoxyd (Syst. No. 2640), Eingießen der Diazoniumchlorid-Lösung in eine 70° warme Kaliumkupfercyanür-Lösung und ¹/₃-stdg. Digerieren im Wasserbad erhält man das Nitril der Diphenylenoxyd-carbonsäure-(2), das durch mehrtägiges Erwärmen mit alkoh. Kalilauge verseift wird (BORSCHE, BOTHE, B. 41, 1943). Nadeln (aus heißem verdünntem Alkohol). F: 266°.

Nitril, 2 - Cyan - diphenylenoxyd $C_{13}H_7ON = C_6H_4 C_0C_6H_3 CN$. B. s. o. bei der Säure. — Nadeln (aus Methylalkohol oder Essigsäure). F: 120° (Borsche, Bothe, B. 41, 1943).

¹⁾ Zur Stellungsbeseichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

[&]quot;) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von F. MAYER, KRIEGER, B. 55, 1659; BORSCHE, SCHACKE, B. 56, 2500 und CULLINARE, Soc. 1930, 2267.

3. Diphenylenoxyd-carbonsäure-(3)¹) C₁₃H₂O₃, s. nebenstehende Formel. B. Bei der Oxydation von 3-Acetyl-diphenylenoxyd (Bd. XVII, S. 363) mit Natriumhypochlorit-Lösung (Boesche, Bothe, B. 41, 1943). — Farblose Nadeln (aus Alkohol). F: 246—247° (F. Mayer, Keieger, B. 55 [1922], 1661).

2. Carbonsäuren $C_{14}H_{10}O_3$.

1. 3 - Methyl - 6.7 - benzo - cumaron - carbonsäure - (2), 4 - Methyl - [naphtho - 1'.2': 2.3 - furan] - carbonsäure - (5)²)
C₁₄H₁₆O₃, s. nebenstehende Formel. B. Der Äthylester wird durch Einw. von α-Chlor-acetessigsäure-āthylester auf α-Naphtholnatrium und Einträgen des entstandenen (nicht näher beschriebenen) α-[α-Naphthoxy]-acetessigesters in konz. Schwefelsäure erhalten; man verseift ihn mit alkoh. Kalilauge (Hantzsch, Pfeiffer, B. 19, 1302, 1303). — Nädelchen (aus Eisessig). Sublimiert teilweise unzersetzt. F: 243—245° (Zors.). Kaum löslich in Wasser, schwer in den üblichen Lösungsmitteln. — Zerfällt bei der Destillation in 3-Methyl-6.7-benzo-cumaron (Bd. XVII, S. 74) und Kohlendioxyd.

2. 3 - Methyl - 4.5 - benzo - cumaron - carbonsäure - (2), 4 - Methyl - [naphtho - 2'.1': 2.3 - furan] - carbonsäure - (5) 2) C₁₄H₁₀O₂, s. nebenstehende Formel. B. Durch Einw. von α -Chlor-acetessigsäure-äthylester auf β -Naphtholnatrium, Eintragen des ontstandenen (nicht näher beschriebenen) α -[β -Naphthoxy]-acetessigesters in konz. Schwefelsäure und Verseifung mit alkoh. Kalilauge (Hantzsch, Pfeiffer, B. 19, 1302, 1304). — F: 253–254°. — Gibt bei der trocknen Destillation in Gegenwart von Kalk 3-Methyl-4.5-benzocumaron (Bd. XVII, S. 74). — NaC₁₄H₂O₂ + 4 H₂O. Bläulich fluorescierende Nadeln.

Äthylester $C_{16}H_{16}O_2 = C_{10}H_6 < C(CH_2) > C \cdot CO_2 \cdot C_2H_5$. B. s. o. bei der Säure. — Nadeln. F: 100° (H., Pr., B. 19, 1302, 1304).

3. Carbonsäuren $C_{15}H_{12}O_3$.

- 1. α -Phenyl- δ -[α -furyl]- α - γ -butadien- α -carbonsaure, α -Phenyl- γ -furfury-liden-crotonsaure $C_{18}H_{18}O_8 = \frac{HC CH}{HC \cdot O \cdot C \cdot CH \cdot CH \cdot CH \cdot C(C_6H_8) \cdot CO_3H}$. B. Durch 6-stdg. Kochen von 2 g β -[α -Furyl]-acrolein (Bd. XVII, 8. 305) mit 2,6 g phenylessigsaurem Natrium und 8 g Essigsaureanhydrid (Röhmer, B. 31, 285). Flockig krystallinische Masse (aus Wasser). F: 212—213°. Leicht löslich.
- 2. α.α-Diphenyl-āthylenoxyd-α'-carbonsāure, α.β-Oxido-β.β-diphenyl-propionsāure, β.β-Diphenyl-glycidsāure C₁₈H₁₂O₃ = (C₆H₅)₂C O CH·CO₂H. Die im folgenden behandelte Verbindung ist auf Grund der Arbeiten von Troell, B. 61 [1928], 2498, 2502 und Kohler, Richtmyer, Hester, Am. Soc. 53 [1931], 211, 218 als Diphenyl-brenztraubensäure anzusehen. B. Man läßt Benzophenon mit Chloresigester in Äther bei Gegenwart von Natriumamid 2½ Tage stehen, behandelt das Reaktionsprodukt mit Wasser, destilliert im Vakuum und verseift den entstandenen Ester durch Natriumäthylat-Lösung, der man die berechnete Menge Wasser zugefügt hat (Pointet, C. r. 148, 418). F: 116° (P.). Geht bei der Destillation unter Verlust von Kohlenoxyd in Diphenylessigsäure über (P.).

Äthylester $C_{17}H_{16}O_3 = (C_0H_5)_3C_{\bigcirc\bigcirc}CH\cdot CO_3\cdot C_2H_5$. Die im folgenden behandelte Verbindung ist auf Grund der Arbeiten von Troell, B. 61 [1928], 2498, 2502 und Kohler, Richtmyer, Hester, Am. Soc. 53 [1931], 211, 218 als Diphenylbrenztraubensäure-

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von F. MAYER, KRIEGER, B. 55, 1659; BORSCHE, SCHACKE, B. 56, 2499.

²⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

äthylester anzusehen. — B. s. im vorhergehenden Artikel. — Krystalle (aus Alkohol). F: 47° (Pointet, C. r. 148, 418; Rutowski, Dajew, B. 64 [1931], 698), 37° (K., R., H.). Kp₁₃: 202—204° (P.).

3. **Xanthylessigsdure** $C_{18}H_{12}O_3 = C_6H_4$ CH(CH₂·CO₂H) C_6H_4 . B. Aus Xanthydrol (Bd. XVII, S. 129) und Essigsdureanhydrid (Fosse, C. r. 143, 59, 61). Beim Erhitzen von Xanthylmalonsäure (S. 341) in Gegenwart von Pyridin (F., Bl. [3] 35, 1007). Durch Verseifen von Xanthylacetonitril mit siedender alkoholischer Kalilauge (F., Bl. [3] 35, 1008). — Nadeln. F: 155,5—156°; sublimierbar; löslich in Alkohol, schwer löslich in siedendem Wasser (F., C. r. 143, 61).

Anilid $C_{21}H_{17}O_2N = C_{13}H_0O \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_5$. Nadeln. F: 213—214° (F., Bl. [3] 35, 1010).

o-Toluidid $C_{22}H_{19}O_2N = C_{13}H_9O \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_2 \cdot CH_3$. Nadeln. F: 215—216° (F., Bl. [3] 85, 1010).

m-Toluidid $C_{22}H_{19}O_2N = C_{13}H_9O \cdot CH_2 \cdot CO \cdot NH \cdot C_8H_4 \cdot CH_8$. F: 153—154° (F., Bl. [3]

p-Toluidid $C_{22}H_{19}O_2N = C_{13}H_9O \cdot CH_2 \cdot CO \cdot NH \cdot C_9H_4 \cdot CH_3$. F: 204—205° (F., Bl. [3] 35, 1010).

 α -Naphthylamid $C_{25}H_{19}O_2N = C_{13}H_9O \cdot CH_2 \cdot CO \cdot NH \cdot C_{10}H_7$. F: 210—211° (F., Bl. [3] 35, 1010).

β-Naphthylamid $C_{25}H_{19}O_2N = C_{13}H_9O \cdot CH_2 \cdot CO \cdot NH \cdot C_{10}H_7$. F: 225—226° (F., Bl. [3] 35, 1010).

Nitril, Xanthylacetonitril $C_{15}H_{11}ON = C_6H_4$ $CH(CH_2 \cdot CN)$ C_6H_4 . B. Durch Erhitzen von Xanthylcyanessigsäure (S. 341) mit Pyridin (Fosse, Bl. [3] 35, 1008). — F: 140°. — Liefert bei der Einw. von siedender alkoholischer Kalilauge Xanthylessigsäure.

4. α -Phenyl- α -p-tolyl-äthylenoxyd- α -carbonsäure, α - β -Oxido- β -phenyl- β -p-tolyl-propionsäure, β -Phenyl- β -p-tolyl-glycidsäure $C_{16}H_{14}O_3=C_{16}H_{14}C_{16}G_{$

Äthylester $C_{18}H_{18}O_3 = CH_3 \cdot C_8H_4 \cdot C - CH \cdot CO_3 \cdot C_2H_5$. Die im folgenden behandelte Verbindung ist auf Grund der Arbeiten von Troell, B. 61 [1928], 2498 und Kohler, Richtmark, Hester, Am. Soc. 53 [1931], 211 als Phenyl-p-tolyl-brenztraubensäureäthylester anzusehen. — B. s. im vorhergehenden Artikel. — Kp_{18} : 225° (Pointet, C. τ . 148, 419).

5. 2.5-Diphenyl-furantetrahydrid-carbonsäure-(3), 2.5-Diphenyl-tetrahydrofuran-carbonsäure-(3) $C_{17}H_{16}O_3 = \frac{H_1C-CH\cdot CO_2H}{C_8H_5\cdot HC\cdot O\cdot CH\cdot C_6H_5}$.

2.3.4.5 - Tetrabrom - 2.5 - diphenyl-furantetrahydrid - carbonsäure - (3), 2.5 - Diphenyl-furantetrabromid-carbonsäure - (3) $C_{17}H_{12}O_3Br_4 = \frac{BrHC - CBr \cdot CO_2H}{C_6H_5 \cdot BrC \cdot O \cdot CBr \cdot C_6H_5}$. Bei der Einw. von Bromdampf auf 2.5-Diphenyl-furan-carbonsäure - (3) (S. 316) (Perkin, Schloesser, Soc. 57, 953). — Farbloses, unlösliches Pulver.

6. α -Xanthyl-isovaleriansäure $C_{18}H_{18}O_3 = \frac{(CH_3)_2CH \cdot CH \cdot CO_2H}{C_6H_4 \cdot CO} \cdot B$. Aus Xanthydrol und Isovaleriansäureanhydrid (Fosse, C. r. 143, 61). — Krystalle. F: 147—150°.

10. Monocarbonsäuren $C_n H_{2n-22} O_3$.

2.5-Diphenyl-furan-carbonsäure-(3) $C_{17}H_{12}O_3 = \frac{HC-C\cdot CO_2H}{C_6H_5\cdot C\cdot O\cdot C\cdot C_6H_5}$. B. Aus β -Brom- α -phenacyl-zimtsäure beim Erhitzen für sich bis zum Schmelzen oder beim Aufbewahren mit überschüssiger Alkslilauge (Thiele, Mayr, A. 306, 174). Durch 5—6-stdg. Kochen von Phenacyl-benzoyl-essigester mit Alkohol und mäßig konz. Salzsäure und Verseifung des entstandenen Athylesters mit alkoh. Kalilauge (Kapf, Paal, B. 21, 3059). Beim Kochen von 5-Oxo-2-phenyl-4-benzoyl-furan-dihydrid-(4.5) (Bd. XVII, S. 535) mit rauchender Salzsäure und etwas Alkohol (K., Pa., B. 21, 1489). Beim Erhitzen von 2.5-Diphenyl-furan-diearbonsäure-(3.4) (S. 342) über den Schmelzpunkt (Perkin, Schloesser, Soc. 57, 951). — Nadeln (aus verd. Alkohol). F: 217°; destilliert fast unzersetzt; unlöslich in Wasser und Petroläther, ziemlich leicht löslich in der Wärme in Alkohol, Ather, Eisessig und Benzol (K., Pa., B. 21, 1489). — Gibt bei der Destillation über Zinkstaub 2.5-Diphenyl-furan (Bd. XVII, S. 81); wird von alkal. Kaliumpermanganat-Lösung glatt zu Benzoesäure oxydiert (K., Pa., B. 21, 1490). — NaC₁₇H₁₁O₃. Nadeln. Leicht löslich in warmem Wasser oder Alkohol, unlöslich in Kalilauge (K., Pa., B. 21, 1490). — AgC₁₇H₁₁O₃. Pulveriger Niederschlag (Pe., Sch.).

Methylester $C_{18}H_{14}O_3 = OC_4H(C_6H_5)_2 \cdot CO_3 \cdot CH_3$. B. Beim Kochen von 2.5-Diphenyl-furan-carbonsäure-(3) mit methylalkoholischer Salzsäure (Thiele, Mayr, A. 306, 175). — Farblose Blätter. F: 63°.

Äthylester $C_{19}H_{16}O_2 = OC_4H(C_9H_5)_2 \cdot CO_2 \cdot C_2H_5$. B. Beim Kochen von Phenacylbenzoyl-essigester mit Alkohol und mäßig konz. Salzsäure (Kapf, Paal, B. 21, 3059). Beim Einleiten von Chlorwasserstoff in die siedende alkoholische Lösung von 2.5-Diphenyl-furancarbonsäure-(3) (K., P., B. 21, 1490). — Krystalle (aus Äther). F: 82° (K., P., B. 21, 1490), 81° (Thelle, Mayr, A. 306, 175).

11. Monocarbonsäuren $C_nH_{2n-26}O_3$.

1. 2-Xanthyl-benzoesäure, Hydrofluoransäure C₂₀H₁₄O₃ = C₆H₄·CO₂H) C₆H₄. Die vom Namen, Hydrofluoransäure abgeleiteten Namen werden in diesem Handbuch nach nebenstehendem Schema beziffert. — B. Beim Behandeln von Fluoran (Syst. No. 2751) amit alkoh. Natronlauge und Zinkstaub (BAEYER, A. 212, 350; R. MEYER, Hoffmeyer, B. 25, 1388). Rascher bei 2-stdg. Kochen einer Lösung von 10 g Fluoran in 100 cm³ Eisessig und 5 cm³ konz. Salzsäure mit 10 g Zinkstaub unter Zusatz einiger Tropfen Platinchlorid (Ullmann, Tscherniac, B. 38, 4110). In geringer Menge durch Kochen, von Fluorananilid C₂H₂·C₂C₂C₃C₄O (Syst. No. 4287) mit Zinkstaub und

durch Kochen von Fluorananilid $C_6H_4 \cdot C < C_6H_4 > O$ (Syst. No. 4287) mit Zinkstaub und OC—N·C₆H₄

N·C₆H₄

N·C₆H₄

(aus Alkohol). F: 226—228° (R. M., H., B. 25, 1389), 227° (U., TSCH.). Leicht löslich in Äther, schwieriger in Benzol (B.), sehr schwer löslich in kaltem Xylol, leichter in Alkohol (R. M., H., B. 25, 1389). Leicht löslich in verd. Alkalien und Alkalicarbonaten (B.). — Liefert bei der Destillation mit Kalk Xanthon (R. M., H., B. 25, 2119), bei der Destillation mit Natronkalk oder Baryt 9-Phenyl-fluoren (R. M., H., B. 25, 2121; R. M., SAUL, B. 25, 3586). Löst sich in warmer konzentrierter Schwefelsäure mit gelber Farbe, die sehr rasch grün und bei weiterem Erhitzen kirschrot wird; Wasser fällt aus der Lösung einen rotbraunen Niederschlag, der sich in Äther mit intensiv grüner Fluorescenz löst (B.) und aus einem Gemisch von Cöroxenol (Bd. XVII, S. 395) und Cöroxonol (S. 74) besteht (Decker, Ferrario, A. 348, 227). — Natriumsalz. Farblose Blättchen. Sehr wenig löslich (R. M., B. 28, 431). — AgC₃₀H₁₃O₃. Amorpher Niederschlag (R. M.).

Methylester $C_{21}H_{16}O_3 = C_6H_4$. $CH(C_6H_4 \cdot CO_3 \cdot CH_3)$ C_6H_4 . B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung von Hydrofluoransäure (R. MEYER, B. 28, 432). Beim Schütteln einer Lösung von 5 g Hydrofluoransäure in 50 cm³ 10^0 /eiger Sodaldsung mit 2;5 g Dimethylsulfat (Ullmann, Tscherniac, B. 38, 4110). — Nadeln (aus Methylalkohol). F: 123—125° (R. M.), 124° (U., T.). — Gibt durch Einw. von Phenylmagnesiumbromid in Äther 2-Xanthyl-triphenylcarbinol (Bd. XVII, S. 152) (U., T.).

Äthylester $C_{22}H_{15}O_{3} = C_{6}H_{4} \underbrace{CH(C_{6}H_{4} \cdot CO_{3} \cdot C_{2}H_{5})}_{O} C_{6}H_{4}$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von Hydrofluoransäure (R. MEYER, B. 28, 432). — Blättehen (aus Alkohol). F: 99—101°.

2-[3.6-Dichlor-xanthyl]-benzoesäure, 3.6-Dichlor-hydrofluoransäure C₂₀H₁₂O₃Cl₂, s. nebenstehende Formel. B. Beim Erhitzen von 3.6-Dichlor-fluoran (Fluoresceinchlorid) (Syst. No. 2751) mit rauchender Jodwasserstoffsäure im Druckrohr auf 150° (Baeyer, Cl. OI A. 183, 21). Beim Kochen von 3.6-Dichlor-fluoran mit wäßrigalkoholischer Natronlauge und Zinkstaub unter allmählichem Zusatz von Wasser (B., A. 212, 352). — Nadeln (aus verd. Alkohol), rhomboedrische Blättchen (aus Essigsäure). F: 226° (B., A. 212, 352), 229—230° (B., A. 183, 21). Leicht löslich in Alkohol, Aceton und heißer Essigsäure (B., A. 183, 21), löslich in Äther und Benzol, unlöslich in Ligroin (B., A. 212, 352); leicht löslich in verd. Alkalien und Alkalicarbonaten (B., A. 212, 352). Unzersetzt löslich mit gelber Farbe in konz. Schwefelsäure (B., A. 213, 353). — Liefert mit Phosphorzentachlerid bei 490° eine in Alkalica und Schwefelsäure (B., A. 213, 353). — Liefert mit Phosphorzentachlerid bei 490° eine in Alkalica und Schwefelsäure (B., A. 213, 353). — Liefert mit Phosphorzentachlerid bei 490° eine in Alkalica und Schwefelsäure (B., A. 213, 353). — Liefert mit Phosphorzentachlerid bei 490° eine in Alkalica und Schwefelsäure (B., A. 212, 353). — Alkalica und Schwefelsäure (B., A. 212, 24)

pentachlorid bei 120° eine in Alkalien unlösliche Verbindung (B., A. 183, 21).

2 - [2.7 - Dinitro - xanthyl] - benzoesäure, 2.7 - Dinitrohydrofluoransäure C₂₀H₁₂O₇N₃, s. nebenstehende Formel. B.

Durch 4-stdg. Erwärmen von 2.7 - Dinitro-fluoran (Syst. No. 2751)

mit alkoh. Schwefelammonium (R. MEYER, FRIEDLAND, B. 32,
2111). — Nadeln (aus Eisessig). F: 245—247° (Zers.). Die farblose

Lösung in alkoh. Kalilauge wird beim Kochen kirschrot. Löst sich in konz. Schwefelsäure mit gelber Farbe, die beim Erwärmen dunkel wird.

2. Carbonsäuren C₂₂H₁₈O₃

- 1. 2-[2.7-Dimethyl-xanthyl]-benzoesäure, 2.7-Dimethyl-hydrofluoransäure C₁₂H₁₈O₃, s. nebenstehende Formel. B. Beim Kochen von 2.7-Dimethyl-fluoran (p-Kresol-phthalein) (Syst. No. 2751) mit Zinkstaub und Eisessig (Dbewsen, A. 212, 342). Krystalle (aus Chloroform). F: 210°. Sublimiert bei vorsichtigem Erhitzen unzersetzt. Sehr leicht löslich in Alkohol, Äther, Chloroform, Benzol und Eisessig; löslich in verd. Alkalien und Alkalicarbonaten. Löst sich in konz. Schwefelsäure mit brauner Farbe; Wasser scheidet aus der Lösung braune Flocken ab, die sich in Äther mit gelber Farbe und rotgrüner Fluorescenz lösen.
- 2. 2-[3.6-Dimethyl-xanthyl]-benzoesdure, 3.6-Dimethyl-hydrofluoransdure C₂₂H₁₈O₃, s. nebenstehende Formel. B. Beim Erhitzen von 3.6-Dimethyl-fluoran (Syst. No. 2751) in Alkohol mit Kalium¹) und Zinkstaub (Lambrecht, B. 42, 3593). Bei der Reduktion von 3.6-Dimethyl-fluoran mit Zinkstaub nodeln (aus Alkohol). F: 230° (F., N.), 232° (L.). Schwer löslich in Alkohol, leicht in Benzol und Chloroform (L.). Löst sich in konz. Schwefelsäure mit gelber Farbe, die beim Erhitzen in Rot übergeht (L.).

Methylester $C_{23}H_{20}O_3 = CH_3 \cdot C_0H_3 \underbrace{CH(C_0H_4 \cdot CO_3 \cdot CH_2)}_{O} C_0H_3 \cdot CH_3$. B. Durch Esterifizieren von 3.6-Dimethyl-hydrofluoransäure mit Methylalkohol und Chlorwasserstoff oder mit Dimethylsulfat in alkal. Lösung (Ferrario, Neumann, Bl. [4] 5, 1099). — Krystalle. F: 115—116°.

12. Monocarbonsäuren C_nH_{2n-80}O₈.

1. [1.2; 7.8 - Dibenzo - xanthyl] - essigsäure, [Di-naphthe - 2'.1': 2.3; 1".2": 5.6 - pyryl] - essigsäure³)

C₂₃H₁₆O₃, s. nebenstehende Formel. B. Beim Kochen von 1.2; 7.8-Dibenzo-xanthylrol (Bd. XVII, S. 145) mit Essigsäure-anhydrid (Fosse, C. r. 134, 664; 143, 60; Bl. [3] 27, 505, 506; A. ch. [8] 2, 270, 271; vgl. A. ch. [9] 13 [1920], 91). Beim Kochen von Bis-[1.2; 7.8-dibenzo-xanthyl]-äther (Bd. XVII, S. 148) mit Essigsäureanhydrid (F., C. r. 134, 664; Bl. [3] 27, 507; A. ch. [8] 2, 280). Durch

¹⁾ Gemeint ist wohl Kaliumhydroxyd (Beilstein-Redaktion).

²⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Erhitzen von [1.2;7.8-Dibenzo-xanthyl]-malonsäure (S. 343) mit Chinolin (F., Bl. [3] 35, 1008). — Krystalle (aus Alkohol). F: 1940 (F., C. r. 134, 664; Bl. [3] 27, 505). — NaC₁₂H₁₅O₂. Krystallalkohol enthaltende Krystalle, die bei 100° matt werden (F., C. r. 143, 60). $KC_{23}H_{15}O_3$. Krystalle (aus absol. Alkohol) (F., C. r. 143, 60). — $AgC_{23}H_{15}O_3$ (F., C. r. 143, 60). — $Ca(C_{23}H_{15}O_3)_2$. Nadeln (F., C. r. 143, 61). — $Ba(C_{23}H_{15}O_3)_2$. Krystallwasserhaltige Nadeln, die bei 100° wasserfrei werden (F., C. r. 143, 61).

2. $\alpha - [1.2; 7.8 - Dibenzo - xanthyl] - propionsäure,$ α-[Dinaphtho-2'.1':2.3:1".2":5.6-pyryl]-propionsäure¹) C₂₄H₁₈O₃, s. nebenstehende Formel. B. Aus 1.2;7.8-Dibenzo-xanthydrol und Propionsäureanhydrid (Fosse, C. r. 143, 61). — Krystalle. F: 197°.

3. α -[1.2;7.8-Dibenzo-xanthyl]-isobuttersäure, α - [Dinaphtho - 2'.1': 2.3; 1".2": 5.6 - pyryl] - isobuttersäure¹) $C_{ab}H_{a0}O_{a}$, s. nebenstehende Formel. B. Aus 1.2;7.8-Dibenzo-xanthydrol und Isobuttersäureanhydrid (Fosse, C. r. 143, 61). — Krystalle. F: 221°.

4. α -[1.2;7.8-Dibenzo-xanthyl]-isovaleriansaure, α-[Dinaphtho-2'.1':2.3;1".2":5.6-pyryl]isovaleriansaure 1) CaeHasOs, s. nebenstehende Formel. B. Aus 1.2;7.8-Dibenzo-xanthydrol und Isovaleriansaureanhydrid (Fosse, C. r. 143, 61). — Krystalle. F: 208—210° (Zers.).

B. Dicarbonsäuren.

1. Dicarbonsäuren $C_nH_{2n-4}O_5$.

 Athylenoxyd-αα'-dicarbonsäure, Oxidobernsteinsäure ("Fumarylglycidsäure") $C_4H_4O_5 = HO_2C \cdot HC \xrightarrow{C} CH \cdot CO_2H^2$. Man läßt eine 10% ige В. Lösung von 1 Mol β -Chlor- oder β -Brom-dl-äpfelsäure nach Zusatz von 3 Mol Natronlauge bei gewöhnlicher Temperatur stehen, bis sie neutral geworden ist (Lossen, A. 348, 299). — Prismen (aus Essigester). F: 203°. Leicht löslich in Wasser, Alkohol und Essigester, ziemlich schwer in Äther, unlöslich in Chloroform und Petroläther. — Liefert beim Kochen mit Wasser Kohlendioxyd, Formaldehyd, Traubensäure und Mesoweinsäure. Beim Schütteln mit konz. Salzsäure entsteht β -Chlor-dl-äpfelsäure, mit konz. Bromwasserstoffsäure β -Brom-dl-äpfelsaure. Einw. von Ammoniak: L. — NaC₄H₂O₅ + H₂O. Tafeln (aus Wasser). — Ag₂C₄H₂O₅. Pulveriger Niederschlag. Verpufft beim Erhitzen. — $CaC_4H_2O_5 + 2H_2O$. Krystallinische Krusten. Leicht löslich in Wasser. — BaC4H2O5 + 2H2O. Niederschlag. — PbC4H2O5 + 2H2O. Niederschlag.

Dimethylester $C_6H_8O_5 = CH_3 \cdot O_2C \cdot HC \cdot CO_2 \cdot CH_3$. B. Durch Einw. von Methyljodid auf das Silbersalz der Äthylenoxyd-α.α'-dicarbonsäure in Äther bei gewöhnlicher Temperatur (L., A. 348, 302). — Nadeln (aus Äther). F: 73°.

Diphenylester $C_{16}H_{12}O_5 = C_6H_5 \cdot O_2C \cdot HC - CH \cdot CO_2 \cdot C_6H_5$. Beim Erhitzen von Äthylenoxyd-α.α'-dicarbonsäure mit der berechneten Menge Phenol (L., A. 348, 302).

— Krystallbüschel (aus Äther und Petroläther). F: 133°. Leicht löslich in Alkohol und Äther, schwer in Petroläther, unlöslich in Wasser.

Dichlorid $C_4H_2O_3Cl_2 = CloC \cdot HC - CH \cdot COCl$. B. Beim Erhitzen von Äthylenoxyd-α.α'-dicarbonsäure mit Phosphorpentachlorid (L., A. 348, 303). — Schuppen (aus

Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1—3.
 Auf Grund einer Arbeit von Kuhn, Ebel, B. 58, 919, die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienen ist, besitzt diese Säure die trans-Konfiguration.

Petroläther). F: 53°. Kp40: 90—93°. Leicht löslich in Alkohol und Äther. — Zersetzt sich an feuchter Luft.

Diamid $C_4H_6O_2N_2=H_2N\cdot CO\cdot HC_{\bigcirc}CH\cdot CO\cdot NH_2$. B. Beim Eintragen von Äthylenoxyd- $\alpha.\alpha'$ -dicarbonsäure-dimethylester in konzentriertes alkoholisches Ammoniak (L., A. 348, 304). Bei der Einw. von trocknem Ammoniak auf Äthylenoxyd- $\alpha.\alpha'$ -dicarbonsäure-dichlorid in Äther (L.). — Krystallinischer Niederschlag. F: 225° (Zers.). Unlöslich in Alkohol, Äther und kaltem Wasser.

Äthylensulfid - $\alpha.\alpha'$ - dicarbonsäure - diäthylester $C_8H_{12}O_4S = C_2H_5 \cdot O_2C \cdot HC - S$ CH·CO₂·C₂H₅. B. Bei 20-stdg. Erhitzen von 1 Mol Fumarsäure-diäthylester mit 1 At.-Gew. Schwefel im Druckrohr auf 205—210° (M^{*}CHAEL, B. 28, 1634). — Gelbliches Öl. Siedet auch im Vakuum nicht unzersetzt.

2. α -Methyl-äthylenoxyd- α . α' -dicarbonsäure, Propylenoxyd- α . β -dicarbonsäure, α . β -Oxido-brenzweinsäure $C_5H_6O_5=HO_2C\cdot HC$ $C(CH_3)\cdot CO_2H$.

B. Beim Kochen von Chlorcitramalsäure (Bd. III, S. 444) mit überschüssigem Barytwasser bis zum Aufhören der Kohlendioxyd-Entwicklung, neben Citraweinsäure (Morawski, J. pr. [2] 10, 79). Man trägt chlorcitramalsaures Barium in viel siedendes Barytwasser ein (Mo., J. pr. [2] 11, 432; Scherks, A. 227, 237). Beim Kochen von Chlorcitramalsäure mit alkoh. Kalilauge (Melikow, Feldmann, A. 253, 89). Beim Kochen von Citra- oder Mesadibrombrenzweinsäure (Bd. II, S. 642) mit Barytwasser (Mo., J. pr. [2] 11, 431, 468). Neben anderen Produkten aus Citradibrombrenzweinsäure durch Zersetzung mit einem großen Sodaüberschuß (Semenow, K. 31, 296; C. 1899 I, 1205). — Krystalle nit 1 H₂O (aus Wasser). Monoklin prismatisch (Johnsen, C. 1907 I, 1587; vgl. Großh, Ch. Kr. 3, 420). Zersetzt sich bei 160° (Sch.); 162° (Me., F.). Sehr leicht löslich in Wasser, Alkohol und äther (Mo., J. pr. [2] 10, 79). — Verwandelt sich bei anhaltendem Erhitzen auf 120—130° in ein voluminöses Produkt [Citraweinsäureanhydrid(?)], das mit Wasser Citraweinsäure bildet (Mo., J. pr. [2] 10, 79; 11, 437). Wird von Natriumamalgam nicht angegriffen (Mo., J. pr. [2] 10, 87). Wird von konz. Jodwasserstoffsäure bei 100—110° zu Citramalsäure (Bd. III, S. 444) reduziert (Mo., J. pr. [2] 11, 439). Reagiert nicht mit Brom (Mo., J. pr. [2] 10, 87). Liefert mit kaltgesättigter Salzsäure α-Chlor-α'-οxy-α-methyl-bernsteinsäure (Bd. III, S. 446) (Me., F.), anti rauchender Bromwasserstoffsäure α-Brom-α'-οxy-α-methyl-bernsteinsäure (Sch.). Zerfällt beim Kochen mit Wasser hauptsächlich in Propionaldehyd und Kohlendioxyd (Son.); daneben entsteht Citraweinsäure (Mo., J. pr. [2] 11, 437; Sch.). Barium- und Bleisalz gehen beim Erhitzen mit Wasser auf 120° in citraweinsaure Salze über unter gleichzeitiger Bildung der entsprechenden Carbonate (Mo., J. pr. [2] 10, 84, 87; 11, 433, 434). Liefert beim Erhitzen mit alkoholisch-wäßigem Ammoniak im Einschlußrohr auf 100° Amino-citramalsäure (Bd. IV, S. 521) (Me., F.). — NH₄C₅H₅O₅. Prismen (Mo., J. pr. [2] 10, 81). — PC₅H₄O

Diäthylester $C_9H_{14}O_5=C_9H_5\cdot O_2C\cdot HC_{\bigcirc \bigcirc }\cdot C(CH_8)\cdot CO_2\cdot C_2H_5$. B. Bei 5—6-stdg. Erhitzen des Silbersalzes der α -Methyl-āthylenoxyd- $\alpha.\alpha'$ -dicarbonsäure mit Äthyljodid in Äther auf dem Wasserbad (Melikow, Feldmann, A. 253, 90). — Flüssig. Kp: 244—245°. D_0^a : 1,1376; D_2^a : 1,1167.

3. Dicarbonsăuren $C_6H_8O_5$.

1. Furantetrahydrid-dicarbonsdure-(2.5), Tetrahydrofuran-dicarbonsdure-(2.5) C₆H₈O₅ = H₂C—CH₂. B. Entsteht als Gemisch zweier stereoisomerer Formen beim Erhitzen einer wäßr. Lösung der α-Oxy-δ-valerolacton-α.δ.δ-tricarbonsäure (Syst. No. 2626) im Einschlußrohr auf 150° (Lean, Soc. 77, 110) oder bei der Reduktion von 2.3-Dihydro-furan-dicarbonsäure-(2.5) (S. 323) mit überschüssigem Natrium-amalgam in wäßr. Lösung (Hill, Wheeler, Am. 25, 482). Eine Trennung der Isomeren läßt sich erreichen durch fraktionierte Krystallisation der freien Säuren aus Wasser (L.) oder auf Grund der verschiedenen Löslichkeit der beiden Bleisalze in Wasser (H., W.).

Hochschmelzende Form, cis-Form 1). Krystalle. F: 123—125° (L.), 124° (H., W.). Sehr leicht löslich in Wasser, Alkohol, Aceton und Eisessig, ziemlich schwer in Äther, unlöslich in Chloroform, Benzol und Petroläther (L.). — Ag₂C₆H₆O₅. Verpufft leicht (I.). Niedrigschmelzende Form, trans-Form 1). Krystallisiert mit 1 H₂O aus den Mutterlaugen der hochschmelzenden Form; die wasserfreie Säure entsteht aus dem Hydrat bei langem Aufbewahren im Vakuum über Schwefelsäure (L.). Schmilzt wasserhaltig bei 63—64° (aus konz. Salzsäure krystallisiert) (L.), 59—61° (aus Wasser krystallisiert) (H., W.), wasserfrei bei 93—95° (L.), 94—95° (H., W.). Das Hydrat ist äußerst leicht löslich in Wasser, Alkohol, Aceton und Eisessig, ziemlich schwer in siedendem Äther, schwer in siedendem Benzol, Toluol und Petroläther (L.). - Ag₂C₈H₄O₅ (L.).

- 2.3-Dibrom-furantetrahydrid-dicarbonsäure-(2.5), 2.3-Dibrom-tetrahydrofuran-H.C-CHBr $\label{eq:constraint} \text{dicarbons}\\ \ddot{a}\text{ure-(2.5)} \quad C_{\delta}H_{\delta}O_{\delta}\text{Br}_{2} = \underbrace{HO_{2}C\cdot HC\cdot O\cdot CBr\cdot CO_{2}H}_{\bullet}.$ B. Aus 2.3-Dihydro-furandicarbonsaure-(2.5) (S. 323) und Brom in Eisessig-Chloroform-Lösung (Hill, Wheeler, Am. 25, 484). — Krystalle (aus Ather + Ligroin), die nicht ganz rein erhalten wurden. Zersetzt sich langsam beim Aufbewahren, schneller in Lösung, momentan beim Erhitzen auf ca. 200°. Leicht löslich in Wasser und Alkohol unter Zersetzung, sehwer in Äther, unlöslich in Benzol, Chloroform und Ligroin.
- 3.4-Dibrom-furantetrahydrid-dicarbonsäure-(2.5), 3.4-Dibrom-tetrahydrofuran-BrHC---CHBr $\frac{\text{dicarbons} \\ \text{dicarbons} \\ \text{dicarbons} \\ \frac{\text{C}_{0}H_{0}O_{5}\text{Br}_{2}}{\text{H}O_{2}\text{C}\cdot\text{H}\text{C}\cdot\text{O}\cdot\text{CH}\cdot\text{CO}_{2}\text{H}} \ . \\ \text{Existiert in zwei stereoiso-} \\ \frac{\text{dicarbons} \\ \text{dicarbons} \\ \text{dicarbons} \\ \text{dicarbons} \\ \frac{\text{dicarbons} \\ \text{dicarbons} \\ \text{dicarbons} \\ \text{dicarbons} \\ \text{dicarbons} \\ \text{dicarbons} \\ \frac{\text{dicarbons} \\ \text{dicarbons} \\ \text{dicarbons$ meren Formen.
- a) Niedrigschmelzende Form. B. Bei der Einw. von Bromdampf auf die cis-Form der 2.5-Dihydro-furan-dicarbonsäure-(2.5) (S. 324) in festem Zustand oder in wäßr. Lösung (Hill, Wheeler, Am. 25, 471). — Prismen mit 1 H₂O (aus Wasser). Schmilzt wasserhaltig bei 112—113° (unkorr.), wasserfrei bei 147—148° (korr.). Leicht löslich in Alkohol und Ather, schwer in heißem Chloroform, unlöslich in Ligroin. — Zersetzt sich beim Behandeln mit Alkalien unter Bildung von Brenzschleimsäure. Wird in wäßr. Lösung durch Natriumamalgam oder in
- alkoh. Lösung durch Zinkstaub in cis-2.5-Dihydro-furan-dicarbonsäure-(2.5) zurückverwandelt.
 b) Hochschmelzende Form. B. Beim Einleiten von Bromdampf in die gesättigte
 wäßrige Lösung der racemischen trans-Form der 2.5-Dihydro-furan-dicarbonsäure-(2.5)
 (S. 325) (Hill, Wheeler, Am. 25, 478). Prismen mit 2 H₂O (aus Wasser). Zersetzt
 sich bei 213—214° (korr.). Leicht löslich in Alkohol und Ather, schwer in Benzol, unlöslich in Ligroin. — Durch Alkali erfolgt Zersetzung unter Bildung von Brenzschleimsäure. Wird durch Natriumamalgam in trans-2.5-Dihydro-furan-dicarbonsaure-(2.5) zurückverwandelt.

Thiophentetrahydrid - dicarbonsäure - (2.5), Tetrahydrothiophen - dicarbon-H₂C—CH₂ säure-(2.5) $C_6H_8O_4S = \frac{H_2U_-U_{12}}{HO_4C \cdot HC \cdot S \cdot CH \cdot CO_4H}$. B. Bei 2-stdg. Erwärmen einer Lösung von 1 Tl. Thiophen-dicarbonsäure-(2.5) (S. 330) in 0,5 Tln. Natriumhydroxyd und wenig Wasser mit 15 Tln. 4^0 /eigem Natriumamalgam auf dem Wasserbad (Ernst, B. 19, 3275). — Tafeln. F: 1620 (korr.). Leicht löslich in Wasser, weniger in Ather. — Reduziert in der Wärme ammoniakalische Silberlösung. Entwickelt beim Erwärmen mit konz. Schwefelsäure 1 Mol Kohlenoxyd. — $Ag_2C_4H_4O_4S$. Pulver. — $BaC_4H_4O_4S$. Schuppen.

H.C-CH. Dimethylester $C_8H_{12}O_4S = \frac{H_2C - CH_2}{CH_2 \cdot O_2C \cdot HC \cdot S \cdot CH \cdot CO_2 \cdot CH_2}$. B. Beim Sättigen einer alkoh. Lösung der Tetrahydrothiophen-dicarbonsäure-(2.5) mit trocknem Chlorwasserstoff (Ernst, B. 19, 3277). Beim Erhitzen des Silbersalzes der Tetrahydrothiophen-dicarbonsäure-(2.5) mit Methyljodid in äther. Lösung (E.). — Öl. Siedet nicht unzersetzt.

- 2. α Methyl-trimethylenoxyd- α' . α' -dicarbonsdure, α . γ -Oxido-propylmalonsdure $C_4H_4O_5=CH_3\cdot HC\cdot CH_1\cdot C(CO_2H)_3$.
- α Chlormethyl trimethylenoxyd $\alpha'.\alpha'$ dicarbonsäure diamid $C_0H_0O_2N_2Cl =$ $CH_2Cl \cdot HC \cdot CH_2 \cdot C(CO \cdot NH_2)_2$. B. Aus 5 g δ -Chlor- α -brom- γ -valerolacton- α -carbonsaure-

athylester (S. 373) und 25 cm3 konzentriertem methylalkoholischem Ammoniak (Leuchs, B. 38, 1939). — Nadeln (aus siedendem Wasser). F: 218—219° (korr.). Fast unlöslich in Chloroform, Benzol und Essigester, ziemlich löslich in Methylalkohol und Alkohol in der Wärme, weniger in der Kälte, leicht löslich in heißem Wasser.

¹⁾ Zur Konfiguration vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von LE SURUE, HAAS, Soc. 97, 175.

- 4. $\alpha.\beta.\beta$ -Trimethyl-trimethylenoxyd- $\alpha.\alpha'$ -dicarbonsaure, $\alpha.\alpha'$ -Oxidoα.β.β-trimethyl-glutarsäure, gewöhnlich als Balbianos Säure bezeichnet, $C_{\mathbf{a}}\mathbf{H}_{12}O_{5} = \mathbf{HO_{2}C \cdot HC \cdot C(CH_{3})_{2} \cdot C(CH_{2}) \cdot CO_{2}\mathbf{H}^{1}}.$
- a) Rechtsdrehende Form. B. Aus der inakt. Form durch Krystallisation des Chininsalzes (Syst. No. 3538) aus 80% igem Alkohol, in dem das Salz der rechtsdrehenden Form schwerer löslich ist als das der linksdrehenden (Balbiano, B. 32, 1022; R. A. L. [5] 8 I, 237; G. 29 II, 517). — F: 119°. $[\alpha]_p$: +5,5° (in Wasser; p = 13).
- Linksdrehende Form. Nicht völlig rein erhalten. F: 117-1190; [a]p: -3,40 (in Wasser; p = 11.9) (B., B. 32, 1023; R. A. L. [5] 8 I, 238; G. 29 II, 518).
- c) Inaktive Form. B. Entsteht neben Oxalsäure als Hauptprodukt, wenn man 50 g d-Camphersaure, 50 g Natriumhydroxyd und 110 g Kaliumpermanganat in 5 l Wasser mehrere Wochen bei Zimmertemperatur stehen läßt (Balbiano, G. 29 II, 496; vgl. R. A. L. [5] 1 I, 279; 2 II, 242; B. 27, 2133). — Blättchen. Sintert von 109° ab und schmilzt bei 120—121° (B., R. A. L. [5] 2 II, 242; G. 29 II, 513); F: 120° (Mahla, Tiemann, B. 28, 2159). Löslich in Wasser, Alkohol und Äther, schwer löslich in warmem Chloroform, fast unlöslich in Schwefelkohlenstoff (B., R. A. L. [5] 2 II, 242). — Zerfällt beim Erhitzen auf 170-220° unter Bildung von Trimethylbernsteinsäureanhydrid, Kohlenoxyd und Wasser (M., T.). Liefert bei der Reduktion mit Jodwasserstoffsäure (Kp. 127°) und rotem Phosphor ein Gemisch von $\alpha.\beta.\beta$ -Trimethyl-butyrolacton- γ -carbonsäure (S. 389) und $\alpha.\beta.\beta$ -Trimethylglutarsäure (B., B. 27, 2135; 28, 1507; G. 29 II, 520, 528; 32 I, 485; vgl. hierzu Rothstein, STEVENSON, THORPE, Soc. 127 [1925], 1072, 1074). Zerfällt bei 12-stdg. Erhitzen mit Bromwasserstoffsäure (D: 1,50) im Einschlußrohr auf 120—140° zum Teil unter Bildung von Trimethylbernsteinsäure und Kohlenoxyd (B., B. 30, 1902; G. 29 II, 546). Liefert auch durch Einw. von Phosphorpentachlorid in Phosphortrichlorid, besser von Phosphorpentachlorid in Phosphortribromid und Behandlung des Reaktionsprodukts mit Wasser Trimethylbernsteinsäure (B., B. 30, 1903; R. A. L. [5] 6 II, 6; G. 29 II, 544). Durch Erhitzen mit Essigsäureanhydrid im geschlossenen Rohr auf 100° erhält man ein amorphes (nicht näher besaureannydrid im geschiossenen Kohr auf 100° erhält man ein amorphes (nicht näher beschriebenes) Anhydrid, das mit β -Naphthylamin das Mono- β -naphthylamid der Säure liefert (B., B. 30, 1901; R. A. L. [5] 6 II, 4; G. 29 II, 565). Liefert mit 4-Brom-phenylhydrazin eine Additionsverbindung $C_{14}H_{19}O_5N_2Br$ (s. u.) (B., G. 26 I, 55). — $NH_4C_8H_{11}O_5$. B. Aus dem neutralen Salz durch längeres Liegen an der Luft oder durch Erhitzen auf 100° (M., T.). — $(NH_4)_2C_8H_{10}O_5$. F: 172° (Zers.) (M., T.). — $Na_2C_8H_{10}O_5$. Nadeln. Sehr leicht löslich in Wasser (B., G. 29 II, 514). — $Ag_3C_8H_{10}O_5$ (M., T.). — $CaC_8H_{10}O_5 + 2H_2O$. Nädelchen (aus Alkohol). Schwer löslich in heißem Alkohol (B., R. A. L. [5] 2 II, 242; G. 29 II, 501). — $BaC_8H_{10}O_5 + H_1O$. Rlättchen. Sehr schwer löslich in kaltern schwer in siedendem Wasser (B., G. 29 II, 515). H₂O. Blättchen. Sehr schwer löslich in kaltem, schwer in siedendem Wasser (B., G. 29 II, 515).

Verbindung C₁₄H₁₉O₅N₂Br. B. Aus Balbianos Säure und 4 - Brom - phenylhydrazin in essigsaurer Lösung (Balbiano, G. 26 I, 55; 29 II, 552). — Gelbliches mikrokrystallinisches Pulver. F: 146—147° (Zers.). Sehr wenig löslich in kaltem Alkohol, unlöslich in Wasser. —

Beim Kochen mit absol. Alkohol entsteht die Verbindung C₁₄H₁₇O₄N₂Br (s. u.).

Verbindung C₁₄H₁₇O₄N₂Br. B. Beim Kochen der Verbindung C₁₄H₁₉O₅N₂Br mit absol. Alkohol bis zur völligen Lösung (Balbiano, G. 26 I, 57; 29 II, 553). — Chromgelbe, mikroekopische Nadeln. F: 153—154° (Zers.); löslich in kaltem Alkohol, unlöslich in Wasser (B., G. 26 I, 57). — Zersetzt sich beim Erhitzen im Vakuum auf 150—160° unter Abspaltung von Kohlendioxyd und Wasser unter Bildung von Trimethylbernsteinsäure-[4-brom-anilid]-nitril (B., B. 30, 290; G. 29 II, 555). Liefert bei der Reduktion mit Natrium und Alkohol Anilin und eine Trimethylpyrrolidoncarbonsäure(?) (Syst. No. 3366) (B., R. A. L. [3] 6 I, 237; G. 29 II, 563). Verändert sich nicht beim Erhitzen mit Barytwasser oder verd. Salzsäure (B., G. 26 I, 58). — $CaC_{14}H_{18}O_4N_9Br+2H_9O$. Krystallinisch. Schwer löslich in kaltem, noch schwerer in heißem Wasser (B., G. 26 I, 58).

Inakt. $\alpha.\alpha'$ - Oxido - $\alpha.\beta.\beta$ - trimethyl - glutarsäure - dimethylester $C_{10}H_{16}O_5=OC_3H(CH_3)_3(CO_3\cdot CH_3)_3^2)$. B. Aus der Säure mit Methylalkohol und Chlorwasserstoff (Balbiano, B. 27, 2134; G. 29 II, 515). — Dicke Flüssigkeit von angenehm harzigem Geruch und beißendem Geschmack. Kp₉₀: 164—165° (korr.); D₁₅: 1,145; unlöslich in Wasser, löslich in Alkohol und Äther (B.). — Gibt beim Kochen mit Essigsäureanhydrid und wasserfreiem Natriumacetat eine flüssige Verbindung vom Kps: 165—166°, beim Erhitzen mit Benzoyl-

¹⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] wurde von BARDHAN, Soc. 1928, 2605, 2608 (vgl. Kón, Stevenson, Thoppe, Soc. 121, 654; Pandya, Th., Soc. 128, 2852; ROTHSTEIN, St., TH., Soc. 127, 1072) bewiesen, daß diese Verbindung α'-Oxo-α.β.β-trimethyl-glutarszure HO₂C·CO·C(CH₂)·CH(CH₃)·CO₂H ist, wie schon MAHLA, TIEMANN, B. 28, 2160 erkannt hatten.

³) Vgl. die vorige Anm.

chlorid eine flüssige Verbindung vom Kp_{30} : ca. 200° (B., B. 27, 2135; vgl. Mahla, Tiemann, B. 28, 2162).

Inakt. $\alpha.\alpha'$ - Oxido - $\alpha.\beta.\beta$ - trimethyl - glutarsäure - diäthylester $C_{12}H_{20}O_5 = OC_2H(CH_2)_3(CO_2 \cdot C_2H_5)_2^1)$. B. Bei 8-tägigem Stehenlassen einer mit Chlorwasserstoff gesättigten alkoh. Lösung der Säure (B., G. 29 II, 516). — Flüssig. Kp₇₀: 189—190°; Kp₂₀: 175—176°; D₁₅: 1,0781 (B., G. 29 II, 517). — Reagiert nicht mit Hydroxylamin oder p-Brom-phenylhydrazin (B., G. 29 II, 564).

Inakt. α.α'-Oxido-α.β.β-trimethyl-glutarsäure-mono- β -naphthylamid $C_{18}H_{19}O_4N=OC_3H(CH_3)_3(CO_2H)\cdot CO\cdot NH\cdot C_{10}H,^1)$. B. Aus einem durch Erhitzen von Balbianos Säure mit Essigsäureanhydrid erhältlichen (nicht näher beschriebenen) Anhydrid und β -Naphthylamin in siedendem Benzol (Balbiano, B. 30, 1901; R. A. L. [5] 6 II, 4; G. 29 II, 566). — Blättchen (aus verd. Alkohol). Sintert von 168° ab und schmilzt bei 178° (Zers.).

5. 2.2.6 - Trimethyl - pyrantetrahydrid - dicarbonsäure - (3.6), 2:2.6 - Trimethyl - tetrahydropyran - dicarbonsäure - (3.6), Cineolsäure $C_{10}H_{16}O_{5}=H_{12}C\cdot CH_{1}\cdot CH\cdot CO_{2}H$

 $(\mathbf{HO_2C})(\mathbf{CH_2})\dot{\mathbf{C}} = \mathbf{O} = \dot{\mathbf{C}}(\mathbf{CH_2})_2$

- a) Rechtsdrehende Form, d-Cineolsdure. B. Das saure Strychninsalz scheidet sich aus, wenn man eine heiße wäßrige Lösung der inakt. Cineolsdure mit 1 Mol Strychnin versetzt und auf dem Wasserbad, schließlich im Vakuum eindampft; aus der Mutterlauge erhält man durch fraktionierte Krystallisation die Salze der dl- und der l-Säure; man zerlegt die Salze unterhalb 40° durch Salzsäure (Rupe, Ronus, B. 33, 3541). Krystalle (aus Wasser) mit 1 H₂O, das im Exsiccator entweicht. Schmilzt wasserhaltig bei 79°, wasserfrei bei 138° bis 139°. Krystallisiert aus Wasser auch manchmal in gestreiften, 1 H₂O enthaltenden, bei 123—126° schmelzenden Formen, die beim Trocknen die wasserfreie Form vom Schmelzpunkt 138—139° liefern. Löst sich bei 8° in 11,2 Tln. Wasser; leicht löslich in Alkohol, Essigester und kaltem Chloroform, schwerer in Äther, schwer löslich in Benzol und Ligroin. [a]²_p: +18,6° (in Wasser; p = 8,2). Racemisiert sich nach langem Aufbewahren zuweilen beim Umkrystallisieren. Gibt bei kurzem Kochen mit Essigsäureanhydrid das Anhydrid (Syst.No. 2760).
- b) Linksdrehende Form, l Cineolsäure. B. s. o. bei der d-Cineolsäure. Tafeln oder Prismen (aus Wasser) mit 1 H_2O (Rupe, Ronus, B. 33, 3542). Rhombisch bisphenoidisch (Osann, Rudin, B. 33, 3543; vgl. Groth, Ch. Kr. 3, 744). Schmilzt wasserhaltig bei 79°, wasserfrei bei 138—139°. [α]°: —19,1° (in Wasser; p = 7,3). Racemisiert sich nach längerem Aufbewahren zuweilen beim Umkrystallisieren.
- Inaktive Form, di-Cineolsäure, gewöhnlich schlechthin als Cineolsäure bezeichnet. B. Durch ca. 9-stdg. Erwärmen von 6 cm³ Cineol (Bd. XVII, S. 24) mit einer Lösung von 30 g Kaliumpermanganat in 450 g Wasser auf dem Wasserbad (Wallach, Gilde-MEISTER, A. 246, 268). Aus gleichen Mengen der akt. Formen in Wasser (Rupe, Ronus, B. 33, 3543). — Krystalle (aus Wasser). F: 204—2060 (Ru., Ro., B. 33, 3544). Löst sich bei 8º in 133,3 Tln. Wasser (Rv., Ro., B. 33, 3545), bei 15º in ca. 70 Tln., bei 100º in ca. 15 Tln. Wasser (W., G.). Schwer löslich in Chloroform, leicht in Ather und warmem Alkohol (W., G.). Elektrolytische Leitfähigkeit: Labhardt, B. 33, 1135, 1420. Läßt sich mittels Strychnins in die optischen Komponenten spalten (Ru., Ro., B. 33, 3541). — Liefert bei der Destillation unter gewöhnlichem Druck neben anderen Produkten das Anhydrid einer Säure $C_0H_{16}O_3(S.323)$ (W., G.; W., A. 258, 322; ELKELES, A. 271, 27). Bei der Oxydation mit Kaliumpermanganat oder mit siedender verdünnter Salpetersäure entsteht als Hauptprodukt Oxalsäure (W., G.). Bei 3-stdg. Erhitzen mit 10 Tln. Wasser im Autoklaven auf 160-165° entstehen 2.6-Dimethylhepten-(2)-ol-(6)-săure-(1 oder 7), 2.6-Dimethyl-heptandiol-(2.6)-săure-(1) sowie α - und β -Cinensaure (S. 266, 267) (Ru., B. 33, 1133; Ru., Řo., B. 34, 2193; Ru., Schlochoff, B. 38, 1502; vgl. Ru., C. 1898 Π, 1055). α-Cinensäure entsteht auch durch 5-stdg. Kochen mit Ameisensăure (D: 1,22) oder 20% jer Schwefelsaure (Ru., Altenburg, B. 41, 3955). Durch 3-4-stdg. Erhitzen mit 10% iger Schwefelsäure im Druckrohr auf 160—165° (Rv., Ró., B. 34, 2204) oder durch ca. 5-stdg. Kochen der Lösung in 30% iger Schwefelsäure (Ru., A., B. 41, 3953) erhält man β -Cinensäure. Schütteln mit kalter konzentrierter Schwefelsäure führt zu dem Lacton der 6-Oxy-2.2.6-trimethyl-pyrantetrahydrid-carbonsaure-(3) (Syst. No. 2739), während beim Erwärmen mit konz. Schwefelsäure auf dem Wasserbad 2.4-Dimethyl-benzoesäure gebildet wird (Ru., Lorz, B. 89, 4084). Durch 3-stdg. Erhitzen mit Alkohol auf 210—220° entsteht unter Abspaltung von Kohlendioxyd der Ester einer ungesättigten Säure ($\mathrm{Kp_{14}}$: 145—150°) (Ru., Ro., B. 34, 2206 Anm.). Kurzes Erwärmen mit Essigsäureanhydrid führt zur Bildung von Cineolsäureanhydrid (Syst. No. 2760) (W., A. 258, 320). — $\mathrm{Ag_2C_{10}H_{14}O_5} + \mathrm{H_2O}$. Amorph.

¹⁾ Vgl. S. 321 Anm. 1.

Löslich in Wasser und Alkohol (W., G.). — $CaC_{10}H_{14}O_5 + 4H_2O$. Krystallinisch. Unlöslich in kochendem Wasser, löst sich langsam in viel kaltem Wasser (W., G.).

Säure $C_9H_{16}O_3$. B. Das Anhydrid $C_{18}H_{26}O_5$ dieser Säure entsteht beim Destillieren von Cineolsäure; man löst es in Kaliumcarbonat-Lösung, äthert aus, säuert mit Schwefelsäure an und destilliert mit Wasserdampf (Wallach, A. 258, 322; vgl. W., Gildemeister, A. 246, 274). — Öl. Flüchtig mit Wasserdampf (W., G.). Geht bei der Destillation im Vakuum in das Anhydrid C₁₈H₃₀O₅ (Kp₁₁: 135°) über (W.). — AgC₂H₁₅O₃ (W., G.; W.). Methylester C₁₀H₁₆O₃ der Säure C₂H₁₆O₃ (s. o.). B. Aus der Säure C₂H₁₆O₃ mit Methylalkohol + Chlorwasserstoff (Elkeles, A. 271, 26). — Flüssig. Kp₁₃: 125°.

Inakt. Cineolsäure-dimethylester $C_{12}H_{20}O_5 = OC_5H_5(CH_3)_3(CO_2 \cdot CH_3)_2$. B. Aus inakt. Cineolsäure mit Methylalkohol + Chlorwasserstoff (Wallach, A. 258, 320). - F: 31°.

Inakt. Cineolsäure-monoäthylester $C_{12}H_{20}O_5 = OC_5H_5(CH_3)_3(CO_2H) \cdot CO_2 \cdot C_2H_5$. Durch Einw. von alkoh. Salzsäure auf Cineolsäure, neben dem Diäthylester (Rupe, B. 33, 1133). — Nadeln (aus verd. Alkohol oder Petroläther). F: 99—100°.

Inakt. Cineolsäure - diäthylester $C_{14}H_{24}O_5 = OC_5H_5(CH_3)_3(CO_2 \cdot C_2H_5)_2$. B. Aus Cineolsäure mit Alkohol und Chlorwasserstoff (Wallach, Gildemeister, A. 246, 273). — Flüssig. Kp₁₁₋₁₂: 155° (W., G.); Kp₁₃: 153° (Rupe, B. 38, 1133).

Inakt. Cineolsäure-monoamid $C_{10}H_{17}O_4N = OC_5H_5(CH_3)_3(CO_2H) \cdot CO \cdot NH_2$. B. Aus Cineolsäureanhydrid (Syst. No. 2760) in Ather und trocknem Ammoniak (Elkeles, A. 271, 25). — Krystalle (aus Methylalkohol).

Inakt. Cineolsäure - monodiäthylamid $C_{14}H_{25}O_4N = OC_5H_5(CH_3)_3(CO_2H) \cdot CO \cdot N(C_2H_5)_2$. B. Aus Cineolsäureanhydrid und Diäthylamin (E., A. 271, 22). — Krystalle. F: 162-163°.

Inakt. Cineolsäure-monoallylamid $C_{18}H_{21}O_4N = OC_5H_5(CH_2)_3(CO_2H) \cdot CO \cdot NH \cdot CH_2 \cdot CH : CH_2$. B. Aus Cineolsäureanhydrid und Allylamin (E., A. 271, 22). — Krystalle (aus methylalkoholhaltigem Äther). F: 126°.

Inakt. Cineolsäure-monoanilid $C_{16}H_{21}O_4N = OC_5H_5(CH_3)_3(CO_2H)\cdot CO\cdot NH\cdot C_6H_5$. B. Aus Cineolsäureanhydrid und Anilin in Benzol (E., A. 271, 23). — Sirup. — $AgC_{16}H_{20}O_4N$. Niederschlag.

Inakt. Cineolsäure-mono-p-toluidid $C_{17}H_{23}O_4N=OC_5H_5(CH_3)_8(CO_2H)\cdot CO\cdot NH\cdot C_6H_4\cdot CH_3$. B. Aus Cineolsäureanhydrid und p-Toluidin in Ather (E., A. 271, 24). — Krystalle (aus Äther + Methylalkohol). F: 125—126°. — Zerfällt bei der Destillation in p-Toluidin. Kohlenoxyd, Kohlendioxyd und 2-Methyl-hepten-(2)-on-(6). — AgC₁₇H₂₂O₄N. Amorph.

Inakt. Cineolsäure-anilid-methylester $C_{17}H_{23}O_4N = OC_5H_5(CH_3)_3(CO_2 \cdot CH_3) \cdot CO \cdot NH$ C6H5. B. Aus dem Silbersalz von Cineolsäure-monoanilid und Methyljodid in Äther (E., A. 271, 23). — Krystalle (aus Methylalkohol + Äther). F: 78—79°.

Inakt. Cineolsäure-mono-phenylhydrazid $C_{16}H_{22}O_4N_2 = OC_5H_5(CH_3)_3(CO_2H)\cdot CO\cdot NH\cdot NH\cdot C_6H_5$. B. Aus Cineolsäureanhydrid und Phenylhydrazin in Äther (E., A. 271, 24). — Nadeln. F: 110°.

2. Dicarbonsäuren $C_n H_{2n-6} O_5$.

1. Dicarbonsäuren C₆H₆O₅.

1. Furan-dihydrid-(2.3)-dicarbonsäure-(2.5), 2.3-Dihydro-furan-H₂C—CH dicarbonsaure-(2.5) $C_6H_6O_5 = \frac{1}{HO_2C \cdot HC \cdot O \cdot C \cdot CO_2H}$ B. Durch 16-stdg. Erhitzen einer Lösung von 1 Tl. 2.5-Dihydro-furan-dicarbonsäure-(2.5) in 10 Tln. Wasser mit 2 Tln. Natriumhydroxyd auf dem Wasserbad (Hill, Wheeler, Am. 25, 481). — Darst. Man reduziert Dehydroschleimsäure (S. 328) mit 3% jigem Natriumamalgam und kocht die nach 24 Stdn. vom Quecksilber abgegossene und filtrierte Lösung in einer Silberflasche 16 Stunden am Rückflußkühler; die Flüssigkeit wird angesäuert und ausgeäthert (H., Wh.). — Platten (aus Wasser). Schmilzt, je nach der Schnelligkeit des Erhitzens, zwischen 175—190° und zersetzt sich bald darauf (H., Russe, Am. 33, 382). Leicht löslich in Wasser und Alkohol, unlöslich in Chloroform und Benzol; löst sich in 200 Tln. siedendem Äther (H., Wh.). — Bei der Oxydation mit Salpetersäure oder alkal. Permanganatlösung entsteht Oxalsäure neben wenig Dehydroschleimsäure (H. Wh.). Wird durch überschüssiges Natriumamalene neben wenig Dehydroschleimsäure (H., WH.). Wird durch überschüssiges Natriumamalgam reduziert unter Bildung der beiden stereoisomeren Formen der Tetrahydrofuran-dicarbon-säure-(2.5) (S. 319) (H., WH.). Bei Einw. von Brom in Eisessig-Chloroform-Lösung entsteht 2.3-Dibrom-tetrahydrofuran-dicarbonsaure-(2.5) (H., WH.). Verwandelt sich beim Erwarmen

oder Eindampfen der wäßr. Lösung unter Aufnahme von 2 $\rm H_2O$ in eine Gallerte, die sich gegen Acetanhydrid, Benzoylchlorid und Brom indifferent verhält und weder beim Erhitzen für sich noch mit Säuren oder Alkalien in die 2.3-Dihydro-furan-dicarbonsäure-(2.5) surtickverwandelt werden kann (H., R., Am. 33, 383). — Salze: H., R. — $\rm KC_6H_8O_5$. Farblose Krystalle (aus Wasser) (H., R.). — $\rm Ag_3C_6H_4O_5 + 1/_2H_2O$. Farblose Nädelchen (aus Wasser). Zersetzt sich beim Erhitzen (H., R.). — $\rm BaC_6H_4O_5 + 21/_3H_2O$. Farblose Täfelchen (aus Wasser). Verliert bei 160—190° nur $\rm 11/_3H_2O$. Etwas löslich in kaltem Wasser (H., R.).

8-Chlor-furan-dihydrid-(2.8)-dicarbonsäure-(2.5), 8-Chlor-2.8-dihydro-furan-dicarbonsäure-(2.5) $C_6H_5O_5Cl = \frac{ClHC-CH}{HO_2C\cdot HC\cdot O\cdot C\cdot CO_2H}$. B. Das Chlorid dieser Säure entsteht bei 50-stdg. Erhitzen von 1 Mol 3.4-Dioxy-tetrahydrofuran-dicarbonsäure-(2.5) (Isozuckersäure) (S. 364) mit 6 Mol Phosphorpentschlorid; man destilliert das gebildete Phosphoroxychlorid ab, zerlegt den Rückstand durch konz. Sodalösung, übersättigt mit verd. Schwefelsäure und schüttelt sehr oft mit Äther aus (TIEMANN, HAARMANN, B. 19, 1275).—Farblose Nadeln (aus Wasser). Schmilzt noch nicht bei 340°. Unlöslich in Chloroform, Benzol und Ligroin, wenig löslich in kaltem Wasser, löslich in Alkohol und Äther.— Zerfällt bei der trocknen Destillation oder beim Kochen mit wäßriger oder alkoholischer Kalilauge in Salzsäure und Dehydroschleimsäure (S. 328).— AgsC₆H₃O₅Cl. Weißer Niederschlag.

Diäthylester $C_{10}H_{13}O_5Cl = OC_4H_3Cl(CO_2\cdot C_2H_5)_2$. B. Durch Einleiten von Chlorwasserstoff in eine alkoh. Lösung von 3-Chlor-2.3-dihydro-furan-dicarbonsäure-(2.5) (T., H., B. 19, 1276). — Farblose Nadeln (aus Chloroform). F: 40°. Leicht löslich in den üblichen organischen Lösungsmitteln.

- 2. Furan dihydrid (2.5) dicarbonsäure (2.5), 2.5 Dihydro furandicarbonsäure (2.5) $C_6H_6O_5 = HO_2C \cdot HC \cdot O \cdot CH \cdot CO_2H$
- a) Inaktive nicht spaltbare 2.5-Dihydro-furan-dicarbonsäure-(2.5), cts-2.5-Dihydro-furan-dicarbonsäure-(2.5). B. Entsteht als Hauptprodukt bei der Reduktion von Dehydroschleimsäure mit Natriumanalgam in konzentrierter wäßriger Lösung bei 0° unter Durchleiten eines raschen Kohlendioxydstromes (Hill, Wheeler, Am. 25, 464; vgl. Seelig, B. 12, 1085; Schrötter, M. 9, 444). Farblose Nadeln (aus Äther + Ligroin), Platten (aus Wasser). F: 149—150° (korr.) (H., Wh.). Sublimiert beim Erhitzen im Wasserstoffstrom auf 190° teilweise unzersetzt (H., Wh.). Leicht löslich in Wasser und Alkohol, sehr wenig in Chloroform, unlöslich in Benzol und Ligroin (H., Wh.). Salpetersäure oder alkal. Permanganatlösung oxydieren zu Dehydroschleimsäure und Oxalsäure (H., Wh.). Wird durch Natriumamalgam nicht angegriffen (H., Wh.). Gibt in fester Form oder in wäßr. Lösung bei der Einw. von Bromdampf die niedrigschmelzende Form der 3.4-Dibrom-tetrahydrofuran-dicarbonsäure-(2.5) (S. 320), beim Erhitzen in fester Form mit 1 Mol Brom im geschlossenen Rohr auf 140° Bromwasserstoff und Dehydroschleimsäure (H., Wh.). Liefert in wäßr. Lösung beim Sättigen mit Chlor in der Kälte die α-Form der 4-Chlor-3-oxy-tetrahydrofuran-dicarbonsäure-(2.5) (S. 360) (H., Wh.). Wird durch Erhitzen mit wäßr. Alkalien erst in trans-2.5-Dihydro-furan-dicarbonsäure-(2.5) (S. 325), dann in 2.3-Dihydro-furan-dicarbonsäure-(2.5) (S. 323) umgelagert (H., Wh.). Ag₃C₆H₄O₅ + ½-H₃O. Krystallinischer Niederschlag. Kann nicht unzersetzt entwässert werden (H., Wh.; Sz.). Beginnt bei 125° sich zu zersetzen (H., Wh.); verpufft bei schnellem Erhitzen bei etwa 200° (Sz.). CaC₆H₄O₅ + ½-H₂O. Zerfließlich (H., Wh.). Sehr leicht löslich in Wasser. BaC₆H₄O₅. Krystallisiert beim freiwilligen Verdunsten der kalten wäßrigen Lösung mit 4½-H₂O in Platten, beim Abkühlen der heißen Lösung als Krystallpulver mit 2 H₂O (H., Wh.). PbC₆H₄O₅ + 2H₂O. Undurchsichtige Nadeln (aus Wasser), die beim Aufbewahren in durchsichtige Platten übergehen. Es lösen sich

b) trans-2.5-Dihydro-furan-dicarbonsaure-(2.5).

α) In wäßriger Lösung rechtsdrehende trans-2.5-Dihydro-furan-dicarbonsäure-(2.5). B. Beim Erkalten der heißen wäßrigen, mit Cinchonin versetzten Lösung der racemischen trans-2.5-Dihydro-furan-dicarbonsäure-(2.5) (S. 325) krystallisiert das Cinchoninsalz der linksdrehenden Säure aus; die aus der Mutterlauge isolierte Säure gibt mit Strychnin das Strychninsalz der rechtsdrehenden Säure (HILL, RUSSE, Am. 38, 373; B. 37, 2538). — Krystallisiert aus Wasser in dicken Platten mit 1 H_2O , aus Äther in wasserfreien Prismen. Die wasserfreie Säure schmilzt bei 144°. Ziemlich löslich in Wasser, Alkohol, ziemlich schwer in Äther, doch leichter als die racemische Verbindung, unlöslich in Benzol, Chloroform und Ligroin. [α] $_0^{\infty}$: +480,7° (in Wasser; c = 10,1). — BaC₆H₄O₅ + 1½ $_2$ O. Kryställchen. Verliert im Vakuum das Krystallwasser. Löslich in ca. 50 Tln. Wasser. — PbC₆H₄O₅ + 2H₂O.

Krystalle, die im Vakuum wasserfrei werden und sich bei 180° zersetzen. In Wasser etwa 50mal so leicht löslich wie das racemische Salz. — Strychninsalz s. Syst. No. 4793. — Cinchoninsalz s. Syst. No. 4799.

β) In wäßriger Lösung linksdrehende trans-2.5-Dihydro-furan-dicarbon-säure-(2.5). B. s. S. 324. — Gleicht in Krystallform, Schmelzpunkt und Löslichkeit der rechtsdrehenden Säure (Hill, Russe, Am. 33, 376; B. 37, 2539). [α]³⁰: —478,7° (in Wasser; c = 10). — Die Salze gleichen denen der rechtsdrehenden Säure. — Strychninsalz s. Syst. No. 4793. — Cinchoninsalz s. Syst. No. 4799.

γ) Racemische trans-2.5-Dihydro-furan-dicarbonsäure-(2.5). B. Durch 1-stdg. Kochen von 1 Tl. cis-2.5-Dihydro-furan-dicarbonsäure-(2.5) mit 1 Tl. Natrium-hydroxyd und 20 Tln. Wasser (Hill, Wheeter, Am. 25, 474). — Darst. Man suspendiert Dehydroschleimsäure in 10 Tln. Wasser, löst durch Zusatz von Natriumcarbonat und fügt 30 Tle. 3% iges Natriumamalgam zu; nach Beendigung der Reaktion kocht man die dekantierte Lösung eine Minute, säuert an und extrahiert mit Äther; die Säure wird mit Hilfe ihres Bleisalzes isoliert (H., Wh.; H., Russe, Am. 33, 374; vgl. Seelig, B. 12, 1085). — Krystallisiert (aus Wasser) mit 1 H₂O, das bei 100° entweicht (H., Wh.). Die wasserfreie Säure schmilzt bei 178—179° (korr.) (H., Wh.). Leicht löslich in Alkohol, schwer in Äther, unlöslich in Chloroform, Benzol und Ligroin (H., Wh.). — Salpetersäure (D: 1,42) oxydiert bei 100° zu Dehydroschleimsäure und Öxalsäure, alkal. Permanganatlösung bei Zimmertemperatur zu Oxalsäure (H., Wh.). Wird durch Natriumamalgam nicht angegriffen (H., Wh.). Beim Einleiten von Bromdampf in die gesättigte wäßr. Lösung entsteht die hochschmelzende Form der 3.4-Dibrom-tetrahydrofuran-dicarbonsäure-(2.5) (S. 320) (H., Wh.). Liefert beim Sättigen der eisgekühlten wäßr. Lösung mit Chlor die β-Form der 4-Chlor-3-oxy-tetrahydrofuran-dicarbonsäure-(2.5) (S. 360) (H., Wh.). Geht bei langem Kochen mit Natronlauge in 2.3-Dihydro-furan-dicarbonsäure-(2.5) (S. 323) über (H., Wh.). — Ag₂C₆H₄O₅. Mikroskopische Nadeln. Verpufft bei etwa 160° (S.). Sehr wenig löslich in Wasser (H., Wh.). — CaC₆H₄O₅ + 1½H₄O (S.). — CaC₆H₄O₅ + 2½H₂O. Sehr leicht löslich in Wasser (H., Wh.). — BaC₆H₄O₅ + 1½H₄O (H., Wh.; S.). Die wäßr. Lösung enthält bei 20° 1,40° wasserfreies Salz (H., Wh.). — PbC₆H₄O₅ + H₂O. Platten (aus Wasser), die bei 195° die Hälfte des Wassers verlieren und sich bei höherer Temperatur zersetzen (H., Wh.). Die wäßr. Lösung enthält bei 20° 0,012°/₀, bei 99,5° 0,027°/₀ wasserfreies Salz (H., Wh.).

2. Dicarbonsăuren $C_8H_{10}O_8$.

- 1. Pyran-dihydrid-(5.6)-carbonsdure-(3)-essigsdure-(2), 5.6-Dihydro-pyran-carbonsdure-(3)-essigsdure-(2) (Methyldehydrohexondicarbon-saure) C₈H₁₀O₅ = H₂C·CH₂·C·CO₂H B. Der Diäthylester entsteht neben 2-Methyl-5.6-dihydro-pyran-carbonsaure-(3)-athylester und Actessigester bei 10-stdg. Kochen eines Gemisches von Acetondicarbonsaurediäthylester und Trimethylenbromid mit alkoh Natrium-
- Gemisches von Acetondicarbonsäurediäthylester und Trimethylenbromid mit alkoh. Natriumäthylatlösung; man verseift ihn durch Kochen mit alkoh. Kalilauge (Perkin jun., Soc. 51, 739, 744). — Farblose Tafeln (aus Wasser). Schmilzt bei 185—190° unter Zersetzung. Leicht löslich in heißem Wasser und in heißem Alkohol, schwer in Äther und Benzol. — Zerfällt beim Kochen mit Wasser in Kohlendioxyd und ô-Aceto-n-butylalkohol (Bd. I, S. 835).
- 5.6 Dihydro pyran [carbonsäure (3) äthylester] essigsäure (2) (Methyldehydrohexondicarbonsäuremonoäthylester) $C_{10}H_{14}O_5 = OC_5H_6(CO_2 \cdot C_2H_5) \cdot CH_2 \cdot CO_3H$. B. Bei 10—14-stdg. Aufbewahren des Diäthylesters mit alkoh. Kalilauge in der Kälte (Perkin jun., Soc. 51, 741). Farblose trikline Tafeln (Haushoffer, Soc. 51, 742). F: 114°. Leicht löslich in Alkohol und Äther, sehr wenig löslich in heißem Wasser, leicht in Alkalien. Zerfällt bei der Destillation in Kohlendioxyd und 2-Methyl-5.6-dihydro-pyrancarbonsäure-(3)-äthylester (S. 270). -AgC₁₀H₁₃O₅. Weißer Niederschlag.
- 5.6 Dihydro pyran [carbonsäure (8) äthylester] [essigsäure (2) äthylester] (Methyldehydrohexondicarbonsäurediāthylester) $C_{12}H_{12}O_5 = OC_5H_6(CO_2 \cdot C_2H_5) \cdot CH_2 \cdot CO_2 \cdot C_2H_5 \cdot B.$ s. o. bei Methyldehydrohexondicarbonsäure. Flüssig. Kp₁₅₀: 238° bis 240° (Perkin jun., Soc. 51, 739). Wird durch alkoh. Kalilauge bei 10—14-stdg. Aufbewahren zum Monoäthylester, bei 3—4-stdg. Kochen zur freien Säure verseift.
- 2. 2 Methyl-furan dihydrid (2.3) carbonsäure (4) essigsäure (5), 2 Methyl-2.3 dihydro furan carbonsäure (4) essigsäure (5) $C_{\bullet}H_{10}O_{\bullet}=HO_{\bullet}O \cdot C$ — OH_{\bullet}

HO.C. CH. C.O. CH. CH.

2-Chlormethyl-2.3-dihydro-furan-[carbonsäure-(4)-äthylester]-[essigsäure-(5)-äthylester] $C_{12}H_{17}O_5Cl = OC_4H_2(CH_2Cl)(CO_2 \cdot C_2H_5) \cdot CH_2 \cdot CO_3 \cdot C_2H_5$. B. Man sättigt eine

Lösung von γ-Chlormethyl-α-carbāthoxyacetyl-butyrolacton (S. 454) in Alkohol mit trocknem Chlorwasserstoff und läßt 48 Stdn. stehen (Haller, March, C. r. 187, 12; Bl. [3] 31, 443). — Öl. Kp₁₇: 198—199°. — Liefert bei 48-stdg. Kochen mit verd. Kaliumearbonat-Lösung 2-Methyl-5-chlormethyl-4.5-dihydro-furan-carbonsäure-(3)-äthylester (S. 270).

- 3. [5-Methyl-tetrahydrofuryliden-(2)]-bernsteinsäure, "Valactenbernsteinsäure" $C_9H_{12}O_5=\frac{H_2C-CH_2}{HO_2C\cdot CH_2\cdot C(CO_2H): \dot{C}\cdot O\cdot \dot{C}H\cdot CH_2}$. B. Das Calciumsalz entsteht beim Kochen von "Valactenbernsteinsäureanhydrid" (Syst. No. 2761) mit Kalkwasser (Fittig, Salomon, Wernher, A. 331, 194). Die freie Säure ist nicht beständig; ihre Salze werden durch Salzsäure unter Rückbildung des Anhydrids zersetzt. $A_2C_2H_{10}O_5$. Lichtempfindlicher Niederschlag. Calciumsalz. Krystallinisch. Ba $C_9H_{10}O_5$. Krystallinisch.

Cantharidinsäure-dimethylester C₁₂H₁₉O₅ = OC₆H₆(CH₂)₂(CO₂·CH₂)₂. B. Aus dem bei 110° entwässerten Silbersalz der Cantharidinsäure durch 2-stdg. Erhitzen mit Methyljodid im geschlossenen Rohr auf 100° (Homolka, B. 19, 1083). Aus Cantharidin (Syst. No. 2761) durch 1-stdg. Erhitzen mit Methylalkohol, Kaliumhydroxyd und Methyljodid auf 100° unter Druck (H. Meyer, M. 18, 397). — Gelbliche Krystalle. Rhombisch bipyramidal (Redlich, Z. Kr. 29, 277; vgl. Groth, Ch. Kr. 5, 456). F: 81—82° (H. M.). Kp: 296—298° (H. M.). Leicht löslich in Äther, Alkohol, Benzol, Chloroform, siedendem Wasser und Pyridin (H. M.). — Wird durch Kochen mit wäßriger oder alkoholischer Kalilauge leicht verseift (H. M.; Ho.).

Cantharidinsäure-mono-[β-amino-äthylamid] H₂C·CH·C(CH₃)·CO·NH·CH₂·CH₂·NH₂ C₁₂H₂₀O₄N₂, s. nebenstehende Formel. B. Bei mehrstündigem Erwärmen einer Lösung äquimolekularer | 0 | 0 | 2) Mengen Cantharidin (Syst. No. 2761) und Äthylen. H₂C·CH·C(CH₃)·CO₂H diamin mit 20 Tln. absol. Alkohol auf 40—50° (ANDERLINI, G. 23 I, 130). — Pulver. Schmilzt bei 195° unter Zersetzung. Sehr leicht löslich in Wasser, unlöslich in Alkohol, Äther und Benzol. — Liefert beim Kochen mit Salzsäure Cantharidin.

Cantharidinsäure - mono - phenylhydrazid

C₁₆H₂₀O₄N₂, s. nebenstehende Formel. B. Bei ¹/₄-stdg.
Erhitzen von 2 Tln. Cantharidin mit einer Lösung von
3 Tln. salzsaurem Phenylhydrazin und 4,5 Tln. Natriumacetat in 30 Tln. Wasser auf 100° (SPIEGEL, B. 25, 1469, 2956; H. MEYER, M. 18, 402; 21,
979). — Krystalle (aus Alkohol). F: 194° (korr.) (Sp.; H. M.). — Geht beim Erhitzen für sich
auf 120°, ebenso beim Erhitzen mit alkoh. Kali, Anilin oder Phenylhydrazin, in N-Anilinocantharidinsäureimid (Syst. No. 4298) über (Sp., B. 25, 2957). Liefert mit Brom in siedendem
Eisessig x.x-Dibrom-N-anilino-cantharidinsäureimid (Syst. No. 4298) und x.x-Dibromcantharidinsäure-mono-[N.N'-diacetyl-phenylhydrazid] (Sp., B. 26, 140).

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von GADAMEB, Ar. 252, 631; RUDOLPH, Ar. 254, 423; v. BRUCHHAUSEN, BERSCH, Ar. 1928, 697.

²) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von GADAMER, Ar. 260, 200.

x.x - Dibrom - cantharidinsäure - mono - [N.N' - diacetyl - phenylhydrazid] $C_{50}H_{25}O_6N_2Br_3 = OC_6H_{16}Br_8(CO_2H) \cdot CO \cdot N(CO \cdot CH_3) \cdot N(CO \cdot CH_3) \cdot C_6H_5^{-1})$. B. Aus Cantharidinsäure-mono-phenylhydrazid und Brom in siedendem Eisessig, neben x.x-Dibrom-N-anilno-cantharidinsäureimid (Spiegel, B. 26, 140). — Blaßgelbe Säulen (aus Alkohol). F: 194° (korr.).

3. Dicarbonsäuren $C_n H_{2n-8} O_5$.

1. Dicarbonsäuren C6H4O5.

1. Furan-dicarbonsăure-(2.3) $C_6H_4O_5 = \frac{HC - C \cdot CO_2H}{HC \cdot O \cdot C \cdot CO_2H}$ [systematische Stammverbindung der Thiophen-dicarbonsäure-(2.3)].

Thiophen - dicarbonsäure - (2.3), Thiophen - $\alpha.\beta$ - dicarbonsäure $C_6H_4O_4S = HC - C \cdot CO_2H$ B. Aus 2.3-Dimethyl-thiophen durch Oxydation mit Kaliumpermanganat $HC \cdot S \cdot C \cdot CO_2H$ in alkal. Lösung, neben 3-Methyl-thiophen-carbonsäure-(2) (Grünewald, B. 20, 2587). Entsteht neben 3-Methyl-thiophen-carbonsäure-(2) beim Versetzen einer Lösung von 25 g 3-Methyl-2-acetyl-thiophen (Bd. XVII, S. 295) und 200 g Natriumhydroxyd in 2000 g Wasser mit 137 g festem Kaliumpermanganat; man übersättigt die eingeengte Lösung mit Salzsäure und kocht je 5 g der ausgeschiedenen Substanz mit 180 cm³ n/10-Natronlauge; Äther entzieht der erkalteten Lösung nur 3-Methyl-thiophen-carbonsäure-(2) (Gerlach, A. 267, 155). — Nadeln (aus Wasser) (Gr.; Gr.). Schmilzt unter Zersetzung bei 270° (Gr.). Nicht flüchtig mit Wasserdampf (Gr.; Gr.). Schwer löslich in kaltem Wasser, leichter in warmem, sehr leicht in Äther (Gr.). — Beim Erhitzen der Säure mit Resorcin auf ca. 200° bildet sich eine braunrote Schmelze, deren alkal. Lösung grüne Fluorescenz zeigt (Gr.; Gr.). — Na $C_6H_3O_4S$ + $3H_2O$. Farblose, sternförmige Krystalle (Gr.). — $Ag_3C_6H_3O_4S$. Nadeln. Schwer löslich in kochendem Wasser (Gr.). — $BaC_6H_3O_4S$. Nadeln. In kaltem Wasser schwer, in heißem leicht löslich (Gr.). — $PbC_6H_2O_4S$. Weißer Niederschlag (Gr.).

2. Furan - dicarbonsdure - (2.4), Furan - $\alpha.\beta'$ - dicarbonsdure $C_4H_4O_5=HO_2C\cdot C$ ——CH

B. Durch 20 Minuten langes Kochen von 5 g 3-Brom-cumalin-carbon-HC·O·C·CO₂H.

sāure-(5)-methylester (S. 406) mit 30 g 33% iger Kalilauge (Feist, B. 34, 1994). — Blättchen mit 1 H₂O (aus Wasser). Wird bei 100% wasserfrei. F: 266%. Sublimierbar. Leicht löslich in heißem Wasser, Alkohol und Aceton, ziemlich schwer in kaltem Wasser, Chloroform, Schwefelkohlenstoff und Eisessig, schwer in Äther und Ligroin. — Ag₂C₆H₂O₅. Feinkrystallinischer, lichtbeständiger Niederschlag. Wird durch längeres Kochen mit Wasser zersetzt. — CaC₆H₂O₅ + 3 H₂O. Nadeln. — BaC₆H₂O₅ + 4 H₂O. Nadeln.

Dimethylester $C_0H_0O_5 = OC_4H_1(OO_2 \cdot CH_3)_2$. B. Durch Sättigen der methylalkoholischen Lösung von Furan-dicarbonsäure-(2.4) mit Chlorwasserstoff (F., B. 34, 1995). — Prismen (aus Methylalkohol). F: 109—110°. Verflüchtigt sich langsam schon bei 70—80°.

Thiophen - dicarbonsäure - (2.4), Thiophen - $\alpha.\beta'$ - dicarbonsäure $C_0H_4O_4S = HO_2C \cdot C - CH$ HÜ $\cdot S \cdot \ddot{C} \cdot CO_2H$.

B. Neben 4 oder 2 - Methyl - thiophen - carbonsäure - (2 oder 4) (S. 294)

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von GADAMER, Ar. 260, 200.

bei der Oxydation von 2.4-Dimethyl-thiophen (Bd. XVII, S. 41) mit alkal. Kaliumpermanganatlösung; man trennt die Säuren durch Destillation mit Wasserdampf, wobei sich nur die Monocarbonsäure verflüchtigt (Zelinsky, B. 20, 2021). — Schmilzt noch nicht bei 260°; zersetzt sich bei 280° und sublimiert teilweise. Schwer löslich in kaltem, leicht in heißem Wasser. — $Ag_2C_4H_2O_4S$. Käsiger Niederschlag.

Dimethylester $C_0H_0O_4S=SC_4H_4(CO_2\cdot CH_3)_2$. B. Aus dem Silbersalz der Thiophendicarbonsäure-(2.4) und Methyljodid (Z., B. 20, 2023). — Blättchen (aus $60^0/_0$ igem Alkohol). F: 120—121°.

Diäthylester $C_{10}H_{12}O_4S=SC_4H_5(CO_5\cdot C_2H_5)_3$. B. Aus dem Silbersalz der Thiophendicarbonsäure-(2.4) und Äthyljodid (Z., B. 20, 2023). — Öl, das bei langem Aufbewahren über Schwefelsäure krystallisiert und dann bei 35—36° schmilzt.

3. Furan-dicarbonsaure - (2.5), Furan-α.α'-dicarbonsaure, Dehydroschleimsaure C₆H₄O₅ = HC—CH
HO₂C·C·O·C·CO₂H

8. Bei mehrstündigem Erhitzen von Alloschleimsaure (E. Fischer, B. 24, 2139) oder d-Taloschleimsaure (E. Fis., B. 24, 3628) mit konz. Salzsaure und rauchender Bromwasserstoffsaure im geschlossenen Rohr auf 150°. Beim Erhitzen des sauren Kaliumsalzes der d-Zuckersaure mit konz. Salzsaure im geschlos-

senen Rohr auf 150° (Sohst, Tollens, A. 245, 19; vgl. Schrötter, M. 9, 443) sowie bei längerem Kochen des Salzes mit konz. Bromwasserstoffsäure (Hill, Am. 25, 441). Bei 8-stdg. Erhitzen von Schleimsäure mit höchst konz. Salzsäure im geschlossenen Rohr auf 140-150° (Seelig, B. 12, 1083). Aus Schleimsäure durch 2-tägiges Erhitzen mit überschüssiger, bei 0° gesättigter Bromwasserstoffsäure im geschlossenen Rohr auf dem Wasserbad (Heinzelmann, A. 193, 187) oder besser durch 8-stdg. Erhitzen im geschlossenen Rohr auf 130—140° (Seelig). Aus Schleimsäure durch 8-stdg. Erhitzen mit konz. Salzsäure und rauchender Bromwasserstoffsäure im geschlossenen Rohr auf 150° (KLINKHARDT, J. pr. [2] 25, 43). In geringer Menge durch vorsichtige Destillation von Schleimsäure bei etwa 280° (Kll., J. pr. [2] 25, 42; vgl. Zenoni, G. 20, 518). Aus 5-Chlormethyl-furfurol (Bd. XVII, S. 290) beim Erhitzen mit überschüssiger Salpetersäure (D: 1,3) (Fenton, Robinson, Soc. 95, 1339). Aus 5-Oxymethyl-furfurol (S. 14) durch Oxydation mit Salpetersaure (D: 1,3) (Blanksma, C. 1910 I, 539). Beim Kochen von 3-Chlor-2.3-dihydro-furan-dicarbonsäure-(2.5) (S. 324) mit überschüssiger Kalilauge (Tiemann, Haarmann, B. 19, 1276). Bei vorsichtiger Destillation von 3-Chlor-2.3-dihydro-furan-dicarbonsäure-(2.5) (Tie., Haa.). Bei vorsichtiger Destillation von 3.4 - Dioxy - tetrahydrofuran - dicarbonsaure - (2.5) (Isozuckersaure, S. 364) mit entwässerter Oxalsaure (Tie., Haa.). Bei vorsichtigem Erhitzen von 3.4 - Dioxy - tetrahydrofuran - dicarbonsaure - (2.5) im Chlorwasserstoffstrom (Tie., Haa.). Beim Erwärmen von Furfurol carbonsaure - (5) (S. 408) mit Silberoxyd und Wasser (Hill, Sawyer, B. 27, 1570). Bei 8-stdg. Erhitzen des Dilactons der d-Mannozuckersäure (Syst. No. 2842) mit konz. Salzsäure und rauchender Bromwasserstoffsäure im geschlossenen Rohr auf 150° (E. Fi., B. 24, 2140). — Darst. Man löst das saure Kaliumsalz der d-Zuckersäure in der 4—5-fachen Menge Bromwasserstoffsäure (D: 1,56) und kocht die Lösung 16 Stdn. am Rückflußkühler; aus dem Reaktionsprodukt isoliert man die Säure durch Kochen mit Wasser und Calciumcarbonat als Calciumsalz (Phelps, Hale, Am. 25, 445; vgl. Hill, B. 32, 1221). Man erhitzt 50 g Schleimsäure mit 100 g konz. Schwefelsäure 40 Minuten auf 133—137°, verdünnt mit 200 cm³ Wasser und erwärmt 10 Minuten im Wasserbad; nach mehrstündigem Stehenlassen filtriert man den Niederschlag, wäscht ihn mit kaltem Wasser, schlämmt ihn in ca. 800 cm³ siedendem Wasser auf, übersättigt mit festem Bariumhydroxyd, kocht den Niederschlag mehrmals mit je 250 cm³ Wasser, evtl. unter Zusatz von etwas Bariumhydroxyd aus und säuert die vereinigten Lösungen mit Salzsäure an; die rohe Dehydroschleimsäure löst man unter Erwärmen in Ammoniak, entfärbt mit Tierkohle und fällt mit Salzsaure (Yoder, Tollers, B. 34, 3447). — Nadeln (aus Wasser), Blättchen (aus heißem Alkohol). Schmilzt nicht bei 320° (Sohst, To.). Sublimiert bei vorsichtigem Erhitzen fast unzersetzt (Hei.). Außerst wenig löslich in Alkohol (Hei.). Die gesättigte wäßrige Lösung enthält bei 18° 0,1°/6 Säure (PH., Hale, Am. 25, 451). Wird der wäßr. Lösung durch Ather entzogen (Tie., Haa.). Eine wäßr. Lösung von Dehydroschleimsäure scheidet beim Erwärmen mit Eisenchlorid eine durchsichtige Gallerte aus (charakteristisch); bei Gegenwart von Mineralsauren und von Essigsaure, Weinsaure oder Schleimsaure bleibt die Reaktion aus (KLL.). — Dehydroschleimsäure zerfällt bei der trocknen Destillation in Kohlendioxyd und Brenzschleimsaure (S. 272) (Hel.). Auch beim Erhitzen der Kupfersalze bildet sich neben öligen Produkten etwas Brenzschleimsäure (Y., To.). Bei der Reduktion von Dehydroschleimsäure mit Natriumamalgam entsteht als primäres Produkt die cis-Form der 2.5-Dihydro-furan-dicarbonsäure-(2.5); infolge der umlagernden Wirkung des freien Alkalis erhält man daneben die trans-Form der 2.5-Dihydro-furan-dicarbonsäure-(2.5) und 2.3-Dihydro-furan-dicarbonsäure-(2.5) (Hill, Am. 25, 442; Hill, Wheeler, Am. 25, 463, 466, 474, 480; vgl. Seelig, B. 12, 1085;

Schrötter, M. 9, 444; Hill, Russe, Am. 33, 374). Bei Zusatz von 4 Mol Brom zu der wäßr. Lösung des Kaliumsalzes der Dehydroschleimsäure erhält man hochschmelzende Dibrombernsteinsäure und die hochschmelzende Form des 2.5-Dibrom-furan-tetrabromids; letzteres bildet sich ausschließlich bei Gegenwart von überschüssigem Kaliumcarbonat (Ph., Hale). Bei der Einw. von Brom auf Dehydroschleimsäure in heißer wäßriger Lösung erhält man Fumarsäure und Kohlendioxyd (Kil.). Erhitzen des Kaliumsalzes der Dehydroschleimsäure mit Jod und Kaliumjodid in wäßr. Lösung auf 120° führt zu 2.5-Dijod-furan (Ph., Hale). Beim Erwärmen von Dehydroschleimsäure mit Salpeterschwefelsäure entsteht 5-Nitro-brenzschleimsäure (S. 287) (Kil., J. pr. [2] 25, 51; vgl. Rinkes, R. 49 [1930], 1169: 50 [1931], 590; Freure, Johnson, Am. Soc. 53 [1931], 1142). Dehydroschleimsäure gibt beim Erhitzen mit Isatin und konz. Schwefelsäure auf 145—155° eine violettblaue Lösung (Y., To.). — (NH₄)₂C₄H₂O₅. Tafeln oder längliche Sechsecke (Y., To.). — Na₂C₄H₂O₅ + 4H₂O. Nadeln (Y., To.). — K₂C₄H₂O₅ + H₂O. Nadeln (aus verd. Alkohol) (Ph., Hale). — K₂C₄H₂O₅ + 1'/₂ oder 2 H₂O. Nadeln (aus Wasser). Leicht löslich in Wasser (Y., To.). — CuC₆H₂O₅ + 2'/₂ oder 3 H₂O. B. Durch Fällen einer kalten Lösung des Natriumsalzes mit Kupfersulfat (Y., To.). Krystallinischer Niederschlag. — CuC₆H₂O₅ + Cu(OH)₂ + 3H₂O. B. Durch Eintropfen einer Lösung des Natriumsalzes in heiße Kupfersulfat-Lösung (Y. To.). Bläulicher Niederschlag. — Ag₅C₆H₄O₅. Niederschlag. Wenig löslich in Wasser: schwärzt sich beim Kochen mit Wasser (Heinzelmann, A. 193, 190). — MgC₆H₂O₅ + 6H₂O. Krystalle. Verliert 3 H₂O bei 130°, den Rest bei 200° (Y., To.). — CaC₆H₂O₅ + 3 H₂O. Nadeln oder Blätter (aus Wasser). Verwittert langsam an der Luft; hält bei 130° noch ¹/₂ H₂O zurück (Hæl.). Die gesättigte wäßrige Lösung enthält bei 18° 3,9°₁₀, bei Siedetemperatur etwa doppelt so viel (Ph., Hale). — SrC₆H₂O₅ + 6H₂O. Krys

Dehydroschleimsäure-monomethylester $C_7H_6O_5=\frac{HC-CH}{HO_2C\cdot C\cdot O\cdot C\cdot CO_2\cdot CH_3}$. B. Bei der Einw. von 1 Mol Ätzkali auf Dehydroschleimsäure-dimethylester in methylalkoholischer Lösung (Hill, Phelps, Hale, Am. 25, 452). — Blättchen (aus Wasser). F: 201—202° (korr.). Leicht löslich in Alkohol und Äther, schwer in Chloroform, unlöslich in Benzol und Ligroin.

Dehydroschleimsäure-dimethylester $C_8H_8O_5 = \frac{HC-CH}{CH_3 \cdot O_3C \cdot C \cdot O \cdot C \cdot CO_3 \cdot CH_3}$. B. Beim Behandeln von Dehydroschleimsäure in Methylalkohol mit Chlorwasserstoff (ZENONI, G. 20, 518; YODER, TOLLENS, B. 34, 3453). — Nadeln (aus Wasser), Krystalle (aus Methylalkohol). F: 109—110° (korr.) (PHELPS, HALE, Am. 25, 452 Anm.), 112° (Z.). Kp₁₅: 154—156° (Y., T.).

Dehydroschleimsäure-monoäthylester $C_8H_8O_5=OC_4H_2(CO_2H)\cdot CO_2\cdot C_2H_5$. B. Beim Stehenlassen von Dehydroschleimsäure-diäthylester mit 1 Mol Ätzkali in alkoh. Lösung (Phelps, Hale, Am. 25, 453). — Nadeln (aus Wasser). F: 148—149° (korr.). Leicht löslich in Alkohol und heißem Wasser, weniger in Äther, wenig löslich in Chloroform und Benzol, unlöslich in Ligroin.

Dehydroschleimsäure-diäthylester $C_{10}H_{12}O_5 = OC_4H_8(CO_2 \cdot C_2H_5)_2$. B. Beim Behandeln von Dehydroschleimsäure in absol. Alkohol mit Chlorwasserstoff (Heinzelmann, A. 193, 190; Yoder, Tollens, B. 34, 3453). Beim Erhitzen von Dehydroschleimsäure-dichlorid mit alkoh. Ammoniak im geschlossenen Rohr (Klinkhardt, J. pr. [2] 25, 49). — Säulen (aus Alkohol). F: 47° (H.). Kp₁₅: 167—168° (Y., T.). Sehr leicht löslich in heißem Alkohol (H.). — Gibt durch Behandlung mit Phenylmagnesiumbromid in trocknem Äther und Zersetzen des Reaktionsprodukts mit essigsäurehaltigem Wasser 2.5-Bis-[α-oxy-benz-hydryl]-furan (Bd. XVII, S. 174); mit Benzylmagnesiumchlorid entsteht analog 2.5-Bis-[α-oxy-β-β'-diphenyl-isopropyl]-furan (Hale, McNally, Pater, Am. 35, 74).

Dehydroschleimsäure - dipropylester $C_{12}H_{16}O_5 = OC_4H_2(CO_2 \cdot CH_2 \cdot CH_2 \cdot CH_3)_2$. B. Beim Behandeln von Dehydroschleimsäure in Propylalkohol mit Chlorwasserstoff (Yoder, Tollens, B. 34, 3453). — Krystalle (aus wenig Propylalkohol). F: 21—21,5°. Kp₁₅: 177° bis 178°.

Dehydroschleimsäure-diisopropylester $C_{12}H_{16}O_5 = OC_4H_2[CO_2 \cdot CH(CH_3)_2]_2$. B. Beim Erhitzen des Silbersalzes der Dehydroschleimsäure mit Isopropylehlorid im geschlossenen Rohr auf dem Wasserbad (Y., T., B. 34, 3454). Durch Behandeln von Dehydroschleimsäure mit Isopropylalkohol und Chlorwasserstoff (Y., T.). — Krystalle (aus Äther). F: 42—42,5°. Kp₁₂: 156—159°.

Dehydroschleimsäure-dibutylester $C_{14}H_{20}O_5 = OC_4H_2(CO_2 \cdot [CH_2]_3 \cdot CH_3)_2$. B. Beim Erhitzen von Dehydroschleimsäure mit Butylelkohol und Chlorwasserstoff (Y., T., B. 34, 3455). — Krystalle (aus Alkohol). F: 37—38°. Kp₁₃: 186—190°.

Dehydroschleimsäure-diisobutylester $C_{14}H_{20}O_5 = OC_4H_2[CO_2 \cdot CH_2 \cdot CH(CH_3)_2]_2$. B. Analog dem Dibutylester (Y., T., B. 34, 3455). — Krystalle (aus Alkohol). F: 88°. Kp₁₃: 172—174°.

Dehydroschleimsäure-diisosmylester $C_{16}H_{24}O_5=OC_4H_2(CO_2\cdot C_5H_{11})_2$. B. Beim Behandeln von Dehydroschleimsäure mit Isoamylalkohol und Chlorwasserstoff (Y., T., B. 34, 3456). — Krystalle (aus Alkohol). F: 37,5°. Kp_{18} : 207—211°.

Essigsäure-dehydroschleimsäure-anhydrid $C_{10}H_8O_7 = OC_4H_4(CO \cdot O \cdot CO \cdot CH_3)_2$. B. Beim Erhitzen von Dehydroschleimsäure mit überschüssigem Essigsäureanhydrid am Rückflußkühler (Phelps, Hale, Am. 25, 454). — Blättchen (aus Benzol oder Aceton). Zersetzt sich bei ca. 150° unter Bildung von Essigsäureanhydrid und Dehydroschleimsäureanhydrid (?). Ziemlich löslich in heißem Benzol, Eisessig und Chloroform, schwer in Äther und Ligroin.

Dehydroschleimsäureanhydrid C₁₂H₄O₈(?). B. Aus Essigsäure-dehydroschleimsäure-anhydrid durch Erhitzen auf 150° unter vermindertem Druck (Phelps, Hale, Am. 25, 454). — Zersetzt sich beim Erhitzen. Unlöslich im allen gewöhnlichen Lösungsmitteln. Sublimiert unter vermindertem Druck bei hohem Erhitzen. — Wird durch heißes Wasser nur langsam angegriffen, leicht aber durch heiße Alkalien.

Dehydroschleimsäure-dichlorid C₆H₂O₃Cl₂ = OC₄H₂(COCl)₂. B. Durch vorsichtige Destillation von Dehydroschleimsäure mit 2 Mol Phosphorpentachlorid (KLINKHARDT, J. pr. [2] 25, 46). Beim Erhitzen von Dehydroschleimsäure mit Acetylchlorid (K.). — Farblose Krystalle. Ft 80°; Kp: ca. 245° (K.). Sublimiert in Nadeln; leicht löslich in Alkohol, Äther und Chloroform (K.). — Gibt mit Ammoniak in wasserfreiem Äther Dehydroschleimsäurediamid; liefert beim Erhitzen mit alkoh. Ammoniak im geschlossenen Rohr Dehydroschleimsäure-diäthylester (K.). Reagiert mit Benzol in Gegenwart von Aluminiumchlorid unter Bildung von 2.5-Dibenzoyl-furan (Bd. XVII, S. 538) (Phelps, Hale, Am. 25, 458).

Dehydroschleimsäure - monoamid $C_5H_5O_4N = OC_4H_3(CO_2H) \cdot CO \cdot NH_2$. B. Aus Dehydroschleimsäure - monoäthylester durch konz. Ammoniak (Phelips, Halle, Am. 25, 453). — Nadeln (aus Wasser). F: 280—281° (korr.). Unlöslich in den gewöhnlichen Lösungsmitteln.

Dehydroschleimsäure-diamid C₆H₆O₃N₈ = OC₄H₂(CO·NH₂)₂. B. Durch Einleiten von trocknem Ammoniak in eine Lösung von Dehydroschleimsäure-dichlorid in absol. Äther unter Kühlung (KLIWKHARDT, J. pr. [2] 25, 48). — Nadeln (aus heißem Wasser). Schmilzt nicht bei 240°. Fast unlöslich in kaltem Wasser, Alkohol und Äther, leicht löslich in heißem Wasser.

Dehydroschleimsäure-dianilid $C_{18}H_{14}O_8N_8 = OC_4H_8(CO \cdot NH \cdot C_6H_5)_8$. B. Aus Dehydroschleimsäure-dichlorid und Anilin in äther. Lösung (Phelps, Hale, Am. 25, 453). — Nadeln (aus 50%-digem Alkohol). F: 227—228% (korr.). Leicht löslich in Alkohol, sehr wenig in Benzol, unlöslich in kochendem Wasser, in Äther und Ligroin.

Thiophen - dicarbonsaure - (2.5), Thiophen - $\alpha.\alpha'$ - dicarbonsaure $C_0H_4O_4S=HC-CH$

B. Der Diāthylester entsteht beim Erhitzen von 2.5-Dibrom-thiophen HO₂C·C·S·C·CO₂H
mit überschüssigem Chlorameisensäureäthylester und 1½°,0/gigem Natriumamalgam; man verseift ihn mit alkoh. Kalilauge (Bonz, B. 18, 2306). Thiophen-α.α'-dicarbonsäure wird erhalten aus 2.5-Dimethyl-thiophen (Messunger, B. 18, 567; Opolski, C. 1905 II, 1797), 2-Methyl-5-acetyl-thiophen (Bd. XVII, S. 296) (Demuth, B. 18, 3026), 5-Āthyl-2-acetyl-thiophen (Schleicher, B. 18, 3022), 5-Methyl-thiophen-carbonsäure-(2) (S. 295) (Levi, B. 19, 656) oder 5-Āthyl-thiophen-carbonsäure-(2) (S. 296) (Sch.) durch Oxydation mit alkal. Permanganaticsung. Das Dinitril entsteht beim Erhitzen des entwässerten Kaliumsalzes der Thiophen-disulfonsäure-(2.4) (Syst. No. 2630) mit Kaliumcyanid; man verseift es durch Kochen mit alkoh. Kali (Jaekel, B. 19, 190; vgl. Steinkoff, Höpner, A. 501 [1933], 179). — Krystallpulver. Schmilzt noch nicht bei 350°; sublimiert unzersetzt; sehr schwer löslich in Wasser, etwas leichter in Äther (M.). — Ag₂C₂H₂O₄S. Flockiger Niederschlag (J.; L.). — CaC₂H₂O₄S + 3H₂O. Gleicht dem Bariumsalz (J.). — BaC₄H₂O₄S + H₂O. Undeutliche Krystalle. Schwer löslich in kaltem Wasser (J.).

Dimethylester $C_8H_8O_4S = SC_4H_8(CO_3 \cdot CH_9)_2$. B. Beim Erwärmen des Silbersalzes der Thiophen- $\alpha.\alpha'$ -dicarbonsäure mit Methyljodid in Äther (Messinger, B. 18, 567; Jarkel, B. 19, 192). — Nädelchen (aus Äther), Prismen (aus Alkohol). Monoklin (Treadwell, B. 19, 192). F: 145—145,5° (J.), 145,5° (Bonz, B. 18, 2307), 146—147° (Schleicher, B. 18, 3020, 3023; Opolski, C. 1905 II, 1797), 151° (Demuth, B. 18, 3026).

Diäthylester $C_{10}H_{12}O_4S=SC_4H_2(CO_2\cdot C_2H_5)_2$. B. Beim Erwärmen des Silberse ves der Thiophen- $\alpha.\alpha'$ -dicarbonsäure mit Äthyljodid in Äther (Jaekel, B. 19, 193; Schleicher, B. 18, 3020). Eine weitere Bildung s. im Artikel Thiophen-α.α'-dicarbonsaure. — Nadeln (aus Alkohol). F: 50° (Demuth, B. 18, 3026; Opolski, C. 1905 II, 1797), 51,5° (Sch.). Leicht löslich in Alkohol (J.).

Thiophen- $\alpha.\alpha'$ -dicarbonsäure-dinit.il, 2.5-Dicyan-thiophen $C_aH_aN_aS=SC_aH_a(CN)_a$. B. s. im Artikel Thiophen-α.α'-dicarbonsaure. — Krystalle (aus Äther). F: 92—92.5°; wird durch heißes Wasser zersetzt (JAEKEL, B. 19, 190).

2. Dicarbonsäuren C₇H₆O₅.

1. Pyran - dicarbonsäure - (2.6), Pyran - $\alpha.\alpha'$ - dicarbonsäure $C_7H_8O_5 =$ $HO_2C \cdot C - O - C \cdot CO_2H$. B. Aus $\alpha.\alpha'$ -Dioxo-pimelinsäure durch konz. Schwefelsäure (Blaise. HC CH CH GAULT, C. r. 139, 138; Bl. [4] 1, 131). -- Farblose Nadeln (aus heißem Wasser). Zersetzt sich bei 250°, ohne zu schmelzen. Löslich in sehr viel heißem Wasser, unlöslich in Alkohol, Äther und Benzol. — Wird durch siedende wäßrige Quecksilberchlorid-Lösung zu α.α'-Dioxo-

pimelinsäure aufgespalten. — $CuC_5H_4O_5+4H_5O$.

Dibromid $C_7H_6O_5Br_8=OC_5H_4Br_8(CO_2H)_2$. B. Aus Pyran- $\alpha\alpha'$ -dicarbonsäure und Brom in Schwefelkohlenstoff oder Eisessig (B., G., Bl. [4] 1, 138). — Krystallpulver. Zersetzt sich bei 205°, ohne zu schmelzen. Sehr leicht löslich in Wasser unter Zersetzung. Macht aus

Kaliumjodid-Lösung Jod frei.

Dimethylester $C_9H_{10}O_5 = OC_5H_4(CO_2 \cdot CH_3)_2$. B. Aus Pyran- $\alpha.\alpha'$ -dicarbonsaure und absol. Methylalkohol in Gegenwart von konz. Schwefelsäure (B., G., Bl. [4] 1, 132). — Krystalle (aus verd. Alkohol). F: 121°.

Diäthylester $C_{11}H_{14}O_5 = OC_5H_4(CO_2 \cdot C_2H_5)_2$. B. Aus Pyran- $\alpha.\alpha'$ -dicarbonsäure und absol. Alkohol in Gegenwart von konz. Schwefelsäure (B., G., Bl. [4] 1, 132). — Fast farblose Tafeln (aus Äther + Petroläther). F: 37°. Sehr leicht löslich in organischen Lösungsmitteln.

Dichlorid $C_7H_4O_3Cl_2=OC_5H_4(COCl)_2$. B. Durch Einw. von 2 Mol Phosphorpentachlorid auf 1 Mol Pyran- $\alpha.\alpha'$ -dicarbonsäure (B., G., Bl. [4] 1, 132). — Fast farblose Krystalle (aus Benzol). F: 112°.

Diamid $C_7H_8O_3N_2 = OC_5H_4(CO \cdot NH_2)_2$. B. Aus Pyran- $\alpha.\alpha'$ -dicarbonsaure-dichlorid und wäßr. Ammoniak bei gewöhnlicher Temperatur (B., G., Bl. [4] 1, 133). — Krystalle (aus Ameisensäure). Zersetzt sich bei 250°, ohne zu schmelzen. Unlöslich in fast allen organischen Lösungsmitteln.

Dianilid $C_{19}H_{16}O_3N_2 = OC_5H_4(CO\cdot NH\cdot C_6H_5)_2$. B. Aus Pyran- $\alpha.\alpha'$ -dicarbonsäure-dichlorid und Anilin in Benzol (B., G., Bl. [4] 1, 133). — Krystalle (aus Ameisensäure). F: 255°.

$$\begin{array}{ll} \textbf{2. 4-Methyl-furan-dicarbons \"aure-(2.3)} \ \ C_7H_6O_5 = & \frac{CH_3 \cdot C -- C \cdot CO_2H}{H \overset{"}{C} \cdot O \cdot \overset{"}{C} \cdot CO_2H} \, . \\ \\ \textbf{5-Brom-4-methyl-furan-dicarbons \"aure-(2.3) (?)} \ \ C_7H_5O_5Br = & \frac{CH_3 \cdot C -- C \cdot CO_2H}{Br \overset{"}{C} \cdot O \cdot \overset{"}{C} \cdot CO_2H} \, . \\ \\ \textbf{8-C} \cdot O \cdot \overset{"}{C} \cdot CO_2H \cdot \overset{"}{C} \cdot CO_$$

Bei Behandlung von 2.4-Dimethyl-furan-carbonsäure-(3) (S. 296) mit Bromwasser (Trefiljew, MANGUBI, Ж. 41, 881; С. 1909 II, 1874). — Krystalle (aus Essigsaure). F: 149—151°.

3. Dicarbonsäuren C₈H₈O₅.

HC·CH(CH₂)·CH 1. 4-Methyl-pyran-dicarbonsäure-(2.6) $C_8H_8O_5 = HO_2C \cdot C - O - C \cdot CO_2H$ B. Man löst 1 Tl. α.α'-Dioxo-γ-methyl-pimelinsäure (Bd. III, S. 838) in 5 Tln. kalter konzentrierter Schwefelsäure und gießt nach einigen Stunden auf Eis (Blaise, Gault, Bl. [4] 1, 141). — Krystalle (aus Wasser). Schmilzt gegen 260° unter Zersetzung. In Wasser leichter löslich als Pyran-dicarbonsäure-(2.6). — ${\rm Cu\,C_8\,H_6\,O_5} + 2\,{\rm CH_3}\cdot{\rm CO_2H} + 2\,{\rm H_2O}$. Grüne Krystalle.

Dibromid $C_8H_9O_5Br_2 = OC_5H_3Br_2(CH_3)(CO_2H)_2$. B. Aus 4-Methyl-pyran-dicarbon-säure-(2.6) und Brom in Eisessig (Blaise, Gault, Bl. [4] 1, 143). — Krystallpulver (aus Essigester + Petroläther). Zersetzt sich bei 190°, ohne zu schmelzen. — Wird durch Wasser vollständig hydrolysiert. Macht aus Kaliumjodid Jod frei.

Dimethylester $C_{10}H_{12}O_5 = OC_5H_3(CH_3)(CO_3 \cdot CH_3)_2$. B. Aus 4-Methyl-pyran-dicarbon-säure-(2.6) bei mehrstündigem Erhitzen mit Methylalkohol und konz. Schwefelsäure (Blaise, GAULT, Bl. [4] 1, 142). — Krystalle (aus verd. Alkohol). F: 79—80°.

2. $[\alpha\text{-Furyl}]\text{-bernsteinsäure}$ $C_8H_8O_5=\frac{HC-CH}{HC\cdot O\cdot C\cdot CH(CO_2H)\cdot CH_2\cdot CO_2H}$. B. Durch Erwärmen von α - $[\alpha\text{-Furyl}]\text{-bernsteinsäure-}\alpha\text{-nitril}$ (s. u.) mit Kalilauge (Sandelin, B. 31, 1120). — Kugelige Gebilde (aus Wasser). Schmilzt bei 154° unter Aufbrausen. Leicht löslich

Erwärmen von α -[α -Furyl]-bernsteinsäure- α -nitril (s. u.) mit Kalilauge (Sandelin, B. 31, 1120). — Kugelige Gebilde (aus Wasser). Schmilzt bei 154° unter Aufbrausen. Leicht löslich in Wasser, Alkohol und Äther, unlöslich in Benzol und Chloroform. — Zersetzt sich bei längerem Erhitzen auf 100° oder beim Kochen der wäßrigen Lösung. Beim Destillieren im Vakuum entsteht Furfurylessigsäure (S. 295). — $K_2C_3H_6O_5$. Undeutlich krystallinische Masse (S., B. 33, 488). — $Ag_3C_3H_6O_5$. Lichtempfindlicher gelatinöser Niederschlag; wird von heißem Wasser zersetzt (S., B. 33, 488).

Dimethylester $C_{10}H_{12}O_5 = OC_4H_3 \cdot CH(CO_2 \cdot CH_3) \cdot CH_2 \cdot CO_2 \cdot CH_3$. B. Durch mehrstündiges Kochen von [α -Furyl]-bernsteinsäure mit Methylalkohol und konz. Schwefelsäure (S., B. 31, 1121). — Gelbliches Öl. Kp₃₀: 162—163°.

Diäthylester $C_{12}H_{16}O_5 = OC_4H_3 \cdot CH(CO_2 \cdot C_2H_5) \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Durch mehrstündiges Kochen von [α -Furyl]-bernsteinsäure mit Alkohol und konz. Schwefelsäure (S., B. 31, 1120). — Gelbe dicke Flüssigkeit. Kp₇₉: 199,5—200°.

 α -[α-Furyl]-bernsteinsäure-α-amid $C_8H_9O_4N = OC_4H_3 \cdot CH(CO \cdot NH_2) \cdot CH_2 \cdot CO_2H$. B. Durch Lösen von α-[α-Furyl]-bernsteinsäure-α-nitril in heißem Wasser (S., B. 33, 488). — Nadeln (aus Wasser). F: 155°. Unlöslich in Äther und Benzol. — Spaltet beim schwachen Erwärmen mit Kalilauge Ammoniak ab.

[\$\alpha\$-Furyl]-bernsteinsäure-diamid \$C_8H_{10}O_3N_2=OC_4H_3\cdot CH(CO\cdot NH_2)\cdot CH_2\cdot CO\cdot NH_2\$. B. Durch Einw. von konz. Ammoniak auf [\$\alpha\$-Furyl]-bernsteinsäure-dimethylester (s. o.) (S., \$B. 33, 488). — Blättchen (aus Wasser). Schmilzt oberhalb 220° unter Zersetzung. Kaum löslich in Alkohol, unlöslich in Äther. — Wird durch Erwärmen mit Kalilauge zu [\$\alpha\$-Furyl]-bernsteinsäure verseift.

 α -[α-Furyl]-bernsteinsäure-α-nitril, β -Cyan- β -[α-furyl]-propionsäure $C_8H_7O_3N=OC_4H_3\cdot CH_2\cdot CO_2H$. B. Durch 24-stündige Einw. von 2 Mol Kaliumeyanid auf 1 Mol Furfurylidenmalonsäure-diäthylester (S. 338) in wäßrig-alkoholischer Lösung (S., B. 33, 487). — Nadeln (aus Benzol). F: 109°. Löslich in Wasser, unlöslich in Ligroin. — Beim Lösen in heißem Wasser bildet sich α -[α-Furyl]-bernsteinsäure- α -amid. Durch Erwärmen mit Kalilauge entsteht [α-Furyl]-bernsteinsäure-

 α -[α-Furyl]-bernsteinsäure-α'-äthylester-α-nitril, β -Cyan- β -[α-furyl]-propion-säure-äthylester $C_{10}H_{11}O_3N = OC_4H_3 \cdot CH(CN) \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Durch 7-stündiges Erhitzen äquimolekularer Mengen Furfurylidenmalonsäure-diäthylester (S. 338) und Kalium-cyanid in alkoholisch-wäßriger Lösung auf 60° (S., B. 38, 487). — Öl. Kp₃₃: 174,5°. Bräunt sich bald.

[α -Furyl]-bernsteinsäure-dihydraxid $C_8H_{12}O_3N_4=OC_4H_3\cdot CH(CO\cdot NH\cdot NH_3)\cdot CH_2\cdot CO\cdot NH\cdot NH_2$. B. Durch Einw. von Hydrazinhydrat auf [α -Furyl]-bernsteinsäure-diäthylester (s. o.) (S., B. 33, 489). — Pulver (aus Alkohol-Äther). F: 159—161°. Leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther.

[\$\alpha\$-Furyl]-bernsteins\(\text{aure-bis-benzalhydrazid}\) \$C_{32}H_{30}O_3N_4 = OC_4H_3\cdot CH(CO\cdot NH\cdot N):\$CH\cdot C_6H_5\cdot CH_2\cdot CO\cdot NH\cdot N:\$CH\cdot C_6H_5\cdot B.\$ Durch Sch\text{\text{atteln}}\) von 1 Mol [\$\alpha\$-Furyl]-bernsteins\(\text{aure-dihydrazid}\) in w\text{\text{\text{a}}Br. L\text{\text{\text{C}}}\) and Benzaldehyd (S., \$B\$. 33, 489). — Pulver (aus 80\(^{\text{o}}\)_0 igem Alkohol). F: 199\(-200^{\text{o}}\).

3. β - $[\alpha$ - Furyl] - isobernsteinsäure, Furfurylmalonsäure $C_8H_8O_5=HC$ —CH

B. Bei der Reduktion von Furfurylidenmalonsäure in wäßr. HC·O·C·CH₂·CH(CO₂H)₂

Lösung durch Natriumamalgam (Marckwald), B. 21, 1083). — Nadeln (aus Alkohol). F: 125° (M.), 127° (Sandelin, B. 33, 489). Leicht löslich in Wasser, Alkohol, Äther und Eisesig, fast unlöslich in Chloroform, Benzol und Ligroin (M.). — Zerfällt bei der Destillation in Furfurylessigsäure (S. 295) und Kohlendioxyd (M.). — Ag₂C₈H₆O₅. Unlöslicher käsiger Niederschlag; leicht zersetzlich (M.).

Diäthylester $C_{12}H_{16}O_{5} = OC_{4}H_{3} \cdot CH_{2} \cdot CH_{2}(CO_{2} \cdot C_{2}H_{5})_{2}$. B. Durch Behandeln von Furfurylmalonsäure mit Alkohol und konz. Schwefelsäure (Sandelin, B. 33, 490). — Hellgelbes Öl von schwachem Fruchtgeruch. Kp₃₅: 171—173°; Kp₇₆₀: 265—267° (geringe Zers.). — Liefert mit Chloressigester in alkoh. Natriumäthylat-Lösung $\gamma^{4}[\alpha\text{-Furyl}]$ -propan- α . β . β -tricarbonsäure-triäthylester (S. 344).

4. 4 - Methyl - furan - carbonsaure - (3) - essigsaure - (2) $C_9H_8O_5 = CH_3 \cdot C - C \cdot CO_2H$

HC·O·C·CH₂·CO₂H. B. Bei der Verseifung ihres Diäthylesters (S. 333) mit wäßr. Alkali, neben 4-Methyl-furan-[carbonsäure-(3)-äthylester]-essigsäure-(2) (S. 333) (Feist, Molz, B. 32,

- 1767; F., B. 35, 1549). Nadeln. F: 196,5° (F., M.; F.). Sehr leicht löslich in absolutem, ziemlich leicht in verdünntem Alkohol, schwer in Wasser (F.). Geht beim Erhitzen über den Schmelzpunkt sowie beim Kochen mit Wasser in 2.4-Dimethyl-furan-carbonsäure-(3) (S. 296) über (F.). $\operatorname{AgC_8H_7O_5} + \operatorname{H_2O}$. Niederschlag; ziemlich leicht löslich in heißem Wasser (F.). $\operatorname{Ag_2C_8H_4O_5}$. Krystallinischer Niederschlag; färbt sich bei 100° erst gelb, dann braun (F.). $\operatorname{BaC_8H_4O_5}$. Warzen. In heißem Wasser schwerer löslich als in kaltem (F.).
- 4 Methyl furan [carbonsäure (3) äthylester] essigsäure (2) $C_{10}H_{12}O_5 = CH_3 \cdot C C \cdot CO_2 \cdot C_2H_5$ B. Durch Teilverseifung des D'āthylesters (s. u.) mit Kalilauge (F., M., B. 32, 1768; F., B. 35, 1550). Krystalle (aus Äther). Triklin pinakoidal (RIVA, B. 32, 1768; vgl. Groth, Ch. Kr. 5, 499). F: 109^0 (F., M.; F.). Leicht löslich in organischen Solvenzien (F.); in Äther viel leichter löslich als die freie Dicarbonsäure (F., M.). Geht beim Erhitzen in den Äthylester der 2.4-Dimethyl-furan-carbonsäure-(3) (S. 296) über (F., M.; F.). Ag $C_{10}H_{11}O_5$. Voluminöser Niederschlag; färbt sich am Licht dunkel; ziemlich leicht löslich in Wasser (F.).
- 4 Methyl furan [carbonsäure (3) äthylester] [essigsäure (2) äthylester] $C_{12}H_{16}O_5 = \begin{array}{c} CH_3 \cdot C ---C \cdot CO_2 \cdot C_2H_5 \\ HC \cdot O \cdot C \cdot CH_2 \cdot CO_2 \cdot C_2H_5 \end{array} \qquad B. \quad \text{Durch Einw. von trocknem Ammoniak auf}$ ein Gemisch von Acetondicarbonsäurediäthylester und Chloraceton in Äther (F., M., B. 32, 1766; F., B. 35, 1539, 1548). Aus 4-Methyl-furan-carbonsäure-(3)-essigsäure-(2) durch Einleiten von Chlorwasserstoff in die alkoh. Lösung (F., B. 35, 1549). Öl. Kp₂₀: 168° (F., B. 35, 1548).
- x.x.x-Tribrom-[4-methyl-furan-carbonsäure-(3)-essigsäure-(2)] $C_8H_5O_5Br_5$. B. Durch längere Einw. von Bromdampf auf 4-Methyl-furan-carbonsäure-(3)-essigsäure-(2) (Trefiljew, B. 41, 2544; \mathcal{H} . 40, 1346). Krystalle (aus Essigsäure). Zersetzt sich beim Erhitzen, ohne zu schmelzen.
- 5. 2 Methyl furan carbonsäure (3) essigsäure (5), Methronsäure HC—C·CO₂H $\mathbf{C_8H_8O_5} = \mathbf{HO_2C \cdot CH_2 \cdot \overset{\parallel}{C} \cdot O \cdot \overset{\parallel}{C} \cdot CH_3}$ B. Der Monoäthylester entsteht bei 10-stündigem Erhitzen von äquimolekularen Mengen Acetessigester, Essigsäureanhydrid und entwässertem bernsteinsaurem Natrium auf 100°; man versetzt das Reaktionsprodukt mit Wasser, schüttelt es mit Äther aus und übersättigt die nach Verdunsten der äther. Lösung hinterbleibende braune Flüssigkeit mit Soda; die Sodalösung wird mit Äther extrahiert, mit Salzsäure stark angesäuert und abermals mehrfach mit Äther extrahiert; den in den Äther übergegangenen Monoäthylester der Methronsäure verseift man durch Erwärmen mit überschüssigem Barytwasser (Fittig, v. Eynern, A. 250, 178). In besserer Ausbeute entsteht der Monoathylester bei der Einw. von je 2 Mol Acetessigester und Essigsäureanhydrid auf 1 Mol bernsteinsaures Natrium (Trefiljew, B. 39, 1860; K. 38, 351), neben Methronsäure-diäthylester (Tr., B. 41, 2545; K. 40, 1338). Uber den Reaktionsverlauf vgl. Tr., B. 39, 1859; K. 38, 350; C. 1925 II, 2209; SCHROETER, B. 39, 2129. Der Diäthylester entsteht neben anderen Produkten (vgl. Bd. III, 8. 642) bei mehrtägigem Aufbewahren von 10 g Glyoxal mit 44 g Acetessigester und 100 g konz. Zinkchlorid-Lösung (Polonowsky, A. 246, 5). — Die Säure bildet farblose Nadeln (aus Wasser). F: 204° (F., Hantzsch, B. 21, 3189). Sublimiert bei raschem Erhitzen unzersetzt (P.). Leicht löslich in Alkohol und Benzol, schwer in Äther und Eisessig, sehr schwer in kaltem Wasser, fast unlöslich in Chloroform und Schwefelköhlenstoff (F., v. E.). Leicht löslich in Alkalien; unverändert löslich in kalter konz. Schwefelsäure (P.). -Spaltet sich bei vorsichtigem Erhitzen über den Schmelzpunkt in Kohlendioxyd und Pyrotritarsäure (S. 297) (F., H.; F., v. E.; vgl. P.). Wird durch konz. Salpetersäure zu Oxalsäure und Essigsäure oxydiert (P.; Tr., B. 39, 1861). Nascierender Wasserstoff wirkt nicht ein (F., v. E.). In Schwefelkohlenstoff suspendierte Methronsäure wird durch Brom bei gewöhnlicher Temperatur nicht verändert (F., v. E.). Setzt man sie im Exsiccator mehrere Wochen der Einw. von Bromdampf aus, so entsteht Tetrabrommethronsäure (S. 334) (Tr., B. 40, 4388; K. 39, 1629). Läßt man Brom in eine eisgekühlte wäßrige Suspension von Methronsäure eintropfen, so erhält man nach mehrtägigem Aufbewahren bei 00 neben anderen Produkten eine Verbindung C₇H₂O₄Br₄(?) (Krystalle aus Eisessig, F: 129–130°) (Tr., Mangubi, Ж. 41, 884; C. 1909 II, 1874); führt man die Bromierung ohne Kühlung aus, so tritt Zersetzung unter Bildung von Bromoform ein (P.; Tr., B. 39, 1862; 40, 4388). Methronsäure zerfällt beim Erhitzen mit salzsäurehaltigem Wasser im geschlossenen Rohr auf 210° in Kohlendioxyd und Acetonylaceton (P.; Tr., B. 39, 1862). Liefert beim Erhitzen mit wäßr. Ammoniak im geschlossenen Rohr auf 320° 2.5-Dimethyl-pyrrol (Syst. No. 3048) (Tr., B. 41, 2545. No. 3048). 2545; Ж. 40, 1340). Beim Erhitzen mit Phenylhydrazin auf dem Wasserbad entsteht eine Verbindung $C_{14}H_{14}O_4N_2$ (S. 334) (F., v. E.). — $(NH_4)_2C_8H_6O_5 + \frac{1}{2}H_2O$. B. Entsteht beim Ein-

leiten von trocknem Ammoniak in eine konzentrierte absolut-alkoholische Lösung von Methronsäure (P.). Unbeständige Nadeln. Schwer löslich in Alkohol. — $Ag_1C_8H_6O_5$ (bei $80^{\rm o}$). Sehr wenig löslich in Wasser; zersetzt sich bei längerem Kochen mit Wasser (F., v. E.). — $Ag_2C_8H_6O_5$ + H_2O . Krystalle (aus viel neißem Wasser) (P.). — $Ca(C_8H_7O_5)_2$. Krystallinischer Niederschlag. Äußerst schwer löslich in siedendem Wasser (F., v. E.). — $CaC_8H_6O_5 + 2^{\rm i}/_{\rm a}(?)H_2O$ (F., v. E.). — $Ba(C_8H_7O_5)_2$. Nadeln. In Wasser leichter löslich als das saure Calciumsalz (F., v. E.). — $BaC_8H_6O_5$. Amorph (F., v. E.; F., H.).

Verbindung C₁₄H₄O₄N₂. B. Bei ³/₄-stündigem Erhitzen von Methronsäure mit überschüssigem Phenylhydrazin auf 100° (Fittig, v. Eynern, A. 250, 188). — Faserige Masse (aus verd. Alkohol). F: 211—212° (Zers.). Unlöslich in Wasser, leicht löslich in Alkohol, schwer in Äther. Löslich in kalter Sodalösung.

- 2-Methyl-furan-carbonsäure-(3)-[essigsäure-(5)-methylester] (?), Methronsäure-HC-— $C \cdot CO_2H$ monomethylester $C_0H_{10}O_5 = HC$ -— $C \cdot CO_2H$ (?). Zur Konstitution vgl. Treflujew, B. 39, 1961; H. 38, 350; SCHROETER, H. 39, 2129; Tr., H. 1925 II, 2209. H. Entsteht neben dem Dimethylester durch Einleiten von trocknem Chlorwasserstoff in die methylalkoholische Lösung von Methronsäure (POLONOWSKY, H. 246, 11). Nadeln (aus verd. Alkohol). H: 98°. Löslich in Soda. H05. Niederschlag.
- $\begin{array}{c} \textbf{2-Methyl-furan-[carbons\"{a}ure-(3)-methylester]-[essigs\"{a}ure-(5)-methylester],} \\ \textbf{Methrons\"{a}ure-dimethylester} \quad \textbf{C}_{10}\textbf{H}_{12}\textbf{O}_{5} = \\ \textbf{CH}_{3}\cdot\textbf{O}_{2}\textbf{C}\cdot\textbf{CH}_{2}\cdot\overset{\text{\parallel}}{\textbf{C}}\cdot\textbf{O}\cdot\overset{\text{\parallel}}{\textbf{C}}\cdot\textbf{C}\textbf{H}_{3} \\ \textbf{Monomethylester.} \quad \textbf{Aromatisch riechendes \"{O}l.} \quad \textbf{Unl\"{o}slich in Soda (P., A. 246, 12).} \end{array}$
- 2-Methyl-furan-carbonsäure-(3)-[essigsäure-(5)-äthylester] (?), Methronsäure- $HC--C\cdot CO_2H$ monoäthylester $C_{10}H_{12}O_5=\frac{HC--C\cdot CO_2H}{C_2H_5\cdot O_2C\cdot CH_2\cdot C\cdot O\cdot C\cdot CH_3}$ (?). Zur Konstitution vgl. Tresteht neben dem Diäthylester beim Einleiten von trocknem Chlorwasserstoff in eine alkoh. Lösung von Methronsäure (Polonowsky, A. 246, 13). Eine weitere Bildung s. bei Methronsäure (S. 333). Nadeln (aus Wasser). F: 76° (P.), 75,5—76° (Fittig, v. Eynern, A. 250, 179). Leicht löslich in Alkohol, Äther, Chloroform und Benzol, schwieriger in Schwefelkohlenstoff, schwer löslich in heißem Wasser (F., v. E.). Liefert bei längerer Einw. von Bromdampf Tetrabrommethronsäure-monoäthylester (S. 335) (Treffiljew, B. 40, 4389; Ж. 39, 1628). Gibt beim Erhitzen mit überschüssigem Phenylhydrazin eine Verbindung $C_{15}H_{18}O_4N_2$ (s. u.) (F., v. E.). Salze: F., v. E. Ag $C_{10}H_{11}O_5$. Weiße Nädelchen (aus Wasser). $Ca(C_{10}H_{11}O_5)_2 + 2H_2O$. Nädelchen (aus Wasser). Leicht löslich in heißem, schwerer in kaltem Wasser.

Verbindung $C_{16}H_{18}O_4N_2$. B. Aus Methronsäure-monoäthylester bei $^3/_4$ -stündigem Erhitzen mit überschüssigem Phenylhydrazin auf 100° (Fittig, v. Eynern, A. 250, 187). — Nadeln (aus verd. Alkohol). F: 133—134°. Ziemlich schwer löslich in Äther, leicht in heißem Alkohol; unlöslich in kalter Natronlauge.

2-Methyl-furan - [carbonsäure - (3) - äthylester] - [essigsäure - (5) - äthylester], $\frac{HC - C \cdot CO_2 \cdot C_2 H_5}{C_2 H_5 \cdot O_2 C \cdot CH_3 \cdot C \cdot O \cdot C \cdot CH_3}. \quad B. \quad \text{Neben dem Monoäthylester beim Einleiten von Chlorwasserstoff in eine absolut-alkoholische Lösung von Methronsäure (Polonowsky, A. 246, 13). Beim Sättigen einer Lösung von Methronsäure-monoäthylester in viel absol. Alkohol mit trocknem Chlorwasserstoff bei 0° (Fittig, v. Eynern, A. 250, 186). Weitere Bildungen s. bei Methronsäure. — Öl. Kp: 300—305° (F., v. E.; Trefilder, B. 41, 2545; %. 40, 1338). — Liefert beim Kochen mit Salpetersäure (D: 1,2) Essigsäure und Oxalsäure (Tr., B. 39, 1861; %. 38, 351). Zersetzt sich beim Versetzen der wäßr. Suspension mit Brom unter Bromoformbildung (Tr., B. 39, 1862).$

2-Dibrommethyl-furan-carbonsäure-(3)-[dibromessigsäure]-(5) (?), Tetrabrommethronsäure $C_8H_4O_5Br_4=\frac{HC-C\cdot CO_3H}{HO_2C\cdot CBr_2\cdot C\cdot O\cdot CHBr_2}$ (?). B. Durch mehrwöchige Einw. von Bromdampf auf Methronsäure (Trefiljew, B. 40, 4388; \mathcal{H} . 39, 1629). — Krystalle (aus Chloroform-Ligroin). Zersetzt sieh, ohne zu schmelzen, bei 150° (Tr., \mathcal{H} . 39, 1629). — Liefert bei der Oxydation mit Salpetersäure Oxalsäure (Tr., B. 40, 4389). Bei längerem Kochen mit Wasser und Bleioxyd entsteht Bernsteinsäure(?) (Tr., B. 40, 4389; vgl. Tr., Mangubi, \mathcal{H} . 41, 875).

2 - Dibrommethyl - furan - carbonsäure - (3) - [dibromessigsäure - (5) - äthylester] (?), Tetrabrommethronsäure-monoäthylester C10HeOcBr.

 $C_2H_5 \cdot O_2C \cdot CBr_2 \cdot C \cdot O \cdot C \cdot CHBr_2$ (?). B. Durch längere Einw. von Bromdampf auf Methron-**saure-monoathylester (Trefiljew, B. 40, 4389; M. 39, 1628). — Krystalle (aus Chloroform + Ligroin). Zerretzt sich, ohne zu schmelzen, bei 160° (Tr., M. 39, 1628).

CH₃·C·O·C·CH₃

Diacetbernsteinsäure-diäthylester (Bd. III, S. 840) mit 150 g 10% iger Schwefelsäure, neben Pyrotritarsäure-äthylester (S. 298) (HARBOW, A. 201, 152, 163). Durch mehrstündiges Kochen des Monoāthylesters mit verd. Schwefelsäure (Ha., A. 201, 157) oder durch Erwärmen des Dimethylesters (Knorr, B. 22, 155) bezw. des Diäthylesters (Kn., B. 17, 2866) mit alkoh. Kali. — Nädelchen (aus Wasser); krystallisiert bei langsamer Abkühlung mit ½ H₂O (Knorr, B. 22, 158 Anm). F: 230—231° (Ha.), 230° (Fittig, Feist, A. 250, 193). Fast unlöslich in kaltem, schwer löslich in siedendem Wasser (Ha.), fast unlöslich in Chloroform und Schwefelder (Ha.), fast unlöslich (Ha.), kohlenstoff, ziemlich schwer in Äther, leicht löslich in Alkohol (Fi., Fri.). — Zerfällt bei der Destillation unter Kohlendioxyd-Entwicklung und Bildung von Pyrotritarsäure, 2.5-Dimethyl-furan und Tetramethyluvinon OCC(CH₃):C·CO·C:C(CH₃) O (Syst. No. 2765)

(DIETRICH, PAAL, B. 20, 1084). Wird durch Kochen mit konz. Kalilauge nicht zersetzt; beim Schmelzen mit Atzkali entstehen Essigsäure und Bernsteinsäure (HA.). — NaCeH₂O₅ beim Schmeizen mit Atzkai entstehen Ess.gsaure und Bernsteinsaure (HA.). — NaC₈H₂O₅ + 3(?)H₂O. Prismen (aus Wasser) (HA.). — KC₈H₂O₅. Krystalle (aus Wasser). Schwer löslich (Kn., B. 22, 159 Ann.). — Neutrales Kaliumsalz. Nadeln. Unlöslich in Alkohol (Kn., B. 17, 2867). — AgC₈H₂O₅. Nadeln (aus Wasser). Lichtbeständig (HA.; Kn., B. 17, 2868). — Ag₂C₈H₆O₅. Krystalle. Weniger lichtbeständig als das saure Salz (Kn., B. 17, 2868; vgl. HA.). — CaC₈H₆O₅. Schwer löslich in heißem Wasser (FI., Fei.). — BaC₈H₆O₅ + '/₂ H₂O. Nadeln (aus Wasser). Schwer löslich in Wasser (FI., Fei.).

Monomethylester $C_9H_{10}O_5 = OC_4(CH_9)_4(CO_2H) \cdot CO_2 \cdot CH_3$. B. Bei 12-stdg. Stehenlassen des Dimethylesters mit 10 Tln. rauchender Salzsäure (Knorr, Cavallo, 7. 22, 155). — Nadeln (aus Alkohol). Schmilzt gegen 129°. Unzersetzt destillierbar. — AgCoHoOs. Niederschlag. Liefert bei der Destillation Pyrotritarsäure-methylester (S. 298).

Dimethylester $C_{10}H_{12}O_5 = OC_4(CH_3)_2(CO_3 \cdot CH_3)_2$. B. Aus dem neutralen Silbersalz der Carbopyrotritarsäure durch Erhitzen mit überschüssigem Methyljodid im Autoklaven auf 100° (Kn., Ca., B. 22, 155). — Krystallmasse. F: 63—64°. Kp₇₅₆: 266° (korr.). Leicht löslich in Alkohol, Äther, Chloroform und Benzol, sehr wenig in Wasser. Sehr wenig löslich in verd. Alkalien und verd. Säuren. — Alkoholische Kalilauge verseift zu Carbopyrotritarsäure. Bei mehrstündiger Einw. rauchender Salzsäure entsteht der Monomethylester,

Monoäthylester $C_{10}H_{12}O_5=OC_4(CH_3)_2(CO_2H)\cdot CO_2\cdot C_2H_5$. B. Aus Diacetbernsteinsäurediäthylester bei kurzem Kochen mit verd. Schwefelsäure (Harrow, A. 201, 152), durch Erhitzen für sich auf 200° oder durch mehrstündiges Stehenlassen mit konz. Salzsäure (Knorr, B. 17, 2864; Kn., Cavallo, B. 22, 153). Aus dem sauren Silbersalz der Carbopyrotritarsäure durch mehrstündiges Erhitzen mit 1 Mol Äthyljodid im geschlossenen Rohr auf 100° (Ha., A. 201, 157). Aus Carbopyrotritarsaure-diathylester bei mehrstündiger Einw. von rauchender Salzsäure (Kn., Ca., B. 22, 153). — Blättchen (aus Ather). F: 810 (Ha.), 83° (Kn.; Kn., Ca.). Destilliert unzersetzt (Kn., Ca.). Etwas löslich in siedendern Wasser, schwer löslich in kaltem Ligroin, leicht in Alkohol und Äther, sehr leicht in Chloroform und Benzol (FITTIG, FEIST, A. 250, 194; KN.). Löst sich leicht in Soda und in verd. Natronlauge und wird daraus durch Säuren unverändert gefällt (Ha.). — Zerfällt bei längerem Kochen mit verd. Schwefelsäure in Alkohol und Carbopyrotritarsäure (HA.). — AgC₁₀H₁₁O₅. Voluminöser Niederschlag. Gibt bei der trocknen Destillation Pyrotritarsäure-äthylester (S. 298) (Kn., Ca.). — Ca(C₁₀H₁₁O₅)₂+3H₂O. Nadeln (aus Wasser). Ziemlich leicht löslich in heißem, viel weniger in kaltem Wasser (Fi., Fei.). — Ba(C₁₀H₁₁O₅)₂+4H₂O. Nadeln (aus Wasser). Ziemlich leicht löslich in heißem, viel schwerer in kaltem Wasser (Fi., Fei.).

Methyläthylester $C_{11}H_{14}O_5 = OC_4(CH_3)_2(CO_3 \cdot CH_3) \cdot CO_3 \cdot C_2H_5$. B. Aus dem Silbersalz des Monoāthylesters durch Einw. von Methyljodid oder aus dem Silbersalz des Mono methylesters durch Einw. von Athyljodid im Autoklaven bei 100° (Knorr, Cavallo, B. 22, 156). — Erstarrt nicht im Kältegemisch. Kp756: 276,50 (korr.). — Liefert beim Verseifen mit rauchender Salzsäure den Monomethyl- und den Monoäthylester.

Diäthylester $C_{12}H_{16}O_5 = OC_4(CH_2)_2(CO_3 \cdot C_2H_5)_2$. B. Aus Diacetbernsteinsäurediäthylester bei mehrstündigem Stehenlassen mit konz. Schwefelsäure in der Kälte oder beim Erwärmen mit konz. Phosphorsäure (Knorg, B. 17, 2866). Neben Benzoesäureanhydrid bei

gelindem Erwärmen von Bis-[α-benzoyloxy-äthyliden]-bernsteinsäure-diäthylester (Bd. IX, 8. 171) mit überschüssiger konzentrierter Schwefelsäure (Paal, Häefel, B. 30, 1995). — Farh oses Öl. Kp₇₈₅: 284° (korr.) (Kn., Cavallo, B. 22, 153). — Wird durch alkoh. Kali zu Carbopyrotritarsäure verseift (Kn.; Kn., Ca.). Rauchende Salzsäure verwandelt ihn bei Zimmertemperatur glatt in den Monoathylester (KN., Ca.).

4. Dicarbonsauren C₂H₁₀O₅.

1. 4-Athyl-pyran-dicarbonsaure-(2.6) $C_5H_{10}O_5 = HO_5C \cdot CO_5H$ $\mathbf{HC} \cdot \mathbf{CH}(\mathbf{C_2H_3}) \cdot \mathbf{CH}$ B. Durch Auflösen von $\alpha.\alpha'$ -Diketo- γ -āthyl-pimelinsāure in kalter konzentrierter Schwefelsäure (Blaise, Gault, Bl. [4] 1, 143). — Farblose Krystalle (aus wenig Wasser oder Essigester). F: 225° (Zers.). — $\mathrm{CuC_9H_8O_5} + 3\,\mathrm{H_2O}$. Hellgrünes amorphes Pulver.

Dimethylester $C_{11}H_{14}O_5 = OC_5H_3(C_2H_5)(CO_3 \cdot CH_3)_2$. B. Bei 6-stdg. Kochen von 4-Äthyl-pyran-dicarbonsäure-(2.6) mit 2 Mol absol. Methylalkohol und etwas konz. Schwefelsäure (B., G., Bl. [4] 1, 144). — Gelbliche Nadeln (aus verd. Alkohol). F: 646. Leicht löslich in Alkohol und Äther.

2. γ - γ $C_0H_{10}O_5 =$ HU—UH

HC·O·C·CH₂·CH(CO₂H)·CH₂·CO₂H

B. Durch Erhitzen von γ -[α -Furyl]-propan- α . β . β -tricarbonsäure (S. 344) auf 155—160 $^{\circ}$ (Sandelin, B. 33, 491). Durch Reduktion von Furfurylidenbernsteinsäure (S. 340) mit Natriumamalgam (Fichter, Scheuermann, B. 34, 1629).

Blättchen (aus Alkohol-Ligroin). F: 139,5—140 $^{\circ}$ (S.), 141—142 $^{\circ}$ (F., Sch.). Unlöslich in Ligroin, Benzol und Chloroform (S.).

Diäthylester $C_{13}H_{16}O_5 = OC_4H_3 \cdot CH_2 \cdot CH(CO_2 \cdot C_2H_5) \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. Durch Verestern von Furfurylbernsteinsäure mit Alkohol und konz. Schwefelsäure (S., B. 33, 491). — Hellgelb & Ol. Kper: 213,5-215°.

- 3. β -[α -Furyl]-glutarsäure $C_9H_{10}O_5 = \frac{HC CH}{HC \cdot O \cdot C \cdot CH(CH_2 \cdot CO_2H)_2}$ Bei der Spaltung von 1 - Methyl - 3 - \alpha - furyl - cyclohexanol - (1) - on - (5) - dicarbonsaure - (2.4) - diathylester (,,Furfurylidenbisacetessigester") (Syst. No. 2626) durch starke Alkalien (KNOEVENAGEL, FRIES, B. 35, 393). Aus [\alpha - Furyl] - dihydroresorein (Bd. XVII, S. 465) durch Einw. von Alkalish prochlorit oder hand and the starke and the Alkalihypochlorit oder -hypobromit, am besten durch Chlorkalk (Vorlander, Kohlmann, A. 322, 245). — Krystalle (aus Benzol-Essigester). F: 134—135° (Kn., F.), 134° (V., Ko.). Leicht löslich in Alkohol, Aceton und Essigsäure, sehr wenig in Ather, unlöslich in Benzol, Ligroin und Chloroform (Kn., F.).
- 4. 2 Methyl furan carbonsäure (3) [α propionsäure] (5), Methyl-methronsäure $C_9H_{10}O_5 = \frac{HC C \cdot CO_2H}{HO_3C \cdot CH(CH_3) \cdot C \cdot O \cdot C \cdot CH_3}$. B. Der Monoäthylester entsteht aus je 1 Mol Acetessigester, brenzweinsaurem Natrium (bei 180° getrocknet) und Essignation of the state o säureanhydrid oberhalb 100°; man erhitzt nach Beendigung der anfangs stürmischen Reaktion einige Stunden auf 135-140°; der Ester wird durch Barytwasser oder Natronlauge verseift (FITTIG, DIETZEL, A. 250, 195). — Nädelchen oder Prismen (aus Alkohol). F: 198° (F., D.). Fast unlöslich in Ligroin, schwer löslich in kaltem Wasser, kaltem Alkohol, Chloroform, Schwefelkohlenstoff und Benzol, leicht in Äther, heißem Alkohol und Eisessig (F., D.). -Zerfällt bei 240-250° in Kohlendioxyd und 2-Methyl-5-äthyl-furan-carbonsäure-(3) (S. 299) (F., D.). Liefert bei längerer Einw. von Bromdampf Tetrabrom-methylmethronsäure (S. 337) (Treffijew, B. 40, 4389; Ж. 39, 1629). — Salze: F., D., A. 250, 199. — Ag, C, H, O, Warzen (aus Wasser). Sehr wenig löslich in Wasser. Zersetzt sich am Licht. — CaC, H, O, + 3 H, O. Prismen (aus verd. Alkohol). Verliert bei 110° 2 H, O, bei 130—145° noch 1/2 H, O, den Rest erst oberhalb 200°. Sehr leicht löslich in Wasser, unlöslich in Alkohol. — BaC, H, O, +2H₂O. Nadeln (aus verd. Alkohol). Verliert im Vakuum 1 H₂O, das zweite erst bei 110°. Sehr leicht löslich in Wasser, unlöslich in Alkohol.

Monoäthylester $C_{11}H_{14}O_5 = C_8H_9O_3 \cdot CO_2 \cdot C_2H_5$. B. Aus dem Diathylester und 1 Molalkoh. Kali bei -20° (Fittig, Dietzel, A. 250, 202). Eine weitere Bildung s. oben bei Methyl-methronsäure. — Sirup. Schwer löslich in Wasser; in jedem Verhältnis mischbar mit den gebräuchlichen Lösungsmitteln, außer Schwefelkohlenstoff. — $\mathrm{AgC_{11}H_{12}O_{5}}$. Flockiger Niederschlag. Wenig beständig. Leicht löslich in Alkohol und Ather, schwer löslich in Wasser.

— $\text{Ca}(\text{C}_{11}\text{H}_{13}\text{O}_5)_2 + 2\text{H}_2\text{O}$. Nädelchen (aus Alkohol). Verliert das Krystallwasser bei 100° bis 105°. F: 130°. Ziemlich leicht löslich in Wasser, leicht in heißem, wenig in kaltem Alkohol. — $\text{Ba}(\text{C}_{11}\text{H}_{13}\text{O}_5)_2 + \text{H}_2\text{O}$. Gummiartig. Verliert das Krystallwasser bei 100—105°. Äußerst löslich in Wasser und absol. Alkohol.

Diäthylester $C_{13}H_{18}O_5=OC_4H(CH_3)(CO_2\cdot C_2H_5)\cdot CH(CH_3)\cdot CO_2\cdot C_2H_5$. B. Man sättigt eine Lösung von Methylmethronsäure in Alkohol mit Chlorwasserstoff erst bei 50°, dann bei 0° (FITTIG, DIETZEL, A. 250, 201). — Öl. Siedet unter geringer Zersetzung bei 279—280°; Kp₂₀: 175—176°. Mit allen üblichen Lösungsmitteln außer Wasser mischbar.

x.x.x.x-Tetrabrom - {2 - methyl-furan - carbonsäure -(3) - [α - propionsäure] -(5)}, Tetrabrom-methylmethronsäure $C_9H_6O_5Br_4$. B. Durch längere Einw. von Bromdampf auf Methylmethronsäure (Trefiljew, B. 40, 4389; \Re 39, 1629). — Krystalle (aus Essigsäure). Zersetzt sich bei etwa 180°, ohne zu schmelzen. Sehr wenig löslich in Chloroform.

5. 4-n-Hexyl-pyran-dicarbonsäure-(2.6) $C_{13}H_{18}O_5 =$

HC·CH($[CH_3]_5$ ·CH₃)·CH

HO₂C· $[C-Q_2]$ B. Durch Auflösen von $\alpha.\alpha'$ -Diketo- γ -n-hexyl-pimelin-säure in konz. Schwefelsäure (Blaise, Gault, Bl. [4] 1, 145). — Nadeln mit 1 H₂O (aus verd. Alkohol). F: 220° (Zers.). Sehr leicht löslich in Alkohol, Äther und Essigester, löslich in heißem Eisessig, unlöslich in Wasser. — $CuC_{13}H_{16}O_5 + 1^1/_2H_2O$. Grün, amorph.

Dimethylester $C_{15}H_{22}O_5 = OC_5H_3([CH_3]_5 \cdot CH_3)(CO_2 \cdot CH_3)_2$. B. Bei 6-stdg. Kochen von 1 Mol 4-n-Hexyl-pyran-dicarbonsäure-(2.6) mit 2 Mol absol. Methylalkohol und etwas konz. Schwefelsäure (B., G., Bl. [4] 1, 146). — Nadeln (aus verd. Alkohol). F: 72°.

6. 5-n-0 ctyl-furan-dicarbonsäure-(2.3 oder 2.4) $C_{14}H_{20}O_5 = OC_4H([CH_2]_7 \cdot CH_3)(CO_2H)_2$ (systematische Stammverbindung der Octylthiophendicarbonsäure).

5 - n - Octyl - thiophen - dicarbonsäure - (2.3 oder 2.4) $C_{14}H_{20}O_4S = HC - C \cdot CO_2H$ $HO_2C \cdot C - CH$

CH₃·[CH₂]₇·Č·S·Č·CO₂H oder CH₃·[CH₂]₇·Č·S·Č·CO₂H.

B. Bei 12-stdg. Aufbewahren von 15 g 5-n-Octyl-2.3- oder 2.4-diacetyl-thiophen (Bd. XVII, S. 464) mit 40 g Kaliumpermansanat (in 2%) iger Lösung) und 40 g KOH; man erwärmt kurze Zeit gelinde, filtriert und schüttelt das Filtrat nach dem Ansäuern mit Äther aus (Schweinitz, B. 19, 646). — Nadeln. Schmilzt bei 185° unter teilweiser Schwärzung. Beinahe unlöslich in kaltem Wasser, löslich in heißem. — CuC₁₄H₁₈O₄S+2½-H₂O. Gelbgrün, krystallinisch. Leicht löslich in heißem, schwer in kaltem Wasser. — Ag₂O₁₄H₁₈O₄S+3H₂O. Gelb, krystallinisch. Schwer löslich in heißem Wasser. Wird am Licht rotbraun. — BaC₁₄H₁₈O₄S+1½-H₂O. Nadeln. Leicht löslich in heißem Wasser.

4. Dicarbonsäuren C_nH_{2n-10}O₅.

1. β -[α -Furýl]-äthylen- α . α -dicarbonsäure, Furfurylidenmalonsäure

C₈H₆O₅ = HC·O·C·CH:C(CO₂H)₂
. B. Der Diäthylester entsteht bei mehrstündigem Kochen von 1 Mol Furfurol und 1 Mol Malonsäurediäthylester mit überschüssigem Essigsäureanhydrid (MARCKWALD, B. 21, 1081) oder mit Piperidin (KNOEVENAGEL, B. 31, 2595); man verseift ihn durch Kochen mit alkoh. Kali (M.). Man erwärmt ein Gemisch aus gleichen Teilen Furfurol, Malonsäure und Eisessig 9—10 Stdn. lang auf dem schwach siedenden Wasserbad (Liebermann, B. 27, 285). Aus je 1 Mol Furfurol und Malonsäure durch mehrstündiges Erhitzen mit etwa ¹/₂₀ Mol Amylamin (Kn., D. R. P. 164296; C. 1905 II, 1702) oder mit 2 Mol alkoh. Ammoniak (Kn., B. 31, 2614). — Prismen (aus Alkohol oder Eisessig). Schmilzt unter Zersetzung gegen 205° (L.), bei 204—206° (Boehm, Ar. 1929, 137). Leicht löslich in der Hitze in Alkohol, Eisessig, Schwefelkohlenstoff und Benzol, ziemlich leicht löslich in Äther und Wasser, unlöslich in Chloroform und Ligroin (M.; L.). — Zerfällt beim Erhitzen über den Schmelzpunkt in Kohlendioxyd und stabile β-[α-Furyl]-acrylsäure (S. 300) (M.). Liefert bei der Reduktion in wäßr. Lösung mit Natriumamalgam Furfurylmalonsäure (S. 332) (M.). Bei kurzem Kochen mit Essigsäureanhydrid erhält man stabile und labile β-[α-Furyl]-acrylsäure (L.). — Ag₂C₈H₄O₅. Niederschlag (M.; L.).

Monoäthylester $C_{10}H_{10}O_5 = OC_4H_5 \cdot CH : C(CO_2H) \cdot GO_2 \cdot C_2H_5$. B. Bei schwachem Erwärmen des Diäthylesters mit alkoh. Kali (MARCKWALD, B. 21, 1082). — Säulen (aus

Benzol). F: 102,5°. Ziemlich löslich in Chloroform und Benzol, unlöslich in Ligroin, sehr wenig löslich in kaltem, leichter in heißem Wasser. — Zerfällt bei der Destillation glatt in Kohlendioxyd und β -[α -Furyl]-acrylsäure-äthylester (S. 300). — AgC₁₀H₂O₅. Farblose Nädelchen (aus Alkohol). Etwas löslich in heißem Alkohol.

Diäthylester $C_{12}H_{14}O_5 = OC_4H_3 \cdot CH : C(CO_2 \cdot C_2H_5)_2$. B. s. bei Furfurylidenmalonsäure. — Blaßgelbe Prismen. F: 41° (Liebermann, B. 27, 28° Anm.), 42° (Sandelin, B. 31, 1119). Siedet unter geringer Zersetzung bei 293° (Marckwald, B. 21, 1081); Kp₂₀: 196—197° (S., B. 31, 1119). Sehr leicht löslich in Alkohol und allen mit Alkohol mischbaren organischen Lösungsmitteln; unlöslich in Wasser (M.). — Gibt beim Eintragen in Salpetersäure (D: 1,48) unter Kühlung [5-Nitro-furfuryliden]-malonsäure-diäthylester (S. 339) (Heuck, B. 28, 2257; vgl. Gilman, Young, R. 51 [1932], 761, 766). Wird beim Behandeln mit alkoh. Kali in gelinder Wärme zum Monoäthylester, in der Siedehitze zur freien Säure verseift (M.). Mit 1 Mol nicht zu verdünnter Natriumäthylatlösung entsteht das Natriumsalz des β-Äthoxy-β-[α-furyl]-isobernsteinsäure-diäthylesters (S. 360) (L., B. 26, 1878). 1 Mol Diäthylester liefert bei 7-stdg. Erwärmen mit 1 Mol Kaliumcyanid in alkoholisch-wäßriger Lösung auf 60° β-Cyan-β-(α-furyl]-propionsäure-sthylester (S. 332); bei Anwendung von 2 Mol Kaliumcyanid erhält man nach 24-stdg. Einw. β-Cyan-β-(α-furyl]-propionsäure und andere Produkte (S., B. 33, 487). Gibt bei mehrtägigem Aufbewahren mit 1 Mol Anilin in absol. Äther β-Anilino-β-[α-furyl]-isobernsteinsäure-diäthylester (Syst. No. 2645) (Goldstein, B. 28, 1455).

Diamid $C_8H_8O_3N_2=OC_4H_3\cdot CH:C(CO\cdot NH_2)_2$. B. Beim Eintragen einer Lösung von 0,01 g Natrium in 2 cm³ Alkohol in ein auf 50° erwärmtes Gemenge aus 3 g Furfurol und 3 g Malonamid (Heuck, B. 28, 2255). — Krystalle (aus 50°/ $_{o}$ igem Alkohol). F: 200°. Leicht löslich in Eisessig, ziemlich schwer in Wasser und Alkohol, unlöslich in Benzol, Chloroform und Ligroin. — Zerfällt bei Einw. von Säuren und Alkalien in Furfurol und Malonsäure. Liefert bei vorsichtigem Erhitzen mit 2 Mol Phosphorpentachlorid Furfurylidenmalonitril.

Furfurylidenmalonsäure-mononitril, α-Cyan-β-[α-furyl]-acrylsäure, Furfurylidencyanessigsäure C₈H₅O₃N = OC₄H₃·CH:C(CN)·CO₃H. B. Aus Furfurol und Cyanessigsäure bei ½-stdg. Erhitzen auf 160° (Heuck, B. 27, 2626) oder auf 125° in Gegenwart geringer Mengen Piperidin (Knoevenagel, D. R. P. 164296; C. 1905 II, 1701; Frdl. 8, 1267). Aus Furfurylidencyanessigsäure-āthylester durch Auflösen in möglichst wenig heißem Alkohol, Versetzen der Lösung mit viel Wasser und Erwärmen des entstandenen Breis mit 2 Mol Kaliumhydroxyd bis zur Lösung (H., B. 27, 2625). Beim Kochen von 1 Tl. Furfurylidencyanacetamid mit 8 Tln. 25°/oiger Schwefelsäure (H., B. 28, 2254). — Goldgelbe Nadeln (aus 40°/oigem Alkohol). F: 218° (Bechert, J. pr. [2] 50, 17; H., B. 27, 2626), 219—220° (Kn.). Leicht löslich in Alkohol und heißem Wasser (Br.). — Spaltet beim Erhitzen auf 220° Kohlensäure ab (H., B. 27, 2626). Beim Eintragen von Furfurylidencyanessigsäure in (S. 339) (H., B. 28, 2257; vgl. Gliman, Young, R. 51 [1932], 761). Gibt beim Erwärmen mit 1 Mol Phosphorpentachlorid in Benzol bis zur Auflösung Furfurylidencyanacetylchlorid (S. 339) (H., B. 28, 2254). Liefert bei 20 Minuten langem Kochen mit Essigsäureanhydrid Essigsäure-furfurylidencyanessigsäure-anhydrid (s. u.) (H., B. 27, 2626; 28, 2254 Anm.).

Furfurylidenmalonsäure-äthylester-nitril, $\alpha \cdot \text{Cyan} - \beta - [\alpha \cdot \text{furyl}] - \text{acrylsäure-}$ äthylester, Furfurylidencyanessigsäure-äthylester $C_{10}H_9O_2N = OC_4H_3 \cdot \text{CH} \cdot \text{C(CN)} \cdot \text{CO}_3 \cdot \text{C}_2H_5$. Das Molekulargewicht ist ebullioskopisch in Benzol bestimmt (Bertini, G. 31 I, 278). — B. Bei 7-stdg. Erhitzen von Furfurol, Cyanessigester und Essigsäureanhydrid auf 180° (Heuck, B. 27, 2625). Aus äquimolekularen Mengen Furfurol und Cyanessigester in absol. Alkohol in Gegenwart von etwas Natriumäthylat (Bechert, J. pr. [2] 50, 16; H.), Acetanhydrid oder Piperidin (Ber.). Entsteht auch durch Einw. von $1-2^0/_{0i}$ ger Methylaminlösung auf ein äquimolekulares Gemisch von Furfurol und Cyanessigester (Guareschi, C. 1809 II, 118). Aus dem Hydramid des Furfurols (Bd. XVII, S. 281) und Cyanessigester in alkoh. Lösung bei gewöhnlicher Temperatur (Beccari, C. 1802 II, 740). — Farblose Nadeln (aus Alkohol). F: 94° (H., B. 27, 2625; Bech.), 93—94° (Gu.). Siedet bei 295—300° unter teilweiser Zersetzung (H., B. 27, 2625). Löslich in Chloroform und Alkohol (Bech.). — Liefert mit 2 Mol Brom in Eisessig [5-Brom-furfuryliden]-malonsäure-äthylester-nitril (Bech.; vgl. Gilman, Young, R. 51 [1932], 761, 767). Gibt bei allmählichem Eintragen in Salpetersäure (D: 1,48) unter Kühlung [5-Nitro-furfuryliden]-malonsäure-äthylester-nitril (H., B. 28, 2256; vgl. G., Y.). Mit wenig alkoh. Kali entsteht eine intensive Blaufärbung, die bald in Braun übergeht (H., B. 27, 2625).

Essigsäure - [α -oyan- β -(α -furyl)-acrylsäure]-anhydrid, Essigsäure-furfurylidencyanessigsäure-anhydrid $C_{10}H_{1}O_{4}N=OC_{4}H_{2}\cdot CH:C(CN)\cdot CO\cdot CO\cdot CO\cdot CH_{2}$. B. Bei 20 Minuten langem Kochen von Furfurylidencyanessigsäure mit 5 Tln. Essigsäureanhydrid (Hevok, B. 27, 2626; 28, 2254 Anm.). — Farblose Nadeln (aus Chloroform-Ligroin). Schmilzt bei 87°, wird bei 90—95° feet und sohmilzt erneut bei 160°. Leicht löslich in Benzol und Chloroform. — Zersetzt sich schon an feuchter Luft in Essigsäure und Furfurylidencyanessigsäure.

Furfurylidenmalonsäure-chlorid-nitril, α -Cyan- β -[α -furyl]-acrylsäure-chlorid, Furfurylidencyanacetylchlorid $C_8H_4O_2NCl = OC_4H_2\cdot CH: C(CN)\cdot COCl$. B. Beim Erwärmen von 5 g Furfurylidencyanessigsäure und 6,5 g Phosphorpentachlorid in 30 g Benzol bis zur Auflösung (Heuor, B. 28, 2254). — Gelbe Nadeln (aus Ligroin). F: 79°. Leicht löslich in Äther, Chloroform, Benzol und heißem Ligroin. — Liefert mit Wasser Furfurylidencyanessigsäure, mit Alkohol deren Äthylester. Beim Einleiten von trocknem Ammoniak in die äther. Lösung entsteht Furfurylidencyanacetamid.

Furfurylidenmalonsäure - amid - nitril, α - Cyan - β - [α - furyl] - acrylsäure - amid, Furfurylidencyanacetamid $C_8H_6O_4N_5 = OC_4H_3 \cdot CH \cdot C(CN) \cdot CO \cdot NH_2$. B. Man kocht 5 g Furfurol mit 4,5 g Cyanacetamid auf und versetzt nach dem Abkühlen mit einer Lösung von 0,01 g Natrium in 1 bis 2 cm³ absol. Alkohol (Heuck, B. 28, 2252). Beim Einleiten von trocknem Ammoniak in die äther. Lösung von Furfurylidencyanacetylchlorid (H., B. 28, 2254). — Blaßgelbe Nadeln (aus Wasser). F: 156°. Unlöslich in Äther und Ligroin, sehr wenig löslich in kaltem Wasser, Benzol und Chloroform, leichter in Alkohol. — Wird durch Kochen mit Schwefelsäure zu Furfurylidencyanessigsäure verseift. Geht bei kurzem Erwärmen mit 1 Mol Kalilauge auf 50—60° in eine isomere Verbindung $C_3H_6O_2N_3$ (s. u.) über. Gibt beim Erhitzen mit 1 Mol Phosphorpentachlorid Furfurylidenmalonitril.

Verbindung C₈H₄O₂N₃. B. Bei kurzem Erwärmen von 1 Mol Furfurylidencyanacetamid mit 1 Mol Kalilauge auf 50—60°; man fällt durch Schwefelsäure (Heuck, B. 28, 2255). — Farblose Nadeln (aus Wasser). Schmilzt unscharf bei 150°. Leicht löslich in verd. Alkalien; fällt aus der alkal. Lösung auf Zusatz von Säuren unverändert wieder aus. — Liefert beim Kochen mit 35% jeger Schwefelsäure Furfurol. Wandelt sich beim Erhitzen auf 160° in Furfurylidencyanacetamid um.

Furfurylidenmalonsäure-dinitril, Furfurylidenmalonitril C₈H₄ON₂ = OC₄H₃·CH:C(CN)₃. B. Aus je 1 Mol Furfurol und Malonitril in Gegenwart von Natriumathylat-Lösung (Hevok, B. 28, 2253). Beim Erhitzen von 4 g Furfurylidencyanacetamid mit 5 g Phosphorpentachlorid (H.). Bei vorsichtigem Erhitzen von 1 Mol Furfurylidenmalonsäure-diamid mit 2 Mol Phosphorpentachlorid (H.). — Gelbe Blättchen oder Nadeln (aus heißem Ligroin). F: 76°; unlöslich in Wasser, leicht löslich in Alkohol, Benzol und Chloroform (H., B. 28, 2252). — Liefert bei vorsichtigem Eintragen in Salpetersäure (D: 1,52) unter Kühlung [5-Nitro-furfuryliden]-malonitril (H., B. 28, 2257; vgl. GILMAN, YOUNG, R., 51 [1932], 761). Gibt mit alkoh. Kalilauge eine intensiv blaue, bald in Braun übergehende, mit alkoh. Ammoniak eine unbeständige kirschrote Farbreaktion (H., B. 28, 2253).

[5 - Brom - furfuryliden] - malonsäure - äthylester - nitril, α - Cyan - β - [5 - brom-HC—CH

furyl-(2)]-acrylsäure-äthylester $C_{10}H_8O_3NBr = \frac{1}{BrC\cdot O\cdot C\cdot CH:C(CN)\cdot CO_3\cdot C_2H_5}$ 1). B. Aus 1 Mol Furfurylidencyanessigsäure-äthylester und 2 Mol Brom in Eisessig (Bechert, J. pr. [2] 50, 18). — Goldgelbe Nadeln (aus Alkohol). F: 111°.

[5 - Nitro - furfuryliden] - malonsäure - diäthylester $C_{19}H_{18}O_7N =$

HC—CH $O_2N \cdot \overset{\square}{C} \cdot O \cdot \overset{\square}{C} \cdot CH : C(CO_2 \cdot C_2H_5)_2$ 1). B. Beim Eintragen von Furfurylidenmalonsäure-diäthylester in Salpetersäure (D: 1,48) unter Kühlung (Heuck, B. 28, 2257). — Krystalle (aus Alkohol). F: 108°.

[5-Nitro-furfuryliden]-malonsäure-mononitril, α -Cyan- β -[5-nitro-furyl-(2)]-acrylsäure $C_2H_4(D_5N_2=OC_4H_2(NO_2)\cdot CH:C(CN)\cdot CO_2H^1)$. B. Bei vorsichtigem Eintragen von Furfurylidencyanessigsätre in Salpetersäure (D: 1,52) unter Kühlung (Heuce, B. 28, 2257). — Blaßgelbe Krystalle. Schmilzt bei 250° unter Zersetzung. Schwer löslich in kaltem Alkohol und Eisessig. — $AgC_2H_2O_5N_2$. Gelber Niederschlag.

[5 - Nitro - furfuryliden] - malonsäure - äthylester - nitril, α - Cyan - β - [5 - nitrofuryl-(2)]-acrylsäure-äthylester $C_{10}H_2O_5N_5=OC_4H_2(NO_2)\cdot CH:C(CN)\cdot CO_3\cdot C_2H_5^{-1})$. B. Bei allmählichem Eintragen von 4 g Furfurylidencyanessigsäure-äthylester unter Kühlung in 15 g Salpetersäure (D: 1,48) (Heuck, B. 28, 2256). Aus dem Silbersalz des [5-Nitro-furfuryliden]-malonsäure-mononitrils und Äthyljodid (H.). — Gelbe Blättchen (aus verd. Essigsäure). Schmilzt bei 153° unter Zersetzung. Leicht löslich in Alkohol, Benzol, Chloroform und Eisessig.

[5-Nitro-furfuryliden]-malonsäure-dinitril, [5-Nitro-furfuryliden]-malonitril $C_8H_8O_8N_8=OC_4H_8(NO_9)\cdot CH:C(CN)_8^{-1}$. B. Bei vorsichtigem Eintragen von Furfuryliden-malonitril unter Kühlung in Salpetersäure (D: 1,52) (H., B. 28, 2257). — Gelbe Blättehen (aus Alkohol). Schmilzt bei 179° unter Zersetzung.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von GILMAN, YOUNG, R. 51, 761.

2. γ -[α -Furyl]- β -propylen- α - β -dicarbonsäure, Furfurylidenbernstein-HC—CH

5. Dicarbonsäuren $C_n H_{2n-12} O_5$.

1. δ -[α -Furyl]- α . γ -butadien- α . α -dicarbonsaure $C_{10}H_{a}O_{\delta}=HC$ —CH

HC.O.C.CH:CH.CH:C(CO.H)

Diäthylester $C_{14}H_{16}O_5 = OC_4H_3 \cdot CH \cdot CH \cdot CH \cdot CH \cdot C(CO_4 \cdot C_2H_5)_2$. B. Durch 8-stündiges Kochen eines Gemisches von je 1 Tl. β -[α -Furyl]-acrolein (Bd. XVII, S. 305) und Malonsäurediäthylester mit 3 Tln. Essigsäureanhydrid (Röhmer, B. 31, 284). — Hellgelbes Öl. Kp₂₃: 210—211°. Nicht mischbar mit Wasser. Mit Alkohol, Ather und Aceton mischbar.

2. δ -Methyl- α -[α -furyl]- α - γ -pentadien- β - γ -dicarbonsäure, Isopropyliden-furfuryliden-bernsteinsäure, α - α -Dimethyl- δ -[α -furyl]-fulgensäure $C_{12}H_{12}O_{\delta} = \frac{HC}{HC}\cdot O\cdot C\cdot CH: C(CO_{2}H)\cdot C(CO_{2}H): C(CH_{2})_{2}$.

B. Aus Furfurol und γ - γ -Dimethyl-itaconsäure-diäthylester bei Gegenwart von Natriumāthylat-Lösung (Stobbe, Ecker, B. 38, 4077). — Blaßgelbe Rhomben (aus 20% jeger Essigsäure). Erweicht bei 204° und schmilzt bei 218° unter Zersetzung. — Natriumsalz. Farblose Blättchen (aus 70% jegem Alkohol).

6. Dicarbonsăuren $C_nH_{2n-14}O_5$.

Dicarbonsauren C10H6O5.

1. Cumaron-dicarbonsaure-(2.3) $C_{16}H_{6}O_{5} = C_{6}H_{4} C_{0}CO_{2}H$ [systematische Stammverbindung der Thionaphthen-dicarbonsaure-(2.3)].

Thionaphthen-dicarbonsäure-(2.3) $C_{10}H_{\bullet}O_{4}S = C_{0}H_{\bullet} C(CO_{2}H) C \cdot CO_{2}H$. B. Durch kurzes Kochen von 2-[Carboxymethyl-mercapto]-phenylglyoxylsäure (Bd. X, S. 950) mit starker Natronlauge und nachfolgendes Ansäuern (Bezdzik, Friedländer, Korniger, B. 41, 238). — Farblose Nadeln (aus Wasser). F: 249—251°. Leicht löslich in Alkohol, schwer in Äther, Chloroform und heißem Wasser, sehr schwer in Benzol und Ligroin. — Beim Erhitzen mit Natronkalk tritt Thionaphthengeruch auf.

2. Cumaron - dicarbonsäure - (2.5) C₁₀H₂O₅, s. nebenstehende Formel. B. Durch kurzes Kochen von 5-Oxymethylcumarilsäure (S. 349) mit Chromsäure in Eisessig (STORRMER, OETKER, B. 37, 200). — Krystallpulver (aus verd. Alkohol). Schmilzt nicht bis 310°.

7. Dicarbonsăuren $C_nH_{2n-16}O_5$.

1. $5-\alpha$ -Furyi-benzoi-dicarbonsäure-(1.3), $5-\alpha$ -Furyi-isophthalsäure $\frac{HC-CH}{HC\cdot O\cdot C\cdot C_0H_0(OO_0H)_0}$. B. Entsteht in geringer Menge beim Kochen von 50 g Brenztraubensäure mit 28 g Furfurol und 120 g krystallisiertem Bariumhydroxyd, gelöst in 1 l Wasser (Doebner, B. 24, 1752). — Nadeln (sus verd. Aceton). Schmikt gegen 290° unter Zersetzung. Leicht löslich in Alkohol, Äther, Aceton und Benzol.

- 2. Dicarbonsauren $C_{13}H_{10}O_{5}$.
- 1. 5-Phonyl-furan-carbonsäure-(4)-essigsäure-(2), Phonythronsäure $HO_3C \cdot C$ —CH $C_{13}H_{10}O_5 = C_6H_5 \cdot C \cdot O \cdot C \cdot CH_2 \cdot CO_2H$. B. Der Monoäthylester entsteht bei 12—15-stündigem Erhitzen von 1 Mol Benzoylessigester mit 1 Mol entwässertem bernsteinsaurem Natrium und 2 Mol Essigsäureanhydrid auf dem Wasserbad; man verseift ihn durch Kochen mit Barytwasser (Fittig, Schloesser, A. 250, 213). Nadeln (aus heißem Wasser). F: 192° bis 193°. Leicht löslich in Alkohol, schwer in kaltem Wasser, unlöslich in Chloroform, Schwefelkohlenstoff und Benzol. Zerfällt bei der trocknen Destillation in Kohlendioxyd, 2-Methyl-5-phenyl-furan-carbonsäure-(4) und 2-Methyl-5-phenyl-furan (Bd. XVII, S. 67). Ag₂C₁₃H₂O₅. Krystallinisch, lichtempfindlich. Unlöslich in Wasser. CaC₁₃H₂O₅ + 3H₂O. Krystallinisch. Löslich in 20 Tln. Wasser. BaC₁₂H₃O₅ + H₁O. Amorphes Pulver (aus verd. Alkohol). Sehr leicht Kelich in Wasser, unlöslich in Alkohol.
- 5-Phenyl-furan-[carbonsäure-(4)-äthylester]-essigsäure-(2), Phenythronsäure- $C_2H_5\cdot O_2C\cdot C$ —CH monoäthylester $C_{15}H_{14}O_5=\frac{C_2H_5\cdot O_2C\cdot C}{C_1H_2\cdot C\cdot O\cdot C\cdot CH_2\cdot CO_2H}$. B. Siehe bei Phenythronsäure. Farblose Nadeln (aus verd. Alkohol). F: 112,5° (F., Sch., A. 250, 214). Fast unlöslich in Wasser und Schwefelkohlenstoff, sehr leicht löslich in Alkohol, Äther, Chloroform und Benzol. AgC_{15}H_{12}O_5. Amorpher Niederschlag (aus Wasser). Etwas löslich in siedendem Wasser. Am Licht und beim Kochen mit Wasser sehr beständig. Ca(C_{15}H_{12}O_5)_2 + 3H_2O. Nadeln (aus verd. Alkohol). Schwer löslich in Wasser. Ba(C_{15}H_{12}O_5)_2 + H_2O. Farblose Tafeln (aus Wasser). In Wasser viel leichter löslich als das Calciumsalz.
- 5-Phenyl-furan-[carbonsäure-(4)-äthylester]-[essigsäure-(2)-äthylester], Phenythronsäure-diäthylester $C_{17}H_{18}O_5=\frac{C_2H_5\cdot O_2C\cdot C-CH}{C_8H_5\cdot C\cdot O\cdot C\cdot CH_2\cdot CO_2\cdot C_2H_5}$. B. Aus Phenythronsäure oder ihrem Monoäthylester durch Sättigen der absolut-alkoh. Lösung mit trocknem Chlorwasserstoff bei 0° (F., Sch., A. 250, 218). Blaßgelbe Rhomben (aus Alkohol). F: 44,5°.
- x.x-Dibrom-{5-phenyl-furan-[carbonsäure-(4)-äthylester]-essigsäure-(2)}, x.x-Dibrom-phenythronsäure-monoäthylester $C_{15}H_{12}O_5Br_2$. B. Durch längere Einw. von Bromdampf auf Phenythronsäure-monoäthylester (Trefiljew, B. 41, 2544; \mathcal{K} . 40, 1346). Farblose Krystalle (aus Essigsäure). Zersetzt sich beim Erhitzen, ohne zu schmelzen.
- 2. 2 Methyl 4 phenyl furan dicarbonsäure (3.5) $C_{13}H_{10}O_5 = C_0H_5 \cdot C C \cdot CO_2H$.

 B. Man übergießt 1 g 3-Brom-6-methyl-4-phenyl-cumalin-carbon-baure-(5)-āthylester (8. 436) mit 30% iger Kalilauge, erwärmt, bis die Rosafarbe der Lösung in Hellbraun übergegangen ist, und säuert nach dem Erkalten mit Schwefelsäure an (Buchner, Schröder, B. 85, 788). Farblose Nadeln (aus Äther). Zersetzt sich bei 224°. Entfärbt sodaalkalische Permanganat-Lösung sofort.

8. Dicarbonsäuren $C_nH_{2n-20}O_5$.

1. Xanthylmalonsäure $C_{16}H_{19}O_5 = C_6H_4$ $CH[CH_1CO_9H)_8$ C_6H_4 . Zur Konstitution vgl. Fosse, Bl. [4] 3, 1076. — B. Aus Xanthydrol und Malonsäure in essignaurer Lösung auf dem Wasserbed (Fosse, Bl. [3] 35, 1006). — Silberweiß Blättchen (aus Chloroform). Zersetzt sich von 140° ab unter Gasentwicklung und Bildung einer grünen Flüssigkeit (F.). — Liefert beim Erwärmen mit bromwasserstoffhaltiger Essignäure auf dem Wasserbad Xanthyliumbromid und Malonsäure, bei der Einw. von heißer alkoholischer Salzsäure Xanthen, Malonsäure und Acetaldehyd, beim Erhitzen in Gegenwart von Pyridin Xanthylessignäure (S. 315) und Kohlendioxyd (F.). — Salze: Fosse, Robyn, Bl. [3] 35, 1008. — Na₂C₁₆H₁₆O₅. Nadeln (aus Alkohol). — K_2 C₁₆H₁₆O₅. Krystallalkohol enthaltende Krystalle (aus Alkohol), die bei 100° den Alkohol verlieren. — Ag_3 C₁₆H₁₀O₅. Niederschlag. — $CaC_{16}H_{16}O_5$. — $BaC_{16}H_{16}O_5$. Niederschlag. — $CaC_{16}H_{16}O_5$. — $BaC_{16}H_{16}O_5$. Niederschlag.

Xanthylmalonsäure - mononitril, Xanthylcyanessigsäure $C_{10}H_{11}O_{2}N = C_{0}H_{4}$. CH[CH(CN) · CO₂H] $C_{0}H_{4}$. Zur Konstitution vgl. Fosse, Bl. [4] 3, 1077. — B. Aus Xanthydrol und Cyanessigsäure in essigsaurer Lösung auf dem Wasserbed (Fosse, Bl. [3] 35, 1008). — F: 164—166 (Zers.) (F.). — Wird durch bromwasserstoffhaltige Essigsäure in

Xanthyliumbromid und Cyanessigsäure zerlegt (F.). Liefert beim Erhitzen mit Pyridin Xanthylacetonitril und Kohlendioxyd (F.). — Salze: Fosse, Robyn, Bl. [3] 35, 1009. — NaC₁₆H₁₀O₂N. Nadeln. — AgC₁₆H₁₀O₂N. Pulver. — Ca(C₁₆H₁₀O₂N)₂. Blättohen. — Ba(C₁₆H₁₀O₂N)₃. Nadeln. — Pb(C₁₆H₁₀O₂N)₃. Krystalle.

Xanthylmalonsäure - äthylester - nitril, Xanthylcyanessigsäure - äthylester $C_{18}H_{18}O_2N = C_6H_4$ $CH[CH(CN)\cdot CO_2\cdot C_2H_5]$ C_6H_4 . B. Durch Erhitzen eines Gemisches äquimolekularer Mengen von Xanthydrol und Cyanessigester (Fosse, Robyn, C. r. 143, 240, 242; Bl. [3] 35, 1012). — Farblose, sich schwach grün färbende Krystalle. F: 125—127°.

- 2. 2.5-Bis-[2-carboxy-phenyl]-furantetrahydrid, 2.2'-[Tetrahydro-furylen-(2.5)]-di-benzoesäure $C_{18}H_{16}O_5 = H_2C CH_2$ furylen-(2.5)]-di-benzoesäure $C_{18}H_{16}O_5 = HO_2C \cdot C_6H_4 \cdot HC \cdot O \cdot CH \cdot C_6H_4 \cdot CO_2H \cdot B$. Man löst α . β -Di-[phthalidyl-(3)]-äthan (Syst. No. 2768) in heißer alkoholischer Natronlauge.
- B. Man löst α.β-Di-[phthalidyl-(3)]-āthan (Syst. No. 2768) in heißer alkoholischer Natronlauge, verdampft zur Trockne und erhitzt das hinterbleibende, nicht näher beschriebene Natriumsalz des α.δ-Dioxy-α.δ-bis-[2-carboxy-phenyl]-butans auf 310° (Gabriel, Eschenbach, B. 31, 1579). Nädelchen oder zu Ballen vereinigte Spieße (aus Alkohol, Nitrobenzol oder Eisessig). F: 208—210°. Ag₂C₁₈H₁₄O₅. Niederschlag. BaC₁₈H₁₄O₅ + 3H₂O. Prismen, die bei 130° wasserfrei werden.
- 3. $\beta.\alpha'$ 0 x i do $\alpha.\alpha$ d i methyl $\beta.\alpha'$ d i phenyl glutars äure $C_{19}H_{18}O_5 = C_{18}H_{18}O_5$ C $C_{19}C_{19}O_{19$

Schwefelsäure in das Anhydrid $O(C_0H_5) \cdot C(CH_2)_3 \cdot CO(CH_2)_3 \cdot C$

Lacton der 4-Oxy-1.4.5-triphenyl-pyrazolidon-(3)-[α -isobuttersäure]-(5) HN CO — C(C₆H₅)· O· CO (Syst. No. 4569). — Das Natrium- und das Kaliumsalz sind sohwer löslich in Wasser. — Ag₅C₁₅H₁₆O₅. Niederschlag.

9. Dicarbonsäuren C_nH_{2n-24}O₅.

2.5-Diphenyl-furan-dicarbonsäure-(3.4) $C_{18}H_{13}O_5 = \frac{HO_8C\cdot C - C\cdot CO_8H}{C_8H_8\cdot C\cdot O\cdot C\cdot C_8H_8}$. Bei 24-stündigem Kochen von $\alpha.\alpha'$ -Dibenzoyl-bernsteinsäure-diäthylester (Bd. X. S. 913) mit 30°/oiger Schwefelsäure; der erhaltene Niederschlag wird mit Soda behandelt, die soda-alkalische Lösung mit verd. Schwefelsäure gefällt und der Niederschlag aus verd. Essigsäure umkrystallisiert (BABYER, PERKIN, B. 17, 61; P., Soc. 47, 266; P., Calman, Soc. 49, 168). Aus dem Diäthylester (S. 343) durch Digerieren mit alkoh. Kalilauge (P., C.; P., Schwer Balich in Wasser, leicht in Alkohol, Äther, Benzol, Ligroin und Eisessig (B., P.; P.). — Liefert beim Erhitzen für sich über den Schmelzpunkt 2.5-Diphenyl-furan-carbonsäure-(3) (S. 316) und 2.5-Diphenyl-furan (Bd. XVII, S. 81) (P., Sch.), beim Kochen mit Essigsäureanhydrid das Anhydrid $O(C(C_8H_8):C\cdot CO)$ (Syst. No. 2770) (B., P.; P., C.). Liefert beim Glühen mit Natronkalk Acetophenon (P.). Die farblose Lösung in konz. Schwefelsäure wird beim Erwärmen violett (P.). Gibt in alkoh. Lösung mit Eisenchlorid eine orangerote Färbung (P.). — Ags $C_{18}H_{18}O_8$. Niederschlag (P., C.).

bei 100°.

Diäthylester $C_{22}H_{20}O_5 = OC_4(C_6H_5)_5(CO_2 \cdot C_2H_5)_2$. B. Beim 12-stündigen Aufbewahren von $\alpha.\alpha'$ -Dibenzoyl-bernsteinsäure-diäthylester mit 10 Tln. konz. Schwefelsäure (P., C., Soc. 49, 166; P., Soh., Soc. 57, 950). — Kanariengelbe Prismen (aus Alkohol), fast farblose rhombisch bipyramidale (HAUSHOFER, Soc. 49, 167; vgl. Groth, Ch. Kr. 5, 500) Prismen (aus Ather) mit 1 H_2O . F: 86° (P., C.). Destilliert fast unzersetzt (P., C.). Leicht löslich in Alkohol, Ather, Benzol, Chloroform und Petroläther (P., C.). — Wird durch alkoh. Kalilauge leicht verseift (P., C.; P., Sch.).

10. Dicarbonsäuren $C_n H_{2n-28} O_5$.

 $\begin{array}{l} \alpha.\alpha-\text{Diphenyl-$\delta-[\alpha-\text{furyl}]-\alpha.y-\text{butadien-$\beta.y-\text{dicarbons aure, Diphenyl-methylen-furfuryliden-bernsteins aure, } \\ \alpha.\alpha-\text{Diphenyl-$\delta-[\alpha-\text{furyl}]-\text{fulgens aure } C_{22}H_{16}O_5 = \frac{HC-CH}{HC-O\cdot C\cdot CH:C(CO_2H)\cdot C(CO_2H):C(C_2H_2)_2}. \\ B. & \text{Aus Furfurol, } \\ y.y-\text{Diphenyl-itacons aure-diathylester (Bd. IX, S. 949) und Natrium athylat in Alkohol (Stobber, Ecker, B. 38, 4078). — Gelblich schimmernde Blättehen (aus Benzol) mit 1 Mol (Stobber, Ecker, B. 38, 4078). — Gelblich schimmernde Blättehen (aus Benzol) mit 1 Mol C_2H_3. Die benzolfreie Säure färbt sich bei 1870 dunkel und schmilzt bei 2020 unter Zersetzung. Leicht löslich in Äther, Alkohol und Chloroform, schwer in Benzol. — Liefert beim Übergießen mit kaltem Acetylchlorid a.a.-Diphenyl-$\delta-[a-furyl]-fulgid (Syst. No. 2772). — Natriumsalz. Farblose, Wasser oder Alkohol enthaltende Tafeln (aus 70% gigen Alkohol). Verwittert$

11. Dicarbonsauren C_nH_{2n-82}O₅:

1. [1.2;7.8-Dibenzo-xanthyl]-malonsäure, [Dinaphtho-2'.1'.2.3;1".2":5.6-pyryl]-malonsäure¹) C₂₄H₁₆O₅, s. nebenstehende Formel. Zur Konstitution vgl. Fosse, Bl. [4] 3, 1076.

B. Aus 1.2;7.8-Dibenzo-xanthydrol (Bd. XVII, S. 145) oder 1.2;7.8-Dibenzo-xanthyliumbromid und Malonsäure in essigsaurer Lösung bei Wasserbadtemperatur (F., Bl. [3] 35, 1007). — Wird durch Salzsäure in 1.2;7.8-Dibenzo-xanthyliumchlorid und Malonsäure gespalten (F.). Liefert beim Erhitzen mit Chinolin [1.2;7.8-Dibenzo-xanthyl]-essigsäure (S. 317) und Kohlendioxyd (F.). — Salze: F., ROBYN, Bl. [3] 35, 1009. — Na₂C₂₄H₁₄O₅. Silberweiße, Krystallalkohol enthaltende Krystalle (aus Alkohol). Wird bei 100° unter Verlust des Alkohols matt. — K₂C₂₄H₁₄O₅. Blättohen. — Ag₂C₂₄H₁₄O₅. Weißer Niederschlag. — MgC₂₄H₁₄O₅. Krystalle. — BaC₂₄H₁₄O₅. Farblose Krystalle. — PbC₂₄H₁₄O₅. Weißer Niederschlag.

Diäthylester $C_{19}H_{14}O_5 = OC_{11}H_{13} \cdot CH(CO_2 \cdot C_2H_3)_1$. B. Aus 1.2;7.8-Dibenzo-xanthyliumbromid und Natriummalonester (Fosse, Robyn, C. r. 143, 240, 241; Bl. [3] 85, 1012). —

Farblose Krystalle. F: 109—110°.

Äthylester - nitril, [1.2; 7.8 - Dibenso - xanthyl] - cyanessigsäure - äthylester, [Dinaphtho - 2'.1': 2.3; 1''.2'': 5.6 - pyryl] - cyanessigsäure - äthylester $C_{24}H_{19}O_{2}N=OC_{11}H_{12}\cdot CH(CN)\cdot CO_{4}\cdot C_{4}H_{5}$. Zur Konstitution vgl. Fosse, Bl. [4] 3, 1077. — B. Aus 1.2; 7.8-Dibenzo-xanthyliumbromid und Natriumcyanessigsäureäthylester (F., Robyn, C. r. 148, 240, 242; Bl. [3] 35, 1012). — Farblose Krystalle. F: 158—159°.

2. Dicarbonsauren C₂₅H₁₈O₅.

1. 2.4.6-Triphenyl-pyran-dicarbonsdure-(3.5) ("Dehydrobenzalbisbenzoylessigsäure") $C_{28}H_{18}O_5=\frac{HO_2C\cdot C\cdot CH(C_8H_8)\cdot C\cdot CO_2H}{C_8H_5\cdot C-O_8H_8}$. Das Molekulargewicht ist ebullioskopisch in Benzol bestimmt (Bertini, G. 33 II, 151). — B. Aus Benzal-bis-benzoylessigsäure-diäthylester (Bd. X, S. 922) durch Einwirkung von Natriumäthylat in alkoh. Lösung (B., G. 33 II, 150). — Schuppen (aus verd. Alkohol). F: 141° (Zers.). Sehr leicht löslich in Alkohol, löslich in Benzol. Gibt mit Eisenchlorid keine Färbung. — Na $_2C_{28}H_{18}O_8$. Sehr leicht löslich in Wasser.

2. [1.2; 7.8 - Dibenzo - xanthyl] - bernsteinsäure, [Dinaphtho-2'.1':2.3; 1".2":
5.6 - pyryl] - bernsteinsäure¹) C₃₂H₁₂O₄, s.
nebenstehende Formel. B. Aus 1.2; 7.8-Dibenzoxanthydrol (Bd. XVII, S. 145) und Bernsteinsäureanhydrid (Fossz, C. r. 143, 60). — Farblose Krystalle. F: 225—230° (Zers.),

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

C. Tricarbonsäuren.

Tricarbonsäuren $C_nH_{2n-10}O_7$.

1. Furan-tricarbonsäure-(2.3.4 oder 2.3.5) $C_7H_4O_7=\frac{HO_3C\cdot C-C\cdot CO_3H}{HC\cdot O\cdot C\cdot CO_4H}$ oder

 $HC - C \cdot CO_{\bullet}H$ (systematische Stammverbindung des Thiophentricarbonsäure-tri- $HO_{\bullet}C \cdot C \cdot O \cdot C \cdot CO_{\bullet}H$ methylesters).

2. γ -[α -Furyl]-propan- α . β . β -tricarbonsaure $C_{10}H_{10}O_{7}=HC$ —CHHC—CH

HC·O·C·CH₂·C(CO₂H)₂·CH₂·CO₂H

alkoh. Kalilauge (Sandelin, B. 33, 490). — Nadeln (aus Alkohol). Schmilzt bei 155—156° unter Entwicklung von Kohlendioxyd und Bildung von Furfurylbernsteinsäure (S. 336). Leicht löslich in Wasser, Alkohol und Äther, unlöslich in Benzol, Ligroin und Chloroform.

Triäthylester $C_{16}H_{23}O_7 = OC_4H_3 \cdot CH_3 \cdot C(CO_3 \cdot C_2H_5)_2 \cdot CH_2 \cdot CO_3 \cdot C_2H_5$. B. Aus Furfurylmalonsäure-diäthylester (S. 332) und Chloressigester in absolut-alkoholischer Natriumäthylat-Lösung (S., B. 33, 490). — Dickflüssiges gelbes Öl von angenehmem Geruch. Kp₂₅: 212° bis 213,5°.

D. Tetracarbonsäuren.

 $\label{eq:furantetracarbons} \textbf{Furantetracarbons}\\ \textbf{aure} \ \ \textbf{C}_{\text{0}}\textbf{H}_{\text{4}}\textbf{O}_{\text{0}} = \frac{\textbf{HO}_{\text{2}}\textbf{C}\cdot\textbf{C}-\textbf{C}\cdot\textbf{CO}_{\text{3}}\textbf{H}}{\textbf{HO}_{\text{2}}\textbf{C}\cdot\textbf{C}\cdot\textbf{O}\cdot\textbf{C}\cdot\textbf{CO}_{\text{3}}\textbf{H}} \ \ \text{(systematische} \ \ \textbf{Stammver-like tracarbons}$ bindung des Thiophentetracarbonsaure-tetramethylesters).

Thiophentetracarbonsaure - tetramethylester C₁₂H₁₂O₈S = CH_a·O_aC·C—C·CO_a·CH_a

B. Bei 20-stündigem Erhitzen von 2 Mol Acetylendicarbon-CH₂·O₂C·C·S·C·CO₂·CH₂

saure-dimethylester mit 1 At.-Gew. Schwefel im zugeschmolzenen Rohr auf 150—155°

(MICHAEL, B. 28, 1635). — Farblose Prismen (aus Alkohol). F: 126—128°. Wenig löslich in heißem Wasser, leicht in heißem Alkohol und Essigester.

E. Oxy-carbonsäuren.

1. Oxy-carbonsäuren mit 4 Sauerstoffatomen.

a) Oxy-carbonsäuren $C_n H_{2n-2}O_4$.

1. 4-Oxy-furantetrahydrid-carbonsaure-(2), 4-Oxy-tetrahydrofurancarbonsaure-(2), 4-0xy-tetrahydrobrenzschleimsaure $C_{i}H_{e}O_{4}$ HO·HC-CH.

H₂C·O·CH·CO₂H. B. Durch Erhitzen der 4-Oxy-tetrahydrofuran-dicarbonsaure-(2.2) (8. 360) mit Wasser im geschlossenen Rohr auf 150—1606 (TRAUBE, B. 37, 4544). — Prismen (aus Alkohol). F: 110°.

2. β -0xy- δ . ζ -oxido-n-caprylsäure, Dialdansäure $C_8H_{14}O_4=CH_3\cdot HC\cdot CH_3\cdot CH\cdot CH_3\cdot CH(OH)\cdot CH_3\cdot CO_2H$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. Bd. I, S. 826.

b) Oxy-carbonsäuren $C_n H_{2n-4} O_4$.

 γ -0xy- α -[tetrahydrofuryliden-(2)]-buttersäure $C_8H_{12}O_4=H_2C-CH_2$ (systematische Stammverbindung der γ -Mercapto- α -[tetrahydrothienyliden-(2)]-monothiobuttersäure).

 γ -Sulfhydryl-α-[tetrahydrothienyliden-(2)]-monothiobuttersäure, γ -Mercapto-α-[tetrahydrothienyliden-(2)]- monothiobuttersäure $C_8H_{12}OS_3=H_2C-CH_2$ H_2C-CH_2 $H_3C\cdot S\cdot C:C(COSH)\cdot CH_2\cdot CH_2\cdot SH$ $H_3C-CCH_3\cdot SH$ $H_3C-CCH_3\cdot SH$ $H_3C\cdot CCH_3\cdot

Dibensoylderivat $C_{22}H_{20}O_3S_3= H_2C-CH_2 H_2C\cdot S\cdot C\cdot C\cdot C_6H_5 \cdot CH_2\cdot CH_2\cdot S\cdot CO\cdot C_6H_5 \cdot CO\cdot C_6H$

c) Oxy-carbonsauren C_nH_{2n-6}O₄.

- 1. 3(?) 0 xy-furan-carbensäure -(2), 3(?) 0 xy-brenzschleimsäure, β (?) 0 xy-brenzschleimsäure $C_bH_4O_4 = \frac{HC C \cdot OH}{HC \cdot O \cdot C \cdot CO_2H}$ (?). B. Neben anderen Produkten bei der Oxydation von Furfurol mit Wasserstoffperoxyd (Cross, Bevan, Heiberg, Soc. 75, 749). Ba($C_aH_4O_4$)s. Niederschlag.
- 2. Oxy-carbonsăuren $C_6H_6O_4$.
- 1. α -Furylglykoledure $C_0H_0O_4=\frac{HC-CH}{HC\cdot O\cdot C\cdot CH(OH)\cdot CO_2H}$ (systematische Stammverbindung der α -Thienylglykoledure).
- α-Thienylglykolsäure $C_6H_4O_3S = \frac{HC-CH}{HC\cdot S\cdot C\cdot CH(OH)\cdot CO_2H}$ B. Beim Behandeln von α-Thienylglyoxylsäure (S. 407) mit Natriumamalgam (Ernst, B. 19, 3281). Nadeln (aus Benzol). F: 115°. Leicht löslich in Wasser, Äther und Alkohol. Gibt beim Kochen mit Braunstein und Wasser etwas α-Thienylessignäure (S. 293) reduziert. AgC₄H₂O₃S. Niederschlag. Ca(C₆H₂O₃S)₂ (bei 130°). Leicht löslich in Wasser. Ba(C₆H₃O₃S)₃ (bei 130°). Leicht löslich in Wasser.
- 2. 51-Owy 5 methyl furan carbonsäure (2), 5 Oxymethyl brenzschleimsäure, 5-Oxymethyl-brenzschleimsäure C₆H₄O₄ = HO CH
 HO · CH₂ · C·O · C·C·C₂H
 B. Beim Erhitzen von 5-Brommethyl-brenzschleimsäure (8. 295) mit Wasser auf 100° (HILL,
 JENNINGS, Am. 15, 181). Beim Erhitzen von 5-Brommethyl-furfurol (Bd. XVII, S. 290)
 mit Wasser und Silberczyd zum Sieden (Fenton, Gostling, Soc. 75, 429). Bei der
 Gydation von 5-Oxymethyl-furfuro! (S. 14) mit ammoniakalischer Silberlösung (KierMayer, Ch. Z. 19, 2004; Blanesma, C. 1910 I, 539). Durch 2-stdg. Erwärmen von

5-Acetoxymethyl-brenzschleimsäure mit Barytwasser auf dem Wasserbad (E. FISCHER, ANDREAE, B. 36, 2590). Entsteht in geringer Menge neben d-Talonsäure beim Erhitzen von d-Galaktonsäure mit Pyridin und Wasser auf 150° (E. Fischer, B. 27, 1526). — Prismen oder Tafeln (aus Alkohol + Toluol). F: 162—163° (Zers.) (H., J.; Fr., G.), 165° (B.), 165—167° (E. Fr., A.). Leicht löslich in Wasser, Alkohol und Eisessig, schwer in Ather, fast unlöslich in Benzol, Chloroform und Schwefelkohlenstoff (H., J.). — $Cu(C_6H_5O_4)_2$. Tafeln (K.). — $AgC_6H_5O_4+H_2O$. Prismen. Sehr schwer löslich in kaltem Wasser, unlöslich in Alkohol (K.). — $Ca(C_6H_5O_4)_2$. Krystalle (aus absol. Alkohol) (K.).

 $\textbf{5-Acetoxymethyl-brenzschleims\"{a}ure} \ \ \textbf{C}_8\textbf{H}_8\textbf{O}_5 = \\ \textbf{CH}_2 \cdot \textbf{CO} \cdot \textbf{O} \cdot \textbf{CH}_2 \cdot \overset{\parallel}{\textbf{C}} \cdot \textbf{O} \cdot \overset{\parallel}{\textbf{C}} \cdot \textbf{O} \cdot \overset{\parallel}{\textbf{C}} \cdot \textbf{CO}_3 \textbf{H}.$ Durch 1-stdg. Kochen von chitonsaurem oder chitarsaurem Calcium (S. 359) mit Essigsaureanhydrid und wasserfreiem Natriumscetat (E. FISCHER, ANDREAE, B. 36, 2590). — Nadeln (aus Chloroform) von bitterem Geschmack (E. F., A.). F: 115—117° (korr.) (E. F., A.), 115°

(BLANKSMA, C. 1910 I, 539). Schwer löslich in Petroläther, sonst ziemlich leicht löslich; reagiert sauer (E. F., A.).

 $HO \cdot CH_2 \cdot C \cdot O \cdot C \cdot CO_2H$. Beim Erwärmen von 3 oder 4-Brom-5-brommethyl-brenzschleimsäure (S. 295) mit Wasser (HILL, JENNINGS, Am. 15, 183). — Prismen (aus Chloroform); Prismen mit 1 H₂O (aus Wasser). Die entwässerte Säure schmilzt bei 153—154°. Leicht löslich in Alkohol, Äther und heißem Wasser.

3. β -0xy- α . α -dimethyl- β -[α -furyl]-propionsäure, α . α -Dimethyl- β -[α -furyl]-hydracrylsäure $C_0H_{12}O_4=\frac{HC-CH}{HC\cdot O\cdot C\cdot CH(OH)\cdot C(CH_2)_2\cdot CO_2H}$. B. Durch Oxydation von $\beta.\beta$ -Dimethyl- α -[α -furyl]-trimethylenglykol (Bd. XVII, S. 155) mit Kaliumpermanganat in neutraler oder saurer Lösung (Lindauer, M. 21, 74). — Krystalle. Zersetzt sich bei ca. 188°. — NaC₉H₁₁O₄. Krystalle (Dain, \mathcal{H} . 29, 670; C. 1898 I, 884). — Ca(C₉H₁₁O₄)₈ + 3,5H₂O (D.). — Ba(C₉H₁₁O₄)₂. Unlöslich in Wasser (L.).

Äthylester $C_{11}H_{16}O_4 = OC_4H_3 \cdot CH(OH) \cdot C(CH_2)_2 \cdot CO_2 \cdot C_2H_5$. B. Man läßt eine Mischung von 95 g α -Brom-isobuttersäure-äthylester und 50 g Furfurol auf granuliertes Zink tropfen, füllt den Apparat mit Kohlendioxyd und zersetzt das Reaktionsprodukt nach 10-tagigem Aufbewahren mit Wasser (Dain, H. 29, 668; C. 1898 I, 884). — Tafelförmige Prismen. Kp: 293-296°.

4. 2-0xy-2.3-oxido-camphan-carbonsăure-(3), 2.3-0xido- $\mathbf{H}_{\mathbf{2}_{i}}$ \mathbf{C}_{i} \mathbf{C}_{i} \mathbf{C}_{i} \mathbf{C}_{i} borneol-carbonsaure-(3) C₁₁H₁₆O₄, s. nebenstehende Formel. Uber eine Verbindung C₁₁H_{1e}O₄, der vielleicht diese Konstitution zu- H₂C CH — C CO₂H kommt, s. Bd. X, S. 946.

d) Oxy-carbonsäuren $C_nH_{2n-10}O_4$.

- 1. 6-0xy-cumaran-carbonsaure-(2), 6-0xy-hydro-CH · CO.H cumarilsaure C.H.O., s. nebenstehende Formel.
- $\textbf{6-Methoxy-hydrocumarils\"{a}ure} \ C_{10}H_{10}O_4 = CH_3 \cdot O \cdot C_0H_3 < \underbrace{CH_2}OH \cdot CO_2H. \ B. \ Beim$ Behandeln einer alkal. Lösung von 6-Methoxy-cumarilsäure (S. 348) mit Natriumamalgam (Will, Beck, B. 19, 1783). — Säulen (aus Wasser). F: 114°. Mit Wasserdampf flüchtig. Leicht löslich in den gewöhnlichen Lösungsmitteln.
- 6-Äthoxy-hydrocumarilsäure $C_{11}H_{12}O_4 = C_2H_5 \cdot O \cdot C_0H_2 < CH_2 > CH \cdot OO_2H$. B. Bei der Reduktion von 6-Äthoxy-cumarilsäure (S. 348) mit Natriumamalgam in sodaalkalischer Lösung (W., B., B. 19, 1785). — Nadeln. F: 1190.

2. α -Methyl- α' -[4-oxy-phenyl]-äthylenoxyd- α -carbonsäure, α -[4-Oxy-phenyl]-propylenoxyd- β -carbonsäure, $\alpha.\beta$ -Oxido- β -[4-oxy-phenyl]-isobuttersäure, α -Methyl- β -[4-oxy-phenyl]-glycidsäure $C_{10}H_{10}O_4=HO\cdot C_0H_4\cdot HC$

 $\alpha.\beta$ - Oxido - β - [4 - methoxy - phenyl] - isobuttersäure - äthylester, α - Methyl- β - [4 - methoxy - phenyl] - glycidsäure - äthylester $C_{18}H_{16}O_4=$ $CH_8 \cdot O \cdot C_6H_4 \cdot HC_{O} \sim C(CH_2) \cdot CO_2 \cdot C_2H_5$. B. Aus α -Chlor-propionsäure-äthylester und Anisaldehyd bei Gegenwart von Natriumäthylat (Darzens, C. r. 142, 215). — Kp₂₀: 189° bis 190°. — Die durch Verseifung erhaltene Säure liefert beim Kochen der wäßr. Lösung ihres Natriumsalzes Methyl-anisyl-keton.

e) Oxy-carbonsäuren C_nH_{2n-12}O₄.

1. Oxy-carbonsäuren C₂H₆O₄.

1. 3-Oxy-cumaron-carbonsäure-(2), 3-Oxy-cumarilsäure bezw. 3-Oxo-cumaran - carbonsäure - (2), Cumaranon - carbonsäure - (2) $C_9H_6O_4=C_6H_4 < \stackrel{CO}{\bigcirc} CH \cdot CO_2H$ bezw. $C_6H_4 < \stackrel{CO}{\bigcirc} CH \cdot CO_2H$.

Methylester $C_{10}H_8O_4=C_8H_5O_2\cdot CO_2\cdot CH_3$. B. Beim Erwärmen von (nicht näher beschriebenem) [Phenoxyessigsäure-o-carbonsäure]-dimethylester mit der berechneten Menge fein verteiltem Natrium in Benzol unter Zusatz einiger Tropfen absol. Alkohol auf dem Wasserbad (FRIEDLÄNDER, B. 32, 1868). — F: 105° .

Äthylester $C_{11}H_{10}O_4 = C_8H_5O_2\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Natrium oder Natriumäthylat auf [Phenoxyessigsäure-o-carbonsäure]-diäthylester (Bd. X, S. 75) in Benzol bei Gegenwart weniger Tropfen absol. Alkohol (Fr., B. 32, 1868; D. R. P. 105200; C. 1900 I, 495). — Nadeln oder Blättchen (aus verd. Alkohol). F: 65°. Leicht löslich, außer in Ligroin. Mit Wasserdampf flüchtig. — Gibt beim Erwärmen mit Alkalilauge Cumaranon-carbonsäure-(2), die bei Behandlung mit Wasserdampf unter Bildung von Cumaranon. (Bd. XVII, S. 118) zerfällt.

3 - Oxy - thionaphthen - carbonsäure - (2) bezw. 3 - Oxo - thionaphthendihydrid-carbonsäure - (2) C₉H₆O₃S = C₆H₄ C(OH) C·CO₂H bezw. C₆H₄ CO CH·CO₂H. B. Aus [S-Phenyl-thioglykolsäure]-o-carbonsäure (Bd. X, S. 129) durch Alkalischmelze (Friedländer, B. 39, 1062; A. 351, 406; Kalle & Co., D. R. P. 192075, 196016, 198713; C. 1908 I, 781, 1436; II, 119). Bei mäßigem Erwärmen von [S-Phenyl-thioglykolsäure]-o-carbonsäure mit Essigsäureanhydrid, evtl. unter Zusatz von etwas Natriumacetat (K. & Co., D. R. P. 198712; C. 1908 II, 119). Aus S-[2-Cyan-phenyl]-thioglykolsäure (Bd. X, S. 132) oder aus 3-Amino-thionaphthen-carbonsäure-(2) (Syst. No. 2645) durch Erhitzen mit verd. Alkali (K. & Co., D. R. P. 184496; C. 1907 II, 434). — Flockiger Niederschlag. Sehr schwer löslich in kaltem Wasser, leicht in Alkohol und Eigessig (F., A. 351, 407). In Alkalien leicht löslich (K. & Co., D. R. P. 192075). — Ist sehr unbeständig; oxydiert sich an der Luft unter Rotfarbung (F., A. 351, 407; K. & Co., D. R. P. 192075). Liefert beim Erhitzen für sich oder beim Kochen der wäßr. Suspension unter Abspaltung von Kohlendioxyd 3-Oxy-thionaphthen (Bd. XVII, S. 119) (F., A. 351, 407; K. & Co., D. R. P. 192075). Gibt in alkal. Lösung mit Oxydationsmitteln wie z. B. Luft oder Kaliumferricyanid Thioindigo (Syst. No. 2769) (F., A. 351, 410; K. & Co., D. R. P. 194237; C. 1908 I, 1116). Beim Kochen des Natriumsalzes mit Eisessig und Zinkstaub entsteht Thionaphthen (Bezdzik, F., Koeniger, B. 41, 231). Gibt mit Hypochlorit in stark alkal. Lösung Thioindigweiß (Syst. No. 2724), in schwach alkal. Lösung Thioindigo (Höchster Farbw., D. R. P. 198692; C. 1908 II, 114). Liefert beim Erhitzen mit Thiosulfaten in Gegenwart von Glycerin auf 130° Thioindigweiß (Hö. Fa., D. R. P. 199551; C. 1908 II, 275). Liefert beim Kochen mit Acenaphthenchinon oder Dichloracenaphthenon in alkoholisch-wäßriger Lösung bei Gegenwart von Soda [Acenaphthen-(1)]-[thionaphthen-(2)]-indigo (Bd. XVII, S. 545) (Ges. f. chem. Ind., D. R. P. 210813; C. 1909 II, 244). Gibt

Methylester $C_{10}H_4O_3S = C_8H_5OS \cdot CO_2 \cdot CH_3$. B. Aus [(S-Phenyl-thioglykolsäure)-o-carbonsäure]-dimethylester (Bd. X, S. 131) in alkoh. Lösung beim Stehenlassen mit Natrium-

äthylat oder bei kurzem Erwärmen mit alkoholischer oder etwas konzentrierter wäßriger Natronlauge auf dem Wasserbad (FRIEDLÄNDER, B. 39, 1062; A. 351, 407). — Blättchen (aus verd. Alkohol). F: 104°. Unlöslich in Wasser, leicht löslich in organischen Lösungsmitteln. Leicht löslich in Alkalien, unlöslich in Ammoniak.

- 2. 6-Oxy-cumaron-carbonsäure-(2), 6-Oxy-cumarilsäure $C_0H_0O_4$, s. nebented Formel.
- 6-Methoxy-cumarilsäure $C_{10}H_8O_4=CH_3\cdot O\cdot C_6H_3$ $\stackrel{CH}{\bigcirc}C\cdot CO_2H$. B. Durch Eintragen von 3-Brom-7-methoxy-cumarin (S. 28) in überschüssige, siedende, konzentrierte alkoholische Kalilauge und kurzes Kochen der Lösung (WILL, BECK, B. 19, 1783). Nadeln (aus verd. Alkohol). F: 195,5—196,5°. Wenig flüchtig mit Wasserdampf. Kaum löslich in kaltem Wasser, leicht in Alkohol und Äther. Beim Glühen des Silbersalzes im Kohlendioxydstrom entweicht 6-Methoxy-cumaron (Bd. XVII, S. 121). Liefert bei der Reduktion mit Natriumamalgam in sodaalkalischer Lösung 6-Methoxy-hydrocumarilsäure. Ba $(C_{10}H_7O_4)_2+4H_2O$. Farblose Krystallmasse.
- 6-Äthoxy-cumarilsäure $C_{11}H_{10}O_4 = C_2H_5 \cdot O \cdot C_0H_3 < O > C_0 > C \cdot CO_2H$. B. Durch Eintragen von 3-Brom-7-äthoxy-cumarin (S. 28) in überschüssige, siedende, konzentrierte alkoholische Kalilauge und kurzes Kochen der Lösung (W., B., B. 19, 1785). Nadeln. F: 162—1630.

2. Oxy-carbonsäuren C10H8O4.

- 1. 6 Oxy 3 methyl cumaron carbonsäure (2), 6 Oxy 3 methyl cumarilsäure C₁₀H₃O₄, s. nebenstehende HO. CCO2H Formel. B. Der Äthylester entsteht beim Kochen von je 1 Mol Resorcin, a-Chlor-acetessigsäure-äthylester und Natriumäthylat in alkoh. Lösung auf dem Wasserbad; man verseift ihn durch Kochen mit wäßr. Kalilauge (Hantzsch, B. 19, 2928). 6-Oxy-3-methyl-cumarilsäure entsteht ferner durch Kochen von 3-Chlor-7-oxy-4-methyl-cumarin (8. 32) mit der 5-fachen Menge 10°/oiger Natronlauge, bis die Flüssigkeit rot erscheint (v. Pechmann, Hanke, B. 34, 360). Nadeln mit ¹/₂ H₂O (aus Wasser). Wird bei 105—110° wasserfrei (v. P., Hanke). F: 226° (Hantzsch; v. P., Hanke). Die alkal. Lösungen fluorescieren himmelblau; die Lösung in konz. Schwefelsäure wird beim Erwärmen violett und dann durch Zusatz von wenig Wasser blau; Eisenchlorid färbt die alkoh. Lösung brauntot (v. P., Hanke). Zerfällt bei der Destillation in Kohlendioxyd und 6-Oxy-3-methyl-cumaron (Bd. XVII, S. 122) (Hantzsch).
- 6-Methoxy-3-methyl-cumarilsäure $C_{11}H_{10}O_4=CH_3\cdot O\cdot C_8H_3 \stackrel{C(CH_3)}{O}C\cdot CO_2H$. B. Beim Kochen von 6-Methoxy-3-methyl-cumarilsäure-äthylester mit Kalilauge (v. Kostanecki, Lampe, B. 41, 1332). Nadeln (aus verd. Alkohol). F: 190° (Zers.). Nicht flüchtig mit Wasserdampf. Die Lösung in reiner konzentrierter Schwefelsäure ist farblos und wird erst nach längerer Zeit allmählich violett; setzt man zu der noch farblosen Lösung eine Spur Eisenchlorid oder Natriumnitrit, so erhält man sofort eine intensiv violette Färbung, die nach längerem Aufbewahren blau und dann grün wird. Liefert beim Erhitzen unter Kohlendioxydentwicklung 6-Methoxy-3-methyl-cumaron (Bd. XVII, S. 122).
- 6 Methoxy 3 methyl cumarilsäure methylester $C_{12}H_{12}O_4 = CH_2 \cdot O \cdot C_6H_3 \cdot C(CH_3) \cdot C \cdot CO_2 \cdot CH_3$. B. Aus 6-Oxy-3-methyl-cumarilsäure oder 6-Methoxy-3-methyl-cumarilsäure in alkoh. Lösung beim Behandeln mit Dimethylsulfat und Alkali bei Siedetemperatur (v. K., L., B. 41, 1332). Nadeln (aus verd. Alkohol). F: 78°.
- 6-Oxy-3-methyl-cumarilsäure-äthylester $C_{18}H_{12}O_4=HO\cdot C_6H_3$ $C\cdot CO_3\cdot C_2H_5$. B. s. im Artikel 6-Oxy-3-methyl-cumarilsäure. Nadeln. F: 178°; leicht löslich in Äther, löslich in Alkohol, ziemlich schwer löslich in Benzol; leicht löslich in verd. Natronlauge mit hellblauer Fluorescenz (Hantzsch, B. 19, 2928). I. $C_2H_5\cdot O_2C\cdot C$ $C(CH_3)$ $C\cdot CO_2\cdot C_2H_5$ Liefert beim Kochen mit α -Chlor-acetessigsäure-äthylester und Natriumäthylat in alkoh. Lösung die Dimethylbenzodifurandicarbonsäurediäthylester der Formeln I und II (Syst. No. 2874).

6 - Methoxy - 3 - methyl - cumarilsäure - äthylester $C_{13}H_{14}O_4 = CH_3 \cdot O \cdot C_0H_3 \cdot C_0CH_3 \cdot C_2H_3$. B. Aus 6-Oxy-3-methyl-cumarilsäure-äthylester in siedendem Alkohol mit Dimethylsulfat und $50^{\circ}/_{\circ}$ iger Kalilauge (v. Kostanecki, Lampe, B. 41, 1331). — Nadeln (aus verd. Alkohol). F: 74—75°.

7-Brom-6-oxy-8-methyl-cumarilsäure C₁₀H₁O₄Br, s. nebenstehende Formel. B. Beim Kochen von 3.4.8-Tribrom-7-oxy-2-oxo-4-methyl-chroman (S. 22) mit alkoh. Kali (v. Pechmann, Cohen, B. 17, 2134). — Nadeln (aus verd. Alkohol). Schmilzt bei 221° unter Gasentwicklung. Unlöslich in Wasser, leicht löslich in Alkohol, Ather und Chloroform, schwer in Benzol. Die Lösung in konz. Schwefelsäure färbt sich beim Erwärmen purpurviolett. Die alkoh. Lösung wird durch Eisenchlorid gelb gefärbt.

2. 5-Oxy-2-methyl-cumaron-carbonsdure-(3) C₁₀H₈O₄, s. u. Formel I.

Äthylester C₁₂H₁₂O₄ = HO·C₆H₃ C(CO₂·C₂H₅) C·CH₂. Nach Graebe, Levy (A. 283, 246) vielleicht 6·Oxy-2·methyl·cumaron-carbonsäure-(3)-äthylester. — B. Beim Erwärmen von 1 Mol Chinon mit 1 Mol Acetessigsäure-äthylester und einer 50% igen Lösung von Zinkchlorid in absol. Alkohol (Ikuta, J. pr. [2] 45, 80). — Blättchen oder Nadeln (aus Ligroin). F: 137° (I.). Schwer löslich in Petroläther, leicht in den meisten organischen Lösungsmitteln (I.). Die Lösung in konz. Schwefelsäure wird beim Erwärmen purpurrot (I.).

4.6.7 - Trichlor - 5 - oxy - 2 - methyl-cumaron-carbonsäure-(3) C₁₀H₅O₄Cl₃, Formel II. Nach Graebe, Levy (A. 283, 246) vielleicht 4.5.7-Trichlor-6-oxy-2-methyl-cumaron-

I. HO.
$$C \cdot CO_2H$$
 II. $C \cdot CO_2H$ III. $C \cdot CO_2H$ III. $C \cdot CO_2H$ $C \cdot CO_$

carbonsäure-(3), Formel III. — B. Der Äthylester entsteht bei 1-stündigem Kochen von 1 Tl. α -[3.4.6-Trichlor-2.5-dioxy-phenyl]-acetessigsäure-äthylester (Bd. X, S. 1002)¹) mit 10 Tln. Eisessig und einigen Tropfen konz. Schwefelsäure; man verseift den Ester mit alkoh. Kali (Ikuta, J. pr. [2] 45, 67). — Nadeln. F: 258° (I.). Unzersetzt flüchtig (I.). — Beim Erwärmen mit konz. Schwefelsäure entsteht eine dunkelrotblaue Färbung (I.).

Äthylester $C_{12}H_{\bullet}O_{\bullet}Cl_{2} = HO \cdot C_{\bullet}Cl_{3} \underbrace{C(CO_{2} \cdot C_{2}H_{5})}_{O} C \cdot CH_{3}$. B. s. im vorangehenden Artikel. — Nadeln. F: 138°; leicht löslich in Chloroform, schwerer in Alkohol, Äther und kaltem Eisessig (Ikuta, J. pr. [2] 45, 67).

- 3. 5¹- Oxy 5 methyl-cumaron-carbonsäure (2), HO·CH₂· CH
 5 Oxymethyl cumarilsäure C10H₂O₄, s. nebenstehende
 Formel. B. Man behandelt 6-Acetoxymethyl-cumarin (S. 34) in
 Schwefelkohlenstoff mit Brom, führt das Bromierungsprodukt durch Erhitzen mit 10⁰/øiger
 alkoholischer Kalilauge in ein Gemisch von 5-Äthoxymethyl-cumarilsäure und {Bis[cumaronyl-(5)-methyl]-äther}-dicarbonsäure-(2.2') über, löst das Gemisch in Alkohol,
 leitet Chlorwasserstoff bis zur Sättigung ein und kocht das erhaltene Öl mit 15⁰/øiger
 Kalilauge (STOERMER, OETKER, B. 37, 199). Krystallpulver (aus Wasser). F: 210°.
 Schwer löslich in kaltem Wasser, leicht in warmem Wasser und Alkohol. Löst sich in konz.
 Schwefelsäure mit violetter Farbe. Chromsäure oxydiert zu Cumaron-dicarbonsäure-(2.5)
 (S. 340). Ca(C10H₂O₄)₂. Sehr leicht löslich in Wasser.

 5-Äthoxymethyl-cumarilsäure C12H₂O₄ = C23H₂·O·CH₂·C0H₂·C0H₂·CO2H. B.
- 5-Athoxymethyl-cumarilsäure $C_{12}H_{12}O_4 = C_2H_5 \cdot O \cdot CH_2 \cdot C_4H_2 \cdot O \cdot C \cdot CO_2H$. B. Entsteht neben {Bis-[cumaronyl-(5)-methyl]-āther}-dicarbonsāure-(2.2'), wenn man 12 g 6-Acetoxymethyl-cumarin mit 9 g Brom in Tetrachlorkohlenstoff 2—3 Tage im Licht stehen läßt und das Reaktionsprodukt $^{1}/_{2}$ Stunde mit 180 g $10^{9}/_{0}$ iger alkoholischer Kalilauge erwärmt (ST., Oz., B. 37, 198). Nadeln (aus Benzol-Ligroin). F: 163—164°. Beim Einleiten von Chlorwasserstoff in die absolut-alkoholische Lösung entsteht 5-Chlormethyl-cumarilsäure-āthylester (S. 310). Ca($C_{12}H_{11}O_4$)₂. Blättchen. Sehr leicht löslich in Wasser.

Bis-{[2-carboxy-cumaronyl-(5)]-methyl}-äther, {Bis-[cumaronyl-(5)-methyl]-äther}-dicarbonsäure-(2.2') $C_{20}H_{14}O_{7}=(HO_{2}C\cdot C \subset CH_{2}C_{6}H_{3}\cdot CH_{4})_{2}O$. B. s. im vorangehenden Artikel. — Amorph. F: ca. 258—260° (St., Or., B. 37, 199). — Liefert beim Ein-

¹) Nach Graebe, Levy, A. 283, 246 vielleicht als β -[3.4.6-Trichlor-2.5-dioxy-phenoxy]-crotonsäure-äthylester aufzufassen.

350

leiten von Chlorwasserstoff in die absolut-alkoholische Lösung 5-Chlormethyl-cumazilsäureäthylester (S. 310) (St., Oz.).

4. 3-Oxy-6-methyl-cumaron-carbonsäure-(2) $C_{10}H_{s}O_{4}$, Formel I [systematische Stammverbindung der 3-Oxy-6-methyl-thionaphthen-carbonsäure-(2)].

8-Oxy-6-methyl-thionaphthen-carbonsäure-(2) bezw. 8-Oxo-6-methyl-thionaphthendihydrid-carbonsäure-(2) $C_{10}H_8O_3S$, Formel II bezw. III. B. Beim Erhitzen von 3 Tln. S-[5-Methyl-2-carboxy-phenyl]-thioglykolsäure (Bd. X, S. 237) mit 12 Tln. Natrium-

hydroxyd und 1,2 Tln. Wasser auf 180—190° (Höchster Farbw., D. R. P. 204763; C. 1909 I, 232). — In Wasser schwer löslich, in Alkohol und Alkalien leicht löslich. — Liefert beim Erhitzen 3-Oxy-6-methyl-thionaphthen (Bd. XVII, S. 125). Gibt beim Erhitzen mit Thiosulfaten und Glycerin auf 120—130° die Leukoverbindung des (nicht näher beschriebenen) Bis-[6-methyl-thionaphthen-(2)]-indigos.

3. Oxy-carbonsäuren $C_{11}H_{10}O_4$.

- 1. 4-0xy-3.6-dimethyl-cumaron-carbonsäure-(2), 4-0xy-3.6-dimethyl-cumarilsäure $C_{11}H_{10}O_4$, s. nebenstehende Formel. $U_{12}H_{12}O_4 = U_{13}H_{12}O_4 = U_{13}H_{$
- CH₂·O·C₆H₂(CH₂) C(CH₂) C·CO₂H. B. Beim Kochen von 4-Methoxy-3.6-dimethyl-cumarilsäure-äthylester mit starker Kalilauge (v. Kostanecki, Tambob, B. 42, 903). Nadeln (aus verd. Alkohol). Schmilzt bei 215° unter Gasentwicklung. Nicht flüchtig mit Wasserdampf. Liefert beim Erhitzen unter Kohlendioxydabspaltung 4-Methoxy-3.6-dimethyl-cumaron (in Bd. XVII, S. 126 als 6-Methoxy-3.4-dimethyl-cumaron angeführt). Kaliumsalz. Schwer löslich in Kalilauge, löslich in Wasser.
- 4 Oxy 3.6 dimethyl cumarilsäure äthylester 1) $C_{13}H_{14}O_4 = HO \cdot C_6H_3(CH_3) < C(CH_3) > C \cdot CO_2 \cdot C_2H_5$. B. Durch Kochen von Orein mit α -Chlor-acetessigsäure-äthylester und alkoh. Natriumäthylatlösung (v. K., T., B. 42, 903). Nadeln (aus Alkohol). F: 212°.
- 4 Methoxy 3.6 dimethyl cumarilsäure äthylester $C_{14}H_{16}O_4 = CH_2 \cdot O \cdot C_6H_2(CH_2) \stackrel{C(CH_3)}{\sim} C \cdot CO_2 \cdot C_2H_5$. B. Aus 4-Oxy-3.6-dimethyl-cumarilsäure-äthylester durch Dimethylsulfat in siedender alkoholisch-alkalischer Lösung (v. K., T., B. 42, 903). Nadeln (aus Alkohol). F: 115—116°.
- 2. x-Oxy-2.x-dimethyl-cumaron-carbonsdure-(3), Oxydimethylisocumarilsäure $C_{11}H_{10}O_4=HO\cdot C_8H_4(CH_3)$ $C\cdot CO_2H$ $C\cdot CH_3$. B. Der Äthylester entsteht neben Trimethyl-p-benzodifurandicarbonsäurediäthylester (s. nebenstehende Formel) (Syst. No. 2874) beim Erhitzen von 10 g Toluchinon mit 25 g Acetessigester und 30 g Zinkchlorid, gelöst in 30 g Aceton, auf dem Wasserbad; man verseift ihn mit alkoh. Kalilauge (GRAEBE, LEVY, A. 283, 252, 254). Nadeln (aus 50°/eiger Essigaäure). Sublimierbar. Zersetzt sich bei 280° unter Gasentwicklung. Löslich in Alkohol, Aceton und Eisessig, kaum in Äther und Benzol.

Methylester $C_{12}H_{12}O_4 = HO \cdot C_6H_2(CH_2) \underbrace{C(CO_2 \cdot CH_2)}_{O} C \cdot CH_2$. B. Beim Kochen von x-Oxy-2.x-dimethyl-cumaron-carbonsäure-(3) mit Methylalkohol und konz. Schwefelsäure (G., L., A. 283, 254). — Krystalle (aus Benzol). F: 185°.

Äthylester $C_{18}H_{14}O_4 = HO \cdot C_8H_2(CH_2) \underbrace{C(CO_3 \cdot C_8H_8)}_{O} C \cdot CH_2$. B. s. im Artikel x-Oxy-2.x-dimethyl-cumaron-carbonsāure-(3). — Pyramiden (aus Aceton). Rhombisch bipyramidal (Fock, Z. Kr. 21, 234; vgl. Groth, Ch. Kr. 5, 549). F: 173° (Graebe, Levy, A. 283, 255). Löslich in Alkohol, Äther und Aceton, unlöslich in Wasser und Ligroin (G., L.). Löslich in konz. Schwefelsäure mit blauer Farbe (G., L.). — Liefert bei Einw. von Chlor je nach den angewandten Mengen x.x-Dichlor-x-oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-

¹⁾ Zur Konstitution vgl. S. 37 Anm.

- äthylester (s. u.) oder x.x.x-Trichlor-x-oxo-2.x-dimethyl-cumaron-dihydrid-(x.x)-carbon-säure-(3)-äthylester (S. 424) (G., L.).
- x Acetoxy 2.x dimethyl cumaron carbonsäure (3) äthylester $C_{18}H_{16}O_5 = CH_2 \cdot CO \cdot O \cdot C_8H_2(CH_2) \stackrel{C(CO_2 \cdot C_2H_5)}{O} \stackrel{C}{>} C \cdot CH_2$. B. Beim Erhitzen von x-Oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester mit Essigsäureanhydrid bis zum Sieden (G., L., A. 283, 256). Nadeln (aus Alkohol). F: 96°. Sublimierbar. Unlöslich in Wasser, löslich in den gewöhnlichen organischen Lösungsmitteln.
- x-Bensoyloxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester $C_{20}H_{16}O_{\delta}=C_{6}H_{5}\cdot CO\cdot O\cdot C_{6}H_{2}(CH_{2})$ $C(CO_{3}\cdot C_{2}H_{5})$ $C\cdot CH_{2}$. B. Beim Kochen von x-Oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester mit Benzoylchlorid (G., L., A. 283, 256). Krystalle (aus Ligroin). F: 94—95°.
- x.x Dichlor x oxy 2.x dimethyl cumaron carbonsäure (3) $C_{11}H_8O_4Cl_2 = HO \cdot C_6Cl_2(CH_3) \underbrace{C(CO_2H)}_{O} \cdot C \cdot CH_2$. B. Der Äthylester entsteht beim Einleiten von 2 Mol Chlor in die äther. Lösung von 1 Mol x-Oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester; man verseift ihn mit 10^9 /oiger Natronlauge (G., L., A. 283, 258). Krystalle (aus Eisessig). Zersetzt sich bei $260-270^9$. Unlöslich in Wasser und Benzol, löslich in Alkohol und Eisessig. Ba $(C_{11}H_7O_4Cl_2)_2+2H_2O$. Krystalle (aus Wasser).
- Äthylester $C_{18}H_{12}O_4Cl_2 = HO \cdot C_6Cl_8(CH_2) \underbrace{C(CO_3 \cdot C_2H_5)}_{O} C \cdot CH_2$. B. s. im vorangehenden Artikel. Tafeln (aus Benzol). Monoklin prismatisch (FOCK, Z. Kr. 21, 234; vgl. Groth, Ch. Kr. 5, 549). F: 134—135° (G., L., A. 283, 259). Liefert beim Kochen mit Eisessig und Salpetersäure (D: 1,4) x-Chlor-x.x-dioxo-2.x-dimethyl-cumaron-dihydrid-(x.x)-carbonsäure-(3)-āthylester (S. 474).
- x.x-Dichlor-x-acetoxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester $C_{15}H_{16}O_5Cl_2 = CH_2 \cdot CO \cdot O \cdot C_6Cl_2(CH_2) \xrightarrow{C(CO_2 \cdot C_2H_5)} C \cdot CH_2$. B. Aus x.x-Dichlor-x-oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester durch Einw. von Acetylchlorid (G., L., A. 283, 259). Prismen. F: 138—139°.
- x-Brom-x-oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester $C_{13}H_{13}O_4Br = HO \cdot C_6HBr(CH_2) \xrightarrow{C(CO_3 \cdot C_2H_5)} C \cdot CH_2$. B. Durch Behandeln von 1 Mol x-Oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester mit 1 Mol Brom in Chloroform-Lösung und Umkrystallisieren des Reaktionsprodukts aus Alkohol (G., L., A. 283, 256). Blättchen (aus Alkohol). F: 208°. Wenig löslich in Alkohol und Ather, leicht löslich in Benzol.
- x Brom x acetoxy 2.x dimethyl cumaron carbonsäure (3) äthylester $C_{15}H_{15}O_5Br = CH_3 \cdot CO \cdot O \cdot C_6HBr(CH_3) \xrightarrow{C(CO_3 \cdot C_5H_5)} C \cdot CH_3$. B. Bei der Einw. von Essigsäureanhydrid auf x-Brom-x-oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester (G., L., A. 283, 257). F: 137—138°.
- x.x Dibrom x oxy 2.x dimethyl cumaron carbonsäure (3) äthylester $C_{13}H_{12}O_4Br_2 = HO \cdot C_6Br_5(CH_3) \xrightarrow{C(CO_2 \cdot C_2H_5)} C \cdot CH_3$. B. Aus 1 Mol x-Oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-āthylester durch Einw. von 2 Mol Brom in Chloroform (G., L., A. 283, 257). F: 123—124°.

f) Oxy-carbonsäuren C_nH_{2n-14}O₄.

Phenyl- α -furyl-glykolsäure, Benzfurilsäure $C_{12}H_{10}O_4=HC$ —CH HC-CHB. Bei allmählichem Eintragen von 2 g Benzfuril (Bd. XVII, 8. 516) in eine auf ca. 60° erwärmte Lösung von 5 g Ätzkali in 40 g Wasser (E. Fischer, 4. 211, 231). — Prismen. Leicht löslich in Alkohol, Äther und Chloroform, schwer in Ligroin. Wird bei etwa 108° braun und zersetzt sich bei wenig höherer Temperatur unter Schäumen. Löst sich mit blutroter Farbe in kalter konzentrierter Schwefelsäure.

g) Oxy-carbonsäuren C_nH_{2n-18}O₄.

1. 3-0xy-5.6-benzo-cumaron-carbonsäure-(2), 4-0xy-[naphtho-2'.3':2.3-furan]-carbonsäure-(5) 1) bezw. 3-0xo-5.6-benzo-cumaran-carbonsäure-(2), 4-0xo-[naphtho-2'.3':2.3-furan]-dihydrid-(4.5)-carbonsäure-(5), 5.6-Benzo-cumaranon-carbonsäure-(2) $C_{12}H_4O_4$, Formel I bezw. II.

Äthylester $C_{15}H_{12}O_4=C_{13}H_7O_2\cdot CO_2\cdot C_2H_5$. B. Aus [3-Oxy-naphthoesaure-(2)-āthylester]-O-essigsaureāthylester (Bd. X, S. 335), gelöst in Benzol, durch Einw. von metallischem Natrium oder von Natriumāthylat (Höchster Farbw., D. R. P. 105200; C. 1900 I, 495). — F: 124°.

2. α -Phenyl- α -[4-oxy-phenyl]-āthylenoxyd- α' -carbonsāure, $\alpha.\beta$ -Oxido- β -phenyl- β -[4-oxy-phenyl]-propionsāure, β -Phenyl- β -[4-oxy-phenyl]-glycidsāure $C_{15}H_{15}C_4=\frac{C_6H_5}{H_0}>C_{-0}CH\cdot CO_5H$.

β-Phenyl-β-[4-methoxy-phenyl]-glycidsäure(?) $C_{16}H_{14}O_4 = C_{4}H_{5} > C_{-}CH \cdot CO_{2}H$ (?). Zur Frage der Konstitution vgl. die bei β-β-Diphenylglycidsäure (S. 314) gebrachten Angaben. — B. Der Äthylester entsteht durch Kondensation von 4-Methoxy-benzophenon mit Chloressigester bei Gegenwart von Natriumamid in äther. Lösung, Zersetzung des Reaktionsprodukts mit Wasser und Destillation im Vakuum; man verseift den Äthylester mit absolut-alkoholischer Natriumäthylatlösung, der man die berechnete Menge Wasser zugesetzt hat (Pointet, C., r. 148, 419). — F: 110 6 . — Geht bei der Destillation unter Verlust von Kohlenoxyd in 4-Methoxy-diphenylessigsäure über.

Äthylester $C_{18}H_{18}O_4 = CH_8 \cdot O \cdot C_6H_4 > C_{18}H_5 \cdot C_{18}H_5 = CH \cdot CO_8 \cdot C_2H_5 ?$. B. s. im vorangehenden Artikel. — Kp_{20} : 240° (P., C. r. 148, 419).

h) Oxy-carbonsäuren C_nH_{2n-20}O₄.

6-0xy-3-phenyl-cumaron-carbonsäure-(2), 6-0xy-3-phenyl-cumarilsäure $C_{18}H_{10}O_4$, s. nebenstehende Formel. HO.

6-Methoxy-3-phenyl-cumarilsäure $C_{16}H_{12}O_4 = CH_2 \cdot O \cdot C_6H_3 \cdot C(C_6H_6) = C \cdot CO_2H$. B. Entsteht neben 5-Methoxy-2-benzoyl-phenoxyessigsäure, wenn man 2-Oxy-4-methoxybenzophenon und Bromessigester mit Natriumäthylat-Lösung erhitzt und das Reaktionsprodukt mit siedendem alkoholischem Kali verseift (Motylewski, B. 42, 3149; C. 1910 I, 747). — Blättchen oder Nadeln (aus Alkohol). Schmilzt bei 198° unter Entwicklung von Kohlendioxyd. — Liefert bei der trocknen Destillation 6-Methoxy-3-phenyl-cumaron (Bd. XVII, S. 133).

i) Oxy-carbonsauren C_nH_{2n-26}O₄.

1. $2 - [9 - 0 \times y - x \text{ anthy } i]$ - benzoesāure, $9 - 0 \times y$ - hydrofluoransāure, $9 - [2 - Carbo \times y - pheny i]$ - $x \text{ anthy } drofl C_{20}H_{14}O_4 = C_0H_4 \underbrace{C(OH)(C_0H_4 \cdot CO_2H)}_{O}C_0H_4$. Das entsprechende Lacton (Fluoran; s. nebenstehende Formel) und seine Salze (9-[2-Carbo xy-pheny i]-xanthy liumsalze) s. Syst. No. 2751.

 $\begin{array}{l} \textbf{9-Oxy-hydrofluorans\"{a}ure-methylester}, \textbf{9-[2-Carbomethoxy-phenyl]-xanthydrol} \\ C_{\textbf{21}}H_{\textbf{16}}O_{\textbf{4}} = C_{\textbf{6}}H_{\textbf{4}} \underbrace{C(OH)(C_{\textbf{6}}H_{\textbf{4}} \cdot CO_{\textbf{3}} \cdot CH_{\textbf{3}})}_{O} \underbrace{C_{\textbf{6}}H_{\textbf{4}}}_{\textbf{4}} \text{ (Pseudobase der nachstehenden Salze)}. \end{array}$

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

- 9-[2-Carbomethoxy-phenyl]-xanthyliumchlorid, 9-[2-Carbomethoxy-phenyl]-xanthoxoniumchlorid. Zur Konstitution vgl. die Angaben in Bd. XVII, S. 117. B. Das Zinnchlorid-Doppelsalz entsteht, wenn man zu Fluoran (Syst. No. 2751) portionsweise Methylalkohol und Zinntetrachlorid zugibt und das Gemisch abwechselnd erhitzt und mit Chlorwasserstoff behandelt (Green, King, B. 41, 3437). $2[C_{11}H_{15}O_{2}]Cl + SnCl_{4}$. Orangefarbene Prismen. Löslich in Wasser mit gelber Farbe. Wird durch Wasser unter Bildung von Fluoran verseift.
- 9-Oxy-hydrofluoransäure-äthylester, 9-[2-Carbäthoxy-phenyl]-xanthydrol $C_{22}H_{18}O_4=C_6H_4 < \underbrace{C(OH)(C_6H_6 \cdot CO_3 \cdot C_2H_5)}_O C_6H_4$ (Pseudobase der nachstehenden Salze).
- 9-[2-Carbāthoxy-phenyl]-xanthyliumchlorid, 9-[2-Carbāthoxy-phenyl]-xanthoxoniumchlorid. Zur Konstitution vgl. die Angaben in Bd. XVII, S. 117. B. Das Zinnchlorid-Doppelsalz entsteht beim Einleiten von Chlorwasserstoff in eine heiße Issung von Fluoran und Zinntetrachlorid in absol. Alkohol (Green, King, B. 41, 3437). $2[C_{28}H_{17}O_3]Cl + SnCl_4 + C_2H_5 \cdot OH$. Gelbe Prismen. Verliert den Alkohol beim Erhitzen auf $60-80^{\circ}$.

2. Oxy-carbonsäuren $C_{22}H_{18}O_4$.

1. 2-[9-Oxy-2.7-dimethyl-xanthyl]-benzoesäure, 9-Oxy-2.7-dimethyl-hydrofluoransäure, 2.7-Dimethyl-9-[2-carboxy-phenyl]-xanthydrol

I.
$$CH_3$$
: CGH_4 : CO_2H
 CGH_4 : CH_3
 CGH_4 : CH_3
 CGH_4 : CH_3
 CGH_4 : $CGGH_4$:

- C₃₂H₁₆O₄, Formel I. Das entsprechende Lacton (2.7-Dimethyl-fluoran; Formel II) und dessen Salze (2.7-Dimethyl-9-[2-carboxy-phenyl]-xanthyliumsalze) s. Syst. No. 2751.
- 9-Oxy-2.7-dimethyl-hydrofluoransäure-methylester, 2.7-Dimethyl-9-[2-carbomethoxy-phenyl]-xanthydrol $C_{22}H_{20}O_4=CH_3\cdot C_6H_3\cdot C_6H_3\cdot C_6H_4\cdot CO_2\cdot CH_3) C_6H_2\cdot CH_3$ (Pseudobase der nachstehenden Salze).
- 2.7-Dimethyl-9-[2-carbomethoxy-phenyl]-xanthyliumsalze, 2.7-Dimethyl-9-[2-carbomethoxy-phenyl]-xanthoxoniumsalze $[C_{12}H_{19}O_3]$ Ac. Zur Konstitution vgl. die Angaben in Bd. XVII, S. 117. $2[C_{12}H_{19}O_3]$ Cl + ZnCl₂. B. Man leitet Chlorwasserstoff in ein erhitztes Gemisch von 2.7-Dimethyl-fluoran, Methylalkohol und 100°/ciger Schwefelsäure, gießt am nächsten Tage in gesättigte Natriumchlorid-Lösung, filtriert und versetzt das Filtrat mit Zinkchlorid (Green, King, B. 41, 3439). Orangefarbene Krystalle. $[C_{12}H_{12}O_3]$ Cl + ZnCl₂. B. Beim Einleiten von Chlorwasserstoff in eine warme methylalkoholische Lösung von 2.7-Dimethyl-fluoran und Zinkchlorid (G., K., B. 41, 3438). Orangefarbene Würfel und Prismen. $[C_{12}H_{12}O_3]$ Cl + SnCl₄. B. Beim Einleiten von Chlorwasserstoff in ein Gemisch von 2.7-Dimethyl-fluoran und Zinntetrachlorid in Methylalkohol (G., K., B. 41, 3438). Gelbe Blättchen. Ziemlich leicht löslich in Wasser. Zersetzt sich in wäßr. Lösung unter Bildung von 2.7-Dimethyl-fluoran.
- 2. 2-[9-Oxy-3.6-dimethyl-xanthyl]-benzoesäure, 9-Oxy-3.6-dimethyl-hydrofluoransäure, 3.6-Dimethyl-9-[2-carboxy-phenyl]-xanthydrol $C_{22}H_{12}O_4$, s. nebenstehende Formel.
- 9-Oxy-8.6-dimethyl-hydrof luoransäure-äthylester, 3.6-Dimethyl-9-[2-carbäthoxy-phenyl] xanthydrol $C_{34}H_{23}O_4 = CH_3 \cdot C_6H_3 \cdot \frac{C(OH)(C_6H_4 \cdot CO_3 \cdot C_2H_5)}{O} \cdot C_6H_3 \cdot CH_3$ (Pseudobase der nachstehenden Salze).
- 3.6-Dimethyl-9-[2-carbāthoxy-phenyl]-xanthyliumchlorid, 3.6-Dimethyl-9-[2-carbāthoxy-phenyl]-xanthoxoniumchlorid. Zur Konstitution vgl. die Angaben in Bd. XVII, S. 117. B. Man erhält das Chlorid in Form seines Platinchlorid-Doppel-salzes durch Esterifizieren von 3.6-Dimethyl-fluoran (Syst. No. 2751) mit Alkohol und Chlorwasserstoff in der Wärme und Versetzen der Lösung mit konz. Platinchloridlösung (Ferrario, Neumann, Bl. [4] 5, 1098). 2[C₂₄H₂₁O₃]Cl + PtCl₄. Gelbe Krystalle.

2. Oxy-carbonsäuren mit 5 Sauerstoffatomen.

a) Oxy-carbonsäuren $C_nH_{2n-12}O_5$.

- 1. Oxy-carbonsäuren CaHaOb.
- 1. 3.6 Dioxy cumaron carbonsāure (2) $C_0H_0O_5$. Formel I [systematische Stammverbindung der 3.6-Dioxy-thionaphthen-carbonsāure-(2)].
- 3.6 Dioxy thionaphthen carbonsäure (2) bezw. 6 Oxy 3 oxo thionaphthen-dihydrid-carbonsäure (2) $C_0H_6O_4S$, Formel II bezw. III. B. Man versetzt 100 Tle. eines äquimolekularen Gemisches von Kaliumhydroxyd und Natriumhydroxyd mit 15 Tln. Wasser,

erhitzt auf 130—140°, trägt 25 Tle. des Monokaliumsalzes der S-[5-Sulfo-2-carboxy-phenyl]-thioglykolsäure (Bd. XI, S. 411) ein, hält $^3/_4$ Stdn. auf 160° und erhitzt schließlich auf 180° bis 185° (Höchster Farbw., D. R. P. 200202; C. 1908 II, 552). — Blättchen. Leicht löslich in kalter Sodalösung (H. F., D. R. P. 200351; C. 1908 II, 464). — Gibt beim Kochen mit Wasser 3.6-Dioxy-thionaphthen (Bd. XVII, S. 156) (H. F., D. R. P. 200202, 200351).

- 3-Oxy-6-methoxy-thionaphthen-carbonsäure-(2) bezw. 6-Methoxy-3-oxo-thionaphthendihydrid-carbonsäure-(2) $C_{10}H_8O_4S=CH_3\cdot O\cdot C_6H_4OS\cdot CO_2H$. B. Bei der Alkalischmelze von S-[5-Methoxy-2-carboxy-phenyl]-thioglykolsäure (Bd. X, S. 383) (H. F., D. R. P. 193724; C. 1908 I, 1011). Pulver. Schwer löslich in Wasser. Liefert beim Kochen mit Wasser 3-Oxy-6-methoxy-thionaphthen (Bd. XVII, S. 156).
- 3-Oxy-6-methylmercapto-thionaphthen-carbonsäure-(2) bezw. 6-Methylmercapto-3-oxo-thionaphthendihydrid-carbonsäure-(2) $C_{10}H_8O_3S_2=CH_3\cdot S\cdot C_8H_4OS\cdot CO_2H$. B. Beim Schmelzen von S-[5-Methylmercapto-2-carboxy-phenyl]-thioglykolsäure (Bd. X, S. 384) mit Ätzkali bei 180—200° (H. F., D. R. P. 193724; C. 1908 I, 1011). Schwer löslich in Wasser. Beim Kochen mit Wasser entsteht 3-Oxy-6-methylmercapto-thionaphthen (Bd. XVII, S. 157).
- 2. 4.6-Dioxy-cumaron-carbonsäure-(2), 4.6-Dioxy-cumarilsäure $\mathrm{C_9H_6O_6}$, Formel IV.

5 oder 7-Chlor-4.3-dimethoxy-cumarilsäure $C_{11}H_9O_8Cl$, Formel V oder VI. B. Aus

$$IV. \xrightarrow[O \ CCO_2H]{CH_3 \cdot O} \xrightarrow{CH_3 \cdot O}$$

3.6-oder 3.8-Dichlor - 5.7-dimethoxy-cumarin (S. 98) und Kalilauge (Tilden, Burrows, Soc. 81, 511). — F: 189°.

5.7-Dichlor-4.6-dimethoxy-cumarilsäure $C_{11}H_8O_5Cl_2$, Formel VII. B. Aus 3.6.8-Trichlor-5.7-dimethoxy-cumarin (S. 98) und Kalilauge (T., B., Soc. 81, 511). — F: 259°.

5 oder 7-Brom-4.6-dimethoxy-cumarilsäure C₁₁H₂O₅Br, Formel VIII oder IX. B. Aus 3.6- oder 3.8-Dibrom-5.7-dimethoxy-cumarin (S. 98) durch Kochen mit 10% jeer Kalilauge (T., B., Soc. 81, 509). — Krystalle (aus Essigsäure). F: 239°. — KC₁₁H₈O₅Br. Nadeln (aus verd. Alkohol).

Methylester $C_{12}H_{11}O_5Br = (CH_3\cdot O)_2C_6HBr < CH > C\cdot CO_2\cdot CH_3$. B. Aus dem Kaliumsalz der 5 oder 7 · Brom · 4.6 · dimethoxy · cumarilsäure und Methyljodid in Methylalkohol (T., B., Soc. 81, 509). — Nadeln. F: 181°.

3. 5.6-Dioxy-cumaron-carbonsäure-(2), 5.6-Dioxycumarilsäure C₂H₆O₅, s. nebenstehende Formel.

5.6-Diäthoxy-cumarilsäure $C_{13}H_{14}O_5 = (C_2H_5 \cdot O)_2C_8H_2 < CH > C \cdot CO_2H$. B. Beim Kochen von 3-Brom-6.7-diäthoxy-cumarin (S. 100) mit alkoh. Kali (WILL, B. 16, 2119). — Nadeln (aus sehr verd. Alkohol). F: 195°.

4. 6.7-Dioxy-cumaron-carbonsäure-(2), 6.7-Dioxy-cumarilsäure C₂H₆O₅, s. nebenstehende Formel.

6.7-Diäthoxy-cumarilsäure C₁H₁O₅ =

6.7-Diäthoxy-cumarilsäure $C_{13}H_{14}O_5 = HO$ $(C_2H_5\cdot O)_2C_6H_2 < CH > C\cdot CO_2H$. B. Beim Kochen von 3-Brom-7.8-diäthoxy-cumarin (S. 101) mit alkoh. Kali (Will, Jung, B. 17, 1085). — Asbestartige Nadeln. F: 154°. — Nimmt bei der Behandlung mit Natriumamalgam 1 Mol Wasserstoff auf.

5. 4.6-Dioxy-cumaron-carbonsäurc-(5) C₂H₆O₅, Formel I.

7-Nitro-6-oxy-4-methoxy-cumaron-carbonsäure-(5) $C_{10}H_7O_7N$, Formel II¹). B. Bei der Oxydation von Nitrobergapten (Formel III) (Syst. No. 2808) mit Salpetersäure

(D: 1,48) (POMERANZ, M. 14, 31). — Hellgelbe prismatische Nadeln (aus Eisessig). F: 200° (Zers.). Schwer löslich in heißem Wasser.

2. Oxy-carbonsäuren C10H8O5.

1. 4.6-Dioxy-3-methyl-cumaron-carbonsäure -(2),
4.6-Dioxy-3-methyl-cumarilsäure C₁₀H₈O₅, s. nebenstehende
Formel. B. Der Äthylester entsteht, wenn man 1 Mol Natriumäthylat in alkoh. Lösung mit 1 Mol Phloroglucin und dann mit 1 Mol
α-Chlor-ace'essigsäure-äthylester versetzt und bis zum Eintritt neutraler Reaktion kocht;
man verseift den Ester mit Alkalilauge (Lang, B. 19, 2934). — Krystalle mit ¹/₂ H₂O (aus
wasserhaltigem Alkohol). Wird bei 120° wasserfrei und schmilzt bei 281° unter Abgabe
von Kohlendioxyd. Löst sich in warmer konzentrierter Schwefelsäure mit indigoblauer
Farbe. — Die Salze sind in Wasser leicht löslich.

4.6-Dimethoxy-3-methyl-cumarilsäure $C_{12}H_{12}O_5 = (CH_3 \cdot O)_2C_6H_2 < C(CH_3) > C \cdot CO_2H$.

B. Der Äthylester entsteht aus rohem 4.6-Dioxy-3-methyl-cumarilsäure-äthylester durch Behandlung mit Dimethylsulfat und Kalilauge (v. Kostanecki, Tambor, B. 42, 908). Der Äthylester entsteht fer er, wenn man 2-Oxy-4.6-dimethoxy-acetophenon mit je 2 Mol Bromessigsäureäthylester und Natriumäthylat in alkoh. Lösung 12 Stdn. auf dem Wasserbade kocht (v. K., T., B. 42, 909). Man verseift den Äthylester durch Erhitzen mit alkoh. Kalilauge (v. K., T., B. 42, 909). — Nadeln (aus ziemlich viel Alkohol). F: 242° (Zers.). Die farblose Lösung in konz. Schwefelsäure wird durch Eisenchlorid schmutzig violettrot. — Liefert bei der trocknen Destillation 4.6-Dimethoxy-3-methyl-cumaron (Bd. XVII, S. 157).

4.6 - Dioxy - 3 - methyl - cumarilsäure - äthylester $C_{13}H_{13}O_5 = (HO)_3C_6H_2 \xrightarrow{C(CH_3)} C \cdot CO_2 \cdot C_2H_5$. B. s. im Artikel 4.6-Dioxy-3-methyl-cumarilsäure. — Nadeln (aus Alkohol). F: 242°; löst sich in kalten Alkalien (Lang, B. 19, 2934).

4.6 - Dimethoxy - 3 - methyl - cumarilsäure - äthylester $C_{14}H_{16}O_5 = (CH_3 \cdot O)_3C_6H_3 \stackrel{C(CH_3)}{\bigcirc} C \cdot CO_3 \cdot C_2H_5$. B. s. im Artikel 4.6-Dimethoxy-3-methyl-cumarilsäure. — Nadeln (aus verd. Alkohol). F: 133—134° (v. K., T., B. 42, 908).

2. 6.7-Dioxy-3-methyl-cumaron-carbonsäure-(2), 6.7-Dioxy-3-methyl-cumarileäure $C_{10}H_8O_5$, s. nebenstehende Formel.

6.7 - Dimethoxy - 8 - methyl - cumarilsäure $C_{18}H_{18}O_5=$ HO $(CH_3\cdot O)_3C_0H_3 < C(CH_2) > C\cdot CO_3H$. B. Durch 10—15 Minuten langes Kochen von 3-Chlor-

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von THOMS, BAETCKE, B. 45, 3705.

7.8-dimethoxy-4-methyl-cumarin (S. 105) mit überschüssiger Natronlauge (v. Pechmann, Hanke, B. 34, 361). — Blättchen (aus Alkohol oder Essigsäure). F: 184°. Die gelbe Lösung in konz. Schwefelsäure färbt sich beim Erhitzen grün, dann blau. — Gibt beim langsamen Destillieren 6.7-Dimethoxy-3-methyl-cumaron (Bd. XVII, S. 157).

3. Oxy-carbonsauren C11H10Os.

- 1. β -[4.6 Dioxy cumaronyl (5)] propionsäure $C_{11}H_{10}O_5$, s. nebenstehende Formel. β [4.6 Dimethoxy cumaronyl (5)] propionsäure

 (Methylhydrobergaptensäure) $C_{12}H_{14}O_5 =$ (HO₂C·CH₂·CH₂)·(CH₂·O)₂C₄H $\stackrel{\text{CH}}{\bigcirc}$ CH $\stackrel{\text{CH}}{\bigcirc}$). B. Aus Methylbergaptensäure (s. u.) durch Behandlung mit Natriumamalgam in sodaalkalischer Lösung (Pomeranz, M. 12, 391). Nädelchen (aus verd. Alkohol). F: 122°.
- 2. x.x-Dioxy-2.x-dinnethyl-cumaron-carbons dure-(3) $C_{11}H_{10}O_5=(HO)_{\sharp}C_{\sharp}H(CH_{\sharp}) \underbrace{C(CO_{\sharp}H)}_{\bullet}C_{\bullet}CH_{\sharp}.$
- x Chlor x.x dioxy 2.x dimethyl cumaron carbonsäure (3) äthylester $C_{13}H_{13}O_5Cl = (HO)_2O_6Cl(CH_2) \underbrace{C(CO_3 \cdot C_2H_5)}_{O} C \cdot CH_3$. B. Beim Einleiten von Schwefeldioxyd in die alkoh. Lösung von x-Chlor-x.x-dioxo-2.x-dimethyl-cumaron-dihydrid-(x.x)-carbonsäure-(3)-äthylester (S. 474); man fällt mit Wasser (Graebe, Levy, A. 263, 263). Nadeln (aus Alkohol). F: 170—171°. Leicht löslich in den gewöhnlichen organischen Lösungsmitteln mit Ausnahme von Ligroin.
- x-Chlor-x,x-diacetoxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester $C_{17}H_{17}O_7Cl = (CH_3\cdot CO\cdot O)_2C_6Cl(CH_2) \underbrace{C(CO_3\cdot C_2H_3)}_{O} C\cdot CH_3$. B. Man erwärmt x-Chlor-x,x-dioxy-2,x-dimethyl-cumaron-carbonsäure-(3)-āthylester kurze Zeit mit Acetylchlorid (G., L., A. 283, 264). Nadeln (aus Alkohol). F: 136°.
- x-Chlor-x.x-dibensoyloxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester $C_{27}H_{21}O_7Cl = (C_6H_5\cdot CO\cdot O)_2C_6Cl(CH_2) \stackrel{C(CO_2\cdot C_2H_6)}{\bigcirc} C\cdot CH_2$. B. Man erwärmt x-Chlor-x.x-dioxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester kurze Zeit mit Benzoylchlorid (G., L., A. 283, 264). F: 174—175°. Ziemlich schwer löslich in Alkohol, leichter in Benzol und Ather.

b) Oxy-carbonsauren C_nH_{2n-14}O₅.

β-[4.6-Diexy-cumarenyl-(5)]-acrylsäure C₁₁H₈O₅,

s. nebenstehende Formel.

β-[4.6-Dimethoxy - cumaronyl - (5)] - acrylsäure

(Methylbergaptensäure) C₁₂H₁₂O₅ =

(HO₂C·CH:CH)(CH₂·O)₂C₆H</br>
(HO₂C·CH:CH)(CH₂·O)₂C₆H</br>
(HO₂C·CH:CH)(CH₂·O)₃C₆H</br>
(HO₂C·CH:CH)(CH₂·O)₃C₆H</br>
(HO₂C·CH:CH)(CH₂·O)₃C₆H</br>
(HO₂C·CH:CH)(CH₂·O)₃C₆H</br>
(HO₂C·CH:CH)(CH₂·O)₃C₆H</br>
(HO₂C·CH:CH)(CH₂·O)₃C₆H</br>
(HO₂C·CH:CH)(CH₂·O)₃C₆H</br>
(HO₂C·CH:CH)
(HO₂C·CH:CH)
(HO₂C·CH:CH)
(HO₂C·CH:CH)
(HO₃C·CH:CH)
(H₃C·CH:CH)
(HO₃C·CH:CH)
(HO₃C·CH:

Prismen oder Nadeln. F: 142^3 . β -[4.6-Dimethoxy-cumaronyl-(5)]-acrylsäure-methylester (Methylbergaptensäure-methylester) $C_{14}H_{14}O_5 = (CH_2 \cdot O_2C \cdot CH \cdot CH)(CH_2 \cdot O_3C_2H < O CH^2)$. B. s. im Artikel Methylbergaptensäure. — Prismen (aus Alkohol). F: 52^6 (P., M. 12, 383).

¹⁾ So fermuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von THOMS, BARTCKE, B. 45, 8705.

c) Oxy-carbonsauren $C_n H_{2n-20} O_5$.

1. 4.6 - Dioxy - 3 - phenyl - cumaron - carbonsäure - (2), 4.6-Dioxy-3-phenyl-cumarilsäure $C_{15}H_{10}O_{5}$, s. nebenstehende Formel.

 $\textbf{4.6-Dimethoxy-8-phenyl-cumarils\"{a}ure} \ C_{17}H_{14}O_{5} = (CH_{3}\cdot O)_{9}C_{6}H_{3} \underbrace{C(C_{6}H_{5})} C\cdot CO_{9}H.$ B. Neben 3.5-Dimethoxy-2-benzoyl-phenoxyessigsäure durch Erhitzen von 2-Oxy-4.6-dimethoxy-benzophenon (Bd. VIII, S. 419) mit Bromessigsäureäthylester in Gegenwart von Natriumäthylat in Alkohol und Verseifung des Reaktionsprodukts mit alkoh. Kalilauge (MOTYLEWSKI, B. 42, 3150; Anzeiger Akad. Wiss. Krakau 1909 II, 769; C. 1910 I, 747).—Nadeln (aus Alkohol). Schmilzt bei 215° unter Entwicklung von Kohlensäure.— Liefert

2. 2.7-Dioxy-2-phenyl-[1.2-chromen]-carbonsäure-(4), 7-Oxy-2-phenylbenzopyranol-(2)-carbonsaure-(4) $C_{16}H_{19}O_{5}$, Formel I, vielleicht auch γ -0xo- γ -phenyl- α -[2.4-dioxy-phenyl]- α -propylen- α -carbonsäure, Formel II (vgl.

bei der trocknen Destillation 4.6-Dimethoxy-3-phenyl-cumaron (Bd. XVII, S. 162).

$$I. \qquad \begin{matrix} \text{CO$_{\$}H} \\ \text{C} \\ \text{C}_{\text{CH}} \\ \text{HO} \\ \begin{matrix} \text{C} \\ \text{C}(\text{OH}) \cdot \text{C$_{\$}H$_{5}} \end{matrix} \end{matrix} \qquad II. \qquad \begin{matrix} \text{CO$_{\$}H} \\ \text{C} \cdot \text{C} \cdot \text{C} \cdot \text{C} \cdot \text{C} \cdot \text{C}_{\$} \cdot \text{H}_{5} \\ \text{OH} \end{matrix}$$

Bd. I, S. 37, 38). Zur Formulierung der im folgenden angeordneten Verbindungen s. die Angaben bei 7-Oxy-2-phenyl-benzopyranol-(2), Bd. XVII, S. 162; vgl. ferner Decker, v. Fellenberg, A. 356, 297; ROBINSON, SCHWARZENBACH, Soc. 1930, 822.

Verbindung C₁₆H₁₂O₅, vielleicht C₁₆H₁₀O₄ + H₂O. B. Man versetzt die konz. Lösung von 7-Oxy-2-phenyl-4-carboxy-benzopyyliumchlorid (s. u.) in siedender wäßriger Natriumacetat-Lösung mit Essigsäure und läßt erkalten (Bülow, Wagner, B. 36, 1947). — Orangefarbene Blättchen. Die Lösung in konz. Schwefelsäure fluoresciert nicht (B., W.). — Bei der Oxydation mit Chromsäure in Eisessig entsteht 7-Oxy-2-phenyl-chromon (S. 58) (B., W.; vgl. dazu Decker, v. Fellenberg, A. 356, 297 Anm.). Bei der Destillation mit konz. Kalilauge erhält man Acetophenon und 2.4-Dioxy-benzoylameisensäure (Bd. X, S. 987)

7-Oxy-2-phenyl-4-carboxy-benzopyryliumsalze, 7-Oxy-2-phenyl-4-carboxy-benzopyroxoniumsalze [C_{1e}H₁₁O₄]Ac. — Chlorid. B. Durch Einleiten von Chlorwasserstoff in die Lösung von Resorcin und Benzoylbrenztraubensäure (Bd. X, S. 814) in Eisessig bei 60—80° (Bülow, Wagner, B. 36, 1947). Orangerotes Krystallpulver. Schwer löslich in heißem Wasser; löslich in warmer wäßriger Natriumacetat-Lösung, leicht löslich in heißen Wasser; löslich in Warmer wäßriger Natriumacetat-Lösung, leicht löslich in siedender alkoholischer Natriumacetat-Lösung, sowie in Natronlauge, Soda und Ammoniak; liefert in wäßr. Lösung mit Bleiscetat einen bordeauxroten, mit Zinnsalz einen braunroten Niederschlag. — Pikrat $[C_{1e}H_{11}O_4]O \cdot C_eH_2(NO_2)_2$. Orangerote Krystalle.

Verbindung $C_{1a}H_{1e}O_5 = C_{1e}H_{14}O_4 + H_2O(?)$. B. Man löst 7-Oxy-2-phenyl-4-carbäthoxy-benzopyryliumchlorid und Natriumscetat in Alkohol und fällt mit Wasser (Bülow, Wagner,

B. 86, 1951). — Amorphes, braunviolettes Pulver. Einw. von Essigsäureanhydrid und von Benzoylchlorid in Pyridin: B., W.

7 - Oxy - 2 - phenyl - 4 - carbāthoxy - benzopyryliumsalze, 7 - Oxy - 2 - phenyl - 4 - carbāthoxy - benzopyroxoniumsalze [C₁₈H₁₈O₄]Ac. Chlorid. B. Beim Einleiten von Chlorwasserstoff in die Lösung von Resorcin und Benzoylbrenztraubensäureäthylester in Eisessig (Bülow, Wagner, B. 36, 1950). Krystallinisches, im durchfallenden Licht orangerotes, im reflektierten Licht bronzeferbeiges Pulver. Sehr leicht löslich mit bordeauxroter Farbe in natriumacetathaltigem Alkohol, in Natronlauge und in Ammoniak, unlöslich in Sodalösung. — Pikrat $[C_{18}H_{18}O_4]O\cdot C_6H_2(NO_8)_3$. Dunkelrote Krystalle.

Verbindung C₁₈H₁₂O₅. B. Beim Kochen von 7-Oxy-2-phenyl-4-carboxy-benzopyrylium-chlorid mit entwässertem Natriumacetat und Essigsäureanhydrid in Eisessig (Büllow, Wagner, B. 36, 1949). Bei der Einw. von Essigsäureanhydrid auf die Lösung der Verbindung C₁₈H₁₂O₅ (s. o.) in Pyridin in der Kälte (B., W., B. 36, 1950). Beim Kochen von 7-Oxy-2-phenyl-4-carbäthoxy-benzopyryliumchlorid mit Natriumacetat und Eisessig (B., W., B. 36, 1952). — Citronengelbe blättrige Krystalle (aus Alkohol oder Eisessig). F: 157,5—158°.

Verbindung C₂₂H₁₄O₅. B. Aus der Verbindung C₁₂H₁₂O₅ (s. o.) und Benzoylchlorid in Pyridin unter Kühlung (Bülow, Wagner, B. 36, 1950). — F: 192° (Zers.).

d) Oxy-carbonsäuren C_nH_{2n-26}O₅.

- 1. Oxy-carbonsăuren $C_{20}H_{14}O_5$.
- 1. 2-[2.7-Dioxy-xanthyl]-benzoesäure, 2.7-Dioxy-hydroftuoransäure, Hydrochinonphthalin C₂₀H₁₄O₅. s. nebenstehende Formel. B. Beim Erhitzen von Hydrochinonphthalin (Syst. No. 2835) mit Zinkstaub und Natronlauge (EKSTRAND, B. 11, 716). Farblose Tafeln mit 1 C₆H₆ (aus Benzol).

 Verliert das Krystallbenzol bei 100—110°. F: 202—203°. Die Lösungen in Alkalien sind farblos. Löst sich in konz. Schwefelsäure mit roter Farbe. Geht durch Oxydation leicht in Hydrochinonphthalein über.
- 2.7-Diacetoxy-hydrofluoransäure, Diacetylhydrochinonphthalin, Hydrochinonphthalin-diacetat $C_{24}H_{18}O_7 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot \frac{CH(C_6H_4 \cdot CO_2H)}{O} \cdot C_6H_3 \cdot O \cdot CO \cdot CH_3$. B. Durch Kochen von Hydrochinonphthalin mit überschüssigem Essigsäureanhydrid (E., B. 11, 716). Farblose Prismen (aus Methylalkohol). F: 190—191°. Wird bei gelindem Erwärmen mit Alkalien unter Violettfärbung zersetzt.
- 2.7 Dioxy hydrofluoransäure äthylester, Hydrochinonphthalin äthylester $C_{22}H_{18}O_5 = HO \cdot C_6H_3 < CH(C_0H_4 \cdot CO_2 \cdot C_2H_5) > C_6H_3 \cdot OH$. B. Durch Einleiten von Chlorwasserstoff in die alkoh. Lösung von Hydrochinonphthalin (R. Meyer, Spengler, B. 36, 2958). Farblose Krystalle. F: 188—189°. Schwer löslich in Benzol und Toluol, ziemlich leicht löslich in Eisessig, Methylalkohol und Äthylalkohol.
- 2. 2-[3.6-Dioxy-xanthyl]-benzoesdure, 3.6-Dioxy-hydroftuoransdure, Fluorescin C₂₀H₁₄O₅, s. nebenstehende Formel. B. Beim Erwärmen von Fluorescein (Syst. No. 2835) mit Zinkstaub und Natronlauge (BAEYER, A. 183, 26). Farblose Nadeln (aus Eisessig), die sich an der Luft gelblich färben; F: 125—127° (Herzie, M. 18, 423). Löslich in Äther, die Lösung in Alkalien ist farblos (B.). Geht durch Oxydationsmittel sehr leicht in Fluorescein über (B.).
- 3.6 Diäthoxy hydrofluoransäure, Fluorescin diäthyläther $C_{24}H_{22}O_5 = C_2H_5 \cdot O \cdot C_6H_3 \cdot C_6H_4 \cdot CO_2H) \cdot C_6H_3 \cdot O \cdot C_2H_5$. B. Beim Kochen von lactoidem Fluoresceindiäthyläther (Syst. No. 2835) mit Zinkstaub in alkoholisch-alkalischer Lösung (Nietzri, Schröter, B. 28, 51). Beim Verseifen von Fluorescin-diäthyläther-äthylester mit kochender alkoholischer Kalilauge (N., Sch.). F: 187°. Leicht löslich in wäßr. Alkalien. Bei der Oxydation mit Chromsäure in Eisessig bildet sich lactoider Fluorescein-diäthyläther zurück. Beim Behandeln mit Alkohol und Chlorwasserstoff wird Fluorescein-diäthyläther-äthylester erhalten.
- 8.6 Discetoxy hydrofluoransäure, Discetylfluorescin, Fluorescin discetat $C_{24}H_{18}O_7 = CH_3 \cdot CO \cdot O \cdot C_6H_3 \cdot CH(C_6H_6 \cdot CO_2H) \cdot C_6H_3 \cdot O \cdot CO \cdot CH_8$. B. Beim Kochen von Fluorescin mit Essigsäureanhydrid und Natriumacetat (Herzig, M. 13, 423). Krystalle (aus Alkohol). F: 200—202°. Sehr leicht löslich in verd. Alkalien.
- 8.6 Dioxy hydrofluoransäure äthylester, Fluorescin äthylester $C_{22}H_{16}O_5 = HO \cdot C_6H_3 \cdot CO_2 \cdot C_2H_5 \cdot C_6H_3 \cdot OH$. B. Beim Erwärmen von Fluorescin in mit Chlorwasserstoff gesättigtem Alkohol (Herzig, M. 18, 424, 425). Nadeln (aus Eisessig), die sich an der Luft gelblich färben (H.); fast farblose Blättchen (aus verd. Alkohol) (Nietzei, Sohröter, B. 26, 46). F: 195—196° (H.), 196° (N., Sch.). C6H4 \cdot CO2 \cdot C2H5 \cdot C6H4 \cdot C02 \cdot C2H5 \cdot C6H4 \cdot C02 \cdot C2H5 \cdot C6H4 \cdot C02 \cdot C2H5 \cdot C6H4 - 8.6-Diäthoxy-hydrofluoransäure-äthylester, Fluorescin-diäthyläther-äthylester $C_{26}H_{26}O_5=C_2H_5\cdot O\cdot C_4H_3\underbrace{CH(C_6H_4\cdot CO_2\cdot C_2H_5)}_{O}C_6H_3\cdot O\cdot C_2H_5$. B. Beim Behandeln von Fluorescin-diäthyläther in alkoh. Lösung mit Chlorwasserstoff (NIETZKI, SCHRÖTER, B.

28, 52). Beim Erhitzen von Fluorescin-äthylester mit Äthylbromid und alkoh. Natriumäthylatlösung im geschlossenen Rohr auf 100° (N., Son.). — Farblose Nadeln (aus Alkohol). F: 110°. — Wird durch kochende alkoholische Kalilauge zu Fluorescin-diäthyläther verseift.

2. 2-[1.8-Dioxy-3.6-dimethyl-xanthyl]-benzoesäure, C6H4 · CO2H 1.8-Dioxy-3.6-dimethyl-hydrofluoransaure, a-Orcin-HO OH phthalin C₂₂H₁₈O₅, s. nebenstehende Formel¹). B. Bei mehrstündigem Erwärmen von α-Orcinphthalein (Syst. No. 2835) mit CH3. CH₃ Zinkstaub und Natronlauge (R. MEYER, H. MEYER, B. 29, 2633; vgl. Baever, E. Fischer, A. 183, 72). — Krystalle (aus 80% iger Essigsäure). Schmilzt bei 256% unter Übergang in α-Orcinphthalein (R. M., H. M.). Schwer löslich in Wasser, äußerst leicht in Alkohol, Aceton und Essigsäure (B., E. F.; vgl. R. M., H. M.). Löslich in konz. Schwefelsäure mit blaßgelber Farbe (R. M., H. M.). — Wird von Oxydationsmitteln leicht in α-Orcinphthalein übergeführt (R. M., H. M.). Gibt beim Kochen mit Essigsäureanhydrid die Verbindung C₂₄H₁₈O₅ (R. M., H. M.; vgl. B., E. F.).

Ver bindung C₂₄H₁₈O₅. B. Durch 2-stdg. Kochen von α-Orcinphthalin mit Essigsäureanhydrid (R. M., H. M., B. 29, 2633, 2634; vgl. B., E. F., A. 183, 73). — Krystalle (aus Benzol und Alkohol). E: 210°: unföslich in Alkalien; wird durch Kochen mit alkoh Kali in α-Orcinph

und Alkohol). F: 219°; unlöslich in Alkalien; wird durch Kochen mit alkoh. Kali in α-Orcin-

phthalin übergeführt (R. M., H. M.).

3. Oxy-carbonsäuren mit 6 Sauerstoffatomen.

a) Oxy-carbonsäuren $C_n H_{2n-2} O_6$.

3.4.51-Trioxy-5-methyl-furantetrahydrid-carbonsäure-(2), 3.4-Dioxy-5-oxymethyl-tetrahydrofuran-carbonsäure-(2), 3.4-Dioxy-5-oxymethyl-tetrahydrobrenzschleimsäure, Chitarsäure und Chitonsäure HO·HC—CH·OH $C_{6}H_{10}O_{6} = HO \cdot CH_{2} \cdot HC \cdot O \cdot CH \cdot CO_{2}H.$ Zur Konstitution vgl. E. FISCHER, ANDREAE, B. 36, 2588; VAN EKENSTEIN, BLANESMA, B. 43 [1910], 2360; E. FI., A. 381 [1911], 136; HAWORTH, HIRST, NICHOLSON, Soc. 1927, 1515.

- HO·HC—CH·OH a) Chitarsaure $C_0H_{10}O_6 = \frac{HO \cdot HC - (H \cdot OH)^2}{HO \cdot CH_2 \cdot HC \cdot O \cdot (CH \cdot CO_2H)^2}$. B. Man versetzt eine Lösung von 10 g Chitaminsäure (Bd. IV, S. 522) in 60 cm³ n-Salzsäure bei 0^0 mit einer Suspension von 10 g Silbernitrit in wenig Wasser; zur Reinigung der Chitarsäure stellt man das Calciumsalz dar und zerlegt es durch Oxalsäure (E. Fischer, Tiemann, B. 27, 145). — Krystalle. Chitarsaure ist in waßr. Lösung rechtsdrehend (E. Fi., T.). - Bei der Einw. von 30% igem Wasserstoffperoxyd auf das Calciumsalz in Gegenwart von Ferrosulfat erhält man d-Arabinose (Neuberg, B. 35, 4010, 4016). Beim Kochen des Calciumsalzes mit Essigsäureanhydrid und wasserfreiem Natriumacetat entsteht 5-Acetoxymethyl-brenzschleimsäure (S. 346) (E. Fi., Andreae, B. 36, 2592). — $Ca(C_6H_9O_6)_2 + 4H_2O$. Krystalle. Sehr leicht löslich in heißem Wasser, fast unlöslich in absol. Alkohol (E. Fi., T.; E. Fi., A.).
- HO·HC——CH·OH b) Chitonsaure $C_6H_{10}O_6 = HO \cdot CH_2 \cdot HC \cdot O \cdot CH \cdot CO_2H$. B. Durch Oxydation von Chitose (S. 161) mit Bromwasser (E. FISCHER, TIEMANN, B. 27, 138). — Darst. Man versetzt eine Lösung von 50 g salzsaurem d-Glykosamin (Bd. IV, S. 328) in 250 g Wasser unter Kühlung mit einem geringen Überschuß von Silbernitrit, filtriert, fällt überschüssiges Silber durch Salzsäure und läßt das Filtrat stehen; nach 6 Stdn. erwärmt man auf dem Wasserbad, verdünnt mit Wasser bis auf 400 cm³ und fügt zur Lösung 110 g Brom; nach ca. 36-stdg.

¹⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von BAEYER, A. 372, 120 und ORNDOBFF, ALLEN, Am. Soc. 37, 1201.

³⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] wird von LEVENE, LA FORGE, J. biol. Chem. 21, 354 und LEVENE, Bio. Z. 124, 46, 66 der Chitarsaure die Konfiguration einer Anhydro-d-glykonsäure, der Chitonsäure die Konfiguration einer Anhydro-d-mannonsaure zugesprochen.

Stehen erhitzt man zur Entfernung des freien Broms, fügt 100 g Bleiweiß zu und filtriert; aus dem Filtrat entfernt man den Rest des Bromwasserstoffs durch Silberoxyd und überschüssiges Silber sowie Blei durch Schwefelwasserstoff und kocht zur Entfernung des Schwefelwasserstoffs; zur Reinigung der Chitonsäure stellt man ihr Calciumsalz dar und zerlegt es durch Oxalsäure (E. Fr., T.). — Die freie Säure ist nur im Gemisch mit ihrem Lacton als Sirup bekannt. [a]: +44,5° (in Wasser bei Gegenwart von etwas Salzsäure; p = 8,8) (E. Fr., T.). — Beim Erwärmen mit Salpetersäure (D: 1,2) entsteht Isozuckersäure (S. 364) (E. Fr., T.; vgl. E. Fr., Andreae, B. 36, 2589). Beim Kochen des Calciumsalzes mit Essigsäureanhydrid und wasserfreiem Natriumacetat bildet sich 5-Acetoxymethylbrenzschleimsäure (S. 346) (E. Fr., A.). — Ca(C₆H₉O₆)₂ + 2 H₂O (bei 140° an der Luft getrocknet). Vierseitige Plättchen (aus Wasser). Verliert das Krystallwasser durch 10-stdg. Erhitzen auf 140° bei 10 mm Druck (E. Fr., A.). 1 Tl. des krystallwasser baltigen Salzes löst sich in 12 Tln. Wasser von 20° (E. Fr., T.). [a]: +32,8° (in Wasser; p = 9) (E. Fr., T.).

b) Oxy-carbonsäuren C_nH_{2n-4}O₆.

Oxy-carbonsauren C.H.O.

1. 4-Oxy-furantetrahydrid-dicarbonsäure-(2.2), 4-Oxy-tetrahydro-furan-dicarbonsäure-(2.2) $C_6H_8O_6 = HO \cdot HC - CH_3$ B. Das entsprechende

furan-dicarbons"aure-(2.2) $C_6H_8O_6=\frac{H_8C\cdot O\cdot C(CO_2H)_2}{H_8C\cdot O\cdot C(CO_2H)_2}$. B. Das entsprechende Diamid entsteht durch Einw. eines Überschusses von konzentriertem alkoholischem Ammoniak

Diamid entsteht durch Einw. eines Überschusses von konzentriertem alkoholischem Ammoniak auf α-Brom-δ-oxy-γ-valerolacton-α-carbonsäure-amid (Syst. No. 2624); die Säure wird durch Erwärmen des Diamids mit Natronlauge auf dem Wasserbade erhalten (Traube, B. 37, 4542, 4543). — Würfelförmige Krystalle mit 1 H₂O (aus Wasser). Verliert das Krystallwasser bei ca. 130°. — Geht bei mehrstündigem Erhitzen mit Wasser im geschlossenen Rohr auf 150—160° in 4-Oxy-tetrahydrofuran-carbonsäure-(2) (S. 344) über. — Ag₃C₆H₆O₆. Krystalle (aus Wasser). — Bleisalz. Krystallinisch. Schwer löslich in Wasser.

Diamid $C_6H_{10}O_4N_3 = \frac{HO \cdot HC - CH_3}{H_3C \cdot O \cdot C(CO \cdot NH_3)_3}$. B. s. im vorhergehenden Artikel. — Krystelle (aus verd. Alkohol) (T., B. 37, 4542).

- 2. 3-Oxy-furantetrahydrid-dicarbonsäure-(2.5). 3-Oxy-tetrahydrofuran-dicarbonsäure-(2.5) $C_{\mathbf{e}}H_{\mathbf{e}}O_{\mathbf{e}} = \frac{H_{\mathbf{e}}C CH \cdot OH}{HO_{\mathbf{e}}C \cdot HC \cdot O \cdot CH \cdot CO_{\mathbf{e}}H} .$
- $\begin{array}{lll} \textbf{4-Chlor-8-oxy-furantetrahydrid-dicarbons \"{a}ure-(2.5), 4-Chlor-8-oxy-tetrahydro-ClHC-CH\cdot OH} \\ \textbf{furan-dicarbons \~{a}ure-(2.5)} & \textbf{C}_{6}\textbf{H}_{7}\textbf{O}_{6}\textbf{Cl} = \frac{\textbf{ClHC}-\textbf{CH}\cdot \textbf{CO}_{8}\textbf{H}}{\textbf{HO}_{9}\textbf{C}\cdot \textbf{HC}\cdot \textbf{O}\cdot \textbf{CH}\cdot \textbf{CO}_{8}\textbf{H}}. \end{array} \\ \textbf{Ist in zwei diastereo-isomera. Former beleavet.}$
- isomeren Formen bekannt.

 a) α-Form. B. Beim Sättigen einer wäßr. Lösung der cis-2.5-Dihydro-furan-dicarbonsäure-(2.5) (S. 324) mit Chlor in der Kälte (Hill, Wheeler, Am. 25, 473). Vierseitige Prismen (aus Wasser oder aus Äther + Ligroin). Zersetzt sich bei 209—210° (korr.). Leicht löslich in Alkohol und Aceton, schwer in Äther, unlöslich in Ligroin, Benzol, Chloroform und Schwefelkohlenstoff.
- b) β -Form. B. Beim Sättigen einer wäßr. Lösung der racemischen trans-2.5-Dihydrofuran-dicarbonsäure-(2.5) (S. 325) mit Chlor unter Eiskühlung (H., Wh., Am. 25, 480). Prismen mit $1^1/2$ H₂O (aus Wasser). Schmilzt wasserhaltig bei 95°.

c) Oxy-carbonsäuren C_nH_{2n-8}O₆.

 $\beta \cdot 0 \times y \cdot \beta \cdot [\alpha \cdot \text{furyi}] \cdot \text{isobernsteins} \\ \text{ure } C_b H_b O_6 = \frac{HC - CH}{HC \cdot O \cdot C \cdot CH(OH) \cdot CH(CO_9 H)_9} \\ \beta \cdot \text{Åthoxy} \cdot \beta \cdot [\alpha \cdot \text{furyl}] \cdot \text{isobernsteins} \\ \text{ure } - \text{disthylester } C_{16} H_{26} O_6 = \frac{HC - CH}{HC \cdot O \cdot C \cdot CH(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9} \\ \text{B. Das Natriumsalz entsteht beim Versetzen einer } \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_9 H_5) \cdot CH(CO_9 \cdot C_9 H_5)_9 \\ \text{Athoxy} \cdot \text{CH}(O \cdot C_$

d) Oxy-carbonsäuren $C_nH_{2n-10}O_6$.

[3.4.7 - Trioxy - chromanyl - (3)] - essigsäure $C_{11}H_{12}O_6$, Formel I.

[3.4-Dioxy-7-methoxy-chromanyl-(3)]-essigsäure, Dihydrobrasilsäure $C_{12}H_{14}O_6 = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_3 \cdot CH_2$. Das entsprechende Lacton (Formel II) s. Syst. No. 2827.

$$I. \quad _{HO}. \quad \bigcirc _{O}^{CH(OH) \sim O(OH_2 \sim CO_2H)} \qquad \qquad II. \quad \bigcirc _{CH \sim C(OH) \sim CH_2}^{O}$$

e) Oxy-carbonsäuren $C_n H_{2n-18} O_6$.

3.6.9-Trioxy-xanthen-carbonsäure-(9), 3.6-Dioxy-xanthydrol-carbonsäure-(9) $C_{14}H_{10}O_6$, Formel III.

Anhydroverbindung, 6 - Oxy - fluoron - carbonsäure - (9) $C_{14}H_8O_5$, Formel IV, s. Syst. No. 2624.

f) Oxy-carbonsäuren $C_nH_{2n-20}O_6$.

6-0xy-3-[4.5-dioxy-2-carboxy-benzyl]-cumaron, 4.5-Dioxy-2- $\{[6-oxy-cumaronyl-(3)]-methyl\}$ -benzoesäure $C_{1e}H_{1s}O_{s}$. Formel V.

4.5-Dimethoxy-2-{[6-methoxy-cumaronyl-(3)]-methyl}-benzoesäure, Pseudotrimethylbrasilon $C_{10}H_{18}O_6$, Formel VI. Zur Konstitution vgl. Perkin, Robinson, Soc.

$$V. \xrightarrow[C \circ CH_3]{CO_3H} VI. \xrightarrow[C \circ CH_3]{CO_3H} \circ CH_3$$

93, 501; 95, 385. — B. Durch kurze Einw. von kalter konzentrierter Schwefelsäure auf Trimethylbrasilon C₁₅H₁₆O₆ (S. 225) (Herzig, Pollak, B. 37, 631). — Farblose Krystalle (aus Alkohol). F: 170—173° (H., Pol.). Löst sich in wäßr. Alkalien und wird aus dieser Lösung durch Mineralsäuren unverändert gefällt (H., Pol., Galitzenstein, M. 25, 881). — Beim Behandeln von Pseudotrimethylbrasilon mit Permanganat in verd. Natriumcarbonatlösung entsteht 4.5-Dimethoxy-2-carboxy-phenylessigsäure (Bd. X, S. 558) (Per., R., Soc. 93, 516). Bei der Einw. von Kaliumhypobromit in der Kälte bildet sich die Verbindung der nebenstehenden Formel (Syst. No. 2842) (Per., R., Soc. 95, 387, 400). Pseudo-chi-schwidelich in Eisessiglösung mit Discetyl-

516). Bei der Einw. von Kaliumhypobromit in der Kälte bildet sich die Verbindung der nebenstehenden Formel (Syst. No. 2842) (PER., R., Soc. 95, 387, 400). Pseudotrimethylbrasilon liefert in Eisessiglösung mit Diacetylorthosalpetersäure Nitropseudotrimethylbrasilon (H., Pol., MAYRHOFER, M. 27, 760). Gibt beim Behandeln mit Schwefelsäure und Alkohol β-Anhydrotrimethylbrasilon (Bd. XVII, S. 203) (H., Pol.). Liefert bei längerem Kochen mit Essigsäureanhydrid und Natriumacetat β-Anhydrotrimethylbrasilon-acetat (Bd. XVII, S. 204) (H., Pol.; H., Pol., G.). Die Einw. von Methyljodid in alkoholisch-alkalischer Lösung oder von Diazomethan in Äther führt zur Bildung von Pseudotrimethylbrasilon-methylester (H., Pol., G.).

Pseudotrimethylbrasilon-methylester $C_{20}H_{20}O_6=CH_2\cdot O\cdot C_6H_2\cdot C_6H_2(O\cdot CH_2)_2\cdot CO_2\cdot CH_3$ CH. B. Beim Erwärmen von Pseudotrimethylbrasilon mit Methyljodid in alkoholisch-alkalischer Lösung oder besser bei Einw. von Diazomethan auf Pseudotrimethylbrasilon in äther. Suspension (H., Pol., G., M. 25,

882). — Krystalle (aus Alkohol). F: 82—83° (H., Pol., G.). — Gibt in Eisessig mit Diacetylorthosalpetersäure Nitropseudotrimethylbrasilon-methylecter (H., Pol., M., M. 27, 763).

Nitropseudotrimethylbrasilon $C_{10}H_{17}O_0N = O_2N \cdot C_{15}H_2O(O \cdot CH_2)_3 \cdot CO_2H$. B. Beim Behandeln von Pseudotrimethylbrasilon in Eisessig mit Diacetylorthosalpetersäure (Herzig, Pollak, Mayrhofer, M. 27, 760). — Gelbbraune Krystalle (aus Essigester). Schmilzt bei 210—214° unter Aufbrausen. Ist lichtempfindlich. — Liefert mit Essigsäureanhydrid und Natriumacetat die Verbindung $C_{51}H_{17}O_2N$.

Verbindung C₃₁H₁₇O₈N, vielleicht x-Nitro-3.6'.7'-trimethoxy-4'-acetoxy-brasan. B. Durch kurzes Kochen von Nitropseudotrimethylbrasilon mit Essigsäureanhydrid und Natriumacetat (H., Pol., M., M. 27, 761). — Gelbe Krystalle (aus Eisessig). Verfärbt sich beim Erhitzen; ist bei 260° noch nicht geschmolzen.

Nit. opseudotrinethylbrasilon - methylester $C_{20}H_{12}O_8N = (CH_3 \cdot O)_8C_{15}H_7O(NO_2) \cdot CO_2 \cdot CH_8$. (Die Zugehörigkeit zu dem oben behandelten Nitropseudotrimethylbrasilon ist ungewiß). B. Beim Behandeln einer Lösung von Pseudotrimethylbrasilon-methylester in Eisessig mit Diacetylorthosalpetersäure (H., Pol., M., M. 27, 763). — Krystalle (aus Alkohol). F: 196—198°. Indifferent gegen Diazomethan.

g) Oxy-carbonsäuren $C_nH_{2n-26}O_6$.

Gxy-carbonsauren C20H14O6.

1. $2-[2.7.9-Trioxy-xanthyl]-benzoesäure, 2.7.9-Trioxy-hydrofluoransäure, 2.7-Dioxy-9-[2-carboxy-phenyl]-xanthydrol <math>C_{10}H_{14}O_{5}$, Formel I. Das

entsprechende Lacton (Hydrochinonphthalein; Formel II) und dessen Hydrochlorid (2.7-Dioxy-9-[2-carboxy-phenyl]-xanthyliumchlorid) s. Syst. No. 2835.

- 2.7.9-Trioxy-hydrofluoransäure-methylester, 2.7-Dioxy-9-[2-carbomethoxy-phenyl]-xanthydrol $C_nH_{16}O_6 = HO \cdot C_8H_3 \underbrace{C(OH)(C_8H_4 \cdot CO_2 \cdot CH_3)}_{O} \cdot C_8H_3 \cdot OH$ (Pseudobase des nachstehenden Salzes).
- 2.7 Dioxy-9 [2 carbomethoxy phenyl] xanthyliumchlorid, 2.7 Dioxy-9 [2 carbomethoxy phenyl] xanthoxoniumchlorid [C₁₁H₁₆O₆]Cl. Zur Konstitution vgl. die Angaben in Bd. XVII, S. 117. B. Beim Einleiten von Chlorwasserstoff in die Lösung von Hydrochinonphthalein (Syst. No. 2835) in Methylalkohol (GREEN, KING, B. 39. 2370). Rote Krystalle. F: 215—220° (Zers.); schwer löslich in Wasser mit orangeroter Farbe, unlöslich in Äther (G., KI., B. 39, 2370). Ist in trocknem Zustand ziemlich stabil, zerfällt beim Erhitzen auf den Schmelzpunkt in Hydrochinonphthalein, Methylchlorid und Chlorwasserstoff (G., KI., B. 39, 2370). Wird beim Kochen mit Wasser langsam verseift (G., KI., B. 39, 2370). Liefert in wäßr. Lösung mit Natriumdicarbonat oder Natriumscetat einen unbeständigen dunkelbraunen Niederschlag, der beim Behandeln mit Salzsäure in das Chlorid zurückverwandelt wird (G., KI., B. 39, 2371; vgl. Kehrmann, A. 372 [1910], 298). Gibt mit überschüssigen Alkalien eine bläulichpurpurrote Lösung, aus der bei sofortigem Ansäuern das Chlorid regeneriert, nach längerem Stehen aber Hydrochinonphthalein gefällt wird (G., KI., B. 40, 3727).
- 2.9- Dioxy 7- methoxy hydrofluoransäure methylester, 2-Oxy 7- methoxy 9-[2-carbomethoxy-phenyl]-xanthydrol $C_{22}H_{18}O_6=HO\cdot C_8H_8 \underbrace{C(OH)(C_8H_4\cdot CO_2\cdot CH_3)}_{O} \cdot C_6H_3\cdot O\cdot CH_3$ (Pseudobase des nachstehenden Salzes).
- 2-Oxy-7-methoxy-9-[2-carbomethoxy-phenyl]-xanthyliumchlorid, 2-Oxy-7-methoxy-9-[2-carbomethoxy-phenyl]-xanthoxoniumchlorid [O₃H₁₇O₅]Cl. Zur Konstitution vgl. die Angaben in Bd. XVII, S. 117. B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung des lactoiden Monomethyläthers des Hydrochinonphthaleins (Syst. No. 2835) (Green, King, B. 40, 3730). Rote Tafeln. Schwer löslich in Wasser mit orangeroter Farbe; unlöslich in wäßr. Alkalien. Gibt beim Liegen Methylchlorid ab. Wird beim Erwärmen mit Alkalien zu dem lactoiden Monomethyläther des Hydrochinonphthaleins verseift.

- 9 Oxy 2.7 dimethoxy hydrofluoransäure methylester, 2.7 Dimethoxy 9 [2 carbomethoxy phenyl] xanthydrol $C_{23}H_{20}O_6=CH_3\cdot O\cdot C_6H_3 \cdot C(OH)(C_6H_4\cdot CO_2\cdot CH_3) \cdot C_6H_3\cdot O\cdot CK_3$ (Pseudobase der nachstehenden Salze).
- 2.7 Dimethoxy 9 [2 carbomethoxy phenyl] xanthyliumchlorid, 2.7 Dimethoxy 9 [2 carbomethoxy phenyl] xanthoxoniumchlorid. Zur Konstitution vgl. die Angaben in Bd. XVII, S. 117. B. Man erhält das Chlorid in Form seines Zinkchlorid-Doppelsalzes, wenn man Chlorwasserstoff in eine heiße, mit 100% eiger Schwefelsäure versetzte methylalkoholische Suspension des lactoiden Hydrochinonphthalein-dimethyläthers (Syst. No. 2835) einleitet, nach iängerem Stehen in konz. Kochsalzlösung einträgt, von dem entstehenden bräunlichen Niederschlag abfiltriert und das Filtrat mit konz. Zinkchlorid-Lösung versetzt (Green, King, B. 40, 3733). 2 [C₂₃H₁₉O₅]Cl + ZnCl₂. Orangerot. Leicht löslich in Wasser mit orangeroter Farbe (G., Ki.); wird durch Wasser rasch verseift (Kehrmann, A. 372, [1910], 297). Die wäßr. Lösung wird durch Alkalien unter Fällung des lactoiden Hydrochinonphthalein-dimethyläthers entfärbt (G., K.).
- 2. 2-[3.6.9-Trioxy-xanthyl]-benzoesäure, 3.6.9-Trioxy-hydroftuoransaure, 3.6-Dioxy-9-[2-carboxy-phenyl]-xanthydrol $C_{20}H_{14}O_{\epsilon}$, Formel I. Das

entsprechende Lacton (Fluorescein; Formel II) und dessen Salze (3.6-Dioxy-9-[2-carboxy-phenyl]-xanthyliumsalze) s. Syst. No. 2835.

Lactoide Derivate des Fluoresceins der Formel III s. Syst. No. 2835. Chinoide Derivate des Fluoresceins der Formel IV s. Syst. No. 2624.

 $\begin{array}{ll} \textbf{9-Oxy-8.6-dimethoxy-hydrofluorans}\\ \textbf{3.6-Dimethoxy-9-[2-carbomethoxy-phenyl]-xanthydrol} & C_{23}H_{20}O_6 =\\ \textbf{CH}_3\cdot\textbf{O}\cdot\textbf{C}_6H_3 & \textbf{C(OH)(C}_0H_4\cdot\textbf{CO}_2\cdot\textbf{CH}_3) & \textbf{C}_6H_3\cdot\textbf{O}\cdot\textbf{CH}_3 & \textbf{(Pseudobase der nachstehenden Salze)}. \end{array}$

3.6-Dimethoxy-9-[2-carbomethoxy-phenyl]-xanthyliumsalze, 3.6-Dimethoxy-9-[2-carbomethoxy-phenyl]-xanthoxoniumsalze[C₂₃H₁₉O₅]Ac. Zur Konstitution vgl. die Angaben in Bd. XVII, S. 117. — Chlorid. B. Man versetzt die Lösung des chinoiden Fluoresceindimethyläthers (Syst. No. 2624) in Nitrobenzol bei 150° mit Dimethylsulfat, gibt Äther zu der erkalteten Lösung hinzu, wodurch das methylschwefelsaure Salz gefällt wird, schüttelt das Ganze mit Wasser und scheidet aus der wäßr. Lösung mit Natriumchlorid das Chlorid aus (Kehrmann, Dengler, B. 42, 878). Aus 3.6-Dimethoxy-fluoran (Syst. No. 2835) durch Esterifizierung mit Methylalkohol und Salzsäure (K., D., B. 42, 872). Bernsteingelbe Prismen mit blauviolettem Metallschimmer (aus verd. Salzsäure). Sehr leicht löslich in Wasser und Alkohol zu einer goldgelben g. ün fluorescierenden Flüssigkeit, unlöslich in Äther. Aus der wäßr. Lösung fällt auf Zusatz von Alkalicarbonat oder Ammoniak nach längerer Zeit 3.6-Dimethoxy-fluoran. Die wäßr. Lösung schmeckt bitter. — Jodid. Goldgelbe Nädelchen. Ziemlich löslich in heißem Wasser. — Dichromat. Orangerote Nadeln. Löslich in heißem Wasser. — Dichromat. Orangerote Nadeln. Löslich in heißem Wasser. — Nitrat. Gelbe Blätter. Leicht löslich in Wasser. — 2[C₂₃H₁₉O₅]Cl + PtCl₄. Orangefarbene Körner.

4. Oxy-carbonsäuren mit 7 Sauerstoffatomen.

a) Oxy-carbonsäuren C_nH_{2n-2}O₇.

 $\begin{array}{c} \textbf{[3.4-Dioxy-5-oxymethyl-furyi-(2)]-glykolsäure, Chitoheptonsäure} \\ \textbf{HO\cdot HC---CH\cdot OH} \\ \textbf{C}_7\textbf{H}_{12}\textbf{O}_7 = \\ \textbf{HO}_2\textbf{C}\cdot \textbf{CH}(\textbf{OH})\cdot \textbf{HC}\cdot \textbf{O}\cdot \textbf{CH}\cdot \textbf{CH}_2\cdot \textbf{OH} \\ \textbf{von Blausäure und Kochen des Reaktionsprodukts mit Bleicarbonat; man fällt mit Bleicasig} \end{array}$

und Ammoniak und zersetzt das basische Bleisalz mit Schwefelwasserstoff (Neuberg, Wolff, Neimann, B. 35, 4022). — Die freie Säure ist nur in wäßr. Lösung bekannt. — $Ba(C_7H_{11}O_7)_2 + 2H_4O$. Amorphes gelbes Pulver.

Dibensoylderivat $C_{21}H_{20}O_0 = C_7H_{10}O_5(0\cdot C0\cdot C_0H_5)_2$. B. Beim Schütteln der Chitoheptonsäure mit Benzoylchlorid und $10^9/_0$ iger Natronlauge (Neu., W., Nei., B. 35, 4022). — Oktaeder mit $1\,H_2O$ (aus Alkohol). Sintert bei 110^0 und schmilzt bei $117-120^0$ unter geringer Gelbfärbung.

b) Oxy-carbonsäuren $C_n H_{2n-4} O_7$.

1. 3.4-Dioxy-furantetrahydrid-dicarbonsäure-(2.5), 3.4-Dioxy-tetrahydrofuran-dicarbonsäure-(2.5), "Isozuckersäure" $C_0H_8O_7=$

HO·HC—CH·OH

HO₂C·HC·O·CH·CO₂H

NOBER, B. 36, 2588.

Zur Konstitution vgl. Tiemann, B. 27, 124; E. Fischer,
Andrear, B. 36, 2588.

B. Beim Erwärmen von salzsaurem d-Glykosamin (Bd. IV, S. 328) mit verd. Salpetersäure (Tiemann, B. 17, 246; T., Haarmann, B. 19, 1258; T., B. 27, 119). An Stelle von salzsaurem Glykosamin kann man auch Chitin verwenden; Zusatz von etwas Salzsäure beschleunigt die Oxydation (T., B. 27, 120). Beim Erwärmen von 1 Tl. Chitonsäure (S. 359) mit 4 Tln. Salpetersäure (D: 1,2) im Wasserbad (E. Fischer, T., B. 27, 142; vgl. E. F., Andreae, B. 36, 2589).

Rhomben. F: 1850 (TIEMANN, B. 17, 247). Leicht löslich in Wasser und Alkohol, schwierig in Ather (T., B. 17, 247; T., HAARMANN, B. 19, 1259). Krystallisiert nach längerem Kochen mit Wasser nur sehr langsam aus der wäßr. Lösung aus (T., B. 27, 126). $[\alpha]_0^\infty$: $+46,1^\circ$ (in Wasser; p = 4,2) (Wegscheider, B. 19, 1260). Die wäßr. Lösung zeigt Mutarotation (T., B. 27, 137). Liefert in wäßr. Lösung bei der Einw. von Alkalihydroxyden, Erdalkalicarbonaten usw. wasserhaltige Salze (T., B. 17, 248; 27, 130; T., H., B. 19, 1260), die früher als Salze einer Tetraoxyadipinsäure ("Norisozuckersäure") bezeichnet wurden (T., B. 27, 126, 130), die aber richtiger als krystallwasserhaltige Salze der Isozuckersäure aufzufassen sind (vgl. E. FISCHER, ANDREAE, B. 36, 2588; MEYER-JACOBSON, Lehrbuch der Organischen Chemie, 2. Aufl., Bd. I, Tl. II [Leipzig 1913], S. 705). — Isozuckersäure zerfällt bei der Destillation im Kohlensäurestrom in Brenzschleimsäure, Wasser und Kohlendioxyd (T., B. 17, 249; T., H., B. 19, 1271). Wird durch Erhitzen mit Jodwasserstoffsäure (D: 1,67) in Gegenwart von rotem Phosphor im Druckrohr auf 145-150° zu Adipinsäure reduziert (T., H., B. 19, 1266). Beim Erhitzen im Chlorwasserstoffstrom erfolgt Spaltung in Wasser und Dehydroschleimsäure (T., H., B. 19, 1273). Durch Erhitzen mit Phosphorpentachlorid und Zers. des Reaktionsprodukts mit konz. Sodalösung erhält man 3-Chlor-2-3-dihydro-furan-dicarbonsäure-(2.5) (S. 324) (T., H., B. 19, 1275). Durch Sättigen einer Suspension von isozuckersaurem Calcium in absol. Alkohol mit Chlorwasserstoff, Ausschütteln der mit Wasser verdünnten Flüssigkeit mit Chloroform, Eindunsten der Chloroform-Lösung und Trocknen der bei 73° schmelzenden wasserhaltigen Verbindung (von Tiemann, B. 27, 127 als "Norisozuckersäurediäthylester" aufgefaßt) im Vakuum erhält man Isozuckersäurediäthylester (T., B. 17, 249; 27, 127; T., H., B. 19, 1263). Durch 2-stdg. Kochen von Isozuckersäure mit Acetylchlorid, Lösen des Reaktionsprodukts in Wasser, Ausschütteln mit Äther, Umkrystallisieren des Ätherextrakts aus Essigester und Trocknen der so erhaltenen wasserhaltigen Krystalle (von Tiemann als "Diacetylnorisozuckersäure" aufgefaßt) erhält man Diacetylisozuckersäure (S. 365) (T. B. 27, 129). Durch mehrstündiges Digerieren von Isozuckersäure mit überschüssigem Acetylchlorid im Wasserbad, Abdestillieren des Acetylchlorids, Aufnahme des Rückstands in Chloroform, dann in Äther und Schütteln der äther. Lösung mit Wasser erhielten Tiemann, Haarmann, B. 19, 1271 eine Verbindung $C_{14}H_{20}O_{13}$, die vielleicht als eine Verbindung von Discetylisozuckersäure mit Essigsäure $C_{10}H_{12}O_{12} + 2C_{2}H_{4}O_{2}$ (S. 365) aufzufassen ist. — Isozuckersäure gibt beim Erwärmen mit Isatin und Schwefelsäure auf 130—140° eine grüne Lösung (Yoder, Tollens, B. 84, 3461). Zur Charakterisierung von Isozuckersäure ist ihr Cinchoninsalz $C_{0}H_{3}O_{7} + 2C_{10}H_{22}ON_{2} + 3H_{2}O$ (Syst. No. 3513) geeignet (Neuberg, Wolff, B. 84, 3841, 3845).

Salze der Isozuckersäure (soweit wasserhaltig, früher als "norisozuckersaure" Salze bezeichnet). — $(NH_4)_2C_4H_4O_7+H_2O$. Nadeln (Tiemann, Harmann, B. 19, 1261). Wird

¹⁾ Die Konfiguration der Isozuckersäure wurde nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] durch LEVENE, LA FORGE, J. biol. Chem. 21, 352; C. 1915 II, 691 aufgeklärt; Isozuckersäure ist danach als Anhydro-mannozuckersäure zu bezeichnen.

bei 100° wasserfrei (T., B. 27, 131). — $KC_6H_7O_7 + 1^1/_2H_2O$. Prismen. Leicht löslich in Wasser (T., B. 19, 1260). Wird durch längeres Trocknen im Exsiccator und Erhitzen auf 100° wasser-(T., B. 19, 1260). Wird durch längeres Trocknen im Exsiccator und Erhitzen auf 100° wasserfrei (T., B. 27, 131). — K₂C₄H₄O₇ + H₄O. Zerfließlich. Wird durch Trocknen im Exsiccator und bei 100° wasserfrei (T., B. 27, 131). — CuC₂H₄O₇ + 4H₄O. Blaue Nadeln. Wird bei 110° wasserfrei und färbt sich dabei tiefblau (T., B. 27, 133). — Ag₃O₄H₆O₇ + H₄O. Farbloser krystallinischer Niederschlag (T., B. 17, 248). Sehr schwer löslich (T., H., B. 19, 1262). — MgC₆H₆O₇ + 3H₂O. Nadeln. Löslich in Wasser; wird bei 115° wasserfrei; bei höherer Temperatur erfolgt Zersetzung (T., B. 27, 135). — CaC₆H₆O₇ + 2H₂O. Rhomboeder. Wird bei 170° wasserfrei; zersetzt sich bei 210° unter Schwärzung (T., B. 27, 132). — SrC₆H₆O₇ + 2H₂O. Rhomboeder. Wird bei 110° wasserfrei (T., B. 27, 132). — BaC₆H₆O₇ + 2H₂O. Nadeln. Wird bei 120—130° wasserfrei (T., B. 27, 133). Ist in Wasser viel schwerer löslich als das Calciumsalz (T., H., B. 19, 1262). — ZnC₆H₆O₇ + 4H₂O. Nadeln. Wird bei 110—120° wasserfrei (T., B. 27, 135). — PbC₆H₆O₇. B. Man versetzt eine heiße, nicht zu verdünnte Lösung von Isozuckersäure mit Bleiacetat, bis der entstehende Niederschlag sich nicht mehr löst, und läßt erkalten (T., B. 27, 134). Krystalle. Zersetzt sich beim Umkrystallisieren aus Wasser. und läßt erkalten (T., B. 27, 134). Krystalle. Zersetzt sich beim Umkrystallisieren aus Wasser. - PbC₆H₆O₇+2H₂O(?). B. Durch Versetzen der siedenden Lösung von Isozuckersäure mit Bleiacetat und Umkrystallisieren des sich beim Erkalten ausscheidenden Niederschlags aus Wasser (T., B. 27, 134; vgl. T., H., B. 19, 1262). Nadeln. Wird bei 100° wasserfrei (T., B. 27, 134). — Cinchoninsalz $C_6H_6O_7 + 2C_{19}H_{21}ON_2 + 3H_2O$ s. Syst. No. 3513. — Chininsalz $C_6H_6O_7 + 2C_{20}H_{24}O_2N_2 + H_2O$ s. Syst. No. 3538. — Brucinsalz $C_6H_8O_7 + 2C_{23}H_{26}O_4N_2 + H_2O$ s. Syst. No. 4792.

3.4-Diacetoxy-tetrahydrofuran-dicarbonsäure-(2.5), "Diacetylisozuckersäure" $CH_3 \cdot CO \cdot O \cdot HC - CH \cdot O \cdot CO \cdot CH_3$. B. Man erhitzt eine Lösung von Isozucker-HO,C·HC·O·CH·CO,H säure in Acetylchlorid 2 Stdn. am Rückflußkühler, destilliert das überschüssige Acetylchlorid ab, löst den Rückstand in Wasser, schüttelt mit Äther aus und krystallisiert die beim Ver-

ab, lost the Nutskisht in Wasser, Schutter in Anter 2ds that Krystansiert the Bein Verdampfen des Äthers zurückbleibende Verbindung aus Essigester um (Tiemann, B. 27, 129). — Nadeln mit 1 H₂O (aus Essigester). F: 174°. Wird bei 100° wasserfrei.

Als eine Verbindung von Diacetylisozuckersäure mit Essigsäure C₁₀H₁₂O₀ + 2C₂H₄O₂ ist wahrscheinlich die Verbindung C₁₄H₂₀O₁₃ aufzufassen, die durch mehrstündiges Digerieren von Diacetylisozuckersäure mit überschüssigem Acetylchlorid im Wasserbad, Abdestillieren des Acetylchlorids, Aufnehmen in Chloroform, dann in Äther, Schütteln der äther. Lösung mit Wasser und Verdunsten der wäßr. Lösung erhalten wurde (Tiemann, Haarmann, B. 19, 1270; vgl. Tiemann, B. 27, 125). — Nadeln. F: 101°. Wird durch Erhitzen mit Wasser verseift.

3.4-Dioxy-tetrahydrofuran-dicarbonsäure-(2.5)-dimethylester, ,, Isozuckersäure-HO·HC—CH·OH $\label{eq:charge_constraints} dimethylester" \quad C_8H_{12}O_7 = \underbrace{CH_2 \cdot O_2C \cdot HC \cdot O \cdot CH \cdot CO_3 \cdot CH_3}_{CH_2 \cdot O_2C \cdot HC \cdot O_3 \cdot CH_3}.$ B. Durch Einw. von Chlorwasserstoff auf isozuckersaures Calcium in methylalkoholischer Suspension (TIEMANN, B. 27, 128). — Nadeln mit 1 H₂O. F: 51°.

3.4-Dioxy-tetrahydrofuran-dicarbonsäure-(2.5)-diäthylester, "Isozuckersäure-HO·HC-CH·OH diäthylester" $C_{10}H_{10}O_7 = \frac{1}{C_2H_5 \cdot O_3C \cdot HC \cdot O \cdot CH \cdot CO_3 \cdot C_2H_5}$. B. Durch Einw. von Chlorwasserstoff auf isozuckersaures Calcium in alkoh. Suspension (Tiemann, Haarmann, B. 19, 1262; TIEMANN, B. 27, 127). — Nadeln mit 1 H₂O (aus Benzol), die bei 73° schmelzen (T., H.; T.). Wird bei 1-tägigem Trocknen im Vakuum wasserfrei und schmilzt dann bei 101° (T.). Die wasserfreie Verbindung zieht an feuchter Luft rasch Wasser an unter Bildung der bei 73° schmelzenden Krystalle (T.). — Geht bei der Einw. von alkoh. Ammoniak in Isozuekersäurediamid über (T., H.; vgl. T.). Beim Behandeln des Diäthylesters mit überschüssigem Acetylchlorid im Wasserbad erhält man eine bei 47° schmelzende Verbindung C₁₈H₂₆O₁₂ [von Tiemann, B. 27, 128 als "Tetraacetylnorisozuckersäurediäthylester" aufgefaßt], die durch Umkrystallisieren aus heißem Wasser in Diacetylisozuckersäurediäthylester übergeht und vielleicht eine Verbindung des letzteren mit Essigsäureanhydrid $C_{14}H_{20}O_{2}+C_{4}H_{6}O_{3}$ darstellt (T., H., B. 19, 1268; T., B. 27, 125, 128).

8.4-Diacetoxy-tetrahydrofuran-dicarbonsäure-(2.5)-diäthylester, "Diacetyliso-3.4-Diacetoxy-tetrahydrofuran-dicarbonsäure-(2.5)-diäthylester, "Diacetyliso-CH₃·CO·O·HC—CH·O·CO·CH₃

suckersäure-diäthylester" $C_{14}H_{20}O_9 = \frac{C_1H_5 \cdot O_1C \cdot H \cdot C \cdot O \cdot CH \cdot CO_2 \cdot C_2H_5}{C_2H_5 \cdot O_1C \cdot H \cdot C \cdot O \cdot CH \cdot CO_2 \cdot C_2H_5}$. B. Aus der Verbindung $C_{18}H_{26}O_{12}$ (s. u.) durch Umkrystallisieren aus heißem Wasser (Tiemann, B. 27, 128). — Nadeln (aus Wasser). F: 49°.

Als eine Verbindung von Diacetylisozuckersäurediäthylester mit Essigsäureanhydrid $C_{14}H_{20}O_9 + C_4H_4O_8$ ist wahrscheinlich die Verbindung $C_{18}H_{26}O_{12}$ aufzufassen, die durch Einw. von Acetylchlorid auf Isozuckersäurediäthylester oder durch

366

Erwärmen von Diacetylisozuckersäurediäthylester mit Essigsäureanhydrid erhalten wurde (Tiemann, Haarmann, B. 19, 1268; T., B. 27, 125, 128). — Nadeln. F: 47°. Leicht löslich in Wasser, Alkohol, Äther und Chloroform. — Zersetzt sich allmählich an feuchter Luft unter Abgabe von Essigsäure (T., H.). Geht beim Umkrystallisieren aus heißem Wasser in Diacetylisozuckersäure-diäthylester über (T.).

- 3.4 Dioxy tetrahydrofuran dicarbonsäure (2.5) diamid, "Isozuckersäure-HO·HC $CH \cdot OH$ B. Aus Isozuckersäurediäthylester und alkoh. Ammoniak bei Zimmertemperatur (Tiemann, Haarmann, B. 19, 1234; vgl. T., B. 27, 124). Krystelle. F: 226°; leicht löslich in Wasser, schwer in Alkohol und Äther, unlöslich in Chloroform und Benzol; $[\alpha]_D: +7,2°$ (in wäßr. Lösung; c=5) (T., H.). Liefert bei der trocknen Destillation im Kohlensäurestrom Brenzschleimsäureamid (T., H.). Wird durch Kochen mit Salzsäure zu Isozuckersäure verseift (T., H.).
- 3.4 · Dioxy tetrahydrofuran dicarbonsäure (2.5) dianilid, "Isosuckersäure-HO·HC——CH·OH dianilid" $C_{18}H_{18}O_5N_2 = {}_{C_6H_5\cdot NH\cdot CO\cdot HC\cdot O\cdot CH\cdot CO\cdot NH\cdot C_6H_5}$. Beim Erhitzen von Isozuckersäurediäthylester mit Anilin (Tiemann, Haarmann, B. 19, 1265; vg.. T., B. 27, 124). Nadeln (aus Alkohol). F: 231°; leicht löslich in Alkohol, wenig in Äther, Chloroform und Benzol (T., H.).
- 2. 3.4-Dioxy-pyrantetrahydrid-dicarbonsäure-(2.6), 3.4-Dioxy-tetrahydropyran-dicarbonsäure-(2.6) $C_7H_{10}O_7 = H_2C \cdot CH(OH) \cdot CH \cdot OH + H_2C \cdot HC O CH \cdot CO_2H$. Moglicherweise besitzt die Hydromekonsäure (8. 505) diese Konstitution.

c) Oxy-carbonsäuren $C_nH_{2n-8}O_7$.

 $3.4 - Dioxy-furan-dicarbons \"{a}ure-(2.5) \quad C_8H_4O_7 = \frac{HO \cdot C - C \cdot OH}{HO_2C \cdot C \cdot O \cdot C \cdot CO_2H} \quad \text{bezw. desmotrope Formen.}$

Diäthylester $C_{10}H_{12}O_7 = C_4H_2O_3(CO_2 \cdot C_2H_3)_3$. B. Aus Oxalsäurediäthylester und Diglykolsäure-diäthylester (Bd. III, S. 238) in Äther in Gegenwart von Natriumäthylat; man zersetzt die erhaltene Natriumverbindung durch verd. Schwefelsäure (Johnson, Johns, Am. 36, 293). — Prismen (aus Alkohol). F: 189°. Leicht löslich in heißem Alkohol. — Na $_2C_{10}H_{10}O_7$. Weißes Pulver.

d) Oxy-carbonsäuren $C_n H_{2n-20} O_7$.

6.7 - Dioxy - 3 - [4.5 - dioxy - 2 - carboxy - benzyl] - cumaron, 4.5 - Dioxy - 2 - $\{[6.7 - dioxy - cumaronyl - (3)] - methyl\}$ - benzoes äure $C_{16}H_{12}O_7$, Formel I.

4.5 - Dimethoxy - 2 - $\{[6.7 - \text{dimethoxy} - \text{cumaronyl} - (3)] - \text{methyl}\}$ - benzoesäure, Pseudotetramethylliämatoxylon (zu dieser Bezeichnung vgl. Herzig, Pollak, Mayrhofer, M. 27, 760) $C_{20}H_{20}O_7$, Formel II. Zur Konstitution vgl. die Betrachtungen von

PERKIN, ROBINSON (Soc. 93, 501; 95, 385) über die Konstitution des Pseudotrimethylbrasilons. — B. Bei kurzer Einw. von kalter konzentrierter Schwefelsäure auf Tetramethylhämatoxylon (S. 251) (Herzig, Pollak, B. 37, 631, 632). — Krystalle (aus Alkohol). F: 165—167⁶ (He., Po., B. 37, 632). Löslich in kalten Alkalien; wird durch Säuren aus diesen

Lösungen gefällt (He., Po., GALITZENSTEIN, M. 25, 881; He., Po., FISCHER, M. 27, 748).

— Ist gegen Reduktionsmittel resistent (He., Po., Fi.). Cibt in Eisessig-Lösung mit Diacetyl-orthosalpetersäure je nach den Bedingungen Nitro- und Dinitropseudotetramethylhämatoxylon (He., Po., Mayrhofer, M. 27, 764). Liefert mit Kaliumhypobromit in der Kälte die Verbindung der Formel I (Syst. No. 2843) (Perkin, Robinson, Scc. 95, 406). Bei längerem Kochen mit Essigsäuroanhydrid und Natriumacetat eutsteht \(\beta \)-Anhydrotetramethylhämatoxylon-acetat (Bd. XVII. S. 224) (He., Po., B. 36, 3714; 37, 632).

4.5 - Dimethoxy - 2 - $\{[6.7 - \text{dimethoxy} - \text{cumaronyl} - (3)] - \text{methyl}\}$ - benzoesäuremethylester, Pseudotetramethylhämatoxylon - methylester $C_{21}H_{22}O_{7}$, Formel II. B. Beim Erhitzen von Pseudotetramethylhämatoxylon in alkoh. Kalilauge mit Methyljodid (Herzig, Pollax, Fischer, M. 27, 749). Man versetzt Pseudotetramethylhämatoxylon mit Methylalkohol und sättigt rin Chlorwasserstoff (H., P., F.). — Nadeln (aus Alkohol). F: 99—102°. — Wird durch Kochen mit alkoh. Kalilauge leicht verseift.

Nitropseudotetramethylhämatoxylon $C_{20}H_{19}O_{9}N=(CH_{3}\cdot O)_{4}C_{15}H_{6}O(NO_{2})\cdot CO_{2}H.$ B. Man löst 1 Gew.-Tl. Pseudotetramethylhämatoxylon in dem 10-fachen Volumen Eisessig und versetzt mit dem doppeltem Volumen Diacetyl-orthosalpetersäure unter Kühlung (Herzig, Pollak, Mayrhofer, M. 27, 764). — Hellgelbe Nadeln (aus Eisessig). F: 221—222°. Sehr schwer löslich in kaltem Eisessig und Essigester. — Liefert mit Diazomethan den bei 131—136° schmelzenden Nitropseudotetramethylhämatoxylon-methylester.

Verbindung C₂₂H₁₉O₂N vom Schmelzpunkt 198—200°, vielleicht x-Nitro-3.4.6′.7′-tetramethoxy-4′-acetoxy-brasan. B. Beim Erhitzen von Nitropseudotetramethylhämatoxylon mit Essigsäureanhydrid und Natriumacetat, neben geringen Mengen des Isomeren vom Schmelzpunkt 289—291° (s. u.) (Herzig, Pollak, Mayrhofer, M. 27, 765). — Schwefelgelbe Nadeln (aus Essigsster). F: 198—200°. Sehr leicht löslich in Essigster. — Wird durch Behandlung mit Essigsäureanhydrid und Schwefelsäure in die isomere Verbindung umgewandelt.

Verbindung C₂₂H₁₉O₉N vom Schmelzpunkt 289—291°. B. Aus Nitropseudotetramethylhämatoxylon durch Einw. von Essigsäureanhydrid in Gegenwart einiger Tropfen konz. Schwefelsäure (Herze, Pollak, Mayrhofer, M. 27, 766). Beim Behandeln der Verbindung C₂₂H₁₉O₉N vom Schmelzpunkt 198—290° mit Essigsäureanhydrid und Schwefelsäure (H., P., M.). — Hellgelbe Nadeln (aus Essigester). F: 289—291°. Schwer löslich in Essigester.

Bei 206—207° schmelzender Nitropseudotetramethylhämatoxylon-methylestei $C_{21}H_{21}O_{2}N=(CH_{3}\cdot O)_{4}C_{15}H_{6}O(NO_{2})\cdot CO_{2}\cdot CH_{3}$. B. Aus Pseudotetramethylhämatoxylon-methylester und Diacetyl-orthosalpetersäure in Eisessig, neben zwei Isomeren (s. u.) (Herzig, Pollak, Mayrhofer, M. 27, 769). — Gelbe Nadeln (aus Eisessig). F: 206—207°. Schwer löslich in Eisessig.

Bei 162—165° schmelzender Nitropseudotetramethylhämatoxylon-methylester $C_{31}H_{41}O_{\bullet}N = (CH_3\cdot O)_4C_{12}H_6O(NO_2)\cdot CO_2\cdot CH_3$. B. s. im vorangehenden Artikel. — Gelbe Nadeln (aus Alkohol). F: 162—165°, leicht löslich in Eisessig (H., P., M.).

Bei 131—136° schmelzender Nitropseudotetramethylhämatoxylon-methylester $C_{21}H_{21}O_{9}N=(CH_{3}\cdot O)_{4}C_{18}H_{6}O(NO_{2})\cdot CO_{3}\cdot CH_{3}$. B. Durch Methylierung von Nitropseudotetramethylhämatoxylon mit Diazomethan (H., P., M., M. 27, 771). Eine weitere Bildung s. im vorletzten Artikel. — Gelbe Krystalle (aus Alkohol). F: 131—136°. Leicht löslich in Eisessig.

Dinitropseudotetramethylhämatoxylon $C_{20}H_{18}O_{11}N_3 = (CH_3 \cdot O)_4C_{18}H_8O(NO_2)_2 \cdot CO_2H$.

B. Aus 1 Tl. Pseudotetramethylhämatoxylon, 4 Tln. Eisessig und 4 Tln. Diacetyl-orthosalpetersäure unter Kühlung (Herzig, Pollak, Mayrhofer, M. 27, 767). — Krystalle (aus Eisessig). F: 173—176° (Zers.). Ziemlich schwer löslich in Eisessig.

Verbindung $C_{22}H_{18}O_{11}N_2$, vielleicht x.x-Dinitro-3.4.6'.7'-tetramethoxy-4'-acetoxy-brasan. B. Beim Erhitzen von Dinitropseudotetramethylhämatoxylon mit Essigsäureanhydrid und Natriumacetat (H., P., M.). — Gelbe Nadeln (aus Essigester). Schmilzt unscharf bei 266—268° unter Gasentwicklung. Schwer löslich in Eisessig.

e) Oxy-carbonsäuren $C_nH_{2n-26}O_7$.

Oxy-carbonsauren C20H14O7.

- 1. 2-[1.3.6.8-Tetraoxy-xanthyl]-benzoesäure,
 1.3.6.8-Tetraoxy-hydrofluoransäure C₂₀H₁₄O₇, s. nebenstehende Formel. B. Beim Behandeln von Phloroglucinphthalein
 (Syst. No. 2843) mit Zinkstaub und Natronlauge (LINK, B. 13, 1653). Amorphe, rötlichgelbe Masse. Löslich in Wasser, Alkohol und Essigsäure. Die Lösung in Alkalien ist farblos, wird aber an der Luft hellorange unter Rückbildung von Phloroglucinphthalein.
- 2. 2-[3.4.5.6-Tetraoxy-xanthyl]-benzoesdure,
 3.4.5.6-Tetraoxy-hydrofluoransdure, Gallin C₂₀H₁₄O₇,
 s. nebenstehende Formel. Zur Konstitution vgl. Orndorff,
 Brewer, Am. 23, 429; 26, 152. B. Aus Gallein (Syst.
 No. 2843) durch Kochen mit Zinkstaub und verd. Schwefelsäure
 (Barer, B. 4, 556; Buchka, A. 209, 269; vgl. dazu Orndorff, Brewer, Am. 23, 428),
 mit Zinkstaub und Ammoniak (Bu., A. 209, 268) oder durch Einw. von Zinkstaub und Kalilauge in der Kälte (Bu., A. 209, 266; vgl. dazu O., Br., Am. 23, 428). Nadeln (aus Äther),
 Prismen (aus wäßr. Pyrogallollösung). Rötet sich schnell an der Luft (Bar.; Bu.). Leicht löslich in Alkohol, Eisessig und Aceton, etwas schwerer in Wasser; ziemlich leicht löslich in verd. Mineralsäuren (Bu.). Liefert beim Behandeln mit konz. Schwefelsäure Cörulin (S. 233) (Bu.).
- 3.4.5.6-Tetraacetoxy-hydrofluoransäure, Tetraacetylgallin, Gallin-tetraacetat $C_{28}H_{22}O_{11} = (CH_3 \cdot CO \cdot O)_2C_6H_3 CH(C_6H_4 \cdot CO_2H) C_6H_2(O \cdot CO \cdot CH_2)_2$. B. Man kocht 5 g Gallein mit 5 g geschmolzenem Natriumacetat und 20 cm³ Acetanhydrid 15 Minuten, fügt 2 g Zinkstaub zu und kocht abermals 15 Minuten (Orndorff, Brewer, Am. 26, 129). Durch Erhitzen von Gallin mit Essigsäureanhydrid (Buchka, A. 209, 269; vgl. O., Br., Am. 26, 125). Trikline (GILL, Am. 26, 125) Krystalle (aus Alkohol und Essigsäure). F: 220° (Bu.), 216° (O., Br.). Leicht löslich in Alkohol, Chloroform, Benzol und Aceton (Bu.). AgC₂₈H₂₁O₁₁. Weiße Masse. Schwärzt sich am Licht; zersetzt sich beim Erhitzen; unlöslich in Alkohol (O., Br.).
- 3.4.5.6-Tetramethoxy-hydrofluoransäure-methylester, Gallin-tetramethyläther-methylester $C_{23}H_{24}O_7=(CH_2\cdot O)_3C_6H_2\frac{CH(C_6H_4\cdot CO_2\cdot CH_2)}{OO}C_6H_2(O\cdot CH_2)_3$. B. Aus Gallin durch Kochen mit alkoh. Kalilauge und Methyljodin in einer Wasserstoff-Atmosphäre (Obnorff, Brewer, Am. 26, 141). Krystalle (aus Alkohol und Essigsäure). F: 127°. Leicht löslich in Alkohol, Aceton und Essigsäure; unlöslich in kalten Alkalien. Bei der Verseifung entsteht ein farbloses Produkt, das mit Alkalien farblose Lösungen gibt.
- 3.4.5.6 Tetrachlor 2 [3.4.5.6 tetraacetoxy xanthyl] bensoesäure, Tetrachlorgallin-tetraacetat C₂₂H₁₈O₁₁Cl₄ = (CH₂·CO·O)₂C₆H₃·CH(C₆Cl₄·CO₂H) C₆H₃(O·CO·CH₃)₂.

 B. Beim Kochen einer Lösung von Tetrachlorgalleintetraacetat in Eisessig mit Zinkstaub und einigen Tropfen Kupfersulfat-Lösung (Orndorff, Deleridge, Am. 42, 230). Krystalle (aus Alkohol) mit 1¹/₂ C₄H₄O. F: 221—222°. Löslich in konz. Schwefelsäure mit roter Farbe; die Lösung wird beim Verdünnen mit Wasser erst farblos und dann grün. AgC₂₂H₁₇O₁₁Cl₄. Krystalle mit 1 C₆H₆ (aus Benzol). Zersetzt sich bei 230—240°. Löslich in Alkohol, Eisessig und Benzol, unlöslich in Wasser und in heißer verdünnter Salpetersäure. Ist gegen Licht ziemlich beständig. Wird durch Natronlauge oder Sodalösung unter Bildung von metallischem Silber zersetzt.

5. Oxy-carbonsäuren mit 9 Sauerstoffatomen.

3.4.5.6 - Tetraexy - xanthen - dicarbonsäure - (1.8)

C₁₈H₁₀O₄, s. nebenstehende Formel. B. Beim Erhitzen von 4.5.6-Trioxy - fluoron - dicarbonsäure - (1.8) (Syst. No. 2626) mit Glykose in Sodalösung (Möhlau, Kahl, B. 31, 270). — Prismen (aus 50% igem Alkohol). Zersetzt sich beim Erhitzen, ohne zu schmelzen. Sehr HO

OH
schwer löslich in heißem Wasser, leichter in verd. Essigsäure und verd. Alkohol; leicht löslich

in Alkalien; die alkal. Lösungen färben sich an der Luft rot. — Oxydiert sich in konz. Schwefelsäure wieder zu 4.5.6-Trioxy-fluoron-dicarbonsäure-(1.8). Liefert bei der Zinkstaub-Destillation Xanthen.

8.4.5.6 - Tetraacetoxy - xanthen - dicarbonsäure - (1.8) $C_{23}H_{18}O_{13} =$ $\text{HO}_2\text{C}\cdot(\text{CH}_3\cdot\text{CO}\cdot\text{O})_2\text{C}_6\text{H}<\underbrace{\text{CH}_3}_{\text{O}}>\text{C}_6\text{H}(\text{O}\cdot\text{CO}\cdot\text{CH}_3)_2\cdot\text{CO}_2\text{H}$. B. Beim Erhitzen von 3.4.5.6-Tetraoxy-xanthen-dicarbonsaure-(1.8) mit Essigsaureanhydrid und Natriumacetat auf 170° (M., K., B. 31, 271). — Blättchen (aus 50% iger Essigsäure). F: 241%. Leicht löslich in Eisessig, schwer in Alkohol, unlöslich in Äther.

6. Oxy-carbonsäuren mit 10 Sauerstoffatomen.

a) Oxy-carbonsäuren $C_nH_{2n-20}O_{10}$.

3.4.5.6.9 - Pentaoxy - xanthen - dicarbons äure - (1.8), 3.4.5.6 - Tetraoxy xanthydrol-dicarbonsäure-(1.8) C15H10O10, Formel I.

Anhydroverbindung, 4.5.8-Trioxy-fluoron-dicarbonsäure-(1.8) $C_{15}H_8O_8$, Formel II, s. Syst. No. 2626.

b) Oxy-carbonsäuren $C_n H_{2n-30} O_{10}$.

5-[3.6.9 - Trioxy - xanthyl] - benzol - tricarbons & ure - (1.2.4) , 3.6 - Dioxy -9-[2.4.5-tricarboxy-phonyl]-xanthydrol C11H14O10, Formel III. B. Das Kaliumsalz Resorcin-CO₂H entsteht aus

pyromellitein (Formel IV) (Syst. No. 2904) durch Behandeln mit Kalilauge (SILBERRAD, Soc. 89, 1798). — Ist nur in Form der Salze bekannt. - Kaliumsalz. Dunkelrotes Pulver. Sehr leicht

Rotes Pulver.

HO₂C HO₂C CO₂H ഭവ III. IV. C(OH) HO löslich in Wasser mit bräunlichroter Farbe und intensiv grüner Fluorescenz. -- Ag₃C₂₂H₁₁O₁₀.

5 - [2.4.5.7 - Tetrabrom - 3.6.9 - trioxy - xanthyl] - benzol - tricarbonsäure - (1.2.4), 2.4.5.7-Tetrabrom-8.6-dioxy-9-[2.4.5-tricarboxy-phenyl] - xanthydrol $C_{22}H_{10}O_{10}Br_4$, Formel V. B. Das Kaliumsalz entsteht aus Tetrabrom-resorcinpyromellitein (Syst.

No. 2904) durch Behandeln mit Kalilauge (S., Soc. 89, 1799). — Ist nur in Form der Salze bekannt. — Ag₅C₂₂H₅O₁₀Br₄. Roter Niederschlag.

5 - [2.4.5.7 - Tetrajod - 3.6.9 - trioxy - xanthyl] - benzol - tricarbonsaure - (1.2.4), 2.4.5.7 - Tetrajod - 3.6 - dioxy - 9 - [2.4.5 - tricarboxy - phenyl] - xanthydrol $C_{12}H_{10}O_{10}I_4$, Formel VI. B. Das Kaliumsals entsteht aus Tetrajod-resorcinpyromellitein durch Behandeln mit Kalilauge (S., Soc. 89, 1801). — Existiert nur in Form der Salze. — Ag₅C₂₂H₅O₁₀I₄. Rotes Pulver.

7. Oxy-carbonsäuren mit 11 Sauerstoffatomen.

Oxy-carbonsăuren $C_n H_{2n-8} O_{11}$.

1. 2.6 - Dioxy - pyrantetrahydrid - tetracarbon säure - (2.3.5.6) $C_0H_{10}O_{11} =$ HO,C.HC.CH, CH.CO,H

HO.C.(HO)C-O-C(OH).CO.H.

Tetraäthylester $C_{17}H_{26}O_{11} = OC_5H_4(OH)_3(CO_2 \cdot C_2H_5)_4$ s. Bd. III, S. 865.

- 2.6 Dioxy thiopyrantetrahydrid tetracarbonsäure (2.3.5.6) tetraäthylester $C_{17}H_{26}O_{10}S = SC_5H_4(OH)_2(CO_2 \cdot C_2H_5)_4$ s. Bd. III, S. 865.
- 2. 2.6 Dioxy 4 methyl pyrantetrahydrid tetracarbonsäure (2.3.5.6) $HO_2C \cdot HC \cdot CH(CH_3) \cdot CH \cdot CO_2H$ $\begin{array}{c} C_{10}H_{13}O_{11} = \frac{1}{HO_{2}C\cdot(HO)C-O-C(OH)\cdot CO_{2}H}.\\ \\ \text{Tetraäthylester } C_{12}H_{22}O_{11} = OC_{5}H_{3}(CH_{2})(OH)_{2}(CO_{2}\cdot C_{2}H_{5})_{4} \text{ s. Bd. III, S. 866.} \end{array}$
- 3. 2.6 Dioxy 4 āthyl pyrantetrahydrid tetracarbon s ăure (2.3.5.6) $CHO_2C \cdot HC \cdot CH(C_2H_3) \cdot CH \cdot CO_2H$ $\begin{array}{c} C_{11}H_{14}O_{11} = \underbrace{HO_{2}C\cdot(HO)\overset{\downarrow}{C}-O}_{C}\underbrace{-O\cdot(COH)\cdot CO_{2}H}^{\downarrow}. \\ \text{Tetraäthylester } C_{19}H_{30}O_{11} = OC_{5}H_{3}(C_{2}H_{5})(OH)_{2}(CO_{2}\cdot C_{2}H_{5})_{4} \text{ s. Bd. III, S. 867.} \end{array}$
- 4. 2.6 Dioxy 4 n hexyl pyrantetrahydrid tetracarbonsäure (2.3.5.6) HO2C·HC·CH([CH2]3·CH3)·CH·CO2H $C_{15}H_{25}O_{11} = HO_{2}C \cdot (HO)C - O - C(OH) \cdot CO_{2}H.$ Tetraäthylester $C_{33}H_{38}O_{11} = OC_5H_3([CH_2]_5 \cdot CH_3)(OH)_3(CO_2 \cdot C_2H_5)_4$ s. Bd. III, S. 868.

F. Oxo-carbonsäuren.

- 1. Oxo-carbonsäuren mit 4 Sauerstoffatomen.
 - a) Oxo-carbonsäuren $C_nH_{2n-4}O_4$.
- 1. Oxo-carbonsäuren C₅H₆O₄.
- 1. Butyrolacton- γ -carbonsäure, Lacton der α -Oxy-glutarsäure $C_bH_6O_4 =$ H₂C-CH, B. Beim Eindampfen der wäßr. Lösung der inakt. α-Oxy-glutarsäure OC·O·CH·CO*H, (Wolff, A. 260, 128). — Zerfließliche Nadeln. F: 49—50°. Sehr leicht löslich in Wasser und Alkohol, schwer in Äther, Chloroform, Benzol und Schwefelkohlenstoff. — Wird von siedender Jodwasserstoffsäure leicht zu Glutarsäure reduziert. Geht beim Kochen mit Wasser teilweise, beim Kochen mit Wasser und Carbonaten vollständig in α -Oxy-glutarsäure über. — Ba $(C_5H_5O_4)_2$ (im Vakuum getrocknet). Amorph. Sehr leicht löslich in Wasser, unlöslich in Alkohol.
- 2. Butyrolacton- α -carbonsaure $C_5H_6O_4=\frac{H_2C--CH\cdot CO_2H}{H_2C\cdot O\cdot CO}$. B. s. bei $[\beta\text{-Oxy-}$ äthyl]-malonsäure, Bd. III, S. 448. — Blaßgelbe Flüssigkeit. In Wasser leicht löslich; wird der wäßr. Lösung nicht durch Äther entzogen (FITTIG, RÖDER, A. 227, 19). — Zerfällt bei 120° in Kohlendioxyd und Butyrolacton. — $Ba(C_{z}H_{z}O_{z})_{z}$. Krystallinisch. Leicht löslich in Wasser.

Äthylester $C_7H_{10}O_4=C_4H_5O_2\cdot CO_2\cdot C_8H_5$. B. s. bei [β -Oxy-āthyl]-malonsāure, Bd. III, S. 448. — Öl. Kp₈₅: 175° (Traube, Lehmann, B. 34, 1976). — Liefert mit alkoh. Ammoniak [β -Oxy-āthyl]-malonsāure-diamid (T., L., B. 32, 721; 34, 1977). — NaC₇H₉Q₄. Blättchen (T., L., B. 34, 1976).

3. Butyrolacton - β - carbonsäure. Paraconsäure $C_5H_5O_4$. B. nebenstehende Formel. Die Stellungsbezeichnung gilt auch für die in diesem Handbuch gebrauchten, vom Namen "Paraconsäure" abgeleiteten Namen. — B. s. bei Itamalsäure, Bd. III, S. 446. — Äußerst zerfließliche, voc. CH_2 krystallinische Masse. F: 57—58° (Fittig, Beer, A. 216, 84), 55° (Reitter, B. 31, 2724). — Gibt bei der Destillation Citraconsäureanhydrid (Bd. XVII, S. 440) (Swarts, Z. 1867, 651). Verbindet sich mit Bromwasserstoffsäure zu Itabrombrenzweinsäure (Bd. II, S. 641) (Sw.). Beim Behandeln mit Basen entstehen itamalsaure Salze (Sw.). Die paraconsauren Salze entstehen durch Umsetzung des Silbersalzes mit den entsprechenden Metallchloriden (Sw.). — NaC₅H₅O₄. Zerfließliche Nadeln (Sw.), — AgC₅H₅O₄. B. Man neutralisiert Paraconsäure mit Silbercarbonat und verdunstet die Lösung im Vakuum (F., B.). Krystalle. Ziemlich löslich in siedendem Wasser. — Ca($C_5H_5O_4$) 2+3H₂O. Zerfließliche Nadeln (Sw.).

2. Oxo-carbonsäuren $C_6H_8O_4$.

 $1. \quad \delta\text{-Valerolacton-}\gamma\text{-carbons\"aure} \quad C_6H_8O_4 = \frac{H_2C\cdot CH_2\cdot CH\cdot CO_2H}{OC-O-CH_2}.$

Äthylester $C_8H_{18}O_4=C_5H_7O_2\cdot CO_2\cdot C_2H_5$. B. Entsteht neben α -Chlormethyl-glutarsäure-diäthylester beim Behandeln von α -[Oxymethyl]-glutarsäure mit absol. Alkohol und Chlorwasserstoff (Weidel, M. 11, 504). — Dickes Öl. Kp₅₆: 245—247°. Leicht löslich in Alkohol, Äther und Benzol. — Liefert bei der Einw. von Phosphorjodür P₂I₄ und wenig Wasser Äthyljodid und eine jodhaltige Säure, die bei der Reduktion mit Zink und verd. Schwefelsäure in α -Methyl-glutarsäure übergeht. Gibt beim Erwärmen mit Barytwasser α -[Oxymethyl]-glutarsäure.

2. Butyrolacton-γ-essigsäure, γ-Valerolacton-δ-carbonsäure, Lacton der β-Oxy-adipinsäure C₆H₈O₄ = H₂C — CH₂ B. Das Nitril entsteht in geringer Menge neben viel γ.δ-Dicyan-valeriansäure-äthylester beim Kochen von 1 Mol δ-Chlor-γ-valerolacton mit 3 Mol Cyankalium in Alkohol; man verseift das Nitril durch Erhitzen mit Barytwasser (Leuchs, Möbis, B. 42, 1230, 1233). — Krystalle (aus Wasser). F: 201—202° (korr.). Schwer löslich in Wasser, Benzol, Chloroform und Äther, leichter in Aceton und Essigester, leicht in Alkohol. — Gibt bei der Einw. von Methylalkohol und Chlorwasserstoff ein Produkt, das beim Erhitzen mit methylalkoholischem Ammoniak im Rohr auf 100° Pyrrolidon-(5)-essigsäure-(2)-amid (Syst. No. 3366) liefert.

3. γ-Methyl-butyrolacton-γ-carbonsäure, γ-Valerolacton-γ-carbonsäure $C_6H_6O_4 = \frac{H_2C-CH_2}{OC\cdot O\cdot C(CH_3)\cdot CO_4H}$ B. s. bei α-Oxy-α-methyl-glutarsäure, Bd. III, S. 448. —

Nadeln oder Prismen. F: 68—70° (Fittig, Bredt, A. 208, 63). Siedet im Vakuum fast unzersetzt bei 200—215° (Block, Kreckeler, Tollens, A. 238, 291). Zerfließlich (F., Br.). Sehr leicht löslich in Wasser, Alkohol und Äther (Bl., K., T.). — Geht schon beim Kochen mit Wasser und Calciumcarbonat in α-Oxy-α-methyl-glutarsäure über (F., Br.). Wird von siedender rauchender Salpetersäure nicht angegriffen (Bredt, B. 14, 1780). Zerfällt beim Erwärmen mit konz. Schwefelsäure auf 100° in Kohlenoxyd und Lävulinsäure (Bl., K., T.). Liefert bei mehrstündigem Kochen mit Anilin und salzsaurem Anilin 1-Phenyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-anilid (Syst. No. 3366) (R. Meyer, Kissin, Pfotenhauer, B. 42, 2837). — NH₄C₆H₇O₄. B. Beim Erhitzen der Säure mit α-Methyl-phenylhydrazin (M., K., Pr.). Leicht löslich in Wasser. — AgC₆H₇O₄. B. Durch Behandeln der Säure mit Silbercarbonat bei gewöhnlicher Temperatur (Br.). Leicht löslich in Wasser. — Ca(C₆H₇O₄)₃ + aq. Enthält 4—5 Mol Wasser (Bl., K., T.).

Methylester $C_7H_{10}O_4 = CH_2 \cdot C_4H_4O_3 \cdot CO_2 \cdot CH_3$. B. Durch Sättigen der methylalkoholischen Lösung der γ -Valerolacton- γ -carbonsäure mit Chlorwasserstoff und Erhitzen der Lösung auf dem Wasserbad (Block, Kreckeler, Tollens, A. 238, 296). — Flüssig. Kp: 252°.

Äthylester $C_8H_{12}O_4=CH_3\cdot C_4H_4O_3\cdot CO_3\cdot C_2H_5$. B. Durch Sättigen einer alkoh. Lösung der γ -Valerolacton- γ -carbonsaure mit Chlorwasserstoff und Erhitzen der Lösung auf dem Wasserbad (Bl., K., T., A. 238, 295). — Flüssig. Kp: 262°.

24*

Amid $C_6H_9O_3N=CH_3\cdot C_4H_4O_3\cdot CO\cdot NH_2$. B. Bei der trocknen Destillation des Ammoniumsalzes der γ -Valerolacton- γ -carbonsäure (BL., K., T., A. 238, 300). Entsteht in geringer Menge neben γ -Cyan- γ -valerolacton, wenn man 60 g Kaliumcyanid mit 20 g Wasser anreibt, 100 g Lävulinsäure zufügt und nach 24 Stdn. mit 80 g Salzsäure (D: 1,19) versetzt (BL., K., T.). — Krystalle (aus Ather + Alkohol). F: 121—124°.

Nitril, γ -Methyl- γ -cyan-butyrolacton, γ -Cyan- γ -valerolacton $C_0H_1O_2N=CH_3\cdot C_4H_4O_3\cdot CN$. B. s. o. beim Amid. Entsteht ferner aus Lävulinsäureäthylester und wasserfreier Blausäure bei Gegenwart von etwas Kaliumcyanid (Ulter, R. 28, 22). — Krystalle. F: 29—30° (U.), 31—33° (Bl., K., T.). Kp₁₈: 139—141° (U.). Schwer löslich in Tetrachlorkohlenstoff (U.), leicht in Alkohol und Äther (Bl., K., T.). — Liefert beim Erwärmen mit Salzsäure (D: 1,126) auf 80° γ -Valerolacton- γ -carbonsäure (Bl., K., T.).

4. β -Methyl-butyrolacton- γ -carbonsäure $C_6H_6O_4= \frac{H_2C-CH\cdot CH_2}{OC\cdot O\cdot CH\cdot CO_9H}$

Äthylester $C_8H_{12}O_4 = CH_2 \cdot C_4H_4O_2 \cdot CO_2 \cdot C_2H_5$ (?). B. Aus α -Brom- β -methyl-glutar-säure-diäthylester beim Kochen mit Diäthylanilin (Darbishire, Thorpe, Soc. 87, 1718). — Kp: $269-272^{\circ}$.

5. γ -Methyl-butyrolacton- β -carbonsäure, γ -Valerolacton- β -carbonsäure, γ -Methyl-paraconsäure $C_6H_8O_4=\frac{H_4C-CH\cdot CO_2H}{OC\cdot O\cdot CH\cdot CH_2}$. B. s. bei γ -Methyl-itamalsäure, Bd. III, S. 451. — Nadeln oder Blättchen (aus Benzol). F: 78—79°; die geschmolzene und wieder erstarrte Substanz zeigt den konstanten Schmelzpunkt 83—84° (FITTIG, FRÄNKEL, A. 255, 20). Äußerst löslich in Wasser, Alkohol, Äther, Chloroform und Aceton, schwer löslich in Benzol, sehr schwer in Ligroin, unlöslich in Schwefelkohlenstoff (FI., Fr.). — Zerfällt bei der Destillation in Kohlendioxyd, γ -Äthyliden-propionsäure, γ -Valerolacton, γ -Methyl-itaconsäure und Methylcitraconsäure (FI., Fr.). — AgC₆H₇O₄. Prismen (aus Wasser). Leicht löslich in heißem Wasser (FI., Fr.). — Ca(C₆H₇O₄)₂ + 2¹/₂H₂O. Krystallinisch. Äußerst löslich in Wasser (FI., Fr.). — Ba(C₆H₇O₄)₂ + 3¹/₂H₂O. Nädelchen (aus Wasser). Sehr leicht löslich in Wasser, unlöslich in Alkohol (FI., Fr.).

Äthylester $C_8H_{12}O_4 = CH_3 \cdot C_4H_4O_3 \cdot CO_4 \cdot C_2H_5$. B. Beim Schütteln einer äther. Lösung von Acetbernsteinsäure-diäthylester mit Aluminiumamalgam (Fichter, Pfister, B. 37, 1997). Durch Kochen einer alkoh. Lösung von γ -Methyl-paraconsäure mit konz. Schwefelsäure (Fittig, Scheen, A. 330, 306). — Dicke Flüssigkeit. Kp: 273—273,5° (Fitt., Sch.); Kp₁₇: 156° (Ficht., Pf.). — Liefert beim Kochen mit Natriumäthylat-Lösung [α -Äthoxy-äthyl]-bernsteinsäure (Bd. III, S. 45¹) und das Natriumsalz des (nicht näher beschriebenen) Äthylidenbernsteinsäuremonoäthylesters (Fitt., Sch.; Ficht., Pf.).

"Monochlordiparaconsäure" (MY., Soc. 71, 012).

"Monochlordiparaconsäure" C₀H₂O₂Cl. B. Durch Erhitzen von γ-Dichlormethylparaconsäure mit Barytwasser auf dem Wasserbad (MYERS, Soc. 71, 614). — Citronengelbe Krystalle. Löslich in Äther, Alkohol und Chloroform, unlöslich in Wasser; löslich in Sodalösung (MY., Soc. 71, 615). — Spaltet beim Erhitzen auf 190—226° Chlorwasserstoff ab (MY., Am. Soc. 24, 526). Gibt mit Natriumamalgam eine Verbindung C₂H₁₂O₂(?) (MY., Soc. 71, 616). — Ca(C₂H₂O₂Cl)₃ + 4H₃O. Nadeln, die an der Luft gelb werden. Verliert 3 Mol Wasser bei 100°, das vierte bei 130° (MY., Soc. 71, 615). — Ba(C₂H₂O₂Cl)₃ + 4H₃O. Verliert 3 Mol Wasser bei 100°, das vierte bei 140° (MY., Soc. 71, 615).

Verbindung $C_0H_{10}O_0(?)$. B. Durch Behandlung einer wäßr. Suspension von "Monochlordiparaconsäure" mit Natriumamalgam (Myers, Soc. 71, 616). — F: 36—37°. Löslich in Äther und Schwefelkohlenstoff. — Oxydiert sich sehr leicht an der Luft und wird dadurch unlöslich in Äther und Schwefelkohlenstoff.

 γ -Trichlormethyl-paraconsäure $C_{\epsilon}H_{\delta}O_{\epsilon}Cl_{\delta} = \frac{H_{\epsilon}C$ — $CH \cdot CO_{\delta}H$ $OC \cdot O \cdot CH \cdot CCl_{\delta}$. B. s. bei γ -Trichlormethyl-itamalsäure, Bd. III, S. 451. — Nadeln. F: 97° (Fitting, Miller, A. 255, 45). Fast unlöslich in Schwefelkohlenstoff, leicht löslich in Alkohol, Äther, Chloroform und warmem Benzol (F., Mi.). — Bei lange fortgesetzter Reduktion mit Natriumamalgam entstehen

 γ -Dichlormethyl-paraconsäure, "Monochlordiparaconsäure" und eine (nicht näher beschriebene) Säure vom Schmelzpunkt 126—127° (MYERS, Am. Soc. 24, 526). Liefert beim Behandeln mit Barytwasser Isocitronensäure (Bd. III, S. 555) (F., MI.). Das Calciumsalz geht beim Kochen mit Wasser in das Salz der γ -Trichlormethyl-itamalsäure über (F., MI.). — AgC₆H₄O₄Cl₂. Nadeln (aus heißem Wasser) (F., MI.). — Ca(C₆H₄O₄Cl₂)₂ + 2H₂O. Prismen (F., MI.). — Ba(C₆H₄O₄Cl₃)₃. Langsam krystallinisch erstarrender Sirup (F., MI.).

β-Brom-γ-methyl-paraconsäure $C_6H_7O_4Br = {H_2C - CB_2 \cdot CO_2H \over OC \cdot O \cdot CH \cdot CH_3}$. B. Entsteht in geringer Menge neben Methylitaconsäuredibromid bei der Einw. von Brom und Wasser auf γ-Methyl-itaconsäure (Bd. II, S. 779) (Fittig, SCHEEN, A. 331, 134, 140). — Würfel (aus Chloroform). F: 138° (Zers.). Sehr leicht löslich in Äther, Alkohol und heißem Wasser, unlöslich in Ligroin. — Liefert mit Natriumamalgam γ-Methyl-paraconsäure. Beim Kochen mit Wasser entsteht Methylaconsäure (S. 397).

6. γ -Methyl-butyrolacton- α -carbonsäure, γ -Valerolacton- α -carbonsäure $HO_2C \cdot HC - CH_2$ $C_6H_8O_4 = OC \cdot O \cdot CH \cdot CH_3$ B. s. bei [β -Oxy-propyl]-malonsäure, Bd. III, S. 449. — Dicke Flüssigkeit, die bei —15° noch nicht erstarrt (Marburg, A. 294, 122). Leicht löslich in Wasser, sohwer in Äther (FITTIG, HJELT, A. 216, 54). — Liefert beim Kochen mit Barytwasser [β -Oxy-propyl]-malonsäure (F., H.). — $AgC_6H_7O_4$. Blättchen (aus Wasser). Leicht löslich in heißem Wasser (M.). — $Ba(C_6H_7O_4)_2$. Blätter. Leicht löslich in kaltem, etwas schwerer in warmem Wasser (F., H.).

γ-Chlormethyl-butyrolacton-α-carbonsäure-äthylester, δ-Chlor-γ-valerolacton-α-carbonsäure-äthylester $C_8H_{11}O_4Cl=\frac{C_2H_5\cdot O_2C\cdot HC-CH_2}{OC\cdot O\cdot CH\cdot CH_2Cl}$. B. Durch Einw. von Epichlorhydrin auf Natriummalonester in Alkohol; man zerlegt die ausgeschiedene Natriumverbindung mit verd. Schwefelsäure (Traube, Lehmann, B. 34, 1977). — Öl. Kp₁₃: 180—182°; D¹⁵: 1,274 (T., L.). — Wird von alkoh. Ammoniak in das Diamid, von Hydrazinhydrat in das Äthylesterhydrazid der [γ-Chlor-β-oxy-propyl]-malonsäure (Bd. III, S. 450) übergeführt (T., L.). Gibt beim Kochen mit konz. Salzsäure neben geringen Mengen des Dilactons der [β.γ-Dioxy-propyl]-malonsäure (Syst. No. 2760) die sirupöse δ-Chlor-γ-valerolacton-α-carbonsäure, die beim Erhitzen unter 12 mm Druck δ-Chlor-γ-valerolacton (Bd. XVII, S. 236) liefert (Leuchs, Splettstößer, B. 40, 303). — NaC₈H₁₀O₄Cl. Blättchen (aus Alkohol). F: 172° (Zers.) (T., L.).

- α-Chlor-γ-chlormethyl-butyrolacton-α-carbonsäure-äthylester, α.δ-Dichlor-γ-valerolacton-α-carbonsäure-äthylester $C_8H_{10}O_4Cl_2=\frac{C_2H_5\cdot O_2C\cdot ClC-CH_2}{OC\cdot O\cdot CH\cdot CH_2Cl\cdot}$ Zur Konstitution vgl. Leuchs, B. 38, 1937; Leuchs, Giua, Brewster, B. 45 [1912], 1962, 1967. Existiert in zwei stereoisomeren Formen:
- a) Feste Form. B. Neben der flüssigen Form beim Einleiten der berechneten Menge Chlor in δ-Chlor-γ-valerolacton-α-carbonsäure-äthylester (Traube, Lehmann, B. 34, 1979). Nadeln (aus Alkohol). F: 55°.
 - b) Flüssige Form. B. s. bei der festen Form. Öl. Kp₁₂: 193^o (T., L.).
- α Brom γ chlormethyl butyrolacton α carbonsäure äthylester, δ Chlor- α brom γ valerolacton α carbonsäure äthylester $C_8H_{10}O_4ClBr = C_2H_5 \cdot O_2C \cdot BrC CH_5$

OC·O·CH·CH₂Cl.

Zur Konstitution vgl. Leuchs, B. 88, 1937. — B. Durch Einw. der berechneten Menge Brom auf δ-Chlor-γ-valerolacton-α-carbonsäure-äthylester (Traube, Lehmann, B. 34, 1980). — Öl. Kp₁₂: 180°. — Beim Behandeln mit methylalkoholischem Ammoniak entsteht α-Chlormethyl-trimethylenoxyd-α'.α'-dicarbonsäure-diamid (S. 320) (Leu.). Wird durch gelindes Erwärmen mit konz. Bromwasserstoffsäure und Destillation des Reaktionsprodukts unter vermindertem Druck in δ-Chlor-α-brom-γ-valerolacton (Bd. XVII, S. 237) übergeführt (Leu.).

7. α - Methyl - butyrolacton - α - carbonsāure $C_6H_8O_4=\frac{H_2C-C(CH_3)\cdot CO_2H}{H_2C\cdot O\cdot CO}$. B. Durch Verseifen des Äthylesters mit Barytwasser (Marburg, A. 294, 106). — Prismen (aus Wasser). Monoklin prismatisch (Liweh, Z. Kr. 12, 153; vgl. Groth, Ch. Kr. 3, 461). F: 98° (M.). Löslich in ca. $^1/_2$ Tl. kaltem Wasser, 'leicht löslich in Alkohol, Äther und Chloroform, fast unlöslich in kaltem Benzol und in Schwefelkohlenstoff (M.). — Zerfällt bei 140° in Kohlendioxyd und α -Methyl-butyrolacton (Bd. XVII, S. 237) (M.). — Ag $C_6H_7O_4$. Spieße (aus

heißem Wasser) (M.). — $Ca(C_6H_7O_4)_3 + H_2O$ (über H_2SO_4). Nädelchen (aus Wasser). Zersetzt sich oberhalb 110° (M.). — $Ba(C_6H_7O_4)_2 + 4H_2O$. Krystallkrusten. Zersetzt sich bei 100° (M.).

Äthylester $C_8H_{12}O_4 = CH_3 \cdot C_4H_4O_3 \cdot CO_2 \cdot C_8H_5$. B. s. bei Methyl- $[\beta$ -oxy-āthyl]-malonsäure, Bd. III, S. 452. — Flüssigkeit, die bei -18° nicht erstarrt (Marburg, A. 294, 105). Kp₇₅₅: 262—263° (korr.). D_4° : 1,1539; D_4° : 1,1366.

- 8. α -Methyl-butyrolacton- β -carbonsäure. α -Methyl-paraconsäure $C_aH_aO_a=$ CH₂·HC—CH·CO₂H. B. s. bei α-Methyl-itamalsäure, Bd. III, S. 453. — Prismen (aus Äther). OC·O·CH. F: 1040 (FICHTER, RUDIN, B. 37, 1613). Sehr leicht löslich in Wasser, Alkohol und Chloroform, schwerer in Äther und Benzol, unlöslich in Petroläther. Im Vakuum unzersetzt flüchtig: gibt bei der Destillation unter gewöhnlichem Druck Dimethylmaleinsäureanhydrid. — $Zn(C_6H_7O_4)_3 + 2H_2O$. Prismen.
- 9. δ -Valerolacton- β -carbonsäure $C_6H_8O_4=\frac{H_4C\cdot CH(CO_2H)\cdot CH_2}{H_4C}$ oder Butyrolacton- α -essigsäure $C_6H_8O_4=\frac{H_4C--CH\cdot CH_2\cdot CO_2H}{H_4C\cdot O\cdot CO}$, Lacton der $[\beta$ -Oxy-āthyl]bernsteinsäure.

Äthylester $C_8H_{12}O_4=C_5H_7O_2\cdot CO_3\cdot C_2H_5$. B. s. bei $[\beta\text{-Oxy-athyl}]$ -bernsteinsäure, Bd. III, S. 452. — Dickes Öl. Kp_{54} : 242—245° (Weidel, Hoff, M. 13, 601). — Liefert bei der Verseifung mit Barytwasser $[\beta\text{-Oxy-athyl}]$ -bernsteinsäure (W., M. 11, 519).

Das Molekulargewicht ist ebullioskopisch in Aceton bestimmt (MELDRUM, Soc. 93, 599). — B. Man läßt ein Gemisch von 104 g Malonsäure, 116 g Aceton und 204 g Essigsäureanhydrid nach Zusatz von 5 cm³ konz. Schwefelsäure 24 Stdn. stehen (M.). — Tafeln oder Prismen (aus Aceton). F: 97°. Leicht löslich in heißem Wasser, Äther, Alkohol und Chloroform. — Zersetzt sich beim Erhitzen über den Schmelzpunkt. Liefert beim Behandeln mit kalter Bromsender und Schwefelsäure 200 kg. — Recht den Schwelzpunkt. Liefert beim Behandeln mit kalter Bromsender und Schwefelsüngen 200 kg. — Recht den Schwelzpunkt. Liefert beim Behandeln mit kalter Bromsender und Schwefelsüngen 200 kg. — Recht den Schwefelsüngen 200 kg. wasserstoffsäure oder mit Barytwasser Malonsäure. — $NaC_6H_7O_4$. Tafeln. Sehr leicht löslich in Wasser. — $KC_6H_7O_4 + H_2O$. Prismen. Sehr leicht löslich in Wasser. — $AgC_6H_7O_4$. Krystallpulver.

11. β -Lacton der $\beta.\beta$ -Dimethyl-äpfelsäure $C_0H_0O_4 = \frac{(CH_0)_2C \cdot CH \cdot CO_3H}{OC \cdot O}$. Das Mol. Gew. ist ebullioskopisch in Äther bestimmt (BAEYER, VILLIGER, B. 30, 1956). — B. Bei der Einw. von frisch gefälltem Silberoxyd auf eine eisgekühlte wäßrige Lösung von α' -Brom- $\alpha.\alpha$ -dimethyl-bernsteinsäure (B., V.). — Tafeln (aus Äther und Benzol) mit 1 H₂O. Schmilzt wasserhaltig bei 54—55°, wasserfrei bei 45—47° (B., V.). Zerfließlich in Äther und Essigester; sehr leicht löslich in Wasser, sehr schwer in Benzol und Ligroin (B., V.). — Lagert sich durch Destillieren im Vakuum in $[\beta.\beta$ -Dimethyl-äpfelsäure]-anhydrid um (FIORTER, HIRSOH, B. 33, 3273). Beim Erwärmen mit Alkalien bildet sich sofort, beim Eindensten mit Salzesture langsam $\beta.6$ Dimethyl-äpfelsäure (R. V.) dampfen mit Salzsäure langsam $\beta.\beta$ -Dimethyl-äpfelsäure (B., V.).

3. Oxo-carbonsăuren $C_2H_{10}O_4$.

1. δ -Methyl- δ -valerolacton- γ -carbonsäure, δ -Caprolacton- γ -carbonsäure $C_7H_{10}O_4 = H_2C \cdot CH_2 \cdot CH_$ $C_7H_{10}O_4 = \frac{H_2O \cdot GH_2 \cdot GH}{OC_-O_-CH_2GH_3}$. B. s. bei α -[α -Oxy-āthyl]-glutarsāure, Bd. III, S. 455. — Tāfelchen (aus absol. Äther + Petrolāther). F: 107—108° (Fighter, B. 29, 2368). Leicht löslich in Wasser, schwer in Äther (F.). — Liefert bei der trocknen Destillation γ . δ -Hexensäure und α -Äthyliden-glutarsäure (F., Eggert, B. 31, 1998). Zerfließt an feuchter Luft unter teilweisem Übergang in α -[α -Oxy-āthyl]-glutarsäure (F.). Gibt bei der Aufspaltung die Salze der α -[α -Oxy-āthyl]-glutarsäure (F.). Liefert bei anhaltendem Kochen mit 25% jeger Natronlauge neben anderen Produkten α -Äthyliden-glutarsäure (F., Dreyfus, B. 38, 1454). B. s. bei α -[α -Oxy-äthyl]-glutarsäure, Bd. III, S. 455. —

Äthylester $C_9H_{14}O_4 = \frac{H_2C \cdot CH_2 \cdot CH \cdot CO_3 \cdot C_2H_5}{OC - O - CH \cdot CH_2}$. B. Bei der Veresterung von δ -Caprolacton- γ -carbonsäure mit Alkohol und Schwefelsäure (Fighter, Eggert, B. 31, 1999). — Farbloses Ol. Kp₁₃₋₁₄: 165—166°. — Wird durch Erwärmen mit alkoh. Natriumäthylatlösung und Verseifung der entstandenen Estersäure in a-Athyliden-glutarsäure übergeführt.

- 2. Butyrolacton γ $[\beta$ propionsäure], γ Caprolacton ε carbonsäure, Lacton der γ -Oxy-pimelinsäure $C_7H_{10}O_4= \frac{H_1C-CH_2}{OC\cdot O\cdot CH\cdot CH_2\cdot CH_2\cdot CO_2H}$ Piperylendicarbonsäure (Bd. II, S. 805) durch 8-stdg. Erhitzen mit Jodwasserstoffsäure (D: 1,7) im Druckrohr auf 170—180° (WILLSTÄTTER, B. 31, 1551). Nadelbüschel (aus Benzol); Täfelchen (aus Benzol + Ligroin). F: 82,5°; unzersetzt flüchtig; sehr leicht löslich in Wasser, Alkohol, Aceton und Chloroform, ziemlich leicht in heißem Benzol, fast unlöslich in Ligroin (W.). Elektrolytische Dissoziationskonstante k bei 25°: 2,72×10-6 (Rothmund, B. 31, 1552). Neutralisiert in der Kälte 1 Mol Natronlauge; wird durch Natronlauge in der Hitze zu γ -Oxy-pimelinsäure aufgespalten (W.). Silbersalz. Leicht löslich in Wasser (W.).
- 3. γ Äthyl butyrolacton γ carbonsäure, γ Caprolacton γ carbonsäure $C_7H_{10}O_4 = {H_2C CH_2 \over O_C^1 \cdot O_C^1(C_2H_5) \cdot CO_2H}$. B. Durch Verseifen des Äthylesters (Maire, Bl. [4] 3, 286). Dicke Flüssigkeit. Kp_{16} : 204°.

Äthylester $C_9H_{14}O_4 = H_2C_{-}CH_2$ $A_1C_{-}CH_2 = \frac{H_2C_{-}CH_2}{OC \cdot O \cdot C(C_2H_5) \cdot CO_2 \cdot C_2H_5} \cdot B.$ Man lagert 1 Mol Blausäure an β -Propionyl-propionsäure oder 2 Mol Blausäure an Äthylvinylketon an, behandelt das entstehende Nitril mit Salzsäure, dampft zur Trockne und verestert die resultierende Säure durch Alkohol und Schwefelsäure (MAIRE, Bl. [4] 3, 286). — Geruchlose Flüssigkeit. Kp₁₆: 156°.

- Äthylester $C_9H_{14}O_4=\frac{H_9C_-CH_2}{OC\cdot O\cdot C(CH_3)\cdot CH_2\cdot CO_3\cdot C_3H_5}$. B. s. bei $\beta\cdot Oxy\cdot \beta\cdot methyladipinsäure$, Bd. III, S. 454. Öl. Kp₁₈: 160—162°; Kp₇₆₀: 285—287° (Duden, Freydag, B. 36, 953). Löslich in 30 Tln. Wasser bei Zimmertemperatur. Unlöslich in Sodalösung; löst sich in verd. Alkalien schon in der Kälte unter Bildung der Salze des $\beta\cdot Oxy\cdot \beta\cdot methyladipinsäure-monoäthylesters$.
- 6. γ -Athyl-butyrolacton- β -carbonsdure, γ -Caprolacton- β -carbonsdure, γ -Athyl-paraconsdure $C_7H_{10}O_4= H_2C$ — $CH\cdot CO_2H$ Säure, Bd. III, S. 454. Verfilzte Nadeln (aus Wasser). F: 85° (Fittig, Delisle, A. 255, 57). Sehr leicht löslich in Wasser, Chloroform und Äther, etwas schwerer in Ligroin, fast unlöslich in Schwefelkohlenstoff. Liefert bei der Destillation γ -Caprolacton (Bd. XVII, S. 238) und Hydrosorbinsäure (Bd. II, S. 435). Liefert beim Kochen mit Kalkmilch oder Barytwasser die Salze der [α -Oxy-propyl]-bernsteinsäure. AgC, H_2O_4 . Nadeln (aus heißem Wasser). $Ca(C_7H_2O_4)_2 + 2H_2O$. Nadeln. Sehr leicht löslich in Wasser. Ba($C_7H_2O_4$) $_2 + 3H_2O$. Prismen.

3H₂O. Prismen.

Äthylester $C_9H_{14}O_4=\frac{H_2C-CH\cdot CO_2\cdot C_2H_5}{OC\cdot O\cdot CH\cdot C_2H_5}$. B. Durch Sättigen der alkoh. Lösung von γ -Äthyl-paraconsäure mit Chlorwasserstoff (Firrig, Glaser, A. 304, 179). — Blaßgelbe Flüssigkeit. Kp: 278—279°. — Gibt durch Behandlung mit alkoh. Natriumäthylat-Lösung und Erwärmen des Reaktionsproduktes mit verd. Natronlauge γ -Äthyl-itaconsäure (Bd. II, 8. 783).

¹) Die schon von WILLSTÄTTER, B. 31, 1537 angenommene Konstitution wurde nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von LEUCHS, NAGEL, B. 55, 3951 bewiesen.

7. γ - Methyl - butyrolacton - α - essigs dure, γ - Valerolacton - α - essigs dure HO.C. CH. HC CH. B. Man löst Allylbernsteinsäure in rauchender OC · O · CH · CH · Bromwasserstoffsäure und läßt die Lösung über Ätzkali und Schwefelsäure verdunsten oder versetzt sie mit Wasser und kocht rasch auf (HJELT, B. 16, 334, 335). Entsteht auch beim Schmelzen von γ-Valerolacton-α-carbonsäure-α-essigsäure (S. 485) (HJ., B. 16, 1259). — Krystalle (aus Aikohol). F: 68—69°; siedet fast unzersetzt bei 260°; sehr schwer löslich in Äther (H_J., B. 16, 335). Liefert beim Neutralisieren mit Bariumcarbonat das zugehörige Bariumsalz, beim Kochen mit Barytwasser das Bariumsalz der [β-Oxy-propyl]-bernsteinsäure (Bd. III, S. 454) (H_J., B. 16, 335). — Ba(C₇H₉O₄)₂. Löslich in Alkohol (H_J., B. 16, 335).

8. α - Athyl - butyrolacton - β - carbonsaure, α - Athyl - paraconsaure, Pilopsaure 1) $C_7H_{10}O_4 = {}^{C_2H_5}\cdot HC - {}^{C_1}CO_2H_2)$ 3). B. s. bei α - Athyl - itamalsaure (Oxysaure aus OC.O.CH. Pilopsaure), Bd. III, S. 456. — Platten (aus Benzol). F: 104° (korr.) (Jowett, Soc. 79, 1335). Kp₁₀: 210—220° (J., Soc. 77, 856). Leicht löslich in Wasser, Alkohol und Benzol (J., Soc. 77, 856). [α]¹⁰: +36,1° 4) (in Wasser; c = 3,3) (J., Soc. 79, 1335). Neutralisiert in der Kälte 1, in der Wärme 2 Mol Alkali (J., Soc. 77, 856). — Gibt beim Schmelzen mit Kali bei hoher Temperatur nur Buttersäure; bei niedriger Temperatur bildet sich in kleiner Menge eine ungesättigte Säure $C_7H_{10}O_4$ (s. u.), während der größere Teil der Pilopsäure unverändert bleibt (J., Soc. 79, 1341, 1342). Geht beim Kochen mit Barytwasser in das Bariumsalz der α-Athyl-itamalsaure über (J., Soc. 79, 1337). — $\text{Ba}(C_7H_9O_4)_8$ (bei 120°). Mikrokrystallinisch (J., Soc. 79, 1336). — Strychninsalz $2C_7H_{10}O_4+C_{21}H_{22}O_2N_2$ s. Syst. No. 4793.

Verbindung $C_7H_{10}O_4$. B. Durch Schmelzen von Pilopsäure mit Kaliumhydroxyd und etwas Wasser bei niedriger Temperatur (Jowerr, Soc. 79, 1342). — Tafeln (aus heißem Wasser). F: 190° (korr.). Unlöslich in Äther, schwer löslich in kaltem Wasser. Entfärbt Kaliumpermanganatlösung. — Ag₃C₇H₅O₄. Körnige Fällung.

Methylester C₈H₁₃O₄ = C₂H₅·HC — CH·CO₂·CH₃. Das Mol.-Gew. ist kryoskopisch

OC.O.CH. in Benzol und Eisessig bestimmt (J., Soc. 79, 1336). — B. Aus Pilopsäure und Methylalkohol in Gegenwart von Schwefelsäure (J., Soc. 79, 1335). — Farblose Flüssigkeit. Kp10: 1550 bis 160°; Kp₇₈₇: 275°.

Äthylester $C_8H_{14}O_4 = \frac{C_8H_6 \cdot HC - CH \cdot CO_8 \cdot C_8H_5}{OA}$. B. s. bei α -Äthyl-itamalsäure, Bd. III, S. 456. — Flüssig. Kp: 299°; Dii: 1,1053; $[\alpha]_5^{\text{in}}$. B. s. bei α -Äthyl-itamalsäure, Bd. III, S. 456. — Flüssig. Kp: 299°; Dii: 1,1053; $[\alpha]_5^{\text{in}}$: +39,8° (†)4); unlöslich in Wasser, löslich in Äther und Alkohol (J., Soc. 77, 856). — Liefert mit konzentriertem wäßrigem Ammoniak das Diamid der α -Äthyl-itamalsäure (J., Soc. 79, 1337).

Anilid $C_{13}H_{16}O_3N = \frac{C_8H_5 \cdot HC - CH \cdot CO \cdot NH \cdot C_6H_5}{OC \cdot OC \cdot OC \cdot NH \cdot C_6H_5}$. B. Beim Kochen von Dilocation.

OC.O.CH mit 3 Tln. Anilin (J., Soc. 79, 1336). — Platten (aus Äther). F: 110° (korr.).

9. β - Methyl - butyrolacton - α - essigsäure, Isoterebinsäure $C_7H_{10}O_4 =$ HO₂C·CH₂·HC—CH·CH₃. B. s. bei [β -Oxy-isopropyl]-bernsteinsäure, Bd. III, S. 456.

¹⁾ Pilopsäure (englisch: pilopic acid) ist im III. Ergänzungsband zur 3. Auflage dieses Handbuchs, S. 687, sowie in Bd. III der 4. Auflage, S. 456 im Hinblick auf JOWETT, Soc. 83, 442, Zeile 19-31 v. o. Pilopinsaure genannt worden. Die Bezeichnung Pilopsaure ist jedoch vorzuziehen.

²) Von Verbindungen dieser Konstitution sind zwei diastereoisomere Reihen möglich. Von diesen entspricht die eine sterisch dem Alkaloid Pilocarpin (Syst. No. 4546), die andere dem Isopilocarpin. Demgemäß werden die beiden Reihen von TSCHITSCHIBABIN, PREOBRASHENENI, B. 63 [1930], 465 als Pilopsäuren (d, 1 und dl) und Isopilopsäuren (d, 1 und dl) unterschieden. Bis sum Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] ist von den sechs Säuren nur eine (rechtsdrehende) beschrieben und Pilopsäure genannt worden. Sie entspricht nach TSCHITSCHIBABIN, PREOBRASHENSKI sterisch dem Isopilocarpin und wäre daher genauer als d-Isopilopsäure su bezeichnen. Über die weiteren stereoisomeren Formen s. bei TSCH., PR.

³⁾ Die schon von JOWETT, Soc. 79, 1345 angenommene Konstitutionsformel der Pilopsaure wurde nach dem Literatur-Schlußtermin der 4. Aufl, dieses Handbuchs [1. I. 1910] von TSCHI-TSCHIBABIN, PREOBRASHENSKI, B. 63 [1930], 464 bewiesen.

⁴⁾ Für die optisch reine Säure fanden TECHITSCHIBABIM, PREOBRASHENSKI, B. 63 [1930]. 464, 468 $[\alpha]_D^{ss}$: + 58,90 (in Wasser; c = 3,3).

— Prismen (aus Chloroform + Ligroin). F: 77—78° (FITTIG, PETKOW, A. 304, 238). — Gibt beim Neutralisieren der kalten Lösung ihr Bariumsalz, beim Kochen mit Barytwasser das Bariumsalz der [β -Oxy-isopropyl]-bernsteinsäure (FI., P.). — AgC, H_0O_4 . Warzen (aus Wasser) (FI., P.). — Ca($C_7H_9O_4$)₂ + 2 H_2O (FI., FRIEDMANN, A. 330, 321 Anm.). Nadeln. Leicht löslich in Wasser (FI., P.). — Ba($C_7H_9O_4$)₂ (bei 100°). Amorphe Masse. Sehr leicht löslich in Wasser (FI., P.).

 β -Brom- β -methyl-butyrolacton- α -essigsäure, Bromisoterebinsäure $C_7H_9O_4Br = HO_8C \cdot CH_8 \cdot HC - CBr \cdot CH_8$

OC·O·CH₂. B. Man versetzt eine Lösung von γ-Methyl-γ-butylen-α.β-dicarbonsäure ("Dimethylaticonsäure") (Bd. II, S. 785) in Äther mit der berechneten Menge Brom (Fittig, A. 304, 136; F., Petrow, A. 304, 222). — Krystalle (aus heißem Wasser). Rhombisch bipyramidal (Stuber, A. 304, 224; vgl. Groth, Ch. Kr. 3, 494). F: 130—131°; leicht löslich in heißem Wasser und Äther, ziemlich leicht in kaltem Wasser, schwer in Benzol, Chloroform und Ligroin (F., P.). — Geht durch Einw. von Natriumamalgam in saurer Lösung in "Dimethylaticonsäure" über (F., A. 304, 134; F., P., A. 304, 226; vgl. F., A. 330, 295). Beim Kochen mit Wasser entsteht Oxyisoterebinsäure C₇H₁₉O₈ (Syst. No. 2624) und daneben

in geringer Menge das Dilacton

OC·OC·CH₂·CH—C·CH₃
OC·O·CH₄
(Syst. No. 2760); dieses erhält man als Hauptprodukt, wenn man Bromisoterebinsäure in alkal. Lösung stehen läßt und dann die Lösung ansäuert (F., A. 304, 136; F., P., A. 304, 227, 230; vgl. F., A. 330, 296, 298).

10. $\beta.\gamma$ -Dimethyl-butyrolacton- γ -carbonsäure, β -Methyl- γ -valerolacton- γ -carbonsäure, $\alpha.\beta$ -Dimethyl-glutolactonsäure $C_7H_{10}O_4 = \begin{matrix} H_1C & CH \cdot CH_3 \\ OC \cdot O \cdot C(CH_3) \cdot CO_2H \end{matrix}$ Existiert in 2 diastereoisomeren Formen. — B. Man setzt eine Lösung von 50 g β -Methyl-

Existiert in 2 diastereoisomeren Formen. — B. Man setzt eine Lösung von 50 g β -Methyllävulinsäure in 15 g Wasser zu einer Lösung von 30 g Kaliumcyanid in 50 g Wasser unter Eiskühlung, gibt nach 24 Stunden 60 g konz. Salzsäure zu, läßt 24 Stunden stehen und erwärmt schließlich 10 Minuten im Wasserbad; das so erhaltene Nitril (Kp₂₅: 144—150°) verseift man durch Erhitzen mit konz. Salzsäure auf 100°; das entstandene Säuregemisch erstarrt zum Teil; die auskrystallisierte feste Form wird durch Krystallisation aus Benzol + absol. Alkohol gereinigt; den flüssigen Anteil des Säuregemisches führt man in das Bleisalz über; dieses wird durch fraktionierte Krystallisation rein erhalten und schließlich durch Schwefelwasserstoff zersetzt (Blaie, C. r. 130, 1718; Bl. [3] 23, 920).

a) Feste Form. Krystalle. F: 142°. Leicht löslich in Wasser, sehr schwer in kaltem Benzol, leichter in Chloroform. — Pb(C,H,O₄), Nadeln (aus siedendem Wasser). F: 212—214°. b) Flüssige Form. Kp₁₅: 193—195°. — Geht durch 6-stündiges Erhitzen mit Chinolin und Wasser im Druckrohr auf 180° in die feste Form über. — Pb(C,H₉O₄), + H₂O. Das wasserhaltige Salz schmilzt bei 140—145°, das wasserfreie bei 181—183°. Leichter löslich in Wasser als das Bleisalz der festen Form.

11. γ.γ-Dimethyl-butyrolacton-β-carbonsäure, γ.γ-Dimethyl-paracon-H₂C—CH·CO₂H
säure, Terebinsäure C₇H₁₀O₄ = OC·O·C(CH₃)₃. B. Terebinsäure entsteht als eines der
Endprodukte des oxydativen Abbaus von Pinen (Bd. V, S. 144) (vgl. Wallach, Otto, A.
253, 258; Wal., A. 259, 311; 277, 148) beim Behandeln von Terpentinöl mit heißer Salpetersäure (Bromeis, A. 37, 297; Rabourdin, A. 52, 392; Svanberg, Ekman, J. pr. [1] 66, 220, 223; J. 1855, 650; Schreder, A. 172, 100; Williams, B. 6, 1094) oder mit Chromschwefelsäure (Fittig, Krafft, A. 208, 73). Beim Erwärmen von cis-Terpinhydrat (Bd. VI, S. 745) mit verd. Salpetersäure (Hempel, A. 180, 74, 76). Durch Einw. von Kaliumpermanganat oder von Salpetersäure (D: 1,4) auf Pinoldibromid (Bd. XVII, S. 23) (Wal., O., A.
253, 258). Durch Erwärmen von inaktivem Pinol (Bd. XVII, S. 45) mit Kaliumpermanganat-Lösung und Ansäuern der Reaktionsflüssigkeit (Wal., O., A. 253, 256; Wal., A. 259, 317; B. 28, 2709) oder beim Erwärmen von inaktivem Pinol mit verd. Salpetersäure (Wal., O., A. 253, 257). Durch Erhitzen von γ-Methyl-γ-butylen-α.β-dicarbonsäure (,Dimethylaticon-säure') mit 65°/oiger Schwefelsäure (Fi., Petkow, A. 304, 220). Aus γ-Methyl-β-butylen-α.β-dicarbonsäure (Teraconsäure) beim Stehenlassen mit bei 0° gesättigter Bromwasserstoffsäure (Fi., Geisler, A. 208, 54), beim Kochen mit konz. Salzsäure oder beim Erwärmen mit 66°/oiger Schwefelsäure (Fi., Frost, A. 226, 365). Bei 7—8-stündigem Erhitzen von cis- oder trans-Caronsäure (Bd. IX, S. 730) mit überschüssiger, bei 0° gesättigter Bromwasserstoffsäure auf 100° (Baeyer, Ipatjew, B. 29, 2799, 2800; Perkin, Thorpe, Soc. 75, 59, 61). Aus Kolophonium durch Erhitzen mit Salpetersäure (Bromeis, A. 37, 297; Sohreder, A. 172, 94, 99). Neben anderen Produkten bei der Oxydation von Dioxydihydro-α-campholen-säure (Bd. X, S. 374) mit Chromschwefelsäure (Tiemann, B. 29, 3018, 3019). Neben Pinsäure

beim Erhitzen von inaktiver fester Pinonsäure (Bd. X, S. 623) mit verd. Salpetersäure (Ba., B. 29, 328). Aus öliger Pinonsäure (von Tiemann, Semmler) (Bd. X, S. 624) beim Erwärmen mit Salpetersäure (D: 1,18) oder beim Erhitzen mit Chromschwefelsäure, neben anderen Produkten (Tie., Semmler, B. 28, 1346, 1347). In geringer Menge bei der Oxydation der linksdrehenden Form der Oxocarbonsäure $C_{10}H_{16}O_3$ (von Tie., B. 29, 3015 als l-Pinonsäure bezeichnet) (Bd. X, S. 625) in wäßr. Lösung mit Chromschwefelsäure (Tie., B. 29, 3024, 3026). In geringer Menge durch Einw. von rauchender Salpetersäure auf Pinoylameisensäure (Bd. X, S. 850) bei 70° (Ba., B. 29, 1921). Neben Terpenylsäure aus der inaktiven Form von 3-Methoathyl-heptanon-(6)-olid-(3¹.1) (Bd. XVII, S. 429) durch Oxydation mit Kaliumpermanganat-Lösung und Ansäuern der Reaktionsflüssigkeit (Mahla, Tie., B. 29, 935) oder durch Oxydation mit überschüssiger Salpetersäure (Ma., Tie., B. 29, 2622; vgl. Locquin, Bl. [4] 13 [1913], 168). Beim Behandeln von Terebilensäure (S. 397) mit Natriumamalgam (Fl., FR., A. 226, 372). Durch Oxydation von Terpenylsäure (S. 384) mit Kaliumpermanganat oder Chromschwefelsäure (Ma., Tie., B. 29, 933). Neben Terpenylsäure bei 3-4-stündigem gelindem Sieden von Homoterpenoylameisensäure (S. 459) mit roher konzentrierter Salpetersäure (BA., B. 29, 2789). Durch Kochen von $\nu.\nu$ -Dimethyl-butyrolacton- $\alpha.\beta$ -dicarbonsaure-diathylester (S. 485) mit Salzsäure (Haller, Blanc, C. r. 142, 1472). — Man kondensiert Brombernsteinsäurediäthylester mit Aceton in Gegenwart von verkupfertem Zink, behandelt das Reaktionsprodukt mit Schwefelsäure, erwärmt den entstandenen Äthylester mit Kalilauge und säuert mit Salzsäure an (Blaise, C. r. 126, 350; Bl. [3] 19, 276). Man läßt Methylmagnesiumjodid auf Acetbernsteinsäureester in äther. Lösung einwirken und verseift den erhaltenen Äthylester mit siedender konzentrierter Salzsäure (Simonsen, Soc. 91, 185; vgl. Grignaed, A. ch. [7] 27, 573). Man erhitzt eine wäßr. Lösung von Isopropylbernsteinsäure mit Chromschwefelsäure (LAWRENCE, Soc. 75, 531). Man erhitzt [Sulfoisopropyl]-bernsteinsäure (Bd. IV, S. 26) im Vakuum auf 160—170° (Königs, Hörlin, B. 26, 2047).

Darst. Man versetzt ein Gemenge von 1 Gew.-Tl. Aceton und 4,36 Gew.-Tln. Brombernsteinsäurediäthylester mit 4,36 Gew.-Tln. verkupfertem Zink, läßt 12 Stdn. bei Zimmertemperatur und weitere 12 Stdn. unter zeitweisem Schütteln bei gleichzeitiger Kühlung stehen, schüttelt dann mit verd. Schwefelsäure durch und extrahiert nach 24 Stdn. mit Äther; man verseift den Ätherextrakt mit wäßr. Kalilauge und behandelt die durch Salzsäure in Freiheit gesetzten Säuren in siedender wäßriger Lösung mit Bariumhydroxyd, wodurch Terebinsäure in das in siedendem Wasser lösliche diaterebinsaure Barium (Bd. III, S. 456) übergeführt wird; dieses gibt beim Ansäuern Terebinsäure (Blasse, C. r. 126, 350; Bl. [3] 19, 276). Man gibt eine äther. Lösung von 21 g Acetbernsteinsäureester unter guter Kühlung zu einer aus 4 g Magnesium und 21 g Methyljodid hergestellten Methylmagnesiumjodidlösung, zersetzt am nächsten Tage das Reaktionsprodukt durch Zusatz von Wasser und verdünnter Salzsäure und fraktioniert das entstandene Estergemisch im Vakuum; man kocht die unter 18 mm bei 140—150° siedende Fraktion 8 Stdn. mit 50 cm² konz. Salzsäure (Smonsen, Soc. 91, 186). Man setzt eine Lösung von 10 g Isopropylbernsteinsäure in 160 cm² Wasser zu einem Gemisch von 40 g Kaliumdichromat und 55 g Schwefelsäure und erhitzt 56 Stdn.; die nach 2-tägigem Stehen ausgeschiedenen, pulverisierten Krystalle kocht man mit Äther und dunstet die äther. Lösung ein (Lawrence, Soc. 75, 528, 531). Darstellung aus Terpentinöl: Fittig, Mielok, A. 180, 47; Bredt, A. 208, 37 Anm.; Erdmann, A. 228, 179.

Krystalle (aus Alkohol). Monoklin prismatisch (v. Reusch, A. 180, 50; vgl. Groth, Ch. Kr. 3, 492). Schmilzt bei 174° (Fittig, Mielok, A. 180, 51), 174,5—175° (Anderlini, G. 25 II, 139), 175° (Lawrence, Soc. 75, 531; Haller, Blanc, C. r. 142, 1472), fängt aber schon bei 100° an sich zu verflüchtigen (Svanberg, Erman, J. pr. [1] 66, 224; Fi., M.). Wenig löslich in kaltem, ziemlich leicht in siedendem Wasser, leichter in warmem Alkohol (Sv., Ek.). 100 Tle. äther. Lösung enthalten bei 10° 1,698 Tle. Terebinsäure (Amthor, Müller, J. pr. [2] 42, 386). Brechungsvermögen der Lösung in Aceton: Anderlini, G. 25 II, 139, 142. Verbrennungswärme bei konstantem Volumen: 778,4 kcal/Mol (Ossipow, C. r. 109, 475; A. ch. [6] 20, 380, 389). Elektrolytische Dissoziationskonstante k bei 25°: 2,65×10—4 (Ostwald, Ph. Ch. 3, 402).

Terebinsäure liefert bei der trocknen Destillation Brenzterebinsäure (Bd. II, S. 438) und Isocaprolacton (Bd. XVII, S. 238) sowie eine kleine Menge Teraconsäure (Bd. II, S. 786); je rascher die Destillation erfolgt, um so mehr Brenzterebinsäure und um so weniger Isocaprolacton erhält man (Fittig, Geisler, A. 208, 37, 39, 50; vgl. Rabourdin, A. 52, 394; Chautard, J. 1855, 652; Williams, B. 6, 1095; Fi., Mielok, A. 180, 51; Bredt, Fi., A. 200, 259). Löst sich unverändert in konz. Salpetersäure (Svanberg, Erman, J. pr. [1] 66, 224); gibt bei 14-tägigem Erhitzen mit konz. Salpetersäure auf dem Wasserbad γ-Valerolacton-β.γ-dicarbonsäure (S. 484) (Bredt, Kershaw, B. 32, 3662). Beim Erhitzen von Terebinsäure mit rauchender Jodwasserstoffsäure im Druckrohr auf 170° entstehen unter Entwicklung von Kohlendioxyd Isocapronsäure (Bd. II, S. 327) und geringe Mengen einer bei ca. 114° schmelzenden Säure (Isopropylbernsteinsäure?) (Fr., M., A. 180, 69). Durch Einw. von 3 Mol Phosphorpentachlorid auf Terebinsäure und Behandlung des Reaktionsprodukts mit Wasser

entsteht α -Chlorterebinsäure neben etwas β -Chlorterebinsäure (Roser, B. 15, 296; A. 220, 259, 265; vgl. Williams, B. 6, 1097; Fi., Frost, A. 226, 370). Terebinsäure löst sich in kalter konzentrierter Schwefelsäure unverändert (Sv., Ek.); beim Erwärmen entwickelt sich Schwefeldioxyd (Erdmann, A. 228, 180). Beim Kochen mit 66°/oiger Schwefelsäure wird Isocaprolaton gebildet (Er.). Terebinsäure gibt beim Kochen mit Barytwasser diaterebinsaures Barium (Bd. III, S. 456) (W.; vgl. Sv., Ek.). Zerfällt beim Erhitzen mit konz. Barytwasser im Druckrohr auf 150—170° in Aceton und Bernsteinsäure (Fi., Fr., A. 226, 374). Liefert beim Erhitzen mit alkoh. Ammoniak im Druckrohr auf 160—170° eine Verbindung (HO₂C)(CH₃)₂C₃H₃>NH (Syst. No. 3244) (Corselli, G. 211, 271). Beim Erhitzen mit Anilin auf 155° erhält man ein Gemisch von Brenzterebinsäure-anilid (Bd. XII, S. 259) und Terebinsäureanilid (Blaise, Courtot, C. r. 139, 293; Bl. [3] 35, 155; vgl. Cor., G. 21 I, 273).

AgC₇H₂O₄. B. Beim Eindunsten einer Lösung von Silbercarbonat in Terebinsäure-Lösung oder beim Kochen von Terebinsäure mit Wasser und Silberoxyd (Williams, B. 6, 1095, 1097) oder beim Fällen von terebinsaurem Barium mit Silbernitrat (Svanberg, Ekman, J. pr. [1] 66, 226; J. 1855, 226; vgl. auch Bromeis, A. 37, 298; Rabourdin, A. 52, 394). Vierseitige Prismen (aus siedendem Wasser). Sehr schwer löslich in kaltem Wasser (Sv. E.). — AgC₇H₂O₄ + C₇H₁₂O₅. B. Aus der Mutterlauge des aus Silbercarbonat und Terebinsäure hergestellten terebinsauren Silbers (W., B. 6, 1095). Krystalle. — Ba(C₇H₂O₄)₂ + 2 H₂O. B. Beim Lösen von Bariumcarbonat in Terebinsäure-Lösung (W., B. 6, 1095; vgl. Sv., Ek.). Amorph. — Bleisalz. In Wasser leicht löslich (Rabourdin, Journal de Pharmacie et de Chimie [3] 6, 196; A. 52, 394).

Äthylester $C_9H_{14}O_4=\frac{H_9C_- CH\cdot CO_2\cdot C_2H_5}{OC\cdot O\cdot C(CH_3)_2}$. B. Beim Einleiten von Chlorwasserstoff in die heiße alkoholische Lösung von Terebinsäure (Roser, A. 220, 255). Weitere Bildungen s. im Artikel Terebinsäure. — Flüssig. Kp: 273—275° (korr.) (R., A. 220, 255); Kp₁₅: 145—147° (SIMONSEN, Soc. 91, 186). D¹°: 1,111 (R., A. 220, 255). — Löst sich langsam in verd. Natronlauge unter Bildung des Natriumsalzes der Diaterebinsäure (Bd. III, S. 456) (R., A. 220, 255). Liefert bei der Einw. von 1 At.-Gew. Natrium in Äther oder von 1 Mol alkoh. Natriumäthylat-Lösung das Natriumsalz des flüssigen Teraconsäure-monoäthylesters (CH₃)₂C:C(CO₂· C₂H₅)·CH₂·CO₂H (Bd. II, S. 786) (R., B. 15, 293; A. 220, 255).

Anilid $C_{13}H_{16}O_3N = H_2C - CH \cdot CO \cdot NH \cdot C_6H_5$. B. In geringer Menge bei der Einw. von Anilin auf Terebinsäure (Blaise, Courtot, Bl. [3] 35, 155). — Krystalle (aus Alkohol). F: 176°. Schwer löslich in Äther.

- β-Chlor γ.γ dimethyl paraconsäure, β-Chlorterebinsäure $C_7H_9O_4Cl = H_2C CCl \cdot CO_2H$ $OC \cdot O \cdot C(CH_3)_9$. B. Beim Einleiten von Chlor in mit Wasser angerührte Teraconsäure $OC \cdot O \cdot C(CH_3)_9$ (Bd. II, S. 786) (Fittig, Frost, A. 226, 368). Neben α-Chlorterebinsäure durch Erwärmen von Terebinsäure mit 3 Mol Phosphorpentachlorid und Behandlung des Reaktionsprodukts mit Wasser (Roser, B. 15, 296; A. 220, 259, 265; vgl. Fi., Fr., A. 226, 370). Prismen (aus Alkohol). Rhombisch pyramidal (Liweh, A. 226, 368; vgl. Groth, Ch. Kr. 3, 492). F: 168° (Zers.) (Fi., Fr.). In Wasser leichter löslich als α-Chlorterebinsäure (R.). Zerfällt beim Eindampfen mit Wasser leicht in Chlorwasserstoff und Terebilensäure (S. 397) (Fi., Fr.).
- α-Chlor · γ.γ dimethyl paraconsäure, α-Chlorterebinsäure $C_7H_9O_4Cl = CHCC-CH \cdot CO_2H$ $OC \cdot O \cdot C(CH_3)_8$ Erwärmen von Terebinsäure mit 3 Mol Phosphorpentachlorid und Behandlung des Reaktionsprodukts mit Wasser; aus der wäßr. Lösung krystallisiert zunächst die α-Säure aus (Roser, B. 15, 296; A. 220, 259; vgl. Williams, B. 6, 1097; Fittig, Frost, A. 226, 370, 376). Gefiederte Nadeln (aus Wasser). Schmilzt unter Zersetzung bei 191°; beginnt schon bei 150° zu sublimieren (R.). Leicht löslich in heißem Wasser, Alkohol und Äther (R.). Zerfällt oberhalb des Schmelzpunktes in Chlorwasserstoff und Terebilensäure (S. 397) (R.). Wird von Natriumamalgam in Terebinsäure zurückverwandelt (W.). Bei mehrstündigem Erhitzen mit Wasser im Druckrohr auf 130—140° oder beim Kochen mit Natriumäthylat wird Terebilensäure gebildet (R.). α-Chlorterebinsäure gibt beim Kochen mit Alkalicarbonat-Lösungen Salze der Oxyterebinsäure (Syst. No. 2624) (R., A. 220, 264). Gibt beim Erhitzen mit Phosphorpentachlorid auf 130—140° und Zersetzen des Reaktionsprodukts mit Wasser Chlorterebilensäure (S. 398) (R.). AgC₇H₈O₄Cl. Leicht lösliche Nadeln (R.). Ca(C₇H₈O₄Cl)₂ + 2H₈O. Nadeln. Sehr leicht löslich in Wasser, unlöslich in Alkohol (R.). Pb(C₇H₈O₄Cl)₂ + 3H₈O (W.).

- β-Brom γ.γ-dimethyl paraconsäure, β-Bromterebinsäure $C_7H_9O_4Br = H_2C CBr \cdot CO_2H$ OC·O·C(CH₂)₂

 B. Beim Eintragen von 1 Mol Brom in ein Gemisch aus 1 Tl. (1 Mol)
 OC·O·C(CH₂)₂

 Teraconsäure und 2 Tln. Wasser (Firrig, Frost, A. 226, 366). Krystalle (aus Äther). Schmilzt unter stürmischer Gasentwicklung bei 151°. Ziemlich leicht löslich in Äther, sehr schwer in Schwefelkohlenstoff, Chloroform und Benzol. Wird von Natriumamalgam leicht in Terebinsäure verwandelt. Zerfällt beim Abdampfen mit Wasser in Bromwasserstoff und Terebilensäure.
- 12. a. γ -Dimethyl-butyrolacton- γ -carbonsäure, a-Methyl- γ -valerolacton- γ -carbonsäure $C_{\gamma}H_{10}O_{4} = \begin{array}{c} CH_{3} \cdot HC CH_{2} \\ OC \cdot O \cdot C(CH_{3}) \cdot CO_{3}H \end{array}$
- $\alpha\text{-Brom-}\alpha\text{-}y\text{-dimethyl-butyrolacton-}\gamma\text{-carbonsäure},\quad \alpha\text{-Brom-}\alpha\text{-methyl-}\gamma\text{-valerolacton-}\gamma\text{-carbonsäure},\quad C_7H_9O_4Br = \frac{CH_9\cdot BrC-CH_2}{OC\cdot O\cdot C(CH_2)\cdot CO_2H}.$ Existiert in zwei diastereoisomeren Formen.
- a) Niedrigschmelzende Form. B. Man erwärmt 1 Tl. eines Gemisches von maleinoider und fumaroider α.α'-Dimethyl-glutarsäure (F: 102°; vgl. Auwers, A. 285, 255 Anm.) oder reiner maleinoider α.α'-Dimethyl-glutarsäure mit 7—9 Tln. Brom und rotem Phosphor (2 At.-Gew. auf 3 Mol Säure) ca. 10 Stdn., verjagt das überschüssige Brom durch Erhitzen auf dem Wasserbad und kocht das Reaktionsprodukt einige Minuten mit Wasser, wodurch die neben den beiden α.γ-Dimethyl-butyrolacton-γ-carbonsäuren entstehende α.α'-Dibrom-α.α'-dimethyl-glutarsäure in die beiden Lactone übergeführt wird; beim Erkalten der Lösung krystallisiert das hochschmelzende Lacton zum großen Teil aus; es kann von dem niedrigschmelzenden Isomeren auf Grund seiner Unlöslichkeit in Benzol getrennt werden (Auwers, Kauffmann, B. 25, 3232, 3235, 3236, 3237). Die niedrigschmelzende Form entsteht neben der hochschmelzenden aus α.α'-Dibrom-α.α'-dimethyl-glutarsäure bei der Einw. von kaltem Wasser, während bei der Einw. von heißem Wasser überwiegend das hochschmelzende Lacton gebildet wird (Au., K., B. 25, 3238, 3239). Plättchen oder Prismen (aus Benzol). F: 112°; leicht löslich in Äther, Essigester, heißem Benzol, weniger in kaltem Wasser, fast unlöslich in Ligroin (Au., K.). Liefert bei der Destillation das hochschmelzende Lacton (Au., K.). Geht auch beim Erhitzen mit Benzol im Druckrohr auf 150° teilweise in das hochschmelzende Isomere über (Au., K.). Gegen Wasser relativ beständig, geht bei andauerndem Kochen mit Wasser oder bei Einw. von kalter Natronlauge in die wasserfreie, bei 107° schmelzende Form der α-Oxy-α-y-dimethyl-butyrolacton-γ-carbonsäure (Syst. No. 2624) (vgl. Fittig, A. 353, 3) über (Au., K.).
- b) Hochschmelzende Form. B. s. oben bei der niedrigschmelzenden Form. Nadeln (aus Essigester). F: 196,5—197° (Zers.) (Auwers, Kauffmann, B. 25, 3241). Ziemlich leicht löslich in Essigester, schwer in Wasser, Äther, fast unlöslich in Benzol und Ligroin. Geht beim Erhitzen mit Benzol im Druckrohr teilweise in das niedrigschmelzende Isomere über. Gegen Wasser verhältnismäßig beständig; liefert bei anduerndem Kochen mit Wasser oder bei Einw. von kalter Natronlauge die bei 189—190° schmelzende Form der α-Oxy-α.γ-dimethyl-butyrolacton-γ-carbonsäure (Syst. No. 2624).
- B. Aus [α.α'-Dibrom-α.α'-dimethyl-glutarsäure]-anhydrid (Bd. XVII, S. 419) mit Anilin in Benzol (Auwers, A. 292, 232). Prismen (aus Alkohol). F: 137—138°. Sehr leicht löslich in Ather, Chloroform, Aceton und Essigester, ziemlich löslich in Alkohol und Benzol, sehwer in Ligroin.
- $\begin{array}{l} \alpha\text{-Brom-}\alpha\text{-}\gamma\text{-dimethyl-butyrolacton-}\gamma\text{-carbons\"{a}ure-p-toluidid},\ \alpha\text{-Brom-}\alpha\text{-methyl-}\gamma\text{-valerolacton-}\gamma\text{-carbons\"{a}ure-p-toluidid}\ C_{14}H_{16}O_{9}NBr = CH_{2}\cdot BrC\text{---}CH_{2} \end{array}$
- OC·O·C(CH₂)·CO·NH·C₆H₄·CH₃

 A. 292, 232). Prismen (aus Alkohol). F: 172°. Sehr leicht löslich in Äther, Chloroform und Aceton, schwer in Ligroin.
- α -Brom α . γ -dimethyl butyrolacton γ carbonsäure- β -naphthylamid, α -Brom- α -methyl γ valerolacton γ carbonsäure β naphthylamid $C_{17}H_{16}O_2NBr = CH_2 \cdot BrC$ — CH_2
- OC·O·C(CH₂)·CO·NH·C₁₀H₇.

 A. 292, 232). Prismen. F: 186°. Sehr leicht löslich in Äther, schwer in Ligroin.

- 13. $\beta.\beta$ -Dimethyl-butyrolacton- γ -carbonsäure $C_7H_{10}O_4 = \begin{array}{c} H_2C C(CH_2)_2 \\ OC \cdot O \cdot CH \cdot CO_2H \end{array}$ B. s. im Artikel α-Oxy-β-β-dimethyl-glutarsäure, Bd. III, S. 457. — Prismen mit 1 H₂O (aus Wasser) (Perkin, Thorpe, Soc. 79, 759). Schmilzt krystallwasserhaltig zwischen 50° und 80°, wasserfrei bei 112° (P., Th., Soc. 79, 759), 110,5° (Crossley, Le Surur, Soc. 81, 834). Leicht löslich in Äther, Aceton und heißem Benzol, ziemlich löslich in Chloroform, sehr sohwer in Petroläther (P., Th., Soc. 75, 56). — Liefert bei der Oxydation mit Kaliumpermanganat in siedender wäßriger Lösung a.a.Dimethyl-bernsteinsäure (C., LES.).
- α Brom β . β dimethyl butyrolacton γ carbons are $C_{1}H_{2}O_{2}Br =$ BrHC--C(CH₃)₂ B. Aus $\alpha.\alpha'$ -Dibrom- $\beta.\beta$ -dimethyl-glutarsäure durch Kochen mit OC·O·CH·CO·H. Wasser oder Pyridin (PERKIN, THORPE, Soc. 79, 755). — Prismen (aus Wasser). F: 169—170°.

Äthylester $C_9H_{13}O_4Br = BrHC - C(CH_9)_2$ OC O CH CO CaH . der α-Brom-β.β-dimethyl-butyrolacton-y-carbonsaure mit konz. Schwefelsaure (P., Th., Soc. 79, 756). — Ol. Kp45: 201°.

14. $\beta.\gamma$ -Dimethyl-butyrolacton- β -carbonsäure, β -Methyl- γ -valerolacton- $\mathbf{H_2C}$ — $\mathbf{C}(\mathbf{CH_2}) \cdot \mathbf{CO_2H}$ β -carbonsaure, β . γ -Dimethyl-paraconsaure $C_7H_{10}O_4 =$ OC · O · CH · CH, Bei der Reduktion von α-Methyl-α-acetyl-bernsteinsäure-diäthylester mit Natriumamalgam in wäßrig-alkoholischer Lösung unter zeitweiser Neutralisation mit Salzsäure (Fichter, Gisiger, B. 42, 4708). — Täfelchen (aus Benzol + Petroläther). F: 80°. Kp₉: 196°. — Geht bei langsamem Destillieren in β -Methyl- β . γ -pentensäure über.

Äthylester $C_9H_{14}O_4=\frac{H_2C-C(CH_2)\cdot CO_2\cdot C_2H_5}{OC\cdot O\cdot CH\cdot CH_3}$. B. Durch Kochen von $\beta.\gamma$ -Dimethylparaconsäure mit Alkohol und wenig konz. Schwefelsäure (F., G., B. 42, 4708). — Kp_{10} : 134°.

15. $\alpha.\beta$ - Dimethyl - butyrolacton - γ - carbonsaure $C_7H_{10}O_4$ = CH₃·HC—CH·CH₃

OC.O.CH.CO.H.

- $\alpha.\beta$ Dimethyl butyrolacton γ carbonsäure äthylester (?) $C_9H_{14}O_4 = CH_3 \cdot HC CH \cdot CH_3$
- $OC \cdot O \cdot CH \cdot CO_3 \cdot C_3H_5$ (?). B. Man kocht α' -Brom- $\alpha.\beta$ -dimethyl-glutarsäure-diäthylester 4 Stdn. mit Diathylanilin, versetzt mit verd. Salzsäure, äthert aus und destilliert den Ätherextrakt unter vermindertem Druck (Darbishire, Thorpe, Soc. 87, 1720). — Kp: 265—266°.
- 16. $\alpha.\gamma$ -Dimethyl-butyrolacton- β -carbonsäure, α -Methyl- γ -valerolacton- β -carbonsäure, $\alpha.\gamma$ -Dimethyl-paraconsäure $C_7H_{10}O_4=$ $CH_3 \cdot HC CH \cdot CO_2H$ $CH_3 \cdot HC CH \cdot CO_2H$ $CH_3 \cdot HC CH \cdot CO_3H$ $CH_4 \cdot CH_5 \cdot B.$ OC · O · CH · CH. Man reduziert α-Methyl-α'-acetyl-bernsteinsäure-diäthylester in wäßrig-alkoholischer Lösung mit Natriumamalgam, dampft die alkal. Lösung ein, säuert an und extrahiert mit Ather (Fighter, Rudin, B. 37, 1615). — Nadeln (aus Wasser), Prismen (aus Ather). F: 131°. Kp₁₄: 195°. Sehr leicht löslich in Alkohol und Chloroform, schwerer in Wasser und Ather, sehr schwer löslich in Benzol, unlöslich in Petroläther. — Geht bei der Destillation teilweise in α -Methyl- β - γ -pentensäure und Methyläthylmaleinsäure bezw. deren Anhydrid über. — $\mathrm{AgC_7H_9O_4}$. Zu Kugeln vereinigte Nädelchen.

Äthylester $C_2H_{14}O_4 = \frac{CH_3 \cdot HC - CH \cdot CO_2 \cdot C_2H_5}{CA_3 \cdot C_3 \cdot C_3}$. B. Beim Kochen von $\alpha.\gamma$ -Dimethyl-OC.O.CH.CH paraconsaure mit Alkohol und konz. Schwefelsaure (F., R., B. 37, 1616). - Flüssigkeit. Kp14: 142º. D15: 1,101.

17. $\alpha.\alpha$ - Dimethyl - butyrolacton - γ - carbonsaure $C_7H_{10}O_4$ (CH₂)₂C——CH₂

 $OC \cdot O \cdot CH \cdot CO_2H$. Beim Kochen von α' -Brom- $\alpha.\alpha$ -dimethyl-glutarsäure-diäthylester mit alkoh. Kalilauge, neben α.α-Dimethyl-glutaconsäure (Perkin, Soc. 81, 253, 259). — Krystalle (aus Toluol). Schmilzt unscharf bei ca. 85°. Leicht löslich in Wasser und heißem Toluol, schwer in kaltem Toluol. — AgC₂H₂O₄. Nadeln. Schwer löslich in kaltem, leicht in heißem Wasser.

Uber eine Verbindung C, H, oO4, die früher als eine a.a-Dimethyl-butyrolacton- γ -carbonsaure aufgefaßt wurde, vgl. bei β -Oxy- α - α -dimethyl-butyrolacton- γ -carbonsäure. Syst. No. 2624.

 β - Brom - $\alpha \alpha$ - dimethyl - butyrolacton - γ - carbonsaure $C_7H_4O_4Br =$ (CH₂)₂C——CHBr

OC·O·CH·CO₂H. B. Aus β . α '-Dibrom- α . α -dimethyl-glutarsäure (F: 217—219°) beim Kochen mit Wasser (PERKIN, Soc. 81, 254). — Nadeln. F: ca. 168—170°. Zersetzt sich bei 180° unter Gasentwicklung.

18. β -Lacton der $\alpha.\beta.\beta$ -Trimethyl-äpfelsäure $C_7H_{10}O_4 = \frac{(CH_3)_2C \cdot C(CH_3) \cdot CO_2H}{2}$ B. s. bei Trimethyläpfelsäure, Bd. III, S. 457. — Nadeln (aus Benzol + Ligroin). F: 118—120° (Komppa, B. 35, 534). — Geht durch Kochen mit Natronlauge in Trimethyläpfelsäure über.

4. 0xo-carbonsăuren $C_8H_{12}O_4$.

- Lacton der α-Methyl-α'-[β oder γ-oxy-propyl]-bernsteinsdure C₈H₁₁O₄, Formel I oder III. B. Entsteht in einer hochschmelzenden und in einer niedrig-CH3·HC·CH2·CH·CO2H III. H2C·CH2·CH2 CHa·HC-CHa II. O . CO . CH . CH. O · CO · CH · CH(CHa) · COaH O-CO-CH-CH(CH₃)-CO₂H schmelzenden Form bei 15 Minuten langem Kochen von 1 Tl. der Para- oder Meso-Form der α-Methyl-α'-allyl-bernsteinsäure (Bd. II, S. 791) mit 5 Tln. Schwefelsäure (1 Vol. konz. Schwefelsäure + 1 Vol. H₂O) (HJELT, B. 29, 1860).
- a) Hochschmelzende Form. Prismen (aus Wasser). F: 140-141º (H.). Schwer löslich in Wasser. — Beim Kochen mit Barytwasser entsteht ein Salz BaCaH₁₂O₅.
- b) Niedrigschmelzende Form. Nadeln. F: 60-68° (H.). Sehr leicht löslich in Wasser. — Beim Kochen mit Barytwasser entsteht ein Salz BaCaH12Os.
- 2. γ-Propyl-butyrolacton-β-carbonsäure, γ-Önantholacton-β-carbonsäure, H₂C—CH·CO₂H γ -Propyl-paraconsāure $C_8H_{18}O_A = OC \cdot O \cdot CH \cdot CH_2 \cdot CH_3 \cdot CH_$ (Bd. II, S. 789) mit rauchender Salzsäure im Druckrohr auf 120° (FITTIG, FIGHTER, A. 304, 244). Zur Reinigung der rohen γ -Propyl-paraconsaure vgl. Fit., Figh., A. 304, 241.—Blattchen (aus Benzol). F: 73,5°; leicht löslich in heißem Wasser und in heißem Benzol, sehr leicht in Chloroform, außerst schwer in heißem Ligroin, unlöslich in Schwefelkohlenstoff (Frr., Schmidt, A. 255, 70). — Liefert bei der Destillation als Hauptprodukt β -Hexylen- α -carbonssure (Bd. II, S. 444), daneben in geringen Mengen γ -Önantholacton (Bd. XVII, S. 241) und γ -Propylitaconssure (Fit., Sch., A. 255, 75). Beim Kochen mit überschüssigem Kalk- oder Barytwasser entstehen die Salze der γ -Propyl-itamalssure (Fit., Sch., A. 255, 72). — AgC₈H₁₁O₄. Nadeln (aus heißem Wasser) (Fir., Sch., A. 255, 71). — $Ca(C_8H_{11}O_4)_2 + 2H_2O$. Warzen (Fir., Sch.). — Ba(C₈H₁₁O₄)₂. Amorphes Pulver (Fig., Sch.)

 H_2C — $CH \cdot CO_2 \cdot C_2H_5$ ${\rm \AA thylester} \ \, C_{10} H_{16} O_4 =$ Athylester $C_{10}H_{16}O_4 = \frac{C_{10}H_{16}O_4}{OC \cdot O \cdot CH \cdot CH_2 \cdot CH_2}$. B. Beim Sättigen der alkoh. Lösung von γ -Propyl-paraconsäure mit Chlorwasserstoff (Fittig, Schmidt, A. 256, 105). — Flüssig. Kp. 211—216° (Fit., Sch.). Kp: 288—289° (geringe Zers.) (Fit., Fich., A. 304, 242). — Beim Erhitzen mit Natriumathylat-Lösung und Verseifen des entstandenen Esters mit siedender Natronlauge erhält man γ-Propyl-itaconsäure (Fit., Sch., A. 256, 106; Fit., FICH., A. 804, 242).

3. γ - Isopropyl - butyrolacton - γ - carbonsaure $C_0H_{10}O_4 =$ H₂C----CH₂ $OC \cdot O \cdot C[CH(CH_a)_a] \cdot CO_aH$. B. s. im Artikel α -Oxy- α -isopropyl-glutarsäure, Bd. III, S. 459. — Krystalle (aus Äther und Ligroin). F: 67—68° (FITTIG, WOLFF, A. 288, 187). Sehr leicht löslich in Wasser. — Beim Kochen mit Kalk- oder Barytwasser entstehen Salze der α-Oxy- α -isopropyl-glutarsäure. — AgC₈H₁₁O₄. Kugelige Krystalle (aus Wasser). — Ca(C₈H₁₁O₄)₂ + $2^1/_2$ H₂O. Nadeln (aus Wasser). Ziemlich schwer löslich in Wasser. — Ba(C₈H₁₁O₄)₂ + 2H₂O. Prismen. Leicht löslich in Wasser. Amid $C_8H_{13}O_3N=\frac{H_1C--CH_2}{OC\cdot O\cdot C[CH(CH_3)_3]\cdot CO\cdot NH_3}$. B. s. im Artikel α -Oxy- α -isopropylglutarsäure, Bd. III, S. 459; man erhält das Amid in erheblicher Menge, wenn man das durch Einw. von Kaliumcyanid auf $\delta.\delta$ -Dimethyl-lävulinsäure entstehende rohe Nitril nur 20 Minuten mit konz. Salzsäure kocht (FITTIG, WOLFF, A. 288, 190). — Prismen (aus Wasser). Monoklin prismatisch (v. Seyfbied, A. 288, 190; vgl. Groth, Ch. Kr. 3, 505). F: 148,5°; schwer löslich in Äther (F., W.). — Wird ziemlich schwer verseift; beim Kochen mit konz. Salzsäure entsteht γ -Isopropyl-butyrolacton- γ -carbonsäure, mit Barytwasser α -Oxy- α -isopropyl-glutarsäure (F., W.).

4. β -Isopropyl-butyrolacton- γ -carbonsaure $C_8H_{12}O_4 = \frac{H_1C - CH \cdot CH(CH_3)_2}{OC \cdot O \cdot CH \cdot CO_4H}$.

B. Man oxydiert α -Phellandren (aus Eucalyptusöl) (Bd. V, S. 129) mit Kaliumpermanganat in neutraler Lösung unter Eiskühlung, führt die entstandene α -Oxy- β -isopropyl-glutarsäure (Bd. III, S. 461) durch Kochen ihrer neutralisierten Lösung mit Kupferacetat in ihr Kupfersalz über, zersetzt das ausgeschiedene Salz mit Schwefelsäure, äthert aus und trocknet im Vakuum (SEMMLER, B. 36, 1750). — Wird in essigsaurer oder schwefelsaurer Lösung durch Bleidioxyd in Isopropylbernsteinsäure¹) (Bd. II, S. 680) übergeführt.

5. γ-Isopropyl-butyrolacton-β-carbonsäure, γ-Isopropyl-paraconsäure

C₈H₁₂O₄ = H₂C — CH·CO₂H

OC·O·CH·CH(CH₂)₂

B. s. im Artikel γ-Isopropyl-itamalsäure, Bd.III, S. 460.

— Blättchen (aus Benzol). F: 68—69°; unlöslich in Ligroin, sehr schwer löslich in Schwefelkohlenstoff, leicht in Wasser, Äther und Chloroform (FITTIG, ZANNER, A. 255, 87). — Liefert bei langsamer Destillation β.γ-Isoheptensäure (Bd. II, S. 445), γ-Isopropyl-itaconsäure (Bd. II, S. 791), Isopropyleitraconsäure (Bd. II, S. 791) und Isoheptolacton (Bd. XVII, S. 241) (Fl., ZANNER, A. 255, 90; Fl., Feurer, A. 283, 130). Wird durch Erhitzen mit rauchender Salzsäure im Druckrohr auf 135—140° fast quantitativ in γ.γ-Dimethyl-butyrolacton-α-essigsäure (S. 387) umgelagert (Fl., Thron, A. 304, 281; vgl. Fl., A. 304, 126). Gibt beim Kochen mit Barytwasser das Bariumsalz der γ-Isopropyl-itamalsäure (Fl., Z., A. 255, 89). — AgC₈H₁₁O₄. Nadeln (aus heißem Wasser) (Fl., Z., A. 255, 88). — Ca(C₈H₁₁O₄)₂ + 2H₂O. Nadeln. Ziemlich leicht löslich in Wasser (Fl., Z.). — Ba(C₈H₁₁O₄)₂ + 3H₂O. Tafeln (Fl., Z.).

Äthylester $C_{10}H_{16}O_4 = \frac{H_1C - CH \cdot CO_2 \cdot C_2H_5}{OC \cdot O \cdot CH \cdot CH(CH_2)_2}$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von γ -Isopropyl-paraconsäure (FITTIG, BUEWELL, A. 304, 259). — Gelbliche, dicke Flüssigkeit. Kp: 282°. — Liefert beim Erhitzen mit Natriumäthylat-Lösung und Verseifen des entstandenen Esters mit siedender Natronlauge γ -Isopropylitaconsäure.

6. α - Āthyl - butyrolacton - β - essigsāure, Homopilopsāure ²) $C_8H_{12}O_4=C_2H_5\cdot HC$ — $CH\cdot CH_2\cdot CO_2H$ $OC\cdot O\cdot CH_2$ 3). Zur Konstitution vgl. Jowett, Soc. 79, 1345. — B. s. bei β -Oxymethyl- α -āthyl-glutarsāure (Oxysāure aus Homopilopsāure), Bd. III, S. 460. — Öl. Kp₂₀: 235—2370; [a] $_0^{11}$: +45,40 (in Wasser; c = 3,5) (J., Soc. 79, 1339). — Beim Kochen mit Barytwasser entsteht das Bariumsalz der β -Oxymethyl- α -āthyl-glutarsāure (J., Soc. 79,

") Homopilopsäure (englisch: homopilopic acid) ist im III. Ergänzungsband zur 3. Aufl. dieses Handbuchs, S. 686 sowie in Bd. III der 4. Aufl., S. 460 im Hinblick auf Jowert, Soc. 83, 442, Zeile 19—31 v. o. Homopilopinsäure genaant worden. Die Bezeichnung Homopilopsäure ist jedoch vorsuziehen.

¹⁾ Die so erhaltene schwach linksdrehende Isopropylbernsteinsäure vom Schmelspunkt 1160 dürfte im wesentlichen aus der racemischen Säure bestanden haben, der etwas linksdrehende Säure beigemischt war (vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von Henry, Paget, Soc. 1928, 72; v. Braun, Reinhardt, B. 62, 2585).

⁸) Von Verbindungen dieser Konstitution sind zwei diastereoisomere Reihen möglich. Von diesen entspricht die eine sterisch dem Alkaloid Pilocarpin (Syst. No. 4546), die andere dem Isopilocarpin. Demgemäß werden die beiden Reihen von Langenbeck, B. 57 [1924], 2074 als Homopilopsäuren (d, 1 und dl) und Homosisopilopsäuren (d, 1 und dl) unterschieden. Bis sum Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] ist von den sechs Säuren nur eine (rechtsdrehende) beschrieben und Homopilopsäure genannt worden. Sie entspricht nach Langenbeck, vgl. auch Tschitzchibabin, Perobrashenski, B. 63 [1930], 461 dem Isopilocarpin und wäre daher genauer als d-Homosisopilopsäure zu bezeichnen.

1339). Beim Schmelzen mit Kaliumhydroxyd und wenig Wasser erhält man inaktive α-Äthyltricarballylsäure (Bd. II, S. 826) (J., Soc. 79, 1343). — Ba(C₄H₁₁O_{4) r (bei 150°). Hygroskopisches} Pulver (J., Soc. 79, 1339).

Äthylester $C_{10}H_{16}O_4 = \frac{C_2H_5 \cdot HC - CH \cdot CH_2 \cdot CO_2 \cdot C_2H_5}{CA_3 \cdot C_3}$. B. s. bei β -Oxymethylester $C_{10}H_{16}O_4 = \frac{C_2H_5 \cdot HC}{CA_3 \cdot C_3}$. OC.O.CH α-āthyl-glutarsāure, Bd. III, S. 460. — Flüssig. Kp_{10} : 210° (Jowett, Soc. 79, 1334). — Liefert beim Behandeln mit Ammoniak das Diamid der β-Oxymethyl-α-āthyl-glutarsāure.

Bromearp'nsäure $C_{10}H_{18}O_4N_2Br = C_2H_3 \cdot HC$ —CH·CHBr·CO·N(CH₃)·CO·NH₂ (?). Zur Konstitution vgl. Pinner, B. 38, 1517. — B. Durch 4-stündiges Erhitzen einer Lösung von 5 g salzsauren Pilocarpin (Syst. No. 4546) in 50 g Wasser mit 20 g Brom im Druckrohr auf 100° (Pinner, Kohlhammer, B. 33, 1429; Pi., Schwarz, B. 35, 205). — Prismen (ausheißem Wasser). F: 200° (Pi., Sch.). Schwer löslich in Wasser, Äther und Benzol, sehr leicht in Alkohol und Eisessig (Pi., K.). $[\alpha]_D$: —90,5° (in Alkohol; p = 6,1) (Pi., Sch.). — Löst sich in warmem konzentriertem Barytwasser oder in 20°/oiger Natronlauge und scheidet sich beim Ansäuern der Lösung unverändert wieder aus (Pi., B. 38, 1516). Beim Erhitzen mit Barytwasser im Druckrohr auf 130—140° bilden sich Ammoniak, Methylamin, Kohlensäure und α -Athyl-itamalsäure (Bd. III. S. 456) (Pi., B. 38, 1516, 1525; vgl. Pi., K., B. 33, 1430, 2359). und a-Athyl-itamalsäure (Bd. III, S. 456) (Pr., B. 38, 1516, 1525; vgl. Pr., K., B. 33, 1430, 2359).

OC · O · C(CH_)

a) Inaktive Terpenylsäure $C_0H_{12}O_4 = \frac{H_1C - CH \cdot CH_2 \cdot CO_2H}{OC \cdot O \cdot C(CH_3)_3}$.

B. Neben Terebinsäure und anderen Produkten bei der Oxydation von d-Limonen

B. Roben referentiation and even from the feet of vydetion von delamonen (Bd. V, S. 133) mit Chromsäuregemisch (Sauer, Gethilms, A. 208, 74 Anm., 75; vgl. Godlewski, K. 31, 213). Terpenylsäure entsteht als eines der Endprodukte des oxydativen Abbaus von Pinen (Bd. V, S. 144) (vgl. Wallach, A. 259, 311; 277, 148; Mahla, Tiemann, B. 29, 934) beim Erhitzen von Terpentinöl mit Chromsäuregemisch (Hempel, A. 180, 82; Fittig, Krafff, A. 208, 72). Aus dl-a-Terpineol (Bd. VI, S. 58) durch starke Oxydation mit Kellumperangenen der neben 2 Methodstehn bestehen (Bl. 214) bei des Oxydation mit Kaliumpermanganat oder, neben 3-Methoathyl-heptanon-(6)-olid-(31.1), bei der Oxydation mit Chromsaure und Eisessig (The., Schmidt, B. 28, 1783, 1784). Beim Erwärmen von cis-Terpinhydrat (Bd. VI, S. 745) mit Chromschwefelsäure (H., A. 180, 78). Terpenylsäure entsteht auch bei Einw. von 2 Mol Jodsaure auf 1 Mol cis-Terpinhydrat (DENABO, SCARLATA, entsteht auch bei Einw. von 2 Mol Jodsäure auf 1 Mol cis-Terpinhydrat (Denabo, Scarlata, G. 33 I, 400). Durch Oxydation von Pinolhydrat (Bd. VI, S. 752) mit Kaliumpermanganat in wäßr. Lösung und Ansäuern (Wallach, A. 259, 318). Neben 3-Methoäthyl-heptanon-(6)-olid-(3¹.1) bei der Oxydation von p-Menthantriol-(1.2.8) (Bd. VI, S. 1069) mit Chromsäure in Eisessig (Tie., Sch., B. 28, 1783). Durch Oxydation der bei 193—194° (Wagner, Slawiński, B. 32, 2069) oder der bei 155,5—156° (Ginsberg, B. 29, 1197) schmelzenden Form des p-Menthantetrols-(1.2.6.8) (Bd. VI, S. 1152) mit Kaliumpermanganat in der Kälte. Als Hauptprodukt durch Oxydation von inaktivem Pinol (Bd. XVII, S. 45) mit 1% iger Kaliumpermanganat-Lösung (3 Atome Sauerstoff auf 1 Mol Pinol) in der Kälte (Wag., B. 27, 1644; vgl. auch Sl., H. 28, 566). Durch Oxydation von "cis"-Pinolglykol (Bd. XVII, S. 154) oder "trans"-Pinolglykol (Bd. XVII, S. 155) mit 5% iger Kaliumpermanganat-Lösung (4 Atome Sauerstoff auf 1 Mol Pinolglykol) in der Kälte (Sl., H. 30, 198, 202; C. 1898 II, 544; Wag., Sl., B. 32, 2067 Anm. 6, 2072). Neben Isocamphoronsäure, Isooxycamphersäure und Terebin-St., B. 32, 2067 Anm. 6, 2072). Neben Isocamphoronsäure, Isocaycamphersäure und Terebinsäure bei der Oxydation von Dioxydihydro-α-campholensäure (Bd. X, S. 374) mit Chromsäuregemisch (Tie., B. 29, 3018, 3026). Entsteht neben anderen Produkten in geringer Menge beim Erwärmen der linksdrehenden Form der Oxocarbonsäure C₁₀H₁₆O₃ (von Tiemann als l-Pinonsäure bezeichnet) (Bd. X, S. 625) in wäßr. Lösung mit Chromsäuregemisch auf dem Wasserbad (Tie., B. 29, 3024, 3028). Terpenylsäure bildet sich neben Oxalsäure und wenig Terebinsaure durch allmähliches Eintragen von 5 g gepulverter Pinoylameisensaure (Bd. X, S. 850) in 50 g rauchende Salpetersaure unter Kühlung; man erwärmt nach 2-stündigem Aufbewahren auf 70° (Baeyer, B. 29, 1921). Aus der rechtsdrehenden Form (Ba., B. 31, 3217; Lapworth, Wechsler, Soc. 91, 1925) oder aus der inaktiven Form (Wal., A. 277, 118; A. 291, 345; B. 28, 1775; vgl. auch Tie., Semmler, B. 28, 1779; Tie., Schmidt, B. 28, 1783) von 3-Methoathyl-heptanon-(6)-olid-(3-1) (Bd. XVII, S. 428) durch Behandlung

¹⁾ Da Bromcarpinsäure nur aus Pilocarpin, nicht aus Isopilocarpin erhalten wurde, so entspricht ihre Konfiguration vielleicht nicht der oben behandelten Homopilopsäure (vgl. Anm. 3 auf S. 383).

mit Kaliumpermanganat in alkal. Lösung. Beim Erwärmen von inaktivem 3-Methoäthylheptanon-(6)-olid-(3¹.1) mit Chromsäuregemisch auf dem Wasserbad (Mahla, Tie., B. 29, 2622). Neben Terebinsäure bei der Oxydation des inaktiven 3-Methoäthyl-heptanon-(6)-olids-(3¹.1) mit Salpetersäure (Locquin, Bl. [4] 13 [1913], 168; vgl. Mahla, Tie., B. 29, 2622). Beim Erhitzen von Oxyterpenylsäure (8. 519) mit Jodwasserstoffsäure und rotem Phosphor auf 120—130° (Best, B. 27, 1220). Entsteht neben Oxalsäure und Terebinsäure bei 3—4-stündigem Erhitzen von Homoterpenoylameisensäure (8. 459) mit konz. Salpetersäure (Ba., B. 29, 2789). Durch Eintragen einer Lösung von β -Acetyl-glutarsäure-diäthylester (Bd. III, S. 809) in Äther in eine gekühlte ätherische Methylmagnesiumjodid-Lösung, Zersetzung des Reaktionsprodukts mit verd. Salzsäure und Verseifung des entstandenen Äthylesters mit siedender konzentrierter Salzsäure (Simonsen, Soc. 91, 187). Beim Erhitzen einer wäßr. Lösung von β -Isopropyl-glutarsäure mit Chromschwefelsäure auf dem Wasserbad (Lawrence, Soc. 75, 532). Beim Erwärmen von Isocamphoronsäure (Bd. II, S. 835) oder ihres Anhydrids (dargestellt aus Isocamphoronsäure und Acetylchlorid) mit konz. Schwefelsäure auf 100° (Tiemann, B. 29, 2613).

Darst. Man kocht 1 Tl. Terpentinöl mit 8 Tln. Kaliumdichromat und 32 Tln. 38% jeger Schwefelsäure unter Rückfluß, bis die Flüssigkeit grün geworden ist, erhitzt dann die filtrierte Lösung zur Entfernung der Essigsäure einige Zeit in einer offenen Schale und schüttelt mit Äther aus; man destilliert den Äther ab und läßt den Rückstand einige Tage stehen, wobei der Hauptteil der Terebinsäure auskrystallisiert; aus dem Filtrat scheidet sich dann nach Abdampfen der letzten Essigsäurereste im Wasserbad und 1—2-tägigem Stehen im Eisschrank ein Gemisch von Terebinsäure und Terpenylsäure ab; man erhitzt das Gemisch auf 80—90°, wobei nur Terpenylsäure schmilzt, gießt ab und krystallisiert die Säure aus Wasser um (Kraffer, Fittig, A. 208, 72; Fl., Levy, A. 256, 110). Zur Darstellung aus Terpentinöl vgl. auch Lawrence, Soc. 75, 530. — Man versetzt eine Lösung von 10 g inaktivem 3-Methoäthylheptanon-(6)-olid-(3¹.1) (Bd. XVII, S. 428) und 10 g Kaliumhydroxyd in 200 g Wasser allmählich mit einer Lösung von 25 g Kaliumpermanganat in 1 l Wasser; man dampft die vom Braunstein abfiltrierte Flüssigkeit ein, zieht den Rückstand mit Alkohol aus, säuert die von Alkohol befreite Lösung mit Schwefelsäure an und extrahiert mit Essigester (Wallach, A. 277, 118).

Blätter oder Prismen mit 1 H₂O (aus Wasser), die im Exsiccator verwittern (Hempel, A. 180, 79; Fittig, Krafft, A. 208, 75). Triklin (asymmetrisch?) (Schimper, A. 208, 76; vgl. Groth, Ch. Kr. 3, 506). Schmilzt wasserhaltig bei 57° (Wallach, A. 259, 318), 56° (Mahla, Tiemann, B. 29, 933), wasserfrei bei 90° (H., A. 180, 79; Wal., A. 277, 119), 88—89° (Amthor, Müller, J. pr. [2] 42, 387). Sublimiert bei 130—140° (H., A. 180, 79). Ziemlich leicht löslich in kaltem, sehr leicht in heißem Wasser (H., A. 180, 79). Verhält sich gegen Carbonate wie eine einbasische Säure (Fl., Kr., A. 208, 77). Die Salze sind in Wasser leicht löslich (H., A. 180, 79). — Liefert beim Destillieren Kohlensäure, Teracrylsäure (Bd. II, S. 448), eine indifferente ölige Verbindung, die bei 195—196° siedet, sich in Wasser löst und beim Kochen mit Baryt zersetzt wird (Fl., Kr., A. 208, 79), sehr geringe Mengen β.γ.γ. Trimethyl·butyrolacton (Bd. XVII, S. 242) und andere Produkte (Am., Mü., J. pr. [2] 42, 388). Wird von Chromsäuregemisch zu Terebinsäure (Mahla, Tiemann, B. 29, 933), bei stärkerer Einw. zu Kohlendioxyd und Essigsäure (Fl., Kr., A. 208, 77) oxydiert. Durch Oxydation mit 5°/oiger Kaliumpermanganat-Lösung erhält man Terebinsäure (Ma., T., B. 29, 933). Wird von Natriumamalgam nicht angegriffen (Fl., Kr., A. 208, 77). Wird von rauchender Jodwasserstoffsäure und rotem Phosphor bei 180—200° zu β-Isopropyl-glutarsäure reduziert (Schryver, Soc. 63, 1343). Gibt beim Kochen mit Alkalien oder Erdalkalien Salze der Diaterpenylsäure (Bd. III, S. 461) (Fl., Kr., A. 208, 77). Bei der Einw. von Brom auf die alkal. Lösung entsteht Tetrabromkohlenstoff (Wallach, A. 277, 120).

 $\operatorname{Cu}(C_8H_{11}O_4)_2 + \operatorname{aq}$. Grüne, rasch verwitternde Krystalle (Hempel, A. 180, 81). — $\operatorname{AgC_8H_{11}O_4}$. Krystallinische Masse. Leicht löslich in kaltem Wasser, sehr leicht in heißem (H.). — $\operatorname{Ba}(C_8H_{11}O_4)_2$. Amorphes Pulver. Sehr leicht löslich in Wasser (H.).

Äthylester $C_{10}H_{10}O_4=\frac{H_2C-CH\cdot CH_2\cdot CO_2\cdot C_2H_5}{OC\cdot O\cdot C(CH_3)_2}$. B. s. im Artikel Terpenylsäure. Entsteht ferner beim Erhitzen von terpenylsaurem Silber mit Äthyljodid auf 100° (Hempel, A. 180, 83). Man sättigt die alkoh. Lösung von entwässerter Terpenylsäure bei 0° mit Chlorwasserstoff und erwärmt 15 Minuten im Wasserbad (Fittig, Levy, A. 256, 111). — Prismen (aus Äther). Monoklin prismatisch (Fock, Z. Kr. 7, 590; A. 256, 111; vgl. Groth, Ch. Kr. 3, 507). F: 37,5° (Fi., L.). Kp: 305° (korr.) (Fi., L.); Kp₁₅: 169—171° (Simonsen, Soc. 91, 187). Leicht löslich in Alkohol und Äther (Fi., L.). — Erwärmt man Terpenylsäureäthylester mit Natrium in absol. Äther und behandelt die wäßr. Lösung des erhaltenen Produkts mit verd. Salzsäure unter Kühlung, so erhält man α -Diterpylsäure $C_{16}H_{22}O_7$ (S. 386) und geringe Mengen (aus nicht isolierter β -Diterpylsäure entstandenes?) β -Diterpodilacton

C₁₅H₂₅O₅ (s. u.); wird dagegen die wäßr. Lösung des Reaktionsprodukts mit Salzsäure ge-

kocht, so bilden sich α- und β-Diterpodilacton (FI., L., A. 256, 113, 123).

 α -Diterpylsäure $C_{1e}H_{22}O_7$. Zur Konstitution vgl. Frrrig, A. 256, 62. — B. Man versetzt 4 g Natrium in etwas absol. Ather mit 20 g trocknem Terpenylsäureäthylester, erwärmt 6 Stdn., entfernt aus dem Reaktionsprodukt das beigemengte Natrium, löst dann in Wasser, säuert unter Kühlung mit verd. Salzsäure an und extrahiert sofort mit Äther (FITTIG, LEVY, A. 256, 113, 123). — Nadeln (aus siedendem Wasser). F: 216°. Fast unlöslich in kaltem, ziemlich leicht löslich in heißem Wasser und heißem Alkohol, ziemlich schwer in Äther; löslich in Sodalösung; wird aus dieser Lösung durch Salzsäure unverändert gefällt (F., L.). — Zerfällt beim Erhitzen auf den Schmelzpunkt oder Kochen mit verd. Salzsäure in Kohlendioxyd und α-Diterpodilacton (s. u.) (F., L.). α-Diterpoxylsäure C₁₅H₂₆O₇. B. Durch Einw. von Natrium auf Terpenylsäureäthylster in Schmelzpunkt.

ester; man verfährt wie bei der Darstellung der α-Diterpylsäure (s. o.), nur kocht man das mit Salzsäure angesäuerte Produkt mehrere Stunden mit Wasser, bis das ausgeschiedene Öl sich wieder gelöst hat und kocht das beim Erkalten sich ausscheidende Gemisch von α- und β-Diterpodilacton (s. u.) mit Barytwasser; beim Erkalten scheidet sich nur das Bariumsalz der α -Diterpoxylsäure aus, während das Salz der β -Diterpoxylsäure (s. u.) erst nach starkem Eindampfen der Mutterlauge auskrystallisiert (FITTIG, LEVY, A. 256, 113, 115). — Die Säure ist in freiem Zustand nicht isoliert; das Bariumsalz gibt bei der Zersetzung mit verd. Salzsäure unter Kühlung zunächst α-Diterpolactonsäure (s. u.), nach längerem Stehenlassen oder Erhitzen α-Diterpodilacton (s. u.). – Ag₂C₁₅H₂₄O₇. Käsiger Niederschlag. — CaC₁₅H₂₄O₇ + 6 H₂O. Nadeln. – BaC₁₅H₂₄O₇ + 6 H₂O. Prismen (aus Wasser). Monoklin (Liweh, A. 256, 115; vgl. Groth, Ch. Kr. 3, 770). Schwer löslich in kaltem, ziemlich leicht in heißem Wasser.

α-Diterpolactonsäure C₁₅H₂₄O₆. B. Man versetzt die auf 0° abgekühlte Lösung von α-diterpoxylsaurem Barium (s. o.) mit der berechneten Menge Salzsäure und extrahiert sofort mit Äther (FITTIG, LEVY, A. 256, 117). — Krystalle (aus Chloroform). F: 158—160°. Leicht löslich in Alkohol, Äther und Chloroform. Löslich in Soda. — Geht beim Erwärmen über

den Schmelzpunkt in α -Diterpodilacton (s. u.) über. α -Diterpodilacton $C_{15}H_{22}O_5$. B. Aus α -Diterpylsäure (s. o.) beim Erhitzen über den Schmelzpunkt oder beim Kochen mit sehr verd. Salzsäure (Firriig, Levy, A. 256, 124). Beim Erhitzen von α-Diterpolactonsäure (s. o.) über den Schmelzpunkt (Fi., Le., A. 256, 117). Bei kurzem Kochen von α-diterpoxylsaurem Barium (s. o.) mit überschüssiger verdünnter Salzsäure (Fi., Le., A. 256, 118). Zur Bildung vgl. auch die Angaben bei α-Diterpoxylsäure. — Nadeln (aus Wasser). F: 153—154°. Schwer löslich in kaltem Wasser, leichter in Alkohol, unlöslich in Chloroform, Schwefelkohlenstoff und Benzol. Unlöslich in Soda. — Geht beim Kochen mit Barytwasser in α-diterpoxylsaures Barium über.

 β -Diterpoxylsäure $C_{15}H_{26}O_7$. B. s. o. bei α -Diterpoxylsäure; zur Gewinnung der reinen Säure versetzt man die von α -diterpoxylsaurem Barium befreite Lösung mit verd. Salzsäure und neutralisiert die ausgeschiedene β -Diterpolactonsäure mit Alkali oder Alkalicarbonat in der Wärme (Fittig, Levy, A. 256, 119, 121). — In freiem Zustande nicht bekannt; das Bariumsalz gibt bei der Zersetzung mit verd. Salzsäure in der Kälte β -Diterpolactonsäure (s. u.), in der Wärme β -Diterpodilacton (s. u.). — $Ag_2C_{15}H_{24}O_7$. Flockiger Niederschlag. Schwer löslich in Wasser. — $CaC_{15}H_{24}O_7$ (bei 130°). Krystallinische Masse. Sehr leicht löslich in Wasser. — $BaC_{15}H_{24}O_7 + 3^1/_3H_2O$. Nadeln. Sehr leicht löslich in Wasser.

β-Diterpolactonsäure C₁₅H_{MO6}. B. Beim Versetzen von β-diterpoxylsaurem Barium (s. o.) mit verd. Salzsäure (Fittig, Levy, A. 256, 119). — Prismen (aus heißem Wasser). Rhombisch (Liweh, A. 256, 120; vgl. Groth, Ch. Kr. 3, 770). F: 186—187°; sehr schwer löslich in kaltem Wasser (F1., LE.). — Liefert mit Alkalien in der Wärme Salze der β -Diterpoxylsaure (Fi., LE.).

 β -Diterpodilacton $C_{15}H_{32}O_5$. B. Aus β -Diterpolactonsaure (s. o.) beim Erhitzen über den Schmelzpunkt oder beim Kochen mit verd. Salzsaure (Fittig, Levy, A. 256, 122). Beim Kochen von β -diterpoxylsauren Salzen (s. o.) mit verd. Salzsäure (Fi., Le.). Zur Bildung vgl. auch oben die Anguben bei α-Diterpoxylsäure. — Nadeln. F: 134—135°. — Unlöslich in Sodalösung. — Liefert beim Kochen mit Barytwasser das Bariumsalz der β -Diterpoxylsäure.

b) Aktive(?) Terpenylsäure $C_3H_{12}O_4 = H_2C - CH \cdot CH_2 \cdot CO_2H$ $CC \cdot O \cdot C(CH_3)_3$ Durch Oxvdation von hochdrehendem l-a-Terpineol (Bd. VI, S. 57) in Benzol mit 1% iger Kaliumpermanganat-Lösung unter Kühlung und Aufbewahren des nach Abdestillieren des Benzols zurückgebliebenen, von Manganoxyden befreiten und durch überschüssige Schwefelsäure angesäuerten Rückstands mit Chromsäure wurden neben rechtsdrehendem 3-Methoäthyl-heptanon-(6)-olid-(31.1) geringe Mengen einer vielleicht optisch aktiven Terpenylsäure erhalten (Godlewski, 3K. 31, 206, 207; C. 1899 I, 1241). — Schmilzt lufttrocken bei 45-50°, wasserfrei bei 79-81°.

- $8. \ \, \beta\text{-Methyl-}\gamma\text{-dihyl-butyrolacton-}\gamma\text{-}carbons \\ \text{dure}, \beta\text{-Methyl-}\gamma\text{-}caprolacton-\\ \gamma\text{-}carbons \\ \text{dure} \ \, C_8H_{12}O_4 = \frac{H_1C\text{---}CH\cdot CH_3}{OC\cdot O\cdot C(C_2H_5)\cdot CO_2H} \, \, .$
- β -Methyl- γ -[α-brom-äthyl]-butyrolacton- γ -carbonsäure, δ-Brom- β -methyl- γ -caprolacton- γ -carbonsäure $C_8H_{11}O_4Br = H_2C$ — $CH \cdot CH_3$ $OC \cdot O \cdot C(CHBr \cdot CH_3) \cdot CO_3H$ handeln von Dicrotonsäure (Bd. II, S. 793) mit Brom in wäßr. Suspension und Eindampfen des entstandenen Reaktionsgemisches auf etwa $^1/_{10}$ seines Volumens (v. Pechmann, B. 33, 335). Prismen. F: 140°. Leicht löslich in Wasser, Alkohol, Äther und Chloroform. Beim Erwärmen der sodaalkalischen Lösung entstehen β -Methyl- γ -äthyliden-butyrolacton (Bd. XVII, S. 255) und β -δ-Dimethyl-lävulinsäure (Bd. III, S. 699).
- 9. γ -Methyl- γ -äthyl-butyrolacton- β -carbonsäure, γ -Methyl- γ -äthyl-paraconsäure $C_8H_{12}O_4= \frac{H_2C-CH\cdot CO_2H}{OC\cdot O\cdot C(CH_3)\cdot C_2H_5}$.
- $\beta\text{-Brom-}\gamma\text{-methyl-}\gamma\text{-äthyl-paraconsäure}\quad C_8H_{11}O_4\text{Br} = \frac{H_3\text{C}\text{--}\text{CBr}\cdot\text{CO}_3\text{H}}{\text{OC}\cdot\text{O}\cdot\text{C}(\text{CH}_3)\cdot\text{C}_2\text{H}_5}.\quad B.$ Durch Einw. von 1 Mol Brom auf eine wäßr. Suspension von 1 Mol γ -Methyl- γ -äthyl-itaconsäure (Bd. II, S. 794) (Stobbe, Strigel, Meyer, A. 321, 119). Nadeln (aus Benzol). F: 163° (Zers.). Leicht löslich in Äther, Alkohol und Chloroform. Wird durch Wasser langsam, durch verd. Alkalien rasener zersetzt. Liefert bei längerem Erwärmen mit $2^0/_0$ iger Natronlauge Methyl-äthyl-aconsäure (S. 398).
- 10. γ·γ-Dimethyl-butyrolacton-α-essigsäure, ., Is opropylis oparaconsäure"

 HO₂C·CH₂·HC—CH₂
 OC·O·C(CH₃)

 S. 459. Prismen (aus Wasser). Monoklin prismatisch (Stuber, A. 304, 274; vgl. Groth, Ch. Kr. 3, 508). F: 143°; sehr leicht löslich in Alkohol und heißem Wasser, schwer in Äther und Chloroform, sehr wenig in Benzol, unlöslich in Ligroin (Fittig, Burwell, A. 304, 275). Liefert bei längerem Kochen Isopropylcitraconsäure (Bd. II, S. 791) und wenig γ-Isopropyl-itaconsäure (Bd. II, S. 791) (F., Thron, A. 304, 290). Beim Kochen mit Kalkwasser oder Barytwasser entstehen die Salze der [β-Oxy-isobutyl]-bernsteinsäure (F., B., A. 304, 277). Salze: F., B., A. 304, 275, 276. AgC₈H₁₁O₄. Farblose Nadeln (aus heißem Wasser). Ca(C₈H₁₁O₄)₂ + 3¹/₂H₂O. Verfilzte Nadeln (aus 80°/₀igem Alkohol). Ba(C₈H₁₁O₄)₂ (bei 110°). Gummiartige Masse. Sehr leicht löslich in Wasser und Alkohol.

Äthylester $C_{10}H_{16}O_4 = \frac{C_2H_5 \cdot O_2C \cdot CH_2 \cdot HC - CH_2}{OC \cdot O \cdot C(CH_3)_3}$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von Isopropylisoparaconsäure (Fittig, Burwell, A. 304, 277). Beim Kochen von 15 g Isopropylisoparaconsäure mit 25 g absol. Alkohol und 2 g konz. Schwefelsäure (F., Thron, A. 304, 293). — Farblose Flüssigkeit. Kp: 276° (F., B.). — Beim Erhitzen mit Natriumäthylat. Lösung entsteht eine Säure C. H., O. (F., Th.).

277). Beim Kochen von 15 g Isopropylisoparaconsäure (FITTIG, BURWELL, A. 304, 277). Beim Kochen von 15 g Isopropylisoparaconsäure mit 25 g absol. Alkohol und 2 g konz. Schwefelsäure (F., Thron, A. 304, 293). — Farblose Flüssigkeit. Kp: 276° (F., B.). — Beim Erhitzen mit Natriumäthylat-Lösung entsteht eine Säure C₁₆H₂₀O₆ (F., Th.).

Verbindung C₁₆H₂₀O₆. B. Beim Erhitzen von 1 Mol Isopropylisoparaconsäureäthylester mit 1 Mol 10°/oiger Natriumäthylat-Lösung (FITTIG, Thron, A. 304, 293). — Blättchen mit 1 H₂O (aus verd. Alkohol). F: 222°. Sehr schwer löslich in Äther, Benzol und Chloroform. — Wird durch mehrstündiges Kochen mit 10°/oiger Natronlauge oder überschüssigem Barytwasser nicht verändert, ebensowenig durch 2-stdg. Kochen mit verd. Salzsäure. — AgC₁₆H₁₉O₆. Blättchen (aus Wasser). — Ca(C₁₆H₁₉O₆)₂. Körniges Pulver. Leicht löslich in Wasser und heißem Alkohol. — Ba(C₁₆H₁₉O₆)₂. Krystallinische Masse. Sehr leicht löslich in Wasser und Alkohol.

- 11. β.β-Dimethyl-butyrolacton-γ-essigsäure, β.β-Dimethyl-γ-valerolacton-δ-carbonsäure C₈H₁₂O₄ = H₂C —C(CH₃)₈ B. Beim Erhitzen der Lactonsäure C₈H₁₂O₆ vom Schmelzpunkt 158° (β.β-Dimethyl-butyrolacton-γ-carbonsäure-γ-essigsäure oder β.β-Dimethyl-butyrolacton-γ-malonsäure; vgl. Perkin, Thorpe, Soc. 103 [1913], 1760, 1762) (S. 486) auf 200° (Perkin, Thorpe, Soc. 79, 747, 767). Krystalle. F: 154—156°.
- 12. γ -Methyl- α -āthyl-butyrolacton- β -carbonsāure, α -Āthyl- γ -valerolacton- β -carbonsāure, γ -Methyl- α -āthyl-paraconsāure $C_8H_{18}O_4=C_2H_5\cdot HC$ — $CH\cdot CO_2H$ 2. Beim Behandeln einer wäßrig-alkoholischen Lösung von α -Äthyl-
- α'-acetyl-bernsteinsäure-diäthylester (Bd. III, S. 815) mit Natriumamalgam unter zeitweiser

Abstumpfung des Alkalis; nach Vertreiben des Alkohols säuert man stark an und äthert die ausgeschiedene Säure aus (Fichter, Obladen, B. 42, 4704). — Nadeln (aus Äther und Petroläther). F: 111°. Kp₁₂: 192—196°. — Zerfällt beim Destillieren unter gewöhnlichem Druck in δ-Hexylen-γ-carbonsäure (Bd. II, S. 447) und Xeronsäureanhydrid (Bd. XVII, S. 451).

13. $\beta.\gamma$ - Dimethyl - butyrolacton - α - essigsäure, β - Methyl- γ - valerolacton- α - essigsäure $C_8H_{18}O_4 = \frac{HO_3C \cdot CH_2 \cdot HC - CH \cdot CH_3}{OC \cdot O \cdot CH \cdot CH_3}$. Zur Konstitution vgl. Stobbe, Streigel, Meyer, A. 321, 109 Ann. — B. Beim Erwärmen von γ - Methyl- γ - äthylidenbrensweinsäure (Bd. II, S. 793) mit 50% jüger Schwefelsäure auf 100% (Stobbe, A. 282, 306, 313).

STRIGEL, MEYER, A. 321, 109 Anm. — B. Beim Erwärmen von γ -Methyl- γ -äthylidenbrenzweinsäure (Bd. II, S. 793) mit $50^{\circ}/_{\odot}$ iger Schwefelsäure auf 100° (Stoebe, A. 282, 306, 313). Durch Reduktion von β -Brom- β - γ -dimethyl-butyrolacton- α -essigsäure (s. u.) in wäßr. Suspension mit Natriumsmalgam und Ausäthern der angesäuerten Flüssigkeit (Sto., A. 282, 317). — Prismen (aus Benzol). F: 125—126°; leicht löslich in Wasser, Alkohol und Äther, schwer in Schwefelkohlenstoff (Sto.). — $\text{Ca}(\text{C}_8\text{H}_{11}\text{O}_4)_3$. Amorph. Sehr leicht löslich in Wasser und absol. Alkohol (Sto.).

β-Brom-β.γ-dimethyl-butyrolacton-α-essigsäure, β-Brom-β-methyl-γ-valerolacton-α-essigsäure $C_8H_{11}O_4Br=\frac{HO_2C\cdot CH_2\cdot HC-CBr\cdot CH_2}{OC\cdot O\cdot CH\cdot CH_2}$. Zur Konstitution vgl. Stobbe, A. 321, 90. — B. Durch Einw. von 1 Mol Brom auf 1 Mol γ-Methyl-γ-äthylidenbrenzweinsäure (Bd. II, S. 793) in Chloroform (Stobbe, A. 282, 308, 314; Sto., Strigel, Meyer, A. 321, 109). — Säulen (aus Chloroform). Monoklin prismatisch (Lenk, A. 282, 315; vgl. Groth, Ch. Kr. 3, 509). F: 161° (Sto., Ste., M., A. 321, 110). Löslich in Äther und Alkohol, unlöslich in Schwefelkohlenstoff (Sto., A. 282, 315). — Geht durch Reduktion in wäßr. Suspension mit Natriumamalgam und Ansäuern in β.γ-Dimethyl-butyrolacton-α-essigsäure über (Sto., A. 282, 317). Ist siedendem Wasser gegenüber bei nicht zu langer Einw. beständig; bei ca. 6-stdg. Einw. von kalter überschüssiger Natronlauge entsteht das

Dilacton der γ-Oxy-γ-methyl-γ-[α-oxy-āthyl]-brenzweinsäure

OC·O·CH₂·HC·—C·CH₃

OC·O·CH·CH₄

OC·O·CH·CH₄

(Syst. No. 2760); beim Kochen mit verd. Natronlauge entsteht als Hauptprodukt $\beta.\gamma$ -Dimethyl- $\Delta^{\alpha.\beta}$ -crotonlacton- α -essignaure (?) (S.399) (Sto., A.321, 90; Sto., Str., M., A. 321, 111, 112, 114). — Ca(C₂H₁₀O₄Br)₂. Amorph. Äußerst leicht löslich in Wasser und absol. Alkohol (Sto., A. 283, 317).

14. $\beta.\beta$ - Dimethyl - butyrolacton - α - essigsäure $C_0H_{10}O_4 = HO_2C \cdot CH_2 \cdot HC - C(CH_2)_2$. B. Beim Erhitzen der Lactonsäure $C_0H_{10}O_4$ vom Schmelzpunkt

OC·O·CH₂ ". B. Beim Erhitzen der Lactonsäure $C_9H_{12}O_6$ vom Schmelzpunkt 188—190° (β.β-Dimethyl-butyrolacton-γ-carbonsäure-α-essigsäure oder β.β-Dimethyl-butyrolacton-α-malonsäure; vgl. Perkin, Thorpe, Soc. 103 [1913], 1760, 1762) (S. 486) auf 190—200° (Perkin, Thorpe, Soc. 79, 747, 765). — Krystalle. F: 107—108°. Sehr leicht löslich in Wasser. — $Ca(C_9H_{11}O_4)_2 + 4H_2O(?)$. Schwer löslich in Wasser. Verliert bei 100° sein Krystallwasser nicht.

15. β.β.γ-Trimethyl-butyrolacton-γ-carbonsäure, β.β-Dimethyl-γ-valero-lacton-γ-carbonsäure C₂H₁₂O₄ =
\[
\begin{align*} \frac{\mathbb{H}_2\mathbb{C}_2 \\ \text{OC} \cdot \text{C}(\text{CH}_2)_2 \\ \text{OC} \cdot \text{C}(\text{CH}_2)_2 \\ \text{OC} \cdot \text{C}(\text{CH}_2)_2 \\ \text{OC} \cdot \text{C}(\text{CH}_2)_2 \\ \text{OC} \cdot \text{C}(\text{CH}_2) \cdot \text{C}_2\text{H} \\ \text{B.} \quad \text{Man vermischt w\text{\selection} \text{Rate} \text{valins\text{\selection} \text{Election} \\ \text{Not.} \quad \text{Blanc} \text{Colored} \\ \text{Salzs\text{\selection} \text{Colored} \\ \text{Salzs\text{\selection} \text{Vir.} \\ \text{Salzs\text{\selection} \\ \text{Vir.} \\ \text{Vir.} \\ \text{Vir.} \\ \text{Vir.} \\ \text{Salzs\text{\selection} \\ \text{Vir.} \\ \text{Vir.

16. a.a.y-Trimethyl-butyrolacton-y-carbonsaure, a.a-Dimethyl-y-valerolacton-y-carbonsaure $C_0H_{10}O_4 = \frac{(CH_2)_1C_1}{CH_2}CH_2$ B. Man trägt [a'-Brom-OC O C(CH₂) CO₂H . B. Man trägt [a'-Brom- $\alpha.\alpha.\alpha'$ -trimethyl-glutarsäure]-anhydrid (Bd. XVII, S. 423) in eiskalte Kalilauge ein und säuert die Lösung an (Auwers, Meyer, B. 23, 307). Man versetzt eine äther. Lösung von $\alpha.\alpha$ -Dimethyl-lävulinsäure (Bd. III, S. 702) erst mit Kaliumcyanid, dann tropfenweise unter guter Kühlung mit konz. Salzasure, dekantiert nach 8-tägigem Aufbewahren in der Kälte und gießt die äther. Lösung in das 2—3-fache Volumen konz. Salzsäure; nach abermaligem 8—10-tägigem Aufbewahren dampft man die filtrierte Flüssigkeit ein und athert aus (Auwers, A. 292, 222). — Krystalle (aus Ather). F: 103—104°; nicht flüchtig mit Wasserdampf; sublimierbar; sehr leicht löslich in kaltem Wasser, in Alkohol, Ather, Chloroform und Benzol, schwerer in Schwefelkohlenstoff, schwer in Ligroin (Au., M.). — Beim Kochen mit Jodwasserstoffsaure und rotem Phosphor entsteht α.α.α'. Trimethyl-glutarsaure (Au.). — AgCaH₁₁O₄. Mikrokrystallinisches Pulver (Au., M.).

Amid $C_8H_{18}O_3N = {}^{(CH_8)_3C} - CH_2$ Amid $C_8H_{18}O_8N = \frac{CH_{18}O_5}{OC \cdot O \cdot C(CH_2) \cdot CO \cdot NH_2}$. B. Beim Einleiten von trocknem Ammoniak in die Lösung von [α' -Brom- $\alpha.\alpha.\alpha'$ -trimethyl-glutarsäure]-anhydrid (Bd. XVII), S. 423) in Chloroform (Auwers, A. 292, 230). — Krystalle (aus Wasser). F: 134—135°. Leicht löslich in Eisessig, schwer in kaltem Wasser, Alkohol, Ather und Benzol.

Anilid $C_{14}H_{17}O_2N = {}^{(CH_2)_2C} - {}^{CH_2}$ Anilid $C_{14}H_{17}O_9N = \frac{(CH_3)_2C - CH_2}{OC \cdot O \cdot C(CH_3) \cdot CO \cdot NH \cdot C_8H_5}$. B. Aus 1 Mol [α' -Brom- $\alpha.\alpha.\alpha'$ -trimethyl-glutarsšure]-anhydrid in Chloroform und 2 Mol Anilin (A., A. 292, 229). — Nadeln (aus sehr verd. Alkohol). F: 97°. Leicht löslich in Alkohol, Äther, Chloroform und Benzol, schwer in heißem Ligroin.

17. $\alpha.\beta.\beta$ - Trimethyl - butyrolacton - γ - carbonsaure $C_{\alpha}H_{12}O_{\alpha}$ = CH₂·HC—C(CH₂)₂

OC·O·CH·CO.H. Zur Konstitution vgl. Mahla, Tirmann, B. 28, 2161; Balbiano, R. A. L. [5] 8 I, 422; G. 29 II, 538, 543; Blanc, Bl. [3] 25, 69. — B. Entsteht neben $\alpha.\beta.\beta$ -Trimethyl-glutarsäure beim Kochen von Balbianos Säure $C_aH_{12}O_5$ (S. 321) mit Jodwasserstoffsäure (Kp: 127°) und etwas rotem Phosphor (Balbiano, B. 27, 2135; 28, 1507; G. 29 II, 520, 528; 32 I, 485; vgl. hierzu Rothstein, Stevenson, Thorpe, Soc. 127 [1925], 1072, 1074). — Prismen (aus Essigester + Petrolather). Monoklin prismatisch (ZAMBONINI, G. 32 I. 489; vgl. Groth, Ch. Kr. 3, 505). F: 165—166° (korr.) (B., G. 29 II. 529). Schwer löslich in kaltem Wasser, Benzol und Petroläther, löslich in Alkohol und Äther (B., B. 27, osnon in kaitem Wasser, Benzol und Petroläther, löslich in Alkohol und Ather (B., B. 27, 2136). — Beim Kochen mit Permanganat-Lösung erhält man Oxalsäure und Balbianos Säure (B., B. 27, 2137). Liefert beim Erhitzen mit Jodwasserstoffsäure (Kp: 127°) im Druckrohr auf 140—150° α.β.β-Trimethyl-glutarsäure (B., R. A. L. [5] 8 I, 422; G. 29 II, 538). Beim Kochen mit überschüßiger Kalilauge entsteht das Kaliumsalz der α'-Oxy-α.β.β-trimethyl-glutarsäure (Bd. III, 8. 462) (B., B. 28, 1508; G. 29 II, 531). Beim Erhitzen mit Brom erhält man γ-Brom-α.β.β-trimethyl-butyrolacton-γ-carbonsäure (s. u.) (B., R. A. L. [5] 8 I, 424; G. 29 II, 542). — AgC₃H₁₁O₄. Nadeln (aus heißem Wasser) (B., G. 29 II, 530). — Ca(C₃H₁₁O₄)₂ + 2 H₂O. Nadeln. Etwas löslich in Wasser (B., G. 29 II, 529). — Ba(C₃H₁₁O₄)₂ + 4 H₃O. Nadeln. Schwer löslich in kaltem Wasser (B., G. 29 II, 530). γ - Brom - $\alpha\beta.\beta$ - trimethyl - butyrolacton - γ - carbons äure $C_8H_{11}O_4Br = CH_2 \cdot HC - C(CH_2)_2$

B. Man erhitzt $\alpha.\beta.\beta$ -Trimethyl-butyrolacton-y-carbonsaure mit OC·O·CBr·CO.H Brom im Rohr zuerst auf 120°, dann auf 150—160° (BALBIANO, R. A. L. [5] 8 I, 424; G. 29 II, 542). — Prismen (aus Benzol). Erweicht bei 120° und schmilzt bei 142—145° (B.). — Gibt das Brom schon bei der Behandlung mit Wasser als Bromwasserstoff ab (B.). Beim Erhitzen mit Alkalien entstehen Oxalsaure und Trimethylacrylsaure (B.; vgl. PANDYA, THORPE. Soc. 128 [1923], 2858).

18. $\alpha.\alpha.\beta$ -Trimethyl-butyrolacton- β -carbonsäure, $\alpha.\alpha.\beta$ -Trimethyl-paraconsaure $C_8H_{18}O_4 = \frac{(CH_2)_2C}{C_1CH_2} \cdot \frac{C(CH_2) \cdot CO_2H}{C_1CH_2}$. B. s. bei $\alpha.\alpha.\beta$ -Trimethyl-itamalsaure, Bd. III, OC.O.OH. 8. 462. — Krystalle (aus Benzol oder verd. Alkohol). F: 270° (korr.) (Noyes, Am. 33, 359). Beim Erwärmen mit überschüssiger Natronlauge entsteht das Natriumsalz der $\alpha.\alpha.\beta$ -Trimethyl-itamalsaure (N., Patterson, Am. 28, 230).

Äthylester $C_{10}H_{16}O_4 = \frac{(CH_2)_2C}{C(CH_3)\cdot CO_3\cdot C_2H_5}$ B. Aus $\alpha.\alpha.\beta$ -Trimethyl-para-OC.O.CH. consture durch Erhitzen mit Alkohol und Chlorwasserstoff im Einschlußrohr im Wasserbad (Noyes, Patterson, Am. 28, 232). Aus $\alpha.\alpha.\beta$ -Trimethyl-itamalsaure-diathylester (Bd. III, S. 462) und Phosphortribromid unter guter Kühlung; man zersetzt das Reaktionsprodukt mit Eis (N., P.). — Krystalle. F: 34,5° (N., P.). Kp₃₅: 150—152° (N., Am. 33, 35°).

Anhydrid $C_{16}H_{23}O_7 = \begin{bmatrix} (CH_2)_2C - C(CH_3) \cdot CO - \end{bmatrix}_2^O$. B. Entsteht neben [O-Acetyl- $\alpha.\alpha.\beta$ -trimethyl-itamalsaure]-anhydrid (S. 83) bei $^1/_2$ -stdg. Kochen von $\alpha.\alpha.\beta$ -trimethyl-itamalsaurem Barium (Bd. III, S. 462) mit Essigsäureanhydrid (Noyes, Am. 33, 364). Entsteht auch beim Kochen von $\alpha.\alpha.\beta$ -Trimethyl-paraconsäure mit Essigsäureanhydrid (N.). — Körnige Krystalle. F: 154—155°. Sehr schwer löslich in Äther.

Chlorid C₈H₁₁O₃Cl = (CH₃)₂C — C(CH₃)·COCl B. Bei gelindem Erwärmen von α.α.β-Trimethyl-paraconsäure mit Phosphorpentachlorid (N., Am. 33, 359). — Krystalle (aus Äther). F: 139°. Kann bei vermindertem Druck destilliert werden.

Bromid $C_8H_{11}O_3Br = \frac{(CH_8)_9C - C(CH_8) \cdot COBr}{OC \cdot O \cdot CH_3}$. B. Beim Erhitzen von 1 Mol $\alpha.\alpha.\beta$ -Trimethyl-paraconsäure-chlorid mit 1 Mol Brom im Rohr (N., Am. 33, 360). — Krystalle (aus Äther). F: 125°. Schwer löslich in Äther.

Amid $C_8H_{13}O_3N = \frac{(CH_3)_2C - C(CH_2) \cdot CO \cdot NH_2}{OC \cdot O \cdot CH_2}$. B. Durch Eingießen einer äther. Lösung von $\alpha.\alpha.\beta$ -Trimethyl-paraconsäure-chlorid in $10^0/p$ iges Ammoniak (N., Am. 33, 360). — F: 241—243°. Sehr schwer löslich in Wasser, Alkohol, Ather und Benzol. Zersetzt sich beim Lösen in heißem Wasser oder Alkohol.

5. Oxo-carbonsauren C.H. O4.

1. γ-Isobutyl-butyrolacton-β-carbonsäure, γ-Isobutyl-paraconsäure H₂C—CH·CO₂H
OC·O·CH·CH₂·CH(CH₃)₂

B. s. bei γ-Isobutyl-itamalsäure, Bd. III, S. 463. — Nädelchen (aus Wasser). Schmilzt bei 124—125° und sublimiert bei weiterem Erwärmen in Blättchen (Fittig, Schneegans, A. 255, 98). Leicht löslich in Alkohol, Äther, Chloroform und Ligroin, schwer in kaltem Wasser (Fitt., Schn.). — Liefert bei der Destillation β.γ-Isocotensäure (Bd. II, S. 451), γ-Isobutyl-itaconsäure, γ-Isobutyl-butyrolacton (Fitt., Schn.) und das nicht rein erhaltene Anhydrid der Isobutylcitraconsäure (Fit., Weil., A. 283, 279). Beim Neutralisieren der kaltgesättigten wäßrigen Lösung mit Calciumcarbonat oder Bariumcarbonat bei gewöhnlicher Temperatur entstehen neben den Salzen der γ-Isobutyl-paraconsäure die entsprechenden Salze der γ-Isobutyl-itamalsäure; beim Kochen mit Barytwasser entsteht das Bariumsalz der γ-Isobutyl-itamalsäure (Fitt., Schn.). Bei längerem Kochen mit einem großen Überschuß von Natronlauge erhält man γ-Isobutyl-itaconsäure (Fiohter, Dreyfos, B. 33, 1453). — Salze: Fitt., Schn. — AgC₉H₁₂O₄. Flockiger Niederschlag. Sehr beständig. — Ca(C₂H₁₂O₄)₂ + 2 H₂O. Nädelchen (aus Wasser). Löslich in Alkohol. — Ba(C₂H₁₃O₄)₂ + 3 H₂O. Nädelchen (aus Wasser). Löslich in Alkohol. — Ba(C₂H₁₃O₄)₂ vgl. Groth, Ch. Kr. 3, 518). Leicht löslich in Alkohol. — Zn(C₉H₁₂O₄)₂ + 1½ H₂O. Nädeln. Leicht löslich in Wasser und Alkohol.

Äthylester $C_{11}H_{10}O_4= H_1C-CH\cdot CO_2\cdot C_3H_5$ $OC\cdot O\cdot CH\cdot CH_2\cdot CH(CH_2)$. B. Beim Sättigen einer Lösung von γ -Isobutyl-paraconsäure in der 10-12-fachen Menge Alkohol mit Chlorwasserstoff bei 0^6 (Fittig, Kraencker, A. 256, 97). — Strahlig-krystallinisch. F: $16-17^6$. Kp: 293°. — Liefert beim Kochen mit Natriumäthylat-Lösung γ -Isobutyl-itaconsäure.

β-Brom-γ-isobutyl-paraconsäure $C_9H_{18}O_4Br = \frac{H_2C^-CB_r\cdot CO_9H}{OC\cdot O\cdot CH\cdot CH_4\cdot CH(CH_4)_9}$. B. Entsteht in geringer Menge neben Isobutylitaconsäure-dibromid aus γ-Isobutyl-itaconsäure und Brom in eiskaltem Wasser (Fittig, Keaencker, A. 381, 142). In geringer Menge bei der Einw. von Wasser auf Isobutylitaconsäure-dibromid (F., K., A. 381, 145). — Farblose Nadeln (aus Chloroform). F: 144—145° (Zers.). Sehr leicht löslich in Äther, schwerer in Chloroform, schwer in Ligroin. — Beim Erwärmen mit Wasser auf 100° entsteht Isobutylaconsäure (S. 399).

2. γ -Methyl-butyrolacton- γ - $\lceil \alpha$ -isobuttersäure \rceil , γ -Valerolacton- γ - $\lceil \alpha$ -isobuttersäure \rceil , 2.2.3 - Trimethyl - hexanolid - (3.6) - säure - (1) C₂H₁₄O₄ = H₂C — CH₂ OC·O·C(CH₂)·C(CH₂)·CO₂H . B. Bei mehrstündigem Kochen des Methylesters (S. 391)

mit verd. Salzsäure (Blaise, C. r. 180, 1034; Bl. [3] 23, 427). — Prismen (aus Methylalkohol).

F: 108—109°. Schwer löslich in Wasser, Alkohol und Äther, leichter in Chloroform. — Durch Erhitzen auf 175° entstehen unter Kohlendioxyd-Abspaltung 2.3-Dimethyl-hexanolid-(3.6) (Bd. XVII, S. 244) und 2.3-Dimethyl-hexen-(3)-säure-(6) (Bd. II, S. 452). Läßt sich nur schwer verestern. — Bleisalz. Nadeln (aus Wasser). Sehr schwer löslich in Wasser.

Methylester $C_{10}H_{10}O_4 = \frac{H_2C-CH_3}{OC\cdot O\cdot C(CH_3)\cdot C(CH_3)_2\cdot CO_3\cdot CH_3}$. B. Man läßt α -Bromisobuttersäure-methylester in Gegenwart von Zink auf Lävulinsäuremethylester einwirken und zersetzt das Reaktionsprodukt durch verd. Schwefelsäure (BL., C. r. 130, 1034; Bl. [3] 23, 426). — Öl. Kp₁₉: 162—165°; D₃: 1,1338. Unlöslich in Wasser. — Wird durch verd. Salzsäure zur Lactonsäure verseift. Beim Behandeln mit Alkalien entstehen Isobuttersäure und Lävulinsäure.

Äthylester $C_{11}H_{18}O_4 = H_2C$ — CH_2 $OC \cdot O \cdot C(CH_2) \cdot C(CH_3)_2 \cdot CO_3 \cdot C_2H_5$ Salz der Lactonsäure mit Äthyljodid und Alkohol im Rohr auf 100° (BL., C.r. 180, 1035; Bl. [3] 28, 428). — Gelbliche Flüssigkeit. Kp: 287—289°.

3. $\gamma - Propyl - butyrolacton - \beta - essigsäure, \gamma - Önantholacton - \beta - essigsäure H₂C — CH·CH₂·CO₂H

C₉H₁₄O₄ = OC·O·CH·CH₂·CH₂·CH₃·B. s. bei <math>\beta$ -[α -Oxy-butyl]-glutarsäure, Bd. III, 8. 463. — Farblose Nadeln (aus Äther + Ligroin oder Chloroform + Ligroin). Monoklin prismatisch (FITTIG, GUTHRIE, A. 314, 47; vgl. Groth, Ch. Kr. 3, 518). F: 53°. Leicht löslich in Chloroform, Alkohol, Äther und Benzol, schwerer in Wasser, unlöslich in Ligroin. — Wird erst durch mehrstündiges Kochen mit Kalkmilch oder Barytwasser unter Bildung der Salze der β -[α -Oxy-butyl]-glutarsäure aufgespalten. — AgC₂H₁₃O₄. Körniger Niederschlag (aus Wasser). — Ca(C₂H₁₃O₄)₂ + 2H₂O. Nadeln (aus Wasser). Schwer löslich in Alkohol. — Ba(C₂H₁₃O₄)₂. Schwer löslich in absol. Alkohol, ziemlich leicht in gewöhnlichem Alkohol. 4. γ -Isopropyl-butyrolacton- α -essigsäure, "Isobutylisoparaconsäure" $C_9H_{14}O_4$ = OC·O·CH·CH(CH₃)₂. B. Durch Reduktion von "Brom-isobutylisoparaconsäure"

paraconsāure" (s. u.) in kalter wāßriger Lösung mit Natriumamalgam unter Durchleiten von Kohlendioxyd (Fittig, Erlenbach, A. 304, 317). Aus "Isobutylaticonsāure" (Bd. II, S. 797) durch Behandlung mit Schwefelsäure (F., E.). Aus "Isobutylisaconsāure" (S. 399) durch Reduktion mit Natriumamalgam (F., E.). — Nadeln (aus Äther). F: 115°. Leicht löslich in heißem, ziemlich schwer in kaltem Wasser. — AgC₃H₁₃O₄. Säulen (aus heißem Wasser). — Ca(C₃H₁₃O₄)₂ + 2 H₂O. Nadeln (aus Wasser). — Ba(C₃H₁₃O₄)₂ + H₃O. Hygroskopische Krystallmasse. Sehr leicht löslich in Wasser.

5. γ.γ - Dimethyl - butyrolacton - β - [β-propionsāure], Homoterpenylsāure C₉H₁₄O₄ = H₂C — CH·CH₂·CH₂·CO₂H B. Man trägt während ¹/₄ Stunde 25 g Bleidioxyd in die mit 25 cm³ 25% iger Schwefelsäure versetzte und auf 100° erwärmte Lösung von 5 g Homoterpenoylameisensäure (S. 459) in 200 cm³ Wasser ein (Baeyer, B. 29, 1919). Beim Erwärmen von Homoterpenoylameisensäure mit rauchender Salpetersäure auf 60° (B.). Beim Eintragen von 1 Tl. Nopinon (Bd. VII, S. 70) in 10 Tle. rauchende Salpetersäure unter Eiskühlung (B., VILLIGER, B. 29, 1928). Aus dem Äthylester (s. u.) durch Kochen mit konz. Salzsäure (Simonsen, Soc. 91, 190). — Prismen (aus Wasser). F: 100—102,5° (B.), 100—101° (Si.). Leicht löslich in Chloroform und heißem Wasser, ziemlich schwer in Ather (B.).

Äthylester $C_{11}H_{18}O_4 = \frac{H_2C - CH \cdot CH_2 \cdot CO_2 \cdot C_2H_5}{OC \cdot O \cdot C(CH_3)_2}$. B. Durch langsames Eintragen einer ätherischen Lösung von β -Acetyl-adipinsäure-diäthylester (Bd. III, S. 813) in

eine äther. Lösung von Methylmagnesiumjodid und Zersetzen des Reaktionsprodukts mit verd. Salzsäure (Smonsun, Soc. 91, 190). — Farbloses Öl. Erstarrt noch nicht bei —15°. Kp18: 1860. — Wird beim Kochen mit konz. Salzsäure zu Homoterpenylsäure verseift.

sauren Lösung von Chromtrioxyd β -Isopropyl-lävulinsäure (Bd. III, S. 709). — AgC₈H₁₈O₄. Ziemlich leicht löslich.

b) Hochschmelzende Form. B. Durch Oxydation des Ketolactons aus Thujamenthon (Bd. XVII, S. 430) mit warmer verdünnter Salpetersaure oder Natriumhypobromit (Wallage, A. 323, 362). — Säulen (aus Wasser). F: 94°. Kp₁₃: 205°. — Liefert beim Kochen mit verdünnter schwefelsaurer Chromtrioxyd-Lösung β-Isopropyl-lävulinsäure. — AgC₂H₁₂O₄.

Leicht löslich in Wasser.

- 7. Lactonsäure C₂H₁₄O₄. B. Entsteht neben einer nicht rein erhaltenen isomeren Lactonsäure C₂H₁₄O₄ (F: ca. 116°?) und α.α.α'.α'. Tetramethyl-glutarsäure beim Erhitzen von β-Oxy-α.α.α'.α' tetramethyl-glutarsäure (Bd. III, S. 464) mit Jodwasserstoffsäure (D: 1,96) im geschlossenen Rohr auf 130—135° (Michailenko, Jaworski, Ж. 32, 328, 332; C. 1900 II, 529). Ohne Nebenprodukte entstehen die beiden Lactonsäuren C₂H₁₄O₄ beim Erhitzen von β-Oxy-α.α.α'.α'-tetramethyl-glutarsäure mit Bromwasserstoffsäure (D:1,78) im geschlossenen Rohr auf 110—160°; man trennt sie durch fraktionierte Krystallisation aug Wasser (M. I.) Krystalle (aug Wasser) F: 1440°. Flektrolytische Dissoriations. aus Wasser (M., J.). — Krystalle (aus Wasser). F: 141°. Elektrolytische Dissoziations-konstante k bei 25°: 1,28×10⁻⁵. — Bleibt beim Kochen mit Wasser unverändert; beim Kochen mit Kalilauge oder Barytwasser erhält man eine von der β -Oxy- α . α . α '. α '-tetramethylglutarsäure verschiedene Säure, die sich beim Abscheiden aus ihren Salzen [z. B. BaC₂H₁₄O₅ + 3H₂O] in die ursprüngliche Lactonsäure zurückverwandelt. — KC₂H₁₅O₄. Täfelchen (aus Alkohol). — Ba(CaH₁₂O₄)₂. Täfelchen (aus Wasser). Leicht löslich in Wasser.
- 6. Oxo-carbonsăuren $C_{10}H_{16}O_4$.

Schwer löslich in kaltem Ather.

- 1. δ Isobutyl δ valerolacton γ carbonsaure (?) $C_{10}H_{10}O_4 =$ H₂C·CH₂·CH·CO₂H OC O CH CH₂ CH(CH₃)₂ (?). B. Entsteht in geringer Menge neben 2-Methyl-octen-(4)säure-(8) bei 8-stündigem Kochen von 1 Tl. α-[α-Brom-isoamyl]-glutarsäure (Bd. II, S. 722) mit 30 Tln. Wasser (Fittig, Bronnert, A. 282, 352). — Prismen (aus Ather). F: 117,5°.
- $\delta.\delta$ Dimethyl δ valerolacton γ [β propions aure] $C_{10}H_{16}O_4 =$ H₂C·CH₂·CH·CH₂·CH₃·CO₂H OC-O-C(CH₂)

3. α - Methyl - δ - isopropyl - δ - valerolacton - δ - carbonsaure $C_{10}H_{10}O_4=$ CH. HC CH. CH.

 $OC - O - C[CH(CH_2)_2] \cdot CO_2H$. B. Aus α' -Oxy- α -methyl- α' -isopropyl-adipinsaure (Bd. III, S. 465) beim Erhitzen über den Schmelzpunkt (Tiemann, Semmler, B. 31, 2894). — Schmilzt unscharf bei ca. 100°.

4. γ -Methyl- α -isobutyl-butyrolacton- γ -carbonsäure, α -Isobutyl- γ -valerolacton- γ -carbonsäure $C_{10}H_{10}O_4 = {(CH_3)_2CH \cdot CH_2 \cdot HC - CH_2 \over OC \cdot O \cdot C(CH_4) \cdot CO_4H}$. B. Aus α -Oxygenethyl- α -isobutyl- α -is

α-methyl-α'-isobutyl-glutarsāure (Bd. III, S. 466) durch kurzes Kochen mit etwas Acetyl-chlorid (Bentley, Perkin, Soc. 73, 58). — Prismen. F: 80°. Leicht löslich in Alkohol und Eisessig, fast unlöslich in kaltem Benzol, Petroläther und Wasser. Wird aus der Lösung in kalten Alkalien durch Säuren unverändert gefällt; beim Erwärmen mit Alkalien erfolgt Aufspaltung zu α-Οχy-α-methyl-α'-isobutyl-glutarsäure.

Athylester C₁₂H₂₀O₄ = (CH₂)CH·CH₂·HC—CH₂

Athylester C₁₂H₂₀O₄ = (CH₂)CH·CH₂·CH

Äthylester $C_{12}H_{20}O_4 = \frac{(CH_2)_2CH \cdot CH_2 \cdot HO - CH_2}{OC \cdot O \cdot C(CH_2) \cdot CO_2 \cdot C_2H_5}$. B. Durch Einw. von alkoh. Chlorwasserstoff auf γ -Oxy- α -isobutyl- γ -cyan-n-valeriansăure (Bd. III, S. 466) (Bentley, Perkin, Soc. 78, 55). Aus dem Diäthylert der α -Oxy- α -methyl- α -isobutyl-glutarsäure (Bd. III, S. 466) durch Destillation oder durch Einw. von Phosphorpentoxyd (B., P.). — Farbloses Öl von schwachem Geruch. Kp₁₇: 168°; Kp₇₆₀: 290°.

Nitril, γ -Methyl- α -isobutyl- γ -cyan-butyrolacton, α -Isobutyl- γ -cyan- γ -valerolacton $C_{10}H_{18}O_2N= (CH_3)_2CH\cdot CH_2\cdot HC - CH_2 OC\cdot O\cdot C(CH_3)\cdot CN$. B. Durch Destillation von γ -Oxya-isobutyl- γ -cyan-n-valeriansäure (Bd. III, S. 466) unter vermindertem Druck (B., P., Soc. 78, 54). — Farblose Tafeln. F: 53°. Leicht löslich in Alkohol und Äther, fast unlöslich in Wasser; unlöslich in Natriumcarbonat-Lösung.

- 5. β-Methyl-γ-isobutyl-butyrolacton-β-carbonsäure, β-Methyl-γ-isobutyl-paraconsäure $C_{10}H_{16}O_4 = \frac{H_2C-C(CH_2)\cdot CO_2H}{OC\cdot O\cdot CH\cdot CH_2\cdot CH(CH_2)_2}$. B. s. bei α-Methyl-γ-isobutyl-itamalsäure, Bd. III, S. 465. Prismen oder Tafeln (aus Benzol). Monoklin prismatisch (Fritig, Feist, A. 255, 120; vgl. Groth, Ch. Kr. 3, 527). F: 83°. In Wasser etwas schwerer löslich als α-Methyl-γ-isobutyl-paraconsäure (s. u.); sehr leicht löslich in Alkohol, Ather, Chloroform und Benzol, sehr schwer in Ligroin, unlöslich in Schwefelkohlenstoff. Zerfällt bei rascher Destillation unter Kohlendioxyd-Entwicklung in 2.5-Dimethyl-hepten-(4)-säure-(7), nicht näher beschriebenes β-Methyl-γ-isobutyl-butyrolacton und geringe Mengen eines bei 111,5° siedenden Kohlenwasserstoffs. Beim Kochen mit Kalkwasser oder Barytwasser entstehen Salze der β-Methyl-γ-isobutyl-itamalsäure (Bd. III, S. 466). AgC₁₀H₁₅O₄. Ca(C₁₀H₁₆O₄)₂ + 2H₂O. Federförmige Krystalle. Ba(C₁₀H₁₅O₄)₂ + 4H₂O. Prismen. Sehr leicht Belich in Wasser.
- 6. α -Methyl- γ -isobutyl-butyrolacton- β -carbonsaure, α -Methyl- γ -isobutyl-cH $_3$ ·HC—CH·CO $_2$ H

 paraconsaure $C_{10}H_{16}O_4=$ OC·O·CH·CH $_2$ ·CH(CH $_3$) $_2$ itamalsaure, Bd. III, S. 465. Blatter oder Prismen (aus Wasser), Nadeln (aus Benzol). F: 142° (FITTIG, FEIST, A. 255, 111). Fast unlöslich in Schwefelkohlenstoff und Ligroin, leicht löslich in Alkohol, Ather, Chloroform und warmem Benzol. Zerfällt bei langsamer Destillation in Kohlendioxyd, Isobutyl-butylen, 2.6-Dimethyl-hepten-(3)-saure-(1), wenig α -Methyl- γ -isobutyl-butyrolacton (s. bei 2.6-Dimethyl-heptanol-(4)-saure-(1), Bd. III, S. 355) und etwas Isovaleraldehyd. Liefert beim Kochen mit Kalkwasser oder Barytwasser Salze der α -Methyl- γ -isobutyl-itamalsaure. $AgC_{10}H_{15}O_4$. Körnige Krystalle. $Ca(C_{10}H_{18}O_4)_2+2H_2O$. Undeutlich krystallinische Masse. Zersetzt sich teilweise bei 150°. $Ba(C_{10}H_{18}O_4)_2+2H_2O$. Leicht lösliche Nädelchen.

7. Oxo-carbonsăuren $m C_{11}H_{18}O_4$

1. γ-n-Hexyl-butyrolacton-β-carbonsäure, γ-Caprinolacton-β-carbonsäure, γ-n-Hexyl-paraconsäure $C_{11}H_{18}O_4 = H_2C - CH \cdot CO_2H - CH_2$ B. s. bei γ-n-Hexylitamalsäure, Bd. III, S. 466. — Nadeln (aus Wasser). F: 89° (Fittig, Schneegans, A. 227, 87). Schwer löslich in kaltem Wasser, leicht in Alkohol, Äther, Chloroform und Schwefelkohlenstoff. — Zerfällt bei der Destillation unter Kohlendioxyd-Entwicklung in β.γ-Decylensäure und eine kleine Menge γ-n-Hexyl-butyrolacton. Aus der in der Kälte mit Calcium-carbonat neutralisierten Lösung scheidet sich beim Eindampfen das Calciumsalz der γ-n-Hexylitamalsäure aus. — AgC₁₁H₁₇O₄. Glänzende Nadeln (aus Wasser). — Ca(C₁₁H₁₇O₄)₂ + 2H₂O. Nadeln (aus Wasser). Löslich in kaltem, sehr leicht löslich in heißem Wasser.

Äthylester C. H. O. — H₂C.—CH·CO₂·C₂H₅

Äthylester $C_{13}H_{22}O_4 = \frac{H_2C - CH \cdot CO_2 \cdot C_3H_5}{OC \cdot O \cdot CH \cdot [CH_2]_5 \cdot CH_2}$. B. Durch 2-stündiges Erhitzen von γ -n-Hexyl-paraconsäure mit Alkohol und etwas konz. Schwefelsäure (Fittig, Hoeffren,

- A. 304, 326). Öl. Kp. 325—326°. Unlöslich in Wasser, leicht löslich in Alkohol, Benzol, Schwefelkohlenstoff, Chloroform und Ligroin. — Liefert beim Erwärmen mit Natriumäthylat-Lösung und folgenden Verseifen mit Natronlauge v-n-Hexyl-itaconsäure.

"Hexylisoparaconsäure" $C_{11}H_{18}O_4 = \frac{10^{2} \text{OC} \cdot O \cdot CH \cdot [CH_2]_4 \cdot CH_3}{OC \cdot O \cdot CH \cdot [CH_2]_4 \cdot CH_3}$. B. Man behandelt eine Suspension von "Brom-hexylisoparaconsäure" in schwefelsäurehaltigem Wasser mit Natriumamalgam unter ständigem Zusatz von verdünnter Schwefelsäure (FITTIG, STUBER, A. 305, 8). — Blätter (aus Benzol). F: 83—84°. Schwer löslich in kaltem Wasser. — Beim Kochen mit Kalkwasser oder Barytwasser entstehen Salze der δ -Oxy-nonan- α . β -dicarbonsäure (Bd. III, S. 466). — AgC₁₁H₁₇O₄. Lichtempfindlicher Niederschlag. — Ca(C₁₁H₁₇O₄)₂. Fächerartig gruppierte Nädelchen. Ziemlich leicht löslich in Wasser.

 β -Brom- γ -n-amyl-butyrolacton- α -essigsäure, β -Brom- γ -pelargolacton- α -essig-HO₀C·CH₀·HC—CHBr saure, ,,Brom-hexylisoparaconsaure" C11H12O4Br =

B. Aus "n-Hexyl-aticonsăure" (Bd. II, S. 801) und Brom in Chloroform (Fittig, Stuber, A. 305, 5). — Nadeln (aus Wasser). F: 145—146°. Sehr leicht löslich in Ather, absol. Alkohol und Chloroform, leicht in warmem Benzol und warmem Schwefelkohlenstoff, sehr schwer in kaltem Wasser, unlöslich in Ligroin. — Wird durch Natriumamalgam in schwefelsaurer Suspension zu "Hexylisoparaconsäure" reduziert. Liefert beim Stehenlassen in alkal. Lösung "Hexylisaconsäure" (S. 403) und Oxoheptyl-bernsteinsäure (?) (Bd. III, S. 820), beim Kochen mit Wasser "Hexylisaconsäure" und "Undecodilacton" (s. nebenstehende Formel, Syst. No. 2760).

8. Oxo-carbonsăuren $C_{12}H_{20}O_4$.

- 1. β -Methyl- γ -n-hexyl-butyrolacton- β -carbonsäure, β -Methyl- γ -caprinolacton β -carbonsäure, β Methyl- γ -n-hexyl-paraconsäure $C_{11}H_{10}O_4=$ $OC \cdot O \cdot CH \cdot [CH_s]_s \cdot CH_s$. B. s. bei α -Methyl- γ -n-hexyl-itamalsäure, Bd. III, S. 467. — $H_{\bullet}C$ — $C(CH_{\bullet}) \cdot CO_{\bullet}H$ Würfelähnliche Krystalle (aus Äther + Ligroin). - F: 83 $^{\rm o}$ (Fittig, Riechelmann, A. 255, 138). Sehr schwer löslich in kaltem Wasser und Ligroin, ziemlich schwer in Schwefelkohlenstoff, sehr leicht in Alkohol, Äther, Chloroform und Benzol. — Liefert beim Kochen mit Kalkwasser oder Barytwasser Salze der β -Methyl- γ -n-hexyl-itamalsäure. — $\operatorname{AgC_{19}H_{19}O_4}$. Nadeln (aus verd. Alkohol). Ziemlich leicht löslich in heißem Wasser. — $\operatorname{Ca(C_{19}H_{19}O_{4)}}_2+2H_{2}O$. Nadeln, Leicht löslich in Wasser. — $\operatorname{Ba(C_{19}H_{19}O_{4)}}_2+3H_{2}O$. Prismen. Leicht löslich in Wasser.
- 2. α -Methyl- γ -n-hexyl-butyrolacton- β -carbonsäure, α -Methyl- γ -caprinolacton - β - carbonsaure, α - Methyl - γ - n - hexyl - paraconsaure $C_{11}H_{10}O_4$ = CH. HC-CH.CO.H
- OC·O·CH·[CH₂]₅·CH₃. B. s. bei α-Methyl-γ-n-hexyl-itamalsäure, Bd. III, S. 467. Nadeln (aus Ather + Ligroin). F: 101,5° (Fittig, Riechelmann, A. 255, 129). Sehr schwer löslich in kaltem Wasser und Ligroin, außerst leicht in Alkohol, Äther, Chloroform, Schwefelkohlenstoff und Benzol. – Zerfällt bei der trocknen Destillation unter Kohlendioxyd-Entwicklung in Hexyl-butylen, Onanthol und Brenzweinsäureanhydrid (Bd. XVII, S. 414). Liefert beim Kochen mit Kalkwasser oder Barytwasser Salze der α -Methyl- γ -n-hexyl-itamalsäure. — $AgC_{12}H_{19}O_4$. Lichtbeständige Nadeln (aus heißem Wasser). Schwer löslich in kaltem Wasser. — $Ca(C_{12}H_{19}O_4)_2 + 5H_2O$. Nadeln. Sehr leicht löslich in Wasser und Alkohol. — $Ba(C_{12}H_{19}O_4)_2 + 3H_2O$. Nadeln. Sehr leicht löslich in Wasser und Alkohol.

b) Oxo-carbonsäuren $C_n H_{2n-6} O_4$.

- 1. Oxo-carbonsauren C₅H₄O₄.
- 1. 5 0xo furan dihydrid (4.5) carbonsdure (2), $\Delta^{\beta,\gamma}$ Crotonlacton- γ carbonsdure $C_{2}H_{4}O_{4} = \begin{array}{c} H_{2}C CH \\ OC \cdot O \cdot C \cdot CO_{2}H \end{array}$
- 5-Imino-furan-dihydrid-(4.5)-carbonsäure-(2)-äthylester bezw. 5-Aminofuran-carbonsäure-(2)-äthylester, 5-Amino-brensschleimsäure-äthylester $C_{2}H_{2}O_{2}N=$ H₂C—CH HC-CH HN:C·O·C·CO₃·C₂H₅ bezw. H₂N·C·O·C·Co₃·C₂H₅. B. Durch Zusatz von 10 g amal-

gamierten Aluminiumspänen zu einer Lösung von 30 g 5-Nitro-brenzschleimsäure-äthylester (S. 288) in 150 cm³ Alkohol und 500 cm³ Äther (Marquis, C. r. 136, 1454; Bl. [3] 31, 1284; A. ch. [8] 4, 265). — Prismen (aus Benzol + Alkohol). F: 95°. Ziemlich löslich in heißem, sehr schwer in kaltem Wasser; löslich in organischen Lösungsmitteln, schwer löslich in kaltem Benzol, unlöslich in Ligroin. — Wird durch Behandlung mit verd. Alkalien oder Säuren oder durch Erhitzen mit Wasser unter Druck unter Verharzung zersetzt.

bezw. $CH_3 \cdot CO \cdot NH \cdot C \cdot O \cdot CC_2H$ athylester mit $5^0/_{o}$ iger Kaliumcarbonat-Lösung (M., C.r. 136, 1455; Bl. [3] 31, 1286; A.ch. [8] 4, 270). — Nadeln (aus Aceton oder Eisessig). Zersetzt sich bei ca. 280°. Sehr schwer löslich in Wasser und Alkohol, etwas leichter in siedendem Aceton und siedendem Eisessig; die Lösung in Eisessig zersetzt sich ziemlich rasch. — Liefert beim Erhitzen mit Chinolin auf 170° oder besser mit Pyridin im Druckrohr auf 170—180° Acetyl- α -furylamin. — $KC_2H_0O_4N + 5H_2O$. Blättchen oder Nadeln (aus Wasser). Sehr leicht löslich in Wasser, schwer in Alkohol. — $Cu(C_7H_6O_4N)_2 + 6H_2O$. Hellgrüne Nadeln. — $Ca(C_7H_6O_4N)_2 + 7H_2O$. Prismen (aus Wasser). Verwittert im Vakuum.

HC—CH

. B. Beim Erwärmen von 5-Amino-brenzschleimsäure-äthylester mit Essigsäureanhydrid auf dem Wasserbad (M., C. r. 136, 1455; Bl. [3] 31, 1285; A. ch. [8] 4, 268). — Scheidet sich aus siedendem Aceton in Blättchen ab, die, sofort von der Mutterlauge getrennt, bei 173,5°, nach dem Wiedererstarren aber erst bei 177,5° schmelzen; die Blättchen verwandeln sich, wenn sie mit der Mutterlauge in Berührung bleiben, in Prismen, die sofort bei 177,5° schmelzen. — Löst sich in verd. Alkalien und konz. Schwefelsäure in der Kälte. — Wird beim Erhitzen mit verd. Alkalien unter Ammoniak-Entwicklung zersetzt.

5-Benzimino-furan - dihydrid - (4.5) - carbonsäure - (2) - äthylester bezw. 5-Benzamino-furan-carbonsäure-(2)-äthylester, 5-Benzamino-brenzschleimsäure-äthylester

 $\begin{array}{c} H_1C - CH & HC - CH \\ C_0H_5 \cdot CO \cdot N \cdot C \cdot O \cdot C \cdot C_2 \cdot C_2H_5 & bezw. & C_0H_5 \cdot CO \cdot NH \cdot C \cdot O \cdot C \cdot C_2 \cdot C_3H_5 & B. \ Aus \\ 5-Amino-brenzschleimsäure-äthylester und Benzoylchlorid in trocknem Pyridin (M., C. r. 136, 1455; A. ch. [8] 4, 268). — Nadeln (aus Schwefelkohlenstoff). F: 99—100°. Löslich in den gewöhnlichen organischen Lösungsmitteln, in siedendem Ligroin und Schwefelkohlenstoff, unlöslich in Wasser; löslich in Alkalien.$

2. 5-Oxo-furan-dihydrid-(4.5)-carbonsäure-(3), $\Delta^{\beta,\gamma}$ -Crotonlacton- β -carbonsäure, Aconsäure $C_sH_4O_4=\frac{H_2C-C\cdot CO_2H}{OC\cdot O\cdot CH}$. B. Man kocht Itadibrom-

brenzweinsäure (Bd. II, S. 643) 2 Stunden mit der 10-fachen Menge Wasser (Fittig, Beer, A. 216, 92) und destilliert die Lösung unter vermindertem Druck bis zur beginnenden Krystallisation ab (Reitter, B. 27, 3440). Man kocht die wäßr. Lösung von Itadibrombrenzweinsäure mit 1½ Mol Natriumcarbonat (Kerulé, A. Spl. 1, 347). Man kocht gleiche Teile Itadibrombrenzweinsäure und Bleioxyd mit Wasser (Swarts, J. 1873, 584). Aconsäure entsteht ferner aus β-Brom-butyrolacton-β-carbonsäure (vgl. Carrière, A. ch. [9] 17 [1922], 95; in Bd. II, S. 763 auf Grund der Arbeit von Swarts als Bromitaconsäure aufgeführt) beim Kochen mit Wasser oder Alkalicarbonat-Lösung (S.). — Darst. Man neutralisiert 29 Tle. Itadibrombrenzweinsäure in möglichst konzentrierter wäßriger Lösung mit 10½ Tln. wasserfreier Soda und kocht die Lösung; während des Kochens gibt man allmählich noch 5½ Tle. Soda zu, wobei der Neutralisationspunkt nicht überschritten werden darf, da sonst ölige Spaltungsprodukte auftreten; nach vorsichtigem Eindampfen auf dem Wasserbad krystallisiert aconsaures Natrium aus; man zerlegt es mit Schwefelsäure und schüttelt Aconsäure mit Äther aus (Meilly, A. 171, 158). — Blätter (aus Äther). Rhombisch bipyramidal (Groth, A. 171, 160; vgl. Groth, Ch. Kr. 3, 403). F: 163—164° (Fl., Beer), 164° (S.; M.), 170° (C.). Leicht löslich in Alkohol und Äther (M.); ziemlich schwer löslich in Äther, löslich in 5,61 Tln. Wasser von 15° (S.). — Geht bei sehr langem Erwärmen mit Zinkstaub und Eisessig in Butyrolacton-β-carbonsäure (S. 371) über (Reil, B. 31, 2723). Verbindet sich nicht direkt mit Brom (Lieber-Mann, A. 171, 182; Fl., Beer). Addiert beim Erhitzen mit konz. Salzsäure im Rohr Chlorwasserstoff (S.; vgl. dagegen Wislicenus, Böklen, Reuthe, A. 363, 364). Liefert beim Erwärmen mit Bromwasserstoffsäure β-Brom-butyrolacton-β-carbonsäure (S.; vgl. C.). Gibt

beim Kochen mit Wasser \(\beta\)-Formyl-propions\(\text{aue}\) (v. Ungern-Sternberg, Dissertation [Königsberg 1904]; vgl. Ellinger, B. 87, 1803; Harries, Alefeld, B. 42, 159; Ha., Hingel-MANN, B. 42, 166). Liefert beim Kochen mit überschüssigem Barytwasser Kohlendioxyd, Ameisensäure, Bernsteinsäure und Formyl- bezw. Oxymethylen-bernsteinsäure (Bd. III, S. 794) (M.; vgl. S.; Frankensteins, Dissertation [Königsberg 1899], S. 22). Gibt beim Sättigen der alkoh. Lösung mit Chlorwasserstoff Formyl- bezw. Oxymethylen-bernsteinsäurediathylester (W., Bö., Reu.). Essigsäureanhydrid ist auch bei 150° unter Druck ohne Wirkung auf Aconsäure (M.). Bei gelindem Erwärmen von Aconsäure mit 2 Mol Phenylhydrazin entsteht das Phenylhydrazon des β -Formyl-propionsäure-phenylhydrazids (Bd. XV, 8. 345) (Rei., Bender, A. 889, 374).

Salze. NaC₅H₂O₄+3H₂O (FI., Beer). Tafeln. Triklin pinakoidal (Fock, A. 216, 94; vgl. Groth, Ch. Kr. 3, 403). In Wasser leicht löslich (Kekulé, A. Spl. 1, 347). — Cu(C₅H₂O₄)₂ +4H₂O. Dunkelblaue Prismen (Mehle, A. 171, 162). — AgC₅H₃O₄. Blättchen. Leicht löslich in heißem, schwer in kaltem Wasser (M.). Zersetzt sich beim Eindampfen seiner Lösung (M.). — Ba(C₅H₃O₄)₃ (bei 150°). Nadeln (aus verd. Alkohol) (K.; M.). — Zn(C₅H₃O₄)₃ +8H₂O. Krystalle, die unter 100° in ihrem Krystallwasser schmelzen (M.).

 $\label{eq:methylester} \begin{array}{ll} \textbf{Methylester} & \textbf{C}_{\textbf{0}}\textbf{H}_{\textbf{0}}\textbf{O}_{\textbf{4}} = \frac{\textbf{H}_{\textbf{2}}\textbf{C} - \textbf{C} \cdot \textbf{CO}_{\textbf{2}} \cdot \textbf{CH}_{\textbf{3}}}{\textbf{OC} \cdot \textbf{O} \cdot \textbf{CH}}. \end{array}$ B. Aus dem Silbersalz der Aconsaure und Methyljodid (Menly, A. 171, 163). Bei 14-tägigem Aufbewahren einer Lösung von 23 g etwas bromwasserstoffhaltiger Aconsäure in 100 g Methylalkohol (Refffer, B. 27, 3440; Ref., Bender, A. 339, 376 Ann. 10). — Prismen (aus Wasser). F: 84° (Ref.), 85° (M.). Schwer kalich in Wasser, leichter in Alkohol, leicht in Äther (M.). — Beim Kochen mit Phenylhydrazin in Methylalkohol erhält man das Phenylhydrazon des α-Formyl-bernsteinsäure-α-methylester-α'-phenylhydrazids (Bd. XV, S. 376) (Rel., Ben., A. 339, 376; vgl. Rel.) und 1-Phenyl-6-oxo-pyridazintetranydrid-carbonsäure-(4)-phenylhydrazid

CeH5·N<N=CHCO·CH·CO·NH·NH·CeH5 (Syst. No. 3696) (Rei., Ben.; vgl. Wislioenus, Böklen, Reuthe, A. 363, 358).

Äthylester $C_7H_8O_4 = \frac{H_8C - C \cdot CO_2 \cdot C_2H_5}{OC \cdot O \cdot CH}$. B. Durch Erwärmen des Silbersalzes der Aconsaure mit Äthyljodid im Druckrohr auf 100° (Wislicenus, Böklen, Reuthe, A. 363, 364). — Farbloses Öl. Kp18: 144—145°. Färbt sich bei etwa 190° braun und spaltet Kohlenoxyd ab.

2. Oxo-carbonsăuren CaHaOa.

1. [5-Oxo-4.5-dihydro-furyl-(2)]-essigsdure, $\Delta^{\beta,\gamma}$ - Crotonlacton - γ -essigsdure, Mucolactonsdure $C_0H_0O_4 = \begin{array}{c} H_1C - CH \\ OC \cdot O \cdot C \cdot CH_1 \cdot CO_2H \end{array}$ (?). B. Beim Behandeln von β.β'-Dibrom-adipinsaure mit Silberoxyd in heißer wäßriger Lösung (LIMPRICHT, A. 165, 274; vgl. Baeyeb, Rupe, A. 256, 22). Beim Kochen von Chlordihydromuconsäure (Bd. II, S. 774) mit Wasser (Ruhemann, Soc. 57, 941). — Monoklin prismatisch (Solly, Soc. 57, 942; vgl. Groth, Ch. Kr. 3, 462). Schmilzt bei 100—105°; nach wiederholtem Umkrystallisieren steigt der Schmelspunkt auf 122—125° (Ruh; vgl. L.). Leicht löslich im Wasser, Alkohol und Ather (L.). - Zerfällt beim Kochen mit Barytwasser in Kohlendioxyd, Essigsăure, Bernsteinsăure und eine Verbindung $C_5H_3O_3(?)$ (L.). — Silbersalz. Sehr unbeständig (L.). — Ba($C_6H_5O_4$)₂ + 4H₂O. Krystallwarzen. Leicht löslich in Wasser; ist aus der Lösung durch Alkohol fällbar (L.).

2. [5-0x0-2.5-dihydro-furyl-(2)]-essigsäure, $\Delta^{\alpha,\beta}$ -Crotonlacton- γ -essigsäure $C_6H_6O_4= {\rm CC \cdot O \cdot CH \cdot CH_2 \cdot CO_2H \cdot CH_3 \cdot CO_2H \cdot CH_3 \cdot CO_3H \cdot CH_3 \cdot$

[5-Oxo-2.5-dihydro-furyl-(2)]-bromessigsäure (?), $\Delta^{\alpha,\beta}$ -Crotonlacton-y-bromessigsaure (P). Lacton der α' - Brom - β' - ρxy - $\Delta^{\alpha,\beta}$ - dihydromuconsaure (P) $C_cH_5O_4Br=HC$ —CH OC·O·CH·CHBr·CO₂H (?) 1). B. s. bei Bromoxydihydromuconsäure, Bd. III, S. 471. — Nadeln (aus Wasser). Zersetzt sich bei 254°; sehr leicht löslich in Alkohol (RUHEMANN, DUFTON, Soc. 59, 753).

¹⁾ Die Angaben von RUHEMANN, DUFTON lassen sich nicht vereinbaren mit der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von CHAND-BASENA, INGOLD, Soc. 121, 1306.

- 3. 5-Oxo-2-methyl-furan-dihydrid-(4.5)-carbonsäure-(3), γ -Methyl- $\Delta^{\beta,\gamma}$ -crotonlacton- β -carbonsäure $C_4H_4O_4= \frac{H_4C_4-C\cdot CO_2H}{OC\cdot O\cdot C\cdot CH_4}$.
- a) Prāparat von Sprankling. B. Der Athylester entsteht beim Erhitzen von Acetylbernsteinsäurediäthylester (Bd. III, S. 801); man verseift ihn mit sehr verd. Salzsäure (Sp., Soc. 71, 1166). Öl. Liefert beim Kochen mit Barytwasser Lävulinsäure. $Ba(C_6H_5O_4)_2$ (bei 120°).
- b) Prāparat von Fittig, Scheen (Methylaconsāure). Zur Konstitution vgl. Wislicenus, Böklen, Reuthe, A. 363, 344. B. Aus β-Brom-γ-methyl-paraconsāure (S. 373) beim Kochen mit Wasser (Fittig, Scheen, A. 331, 141). In geringer Menge bei der Zersetzung von Methylitaconsāuredibromid (Bd. II, S. 661) durch Wasser (F., Sch., A. 331, 137). Sāulen (aus Wasser). F: 159,5—160°; leicht löslich in Ather und Alkohol, sohwerer in Chloroform, unlöslich in Ligroin. Liefert mit Natriumamalgam γ-Methyl-paraconsāure (S. 372) (F., Sch.). Ca(C₆H₅O₆)₂. Leicht löslich in Wasser (F., Sch.). Ba(C₆H₅O₆)₂. Nadeln. Leicht löslich in Wasser, unlöslich in Alkohol (F., Sch.).
- 4. Lacton der 3-Methyl-cyclopropanol-(3)-dicarbonsäure-(1.2) $C_6H_6O_4=HO_2C\cdot HC \stackrel{CH}{\longrightarrow} C_1$. B. Aus dem Lacton der 1-Brom-3-methyl-cyclopropanol-(3)-dicarbonsäure-(1.2) (s. u.) durch Behandlung mit Natriumamalgam unter zeitweiser Abstumpfung des Alkalis mit Schwefelsäure (Feist, B. 26, 763). F: 141°. Leicht Belich in Wasser, schwer in Äther. Beim Behandeln mit salzsaurem Hydroxylamin in Gegenwart von überschüssiger Soda wurde eine Säure $C_6H_6O_4$, wahrscheinlich 2-Methyl-cyclopropen-(1)-dicarbonsäure-(1.3) erhalten.

Lacton der 1-Brom-8-methyl-cyclopropanol-(3)-dicarbonsäure-(1.2) $C_6H_6O_4Br=HO_2C\cdot HC \stackrel{(CBr-CO)}{\xrightarrow{i}} ^{1}$). B. Aus 2-Methyl-cyclopropen-(1)-dicarbonsäure-(1.3) durch Behandlung mit Bromwasser in der Wärme (Frist, B. 26, 763). Aus 1-Brom-3-methyl-cyclopropanol-(3)-dicarbonsäure-(1.2) (in Bd. III, S. 801 als α -Brom- β -oxal-buttersäure beschrieben) durch Sublimation (F., B. 26, 763). — Krystalle. F: 168°. — Gibt mit Natriumamalgam das Lacton der 3-Methyl-cyclopropanol-(3)-dicarbonsäure-(1.2).

3. Oxo-carbonsauren $\mathrm{C_7H_8O_4}$.

1. $[2-0\infty-4-methyl-2.5-dihydro-furyl-(3)]$ -essigsäure (?), β -Methyl- $\Delta^{\alpha,\beta}$ - crotonlacton - α - essigsäure (?), Isoterebilensäure $C_7H_8O_4=HO.C\cdot CH.\cdot C=C\cdot CH$.

HO₂C·CH₂·C = C·CH₂ (?). Zur Konstitution vgl. Firtig, A. 304, 140. — B. Durch langes OC·O·CH₂ (?). Zur Konstitution vgl. Firtig, A. 304, 140. — B. Durch langes Kochen von Isoheptodilacton (Syst. No. 2760) mit Wasser (Fi., Petkow, A. 304, 234). Beim Erhitzen von Oxyisoterebinsäure (Syst. No.2624) mit rauchender Bromwasserstoffsäure im Druckrohr auf 100—120° (Fi., P.). — Tafeln (aus Wasser). Monoklin prismatisch (Stuber, A. 304, 236; vgl. Groth, Ch. Kr. 3, 493). F: 118—119° (Fi., P.). — Geht durch Reduktion mit Natriumamalgam unter Einleiten von Kohlendioxyd in Isoterebinsäure (S. 376) über (Fi., P.). — AgC, H,O₄. Nadeln (aus Wasser) (Fi., P.). — Ca(C, H,O₄)₂ + H₂O (Fi., Friedmann, A. 380, 321 Anm.). Federförmige Krystalle. Leicht löslich in Wasser (Fi., P.). — Ba(C, H,O₄)₂ + 2 H₂O (Fi., Fr.). Pulver. Sehr leicht löslich in Wasser (Fi., P.).

2. 5-Oxo-2.2-dimethyl-furandihydrid-carbonsäure-(3), $\gamma \cdot \gamma - Dimethyl-\Delta^{\alpha\beta}$ -crotonlacton- β -carbonsäure, Terebilensäure $C_7H_8O_4=\frac{HC=-C\cdot CO_2H}{OC\cdot O\cdot C(CH_2)_2}$. B. Aus β -Chlor- und β -Bromterebinsäure (8. 379, 380) beim Abdampfen mit Wasser (FITTIG, FROST, A. 226, 370). Eine weitere Bildung s. bei Diaterebilensäure, Bd. III, S. 472. — Krystallisiert aus Wasser oder Äther in Prismen, die bei 168° schmelzen (FI., FR.; vgl. Roser, A. 220, 261). Aus Alkohol oder konz. Bromwasserstoffsäure werden Krystalle erhalten, die

¹) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von Goss, Ingold, Thorre, Soc. 128, 327, 344 und von Feist, A. 436, 135.

bei 162—163° schmelzen (FI., FR.). Die bei 162—163° schmelzenden Krystalle sind rhombisch (LIWEH, A. 226, 371). Sublimierbar (R.). Leicht löslich in Alkohol, Äther (R.; FI., FR.) und in siedendem Wasser, fast unlöslich in Schwefelkohlenstoff (FI., FR.). — Zersetzt sich bei der Destillation nur zum geringen Teil unter Entwicklung von Kohlendioxyd und Bildung von Terelactonsäurelacton (Bd. XVII, S. 254) (FI., FR.). Wird von Natriumamalgam in Terebinsäure umgewandelt (FI., FR.). Verbindet sich weder mit Brom noch mit Brom wasserstoffsäure (FI., FR.). Wird durch Kochen mit Kalikauge, aber nicht mit Kalkwasser in Diaterebilensäure übergeführt (R.). — AgC₇H₇O₄. Prismen (R.). — Ca(C₇H₇O₄)₂. Nadeln. Leicht löslich in Wasser (R.).

- 4-Chlor-5-oxo-2.2-dimethyl-furandihydrid-carbonsäure-(8) (?), α -Chlor- γ - γ -dimethyl- $\Delta^{\alpha,\beta}$ -crotonlacton- β -carbonsäure (?), Chlorterebilensäure $C_7H_7O_4Cl=ClC=C\cdot CO_2H$ (?). B. Beim Erhitzen von α -Chlorterebinsäure (S. 379) mit Phosphorpenta-chlorid auf 130—140° (Roser, A. 220, 265). Prismen. F: 200—203°. Leicht löslich in heißem Wasser. Sehr beständig; wird durch Kochen mit Wasser und Silberoxyd kaum verändert. AgC $_7H_4O_4Cl$. Nadeln (aus Wasser). $Ca(C_7H_4O_4Cl)_2+H_2O$. Tafeln oder Prismen (aus Wasser).
- 3. 5-Oxo-2.4-dimethyl-furan-dihydrid-(4.5)-carbonsäure-(3), $\alpha.\gamma-Dimethyl-\Delta^{\beta.\gamma}-crotonlacton-\beta-carbonsäure$ $C_7H_8O_4= \begin{array}{c} CH_3\cdot HC-C\cdot CO_2H\\ OC\cdot O\cdot C\cdot CH_3 \end{array}$. B. Aus ihrem (nicht näher beschriebenen) Äthylester, der durch Destillation von α -Methyl- α -acetyl-bernsteinsäure-diäthylester (Bd. III, S. 811) entsteht, durch Verseifen mit Salzsäure (Sprankling, Soc. 71, 1162). F: 1760. Bei der Behandlung mit kaltem Barytwasser entsteht α -Methyl- α -acetyl-bernsteinsäure. Ba $(C_7H_7O_4)_2$.

4. Oxo-carbonsauren C₈H₁₀O₄.

- 1. 5-Oxo-2-propyl-furan-dihydrid-(4.5)-carbonsäure-(3), γ-Propyl
 Δ^{β,γ}-crotonlacton-β-carbonsäure, Propylaconsäure, Propaconsäure C₈H₁₀O₄=

 H₁C—C·CO₂H

 OC·O·C·CH₂·CH₃·CH₃

 B. Man behandelt γ-Propyl-itaconsäure (Bd. II, S. 789) mit

 Bromwasser unter Kühlung und kocht das Reaktionsprodukt mit Wasser (FITTIG, SCHMIDT,

 A. 256, 108). Nadeln (aus Wasser). F: 124—124,5°. Sehr leicht löslich in Wasser und

 Chloroform, löslich in Alkohol, Äther und heißem Benzol, unlöslich in Ligroin. Ba(C₈H₂O₄)₂.
- 2. 5-Oxo-2-methyl-2-athyl-furandihydrid-carbonsäure-(3), $\gamma-Methyl-\gamma-athyl-\Delta^{\alpha,\beta}-crotonlacton-\beta-carbonsäure$, Methyl-āthyl-aconsäure $C_8H_{10}O_4=HC=C\cdot CO_2H$ OC·O·C(CH₂)·C₂H₂. B. Durch mehrstündiges Erwärmen von 1 Mol β -Brom- γ -methyl- γ -āthyl-paraconsäure (S. 387) mit $1^1/2$ Mol $2^0/0$ iger Natronlauge auf dem Wasserbad und Ansäuern der Lösung mit Schwefelsäure (Stobbe, Strigel, Meyer, A. 221, 120). Schuppen (aus Wasser). F: 117—119°. Löslich in den üblichen organischen Lösungsmitteln. Der Lactonring wird erst durch Kochen mit überschüssiger Alkalilauge gesprengt, beim Zurücktitrieren des Alkaliüberschusses jedoch bereits teilweise wieder geschlossen. Ba($C_8H_9O_4$)₂. Nadeln. Leicht löslich in Wasser, schwerer in Alkohol.
- 3. $5-Oxo-2-methyl-4-\ddot{a}thyl-furan-dihydrid-(4.5)-carbons\"{a}ure-(3)$, $\gamma-Methyl-\alpha-\ddot{a}thyl-\Delta^{\beta\cdot\gamma}-crotonlacton-\beta-carbons\"{a}ure$ $C_8H_{10}O_4=C_2H_5\cdot HC-C\cdot CO_2H$ $O\dot{C}\cdot O\cdot \dot{C}\cdot CH_3$. B. Der (nicht näher beschriebene) Äthylester entsteht bei der Destil-

lation von α -Åthyl- α '-acetyl-bernsteinsäure-diäthylester (Bd. III, S. 815); man verseift den Ester durch Kochen mit verd. Salzsäure (Fittig, Young, A. 216, 45; Sprankling, Soc. 71, 1160). — Krystalle. F: 181° (F., Y.), 180° (S.). — Geht bei Einw. von überschüssigem Barytwasser in der Kälte in α -Äthyl- α '-acetyl-bernsteinsäure über (F., Y.). Zerfällt beim Erwärmen mit Barytwasser in Kohlendioxyd und α -Äthyl- β -acetyl-propionsäure (S.; vgl. F., Y.). — Ag C₈ H₉ O₄. Krystallinisch (F., Y.). — Ba(C₈H₉O₄)₂ + 2 H₂O. Krystalle. Unlöslich in Alkohol (F., Y.). — Ba(C₈H₉O₄)₂ + 5 H₂O (S.).

- 4. [2 0xo 4.5 dimethyl 2.5 dihydro furyl (3)] essigsdure(?), $\beta.\nu$ $Dimethyl \triangle^{\alpha.\beta}$ $crotonlacton \alpha$ essigsdure(?) $C_8H_{10}O_4 = HO_4C \cdot CH_3 \cdot C COH_3$
- HO₂C·CH₂·C=C·CH₃
 OC·O·CH·CH₃
 (?). B. Als Hauptprodukt beim Kochen von β-Brom·β.γ-dimethylbutyrolacton-α-essigsäure (S. 388) mit verd. Natronlauge (Stobbe, Striggel, Meyer, A. 321, 114). Prismen oder Tafeln (aus Äther). F: 144—145°. Leicht löslich in Aceton, Wasser, Alkohol und Chloroform, schwerer in Äther und Benzol.
- 5. Lacton der Cyclohexanol-(2)-dicarbonsäure-(1.4), Lacton der 2-Oxyhexahydroterephthalsäure $C_tH_{10}O_4$, Formel I.

Lacton des 1.4.5-Tribrom-2-oxy-hexahydroterephthalsäure-methylesters-(1) $C_9H_9O_4Br_3$, Formel II. B. Aus 4.5-Dibrom-cyclohexen-(1)-dicarbonsäure-(1.4)-dimethylester

$$I. \begin{array}{c} \text{OC-----O} \\ \text{I.} \quad \underset{HC < \text{CH}_2 \cdot \text{CH}_2}{\overset{\circ}{\smile}} \text{CH}_2 \\ \text{CH}_2 \cdot \text{CH}_2 \\ \end{array} \\ \text{OH} \cdot \text{CO}_2 H \\ \qquad II. \quad \underset{HC < \text{CH}_3 - \text{CH}_3}{\overset{\circ}{\smile}} \text{CH}_2 \\ \text{CH}_{Br} \cdot \text{CH}_2 \\ \text{CH}_{Br} \cdot \text{CH}_3 \\ \end{array} \\ \text{CH} \cdot \text{CO}_2 \cdot \text{CH}_3 \\ \text{CH}_3 \cdot \text{CH}_3 \\ \text{CH}_{Br} \cdot \text{CH}_3 \\ \text{C$$

und überschüssigem Brom (BAEYER, A. 245, 156; vgl. A. 251, 270; B., HEBB, A. 258, 30). — Blättchen oder Nadeln. F: 187—188°; schwer löslich in Äther, etwas leichter in Alkohol (B., A. 245, 157). — Liefert mit Zinkstaub und Eisessig A^{1.4}-Dihydroterephthalsäure-monomethylester (B., A. 245, 158). Mit alkoh. Kali entsteht Terephthalsäure (B., A. 245, 159).

5. Oxo-carbonsäuren $C_9H_{12}O_4$.

- 1. $5-Oxo-2-isobutyl-furan-dihydrid-(4.5)-carbonsäure-(3), \gamma-Isobutyl-\Delta^{\beta,\gamma}-crotonlacton-\beta-carbonsäure,$ Isobutylaconsäure, Isobutylaconsäure, Isobutylaconsäure $C_9H_{12}O_4=\frac{H_2C-C\cdot CO_2H}{O^{\prime}\cdot O^{\prime}\cdot C\cdot CH_2\cdot CH(CH_3)_2}$. B. Beim Erwärmen von Isobutylitaconsäuredibromid (Bd.II, S.711) oder von β -Brom- γ -isobutyl-paraconsäure (S. 390) mitWasser (Fittig, Kraencker, A. 331, 146; vgl. F., K., A. 256, 103). Nadeln (aus Wasser). Schmilzt zwischen 165 und 170° unter teilweiser Zersetzung (F., K., A. 256, 104); F: 170° (F., K., A. 331, 146). Gibt bei Behandlung mit Natriumamalgam in Wasser γ -Isobutyl-paraconsäure (F., K., A. 256, 105). Salze: F., K., A. 256, 104. $AgC_9H_{11}O_4$. $Ca(C_9H_{11}O_4)_2$ (über konz. Schwefelsäure im Vakuum). Krystallkruste. Leicht löslich in Wasser und Alkohol. $Ba(C_9H_{11}O_4)_2$ (über konz. Schwefelsäure im Vakuum).
- 2. [2-Oxo-5-isopropyl-2.5-dihydro-furyl-(3)]-essigsäure, γ -Isopropyl- $\Delta^{\alpha,\beta}$ -crotonlacton α -essigsäure, "Isobutylisaconsäure" $C_0H_{12}O_4=HO_2C\cdot CH_1\cdot C=CH$
- OC·O·CH·CH(CH₃)₂

 B. Aus "Bromisobutylisoparaconsäure" (S. 391) beim Stehenlassen mit Natronlauge (Fittig, Erlenbach, A. 304, 319). Aus Isobutylaticonsäure-dibromid (Bd. II, S. 711) durch Kochen mit Wasser oder Stehenlassen mit Natronlauge (F., E., A. 304, 324). Krystalle (aus Äther-Ligroin). F: 51°. Leicht löslich in den üblichen Solvenzien außer in Schwefelkohlenstoff. Liefert durch Reduktion "Isobutylisoparaconsäure". $AgC_9H_{11}O_4$. Blättchen (aus Wasser). $Ca(C_9H_{11}O_4)_3 + 3H_2O$. Krystalle (aus Wasser). $Ba(C_9H_{11}O_4)_2 + 4H_2O$. Rechteckige Tafeln.
- 6. Oxo-carbonsäuren $C_{10}H_{14}O_4$.
- 1. $5-0x_0-2.2-dimethyl-4-isopropyliden-furantetrahydrid-carbon-säure-(3)(?), \gamma, \gamma-Dimethyl-\alpha-isopropyliden-butyrolacton-\beta-carbonsäure(?)$ $C_{10}H_{14}O_4 = \frac{(CH_3)_3C:C-CH\cdot CO_3H}{OC\cdot O\cdot C(CH_3)_3}$ $Athylester C_{18}H_{18}O_4 = \frac{(CH_3)_3C:C-CH\cdot CO_3\cdot C_2H_5}{OC\cdot O\cdot C(CH_3)_3}$ $C_{10}H_{14}O_4 = \frac{(CH_3)_3C:C-CH\cdot CO_3\cdot C_3H_5}{OC\cdot O\cdot C(CH_3)_3}$

Äthylester $C_{18}H_{18}O_4 = \frac{(CH_3)_2C:C - CH \cdot CO_2 \cdot C_2H_5}{OC \cdot O \cdot C(CH_3)_3}$ (?). B. Aus Bernsteinsäurediäthylester und Aceton in Gegenwart von Natriumäthylat, neben Teraconsäurediäthylester (Bd. II, S. 786) (STOLLÉ, J. pr. [2] 67, 197). — Sechseckige Schuppen (aus verd. Alkohol). F: 75°. Kp₁₈: 165°. In Alkohol und Äther sehr leicht Gebilch. — Gibt bei Behandlung mit alkoh. Kalilauge Tetramethylfulgensäure (Bd. II, S. 808).

- 2. Lacton der 2¹- Oxy cam H₂C-C(CH₂)-CO H₂C-C(CH₂)-CO₂H phersäure, Lacton der π-Oxy I. C(CH₂)-CH₂ O II. C(CH₂)-CH₂ O II. C(CH₂)-CH₂ O C1₂H₂AC₂, Formel I oder II. Zur Konstitution vgl. KIPPING, Soc. 69, 916, 918; ASCHAN, Chemie der alicyclischen Verbindungen [Braunschweig 1905], S. 526. π-Camphansäure ist in einer rechtsdrehenden Form, einer nach KIPPING, Soc. 69, 917 damit diastereoisomeren linksdrehenden Form und zwei zu den beiden aktiven Formen gehörigen Racemformen bekannt.
- a) Rechtsdrehende "trans"-π-Camphansäure C₁₀H₁₄O₄ = (CH₃)₂C₇H₇O₃·CO₂H. B. Man trägt die verdünnte Lösung von 1 Mol Natriumcarbonat innerhalb 1 Stunde in ein auf 100° erhitztes Gemisch aus π-Brom-d-camphersäure (Bd. IX, S. 759) und Wasser ein, konzentriert die filtrierte Lösung durch Eindampfen und säuert nach dem Erkalten mit verdünnter Schwefelsäure an (Kipping, Soc. 69, 930). Krystallisiert aus Wasser oder Essigster in monoklinen Prismen mit 1 H₂O, aus Benzol in rhombischen Prismen mit 1H₂O, wenn man die Lösung an feuchter Luft stehen läßt, aus Chloroform + Petroläther hauptsächlich in wasserfreien rhombischen Prismen (K., Pope, Soc. 71, 965, 973; Z. Kr. 30, 444, 453). Die wasserhaltige Säure schmilzt beim Erhitzen in ihrem Krystallwasser, erstarrt dann und schmilzt bei ca. 163°; die wasserfreie Säure schmilzt bei 164—165° (K.). Fast unlöslich in Petroläther, leicht löslich in siedendem Wasser, Alkohol und in den üblichen organischen Lösungsmitteln (K.). [α]³⁰: +9,85° (in Alkohol; c = 5,2) (K., Soc. 69, 931). Wandelt sich bei der Destillation in die linksdrehende "cis"-π-Camphansäure (s. u.) um; daneben entstehen geringe Mengen einer Verbindung C₂₀H₂₆O₇ (F: 205°) (Bd. X, S. 462) (K.). Wird beim Erwärmen mit Salpetersäure zu rechtsdrehender "trans"-Camphotricarbonsäure (Bd. IX, S. 974) oxydiert (k.). Einw. von Brom: K. Liefert bei mehrstündigem Kochen mit Essigsäureanhydrid ein Anhydrid C₂₀H₂₆O₇ vom Schmelzpunkt 230° (s. u.) (K.). Geht bei längerem Kochen mit Wasser in π-Oxy-camphersäure (Bd. X, S. 462) über (K.). Dieselbe Umwandlung erfolgt bei kurzem Kochen mit überschüssigen Alkalien in wäßiger oder alkoh. Lösung (K.).

Anhydrid $C_{30}H_{36}O_7 = [(CH_3)_2C_7H_7O_3\cdot CO]_3O$. B. Bei mehrstündigem Kochen von rechtsdrehender "trans"- π -Camphansäure mit Essigsäureanhydrid (KIPPING, Soc. 69, 933). — Mikroskopische Tafeln (aus Chloroform). Sintert bei raschem Erhitzen bei 205—210° und schmilzt bei ca. 230° unter Zersetzung. Unlöslich in Äther, sehr wenig löslich in siedendem Benzol und Chloroform. Löst sich in siedender Essigsäure unter Rückbildung von "trans"- π -Camphansäure. Unlöslich in kaltem Wasser; wird beim Kochen mit Wasser hydrolysiert.

Amid $C_{10}H_{10}O_2N = (CH_3)_2C_7H_7O_3 \cdot CO \cdot NH_2$. B. Man läßt den Dimethylester der π -Bromd-camphersäure (Bd. IX, S. 759) mit konzentriertem wäßrigem Ammoniak stehen (KIPPING, Soc. 69, 936). — Tafeln oder Prismen (aus Chloroform oder Benzol). Rhombisch bisphenoidisch (Pope, Soc. 69, 937; Z. Kr. 31, 119; vgl. Groth, Ch. Kr. 3, 737). F: 107,5—108,5 6 ; destillierbar; leicht löslich in Chloroform, Benzol und siedendem Wasser, sehr schwer in kaltem Wasser (K.).

- b) Inaktive "trans"-π-Camphansäure C₁₀H₁₄O₄ = (CH₂)₂C₇H₇O₃·CO₂H. B. Man trägt eine Lösung von Natriumcarbonat in eine warme wäßrige Suspension von π-Chloroder π-Brom-dl-camphersäure (Bd. IX, S. 761, 762) ein, kocht die Lösung ca. 10 Minuten, dampft auf ein kleines Volum ein und säuert nach dem Erkalten mit verd. Salzsäure an (Kipping, Pope, Soc. 71, 971, 972). Krystallisiert aus Wasser in monoklinen Prismen mit 1H₂O, die den Krystallen der aktiven Form sehr ähnlich sind, aus Essigester, Benzol und Chloroform in wasserfreien monoklinen Tafeln (K., P., Soc. 71, 965, 973; Z. Kr. 30, 444, 453). Die wasserhaltige Säure schmilzt bei raschem Erhitzen auf 125° in ihrem Krystallwasser, erstarrt dann wieder und schmilzt schließlich bei 155—160°; die wasserfreie Säure schmilzt bei 164—165°. Gibt bei der Destillation inaktive "cis"-π-Camphansäure und geringe Mengen einer Verbindung, die sich aus Methanol krystallinisch abscheidet.
- c) Linksdrehende "cis"- π -Camphansäure $C_{10}H_{14}O_4 = (CH_2)_3C_7H_7O_3 \cdot CO_3H$. B. Entsteht in geringer Menge durch 2-stündiges Erhitzen von π -Brom-d-camphersäure (Bd. IX, 8. 759) mit 4 Tln. Chinolin auf 170° (Kipping, Soc. 69, 943). Wird in größerer Menge bei der Destillation von rechtsdrehender "trans"- π -Camphansäure oder von π -Oxy-camphersäure (Bd. X, 8. 462) erhalten; man wäscht das Destillat mit Chloroform (K., Soc. 69, 934, 941, 444). Farnkrautähnliche Gebilde, sechseck-diagonal angeordnete Krystalle oder sechsseitige Tafeln (aus Wasser oder Alkohol). Hexagonal pyramidal (Poping, Soc. 69, 973; Z. Kr. 27, 408; vgl. Groth, Ch. Kr. 3, 736). F: 226°; sublimiert in Nadeln; unlöslich in kaltem Chloroform, sehr schwer löslich in kaltem Alkohol und Benzol; $(\alpha)_0^{\infty}$: —47,7° (in Alkohol; α) c = 4,2)

¹) Zur Bezifferung der vom Namen "π-Camphansäure" abgeleiteten Namen vgl. die Bezifferung der Camphersäure, Bd. IX, S. 745.

(K.). — Wird in sodaalkalischer Lösung durch Kaliumpermanganat langsam zu w-Oxy-,,cis"- π -camphansäure (S. 523) oxydiert (K.). Liefert beim Kochen mit überschüssigen Alkalien Salze der π -Oxy-camphersäure (K.). Geht bei längerem Kochen mit Essigsäureanhydrid

in das Anhydrid C₂₀H₂₆O₇ vom Schmelzpunkt 164—165° (s. u.) über (K.).

Salz des inaktiven Hydrindamins-(1) (Bd. XII, S. 1191) C₀H₁₁N + C₁₀H₁₄O₄.

Existiert in 2 Formen (vgl. hierzu Kipping, Soc. 87, 630, 635). — α-Form. B. Entsteht neben der β-Form beim Versetzen der methylalkoholischen Lösung von linksdrehender "cis"-n-Camphansäure mit einer wäßrigen oder alkoholischen Lösung von Hydrindamin-(1) bis zur alkalischen Reaktion; man trennt die beiden Formen durch fraktionierte Krystallisation aus Äthylalkohol, in dem die α-Form weniger löslich ist (KIPPING, Soc. 77, 904). Prismen oder Nadeln (aus Alkohol). F: 193° (Zers.); ziemlich löslich in siedendem Alkohol und Wasser, schwer in Äther und Chloroform (K., Soc. 77, 904). Zeigt in methylalkoholischer Lösung Mutarotation (K., Soc. 77, 916; K., Hall, Soc. 79, 440). Gibt bei der Zersetzung mit konz. Salzsäure oder Bariumhydroxydlösung inaktives Hydrindamin (K., Soc. 77, 907, 910); bei der Zersetzung mit methylalkoholischem Chlorwasserstoff entsteht linksdrehende "cis"- π -Camphansäure (K., H.). — β -Form. Krystalle. F: 173° (Zers.); leichter löslich als die α -Form (K., Soc. 77, 904). Zeigt keine Mutarotation (K., Soc. 77, 919). Gibt bei der Zersetzung mit konz. Salzsäure inaktives Hydrindamin (K., Soc. 77, 909), mit methylalkoholischem Chlorwasserstoff linksdrehende "cis"- π -Camphansäure (K., Hall.).

Methylester $C_{11}H_{16}O_4 = (CH_3)_2C_7H_2O_2 \cdot CO_2 \cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in eine heiße methylalkoholische Lösung von linksdrehender "cis"- π -Camphansäure (KIPPING, Soc. 69, 946). — Prismen (aus Äther + Petroläther). F: 74,5—75,5°. Sehr wenig löslich in Petroläther, sehr leicht in Alkohol, Äther und Chloroform.

Anhydrid $C_{20}H_{26}O_7 = [(CH_3)_2C_7H_7O_2 \cdot CO]_2O$. B. Bei längerem Kochen von linksdrehender "cis"-n-Camphansaure mit Essigsaureanhydrid (KIPPING, Soc. 69, 946). — Tafeln oder Prismen (aus Benzol). F: 164—165°. Unlöslich in Ather, leicht löslich in Chloroform und Benzol. — Wird durch kurzes Erhitzen mit alkoh. Natronlauge und Ansäuern in "cis"π-Camphansäure zurückverwandelt.

- d) Inaktive "cis" π Camphansaure C₁₀H₁₄O₄ = (CH₃)₂C₇H₇O₂·CO₂H. B. Durch Destillation von inaktiver "trans" π-Camphansaure (ΚΙΡΡΙΝΟ, POPE, Soc. 71, 983). Hexagonale Tafeln (aus Methylalkohol + Chloroform), die den Krystallen der aktiven "cis"π-Camphansaure sehr ähnlich sind und aus einem Gemisch von rechts- und linksdrehenden Krystallen bestehen (K., P., Soc. 71, 984; Z. Kr. 30, 454). F: 226°.
- Lacton der 3-Oxy-camphersäure, Lacton der w-Oxy- H₂C-C(OH₃)---CO camphersdure, w - Camphansdure¹) C₁₀H₁₄O₄, s. nebenstehende C(CH₂)₂ Formel. Zur Konstitution vgl. Bredt, B. 26, 3049; Lapworth, Len-H₂C-C(CO₂H)-O TON, Soc. 79, 1284.
- Linksdrehende w Camphansäure, gewöhnlich schlecht- H2C-C(CH2)-CO hin Camphansäure genannt $C_{10}H_{14}O_4$, s. nebenstehende Formel. B. s. bei 3-Oxy-camphersäure, Bd. X, S. 461. — Darst. Man kocht 1 Mol [3-Brom-d-camphersäure]-anhydrid (Bd. XVII, S. 458) mit der 4—5-fachen $H_{2C}-C(CO_2H)-O$ Menge Eisessig und 2 Mol frisch geschmolzenem Kaliumacetat, bis eine Probe sich nach Verdampfen des Eisessigs in Wasser klar löst, filtriert nach dem Erkalten vom Kaliumbromid ab, verdunstet den Eisessig im Wasserbad, nimmt das zurückbleibende camphansaure Kalium in etwas warmem Wasser auf und säuert an (Aschan, Acta Soc. Sci. Fenn. 21, No. 5, S. 221). Krystallisiert aus Wasser in Nadeln mit 1-2 Mol H₂O (WREDEN, 3. 3, 83; A. 163, 334), aus absol. Äther in wasserfreien Rhomboedern (Aschan, A. 290, 187). Die wasserhaltigen Krystalle sind monoklin sphenoidisch (GRÜNLING, A. 227, 4; vgl. Groth, Ch. Kr. 3, 736); sie verwittern schon an der Luft und geben das gesamte Krystallwasser im Vakuum über Schwefelsäure ab (Wr.). Die wasserhaltige Säure schmilzt schon in siedendem Wasser (Wr.), rasch erhitzt bei ca. 140° (Kipping, Soc. 69, 65), die im Vakuum entwässerte Säure bei 201° (Wr.), 200—201° (A., Acta Soc. Sci. Fenn. 21, No. 5, S. 222; C. 1895 II, 972), die aus absol. Äther umkrystallisierte bei 199° (A., A. 290, 187). Die wasserfreie Verbindung sublimiert von 110° an (Wr.). Die wasserhaltige Verbindung ist schon auf dem Wasserbad flüchtig (A., Acta Soc. Sci. Fenn.). Leicht löslich in Alkohol und Äther (WR.). — [a] 16.5 — 7,15 (in Alkohol; p=10) (A., Acta Soc. Sci. Fenn.); $[\alpha]_p$: -9.3° (Zelinsky, Lepeschkin, \Re . 33, 556; A. 319, 311). — Gibt bei langsamer Destillation im Kohlendioxyd-Strom Lauronol säure (Bd. IX, S. 56), Campholacton (Bd. XVII, S. 259) und Laurolen (Bd. V, S. 75) (FITTIG, Woringer, A. 227, 5; A., B. 27, 3507; A. 290, 185; Ze., Le.; Crossley, Renouf, Soc. 89, 38). Liefert bei der Oxydation mit Chromsäuregemisch l-Camphoronsäure (Bd. II, S. 837) (Bredt, B. 18, 2989; A. 292, 56; Mahla, Tiemann, B. 28, 2154). Wird durch Salpetersäure nur sehr langsam unter Bildung von Camphoronsäure angegriffen (LAPWORTH, LENTON,

¹⁾ Vgl. S. 400 Anm.

Soc. 79, 1288). Durch Erhitzen mit Jodwasserstoffsäure (D: 1,7) auf 1500 entsteht Laurolen (WB., X. 3, 86; A. 163, 338). Bei der Einw. von Phosphorpentachlorid erhält man ein Chlorid, das mit Wasser Camphansaure regeneriert (Wr., 3. 3, 84; A. 163, 336). Durch 24-stündiges Koohen mit 10% iger Natronlauge bildet sich das Natriumsalz der 3-Oxy-camphersaure (Bd. X, S. 461) (Noyes, Warren, Am. 28, 481). Beim Erhitzen mit Wasser im Druckrohr auf 180° (Wr., K. 3, 85; A. 163, 337; vgl. dagegen Rupe, Maull, B. 26, 1201) oder bei der trocknen Destillation des Calciumsalzes (Wr., 3. 3, 85; A. 163, 336; Ru., M., B. 26, 1201) oder bei der trocknen Destillation des Calciumsalzes (Wr., 3. 85; A. 163, 336; Ru., M., B. 26, 1202) entsteht Laurolen. Beim Erhitzen des Bariumsalzes mit Wasser im Druckrohr auf 200° erhält man Lauronolsäure und Campholacton (FI., Wo., A. 227, 7).

Ba(C₁₀H₁₃O₄)₂. Enthält nach Fittig, Woringer (A. 227, 5) 3½ H₂O, nach Roser (B. 18, 3112) 4 H₂O. Krystalle (aus Wasser). — Cd(C₁₀H₁₃O₄)₂ + 3H₂O. Prismen (aus Wasser) (Wr., 3. 83; A. 163, 334). — Das Bleisalz ist in siedendem Wasser etwas löslich (Wr., 18, 232)

Ж. 3, 83; А. 163, 333).

Äthylester $C_{12}H_{18}O_4=(CH_2)_2C_6H_4O_2\cdot CO_2\cdot C_2H_5$. B. Aus [3-Brom-d-camphersaure]-anhydrid (Bd. XVII, S. 458) beim Erhitzen mit Alkohol im Druckrohr auf 150° (WREDEN, 3. 3, 84; A. 163, 336), besser durch Digerieren der alkoh. Lösung in Gegenwart von etwas Kaliumcyanid und Wasser im Wasserbad (Auwers, Schnell, B. 26, 1526). Beim Einleiten von Chlorwasserstoff in die absolut-alkoholische Lösung der linksdrehenden Camphansäure (Wheden, M. 3, 84; A. 163, 335). — Nadeln (aus Ligroin). F: 63° (W.), 62° (Au., Sch.). Kp: 195-196 (Av., Sch.). Beginnt unter 100 zu sublimieren (W.). Leicht löslich in Alkohol, Ather, Chloroform und Schwefelkohlenstoff, schwer in siedendem Wasser (W.). — Wird durch Kochen mit konz. Kalilauge (W.) oder durch Einw. von alkoh. Kalilauge bei gewöhnlicher Temperatur (Au., Sch.) verseift. Liefert mit konzentriertem wäßrigem Ammoniak bei gewöhnlicher Temperatur das Amid (s. u.) (Au., Sch.).

Amid C₁₆H₁₆O₃N = (CH₃)₂C₆H₄O₃·CO·NH₃. B. Aus [3-Brom-d-camphersäure]-anhydrid und konzentriertem wäßrigem Ammoniak durch Erhitzen im Druckrohr auf 150° (WREDEN, A. 163, 339), besser durch längeres Stehenlassen bei Zimmertemperatur (Auwers, Schnell, B. 26, 1526; LAPWORTH, LENTON, Soc. 79, 1290) oder durch Einleiten von trocknem Ammoniak in eine siedende Lösung von [3-Brom-d-camphersäure]-anhydrid in Chloroform (Au., Sch.). In geringer Menge durch Erhitzen von linksdrehender Camphansäure mit überschüssigem Phosphortrichlorid und Eintragen der äther. Lösung des entstandenen Chlorids in konzentriertes wäßriges Ammionak bei 0° (La., Le., Soc. 79, 1289). Durch Stehenlassen des Äthylesters der linksdrehenden Camphansäure mit konzentriertem wäßrigem Ammoniak (Au., Sch.). — Nadeln (aus Wasser), Prismen (aus Aceton). Rhombisch bisphenoidisch (VIL-LIGER; vgl. Groth, Ch. Kr. 3, 737). F: 2080; sublimiert von 1500 an (W.). Unlöslich in Ligroin (Au., Sch.), schwer löslich in kaltem Alkohol, Äther und siedendem Wasser, leicht in siedendem Alkohol (W.), heißem Benzol und Chloroform (Au., Sch.). — Gibt bei der Einw. von Phosphortrichlorid + Phosphorpentachlorid in der Wärme das Nitril (La., Le.). Geht bei der Einw. von nitrosen Gasen in Camphansaure über (W.). Bleibt beim Erhitzen mit Wasser auf 150° unverändert (W.). Geht beim Kochen mit 10% iger Kalilauge (W.) oder Natronlauge (La., Læ.) in 3-Oxy-camphersäure-α-amid (Bd. X, S. 461) über; bei der Einw. von konz. Kalilauge entsteht Camphansäure (W.). Liefert bei der Einw. von Natronlauge und Brom rechtsdrehende Camphononsäure (Bd. X, S. 616) (La., Le.).

Methylamid $C_{11}H_{17}O_3N = (CH_3)_3C_6H_4O_3\cdot CO\cdot NH\cdot CH_3$. B. Aus 1 Mol [3-Bromd-camphersäure]-anhydrid bei Einw. einer $30^9/_6$ igen Lösung von 2 Mol Methylamin (Auwers, Schnell, B. 26, 1528). — Prismen (aus Wasser). F: 133°. Ziemlich löslich in kaltem Wasser, sehr leicht in Alkohol und den üblichen Lösungsmitteln außer in Ligroin. — Gibt bei kurzem Kochen mit 10% jeer Kalilauge 3-Oxy-camphersaure-α-methylamid (Bd. X, S. 462).

Anilid $C_{16}H_{19}O_3N = (CH_3)_3C_6H_4O_2 \cdot CO \cdot NH \cdot C_6H_5$. B. Beim Kochen einer Lösung von 1 Mol [3-Brom-d-camphersaure]-anhydrid in Chloroform mit etwas mehr als 2 Mol Anilin (Auwers, Schnell, B. 26, 1530). — Blättchen (aus Alkohol). F: 126°. Leicht löslich in Alkohol, Äther, Chloroform und Benzol. — Gibt beim Erwärmen in alkoh. Lösung mit überschüssiger $30^{\circ}/_{\circ}$ iger Kalilauge [3-Oxy-camphersäure]- α -anilid (Bd. XII, S. 510).

Nitril $C_{10}H_{10}O_2N = (CH_2)_2C_6H_4O_2\cdot CN$. B. Aus dem Amid der linksdrehenden Camphansäure durch Einw. von Phosphortrichlorid + Phosphorpentachlorid auf dem Wasserbad (LAPWOBTH, LENTON, Soc. 79, 1291). — Farnkrautähnliche Krystallaggregate (aus Ligroin). F: 135-1370. Destilliert beim Erhitzen fast unzersetzt, der Dampf riecht nach Himbeeren. -Wird durch Alkali in Blausäure und rechtsdrehende Camphononsäure (Bd. X, S. 616) gespalten.

Phenylhydraxid C_{1e}H₂₀O₂N₃ = (CH₃)₃C_eH₄O₂·CO·NH·NH·C_eH₅. B. Beim Versetzen einer siedenden Lösung von 1 Mol [3-Brom-d-camphersäure]-anhydrid in Chloroform mit 2 Mol Phenylhydrazin (Auwers, Schnell, B. 26, 1531). — Seideglänzende Nadeln. F: 193°. Leicht löslich in Chloroform und Aceton, mäßig in Alkohol und Benzol, schwer in Ather, unlöslich in Ligroin.

π-Brom-w-camphansäure C₁₀H₁₈O₄Br, s. nebenstehende Formel.

B. Aus [w.π-Dibrom-d-camphersäure]-anhydrid (Bd. XVII, S. 459)
durch längeres Kochen mit viel Wasser, durch Kochen mit einer
wäßrig-alkoholischen Lösung von ¹/₂ Mol Natriumcarbonat, am besten
durch Erhitzen in essigsaurer Lösung (Kipping, Soc. 75, 131, 138).

Durch Kochen von
w.π-Dibrom-d-camphersäure (Bd. IX, S. 760) mit Sodalösung und Ansäuern (K., Soc. 75,
134). Beim Kochen von [w-Chlor-π-brom-d-camphersäure]-anhydrid (Bd. XVII, S. 459) mit
viel Wasser oder mit verd. Essigsäure (K., Soc. 75, 128, 143).

Rhombisch bisphenoidisch (Pope, Soc. 75, 139; vgl. Groth, Ch. Kr. 3, 737). F: 176°
bis 177°; schwer löslich in heißem Chloroform, ziemlich schwer in heißem Wasser und
siedendem Benzol, leicht in Alkohol und Essigester (K.).

Sehr beständig; geht bei
längerem Kochen mit Chromsäureanhydrid und verd. Schwefelsäure in w-Oxy-π-camphansäure (S. 523) über; diese Säure entsteht auch neben anderen Produkten beim Kochen mit
Silbernitrat-Lösung (K.).

Methylester $C_{11}H_{15}O_4Br = (CH_3)_3C_6H_3O_2Br \cdot CO_2 \cdot CH_2$. B. Durch Einleiten von Chlorwasserstoff in die methylalkoholische Lösung von π -Brom-w-camphansäure (Kipping, Soc. 75, 140). — Nadeln (aus Äther), Tafeln oder Prismen (aus Äther + Chloroform). Rhombisch bisphenoidisch (Pope, Soc. 75, 141; vgl. Groth, Ch. Kr. 3, 738). F: 87—88°; sehr leicht löslich in kaltem Chloroform, Methylalkohol, siedendem Äther, ziemlich schwer in Petroläther (K.). — Gibt mit konzentriertem wäßrigem Ammoniak das Amid (K.).

Amid $C_{10}H_{14}O_3NBr = (CH_3)_3C_6H_3O_2Br \cdot CO \cdot NH_2$. B. Durch Stehenlassen von [w. π -Dibrom-d-camphersäure]-anhydrid oder π -Brom-w-camphansäure-methylester (s. o.) mit konzentriertem wäßrigem Ammoniak (KIPPING, Soc. 75, 142). — Nadeln. F: 161—162°. Sehr leicht löslich in Chloroform, Aceton und den meisten Lösungsmitteln, löslich in siedendem Wasser. — Gibt beim Kochen mit konz. Salzsäure π -Brom-w-camphansäure.

- b) Rechtsdrehende w-Camphansäure $C_{10}H_{14}O_4$, s. nebenstehende $H_{2}C_{-C}(CH_3)$ —Co Formel. B. Aus [3-Brom-l-camphersäure]-anhydrid (Bd. XVII, S. 459) beim Kochen mit Kaliumacetat und Eisessig (ASCHAN, Acta Soc. Sci. Fenn. 21, No. 5, S. 226; C. 1895 II, 972). Wasserhaltige Nadeln (aus Wasser). Schmilzt wasserfrei bei 200°. [α]¹⁹_{ueis}: $+7,0^{\circ}$ (in Alkohol; p=10).
- c) Inaktive w-Camphansäure C₁₀H₁₄O₄, s. nebenstehende Formel. H₂C-C(CH₃)—CO B. Durch Kochen von [3-Brom-dl-camphersäure]-anhydrid (Bd. XVII, S. 460) mit Kaliumacetat und Eisessig oder durch Mischen gleicher Teile linksdrehender und rechtsdrehender w-Camphansäure in wäßr. Lösung (Aschan, Acta Soc. Sci. Fenn. 21, No. 5, S. 226; C. 1895 II, 972). Blätter mit schiefer Abstumpfung (aus Wasser). F: 201—202°. Leicht löslich in heißem Wasser, Alkohol und Eisessig.

Amid C₁₀H₁₅O₃N = (CH₃)₃C₆H₄O₂·CO·NH₂. B. Aus [3-Brom-dl-camphersäure]-anhydrid und kaltem konzentriertem Ammoniak (Noyes, Warren, Am. 28, 482). — Platten oder Prismen (aus Alkohol). F: 196°. — Gibt bei der Einw. von Natronlauge und Brom inaktive Camphononsäure (Bd. X, S. 617).

7. Oxo-carbonsäuren $C_{11}H_{16}O_4$.

- 1. [2-Oxo-5-n-amyl-2.5(?)-dihydro-furyl-(3)]-essigsäure, γ -n-Amyl- $\Delta^{\alpha,\beta(?)}$ -crotonlacton α -essigsäure, "Hexylisaconsäure" $C_{11}H_{16}O_4=HO_2C\cdot CH_1\cdot C=CH$
- OC·O·CH·[CH₂]₄·CH₃
 butyrolacton-α-essigsäure (,,Bromhexylisoparaconsäure") beim Stehenlassen mit Natronlauge oder beim Kochen mit Wasser (FITTIG, STUBER, A. 305, 10, 17). Blätter (aus Äther-Ligroin). F: 57,5—58,5°. Leicht löslich in den üblichen Lösungsmitteln, außer in Wasser und Ligroin. Liefert bei der Reduktion mit Natriumamalgam γ-n-Amyl-butyrolacton-α-essigsäure. Gibt bei längerem Kochen mit überschüssigem Kalkwasser das Calciumsalz der Oxoheptyl-bernsteinsäure(?) (Bd. III, S. 820). $AgC_{11}H_{15}O_4$. Flockiger Niederschlag. $Ca(C_{11}H_{16}O_4)_2 + 3H_2O$. Nadeln. Leicht löslich in heißem Wasser.
- 2. Lacton der α -O α y-homocamphersäure (?), Homocamphansäure $C_{11}H_{16}O_4$, s. nebenstehende Formel. B. Durch Eindampfen der wäßr: Lösung des Natriumsalzes der α -Brom-homocamphersäure (Bd. IX, S. 767) und Ansäuern des Rückstandes mit

verd. Salzsäure (Lapworth, Soc. 77, 1055, 1067). Durch Erhitzen von α-Brom-homocamphersäure mit einer Lösung von Natriumscetat in Eisessig (L., Soc. 77, 1067). Durch Erhitzen des Diäthylesters der α-Brom-homocamphersäure mit Diäthylanilin auf 170°, Verseifung des entstandenen Estergemisches mit alkoh. Kalilauge und Ansäuern (L., Soc. 77, 1067). — Nadeln (aus Wasser), sechsseitige Platten (aus Benzol). F: 161—162°. Leicht löslich in Alkohol, Aceton und Essigester, ziemlich leicht in Wasser, löslich in Chloroform und Benzol.

- 3. Lacton der 1.2.2-Trimethyl-cyclohexanol-(4)-dicarbonsäure-(1.4) C₁₁H₁₆O₄, s. nebenstehende Formel. B. Entsteht neben geringen Mengen 1.2.2-Trimethyl-cyclohexanol-(4)-dicarbonsäure-(1.4) (Bd. X, S. 462) durch Eintragen von 4 g Kaliumcyanid und 3 cm³ konz. Salzsäure in eine auf —10° abgekühlte ätherische Lösung von 5 g Camphonsäure (Bd. X, S. 619) und Behandeln des öligen Reaktionsprodukts mit konz. Salzsäure (Lapworth, Chapman, Soc. 77, 459). Krystallwasserhaltige Nadeln (aus verd. Essigsäure), wasserfreie Nadeln (aus Benzol). Schmilzt wasserfrei bei 144—145°. Leicht löslich in Alkohol und Chloroform, ziemlich schwer in Benzol, sehr schwer in Wasser und Petroläther. Ba(C₁₁H₁₅O₄)₂. Nadeln. Sehr leicht löslich in Wasser.
- 8. Lacton der p-Menthanol-(3)-dicarbon- $_{\text{CH}_3\cdot\text{HC}}<\frac{\text{CH}_3\cdot\text{HC}}{\text{CH}_3\cdot\text{C}(\text{CO}_2\text{H})}>\text{CH}\cdot\text{C}(\text{CH}_3)_2}$ säure-(3.8), Lacton der Menthol-dicarbon-säure-(3.8) $C_{12}H_{18}O_4$, s. nebenstehende Formel.

Lacton des Menthol-dicarbonsäure-(3.8)-nitrils-(3), $CH_3 \cdot HC < \frac{CH_2 \cdot CH_2}{CH_2 \cdot C(CN)} > CH \cdot C(CH_3)_2$ Lacton der 3 - Cyan - menthol - carbonsäure - (8) $C_{12}H_{17}O_2N$, s. nebenstehende Formel.

- a) Niedrigschmelzende Form. B. Entsteht neben der hochschmelzenden Form, wenn man eine Lösung von 1 Mol Menthon-carbonsäure-(8) (Bd. X, S. 625) in der berechneten Menge Sodalösung mit einer wäßr. Lösung von 1 /4 Mol Kaliumcyanid mischt, 1 Mol verd. Schwefelsäure zugibt und nach 24 Stdn. ansäuert; man trennt die beiden Isomeren mit Petroläther, in dem sich nur das niedrigerschmelzende Lacton löst (Clarke, Lapworth, Soc. 89, 1880). Nadeln (aus Petroläther). F: 48—49°. Leicht löslich in den gewöhnlichen Lösungsmitteln. Liefert beim Kochen mit Natronlauge Menthon-carbonsäure-(8) und Cyanwasserstoff.
- b) Hochschmelzende Form. B. s. o. Krystalle (aus Benzol + Petroläther). F: 126—127° (Clarke, Lapworth, Soc. 89, 1881). Sehr leicht löslich in Chloroform, Benzol und Alkohol, sehr schwer in Petroläther. Verhält sich chemisch wie die niedrigschmelzende Form.

c) Oxo-carbonsäuren C_nH_{2n-8}O₄.

- 1. Oxo-carbonsăuren $\mathrm{C_6H_4O_4}$.
- 1. 2-Oxo-[1.2-pyran]-carbonsäure-(6), Pyron-(2)-carbonsäure-(6), Cumalin-carbonsäure-(6) C₆H₆O₄ = HC·CH:CH

 HC·CH:CH

 HO₂C·C-O-CO

 B. Aus γ-Oxal-crotonsäure (Bd. III, S. 824) durch Erhitzen auf den Schmelzpunkt oder besser aus ihrem Diäthylester beim Kochen mit überschüssiger rauchender Salzsäure (Lapworth, Soc. 79, 1280). Rechteckige Platten oder Nadeln (aus heißer konzentrierter Salzsäure). Schmilzt bei 227—228° unter schwacher Zersetzung. Sublimiert bei langsamem Erhitzen in Nadeln. Schwer löslich in Alkohol, Aceton und heißem Wasser, unlöslich in Benzol, Chloroform und Petroläther. Bei schnellem Erhitzen von Cúmalin-carbonsäure-(6) oder ihrem Calciumsalz entsteht in kleiner Menge Cumalin (Bd. XVII, S. 271). Reduziert ammoniakalische Silberlösung unter Spiegelbildung. Bei Einw. von Ammoniak bildet sich kein Pyridonderivat; beim Erhitzen des Ammoniumsalzes mit Kalk tritt starker Pyridingeruch auf. In der verd. Lösung des Natriumsalzes erzeugt Bleiacetat eine weiße, in Essigsäure leicht lösliche, Eisenchlorid eine flockige braune Fällung und Quecksilberchlorid einen unlöslichen Niederschlag.

Äthylester $C_8H_8O_4=C_5H_3O_3\cdot CO_3\cdot C_2H_5$. B. Aus Cumalin-carbonsäure-(6) und Alkohol bei Gegenwart von konz. Schwefelsäure (L., Soc. 79, 1281; vgl. v. Pechmann, A. 264, 279). — Rechteckige Platten (aus Ligroin). F: 59—60°; leicht löslich in Wasser und den meisten organischen Lösungsmitteln außer Petroläther (L.).

2. 4-Oxo-[1.4-pyran]-carbonsäure-(2), Pyron-(4)-carbonsäure-(2)

(Komansäure) C₆H₄O₄ = HC·CO·CH

HC·CO·CH

B. Beim Kochen von Chlorkomansäure

oder Dichlorkomansäure mit Jodwasserstoffsäure (Kp: 127°) (Ost, J. pr. [2] 29, 62). Beim

Erhitzen von Chelidonsäure (S. 490) im Vakuum auf 220—230° (Haitinger, Lieben, M. 6, 279). — Schiefwinklige Prismen. Schmilzt unter Zersetzung bei 250°; schwer lößlich in

Wasser (O., J. pr. [2] 29, 62). Starke Säure; elektrische Leitfähigkeit: Peratoner,

Palazzo, C. 1905 II, 678; G. 36 I, 10. — Komansäure zerfällt beim Erhitzen in Pyron

(Bd. XVII, S. 271) und Kohlendioxyd (O., J. pr. [2] 29, 63). Gibt beim Erwärmen

mit überschüssigem Erdalkalihydroxyd und Wasser Oxalsäure, Aceton und Ameisensäure

(O., J. pr. [2] 29, 63; H., L., M. 6, 281). Liefert beim Erwärmen mit konz. Ammoniak 4-Oxy
pyridin-carbonsäure-(2) (Syst. No. 3331) (O., J. pr. [2] 29, 64). Mit Hydroxylamin entsteht

1-Oxy-pyridon-(4)-carbonsäure-(2) (Syst. No. 3366) (O., J. pr. [2] 29, 378). Mit Äthylamin

bildet sich 1-Åthyl-pyridon-(4)-carbonsäure-(2) (Syst. No. 3366) (O., J. pr. [2] 29, 380). —

Salze: O., J. pr. [2] 29, 62. — AgC₆H₃O₄. Krystallinischer Niederschlag. — Ba(C₆H₃O₄)₂

+ H₂O. Leicht löslich in Wasser. — Ba(C₆H₃O₄)₂ + 3H₂O. Leicht löslich in Wasser.

Äthylester $C_8H_8O_4=C_5H_3O_2\cdot CO_2\cdot C_4H_5$. B. Beim Behandeln von Komansäure mit Alkohol und Chlorwasserstoff (Ost, J. pr. [2] 29, 62). Durch Erhitzen von Chelidonsäuremonoäthylester auf 225° (Haitinger, Lieben, M. 6, 281). — Prismen. F: 103° (O.), 102° (korr.) (H., L.). Sublimiert leicht; destilliert unter geringer Zersetzung (O.).

x-Chlor-pyron-(4)-carbonsäure-(2) (Chlorkomansäure) $C_6H_3O_4Cl = C_5H_4O_3Cl \cdot CO_2H$. B. Man kocht Komensäure (S. 461) mit 4 Mol Phosphorpentachlorid unter Zusatz von Phosphoroxychlorid, bis die Entwicklung von Chlorwasserstoff aufhört, erhitzt dann auf ca. 150°, um Phosphoroxychlorid abzudestillieren, und zerlegt den Rückstand mit dem doppelten Volumen Wasser; hierbei scheidet sich Dichlorkomansäure aus; Äther entzieht dem Filtrat etwas Dichlorkomansäure und einen nicht krystallisierenden Sirup, den man bis zum beginnenden Verkohlen erhitzt und dann mit Wasser auszieht, um Chlorkomansäure zu gewinnen (O., J. pr. [2] 29, 61). — Schwer lösliche Nadeln. F: 247°. — Gibt beim Kochen mit Jodwasserstoffsäure (Kp: 127°) Komansäure.

x.x - Dichlor - pyron - (4) - carbonsäure - (2) (Dichlorkomansäure) $C_8H_9O_4Cl_2 = C_5HO_2Cl_2 \cdot CO_2H$. B. s. Chlorkomansäure. — Voluminöse Nadeln (aus Alkohol). F: 217°; gibt beim Kochen mit Jodwasserstoffsäure (Kp: 127°) Komansäure (O., J. pr. [2] 29, 61).

3. 2-0xo-[1.2-pyran]-carbonsäure-(5), Pyron-(2)-carbonsäure-(5). Cumalin-carbonsäure-(5), "Cumalinsäure" $C_8H_4O_4=\frac{HO_4C\cdot C\cdot CH:CH}{HC-O-CO}$. B. Bei

ca. 2-stdg. Erhitzen von 50 g trockner Äpfelsäure mit einem Gemisch von 75 g konz. Schwefelsäure und 75 g rauchender Schwefelsäure (mit 10—12% Anhydrid) auf dem Wasserbad; man versetzt das Reaktionsprodukt vorsichtig mit 200 g Eiswasser und läßt über Nacht stehen (v. Pechmann, A. 264, 262, 272; vgl. v. P., B. 17, 937). Beim Erwärmen von Natriumformylessigester mit 10 Tln. konz. Schwefelsäure (v. P., A. 264, 284). — Prismen (aus Methylalkohol). Färbt sich bei 200° rötlich und schmilzt bei 205—210° unter teilweiser Zersetzung; Kp₁₈₀: ca. 218°; sublimiert zum Teil unzersetzt; ziemlich leicht löslich in Alkohol und Eisessig, schwerer in Äther, Aceton und Essigester, schwer in kaltem Wasser, unlöslich in Chloroform, Benzol und Ligroin (v. P., A. 264, 275). — Reduziert in der Wärme ammoniakalische Silberlösung und Fehlingsche Lösung (v. P., A. 264, 275). Zerfällt beim Kochen mit verd. Schwefelsäure oder beim Erhitzen mit Wasser im Druckrohr auf 170 bis 180° in Kohlendioxyd und Crotonaldehyd, beim Kochen mit Barytwasser in Ameisensäure und Glutaconsäure (v. P., A. 264, 298). Beim Einleiten von Chlor in eine heiße Lösung von Cumalinsäure in Eisessig bei Gegenwart von etwas Jod entsteht 3-Chlor-cumalin-carbonsäure-(5) (v. P., Mills, B. 37, 3830). Beim Erwärmen einer Lösung von Cumalinsäure in Eisessig mit Brom bei Gegenwart von etwas Jod (v. P., B. 17, 2396) oder bei Behandlung von cumalinsaurem Magnesium mit Bromdampf (v. P., A. 264, 276) bildet sich 3-Brom-cumalin-carbonsäure-(5). Durch Erwärmen von Cumalinsäure mit Phosphorpentachlorid und Phosphoroxychlorid erhält man (nicht rein isoliertes) Cumalinsäure-chlorid (v. P., A. 264, 282); es gibt bei Behandlung mit Ammoniak Aminomethylen-glutaconsäure Hydroxylamin und Natronlauge β-Isonitroso-propionsäure (Bd. III, S. 626) (v. P., A. 264, 286). Liefert beim Erwärmen mit Methylalkohol und konz. Schwefelsäure Cumalinsäure mit Methylalkohol mit Chlorwasserstoff entstehen α-[Methoxymethylen]-glutaconsäure-dimethylester (v. P., A. 264, 279). Beim Sättigen einer Suspension

(v. P., A. 273, 179). — Salze: v. P., A. 264, 277. Die Salze zersetzen sich beim Kochen mit Wasser unter Bildung von Carbonat. — $Mg(C_6H_3O_4)_2 + 6H_2O$. Prismen (aus Wasser). — $Ba(C_6H_3O_4)_2 + 2H_2O$. Krystallpulver (aus Wasser). — $Zn(C_6H_3O_4)_2 + 6H_2O$. Krystalle (aus Wasser).

Methylester C₇H₆O₄ = C₅H₃O₃·CO₃·CH₃. B. Man übergießt 1 Tl. Cumalinsäure mit 2 Tln. konz. Schwefelsäure, fügt nach erfolgter Lösung 1 Tl. Methylalkohol zu und erwärmt 1 Stde. auf dem Wasserbad (v. P., A. 264, 279). Man gießt nach dem Erkalten vorsichtig in Wasser und neutralisiert den größten Teil der freien Säure durch krystallisierte Soda; die Hauptmenge des Methylesters fällt dann aus; den Rest schüttelt man mit Äther aus (Marchwald, B. 27, 1319). — Säulen oder Blättchen (aus Ligroin). F: 73—74°; Kp: 250° bis 260°; Kpe0: 178—180°; schwer löslich in Ligroin (v. P., A. 264, 279). — Beim Auflösen von Gumalinsäuremethylester in verd. Kalilauge entsteht Trimesinsäuremonomethylester (v. P., A. 264, 294). Bei längerer Einw. von Ammoniakwasser auf Cumalinsäuremethylester bildet sich Aminomethylenglutaconsäureanhydrid (v. P., B. 34, 1406). Löst man Cumalinsäuremethylester in Ammoniakwasser und kocht die Lösung mit verd. Natronlauge, so entsteht 6-Oxy-pyridin-carbonsäure-(3) (Syst. No. 3331) (v. P., Welsh, B. 17, 2391). Trägt man Cumalinsäuremethylester in wäßr. Methylaminlösung ein und kocht mit Natronlauge, so bildet sich 1-Methyl-pyridon-(6)-carbonsäure-(3) (Syst. No. 3366) (v. P., Wel, B. 17, 2394; v. P., B. 18, 318).

Ätnylester $C_9H_9O_4=C_9H_9O_2\cdot CO_2\cdot C_2H_5$. B. Analog der des Methylesters (v. P., A. 264, 281). — F: 36°; Kp: 262—265°. Destilliert unzersetzt.

3-Chlor-cumalin-carbonsäure-(5) $C_6H_3O_4Cl = HO_2C \cdot C \cdot CH : CCl \ HC-O-CO$. B. Durch Einleiten von Chlor in eine Lösung von Cumalinsäure in Eisessig in Gegenwart von Jod auf dem Wasserbade (v. Pechmann, Mills, B. 37, 3830). — Krystalle (aus Eisessig). F: 187—189°. Sehr leicht löslich in Essigester, leicht in Alkohol, Äther und warmem Eisessig, schwer in Chloroform, sehr sehwer in Benzol. — Zersetzt sich beim Erhitzen mit Wasser. Die Lösung in Natriumcarbonat-Lösung färbt sich auf Zusatz von Natronlauge rotbraun.

Methylester $C_7H_5O_4Cl=C_5H_2O_2Cl\cdot CO_2\cdot CH_3$. B. Durch Eintragen von Cumalinsäuremethylester in eine 4—8% ige Lösung von Chlor in Kohlenstofftetrachlorid (v. P., M., B. 37, 3831). Aus 3-Chlor-cumalin-carbonsäure-(5) und Methylalkohol durch Einw. von Chlorwasserstoff (v. P., M.). Aus (nicht näher beschriebenem, aus rohem Cumalinsäurechlorid und Chlor in Kohlenstofftetrachlorid bereiteten) 3-Chlor-cumalin-carbonsäure-(5)-chlorid und Methylalkohol (v. P., M.). — Prismen (aus Alkohol). F: 138,5°. Sehr leicht löslich in Chloroform, löslich in Aceton und Benzol, ziemlich schwer löslich in kaltem Alkohol und Äther, sehr schwer im Wasser. Leicht löslich in Natronlauge, unlöslich in Sodalösung. — Wird beim Kochen mit Wasser zersetzt. Gibt mit konz. Ammoniak 5-Chlor-6-oxy-pyridin-carbonsäure-(3)-methylester (Syst. No. 3331).

3-Brom-cumalin-carbonsäure-(5) $C_6H_3O_4Br=\frac{HO_4C\cdot C\cdot CH:CBr}{H^*_C-O-CO}$. Zur Konstitution vgl. Feist, B. 34, 1993. — B. Beim Erwärmen einer Lösung von Cumalinsäure in Eisessig mit Brom bei Gegenwart von etwas Jod (v. Pechmann, B. 17, 2396), besser bei 2-tägiger Einw. von Bromdampf auf cumalinsaures Magnesium (v. Pechmann, A. 364, 276). — Nadeln (aus Wasser). F: 176°; destilliert in kleinen Mengen fast unzersetzt; leicht löslich in Alkohol, Ather, Chloroform und Eisessig, schwerer in Benzol, unlöslich in Ligroin; fast unlöslich in kaltem Wasser, ziemlich leicht löslich in heißem; zerfällt beim Kochen mit Wasser unter Abgabe von Kohlendioxyd (v. P., B. 17, 2397).

Methylester C₇H₈O₄Br = C₅H₈O₄Br·CO₃·CH₃. B. Aus 3-Brom-cumalin-carbonsäure-(5) durch Sättigen der methylalkoholischen Lösung mit Chlorwasserstoff (v. Pechmann, B. 17, 2397). Aus Cumalinsäuremethylester durch Behandlung mit Brom in Chloroform (Feist, B. 34, 1994). — Prismatische Nadeln (aus Methylalkohol). F: 134°; destilliert unzersetzt; schwer löslich in Äther, leichter in Alkohol und Benzol (v. P., B. 17, 2397). — Wird von Kalilauge in Furan-dicarbonsäure-(2.4) (S. 327) übergeführt (Feist). Gibt mit wäßr. Ammoniak 5-Brom -6-oxy-pyridin-carbonsäure-(3)-methylester (Syst. No. 3331) (v. P., B. 17, 2398). Liefert mit Hydrazinhydratlösung 5-Brom -1-amino-pyridon-(6)-carbonsäure-(3)-methylester (Syst. No. 3366) (v. P., Mills, B. 37, 3837). Liefert mit Semicarbazid in methylalkoholischer oder äthylalkoholischer Lösung 5-Brom-1-ureido-pyridon-(6)-carbonsäure-(3)-methylester (Syst. No. 3366) (Bülow, Filchner, B. 41, 3283). Erzeugt mit Anilin 5-Brom-1-phenyl-pyridon-(6)-carbonsäure-(3)-methylester (Syst. No. 3366) (v. P., B. 17, 2399; 18, 318).

4. $Oxo-\alpha$ -furylessigsäure $C_6H_4O_4=\frac{HC-CH}{HC\cdot O\cdot C\cdot CO\cdot CO_2H}$ (systematische Stammverbindung der Oxo- α -thienylessigsäure).

Oxo-α-thienylessigsäure, α-Thenoylameisensäure, α-Thienylglyoxylsäure HC---CH HC-S·C·CO·CO·H B. Neben Thiophen-carbonsäure-(2) bei 1-stdg. Schütteln von 12 gα-Acetothienon (Bd. XVII, S. 287) mit der Lösung von 50 g Kaliumpermanganat und 12 g Natriumhydroxyd in 4 l Wasser (Peter, B. 18, 537; Biedermann, B. 19, 637; Bradley, B. 19, 2116). Neben Thiophen-carbonsäure-(2) bei der Oxydation von 2-Äthyl-thiophen (Bd. XVII, S. 39) mit alkal. Kaliumpermanganat-Lösung (Egit, B. 18, 546). — Krystalle mit 1 H₂O. Schmilzt wasserhaltig bei 58—59°, wasserfrei bei 91,5° (Br.). Sehr leicht löslich in Wasser; wird der wäßr. Lösung durch Äther entzogen (P.). Sehr starke Säure; elektrische Leitfähigkeit: Hantzson, Miolati, Ph. Ch. 10, 16. — Zerfällt in der Hitze in Kohlendioxyd und α-Thiophenaldehyd (Bd. XVII, S. 285) (Bie.). Wird durch Wasserstoffperoxyd quantitativ zu Thiophen-carbonsäure-(2) und Kohlendioxyd oxydiert (Holleman, R. 23, 170). Beim Kochen mit überschüssigem Hydroxylaminhydrochlorid entsteht Thiophen-α-carbonsäure-nitril (Douglas, B. 25, 1311). Versetzt man eine Lösung von α-Thienylglyoxylsäure in Eisessig mit einem Gemisch von Eisessig und konz. Schwefelsäure, so tritt eine braune Färbung auf, die über Grün und Violett in Blau übergeht (P.). Mit thiophenhaltigem Benzol und konz. Schwefelsäure entsteht ein roter Farbstoff (P.). Beim Erhitzen von α-Thienylglyoxylsäure mit Dimethylanilin und Zinkchlorid entsteht ein grüner Farbstoff (P.). — Salze: Br. — Cu(C₆H₃O₃S)₂ + 2H₂O. Grüngelbe Prismen. Ziemlich leicht löslich in Wasser. — AgC₆H₃O₃S + H₂O. Amorpher Niederschlag. — Ca(C₆H₃O₃S)₂ + 2H₂O. Prismen.

Oximino - α - thienylessigsäure, α - Thienylglyoxylsäure - oxim $C_6H_5O_5NS = SC_4H_3 \cdot C(:N \cdot OH) \cdot CO_2H$. Zur Konfiguration vgl. Hantzsch, B. 24, 48. — B. Aus α -Thienylglyoxylsäure und Hydroxylamin (Peter, B. 18, 539). — Darst. Man versetzt die Lösung von 5 g α -Thienylglyoxylsäure in 50 g Wasser mit der wäßr. Lösung von 5 g salzsaurem Hydroxylamin, bringt das gefällte Öl durch Zusatz von möglichst wenig Alkohol in Lösung und läßt 2—3 Stdn. stehen (Bradley, B. 19, 2120). — Nadeln. F: 145—146° (Zers.) (H.). Elektrolytische Dissoziationskonstante k bei 25°: 5.03×10^{-3} (H., Miolati, Ph. Ch. 10, 15). Wird durch Kochen mit reinem Wasser oder mit Alkalicarbonat-Lösung nicht verändert (H.). Beim Kochen mit salzsaurem Hydroxylamin erfolgt glatte Spaltung in Thiophen - α -carbonsäurenitril und Kohlendioxyd (H.). Die Lösung in konz. Schwefelsäure färbt sich auf Zusatz von Phenol erst grün und dann tiefblau (Br.). — Salze: Br. — AgC₆H₄O₃NS. Amorpher Niederschlag. — Ba(C₆H₄O₃NS)₂ + 1½H₂O. Nadeln.

Acetyloximino - α - thienylessigsäure, α - Thienylglyoxylsäure - oximacetat $C_8H_7O_4NS = SC_4H_9 \cdot C(:N \cdot O \cdot CO \cdot CH_9) \cdot CO_2H$. B. Aus α -Thienylglyoxylsäure-oxim durch Behandlung mit Acetylchlorid (Hantzsch, B. 24, 49). — Prismen. Schmilzt unter Aufschäumen bei 85—87°. — Zerfällt sehr leicht (durch Einw. von Alkohol, Eisessig oder Alkalicarbonaten) in Thiophen- α -carbonsäure-nitril, Essigsäure und Kohlendioxyd.

- α-Thienylglyoxylsäure-phenylhydrazon $C_{12}H_{10}O_3N_2S=SC_4H_3\cdot C(:N\cdot NH\cdot C_6H_5)\cdot CO_2H$. B. Aus α-Thienylglyoxylsäure und salzsaurem Phenylhydrazin (Bradley, B. 19, 2119). Gelbe Nädelchen (aus Äther). Schmilzt unter Abspaltung von Kohlendioxyd bei 164—165°. (Br.). Beim Erhitzen auf 180° entsteht α-Thiophenaldehyd-phenylhydrazon (Bd. XVII, S. 286) (Biedermann, B. 19, 1855).
- α-Thienylglyoxylsäure-methylester $C_7H_4O_3S=SC_4H_3\cdot CO\cdot CO_2\cdot CH_3$. B. Man sättigt die methylalkoholische Lösung von α-Thienylglyoxylsäure mit Chlorwasserstoff (Bradley, B. 19, 2118). F: 28,5°.
- $\alpha\text{-Thienylglyoxylsäuremethylester-oxim}$ $C_7H_7O_3NS=SC_4H_3\cdot C(:N\cdot OH)\cdot CO_3\cdot CH_3.$ B. Man leitet trocknen Chlorwasserstoff in die methylalkoholische Lösung von $\alpha\text{-Thienylglyoxylsäure-oxim}$ (s. o.) ein (Br., B. 19, 2121). Nadeln (aus verd. Alkohol). Erweicht gegen 97° und ist bei 104—105° flüssig. Löst sich in Alkalilauge, aber nicht in Alkalicarbonat-Lösung. Einwirkung von Methyljodid und Natriumäthylat: Br.
- α-Thienylglyoxylsäure-äthylester $C_8H_8O_8S=SC_4H_3\cdot CO\cdot CO_2\cdot C_2H_5$. B. Man sättigt die alkoh. Lösung von α-Thienylglyoxylsäure mit Chlorwasserstoff (Br., B. 19, 2119). Wohlriechendes Öl. Bleibt bei —20° flüssig. Siedet bei 264—265° unter teilweiser Zersetzung.
- α -Thienylglyoxylsäureäthylester-oxim $C_8H_9O_3NS = SC_4H_3 \cdot C(:N \cdot OH) \cdot CO_3 \cdot C_5H_5$. B. Durch Einleiten von Chlorwasserstoff in die alkoh. Lösung von α -Thienylglyoxylsäureoxim (Br., B. 19, 2121). Nadeln. F: 122—123°. Löst sich in Alkalilauge, aber nicht in Alkalicarbonat-Lösung.

α-Thienylglyoxylsäure-amid $C_6H_5O_2NS = SC_4H_3 \cdot CO \cdot CO \cdot NH_2$. B. Bei der Einw. von konzentriertem wäßrigem Ammoniak auf α-Thienylglyoxylsäure-methylester oder -äthylester (Br., B. 19, 2119). — Nadeln. F: 88°. Fast unlöslich in Wasser, leicht löslich in Alkohol und Äther.

[x-Nitro-thenoyl-(2)]- ameisensäure, [x-Nitro-thienyl-(2)]- glyoxylsäure C₆H₃O₅NS = O₅N·SC₄H₂·CO·CO₂H. B. Aus x-Nitro-2-acetyl-thiophen vom Schmelzpunkt 127° (Bd. XVII, S. 288) beim Erwärmen mit Salpetersäure (D: 1,15) auf dem Wasserbad (Peter, B. 18, 541). — Krystallinisch. Erweicht bei 78° und schmilzt bei 92°. Gibt mit thiophenhaltigem Benzol und konz. Schwefelsäure eine violettrote Färbung.

5. 5¹-Oxo-5-methyl-furan-carbonsäure-(2), 5-Formyl-brenzschleim-säure, Furfurol-carbonsäure-(5) C₆H₄O₄ = HC — CH
OHC CO₂C CO₂H

B. Aus 5-Dibrom-methyl-brenzschleimsäure-bromid (S. 295) beim Erhitzen mit Wasser (Hill, Sawyer, B. 27, 1570), zweckmäßig unter Einleiten von Wasserdampf (H., S., Am. 20, 174). — Nadeln mit 1 H₂O (aus Wasser) oder wasserfreie Blättchen. Schmilzt wasserfrei bei raschem Erhitzen bei 201—202°. Leicht löslich in Alkohol und heißem Wasser, weniger in Äther, schwer in Chloroform und kaltem Wasser, fast unlöslich in Benzol, Ligroin und Schwefelkohlenstoff. Wird beim Erwärmen der alkal. Lösung mit Silberoxyd in Dehydroschleimsäure (S. 328) übergeführt.

Oxim $C_6H_5O_4N = HO \cdot N : CH \cdot C_4H_2O \cdot CO_2H$. B. Bei der Einw. von salzsaurem Hydroxylamin auf das Natriumsalz von 5-Formyl-brenzschleimsäure in konz. Lösung (H., S., Am. 20, 177). — F: $224-226^{\circ}$ (Zers.). Leicht löslich in heißem Wasser, in Alkohol und Äther, unlöslich in Benzol und Chloroform.

Phenylhydrason $C_{12}H_{10}O_3N_2 = C_6H_5 \cdot NH \cdot N : CH \cdot C_4H_2O \cdot CO_2H$. B. Bei der Einw. von essigsaurem Phenylhydrazin auf 5-Formyl-brenzschleimsäure in Natriumacetat-Lösung (H., S., Am. 20, 176). — Krystalle. F: 176° (Zers.). Leicht löslich in Alkohol, löslich in Äther, fast unlöslich in Benzol, Chloroform und Schwefelkohlenstoff.

2. Oxo-carbonsăuren $C_7H_6O_4$.

1. β - Oxo - β - $[\alpha$ - furyl] - propions "aure, Furfuroylessigs \"aure $C_7H_6O_4=H^0_C \cdot O \cdot ^0_C \cdot CO \cdot CH_6 \cdot CO_6H$

β-Oxo-β-[α-furyl]-propionsäure-äthylester, Furfuroylessigsäure-äthylester $C_9H_{10}O_4=OC_4H_3\cdot CO\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Aus Brenzschleimsäureäthylester (S. 275) und Essigester durch Einw. von Natrium (Sandelin, B. 33, 492, 1176; Bouveault, C. r. 125, 1186; Bl. [3] 25, 440; Torrey, Zanetti, Am. 36, 539). — Flüssigkeit. Kp_{10} : 142—143° (B.), 143—145° (T., Z.); Kp_{33} : 170° (S.). Zerfällt beim Kochen mit 25°/ $_0$ iger Schwefelsäure unter Bildung von 2-Acetyl-furan (Bd. XVII, S. 286) (S.; B.). — $Cu(C_9H_9O_4)_2$. Grüner, krystallinischer Niederschlag (S.).

β-Oximino-β-[α-furyl]-propionsäure-äthylester, Furfuroylessigsäureäthylester-oxim $C_9H_{11}O_4N = OC_4H_3 \cdot C(:N \cdot OH) \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Aus Furfuroylessigsäureäthylester und salzsaurem Hydroxylamin in wäßrig-alkoholischer Lösung bei Gegenwart von Natriumacetat (Torrey, Zanetti, Am. 36, 540). — Nadeln (aus verd. Alkohol). F: 131—132°.

Furfuroylessigsäureäthylester-semicarbazon $C_{10}H_{13}O_4N_5 = OC_4H_3 \cdot C(:N \cdot NH \cdot CO \cdot NH_4) \cdot CH_5 \cdot CO_2 \cdot C_2H_5$. B. Aus Furfuroylessigsäureäthylester und salzsaurem Semicarbazid in wäßrig-alkoholischer Lösung bei Gegenwart von Natriumacetat (T., Z., Am. 36, 541). — Platten (aus Alkohol). F: 142—144° (Zers.). Löslich in der Hitze in Alkohol, Benzol und Chloroform, unlöslich in Ligroin.

- α-Thenoylacetonitril, 2-Cyanacetyl-thiophen $C_7H_5ONS = \frac{HC-CH}{HC\cdot S\cdot C\cdot CO\cdot CH_2\cdot CN}$. B. Durch Schmelzen von 5-α-Thienyl-isoxazol-carbonsäure-(3) (Syst. No. 4449) (Salvatori, G. 21 II, 284). Schuppen (aus verd. Alkohol). F: 137°. Leicht löslich in warmem Wasser und in Alkalicarbonat-Lösungen.
- 2. α -Oxo- β -[α -furyl]-propions dure, α -Furylbrenz traubens dure, Furfurylgly oxyls dure $C_7H_6O_4=\frac{HC-CH}{HC\cdot O\cdot C\cdot CH_2\cdot CO\cdot CO_2H}$.

α-Benzimino-β-[α-furyl]-propionsäure bezw. α-Benzamino-β-[α-furyl]-acrylsäure, Furfurylidenhippursäure $C_{14}H_{11}O_4N = OC_4H_3 \cdot CH_2 \cdot C(:N \cdot CO \cdot C_6H_5) \cdot CO_2H$ bezw. $OC_4H_3 \cdot CH : C(NH \cdot CO \cdot C_6H_5) \cdot CO_2H$. B. Durch Erwärmen von 2-Phenyl-4-furfuryliden-oxazolon (Syst. No. 4444) mit verd. Natronlauge auf dem Wasserbad (Erlenmeyer jun., Stadlin, A. 337, 284). — Blättehen (aus 95% gigem Alkohol). F: 210°.

Athylester $C_{16}E_{15}O_4N = OC_4H_3 \cdot CH_2 \cdot C(:N \cdot CO \cdot C_6H_5) \cdot CO_2 \cdot C_2H_5$ bezw. $OC_4H_3 \cdot CH : C(NH \cdot CO \cdot C_6H_5) \cdot CO_2 \cdot C_2H_5$. B. Aus 2-Phenyl-4-furfuryliden-oxazolon (Syst. No. 4444) mit alkoh. Natronlauge (E., S., A. 337, 284). — Nadeln (aus verd. Alkohol). F: 132—133°.

Amid $C_{14}H_{19}O_3N_2 = OC_4H_3 \cdot CH_2 \cdot C(:N \cdot CO \cdot C_6H_5) \cdot CO \cdot NH_2$ bezw. $OC_4H_3 \cdot CH : C(NH \cdot CO \cdot C_6H_5) \cdot CO \cdot NH_2$. B. Beim Erwärmen von 2-Phenyl-4-furfuryliden-oxazolon (Syst. No. 4444) in einer Mischung von konz. Ammoniakwasser und Alkohol (E., S., A. 337, 284). — Blaßgelbe Nädelchen (aus Alkohol). F: 184°.

- 3. [3 Methyl furfuroyl] ameisensäure $C_7H_6O_4 = \frac{HC C \cdot CH_3}{HC \cdot O \cdot C \cdot CO \cdot CO_2H}$ (systematische Stammverbindung der [3-Methyl-thenoyl-(2)]-ameisensäure).
- $\begin{array}{lll} & \textbf{[8-Methyl-thenoyl-(2)]-ameisens\"{a}ure, [8-Methyl-thienyl-(2)]-glyoxyls\"{a}ure} \\ & \textbf{C}_7\textbf{H}_6\textbf{O}_3\textbf{S} = \begin{array}{lll} & \textbf{HC} & \textbf{--C} \cdot \textbf{CH}_3 \\ & \textbf{HC} & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_2\textbf{H} \\ & \textbf{HC} & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_2\textbf{H} \\ \end{array} \end{array} . \quad \textbf{Zur Konstitution vgl. Gerlach, A. 267, 154, 170. --}$
- B. Bei der Oxydation von 3-Methyl-2-acetyl-thiophen (Bd. XVII, S. 295) mit Kalium-permanganat in alkal. Lösung (Ruffi, B. 20, 1748). Nadeln (aus heißem Wasser). F: 142^{0} (R.). Sublimiert schon bei gewöhnlicher Temperatur (R.). Liefert beim Erwärmen mit Dimethylanilin und Zinkchlorid eine grüne Schmelze (R.). $AgC_7H_5O_3S$. Niederschlag (R.).

Oxim $C_7H_7O_3NS = SC_4H_2(CH_3)\cdot C(:N\cdot OH)\cdot CO_2H$. B. Durch 1-tägiges Erwärmen von [3-Methyl-thienyl-(2)]-glyoxylsäure mit Hydroxylaminhydrochlorid und Kaliumhydroxyd in alkoh. Lösung auf dem Wasserbad (RUFFI, B. 20, 1748). — Nadeln. F: 104° .

Phenylhydrazon $C_{13}H_{12}O_2N_3S=SC_4H_2(CH_3)\cdot C(:N\cdot NH\cdot C_6H_5)\cdot CO_3H$. B. Beim Vermischen einer kalt gesättigten wäßrigen Lösung von [3-Methyl-thienyl-(2)]-glyoxylsäure mit einer wäßrigen Lösung von salzsaurem Phenylhydrazin (R., B. 20, 1749). — Gelbe Krystalle (aus Alkohol). F: 141°.

- 4. [5 Methyl furfuroyl] ameisensäure. $C_7H_6O_4 = \frac{HC CH}{HO_2C \cdot CO \cdot C \cdot C \cdot C \cdot C \cdot C}$ (systematische Stammverbindung der [5-Methyl-thenoyl-(2)]-ameisensäure).

3. Oxo-carbonsăuren $C_8H_8O_4$.

1. 2-Oxo-4.6-dimethyl-[1.2-pyran]-carbonsäure-(5), 4.6-Dimethyl-pyron-(2)-carbonsäure-(5), 4.6-Dimethyl-cumalin-carbonsäure-(5). Mesitenlactoncarbonsäure, Isodehydracetsäure (,,Carbacetessigsäure")

Ch3.C-C-C(CH3):CH
CH3.C - O-CO
B. Entsteht neben ihrem Äthylester bei 10-14-tägigem Ch4.C - O-CO
Aufbewahren von 100 g Acetessigester mit 250 g konz. Schwefelsäure (Hantzsch, A. 222, 9). Man gießt die Mischung in etwa das 3-fache Volumen Wasser, löst das abgesaugte Reaktionsprodukt in einem Gemisch aus Äther und Chloroform, wäscht die Lösung mit Wasser und schüttelt sie dann mit konz. Kaliumcarbonat-Lösung; in der äther. Schicht findet sich Isodehydracetsäuresthylester, während die wäßr. Lösung das Kaliumsalz der Isodehydracetsäure enthält (Anschütz, Bendix, Kerf, A. 259, 151, 153). Isodehydracetsäure wird ferner beim Erhitzen von Citracumalsäure (S. 511) auf 190-200° erhalten (Nieme, v. Pechmann, A. 261, 202). — Asbestartige Nädelchen oder Tafeln (aus Wasser), Prismen (aus kalten alkoholischen Lösungen). Triklin (asymmetrisch?) (Beckenkamp, Z. Kr. 33, 601; vgl. Groth, Ch. Kr. 3, 507). F: 155° (Ha.; A., Ben., K.). Sublimiert bei vorsichtigem Erhitzen fast unzersetzt

(Ha.). Schwer löslich in kaltem, äußerst leicht in heißem Wasser, leicht löslich in Alkohol und Äther (Ha.). Absorptionsspektram: Bally, Collie, Watson, Soc. 95, 153. Elektrolytische Dissoziationskonstante k bei 25°: 5,2×10⁻³ (Ostwald, Ph. Ch. 3, 401). — Isodehydracetsäure zerfällt beim Erhitzen für sich auf 200—245° oder mit konz. Schwefelsäure auf 160—170° in Kohlendioxyd und Mesitenlacton (Bd. XVII, S. 291) (Ha.). Einw. von Natriumamalgam auf Isodehydracetsäure: Ha. Bei der Einw. von Bromwasser auf Isodehydracetsäure entstehen je nach den Versuchsbedingungen in wechselnden Mengen Bromisodehydracetsäure und 2.4-Dimethyl-furan-carbonsäure-(3) (S. 296) (Feist, B. 26, 754). Isodehydracetsäure liefert beim Erhitzen mit Kalk Mesityloxyd (Ha.). Beim Kochen von Isodehydracetsäure mit Kalkwasser oder Barytwasser entstehen die Salze der Oxymesitencarbonsäure (Bd. III, S. 737), die leicht weiter unter Abspaltung von Mesityloxyd zerfallen (Ha.). — Salze: Ha., A. 222, 10. — NH_cC₈H₇O₄. Undeutlich krystallinische Masse. Schmilzt gegen 190°. — NaC₈H₇O₄. — KC₈H₇O₄+1/2 oder 1/3 H₂O. Krystalle. Sehr leicht löslich in Wasser. — Cu(C₈H₇O₄)₂ + 2H₂O. Hellgrüner, mikrokrystallinischer Niederschlag. Sehr schwer löslich in Wasser. — 4AgC₈H₇O₄ + 3C₈H₈O₄. B. Durch Fällen des Kaliumsalzes in nicht zu verd. Lösung mit Silbernitrat (Ha.). Nadeln (aus Wasser). Leicht löslich in heißem Wasser. — 6AgC₈H₇O₄ + C₈H₈O₄. B. Durch Digerieren von Isodehydracetsäure in wäßr. Lösung bei sehr gelinder Wärme mit frisch gefälltem Silberoxyd (Ha.). Nadeln. In Wasser leicht löslich. Scheidet schon unter 100° Silber ab. — Mg(C₈H₇O₄)₂ + 5 oder 6H₂O. — Ba(C₈H₇O₄)₂.

Isodehydracetsäure-methylester $C_9H_{10}O_4=(CH_3)_2C_5HO_2\cdot CH_3$. B. Beim Erhitzen des Kaliumsalzes der Isodehydracetsäure mit Methyljodid (Anschütz, Bendix, Kerf, Λ . 259, 156). Entsteht neben Isodehydracetsäure bei 13-stündiger Einw. von konz. Schwefelsäure auf Acetsesigsäure-methylester (A., Ben. K., Λ . 259, 156). Durch Sättigen von Acetsesigsäure-methylester mit Chlorwasserstoff bei 0° und mehrtägiges Aufbewahren (Genvresser, Λ . Λ . 66] 24, 122). Durch mehrtägiges Kochen von Natriumacetessigsäure-methylester in wasserfreiem Benzol mit ,,β-Chlor-isocrotonsäure-methylester (Λ ., Ben., K., Λ . 259, 182). Beim Erhitzen von 4-Methyl-5-acetyl-pyrazol-dihydrid-(4.5)-dicarbonsäure-(3.5)-dimethylester (Syst. No. 3698) (Buchneb, Schröder, Λ . 85, 790). — Nadeln (aus 20% igem Alkohol oder aus Λ -her). F: 67—67,5% (Λ ., Ben., K.). Kp₁₄: 167% (Λ ., Ben., K.); Kp₂₀: 188% (G.). Unlöslich in Wasser, löslich in Alkohol und Λ -her (G.). — Liefert beim Behandeln mit Brom in Schwefelkohlenstoff Bromisodehydracetsäure-methylester (Bu., Sch.). Gibt beim Erwärmen mit Barytwasser cis- und trans-β-Methyl-glutaconsäure (G., Λ . ch. [6] 24, 122; vgl. Feist, Λ . 345, 77, 91).

2 - Oxy - 2 - amino - 4.6 - dimethyl - [1.2 - pyran] - carbonsäure - (5) - methylester (,, Mesitencarbaminmethyläthersäure"), möglicherweise auch β -Methyl- α -[α -iminoäthyl]-glutaconsäure- α -methylester. Oxymesitendicarbonsäure-monomethylesterimid $C_0H_{13}O_4N = CH_3 \cdot O_3C \cdot C \cdot C(CH_3) : CH_3 \cdot C(:NH) \cdot CH(CO_3 \cdot CH_3) \cdot C(CH_3) : CH_3 \cdot C(:NH) \cdot CH(CO_3 \cdot CH_3) \cdot C(CH_3) : CH_3 \cdot C(:NH) \cdot CH(CO_3 \cdot CH_3) \cdot C(:NH) \cdot CH(:NH) \cdot CH(:N$

Isodehydracetsäure-äthylester C₁₀H₁₈O₄ = (CH₃)₂C₅HO₂·Co₂·C₂H₅. B. Durch Sättigen von Acetessigester mit Chlorwasserstoff unterhalb 0° und längeres Stehenlassen (Duisberg, A. 213, 178; Polonowska, B. 19, 2402; Genvresse, A. ch. [6] 24, 91; Bl. [3] 7, 586; Feist, A. 345, 69). Neben α-Isopropyliden-acetessigsäure-äthylester beim Sättigen eines Gemisches von Acetessigester und Aceton mit Chlorwasserstoff unter starker Kühlung (Paulx, B. 30, 482). Bei längerem Kochen von Natriumacetessigester in wasserfreiem Benzol mit ,β-Chlor-isocrotonsäure-äthylester' (Anschütz, Bendix, Kerf, A. 259, 181). Beim Erhitzen des Kaliumsalzes der Isodehydracetsäure mit Alkohol und Äthyljodid unter Überdruck (Hantzsch, A. 222, 24). Eine weitere Bildung s. bei Isodehydracetsäure. — Gewützartig riechendes Öl, das im Kältegemisch zu büscheligen Nadeln erstartt. F: 17—18° (G.; F., A. 345, 62), 17,5—18,5° (K., A. 274, 272), 24—25° (Pau., B. 30, 483). Siedet unter teilweiser Zersetzung (Ha.) bei 225° (G.), 290—294° (Pau., B. 30, 483). Siedet unter teilweiser Zersetzung (Ha.) bei 225° (G.), 290—294° (D.), 290—294° (Pau.) Kpie: 177° (F., A. 345, 70); Kpie: 185°; Kpie: 191° (Anschütz, Be., K., A. 259, 155); Kpie: 195°

bis 1960 (G.). Do: 1,18 (flüssig) (G.); D27: 1,136 (D.); D40: 1,1673 (Anschütz, Be., K., A. 259, 155). Mischbar mit Alkohol, Ather, Chloroform und Benzol, unlöslich in Wasser (G.). — Isodehydracetsäure äthylester liefert bei Behandlung mit Sulfurylchlorid in äther. Lösung Chlorisodehydracetsäure-äthylester (G.; F., A. 345, 75). Gibt bei Einw. von Brom in Schwefelkohlenstoff oder in Chloroform Bromisodehydracetsäure-äthylester (HA.; F., A. 345, 71). Beim Erhitzen mit 8 Tln. Salpetersäure (D: 1,52) entsteht eine gegen 98° schmelzende, gelbe, in Alkalien mit gelber Farbe lösliche Verbindung CoHoO, N (ANGELI, G. 22 II, 329). Beim Erhitzen von Isodehydracetsäure-äthylester mit salzsäurehaltigem Wasser im geschlossenen Ermitzen von Isouenydraceusadre-athylester int salzsadrenaltigem Wasser im geschiossenen Rohr auf 170° entstehen Kohlendioxyd, Essigsäure, Aceton und Alkohol (G.). Gibt beim Erwärmen mit 3—6 Mol 2n-Natronlauge oder mit etwas mehr als 1¹/2 Mol Barytwasser eis- und trans-β-Methyl-glutaconsäure (F., A. 345, 66, 77, 91; vgl. auch G.). Liefert beim Erwärmen mit hochkonzentrierter Kalilauge neben einer Verbindung C₈H₁₀O₃ (s. u.) und anderen Produkten eine Verbindung C₁₈H₁₆O₆ (s. u.) (Anschütz, Be., K., A. 259, 158, 184; vgl. F., A. 345, 67, 95; F., EGGERT, A. 438 [1923], 51). Beim Einleiten von Ammoniak in die alkoholische oder alkoholisch-ätherische Lösung des Athylesters entsteht das Ammoniumsalz des 2-Oxy-2-amino-4.6-dimethyl-[1.2-pyran]-carbonsäure-(5)-äthylesters (s. u.) (Ha.; Anschutz, Be., K., A. 259, 174, 177, 186; K., A. 274, 268; vgl. a. Nieme, v. Pechmann, A. 261, 206); leitet man trocknes Ammoniak in den auf 150-160° crhitzten Äthylester, so erhält man 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester (Syst. No. 3333) (An-SCHUTZ, BE., K., A. 259, 173, 185). — Die alkoh. Lösung wird durch Eisenchlorid nicht gefärbt (F., A. 345, 70).

Über eine bei ca. 60° schmelzende Substanz, die als lockere Additionsverbindung aus Isodehydracetsäure und ihrem Äthylester betrachtet wird, vgl. Hantzsch, A. 222, 4; Anschütz, Bendix, Kerp, A. 259, 152, 157; Feist, A. 345, 69.

Verbindung $C_8H_{10}O_3$. B. Entsteht neben der Verbindung $C_{15}H_{16}O_6$ bei schnellem Versetzen von 5 g Isodehydracetsäure-äthylester mit einer Lösung von 13 g Kaliumhydroxyd in 4,5 cm³ Wasser bei 100° (Anschütz, Bendix, Kerp, A. 259, 158; Feist, A. 345, 96; vgl. F., Eggert, A. 433 [1923], 55). Trennung der beiden Verbindungen: F. — Nädelchen (aus Wasser). F: 149° (A., B., K.). Schwer löslich in siedendem Wasser, sehr leicht in Alkohol, leicht in Äther und Chloroform, unlöslich in Petroläther (A., B., K.). — $AgC_8H_9O_3$. Farbloser Niederschlag (A., B., K.). — $Ba(C_8H_9O_3)_2 + 2H_2O$. Krystallpulver. 100 Tle. Wasser lösen beim Kochen 0,18 Tle. wasserfreies Salz (A., B., K.).

Verbindung $C_{15}H_{16}O_6=C_{12}H_{13}(CO_2H)_3^1$). B. s. oben bei der Verbindung $C_8H_{10}O_3$. — Prismatische Nadeln (aus heißem Wasser). F: 234° (Feist, A. 345, 96; F., Eggert, A. 433 [1923], 51). Fast unlöslich in Äther, Chloroform und Benzol, ziemlich schwer löslich in siedendem Wasser (Anschütz, Bendix, Kerp, A. 259, 160). — Salze: A., B., K. — Kaliumsalz. Glasartige Masse. Sehr hygroskopisch. — Kupfersalz. Apfelgrüner Niederschlag. — Bariumsalz. Krystallwasserhaltige Nadeln. 1 Tl. wasserfreies Salz löst sich bei 20° in 5.24 Tln. Wasser.

Trimethylester $C_{18}H_{22}O_6=C_{12}H_{13}(CO_2\cdot CH_3)_3$. B. Aus dem Silbersalz der Verbindung $C_{15}H_{16}O_6$ durch Methyljodid (Anschütz, Bendix, Kerp, A. 259, 163; Feist, A. 345, 98). — Säulen (aus Äther). F: 71° (A., B., K.). Leicht löslich in Alkohol, Äther, Chloroform und Benzol, unlöslich in Petroläther (A., B., K.).

2 - Oxy - 2 - amino - 4.6 - dimethyl - [1.2 - pyran] - carbonsäure - (5) - äthylester (,,Mesitencarbaminäthyläthersäure"), möglicherweise auch β -Methyl- α -[α -iminoäthyl]-glutaconsäure- α -äthylester, Oxymesitendicarbonsäure-monoäthylesterimid $C_{10}H_{15}O_4N = C_2H_5 \cdot O_2C \cdot C \cdot C(CH_3) \cdot CH$ bezw. $CH_3 \cdot C(:NH) \cdot CH(CO_2 \cdot C_2H_5) \cdot C(CH_3) \cdot CH_3 \cdot CH_$

CH·CO₂H. B. Das Ammoniumsalz entsteht beim Einleiten von trocknem Ammoniak in eine Lösung von 2 g Isodehydracetsäure-äthylester in einem Gemisch aus 4 cm³ absol. Alkohol und 40 cm³ absol. Äther (Änschütz, Bendix, Kerp, A. 259, 177; vgl. Hantzsch, A. 222, 25; Kerp, A. 274, 268); man fällt die wäßr. Lösung des Ammoniumsalzes mit Bleiacetat und zersetzt das in Äther suspendierte Bleisalz durch Schwefelwasserstoff (K., A. 274, 273, 275). — Nädelchen (aus Äther). Schmilzt bei 82° unter Zerfall in Ammoniak und Isodehydracetsäure-äthylester (K.). — NH₄C₁₀H₁₄O₄N. Körniges Pulver. F: 94—95° (K.). — NH₄C₁₀H₁₄O₄N + H₂O. Blätter. Schmilzt bei 104° unter Ammoniak-Entwicklung und Rückbildung des Isodehydracetsäure-äthylesters (Ha.; K., A. 274, 272). Unlöslich in Äther, leicht löslich in Wasser und Alkohol; die Lösungen zersetzen sich unter Ammoniak-Entwicklung und Bildung von Isodehydracetsäure-äthylester sowie wenig Oxymesitendicarbonsäure-monoäthylester (Bd. III,

¹⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] ist diese Verbindung von Feist, Eggert, A. 433, 53 als β -Methyl- γ -[3.5-dimethyl-4-carboxy-phenyl]-glutaconsäure $HO_2C \cdot C_8H_2(CH_3)_2 \cdot C(CO_2H) \cdot C(CH_3) \cdot CH_2 \cdot CO_2H$ erkannt worden.

S. 828) (Ha.). Zersetzt man das Ammoniumsalz mit Salzsäure in der Kälte, so entsteht ausschließlich Oxymesitendicarbonsäure-monoāthylester (Ha.; K., A. 274, 276). — $Cu(C_{10}H_{14}O_4N)_2 + H_2O$. Dunkelgrüner, krystallinischer Niederschlag (A., B., K.). — $Pb(C_{10}H_{14}O_4N)_2 + H_2O$. Farblose Nädelchen (K.).

x-Chlor-4.6-dimethyl-pyron-(2)-carbonsäure-(5)-äthylester, x-Chlor-4.6-dimethyl-cumalin-carbonsäure-(5)-äthylester, Chlorisodehydracetsäure-äthylester $C_{10}H_{11}O_4Cl=(CH_2)_2C_5O_2Cl\cdot CO_2\cdot C_2H_6$. B. Aus Isodehydracetsäure-äthylester in Äther durch Zusatz von Sulfurylchlorid (Genvresse, A. ch. [6] 24, 98; Feist, A. 345, 75). — Krystalle (aus Petroläther). F: 57—58° (F.), 57° (G.). Unlöslich in Wasser, schwer löslich in Äther, leichter in Alkohol (G.).

8-Brom-4.6-dimethyl-pyron-(2)-carbonsäure-(5), 8-Brom-4.6-dimethyl-cumalin-carbonsäure-(5), Bromisodehydracetsäure $C_8H_7O_4Br= \frac{CH_3 \cdot C - O - CO}{CH_3 \cdot C - O - CO}$. B. Aus Isodehydracetsäure und Brom in Wasser bei gelinder Wärme (Feist, B. 26, 754). — Blättchen (aus Benzol + wenig Alkohol). Sublimierbar. F: 161—162°. Leicht löslich in heißem Wasser. Alkohol, Äther, Chloroform und Aceton, fast unlöslich in Schwefelkohlenstoff, Benzol und Ligroin. — Beim Behandeln mit kalter Kalilauge entstehen farblose Krystalle [2.4-Dimethyl-furan-dicarbonsäure-(3.5) (?)], die sich bei etwa 260° zersetzen und bei vorsichtigem Erhitzen 2.4-Dimethyl-furan-carbonsäure-(3) (S. 296) liefern.

Methylester C₂H₂O₄Br = (CH₃)₂C₅O₂Br·CO₂·CH₃. B. Aus Isodehydracetsäure-methylester durch Behandeln mit Brom in Schwefelkohlenstoff (Buchner, Schroeder, B. 35, 790). — Nadeln (aus verd. Alkehol). F: 135°. — Liefert mit konz. Kalilauge 2-Methyl-cyclopropen-(1)-dicarbonsäure-(1.3).

Äthylester C₁₀H₁₁O₄Br = (CH₃)₂C₅O₂Br·CO₂·C₂H₅. B. Man versetzt die Lösung von Isodehydracetsäure-äthylester in Schwefelkohlenstoff (Hantzsch, A. 222, 25; Feist, B. 26, 757) oder in Chloroform (F., A. 345, 7?) mit Brom. — Nadeln (aus Alkohol). Monoklin prismatisch (Hein, A. 345, 73; vgl. Groth, Ch. Kr. 3, 508). F: 87° (Ha.). — Gibt beim Kochen mit Kalilauge Essigsäure und 2-Methyl-cyclopropen-(1)-dicarbonsäure-(1.3) (F., B. 26, 759: A. 345, 74). Liefert bei Behandlung mit trocknem Ammoniak bei 100° 5-Brom-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester (Syst. No. 3333) (Kerp, A. 274, 280), beim Kochen mit konzentriertem wäßrigem Ammoniak außer diesem 5.6-Dioxy-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester (Syst. No. 3349) (F., B. 26, 757), während mit alkoh. Ammoniak bei gewöhnlicher Temperatur das Ammoniumsalz des 3-Brom-2-oxy-2-amino-4.6-dimethyl-[1.2-pyran]-carbonsäure-(5)-äthylesters (s. u.) entsteht (F., B. 26, 758; K.).

8-Brom-2-oxy-2-amino-4.6-dimethyl - [1.2 - pyran] - carbonsäure - (5) - äthylester (,, Brommesitencarbaminäthyläthersäure"), möglicherweise auch γ -Brom- β -methyl- α -[α -imino-äthyl]-glutaconsäure- α -äthylester, Bromzymesitendicarbonsäure-

2. 4-Oxo-2.6-dimethyl-[1.4-pyran]-carbonsäure-(3), 2.6-Dimethyl-pyron-(4)-carbonsäure-(5) C₈H₈O₄ = CH₃·C-O-C·C·CO₂H

B. Beim Erwärmen von "Dehydracetchlorid" (Bd. XVII, S. 562) mit konz. Schwefelsäure auf 90—100° (Feist, A. 257, 286). Beim Erhitzen von Dehydracetsäure (Bd. XVII, S. 559) mit 85°/0 iger Schwefelsäure auf 135°, neben Triacetsäurelacton (Bd. XVII, S. 442) (Collie, Hilditch, Soc. 91. 787). — Krystalle (aus Wasser). F: 98,5—99° (F.), 99° (C., H.). Unlöslich in Ligroin, leicht löslich in Benzol, Chloroform, warmem Alkohol und Eisessig (F.). Elektrische Leitfähigkeit: Magnanini, A. 257, 287; C., H., Soc. 91, 788. Absorptionsspektrum: Baly, Collie, Watson. Soc. 95, 153. — 2.6-Dimethyl-pyron-(4)-carbonsäure-(3) zerfällt beim Erhitzen in 2.6-Dimethyl-pyron-(4) (Bd. XVII, S. 291) und Kohlendioxyd (F.; C., H.). Dieselbe Spaltung erfolgt beim Kochen mit Salzsäure (C., H.), teilweise auch schon beim Kochen mit Wasser (F.). Das Natriumsalz der 2.6-Dimethyl-pyron-(4)-carbonsäure-(3) gibt durch Kochen seiner wäßr. Lösung und nachfolgendes Ansäuern Dehydracetsäure (C., H.). 2.6-Dimethyl-pyron-(4)-carbonsäure-(3) zerfällt beim Kochen mit konz. Barytwasser in Kohlendioxyd, Aceton. Essigsäure

- 3. [2.5 Dimethyl furan carboyl (3)] ameisensäure $C_8H_8O_4 = HC C \cdot CO \cdot CO_2H$ (systematische Stammverbindung der [2.5-Dimethyl-thenoyl-(3)]-ameisensäure).
- [2.5-Dimethyl-thenoyl-(3)]-ameisensäure, [2.5-Dimethyl-thienyl-(3)]-glyoxyl-säure $C_8H_8O_3S = {\rm CH_3 \cdot C \cdot S \cdot C \cdot CH_3 \over CH_3 \cdot C \cdot S \cdot C \cdot CH_3}$. B. Bei der Oxydation von 2.5-Dimethyl-3-acetyl-thiophen (Bd. XVII, S. 298) mit alkal. Kaliumpermanganat-Lösung (RUFFI, B. 20, 1750). Allmählich erstarrendes Öl. Liefert beim Erhitzen mit Dimethylanilin und Zinkchlorid eine grüne Schmelze. AgC₈H₂O₃S.

4. Oxo-carbonsäuren C.H.10O4.

- 1. **[5 Propyl furfuroyl] ameisensäure** $C_9H_{10}O_4 = HC CH$ $CH_3 \cdot CH_2 \cdot CH_2 \cdot C \cdot O \cdot C \cdot CO \cdot CO_2H$ (systematische Stammverbindung der [5-Propyl-thenoyl-(2)]- ameisensäure).
- $\begin{array}{l} [5\text{-Propyl-thenoyl-(2)]-ameisensäure,} \quad [5\text{-Propyl-thienyl-(2)]-glyoxylsäure} \\ C_9H_{10}O_3S = & HC -- CH \\ CH_3\cdot CH_2\cdot CH_2\cdot C\cdot S\cdot C\cdot CO\cdot CO_2H \end{array}. \\ B. \quad Aus 5\text{-Propyl-2-acetyl-thiophen (Bd. XVII, S. 300) durch Oxydstion mit alkal. Kaliumpermanganat-Lösung (Ruffi, B. 20, 1745).} \\ Allmählich erstarrendes Öl. -- Ammoniumsalz. Krystalle. Schwer löslich in Wasser. -- AgC_9H_9O_3S. \\ \end{array}$
- 2. [3 oder 4 Isopropyl furfuroyl] ameisensäure $C_9H_{10}O_4 = HC C \cdot CH(CH_3)_2$ (CH₃)₂CH·C—CH (systematische Stammverbindung der $H \overset{\circ}{C} \cdot O \cdot \overset{\circ}{C} \cdot CO \cdot CO_2H$ (systematische Stammverbindung der [3 oder 4-Isopropyl-thenoyl-(2)]-ameisensäure).
- $\begin{array}{lll} & \textbf{[3 oder 4-Isopropyl-thenoyl-(2)]-ameisensäure, [3 oder 4-Isopropyl-thienyl-(2)]-} \\ & \textbf{glyoxylsäure} & \textbf{C}_{0}\textbf{H}_{10}\textbf{O}_{3}\textbf{S} = \\ & \textbf{H}_{0}^{"} \textbf{C} \cdot \textbf{CH}(\textbf{CH}_{3})_{2} & (\textbf{CH}_{3})_{2}\textbf{CH} \cdot \textbf{C} & \textbf{CH} \\ & \textbf{H}_{0}^{"} \cdot \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} & \textbf{H}_{0}^{"} \cdot \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} \\ & \textbf{H}_{0}^{"} \cdot \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} & \textbf{H}_{0}^{"} \cdot \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} \\ & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} & \textbf{S} \cdot \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} \\ & \textbf{S} \cdot \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} & \textbf{S} \cdot \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} \\ & \textbf{S} \cdot \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} & \textbf{S} \cdot \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} \\ & \textbf{S} \cdot \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{H} \\ & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} \\ & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} \\ & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} & \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} \\ & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} \\ & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} \\ & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} \\ & \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} \\ & \textbf{S} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{S} \\ & \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_{2}\textbf{CO}_{2}\textbf{CO}_{2} \\ & \textbf{C} \cdot \textbf{CO}_{2} \\ & \textbf{C} \cdot \textbf{CO}_{2} \\ & \textbf{C} \cdot \textbf{CO}_{2} \cdot \textbf{CO}_{2} \\ & \textbf{C}$
- 3. 4¹-Oxo-2.5-dimethyl-4-āthyl-furan-carbonsāure-(3), 2.5-Dimethyl-4-acetyl-furan-carbonsāure-(3), Dehydrodiacetyllāvulinsāure C₂H₁₀O₄ = CH₃·CO·C—C·CO₂H

 CH₃·CO·C—C·CO₃H

 B. Bei längerem Erhitzen von Lävulinsäure mit Essigsäureanhydrid CH₃·C·O·C·CH₃

 Prismen und Tafeln (aus Äther). Monoklin prismatisch (Negri, G. 19, 278; vgl. Groth, Ch. Kr. 3, 519). F: 151,5—152° (M., B. 21, 1524; G. 18, 117). Elektrolytische Dissoziationskonstante k bei 25°: 6,82×10⁻⁵ (M., Scheidt, G. 22 I, 439). Zersetzt sich beim Kochen mit Wasser (M., Sch., G. 22 I, 439). Liefert beim Erhitzen mit Ammoniak (D: 0,905) im geschlossenen Rohr auf 100° 2.5-Dimethyl-3-acetyl-pyrrol (Syst. No. 3181) (M., G. 19, 281; M., Sch., G. 22 I, 444; M., G. 23 I, 463). Verbindet sich mit Hydroxylamin bei längerem Stehenlassen unter Bildung des entsprechenden Oxims (M., Sch., G. 22 I, 439). Gibt mit Phenylhydrazin und verdünnter Essigsäure bei kurzem Erhitzen auf 100° das Phenylhydrazon der Dehydrodiacetyllävulinsäure, bei 3—4-stdg. Erhitzen im geschlossenen Rohr auf 150°

bis 160° das Phenylhydrazon des 2.5-Dimethyl-3-acetyl-furans (Bd. XVII, S. 298) (M., Son., G. 22 I, 440, 443). — $AgC_9H_9O_4$. Krystallinischer Niederschlag. Lichtbeständig; schwer löslich in Wasser (M., B. 21, 1524; G. 18, 117). — $Ba(C_9H_9O_4)_2 + H_2O$ (bei 100°). Krystallinisch. Leicht löslich in Wasser (M., B. 21, 1524; G. 18, 118).

Oxim C₉H₁₁O₄N = CH₃·C(:N·OH)·C — C·CO₂H CH₃·C·O·C·CH₄. B. Bei längerem Stehenlassen von Dehydrodiacetyllävulinsäure mit Hydroxylaminhydrochlorid und Natriumcarbonat in wäßr. Lösung (Magnanini, Scheidt, G. 22 I, 439). — Nädelchen (aus Alkohol). F: 198—1990 (Zers.). Schwer löslich in Benzol, Essigsäure, kaltem Alkohol und Chloroform, unlöslich in Wasser; löslich in Sodalösung. — Zersetzt sich beim Kochen mit Wasser oder verd. Alkohol.

Phenylhydrason C₁₈H₁₆O₃N₂ = CH₃·C(:N·NH·C₆H₅)·C—C·CO₂H B. Bei kurzem CH₃·C·O·C·C·H₃ B. Bei kurzem Erhitzen von Dehydrodiacetyllävulinsäure mit Phenylhydrazin und verd. Essigsäure auf 100° (Magnanini, Scheidt, G. 22 I, 441). — Nädelchen (aus absol. Alkohol). Zersetzt sich bei 185—187°. Schwer löslich in Benzol, leichter in Äther, sehr leicht in kochendem Alkohol, unlöslich in Wasser. — Zerfällt beim Erhitzen mit Wasser im geschlossenen Rohr auf 150° bis 160° in Kohlendioxyd und das Phenylhydrazon des 2.5-Dimethyl-3-acetyl-furans.

5. Oxo-carbonsăuren $C_{10}H_{12}O_4$.

- 1. γ -Oxo- $\dot{\epsilon}$ -fa-furyl]-n-capronsāure, δ -Furfuryl-lāvulinsāure $C_{10}H_{12}O_4=HC$ —CH $HC^{"}-CH_{2}\cdot CH_{2}\cdot CH_{2}\cdot CH_{2}\cdot CO\cdot CH_{2}\cdot CH_{2}\cdot CO_{2}H$ B. Durch Reduktion von δ -Furfuryliden-lāvulinsāure (S. 416) mit Natriumamalgam (Kehrer, Kleberg, B. 26, 351).—Nadeln (aus Wasser). F. 980
- 2. γ -Oxo- β -furfuryl-n-valeriansäure, β -Acetyl- γ - $[\alpha$ -furyl]-buttersäure, β -Furfuryl-lävulinsäure $C_{10}H_{12}O_4=\frac{HC-CH}{HC\cdot O\cdot C\cdot CH_2\cdot CH(CO\cdot CH_3)\cdot CH_2\cdot CO_2H}$. B. Durch Reduktion von β -Furfuryliden-lävulinsäure (S. 417) mit Natriumamalgam (Kehrer, Kleberg, B. 26, 351). Nadeln oder Prismen. F: 100—101°.
- 3. Lacton der 1.2-Dimethyl-cyclohexen-(3)-ol-(6)-dicarbonsäure-(1.2), Cantharsäure C₁₀H₁₂O₄ = HC CH·C(CH₃) C(CH₃)·CO₂H O CO CO CO CH₂—CH CH₂—CH CO CH₃—CO CO CH₃—CO CO CH₃—CO CO CH₃—CO CH₃—CO CO CH₃—CO CH₃—CO CO CH₃—CO CH₃—CO CO CH₃—CO CH₃—CO CO CH₃—CO CO CH₃—CO CH

¹) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von GADAMER, Ar. 255, 290.

von Soda-Permanganatlösung schon in der Kälte unter Bildung einer sirupösen Säure angegriffen (H. M., M. 19, 718). Liefert beim Erhitzen mit Wasser auf 300° Cantharen (Bd. V. S. 118) (P., B. 19, 1406). Gibt beim Erhitzen mit Ätzkalk Cantharen und etwas o-Xylol (P., B. 11, 2122; 12, 578; vgl. Harries, Antoni, A. 328, 115). Beim Erhitzen des Bariumsalzes für sich auf etwa 400° entweichen Kohlendioxyd, Kohlenoxyd, Cantharen und wenig o-Xylol; im Rückstande bleiben Buttersäure und eine Xylylsäure (P., B. 11, 2122). Verhalten von Cantharsäure gegen Phosphorpentachlorid: P., B. 19, 1407. Liefert beim Erhitzen mit alkoh. Ammoniak im Druckrohr auf 150° das Imid C₁₀H₁₃O₃N (Syst. No. 3240) der Formel HC=CH—C(CH₃)·CO NH (And., Gh., G. 21 II, 56; And., B. 24, 1997; vgl. Gadamer, H_2 C·CH(OH)·C(CH₃)·CO Ar. 260 [1922], 205, 220). Verbindet sich mit Hydroxylamin zu Cantharoximsäure C₁₀H₁₈O₄N (s. u.) (Ho.). Wird beim Erhitzen mit Acetylchlorid im Druckrohr auf 135° in "Isocantharidin" (S. 87) übergeführt (And., GH., B. 21 II, 57; B. 24, 1998; H. M., M. 19, 718; vgl. Gadamer, Ar. 255, 282). Beim Erhitzen von Cantharsäure mit Dimethylanilin und Zinkchlorid auf 140-150° entsteht eine Verbindung C25H32ON2(?), die sich an der Luft grünlich chlorid auf 140—150° entsteht eine verbindung $C_{15}H_{12}ON_{2}(7)$, die sich an der Luit gründen färbt und durch saure Oxydationsmittel zu grünen oder violetten Farbstoffen oxydiert wird (Ho.). Cantharsäure wirkt nicht blasenziehend (P., B. 10, 1505). — $KC_{10}H_{11}O_{4}$. Nadeln. In Wasser sehr leicht löslich (P., B. 11, 2121). — $Cu(C_{10}H_{11}O_{4})_{2}$ (bei 110°). Blaue Nadeln. Schwer löslich in Wasser (P., B. 11, 2121). — $AgC_{10}H_{11}O_{4}$. Niederschlag (Ho.). — $Pb(C_{10}H_{11}O_{4})_{2}$ + xH₂O. Nadeln (aus essigsäurehaltigem Wasser) (P., B. 10, 1506).

Cantharoximsäure $C_{10}H_{12}O_{4}N$. B. Bei 3—4-tägigem Erwärmen von cantharsaurem Natrium in wäßr. Lösung mit überschüssigem Hydroxylaminhydrochlorid und der berechneten Menge Sode auf 800 (Howo L. R. 19, 1087). — Rightschen oder Täfelsben (aus Wasser)

Menge Soda auf 80° (Homolka, B. 19, 1087). — Blättchen oder Täfelchen (aus Wasser). Monoklin prismatisch (Negri, G. 21 II, 55; B. 24, 1997; vgl. Groth, Ch. Kr. 5, 459). Schmilzt unter Zersetzung bei 175-180° (H.); F: 166° (Anderlini, Ghira, G. 21 II, 54).

Cantharsäure-methylester $C_{11}H_{14}O_4=(CH_3)_9C_7H_5O_2\cdot CO_3\cdot CH_3$. B. Durch Erhitzen von cantharsaurem Silber mit Methyljodid im geschlossenen Rohr auf 100° (Homolka, B. 19, 1087). — Farblose Flüssigkeit. Kp₅₀: 210—220°.

Cantharsäure - äthylester $C_{12}H_{16}O_4 = (CH_3)_2C_7H_5O_2 \cdot CO_3 \cdot C_2H_5$. B. Durch Einw. von Äthyljodid auf das Kaliumsalz der Cantharsäure (Piccard, B. 11, 2122). — Siedet unzersetzt bei etwa 300°.

4. Cantharidin C10H11O4. Dieser früher als Lacton der Bicyclo - [1.1.3] heptanol-(6)-carbonsaure-(1)-essigsaure-(6), Formel I, formulierten Verbindung

ist nach dem Literatur-Schlußterminder 4. Aufl. dieses Handbuchs [1. I. 1910] durch Gadamer, Ar. 252, 631; Rudolph, Ar. 254, 423; Bruchhausen, Bersch, Ar. 266, 697 die Formel II erteilt worden; s. Syst. No. 2761.

6. Lacton der 2.2-Dimethyl-bicyclo-[1.2.2]-hepta- H₂Ç-ÇHnol-(3)-dicarbonsäure-(3.7), Camphenilol-dicarbon-Saure-lacton C₁₁H₁₄O₄, s. nebenstehende Formel. B. Aus dem H₂C-CH-Lacton der 2.2.3-Trimethyl-bicyclo-[1.2.2]-heptanol-(3)-carbonsäure-(7) (Bd. XVII, S. 303) bei 6-stdg. Erwärmen mit Salpetersäure (D: 1,27) auf dem Wasserbad (Bredt, Sandkuhl, A. 366, 56). — Krystalle (aus heißem Wasser). F: 230°. Bei der Einw. von Alkalien oder Erdalkalien entstehen neben den Salzen der Lactonsäure auch unbeständige Salze einer Oxydicarbonsaure $C_{11}H_{16}O_{5}$. — $Ba(C_{11}H_{18}O_{4})_{2}$.

7. Lacton der [3-0xy-menthen-(3)-yl-(8)]-malonsäure, Lacton der Enolform der Pulegon-maionsäure $C_{13}H_{18}O_4 =$

Methylester, Lacton des Pulegon-malonsäure-monomethylesters $C_{14}H_{20}O_4 = (CH_3)_3C_9H_5O_2 \cdot CO_3 \cdot CH_3$. B. Durch Kochen von Natrium-malonsäuredimethylester mit Pulegon in Benzol (Vorländer, Köthner, A. 345, 164). — Nadeln (aus siedendem Petroläther). F: 75—76°. Sehr leicht löslich in Alkohol, Äther, Benzol, Chloroform und Schwefelbell. kohlenstoff, löslich in Petroläther, kaum löslich in Wasser. $[\alpha]_0^{\text{po}}$: +26,6° (in Methylalkohol; c = 4)

Äthylester, Lacton des Pulegon-malonsäure-monoäthylesters $C_{15}H_{22}O_4 = (CH_3)_3C_5H_9O_3 \cdot CO_2 \cdot C_2H_5$. B. Durch Kochen von Natrium-malonsäurediäthylester mit Pulegon in Benzol (V., K., A. 34 Γ , 162). — Dickflüssiges Öl. Kp₂₀: 193—195°. — Wird durch Verseifung in Pulegon-malonsäure (Bd. X, S. 851) übergeführt. Gibt beim Erhitzen mit alkoh. Ammoniak die Verbindung $CH_3 \cdot HC < CH_2 - CH_2 \cdot C(CH_3)_2 > CH_2$ (Syst. No. 3181).

Nitril, Lacton der Pulegon-cyanessigsäure $C_{13}H_{17}O_2N=(^{\circ}H_3)_3C_2H_3O_3\cdot CN.$ B. Durch Kochen von Natrium-cyanessigester mit Pulegon in Benzol (V., K., A. 345, 182). — Sechsseitige Säulen (aus Alkohol). F: 75—76°. Unlöslich in kaltem, schwer löslich in warmem Wasser, sehr leicht löslich in Alkohol, Äther, Schwefelkohlenstoff, Chloroform, Benzol und Aceton, schwer in kaltem, leichter in warmem Petroläther; schwer löslich in heißer, wäßriger, leicht in wäßrig-alkoholischer Kalilauge, ziemlich löslich in warmer, schwer in kalter Sodalösung. [α] $_0^\infty$: +65,2° (in Alkohol; c=1). — Wird beim Kochen mit alkoh. Kalilauge in die Verbindung $C_{13}H_{18}O_4$ (Dilacton der [3.3-Dioxy-p-menthyl-(8)]-malonsäure?, Bd. X, S. 851) übergeführt.

d) Oxo-carbonsăuren C_nH_{2n-10}O₄.

1. α -Oxo- γ -[α -furyl]-vinylessigsäure, Furfurylidenbrenztraubensäure $C_8H_6O_4=\frac{HC-CH}{HC\cdot O\cdot C\cdot CH:CH\cdot CO\cdot CO_2H}$. B. Bei 10-stdg. Erhitzen von 1 Tl. Furfurol mit 1 Tl. Brenztraubensäure und 3 Tln. Eisessig auf dem Wasserbad (Röhmer, B. 31, 281). — Hellgelbe Nadeln (aus Wasser). Schmilzt bei 111° (Bougault, A. ch. [8] 14, 179, 183), bei 110° unter Braunfärbung (R.). Leicht löslich in Alkohol, Äther und Aceton (R.). — Bariumsalz. Leicht löslich in heißem, schwer in kaltem Wasser.

Athylester C₁₀H₁₀O₄ = HC—CH

Athylester C₁₀H₁₀O₄ = HC—CH

HC·O·C·CH:CH·CO·CO₂·C₂H₅

B. Beim Erhitzen äquimolekularer Mengen von Furfurylidenbrenztraubensäure und absol. Alkohol im geschlossenen Rohr auf 100° (R., B. 31, 281). — Hellgelbe Nadeln (aus Wasser). F: 44—45°. Leicht löslich in organischen Lösungsmitteln.

Anil des Furfurylidenbrenstraubensäure - anilids $C_{20}H_{16}O_2N_2 = HC - CH$ $HC \cdot O \cdot C \cdot CH : CH \cdot C(:N \cdot C_6H_5) \cdot CO \cdot NH \cdot C_6H_5$ $2 \cdot [\alpha - \text{furyl}] - \text{pyrrolidin } C_{20}H_{16}O_2N_3 = HC - CH + C \cdot N \cdot C_6H_5$ $C \cdot C \cdot CH \cdot CH \cdot C(:N \cdot C_6H_5) \cdot CO \cdot NH \cdot C_6H_5$ ist nach der zweiten Formel Syst. No. 4298 eingeordnet.

2. $\gamma \cdot 0 \times 0 \cdot \alpha \cdot [\alpha \cdot [\text{diryl}] \cdot \alpha \cdot \text{butylen} \cdot \beta \cdot \text{carbonsäure}, \ \beta \cdot 0 \times 0 \cdot \alpha \cdot \text{furfuryliden-buttersäure}, \ \alpha \cdot \text{Acetyl} \cdot \beta \cdot [\alpha \cdot [\text{diryl}] \cdot \text{acrylsäure}, \ \alpha \cdot \text{Furfuryliden-acet-essigsäure} \cdot C_9 H_8 O_4 = \frac{\text{HC} - \text{CH}}{\text{HC} \cdot \text{O} \cdot \text{C} \cdot \text{CH} : \text{C(CO} \cdot \text{CH}_3) \cdot \text{CO}_2 \text{H}}} \cdot \frac{\text{HC} - \text{CH}}{\text{HC} \cdot \text{O} \cdot \text{C} \cdot \text{CH} : \text{C(CO} \cdot \text{CH}_3) \cdot \text{CO}_2 \cdot \text{H}}} \cdot B. \text{ Aus äquimolekularen}$ Mengen Furfurol und Acetessigester in Gegenwart von Essigsäureanhydrid bei 150–160° (CLASSEN MATTERES). A 218 175) oder in Gegenwart von wenigen Tronfen Pineridin bei

Äthylester C₁₁H₁₂O₄ = H \(\begin{array}{c}\) - \(\begin{array

3. Oxo-carbonsäuren $C_{10}H_{10}O_4$.

1. γ -Oxo- ε -[α -furyl]- δ -amylen- α -carbonsdure, δ -Furfuryliden-ldvulin-sdure $C_{10}H_{10}O_4= HC - CH$ ##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

##C C:

#

Ke., Kleberg, B. 26, 349; Hofacker, Ke., B. 28, 917; vgl. Erdmann, B. 24, 3201). — Nadeln (aus Wasser), Prismen (aus Äther). F: 115—116° (H., Ke.). Sehr schwer löslich in kaltem Wasser und siedendem Petroläther, löslich in Methylalkohol und Schwefelkohlenstoff, leicht in warmem Alkohol und Äther, sehr leicht in Chloroform, Aceton, Essigester und Benzol (L., Ke.). — Bei der Reduktion mit Natriumamalgam entsteht δ-Furfurylävulinsäure (S. 414) (Ke., Kl.). Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung entsteht neben viel Harz in geringer Ausbeute (Kehrer, Hofacker, A. 294, 167) γ,γ' -Dioxo-sebacinsäure-diäthylester (Bd. III, S. 845) (H., Ke.). Bei mehrstündigem Kochen von δ-Furfuryliden-lävulinsäure mit Alkohol und konz. Salzsäure erhält man γ,γ' -Dioxo-sebacinsäure (Ke., H.). — $AgC_{10}H_{\phi}O_{4}$ (L., Ke.). — $Ca(C_{10}H_{\phi}O_{4})_{2}+2H_{2}O$. Gelbe Nadeln (L., Ke.).

2. γ -Oxo- β -furfuryliden-n-valeriansäure, β -Acetyl- γ -[α -furyl]-vinyl-essigsäure, β -Furfuryliden-lävulinsäure $C_{10}H_{10}O_4=HC$ —CH

Phenylhydrazon $C_{16}H_{16}O_3N_2=OC_4H_3\cdot CH:C[C(:N\cdot NH\cdot C_6H_5)\cdot CH_3]\cdot CH_2\cdot CO_2H$. Gelbe Täfelchen. F: 168° (Keheer, Kleberg, B. 26, 347).

4. Photosantoniactonsäure $C_{15}H_{20}O_4=C_{14}H_{10}O(:O)\cdot CO_2H^1$). B. Durch Erhitzen von Photosantonsäure (Bd. X, S. 497) auf 100^0 (VILLAVECCHIA, R. A. L. [4] 1, 722; B. 18, 2859; Francesconi, Venditti, G. 32 I, 301). — F: 154— 155^0 (VI.). Weniger löslich in Alkohol und Äther als Photosantonsäure; geht an der Luft leicht in diese über (Fr., Ve.).

Äthylester, Photosantonin $C_{17}H_{24}O_4=C_{14}H_{19}O(:O)\cdot CO_2\cdot C_2H_5$. B. Beim Behandeln von Photosantonsäure mit Alkohol und Schwefelsäure (VIILAVECCHIA, R. A. L. [4] 1, 724; B. 18, 2862). Aus photosantonsaurem Silber und Äthyljodid (VI.; vgl. Sestini, G. 6, 368). Neben einer isomeren Verbindung $C_{17}H_{24}O_4$ (Bd. XVII, S. 503) und etwas Photosantonsäure bei dreimonatiger Einw. des Sonnenlichts auf eine Lösung von 20 g Santonin in 1 1 90% jegem Alkohol (VI.). — Tafeln (aus Alkohol + Äther). F: 68—69% (VI.). Leicht löslich in Alkohol und Äther, fast unlöslich in kaltem Wasser (VI.). [α] : —121,6% (in Alkohol; c=2) (VI.).

5. Hydroalantolactoncarbonsäure $C_{16}H_{12}O_4 = {O \choose OC}C_{14}H_{21} \cdot CO_2H$. B. s. bei Hydroalantsäurecarbonsäure (Bd. X, S. 497). — Nadeln (aus verd. Alkohol). F: 137° (Bredt, Kallen, A. 293, 360). Kp₁₄: gegen 250°. Schwer löslich in kaltem Wasser, sehr leicht in Alkohol, Äther und Benzol. — $AgC_{16}H_{31}O_4$. Schuppen (aus siedendem Wasser). Ziemlich leicht löslich in Äther, unlöslich in kaltem Wasser. — $Ca(C_{16}H_{21}O_4)_2$. Pulveriger Niederschlag (aus heißem Wasser). — $Ba(C_{16}H_{21}O_4)_2$. Plättchen (aus siedendem Wasser). Schwer löslich in kaltem Wasser.

Nitril $C_{16}H_{31}O_2N = {O \choose OC}C_{16}H_{31}\cdot CN$. B. s. bei Hydroalantsäurecarbonsäure (Bd. X, S. 497). — Schuppen (aus verd. Alkohol). F: 132°; leicht löslich in Äther, Alkohol und Benzol, unlöslich in Wasser (Br., K., A. 293, 356). — Wird durch Kochen mit wäßrig-alkoholischer Kalilauge zu Hydroalantsäurecarbonsäure verseift. Bei der Reduktion mit Natrium und Alkohol entsteht eine Verbindung C. H. O.N (s. u.).

Alkohol entsteht eine Verbindung $C_{16}H_{25}O_2N$ (s. u.). Verbindung $C_{16}H_{25}O_2N = 0$ $O_C C_{14}H_{21} \cdot CH_2 \cdot NH_2$ oder $O_C C_{14}H_{21} \cdot CH_2 \cdot NH_2$ oder $O_C C_{14}H_{21} \cdot CH_2 \cdot NH_3$ Bei allmählichem Eintragen von 20 g Natrium in die siedende Lösung von 10 g Hydroalantolactoncarbonsäurenitril in 200 cm³ absol. Alkohol (Br., K., A. 293, 358). — Nädelchen (aus

¹⁾ Die von Francesconi, Venditti, G. 32 I, 297 für die Photosantoulactonsäure angegebene (CH₃)₂CH·C: CH·CH—O ist nach dem Literatur-Schlußtermin der HO₃C·CH(CH₃)·C: CH·CH·CH(CH₃)·CO

4. Aufl. dieses Handbuchs [1. I. 1910] unbaltbar geworden; vgl. die Untersuchungen von Clemo, Haworth, Walton, Soc. 1929, 2368; 1930, 1110; CL., Ha., Soc. 1930, 2579; Ruzicka, Eichenberger, Helv. chim. Acta 13, 1117; Tschitschibabin, Schtschukina, B. 63, 2793; Wedekind, Tettweiler, B. 64, 387, 1796 über die Konstitution des Santonins; dasselbe gilt für die in Bd. X, S. 497 aufgeführte Photosantonsäure.

verd. Alkohol). Schmilzt bei 171° unter Zersetzung. Sehr leicht löslich in Alkohol, Äther und Petroläther, unlöslich in Wasser. — $2C_{16}H_{25}O_2N + 2HCl + PtCl_4$. Hellgelber Niederschlag. Unlöslich in Wasser und Äther.

e) Oxo-carbonsäuren C_nH_{2n-12}O₄.

1. Oxo-carbonsäuren CoHaO4.

- 1. 3 Oxo cumaran carbonsäure (2), Cumaranon carbonsäure (2) $C_9H_6O_4 = C_6H_4 < {CO \over O} > CH \cdot CO_2H$ ist desmotrop mit $3 \cdot Oxy \cdot cumaron \cdot carbonsäure \cdot (2)$ $C_6H_4 < {C(OH) \over O} > C \cdot CO_2H$, S. 347.
- $\textbf{3-Oxo-thionaphthendihydrid-carbons\"aure-(2)} \ C_9H_6O_3S = C_6H_4 < \underbrace{CO}_S > CH \cdot CO_2H \ \text{ist} \\ \text{desmotrop mit 3-Oxy-thionaphthen-carbons\"aure-(2)} \ C_6H_4 < \underbrace{C(OH)}_S > C \cdot CO_2H, \ S. \ 347.$
- $\begin{array}{lll} \textbf{3-Imino-thionaphthendihydrid-carbons\"{a}ure-(2)} & C_9H_7O_2NS = \\ C_6H_4 < & C(:NH) \\ > & CH \cdot CO_2H & \text{ist desmotrop mit 3-Amino-thionaphthen-carbons\={a}ure-(2)} \\ C_6H_4 < & C(NH_2) \\ > & C \cdot CO_2H, & \text{Syst. No. 2645.} \\ \end{array}$
- 2. 3 Oxo phthalan carbonsäure (1), Phthalid carbonsäure (3) $C_9H_6O_4=C_6H_4$ $CO_{2H}O$. B. s. bei Mandelsäure-o-carbonsäure, Bd. X, S. 511. Blättchen (aus Benzol + Eisessig), Tafeln (aus Wasser). F: 153° (ZINCKE, FRIES, A. 334, 358), 152° (GABRIEL, B. 40, 81; GREETH, THORPE, Soc. 93, 1512), 151—152° (Z., SCHMIDT, B. 27, 743). Leicht löslich in Wasser, Alkohol, Eisessig und Ather (Z., SCHM.). Zerfällt oberhalb 180° in Kohlendioxyd und Phthalid (Bd. XVII, S. 310) (SCHERES, B. 18, 382; GRAEBE, TRÜMPY, B. 31, 374). Gibt beim Behandeln mit Barytwasser das Bariumsalz der Mandelsäure-o-carbonsäure (Z., Fr.; vgl. Ga., B. 40, 4238). AgC₉H₈O₄. Nadeln (aus Wasser). Schwer löslich (Ga., B. 40, 81).

Methylester $C_{10}H_8O_4=C_6H_4$ $CO_2\cdot CH_3)$ O. B. Aus Phthalid-carbonsäure-(3) und Methylalkohol in Gegenwart von Chlorwasserstoff (Zincke, Schmidt, B. 27, 744; Gabriel, B. 40, 81). — Nadeln (aus Ligroin). F: 53—54° (Ga.), 54—55° (Z., Schm.), 57° (Z., Fries, A. 334, 358).

3. 1-Oxo-phthalan-carbonsäure-(5), Phthalid-carbonsäure-(5) C₂H₆O₄, s. nebenstehende Formel. B. Durch Erhitzen von Phthalid-dicarbonsäure-(3.5) (S. 496) auf 240° (Thiele, Giese, B. 36, 843). — F: 283—284°.

2. Oxo-carbonsăuren $C_{10}H_8O_4$.

- 1. α Oxo ε [α furyl] β . δ pentadien α carbonsaure $C_{10}H_8O_4 = HC$ —CH

 . B. Durch Erhitzen von β -[α -Furyl]-acrolein (Bd. XVII, S. 305) und Brenztraubensaure mit Eisessig auf dem Wasserbad (Röhmer, B. 31, 285). Gelbliche Nadeln (aus verd. Alkohol).
- 2. 3-Oxo-isochroman-carbonsäure-(1), Lacton der o-Phenylen-essigsäure-glykolsäure $C_{10}H_{8}O_{4}=C_{6}H_{4}$ CH₃
 CH₃
 CH(CO₂H)· O

 B. Man versetzt ein Gemisch aus o-Phenylendiessigsäure und rotem Phosphor mit dem doppelten der ber. Menge Brom und zersetzt mit Wasser (SCHAD, B. 26, 223). Nadeln mit $1\frac{1}{4}H_{2}O$. Schmilzt wasserhaltig bei 85°, wasserfrei bei 140°. Sehr leicht löslich in Alkohol und Äther, ziemlich leicht in kaltem Wasser, schwer in Chloroform und Benzol. Ba(C₁₀H₇O₄)₈+4H₂O. Tafeln.

- 3. 1-Oxo-isochroman-carbonsäure-(3), 3.4-Dihydro-isocumarin-carbonsaure-(3) $C_{10}H_8O_4 = C_6H_4 < \begin{array}{c} CH_2 \cdot CH \cdot CO_2H \\ CO \cdot O \end{array}$ B. Entsteht neben 1.3-Dioxy-naphthalintetrahydrid-(1.2.3.4)(?) durch Behandeln von 1.2-Dihydro-naphthol-(2) mit sodaalkalischer Kaliumpermanganat-Lösung in der Kälte (Bamberger, Lodter, B. 26, 1841; A. 288, 107). Man behandelt Isocumarin-carbonsäure-(3) (S. 430) mit 3% jegem Natriumamalgam unter Einleiten von Kohlendioxyd und zeitweiligem Abstumpfen der Alkelität mit Schwefelsäure;
- die vom Quecksilber abgegossene Flüssigkeit wird angesäuert (B., L., B. 26, 1842; A. 288, 134). Nadeln (aus Benzol). F: 153,5°. Sehr leicht löslich in kochendem Wasser und Alkohol, schwerer in Äther, schwer in Benzol, fast unlöslich in Ligroin. — Wird von Jodwasserstoffsäure und Phosphor zu Hydrozimtsäure-o-carbonsäure reduziert. — AgC₁₀H₇O₄. Nadeln (aus Wasser).
- 4. 3-Oxo-6-methyl-cumaran-carbons"aure-(2), 6-Methyl-cumaranon-carbons"aure-(2) $C_{10}H_8O_4$, s. neben CH_3 . stehende Formel.
- **3-Oxo-6-methyl-thionaphthendihydrid-carbonsäure-(2)** $C_{10}H_aO_aS$, Formel I, ist desmotrop mit 3-Oxy-6-methyl-thionaphthen-carbonsäure-(2) (Formel II), S. 350.

$$I. \quad \underset{S}{\text{CH}_3} \cdot \underbrace{\begin{array}{c} co \\ \text{S} \\ \text{C} \cdot \text{CO}_2 H \end{array}} \qquad \qquad II. \quad \underset{CH_3}{\text{H}_3} \cdot \underbrace{\begin{array}{c} c \cdot \text{OH} \\ \text{S} \\ \text{C} \cdot \text{CO}_2 H \end{array}}$$

5. [Phthalidyl-(3)]-essigsäure C₁₀H₈O₄ = C₆H₄ CH(CH₂·CO₂H) O. B. Durch Behandeln von Acetophenon-2.ω-dicarbonsäure (Bd. X, S. 862) mit Natriumamalgam in alkal. Lösung und nachfolgendes Ansäuern mit Salzsäure (Gabriel, Michael, B. 10, 1558, 2200). Aus Zimtsäure-0-carbonsäure durch Erhitzen über den Schmelzpunkt (Ga., Mi., B. 10, 2203; Ehrlich, Benedikt, M. 9, 531), durch Kochen mit Essigsäureanhydrid und Natriumacetat (E., B., M. 9, 529), wahrscheinlich auch durch Einw. von konz. Schwefelsäure (Leupold, B. 34, 2834). — Krystalle mit 1 H₂O (aus Wasser), Nadeln (aus Benzol). F: 151,5° (Leu.), 150—151° (Ga., Mi., B. 10, 1558), 147—150° (E., B.). Leicht löslich in Alkohol und in heißem Wasser (Ga., Mi., B. 10, 1558). — Gibt mit Barytwasser das Bariumsalz der β-[2-Carboxy-phenyl]-hydracrylsäure (Bd. X, S. 516) (Ga., Mi., B. 10, 2202). Geht beim Abdampfen mit Alkalilauge in Zimtsäure-0-carbonsäure über (Ga., Mi., B. 10, 2203; Leu.). — AgC₁₀H₇O₄. Nadeln (Ga., Mi., B. 10, 1559). $AgC_{10}H_2O_4$. Nadeln (GA., MI., B. 10, 1559).

Äthylester $C_{12}H_{12}O_4=C_8H_5O_2\cdot CH_2\cdot CO_2\cdot C_2H_5$. Nadeln oder Tafeln (aus Alkohol) (Leupold, B. 34, 2835).

 $[\textbf{Phthalidyl-(3)]-dichloressigs\"{a}ure} \ C_{10}H_6O_4Cl_2 = C_0H_6\underbrace{CO_{2}CO_{2}H}_{CCl_3}\underbrace{CO_{2}H}_{O} O. \ \ \textit{B.} \ \ \text{Man}$ versetzt 1 Tl. mit Wasser angeriebenes 3-Chlor-naphthochinon-(1.2) mit 30 Tln. Chlorkalk-Lösung (4—4,5% HOCl enthaltend), der zweckmäßig etwas Salpetersäure zugesetzt ist, kühlt mit Wasser, läßt das Gemisch stehen, bis alles Chlornaphthochinon verschwunden ist, filtriert etwas 2.2-Dichlor-1.3-dioxo-hydrinden ab und fällt das Filtrat durch einen großen Überschuß von konz. Salzsäure; zur Reinigung stellt man das Natriumsalz dar (ZINCKE, SCHMIDT, B. 27, 738). — Tafeln mit 1 H₂O (aus Wasser); wasserfreie Nadeln (aus Benzol + Benzin) vom Schmelzpunkt 157°. Leicht löslich in heißem Wasser und den gebräuchlichen Lösungsmitteln außer in Benzin. — Gibt bei der Reduktion mit Jodwasserstoffsäure und rotem, Phosphor Hydrozimtsäure-o-carbonsäure. Bei Einw. von Barytwasser entsteht das Bariumsalz der [2-Carboxy-phenyl]-oxy-brenztraubensäure (Bd. X, S. 1021), das beim Behandeln mit Salzsäure Phthalid-oxalylsäure-(3) (S. 471) liefert. — Na C₁₀H₅O₄Cl₂. Körnig-kyrstellisische Nichten der Salzsäure Phthalid-oxalylsäure-(3) (S. 471) liefert. krystallinischer Niederschlag.

Methylester $C_{11}H_8O_4Cl_2 = C_8H_4$ $CH(CCl_2 \cdot CO_2 \cdot CH_3)$ O. B. Aus [Phthalidyl-(3)]-dichloresigsaure und Methylalkohol in Gegenwart von Chlorwasserstoff (ZINCKE, SCHMIDT, B. 27, 739). — Krystalle (aus Ather + Benzin). F: 77°.

[Phthalidyl-(3)]-bromessigsäure C₁₀H₇O₄Br = C₆H₄ CH(CHBr·CO₂H)>O. B. Bei 8-stdg. Kochen von α.β-Dibrom-hydrozimtsäure-o-carbonsäure mit Eisessig (LEUPOLD, B. 34, 2833). — Säulen (aus Alkohol). F: 189°. — Liefert beim Erhitzen mit Eisessig und Kaliumesstat erhölden Westellen (aus Alkohol). Kaliumacetat auf dem Wasserbad Phthalylessigsäure (S. 431).

[Phthalidyl-(3)]-chlorbromessigsäure $C_{10}H_6O_4ClBr = C_6H_4$ $CH(CClBr \cdot CO_9H) O$. B. Entsteht neben etwas 2-Chlor-2-brom-1.3-dioxo-hydrinden beim Versetzen von 1 Tl. mit Wasser fein zerriebenem 3-Brom-naphthochinon-(1.2) mit 24 Tln. einer 4—4,5°/ $_6$ HOCl enthaltenden Chlorkalk-Lösung, der etwas Salpetersäure zugesetzt ist; man filtriert nach einiger Zeit und fällt das Filtrat mit Salzsäure (ZINCKE, SCHMIDT, B. 27, 740). — Nadeln (aus Salpetersäure, D: 1,2). F: 175°. Schwer löslich in Chloroform und Benzin. — Bei Einw. von Barytwasser entsteht das Bariumsalz der [2-Carboxy-phenyl]-oxy-brenztraubensäure (Bd. X, S. 1021), das beim Behandeln mit Salzsäure Phthalid-oxalylsäure-(3) (S. 471) liefert.

6. 3-Oxo-1-methyl-phthalan-carbonsäure-(1), 3-Methyl-phthalid-carbonsäure-(3) $C_{10}H_8O_4$, s. nebenstehende Formel.

6-Brom-3-methyl-phthalid-carbonsäure-(3) C₁₀H₇O₄Br, s. nebenstehende Formel. B. Durch Einw. von Chlorkalk-Lösung auf 1.4.4-Trichlor-6-brom-2.3-dioxo-1-methyl-naphthalin-tetra-hydrid-(1.2.3.4) (Bd. VII, S. 705) und Ansäuern der Reaktionsflüssigkeit mit Salzsäure, neben 1.3.3-Trichlor-5-brom-1-methyl-hydrindon-(2) (FRIES, HEMPELMANN, B. 42, 3386). — Benzolhaltige Prismen (aus Benzol), die bei gewöhnlicher Temperatur das Krystallbenzol langsam verlieren und dann den Schmelzpunkt 132—135° zeigen. Leicht löslich in Alkohol, Äther und Chloroform, löslich in Benzol, schwer löslich in Benzin und Petroläther. — Spaltet beim Erhitzen über 180° Kohlendioxyd ab unter Bildung von 6-Brom-3-methyl-phthalid (Bd. XVII, S. 318).

3. Oxo-carbonsäuren C₁₁H₁₀O₄.

- 1. γ -Phenyl-butyrolacton- β -carbonsaure $C_{11}H_{10}O_4=\frac{H_2C-CH\cdot CO_2H}{OC\cdot O\cdot CH\cdot C_6H_5}$. Ist in zwei diastereoisomeren Formen bekannt.
 - a) γ -Phenyl-paraconsäure $C_{11}H_{10}O_4 = C_6H_5 \cdot C_4H_4O_2 \cdot CO_2H$.
- α) Rechtsdrehende Form $C_{11}H_{10}O_4 = C_6H_5 \cdot C_4H_4O_2 \cdot CO_2H$. B. Aus der inakt. γ-Phenyl-paraconsāure durch Spaltung mit Strychnin (Kreutz, A. 321, 130, 135; Fittig, Jehl., A. 380, 345). Nadeln (aus Wasser) mit $^1/_4$ H_2O ; beim Erhitzen entweicht das Wasser; die wasserfreie Säure krystallisiert aus absol. Äther in Tafeln (K.; F., J.). Rhombisch (bipyramidal?) (F., J., L. Kr. 42, 675; vgl. Groth, Ch. Kr. 4, 638). Die wasserfreie Säure schmilzt bei 134° (F., J.). Leicht löslich in Alkohol, Äther, Chloroform, heißem Wasser, heißem Benzol und heißem Toluol, unlöslich in Schwefelkohlenstoff und Petroläther (K.). [α]: +56,9° (in verdünntem, höchstens 50°/₀igem Alkohol; c = 16) (K.); [α]: +64,3° (in Alkohol; p = 9,3), +75,9° (in Eisessig; p = 5) (F., J.). Gibt bei der Destillation β-Benzal-propionsäure und α-Naphthol (K.). Natriumsalz. [α]_D: +57,4° (in Wasser; c = 1) (K.). AgC₁₁H₂O₄. Nādelchen (K.). Ca(C₁₁H₂O₄)₂. Nādelchen. Leicht löslich in Wasser (K.). Ba(C₁₁H₂O₄)₂ + 3 H₂O. Nadeln. Leicht löslich in Wasser (K.). Strychninsalz s. Syst. No. 4793.
- β) Linksdrehende Form $C_{11}H_{10}O_4 = C_6H_5 \cdot C_4H_4O_2 \cdot CO_2H$. B. Aus der inakt. γ-Phenyl-paraconsaure durch Spaltung mit Strychnin (Kreutz, A. 321, 130; Firtig, Jehl, A. 330, 345). Nadeln (aus Wasser) mit $^1/_4H_3O_5$ beim Erhitzen entweicht das Wasser; die wasserfreie Säure krystallisiert aus absol. Äther in Tafeln (K.; F., J.). Rhombisch (bipyramidal?) (F., J.; J., Z. Kr. 42, 675; vgl. Groth, Ch. Kr. 4, 638). Die wasserfreie Säure schmilzt bei 134° (F., J.). Leicht löslich in Alkohol, Äther, Chloroform, heißem Wasser, heißem Benzol und heißem Toluol, unlöslich in Schwefelkohlenstoff und Petroläther (K.). [α]_p: —59,3° (in verdünntem, höchstens 50°/2 igem Alkohol; c = 17) (K.); [α]_p: —65,3° (in Alkohol; p = 9), —76,3° (in Eisessig; p = 4) (F., J.). Liefert bei der Destillation β-Benzal-propionsaure und α-Naphthol (K.). Natriumsalz. [α]_p: —53,1° (inWasser; c = 6) (K.). AgC₁₁H₂O₄. Nädelnen. Ziemlich leicht löslich in warmem Wasser; lichtbeständig (K.). Ca(C₁₁H₂O₄)₂. Nadeln. Leicht löslich in Wasser (K.). Ba(C₁₁H₂O₄)₂ + 3H₂O. Nadeln. Leicht löslich in Wasser (K.). Strychninsalz s. Syst. No. 4793.
- γ) Inaktive Form $C_{11}H_{10}O_4 = C_8H_5 \cdot C_4H_4O_2 \cdot CO_2H$. B. Entsteht neben β-Benzal-propionsaure beim Erhitzen aquimolekularer Mengen von Benzaldehyd, bernsteinsaurem Natrium und Essigsaureanhydrid auf 125—130° (Fittig, Janne, A. 216, 100, 108). Bei der Reduktion von $\beta(\tilde{t})$ -Brom- und $\gamma(\tilde{t})$ -Brom- γ -phenyl-butyrolacton- β -carbonsaure mit Natrium-amalgam in essigsaurer Lösung (Fitt., Leoni, A. 256, 78, 80). Neben Iso-[γ -phenyl-paraconsaure] durch Einw. von Natriumamalgam auf x-Brom- γ -phenyl-butyrolacton- β -carbonsaure

vom Schmelzpunkt 147° in saurer Lösung oder in alkal. Lösung mit nachfolgendem Ansäuern (Fir., B. 83, 1294; Fir., Breslauer, A. 830, 328). — Nadeln mit 1/4H,0 (aus Wasser). Schmilzt wasserhaltig bei 99° (Fir., JA.), wasserfrei bei 121°, nach dem Erstarren bei 106°; berührt man aber die bei 106° geschmolzene Substanz mit einer Spur der bei 121° schmelzenden Säure, so erstarrt sie und zeigt wieder den Schmelzpunkt 121° (Fir., A. 255, 143). Die wasserfreie Säure ist monoklin prismatisch (domatisch?) (Frr., Jehl, A. 330, 349; Z. Kr. 42, 674; vgl. Groth, Ch. Kr. 4, 638). Die wasserhaltige Säure ist unlöslich in Schwefelkohlenstoff, wenig löslich in kaltem Wasser, sehr leicht in Alkohol, Ather und Chloroform (Fir., Ja.). Verbrennungswärme der wasserfreien Säure bei konstantem Volumen: 1195,9 kcal/mol (STOHMANN, Ph. Ch. 10, 420). Elektrolytische Dissoziationskonstante k bei 20°: 4,80×10-4 (Fit., Je.). γ-Phenyl-paraconsäure läßt sich mit Hilfe des Strychninsalzes in die optisch aktiven Komponenten spalten (Kreutz, A. 321, 130; Fit., Je.). — Zerfällt bei der Destillation in Kohlendioxyd, β-Benzal-propionsäure und γ-Phenyl-butyrolacton (Bd. XVII, S. 319) (Fit., Ja.); daneben entsteht in wechselnden Mengen α-Naphthol (Fit., Erdmann, A. 227, 242). Das Calciumsalz liefert beim Erhitzen auf 140° β -Benzal-propionsäure (Fir., Ja.). Beim Kochen von γ-Phenyl-paraconsäure mit Jodwasserstoffsäure (Kp: 127°) und rotem Phosphor entstehen Benzylbernsteinsäure und γ-Phenyl-buttersäure (Fir., Shields, A. 288, 207). Gibt beim Neutralisieren mit Calcium- oder Bariumcarbonat ihre eigenen Salze, beim Kochen mit Kalk- oder Barytwasser die Salze der γ-Phenyl-itamalsäure (Bd. X, S. 516) (Frr., Ja.). Liefert durch Kochen mit Natronlauge und nachfolgendes Ansäuern der Reaktionsflüssigkeit γ-Phenyl-itaconsäure (Bd. IX, S. 899) und Iso-[γ-phenyl-paraconsäure] (S. 422) (FICHTER, DREYFUS, B. 33, 1453). Löst sich unzersetzt in kalter konzentrierter Schwefelsäure; zersetzt sich beim Kochen mit verd. Schwefelsäure in Kohlendioxyd, γ-Phenyl-butyrolacton und Diphenyloctolactonsaure $O < \frac{CH(C_0H_5)}{CO-CH_2} > CH \cdot CH(C_0H_5) \cdot CH_2 \cdot CH_2 \cdot CO_2H$ (S. 443) (Erdmann, A. 228, 177; vgl. Fit., A. 334, 85, 121). — $AgC_{11}H_{2}O_{4}$. Flockiger Niederschlag (Fit., Ja.). — $Ca(C_{11}H_{2}O_{4})_{2} + 2H_{2}O$. Krystalle (aus Wasser). Leicht löslich in Wasser (Fit., Ja.). — $Ba(C_{11}H_{2}O_{4})_{2} + 3H_{2}O$. Krystalle. In Wasser leicht löslich (Fit., Ja.).

Athylester C₁₃H₁₄O₄ = C₆H₅·C₄H₄O₃·CO₂·C₂H₅. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung der γ-Phenyl-paraconsäure (Erdmann, B. 17, 416). Beim Kochen von γ-Phenyl-paraconsäure mit absol. Alkohol und Bortrioxyd (Brooke, Dissertation [Straßburg 1894], S. 13; vgl. Stobbe, A. 315, 237 Anm.). — Aromatisch riechendes Öl. Siedet unzersetzt weit über 360° (E.); Kp₅₁: 241—242° (St., A. 315, 237 Anm.); Kp₂₅: 224° (Br.), 250—252° (Fittig, Leoni, A. 256, 65). — Liefert durch Behandeln mit Natrium in wasserfreiem und alkoholfreiem Äther, Kochen des Reaktionsprodukts mit Natrolauge und Ansäuern der Flüssigkeit mit Salzsäure γ-Phenyl-itaconsäure (Bd. IX, S. 899) und wenig Diphenyloctolactonsäure (Fitt., L.). Durch Behandlung von γ-Phenyl-paraconsäure-äthylester mit Natriumäthylat in absol. Äther kann man reinen γ-Phenyl-itaconsäure-β-monoäthylester erhalten (St., B. 41, 4356; vgl. Fit., L.).

 γ -[2-Chlor-phenyl]-butyrolacton- β -carbonsäure, γ -[2-Chlor-phenyl]-paraconsäure $C_{11}H_{\bullet}O_{\bullet}Cl = C_{\bullet}H_{\bullet}Cl \cdot C_{\bullet}H_{\bullet}O_{\circ} \cdot CO_{\circ}H$. B. Bei 6-stündigem Erhitzen äquimolekularer Mengen von 2-Chlor-benzaldehyd, Bernsteinsäureanhydrid und wasserfreiem Kaliumacetat auf 120° (Евриани, Ківсінногг, A. 247, 369, 370). — Nadeln mit 1½ $H_{\bullet}O$ (aus Wasser). F: 146—147°. 100 Tle. siedendes Wasser lösen cs. 1,4 Tle. Säure; sehr schwer löslich in kaltem Wasser. — Zerfällt bei raschem Destillieren in Kohlendioxyd und 5-Chlor-naphthol-(1). — Silbersalz. Löslich in heißem Wasser. — Bariumsalz. Prismen.

 γ -[3-Chlor-phenyl]-butyrolacton- β -carbonsäure, γ -[3-Chlor-phenyl]-paraconsäure $C_{11}H_2O_4Cl=C_6H_4Cl\cdot C_4H_4O_2\cdot CO_2H$. B. Beim Erhitzen von 3-Chlor-benzaldehyd mit Bernsteinsäureanhydrid und wasserfreiem Kaliumacetat (E., K., A. 247, 369, 371). — Prismen (aus Wasser). F: 160—161°. 100 Tle. siedendes Wasser lösen ca. 1 Tl. Säure; sehr schwer löslich in kaltem Wasser. — Zerfällt bei raschem Destillieren in Kohlendioxyd und 6-Chlor-naphthol-(1).

 γ -[4-Chlor-phenyl]-butyrolacton- β -carbonsäure, γ -[4-Chlor-phenyl]-paraconsäure $C_{11}H_{\bullet}O_{\bullet}Cl = C_{\bullet}H_{\bullet}Cl \cdot C_{\bullet}H_{\bullet}O_{\bullet}\cdot CO_{\bullet}H$. B. Beim Erhitzen von 4-Chlor-benzaldehyd mit Bernsteinsäureanhydrid und wasserfreiem Kaliumacetat (E., K., A. 247, 369, 371). — Krystalle mit $^{1}/_{2}H_{\bullet}O$ (aus Wasser). F: 119—120°. 1 Tl. Säure löst sich bei 16° in 500 Tln., bei 100° in 100 Tln. Wasser. — Zerfällt bei raschem Destillieren in Kohlendioxyd und 7-Chlornaphthol-(1).

 γ -[3.4-Dichlor-phenyl]-butyrolacton- β -carbonsäure, γ -[2.4-Dichlor-phenyl]-paraconsäure $C_{11}H_2O_4Cl_2=C_4H_4O_3\cdot CO_2H$. B. Beim Erhitzen äquimolekularer Mengen von 2.4-Dichlor-benzaldehyd, Bernsteinsäureanhydrid und wasserfreiem Kaliumacetat auf 130—140° (Επρμάνη, Schwechten, A. 260, 74, 75). — Blättchen (aus Wasser). F: 164,5—165,5°. Löslich in ca. 140 Tln. heißem Wasser.

- γ -[2.5-Dichlor-phenyl]-butyrolacton- β -carbonsäure, γ -[2.5-Dichlor-phenyl]-paraconsäure $C_{11}H_2O_4Cl_2=C_4H_4Cl_2\cdot C_4H_4O_2\cdot CO_2H$. B. Beim Erhitzen äquimolekularer Mengen von 2.5-Dichlor-benzaldehyd, Bernsteinsäureanhydrid und wasserfreiem Kaliumacetat auf 130—140° (E., Sch., A. 260, 74, 75). Blättchen mit 1 H_2O (aus Wasser). F: 197—198°.
- γ -[3.4-Dichlor-phenyl]-butyrolacton- β -carbonsäure, γ -[3.4-Dichlor-phenyl]-paraconsäure $C_{11}H_4O_4Cl_2=C_6H_3Cl_2\cdot C_4H_4O_2\cdot CO_2H$. B. Beim Erhitzen äquimolekularer Mengen von 3.4-Dichlor-benzaldehyd, Bernsteinsäureanhydrid und wasserfreiem Kaliumacetat auf 130—140° (E., Sch., A. 260, 75, 76). Nadeln (aus Wasser). F: 136—137°.
- γ -[4-Brom-phenyl]-butyrolacton- β -carbonsäure, γ -[4-Brom-phenyl]-paraconsäure $C_{11}H_0O_4$ Br = C_4H_4 Br· $C_4H_4O_2$ · CO_2 H¹). B. Beim Schütteln von 1 Mol γ -Phenyl-paraconsäure in wäßr. Suspension mit 1 Mol Brom (Fittig, Leoni, A. 256, 86). Schuppen (aus Benzol), Nadeln (aus Ligroin). F: 141,5°. Sehr schwer löslich in Schwefelkohlenstoff, leicht in Alkohol, Chloroform, Ligroin und in heißem Benzol. Liefert bei der Reduktion mit Natriumamalgam γ -Phenyl-paraconsäure.
- $\begin{array}{l} \gamma [\mathbf{8}-\mathbf{Nitro-phenyl}] \mathrm{butyrolacton-}\beta \mathrm{carbons\"{a}ure} , \quad \gamma [\mathbf{8}-\mathbf{Nitro-phenyl}] \mathbf{paracons\"{a}ure} \\ C_{11}H_{9}O_{6}N = & \begin{array}{l} H_{2}C CH \cdot CO_{2}H \\ OC \cdot O \cdot CH \cdot C_{6}H_{4} \cdot NO_{2} \end{array} \\ & B. \ Bei \ 4 \text{-st\"{u}} n digem Erhitzen eines Gemisches \"{a}quimolekularer Mengen von 3-Nitro-benzaldehyd, Essigs\"{a}ureanhydrid und Natriumsuccinat auf 125° (Salomonson, B. 18, 2154; R. 6, 2). Krystallinische Masse (aus Wasser). F: 171°. \\ Verkohlt bei der Destillation. Leicht löslich in heißem Wasser, löslich in Alkohol und Eisessig, unlöslich in Benzol und Schwefelkohlenstoff. Unzersetzt löslich in konz. Schwefels\"{a}ure. \\ \ AgC_{11}H_{8}O_{6}N. \ Nadeln (aus Wasser). Cu(C_{11}H_{8}O_{6}N)_{2}. \ Hellblauer Niederschlag. Löslich in heißem Wasser. Pb(C_{11}H_{8}O_{6}N)_{2}. \ Nadeln (aus Wasser). \end{array}$

Methylester $C_{12}H_{11}O_6N=O_2N\cdot C_6H_4\cdot C_4H_4O_2\cdot CO_2\cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung von γ -[3-Nitro-phenyl]-butyrolacton- β -carbonsäure (S., R. 6, 13). — Bleibt bei —12° flüssig. Riecht pfefferminzartig. Löslich in Benzol, Äther und Chloroform.

Phenylhydrasid $C_{17}H_{18}O_5N_3=\frac{H_4C-CH\cdot CO\cdot NH\cdot NH\cdot C_6H_5}{OC\cdot O\cdot CH\cdot C_6H_4\cdot NO_2}$. B. Aus $\gamma\cdot [3\cdot Nitro-phenyl]$ -butyrolacton- β -carbonsaure durch Erhitzen mit Phenylhydrazin auf 130° (Salo-Monson, R. 6, 19). — F: 130—132° (Zers.).

 γ -[4-Nitro-phenyl]-butyrolacton- β -carbonsäure, γ -[4-Nitro-phenyl]-paraconsäure $C_{11}H_{\theta}O_{\epsilon}N=O_{2}N\cdot C_{\epsilon}H_{\epsilon}\cdot C_{\epsilon}H_{\epsilon}O_{2}\cdot CO_{2}H$. B. Durch 4-stündiges Erhitzen von 4-Nitrobenzaldehyd mit Natriumsuccinat und Essigsäureanhydrid auf 130° (Salomonson, B. 18, 2155; R. 6, 6). Beim Eintragen von γ -Phenyl-paraconsäure in eiskalte rauchende Salpetersäure (Erdmann, B. 18, 2742). — Blättchen. F: 155° (E.), 163° (S.). Unlöslich in Schwefelkohlenstoff, schwer löslich in Äther, Chloroform und Benzol, löslich in heißem Wasser, leicht löslich in Alkohol (E.). Wird von Kaliumpermanganat zu 4-Nitro-benzoesäure oxydiert (E.). — Cu($C_{11}H_{\delta}O_{\epsilon}N$)₂. Krystalle (aus Wasser) (S.). — Ag $C_{11}H_{\delta}O_{\epsilon}N$. Nadeln. Unlöslich in kaltem, leicht löslich in heißem Wasser (S.).

Methylester $C_{12}H_{11}O_6N=O_2N\cdot C_6H_4\cdot C_4H_4O_2\cdot CO_2\cdot CH_2$. B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung von γ -[4-Nitro-phenyl]-butyrolacton- β -carbonsäure (Salomonson, R. 6, 13). — Öl, das bei —12° noch nicht erstarrt. Riecht pfefferminzartig. Löslich in Benzol, Äther und Chloroform.

Äthylester $C_{12}H_{12}O_6N=O_2N\cdot C_6H_4\cdot C_4H_4O_2\cdot CO_2\cdot C_2H_6$. B. Beim Erhitzen von γ -[4-Nitro-phenyl]-butyrolacton- β -carbonsäure mit Alkohol und konz. Schwefelsäure (8., R. 6, 14). — Öl. Riecht pfefferminzartig. Löslich in Benzol, Äther und Chloroform.

- b) Iso-[γ -phenyl-paraconsāure] $C_{11}H_{10}O_4 = C_6H_5 \cdot C_4H_4O_3 \cdot CO_3H$.
- α) Rechtsdrehende Form $C_{11}H_{10}O_4 = C_4H_5 \cdot C_4H_4O_3 \cdot CO_3H$. B. Aus der inakt. Iso-[γ-phenyl-paraconsaure] durch Spaltung mit Strychnin (Fittig, Jehl, A. 330, 338). Wasserfreie Krystalle (aus Wasser oder Äther). Rhombisch (bipyramidal?) (Fit., J.; J., Z. Kr. 42, 674; vgl. Groth, Ch. Kr. 4, 639). F: 182° (Fit., J.). [α] $_5^6$: +14,7° (in Alkohol; p=8), —7,0° (in Eisessig; p=5) (Fit., J.). Strychninsalz s. Syst. No. 4793.
- β) Linksdrehende Form $C_{11}H_{10}O_4 = C_6H_5 \cdot C_4H_4O_4 \cdot CO_2H$. B. Aus der inakt. Iso-[γ-phenyl-paraconsāure] durch Spaltung mit Strychnin (Fritte, Jehl, A. 330, 338). Wasserfreie Krystalle (aus Wasser oder Ather). Rhombisch (bipyramidal?) (Fr., J.; J.,

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Haudbuchs [1. I. 1910] erschienenen Arbeit von Fuson, Am. Soc. 47, 517.

- Z. Kr. 42, 674; vgl. Groth, Ch. Kr. 4, 639). F: 182° (Fig., J.). $[\alpha]_{0}^{\infty}$: $-14,5^{\circ}$ (in Alkohol; p=7), $+7,3^{\circ}$ (in Eisessig; p=3) (Fig., J.). Strychninsalz s. Syst. No. 4793.
- γ) Inaktive Form $C_{11}H_{10}O_4 = C_6H_5 \cdot C_4H_4O_2 \cdot CO_2H$. B. Neben γ-Phenyl-paraconsăure durch Einw. von Natriumamalgam auf x-Brom-γ-phenyl-butyrolacton-β-carbonsăure vom Schmelzpunkt 147° (s. u.) in saurer Lösung oder in alkal. Lösung mit nachfolgendem Ansäuern (FITTIG, B. 33, 1294; FTT., Breslauer, A. 330, 328). Neben γ-Phenyl-itaconsăure beim Kochen von γ-Phenyl-paraconsăure mit $20^9/_{0i}$ ger Natronlauge (FICHTER, Dreyfus, B. 33, 1453). Tafeln (aus heißem Wasser, Äther oder Äther-Ligroin). Monoklin prismatisch (FITTIG, Jehl., A. 330, 342; Jehl., Z. Kr. 42, 673; vgl. Groth, Ch. Kr. 4, 639). F: 168° (FICH., D.), 168—170° (FIT., B.). Unlöslich in Chloroform, Ligroin, Benzol und Schwefelkohlenstoff, sehr schwer löslich in kaltem Äther, leichter in Alkohol (FIT., B.). Elektrolytische Dissoziationskonstante k bei 20^9 : 4,04×10-4 (FIT., J.). Iso-[γ-phenyl-paraconsäure] läßt sich mit Hilfe des Strychninsalzes in ihre optisch aktiven Komponenten spalten (FIT., J.). Geht beim Erhitzen über den Schmelzpunkt teilweise in γ-Phenyl-paraconsäure über und liefert daher bei der trocknen Destillation neben etwas unzersetzt destillierender Iso-[γ-phenyl-paraconsäure] α-Naphthol, β-Benzal-propionsäure und γ-Phenyl-butyrolacton (Bd. XVII, S. 319) (FIT., J.). Beim Kochen mit Salzsäure erhält man γ-Phenyl-paraconsäure, β-Benzal-propionsäure und γ-Phenyl-butyrolacton (FIT., J.). Geht durch Kochen mit Natronlauge und Ansäuern der Reaktionsflüssigkeit teilweise in γ-Phenyl-paraconsäure über; daneben entsteht etwas γ-Phenyl-itaconsäure (FIT., J.). Ba($C_{11}H_{10}O_{12}$. Leicht lösliche krystallinische Masse (FIT., B.).
- c) Substitutionsprodukte der γ -Phenyl-butyrolacton- β -carbonsäure $C_{11}H_{10}O_4=C_4H_5\cdot C_4H_4O_3\cdot CO_2H$, von denen nicht feststeht, ob sie sterisch zur γ -Phenyl-paraconsäure oder Iso-[γ -phenyl-paraconsäure] gehören.
- $\gamma(?)$ Brom γ phenyl butyrolacton β carbonsäure $C_{11}H_9O_4Br = H_1C CH \cdot CO_2H$ $O^1_c \cdot O \cdot CBr \cdot C_2H_5$ (?) ¹). B. Entsteht neben $\beta(?)$ -Brom- γ -phenyl-butyrolacton- β -carbonsäure (s. u.) bei tropfenweisem Zusatz von Brom zu einer wäßr. Suspension von fein verteilter γ -Phenyl-itaconsäure (Bd. IX, S. 899); man trennt die beiden Säuren durch fraktionierte Krystallisation aus Chloroform (Fittig, A. 256, 52; F., Leoni, A. 256, 76). Prismen (aus Chloroform). Rhombisch (Linck, A. 256, 78; Z. Kr. 15, 29; vgl. Groth, Ch. Kr. 4, 639). F: 99° (F., Le.). Leicht löslich in Äther und in heißem Benzol, schwer in Ligroin, unlöslich in Schwefelkohlenstoff (F., Le.). Liefert bei der Reduktion in kalter essigsaurer Lösung mit Natriumamalgam γ -Phenyl-paraconsäure (F., Le.). Beim Behandeln mit Sodalösung oder beim Kochen mit Wasser entsteht β -Benzoyl-propionsäure (F., Le.).
- β(P) Brom γ phenyl butyrolacton β carbonsäure $C_{11}H_0O_4Br = H_2C$ — $CBr \cdot CO_2H$ $OC \cdot O \cdot CH \cdot C_6H_5$ (?). B. s. im vorangehenden Artikel. Tafeln (aus Chloroform). Rhombisch bipyramidal (Linck, A. 256, 79; Z. Kr. 15, 30; vgl. Groth, Ch. Kr. 4, 639). F: 144° (Zers.) (Fittig, Leoni, A. 256, 80). Liefert bei der Reduktion in kalter essigsaurer Lösung mit Natriumamalgam γ-Phenyl-paraconsäure (F., Le.). Beim Kochen mit Wasser entsteht β-Benzoyl-propionsäure (F., Le.).
- **x-Brom** -γ-phenyl-butyrolacton -β-carbonsäure, "Phenylbromisoparaconsäure" $C_{11}H_2O_4Br = C_{10}H_3O_5Br \cdot CO_3H$. B. Bei der Einw. von Brom auf "Phenylaticonsäure" (Bd. IX, S. 900) in Äther-Chloroform-Lösung im zerstreuten Tageslicht oder rascher und glatter in wäßr. Suspension (Fittig, B. 33, 1294; A. 305, 39 Anm.; F., Breslauer, A. 330, 325). Nadeln (aus Chloroform). F: 147° (F., A. 305, 40; F., B.). Sehr leicht löslich in Äther, leicht in Benzol und Chloroform, unlöslich in Schwefelkohlenstoff und Ligroin (F., B.). Durch Einw. von Natriumamalgam in saurer Lösung oder in alkal. Lösung mit nachfolgendem Ansäuern entstehen γ-Phenyl-paraconsäure und Iso-[γ-phenyl-paraconsäure] (F., B. 33, 1294). Liefert beim Kochen mit Wasser oder beim Stehenlassen mit überschüssiger Natronlauge β-Benzoyl-propionsäure (F., B.).
- 2. γ -Phenyl-butyrolacton- α -carbonsäure $C_{11}H_{10}O_4 = HO_2C \cdot HC CH_2$ $OC \cdot O \cdot CH \cdot C_6H_6$ B. Durch Reduktion von Phenacylmalonsäure (Bd. X, S. 865) mit Natriumamalgam in neutraler Lösung und Ansäuern der Reaktionsflüssigkeit (Bougault, C. r. 146, 937; A. ch.

¹⁾ Vgl. hierzu die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von Haerdi, Thorpe, Soc. 127, 1247.

[8] 15, 507). Bei der Verseifung des entsprechenden Nitrils mit siedender 10% jer Salzsäure (B.). — F: 106°. Sehr schwer löslich in kaltem Wasser, schwer in Äther und Benzol, leicht in Alkohol.

 $\label{eq:Nitril} \text{Nitril, } \gamma\text{-Phenyl-}\alpha\text{-cyan-butyrolacton } C_{11}H_{\mathfrak{z}}O_{\mathfrak{z}}N = \frac{NC \cdot HC - CH_{\mathfrak{z}}}{OC \cdot O \cdot CH \cdot C_{\mathfrak{z}}H_{\mathfrak{z}}}. \quad \text{Die im}$

folgenden beschriebenen Präparate könnten stereoisomer sein.

a) Präparat von Bougault. B. Durch Reduktion von Phenacylcyanessigsäure (Bd. X, S. 865) mit Natriumamalgam in neutraler Lösung und Ansäuern der Reaktionsflüssigkeit (Bougault, C. r. 146, 937; A. ch. [8] 15, 505). — F: 132°. Unlöslich in Wasser, schwer löslich in Äther und Benzol, leicht in Alkohol; unlöslich in kalten Alkalicarbonat-Lösungen. — Wird durch siedende 10°/oige Salzsäure zu y-Phenyl-butyrolacton-a-carbonsäure verseift.

b) Prāparat von Haworth. B. Man digeriert Styrylcyanessigsäure-äthylester (Bd. IX, S. 901) einige Minuten mit methylalkoholischer Kalilauge, verdünnt mit Wasser und säuert die Lösung an (Haworth, Soc. 95, 483). — Prismen (aus verd. Methylalkohol). F: ca. 90°. Leicht löslich in Methylalkohol, Alkohol und Benzol, schwer in Petroläther. Die Lösung in konz. Schwefelsäure ist rot.

3. x - Oxo - 2.x - dimethyl - cumaron - dihydrid - (x.x) - carbonsäure - (3) $C_{11}H_{10}O_4 = CH_3 \cdot C_6H_3(:0) \underbrace{C(CO_2H)}_{O} C \cdot CH_3.$

x.x.x-Trichlor-x-oxo-2.x-dimethyl-cumaron-dihydrid-(x.x)-carbonsäure-(3)-äthylester, ,,Trichloroxydimethylisocumarilsäureäthylester" $C_{18}H_{11}O_4Cl_2 = CH_3 \cdot C_6Cl_3(:0) \xrightarrow{C_2H_5} C \cdot CH_2$. B. Beim Einleiten von 3 Mol Chlor in die äther. Lösung von 1 Mol x-Oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester (S. 350) (Graebe, Levy, A. 283, 258, 260). — Gelbe Prismen (aus Ligroin). F: 103°. — Beim Erwärmen der alkoh. Lösung mit Zinn und Salzsäure, mit Hydroxylamin oder mit Phenylhydrazin entsteht x.x-Dichlor-x-oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester (S. 351). Liefert beim Koohen mit Eisessig und Salpetersäure (D: 1,4) x-Chlor-x.x-dioxo-2.x-dimethyl-cumaron-dihydrid-(x.x)-carbonsäure-(3)-äthylester (S. 474).

x.x.x-Tribrom-x-oxo-2.x-dimethyl-cumaron-dihydrid-(x.x)-carbonsäure-(3)-äthylester, "Tribromoxydimethylisocumarilsäureäthylester" $C_{13}H_{11}O_4Br_3=CH_3\cdot C_6Br_3(:O) \xrightarrow{C(CO_3\cdot C_2H_5)} C\cdot CH_3$. B. Bei Zusatz von überschüssigem Brom zu einer kochenden Lösung von x-Oxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester (S. 350) in Chloroform (Graebe, Levy, A. 283, 258). — F: 145°. Schwer löslich in Alkohol.

- β-[Phthalidyl-(3)]-propionsäure C₁₁H₁₀O₄ = C₆H₄ CH(CH₂ · CH₃ · CO₂H) O.
 B. Durch Reduktion des Dilactons der γ.γ-Dioxy-γ-[2-carboxy-phenyl]-buttersäure (Bd. X, S. 867) mit Natriumamalgam in alkal. Lösung und Ansäuern mit Salzsäure (Roser, B. 17, 2773). Blätter (aus Wasser). F: 121°. Leicht löslich in Alkohol, Äther und in heißem Wasser. AgC₁₁H₂O₄. Ziemlich löslich in kaltem Wasser. Calciumsalz. Amorph. Sehr leicht löslich in Wasser. Bariumsalz. Amorph. Sehr leicht löslich in Wasser.
- 5. α -[Phthalidyl-(3)]-propionsäure $C_{11}H_{10}O_4 = C_6H_4$ CH[CH(CH₂)·CO₃H]-O. B. Durch Behandeln von α -Phthalyl-propionsäure mit 2°/oigem Natriumamin alkal. Lösung und Ansäuern der Lösung (Gabriel, Michael, B. 11, 1681). Nadeln (aus schwachem Alkohol). Erweicht bei 135° und schmilzt bei 140°. Wenig löslich in kaltem, löslich in heißem Wasser, leicht löslich in den gewöhnlichen Lösungsmitteln. AgC₁₁H₉O₄. Körnig-krystallinische Fällung. Ba(C₁₁H₉O₄)₂.
- 6. 3-Oxo-1.1-dimethyl-phthalan-carbonsäure-(5), HO₂C CO
 3.3-Dimethyl-phthalid-carbonsäure-(6), Cannabino-lactonsäure C_{II}H_{I0}O₄, s. nebenstehende Formel. B. Aus 1.5-Diäthyl-2-isopropyl-benzol durch Oxydation mit Chromschwefelsäure (Cannizzaro, Gucci, G. 23 I, 291; Francesconi, Venditti, G. 32 I, 309). Durch Oxydation von 3.3.6-Trimethyl-phthalid (Bd. XVII, S. 324) in alkal. Lösung mit Permanganat und Ansäuern der Lösung mit Salzsäure (Wood, Spivey, Eastenfield, Soc. 75, 34). Aus den 3 Formen der Dehydrophotosantonsäure (Bd. IX, S. 890) durch Oxydation mit Chromschwefelsäure (C., G.; F., V.). Nadeln (aus heißem Wasser). F: 203° (W., S., E.), 205° bis 206° (C., G.; F., V.). Löslich in 85 Tln. siedendem, schwer löslich in kaltem Wasser, leicht

in Alkohol (W., S., E.). — Beim Erhitzen mit Jodwasserstoffsäure, Jod und rotem Phosphor im Einschlußrohr auf 180—190° entsteht 4-Isopropyl-isophthalsäure (W., S., E.; F., V.) 1). Zerfällt beim Erhitzen mit Kaliumhydroxyd auf 200—270° in Aceton und Isophthalsäure (C., G.; vgl. W., S., E.). Liefert bei der trocknen Destillation mit Baryt Benzol (C., G.; F., V.). — $KC_{11}H_9O_4$ (W., S., E.). — $AgC_{11}H_9O_4$ (W., S., E.).

Äthylester $C_{13}H_{14}O_4 = C_3H_5 \cdot O_3C \cdot C_0H_3 \underbrace{CO}_{C(CH_3)_2}O$. B. Beim Kochen von 3.3-Dimethyl-phthalid-carbonsäure-(6) mit einer 3°/oigen Lösung von Chlorwasserstoff in absol. Alkohol (Wood, Spivey, Easterfield, Soc. 75, 34). — Prismen. F: 105° (W., S., E.), 105° bis 106° (Cannizzaro, Guodi, G. 23 I, 292; Francesconi, Venditti, G. 32 I, 309).

5-Nitro-3.3-dimethyl-phthalid-carbonsäure-(6), Nitro-cannabinolactonsäure $C_{11}H_{2}O_{6}N$, s. nebenstehende Formel. B. Beim Erhitzen von 5-Nitro-3.3.6-trimethyl-phthalid (Bd. XVII, S. 324) mit 25% giger Salpetersäure auf 185%, neben 5-Nitro-trimellitsäure (s. im Artikel 5-Nitro-3.3.6-trimethyl-phthalid) (Wood, Spivey, Easterspield, Soc. 75, 31). Bei der Oxydation von 5-Nitro-3.3.6-trimethyl-phthalid mit Kaliumpermanganat in der Kälte (W., S., E.).—Krystallinisch. F: 229—230%. Schwer löslich in Wasser.—AgC₁₁H₈O₆N.

4. Oxo-carbonsäuren $C_{12}H_{12}O_4$.

- 1. δ -Phenyl- δ -valerolacton- γ -carbonsäure $C_{12}H_{12}O_4=\frac{H_2C\cdot CH_2\cdot CH\cdot CO_2H}{OC-O-CH\cdot C_0H_5}$. B. Man reduziert α -Benzoyl-glutarsäure-diäthylester (Bd. X, S. 868) mit Natriumamalgam in wäßrig-alkoholischer Lösung und erhitzt die entstandene (nicht in reinem Zustand erhaltene) α -[α -Oxy-benzyl]-glutarsäure auf 125° (FICHTER, BAUER, B. 31, 2001). Drusen (aus Äther + Petroläther). F: 161°. Bei der Destillation entstehen neben öligen indifferenten Produkten Cinnamylessigsäure und α -Benzal-glutarsäure. Liefert beim Kochen mit Wasser Cinnamylessigsäure.
- 2. γ -Benzyl-butyrolacton- β -carbonsäure, δ -Phenyl- γ -valerolacton- β -carbonsäure, γ -Benzyl-paraconsäure $C_{12}H_{12}O_4 = H_2C$ — $CH \cdot CO_2H$ $OC \cdot O \cdot CH \cdot CH_2 \cdot C_6H_5$. B. Durch Einwirkung von Eisessig-Bromwasserstoff auf Styrylbernsteinsäure bei Wasserbadtemperatur, Verdünnen des Reaktionsprodukts mit Wasser und Aufkochen der Lösung (Thiele, Meisenheimere, A. 306, 256). Prismen oder Körner (aus Äther und Schwefelkohlenstoff). F: 93°. Leicht löslich in Alkohol, Äther und warmem Wasser, schwer in Benzol, unlöslich in Petroläther und Schwefelkohlenstoff.
- 3. 1 Methyl 3 [α furyl] cyclohexen (6) on (5) carbonsaure (2) $C_{12}H_{12}O_4 = HC CH$ HC CH $CH_1 CO$ Athylester $C_{14}H_{14}O_4 = OC_4H_3 \cdot HC < CH(CO_3 \cdot C_2H_5) \cdot C(CH_3) > CH$. Zur Konstitution

Äthylester $C_{14}H_{16}O_4 = OC_4H_8 \cdot HC < \frac{CH(CO_2 \cdot C_2H_5) \cdot C(CH_3)}{CO} > CH$. Zur Konstitution vgl. Merling, B. 38, 982. — B. Entsteht, wenn man ein Gemisch aus 1 Mol Furfurol 2 Mol Acetessigester und etwas Piperidin, nachdem es fest geworden ist, längere Zeit stehen läßt, ohne das Piperidin zu entfernen; das flüssig gewordene Produkt wird nach Neutralisation der Base mit Wasser ausgewaschen und im Vakuum destilliert (Knorvenagel, A. 303, 246). — Krystalle (aus Ligroin). F: 72°; Kp₈: 194° (K.). Färbt sich nicht in alkoh. Lösung mit Eisenchlorid (K.).

Oxim des Äthylesters $C_{14}H_{17}O_4N = OC_4H_3 \cdot HC < \frac{CH(CO_2 \cdot C_2H_5) \cdot C(CH_3)}{CH_3} \cdot C(:N \cdot OH)$ CH. B. Aus dem Äthylester durch Einw. von salzsaurem Hydroxylamin und Soda in wäßrig-alkoholischer Lösung (Knoevenagel, A. 303, 246). — Krystalle (aus Äther + Alkohol). F: 110—112°. Löslich in Alkohol, Benzol und Chloroform, unlöslich in Äther und Ligroin.

4. γ -Phenyl-butyrolacion- β -essigsäure $C_{12}H_{12}O_4 = H_2C$ — $CH \cdot CH_2 \cdot CO_2H$ $OC \cdot O \cdot CH \cdot C_2H_5$ B. Durch Reduktion des Dilactons der β -[α . α -Dioxy-benzyl]-glutarsäure (Bd. X, S. 868) mit

¹⁾ Die von Wood, Spiver, Easterfield (Soc. 75, 36) als 3-Carboxy-phenylbuttersäure (Bd. IX, S. 883) beschriebene Verbindung dürfte nach Bergel, Vögele (A. 493, 254) unreine 4-Isopropyl-isophthalsäure gewesen sein.

Natriumamalgam in schwach alkalisch gehaltener Lösung und nachfolgendes Ansäuern mit Salzsäure (FITTIG, SALOMON, A. 314, 65). — Prismen (aus Wasser). F: 114°. Schwer löslich in heißem Wasser und in Äther, fast unlöslich in Schwefelkohlenstoff. — Bei der Destillation entstehen geringe Mengen von β -Benzal-buttersäure und 3-Methyl-naphthol-(1). Gibt beim Kochen mit Kalkwasser oder Barytwasser die Salze der β -[α -Oxy-benzyl]-glutarsäure (Bd. X, S. 518). — $AgC_{12}H_{11}O_4$. Niederschlag. In heißem Wasser ziemlich leicht löslich. — $Ca(C_{12}H_{11}O_4)_2$. Säulen. — $Ca(C_{12}H_{11}O_4)_2 + 2H_2O$. Prismen. — $Ba(C_{12}H_{11}O_4)_2 + 3H_2O$. Prismen.

- 5. β -Phenyl-butyrolacton- α -essigsäure $C_{13}H_{13}O_4 = \frac{C_6H_5 \cdot HC CH \cdot CH_3 \cdot CO_8H}{H_3C \cdot O \cdot CO}$
- β Brom β phenyl butyrolacton α essignature $C_{12}H_{11}O_4Br = C_6H_5 \cdot BrC CH \cdot CH_2 \cdot CO_4H$ By Durch First was Brom and a Phenyl of the phenyl o
- H_2^{\bullet} : OCO Brown auf γ -Phenyl- γ -methylen-brenz-weinsäure (Bd. IX, S. 908) in Chloroform (Stobbe, A. 308, 149). Prismen (aus Benzol). F: 177° (schwache Zersetzung; sintert häufig vor dem Schmelzen bei ca. 100°). Wird durch kaltes Wasser langsam, durch siedendes Wasser rasch in das Dilacton der γ -Oxy- γ -oxymethyl- γ -phenyl-brenzweinsäure (Syst. No. 2764) übergeführt.
- 6. γ -Methyl- γ -phenyl-butyrolacton- β -carbonsäure, γ -Phenyl- γ -valerolacton- β -carbonsäure, γ -Methyl- γ -phenyl-paraconsäure $C_{12}H_{12}O_4=H_2C-CH\cdot CO_2H$ Infolge des Vorhandenseins zweier asymmetrischer Kohlenstoffatome Sind zwei diastereoissomere Reihen möglich. Bekannt ist nur die unter a) aufgeführte γ -Methyl- γ -phenyl-paraconsäure. Ungewiß ist, welches von den beiden unter b) aufgeführten Substitutionsderivaten ihr sterisch entspricht.
- tutionsderivaten in secrisch enesprend.

 a) γ -Methyl- γ -phenyl-paraconsäure $C_{12}H_{12}O_4=\frac{H_2C_--CH\cdot CO_2H}{OC\cdot O\cdot C(CH_2)\cdot C_6H_5}$. B. Aus γ -Methyl- γ -phenyl-itaconsäure (Bd. IX, S. 906) bei 1—2-tägigem Stehenlassen mit höchst konzentrierter Bromwasserstoffsäure oder bei 1-stdg. Erwärmen mit Salzsäure (D: 1,15) auf dem Wasserbad (Stobbe, A. 282, 294, 295). Durch Reduktion der β -Brom- γ -methyl- γ -phenyl-paraconsäure vom Schmelzpunkt 161° (s. u.) oder von γ -Methyl- γ -phenyl- $\Delta^{\alpha,\beta}$ -crotonlacton- β -carbonsäure (S. 434) mit Natriumamalgam und nachfolgendes Ansäuern der Lösung (St.). Prismen (aus Benzol). F: 123—124°. Ag $C_{12}H_{11}O_4$. Amorph. Leicht löslich in Wasser. Ca $(C_{12}H_{11}O_4)_2$. Flocken. Sehr schwer löslich in Alkohol.
- b) Substitutions derivate von γ -Methyl- γ -phenyl-paracons duren $C_{12}H_{12}O_4=H_1C-CH\cdot CO_2H$ of \cdot O \cdot
- β-Brom-γ-methyl-γ-phenyl-paraconsäure vom Schmelspunkt 161° $C_{12}H_{11}O_4Br = H_2C$ — $CBr\cdot CO_2H$ $OC\cdot O\cdot C(CH_3)\cdot C_6H_5$ B. Man trägt ein Gemenge von 2,2 g Brom und 2 g Wasser in 3 g gepulverte, mit 5 g Wasser übergossene γ-Methyl-γ-phenyl-itaconsäure (Bd. IX, S. 906) ein und läßt 12 Stdn. stehen (Stobbe, A. 282, 296). Nadeln (aus Benzol). Rhombisch (Reinnisch, A. 308, 129). F: 161° (Zers.) (St., A. 308, 129). Sehr leicht löslich in Äther, Alkohol, Chloroform und Aceton, schwer in Schwefelkohlenstoff (St., A. 282, 297). Beim Kochen mit Wasser entsteht γ-Methyl-γ-phenyl- $\mathcal{A}^{\alpha,\beta}$ -crotonlacton- β -carbonsäure (St., A. 282, 298).
- β-Brom-γ-methyl-γ-phenyl-paraconsäure vom Schmelspunkt 129° $C_{12}H_{11}O_4Br = H_aC$ — $CBr \cdot CO_2H$ $OC \cdot O \cdot C(CH_4) \cdot C_4H_5$ B. Durch Einw. von 1,8 g Brom auf 2,5 g Iso-[γ-methyl-γ-phenyl-itaconsäure] (Bd. IX, S. 907) bei Gegenwart von 3 g Wasser (Stobbe, A. 308, 139). Krystalle (aus Chloroform) mit 1 Mol Chloroform, das schon bei gewöhnlicher Temperatur langsam abgegeben wird. Schmilzt bei 129° und zersetzt sich bei 147°. Leicht löslich in Äther und Alkohol, schwer in Petroläther. Geht beim Erwärmen mit Wasser in γ-Methyl-γ-phenyl- $\Delta^{\alpha,\beta}$ -crotonlacton- β -carbonsäure (S. 434) über.

Äthylester der β -Brom- γ -methyl- γ -phenyl-paraconsäure vom Schmelspunkt 129° $C_{14}H_{16}O_4$ Br = $C_4H_5\cdot C_4H_2O_4$ Br($CH_3\cdot CO_2\cdot C_4H_5$. B. Durch Einw. von Brom auf den β -Äthylester der Iso- $[\gamma$ -methyl- γ -phenyl-itaconsäure] (Bd. IX, S. 907) bei Gegenwart von Wasser (St., A. 308, 143). — Krystalle (aus Petroläther). F: 103—104°. — Schmilzt unter Wasser zu einem farblosen Öl, wird dabei aber nur wenig zersetzt. Liefert durch Behandlung mit verd.

Krusten.

Natronlauge und nachfolgendes Ansäuern der Lösung γ -Methyl- γ -phenyl- $\Delta^{\alpha,\beta}$ -crotonlacton- β -carbonsäure.

- 7. β -Methyl- γ -phenyl-butyrolacton- β -carbonsäure, β -Methyl- γ -phenyl-paraconsäure $C_{12}H_{12}O_4 = \frac{H_2C-C(CH_3)\cdot CO_2H}{OC\cdot O\cdot CH\cdot C_6H_5}$. Existiert in zwei stereoisomeren Formen.
- a) Niedrigerschmelzende β -Methyl- γ -phenyl-paraconsäure $C_{12}H_{12}O_4=H_2C-C(CH_3)\cdot CO_2H$ $OC\cdot O\cdot CH\cdot C_6H_5$ B. Entsteht neben dem höherschmelzenden Stereoisomeren bei 20-stdg. Erhitzen äquimolekularer Mengen von brenzweinsaurem Natrium, Benzaldehyd und Essigsäureanhydrid auf 100° (FITTIG, LIEBMANN, A. 255, 257; vgl. F., Penfield, A. 216, 119). Nadeln und Blätter (aus Wasser), Tafeln (aus verd. Alkohol). Monoklin prismatisch (Goller, A. 255, 265; Z. Kr. 15, 37; vgl. Groth, Ch. Kr. 4, 652). F: 124,5° (F., L.). In Wasser etwas schwerer, in verd. Alkohol leichter löslich als das höherschmelzende Stereoisomere (F., L.). Zerfällt bei der Destillation teilweise in β -Methyl- α -phenyl- α -propylen, β -Benzal-buttersäure, 3-Methyl-naphthol-(1) und wenig Benzaldehyd (F., L.). Liefert mit bei 0° gesättigter Bromwasserstoffsäure α -Methyl- α -[α -brom-benzyl]-bernsteinsäure (F., L.). Gibt beim Kochen mit Kalkwasser oder Barytwasser die Salze der β -Methyl- γ -phenyl-itamalsäure (Bd. X, S. 518) (F., L.). AgC₁₂H₁₁O₄. Krystalle (aus heißem Wasser) (F., L.). Ca(C₁₂H₁₁O₄)₂ + 2 H₂O. Nädelchen (aus heißem Wasser). Leicht löslich in Wasser (F., L.). Ba(C₁₃H₁₁O₄)₂. Krystalle (F., L.).
- b) Höherschmelzende β Methyl γ phenyl paraconsäure $C_{12}H_{12}O_4=H_2C-C(CH_3)\cdot CO_2H$. B. s. im vorangehenden Artikel. Blätter (aus Wasser), Krystalle OC·O·CH·C₆H₅ (aus verd. Alkohol). Monoklin prismatisch (Goller, A. 255, 259; Z. Kr. 15, 38; vgl. Groth, Ch. Kr. 4, 651). F: 177° (Fittig, Penfield, A. 216, 121; F., Liebmann, A. 255, 259). Schwer löslich in kaltem Wasser, leicht in Alkohol, Äther und siedendem Wasser (F., P.). Liefert bei der Destillation dieselben Produkte wie das niedrigerschmelzende Stereoisomere (F., Lie.; vgl. Klinckhard, A. 379 [1911], 363, 366; Lesser, A. 402 [1914], 8). AgC₁₂H₁₁O₄. Krystalle. Ziemlich löslich in Wasser (F., P.; F., Lie.). Ca(C₁₂H₁₁O₄)₂ + H₂O. Krystalle. Ziemlich löslich in Wasser (F., Lie.). Ba(C₁₂H₁₁O₄)₂ + H₂O. Krystalle. Ziemlich löslich in Wasser (F., Lie.).
- 8. γ Methyl- α phenyl- butyrolacton- β -carbonsäure, α Phenyl- γ -valerolacton- β carbonsäure, γ Methyl- α phenyl- paraconsäure $C_{12}H_{12}O_4=C_6H_5\cdot HC$ —CH·CO₂H
 OC·O·CH·CH₃
 B. Man behandelt α -Phenyl- α -acetyl-bernsteinsäure-diäthylester (Bd. X, S. 869) mit Natriumamalgam in schwach alkalisch gehaltener Lösung und fällt mit Salzsäure (Weltner, B. 18, 791). Liefert beim Kochen mit Alkalien oder Erdalkalien Salze der γ -Methyl- α -phenyl-itamalsäure (Bd. X, S. 518). Ca(C₁₂H₁₁O₄)₂. Krystallinische
- 9. 3-Oxo-2-isopropyl-cumaran-carbonsäure-(2), 2-Isopropyl-cumaranon-carbonsäure-(2) $C_{12}H_{12}O_4 = C_6H_4 < \stackrel{CO}{\bigcirc} C < \stackrel{CH(CH_3)_2}{\bigcirc} C_{02}H$.
- Äthylester $C_{14}H_{16}O_4 = C_6H_4 < \stackrel{CO}{O} > C < \stackrel{CH(CH_3)_2}{CO_3} \cdot C_2H_5$. Beim Erhitzen der Natriumverbindung des Salicylsäureäthylesters mit α -Brom-isovaleriansäure-äthylester auf 160°, neben Salicylsäureäthylester-O- α -isovaleriansäureäthylester (Bd. X, S. 75) (Bischoff, B. 33, 1399, 1403). Nadeln (aus Ligroin). F: 77—78°.
- 10. [5.6 Dimethyl phthalidyl (7)] -essigsäure $C_{12}H_{12}O_4$, $HO_2C \cdot H_2C$ s. nebenstehende Formel. B. Beim Schmelzen von α -[5.6-Dimethyl-phthalidyl-(7)]-tetronsäure (Syst. No. 2784) mit Kaliumhydroxyd (Wolff, A. 322, 385). Nadeln (aus heißem verdünntem Alkohol). F: 212° CH_2 CH_2 CH_3 CH_3

5. Oxo-carbonsäuren C₁₂H₁₄O₄.

- 1. γ-[β-Phenāthyl]-butyrolacton-β-carbonsäure, ε-Phenyl-γ-caprolacton- β - carbons dure, γ - [β - Phendthyl] - paracons dure $C_{11}H_{14}O_{4}$ = H.C-CH.CO.H
- OC · O · CH · CH · CH · CH · C · H ·
- γ -[$\alpha.\beta$ -Dibrom- β -phenyl-äthyl]-paraconsäure, Dibromid der γ -Styryl-paracon-H₂C—CH·CO,H OC·O·CH·CHBr·CHBr·C_eH₅. B. Aus γ -Styryl-paraconsäure (S. 435) säure $C_{13}H_{12}O_4Br_2 =$ und Brom in Chloroform (Bougault, C. r. 142, 1541). — Krystalle (aus Alkohol). F: 205° (Zers.). Sehr schwer löslich in den üblichen Lösungsmitteln. — Zersetzt sich beim Kochen mit Sodalösung vollständig unter Bildung von Natriumbromid, Benzaldehyd und anderen Produkten.
- 2. 3 Oxo 7 tert. butyl phthalan carbonsäure (5), HO₂C. 4 tert. Butyl phthalid carbonsäure (6) C₁₃H₁₄O₄, s. nebenstehende Formel. B. Entsteht neben anderen Produkten durch Oxydation von 2.4-Dimethyl-6-tert.-butyl-acetophenon mit alkal. Kaliumpermanganat-Losung oberhalb 70°, nachfolgende Reduktion mit Zinkstaub und siedender Schwefelsäure und Erhitzen des trocknen Reduktionsprodukts auf 200° (BAUR-THURGAU, B. 31, 1347). — Nadeln (aus Alkohol). F: 273°.
- 6. γ -[4-isopropyl-phenyl]-butyrolacton- β -carbonsaure $\mathrm{C_{14}H_{16}O_4}=\mathrm{H_1C-CH\cdot CO_2H}$
 - OC · O · CH · C₆H₄ · CH(CH₂)₂
- a) γ [4 Isopropyl phenyl] paraconsāure $C_{14}H_{16}O_4 = H_1C$ — $CH \cdot CO_2H$
- $OC \cdot O \cdot CH \cdot C_0H_4 \cdot CH(CH_2)_2$. B. Neben γ -[4-Isopropyl-phenyl]-itaconsäure (Bd. IX, S. 911) und den beiden stereoisomeren a. 8-Bis-[4-isopropyl-phenyl]-fulgensäuren (Bd. IX, S. 961, 962) durch Kondensation von Cuminol mit Bernsteinsäureester bei Gegenwart von Natriumäthylat in Äther (Stobbe, Härtel, A. 380, 61, 68). — Blättchen (aus Wasser oder Chloroform). F: 158°. Leicht löslich in Alkohol und Ather, schwerer in Wasser, Benzol, Chloroform und Petroläther. — Wird von Kaliumpermanganat zu Cuminol und Oxalsäure oxydiert. Lagert sich beim Kochen mit $50^{\circ}/_{\circ}$ iger Schwefelsäure in Iso- $[\gamma-(4-isopropyl-phenyl)-paracon$ säure] um. Gibt mit konz. Schwefelsäure zunächst eine gelbe, später eine gelbgrüne Färbung.
- b) Iso fy (4 isopropyl phenyl) paraconsduref $C_{14}H_{16}O_4=H_4C-CH\cdot CO_4H$
- B. Aus γ -[4-Isopropyl-phenyl]-paraconsäure oder γ -[4-Iso-OC · O · CH · CaH4 · CH(CH3)3 propyl-phenyl]-itaconsaure (Bd. IX, S. 911) beim Kochen mit 50% iger Schwefelsaure (Stobbe, Härtel, A. 380, 70). — Nadeln (aus Wasser). F: 131%. Leicht löslich in Alkohol und Äther, schwerer in Wasser, Chloroform und Petroläther. Wird von Kaliumpermanganat zu Cuminol oxydiert. Die Lösung in konz. Schwefelsäure ist zunächst farblos, wird aber beim

Mit Iso- $[\gamma-(4-isopropyl-phenyl)$ -paraconsāure] ist vielleicht eine Säure identisch, die HJELT, Of. Fi. 37, 173 durch Erhitzen äquimolekularer Mengen Cuminol, Natriumsuccinat und Acetanhydrid auf 115° dargestellt hat. — Nadeln (aus Wasser). F: 138—139°. Leicht löslich in warmem Wasser. — Beim Kochen mit Natronlauge entsteht γ -[4-Isopropyl-phenyl]-itamalsäure (Bd. X, S. 519). — Ca(C₁₄H₁₅O₄)₂. — Ba(C₁₄H₁₅O₄)₂.

f) Oxo-carbonsauren $C_n H_{2n-14} O_4$.

1. Oxo-carbonsăuren C₁₀H_aO₄.

1. 4-Oxo-[1.4-chromen]-carbonsäure-(2), Chromon-carbonsäure-(2) $C_{10}H_6O_4 = C_6H_4 \stackrel{CO \cdot CH}{\bigcirc -C \cdot CO_9H}.$ B. Aus Phenoxyfumarsäure (Bd. VI, S. 169) durch Einw. von konz. Schwefelsäure bei gewöhnlicher Temperatur (RUHEMANN, STAPLETON, Soc. 77,

1184). Durch 1½-stündiges Kochen von 2-Oxy-benzoylbrenztraubensäure-äthylester (Bd. X, 8, 1003) mit wäßrig-alkoholischer Salzsäure (Heywang, v. Kostaneckt, B. 35, 2889). — Nadeln (aus Alkohol). Schmilzt unter Abspaltung von Kohlendioxyd bei 252° (H., v. K.), bei 250—251° (R., St.). Leicht löslich in Alkohol, schwer in Wasser (R., St.). — Liefert beim Erhitzen im Vakuum (R., St.) oder bei gewöhnlichem Druck über den Schmelzpunkt (H., v. K.) Chromon (Bd. XVII, S. 327). — AgC₁₀H₅O₄. Nadeln (aus Wasser) (R., Bausor, Soc. 79, 471).

4 - Oxy - 4 - amino - [1.4 - chromen] - carbonsäure - (2) $C_{10}H_2O_4N =$ C₆H₄C(OH)(NH₂)·CH C-C-C-C vertreibt das überschüssige Ammoniak durch Erwärmen der Lösung unter vermindertem Druck und fällt mit Salzsäure (RUHEMANN, BAUSOR, Soc. 79, 471). — Regeneriert beim Kochen mit Wasser oder Alkohol Chromon-carbonsaure-(2).

Chromon-carbonsäure-(2)-äthylester $C_{12}H_{10}O_4 = C_0H_4$ CO·CH

Kochen der alkoh. Lösung von Chromon-carbonsäure-(2) in Gegenwart von etwas konz. Schwefelsäure (Ruhemann, Bausor, Soc. 79, 472). — Nadeln (aus Alkohol). F: 69—70°.

Chromon-carbonsäure-(2)-äthylester und alkoh. Ammoniak (R., B., Soc. 79, 472). — Blaßgelbe Prismen (aus Wasser oder Alkohol). Erweicht bei 230° und schmilzt bei 252°.

2. 2 - Oxo - [1.2 - chromen] - carbonsäure - (3), Cumarin - carbonsäure - (3) $C_{10}H_{4}O_{4} = C_{6}H_{4} \underbrace{\begin{array}{c} CH:C\cdot CO_{2}H\\ O-CO \end{array}}_{CO}.$. B. Beim Erhitzen von Salicylaldehyd mit Malonsäure in Eisessig (STUART, Soc. 49, 366). Entsteht ferner aus Salicylaldehyd und Malonsäure beim Erhitzen in Alkohol in Gegenwart von Ammoniak (Knoevenagel, B. 31, 2619; D. R. P. 97735; C. 1898 II, 695), Anilin (Kn., B. 31, 2618; D. R. P. 97735), salzsaurem Anilin (Kn., D. R. P. 161171; C. 1905 II, 179) oder Piperidin (Kn., D. R. P. 164296; C. 1905 II, 1702). Der Athylester entsteht aus Salicylaldehyd und Malonsäurediäthylester in Gegenwart von Ammoniak oder Piperidin; man verseift ihn mit kalter Natronlauge (Kn., B. 31, 2593; D. R. P. P7734; C. 1898 II, 695). Cumarin-carbonsaure-(3) wird ferner erhalten durch 3-stündiges Erwärmen von Salicylaldehyd-O-carbonsaureathylester mit Malonsaure (Cajar, B. 31, 2809). Beim Kochen von Salicylalcyanessigsaure (Bd. X, S. 520) mit Mineralsauren (Haarmann & Reimer, D. R. P. 189252; C. 1908 I, 74). Das Nittil entsteht beim Versetzen der währ. Lösung des Kaliumsalzes der Salicylal-bis-cyanessigsäure (Bd. X, S. 589) mit verd. Schwefelsaure; man kocht es zur Verseifung 5-10 Minuten mit Kalilauge (Bechert, J. pr. [2] 50, 23). Cumarin-carbonsaure-(3) entsteht durch Verseifen von Salicylal-bis-cyanessigsaureäthylester (Bd. X, S. 590) mit Kalilauge und darauffolgendes Kochen des abgeschiedenen Kaliumsalzes mit verd. Salzsäure (Br.). Beim Behandeln von β -Oxo- β -[cumarinyl-(3)]-Kaliumsalzes mit verd. Salzsäure (BE.). Beim Behandeln von β-Oxo-β-[cumarinyl-(3)]propionsäure-åthylester (S. 476) mit Sodalösung (Kn., Langensiepen, B. 37, 4493). —
Nadeln (aus Wasser). F: 187° (Sr.), 187—188° (BE.), 188° (HJELT, C. 1903 I, 89). Unlöslich
in Äther, Benzol und Petroläther (BE.). — Zerfällt bei der Destillation in Cumarin und Kohlendioxyd (Sr.). — AgC₁₀H₅O₄ (Sr.). — Ba(C₁₀H₅O₄)₂ (bei 130°). Niederschlag (Sr.).

Äthylester C₁₂H₁₀O₄ = C₂H₄ C. 180° (B. 8. 8. bei Cumarin-carbonsäure-(3). —

Krystalle. F: 94° (Knoevenagel, B. 31, 2593; D. R. P. 97734; C. 1898 II, 695).

Amid C₁₀H₇O₂N = C₆H₄ C. 190° (B. 724 vgl. a. Brouper, Lett. [21, 50, 27). —

Malonamid (Merce, D. R. P. 12724). C. 190° (II, 724 vgl. a. Brouper, Lett. [21, 50, 27). —

Malonamid (Merce, D. R. P. 172724; C. 1906 II, 724; vgl. a. Bechert, J. pr. [2] 50, 27). — Nadeln (aus Eisessig). F: 268—269°; löslich in verd. Alkohol, Methylalkohol und Essigester, sehr leicht löslich in heißem Eisessig (M.).

 $\begin{array}{ll} \textbf{Methylamid} & C_{11}H_{\bullet}O_{\bullet}N = C_{\bullet}H_{\bullet} & CH:C\cdot CO\cdot NH\cdot CH_{\bullet}\\ O--CO \end{array}.$ Man verrührt Salicylaldehyd und Malonsäure-bis-methylamid (Bd. IV, S. 62) in Alkohol, destilliert den Alkohol ab und erhitzt am Rückflußkühler (Merck, D. R. P. 172724; C. 1906 II, 724). — Nadeln (aus Alkohol). F: 172-173°. Leicht löslich in den organischen Lösungsmitteln, außer in Chloroform, Benzol und Toluol.

Anilid $C_{16}H_{11}O_3N = C_6H_4$ $CH:C\cdot CO\cdot NH\cdot C_6H_5$. B. Beim Erhitzen von Salicylaldehyd mit Malonanilid (Bd. XII, S. 293) (M., D. R. P. 172724; C. 1906 II, 724). — Gelbe Nadeln. F: 250°. Leicht löslich in Aceton, Essigester und Amylalkohol, löslich in heißem Eisessig, Alkohol und Toluol, schwer bezw. unlöslich in Chloroform, Ligroin, Benzol und Wasser.

Methylanilid $C_{17}H_{13}O_3N = C_6H_4$ CH: $C \cdot CO \cdot N(CH_3) \cdot C_6H_5$. B. Beim Erhitzen von Salicylaldehyd mit N.N'-Dimethyl-malonanilid (Bd. XII, S. 294) (M., D. R. P. 172724; C. 1906 II, 724). — Nadeln (aus verd. Alkohol). F: 139—140°.

Nitril, 8-Cyan-cumarin $C_{16}H_{8}O_{2}N = C_{6}H_{4} \bigcirc CH:C \cdot CN$. B. s. bei Cumarin-carbon-säure-(3). — Nadeln (aus Alkohol). F: 182°; löslich in Benzol, unlöslich in Petroläther (Bechert, J. pr. [2] 50, 23).

4 - Chlor - cumarin - carbonsäure - (3) - äthylester C₁₂H₉O₄Cl = CCl:C·CO₂·C₂H₅. B. Durch Erwärmen von 1 Mol 4-Oxy-cumarin-carbonsäure-(3)-äthylester (S. 469) mit etwas mehr als 3 Mol Phosphorpentachlorid in Chloroform und Zersetzen mit Eis (Anschütz, A. 367, 182). — Blaßgelbe Nadeln (aus Wasser). Riecht eigentümlich aromatisch, an weißen Pfeffer erinnernd. F: 83,5°. Leicht löslich in kaltem Alkohol, Äther, Chloroform und Eisessig, ziemlich leicht in heißem Wasser. — Beständig gegen siedendes Wasser. Beim Erwärmen mit Natriumäthylat-Lösung erhält man 4-Äthoxy-cumarin-carbonsäure-(3)-äthylester. Beim Kochen mit Anilin in alkoh. Lösung auf dem Wasserbad entsteht 4-Anilino-cumarin-carbonsäure-(3)-äthylester; beim Kochen mit Anilin ohne Zusatz eines Lösungsmittels bildet sich 4-Anilino-cumarin-carbonsäure-(3)-anilid.

3. 2-Oxo-[1.2-chromen]-carbonsäure-(4), Cumarin-carbonsäure-(4)

C₁₀H₆O₄ = C₆H₄C(CO₂H):CH

B. Der Äthylester entsteht durch Kondensation von Phenol mit Oxalessigester mittels konz. Schwefelsäure bei 0—5°; man gießt auf Eis und verseift den Ester mit alkoh. Kalilauge (v. Pechmann, v. Krafft, B. 34, 422). — Nädelchen (aus Wasser). F: 179—180°. Fast unzersetzt flüchtig. Löslich in den meisten Lösungsmitteln, unlöslich in Benzol und Ligroin. — Bei trockner Destillation des Silbersalzes entsteht Cumarin.

Äthylester $C_{12}H_{10}O_4 = C_6H_4$ $C(CO_2 \cdot C_2H_5): CH$ $CO_2 \cdot C_2H_5$ $CO_3 \cdot CO_4$ $CO_4 \cdot CO_5$ $CO_5 $CO_5 \cdot CO_5$ $CO_5 \cdot CO_5$

4. 2-Oxo-[1.2-chromen]-carbonsäure-(6), Cumarin-carbonsäure-(6) C₁₀H₆O₄, s. nebenstehende Formel. B. Bei der Oxydation von Cumarin-aldehyd-(6) (Bd. XVII, S. 510) mit Chromsäure in Eisessig (Stoermer, Oetker, B. 37, 196). — Krystalle (aus verd. Alkohol). F: 267—268° (Zers.). Schwer löslich in Wasser, Ligroin und Benzol; löslich in Sodalösung.

Methylester C₁₁H₈O₄, s. nebenstehende Formel. Nadeln CH₃·O₂C·CH CH (aus Ligroin-Benzol). F: 174° (St., OE., B. 37, 196).

5. 1-Oxo-isochromen-carbonsäure-(3), Isocumarin-carbonsäure-(3) $C_{10}H_6O_4=C_6H_4$ $C_{10}O_4$ $C_{10}O_4$

bei mehrstündigem Erhitzen mit konz. Salzsäure auf 160—165° (Bamberger, Kitschelt, B. 25, 896) oder beim Erhitzen für sich auf 225—230° (Zincke, B. 25, 1495). — Nadeln (aus Alkohol), Blätter (aus Methylalkohol). F: 237° (B., K., B. 25, 896), 235° (Z.). Sublimierbar (Z.). Ziemlich leicht löslich in heißem Wasser, leicht in warmem Alkohol, Eisessig und Aceton, sehr schwer in Äther, Chloroform, Ligroin und Benzol (B., K., B. 25, 896). — Bei trockner Destillation des Silbersalzes entsteht Isocumarin (Bd. XVII, S. 333) (B., Frew, B. 27, 207). Liefert bei der Reduktion mit 3°/oigem Natriumamalgam in annähernd neutraler Lösung 3.4-Dihydro-isocumarin-carbonsäure-(3) (S. 419) (B., A. 268, 134). Zerfällt beim Kochen mit 40°/oiger Natronlauge in o-Toluylsäure und Oxalsäure (B., A. 268, 135). Bei mäßiger Einw. von unterchloriger Säure entsteht Phthalid-carbonsäure-(3) (S. 418) (Z., Schmot, B. 27, 743). Bei der Einw. von Ammoniak entsteht Isocarbostyril-carbonsäure-(3) (Syst. No. 3340) (B., K., B. 25, 1142; Z.; Höchster Farbw., D. R. P. 65947; Frdl. 3, 966). Liefert bei 2-stündigem Erhitzen mit 33°/oiger wäßriger Methylamin-Lösung auf 100° 2-Methyl-isocarbostyril-carbonsäure-(3) (Syst. No. 3366) (B., Fr.). — AgC₁₀H₅O₄. Niederschlag (B., Fr.).

Methylester $C_{11}H_8O_4=C_6H_4$ $C_{CO}\cdot O_2\cdot CH_3$. Beim Sättigen der methylalkoholischen Lösung von Isocumarin-carbonsäure-(3) mit Chlorwasserstoff (ZINCKE, B. 25, 1496). — Nadeln (aus Methylalkohol). F: 172—173°.

6. 1-Oxo-isochromen-carbonsäure-(4), Isocumarin-carbonsäure-(4)

C₁₀H₆O₄ = C₆H₄ C(CO₂H):CH

C₁₀H₆O₄ = C₆H₄ CO₂ O

B. Beim Erwärmen von α-Formyl-homophthalsäure-diäthylester (Bd. X, S. 863) mit konz. Salzsäure und etwas Eisessig (Dieckmann, Meiser, B. 41, 3264). Die Ester entstehen aus α-Formyl-homophthalsäure-dimethylester bezw. diäthylester beim Aufbewahren, schneller beim Erwärmen (Dieckmann, Meiser, B. 41, 3263). Sie bilden sich ferner bei kurzem Aufbewahren wäßr. Lösungen der Alkalisalze der α-Formyl-homophthalsäureester; man verseift sie durch längeres Erwärmen mit konz. Salzsäure und etwas Eisessig (D., M.). — Nadeln (aus Alkohol oder Eisessig). F: 244°. Verflüchtigt sich beim Erhitzen großenteils unzersetzt. Leicht löslich in Aceton, ziemlich schwer in heißem Wasser, schwer in Alkohol, Äther, Benzol, Eisessig und Chloroform, sehr schwer in kaltem Wasser. — Bei der trocknen Destillation des Silbersalzes oder beim Kochen der freien Säure mit 50°/oiger Schwefelsäure oder 85°/oiger Phosphorsäure entsteht unter Kohlendioxyd-Abspaltung Isocumarin. Wird durch Erwärmen mit Alkali in Ameisensäure und Homophthalsäure gespalten. Durch Einw. von überschüssigem konzentriertem Ammoniak entsteht in der Kälte Isocarbostyril-carbonsäure-(4) (Syst. No. 3340), in der Wärme daneben Isocarbostyril (Syst. No. 3114). Gibt mit Methylamin 2-Methyl-isocarbostyril-carbonsäure-(4) (Syst. No. 3366). Beim Kochen mit Anilin erhält man 2-Phenyl-isocarbostyril (Syst. No. 3184).

Äthylester $C_{12}H_{10}O_4 = C_6H_4$ $C(CO_2 \cdot C_2H_5)$: CH. B. s. bei Isocumarin-carbonsäure-(4). — Nadeln (aus $90^{\circ}/_{\circ}$ igem Alkohol). F: $67-68^{\circ}$; unlöslich in Wasser, leicht löslich in den gebräuchlichen organischen Lösungsmitteln (D., M.). — Wird durch Kochen mit überschüssiger methylalkoholischer Kalilauge in Ameisensäure und Homophthalsäure gespalten. Liefert bei kurzem Kochen mit Anilin 2-Phenyl-isocarbostyril-carbonsäure-(4)-äthylester (Syst. No. 3366).

- 7. Cumarilylameisensäure, [Cumaronyl-(2)]-glyoxylsäure $C_{10}H_{e}O_{4}=C_{4}CH_{4}COC\cdot CO\cdot CO_{2}H$. B. Durch Oxydation von 2-Acetyl-cumaron (Bd. XVII, S. 338) mit Permanganat unter Eiskühlung (Stoermer, A. 312, 332). Nadeln. F: 156°. Sehr leicht löslich in Wasser und organischen Lösungsmitteln.
- 8. Phthalidylidenessigsäure, Phthalylessigsäure C₁₀H₆O₄ = C₆H₄ CO: (CH·CO₂H) O. B. Durch Kochen von Phthalsäureanhydrid mit Essigsäureanhydrid und wasserfreiem Natriumacetat (Michael, Gabriel, B. 10, 391; Ga., Mi., B. 10, 1552). Durch Einw. von konz. Schwefelsäure auf Acetophenon-2.ω-dicarbonsäure (Bd. X, S. 862) (Ga., B. 17, 2526). Beim Erwärmen von Phthalylacetessigester (S. 476) mit konz. Schwefelsäure auf 65° (Bülow, A. 236, 186). Darst. Man erhitzt 30 g Phthalsäureanhydrid mit 40 cm³ Essigsäureanhydrid und 20 g frisch geschmolzenem Kaliumacetat erst auf dem Wasserbad, dann 10 Minuten auf 150—160°, fügt nach dem Abkühlen allmählich 100 g heißes Wasser zu und filtriert (Ga., Neumann, B. 26, 952). Nadeln (aus Nitrobenzol oder Eisessig), gekrümmte Krystalle (aus Alkohol). Schmilzt unter Zersetzung bei 243—246° (Mi., Ga., B. 10, 392); schmilzt oberhalb 260° und zersetzt sich unter Gasentwicklung gegen 276° (Roser, B. 17, 2620). Unlöslich in Wasser und kaltem Benzol, sehr wenig löslich in siedendem Alkohol, siemlich leicht in heißer Essigsäure (Mi., Ga., B. 10, 392). Phthalylessigsäure zerfällt bei der Destillation im Vakuum in 3-Methylen-phthalid (Bd. XVII, S. 333), Kohlendioxyd und Phthalsäure (Ga., B. 17, 2521). Durch Reduktion mit 1½°/ojegem Natriumamalgam in alkal. Lösung bei gewöhnlicher Temperatur und Ansäuern des Reaktionsprodukts entsteht [Phthalidyl-(3)]-essigsäure (S. 419) (Ga., Mi., B. 10, 1558, 2200). Beim Einleiten von Chlor

in eine Suspension von Phthalylessigsäure in verd. Essigsäure auf dem Wasserbad entsteht ω.ω.ω. Trichlor -acetophenon - carbonsäure -(2) (Bd. X, S. 692). Beim Erwärmen von Phthalylessigsäure mit Brom in verd. Essigsäure erhält man ω.ω.ω - Tribrom -acetophenon-carbonsäure-(2) (Ga., Mi., B. 10, 1555, 1556). Phthalylessigsäure liefert beim Erhitzen mit der äquimolekularen Menge trocknem Brom in Chloroform im Rohr auf 100° Phthalylbromessigsäure (s. u.) (Ga., Mi., B. 10, 2199). Beim Erhitzen mit Wasser auf 200° erhält man Acetophenon-carbonsäure-(2) (Ga., Mi., B. 10, 1555). Beim Erhitzen von 1 Tl. Phthalylessigsäure mit 60 Tln. konz. Schwefelsäure auf dem Wasserbad bildet sich Tri-o-benzoylenbenzol (Bd. VII, S. 881) (Ga., Mi., B. 10, 1557; 11, 1007). Liefert beim Behandeln mit überschüssiger Alkalilauge Acetophenon -2.ω -dicarbonsäure (Ga., Mi., B. 10, 1553). Phthalylessigsäure liefert mit Natriummethylat-Lösung α.γ-Diketo-hydrinden-β-carbonsäure (Bd. X, S. 823) (Ga., Neumann, B. 26, 953). Durch Lösen in wäßr. Ammoniak und nachfolgenden Zusatz von Säure erhält man 3-Carbonsymethylen-phthalimidin

C₆H₄ C(:CH·CO₃H) NH (Syst. No. 3366) (Ga., Mi., B. 10, 1556; vgl. Ro., B. 17, 2623; Ga., B. 18, 2451). Beim Behandeln mit eiskalter wäßriger Methylaminlösung entsteht Benzoylessigsäure-o-[carbonsäure-methylamid] (Bd. XI, S. 443) (Ga., B. 18, 2452). Mit Äthylamin-Lösung entsteht das Salz C₆H₄ C(:CH·CO₃H) N·C₂H₅ + C₆H₄ C(:CH₂) N·C₂H₅ + H₂O (s. im Artikel N-Äthyl-3-carboxymethylen-phthalimidin, Syst. No. 3366); analog reagiert Propylamin (Mertens, B. 19, 2368). Durch Erwärmen von Phthalylessigsäure mit Anilin auf dem Wasserbad entsteht Acetophenon-carbonsäure-(2)-anilid (Bd. XII, S. 523) (Me.). — AgC₁₀H₅O₄. Schleimiger, bald pulverig werdender Niederschlag (Ga., Mi., B. 10, 1556).

Phthalylchloressigsäure $C_{10}H_5O_4Cl = C_6H_4 \underbrace{C(:CCl\cdot CO_2H)}O$. B. Entsteht neben einer isomeren Säure $C_{10}H_5O_4Cl$ (s. u.) und ω -Chlor-acetophenon-carbonsäure-(2) bei 10 bis 12-stündigem Aufbewahren von 2-Trichloracryloyl-benzoesäure (Bd. X, S. 728) mit konz. Schwefelsäure (ZINCKE, COOKSEY, A. 255, 378). — Nadeln (aus Eisessig + Benzol). Erweicht bei 218° und schmilzt bei 233—234°. Leicht löslich in Alkohol und Eisessig, schwer in Aceton, sehr schwer in heißem Benzol, unlöslich in Benzin. — Beim Erwärmen mit Salpetersäure (D: 1,4) erhält man Phthalsäure. Durch Einleiten von Chlor in eine Eisessig-Suspension von Phthalylchloressigsäure erhält man 3-Chlor-3-trichlormethyl-phthalid (Bd. XVII, S. 318) und 3-Dichlormethylen-phthalid (Bd. XVII, S. 334). Beim Erwärmen mit Anilin in alkoh. Lösung entsteht ω -Chlor-acetophenon-carbonsäure-(2)-anilid (Bd. XII, S. 523).

Säure C₁₀H₅O₄Cl. B. s. im Artikel Phthalylchloressigsäure; entsteht in größerer Menge bei raschem Arbeiten in der Wärme (Z., C., A. 255, 387). — Nadeln (aus heißem Benzol). F: 215—216°. — Bei längerem Aufbewahren mit konz. Schwefelsäure in der Kälte entsteht Phthalylchloressigsäure. Verhält sich gegen Salpetersäure, Chlor und Anilin wie Phthalylchloressigsäure.

Phthalylbromessigsäure $C_{10}H_5O_4Br = C_6H_4$ $C(:CBr\cdot CO_9H)$ O. B. Man erhitzt 2 Tle. Phthalylessigsäure mit $1^8/_4$ Tln. trocknem Brom und 10 Tln. trocknem Chloroform im Rohr auf 100^0 (Gabriel, Michael, B. 10, 2199). — Nadeln (aus verd. Alkohol). F: 232° bis 235°. — Zersetzt sich beim Erhitzen mit Wasser auf $180-200^\circ$ unter Abspaltung von Kohlensäure und Bromwasserstoff.

2. Oxo-carbonsäuren C₁₁H₈O₄.

- 1. 4-0xo-6-methyl-[1.4-chromen]-carbonsäure-(2), CH₃. CO CH 6-Methyl-chromon-carbonsäure-(2) C₁₁H₂O₄, s. nebenstehende Formel. B. Beim Stehenlassen von p-Kresoxyfumarsäure (Bd. VI, S. 400) mit konz. Schwefelsäure (RUHEMANN, BAUSOR, Soc. 79, 474). Nadeln (aus verd. Alkohol). F: 258° (Zers.). Liefert beim Erhitzen 6-Methyl-chromon (Bd. XVII, S. 337).
- 2. 4-Oxo-5 oder 7-methyl-[1.4-chromen]-carbonsäure-(2), 5 oder 7-Methyl-chromon-carbonsäure-(2) C₁₁H₈O₄, Formel I oder II. B. Beim Stehenlassen von m-Kresoxyfumarsäure (Bd. VI, CH₃ S. 380) mit konz. Schwefelsäure (R., B., Soc. 79, 473). Platten (aus verd. I. Alkohol). Erweicht bei 222° und schmilzt bei 233—234° unter Zersetzung. Liefert beim Erhitzen 5 oder 7-Methyl-chromon (Bd. XVII, S. 338).

- 3. 4-Oxo-8-methyl-[1.4-chromen]-carbonsäure-(2), 8-Methyl-chromon-carbonsäure-(2) $C_{11}H_8O_4$, s. nebenstehende Formel. B. Beim Stehenlassen von o-Kresoxyfumarsäure (Bd. VI, S. 357) mit konz. Schwefelsäure (R., B., Soc. 79, 472). Nadeln (aus Alkohol). CO ~CH _Ü·CO2H F: 255—256°. — Liefert beim Erhitzen 8-Methyl-chromon (Bd. XVII, S. 338). — AgC₁₁H₂O₄. Nadeln (aus Wasser).
- 4. 2-0xo-5-methyl-[1.2-chromen]-carbonsäure-(3), 5-Methyl-cumarin-carbonsaure-(3) C₁₁H₈O₄, s. nebenstehende Formel. B. Bei der Kondensation von 6-Oxy-2-methyl-benzaldehyd (Bd. VIII, S. 97) mit Malonsäure in Gegenwart von salzsaurem Anilin auf dem Wasserbad (Chuit, Bolsing, Bl. [3] 35, 85). — Nadeln (aus Alkohol). F: 162,50 bis 163°. 100 cm³ einer bei 14° gesättigten alkoholischen Lösung enthalten 1 g. — Liefert beim Erhitzen 5-Methyl-cumarin (Bd. XVII, S. 337).

Äthylester C₁₃H₁₃O₄, s. nebenstehende Formel. B. Bei der Einw. von Malonester auf 6-Oxy-2-methyl-benzaldehyd in Gegenwart von wenig Piperidin bei gewöhnlicher Temperatur (CH., B., Bl. [3] 35, 85). — Nadeln (aus 50% jeem Alkohol). F: 122—122,5%. Sehr schwer löslich in kaltem 50% jeem Alkohol. $\sim \mathrm{CH} \approx_{\mathrm{C} \cdot \mathrm{CO}_2 \cdot \mathrm{C}_2\mathrm{H}_5}$

5. 2-Oxo-6-methyl-[1,2-chromen]-carbonsäure-(3), $_{CH_3}$ 6. Methyl-cumarin-carbonsäure-(3) C₁₁H₈O₄, s. nebenstehende Formel. B. Durch Kondensation von 6-Oxy-3-methylbenzaldehyd (Bd. VIII, S. 100) mit Malonsäure in Gegenwart von Anilin oder Piperidin (CH., B., Bl. [3] 35, 87). — Blaßgelbe Nadeln (aus Alkohol). F: 166,8°. Unlöslich in kaltem, schwer löslich in heißem Wasser, leicht in heißem Eisessig; 100 cm³ einer bei 14° gesättigten alkoh. Lösung enthalten 1,22 g. — Liefert beim Erhitzen 6-Methyl-cumarin (Bd. XVII, S. 337).

Äthylester C₁₃H₁₂O₄, s. nebenstehende Formel. B. Durch 24-stdg. Einw. von Malonester auf 6-Oxy-3-methyl-benz-aldehyd bei gewöhnlicher Temperatur in Gegenwart von Piperidin (CH., B., Bl. [3] 35, 88). — Tafeln (aus Alkohol). F: 103—104°. Leicht löslich in Benzol, löslich in Alkohol und Äther, sehr schwer löslich in Petroläther und siedendem Wasser.

 $CH \bowtie_{C \cdot CO_2H}$ 2-0xo-7-methyl-[1.2-chromen]-carbonsäure-(3),6. 2-Oxo-7-methyl-[1.2-chromen]-carbonsäure-(3),
7-Methyl-cumarin-carbonsäure-(3) C₁₁H₈O₄, s. nebenstehende Formel. B. Aus 2-Oxy-4-methyl-benzaldehyd (Bd. VIII,
S. 101) und Malonsäure in Gegenwart von salzsaurem Anilin (CH., B., Bl. [3] 35, 82).
Farblose Blättchen. F: 198,8—199,8°. Sehr schwer löslich in siedendem Wasser, schwer in heißem Alkohol, leicht in siedendem Eisessig; 100 cm³ einer bei 14° gesättigten alkoholischen Lösung enthalten 0,45 g. — Liefert beim Erhitzen 7-Methyl-cumarin (Bd. XVII, S. 337).

Äthylester C₁₃H₁₂O₄, s. nebenstehende Formel. B. Durch
12-stdg. Einw. von Malonester auf 2-Oxy-4-methyl-benzaldehyd in Gegenwart von Piperidin bei gewöhnlicher Temperatur (CH., B., Bl. [3] 35, 83). — Farblose Blättchen (aus verd. Alkohol). F: 101,5—102,5°.
Unlöslich in Petroläther, leicht löslich in heißem Alkohol.

- $CCl \gg_{\mathbf{C} \cdot \mathbf{CO_2} \cdot \mathbf{C_2H_5}}$ 4-Chlor-7-methyl-cumarin-carbonsäure-(3)-äthylester C₁₃H₁₀Q₄Cl, s. nebenstehende Formel. B. Beim Erhitzen von 4-Oxy-7-methyl-cumarin-carbonsäure-(3)-äthylester (8. 473)
 mit überschüssigem Phosphorpentachlorid in Tetrachlorkohlenstoff; man gießt nach dem Abdestillieren vorsichtig auf Eis (Anschütz, A. 367, 222). — Gelbe Krystalle (aus Alkohol). F: 109—110°. Löslich in Chloroform, Eisessig, Aceton und Tetrachlorkohlenstoff. — Wird beim Erwärmen mit Wasser zersetzt. Beim Behandeln mit Natriumäthylat-Lösung erhält man 4-Athoxy-7-methyl-cumarin-carbonsäure-(3)-äthylester (S. 531). Liefert bei 2-stdg. Kochen mit der berechneten Menge Anilin in alkoh. Lösung 4-Anilino-7-methyl-cumarin-carbonsäure-(3)-äthylester (8. 474); ohne Lösungsmittel entsteht mit überschüssigem Anilin bei 184º 4-Anilino-7-methyl-cumarin-carbonsäure-(3)-anilid.
- 2-0xo-8-methyl-1.2-chromen-carbonsäure-(3), \sim CH \ll C \cdot CO₂H 8-Methyl-cumarin-carbonsaure-(3) C₁₁H₈O₄, s. nebenstehende Formel. B. Durch Erhitzen von 27,2 g 2-Oxy-3-methyl-benzeldehyd (Bd.VIII, S. 98) mit 20,8 g Malonsaure in Gegenwart von 4 g salzsaurem
 Anilin zunächst auf dem Wasserbad, dann auf 130° (Chuir, Bolsing, Bl. [3] 35, 78).

 Farblose Nadeln (aus Benzol). F: 142—143°. Leicht löslich in heißem Benzol, Tetrachlorkohlenstoff und Eisessig, löslich in siedendem Wasser, sehr schwer löslich in heißem Petroläther; 100 cm³ einer bei 14^o gesättigten alkoholischen Lösung enthalten 2,28 g. — Liefert beim Erhitzen 8-Methyl-cumarin (Bd. XVII, S. 338).

Äthylester $C_{13}H_{12}O_4$, s. nebenstehende Formel. B. Durch 24-stdg. Einw. von 13,6 g 2-Oxy-3-methyl-benzaldehyd auf 16 g Malonester bei gewöhnlicher Temperatur in Gegenwart von 2 Tropfen Piperidin (CHUIT, BOLSING, Bl. [3] 35, 79). — Krystalle (aus Benzol+Petroläther). F: 81°. Leicht löslich in Benzol und heißem Wasser, Alkohol und Tetrachlorkohlenstoff, unlöslich in Petroläther und kaltem Wasser.

- 8. α-Phthalidyliden-propionsäure, α-Phthalyl-propionsäure C₁₁H₈O₄ = C₂H₄ C₁:C(CH₃)·CO₂H₁O. B. Beim Kochen von 1 Tl. Phthalsäureanhydrid mit 2 Tln. Propionsäureanhydrid und 0,2 Tln. Natriumpropionat (Gabriel, Michael, B. 11, 1013). Nadeln (aus Alkohol). F: 245—248° (G., M., B. 11, 1013). Liefert bei der Reduktion mit 2°/₀igem Natriumamalgam in alkal. Lösung und nachfolgendem Ansäuern α-[Phthalidyl-(3)]-propionsäure (S. 424) (G., M., B. 11, 1681). Beim Erhitzen mit Jodwasserstoffsäure (Kp: 127°) und rotem Phosphor auf 200° entsteht 2-Propyl-benzoesäure (G., M., B. 11, 1014). Geht beim Lösen in kaltem Alkali in (nicht näher beschriebene) Propiophenon-2α-dicarbonsäure über; beim Kochen mit überschüssigem Alkali entsteht Propiophenon-carbonsäure-(2) (Bd. X, S. 701) (G., M., B. 11, 1014, 1015). Liefert beim Erhitzen mit konz. Schwefelsäure auf dem Wasserbad die Verbindung C₂₀H₁₄O₃ (s. u.) (G., M., B. 11, 1680). Durch Lösen in wäßr. Ammoniak und nachfolgenden Zusatz von Säure erhält man 3-[Methyl-carboxy-methylen]-phthalimidin C₆H₄ C[:C(CH₃)·CO₂H] NH (Syst. No. 3366) (G., M., B. 11, 1014; vgl. Roser, B. 17, 2625; G., B. 18, 2453). AgC₁₁H₇O₄. Pulveriger Niederschlag (G., M., B. 11, 1014). Verbindung C₂₀H₁₄O₃. B. Beim Erhitzen von α-Phthalyl-propionsäure mit konz. Schwefelsäure auf dem Wasserbad (G., M., B. 11, 1680). Nadeln (aus Alkohol). F: 235° bis 237°. Unlöslich in Säuren und wäßr. Alkalien.
- 3. Oxo-carbonsäuren $C_{12}H_{10}O_4$.
- 1. $5-Oxo-2-methyl-2-phenyl-furandihydrid-carbonsäure-(3), \gamma-Methyl-\gamma-phenyl- <math>\Delta^{\alpha,\beta}$ -crotonlacton β -carbonsäure, Methyl-phenyl-aconsäure $HC=C \cdot CO_2H$ $HC=C \cdot CO_2H$ $C_{12}H_{10}O_4 = \begin{array}{c} HC=C \cdot CO_2H \\ OC \cdot O \cdot C(CH_3) \cdot C_6H_5 \end{array}$ B. Entsteht aus den beiden β -Brom- γ -methyl- γ -phenyl-paraconsäuren (S. 426) durch Kochen mit Wasser oder durch mäßiges Erwärmen mit $3^{\circ}/_{\circ}$ iger Natronlauge (Stobbe, A. 282, 298; 308, 129). Nadeln (aus Wasser). Rhombisch (Reinisch, A. 308, 130). F: 178—179°; leicht löslich in Alkohol, Äther, Chloroform und Aceton, schwer in Schwefelkohlenstoff und Petroläther (St., A. 282, 298). Entfärbt Permanganat-Lösung (St., A. 308, 130). Liefert durch Reduktion mit Natriumamalgam in wäßr. Suspension und folgendes Ansäuern γ -Methyl- γ -phenyl-paraconsäure (S. 426) (St., A. 282, 298). Addiert leicht Brom in wäßr. Lösung (St., A. 308, 130). Wird beim Kochen mit Wasser nicht verändert (St., A. 308, 131). Gibt beim Kochen mit überschüssiger Kalilauge das Salz einer Oxydicarbonsäure, das nach Neutralisierung des Alkaliüberschusses allmählich unter Abspaltung von Alkali wieder in das Salz der einbasischen Lactonsäure übergeht (St., A. 308, 132). $Ca(C_{12}H_9O_4)_2$. Prismen (St., A. 262, 298). $Ba(C_{12}H_9O_4)_2$. Nadeln (aus Alkohol) (St., A. 308, 131).
- 2. $2-Oxo-[1.2-chromen]-[\alpha-propions\"aure]-(3)$, $\alpha-[Cumarinyt-(3)]-propions \"aure$ $C_{12}H_{10}O_4=C_6H_4$ $CH:C\cdot CH(CH_3)\cdot CO_2H$ $CH:C\cdot CH(CH_3)\cdot CH(CH_3)\cdot CO_2H$ $CH:C\cdot CH(CH_3)\cdot CH(CH_3)\cdot CO_2H$ $CH:C\cdot CH(CH_3)\cdot CH(C$
- 3. 4-Oxo-6.8-dimethyl-[1.4-chromen]-carbon-cH₃·CH₃·CO₂H
 säure-(2), 6.8-Dimethyl-chromon-carbonsäure-(2)
 C₁₂H₁₀O₄, s. nebenstehende Formel. B. Beim Stehenlassen von [2.4-Dimethyl-phenoxy]-fumarsäure (Bd. VI, S. 488) mit konz.

Schwefelsäure (Ruhemann, Wragg, Soc. 79, 1189). — Prismen (aus verd. Alkohol). F: 278° (Zers.). Leicht löslich in Alkohol, unlöslich in Wasser. — Verliert beim Erhitzen Kohlensäure unter Bildung von 6.8-Dimethyl-chromon (Bd. XVII, S. 342).

4. γ -Styryl-butyrolacton- β -carbonsäure, γ -Styryl-paraconsäure H_1C — $CH \cdot CO_2H$ $C_{13}H_{12}O_4 = \begin{array}{c} H_1C - CH \cdot CO_2H \\ OC \cdot O \cdot CH \cdot CH \cdot CH \cdot C_6H_5 \\ \end{array}$ B. Beim Erhitzen von Zimtaldehyd mit bernsteinsaurem Natrium in Gegenwart von Essigsäureanhydrid (Bougault, C.r. 142, 1540). — F: 145°; sehr schwer löslich in Wasser, Benzol und Petroläther, schwer in Äther und Chloroform, löslich in kaltem Alkohol zu $0.5-0.6^{\circ}/_{\circ}$, leichter in heißem Alkohol (B., C.r. 142, 1540). — Wird aus ihrer Lösung in Sodalösung durch Säuren unverändert gefällt. Löst sich in Natronlauge unter Bildung von (nicht näher beschriebener) γ -Styryl-itamalsäure (B., C.r. 142, 1540). Beim Kochen mit Wasser entsteht β -Cinnamal-propionsäure (Bd. IX, S. 644) (B., C.r. 142, 1541; A.ch. [8] 14, 177). Addiert leicht 2 Atome Brom (B., C.r. 142, 1540).

5. Oxo-carbonsäuren $C_{14}H_{14}O_4$.

 $\begin{array}{ll} 1. & \gamma.\gamma-Dimethyl-\alpha-benzal-butyrolacton-\beta-carbons\"{a}ure, \ \gamma.\gamma-Dimethyl-\alpha-benzal-paracons\"{a}ure \ C_{14}H_{14}O_4 = & \begin{array}{c} C_6H_5\cdot CH:C-CH\cdot CO_2H \\ OC\cdot O\cdot C(CH_3)_1 \end{array} & oder \ \gamma-Phenyl-\alpha-iso-propyliden-butyrolacton-\beta-carbons\"{a}ure. \ \gamma-Phenyl-\alpha-iso-paracons\"{a}ure \ C_{14}H_{14}O_4 = & \begin{array}{c} (CH_3)_2C:C-CH\cdot CO_2H \\ OC\cdot O\cdot CH\cdot C_2H_3 \end{array} \end{array}$

 $\begin{array}{c} \gamma.\gamma - \text{Dimethyl} - \alpha - [4 - \text{chlor} - \text{bengal}] - \text{paracons\"{a}ure} & C_{14}H_{13}O_4\text{Cl} = \\ C_6H_4\text{Cl} \cdot \text{CH} \cdot \text{C} - \text{CH} \cdot \text{CO}_2\text{H} & \text{oder } \gamma - [4 - \text{Chlor} - \text{phenyl}] - \alpha - \text{isopropyliden} - \text{paracons\"{a}ure} \\ O\dot{\text{C}} \cdot \text{O} \cdot \dot{\text{C}}(\text{CH}_2)_2 & \text{oder } \gamma - [4 - \text{Chlor} - \text{phenyl}] - \alpha - \text{isopropyliden} - \text{paracons\"{a}ure} \\ O\dot{\text{C}} \cdot \text{O} \cdot \dot{\text{C}}(\text{CH}_2)_2 & \text{CH} \cdot \text{CO}_2\text{H} \\ O\dot{\text{C}} \cdot \text{O} \cdot \dot{\text{C}}(\text{H} \cdot \text{Cl})_2 & B. & \text{Man versetzt eine im Eis-Kochsalz-Gemisch} \\ \text{gek\"{u}hlte Suspension von Natrium\"{a}thylat in \"{A}ther allm\"{a}hlich mit einem Gemisch aus 4-Chlorbenzaldehyd und Teracons\"{a}uredi\"{a}thylester (Bd. II, S. 786), l\"{a}\emph{b}t mehrere Tage stehen und f\"{a}llt mit wenig Wasser (Stobbe, A. 380, 34). — Krystalle (aus \"{A}ther). F: 220°. — Bei mehrstündigem Erhitzen mit Acetylchlorid wurde einmal in geringer Menge <math>\alpha.\alpha$ -Dimethyl- δ -[4-chlor-phenyl]-fulgid (Bd. XVII, S. 517) erhalten.

2. 4-Oxo-5-methyl-8-isopropyl-[1.4-chromen]-carbonsäure-(2), 5-Methyl-8-isopropyl-chromon-carbonsäure-(2) $C_{14}H_{14}O_4$, s. nebenstehende Formel. B. Beim Aufbewahren von Thymoxy-fumarsäure-(Bd. VI, S. 539) mit konz. Schwefelsäure (Ruhemann, Soc. 79, 920). — Platten (aus verd. Alkohol). F: 245° (Zers.). Leicht löslich in Alkohol und Äther, unlöslich in Wasser.

3. 4-Oxo-8-methyl-5-isopropyl-[1.4-chromen]-carbonsäure-(2), 8-Methyl-5-isopropyl-chromon-carbonsäure-(2) C₁₄H₁₄O₄, s. nebenstehende Formel. B. Beim Stehenlassen von Carvacroxy-fumarsäure (Bd. VI, S. 531) mit konz. Schwefelsäure (Ruhemann, Soc. 79, 921). — Prismen (aus verd. Alkohol). F: 237—238° (Zers.). Leioht löslich in Alkohol und Äther. — Liefert bei der Destillation 8-Methyl-5-isopropyl-chromon (Bd. XVII, S. 345).

6. $\gamma.\gamma$ -Dimethyl- α -cuminal-butyrolacton- β -carbonsäure, $\gamma.\gamma$ -Dimethyl- α -cuminal-paraconsäure $C_{17}H_{20}O_4=\frac{(CH_2)_2CH\cdot C_6H_4\cdot CH:C-CH\cdot CO_2H}{OC\cdot O\cdot C(CH_2)_2}$ oder γ -[4-isopropyl-phenyl]- α -isopropyliden-butyrolacton- β -carbonsäure, γ -[4-isopropyl-phenyl]- α -isopropyliden-paraconsäure $C_{17}H_{20}O_4=\frac{(CH_3)_2C:C-CH\cdot CO_2H}{OC\cdot O\cdot CH\cdot C_6H_4\cdot CH(CH_2)_2}$. Zur Konstitution vgl. Stobba, A. 380, 27. — B. Wurde

436

einmal neben den beiden Formen der Isopropyliden-cuminyliden-bernsteinsäure bei der Kondensation von Cuminol mit Teraconsaurediathylester (Bd. II, S. 786) in Gegenwart von Natriumäthylat in Alkohol erhalten (Stobbe, Leuner, B. 36, 3899, 3902). — Schmilzt bei 1970 nach vorherigem Erweichen (Sr., L.).

g) Oxo-carbonsäuren $C_n H_{2n-16} O_4$.

 2-0xo-6-phenyl-[1.2-pyran]-carbonsäure-(3), 6-Phenyl-pyron-(2)carbonsaure-(3), 6-Phenyl-cumalin-carbonsaure-(3) $C_{12}H_{R}O_{4}$ = HC · CH · C · CO · H $C_0H_0 \cdot C - O - CO$

 $\text{HC} \cdot \text{CH} : \text{C} \cdot \text{CO}_2 \cdot \text{C}_2 \text{H}_5$. Beim Erwärmen von [γ -Phenyl-Äthylester $C_{14}H_{19}O_4 = \frac{1}{C_4H_5 \cdot C - O - CO}$ propargyliden]-malonsäure-diathylester (Bd. IX, S. 917) mit Schwefelsäure (Claisen, B. 36, 3671). — Krystalle. F: 107—108°.

- 2. Oxo-carbonsauren C18H10O4.
- 1. $2-0x_0-6-methyl-4-phenyl-[1.2-pyran]-carbonsäure-(5), 6-Methyl-$ 1. $Z-Oxo-6-methyl-4-phenyl-[1.Z-pyranj-carbonsaure-(5), 6-Methyl-4-phenyl-pyron-(2)-carbonsaure-(5), 6-Methyl-4-phenyl-cumalin-carbonsaure-(5) <math>C_{13}H_{10}O_4 = \begin{array}{c} HO_3C \cdot C \cdot C(C_6H_5) : CH \\ CH_3 \cdot C - O - CO \\ C_1_5H_{14}O_4 = \begin{array}{c} C_2H_5 \cdot O_2C \cdot C \cdot C(C_6H_5) : CH \\ CH_3 \cdot C - O - CO \\ CH_3 \cdot C$
- und behandelt das Reaktionsprodukt mit überschüssiger verd. Schwefelsäure (RUHEMANN, Soc. 75, 251). Beim Erhitzen von 4-Phenyl-5-acetyl-pyrazol-dihydrid-(4.5)-dicarbonsaure-(3.5)diathylester (Syst. No. 3698) auf 160-2300 in Kohlensaure-Atmosphäre (Buchner, Schröder, B. 35, 786). — Nadeln (aus Alkohol oder 50% iger Essigsaure). F: 104% (R., Soc. 75, 252; B., Soh.). Kp₁₃: 207—214% (geringe Zersetzung); unlöslich in Wasser, löslich in Alkohol und Ather (R., Soc. 75, 252). — Entfärbt Permanganat in Sodalösung (B., Soh.). Reduziert ammoniakalische Silberlösung (B., Son.). Durch gelinde Einw. von Alkali entsteht eine nicht näher beschriebene, aus Äther in Blättchen krystallisierende Säure (sehr leicht löslich in Wasser; schmilzt bei 205° unter Braunfärbung) (B., Sch.). Beim Kochen mit 12°/oiger Natronlauge (B., Sch.) oder mit alkoh. Kalilauge (R., Soc. 75, 252) entstehen Essigsäure und β -Phenyl-glutaconsaure. Liefert mit alkoh. Ammoniak das Ammoniumsalz der Verbindung $C_{18}H_{17}O_4N$ (s. u.) (R., Soc. 75, 252, 411). Einw. von Athylamin: R., Cunnington, Soc. 75, 780.
- 2-Oxy-2-amino 6 methyl 4 phenyl [1.2 pyran] carbonsäure (5) äthylester, möglicherweise auch $\alpha - [\alpha - \text{Imino} - \text{äthyl}] - \beta$ - phenyl - glutaconsäure - α - äthylester $C_{15}H_{17}O_4N = C_2H_5 \cdot O_2C \cdot C \cdot C(C_6H_6) : CH$ bezw. $CH_2 \cdot C(:NH) \cdot CH(CO_2 \cdot C_2H_5) \cdot C(C_6H_6) : CH$ $\begin{array}{l} C_{15}H_{17}O_4N = & \begin{array}{l} C_2H_5 \cdot O_2C \cdot C \cdot C(C_6H_5) : CH_5 \cdot C_2H_5 \cdot C(C_6H_5) : \\ CH_2 \cdot C - O_2C(OH) \cdot NH_2 \end{array} & \text{bezw. } CH_3 \cdot C(:NH) \cdot CH(CO_2 \cdot C_2H_5) \cdot C(C_6H_5) : \\ CH \cdot CO_2H. & B. & \text{Das Ammoniumsalz entsteht bei 1-stdg. Stehenlassen einer Lösung von 6-Methyl-4-phenyl-oumalin-carbonsäure-(5)-äthylester in alkoh. Ammoniak (R., Soc. 75, 252, 411). — Ammoniumsalz. Farblose Krystalle. Spaltet bei <math>100^0$ -Ammoniak ab unter Gelbfärbung. Sehr leicht lösich (5) Methylester zu zu all bei der Einw. von Salzsäure in Methylester von Salzsäure in Methylester von Salzsäure in Salzsäure 6-Methyl-4-phenyl-cumalin-carbonsaure-(5)-athylester und Ammoniak. — ${\rm AgC_{16}\,H_{16}O_4N}$. Farbloser Niederschlag. Lichtbeständig. Wird bei 100° braun.
- 3 Brom 6 methyl 4 phenyl pyron (2) carbonsäure-(5)-äthylester, 3-Brom-6 - methyl - 4 - phenyl - cumalin - carbonsäure - (5) - äthylester $C_{15}H_{18}O_4Br =$ $C_2H_4 \cdot O_2C \cdot C \cdot C(C_6H_5) : CBr$
- B. Durch Zusatz von Brom zu einer gekühlten Lösung von CH₂·C——O——CO 6-Methyl-4-phenyl-cumalin-carbonsaure-(5)-athylester in Chloroform oder Schwefelkohlenstoff und 24-stdg. Stehenlassen der Mischung (Buchner, Schröder, B. 85, 788). — Nadeln (aus Ligroin). F: 72°. — Liefert beim Auflösen in wäßriger 28°/eiger Kalilauge und Ansäuern mit Schwefelsäure unter Kühlung 2-Methyl-4-phenyl-furan-dicarbonsäure-(3.5) (S. 341); bei 1/3-stdg. Kochen mit 40% iger Kalilauge entsteht 2-Methyl-4-phenyl-furan (Bd. XVII, S. 67).

6-Methyl-4-[4-nitro-phenyl]-pyron-(2)-carbonsäure-(5)-äthylester, 6-Methyl-4-[4-nitro-phenyl]-cumalin-carbonsäure-(5)-äthylester $C_{1_0}H_{12}O_4N=C_2H_4\cdot O_2C\cdot C\cdot C(C_4H_4\cdot NO_2)\cdot CH$

CH₂·C — CO.

CH₂·C — CO.

CO.

CO.

Ansäuern des Reaktionsproduktes mit verd. Schwefelsäure (Ruhemann, Cunnington, Soc. 75, 782). — Blaßgelbe Prismen (aus Alkohol). F: 131—132°. Wenig löslich in Ather.

2. 4-Oxo-2-methyl-5-benzal-furandihydrid-carbonsäure-(3) $C_{15}H_{10}O_4 = OC-C \cdot CO_5H$

C.H. CH: C.O.C.CH.

ÖC — C·CO₂·C₂H₅

Äthylester C₁₅H₁₄O₄ = OC — C·CO₂·C₂H₅

C₆H₅·CH: C·O·C·CH₃

essigester eine Suspension von Phenylpropiolsäurechlorid in Äther (Ruhemann, Meerlman, Soc. 87, 1393). — Hellgelbe Prismen, (aus verd. Alkohol). Erweicht bei 130° und schmilzt bei 140—141°. Leicht löslich in Chloroform, ziemlich leicht in Äther und Alkohol. Eisenchlorid gibt eine tiefbraune Färbung.

h) Oxo-carbonsäuren C_nH_{2n-18}O₄.

1. $3-0\times0-5.6$ -benzo-cumaran-carbonsāure-(2), 5.6-Benzo-cumaranon-carbonsāure-(2) $C_{13}H_8O_4$, Formel I, ist desmotrop mit $3-0\times y-5.6$ -benzo-cumaron-carbonsāure-(2) (Formel II), S. 352.

2. α -Benzoyl- β -[α -furyl]-acrylsäure, Furfuryliden-benzoylessigsäure $C_{14}H_{10}O_4=\frac{HC-CH}{HO\cdot O\cdot C\cdot CH\cdot C(CO\cdot C_0H_0)\cdot CO_2H}$.

Äthylester $C_{16}H_{14}O_4 = \frac{HC - CH}{HC \cdot O \cdot C \cdot CH \cdot C(CO \cdot C_6H_5) \cdot CO_3 \cdot C_4H_5}$. B. Bei 3-stdg. Erhitzen von Benzoylessigsäure-äthylester mit Furfurol und überschüssigem Essigsäureanhydrid im Rohr auf 150° (Perkin, Stenhouse, Soc. 59, 1011). — Tafeln (aus Methylalkohol). F: 68°. Leicht löslich in Alkohol und Benzol, schwer in Petroläther.

3. γ -Phenyl- α -[5-oxo-3.4-dimethyl-dihydrofuryliden-(2)]- β -propylen- α -carbonsäure $C_{16}H_{14}O_4= CH_3 \cdot C=C \cdot CH_3 \over OC \cdot O \cdot C \cdot C(CO_2H) \cdot CH \cdot CH \cdot C_6H_5$. B. Entsteht neben viel $\alpha.\beta$ -Dimethyl- γ -cinnamal- $\Delta^{\alpha.\beta}$ -crotonlacton bei $^{1/2}$ -stdg. Erhitzen von β -benzal-propion-saurem Natrium mit Pyrocinchonsäureanhydrid (Bd. XVII, S. 445) und Acetanhydrid auf 140—150° (Thible, A. 306, 244). — Gelbe Nadeln (aus 70°/sigem Alkohol). F: 216°.

i) Oxo-carbonsauren C_nH_{2n-20}O₄.

1. Oxo-carbonsauren C14H8O4.

1. 9-Oxo-xanthen-carbonsaure-(4), Xanthon-carbon-saure-(4) C₁₄H₈O₄, s. nebenstehende Formel¹). B. Beim Kochen der Verbindung C₁₄H₈O₄ (Bd. X, S. 63) mit alkoh. Kali (A. G. Perkin, Soc. 43, 188). — Nadeln (aus Alkohol). F: 275°. Sublimiert in Nadeln. CO₂H Destilliert fast ungersetzt. Schwer löslich in Alkohol. — Liefert beim Schmelzen mit Alkali Salicylsaure. — AgC₁₄H₇O₄. Niederschlag (aus heißem Wasser). Wenig löslich in kaltem Wasser.

¹⁾ Zur Formulierung vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von Arschütz, Stoltenhoff, Voeller, B. 58 [1925], 1736.

- 2. 4-0xo-7.8-benzo-[1.4-chromen]-carbonsäure-(2),
 7.8 Benzo chromon carbonsäure (2),
 [Naphtho-1'.2':2.3-pyron-(4)]-carbonsäure-(6)¹ (,,a-Naphtho-chromoncarbonsäure") C₁₄H₅O₄, s. nebenstehende Formel.

 B. Durch Kochen einer alkoh. Lösung von [1-Oxy-naphthoyl-(2)]-brenztraubensäureester (Bd. X, S. 1008) mit konz. Salzsäure (v. Kostanecki, Froemsdorff, B. 35, 860).

 Nadeln (aus Eisessig). Schmilzt bei 277—278° unter Entwicklung von Kohlendioxyd. Sehr schwer löslich in heißem Alkohol.
- 3. 2-Oxo-7.8-benzo-[1.2-chromen]-carbonsaure-(4), 7.5-Benzo-cumarin-carbonsaure-(4), [Naphtho-2'.1':5.6-pyron-(2)]-carbonsaure-(4)\dagger (,\alpha-\text{Naphtho-cumarin-\$\beta\$-carbonsaure-(4)\dagger (,\alpha-\text{Naphtho-cumarin-\$\beta\$-carbonsa

Äthylester C₁₈H₁₈O₄, s. nebenstehende Formel. B. Durch Einw. von konz. Schwefelsäure auf eine Mischung von Oxalessigester und α-Naphthol bei 0° (Bartsch, B. 36, 1968). — Gelbe, stark pleochroitische Nadeln (aus Alkohol). F: 145—146°.

C(CO₁·C₁H₆) ≈ CF

4. 2-Oxo-5.6-benzo-[1.2-chromen]-carbonsāure-(3), 5.6-Benzo-cumarin-carbonsāure - (3), [Naphtho - 1'.2':5.6-pyron - (2)] - carbonsāure - (3)¹) (,,β-Naphthocumarin - α-carbonsāure ') C₁₄H₈O₄, s. nebenstehende Formel. B. Durch Kondensation von 2-Oxy-naphthaldehyd-(1) mit Malonsāure in Gegenwart von Essigsāure (Betti, Mundioi, R. A. L. [5] 13 II, 546; G. 35 II, 45) oder in alkoh. Lösung in Gegenwart von Anilin (Knoevenagel, Schröter, B. 37, 4487).

Aus 2-Oxy-naphthaldehyd-(1)-anil (Bd. XII, S. 220) und Malonsāure in alkoh. Lösung (K., Sch., B. 37, 4489). Durch Verseifen des entsprechenden Athylesters mit verd. Alkaliauge (Bartsch, B. 36, 1972; K., Sch., B. 37, 4487). Aus β-Oxo-β-[5.6-benzo-cumarinyl-(3)]-propionsāure-āthylester (S. 479) beim Behandeln mit verd. Kalilauge (K., Langensiepen, B. 37, 4495). — Schuppen oder gelbe Nadeln (aus Alkohol), Nadeln (aus Eisessig). F: 234° (Ba.), 233° (Zers.) (Be., M.), 232° (K., Sch.). Unlöslich in Wasser, Äther, Ligroin und Benzol, schwer löslich in kaltem Chloroform und Eisessig, in heißem Alkohol und Aceton (K., Sch.). Die alkoh. Lösung fluoresciert gelbblau (Ba.; Be., M.). Gibt mit konz. Schwefelsäure eine intensiv gelbe Färbung (K., Sch.).

Äthylester C₁₆H₁₈O₄, s. nebenstehende Formel. B. Neben 2-Acetoxy-naphthaldehyd-(1)-diacetat bei längerem Kochen von 2-Oxy-naphthaldehyd-(1) mit Malonester und Essigsäureanhydrid (Babtsch, B. 36, 1971). Durch Kondensation von 2-Oxy-naphthaldehyd-(1) mit Malonester bei Gegenwart von Piperidin (KNOEVE-NACEL, SCHEÖTEE, B. 37, 4486). — Nadeln (aus Alkohol). F: 115° (BA.; K., SCH.). Sehr leicht löslich in warmem Eisessig, leicht in warmem Alkohol, Aceton und Chloroform, unlöslich in Wasser und Ligioin (K., SCH.). Zeigt in kalten Lösungen veilchenblaue Fluorescenz (K., SCH.). Eisenchlorid färbt die mit Disulfit gekochten Lösungen blutrot (B.).

5. [3-Oxo-6.7-benzo-cumaranyliden-(2)]-essigsäure, Naphtharonylidenessigsäure $C_{14}H_{\theta}O_4$, s. nebenstehende Formel.

Äthylester $C_{16}H_{18}O_4 = C_{10}H_4 < C_0 > C: CH \cdot CO_3 \cdot C_2H_5$. B. Ent-

C:CH·CO2H

steht neben Bisnaphtharonyliden und α-Naphthoxyfumarsäurediäthylester aus Chlorfumarsäurediäthylester und Natrium-α-naphtholat in Toluol (Ruhemann, Soc. 81, 423, 425; vgl. R., Soc. 83, 1130). — Gelbliche Nadeln (aus Alkohol). F: 146° bis 147°. Schwer löslich in kaltem, leicht in heißem Alkohol. Destilliert im Vakuum unzersetzt. Bei der Hydrolyse mit alkoh. Kalilauge entsteht eine dunkelpurpurrote Lösung, aus der durch Zusatz von Salzsäure eine braune, amorphe Fällung erhalten wird; bei Anwendung von wäßr. Kalilauge entsteht ein Gemisch mehrerer Säuren.

Amid $C_{14}H_{\bullet}O_{\bullet}N = C_{10}H_{\bullet} < \stackrel{CO}{\bigcirc} > C: CH \cdot CO \cdot NH_{\bullet}$. B. Aus Naphtharonylidenessigsäureäthylester durch Einw. von alkoh. Ammoniak (R., Soc. 81, 425). — Gelbliche Nadeln (aus Eisessig). Schwärzt sich bei 258° und schmilzt bei 265° zu einer dunklen Flüssigkeit.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

2. Oxo-carbonsăuren $C_{15}H_{10}O_4$.

1. 2-[Phthalidyl-(3)]-benzoesäure, Lacton der Diphenylcarbinol-dicarbonsäure-(2.2') C₁₅H₁₀O₄ = C₆H₄ CH(C₆H₄·CO₃H) O. B. Beim Erhitzen von 3-[2-Carboxy-phenyl]-phthalid-carbonsäure-(3) (S. 499) auf 140—150° (Graebe, Juillard, A. 242, 233). Aus der Anhydroverbindung C₁₅H₉O₄ (wahrscheinlich das Dilacton der α.α-Dioxy-diphenylmethan-dicarbonsäure-(2.2') C₆H₄ CO·O·C·O·CO·C₆H₄, Bd. X, S. 881) beim Erwärmen mit Zinkstaub und Eisessig auf dem Wasserbad (G., J., A. 242, 247). Beim Ansäuern der alkal. Lösung der Diphenylcarbinol-dicarbonsäure-(2.2') (Bd. X, S. 529) (G., J., A. 242, 215). — Krystalle (aus Alkohol). Monoklin prismatisch (Le Royee, Z. Kr. 20, 263; vgl. Groth, Ch. Kr. 5, 124). F: 203° (korr.) (G., J.). 100 Tle. Wasser lösen bei 23° 0,022 Tle. (G., J.). Sehr leicht löslich in Alkohol, leicht in Ather und Chloroform (G., J.). — Bei starkem Erhitzen von 2-[Phthalidyl-(3)]-benzoesäure sublimiert eine Ver bind ung C₁₅H₁₀O₄, die bei 171—172° schmilzt, sich nur langsam in Ammoniak oder Soda löst, aber leicht in Natronlauge; Säuren fällen aus dieser Lösung wieder 2-[Phthalidyl-(3)]-benzoesäure (G., J.). Beim Erhitzen von 2-[Phthalidyl-(3)]-benzoesäure mit 50°/biger Jodwasserstoffsäure und rotem Phosphor erhält man je nach den Versuchsbedingungen Diphenylmethan-dicarbonsäure-(2.2'), Anthranol-(9)-carbonsäure-(4) (Bd. X, S. 776) oder Anthracen-dihydrid-(9.10)-carbonsäure-(1) (Bd. IX, S. 699) (G., J.). Wird durch Natronlauge in Diphenylcarbinol-dicarbonsäure-(2.2') übergeführt (G., J.). — Cu(C₁₆H₂O₄)₂ + 3H₂O. Grünblauer Niederschlag. Löslich in Natronlauge mit blauer Farbe (G., J.). — AgC₁₅H₂O₄. Niederschlag (G., J.). — Ba(C₁₅H₂O₄)₂ + 2½ H₂O. Pulveriger Niederschlag (G., J.).

Methylester $C_{16}H_{12}O_4 = C_6H_4 CO_6 CO_7 CO_1 O$. B. Aus 2-[Phthalidyl-(3)]-benzoesäure beim Einleiten von Chlorwasserstoff in die heiße methylalkoholische Lösung (G., J., A. 242, 241). — Blättchen (aus Alkohol). F: 154—155°.

Äthylester $C_{17}H_{14}O_4 = C_6H_4 \underbrace{CH(C_6H_4 \cdot CO_3 \cdot C_2H_5)}_{CH(C_6H_4 \cdot CO_3 \cdot C_2H_5)} O$. B. Beim Einleiten von Chlorwasserstoff in die heiße alkoholische Lösung von 2-[Phthalidyl-(3)]-benzoesäure (G., J., A. 242, 241). — Nadeln (aus verd. Alkohol). F: 99,5°.

Amid C₁₈H₁₁O₂N = C₆H₄ CH(C₆H₄·CO·NH₂) O. B. Aus dem Methylester oder dem Äthylester von 2-[Phthalidyl-(3)]-benzoesäure durch Erhitzen mit alkoh. Ammoniak auf 140° (G., J., A. 242, 241). — Nadeln. F: 158—160°. Schwer löslich in kaltem Alkohol, ziemlich leicht in heißem Wasser.

Phenylhydrasid $C_{21}H_{16}O_3N_2 = C_6H_4 CH(C_9H_4 CO NH NH C_6H_5)$ O. B. Beim Erwärmen einer alkoh. Lösung von 2-[Phthalidyl-(3)]-benzoesäure mit Phenylhydrazin auf dem Wasserbad (G., J., A. 242, 241). — Krystalle (aus Alkohol). Unlöslich in Sodalösung, löslich in Natronlauge. Durch kurzes Kochen mit verd. Natronlauge und Ansäuern der Lösung erhält man 2-[Phthalidyl-(3)]-benzoesäure zurück. Gibt mit konz. Schwefelsäure und Eisenchlorid eine intensiv rotviolette Färbung.

x.x-Dinitro - {2 - [phthalidyl - (3)] - bensoesäure} $C_{1s}H_sO_sN_s = C_{14}H_rO_s(NO_s)_s \cdot CO_sH$. B. Bei mehrstündigem Erhitzen von 2-[Phthalidyl-(3)]-benzoesäure mit Salpeterschwefelsäure auf dem Wasserbad (G., J., A. 242, 242). — Krystalle (aus Eisessig). F: 270—280°.

Äthylester $C_{17}H_{18}O_8N_8 = C_{14}H_7O_8(NO_9)_8 \cdot CO_2 \cdot C_2H_5$. B. Aus x.x-Dinitro-{2-[phthalidyl-(3)]-benzoesaure} durch Alkohol und Chlorwasserstoff (G., J., A. 242, 243). — Krystalle (aus Alkohol). F: 146—148°.

2. 3-Oxo-1-phenyl-phthalan-carbonsäure-(5), HO2C CO 3-Phenyl-phthalid-carbonsäure-(6) C₁₂H₁₀O₄, s. nebenstehende Formel. B. Bei Einw. von Zink und Salzsäure auf Benzophenon-dicarbonsäure-(2.4) (Bd. X, S. 880) in wäßrig-alkoholischer Lösung (ZINCKE, BLATZ-BECKER, B. 9, 1763). — Nadeln (aus Alkohol). F: 206—207°. Löslich in Ather und Chloroform, leicht in heißem Alkohol. — AgC₁₅H₂O₄. Pulveriger Niederschlag. — Calciumsalz. Leicht löslich in Wasser. Wird daraus durch Alkohol in Form einer Gallerte gefällt, die bei längerem Stehen körnig wird. — Ba(C₁₅H₂O₄)₂ + 2½H₂O. Nadeln (aus heißem Wasser). Schwer löslich in verd. Alkohol.

Äthylester $C_{17}H_{14}O_4 = C_2H_8 \cdot O_2C \cdot C_0H_3 < CH(C_0H_5) > 0$. B. Aus dem Silbersalz von 3-Phenyl-phthalid-carbonsäure: (6) und Äthyljodid (ZINCKE, BLATZBECKER, B. 9, 1764). —

Täfelchen oder Prismen. F: 114—115°. Leicht löslich in heißem Alkohol, in Äther und Chloroform.

3. 3 - Oxo - 1 - phenyl - phthalan - carbonsäure - (6), 3-Phenyl-phthalid-carbonsäure-(5) $C_{1b}H_{10}O_4$, s. nebenstehende Formel. B. Bei der Reduktion von Benzophenon-dicarbonsäure-(2.5) (Bd. X, S. 881) mit Zink und Salzsäure (Weber, J. 1878, 403). — $Ca(C_{1b}H_{0}O_{4})_{2}$ + $3H_{2}O$. Körniges Pulver.

3. Oxo-carbonsäuren $C_{16}H_{12}O_4$.

- 1. 1-Oxo-3-phenyl-isochroman-carbonsäure-(4), 3-Phenyl-3.4-dihydro-isocumarin-carbonsäure-(4) $C_{16}H_{15}O_4=C_6H_4$ C_{10} $C_{16}H_{15}O_4=C_6H_4$ C_{10} C_{16}
- 4-Brom-3-phenyl-3.4-dihydro-isocumarin-carbonsäure-(4)-nitril, 4-Brom-3-phenyl-4-cyan-3.4-dihydro-isocumarin $C_{16}H_{10}O_2NBr=C_6H_4$ C_{CO} . B. Aus α -Cyan-stilben-carbonsäure-(2) durch Brom in Sodslösung (Gyr, B. 40, 1204). Aus α -Cyan-stilben-carbonsäure-(2)-āthylester durch Brom in Chloroform bei zerstreutem Tageslicht (G.). Nädelchen (aus Alkohol). Zersetzt sich bei 165°. Leicht löslich in Alkohol, Eisessig, Chloroform, löslich in warmem Benzol, schwer löslich in Ather, fast unföslich in Ligroin. Geht beim Erhitzen über den Zersetzungspunkt unter Bromwasserstoff-Entwicklung in 3-Phenyl-4-cyan-isocumarin (S. 444) über.
- 2. ω-[Phthalidyl-(3)]-o-toluylsdure, 3-[2-Carboxy-benzyl]-phthalid, Hydrodiphthalyllactonsdure C₁₆H₁₂O₄ = C₆H₄·Ch(CH₂·C₆H₄·CO₂H) O. B. Neben Diphthalyl, Hydrodiphthalyl und Phthalid beim Eintragen von Zinkstaub in eine Lösung von Phthalsäureanhydrid in Eisessig (Wislicenus, B. 17, 2179; Hasselbach, A. 243, 250, 252). Durch Erwärmen von Hydrodiphthalyl (H., A. 243, 270) oder Diphthalyl (Graebe, Schmalzicaug, A. 228, 138; vgl. H., A. 243, 253) mit Zinkstaub und verd. Alkalilauge und nachfolgendes Ansäuern der Lösung. Beim Erhitzen von 3-[2-Carboxy-benzyl]-phthalid-carbonsäure-(3) (S. 499) auf 220° (Gabriel, Posner, B. 27, 2502). Aus Desoxybenzoin-dicarbonsäure-(2.2') (Bd. X, S. 885) durch Kochen mit Natriumamalgam in Natronlauge und darauffolgendes Ansäuern (Ephraim, B. 24, 2825). Aus α-Oxy-dibenzyl-dicarbonsäure-(2.2') (Bd. X, S. 529) bei kurzem Erhitzen auf 170° (W., B. 17, 2181) sowie bei 1-1¹/3 stdg. Erhitzen auf ca. 120° oder beim Umkrystallisieren aus heißem Alkohol (H., A. 243, 258, 262). Durch Erhitzen von Homophthalsäure auf, 210—230° (Ge., Trümpy, B. 31, 376). Prismen (aus Alkohol), Nadeln (aus Eisessig). Monoklin(?) (Fock, B. 24, 2825; vgl. Groth, Ch. Kr. 5, 213). F: 197—198° (Ge., Sch.), 198° (H.), 198,5° (W.), 201° (E.). Sehr leicht löslich in heißem, schwer in kaltem Alkohol, fast unlöslich in Wasser (W.). Gibt durch Oxydation mit Kalium-permanganat in Sodalösung und nachfolgendes Ansäuern der Lösung Diphthalylsäure (Bd. X, S. 910) (Ge., Jutillard, A. 242, 223). Beim Erhitzen mit einem großen Überschuß höchst konzentrierter Jodwasserstoffsäure im Rohr auf 200° (H.) oder beim Kochen mit Jodwasserstoffsäure und Phosphor (W.) entsteht Dibenzyl-dicarbonsäure-(2.2'). Durch Kochen mit überschüssiger Alkalilauge entstehen die Salze der α-Oxy-dibenzyl-dicarbonsäure-(2.2') (W.; H.). 3-[2-Carboxy-benzyl]-phthalid lagert sich beim Erhitzen mit Kaliumcyanid auf 215° in Stilben-dicarbonsäure-(2.2') um (H.). Cu(C₁₆H₁₁O₄). Grüner Niederschlag (Gr., Sch.). AgC₁₆H₁₁O₄. Niedersc

4. 0xo-carbonsăuren $C_{17}H_{14}O_4$.

1. $\gamma.\gamma$ -Diphenyl-butyrolacton- β -carbonsäure, $\gamma.\gamma$ -Diphenyl-paraconsäure $C_{17}H_{14}O_4 = {H_2C - CH \cdot CO_2H \over OC \cdot O \cdot C(C_0H_5)_2}$.

β-Brom-γ.γ-diphenyl-paraconsäure $C_{17}H_{13}O_4$ Br = $\frac{H_2C$ —CBr·CO $_2$ H O_1 C·O·C(C $_6$ H $_5$) $_2$ B. Durch Einw. von 1 Mol Brom auf 1 Mol γ.γ-Diphenyl-itaconsäure (Bd. IX, S. 948) bei Gegenwart von Wasser (Stobbe, Noetzeel, A. 308, 104). — Krystalle (aus Benzol). Schmilzt bei 171° bis 172° unter Gasentwicklung und Braunfärbung. Leicht löslich in Alkohol, Äther und

Petroläther, schwerer in Schwefelkohlenstoff. Durch Kochen mit Wasser entsteht zunächst $\gamma.\gamma$ -Diphenyl- $\Delta^{\alpha,\beta}$ -crotonlacton- β -carbonsäure (S. 445), dann $\gamma.\gamma$ -Diphenyl- $\Delta^{\alpha,\beta}$ -crotonlacton (Bd. XVII, S. 378).

Äthylester $C_{19}H_{17}O_4Br = \frac{H_1C - CBr \cdot CO_3 \cdot C_2H_5}{OC \cdot O \cdot C(C_6H_5)_2}$. B. Durch Einw. von Brom auf $\gamma.\gamma$ -Diphenyl-itaconsäure- β -äthylester bei Gegenwart von Wasser (Sr., A. 308, 92). — Prismen (aus niedrig siedendem Petroläther). F: 95,5—96,5°. Leicht löslich in Alkohol und Äther, schwer in Petroläther. — Läßt sich durch Kochen mit Wasser nicht in $\gamma.\gamma$ -Diphenyl- $\Delta^{\alpha.\beta}$ -crotonlacton- β -carbonsäure-äthylester überführen. Durch Kochen mit Natronlauge und nachfolgendes Ansäuern der Lösung entsteht $\gamma.\gamma$ -Diphenyl- $\Delta^{\alpha.\beta}$ -crotonlacton- β -carbonsäure.

- 2. 1-Oxo-3-p-tolyl-isochroman-carbonsdure-(4), 3-p-Tolyl-3.4-dihydroisocumarin-carbonsdure-(4) $C_{17}H_{14}O_4=C_6H_4\cdot CH_2\cdot CH\cdot CO_9H_1\cdot CH\cdot CO_9H_4\cdot CH_3$. Vgl. auch No. 3.
- B. Aus 4'-Methyl-stilben-2.α-dicarbonsāure-α-nitril durch Brom in Chloroform- oder Soda-Lösung (Gyr., B. 40, 1207). — Nadeln (aus Alkohol). Spaltet bei 173° Bromwasserstoff ab unter Übergang in 3-p-Tolyl-4-cyan-isocumarin (S. 445). Leicht löslich in Chloroform, Benzol und Aceton, schwer in Eisessig und Alkohol, fast unlöslich in Äther und Ligroin; unlöslich in verd. Sodalösung, löslich in warmer verdünnter Natronlauge, farblos löslich in reiner Schwefelsäure.
- 3. Derivat, das entweder von 3-p-Tolyl-3.4-dihydro-isocumarin-carbon-säure-(4) $C_{17}H_{14}O_4 = C_0H_4$ $C_{17}H_{14}O_4 = C_0H_4$ $C_{17}H_{14}O_4 = C_0H_4$ oder von 3-p-Tolubenzyl-phthalid-carbonsäure-(3) $C_{17}H_{14}O_4 = C_0H_4$ $C_{17}H_{14}O_4$ abzuleiten ist. Vgl. auch No. 2.

Nitril
$$C_{17}H_{18}O_2N = C_0H_4 \stackrel{CH(CN) \cdot CH \cdot C_0H_4 \cdot CH_3}{OO}$$
 oder

 C_0H_4 $C(CN)(CH_2 \cdot C_0H_4 \cdot CH_3)$ O. B. Beim Erhitzen von 4'-Methyl-stilben-2. α -dicarbon-säure- α -nitril bis ca. 20° über ihren Schmelzpunkt (Gyr, B. 40, 1206). — Krystallinische Flocken (aus verd. Alkohol). F: 157°. Unlöslich in Ligroin, leicht löslich in den gewöhnlichen Lösungsmitteln. Unlöslich in verdünnter warmer Sodalösung. Schwer löslich in warmen verdünnten Alkalien unter Zersetzung. Löst sich in reiner Schwefelsäure mit tiefroter Farbe.

4.
$$\alpha$$
-Xanthyl-acetessigsäure $C_{17}H_{14}O_4 = C_0H_4 \underbrace{CH[CH(CO \cdot CH_0) \cdot CO_3H]}_{O} C_0H_4$.

Äthylester $C_{19}H_{19}O_4=C_9H_4$ CH[CH(CO·CH₂)·CO₂·C₂H₅] C_9H_4 . B. Durch Erhitzen äquimolekularer Mengen von Xanthydrol und Acetessigester (Fosse, Robyn, C. r. 143, 240, 241; F., Bl. [3] 35, 1011; [4] 3, 1077). — Farblose Krystalle. F: 87—89° (F., R.; F., Bl. [3] 35, 1011). — Zerfällt beim Erhitzen mit Essigsäure im Rohr in Kohlendioxyd, Essigester und Xanthylaceton (Bd. XVII, S. 369) (F., Bl. [3] 35, 1013). Bromwasserstoffhaltige Essigsäure spaltet in Xanthyliumbromid und Acetessigester (F., Bl. [3] 35, 1011).

5. Oxo-carbonsauren $C_{18}H_{16}O_4$.

1. $\beta.\gamma$ - Diphenyl - butyrolacton - α - essigsäure $C_{18}H_{16}O_4 = HO_2C \cdot CH_2 \cdot HC - CH \cdot C_8H_5$ $OC \cdot O \cdot CH \cdot C_8H_5$

 β - Brom - β . γ - diphenyl - butyrolacton - α - essigsäure $C_{18}H_{15}O_4Br = HO_2C \cdot CH_2 \cdot HC - CBr \cdot C_0H_5$ B. Durch Einw. von Brom auf γ -Phenyl- γ -benzal-brenzwein-

Säure (Bd. IX, 8. 950) in Chloroform-Lösung (Stobbe, Russwurm, A. 308, 163). — Blättchen (aus Chloroform). Schmilzt je nach der Art des Erhitzens bei 141—143° oder bei 144—145° unter Zersetzung. Leicht löslich in Alkohol und Äther, schwerer in Benzol und Chloroform, unlöslich in Petroläther. — Liefert beim Kochen mit Wasser, bei Einw. von kalter Sodalösung sowie beim Schmelzen $\beta.\gamma$ -Diphenyl- $\Delta^{\alpha.\beta}$ - crotonlacton- α -essigsäure (S. 446) und das Dilacton der γ -Oxy- γ -phenyl- γ -[α -oxy-benzyl]-brenzweinsäure (s. nebenstehende Formel; Syst. No. 2768).

- 2. α -Methyl- γ . γ -diphenyl-butyrolacton- β -carbonsäure, α -Methyl- γ . γ -diphenyl-paraconsäure $C_{18}H_{16}O_4 = \begin{array}{c} CH_1 \cdot CO_2H \\ OC \cdot O \cdot C(C_2H_3)_3 \end{array}$.
- β Brom α methyl γ . γ diphenyl paraconsäure $C_{18}H_{15}O_4Br = CH_2 \cdot HC CBr \cdot CO_2H$

oC·O· $(C_6H_5)_8$. B. Aus α -Methyl- γ - γ -diphenyl-itaconsaure (Bd. IX, S. 951) und Brom bei Gegenwart von Wasser (Stobbe, Noetzel, B. 39, 1072). — Krystalle (aus Schwefelkohlenstoff). F: 174,5° (Zers.). Leicht löslich in Äther, Alkohol, Aceton und Chloroform, schwer in Benzol. — Beim Kochen mit Wasser entsteht α -Methyl- γ - γ -diphenyl- $\Delta^{\alpha,\beta}$ -crotonlacton- β -carbonsaure (S. 446).

3. $\alpha.\alpha'-Diphenyl-\alpha-acetyl-athylenoxyd-\alpha'-essigsäure, \alpha.\beta-Diphenyl-\alpha-acetyl-propylenoxyd-\gamma-carbonsäure, <math>\beta.\gamma-Oxido-\delta-oxo-\beta.\gamma-diphenyl-n-capronsäure, \beta.\gamma-Oxido-\beta.\gamma-diphenyl-\gamma-acetyl-buttersäure <math>C_{18}H_{16}O_4=C_{18}H_{16}C_0-C_0-C_0+H_{16}C_0+H$

Semicarbason $C_{19}H_{19}O_4N_3 = C_{18}H_{18}O_3(:N\cdot NH\cdot CO\cdot NH_2)$. B. Aus $\beta.\gamma$ -Oxido- $\beta.\gamma$ -diphenyl- γ -acetyl-buttersäure und salzsaurem Semicarbazid bei Gegenwart von Kaliumacetat in wäßrig-alkoholischer Lösung (J., M., Soc. 83, 291). — Nadeln (aus Alkohol). F: 198° (Zers.). Löslich in Sodalösung.

6. Oxo-carbonsäuren C19H18O4.

1. $\beta.\delta$ - Diphenyl - δ - valerolation - α - essignaure $C_{10}H_{18}O_4 = HO_2C \cdot CH_2 \cdot HC \cdot CH(C_6H_5) \cdot CH_2$

OC—O—CH·C₆H₅

B. Man behandelt γ-Phenyl-γ-phenacyl-brenzweinsäure (Bd. X, S. 886) in Wasser mit Natriumamalgam unter Einleiten von Kohlendioxyd und säuert die erhaltene Lösung mit verd. Schwefelsäure an; man erhält ein sirupöses Produkt, das beim Kochen mit 10% iger Schwefelsäure die Lactonsäure liefert (Stobbe, Russwurm, A. 814, 134). — Nadeln (aus Benzol-Petroläther). Erweicht bei 170° und schmilzt bei 185° bis 187°. Leicht löslich in der Wärme in Alkohol, Benzol, Chloroform und Wasser. — Beim Kochen mit Barytwasser entsteht das Bariumsalz der [γ-Oxy-α.γ-diphenyl-propyl]-bernsteinsäure (Bd. X, S. 530).

- 2. γ Phenyl β benzyl butyrolacton α essigsdure $C_{19}H_{18}O_4 = HO_2C \cdot CH_1 \cdot HC CH \cdot CH_1 \cdot C_2H_5$ $OC \cdot O \cdot CH \cdot C_4H_5$
- β Brom γ phenyl β bensyl butyrolacton α essignaure $C_{10}H_{17}O_4Br = HO_2C \cdot CH_2 \cdot HC CBr \cdot CH_2 \cdot C_6H_5$. B. Entsteht in geringer Menge durch Zusatz von Brom

OC·O·CH·C_eH₅
zu einer Lösung von γ-Benzyl-γ-benzal-brenzweinsäure (Bd. IX, S. 959) in Chloroform (Stobbe, Russwurm, Schulz, A. 808, 180). — Spieße (aus Benzol). Schmilzt bei 157—159° unter Gelbfärbung und starker Gasentwicklung.

3. $\alpha_{.}\alpha - Dimethyl - \beta_{.}\gamma - diphenyl - butyrolacton - \gamma - carbonsäure <math>C_{10}H_{18}O_{A} =$ $(CH_2)_2C$ — $CH \cdot C_2H_2$

 $OC \cdot O \cdot C(C_0H_0) \cdot CO_2H$. B. Man versetzt eine Lösung von 1.1-Dimethyl-2.3-diphenylevelopenten-(3)-ol-(4)-on-(5) (Bd. VII, S. 820) in Kalilauge mit Kaliumhypobromit-Lösung, behandelt die von einem geringen Niederschlag abfiltrierte Lösung mit Schwefeldioxyd und sauert dann mit verd. Schwefelsaure an (GRAY, Soc. 95, 2148). — Nadeln mit 1 H₂O (aus verd. Alkohol). F: 197°. Sehr leicht löslich in Alkohol, Essigsäure und Benzol, unlöslich in Petroläther. — Gibt mit alkoh. Natriumäthylatlösung das Dinatriumsalz der α'-Oxy-α-α.dimethyl- $\beta.\alpha'$ -diphenyl-glutarsäure (Bd. X. S. 530).

4. $\alpha.\alpha'$ - Diphenyl - α - acetyl - āthylenoxyd - α' - $[\alpha$ -propionsäure], $\beta.\gamma$ - Oxido- δ -oxo- α -methyl- $\beta.\gamma$ -diphenyl-n-capronsäure, $\beta.\gamma$ - Oxido - α - methyl- $\beta.\gamma$ - diphenyl- γ - acetyl - buttersäure $C_{13}H_{13}O_4 = \frac{C_8H_5}{C_1} \cdot \frac{C_5}{C_1} \cdot \frac{C$ Aus α.β-Dimethyl-anhydroscetonbenzil (Bd. VIII, S. 204) durch Oxydation mit Chromtrioxyd in Eisessig (JAPP, MICHIE, Soc. 83, 294). — Sechsseitige Prismen (aus Aceton + Petroläther). F: 164° (Zers.). — Gibt beim Erhitzen im Vakuum α -Athyl- α . α -diphenyl- α -acetyl-äthylenoxyd (Bd. XVII, S. 372). Bei der Oxydation des Kaliumsalzes mit Kaliumhypobromit-Lösung entsteht $\beta.\alpha'$ -Dioxy- α -methyl- $\beta.\alpha'$ -diphenyl-glutarsäure (Bd. X, S. 568). Gibt beim Kochen mit überschüssiger rauchender Jodwasserstoffsäure α -Methyl- β . γ -diphenyl- $\Delta^{\alpha,\beta}$ -crotonlacton (Bd. XVII, S. 385). Die Einw. von Essigsäureanhydrid führt zu β -Acetoxy- α -methyl- β . γ -diphenyl- γ -acetyl-butyrolacton (8. 137). Mit Phenylhydrazin entsteht 4-Methyl-1.5-diphenyl-5-[α oxy-α-phenyl-acetonyl]-pyrazolidon-(3) (Syst. No. 3636). — Natriumsalz. Schwer löslich. — AgC₁₈H₁₇O₄. Weißes Pulver.

Oxim $C_{19}H_{19}O_4N = C_{CH_3}\cdot C(:N\cdot OH) > C C_{CH(CH_3)\cdot CO_1H} \cdot B$. Aus $\beta.\gamma$ -Oxido- α -methyl- $\beta.\gamma$ -diphenyl- γ -acetyl-buttersäure und Hydroxylamin (Japp, Michie, Soc. 83, 296). — Nadeln (aus Äther + Ligroin). F: 172—173° (Zers.). — Ag $C_{19}H_{18}O_4N$. Weiße Fällung.

5. $\alpha - Athyl - \alpha - xanthyl - acetessigs aure, \alpha - Acetyl - \alpha - xanthyl - butters aure$ $C_{19}H_{16}O_4 = O < \begin{array}{c} C_0H_4 \\ C_0H_4 \end{array} > CH \cdot C(C_2H_5)(CO \cdot CH_3) \cdot CO_2H.$

Äthylester $C_{11}H_{12}O_4 = C_{12}H_{17}O_3 \cdot CO_3 \cdot C_2H_5$. B. Aus α -Xanthyl-acetessigester (S. 441) durch Behandlung mit Natrium und Äthyljodid (Fosse, Robyn, C. r. 143, 240, 241; F., Bl. [3] 35, 1011). — Blattchen. F: 126—127°.

7. γ-Phenyl-γ-[5-oxo-2-phenyl-tetrahydrofuryl-(3)] - buttersäure,

 $\begin{array}{ll} \textbf{Diphenyloctolactons\"{a}ure} \ \textbf{C}_{\textbf{30}}\textbf{H}_{\textbf{30}}\textbf{O}_{\textbf{4}} = \frac{\textbf{H}_{\textbf{3}}\textbf{C}-\textbf{C}\textbf{H}\cdot\textbf{C}\textbf{H}(\textbf{C}_{\textbf{6}}\textbf{H}_{\textbf{5}})\cdot\textbf{C}\textbf{H}_{\textbf{2}}\cdot\textbf{C}\textbf{H}_{\textbf{2}}\cdot\textbf{C}\textbf{O}_{\textbf{2}}\textbf{H}}{\textbf{O}_{\textbf{C}}^{\dagger}\cdot\textbf{O}\cdot\textbf{C}\textbf{H}\cdot\textbf{C}_{\textbf{6}}\textbf{H}_{\textbf{5}}}. \ B. \end{array}$

Neben γ -Phenyl-butyrolacton (Bd. XVII, S. 319) bei mehrtägigem Kochen von β -Benzal-propionsaure mit einem Gemisch gleicher Volumina konz. Salzsaure und Wasser (FITTIG, B. 33, 3519; A. 334, 78; F., HADORFF, A. 334, 118). Neben γ -Phenyl-butyrolacton beim Kochen von β -Benzal-propionsäure mit verd. Schwefelsäure (1 Vol. konz. Schwefelsäure + 2 Vol. Wasser) (F., ERDMANN, A. 227, 258). Neben γ -Phenyl-butyrolacton beim Kochen von γ -Phenyl-itaconsäure (Bd. IX, S. 899) mit verd. Schwefelsäure (1 Vol. konz. Schwefelsäure + 1 Vol. Wasser) (F., Leoni, A. 256, 73). Neben β -Benzal-propionsäure beim Kochen von γ -Phenyl-butyrolacton mit einem Gemisch gleicher Vol. konz. Salzsäure und Wasser (F., H., A. 334, 119). Neben γ -Phenyl-butyrolacton beim Kochen von γ -Phenyl-paraconsaure (S. 420) mit verd. Schwefelsaure (1 Vol. konz. Schwefelsaure + 2 Vol. Wasser) (E., A. 228, 177). — Blättchen (aus verd. Alkohol), Nadeln (aus verd. Aceton). F: 179° (F., E.). Sehr schwer löslich in Wasser, Äther und Schwefelkohlenstoff, leicht in Alkohol und Aceton (F., H.). — Bei der Oxydation mit Chromschwefelsäure erhält man wenig γ -Phenyl- β -benzoylpimelinsaure (Bd. X, S. 887) und viel Benzoesaure (F., H.). Beim Kochen mit Barytwasser entsteht das Bariumsalz der γ -Phenyl- β -[α -oxy-benzyl]-pimelinsäure (Bd. X, S. 530) (F., H.). — AgC₂₀H₁₀O₄. Sehr lichtempfindlicher Niederschlag (F., H.). — Ca(C₂₀H₁₀O₄)₂. Krystallinisch (F., H.). — Ba(C₂₀H₁₀O₄)₂ (F. H.).

k) Oxo-carbonsăuren C_nH_{2n-22}O₄.

- 1. Oxo-carbonsäuren $C_{16}H_{10}O_4$.
- 1. Anhydro-/7-oxy-2-phenyl-benzopyranol-carbon-sdure-(4)/ $C_{16}H_{10}O_4$, s. nebenstehende Formel. Eine Verbindung, der vielleicht diese Konstitution zukommt, und ihren Äthylester s. im Artikel 7-Oxy-2-phenyl-benzopyranol-(2)-carbonsäure-(4), S. 357.

- 2. 2 [Isocumarinyl (3)] benzoesäure $C_{16}H_{10}O_4 = C_6H_4 < \frac{CH:C\cdot C_6H_4\cdot CO_9H}{CO\cdot CO}$ s. unten bei No. 5.
- 3. 1-0x0-3-phenyl-isochromen-carbonsäure-(4), 3-Phenyl-isocumarin-carbonsäure-(4) $C_{16}H_{10}O_4=C_6H_4$ C_{CO} .
- 3-Phenyl-isocumarin-carbonsäure-(4)-nitril, 3-Phenyl-4-cyan-isocumarin $C_{16}H_{9}O_{2}N=C_{6}H_{4}$ $C(CN):C\cdot C_{6}H_{5}$ CO - 3-[3-Nitro-phenyl]-isocumarin carbonsäure-(4)-nitril, 3-[3-Nitro-phenyl]-4-cyan-isocumarin $C_{16}H_6O_4N_2=C_6H_4$ C_{CO} $C_6H_4\cdot NO_2$ B. Man schmilzt 15 g 2-Cyan-benzylcyanid mit 26 g 3-Nitro-benzylchlorid auf dem Wasserbad zusammen, versetzt das Gemisch allmählich unter Kühlung mit 300 cm³ 10° /oger Natronlauge, erhitzt bis zur Lösung des entstandenen Niederschlags, übersättigt mit konz. Salzsäure und kocht 5 Minuten (HARPER, B. 29, 2543). Gelbes Krystallpulver (aus Eisessig). F: 210—211°. Löslich in Chloroform und heißem Benzol, schwer löslich in Alkohol, unlöslich in Ather und Ligroin. Beim Erhitzen mit alkoh. Ammoniak im geschlossenen Rohr im Dampfbad entsteht 3-[3-Nitro-phenyl]-4-cyan-isocarbostyril (Syst. No. 3344). Liefert beim Erhitzen mit konz. Salzsäure + Eisessig im geschlossenen Rohr auf 180° 3-[3-Nitro-phenyl]-isocumarin (Bd. XVII, S. 375).
- 4. Phthalidyliden-phenylessigsäure, 3-[α -Carboxy-benzal]-phthalid $C_{16}H_{10}O_4=C_6H_4\overbrace{C[:C(C_6H_5)\cdot CO_2H]}^O$.
- Nitril, $3 [\alpha \text{Cyan benzal}]$ -phthalid $C_{16}H_{6}O_{2}N = C_{6}H_{4}$ $C[:C(C_{6}H_{5})\cdot CN]$ 0. B. Bei 2-stdg. Koohen von 9 Tin. Benzylcyanid mit 13 Tin. Phthalsäureanhydrid und $2^{1}/_{2}$ Tin. Natriumacetat (Gabriel, B. 18, 1264). Durch Kondensation von Phthalsäurediäthylester mit Benzylcyanid in Gegenwart von Natriumäthylat (Walther, Schickler, J. pr. [2] 55, 330). Farblose Nadeln (aus Alkohol). F: 164° (W., Sch.), 164—165,5° (Ga.). Schwer löslich in Alkohol (Ga.). Löst sich in Natronlauge erst beim Kochen (Ga.). Beim Erhitzen mit alkoh. Ammoniak auf 100° entsteht phthalamidsaures Ammonium (Ga.).
- 5. ω -Phthalidyliden-o-toluylsäure, 3-[2-Carboxy-benzal]-phthalid $C_{16}H_{10}O_4=C_6H_4$ $C_{16}H_4$ C_{16}

säure (Kp: 127°) und rotem Phosphor (Gabriel, Leupold, B. 31, 2652). Neben Dihydrodiphthalyl durch Erhitzen von Desoxybenzoin-dicarbonsäure-(2.2′) (Bd. X, S. 885) auf 240° (G., L.). — Prismen oder Rhomben (aus verd. Alkohol), die bei etwa 200° erweichen und bei 228—229° schmelzen. — $AgC_{16}H_{2}O_{4}$. Niederschlag.

2. Oxo-carbonsauren $C_{17}H_{12}O_4$.

- 1. 5-Oxo-2.2-diphenyl-furandihydrid-carbonsäure-(3), $\gamma.\gamma$ -Diphenyl- $\Delta^{\alpha.\beta}$ -crotonlacton- β -carbonsäure, Diphenylaconsäure $C_{17}H_{12}O_4 = \frac{HC C \cdot CO_2H}{OC \cdot O \cdot C(C_6H_3)_2}$
- B. Entsteht bei nicht zu langem Kochen feingepulverter β -Brom- γ . γ -diphenyl-paraconsäure (S. 440) mit der 300-fachen Menge Wasser oder der 30-fachen Menge 30-fachen Menge (Stobbe, Noetzel, A. 308, 106). Krystalle mit 1 H₂O (aus Wasser), wasserfreie Krystalle (aus Benzol oder Schwefelkohlenstoff). Schmilzt wasserhaltig bei 100—101°, wasserfreie bei 38—139°. Leicht löslich in Äther, Alkohol, Aceton und Chloroform, schwerer in kaltem Benzol und Schwefelkohlenstoff, sehr schwer in kaltem Wasser und Petroläther. Addiert in wäßr. Suspension oder in Chloroform-Lösung sehr leicht Brom. Sodaalkalische Kaliumpermanganat-Lösung wird sofort entfärbt. Beim Erwärmen der wäßr. Lösung mit Erdalkalicarbonsten oder -hydroxyden entstehen nur die Salze der einbasischen Lactonsäure. Beim Kochen mit überschüssiger Kalilauge wird der Lactonring gesprengt; das oxydicarbonsaure Salz spaltet in neutraler Lösung bei längerem Stehen unter Rückbildung des Lactonringes Alkali ab. $AgC_{17}H_{11}O_4$. Schuppen (aus Wasser). Ziemlich lichtbeständig. $Ca(C_{17}H_{11}O_4)_3$. Nadeln oder Schuppen (aus Wasser). In kaltem Wasser ebenso leicht löslich wie in heißem. $Ba(C_{17}H_{11}O_4)_3 + 2^{1}/_3 H_3O$. Sehr leicht löslich in Wasser.
- 2. 1-Oxo-3-p-tolyl-isochromen-carbonsäure-(4), 3-p-Tolyl-isocumarin-carbonsäure-(4) $C_{17}H_{12}O_4=C_4H_4\cdot CCO_2H_3\cdot CCO_4H_4\cdot CCH_3$
- 3-p-Tolyl-isocumarin carbonsäure-(4)-nitril, 3-p-Tolyl-4-cyan-isocumarin C₁₇H₁₁O₂N = C₆H₄·CH₃. B. Man schmilzt 1 g 2-Cyan-benzyleyanid (Bd. IX, S. 859) mit 0,5 g p-Tolylsäurechlorid und schüttelt die noch heiße Schmelze mit überschüssiger konzentrierter Natronlauge; man löst das entstandene Kaliumsalz des α'-Oxy-4'-methyl-2.α-dicyan-stilbens unter Umschütteln und Erwärmen in Wasser, versetzt die noch heiße Lösung vorsichtig mit überschüssiger konzentrierter Salzsäure und kocht 5 Minuten (Harper, B. 29, 2546). Beim Schmelzen von 4-Brom-3-p-tolyl-4-cyan-3.4-dihydro-isocumarin (S. 441) (GYR, B. 40, 1208). Farblose Nadelbüschel. F: 194° (G.), 193—195° (H.). Leicht löslich in Chloroform, Aceton und Benzol, schwerer in warmem Äther, Eisessig und Alkohol, unlöslich in Ligroin (G.). Unlöslich in verd. Sodalösung, löslich in warmer verdünnter Alkalilauge (G.). Mit alkoh. Ammoniak entsteht 3-p-Tolyl-4-cyan-isocarbostyril (Syst. No. 3344) (H.). Beim Erhitzen mit Eisessig und rauchender Salzsäure auf 140—160° erhält man 4-Methyldesoxybenzoin-carbonsäure-(2') und 3-p-Tolyl-isocumarin (Bd. XVII, S. 380) (H.).
- 3. 2-Methyl-a-phthalidyliden-phenylessigsäure, o-Tolyl-phthalidylidenessigsäure, 3-[2-Methyl-a-carboxy-benzal]-phthalid $C_{17}H_{18}O_4=C_0H_4 \underbrace{C[:C(CO_2H)\cdot C_4H_4\cdot CH_3]}^{CO}$ 0.

Nitril, 3 - [2 - Methyl - α - cyan - bensal] - phthalid $C_{17}H_{11}O_8N = C_0H_4 - C_1:C(CN)\cdot C_0H_4\cdot CH_2>0$. B. Durch 2—3-stdg. Erhitzen von o-Tolylessigsäurenitril mit Phthalsäureanhydrid und sehr geringen Mengen geschmolzenen Natriumacetats auf 240—245° (Goldberg, B. 33, 2823). — Krystallinische Masse (aus Alkohol). F: 191° bis 192°.

4. 3-Methyl-a-phthalidyliden-phenylessigsäure, m-Tolyl-phthalidyliden-essigsäure, 3-[3-Methyl-a-carboxy-benzal]-phthalid $C_{17}H_{12}O_4=C_0H_4 \underbrace{C_0[:C(CO_2H)\cdot C_4H_4\cdot CH_2]}^{OO}$.

Nitril, 3 - [3 - Methyl - α - cyan - bensal] - phthalid $C_{17}H_{11}O_2N = C_0H_4 C[:C(CN)\cdot C_0H_4\cdot CH_2] > 0$. Bei vorsichtigem Schmelzen von 50 Tln. m-Tolylessigsäurenitril mit 50 Tln. Phthalsäureanhydrid und 1 Tl. Natriumscetat (Braun, B. 28,

- 1392). Citronengelbe Nadeln (aus Alkokel). F: 144—145°. Leicht löslich in Toluol. Wird durch Kochen mit Kalilauge teilweise in Phthalsäure und m-Tolylessigsäurenitril zerlegt.
- x.x-Dinitro-[8-(3-methyl- α -cyan-benzal)-phthalid] $C_{17}H_0O_4N_3 = C_{17}H_0O_2N(NO_3)_9$. B. Durch Eintragen von 3-[3-Methyl- α -cyan-benzal]-phthalid in rauchende Salpetersaure (B., B. 28, 1393). Blaßgelbe Krystalle (aus Benzol). F: 187—188°. Sehr schwer löslich in Alkohol und Ligroin, löslich in Chloroform und Essigester.

3. Oxo-carbonsauren $C_{18}H_{14}O_4$.

- B. s. bei β -Brom- β . γ -diphenyl-butyrolacton- α -essigsäure (S. 442); man damptt die Chloroform-Mutterlaugen ein und erwärmt den gelben zähflüssigen Rückstand mit einer zur Lösung unzureichenden Menge Wasser (Stobbe, Russwurm, A. 308, 171). Nadeln mit 1 oder $1^{1}/_{3}$ \mathbb{C}_{9} (aus Benzol). Schmilzt nach vorherigem Erweichen bei 95°. Leicht löslich in Alkohol, Ather und Chloroform, schwer in warmem Schwefelkohlenstoff. Beim Kochen mit Wasser erhält man β . γ -Diphenyl- β -crotonlacton- α -essigsäure (s. u.) und das Dilacton der γ -Oxy- γ -phenyl- γ -(α -oxy-benzyl]-brenzweinsäure (Syst. No. 2768). Natriumsalz. Krystalle. Schwer löslich in konz. Sodalösung.
- 2. [2-0x0-4.5-diphenyl-2.5-dihydro-furyl-(3)]-essigsäure, $\beta.\gamma$ -Diphenyl- $\Delta^{\alpha.\beta}$ -crotonlacton- α -essigsäure $C_{18}H_{14}O_4= \begin{array}{c} HO_2C\cdot CH_2\cdot C=C\cdot C_8H_5 \\ OC\cdot O\cdot CH\cdot C_8H_5 \end{array}$ B. Aus dem Diacton der γ -Oxy- γ -phenyl- γ -[α -oxy-benzyl]-brenzweinsäure (Syst. No. 2768) beim Kochen mit Wasser (Stobbe, Russwurm, A. 308, 167). Aus $\beta.\gamma$ -Diphenyl- $\Delta^{\beta.\gamma}$ -crotonlacton- α -essigsäure(?) beim Kochen mit Wasser (St., R.). Nadeln mit $1^1/_2$ H_2O (aus verd. Alkohol). Wird bei 195° rot und schmilzt bei 210—214° unter Zersetzung. Leicht löslich in Alkohol und Ather, schwer in heißem Benzol und heißem Wasser, fast unlöslich in Petroläther. $AgC_{18}H_{12}O_4$. Niederschlag. Ziemlich leicht löslich in kaltem Wasser; heißes Wasser zersetzt unter Rotfärbung. $Ca(C_{18}H_{13}O_4)_2$ (bei 100°). Braune amorphe Masse. $Ba(C_{18}H_{13}O_4)_2$ bei 100°). Gelbe Nadeln (aus Wasser).
- 3. 5-Oxo-4-methyl-2.2-diphenyl-furandihydrid-carbonsäure-(3), $\alpha-Methyl-\gamma.\gamma-diphenyl-\Delta^{\alpha,\beta}-crotonlacton-\beta-carbonsäure$, Methyl-diphenyl-aconsäure, Methyl-diphenyl-aconsäure, Methyl-diphenyl-aconsäure, Methyl-diphenyl-aconsäure, Methyl-diphenyl-aconsäure, Methyl-diphenyl-aconsäure, Methyl-diphenyl-baraconsäure, Methyl-baraconsäure, Methyl-baraconsäure, Methyl-baraconsäure, Methyl-baraconsäure, Methyl-baraconsäure, Methyl-baraconsäure, Methyl-baracons, Methyl-bara

4. Oxo-carbonsäuren $C_{19}H_{16}O_4$.

- 1. γ -Phenyl- α -[α -phenyl-vinyl]-butyrolacton- α -carbonsäure $C_{19}H_{16}O_4=[C_{8}H_{5}\cdot C(:CH_{2})](HO_{2}C)C$ — CH_{2} OC·O·CH·C₈H₅.
- Nitril, γ Phenyl α [α phenyl vinyl] α cyan butyrolacton $C_{19}H_{15}O_2N = [C_6H_5\cdot C(:CH_2)](NC)C$ — CH_2 OC · O · CH · C_6H_5 . B. s. bei ε -Oxy- β . ε -diphenyl- γ -cyan- α -amylen- γ -carbon-säure, Bd. X, S. 532. Grünliche Prismen (aus Methylalkohol). F: 157° (HAWORTH, Soc. 95, 487).
- OC·O·CH·C₆H₅. B. s. bei β -Brom- γ -phenyl- β -benzyl-butyrolacton- α -essigsäure, S. 442; man behandelt die öligen, bromhaltigen Produkte 2 Stdn. mit wenig heißem Wasser und trennt das erhaltene Gemisch des Dilactons der γ -Oxy- γ -benzyl- γ -[α -oxy-benzyl]-brenzweinsäure (Syst. No. 2768) und der γ -Phenyl- β -benzyl- $\Delta^{\alpha,\beta}$ -crotonlacton- α -essigsäure

mit Sodalösung, in der das Dilacton unlöslich ist (Stobbe, Russwurm, Schulz, A. 308, 181). — Nadeln (aus heißem Benzol + Petroläther). F: 115—117°. Leicht löslich in Äther, Chloroform und Benzol, schwer in Wasser und Schwefelkohlenstoff. — AgC₁₉H₁₅O₄. Flockiger Niederschlag. Ziemlich leicht löslich in kaltem Wasser. — Ca(C₁₉H₁₅O₄)₂. Blaßgelbe, amorphe Masse.

1) Oxo-carbonsäuren $C_nH_{2n-24}O_4$.

- 1. Oxo-carbonsäuren $C_{18}H_{18}O_4$.
- 1. 2-Oxo-4.6-diphenyl-[1.2-pyran]-carbonsäure-(5), 4.6-Diphenyl-pyron-(2)-carbonsäure-(5), 4.6-Diphenyl-cumalin-carbonsäure-(5) $C_{18}H_{12}O_4 = \frac{HO_3C \cdot C \cdot C(C_6H_5) \cdot CH}{C_6H_5 \cdot C} O \frac{CO}{CO} \cdot \frac{C_3H_5 \cdot O_3C \cdot C \cdot C(C_6H_5) \cdot CH}{C_6H_5 \cdot C} O \frac{CO}{CO} \cdot \frac{B}{CO}

Äthylester $C_{20}H_{16}O_4 = \frac{C_2H_5}{C_4H_5}C_{--}O_{--}CO$. B. Durch Erwärmen von Benzoylessigester mit Phenylpropiolsäureäthylester in Gegenwart von Natriumäthylat auf dem Wassserbad (Ruhemann, Soc. 75, 253). — Prismen (aus Alkohol). F: 120—121°. Leicht löslich in Alkohol und Äther.

- C₂H₅·O₂C·C·C(C₆H₄·NO₂):CH

 C₂H₅·C

 C₂H₅·C

 C₂H₅·C

 C₂H₅·C

 C₂H₅·C

 C₂H₅·C

 C₃C

 C₄H₅·C

 C₄H₅·C

 C₅H₆·C

 C₅H₆·C

 C₆H₆·C

 C₆H₆·C

 C₇C

 C
- 2. 4-0xo-2.6-diphenyl-[1.4-pyran]-carbonsdure-(3), 2.6-Diphenyl-pyron-(4)-carbonsdure-(3) $C_{18}H_{12}O_4=\frac{HC\cdot CO\cdot C\cdot CO_2H}{C_6H_5\cdot C-O-C\cdot C_6H_5}$. B. Entsteht neben 2.6-Diphenyl-pyron-(4), wenn man Dehydrobenzoylessigsdure (Bd. XVII, S. 575) mit Phosphoroxychlorid + Phosphorpentachlorid behandelt und die entstandene Verbindung $C_{18}H_{11}O_3Cl$ (Bd. XVII, S. 576) mit ca. 65% iger Schwefelsdure auf 130—150% erhitzt (Feist, B. 23, 3731). Krystalle (aus Benzol). Schmilzt bei 201% unter stürmischem Zerfall in 2.6-Diphenyl-pyron-(4) und Kohlendioxyd. Ziemlich leicht löslich in Alkohol, sehr leicht in Chloroform, ziemlich schwer in Äther und Benzol. Verhalten gegen konzentriertes wäßriges Ammoniak: F., B. 23, 3733. Das Ammoniumsalz schmilzt bei 135% unter Schäumen. $2AgC_{18}H_{11}O_4+AgNO_2$. Käsiger Niederschlag. Löslich in heißem Wasser. $Ba(C_{18}H_{11}O_4)_2+6H_2O$. Voluminöser Niederschlag. Löslich in heißem Wasser.
- 3. [5-Oxo-4-phenyl-dihydrofuryliden-(2)]-phenylessigsäure, α -Phenyl- γ - $[\alpha$ -carboxy-benzal]- $\Delta^{\alpha,\beta}$ -crotonlacton, Carboxy-cornicularlacton $C_{18}H_{18}O_4=C_4H_5\cdot C$ —CH
- OC·O·C·C(C₄H₅)·CO₂H.

 B. Entsteht neben anderen Produkten durch Eintragen von Zinkstaub in eine kochende Lösung von Pulvinsäure (S. 480) in überschüssigem Ammoniak, Ansäuern der Lösung und Kochen des ausfallenden zähen Gemenges von Reduktionsprodukten mit Essigsäureanhydrid (Spiegel, A. 219, 19). Prismen von der Farbe und Fluorescenz des Uranglasse (aus Alkohol). F: 215°. Löst sich unzersetzt mit gelber Farbe in kalten Alkalien und Alkalien oder Alkaliern oder Alkaliern oder Alkaliern oder Alkaliern in Cornioularsäure (Bd. X, S. 779) und Kohlendioxyd. AgC₁₈H₁₁O₄. Gelber krystallinischer Niederschlag.
- [8-Chlor-5-oxo-4-phenyl-dihydrofuryliden-(2)]-phenylacetonitril, β -Chlor- α -phenyl- γ -[α -cyan-bengal]- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{18}H_{10}O_2NCl=C_4H_5\cdot C$
- OC·O·C:C(C₆H₅)·CN

 B. Durch kurzes Kochen von α.α'-Diphenyl-ketipinsäuredinitril OC·O·C:C(C₆H₅)·CN

 (Bd. X, S. 912) mit überschüssigem Phosphoroxychlorid und Behandeln des Reaktionsprodukts mit Eis (Volhard, Henke, A. 282, 59). Graugrüne Nadeln (aus Eisessig). F: 161—162°. Sehr beständig. Unlöslich in Wasser. Wird von rauchender Salzsäure bei 130° nicht verändert. Beim Erhitzen mit geschmolzenem Natriumacetat und absol. Alkohol auf 134° entsteht Pulvinsäurenitril (S. 482). Beim Lösen in alkoh. Kalilauge entsteht unter Sprengung des Lactonringes das Kaliumsalz der entsprechenden Oxycarbonsäure C₁₈H₁₂O₃NCl, deren Bariumsalz Ba(C₁₈H₁₁O₃NCl)₃ + 10 H₂O in Nadeln krystallisiert.

H₂C·CO·CH·CO₂H

C₄H₅·CH:CH·HC—O—CH·CH:CH·C₄H₅

B. Durch Einleiten von Chlorwasserstoff in eine C₄H₅·CH:CH·HC—O—CH·CH:CH·C₄H₅

gekühlte Lösung von 12,8 g Acetondicarbonsäure und 22 g Zimtaldehyd in 35 cm⁸ Eisessig (Coen, G. 30 I, 4). — Gelbes Pulver (aus Benzol). F: 210—211°. Löslich in Alkohol und Ather, unlöslich in Wasser und Ligroin. — Liefert beim Erhitzen mit talkoh. Ammoniak im Einschlußrohr auf 120—130° eine Verbindung C₄₄H₄₁O₇N vom Schmelzpunkt 244—245° (löslich in Alkohol; liefert ein krystallinisches gelbes Platinsalz), eine isomere Verbindung C₄₄H₄₁O₇N, die oberhalb 280° schmilzt (löslich in Essigester, unlöslich in Alkohol), und eine dritte isomere Verbindung C₄₄H₄₁O₇N, die in allen Lösungsmitteln unlöslich ist.

4-Oxo-2.8-distyryl-pyrantetrahydrid-carbonsäure-(3)-äthylester, 2.6-Distyryl-tetrahydropyron - carbonsäure - (3) - äthylester $C_{14}H_{14}O_{4}$ =

C₆H₅·CH·CH·HC—O—CH·CH·CC₈H₅

B. Wurde nicht völlig rein erhalten beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von 2.6-Distyryl-tetrahydropyron-carbonsäure-(3) (C., G. 30 I, 6). — Gelbe Masse. F: 233°.

x-Brom-[4-oxo-2.6-distyryl-pyrantetrahydrid-carbonsäure-(3)], x-Brom-[2.6-distyryl-tetrahydropyron-carbonsäure-(3)] $C_{22}H_{19}O_4Br$. B. Durch Einw. von 3 g dampfförmigem Brom auf die essigsaure Lösung von 3 g 2.6-Distyryl-tetrahydropyron-carbonsäure-(3) (C., G. 30 I, 5). — Gelbes Pulver (aus Alkohol). Schmilzt oberhalb 280° unter Zersetzung. Löslich in Benzol und Äther, schwer löslich in Alkohol, unlöslich in Wasser.

m) Oxo-carbonsäuren C_nH_{2n-28}O₄.

1. 3-[2-Carboxy-benzoyl]-diphenylenoxyd C₂₀H₁₂O₄, s. nebenstehende Formel. Zur Konstitution vgl. Borsche, Schaore, Schaore, B. 56 [1923], 2499, 2500. — B. Man kocht Diphenylenoxyd (Bd. XVII, S. 70) in Petroläther mit Phthalsäureanhydrid in Gegenwart von Aluminium-chlorid und zersetzt das Reaktionsprodukt mit Wasser (Stümmer, M. 28, 416). — Täfelchen (aus Methylalkohol). F: 208—210° (St.), 203—204° (B., Sch.). Leicht löslich in Alkohol, Benzol, Xylol und Chloroform, löslich in Amylalkohol; löslich in konz. Schwefelsäure mit bordeauxroter Farbe (St.). — Natriumsalz. Krystalle. Schwer löslich (St.). — AgC₂₀H₁₁O₄. Farbloser, amorpher Niederschlag (St.).

Methylester C₁₁H₁₄O₄, s. nebenstehende Formel. B. Man kocht das Silbersalz des 3-[2-Carboxy-benzoyl]-diphenylenoxyds mit Methyljodid (Sr., M. 28, 418). Aus 3-[2-Carboxy-benzoyl]-diphenylenoxyd beim Kochen mit Methylalkohol und konz. Schwefelsäure (Sr., M. 28, 420). Man behandelt 3-[2-Carboxy-benzoyl]-diphenylenoxyd mit Phosphortrichlorid und löst das Reaktionsprodukt in Methylalkohol (Sr., M. 28, 420). — Tafeln (aus Methylalkohol). Schmilzt bei 99—103°. Leicht löslich in Alkohol, Chloroform und Äther. Löslich in konz. Schwefelsäure mit roter, gelbstichiger Farbe, die nach einiger Zeit in Bordeauxrot übergeht.

Pseudomethylester, 8-[8-Methoxy-phthalidyl-(8)]-diphenylenoxyd $C_{21}H_{14}O_4$ nebenstehender Formel s. Syst. Oct. Co. 2814.

Amid C₂₀H₁₂O₃N = OC₁₂H₂·CO·C₆H₄·CO·NH₂. B. Aus dem (nicht näher beschriebenen) Chlorid des 3-[2-Carboxy-benzoyl]-diphenylenoxyds und konz. Ammoniak (St., M. 28, 421). — Pulver. F: 115—118°. Leicht löslich in Alkohol, Benzol, Pyridin und Eisessig. Löslich in konz. Schwefelsäure mit intensiv roter Farbe.

2. Oxo-carbonsäuren $C_{21}H_{14}O_4$.

1. 3-Oxo-1.1-diphenyl-phthalan-carbonsäure-(5), 3.3-Diphenyl-phthalid-carbonsäure-(6), Lacton der Triphenylcarbinol-dicarbon-säure-(2.4) C₃₁H₁₄O₄, s. nebenstehende Formel. B. Entsteht neben anderen Produkten beim Kochen von Diphenyl-[2.4-dimethyl-phenyl] coonethan (Bd. V, S. 712) mit Chromschwefelsäure (Hemilian, B. 19, 3062, 3067). Man behandelt Triphenylmethan-dicarbonsäure-(2.4) (Bd. IX, S. 965) mit

alkal. Kaliumpermanganat-Lösung und säuert an (H., B. 19, 3069). — Krystallisiert aus Alkohol mit 1 C_2H_4O in Tafeln, die an der Luft schnell verwittern. Schmilzt alkoholfrei bei 228° und destilliert unzersetzt. Unlöslich in Wasser, leicht löslich in Alkohol, Äther, Benzol und Eisessig. — Wird von Zinkstaub und Natronlauge zu Triphenylmethan-dicarbonsäure-(2.4) reduziert. Zerfällt beim Schmelzen mit Kaliumhydroxyd in Benzophenon, Benzoesäure und Isophthalsäure. — $AgC_3_1H_{13}O_4$. Nadeln. Unlöslich in Wasser. — $Ca(C_{21}H_{13}O_4)_3+3H_2O$. Nadeln (aus $70^9/_9$ igem Alkohol).

- 2. 3-Oxo-1.1-diphenyl-phthalan-carbonsäure-(6), 3.3-Diphenyl-phthalid-carbonsäure-(5), Lacton der Triphenylcarbinol-dicarbon-säure-(2.5) C₁₁H₁₄O₄, s. nebenstehende Formel. B. Entsteht neben 5-Methyl-3.3-diphenyl-phthalid und 2-Methyl-triphenylcarbinol-carbonsäure-(5) beim Kochen von Diphenyl-[2.5-dimethyl-phenyl]-methan mit Chromschwefelsäure (Hemilian, B. 16, 2361). Man behandelt 5-Methyl-triphenylmethan-carbonsäure-(2) (Bd. IX, S. 716), 2-Methyl-triphenylcarbinol-carbonsäure-(5) (Bd. X, S. 370), Triphenylmethan-dicarbonsäure-(2.5) (Bd. IX, S. 966) oder 5-Methyl-3.3-diphenyl-phthalid (Bd. XVII, S. 393) mit slkal. Kaliumpermanganat-Lösung und säuert an (H., B. 16, 2373, 2376). Krystallisiert aus der heiß gesättigten Lösung in Eisessig bei raschem Erkalten in Nadeln; bei langsamem Abkühlen verdünnterer Lösungen entstehen Tafeln. F: 244—246°. Destilliert unzersetzt. Leicht löslich in kaltem Alkohol und Eisessig. Liefert beim Kochen mit Zinkstaub und Natronlauge Triphenylmethandicarbonsäure-(2.5). Zerfällt beim Schmelzen mit Kaliumhydroxyd in Benzophenon, Benzoesäure und Terephthalsäure. AgC₂₁H₁₈O₄ (bei 110°). Nadeln (aus 50°/oigem Alkohol).
- 3. 2-[7-Methyl-fluoronyl-(9)]-benzoesäure, $7-Methyl-9-[2-carboxy-phenyl]-fluoron <math>C_{11}H_{14}O_4$, Formel I.

Äthylester-dimethylimoniumehlorid $C_{28}H_{24}O_3NCl$, Formel II, s. bei 6-Dimethylamino-2-methyl-9-[2-carbāthoxy-phenyl]-xanthydrol, S. 633.

3. α -Xanthyl-benzoylessigsäure $C_{22}H_{16}O_4$, s. nebenstehende $C_{6}H_{5}\cdot CO\cdot CH\cdot CO_2H$ Formel.

Äthylester $C_{24}H_{30}O_4 = OC_{13}H_3 \cdot CH(CO \cdot C_6H_5) \cdot CO_3 \cdot C_3H_5$. Zur Konstitution vgl. Fosse, Bl. [4] 3, 1077. — B. Durch Erhitzen eines äquimolekularen Gemisches von Xanthydrol und Benzoylessigester (Fosse, Robyn, C.r. 143, 240, 241; Bl. [3] 35, 1011). — Farblose Nadeln. F: 80° (F., R.). — Wird durch Halogenwasserstoffsäuren leicht gespalten (F., R.). Gibt beim Erhitzen mit Essigsäure im geschlossenen Rohr ω -Xanthyl-acetophenon (Bd. XVII, S. 393), Essigester und Kohlendioxyd (F., R.).

n) Oxo-carbonsäuren C_nH_{2n-30}O₄.

 $\begin{array}{l} \gamma\text{-Phenyl-}\alpha\text{-diphenylmethylen-butyrolacton-}\beta\text{-carbons}\\ \text{a-diphenylmethylen-paracons}\\ \text{au-diphenylmethylen-paracons}\\

Phenylitaconsäurediäthylester (Bd. IX, S. 900) und Benzophenon durch Einw. von Natriumäthylat in Äther (Stobbe, Badenhausen, B. 39, 770, 772). — Farblose Nadeln (aus 60% iger Essigsäure). F: 203—205° (St., B.). Leicht löslich in organischen Lösungsmitteln (St., B.). — Wird beim Kochen mit alkoh. Natronlauge oder mit Natriumäthylat-Lösung zu Triphenylfulgensäure (Bd. IX, S. 968) umgelagert (St., B.). Liefert bei der Oxydation Benzophenon (Stobbe, A. 380, 100).

o) Oxo-carbonsauren $C_nH_{2n-32}O_4$.

1. y-Phenyl- α -fluorenyliden-butyrolacton- β -carbonsäure, γ -Phenyl-

1. y-Phenyi- α -Tiuorenyiluon-butyi o.ac. C_0H_4 C:C $CH:CO_2H$ α -fluorenyliden-paraconsäure $C_{24}H_{16}O_4 = \overset{C_0}{C_0H_4} \overset{C:C}{OC} \cdot O \cdot \overset{CH:C_0}{CH:C_0H_5}$ B. Beim Eintragen einer äther. Lösung von je 1 Mol Diphenylenketon und Phenylitaconsäurediäthylester (Bd. IX, S. 900) in eine gut gekühlte ätherische Suspension von 2 Mol Natriumäthylat, neben Phenyl-diphenylen-fulgensäure (Bd. IX, S. 969) (STOBBE, A. 380, 127). — Gelblichgrüne, würfelähnliche Krystalle (aus verd. Essigsäure oder Acetylchlorid). F: 193°. Löslich in fast allen Lösungsmitteln. Konz. Schwefelsäure färbt rot. — Bei der Oxydation mit Kaliumpermanganat in Sodalösung entsteht Diphenylenketon.

2. α - [1.2; 7.8 - Dibenzo - xanthyl] - acetessig säure, α-[Dinaphtho-2'.1':2.3; 1".2":5.6-pyryl]acetessigsaure 1) C25H18O4, s. nebenstehende

Äthylester $C_{27}H_{22}O_4 = OC_{21}H_{13} \cdot CH(CO \cdot CH_3) \cdot CO_2 \cdot C_2H_5$. Zur Konstitution vgl. Fosse, Bl. [4] 3, 1077. — B. Aus 1.2;7.8-Dibenzo-xanthydrol (Bd. XVII, S. 145) und Acetessigester in essignaurer Lösung (Fosse, Robyn, C. r. 143, 240; Bl. [3] 35, 1011). Aus 1.2;7.8-Dibenzo-xanthydrol (Bd. XVII) and (Bd. XVII) are the signature of the statement of the xanthyliumbromid und Natriumacetessigester (F., R.). — Farblose Krystalle. F: 116—118°. Löslich in Benzol, Alkohol, Äther und Chloroform. — Zerfällt leicht bei der Einw. von Salzsäure in 1.2;7.8-Dibenzo-xanthyliumchlorid und Acetessigester.

2. Oxo-carbonsäuren mit 5 Sauerstoffatomen.

a) Oxo-carbonsauren $C_nH_{2n-6}O_5$.

1. 2.4-Dioxo-furantetrahydrid-carbonsäure-(3), β -Oxo-butyrolactonα-carbonsäure bezw. 4-0xy-2-oxo-furan-dihydrid-(2.5)-carbonsäure-(3), β -Oxy- $\Delta^{\alpha,\beta}$ -crotoniacton- α -carbonsaure $C_5H_4O_5=\frac{OC-CH\cdot CO_5H}{H_5C\cdot O\cdot CO}$ bezw.

 $HO \cdot C = C \cdot CO_2H$, α -Carboxy-tetronsäure, Tetronsäure- α -carbonsäure. B. Das Bariumsalz entsteht beim Kochen von Tetronsäure-a-carbonsäure-äthylester mit Barytwasser (Benary, B. 40, 1080). — Bei der Zersetzung des Bariumsalzes mit verd. Schwefelsäure entsteht Tetronsäure (Bd. XVII, S. 403). — BaC₅H₂O₅ (bei 140°). Nadeln. Unlöslich in Wasser.

Methylester $C_6H_6O_5 = \frac{OC - CH \cdot CO_2 \cdot CH_3}{H_2C \cdot O \cdot CO}$ bezw. $\frac{HO \cdot C - C \cdot CO_2 \cdot CH_3}{H_2C \cdot O \cdot CO}$. B. Durch Kochen von Natriummalonsäure-dimethylester mit Acetylglykolsäurechlorid in Benzol (Anschütz, Bertram, B. 36, 469). — Nadeln (aus Methylalkohol). Bräunt sich bei 160° (Anscholiz, Bernam, B. 30, 409). — Natural (state in the injuriation). Braint state in the last red and schmilzt bei 171—173° unter Zersetzung. — Liefert beim Kochen mit wäßrig-methylalkoholischer Natronlauge Tetronsäure (Bd. XVII, S. 403). — $NH_4C_6H_5O_8$. Nadeln. Bräunt sich gegen 180° und schmilzt bei 200—205° unter Zersetzung. — Me thylaminsalz $CH_5N+C_8H_6O_8$. B. Beim Einleiten von Methylamin in eine methylalkoholisch-ätherische Lösung von Tetronsäure-α-carbonsäure-methylester (A., B.). Blättchen. F: 177—1780 (Zers.).

Kochen von Natriummalonsäure-diäthylester mit Acetylglykolsäurechlorid in Benzol (Anschütz, Вектвам, В. 36, 470). Neben 2-Äthoxy-4-oxo-furan-dihydrid-(4.5)-carbonsäure-(3)äthylester (vgl. Bd. II, S. 581) bei Einw. von 1 Mol Chloracetylchlorid auf 2 Mol Natriummalonsäure-diathylester in äther. Suspension (BENABY, B. 40, 1080). Aus 2-Athoxy-4-oxofuran-dihydrid-(4.5)-carbonsäure-(3)-äthylester durch spontane Zersetzung, z. B. beim Stehenlassen der wäßr. Lösung oder bei Einw. von Brom in Chloroform (Ben., B. 40, 1081). —

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Wasserhaltige Nadeln (aus Wasser) (A., Ber.), wasserfreie Nadeln (aus Methylalkohol) (Ben.). Die wasserhaltige Verbindung schmilzt bei 75-77° (A., Ber.), die wasserfreie bei 124° bis 125° (A., Ber.; Ben.). Leicht löslich in Wasser und Alkohol, schwer in Benzol, fast unlöslich in Äther (A., BER.). - Liefert beim Kochen mit Barytwasser das Bariumsalz der Tetronsäure-α-carbonsäure (Ben.).

- 4-Oxo-2-imino-furantetrahydrid-carbonsäure-(8)-äthylester bezw. 4-Oxy-2 - imino - furan - dihydrid - (2.5) - carbonsäure - (8) - äthylester $C_rH_0O_4N$ = OC— $CH \cdot CO_2 \cdot C_2H_5$ $HO \cdot C = C \cdot CO_2 \cdot C_2H_5$ bezw. "Imido-tetron-a-carbonsaure-H,C·O·C:NH H,C·O·C:NH athylester". Vgl. hierzu Bd. II, S. 581.
- 4-Oxo-2-oximino-furantetrahydrid-carbonsäure-(8)-äthylester bezw. 4-Oxy-2 - oximino - furan - dihydrid - (2.5) - carbonsäure - (3) - äthylester $C_2H_2O_5N$ = OC—CH·CO₂·C₂H₅ bezw. $HO \cdot C = C \cdot CO_2 \cdot C_2H_5$, "Oximido-tetron-α-carbonsäure-H.C.O.C: N.OH $H_{\bullet}C \cdot O \cdot C : N \cdot OH$ äthylester". Vgl. hierzu Bd. II, S. 581.
- 4-Oxo-2-phenylhydrazono-furantetrahydrid-carbonsäure-(3)-äthylester bezw. 4 - Oxy - 2 - phenylhydrazono - furan - dihydrid - (2.5) - carbonsäure - (3) - äthylester $\begin{array}{c} \text{OC} & \overset{\circ}{\text{CH}} \cdot \text{CO}_2 \cdot \text{C}_2\text{H}_5 \\ \text{H}_1\overset{\circ}{\text{C}} \cdot \text{O} \cdot \overset{\circ}{\text{C}} : \text{N} \cdot \text{NH} \cdot \text{C}_6\text{H}_5 \\ \end{array} & \begin{array}{c} \text{HO} \cdot \text{C} & \overset{\circ}{\text{C}} \cdot \text{CO}_2 \cdot \text{C}_2\text{H}_5 \\ \text{H}_1\overset{\circ}{\text{C}} \cdot \text{O} \cdot \overset{\circ}{\text{C}} : \text{N} \cdot \text{NH} \cdot \text{C}_6\text{J} \end{array}$ H,C.O.C:N.NH.C.H, ,,Phenylhydrazidotetron-α-carbonsaure-athylester". Vgl. hierzu Bd. II, S. 581.

2. Oxo-carbonsăuren $C_6H_6O_5$.

1. [2.4-Dioxo-tetrahydrofuryl-(3)]-essigsäure, β -Oxo-butyrolacton- α -essigsäure bezw. [4-Oxy-2-oxo-2.5-dihydro-furyl-(3)]-essigsäure, β -Oxy- $\Delta^{\alpha,\beta}$ -crotonlacton- α -essigsäure $C_6H_6O_5= {\rm OC-CH\cdot CH_3\cdot CO_2H}\over {\rm H_2C\cdot O\cdot CO}$ bezw.

 $HO \cdot C = C \cdot CH_1 \cdot CO_2H$, Tetronsäure - a - essigsäure, Carboxytetrinsäure.

Äthylester $C_8H_{10}O_5 = \frac{OC-CH \cdot CH_2 \cdot CO_2 \cdot C_2H_5}{H_2C \cdot O \cdot CO}$ bezw. $HO \cdot C = C \cdot CH_2 \cdot CO_2 \cdot C_2H_3$

- B. Aus Bromacetyl-bernsteinsäure-diäthylester (Bd. III, S. 803) durch Destillation unter vermindertem Druck (RUHEMANN, HEMMY, Soc. 71, 333) oder durch längeres Erhitzen im Wasserbad (Moscheles, Cornelius, B. 21, 2605). — Blättchen (aus Benzol). F: 95° (M., C.), 96° bis 97° (R., H.). Kp14: 191—198° (R., H.). Leicht löslich in Alkohol, schwer in Äther (R., H.).
- 2. [2.5-Dioxo-tetrahydrofuryl-(3)]-essigsäure, $\alpha.\beta$ -Anhydro-tricarballyl $s\"{a}ure \quad C_0H_0O_5 = \frac{H_1C - CH \cdot CH_1 \cdot CO_2H}{OC \cdot O \cdot CO}^1.$ B. Aus Tricarballylsäure beim Destillieren

unter vermindertem Druck (EMERY, B. 24, 597) oder beim Kochen mit Acetylchlorid (E. bis 132° (E.), 130—131° (B., S.). Kp₄₅: 215—225° (B., S.). Leicht löslich in Wasser, Alkohol und heißem Eisessig, schwer in Ather und Chloroform (E.). — Liefert beim Sättigen der äther. Lösung mit Ammoniak das saure Ammoniumsalz des Tricarballylsäure-monoamids (E.). Gibt in ather. Lösung bei der Einw. von 1 bezw. 2 Mol Anilin Tricarballylsaure-monoanilid bezw. dessen Anilinsalz (Bd. XII, S. 317) (E.; Bertram, B. 38, 1620). Bei kurzem Kochen mit Anilin entsteht neben anderen Produkten Tricarballylsäureanil

- H₂C-- $-\mathbf{CH} \cdot \mathbf{CH_2} \cdot \mathbf{CO_2H}$ (Syst. No. 3367) (E.); beim Erhitzen mit 3 Mol Anilin auf $OC \cdot N(C_6H_5) \cdot CO$ ca. 1850 erhält man Tricarballylsäure-anil-anilid (BE.).
- 3. 4.5 Dioxo 2 methyl furantetrahydrid carbonsäure (2), α Oxo - γ -methyl-butyrolacton- γ -carbonsäure, α -Oxo- γ -valerolacton- γ -carbonsaure bezw. 4 - 0xy - 5 - 0xo - 2 - methyl - furandihydrid - carbonsaure - (2), α - $Oxy - \gamma$ - $methyl - \Delta^{\alpha,\beta}$ - $crotonlacton - \gamma$ - carbonsaure $C_6H_6O_5$ OC-CH, HO·C=CH bezw.

 $O\dot{C} \cdot O \cdot \dot{C}(CH_3) \cdot CO_2H \cdot B. \text{ s. bei } \gamma \cdot Oxy \cdot \alpha \cdot oxo \cdot butan \cdot \alpha \cdot \gamma \cdot dicarbon$ OC·O·C(CH₂)·CO₂H

¹⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] wurde die schon von Bone, Sprankling, Soc. 81, 35 bevorzugte Formel von Malachowski, C. 1929 II, 2175 bewiesen.

säure, Bd. III, S. 882. — Farblose, etwas hygroskopische Tafeln oder Säulen (aus Äther + Benzol), Nadeln (aus Ather). F: 116—117. (WOLFF, A. 805, 157; 817, 8), 115—116. (DE JONG, R. 20, 91). Verkohlt bei der Destillation zum größten Teil (W., A. 317, 8). Leicht löslich in Wasser, Alkohol und Ather, schwer in Chloroform, Benzol und Ligroin (W., A. 817, 8). Verhält eich bei der Titration mit 0,1n-Natronlauge gegen Phenolphthalein wie eine zweibasische Saure (W., A. 317, 8). Verhalt sich bei der Titration mit 0,1n-Kalilauge gegen Lackmus bei gewöhnlicher Temperatur wie eine einbasische, beim Kochen wie eine weibasische Säure (DE J., R. 20, 93; A. 319, 122). Gibt in wäßr. Lösung mit Eisenchlorid eine rote Färbung (W., A. 317, 8). — Reduziert Fehlengsche Lösung und ammoniakalische Silberlösung beim Erwärmen (W., A. 317, 8). Liefert bei der Einw. von 1 Mol Brom in Chloroform (W., A. 317, 16) oder in Wasser (DE J., R. 21, 203) in der Kälte β-Brom-α-οκο-γ-valerolacton-γ-carbonsäure. Gibt beim Erhitzen mit überschüssigem Brom in wäßriger Lösung Bromwasserstoff, Kohlendioxyd, Oxalsaure und ein Gemisch von Bromacetonen (DE J., R. 22, 285). Beim Eintragen in auf -5° abgekühlte wasserfreie Salpetersäure wird β -Nitro- α -oxo- γ -valerolacton- γ -carbon-säure gebildet (W., A. 817, 20). Beim Erwärmen mit salzsaurem Hydroxylamin in wäßr. Lösung entsteht a-Oximino-y-valerolacton-y-carbonsaure (W., A. 317, 11). a-Oxo-y-valerolacton-y-carbonsäure liefert beim Erwärmen mit Natronlauge Brenztraubensäure bezw. Methyldihydrotrimesinsäure (Bd. IX, S. 975) (W., A. 317, 3, 8). Geht beim Sättigen mit Carbonaten in heißer Lösung teilweise in Brenztraubensäure über; durch Fällen der wäßr. Säurelösung mit Bleisoetat entsteht ein gelbliches Salz Pb $C_8H_4O_5+3H_2O$, das sich langsam schon bei 85° zersetzt und bei der Zersetzung mit Schwefelwasserstoff eine sirupöse Säure gibt, welche ein Phenylhydrazon vom Schmelzpunkt 182° liefert (W., A. 317, 9; vgl. auch DE J., R. 21, 195). Die Salze der α-Οxο-γ-valerolacton-γ-carbonsäure gehen beim Kochen der wäßr. Lösung in saure Salze der γ-Οxγ-α-oxo-butan-α-γ-dicarbonsäure über (DE J., R. 20, 84, 99; 21, 192). Versetzt man die mit Natriumcarbonat neutralisierte Lösung von α-Οxoγ-valerolacton-γ-carbonsaure mit 1 Mol Natriumdisulfit, neutralisiert die Lösung mit Natronlauge und läßt einige Monate stehen, so erhält man eine Verbindung des Natriumsalzes der γ -Oxy- α -oxo-butan- α . γ -dicarbonsaure mit Natriumdisulfit NaO₂C · C(OH)(CH₂) · CH₂ · C(OH) (SO₂Na)·CO₂Na + 7H₂O (DE J., R. 23, 153). α-Oxo-γ-valerolacton-γ-carbonsāure wird durch Erhitzen mit Wasser auf 120° (W., A. 817, 25), leichter durch Erhitzen mit Reim Sättigen auf 120° (W., A. 317, 25; DE J., R. 21, 199) in Brenzweinsäure übergeführt. — Beim Sättigen der alkoh. Lösung mit Chlorwasserstoff erhält man α -Athoxy- γ -methyl- $\Delta^{\alpha,\beta}$ -crotonlactonγ-carbonsaure-athylester (S. 522) (DE J., R. 28, 151; vgl. Gault, C. r. 154 [1912], 441). Liefert bei Behandlung mit Essigsäureanhydrid α -Acetoxy- γ -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton- γ -carbonsäure (S. 522) (DE J., R. 22, 282). Gibt bei Einw. von Benzoylchlorid in Gegenwart von Soda α -Benzoyloxy-y-methyl- $\Delta^{\alpha,\beta}$ -crotonlacton-y-carbonsäure (S. 522) (W., A. 317, 10). Bei der Einw. von salzsaurem Phenylhydrazin in wäßr. Lösung entsteht α-Phenylhydrazono-y-valerolacton-y-carbonsaure (W., A. 817, 12; DE J., R. 20, 94). Bei Zusatz von Benzoldiazoniumsalz-Lösung zur sodaalkalischen Lösung erhält man α -Oxo- β -phenylhydrazono- γ -valerolacton- γ -carbonsaure (S. 489) (W., A. 817, 15).

NH₄C₄H₅O₅. Hygroskopische Nadeln (aus Alkohol + Ather). Löslich in Alkohol (DE J., R. 21, 191). — KC₆H₅O₅ + C₅H₅·OH. Amorphe, hygroskopische Masse (aus Alkohol + Ather) (DE J., R. 21, 192). — Silbersalz. Amorphe Masse. Leicht löslich in Wasser und Alkohol (DE J., R. 21, 192). — Ba(C₆H₈O₅)₂ + 1^{1} /₂ H₂O. Nadeln. Sehr leicht löslich in Wasser (DE J., R. 20, 98).

5 - Oxo - 4 - phenylhydrazono - 2 - methyl - furantetrahydrid - carbonsäure - (2), α - Phenylhydrazono - γ - methyl - butyrolacton - γ - carbonsäure , α - Phenylhydrazono - γ - valerolacton - γ - carbonsäure $C_{12}H_{12}O_4N_2 = \begin{array}{c} C_4H_5\cdot NH\cdot N:C-CH_2 \\ OC\cdot O\cdot C(CH_2)\cdot CO_2H \end{array}$. B. Beim Mischen äquimolekularer Mengen von α -Oxo- γ -valerolacton- γ -carbonsäure und salzsaurem

Mischen äquimolekularer Mengen von α -Oxo- γ -valerolacton- γ -carbonsäure und salssaurem Phenylhydrazin in wäßr. Lösung (Wolff, A. 817, 12; de Jong, R. 20, 94). — Krystallisiert aus siedendem Wasser in gelben Nadeln, aus warmem Alkohol in gelben Prismen mit $^1/_2$ C_2H_3 ·OH, die beide, rasch erhitzt, bei 197—198° unter Zersetzung schmelsen (W.). Scheidet sich aus verd. Lösung in gelben Nadeln mit 2 H_2 O, aus konz. Lösung in wasserfreien Krystallen ab,

die beide bei 191—192° schmelzen (DE J., R. 20, 95). Leicht löslich in heißem Wasser und Alkohol (W.; DE J., R. 20, 96). Die alkoholhaltigen Krystalle lösen sich in Alkohol viel schwerer als die durch Umkrystallisieren aus Wasser erhaltene Verbindung (W.). Ist in kalter Natronlauge mit gelber Farbe unverändert löslich (DE J., R. 20, 94). — Liefert beim Kochen mit Natronlauge α-Oxy-α'-phenylhydrazono-α-methyl-glutarsäure (Bd. XV, S. 394) (W.). Geht beim Kochen mit Salzsäure (D: 1,14) in 1-Phenyl-6-oxo-5-methyl-pyridazindihydrid-carbon-N:C(CO₃H)·CH

săure-(3) $C_3H_3 \cdot N$ —C0—C·CH₃ (Syst. No. 3696), beim Kochen mit Salzsăure (D: 1,2) in eine Verbindung $C_{12}H_{10}O_3N_2$ (s. u.) über (DE J., A. 319, 125, 126). Die Lösung in konz. Schwefelsäure wird durch Kaliumdichromat tiefrot (W.). — $KC_{12}H_{11}O_4N_2 + H_3O$. Gelbrote Nadeln. Wird durch Kochen in wäßr. Lösung nicht verändert (DE J., A. 319, 125).

Verbindung $C_{12}H_{10}O_3N_2$. B. Aus α -Phenylhydrazono- γ -velerolacton- γ -carbonssure (S. 452) durch Kochen mit Salzssure (D:1,2) (DE J., A. 319, 126). — Farblose Nädelchen. Bräunt sich bei 265° und schmilzt bei 280° unter Zersetzung; unlöslich in Wasser, Alkohol und Äther, löslich in heißem Eisessig; unlöslich in Kaliumcarbonat-Lösung, löslich in Natronlauge; aus der Lösung in Natronlauge fällt Salzssure eine Verbindung $C_{12}H_{11}O_5N = C_{12}H_2O_4N + H_2O$ (?) (s. u.) (DE J., A. 319, 127). Liefert beim Kochen mit Essigssureanhydrid ein Acetylderivat $C_{12}H_2O_3N_4(CO\cdot CH_2)$ (s. u.) (DE J., R. 23, 153).

Verbindung $C_{12}H_{11}O_5N=C_{12}H_3O_4N+H_3O$ (?). B. Durch Lösen der Verbindung $C_{12}H_{10}O_5N_2$ (s. o.) in Natronlauge und Fällen mit Salzsäure (DE J., A. 319, 127). — Gelbe Nadeln oder Rauten. F: 237—238°; einbasisch; liefert beim Kochen mit starker Salzsäure unter Verlust von 1H₂O die Verbindung $C_{12}H_3O_4N$ (s. u.) (DE J., A. 319, 127). Löst sich in Salpetersäure zu der Verbindung $C_{12}H_{10}O_5N_3$ (s. u.) (DE J., R. 23, 154). — $KC_{12}H_{10}O_5N=KC_{12}H_3O_4N+H_2O$ (?). Leicht löslich in Wasser (DE J., A. 319, 127).

Verbindung $C_{12}H_2O_4N$. B. Aus der Verbindung $C_{12}H_{11}O_4N$ (s. o.) beim Kochen mit starker Salzsäure (DE J., A. 319, 127). — Sandiges Krystallpulver. F: 237—238°. Liefert mit Kaliumcarbonat-Lösung das Kaliumsalz $KC_{12}H_{10}O_4N = KC_{12}H_4O_4N + H_4O$ (?) (s. o.).

Verbindung $C_{12}H_{10}O_7N_2 = C_{12}H_8O_4N(NO_2) + H_2O_3(?)$. B. Durch Lösen der Verbindung $C_{12}H_{11}O_5N$ (s. o.) in Salpetersäure (DE J., R. 23, 154). — F: 218°.

Verbindung $C_{14}H_{12}O_4N_2 = C_{12}H_2O_3N_3(CO \cdot CH_3)$. B. Beim Kochen der Verbindung $C_{12}H_{10}O_3N_3$ (s. o.) mit Essignäureanhydrid (Dr J., R. 23, 153)...— Nadeln (aus verd. Alkohol). Sintert bei 255° und zersetzt sich bei 264°. Unlöslich in Wasser, löslich in Alkohol und Natronlauge.

5 - Oxo - 4 - phenylhydrasono - 2 - methyl - furantetrahydrid - carbonsäure - (2) - äthylester, α -Phenylhydrasono - γ - methyl - butyrolacton - γ - carbonsäure - äthylester, α - Phenylhydrasono - γ - valerolacton - γ - carbonsäure - äthylester $C_{14}H_{16}O_4N_2=C_4H_5\cdot NH\cdot N:C$ —CH.

OC·O·C(CH₂)·CO₂·C₂H₅
B. Durch Eintragen von α-Phenylhydrazono-γ-valero-lacton-γ-carbonsāure (S. 452) in mit Chlorwasserstoff gesāttigten Alkohol (DE Jong, R. 22, 283). — Nadeln (aus verd. Alkohol). F: 120°. Unlöslich in kalter Kaliumcarbonat-Lösung. — Bestāndig gegen siedenden Alkohol. Wird durch Erhitzen mit Alkohol, der mit Chlorwasserstoff gesāttigt ist, in 1-Phenyl-6-oxo-5-methyl-pyridazindihydrid-carbonsāure-(3)-āthylester (Syst. No. 3696) übergeführt.

 (DE J., R. 23, 149). Mit salzsaurem Hydroxylamin in wäßr. Lösung erhält man 5-Methylisoxazol-carbonsäure-(3) (Syst. No. 4305) (W.). — Durch Erwärmen der alkoh. Lösung von β -Brom- α -oxo- γ -valerolacton- γ -carbonsäure unter 20 mm Überdruck auf ca. 50° oder durch Einleiten von Alkohol-Dampf in die auf 110—120° erhitzte alkoh. Lösung der Säure bildet sich β -Brom- α -oxo- γ -valerolacton- γ -carbonsäure-äthylester (DE J., R. 21, 205; vgl. GAULT, C. r. 153 [1911], 109). Beim Eindunsten einer Lösung in Essigsäureanhydrid über Schwefelsäure erhält man β -Brom- α -acetoxy- γ -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton- γ -carbonsäure (8. 522) (DE J., R. 23, 150). Bei der Einw. von salzsaurem Phenylhydrazin in wäßr. Lösung entstehen α -Phenylhydrazono- γ -methyl- $\Delta^{\beta,\gamma}$ -crotonlacton vom Schmelzpunkt 129° (Bd. XVII, S. 439), ein isomeres Phenylhydrazon C₁₁H₁₀O₂N₂ (vom Schmelzpunkt 177°) (Bd. XVII, S. 440) und 1-Phenyl-5-methyl-pyrazol-carbonsäure-(3) (Syst. No. 3643) (W.). — BaC₆H₂O₈Br+H₂O (DE J., R. 21, 205).

 $\begin{array}{ll} \beta\text{-Brom-α-oxo-γ-methyl-butyrolacton-γ-carbonsäure-äthylester,} & \beta\text{-Brom-α-oxo-γ-valerolacton-γ-carbonsäure-äthylester bezw.} & \beta\text{-Brom-α-oxy-γ-methyl-$\Delta^{\alpha,\beta}$-croton-lacton-γ-carbonsäure-äthylester $C_8H_8O_5Br = & OC--CHBr \\ OC-O\cdot C(CH_8)\cdot CO_2\cdot C_2H_8 & bezw. \\ \end{array}$

HO·C—CBr
OC·O·C(CH₂)·CO₂·C₂H₅. Zur Formulierung vgl. Gault, C. r. 158 [1911], 109. — B.
Durch Erwärmen einer alkoh. Lösung von β-Brom-α-οχο-γ-valerolecton-γ-carbonsäure unter 20 mm Überdruck auf ca. 50°, durch Einleiten von Alkohol-Dampf in die auf 110° bis 120° erhitzte alkoholische Lösung oder durch Sättigen der alkoh. Lösung mit Chlorwasserstoff (DE Jong, R. 21, 205). — Krystalle. F: 76—77° (DE J., R. 21, 205). — Entfärbt Bromwasser (DE J., R. 21, 206). Liefert beim Auflösen in Essigsäureanhydrid β-Brom-α-acetoxy-γ-methyl-Δ^{α,β}-crotonlacton-γ-carbonsäure-äthylester (S. 522) (DE J., R. 23, 151).—KC₈H₈O₈Br. Nadeln (DE J., R. 21, 206).

β-Nitro-α-oxo-γ-methyl-butyrolacton-γ-carbonsäure, β-Nitro-α-oxo-γ-valerolacton-γ-carbonsäure $C_4H_5O_7N= {{\rm OC-CH\cdot NO_2}\atop {\rm OC\cdot O\cdot C(CH_2)\cdot CO_2H}}$ bezw. desmotrope Formen. B. Beim Eintragen von α-Oxo-γ-valerolacton-γ-carbonsäure in auf — 5° abgekühlte wasserfreie Salpetersäure (Wolff, A. 317, 20). — Nädelchen oder körnige Krusten (aus Äther + Benzol). F: 152° (Zers.). Sehr leicht löslich in Wasser und Alkohol, leicht in Äther, schwer in Benzol, Chloroform und Ligroin. — Die schwach gelbgrüne Färbung der wäßr. Lösung wird durch Zusatz von Eisenchlorid nicht wesentlich verändert. Zerfällt in wäßr. Lösung leicht in Oxalsäure und eine andere krystallinische Säure.

3. Oxo-carbonsauren CaH10O5.

1. β -Oxo- β -[2-oxo-5-methyl-tetrahydrofuryl-(3)]-propionsäure, γ -Methyl- α -carboxyacetyl-butyrolacton, γ -Valerolacton- α -malonyledure $C_{b}H_{10}O_{b}=HO_{1}C\cdot CH_{1}\cdot CO\cdot HC$ — CH_{2}

OC · O · CH · CH.

γ-Chlormethyl-α-carbomethoxyacetyl-butyrolacton, δ-Chlor-γ-valerolacton-α-malonylsäure-methylester $C_9H_{11}O_8Cl=$ $CH_2\cdot O_2C\cdot CH_2\cdot CO\cdot HC$ — CH_2 bezw. desmotrope Formen. B. Durch Kondensation von Natrium-Acetondicarbonsäure-dimethylester mit Epichlorhydrin (Haller, Maron, C. r. 136, 436; Bl. [3] 31, 443). — Öl. Bei der Einw. von Benzoldiazoniumchlorid-Lösung auf die Natriumerbindung in Alkohol bei 0° entsteht δ-Chlor-α-phenylhydrazono-γ-valerolacton (Bd. XVII, S. 412) (H., M., C. r. 137, 15; Bl. [3] 31, 447). — Cu(C₉H₁₀O₈Cl)₂. Hellgrün. F: 204—205° (H., M., C. r. 136, 436; Bl. [3] 31, 443).

Semicarbason $C_{10}H_{14}O_{2}N_{3}Cl=\frac{CH_{2}\cdot O_{3}C\cdot CH_{3}\cdot C(:N\cdot NH\cdot CO\cdot NH_{2})\cdot HC-CH_{2}}{OC\cdot O\cdot CH\cdot CH_{2}Cl}$ B. Aus δ -Chlor- γ -valerolacton- α -malonylsäure-methylester und salzsaurem Semicarbazid in wäßrig-alkoholischer Lösung bei Gegenwart von Natriumacetat (Haller, March, C.r. 136,

436; Bl. [3] 31, 443). — Krystalle mit $^{1}/_{2}$ H₂O (aus Methylalkohol). F: 132—133°. γ -Chlormethyl- α -carbāthoxyacetyl-butyrolacton, δ -Chlor- γ -valerolacton- α -malonylaäure-āthylester $C_{10}H_{12}O_{5}Cl= \frac{C_{2}H_{5}\cdot O_{2}C\cdot CH_{2}\cdot CO\cdot HC}{OC\cdot O\cdot CH\cdot CH_{2}Cl}$ bezw. desmotrope Formen. B. Durch Erwärmen von Natrium-Acetondicarbonsäure-diäthylester

mit Epichlorhydrin in alkoh. Lösung; man trennt δ -Chlor- γ -valerolacton- α -malonylsäureäthylester von unverändertem Acetondicarbonsäure-diäthylester durch die Kupfersalze (Haller, March, C. r. 186, 435; Bl. [3] 81, 440). — Blaßgelbes, ziemlich dickflüssiges Ol. Destilliert nicht unzersetzt (H., M., C. r. 186, 435). — Liefert beim Kochen mit der Destilliert nicht unzersetzt (H., M., C. r. 136, 435). — Liefert beim Kochen mit der äquimolekularen Menge verd. Kaliumcarbonat-Lösung unter Entwicklung von CO_2 $\varepsilon.\zeta$ -Dioxy- β -oxo-hexan (H., M., C. r. 137, 14; Bl. [3] 31, 446). Gibt beim Sättigen der alkoh. Lösung mit Chlorwasserstoff in der Kälte 2-Chlormethyl-2.3-dihydro-furan-[carbonsäure-(4)-äthylester]-[essigsäure-(5)-äthylester] (S. 325) (H., M., C. r. 137, 11; Bl. [3] 31, 443). Bei der Einw. von Benzoldiazoniumchlorid-Lösung auf die Natriumverbindung in Alkohol bei 0° entsteht δ -Chlor- α -phenylhydrazono- γ -valerolacton (Bd. XVII, S. 412) (H., M., C. r. 137, 14; Bl. [3] 31, 447). — Cu($C_{10}H_{18}O_5Cl$), Hellgrünes Krystallpulver (aus Alkohol). F: 224—225°; sehr schwer löslich in siedendem Alkohol, unlöslich in Wasser, Chloroform und Äther (H., M., C. r. 186, 435; Bl. [3] 81, 441).

 $\textbf{Semicarbason} \quad C_{11}H_{16}O_5N_3Cl = \frac{C_2H_5 \cdot O_2C \cdot CH_2 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot HC - CH_2}{CH_3 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot HC - CH_2}$

- B. Bei der Einw. von salzsaurem Semicarbazid auf δ-Chlor- γ -valerolacton- α -malonylsäure-äthylester in wäßrig-alkoholischer Lösung bei Gegenwart von Natriumacetat (Haller, March, C. τ . 136, 435; Bl. [3] 31, 442). Krystalle (aus Alkohol) mit $^{1}/_{2}$ H₂O. F: 118—119°. Unlöslich in Wasser, leicht löslich in siedendem Alkohol, ziemlich leicht in Äther.
- 2. 4.5-Dioxo-3-methyl-2-åthyl-furantetrahydrid-carbonsäure-(2), a-Oxo-

2. 4.5-Dioxo-3-methyl-2-athyl-furantetrahydrid-carbonsaure-(2), α-Oxo-β-methyl-γ-athyl-butyrolacton-γ-carbonsaure, α-Oxo-β-methyl-γ-capro-lacton-γ-carbonsaure C₈H₁₀O₅ = OC — CH·CH₃

| CC — CH·CH₃ | B. Durch Kochen von Anilino-citraconanil | C₆H₅·N:C·CO | N·C₆H₅ | bezw. | C₆H₅·NH·C·CO | N·C₆H₅ | (Syst. No. 3237) | oder von Methyloxalessigsäurediäthylester mit 70—80°/ojger Schwefelsäure bis zur Beendigung der Kohlendioxyd-Entwicklung (Fighter, Preiswerk, B. 35, 1629). Beim Erwärmen von Propionylameisensäure mit 75°/ojger Schwefelsäure im Wasserbad (F., A. 361, 387). — Krystalle (aus Benzol oder Chloroform-Petroläther). F: 128°; leicht löslich in Wasser, Alkoho, Äther. Chloroform, schwerer in Benzol: Eigenchlorid färht die wäßr. Lönung violett (F., P.). — Äther, Chloroform, schwerer in Benzol; Eisenchlorid färbt die wäßr. Lösung violett (F., P.). -Gibt beim Kochen mit 5% giger Natronlauge die beiden symm. Methyläthylbernsteinsäuren (F.).

- 3. [Pentan- $\alpha.\beta.\epsilon$ -tricarbonsaure]-anhydrid $C_8H_{10}O_5 = HO_2C \cdot C_5H_9 < {CO \atop CO} > O$. B. Man kocht Pentan-α.β.ε-tricarbonsäure-triäthylester mit verd. Salzsäure, destilliert Wasser und Salzsäure im Vakuum ab, bis die Temperatur bei 12 mm Druck auf 100° steigt und läßt über Schwefelsäure im Vakuum erkalten (Koetz, A. 350, 241). — Krystalle (aus Benzol). F: 95°. Leicht löslich in Wasser, schwer in kaltem Äther und Benzol.
- 4. Anhydro-fa-athyl-tricarballylsauref $C_8H_{10}O_5 = (HO_3C)(C_2H_5)C_3H_4 < {CO \atop CO} > O.$ B. Aus α-Äthyl-tricarballylsäure durch Kochen mit Acetylchlorid (Jowett, Soc. 79, 1349). — Amorphe Masse. Löslich in Benzol. Die Lösung gibt mit Anilin eine amorphe Fällung.
- 5. Anhydro $f_{\alpha,\alpha}$ dimethyl tricarballylsäure $f_{\alpha,\alpha}$ $f_{\alpha,\alpha}$ dimethyl tricarballylsäure beim Erhitzen über den $f_{\alpha,\alpha}$ f_{α,α Schmelzpunkt (Tiemann, Semmler, B. 28, 1349) oder bei der Einw. von Acetylchlorid (Gardner, Cockburn, Soc. 78, 710; Bone, Sprankling, Soc. 81, 35, 44). — Prismen (aus Essigester). F: 145—146° (Baryer, B. 29, 2792), 142,5° (T., S.), 139—141° (G., C., Soc. 73, 710), 135—136° (Bo., Sp.). Kp₁₆: gegen 225° (T., S.).
- 6. Anhydrid der bei 203–204° schmelzenden a.a'-Dimethyl-tricarballyl-säure (Bd. II, S. 830) $C_8H_{10}O_5 = (HO_9C)(CH_3)_2C_3H_3 < {CO \atop CO}>0$. B. Beim Erwärmen der bei 203—204° schmelzenden α.α'-Dimethyl-tricarballylsäure mit wenig überschüssigem Acetylchlorid bis zur Lösung (Zeilnsky, Tscheernoswitow, B. 29, 334; Bone, Sprankling, Soc. 81, 35, 42). — Krystalle (aus Chloroform + Petroläther). F: 111—113° (Z., T.), 110—112° (B., S.). — Liefert beim Erwärmen mit Wasser die Ausgangssäure (Z., T.).
- 7. Anhydrid der bei 175—176° schmelzenden α,α' -Dimethyl-tricarballyl-säure (Bd. II, S. 830) $C_8H_{10}O_5$. B. Beim Erhitzen der bei 175—176° schmelzenden α,α' -Dimethyl-tricarballylsäure für sich auf 200° oder mit Acetylchlorid (Zelinsky, Tschernoswitow, P. 200° oder mit Acetylchlorid (Zelinsky, Tschernoswitow), P. 200° oder mit Acetylchlorid (Ze B. 29, 337; Bone, Sprankling, Soc. 81, 35, 42). — Prismen (aus Chloroform + Ligroin).

- F: 129—130° (Z., T.; B., S.). Leicht löslich in Chloroform und Benzol (Z., T.). Liefert beim Lösen in Wasser die Ausgangssäure (Z., T.).
- 8. Anhydrid der bei 148—149° schmelzenden α.α'-Dimethyl-tricarballyl-säure C_bH₁₀O₅. B. Beim Erhitzen der bei 148—149° schmelzenden α.α'-Dimethyl-tricarballyl-säure mit Acetylchlorid (Zeliner, Tschernoswitow, B. 29, 337; Bone, Sprankling, Soc. 81, 35, 43). Nädelhen (aus Chloroform durch Petroläther). F: 117—119° (Z., T.), 16—117° (B., S.). Leicht löslich in Chloroform (Z., T.). Liefert mit Wasser die Ausgangssäure (Z., T.). Geht beim Erhitzen mit Salzsäure in die bei 203—204° schmelzende α.α'-Dimethyl-tricarballylsäure über (Z., T.).

4. Oxo-carbonsauren C.H. Os.

- 1. [δ Methyl pentan α . γ . δ tricarbonsäure] anhydrid $C_9H_{12}O_5 = (HO_2C)(CH_2)_2C_4H_5 < CO>0$. Von Perkin, Thorpe, Soc. 85, 130 als [δ -Methyl-pentan- α . γ . δ -tricarbonsäure]- γ . δ -anhydrid $\begin{array}{c} HO_2C\cdot CH_2\cdot CH_2\cdot HC C(CH_2)_2 \\ OC\cdot O\cdot CO \end{array}$ formuliert. B. Beim Erhitzen von δ -Methyl-pentan- α . γ . δ -tricarbonsäure (F: 155-157°) unter 45 mm Druck (P., Th., Soc. 85, 136). Vierseitige Platten (aus heißem Benzol). F: 98°. Kp₄₅: 255°. Schwer löslich in kaltem Wasser; löslich in heißem Wasser unter Rückbildung der Säure.
- 2. [Hexan β .y.s tricarbonsāure] anhydrid $C_0H_{12}O_5 = (HO_2C)(CH_2)_2C_4H_5 < \frac{CO}{CO} > 0$. B. Beim Kochen von Hexan- β .y.s-tricarbonsāure mit Acetylchlorid (Henstock, Sprankling, Soc. 91, 357). Flüssig. Regeneriert mit Wasser die ursprüngliche Säure.
- 3. $[\gamma \cdot \gamma Dimethyl butan \alpha \cdot \beta \cdot \delta tricarbons dure] anhydrid <math>C_bH_{12}O_\delta = (HO_2C)(CH_2)_2C_4H_5 < \stackrel{CO}{CO} > 0$. Von Perkin, Thorpe, Soc. 75, 900 als $[\gamma \cdot \gamma Dimethyl butan-\alpha \cdot \beta \cdot \delta tricarbons aure] \alpha \cdot \beta anhydrid OC \cdot O \cdot CO formuliert. B. Durch Destillation von <math>\gamma \cdot \gamma Dimethyl butan-\alpha \cdot \beta \cdot \delta tricarbons aure unter 16 mm Druck (P., Th., Soc. 75, 904). Dickes Öl. Kp₁₆: 240—242°. Leicht löslich in Wasser unter Rückbildung der ursprünglichen Säure.$
- 4. $[\beta.\gamma$ Dimethyl butan $\alpha.\beta.\gamma$ tricarbonsaure] anhydrid, Anhydro- $[\alpha.\alpha.\beta$ trimethyl tricarballylsaure], Anhydrocamphoronsaure $C_5H_{12}O_5 = (HO_2C)(CH_2)_5C_5H_2 < CO>O$. Für Anhydrocamphoronsaure erscheinen drei verschiedene Strukturformeln möglich:

Von Anhydrocamphoronsäure selbst sind strukturisomere Formen nicht bekannt; nach Aschan, A. 302, 73 besitzt sie wahrscheinlich die Konstitutionsformel I. Hingegen sind mehrere der unten angeführten Derivate in zwei Formen erhalten worden, die als strukturisomer aufzufassen sind (vgl. Aschan, A. 302, 55, 71).

a) Aktive 1) Anhydrocamphoronsāure C_bH₁₂O₅ = (HO₂C)(CH₂)₂C₃H₂CO₅O₅O₅B. Aus 1-Camphoronsāure (Bd. II, S. 837) bei der Destillation (Kachler, Spitzer, M. 6, 186), bei 1½-stdg. Erhitzen auf 190—195° (Aschar, A. 302, 59) sowie bei 10-stdg. Erhitzen auf 105° (Hess, B. 28, 2688; vgl. A., A. 302, 58). Beim Kochen von 1-Camphoronsäure in absol. Ather mit Acetylchlorid (Bredt, A. 292, 87) oder durch Behandeln der Säure mit Acetylchlorid bei gewöhnlicher Temperatur (A., A. 302, 60). — Krystalle (aus Ather). Kann aus 60—80° warmem Wasser umkrystallisiert werden (A., A. 302, 57). Rhombisch bisphenoidisch (Fock, A. 292, 87; vgl. Groth, Ch. Kr. 3, 747). F: 136—137° (A., A. 302, 57), 139° (B., A. 292, 87). Sublimiert unzersetzt (K., Sp.). Siedet im Vakuum fast unzersetzt (B., A. 292, 130). Leicht löslich in Alkohol und Chloroform, schwer in Petroläther (K., Sp.), ziemlich schwer

¹⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs wurde von GOEBEL, NOYES, Am. Soc. 45, 3067 für die aus L-Camphoronsäure erhaltene aktive Anhydrocamphoronsäure $[\alpha]_{\overline{D}}^{n}$: + 5,6° (in Chloroform) gefunden.

in trocknem Äther (A., A. 302, 61). Wird aus Sodalösung durch Mineralsäuren unverändert ausgefällt (A., A. 302, 57). Liefert beim Einleiten von Ammoniak in die absolut-ätherische Lösung ein Ammoniumsalz (K., Sp.). — Geht beim Erhitzen der mit Ammoniak gesättigten Benzol-Lösung im Druckrohr auf 140° in camphoronimidsaures Ammonium

 $(\mathbf{H_4N \cdot O_3C})(\mathbf{CH_3})_{\mathbf{3}}\mathbf{C_3H_3} < \overset{\mathbf{CO}}{\mathbf{CO}} > \mathbf{NH}(\mathbf{Syst. No. 3367}) \text{ über (H., } B. \mathbf{28}, 2692). \text{ Liefert bei der Einw. von}$

Phosphorpentachlorid 2 isomere Chloride (ClO₂C)(CH₂)₃C₃H₂<\begin{array}{c}CO > O vom Schmelzpunkt 135° und 38—39° (B., A. 292, 89; vgl. K., Sp.). Wird durch längeres Aufbewahren oder Erwärmen oder durch Kochen mit Wasser in Camphoronsäure zurückverwandelt (A., A. 302, 57). — Gibt durch Erhitzen des Natriumsalzes mit Methyljodid im Druckrohr auf 135—140° oder durch Erwärmen des Silbersalzes mit Methyljodid im Wasserbad 2 isomere Methylester (CH₃·O₂C)(CH₂)₂C₃H₁<\begin{array}{c}CO > O vom Schmelzpunkt 138° und 45° (A., A. 302, 66, 69). Bei der Einw. von methylalkoholischer Natriummethylatlösung auf Anhydrocamphoronsäure erhält man einen Monomethylester der 1-Camphoronsäure (HO₂C)₂C₆H₁₁·CO₂·CH₂ (A., A. 302, 61). Beim Kochen mit Acetylchlorid entsteht das Anhydrid O \[OC·(CH₃)₃C₃H₂<\begin{array}{c}CO > O \]2 (S. 458) (K., Sp., M. 6, 191; vgl. B., A. 292, 85). Mit 1 Mol Anilin in Benzol bildet sich das Monoanilid der 1-Camphoronsäure (Bd. XII, S. 317) (Perkin, Thorpe, Soc. 71, 1192 Anm.).— NH₄C₃H₁₁O₅. B. Beim Einleiten von trocknem Ammoniak in eine Lösung der aktiven Anhydrocamphoronsäure in absol. Äther (K., Sp., M. 6, 189). Aus dem Ammoniumsalz der 1-Camphoronsäure im Vakuum über Schwefelsäure (K., Sp., M. 6, 189). Krystallpulver. F: 125—128°. Leicht löslich in Wasser (K., Sp.). — AgC₃H₁₁O₅. Blättchen oder Krystallrosetten. Etwas löslich in kaltem Wasser (A., A. 302, 69).

Derivate, die aus aktiver Anhydrocamphoronsäure bezw. l-Camphoronsäure oder deren Derivaten erhalten worden sind.

Hochschmelsender Anhydrocamphoronsäuremethylester (von Bredt, B. 28, 318; A. 292, 95 als α-Anhydrocamphoronsäuremethylester bezeichnet) C₁₀H₁₄O₅ = (CH₃·O₂C)(CH₃)₂C₃H₂<CO > O. Besitzt nach Aschan, A. 302, 65, 76 wahrscheinlich die Formel (CH₃·O₂C·CH₃)(CH₃)C—C(CH₃)₂. Das Mol.-Gew. ist ebullioskopisch in Benzol bestimmt OC·O·OO . Das Mol.-Gew. ist ebullioskopisch in Benzol bestimmt (A., A. 302, 68). — B. Neben dem niedrigschmelzenden Isomeren beim Erhitzen des Natrium-

(A., A. 302, 68). — B. Neben dem niedrigschmelzenden Isomeren beim Erhitzen des Natriumsalzes der aktiven Anhydrocamphoronsäure (hergestellt durch Kochen der Säure in Benzol-Lösung mit 1 At. Gew. Natrium) mit Methyljodid im Druckrohr auf 135—140° oder beim Erwärmen des Silbersalzes mit Methyljodid im Wasserbad (A., A. 302, 66, 69). Neben dem niedrigschmelzenden Isomeren bei der Destillation von [1-Camphoronsäure]-dimethylester (Bd. II, S. 838), der durch Einw. von Methylalkohol und Chlorwasserstoff auf das Bariumsalz der l-Camphoronsäure oder durch Einw. von Methylalkohol suf das hochschmelzende Anhydrocamphoronsäurechlorid erhalten wird (Bredt, B. 28, 318; A. 292, 95). Man trennt die beiden Ester durch Waschen mit Äther, in dem das hochschmelzende Isomere schwer löslich ist (B., A. 292, 95). — Prismen (aus Methylalkohol). Rhombisch (Fook, A. 292, 95). F: 138°; Kp₁₈: 168—167°; schwer löslich in Äther (B.). $\alpha_{\rm p}^{\rm ph}$: +1,14° (in Äthylenbromid; p = 1,5) (A., A. 302, 68). — Beim Eintragen in eine Lösung von 1 At.-Gew. Natrium in Methylalkohol entsteht ein [1-Camphoronsäure]-dimethylester (Bd. II, S. 838), der bei der Destillation fast ausschließlich in den hochschmelzenden Anhydrocamphoronsäuremethylester zurückverwandelt wird (A., A. 302, 72).

Niedrigschmelsender Anhydrocamphoronsäuremethylester (von Bredt, B. 28, 318; A. 292, 95 als β -Anhydrocamphoronsäuremethylester bezeichnet) $C_{10}H_{14}O_5=(CH_3\cdot O_2C)(CH_3)_2C_3H_2 < CO>0$. Zur Konstitution vgl. Aschan, A. 302, 55, 65, 70, 76. Das Mol.-Gew. ist ebullioskopisch in Benzol bestimmt (A., A. 302, 68). — B. s. im vorangehenden Artikel. Entsteht auch bei der Einw. von Methylalkohol auf das niedrigschmelzende Anhydrocamphoronsäurechlorid in äther. Lösung (Bredt, B. 28, 318; A. 292, 99). Bei Einw. von Acetylchlorid auf [1-Camphoronsäure]-monomethylester (Bd. II, S. 838) (Aschan, A. 302, 63). — Prismen (aus Methylalkohol). Rhombisch (Fock, A. 292, 96). F: 45°; Kp₁₆: 156°; leicht löslich in Äther (B.). [a] $_{b}^{p,s}$: +16,2° (in Alkohol; p = 5) (A., A. 302, 64). — Geht bei Einw. von Wasser in [1-Camphoronsäure]-monomethylester über (B.). Liefert beim Eintragen in die methylalkoholische Lösung von 1 At.-Gew. Natrium einen [1-Camphoronsäure]-dimethylester, der beim Erhitzen fast ausschließlich in den niedrigschmelzenden Anhydrocamphoronsäuremethylester zurückverwandelt wird (A., A. 302, 72).

Fester Anhydrocamphoronsäureäthylester $C_{11}H_{16}O_5=(C_2H_5\cdot O_2C)(CH_3)_3C_3H_2<\frac{CO}{CO}>O$. B. Entsteht neben dem flüssigen Äthylester bei der Destillation von [1-Camphoronsäure]-diäthylester (Bd. II, S. 838) und scheidet sich aus dem öligen Gemisch [Kp: 298—300°; Kp₁₁: 166—167° (Bredt, A. 292, 103)] bei längerem Stehen aus (Hjelt, B. 13, 797; B., A. 226, 257; Hess, B. 28, 2689). — Tafeln. F: 67° (Hj.). — Beim Einleiten von Ammoniak in die alkoh. Lösung entsteht Camphoronamidsäure-monoäthylester (HJ.; vgl. HESS).

Das unter 11 mm Druck bei 166—167° siedende Öl erhält man auch bei der Einw. von

Acetylchlorid auf [1-Camphoronsäure]-monoäthylester (B., A. 292, 104).

Flüssiger Anhydrocamphoronsäureäthylester $C_{11}H_{16}O_{5}=(C_{2}H_{5}\cdot O_{2}C)(CH_{3})_{2}C_{3}H_{2}< \stackrel{CO}{CO}>0$. Vgl. darüber den vorangehenden Artikel.

 $\textbf{Anhydrocamphorons \"{a}ureanhydrid} \quad C_{18}H_{12}O_{9} = O\Big[OC\cdot(CH_{3})_{8}C_{a}H_{2} < \begin{matrix} CO \\ CO \end{matrix} > O\Big]_{1}.$ Konstitution vgl. Bredt, A. 292, 85. — B. Beim Kochen von l-Camphoronsäure oder aktiver Anhydrocamphoronsäure mit Acetylchlorid (Kachler, Spitzer, M. 6, 190, 191). — Krystalle. F: 175—176°; fast unlöslich in kaltem Alkohol, Äther und Petroläther, schwer löslich in kochendem Alkohol oder Äther (K., Sr.). Löst sich in Alkalien unter Bildung von Camphoronsaure (K., Sp.).

Hochschmelzendes Anhydrocamphoronsäurechlorid (von Bredt, B. 28, 317; A. 292, 89 als α -Anhydrocamphoronsäurechlorid bezeichnet) $C_0H_{11}O_4Cl =$ (ClOC)(CH₂)₂C₃H₂<CO>O. Zur Konstitution vgl. Aschan, A. 302, 55, 65, 71. — B. Beim Kochen von l-Camphoronsäure mit Phosphorpentachlorid (Kachler, Spitzer, M. 6, 192). In größerer Menge neben dem niedrigschmelzenden Isomeren beim Kochen von aktiver Anhydrocamphoronsäure mit Phosphorpentachlorid (Kachler, Spitzer, M. 6, 193; Bredt, B. 28, 317; A. 292, 89). — Krystalle (aus Benzol). F: 135° (B., Priv. Mitt.). Siedet unter 13 mm Druck bei 164—165° und geht dabei größtenteils in das niedrigschmelzende Isomere über (B., B. 28, 317; A. 292, 90). Schwer löslich in kochendem Wasser, leichter in Alkohol und warmem Äther (K., Sp.). — Wandelt sich beim Kochen mit Wasser in l-Camphoronsäure um (K., Sp.). Beim Erhitzen mit Brom im Druckrohr auf ca. 120° entstehen festes und flüssiges Bromanhydrocamphoronsaurechlorid (B., B. 28, 318; A. 299, 142). Mit Methylalkohol oder methylalkoholischer Natriummethylat-Lösung entsteht ein Dimethylester der l-Camphoronsaure (Bd. II, S. 838) (identisch mit dem aus camphoronsaurem Barium mit Methylalkohol und Chlorwasserstoff erhaltenen Dimethylester) (B., B. 28, 318; A. 292, 94, 98).

Niedrigschmelsendes Anhydrocamphoronsäurechlorid (von Bredt, B. 28, 317; A. 292, 90 als β -Anhydrocamphoronsaurechlorid bezeichnet) $C_0H_{11}O_4Cl =$ (CloC)(CH₃)₃C₃H₃<CO>O. Zur Konstitution vgl. Aschan, A. **802**, 55, 65, 71. — B. s. im vorangehenden Artikel. Entsteht auch bei der Destillation des hochschmelzenden Isomeren im Vakuum (B., B. 28, 317; A. 292, 90). — Prismen (aus Äther + Ligroin). Rhombisch (Fock, A. 292, 90). F: 38—39°; Kp₁₀: 151°; leicht löslich in Äther und Benzol (B.). — Liefert beim Erhitzen mit Brom im Druckrohr auf ca. 120° festes und flüssiges Bromanhydrocamphoronaäurechlorid (B., B. 28, 318; A. 299, 142). Mit Methylalkohol entsteht der niedrig schmelzende Anhydrocamphoronsäuremethylester (B., B. 28, 318; A. 292, 99).

Anhydrocamphoronsäureanilid $C_{15}H_{17}O_4N = (C_6H_5 \cdot NH \cdot OC)(CH_2)_5C_5H_5 < \frac{CO}{CO} > O.$ B. Entsteht anscheinend sowohl bei Einw. von Anilin auf hochschmelzendes Anhydrocamphoronsaurechlorid in heißem Benzol als auch bei Einw. von Anilin auf niedrigschmelzendes Anhydrocamphoronsaurechlorid in ather. Lösung (Bredt, B. 28, 318; A. 299, 141). — Warzenförmige Krystalle (aus Benzol). F: 202-203°.

Bromanhydrocamphoronsäure $C_9H_{11}O_8Br = (HO_9C)(CH_9)_9C_9HBr < {CO \atop CO} > 0$. Zur Konstitution vgl. Aschan, A. 302, 73. - B. Man behandelt l-Camphoronsäure mit 3 Mol Phosphorpentachlorid, erwärmt das rohe Camphoronsäurechlorid mit 1 Mol Brom, schüttelt das Reaktionsgemisch mit kaltem Wasser, nimmt die feste, aus Bromanhydrocamphoronsäurechlorid bestehende Verbindung mit Äther auf, verdunstet die ather. Lösung und erhitzt den Rückstand mit Ameisensäure (D: 1,2) auf dem Wasserbad (Aschan, B. 28, 20). Beim Erhitzen von festem Bromanhydrocamphoronsäurechlorid mit Eisessig (BREDT, B. 28, 319; A. 299, 145). — Rhomboeder (aus Ameisensäure), Blätter (aus Benzol). F: 158° (A.), 154° (B.). — Wird von kalter Sodalösung unverändert aufgelöst und liefert mit Wasser nur α-Camphoransaure (S. 487) (B.; A., A. 302, 74 Anm.).

Niedrigschmelsender Bromanhydrocamphoronsäure - methylester (von Bredt, A. 299, 146 α -Methylester der Bromanhydrocamphoronsäure genannt) $C_{10}H_{13}O_5Br = (CH_3 \cdot O_3C)(CH_3)_3C_3HBr < {CO \atop CO} > 0$. Zur Konstitution vgl. Aschan, A. 302, 75. — B. Aus festem Bromanhydrocamphoronsäurechlorid beim Kochen mit Methylalkohol, neben etwas α -Camphoransäuredimethylester (S. 487); man kühlt die Lösung rasch ab (Bredt, B. 28, 319; A. 399, 146). — Krystalle (aus Äther). Rhombisch (bipyramidal?) (Fock, A. 299, 147; vgl. Groth, Ch. Kr. 3, 749). F: 100°; Kp₁₅: 177°; ziemlich leicht löslich in Äther (B.). — Geht beim Stehenlassen mit methylalkoholischer Salzsäure in den hochschmelzenden isomeren Ester über (B.).

Hochschmelzender Bromanhydrocamphoronsäure - methylester (von Bredt, A. 299, 148 β -Methylester der Bromanhydrocamphoronsäure genannt) $C_{10}H_{13}O_5Br = (CH_3 \cdot O_3C)(CH_3)_3C_3HBr< {CO \atop CO} > O$. Zur Konstitution vgl. Aschan, A. 302, 75. — B. Beim Stehenlassen von niedrigschmelzendem Bromanhydrocamphoronsäure-methylester mit methylalkoholischer Salzsäure (Bredt, B. 28, 320; A. 299, 148). — Krystalle (aus Äther). Rhombisch (Fock, A. 299, 148). F: 142°; ziemlich schwer löslich in Ather (B.). — Liefert beim Erhitzen im Vakuum das Anhydrid der α-Camphoransäure $C(CH_3)_2C$ — $C(CH_3)_3CO$ (Syst. No. 2780) und Methylbromid (B.).

Festes Bromanhydrocamphoronsäurechlorid C₂H₁₀O₄ClBr =

(ClOC)(CH₃)₃C₃HBr< $\stackrel{CO}{CO}$ >0. Wahrscheinlich diastereoisomer mit dem flüssigen Bromanhydrocamphoronsäurechlorid (s. u.) (Bredt, A. 299, 135; Aschan, A. 302, 55). — B. Neben dem flüssigen Isomeren aus hochschmelzendem oder niedrigschmelzendem Anhydrocamphoronsäurechlorid durch Erhitzen mit Brom im Druckrohr auf ca. 120°; Trennung durch Äther, in dem die feste Verbindung schwer, die flüssige leicht löslich ist (Bredt, B. 28, 318; A. 299, 143; vgl. auch Lapworth, Lenton, Soc. 81, 25). — Krystalle (aus Benzol). Monoklin (sphenoidisch?) (Fock, A. 299, 143; vgl. Groth, Ch. Kr. 3, 749). F: 168°; im Vakuum unzersetzt sublimierbar; sehr schwer föslich in Äther (B.). — Wird durch kaltes Wasser nicht verändert; bildet beim Kochen mit Wasser α-Camphoransäure (S. 487) (B.). Liefert beim Erhitzen mit Eisessig Bromanhydrocamphoronsäure (B.).

Flüssiges Bromanhydrocamphoronsäurechlorid $C_9H_{10}O_4\text{ClBr} = (\text{ClOC})(\text{CH}_3)_3C_9\text{HBr}<_{\text{CO}}^{\text{CO}}>0$. Wahrscheinlich diastereoisomer mit dem festen Bromanhydrocamphoronsäurechlorid (Bredt, A. 299, 135; Aschan, A. 302, 55). — B. s. im vorangehenden Artikel. — Öl. Nicht rein erhalten; leicht löslich in Äther (B., B. 28, 319; A. 299, 144). — Verwandelt sich bei der Destillation im Vakuum wahrscheinlich zum Teil in das feste Chlorid; liefert beim Kochen mit Wasser β -Camphoransäure (B., B. 28, 319; A. 299, 144).

b) Inaktive Anhydrocamphoronsäure C₅H₁₂O₅ = (HO₂C)(CH₃)₃C₃H₂< $\stackrel{CO}{CO}$ >O. B. Beim Kochen von inakt. Camphoronsäure (Bd. II, S. 839) mit Acetylchlorid (Perkin, Thorpe, Soc. 71, 1191). — Krystalle (aus Benzol). F: 136—137°. — Liefert mit 1 Mol Anilin in Benzol das Monoanilid der inaktiven Camphoronsäure (Bd. XII, S. 317).

Inaktives Bromanhydrocamphoronsäurechlorid C₉H₁₀O₄ClBr = (ClOC)(CH₈)₃C₃HBr<CO>O. B. Durch gelindes Erwärmen von inaktiver Camphoronsäure mit Phosphorpentachlorid und Erhitzen des Reaktionsprodukts mit Brom im Druckrohr auf 100° (NOYES, DOUGHTY, Am. Soc. 27, 1434). — Krystalle (aus Äther). F: 123—126°. — Liefert durch Kochen mit Wasser und Destillation des Reaktionsprodukts unter 20 mm Druck das Anhydrid der inaktiven Camphoransäure (Syst. No. 2780).

5. Oxo-carbonsäuren $C_{10}H_{14}O_5$.

1. α -Oxo- γ -[5-oxo-2.2-dimethyl-tetrahydrofuryl-(3)]-buttersäure, Homoterpenoylameisensäure $C_{10}H_{14}O_5 = \frac{H_2C - CH \cdot CH_2 \cdot CH_2 \cdot CO \cdot CO_2H}{OC \cdot O \cdot C(CH_3)_3}$. B. Bei $^1/_2$ -stündigem Kochen von 1 Tl. Pinoylameisensäure (Bd. X, S. 850) mit 10 Tln. $10^0/_0$ iger Schwefelsäure (Banyer, B. 29, 1917). — Prismen (aus Wasser), Blätter (aus Chloroform). F: 126° bis 129°. Leicht löslich in heißem Wasser, schwer in Äther, sehr schwer in kaltem Chloroform. —

Bei der Behandlung mit Bleidioxyd und Schwefelsäure oder mit rauchender Salpetersäure bei 60° entsteht unter Entwicklung von Kohlendioxyd Homoterpenylsäure (S. 391) (B., B. 29, 1919). Beim Erwärmen mit konzentrierter roher Salpetersäure entstehen Oxalsäure, Terpenylsäure (S. 384) und Terebinsäure (S. 377) (B., B. 29, 2789).

Oxim $C_{10}H_{10}O_{2}N = \frac{H_{2}C - CH \cdot CH_{2} \cdot CH_{2} \cdot C(:N \cdot OH) \cdot CO_{2}H}{OC \cdot O \cdot O(CH_{2})_{2}}$. B. Das Hydroxylamin
lz entsteht bei mehrständigem Stehenlassen von 1 Mol Homoterpenovlameisensäure mit

salz entsteht bei mehrstündigem Stehenlassen von 1 Mol Homoterpenoylameisensäure mit 4 Mol salzsaurem Hydroxylamin und Kaliumacetat in wäßriger Lösung (BAEYER, B. 29, 1919). — $NH_2O + C_{10}H_{15}O_2N$. Nadeln (aus Methylalkohol + Äther). Schmilzt gegen 170° unter Gasentwicklung. Leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther.

- 2. 4.5 Dioxo 3 Äthyl-2 propyl-furantetrahydrid carbonsäure (2), α -Oxo- β -āthyl- γ -propyl-butyrolacton- γ -carbonsäure, α -Oxo- β -āthyl- γ -önan-tholacton- γ -carbonsäure $C_{10}H_{14}O_5 = \begin{array}{c} OC CH \cdot C_2H_5 \\ OC \cdot O \cdot C(CH_2 \cdot CH_2 \cdot CH_2) \cdot CO_2H \end{array}$. B. Beim Erwärmen von Butyrylameisensäure mit 75% eiger Schwefelsäure im Wasserbad (Fichter, A. 361, 391). Nadeln (aus Chloroform + Petroläther). F: 110—111%. Leicht löslich in Wasser, Alkohol, Äther, Chloroform und Benzol, unlöslich in Petroläther. Gibt mit Eisenchlorid intensive Rotfärbung. Liefert beim Kochen mit 5% jeger Natronlauge die hochschmelzende und die niedrigschmelzende α -Äthyl- α -propyl-bernsteinsäure.
- 3. Niedrigschmelzendes [γ.δ-Dimethyl-pentan α.γ.δ-tricarbonsäure] anhydrid, α-Anhydrohomocamphoronsäure C₁₀H₁₄O₅ =

 (HO₂C)(CH₂)₂C₄H₄<CO>O. B. Aus Homocamphoronsäure (Bd. II, S. 842) beim Erhitzen für sich auf 180° oder beim Kochen mit Acetylchlorid (Lapworth, Chapman, Soc. 75, 998). Prismen (aus Benzol). F: 86—87°; leicht löslich in Methylalkohol, Äthylalkohol, Chloroform und Essigsäure, löslich in Benzol, fast unlöslich in Petroläther (L., Ch., Soc. 75, 998). Geht beim Erhitzen auf 200—260° unter Abspaltung von Kohlendioxyd in rechtsdrehende Camphononsäure (Bd. X, S. 616) über (L., Ch., P. Ch. S. No. 212; Soc. 75, 1000). Liefert durch Erhitzen mit Phosphortrichlorid und Stehenlassen des entstandenen Chlorids an feuchter Luft β-Anhydrohomocamphoronsäure (L., Ch., Soc. 77, 453, 463). Wird durch mehrstündiges Kochen mit Wasser oder kurzes Kochen mit verd. Mineralsäuren oder kurzes Stehenlassen in alkal. Lösung zu Homocamphoronsäure hydrolysiert (L., Ch., Soc. 75, 999). Liefert in heißer Benzol-Lösung mit Anilin Homocamphoronsäure-monoanilid (Bd. XII, S. 317), mit p-Toluidin Homocamphoronsäuremono-p-toluidid (Bd. XII, S. 940) (L., Ch., Soc. 75, 999).
- 4. Hockschmelzendes [γ.δ Dimethyl pentan α.γ.δ tricarbonsäure] anhydrid, β Anhydrohomocamphoronsäure C₁₀H₁₄O₅ =

 (HO₂C)(CH₂)₂C₄H₄<CO>O. Wahrscheinlich strukturisomer mit α-Anhydrohomocamphoronsäure (s. o.) (vgl. Lapwobth, Chapman, Soc. 77, 464). B. Durch Erhitzen von α-Anhydrohomocamphoronsäure mit Phosphortrichlorid und Stehenlassen des entstandenen Chlorids an feuchter Luft (Lapwobth, Chapman, Soc. 77, 453, 463). Prismen oder Platten (aus Benzol). F: 128—129°. Weniger löslich in Benzol oder Chloroform als α-Anhydrohomocamphoronsäure. Geht beim Erhitzen unter Abspaltung von Kohlendioxyd in Camphononsäure über. Liefert beim Kochen mit Wasser Homocamphoronsäure. Mit Anilin und p-Toluidin entstehen die gleichen Verbindungen wie aus α-Anhydrohomocamphoronsäure.
- 5. $[\beta.\beta-Dimethyl-pentan-\alpha.\gamma.\delta-tricarbonsdure]-anhydrid$ $C_{10}H_{14}O_{5}=(HO_{2}C)(CH_{3})_{5}C_{4}H_{4}< {}^{CO}_{CO}>0$. Von Perkin, Thorpe, Soc. 89, 786 als $[\beta.\beta-Dimethyl-pentan-\alpha.\gamma.\delta-tricarbonsdure]-\gamma.\delta-anhydrid$ $CCCH_{3}\cdot C(CH_{3})_{2}\cdot HC$ — $CH\cdot CH_{3}$ formuliert. B. Aus $\beta.\beta$ -Dimethyl-pentan- $\alpha.\gamma.\delta$ -tricarbonsdure beim Kochen mit Acetylchlorid (Perkin, Thorpe, Soc. 89, 786). Prismen (aus Benzol). F: 105—107°.
- 6. [β . δ Dimethyl pentan β . γ . δ tricarbons dure] anhydrid, Anhydro-[α . α . α '. α '-tetramethyl-tricarballyledure] $C_{10}H_{14}O_5 = (HO_2C)(CH_3)_4C_3H < {CO \atop CO} > 0$. B. Beim Kochen von α . α . α '. α '-Tetramethyl-tricarballyledure mit Acetylchlorid (Henstock, Sprankling, Soc. 91, 360). Krystallinisch. F: 132°.

b) Oxo-carbonsăuren $C_n H_{2n-8} O_5$.

1. Oxo-carbonsauren C.H.O.

1. 4.5-Dioxo-[1.4-pyran]-dihydrid-carbonsäure-(2) bezw. 5-Oxy-4-oxo-[1.4-pyran]-carbonsaure-(2), $\tilde{5}$ -Oxy-pyron-(4)-carbonsaure-(2) $C_4H_4O_5=$ OC · CO · CH HO·C·CO·CH

H.C-O-C·CO.H HC-O-C·CO₂H, Komensäure. Die Stellungsbezeichnung bezw. gilt auch für die in diesem Handbuch gebrauchten, vom Namen "Komensäure" abgeleiteten Namen. Zur Konstitution vgl. Peratoner, Palazzo, C. 1905 II, 678; G. 86 I, 4, 8; H. MEYER, M. 26, 1328. — B. Aus Mckonsaure (S. 503) beim Erhitzen auf 120—220° oder beim Kochen mit Wasser oder Salzsaure (Robiquer, A. ch. [2] 51, 246; 53, 428; A. 5, 95; Liebig, A. 7, 237; How, A. 80, 67). Entsteht in kleiner Menge beim Erhitzen von pyromekonsaurem Natrium (Bd. XVII, S. 436) im Kohlendioxyd-Strom auf 180° (PERATONER, LEONE, G. 24 II, 81). — Darst. Man kocht 50 g Mekonsäure mit 100 cm³ Salzsäure (D: 1,19) und 100 cm³ Wasser am Rückflußkühler, bis ein schwerer, weißer Niederschlag ausgefallen ist, kocht dann noch 20 Minuten, gießt in 200 cm² Wasser, saugt ab und wäscht (H. Mey.). — Farbloses, krystallinisches Pulver. Löst sich in mehr als 16 Tln. siedendem Wasser (Ro., A. ch. [2] 51, 246; A. 5, 96). Unlöslich in absol. Alkohol (H.). Sehr starke Säure; elektrische Leitfähigkeit: Pr., Pa., C. 1905 II, 678; G. 36 I, 10. Gibt mit Ferrisalzen eine rote Färbung (Ro., A. ch. [2] 51, 246; A. 5, 96). — Liefert bei der Destillation unter Kohlendioxyd-Abspeltung Pyromekonsaure (Stenhouse, A. 49, 18; Ost, J. pr. [2] 19, 178). Wird von Salpetersaure unter Bildung von Kohlendioxyd, Blausaure und Oxalsaure zersetzt (Reibstein, J. pr. [2] 24, 278). Reduktion mit Natriumamalgam: v. Korff, A. 138, 195. Bei der Einw. von Chlor oder Brom auf Komensäure bei Gegenwart von Wasser entstehen 6-Chlor-komensäure bezw. 6-Brom-komensäure (H.). Beim Kochen von Komensäure mit Jodwasserstoffsäure (Kp: 127°) entsteht Oxalsäure (Rel.). Beim Erhitzen mit Barytwasser erhält man Ameisensäure, Oxalsaure und Oxyaceton bezw. dessen Kondensationsprodukt 5-0xo-3-methyl-[1.2-pyran] dihydrid-(5.6) (?) (Bd. XVII, S. 254); daneben bilden sich gummiartige Substanzen und etwas Methylalkohol (Pe., Leonard, G. 80 I, 547, 556, 565). Kocht man Komensäure mit Phosphorpentachlorid und Phosphoroxychlorid unter Rückfluß und zersetzt das Produkt mit warmem Wasser, so erhält man x.x-Dichlor-pyron-(4)-carbonsäure-(2) (S. 405) neben wenig x-Chlorpyron-(4)-carbonsäure-(2) (S. 405) (Ost, J. pr. [2] 27, 293; 29, 61). Erhitzt man Komensäure mit Phosphorpentachlorid auf 280—290°, so entstehen Hexachlorathan, eine Verbindung $C_{\mathbf{s}}Cl_{\mathbf{s}}$ (,, Perchlormekylen") vom Schmelzpunkt 39° und andere Produkte (Ost, J. pr. [2] 27, 293). Beim Erhitzen von saurem komensaurem Ammonium im Einschlußrohr auf 199° oder beim Kochen von Komensäure mit überschüssigem Ammoniak entsteht 4.5-Dioxypyridin-carbonsäure-(2) (Komenaminsäure, Syst. No. 3349) (H.; vgl. H. Mey., M. 26, 1328). Analog entsteht beim Erhitzen mit wäßr. Athylamin-Lösung 1-Athyl-5-oxy-pyridon-(4)-carbonsäure-(2) (Syst. No. 3371), mit Anilin und Wasser 1-Phenyl-5-oxy-pyridon-(4)-carbonsäure-(2) (Syst. No. 3371) (Ost, J. pr. [2] 29, 380; Mennel, J. pr. [2] 32, 177, 178). Komensäure wird im Organismus des Hundes vollständig verbrannt (Tuschnow-Philipoff, Ar. Pth. 51, 185).

Salze. NH₄C₆H₂O₅ + H₂O. Säulen. Leicht löslich in siedendem Wasser, schwer in Alkohol (How, A. 80, 69). — NH₄C₆H₂O₅ + 1¹/₂H₂O. Prismen (aus kaltgesättigter Lösung durch starken Alkohol) (H.). — NaC₆H₂O₅ (bei 100°). Warzen. Leicht löslich (H.). — KC₆H₂O₅. Nadeln (H.). — CuC₆H₂O₅ + H₂O. Krystallinischer, grüner Niederschlag (Stenhouse, A. 51, 240). — AgC₆H₂O₅. B. Aus der freien Säure und Silbernitrat (Liebig, A. 26, 117; St., A. 51, 249). Flowings oder Körniger Niederschlag — Ag C. H.O. B. Aus dem nautzelen Ammen. 51, 242). Flookiger oder körniger Niederschlag. — Ag, C, H, O, B. Aus dem neutralen Ammoniumsalz und Silbernitrat (Lie., A. 26, 116; Sr., A. 51, 242). Gelber Niederschlag. — $Mg(C_8H_8O_8)_8 + 8H_8O$. B. Aus dem sauren Ammoniumselz und Magnesiumsulfat (H.). Rhommg(U₅H₂U₅)₂ + 8 H₂U. B. Aus dem sauren Ammoniumsaiz und magnesiumsulfat (H.). Khomben. Leicht löslich in siedendem Wasser. Verliert bei 116° 6H₂O. — Mg(C₆H₂O₅ + 5¹/₃H₄O. B. Aus einer ammoniakalischen Lösung der Säure und Magnesiumsulfat (H.). Krystallinischkörniger Niederschlag. Unlöslich in siedendem Wasser. Verliert bei 100° 4 H₂O. — Ca(C₆H₂O₅)₃ + 7H₂O. Rhomben. Leicht löslich in siedendem Wasser (H.). — Ca(C₆H₂O₅)₃ + 3¹/₃H₂O. Prismen. Unlöslich in Wasser (H.). Verliert bei 121° 2¹/₃H₂O (H.). — Ca(C₆H₂O₅)₃ + 6H₂O. Krystalle. Unlöslich in Wasser (H.). Verliert bei 121° 5¹/₃H₂O (H.). — Ba(C₆H₂O₅)₃ + 6H₂O. Rhomben. Leicht löslich in siedendem Wasser (H.). — BaC₆H₂O₅ + 5H₂O. Nadeln. Unlöslich in Wasser (H.). Verliert bei 121° 4H₂O. — PbC₅H₂O₅ + H₂O. B. Aus der Säure oder dem Ammoniumsals und Bleiscetat (St. A. 51. 239). Körniger Niederschlag. — FeOH)(C.H.O.). Ammoniumsalz und Bleiacetat (Sr., A. 51, 239). Körniger Niederschlag. — Fe(OH)($C_0H_3O_5$)₂ + $2H_3O$ (bei 100°). Schwarze Krystalle (Sr., A. 49, 28).

¹⁾ Vgl. auch Oktachlorcyclopenten (Bd. V, S. 62) (Redaktion dieses Handbuchs).

Komensäure-Derivate, die sich von der Enolform HC-O-C·CO₂H ableiten, s. S. 524.

Komensäure-äthylester $C_8H_8O_5=C_5H_3O_3\cdot CO_4\cdot C_9H_5$. B. Beim Einleiten von Chlorwasserstoff in eine Suspension von Komensäure in absol. Alkohol (How, A. 80, 88; Reibstein, J. pr. [2] 24, 277; vgl. a. H., J. 1855, 494). — F: 135° (H., A. 80, 90), 126,5° (R.). Sublimierbar (H., A. 80, 90). Leicht löslich in heißem Wasser, sehr leicht in Alkohol (H., A. 80, 90). Gibt mit Ferrisalzen eine tiefrote Färbung (H., A. 80, 90). — Bei längerem Kochen von Komensäureäthylester mit Wasser findet Verseifung statt (H., A. 80, 89). Beim Erhitzen mit Essigsäureanhydrid im Druckrohr auf 150° entsteht O-Acetyl-komensäure-äthylester (S. 524) (R.). Durch Behandlung von Komensäureäthylester mit alkoh. Natriumäthylatlösung und Einw. von Chlorsmeisensäureäthylester auf das Reaktionsprodukt erhält man Komensäureäthylester-O-carbonsäureäthylester (S. 524) (Drechbel, Möller, J. pr. [2] 17, 163; vgl. R.). — Ammoniumsalz. Gelbe Krystallbüschel (H., A. 80, 90).

Komensäure-amid $C_6H_5O_4N=C_5H_3O_3\cdot CO\cdot NH_2$. B. Das Ammoniumsalz entsteht bei längerem Einleiten von Ammoniak in eine äther. Lösung des Komensäureäthylesters; durch Behandeln mit Salzsäure wird daraus das freie Komensäureamid gewonnen (Reibstein, J. pr. [2] 24, 282). — Blättchen (aus heißem Wasser). Schwer löslich in kaltem Wasser und in starkem Alkohol. Wird von heißem Wasser nicht zersetzt. Die wäßr. Lösung gibt mit Eisenchlorid eine rote Färbung. — Ammoniumsalz. Schwer löslich in kaltem Wasser. Verliert beim Stehenlassen über konz. Schwefelsäure Ammoniak. — $KC_6H_4O_4N+H_2O$. Gelbliche Nadeln. Sehr leicht löslich in kaltem Wasser, unlöslich in Alkohol.

6-Chlor-komensäure $C_6H_3O_5Cl=\frac{OC\cdot CO\cdot CH}{ClHC-O-C\cdot CO_3H}$ bezw. $\frac{HO\cdot C\cdot CO\cdot CH}{ClC-O-C\cdot CO_2H}$. B. Man leitet Chlor durch eine wäßr. Lösung von saurem komensaurem Ammonium (How, A. 80, 80). Entsteht auch beim Einleiten von Chlor in eine Lösung von mekonsaurem Ammonium (H., A. 83, 354). — Prismen mit $1^1/_2H_3O$. Sehr leicht löslich in siedendem Wasser und in warmem Alkohol; gibt mit Ferrisalzen eine tiefrote Färbung; wird von Salpetersäure unter Bildung von Salzsäure, Blausäure, Kohlendioxyd und Oxalsäure schnell zersetzt (H., A. 80, 82). — $AgC_6H_2O_5Cl+1^1/_2H_3O$. B. Aus der freien Säure und Silbernitrat (H., A. 80, 83). Nadeln (aus siedendem Wasser). Schwer löslich in kaltem Wasser. — $Ag_2C_6HO_5Cl$ (bei 100°). B. Aus einer ammoniakalischen Lösung der Säure und Silbernitrat (H., A. 80, 84). Gelber, flockiger Niederschlag. Unlöslich in siedendem Wasser.

6-Brom-komensäure C₆H₃O₅Br = OC·CO·CH
BrHC-O-C·CO₂H
BrHC-O-C·CO₂H
BrHC-O-C·CO₂H
BrHC-O-C·CO₃H
BrC-O-C·CO₄H
BrHC-O-C·CO₄H
BrHC-O-C-CCO₄H
BrHC-O-C-CCO₄H
B

Äthylester $C_8H_7O_8Br=C_8H_8O_8Br\cdot CO_2\cdot C_8H_5$. B. Beim Behandeln von 6-bromkomensaurem Silber mit Äthyljodid (Mennel, J. pr. [2] 26, 472). Aus 6.6-Dibrom-komensaure-athylester durch Erhitzen für sich oder mit Wasser oder durch Einleiten von Schwefeldioxyd in die wäßrige Suspension (M.). — Nadeln (aus Alkohol). F: 140—141°. Löslich in heißem Wasser. Die Lösung wird durch Eisenchlorid rot gefärbt.

6.6-Dibrom-komensäure $C_6H_2O_5Br_3=\frac{OU\cdot CU\cdot CM}{Br_3C-O-C\cdot CO_2H}$. Zur Konstitution vgl. Peratoner, G. 41 II [1911], 646, 681. — B. Aus 6-Brom-komensäure durch Behandlung mit Brom bei Gegenwart von Wasser (Mennel, J. pr. [2] 26, 467). Zu einem Gemenge von 10 g Mekonsäure (8. 503) und 80 g Wasser setzt man allmählich 18 g Brom (M., J. pr. [2] 26, 468). — Gelbliche Tafeln mit 3 H_2O (aus wenig lauwarmem Wasser). Verliert bei 105° Brom und Wasser und hinterläßt 6-Brom-komensäure (M.). Leicht löslich in Wasser und Alkohol, schwerer in Chloroform, Äther und Benzol (M.). Gibt mit Eisenchlorid keine Färbung

(M.). — Entwickelt beim Übergießen mit Bromwasserstoffsäure kein Brom (M.). Liefert beim Behandeln mit Schwefeldioxyd in wäßr. Lösung oder mit Zink und Salzsäure oder mit Zinn und Salzsäure 6-Brom-komensäure (M.).

Äthylester $C_8H_6O_5Br_9=C_9HO_3Br_9\cdot CO_2\cdot C_9H_5$. B. In ein Gemisch von 10 g Mekonsäuremonoäthylester (S. 506) und 80 g kaltem Wasser trägt man 18 g Brom ein (Mennel, J. pr. [2] 26, 469). — Gelbliche Tafeln. Läßt sich aus Äther, aber nicht aus Wasser umkrystallisieren. Leicht löslich in Wasser, Alkohol und Äther. — Zersetzt sich beim Trocknen für sich oder mit Wasser oder beim Einleiten von Schwefeldioxyd in die wäßr. Suspension 6-Brom-komensäure-äthylester.

 $\textbf{6-Nitro-komens}\\ \text{aure-\ddot{a}thylester} \ C_8H_7O_7N = \frac{OC \cdot CO \cdot CH}{O_2N \cdot HC - O - C \cdot CO_3 \cdot C_2H_5} \ \text{bezw.}$

HO·C·CO·CH

O₂N·C·O-C·CO₂·C₂H₅

B. Durch Behandeln von Komensäureäthylester mit Salpeter-säure (D: 1,5) oder besser durch Einleiten von nitrosen Gasen in mit absol. Äther übergossenen Komensäureäthylester (Reibstein, J. pr. [2] 24, 279). — Gelbe Nadeln (aus Alkohol). F: 147°. Ziemlich leicht löslich in Äther und in heißem Wasser. Wird von heißem Wasser nicht zersetzt. Gibt mit Eisenchlorid eine rote Färbung. Zerlegt in der Wärme Sodalösung. — Gibt bei der Behandlung mit Zinn und verd. Salzsäure 6-Amino-komensäure (Syst. No. 2648). — NaC₂H₆O₇N. Gelbe Nadeln. Schwer löslich in kaltem Wasser. Explodiert heftig beim Erhitzen. — Silbersalz. Orangegelbe Nädelchen. Scheidet schon in der Kälte, sofort auf Zusatz von Ammoniak, Silber ab. — Ba(C₈H₆O₇N)₂. Krystallinischer, gelber Niederschlag. Unlöslich in Wasser.

- 3. [2.5-Dioxo-tetrahydrofuryliden-(3)]-essigsäure, α.β-Anhydro-aconitsäure C₆H₄O₅ = H₂C C:CH·CO₂H 1). B. Durch Kochen von Aconitsäure mit überschüssigem Acetylchlorid (Easterfield, Sell, Soc. 61, 1009) in Chloroform-Lösung (Anschütz, Bertram, B. 37, 3968). Durch Erhitzen von Aconitsäure auf 140° bei 15—20 mm Druck (A., B.). Krystalle (aus Chloroform), Blättchen (aus Benzol). F: 76° (A., B.). Leicht löslich in Alkohol (E., S.), Äther, Chloroform und Essigsäureanhydrid, schwer in Benzol (A., B.). Liefert beim Destillieren im Vakuum unter Abspaltung von Kohlendioxyd Itaconsäureanhydrid; erhitzt man unter gewöhnlichem Druck, so isomerisiert sich das primär entstehende Itaconsäureanhydrid größtenteils zu Citraconsäureanhydrid (A., B.). Beim Erhitzen von Anhydroaconitsäure mit Ammoniak im Einschlußrohr auf 120° entsteht 2.6-Dioxy-pyridin-carbonsäure-(4) (Citrazinsäure, Syst. No. 3349) (E., S.). Anhydroaconitsäure liefert mit 1 Mol Anilin in äther. Lösung Aconitsäure-monoanilid (Bd. XII, S. 318), mit 2 Mol Anilin dessen Anilinsalz, mit 3 Mol Anilin Aconitsäure-anilid-anil (Syst. No. 3367) (Bertram, B. 38, 1615).
- 4. [trans Cyclopropan tricarbonsäure (1.2.3)] anhydrid $C_6H_4O_5 = HO_2C \cdot HC \stackrel{CH \cdot CO}{\hookrightarrow} O$. B. Aus trans-Cyclopropan-tricarbonsäure-(1.2.3) beim Destillieren im Vakuum (Buchner, B. 21, 2642; Habilitationsschrift [München 1891], S. 108) oder bei 2-stündigem Kochen mit 6 Tln. Acetylchlorid (B., Witter, A. 284, 222). Beim Erhitzen des

¹⁾ Die Anhydroaconitsäure vom Schmelzpunkt 76° ist nach Malachowski, Giedboyć, Jerzmanowska (B. 61 [1923], 2525) als [2.5-Dioxo-dihydrofuryl-(3)]-essigsäure HC—C·CH₂·CO₂H

OC·O·CO

gu formulieren.

Silbersalzes der trans-Cyclopropan-tricarbonsäure-(1.2.3) (B., W.). — Prismen (aus Äther). F: 189—190°; Kp₇₆: 266° (B., Habilitationsschr.). Leicht löslich in Wasser und Alkohol, etwas schwerer in Äther (B.).

2. Oxo-carbonsauren C2H4O5.

1. 4.6-Dioxo-2-methyl-[1.4-pyran]-dihydrid-carbonsäure-(5), Carboxy-triacetsäurelacton $C_7H_6O_5= \begin{array}{c} HO_5C\cdot HC\cdot CO\cdot CH\\ OC-O-C\cdot CH_2 \end{array}$ bezw. desmotrope Formen.

Anilid C₁₉H₁₁O₄N = CH₃·C₅H₂O₂·CO·NH·C₄H₅. B. Beim Erwärmen von Triacetsäurelacton (Bd. XVII, S. 442) mit Phenylisocyanat in Gegenwart von Natriumacetat (Dieckmann, Breest, B. 87, 3391). — Prismen (aus Alkohol). F: 156°. Eisenchlorid färbt die alkoh. Lösung gelbrot. — Kupfersalz. Fast farbloser Niederschlag. Schwer löslich.

3. Oxo-carbonsăuren CaHaOs.

1. β -[2.5-Dioxo-4-methyl-dihydrofuryl-(3)]-propionsäure, [γ -Amylen-a. γ -5-tricarbonsäure]- γ -5-anhydrid, Anhydrid der dreibasischen Hämatinsäure $C_8H_8O_5= { H_0 \cdot CH_1 \cdot CH_2 \cdot CH_2 \cdot CH_3

A. 315, 179; B. 35, 2948; A. 345, 2. — Das Mol.-Gew. ist kryoskopisch in Phenol bestimmt (K., A. 315, 198). — B. Bei der Oxydation von Hämatin (Syst. No. 4840) (KÜSTER, B. 29, 823; H. 28, 5), von Hamatoporphyrin (Syst. No. 4840) (K., B. 30, 106; H. 28, 8, 34), von Phylloporphyrin (Syst. No. 4868a) (Marchlewski, J. pr. [2] 65, 163), von Bilirubin bezw. Biliverdin (Syst. No. 4870) (K., H. 26, 323; 59, 90) mit Natriumdichromat und Eisessig. Durch Behandeln des Imids der dreibasischen Hämatinsäure (Biliverdinsäure, Syst. No. 3367) mit Basen (und Ansäuern der Lösung) oder mit Säuren (K., B. 32, 679; H. 28, 36; 54, 506 Anm., 515; A. 315, 194, 207; 345, 19). — Krystalle (aus Äther oder heißem Wasser). Rhombisch (Wülfing, A. 315, 199; Z. Kr. 38, 519). F: 96—97° (K., A. 315, 198), 95,5—96° (Ma.). Ziemlich leicht löslich in Alkohol, Äther und Eisessig, etwas schwerer in Chloroform und Benzol, sehr leicht in heißem Wasser; bei Zimmertemperatur lösen 100 Tle. Wasser nicht ganz 4 The. Anhydrid (K., A. 315, 200). Elektrolytische Dissoziationskonstante k bei 25°: 2,29·10-4 (K., A. 315, 200). — Beim Erhitzen auf 160° entsteht unter Kohlendioxyd-Abspaltung Methyläthylmaleinsäureanhydrid (Bd. XVII, S. 449) (K., B. 35, 2948; K., Haas, MEZGER, A. 345, 26). Bei der Oxydation mit Kaliumpermanganat und Schwefelsäure oder mit Natriumdichromat in verdünnter essigsaurer Lösung entsteht Bernsteinsäure (K., B. 35, 2948; K., H., Mr., A. 345, 28, 30). Liefert beim Erhitzen mit Jodwasserstoffsäure (D: 1,96) auf 150° (K., B. 35, 2949; A. 345, 31; vgl. K., B. 32, 682; 33, 3022; A. 315, 180) oder beim Behandeln mit 3% igem Natriumamalgam in verdünnter schwefelsaurer Lösung (K., A. 845, 36) oder beim Erwärmen mit Zinkstaub in schwach essigsaurer Lösung (K., A. 345, 39) die beiden stereoisomeren Formen der Hämotricarbonsäure (Bd. II, S. 825). Gibt beim Erhitzen mit alkoh. Ammoniak auf 100-110° das Imid der dreibasischen Hämatinsäure; erhitzt man auf 125—130°, so entsteht Methyläthylmaleinsäureimid (Syst. No. 3202) neben einer öligen (nicht näher untersuchten) Säure $C_aH_{10}O_a$ (K., B. 33, 3022; A. 315, 206, 211). Liefert beim Erhitzen mit Methylalkohol und Salzsäure nebeneinander den Mono- und Trimethylester der dreibasischen Hämatinsäure (Bd. II, S. 854) sowie den (nicht näher beschriebenen) Methylester des Anhydrids der dreibasischen Hämatinsäure (K., H. 54, 516). Beim Erwärmen mit Anilin in Ather entsteht das Anilinsalz des Monoanilids der dreibasischen Hämatinsäure (Bd. XII, S. 318) (K., H. 54, 543).

2. $\alpha - [2.5 - Dioxo - 4 - methyl - tetrahydrofuryliden - (3)] - propionsdure,
<math display="block">\alpha.\beta-Anhydro-[\alpha.\gamma-dimethyl-aconitedure] \ C_8H_8O_8 = \begin{array}{c} HO_8C \cdot C(CH_8):C-CH \cdot CH_8 \\ OC \cdot O \cdot CO \end{array}$

Aus α.γ-Dimethyl-aconiteaure beim Kochen mit Acetylchlorid (Rogerson, Thorre, Soc. 89, 647). — Nadeln (aus Petrolather). F: 74°. Löslich in siedendem Wasser.

bezw. CH₃·C(OH):C—C·CO₃H OC·O·C·CH₃, Isocarbopyrotritarsäure. B. Der Äthylester entsteht

beim Erhitzen von reinem Diacetbernsteinsäurediäthylester auf 170—190° (Knorr, B. 22, 159) oder auf 210—215° unter Durchleiten von Wasserstoff (K., A. 303, 135). Der Äthylester entsteht ferner bei kurzem Kochen von 1 Mol Diacetbernsteinsäurediäthylester mit 1 Mol alkoh. Kalilauge (K., Haber, B. 27, 1158). Man verseift ihn durch kurzes Kochen mit 20°/oiger wäßriger Natronlauge und Ansäuern mit eiskalter verdünnter Schwefelsäure (K., B. 22, 163; A. 303, 135). — Krystalle (aus Essigsäure oder verd. Alkohol). Zersetzt sich bei langsämem Erhitzen bei 200°, bei schnellem Erhitzen bei 209° unter Bildung von Kohlendioxyd; der Rückstand, durch Destillation im Vakuum gereinigt, besteht aus der Enolform des Acetylangelicalactons (Bd. XVII, S. 448) (K., A. 303, 136; vgl. K., B. 22, 165). — Isocarbopyrotritarsäure reduziert Gold-, Silber- und Kupfersalze (K., B. 22, 164). Ist gegen siedende konzentrierte Alkalilauge ziemlich beständig, zersetzt sich dagegen beim Kochen mit Wasser in Kohlendioxyd und Acetonylaceton (K., B. 22, 164). Beim Erwärmen mit konz. Schwefelsäure entsteht Carbopyrotritarsäure (S. 335) (K., H.). — Ba(C₈H₇O₅)₂ + 2H₂O. Krystalle (K., B. 22, 164).

Athylester $C_{10}H_{13}O_5 = CH_3 \cdot CO \cdot C_4HO_4(CH_3) \cdot CO_2 \cdot C_2H_5$ bezw. $CH_3 \cdot C(OH) : C_4O_4(CH_3) \cdot CO_2 \cdot C_2H_5$. Das Mol.-Gew. ist kryoskopisch in Éisessig bestimmt (Knorr, Haber, B. 27, 1161). — B. s. im vorangehenden Artikel. — Nadeln (aus Wasser). F: 110°; Kp₁₈: ca. 280° (Knorr, B. 22, 160). Zersetzt sich etwas bei der Destillation an der Luft; leicht löslich in heißem Alkohol, in Äther und Chloroform, sehr schwer in Wasser und verd. Säuren, leicht in Alkalien, Soda und Ammoniak; wird aus den alkal. Lösungen durch Kohlendioxyd gefällt (K.). — Zersetzt sich beim Aufbewahren unter Abgabe von Essigsäure (K., H.). Wirkt stark reduzierend; die Edelmetallsalze zersetzen sich schon in der Kälte unter Abscheidung der Metalle (K.). Gibt in alkoh. Lösung mit Eisenchlorid eine blaue Färbung (K.). Liefert mit Brom Dibromisocarbopyrotritarsäureäthylester (K., H.). Beim Einleiten von nitrosen Gasen oder bei Einw. von roter, rauchender Salpetersäure entsteht Nitroisocarbopyrotritarsäureäthylester (K., H.). Beim Behandeln mit konzentriertem wäßrigem Ammoniak in der Kälte

I. CH3 C CH - HC C C CH3
II. CH3 C CH - HC C C CH3
III. N N (C₆H₅) CO OC N (C₆H₅) N

entsteht die Verbindung C₁₀H₁₇O₃N₃ (s. u.), beim Erhitzen mit Ammoniumacetat und Eisessig entsteht die Verbindung C₁₀H₁₇O₄N (s. u.) (K., H.). Beim Erwärmen mit Hydroxylamin in essigsaurer Lösung auf dem Wasserbad erhält man 5.5'-Dioxo-3.3'-dimethyl-4.5.4'.5'-tetrahydro-diisoxazolyl-(4.4') (Formel I) (Syst. No. 4641) (K.). Beim Erhitzen mit Alkohol auf 180° entsteht Diacetbernsteinsäurediäthylester (K., H.). Verbindet sich mit Phenylhydrazin zu 1.1'-Diphenyl-5.5'-dioxo-3.3'-dimethyl-4.5.4'.5'-tetrahydro-dipyrazolyl-(4.4') (Formel II) (Syst. No. 4138) (K.). Beim Kochen mit N.N-Diphenyl-hydrazin in Eisessig entsteht eine bei 187° schmelzende Verbindung (K., H.).

bei 187° schmelzende Verbindung (K., H.).

Verbindung C₁₀H₁₃O₄N. B. Beim Erhitzen von Isocarbopyrotritarsäureäthylester mit

Ammoniumacetat und Eisessig (Knorr, Haber, B. 27, 1162). — Krystalle (aus Alkohol).

F: 220—221°.

Verbindung C₁₀H₁₇O₃N₃. B. Beim Behandeln von Isocarbopyrotritarsäureäthylester mit konzentriertem wäßrigem Ammoniak in der Kälte (K., H., B. 27, 1163). — Krystalle (aus Wasser). F: 260° (Zers.). — Entwickelt beim Erwärmen mit Natronlauge Ammoniak.

 $\frac{\alpha - Brom - \gamma - brommethyl - \alpha - acetyl - \Delta^{\beta - \gamma} - crotonlacton - \beta - carbonsäure - äthylester}{C_{10}H_{10}O_5Br_2} = \frac{CH_3 \cdot CO \cdot BrC - C \cdot CO_3 \cdot C_2H_5}{OC \cdot O \cdot C \cdot CH_2Br} \quad oder \quad \alpha - Brom - \gamma - methyl - \alpha - bromacetyl - C \cdot CH_2Br}$

 $\Delta^{\beta,\gamma}\text{-}crotonlacton-\beta-carbons \"{a}ure-\ddot{a}thy lester} \overset{CH_2Br\cdot CO \cdot BrC \longrightarrow C \cdot CO_2 \cdot C_2H_5}{OC \cdot O \cdot C \cdot CH_2}, \quad \text{Dibrom-}$

isocarbopyrotritarsäureäthylester. B. Beim Eintragen von Isocarbopyrotritarsäureäthylester in eiskaltes Brom (K., H., B. 27, 1161). — Schuppen (aus Alkohol). F: 122°. Unlöslich in Wasser.

 $\begin{array}{ll} \alpha\text{-Nitro-}\gamma\text{-methyl-}\alpha\text{-acetyl-}\Delta^{\beta,\gamma}\text{-crotonlacton-}\beta\text{-carbons}\\ \text{aure-athylester}, & \text{Nitro-isocarbopyrotritars}\\ \text{aure-athylester} & \text{$C_{10}H_{11}O_7N$} = \\ \begin{array}{ll} (\text{CH}_3\cdot\text{CO})(\text{O}_2\text{N})\text{C---}\text{C}\cdot\text{CO}_3\cdot\text{C}_2\text{H}_5}\\ \text{OC}\cdot\text{O}\cdot\text{C}\cdot\text{CH}_3 \end{array}. & B. \end{array}$

Aus Isocarbopyrotritarsäureäthylester und roter, rauchender Salpetersäure (D: 1,54) (K., BEILSTEIN's Handbuch. 4. Aufl. XVIII.

- H., B. 27, 1162). Beim Einleiten von nitrosen Gasen in die äther. Suspension von Isocarbopyrotritarsäureäthylester (K., H.). Krystalle (aus Alkohol). F: 58—59°.
- 4. "Oxydehydracetsäure" C₈H₈O₅, für die Konstitution kommen die Formeln I—IV, evtl. auch desmotrope Formen, in Frage. Zur Konstitution vgl. Feist, B. 25, 318. Das Mol.-Gew. ist kryoskopisch in Phenol bestimmt (F.). B. Bei 14-tägigem Stehenlassen von Bromdehydracetsäure (Bd. XVII, S. 565) mit konzentrierter alkoholischer Kalilauge bei 35—40° (Perkin, Soc. 51, 491). Darst. Man übergießt 4 g fein gepulvertes Kalium-

OC—C·CO₂H OC—C·CO₂H OC—CH₃ HC—CO
CH₃·CO·HC·O·C·CH₃ H₂C·O·C·C·CH₃ H₂C·O·C·C·C₂H)·CO·CH₃ CH₃·C·O·C(CO₂H)·CO·CH₃
I. II. IV.

hydroxyd mit etwas absol. Alkohol, fügt 2 g Bromdehydracetsäure zu und läßt 5—8 Tage an einem warmen Ort stehen (Feist, B. 25, 322). — Krystalle (aus verd. Alkohol). Schmilzt bei raschem Erhitzen bei 250—255° (Zers.) (P.), 253—255° (Zers.) (F.). Läßt sich in kleinen Mengen fast unzersetzt sublimieren (P.). Leicht löslich in heißem Alkohol und Methylalkohol (P.), löslich in Äther (F.), fast unlöslich in kaltem Wasser, Chloroform, Petroläther, Benzol und Aceton (P.). Elektrolytische Dissoziationskonstante k: 1,59×10³ (Barth, B. 25, 323). Gibt mit Eisenchlorid in alkoh. Lösung eine intensiv violette Färbung (P.). — Beim Erhitzen mit konz. Salzsäure im Druckrohr auf 50—56° entstehen 2.5-Diäthylon-cyclohexandion-(3.6)-dicarbonsäure-(1.4)(?) (Bd. X, S. 934), 2-Äthylon-cyclohexandion-(3.6)-dicarbonsäure-(1.4)(?) (Bd. X, S. 925) und eine Verbindung C₁₀H₈O₆ (s. u.) (F.). Liefert mit Phenylhydrazin eine Verbindung C₃₀H₄O₅N₄ (s. u.) (F.). — Ammoniumsalz. F: 178° (Zers.) (F.). Sehr leicht löslich. — NaC₆H₄O₅+H₄O. Krystallpulver (F.). — Ag₄C₆H₆O₅. Hellgelber, amorpher Niederschlag (P.; F.). — BaC₆H₆O₅ + 5H₄O. Krystallpulver (F.). — Salz des 3.4-Diaminotoluols C₇H₁₀N₂ + C₈H₈O₅. Gelber Niederschlag. F: 147° (Zers.) (F.). Schwer löslich in Wasser.

Verbindung C₁₀H₈O₆. B. Aus Oxydehydracetsäure und konz. Salzsäure bei 50—56°, neben anderen Produkten (F., B. 25, 327, 334). — Strohgelbe Nädelchen. Schmilzt unter Schäumen bei 271°. Sehr schwer löslich in Alkohol und Chloroform, unlöslich in Wasser und Alkohol

Verbindung C₁₀H₁₀O₆. B. Durch Kochen von Oxydehydracetsäure mit Essigsäureanhydrid (Perkin, Soc. 51, 492). — Krystallinisch. F: 165—167°. Leicht löslich in heißem

Alkohol, schwerer in Benzol, Chloroform, Schwefelkohlenstoff und Äther.

Verbindung C₃₀H₁₆O₃N₄. B. Bei gelindem Erwärmen von Oxydehydracetsäure mit einem geringen Überschuß von Phenylhydrazin (Feist, B. 25, 325). — Hellgelb, krystallinisch. F: 105° (Zers.). Leicht löslich in Alkohol, Äther, Essigester und Eisessig; leicht löslich in Alkalilauge.

- 5. [Cyclopentan tricarbonsāure (1.2.4)] 1.2 anhydrid C₈H₈O₅ = HO₅C·HC CH₂·CH·CO B. Man kocht das rohe Gemisch der höher- und niedrigerschmelzenden Form der Cyclopentan-tricarbonsäure-(1.2.4) (F: 115—125°) 2 Stdn. mit Essigsäureanhydrid, destilliert das überschüssige Essigsäureanhydrid ab und destilliert den Rückstand so schnell wie möglich bei 15 mm Druck (Bottomley, Perkin jun., Soc. 77, 304). Krystalle (aus Aceton-Chloroform). F: 215—217°. Schwer löslich in kaltem Wasser. Gibt mit heißem Wasser die höherschmelzende Cyclopentan-tricarbonsäure-(1.2.4).

5. Oxo-carbonsăuren $C_{10}H_{12}O_{\delta}$.

1. Carboxyapocamphersäureanhydrid, Camphosäure-anhydrid $C_{10}H_{13}O_5$, s. nebenstehende Formel. B. Beim Erhitzen von Camphosäure (Bd. IX, S. 973) mit Acetylchlorid (MARSH, GARDNER, Soc. 69, 76). — Tafeln (aus Äther). F: 205° (Zers.). Schwer löslich in Chloro-thermal control of the cont

form, Benzel und kaltem Wasser, leicht in heißem Wasser. — Zerfällt in der Hitze in Kohlendioxyd und Apocamphersäureanhydrid (Bd. XVII, S. 453).

2. Camphotricarbonsäureanhydrid $C_{10}H_{12}O_5$. Es ist nicht bekannt, ob die drei isomeren Anhydride die gleiche Struktur besitzen und welche von den möglichen Formeln I—III ihnen zuzuordnen ist.

$$I. \begin{array}{c} H_2C - CH \cdot CO_2H \\ \downarrow C(CH_3) \cdot CO \\ \downarrow H_2C - C(CH_3) \cdot CO \\ \end{array} \qquad II. \begin{array}{c} H_2C - CH - CO \\ \downarrow C(CH_3) \cdot CO \\ \downarrow H_2C - C(CH_3) \cdot CO_2H \\ \end{array} \qquad III. \begin{array}{c} H_2C - CH - CO \\ \downarrow C(CH_3) \cdot CO_2H \\ \downarrow C(CH_3) \cdot CO_2H \\ \end{array}$$

a) Anhydrid der "cis"-Camphotricarbonsäure C₁₀H₁₂O₅=

(CH₃)₂C₅H₅(CO₂H)<CO>O. B. Beim Erhitzen von rechtsdrehender "trans"-Camphotricaruonsäure (Bd. IX, S. 974) mit konz. Schwefelsäure auf 150—160° (KIPPING, Soc. 69, 970). Aus "cis"-Camphotricarbonsäure beim Erhitzen auf 180° oder beim Erwärmen mit Acetylchlorid (K.). — Ätherhaltige Tafeln (aus Äther). F: 220—221°. Läßt sich in geringen Mengen unzersetzt destillieren. Unlöslich in Petroläther, leicht löslich in heißem Äther, Chloroform und Aceton; leicht löslich in heißem Wasser, dabei in "cis"-Camphotricarbonsäure übergehend. b) Anhydrid der rechtsdrehenden "trans"-Camphotricarbonsäure C₁₀H₁₂O₅ =

- b) Anhydrid der rechtsdrehenden "trans"-Camphotricarbonsäure $C_{10}H_{12}O_5 = (CH_3)_2C_5H_5(CO_2H) < CO_5O_5$ 0. B. Aus rechtsdrehender "trans"-Camphotricarbonsäure beim Erhitzen für sich auf 200—210° oder beim Erwärmen mit Acetylchlorid (K., Soc. 69, 957). Krystalle (aus Äther und Chloroform). Monoklin (Pope, Soc. 69, 958; Kipping, Pope, Z. Kr. 30, 456). F: 253—254° (K.). Sublimerbar (K.). Disch 1,3894 (K., P., Soc. 71, 988). Unlöslich in Petroläther, leicht löslich in trocknem Chloroform und Äther (K.). Destilliert größtenteils unzersetzt, nur ein kleiner Teil wird in das isomere Anhydrid der "cis"-Camphotricarbonsäure umgewandelt (K.).
- c) Anhydrid der inaktiven "trans"-Camphotricarbonsäure $C_{10}H_{12}O_5=(CH_2)_2C_5H_5(CO_2H)<{CO\atop CO}>O$. B. Beim Kochen von inaktiver "trans"-Camphotricarbonsäure mit Acetylchlorid (KIPPING, POPE, Soc. 71, 986). Krystalle (aus Äther und Chloroform). Monoklin (K., P., Soc. 71, 987; Z. Kr. 30, 457). F: 253—254°. Dis: 1,3890. Schwer löslich in kaltem Wasser, Petroläther und Benzol, leicht in Chloroform, Methylalkohol und siedendem Ather

c) Oxo-carbonsäuren $C_nH_{2n-10}O_5$.

 $\begin{array}{ll} \alpha.\gamma\text{-Dioxo-}\gamma\text{-}[\alpha\text{-furyl}]\text{-buttersäure} & \mathrm{C_8H_6O_5} = \frac{\mathrm{HC--CH}}{\mathrm{HC}\cdot\mathrm{O}\cdot\mathrm{C}\cdot\mathrm{CO}\cdot\mathrm{CH_2}\cdot\mathrm{CO}\cdot\mathrm{CO_2H}} \\ \mathrm{matische} & \mathrm{Stammverbindung} & \mathrm{der} & \alpha.\gamma\text{-Dioxo-}\gamma\text{-}[\alpha\text{-thienyl}]\text{-buttersäure}). \end{array}$

 γ - Oxo - α - oximino - γ - [α - thienyl] - buttersäure $C_gH_7O_4NS = HC - CH$ HC· S· C· CO· CH₂· C(:N·OH)· CO₂H

B. Bei 5—6-stdg. Aufbewahren von [α-Thenoyl]-brenztraubensäure mit Hydroxylaminhydrochlorid und überschüssiger Soda in wäßr. Lösung S vatori, G. 21 II, 282). — Prismen (aus Äther). F: 110—112° (Zers.). — Geht beim Erwärmen, rascher beim Behandeln mit Acetylchlorid in 5-α-Thienyl-isoxazol-carbonsäure-(3) $SC_4H_2 \cdot C = N$ (Syst. No. 4449) über.

468

α.γ-Pioxo-γ-[α-thienyl]-buttersäure-äthylester, [α-Thenoyl]-brenstraubensäure-äthylester $C_{10}H_{10}O_4S=\frac{HC-CH}{HC\cdot S\cdot C\cdot CO\cdot CH_2\cdot CO\cdot CO_2\cdot C_2H_3}$. B. s. im Artikel [α-Thenoyl]-brenztraubensäure. — Citronengelbe Prismen (aus Petroläther). F: 42° (Angeli, G. 21 I, 444). Leicht löslich in Alkohol, Chloroform und Benzol (A.). Gibt in alkoh. Lösung mit Eisenchlorid eine intensiv rote Färbung (A.). — Wird von Natriumnitrit und Mineralsäure α-Thiophensäure (S. 289) oxydiert (Salvatori, G. 21 II, 272). Liefert beim Erwärmen mit Hydroxylaminhydrochlorid in alkoh. Lösung auf dem Wasserbad 5-α-Thienyl-isoxazol-carbonsäure-(3)-äthylester (Syst. No. 4449) (A.). Reagiert mit Phenylhydrazin in essigsaurer Lösung unter Bildung von 1-Phenyl-5-α-thienyl-pyrazol-carbonsäure-(3)-äthylester (Syst. No. 4588) (S.). Gibt mit Isatin und konz. Schwefelsäure eine blauviolette Färbung (A.). — $C_{10}H_{10}O_4S+2NH_3$. Krystallinisch. F: 125° (Zers.); unlöslich in Wasser, Äther und Ligroin, löslich in Alkohol und Benzol (S.). — $C_{10}(C_{10}H_2O_4S)_3$. Hellgrüner, krystallinischer Niederschlag (S.).

d) Oxo-carbonsäuren $C_nH_{2n-12}O_5$.

 $\begin{array}{ll} 2 \cdot [\alpha \cdot Furyl] \cdot cyclohexandion \cdot (4.6) \cdot carbons \"{a}ure \cdot (1) & C_{11}H_{10}O_5 = \\ HC - CH \\ HC \cdot O \cdot C \cdot HC < CH(CO_2H) \cdot CO \\ CH_2 - CO > CH_2. \end{array}$

Äthylester C₁₈H₁₄O₅ = OC₄H₅·C₆H₆O₂·CO₂·C₂H₅. B. Aus Furfurylidenaceton (Bd.XVII, S. 306) und Natriummalonester (VORLÄNDER, A. 294, 299). — Krystalle (aus Essigsäure). F: 102°.

e) Oxo-carbonsăuren $C_n H_{2n-14} O_5$.

1. Oxo-carbonsauren CoH4O6.

1. 1.3-Dioxo-phthalan-carbonsäure-(4), Anhydrohemimel-litsäure C₃H₄O₅, s. nebenstehende Formel. B. Beim Erhitzen von Hemimellitsäure auf 190—200° (Graebe, Bossel, A. 290, 211; G., Leonhardt, A. 290, 221). Beim Erhitzen von 2.6-Dicarboxy-phenylglyoxylsäure auf 250°, neben anderen Produkten (G., B., A. 290, 214). — Krystalle. F: 196° (G., B., A. 290, 211; G., L., A. 290, 221). — Zerfällt oberhalb 300° in CO₂ und Phthalsäureanhydrid (G., L., A. 290, 222). Anhydrohemimellitsäure liefert mit Benzol und Aluminiumchlorid als Hauptprodukt 3-Benzoyl-phthalsäure(Bd. X, S. 880) und in geringerer Menge 2.3- und 2.6-Dibenzoyl-benzoesäure (G., L., A. 290, 229; vgl. G., Blumenfeld, B. 30, 1115). Beim Behandeln des Kaliumsalzes mit Benzol und Aluminiumchlorid erhält man als Hauptprodukt

2-Benzoyl-isophthalsäure (Bd. X, S. 881) und in geringerer Menge 3-Benzoyl-phthalsäure und 2.3-Dibenzoyl-benzoesäure (G., L., A. 290, 230). Beim Erhitzen mit Resorcin auf 200° erhält man die Verbindung der Formel I (Syst. No. 2842) und die Verbindung der Formel II bezw. III (Syst. No. 2902) (G., L., A. 290, 235). Beim Erhitzen mit 3-Dimethylamino-phenol entsteht ein in Alkalien mit violettroter Farbe lösliches Rhodamin (G., L., A. 290, 238)

Anhydro-[4.6-dichlor-hemimellitzäure] C₂H₂O₃Cl₂, s. nebenstehende Formel. B. Aus 4.6-Dichlor-hemimellitzäure bei kurzem Erhitzen auf 235° bis 240° (CROSSLEY, HILLS, Soc. 89, 885). — Nadeln (aus Essigzäureanhydrid). F: 227—228°. Leicht löslich in Wasser, löslich in Alkohol, unlöslich in Benzol und Chloroform.

2. 1.3-Dioxo-phthalan-carbonsäure-(5), Anhydrotrimellitsäure C₂H₁O₃, s. nebenstehende Formel. B. Beim Erhitzen von Trimellitsäure (Baever, A. 166, 340; Schreder, A. 172, 97; Rér, A. 233, 231) im Vakuum auf 200—220° (Schreder, A. 359, 142, 143). — Nadeln. F: 157° (Schr.), 157—158° (B.), 158° (Hammerschlag, B. 11, 88; R.), 162,5—163,5° (Schu.). Schwer löslich in kaltem, leicht in heißem Wasser (B.).

2. Oxo-carbonsauren $C_{10}H_6O_5$.

1. 2.4-Dioxo-chroman-carbonsäure-(3) bezw. 4-Oxy-2-oxo-[1.2-chromen]-carbonsäure-(3), 4-Oxy-cumarin-carbonsäure-(3) $C_{10}H_4O_5=C_4H_4$ C_0 bezw. C_4H_4 C_0 C_0 , 3-Carboxy-benzotetronsäure, Benzotetronsäure-carbonsäure-(3).

8-Carboxy-bensotetronsäure-Derivate, die sich nur von der Enolform C(OH):C·CO₂H ableiten lassen, s. S. 527, 528.

Bensotetronsäure-[carbonsäure-(3)-äthylester] $C_{12}H_{10}O_5 = C_5H_5O_3 \cdot CO_2 \cdot C_2H_5$. B. Aus 1 Mol Acetylsalicylsäurechlorid (Bd. X, S. 86) und 3 Mol Natriummalonester in Ather (AGFA, D. R. P. 102096; C. 1899 I, 1261; Anschütz, B. 36, 464; A. 367, 174). — Nadeln (aus Alkohol). F: 101° (A., B. 36, 464; A. 367, 174). Sehr leicht löslich in Benzol, schwer in Wasser und Alkohol (A., A. 367, 175). Die wäßr. Lösung reagiert sauer; zerlegt Alkalicarbonate, wird aber durch Mineralsäuren sowie durch Essigsäure aus den Salzen in Freiheit gesetzt (A., A. 367, 175). Die wäßr. Suspension gibt mit Ferrichlorid Dunkelrotfärbung (A., A. 367, 176). — Liefert beim Kochen mit Kalilauge Benzotetronsäure (AGFA, D. R. P. 102097; C. 1899 I, 1261; A., A. 367, 176, 196). Mit Phosphorpentachlorid in Chloroform entsteht 4-Chlor-cumarin-carbonsäure-(3)-äthylester (S. 430) (A., A. 367, 182). Das Silbersalz gibt mit Äthyljodid 4-Äthoxy-cumarin-carbonsäure-(3)-äthylester (S. 527) (A., A. 367, 183). Liefert mit Phenylhydrazin Benzotetronsäure-[carbonsäure-(3)-phenylhydrazid] (S. 470) (A., A. 367, 190). — NH₄C₁₂H₉O₅. B. Beim Einleiten von Ammoniak (A., A. 367, 176). Farblose Nadeln. — NaC₁₂H₉O₅. Farbloser Niederschlag (A., A. 367, 176). — Cu(C₁₂H₉O₅)₂. Stahlblaue Nadeln (aus Alkohol) (A., A. 367, 177). — AgC₁₂H₉O₅. Krystalle (aus Alkohol). Lichtempfindlich (A., A. 367, 177).

 $\begin{array}{lll} \textbf{2-Oxo-4-phenylimino-chroman-carbons\"{a}ure-(3)-\"{a}thylester bezw. 4-Anilino-cumarin-carbons\"{a}ure-(3)-\"{a}thylester & C_{18}H_{_{15}}O_{_{6}}N = & C_{_{6}}H_{_{6}} & C_{_{18}}H_{_{15}}O_{_{6}}N \\ & O & C_{_{18}}H_{_{15}}O_{_{18}} & C_{_{18}}H_{_{18}}O_{_{18}} & C_{_{18}}H_{_{18}}O_{_{18}} & C_{_{18}}H_{_{18}}O_{_$

 $\begin{array}{lll} \textbf{2-Oxo-4-phenylhydrazono-chroman-carbons\"{a}ure-(3)-\"{a}thylester} & bezw. \textbf{4-Phenylhydrazono-cumarin-carbons\"{a}ure-(3)-\"{a}thylester} & C_{16}H_{16}O_{4}N_{2} = \\ C_{16}H_{16}C(:N\cdot NH\cdot C_{6}H_{5})\cdot CH\cdot CO_{2}\cdot C_{2}H_{5} & bezw. & C_{16}H_{16}C(NH\cdot NH\cdot C_{6}H_{5})\cdot C\cdot CO_{3}\cdot C_{2}H_{5} \\ C_{16}H_{16}CO & bezw. & C_{16}H_{16}CO & constant CO & consta$

hydrason bezw. Phenylhydrasid des Benzotetronsäure-[carbonsäure-(3)-äthylesters]. B. Aus 1 Mol 4-Chlor-cumarin-carbonsäure-(3)-äthylester (8. 430) und 2 Mol Phenylhydrasin in Alkohol bei gewöhnlicher Temperatur (A., A. 367, 191). — Nädelchen (aus Alkohol). Bräunt sich bei 200° und schmilzt bei ca. 220° unter Zersetzung.

Benzotetronsäure-[carbonsäure-(3)-amid] $C_{10}H_7O_4N = C_8H_8O_3 \cdot CO \cdot NH_8$. B. Man trägt Benzotetronsäure-[carbonsäure-(3)-nitril] in 5 Tle. konz. Schwefelsäure ein und gießt nach einigen Stunden auf Eis (A., A. 367, 181). — Nadelbüschel (aus Alkohol). F: 219°. Schwer löslich in Wasser.

Benzotetronsäure - [carbonsäure - (3) - anilid] $C_{16}H_{11}O_4N = C_0H_0O_3 \cdot CO \cdot NH \cdot C_0H_0$. B. Beim Kochen von 1 Tl. Benzotetronsäure-[carbonsäure-(3)-āthylester] mit 1 Tl. Anilin (A., A. 367, 186). — Farblose Nadeln (aus Chloroform oder Eisessig). F: 213°. Leicht löslich in heißem, schwerer in kaltem Chloroform, ziemlich leicht in heißem Alkohol, schwer in kaltem Eisessig, sehr schwer in Wasser. — Beständig gegen siedende Salzsäure und siedende verdünnte Natronlauge. — Na $C_{16}H_{10}O_4N$. Farbloser Niederschlag (aus Alkohol). Bräunt sich bei 300° und ist bei 320° noch nicht geschmolzen. — Ag $C_{16}H_{10}O_4N$. Farbloser Niederschlag. Färbt sich am Licht allmählich rötlichbraun.

$$C_0H_4$$
 $C(NH \cdot C_0H_4) : C \cdot CO \cdot NH \cdot C_0H_5$. B. Beim Kochen von 4-Chlor-cumarin-carbonsaure-(3)-

äthylester (S. 430) mit Anilin (A., A. 367, 189). — Hellgelbe Nadelbüschel (aus Alkohol). F: 1940. Leicht löslich in heißem Alkohol, schwer in Äther und Petroläther, unlöslich in Wasser.

Bensotetronsäure-[carbonsäure-(3)-nitril], 3-Cyan-bensotetronsäure $C_{10}H_5O_3N=C_8H_5O_3\cdot CN$. B. Man läßt Ammoniak auf 2-Acetoxy-benzoyleyanessigsäure-äthylester (Bd. X, S. 1021) einwirken und zersetzt das entstandene Ammoniumsalz mit Salzsäure (A., A. 367, 179). — Krystalle (aus Salzsäure). F: 242°. Leicht löslich in Wasser, Alkohol und Eisessig, schwer in Benzol. — $NH_4C_{10}H_4O_3N$.

Benzotetronsäure - [carbonsäure - (3) - phenylhydrazid] $C_{16}H_{13}O_4N_2 = C_9H_5O_3 \cdot CO \cdot NH \cdot NH \cdot C_6H_5$. Aus Benzotetronsäure-[carbonsäure-(3)-äthylester] beim Erwärmen mit der äquimolekularen Menge Phenylhydrazin in Alkohol (A., A. 367, 190). — Blaßgelbe Krystalle (aus Alkohol). F: 210°.

2-Oxo-4-phenylhydrazono-chroman-carbonsäure-(3)-phenylhydrazid bezw. 4-Phenylhydrazino-cumarin-carbonsäure-(3)-phenylhydrazid $C_{22}H_{18}O_3N_4=$

$$C_6H_4$$
 $C(:N \cdot NH \cdot C_6H_5) \cdot CH \cdot CO \cdot NH \cdot NH \cdot C_6H_5$ bezw

$$C_6H_4$$
 $C(NH \cdot NH \cdot C_6H_5)$: $C \cdot CO \cdot NH \cdot NH \cdot C_6H_5$. B. Beim Kochen von 1 Mol 4-Chlor-cumarin-

carbonsaure-(3)-athylester (S. 430) mit 3 Mol Phenylhydrazin in Alkohol (A., A. 367, 191). — Krystalle (aus Alkohol). F: 189—190° (Zers.). Braunt sich an der Luft. Leicht löslich in heißem Alkohol, in Chloroform, Eisessig und Benzol, sehr schwer in Äther, Petrolather und Wasser.

6-Chlor-benzotetronsäure-[carbonsäure-(3)-äthylester] $C_{18}H_{\bullet}O_{5}Cl$, Formel I besw. II. B. Aus Natriummalonester und Acetyl-5-chlor-salicylsäure-chlorid (Bd. X, S. 103) in Äther (A., A. 367, 264). — Nädelchen (aus Alkohol). F: 175°.

I.
$$Cl \cdot \bigcirc CO \cdot CH \cdot CO_2 \cdot C_2H_5$$
 II. $Cl \cdot \bigcirc COD_2 \cdot C_2H_5$

6.8-Dichlor-benzotetronsäure-[carbonsäure-(3)-äthylester] C₁₂H₅O₅Cl₂, Formel III bezw. IV. B. Aus 3.5-Dichlor-salicylsäure-chlorid (Bd. X, S. 106) und Natriummalonester in Äther (AGFA, D. R. P. 102096; C. 1899 I, 1261; ANSCHÜTZ, B. 36, 463; A. 368, 25). — Nadeln (aus Alkohol). F: 135° (AGFA; A.). Sehr schwer löslich in Wasser mit saurer Reaktion; zerlegt Carbonate (AGFA; A.). — Beim Kochen mit wäßrig-alkoholischer Kalilauge entsteht

6.8-Dichlor-benzotetronsäure (Bd. XVII, S. 489) (AGFA, D. R. P. 102097; C. 1899 I, 1261; A.). Das Silbersalz liefert beim Erhitzen mit Äthyljodid auf 110° 6.8-Dichlor-4-äthoxy-cumarin-carbonsäure-(3)-äthylester (S. 527) (AGFA, D. R. P. 102096; A.). — NH₄C₁₂H₇O₅Cl₂. Farblose Nädelchen. Beginnt bei 200° sich gelb zu färben und schmilzt bei 240—250° unter Zersetzung (A., A. 368, 27). Schwer löslich in kaltem Wasser. — NaC₁₂H₇O₅Cl₂. Nadeln (aus Alkohol). Schwer löslich in Alkohol; die wäßr. Lösung reagiert neutral (A., A. 368, 26). — AgC₁₂H₇O₅Cl₂. Farbloser Niederschlag. Sehr schwer löslich in Wasser (A., A. 368, 27).

6.8-Dibrom-bensotetronsäure-[carbonsäure-(3)-äthylester] C₁₂H₂O₃Br₂, Formel V bezw. VI. B. Aus 3.5-Dibrom-salicylsäure-chlorid (Bd. X, S. 111) und Natriummalonester in Äther (A., A. 368, 29). — Farblose Nadeln (aus Alkohol). F: 153—154°. Leicht löslich in Äther und Aceton. Beständig gegen siedendes Wasser. — Beim Kochen mit wäßrig-alkoholischer

$$V. \begin{array}{c|c} B_r & CO & CH \cdot CO_2 \cdot C_2H_5 \\ \hline & O & CO \\ \hline & B_r & C(OH) \otimes C \cdot CO_2 \cdot C_2H_5 \\ \hline & B_r & CO \\ \hline &$$

Kalilauge entsteht 6.8-Dibrom-benzotetronsäure (Bd. XVII, S. 489). Das Silbersalz liefert beim Erhitzen mit Äthyljodid 6.8-Dibrom-4-äthoxy-cumarin-carbonsäure-(3)-äthylester (S. 527). — $NH_4C_{18}H_7O_5Br_3$. Schwer löslich in kaltem Wasser, löslich in wäßr. Ammoniak. — $NaC_{18}H_7O_5Br_3$. Gallertartige Abscheidung. Schwer löslich in heißem Wasser. — $AgC_{18}H_7O_5Br_3$. Farblose, lichtempfindliche Flocken.

6.8 - Dibrom - bensotetronsäure - [oarbonsäure - (3) - nitril], 6.8 - Dibrom - 3 - cyanbensotetronsäure $C_{10}H_2O_2NBr_2 = C_3H_2O_2Br_2 \cdot CN$. B. Aus Natriumcyanessigester und 3.5-Dibrom-salicylsäure-chlorid (Bd. X, S. 111) in Äther (A., A. 368, 31). — Nadeln (aus Eisessig). Schmilzt gegen 270° unter Zersetzung. Leicht löslich in Alkohol, Eisessig und

Aceton, schwerer in Wasser, sehr schwer in Äther, Chloroform, Petroläther und Benzol. — Das Natriumsalz ist ziemlich leicht löslich in Wasser.

6.8 - Dijod - benzotetronsäure - [carbonsäure - (3) - äthylester] $C_{12}H_2O_5I_2$, Formel I bezw. II. B. Aus 3.5-Dijod-salicylsäure-chlorid (Bd. X, S. 114) und Natriummalonester in Äther (A., A. 368, 35). — Farblose Nädelchen (aus Alkohol). F: 235—240°. Sehr schwer löslich in Wasser mit saurer Reaktion. Zerlegt Carbonate. — Ist gegen siedendes Wasser

I.
$$\begin{array}{c|c}
 \hline
 & 1 \\
 & 1 \\
 & 1
\end{array}$$

$$\begin{array}{c|c}
 & 1 \\
 & 1
\end{array}$$

beständig. Liefert beim Kochen mit Kalilauge 3.5-Dijod-salicylsäure zurück. Das Silbersalz gibt mit Äthyljodid 6.8-Dijod-4-äthoxy-cumarin-carbonsäure-(3)-äthylester (8. 528). — $\mathrm{NH_4C_{18}H_7O_5I_3}$. Krystalle. — $\mathrm{NaC_{18}H_7O_5I_3}$. Krystalle (aus verd. Alkohol). — $\mathrm{AgC_{18}H_7O_5I_3}$. Lichtempfindliche Krystalle (aus Wasser).

- 6.8-Dijod-bensotetronsäure-[carbonsäure-(3)-amid] $C_{10}H_1O_2NI_3 = C_0H_2O_3I_2 \cdot CO \cdot NH_2$. B. Beim Auflösen von 6.8-Dijod-benzotetronsäure-[carbonsäure-(3)-nitril] in siedendem, schwach mit Salzsäure angesäuertem Wasser (A., A. 368, 39). Durch Lösen von 6.8-Dijod-benzotetronsäure-[carbonsäure-(3)-nitril] in 30° warmer konzentrierter Schwefelsäure und Gießen der Lösung auf Eis (A.). Nadelbüschel. F: 256°.
- 6.8-Dijod-bensotetronsäure-[carbonsäure-(3)-nitril], 6.8-Dijod-3-cyan-bensotetronsäure $C_{10}H_2O_3NI_2 = C_0H_2O_3I_2 \cdot CN$. B. Aus 3.5-Dijod-salicylsäure-chlorid (Bd. X, S. 114) und Natriumoyanessigester in Ather (A., A. 368, 37). Krystalle (aus Amylalkohol). Schmilzt oberhalb 285°. Liefert benchen mit Kalilauge 3.5-Dijod-salicylsäure zurück. Das Silbersalz gibt mit Äthyljodid 6.8-Dijod-4-āthoxy-cumarin-carbonsäure-(3)-nitril (S. 528). $NH_4C_{10}H_2O_3NI_2$. Krystalle. $NaC_{10}H_2O_2NI_2$. Pulveriger Niederschlag. $Cu(C_{10}H_2O_3NI_2)_2$. Gelbgrünes Pulver. $AgC_{10}H_2O_3NI_2$. Farbloser Niederschlag.
- 6.8 Dijod bensotetronsäure [carbonsäure (3) phenylhydraxid] $C_{16}H_{10}O_4N_3I_3=C_9H_9O_9I_9$: CO·NH·NH·C₆H₅. B. Beim Kochen von 6.8-Dijod-benzotetronsäure-[carbonsäure-(3)-äthylester] mit der äquimolekularen Menge Phenylhydrazin in əlkoh. Lösung (A., A. 368, 37). Gelbe Nadeln (aus Eisessig). F: 238°. Unlöslich in Wasser, schwer löslich in Alkohol und Äther, leichter in Benzol, Essigsäure und Essigester.
- 2. [Phthalidyl-(3)]-glyoxylsdure, Phthalid-oxalylsdure-(3), "Phthalid-oxalsdure" $C_{10}H_6O_5=C_6H_4$ $CH(CO\cdot CO_2H)$ O. B. Man behandelt [Phthalidyl-(3)]-dichloressigsäure (8. 419) oder [Phthalidyl-(3)]-chlorbromessigsäure (8. 420) mit überschüssigem Barytwasser und zersetzt das hierbei entstandene Bariumsalz der [2-Carboxy-phenyl]-oxybrenstraubensäure (Bd. X, 8. 1021) mit Salzsäure (Zinoke, Schmidt, B. 27, 741). Nadeln (aus Eisessig). Schmilzt unter Zersetzung bei 246°. Leicht löslich in heißem Wasser und in Alkohol, schwer in Chloroform, Bensin und Benzol. Unterchlorige Säure erzeugt zunächst Phthalid-carbonsäure-(3) (8. 418), dann Phthalsäure.

Oxim $C_{10}H_7O_4N=C_6H_6O_9\cdot C(:N\cdot OH)\cdot CO_9H$. B. Man kocht [Phthalidyl-(3)]-glyoxylsäure in wäßrig-alkoholischer Lösung mit Hydroxylamin (ZINCKE, SCHMIDT, B. 27, 742). — Prismen (aus Eisessig). F: 167—168°.

[Phthalidyl - (3)] - glyoxylsäure - äthylester, "Phthalidoxalester" $C_{12}H_{10}O_5 = C_9H_5O_2 \cdot CO \cdot CO_2 \cdot C_2H_5$. B. Aus je 1 Mol Diäthyloxalat und Phthalid (Bd. XVII, S. 310) in Äther in Gegenwart von 1 Mol Natriumäthylat; man zerlegt das ausfallende Natriumsalz durch Ansäuern der wäßr. Lösung (Wislioenus, B. 20, 2062; A. 246, 342). — Blättchen (aus Alkohol), Nädelchen (aus Äther). F: 120—121° (W.). Unlöslich in Wasser, leicht löslich in heißem Alkohol, schwieriger in kaltem Alkohol und in äther (W.). Leicht löslich in Alkalien und Alkalicarbonaten; neutralisiert in der Kälte 2 Mol Alkali (W.). Die verdünnte alkoholische Lösung wird durch Eisenchlorid bräunlichviolett gefärbt (W.). — Die alkal. Lösungen reduzieren Feminosche Lösung (W.). Phthalidoxalester bleibt beim Erhitzen für sich auf 300° größtenteils unverändert (Wislioenus, Münzeshenmer, B. 31, 556). Bei der Oxydation mit verd. Salpetersäure entsteht Phthalsäure (W.). Beim Erwärmen mit verd. Alkalien erhält man 2 · Oxymethyl · benzoesäure, Oxalsäure und Alkohol (W.). — NaC₁₂H₂O₅. Gelber Niederschlag (W.).

Phenylhydrason $C_{18}H_{10}O_4N_2=C_8H_8O_2\cdot C(:N\cdot NH\cdot C_8H_5)\cdot CO_2\cdot C_8H_5$. B. Beim Erwärmen von 2 Tln. [Phthalidyl-(3)]-glyoxylsäure-äthylester mit 1 Tl. Phenylhydrazin (Wisliomus, A. 246, 344). — Prismen (aus Alkohol). F: 157—159°. Leicht löslich in heißem Alkohol und in Benzol, schwer in Äther, unlöslich in Wasser und in Alkalien. Die Lösung in konz. Schwefelsäure wird durch wenig Eisenchlorid intensiv rotviolett gefärbt.

3. Oxo-carbonsauren C11H8O5.

1. 4.5 - Dioxo - 2 - phenyl - furantetrahydrid - carbonsäure - (3), α - Oxo - γ - phenyl - butyrolacton - β - carbonsäure, α - Oxo - γ - phenyl - paraconsäure $C_{11}H_8O_5= {\begin{array}{c} OC --CH\cdot CO_2H \\ OC\cdot O\cdot CH\cdot C_aH_\kappa \end{array}}$

Äthylester C₁₂H₁₃O₅ = C₆H₅·C₄H₂O₅·CO₂·C₂H₅. B. Bei der Kondensation von Oxalessigester mit Benzaldehyd in Gegenwart von Chlorwasserstoff (Wislicenus, Jensen, B. 25, 3448; W., B. 26, 2144) oder in Gegenwart von Diäthylamin (Blaise, Gault, C. r. 142, 452; G., Bl. [3] 35, 1266). — Krystalle (aus Wasser oder Alkohol). F: 104—105° (W., J.; G.). Destilliert im Vakuum zum Teil unzersetzt (W., J.). Leicht löslich in Alkohol und Äther, etwas schwerer in Petroläther, Benzol und heißem Wasser (W., J.). Die alkoh. Lösung wird durch Eisenchlorid tiefrot gefärbt (W., J.). — Bei der Reduktion mit 2¹/₂⁰/sigem Natriumamalgam entsteht α·Oxy·γ-phenyl-paraconsäure-äthylester (S. 526) (W.). Bei der trocknen Destillation des Kupfersalzes bildet sich Zimtsäureäthylester (W., J.). Beim Lösen von je 1 Mol α·Oxo·γ-phenyl-paraconsäure-äthylester und wasserfreiem Eisenchlorid in Äther erhält man ein rotes Öl, das durch Waschen mit Äther und Stehenlassen im Vakuum über Natronkalk die Verbindung FeCl₂·C₁₂H₁1O₅ (s. u.) liefert (MORREIL, CROFTS, Soc. 73, 347). Zerfällt beim Erwärmen mit Natronlauge in Benzaldehyd, Oxalsäure und Essigsäure (W., J.). — NaC₁₃H₁1O₅. Krystalle (aus Alkohol) (W.). — Cu(C₁₃H₁1O₅)₂ (bei 110°). Krystallisiert aus Methylalkohol mit 2 CH₂·OH in grünen Blättchen, die bei 117—119° schmelzen (W., J.). Verliert im Exsiccator über Schwefelsäure oder beim Erhitzen im Toluolbad den Krystallalkohol; das alkoholfreie Salz schmilzt bei 145° unter Zersetzung. Leicht löslich in Äther und Alkohol, etwas schwerer in Benzol, unlöslich in Wasser. — FeCl₂·C₁₃H₁1O₅. Rotes, krystallinisches Pulver (M., C.). — HO·Fe(C₁₂H₁1O₅)₂. B. Durch Behandeln der Verbindung FeCl₂·C₁₃H₁1O₅ mit kaltem Wasser (M., C.). Orangefarbene Nadeln (aus Methylalkohol). Schmilzt bei 160° unter Zersetzung; unlöslich in Wasser, leicht löslich in warmem Alkohol (G.). — Phenylhydrazinsalz C₂H₂N₂+C₁₃H₁2O₅. Nädelchen. Schmilzt unter Zersetzung bei 90° (W., J.).

- α Oxo γ [2 nitro phenyl] paraconsäure äthylester $C_{15}H_{11}O_7N=O_5N\cdot C_6H_4\cdot C_4H_4O_3\cdot CO_3\cdot C_2H_5.$ B. Aus äquimolekularen Mengen von Oxalessigester und 2-Nitro-benzaldehyd in Gegenwart von Diäthylamin oder Chlorwasserstoff (Blaise, Gault, C. r. 142, 452; G., Bl. [3] 35, 1269). Krystalle (aus verd. Alkohol). F: 115°; löslich in Alkalicarbonaten (G.). Wird in alkoh. Lösung durch Eisenchlorid rot gefärbt (G.). Diäthylaminsalz $C_4H_{11}N+C_{18}H_{11}O_7N.$ Blaßgelbe Krystalle. F: ca. 165° (Zers.) (G.).
- α-Oxo-γ-[3-nitro-phenyl]-paraconsäure-äthylester $C_{15}H_{11}O_7N=O_2N\cdot C_6H_4\cdot C_4H_2O_3\cdot CO_3\cdot C_2H_5$. B. Aus äquimolekularen Mengen von Oxalessigester und 3-Nitro-benzaldehyd in Gegenwart von Diäthylamin oder Chlorwasserstoff (Blaise, Gault, C. r. 142, 452; G., Bl. [3] 35, 1270). Krystalle (aus Benzol). F: 96° (G.). Wird in alkoh. Lösung durch Eisenchlorid rot gefärbt (G.). Diäthylaminsalz $C_4H_{11}N+C_{12}H_{11}O_7N$. Blaßgelbe Krystalle (aus verd. Alkohol). F: ca. 165° (Zers.) (G.).
- 2. 3.5 Dioxo 2 phenyl furantetrahydrid carbonsdure (4), β Oxo γ phenyl butyrolacion α carbonsdure bezw. 3-Oxy-5-oxo-2-phenyl-furandihydrid (2.5) carbonsdure (4), β Oxy γ phenyl $\Delta^{\alpha,\beta}$ crotonlacton $\Delta^{\alpha,\beta}$ crotonlacton $\Delta^{\alpha,\beta}$ Cooling Cool
- 8-Oxo-5-imino-2-phenyl-furantetrahydrid-carbonsäure-(4) bezw. 8-Oxy-5-imino-2-phenyl-furan-dihydrid-(2.5)-carbonsäure-(4) $C_{11}H_9O_6N=HO_1C\cdot HC$
- HN:C·O·CH·C₆H₅ bezw. HN:C·O·CH·C₆H₅
 beim Erwärmen von 3-Oxo-5-imino-2-phenyl-furantetrahydrid-carbonsäure-(4)-äthylester mit verd. Natronlauge auf 40—50° (Anschütz, Böcker, A. 368, 73). Weißes Pulver (aus Alkohol). F: 178—179° (A., B.). Schwer löslich in Wasser; zerlegt Alkalicarbonate (A., B.). Beim Schmelzen der Säure wird Kohlendioxyd abgespalten; die erhaltene Schmelze löst sich in Alkalilauge bei gewöhnlicher Temperatur unter Ammoniak-Entwicklung (A., B.).

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. 1. 1910] erschienenen Arbeit von ANSCHUTZ, B. 45 [1912], 2378.

 γ -Phenyl-tetronsäure-[α -carbonsäure-äthylester] $C_{13}H_{12}O_5=C_6H_5\cdot C_4H_2O_3\cdot CO_2\cdot C_4H_5$. Beim Erhitzen von Acetyl-mandelsäurechlorid mit Natriummalonester in Benzol (A., B., A. 368, 62). — Farblose Nädelchen (aus verd. Alkohol). F: 140°. Die wäßr. Lösung reagiert sauer; zersetzt Carbonate und Nitrite. — Liefert beim Kochen mit Kalilauge y-Phenyltetronsaure (Bd. XVII, S. 492). — Ammoniumsalz. Farbloses Pulver. — NaC₁₃H₁₁O₅. Schr leicht löslich in Wasser und Alkohol. — Fe(C₁₃H₁₁O₅)₃. Hellroter Niederschlag. Schr leicht löslich in Alkohol und Chloroform mit dunkelroter Farbe. Löst sich in überschlüssiger Eisenchlorid-Lösung. — Co(C₁₃H₁₁O₅)₂. Dunkelrote Krystalle, die an der Luft zu einem helirosa Pulver zerfallen.

8-Oxo-5-imino-2-phenyl-furantetrahydrid-carbonsäure-(4)-äthylester bezw. 8-Oxy-5-imino-2-phenyl-furan-dihydrid-(2.5)-carbonsäure-(4)-äthylester $C_{13}H_{13}O_4N=$ C.H. O.C. HC-CO

HN:C·O·CH·C,H,

soctoesiant HN:C·O·CH·C₆H₅ bezw. HN:C·O·CH·C₆H₅ 1). B. Aus γ-Acetoxy-γ-phenyl-α-cyan-acetesia-x-athylester (Bd. X, S. 1022) beim Kochen mit Methyl- oder Athylester (Bd. X, S. 1022) beim Kochen mit Methyl- oder (Bd. X, S. 1022 alkohol oder bei mehrtägigem Stehenlassen mit rauchender Salzsäure (A., B., A. 368, 70). Pulver (aus Wasser), Blättchen (aus Eisessig). Schmilzt bei 220—223° unter Zersetzung. Fast unlöslich in Ather, Chloroform, Benzol, Ligroin, Aceton und Xylol, schwer löslich in siedendem Wasser, leichter in heißem Alkohol und Eisessig. — Löst sich in kalter verdünnter Natronlauge nur langsam auf. Liefert beim Erwärmen mit verd. Natronlauge auf 40-50° 3-Oxo-5-imino-2-phenyl-furantetrahydrid-carbonsäure-(4) (S. 472), eine Verbindung C₁₁H₂O₄N vom Schmelzpunkt 183^o (Zers.) und ein drittes, nicht näher beschriebenes Produkt. Beim Kochen der alkal. Lösung entweicht Ammoniak.

3. 2.4 - Dioxo - 6 - methyl - chroman - carbonsäure - (3) bezw. 4-Oxy-2-oxo-6 - methyl - [1.2 - chromen] - carbonsäure - (3), 4 - Oxy - 6 - methyl - cumarin-

carbonsaure-(3) C11H6O6, Formel I bezw. II, 6-Methyl-3-carboxy-benzotetronsäure, 6-Methyl-benzotetronsäure-carbonsäure-(3).

- 6-Methyl-bensotetronsäure-[carbonsäure-(8)-äthylester] $C_{12}H_{12}O_5 = CH_3 \cdot C_5H_4O_2 \cdot CO_2 \cdot C_2H_5$. B. Bei längerem Kochen von Acetyl-p-kresotinsäurechlorid (Bd. X, S. 230) mit Natriummalonester in Ather (Anschütz, A. 367, 247). Nadeln (aus Alkohol). F: 121—122°. Schwer löslich in Wasser mit saurer Reaktion. Liefert bei der Einw. von Alkalien 6-Methylbenzotetronsäure (Bd. XVII, S. 493). $NH_4C_{13}H_{11}O_5$. Farblose Masse. Leicht löslich in Wasser. $NaC_{12}H_{11}O_5$. Leicht löslich in Wasser. $AgC_{12}H_{11}O_5$. Farbloser Niederschlag; färbt sich am Licht rötlich.
- 6-Methyl-benzotetronsäure-[carbonsäure-(8)-nitril], 6-Methyl-3-cyan-benzotetronsäure $C_{11}H_7O_3N=CH_3\cdot C_9H_4O_3\cdot CN$. B. Bei längerem Kochen von Acetyl-p-kresotinsäurechlorid (Bd. X, S. 230) mit Natriumcyanessigester in Ather (A., A. 367, 249). Krystalle (aus Alkohol). Schmilzt bei 248° unter Zersetzung. — Wird durch heiße Natronlauge zu p-Kresotinsäure aufgespalten. — NaC₁₁H_eO₂N. Krystallinischer Niederschlag. Löslich in Wasser. — AgC₁₁H_eO₂N. Krystallinischer Niederschlag. Sehr schwer löslich in Wasser.
- 4. 2.4 Dioxo 7 methyl chroman carbonsaure (3) bezw. 4-Oxy-2-oxo-7-methyl-[1.2-chromen]-carbonsaure-(3), 4-Oxy-7-methyl-cumarin-car-

III.
$$CH_2$$
. $CO CH \cdot CO_2H$ IV. CH_3 $CO CO CO CO_2H$

bonsaure-(3) $C_{11}H_5O_5$, Formel III bezw. IV, 7-Methyl-3-carboxy-benzotetronsaure, 7-Methyl-benzotetronsaure-carbonsaure-(3).

7-Methyl-bensotetronsäure-[carbonsäure-(3)-äthylester] $C_{13}H_{12}O_5 = CH_3 \cdot C_5H_4O_3 \cdot C_0 \cdot C_2H_5$. B. Aus Acetyl-m-kresotinsäurechlorid (Bd. X, S. 236) und Natriummalonester in Ather (A., A. 367, 221). — Farblose Blättchen (aus 90% jegem Alkohol). F: 140%. Schwer löslich in Wasser; die wäßr. Lösung resgiert sauer und zerlegt Carbonate. — Liefert mit Phosphorpentachlorid 4-Chlor-7-methyl-cumarin-carbonsäure-(3)-äthylester (S. 433). Durch Einw. von siedender Kalilauge bildet sich 7-Methyl-benzotetronsäure (Bd. XVII, S. 493). Raim Erhitzen des Silbarsalzes mit Mathyliedid antathyl-Amethyl-var-7-methyl-cumarin-Beim Erhitzen des Silbersalzes mit Methyljodid entsteht 4-Methoxy-7-methyl-cumarincarbonsäure-(3)-äthylester (8. 531). Liefert mit Essigsäureanhydrid in Gegenwart von etwas konz. Schwefelsäure 4-Acetoxy-7-methyl-cumarin-carbonsäure-(3)-äthylester (8. 532). Mit Anilin entsteht 7-Methyl-benzotetronsaure-[carbonsaure-(3)-anilid] (S. 474). — NH₄C₁₂H₁₁O₈.

¹⁾ Siehe Anmerkung S. 472.

Farblose Nädelchen. Schmilzt bei 230—240° unter Zersetzung. — Na $C_{13}H_{11}O_5$. Krystalle (aus Alkohol). — $AgC_{13}H_{11}O_5$. Farblose Nadeln.

(aus Alkohol). — $AgC_{12}H_{11}O_5$. Farblose Nadeln. 2-Oxo-4-phenylimino-7-methyl-chroman-carbonsäure-(3)-äthylester bezw.

4 - Anilino - 7 - methyl - cumarin - carbonsäure - (3) - äthylester $C_{10}H_{17}O_4N = CH_3 \cdot C_0H_3 \cdot C_0H_5 \cdot CH_5 \cdot CO_2 \cdot C_2H_5$ bezw. $CH_3 \cdot C_0H_3 \cdot C_0H_5 \cdot CO_2 \cdot C_2H_5$ Anil

bezw. Anilid des 7-Methyl-benzotetronsäure-(carbonsäure-(3)-äthylesters]. B. Beim Kochen von 4-Chlor-7-methyl-cumarin-carbonsäure-(3)-äthylester (S. 433) mit der berechneten Menge Anilin in Alkohol (A., A. 367, 228). — Krystalle (aus Alkohol). F: 162°. Löslich in Eisessig und Benzol, sehr schwer löslich in Äther.

- 7 Methyl bensotetronsäure [carbonsäure (3) äthylamid] $C_{13}H_{13}O_4N = CH_3 \cdot C_9H_4O_3 \cdot CO \cdot NH \cdot C_2H_5$. B. Aus 7-Methyl-benzotetronsäure-[carbonsäure-(3)-äthylester] und 33% eiger alkoh. Äthylamin-Lösung bei 130—150° im Rohr (A., A. 367, 230). Krystalle (aus Alkohol). F: 152°. Ziemlich leicht löslich in den meisten Lösungsmitteln außer in Äther.
- 7-Methyl-benzotetronsäure-[carbonsäure-(3)-anilid] $C_{17}H_{12}O_4N=CH_3\cdot C_5H_4O_3\cdot CO\cdot NH\cdot C_6H_5$. B. Beim Erhitzen von 7-Methyl-benzotetronsäure-[carbonsäure-(3)-äthylester] mit überschüssigem Anilin auf 175° (A., A. 367, 228). Krystalle (aus verd. Alkohol). F: 202°. Löslich in Alkohol, Eisessig, Chloroform und Benzol, unlöslich in Wasser.
- 7 Methyl bensotetronsäure [carbonsäure (3) p phenetidid] $C_{19}H_{17}O_5N=CH_3\cdot C_9H_4O_3\cdot CO\cdot NH\cdot C_9H_4\cdot O\cdot C_9H_5$. B. Bei längerem Erhitzen von 7-Methyl-benzotetronsäure-[carbonsäure-(3)-äthylester] mit p-Phenetidin auf 200° (A., A. 367, 229). Gelbliche Nädelchen (aus Benzol). F: 218°. Schwer löslich in Alkohol, Eisessig und Chloroform.
- $\begin{array}{lll} \textbf{2-Oxo-4-phenylimino-7-methyl-chroman-carbons\"{a}ure-(3)-anilid} & bezw. \\ \textbf{4-Anilino-7-methyl-cumarin-carbons\"{a}ure-(3)-anilid} & C_{23}H_{13}O_{3}N_{3} & = \\ \textbf{CH}_{3}\cdot\textbf{C}_{6}\textbf{H}_{3}\cdot\textbf{C}_{1$
- B. Durch Erhitzen von 3 g 4-Chlor-7-methyl-cumarin-carbonsäure-(3)-äthylester (S. 433) mit 5 g Anilin auf 184° (A., A. 367, 229). Krystalle (aus Eisessig). F: 220—222°. Unlöslich in Wasser, sehwer löslich in Alkohol, Chloroform und Benzol.
- 7-Methyl-bensotetronsäure-[carbonsäure-(3)-nitril], 7-Methyl-3-cyan-bensotetronsäure $C_{11}H_7O_2N=CH_2\cdot C_0H_4O_3\cdot CN$. B. Aus Acetyl-m-kresotinsäurechlorid (Bd. X, S. 236) und Natriumcyanessigester in Ather (A., A. 367, 232). Pulver (aus wenig Alkohol). F: 250°. Geht beim Behandeln mit Kalilauge oder mit Salzsäure in m-Kresotinsäure tiber. Das Silbersalz liefert beim Erhitzen mit überschüssigem Methyljodid im gesotinsäure tiber. Das 120° 4-Methoxy-7-methyl-cumarin-carbonsäure-(3)-nitril (S. 532). Na $C_{11}H_4O_3N$. Krystalle (aus Alkohol). Ziemlich schwer löslich in kaltem Wasser. Ag $C_{11}H_4O_3N$. Farbloser pulveriger Niederschlag.
- 7-Methyl-benzotetronsäure-[carbonsäure-(3)-phenylhydraxid] $C_{17}H_{14}O_4N_8 = CH_3 \cdot C_9H_4O_3 \cdot CO \cdot NH \cdot NH \cdot C_9H_5$. B. Beim Erwärmen der alkoh. Lösung des 7-Methylbenzotetronsäure-[carbonsäure-(3)-äthylesters] mit der berechneten Menge Phenylhydrazin auf dem Wasserbad (A., A. 367, 230). Krystalle (aus Toluol). F: 232°. Sehr schwer löslich in Alkohol und Ather, leichter in Benzol und Toluol.
- 7-Methyl-bensotetronsäure-[carbonsäure-(3)-(β P-methyl- β -phenyl-hydraxid)] $C_{18}H_{16}O_4N_2=CH_2\cdot C_0\cdot H_4O_2\cdot CO\cdot NH\cdot N(CH_3)\cdot C_0\cdot H_5(?)$. B. Beim Erhitzen von 7-Methylbenzotetronsäure-[carbonsäure-(3)-phenylhydrazid] (s. o.) mit Methyljodid in methylalkoholischer Lösung im geschlossenen Rohr auf 100—110° (A., A. 367, 231). Krystalle (aus Toluol). F: 207°.
- 5. x.x-Dioxo-2.x-dimethyl-cumaron-dihydrid-(x.x)-carbonsdure-(3) $C_{11}H_{\theta}O_{\theta}=CH_{3}\cdot C_{\theta}H(:O)_{\theta}\underbrace{C(CO_{\theta}H)}_{=}C\cdot CH_{3}.$
- x-Chlor-x.x-dioxo-2.x-dimethyl-cumaron-dihydrid-(x.x)-carbonsäure-(3)-äthylester, Chlordimethylisocumarilsäureäthyläther-o-chinon $C_{12}H_{11}O_3Cl = CH_2 \cdot C_6(:O)_2Cl \xrightarrow{C(CO)_2 \cdot C_2H_3} C \cdot CH_2$. B. Beim Kochen von x.x-Dichlor-x-oxy-2.x-dimethyl-cumaron-dihydrid-(x.x)-carbonsäure-(3)-äthylester (S. 351) oder x.x.x-Trichlor-x-oxo-2.x-dimethyl-cumaron-dihydrid-(x.x)-carbonsäure-(3)-äthylester (S. 424) mit Eisessig und Salpetersäure (D: 1,4) (Graebe, Levy, A. 283, 262). Rubinrote Tafeln oder Prismen (aus Alkohol). F: 118° bis 119°. Leicht löslich in Eisessig, Alkohol, Äther und Benzol, sehr schwer in heißem Wasser. Löslich in konz. Schwefelsäure mit violetter Farbe. Bei der Reduktion mit Schwefeldioxyd

entsteht x-Chlor-x.x-dioxy-2.x-dimethyl-cumaron-carbonsäure-(3)-äthylester (S. 356). Mit 3.4-Diamino-toluol entsteht das entsprechende Chinoxalinderivat (Syst. No. 4594).

4. Oxo-carbonsäuren $C_{12}H_{10}O_5$.

1. 4.5-Dioxo-3-methyl-2-phenyl-furantetrahydrid-carbonsäure-(3), $\begin{array}{lll} \textbf{a-Oxo-}\beta-\textbf{methyl-}\gamma-\textbf{phenyl-butyrolacton-}\beta-\textbf{carbonsäure}, & \textbf{a-Oxo-}\beta-\textbf{methyl-} \\ \gamma-\textbf{phenyl-paraconsäure} & C_{12}H_{10}O_5 = \begin{array}{lll} & \text{OC} & \text{--}C(CH_2)\cdot CO_2H \\ & \text{OC}\cdot O\cdot CH\cdot C_6H_5 \end{array}. \end{array}$

Äthylester $C_{14}H_{14}O_5 = \frac{OC - C(CH_3) \cdot CO_2 \cdot C_2H_5}{OC \cdot O \cdot CH \cdot C_6H_5}$. B. Beim Einleiten von trocknem Chlorwasserstoff in ein kaltes Gemisch äquimolekularer Mengen von Methyloxalessigester und Benzaldehyd (W. WISLIGENUS, KIESEWETTER, B. 31, 196). — Nicht destillierbares Öl. — Spaltet sich beim Kochen mit verdünnter Schwefelsäure in Propionylameisensäure, Benzaldehyd, Kohlendioxyd und Alkohol.

2. 1.3 - Dioxo - 4.4 - dimethyl - isochroman - carbon-säure-(7), Joniregentricarbonsäureanhydrid C₁₂H₁₀O₅, s. nebenstehende Formel. B. Beim Schmelzen von Joniregentricarbonsäure (Bd. IX, S. 983) (Tiemann, Krüger, B. 26, 2686). — Blättchen (aus Benzol). F: 214°. Löst sich in Sodalösung.

5. Oxo-carbonsäuren C₁₃H₁₂O₅.

beständig gegen Wasser.

- 1. 2.6 Dioxo 3 methyl 4 phenyl pyrantetrahydrid carbonsäure (3), α Methyl β phenyl α carboxy glutarsäureanhydrid $C_{13}H_{13}O_5=H_3C\cdot CH(C_0H_5)\cdot C(CH_2)\cdot CO_2H$
- Nitril, α Methyl β phenyl α cyan glutarsäureanhydrid $C_{13}H_{11}O_3N = H_2C \cdot CH(C_6H_5) \cdot C(CH_3) \cdot CN$. B. Aus der β -Form der α -Methyl- β -phenyl- α -cyan-glutarsäure (Bd. IX, S. 984) und Acetylchlorid (Carter, Lawrence, Chem. N. 82, 253). F: 146°. Sehr
- 2. β -Phenyl- β -[2.5-dioxo-tetrahydrofuryl-(3)]-propionsäure, [γ -Phenylbutan α . β . δ tricarbonsäure] α . β anhydrid $C_{13}H_{14}O_5$ =
- H₂C—CH·CH(C₆H₅)·CH₂·CO₂H.

 B. Beim Erhitzen der hochschmelzenden oder der OC·O·CO
 niedrigschmelzenden Form der γ-Phenyl-butan-α.β.δ-tricarbonsäure (Bd. IX, S. 983, 984)
 mit Acetylchlorid (Thorpe, Udall, Soc. 75, 907, 908). Nadeln (aus Aceton-Petroläther).
 F: 134—135°. Löst sich in siedendem Wasser unter Bildung der niedrigschmelzenden Form der γ-Phenyl-butan-α.β.δ-tricarbonsäure.
- 3. 5.2¹-Dioxo-2-dthyl-2-phenyl-furantetrahydrid-carbonsäure-(3), γ -Phenyl- γ -acetyl-butyrolacton- β -carbonsäure, δ -Oxo- γ -phenyl- γ -caprolacton- β -carbonsäure, γ -Phenyl- γ -acetyl-paraconsäure $C_{13}H_{12}O_{\delta}=H_1C$ — $CH\cdot CO_2H$
- OC·O·C(C_6H_5)·CO·CH₃

 B. Durch Oxydation von γ -Phenyl- γ -äthyliden-brenzweinsäure OC·O·C(C_6H_5)·CO·CH₃

 (Bd. IX, S. 910) mit der 2 Atomen Sauerstoff entsprechenden Kaliumpermanganat-Menge in schwach alkal. Lösung bei 0° (Stobbe, Niedenzu, A. 321, 98). Säulen (aus schwach angesäuertem Wasser). F: 141—142°. Sehr schwer löslich in Schwefelkohlenstoff. Wird erst durch sehr lange Einw. von Kaliumpermanganat in β -Benzoyl-propionsäure (Bd. X, S. 696), Essigsäure und Kohlendioxyd gespalten. Ba($C_{18}H_{11}O_5$)₈. Hornartige Masse; löslich in absol. Alkohol.

Semicarbason $C_{14}H_{16}O_5N_3=\frac{H_2C-CH\cdot CO_2H}{OC\cdot O\cdot C(C_6H_5)\cdot C(CH_2):N\cdot NH\cdot CO\cdot NH_2}$. B. Aus γ -Phenyl- γ -acetyl-paraconsäure und überschüssigem Semicarbazid in verdünnt-alkoholischer Lösung bei gewölnlicher Temperatur (Stobbe, Niedenzu, A. 321, 99). — Krystalle (aus verd. Alkohol). Schmilzt bei 210° unter Zersetzung.

4. [δ -Phenyl-butan - $\alpha.\beta.\delta(?)$ - tricarbonsäure] - anhydrid $C_{12}H_{12}O_5 = C_6H_5\cdot C_4H_6(CO_2H) < CO_5O_5O_5$. B: Durch 2-stündiges Erhitzen von δ -Phenyl-butan- $\alpha.\beta.\delta(?)$ -tricarbonsäure (Bd. IX, S. 983) auf 190° (Thiele, Meisenheimer, A. 306, 265). — Blättchen (aus Benzol). F: 112°.

f) Oxo-carbonsauren C_nH_{2n-16}O₅.

Oxo-carbonsauren C12H2O5.

1. 2-Oxo-[1.2-chromen]-malonylsäure-(3), β -Oxo- β -[cumarinyl-(3)]-propionsäure $C_{12}H_4O_5=C_6H_4$ O-CO $CH:C\cdot CO\cdot CH_2\cdot CO_2H$ $CH:C\cdot CO\cdot CH_2\cdot CO_2\cdot C_2H_5$ $CH:C\cdot CO\cdot CH_2\cdot CO_2\cdot C_2H_5$ B. Beim Erwärmen von

Äthylester C₁₄H₁₂O₅ = C₅H₄CH:C·CO·CH₂·CO₂·C₂H₅. B. Beim Erwärmen von 5 g Salicylaldehyd und 8,5 g Acetondicarbonsäurediäthylester in Gegenwart von etwas Piperidin, neben wenig Di-[cumarinyl-(3)]-keton (Syst. No. 2790) (KNOEVENAGEL, LANGENSIEPEN, B. 87, 4492). — Nadeln (aus Ligroin). F: 104°. Leicht löslich in Alkohol, Benzol und Eisessig in der Wärme, schwer in kaltem Ligroin. Liefert mit Sodalösung Cumarincarbonsäure-(3) (S. 429), mit Salicylaldehyd in Gegenwart von Piperidin Di-[cumarinyl-(3)]-keton.

2. Phthalylacetessigsäure $C_{12}H_6O_5 = C_6H_4 - \frac{CO \cdot CO_2H_3 \cdot CO_2H_3}{C[:C(CO \cdot CH_3) \cdot CO_2H]} O (?)^{.1}$.
Phthalylacetessigsäure - äthylester, Phthalylacetessigester $C_{14}H_{12}O_5 =$

C₄H₄ C_{[:C(CO·CH₃)·CO₂·C₂H₃] O (?) ¹). B. Aus Natriumacetessigester und Phthalylchlorid beim Kochen in åther. Suspension unter Rückfluß (E. Fischer, Koch, B. 16, 651) oder besser bei 1—2-tägigem Stehenlassen bei gewöhnlicher Temperatur (Büllow, A. 236, 185). — Prismen (aus Alkohol). F: 124° (E. F., K.). Kaum löslich in Äther (E. F., K.). — Liefert beim Erwärmen mit Zinkstaub und Eisessig Benzylacetessigsäureåthylester-o-carbonsäure (Bd. X, S. 869) (B., A. 236, 190). Beim Kochen mit Wasser, 10°/oiger Schwefelsäure, verd. Kalilauge oder Barytwasser findet Verseifung unter Bildung von Phthalsäure statt (E. F., K.; B., A. 236, 187). Wird von kalter konzentrierter Salpetersäure und Schwefelsäure gelöst und durch Wasser unverändert abgeschieden (B., A. 236, 186). Beim Erwärmen mit konz. Schwefelsäure auf 65° entstehen Phthalylessigsäure (S. 431), Alkohol und Essigsäure (B., A. 236, 186). Beim Behandeln mit wäßrigem oder alkoholischem Ammoniak entsteht in der Kälte Phthalsäurediamid, beim Kochen Phthalimid (Syst. No. 3207) (B., A. 236, 188). Beim Kochen mit Hydrazinhydrat und Eisessig erhält man die Verbindung C₁₄H₁₄O₄N₂ (s. u.) (B., B. 38, 1912). Mit 2 Mol Hydroxylaminhydrochlorid in essigsaurer Lösung bei Gegenwart von CO—N·OH}

Phthalylacetessigester kondensiert sich in Eisessig-Lösung bei Gegenwart von Chlorwasserstoff mit Resoroin zu 7-Oxy-4-methyl-3-[2-carboxy-benzoyl]-cumarin (Syst. No. 2625), mit Pyrogallol zu 7.8-Dioxy-4-methyl-3-[2-carboxy-benzoyl]-cumarin (Syst. No. 2626) und mit Phlorogluein zu 5.7-Dioxy-4-methyl-3-[2-carboxy-benzoyl]-cumarin (Syst. No. 2626) (B., B. 38, 478, 481, 485). Liefert mit Phenylhydrazin die Verbindung $C_{30}H_{16}O_4N_3$ (S. 477) (B., A. 236, 189). Beim Kochen mit Semicarbazidhydrochlorid in wäßrig-alkoholischer Lösung erhält man die Verbindung $C_{18}H_{16}O_5N_3$ (S. 477) und eine in Nadeln krystallisierende Verbindung vom Schmelzpunkt 243° (B., B. 38, 1914).

Verbindung $K_2C_{10}H_{10}O_7$. B. Beim Stehenlassen einer Lösung von Phthalylacetessigester in kalter alkoholischer Kalilauge (B., A. 236, 187). — Hygroskopische Krystalle. Sehr leicht löslich in Wasser.

Verbindung C₁₄H₁₄O₄N₂. B. Durch 1-stündiges Kochen von Phthalylacetessigester mit Hydrazinhydrat in Eisessig (B., B. 38, 1912). — Nädelchen (aus Eisessig). Schmilzt

¹⁾ Vgl. hiersu folgende nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Abhandlungen: Schriebe, A. 389, 125; v. Auwers, Auffenberg, B. 51, 1106; Schrieber, Hopfer, B. 53, 898.

oberhalb 290°. Leicht löslich in Benzol und Chloroform, löslich in Alkohol und Eisessig,

Verbindung C₂₀H₁₆O₄N₂¹). B. Bei vorsichtigem Vermischen von Phthalylacetessigester mit Phenylhydrazin (B., A. 236, 189). — Tafeln (aus Alkohol). F: 236—238°; unlöslich in Wasser, schwer löslich in Ather, Chloroform und Schwefelkohlenstoff, leichter in absol. Alkohol und Eisessig; leicht löslich in verd. Alkalilauge (B., A. 236, 189). — Bleibt beim Erhitzen mit konz. Schwefelsäure auf 175° sowie beim Kochen mit Eisessig oder Essigsäureanhydrid

mit konz. Schwefelsäure auf 175° sowie beim Kochen mit Eisessig oder Essigsäureanhydrid unverändert (B., B. 38, 1910). Beim Kochen mit Barytwasser oder 30°/siger Kalilauge entsteht die Verbindung C₁₈H₁₄O₄N₂ (s. u.) (B., B. 38, 1911).

Verbindung C₁₈H₁₄O₄N₂. B. Durch Kochen der Verbindung C₂₀H₁₈O₄N₂ mit Barytwasser oder 30°/oiger Kalilauge (B., B. 38, 1911). — Prismen (aus Alkohol oder viel Wasser). F: 233—234° (Zers.). Ziemlich leicht löslich in Alkohol und Eisessig.

Verbindung C₁₈H₁₈O₅N₃. B. Beim Kochen von Phthalylacetessigester mit Semicarbasid-hydrochlorid und Kaliumacetat in wäßrig-alkoholischer Lösung, neben einer in Nadeln krystallisierenden Verbindung vom Schmelzpunkt 243° (B., B. 38, 1915). — Nadeln (aus Eisessig). F: 188—189°. Löslich in Alkohol und Chlorotra, schwerer in Benzol, unlöslich in Ligroin. Die Lösung in konz. Schwefelsäure ist gelb. in Ligroin. Die Lösung in konz. Schwefelsäure ist gelb.

g) Oxo-carbonsäuren $C_n H_{2n-20} O_5$.

1. [Naphthalin-tricarbonsaure-(1.4.5)]-4.5-anhydrid, 1.8-Anhydro-[4-carboxy-naphthalsaure] C13H4O5, s. nebenstehende Formel. B. Beim Erhitzen von Naphthalin-tricarbonsäure-(1.4.5) auf 110-1200 (GRAEBE, HAAS, A. 827, 95). — F: 243°.

2. Oxo-carbonsăuren $C_{14}H_8O_5$.

N·N·C.H.

1. 2.4-Dioxo-6.7-benzo-chroman-carbonsäure-(3) bezw. 4-Oxy-2-oxo-6.7-benzo-[1.2-chromen]-carbonsaure-(3), 4-Oxy-6.7-benzo-cumarin-carbonsaure-(3) $C_{14}H_8O_6$, Formel I bezw. II (2.3-Naphthotetronsaure- α -carbonsäure).

Derivate, die sich nur von der Enolform (s. Formel II) ableiten lassen, s. S. 532, 533.

Durch Kochen von 3-Acetoxy-naphthoesäure-(2)-chlorid mit Natriummalonester in Äther und Zersetzen der Natriumverbindung mit Salzsäure (Anschütz, A. 367, 254). — Hellgelbe Nädelchen (aus Alkohol), Blättchen (aus Eisessig). F: 182°. Fast unlöslich in Äther, Petroläther und Benzol, löslich in heißem Alkohol, sehr leicht löslich in heißem Eisessig, sehr schwer in Wasser mit saurer Reaktion. — Liefert beim Behandeln mit kalter konzentrierter Schwefelsäure und Erhitzen der mit Wasser verdünnten Flüssigkeit 2.3-Naphthotetronsäure (Bd. XVII, saure und Erintzen der mit Wasser verdunnten Flussigkeit 2.3-Naphthotetronsaure (Bd. XVII, 8. 524). Beim Erhitzen mit Kalilauge entsteht 3-Oxy-naphthotesäure-(2) neben einer geringen Menge einer Verbindung $C_{12}H_{10}O_2$ oder $C_{12}H_{13}O_2$ [gelbe Krystallflütter (aus Alkohol + Wasser); F: 115°; leicht löslich in Alkohol, unlöslich in Natronlauge und Soda]. Beim Kochen des Silbersalzes mit überschüssigem Methyljodid entsteht 4-Methoxy-6.7-benzo-cumarincarbonsäure-(3)-äthylester (S. 532). — $NH_4C_{16}H_{11}O_5$. Weißer Niederschlag. — $NaC_{16}H_{11}O_5$. Krystalle (aus Wasser). Leicht löslich in Alkohol. — $Cu(C_{16}H_{11}O_5)_2$. Grüner, gallertartiger, beim Kochen pulvrig werdender Niederschlag. — $AgC_{16}H_{11}O_5$. Hellgelbe Nadeln (aus Alkohol).

 $\mathbf{Amid}\,\mathbf{C_{14}H_{9}O_{4}N} = \mathbf{C_{10}H_{6}} \\ \underbrace{\mathbf{CO \cdot CH \cdot CO \cdot NH_{3}}}_{\mathbf{O-CO}} \text{ bezw. } \mathbf{C_{10}H_{6}} \\ \underbrace{\mathbf{C(OH) : C \cdot CO \cdot NH_{3}}}_{\mathbf{CO}}. \quad B. \quad \mathbf{Durch}$ mehrstündiges Kochen des Nitrils mit Salzsäure (A., A. 367, 260). — Gelbe Krystalle. F: 256°. Leicht löslich in Alkohol.

²) Diese von Bülow als $C_6H_4 < \overbrace{CO} > O C(CO_2 \cdot C_2H_5) \cdot C(:N \cdot NH \cdot C_9H_5) \cdot CH_3$ aufgefaßte Verbindung wird nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von SCHRIBEB, A. 389, 132, 133, 149 als ein Pyrazolderivat der Konstitution HO₂C·C₄H₄·C—C·CO₃·C₄H₅

| C·CH₂ oder | C·CO₃·C·CH₃ betrachtet. $\begin{array}{c|c} HO_2C \cdot C_6H_4 \cdot C = C \cdot CO_3 \cdot C_2H_5 \\ \text{der} & | > C \cdot CH_3 & \text{betrachtet.} \\ C_6H_5 \cdot N \cdot N \end{array}$

Nitril, 2.4 - Dioxo - 3 - cyan - 6.7 - benzo - chroman bezw. 4-Oxy-3-cyan - 6.7 - benzo - cumarin $C_{14}H_7O_3N = C_{10}H_6 < \begin{array}{c} CO \cdot CH \cdot CN \\ O - CO \end{array}$ bezw. $C_{10}H_6 < \begin{array}{c} C(OH) : C \cdot CN \\ O - CO \end{array}$. B. Entsteht als Hauptprodukt neben [3-Acetoxy-naphthoyl-(2)]-cyanessigsäure-äthylester, wenn man Natrium-cyanessigsäureäthylester mit 3-Acetoxy-naphthoesäure-(2)-chlorid in Äther 20 Stunden erhitzt, das Reaktionsprodukt in Wasser löst und mit Salzsäure ansäuert (A., A. 367, 258, 279). Beim Erwärmen von [3-Acetoxy-naphthoyl-(2)]-cyanessigsäure-äthylester mit Natron-lauge (A.). — Gelbe Flocken (gereinigt durch Auskochen mit Eisessig und Alkohol). F: 276°. Unlöslich in fast allen Lösungsmitteln. — NaC₁₄H₆O₃N. Pulver. Löslich in Alkohol. — Cu(C₁₄H₆O₃N)₂. Grünes Pulver.

Phenylhydramid $C_{50}H_{14}O_4N_5 = C_{10}H_6 CO \cdot CH \cdot CO \cdot NH \cdot NH \cdot C_6H_5$ bezw. $C_{10}H_6 CO \cdot CO \cdot NH \cdot NH \cdot C_6H_5 CO \cdot B.$ Beim Kochen von 2.3 Narhthoten von 2.3 Narhthoten von 2.5 Narhthoten Beim Kochen von 2.3 - Naphthotetronsäureα-carbonsäureäthylester mit der berechneten Menge Phenylhydrazin in alkoh. Lösung (A., A. 367, 257). — Rotgelbe Nädelchen (aus Eisessig). F: 245°. Schwer löslich in Wasser, Alkohol und Ather.

2. 2.4 - Dioxo - 7.8 - benzo - chroman - carbonsäure - (3) bezw. 4-Oxy-2-oxo-7.8 - benzo - [1.2 - chromen] - carbonsaure - (3), 4 - 0xy - 7.8 - benzo - cumarin-

carbonsdure - (3) C14H8O5, Formel I bezw. II (2.1-Naphthotetronsaure-a-carbon-

B. Durch Kochen von 1-Oxy-naphthoesäure-(2)-chlorid mit Natriummalonester in Äther und Zersetzen der erhaltenen Natriumverbindung mit Salzsäure (Anschütz, A. 368, 43). — Gelbe Nadeln (aus Alkohol). F: 179°. — Zersetzt Alkalicarbonate. — Beim Erhitzen mit Kalilauge entsteht 1-Oxy-naphthoesäure-(2). Das Silbersalz liefert mit Äthyljodid 4-Äthoxy-7.8-benzo-cumarin-carbonsäure-(3)-äthylester (8.533). — Natriumsalz. Schwer löslich in Wasser. — KC₁₆H₁₁O₅. Farbloses Pulver. Ziemlich leicht löslich in Wasser. — Cu(C₁₆H₁₁O₅)₂. Grüne Nadeln (aus Alkohol). — AgC₁₆H₁₁O₅. Gelblicher, lichtempfindlicher Niederschlag. Zersetzt sich beim Kochen mit Wasser oder Alkohol.

 $\mathbf{Amid} \ \mathbf{C_{14}H_9O_4N} = \mathbf{C_{10}H_6} \underbrace{\mathbf{CO \cdot CH \cdot CO \cdot NH_8}}_{\mathbf{O} - \mathbf{CO}} \text{ bezw. } \mathbf{C_{10}H_6} \underbrace{\mathbf{C(OH) : C \cdot OO \cdot NH_8}}_{\mathbf{CO} - \mathbf{CO}}. \ \ B. \ \ \mathbf{Beim}$ Kochen des Nitrils mit Kalilauge (A., A. 368, 46). — Krystalle (aus Wasser). F: 182º.

Nitril, 2.4-Dioxo-3-cyan-7.8-benso-chroman bezw. 4-Oxy-3-cyan-7.8-benso-cumarin $C_{14}H_{7}O_{3}N = C_{10}H_{6}$ O—CO bezw. $C_{10}H_{6}$ O—CO bezw. naphthoesaure-(2)-chlorid und Natriumcyanessigester beim Kochen in Äther (A., A. 368, 45). — Gelbe Nadeln (aus Eisessig). F: 235°. — Beim Kochen mit Kalilauge entsteht 2.1-Naphthotetronsaure-\(\alpha\)-carbonsaure-and. Das Silbersalz liefert mit Äthyljodid 4-Äthoxy-3-cyan-7.8-benzo-cumarin (S. 533). — KC₁₄H₆O₃N. Farbloses Pulver. — AgC₁₄H₆O₃N. Farbloses, lichtempfindliches Pulver.

h) Oxo-carbonsäuren $C_n H_{2n-22} O_5$.

1. Oxo-carbonsäuren C₁₆H₁₀O_s.

1. 3-[2-Carboxy-benzoyl]-phthalid, Diphthalyllactonsäure $C_{16}H_{10}O_{5} =$ C_6H_4 $CH(CO \cdot C_6H_4 \cdot CO_9H) > O^1$). B. Beim Erhitzen von Diphthalyl (Syst. No. 2769) mit

¹⁾ Zur Konstitution vgl. auch die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I, 1910] erschienenen Arbeiten von Reissert, B. 48, 1484; Ruggli, Meyer, Helv. chim. Acta 5, 29.

alkoh. Kalilauge unter Luftausschluß (Graebe, Schmalzigaug, A. 228, 135; vgl. Addr. A. 164, 233). — Krystalle (aus Alkohol). Verwandelt sich beim Erhitzen auf 200—220° in Diphthalyl (Gr., Sch.). Löslich in Alkalien mit gelber Farbe (Gr., Sch.). — Liefert bei der Oxydation mit Luft oder mit Silberoxyd in alkal. Lösung oder beim Kochen mit Zinkcarbonat und Wasser unter Luftzutritt (A.; vgl. Gr., Sch.), quantitativ beim Behandeln mit Kaliumpermanganat, Chlor oder Brom in alkal. Lösung (Gr., Juillard, A. 242, 219) Diphthalylsäure (Bd. X, S. 910). Beim Erwärmen mit 2—3 Mol Phosphorpentachlorid entsteht Diphthalyldichlorid (Syst. No. 2768) (Gr., Sch., A. 228, 133). Beim Kochen der ammoniakalischen Lösung erhält man Diphthalylimid C₆H₄ COO HN COC₆H₄ (Syst. No. 4298) (Gr., Sch.; vgl. Gr., Guye, A. 238, 245).

2. $2-Oxo-5.6-benzo-[1.2-chromen]-malonyl-sdure-(3), \beta-Oxo-\beta-[5.6-benzo-cumarinyl-(3)]-propionsdure <math>C_{1e}H_{1e}O_5$, s. nebenstehende Formel.

Äthylester $C_{1e}H_{1e}O_5 = C_{1e}H_{1e}C_5

B. Aus 2-Oxy-naphthaldehyd-(1) und Acetondicarbonsäureester in alkoh. Lösung bei Gegenwart von wenig Piperidin (Knoevenagel, Langensiepen, B. 37, 4495). — Hellgelbe Krystalle (aus Benzol). F: 151—152°. — Gibt beim Erwärmen mit 10°/0 iger Kalilauge 5.6-Benzocumarin-carbonsäure-(3) (S. 438).

2. Oxo-carbonsäuren C18H14Os.

- 1. 5 0xo 2 phenyl 2 benzoyl furantetrahydrid carbonsdure (3), γ -Phenyl- γ -benzoyl-butyrolacton- β -carbonsdure, γ -Phenyl- γ -benzoyl-paraconsdure $C_{18}H_{14}O_5 = \begin{array}{c} H_2C CH \cdot CO_3H \\ OC \cdot O \cdot C(C_6H_5) \cdot CO \cdot C_6H_5 \end{array}$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. Bd. IX, S. 950.
- 2. ω -[1.3-Dioxo-4-methyl-isochromanyl-(4)]-o-toluylsäure, 1.3-Dioxo-4-methyl-4-[2-carboxy-benzyl]-isochroman, [α -Methyl-dibenzyl-2.2'. α -tricarbonsäure]-2. α -anhydrid $C_{18}H_{14}O_{5}=C_{6}H_{4}$ $C_{18}C_{1$
- 3. γ -Oxo- γ -phenyi- β -[5-oxo-2-phenyi-tetrahydrofuryi-(2)]-buttersäure, β -Benzoyi- β -[5-oxo-2-phenyi-tetrahydrofuryi-(2)]-propionsäure, γ -Phenyi- δ -benzoyi- γ -caprolacton- ε -carbonsäure $C_{20}H_{10}O_{\delta}=H_{10}C_{10}$

 $OC \cdot O \cdot C(C_0H_5) \cdot CH(CO \cdot C_0H_5) \cdot CH_3 \cdot CO_3H$. Existiert in zwei, wohl als Diastereoisomere aufzufassenden Formen

a) Niedrigerschmelzende Form, "Diphenylketoctolactonsäure" $C_{30}H_{18}O_5=H_1C-CH_2$ $OC\cdot O\cdot C(C_0H_5)\cdot CH(CO\cdot C_0H_5)\cdot CH_3\cdot CO_3H$. B. Neben Isodiphenylketoctolactonsäure (s. u.),

dem Dilacton der Formel $C_0H_5 \cdot C : C \cdot CH_2 \cdot CO \cdot O$ $C_0H_5 \cdot C \cdot CH_2 \cdot CH_3 \cdot CO \cdot O$ (Syst. No. 2769) und einer geringen Menge β -Benzoyl-propionsäure bei der Einw. von überschüssiger $25^{\circ}/_{\circ}$ iger Natronlauge auf β -Brom-y-phenyl-butyrolacton (Bd. XVII, S. 320) (FITTIG, A. 834, 81; FI., STADLMAYB, A. 334, 129, 133, 138). Neben geringen Mengen einer isomeren, bei 170° bis 171° schmelzenden Säure (Syst. No. 2769) beim Kochen des obigen Dilactons mit Kalkwasser (FI., St., A. 334, 141). — Nadeln mit 3H₂O (aus wasserhaltigem Äther). Bräunt sich bei 180—185° und schmilzt bei 195—197°. Unlöslich in Schwefelkohlenstoff, schwer löslich in heißem Wasser, leicht in Chloroform. — Liefert mit Kalkwasser neben ihrem eigenen Calciumsalz das Salz der zugehörigen Oxyoxocarbonsäure $CaC_{20}H_{18}O_4$. — $Ca(C_{20}H_{17}O_5)_2 + 2^1/_2H_2O$. Nadeln (aus siedendem Wasser). Schwer löslich in Wasser.

b) Höherschmelzende Form, "Isodiphenylketoctolactonsäure" $C_{20}H_{18}O_{5}=H_{1}C$ — CH_{2} $OC \cdot O \cdot C(C_{6}H_{5}) \cdot CH(CO \cdot C_{6}H_{5}) \cdot CH_{2} \cdot CO_{3}H$. B. s. bei Diphenylketoctolactonsäure. — Prismen

(aus Äther). Sintert unter Gelbfärbung bei 190° und schmilzt zwischen 202° und 206° (Fr., Sr., A. 834, 138). Leicht löslich in Chloroform, schwer in 50°/sigem Alkohol, fast unlöslich in siedendem Wasser, unlöslich in Schwefelkohlenstoff. — Gibt beim Auflösen in Kalkwasser das Calciumsalz, das beim Erwärmen mit Kalkwasser das Calciumsalz der zugehörigen Oxyoxocarbonsäure $CaC_{20}H_{13}O_{6}$ liefert. — $Ca(C_{20}H_{17}O_{6})_{2}$. Nadeln (aus Wasser).

i) Oxo-carbonsauren C_nH_{2n-24}O₅.

Oxo-carbonsäuren $C_{18}H_{12}O_{\kappa}$.

1. [3.5 - Dioxo - 4 - phenyl - tetrahydrofuryliden - (2)] - phenylessigsäure, β - Oxo - α - phenyl - γ - [α - carboxy - benzal] - butyrolacton bezw. [3-Oxy-5-oxo-4 - phenyl - dihydrofuryliden - (2)] - phenylessigsäure, β - Oxy - α - phenyl - γ - [α - carboxy - benzal] - $\Delta^{\alpha,\beta}$ - crotonlacton $C_{18}H_{12}O_5=C_4H_5\cdot HC$ —C0

OC O C: C(C₆H₅) · CO₂H, Pulvinsäure. B. Aus $OC \cdot O \cdot C : C(C_aH_a) \cdot CO_aH$ Pulvinsäurelacton (Syst. No. 2770) durch Lösen in einer Mischung von Aceton und Kalilauge und Fällen der Lösung mit Salzsäure (Spiegel, A. 219, 11; Volhard, A. 282, 14). Aus Pulvinsäuremethylester (Vulpinsäure, s. u.) durch Kochen mit Kalkmilch und Ansäuern der Lösung mit Salzsäure (Sp., A. 219, 6; V.). — Orangefarbenes Pulver (aus Äther oder Chloroform), braune, keilförmige Krystalle (aus Benzol) (Sp.). Triklin(?) (Ramsay, Z. Kr. 15, 408; vgl. Groth, Ch. Kr. 5, 256). Liefert aus Methylalkohol rasch verwitternde gelbe Krystalle mit 1CH₄O; monoklin prismatisch (R., Z. Kr. 15, 406; vgl. Groth, Ch. Kr. 5, 256). Liefert aus Athylalkohol gelbrote, leicht verwitternde Krystalle mit 1C₂H₆O (SP.); rhombisch bipyramidal (LÜDECKE, A. 282, 15; R., Z. Kr. 15, 405; vgl. LINCE, Z. Kr. 15, 33; Groth, Ch. Kr. 5, 257). Pulvinsäure schmilzt bei 216—217° (ZOPF, A. 284, 122), 215—216° (V.), 214—215° (SP.) unter Gasentwicklung (V.). Schwer löslich in Ather; Chloroform und Benzol, ziemlich leicht in Wasser und daraus durch Säuren fällbar; sehr leicht löslich in Alkohol (Sp.) und in heißem Eisessig (Hesse, J. pr. [2] 62, 339). — Pulvinsäure geht beim Erhitzen über den Schmelzpunkt in Pulvinsäurelacton über (Sp.), ebenso beim Erwärmen mit Acetylchlorid (Sp.) sowie beim Kochen mit Essigsäureanhydrid (Hz.). Setzt man zu einer verd. Lösung von Pulvinsäure in Natronlauge in der Kälte Kaliumpermanganat-Lösung bis zu bleibender Rotfärbung, so erhält man Oxalsäure und Phenylglyoxylsäure (Sp.). Eine Lösung von Pulvinsäure in Ammoniak liefert beim Behandeln mit Zinkstaub ein Gemisch von Reduktionsprodukten, aus dem Dihydrocornicularsäure (Bd. X, S. 768) und nach Einw. von siedendem Essigsäureanhydrid Carboxy-corniculariacton (S. 447) sowie Cornicularlacton (Bd. XVII, S. 388) isoliert wurden (Sp.; V.; vgl. Thiele, Straus, A. 319, 215 Anm. 11). Pulvinsäure gibt bei Behandlung mit Brom in Chloroform Brompulvinsäure (V.). — AgC₁₈H₁₁O₈. B. Aus der wäßr. Lösung von Pulvinsäure mit Silbernitrat (Sp., A. 219, 8; V.). Gelbe Prismen. Beständig an der Luft; zersetzt sich beim Umkrystallisieren aus heißem Wasser (Sr.). - $Ag_2C_{18}H_{10}O_5 + H_2O$. B. Man versetzt eine wäßr. Lösung von Pulvinsäure unter Zuast von Alkohol mit überschüssigem Silbernitrat und Ammoniak, bis die zuerst ausgeschiedenen gelben Flocken in Nadeln übergegangen sind (Sr., A. 219, 8; V.). Blaßgelbe Nadeln. Zersetzt sich zum Teil beim Umkrystallisieren aus heißem Wasser (Sr.). — $CaC_{18}H_{10}O_5 + H_{10}O_5$). Gelbe Nadeln. Wird auch bei 180° nicht wasserfrei (V.). — $BaC_{18}H_{10}O_5 + 4H_{20}O_5$ Gelbe Nadeln (V.; vgl. Sp.).

Pulvinsäuremethylester, Vulpinsäure ("Methylpulvinsäure") $C_{19}H_{16}O_5 = C_4H_5 \cdot C_4HO_2 \cdot C(C_2H_5) \cdot CO_2 \cdot CH_2$. V. In der Flechte Cetraria vulpina (Möller, Strecker, A. 113, 56; Bolley, J. pr. [1] 93, 355; J. 1864, 554; Hesse, J. pr. [2] 57, 244). In Cetraria juniperina (H., B. 30, 361; J. pr. [2] 57, 316; 68, 39; Zoff, A. 324, 56). In Cetraria pinastri (H., J. pr. [2] 57, 316; 65, 552). In Cyphelium chrysocephalum (Z., A. 284, 121). In Calycium chlorinum (Z., A. 284, 120; H., J. pr. [2] 62, 340; 68, 65). — B. Aus Pulvinsäurelacton durch Behandlung mit methylalkoholischer Kalilauge (Spiegel, A. 219, 13; Volhard, A. 282, 13). Aus pulvinsaurem Silber AgC₁₈H₁₁O₅ durch Einw. von Methyljodid (V., A. 282, 18). — Darst. Man extrahiert die Flechten mit Chloroform, destilliert das Chloroform bis auf einen kleinen Rest ab, läßt auskrystallisieren und reinigt die Krystallmasse durch wiederholtes Umkrystallisieren aus Alkohol (Z., A. 284, 121; 295, 223). Darstellung aus Flechten mit Hilfe von Kalkwasser: Mö., Str., A. 113, 57; Sr., A. 219, 4. — Gelbe Blätter (aus Alkohol), Nadeln oder Prismen (aus Äther). Monoklin prismatisch (Muthann, Z. Kr. 15, 389; Kappen, Z. Kr. 37, 159; vgl. Groth, Ch. Kr. 5, 257). F: 148—149° (Z., A. 284, 121), 148° (Sp.), 147° (H., J. pr. [2] 57, 244), 146—148° (V.). Unlöslich in siedendem Wasser, schwer löslich in siedendem Alkohol, leichter in Äther, leicht in Chloroform (Mö., Str.). — Vulpinsäure liefert oberhalb 200° Methylalkohol, Pulvinsäurelacton und wenig Isovulpinsäure (S. 481)

(Sp.). Wird durch Kochen mit Kalkmilch zu Pulvinsäure verseift (Mö., Str.; Sp.). Beim Kochen von Vulpinsäure mit verd. Kalilauge wurden Kohlendioxyd, Methylalkohol und α-Oxy-dibenzylessigsäure (Bd. X, S. 350) erhalten (Mö., Str.; Sp.). Beim Kochen mit Barytwasser tritt Spaltung in Methylalkohol, Oxalsäure und Phenylessigsäure ein (Mö., Str.). Beim Kochen mit Essigsäureanhydrid entsteht O-Acetyl-vulpinsäure (S. 535) (Sp.; V.). — Vulpinsäure ist giftig (Kobert, zitiert bei Z., A. 284, 120). — NH₄C₁₉H₁₂O₅ + H₂O. Gelbe Krystalle. Verliert beim Erhitzen Wasser und Ammoniak (Mö., Str.). — Natriumsalz. Monoklin prismatisch (Kappen, Z. Kr. 37, 162; vgl. Groth, Ch. Kr. 5, 260). — KC₁₉H₁₃O₅ + H₂O. Gelbe Blättchen oder Nadeln. Ziemlich schwer löslich in Wasser und Alkohol (Mö., Str.). — AgC₁₂H₁₃O₅. Gelber Niederschlag. Schwärzt sich bei 100° (Mö., Str.). — Ba(C₁₉H₁₃O₅)₂ + 7H₂O. Hellgelbe Nadeln (Mö., Str.).

Isovulpinsäure C₁₉H₁₄O₅. B. Entsteht in kleiner Menge neben Pulvinsäurelacton beim Erhitzen von Vulpinsäure auf 200°; man behandelt das Produkt mit Alkohol, verdunstet die alkoh. Lösung, zieht den Rückstand mit Soda-Lösung aus und fällt mit Mineralsäure (Sp.). Wird durch Kochen mit Kalkmilch zu Pulvinsäure verseift (Mö., Str.; Sp.). Beim

die alkoh. Lösung, zieht den Rückstand mit Soda-Lösung aus und fällt mit Mineralsäure (Spiegel, A. 219, 10, 15). — Goldglänzende Blätter (aus Alkohol). F: 124°.

O - Acetyl - pulvinsäure - methylester, O - Acetyl - vulpinsäure $C_{e_1}H_{1e}O_{e_2}$ $C_6H_5 \cdot C = C \cdot O \cdot CO \cdot CH_3$ s. S. 535.

 $O\dot{C}\cdot O\cdot \dot{C}\colon C(C_dH_s)\cdot CO_{\bullet}\cdot CH_{\bullet}$

Pulvinsäureäthylester ("Äthylpulvinsäure"), Callopisminsäure $C_{20}H_{16}O_5=C_6H_5$. C₄HO₃:C(C₆H₅)·CO₂·C₂H₅. B. Aus Pulvinsäurelacton (Syst. No. 2770) durch Lösen in alkoh. Kalilauge (Spiegel, A. 219, 14; Volhard, A. 282, 14) oder durch Kochen mit absol. Alkohol (HESSE, J. pr. [2] 58, 516). — Gelbe Tafeln (aus Alkohol). Triklin pinakoidal (Kappen, Z. Kr. 37, 166; vgl. Groth, Ch. Kr. 5, 259). F: 127—128° (Sp.). — Zerfällt beim Erhitzen über den Schmelzpunkt in Alkohol und Pulvinsäurelacton (Sp.). Liefert beim Erhitzen mit Methylalkohol im Druckrohr auf 150—160° eine in kanariengelben oder gelbgrünen Blättchen vom Schmelzpunkt 113° krystallisierende Verbindung (ZOPF, A. 297, 292). Beim Kochen mit Essigsäureanhydrid entsteht O-Acetyl-pulvinsäure-äthylester (S. 535) (Z., A. 284, 116, 124; H.).

Pulvinsäure - propylester ("Propylpulvinsäure") $C_{21}H_{18}O_5 = C_6H_5 \cdot C_4HO_3$: " $C(C_6H_5) \cdot CO_3 \cdot CH_2 \cdot CH_3 \cdot$ alkoholischer Kalilauge (Schenck, A. 282, 42). — Gelbe Nadeln oder Tafeln (aus Chloroform). Monoklin prismatisch (KAPPEN, Z. Kr. 37, 165; vgl. Groth, Ch. Kr. 5, 259). F: 134° (SCH.). Leicht löslich in Chloroform und Benzol, schwerer in Alkohol (K.).

Pulvinsäureamid ("Pulvinaminsäure") $C_{18}H_{13}O_4N=C_6H_5\cdot C_4HO_5:C(C_6H_5)\cdot CO\cdot NH_2$. B. Durch Erwärmen von Pulvinsäurelacton mit einem Gemisch von Aceton und wäßr. Ammoniak bis zur Lösung (Spiegel, A. 219, 14) oder besser durch Kochen von Pulvinsäurelacton, das mit Alkohol befeuchtet ist, mit konzentriertem wäßrigem Ammoniak (SCHENCK, A. 282, 23). Beim Kochen von α.α'-Diphenyl-ketipinsäure-amid-nitril (Bd. X, S. 912) mit Salzsaure (D: 1,1) (Volhard, Henke, A. 282, 49). — Gelbe, benzolhaltige(?) Prismen (aus Benzol), gelbe Täfelchen (aus Eisessig). Beginnt bei 220—221° zu sintern und schmilzt bei 226° (SCH.), bei 225—227° (V., H.). Sehr leicht löslich in Aceton, schwerer in Alkohol, Äther und Benzol (Sch.), sehr schwer löslich in Alkohol (V., H.), unlöslich in Wasser (Sch.). — Spaltet bei 150° Ammoniak ab und geht zum Teil in Pulvinsäurelacton über (Sch.). Oxydiert sich in alkal. Lösung an der Luft, rascher beim Zusatz von Kaliumpermanganat, unter Entwicklung eines bittermandelölartigen Geruchs (SCH.). Beim Erwärmen des Silbersalzes mit Methyljodid entsteht Methylätherpulvinsäure-amid (S. 535) (V., H.). — Salze: Sch., A. 282, 23, 24. — $NH_4C_{18}H_{19}O_4N$. Nadeln. F: 218°. Schwer löslich in kaltem Wasser, leicht in Alkohol. — $KC_{18}H_{19}O_4N + 5H_4O$. Nadeln (aus Wasser). — $AgC_{18}H_{19}O_4N + H_4O$. Gelber Niederschlag. Zersetzt sich schnell am Licht. Unlöslich. — $Zn(C_{18}H_{12}O_4N)_2$. Gelber, flockiger Niederschlag.

Pulvinsäuremethylamid ("Pulvinmethylaminsäure") $C_{10}H_{15}O_4N = C_6H_5 \cdot C_4HO_3$: $C(C_6H_5) \cdot CO \cdot NH \cdot CH_3$. B. Das Methylaminsalz entsteht beim Kochen von Pulvinsäurelacton mit $10^9/_0$ iger Methylamin-Lösung und etwas Alkohol bis zur Lösung; man zersetzt es in wäßr. Lösung mit Essigsäure (SCHENCK, A. 282, 25). — Blättchen (aus Alkohol + Rengel) Tr. 2272. Schwer Belieb in Alkohol in Parael. Benzol). F: 237°. Schwer löslich in Alkohol, leicht in Benzol. — Kalium- und Natriumsalz bilden Nadeln. — Bariumsalz. Gelb, fein krystallinisch. — Methylaminsalz CH₅N + C₁₉H₁₈O₄N + H₂O. Prismen. F: 214°. Verliert beim Erhitzen Wasser und Methylamin.

Pulvinsäuredimethylamid ("Pulvindimethylaminsäure") $C_{50}H_{17}O_4N = C_6H_5$: C_4HO_3 : $C(C_6H_5)$: $CO \cdot N(CH_3)_2$. B. Das Dimethylaminsalz entsteht, wenn man mit Alkohol angefeuchtetes Pulvinsäurelacton mit Dimethylamin-Lösung kocht; man zersetzt es in wäßr. Lösung mit Essigsäure (SCH., A. 282, 31). — Prismen. F: 211°. Schwer löslich in Alkohol, leichter in Eisessig. — Dimethylaminsalz CaH2N + CanH17O4N + H2O. Blättchen. F: 210°.

Pulvinsäureanilid ("Pulvinanilinsäure") $C_{24}H_{17}O_4N = C_6H_5 \cdot C_4HO_3 \cdot C(C_6H_5) \cdot CO \cdot NH \cdot C_6H_5$. B. Beim Verreiben von Pulvinsäurelacton mit 2 Mol Anilin (Sch., A. 282, 26). — Krystalle (aus Eisessig). F: 187—188°. Löslich in Benzol, Toluol, Amylalkohol, Eisessig und Essigsäureanhydrid. — $NH_4C_{24}H_{16}O_4N$. Gelbe Prismen. F: 153°. — $KC_{24}H_{16}O_4N + 2H_2O$. Gelbe Krystalldrusen. — $Zn(C_{24}H_{16}O_4N)_3$. Flockiger Niederschlag, der beim Stehen krystallinisch wird. Spaltet beim Kochen mit Wasser Anilin ab.

Pulvinsäure - α -naphthylamid ("Pulvin- α -naphthylaminsäure") $C_{28}H_{19}O_4N=C_6H_5\cdot C_4HO_5\colon C(C_6H_6)\cdot CO\cdot NH\cdot C_{10}H_7.$ B. Beim Erhitzen von Pulvinsäurelacton und 2 Mol α -Naphthylamin in Alkohol oder Toluol (Sch., A. 282, 28). — Rotgelbe Blättchen (aus Toluol). F: 211—212°. Schwer löslich in Alkohol, löslich in Benzol, Toluol, Chloroform und Eisessig. — Die Alkalisalze sind unlöslich in Wasser und spalten bei Einw. von warmem Wasser α -Naphthylamin ab. — $NH_4C_{28}H_{18}O_4N$. Gelbe Nadeln (aus Alkohol). F: 208°. — Ba $(C_{28}H_{18}O_4N)_2$. Nädelchen (aus Alkohol).

Pulvinsäure- β -naphthylamid ("Pulvin- β -naphthylaminsäure") $C_{20}H_{10}O_4N=C_4H_5\cdot C_4HO_3\cdot C(C_6H_5)\cdot CO\cdot NH\cdot C_{10}H_7$. B. Beim Erwärmen gleicher Mengen Pulvinsäurelacton und β -Naphthylamin in Toluol bis zur Lösung (Sch., A. 282, 29). — Rotgelbe Krystalldrusen (aus Toluol). F: 192°. Gleicht der vorhergehenden Verbindung. — $NH_4C_{20}H_{10}O_4N$. Prismen (aus Alkohol). Sintert bei 177° und ist bei 182° geschmolzen. — $Ba(C_{20}H_{10}O_4N)_2$. Warzen (aus Alkohol), die bei Berührung mit Wasser zu einem krystallinischen Pulver zerfallen.

Pulvinhydroxamsäure $C_{18}H_{18}O_5N=C_6H_5\cdot C_4HO_3:C(C_6H_5)\cdot CO\cdot NH\cdot OH$ bezw. $C_6H_5\cdot C_4HO_3:C(C_6H_5)\cdot C(OH):N\cdot OH$. B. Durch Kochen von 1 Mol Pulvinsäurelacton mit je 1 Mol Hydroxylaminhydrochlorid und wasserfreiem Natriumacetat in Eisessig-Lösung (Sch., 4. 282, 34). — Krystalle (aus Alkohol). Schmilzt bei 194° unter Entwicklung von Kohlendioxyd. Leicht löslich in Alkohol, schwerer in Benzol, Chloroform und Äther, unlöslich in Petroläther und Wasser. — Anilinsalz $C_6H_7N+C_{18}H_{18}O_5N$. Blättchen (aus Alkohol). F: 163—164°.

Pulvinsäurephenylhydrazid ("Pulvinphenylhydrazinsäure") $C_{14}H_{18}O_4N_2 = C_6H_5 \cdot C_4HO_3 \cdot C(C_6H_5) \cdot CO \cdot NH \cdot NH \cdot C_6H_5$. B. Entsteht neben dem Phenylhydrazinsalz beim Verreiben gleicher Tle. Pulvinsäurelacton und Phenylhydrazin (Sch., A. 282, 36). — Gelbe Prismen (aus Eisessig). F: 201—202°. Schwer löslich in Alkohol. — $NH_4C_{24}H_{17}O_4N_2$. Hellgelbe Nadeln. F: 187—188°. Unlöslich in Wasser, leicht löslich in Alkohol. — $Ca(C_{24}H_{17}O_4N_2)_3$. Gelbe Prismen (aus Alkohol). — Phenylhydrazinsalz $C_6H_5N_2+C_{24}H_{15}O_4N_2$. Hellgelbe Nadeln. Färbt sich bei 115° dunkel, sintert bei 125° und schmilzt bei 170° unter Zersetzung. Leicht löslich in Alkohol.

Pulvinsäurenitril $C_{18}H_{11}O_3N = C_6H_5 \cdot C_4HO_3 \cdot C(C_6H_5') \cdot CN$. B. Beim Erhitzen von β -Chlor- α -phenyl- γ -[α -cyan-benzal]- $\Delta^{\alpha,\beta}$ -crotonlacton (8. 447) mit wasserfreiem Natrium-acetat und Alkohol auf 134° (Volhard, Henne, A. 282, 61). — Rotgelbe Nadeln (aus Alkohol). Sintert bei 190° und schmilzt bei 193—194°. — Liefert beim Kochen mit Essigsäureanhydrid O-Acetyl-pulvinsäurenitril (8. 535). Färbt Wolle gelb.

Brompulvinsäure C₁₈H₁₁O₅Br. B. Beim Erwärmen von 1 Mol Pulvinsäure mit 2 Mol Brom in Chloroform bis zur Lösung (Volhard, A. 282, 19). — Nadeln mit 1 Mol Krystallalkohol (aus Alkohol); gelbe, strahlig gruppierte Täfelchen (aus Toluol). F: 208—209° (Zers.). — BaC₁₈H₉O₅Br+2H₂O. Krystallinisch.

2. $5 - Oxo - 2 - phenyl - 4 - benzoyl - furan - dihydrid - (4.5) - carbonsäure - (3),
\gamma - Phenyl - <math>\alpha$ - benzoyl - $\Delta^{\beta,\gamma}$ - crotonlacton - β - carbonsäure $C_{18}H_{12}O_5 = C_6H_5 \cdot CO \cdot HC - C \cdot CO_2H$ $OC \cdot O \cdot C \cdot C_8H_5$

 $\ddot{\mathbf{A}} \mathbf{thylester} \ \ \mathbf{C_{20}H_{16}O_5} = \frac{\mathbf{C_6H_5 \cdot CO \cdot HC - C \cdot CO_2 \cdot C_2H_5}}{\mathbf{OC \cdot O \cdot C \cdot C_6H_5}}. \quad B. \quad \mathbf{Man} \ \ \mathbf{versetzt} \ \ \mathbf{die} \ \ \mathbf{L\ddot{o}} \mathbf{sung}$

von 19,1 g β-Dibenzoylbernsteinsäureester (Bd. X, S. 914) in 50 cm³ siedendem Alkohol mit der heißen Lösung von 2,3 g Natrium in 100 cm³ Alkohol, verdünnt nach 1 Stde. mit 500 cm³ Wasser, sättigt mit Kohlendioxyd, schüttelt mehrmals mit Äther aus und versetzt die ausgeätherte Flüssigkeit allmählich mit 30 cm³ 20% jeger Schwefelsäure; das ausgeschiedene Öl nimmt man in Äther auf (Knorr, A. 293, 85). — Gelbe Prismen (aus Ligroin). F: 64—68%. — Gibt mit Eisenchlorid eine blaugrüne Färbung. Beim Erhitzen auf 270—290% entsteht Naphthacendichinondihydrid.

k) Oxo-carbonsăuren $C_n H_{2n-30} O_5$.

$$\begin{array}{lll} \beta.\gamma.\beta'\text{-Triphenyl-}\gamma\text{-carboxy-pimelinsäureanhydrid} & C_{26}H_{22}O_5 = \\ H_2'C\cdot CH(C_6H_5)\cdot C(C_9H_5)(CO_2H)\cdot CH(C_6H_5)\cdot CH_2 & & & \\ O\dot{C} & & & & & \\ O\dot{C} & & & & & \\ \beta.\gamma.\beta'\text{-Triphenyl-}\gamma\text{-cyan-pimelinsäureanhydrid} & C_{26}H_{21}O_3N = \\ H_2'C\cdot CH(C_6H_5)\cdot C(C_6H_5)(CN)\cdot CH(C_6H_5)\cdot CH_2 & & \\ O\dot{C} & & & & \\ O\dot{C} & & & & \\ S. 583. & & & \\ \end{array}$$

1) Oxo-carbonsäuren $C_nH_{2n-32}O_5$.

Oxo-carbonsauren C24H16O5.

1. Oxo-carbonsaure C24H16O5, Formel I, s. S. 548.

I.
$$\begin{array}{c} CO_2H \\ C(CH_3) \\ C \cdot C_6H_5 \end{array}$$

$$(?)$$

$$O : \begin{array}{c} C(CH_3) \\ C \cdot C_6H_5 \end{array}$$

$$(?)$$

$$CO_2H \\ (?)$$

2. Oxo-carbonsaure C₁₄H₁₆O₅, Formel II, s. S. 548.

3. Oxo-carbonsäuren mit 6 Sauerstoffatomen.

a) Oxo-carbonsăuren $C_nH_{2n-6}O_6$.

1. Butyrolacton $-\beta_{.}\gamma$ -dicarbonsaure, Isocitronensaurelacton $C_cH_cO_sH_cC_cH_cO_sH$ $OC\cdot O\cdot CH\cdot CO_sH$ $OC\cdot O\cdot CH\cdot CO_sH$ Erhitzen von Isocitronensaure auf 100° (FITTIG, MILLER, A. 255, 51). — Krystalle (aus Chloroform). Schmilzt unscharf zwischen 120° und 130° (WISLICENUS, NASSAUER, A. 285, 9). Leicht löslich in Wasser, Alkohol und Essigester, sehwer in Benzol und Ligroin, sehr schwer in Chloroform (W., N.). — Die Salze entstehen durch Neutralisation von Isocitronensaurelacton mit Carbonaten in der Kälte (F., M.). — $Ag_sC_sH_sO_s$. Amorph. — $CaC_sH_sO_s+3H_sO$. Nadeln. Schwer löslich in kaltem Wasser. — $BaC_sH_sO_s$. Gummiartig. Das getrocknete Salz löst sich schwer in Wasser.

2. Oxo-carbonsāuren $C_7H_8O_6$.

1. δ -Valerolacton- γ . δ -dicarbonsäure $C_7H_8O_6=\frac{H_2C\cdot CH_2\cdot CH\cdot CO_2H}{OC-O-CH\cdot CO_2H}$. B. s. bei α -Oxy-butan- α . β . δ -tricarbonsäure, Bd. III, S. 570. — Hygroskopisches Gummi. Ziemlich leicht löslich in Alkohol, Essigester und Aceton (Perlmutter, M. 13, 844). — Liefert beim Erhitzen mit Jodwasserstoffsäure (D: 1,96) im Druckrohr auf 170—180° β -Carboxy-adipinsäure (P.). — Ba $C_7H_6O_6$ (bei 220°). Pulver. Ziemlich leicht löslich in Wasser (P.).

Diäthylester $C_{11}H_{16}O_6 = H_2C \cdot CH_2 \cdot CH \cdot CO_2 \cdot C_2H_5$. B. Aus δ -Valerolacton- γ . δ -dicarbonsäure und Alkohol bei Gegenwart von konz. Schwefelsäure (P., M. 13, 842). — Nicht destillierbares Öl.

2. δ -Valerolacton - β . γ -dicarbonsäure, Cinchonsäure $C_7H_8O_6=H_2C\cdot CH(CO_2H)\cdot CH\cdot CO_2H$. B. Durch Behandeln von Pyridin-dicarbonsäure-(3.4) (Cinchomeronsäure, Syst. No. 3279) mit Natriumamalgam in der Hitze, Ansäuern der Lösung mit Salzsäure oder Schwefelsäure und Eindampfen der Flüssigkeit (Weidel, A. 178, 103; W.,

v. Schmidt, B. 12, 1150; W., Brix, M. 3, 604; W., Hoff, M. 13, 578). Aus Pyridin-tricarbonsaure-(2.3.4) (Syst. No. 3310) in gleicher Weise (W., A. 173, 104). — Darst.: W., H., M. 13, 582; vgl. W., B., M. 3, 604. — Tafeln (aus Wasser). Monoklin (Hockauf, M. 13, 584). F: 168° bis 169° (W., H.). Leicht löslich in Wasser und Alkohol, schwerer in Äther, unlöslich in Benzol (W., H.). — Zerfällt bei der trocknen Destillation in Pyrocinchonsäureanhydrid (Bd. XVII, S. 445) und Kohlendioxyd (W.; W., v. Sch.; W., B.; W., H.). Sehr beständig gegen Salpetersäure (W., H.). Beim Erwärmen mit wäßr. Chlorsäure-Lösung entstehen Oxalsäure und Glutarsäure (W., H.). Beim Erhitzen mit Jodwasserstoffsäure (D: 1,96) im Einschlußrohr auf 170—190° erhält man fumaroide und maleinoide α-Methyl-tricarballylsäure (W., H.). Beim Einleiten von Chlorwasserstoff in die alkoholische Lösung von Cinchonsäure erhält man Cinchonsäure-diäthylester und α-Chlormethyl-tricarballylsäure-triäthylseter (W., H.). Beim Erhitzen mit Natriumäthylat in Alkohol im geschlossenen Rohr auf 190—200° entsteht [β-Oxy-āthyl]-bernsteinsäure (Bd. III, S. 452) (W., H.). — CuC₇H₆O₆. Hellblaue Flocken. Äußerst löslich in Wasser, unlöslich in Alkohol (W.; W., B.). — Ag₂C₇H₆O₆. Niederschlag (W.; W., B.). — CaC₇H₆O₆ + 2H₂O. Nadeln (W., H.). — BaC₇H₆O₆ + 3 H₂O. Nadeln. Sohwer löslich in Wasser (W., H.). Das Bariumsalz gibt mit Bleiessig einen in überschüssigem Bleiessig löslichen Niederschlag, der beim Kochen mit Wasser pflasterartig wird (W., B.).

Diäthylester $C_{11}H_{16}O_6 = H_2C \cdot CH(CO_2 \cdot C_2H_5) \cdot CH \cdot CO_2 \cdot C_2H_5$. B. Aus Cinchonsäure durch Erwärmen mit absol. Alkohol und Conc. Schwefelsäure (Weidel, Hoff, M. 13, 588). — Nicht unzersetzt destillierendes Öl. — Erwärmt man den Ester mit Phosphorpentachlorid und Phosphoroxychlorid, dunstet das Phosphoroxychlorid im Vakuum ab und trägt den Rückstand in absol. Alkohol ein, so entsteht α -Chlormethyl-tricarballylsäure-triäthylester.

- 3. 4 0xo pyrantetrahydrid dicarbonsäure (3.5), Tetrahydropyron dicarbonsäure (3.5) $C_7H_2O_6=\frac{HO_3C\cdot HC\cdot CO\cdot CH\cdot CO_2H}{H_2C-O-CH_2}$.
- $\begin{array}{lll} \textbf{4-Oxo-thiopyrantetrahydrid-dicarbons \"{a}ure-(3.5)-di \ddot{a}thylester,} & \textbf{4-Oxo-penthio-phentetrahydrid-dicarbons \"{a}ure-(3.5)-di \ddot{a}thylester,} & \textbf{Tetrahydro-1-thio-pyron-dicarbons \"{a}ure-(3.5)-di \ddot{a}thylester,} & \textbf{C}_{2}\textbf{H}_{5}\cdot\textbf{O}_{2}\textbf{C}\cdot\textbf{HC}\cdot\textbf{CO}\cdot\textbf{CH}\cdot\textbf{CO}_{2}\cdot\textbf{C}_{2}\textbf{H}_{5}^{*}} \\ \textbf{bons \"{a}ure-(3.5)-di \ddot{a}thylester} & \textbf{C}_{11}\textbf{H}_{16}\textbf{O}_{5}\textbf{S} = & \textbf{C}_{2}\textbf{H}_{5}\cdot\textbf{O}_{2}\textbf{C}\cdot\textbf{HC}\cdot\textbf{CO}_{2}\cdot\textbf{C}_{2}\textbf{H}_{5}^{*}} & \textbf{B}. & \textbf{Beim} \\ & \textbf{H}_{2}\textbf{C}-\textbf{S}-\textbf{C}\textbf{H}_{2} & \textbf{B}. & \textbf{C}_{2}\textbf{H}_{3}\cdot\textbf{C} & \textbf{C}_{3}\textbf{H}_{3}\cdot\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{H}_{3}\cdot\textbf{C} \\ & \textbf{H}_{3}\textbf{C}-\textbf{S}-\textbf{C}_{3}\textbf{H}_{3} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} \\ & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{C} & \textbf{C}_{3}\textbf{$

Kochen von 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dioarbonsäuro-(3.5)-diäthylester (S. 510) in Alkohol mit verd. Salzsäure und Zinkstaub (Afitzsch, Blezinger, B. 41, 4038). — Farblose Nadeln (aus verd. Methylalkohol). F: 102—103°. Unlöslich in Wasser, Ligroin und Petroläther, sonst meist leicht löslich; unlöslich in Alkalien.

- 4. Butyrolacton-β-carbonsäure-γ-essigsäure (?), γ-Valerolacton-β.δ-dicarbonsäure (?), Paraconsäure-γ-essigsäure (?) C₇H₈O₆ = H₂C CH·CO₂H OC·O·CH·CH₂·CO₂H (?). B. Bei 30-stdg. Erwärmen von Cyclopropan-tricarbonsäure-(1.2.3)-essigsäure-(1)-tetramethylester (Bd. IX, 8.992) mit Sodalösung auf 65° (Buchner, Witter, B. 27, 871, 876). Krystalle (aus Äther + Ligroin). F: 190°.

Basen Salze der γ -Oxy-butan- α . β - γ -tricarbonsäure (R.). — CaC₇H₆O₆. Amorphes Pulver. Leicht löslich in Wasser (R.). — BaC₇H₆O₆. Glasige Masse (R.).

Diäthylester $C_{11}H_{16}O_6 = \frac{H_2C - CH \cdot CO_2 \cdot C_2H_6}{OC \cdot O \cdot C(CH_6) \cdot CO_2 \cdot C_2H_5}$ Bariumsalz der γ -Valerolacton- β - γ -dicarbonsäure in viel Alkohol und leitet Chlorwasserstoff bis sur Sättigung ein (B., K., B. 32, 3663). — Dickes, farbloses Öl. Kp₁₈₋₁₁: 176—177°.

- 3. Oxo-carbonsăuren $C_8H_{10}O_6$.

1. γ -Valerolacton-è-malonsäure, γ -Caprolacton- ε .s-dicarbonsäure, [5-Oxotetrahydrofurfuryl]-malonsäure $C_8H_{10}O_6=\frac{H_1C-CH_2}{OC\cdot O\cdot CH\cdot CH_2\cdot CH(CO_2H)_2}$ Diäthylester $C_{12}H_{18}O_6=\frac{H_2C-CH_2}{OC\cdot O\cdot CH\cdot CH_2\cdot CH(CO_2\cdot C_2H_3)_2}$. B. s. bei γ -Oxy-pentan-a.a. ε -tricarbonsäure, Bd. III, S. 570. — Öl. Kp₁₄: 218—220° (korr.) (Leuchs, Möbis, B. 42, 1235). Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser. — Wird durch Koehen mit Natronlauge in γ -Oxy-pentan-a.a. ε -tricarbonsäure übergeführt. Gibt mit alkoh Kochen mit Natronlauge in γ-Oxy-pentan-α.α.ε.tricarbonsäure übergeführt. Gibt mit alkoh. Ammoniak bei 100° das Triamid dieser Säure.

- Butyrolacton- γ . γ -diessigsäure $C_8H_{10}O_6 = H_2C CH_2$ $OC \cdot O \cdot C(CH_2 \cdot CO_2H)_2 \cdot B. \text{ Aus } \gamma.\gamma \cdot Di$ allyl-butyrolacton (Bd. XVII, S. 301) durch Oxydation mit Kaliumpermanganat in Wasser und Ansauern des eingedampften Filtrats mit Schwefelsaure (Kasanski, R. 35, 1186; C. 1904 I, 1330; $J. pr. [\tilde{2}]$ 71, 255). — $CaC_8H_8O_6$.
- 3. γ Methyl butyrolacton α carbons äure α essigs äure, γ Valerolacton -Beim

Verdunsten einer Lösung von δ-Amylen-α,β,β-tricarbonsäure in rauchender Bromwasserstoff-säure über Kaliumhydroxyd (Hjelt, B. 16, 1258). — Krystalle (aus Wasser). F: 152—153°. Schwer löslich in Äther, leichter in Wasser. — Zerfällt beim Schmelzen in Kohlendioxyd und γ-Valerolacton-α-essigsäure (S. 376). — Ag₂C₃H₈O₆. Pulveriger Niederschlag. — BaC₃H₈O₆. Amorph. Leicht löslich in Wasser.

4. $\gamma \cdot \gamma$ - Dimethyl - butyrolacton - $\alpha \cdot \beta$ - dicarbonsaure $C_8H_{10}O_6 =$

4. γ.γ - Dimethyl - outyrolacion - α.ρ - accuroonscure $C_{8^{11}10}C_{6} = HO_{3}C \cdot HC - CH \cdot CO_{2}H$ OC·O·C(CH₃)₂

Diäthylester $C_{12}H_{18}O_{6} = \frac{C_{2}H_{5} \cdot O_{2}C \cdot HC - CH \cdot CO_{2} \cdot C_{2}H_{5}}{OC \cdot O \cdot C(CH_{3})_{3}}$ āquimolekularer Mengen von β.β-Dimethyl-glycidsäure-äthylester (S. 264) und Natriummalonester in alkoh. Lösung (Haller, Blanc, C. r. 142, 1471). — Prismen (aus Äther + Petroläther). F: 46°. Kp₁₂: 174°. — Geht beim Kochen mit Salzsäure quantitativ in Terebinsäure (S. 377) über. saure (S. 377) über.

- 5. $\alpha.\alpha$ Dimethyl butyrolacton $\beta.\gamma$ dicarbonsäure $C_aH_{10}O_a$ = (CH₂)₂C—CH·CO₂H
 - OC.O.CH.CO.H.
- a) cis-Form. B. Man erhitzt 4,4 g α.α-Dimethyl-tricarballylsäure mit 7,1 g Phosphortribromid und 13,2 g Brom 6 Stdn. auf dem Wasserbad und trägt das durch einen Kohlendioxyd-Strom vom überschüssigen Brom befreite Produkt in siedendes Wasser ein; man kocht noch einige Minuten und schüttelt die nach dem Erkalten mit Ammoniumsulfat gesättigte Lösung mit Essigester aus; zur Reinigung der Säure fällt man durch Calciumchlorid und Ammoniak das Calciumsalz aus und zersetzt es mit Salzsäure (BARYER, B. 29, 2794; B., VILLIGER, B. 30, 1960). Entsteht in geringer Menge aus der trans-Form durch längeres Erhitzen auf 150° (B., V.). — Krystalle (aus Wasser). Schmilzt bei langsamem Erhitzen bei 196°, bei schnellem Erhitzen bei 207° unter Gasentwicklung (B.). Leicht löslich in Wasser, schwer in Äther, sehr schwer in Chloroform (B.). — Geht bei längerem Erhitzen auf 150° größtenteils in die trans-Form über (B., V.). Beständig gegen rauchende Salpetersäure (B.). Gibt beim Schmelzen mit Kaliumhydroxyd und wenig Wasser Essigsäure, Oxalsäure und asymm. Dimethylbernsteinsäure (B.). — $\text{CaC}_8\text{H}_8\text{O}_6+3\text{H}_4\text{O}$. Blätter. Schwer löslich in Wasser; verliert bei 125° $2\text{H}_4\text{O}$, bei 150° den Rest des Krystallwassers (B.).
- b) trans-Form. B. Man behandelt das aus Isocamphoronsäure (Bd. II, S. 835) erhaltene Bromierungsprodukt mit kochendem Barytwasser und oxydiert die entstehende Verbindung mit Chromsaure (B., V., B. 30, 1960). Entsteht aus der cis-Form durch langeres Erhitzen auf 150° (B., V., B. 30, 1961). — Prismen. F: 211—212°. Ist schwerer löslich in Wasser als die eis-Form. Geht beim Erhitzen auf 150° zum kleinen Teil in die eis-Form über. Unterscheidet sich von der eis-Form dadurch, daß ihre mit Ammoniak neutralisierte Lösung mit Silbernitrat, Bariumchlorid und Calciumchlorid keinen Niederschlag gibt.

- 4. Oxo-carbonsauren CoH₁₂O₆.
- 1. 4-Oxo-2.6-dimethyl-pyrantetrahydrid-dicarbonsäure-(3.5), 2.6-Dimethyl-tetrahydropyron-dicarbonsaure-(3.5) C.H.,O. = HO.C. HC.CO.CH.CO.H

CH.·HC-O-CH·CH.

Diäthylester $C_{13}H_{20}O_6 = \frac{C_2H_5 \cdot O_3C \cdot HC \cdot CO \cdot CH \cdot CO_2 \cdot C_2H_5}{CH_2 \cdot HC - O - CH \cdot CH_3}$. B. Durch Sättigen des abgekühlten Gemisches aus 1 Mol Acetondicarbonsäurediäthylester und 2 Mol Acetaldehyd mit Chlorwasserstoff (Petrenko-Kritschenko, Stanischewski, B. 29, 995). — Nadeln (aus verd. Alkohol). F: 102°. Kp₅₃: 195—200° (fast ohne Zersetzung). Leicht löslich in Äther und Alkohol. Gibt in alkoh. Lösung mit Eisenchlorid eine rote Färbung.

 $\textbf{Diisobutylester} \ \ C_{17} H_{28} O_6 = \underbrace{(CH_2)_2 CH \cdot CH_2 \cdot O_2 C \cdot HC \cdot CO \cdot CH \cdot CO_2 \cdot CH_2 \cdot CH(CH_2)_2 }_{-}$ CH₂·HC-O-CH·CH₂ Bei 12-stdg. Stehen des mit Chlorwasserstoff gesättigten Gemisches aus 1 Mol Acetondicarbonsaurediisobutylester und 2 Mol Acetaldehyd (P.-K., ARZYBASCHEW, B. 29, 2053). — Ol. Kpan: 218-223°. Gibt mit Eisenchlorid eine tiefrote Färbung.

- 2. $\beta.\beta-Dimethyl-butyrolacton-y-carbonsäure-y-essigsäure, <math>\beta.\beta-Dimethyl-$ 2. $\beta.\beta$ -Dimethyi-outyroiacion- γ -caroonsaure- γ -casegoaute, ρ -pi- γ -valerolacion - $\gamma.\delta$ - dicarbonsaure $C_9H_{12}O_6 = H_2C - C(CO_2H) \cdot CH_2 \cdot CO_2H$ oder $\beta.\beta$ - Dimethyl - butyrolacton - γ - malons aure, $\beta.\beta$ - Dimethyl - γ - valerolacton -
- o.o-dicarbonsdure, [5-0xo-3.3-dimethyl-tetrahydrofuryl-(2)]-malonsdure OC O CH CH(CO,H). Zur Konstitution vgl. Perkin, Thorpe, Soc. 108 [1913], 1762. H_2C — $C(CH_2)_2$
- B. Aus 1.1-Dimethyl-cyclopropan-dicarbonsäure-(2.3)-malonsäure-(2)-tetraäthylester durch Kochen mit methylalkoholischer Kalilauge und Ansäuern der Reaktionsflüssigkeit, neben $\beta.\beta$ -Dimethyl-butyrolacton- γ -carbonsaure- α -essigsaure oder $\beta.\beta$ -Dimethyl-butyrolactonα-malonsäure (s. den folgenden Artikel) (P., Th., Soc. 79, 764). — Krystalle (aus wenig Wasser). Zersetzt sich bei ca. 158° unter Gasentwicklung; leicht löslich in Wasser (P., Th., Soc. 79, 765). — Gibt beim Erhitzen auf 200° $\beta.\beta$ -Dimethyl-butyrolacton- γ -essigsäure (S. 387) (P., TH., Soc. 79, 767).
- $\beta.\beta$ Dimethyl butyrolacton γ carbonsaure α essignaure $C_aH_{12}O_a=$ $HO_{\bullet}C \cdot CH_{\bullet} \cdot HC - C(CH_{\bullet})_{\bullet}$ $OC \cdot O \cdot CH \cdot CO_{*H}$ oder $\beta.\beta$ - Dimethyl - butyrolacton - α - malonsäure,

[2 - Oxo - 4.4 - dimethyl - tetrahydrofuryl - (3)] - malonsäure

- (HO₂C)₂CH·HC—C(CH₂)₂. Zur Konstitution vgl. Perkin, Thorpe, Soc. 103 [1913], 1762. B. s. im vorangehenden Artikel. — Prismen (aus Wasser). F: ca. 188—1900 (Zers.); schwer löslich in kaltem Wasser (P., Th., Soc. 79, 764). — Gibt beim Erhitzen auf 200° β . β -Dimethylbutyrolacton- α -essigsäure (S. 388) (P., Th., Soc. 79, 766).
- 4. $\alpha.\alpha$ -Dimethyl-butyrolacton- γ -carbonsäure- β -essigsäure oder Butyrolacton- γ -carbonsäure- β -[α -isobuttersäure] $C_9H_{12}O_6 = \frac{(CH_2)_2C}{OC \cdot O \cdot CH \cdot CO_2H}$
- H_2C — $CH \cdot C(CH_2)_2 \cdot CO_2H$, $\alpha \cdot Oxy \cdot isocamphorons aurelacton¹). B. Man reduziert$ oder α-Keto-isocamphoronsäure (Bd. III, S. 858) in sodaalkalischer Lösung mit überschüssigem Natriumamalgam unter Kühlung, erwärmt auf dem Wasserbad und säuert mit Schwefelsäure an (BAEYEE, B. 29, 2792). — Prismen mit 1 H₂O (aus Wasser). Schmilzt wasserfrei bei 1869. Ziemlich schwer löslich in kaltem Wasser, schwer in Ather und Essigester, unlöslich in 1869. Chloroform und Benzol. — Beim Erhitzen mit Jodwasserstoffsäure auf 170° entsteht Isocamphoronsäure (Bd. II, S. 835).
- 5. $\alpha.\alpha.\beta$ Trimethyl butyrolacton $\beta.\gamma$ dicarbonsaure, Camphoransaure (,,Oxycamphoronsaure") $C_9H_{12}O_6=\frac{(CH_3)_2C-C(CH_2)\cdot CO_2H}{OC\cdot O\cdot CH\cdot CO_2H}$. Die im folgenden unter

¹⁾ Zur Formulierung vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von PERKIN, THORPE, Soc. 108, 1760; LIPP, B. 47, 872, 2995.

a und b aufgeführten Säuren sind diastereoisomer (Bredt, Privatmitteilung; vgl. auch Baever, Villiger, B. 30, 1958). Über das optische Verhalten dieser beiden, aus l-Camphoronsäure (Bd. II, S. 837) entstehenden Säuren ist nichts bekannt. Von der unter c aufgeführten, aus inakt. Camphoransäureanhydrid dargestellten Säure ist unbestimmt, ob sie sterisch der unter a oder der unter b aufgeführten Form zuzuordnen ist.

a) α -Camphoransäure $C_0H_{18}O_6=C_4HO_4(CH_3)_3(CO_2H)_3$. B. Beim Erhitzen von 25 g l-Camphoransäure mit 20 g Brom auf 160—165° entstehen α - und β -Camphoransäure (Kachler, Spitzer, M. 9, 709; vgl. Bredt, A. 299, 138, 151; Lapworth, Lenton, Soc. 81, 25). Man trennt die beiden Säuren durch annäherndes Neutralisieren mit Barytwasser und Zusatz von Ammoniak bis zur alkal. Reaktion; beim Schütteln fällt nur das Bariumsalz der α-Camphoransäure aus (K., Sp.). Aus festem Bromanhydrocamphoronsäurechlorid (S. 459) beim Kochen mit Wasser (B., A. 299, 144). — Darst. Man mischt gepulverte aktive Anhydrocamphoronsäure (S. 456) mit 1 Mol Phosphorpentachlorid, erhitzt ½ Stde. auf dem Wasserbad, versetzt das abgekühlte Reaktionsprodukt mit 1½ Mol Brom, steigert innerhalb 1 Stde. die Temperatur auf 100°, hält 6 Stdn. bei dieser Temperatur und gießt dann auf Eis; das erhaltene Gemisch von krystallinischem und flüssigem Bromanhydrocamphoronsäurechlorid verwandelt man durch Kochen mit nahezu wasserfreier Ameisensäure in die Bromanhydrocamphoronsäuren (S. 458), kocht diese einige Stunden mit Wasser und macht mit Barytwasser schwach alkalisch; α-camphoransaures Barium scheidet sich aus; aus dem Filtrat erhält man durch Ansäuern und Ausäthern β -Camphoransäure (La., Le., Soc. 81, 25). — Tafeln oder Prismen mit 1 H₂O (aus Wasser) (K., Sp.). Monoklin sphenoidisch (v. Zepharovich, M. 9, 711; vgl. Groth, Ch. Kr. 3, 750). Leicht löslich in kaltem Wasser und Alkohol, schwerer in Äther (K., Sp.). Backt gegen 100° unter Abspaltung von Wasser zusammen, wird bei weiterem Erhitzen wieder fest und schmilzt bei 209—210° (K., Sp.; B., A. 299, 151), 216,5° (korr.) (K., Sp.). Geht beim Stehenlassen über konz. Schwefelsäure, rascher bei 100° (K., Sp.) in krystallwasser freie α-Camphoransäure über, aus der beim Lösen in Wasser wieder krystallwasserhaltige Säure erhalten wird; beim Erhitzen von Camphoransäure auf höhere Temperatur (K., Sr.) oder beim Erhitzen im Vakuum (B., A. 299, 152) oder beim Kochen mit Acetylchlorid (K., Sr.) entsteht das Camphoransäureanhydrid $C_0H_{10}O_5$ vom Schmelzpunkt 136—137° (Syst. No. 2780). Elektrolytische Dissoziationskonstante der ersten Stufe k_1 bei 25°: 3.2×10^{-3} (Ost-WALD, Ph. Ch. 3, 403); elektrolytische Dissoziationskonstante der zweiten Stufe k, (durch Zuckerinversion bei 100° bestimmt): 6,5×10⁻⁶ (SMTH, Ph. Ch. 25, 252); (bei 25° durch Leitfähigkeit ermittelt): 1,3×10⁻⁵ (Wegscheider, M. 23, 630, 635). Erfordert in der Kälte genau 2 Mol Kaliumhydroxyd zur Neutralisation, in der Wärme etwas mehr (BAEYER, VILLIGER, B. 30, 1958). — Läßt sich durch Alkalien nicht zur Oxytricarbonsäure aufspalten (B., A. 299, 135). Liefert beim Schmelzen mit Kaliumhydroxyd glatt Oxalsäure und Trimethylbernsteinsäure (B., A. 299, 139, 159). Ist gegen Salpetersäure sehr beständig (B., A. 299, 151). — Salze: K., Sp., M. 9, 714. — $KC_9H_{11}O_6 + H_2O$. Nadeln. — $K_2C_9H_{10}O_6 + 1^1/_3H_2O$. Blättchen. — $CuC_9H_{10}O_6 + H_2O$. Himmelblaue Krystallmasse. — $Ag_3C_9H_{10}O_6$. Krystallblättchen. — $Ag_3C_9H_{10}O_6 + 2H_2O$. Krystalldrusen. — $CaC_9H_{10}O_6 + 5H_2O$. Nadeln. — $BaC_9H_{10}O_6 + H_2O$. Blättchen. Unlöslich in Wasser. — $PbC_9H_{10}O_6 + H_2O$. Nadeln (aus

Monomethylester $C_{10}H_{14}O_8=C_4HO_4(CH_3)_3(CO_3H)\cdot CO_3\cdot CH_3$. B. Aus Camphoransäureanhydrid vom Schmelzpunkt 136—137° und Methylalkohol beim Stehenlassen in der Kälte (Bredt, A. 299, 156). Eine weitere Bildung siehe beim Dimethylester. — Tateln mit 1 $_{10}$ (aus Wasser). Rhombisch bisphenoidisch (Fook, A. 299, 155; vgl. Groth, Ch. Kr. 3, 752). F: 81—83°. Verliert das Krystallwasser bei 100°. Ziemlich leicht löslich in Wasser. Krystallisiert wasserfrei aus Äther in tetragonalen Krystallen (Fook). F: 157°. α -Camphoransäure-monomethylester verhält sich beim Titrieren wie eine einbasische Säure.

Dimethylester $C_{11}H_{16}O_8=C_4HO_8(CH_2)_3(CO_2\cdot CH_3)_2$. B. Aus α -Camphoransäure durch Behandlung mit Methylalkohol und Chlorwasserstoff, neben dem Monomethylester, von dem er durch Schütteln mit Sodalösung getrennt wird (B., A. 299, 153). Entsteht auch aus dem festen Bromanhydrocamphoronsäurechlorid (S. 459) durch Einw. von Methylalkohol (B., A. 299, 150, 153). — Nadeln (aus Wasser) oder Prismen (aus Methylalkohol). Rhombisch (bisphenoidisch?) (Fock, A. 299, 153; vgl. Groth, Ch. Kr. 3, 752). F: 111°.

Monoäthylester C₁₁H₁₆O₆ = C₄HO₃(CH₂)₃(CO₂H)·CO₂·C₂H₅. B. Man sättigt eine alkoholisch-ätherische Lösung von α-Comphoransäure mit Chlorwasserstoff und läßt 2—3 Tage stehen (ΚΛΟΗΙΕΕ, SPITZER, M. 9, 718). — Tafeln (aus Alkohol + Äther). Rhombisch (v. ZΕΡΗΑΒΟVICH, M. 9, 718). F: 158° (korr.). — NH₄C₁₁H₁₅O₆. B. Beim Einleiten von Ammoniak in eine äther. Lösung des Esters (K., Sp.). Krystallinisch. Schmilzt bei ca. 168—170° unter Zersetzung. Leicht löslich in Wasser, schwerer in Alkohol.

b) β -Camphoransāure $C_9H_{19}O_6=C_4HO_9(CH_9)_8(CO_2H)_8$. B. Aus flüssigem Bromanhydrocamphoronsaurechlorid (S. 459) beim Kochen mit Wasser (Bredt, A. 299, 144). Aus Tribrom-camphonolacton (Bd. XVII, S. 460) durch Spaltung mit Alkali und Oxydation des entstehenden

Produktes mit Natriumhypobromit (Lapworth, Lenton, Soc. 81, 18, 22). Weitere Bildungen s. bei α-Camphoransäure (S. 487). — Krystallisiert aus Wasser nach Kachleb, Spitzer (M. 9, 720; vgl. Bredt, A. 299, 157) in Tafeln mit 1 H₂O [monoklin sphenoidisch? (v. Zepharovich, M. 9, 720; vgl. Groth, Ch. Kr. 3, 751)], nach Lapworth, Lenton (Soc. 81, 24, 26) in rechteckigen Platten oder anscheinend rhombischen Prismen mit 2 H₂O. Sublimiert bei 140—1500 in Nadeln, die bei 183—186° schmelzen und sich leicht in Wasser lösen; die aus der wäßr. Lösung auskrystallisierte Säure schmilzt bei 250,9° (korr.) (K., Sp.). Die bei 100° getrocknete wasserfreie Säure schmilzt bei 246° (La., Le.). Sie ist ziemlich leicht löslich in Alkohol und heißem Wasser, schwer in Benzol, unlöslich in Ligroin (La., Le.). Elektrolytische Dissoziationskonstante der ersten Stufe k₁ bei 25°: 6,5×10—8 (Ostwald, Ph. Ch. 8, 404). Elektrolytische Dissoziationskonstante der zweiten Stufe k₂ (durch Zuckerinversion bei 100° bestimmt): 8,4×10—6 (Smith, Ph. Ch. 25, 252, 256); (bei 25° durch Leitfähigkeit ermittelt): 2,1×10—6 (Wegschedder, M. 23, 634, 635). — Verliert oberhalb 250° Wasser unter Bildung von Camphoransäureanhydrid vom Schmelzpunkt 136—137° (Syst. No. 2780) (B., A. 299, 158). Gibt beim Schmelzen mit Kaliumhydroxyd glatt Oxalsäure und Trimethylbernsteinsäure (B., A. 299, 160). — Salze: K., Sp., M. 9, 722. — K₂C₂H₁₀O₆+1½(?) H₂O. — Ag₆C₃H₁₀O₆+2H₂O. Undeutlich krystallinisch. — BaC₃H₁₀O₆+5H₂O. Nadeln. — Ba₃(C₂H₁₀O₆) + 2H₂O. Undeutlich krystallinisch. — BaC₃H₁₀O₆+5H₂O. Nadeln. — Ba₃(C₃H₂O₆) + 2H₂O. Unlöslicher Niederschlag.

Monoäthylester $C_{11}H_{16}O_6 = C_4HO_4(CH_8)_6(CO_2H) \cdot CO_2 \cdot C_4H_5$. Beim Behandeln von β -Camphoransäure in alkoholisch-ätherischer Lösung mit Chlorwasserstoff (Kachler, Spitzer, M. 9, 724). — Nadeln. F: 158,5—159,5° (korr.) (K., Sp.), 161° (La., Le.). Unlöslich in kaltem Wasser, löslich in Alkohol und Äther (K., Sp.). — Ammoniumsalz $NH_4C_{11}H_{16}O_6$. Beim Einleiten von Ammoniak in eine äther. Lösung des Esters (K., Sp.). Krystallinisch. Schmilzt unter Schäumen gegen 165°. Leicht löslich in Wasser, unlöslich in Alkohol und Äther.

- c) Inaktive Camphoransdure C₀H₁₂O₆ = C₄HO₂(CH₂)₂(CO₂H)₃. B. Inakt. Camphoransäureanhydrid vom Schmelzpunkt 119—121° (Syst. No. 2780) wird mit wenig Wasser gekocht und die entstandene Lösung auf ein kleines Volumen eingedampft (Noves, Doughty, Am. Soc. 27, 1435). Pyramiden. Schmilzt bei 190—191° unter teilweiser Sublimation. Der Lactonring wird weder beim Kochen mit Wasser noch bei der Behandlung mit Alkali aufgespalten.
- 6. Oxyisocamphoronsäurelacton, Isocamphoransäure $C_9H_{19}O_6$ s. Bd. III, S. 571.
- 5. $\beta.\beta$ Dimethyl butyrolacton γ carbons äure γ [α propions äure], $\beta.\beta$ Dimethyl γ caprolacton $\gamma.\delta$ dicarbons äure $C_{10}H_{14}O_6=H_4C$ — $C(CH_8)_2$

 $OC \cdot O \cdot C(CO_2H) \cdot CH(CH_3) \cdot CO_2H$

- a) Höherschmelzende Form. B. Aus 2.5.5-Trimethyl-bicyclo-[0.1.2]-pentanon-(3)-tricarbonsäure-(1.2.4)-triäthylester (Bd. X, S. 927) durch Kochen mit alkoh. Kalilauge und Ansäuern (Perkin, Thorpe, Soc. 79, 788). Prismen. F: 237° (Zers.). Schwer löslich in den meisten organischen Lösungsmitteln, ziemlich leicht in Wasser, leicht in Aceton. Wird durch Bromwasserstoffsäure in der Kälte, durch Kochen mit verd. Schwefelsäure oder Erhitzen mit Wasser auf 180° im geschlossenen Rohr nicht angegriffen. Liefert beim Kochen mit Acetylchlorid das Anhydrid (F: 94—96°) (Syst. No. 2780). Durch Erhitzen mit Phosphorpentachlorid und Stehenlassen des Reaktionsprodukts mit Alkohol erhält man β -Chlorach- α - β '. β '-trimethyl- β -carboxy-adipinsäure-triäthylester (Bd. II, S. 843). Ag₃C₁₀H₁₃O₆. Platten (aus Wasser).
- b) Niedrigerschmelzende Form. B. Aus der höherschmelzenden Form durch Destillation unter 30 mm Druck (P., Th., Soc. 79, 790). Nadeln (aus Wasser). F: 181°. Zersetzt sich bei 200°. Liefert beim Kochen mit Acetylchlorid das Anhydrid (F: 131°) (Syst. No. 2780).
- 6. β . β -Dimethyl-butyrolacton- γ -carbonsäure- γ -[α -buttersäure], β . β -Dimethyl- γ -önantholacton- γ . δ -dicarbonsäure $C_{11}H_{16}O_6=H_1C$ — $C(CH_2)_3$

 $OC \cdot O \cdot C(CO_2H) \cdot CH(C_2H_2) \cdot CO_2H$

a) Höherschmelzende Form. B. Aus 1.1-Dimethyl-cyclopropan-dicarbonsäure-(2.3)äthylmalonsäure-(2)-tetraäthylester (Bd. IX, S. 994) durch Spaltung mit methylalkoholischer Kalilauge und Ansäuern der Reaktionsflüssigkeit, neben 2-Athoxy-4-oxo-1.1-dimethyl3-āthyl-cyclopentan-dicarbonsāure-(2.3) (Bd. X, S. 1015) und $\beta.\beta$ -Dimethyl- γ -önantholacton- $\gamma.\delta.\delta$ -tricarbonsāure (S. 509) (Perkin, Thorpe, Soc. 79, 773). — Nadeln (aus Wasser). F: 213°.

- Geht beim Kochen mit Natronlauge in eine dreibasische Säure über.

b) Niedrigersch melzende Form. B. Aus 2-Äthoxy-4-oxo-1.1-dimethyl-3-äthyl-cyclopentan-dicarbonsäure-(2.3) (Bd. X, S. 1015) durch Kochen mit konz. Salzsäure (P., Th., Soc. 79, 774). — Krystallisiert aus Wasser bei langsamer Krystallisation in Prismen mit 1 H₂O, bei rascher Krystallisation in wasserfreien Nadeln. Die Prismen zersetzen sich bei ca. 144°, die Nadeln bei ca. 153°. Leicht löslich in Wasser. — Gibt beim Erhitzen mit Acetylchlorid das Anhydrid (F: 168°) (Syst. No. 2780).

b) Oxo-carbonsäuren $C_nH_{2n-8}O_6$.

1. Oxo-carbonsäuren CaHaOa.

- 1. 2.4.6 Trioxo pyrantetrahydrid carbonsäure (3) $C_6H_4O_6 =$ H.C.CO.CH.CO.H 0¢-0-¢0
- 4-Oxo-2.6-dithion-thiopyrantetrahydrid-carbonsäure-(3) bezw. 2.6-Disulfhydryl-4 - oxo - thiopyran - carbonsaure - (3), 2.6 - Dimercapto - 4 - oxo - penthiophen - carbon-

kaliumsalzes der 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure-(3.5) (S. 509) zunächst mit Eisessig und dann mit verd. Salzsäure (APITZSCH, B. 41, 4036). — Gelbe Nadeln (aus Benzol). Zersetzt sich bei 143°. Leicht löslich in Alkohol, Chloroform, Aceton und Essigester, schwer in Benzol. — Das Natriumsalz liefert beim Kochen mit Athylbromid in alkoholischwäßriger Lösung 2.6-Bis-äthylmercapto-1-thio-pyron-carbonsäure-(3) (S. 541). — KaCaHOaSa. Krystalle. Sehr leicht löslich in Wasser und Alkohol.

2. 3.4.5-Trioxo-2-methyl-furantetrahydrid-carbonsäure-(2), α.β-Dioxo- γ -methyl-butyrolacton- γ -carbonsaure, $\alpha.\beta$ -Dioxo- γ -valerolacton- γ -carbon-OC---CO saure $C_6H_4O_6 = OC \cdot O \cdot C(CH_3) \cdot CO_2H$

 $\alpha\text{-Oxo-}\beta\text{-phenylhydrazono-}\gamma\text{-valerolacton-}\gamma\text{-carbonsäure} \quad (\beta\text{-Benzolazo-}\alpha\text{-oxo-}\gamma\text{-valerolacton-}\gamma\text{-carbonsäure}) \quad C_{12}H_{10}O_5N_2 = \begin{array}{c} \text{OC} & \text{C:N·NH·C}_6H_5 \\ \text{OC·O·C(CH}_3)\cdot\text{CO}_2\text{H} \end{array}. \quad B. \quad \text{Durch Einw.}$

von Benzoldiazoniumchlorid auf eine eiskalte sodaalkalische Lösung von α-Oxo-γ-valerolacton-γ-carbonsäure (S. 451) (Wolff, A. 317, 15). — Ziegelrote Nadeln (aus heißem Eisessig). Schmilzt bei 188° unter Zersetzung. Schwer löslich in Äther, Chloroform und Benzol, leichter in siedendem Alkohol und Eisessig. Die Lösung in konz. Schwefelsäure wird durch Kaliumdichromat tiefblau gefärbt.

3. 5-Oxo-furan-dihydrid-(4.5)-dicarbonsäure-(2.3), $\Delta^{\beta,\gamma}$ -Crotonlacton- β,γ -dicarbonsäure $C_0H_4O_6= \begin{array}{c} H_2C - C \cdot CO_2H \\ OC \cdot O \cdot C \cdot CO_2H \end{array}$.

5-Anilinoformylimino-3-cyan-furan - dihydrid - (4.5) - carbonsäure - (2) - äthylester bezw. 5-[ω -Phenyl-ureido]-8-cyan-furan-carbonsäure-(2)-äthylester $C_{15}H_{18}O_4N_3=$ H₂C—C·CN C₆H₅·NH·CO·N:C·O·C·CO₂·C₂H₅ bezw. C₆H₅·NH·CO·NH·C·O·C·CO₂·C₂H₅ Zur Konstitution vgl. Diecemann, B. 44 [1911], 986. — B. Aus der α- oder β-Form des Äthoxalylbernsteinsäuredinitrils (Bd. III, 8. 853) beim Erhitzen mit Phenyliscoyanat auf 100° (Wislicenus, Berg, B. 41, 3764). — Nadeln (aus verd. Alkohol). Zersetzt sich bei 200°; leicht löslich in Alkohol fast valksich in Alko in Alkohol, fast unlöslich in Äther, Benzol, Ligroin und Wasser; die Lösung in konz. Schwefelsäure wird durch wenig Kaliumdichromat intensiv violettrot (W., B.).

2. Succinylmaionsäure $C_7H_6O_6=\frac{H_2C\cdot C[:C(CO_2H)_2]}{H_2C}O$ oder $\frac{H_2C\cdot CO}{H_2C\cdot CO}C(CO_2H)_2$. Succinylmalonsäure-diäthylester $C_{11}H_{14}O_6=\frac{H_2C\cdot C[:C(CO_2\cdot C_2H_5)_2]}{H_2C}O$ oder $C_{12}H_{14}O_{12}O$ oder $C_{12}H_{14}O_{12}O$ $H_2C \cdot CO \to C(CO_3 \cdot C_2H_5)_2$. B. Beim Behandeln von 1 Mol Succinylchlorid mit 2 Mol Natriummalonester in Äther (Reubold, Dissertation [Leipzig 1897], S. 1; Scheiber, Lungwitz, B. 42, 1320). Beim Erwärmen von 1 Mol Bernsteinsäureanhydrid (Bd. XVII, S. 407) mit 1 Mol Natriummalonester in Benzol auf dem Wasserbad (R.). — Nadeln (aus Äther oder Schwefelkohlenstoff). F: 68° (R.; Sch., L.). Löslich in den meisten Lösungsmitteln, außer in Wasser, Petroläther und Ligroin (R.). Unlöslich in Natronlauge und Sodalösung in der Kälte (Sch., L.). — Bei längerem Stehenlassen mit Sodalösung bei Zimmertemperatur bilden sich Malonester und Reiser und Scheinlassen (R.). Bernsteinsäure (R.); ebenso tritt Zersetzung ein beim Kochen mit Wasser oder Natronlauge (Son., L.). Gibt mit Phenylhydrazin in Eisessig die Verbindung

C₆H₅·NH·NH·CO·CH₂·CH₂·C·CH(CO₂·C₂H₅) CO (Syst. No. 3698) (Sch., L.; vgl. Sch., N.—N(C₆H₅) CO (Syst. No. 3698) (Sch., L.; vgl. Sch., B. 44 [1911], 2422 Anm. 3; v. Auwers, Auffenberg, B. 51 [1918], 1112).

Succinylmalonsäure-äthylester-nitril (?), Succinylcyanessigsäure-äthylester (?) $C_{\textbf{9}}H_{\textbf{9}}O_{\textbf{4}}N = \frac{H_{\textbf{3}}C \cdot C[:C(CN) \cdot CO_{\textbf{3}} \cdot C_{\textbf{9}}H_{\textbf{5}}]}{H_{\textbf{4}}C}O(?).$

- a) Prāparat von Muller. B. Bei etwa 1-stdg. Kochen von 1 Mol trocknem Natrium-Cyanessigsäureäthylester in absol. Äther mit 1/2 Mol Succinylchlorid (MULLER, A. ch. [7] 1, 465). Krystalle (aus Chloroform). F: 125—126°. Löslich in Alkohol, Chloroform und Benzol, sehr schwer löslich in Äther, unlöslich in Wasser, Petroläther und Schwefelkohlenstoff; unlöslich in Sodalösung. - Zerfällt beim Kochen mit Wasser in Bernsteinsäure und Cyanessigester.
- b) Präparat von Best, Thorpe. B. Bei der Destillation von β -Oxo- α -cyan-adipinsäure-monoäthylester (Bd. III, S. 854) unter vermindertem Druck (Best, Thorpe, Soc. 95, 1524). — Flüssigkeit. Kp₂₀: 142—145°. Flüchtig mit Wasserdampf. Unlöslich in kaltem, schwer löslich in kochendem Wasser. — Liefert beim Behandeln mit heißem wäßrigem Alkali und darauffolgenden Ansäuern β -Oxo- α -cyan-adipinsäure-monoäthylester zurück.
- 3. 4-0xo-2.6-dimethyl-[1.4-pyran]-dihydrid-dicarbonsäure-(3.5) $C_9H_{10}O_6$ HO'C · C · CO · CH · CO'H CH. C-O-CH. CH.

Diäthylester $C_{13}H_{18}O_6 = \frac{C_2H_5 \cdot O_2C \cdot C \cdot CO \cdot CH \cdot CO_2 \cdot C_2H_5}{CH_3 \cdot C - O - CH \cdot CH_3}$ (?). Eine Verbindung, der vielleicht diese Konstitution zukommt, s. S. 494.

II. $\left| \begin{array}{c} H_2C - C(CH_3) - CO_2H \\ C(CH_3) \cdot CO_2H \end{array} \right|$ 4. Lactone der w-Oxy-camphotri- $H_2C-C(CH_3)\cdot CO_2H$ C(CH₃)—CO H₂C-C(CO₂H)·O carbonsaure C₁₀H₁₂O₆, Formel I u. II. a) β -Derivat $C_{10}H_{12}O_6$, Formel I oder II.

- B. Entsteht neben dem y-Derivat durch Behandeln von wasserfreier "trans"-Camphotricarbonsaure (Bd. IX, S. 974) mit Brom und rotem Phosphor und Erhitzen des Resktionsprodukts mit Wasser (Kipping, Soc. 69, 962). — Tafeln (aus Benzol + Ather). Schmilzt gegen 220° unter Zersetzung. Sehr leicht löslich in Äther und Aceton, leicht in heißem Wasser, kaum löslich in Chloroform und Benzol. Wird aus der wäßr. Lösung durch Salzsäure nicht gefällt. — Geht beim Kochen mit Wasser langsam und unvollständig, beim Aufkochen mit Ammoniak oder Kalilauge und folgenden Ansäuern sofort in das γ -Derivat über.
- b) γ -Derivat $C_{10}H_{12}O_6$, Formel II oder I. B. s. beim β -Derivat. Nadeln (aus Äther + Benzol, besser aus mäßig konz. Salzsäure). Verkohlt oberhalb 250°, ohne zu schmelzen. Unlöslich in Chloroform und Benzol, leicht löslich in Äther und Aceton, sehr leicht in Wasser; unlöslich in konz. Salzsäure. Zweibasische Säure. — Sehr beständig gegen Oxydationsmittel. Verliert beim Kochen mit Essigsäureanhydrid kein Wasser.

c) Oxo-carbonsäuren $C_nH_{2n-10}O_6$.

1. 4-0xo-[1.4-pyran]-dicarbonsaure-(2.6), Pyron-(4)-dicarbonsaure-(2.6), HC·CO·CH Chelidonsäure (Jervasäure) $C_7H_4O_6 = \frac{10^{-1000 \text{ Col}}}{HO_5C \cdot \overset{\circ}{C} - O - \overset{\circ}{C} \cdot \text{CO}_5H}$. V. Im Wurzelstock von Veratrum album (weiße Nieswurz) (WEPPEN, Ar. 202, 112; J. 1878, 856). In allen Teilen von Chelidonium majus (Schöllkraut) (Probst, A. 29, 116), besonders in der Blütezeit (LERCH,

A. 57, 274; HUTSTEIN, Ar. 115, 23). In der Wurzel von Stylophorum diphyllum (Schlotter-BECK, WATKINS, B. 35, 21). — B. Beim Erhitzen von Aceton- α . α' -dioxalsäure-diäthylester mit rauchender Salzsäure (Claisen, B. 24, 118; Höchster Farbw., D. R. P. 57648; Frdl. 3, 12; WILLSTÄTTER, PUMMERER, B. 37, 3744; 38, 1465). Beim Erhitzen von Pyron-tetracarbonsäure-tetraäthylester (S. 514) mit schwefelsäurehaltigem Wasser im geschlossenen Rohr auf 120—130° (PERATONER, STRAZZERI, G. 21 I, 306). — Darst. aus Schöllkraut: Lietzen-mayer, Dissertation [Erlangen 1878], S. 11; Haftinger, Lieben, M. 5, 341. — Krystallisiert aus nicht zu konzentrierter wäßriger Lösung bei langsamem Erkalten in Nadeln mit 1¹/2 H₂O, beim raschen Erkalten der konz. Lösung mit 1 H₂O; auch aus konz. Salzsäure werden Nadeln mit 1 H₂O erhalten (LIETZ.; vgl. LERCH, A. 57, 310). Chelidonsäuremonohydrat krystallisiert monoklin prismatisch (*Groth*, *Ch. Kr.* 3, 499). Schmilzt bei 262° unter Zersetzung (Cl., B. 24. 118; WILLSTÄTTER, PUMMERER, B. 37, 3744 Anm.). 100 Tle. der wäßr. Lösung enthalten bei 13º 0,98 Tle. wasserfreie Säure (SCHMIDT, Ar. 224, 514). 1 Tl. wasserfreier Säure löst sich in 166 Tin. Wasser von 8°, in ca. 26 Tin. siedendem Wasser und in 709 Tin. 79°/gigem Alkohol von 22º (Pa.). Absorptionsspektrum in wäßr. Natronlauge: Baly, Collie, Warson, Soc. 95, Von 22° (Pk.). Ausorptionsspektruin in wahr. Natroniauge: Balx, Collie, Waltson, Soc. 30, 154. Elektrisches Leitvermögen: Ostwald, Ph. Ch. 3, 400. — Bei der trocknen Destillation von Chelidonsäure entsteht als Hauptprodukt γ-Pyron (Bd. XVII, S. 271) neben sehr wenig Pyron-(4)-carbonsäure-(2) (S. 405) (Wilde, A. 127, 165; Haitinger, Lieben, M. 5, 363); Gegenwart von Kupferpulver begünstigt die Bildung von γ-Pyron (Willstätter, Pummerer, B. 37, 3745; 38, 1465). Erhitzt man Chelidonsäure im Vakuum auf 220—2300, so steigt die Ausbeute an Pyron-(4)-carbonsaure-(2) (HAI., LIE., M. 6, 279). Durch 30-stdg. Kochen mit Zink und verd. Essigsäure erhält man y-Oxo-pimelinsäure (Hydrochelidonsäure) (HAI., LIE., M. 5, 353). Durch Erhitzen mit einem großen Überschuß von konz. Jodwasserstoffsäure im Rohr auf 200-210° entsteht Pimelinsäure (HAL., Lie., M. 5, 359). Beim Erwärmen von Chelidonsäure mit Brom und Wasser erhält man Pentabromaceton, Bromoform und Oxalsäure (WILDE, A. 127, 167). Bei der Einw. von überschüssigen Alkalien entstehen bei gewöhnlicher Temperatur die Salze der Aceton-α.α'-dioxalsäure (Xanthochelidonsäure) (Bd. III, S. 859), beim Kochen Aceton und Oxalsäure (HAI., LIE., M. 5, 345, 347; LERCH. M. 5, 373). Beim Behandeln von Chelidonsäure mit Ammoniak in der Wärme bildet sich 4-Oxy-pyridindicarbonsäure-(2.6) (Chelidamsäure) (Syst. No. 3359) (Lietz.; Lerch, M. 5, 383; Hal., Lie., M. 6, 285). Chelidonsäure verbindet sich nicht mit Hydroxylamin (V. Meyer, B. 17, 1061). Wird durch Erhitzen mit überschüssigem, 5% igem wäßrigem Methylamin im Rohr auf 100% in 1-Methyl-pyridon-(4)-dicarbonsäure-(2.6) (Syst. No. 3368) übergeführt (Hal., Lie., M. 6, 293). Beim Erhitzen mit wäßr. Dimethylamin im Rohr auf 1000 tritt Zerfall in Aceton und Oxalsaure ein (Hal., Lie., M. 6, 297). Längers Kochen von Chelidonsaure mit Anilin in Gegenwart von Wasser liefert 1-Phenyl-pyridon-(4)-dicarbonsaure-(2.6) (Hal., Lie., M. 6, 293, 296). — NH₄C₇H₃O₆ + C₇H₄O₆ + H₂O. Nadeln. Verliert die Hälfte des Wassers bei 100°, den Rest bei 150°; leicht löslich in kochendem Wasser (Lietz.). — NH₄C₇H₃O₆ + bei 100°, den Kest bei 150°; leicht löslich in kochendem Wasser (Lietz.). — $NH_4C_7H_3C_6 + V_4H_2O$. Nadeln. Verliert das Wasser bei 180° (Lietz.). — $(NH_4)_2C_7H_2O_6 + 2H_2O$. Krystalle; sehr leicht löslich in Wasser (Lietz.). — $NaC_7H_3O_6 + C_7H_4O_6$. Nadeln. Sehr schwer löslich in kaltem, ziemlich leicht in heißem Wasser (Will., Pu., B. 37, 3744). — $KC_7H_3O_6 + C_7H_4O_6 + H_4O$. Nadeln. Verliert das Wasser bei 200° (Lietz.). — $AgC_7H_3O_6 + H_2O$. Nadeln (aus verd. Salpetersäure) (Wilde). 1 Tl. löst sich in 636 Tln. Wasser von 15° und in 64 Tln. schwach angesäuertem Wasser von 100°; unlöslich in Alkohol und Äther (Lietz.). — $Ag_2C_7H_2O_6$. Nadeln (Weppen, Ar. 202, 204). — $Ca(C_7H_3O_6)_2 + 2C_7H_4O_6 + 4H_2O$. Nadeln. Verliert das Wasser bei 150—200°; ziemlich leicht löslich in heißem Wasser (Lietz.). — $CaC_7H_2O_6 + 4H_2O$. Nadeln (aus angesäuertem Wasser). 1 Tl. löst sich in 295 Tln. Wasser von 15° und 3H₂O. Nadeln (aus angesäuertem Wasser). 1 Tl. löst sich in 295 Tln. Wasser von 15⁶ und in 96 Tln. Wasser von 100° (Lietz.). — $SrC_7H_2O_6 + \frac{1}{2}H_2O$. Prismen. Sehr schwer löslich in kaltem Wasser, unlöslich in Alkohol (We., Ar. 202, 199).

Chelidonsäure - dimethylester $C_9H_8O_6=\frac{HC\cdot CO\cdot CH}{CH_3\cdot O_2C\cdot C\cdot O\cdot C\cdot CO_2\cdot CH_3}$. Prismen. F: 122,5°; löslich in Äther, leicht löslich in siedendem Methylalkohol, sehr leicht in Chloroform (Willstätter, Pummerer, B. 37, 3751).

Chelidonsäure-monoäthylester $C_9H_8O_6 = \frac{HC \cdot CO \cdot CH}{HO_2C \cdot C_-O - C \cdot CO_2 \cdot C_2H_5}$. B. Beim Kochen der wäßr. Lösung von Chelidonsäure-diäthylester (Lerch, M. 5, 371). Beim Sättigen von in absol. Alkohol suspendierter Chelidonsäure mit Chlorwasserstoff, neben Chelidonsäure-diäthylester (Hartinger, Lieben, M. 5, 342). Das Natriumsalz bildet sich beim Aufbewahren der Natriumäthylat-Verbindung des Chelidonsäure-diäthylesters (Wilstätter, Pummerer, B. 37, 3751). — Krystalle (aus Alkohol). F: 223—224° (Hai, Lie, M. 5, 344), 223° (Wi., P., B. 37, 3744 Anm.). Sehr schwer löslich in Wasser und Äther, etwas leichter in Alkohol (Hai, Lie, M. 5, 344). — Zerfällt bei 225° in Kohlensäure und Pyron-(4)-carbonsäure-(2)-äthylester (Hai, Lie, M. 6, 281). — AgC₉H₇O₆. Prismen. Löslich in Wasser (Lerch).

Chelidonsäure-diäthylester C₁₁H₁₂O₆ = H. · O₂C·C₋O₋C·C₋C₂C₃H₅ · O₄C·C₋O₋C·C₃C₅H₅ · O₄C·C₄

Chelidonsäure-diamid $C_7H_6O_4N_2 = \frac{HC \cdot CO \cdot CH}{H_4N \cdot CO \cdot C-O - C \cdot CO \cdot NH_2}$. B. Aus Chelidonsäure-diathylester und Ammoniak in wäßriger oder alkoholischer Lösung (WILLSTÄTTER, PUMMERER, B. 37, 3752). — Farblose, nicht schmelzbare Nädelchen (aus siedendem Wasser). Sehr schwer löslich in Wasser, Alkohol, Äther und Chloroform. — Wird durch Alkalien leicht verseift.

Chlorchelidonsäure-diäthylester $C_{11}H_{11}O_6Cl = \frac{HC\cdot CO\cdot CCl}{C_2H_5\cdot O_2C\cdot C-O-C\cdot CO_3\cdot C_2H_5}$. B. Neben Dichlorchelidonsäure-diäthylester durch Behandeln von Aceton- $\alpha.\alpha$ -dioxalsäure-diäthylester in absol. Äther mit Sulfurylchlorid (Feist, B. 39, 3663). — F: 77°. Löslich in Schwefelkohlenstoff und Petroläther.

Dichlorchelidonsäure-diäthylester $C_{11}H_{10}O_8Cl_2 = \frac{ClC \cdot CO \cdot CCl}{C_2H_5 \cdot O_2C \cdot C - O - C \cdot CO_2 \cdot C_3H_5}$.

s. im vorangehenden Artikel. — Wurde nicht ganz rein erhalten. Schuppen (aus Schwefelkohlenstoff), die bei 137—138° schmelzen (Frist, B. 39, 3663). Schwer löslich in warmem Schwefelkohlenstoff.

Dibromchelidonsäure-monoäthylester $C_9H_6O_6Br_2=\frac{BrU\cdot CU\cdot UBr}{HO_2C\cdot C-O-C\cdot CO_2\cdot C_2H_5}$. B. Neben Dibromchelidonsäure-diäthylester aus Aceton- $\alpha.\alpha'$ -dioxalsäure-diäthylester und Brom (Feist, Baum, B. 38, 3574; F., B. 39, 3662). — Krystalle mit $2H_2O$; schmilzt wasserhaltig bei ca. 85°, wasserfrei bei 182—183° (F.).

Dibromchelidonsäure-diäthylester $C_{11}H_{10}O_6Br_2=\frac{BrC\cdot CO\cdot CBr}{C_2H_5\cdot O_2C\cdot C-O-C\cdot CO_2\cdot C_2H_5}$.

s. im vorangehenden Artikel. — Krystalle (aus viel Äther). F: 126—127° (Feist, Baum, B. 38, 3574). Leicht löslich in siedendem, schwer in kaltem Alkohol, sehr schwer in Chloroform, Ligroin und Benzol (F., B.). — Gibt beim Erhitzen mit konz. Salzsäure Oxalsäure (F., B.). Gibt mit überschüssigem alkoholischem Ammoniak Oxamid (F., B. 39, 3662). — $C_{11}H_{10}O_6Br_2+HBr+3Br$. B. Man löst Dibromchelidonsäure-diäthylester in Brom, leitet kurze Zeit Bromwasserstoff ein und läßt stehen (F., B. 40, 3649, 3650). Rotbraune Prismen. Verliert beim Liegen an der Luft oder beim Waschen mit Äther oder Petroläther Brom und Bromwasserstoff.

2. 2-0xo-6-methyl-[1.2-pyran]-dicarbonsäure-(3.5), 6-Methyl-pyron-(2)-dicarbonsäure-(3.5), 6-Methyl-cumalin-dicarbonsäure-(3.5) ${\rm C_8H_6O_6} = \frac{{\rm HO_2C\cdot C\cdot CH:C\cdot CO_2H}}{{\rm CH_3\cdot C-O-CO}}.$

Diäthylester C₁₂H₁₄O₈ = C₂H₅·O₂C·C·CH:C·CO₂·C₂H₅. B. Durch Kondensation von α-[Äthoxymethylen]-acetessigsäure-āthylester (Bd. III, S. 878) mit Natrium-cyanessigsäure-āthylester in alkoh. Lösung und Ansäuern des Reaktionsprodukts mit Salzsäure (Simonsen, Soc. 93, 1025). Entsteht in gleicher Weise bei der Kondensation von Äthoxymethylen-malonsäure-diäthylester (Bd. III, S. 469) mit Natriumacetessigester, von Äthoxymethylen-cyanessigsäure-āthylester (Bd. III, S. 470) mit Natriumacetessigester oder von α-[Äthoxymethylen]-acetessigsäure-āthylester mit Natriummalonester (S., Soc. 93, 1026). — Nadeln (aus Petroläther). F: 79,5°; Kp₁₂: 230—250°; leicht löslich in den meisten organischen Lösungsmitteln, unlöslich in Wasser; gibt mit Ferrichlorid in alkoh. Lösung Violettfärbung (S., Soc. 93, 1025). — Liefert beim Kochen mit Barytwasser oder alkoh. Kalilauge Methyltrimesinsäure (Ergw. Bd. IX, S. 430) (S., Soc. 93, 1027; vgl. S., Soc. 97 [1910], 1910). Bei der Einw. von wäßr. Ammoniak entsteht das Ammoniumsalz des 2-Oxy-6-methyl-pyridindicarbonsäure-(3.5)-āthylesters-(5) (Syst. No. 3359) (S., Soc. 93, 1028). Liefert beim Erhitzen mit Anilin auf dem Wasserbad α-Acetyl-γ-carbäthoxy-glutaconsäure-α-āthylester-γ-anilid (Bd. XII, S. 539) (S., Soc. 93, 1031).

3. Oxo-carbonsauren C.H.O.

1. 4.6.5¹-Trioxo-2-methyl-5-äthyl-[1.4-pyran]-dihydrid-carbonsäure-(3), 4.6-Dioxo-2-methyl-5-acetyl-[1.4-pyran]-dihydrid-carbonsäure-(3), Dehydracetsäurecarbonsäure $C_1H_1O_4=\frac{CH_2\cdot CO\cdot HC\cdot CO\cdot C\cdot CO_2H}{CH_2\cdot CO\cdot C\cdot CO_2H}$ bezw. desmotrope

Formen. Das Molekulargewicht ist kryoskopisch in Benzol bestimmt (v. Pechmann, Neger, A. 273, 195). — B. Man übergießt schwefelsäurehaltige Aceton-α.α'-dicarbonsäure (Bd. III, S. 789) mit Essigaäureanhydrid unter Kühlung und erwärmt noch 5—10 Minuten auf dem Wasserbad (v. P., N.; vgl. Willstätter, Pfannenstiel, A. 422 [1921], 7). — Blättchen (aus Wasser). F: 154° (v. P., N.). Unlöslich in Ligroin, sehr schwer löslich in kaltem Wasser, schwer in Äther, leichter in Alkohol und Eisessig, sehr leicht in kaltem Chloroform und Benzol (v. P., N.). Elektrische Leitfähigkeit: v. P., N. — Bei der trocknen Destillation entsteht Dehydracetsäure (Bd. XVII, S. 559), ebenso bei wiederholtem Abdampfen der wäßr. Lösung des Kaliumsalzes (v. P., N.). Dehydracetsäurecarbonsäure liefert dei der Einw. von trocknem Brom Pentabromacetylaceton und Bromdehydracetsäure (v. P., N.). Beim Erhitzen mit Wasser auf 180—200° entsteht Dimethylpyron (Bd. XVII, S. 291) (v. P., N.). Liefert beim Kochen mit Alkalien zunächst Dehydracetsäure, weiterhin Aceton und Kohlensäure (v. P., N.). — KC₂H₇O₄+2(?)H₂O. Nadeln (aus verd. Alkohol). Die wäßr. Lösung reagiert neutral (v. P., N.). — K₂C₂H₄O₄. Nadeln. Die wäßr. Lösung reagiert alkalisch (v. P., N.).

 $\begin{array}{c} \textbf{Methylester} \ C_{10}H_{10}O_6 = \\ \hline \\ O\overset{.}{C}-O-\overset{.}{C}\cdot CO_3\cdot CH_3 \\ \hline \\ O\overset{.}{C}-O-\overset{.}{C}\cdot CH_3 \\ \hline \\ A.\ 273,\ 199). \\ \hline \\ \hline \\ B\overset{.}{B}. \ Beim \ Erwärmen \ des \ Silberskip Silbersk$

Anilid $C_{18}H_{13}O_6N= \begin{array}{c} CH_3\cdot CO\cdot HC\cdot CO\cdot C\cdot CO\cdot NH\cdot C_6H_5\\ OC-O-C\cdot CH_3\\ Negret, A. 273, 208). \\ -N\"{a}delchen (aus Alkohol). F: 185°. Schwer löslich in heißem Alkohol und in Ligroin, leicht in Chloroform und Benzol. \\ -Bei der Vakuumdestillation entsteht 1-Phenyl-4.6-dioxo-2-methyl-5-acetyl-pyridintetrahydrid (Syst. No. 3237). \\ \\ \end{array}$

Anil des Anilids $C_{31}H_{18}O_4N_5 = CH_5 \cdot C_7H_4O_5(:N \cdot C_6H_5) \cdot CO \cdot NH \cdot C_6H_5$. B. Beim Kochen von Dehydracetsäurecarbonsäure mit überschüßigem Anilin (v. Pechmann, Neger, A. 273, 210). — Hellgelbe Nädelchen (aus Eisessig oder Alkohol). F: 156—157°. — Wird beim Kochen mit Natronlauge in Dehydracetsäurecarbonsäure und Anilin gespalten.

Phenylhydrazid $C_{18}H_{14}O_{5}N_{8} = \frac{CH_{3}\cdot CO\cdot HC\cdot CO\cdot C\cdot CO\cdot NH\cdot NH\cdot C_{6}H_{5}}{OC-O-C\cdot CH_{3}}$. B. Man löst Dehydracetsäurecarbonsäure in Sodalösung, säuert mit Essigsäure an und versetzt mit der äquimolekularen Menge Phenylhydrazin in essigsaurer Lösung (v. Pechmann, Neger, A. 273, 211). Beim Erwärmen äquimolekularer Mengen von Dehydracetsäurecarbonsäure und Phenylhydrazin in Eisessig (v. P., N.). — Citronengelbes Krystallpulver (aus Aceton). F: 190—191°. In den meisten Lösungsmitteln nur in der Wärme löslich.

 $\begin{array}{ll} 2. & \textbf{4-Oxo-2.6-dimethyl-[1.4-pyran]-dicarbons\"{a}ure-(3.5), 2.6-Dimethyl-pyron-(4)-dicarbons\~{a}ure-(3.5) } & \mathbf{C_9H_8O_6} = \frac{\mathbf{HO_1C\cdot C\cdot CO\cdot C\cdot CO_2H}}{\mathbf{CH_3\cdot C-O-C\cdot CH_3}}. \end{array}$

Diäthylester $C_{13}H_{16}O_6 = \frac{C_2H_5 \cdot O_2C \cdot CO \cdot C \cdot CO_2 \cdot C_2H_5}{CH_3 \cdot U_{-}O_{-}U \cdot CH_3}$. B. Durch Behandeln von trocknem Kupfer-Acetessigester mit der berechneten Menge Phosgen in Benzol unter Kühlung (Conrad), Guthzeit, B. 19, 22; 20, 152). Beim Versetzen der Dinatriumverbindung des Acetondicerbonsäurediäthylesters in Äther mit Acetylehlorid (Peratoner, Strazzeri, G. 21, 298). — Krystalle (aus Benzol oder Äther). F: 80°; 100 Tle. Wasser lösen bei 20° 0,8 Tle.; leicht löslich in heißem Alkohol, Äther und Benzol (C., G., B. 20, 152). — Liefert bei der trocknen Destillation im Vakuum Kohlenoxyd, Kohlendioxyd, Äthylen (?) und Acetessigester (Oliveri-Tortorioi, G. 30 I, 523). Liefert bei der Reduktion mit Zink und Salzsäure oder mit Natriumamalgam und überschüssiger Essigsäure eine Verbindung $C_{13}H_{18}O_6$ (s. u.) (O.-T.). Bei der Einw. von Brom entstehen 2.6-Bis-brommethyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester, 2.6-Bis-dibrommethyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester und ein nicht näher untersuchtes Öl (Palazzo, C. 1905 I, 1258; G. 35 II, 468, 471). Zerfällt beim Kochen mit Barytwasser in Kohlensäure, Aceton, Essigsäure und Malonsäure (C., G., B. 20, 152). Beim Kochen mit verd. Schwefelsäure erfolgt Spaltung in Alkohol, Kohlensäure und Dimethyl-pyron (Bd. XVII, 8. 291) (Feist, A. 257, 282). Beim Aufbewahren mit wäßrig-alkoholischem Ammoniak entsteht 4-Oxy-2.6-dimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester (Syst. No. 3359) (C., G., B. 19, 24; 20, 154). Bei der Einw. von Hydroxylamin erhält man 3-Methylisoxazolon-(6)-carbonsäure-(4)-äthylester (Syst. No. 4330) (Pa., R. A. L. [5] 11 I, 563; 14 II, 251; G. 34 I, 458; 36 I, 610). Geht beim Erhitzen mit Phosphorpentasulfid auf dem Wasserbad in 2.6-Dimethyl-4-thio-pyron-(4)-dicarbonsäure-(3.5)-diäthylester über (G., Epstein, B. 20, 2111). Liefert mit Semicarbonsäure-(3.5)-diäthylester über (G., Epstein, B. 20, 2111). Liefert mit Semicarbonsäure-(3.5)-diöthylester über (G., Epstein, B. 20, 2111). Eigert mit Semicarbonsäure-(3.5)-diothylest

Verbindung $C_{13}H_{18}O_6$, vielleicht $O<\frac{C(CH_3)-C(CO_3\cdot C_3H_5)}{CH(CH_3)\cdot CH(CO_3\cdot C_3H_5)}>CO$. B. Durch Reduktion von 2.6-Dimethyl-pyron-(4)-dicarbonsäure-(3.5)-diāthylester mit Zink und Salzsäure oder mit Natriumamalgam und überschüssiger Essigsäure (0.-T., G. 30 I, 518). — Blaßgelbes Öl. Mit Wasserdampf sehr wenig flüchtig. Sehr leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser. Gibt mit Eisenchlorid eine intensive rote Färbung. — Liefert bei der Destillation im Vakuum Acetessigester, Kohlensäure und Äthylen (?). Entfärbt in alkoh. Lösung Permanganat. Reagiert nicht mit Hydroxylamin, Phenylhydrazin oder Semicarbazid.

Verbindung $C_{14}H_{19}O_6N_3$, vielleicht $H_2N \cdot NH \cdot CO \cdot N < C(CH_3) : C(CO_3 \cdot C_3H_6) > CO$. B. Aus 2.6-Dimethyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester und Semicarbazid in Gegenwart von Natriumacetat in alkoholisch-wäßriger Lösung (O.-T., G. 30 I, 524). — Nadeln (aus Alkohol). F: 270° (Zers.). Unlöslich in kaltem, schwer löslich in warmem Wasser, leicht in warmem Alkohol und Äther; löslich in kalten konzentrierten und in warmen verdünnten Säuren; krystallisiert aus letzteren wieder unverändert aus.

2.6-Bis-brommethyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester $C_{18}H_{14}O_8Br_2 = C_2H_5 \cdot O_2C \cdot C \cdot C \cdot C \cdot C \cdot C_2 \cdot C_2H_5$. Beim Versetzen des Kupfersalzes des γ -Brom-acetessig-CH₂Br·C-O-C·CH₃Br säure-åthylesters (Bd. III, S. 664) mit überschüssigem Phosgen in Benzol (Palazzo, C. 1905 I, 1259; G. 35 II, 475). Neben 2.6-Bis-dibrommethyl-pyron-(4)-dicarbonsäure-(3.5)-diåthylester

1259; G. 35 II, 475). Neben 2.6-Bis-dibrommethyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester aus 2.6-Dimethyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester und der berechneten Menge Brom in Schwefelkohlenstoff (P., C. 1905 I, 1258; G. 35 II, 471). — Tafeln (aus Alkohol). F: 126°. Fast unlöslich in Wasser, schwer löslich in Ather und Petroläther, löslich in Alkohol, Aceton, Benzol, Chloroform, verd. Essigsäure und Essigseter. — Liefert bei der Reduktion mit Zink in essigsaurer Lösung 2.6-Dimethyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester. Beim Kochen mit Alkalien entstehen Kohlensäure, Bromwasserstoff, Aceton und Alkohol.

2.6-Bis-dibrommethyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester $C_{13}H_{12}O_6Br_4=C_2H_5\cdot O_2C\cdot C\cdot CO\cdot C\cdot CO_2\cdot C_2H_5$. B. Bei der Einw. von wenig überschüssigem Brom auf 2.6-Bis-CHBr₃·C—O—C·CHBr₃. B. Bei der Einw. von wenig überschüssigem Brom auf 2.6-Bis-brommethyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester in Schwefelkohlenstoff (PALAZZO, C. 1905 I, 1258, 1259; G. 35 II, 472, 476). Eine weitere Bildung s. im vorangehenden Artikel. — Krystalle (aus verd. Essigsäure oder Schwefelkohlenstoff). F: 142°. Unlöslich in Wasser und Petroläther, löslich in Alkohol und Essigsäure, leicht löslich in Aceton, Benzol und Chloroform. — Bei der Reduktion mit Zink und Essigsäure entsteht 2.6-Dimethyl-pyron-(4)-di-

carbonsäure-(3.5)-diäthylester. Liefert mit siedenden Alkalien Kohlensäure, Bromwasserstoff, Alkohol und Aceton.

4-Thion-2.6-dimethyl-[1.4-pyran]-dicarbonsäure-(3.5)-diäthylester, 2.6-Dimethyl-4-thio-pyron-(4)-dicarbonsäure-(3.5)-diäthylester $C_{13}H_{16}O_5S=C_2H_5\cdot O_2C\cdot C\cdot CS\cdot C\cdot CO_2\cdot C_3H_5$

CH₃·C-O-C·CH₃
Saure-(3.5)-diāthylester mit Phosphorpentasulfid auf dem Wasserbad (Guthzeit, Epstein, B. 20, 2111). — Orangefarbene Nadeln (aus Äther). F: 109—111°. Leicht löslich in Äther, siedendem Alkohol und Benzol, unlöslich in Wasser. — Wird durch Barytwasser in Aceton, Kohlensäure, Essigsäure, Schwefelwasserstoff und ein nicht näher beschriebenes Produkt zerlegt. Beim Erwärmen mit Anilin und Eisessig entsteht 1-Phenyl-2.6-dimethyl-thiopyridon-(4)-dicarbonsäure-(3.5)-diäthylester (Syst. No. 3368).

4. 2-Methyl-furan-carbonsäure-(3)-[α -acetessigsäure]-(5) $C_{10}H_{10}O_6=HC$ — $C\cdot CO_2H$

HO,C.CH(CO.CH,).C.O.C.CH,

Diäthylester $C_{14}H_{18}O_6=\frac{HC-C\cdot CO_2\cdot C_2H_5}{C_2H_5\cdot O_2C\cdot CH(CO\cdot CH_2)\cdot C\cdot O\cdot C\cdot CH_3}$. B. Bei mehrtägigem Aufbewahren von 10 g Glyoxal mit 44 g Acetessigester und 100 g einer konz. Zinkchlorid-Lösung, neben Methronsäurediäthylester (S. 334) und sehr geringen Mengen einer isomeren (?) Verbindung (F: 139°) (Polonowsky, A. 246, 5, 18). — Hellgelbes Öl. Mischt sich mit Alkohol, Äther, Chloroform und Benzol in jedem Verhältnis. Unlöslich in Wasser und in wäßr. Alkalien. — Bei längerem Kochen mit alkoh. Kalilauge entsteht etwas 2-Methylfuran-carbonsäure-(3)-essigsäure-(5).

5. 4.6.5¹-Trioxo-2-äthyl-5-propyl-[1.4-pyran]-dihydrid-carbonsäure-(3), 4.6-Dioxo-2-äthyl-5-propionyl-[1.4-pyran]-dihydrid-carbonsäure-(3), Dehydropropionylessigsäurecarbonsäure $C_{11}H_{12}O_6=C_{11}H_{12}O_6$

C₂H₅·CO·HC·CO·C·CO₂H

OC-O-C·C₂H₅
bezw. desmotrope Formen. B. Beim Behandeln von schwefelsäurehaltiger Aceton-α.α'-dicarbonsäure (Bd. III, S. 789) mit 2 bis 3½ Tln. Propionsäureanhydrid (v. Pechmann, Neger, A. 273, 201; vgl. Willstätter, Pfannenstiel, A. 422
[1921], 7). — Blättchen (aus Alkohol). F: 114—115°. — Geht bei der Destillation oder beim
Eindampfen der wäßr. Lösung des Monokaliumsalzes in Dehydropropionylessigsäure (Bd. XVII,
S. 566) über.

6. Lacton der β -Oxy- β -[2.2.3-trimethyl-3-carboxy-cyclopentyl] - methylen malon säure (,, Campheryl-malon säure") $C_{13}H_{16}O_6$, s. nebenstehende Formel. $H_2C-CH-CCCO_2H)_2$

Diäthylester $C_{17}H_{24}O_6 = C_8H_{14} C_0 C_0 C_0 C_2H_5)_3$ 1). B. Beim Kochen von Natrium-

malonsäurediäthylester mit Camphersäureanhydrid oder mit Camphersäurechlorid in Benzol (Winzer, A. 257, 299). — Krystalle (aus Methylalkohol). F: 84°. Kp₄₀: 284° (korr.). Siedet bei gewöhnlichem Druck etwas oberhalb 360° unter geringer Zersetzung. Leicht löslich in Alkohol, Äther, Chloroform, Aceton, Schwefelkohlenstoff und Eisessig, sehr schwer in heißem Ligroin, unlöslich in Wasser. — Bei der Reduktion mit Natriumamalgam in stets sauer gehaltener, wäßrig-alkoholischer Lösung entsteht "Hydrocampheryl-malonsäure" (Bd. IX, S. 975) teils frei, teils als Estersäure: Wird beim Sättigen der äther. Lösung mit Ammoniak in [d-Camphersäure]-diamid und Malonsäurediäthylester gespalten. Zerfällt beim Kochen mit konz. Barytwasser in Kohlensäure, Malonsäure, Camphersäure und 1.2.2-Trimethyl-3-äthylon-cyclopentan-carbonsäure-(1) (Bd. X, S. 628). Liefert beim Erwärmen mit konz. Schwefelsäure auf 100° Kohlensäure und eine Verbindung C₃₁H₃₂O₄. Beim Aufbewahren mit Natriumäthylat in alkoh. Lösung bei gewöhnlicher Temperatur erhält man Malonsäure, Camphersäure und 1.2.2-Trimethyl-3-äthylon-cyclopentan-carbonsäure-(1)-äthylester.

¹⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienene Arbeit von LAPWORTH, ROYLE, Soc. 117, 743.

Verbindung C₈₁H₃₂O₄. B. Durch Erwärmen von "Campherylmalonsäurediäthylester" mit konz. Schwefelsäure auf 100° und Fällen der Lösung mit Wasser (Winzer, A. 257, 320). Beim Kochen von 1.2.2-Trimethyl-3-äthylon-cyclopentan-carbonsäure-(1) (Bd. X, S. 628) mit Natriumäthylat-Lösung (W.). — Prismen (aus Äther). F: 231° (korr.). Sublimierbar. Leicht löslich in Alkohol, Benzol und heißem Wasser, löslich in Ligroin und Äther. Zweibasische Säure.

d) Oxo-carbonsäuren C_nH_{2n-14}O₆.

1. Oxo-carbonsăuren $C_{10}H_6O_6$.

- 1. 3-Oxo-phthalan-dicarbonsäure-(1.6), Phthalid-dicarbonsäure-(3.5) C₁₀H_eO_e, s. nebenstehende Formel. B. Durch Kondensstion von A^{1.4}-Dihydroterephthalsäure-dimethylester (Bd. IX, S. 785) mit Oxalester in absol. Alkohol in Gegenwart von Natriumäthylat, Verseifen mit Kalilauge und Ansäuern der Lösung (THIELE, GIESE, B. 36, 843). Krystallwarzen (aus Wasser). Spaltet bei 240° Kohlensäure ab unter Bildung von Phthalid-carbonsäure-(5) (S. 418).
- 2. 1 oder 3-Oxo-phthalan-dicar-bonsāure (4.6), Phthald-dicar-I.

 bonsāure (4.6), Phthald-dicar-I.

 Formel I oder II ¹). B. Aus Phthalid-tri.

 carbonsāure (3.5.7 oder 3.4.6) (S. 511) beim Erhitzen über 200° oder beim Kochen mit Wasser (Doebner, A. 311, 136). Durch Erwärmen von diacetoxyessigsaurem Kalium (aus dichloressigsaurem Kalium durch Erhitzen mit Kaliumacetat gewonnen) mit Brenztraubensäure und Alkalilauge auf 100° (D.). Blättchen mit 2H₄O (aus heißem Wasser). F: 286°. Destilliert über 300° unter teilweiser Zersetzung. Leicht löslich in Alkohol, schwer in Äther und Essignester, unlöslich in Benzol, Chloroform und Petroläther. Bei der Oxydation mit Kalium-bermanganat in alkal. Lösung entsteht Benzol-tetracarbonsäure-(1.2.3.5) (Prehnitsäure) (Bd. IX, S. 997; vgl. Ergw. Bd. IX, S. 435). Liefert bei der Kalischmelze eine Methylbenzoltricarbonsäure (in Bd. IX, S. 980 fälschlich als 3-Methyl-benzol-tricarbonsäure-(1.2.4) beschrieben; vgl. auch Ergw. Bd. IX, S. 430). Das Bariumsalz liefert im Gemisch mit der 4-fachen Menge Bariumoxyd bei der trocknen Destillation Toluol. Ag₂C₁₀H₄O₆. Voluminöser Niederschlag. Löslich in heißem Wasser. CaC₁₀H₄O₆ + 6H₃O. Nadeln. Schwer löslich in kaltem Wasser. BaC₁₀H₄O₆ + 4H₂O. Säulen. Schwer löslich in kaltem Wasser.

Diäthylester $C_{14}H_{14}O_6=(C_2H_5\cdot O_2C)_2C_6H_3 < \frac{CH_5}{CO}>0$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von Phthalid-dicarbonsäure-(4.6 oder 5.7) (D., A. 311, 140). — Nadeln (aus verd. Alkohol). F: 112°. Destilliert unter Atmosphärendruck ohne Zersetzung. Sehr schwer löslich in Wasser, Äther und Benzol.

Dianilid $C_{33}H_{16}O_4N_2 = (C_6H_5\cdot NH\cdot CO)_3C_6H_2 < \frac{CH_2}{CO} > 0$. B. Beim Erhitzen von 2 Tln. Phthalid-dicarbonsäure-(4.6 oder 5.7) mit 7 Tln. Anilin im Rohr auf 200—220° (D., A. 311, 140). — Tafeln. Schmilzt oberhalb 300°. Unlöslich in Wasser, heißem Alkohol, Benzol, Aceton und Petroläther.

- 2. 3-0xo-phthalan-carbonsăure-(5)-essig-săure-(1), Phthalid-carbonsăure-(6)-essig-săure-(3) $C_{11}H_8O_6$, s. nebenstehende Formel.
- 4-Brom-phthalid-carbonsäure-(6)-essigsäure-(3) HO₂C. C₁₁H₂O₆Br, s. nebenstehende Formel. B. Beim Erhitzen von 4-Brom-phthalid-carbonsäure-(6)-bromessigsäure-(3) mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor auf ca. 160° Br (ZINOKE, FRANCKE, A. 293, 169). Nadeln (aus Salpetersäure). F: 275—276°. Leicht löslich in Alkohol, Aceton und Eisessig, schwer in Benzol und Äther, fast unlöslich in Chloroform und Benzin. BaC₁₁H₂O₈Br+3H₂O. Nädelchen. Schwer löslich.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von SIMONSEN, Soc. 97, 1912 und FREUND, FLEISCHEE, A. 411, 20.

----CO-Dimethylester $C_{13}H_{11}O_6Br = CH_3 \cdot O_2C \cdot C_6H_2Br \underbrace{CO_1 \cdot CO_2 \cdot CH_3}_{CH(CH_2 \cdot CO_2 \cdot CH_3)} O$. B. Durch Einleiten von Chlorwasserstoff in die methylalkoh. Lösung von 4-Brom-phthalid-carbonsäure-(6)-essigsäure-(3) (Z., F., A. 293, 170). — Blätter (aus heißem Benzin). F: 102°. Leicht löslich in Ather, Chloroform, Aceton, Eisessig und Benzol, sehr schwer in kaltem Benzin.

4 - Brom - phthalid - carbonsaure - (6) - bromessigsaure - (8) $C_{11}H_6O_6Br_2$ = $\mathrm{HO_{2}C \cdot C_{6}H_{2}Br} \xrightarrow{\mathrm{CH}(\mathrm{CHBr} \cdot \mathrm{CO_{2}H})} \mathrm{O.}$ B. Beim Behandeln von 3.5-Dibrom-naphthochinon-(1.2)-carbonsäure-(7) (Bd. X, S. 829) mit verd. Natronlauge unter Luftzutritt, neben 2.8-Dibrom-3-oxy-naphthochinon-(1.4)-carbonsäure-(6) (ZINCKE, FRANCKE, A. 293, 137, 166). — Blättchen (aus verd. Salzsäure). Schmilzt bei 224° unter Zersetzung, wird bei weiterem Erhitzen wieder fest und schmilzt dann gegen 280°. Sehr leicht löslich in Äther, Aceton und Eisessig, leicht in warmem Wasser, schwer in Chloroform und Benzol, fast unlöslich in Benzin; leicht löslich in Salpetersäure. — Liefert bei der Oxydation mit Kaliumpermanganat oder Chlorkalk 6-Brom-trimellitsäure (Bd. IX, S. 978). Beim Erhitzen mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor auf 160° entsteht 4-Brom-phthalid-carbonsäure-(6)-essigsäure-(3). Beim Behandeln mit 4°/0 igem Natriumamalgam bildet sich Hydrozimtsäure-dicarbonsäure-(2.4) (Bd. IX, S. 984). Beim Kochen mit Barytwasser erhält man 5-Brom-acetyl-isophthalsäure (Bd. X, S. 864).

Dimethylester $C_{13}H_{10}O_6Br_2 = CH_3 \cdot O_2C \cdot C_6H_2Br \underbrace{CO}_{CH(CHBr} \cdot CO_2 \cdot CH_3) = 0$. B. Beim Sättigen der methylalkoh. Lösung von 4-Brom-phthalid-carbonsäure-(6)-bromessigsäure-(3) mit Chlorwasserstoff (Z., F., A. 293, 168). — Prismen (aus Methylalkohol). F: 168°. Sehr leicht löslich in Chloroform, leicht in Aceton, heißem Eisessig und Benzol, schwerer in Methylalkohol und Äther, sehr schwer in Benzin.

3. Oxo-carbonsäuren $C_{12}H_{10}O_6$.

- 1. γ Phenyl butyrolacton $\alpha.\beta$ dicarbonsaure $C_{12}H_{10}O_6 = HO_2C \cdot HC CH \cdot CO_2H$
- Zur Konstitution vgl. Buchner, Perkel, B. 36, 3776 Anm. OC · O · CH · C₆H₅
- B. Beim Behandeln von 3-Phenyl-cyclopropan-tricarbonsäure-(1.1.2)-trimethylester mit Natronlauge (Buchner, Dessauer, B. 25, 1153). Krystalle mit 4H,O (aus wasserhaltigem Äther + Ligroin) (B., D.). Verliert das Krystallwasser bei 110° und schmilzt dann bei 188° unter Gasentwicklung (B., D.). — Durch Erhitzen im Kohlensäurestrom auf 180—200° und anschließende Vakuumdestillation entsteht β -Benzal-propionsäure (Bd. IX, S. 612) (B., D.). — $\mathrm{KC}_{12}\mathrm{H}_{9}\mathrm{O}_{6}$. Krystalle (aus Wasser) (B., D.).
- 2. Phthalyldiessigsäure $C_{12}H_{10}O_6 = C_6H_4 \underbrace{C(CH_2 \cdot CO_2H)_2}O$ (?) \(^1) \). B. Durch Erwärmen von Phthalyldimalonsäure-tetraäthylester mit überschüssiger Kalilauge auf dem Wasserbad und Ansäuern der Lösung mit Schwefelsäure (Wislicenus, A. 242, 80). — Prismen. F: 158°. Liefert beim Erhitzen mit Alkalien die (nicht näher beschriebenen) Alkalisalze der entsprechenden Oxycarbonsäure: — $Ag_5C_{12}H_6O_6$. Niederschlag. Unlöslich in Wasser. — $BaC_{12}H_8O_6 + 2H_2O$. Prismen. Leicht löslich in Wasser.

4. Oxo-carbonsäuren $C_{13}H_{12}O_6$.

1. $1- \underbrace{Methyl - 3 - \alpha - furyl - cyclohexen - (6) - on - (5) - dicarbonsäure - (2.4)}_{\text{C}_{13}\text{H}_{12}\text{O}_6} = \underbrace{H\ddot{\text{C}} - \text{CH}}_{\text{C}'} \underbrace{CH(\text{CO}_{2}\text{H}) \cdot \text{C}(\text{CH}_{3})}_{\text{C}'} \underbrace{CH}.$

Oxim des Diäthylesters $C_{17}H_{21}O_6N = OC_4H_3 \cdot HC < \frac{CH(CO_2 \cdot C_2H_5) - C(CH_3)}{CH(CO_2 \cdot C_2H_5) \cdot C(:N \cdot OH)} > CH.$ B. Aus Furfurylidenbisacetessigester (S. 553) und Hydroxylamin in alkoholisch-wäßriger Lösung (Knoevenagel, A. 303, 245). — Nadeln (aus verd. Alkohol). F: 142° (Zers.). Sehr leicht löslich in Alkohol, Äther, Chloroform und Benzol.

- 2. β -Carboxymethyl- γ -[2-carboxy-phenyl]-butyrolacton (?), γ -[2-Carboxy-phenyl]-butyrolacton- β -essigsäure (?) $C_{13}H_{12}O_6 = \begin{array}{c} H_2C CH \cdot CH_2 \cdot CO_2H \\ OC \cdot O \cdot CH \cdot C_6H_4 \cdot CO_2H \end{array}$ (?).

 B. Durch Reduktion von β -[2-Carboxy-benzoyl]-glutarsäure (Bd. X, S. 928) mit 4^0 /oigem

¹⁾ Vgl. hierzu folgende nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Abhandlungen: Schriber, A. 389, 125; v. Auwers, Auffenberg, B. 51, 1106; SCHEIBER, HOPFER, B. 53, 898.

Natriumamalgam in schwach alkalischer Lösung auf dem Wasserbad und Ansäuern der Lösung mit Salzsäure (Fittig, Gottsche, A. 314, 83). — Tafeln mit 1H₂O (aus Wasser). F: 165°. Sehr schwer löslich in Ather und Chloroform, unlöslich in Ligroin. — Ag₂C₁₂H₁₀O₆. Flockiger Niederschlag. — CaC₁₃H₁₀O₆ + 2H₂O. Sehr schwer löslich in Wasser. — BaC₁₃H₁₀O₆ + 6H₂O. Nadeln. Verliert bei 100° ca. 3H₂O, den Rest bei 160°. Ziemlich schwer löslich in kaltem Wasser.

e) Oxo-carbonsäuren C_nH_{2n-16}O₆.

1. Phthalylmaionsäure $C_{11}H_6O_6=C_0H_4\underbrace{CO_2H_3}_{C(:C(CO_2H)_3]}O$.

Diäthylester $C_{15}H_{14}O_6 = C_6H_4\underbrace{C[:C(C_2, C_2H_5)_3]}O(?)^1$. B. Aus Phthalylchlorid oder Phthalsäureanhydrid und Natriummalonester, neben [2.2-Dicarbäthoxy-hydrindon-(1)-yliden-(3)]-malonsäure-diäthylester (?) und Phthalyldimalonsäure-tetraäthylester (?) (Wislicenus, A. 242, 24, 26, 88). Durch Einw. von Brom auf das Natriumsalz des Phthalyldimalonsäure-tetraäthylesters in Äther (W., A. 242, 75). — Prismen (aus Äther). F: 74,5°; 1 Tl. löst sich bei 9° in 14 Tln., bei 35° in 1,7 Tln. Äther; leicht löslich in heißem Alkohol (W., A. 242, 26). — Liefert bei der Reduktion mit Zinkstaub und Essigsäure 2-Carboxy-benzylmalonsäure-diäthylester (Bd. IX, S. 981) (W., A. 242, 32). Bei mehrstündigem Kochen mit Wasser erhält man Phthalsäure und Malonsäurediäthylester (W., A. 242, 31). Liefert beim Behandeln mit alkoh. Ammoniak unter Kühlung Phthalsäurediamid und Malonsäurediamid (W., A. 242, 44). Durch Lösen in 10% iger Kalilauge bei 0° und Ansäuern mit Salzsäure entstehen Phthalsäureanhydrid und Malonsäurediäthylester (W., A. 242, 44). Zerfällt beim Kochen mit wäßr. Kalilauge in Phthalsäure, Malonsäure und Alkohol (W., A. 242, 30). Liefert mit Natriumäthylat-Lösung die Natriumverbindung des [3-Äthoxy-phthalidyl-(3)]-malonsäure-diäthylesters (?) (S. 555) (W., A. 242, 46).

Phthalyloyanessigsäure-äthylester $C_{13}H_{2}O_{4}N = C_{6}H_{4} - \frac{CO}{C[:C(CN)\cdot CO_{2}\cdot C_{2}H_{5}]}O(?)^{1}$).

B. Entsteht in 2 isomeren Fermen beim Kochen von je 1 Mol Phthalylchlorid und trocknem Natriumovanessigester in Benzol (MULLER, A. ch. [7] 1, 480).

Natriumcyanessigester in Beazol (MULLER, A. ch. [7] 1, 480).

a) Höherschmelzende Form. F: 190—192°; schwerer löslich in Chloroform und Benzol als das niedrigerschmelzende Isomere (M.). — Zeigt das gleiche chemische Verhalten wie das

Isomere.

- b) Niedrigerschmelzende Form. F: 140—141° (M.). Liefert beim Kochen mit Wasser Cyanessigester und Phthalsäure (M.). Durch mehrwöchiges Stehenlassen mit Sodalösung erhält man Benzoylcyanessigsäureäthylester-o-carbonsäure (Bd. X, S. 928) (M.). Ammoniak spaltet in der Kälte in Cyanessigester und Phthalsäurediamid (M.). Bei der Einw. von Phenylhydrazin erhält man Phthalsäure-bis-phenylhydrazid (M.; vgl. Scheißer, A. 389 [1912], 153). Beim Eintragen in Natriummethylat-Lösung entsteht Benzoylcyanessigsäureäthylester-o-carbonsäuremethylester (M.).
- 2. 2.5.3¹-Trioxo-4.7-dimethyl-3-āthyl-[1.2-chromen]-dihydrid-(5.8)-carbonsāure-(6), 5-0xo-4.7-dimethyl-3-acetyl-5.8-dihydro-cumarin-carbonsāure-(6) $C_{14}H_{19}O_6$, s. nebenstehende Formel, ist desmotrop mit 5-0xy-4.7-dimethyl-3-acetyl-cumarin-carbonsāure-(6), S. 546.

f) Oxo-carbonsäuren $C_nH_{2n-18}O_6$.

2-0xo-4-phenyl-[1.2-pyran]-dicarbonsäure-(5.6), 4-Phenyl-pyron-(2)-dicarbonsäure-(5.6), 4-Phenyl-cumalin-dicarbonsäure-(5.6) $C_{13}H_8O_6=HO_2C\cdot C\cdot C(C_6H_5)$:CH

HO*C·C---O---CO

Diäthylester $C_{17}H_{16}O_6 = \frac{C_2H_5 \cdot O_2C \cdot C \cdot C(C_6H_5) \cdot CH}{C_2H_5 \cdot O_2C \cdot C}$. B. Man mischt Oxalessigester (Bd. III, S. 782) mit Natriumäthylat in Äther, versetzt mit Phenylpropiolsäure und behandelt nach einigen Tagen mit verd. Schwefelsäure (Ruhemann, Cunnington, Soc. 75, 783). — Gelbe Platten (aus Äther). F: 94—95°. Sehr leicht löslich in Alkohol.

¹⁾ Vgl. hierzu folgende nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Abhandlungen: Scheiber, A. 389, 125; v. Auwers, Auffenberg, B. 51, 1106; Scheiber, Hopfer, B. 53, 898.

g) Oxo-carbonsäuren $C_nH_{2n-22}O_6$.

- 1. 9-0xo-xanthen-dicarbonsäure-(4.5), Xanthon-dicarbonsäure-(4.5) $C_{15}H_8O_6$, s. nebenstehende Formel. B. Bei der Oxydation von 4.5-Dimethyl-xanthon (Bd. XVII, S. 367) mit Kaliumpermanganat (Schöpff, B. 25, 3647). Nadeln (aus Äther). Schmilzt noch nicht bei 285°. Löst sich in konz. Schwefelsäure mit gelber Farbe und schwacher bläulichgrüner Fluorescenz.
- 2. $3-0\times0-1-[2-carboxy-phenyl]-phthalan-carbonsäure-(1), 3-[2-Carboxy-phenyl]-phthalid-carbonsäure-(3), Lacton der Diphenylcarbinol-2.2'.<math>\alpha$ -tricarbonsäure $C_{16}H_{10}O_6=C_6H_4$ $C(CO_2H)(C_6H_4\cdot CO_2H)$ O. B. Man erhitzt eine Lösung von 12 g Diphthalylsäure (Bd. X, S. 910) in 100 g $4^0/6$ ger Natronlauge erst zum Sieden und dann 2—3 Minuten auf 110—115° und säuert die Lösung, nachdem sie wieder farblos geworden ist, mit Salzsäure an (Graebe, Juhlabd, A. 242, 232). Krystalle (aus verd. Alkohol). Schmilzt bei raschem Erhitzen bei ca. 170° unter Zersetzung. Schwer löslich in kaltem Wasser und Chloroform, reichlich in Äther und verd. Alkohol, sehr leicht löslich in Alkohol. Zerfällt bei längerem Erhitzen auf 140—150° in Kohlendioxyd und 2-[Phthalidyl-(3)]-benzoesäure (S. 439). Wird bei 8—10-stündigem Erhitzen mit 50°/ $_0$ iger Jodwasserstoffsäure und rotem Phosphor auf 170° zu Diphenylmethan-2.2'. $_0$ -tricarbonsäure reduziert.

Dimethylester $C_{18}H_{14}O_6 = C_6H_4 - C_{(CO_2 \cdot CH_3)}(C_6H_4 \cdot CO_2 \cdot CH_3) = O$. B. Aus 3-[2-Carboxy-phenyl]-phthalid-carbonsäure-(3) und Methylalkohol in Gegenwart von Chlorwasserstoff (G., J., A. 242, 234, 235). — Krystalle. F:147—148°. Leicht löslich in heißem Methylalkohol.

Diäthylester $C_{20}H_{18}O_6 = C_6H_4 \underbrace{C(CO_2 \cdot C_2H_5)(C_6H_4 \cdot CO_2 \cdot C_2H_5)}$ O. B. Aus 3-[2-Carboxy-phenyl]-phthalid-carbonsāure-(3) und Athylalkohol in Gegenwart von Chlorwasserstoff (G., J., A. 242, 234). — Säulen. F: 108°. Reichlich löslich in Alkohol.

- 3. Oxo-carbonsäuren $C_{17}H_{12}O_{6}$.
- 1. I-Oxo-3-[2-carboxy-phenyl]-isochroman-carbonsdure-(3), 3-[2-Carboxy-phenyl]-dihydroisocumarin-carbonsdure-(3) $C_{17}H_{13}O_4=C_4H_4\cdot CO_2H$.

 $\label{eq:monoamid} \begin{array}{ll} \text{Monoamid} & C_{17}H_{18}O_8N = C_6H_4 \\ \begin{array}{c} CH_3 \cdot C(CO \cdot NH_2) \cdot C_6H_4 \cdot CO_2H \\ CO - O \end{array} \text{ oder} \end{array}$

CH₂·C(CO₂H)·C₆H₄·CO·NH₂. B. Das Ammoniumsalz entsteht beim Stehenlassen einer ammoniakalischen Lösung von 1.3-Dioxy-4-[2-carboxy-benzyl]-isochinolin (Syst. No. 3353) an der Luft (Gabriel, Posner, B. 27, 2500). — Krystalle mit 1 H₄O (aus Alkohol). Schmilzt bei 128—130° unter Schäumen. — Geht beim Erhitzen auf 150—160° in das Lacton des 4-Oxy-1.3-dioxo-4-[2-carboxy-benzyl]-isochinolintetrahydrids (Syst. No. 4299) über. Wird durch Kochen mit Alkalien und nachfolgendes Ansäuern mit Salzsäure in 3-[2-Carboxy-benzyl]-phthalid-carbonsäure-(3) (s. u.) übergeführt. — NH₄C₁₇H₁₂O₅N. Kreideähnlich. F: 197° bis 198°.

2. 3-Oxo-1-[2-carboxy-benzyl]-phthalan-carbonsäure-(1), 3-[2-Carboxy-benzyl]-phthalid-carbonsäure-(3) $C_{17}H_{12}O_6=C_6H_4$ C_6H_4 C_6H_4

oxy-phenyl]-dihydroisocumarin-carbonsäure-(3) (s. o.) mit Alkalilauge bis zur Beendigung der Ammoniak-Entwicklung und Ansäuern der Lösung mit Salzsäure (Gabriel, Posner, B. 27, 2502). — Prismen (aus verd. Alkohol). Schmilzt unter Schäumen bei 204—207°. — Zerfällt beim Erhitzen auf 220° in Kohlendioxyd und 3-[2-Carboxy-benzyl]-phthalid (S. 440). — $Ag_2C_{17}H_{10}O_8$. Flockiger Niederschlag. — $BaC_{17}H_{10}O_8+H_3O$. Blättchen.

4. 4-0xo-2.6-diphenyl-pyrantetrahydrid-dicarbonsäure-(3.5), 2.6-Di-

phenyl-tetrahydropyron-dicarbonsaure-(3.5) C, H₁₀O₄ =

HO₂C·HC·CO·CH·CO₂H

C₄H₅·HC·O·CH·CO₄H₅

B. Aus Aceton-α.α'-dicarbonsaure und Benzaldehyd bei Gegenwart von Chlorwasserstoff (Petrenko-Kritschenko, Plotnikow, Ж. 31, 464; B. 30, 2802). — Zähflüssige Masse. Gibt in alkoh. Lösung mit Eisenchlorid eine blutrote Färbung (Pe.-K., Pl.). Verliert leicht Kohlendioxyd und geht in 2.6-Diphenyl-tetrahydropyron (Bd. XVII, S. 370) über (Pe.-K., Pl.). Bei Zusatz von Brom zu der mit Soda neutralisierten Lösung entsteht in geringer Menge 3.3.5.5-Tetrabrom-2.6-diphenyl-tetrahydropyron (Schtwan, Ж. 41, 481; C. 1909 II, 833).

Dimethylester $C_{21}H_{20}O_6=(C_6H_5)_2C_5H_4O_2(CO_2\cdot CH_2)_3$. B. Durch Kondensation von Aceton- $\alpha.\alpha'$ -dicarbonsäure-dimethylester mit Benzaldehyd in Gegenwart von Chlorwasserstoff (Petreenko-Kritschenko, 3k. 81, 470; J. pr. [2] 60, 157). — F: 194°. Unlöslich in Wasser, leicht löslich in Chloroform, schwer in Alkohol. Gibt in alkoh. Lösung mit Eisenchlorid eine rote Färbung.

Diäthylester C₂₂H₂₄O₆ = (C₆H₅)₂C₅H₄O₂(CO₂·C₂H₅)₂. B. Beim Einleiten von Chlorwasserstoff in ein Gemisch aus 1 Mol Aceton-α.α'-dicarbonsäure-diäthylester und 2 Mol Benzaldehyd unter Kühlung (РЕТВЕМКО-ККІТЯСНЕМКО, STANISCHEWSKI, B. 29, 996; P.-K., JELTSCHANINOW, Ж. 31, 906; C. 1900 I, 608). — Der Schmelzpunkt liegt je nach der Darstellung bald bei 116°, bald bei 126° (P.-K., St.; P.-K., J.). Fast unlöslich in Wasser, schwer löslich in kaltem Alkohol und Ligroin, leichter in Ather und heißem Alkohol (P.-K., St.). Gibt mit Eisenchlorid eine rote Färbung (P.-K., St.). Wird durch heiße alkoh. Kalilauge in Zimtsäure und Benzalmalonsäure gespalten (P.-K., DEMENTJEW, Ж. 40, 794; B. 41, 1696; C. 1908 II, 1443). — KC₂₂H₂₃O₆. Krystalle. Unlöslich in Wasser, schwer löslich in Alkohol (P.-K., D.).

3.5 - Dibrom - 2.6 - diphenyl - tetrahydropyron - dicarbonsäure - (3.5) - diäthylester $C_{23}H_{22}O_6Br_2 = \frac{C_2H_5 \cdot O_2C \cdot BrC \cdot CO \cdot CBr \cdot CO_2 \cdot C_2H_5}{C_6H_5 \cdot HC - O - CH \cdot C_6H_5}. \quad B. \quad \text{Aus} \quad 2.6 \cdot \text{Diphenyl-tetrahydropyron-dicarbonsäure} \cdot (3.5) \cdot \text{diāthylester} \quad \text{und} \quad \text{Brom} \quad \text{in} \quad \text{Eisessig} \quad \text{(Schtwan, } \text{ $\text{$\mathcal{K}$}$. } \quad 41, \ 477; \quad \textit{C}. \quad 1909 \quad \Pi, \ 832). \quad -- \text{Plāttchen} \quad \text{(aus Eisessig)}. \quad \text{F:} \quad 171^\circ \, (\text{Zers.}). \quad \text{Sehr leicht löslich in Chloroform, leicht in} \quad \text{Benzol, löslich in heißem Alkohol und in} \quad \text{Essigsäure}. \quad -- \quad \text{Gibt beim} \quad \text{Erwärmen} \quad \text{mit} \quad \text{Silbernitrat} \quad \text{in} \quad \text{Pyridin} \quad 2.6 \cdot \text{Diphenyl-pyron-(4)-dicarbonsäure-(3.5)-diāthylester.}$

h) Oxo-carbonsäuren C_nH_{2n-24}O₆.

1. 1.3-Dioxo-5-[2-carboxy-benzoyi]-phthalan, [Benzo-phenon-tricarbonsaure-(2.3'.4')]-3'.4'-anhydrid $C_{1e}H_{e}O_{e}$, s. nebenstehende Formel. Eine Verbindung $C_{1e}H_{e}O_{e}$, die vielleicht diese Konstitution besitzt, s. bei Benzophenon-tricarbonsaure-(2.3'.4'), Bd. X. S. 932.

2. β -Phenyl- δ -[β -phenyl- α - γ -dicarboxy-propyliden]- δ -valerolacton $C_{22}H_{20}O_6 = H_{2}C \cdot CH(C_6H_8) \cdot CH_2 - C:C(CO_8H) \cdot CH(C_6H_8) \cdot CH_3 \cdot CO_2H$. Eine Verbindung $C_{22}H_{20}O_6$, der vielleicht diese Konstitution zukommt, s. bei [β -Phenyl-glutarsäure]-anhydrid, Bd. XVII, S. 495.

i) Oxo-carbonsăuren $C_nH_{2n-26}O_6$.

 $\begin{array}{ll} \textbf{4-0} \times \textbf{0-2.6-diphenyl-pyran-dicarbons} \\ \textbf{aure-(3.5)} & \textbf{C}_{19} \textbf{H}_{19} \textbf{O}_6 = \\ & \frac{\textbf{HO}_2 \textbf{C} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CO}_2 \textbf{H}}{\textbf{C}_0 \textbf{H}_1 \cdot \textbf{C} - \textbf{O} - \textbf{C} \cdot \textbf{C}_0 \textbf{H}_6} \end{array}.$

Diäthylester $C_{ss}H_{so}O_{d} = \frac{C_{s}H_{s} \cdot O_{s}C \cdot C \cdot C \cdot C \cdot C \cdot C_{s} \cdot C_{s}H_{s}}{C_{s}H_{s} \cdot C - O - C \cdot C_{s}H_{s}}$. B. Man kocht eine Lösung von 1 At.-Gew. Natrium in einem Gemisch von 1 Mol Aceton- α, α' -dicarbonsäure-diäthylester

und Äther mit 1 Mol Benzoylchlorid bis zur neutralen Reaktion, fügt hierauf noch 1 At.-Gew. Natrium und 1 Mol Benzoylchlorid zu und kocht abermals (Dünschmann, v. Pechmann, A. 261, 189). Entsteht in geringer Menge bei 6-wöchigem Stehenlassen von 24 g Kupferbenzoylessigester mit 50 g einer 20% jegen Lösung von Phosgen in Toluol (Feist, B. 23, 3738). Beim Erwärmen von 3.5-Dibrom-2.6-diphenyl-tetrahydropyron-dicarbonsäure-(3.5)-diäthylester (S. 500) mit Silbernitrat in Pyridin (Schtwan, K. 41, 478; C. 1909 II, 832). — Blättchen (aus verd. Alkohol). F: 140,5—141° (Sch.), 140,5° (D., v. P.), 140° (Zers.) (F.). Leicht löslich in den meisten Lösungsmitteln (D., v. P.; F.). Die alkoh. Lösung wird durch Natronlauge gelb gefärbt (D., v. P.; Sch.). Bei der Verseifung erhält man Benzoesäure und Acetophenon (D., v. P.; F.). Wird von heißer verdünnter Schwefelsäure nicht angegriffen (F.). Gibt mit alkoh. Ammoniak 4-0xy-2.6-diphenyl-pyridin-dicarbonsäure-(3.5)-diäthylester (Syst. No. 3363) (Ретревико-Кергосненко, B. 42, 3683).

k) Oxo-carbonsäuren $C_nH_{2n-30}O_6$.

1. $[4-(2-Carboxy-benzoyl)-naphthalin-dicarbon-säure-(1.8)]-anhydrid, <math>[4-(2-Carboxy-benzoyl)-naphthalsäure]-anhydrid <math>C_{20}H_{10}O_6$, s. nebenstehende Formel. B. Aus 2-Acenaphthoyl-benzoesäure (Bd. X, S. 786) durch Oxydation mit Natrium-dichromat in Eisessig, neben 4-(2-Carboxy-benzoyl)-naphthalsäure, die bei 120—150° vollkommen in das Anhydrid übergeht (Graebe, Peruzz, A. 327, 101). — F: 229°.

2. $3-0\times0-1.1$ -bis-[4-carboxy-phenyl]-phthalan, 3.3-Bis-[4-carboxy-phenyl]-phthalid, Lacton der Triphenylcarbinol-tricarbonsäure-(2.4.4') $C_{12}H_{14}O_6 = C_6H_4 \underbrace{CO_3H_2 \cdot CO_3H_2}_{C(C_6H_4 \cdot CO_3H)_2}O$. B. Durch Erhitzen von Triph-nylcarbinol-tricarbonsäure-(2.4'.4'') (Bd. X, S. 584) über den Schmelzpunkt (LIMPRICHT, A. 299, 296). — F: 304°. — Wandelt sich sehr leicht in Triphenylcarbinol-tricarbonsäure-(2.4'.4'') um.

Diäthylester $C_{36}H_{23}O_6 = C_6H_4 < CO_8 + C_2H_4 > C_3C_8 + C_3H_5 > 0$. B. Aus Triphenylearbinoltricarbonsäure-(2.4'.4") durch alkoh. Salzsäure (L., A. 299, 298). — Krystalle (aus Alkohol). F: 138—139°.

1) Oxo-carbonsăuren $C_nH_{2n-40}O_6$.

 $\begin{array}{l} \textbf{5-0xo-2.3-diphenyl-2.3-dibenzoyl-pyrantetrahydrid-carbons} \\ \textbf{aure-(4) (?),} \\ \textbf{Anhydrodibenzilacetessigs} \\ \textbf{aure-} \\ \textbf{C}_{22} \textbf{H}_{24} \textbf{O}_{6} = \\ & \begin{array}{l} \textbf{OC} \cdot \textbf{CH}(\textbf{CO}_{2}\textbf{H}) \cdot \textbf{C}(\textbf{C}_{6}\textbf{H}_{5}) \cdot \textbf{CO} \cdot \textbf{C}_{6}\textbf{H}_{5}} \\ \textbf{H}_{2} \textbf{C} & \textbf{O} & \\ & \textbf{C}(\textbf{C}_{6}\textbf{H}_{5}) \cdot \textbf{CO} \cdot \textbf{C}_{6}\textbf{H}_{5}} \end{array} \right) \\ \textbf{bezw. desmotrope-Formen.}$

Äthylester $C_{24}H_{24}O_6 = C_{21}H_{23}O_4 \cdot CO_2 \cdot C_2H_5$. B. Das Natriumsalz scheidet sich beim Erhitzen eines Gemisches von Benzil und Acetessigsäureäthylester mit Natriumäthylat-Lösung auf dem Wasserbad ab; es wird in Benzol-Lösung durch Eisessig zerlegt (JAPF, LANDER, Soc. 69, 736). — Nadeln oder Prismen (aus Alkohol). F: 210—211° (Zers.) (J., L.). — Gibt beim Erhitzen im Vakuum auf 150° bis 160° Benzil und Kohlendioxyd; wird von Chromtrioxyd in Eisessig zu Phenyl-dibenzoyl-essigsäure oxydiert (J., L.). Rauchende Jodwasserstoffsäure erzeugt die Verbindung $C_{21}H_{24}O$ vom Schmelzpunkt 187—188° (Bd. VIII, S. 488) (J., L., Soc. 69, 743; J., Findlay, Soc. 75, 1021); bei sehr kurzem Kochen entsteht als Zwischenprodukt eine bei 221° schmelzende sauerstoffreichere Verbindung (J., L.). Alkalien spalten Benzil ab (J., L.). Beim Kochen mit schwefelsäurehaltigem Alkohol entsteht O-Äthylschydrodibenzilacetessigsäureäthylester (S. 549) (J., L.). Phenylhydrazin liefert bei höherer Temperatur Benzil-bis-phenylhydrazon (J., L.). — NaC₂₄H₂₇O₆ + C₂H₅·OH. Sehr leicht löslich in Benzol (J., L.).

4. Oxo-carbonsäuren mit 7 Sauerstoffatomen.

a) Oxo-carbonsäuren $C_nH_{2n-8}O_7$.

- 1. Oxo-carbonsauren CaH4O7.
- 1. 3.4 Dioxo furantetrahydrid dicarbonsăure (2.5) $C_6H_4O_7 = OC CO$ $HO_5C \cdot HC \cdot O \cdot CH \cdot CO_2H$ ist desmotrop mit 3.4-Dioxy-furan-dicarbonsăure-(2.5), S. 366.
- 2. 2.4 Dioxo furantetrahydrid dicarbonsäure (3.3) $C_0H_4O_7 = OC C(CO_2H)_2$ (systematische Stammverbindung der nachstehenden Schwefelverbindungen). $H_2C \cdot O \cdot CO$
- 4-Oxo-2-phenylimino-thiophentetrahydrid-dicarbonsäure-(3.3)-diäthylester C₁₆H₁₇O₅NS = OC—C(CO₂·C₂H₅)₂. B. Bei 1-stdg. Erwärmen eines Gemisches von Methandicarbonsäurediäthylester-thiocarbonsäureanilid (Bd. XII, S. 316) und Chloressigsäureäthylester in Gegenwart von Natriumäthylat-Lösung auf dem Wasserbad; zur Reinigung behandelt man die Krystalle 14 Tage lang mit Alkalilauge, fällt die filtrierte Lösung mit Salzsäure und krystallisiert die Verbindung aus Alkohol unter Zusatz von Tierkohle um (Ruhemann, Soc. 93, 627; 95, 121). Farblose Prismen (aus Alkohol). Sintert von 104° an und schmilzt bei 134° (R., Soc. 93, 628). Gibt beim Kochen mit Kalilauge Anilin, Malonsäure, Thioglykolsäure, Kohlensäure und Alkohol (R., Soc. 93, 628). Liefert mit Benzaldehyd in Alkohol in Gegenwart von Piperidin 3-Oxo-5-phenylimino-2-benzal-thiophentetrahydrid-dicarbonsäure-(4.4)-diäthylester (S. 509) (R., Soc. 95, 122).
- $\begin{array}{lll} \textbf{4-Oxo-2-phenylimino-3-cyan-thiophentetrahydrid-carbons\"{a}ure-(3)-\"{a}thylester} \\ \textbf{C}_{14}\textbf{H}_{12}\textbf{O}_{3}\textbf{N}_{2}\textbf{S} &= \begin{matrix} \textbf{OC} & \textbf{C}(\textbf{CN}) \cdot \textbf{CO}_{3} \cdot \textbf{C}_{3}\textbf{H}_{5} \\ \textbf{H}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{H}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{M}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{M}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{M}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{M}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{M}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{M}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{M}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{M}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{M}_{5}\textbf{C} \cdot \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{C} \\ \textbf{N} \cdot \textbf{N} \\ \textbf{S} \cdot \textbf{C} : \textbf{N} \cdot \textbf{C}_{6}\textbf{C} \\ \textbf{S} \cdot \textbf{C} : \textbf$
- 5.5 Dibrom 4 oxo 2 phenylimino thiophentetrahydrid dicarbonsäure (8.3)-diäthylester $C_{16}H_{18}O_5NBr_2S= \frac{OC-C(CO_3\cdot C_3H_5)_8}{Br_2C\cdot S\cdot C:N\cdot C_6H_5}$. B. Aus 4-0xo-2-phenylimino-thiophentetrahydrid-dicarbonsäure-(3.3)-diäthylester und Brom in Chloroform (R., Soc. 95, 122). Hellgelbe Nadeln (aus Petroläther). F: 140°. Leicht löslich in Chloroform und Benzol, schwer in kaltem Petroläther.
- 2. Monoanhydrid der hochschmelzenden Butan $\alpha.\beta.\gamma.\delta$ -tetracarbonsäure $C_8H_2O_7=C_6H_4O_8(CO_8H)_8$. B. Beim Erhitzen von niedrigschmelzender Butan- $\alpha.\beta.\gamma.\delta$ -tetracarbonsäure für sich auf 190° oder besser mit Nitrobenzol auf 180—190° (Auwers, Jacob, B. 27, 1127). Blättchen (aus Aceton + Chloroform). F: 232° (Zers.). Löslich in Eisessig, Aceton und Nitrobenzol, unlöslich in Äther, Chloroform, Ligroin und Benzol. Gibt beim Köchen mit Wasser die hochschmelzende Butan- $\alpha.\beta.\gamma.\delta$ -tetracarbonsäure. Beim Neutralisieren mit Soda oder Ammoniak in der Kälte erhält man die Salze der hochschmelzenden Butan- $\alpha.\beta.\gamma.\delta$ -tetracarbonsäure.
- 3. Monoanhydrid der Hexan- $\alpha.\gamma.\delta.\zeta$ -tetracarbonsäure $C_{10}H_{12}O_7=C_0H_{10}O_8(CO_2H)_2$. B. Beim Erhitzen von Hexan- $\alpha.\gamma.\delta.\zeta$ -tetracarbonsäure auf 200° (Sell, Easterfield, Soc. 65, 831). Pulver. F: 130—135°.

4. β -0xo- β -[5-0xo-3.4.4-trimethyl-tetrahydrofuryl-(3)]-isobernsteinsaure, $\alpha.\alpha.\beta$ -Trimethyl- β -dicarboxyacetyl-butyrolacton, $[\alpha.\alpha.\beta$ -Tri $methyl-paraconyl]-maionsäure \quad C_{11}H_{14}O_7 = \frac{[(HO_3C)_2CH\cdot CO](CH_3)C - C(CH_3)_2}{[(HO_3C)_2CH\cdot CO](CH_3)C - C(CH_3)_2}$

 $\textbf{Diäthylester} \quad C_{15}H_{22}O_7 = \frac{[(C_2H_5 \cdot O_2C)_2CH \cdot CO](CH_3)C - - C(CH_3)_2}{[(C_3H_5 \cdot O_2C)_2CH \cdot CO](CH_3)C - - C(CH_3)_2}$ B. Durch Einw. H.C.O.CO von α.α.β-Trimethyl-paraconsäure-chlorid (S. 390) auf Natriummalonsäurediäthylester (Noves, Am. 33, 363). — Öl. Kpec: 250—255°. Gibt in alkoh. Lösung mit Eisenchlorid eine dunkelrote Färbung.

b) Oxo-carbonsäuren $C_nH_{2n-10}O_7$.

1. Oxo-carbonsauren C2H4O2.

1. 3.4 - Dioxo - [1.4 - pyran] - dihydrid - dicarbonsäure-(2.6) bezw. 3-Oxy-4-oxo-[1.4-pyran]-dicarbonsaure-(2.6), 3-Oxy-pyron-(4)-dicarbon-HC·CO·CO saure-(2.6), Oxychelidonsaure $C_7H_4O_7 = \frac{H_0 \cdot G_0 \cdot G_0}{H_0 \cdot G_0 \cdot G_0 - G_0 \cdot G_0 \cdot G_0}$ bezw.

HO₂C·C-O-C·CO₂H' Mekonsäure 1). Zur Konstitution vgl. Peratoner, Leonardi, HC · CO · C · OH G. 80 I, 561. — V. Im Milchsaft der unreifen Samenkapseln von Papaver somniferum L. (Opium) (Sertüener, Trommsdorffs Journal der Pharmacie 18 I [1805], 234; 14 I, 50; Seguin, A. ch. [1] 92 [1814], 225; Choulant, Gilberts Annalen der Physik 56 [1817], 342; Vogel, Schweiggers Journal f. Chemie u. Physik 20 [1817], 196; Robinet, Schweiggers Journal f. Chemie u. Physik 45 [1825], 242; Robiquet, A. ch. [2] 5, 276; 51, 236; A. 5, 90), Papaver Rhoeas L. (Pavesi, C. 1906 I, 690) sowie Papaver dubium L. (Pavesi). — Darst. Man zieht zerschnittenes Opium mit lauwarmem Wasser aus, stumpft die Lösung mit Calciumcarbonat ab, verdampft zum dünnen Sirup, versetzt mit eisenfreiem Calciumchlorid, kocht einige Minuten und verdünnt mit Wasser (Gregory, A. 7, 261). Der ausgeschiedene Niederschlag von mekonsaurem Calcium wird durch 3-malige Behandlung mit einem Gemisch von 20 Tln. siedendem Wasser und 3 Tln. konz. Salzsäure in rohe Mekonsäure übergeführt (Gr., A. 24, 43; How, A. 83, 351). Zur Reinigung der Mekonsäure dient das Kaliumsalz (Gr., A. 24, 44) oder das Ammoniumsalz (How, A. 83, 351). Die Säure kann auch aus Opium durch Behandlung mit Salzsäure extrahiert werden; man dampft die salzsaure Lösung ein, extrahiert den Rückstand mit Alkohol, macht das Filtrat mit alkoh. Kalilauge alkalisch und löst den mit Alkohol + Äther gewaschenen Niederschlag in Wasser; das mit Bleiacetat gefällte Bleisalz zersetzt man mit Schwefelwasserstoff (VALENTI, C. 1905 II, 491).

Farblose Krystalle mit 3H₂O (aus verdünnten, wäßrigen oder salzsauren Lösungen) (Robiquet, A. ch. [2] 51, 249; A. 5, 94; Liebiq, A. 7, 239; 26, 147; Leroy, A. ch. [7] 21, 138). Rhombisch pyramidal (Burghardt, Soc. 27, 937; Wackenroder, J. pr. [1] 28, 205; vgl. Groth, Ch. Kr. 5, 644). Prismen mit 1 H₂O (aus konz. Lösungen) (Tuschnowa-Philippowa, Ar. Pth. 51, 183). Löslich in 4 Tln. siedendem Wasser (Robiquet, A. ch. [2] 51, 244; A. 5, 94), in 50 Tln. Methylalkohol und Essigester, in 100 Tln. Aceton; löslich in Alkohol und Benzol, sehr schwer löslich in Amylalkohol, Ligroin, Schwefelkohlenstoff und Glycerin (VALENTI, C. 1905 II, 491). Wärmetönung beim Lösen von Mekonsäure in Wasser: BERTHELOT, A. ch. [6] 7, 199; LEROY. Verbrennungswärme des Trihydrats bei konstantem Volumen: 492,2 kcal/Mol (LEROY). Elektrische Leitfähigkeit: OSTWALD, Ph. Ch. 3, 399. Mekonsäure bildet mit Basen Salze von einbasischem, zweibasischem und dreibasischem Charakter (Liebig, A. 26, 114). Verhält sich bei der Titration gegen die meisten Indicatoren, auch Helianthin wie eine zweibasische Säure, gegen Wasserblau (Poirrierblau) dagegen wie eine dreibasische Säure (ASTRUC, C.r. 130, 1564). Wärmetönung bei der Neutralisation durch Natronlauge: Gal, Werner, C.r. 103, 1141; Bl. [2] 47, 161; Berthelot, A. ch. [6] 7, 199.

Mekonsäure geht beim Erhitzen auf 120—220° unter Verlust von Kohlendioxyd in

Komensäure (S. 461) über (Robiquet, A. ch. [2] 53, 428). Gibt beim Erhitzen im Köhlen-

¹⁾ Die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von BORSCHE, B. 49 [1916], 2538 für Mekonsäure aufgestellte Formel HO₂C·C(OH)₂·CH₂·CO· CH(OH) · C(OH) a · CO a H wurde von THOMS, PIETRULLA, Ber. disch. Pharmaz. Ges. 31 [1921], 19 und von VERKADE, R. 43 [1924], 885 widerlegt.

djoxydstrom auf 300° Pyromekonsaure (Bd. XVII, S. 435) (Peratoner, Leone, G. 24 II, 79). Liefert bei der trocknen Destillation Pyromekonsäure (ROBIQUET, A. ch. [2] 51, 254; A. 5, 102; STENHOUSE, A. 49, 18; BROWN, A. 84, 33; IHLEE, A. 188, 32; OST, J. pr. [2] 19, 178, 180) und etwas Komensaure (STENHOUSE; OST). Wird durch Oxydation mit Wasserstoffperoxyd in Gegenwart von Eisen in 6-Oxy-komensäure (S. 540) übergeführt (Tickle, COLLIE, Soc. 81, 1006). Reduziert in der Hitze Goldchlorid, Quecksilberchlorid bei Zusatz von Kalilauge; reduziert Chromsäure und schwefelsaure Permanganat-Lösung schon in der Kälte (Valenti, C. 1905 II, 492). Wird von Salpetersäure bei Gegenwart von Silbernitrat unter Bildung von Kohlensäure, Oxalsäure, Cyansäure oder Blausäure zersetzt (Liebig, A. 5, 287). Salpetersäure allein oxydiert Mekonsäure zu Oxalsäure (Robiquet, A. ch. [2] 51, 257; A. 5, 104). Die Reduktion von Mekonsäure mit Natriumsmalgam führt zu Hydromekonsäure (S. 505) (v. Korff, A. 138, 191). Beim Einleiten von Chlor in eine wäßrige Lösung von mekonsaurem Ammonium bildet sich 6-Chlor-komensaure (S. 462) (How, A. 83, 354). Durch Erwärmen von wasserfreier Mekonsäure mit einem Gemisch von Phosphorpentachlorid und Phosphoroxychlorid und Behandlung des Reaktionsprodukts mit Eiswasser erhält man eine Verbindung C₇H₃O₆Cl (Chlormekensäure; S. 505) (HILSEBEIN, J. pr. [2] 32, 132). Mekonsäure wird von Bromwasser in 6-Brom-komensäure (S. 462) übergeführt (How, A. 83, 356; vgl. Mennel, J. pr. [2] 26, 465); dieselbe Säure entsteht auch, wenn man zur essigsauren Lösung von 1 Mol Mekonsäure eine essigsaure Lösung von 1 Mol Brom zufügt und die Lösung sofort unter vermindertem Druck eindampft oder wenn man Mekonsäure 36-48 Stdn. Bromdämpfen aussetzt (Peratoner, Castellana, C. 1905 II, 679; G. 86 I, 25). Beim Behandeln von Mekonsäure in wäßr. Suspension mit 2 Mol Brom unter guter Kühlung entsteht 6.6-Dibrom-komensäure (S. 462) (Men., J. pr. [2] 26, 466). Mekonsäure liefert bei längerem Kochen mit Wasser (ROBIQUET, A. ch. [2] 51, 245, A. 5, 95), schneller beim Kochen mit Salzsäure (Liebig, A. 7, 239; How, A. 80, 67), ferner beim Erhitzen mit Jodwasserstoffsäure (v. Korff, A. 138, 195) Komensäure. Beim Kochen von Mekonsäure mit konz. Kalilauge entstehen Kohlensäure, Oxalsäure u. a. Substanzen (Wackenroder, Pharmac. Centralbl. 1841, 589). Bei der Spaltung mit Barytwasser erhält man Acetylcarbinol bezw. sein Kondensationsprodukt 5-Oxo-3-methyl-[1.2-pyran]-dihydrid-(5.6)(?) (Bd. XVII, S. 254) und Oxalsäure, neben geringen Mengen Ameisensäure, Kohlensäure sowie gummiartigen Substanzen (Per., Leonaedi, G. 30 I, 547, 555, 567). Beim Kochen mit überschüssigem Ammoniak bildet sich Komenaminsäure (Syst. No. 3349) (How, A. 83, 353). Beim Kochen von mekonsaurem Silber Ag₃C₇HO, mit Äthyljodid entsteht Äthyläthermekonsäurediäthylester (S. 552) (Peb., Ch. Z. 21, 40; G. 30 I, 541). Durch Behandlung von entwässerter Mekonsäure mit absol. Alkohol und Chlorwasserstoff gewinnt man je nach den Versuchsbedingungen Mekonsäuremonoathylester oder Mekonsäurediathylester (MEN., J. pr. [2] 26, 450, 453; vgl. How, A. 83, 358, 370).

Mekonsäure wird im Organismus von Kaninchen, Hunden und Menschen nahezu vollständig verbrannt (Tuschnowa-Philippowa, Ar. Pth. 51, 184). Sie ist gleich ihren Salzen unschädlich für den tierischen Organismus (Valenti, C. 1905 II, 492).

Mekonsäure gibt mit Eisenchlorid eine blutrote Färbung (Robiquet, A. ch. [2] 51, 246, 258; A. 5, 96, 105), die bei Zusatz von Phosphorsäure oder Oxalsäure verschwindet (Dufré, J. 1875, 907). Beim Erhitzen kleiner Mengen Mekonsäure mit konz. Schwefelsäure und etwas Jodsäure tritt eine Rosafärbung auf; erhitzt man kleinste Mengen Mekonsäure mit einigen Tropfen konz. Salpetersäure vorsichtig bis zur Trockne und gibt zu dem erkalteten Rückstand einige Tropfen alkoh. Kalilauge, so färbt er sich vorübergehend violett und dann beim Rühren lebhaft rot (Val.). Farbreaktionen von Mekonsäure mit Kaliumpersulfat, Kaliumferrocyanid, Ammoniummolybdat und Natriummetavanadat: Val. Nachweis von Mekonsäure in tierischen Organen: Val. Titrimetrische Bestimmung von Mekonsäure mit 0,1 n-Alkalilauge: Val.; Mallingerott, Dunlap, Am. Soc. 27, 963.

NH₄C₇H₂O₇ + H₂O. B. Scheidet sich ab, wenn man in die wäßr. Lösung des zweibasischen Ammoniumsalzes Chlor einleitet (How, A. 83, 355). Nadeln (aus siedendem Wasser). — (NH₄)₂C₇H₂O₇ + xH₂O. Nadeln (aus siedendem Wasser) (How, A. 83, 352). — Hydroxylamin in wäßr. Lösung (Peratoner, Tamburello, G. 88 II, 236; vgl. V. Meyer, B. 17, 1061; Odernheimer, B. 17, 2081). Nadeln. Sehr leicht löslich in Wasser, schwer in Alkohol, Äther, Chloroform, unlöslich in Ligroin (O.). Zersetzt sich bei 190° (O.). Reduziert Fehlingsche Lösung in der Kälte (O.). — Ag₂C₇H₂O₇. B. Durch Fällen von Mekonsäure mit Silbernitrat in wäßr. Lösung (Liebig, A. 26, 115). Weißer Niederschlag. — Ag₃C₇HO₇. B. Man neutralisiert Mekonsäure mit Ammoniak und fällt die Lösung mit Silbernitrat (Liebig, A. 26, 115). Gelber Niederschlag. — CaC₇H₂O₇ + 4H₂O. B. Aus der mit verd. Ammoniak genau neutralisierten wäßrigen Lösung von Mekonsäure durch Fällen mit Calciumchlorid (Per., T.). Flockiger, gelblicher Niederschlag, der bald krystallinisch wird. — Ca₂(C₄HO₇)₂ + 6(?)H₂O. B. Man versetzt 100 cm³ einer Lösung von Calciumnitrat (entsprechend 1,674 g CaO)

mit einer Lösung von 5,05 g krystallisierter Mekonsäure in 3 Mol Natriumhydroxyd enthaltender Natronlauge (Mallinckrodt, Dunlap, Am. Soc. 27, 959). Aus berechneten Mengen Mekonsäure und Calciumoxyd in wäßr. Lösung (Ma., Du.). Amorpher, hellgelber Niederschlag. — CaNH₄C₇HO₇+2 oder 3H₂O. B. Aus Mekonsäure, überschüssigem Ammoniak und Calciumnitrat (Ma., Du.). Blaßgelber, voluminöser Niederschlag. — BaC₇H₂O₇+3H₂O. B. Man fällt eine mit verd. Ammoniak neutralisierte wäßrige Lösung von Mekonsäure mit Bariumchlorid (Per., T.). Amorph. — Ba₃(C₇HO₇)₂+6(?)H₂O. B. Aus berechneten Mengen Mekonsäure und Bariumhydroxyd (Ma., Du.). Gelbe Krystalle. — Pb₃(C₇HO₇)₂+2H₂O. B. Durch Fällen von Mekonsäure mit Bleiacetat (Stenhouse, A. 51, 231). Flockiger Niederschlag. Unlöslich in Wasser. — Fe₂Ca₃(C₇HO₇)₄+5H₂O. B. Aus Mekonsäure, überschüssigem Calciumchlorid und Eisenchlorid (Rennie, Chem. N. 42, 75; J. 1881, 936). Roter, amorpher Niederschlag (aus heißem Wasser). Schwer lößlich in kaltem Wasser. — Harnstoff-Salz 3CH₄ON₂+C₇H₄O₇. Krystalle (Hlastwettz, J. pr. [1] 69, 105; J. 1856, 699). — Anilin-Salz $2C_6H_7N+C_7H_4O_7.$ Krystalle (v. Korff, A. 138, 195).

Umwandlungsprodukte unbekannter Konstitution aus Mekonsäure.

Chlormekensäure C₇H₃O₆Cl. B. Man erwärmt entwässerte Mekonsäure mit Phosphorpentachlorid und Phosphoroxychlorid, bis die Entwicklung von Chlorwasserstoff nachläßt und die Flüssigkeit braun geworden ist, destilliert bei höchstens 140° das Phosphoroxychlorid ab und trägt den Rückstand allmählich in Eiswasser ein (HILSEBEIN, J. pr. [2] 32, 132). — Prismen mit 1H₃O (aus Wasser). Schmilzt bei 165° unter Schwärzung und Gasentwicklung. Nicht flüchtig. Leicht löslich in Alkohol und Äther, schwerer in Wasser. — Zerfällt bei der trocknen Destillation in Kohlendioxyd und Chlorpyromekensäure (s. u.). Zinkstaub und Eisessig wirken auf Chlormekensäure nicht ein; mit Natriumamalgam in saurer Lösung entsteht Chlordihydromekensäure (s. u.). Beim Erhitzen mit rauchender Jodwasserstoffsäure auf 100° wird "Oxyamylendicarbonsäure" (Bd. III, S. 454) gebildet. Die wäßr. Lösung wird durch Eisenchlorid dunkelgrün gefärbt. Die Lösung von Chlormekensäure in kaltem konzentriertem Ammoniak färbt sich bald rot, dann dunkelblau und enthält nun "Mekenrot" und "Mekenblau". — Ba(C₇H₂O₆Cl)₂. B. Beim Versetzen der konzentrierten wäßrigen Lösung der Chlormekensäure mit Barytwasser in der Kälte. Prismen. Schwer löslich in kaltem Wasser. — Ba₃(C₇O₆Cl)₂. B. Durch Kochen des vorangehenden Bariumsalzes mit überschüssigem Barytwasser. Krystallpulver. Unlöslich in Wasser.

Chlormekensäure-monoäthylester C₂H₇O₂Cl. B. Durch Einleiten von Chlorwasserstoff in die alkoh. Lösung der Chlormekensäure (H., J. pr. [2] 32, 138). — Nadeln (aus Alkohol). F: 148°. Schwer löslich in kaltem, leicht in heißem Wasser, in Alkohol, Äther, Chloroform und Benzol. Gibt in wäßr. Lösung mit Eisenchlorid eine schmutzig grüne Färbung.

Acetyl-chlormekensäure-monoäthylester C₁₁H₉O₇Cl. B. Durch Erhitzen von Chlormekensäure-monoäthylester mit überschüssigem Essigsäureanhydrid auf 100° (H., J. pr. [2] 32, 139). — Nadeln. F: 70°. Schwer löslich in Wasser, leicht in Alkohol, Äther, Chloroform und Benzol. — Beim Erhitzen mit Wasser wird Essigsäure abgespalten.

Chlordihydromekensäure C₇H₈O₈Cl. B. Durch Reduktion von Chlormekensäure mit Natriumamalgam in saurer Lösung (H., J. pr. [2] 32, 146). — Prismen (aus Alkohol). Schmilzt unter teilweiser Zersetzung bei 145°. Leicht löslich in Alkohol und Äther, schwerer in Wasser. Gibt in wäßr. Lösung mit Eisenchlorid eine hellgrüne Färbung.

Chlorpyromekensäure $C_5H_2O_3Cl$. B. Bei der trocknen Destillation von Chlormekensäure (H., J. pr. [2] 32, 140). — Prismen mit $1H_2O$ (aus Wasser oder Alkohol). F: 174°. Verflüchtigt sich schon bei gewöhnlicher Temperatur. Schwer löslich in Wasser, leicht in Alkohol und Äther. Gibt in wäßr. Lösung mit Eisenchlorid eine dunkelgrüne Färbung. — $Ca(C_5H_2O_2Cl)_2$. Nadeln (aus Wasser). Schwer löslich in heißem Wasser.

Funktionelle Derivate der Mekonsäure.

Mekonsäure-Derivate, die sich nur von der Enolform HC·CO·C·OH HO₂C·C-O-C·CO₂H ableiten lassen, s. S. 552.

 $\begin{array}{ll} \textbf{Mekons \"{a}ure mono \"{a}thy lester} & C_{\textbf{s}}H_{\textbf{s}}O_{\textbf{7}} = \frac{HC \cdot CO \cdot CO}{C_{\textbf{s}}H_{\textbf{s}} \cdot O_{\textbf{s}}C \cdot C \cdot C - O - CH \cdot CO_{\textbf{s}}H} & \text{bezw.} \end{array}$

HC·CO·C·OH $C_2H_5\cdot O_2C\cdot C-O-C\cdot CO_3H$ Man leitet in eine Suspension von 1 Tl. entwässerter C₂H₅·O₂C·C-O-C·CO₃H

Mekonsäure in 2 Tln. absol. Alkohol unter Erwärmen Chlorwasserstoff ein, bis ein Niederschlag entsteht (Mennel, J. pr. [2] 26, 450; vgl. How, A. 83, 358). — Nadeln (aus heißem Wasser). F: 179° (M.). Sehr leicht löslich in Ather, heißem, gewöhnlichem Alkohol und siedendem Wasser, schwerer in absol. Alkohol (H.). Gibt mit Ferrisalzen eine tiefrote Färbung (H.). — Liefert mit überschüssigem Ammoniak das Ammoniumsalz des Mekonsäuremonoamids (M.; H.). Reagiert mit Brom unter Bildung von 6.6-Dibrom-komensäure-äthylester (S. 463) (M.). — AgC₂H₇O₇ + H₂O. Krystalle (aus Wasser) (H.; M.). — Ba(C₂H₇O₇)₂ (bei 100°). Gelbe Krystalle (H.). — BaC₂H₆O₇ (bei 100°). Nadeln (H.).

Mekonsäurediäthylester $C_{11}H_{12}O_7 = C_5H_2O_3(CO_2 \cdot C_2H_5)_2$. B. Man leitet in eine Suspension von 1 Tl. entwässerter Mekonsäure in 2 Tln. absol. Alkohol Chlorwasserstoff ein, bis der zuerst entstandene Niederschlag wieder in Lösung gegangen ist, läßt dann einige Stunden stehen und gießt die Lösung in wenig kaltes Wasser (MENNEL, J. pr. [2] 26, 453; vgl. How, A. 83, 370). — Krystallisiert aus konzentrierter, heißer wäßriger Lösung in wasserfreien Blättchen, aus etwas verdüfinterer Lösung in Nadeln mit $^{1}/_{2}H_{2}O$ (M.). Schmilzt wasserfreie bei 111,5° (M.), 110° (H.). Sehr leicht löslich in Alkohol (H.). Gibt mit Ferrisalzen eine rote Färbung (H.). — Wird von Brom nicht angegriffen (M.). — NH₄C₁₁H₁₁O₇. Gelbe Nadeln (aus heißem Alkohol). Leicht löslich in kaltem Wasser (H.). — Silbersalz. Gelber, voluminöser Niederschlag. Leicht löslich in Salpetersäure und in Ammoniak (M.). — Ba(C₁₁H₁₁O₇)₂. Gallertartiger Niederschlag. Unlöslich in siedendem Wasser (H.).

 $\begin{aligned} \textbf{Mekonsäuremonoamid} \ \ C_7H_6O_6N &= \frac{HC \cdot CO \cdot CO}{H_2N \cdot OC \cdot \overset{\parallel}{C} - O - \overset{\parallel}{C}H \cdot CO_2H} \ \ \text{bezw}. \end{aligned}$

HC·CO·C·OH

H₂N·CO·C·O—

B. Beim Versetzen einer warmen wäßrigen oder alkoholischen H₂N·CO·C·CO₂H

Lösung von Mekonsäuremonoäthylester mit überschüssigem wäßrigem oder alkoholischem Ammoniak scheidet sich das Ammoniumsalz des Mekonsäuremonoamids ab, aus dem durch Behandeln mit Salzsäure Mekonsäuremonoamid erhalten wird (How, A. 83, 363; Mennel, J. pr. [2] 26, 461). — Krystalle (aus heißem Wasser). Enthält, über Schwefelsäure getrocknet, 1H₂O (M.). — Geht durch Erwärmen mit Alkalilauge in Mekonsäure über (H.; M.). Auch beim Auflösen des Monoamids in heißer konzentrierter Salzsäure wird Mekonsäure gebildet (M.). — (NH₄)₂C₇H₂O₆N. Gelbliche Nadeln (aus verd. Alkohol) (M.). Nicht unzersetzt löslich in heißem Wasser, unlöslich in kaltem Alkohol (H.).

Mekonsäurediamid $C_7H_8O_5N_9=C_5H_9O_3(CO\cdot NH_9)_9$. B. Beim Kochen von Mekonsäurediäthylester mit Ammoniak (How, J. 1855, 494). — Graues Pulver. Reagiert sauer. Schwer löslich in kaltem Wasser und verd. Säuren. Wird durch Alkalien leicht zersetzt.

- 2. 2.6-Dioxo-[1.2-pyran]-dihydrid-dicarbonsdure-(3.5), a.y-Dicarboxy-glutaconsdureanhydrid $C_7H_4O_7=\frac{HO_1C\cdot HC\cdot CH:C\cdot CO_2H}{OC-O-CO}$.
- $\begin{aligned} \textbf{6-Oxo-2-imino-[1.2-pyran]-dihydrid-(3.6)-dicarbons \"{a}ure-(3.5)-di \ddot{a}thylester,} \\ \alpha.\gamma-\textbf{Dicarb \ddot{a}thoxy-glutaconisoimid} \quad C_{11}H_{13}O_{6}N = \\ & C_{2}H_{5}\cdot O_{2}C\cdot C:CH\cdot CH\cdot CO_{2}\cdot C_{2}H_{5} \\ & OC-O-C:NH \end{aligned}. \quad \text{Zur}$

Konstitution vgl. Errera, B. 34, 3703. — B. Beim Einleiten von trocknem Ammonisk in eine ca. 5% jege Lösung von 6-Äthoxy-cumalin-dicarbonsäure-(3.5)-diäthylester (8. 553) in Benzol (Guthzert, B. 26, 2796; vgl. Er., B. 34, 3703; G., Eysser, J. pr. [2] 80, 39). — Asbestartige Masse (aus heißem Aceton). F: 178—179° (G.; G., Ey.). 1 Tl. löst sich bei Zimmertemperatur in 175 Tln. Aceton, 254 Tln. Chloroform, 277 Tln. Eisessig, 410 Tln. Methylalkohol, 878 Tln. Äthylalkohol, 2200 Tln. Äther, 3200 Tln. Benzol; unlöslich in Schwefel-

kohlenstoff, Tetrachlorkohlenstoff und in Äthylenbromid (G., Ey.). In benzolischer oder ätherischer Lösung wird durch Ammoniak kein Ammoniumsalz gefällt (Hantzsch, Dollfus, B. 35, 244). Gibt in alkoholisch-wäßriger Lösung mit Eisenchlorid eine gelbe Färbung (Er.). — Geht beim Erhitzen auf den Schmelzpunkt oder beim Kochen der alkoh. Lösung (G.; G., Ey.) sowie bei Behandlung mit Zinkstaub und Eisessig in der Wärme (G., Ey.) in 2.6-Dioxypyridin-dicarbonsäure-(3.5)-diäthylester (Syst. No. 3364) über. Bei kurzem Kochen mit Alkalilauge wird Ammoniak abgespalten (G.). Gibt mit 0,5% jeger alkoholischer Natronlauge (G.; G., Ey.) sowie mit heißer ca. 5% jeger Sodalösung (G.) das Mononatriumsalz des 2.6-Dioxypyridin-dicarbonsäure-(3.5)-diäthylesters. Läßt man 0,5% jege wäßrige Natronlauge oder wäßrige 2 n- Ammoniaklösung auf den Ester einwirken und säuert darauf die Lösung mit verd. Schwefelsäure an, so erhält man α-Cyan-glutaconsäure-diäthylester (Bd. II, S. 849) (G., Ey.). Liefert bei der Einw. von 2,5% jegem alkoholischem Ammoniak das Amid des 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-monoāthylesters, Aminomethylenmalonsäureāthylesteramid (Bd. III, S. 787) und Malonsäureāthylesteramid (G., Ey.). Gibt mit Äthylamin in wäßriger Lösung α-Cyan-glutaconsäure-diäthylester, in alkoholischer oder ätherischer Lösung β-[Äthylamino]-äthylen-α-α-dicarbonsäure-äthylester-amid (Bd. IV, S. 126) und ein öliges Produkt (G., Ey.). Liefert bei längerem Stehenlassen mit Anilin Anilinomethylen-malonsäureäthylesteranilid (Bd. XII, S. 533) (Band, A. 285, 147; G., Ey.).

6-Oxo-2-äthylimino-[1.2-pyran]-dihydrid-(3.6)-dicarbonsäure-(3.5)-diäthylester, N-Äthyl- $\alpha \gamma$ -dicarbäthoxy-glutaconisoimid $C_{13}H_{17}O_8N=C_2H_5\cdot O_2C\cdot C:CH\cdot CO_2\cdot C_2H_5$. Das Molekulargewicht ist kryoskopisch in Benzol bestimmt

(Haussmann, A. 285, 85). Zur Konstitution vgl. Errera, B. 34, 3703. — B. Beim Versetzen einer möglichst konzentrierten Lösung von 6-Äthoxy-cumalin-dicarbonsäure-(3.5)-diäthylester (S. 553) in Benzol mit der berechneten Menge einer stark gekühlten, 2½,00 igen ätherischen Athylaminlösung (H.). — Nadeln (aus Chloroform + Petroläther). F: 1230 (H.). Leicht löslich in Aceton, Chloroform und Benzol (H.), ziemlich leicht in kaltem Äther und in Alkohol, fast unlöslich in Petroläther (Guthzeit, Eyssen, J. pr. [2] 80, 51). Nicht unzersetzt löslich in Wasser, Salzsäure, Sodalösung und Natronlauge (H.). Bildet keine Salze (H.). — Beim Schmelzen sowie bei Einw. von absolutem Alkohol entsteht 1-Äthyl-2.6-dioxo-pyridintetra-hydrid-dicarbonsäure-(3.5)-diäthylester (Syst. No. 3369) (H.). Durch mehrstündige Einw. von 0,5% iger Natronlauge auf N-Athyl-α,γ-dicarbäthoxy-glutaconisoimid und Ansäuern der filtrierten Lösung erhält man Isoaconitsäure-diäthylester-āthylamid (Bd. IV, S. 114) (G., Ex.). Bei 3-stündigem Erwärmen von N-Äthyl-α,γ-dicarbāthoxy-glutaconisoimid mit 11% iger Kalilauge bildet sich 1-Äthyl-2.6-dioxo-pyridintetrahydrid (Syst. No. 3202) (H.). Bei der Einw. von 2,5% igem alkoholischem Ammoniak erhält man 1-Äthyl-2.6-dioxo-pyridintetrahydrid-dicarbonsäure-(3.5)-äthylester-amid (Syst. No. 3369) und Aminomethylen-malonsäureäthylesteramid (Bd. III, S. 787) neben einem öligen Produkt (wahrscheinlich Malonsäure-äthylesterathylamid) (G., Ex.). Bei längerem Stehenlassen mit Anilin entsteht Anilinomethylen-malonsäureäthylesteramilid (Bd. XII, S. 533) (Band, A. 285, 148). — Verbindung mit Athylamin 2C₂H₇N + C₁₃H₁₇O₆N. Gelbes Öl (H.).

6-Oxo-2-phenylimino-[1.2-pyran] - dihydrid - (3.6) - dicarbonsäure - (3.5) - diäthylester, N - Phenyl - $\alpha.\gamma$ - dicarbäthoxy - glutaconisoimid $C_{17}H_{17}O_6N=C_2H_5\cdot O_2C\cdot C:CH\cdot CH\cdot CO_2\cdot C_2H_5$. Zur Konstitution vgl. Errera, B. 34, 3703; Guthzeit,

OC-O-C:N·C₆H₅

Eyssen, J. pr. [2] 80, 54, 61. — B. Aus 6-Äthoxy-cumalin-dicarbonsäure-(3.5)-diäthylester (S. 553) und Anilin in äther. Lösung (Band, A. 285, 108). — Blättchen (aus Äther oder aus wenig Chloroform + Äther). F: 147° (B.). Löst sich bei Zimmertemperatur in ca. 460 Tln. absol. Alkohol, 480 Tln. Äther, 4600 Tln. Ligroin; leicht löslich in Benzol, Aceton und Eisesig, sehr leicht löslich in Chloroform (B., A. 285, 110). — Geht beim Schmelzen sowie beim Erhitzen mit Alkohol in 1-Phenyl-2.6-dioxo-pyridintetrahydrid-dicarbonsäure-(3.5)-diäthylester (Syst. No. 3369) über (B., A. 285, 112, 113). Liefert bei Einw. von verdünnter wäßriger Natronlauge oder von verdünntem wäßrigem Ammoniak die entsprechenden Salze des a.y-Dicarboxy-glutaconsäure-a.y-diäthylester-a-anilids (Bd. XII, S. 319) (G., Ey., J. pr. [2] 80, 55, 56). Gibt mit 2,5%/eigem alkoholischem Ammoniak neben einem öligen Produkt (wahrscheinlich Malonsäureäthylesteramid enthaltend) 1-Phenyl-2.6-dioxo-pyridintetrahydrid-dicarbonsäure-(3.5)-äthylester-amid (Syst. No. 3369), mit 2,5%/eiger ätherischer Äthylamin-Lösung Äthylaminomethylen-malonsäureäthylesteranilid (Bd. XII, S. 533) neben einem öligen Produkt (wahrscheinlich Malonsäureäthylesteräthylamid) (G., Ey.). Liefert bei längerem Stehenlassen mit Anilin Anilinomethylen-malonsäureäthylesteranilid (Bd. XII, S. 533) (B.) A. 285, 123).

2. Monoanhydrid der β-Santorsäure $C_{13}H_{16}O_7 = C_{11}H_{14}O_3(CO_9H)_8^{-1}$). B. Beim Erhitzen von β-Santorsäure (Bd. IX, S. 995) auf 135—150° (Francesconi, G. 22 I, 203; 29 II, 215, 238) oder von α-Santorsäure (Bd. IX, S. 995) über den Schmelzpunkt (F., G. 22 I, 200; 23 II, 458; 29 II, 241). — Prismen (aus Äther). F: 192—193°; mäßig löslich in Äther (F., G. 22 I, 200). — Geht beim Erhitzen auf 260—280° in das Anhydrid der Ketoß-santorsäure (Bd. XVII, S. 567) über (F., G. 29 II, 216). Beim Konzentrieren der wäßr. Lösung auf dem Wasserbad entsteht β-Santorsäure (F., G. 22 I, 202; 23 II, 458).

c) Oxo-carbonsäuren $C_nH_{2n-12}O_7$.

Verbindung C₁₅H₁₈O₇, s. nebenstehende Formel. (HO₂C)(CH₃)C CH₂ CH₂
Diese Formel ist der in Bd. X, S. 963 beschriebenen (HO₂C CO)(CH₃)C : C CH CH CH₃
Sāure C₁₅H₂₀O₇ zuzuerteilen; vgl. dazu nach dem
Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs
[1. I. 1910] Wedekind, Tettweiler, B. 64, 1796; Ruzicka, Eichenberger, Helv. 13, 1120.

d) Oxo-carbonsäuren C_nH_{2n-14}O₇.

 $\beta.\zeta$ - Dioxo - δ - methyl - ζ - [2.4 - dioxo - 6 - methyl - dihydropyryl - (3)] - δ - hexylen - γ - carbonsaure $C_{14}H_{14}O_7 \Rightarrow CH_3 \cdot CO \cdot CH(CO_3H) \cdot C(CH_3) : CH \cdot CO \cdot HC \cdot CO \cdot CH$

 $O\dot{C}$ -O- \dot{C} -CH₃

ζ-Oxo- β -imino- δ -methyl- ζ -[2.4-dioxo- θ -methyl-dihydropyryl-(3)]- δ -hexylen- γ -carbonsäure-äthylester C₁H₁O₂N =

 γ -carbonsaure-athylester $C_{16}H_{19}U_{6}N = CH_{3} \cdot C(:NH) \cdot CH(CO_{3} \cdot C_{2}H_{5}) \cdot C(CH_{3}) \cdot CH \cdot CO \cdot HC \cdot CO \cdot CH$ bezw. desmotrope Formen. B.

Durch Erhitzen von 6,2 g Triacetsäurelacton (Bd. XVII, S. 442) und 7,5 g β-Imino-buttersäure-äthylester in Gegenwart von Eisessig bis fast zum Sieden, neben der Verbindung HC:C(CH₂)·C·CO·O

HC:C(CH₃)·C·CO·CH

Oder

OC—O—C·CH:C·CH₃

Oder

OC—O—C·CH₃

(Syst. No. 2763) (Fleischmann, Soc. 91, 250, 255). — Platten (aus Methylalkohol). F: 193°. Leicht löslich in heißem Alkohol, Methylalkohol und Chloroform, unlöslich in Wasser und Äther; löslich in wäßr. Alkalien. — Zersetzt sich beim Kochen mit sehr konzentrierten Alkalien unter Entwicklung von Ammoniak. Liefert beim Kochen mit alkoh. Kalilauge 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester (Syst. No. 3333).

e) Oxo-carbonsăuren $C_nH_{2n-16}O_7$.

1.3-Dioxo-phthalan-dicarbonsäure-(4.6), 1.2-Anhydro-prehnitsäure $C_{10}H_4O_7$, s. nebenstehende Formel. Zur Konstitution der Prehnitsäure, die in Bd. IX, S. 997 entsprechend einer älteren Auffassung noch als Benzol-tetracarbonsäure-(1.2.3.4) formuliert ist, vgl. Bamford, Simonsen, Soc. 97 [1910], 1905; Freund, Fleischer, A. 411 [1916], 18. — B. Beim Erhitzen von Prehnitsäure auf 250° (Baeyer, A. 166, 328). — Krystalle. F: 239°; destilliert bei höherer Temperatur unzersetzt (Baeyer).

¹) Die von Francesconi, Santonina e suoi derivati [Rom 1904], S. 149 für das Monoanhydrid der β-Santorsäure angegebene Formel OC·C(CH₂)·CH·CH₂·CO₂H ist nicht mehr haltbar; vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Untersuchungen von Clemo, Haworth, Walton, Soc. 1929, 2368; 1930, 1110; CL., Ha., Soc. 1930, 2579; Ruzicka, Eichenbergeb, Helv. 13, 1117; Tsohitschibabin, Schtschukina, B. 63, 2793; Wedekind, Tettweilbe, B. 64, 387, 1796 über die Konstitution des Santonins. Dasselbe gilt für die im Bd. IX, S. 995 aufgeführte β-Santorsäure und die isomere α-Santorsäure.

f) Oxo-carbonsäuren $C_n H_{2n-18} O_7$.

3.5-Dioxo-2-benzal-furantetrahydrid-dicarbonsäure-(4.4) $C_{13}H_{8}O_{7}=(HO_{2}C)_{2}C$

OC·O·C:CH·C.H. (systematische Stammverbindung der nachstehenden Schwefel-

verbindungen).

8-Oxo-5-phenylimino-2-benzal-thiophentetrahydrid-dicarbonsäure-(4.4)-diäthylester $C_{23}H_{21}O_5NS = \frac{(C_2H_5\cdot O_2C)_2C-CO}{C_6H_5\cdot N:C\cdot S\cdot C:CH\cdot C_6H_5}$. B. Aus 4-Oxo-2-phenylimino-thiophentetrahydrid-dicarbonsäure-(3.3)-diäthylester (8. 502) und Benzaldehyd in Alkohol in Gegenwart von Piperidin (Ruhemann, Soc. 95, 122). — Blaßgelbe Nädelchen (aus Alkohol). F: 164°. Mäßig löslich in siedendem Alkohol.

3-Oxo-5-phenylimino-2-bensal-4-cyan-thiophentetrahydrid-carbonsäure-(4)-äthylester $C_{21}H_{16}O_8N_2S=\frac{(C_2H_5\cdot O_2C)(CN)C-CO}{C_4H_5\cdot N\cdot \dot{C}\cdot S\cdot \dot{C}:CH\cdot C_6H_5}$. B. Aus 4-Oxo-2-phenylimino-3-cyan-thiophentetrahydrid-carbonsäure-(3)-äthylester (8. 502) und Benzaldehyd in Alkohol in Gegenwart von Piperidin (R., Soc. 95, 121). — Nadeln (aus Alkohol oder Eisessig). F: 284°. Sehr schwer löslich in siedendem Alkohol, mäßig löslich in Eisessig.

g) Oxo-carbonsäuren $C_n H_{2n-24} O_7$.

 $\begin{array}{lll} 5 - Oxo - 2 - phenyl - 3 - [\alpha - oxo - \beta - phenyl - \beta - carboxy - athyl] - furantetra-hydrid - carbonsaure - (2), & \gamma - Phenyl - \beta - [\alpha - oxo - \beta - phenyl - \beta - carboxy-athyl] - butyrolacton - <math display="inline">\gamma$ - carbonsaure & $C_{20}H_{16}O_{7} = H_{2}C - CH \cdot CO \cdot CH(C_{6}H_{8}) \cdot CO_{2}H & \\ OC \cdot O \cdot C(C_{6}H_{8}) \cdot CO_{8}H & \\ \end{array}$

 $\begin{array}{l} \textbf{Dinitril, } \gamma\text{-Phenyl-}\beta\text{-}[\alpha\text{-}\infty\alpha\text{-}\beta\text{-}phenyl-}\beta\text{-}cyan\text{-}\ddot{a}thyl]\text{-}\gamma\text{-}cyan\text{-}butyrolacton(P)} \\ \textbf{C}_{20}\textbf{H}_{14}\textbf{O}_{3}\textbf{N}_{2} = \begin{array}{l} \textbf{H}_{2}\textbf{C} & \textbf{C}\textbf{H}\cdot\textbf{C}\textbf{O}\cdot\textbf{C}\textbf{H}(\textbf{C}_{6}\textbf{H}_{5})\cdot\textbf{C}\textbf{N} \\ \textbf{O}\textbf{C}\cdot\textbf{O}\cdot\textbf{C}(\textbf{C}_{6}\textbf{H}_{5})\cdot\textbf{C}\textbf{N} \end{array} \end{aligned} \tag{?) s. Bd. IX, S. 444.}$

5. Oxo-carbonsäuren mit 8 Sauerstoffatomen.

a) Oxo-carbonsăuren $C_nH_{2n-8}O_8$.

β.β-Dimethyl-γ-önantholacton-γ.δ.δ-tricarbonsäure $C_{12}H_{16}O_8 = H_2C$ — $C(CH_3)_2$. B. Aus dem Tetraäthylester der 1.1-Dimethyl-cyclopropan-OC· $C(CO_2H)$ · $C(C_2H_5)(CO_2H)_2$ durch Kochen mit methylalkoholischer Kalilauge und Ansäuern des Reaktionsprodukts, neben 2-Äthoxy-4-oxo-1.1-dimethyl-3-äthyl-cyclopentan-dicarbonsäure-(2.3) und β.β-Dimethyl-γ-önantholacton-γ.δ-dicarbonsäure vom Schmelzpunkt 213° (Perkin, Thorpe, Soc. 79, 772). — Prismen (aus Wasser). F: ca. 193° (Zers.). — Bei kurzer Einw. von heißer Natronlauge entsteht unter Aufspaltung des Lactonringes aine vierbasische Säure.

b) Oxo-carbonsäuren $C_nH_{2n-10}O_8$.

2.4.6 - Trioxo - pyrantetrahydrid - dicarbonsäure - (3.5) $C_7H_4O_8=HO_9C\cdot HC\cdot CO\cdot CH\cdot CO_9H$

0¢-0-¢0

4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure-(3.5)-diäthylester beim Erhitzen mit wäßrig-alkoholischer Kalilauge unter 3 Atm. Druck (Aptrzson, Blezinger, B. 41, 4030, 4035). — Nicht in freiem Zustand bekannt; beim Ansauern der waßr. Lösung des Kaliumsalzes entsteht unter Entwicklung von Kohlendioxyd 4-Oxo-2.6-dithion-thiopyrantetra-hydrid-carbonsäure-(3). Das Kaliumsalz liefert mit Methyljodid oder Dimethylsulfat 2.6-Bismethylmercapto-4-oxo-thiopyran-dicarbonsaure-(3.5), mit Athylbromid 2.6-Bis-athylmercapto-4-oxo-thiopyran-dicarbonsaure-(3.5). Beim Kochen des Silbersalzes mit Äthyljodid entsteht 2.6-Bis-āthylmercapto-4-oxo-thiopyran-dicarbonsāure-(3.5)-diāthylester. — $K_4C_7O_5S_8+6H_3O$. Blaßgelbe prismatische Krystalle (aus Wasser + Methylalkohol). — $Ag_4C_7O_5S_8$. Gelbe Nädelchen. Verpufft beim Erhitzen.

4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure-(3.5)-diäthylester bezw. 2.6-Disulfhydryl-4-oxo-thlopyran-dicarbonsäure-(8.5)-diäthylester, 2.6-Dimercapto-1-thio-pyron-dicarbonsäure-(3.5)-diäthylester C₁H₁₂O₅S₅ = C₂H₅·O₅C·C₅H₂OS₅·CO₅·C₂H₃. B. Das Kaliumsalz entsteht aus Aceton-α.α'-dicarbonsäure-diäthylester, Schwefelkohlenstoff und Kaliumhydroxyd unter Kühlung (Apitzsch, Blezinger, B. 41, 4029, 4031).

— Goldgelbe Blättchen (aus Chloroform + absol. Äther). Schmilzt bei schnellem Erhitzen bei ca. 133° (A., Bl.). Leicht löslich mit orangeroter Farbe in Benzol, Chloroform, Aceton, Essigester, etwas schwerer in Alkohol, Ather und Eisessig, unlöslich in Ligroin und Petroläther; leicht löslich in Alkalien und Alkalicarbonaten (A., Bl.). — Zersetzt sich beim Kochen mit Wasser (A., Bl.). Liefert bei Luftoxydation, bei der Einw. von Amylnitrit in Benzol oder bei der Oxydation durch 1 At.-Gew. Jod die Verbindung $C_{23}H_{25}O_{10}S_6$ (s. u.); bei der Oxydation mit konz. Salpetersaure in Eisessig oder mit 1 Mol Jod die Verbindung $C_{23}H_{20}O_{15}S_5$ (s. u.); mit Phosphorpentachlorid in Benzol erhält man je nach den Bedingungen die eine oder die andere Verbindung (A., Bl.; A., Kelber, B. 42, 2941, 2942, 2943). Bei der Oxydation der Salze mit Wasserstoffperoxyd entsteht je nach den Bedingungen 4-Oxo-thiopyran-dicarbonsäure-(3.5)-diäthylester-disulfinsäure-(2.6) (S. 566) oder 4-Oxo-thiopyrandicarbonsaure-(3.5)-diathylester-disulfonsaure-(2.6) (S. 583) (A., BAUER, B. 41, 4040, 4044). Bei der Reduktion mit Zink und Salzsaure in Alkohol erhält man 4-Oxo-thiopyrantetrahydrid-dicarbonsaure-(3.5)-diäthylester (8. 484) (A., Bl.). Das Kaliumsalz gibt bei Behandlung mit Methyljodid 2.6-Bis-methylmercapto-4-oxo-thiopyran-dicarbonsaure-(3.5)-diäthylester (S. 561), mit Benzoylchlorid 2.6-Bis-benzoylmercapto-4-oxo-thiopyran-dicarbonsaure-(3.5)diathylester (S. 562) (A., Bl.). Beim Kochen des Natriumsalzes in Alkohol mit Chloressigester entsteht 2.6-Bis-carbāthoxymethylmercapto - 1 - thio-pyron - dicarbonsaure - (3.5) - diathylester (S. 562) (A., B. 41, 4049). Beim Kochen mit Anilin entstehen Alkohol, Schwefelwasserstoff, mercaptanartige Verbindungen, N.N.-Diphenyl-harnstoff und Malonsäure-dianilid (A., Bau.). Mit Phenylisocyanat in Benzol wird 2.6-Bis-anilinoformylmercapto-4-oxo-thiopyran-dicarbonsaure-(3.5)-diathylester (S. 562) erhalten (A., Bau.). — (NH₄)₃C₁₁H₁₀O₅S₃. Gelbe Krystalle. Leicht löslich in Wasser und Alkohol; verliert an der Luft Ammoniak (A., Bl.). - $K_2C_{11}H_{10}O_5S_5 + C_2H_5 \cdot OH$. Hellgelbe Krystallwarzen (aus Alkohol + Äther). Sehr leicht löslich in Wasser und Alkohol (A., Bl.). — $Ag_2C_{11}H_{10}O_5S_3$. Gelber, käsiger Niederschlag (A., Br.). Unlöslich.

Verbindung C₂₂H₂₁O₁₀S₄, wahrscheinlich 6.6' - Dimercapto - 4.4' - dioxo - 1.1' - di-thio-[dipyryl-(2.2')-disulfid]-tetracarbonsäure-(3.5.3'.5')-tetraäthylester [C₂H₅·O₂C·C·CO·C·CO₃·C₂H₅]

Das Molekulargewicht ist kryoskopisch in Bromoform HS-C-S-C-Sbestimmt (APITZSCH, KELBER, B. 42, 2942). — B. Aus 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsaure-(3.5)-diathylester durch Luftoxydation, bei der Einw. von Amylnitrit in Benzol, bei der Oxydation durch 1 At-Gew. Jod oder durch Phosphorpentachlorid in Benzol (A., K., B. 42, 2942, 2943). — Orangerote Nadeln (aus Chloroform + Ather). F: 158—159°. Leicht löslich in Chloroform, Bromoform und heißem Äthylenbromid, schwer in Alkohol, Eisessig, Aceton, Essigester und Benzol, unlöslich in Wasser, Äther und Petroläther. — Wird durch Jod zur Verbindung $C_{33}H_{30}O_{15}S_{6}$ (s. u.) oxydiert. Liefert beim Behandeln mit Alkalien 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure-(3.5)-diäthylester zurück.

 $\begin{array}{c} \text{Verbindung } C_{33}H_{30}O_{15}S_{9} \stackrel{=}{=} \\ C_{2}H_{5}\cdot O_{2}C\cdot C\cdot CO\cdot C\cdot CO_{3}\cdot C_{2}H_{5} & C_{2}H_{5}\cdot O_{2}C\cdot C\cdot CO\cdot C\cdot CO_{3}\cdot C_{2}H_{5} & C_{2}H_{5}\cdot O_{3}C\cdot C\cdot C\cdot CO\cdot C\cdot CO_{3}\cdot C_{2}H_{5} \end{array}$ $-\mathbf{s}$ $-\ddot{\mathbf{c}} \cdot \mathbf{s} \cdot \ddot{\mathbf{c}}$ $-\mathbf{s}$ $-\ddot{\mathbf{c}} \cdot \mathbf{s} \cdot \ddot{\mathbf{c}} \cdot \mathbf{s}$ $\mathbf{S} \cdot \ddot{\mathbf{C}} \cdot \mathbf{S} \cdot \ddot{\mathbf{C}} - \mathbf{S} - \mathbf{S}$

Das Molekulargewicht ist kryoskopisch in Benzol bestimmt (APITZSCH, BLEZINGER, B. 41, 4039). — B. Aus 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsaure-(3.5)-diathylester (s. o.) durch Oxydation mit konz. Salpetersäure in Eisessig (Apitzsch, Blezinger, B. 41, 4038), mit 1 Mol Jod in verd. Alkohol (A., Kelber, B. 42, 2941) oder mit Phosphorpentachlorid in Benzol (A., K., B. 42, 2943). Aus der Verbindung C₂₂H₂₃O₁₀S₆ durch Oxydation mit Jod (A., K., B. 42, 2942). — Farblose Krystalle (aus Essigester). F: 185⁶ (A., Bl.). Leicht löslich in Chloroform, Aceton und Benzol, schwer in Essigester, Eisessig, Methylalkohol und Alkohol, unlöslich in Äther (A., Bl.). — Wird durch Alkali in 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure-(3.5)-diäthylester zurückverwandelt, wobei wahrscheinlich auch eine Sulfinsäure entsteht (A., Bl..; A., K.).

- 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure-(3.5)-äthylester-amid bezw. 2.6-Disulfhydryl-4-oxo-thiopyran-dicarbonsäure-(3.5)-äthylester-amid, 2.6-Dimercapto-1-thio-pyron-dicarbonsäure-(3.5)-äthylester-amid $C_2H_5O_4NS_2=C_2H_5\cdot O_2C\cdot C_5H_2OS_2\cdot CO\cdot NH_2$. B. Das Ammoniumsalz entsteht bei 4-stdg. Erhitzen von 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure-(3.5)-diäthylester mit alkoh. Ammoniak im Druckrohr auf 100^6 (Apirzsch, Blezinger, B. 41, 4034). $(NH_4)_2C_3H_7O_4NS_2$. Hellgelbe tetraederähnliche Krystalle (aus Äther). Leicht löslich in Wasser, unlöslich in Alkohol.
- 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure-(3.5)-diamid bezw. 2.6-Disulfhydryl-4-oxo-thiopyran-dicarbonsäure-(3.5)-diamid, 2.6-Dimercapto-1-thio-pyron-dicarbonsäure-(3.5)-diamid $C_7H_5O_3N_2S_3=H_4N\cdot CO\cdot C_5H_2OS_3\cdot CO\cdot NH_2$. B. Das Ammoniumsalz entsteht durch 8-stdg. Erhitzen von 4-Oxo-2.6-dithion-thiopyrantetra-hydrid-dicarbonsäure-(3.5)-diäthylester mit alkoh. Ammoniak im Druckrohr auf 120°; aus der wäßrigen, mit Essigsäure versetzten Lösung des Ammoniumsalzes wird durch verd. Salzsäure das freie Diamid abgeschieden (A., Bl., B. 41, 4034). Gelbe Nädelchen (aus siedendem Eisessig). Sehr schwer löslich in den üblichen Lösungsmitteln. (NH $_4$) $_2$ C $_7$ H $_4$ O $_3$ N $_2$ S $_3$. Hellgelbe rhomboedrische Kryställehen. Verliert leicht Ammoniak. Leicht löslich in Wasser, unlöslich in Alkohol.

c) Oxo-carbonsäuren $C_nH_{2n-12}O_8$.

2-0xo-[1.2-pyran]-carbonsäure-(5)-diessigsäure-(4.6), Pyron-(2)-carbonsäure-(5)-diessigsäure-(4.6), Cumalin-carbonsäure-(5)-diessigsäure-(4.6), Citracumalsäure $C_{10}H_8O_8=HO_3C\cdot C\cdot C(CH_1\cdot CO_2H):CH$

HO₂C·C(CH₂·CO₂H):CH

B. Bei längerem Stehenlassen von Aceton-α.α'-dicarbonsäure mit konz. Schwefelsäure (Nieme, v. Pechmann, A. 261, 199). — Darst. Man vermischt
500 g bei 145—150° entwässerter und pulverisierter Citronensäure mit 500 g konz. Schwefelsäure und 500 g rauchender Schwefelsäure (ca. 12°/₀ SO₃-Gehalt) und erwärmt nach ½ Stde.
auf dem Wasserbad, solange noch Kohlenoxyd entweicht; dann läßt man erkalten, versetzt
mit 125 g konz. Schwefelsäure und läßt 2—3 Wochen stehen, bis eine Probe des Gemisches
durch Wasser gefällt wird; hierauf gießt man in 800—900 cm³ eiskaltes Wasser und saugt
nach 24 Stdn. die gefällte Säure ab (N., v. P.). — Krystallpulver. Bräunt sich bei 150° und
schmilzt unter Gasentwicklung bei 185°. Leicht löslich in heißem Wasser und heißem Alkohol,
schwer in Äther und Eisessig, unlöslich in Chloroform und Benzol. — Zerfällt beim Erhitzen
auf 190—200° in Kohlendioxyd und Isodehydracetsäure (S. 409). Derselbe Zerfall findet
teilweise schon beim Umkrystallisieren aus heißem Wasser statt. Beim Abdampfen mit
Ammoniak entsteht 2-Methyl-pyridon-(6)-carbonsäure-(3)-essigsäure-(4) (Syst. No. 3359).

d) Oxo-carbonsäuren $C_nH_{2n-16}O_8$.

3-0xo-phthalan-tricarbonsäure-(1.4.6 oder 1.5.7), Phthalid-tricarbonsäure-(3.5.7 oder 3.4.6) $C_{11}H_eO_8$, Formel I oder II 1). B. Man kocht dichloressigsaures Kalium mit Kaliumacetat in wäßr. Lösung und erwärmt die Flüssigkeit, welche Glyoxyl-

säure-diacetat (CH₂·CO·O)₂CH·CO₂H enthält, mit Brenztraubensäure auf 60—70° in alkal. Lösung (DOEBNER, A. 311, 136). — Nadeln (aus Wasser). Spaltet oberhalb 200° allmählich Kohlendioxyd ab und schmilzt dann bei 270—280°. Leicht löslich in Alkohol und Äther. — Geht beim Kochen der wäßr. Lösung unter Kohlendioxyd-Abspaltung in Phthalid-dicarbonsäure-(4.6 oder 5.7) über.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von SIMONSEN, Soc. 97, 1912 und FREUND, FLEISCHER, A. 411, 20.

e) Oxo-carbonsăuren $C_nH_{2n-22}O_8$.

2-0xo-5.6-benzo-chroman-carbonsäure-(3)-malon-CH(COaH)a saure-(4). 5.6-Benzo-3.4-dihydro-cumarin-carbon-CH CH · CO2H saure-(3)-malonsaure-(4), 6-0xo-[naphtho-2'.1':2.3-.ċo pyranl-dihydrid-(5.6)-carbonsäure-(5)-malonsaure-(4) 1) C₁₇H₁₈O₈, s. nebenstehende Formel.

8-Cyan-5.6-benzo-8.4-dihydro-cumarin-cyanessig-säure-(4)-äthylester $C_{10}H_{14}O_4N_4$, s. nebenstehende Formel. B. Aus 1 Mol 2-Oxy-naphthaldehyd-(1) und 2 Mol Cyanessigester CH(CN)·CO2·C2H5 CH_CH·CN in alkoh. Lösung bei Gegenwart von Piperidin (KNOEVENAGEL, ∠ċo SCHROETER, B. 37, 4490). — Gelbe Nädelchen (aus Nitrobenzol). F: 283° (Zers.). Unlöslich in den üblichen Lösungsmitteln, leicht löslich in warmem, sehr schwer in kaltem Nitrobenzol. Zersetzt sich beim Kochen mit Eisessig.

6. Oxo-carbonsäuren mit 9 Sauerstoffatomen.

a) Oxo-carbonsäuren $C_n H_{2n-10} O_9$.

4.5 - Dioxo - furantetra hydrid - dicarbon säure - (2.3) - essigsäure - (2), α -Oxo-butyrolacton- β . γ -dicarbonsaure- γ -essigsaure, α -Oxo- γ -valerolacton-β.γ.δ-tricarbonsaure bezw. 4-0xy-5-oxo-furandihydrid-dicar- $\begin{array}{l} \text{bonsäure-(2.3)-essigsäure-(2),} \quad \alpha - 0 \text{ xy - } \Delta^{\alpha,\beta} \text{-crotoniacton-} \beta.\gamma \text{-dicarbonsäure-} \gamma \text{-essigsäure-} C_8 H_6 O_9 = \begin{array}{l} OC - CH \cdot CO_2 H \\ OC \cdot O \cdot C(CO_2 H) \cdot CH_3 \cdot CO_2 H \end{array} \end{array} \text{bezw.}$

 $HO \cdot C = C \cdot CO_{\bullet}H$ $\mathbf{OC} \cdot \mathbf{O} \cdot \mathbf{C(CO_3H)} \cdot \mathbf{CH_3} \cdot \mathbf{CO_3H} \; , \; \; \textbf{Oxalcitronensaurelacton}.$

Trimethylester $C_{11}H_{12}O_0=C_4HO_3(CO_3\cdot CH_3)_3\cdot CH_3\cdot CO_3\cdot CH_3$. B. Das Triäthylaminsalz entsteht aus Oxalessigsäuredimethylester (Bd. III, S. 780) und Triäthylamin; man zerlegt das Salz durch Behandlung mit Salzasure (MICHAEL, SMITH, A. 363, 49). — Krystalle. F: 63°. — Bariumsalz. Krystalle. F: 225—227°. — Triathylaminsalz. F: 103°. — Tripropylaminsalz. Krystalle. F: 88—89°.

Triäthylester $C_{14}H_{18}O_0 = C_4HO_3(CO_3 \cdot C_2H_5)_3 \cdot CH_3 \cdot CO_3 \cdot C_2H_5$. B. Das Kaliumsalz wird erhalten beim Stehenlassen von Oxalessigester mit einer wäßr. Lösung von Kaliumacetat (Claisen, Hori, B. 24, 124). Das Natriumsalz entsteht bei der Einw. von 1 Mol Natriumäthylat auf 2 Mol Oxalessigester in alkoh. Lösung (Wislicenus, Beckh, B. 28, 791; A. 295, 349, 353). Das Ammoniumsalz entsteht aus Oxalessigester beim Erwärmen mit alkoh. Ammoniak, aus Ammoniak-Oxalessigester beim Erhitzen zum Schmelzen oder beim Erwärmen mit Alkohol (W., B., B. 28, 789, 790; A. 295, 345, 351). Das Diäthylaminsalz bildet sich mit Alkohol (W., B., B. 28, 789, 790; A. 295, 340, 351). Das Diathylaminsalz bildet sich beim Kochen von Diathylamin-Oxalessigester mit Alkohol (W., B., A. 295, 356), das Triathylaminsalz beim Mischen äther. Lösungen von Triathylamin und Oxalessigester (W., B., A. 295, 359; vgl. Michael, Smith, A. 363, 48). — Öl. Kp. 210° (geringe Zersetzung) (W., B., B. 28, 791; A. 295, 346). Leicht löslich in Alkohol und Äther, schwer in Wasser (Cl., H.). Löst sich in Natriumacetat-Lösung und wird daraus durch verd. Schwefelsäure, nicht aber durch Essigsäure gefällt (W., B., A. 295, 348). Die alkoh. Lösung gibt mit Eisenchlorid eine dunkelrote Färbung (Cl., H.). Beim Erwärmen mit alkoh. Kalilauge werden Aconitsäure, Essigsäure und Oxaleäure erhelten (Cl., H.). — NH C. Zu Wassen genynigen Nedeln eine dunkelrote Färbung (CL., H.). Beim Erwärmen mit alkoh. Kalilauge werden Aconitsäure, Essigsäure und Oxalsäure erhalten (CL., H.). — NH₄Cl₁₄H₁₇O₉. Zu Warzen gruppierte Nadeln. F: 129°; löslich in Wasser und Alkohol (W., B., B. 28, 790). — NaCl₁₄H₁₇O₉. Krystalle (aus heißem Alkohol) (W., B., A. 295, 353). — Ca(Cl₁₄H₁₇O₉)₂ + 2H₂O. Nadeln. Leicht löslich in Alkohol, schwer in heißem Wasser. Verliert bei 105° das Krystallwasser (W., B., B. 28, 791) und schmilzt bei 213—215° unter Zersetzung (W., B., A. 295, 352). — Ba(Cl₁₄H₁₇O₉)₂ + 2H₂O (CL., H.; W., B., B. 28, 791). Nadeln (aus siedendem Wasser). — Pb(Cl₁₄H₁₇O₉)₃. Nadeln (aus verd. Alkohol). Ziemlich leicht löslich in heißem Alkohol, schwer in Wasser (CL., H.). — Fe(Cl₁₄H₁₇O₉)₃. B. Aus der Verbindung Cl₁₄H₁₈O₉ + FeCl₂ (S. 513) durch Behandeln mit Wasser (Morrell, Crofts, Soc. 78, 349). Rote Prismen (aus Benzol). F: 163° (Zers.)

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Leicht löslich in Benzol, löslich in Methylalkohol, unlöslich in Wasser. — Diäthylaminsalz $C_4H_{11}N+C_1H_{12}O_2$. B. Aus Diäthylamin und dem Triäthylester des Oxalcitronensäurelactons in äther. Lösung (W., B., A. 295, 356). Bildung aus Oxalessigester s. S. 512. Nädelchen (aus Alkohol + Äther). F: 126°. — Triäthylaminsalz $C_6H_{12}N+C_{14}H_{12}O_2$. Stark lichtbrechendes Öl. Läßt man das Öl bei gewöhnlicher Temperatur in äther. Lösung 1 Tag stehen, so scheidet sich dieselbe Verbindung in Krystallen vom Bohmelzpunkt 64° ab (W., B., A. 295, 200). Discription of the North North Research (W., B., A. 295, Aus 360). — Piperidinsals $C_5H_{11}N + C_{14}H_{16}O_9$ s. Syst. No. 3038. — $C_{14}H_{18}O_9 + FeCl_9$. B. Aus dem Ester und der berechneten Menge Eisenchlorid in Ather (Mo., Cs., Soc. 73, 348). Rotes Öl. Unlöslich in Benzol, Tetrachlorkohlenstoff und Petroläther, schwer löslich in Äther, leicht in Alkohol und Aceton.

b) Oxo-carbonsauren $C_n H_{2n-12} O_9$.

Oxo-carbonsauren CaH4Oa.

1. 5.6-Dioxo-[1.4-pyran]-dihydrid-tricarbonsäure-(2.3.4) bezw. 3-Oxy-oxalbernsteinsäurelacton.

Diäthylester $C_{12}H_{12}O_9 = \begin{matrix} OC \cdot CH(CO_2 \cdot C_2H_5) \cdot C \cdot CO_2 \cdot C_2H_5 \\ OC & O & C \cdot CO_2 \cdot C_2H_5 \end{matrix}$ bezw. $HO \cdot C : C(CO_2 \cdot C_2H_5) \cdot C \cdot CO_2 \cdot C_2H_5$. Zur Konstitution vgl. Blaise, Gault, C. r. 148, 178. — --O------Ö-CO₂H

B. Das Dinatriumsalz entsteht aus dem Dinatriumsalz des Tetraäthylesters der α.α'-Dioxalbernsteinsäure (Bd. III, S. 865) beim Kochen der wäßrig-alkoholischen Lösung oder beim Stehenlassen der wäßr. Lösung (W. WISLICENUS, BOECKLER, A. 285, 27). Das Dinatriumsalz wird ferner erhalten aus dem Natriumsalz des Triäthylesters des Dioxalbernsteinsäurelactons (s. u.) und 1 Mol Natronlauge; man zersetzt das Salz mit verd. Schwefelsäure (W., Boe., A. 285, 28, 30). — Nädelchen (aus Benzol oder Chloroform). Schmilzt bei 170—171° unter Gasentwicklung (W., Boe.). Leicht löslich in Wasser, Alkohol und Ather (W., Boe.). Gibt in alkoh. Lösung mit Eisenchlorid eine tief braunrote Färbung (W., Boe.). — Wird beim Kochen mit Wasser nicht verändert (W., Boe.). Zerfällt beim Kochen mit überschüssiger Alkalilauge in Oxalsäure und Bernsteinsäure (W., Boz.). — Na₂C₁₂H₁₀O₉. Leicht löslich in Wasser, unlöslich in Alkohol (W., Bor.). Liefert beim Stehenlassen mit 1 Mol Natronlauge das Dinatriumsalz des α.α'-Dioxal-bernsteinsäure-diäthylesters (W., Bor.).

Triäthylester $C_{14}H_{16}O_0 = C_5HO_3(CO_2 \cdot C_2H_5)_3$. Das Molekulargewicht ist kryoskopisch in Benzol bestimmt (W. Wislicenus, Boeckler, A. 285, 23). Zur Konstitution vgl. Blaise, Gault, C. r. 148, 178. — B. Das Natriumsalz entsteht beim Neutralisieren der abgekühlten wäßr. Lösung des Dinatriumsalzes des Tetraäthylesters der $\alpha.\alpha'$ -Dioxal-bernsteinsäure (Bd. III, S. 865) mit verd. Schwefelsäure; man läßt einige Stunden stehen und zerlegt das ausgeschiedene Salz durch verd. Schwefelsäure (W., Boe., A. 285, 21). — Nadeln (aus Alkohol). F: 89—90° (W., Boe.). Leicht löslich in Alkohol, Äther, Chloroform, Benzol und Eisessig, schwer in Patroläther: Iselich in verdünnten Alkalien und Alkelier bonaten (W. Rog.). Gibt in alkohol. in Petroläther; löslich in verdünnten Alkalien und Alkalicarbonaten (W., Boz.). Gibt in alkoh. Lösung mit Eisenchlorid eine rotbraune Färbung (W., Bor.). — Zerfällt beim Kochen mit Natronlauge in Oxalsäure und Bernsteinsäure (W., Boe.). Bei Behandlung mit 2 Mol Natriumäthylat in alkoh. Lösung entsteht das Dinatriumsalz des Tetraäthylesters der a.a'-Dioxalbernsteinsäure (W., Boe.). — $NH_cC_{14}H_{18}O_s$. Blättchen (aus heißem Alkohol). Schmilzt bei ca. 160° unter Gasentwicklung; leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Äther und Benzol (W., Boe.). — $NaC_{14}H_{18}O_s$. Krystalle (aus heißem Wasser). Ziemlich schwer löslich in Wasser und in heißem Alkohol (W., Boe.). — $Triäthylaminsalz\ C_6H_{18}N + C_{14}H_{18}O_s$. B. Beim Vermischen äther. Lösungen von Triäthylamin und Dioxalbernsteinsäurelacton-triathylester (W., Вески, А. 295, 362). Krystallinischer Niederschlag. F: 80—82°. Löslich in Wasser.

- 6-Oxo-2-imino-[1.2-pyran]-dihydrid-(3.6)-tricarbonsäure-(3.4.5)-triäthylester, $\begin{array}{ll} \alpha.\beta.\gamma\text{-Tricarbäthoxy-glutaconisoimid} & C_{14}H_{17}O_8N = \\ C_2H_5\cdot O_2C\cdot C: C(CO_2\cdot C_2H_5)\cdot CH\cdot CO_2\cdot C_2H_5 & \text{Das: Molekulargewicht ist kryoskopisch in Essignature of the control of the$

-0----Ċ:NH

säure bestimmt (ERREBA, PERCIABOSCO, B. 34, 3711). — B. Beim Ansäuern einer sehr verdünnten wäßrigen Lösung der Natriumverbindung des α.γ-Dicyan-aconitsäure-triäthylesters (Bd. II, S. 882) oder beim Lösen des freien Esters in warmer Salzsäure (D: 1,12) und Kochen der auskrystallisierenden chlorhaltigen Verbindung mit Wasser (ER., P., B. 34, 3706, 3711). — Nadeln mit 1 H₂O (aus alkoholhaltigem Wasser). F: 70° (ER., P.). Wird im Vakuum über Schwefelsäure wasserfrei und amorph (ER., P.). Sehr leicht löslich in Alkohol, schwerer in Essigsäure und Benzol, unlöslich in Ligroin (ER., P.). In der Kälte kaum löslich in Alkalicarbonaten (ER., P.). Leicht löslich in der Wärme in sehr verd. Alkalilauge; beim Ansäuern der alkal. Lösung scheidet sich unter Kohlendioxyd-Entwicklung α-Cyan-aconitsäure-triäthylester (Bd. II, S. 876) aus (ER., P.). Lagert sich beim Kochen mit absol. Alkohol in 2.6-Dioxy-pyridin-tricarbonsäure-(3.4.5)-triäthylester (Syst. No. 3364) um (ER., P.). Liefert beim Kochen mit Salzsäure (D: 1,06) 2.6-Dioxy-pyridin-dicarbonsäure-(3.4)-diäthylester (Syst. No. 3364), nach dem Abdampfen der salzsauren Lösung 2.6-Dioxy-pyridin-carbonsäure-(4) (Syst. No. 3349) (ER., P.). Gibt bei Behandlung mit Anilin β-Phenylimino-äthan α.α.β-tricarbonsäure-α.β-diäthylester-α-anilid (Bd. XII, S. 539) (Guthzeit, Eyssen, J. pr. [2] 80, 60).

7. Oxo-carbonsäuren mit 10 Sauerstoffatomen.

a) Oxo-carbonsäuren $C_n H_{2n-14} O_{10}$.

 $\begin{array}{l} \textbf{4-0} \, \texttt{xo-[1.4-pyran]-tetracarbons \"{a}ure-(2.3.5.6), Pyron-(4)-tetracarbons \"{a}ure-(2.3.5.6)} \\ \text{S\"{a}ure-(2.3.5.6)} \\ \text{$C_0H_4O_{10} = \frac{HO_2C \cdot C \cdot CO \cdot C \cdot CO_2H}{HO_2C \cdot C - O - C \cdot CO_2H}.} \end{array}$

Tetraäthylester $C_{17}H_{20}O_{10}=C_5O_2(CO_3\cdot C_2H_5)_4$. B. Aus Dinatrium-Acetondicarbonsäurediäthylester und Oxalsäureäthylesterchlorid in Benzol-Lösung (Peratoner, Strazzeri, G. 21 I, 302). — Nadeln (aus Äther). F: 94°. Löslich in Alkohol, Benzol, Chloroform und Essigsäure, schwer löslich in kaltem, leicht in siedendem Äther. Löst sich in Alkalien mit gelber Farbe. — Liefert mit verdünntem wäßrigem Ammoniak Pyridon-(4)-tetracarbonsäure-(2.3.5.6)-tetraäthylester (Syst. No. 3369). Beim Erhitzen mit 25°/ $_0$ iger Schwefelsäure erhält man Pyron-(4)-dicarbonsäure-(2.6) (S. 490) und Pyron (Bd. XVII, S. 271).

b) Oxo-carbonsäuren $C_nH_{2n-18}O_{10}$.

 $Phthalyldimalons \"{a}ure \ C_{14}H_{10}O_{10} = C_0H_4\underbrace{C[CH(CO_2H)_2]_2}O.$

Phthalyldimalonsäure-tetraäthylester $C_{22}H_{26}O_{10} =$

C₀H₄ C[CH(CO₂·C₂H₅)₂]₂O(?)¹). B. Entsteht neben Phthalylmalonsäure-diäthylester (S.498) und [2.2·Dicarbāthoxy·hydrindon·(1)·yliden·(3)]-malonsäure-diāthylester (?) (Bd. X, S. 938) bei Einw. von Phthalylchlorid oder Phthalsäureanhydrid auf Natriummalonester in Äther (J. WISLICENUS, A. 242, 23, 88). Die Dinatriumverbindung des Phthalyldimalonsäuretetra-äthylesters bildet sich bei ¹/₂-stündigem Kochen von 1 Mol Phthalylmalonester mit 2 Mol Natriummalonester in Äther (W., A. 242, 63). — Prismen (aus Alkohol). F: 48,5°; sehr leicht löslich in Äther und in warmem Alkohol, kaum löslich in Wasser (W., A. 242, 29). Wird durch Spuren von Alkalien intensiv gelb gefärbt (W., A. 242, 29). — Ätherische Jodlösung ist ohne Wirkung auf die Dinatriumverbindung; Brom zerlegt die in Äther verteilte Verbindung unter Bildung von Phthalylmalonester und Dibrommalonester (W., A. 242, 75). Durch mehrstündiges Erwärmen des Tetraäthylesters mit überschüssiger Kalilauge und Ansäuern der Lösung mit Schwefelsäure erhält man Phthalyldiessigsäure (8.497) (W., A. 242, 80). Die krystallwasserfreie Dinatriumverbindung liefert beim Erhitzen mit überschüssigem Äthyljodid auf 100° eine Verbindung C₂₆H₃₄O₁₀ = (C₂H₅)₂C₂₁H₃₄O₁₀, die von alkoh. Kalilauge in Phthalsäure und Äthylmalonsäure zerlegt wird (W., A. 242, 64). Die krystallwasserfreie Dinatriumverbindung mit Essigsäureanhydrid, Phthalylchlorid oder

¹⁾ Vgl. hierzu folgende nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Abhandlungen: Scheiber, A. 389, 125, 140; v. Auwers, Auffenberg, B. 51, 1106; Sch., Hopfer, B. 53, 898.

Phthalsäureanhydrid leicht unter Bildung von [2.2-Dicarbäthoxy-hydrindon-(1)-yliden-(3)]-malonsäure-diäthylester (?) (W., A. 242, 68) zerlegt; Eisessig bewirkt Spaltung in Malonester, Phthalylmalonester und wenig Phthalyldimalonester (W., A. 242, 70). — $Na_2C_{22}H_{24}O_{10} + 2H_2O$ (im Vakuum über Schwefelsäure). Citronengelb. Leicht löslich in Wasser (W., A. 242, 64). Wird bei 110° wasserfrei. — $K_2C_{32}H_{24}O_{10} + 2H_3O$ (exsiccatortrocken). Hellorangefarbene Nadeln. Verliert im Vakuum $1H_2O$; wird bei 90° wasserfrei (W., A. 242, 83).

Phthalyl - bis - [cyanessigsäure - äthylester] $C_{18}H_{16}O_6N_2 = C_6H_4 \underbrace{CO}_{CC[CH(CN)\cdot CO_2\cdot C_2H_5]_2}O$ (?). B. Aus 4 Mol Natriumcyanessigsester und 1 Mol Phthalylchlorid in Benzol (Muller, A. ch. [7] 1, 499). — F: 158—160°. Löslich in Natronlauge.

8. Oxo-carbonsäuren mit 11 Sauerstoffatomen.

- $\begin{array}{ll} \textbf{2.5-Dioxo-furantetrahydrid-tetracarbons\"aure-(3.3.4.4)} & C_8H_4O_{11} = \\ \textbf{(HO_2C)_2C---C(CO_2H)_2} & \textbf{(systematische Stammverbindung der nachstehenden Verbindungen).} \\ \textbf{OCOCO} & \textbf{(CO)} & \textbf{(Systematische Stammverbindung der nachstehenden Verbindungen).} \\ \textbf{(Systematische Stammverbindung der nachstehenden Verbindungen).} \end{array}$
- 2.5 Dithion thiophentetrahydrid tetracarbonsäure (3.3.4.4) tetraäthylester $C_{16}H_{20}O_aS_3 = \frac{(C_2H_5 \cdot O_2C)_2C C(CO_2 \cdot C_2H_5)_3}{SC \cdot S \cdot CS}$. Das Molekulargewicht ist ebullioskopisch in Benzol bestimmt (Wenzel, B. 34, 1043). B. Neben Cyclobutandithion-(3.4)-tetracarbonsäure-(1.1.2.2)-tetraäthylester (Bd. X, S. 939) bei Einw. von Brom auf in siedendem Schwefelkohlenstoff suspendierten Natriummalonester (W., B. 33, 2041; 34, 1045). Nadeln (aus Alkohol). F: 139° (W., B. 33, 2042). Bei der Einw. von kalter alkoholischer Alkalilauge
- entsteht Cyclobutandithion-(3.4)-tetracarbonsäure-(1.1.2.2) (W., B. 34, 1048).
 2.5 Dithion-3.4-dicyan thiophentetrahydrid dicarbonsäure (3.4) diäthylester $C_{12}H_{10}O_4N_2S_3 = \frac{(C_2H_5\cdot O_2C)(NC)C-C(CN)\cdot CO_2\cdot C_2H_5}{S_C^1\cdot S_1}$. Das Molekulargewicht ist ebullioskopisch in Benzol und Chloroform bestimmt (W., B. 34, 1044). B. Aus Natriumcyanessigester und Brom in siedendem Schwefelkohlenstoff (W., B. 33, 2042; 34, 1045). Gelbe Nadeln (aus Alkohol, Toluol oder Eisessig). F: 225°; unkislich in Wasser und Ligroin (W., B. 33, 2042). Verbindung $C_{12}H_{10}O_4N_2Br_2S_3$, vielleicht($C_2H_5\cdot O_3C$)(NC)CBr·CS·S·CS·CBr(CN)(CO $_3\cdot C_3H_5$). B. Durch 1—2-stündiges Erwärmen von 2.5-Dithion-3.4-dicyan-thiophentetrahydriddicarbonsäure-(3.4)-diäthylester mit Brom und Wasser (W., B. 34, 1048). Gelbe Nadeln (aus Alkohol). F: 95—96°.

G. Oxy-oxo-carbonsäuren.

1. Oxy-oxo-carbonsäuren mit 5 Sauerstoffatomen.

a) Oxy-oxo-carbonsäuren $C_nH_{2n-4}O_5$.

1. Oxy-oxo-carbonsauren $C_5H_6O_5$.

1. β -Oxy-butyrolacton- γ -carbonsäure, Lacton der $\alpha.\beta$ -Dioxy-glutarsäure $C_5H_6O_5=\frac{H_1C-CH\cdot OH}{OC\cdot O\cdot CH\cdot CO_2H}$. B. Man behandelt 1 Tl. digitoxonsaures Calcium (Bd. III, S. 413) erst unter Kühlung, dann 12—18 Stunden bei 35—37° mit 2 Tln. Salpetersäure (D: 1,4), verdünnt dann mit Wasser, kocht die Lösung mit Calciumcarbonat und zersetzt das nach dem Einengen der Lösung sich ausscheidende Calciumsalz der aktiven $\alpha.\beta$ -Dioxy-glutarsäure; die Säure erstarrt nach längerem Aufbewahren unter Bildung des Lactons (KILANI, B. 38, 4042). — Krystalle (aus Wasser). F: 120°. In Wasser leicht löslich. Schwach rechtsdrehend. — Liefert beim Kochen mit Calciumcarbonat das Calciumsalz der aktiven $\alpha.\beta$ -Dioxy-glutarsäure.

- 2. α -Oxy-butyrolacton- γ -carbons aure, Lacton der α - α' -Dioxy-glutars dure $C_5H_6O_6= \begin{array}{c} HO \cdot HC CH_2 \\ OC \cdot O \cdot CH \cdot CO_5H \end{array}$. B. Beim Koohen von α - γ -Dioxy-propan- α - α - γ -tricarbons aure mit Wasser (Killani, Hebold, B. 38, 2675; K., Matthes, B. 40, 1239). Krystalle (aus Wasser). F: 164—165° (K., H.), 167—168° (K., M.).
- 3. β -Oxy-butyrolacton- β -carbonsāure, β -Oxy-paraconsāure, Itaweinsāurelacton $C_5H_6O_5=\frac{H_2C-C(OH)\cdot CO_2H}{OC\cdot O\cdot CH_2}$. B. Das neutrale Calciumsalz der β -Chloritamalsāure (Bd. III, S. 447) zerfāllt bei längerem Kochen mit Wasser in Calciumchlorid, die Calciumsalze der Itaweinsäure (Bd. III, S. 532) und β -Oxy-paraconsāure; man filtriert den Niederschlag ab und entzieht ihm durch kochendes Wasser das β -oxy-paraconsaure Salz (MORAWSKI, J. pr. [2] 11, 451). Das Calciumsalz der Itaweinsäure wird durch Auflösen in der eben ausreichenden Menge sehr verd. Salzsäure und Eindampfen der Lösung in das Calciumsalz der β -Oxy-paraconsäure übergeführt (Frittig, Köhl., A. 305, 44). Blumenkohlartige Aggregate (aus Aceton + Tetrachlorkohlenstoff). F: 104°; unlöslich in Äther, Chloroform, Benzol, Ligroin und Schwefelkohlenstoff, sehr leicht in Wasser, Alkohol und Aceton (F., K.). Das Calciumsalz geht beim Kochen mit Kalkwasser in itaweinsaures Calcium über (M.). Silbersalz. Amorph. Sehr leicht löslich in Wasser; sehr lichtempfindlich (F., K.). $Ca(C_5H_5O_5)_2$. Amorph. Sehr leicht löslich in Wasser (F., K.). Ba($C_5H_5O_5)_2$. Amorph. Sehr leicht löslich in Wasser (F., K.).

2. $0xy-oxo-carbonsäuren C_a\dot{H}_aO_a$.

- 1. γ Oxymethyl butyrolacton α carbonsäure, δ Oxy γ valerolacton α carbonsäure $C_0H_0O_5 = \frac{HO_2C \cdot HC CH_2}{OC \cdot O \cdot CH \cdot CH_2 \cdot OH}$.
- γ -Oxymethyl-butyrolacton-α-carbonsäure-äthylester, δ-Oxy- γ -valerolacton-α-carbonsäure-äthylester $C_8H_{12}O_5=$ $C_2H_5\cdot O_2C\cdot HC-CH_2$ $C_2H_5\cdot O_2C\cdot HC-CH_2$ $C_3H_5\cdot O_3C\cdot HC-CH_3\cdot DH_3$ $C_3H_3\cdot DH_3\cdot DH_3$
- α -Brom γ [4 brom phenoxymethyl] butyrolacton α carbonsäure, α -Brom δ [4 brom phenoxy] γ valerolacton α carbonsäure $C_{12}H_{10}O_8Br_2=HO_8C\cdot BrC$ ——CH₂
- B: Aus δ-Phenoxy-γ-valerolacton-α-carbonsaure und OC·O·CH·CH₂·O·C₆H₄Br

 Brom in Chloroform im Sonnenlicht (E. Fischer, Krämer, B. 41, 2732). Nädelchen (aus Ather + Petroläther oder aus heißem Benzol). Schmilst gegen 157° (korr.) unter Gasentwicklung. Sehr leicht löslich in kaltem Alkohol, siemlich sohwer in heißem Benzol. Gibt beim Erhitzen unter 15—20 mm Druck α-Brom-δ-[4-brom-phenoxy]-γ-valerolacton (S. 3).
- α-Brom-γ-oxymethyl-butyrolacton-α-carbonsäure-amid, α-Brom-δ-oxy-γ-valero-lacton-α-carbonsäure-amid $C_0H_0O_4NBr = \frac{H_4N\cdot CO\cdot BrC--CH_2}{OC\cdot O\cdot CH\cdot CH_2\cdot OH}$. B. Durch Einw. von Brom auf $[\beta,\gamma\text{-Dioxy-propyl}]$ -malonsäure-diamid (Bd. III, 8. 534) in Eisensig-Lösung auf dem Wasserbade (Traube, B. 37, 4542). Prismen (aus Essigester). F: 109°.

Sehr leicht löslich. — Wird von konzentriertem alkoholischem Ammoniak in 4-Oxy-tetrahydrofuran-dicarbonsäure-(2.2)-diamid (S. 360) übergeführt.

- Lacton einer Dioxyadipinsäure von unbekannter Konstitution C_eH_eO_s.
 Lacton einer Dibromdioxyadipinsäure C_eH_eO_sBr_e. B. Beim Erhitzen von α.β.α'.β'-Tetrabrom-adipinsäure mit Wasser im geschlossenen Rohr auf 120° (Ruhemann, Duffon, Soc. 59, 751). Nadeln. F: 223° (Zers.). Löslich in Alkohol und Äther.
- 3. Oxy-oxo-carbonsäuren $C_7H_{10}O_5$.
- 2. α -Oxy- γ - γ -dimethyl-butyrolacton- β -carbonsdure. α -Oxy- γ - γ -dimethyl-paraconsdure, Oxyterebinsdure $C_7H_{10}O_5= HO \cdot HC CH \cdot CO_2H OC \cdot O \cdot C(CH_3)_2$. B. Beim Kochen von α -Chlor- γ - γ -dimethyl-paraconsdure (S. 379) mit Wasser und Natriumcarbonat oder Calciumcarbonat (Roseb, A. 220, 263). Langsam krystallisierender Sirup. Leicht löslich in Wasser, Alkohol und Äther. Schmilzt zwischen 100 und 120°. AgC $_7H_2O_5$. Nadeln. Leicht löslich in Wasser. Ca($C_7H_2O_5$) $_2$. Tafeln (aus Wasser + Alkohol).
- 3. α Oxy α . γ dimethyl butyrolacton γ carbonsäure, α Oxy α methyl- γ -valerolacton- γ -carbonsäure, Lacton der α . α' -Dioxy- α . α' -dimethyl-glutar-säure $C_7H_{10}O_5= \frac{(HO)(CH_2)C-CH_2}{OC\cdot O(CH_2)\cdot CO_2H}$.
- a) Höherschmelzende Form ("Dimethylpentoxylactonsäure"). B. Aus α.α'-Dioxy-α.α'-dimethyl-glutarsäure-dinitril durch Behandeln mit Salzsäure (D: 1,19) bei Zimmertemperatur (Zelinsky, Ж. 23, 587; B. 24, 4008; Fittig, Keaus, A. 353, 13). Aus der hochschmelzenden Form der α-Brom-αγ-dimethyl-butyrolacton-γ-carbonsäure (S. 380) durch Einw. von Natronlauge bei 0° (Auwers, Kauffmann, B. 25, 3243). Neben der niedrigerschmelzenden Form bei anhaltendem Kochen von α.α'-Dibrom-α.α'-dimethyl-glutarsäure mit Wasser (Au., Kau., B. 25, 3239). Tafeln (aus Wasser). Rhombisch bipyramidal (Prender, Z. Kr. 18, 279; vgl. Groth, Ch. Kr. 3, 491). F: 189—190° (Z.), 188° (Åu., Kau.), 186° (F., Kr.). Gibt bei der Destillation α.γ-Dimethyl-Δβγ oder Δαβ-crotonlacton (oder Gemisch beider) (Bd. XVII, S. 254) und das Dilacton der α.α'-Dioxy-α.α'-dimethyl-glutarsäure ("Dimethylpentadilacton") (Syst. No. 2760) (F., A. 353, 4; F., Kr.; vgl. Z.). Wird durch Kochen mit Wasser nicht verändert (F., Kr.). Gibt beim Kochen mit Kalk- oder Baryt-wasser die Salze der α.α'-Dioxy-α.α'-dimethyl-glutarsäure (Z.; F., Kr.). Salze: F., Kr. AgC-H₂O₅. Niederschlag. In heißem Wasser sehr schwer löslich. Ca(C₇H₂O₅)₂. Blättchen. Leicht löslich in Wasser. Ba(C₇H₂O₅)₂ + 3H₂O. Nadeln. Leicht löslich in Wasser.

 b) Niedrigerschmelzende Form aus α.α'-Dibrom-α.α'-dimethyl-glutarsäure bei anhaltendem Kochen mit Wasser (Au., Kau. R. 25, 3239). Aus der gleichen Säure oder ihrem
- b) Niedrigerschmelzende Form ("Isodimethylpentoxylactonsäure"). B. Neben der höherschmelzenden Form aus α.α'.Dibrom-α.α'-dimethyl-glutarsäure bei anhaltendem Kochen mit Wasser (Au., KAU., B. 25, 3239). Aus der gleichen Säure oder ihrem Anhydrid (Bd. XVII, S. 419) beim Eintragen in eisgekühlte Natronlauge (Au., KAU., B. 25, 3239, 3240, 3244; vgl. Au., JACKSON, B. 23, 1614). Aus der niedrigschmelzenden α-Brom-α-γ-dimethyl-butyrolacton-γ-carbonsäure (S. 380) beim Eintragen in eisgekühlte Natronlauge

- (Au., Kau., B. 25, 3244). Aus "Dimethylpentadilacton" (Syst. No. 2760) durch Behandeln mit Wasser (F., Kr., A. 353, 18) oder durch Kochen mit Kalilauge und Ansäuern der Lösung (Z., K. 23, 589; B. 24, 4011; vgl. F., A. 353, 3). Krystalle (aus Äther). Triklin asymmetrisch (Prendel, B. 24, 4015; vgl. Groth, Ch. Kr. 3, 489). F: 107° (F., Kr.). Krystallisiert aus Wasser mit 1 H₂O in triklin-pinakoidalen Tafeln (P.; vgl. Groth, Ch. Kr. 3, 489). F: 102° (F., Kr.). Leicht löslich in Alkohol und Wasser, schwerer in Äther (Z.). Liefert bei der Destillation "Dimethylpentadilacton" (Au., Kau.). Salze: F., Kr. AgC₇H₂O₅. Ziemlich leicht löslich in warmem Wasser. Ca(C₇H₂O₅)₂ + 9 H₂O. Blättchen. Ba(C₇H₂O₅)₂ + H₂O. Blättchen. Leicht löslich in heißem Wasser.
- 4. α -Oxy- β , β -dimethyl-butyrolacton- γ -carbonsäure, Lacton der α . α' -Di-oxy- β , β -dimethyl-glutarsäure $C_7H_{10}O_5= {HO\cdot HC C(CH_3)_2 \over OC\cdot O\cdot CH\cdot CO_2H}$. B. Aus α -Brom- β , β -dimethyl-butyrolacton- γ -carbonsäure (S. 381) durch Kochen mit 25% jeger Kalilauge und Ansäuern der Lösung (Perrin, Thorpe, Soc. 79, 756). Nadeln (aus Äther). F: 140—142%. Calciumsalz. Schwer löslich.
- 5. β -Oxy-a.a-dimethyl-butyrolacton-y-carbonsaure, Lacton der β .a'-Di-oxy-a.a-dimethyl-glutarsaure $C_7H_{10}O_5= \frac{(CH_2)_2C-CH\cdot OH}{OC\cdot O\cdot CH\cdot CO_2H}$. B. Durch Erhitzen von a.a-Dimethyl-y-cyan-acetessigsäure-methylester mit konz. Salzsäure im geschlossenen Rohr auf 130—140° (Conrad, Gast, B. 32, 141) oder durch mehrstündiges Kochen mit konz. Salzsäure (Lawbence, Soc. 75, 419). Bei Anwendung von 50°/piger Schwefelsäure statt konz. Salzsäure entsteht außerdem eine stereoisomere (?) Säure $C_7H_{10}O_5$ (F: 96°) (L.). Prismen (aus Wasser). F: 216° (L.), 214° (C., G.). Siedet bei 320—330° unter teilweiser Zersetzung (C., G.). Unter vermindertem Druck unverändert destillierbar (L.). Löslich in siedendem Essigester und Alkohol, schwerer in Äther, fast unlöslich in Petroläther (C., G.). Krystallisiert unverändert aus konz. Schwefelsäure; beständig gegen rauchende Salpetersäure und Permanganat (L.). Gibt mit Eisenchlorid eine gelbe Färbung (L.). Wird durch mehrstündiges Erhitzen mit rauchender Jodwasserstoffsäure und rotem Phosphor (L.) zu einer Verbindung $C_7H_{10}O_4$ (s. u.) reduziert. $AgC_7H_2O_5$. Prismen (C., G.; L.). $Ca(C_7H_2O_5)_2$ + $4H_2O$. Warzenförmig gruppierte Nadeln (aus Wasser). Etwas löslich in Alkohol (C., G.). $Ba(C_7H_2O_5)_2$. Leicht löslich in Wasser (C., G.). Anilinsalz $C_6H_7N+C_7H_{10}O_5$. Krystallinisch. F: 141° (C., G.).

Săure $C_7H_{10}O_4 = C_9H_9O_2 \cdot CO_2H$. Zur Konstitution vgl. Perkin, Soc. 81, 250. — B. Durch mehrstündiges Erhitzen von β -Oxy- α . α -dimethyl-butyrolacton- γ -carbonsăure mit rauchender Jodwasserstoffsăure im Druckrohr auf 130° (Conrad), Gast, B. 32, 144) oder durch längeres Kochen mit rauchender Jodwasserstoffsäure und rotem Phosphor (Lawrence, Soc. 75, 421). — Prismen. F: 153° (C., G.), 152° (L.). — AgC₇H₉O₄ (C., B. 38, 1922). — Ba(C₇H₉O₄)₈ (C., G.).

Methylester der Säure $C_7H_{10}O_4$, $C_8H_{12}O_4 = C_6H_9O_2 \cdot CO_2 \cdot CH_3$. B. Durch Einleiten von Chlorwasserstoff in die Lösung der Säure $C_7H_{10}O_4$ in Methylalkohol (C., B. 33, 1921). — Prismen (aus Benzol oder Methylalkohol). F: 68° (C.), 69° (L., Soc. 75, 422). — Gibt beim Erhitzen mit Natriumisoamylat eine Dicarbonsäure $C_7H_{10}O_4$ (Bd. II, S. 789) (C.).

- β-Acetoxy-α.α-dimethyl-butyrolacton-γ-carbonsäure $C_0H_{12}O_6=(CH_3)_*C_4H_2O_3(O\cdot CO\cdot CH_3)\cdot CO_2H$. B. Durch Erhitzen von β-Oxy-α.α-dimethyl-butyrolacton-γ-carbonsäure mit Essigsäureanhydrid (Conrad, Gast, B. 32, 144; Lawrence, Soc. 75, 421) oder mit Acetylchlorid (L.). Nadeln (aus Benzol). F: 135° (C., G.), 136° (L.). Leicht löslich in Alkohol und Äther (C., G.). NaC₃H₁₁O₆. Nadeln (C., G.). Anilinsalz. F: 121° (L.).
- β -Bensoyloxy-α.α-dimethyl-butyrolacton- γ -carbonsäure $C_{14}H_{14}O_6 = (CH_3)_2C_4H_2O_3(O\cdot CO\cdot C_4H_5)\cdot CO_2H$. B. Durch Erhitzen von β -Oxy-α.α-dimethyl-butyrolacton- γ -carbonsäure mit Benzoylchlorid (LAWRENCE, Soc. 75, 421). Nadeln (aus Benzol). F: 209°.
- β Oxy $\alpha.\alpha$ dimethyl butyrolacton γ carbonsäure methylester $C_8H_{12}O_5=(CH_3)_2C_4H_2O_3(OH)\cdot CO_2\cdot CH_3$. B. Aus β -Oxy- $\alpha.\alpha$ -dimethyl-butyrolacton- γ -carbonsäure und Methylalkohol durch Einw. von Chlorwasserstoff (L., Soc. 75, 420). Krystalle (aus Wasser). F: 104°. Kp: 285°. Leicht löslich in heißem Wasser. Beständig gegen rauchende Salpetersäure.
- β Oxy α.α dimethyl butyrolacton γ carbonsäure äthylester $C_9H_{14}O_5=(CH_3)_2C_4H_2O_5(CH)\cdot CO_3\cdot C_2H_5$. B. Aus β -Oxy-α.α-dimethyl-butyrolacton- γ -carbonsäure und Alkohol in Gegenwart von konz. Schwefelsäure (L., Soc. 75, 421). Krystalle (aus Alkohol). F: 49°. Kp₁₈: 169—170°.

4. Oxy-oxo-carbonsäuren $C_8H_{12}O_5$.

- 1. α Oxy α . δ dimethyl δ valerolacton δ -carbons dure, α Oxy α methyl- δ -carbons dure, Lacton der α . α' Dioxy α . α' dimethyl adipin adip
- a) Niedrigerschmelzende Form ("Dimethylhexoxylactonsäure"). B. Beim Erhitzen der hochschmelzenden α.α'-Dioxy-α.α'-dimethyl-adipinsäure auf 160° unter vermindertem Druck (Fittig, Lentz, A. 353, 57). Krystalle. F: 139—140°. Leicht löslich in Äther, schwerer in Chloroform, fast unlöslich in Benzol. Wird von kaltem Wasser zersetzt.
- b) Höherschmelzende Form ("Isodimethylhexoxylactonsäure"). B. Beim Erhitzen der niedrigschmelzenden $\alpha.\alpha'$ -Dioxy- $\alpha.\alpha'$ -dimethyl-adipinsäure (Iso- $\alpha.\alpha'$ -dioxy- $\alpha.\alpha'$ -dimethyl-adipinsäure) auf 160° (F., L., A. 353, 61). Blättchen (aus Äther-Benzol). F: 153°. Geht beim Lösen in Wasser in die hochschmelzende $\alpha.\alpha'$ -Dioxy- $\alpha.\alpha'$ -dimethyl-adipinsäure über.
- 2. β Oxy γ - γ dimethyl δ valerolacton α carbonsaure $C_8H_{12}O_{\delta} = HO_{\bullet}C \cdot HC \cdot CH(OH) \cdot C(CH_3)_3$
- OC—O—CH.

 B. Aus β-Oxy-α.α-dimethyl-propionaldehyd und Malonsäure durch Einw. von alkoh. Ammoniak (Silberstein, M. 25, 13). Nadeln. F: 82°. Löslich in Wasser und Äther. Spaltet beim Erhitzen über den Schmelzpunkt Kohlendioxyd ab. Gibt bei der Oxydation mit Kaliumpermanganat in alkal. Lösung Dimethylmalonsäure.
- 3. γ-Methyl-γ-oxymethyl-butyrolacton-β-essigsäure, Lacton der Oxydiaterpenylsäure, Oxyterpenylsäure C₈H₁₂O₅ =
 \[
 \begin{align*} \frac{\mathbb{H}_2C \rightharpoonup \mathbb{C} \mathbb{H}_2 \cdot \mathbb{C} \mathbb

Kalilauge Oxydiaterpenylsäure (Bd. III, S. 538) (B.; T., S.). — AgC₈H₁₁O₅ (B.; G., Ж. 28, 142).

Oxyderpenylsäure-methylester C₈H₁₄O₅ = C₈H₂O₈(CH₂)(CH₂·OH)·CH₂·CO₃·CH₃. B.

Oxyterpenylsäure-methylester $C_9H_{14}O_5=C_4H_9O_2(CH_9)(CH_8\cdot OH)\cdot CH_2\cdot CO_2\cdot CH_3$. B. Man übergießt oxyterpenylsaures Silber mit Methyljodid und dunsiet nach einem Tage im Vakuum ein (Best, B. 27, 1221). — Dickes Öl.

4. α - Oxy - γ oder α - methyl - α oder γ - $\ddot{a}thyl$ - butyrolacton - γ - $carbons \ddot{a}ure$, Lacton der $\alpha.\alpha'$ - Dioxy - α - methyl - α' - dthyl - $glutars \ddot{a}ure$ $C_8H_{12}O_5 = (HO)(C_1H_5)C$ — CH_2 (HO)(CH3)C— CH_2 (,,Methyläthylpent)

OC·O·C(CH₃)·CO₂H
OC·O·C(C₂H₅)·CO₂H
OC·O·C(C

- a'-āthyl-glutarsāure-dinitril durch Einw. von konz. Salzsāure (F., v. P., A. 353, 26). Prismen (aus Äther). F: 114°. Destilliert unter gewöhnlichem Druck teilweise unzersetzt. Löslich in Äther und warmem Wasser, sehr schwer löslich in kaltem Wasser. — Wird von ziemlich starker Salzsäure in der Kälte nur langsam angegriffen. Beim Kochen der wäßr. Lösung entsteht unter Entwicklung von Cyanwasserstoff β -Oxy- δ -oxo-hexan- β -carbonsäure oder y-Oxy-s-oxo-hexan-y-carbonsaure (Bd. III, S. 874).
- 5. β -Oxy- α -methyl- α -āthyl-butyrolacton- γ -carbonsāure, Lacton der β . α' -Dioxy- α -methyl- α -āthyl-glutarsāure $C_{\bullet}H_{12}O_{\bullet} = \begin{pmatrix} C_{\bullet}H_{\bullet} \end{pmatrix} \begin{pmatrix} CH_{\bullet} OC · O · CH · CO · H · B. Durch Erhitzen von α-Methyl-α-āthyl-γ-cyan-acetessigsäure-āthylester (Bd. III, S. 814) mit konz. Salzsaure (LAWRENCE, Soc. 75, 422). - F: 165.
- 6. α -Oxy- α , β - γ -trimethyl-butyrolacton- γ -carbonsäure, α -Oxy- α . β -dimethyly-valerolacton-y-carbonsaure, Lacton der a.a'-Dioxy-α.β.a'-trimethyl-glutar-(HO)(CH₂)C—CH·CH₂ säure $C_8H_{12}O_5 = \frac{CH^2CH_2CH^2CH^2CH^2CH^2}{CC^2CH^2CO_8H}$. B. Bei längerem Stehenlassen von $\alpha.\alpha'$ -Dioxy- $\alpha.\beta.\alpha'$ -trimethyl-glutarsäure über konz. Schwefelsäure im Vakuum (Zelinsky, Tschuсалы, B. 28, 2941). Das Calciumsalz entsteht beim Eindampfen der wäßr. Lösung des Calciumsalzes der $\alpha.\alpha'$ -Dioxy- $\alpha.\beta.\alpha'$ -trimethyl-glutarsäure (Z., T., B. 28, 2941). Das Lacton entsteht ferner aus $\alpha.\alpha'$ -Dioxy- $\alpha.\beta.\alpha'$ -trimethyl-glutarsäure-dinitril beim Aufbewahren mit rauchender Salzsäure (Z., T., B. 28, 2941). — Warzen (aus Essigester + Ligroin). F: 119° bis 120°. — Wird durch Wasser sehr leicht in α.α'-Dioxy-α.β.α'-trimethyl-glutarsäure zurückverwandelt. — Ca(C₈H₁₁O₅)₂.

5. Oxy-oxo-carbonsauren CoH14Ox.

1. α -Oxy- γ oder α -methyl- α oder γ -propyl-butyrolacton- γ -carbonsäure, Lacton der $\alpha.\alpha'$ -Dioxy- α -methyl- α' -propyl-glutarsäure $C_0H_{14}O_6=$ OC·O·C(CH₂)·CO₂H oder (HO)(CH₂)C—CH₂ (HO)(CH₂·CH₂·CH₂)C——CH₂

OC · O · C(CH · CH · CH · CH ·) · CO · H ·

Nitril, α -Oxy- γ oder α -methyl- α oder γ -propyl- γ -cyan-butyrolacton $C_9H_{13}O_9N = (HO)(CH_3 \cdot CH_2 \cdot CH_2)C$ — CH_2 $(HO)(CH_3)C$ — CH_2 $CH_3 \cdot CH_4 \cdot CH_4 \cdot CH_5 OC · O · C(CH₂ · CH₂ · CH₂) · CN · $OC \cdot O \cdot C(CH_3) \cdot CN$ α.α'-Dioxy-α-methyl-α'-propyl-glutarsāure-dinitril durch Behandeln mit konz. Salzsāure (FITTIG, v. Panayeff, A. 353, 37). — Prismen (aus Äther). F: 125°. Löslich in Alkohol, Äther und warmem Wasser.

- 2. β -Oxy-a.a-didthyl-butyrolacton-y-carbonsdure, Lacton der β .a'-Dioxy-a.a-didthyl-glutarsdure $C_2H_{14}O_5 = (C_2H_5)_2C$ —CH·OH

 a.a-didthyl-glutarsdure $C_2H_{14}O_5 = (C_2H_5)_2C$ —CH·OH.

 B. Durch Erhitzen von OC · O · CH · CO · H . B. Durch Erhitzen von α.α-Diāthyl-γ-cyan-acetessigsāure-āthylester (Bd. III, S. 818) mit konz. Salzsāure (Lawrence, Soc. 75, 423). — F: 159°.
- 3. α -Oxy- α . γ -dimethyl- β -āthyl-butyrolacton- γ -carbonsāure, α -Oxy- α -methyl- β -āthyl- γ -valerolacton- γ -carbonsaure, Lacton der $\alpha.\alpha'$ -Dioxy- $\alpha.\alpha'$ -dimethyl- β -āthyl-glutarsaure $C_1H_{14}O_5 = \frac{(HO)(CH_2)C...CH \cdot C_8H_5}{2}$ OC.O.C(CH.).CO.H.
- Dem hochschmelzenden Nitril entsprechende α Oxy α , γ dimethylβ-āthyl-butyrolacton-γ-carbonsaure (,,Dimethylathylpentoxylactonsaure")

 (HO)(OH₂)O—CH·O₂H₅

 R Aug dem hochschmelrenden « «' Dioxys B. Aus dem hochschmelzenden a.a'-Dioxy-OQ.O.Q(CH2).CO.H. $\alpha.\alpha'$ -dimethyl- β -äthyl-glutarsäure-dinitril (Bd. III, S. 539) oder dem hochschmelzenden α -Oxya.y-dimethyl- β -āthyl-y-oyan-butyrolacton (S. 521) durch Behandeln mit kons. Salssäure (Firrig, Peters, A. 353, 45). — Prismen (aus Äther + Ligroin). F: 140°. Leicht löslich in Wasser und Äther, schwer in kaltem Benzol. Sehr hygroskopisch. — Geht beim Erhitzen in das Dilacton der $\alpha.\alpha'$ -Dioxy- $\alpha.\alpha'$ -dimethyl- β -āthyl-glutarsäure ("Dimethylāthylpentadilacton", Syst. No. 2760) über. — $AgC_9H_{12}O_8$. Körner. — $Ca(C_9H_{12}O_8)_8$. Krystalle. Sehr leicht löslich in Wasser, schwer in Alkohol. — $Ba(C_9H_{12}O_8)_8$. Krystalle. Sehr leicht löslich in Wasser, unlöslich in Alkohol. unlöslich in Alkohol.

Nitril, hochschmelsendes α -Oxy- α y-dimethyl- β -äthyl- γ -oyan-butyrolacton, hochschmelsendes α -Oxy- α -methyl- β -äthyl- γ -oyan- γ -valerolacton $C_9H_{13}O_3N=(EO)(CH_2)C-CH\cdot C_2H_5$

- OC·O·C(CH₂)·CN. B. Aus dem hochschmelzenden α.α'-Dioxy-α.α'-dimethylβ-āthyl-glutarsāure-dinitril durch Behandeln mit konz. Salzsāure (F., P., A. 353, 42). — Tafeln (aus Äther). Rhombisch (Söllner, A. 353, 43). F: 109°. Sehr leicht löslich in warmem Wasser, Alkohol und Äther. — Wird durch Kochen mit Wasser unter Entwicklung von Cyanwasserstoff zersetzt, durch konz. Salzsäure zu "Dimethyläthylpentoxylactonsäure" verseift.
- b) Dem niedrigschmelzenden Nitril entsprechende α -Oxy- α . γ -dimethyl- β -äthyl-butyrolacton- γ -carbonsdure ("Isodimethyläthylpentoxylacton-säure") $C_9H_{14}O_5= \overset{(HO)(CH_3)C--CH\cdot C_2H_5}{O^2}$

Amid $C_9H_{18}O_4N=$ $O_C^{\dagger}\cdot O\cdot C(CH_3)\cdot CO_2H$ Amid $C_9H_{18}O_4N=$ $O_C^{\dagger}\cdot O\cdot C(CH_3)\cdot CO\cdot NH_2$ $O_C^{\dagger}\cdot O\cdot C(CH_3)\cdot CO\cdot NH_2$ $\alpha.\alpha'\cdot Dioxy-\alpha.\alpha'\cdot dimethyl-\beta-\tilde{a}thyl-glutars \tilde{a}ure-dinitril (Bd. III, S. 539) oder dem niedrigschmelzenden <math>\alpha\cdot Oxy-\alpha.\gamma\cdot dimethyl-\beta-\tilde{a}thyl-\gamma-cyan-butyrolacton (s. u.) durch Behandeln mit konz. Salzs <math>\tilde{a}ure(F,P,A.353,48)$.— Tafeln. F: 223°. Sublimiert oberhalb 250°. Schwer löslich in Wasser und kalten Alkohol, unlöslich in \tilde{a} there, Chloroform und Benzol.— Wird durch kalte konzentrierte Salzs $\tilde{a}ure$ oder kalte Kalilauge zu "Dimethyläthylpentoxylactonsäure" (S. 520) verseift.

Nitril, niedrigschmelsendes α -Oxy- α . γ -dimethyl- β -äthyl- γ -cyan-butyrolacton, niedrigschmelsendes α -Oxy- α -methyl- β -äthyl- γ -cyan- γ -valerolacton $C_9H_{13}O_3N=(HO)(CH_2)C$ — $CH\cdot C_9H_5$

- OC·O·C(CH₃)·CN. B. Aus dem niedrigschmelzenden α.α'-Dioxy-α.α'-dimethyl-β-āthyl-glutarsāure-dinitril durch Behandeln mit konz. Salzsāure (F., P., A. 353, 44). Tafeln (aus Äther). F: 72°. Sehr leicht löslich in Äther. Wird beim Kochen mit Wasser unter Entwicklung von Cyanwasserstoff zersetzt. Liefert mit konz. Salzsāure das zugehörige Amid.
- 6. β -0xy- γ -n-hexyl-butyrolacton- β -carbonsäure, β -0xy- γ -n-hexyl-paraconsäure $C_{11}H_{18}O_5= \frac{H_1C-C(OH)\cdot CO_2H}{OC\cdot O\cdot CH\cdot [CH_2]_5\cdot CH_2}$. B. Bei der Oxydation von γ -n-Hexyl-itaconsäure (Bd. II, S. 800) mit Kaliumpermanganat in schwach alkalischer Lösung (Fittig, Simon, A. 331, 110). Tafeln (aus Äther). Rhombisch (SÖLLNER, A. 331, 111). F: 103—104°. Leicht löslich in heißem Wasser, löslich in heißem Benzol. Liefert beim Erwärmen mit Kalk- oder Barytwasser die Salze der Hexylitaweinsäure (Bd. III, S. 540). Ag $C_{11}H_{17}O_5$. Niederschlag. Ziemlich leicht löslich in heißem Wasser. Ca $(C_{11}H_{17}O_5)_2+2^1/2H_2O$. Nadeln. Leicht löslich in Wasser. Ba $(C_{11}H_{17}O_5)_2+H_2O$. Nadeln.

b) Oxy-oxo-carbonsäuren $C_nH_{2n-6}O_5$.

- 1. Oxy-oxo-carbonsäuren $C_5H_4O_5$.
- 1. 2 Oxy 4 oxo furan dihydrid (4.5) carbonsäure (3) $C_5H_4O_5=OC-C\cdot CO_2H$ $H_*C\cdot O\cdot C\cdot OH$
- 2-Äthoxy-4-oxo-furan-dihydrid-(4.5)-carbonsäure-(3)-äthylester $C_5H_{12}O_5=OC-C\cdot CO_2\cdot C_2H_5$. Diese Konstitution kommt auf Grund der nach dem Literatur-Schlußtermin der 4. Auflage dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von Anschütz (B. 45, 2376) und Benary (B. 45, 3682) der in Bd. II, S. 581 beschriebenen Verbindung $C_5H_{12}O_5$ zu.
- 2. 4-Oxy-2-oxo-furan-dihydrid-(2.5)-carbonsäure-(3), β -Oxy- $\Delta^{\alpha\beta}$ -crotonlacton- α -carbonsäure (α -Carboxy-tetronsäure, Tetronsäure- α -carbonsäure) $C_5H_4O_5=\frac{H0\cdot C}{H_2C\cdot O\cdot CO}$ ist desmotrop mit 2.4-Dioxo-furantetrahydrid-carbonsäure-(3), 8. 450.

- 2. 0xy-oxo-carbonsäuren $C_6H_6O_5$.
- 1. [4-Oxy-2-oxo-2.5-dihydro-; aryl-(3)]-essigsäure, β -Oxy- $\Delta^{\alpha,\beta}$ -croton-lacton α -essigsäure (Tetronsäure α -essigsäure, Carboxytetrinsäure) $C_6H_6O_5=\frac{HO\cdot C-C\cdot CH_2\cdot CO_2H}{H_2C\cdot O\cdot CO}$ ist desmotrop mit [2.4-Dioxo-tetrahydrofuryl-(3)]-essigsäure, S. 451.
- 2. 4-Oxy-5-oxo-2-methyl-furandihydrid-carbonsäure-(2), $\alpha-Oxy-\gamma-methyl-\Delta^{\alpha,\beta}-crotonlacton-\gamma-carbonsäure$ $C_0H_0O_5= \begin{array}{c} HO\cdot C \longrightarrow CH\\ OC\cdot O\cdot C(CH_3)\cdot CO_2H \end{array}$ ist desmotrop mit 4.5-Dioxo-2-methyl-furantetrahydrid-carbonsäure-(2), S. 451.
- $\begin{array}{lll} \textbf{4-Acetoxy-5-oxo-2-methyl-furandihydrid-carbons\"{a}ure-(2),} & \alpha\text{-Acetoxy-}\gamma\text{-methyl-}\\ \Delta^{\alpha,\beta}\text{-crotonlacton-}\gamma\text{-carbons\"{a}ure} & C_8H_8O_6^{\bullet} = & \begin{array}{ll} CH_2\cdot CO\cdot O\cdot C = CH \\ OC\cdot O\cdot C(CH_3)\cdot CO_2H \end{array}. \end{array} \end{array} . \quad B. \quad \text{Durch}$

Eindunsten einer Lösung von α -Oxy- γ -methyl- $\Lambda^{\alpha,\beta}$ -crotonlacton- γ -carbonsäure (S. 451) in Essigsäureanhydrid über konz. Schwefelsäure (DE Jong, R. 22, 282). — Tafeln (aus Eisessig). F: 112—113°. Schwer löslich in Wasser, leicht in Eisessig. Neutralisiert in der Kälte 2, in der Hitze 3 Mol 0,1n-Kalilauge. Zerfällt bei Einw. von Wasser langsam in α -Oxy- γ -methyl- $\Lambda^{\alpha,\beta}$ -crotonlacton- γ -carbonsäure und Essigsäure.

- **4-Benzoyloxy-5-oxo-2-methyl-furandihydrid-carbonsäure-(2)**, α -Benzoyloxy- γ -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton- γ -carbonsäure $C_{13}H_{10}O_{8}=C_{6}H_{5}\cdot CO\cdot O\cdot C$
- $OC \cdot O \cdot C(CH_3) \cdot CO_2H$. B. Man schüttelt eine eiskalte wäßrige Lösung der α -Oxyy-methyl- $\Delta^{\alpha,\beta}$ -crotonlacton- γ -carbonsäure (S. 451) unter zeitweiliger Zugabe von Soda mit Benzoylchlorid (Wolff, A. 317, 10). Nadeln (aus Äther + Ligroin). F: 114° (rasch erhitzt 118°). Leicht löslich in Alkohol, löslich in Äther und Benzol, schwer löslich in Wasser und Ligroin, leicht in Sodalösung. Gibt keine Eisenchlorid-Reaktion. Wird leicht verseift und durch heißes Wasser unter Kohlendioxyd-Entwicklung zersetzt.
- 4-Äthoxy-5-oxo-2-methyl-furandihydrid-carbonsäure-(2)-äthylester, α -Äthoxy- γ -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton- γ -carbonsäure-äthylester $C_{10}H_{14}O_{5}=C_{2}H_{5}\cdot O\cdot C$
- $OC \cdot O \cdot C(CH_3) \cdot CO_2 \cdot C_2H_5$. Als Verbindung von dieser Konstitution wurde von GAULT, C.r. 154 [1912], 441 der in Bd. III, S. 825 beschriebene $\alpha \cdot Oxo \cdot \beta \cdot butylen \cdot \alpha \cdot \gamma \cdot dicarbonsaure diathylester erkannt.$
- 3-Brom-4-acetoxy-5-oxo-2-methyl-furandihydrid-carbonsäure-(2), β -Brom- α -acetoxy- γ -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton- γ -carbonsäure $C_8H_7O_8Br=CH_2\cdot CO\cdot O\cdot C$ —CBr
- OC·O·C(CH₃)·CO₂H. B. Man dunstet eine Lösung von β -Brom- α -oxy- γ -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton- γ -carbonsäure in Essigsäureanhydrid über konz. Schwefelsäure ein (DE Jong, R. 23, 150). Krystalle. F: 86°. Wird durch Wasser zersetzt.
- Äthylester $C_{10}H_{11}O_6Br = CH_3 \cdot CO \cdot C \cdot CDer$ $CC \cdot C_{10}CBr$ $CC \cdot C \cdot C_{10}CBr$ Lösung von β -Brom- α -oxy- γ -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton- γ -carbonsäure-äthylester in Essigsäureanhydrid über konz. Schwefelsäure ein (DE Jong, R. 23, 151). Öl. Wird durch Wasser allmählich in die Komponenten zerlegt.
- 3. $4 0 \times y 6 o \times o 2.4 dimethyl [1.4 pyran] dihydrid carbonsäure (3)$ $C_0 H_{10}O_5 = \begin{array}{c} H_2 C \cdot C(CH_3)(OH) \cdot C \cdot CO_2 H \\ OC O C \cdot CH_3 \end{array}$
- Nitril, 4-Oxy-6-oxo-2.4-dimethyl-3-cyan-[1.4-pyran]-dihydrid $C_bH_0O_2N=H_sC\cdot C(CH_3)(OH)\cdot C\cdot CN$ OC O $C\cdot CH_3$. B. Bei allmählichem Auflösen von 10 g β -Oxy- δ -oxo- β -methyl-pentan- α - γ -dicarbonsäure-dinitril (Bd. III, S. 883) in ca. 140 cm³ 2n-Schwefelsäure (Obrégia. A. 266, 345). Nädelchen (aus Wasser). F: 65°. Sehr schwer löslich in kaltem Wasser,

leicht in siedendem Wasser, in Alkohol, Chloroform und Benzol, ziemlich schwer in Äther, fast unlöslich in Ligroin. Leicht löslich in Alkalien. Unzersetzt löslich in konz. Mineralsäuren. Gibt mit Eisenchlorid in wäßriger oder alkoholischer Lösung erst eine bräunliche, dann eine violette Färbung. — Zerfällt beim Kochen mit Barytwasser in Kohlendioxyd, Ammoniak und β -Oxy- γ -acetyl-isovaleriansäure (Bd. III, S. 874).

Verbindung $C_8H_{13}O_4N_3$, vielleicht $H_2C \cdot C(OH)(CH_3) \cdot CH \cdot C(:N \cdot OH) \cdot CH_3$ (?). B. Aus

- Verbindung C₈H₁₃O₄N₃, vielleicht OC—NH—C:N·OH

 1 Mol 4-Oxy-6-oxo-2.4-dimethyl-3-cyan-[1.4-pyran]-dihydrid und 2 Mol Hydroxylamin in schwach alkal. Lösung (O., A. 266, 355). Nädelchen mit 3H₂O (aus Wasser). Zersetzt sich krystallwasserhaltig bei 179—180°, wasserfrei bei 184—185°. Sehr schwer löslich in kaltem Wasser, sehr leicht in siedendem, fast unlöslich in Äther, Aceton und Ligroin, leichter löslich in Alkohol, Chloroform und Benzol; leicht löslich in Alkalien und verd. Säuren. Gibt in wäßriger oder alkoholischer Lösung mit Eisenchlorid eine braunviolette Färbung.
- **x-Brom-4-oxy-6-oxo-2.4-dimethyl-3-cyan-[1.4-pyran]-dihydrid** $C_8H_8O_2NBr$. Beim Zusatz von Brom zu einer alkoh. Lösung von β -Oxy- δ -oxo- β -methyl-pentan- α . γ -dicarbonsaure-dinitril (O., A. 266, 343, 348). Aus 4-Oxy-6-oxo-2.4-dimethyl-3-cyan-[1.4-pyran]-dihydrid durch Bromierung (O., A. 266, 348). — Nädelchen. F: 98—100°. Unlöslich in kaltem, leicht löslich in heißem Wasser, sehr leicht in Alkohol, Äther, Chloroform und Benzol.
- der alicyclischen Verbindungen [Braunschweig 1905], S. 527. — B. Aus [w.π-Dibrom-d-camphersäure]-anhydrid (Bd. XVII, S. 459) durch Kochen mit überschüssiger, wäßriger oder alkoholischer Kalilauge oder durch Schmelzen mit Kaliumhydroxyd bei ziemlich niedriger Temperatur und Ansäuern, ferner durch Einw. von Silbernitrat in Wasser oder Eisessig (Kipping, Soc. 75, 131, 143). Durch Oxydation von linksdrehender ,,cis"-π-Camphansäure (S. 400) in sodaalkalischer Lösung mit Kaliumpermanganat bei 95—100° und Ansäuern der filtrierten Lösung (K., Soc. 69, 948). Beim Erhitzen von π-Brom-w-camphansäure (S. 403) mit Chromsäure und verd. Schwefelsäure oder mit Silbernitrat-Lösung (K., Soc. 75, 139, 143). — Prismen mit 1 H₂O (sus wasserhaltigem Aceton + Äther), Nadeln (aus Wasser). F: 264—265°; sehr leicht löslich in Alkohol, Aceton, heißem Ather und siedendem Wasser, schwerer in siedendem Chloroform, schwer in siedendem Benzol (K., Soc. 69, 948). — Sehr beständig; wird durch Kochen mit konz. Salpetersäure nicht verändert (K., Soc. 69, 549). Beim Kochen der entwässerten Säure mit Acetylchlorid erhält man ihr Acetylderivat (s. u.) und geringe Mengen einer aus Chloroform in Prismen krystallisierenden, bei 192—193° schmelzenden, schwer löslichen Verbindung (K., Soc. 69, 949).—Salz des inaktiven Hydrindamins-(1) $C_{10}H_{14}O_5 + C_9H_{11}N$. Prismen mit $\frac{1}{2}H_2O$ (aus verd. Alkohol) (K., Hall, Soc. 79, 439). Schmilzt wasserfrei bei 206—207° (korr.); leicht löslich in kaltem Alkohol und heißem Wasser, unlöslich in Chloroform und Äther; wird durch Kochen in wäßr. Lösung hydrolysiert (K., H.).

w-Acetoxy- π -camphansäure $C_{12}H_{16}O_6 = (CH_3 \cdot CO \cdot O)(HO_2C)(CH_3)_2C_5H_4 < \frac{CO}{CH_9} > 0$. B. Bei 2-stdg. Kochen von entwässerter w-Oxy-,,cis"-n-camphansäure mit überschüssigem Acetylchlorid (KIPPING, Soc. 69, 949). -- Nadeln oder Prismen (aus Petroläther + Äther), Tafeln (aus verd. Methylalkohol). Monoklin sphenoidisch (Pope, Soc. 69, 950; Z. Kr. 31, 121; vgl. Groth, Ch. Kr. 3, 734). Scheidet sich aus verschiedenen Lösungsmitteln beim Eindunsten ölig ab (K.). F: 123—124°; sehr schwer löslich in siedendem Petroläther, ziemlich leicht in siedendem Wasser, sehr leicht in Äther, Chloroform und Benzol (K.).

c) Oxy-oxo-carbonsäuren $C_nH_{2n-8}O_5$.

Oxy-oxo-carbonsäuren C₆H₄O₅.

1. 3-Oxy-2-oxo-[1.2-pyran]-carbonsäure-(6), 3-Oxy-pyron-(2)-carbonsäure-(6), 3-Oxy-cumalin-carbonsäure-(6) $\rm C_6H_4O_5=$ HC·CH:C·OH

ist desmotrop mit 5.6 - Dioxo - [1.4 - pyran] - dihydrid - carbonsäure - (2), HO.C.C.O.CO S. 463.

2. 5-Oxy-4-oxo-[1.4-pyran]-carbonsäure-(2), 5-Oxy-pyron-(4)-carbonsäure-(2) (Komensäure) $C_0H_4O_5= \frac{HO \cdot C \cdot CO \cdot CH}{HC - O - C \cdot CO_2H}$ ist desmotrop mit 4.5-Dioxo-[1.4-pyran]-dihydrid-carbonsäure-(2), S. 461.

5 - Äthoxy - pyron - (4) - carbonsäure - (2), Äthylätherkomensäure $C_8H_8O_5 = C_8H_8 \cdot O \cdot C \cdot CO \cdot CH$

HC-O-C·CO₃H

Beim Schmelzen von Äthyläthermekonsäure (S. 552) (Mennel, HC-O-C·CO₃H

J. pr. [2] 26, 458). Bei 3—4-stdg. Kochen von Äthylätherkomensäure-äthylester mit Wasser (Oliveri-Tortorici, G. 30 II, 20). — Nadeln (aus Wasser). F: 239—240° (M.). Schwer löslich in kaltem Wasser, leicht in heißem Wasser und in Alkohol (M.). — Beim Erhitzen entsteht unter Kohlendioxyd-Abspaltung Pyromekonsäure-äthyläther (S. 12) (O.-T., G. 32 I, 57). Liefert beim Erhitzen mit Barytwasser quantitativ äquimolekulare Mengen Äthoxyaceton, Oxalsäure und Ameisensäure (O.-T., G. 30 II, 20). Wird durch Kochen mit konz. Salzsäure nicht verändert, zerfällt aber beim Erhitzen mit der Säure im Druckrohr auf 120—130° in Äthylchlorid und Komensäure (M.). Die Salze sind meist leicht löslich in Wasser (M.). — AgC₄H₂O₅ + 2½, H₆O. Nadeln (aus heißem Wasser) (M.).

5-Åthoxy-pyron-(4)-carbonsäure-(2)-äthylester, Äthylätherkomensäure-äthylester $C_{10}H_{12}O_5 = C_2H_5 \cdot O \cdot C \cdot CO \cdot CH$ ester $C_{10}H_{12}O_5 = H_C^* - O \cdot C \cdot CO_2 \cdot C_2H_5$. B. Aus dem frisch gefällten, sehr leicht zersetzlichen gelben Silbersalz des Komensäureäthylesters (S. 462) durch Behandeln mit überschüssigem Äthyljodid und Alkohol bei gewöhnlicher Temperatur (OLIVERI-TORTORICI, G. 30 II, 17). — Nadeln mit $1H_2O$. F: 79—80°. Löslich in Wasser, sehr leicht löslich in Alkohol, Äther, Chloroform und Benzol. Wird aus Benzol-Lösung durch Ligroin gefällt. — Liefert beim Kochen mit Wasser Athylätherkomensäure.

5-Isoamyloxy-pyron-(4)-carbonsäure-(2)-äthylester, Isoamylätherkomensäure-äthylester $C_{13}H_{16}O_5= C_5H_{11}\cdot O\cdot C\cdot CO\cdot CH$ $H_{C-O-C\cdot CO_3\cdot C_3H_5} B. \text{ Aus dem Silbersalz des Komensäure-āthylesters durch Behandeln mit Isoamyljodid (Tamburello, <math>G$. 33 II, 266). — Prismen (aus Alkohol). F: 79—80°. Unlöslich in Wasser, sehr leicht löslich in Aceton und Äther.

5-Acetoxy-pyron-(4)-carbonsäure-(2)-äthylester, O-Acetyl-komensäure-äthylester $C_{10}H_{10}O_6=$ $\begin{array}{c} CH_2\cdot CO\cdot C\cdot CO\cdot CH\\ HC-O-C\cdot CO_2\cdot C_2H_3 \end{array}. \quad B. \quad \text{Beim Erhitzen von Komensäure-}\\ \text{athylester mit Essigsäureanhydrid im Druckrohr auf 150^0 (Reibstein, <math>J.~pr.~[2]$ 24, 277). — Nadeln (aus Alkohol). F: 104°. Wird durch Wasser in Komensäure-äthylester und Essigsäure zersetzt.

O-Carbäthoxy-komensäure-äthylester, Komensäureäthylester-O-carbonsäureäthylester $C_{11}H_{12}O_7=$ $\begin{array}{c} C_2H_5\cdot O_2C\cdot O\cdot C\cdot CO \cdot CH \\ HC-O-C\cdot CO_2\cdot C_2H_5 \end{array}. \quad B. \quad \text{Man behandelt Komensäureāthylester in absolut-alkoholischer Lösung erst mit Natriumäthylat, dann mit Chlorameisensäureäthylester (Drechell, Möller, <math>J.\ pr.\ [2]\ 17,\ 163).$ - Nadeln und Blättchen (aus Wasser).F: 87°. Sehr schwer löslich in kaltem, leichter in heißem Wasser, leicht löslich in Alkohol und Äther.

5 - Åthoxy - pyron - (4) - carbonsäure - (2) - amid, Åthylätherkomensäure - amid $C_8H_9O_4N = {C_8H_8 \cdot O \cdot C \cdot CO \cdot CH} \atop HC-O-C \cdot CO \cdot NH_8$. Man behandelt Komensäure-äthylester mit konz. Ammoniak, fällt mit Silbernitrat und behandelt das ausfallende Silbersalz mit Äthyljodid in Alkohol (Tamburello, G. 83 II, 264). — Krystalle. F: 159—160°. Unlöslich in Ather, Chloroform und Benzol.

d) Oxy-oxo-carbonsäuren C_nH_{2n-12}O₅.

1. Oxy-oxo-carbonsauren C.H.Ox.

1. 6-Oxy-3-oxo-cumaran-carbonsäure-(2) C₂H₄O₅, Formel I.

6-Oxy-8-oxo-thionaphthendihydrid-carbonsäure-(2) $C_9H_4O_4S$, Formel II, ist desmotrop mit 3.6-Dioxy-thionaphthen-carbonsäure-(2), S. 354.

- 2. 1-Oxy-3-oxo-phthalan-carbonsäure-(1), 3-Oxy-phthalid-carbonsaure-(3) $C_0H_0O_3=C_0H_0$ $C_0O_3H_0O_3$ $C_0O_3H_0O_3$ $C_0O_3H_0O_3$ $C_0O_3H_0O_3$
- 3 Methoxy phthalid carbonsäure (3) methylester $C_{11}H_{10}O_5 = C_0H_4 \bigcirc CO \bigcirc CH_2)(CO_3 \cdot CH_2) \bigcirc O$. Diese Konstitution kommt nach Cornillor, A. ch. [10] 8, 189 der im Bd. X, S. 859 als Phthalonsäure dimethylester beschriebenen Verbindung zu.
- 3. 5-Oxy-3-oxo-phthalan-carbonsaure-(1), 6-Oxy-phthalid-carbonsaure-(3) C,H,O₅, s. nebenstehende Formel.
- 6 Methoxy phthalid carbonsaure (3) $C_{10}H_0O_5 = CH(CO_0H)$ CO C_0H_0 CO C_0H
- 6-Äthoxy-phthalid-carbonsäure-(3) $C_{11}H_{10}O_5 = C_2H_5 \cdot O \cdot C_0H_3 \cdot CH(CO_2H) \cdot O$. B. Durch Verseifen von 6-Äthoxy-3-trichlormethyl-phthalid (8. 20) mit ca. 17% iger Natronlauge bei 80% (Fr., A. 296, 354). Nadeln oder Blättchen (aus verd. Alkohol oder aus Benzol). F: 128%. Unlöslich in Benzin, sohwer löslich in kaltem Wasser, Äther, Chloroform und Benzol, ziemlich leicht in heißem Wasser, sehr leicht in Alkohol. Liefert beim Erhitzen auf 180% bis 185% 6-Äthoxy-phthalid (S. 18).
- 6 Methoxy phthalid carbonsäure (3) methylester $C_{11}H_{10}O_6 = CH_2 \cdot O \cdot C_6H_3 \cdot CH_2 \cdot O \cdot B$. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung der 6-Methoxy-phthalid-carbonsäure (3) (Fr., A. 296, 354). Nadeln (aus Methylalkohol oder Benzin). F: 95°.
- 6 Athoxy phthalid carbonsäure (3) methylester $C_{12}H_{12}O_5 = C_2H_3 \cdot O \cdot C_6H_3 \cdot CH_{(CO_2 \cdot CH_3)} \cdot O$. B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung der 6-Athoxy-phthalid-carbonsäure-(3) (Fr., A. 296, 354). Nadeln (aus Methylalkohol oder Benzin). F: 79—80°.

2. Oxy-oxo-carbonsauren $\mathrm{C_{10}H_8O_5}.$

- 1. 7-Oxy-4-oxo-chroman-carbonsäure-(6), $7-Oxy-HO_{3}C$ CH, chromanon-carbonsäure-(6) $C_{10}H_{3}O_{3}$, s. nebenstehende HO CH, chromel.
- 2 oder 3-Jod-7-oxy-4-oxo-chroman-carbonsäure-(6), 2 oder 3-Jod-7-oxy-chromanon-carbonsäure-(6) C₁₀H₇O₅I, Formel I oder II. B. Das Hydrojodid entsteht beim Erhitzen von 4.6-Diäthoxy-ω-formyl-acetophenon-carbonsäure-(3)-äthylester (Bd. X, S. 1021) mit Jodwasserstoff-Eisessig auf 70—75° im Einschlußrohr (Liebermann, Linden-Baum, B. 42, 1402). Das Hydrojodid spaltet beim Erhitzen mit alkoh. Silbernitratlösung

sowie mit konz. Schwefelsäure rasch 1 Mol Jodwasserstoff ab. Das Hydrojodid wie auch das Acetat gibt bei der Einw. von verd. Kalilauge 7-Oxy-chromon-carbonsäure-(6) (S. 530). — $C_{10}H_{7}O_{5}I+HI$. Blaßgelbe Nadeln. F: 217° (Zers.). Unlöslich in Wasser, schwer löslich in organischen Mitteln, etwas leichter in Äther. Löst sich in Alkalilauge mit orangegelber, in Natriumdicarbonat mit blaßgelber Farbe. — Verbindung mit Essigsäure $C_{10}H_{7}O_{5}I+C_{2}H_{4}O_{5}$. B. Man erhitzt das Hydrojodid mit konz. Schwefelsäure, gießt auf Eis, entfernt Jod mit schwefliger Säure und krystallisiert den Rückstand aus Eisessig um (Lie., Lin., B. 42, 1403). Gelbliche Nädelchen. Färbt sich von 200° ab dunkel und zersetzt sich bei 270—280° völlig. Die Essigsäure ist durch Erhitzen nur unter starker Zersetzung auszutreiben.

2. 4-Oxy-1-oxo-isochroman-carbonsäure-(3), 4-Oxy-3.4-dihydro-isocumarin-carbonsäure-(3) $C_{10}H_2O_5=C_6H_4$ CO $C_{10}H_2O_5=C_6H_4$ B. Man versetzt 3 g mit Wasser angeriebenes β -Naphthochinon mit 80—90 cm³ filtrierter Chlorkalklösung (erhalten aus 500 g Chlorkalk und $1\frac{1}{2}$ l Wasser) und zersetzt das ausgeschiedene Calcium-

salz durch Salzsäure (Zincke, Schaffenberg, B. 25, 405; Z., B. 25, 1168; vgl. Bamberger, Kitschelt, B. 25, 893). — Tafeln (aus Wasser). F: 202° (Z., Sch.), 204,5° (B., K.). Schwer löslich in Äther, Chloroform und Benzol, leicht in heißem Alkohol und Eisessig (Z., Sch.). Die wäßr. Lösung wird durch Eisenchlorid intensiv eitronengelb (B., K.). — Beim Erhitzen für sich auf 225—230° (Z., B. 25, 1495) oder mit konz. Salzsäure auf 160—165° (B., K.) entsteht Isocumarin-carbonsäure-(3) (S. 430). Wird durch Kaliumpermanganat zu Phthalsäure oxydiert (Z., Sch.). Liefert bei der Reduktion mit Jodwasserstoff und rotem Phosphor Hydrozimtsäure-o-carbonsäure (Bd. IX, S. 872) (Z., Sch.; B., K.). — $Ca(C_{10}H_7O_5)_2$ (über H_2SO_4). Nadeln. Schwer löslich in kaltem, leicht in heißem Wasser (Z., Sch.). — $AgC_{10}H_7O_5$. Blätter oder Täfelchen (aus Wasser) (Z., Sch.).

- 4 Acetoxy 8.4 dinydro isocumarin carbonsäure (3) $C_{12}H_{10}O_6 =$ C_0H_4 $CH(O \cdot CO \cdot CH_3) \cdot CH \cdot CO_2H$ B. Aus 4-Oxy-3.4-dihydro-isocumarin-carbonsäure-(3) beim Erhitzen mit Acetylchlorid auf 100° (ZINCKE, SCHARFENBERG, B. 25, 407; BAMBERGER, KITSCHELT, B. 25, 895) oder beim Kochen mit Essigsäureanhydrid (B., K., B. 25, 895).— Nadeln (aus heißem Wasser). F: 1870 (Z., Sch.), 189-1900 (B., K., B. 27, 198). Leicht löslich in heißem Wasser, in Alkohol und Aceton, schwer in Ather und Chloroform (B., K., B. 25, 895). — AgC, H₂O₅. Nadeln (aus Wasser) (B., K., B. 25, 895).
- 4 Oxy 3.4 dihydro isocumarin carbonsäure (3) methylester $C_{11}H_{10}O_5 = CH(OH) \cdot CH \cdot CO_2 \cdot CH_3$. B. Aus dem Silbersalz der 4-Oxy-3.4-dihydro-isocumarincarbonsäure-(3) und Methyljodid (ZINCKE, SCHARFENBERG, B. 25, 407). — Tafeln (aus Äther + Methylalkohol). F: 131°. Schwer löslich in Äther.
- 4-Acetoxy-3.4-dihydro-isocumarin-carbonsäure-(3)-methylester $C_{13}H_{14}O_{6}=$ C_6H_4 $CH(O \cdot CO \cdot CH_3) \cdot CH \cdot CO_2 \cdot CH_3$. B. Aus dem Silbersalz der 4-Acetoxy-3.4-dihydroisocumarin-carbonsaure-(3) und Methyljodid (ZINCKE, SCHARFENBERG, B. 25, 407). Aus 4-Oxy-3.4-dihydro-isocumarin-carbonsaure-(3)-methylester und Acetylchlorid (Z., Sch.). -- Tafeln (aus Äther). F: 108°.
- 3. $\alpha 0 \times y \gamma$ phenyl butyrolacton β carbonsäure, $\alpha 0 \times y \gamma$ phenyl paraconsäure $C_{11}H_{10}O_{\delta} = \frac{HO \cdot HC CH \cdot CO_{2}H}{OC \cdot O \cdot CH \cdot C_{6}H_{\delta}}$ Äthylester $C_{13}H_{14}O_{\delta} = \frac{HO \cdot HC CH \cdot CO_{3} \cdot C_{3}H_{\delta}}{OC \cdot O \cdot CH \cdot C_{6}H_{\delta}}$. B. Durch Behandlung von α -Oxo-ty phonyl paraconsäure äthyloster $C_{13}C_{$

 γ -phenyl-paraconsäure-äthylester (S. 472) mit $2^{1/2}/_{2}^{0}/_{0}$ igem Natriumamalgam und Ansäuern der Reduktionsflüssigkeit (Wislicenus, B. 26, 2147). — Nädelchen (aus verd. Alkohol). F: 86-88°. Leicht löslich in organischen Lösungsmitteln.

4. Oxy-oxo-carbonsäuren $C_{12}H_{12}O_5$.

1. α -Oxy- α oder γ -methyl- γ oder α -phenyl-butyrolacton- γ -carbonsäure $C_{11}H_{12}O_5$, Formel I oder II. B. Das Dinitril der entsprechenden Dioxydicarbonsäure entsteht durch Versetzen einer alkoh. Lösung von 1 Mol Benzoylaceton mit 4 Mol Kaliumcyanid und

Zusatz von Salzsäure (D: 1,19); beim Verseifen des Dinitrils durch mehrtägiges Kochen mit Salzsäure entstehen neben viel Harz die beiden isomeren Oxymethylphenylbutyrolacton-carbonsäuren (Carlson, B. 25, 2729). — Nädelchen (aus Wasser). F: 174—175°. — Gibt beim Kochen mit Alkalilauge α.α'-Dioxy-α-methyl-α'-phenyl-glutarsäure. — AgC₁₃H₁₁O₅.

2. α -Oxy- γ oder α -methyl- α oder γ -phenyl-butyrolacton- γ -carbonsaure $C_{12}H_{12}O_5$, Formel II oder I. B. s. im vorangehenden Artikel. — Prismen (aus Wasser). F: 163° (C., B. 25, 2729). — Gibt beim Kochen mit Alkalilauge $\alpha.\alpha'$ -Dioxy- α -methyl- α' -phenylglutarsaure — AgC₁₂H₁₁O₅.

e) Oxy-oxo-carbonsäuren $C_nH_{2n-14}O_5$.

1. Oxy-oxo-carbonsauren C₁₀H₈O₅.

- 1. 6-Oxy-4-oxo-[1.4-chromen]-carbonsäure-(2), HO CO CH G-Oxy-chromon-carbonsäure-(2) $C_{10}H_6O_5$, s. nebenstehende $C_{10}H_6O_5$ Formel.
 - 6 Äthoxy chromon carbonsäure (2) $C_{12}H_{10}O_5 = C_2H_5 \cdot O \cdot C_6H_3 < \frac{CO \cdot CH}{O C \cdot CO_5H}$
- B. Durch Kochen einer alkoh. Lösung von 2-Oxy-5-äthoxy-benzoylbrenztraubensäure-äthylester (Bd. X, S. 1020) mit konz. Salzsäure (David, v. Kostanecki, B. 35, 2548). Nadeln mit 1 H₂O (aus Alkohol). Schmilzt bei 235° unter Entwicklung von Kohler lioxyd und Bildung von 6-Äthoxy-chronion (S. 25). Schwer löslich in Alkohol.
- 2. 7-Oxy-4-oxo-[1.4-chromen]-carbonsäure-(2), 7-Oxy-chromon-carbonsaure-(2) $C_{10}H_6O_5$, s. nebenstehende Ho. $CO \cdot CH$ 7-Methoxy-chromon-carbonsaure-(2) $C_{11}H_8O_5 = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_3$ 8.

Durch Kochen einer alkoh. Lösung von 2-Oxy-4-methoxy-benzoylbrenztraubensäure-äthylester (Bd. X, S. 1020) mit Salzsäure (D: 1,19) (v. Kostanecki, de Ruijter de Wildt, B. 35, 865). — Nädelchen (aus Alkohol). Schmilzt bei 261° unter Entwicklung von Kohlendioxyd und Bildung von 7-Methoxy-chromon (S. 25).

yd und Bildung von 7-Metnoxy-enromon (8. 20).

7-Äthoxy-chromon-carbonsäure-(2) $C_{12}H_{10}O_5 = C_2H_5 \cdot O \cdot C_6H_3 \stackrel{!!}{C} \cdot CO_2H$. B.

Durch Kochen einer alkoh. Lösung von 2-Oxy-4-äthoxy-benzoylbrenztraubensäure-äthylester (Bd. X, S. 1020) mit Salzsäure (D: 1,19) (v. Kostanecki, Paul., Tambor, B. 34, 2478). — Nadeln (aus Alkohol). Schmilzt bei 234° unter Kohlendioxyd-Entwicklung und Bildung von 7-Athoxy-chromon (S. 25). Löst sich in konz. Schwefelsäure mit blaßgelber Farbe ohne Fluorescenz. Löslich in warmer Natriumcarbonat-Lösung. — NaC₁₂H₂O₅. Nadeln (aus Wasser).

- 3. 4-Oxy-2-oxo-[1.2-chromen]-carbonsäure-(3), 4-Oxy-cumarin-carbonsäure (3) (3 Carboxy benzotetronsäure, Benzotetronsäure carbonsäure-(3)) $C_{10}H_6O_5$, s. nebenstehende Formel. Derivate, die sich von der desmotropen Form, 2.4-Dioxo-chroman-carbonsäure-(3), ableiten lassen, s. S. 469ff.
- 4-Äthoxy-cumarin-carbonsäure-(3), Benzotetronsäureäthyläther-carbonsäure-(3) $C_{12}H_{10}O_5 = C_6H_4 \bigcirc CO \bigcirc CO_2H_5$: CO B. Aus 4-Äthoxy-cumarin-carbonsäure-(3)-äthylester beim Stehenlassen mit der äquimolekularen Menge Kaliumhydroxyd in warmem Alkohol (Anschütz, A. 367, 184). — Nadeln (aus Alkohol). F: 96°. Unlöslich in Benzol und Wasser, leicht löslich in Alkohol und Äther. — Geht beim Erhitzen für sich oder mit alkoh. Kalilauge
- in Benzotetronsäure (Bd. XVII, S. 488) über. 4-Äthoxy-cumarin-carbonsäure-(3)-äthylester, Benzotetronsäureäthyläther-[carbonsäure-(8)-äthylester] $C_{14}H_{14}O_5 = C_6H_4 C_0 C_2H_5$: $C C_2 C_2H_5$. B. Durch Erwärmen des Silbersalzes des Benzotetronsäure-[carbonsäure-(3)-äthylesters] (S. 469) mit

Athyljodid (A., A. 367, 183). Durch Erwärmen von 4-Chlor-cumarin-carbonsäure-(3)-äthylester (S. 430) mit Natriumäthylat-Lösung (A.). — Krystalle (aus Alkohol). F: 123,5—124,5°. — Liefert mit 1 Mol alkoh. Kalilauge 4-Äthoxy-cumarin-carbonsäure-(3).

- 6.8-Dichlor-4-äthoxy-cumarin-carbonsäure-(3)-äthylester, 6.8-Dichlor-benzotetronsäure-äthyläther-[carbonsäure-(3)- äthylester] C..H..O.Cl., s. neben-[carbonsäure - (3) - äthylester] $C_{14}H_{12}O_5Cl_2$, s. nebenstehende Formel. B. Beim Erhitzen des Silbersalzes des 6.8-Dichlor-benzotetronsäure-[carbonsäure-(3)-äthylesters] (S. 470) mit Äthyljodid im Rohr auf 110º (A., A. 368, 27). - Nadeln (aus Alkohol). F: 148º. Schwer löslich in Alkohol und Ather, leicht in Benzol.
- 6.8-Dibrom-4-äthoxy-cumarin-carbonsäure-(3)- athylester, 6.8-Dibrom-benzotetronsäure-äthyläther-[carbonsäure (3) äthylester] $C_{14}H_{12}O_5Br_s$, s. nebenstehende Formel. B. Beim Erhitzen des Silbersalzes des

$$\begin{array}{c|c}
Br & C(O \cdot C_2H_5) & C \cdot CO_2 \cdot C_2H_5 \\
\hline
& O & CO
\end{array}$$

6.8-Dibrom-benzotetronsäure-[carbonsäure-(3)-äthylesters] (S. 470) mit Äthyljodid im Rohr auf 110° (A., A. 368, 30). — Nadeln (aus Alkohol). F: 155°. Leicht löslich in Benzol und Äthyljodid, schwerer in Alkohol.

Athyljodid, sonwerer in Alacura.

6.8 - Dijod - 4 - äthoxy - cumarin - carbonsäure - (8) - I.

äthylester, 6.8 - Dijod - bensotetronsäure - äthyläther - [carbonsäure-(3)-äthylester] $C_{14}H_{12}O_5I_5$, s. nebenstehende

Formel. B. Aus dem Silbersalz des 6.8-Dijod-benzotetronsäure-(3)-äthylesters] (8.471) und Athyljodid (A., A. 868, 36). — Nadeln (aus Ather). F: 159°. Leicht löslich in Alkohol und Ather, unlöslich in Wasser und Alkalilauge.

6.8 - Dijod - 4 - äthoxy - cumarin - carbonsäure - (3) - nitril, 6.8 - Dijod - 3 - cyan - benzotetronsäure - äthyläther C₁₂H₃O₂NI₂, s. nebenstehende Formel. B. Aus dem Silbersalz der 6.8 - Dijod - co do 3 - cyan - benzotetronsäure (8. 471) und Äthyljodid (A., A. 368, 39).

— Nädelchen (aus Alkohol). F: 226°.

4. 7-Oxy-2-oxo-[1.2-chromen]-carbonsäure-(3),
7-Oxy-cumarin-carbonsäure-(3), Umbelliferon-carbonsäure-(3), Umbelliferon-carbon

Äthylester $C_{12}H_{10}O_5 = HO \cdot C_6H_2 < C_1H_5$. B.s. im vorangehenden Artikel. — Nadeln oder Blättchen (aus verd. Alkohol), die bei 100° wasserfrei werden, bei 165° sintern und bei 170° geschmolzen sind; löslich in Alkohol und Eisessig, unlöslich in Benzol (v. P., G., B. 84, 385). Die verd. Lösungen in organischen Solvenzien und in konz. Schwefelsäure fluorescieren intensiv blau; die alkal. Lösungen sind citronengelb mit blauer Fluorescenz (v. P., G.). Besitzt, besonders in alkoh. Lösung, cumarinartigen Geruch (v. P., G.).

5. 6-Oxy-2-oxo-[1.2-chromen]-carbonsāure-(4), Ho. C(CO₂H) CH 6-Oxy-cumarin-carbonsāure-(4) C₁₀H₆O₅, s. nebenstehende Formel. B. Durch Verseifen von 6-Oxy-cumarin-carbonsāure-(4)- athylester mit Alkalien in der Kälte (Biginelli, G. 24 II, 493, 494). — Krystallisiert in gelben Nadeln, die bei 279—280° schmelzen, oder in nadelförmigen Blättchen, die bei 283° schmelzen; beide Formen geben nach der Destillation nadelförmige Blättchen vom Schmelzpunkt 289°. Bei der Destillation tritt teilweise Zersetzung unter Entwicklung von Kohlensäure ein. — NaC₁₀H₅O₅ + H₂O. Nadeln (aus Wasser). Sehr leicht löslich in Wasser, löslich in Alkohol. Das wasserfreie Salz ist in Alkohol fast unlöslich. — NaC₁₀H₅O₅ + ½H₅O + ½C₁H₅OH. Prismen. Sehr leicht löslich in Wasser.

6-Methoxy-cumarin-carbonsäure-(4) $C_{11}H_{0}O_{5}=CH_{2}\cdot O\cdot C_{6}H_{2}\cdot C(CO_{2}H):CH$. Entsteht neben dem entsprechenden Methylester bei der Einw. von Methyljodid und methylalkoholischer Kalilauge auf 6-Oxy-cumarin-carbonsäure-(4) (B., G. 24 II, 497, 498). Bei kurzem Kochen von 6-Methoxy-cumarin-carbonsäure-(4)-methylester mit Alkalien (B.). — Gelbe Blättchen (aus Alkohol). F: 246—247°. Destilliert unzersetzt gegen 290°. — Läßt sich durch Erhitzen mit Eisenpulver auf 260—270° in Kohlendioxyd und 6-Methoxy-cumarin (S. 26) spalten.

6 - Methoxy - cumarin - carbonsäure - (4) - methylester $C_{12}H_{16}O_5 = CH_2 \cdot O \cdot C_6H_6 \cdot CH_2 \cdot CH_2 \cdot CH_6 \cdot B$. s. im vorangehenden Artikel. — Nadeln (aus Alkohol). F: 131—132° (B., G. 24 II, 498).

6 - Oxy - cumarin - carbonsäure - (4) - äthylester $C_{12}H_{10}O_5 = HO \cdot C_0H_0 \cdot C_2H_3$: CH HO · $C_0H_0 \cdot C_2H_3$: B. Durch Kondensation von Hydrochinon mit Oxalessigsäurediäthylester in Gegenwart von konz. Schwefelsäure (B., G. 24 II, 492). — Krystallisiert aus verd. Alkohol oder aus Äther in hellgelben Täfelchen, die bei 177—178° schmelzen, oder in dunkelgelben Prismen, die bei 180—182° schmelzen. Fast unlöslich in Wasser, löslich in Alkohol und Äther. Die Lösungen fluorescieren grün.

6. 7-Oxy-2-oxo-[1.2-chromen]-carbonsäure-(4),
7-Oxy-cumarin-carbonsäure-(4), Umbelliferon-carbonsäure-(4), Umbelliferon-carbonsäure-(4), Umbelliferon-carbonsäure-(4), Umbelliferon-carbonsäure-(4), Umbelliferon-carbonsäure-(4)-methylester oder -äthylester mit überschüssiger Natronlauge in der Kälte (v. Peohmann, Graeger, B. 34, 381). — Krystallisiert aus Wasser in gelben Nadeln mit 1½, H₂O oder in Warzen mit 2H₂O. F: 247—248°. Fast unzersetzt destillierbar. Leicht löslich in heißem Wasser und Alkohol. Die alkoh. Lösung fluoresciert schwach grünlich. Die gelben alkalischen Lösungen nehmen beim Aufbewahren grüne Fluorescenz an. — Liefert bei der Natronschmelze 2.4-Dioxy-benzoesäure. Beim Erhitzen mit Barytwasser entsteht 2.4-Dioxy-phenylmaleinsäure.

7-Methoxy-cumarin-carbonsäure-(4), Umbelliferonmethyläther-carbonsäure-(4) $C_{11}H_8O_5 = CH_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_6H_3 \cdot O \cdot C_0 \cdot B$. B. Durch Verseifen von Umbelliferonmethyläther-carbonsäure-(4)-methylester mit der berechneten Menge alkoh. Kalilauge (v. P., G., B. 34, 382). — Gelbe Nadeln (aus Wasser). F: 219°. Die fast farblose alkalische Lösung fluoresciert nach einiger Zeit grün. — Das Silbersalz gibt bei der trocknen Destillation Umbelliferon-methyläther (S. 27).

7-Oxy-cumarin-carbonsäure-(4)-methylester, Umbelliferon-carbonsäure-(4)-methylester $C_{11}H_8O_5=HO\cdot C_6H_3 < C_0CO_2\cdot CH_8$: CH B. Durch Erwärmen von Oxalessigsäurediäthylester mit Resorcin in Gegenwart von Natriummethylatlösung (v. P., G., B. 34, 382). — Grüngelbe Prismen (aus verd. Alkohol). F: 178°.

7-Methoxy-cumarin-carbonsäure-(4)-methylester, Umbelliferonmethyläther-carbonsäure-(4)-methylester $C_{12}H_{10}O_5=CH_3\cdot O\cdot C_6H_3\cdot CC(CO_1\cdot CH_3):CH$ and Durch Einw. von Methyljodid auf Umbelliferon-carbonsäure-(4)-methylester in Gegenwart von Natrium-alkoholat (v. P., G., B. 34, 382). — Schwefelgelbes Krystallpulver (aus Methylalkohol). F: 115°. Die alkoh. Lösung fluoresciert gelbgrün, die Aceton- oder Benzol-Lösung blau.

und 4-Brom-benzoylchlorid nach Schotten-Baumann (v. P., G., B. 34, 384). — Farblose Nädelchen (aus verd. Alkohol). F: 98°.

7-Benzolsulfonyloxy-cumarin-carbonsäure-(4)-methylester, O-Benzolsulfonylumbelliferon - carbonsäure - (4) - methylester $C_{17}H_{18}O_7S=$

7-Oxy-cumarin-carbonsäure-(4)-äthylester, Umbelliferon-carbonsäure-(4)-äthylester $C_{12}H_{10}O_5=HO\cdot C_6H_3$ O_2 O_3 O_4 O_5 O_4 O_5 O_5 O_6

 $\begin{array}{lll} \textbf{7-Bensoyloxy-cumarin-carbons\"{a}ure-(4)-\"{a}thylester}, & \textbf{O-Bensoyl-umbelliferon-carbons\"{a}ure-(4)-\"{a}thylester} & \textbf{C}_{19}\textbf{H}_{14}\textbf{O}_{6} = \textbf{C}_{6}\textbf{H}_{5}\cdot\textbf{CO}\cdot\textbf{O}\cdot\textbf{C}_{6}\textbf{H}_{5} \cdot \begin{matrix} \textbf{C}(\textbf{CO}_{2}\cdot\textbf{C}_{3}\textbf{H}_{5}): \textbf{CH} \\ \textbf{O} & & \textbf{CO}_{2}\cdot\textbf{C}_{3}\textbf{H}_{5} \end{matrix}): \textbf{B}. & \textbf{D}\textbf{U}\textbf{r}\textbf{ch} \\ \textbf{D} & \textbf{D}\textbf{C} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} \\ \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} \\ \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} \\ \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} \\ \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} \\ \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} \\ \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} \\ \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} & \textbf{D} \\ \textbf{D} & \textbf{D} \\ \textbf{D} & \textbf{D} & \textbf{D} \\ \textbf{D} \\ \textbf{D} & \textbf{D} \\ \textbf{D} \\ \textbf{D} & \textbf{D} \\ \textbf{D} \\ \textbf{D} \\ \textbf{D} \\ \textbf{D} & \textbf{D} \\

Einw. von Benzoylchlorid auf Umbelliferon-carbonsäure-(4)-äthylester in Chloroform bei Gegenwart von Kaliumcarbonat (v. P., G., B. 34, 383). - Farblose Nadeln (aus verd. Alkohol). F: 118°.

8(P)-Brom-7-oxy-cumarin-carbonsaure-(4), 8(P)-Bromumbelliferon-carbonsäure-(4) $C_{10}H_5O_5Br$, s. nebenstehende Formel. B. Durch Verseifung des Athylesters mit der berechneten Menge Alkalilauge (v. P., G., B. 34, 385). — Hellgelbe Nadeln (aus verd. Alkohol). F: 260°. Die alkal. Lösung ist gelb.

Äthylester C₁₂H₂O₅Br, s. nebenstehende Formel. B. Durch Einw. von Brom auf Umbelliferon-carbonsäure-(4)-äthylester in Ho. Chloroform (v. P., G., B. 34, 385). — Goldgelbe Nadeln (aus Alkohol oder Aceton). F: 203°. Die Eisessiglösung fluoresciert. Die rotbraune alkalische Lösung wird schnell gelb.

7. 7-Oxy-4-oxo-[1.4-chromen]-carbonsäure-(6), 7-Oxy-Ho₂C CH chromon-carbonsäure-(6) C₁₀H₆O₅, s. nebenstehende Formel. B. HO CH Durch 24-stdg. Stehenlassen des Hydrojodids der 2 oder 3-Jod-7-oxy-chromanon-carbonsäure-(6) (S. 525) mit 2°/oiger Kalilauge (LIEBERMANN, LINDENBAUM, B. 42, 1404). — Farblos, krystallinisch. F: 297° (Zers.). Ziemlich leicht löslich in Alkohol und Eisessig, schwer in Wasser, Benzol und Ligroin. Löst sich in Alkalilauge und in Sdangeralber Einer Schwerzenz in Diesbenzt Lösung fasbler eine Plantensenz in Diesbenzt eine Plantensenz in Diesbenzt Lösung fasbler eine Plantensenz in Diesbenzt Lösung fasbler eine Plantensenz in Diesbenzt eine Plantensenz eine Plantensenz in Diesbenzt eine Plantensenz eine lösung gelb mit grünlicher Fluorescenz, in Dicarbonat-Lösung farblos ohne Fluorescenz, in konz. Schwefelsäure gelb. Gibt in alkoh. Lösung mit Eisenchlorid eine rote Färbung.

[5 oder 6- \ddot{A} thoxy-phthalidyliden]-essigsäure, β - \ddot{A} thoxyphthalylessigsäure CO₁₂H₁₀O₅ = C₂H₅·O·C₆H₃·C(:CH·CO₂H)·O. B. Durch kurzes Erhitzen von [4-Äthoxyphthalsäure] anhydrid (S. 95) mit Essigsäureanhydrid und wasserfreiem Kaliumacetat auf 150° (ONNERTZ, B. 34, 3736). — Gelbe Nadeln (aus Eisessig). F: 246—248° (Zers.). Unlöslich in Wasser, schwer löslich in heißem Alkohol.

2. Oxy-oxo-carbonsäuren $C_{11}H_8O_5$.

1. 7-Oxy-4-oxo-[1.4-chromen]-essigsäure-(3), 7-Oxy-chromon-essigsäure-(3) $C_{11}H_8O_5$, s. nebenstehende

7-Methoxy-chromon-essigsäure-(3), Anhydrobrasilsäure $C_{12}H_{10}O_5=CH_3\cdot O\cdot C_6H_3\cdot CO\cdot C_6H_2\cdot CO_2H$. B. Durch Erhitzen von 3-Oxy-7-methoxy-chromanonessigsäure-(3) (Brasilsäure, S. 543) mit konz. Schwefelsäure (Perkin, Soc. 81, 222, 230). Durch Kondensation von β -[2-Oxy-4-methoxy-benzoyl]-propionsäure-methylester (Bd. X, S. 1002) mit Ameisensäureäthylester in Gegenwart von Natrium und Verseifung des Reaktionsprodukts durch Kochen mit überschüssiger methylalkoholischer Kalilauge (P., Robinson, Soc. 93, 503, 504, 509). — Gelbes Krystallpulver (aus Wasser). F: 197° (P.; P., R.). Fast unlöslich in Petroläther, sehr schwer löslich in Wasser, schwer in Benzol, Chloroform und Ather, leicht in Alkohol (P.). — Zersetzt sich beim Erhitzen unter Bildung eines braunen, nach Cumarin riechenden und beim Abkühlen erstarrenden Destillats (P.). Beim Behandeln mit Permanganat in verd. Sodalösung in der Kälte entsteht 4-Methoxy-salicylsäure (P.). Zersetzt sich beim Kochen mit Barytwasser in Ameisensäure und β -[2-Oxy-4-methoxybenzoyl]-propionsäure (P.).

Oxim $C_{12}H_{11}O_5N = CH_3 \cdot O \cdot C_6H_3 \cdot \frac{C(:N \cdot OH) \cdot C \cdot CH_2 \cdot CO_2H}{O - CH}$. B. Aus Anhydrobrasilsäure und salzsaurem Hydroxylamin in Gegenwart von Soda (P., Soc. 81, 222, 231). — Mikroskopische Nadeln (aus Wasser). Schmilzt unter Zersetzung gegen 175—180°.

[7-Oxy-cumarinyl-(4)]-essigsäure. Umbelliferonessigsäure-(4) $C_{11}H_8O_5$, s. nebenstehende Formel. B. Durch $C_{11}H_8O_5$

längeres Stehenlassen von Resorcin mit roher Acatondicarbonsäure in Gegenwart von konz. Schwefelsäure (v. Pechmann, A. 261, 167). Durch längeres Erhitzen von Resorcin mit Malonsäurediäthylester und festem Natriumäthylat in Wasserstoffatmosphäre auf dem Wasserbad (Michael, J. pr. [2] 37, 469; vgl. Dey, Soc. 107 [1915], 1610, 1632]¹). — Nadeln mit 1 H₂O (aus Wasser). Wird bei 110° wasserfrei (v. P.). Schmilzt bei 201—202° unter Zerfall in 4-Methyl-umbelliferon (S. 31) und Kohlendioxyd (vgl. M.; v. P.). Unlöslich in kaltem Wasser, in Äther, Chloroform und Benzol, ziemlich leicht löslich in heißem Wasser und Alkohol (v. P.). Die Lösungen in Alkalien und Alkalicarbonaten fluorescieren blau (v. P.). — AgC₁₁H₇O₅. Gelber Niederschlag (v. P.).

- 3. 7-Oxy-4-oxo-2-methyl-[1.4-chromen]-carbon-säure-(6), 7-Oxy-2-methyl-chromon-carbonsäure-(6)

 C₁₁H₈O₅, s. nebenstehende Formel. B. Durch Kochen von 4.6-Disäthoxy-3-[α,γ-dioxo-butyl]-benzoesäure-äthylester (Bd. X, S. 1022) mit Jodwasserstoffsäure (D: 1,96) (Liebermann, Lindenbaum, B. 42, 1400). Farblose Nadeln. F: 301° (Zers.). Sehr schwer löslich in Wasser, leichter in Alkohol und Eisessig. Die Lösungen in Alkalilauge und in Sodalösung fluorescieren blaugrün, die Lösung in konz. Schwefelsäure fluoresciert hellgrün. Gibt in alkoh. Lösung mit Eisenchlorid eine rotbraune Färbung.
- 4. 4-Oxy-2-oxo-6-methyl-[1.2-chromen]-carbonsäure-(3), 4-Oxy-6-methyl-cumarin-carbonsäure-(3) (6-Methyl-3-carboxy-benzotetronsäure, 6-Methyl-benzotetronsäure-carbonsäure-(3)) $C_{11}H_0O_5$, s. nebenstehende Formel. Derivate, die sich von der desmotropen Form, 2.4-Dioxo-6-methyl-chroman-carbonsäure-(3), ableiten lassen, s. S. 473.
- 4-Äthoxy-6-methyl-cumarin-carbonsäure-(3)-äthylester, 6-Methyl-benzotetronsäure-äthyläther-[carbonsäure-(3)-äthylester] $C_{15}H_{16}O_5=CH_3\cdot C_6H_3\cdot C_2H_5$; $C\cdot CO_2\cdot C_2H_5$. B. Durch Erhitzen des Silbersalzes des 6-Methylbenzotetronsäure-[carbonsäure-(3)-äthylesters] (S. 473) mit Äthyljodid im Rohr auf 110° (Anschütz, A. 367, 248). Nadeln. F: 87°.
- 5. 4-Oxy-2-oxo-7-methyl-[1.2-chromen]-carbonsäure-(3), 4-Oxy-7-methyl-cumarin-carbonsäure-(3) (7-Methyl-3-carboxy-benzotetronsäure, 7-Methyl-benzotetronsäure-carbonsäure-(3)) $C_{11}H_{5}O_{5}$, s. nebenstehende Formel. Derivate, die sich von der desmotropen Form, 2.4-Dioxo-7-methyl-chroman-carbonsäure-(3), ableiten lassen, s. S. 473, 474.
- 4-Methoxy-7-methyl-cumarin-carbonsäure-(3)-äthylester, 7-Methyl-benzotetronsäure-methyläther-[carbonsäure-(3)-äthylester] $C_{14}H_{14}O_5 = CH_3 \cdot C_6H_3 \cdot C_6H_3 \cdot C_0 \cdot C_2H_5$. B. Durch Erhitzen des Silbersalzes des 7-Methyl-benzotetronsäure-[carbonsäure-(3)-äthylesters] (S. 473) mit Methyljodid im Rohr auf 100° bis 110° (ANSCHÜTZ, A. 367, 223). Nadeln (aus Alkohol). F: 126°.
- 4-Äthoxy-7-methyl-cumarin-carbonsäure-(3)-äthylester, 7-Methyl-benzotetronsäure äthyläther [carbonsäure (3) äthylester] $C_{15}H_{16}O_5 = CH_3 \cdot C_6H_3 \cdot C_5 \cdot C_2H_5$. B. Aus dem Silbersalz des 7-Methyl-benzotetronsäure-

[carbonsaure-(3)-āthylesters] und Athyljodid (A., A. 367, 224, 225). Durch Erwärmen von 4-Chlor-7-methyl-cumarin-carbonsaure-(3)-āthylester (S. 433) mit Natriumāthylat-Lösung (A.). — Gelbliche Krystalle (aus Alkohol). Monoklin prismatisch (Geipel, Z. Kr. 35, 616; Hintze, A. 367, 224; vgl. Groth, Ch. Kr. 4, 698, 767). F: 104° (A.).

4-Propyloxy-7-methyl-cumarin-carbonsäure-(3)-äthylester, 7-Methyl-benzo-tetronsäure - propyläther - [carbonsäure - (3) - äthylester] $C_{16}H_{18}O_5$

CH₃·C₈H₄·C₀·CH₂·CH₂·CH₃·CCO₂·C₂H₅.

B. Aus dem Silbersalz des 7-Methyl-benzoteronsäure - [carbonsäure - (3) - åthylesters] und Propyljodid (A., A. 367, 226). — Gelbe Krystalle. Monoklin prismatisch (Geipel, Z. Kr. 35, 618; Hintze, A. 367, 227; vgl. Groth, Ch. Kr. 4, 698, 767). F: 112° (A.).

¹⁾ Danach ist die Angabe, Bd. VI, S. 803, Z. 5—3 v. u. zu berichtigen. Durch Kondensation von Resordin mit Malonsäurediäthylester in Gegenwart von alkoh. Natriumäthylat-Lösung erhält man Umbelliferon-essigsäure-(4)-äthylester (F: 157°) (DEY, Soc. 107 [1915], 1610, 1632).

A. 367, 256). — Blaßgelbe Krystalle (aus Alkohol). F: 146°.

4 - Acetoxy - 6.7 - benso - cumarin - carbonsäure - (3) - äthylester $C_{10}H_{14}O_6 = C_{10}H_{14}O_6 = C_{10}$

tetronsäure-α-carbonsäureäthylesters (S. 477) mit überschüssigem Methyljodid (Awschütz,

4 - Methoxy - 6.7 - benso - cumarin - carbonsäure - (3) - äthylester $C_{17}H_{14}O_5$ =

. B. Bei längerem Kochen des Silbersalzes des 2.3-Naphtho-

 $C_{10}H_{\bullet}$ $C_{10}G(O \cdot CH_{\bullet}): C \cdot CO_{\bullet} \cdot C_{\bullet}H_{\bullet}$

(aus Alkohol). F: 157° . — Wird durch verd. Natronlauge in Essigsäure und 2.3-Naphthotetronsäure- α -carbonsäureäthylester gespalten.

- 4-Acetoxy-6.7-benso-cumarin carbonsäure (8) nitril, 4-Acetoxy-3-cyan-6.7-benso-cumarin $C_{16}H_{9}O_{4}N=C_{10}H_{6}$ $C_{10}CO\cdot CO\cdot CH_{3}$: CO $CO\cdot CO\cdot CH_{3}$: $CO\cdot CH_{3}$: $CO\cdot CO\cdot CH_{3}$: $CO\cdot CO\cdot CH_{3}$: $CO\cdot CH_{3}$: $CO\cdot CO\cdot C$
- 2. 6 Oxy fluoron carbonsäure (9) C₁₄H₂O₅, Formel I. B. Man kocht "Citraconfluorescein" (Formel II; Syst. No. 2832) mit Essigsäureanhydrid, oxydiert die entstandene Acetylverbindung mit Chromtrioxyd in heißem Eisessig und verseift das Reaktions-

produkt durch Kochen mit Alkalilauge (Hewitt, Pope, B. 29, 2825). — Braunes Krystall-pulver (aus Aceton). Sehr schwer löslich in fast allen organischen Lösungsmitteln; leicht löslich in Alkalilaugen. — $\mathrm{AgC_{14}H_7O_5}$. Dunkelroter Niederschlag.

- 3. 4-Oxy-2-oxo-7.8-benzo-[1.2-chromen]-carbon-sdure-(3), 4-Oxy-7.8-benzo-cumarin-carbonsäure-(3) (2.1-Naphthotetronsäure- α -carbonsäure) $C_{14}H_8O_8$, siehe nebenstehende Formel. Derivate, die sich von der desmotropen Form, 2.4-Dioxo-7.8-benzo-chroman-carbonsäure-(3), ableiten lassen, s. S. 478.
- C(OH) C · CO2H
- 4 Äthoxy 7.8 benzo cumarin carbonsäure (3) äthylester $C_{18}H_{16}O_5 = C_{10}H_6 \cdot C_{10}C_{10}C_{10}C_{10}$. B. Aus dem Silbersalz des 2.1-Naphthotetronsäure- α -carbonsäureäthylesters (8. 478) und Äthyljodid (Ansonütz, A. 368, 44). Hellgelbe Nadeln (aus Benzol + Lágroin). F: 147°. Leicht löslich in Alkohol, Äther, Chloroform, Eisessig, Benzol und Schwefelkohlenstoff, schwer in Ligroin und Petroläther.
- 4 Äthoxy 7.8 benso cumarin carbonsäure (3) nitril, 4-Äthoxy-3-cyan-7.8-benso-cumarin $C_{16}H_{11}O_8N = C_{10}H_4 < \begin{array}{c} C(O \cdot C_8H_8) : C \cdot CN \\ O & C_8H_8 \end{array}$. B. Aus dem Silbersalz des 2.4-Dioxo-3-cyan-7.8-benzo-chromans (S. 478) mit Äthyljodid (A., A. 368, 46). Schuppen (aus Eisessig). F: 52°.
- 2. β 0 x y β . γ diphenyl-butyrolacton α essigs aure (?) $C_{10}H_{10}O_5 = HO_2C \cdot CH_2 \cdot HC C(C_0H_0) \cdot OH$ (?). B. Beim Bromieren von γ -Phenyl- γ -benzal-brenzwein- $OC \cdot O \cdot CH \cdot C_0H_0$ (?). B. Beim Bromieren von γ -Phenyl- γ -benzal-brenzwein-saure in Chloroform entsteht außer β -Brom- β . γ -diphenyl-butyrolacton- α -essigsaure (8. 442) ein gelbes zähflüssiges Produkt; dieses geht beim Erwärmen mit Wasser in β -Oxy- β . γ -diphenyl-butyrolacton- α -essigsaure (?) und andere Produkte über (Stobbe, Russwurm, A. 308, 170, 173). Krystalle mit $\frac{1}{2}$ C_0H_0 (aus Benzol). F: 169—171,5°. Leicht löslich in Alkohol, Ather und heißem Wasser, sehr sohwer in heißem Benzol, fast unlöslich in Schwefelkohlenstoff und Chloroform. Reagiert nicht mit Semicarbazid. Wird durch wasserentziehende Mittel wahrscheinlich in β . γ -Diphenyl- Δ ^{α}-crotonlacton- α -essigsaure (8. 446) übergeführt.
- 3. γ -Phenyl- α -[β -oxy- β -phenyl-āthyl]-butyrolacton- β -carbonsāure, γ -Phenyl- α -[β -oxy- β -phenyl-āthyl]-paraconsāure $C_{19}H_{18}O_{\delta}=C_{6}H_{5}\cdot CH(OH)\cdot CH_{2}\cdot HC$ — $CH\cdot CO_{2}H$ OC·O·CH· $C_{6}H_{5}$ Dentan- β - γ -dicarbonsāure (s. nebenstehende Formel; Syst. Nr. 2768) durch Einw. von 1 Mol Kalilauge (Firma, A. 331, 157, 188). Ist in freiem Local Custand nicht bekannt; die Salze liefern beim Ansäuern das genannte Dilacton zurück. AgC₁₉H₁₇O₅. Krystalle (aus Wasser). Be($C_{19}H_{17}O_{5})_{2}$. Spieße (aus Wasser). Schwer löslich in Alkohol.

g) Oxy-oxo-carbonsäuren $C_nH_{2n-22}O_5$.

1. Oxy-oxo-carbonsauren $C_{18}H_{14}O_5$.

1. 2-Oxo-3-[β -(2-oxy-phenyl)- α -carboxy-āthyl]-[1.2-chromen], β -[2-Oxy-phenyl] - α - [cumarinyl - (3)] - propionsaure (,,Hydrodicumarinsaure") $C_{18}H_{14}O_5 = C_6H_4$ CH: $C \cdot CH(CO_2H) \cdot CH_2 \cdot C_6H_4 \cdot OH$ B. Man behandelt eine in der Wärme

hergestellte alkal. Lösung von Dicumarinyl-(3.3') $\begin{bmatrix} C_6H_4 & CH:C-\\ O-CO \end{bmatrix}_2$ (Syst. No. 2770) mit 5°/pigem Natriumamalgam auf dem Wasserbad, bis der durch Salzsäure bewirkte Niederschlag sich völlig in Sodalösung löst (Dyson, Soc. 51, 64, 68; Fittig, Dy., A. 255, 277). — Nadeln (aus verd. Alkohol). Unlöslich in Chloroform und Benzol, schwer löslich in kochendem Wasser und in Äther, leicht in Alkohol (Dy.; Fit., Dy.). — Geht bei 130° in 3.4-Dihydro-dicumarinyl-(3.3') (,,Hydrodicumarin'') C_6H_4 (Syst. No. 2769) über (Dy.; Fit. Dy., vol. Dy., vol. Dy., vol. Dy., vol. Dy., vol. Dy., vol. Dy., Fit. Dy., Fit. Dy., vol. Dy., Fit. Dy., vol. Dy., vol. Dy., vol. Dy., Fit. Dy., vol.
FIT., DY.; vgl. DE JONG, R. 43 [1924], 316). Einw. von Natriumamalgam: DY.; FIT., DY.; vgl. FRIES, FICKEWIRTH, A. 362, 30. Bei der Einw. von Brom in Chloroform entsteht Brom 3.4-dihydro-dicumarinyl-(3.3') (DY.; FIT., DY.). — AgC₁₈H₁₃O₅. Krystallinisch. Fast unlöslich in Wasser (DY.; FIT., DY.). — Ba(C₁₈H₁₃O₅)₂ + xH₂O. Krystalle (aus Wasser). Verwittert an der Luft; schwer löslich in kaltem, leichter in siedendem Wasser (DY.; FIT., DY.).

- 2. 7-Oxy-2-oxo-4-methyl-3-[2-carboxy-benzyl]-[1.2-chromen], 7-Oxy-4-methyl-3-[2-carboxy-benzyl]-cumarin, 4-Methyl-3-[2-carboxy-benzyl]-umbelliferon C₁₈H₁₄O₈, s. nebenstehende Formel.

 B. Durch Einleiten von Chlorwasserstoff in eine Lösung von α-[2-Carboxy-benzyl]-acetessigester (Bd. X, S. 869) HO.

 und Resorcin in Eisessig (Bülow, Siebert, B. 38, 476, 482). Farblose Nädelchen (aus Alkohol). Prismen (aus Eisessig). F: 283°. Löst sich in sehr verd. Natronlauge zu einer fast farblosen, blau fluorescierenden Lösung und wird daraus durch Essigsäure wieder gefällt. Gibt beim Kochen mit 10°/oiger Kalilauge Resorcin und Benzylaceton-o-carbonsäure (Bd. X, S. 712). Wird durch Erhitzen mit Kaliumhydroxyd auf 285—295° in Resorcin, Resacetophenon, o-Toluylsäure und Essigsäure gespalten.
- 7-Acetoxy-4-methyl-3-[2-carboxy-bensyl]-cumarin, O-Acetyl-4-methyl-3-[2-carboxy-bensyl]-umbelliferor. $C_{20}H_{16}O_{6}=$ $CH_{3}\cdot CO\cdot O\cdot C_{6}H_{3}\cdot C_{6}\cdot COH_{2}\cdot C_{6}\cdot CO\cdot C_{6}\cdot B$. Bei kurzem Kochen von 4-Methyl-3-[2-carboxy-benzyl]-umbelliferon mit entwässertem Natriumacetat, Eisessig und Essigsäureanhydrid (B., S., B. 38, 485). Krystalle (aus Eisessig). F: 246—247°. Löslich in Eisessig, Aceton und Essigester, unlöslich in Wasser und Ligroin. Löslich in verd. Sodalösung.
- 2. γ -Phenyl- α -[β -oxy- β -phenyl-āthyliden]-butyrolacton- β -carbon-săure, γ -Phenyl- α -[β -oxy- β -phenyl-āthyliden]-paraconsăure $C_0H_5 \cdot CH(OH) \cdot CH \cdot C CH \cdot CO_2H$ $C_{10}H_{10}O_5 = \begin{array}{c} C_0H_5 \cdot CH(OH) \cdot CH \cdot C CH \cdot CO_2H \\ OC \cdot O \cdot CH \cdot C_0H_5 \\ OC \cdot O$

h) Oxy-oxo-carbonsäuren $C_nH_{2n-24}O_5$.

[3-0xy-5-0xo-4-phenyl-dihydrofuryliden-(2)]-phenylessigsäure, $\beta - 0xy - \alpha - phenyl - \gamma - [\alpha - carboxy-benzal] - \Delta^{\alpha.\beta} - crotonlacton (Pulvinsäure)$ $C_{18}H_{12}O_5 = \frac{C_6H_5 \cdot C - C \cdot OH}{OC \cdot O \cdot C \cdot C(C_6H_5) \cdot CO_2H} \quad \text{ist desmotrop mit [3.5-Dioxo-4-phenyl-tetrahydrofuryliden-(2)]-phenylessigsäure, §3. 480.}$

Methylätherpulvinsäure-methylester, Vulpinsäuremethyläther ("Pulvinsäuredimethylester") $C_{30}H_{16}O_5 = C_{6}H_{5} \cdot C = C \cdot O \cdot CH_{3}$ dimethylester") $C_{20}H_{16}O_5 = \frac{C_{10}C_{16}C_{1$ von Methylalkohol (Sr.) oder wasserfreiem Ather (Schenck, A. 282, 39, 40); zur Reinigung führt man den Ester in seine Piperidinverbindung (Syst. No. 3038) über und zersetzt diese durch verd. Salzsäure (Sch.). — Nadeln (aus Methylalkohol). F: 141° (Sch.). — Bei mehrtägigem Stehenlassen von Methylätherpulvinsäure-methylester mit konzentriertem alkoholischem Ammoniak tritt Spaltung in Phenylessigsäureamid und die Verbindung C.H. · HC --- C: NH

(Syst. No. 3237) ein (Sch., A. 282, 43; Volhard, Henre, A. 282, OC.NH.CO 67, 80).

 $\mathbf{OC} \cdot \mathbf{O} \cdot \mathbf{C} : \mathbf{C}(\mathbf{C_6H_5}) \cdot \mathbf{CO_2} \cdot \mathbf{CH_3}$ Silber und Äthyljodid anajog dem Methylätherpulvinsäure-methylester (Schenck, A. 282, 39, 41). — Blättchen (aus Alkohol). F: 138—139°.

Propylätherpulvinsäure - methylester, Vulpinsäurepropyläther (,, Methylpulvinsäurepropylester") $C_{22}H_{20}O_5 = \begin{array}{c} C_6H_5 \cdot C = C \cdot O \cdot CH_2 \cdot CH_3 \cdot CH_3 \\ OC \cdot O \cdot C \cdot C(C_6H_5) \cdot CO_2 \cdot CH_3 \end{array}$ B. Aus vulpinsäurepropylester" (2008) 2004 (2018) 100 (2018) saurem Silber und Propyljodid (SCHENCK, A. 282, 39, 42). — Blättchen. F: 95—96°.

O - Aratyl - pulvinsäure - methylester, O - Acetyl - vulpinsäure $C_{21}H_{16}O_6=$ C.H. C-COCOCH,

OC·O·C:C(C₆H₅)·CO₃·CH₃. B. Durch Kochen von Vulpinsäure mit Essigsäureanhydrid (SPIEGEL, A. 219, 17; VOLHARD, A. 282, 14; ZOPF, A. 284, 121). -- Nadeln (aus Alkohol). F: 156° (SP.), 155—156° (Z.), 155° (HESSE, J. pr. [2] 57, 317).

Methylätherpulvinsäure-äthylester ("Äthylpulvinsäuremethylester") C.,H,,O, $C_{\bullet}H_{\bullet} \cdot C = C \cdot O \cdot CH_{\bullet}$ $= \underbrace{ \begin{matrix} C_{\bullet} \mathbf{H_5} \cdot \mathbf{C} = \mathbf{C} \cdot \mathbf{O} \cdot \mathbf{C} \cdot \mathbf{H_5} \\ O\dot{\mathbf{C}} \cdot \mathbf{C} \cdot \dot{\mathbf{C}} \cdot \mathbf{C} \cdot \mathbf{C}_{\bullet} \cdot \mathbf{C}_{\bullet} \cdot \mathbf{C}_{\bullet} \cdot \mathbf{H_5} \end{matrix}}_{\mathbf{C} \cdot \mathbf{O}_{\bullet} \cdot \mathbf{C}_{\bullet} \cdot \mathbf{H_5}}. \quad B. \quad \text{Aus dem Silbersalz des Pulvinsäureäthylesters und Methyljodid (Schenck, A. 282, 39, 42).} \quad - \text{Nadeln (aus Alkohol), Prismen (aus Eisessig).}$

O - Acetyl - pulvinsäure - äthylester ("Acetyläthylpulvinsäure") CerHinOs = $C_4H_5 \cdot C = C \cdot O \cdot CO \cdot CH_8$

B. Durch Kochen von Pulvinsäureäthylester mit Essig-OC·O·C: C(C₆H₅)·CO₂·C₃H₅

B. Durch Kochen von Pulvinsäureäthylester mit Essigsureanhydrid (ZOFF, A. 284, 116, 124; HESSE, J. pr. [2] 58, 516). — Farblose Nadeln. F: 143-144° (Z.).

Methylätherpulvinsäure-propylester ("Propylpulvinsäuremethylester")

 $C_{22}H_{20}O_{\delta} = C_{\delta}H_{\delta} \cdot C = C \cdot O \cdot CH_{\delta}$ OC·O·C:C(C₆H₅)·CO₂·CH₂·CH₂·CH₃.

B. Aus dem Silbersalz des Pulvinsäurepropylesters und Methyljodid (Schenck, A. 282, 39, 42). — Nadeln. F: 121—122°.

Methylätherpulvinsäure-amid $C_{19}H_{15}O_4N = C_0H_8 \cdot C = C \cdot O \cdot CH_3$ Pulvinsaure statt.

vinsăure statt.

O-Acetyl-pulvinsäure-nitril $C_{20}H_{13}O_4N = \frac{C_6H_5 \cdot C = C \cdot O \cdot CO \cdot CH_3}{OC \cdot O \cdot C \cdot C(C_6H_5) \cdot CN}$ B. Aus Pulvinsäurenitril (S. 482) beim Kochen mit Essigsäureanhydrid (Volhard, Henke, A. 282, 62). Bei 6-stdg. Kochen von α.α'-Diphenyl-ketipinsäuredinitril (Bd. X, S. 912) mit Acetylchlorid (V., H., A. 282, 57). — Gelbe Nadeln (aus Alkohol). F: 141—142°. Leicht löslich in Äther. $C_6H_5 \cdot C = C \cdot O \cdot CO \cdot C_6H_5$

O-Bensoyl-pulvinsäure-nitril $C_{25}H_{15}O_4N=$ Durch OC·O·C:C(C.H.)·CN Kochen von α.α'-Diphenyl-ketipinsäure-dinitril mit Benzoylchlorid (Volhard, Henre, A. 282, 58). — Blaßgelbe Nadeln (aus Alkohol). F: 168—168,5°. Unlöslich in siedendem Wasser.

i) Oxy-oxo-carbonsăuren $C_nH_{2n-28}O_5$.

6-0xy-9-[2-carboxy-phenyl]-fluoron, 4''-0xy-2.2''-oxido-fuchson-carbonsäure-(2') bezw. Lacton der 2-[3.6.9-Trioxy-xanthyl]-benzoesäure, 3.6-Dioxy-fluoran $C_{50}H_{19}O_5$, Formel I bezw. II, Fluorescein, s. Syst. No. 2835.

6-Oxy-9-[2-carbomethoxy-phenyl]-fluoron, chinoider Fluorescein-monomethyläther C₂₁H₁₄O₅, s. nebenstehende Formel. B. Durch längeres Erwärmen von Fluorescein mit Methylalkohol und konz. Schwefelsäure im Wasserbad (Feuerstein, Ho. J. Wallach, B. 34, 2642). Entsteht auch durch Kochen von Fluorescein mit Methyljdid und Kaliumhydroxyd in methylalkoholischer Lösung (Nietzei, B. 30, 175 Anm. 2; vgl. O. Fischer, Heff, B. 28, 397). — Rote, grünglänzende Krystalle (aus Methylalkohol). F: 252—253° 1) (Feu., W.). Sehr schwer löslich in den gewöhnlichen Mitteln (Feu., W.). — Liefert mit Dimethylsulfat in heißem Nitrobenzol chinoiden Fluoresceindimethyläther (s. u.) und lactoiden Fluorescein-dimethyläther (Syst. No. 2835) (Kehrmann,

DENGLER, B. 42, 877; vgl. O. F., H., B. 46 [1913], 1952).

6 - Methoxy - 9 - [2 - carbomethoxy - phenyl] - fluoron, chinoider Fluorescein - dimethyläther C₂₁H₁₆O₅, s. nebenstehende Formel. B. Durch längeres Kochen von Fluorescein mit überschüssigem Methyljodid und Kaliumhydroxyd in methylalkoholischer Lösung unter geringem Überdruck und nochmalige

CH3·O·CO3·CH3

alkoholischer Lösung unter geringem Überdruck und nochmalige
Methylierung des Reaktionsprodukts, neben lactoidem Fluorescein-dimethyläther (O. Fischer,
Heff, B. 28, 396; 46 [1913], 1952, 1955). Beim Behandeln von Fluorescein mit Diazomethan
in Äther, neben etwas lactoidem Fluorescein-dimethyläther (Herzig, Pollak, M. 28, 709;
vgl. O. F., H., B. 46, 1957). Aus chinoidem Fluorescein-monomethyläther und Dimethylsulfat in heißem Nitrobenzol (Kehrmann, Dengler, B. 42, 877; vgl. O. F., H., B. 46, 1951;
K., B. 46, 3033). — Orangegelbe Nadelbüschel oder tiefrote, metallglänzende Krystalle
(aus Benzol + Methylalkohol). F: 208° (O. F., H., B. 28, 397; 46, 1952). Zeigt in alkoh.
Lösung grüne Fluoresceinz (O. F., H., B. 28, 397). — Geht beim Kochen mit verd. Natronlauge in lactoiden Fluorescein-monomethyläther (Syst. No. 2835) über (O. F., H., B. 28, 397).

6-Oxy-9-[2-carbäthoxy-phenyl]-fluoron, chinoider Fluorescein-monoäthyläther $C_{22}H_{16}O_{5}$, s. nebenstehende Formel. B. Bei der Oxydation von Fluorescin-äthylester (8. 358) mit Kaliumferrieyanid in wäßrig-alkoholischer, mit Natriumcarbonat versetzter Lösung (NIETZEI, SCHRÖTER, B. 28, 46).

C8H4·CO2·C2H5

Durch längeres Erwärmen von Fluorescein mit absol. Alkohol und konz. Schwefelsäure (Feuerstein, J. Wallach, B. 34, 2641). Ein Gemisch von chinoidem und lactoidem Fluorescein-monoäthyläther sowie chinoidem und lactoidem Fluorescein-diäthyläther erhält man durch mehrtägiges Erhitzen von Fluorescein-Kalium in Alkohol mit Äthylbromid unter Druck im Wasserbad (N., Sch., B. 28, 49; vgl. Baever, A. 183, 15) sowie beim Kochen von Fluorescein mit überschüssigem Äthyljodid und alkoh. Natronlauge (Acres, Slacie, Am. 42, 131). — Grüne Blätter (aus Alkohol), die beim Zerreiben ein rotes Pulver liefern. F: 247° (N., Sch.; A., Sl.), 242° (F., W.). Schwer löslich in Alkohol, Aceton und Eisessig, unlöslich in Wasser (F., W.; N., Sch.). — Wird von siedenden verdünnten Alkalien zu Fluorescein verseift (N., Sch.; F., W.). Reagiert mit Brom in alkoh. Lösung oder in Eisessig-Lösung unter Bildung von chinoidem Eosin-monoäthyläther (N., Sch.). Liefert in alkoh. Lösung mit 1 Mol Natriumäthylat und überschüssigem Äthylbromid beim Erhitzen im Druckrohr auf 100° chinoiden Diäthyläther, neben geringen Mengen des lactoiden Diäthyläther (N., Sch.). Mit Essigsäuresnhydrid und Natriumacetat entsteht der chinoide O-Acetylfluorescein-äthyläther (Herzig, Meyer, M. 17, 434; F., W.).

6-Åthoxy-9-[2-carbāthoxy-phenyl]-fluoron, chinoider Fluorescein-diāthylāther $C_{24}H_{29}O_5$, s. nebenstehende Formel. B. Aus Fluorescein und Åthylbromid oder Åthyljodid s. o. bei chinoidem Fluorescein-monoāthylāther, Entsteht ferner aus Fluorescein durch Behandlung mit Diazoāthan

¹⁾ Nach dem Literstur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] werden für diese Verbindung folgende Schmelspunkte angegeben: 269—270° (ORNDORFF, HEMMER, Am. Soc. 49 [1927], 1278), 274—275° (H. v. LIEBIG, J. pr. [2] 88 [1913], 96), 281—282° (O. FISCHER, HEPP, B. 46 [1913], 1954).

(ACREE, SLAGLE, Am. 42, 132). Durch mehrstündiges Erhitzen von chinoidem Fluoresceinmonoäthyläther in alkoh. Lösung mit 1 Mol Natriumäthylat und überschüssigem Äthylbromid im Druckrohr auf 100°, neben geringen Mengen von lactoidem Fluorescein-diäthyläther (Nietzei, Schröter, B. 28, 47). Aus lactoidem Fluorescein-monoäthyläther durch Behandlung mit Alkohol und Chlorwasserstoff oder (neben geringen Mengen von lactoidem Fluorescein-diäthyläther) bei Einw. von Äthylbromid in alkal. Lösung (N., Sch.). — Dunkelgelbe Nadeln (aus verd. Alkohol). F: 159° (N., Sch.; A., Sl.). In Alkohol leichter löslich als der lactoide Diäthyläther (N., Sch.). — Liefert bei kurzem Kochen mit alkoh. Kalilauge lactoiden Fluorescein-monoäthyläther (N., Sch.; vgl. Herzig, Meyer, B. 28, 3261; M. 17, 433).

6 - Acetoxy - 9 - [2 - carbāthoxy - phényl] - fluoron, chinoider O - Acetyl - fluorescein - āthylāther C₂₄H₁₈O₆, s. nebenstehende Formel. B. Aus chinoidem Fluoresceinmonoāthylāther durch Kochen mit Essigsāureanhydrid und CH₃·CO·O· ONatriumacetat (Herzig, Meyer, M. 17, 434; Feuerstein, Wallaoh, B. 34, 2642). — Gelbe Nadeln (aus Alkohol). Orangefarbene, blauschimmernde Nadeln (aus Aceton). F: 189—190° (H., M.), 191° (F., W.). Leicht löslich in Alkohol und Aceton; die verdünnten Lösungen fluorescieren grün (F., W.).

2.4.5.7-Tetrabrom-6-oxy-9-[2-carboxy-phenyl]-fluoron bezw. 2.4.5.7-Tetrabrom-8.6-dioxy-fluoran $C_{50}H_8O_5Br_4$, Formel I bezw. II, 2.4.5.7-Tetrabrom-fluorescein, Eosin, s. Syst. No. 2835.

2.4.5.7-Tetrabrom-6-oxy-9-[2-carbomethoxy-phenyl]fluoron, chinoider 2.4.5.7-Tetrabrom-fluorescein-monomethyläther, chinoider Eosin-monomethyläther C₁₁H₁₀O₈Br₄,
s. nebenstehende Formel. B. Durch Kochen von Eosin mit Methylalkohol und konz. Schwefelsäure (BINDSCHEDLER, BUSCH, Moniteur
scient. [3] 8, 1172; Ch. I. 1, 372; J. 1878, 1186). — Nadeln oder rote
Br
Br
Br
Br
Krystelle mit grüner Oberflächenfarbe (aus Chloroform). Schwer löslich in Alkohol, ziemlich
leicht in Chloroform (Baryer, A. 183, 53). — Das Kaliumsalz ist als Eosin spritlöslich
im Handel (Schultz, Tab. No. 588).

2.4.5.7 - Tetrabrom - 6 - oxy - 9 - [2 - carbathoxy - phenyl] -C6H4 · CO2 · C2H5 fluoron, chinoider 2.4.5.7 - Tetrabrom - fluorescein - mono äthyläther, chinoider Eosin-monoäthyläther C₂₂H₁₂O₅Br₄, Br · Rr s. nebenstehende Formel. B. Aus chinoidem Fluorescein-monoäthyläther und Brom in alkoh. Lösung oder in Eisessig-Lösung (NIETZEI, SCHRÖTER, B. 28, 46). Durch Erhitzen von Eosin-Kalium mit Alkohol und Kaliumäthylsulfat im Druckrohr auf 140--150 (BAEYER, A. 183. 46). Durch Erhitzen von Eosin-Kalium mit Athylbromid und Alkohol im Druckrohr auf 120° (B., A. 183, 47). Aus Eosin durch Kochen mit Alkohol und konz. Schwefelsäure (BIND-SCHEDLER, Busch, Moniteur scient. [3] 8, 1172). — Darst. s. Mühlhäuser, D. 263, 100; 283, 210. — Rote Krystelle (aus Chloroform oder Alkohol), rote, grünglänzende Nadeln (aus sehr verdünnter wäßrig-alkoholischer Lösung beim Verdunsten). Reichlich löslich in siedendem Alkohol, leichter in Chloroform, leicht in warmem Eisessig (Ba.). — Beim Erhitzen mit konz. Schwefelsäure auf 150° wird Eosin regeneriert (Ba.). — KC₂₂H₁₁O₅Br₄+H₂O. Grünglänzende Krystalle. Sehr schwer löslich in Wasser und absol. Alkohol, leicht in warmem 50% igem Alkohol; sehr schwer löslich in verd. Kalilauge oder Kaliumcarbonat-Lösung (Ba.). Ist als Eosin S im Handel (Schultz, Tab. No. 589). — Silbersalz. Roter, amorpher Niederschlag, der beim Stehenlassen oder Erwärmen krystallinisch wird (BA.). Das trockne Salz hat grunen Metallglanz und ist im durchfallenden Licht intensiv blau (BA.).

2.4.5.7 - Tetrabrom - 6 - äthoxy - 9 - [2 - carbäthoxy - phenyl]-fluoron, chinoider 2.4.5.7-Tetrabrom-fluoresceindiäthyläther, chinoider Eosin - diäthyläther C₂₄H₁₅O₅Br₄, s. nebenstehende Formel. B. Aus dem Silbersalz des chinoiden Eosin-monoäthyläthers durch Behandlung mit Äthyljodid oder durch Erhitzen mit Äthylbromid und Alkohol auf 120°

(BAEYER, A. 183, 51; vgl. Nietzki, Schröter, B. 28, 52). Aus dem Silbersalz des Eosins durch Erhitzen mit Äthylbromid oder Äthyljodid und Alkohol auf 100°, neben lactoidem

Eosin-monoāthyläther (B., A. 183, 51). Aus lactoidem Eosin-monoāthyläther durch Behandlung mit Alkohol und Chlorwasserstoff oder durch alkal. Äthylierung (N., zit. bei Herzig, Meyer, M. 17, 433). — Rote Krystalle. Sehr schwer löslich in Alkohol und Äther mit gelblicher Farbe, leicht in Chloroform und Eisessig mit rotgelber Farbe (B.). — Läßt sich durch Erhitzen mit schwacher alkoholischer Kalilauge und Zersetzen des Reaktionsprodukts mit Essigsäure in lactoiden Eosin-monoäthyläther überführen (N., Sch.).

k) Oxy-oxo-carbonsäuren $C_nH_{2n-32}O_5$.

Oxy-oxo-carbonsäuren $C_{24}H_{16}O_5$.

- 1. 7-Oxy-2-phenyl-4-methylen-3-[2-carboxy benzoyl] [1.4 chromen], 7 Oxy 4-methylen 3-[2-carboxy benzoyl] flaven $C_{24}H_{16}O_5$, s. nebenstehende Formel. Vgl. hierzu Anhydro-[7-oxy-4-methyl-2-phenyl-3-(2-carboxy-benzoyl)-benzopyranol], S. 548.

2. Oxy-oxo-carbonsäuren mit 6 Sauerstoffatomen.

a) Oxy-oxo-carbonsäuren C_nH_{2n-4}O₆.

1. $\alpha.\beta$: Dioxy-butyrolacton- γ -carbonsäure, Lacton der Ribotrioxy-glutarsäure $C_5H_6O_6=\frac{HO\cdot HC}{O^{'}\cdot O\cdot OH\cdot CO_2H}$. B. Durch Eindampfen einer wäßr. Lösung von Ribotrioxyglutarsäure (Bd. III, S. 552) im Vakuum (E. Fischer, Piloty, B. 24, 4222, 4224; vgl. Levene, Jacobs, B. 42, 3249). — Nadeln (aus Essigester). Erweicht gegen 158° (L., J.), 160° (F., P.) und schmilzt gegen 168° (Zers.) (L., J.), bei 170—171° (Zers.) (F., P.). Sehr leicht löslich in Wasser und Alkohol, ziemlich leicht in Aceton, ziemlich schwer in Essigester, fast unlöslich in Äther (F., P.). Optisch inaktiv (F., P.; L., J.). — Reduziert Fehlingsche Lösung nicht (F., P.). Beim Kochen mit konz. Jodwasserstoffsäure und rotem Phosphor entsteht Glutarsäure (F., P.).

2. Oxy-oxo-carbonsäuren C.H.O.

1. α.β - Dioxy - γ oder α - methyl - butyrolacton - γ - carbonsaure C₆H₈O₆ = HO·HC — CH·OH (CH₃)(HO)C — CH·OH (CH₃)(HO)C — CH·OH (CH₃)·CO₂H (CO₂H) (

- 2. Lacton der $\beta.\gamma.\delta$ oder $\alpha.\beta.\delta$ -Trioxy-butan- $\alpha.\beta$ -dicarbonsäure, Lacton der Parasaccharonsäure, Parasaccharon $C_6H_3O_6=C_5H_7O_4\cdot CO_2H^1$). B. s. im Artikel Parasaccharonsäure, Bd. III, S. 555. Blätter oder Prismen (aus Wasser). F: 159° bis 160° (Killani, Loeffler, B. 87, 3613). $[\alpha]_0$: —107,8° (in Wasser; c=2) (K., L., Matthes, B. 40, 2999).
- 3. α -Oxy- γ -oxymethyl-butyrolacton- α -essigsäure, $\alpha.\delta$ -Dioxy- γ -valerolacton- α -essigsäure $C_7H_{10}O_6= \frac{HO_2C\cdot CH_2\cdot (HO)C-CH_2}{OC\cdot O\cdot CH\cdot CH_2\cdot OH}$. B. Aus dem Calciumsalz der $\beta.\delta.\varepsilon$ -Trioxy-pentan- $\alpha.\beta$ -dicarbonsäure (Bd. III, S. 555) durch Behandeln mit Oxalsäure (Fokin, \mathcal{K} . 22, 527; J. pr. [2] 48, 526).—Sirup.—Bildet mit Bariumcarbonat in der Kälte das entsprechende Bariumsalz Ba($C_7H_9O_6$)2 (bei 120°), mit Bariumhydroxyd in der Wärme das Bariumsalz der $\beta.\delta.\varepsilon$ -Trioxy-pentan- $\alpha.\beta$ -dicarbonsäure.

b) Oxy-oxo-carbonsäuren $C_nH_{2n-6}O_6$.

Oxy-oxo-carbonsauren $C_6H_6O_6$.

- 1. [3-Oxy-2.5-dioxo-tetrahydrofuryl-(3)]-essigsäure, $\alpha.\beta$ -Anhydrocitronensäure $C_6H_6O_6=\frac{H_2C-C(OH)\cdot CH_2\cdot CO_2H}{OC\cdot O\cdot CO}$ (vgl. No. 2).
- O Acetyl $[\alpha.\beta$ anhydro citronensäure] methylester $C_9H_{10}O_7=H_2C-C(O\cdot CO\cdot CH_3)\cdot CH_2\cdot CO_2\cdot CH_3$. B. Durch Kochen von Acetyl-citronensäure-mono-methylester (Bd. III, S. 567) mit überschüssigem Acetylchlorid (Schroeter, B. 38, 3190, 3195). Nädelchen (aus Benzol). F: 108—110°. Liefert beim Erwärmen mit Methylalkohol Acetyl-citronensäure-dimethylester.
- 2. Derivate, von denen es ungewiß ist, ob sie sich von der $\alpha.\beta$ -Anhydrocitronensäure $C_6H_6O_6$ (No. 1) oder von der $\alpha.\alpha'$ -Anhydro-citronensäure $C_6H_6O_6=H_4C\cdot C(OH)(CO_4H)\cdot CH_2$ ableiten.

Anhydrocitronensäure-methyläther $C_7H_8O_6=\frac{H_2C-C(O\cdot CH_3)\cdot CH_2\cdot CO_2H}{OC\cdot O\cdot CO}$ oder $H_2C\cdot C(O\cdot CH_3)(CO_2H)\cdot CH_2$ oder O_2^{\bullet} . B. Durch gelindes Erwärmen von wasserfreier Methyläther-citronensäure (Bd. III, S. 566) mit überschüssigem Acetylchlorid (Anschütz, Bertram, B. 37, 3970). — Prismen. F: 131°. Leicht löslich in Äther, schwerer in Chloroform.

O-Acetyl-anhydrocitronensäure $C_8H_8O_7 = \frac{H_1C - C(O \cdot CO \cdot CH_3) \cdot CH_2 \cdot CO_2H}{OC \cdot O \cdot CO}$ oder $H_2C \cdot C(O \cdot CO \cdot CH_3)(CO_2H) \cdot CH_2$ oder $O_C^{\dagger} \cdot O_C^{\dagger} \cdot O_C^{$

¹) Auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von NEF (A. 876, 78, 83, 84) ist diese Verbindung als Lacton der β -d-Galakto-metasaccharonsäure aufzufassen; vgl. dagegen Kiliani, B. 44, 111.

B. 38, 3190, 3195). Durch Kochen mit 2 Mol Anilin in Chloroform-Lösung entsteht Citronensaure-dianilid (Bd. XII, S. 514) (K.). Läßt man $2^1/2$ Mol Anilin in trocknem Ather einwirken, so fällt zunächst eine Verbindung $C_{20}H_{22}O_7N_2$ aus, die beim Behandeln mit Wasser oder beim Erwärmen in äther. Anilinlösung Citronensaure-dianilid abscheidet (E., Sell). Beim Kochen mit mehr als 4 Mol Anilin in Ather entstehen Citronensaure-dianilid, sein Anilinsalz und Citronensaure-anil-anilid $C_8H_5 \cdot NH \cdot CO \cdot CH_2 \cdot (HO)C \cdot CH_2 \cdot CO \cdot N \cdot C_6H_3$ (Syst. No. 3372) (Bertram, B. 38, 1623).

c) Oxy-oxo-carbonsäuren $C_n H_{2n-8} O_6$.

Oxy-oxo-carbonsauren $C_6H_4O_6$.

1. 5.6-Dioxy-4-oxo-pyran-carbonsäure-(2). 5.6-Dioxy-pyron-carbon-säure-(2), 6-Oxy-komensäure C₆H₄O₆ = HO·C-O-C·CO₂H bezw. desmotrope Formen. Zur Konstitution vgl. Peratoner, R. A. L. [5] 11 I, 333; G. 36 I, 4, 5; P., Castellana, C. 1905 II, 679; G. 36 I, 21. — B. Durch Kochen von 6-Brom-komensäure (S. 462) mit Barytwasser oder besser mit verd. Salzsäure oder Bromwasserstoffsäure (Reibstein, J. pr. [2] 24, 286; vgl. Ost, J. pr. [2] 23, 440; 27, 266; P., Ca., C. 1905 II, 679; G. 36 I, 25). Durch Behandeln einer wäßr. Lösung von 1 Mol Mekonsäure (S. 503) mit 0,5 Mol Wasserstoffperoxyd in Gegenwart von Eisen (Tiorle, Collie, Soc. 81, 1006). — Darst. Man suspendiert fein pulverisierte Komensäure in Wasser, trägt unter Kühlung allmählich 1 Mol Brom ein, kocht die Lösung 1 Stde. und verdampft zur Trockne (Ost, J. pr. [2] 23, 441). — Farblose Nadeln mit 3 H₂O (aus Wasser), die an der Luft sehr schnell 2 H₂O verlieren (R.). F: 275° (korr.) (T., Co.). Leicht löslich in Wasser und Alkohol, schwer in Äther (R.), unlöslich in Chloroform (T., Co.). Gibt mit Eisenchlorid eine intensiv violette, mit überschüssigem Eisenchlorid eine rote Färbung (R.; T., Co.; P., Ca., G. 36 I, 26). — Beim Behandeln mit 2 Mol Brom und Wasser entsteht eine Verbindung C_kH₃O_kBr (Tafeln mit 1 H₄O; zersetzt sich bei 120°; sehr leicht löslich in Wasser, löslich in Äther; gibt mit Eisenchlorid kirschrote Färbung) (Ost, J. pr. [2] 23, 441). Durch Erhitzen mit konzentriertem wäßrigem Ammoniak auf 150° bildet sich 4.5.6-Trioxy-pyridin-carbonsäure-(2); bei höherer Temperatur erhält man unter Kohlensäure-Abspaltung 2.3.4-Trioxy-pyridin (Ost, J. pr. [2] 27, 265; vgl. R.). — NH₄C₄H₃O₆. Farblose Nadeln; schwer löslich in kaltem, leicht in heißem Wasser; leicht löslich in Ammoniak; die wäßr. Lösung reagiert sauer und gibt mit Eisenchlorid eine blaue Färbung (R.). — NH₄C₄H₃O₆. RA L. [5] 14 II, 162, 164; G. 36 I, 622, 623). Blaßgelbe Krystalle (aus Wasser). Verkohlt negen 200°, ohne zu schmelzen. Unlöslich in Alkohol und Äther,

- 5.6-Dimethoxy-pyron-carbonsäure-(2) $C_8H_8O_8=\frac{CH_3\cdot O\cdot C\cdot CO\cdot CH}{CH_3\cdot O\cdot C-O-C\cdot CO_2H}$. B. Durch Kochen von 5.6-Dimethoxy-pyron-carbonsäure-(2)-methylester mit Wasser in Gegenwart von etwas Salzsäure (Peratoner, Castellana, C. 1905 II, 679; G. 36 I, 28). Schuppen (aus Wasser). F: 242°.
- $\begin{array}{c} \textbf{5.6-Dioxy-pyron-carbons\"{a}ure-(2)-methylester}, \textbf{ 6-Oxy-komens\"{a}ure-methylester} \\ \textbf{C}_7\textbf{H}_6\textbf{O}_6 = & \textbf{HO} \cdot \textbf{C} \cdot \textbf{CO} \cdot \textbf{CH} \\ \textbf{HO} \cdot \textbf{C} \textbf{O} \textbf{C} \cdot \textbf{CO}_2 \cdot \textbf{CH}_3 \\ \textbf{Chlorwasserstoff} \ \text{auf } \textbf{6-Oxy-komens\"{a}ure} \ \text{in der K\"{a}lte} \ (\textbf{P.}, \textbf{C.}, \textbf{C.} \ \textbf{1905} \ \textbf{II}, \ \textbf{679}; \textbf{ G.} \ \textbf{36} \ \textbf{I.} \ \textbf{26}). \\ \textbf{Nadeln (aus Methylalkohol). F: ca. 222°. L\"{o}slich in Wasser, \"{A}ther, Alkohol und Aceton. \\ \textbf{Die L\"{o}sungen werden durch wenig Eisenchlorid intensiv indigblau, durch \"{u}bersch\"{u}ssiges} \\ \textbf{Eisenchlorid kirschrot gef\"{a}rbt}. \\ \textbf{Wird durch Kochen mit Wasser oder wasserhaltigen L\"{o}sungsmitteln leicht verseift.} \\ \end{array}$
- 5.6 Dimethoxy pyron carbonsäure (2) methylester $C_9H_{10}O_6 = CH_3 \cdot O \cdot C \cdot CO \cdot CH$ $CH_2 \cdot O \cdot C - O - C \cdot CO_4 \cdot CH_3$ 8. Bei der Einw. von Diazomethan in Äther auf 6-Oxy-komensäure-methylester (P., C., C. 1905 II, 679; G. 36 I, 27). — Nadeln (aus Methylalkohol). F: 97°;

leicht löslich in Wasser und Alkohol, schwer in Äther (P., C.). — Wird durch Kochen mit Wasser in Gegenwart von etwas Salzsäure zu 5.6-Dimethoxy-pyron-carbonsäure-(2) verseift (P., C.). Beim Erhitzen mit Barytwasser tritt Spaltung in Methoxyaceton, Kohlensäure, Oxalsäure und Methylalkohol ein (P., C.). Liefert beim Erhitzen mit Hydroxylamin in Alkohol 5.6-Dimethoxy-pyron-carbonsäure-(2)-hydroxylamid (AZZARELLO, R. A. L. [5] 14 II, 163, 165; G. 36 I, 622, 624). Einw. von Ö-Benzyl-hydroxylamin: A.

5.6 - Dioxy - pyron - carbonsäure - (2) - äthylester, 6-Oxy-komensäure-äthylester HO·C·CO·CH

C₈H₈O₆ = HO·C·CO₂·C₂H₅. B. Durch Einleiten von Chlorwasserstoff in eine alkoh.

Lösung von 6-Oxy-komensäure (Osr, J. pr. [2] 23, 440; Reibstein, J. pr. [2] 24, 287). Entsteht auch durch Behandeln von 6-Brom-komensäure mit trocknem Chlorwasserstoff in Alkohol auf dem Wasserbad (Mennel, J. pr. [2] 26, 471). — Prismen (aus Alkohol). F: 204° (R.; M.), 207,5° (Tickle, Collie, Soc. 81, 1007). Leicht löslich in heißem Alkohol, schwer in kaltem Wasser (R.; M.). Die wäßr. Lösung gibt mit Eisenchlorid eine blaue Färbung (R.; M.).

5.6 - Dimethoxy - pyron - carbonsäure - (2) - hydroxylamid $C_8H_9O_8N = CH_3 \cdot O \cdot C \cdot CO \cdot CH$ $CH_3 \cdot O \cdot C \cdot CO \cdot CH$ $CH_3 \cdot O \cdot C \cdot CO \cdot CH$ bezw. $CH_3 \cdot O \cdot C - O - C \cdot CO \cdot NH \cdot OH$ ciner alkoh. Lösung von 1 Mol 5.6-Dimethoxy-pyron-carbonsäure-(2)-methylester mit 1 Mol salzsaurem Hydroxylamin und 1 Mol Natriumäthylat (Azzabello, R. A. L. [5] 14 II, 163, 165; G. 36 I, 622, 624). — Nadeln (aus Essigester). F: 178—179° (Zers.). Löslich in Wasser, Aceton und Alkohol, schwer löslich in Essigester, fast unlöslich in Chloroform, Äther und Ligroin. — Reduziert Fehlingsché Lösung und ammoniakalische Silbernitrat-Lösung in der Wärme. Zerfällt beim Kochen mit 20°/9iger Schwefelsäure in Hydroxylamin und 5.6-Dimethoxy - pyron - carbonsäure - (2). Gibt mit Eisenchlorid eine kirschrote Färbung. — Ba(C₈H₈O₈N)₂ + 2H₂O. Nadeln (aus Wasser). Verändert sich bei 110—120°.

- 2. 2.6-Dioxy-4-oxo-pyran-carbonsäure-(3), 2.6-Dioxy-pyron-carbonsäure-(3) $C_4H_4O_4=\frac{HC\cdot CO\cdot C\cdot CO_2H}{HO\cdot C-O-C\cdot OH}$
- $\begin{array}{lll} \textbf{2.6-Disulfhydryl-4-oxo-thiopyran-carbons\"{a}ure-(3),} & \textbf{2.6-Dimercapto-4-oxo-penthiophen-carbons\~{a}ure-(3),} & \textbf{2.6-Dimercapto-1-thio-pyron-carbons\~{a}ure-(3),} \\ \textbf{C_6H_4O_3S_8} &= & & & & & & & & & & & & \\ \textbf{HS.} & & & & & & & & & & & & & & \\ \textbf{HS.} & & & & & & & & & & & & & \\ \textbf{S.} & & & & & & & & & & & & \\ \textbf{S.} & & & & & & & & & & & \\ \textbf{S.} & & & & & & & & & & & \\ \textbf{S.} & & & & & & & & & & & \\ \textbf{S.} & & & & & & & & & & \\ \textbf{S.} & & & & & & & & & & \\ \textbf{S.} & & & & & & & & & \\ \textbf{S.} & & & & & & & & & \\ \textbf{S.} & & & & & & & & & \\ \textbf{S.} & & & & & & & & & \\ \textbf{S.} & & & & & & & & & \\ \textbf{S.} & & & & & & & & \\ \textbf{S.} & & & & & & & & \\ \textbf{S.} & & & & & & & & \\ \textbf{S.} & & & & & & & & \\ \textbf{S.} & & & & & & & & \\ \textbf{S.} & & & & & & & & \\ \textbf{S.} & & & & & & & & \\ \textbf{S.} & & & & & & & & \\ \textbf{S.} & & & & & & & & \\ \textbf{S.} & & & & & & & \\ \textbf{S.} & & & & & & & \\ \textbf{S.} & & & & & & & \\ \textbf{S.} & & & & & & & \\ \textbf{S.} & & & & & & & \\ \textbf{S.} & & & & & & & \\ \textbf{S.} & & & & & & & \\ \textbf{S.} & & & & & & & \\ \textbf{S.} & & & & & & & \\ \textbf{S.} & & & & & \\ \textbf{S.} & & & & & \\ \textbf{S.} & & & & & \\$
- 2.6 Bis methylmercapto 1 thio pyron carbonsaure (3) $C_8H_8O_8S_8 = HC \cdot CO \cdot C \cdot CO_8H$ $CH_8 \cdot S \cdot C - S - C \cdot S \cdot CH_9$ B. Analog der folgenden Verbindung (Apitzsch, B. 41, 4037). — F: 215—216°. Leicht löslich in Alkohol, Chloroform, Aceton und Benzol, schwerer in Essigester.

2.6 - Bis - āthylmercapto - 1 - thio - pyron - carbonsāure - (3) $C_{10}H_{12}O_3S_3 = HC \cdot CO \cdot C \cdot CO_2H$ $C_2H_5 \cdot S \cdot C - S - C \cdot S \cdot C_2H_5$ thiopyrantetrahydrid-carbonsāure-(3) mit Äthylbromid in alkoholisch-wäßriger Lösung (A., B. 41, 4037). — Nadeln. F: 129—131°. Leicht löslich in Alkohol, Chloroform, Aceton und Benzol, schwerer in Essigester.

d) Oxy-oxo-carbonsauren C_nH_{2n-12}O₆.

1. Oxy-oxo-carbonsăuren $C_9H_6O_6$.

1. 5.6 - Dioxy - 3 - oxo - phthalan - carbonsaure - (1), HO. 5.6 - Dioxy - phthalid - carbonsaure - (3) $C_0H_4O_6$, s. neben-stehende Formel.

- 5.6 Dimethoxy phthalid carbonsäure (3), Metamekonin carbonsäure (3) $C_{11}H_{10}O_6 = (CH_3 \cdot O)_2C_6H_2 \underbrace{CO}_{CH(CO_2H)}O$. B. Durch Reduktion von 4.5-Dimethoxy-phthalonsäure (Bd. X, S. 1038) mit Natriumamalgam und nachfolgendes Ansäuern (Perkin, Soc. 81, 1011, 1026). Farblose Krystalle (aus Äther). Schmilzt gegen 207° unter Zersetzung. Sehr schwer löslich in Äther, leicht in heißem Wasser. Zersetzt sich beim Erhitzen über den Schmelzpunkt in Kohlensäure und Metamekonin (S. 89).
- 2. 5.7 Dioxy 3 oxo phthalan carbonsaure (1), HO
 4.6 Dioxy phthalid carbonsaure (3) C₂H₆O₆, s. nebenstehende Formel.

 HO

 HO
- 4.6 Dimethoxy phthalid carbonsäure (3) $C_{11}H_{10}O_6 = HO$ (CH₃·O)₃C₆H₂·CH(CO₂H) O. B. Durch Erwärmen von 4.6-Dimethoxy-3-trichlormethylphthalid (S. 91) mit wäßr. Alkalien (Fritsch, A. 296, 352, 354). Krystalle (aus verd. Alkohol oder Benzol). F: 183°. Unlöslich in Benzin, schwer löslich in kaltem, ziemlich leicht in heißem Wasser, löslich in Äther, Chloroform und Benzol, sehr leicht in Alkohol. Spaltet sich beim Erhitzen auf 180-185° in Kohlensäure und 4.6-Dimethoxy-phthalid (S. 89).
- 4.6-Diäthoxy-phthalid-carbonsäure-(3) $C_{13}H_{14}O_5 = (C_2H_5\cdot O)_2C_6H_2\underbrace{CH(CO_2H)}_{CH(CO_2H)}O$.

 B. analog 4.6-Dimethoxy-phthalid-carbonsäure-(3). Krystalle (aus verd. Alkohol oder Benzol). F: 172—173°; unlöslich in Benzin, schwer löslich in kaltem, ziemlich leicht in heißem Wasser, löslich in Äther, Chloroform und Benzol, sehr leicht in Alkohol (F., A. 296, 353, 354).
- 4.6 Dimethoxy phthalid carbonsäure (3) methylester $C_{13}H_{12}O_6 = (CH_3 \cdot O)_3C_6H_2 \underbrace{CO}_{CH_3 \cdot O}O$. B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung von 4.6-Dimethoxy-phthalid-carbonsäure-(3) (F., A. 296, 353, 354). Nadeln (aus Methylalkohol oder Benzin). F: 142—143°.
- 4.6 Diäthoxy phthalid carbonsäure (3) methylester $C_{14}H_{16}O_6 = (C_2H_5 \cdot O)_2C_6H_2 \cdot CH_{(CO_2 \cdot CH_3)} \cdot O$. B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung von 4.6-Diäthoxy-phthalid-carbonsäure-(3) (F., A. 296, 353, 354). Nadeln (aus Methylalkohol oder Benzin). F: 108°.
- 2. [6.7 Dioxy-phthalidyl-(3)] essigsäure, Normekonin essigsäure-(3) C₁₀H₈O₈, s. nebenstehende Formel. B. Beim Kochen von Mekonin-essigsäure-(3) mit Jodwasserstoffsäure (D: 1,72) und rotem Phosphor (LIEBERMANN, KLEEMANN, B. 19, 2293). Täfelchen (aus Wasser). F: 228°. Wird durch wenig Eisenchlorid blau, durch überschüssiges Eisenchlorid grün gefärbt. Reduziert Silberlösung bereits in der Kälte. BaC₁₀H₈O₈ (bei 120°).
- [6.7-Dimethoxy-phthalidyl-(3)]-essigsäure, Mekonin-essigsäure-(3) $C_{13}H_{12}O_6=(CH_3\cdot O)_2C_6H_3\cdot CO_2H)$ O. B. Durch 10-stdg. Erhitzen von 3 Tln. Opiansäure (Bd. X, S. 990) mit $1^{1/2}$ Tln. Malonsäure, 2 Tln. Eisessig und $1^{1/2}$ Tln. entwässertem Natriumacetat im Wasserbad (L., K., B. 19, 2290). In geringer Menge beim Kochen von Opiansäuremethylester mit Essigsäureanhydrid und Natriumacetat (Wegscheider, M. 17, 116). Nadeln (aus Wasser). F: 167° (L., K.). Liefert beim Kochen mit Barytwasser das Bariumsalz der Opianylessigsäure (Bd. X, S. 579) (L., K.). $AgC_{12}H_{11}O_6$ (L., K.; W.). Warzen (aus Wasser) (L., K.). $Ca(C_{12}H_{11}O_6)_2$. Nadeln (L., K.).
- Methylester $C_{13}H_{14}O_6 = (CH_3 \cdot O)_2C_6H_3 \cdot CH(CH_2 \cdot CO_3 \cdot CH_3)$ O. Durch Sättigen einer methylalkoholischen Lösung von Mekonin-essigsäure-(3) mit Chlorwasserstoff (L., K., B. 19, 2293). Durch Behandeln des Silbersalzes der Opianylessigsäure (Bd. X, S. 579) mit Methyljodid im Rohr auf dem Wasserbad (L., K.). Plättchen (aus Benzol + Ligroin). F: 124°.
- [6.7-Dioxy-phthalidyl-(3)]-essigsäure-äthylester, Normekonin-essigsäure-(3)-äthylester $C_{12}H_{12}O_6=(HO)_2C_6H_2$ $CH(CH_2\cdot CO_2\cdot C_2H_5)$ O. B. Durch Einleiten von Chlorwasserstoff in eine alkoh. Lösung der Normekonin-essigsäure-(3) (L., K., B. 19, 2294). Krystalle (aus Wasser). F: 131°. Sehr leicht löslich in Alkohol, löslich in Ather und siedendem Wasser. Die wäßr. Lösung reagiert sauer und fluoresciert. Reduziert Silberlösung.

[4-Nitro-6.7-dimethoxy-phthalidyl-(8)] - essigsäure,
4-Nitro-mekonin-essigsäure-(3) C₁₂H₁₁O₈N, s. nebenstehende Formel. B. Beim Auflösen von Mekonin-essigsäure-(3) in rauchender Salpetersäure (L., K., B. 19, 2295).

Fast farblose Krystalle (aus Wasser). F: 176°. Die Lösung in konz. Schwefelsäure ist gelb und wird beim Erwärmen kirschrot. — Beim Erwärmen mit Zinn und rauchender Salzsäure entsteht das Lacton der 4-Oxy-6.7-dimethoxy-dihydrocarbostyril-carbonsäure-(5) (Syst. No. 4300). — Ca(C₁₂H₁₀O₈N)₂ (bei 125°). Gelbe Nadeln.

Äthylester $C_{14}H_{15}O_8N = (O_2N)(CH_2 \cdot O)_2C_6H \underbrace{CO_2 \cdot C_2H_5}O$. B. Durch Einleiten von Chlorwasserstoff in eine alkoh. Suspension von 4-Nitro-mekonin-essigsäure-(3) (L., K., B. 19, 2295). — Nadeln. F: 129°. Unlöslich in Wasser und Ligroin, leicht löslich in Alkohol und Benzol.

- 3. [3.7-Dioxy-4-oxo-chromanyl-(3)]-essigsäure, 3.7-Dioxy-chromanon-essigsäure-(3) $C_{11}H_{10}O_6$, $H_{10}O_6$, H_{10}
- 3 · Oxy · 7 · methoxy · chromanon · essigsäure · (3), Brasilsäure C₁₂H₁₂O₆ = CO·C(OH)·CH₂·CO₂H

 CO·C(OH)·CH₂·CO₂H

 Das Molekulargewicht ist kryoskopisch bestimmt (Perkin, Soc. 81, 226). B. Entsteht neben anderen Produkten beim Behandeln von Brasilintrimethyläther (Bd. XVII, S. 196) mit Kaliumpermanganat-Lösung (Gilbody, P., Yates, Soc. 79, 1399, 1404, 1410; P., Soc. 81, 221, 1011). Nadeln (aus Wasser oder Benzol). F: 129° bis 130° (P., Soc. 81, 226). Schwer löslich in kaltem, leicht in heißem Wasser (G., P., Y.). Leicht löslich in Alkohol, Äther und heißem Benzol, schwerer in Chloroform, fast unlöslich in kaltem Petroläther (P., Soc. 81, 226). Zersetzt sich beim Erhitzen unter Bildung eines nach Cumarin riechenden, öligen Destillats (P., Soc. 81, 226). Liefert bei der Reduktion mit Natriumamalgam und nachfolgendem Ansäuern das Lacton der Dihydrobrasilsäure C₁₂H₁₂O₅ (Syst. No. 2827) (P., Soc. 81, 221, 224, 229). Durch Erhitzen mit konz. Schwefelsäure entsteht 7-Methoxy-chromon-essigsäure-(3) (S. 530) (P., Soc. 81, 222, 230). Beim Schmelzen mit Kaliumhydroxyd entsteht eine leicht lösliche Verbindung, die mit Eisenchlorid intensive Violetifärbung gibt (P., Soc. 81, 221, 224). Löst sich beim Kochen mit Essigsäure-anhydrid zu einer gelben Flüssigkeit, die zuerst braun, dann schwarz wird (P., Soc. 81, 226). Salze: P., Soc. 81, 221, 224, 227, 228. NaC₁₂H₁₁O₆ (bei 100°). Krystalle (aus Wasser). Ziemlich schwer löslich in kaltem Wasser. AgC₁₂H₁₁O₆. Sehr schwer löslich in Wasser. BaC₁₂H₁₀O₆ + H₂O. Körner. Sehr schwer löslich in heißem Called in heißem Called in heißem Called in Sehre Sehre schwer löslich in Wasser. BaC₁₂H₁₀O₆

Oxim $C_{12}H_{13}O_6N=CH_3\cdot O\cdot C_6H_3\cdot C(:N\cdot OH)\cdot C(OH)\cdot CH_3\cdot CO_2H$. B. Bei der Einw. von salzsaurem Hydroxylamin auf Brasilsäure in verd. Kalilauge (P., Soc. 81, 228). — Sirup. Erstarrt allmählich im Vakuum. Leicht löslich in heißem Wasser.

Semicarbason $C_{13}H_{15}O_6N_3 = CH_3 \cdot O \cdot C_6H_3 \cdot \frac{C(:N \cdot NH \cdot CO \cdot NH_2) \cdot C(OH) \cdot CH_2 \cdot CO_2H}{O}$. Bei der Einw. von salzsaurem Semicarbazid auf eine wäßr. Lösung von Brasilsäure in Gegenwart von Natriumacetat (P., Soc. 81, 228). — Krystalle. Zersetzt sich bei 125—126°; wird bei 150—160° wieder fest und zersetzt sich abermals bei höherem Erhitzen unter Bildung einer schwarzen Masse. Liefert bei der Einw. von heißer Salzsäure Brasilsäure zurück.

e) Oxy-oxo-carbonsäuren $C_nH_{2n-14}O_6$.

1. 0xy-oxo-carbonsäuren $C_{10}\dot{H}_6O_6$.

1. 5.7-Dioxy-4-oxo-[1.4-chromen]-carbonsäure-(2), 5.7-Dioxy-chromon-carbonsäure-(2) $C_{10}H_6O_6$, s. nebenstehende Formel.

- 5.7 Dimethoxy chromon carbonsäure (2) $C_{12}H_{10}O_6 = (CH_3 \cdot O)_2C_6H_2 \cdot CO_2H$. B. Durch Kochen einer alkoh. Lösung von 2-Oxy-4.6-dimethoxy - benzoylbrenztraubensäure - äthylester (Bd. X, S. 1038) mit Salzsäure (D: 1,19) (v. Kostanecki, de Ruijter de Wildt, B. 35, 863). — Farblose Nadeln mit 1 H₂O (aus verd. Alkohol). Schmilzt wasserfrei bei 244,5° unter Entwicklung von CO₂ und Bildung von 5.7-Dimethoxy-chromon (8. 96).
- 2. 7.8-Dioxy-4-oxo-[1.4-chromen]-carbonsaure-(2), 2. 7.8-Dioxy-4-oxo-[1.4-chromen]-carbonsdure-(2), 7.8-Dioxy-chromon-carbonsdure-(2) $C_{10}H_4O_6$, s. neben- HO HO HO
 - 7.8-Dimethoxy-chromon-carbonsäure-(2) $C_{12}H_{10}O_6 = (CH_2 \cdot O)_2C_6H_2 \stackrel{CO \cdot CH}{\bigcirc U \cdot CO_2H}$
- B. Man kondensiert Gallacetophenon-3.4-dimethyläther (Bd. VIII, S. 393) mit Oxalsäurediäthylester in Gegenwart von Natrium und kocht den entstandenen (nicht isolierten) 2-Oxy-3.4 - dimethoxy - benzoylbrenztraubensäure - äthylester mit alkoholisch - wäßriger Salzsäure (DAVID, v. KOSTANECKI, B. 36, 126, 127). — Nadeln (aus Alkohol). Schmilzt bei 272° unter Entwicklung von CO₂ und Bildung von 7.8-Dimethoxy-chromon (S. 97).
- ∨CH≈C·CO2H 6.7-Dioxy-2-oxo-[1.2-chromen]-carbonsaure-(3), 6.7 - Dioxy - cumarin - carbonsaure - (3), Asculetin-carbonsaure - (3) C₁₀H₆O₆, s. nebenstehende Formel. B. Der Athylester entsteht durch Kondensation von Oxyhydrochinonaldehyd (Bd. VIII, S. 388) mit Malonester in Gegenwart von Piperidin; man verseift durch kochende verdünnte Schwefelsäure (v. Pechmann, v. Krafft, B. 34, 426). — Gelbe Nädelchen und Kügelchen (aus Alkohol). Schmilzt bei 270° unter Entwicklung von CO₂ und Bildung von Äsculetin (S. 98). Schwer löslich in den meisten Lösungsmitteln. Die gelben Lösungen in Alkohol, Äther und Eisessig fluorescieren blau; die Lösung in konz. Schwefelsäure zeigt grüne Fluorescenz. Löslich in Alkalien mit gelber Farbe ohne Fluorescenz.
 - Äthylester $C_{12}H_{10}O_6 = (HO)_2C_6H_2 C_1 C CO_2 C_2H_5$. B. s. im vorhergehenden Artikel.
- Bräunliche Spieße (aus Methylalkohol), die an der Luft verwittern; F: 244—245°; die Lösungen in Alkohol, Ather, Eisessig, Chloroform und Aceton fluorescieren blau; die Lösung in konz. Schwefelsäure fluoresciert grün; die gelben alkal. Lösungen fluorescieren nicht; die alkoh. Lösung wird durch Eisenchlorid olivbraun gefärbt (v. P., v. K., B. 84, 426).
- 6.7-Dioxy-2-oxo-[1.2-chromen]-carbonsaure-(4), HO. 6.7 - Dioxy - cumarin - carbonsäure - (4), Asculetin-carbonsäure - (4) Cobonsäure - (4) C₁₀H₆O₆, s. nebenstehende Formel. B. Durch Verseifen von Asculetin-carbonsäure-(4)-äthylester mit kalter Natronlauge (v. Pechmann, v. Krafft, B. 34, 425). — Citronengelbe Nädelchen mit 1 H₂O (aus Wasser). Wird bei 110° wasserfrei, färbt sich bei ca. 160° dunkler und schmilzt bei 295° unter Braunfärbung. Löslich in heißem Wasser, Alkohol und Eisessig ohne Fluorescenz, unlöslich in Äther und Benzol.
- 6.7 Dimethoxy cumarin carbonsäure (4), Äsculetindimethyläther carbon säure-(4) $C_{12}H_{10}O_6 = (CH_3 \cdot O)_2C_6H_2 \cdot C(CO_2H) \cdot CH$. Durch Einw. von Methyljodid und Kalilauge auf Äsculetin-carbonsäure-(4)-äthylester und Erwärmen des Reaktionsprodukts mit alkoh. Kalilauge (v. P., v. K., B. 34, 425). — Goldgelbe Nädelchen (aus verd. Alkohol). Sintert von 230° ab und schmilzt bei 241—244°. Die gelben Lösungen in Alkohol, Eisessig und Schwefelsäure zeigen keine Fluorescenz; die Lösungen in Ather, Aceton, Benzol und Chloroform fluorescieren grün. Löslich in Alkalien mit blaßgelber Farbe. — Bei der Destillation des Silbersalzes im Wasserstoffstrom entsteht 6.7-Dimethoxy-cumarin (S. 99).
- 6.7-Dioxy-cumarin-carbonsäure-(4)-äthylester, Äsculetin-carbonsäure-(4)-äthylester $C_{12}H_{10}O_6 = (HO)_2C_6H_2 C_0C_2 C_2H_5): CH$ B. Durch Kochen von Oxyhydrochinon oder Oxyhydrochinontriacetat mit Oxalessigester in alkoh. Lösung in Gegenwart von Zinkchlorid (v. P., v. K., B. 34, 424). — Goldgelbe Nadeln mit 1/2 H2O (aus Alkohol). Wird bei 110° wasserfrei und schmilzt bei 207-208°. Löslich mit gelber Farbe in heißem Wasser, Alkohol und Eisessig, schwerer in Äther, Benzol und Chloroform. Die Lösungen in Wasser, Alkohol, Essigsäure und Schwefelsäure fluorescieren nicht. Die anfangs blutrote Lösung in Alkalien wird bald gelbrot. Eisenchlorid färbt die alkoh. Lösung grün.

HO2C 7 - Oxy - 1.3 - dioxo - 5 - methyl -HO₂C phthalan-carbonsäure-(4) oder 5-Oxy-CH8. HO II. 1.3 - dioxo - 7 - methyl - phthalan - carbon - I. 00/ saure-(4) C₁₀H₆O₆, Formel I oder II, Anhydrocochenillesaure (vgl. No. 6). B. Durch Erhitzen von Cochenillesäure (Bd. X, S. 581) auf 160-170° (LIEBERMANN, LINDENBAUM, B. 35, 2916). Beim Erhitzen von aus Eisessig umkrystallisierter Acetylcochenillesäure (Bd. X, S. 582) auf 1150 (Lie., Lin.). — Darst. Man kocht 1 Tl. Cochenillesäure mit einer Mischung von 10 Tln. Acetylchlorid und 10 Tln. Phosphoroxychlorid 1/4 Stde.; beim Stehen krystallisiert die Essigsäureverbindung der Anhydrocochenillesäure aus, die bei 115° in Anhydrocochenillesäure übergeht (Lie., Voswinckel, B. 37, 3346). — F: ca. 220—225° (Zers.) (Lie., Lin.), 229° (Lie., V.). Sehr schwer löslich in Benzol, sehr leicht in Alkohol (Lie., Lin.). — Liefert beim Verschmelzen mit Bernsteinsäure; Bernsteinsäureanhydrid und Kaliumacetat bei 200—205° Bis-[x-oxy-x-methyl-phthalidyliden]-äthan C CH- $(HO)(CH_3)C_6H_3 \underbrace{CO}_O$ (Syst. No. 2842) (Lie., V.). - Verbindung mit Essigsäure C₁₀H₆O₆ + C₂H₄O₂. Prismen. Wird bei 115° essigsäurefrei (Lie., V.).

6. Derivate, von denen es ungewiß ist, ob sie sich von der 7-Oxy-1.3-dioxo-5-methyl-phthalan-carbonsäure-(4) oder von der 5-Oxy-1.3-dioxo-7-methyl-phthalan-carbonsäure-(4) $C_{10}H_6O_6=(HO_2C)(CH_3)(HO)C_6H<\frac{CO}{CO}>0$ ableiten (vgl. No. 5).

- O-Acetyl-anhydrocochenillesäure $C_{12}H_8O_7=(HO_3C)(CH_3)(CH_3\cdot CO\cdot O)C_8H<\frac{CO}{CO}>0$. B. Neben Acetylcochenillesäure durch 4-stdg. Erhitzen von 4 g Cochenillesäure (Bd. X, S. 581) mit 16 cm³ Acetylchlorid und 4 cm³ Essigsäureanhydrid im Rohr im Wasserbad und Fällen mit Ligroin (Lie., Lin., B. 35, 2910, 2916). Blättchen (aus Eisessig). F: 152—153° (Zers.). Leicht löslich in Alkohol, Äther und Eisessig, ziemlich schwer in Benzol, unlöslich in Ligroin. —AgC₁₂H₇O₇. Nadeln. Ziemlich leicht löslich in Wasser.
- O-Benzoyl-anhydrocochenillesäure $C_{17}H_{10}O_7 = (HO_2C)(CH_3)(C_6H_5\cdot CO\cdot O)C_6H < CO < 0$. B. Durch 4-stdg. Erhitzen von 6·g Cochenillesäure mit 24 cm³ Benzoylchlorid im Rohr auf 100° (Lie., Lin., B. 35, 2919). Krystalle (aus Benzol + Ligroin). F: 187—189°. Leicht löslich in heißem, schwer in kaltem Benzol.
- O Acetyl anhydrocochenillesäure methylester $C_{13}H_{10}O_7 = (CH_3 \cdot O_3C)(CH_3)(CH_3 \cdot CO \cdot O)C_6H < \frac{CO}{CO} > 0$. B. Durch 2-stdg. Erhitzen des Silbersalzes der O-Acetyl-anhydrocochenillesäure mit überschüssigem Methyljodid auf 100° (Lie., Lin., B. 35, 2912). Blättchen (aus Alkohol). F: 135—138°. Sehr leicht löslich in Benzol und Chloroform, fast unlöslich in Ligroin. Durch Erhitzen mit absol. Methylalkohol entsteht Acetyl-cochenillesäure-dimethylester (Bd. X, S. 582).

- OC $CH \cdot CO_2 \cdot C_2 \dot{H}_5$ OC O $CH \cdot C_6 H_4 \cdot O \cdot CH_3$ ester und Anisaldehyd in Gegenwart von Chlorwasserstoff oder Diäthylamin (Gault, Bl. [3] 35, 1264, 1267). Krystalle (aus verd. Alkohol oder Benzol). F: 96°. Unlöslich in Wasser, leicht löslich in Alkohol und Äther, sehr schwer in Benzol. Wird in alkoh. Lösung durch Eisenchlorid rot gefärbt. Verbindung mit Diäthylamin $C_4H_{11}N + C_{14}H_{14}O_4$.

546 HETERO: 10 (BZW. 8). - OXY-OXO-CARBONS. CnH2n-1406 BIS CnH2n-2406 [Syst. No. 2625

Krystalle (aus Alkohol). F: ca. 160° (Zers.). Unlöslich in Wasser, schwer löslich in Äther, leicht in Alkohol.

3. 5-0xy-2.3¹-dioxo-4.7-dimethyl-3-äthyl-chroman-carbonsäure-(6), 5-0xy-4.7-dimethyl-3-acetyl-3.4-dihydro-cumarin-carbonsäure-(6) $C_{14}H_{14}O_6$, s. nebenstehende Formel.

3.4.x - Tribrom - 5 - oxy - 4.7 - dimethyl - 3 - acetyl - 3.4 - dihydro - cumarin - carbon-säure-(6)-äthylester, x - Brom - 5 - oxy - 4.7 - dimethyl - 3 - acetyl - cumarin - dibromid-carbonsäure - (6) - äthylester $C_{16}H_{15}O_6Br_3 = C_{13}H_{10}O_6Br_3 \cdot CO_2 \cdot C_2H_5$. B. Aus 5-Oxy-4.7-dimethyl-3-acetyl-cumarin-carbonsäure-(6)-äthylester und Brom in Eisessig (Collie, Chrystall, Soc. 91, 1803). — Gelbe Krystalle (aus salzsäurehaltigem Alkohol). F: 182,5°. — Wird beim Kochen mit Alkohol zersetzt.

f) Oxy-oxo-carbonsäuren C_n H_{2n-16}O₆.

1. 5-0 xy- 2.3^1 -dioxo-4.7-dimethyl-3-äthyl-[1.2-chromen]-carbon-säure-(6), 5-0xy-4.7-dimethyl-3-acetyl-cumarin-carbonsäure-(6)

bczw. $2.5.3^1$ -Trioxo-4.7-dimethyl-3-äthyl-[1.2-chromen]-dihydrid-(5.8)-carbonsäure-(6), 5-0xo-4.7-dimethyl-3-acetyl-5.8-dihydro-cumarin-carbonsäure-(6) $C_{14}H_{12}O_6$, Formel I bezw. II.

Äthylester $C_{16}H_{16}O_6 = C_2H_5 \cdot O_2C \cdot C_6H_2O(CH_3) \cdot C(CH_3) \cdot C \cdot CO \cdot CH_3$. B. Man destilliert eine Mischung von 78 g Acetessigester und einer aus 4,6 g Natrium und 50 cm³ Alkohol erhaltenen Natriumäthylat-Lösung und versetzt den Rückstand mit Salzsäure (Collie, Chrystall, Soc. 91, 1802). — Nadeln (aus Benzol). F: 168—169°; löslich in Alkalien mit hellgelber Farbe (Co., Ch.). Die gelbe alkalische Lösung wird beim Erwärmen mit überschüssigen Alkalien farblos; die farblose Lösung liefert beim Ansäuern eine Säure, die beim Erhitzen unter Abspaltung von Kohlendioxyd eine thymolähnlich riechende Verbindung gibt, beim Erhitzen mit Jodphosphor etwas Cymol liefert und in alkal. Lösung an der Luft zu der Verbindung $C_{13}H_{13}O_{11}$ oxydiert wird (Co., Soc. 91, 1811). Spaltet beim Kochen mit Barytwasser 2 Mol Kohlendioxyd ab (Co., Ch.). Liefert beim Erhitzen mit 93°/oiger Schwefelsäure auf 140° bis 160° 5-Oxy-4.7-dimethyl-cumarin (S. 37) (Co., Ch.).

Verbindung C₂₂H₂₂O₁₁. B. s. o. — Gelbrotes Pulver. Löslich in Wasser mit gelber Farbe, die auf Zusatz von Alkalien in Rot übergeht (Co., Soc. 91, 1811). Die alkal. Lösung wird durch Zinkstaub entfärbt.

2. Decarbousninsäure $C_{17}H_{18}O_8$, der von Widman, A. 310, 288; 324, 192 die $HO_2C \cdot (C_8H_{11})CH \cdot C = C \cdot OH$ erteilt wurde (vgl. indessen Schöff, Heuck, A. 459 [1927], 254; Curd, Robertson, Soc. 1933, 1173, 1176) s. bei Flechtenstoffen, Syst. No. 4864.

g) Oxy-oxo-carbonsäuren $C_nH_{2n-20}O_6$.

4'.3"-Dioxy-2-oxo-[dibenzo-1'.2':3.4; 1".2":5.6-(1.2-pyran)]carbonsäure-(6")¹), Lacton der 5.6.5'-Trioxy-diphensäure
C₁₄H₈O₆, s. nebenstehende Formel. B. Aus 4-Oxy-benzoesäure durch Oxydation mit Kaliumpersulfat in Schwefelsäure (Perkin, Nierenstein, Soc. 87,
1419). — Farblose Nadeln. Beginnt bei ca. 300° sich zu schwärzen und ist bei
360° noch nicht geschmolzen. Leicht löslich in heißem Pyridin, sonst sehr
schwer löslich; in Alkalilauge mit blaßgelber Farbe löslich. — Gibt bei der
Destillation mit Zinkstaub Fluoren.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Diacetylderivat $C_{18}H_{12}O_8=C_{18}H_5O_8(CO_2H)(O\cdot CO\cdot CH_2)_2$. B. Aus dem Lacton der 5.6.5'-Trioxy-diphensäure durch Behandlung mit Essigsäureanhydrid und konz. Schwefelsäure (P., N., Soc. 87, 1420). — Nadeln (aus Eisessig). F: 267—268° (Zers.).

h) Oxy-oxo-carbonsäuren $C_nH_{2n-22}O_6$.

Oxy-oxo-carbonsauren C18H14O6.

1. γ - [4 - Oxy - phenyl] - α - [4 - oxy - benzal] - butyrolacton - β - carbonsäure, γ - [4 - Oxy - phenyl] - α - [4 - oxy - benzal] - paraconsäure $C_{18}H_{14}O_6 = HO \cdot C_6H_4 \cdot CH : C - CH \cdot CO_2H$

OC.O.CH.C'H'OH.

 γ - [4 - Methoxy - phenyl] - α - anisal - paraconsaure $C_{20}H_{18}O_6 = CH_3 \cdot O \cdot C_6H_4 \cdot CH \cdot C - CH \cdot CO_2H$

CH₃·O·C₆H₄·CH:C—CH·CO₂H
OC·O·CH·C₆H₄·O·CH₃

B. Aus 1 Mol Bernsteinsäurediäthylester und
2 Mol Anisaldehyd in Äther bei Gegenwart von 2 Mol alkoholfreiem Natriumäthylat, neben
α.δ-Bis-[4-methoxy-phenyl]-fulgensäure (Stobbe, Benary, A. 380, 73). — Krystalle (aus
Benzol). F: 108—109°. Leicht löslich in Chloroform, Benzol, Eisessig, Alkohol und Äther.
— Entfärbt Brom in Chloroform-Lösung. Liefert mit Kaliumäthylat-Lösung α.δ-Bis-[4-methoxy-phenyl]-fulgensäure.

- 2. 5.7-Dioxy-2-oxo-4-methyl-3-[2-carb-oxy-benzyl]-[1.2-chromen], 5.7-Dioxy-4-methyl-3-[2-carboxy-benzyl]-cumarin C₁₈H₁₄O₈.

 s. nebenstehende Formel. B. Aus Benzylacetessigsesüresäthylester-o-carbonsäure (Bd. X, S. 869) und Phloroglucin in Eisessig in Gegenwart von Chlorwasserstoff (Bülow, Siebert, B. 38, 485). Krystalle (aus Alkohol). Schmilzt oberhalb 300°. Löslich in Alkohol, siedendem Eisessig, Aceton, unlöslich in Wasser, Äther, Benzol und Ligroin. Die gelbe Lösung in Soda fluoresciert grünblau.
- 3. 7.8-Dioxy-2-oxo-4-methyl-3-[2-carboxy-benzyl]-[1.2-chromen], 7.8-Dioxy-4-methyl-3-[2-carboxy-benzyl]-cumarin, 4-Methyl-3-[2-carboxy-benzyl]-cumarin, 4-Methyl-3-[2-carboxy-benzyl]-daphnetin C₁₈H₁₄O₆, s. Ho nebenstehende Formel. B. Aus Benzylacetessigsäureäthylester-o-carbonsäure und Pyrogallol in Eisessig in Gegenwart von Chlorwasserstoff (Bülow, Siebert, B. 38, 485). Nadeln (aus siedendem Alkohol). F: 259—260°. Unlöslich in Wasser, Äther, Benzol und Ligroin, löslich in Aceton, Eisessig und siedendem Alkohol. Die gelbe Lösung in Soda wird beim Einleiten von Kohlendioxyd entfärbt.

i) Oxy-oxo-carbonsäuren C_nH_{2n-24}O₆.

7-0xy-4-methyl-3-[2-carboxy-benzoyl]-cumarin, 4-Methyl-3-[2-carboxy-benzoyl]-umbelliferon bezw. 7-0xy-4-methyl-3-[3-oxy-phthalidyl-(3)]-cumarin, 4-Methyl-3-[3-oxy-phthalidyl-(3)]-umbelliferon

$$I. \quad \underset{HO}{\underbrace{ \text{C(CH_3)} \bigcirc_{\text{C} \cdot \text{CO} \cdot \text{C}_{\text{e}}\text{H}_{\text{4}} \cdot \text{CO}_{\text{3}}\text{H}}} \qquad \qquad II. \quad \underset{HO}{\underbrace{ \text{TI.}} \quad \underset{C(\text{CH_3}) \bigcirc_{\text{C} \cdot \text{C(OH)}} \bigcirc_{\text{C}_{\text{e}}\text{H}_{\text{4}}} \cdot \text{CO}_{\text{3}}\text{H}} }$$

C₁₈H₁₉O₆, Formel I bezw. II. B. Beim Einleiten von Chlorwasserstoff in die Eisessig-Lösung von Phthalylacetessigester (S. 476) und Resorcin (Büllow, Siebert, B. 38, 478). — Nadeln (aus Alkohol). F: 180°. Unlöslich in Wasser, Äther, Benzol und Ligroin, löslich in Eisessig und siedendem Alkohol; löslich in stark verdünnter Sodalösung mit gelber Farbe, die bei Zusatz von Alkalilauge verblaßt. Wird aus der Lösung in Soda durch Kohlendioxyd gefällt. — Wird durch Verschmelzen mit Kaliumhydroxyd bei 180—190° in Resorcin, Resacetophenon, Phthalsäure und Essigsäure gespalten.

Monoacetylderivat $C_{20}H_{14}O_7$, Formel I bezw. II. B. Man kocht 4-Methyl-3-[2-carboxy-benzoyl]-umbelliferon mit Essigsäureanhydrid, Eisessig und frisch entwässertem Natrium-

$$\begin{array}{c} \text{CH}_3 \cdot \text{CO} \cdot \text{O} \cdot \\ \text{C} \\ \text{C$$

acetat (B., S., B. 38, 480). — Krystalle (aus Eisesaig). F: 152°. Unlöslich in Wasser, Äther und Ligroin, löslich in Alkohol, Eisessig und Essigester.

k) Oxv-oxo-carbonsauren C_nH_{2n-26}O₆.

 γ - 0 xo - α - [2 - 0 xy - p heny [] - γ - [cumariny] - (3)] - α - p ropy [cumariny] - β - carbon săure, α -[Cumarin-carboyi-(3)]-o-cumarsăure¹) $C_{19}H_{18}O_{6} = C_{6}H_{4} \cdot CO \cdot C(CO_{2}H) \cdot CH \cdot C_{6}H_{4} \cdot OH$ B. Beim Erwärmen von Di-[cumarinyl-(3)]-keton

(Syst. No. 2790) mit Sodalösung oder mit 10% jeer Kalilauge (Knoevenagel, Langensiepen, B. 37, 4494). — Nadeln (aus Eisessig oder Alkohol). F: 259—260°. Schwer löslich in kaltem Alkohol und Eisessig, sehr schwer in kaltem Benzol; löslich in Sodalösung und Ammoniak. — Wird durch Essigsaureanhydrid in Di-[cumarinyl-(3)]-keton zurückverwandelt.

1) Oxy-oxo-carbonsäuren $C_nH_{2n-80}O_6$.

7-0xy-4-methyl-2-[2-carboxy-phenyl]-3-benzoyl-benzopyranol oder 7 - Oxy - 4 - methyl - 2 - phenyl - 3 - [2 - carboxy - benzoyl] - benzopyranol

CathiaO4, Formel III oder IV oder V oder VI. Ist als Hydrat der nachfolgenden Verbindung anzusehen. Zur Formulierung der hier angeordneten Verbindungen s. Bd. XVII, S. 158 bei

7-Oxy-2.4-dimethyl-benzopyranol; vgl. ferner Bülow, B. 87, 1966, 1967; 38, 474; B., DESENISS, B. 89, 3665.

Anhydroverbindung C₂₄H₁₆O₅, Formel VII oder VIII oder IX oder X. B. Aus Phthalylbenzoylaceton (Bd. XVII, S. 576) und Resorcin in Eisessig beim Einleiten von

trocknem Chlorwasserstoff (Bülow, B. 37, 1968). — Gelbe Krystalle (aus siedendem Eisessig). F: 245°. Löslich in Alkohol, Chloroform und Eisessig, unlöslich in Wasser, Ather und Ligroin.

Löslich mit gelber Farbe in Alkalien sowie in kons. Schwefelsäure. — Zerfällt bei der Destillation mit 10^{9} eiger Kalilauge in Acetophenon, Resorcin, Resocctophenon, Phthalsäure und Essigsäure. Liefert mit Säuren keine Salze.

¹⁾ Zur Beseichnung "carboyl" vgl. E. Fincher, B. 46 [1918], 2890 Anm.

Acetylderivat der Anhydroverbindung $C_{26}H_{18}O_6$. B. Durch Kochen der Verbindung $C_{24}H_{18}O_5$ mit Essigsäureanhydrid, Eisessig und wasserfreiem Natriumacetat (B., B. 37, 1969). — Farblose Nadeln (aus Eisessig). F: 148°. Unlöslich in Wasser und Äther, löslich in Alkohol und Eisessig; löslich in Alkalilauge.

m) Oxy-oxo-carbonsauren C_nH_{2n-32}O₆.

Anhydro-[5.7-dioxy-4-methyl-2-(2-carboxy-phenyl)-3-benzoyl-benzo-pyranol] oder Anhydro-[5.7-dioxy-4-methyl-2-phenyl-3-(2-carboxy-benzoyl)-benzopyranol] $C_{24}H_{16}O_{4}$, Formel I oder II oder IV, s. S. 560.

n) Oxy-oxo-carbonsäuren $C_n H_{2n-40} O_6$.

5-0xy-2.3-diphenyl-2.3-dibenzoyl-[1.4-pyran]-dihydrid-carbon-säure-(4) (Anhydrodibenzilacetessigsäure) $C_{33}H_{24}O_6 = HO_4C_5GH(CO_1H)_5GO_1GH$

HO·C·CH(CO₃H)·C(C₆H₅)·CO·C₆H₅ ist desmotrop mit 5-Oxo-2.3-diphenyl-2.3-dibenzoyl-pyrantetrahydrid-carbonsaure-(4), S. 501.

5 - Äthoxy - 2.3 - diphenyl - 2.3 - dibenzoyl - [1.4 - pyran] - dihydrid - carbonsaure - (4) (?), O - Äthyl - anhydrodibenzilacetessigsäure $C_{24}H_{28}O_6 = C.H. \cdot O \cdot C. \cdot C.H. \cdot C.C. \cdot H. \cdot C.C. \cdot C.H.$

Saure - (**)(**), CC-CH(CO₂H)·C(C₂H₅)·CO·C₂H₅

C₂H₅·O·C·CH(CO₂H)·C(C₂H₅)·CO·C₂H₅

HC — O — C(C₂H₅)·CO·C₂H₅

von Anhydrodibenzilscetessigsäure-äthylester (S. 501) mit absol. Alkohol und etwas konz. Schwefelsäure; man verseift ihn durch Erwärmen mit alkoh. Kalilauge (JAPP, LANDER, Soc. 69, 738). — Nadeln (aus Benzol). F: 216°. — AgC₂₄H₂₇O₆. Niederschlag. — Ba(C₂₄H₂₇O₆)₂

(bei 100°). Prismen (aus verd. Alkohol).

 $\begin{array}{lll} \textbf{5-Isobutyloxy-2.8-diphenyl-2.8-dibensoyl-[1.4-pyran]-dihydrid-carbon-säure-(4)(?), O-Isobutyl-anhydrodibensilacetessigsäure & C_{26}H_{32}O_6 = \\ (CH_2)_2CH\cdot CH_2\cdot O\cdot C\cdot CH(CO_2H)\cdot C(C_6H_5)\cdot CO\cdot C_6H_5 & (?). & B. & analog & der O-Äthyl-anhydro-like order & (?). & C. & (?)

HÖ—O—C(C_0H_5)·CO· C_0H_5 (7). B. salaby der O-Arnyr-annydrodibenzilacetessigsäure (J., L., Soc. 69, 740). — Nadeln (aus Benzol). F: 237°. — Ag $C_{30}H_{31}O_6$. Niederschlag. — Ba $(C_{30}H_{31}O_6)_8$. Nadeln (aus verd. Alkohol).

3. Oxy-oxo-carbonsäuren mit 7 Sauerstoffatomen.

a) Oxy-oxo-carbonsăuren $C_n H_{2n-4} O_7$.

 $\alpha.\beta$ -Dioxy-butyrolacton- γ -glykolsäuren, $\alpha.\beta.\delta$ -Trioxy- γ -valerolacton- δ -carbonsauren $C_0H_0O_7 = HO \cdot HC - CH \cdot OH$ OC · O · CH · CH(OH) · CO · H ·

d-Zuckersäure (Sohst, Tollens, A. 245, 5) oder beim Konzentrieren derselben bei möglichst niedriger Temperatur (J. Meyer, Z. El. Ch.

13, 497, 498; vgl. S., T.). — Nadeln. F: 129—130° (M.), 130—132° (S., T.). Ist nicht hygroskopisch (S., T.; M.). Leicht löslich in Wasser (M.). [a]5: +40,8° (in Wasser; c = 19); die Drehung nimmt infolge Bildung von d-Zuckersäure allmählich ab und erreicht nach ca.

385 Stdn. den konstanten Wert [a]5: +22,7° des Gleichgewichtsgemisches d-Zuckersäure = Lacton + H₂O (M.; vgl. S., T.; van Ekenstein, Jorissen, Reicher, Ph. Ch.

21, 384). Elektrolytische Dissoziationskonstante k bei 25,2°: 1,7×10-6 (M.). — Geht bei längerem Erhitzen auf ca. 100° unter Abgabe von Wasser allmählich in ein braunes, sauer reagierendes Produkt über, das Fehlingsche Lösung reduziert; bei vorsichtigem Erhitzen im Glasrohr entweicht Wasser unter Bildung eines Brenzschleimsäure und etwas Isobrenzschleimsäure enthaltenden Sublimats (S.. T.). Reduziert Fehlingsche Lösung in der Kälte schleimsäure enthaltenden Sublimats (S., T.). Reduziert Fehlingsche Lösung in der Kälte nicht (S., T.). Bei der Reduktion mit Natriumamalgam in schwefelsaurer Lösung entsteht d-Glykuronsäure (Bd. III, S. 884); setzt man die Reduktion in schwach alkal. Lösung fort, so erhält man d-Gulonsäure ¹) (Bd. III, S. 546) (E. FISCHER, PILOTY, B. 24, 522, 525). Durch Zusammenschmelzen mit Polyoxymethylen und Eintragen der Schmelze in konz. Schwefelsaure entsteht Dimethylen-d-zuckersaure C₈H₁₀O₈ (Syst. No. 3016) (LOBRY DE BRUYN, VAN EKENSTEIN, R. 21, 316).

Monolacton der Monomethylen-d-suckersäure C₂H₂O₂ s. Syst. No. 2984.

b) Monolactone der Mannozuckersäuren C₂H₂O₇ =

a) Monolacton der d-Mannozuckersäure CaHaO, (Konfiguration entsprechend Formel I).

Phenylhydrasid $C_{12}H_{14}O_6N_2=C_5H_7O_5\cdot CO\cdot NH\cdot NH\cdot C_6H_5$. B. Beim Eintragen von 1 g festem Dilacton der d-Mannozuckersäure (Syst. No. 2842) in eine kalte Lösung von je 1 g Phenylhydrazin und $50^\circ/_{\circ}$ iger Essigsäure in 5 g Wasser (E. Fischer, B. 24, 543). — Farblose Nadeln (aus Wasser). Färbt sich bei raschem Erhitzen gegen 185° gelb und schmilzt bei 190-191° unter Zersetzung. Schwer löslich in Alkohol, ziemlich schwer in kaltem, leicht in heißem Wasser.

β) Monolacton der l-Mannozuckersäure C_aH_aO₇ (Konfiguration entsprechend Formel II).

Phenylhydrasid $C_{12}H_{14}O_{8}N_{2}=C_{8}H_{7}O_{5}\cdot CO\cdot NH\cdot NH\cdot C_{8}H_{8}$. Be Beim Eintragen von 1 Tl. festem Dilacton der l-Mannozuckersäure (Syst. No. 2842) in eine kalte Lösung von 1 Tl. salzsaurem Phenylhydrazin und $1^{1}/_{8}$ Tln. Natriumacetat in 10 Tln. Wasser (Killawi, B. 20, 2713). — Krystalle mit $^{1}/_{8}$ H₈O (aus Wasser). Färbt sich bei raschem Erhitzen gegen 1850 gelb und schmilzt bei 190—1920 unter Zersetzung. Sehr schwer löslich in Wasser und Alkohol in der Kälte, sehr leicht in der Wärme.

γ) Monolacton der dl-Mannozuckersäure C₄H₄O₇, Formel I + II.

Phenylhydrasid C₁₂H₁₄O₆N₂ = C₅H₇O₅·CO·NH·NH·C₆H₅. B. Beim Schütteln des Dilactons der dl-Mannozuckersäure (Syst. No. 2842) mit einer konzentrierten kalten wäßrigen Lösung von essigsaurem Phenylhydrazin (E. Fischer, B. 24, 545). — Krystallmasse. F: 190° bis 195° (Zers.). Ziemlich leicht löslich in heißem Wasser. — Beim Erwärmen mit einem Überschuß von essigsaurem Phenylhydrazin auf dem Wasserbad entsteht dl-Mannozuckersäure-bis-phenylhydrazid (Bd. XV, S. 334).

¹⁾ Nach der neueren Nomenklatur als l-Gulonsäure zu beseichnen.

c) Monolacton der Schleimsäure C₈H₈O₇, Formel I und II (vgl. E. Fischer, Herrz, B. 25, 1249). B. Beim Eindampfen eine wäßr. Lösung von Schleimsäure (Bd. III, S. 581) (E. Fischer, B. 24, 2141; vgl. Malaguti, A. ch. [2] 60, 195; A. 15, 179). — Darst. Man kocht 30 g Schleimsäure mit 2 l Wasser bis zur klaren Lösung, verdampft die Flüssigkeit bis auf ca. 300 cm³, filtriert von abgeschiedener Schleimsäure, konzentriert das Filtrat im Vakuum bei etwa 50° bis zum dünnen Sirup, behandelt diesen mit trocknem Aceton, filtriert und verdunstet das Filtrat im Vakuum über Schwefelsäure (E. F.). — Stark sauer schmeckender Sirup. Leicht löslich in absol. Alkohol und in Aceton (E. F.). — Geht beim Erwärmen mit

Wasser, schneller beim Erwärmen mit Mineralsäuren oder mit Natronlauge in Schleimsäure über (E. F.). Durch Reduktion mit Natriumamalgam zunächst in schwefelsaurer, dann in schwach alkal. Lösung entsteht zunächst eine Aldehydsäure, darauf dl-Galaktonsäure (Bd. III, S. 550) (E. F.; E. F., H.). Durch Zusammenschmelzen mit Polyoxymethylen und Behandeln der Schmelze mit konz. Schwefelsäure entsteht als Hauptprodukt Dimethylenschleimsäure C₈H₁₀O₈ (Syst. No. 3016) (Lobry de Bruyn, van Ekenstein, R. 21, 319). Beim Stehenlassen mit Phenylhydrazin in wäßr. Lösung bildet sich Schleimsäuremono-phenylhydrazid (Bd. XV, S. 334) (E. F.).

Lacton des Triacetyl - schleimsäure - monoäthylesters $C_{14}H_{18}O_{10} = CH_2 \cdot CO \cdot O \cdot HC$ CH · O · CO · CH₂

CH₂·CO·O·HC—CH·O·CO·CH₂
OC·O·CH·CH(O·CO·CH₃)·CO₂·C₂H₅
(?). B. Neben Tetraacetyl-schleimsäurediäthylester (Bd. III, S. 585) mit 16 Tln. Acetylchlorid im geschlossenen Rohr auf 100°; man trennt durch Behandeln mit Aceton, das das Lacton leicht aufnimmt (SKRAUF, M. 14, 474; FORTNER, S., M. 15, 206). — Nadeln (aus Alkohol). F: 122°; Iöslich in ca. 3 Tln. kaltem Aceton, sehr schwer löslich in Ather, fast unlöslich in Wasser (S.). — Beim Erhitzen mit Mineralsäuren entsteht Schleim-Ather, (S. F. S.). Verseifung durch alkoh Networlauge, S. Alkoholisches Amponick corougt saure (S.; F., S.). Verseifung durch alkoh. Natronlauge: S. Alkoholisches Ammoniak erzeugt Schleimsäurediamid (S.).

Lacton des Tripropionyl - schleimsäure - monoäthylesters $C_{17}H_{24}O_{10}=CH_2\cdot CH_2\cdot CO\cdot O\cdot HC$ — $CH\cdot O\cdot CO\cdot CH_2\cdot CH_3$

OC·O·CH·CH(O·CO·CH₂·CH₃)·CO₃·C₃H₅ (?). B. Neben Tetrapropionyl-schleimsäure-diäthylester bei 4-stdg. Erhitzen von 5 g Schleimsäurediäthylester mit 9 g Propionylchlorid im Rohr auf 100° (F., S., M. 15, 203). — Krystalle (aus Äther + Petroläther). F: 59°. Leicht löslich in Äther. — Konz. Salzsäure erzeugt Schleimsäure.

b) Oxy-oxo-carbonsäuren $C_n H_{2n-6} O_7$.

1. α - 0xy - butyrolacton - γ . γ - dicarbonsaure $C_0H_0O_7 = \frac{HO \cdot HC - CH_2}{ch}$

B. Man erwärmt isosaccharinsaures Calcium (Bd. III, S. 479) mit Salpetersäure (D: 1,4) auf 35-50°, verdünnt und versetzt erst mit Calciumcarbonat, dann mit Kalkwasser unter Erhitzen auf dem Wasserbad; nach dem Erkalten und Versetzen mit Alkohol scheidet sich das Calciumsalz der $\alpha.\gamma$ -Dioxy-propan- $\alpha.\alpha.\gamma$ -tricarbonsäure ab; man entzieht ihm durch Oxalsäure $^3/_5$ seines Calciumgehalts und dampft die filtrierte Lösung bei $30-40^\circ$ ein; das Calciumsalz der α -Oxy-butyrolacton- $\gamma.\gamma$ -dicarbonsäure krystallisiert langsam aus (Killani, Herold, B. 38, 2672; K., Matthes, B. 40, 1238). — $\text{Ca}(C_6H_5O_7)_2 + 2H_2O$ (K., H.). — $\text{Ca}(C_6H_5O_7)_2 + 5H_2O$. Prismen (aus Wasser). Verliert beim Erhitzen auf $100-120^\circ$ Wasser und Kohlendioxyd; löslich in mehr als 20 Tln. Wasser (K., H.).

2. α -0xy- γ -methyl-butyrolacton- $\alpha\gamma$ -dicarbonsäure (?) $C_7H_8O_7 = (HO_8C)(HO)C$ — CH_8

OC O C(CH₂) CO₂H (?). B. Durch Einw. von Kaliumcyanid auf brenztraubensaures Barium oder auf parabrenztraubensaures Barium (Bd. III, S. 612) in Wasser, mehrtägiges Aufbewahren der Mischung und Zersetzung des abgeschiedenen Salzes mit Salzsäure (Dz Jong, R. 25, 230). — Krystalle mit ½ H₂O (aus Wasser; über H₂SO₄ getrocknet), die sich bei 180° zersetzen. Wird bei 98° wasserfrei und zersetzt sich dann bei 195°.

c) Oxy-oxo-carbonsauren $C_n H_{2n-8} O_7$.

 $[3-0xy-4.5-dioxo-tetra hydrofuryl-(2)]-glyoxylsäure, <math>\beta$ -0xy- α -oxobutyrolacton- γ -oxalylsäure, β -0xy- α - δ -dioxo- γ -valerolacton- δ -carbonsäure $C_0H_4O_7 = {\begin{array}{*{20}{c}} OC - CH \cdot OH \\ OC \cdot O \cdot CH \cdot CO \cdot CO_2H \end{array}}$

 $\label{eq:continuous} \textbf{Bis-phenylhydrason} \quad \textbf{C}_{16}\textbf{H}_{16}\textbf{O}_{5}\textbf{N}_{4} \; = \; \overset{\textbf{C}_{6}\textbf{H}_{5}\cdot\textbf{N}\textbf{H}\cdot\textbf{N}:\textbf{C}----\textbf{C}\textbf{H}\cdot\textbf{O}\textbf{H}}{\text{`}}$ OC.O.CH.C(:N.NH.C.H.).CO.H.

Existiert in zwei stereoisomeren Formen.

a) Bis-phenylhydrazon vom Schmelzpunkt 256°. B. Man kocht Schleimsäure mit viel Wasser, versetzt die Lösung mit etwas Eisen und fügt zur erkalteten Lösung erst Wasserstoffperoxyd, dann Phenylhydrazinacetat zu (FERBABOSCHI, Soc. 95, 1249). — Gelbe Nadeln (aus Toluol + Alkohol). Schmilzt bei schnellem Erhitzen bei 256° unter Zersetzung. Leicht löslich in Benzol, Toluol und Pyridin, schwer in Alkohol, Äther und Chloroform, sehr schwer in Wasser. — Verhält sich bei der Titration mit Barytwasser gegen Phenolphthalein wie eine zweibasische Säure. Beim Behandeln mit Alkohol und Chlorwasserstoff entsteht ein Ester, der bei 158° zu einer tief orangeroten Flüssigkeit schmilzt.

b) Bis-phenylhydrazon vom Schmelzpunkt 242-244°. B. Man oxydiert Zuckersäure in wäßr. Lösung, nachdem man etwas Eisen in der Flüssigkeit gelöst hat, mit Wasserstoffperoxyd und fällt dann mit Phenylhydrazinacetat (F., Soc. 95, 1252). — Orangegelb, mikrokrystallinisch. Schmilzt bei schnellem Erhitzen bei 242—244° unter Zersetzung. — Liefert mit Alkohol und Chlorwasserstoff einen bei 164-165° schmelzenden Ester.

d) Oxy-oxo-carbonsauren $C_n H_{2n-10} O_7$.

- 1. Oxy-oxo-carbonsauren C₂H₄O₂.
- 1. 3-Oxy-4-oxo-[1.4-pyran]-dicarboneaure-(2.6), 3-Oxy-pyron-(4)-di- $HC \cdot CO \cdot C \cdot OH$ carbonsaure-(2.6) (Mekonsaure) $C_7H_4O_7 = \frac{1}{HO_3C \cdot C - O - C \cdot CO_3H}$ ist desmotrop mit 3.4-Dioxo-[1.4-pyran]-dihydrid-dicarbonsaure-(2.6), S. 503.
- 8-Åthoxy-pyron-(4) dicarbonsaure-(2.6), Åthyläthermekonsaure $C_0H_0O_7 = HC \cdot CO \cdot C \cdot O \cdot C_2H_5$ B. Man kocht 3-Äthoxy-pyron-(4)-dicarbonsäure-(2.6)-diäthylester HO.C.C.O.C.CO.H zwei Tage mit Wasser und verdunstet die erhaltene Lösung (MENNEL, J. pr. [2] 26, 456). -Prismen mit 1 H₂O (aus Wasser). Schmilzt bei 200° und zerfällt dabei in Kohlendioxyd und Athylatherkomensaure (S. 524). Sehr leicht löslich in Wasser, leicht in Alkohol, schwerer in Ather. — PbC₂H₂O₇+1¹/₂H₂O. Nadeln (aus siedendem Wasser). Schwer löslich in kaltem Wasser.

 $\mathbf{HC} \cdot \mathbf{CO} \cdot \mathbf{C} \cdot \mathbf{O} \cdot \mathbf{C_{2}H_{2}}$ (S. 506) mit Athylodid (Mennel, J. pr. [2] 26, 456; vgl. P., Ch. Z. 21, 40; G. 30 I, 541). — Prismen (aus Alkohol). F: 61°; sehr schwer löslich in Wasser, leicht in Alkohol, Äther und Chloroform (M.). — Wird von Brom in der Kälte nicht angegriffen (M.). Liefert bei längerem Kochen mit Wasser Äthyläthermekonsäure (M.). Wird durch Kochen mit Barytwasser in Oxalsaure und Athoxyaceton gespalten (P.).

2. 6-Oxy-2-oxo-[1.2-pyran]-dicarbonsaure-(3.5), 6-Oxy-pyron-(2)dicarbonsdure - (3.5), 6 - Oxy - cumalin - dicarbonsdure - (3.5) $C_rH_1O_7 =$ HO,C.C.CH:C.CO,H

HO-C-O-CO

6-Methoxy-pyron-(2)-dicarbonsäure-(8.5)-dimethylester, 6-Methoxy-cumalindicarbonsäure-(8.5)-dimethylester $C_{10}H_{10}O_7=\frac{CH_2\cdot O_3C\cdot C\cdot CH:C\cdot CO_2\cdot CH_2}{CH_2\cdot O_3C\cdot O_3\cdot CH_2}$. B. Aus α.γ-Dicarboxy-glutaconsäure-tetramethylester (Bd. II, S. 876) durch Erhitzen unter 20 mm Druck auf 2206 (GUTHZEIT, WEISS, SCHARFER, J. pr. [2] 80, 447). — Prismen (aus Ligroin).

F: 128—129°. Leicht löslich in Chloroform, Aceton, Benzol und Essigester; 1,2 g lösen sich in ca. 500 cm³ heißem Ligroin.

6-Åthoxy-pyron-(2)-dicarbonsäure-(3.5)-diäthylester, 6-Äthoxy-cumalin-dicarbonsäure-(3.5)-diäthylester C₁₂H₁₆O₇ = C₂H₅·O₂C·C·CH:C·CO₂·C₂H₅. B. Bei 30 bis 40 Minuten langem mäßigem Sieden von α.γ.Dicarboxy-glutaconsäure-tetraäthylester unter 15 mm Druck (GUTHZEIT, DRESSEL, B. 22, 1415; vgl. G., EYSSEN, J. pr. [2] 80, 38). — Nädelchen (aus Ligroin). F: 94—95° (G., EY.). Leicht löslich in Chloroform, Schwefelkohlenstoff, Aceton, Benzol und siedendem Ligroin, schwer in kaltem Ather, sehr schwer in kaltem Ligroin (G., D., B. 22, 1415). — Wird bei längerem Stehenlassen mit Wasser oder beim Lösen in kalter verdünnter Natronlauge in Kohlensäure und Isoaconitsäuretriäthylester (Bd. II, S. 348) gespalten (G., D., B. 22, 1424). — Wird bei längerem Stehenlassen mit Kalilauge oder mit Salzsäure entstehen Glutaconsäure, Kohlensäure und Alkohol (G., D., B. 22, 1421). Liefert bei der Einw. vonlverdünntem wäßrigemAmmoniak 20xy-6-åthoxy-pyridin-dicarbonsäure-(3.5)-åthylester-(5) (Syst. No. 3364) (G., D., B. 22, 1427; A. 263, 105). Beim Einleiten von Ammoniak in die kalte Lösung in Benzol entsteht α.γ-Dicarbāthoxy-glutaconisoimid (S. 50d) (G., B. 26, 2796; ERRERA, B. 34, 3703; G., EY.). Gibt bei eintägigem Stehenlassen mit absol. Alkohol α.γ-Dicarboxy-glutaconsäure etstäthylester (G., D., B. 22, 1421). Liefert bei Einw. von wäßr. Athylaminlösung erst 1-Åthyl-6-åthoxy-pyridon-(2)-dicarbon-räure-(3.5)-åthylester-(5) (Syst. No. 3373) (HAUSSMANN, A. 285, 61), dann 1-Åthyl-6-åthyl-amino-pyridon - (2)-dicarbonsäure - (3.5)-(HAUSSMANN, A. 285, 75) und schließlich 1-Åthyl-6-åthyl-2-6-dicarbonsäure - (3.5)-(HAUSSMANN, A. 285, 75) und schließlich 1-Åthyl-6-åthyl-2-6-dicarbonsäure - (3.5)-disthylester (B. A. 285, 89); in der Währler of the der Währler of the rider of

γ-anilid (Bd. AII, S. 519) (D., A. 266, 147). Verbindung $C_{16}H_{27}O_5N = C_2H_5 \cdot O_2C \cdot C < C(O \cdot C_2H_5) \cdot N(C_2H_5)_2$ (?). B. Entsteht neben wenig Isoaconitsäuretriäthylester (Bd. II, S. 848) beim Schütteln von 6-Äthoxy-cumalindicarbonsäure-(3.5)-diäthylester mit ca. 2%-giger wäßr. Diäthylaminlösung (Haussmann, A. 285, 99). — Rotbraunes Öl.

e) Oxy-oxo-carbonsäuren $C_nH_{2n-12}O_7$.

 $\begin{array}{lll} \hbox{1-Methyl-3-α-furyl-cyclohexanol-(1)-on-(5)-dicarbons \"{a}ure-(2.4)} \\ \hbox{$C_{18}H_{14}O_7$} &= & \hbox{H_{C}^{C}-$O-$$$$.$ HC<$$CH(CO_3H)-C(CH_3)(OH)$>$CH_2$} \\ \end{array}$

Diäthylester ("Furfurylidenbisacetessigester") $C_{17}H_{22}O_7 = OC_4H_8 \cdot HC < CH(CO_2 \cdot C_2H_5) \cdot C(CH_2)(OH) > CH_2$. Zur Konstitution vgl. Rabe, Elze, A. 323, 94; Knoevenagel, B. 36, 2118. — B. Man kondensiert 1 Mol Furfurol mit 2 Mol Acetessigester in Gegenwart von Piperidin bei Zimmertemperatur (K., A. 308, 244). — Krystalle (aus Ligroin). F: 75°; leicht löslich in den gebräuchlichen organischen Lösungsmitteln außer Ligroin; wird in alkoh. Lösung durch Eisenchlorid intensiv violettrot gefärbt (K., A. 303, 244). — Gibt beim Kochen mit Kalilauge 1-Methyl-3- α -furyl-cyclohexen-(6)-on-(5) (Bd. XVII, S. 322) und β -[α -Furyl]-glutarsäure (S. 336) (K., B. 35, 393). Bei der Einw. von Hydroxylamin in wäßrig-alkoholischer Lösung entsteht das Oxim des 1-Methyl-3- α -furyl-cyclohexen-(6)-on-(5)-dicarbonsäure-(2.4)-diäthylesters (S. 497) (K., A. 303, 245).

f) Oxy-oxo-carbonsäuren $C_nH_{2n-14}O_7$.

1. Oxy-oxo-carbonsauren C₁₀H₆O₇.

1. 5.6.7-Trioxy-2-oxo-[1.2-chromen]-carbonsaure-(4), 5.6.7-Trioxy-cumarin-carbonsaure-(4) $C_{10}H_4O_7$, Formel I.

6-Oxy-5.7-dimethoxy-cumarin-carbonsäure-(4) $C_{18}H_{10}O_7$, Formel II. B. Der Äthylester entsteht durch Kondensation von 2.6-Dimethoxy-hydrochinon (Bd. VI, S. 1154) mit Oxalessigester in Gegenwart von konz. Schwefelsäure; man verseift den Ester durch Lösen in verd. Alkalilauge und Ansäuern (BIGINELLI, G. 25 II, 366). — Gelbe Nadeln mit

 $2H_2O$ (aus Wasser). Schmilzt bei $248-250^\circ$ unter Gasentwicklung. Verliert bei 100° oder im Vakuum über konz. Schwefelsäure das Krystallwasser und wird rot; durch Kochen der wasserfreien Verbindung mit verd. Salzsäure entstehen die gelben Hydrate $C_{12}H_{10}O_7 + H_2O$ und $2C_{12}H_{10}O_7 + H_2O$, die bei 100° oder im Vakuum über konz. Schwefelsäure kein Krystallwasser verlieren und nicht rot werden, aber durch Lösen in Sodalösung und Ansäuern wieder das Hydrat mit $2H_2O$ liefern.

5.6.7-Trimethoxy-cumarin-carbonsäure-(4) C₁₃H₁₂O₇, s. nebenstehende Formel. B. Der Methylester entsteht beim Kochen von 6-Oxy-5.7-dimethoxy-cumarin-carbonsäure-(4) mit Methyljodid in methylalkoholischer Kalilauge unter einem Druck von 10—15 cm Quecksilber; man verseift den Ester durch Kochen mit Alkalilauge (B., G. 25 II, 369). — Blättchen (aus Alkohol). F: 209°. — Gibt beim Erhitzen mit Eisenpulver auf 250° bis 260° 5.6.7-Trimethoxy-cumarin (S. 169).

Methylester $C_{14}H_{14}O_7$, s. nebenstehende Formel. B. s. im vorangehenden Artikel. — Tafeln (aus Alkohol). F: 105° bis 106° ; sehr leicht löslich in Alkohol und Äther, fast unlöslich in Wasser; fast unlöslich in Alkalicarbonat-Lösung und in kalter Alkalilauge (B., G. 25 II, 369).

CH₃·O

CH₃·O

CH₃·O

6-Oxy-5.7-dimethoxy-cumarin-carbonsäure-(4)-äthylester $C_{14}H_{14}O_{7}$, s. nebenstehende Formel. B. s. im Artikel 6-Oxy-5.7-dimethoxy-cumarin-carbonsäure-(4). — Prismen (aus Alkohol). F: 199—200°; etwas löslich in Wasser und Äther; unlöslich in Alkalicarbonat-Lösung (B., G. 25 II, 367).

2. 5.7-Dioxy-2.4-dioxo-chroman-carbonsäure-(6 oder 8) bezw. 4.5.7-Tri-oxy-2-oxo-[1.2-chromen]-carbonsäure-(6 oder 8), 4.5.7-Trioxy-cumarin-

carbonsdure-(6 oder 8) $C_{10}H_4O_1$, Formel III oder IV bezw. V oder VI, 5.7-Dioxybenzotetronsdure-carbonsdure-(6 oder 8).

5.7 - Dioxy - bensotetronsäure - carbonsäure - (6 oder 8) - äthylester 1) $C_{12}H_{10}O_7 = C_0H_4O_5 \cdot CO_3 \cdot C_3H_5$. B. Durch Kochen von 2 Mol Acetondicarbonsäurediäthylester (Bd. III, 8. 791) mit 3 At. Gew. fein verteiltem Natrium in Benzol, Ausschütteln mit Wasser und Ansäuern der wäßr. Lösung (Jerdan, Soc. 71, 1110). Durch Kochen von 2 Mol Acetondicarbonsäurediäthylester mit 3 Mol Natriumäthylat in Alkohol (v. Pechmann, Wolman, B. 31, 2015; J., Soc. 75, 810). — Pulver von bitterem Geschmack (aus Eisessig). F: 188°; leicht löslich in Alkohol, heißem Eisessig und siedendem Chloroform, schwer in Äther, unlöslich in Ligroin; löslich in Sodalösung; gibt mit Eisenchlorid in alkoh. Lösung eine tiefpurpurrote Färbung (J., Soc. 71, 1111). — Durch Behandlung mit Brom in siedendem Chloroform entsteht x.x.Dibrom-5.7-dioxy-2.4-dioxo-chroman-carbonsäure-(6 oder 8)-äthylester (J., Soc. 71, 1112). Liefert durch Kochen mit $3^{\circ}/_{\circ}$ iger methylalkoholischer Salzsäure 2.4.6-Trioxy-3-carbāthoxy-benzoylessigsäure-methylester (in Bd. X, S. 1047 noch als 2.4.6-Trioxy-3-carbāthoxy-benzoylessigsäure-methylessigsäure-methylessigsäure-methylessigsäure-methylessigsäure-methylessigsäure-methylessigsäur

¹⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von LEUCES, SPERLING, B. 48, 188; SONN, B. 50, 188.

methoxy-benzoylessigsäure-äthylester formuliert) (J., Soc. 71, 1111). Wird beim Kochen mit überschüssigem Barytwasser in Alkohol, Phloroglucin, Malonsäure und Kohlensäure zersetzt (J., Soc. 71, 1113).

5.7 - Dioxy - 2 - oxo - 4 - phenylhydrazono - chroman - carbonsäure - (6 oder 8) - äthylester bezw. 5.7 - Dioxy - 4 - phenylhydrazino - cumarin - carbonsäure - (6 oder 8) -

 $(C_2H_5\cdot O_2C)(HO)_2C_6H < C(NH\cdot NH\cdot C_6H_5): CH \\ O - CO$. B. Aus 5.7-Dioxy-benzotetronsäure-carbonsäure-(6 oder 8)-åthylester und überschüssigem Phenylhydrazin in heißem Eisessig (JERDAN, Soc. 71, 1112). — Nadeln (aus Eisessig). F: 243°.

x.x-Dibrom - 5.7 - dioxy - 2.4 - dioxo - chroman - carbonsäure - (6 oder 8) - äthylester C₁₂H₂O₃Br₂ = C₃H₂O₅Br₂·CO₃·CO durch Behandeln mit Brom in siedendem Chloroform (JERDAN, Soc. 71, 1112). — Nadeln (aus Eisessig). Schmilzt bei raschem Erhitzen bei 220° unter Zersetzung.

2. 1-0xy-3-oxo-phthalan-malonsäure-(1), [3-0xy-phthalidyl-(3)]-malonsäure $C_{11}H_{\theta}O_{\tau} = C_{\theta}H_{\theta} \underbrace{C(OH)[CH(CO_{\theta}H)_{\theta}]}O.$

[8 - Äthoxy - phthalidyl - (3)] - malonsäure - diäthylester(?) $C_{17}H_{20}O_7 =$ C_0H_4 $C(O \cdot C_2H_5)[CH(CO_2 \cdot C_2H_5)_2]$ O (?) 1). B. Die Natriumverbindung entsteht aus Phthalylmalonsäure-diäthylester (S. 498) und Natriumäthylat in absol. Alkohol; man zerlegt sie durch Säuren (Wisligenus, A. 242, 46). — Dickflüssiges Öl. Löslich in kalter Natronlauge. Beim Kochen mit Alkalien tritt Zersetzung in Alkohol, Malonsäure und Phthalsäure ein. -Die Natriumverbindung liefert bei mehrtägigem Erhitzen mit überschüssigem Äthyljodid im Rohr auf dem Wasserbad α -[3-Äthoxy-phthalidyl-(3)]-äthylmalonsäurediäthylester(?). — NaC₁₇H₁₈O₇. Prismen. Sehr leicht löslich in Wasser, schwer in kaltem, ziemlich leicht in siedendem Alkohol. — Cu(C₁₇H₁₈O₇)₂ + 2H₂O(?). Grüne Prismen (aus Alkohol). Schmilzt unterhalb 90° zu einer blaugrünen Flüssigkeit und zersetzt sich bei 100°.

3. Oxy-oxo-carbonsäuren $C_{13}H_{12}O_7$.

HO HC.CO.CH.OH 1. 3-0xy-4-oxo-6-[2.6-dioxy-4-methyl-phenyl]-[1.4-pyran] - dihydrid - (2.3) - carbonsäure - (2) C₁₃H₁₂O₇, s. nebenstehende Formel.

8-Oxy-4-oxo-6-[2.6-dimethoxy-4-methyl-phenyl]-[1.4-pyran]-dihydrid-(2.3)- $HC \cdot CO \cdot CH \cdot OH$ carbonsäure-(2) $C_{15}H_{16}O_7 = \frac{(CH_3 \cdot O)_8(CH_3)C_6H_2 \cdot C - O - CH \cdot CO_2H}{(CH_3 \cdot O)_8(CH_3)C_6H_2 \cdot C - O - CH \cdot CO_2H}$ früher für die Podophyllsäure in Betracht gezogen, die Diese Formel wurde OH auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. CH~CH·CH2·OH dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von Borsche, Niemann, A. 499, 62; Späth, Wessely, Nadler, B. 65, 1773; B. 66, 125 als Verbindung nebenstehender Formel erkannt ist und demzufolge unter Syst. No. 2893 CH CH CO'H behandelt wird.

2. α - [3 - Oxy - phthalidyl - (3)] - äthylmalonsäure $C_{13}H_{12}O_7 = C_6H_6 - COO_{13}[C(C_2H_5)(CO_2H)_3] > O$ ist desmotrop mit Äthyl-[2-carboxy-benzoyl]-malonsäure, Bd. X, S. 929.

¹⁾ Vgl. hierzu folgende nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Abhandlungen: Scheiber, A. 389, 125; v. Auwers, Auffenberg, B. 51, 1106; SCHEIBER, HOPFER, B. 58, 898.

 α - [8 - Äthoxy - phthalidyl - (3)] - äthylmalonsäure - diäthylester (?) $C_{10}H_{34}O_7=C_0H_4$ - CO - $C_2H_3)[C(C_2H_3)(CO_2\cdot C_2H_3)_2]^{-O}$ (?) ¹). B. Bei mehrtägigem Erhitzen der Natriumverbindung des [3-Åthoxy-phthalidyl-(3)]-malonsäure-diäthylesters mit überschüssigem Äthyljodid im Rohr auf dem Wasserbad (Wislioenus, A. 242, 52). — Flüssigkeit. Löslich in Äther, unlöslich in Wasser. — Liefert mit 10% jeger alkoholischer Kalilauge in der Kälte das Trikaliumsalz der Äthyl-[2-carboxy-benzoyl]-malonsäure (Bd. X, S. 929).

g) Oxy-oxo-carbonsäuren $C_nH_{2n-16}O_7$.

[5-0x0-2-(2.4-dioxy-phenyl)-4.5-dihydro-furyl-(3)]-glyoxylsäure, γ -[2.4-Dioxy-phenyl]- $\Delta^{\beta\gamma}$ -crotonlacton- β -oxalylsäure $C_{12}H_{0}O_{7}=H_{1}C-C\cdot CO\cdot CO_{2}H$ OC·O· $C\cdot C_{1}H_{1}(OH)_{1}$

[5 · Oxo · 2 · (2.4 · dimethoxy · phenyl) · 4.5 · dihydro · furyl · (3)] · glyoxylsäure-äthylester (?) , γ · [2.4 · Dimethoxy · phenyl] · $\Delta^{\beta,\gamma}$ · crotonlacton · β · oxalylsäure-äthylester (?) $C_{18}H_{18}O_7 = \frac{H_2C - C \cdot CO \cdot CO_2 \cdot C_2H_5}{OC \cdot O \cdot C_4H_3(O \cdot CH_4)_2}$ (?). B. Man trägt feinverteiltes Natrium in eine Lösung von β -[2.4-Dimethoxy-benzoyl]-propionsäure-methylester (Bd. X, S. 1002) in Oxalsäurediäthylester ein, erwärmt das Reaktionsprodukt auf dem Wasserbad und zersetzt es mit verd. Essigsäure (Perkin, Robinson, Soc. 93, 507). — Braungelbe Nadeln oder Prismen

h) Oxy-oxo-carbonsäuren $C_n H_{2n-22} O_7$.

(aus Alkohol). F: 170°. Schwer löslich in Alkohol. Eisenchlorid färbt die alkoh. Lösung braun. — Bei der Hydrolyse mit Alkali entsteht β -[2.4-Dimethoxy-benzoyl]-propionsäure.

7.8 - Dioxy - 2.4 - dimethyl - 3 - [2 - carboxy - benzoyl] - benzopyranol bezw. 7.8 - Dioxy - 2.4 - dimethyl - 3 - [3 - oxy - phthalidyl - (3)] - benzopyranol $C_{19}H_{16}O_{7}$,

I. HO.
$$C(CH_3)$$
 $C(CH_3)$ $C(CH_3)$

Formel I oder II bezw. III oder IV, vielleicht auch α -[2.3.4-Trioxy- α -methylbenzal]- α -[2-carboxy-benzoyl]-aceton bezw. α -[2.3.4-Trioxy- α -methyl-

benzal] - α - [3 - oxy - phthalidyl - (3)] - aceton, Formel V bezw. VI. Ist als Pseudobase der im folgenden behandelten Salze anzusehen, vgl. Bd. XVII, S. 116.

7.8 · Dioxy · 2.4 · dimethyl · 3 · [2 · carboxy · benzoyl] · benzopyryliumsalze bezw· 7.8 · Dioxy · 2.4 · dimethyl · 3 · [3 · oxy · phthalidyl · (3)] · benzopyryliumsalze [C₁₈H₁₈O₈]Ac. Zur Konstitution vgl. Bd. XVII, S. · 117. — Chlorid [C₁₈H₁₈O₈]Cl + 1¹/₈H₂O. B. Durch Einleiten von Chlorwasserstoff in die Lösung von Phthalylacetylaceton (Bd. XVII, S. 571) und Pyrogallol in Eisessig (Bülow, Deseniss, B. 39, 3666). Rote Krystalle (aus salzsäurehaltigem Alkohol). Wird bei ca. 109° zersetzt. Löslich in Alkohol, Eisessig, Benzol und Aceton, unlöslich in Ather. Wird durch Wasser hydrolytisch gespalten. Die Lösung in verd. Alkalien und Ammoniak ist tiefblau und wird bei längerem Aufbewahren erst grün,

¹⁾ Siehe Anmerkung auf S. 555.

dann schmutzig schwarz. — Pikrat $[C_{10}H_{10}O_{6}]O\cdot C_{6}H_{2}(NO_{9})_{2}$. Rote Krystalle (aus Eisessig + Pikrinsäure). Verkohlt zwischen 195—200°. Schwer löslich in Alkohol und Wasser, löslich in Eisessig und in konz. Schwefelsäure. Löslich mit blaugrüner Farbe in Alkalien und Alkalicarbonat-Lösungen, schwer löslich in Natriumdicarbonat-Lösung mit roter Farbe.

i) Oxy-oxo-carbonsäuren $C_n H_{2n-24} O_7$.

Oxy-oxo-carbonsauren C18H18O2.

1. 5.7-Dioxy-4-methyl-3-[2-carboxy-benzoyl]-cumarin bezw. 5.7-Dioxy-4-methyl-3-[3-oxy-phthalidyl-(3)]-cumarin $C_{12}H_{12}O_{7}$, Formel I bezw. II. B. Beim Einleiten von Chlorwasserstoff in eine Lösung von Phthalylacetessigester (S. 476)

und Phloroglucin in Eisessig unter Eiskühlung (Bülow, B. 38, 481). — Krystalle (aus Alkohol). Löslich in konz. Schwefelsäure mit orangegelber Farbe. Wird aus der orangegelben Lösung in Sodalösung durch Kohlensäure gefällt. Die orangegelbe Lösung in verd. Alkalilaugen verblaßt beim Aufbewahren oder beim Einleiten von Kohlensäure.

2. 7.8-Dioxy-4-methyl-3-[2-carboxy-benzoyl]-cumarin, 4-Methyl-3-[2-carboxy-benzoyl]-daphnetin bezw. 7.8-Dioxy-4-methyl-3-[3-oxy-phthalidyl-(3)]-cumarin, 4-Methyl-3-[3-oxy-phthalidyl-(3)]-daphnetin C₁₂H₁₂O₇, Formel III bezw. IV. B. Beim Einleiten von Chlorwasserstoff in eine Lösung von Phthalylacetessigester (S. 476) und Pyrogallol in Eisessig unter Eiskühlung (Bülow, B.

III. HO.
$$C(CH_2) \sim C \cdot C_0 \cdot C_0H_4 \cdot CO_2H$$

$$V. HO. C(CH_2) \sim C \cdot C(OH) < C_0H_4 > CO$$

$$V. HO. C(CH_2) \sim C \cdot C(OH) < C_0H_4 > CO$$

38, 482). — Krystalle (aus Alkohol oder Eisessig). F: 237°. Unlöslich in Wasser, Äther, Benzol und Ligroin, leicht löslich in siedendem Alkohol, Aceton und Eisessig; löslich in konz. Schwefelsäure mit orangegelber Farbe, in verd. Sodalösung und Alkalilauge mit blauer Farbe. Wird aus der Lösung in Soda durch Kohlensäure gefällt. Die Lösung in Alkalilauge verblaßt beim Aufbewahren oder beim Erwärmen auf 50°.

k) Oxy-oxo-carbonsäuren C_nH_{2n-28}O₇.

Oxy-oxo-carbonsauren $C_{20}H_{12}O_7$.

1. 2.6.7-Trioxy-9-[2-carboxy-phenyl]-fluoron, 3.3".4"-Trioxy-6.6"-oxido-fuchson-carbonsaure-(2') bezw. Lacton der 2-[2.3.6.7.9-Pentaoxy-xanthyl]-benzoesaure $C_{20}H_{12}O_{\gamma}$, Formel V bezw. VI, 2.7-Dioxy-fluorescein, Oxyhydro-

chinonphthalein s. Syst. No. 2843; s. daselbst auch alle Derivate, die sich von der lactoiden Formel ableiten lassen.

2.6.7-Trioxy-9-[2-carbāthoxy-phenyl]-fluoron, chinoider
2.7 - Dioxy - fluorescein - monoāthylāther, chinoider Oxyhydrochinonphthalein - monoāthylāther C₂₂H₁₆O₇, s. nebenstehende Formel. B. Durch 8-stdg. Erwärmen von 2.7-Dioxyfluorescein (Syst. No. 2843) mit Alkohol und konz. Schwefelsäure
(FEUERSTEIN, DUTOIT, B. 34, 2639). — Grüne Blätter (aus Alkohol). F: 326°. Schwer
löslich in Aceton, Alkohol und Eisessig, unlöslich in Wasser und Natriumdicarbonat-Lösung.

2.6.7 - Triacetoxy - 9 - [2 - carbathoxy - phenyl] -CaHa · COa · CaHa fluoron, chinoider O.O.O. Triacetyl - [oxyhydrochinonphthalein] - monoäthyläther C₂₂H₂₂O₁₀, s. CH₃·CO·O·nebenstehende Formel. B. Aus 2.6.7 Trioxy-9-[2-carb-CH₃·CO·O· -. O . CO . CH. äthoxy-phenyl]-fluoron durch kurzes Kochen mit Essig-säureanhydrid und entwässertem Natriumacetat (F., D., B. 34, 2640). — Orangegelbe, bläulich schimmernde Krystalle (aus Aceton). F: 238—239°. Leicht löslich in Alkohol und Aceton. Verdünnte Lösungen zeigen intensive Fluorescenz.

2.6.7 - Trimethoxy - 9 - [8.4.5.6 - tetrachlor - 2 - carbomethoxy - phenyl] - fluoron, chinoider 8'.4'.5'.6'-'Tetrachlor-2.7-dimethoxy-fluorescein-dimethyläther, chinoider Tetrachlor-[oxyhydrochinonphthalein]-tetramethyläther CeCla · CO2 · CH2 Tetrachlor-loxyhydrochinonphthaleinj-tetramethylather

C₂₄H₁₆O₇Cl₄, s. nebenstehende Formel. B. Beim Erhitzen

von 3'.4'.5'.6'-Tetrachlor-2.7-dioxy-fluorescein (Syst. No. 2843)

mit überschüssigem Methyljodid und methylalkoholischer

Kalilauge auf dem Wasserbad (Osorovitz, B. 36, 1079).

Rotgelbes Pulver (aus verd. Methylalkohol). F: 175°. Leicht löslich in Alkohol, Aceton

und Eisessig. In kalter Alkalilauge unlöslich. Löst sich beim Erhitzen unter Verseifung zum

lactoiden 3'.4'.5'.6'-Tetrachlor-2.7-dimethoxy-fluorescein-monomethyläther (Syst. No. 2843).

2:6.7 - Trioxy - 9 - [4.5 - dibrom - 2 - carbathoxy - phenyl] -CaHaBra · COa · CaHs fluoron, chinoider 4'.5' - Dibrom - 2.7 - dioxy - fluoresceinmonoäthyläther, chinoider Dibrom - [oxyhydrochinon-Hophthalein]-monoäthyläther $C_{21}H_{14}O_7Br_3$, s. nebenstehende HO. Formel. B. Aus 4'.5'-Dibrom-2.7-dioxy-fluorescein (Syst. No. ·OH 2843) beim Erhitzen mit Alkohol und konz. Schwefelsäure (O., B. 36, 1082). — Nadeln (aus Alkohol). Löslich in Alkohol, Aceton und Eisessig, etwas löslich in Chloroform und Äther (O.). Absorptionsspektrum in Kalilauge: MIETHE, B. 36, 1084. Unlöslich in Natrium-dicarbonat-Lösung (O.). Färbt Aluminiumbeize orange, Eisenbeize schwarz (O.).

CaHaBra COa CaHs 2.6.7-Triacetoxy-9-[4.5-dibrom-2-carbathoxyphenyl]-fluoron, chinoider O.O.O-Triscetyl-dibrom- CHa-CO-O ·O·CO·CHa [oxyhydrochinonphthalein] - monoäthyläther C₂₂H₂₀O₁₀Br₂, s. nebenstehende Formel. Gelbe Krystalle CH₂·CO·O· (aus Benzol). F: 252° (O., B. 36, 1083).

 $2. \ \ 4.5.6-Trioxy-9-[2-carboxy-phenyl]-fluoron, \ \ 3.3^{\prime\prime}.4^{\prime\prime}-Trioxy-2.2^{\prime\prime}-oxido-2.2^{\prime\prime}-oxid$ fuchson-carbonsaure-(2') bezw. Lacton der 2-[3.4.5.6.9-Pentaoxy-xanthyl]benzoesäure C20H12O7, Formel I nn. CaHa · COaH bezw. II, 4.5-Dioxy-fluorescein, Gallein s. Syst. No. 2843; II. s. daselbst auch alle Derivate, die HO sich von der lactoiden Form ab-

leiten lassen.

'nπ нò 4.5.6-Trioxy-9-[2-carbomethoxy-phenyl]-fluoron, chino-CeH4 · CO2 · CH3 ider Gallein-monomethyläther $C_{21}H_{14}O_7$, s. nebenstehende Formel. B. Aus Gallein (Syst. No. 2843) durch Erhitzen mit Methylalkohol und konz. Schwefelsäure (ORNDORFF, BREWER, Am. 26, 130) - HO Dunkelrote, körnige Masse. Ist bei 280° noch nicht geschmolzen. нó ÓΉ Löslich in Alkohol, Ather und Chloroform mit roter Farbe, unlöslich in Benzol.

ŎН

HO

4.5.6-Trimethoxy-9-[2-carbomethoxy-phenyl]-fluoron, CaH4 · CO2 · CH3 chinoider Gallein-tetramethyläther $C_{24}\bar{H}_{20}O_{7}$, s. nebenstehende Formel. B. Neben lactoidem Gallein-trimethyläther und lactoidem Gallein-tetramethyläther beim Kochen von CH₃·O·Gallein (Syst. No. 2843) mit Methyljodid und methylalkoholischer Kalilauge (O., B., Am. 26, 137). — Dunkelrote Krystalle. F: 199°. CHa · O O·CH₃ Löslich in Alkohol, Aceton, Chloroform und Äther mit roter Farbe; unlöslich in kalter Alkalilauge. — Bei der Verseifung mit Sodalösung entsteht lactoider Gallein-trimethyläther.

4.5.6-Trioxy-9-[2-carbathoxy-phenyl]-fluoron, chinoider CeH4 · CO2 · C2H5 Gallein-monoäthyläther $C_{22}H_{12}O_{7}$, s. nebenstehende Formel. B. Beim Kochen von Gallein mit Alkohol und konz. Schwefelsäure (O., B., Am. 26, 131) oder mit alkoh. Salzaäure (Heller, Lang-koff, C. 1906 II, 681). — Krystalle, die im durchfallenden Licht rot, im reflektiertem grün erscheinen. Löslich in Alkohol, Äther, ÓН ĦŎ Chloroform und Essigester mit roter Farbe (O., B.). — C₂₂H₁₆O₂ + HCl. Braunrote Nadeln. Löslich in Alkohol, sehr schwer löslich in Aceton (H., L.). — $C_{22}H_{16}O_7 + H_2SO_4$. Rotbraune Nadeln. Fast unlöslich in Aceton (H., L.).

4.5.6 - Triäthoxy - 9 - [2 - carbäthoxy - phenyl] - fluoron, chinoider Gallein - tetraäthyläther $C_{28}H_{28}O_7$, s. nebenstehende Formel. B. Neben lactoidem Gallein-triäthyläther und lactoidem Gallein tetraäthyläther beim Kochen von Gallein (Syst. No. 2843) mit Äthyljodid und methylalkoholischer Kailiauge (O., B., Am. 26, 138). — Dunkelrote Krystalle.

in Benzol, Ather, Alkohol und Aceton mit purpurner Farbe.

C₂H₅·O·C₂H₅
C₂H₅·O·O·C₂H₅

F: 155°. Löslich in Alkohol, Aceton, Chloroform und Essigsäure; unlöslich in kalter Alkalilauge. — Bei der Verseifung mit Soda oder Kalilauge entsteht lactoider Gallein-triäthyläther.

4.5.6 - Trioxy - 9 - [3.4.5.6 - tetrachlor - 2 - carbomethoxy-phenyl]-fluoron, chinoider 3'.4'.5'.6'-Tetrachlor-gallein-monomethyläther $C_{31}H_{10}O_7Cl_4$, s. nebenstehende Formel. B. Aus wasserfreiem Tetra-chlorgallein beim Kochen mit $3^{\circ}/_{0}$ ig. methylalkoh. Salzsäure (Orndorff, Delebenger, Am. 42, 236). — Dunkelrote, schwach grünlich schimmernde Krystalle (aus Benzol). F: 285—290° (Zers.). Sehr leicht löslich in Aceton, Alkohol, Eisessig und Chloroform, löslich in Benzol und Äther, unlöslich in Ligroin. Leicht löslich in Salzsäure. Wird durch verd. Natronlauge nicht verseift. — $C_{21}H_{10}O_7Cl_4+HCl$. Dunkelrote, grünlich schimmernde Krystalle. Schwer löslich

4.5.6 - Trimethoxy - 9 - [8.4.5.6 - tetrachlor - 2 - carbo - methoxy-phenyl]-fluoron, chinoider 8'.4'.5'.6'-Tetrachloregallein-tetramethyläther $C_{14}H_{16}O_{1}$ Cl₄, s. nebenstehende Formel.

B. Neben lactoidem Tetrachlorgallein-trimethyläther bei längerem Kochen von wasserfreiem Tetrachlorgallein (Syst. No. 2843) mit überschüssigem Methyljodid und Natriummethylat in Methylallein-trimethyläther durch Kochen mit 30'0 ger methylalkoholischer Salzsäure (O., D.). — Säulen (aus Alkohol), die im durchfallenden Licht rot, im reflektierten Licht dunkelgrün erscheinen. Triklin oder wahrscheinlicher monoklin (Ghl., Am. 42, 250). F: 217°. Leicht löslich mit roter Farbe in Alkohol, Äther, Aceton, Benzol und Chloroform, unlöslich in Wasser. Löslich in heißer Salzsäure mit roter Farbe, unlöslich in kalter Natronlauge. — Beim Kochen mit 20'0 gier methylalkoholischer Natronlauge entsteht lactoider Tetrachlorgallein-trimethyläther. — $C_{24}H_{16}O_{7}Cl_{4} + HCl$. Rote Substanz. Wird durch heißes Wasser in die Komponenten gespalten.

4.5.6-Trioxy-9-[3.4.5.6-tetrachlor-2-carbäthoxy-phenyl]-fluoron, chinoider 3'.4'.5'.6'-Tetrachlor-gallein-monoäthyl-äther C₂₂H₁₂O₇Cl₄, s. nebenstehende Formel. B. Aus wasserfreiem Tetrachlorgallein beim Kochen mit 3º/oiger alkoh. Salzsäure oder mit Alkohol und konz. Schwefelsäure (O., D., Am. 42, 243, 244). — Dunkelrote, benzolhaltige Krystalle (aus Benzol). F: ca. 275—280° (Zers.). Löslich in Salzsäure mit tiefroter Farbe.

l) Oxy-oxo-carbonsäuren $C_n H_{2n-30} O_7$.

1. Oxy-oxo-carbonsäuren $C_{21}H_{12}O_7$.

1. 6-Oxy-9-[2.4 oder 2.5-dicarboxy-phenyl]-fluoron, 4"-Oxy-2.2"-oxido-fuchson-dicarbonsäure-(2'.4' oder 2'.5') bezw. Lacton der 4-[3.6.9-Trioxy-

xanthylj-isophthalsdure oder der 2-[3.6.9-Trioxy-xanthyl]-ierephthalsdure $C_{\rm n}H_{\rm 1s}O_{\rm n}$ Formel I bezw. II oder III, Fluorescein-carbonsdure-(4'oder 5'), Resorcintrimellitein s. Syst. No. 2902.

2. 6-Oxy-9-[2.6-dicarboxy-phenyl]-fluoron, 4"-Oxy-2.2"-oxido-fuchson-dicarbonsaure-(2'.6') bezw. Lacton der 2-[3.6.9-Trioxy-xanthyl]-isophthal-

säure C₁₁H₁₂O₇, Formel I bezw. II, Fluorescein-carbonsäure-(6'), Resorcin-hemimelitiein s. Syst. No. 2902.

2. 5.7-Dioxy-4-methyl-2-[2-carboxy-phenyl]-3-benzoyl-benzopyranol oder 5.7-Dioxy-4-methyl-2-phenyl-3-[2-carboxy-benzoyl]-benzopyranol

 $C_{24}H_{18}O_7$, Formel III oder IV oder V oder VI. Ist als Hydrat der nachfolgenden Verbindung anzusehen. Zur Formulierung der hier angeordneten Verbindungen s. Bd. XVII, S. 158

$$V. \xrightarrow[]{\text{HO}} \begin{array}{c} \text{HO} \\ \text{C(CH_8)} & \text{C.CO.C_6H_4.CO_2H} \\ \text{O(OH).C_6H_5} \end{array} \qquad VI. \xrightarrow[]{\text{HO}} \begin{array}{c} \text{C(CH_8)(OH)} & \text{C.CO.C_6H_4.CO_2H} \\ \text{O.C.CO.C_6H_4.CO_2H} \end{array}$$

bei 7-Oxy-2.4-dimethyl-benzopyranol; vgl. ferner Bülow, B. 37, 1966, 1967; 38, 474; B., Deseniss, B. 39, 3665.

Anhydroverbindung $C_{24}H_{16}O_6$, Formel VII oder VIII oder IX oder X. B. Aus Phthalylbenzoylaceton (Bd. XVII, S. 576) und Phloroglucin in Eisessig beim Einleiten von trocknem

Chlorwasserstoff (Bülow, B. 37, 1970). — Krystalle (aus Eisessig). F: etwa 263° (Zers.). Löslich in Alkohol, Chloroform und Eisessig, unlöslich in Wasser, Äther und Ligroin; löslich in konz. Schwefelsäure mit gelber, in verd. Alkalilaugen mit orangegelber Farbe.

$$IX. \xrightarrow[HO]{C(:CH_2)} \xrightarrow{C \cdot CO \cdot C_0H_4 \cdot CO_2H} X. \xrightarrow[O:COC_0H_4 \cdot CO_2H]{C(:CH_2)} \xrightarrow{C \cdot CO \cdot C_0H_4 \cdot CO_2H}$$

Discetylierte Anhydroverbindung $C_{28}H_{20}O_8$. B. Aus der Anhydroverbindung $C_{24}H_{16}O_6$ durch kurzes Kochen mit Essigsäureanhydrid und wasserfreiem Natriumacetat in Eisessig (Bülow, B. 37, 1971). — Amorph. F: 189° (Zers.). Löslich in Äther, Aceton, Eisessig und Ligroin.

m) Oxy-oxo-carbonsäuren $C_nH_{2n-34}O_7$.

2.6.7 - Trioxy - 9 - [2 oder 1 - carboxy - naphthyl-(1 oder 2)] - fluoron bezw. Lacton der 1 oder 2 - [2.3.6.7.9 - Pentaoxy - xanthyl] - naphthalin - carbon-säure-(2 oder 1) $C_MH_{14}O_{7}$, Formel XI bezw. XII, s. Syst. No. 2843.

4. Oxy-oxo-carbonsäuren mit 8 Sauerstoffatomen.

a) Oxy-oxo-carbonsäuren $C_nH_{2n-4}O_8$.

 $\alpha.\beta - \text{Dioxy-butyrolacton-} \gamma - [\alpha.\beta - \text{dioxy-}\beta - \text{propions} \\ \text{aure}], \text{ Lacton der Pentaoxypimelins} \\ \text{C}_7H_{10}O_8 = \frac{\text{HO} \cdot \text{HC} - \text{CH} \cdot \text{OH}}{\text{OC} \cdot \text{O} \cdot \text{CH} \cdot \text{CH}(\text{OH}) \cdot \text{CH}_2(\text{OH}) \cdot \text{CO}_4H}.$

a) y-Lacton der d-Glyko-a-pentaoxypimelinsäure C,H100s

(Konfiguration entsprechend Formel I + II). B. s. bei d-Glyko- α -pentaoxypimelinsäure (Bd. III, S. 589). — Nadeln oder Prismen. F: 143° (KILIANI, B. 19, 1918), 150° (K., B. 55 [1922], 2819). Sehr leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Äther; liefert mit Basen Salze der Pentaoxypimelinsäure (K., B. 19, 1918). Inaktiv (E. FISCHER, A. 270, 91).

b) γ-Lacton der d-Glyko-β-pentaoxypimelinsäure C₂H₁₀O₈

(Konfiguration entsprechend Formel I oder II; vgl. auch Anderson, Am. Soc. 34 [1912], 54). — B. s. bei d-Glyko- β -pentaoxypimelinsäure (Bd. III, S. 589). — Nadeln oder Prismen (aus Essigester). F: gegen 177° (Gasentwicklung); sehr leicht löslich in Wasser und in heißem Alkohol, schwer in Aceton; $[\alpha]_0^{m}$: +68,5° (in Wasser; p=10) (E. FISCHER, A. 270, 90).

b) Oxy-oxo-carbonsäuren $C_nH_{2n-10}O_8$.

 $\begin{array}{ll} 2.6\text{-Dioxy-4-oxo-pyran-dicarbons} & \text{dicarbons} & \text{dica$

2.6 - Disulfhydryl - 4 - oxo - thiopyran - dicarbonsäure - (3.5), 2.6 - Dimercapto-4-oxo-penthiophen-dicarbonsäure-(3.5), 2.6-Dimercapto-1-thio-pyron-(4)-dicarbonsäure-(3.5) $C_7H_4O_5S_3 = \frac{HO_3C\cdot C\cdot CO\cdot C\cdot CO_2H}{HS\cdot \ddot{C}-S-\ddot{C}\cdot SH}$ ist desmotrop mit 4 · Oxo - 2.6 · dithion - thiopyrantetrahydrid-dicarbonsäure-(3.5), S. 509.

2.6 - Bis - methylmercapto - 1 - thio - pyron - dicarbonsäure - (3.5) $C_9H_8O_8S_3 = HO_2C \cdot C \cdot CO \cdot C \cdot CO_2H$ $CH_3 \cdot S \cdot C - S - C \cdot S \cdot CH_3$ B. Beim Behandeln des Kaliumsalzes der 4-Oxo-2.6-dithion-thio-pyrantetrahydrid-dicarbonsäure-(3.5) (S. 509) mit Methyljodid oder Dimethylsulfat (Apitzsch, Blezinger, B. 41, 4035). — Blaßgelbe Nadeln (aus Nitrobenzol). F: 230° (Aufschäumen). Sehr schwer löslich. — $Ag_2C_9H_6O_5S_3 + 2H_2O$. Farblose Nadeln. Verpufft beim Erhitzen.

2.6 - Bis - äthylmercapto - 1 - thio - pyron - dicarbonsäure - (3.5) $C_{11}H_{12}O_5S_3 = HO_2C \cdot C \cdot CO \cdot C \cdot CO_2H$ $C_2H_5 \cdot S \cdot C = S = 0 \cdot S \cdot C_2H_5$ dicarbonsäure-(3.5) und Äthylbromid (A., Bl., B. 41, 4036). — Farblose Nadeln. F: 178—180°. Leicht löslich in Alkohol, Aceton und Chloroform, schwer in Benzol, kaum löslich in Essigester.

2.6 - Bis - methylmercapto - 1 - thio - pyron - dicarbonsäure - (3.5) - diäthylester $C_{13}H_{16}O_5S_3=\frac{C_2H_5\cdot O_3C\cdot C\cdot CO\cdot C\cdot CO_2\cdot C_2H_5}{CH_3\cdot S\cdot C-S-C\cdot S\cdot CH_3}$. B. Aus dem Kaliumsalz des 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure-(3.5)-diāthylesters und Methyljodid (A., BL., B. 41, 4033). Aus dem Silbersalz der 2.6-Bis-methylmercapto-1-thio-pyron-dicarbonsäure-(3.5) und Äthyljodid (A., BL.). — Farblose Nadeln. F: 82—83°.

- 2.6 Bis äthylmercapto 1 thio pyron dicarbonsäure (3.5) diäthylester $C_{18}H_{20}O_5S_3=\frac{C_2H_5\cdot O_2C\cdot C\cdot CO\cdot C\cdot CO_2\cdot C_2H_5}{C_2H_5\cdot S\cdot C_-S-C\cdot S\cdot C_2H_5}$. B. Aus dem Silbersalz der 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure-(3.5) durch Erhitzen mit Äthyljodid oder aus ihrem Diäthylester, gelöst in Sodalösung, durch Erhitzen mit Äthylbromid (A., Bl., B. 41, 4033, 4036). Farblose Nädelchen (aus verd. Alkohol). F: 47—49°. Leicht löslich in Alkohol, Benzol, Chloroform und Essigester.
- 2.6 Bis benzoylmercapto 1 thio pyron dicarbonsäure (3.5) diäthylester $C_2H_5 \cdot O_2C \cdot C \cdot C \cdot C \cdot C \cdot C \cdot C_2 \cdot C_2H_5$. B. Aus dem Kaliumsalz des 4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsäure (3.5)-diäthylesters in Wasser durch Schütteln mit Benzoylchlorid (A., Bl., B. 41, 4034). Blaßrosa Krystalle (aus Essigester + Petroläther). F: 128° bis 129°. Leicht löslich in Essigester und Chloroform, schwer in Benzol.
- 2.6-Bis-[anilinoformyl-mercapto]-1-thio-pyron-dicarbonsäure-(3.5)-diäthylester $C_{25}H_{32}O_7N_2S_3=C_{4}H_5\cdot O_2C\cdot C\cdot C\cdot C\cdot C\cdot C_2\cdot C_2H_5$. B. Aus 4-0xo-2.6-dithion-thiopyrantetrahydrid dicarbonsäure (3.5) diäthylester und Phenylisocyanat in Benzol (Aptizsch, Bauer, B. 41, 4046). Gelbliche Kryställehen (aus gleichen Teilen Aceton und Essigester unter Zusatz von Petroläther). Färbt sich bei 120° rot und schmilzt bei 140°. Leicht löslich in Alkohol, Aceton und Essigester, schwer in Benzol, unlöslich in Petroläther. Wird durch Einw. von feuchter Luft gespalten.
- $\begin{array}{c} \textbf{2.6-Bis-[carbāthoxymethyl-mercapto]-1-thio-pyron-dicarbonsāure-(3.5)-diāthylester,} \ \textbf{2.6-Bis-[carboxymethyl-mercapto]-1-thio-pyron-dicarbonsāure-(3.5)-tetra-$$C_2H_5\cdot O_2C\cdot C\cdot CO\cdot C\cdot CO_2\cdot C_2H_5$$ athylester $C_{19}H_{24}O_9S_3 = $$C_2H_5\cdot O_2C\cdot CH_2\cdot S\cdot C S-C\cdot S\cdot CH_2\cdot CO_2\cdot C_2H_5$$ B. Durch Kochen von 1 Mol des Natriumsalzes des $4-Oxo-2.6-dithion-thiopyrantetrahydrid-dicarbonsāure-(3.5)-diāthylesters mit 2 Mol Chloresigsäureāthylester in alkoh. Lösung (Apitzsch, B. 41, 4049). Dickes gelbes Öl. Zersetzt sich beim Erhitzen im Vakuum. Liefert beim Behandeln mit wäßriger oder alkoholischer Natronlauge $4'.4''\cdot Dioxy-4-oxo-[dithiopheno-2'.3':2.3; 3''.2'':5.6-thiopyran]-dicarbonsāure-(5'.5'')-diāthylester $$C_2H_5\cdot O_2C\cdot C\cdot S\cdot C-S-C\cdot S\cdot C\cdot CO_2\cdot C_2H_5$$ (Syst. No. 2986). \end{tabular}$
- $\begin{array}{l} \textbf{6.6'-Disulfhydryl-4.4'-dioxo-1.1'-dithio-[dipyryl-(2.2')-disulfid]-tetracarbon-säure-(3.5.3'.5')-tetraäthylester \\ C_{22}H_{22}O_{10}S_6 = \begin{bmatrix} C_2H_5\cdot O_2C\cdot C\cdot CO\cdot C\cdot CO_2\cdot C_2H_5 \\ HS\cdot C-S-C\cdot S & & \\ \end{bmatrix}_2. \end{array}$ Eine Verbindung, der vielleicht diese Konstitution zukommt, s. S. 510.

c) Oxy-oxo-carbonsäuren C_nH_{2n-16}O₈.

Oxy-oxo-carbonsaure C14H12O8.

Diäthylester $C_{18}H_{20}O_8$, Formel I bezw. II. Vielleicht hat die Äthylxanthophansäure, Bd. III, S. 880, diese Konstitution.

$$\begin{array}{c} C_2H_5 \cdot O_2C \cdot \\ HO \cdot \\ O \cdot CH_2 \\ CH \cdot CH(CO \cdot CH_3) \cdot CO_2 \cdot C_2H_5 \\ I. \end{array} \quad \begin{array}{c} C_2H_5 \cdot O_2C \cdot \\ O \cdot CH \cdot CH(CO \cdot CH_3) \cdot CO_2 \cdot C_2H_5 \\ O \cdot CH \cdot CH(CO \cdot CH_3) \cdot CO_2 \cdot C_2H_5 \\ \end{array}$$

d) Oxy-oxo-carbonsäuren $C_nH_{2n-18}O_8$.

3.5 - Dio x o - 2 - salicylal - furantetrahydrid - dicarbon s aure - (4.4) $C_{12}H_0O_8 = (HO_3C)_2C - CO$

 $OC \cdot O \cdot C : CH \cdot C_8H_4 \cdot OH$ (systematische Stammverbindung der in den folgenden Artikeln abgehandelten Schwefelverbindungen).

3-Oxo-5-phenylimino-2-salicylal-4-cyan-thiophentetrahydrid-carbonsäure-(4)-äthylester $C_{21}H_{16}O_4N_2S=\frac{(C_2H_5\cdot O_2C)(NC)C-CO}{C_6H_5\cdot N:C\cdot S\cdot C:CH\cdot C_6H_4\cdot OH}$. B. Aus 4-Oxo-2-phenylimino-3-cyan-thiophentetrahydrid-carbonsäure-(3)-äthylester (S. 502) und Salicylaldehyd in Alkohol in Gegenwart von Piperidin (R., Soc. 95, 121). — Gelbe Nadeln (aus Alkohol oder Eisessig). Schmilzt bei 2526 unter Zersetzung.

e) Oxy-oxo-carbonsäuren $C_nH_{2n-20}O_8$.

6.7 - Dioxy - 3 - [3.4 - dioxy - 2 - carboxy - benzyl] - phthalid C16H13O8, Formel I.

6.7-Dimethoxy-3-[8.4-dimethoxy-2-carboxy-benzyl]-phthalid, Tetramethoxy-hydrodiphthalyllactonsäure $C_{20}H_{20}O_8$, Formel II. B. Beim Erwärmen von Tetramethoxydiphthalidyliden-(3.3') $(CH_3 \cdot O)_2C_6H_2 < CO > O < CO > C_6H_2(O \cdot CH_3)_2$ (Syst. No. 2843)

mit Zink und Kalilauge (Löwy, M. 14, 137). — Krystalle (aus verd. Alkohol). F: 186—187°. Leicht löslich in Wasser, Alkohol, Äther und Benzol, schwer in Petroläther. — Geht beim Kochen mit überschüssiger Jodwasserstoffsäure und rotem Phosphor in 3.4.3′.4′-Tetraoxydibenzyl-dicarbonsäure-(2.2′) (Bd. X, S. 588) über.

f) Oxy-oxo-carbonsäuren C_nH_{2n-22}O₈.

 $4-0\,x\,o-2.6$ - bis - [2-oxy-phenyl]-pyrantetrahydrid-dicarbonsäure-(3.5), 2.6 - Bis-[2-oxy-phenyl]-tetrahydropyron-dicarbonsäure-(3.5) $\mathrm{C_{10}H_{16}O_8} = \mathrm{HO_2C \cdot HC \cdot CO \cdot CH \cdot CO_2H}$

HO · CaHa · HC - O - CH · CaHa · OH

2.6-Bis-[2-methoxy-phenyl]-tetrahydropyron-dicarbonsäure-(3.5) C₂₁H₂₀O₈ = HO₂C·HC·CO·CH·CO₂H

. B. Durch Sättigen einer Lösung von 1 Mol CH₂·O·C₆H₄·HO·O·CH·C₆H₄·O·CH₃

. B. Durch Sättigen einer Lösung von 1 Mol Acetondicarbonsäure und 2 Mol Salicylaldehydmethyläther in Essigsäure mit Chlorwasserstoff unter Kühlung (РЕТRЕИКО-КВІТЗСНЕЙКО, В. 32, 810; J. pr. [2] 60, 146). — Krystalle (aus Alkohol). Zersetzt sich bei 140—170° unter Entwicklung von Kohlendioxyd. Unlöslich in Wasser, schwer löslich in Äther, Essigsäure und kaltem Alkohol. Eisenchlorid färbt die alkoh. Lösung rot. — Beim Eindampfen der ammoniakalischen Lösung erhält man 2.6-Bis-[2-methoxy-phenyl]-tetrahydropyron (S. 122).

2.6 - Bis - [2 - äthoxy - phenyl] - tetrahydropyron - dicarbonsäure - (3.5) $C_{23}H_{24}O_8 = HO_2C \cdot HC \cdot CO \cdot CH \cdot CO_2H$. B. Aus 2 Mol Salicylaldehydāthylāther und $C_2H_5 \cdot O \cdot C_4H_4 \cdot HC - O - CH \cdot C_6H_4 \cdot O \cdot C_2H_5$.
1 Mol Acetondicarbonsāure in Essigsāure-Lösung unter Einleiten von Chlorwasserstoff (P.-K., B. 32, 811; J. pr. [2] 60, 148). — Krystalle (aus Alkohol). Schmilzt bei 140° (rasch erhitzt bei 170°) unter Entwicklung von Kohlendioxyd. Unlöslich in Wasser, schwer löslich in Ather, Benzol und kaltem Alkohol. Eisenchlorid färbt die alkoh. Lösung rot. — Beim Eindampfen der ammoniakalischen Lösung erhält man 2.6-Bis-[2-āthoxy-phenyl]-tetrahydropyron (S. 122).

2.6 - Bis - [2 - methoxy - phenyl] - tetrahydropyron - dicarbonsäure-(8.5) - dimethyl-CH₂·O₂C·HC·CO·CH·CO₃·CH₄ ester $C_{33}H_{34}O_6 = \frac{OH_2 \cdot O \cdot C_6H_4 \cdot HC - O - CH \cdot C_6H_4 \cdot O \cdot CH_3}{OH_2 \cdot O \cdot C_6H_4 \cdot HC - O - CH \cdot C_6H_4 \cdot O \cdot CH_3}$. B. Bei der Kondensation von 1 Mol Acetondicarbonsäuredimethylester mit 2 Mol Salicylaldehydmethyläther durch Chlorwasserstoff unter Kühlung (P.-K., J. pr. [2] 60, 157). — F: 171—175. Eisenchlorid färbt die alkoh. Lösung rot.

g) Oxy-oxo-carbonsäuren C_nH_{2n-30}O₈.

3.3-Bis-[x-oxy-x-carboxy-phenyl]-phthalid, Phthalidyliden-dl-salicyl-CO · Säure C₂₂H₁₄O₈ = C₆H₄ C[C₆H₃(OH)·CO₂H]₂ O. B. Aus dem Dimethylester durch Kochen mit verd. Natronlauge (LIMPRICHT, WIEGAND, A. 303, 282). — Krystalle. Schmilzt bei 276° unter Aufschäumen. Leicht löslich in Alkohol und Eisessig, unlöslich in Wasser und Äther. Die mit Alkali in der Kälte neutralisierte Lösung wird beim Kochen wieder alkalisch. Beim Erhitzen mit Saksäure auf 190° erhält man Phthalsäure, Phenol und Kohlendioxyd. — Silbersalz. Weißer, unbeständiger Niederschlag. — BaC₂₃H₁₃O₃ (bei 130°). Fast farbloses Pulver, das beim Trocknen über Schwefelsäure oder bei 130° rot wird.

Dimethylester $C_{34}H_{18}O_8 = C_6H_4 \underbrace{C[C_8H_3(OH) \cdot CO_9 \cdot CH_2]_2}O$. B. Neben anderen Produkten durch Erwärmen von Phthalylchlorid mit Salicylsäuremethylester in Schwefelkohlenstoff-Lösung in Gegenwart von Aluminiumchlorid und Zersetzen des Reaktionsprodukts mit verd. Salzsäure (L., W., A. 303, 280, 285). Bei mehrstündigem Erwärmen der methylalkoholischen Lösung der Phthalidyliden-disalicylsäure mit wenig Salzsäure (L., W.). — Krystalle (aus Alkohol). F: 171°. Unlöslich in Wasser, schwer löslich in Ather, leicht in Benzol und Alkohol. — Bei anhaltendem Kochen mit Sodalösung tritt teils Verseifung, teils Spaltung in Salicylsäure und x-[2-Carboxy-benzoyl]-salicylsäure ein.

-00-Diäthylester $C_{26}H_{22}O_8 = C_6H_4 \underbrace{C[C_6H_3(OH) \cdot CO_2 \cdot C_2H_6]_2}O$. B. Bei Behandlung von Salicylsäureäthylester mit Phthalylehlorid und Aluminiumehlorid in Schwefelkohlenstoff (L., W., A. 303, 287). — Rötliche Krystalle. F: 144°.

5. Oxy-oxo-carbonsäuren mit 9 Sauerstoffatomen.

a) Oxy-oxo-carbonsauren $C_nH_{2n-8}O_9$.

 α -0xy- δ -valerolacton- α . δ . δ -tricarbonsaure $C_aH_aO_b =$ (HO,C)(HO)C·CH,·CH,

 $OC-O-C(CO_2H)_2$. B. Beim Eindampfen einer wäßr. Lösung von $\alpha.\delta$ -Dioxybutan-α.α.δ.δ-tetracarbonsaure (Lean, Soc. 77, 109). — Nadeln (aus Wasser). F: 156°. Leicht löslich in Wasser, Äther und Alkohol, unlöslich in Benzol und Petroläther. — Gibt beim Erhitzen mit Wasser im Einschlußrohr auf 150° ein Gemisch der beiden stereoisomeren Tetrahydrofuran-dicarbonsäuren-(2.5) (8. 319).

b) Oxy-oxo-carbonsauren $C_n H_{2n-20} O_9$.

OH

3'.4'.5'.3".4" - Pentaoxy - 2 - oxo - [dibenzo - 1'.2': 3.4; 1".2": 5.6 - (1.2 - pyran)] - carbon saure - (6") 1), Monolacton HO2C HO der 4.5.6.4′.5′.6′-Hexaoxy-diphensäure, Luteosäure C₁₄H₂O₅, s. nebenstehende Formel. V. In den echten Myrobalanen, den Früchten von Terminalia Chebula (NIERRISTEIN, B. 42, 354). — B. Beim Kochen von Gallotannin (vgl. 4. Hauptabteilung unter Kohlenhydrate) mit Wasserstoffperoxyd, neben Ellagsäure (N., B. 41, 3017). -

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII. S. 1-3.

Rötlichbraune Krystalle (aus Pyridin und Eisessig). Zersetzt sich unter Gasentwicklung bei 338—342°. Löslich in Alkalilauge und in Natriumdicarbonat-Lösung mit rötlichbrauner Farbe. Löslich in konz. Schwefelsäure mit gelber Farbe unter Bildung von Ellagsäure. — Geht beim Erwärmen mit 10°/eiger Sodalösung in Ellagsäure über. Liefert bei der Acetyleirung Tetrascetylellagsäure. Versetzt man die Pyridin-Lösung von Luteosäure mit Jodwasserstoffsäure und setzt sie dem zerstreuten Tageslicht aus, so erhält man das Lacton der 4.5.6.2′.3′.4′-Hexaoxy-diphenyl-carbonsäure-(2) (S. 237).

8'.4'.5'.8".4"-Pentamethoxy-2-oxo-[dibenso-1'.2': 8.4;
1".2": 5.6 - (1.2 - pyran)] - carbonsäure - (6") - methylester '),
Lacton des 6-Oxy-4.5.4'.5'.6'-pentamethoxy-diphensäuremethylesters C₂₀H₂₀O₂, s. nebenstehende Formel. B. Beim
Kochen des Tetramethyläthers der Ellagsäure mit Kaliumhydroxyd
und Methyljodid auf dem Wasserbad, neben 4.5.6.4'.5'.6'-Hexamethoxy-diphensäure-dimethylester (Herzig, Polar, M. 29,
268, 273). — Krystalle. F: 187—189°. Sehr schwer löslich in
Alkohol. — Gibt mit heißer alkoholischer Kalilauge 6-Oxy-4.5.4'.5'.6'-pentamethoxy-diphensäure.

c) Oxy-oxo-carbonsäuren $C_n H_{2n-22} O_9$.

1. 4.5.6-Trioxy-fluoron-dicarbonsäure-(1.8) C₁₈H₂O₂, s. nebenstehende Formel. B. Bei der Einw. von Nitrosylschwefelsäure auf eine Lösung der schwer löslichen krystallinischen Form der Methylendigallussäure (Bd. X, S. 594) in konz. Schwefelsäure (MÖHLAU, KAHL, B. 31, 267). — Violettes krystallinisches Pulver. Schr schwer löslich. Löslich in konz. Schwefelsäure mit gelbroter, in den wäßr. Lösungen von Alkalicarbonaten, acetaten und -boraten mit violetter, in Alkalilaugen mit grünlichblauer Farbe. Liefert mit Metalloxyden schwer lösliche blaue bis grünlichblaue Lacke. — Gibt bei der Reduktion mit Glykose in Sodalösung 3.4.5.6-Tetraoxy-xanthen-dicarbonsäure-(1.8) (S. 368). Beim Erhitzen mit Essigsäureanhydrid und Natriumacetat entsteht das Lacton der 9-Oxy-3.4.5.6-tetraacetoxy-xanthen-dicarbonsäure-(1.8) (Syst. No. 2904). Beim Erhitzen mit Benzoylchlorid auf 140—150° bildet sich das Lacton der 9-Oxy-3.4.5.6-tetrabenzoyloxy-xanthen-dicarbonsäure-(1.8)(?) (Syst. No. 2904).

2. 6.7 - Dioxy - 3 - [3.4 - dioxy - 2 - carboxy - benzoyl] - phthalid $C_{10}H_{10}O_{0}$, Formel I.

6.7-Dimethoxy-8-[8.4-dimethoxy-2-carboxy-bensoyl]-phthalid, Tetramethoxy-diphthalyllactonsäure $C_{20}H_{12}O_9$, Formel II. B. Durch Erwärmen von Tetramethoxy-diphthalyl $(CH_2 \cdot O)_2C_0H_2 < CO > O > C_0 + C_0 + C_0 > C_0 + C_0 + C_0 > C_0 + C_0 > C_0 + C_0 + C_0 > C$

(Löwy, M. 14, 133). — Hellgelbe Krystalle (aus Alkohol). Schmilzt bei $284-292^{\circ}$ unter Zersetzung. Löslich in Alkohol, Äther, Benzol, Petroläther und Chloroform, unlöslich in Wasser. Löslich in Alkalilauge mit rotgelber Farbe. — $\text{Cu}(C_{20}H_{17}O_{9})_{2}$ (bei 110°). Grünlichblauer Niederschlag.

¹⁾ Zur Stellungsbeseichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

d) Oxy-oxo-carbonsäuren $C_nH_{2n-28}O_0$.

2.6.7 - Trioxy - 9- [3.4 - oder 5.6 - dioxy - 2 - carboxy - phenyl] - fluoron CmH 120. Formel I.

2.6.7-Trioxy-9-[8.4-oder 5.6-dimethoxy-2-carboxy-phenyl]-fluoron, 8.8".4"-Trioxy - 8'.4' - oder 5'.6'-dimethoxy-6.6"-oxido-fuchson-carbonsaure-(2') bezw. Lacton

der 5.6- oder 8.4 - Dimethoxy - 2 - [2.8.6.7.9-pentaoxy-xanthyl]-benzoesäure $C_{22H_{16}}O_{9}$, Formel II bezw. III, 2.7-Dioxy-3'.4'- oder 5'.6'-dimethoxy-fluorescein s. Syst. No. 2843.

6. Oxy-oxo-carbonsäuren mit 11 Sauerstoffatomen.

 $4-\alpha$ -Furyl-cyclohexanol-(2)-on-(6)-tricarbonsäure-(1.3.5)-essigsäure-(2)

$$4-\alpha - Furyl-cyclohexanol-(2)-on-(6)-tricarbonsäure-(1.3.9) \\ \frac{HC-CH}{HC-O\cdot C\cdot HC} \underbrace{\frac{CH(CO_2H)\cdot C(OH)(CH_2\cdot CO_2H)}{CO}}_{CO} \underbrace{\frac{CH\cdot CO_2H}{CO_2H}}_{CO}$$

Tetramethylester ("Furfuryliden bisaceton dicarbon săure dimethylester") $C_{19}H_{24}O_{11} = OC_4H_3 \cdot C_6H_4(OH)(:O)(CO_2 \cdot CH_3)_2 \cdot CH_2 \cdot CO_3 \cdot CH_3$. Zur Konstitution vgl. RABE, ELZE, A. 323, 94. — B. Beim Einleiten von Ammoniak in eine Mischung von 1 Mol Acetondicarbonsauredimethylester und 2 Mol Furfurol (PETRENKO-KRITSCHENKO, LEWIN, B. 40, 2883). — Krystalle (aus Chloroform + Alkohol). Schmilzt bei 162—175° unter Zersetzung. Schwer löslich in Alkohol.

V. Sulfinsäuren.

A. Monosulfinsäuren.

HC---CH $\mathbf{H}_{\mathbf{C}}^{\widetilde{\mathbf{I}}}\cdot\mathbf{O}\cdot\overline{\mathbf{C}}\cdot\mathbf{SO_{\bullet}H}$ (systematische Stammverbindung Furan-sulfinsaure-(2) $C_4H_4O_2S =$ der nachstehenden Schwefelverbindung).

Thiophen - sulfinsäure - (2), Thiophen - α - sulfinsäure $C_4H_4O_2S_2=$ HC.S.C.SO.H Zur Konstitution und Einheitlichkeit vgl. V. MEYER, A. 236, 223; M., Die Thiophengruppe [Braunschweig 1888], S. 111, 119, 143. — B. Bei der Reduktion von Thiophen-sulfochlorid-(2) mit Zinkstaub in alkoh. Lösung unter Kühlung (Wertz, B. 17, 800). — Nadeln. F: 67°; leicht löslich in Wasser, Alkohol und Äther; unbeständig (W.). Gibt die Indophenin-Reaktion (W.). — $AgC_4H_2O_2S_2$. Krystallinisch (W.). — $Ba(C_4H_2O_2S_2)_2 + 2H_2O$. Blättrig-krystallinisch. Leicht löslich in Wasser (W.). — $Zn(C_4H_2O_2S_2)_2 + 3H_2O$. Blättchen. Ziemlich leicht löslich in Wasser (W.).

B. Sulfinsäuren der Oxo-carbonsäuren.

1-Thio-pyron-bis-[carbonsaure-athylester]-(3.5)-disulfinsaure-(2.6) $C_{11}H_{12}O_2S_2 =$ $C_2H_4 \cdot O_2C \cdot C \cdot CO \cdot C \cdot CO_2 \cdot C_2H_4$ B. Das Bariumsalz entsteht durch Oxydation des Barium-HO.S.C.S.C.SO.H salzes des 2.6-Dimercapto-1-thio-pyron-dicarbonsaure-(3.5)-diathylesters (8.510) mit 12% igem Wasserstoffperoxyd in der Kälte (APITZSCH, BAUER, B. 41, 4045). — Ba $C_{11}H_{10}O_{9}S_{3}$. Krystallpulver (aus Wasser, Alkohol und Ather). Sehr leicht löslich in Wasser und Alkohol. — Zersetzt sich in wäßr. Lösung unter Schwefeldioxyd-Entwicklung und Abscheidung von Bariumsulfit.

VI. Sulfonsäuren.

A. Monosulfonsäuren.

1. Monosulfonsäuren C_nH_{2n}O₄S.

2.5 - Dimethyl-furantetrahydrid-sulfonsäure-(2) $C_6H_{12}O_4S = H_2C - CH_2$ $CH_3 \cdot HC \cdot O \cdot C(CH_3) \cdot SO_3H$ Natriumdisulfit-Lösung (Lipp, Scheller, B. 42, 1964). — Na $C_6H_{11}O_4S + 2^1/_3H_2O$. Zerfließliche Krystalle (aus Wasser).

2. Monosulfonsäuren C_nH_{2n-4}O₄S.

1. Sulfonsäuren C.H.O.S.

1. Furan-sulfonsäure-(2), Furan- α -sulfonsäure $C_4H_4O_4S = \frac{HC--CH}{HC\cdot O\cdot C\cdot SO\cdot H}$

5-Nitro-furan-sulfonsäure-(2) $C_4H_2O_4NS = \frac{HC-CH}{O_2N \cdot C \cdot O \cdot C \cdot SO_2H}$. B. Neben 5-Nitro-brenzschleimsäure und 2.5-Dinitro-furan beim Behandeln von 5-Sulfo-brenzschleimsäure (8. 581) mit konz. Salpetersäure (Hill, White, Am. 27, 196). — Das Kaliumsalz liefert bei weiterer Einw. von konz. Salpetersäure 2.5-Dinitro-furan. Beim Erhitzen des Kaliumsalzes mit Bromwasserstoffsäure im Einschlußrohr auf 100° erhält man Brombernsteinsäure. — $KC_4H_4O_4NS$. Prismen. Sehr schwer löslich in kaltem, leicht in heißem Wasser.

Thiophen-sulfonsäure-(2), Thiophen- α -sulfonsäure $C_4H_4O_2S_2=\frac{HC-CH}{HC\cdot S\cdot C\cdot SO_2H}$

Zur Konstitution und Einheitlichkeit vgl. V. Meyer, A. 236, 223; M., Die Thiophengruppe [Braunschweig 1888], S. 111, 119. — B. Beim Schütteln von Thiophen in Petroläther-Lösung mit konz. Schwefelsäure (M., B. 16, 1471; Biedermann, B. 19, 1615). — Zerfließliche krystallinische Masse. Liefert bei der trocknen Destillation Thiophen (M., B. 16, 1471; M., Keris, B. 16, 2173). Beim Erhitzen der Erdalkalisalze mit konz. Salzsäure auf 100° bilden sich Thiophen und Schwefelsäure (Eberhard, B. 28, 2386). — NaC₄H₂O₃S₂+H₄O. Blättchen (Weitz, B. 17, 796). — AgC₄H₂O₃S₂+3H₂O. Farblose, leicht lösliche Blättchen, die sich am Licht schwärzen (W.). Unbeständig. — Ca(C₄H₃O₃S₂)₂. In Wasser leicht lösliche Blättchen (W.). — Ba(C₄H₂O₂S₂)₂+3H₄O. Warzen. Leicht löslich in Wasser (W.). — Pb(C₄H₃O₂S₂)₂+H₂O. Krystallnisch. Leicht löslich in Wasser (W.).

Äthylester $C_8H_8O_8S_2=SC_4H_8\cdot SO_8\cdot C_2H_5$. B. Aus Thiophen-sulfonsäure-(2)-chlorid und Natriumäthylat (Werrz, B. 17, 799). — Gelbliches Öl von schwach weinartigem Geruch.

Chlorid $C_4H_3O_2ClS_2 = SC_4H_3 \cdot SO_2Cl$. Aus dem Natriumsalz der Thiophen-sulfonsäure-(2) und Phosphorpentachlorid (V. MEYER, KREIS, B. 16, 2173; WEITZ, B. 17, 798). — F: 28° (W.). Siedet und sublimiert unzersetzt (W.). — Liefert bei der Reduktion mit Zinkstaub und Alkohol Thiophen-sulfinsäure-(2) (W.).

Amid $C_4H_5O_4NS_2 = SC_4H_2 \cdot SO_2 \cdot NH_2$. B. Beim Verreiben des Chlorids mit Ammonium-carbonat (V. M., Kreis, B. 16, 2173). — Nadeln (aus Wasser). F: 142° (Langer, B. 17, 1568). — $AgC_4H_4O_2NS_2$. Schuppen (Weitz, B. 17, 799).

Anilid $C_{10}H_9O_9NS_2 = SC_4H_3 \cdot SO_3 \cdot NH \cdot C_6H_5$. B. Aus dem Chlorid und Anilin (Werrz, B. 17, 799). — Nadeln (aus verd. Alkohol). F: 96°.

2. Furan-sulfonsäure-(3), Furan- β -sulfonsäure $C_4H_4O_4S = \frac{HC - C \cdot SO_3H}{HC \cdot O \cdot CH}$

5-Chlor-2-brom-furan-sulfonsäure-(3) $C_4H_2O_4ClBrS = \frac{HC--C\cdot SO_2H}{ClC\cdot O\cdot CBr}$. B. Beim Einleiten von 1 Mol Bromdampf in die kalte wäßrige Lösung des Bariumsalzes der 5-Chlor-3-sulfo-brenzschleimsäure (S. 579) (Hill, Hendrikson, Am. 15, 156). — Zerfließlich. — KC_4HO_4ClBrS . Tafeln. Leicht löslich in heißem Wasser. — $Ca(C_4HO_4ClBrS)_2 + 2H_2O$. Nadeln. — $Ba(C_4HO_4ClBrS)_2 + H_2O$. Tafeln oder Nadeln. Leicht löslich in heißem Wasser. Die bei 18° gesättigte wäßrige Lösung enthält 4,29°/ $_0$ wasserfreies Salz. — $Pb(C_4HO_4ClBrS)_2 + H_2O$. Schwer löslich in Wasser.

Amid $C_4H_3O_3NClBrS = \frac{HC - C \cdot SO_3 \cdot NH_2}{ClC \cdot O \cdot CBr}$. B. Beim Einleiten von 1 Mol Bromdampf in die wäßr. Lösung von Salzen der 5-Chlor-3-sulfamid-brenzschleimsäure (S. 580) (Hill, Sylvester, Am. 32, 216). — Nadeln (aus Wasser), Prismen (aus Alkohol). F: 134° bis 135°. Sehr leicht löslich in Alkohol, leicht in heißem Wasser, löslich in heißem Chloroform und Benzol, schwer löslich in Äther, sehr schwer in Schwefelkohlenstoff. — Kaliumsalz. Säulen (aus absol. Alkohol). — Silbersalz. Nadeln; sehr schwer löslich in Wasser.

2.5-Dibrom-furan-sulfonsäure-(3) $C_4H_2O_4Br_2S = \frac{HC - C \cdot SO_3H}{BrC \cdot O \cdot CBr}$. B. Das Barium-salz entsteht bei der Einw. von 1 Mol Brom auf 1 Mol des Bariumsalzes der 5-Brom-3-sulfobrenzschleimsäure (S. 580) in Wasser (Hill, Palmer, Am. 10, 413). — Liefert mit Brom Fumarsäuresulfonsäure (Bd. IV, S. 26). — $KC_4HO_4Br_2S$. Prismen. — $Ba(C_4HO_4Br_2S)_2 + H_2O$. Schuppen oder Tafeln. Ziemlich leicht löslich in heißem Wasser.

Amid $C_4H_3O_3NBr_2S = \frac{HC - C \cdot SO_2 \cdot NH_2}{BrC \cdot CBr}$. B. Bei der Einw. von Brom auf die Salze der 5-Brom-3-sulfamid-brenzschleimsäure (S. 580) in wäßr. Lösung (Hill, Sylvester, Am. 32, 227). — Prismen (aus Wasser), Nadeln (aus heißem Chloroform). F: 153,5°. Kaum löslich in Schwefelkohlenstoff und kaltem Wasser, leichter in heißem Wasser, etwas löslich in Äther und heißem Chloroform, leicht löslich in Alkohol und heißem Benzol. — Kaliumsalz. Säulen (aus Alkohol). Sehr leicht löslich in Wasser. — Silbersalz. Unlöslich in Wasser.

Thiophen-sulfonsäure-(3), Thiophen- β -sulfonsäure $C_4H_4O_3S_3=\frac{HC_-C_2S_3H_1}{HC_2S_2H_2}$.

B. Beim Behandeln von 2.5-Dibrom-thiophen-sulfonsäure-(3) (Langer, B. 17, 1567; 18, 553) oder von 2.4.5-Tribrom-thiophen-sulfonsäure-(3) (Robenberg, B. 18, 1776) mit Natrium-amalgam. — Zerfließliche, krystallinische Masse. Leicht löslich in Wasser (L., B. 18, 554). — Gibt mit Isatin und konz. Schwefelsäure eine kornblumenblaue Färbung (L., B. 18, 554). — Be($C_4H_2O_3S_3$)s. Krystalle. Ziemlich leicht löslich in kaltem, sehr leicht in heißem Wasser (L., B. 18, 554).

Chlorid $C_4H_2O_2ClS_2=SC_4H_2\cdot SO_2Cl$. B. Aus Thiophen-sulfonsaure-(3) und Phosphorpentachlorid (L., B. 17, 1568). — Krystalle (aus Äther). F: 43°. Kleine Mengen destillieren unzersetzt. Unlöslich in Ligroin, leicht löslich in Äther.

Amid $C_4H_9O_9NS_3=SC_4H_9\cdot SO_9\cdot NH_9$. B. Aus dem entsprechenden Chlorid und Ammoniumcarbonat (L., B. 17, 1568). — Täfelchen (aus Wasser). F: 148°. Gibt beim Erhitzen mit konz. Schwefelsäure und etwas Isatin eine tiefblaue Lösung.

[2.4.5 - Trichlor - thiophen - sulfonsäure - (3)] - anhydrid $C_8O_8Cl_9S_4 = ClC - C \cdot SO_8 \cdot C \cdot SO_8 \cdot C - Ccl$ ClC - S \cdot ClC \cdot S \cdot Ccl

B. Beim Behandeln von 2.3.5-Trichlor-thiophen (Bd. XVII, S. 33) mit geschmolzener Pyroschwefelsäure (Rosenberg, B. 19, 651). — Krystallinisch. Fast unlöslich in Wasser, Alkohol und Äther, löslich in Benzol. — Wird von Wasser schwer, weit leichter durch Alkalien zu (nicht näher beschriebener) 2.4.5-Trichlor-thiophen-sulfonsäure-(3) verseift.

2.5-Dibrom-thiophen-sulfonsäure-(3) $C_4H_2O_3Br_3S_3=\frac{HC-C\cdot SO_8H}{Br^0\cdot S\cdot CBr}$. B. Beim Vermischen gleicher Volumina 2.5-Dibrom-thiophen (Bd. XVII, S. 33) und geschmolsener Pyroschwefelsäure (Langer, B. 17, 1566; vgl. Töhl., Schultz, B. 27, 2837). — Liefert beim Behandeln mit Natriumamalgam Thiophen-sulfonsäure-(3) (L.). — Pb($C_4HO_3Br_3S_3$) + $5^1/_3H_3O$. Krystalle (aus Wasser). Ziemlich leicht löslich in heißem Wasser (L.).

Chlorid C₄HO₂ClBr₂S₃ = SC₄HBr₂·SO₂Cl. B. Aus dem Natriumsalz der 2.5-Dibromthiophen-sulfonsäure-(3) und Phosphorpentachlorid (LANGER, B. 18, 553). — Krystallinisch. F: 32—33° (ROSENBERG, B. 18, 3030).

Amid $C_4H_2O_9NBr_2S_2 = SC_4HBr_2 \cdot SO_2 \cdot NH_2$. B. Aus dem entsprechenden Chlorid und Ammoniumcarbonat (Langer, B. 18, 553). — Nadeln (aus Wasser). F: 146,5—147°. Schwer löslich in heißem Wasser.

2.4.5-Tribrom-thiophen-sulfonsäure-(8) $C_4HO_3Br_3S_3 = \frac{BrC - C \cdot SO_3H}{BrC \cdot S \cdot CBr}$. B. Beim Kochen von [2.4.5-Tribrom-thiophen-sulfonsäure-(3)]-anhydrid mit konz. Bariumhydroxyd-Losung (Rosenberg, B. 18, 1775). — Liefert beim Behandeln mit Natriumamalgam Thiophen-sulfonsäure-(3). — Ba $(C_4O_3Br_3S_3)_3 + H_3O$. Warzen. Löslich in heißem Wasser.

Anhydrid $C_8O_8Br_6S_4 = \frac{BrC - C \cdot SO_3 \cdot C - CBr}{BrC \cdot S \cdot CBr} \cdot B$. Beim Behandeln von 2.3.5-Tribrom-thiophen (Bd. XVII, S. 34) mit geschmolzener Pyroschwefelsäure (R., B. 18, 1774). — Krystalle (aus Äther). F: 115—116°. Mit Wasserdampf flüchtig. Sehr schwer löslich in Wasser, leicht in Alkohol und Äther. — Wird von Kalilauge langsam, rascher durch konz. Bariumhydroxyd-Lösung in die Säure übergeführt.

Chlorid $C_4O_2ClBr_2S_2 = SC_4Br_2 \cdot SO_2Cl$. B. Beim Kochen von [2.4.5-Tribrom-thiophen-sulfonsäure-(3)]-anhydrid mit überschüssigem Phosphorpentachlorid in Gegenwart von Phosphoroxychlorid (R., B. 18, 3027). — Nadeln (aus Äther). F: 126°. Schwer löslich in Äther.

Amid $C_4H_2O_4NBr_2S_3=SC_4Br_2\cdot SO_3\cdot NH_2$. B. Durch Verreiben des entsprechenden Chlorids mit Ammoniumcarbonat (R., B. 18, 3028). — Nadeln (aus Wasser).

- 3. Furan-sulfonsäure-Derivate mit unbekannter Stellung der Sulfogruppe (systematische Stammverbindungen der nachstehenden Schwefelverbindungen).
- 2-Chlor-thiophen-sulfonsäure-(x) $C_4H_2O_3ClS_2 = SC_4H_2Cl\cdot SO_2H$. B. Entsteht neben 5-Chlor-dithienyl-(2.2') beim Schütteln von 2-Chlor-thiophen (Bd. XVII, S. 32) mit konz. Schwefelsäure (Töhl., Eberhard, B. 26, 2948). Liefert mit konz. Salzsäure bei 100° 2-Chlor-thiophen (E., B. 28, 2386). $Ba(C_4H_2O_3ClS_2)_2 + 2H_2O$. Nadeln (aus Alkohol). Zersetzt sich bei 110° (T., E.).
- 2-Brom-thiophen-sulfonsäure-(x) $C_4H_3O_3BrS_3 = SC_4H_2Br \cdot SO_3H$. B. Aus 2-Bromthiophen (Bd. XVII, S. 33) und konz. Schwefelsäure, neben einem Isomeren (s. u.) und anderen Produkten (Töhl, Schulfz, B. 27, 2836). $Ba(C_4H_2O_3BrS_2)_3$. Drusen.
- 2-Brom-thiophen-sulfonsäure-(x) $C_4H_2O_3BrS_3 = SC_4H_2Br \cdot SO_3H$. B. s. im vorangehenden Artikel. Entsteht auch aus 2-Brom-thiophen (Bd. XVII, S. 33) und schwach rauchender Schwefelsäure, neben einem Gemisch bromierter Dithienyle (Töhl, Schultz, B. 27, 2836). $Ba(C_4H_2O_3BrS_3)_3$. Blätter.
- 2-Nitro-thiophen-sulfonsäure-(x) $C_4H_2O_5NS_2=SC_4H_3(NO_2)\cdot SO_2H^1$). B. Beim Übergießen von 3 Tin. unreinem (vgl. hierzu Steinkopf, Höpner, A. 501 [1933], 176) 2-Nitrothiophen (Bd. XVII, S. 35) mit 8 Tin. rauchender Schwefelsäure (V. Meyer, Stadler, B. 17, 2779; Sta., B. 18, 534). Äußerst hygroskopische Krystalle. Beim Behandeln mit Zinn und Salzsäure scheidet sich Zinnsulfid ab (Sta.). Färbt sich auf Zusatz von Schwefelammonium fuchsinrot (M., Sta.). $KC_4H_2O_5NS_2$ (bei 120—130°). Nadeln. Ziemlich schwer löslich in Wasser (Sta.). $AgC_4H_2O_5NS_2$ (bei 130°) (Sta.). $Ca(C_4H_2O_5NS_2)_3$ (bei 120—130°). Krystallinische Masse (Sta.). $Ba(C_4H_2O_5NS_2)_3$ (bei 130°) (Sta.).

Chlorid $C_4H_2O_4NClS_2=SC_4H_2(NO_4)\cdot SO_4Cl$. B. Beim Verreiben des Kaliumsalzes der 2-Nitro-thiophen-sulfonsäure-(x) mit Phosphorpentachlorid (Sta., B. 18, 535). — Dickes, schweres Öl.

Amid $C_4H_1O_4N_2S_2=SC_4H_2(NO_2)\cdot SO_2\cdot NH_2$. B. Aus dem Chlorid der 2-Nitro-thiophensulfonsäure-(x) beim Verreiben mit Ammoniumcarbonat (STA., B. 18, 536). — Nädelchen (aus Wasser). F: 172—173° (unkorr.).

¹⁾ Ist der nach dem Literatur-Schlußtermia der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von STEINKOPF, HÖPNER, ... 501, 176 Anm. 3 sufolge als ein Gemisch von 2-Nitro-thiophen-sulfonsäure-(3) mit 3-Nitro-thiophen-sulfonsäure-(2) und wahrscheinlich 5-Nitro-thiophen-sulfonsäure-(2) aufzufassen.

2. Sulfonsäuren C.H.O.S.

- 1. 2-Methyl-furan-sulfonsäure-(4) $C_3H_4O_4S = \frac{HO_4S\cdot C-CH}{L}$
- 5 Brom 2 methyl furan sulfonsäure (4) amid C_zH_zO_zNBrS = H_N.80.-C---CH

BrC·O·C·CH₃. B. Beim Einleiten von 1 Mol Bromdampf in eine kalte wäßrige Lösung von 1 Mol des Bariumsalzes der 3-Sulfamid-5-methyl-brenzschleimsäure (S. 582) (HILL, SYLVESTER, Am. 32, 199). — Prismen (aus Wasser). F: 123°. Leicht löslich in Alkohol und Ather, schwer in kaltem Wasser, Benzol, Chloroform und in Schwefelkohlenstoff. — Einw. von Brom: H., S.

2. 2-Methyl-furan-sulfonsäure-(5) $C_5H_6O_4S = \frac{HU-UH}{HO_2S \cdot C \cdot O \cdot C \cdot CH_3}$ (systematische Stammverbindung der nachstehenden Schwefelverbindungen).

2-Methyl-thiophen-sulfonsäure-(5) $C_5H_6O_3S_2 = \frac{HC-CH}{HO_2S\cdot C\cdot S\cdot C\cdot CH_2}$. B. Beim Erhitzen von rohem 2-Methyl-5-acetyl-thiophen (Bd. XVII, S. 296) mit rauchender Schwefelsäure (Muhlert, B. 19, 1621). — Dicker, an der Luft sich rot färbender Sirup. — $KC_5H_5O_3S_2 + \frac{1}{4}H_2O$. Warzen. Sehr leicht löslich in Wasser. — $Zn(C_5H_5O_3S_2)_2 + \frac{3}{4}H_2O$. Spieße. Sehr leicht löslich in Wasser. — Pb $(C_5H_5O_3S_2)_3$ (bei 110°). Sehr leicht löslich in Wasser.

HC-CH Chlorid $C_5H_5O_3ClS_2 = \frac{ClO_2S \cdot C \cdot S \cdot C \cdot CH_2}{ClO_2S \cdot C \cdot S \cdot C \cdot CH_2}$. B. Aus dem Kaliumsalz der 2-Methylthiophen-sulfonsäure-(5) und Phosphorpentachlorid (M., B. 19, 1622). — Flüssig.

HC-CH Amid $C_5H_7O_2NS_2 = H_2N \cdot SO_3 \cdot C \cdot S \cdot C \cdot CH_2$. B. Beim Verreiben des entsprechenden Chlorids mit festem Ammoniumcarbonat (M., B. 19, 1623). — Warzen (aus Äther). F: 78—80°.

3. Sulfonsäuren CaHaOaS.

- 1. 2.5 Dimethyl furan sulfonsäure (3) $C_8H_8O_4S = \frac{HC C \cdot SO_3H}{CH_8 \cdot C \cdot O \cdot C \cdot CH_3}$ (systematische Stammverbindung der nachstehenden Schwefelverbindung).
- **2.5-Dimethyl-thiophen-sulfonsäure-(3)-amid** $C_0H_0O_2NS_2 = \frac{1}{CH_2 \cdot C \cdot S \cdot C \cdot CH_3}$ B. s. im folgenden Artikel. — Nädelchen. F: 135° (Keiser, B. 29, 2564).
- 2. x.x-Dimethyl-furan-sulfonsdure-(x) $C_6H_6O_4S = OC_4H(CH_2)_2 \cdot SO_2H$ (systematische Stammverbindung der nachstehenden Schwefelverbindung).
- x.x-Dimethyl-thiophen-sulfonsäure-(x)-amid vom Schmelspunkt 264° C₆H₆O₈NS₂=SC₄H(CH₂)₂·SO₂·NH₂. B. Man behandelt das aus Steinkohlenteer-Thioxen (Bd. XVII, S. 41, Zeile 24 v. u.) gewonnene Gemisch von Monobromthioxenen mit schwach rauchender Schwefelsäure unter Kühlung, reduziert die entstandenen Bromthioxensulfonsäuren mit Natriumamalgam und stellt aus dem so gewonnenen Gemisch der Thioxensulfonsauren die Chloride und daraus weiter die Amide dar; bei der fraktionierten Krystallisation erhält man erst das Sulfamid vom Schmelzpunkt 264°, dann das Sulfamid vom Schmelzpunkt 258°, 2.5-Dimethyl-thiophen-sulfamid-(3) vom Schmelzpunkt 135° und eine Verbindung (Sulfamid?) vom Schmelzpunkt 225° (Keiser, B. 29, 2562). — Nadeln. F: 264°.
- 3. x.x-Dimethyl-furan-sulfonsdure-(x) $C_0H_0O_4S = OC_0H(CH_2)_2 \cdot SO_3H$ (systematische Stammverbindung der nachstehenden Schwefelverbindung).

x.x-Dimethyl-thiophen-sulfonsäure-(x)-amid vom Schmelspunkt 258° C.H.O.NS.= $SC_4H(CH_2)_3 \cdot SO_2 \cdot NH_2$. B. s. im vorangehenden Artikel. — Nadeln. Schmilzt bei 258° unter Braunfarbung (Keiser, B. 29, 2563).

3. Monosulfonsäuren C_nH_{2n-8}O₄S.

Cumaran-sulfonsaure-(x) $C_2H_2O_4S = OC_2H_2 \cdot SO_2H$.

Chlorid $C_0H_7O_3ClS=OC_0H_7\cdot SO_3Cl$. B. Man behandelt Cumaran (Bd. XVII, S. 50) mit konz. Schwefelsäure und setzt das Natriumsalz der entstandenen Sulfonsäure mit

Phosphorpentachlorid um (Boes, Apoth. Ztg. 17, 422; C. 1902 II, 370). — Nadeln (aus Alkohol). F: 81°.

Amid C₈H₉O₃NS = OC₈H₇·SO₂·NH₂. B. Aus dem entsprechenden Sulfochlorid und Ammoniak (B., Apoth. Zig. 17, 422; C. 1902 II, 370). — Krystalle (aus Alkohol). F: 163°.

B. Disulfonsäuren.

1. Disulfonsäuren C_n H_{2n-4}O₇S₂.

Disulfonsäuren C₄H₄O₇S₂.

1. Furan-disulfonsdure-(2.4) $C_4H_4O_7S_3 = HO_3S \cdot C - CH H_0^{"} \cdot O \cdot C \cdot SO_3H$ (systematische Stammverbindung der nachstehenden Schwefelverbindungen).

Thiophen - disulfonsäure - (2.4), Thiophen - $\alpha.\beta'$ - disulfonsäure $C_4H_4O_6S_3=HO_5S\cdot C$ —CH

1). B. Man übergießt das Bleisalz der Thiophen-sulfonsäure-(2) mit HC·S·C·SO₃H

rauchender Schwefelsäure und trägt das Reaktionsgemisch, sobald Schwefeldioxyd entweicht, in Wasser ein (Jaekel, B. 19, 185). — Krystalle. Sehr leicht löslich in Wasser und Alkohol (J., B. 19, 189). — Beim Erhitzen des Kaliumsalzes mit Kaliumcyanid entsteht das Dinitril der Thiophen-dicarbonsäure-(2.5) (S. 330) (J., B. 19, 190). — Na₂C₄H₂O₆S₃ + 3 H₂O. Nadeln (aus Wasser). Leicht löslich in Wasser (J., B. 19, 187). — K₂C₄H₂O₆S₃ + H₂O. Prismen oder Nadeln (aus Wasser). Sehr leicht löslich in Wasser (J., B. 19, 186). — CuC₄H₂O₆S₃ + 4H₂O. Nadeln. Leicht löslich in Wasser (J., B. 19, 1066). — Ag₄C₄H₂O₆S₃. Nadeln. Ziemlich leicht löslich in warmem Wasser (J., B. 19, 1067). — BaC₄H₂O₆S₃ + 3 H₂O. Blättchen oder Prismen. Schwer löslich in kaltem Wasser (J., B. 19, 188).

Dichlorid $C_4H_2O_4Cl_2S_3 = SC_4H_2(SO_2Cl)_2$. B. Aus dem getrockneten Kaliumsalz der Thiophen-disulfonsäure-(2.4) beim Verreiben mit überschüssigem Phosphorpentachlorid (Jaekel, B. 19, 189). — Nadeln (aus Äther). F: 77—77,5°.

Diamid C₄H₆O₄N₂S₃ = SC₄H₂(SO₂·NH₂)₂. B. Beim Verreiben des Dichlorids mit festem Ammoniumcarbonat in der Wärme (Jaekel, B. 19, 189). — Prismen. F: 211,5° (J.), 218° (Steinkoff, Höpner, A. 501 [1933], 179, 186). Schwer löslich in kaltem Wasser und Äther (J.).

2. Furan - disulfonsdure - (3.4) $C_4H_4O_7S_2 = \frac{HO_3S \cdot C - C \cdot SO_3H}{HC \cdot O \cdot CH}$ (systematische Stammverbindung der nachstehenden Schwefelverbindungen).

Thiophen - disulfonsäure - (3.4), Thiophen - $\beta \beta'$ - disulfonsäure $C_4H_4O_6S_3 = HO_3S \cdot C - C \cdot SO_3H$

HC-S-CH

Beim Behandeln von 2.5-Dibrom-thiophen-disulfonsäure-(3.4) mit HC-S-CH

Natriumamalgam (Langer, B. 18, 555, 1114). — Krystallinisch. In Wasser leicht löslich (L., B. 18, 1115). — BaC₄H₂O₆S₃ + 2¹/₂H₂O. Krystalle (aus Wasser). Ziemlich schwer löslich in kaltem Wasser (L., B. 18, 1115).

Dichlorid $C_4H_4O_4Cl_2S_3 = SC_4H_5(SO_3Cl)_2$. B. Aus dem Natriumsalz der Thiophendisulfonsäure-(3.4) beim Behandeln mit Phosphorpentachlorid (L., B. 18, 555). — Schuppen oder Blättchen (aus Äther). Schmilzt bei 148—149° unter Schwarzfärbung. Leicht löslich in Äther. Färbt sich mit Isatin und konz. Schwefelsäure blauviolett.

 $\begin{array}{lll} \textbf{Diamid} & \textbf{C_4H_6O_4N_2S_3} = \textbf{SC_4H_2(SO_2 \cdot NH_2)_2}. & \textbf{\textit{B.}} & \textbf{\textit{Aus}} & \text{dem} & \text{entsprechenden} & \textbf{\textit{Dichlorid}} \\ \textbf{\textit{durch Verreiben mit festem Ammonium carbonat (Langer, \textit{B. 18, 556}).} & -- \textbf{Nadeln (aus Wasser)}. \\ \textbf{\textit{Schmilzt oberhalb 280}^o & unter & \textbf{Schwärzung.}} & \textbf{\textit{Sehr schwer löslich in kaltem Wasser.}} \end{array}$

2.5-Dibrom-thiophen-disulfonsäure-(3.4) $C_4H_3O_6Br_2S_3 = \frac{HO_3S\cdot C--C\cdot SO_3H}{BrC\cdot S\cdot CBr}$. B. Das Anhydrid (Syst. No. 3008) entsteht beim Vermischen von 1 Vol. 2.5-Dibrom-thiophen (Bd. XVII, S. 33) mit 5 Vol. geschmolzener Pyroschwefelsäure; aus dem Anhydrid erhält man

¹) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von STEINKOPF, HÖPNER, A. 501, 179.

durch anhaltendes Kochen mit überschüssigem Barytwasser in Gegenwart von festem Bariumhydroxyd das Bariumsalz der 2.5-Dibrom-thiophen-disulfonsäure-(3.4) (Langer, B. 17, 1569; Rosenberg, B. 18, 3030). — Krystalle. — Wird durch Natriumamalgam in Thiophen-disulfonsäure-(3.4) übergeführt (L., B. 18, 555). — (NH₄)₂C₄O₅Br₂S₃ + H₂O. Krystalle (aus Wasser) (L., B. 18, 558). — Na₂C₄O₆Br₂S₃ + 3H₂O. Nadeln (aus Wasser). Sehr leicht löslich in Wasser (L., B. 18, 557). — BaC₄O₆Br₂S₃ + H₂O. Spieße (aus Wasser). Schwer löslich in Wasser (L., B. 17, 1570). — PbC₄O₆Br₂S₃. Krystalle (aus Wasser). Schwer löslich in kaltem, leicht in heißem Wasser (L., B. 18, 557).

Dichlorid C₄O₄Cl₂Br₅S₅ = SC₄Br₅(SO₅Cl)₂. B. Bei gelindem Erwärmen des Natriumsalzes der 2.5-Dibrom-thiophen-disulfonsäure-(3.4) mit Phosphorpentachlorid (Langer, B. 18, 556). Beim Kochen von [2.5-Dibrom-thiophen-disulfonsäure-(3.4)]-anhydrid (Syst. No. 3008) mit überschüssigem Phosphorpentachlorid und Phosphoroxychlorid (Rosenberg, B. 18, 3030). — Nadeln (aus Äther). F: 219—220° (R.).

Diamid $C_4H_4O_4N_9Br_9S_2 = SC_4Br_9(SO_3\cdot NH_9)_3$. B. Beim Verreiben des Dichlorids mit Ammoniumcarbonat (Langer, B. 18, 557). — Pulver. Schmilzt unter Bräunung oberhalb 270°. Kaum löslich in kochendem Wasser.

3. Furan-disulfonsäure-(x.x) $C_4H_4O_7S_2 = OC_4H_2(SO_2H)_2$ (systematische Stammverbindung der nachstehenden Schwefelverbindungen).

Thiophen-disulfonsäure-(x.x)-diamid ¹) $C_4H_6O_4N_3S_8 = SC_4H_2(SO_2 \cdot NH_2)_2$. B. Man redusiert 2-Jod-thiophen-disulfonsäure-(x.x) mit Natriumamalgam, behandelt das entstehende Natriumsalz mit Phosphorpentachlorid und führt das so gewonnene ölige Chlorid mit Ammoniumcarbonat in das Amid über (Langer, B. 18, 561). — Blättchen. F: 142°. Schwer löslich in kaltem, leichter in heißem Wasser. — Gibt mit Isatin und konz. Schwefelsäure eine blauviolette Färbung.

2-Jod-thiophen-disulfonsäure-(x.x) $C_4H_3O_6IS_3 = SC_4HI(SO_3H)_2$. B. Durch Zusatz von rauchender Schwefelsäure zu einer Lösung von 2-Jod-thiophen (Bd. XVII, S. 34) in Ligroin (Langer, B. 18, 559). — Zerfließliche krystallinische Masse. — Liefert mit Natriumamalgam Thiophen-disulfonsäure-(x.x).

2. Disulfonsäuren $C_nH_{2n-16}O_7S_2$.

Diphenylenoxyd - disulfonsäure - (x.x) $C_{19}H_8O_7S_1 = OC_{19}H_6(SO_9H)_3$. B. Durch Schütteln von Diphenylenoxyd (Bd. XVII, S. 70) mit konz. Schwefelsäure (Hoffmeister, A. 159, 213). — Krystallinisch, zerfließlich. — $BeC_{19}H_8O_7S_3 + H_2O$. Nadeln.

C. Tetrasulfonsäuren.

Tetrasulfonsäuren C_nH_{2n-28}O₁₃S₄.

Tetrasulfonsäuren $C_{20}H_{12}O_{13}S_4$.

1. [a-Dinaphthylenoxyd]-tetrasulfonsäure - (x.x.x.x) $C_{20}H_{12}O_{19}S_4 = OC_{20}H_3$ $(SO_2H)_4$. B. Durch Erwärmen von 1 Tl. α -Dinaphthylenoxyd (Bd. XVII, S. 88) mit 10 Tln. konz. Schwefelsäure auf 100° (Geaebe, Knecht, Unzeitig, A. 209, 138). — Krystallinisch. — $Ba_2C_{20}H_3O_{18}S_4 + 2H_2O$. Nadeln. Ziemlich schwer löslich in Wasser mit blauer Fluorescenz. Als eine [a-D inaphthylenoxyd]-tetrasulfonsäure $C_{20}H_{12}O_{18}S_4$ ist nach einer Privatmitteilung von G. Goldschmiedt vielleicht die von Graebe, v. Abx, A. 209, 145 als [Phenylen- α -naphthylen-oxyd]-tetrasulfonsäure $C_{16}H_{10}O_{13}S_4$ beschriebene Verbindung anzusehen.

2. $[\beta$ - Dinaphthylenoxyd] - tetrasulfonsäure - (x.x.x.x) $C_{20}H_{12}O_{13}S_4 = OC_{20}H_{2}(SO_3H)_4$. B. Durch Erwärmen von 1 Tl. β -Dinaphthylenoxyd (Bd. XVII, S. 88) mit 5 Tln. Schwefelsäure auf 100° (Geaebe, Knecht, Unzeitig, A. 209, 141). Bei der Einw.

¹) Der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [I. I. 1910] erschienenen Arbeit von STEINKOPF, HÖPNER, A. 501, 179 zufolge ist das Diamid vom Schmelspunkt 142° wahrscheinlich als Gemisch anzusehen.

von Chlorsulfonsäure auf β -Dinaphthylenoxyd (Hodgkinson, Limpach, Soc. 59, 1097). Entsteht auch in geringer Menge beim Erhitzen von β -Naphthol mit Schwefelsäure auf 120—150° (H., L.). — $\mathrm{Ba_2C_{29}H_2O_{12}S_4} + 2\,\mathrm{H_2O}$. Schuppen. In Wasser ziemlich schwer löslich; die wäßr. Lösung fluoresciert stark blauviolett (G., K., U.). Krystallisiert in der Kälte auch mit 10 $\mathrm{H_2O}$ (H., L.).

D. Oxo-sulfonsäuren.

1. Sulfonsäuren der Monooxo-Verbindungen.

- a) Sulfonsäuren der Monooxo-Verbindungen $C_nH_{2n-6}O_2$.
- 1. Sulfonsäure des 3-Methyl-pyrons C₆H₆O₂ (Bd. XVII, S. 286).

3-Methyl-1-thio-pyron-disulfonsäure-(2.6) $C_6H_6O_7S_3 = \frac{HC \cdot CO \cdot C \cdot CH_3}{HO_3S \cdot C - S - C \cdot SO_2H}$. B. Das Natriumsalz entsteht aus dem Natriumsalz des 2.6-Dimercapto-3-methyl-1-thio-pyrons (Bd. XVII, S. 555) durch Oxydation mit Wasserstoffperoxyd (Aprizsch, Bauer, B. 41, 4043). — Na₂C₅H₄O₇S₃ + C₂H₄O. Säulenförmige Krystalle.

- 2. Sulfonsäure des 3.5-Dimethyl-pyrons C7H8O2.
 - 3.5-Dimethyl-1-thio-pyron-disulfonsäure-(2.6) $C_7H_8O_7S_3 = \frac{CH_3 \cdot C \cdot CO \cdot C \cdot CH_3}{HO_3S \cdot C S C \cdot SO_3H}$ Das Natriumsalz entsteht aus dem Natriumsalz des 2.6-Dimercapto-3.5-dimethyl-1-thio-
- B. Das Natriumsalz entsteht aus dem Natriumsalz des 2.6-Dimercapto-3.5-dimethyl-1-thiopyrons (Bd. XVII, S. 556) durch Oxydation mit Wasserstoffperoxyd (Apitzson, Bauer, B. 41, 4044). Na₂C₇H₆O₇S₃+3H₂O. Krystalle (aus Wasser + Alkohol + Äther).
- 3. Sulfonsäure des 2¹-0xo-2-isobutyl-furans $\mathrm{C_8H_{10}O_2}$ (Bd. XVII, S. 297) bezw. Schwefelanalogon.

α-Isobutyrothienon-sulfonsäure $C_8H_{10}O_4S_8 = (CH_3)_2CH \cdot CO \cdot C_4H_8S \cdot SO_3H$. B. Aus α-Isobutyrothienon (Bd. XVII, S. 297) und fester Pyroschwefelsäure in der Kälte (Krekeler, B. 19, 2627). — Ba($C_8H_9O_4S_3$)₈. Äußerst leicht löslich in Wasser. — Pb($C_8H_9O_4S_3$)₈ (bei 150—160°). Äußerst leicht löslich in Wasser mit gelblichgrüner Farbe.

Phenylhydrason $C_{14}H_{16}O_3N_2S_2=C_8H_{10}O_3S_2:N\cdot NH\cdot C_8H_5$. B. Das Phenylhydrazinsalz entsteht aus α -Isobutyrothienon-sulfonsäure und Phenylhydrazin durch kurzes Erhitzen auf dem Wasserbad (K., B. 19, 2627). — Phenylhydrazinsalz $C_{14}H_{16}O_3N_2S_2+C_9H_8N_5$. Blättchen (aus heißem Wasser). Sehr schwer löslich in kaltem Wasser, leicht in Alkohol. Löslich mit gelblichgrüner Farbe in konz. Schwefelsäure.

- b) Sulfonsäuren der Monooxo-Verbindungen C_n H_{2n-10} O₂.
- 1. Sulfonsaure des Phthalids C₈H_eO₃ (Bd. XVII, S. 310).

Phthalid-sulfonsäure-(x) ¹) $C_8H_6O_5S = C_8H_5O_2 \cdot SO_3H$. B. Beim Erwärmen von Phthalid mit rauchender Schwefelsäure (von $20^{\circ}/_{0}$ Anhydridgehalt) auf dem Wasserbad (Hönig, B. 18, 3453). — Zerfließliche Nadeln. Sehr leicht löslich in Alkohol, unsöslich in Ather und Chloroform. — Liefert beim Schmelzen mit Natriumhydroxyd Phthalsäure. — $Cu(C_8H_8O_5S)_9 + 2H_9O$. Hellblaue Prismen. — $Ba(C_8H_8O_5S)_9$ (bei 180°). Prismen. Leicht löslich in Wasser, unlöslich in Alkohol.

¹⁾ Die Verbindung ist vielleicht identisch mit der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von TCHERNIAC, Soc. 109, 1242 beschriebenen Phthalid-sulfonsäure-(3).

2. Sulfonsaure des y-Benzyl-butyrolactons C₁₁H₁₂O₂ (Bd. XVII, S. 322).

 γ -Bensyl-butyrolacton - β -sulfonsäure, δ -Phenyl- γ -valerolacton- β -sulfonsäure H₂C—CH·SO₂H $\begin{array}{l} C_{11}H_{12}O_{\delta}S = \frac{112}{O_{\bullet}^{-1}O_{\bullet}^{-1}} & \text{B. Durch Einw. von Ammonium sulfit suf } \beta\text{-Jod-}\\ \gamma\text{-benzyl-butyrolacton (Bd. XVII, S. 322) (Bougault, A. ch. [8] 14, 172).} & -NH_{\delta}C_{11}H_{11}O_{\delta}S.\\ \text{Leicht löslich in Wasser.} & -Ba(C_{11}H_{11}O_{\delta}S)_{\delta}+3H_{\delta}O. \end{array}$

c) Sulfonsäuren der Monooxo-Verbindungen $C_n H_{2n-12} O_2$.

1. Sulfonsäuren des Cumarins C. H.O. (Bd. XVII, S. 328).

Cumarin-sulfonsäure-(6) 1) C₂H₂O₃S, s. nebenstehende Formel. _{HO3}S. B. Bei 1—2-stdg. Erhitzen von 1 Tl. Cumarin mit 5 Tln. rauchender Schwefelsäure auf dem Wasserbad (Perkin, Soc. 24, 49; Z. 1871, 94, 179). — Oktaedrische Krystalle mit 2 H_2O (aus Wasser). Leicht löslich in Wasser (P.). — $Sr(C_9H_5O_5S)_9 + H_2O$ (P.). — $Ba(C_9H_5O_5S)_9 + 5H_2O$. Prismen (P.).

Cumarin-disulfonsäure-(3.6) 1) C₅H₄O₅S₅, s. nebenstehende HO₅S. Formel. B. Beim Erhitzen von 1 Tl. Cumarin mit 8 Tln. rauchender ∕CH≈_{C·SO2}H ∠¢o Schwefelsäure auf 150—160°, neben Cumarin-sulfonsäure-(6) (Perkin, Soc. 24, 52; Z. 1871, 94, 179). — BaC₉H₄O₈S₂ + H₂O. Fast unlöslich in kaltem, schwer löslich in heißem Wasser.

2. Sulfonsaure des 3-Methyl-cumarins C₁₀H₈O₂ (Bd. XVII, S. 335).

8-Methyl-cumarin-sulfonsäure-(6) $C_{10}H_8O_5S$, s. nebenstehende HO_8S . CH CCH3 Formel. B. Bei gelindem Erwärmen von 3-Methyl-cumarin mit rauchender Schwefelsäure auf dem Wasserbad (Perkin, Soc. 28, 14). — Ba(C₁₀H₇O₅S)₂ + 10 H₂O. Krystalle.

d) Sulfonsäuren der Monooxo-Verbindungen $C_nH_{2n-18}O_2$.

Sulfonsäuren der Monooxo-Verbindungen C₁₈H₈O₂.

1. Sulfonsäure des Xanthons C₁₃H₈O₂ (Bd. XVII, S. 354).

Xanthon-disulfonsäure-(x.x) $C_{13}H_8O_8S_2 = C_{13}H_6O_2(SO_3H)_2$. B. Man erwärmt Xanthon so lange mit rauchender Schwefelsäure, bis die Lösung nicht mehr durch Wasser gefällt wird (Perkin, Soc. 43, 192). — Nadeln. Leicht löslich in Wasser. — $BaC_{12}H_6O_8S_2 + H_2O$. Nadeln. Mäßig löslich in siedendem, sehr schwer in kaltem Wasser. Wird erst bei 160° wasserfrei.

2. Sulfonsäure des 3.4-Benzo-cumarins C₁₃H₈O₂ (Bd. XVII, S. 360).

[3.4-Benzo-cumarin]-disulfonsäure-(x.x) $C_{13}H_3O_3S_2=C_{13}H_4O_3(SO_3H)_2$. B. Beim Erwärmen von 3.4-Benzo-cumarin mit konz. Schwefelsäure auf 100° (RICHTER, J. pr. [2] 28, 302). — Krystallpulver. Sehr leicht löslich in Wasser, unlöslich in Alkohol. — $BaC_{13}H_4O_3S_2$ +H.O. Nadeln.

e) Sulfonsäuren der Monooxo-Verbindungen $C_n H_{2n-20} O_2$.

3-Phenyl-cumarin-sulfonsäure-(x) $C_{15}H_{10}O_5S = C_{15}H_9O_3 \cdot SO_3H$. B. Bei 4-stdg. Erwärmen von 1 Tl. 3-Phenyl-cumarin mit 2 Tln. konz. Schwefelsäure und 2 Tln. Pyroschwefelsäure auf cs. 110° (Curatolo, G. 14, 257). — Nadeln mit 2¹/₂ H_2O . Schmilzt unter beginnender Zersetzung bei 262—263°. Leicht löslich in heißem Wasser, schwer in kaltem Wasser und Alkohol, sehr schwer in Ather, fast unlöslich in Chloroform. Verliert bei 130° $1^1/_2H_2O$. — Ba($C_{15}H_9O_5S$)₃. Blättchen. Mäßig löslich in Wasser. — Pb($C_{15}H_9O_5S$)₂ + $4H_2O$. Nadeln. Sehr schwer löslich in kaltem, leicht in heißem Wasser.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von SEN, CHAKRAVARTI, Journ. of the Indian Chem. Soc. 5, 433; C. 1928 II, 2241.

8-Phenyl-cumarin-disulfonsäure-(x.x) $C_{15}H_{10}O_8S_2=C_{15}H_8O_2(SO_3H)_2$. B. Bei 1-stdg. Erwärmen von 12 g 3-Phenyl-cumarin mit 40 g Pyroschwefelsäure auf dem Wasserbad (C., G. 14, 260). — Sehr zerfließliche, krystallinische Masse mit 6 H_2O . F: 88—89°. Verliert im Vakuum über Schwefelsäure Krystallwasser und schmilzt dann völlig erst bei 165°. — $BaC_{15}H_8O_8S_2+4H_2O$. Prismen. Leicht löslich in Wasser. — $PbC_{15}H_8O_8S_2+5H_2O$. Nadeln. Leicht löslich in Wasser.

f) Sulfonsäuren der Monooxo-Verbindungen $C_nH_{2n-22}O_2$.

3.5-Diphenyl-1-thio-pyron-disulfonsäure-(2.6) $C_{17}H_{12}O_7S_3 = \frac{C_6H_5 \cdot C \cdot CO \cdot C \cdot C_6H_5}{HO_2S \cdot C - S - C \cdot SO_3H}$.

B. Das Natriumsalz entsteht aus dem Natriumsalz des 2.6-Dimercapto-3.5-diphenyl-1-thiopyrons (Bd. XVII, S. 573) durch Oxydation mit Wasserstoffperoxyd (APITZSCH, BAUER, B. 41, 4041). — Hygroskopische Nadeln. F: 261°. Sehr leicht löslich in Wasser und Alkohol, unlöslich in Benzol, Essigester, Aceton, Äther und Chloroform. — Liefert bei der Kalischmelze Phenylessigsäure. — Na₂C₁₇H₁₀O₇S₃ + 2C₂H₃O. Nadeln (aus Alkohol + Äther). Sehr leicht löslich in Wasser, unlöslich in Äther. Gibt beim Ansäuern mit Minerslsäure ein sehr schwer lösliches saures Natriumsalz. — Ag₂C₁₇H₁₀O₇S₃. Stäbchen (aus Wasser). — BaC₁₇H₁₀O₇S₃. Nadeln mit 2 Mol Krystallalkohol oder Prismen mit 12H₂O; das Krystallwasser wird erst bei 150° völlig ausgetrieben.

Dimethylester $C_{19}H_{16}O_7S_3 = \frac{C_6H_6 \cdot C \cdot CO \cdot C \cdot C_6H_6}{CH_3 \cdot O_3S \cdot C - S - C \cdot SO_3 \cdot CH_3}$. B. Aus dem Silbersalz der 3.5-Diphenyl-1-thio-pyron-disulfonsäure-(2.6) durch Kochen mit Methyljodid (A., B., B. 41, 4043). — Blättchen (aus wäßr. Aceton). Wird bei 150° dunkel. F: 190—191°. Unlöslich in Wasser, Äther, Ligroin und Petroläther, sehr schwer löslich in Chloroform, Alkohol und Eisessig, leicht in Aceton, Essigester und Benzol.

Diäthylester $C_{21}H_{20}O_7S_3 = \frac{C_6H_5 \cdot C \cdot CO \cdot C \cdot C_6H_5}{C_2H_5 \cdot O_3S \cdot C_-S - C \cdot SO_3 \cdot C_3H_5}$. Krystalle. Färbt sich bei 140° dunkel. F: 173—174° (A., B., B. 41, 4043). Unlöslich in Ligroin und Wasser, schwer löslich in Äther, Benzol und Alkohol, leicht in Chloroform, Eisessig, Essigester und Aceton.

2. Sulfonsäuren der Dioxo-Verbindungen.

a) Sulfonsäuren der Dioxo-Verbindungen C_nH_{2n-4}O₃.

 $\begin{array}{lll} \textbf{2.4 - Dioxo - furantetra hydrid - sulfons \"{a}ure - (3) & bezw.} & \textbf{4 - Oxy - 2 - oxo - furantetra hydrid - sulfons \"{a}ure - (3)} & C_4H_4O_5S & = & OC & CH \cdot SO_3H \\ \textbf{dihydrid - (2.5) - sulfons \"{a}ure - (3)} & C_4H_4O_5S & = & H_2\dot{C} \cdot O \cdot \dot{C}O

Tetronsäure - α -sulfonsäure, α -Sulfo-tetronsäure. B. Aus Tetronsäure (Bd. XVII, S. 403) und rauchender Schwefelsäure (D: 1,927) bei gelindem Erwärmen (Wolff, Fertig, A. 312, 169). — Nadeln (aus Alkohol + Äther) F: ca. 83°. Leicht löslich in Wasser und Alkohol, schwer in Äther und Benzol. Gibt in wäßr. Lösung mit Eisenchlorid eine tiefrote Färbung. — $BaC_4H_2O_6S+4H_4O$. Nadeln. Ziemlich leicht löslich in kaltem Wasser. — $PbC_4H_2O_6S+2H_3O$. Nadeln. Leicht löslich in heißem Wasser.

b) Sulfonsäuren der Dioxo-Verbindungen C_nH_{2n-6}O₃.

2¹-Sulfo-camphersäure-1.3-anhydrid, Camphersäure- $_{12}$ C-C(CH₃)—Coanhydrid- π -sulfonsäure C_{10} H₁₄O₆S, s. nebenstehende Formel. B. | C(CH₃)-CH₂·SO₃H | Ourch Erhitzen von [d-Camphersäure]-sulfonsäure-(2¹) (Bd. XI, S. 405) mit Essigsäureanhydrid (Lapworth, Kipping, Soc. 71, 11). | C-CH-Co-Nadeln (aus Essigsster). F: 220—222°. Sehr leicht löslich in Wasser, Alkohol und Aceton, fast unlöslich in Benzol und Chloroform.

Camphersäureanhydrid- π -sulfochlorid $C_{10}H_{13}O_3ClS = C_{10}H_{13}O_3 \cdot SO_3Cl.$ B. Durch Behandlung von [d-Camphersäure]-sulfonsäure- (2^1) mit Phosphorpentachlorid (L., K., Soc. 71, 11). — Prismen (aus Essigester). F: 184—185°. — Gibt beim Erhitzen unter Entwicklung von Schwefeldioxyd [π -Chlor-d-camphersäure]-anhydrid (Bd. XVII, S. 457).

Camphersäureanhydrid- π -sulfobromid $C_{19}H_{19}O_{5}BrS = C_{19}H_{13}O_{5}\cdot SO_{5}Br$. B. Durch Behandlung von [d-Camphersäure]-sulfonsäure- (2^{1}) mit Phosphorpentabromid (L., K., Soc. 71, 11). — Prismen. F: 169—171° (Zers.) Leicht löslich in Äther, Aceton und Alkohol. — Beim Erhitzen entweicht Schwefeldioxyd, und es entsteht [π -Brom-d-camphersäure]-anhydrid Bd. XVII, S. 458).

c) Sulfonsäuren der Dioxo-Verbindungen C_nH_{2n-18}O₈.

[3-Sulfo-naphthalin-dicarbonsäure-(1.8)]-1.8-anhydrid, $_{00}$ Co
3-Sulfo-naphthalsäure-1.8-anhydrid $_{19}H_{6}O_{6}S$, s. nebenstehende Formel. Vgl. dazu 3-Sulfo-naphthalsäure, Bd. XI, S. 409.

E. Oxy-oxo-sulfonsäuren.

1. Sulfonsäuren der Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen.

Sulfonsäuren der Oxy-oxo-Verbindungen C_nH_{2n-26}O₃.

1. Sulfonsaure des 6-0xy-9-phenyl-fluorons $C_{10}H_{12}O_{8}$ (8.68).

6-Oxy-9-[2-sulfo-phenyl]-fluoron bezw. Sulton des 3.6.9-Trioxy-9-[2-sulfo-phenyl]-xanthens $C_{10}H_{12}O_{6}S$, Formel I bezw. II, Sulfonfluorescein, Resorcinsulfurein s. Syst. No. 2955.

2. Sulfonsäuren der Oxy-oxo-Verbindungen $C_{20}H_{14}O_{2}$.

1. Sulfonsäuren des 6-Oxy-2-oxo-3.3-diphenyl-cumarans C₂₀H₁₄O₃ (S. 70). 6 · Oxy · 2 · oxo · 3.3 · diphenyl · cumaran · sulfonsäure · (5), HO₃S · C(C₄H₅)2 Lacton der 2.4-Dioxy-triphenylessigsäure-sulfonsäure · (5) HO. Co C₂₀H₁₄O₃S, s. nebenstehende Formel. B. Aus dem Lacton der 2.4-Dioxy-triphenylessigsäure (S. 70) und konz. Schwefelsäure durch Schütteln oder gelindes Erwärmen auf dem Wasserbad (H. v. Linbig, A. 360, 223, 244; vgl. J. pr. [2] 72, 164). Zur Isolierung der Säure zersetzt man ihr Kupfersalz mit Schwefelwasserstoff (v. L., A. 360, 243). — Stäbchen mit 2 H₂O (aus Benzol). F: 132°; zersetzt sich bei etwa 180° unter Rotfärbung (v. L., A. 360, 243). Leicht löslich in Wasser, Alkohol und Ather, schwerer in Benzol; die wäßr. Lösung gibt mit Eisenchlorid eine rotviolette Färbung (v. L., A. 360, 244). — Das Kaliumsalz gibt beim Kochen mit überschüssiger wäßrig-alkoholischer Kalilauge das Tetrakaliumsalz der 2.4-Dioxy-triphenylessigsäure-sulfonsäure-(5) (Bd. XI, S. 419) (v. L., A. 360, 255). Das Ammoniumsalz liefert beim Erwärmen mit Acetylchlorid die Ammoniumsalze der 2-Oxy-4-acetoxy-triphenylessigsäure-sulfonsäure-(5) (Bd. XI, S. 419) und des Lactons dieser Säure (S. 577) (v. L., A. 360, 255), beim Eindampfen mit Acetylchlorid auf dem Wasserbad unter Abspaltung der Sulfogruppe das Lacton der 2.4-Dioxy-triphenylessigsäure (v. L., A. 360, 257). — NH₄C₂₀H₁₃O₄S + 11/₂H₂O. Nadeln (aus Wasser). Schmilzt wasserhaltig bei 212°, wasserfrei bei 224—225° (v. L., A. 360, 245). Leicht löslich in Alkohol und heißem Wasser, ziemlich schwer in kaltem Wasser, unlöslich in Ather. — NH₄C₂₀H₁₃O₄S + C₂H₄O. Nadeln (aus Alkohol) (v. L., A. 360, 246). — NaC₂₀H₁₃O₄S + 5 H₂O. Nadeln. Schwer löslich in Wasser, leicht in Alkohol (v. L., A. 360, 250). — NaC₂₀H₁₃O₄S + 5 H₂O. V. L., A. 360, 250). — NaC₂₀H₁₃O₄S + 5 H₂O. V. L., A. 360, 248). Verliert bei 100° 3 H₄O. Leicht löslich in Alkohol, ziemlich schwer in kaltem Wasser, unlöslich in Ather. — Cu(C₂₀H₁₃O₄S)₂

A. 360, 253). — $\operatorname{AgC}_{20}H_{13}O_{6}S + H_{4}O$. Krystalle (aus heißem Wasser). Sehr schwer löslich in Wasser, leicht in Alkohol, unlöslich in Äther (v. L., A. 360, 244). — $\operatorname{Ba}(C_{30}H_{13}O_{6}S)_{3} + 2H_{4}O$. Nadeln. Sehr schwer löslich in Wasser, leichter in Alkohol, unlöslich in Äther (v. L., A. 360, 252). — $\operatorname{Al}(C_{20}H_{13}O_{6}S)_{3} + 6H_{4}O$. Krystalle. Löslich in Wasser, Alkohol und Äther (v. L., A. 360, 253). — $\operatorname{Fe}(C_{20}H_{13}O_{6}S)_{3}$. Unregelmäßige Sechsecke. Sehr schwer löslich in Wasser, leichter in Alkohol, unlöslich in Äther (v. L., A. 360, 253). — $\operatorname{Fe}(C_{20}H_{13}O_{6}S)_{3} + 6H_{2}O$. Blättchen. Ziemlich schwer löslich in Wasser, leicht in Alkohol und Äther, unlöslich in Benzol; die Lösungen färben sich an der Luft rotviolett (v. L., A. 360, 261). — $\operatorname{Fe}(C_{20}H_{13}O_{6}S)_{3} + 6H_{2}O$. Farblose Blättchen, die beim Trocknen stahlblau werden. Löslich in Wasser, Alkohol, Äther und Chloroform mit tiefvioletter Farbe (v. L., A. 360, 261). — $\operatorname{Co}(C_{20}H_{13}O_{6}S)_{3} + 6H_{2}O$. Blättchen. Schwer löslich in Wasser, leicht in Alkohol und Äther (v. L., A. 360, 254). — $\operatorname{Ni}(C_{30}H_{13}O_{6}S)_{3} + 6H_{2}O$. Krystalle. Schwer löslich in Wasser, leicht in Alkohol und Äther (v. L., A. 360, 254). — $\operatorname{Ni}(C_{30}H_{13}O_{6}S)_{3} + 6H_{2}O$. Krystalle. Schwer löslich in Wasser, leicht in Alkohol und Äther (v. L., A. 360, 254).

6-Methoxy-2-oxo-3.3-diphenyl-cumaran-sulfonsäure-(5), Ho38-C (C6H5): Lacton der 2-Oxy-4-methoxy-triphenylessigsäure-sulfonsäure-(5) $C_{11}H_{16}O_{48}$, s. nebenstehende Formel. B. Aus dem Lacton der 2-Oxy-4-methoxy-triphenylessigsäure (8. 71) beim Erwärmen mit konz. Schwefelsäure auf dem Wasserbad (H. v. Liebig, A. 360, 238). — Nadeln mit $3H_{2}O$ (aus Wasser). F: 160—161°.

- 6-Äthoxy-2-oxo-3.3-diphenyl-cumaran-sulfonsäure-(5), Lacton der 2-Oxy-4-äthoxy-triphenylessigsäure-sulfonsäure-(5) C₂₂H₁₈O₆S, s. nebenstehende Formel. B. Aus dem Lacton der 2-Oxy-4-äthoxy-triphenylessigsäure (S. 71) beim Erwärmen mit konz. Schwefelsäure auf dem Wasserbad (H. v. L., A. 360, 239). Nadeln mit 3 H₂O (aus Wasser). F: 140—141°. Ferrisalz. Farblose Blättchen (aus konzentrierter wäßriger Lösung). Leicht löslich in Äther. Wird beim Aufbewahren rot.
- 6-Acetoxy-2-oxo-3.3-diphenyl-cumaran-sulfon-säure-(5), Lacton der 2-Oxy-4-acetoxy-triphenylessig-säure-sulfonsäure-(5) C₂₂H₁₆O₇S, s. nebenstehende Formel. B. Das Natriumsalz entsteht aus dem Natriumsalz des Lactons der 2.4-Dioxy-triphenylessig-säure-sulfonsäure-(5) (S. 576) durch Kochen mit wasserfreiem Natriumacetat und Essigsäure-anhydrid (H. v. L., A. 360, 256), das Ammoniumsalz aus dem entsprechenden Ammoniumsalz durch Erwärmen mit Acetylchlorid auf dem Wasserbad (v. L., A. 360, 255). Die Salze geben mit Eisenchlorid eine rotviolette Färbung. NH₄C₂₂H₁₅O₇S. Nadeln (aus Chloroform, Wasser oder Alkohol). F: 235—236°. NaC₂₂H₁₅O₇S. Blättchen (aus Wasser). F: 124—125°.

2. Sulfonsaure des 6-Oxy-9-p-tolyl-fluorons C₂₀H₁₄O₂.

6-Oxy-9-[2-sulfo-4-methyl-phenyl]-fluoron bezw. Sulton des 3.6.9-Trioxy-9-[2-sulfo-4-methyl-phenyl]-xanthens $C_{20}H_{14}O_6S$, Formel I bezw. II, Methyl-sulfon-fluorescein s. Syst. No. 2955.

2. Sulfonsäuren der Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen.

a) Sulfonsäuren der Oxy-oxo-Verbindungen $C_nH_{2n-10}O_4$.

6.7 - Dioxy -3.4 -dihydro-cumarin-sulfensäure-(3 oder 4), 3.4 -Dihydro-äsculetin-sulfensäure-(3 oder 4) $C_9H_8O_7S$, Formel III oder IV. B. Beim Kochen von Äsculetin (8.98) mit Natriumdisulfit-Lösung (Rochleder, J. 1863, 589; Z. 1867, 530; Liebermann, Knietsch,

BEILSTEINS Handbuch. 4. Aufl. XVIII.

B. 13, 1595; vgl. L., WIEDERMANN, B. 34, 2609). — Hygroskopische Krystalle mit 1 H₂O (aus sehr wenig Wasser). Verliert von 70° an langsam, bei höherer Temperatur schnell Wasser und Schwefeldioxyd unter Bildung von Äsculetin (L., W.). Sehr leicht löslich in Wasser und Alkohol (L., W.). — Liefert bei Einw. von konz. Salzsäure sowie beim Aufkochen mit 50°/0-iger Schwefelsäure unter Entwicklung von Schwefeldioxyd Äsculetin (L., W.). Mit Essigsäure-sanhydrid und Natriumacetat entsteht Äsculetin-diacetat (S. 100) (L., W.). Bei der Einw. von Ammoniak auf das Natriumsalz in Gegenwart von Luft entsteht äscorceindisulfonsaures Natrium (s. u.) (L., W.; vgl. R.). — NaC₀H₇O₇S + ¹/₂H₂O. Nadeln (L., W.). Ascorceindisulfonsäure C₁₈H₁₈O₁₆N₂S₂ (?). B. Das Hexanatriumsalz entsteht durch mehrtägige Einw. von Ammoniakdampf auf das mit Wasser durchfeuchtete Natriumsalz

Äscorceindisulfonsäure $C_{18}H_{18}O_{16}N_2S_2$ (?). B. Das Hexanatriumsalz entsteht durch mehrtägige Einw. von Ammoniakdampf auf das mit Wasser durchfeuchtete Natriumsalz der 3.4-Dihydro-äsculetin-sulfonsäure-(3 oder 4) bei Gegenwart von Luft, Lösen in wenig Wasser, Ansäuern mit Essigsäure, Zufügen von viel Alkohol, Filtrieren und Fällen mit alkoh. Natriumäthylat-Lösung (Liebermann, Wiedermann, B. 34, 2612; vgl. Roohleder, Z. 1867, 531). — Na₆C₁₈H₁₂O₁₆N₂S₂ (?). Rotviolette Flocken; die blaue Lösung in konz. Schwefelsäure färbt sich auf Zusatz von Wasser braun, beim Übersättigen mit Alkali blau mit intensiver blutroter Fluorescenz (L., W.). — Na₆C₁₆H₁₂O₁₆N₂S₂ (?). B. Durch Lösen des Einwirkungsprodukts von Ammoniak auf freie 3.4-Dihydro-äsculetin-sulfonsäure-(3 oder 4) in wenig Wasser, Zufügen von viel Alkohol und Fällen mit Natriumäthylat (L., W.). Blaue Masse. Liefert mit Brom das Salz Na₅C₁₈H₁₁O₁₆N₂Br₂S₂ (?) (braunes Harz; die alkal. Lösung ist blau und fluoresciert schwächer als die Lösung des bromfreien Salzes; hat Farbstoffcharakter).

b) Sulfonsäuren der Oxy-oxo-Verbindungen $C_n H_{2n-18} O_4$.

[x-Sulfo-3-oxy-naphthalin-dicarbonsäure-(1.8)]-1.8-anhydrid, x-Sulfo-3-oxy-naphthalsäure-1.8-anhydrid $C_{12}H_6O_7S=HO_3S\cdot(HO)C_{10}H_4<{CO\atop CO}>O$. B. Aus [3-Oxy-naphthalsäure]-anhydrid (S. 111) durch rauchende Schwefelsäure (25% SO3) bei ca. 115% bis 120% (Anselm, Zuckmayer, B. 32, 3295). — Gelbe Nadeln (aus Wasser + Alkohol). Verhalten beim Verschmelzen mit Kaliumhydroxyd: A., Z. — Na $C_{12}H_8O_7S$. Gelbe Nadeln.

c) Sulfonsäuren der Oxy-oxo-Verbindungen $C_n H_{2n-26} O_4$.

6-Oxy-9-[4-methoxy-2-sulfo-phenyl]-fluoron bezw. Sulton des 3.6.9-Trioxy-9-[4-methoxy-2-sulfo-phenyl]-xanthens $C_{20}H_{14}O_7S$, Formel I bezw. II, Methoxy-sulfonfluorescein, Resorcinmethoxysulfurein s. Syst. No. 2956.

3. Sulfonsäuren der Oxy-oxo-Verbindungen mit 5 Sauerstoffatomen.

4.5.6-Trioxy-9-[2-sulfo-phenyl]-fluoron bezw. Sulton des 8.4.5.6.9-Pentaoxy-9-[2-sulfo-phenyl]-xanthens $C_{19}H_{12}O_{8}S$, Formel III bezw. IV, Sulfongallein, Pyrogallol-sulfurein s. Syst. No. 2957.

4. Sulfonsäuren der Oxy-oxo-Verbindungen mit 6 Sauerstoffatomen.

7.3'.4'-Trioxy-3.4-dioxo-flavan-sulfonsäure-(x) bezw. 3.7.3'.4'-Tetraoxy-flavon-sulfonsäure-(x) $C_{15}H_{10}O_9S=C_{15}H_9O_6\cdot SO_3H$, Fisetin-sulfonsäure-(x). B. Bei 3—4-stdg. Erhitzen von 1 Tl. Fisetintetraäthyläther (S. 223) mit 10 Tln. konz. Schwefelsäure auf dem Wasserbad (Herzig, M. 17, 426). Aus Fisetin (S. 221) durch Sulfurierung (H.).—Gelbe Nadeln (aus Alkohol + Eisessig). Schmilzt noch nicht bei 300°. Leicht löslich in Wasser und Alkohol, unlöslich in Äther. Die wäßr. Lösung wird durch Eisenchlorid grün gefärbt.

5. Sulfonsäuren der Oxy-oxo-Verbindungen mit 7 Sauerstoffatomen.

5.7.2'.4'-Tetraoxy-3.4-dioxo-flavan-sulfonsäure-(x) bezw. 3.5.7.2'.4'-Pentaoxy-flavon-sulfonsäure-(x) $C_{15}H_{10}O_{10}S=C_{15}H_9O_7\cdot SO_3H$, Morin-sulfonsäure-(x). B. Bei 1-stdg. Erwärmen von 10 g wasserfreiem Morin (8. 239) mit 11 cm³ konz. Schwefelsäure auf dem Wasserbad (Benedikt, Hazura, M. 5, 670). — Scheidet sich beim Eindampfen der wäßr. Lösung als gallertartige Masse ab, die aus feinen Fäden besteht und 2 H_9O enthält. Wird bei 100° wasserfrei. Ziemlich schwer löslich in kaltem Wasser, löslich in Alkohol und Eisessig, unlöslich in Äther. — Gibt in heißer wäßriger Lösung mit Brom Tribromphlorogluein. Liefert beim Nitrieren Trinitrophlorogluein. — $K_2C_{15}H_8O_{10}S+^1/_1H_9O$. Schwefelgelbe Nadeln. Leicht löslich in Wasser, schwer in Alkohol. — Ba $C_{15}H_8O_{10}S$. B. Beim Kochen von Morinsulfonsäure in wäßr. Lösung mit Bariumcarbonat (B., H.). Gelbe Sehr schwer löslich in Wasser. — Ba $_2C_{15}H_8O_{10}S$. B. Beim Versetzen der Lösung von Morinsulfonsäure mit Barytwasser bis zu schwach alkal. Reaktion (B., H.). Gelbe Flocken.

F. Sulfonsäuren der Carbonsäuren.

1. Sulfonsäuren der Monocarbonsäuren.

Sulfonsäuren der Monocarbonsäuren C_nH_{2n-6}O₃.

1. Sulfonsäuren der Furan-carbonsäure-(2) (Brenzschleimsäure) $C_5H_4O_8$ (S. 272).

Furan - carbonsäure - (2) - sulfonsäure - (3), Brenzschleimsäure - sulfonsäure - (3), $\frac{HC - C \cdot SO_3H}{GC - C \cdot SO_3H}$ 3-Sulfo-brenzschleimsäure, β -Sulfo-brenzschleimsäure $\frac{HC}{GC} = \frac{C \cdot SO_3H}{GC \cdot GC}$

B. Durch Kochen von 5-Chlor-brenzschleimsäure-sulfonsäure-(3) (HILL, Henderlsson, Am. 15, 155) oder von 5-Brom-brenzschleimsäure-sulfonsäure-(3) (HILL, PALMER, Am. 10, 418) in ammoniakalischer Lösung mit Zinkstaub. — Liefert bei längerem Erhitzen in wäßr. Lösung mit überschüssigem Brom Fumarsäuresulfonsäure (Bd. IV, S. 26) (HILL, P.). Beständig gegen Natriumamalgam in alkal. Lösung (HILL, He., Am. 15, 148). — Salze: HILL, P. — K₂C₂H₂O₆S + 2½₁H₂O. Prismen (aus Wasser), Nadeln (aus verd. Alkohol). Außerst löslich in Wasser. — CaC₂H₂O₆S + 2H₂O. Prismen (aus Wasser durch Alkohol). Ziemlich leicht löslich in kaltem Wasser. — Ba(Ö₂H₂O₆S)₂ + 3H₂O. Prismen. Leicht löslich in heißem Wasser. — BaC₅H₂O₆S + 3H₂O. Tafeln (über Schwefelsäure im Vakuum). Schwer löslich in heißem Wasser. — BaC₅H₂O₆S + H₂O. Prismen (durch Eindampfen bei 100°). Die bei 21° gesättigte wäße. Lösung enthält 1,91°/₀ wasserfreies Salz.

5-Chlor-brenzschleimsäure-sulfonsäure-(3), 5-Chlor-3-sulfo-brenzschleimsäure $C_5H_8O_6ClS = {HC - C \cdot SO_3H \over ClC \cdot O \cdot CO_3H}$. B. Beim Eintragen von 1 Tl. 5-Chlor-brenzschleimsäure

(S. 282) in 4 Tle. rauchende Schwefelsäure (D: 1,95) (Hill, Hendrixson, Am. 15, 151). —

Nadeln.—Beim Kochen der ammoniakalischen Lösung mit Zinkstaub erhält man Brenzschleimsäure-sulfonsäure-(3). Beim Behandeln der kalten wäßrigen Lösung mit 1 Mol Brom entsteht

5-Chlor-2-brom-furan-sulfonsāure-(3). Bei Anwendung von überschüssigem Brom entsteht Fumarsäuresulfonsäure (Bd. IV, S. 26). — $K_2C_5HO_6ClS$. Nadeln. — $CaC_5HO_6ClS + 2H_2O$. Prismen. Beständig an der Luft und über Schwefelsäure. — $Ba(C_5H_2O_6ClS)_2 + 4H_2O$. Prismen. Beständig an der Luft und über Schwefelsäure. Die bei 20° gesättigte wäßrige Lösung enthält $7,2^{\circ}/_{\circ}$ wasserfreies Salz. — $BaC_5HO_6ClS + 5H_2O$. Nadeln. Verliert über Schwefelsäure enthält $1,7^{\circ}/_{\circ}$ wasserfreies Salz. — $PbC_5HO_6ClS + H_2O$. Die bei 18° gesättigte wäßrige Lösung enthält $1,7^{\circ}/_{\circ}$ wasserfreies Salz. — $PbC_5HO_6ClS + H_2O$. Prismen. Beständig über Schwefelsäure und bei 100° . Schwer löslich in kaltem Wasser.

5-Chlor-brenzschleimsäure-sulfamid-(3), 5-Chlor-3-sulfamid-brenzschleimsäure $C_5H_4O_5NClS=\dfrac{HC-C\cdot SO_2\cdot NH_2}{ClC\cdot O\cdot C\cdot CO_2H}$. B. Beim 2—3-stdg. Kochen von 5-Chlor-brenzschleimsäure-sulfonsäure-(3)-diamid mit Barytwasser (Hill, Sylvester, Am. 32, 209). — Prismen (aus Wasser). F: 194—195°. Leicht löslich in Wasser und Alkohol, sehr schwer in Äther, unlöslich in Schwefelkohlenstoff, Chloroform und Benzol. Die Salze liefern bei der Einw. von 1 Mol Brom 5-Chlor-2-brom-furan-sulfonsäure-(3)-amid. — $KC_5H_2O_5NClS$. Prismen Leicht löslich in Wasser. — $AgC_5H_4O_5NClS$. Prismen oder Tafeln. Schwer löslich in kaltem Wasser. — $Ca(C_5H_2O_5NClS)_3+5$ oder $6H_5O$. Prismen. Sehr leicht löslich in Wasser. — $Ba(C_5H_2O_5NClS)_3+3H_2O$. Nadeln (aus Wasser). Schwer löslich in kaltem, leicht in heißem Wasser. Wird bei 110^9 wasserfrei. — $Pb(C_5H_3O_5NClS)_2+H_2O$. Platten (aus Wasser). Sehr schwer löslich in kaltem Wasser.

5-Chlor-brenzschleimsäure-sulfonsäure-(3)-diamid, 5-Chlor-3-sulfo-brenzschleimsäure-diamid $C_5H_5O_4N_2ClS = \frac{HC - C \cdot SO_2 \cdot NH_2}{ClC \cdot O \cdot C \cdot CO \cdot NH_2}$. B. Man erhitzt das Kaliumsalz der 5-Chlor-brenzschleimsäure-sulfonsäure-(3) mit etwas mehr als 2 Mol Phosphorpentachlorid 3 Stdn. auf 110° und trägt das so erhaltene Chlorid in konzentrierte eiskalte Ammoniaklösung ein (Hill, Sylvester, Am. 32, 206). — Blaßgelbe Prismen (aus Wasser). F: 212°. Leicht löslich in heißem, schwer in kaltem Wasser und Alkohol, unlöslich in Chloroform, Äther, Benzol und Schwefelkohlenstoff.

4.5 - Dichlor - brenzschleimsäure - sulfonsäure - (3), 4.5 - Dichlor - 3 - sulfo - brenzschleimsäure $C_5H_2O_6Cl_2S = \frac{ClC - C \cdot SO_3H}{ClC \cdot O \cdot C \cdot CO_3H}$. B. Beim Eintragen von 1 Tl. 4.5 - Dichlor-brenzschleimsäure in 4 Tle. rauchende Schwefelsäure unter Kühlung (Hill, Jackson, Am. 12, 116). — Ba $(C_5HO_6Cl_2S)_2$ (über Schwefelsäure getrocknet). Prismen (aus Wasser). Leicht löslich in heißem Wasser. — Ba $C_5O_6Cl_2S + 2H_2O$ (über Schwefelsäure getrocknet). Prismen.

5-Brom-brenzschleimsäure-sulfonsäure-(3)-diamid, 5-Brom-3-sulfo-brenzschleimsäure-diamid $C_5H_5O_4N_2BrS = \frac{HC--C\cdot SO_2\cdot NH_2}{BrC\cdot O\cdot C\cdot CO\cdot NH_2}$. B. Man erhitzt das Kaliumsalz der 5-Brom-brenzschleimsäure-sulfonsäure-(3) mit etwas mehr als 2 Mol Phosphorpentabromid auf 90°, gießt das erkaltete Reaktionsprodukt in Wasser und führt das so erhaltene Bromid durch Eintragen in konzentrierte, eiskalte wäßrige Ammoniak-Lösung in das Diamid über (Hill, Sylvester, Am. 32, 220). — Prismen (aus Wasser). F: 219—220°. Leicht löslich in heißem, schwer in kaltem Wasser und Alkohol, unlöslich in Äther, Chloroform, Benzol und Schwefelkohlenstoff.

Furan - carbonsäure - (2) - sulfonsäure - (5), Brenzschleimsäure - sulfonsäure - (5), 5 - Sulfo - brenzschleimsäure, δ - Sulfo - brenzschleimsäure $C_5H_4O_6S=$

HU—UH

HO₃S . C·O·C·CO₂H

B. Beim Eintragen von 1 Tl. Brenzschleimsäure in 3 Tle. kalte rauchende HO₃S·C·O·C·CO₂H

Schwefelsäure (D: 1,95) (Hill, Palmer, Am. 10, 373; vgl. Schwanert, A. 116, 268). Durch Erwärmen von 3.4-Dibrom-brenzschleimsäure-sulfonsäure-(5) mit Zinkstaub und Ammoniak (Hill, Palmer, Am. 10, 389). — Prismen (aus Wasser). Sehr leicht löslich in Wasser; zerfließt an feuchter Luft (Hill, P.). — Bei der Reduktion mit Natriumamalgam in alkal. Lösung entsteht Brenzschleimsäure (Hill, Hendrixson, Am. 15, 148). Liefert beim Schmelzen mit Kaliumhydroxyd Bernsteinsäure und in geringer Menge Oxalsäure (Hill, P.). Beim Eintragen von Brom in die wäßr. Lösung des Bariumsalzes bildet sich Fumarsäure (Hill, P.). Beim Eintragen von Brom int trocknem Brom im Einschlußrohr auf 100° erhält man Dibrombernsteinsäure und etwas Mucobromsäurebromid (Bd. III, S. 730) (Hill, P.). Liefert bei längerem Kochen mit Salpetersäure (D: 1,2) Fumarsäure und etwas Oxalsäure (Hill, P.). Rauchende Salpetersäure erzeugt in der Kälte langsam, rasch bei 100° 5-Nitro-brenzschleimsäure, 5-Nitrofuran-sulfonsäure-(2) und als Endprodukt der Nitrierung 2.5-Dinitro-furan (Bd. XVII, S. 29) (Hill, P.; Hill, White, Am. 27, 194). — Salze: Hill, P. — NaC₄H₄O₆S + H₂O. Prismen. — Na₅C₅H₂O₆S + 5(?)H₃O. Nadeln (aus Wasser oder verd. Alkohol). Äußerst löslich in Wasser. — KC₄H₄O₆S. Prismen. Sehr leicht löslich in Wasser. — K₅C₆H₂O₆S + 4(?)H₅O. Prismen. Verwittert sehr rasch an der Luft. Sehr leicht löslich auch in kaltem Wasser. — Ag₅C₆H₄O₆S. Prismen. Löslich in Wasser. — Ba(C₅H₃O₆S)₂ + 6H₂O bezw. 4H₄O. Krystallisiert beim Abkühlen der heißen konzentrierten Lösungen mit 6H₂O in Prismen, die langsam an der Luft verwittern, aus verdünnteren Lösungen bei Zimmertemperatur mit 4 H₂O in Tafeln. — BaC₅H₂O₆S + 4H₄O (lufttrocken). Prismen. Verliert einen Teil des Wassers über Schwefelsäure. Die bei 21° gesättigte wäßrige Lösung enthält 3,4°/o wasserfreies Salz. — PbC₅H₂O₆S + 2H₃O

Brenzschleimsäure-sulfonsäure-(5)-diamid, 5-Sulfo-brenzschleimsäure-diamid HC—CH $C_8H_8O_4N_2S = \frac{\| \ \| \ \|}{H_2N\cdot SO_2\cdot C\cdot O\cdot C\cdot CO\cdot NH_2}. \quad B. \quad \text{Durch Einw. von Phosphorpentachlorid auf das Natriumsalz der Brenzschleimsäure-sulfonsäure-(5) und Behandeln des Reaktionsprodukts mit konz. Ammoniak (Hill, Palmer, <math>Am.$ 10, 378). — Prismen (aus Wasser). F: 213°. Schwer löslich in kaltem Wasser.

3-Chlor-brenzschleimsäure-sulfonsäure-(5), 3-Chlor-5-sulfo-brenzschleimsäure HC—CCl HC_3 ClS = HC—CCl HC_3 ClO·C·C0. HC1. HC2. HC3. HC4. HC4. HC5. HC4. HC5. HC5. HC6. HC6. HC6. HC7. HC8. HC8. HC9.
3.4 - Dichlor - brenzschleimsäure - sulfonsäure - (5), 3.4 - Dichlor - 5 - sulfo - brenz-cic — CCI — CCI schleimsäure $C_8H_2O_6Cl_2S = \frac{CC}{HO_2S} \cdot \frac{C}{C} \cdot O \cdot \frac{C}{C} \cdot CO_2H$. B. Aus 3.4 - Dichlor - brenzschleimsäure und rauchender Selvesfelsäure (D: 1,95) (Hill, Hendrikson, Am. 15, 149; vgl. Hill, Jackson, Am. 12, 126). — Zerfließliche Nadeln. — Bromwasser oxydiert zu Dichlor-maleinsäure (Hill, He.). Mit rauchender Salpetersäure entsteht 3.4-Dichlor-5-nitro-brenzschleimsäure (Hill, J.). — Salze: Hill, He. — $K_2C_5O_6Cl_2S + H_2O$. Nadeln. Leicht löslich auch in kaltem Wasser. —

 $BaC_sO_qCl_2S+5H_2O$. Nadeln. Die bei 18^o gesättigte wäßrige Lösung enthält $10^o/_0$ wasserfreies Salz; sehr leicht löslich in heißem Wasser. — $PbC_sO_qCl_2S+3H_2O$. Nadeln. Leicht balich in heißem Wasser.

2. Sulfonsäure der 5-Methyl-furan-carbonsäure-(2) C.H.O. (S. 294).

5-Methyl-furan-carbonsäure-(2)-sulfonsäure-(3), 5-Methyl-brenzschleimsäure-sulfonsäure-(3), 3-Sulfo-5-methyl-brenzschleimsäure, β -Sulfo- δ -methyl-brenzschleimsäure, β -Sulfo- δ -methyl-brenzschleimsäure $C_6H_6O_6S=\frac{HC-C\cdot SO_3H}{CH_3\cdot C\cdot O\cdot C\cdot CO_2H}$. B. Man trägt 1 Tl. 5-Methyl-brenzschleimsäure unter guter Kühlung in 3 Tle. rauchende Schwefelsäure ein und läßt 24 Stdn. stehen (Hill, Jennings, Am. 15, 174; Hill, Sylvester, Am. 32, 188). — $K_4C_6H_4O_6S+2H_2O$. Prismen (aus Wasser). Sehr leicht löslich auch in kaltem Wasser (H., S.). — $BaC_6H_4O_6S+5H_4O$. Nadeln (H., J.).

5-Methyl-brenzschleimsäure-sulfamid-(3), 3-Sulfamid-5-methyl-brenzschleimsäure $C_0H_7O_5NS = \frac{HC - C \cdot SO_3 \cdot NH_8}{CH_3 \cdot C \cdot O \cdot C \cdot CO_2H}$. B. Durch Kochen von 5-Methyl-brenzschleimsäure-sulfonsäure-(3)-diamid mit Barytwasser (Hill, Sylvester, Am. 32, 193). — Prismen oder Nadeln (aus Wasser). F: 217—218°. Unlöslich in Benzol, Schwefelkohlenstoff und Chloroform, schwer löslich in Äther, leicht in Wasser und Alkohol. — Bei der Einw. von 1 Mol Brom auf die wäßr. Lösung der Salze erhält man 5-Brom-2-methyl-furan-sulfonsäure-(4)-amid. — KC_6H_6O_5NS + H_2O. Prismen. Leicht löslich in Wasser. — AgC_6H_6O_5NS. Prismen. — Calciumsalz. Sehr leicht löslich in Wasser. — Ba(C_6H_6O_5NS)_3 + 3H_2O. Nadeln (aus Wasser). Leicht löslich in heißem, schwer in kaltem Wasser. — Pb(C_6H_6O_5NS)_3 + aq. Prismen (aus Wasser). Verwittert sehr rasch. Leicht löslich in heißem, schwer in kaltem Wasser. Geht leicht in ein in Wasser unlösliches basisches Salz über.

5-Methyl-brenzschleimsäure-sulfonsäure-(3)-diamid, 3-Sulfo-5-methyl-brenzschleimsäure-diamid $C_6H_8O_4N_8S=\frac{HC-C\cdot SO_3\cdot NH_2}{CH_3\cdot C\cdot O\cdot C\cdot CO_1\cdot NH_2}$. B. Man behandelt das wasserfreie Kaliumsalz der 5-Methyl-brenzschleimsäure-sulfonsäure-(3) mit Phosphorpentachlorid und trägt das entstandene Chlorid langsam in konz. Ammoniak bei ca. 10° ein (HILL, SYLVESTER, Am. 32, 190). — Prismen (aus Wasser). F: 196—197°. Sehr leicht löslich in heißem Wasser, leicht in Alkohol, schwer in kaltem Wasser, sehr schwer in Chloroform. unlöslich in Äther, Benzol und Schwefelkohlenstoff.

2. Sulfonsäuren der Dicarbonsäuren.

Xanthen-dicarbonsäure-(2.7)-sulfonsäure-(x) $C_{15}H_{10}O_8S = (HO_2C)_2C_{13}H_7O \cdot SO_3H$. B. Aus 6.6'-Dioxy-diphenylmethan-dicarbonsäure-(3.3') (Bd. X, S. 567) durch mehrstündiges Erhitzen mit konz. Schwefelsäure auf dem Wasserbad (Epstein, J. pr. [2] 81, 92). — Grünes Pulver. Löslich in Wasser, Alkohol und Eisessig. Zersetzt sich beim Erhitzen, ohne zu schmelzen. — $Cu_3(C_{15}H_7O_8S)_2$ (bei 140°). Grün.

G. Sulfonsäuren der Oxo-carbonsäuren.

1-Thio-pyron-bis-[carbonsäure-äthylester]-(3.5)-disulfonsäure-(2.6) $C_{11}H_{12}O_{11}S_3 = C_2H_5 \cdot O_2C \cdot C \cdot CO \cdot C \cdot CO_2 \cdot C_2H_5$. Bei der Oxydation von 2.6-Dimercapto-1-thio-pyron-

 $HO_3S \cdot C - S - C \cdot SO_3H$ dicarbonsāure-(3.5)-diāthylester (S. 510) in Natriumcarbonat-Lösung mit der berechneten Menge Wasserstoffperoxyd (APITZSCH, BAUER, B. 41, 4044). — $Na_2C_{11}H_{10}O_{11}S_3 + H_2O$. Nadeln. — $BaC_{11}H_{10}O_{11}S_3 + 2H_2O$. Nadeln.

VII. Amine.

A. Monoamine.

1. Monoamine $C_nH_{2n+1}ON$.

 γ -Amino-propylenoxyd, $\beta.\gamma$ -Oxido-propylamin (Epihydrinamin, "Glycidamin") $C_3H_7ON=H_2C$ —O-CH·CH₃·NH₂. B. Das Hydrochlorid entsteht neben salzsaurem symm. Diamino-isopropylalkohol beim Erhitzen von symm. Dichlor-isopropylalkohol mit $1-1^1/2^0/2$ igem absolut-alkoholischem Ammoniak im Rohr auf 105^0 (CLAUS, A. 168, 29, 36, 40). — $C_2H_7ON+HCl$. Außerst hygroskopische Krystalle. — $2C_3H_7ON+HCl$. HCl.+PtCl₄.

Trimethyl-[β . γ -oxido-propyl]-ammoniumhydroxyd, Anhydrohomoisomuscarin $C_6H_{16}O_8N=H_2C_{\bigcirc}$ CH·CH $_2$ ·N(CH $_3$) $_3$ ·OH. B. Durch Erhitzen einer wäßr. Lösung von Trimethyl-[γ -chlor- β -oxy-propyl]-ammoniumchlorid (Bd. IV, S. 290) mit überschüssigem Silberoxyd auf dem Wasserbad (Partheil, A. 268, 195). Das Chlorid entsteht in geringer Menge aus Epiohlorhydrin (Bd. XVII, S. 6) und Trimethylamin in Alkohol bei 100° (E. SCHMIDT, HARTMANN, A. 337, 118, 120). — Beim Erhitzen des Chlorids mit Trimethylamin entsteht β -Oxy-trimethylen-bis-[trimethylammoniumchlorid] (Bd. IV, S. 290) (Sch., H.). — C_6H_{14} ON·Cl+AuCl $_2$. Hellgelbe Tafeln. F: 128° (Sch., H.). — $2C_6H_{14}$ ON·Cl+PtCl $_4$. Gelbrote Tafeln. F: 207° (P.), 211° (Zers.) (Sch., H.).

Diäthyl-[β . γ -oxido-propyl]-amin $C_7H_{18}ON = H_2C_{\bigcirc\bigcirc}CH\cdot CH_2\cdot N(C_2H_5)_2$. B. Entsteht neben symm. Bis-diäthylamino-isopropylalkohol aus Epichlorhydrin und Diäthylamin (Reboul, C. r. 97, 1556; J. 1883, 642). — Dickflüssig. Kp: ca. 160°. Sehr leicht löslich in Wasser.

Triäthyl - $[\beta,\gamma$ - oxido - propyl] - ammoniumhydroxyd $C_0H_{21}O_2N=H_2O_O$ CH· CH_2 · $N(C_2H_5)_2$ ·OH. B. Das Chlorid entsteht beim Erwärmen von Epichlorhydrin mit Triäthylamin im Rohr auf dem Wasserbad; man zersetzt es durch frisch gefälltes Silberoxyd (Reboul, C. r. 93, 423; J. 1881, 510). — Dicker, stark basischer Sirup. — $C_0H_{20}ON$ ·Cl. Dicker Sirup. — $2C_0H_{20}ON$ ·Cl. + PtCl₄. Orangegelbe Nadeln. Leicht löslich in siedendem Wasser und in heißem 850/oigem Alkohol, fast unlöslich in absol. Alkohol.

2. Monoamine $C_n H_{2n-3} ON$.

1. 2-Amino-furan, α -Furylamin $C_4H_5\mathrm{ON} = \frac{HC-CH}{HC\cdot O\cdot C\cdot NH_5}$.

2 - Acetamino - furan, Acetyl - α - furylamin, N - α - Furyl - acetamid $C_aH_7O_2N=$ HC----CH HC·O·C·NH·CO·CH, ist desmotrop mit 2-Acetimino-furan-dihydrid-(2.3)

HC---CH₂

HC·O·C:N·CO·CH₃, Bd. XVII, S. 248.

2-[Carbomethoxy-amino]-furan, α -Furyl-carbamidsäure-methylester $C_0H_7O_3N=$ ist desmotrop mit 2-[Carbomethoxy-imino]-furan-dihydrid-(2.3) HC-O-C-NH-CO-CH.

 $H\overset{"}{\mathrm{C}}\cdot O\cdot\overset{'}{\mathrm{C}}:\overset{"}{\mathrm{N}}\cdot CO_{\underline{a}}\cdot CH_{\underline{a}}, \ \ Bd. \ \ XVII, \ \ S. \ \ 248.$

 $\textbf{2-[Carb\"{a}thoxy-amino]-furan}, \alpha\textbf{-Furyl-carbamids\"{a}ure-\"{a}thylester}, \alpha\textbf{-Furyl-urethan}$ $C_{7}H_{9}O_{3}N = \frac{HC - CH}{HC \cdot O \cdot C \cdot NH \cdot CO_{3} \cdot C_{3}H_{5}}$ ist desmotrop mit 2-[Carbāthoxy-imino]-furan-dihy-drid-(2.3) $\frac{HC - CH_{2}}{HC \cdot O \cdot C \cdot N \cdot CO_{3} \cdot C_{2}H_{5}}$ Bd. XVII, S. 248.

2-Amino-thiophen, Thiophenin $C_4H_8NS = \frac{HC - CH}{HC \cdot S \cdot C \cdot NH_8}$ bezw. seine Derivate sind desmotrop mit 2-Imino-thiophen-dihydrid-(2.3)

HC—CH₂

HC—S·C:NH,

Bd. XVII, S. 248, bezw. dessen Derivaten.

2. Amine C₅H₇ON.

1. 2-Amino-[1.2-pyran] $C_5H_7ON = \frac{HC \cdot CH \cdot CH}{HC - O - CH \cdot NH_2}$. Verbindungen, denen vielleicht die Formel $\frac{HC}{HC}O - \frac{CH \cdot NH \cdot R}{HC - O - CH \cdot NH \cdot R}$ zukommt, sind bei den Aminen $R \cdot NH_2$ als Derivate des Clutsecondielle bei den Aminen $R \cdot NH_2$ als Derivate des Glutacondialdehyds mit der Formel R·N:CH·CH·CH·CH₂·CHO bezw. R·N:CH·CH₂·CH: CH·CHO eingeordnet; vgl. Bd. XII, S. 610, 743, 753; XIII, 424; XIV, 382.

2. 2^1 -Amino-2-mothyl-furan, Furfurylamin $C_5H_7ON = \frac{HC-CH}{HC\cdot O\cdot C\cdot CH_2\cdot NH_2}$ B. Beim Behandeln von Brenzschleimsäurenitril (S. 278) mit Zink und Schwefelsaure (CIAMICIAN, DENNSTEDT, B. 14, 1059, 1475). Beim Behandeln von Furfur-syn-aldoxim (Bd. XVII, S. 281) (Goldsonnior, B. 20, 730) oder von Furfurol-phenylhydrazon (Bd. XVII, 8. 282) (TAFEL, B. 20, 399) mit Natriumamalgam in alkoholisch-essigsaurer Lösung. — Farbloses, continartig riechendes Öl. Kp₇₅₁: 145—146° (C., D., B. 14, 1476); Kp₇₅₂: 145° (korr.) (T.); Kp₇₅₂: 143° (G.); Kp₈₄: 80° (T.). Leichter als Wasser und damit mischbar (C., D., B. 14, 1476). Zieht an der Luft Kohlendioxyd an unter Bildung einer bei 75° schmelzenden krystallinischen Verbindung, die beim Erhitzen über den Schmelzpunkt wieder Kohlendioxyd abgibt (T.). — $C_5H_7ON + HCl$. Prismen oder Nadeln. Leicht löslich in Wasser und Alkohol (T.). — Pikrat. Goldgelbe Prismen. Zersetzt sich oberhalb 150°, ohne zu schmelzen (T.). — Oxalat $C_5H_7ON + C_2H_2O_4 + \frac{1}{2}H_2O$. Blätter (aus Alkohol). Verliert das Krystallwasser bei 110°, zersetzt sich gegen 145°; leicht löslich in Wasser, schwer in heißem Alkohol (T.). — $2C_5H_7ON + 2HCl + PtCl_4$. Orangegelbe bis goldgelbe Blättchen. Schwer löslich in kaltem, ziemlich leicht in heißem Wasser (C., D.).

Methylfurfurylamin C₄H₅ON = OC₄H₅·CH₂·NH·CH₃. B. Durch Reduktion von Furfuryliden-methylamin (Bd. XVII, S. 278) mit Natrium und Alkohol (SCHWABBAUER, B. 35, 411). — Öl. Riccht ähnlich wie Heringslake. Kp₁₁: 65—67°. Ist eine starke Base. — C₈H₉ON + HCl. Blätter. F: 139°. Leicht löslich in Wasser und Alkohol, schwer in Ather und Benzol. — $C_0H_0ON + HBr$. Nädelchen oder Blättchen. F: 131°. Löslich in Alkohol, unlöslich in Äther. — Pikrat $C_0H_0ON + C_0H_0O_7N_3$. Gelbe Nadeln (aus absol. Alkohol). F: 144°. Löslich in Wasser und Alkohol.

Trimethylfurfurylammoniumhydroxyd $C_8H_{15}O_2N = OC_4H_3 \cdot CH_2 \cdot N(CH_2)_3 \cdot OH$. B. Das Jodid entsteht beim Kochen von Furfurylamin mit Methyljodid in Methylalkohol; man zersetzt es durch feuchtes Silberoxyd (Zenoni, G. 20, 514). — Krystallinisch. Bei der Destillation entweicht Trimethylamin. — $C_8H_{14}ON \cdot I$. Krystallpulver. F: 118—120°. Löslich in Wasser und Alkohol. — Pikrat. Gelber Niederschlag. F: ca. 180° (Zers.). — $C_8H_{14}ON \cdot Cl + AuCl_2$. Gelber, krystallinischer Niederschlag. — Chloroplatinat. Gelbe Nädelchen.

Äthylfurfurylamin $C_7H_{11}ON = OC_4H_3 \cdot CH_4 \cdot NH \cdot C_3H_5$. B. Durch Reduktion von Furfuryliden-Athylamin (Bd. XVII, S. 279) mit Natrium und Alkohol (SCHWABBAUER, B. 35, 412). — Öl. Kp₃₁: 49—50°. — $C_7H_{11}ON + HCl$. Täfelchen. F: 120°. Leicht löslich in Wasser und Alkohol, sehr schwer in Äther und Benzol. — $C_7H_{11}ON + HBr$. Nädelchen. F: 113°. — Pikrat $C_7H_{11}ON + C_6H_3O_7N_3$. Gelbe Nadeln (aus absol. Alkohol). F: 111°.

Furfurylcarbamidsäure - äthylester, Furfurylurethan $C_8H_{11}O_3N = OC_4H_3 \cdot CH_3 \cdot NH \cdot CO_2 \cdot C_2H_5$. B. Beim Schütteln von 1 Mol Furfurylamin mit 1 Mol Chlorameisensäure- äthylester in Natronlauge (Marckwald, B. 23, 3208). — Öl. Erstarrt nicht im Kältegemisch. Kp: 240°.

N.N'-Difurfuryl-harnstoff $C_{11}H_{12}O_3N_2 = (OC_4H_3 \cdot CH_2 \cdot NH)_3CO$. B. Beim Schütteln von 2 Mol Furfurylamin mit etwas mehr als 1 Mol Phosgen, gelöst in Benzol, und überschüssiger Kalilauge (MARCKWALD, B. 23, 3207). — Blättchen (aus Benzol). F: 128°. Schwer löslich in den meisten Lösungsmitteln.

[d-Weinsäure]-bis-furfurylamid, N.N'-Difurfuryl-d-tartramid $C_{14}H_{16}O_6N_2=[OC_4H_3\cdot CH_2\cdot NH\cdot CO\cdot CH(OH)-]_2$. B. Aus Furfurylamin durch Erhitzen mit d-Weinsäure oder Diäthyl-d-tartrat auf ca. 140° (Frankland, Ormerod, Soc. 83, 1347). — Tafeln (aus Wasser). F: 179°. Leicht löslich in heißem Wasser, schwer in Alkohol und kaltem Wasser. [α] $_{\rm D}^{\rm m}$: +97,3° (Pyridin; p = 0,9).

3. 2^1 - Amino - 2 - athyl - furan $C_6H_9ON = \frac{HC-CH}{HC\cdot O \cdot C \cdot CH(CH_3) \cdot NH_3}$ (systematische Stammverbindung der nachstehenden Schwefelverbindung).

ketoxim (Bd. XVII, S. 287) mit Natriumamalgam in alkoholisch-essigsaurer Lösung unter guter Kühlung (Goldschmidt, Schulthess, B. 20, 1700). — Flüssig. Kp: 185—187°. Löslich in Wasser, unlöslich in Alkalien. Zersetzt sich beim Abdampfen mit Salzsäure. Zieht an der Luft Kohlendioxyd an. Bei der Einw. von Benzoylchlorid auf die äther. Lösung entsteht ein Benzoylderivat [Nadeln; F: 95°]. — Acetat C₆H₉NS+C₂H₄O₂. Nadeln. Sehr leicht löslich in Wasser.

3. Monoamine $C_nH_{2n-7}ON$.

Amine CaHON.

1. 2 - Amino - cumaran, [Cumaranyl - (2)] - amin $C_8H_9ON = C_6H_4 < CH_2 > CH: NH_3.$

[Cumaranyl-(2)]-carbamidsäure-äthylester, [Cumaranyl-(2)]-urethan $C_{11}H_{13}O_3N=OC_8H_7\cdot NH\cdot CO_2\cdot C_2H_5$. B. Durch Kochen von Hydrocumarilsäure-azid (S. 305) mit Alkohol (Stormer, König, B. 39, 494). — F: 105°. Leicht löslich in Alkohol, Äther und Benzol, schwer in Wasser.

[Cumaranyl-(2)]-carbamidsäure-phenylester $C_{15}H_{13}O_3N=OC_8H_7\cdot NH\cdot CO_2\cdot C_8H_5$. B. Aus Hydrocumarilsäure-azid und Phenol in Benzol (Sr., K., B. 39, 495). — Blättchen. F: 151°.

N.N'-Di-[cumaranyl-(2)]-harnstoff $C_{17}H_{16}O_3N_3=(OC_8H_7\cdot NH)_2CO$. B. Durch Kochen von Hydrocumarilsäure-azid mit Wasser (St., K., B. 39, 495). — Mikrokrystallinisches Pulver. F: 205°.

2. 3 - Amino - cumaran, [Cumaranyl - (3)] - amin C₈H₉ON = C₆H₄CH(NH₂) CH₂. B. Durch Reduktion von Cumaranon-oxim (8. 637) mit Natriumamalgam in alkoholisch-essigsaurer Lösung (Stoermer, König, B. 39, 496). — Ziemlich dickflüssiges Öl. Riecht süßlich und zugleich aminartig. Flüchtig mit Wasserdampf. Kp₁₈:

122°; Kp₃₉: 133°. D¹¹: 1,1303. Leicht löslich in Wasser und organischen Lösungsmitteln. n¹º: 1,5645. Ist eine starke Base. — Das Hydrochlorid zersetzt sich bei der trocknen Destillation sowie beim Erhitzen mit konz. Salzsäure im Druckrohr auf 120—130° in Cumaron (Bd. XVII, S. 54) und Salmiak. Bei gelindem Erwärmen einer Lösung des Hydrochlorids mit der äquimolekularen Menge Kaliumnitrit entsteht Cumaron. Beim Behandeln einer wäßr. Lösung des Hydrochlorids mit überschüssigem Kaliumnitrit und etwas Essigsäure erhält man [Cumaranyl-(3)]-nitrit (Bd. XVII, S. 114). — C₈H₉ON+HCl. Nadeln. F: 226° (Zers.). — C₈H₉ON+HCl+AuCl₂. Gelbe Blättchen (aus Wasser). F: 161° (Zers.). — 2C₈H₉ON+2HCl+PtCl₄. Gelbrote Krystalle (aus Wasser). Färbt sich bei 220° braun.

[Cumaranyl-(3)]-carbamidsäure-äthylester, [Cumaranyl-(3)]-urethan $C_{11}H_{13}O_3N = OC_8H_7 \cdot NH \cdot CO_9 \cdot C_2H_5$. B. Aus 3-Amino-cumaran und Chlorameisensäureäthylester in Äther (St., K., B. 39, 497). — Nadeln (aus verd. Alkohol). F: 101,5°. Leicht löslich in Alkohol und Äther, unlöslich in kaltem Wasser.

N-Phenyl-N'-[cumaranyl-(3)]-harnstoff $C_{15}H_{14}O_{2}N_{2}=OC_{8}H_{7}\cdot NH\cdot CO\cdot NH\cdot C_{6}H_{5}$. B. Aus 3-Amino-cumaran und Phenylisocyanat in Äther (St., K., B. 39, 498). — Nadeln (aus Alkohol). F: 204°.

4. Monoamine $C_n H_{2n-9} ON$.

- 1. Amine C₈H₂ON.
 - 1. 2-Amino-cumaron $C_8H_7ON = C_8H_4 < CH > C \cdot NH_2$.

2-[Carbāthoxy-amino]-cumaron $C_{11}H_{11}O_3N = C_6H_4 < C_0 > C \cdot NH \cdot CO_2 \cdot C_2H_5$ ist desmotrop mit 2-[Carbāthoxy-imino]-cumaran $C_6H_4 < C_0 > C \cdot N \cdot CO_2 \cdot C_2H_5$, Bd. XVII, S. 309.

- 2. 3-Amino-cumaron $C_8H_7ON = C_6H_4 \xrightarrow{C(NH_2)} CH$ (systematische Stammverbindung der nachstehenden Schwefelverbindungen).
- 3 Amino thionaphthen bezw. 3 Imino thionaphthendihydrid $C_8H_7NS = C_8H_4$ C(:NH₂) CH bezw. C_6H_4 C(:NH) CH₂. B. Beim Kochen von 3-Amino-thionaphthen-carbonsäure-(2) (S. 631) mit Wasser (FRIEDLÄNDER, A. 351, 418). Öl. Verharzt an der Luft. Ist mit Wasserdampf flüchtig. Wird durch verd. Salzsäure, besonders schnell beim Kochen, in 3-Oxy-thionaphthen (Bd. XVII, S. 119) übergeführt. Hydrochlorid. Blättchen. Leicht löslich. Sulfat. Blättchen. Ziemlich schwer löslich. Chloroplatinat. Unbeständige, gelbrote Prismen.
- 3-Acetamino-thionaphthen bezw. 3-Acetimino-thionaphthendihydrid C₁₀H₉ONS=
 C₆H₄ C(NH·CO·CH₃) CH bezw. C₆H₄ C(:N·CO·CH₃) CH₂. B. Beim Schütteln von
 3-Amino-thionaphthen mit Acetanhydrid in wäßr. Suspension (Friedländer, A. 351, 419).
 Durch Kochen von 3-Amino-thionaphthen-carbonsäure-(2) mit Alkohol und nachfolgendes
 Acetylieren des Reaktionsprodukts (F.). Blättchen (aus Methylalkohol), Nadeln (aus Wasser). F: 169°. Wird durch alkoh. Alkalilauge nur langsam verseift.
- 2. 6-Amino-3-methyl-cumaron C_9H_9ON , s. nebenstehende Formel.
- 6-Dimethylamino-3-methyl-cumaron $C_{11}H_{13}ON = (CH_3)_2N \cdot C_6H_2 < C(CH_3) CH$. B. Durch Erhitzen von 6-Dimethylamino-3-methyl-cumarilsäure (S. 631) bis zum Aufhören der CO_3 -Entwicklung (v. Pechmann, Schaal, B. 32, 3695). Krystalle (aus verd. Methylalkohol). Riecht cumarinartig. F: 58°. Leicht löslich.

Ist eine starke Base. Liefert mit salpetriger Säure Methyl-[cumaronyl-(2)]-carbinol (Bd. XVII, S. 125). — $C_{10}H_{11}ON + HCl$. F: 114°. — $C_{10}H_{11}ON + HBr$. F: 95°. — $C_{10}H_{11}ON + HI$. F: 144°. — $C_{10}H_{11}ON + HCl + AuCl_3$. Braune Nadeln. F: 117°. — $C_{10}H_{11}ON + HCl + HgCl_4$. Nadeln (aus Wasser). F: 114°. — $2C_{10}H_{11}ON + 2HCl + PtCl_4$. Gelbe Blättchen. F: 191°.

5. Monoamine $C_n H_{2n-11} ON$.

1. 2-[α -Amino-benzyl]-furan, [Phenyl- α -furyl-methyl]-amin, α -[α -Furyl]-benzylamin $C_{11}H_{11}ON = \frac{HC}{H_0^0 \cdot O \cdot C \cdot CH(NH_2) \cdot C_8H_5}$. B. Durch Reduktion von Phenyl- α -furyl-ketoxim (Bd. XVII, S. 348) mit Natrium in absolut-alkoholischer Lösung (Marquis, C. r. 129, 112; Bl. [3] 23, 34; A. ch. [8] 4, 280). — Flüssigkeit von sehr schwachem Geruch. Kp45-44: 167—1680; Kp19: 144—1450. Dist 1,1045. np3: 1,5661. Verliert bei mehrwöchigem Aufbewahren Ammoniak. — $C_{11}H_{11}ON + HCl$. Prismen. Sehr leicht löslich in Wasser. — $2C_{11}H_{11}ON + 2HCl + PtCl_4 + 2H_2O$. Goldgelbe Blättchen. Leicht löslich in heißem, schwer in kaltem Wasser. Zersetzt sich bei 1000.

Monoacetylderivat $C_{13}H_{13}O_2N = OC_4H_3 \cdot CH(NH \cdot CO \cdot CH_3) \cdot C_6H_5$. B. Durch Erhitzen von [Phenyl- α -furyl-methyl]-amin mit Essigsäureanhydrid (M., C. r. 129, 112; Bl. [3] 23, 35; A. ch. [8] 4, 282). — Nadeln (aus sehr verd. Alkohol). F: 127°.

[β -Phenyl- γ -(α -furyl)-propyl]-harnstoff $C_{14}H_{16}O_{2}N_{2}=OC_{4}H_{3}\cdot CH_{2}\cdot CH(C_{6}H_{5})\cdot CH_{2}\cdot NH\cdot CO\cdot NH_{3}$. B. Aus β -Phenyl- γ -[α -furyl]-propylamin-hydrochlorid und Kaliumcyanat (F., I., B. 23, 2851). — Krystalle (aus absol. Alkohol). F: 101°.

N-Phenyl-N'-[β -phenyl- γ -(α -furyl)-propyl]-thioharnstoff $C_{20}H_{20}ON_2S = OC_4H_2$ · CH_4 · $CH(C_6H_5)$ · CH_2 · NH· CS· NH· C_6H_5 · B. Aus β -Phenyl- γ -[α -furyl]-propylamin und Phenylsenföl (F., I., B. 23, 2851). — Krystalle (aus Alkohol). F: 113°.

6. Monoamine $C_nH_{2n-15}ON$.

1. 2-Amino-diphenylenoxyd C₁₂H₉ON, s. nebenstehende Formel.

B. Bei der Reduktion von 2-Nitro-diphenylenoxyd (Bd. XVII, S. 72)
mit Zinn und rauchender Salzsäure auf dem Wasserbad (Borsche,
Bothe, B. 41, 1941). — Krystalle (aus verd. Alkohol). F: 94°. — Wird durch Natriumnitrit
nthe Salzsäure diazotiert. — Hydrochlorid. Blättchen. Zersetzt sich bei ca. 220°. Ziemlich schwer löslich in kaltem Wasser. — Zinnchlorid-Doppelsalz. Blättchen (aus verd. Salzsäure).

Diacetylderivat $C_{16}H_{13}O_3N=C_6H_4$ C_6H_4 $N(CO\cdot CH_3)_2$. B. Aus salzsaurem 2-Amino-diphenylenoxyd durch Kochen mit Essigsäureanhydrid in Gegenwart von entwässertem Natriumacetat (B., B., B. 41, 1941). — Nadeln (aus verd. Alkohol). F: 83°.

Monobenzoylderivat $C_{19}H_{18}O_2N = C_6H_6 C_6H_3 \cdot NH \cdot CO \cdot C_6H_5$. B. Durch Benzoylieren von 2-Amino-diphenylenoxyd in Pyridin (B., B., B. 41, 1941). — Krystalle. F: 201°. Löslich in Alkohol.

2. 9-Amino-xanthen, Xanthylamin $C_{13}H_{11}ON = C_0H_4 CH(NH_2) C_0H_4$.

Acetylxanthylamin, N-Xanthyl-acetamid $C_{15}H_{13}O_2N=C_6H_4$ CH(NH·CO·CH₃) C_6H_4 . B. Aus Xanthydrol (Bd. XVII, S. 129) und Acetamid (Fosse, C. r. 145, 815). — Nadeln. Schmilzt auf dem Quecksilberbad bei 245° (unter Sublimation), im Capillarrohr bei 238—244°.

Propionylxanthylamin, N - Xanthyl - propionamid $C_{16}H_{15}O_2N = C_6H_4 \xrightarrow{CH(NH\cdot CO\cdot C_2H_5)} C_6H_4$. B. Aus Xanthydrol und Propionamid (F., C. r. 145, 815). — Nadeln. F: 211—214°.

Butyrylxanthylamin, N-Xanthyl-butyramid $C_{17}H_{17}O_2N = C_6H_4 - CH(NH \cdot CO \cdot CH_2 \cdot C_2H_5) - C_6H_4$. B. Aus Xanthydrol und Butyramid (F., C. r. 145, 815). — Nadeln. F: 186—187°.

Isovalery|xanthylamin, N - Xanthyl - isovaleramid $C_{18}H_{19}O_2N = C_6H_4 \underbrace{CH[NH\cdot CO\cdot CH_2\cdot CH(CH_3)_2]}_{O_4} C_6H_4$. B. Aus Xanthydrol und Isovaleramid (F., C. r. 145, 815). — Nadeln. F: 182—184°.

Phenacetylxanthylamin, N-Xanthyl-phenylacetamid, N-Xanthyl-phenacetamid $C_{81}H_{17}O_{9}N = C_{6}H_{4} \xrightarrow{CH(NH\cdot CO\cdot CH_{9}\cdot C_{6}H_{5})} C_{6}H_{4}$. B. Aus Xanthydrol und Phenacetamid (F., C. r. 145, 815). — Nadeln. F: 196—197°.

Xanthylcarbamidsäure - äthylester, Xanthylurethan $C_{16}H_{15}O_3N = C_6H_4 \underbrace{CH(NH \cdot CO_2 \cdot C_2H_5)}_{O} C_6H_4$. B. Aus Xanthydrol und Urethan (F., C. r. 145, 815). — Nadeln. F: 168—169°.

N.N'-Dixanthyl-harnstoff $C_{27}H_{20}O_2N_2=\left(O<\frac{C_6H_4}{C_6H_4}>CH\cdot NH\right)_2CO$. B. Aus 2 Mol Xanthydrol und 1 Mol Harnstoff (F., C. r. 145, 814, 898). — Schwach rosa Nadeln. Schmilzt unter Zersetzung zwischen 250° und 258°. Unlöslich in siedendem Wasser, schwer löslich in siedendem Alkohol. — Beständig gegen siedende wäßrige Alkalilaugen. Wird durch Halogenwasserstoffsäure in Harnstoff und Xanthyliumhalogenid zersetzt.

4-Xanthyl-semicarbazid $C_{14}H_{13}O_3N_3 = C_6H_4 \xrightarrow{CH(NH\cdot CO\cdot NH\cdot NH_2)} C_6H_4$. Zur Konstitution vgl. Doucer, C. r. 177 [1923], 1121. — B. Aus Xanthydrol und Semicarbazid (F., C. r. 143, 751; Bl. [3] 35, 1006). — F: 170—171° (Zers.) (F.). — Liefert bei der Einw. von alkoh. Salzsäure Semicarbazid, Xanthen und Acetaldehyd (F.).

N-Phenyl-N'-xanthyl-thioharnstoff $C_{20}H_{16}ON_2S = C_6H_4$ CH(NH·CS·NH·C₆H₅) C₆H₄. B. Aus Xanthydrol und Phenylthioharnstoff (F., C. r. 145, 815). — Farblose Nadeln. Färbt sich bei 170° grün, schmilzt bei höherer Temperatur zu einer blauen Flüssigkeit.

N.N'- Dixanthyl - thioharnstoff $C_{27}H_{20}O_2N_2S = \left(0 < \frac{C_6H_4}{C_6H_4} > CH \cdot NH\right)_2CS$. B. Aus Xanthydrol und Thioharnstoff (F., C. r. 145, 815). — Nadeln (aus siedendem Eisessig). F: ca. 200° (Zers.).

7. Monoamine $C_nH_{2n-27}ON$.

9-Amino-1.2; 7.8-dibenzo-xanthen, 4-Amino-[dinaphtho-2.1':2.3; 1".2":5.6-pyran] 1) $C_{21}H_{15}ON$, s. nebenstehende Formel.

9-Anilino-1.2; 7.8-dibenzo-xanthen, 4-Anilino-[dinaphtho-2'.1': 2.3; 1".2": 5.6-pyran] ¹) $C_{27}H_{18}ON = C_{10}H_{6} \underbrace{CH(NH \cdot C_{6}H_{5})}_{O} \underbrace{C_{10}H_{6}}_{O}$. B. Aus Dinaphthopyryliumbromid (Bd. XVII, S. 146) und Anilin (Robyn, C. r. 140, 1644). — Farblose Krystalle. F: 250—253° (Zers.). Löslich in Benzol und Toluol, unlöslich in Alkohol.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

- 9 0 Toluidino 1.2; 7.8 dibenso xanthen, 4 0 Toluidino [dinaphtho-2'.1':2.3; 1''.2'':5.6-pyran] 1) $C_{13}H_{11}ON = C_{10}H_{6} \underbrace{\begin{array}{c} CH(NH \cdot C_{6}H_{4} \cdot CH_{3}) \\ O \end{array}}_{O} \underbrace{C_{10}H_{6}}_{O}$. B. Aus Dinaphthopyryliumbromid (Bd. XVII, S. 146) und o-Toluidin (R., C. r. 140, 1644). Farblose Krystalle. F: 270—271°. Löslich in Benzol und Toluol.
- 9 p Toluidino 1.2; 7.8 dibenzo xanthen, 4 p Toluidino [dinaphtho-2'.1':2.8; 1''.2'':5.6-pyran] 1) $C_{23}H_{21}ON = C_{10}H_{6} \underbrace{CH(NH \cdot C_{6}H_{4} \cdot CH_{3})}_{O} \underbrace{C_{10}H_{6}}_{O}$. Aus Dinaphthopyryliumbromid (Bd. XVII, S. 146) und p-Toluidin (R., C. r. 140, 1644). F: 232—233°. Löslich in Benzol und Toluol.
- 9-a-Naphthylamino-1.2; 7.8-dibenzo-xanthen, 4-a-Naphthylamino-[dinaphtho-2'.1':2.8; 1".2":5.6-pyran] 1) $C_{31}H_{31}ON = C_{10}H_{6} \underbrace{CH(NH\cdot C_{10}H_{7})}_{O} \underbrace{C_{10}H_{6}}_{O}$. B. Aus Dinaphthopyryliumbromid (Bd. XVII, S. 146) und a-Naphthylamin (R., C. r. 140, 1644). Krystalle. F: 255—260°.

Bis-[1.2; 7.8-dibeneo-xanthyl]-amin, Bis-[dinaphtho-2'.1':2.3; 1''.2'':5.6-pyryl]-amin¹) $C_{42}H_{27}O_2N = \left(O < \frac{C_{10}H_6}{C_{10}H_6} > CH\right)_2NH \left[oder\left(HC < \frac{C_{10}H_6}{C_{10}H_6} O\right)_2NH(?), vgl. Fosse, A.ch. [8] 2, 315]. B. Durch Behandlung von Dinaphthopyryliumbromid (Bd. XVII, S. 146) mit Ammoniak in alkoholischer oder wäßriger Lösung (Fosse, C. r. 133, 102, 639; Bl. [3] 27, 522; A.ch. [8] 2, 312; vgl. Rousseau, A.ch. [5] 28, 184). — Farblose Krystalle (aus Benzol oder Chloroform). F: ca. 235° (Zers.)(F.). Wird durch Halogenwasserstoffsäuren in Dinaphthopyryliumhalogenid und Ammoniumhalogenid gespalten (F.).$

Bis-[1.2; 7.8-dibenzo-xanthy]]-m-toluidin, Bis-[dinaphtho-2'.1':2.3; 1''.2'':5.6-pyryl]-m-toluidin¹) $C_{49}H_{33}O_{2}N = \left(0 < \frac{C_{10}H_{6}}{C_{10}H_{6}} > CH\right)_{2}N \cdot C_{6}H_{4} \cdot CH_{3}$. B. Aus Dinaphthopyryliumbromid (Bd. XVII, S. 146) und m-Toluidin (ROBYN, C. r. 140, 1644). — F: 275°.

8. Monoamine $C_nH_{2n-31}ON$.

- 1. 9-Phenyl-9-[4-amino-phenyl]-xanthen $C_{28}H_{19}ON=$
- C_6H_4 $C(C_6H_5)(C_8H_4\cdot NH_2)$ C_6H_4 . B. Das Hydrochlorid entsteht aus 9-Phenyl-xanthydrol (Bd. XVII, S. 138) und Anilinhydrochlorid in Eisessig; man zerlegt es durch wenig Ammoniak in siedender alkoholischer Lösung (ULIMANN, ENGI, B. 37, 2372). Krystalle (aus Alkohol). F: 227,5°. Leicht löslich in heißem Alkohol, löslich in Äther und Benzol. Geht durch Diazotieren und Behandeln der Diazoniumverbindung mit Alkohol und Kupferoxydul in 9.9-Diphenyl-xanthen (Bd. XVII, S. 94) über. $C_{15}H_{19}ON + HCl$. Nadeln. F: 262—263° (Zers.). Leicht löslich in Alkohol, schwer in Eisessig.
- 9 Phenyl 9 [4 dimethylamino phenyl] xanthen $C_{37}H_{23}ON = C_{6}H_{4} \frac{C(C_{6}H_{5})[C_{6}H_{4} \cdot N(CH_{3})_{3}] C_{6}H_{4}}{O}$. Aus 9-Phenyl-xanthydrol und Dimethylanilin in Eisessig (U., E., B. 37, 2374). Blättchen. F: 195,5°. Löslich in heißem Benzol und Eisessig, sehr schwer löslich in siedendem Alkohol, unlöslich in Ather.
- 2. 1.1 Diphenyl 3 [4 amino phenyl] phthalan $C_{se}H_{s1}\mathrm{ON} = C_{e}H_{4} \underbrace{CH(C_{e}H_{4}\cdot\mathrm{NH}_{2})}_{C(C_{e}H_{5})_{2}}\mathrm{O}.$
- 1.1 Diphenyl 3 [4 dimethylamino phenyl] phthalan ') $C_{88}H_{85}ON = C_6H_4 \cdot N(CH_3)_2 O$. B. Auf Zusatz einiger Tropfen Schwefelsäure zu einer siedenden Eisessig-Lösung von 2-[4-Dimethylamino- α -oxy-benzyl]-triphenylcarbinol (Bd. XIII, S. 824) (Pérard, C. r. 143, 239). Farblose Prismen (aus Benzol + Alkohol). F: 110°.

Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1—3.
 So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von PÉBARD, A. ch. [9] 7, 375.

9. Monoamine $C_nH_{2n-35}ON$.

9 - [4 - Amino - phenyl] - 1.2; 7.8 - dibenzo - xanthen, 4 - [4 - Amino - phenyl] - [dinaphtho - 2'1': 2.3; 1".2": 5.6pyran 1) C₂₇H₁₉ON, s. nebenstehende Formel.

9-[4-Dimethylamino-phenyl]-1.2; 7.8-dibenzo-xanthen,

4-[4-Dimethylamino-phenyl]-[dinaphtho-2.1': 2.3; 1".2": 5.6-pyran]¹) $C_{10}H_{4}$ $C_{10}H_{4}$ $C_{10}H_{6}$ -Naphthol und 1 Mol 4-Dimethylamino-benzaldehyd (Bd. XIV, S. 31) beim Kochen mit Schwefelsäure und Eisessig (HEWITT, TURNER, BRADLEY, Soc. 81, 1208) oder beim Vermischen mit Schwefelsäure und Essigsäureanhydrid (Fosse, C. r. 138, 577). Das Hydrobromid entsteht beim Verreiben von Dinaphthopyryliumbromid (Bd. XVII, S. 146) mit Dimethylanilin (F.). Das Hydrochlorid entsteht aus salzsaurem [4-Dimethylamino-phenyl]-bis-[2-oxynaphthyl-(1)]-methan (Bd. XIII, S. 825) beim Kochen mit Eisessig und konz. Salzsäure (H., T., B.). Man zerlegt die Salze durch Alkalilauge (H., T., B.; F.). — Farblose Prismen (aus Xylol). F: 214—215° (korr.) (H., T., B.), 207—208° (F.). Sehr schwer löslich in Alkohol (H., T., B.), löslich in Berzol, Chloroform und Eisessig (F.), leicht löslich in heißem Anilin, (H., T., B.), losich in Benzol, Chloroform und Eisessig (F.), leicht losich in heisem Anlim, sehr leicht in Pyridin (H., T., B.). — Wird von Oxydationsmitteln (Eisenchlorid, Bleidioxyd, Mangandioxyd) nicht angegriffen (H., T., B.). Mit Brom und Eisessig entsteht eine Verbindung C₂₀H₂₃ONBr₂ (F: 196°) (H., T., B.). — C₂₉H₂₃ON+HCl. Farblose Prismen. F: 257—260° (H., T., B.). — C₂₉H₂₃ON+H₂SO₄. Farblose Nadeln (aus Alkohol + Schwefelsäure). F: 231—232° (Zers.) (H., T., B.). — Pikrat C₂₉H₂₃ON+C₆H₃O₇N₃. Gelbe Prismen. F: 194—196° (H., T., B.). — 2C₂₉H₂₃ON+2HCl+PtCl₄. Gelbe Tafeln. F: 256°; sehr schwer löslich in allen Lösungsmitteln (H., T., B.).

methylamino-phenyl]-1.2; 7.8-dibenzo-xanthen durch Erwärmen mit überschüssigem Methyljodid (Hewitt, Turner, Bradley, Soc. 81, 1210). — Blaßgelbe Krystalle. F: 226—2270

9-[4-Diäthylamino-phenyl] -1.2; 7.8 - dibenzo - xanthen, 4 - [4-Diäthylamino-phenyl] - [dinaphtho - 2'.1':2.3; 1".2":5.6 - pyran] \(^1\)) $C_{31}H_{27}ON = C_{10}H_{6} \underbrace{CH[C_{6}H_{4} \cdot N(C_{2}H_{5})_{2}]}_{O}C_{10}H_{6}$. Man verreibt Dinaphthopyryliumbromid (Bd. XVII, S. 146) mit Diäthylanilin und zerlegt das Reaktionsprodukt mit verdünnter heißer Alkalilauge (Fosse, C. r. 138, 577). — Krystalle. F: 230—231°. Löslich in Benzol und Chloroform.

10. Monoamine $C_n H_{2n-39} ON$.

1.1.3-Triphenyl-3-[4-amino-phenyl]-phthalan $C_{ss}H_{ss}ON =$ $C_6H_4 \stackrel{C(C_6H_6)(C_8H_4 \cdot NH_2)}{C(C_6H_5)_3}O.$ B. Aus 3-Oxy-1.1.3-triphenyl-phthalan (Bd. XVII, S. 149) und Anilinhydrochlorid in siedendem Eisessig in Gegenwart von etwas konz. Salzsäure (GUYOT, CATEL, C. r. 140, 255; Bl. [3] 35, 564). — Krystallpulver. F: ca. 200°. Leicht löslich in Benzol und Äther, sehr schwer in Alkohol; löslich in konz. Schwefelsäure mit orangegelber Farbe. Läßt sich diazotieren.

1.1.3 - Triphenyl - 3 - [4 - dimethylamino - phenyl] - phthalan $C_{34}H_{39}ON =$ 1.1.3 - Tripnenyi - 3 - [4 - dimethylamino - pnenyi] - pnthalan $C_{24}n_{25}C_{15} = C_{6}H_{4} - \frac{C(C_{6}H_{5})[C_{6}H_{4} \cdot N(CH_{3})_{3}]}{C(C_{6}H_{5})_{2}} = 0$. B. Durch Kochen einer Lösung von 3-0xy-1.1.3-triphenyl-phthalan (Bd. XVII, S. 149) in Eisessig mit einem geringen Überschuß von Dimethylanilin und einigen Tropfen Salzsäure (G., C., C. r. 140, 255; Bl. [3] 35, 564). — Blättchen (aus Benzol + Alkohol). F: 177°. Leicht löslich in Benzol und Ather, solver in Alkohol. — Liefert in siedender benzolischer Lösung mit konz. Schwefelsäure 10-Oxy-9.10-diphenyl-9-[4-dimethylamino-phenyl]-anthracen-dihydrid-(9.10) (Bd. XIII, S. 778). Bildet ein Hydrochlorid, das durch Wasser hydrolysiert wird. — $2C_{14}H_{19}ON + 2HCl + PtCl_{1}$. Gelbe Blättchen.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

B. Diamine.

1. Diamine $C_nH_{2n-14}ON_2$.

- 1. 2.7 Diamino diphenylenoxyd¹) C₁₂H₁₀ON₂, s. nebenstehende Formel. B. Man erhizzt Benzidin-disulfonsäure-(2.2′) (Bd. XIV, S. 794) 6—8 Stdn. mit 40°/₀iger Natronlauge unter 36 Atmosphären Druck (BAYER & Co., D. R. P. 48709; Frdl. 2, 410). Nadeln (aus Wasser). F: 150—152° (B. & Co., D. R. P. 48709), 153—154° (B. & Co., Priv.-Mitt.). Mit salpetriger Säure entsteht eine Tetrazoverbindung, die sich m.it Aminen und Phenolen zu direkt ziehenden Disazofarbstoffen vereinigen läßt (B. & Co., D. R. P. 51570; Frdl. 2, 412). Salze: B. & Co., D. R. P. 48709. Hydrochlorid. Leicht löslich in Wasser. Sulfat. Schwer löslich in Wasser.
- 2.7 Diamino diphenylensulfon, Benzidinsulfon $C_{12}H_{10}O_2N_2S$, s. nebenstehende Formel. B. Man erwärmt Benzidinsulfat auf dem Wasserbad mit überschüssiger rauchender Schwefelsäure von 20% SO₃-Gehalt (GRIESS, DUISBERG, B. 22, 2467) oder von 40% SO₃-Gehalt (BAYER & Co., D. R. P. 33088; Frdl. 1, 498). Gebe Nadeln. Schmilzt oberhalb 350°; fast unlöslich in siedendem Wasser und siedendem Alkohol sowie in Äther und Benzol (G., D.). Gibt beim Verschmelzen mit Natriumhydroxyd bei 180° Oxybenzidin (G., D.). Wird durch Diazotieren, Reduzieren des Diazotierungsprodukts mit Zinnchlorür und Salzsäure zum Hydrazin und Kochen desselben mit Kupfersulfat-Lösung in Diphenylensulfon (Bd. XVII, S. 72) übergeführt (G., D.). Disazofarbstoffe aus diazotiertem Benzidinsulfon: B. & Co. Salze: G., D. $C_{12}H_{10}O_2N_2S + 2$ HCl. Blättchen (aus verd. Salzsäure). Wird durch Wasser zersetzt. $C_{12}H_{10}O_2N_2S + H_2SO_4 + 1^1/_3H_2O$. Nadeln oder Blättchen. Schwer löslich in schwefelsäurehaltigem Wasser. Wird durch Wasser zersetzt. Chloroplatinat. Dunkelgelbe Blättchen. Unlöslich in Wasser.
- 2.7-Dianilino-diphenylensulfon, N.N'-Diphenyl-benzidinsulfon $C_{24}H_{18}O_{2}N_{2}S = C_{6}H_{5}\cdot NH\cdot C_{6}H_{3}$ $C_{6}H_{3}\cdot NH\cdot C_{6}H_{5}$. B. Durch 12—15-stdg. Erhitzen von 20 g Diphenylamin mit 20 g konz. Schwefelsäure und 60 g rauchender Schwefelsäure mit 20% SO_{3}-Gehalt auf 80% (Kadiera, B. 38, 3576; vgl. Dahl & Co., D. R. P. 106511; C. 1900 I, 742; Frdl. 5, 434). Gelbbraunes Pulver (aus Amylalkohol). Ist bei 300% noch nicht geschmolzen (K.). Löslich in Amylalkohol und Anilin mit schwachblauer Fluorescenz, fast unlöslich in Alkohol, Äther und Benzol (K.). Löslich in kalter konz. Schwefelsäure mit blaßgrüner Farbe, die bei starkem Erhitzen in ein intensives Blau, dann in Blaugrau übergeht; die Lösung in konz. Schwefelsäure färbt sich mit etwas Salpeter blau; die Lösung in Essigsäure wird mit Kaliumdichromat tiefblau, mit Eisenchlorid grünlichgelb (K.).

2. Diamine $C_{13}H_{12}ON_2$.

- 1. 3.6-Diamino-xanthen C₁₈H₁₈ON₂, s. nebenstehende H₂N. NH
- 3.6 Bis dimethylamino xanthen, Leukobase des Pyronins G C₁₇H₂₀ON₂ = (CH₃)₂N·C₆H₃ · N(CH₃)₂. B. Man erhitzt 30 g 4.4'-Bis-dimethylamino-2.2'-dioxy-diphenylmethan (Bd. XIII, S. 811) mit 150 g konz. Schwefelsäure 3 Stdn. auf 100° (Leonhard & Co., Dtsch. Patentanmeldung L 5765; Frdl. 2, 63; Biehringer, J. pr. [2] 54, 229). Entsteht beim Erwärmen einer wäßr. Suspension von Dioxytetramethylrosaminsulfonsäure (S. 636) mit Kalilauge im siedenden Wasserbad infolge eines Gehalts des Farbstoffs an Leukoverbindung (Liebermann, Glawe, B. 37, 203, 206). Nadeln oder Tafeln (aus Ligroin). F: 116° (B.), 113° (L., G.). Sehr leicht löslich in Äther, Chloroform, Benzol und Aceton, leicht in Alkohol und Ligroin (B.). Oxydiert sich leicht am Licht unter Rotfärbung (B.; L., G.). Wird von Oxydationsmitteln wie salpetriger Säure oder Chloranil zu Pyronin G (S. 596) oxydiert (B.). C₁₇H₂₀ON₂ + 2 HCl. Tafeln (aus Alkohol). F: 223° (Zers.); unlöslich in Äther, leicht löslich in Alkohol; wird durch Wasser zersetzt (SCHARWIN, NAUMOW, GANDURIN, B. 37, 3620). C₁₇H₂₀ON₂ + 2 HCl. + PtCl₄ (B.; L., G.). Hellgelber, krystallinischer Niederschlag.

²) Über Konstitution und Einheitlichkeit des von GALEWSKY (A. 264, 192) beschriebenen Diaminodiphenylenoxyds [gelbe Nadeln (aus Alkohol), F: 188^o] läßt sich nichts ermitteln.

- 3.6 Diamino thioxanthen S dioxyd, 5.5' Diamino 2.2'-methylen-diphenylsulfon C₁₂H₁₁O₂N₂S, s. nebenstehende Formel. B. Man erwärmt 5 g 4.4'-Diamino-diphenylmethan (Bd. XIII, S. 238) mit 50 g rauchender Schwefelsäure von 20°/₀ SO₂-Gehalt 2—3 Stdn. auf dem Wasserbad (STEIN, B. 27, 2806). Blättchen. F: 217° (ST.). Das salzsaure Salz gibt in wäßr. Lösung mit salpetriger Säure eine intensiv blaue Färbung (ST.). Die Base gibt mit p-Nitrosoverbindungen aromatischer Amine farbige Kondensationsprodukte (Azomethinverbindungen) (SACHS, D. R. P. 109486; C. 1900 II, 407; Frdl. 5, 669).
- 8.6 Bis dimethylamino thioxanthen, Leukothiopyronin $C_{17}H_{20}N_2S = (CH_3)_2N \cdot C_6H_2 < CH_3 \cdot N(CH_3)_2$. B. Durch Behandlung des Zinkehlorid-Doppelsalzes des Thiopyronins (S. 596) mit Zinkstaub und Salzsäure (Biehringer, Topaloff, J. pr. [2] 65, 505). Farblose Blättchen oder Nadeln. F: 130°. Wird leicht wieder zu Thiopyronin oxydiert.
- 3.6-Bis-dimethylamino-thioxanthen-S-dioxyd, 5.5'-Bis-dimethylamino-2.2'-methylen-diphenylsulfon $C_{17}H_{20}O_2N_2S=(CH_3)_2N\cdot C_6H_3 < \frac{CH_2}{SO_2} > C_6H_3\cdot N(CH_2)_2$. B. Beim Erhitzen von 4.4'-Bis-dimethylamino-diphenylmethan (Bd. XIII, S. 239) mit Schwefelsäure von 20°/ $_0$ SO $_2$ -Gehalt auf 150° (Höchster Farbw., D. R. P. 54621; Frdl. 2, 59). Blätter (aus Alkohol). F: 216°; färbt sich an der Luft grün (H. F.). Kondensiert sich mit 4-Nitroso-dimethylanilin in Alkohol bei Gegenwart von etwas Natronlauge zum 4-Dimethylamino-anil des 3.6-Bis-dimethylamino-benzophenonsulfons (S. 614) (Sachs, B. 33, 965).
 - 2. 2.7-Diamino-1 oder 3-methyl-diphenylenoxyd C₁₈H₁₂ON₂, Formel I oder II.

2.7 - Diamino - 1 oder 3 - methyl - diphenylensulfon $C_{13}H_{12}O_2N_2S=H_2N\cdot C_6H_3$ $C_6H_2(CH_3)\cdot NH_2$. Vgl. hierüber den Artikel 3-Methyl-benzidin, Bd. XIII, S. 247.

3. Diamine C₁₄H₁₄ON₂

- 1. 2.7 Diamino 3.6 dimethyl diphenylenoxyd $C_{14}H_{14}ON_2$, s. nebenstehende Formel. Vgl. auch No. 2. B. Man erhitzt o-Tolidin-disulfonsäure-(6.6') (Bd. XIV, S. 796) 6—8 Stdn. mit 40^{9} /oiger Natronlauge unter 36 Atm. Druck (Bayer & Co., D. R. P. 50140; Frdl. 2, 412). Mit salpetriger Säure entsteht eine Tetrazoverbindung, die sich mit Aminen und Phenolen zu direkt ziehenden Disazofarbstoffen vereinigen läßt (B. & Co., D. R. P. 54154; Frdl. 2, 415).
- 2. 2.7-Diamino-3.6-oder 1.8-dimethyl-diphenylenoxyd $C_{14}H_{14}ON_2$, Formel III oder IV. Vgl. auch Nr. 1.

- 2.7 Diamino 3.6 oder 1.8 dimethyl diphenylensulfon, o Tolidinsulfon $C_{14}H_{14}O_2N_2S = H_2N \cdot C_6H_2(CH_3) \cdot SO_2 \cdot C_6H_3(CH_3) \cdot NH_2$. B. Beim Erhitzen von o-Tolidinsulfat mit rauchender Schwefelsäure von $40^0/_0$ SO₃-Gehalt auf 80^0 (Bayer & Co., D. R. P. 44784; Frdl. 2, 407). Hellgrüner, amorpher Niederschlag. Leicht löslich in heißer verdünnter Salzsäure. Salpetrige Säure liefert eine in Wasser schwer lösliche Tetrazoverbindung. Läßt sich durch rauchende Schwefelsäure in eine Mono- und eine Disulfonsäure überführen. Die Salze werden beim Kochen mit Wasser zerlegt. —Hydrochlorid. Nadeln. Sulfat. Schwer löslich in reinem, leicht in salzhaltigem Wasser.
- 4. 3.6-Diamino-2.7-dimethyl-xanthen C₁₅H₁₆ON₂, cH₃ cH₃ s. nebenstehende Formel. B. Beim Erhitzen von 4.4'-Diamino-6.6'-dioxy-3.3'-dimethyl-diphenylmethan (Bd. XIII, S. 815) mit konz. Schwefelsäure im Wasserbad (Leonhardt & Co., D. R. P. 75138; Frdl. 3, 95). Rötlicher Niederschlag. Gibt bei der Oxydation mit Eisenchlorid oder Dichromat in

Gegenwart von Zinkchlorid und verd. Schwefelsäure das Zinkchlorid-Doppelsalz des Pyroninfarbstoffs, das sich in Wasser oder Alkohol mit gelbroter, in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz löst (L. & Co., D. R. P. 75138); Überführung dieses Farbstoffs durch Alkylierung in tiefer rot gefärbte Derivate: L. & Co., D. R. P. 84955; Frdl. 4, 175.

3.6 - Bis - dimethylamino - 2.7 - dimethyl - xanthen $C_{19}H_{24}ON_3 = (CH_3)_2N \cdot C_6H_2(CH_3) < \frac{CH_2}{O} > C_6H_2(CH_3) \cdot N(CH_3)_2$. B. Durch Erhitzen von 4.4'-Bis-dimethylamino-6.6'-dioxy-3.3'-dimethyl-diphenylmethan (Bd. XIII, S. 815) mit konz. Schwefelsäure (L. & Co., D. R. P. 99613; C. 1899 I, 400; Frdl. 5, 182). — Gibt durch Oxydation einen Farbstoff, der tanningebeizte Baumwolle rotviolett färbt.

3.6-Bis-äthylamino-2.7-dimethyl-xanthen $C_{19}H_{26}ON_2 = C_2H_5\cdot NH\cdot C_8H_2(CH_3)\cdot C_8H_2(CH_3)\cdot NH\cdot C_2H_5$. B. Beim Erhitzen von 4.4'-Bis-äthylamino-6.6'-dioxy-3.3'-dimethyl-diphenylmethan mit konz. Schwefelsäure im Wasserbad (L. & Co., D. R. P. 86967; Frdl. 4, 176). — Liefert bei der Oxydation mit Eisenchlorid einen Farbstoff, der tanningebeizte Baumwolle rot färbt.

2. Diamine $C_n H_{2n-18} ON_2$.

 $\begin{aligned} &2 - [4.4' - Diamino - benzhydryl] - furan, \ Bis - [4 - amino - phenyl] - \alpha - furyl-\\ &methan \ \mathbf{C_{17}H_{16}ON_2} = \frac{HC - CH}{H^{\prime\prime}_C \cdot \mathbf{C} \cdot \mathbf{CH}(C_6H_4 \cdot \mathbf{NH_2})_2}. \end{aligned}$

2-[4.4'-Bis-dimethylamino-benzhydryl]-furan, Bis-[4-dimethylamino-phenyl]- α -furyl-methan $C_{21}H_{24}ON_s = OC_4H_3 \cdot CH[C_6H_4 \cdot N(CH_3)_3]_2$. B. Beim Behandeln eines Gemenges von Furfurol und Dimethylanilin mit Zinkehlorid (O. FISCHER, A. 206, 141). — Nadeln (aus Petroläther). F: 83°. Leicht löslich in Alkohol, Äther und Ligroin. unlöslich in Wasser. Stark basisch. — Gibt beim Kochen mit Chloranil und Alkohol einen grünen, nicht lichtbeständigen Farbstoff. Verhalten gegen Brom: F. Löst sich in konz. Schwefelsäure in der Kälte mit rotbrauner Farbe; in der Wärme wird die Lösung dunkler und zeigt grünlichgelbe Fluorescenz. — Pikrat $C_{21}H_{24}ON_2 + 2C_6H_3O_7N_3$. Grünlichgelbe Nadeln. Fast unlöslich in Alkohol. — $C_{21}H_{24}ON_2 + 2HCl + PtCl_4$. Krystallinisches Pulver (aus Alkohol).

2 - [4.4'- Bis - dimethylamino - benzhydryl] - thiophen, Bis - [4 - dimethylamino - phenyl] - α - thienyl - methan, Leukothiophengrün $C_{21}H_{24}N_2S=HC$ ——CH

B. Bei 6-stdg. Kochen von 1 Tl. α-Thiophenaldehyd HC·S·C·CH[C₆H₄·N(CH₃)₂]₃

(Bd. XVII, S. 285) mit 2 Tln. Dimethylanilin und wenig Alkohol unter allmählichem Zusatz von 3—4 Tln. Zinkchlorid (Levi, B. 20, 514). — Nadeln (aus Alkohol). F: 92—93°. Unlöslich in Wasser, leicht löslich in Alkohol, Äther und Benzol. Die alkoh. Lösung wird an der Luft schnell grün. Wird von Oxydationsmitteln in Thiophengrün (8. 597) übergeführt. — Pikrat C₃₁H₂₄N₂S+2C₆H₃O₇N₃. Gelblichgrüne Nädelchen. F: ca. 208°. Schwer löslich in kaltem Wasser, leicht in Alkohol, Äther und Benzol. — C₂₁H₂₄N₂S+2HCl+PtCl₄.

Bis-hydroxymethylat $C_{23}H_{32}O_2N_2S=SC_4H_3\cdot CH[C_6H_4\cdot N(CH_3)_3\cdot OH]_2$. — Dijodid $C_{23}H_{30}N_2SI_2$. B. Man kocht Leukothiophengrün in Methanol mit überschüssigem Methyljodid (Levi, B. 20, 515). — Blättchen (aus verd. Alkohol). F: 210—212°.

3. Diamine $C_n H_{2n-22}ON_2$.

 $\text{1.3-Bis-[4-amino-phenyl]-phthalan } C_{20}H_{18}ON_2 = C_0H_4 < \underbrace{CH(C_0H_4\cdot NH_2)}_{CH(C_0H_4\cdot NH_2)} > 0.$

1.3 - Bis - [4 - dimethylamino - phenyl] - phthalan $C_{24}H_{26}ON_2 = C_6H_4 < CH[C_6H_4 \cdot N(CH_2)_2] > 0$. B. Aus 1.2 - Bis - [4 - dimethylamino - α -

4. Diamine $C_n H_{2n-24} ON_2$.

2.5 - Bis - [4 - amino - phenyl] - 3.4 - benzo - furan $C_{20}H_{16}ON_2 =$ HC:CH·C:C(C₆H₄·NH₂)

HC: CH · C: C(C6H4 · NH2)

2.5 - Bis - [4 - dimethylamino - phenyl] - 3.4 - benzo - furan $C_{24}H_{24}ON_{2}$ HC:CH·C:C[C₆H₄·N(CH₃)₂]O. Zur Konstitution vgl. Guyot, Haller, A. ch. [8] 19, $\mathbf{HC}: \mathbf{CH} \cdot \mathbf{C}: \mathbf{C}[\mathbf{C_6H_4} \cdot \mathbf{N}(\mathbf{CH_3})_2]$ 314, 318, 346. — B. Man erhitzt 1 Tl. dimeres 2.5-Bis-[4-dimethylamino-phenyl]-3.4-benzofuran (s. u.) mit 5 Tln. konz. Schwefelsäure 15 Minuten auf 100° (G., H., A. ch. [8] 19, 323). - Orangerote Prismen. F: 140°. Zeigt beim Erhitzen über den Schmelzpunkt orangegelbe Fluorescenz. — Leicht veränderlich. Dimerisiert sich in Gegenwart gewisser Reagenzien, z. B. Eisessig, fast augenblicklich. Geht bei der Oxydation in 1.2-Bis-[4-dimethylamino-

benzoyl]-benzol (Bd. XIV, S. 228) über.

Dimeres 2.5-Bis-[4-dimethylamino-phenyl]-3.4-benzo-furan C₄₈H₄₈O₂N₄ = (C₂₄H₂₄ON₂)₂. Zur Konstitution vgl. G., H., A. ch. [8] 19, 316. — B. Aus 4'.4"-Bis-dimethylamino-triphenylmethan-carbonsäure-(2) (Bd. XIV, S. 549) durch Behandeln mit Phosphoroxychlorid in Dimethylanilin (H., G., C. r. 125, 286; Bl. [3] 25, 319) oder besser durch 9-stdg. Erhitzen mit 1¹/₂ Tln. Essigsäureanhydrid auf 100° (G., H., A. ch. [8] 19, 319). — Blättchen (2018 Telyel) mit 4 Mel Telyel des hei 120° ontweight: semilar george 278° (H. G.) — Wird (aus Toluol) mit 1 Mol Toluol, das bei 130° entweicht; schmilzt gegen 275° (H., G.). — Wird beim Erhitzen auf 200° stark phosphorescierend, wobei teilweise Oxydation zu 1.2-Bis-[4-dimethylamino-benzoyl]-benzol eintritt; diese erfolgt rascher mit Eisenchlorid in schwach salzsaurer Lösung (H., G.). Wird durch kurzes Erwärmen mit konz. Schwefelsäure teilweise depolymerisiert, während die Hauptmenge in ein noch stärker polymerisiertes Produkt übergeht (G., H., A. ch. [8] 19, 323).

5. Diamine $C_nH_{2n-26}ON_2$.

Diamino - [dinaphtho - 2'.1': 2.3; 1".2": 4.5 - furan] 1), Diamino - β - dinaphthylenoxyd $C_{20}H_{14}ON_2 = OC_{20}H_{10}(NH_2)_3$. Zur Konstitution vgl. Schoepfle, Am. Soc. 45 [1923], 1568. — B. Man destilliert β -Dinaphthol mit 10—15 Tln. Zinkstaub, nitriert das Produkt in Eisessig mit 8 Tln. konz. Salpetersäure (D: 1,3) bei 60° und reduziert das entstandene Dinitro- β -naphthylenoxyd [in Bd. V, S. 726 entsprechend der Auffassung von Julius, B. 19, 2550 als Dinitro-dinaphthyl-(1.1') aufgenommen] durch allmähliches Eintragen von Zinkstaub in die kochende, mit etwas konz. Salzsäure versetzte Eisessig-Lösung (Julius, B. 19, 2549; vgl. Schoepfle, Am. Soc. 45 [1923], 1568). Wird die Lösung des salzsauren Salzes mit Eisenchlorid behandelt, so entsteht das salzsaure Salz eines Oxydationsprodukts [dunkelbraune, bronzeglänzende Nädelchen; schwer löslich in kaltem Wasser; wird von Zinnchlorür oder Schwefeldioxyd in salzsaures Diamino- β -dinaphthylenoxyd zurückverwandelt] (J.). — Salzsaures Salz. Nadeln. Leicht löslich in Wasser, schwer in Salzsaure (J.).

Diacetylderivat $C_{34}H_{18}O_3N_2=OC_{20}H_{10}(NH\cdot CO\cdot CH_3)_2$. B. Beim Kochen von salzsaurem Diamino- β -dinaphthylenoxyd mit Essigsäureanhydrid und wasserfreiem Natriumacetat (Julius, B. 19, 2551; vgl. Schoepfle, Am. Soc. 45 [1923], 1568). — Nadeln. Schmilzt oberhalb 300°; unlöslich in den gewöhnlichen Lösungsmitteln (J.).

6. Diamine $C_n H_{2n-38} ON_2$.

1.1 - Diphenyl - 3.3 - bis - [4 - amino - phenyl] - phthalan $C_{32}H_{36}ON_2 =$ C_6H_4 $C(C_6H_5)_2$ O.

1.1 - Diphenyl - 3.3 - bis - [4 - dimethylamino - phenyl] - phthalan $C_{36}H_{34}ON_2 =$ C_6H_4 $C[C_6H_4\cdot N(CH_3)_2]_2$ O^2). B. Durch Kondensation von 5-Oxy-2.2-diphenyl-5-[4-dimethylamino-phenyl]-3.4-benzo-furan-dihydrid-(2.5) (Bd. XIV, S. 244) mit Dimethylanilin (PÉRARD, C. r. 146, 936). — F: 160°.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

²⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von PÉRARD, A. ch. [9] 7, 382; 8, 22.

C. Triamine.

1. Triamine $C_nH_{2n-21}ON_3$.

3.6 - Diamino - 9 - [4 - amino - phenyl] - xanthen

C₁₀H₁₇ON₃, s. nebenstehende Formel.

3.6 - Bis - dimethylamino - 9 - [4-dimethylamino
phenyl] - xanthen C₂₅H₂₅ON₃ = (CH₃)₂N·C₆H₃ - CH[C₆H₄·N(CH₃)₂] C₆H₃·N(CH₃)₂. B. Bei

6-stdg. Erwärmen von 4.4′.4″-Tris-dimethylamino - 2.2′-dioxy-triphenylmethan (Bd. XIII,

8. 820) mit konz. Schwefelsäure auf dem Wasserbad (Noelting, Gerlinger, B. 39, 2055). —

Blaurotes Pulver. Sehr lichtempfindlich. Unlöslich in Natronlauge. — Gibt beim Erhitzen

mit konz. Schwefelsäure auf 140—150° einen blauroten Farbstoff.

2. Triamine $C_n H_{2n-29} ON_3$.

 $\begin{array}{lll} \textbf{1.1.3-Tris-[4-amino-phenyl]-phthalan} & C_{26}H_{23}\mathrm{ON_3} = C_6H_4 < \frac{\mathrm{CH}(C_6H_4\cdot\mathrm{NH_2})}{\mathrm{C(C_6H_4\cdot\mathrm{NH_2})_2}} > 0. \\ \textbf{1.1.3-Tris-[4-dimethylamino-phenyl]-phthalan} & C_{32}H_{35}\mathrm{ON_3} = \\ C_6H_4 < \frac{\mathrm{CH}[C_6H_4\cdot\mathrm{N(CH_3)_2}]}{\mathrm{C[C_6H_4\cdot\mathrm{N(CH_3)_2}]_2}} > 0. & \mathrm{Diese} & \mathrm{Konstitution} & \mathrm{kommt} & \mathrm{vielleicht} & \mathrm{dem} & \mathrm{Leukophthalgrün} \\ \mathrm{(Bd.} & \mathrm{XIV}, \ 8. \ 246) & \mathrm{zu}. \end{array}$

D. Tetraamine.

Mannitantetramin $C_6H_{16}ON_4 = OC_6H_8(NH_2)_4$ s. bei d-Mannit, Bd. I, S. 542.

E. Oxy-amine.

1. Aminoderivate der Monooxy-Verbindungen.

a) Aminoderivate der Monooxy-Verbindungen C_nH_{2n-10}O₂.

2-Acetamino-3-oxy-thionaphthen bezw. 2-Acetimino-3-oxy-thionaphthen-dihydrid $C_{10}H_{9}O_{2}NS = C_{6}H_{4} \stackrel{C(OH)}{\sim} C \cdot NH \cdot CO \cdot CH_{3}$ bezw. $C_{6}H_{4} \stackrel{CH(OH)}{\sim} C \cdot N \cdot CO \cdot CH_{3}$.

B. Beim Behandeln einer Lösung von Thionaphthenchinon-oxim-(2) (Bd. XVII, S. 468) in Eisessig mit Essigsäureanhydrid und Zinkstaub (Bezdzik, Friedländer, Koeniger, B. 41, 240). — Farblose Nädelchen (aus Alkohol). F: 189,5°.

5 - Amino - 3 - Oxy - thionaphthen C₈H₇ONS, s. nebenstehende H₂N. C · OH Formel. B. Durch Verschmelzen der nicht näher beschriebenen S-[4-Amino-2-carboxy-phenyl]-thioglykolsäure mit Alkalien und Erhitzen der entstandenen 5-Amino-3-oxy-thionaphthen-carbonsäure-(2) (Höchster Farbw., D. R. P. 201837; C. 1908 II, 1309). — Kondensiert sich mit Isatin zu einem Wolle rötlichgrau färbenden Küpenfarbstoff.

6 - Amino - 3 - oxy - thionaphthen C₈H₇ONS, s. nebenstehende Formel. B. Analog der vorhergehenden Verbindung (H. F., D. R. P. 201837; C. 1908 II, 1309). — Liefert bei vorsichtiger Oxydation 6.6'-Di-amino-thioindigo H₂N·C₆H₃<CO_SC:C<CO_SC₆H₃·NH₂ (Syst. No. 2933) (H. F., D. R. P. 198644; C. 1908 I, 2119). Beim Erhitzen mit Isatin in Eisessig entsteht ein Wolle gelborange färbender Küpenfarbstoff (H. F., D. R. P. 201837).

b) Aminoderivate der Monooxy-Verbindungen C_nH_{2n-16}O₂.

1. Aminoderivate des 9-0xy-xanthens $C_{18}H_{10}O_2$ (Bd. XVII, 8. 129).

8.6 - Bis - dimethylamino - 9 - oxy - xanthen, 8.6-Bis-dimethylamino-xanthydrol, Carbinolbase N(CHa)e (CHa)aN des Pyronins G C₁₇H₂₀O₂N₂, s. nebenstehende Formel.

B. Entsteht in Form von Farbsalzen beim Behandeln von 3.6-Bis-dimethylamino-xanthen (S. 591) mit Oxydationsmitteln wie salpetrige Säure, Bleidioxyd oder Eisenchlorid in saurer Lösung, ferner mit Chloranil in Benzol (Leonhardt & Co., D. R. P. 59003; Frdl. 3, 94; Biehringer, B. 27, 3304; J. pr. [2] 54, 232; vgl. Gerber & Co., D. R. P. 60505; Frdl. 3, 96; Möhlav, Koch, B. 27, 2896). — Durch Fällen der Farbsalzlösung mit Ammoniak werden hellrote Flocken erhalten, die sich in Alkohol, Chloroform und Aceton leicht, in heißem Benzol, in Ligroin, Schwefelkohlenstoff, Ather und Essigester schwer lösen; die Lösungen in Alkohol, Aceton und Chloroform sind rot und fluorescieren gelb; die Lösungen in Benzol, Schwefelkohlenstoff, Ather und Essigester sind gelb, fluorescieren nicht und nehmen auf Zusatz von Essigsäure rote Färbung und gelbe Fluorescenz an; die Lösung in Ligroin ist rot und wird beim Erwärmen hellgelb (Bir., J. pr. [2] 54, 233). Beim Erwärmen mit Kaliumferricyanid in alkal. Lösung auf dem Wasserbad entsteht 3.6-Bis-dimethylamino-xanthon (S. 614) (Bir., In aikai. Losing auf dem Wasserbad einstein 3.5-Bi-dimetrykimino-kantilon (5. 514) (Bis., J. pr. [2] 54, 235). — Farbsalze. Zur Konstitution vgl.: Bis., B. 27, 3300; J. pr. [2] 54, 234, 248, 249; Werner, B. 34, 3310; Watson, Soc. 105 [1914], 761; Wa., Meek, Soc. 107 [1915], 1571; Kehrmann, A. 372 [1910], 292, 296; 414 [1918], 164, 173, 178; B. 54 [1921], 657; v. Braun, Aust, B. 49 [1916], 991; v. Br., B. 51 [1918], 440; Moir, Soc. 119 [1921], 1662; vgl. ferner die Angaben in Bd. XIII, S. 733—735 und Bd. XVII, S. 117—118. — Die Farbsalze lösen sich in Wasser und Alkohol mit roter Farbe und gelber Fluorescenz; sie färben annichbiete. Beumzelle stef (1. 5 C. H. tanningebeizte Baumwolle rot (L. & Co.). — $[C_{17}H_{19}ON_2]Cl + \frac{1}{1_2}H_2O$. Grünglänzend (Bie., J. pr. [2] 54, 234). — $[C_{17}H_{19}ON_2]Cl + HCl + H_2O$. Blauglänzende Prismen; geht beim Erhitzen im Xylolbad in das Salz $[C_{17}H_{19}ON_2]Cl + \frac{1}{1_2}H_2O$ (s. o.) über (Bie., J. pr. [2] 54, 233, 234). Die wäßr. Lösung wird durch Zusatz von rauchender Salzsäure braun gefärbt und verliert die Fluorescenz (BIE., Topaloff, J. pr. [2] 65, 505 Anm. 1). — Zinkehlorid-Doppelsalz, Pyronin G'vgl. Bir., J. pr. [2] 54, 219; Schultz, Tab. No. 568. — 2[C₁₇H₁₈ON₂]Cl +PtCl. Grünglänzende Prismen (Biz., J. pr. [2] 54, 234).

3.6 - Bis - diäthylamino - 9 - oxy - xanthen,
3.6-Bis-diäthylamino-xanthydrol, Carbinolbase
des Pyronins B C₃₁H₅₀O₅N₂, s. nebenstehende
Formel. B. Das Zinkehlorid-Doppelsalz entsteht durch Erhitzen einer schwefelsauren Lösung
des nicht näher beschriebenen 3.6-Bis-diäthylamino-xanthens mit Eisenchlorid-Lösung unter
Zusatz von Zinkehlorid-Lösung auf dem Wasserbad (Leonhardt & Co., D. R. P. 59003;
Frdl. 3, 95). — Zinkehlorid-Doppelsalz, Pyronin B (vgl. Bieheringer, J. pr. [2] 54,
219). Zur Konstitution vgl. die Angaben bei 3.6-Bis-dimethylamino-9-oxy-xanthen (s. o.).
Krystalle (aus salzsäurehaltigem Wasser); färbt bläulicher als Pyronin G (L. & Co).

3.6-Bis-dimethylamino-9-oxy-thioxanthen, 3.6-Bis-dimethylamino-thioxanthydrol, Carbinolbase des Thiopyronins $C_{17}H_{20}ON_2S$, s. untenstehende Formel. B. Entsteht in Form des Farbsalzes, wenn man 4.4'-Bis-dimethylamino-diphenylmethan mit einer Lösung von Schwefelblumen in rauchender Schwefelsäure (25%) (CH₃)₂N · N(CH₃)₂ SO₂-Gehalt) bei 30° bis höchstens 35° einige Zeit stehen läßt, die mit Wasser verdünnte Lösung aufkocht, filtriert und mit Zinkohlorid-Lösung versetzt (Geigy & Co., D. R. P. 65739; Frdl. 8, 97; BIEHRINGER, TOPALOFF, J. pr. [2] 65. 500). — Durch Zusatz von Natronlauge zur Farbsalzlösung erhält man die Farbbase als violetten flockigen Niederschlag, der sich nach sorgfältigem Auswaschen in warmem Alkohol, Aceton und Chloroform leicht, in heißem Benzol schwer mit roter Farbe und schwach gelber Fluorescenz löst und in Ligroin unlöslich ist (BIE., T.). Die Farbbase liefert bei kurzem Erwärmen mit Natronlauge in alkoh. Lösung 3.6-Bis-dimethylamino-thioxanthon (S. 614) und 3.6-Bisdimethylamino-thioxanthen (S. 592) (BIE., T.). 3.6-Bis-dimethylamino-thioxanthon entsteht auch beim Behandeln des Zinkehlorid-Doppelsalzes mit alkal. Permanganat-Lösung (Biz., T.). Beim Behandeln des Zinkohlorid-Doppelsalzes mit Zinkstaub und Salzsäure bildet sich 3.6-Bisdimethylamino-thioxanthen (BIE., T.). — Farbsalze. Zur Konstitution vgl. die Angaben bei 3.6-Bis-dimethylamino-9-oxy-xanthen (s. o.). — [C₁₇H₁₈N₁₈]Cl+HCl. Goldgrünglänzende Nadeln. F: 245° (Zers.); leicht löslich in Wasser und Alkohol mit roter Farbe und gelber Fluorescenz; Farbe und Fluorescenz werden durch Zusatz von viel Salzsäure nicht verändert (Bie., T.). — Zinkchlorid-Doppelsalz, Thiopyronin. Grünglänzende Nadeln (aus verd. Salzsäure). Löslich in Wasser mit roter Farbe und gelber Fluorescenz (Bie., T.), schwer in Alkohol mit roter Fluorescenz (G. & Co.). Löslich in konz. Schwefelsäure mit orangegelber Farbe (G. & Co.). — 2[C₁₇H₁₈N₂S]Cl+PtCl₄. Grünglänzende Nadeln (Bie., T.).

2. Aminoderivat des 9-0xy-9-methyl-xanthens C14H12O2 (Bd. XVII, S. 131).

3.6-Bis-dimethylamino-9-oxy-9-methyl-xanthen, 3.6-Bis-dimethylamino-9-methyl-xanthydrol C₁₈H₂₂O₂N₂, s. nebenstehende Formel. (CH₂)₂N .

B. Entsteht in Form eines Farbsalzes beim Behandeln von 3.6-Bis-dimethylamino-9-methyl-xanthen, erhalten durch 2-stündiges Erwärmen von α.α-Bis-[4-dimethylamino-2-oxy-phenyl]-äthan (Bd. XIII, S. 814) mit konz. Schwefelsäure auf dem Wasserbade, mit Natriumnitrit-Lösung und verd. Salzsäure (Möhlau, Koch, B. 27, 2895). — Durch Fällen der Farbsalzlösung mit Alkalien und Umkrystallisieren des Niederschlags aus Alkohol erhält man eine dunkelviolette Krystallmasse, die bei 152° schmilzt, in Alkohol, Äther und Aceton löslich ist und sich in verd. Säuren mit roter Farbe und gelber Fluorescenz löst. — Farbsalze. Zur Konstitution vgl. die Angaben bei 3.6-Bis-dimethylamino-9-oxy-xanthen (S. 596). — Chlorid und Sulfat sind sehr leicht löslich, Jo did und Pikrat sehwer löslich. — 2 [C₁₈H₂₁ON₂]Cl+PtCl₄. Grauschwarze Blättchen mit grünem Metallglanz.

3. Aminoderivat eines x-0xy-4.5-oxido-x-āthyl-phenanthren-tetra-hydrids $C_{1e}H_{1e}O_{2}$.

Chlorverbindung aus α -Methylmorphimethin, "Chloromethylmorphimethin" $C_{18}H_{28}O_2NCl = 0 < C_{14}H_0Cl(0 \cdot CH_2) \cdot CH_2 \cdot CH_2 \cdot N(CH_3)_8$ s. bei Morphin, Syst. No. 4785.

c) Aminoderivate der Monooxy-Verbindungen C_nH_{2n-18}O₂.

2-{Amino-[2-oxy-naphthyl-(1)]-methyl}-furan, Amino-[2-oxy-HCCH naphthyl-(1)]- α -furyl-methan(,, β -Naphtholfuralamin") C_1 H₁, O_2 N, s. HCO-C-CH-NH₂ nebenstehende Formel. B. Das salzsaure Salz entsteht durch Kochen von Furfurylidenamino-[2-oxy-naphthyl-(1)]- α -furyl-methan mit 10%-iger Salzsaure (Betti, G. 83 I, 13). — Fast farblose Schuppen. F: 115°. — C_{18} H₁₂O₂N + HCl. Krystalle. Braunt sich bei 100° und ist bei 200° noch nicht geschmolzen.

Furfurylidenamino - [2 - oxy - naphthyl - (1)] - α - furyl - methan $C_{50}H_{15}O_{5}N = HC$ —CH HC—CH). B. Bei der Kondensation von β -Naphthol mit HC- $O \cdot C \cdot CH(C_{16}H_{6} \cdot OH) \cdot N : HC \cdot C \cdot O \cdot CH$). B. Bei der Kondensation von β -Naphthol mit Furfurol und Ammoniak in alkoh. Lösung bei gewöhnlicher Temperatur (B., G. 30 Π , 315). — Farblose Nadeln (aus Alkohol). F: 115°. Schwer löslich in siedendem Alkohol. Die Lösung in Benzol färbt sich auf Zusatz einer ätherischen Eisenchlorid-Lösung intensiv violett.

d) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-20}O_2$.

2-[4.4'-Bis-dimethylamino-α-oxy-benshydryl]-thiophen, Bis-[4-dimethylamino-phenyl]-α-thienyl-carbinol, Carbinolbase des Thiophengrüns C₁₁H₂₄ON₂S = HC—CH

B. Entsteht in Form von Farbsalzen beim Behandeln HC·S·C·C(OH)[C₆H₄·N(CH₄)₃]₂

B. Entsteht in Form von Farbsalzen beim Behandeln von Bis-[4-dimethylamino-phenyl]-α-thienyl-methan (S. 593) mit Braunstein in sohwefelsaurer Lösung (Livi, B. 20, 515). Bei der Einw. von α-Thienylmagnesiumjodid auf 4.4'-Bis-dimethylamino-benzophenon (Thomas, C. r. 146, 643; Bl. [4] 5, 734). Die Carbinolbase erhält man durch Einw. von Ammoniak oder Natronlauge auf die Farbsalz-Lösungen (L.). — Die Carbinolbase wurde als dunkelbraunes Öl erhalten. Unlöslich in Wasser, löslich in Alkohol, Bensol und Chloroform; färbt sich mit überschüssiger Säure dunkelrot (L.). — Farbsalze. Zur Konstitution vgl. die Angaben in Bd. XIII, S. 733—735. Die Farbsalze (Thiophengrün) färben etwas gelbstichiger als Malschitgrün (L.). — [C₁₁H₁₂N₁S]HSO₄. Blättohen. Sehr leicht löslich in Wasser (L.). — Oxalsaures Salz 2[C₁₁H₁₂N₁S]HSO₄. Blättohen. Sehr leicht löslich in Wasser und Alkohol (L.). — Pikrinsaures Salz [C₁₁H₁₂N₁S]C₂H₄O₇N₂. Kupferglänzende Blättohen (aus Chloroform). Zersetzt sich leicht beim Erhitzen; sehr schwer löslich in Wasser, leicht in Alkohol). Verliert bei 100° Krystallwasser. Leicht löslich in Alkohol und Chloroform; leicht löslich in Wasser mit blaugrüner Farbe, die auf Zusatz von Säuren rotgelb wird (L.).

³⁾ So formuliert auf Grund einer Priv.-Mitt. von BETTI (vgl. B., G. 88 I, 25).

e) Aminoderivate der Monooxy-Verbindungen C_nH_{2n-24}O₂.

8.6-Bis-dimethylamino-9-oxy-9-phenyl-xanthen, 8.6-Bis-dimethylamino-9-phenyl-xanthydrol, Carbinolbase des Tetramethylrosamins C₂₂H₂₄O₂N₂₂, s. untenstehende Formel. B. Entsteht in Form von Farb-C(CaHs)(OH) salzen beim Erwärmen von 1 Mol Benzotrichlorid · N(CH2)2 mit 2 Mol 3-Dimethylamino-phenol in Benzol auf (CH₃)₂N· dem Wasserbad (Heumann, Rey, B. 22, 3002; vgl. BASF, D. R. P. 56018; Frdl. 3, 168; B. Ehringer, J. pr. [2] 54, 250). Durch Erhitzen von 1 Mol Benzaldehyd mit 2 Mol 3-Dimethylamino-phenol in Gegenwart von Zinkchlorid und 33°/siger Salzsaure zunächst auf dem Wasserbad, dann unter Luftzutritt bis auf 200° (BAYER & Co., D. R. P. 62574; Frdl. 3, 100). — Durch Fällen der Lösung des salzsauren Farbsalzes mit Sodalösung oder Ammoniak entsteht ein dunkelroter flockiger Niederschlag (H., R.; vgl. Br., A. 391 [1912], 311). — Farbsalze. Zur Konstitution vgl. die Angaben bei 3.6-Bisdimethylamino-9-oxy-xanthen (S. 596). Die Salze lösen sich sehr leicht in Alkohol und Wasser mit blauroter Farbe und gelbroter Fluorescenz (H., R.). Die Lösung in konz. Schwefelsaure ist orangegelb und wird auf Zusatz von Wasser rot (H., R.). Lichtabsorption: H., R. Die Salze färben Seide und Wolle rosa bis dunkelblaurot, erstere mit gelbroter Fluorescenz (H., R.). — Salzsaures Salz, Tetramethylrosamin [C₂₂H₂₃ON₂]Cl. Schwarzrote Nadeln mit stahlblauem Reflex (H., R.). — 2[C₂₃H₂₃ON₂]Cl+PtCl₄. Dunkelroter Niederschlag (H., R.).

3.6 - Bis-diäthylamino-9-oxy-9-phenyl-xanthen, 3.6 - Bis-diäthylamino-9-phenyl-xanthydrol, Carbinolbase des Tetraäthylrosamins C₂₇H₂₂O₂N₃, s. untenstehende Formel. B. Das salzsaure Farbsalz (Tetra
āthylrosamin) entsteht durch Erwärmen von
1 Mol Benzotrichlorid mit 2 Mol 3-Diäthylaminophenol in Toluol auf dem Wasserbad (BASF,
D. R. P. 56018; Frdl. 3, 167; vgl. Heumann, Rey, B. 22, 3004). — Durch Fällen der FarbsalzLösung mit Alkalien bilden sich rötliche Flocken, die in Alkohol mit roter Farbe und gelbroter Fluorescenz löslich, in Äther ohne Fluorescenz mit rötlichgelber Farbe ziemlich löslich sind (BASF). — Zur Konstitution der Farbsalze vgl. die Angaben bei 3.6-Bis-dimethylamino9-oxy-xanthen (S. 596). — Zinkchlorid-Doppelsalz. Violettrotes Pulver. Löslich in warmem Wasser und in Alkohol mit roter Farbe und gelbroter Fluorescenz; löslich in konz. Schwefelsäure mit gelber Farbe; färbt Seide und Wolle bläulichrot mit roter Fluorescenz (BASF).

3.6-Bis-acetamino-9-oxy-9-phenyl-xanthen, 3.6-Bis-acetamino-9-phenyl-xanthydrol, Carbinolbase des N.N'-Diacetyl-rosamins $C_{22}H_{20}O_4N_2$, s. untenstehende Formel. B. Das salzsaure Farbsalz entsteht neben salzsaurem 6-Acetamino-9-phenyl-fluoron und anderen Produkten durch Erchitzen von Benzotrichlorid mit 3-Acetamino-phenol in Nitrobenzol auf 150—160°; die Carbinolbase erhält man durch Stehenlassen oder durch Aufkochen der Farbsalz-Lösung mit Ammoniak (Kehrmann, Dengler, B. 41, 3440, 3442). — Die Carbinolbase krystallisiert aus Äther in farblosen Nadeln, ist leicht löslich in Äther und liefert mit Salzsäure das salzsaure Farbsalz zurück (K., D.). — Salzsaures Farbsalz, N.N'-Diacetyl-rosamin [C₂₂H₁₉O₃N₂]Cl (bei 120° getrocknet). Zur Konstitution vgl. die Angaben bei 3.6-Bis-dimethylamino-9-oxy-xanthen (S. 596). Gelbbraune, blauschimmernde Nadeln (aus Alkohol). Schwer löslich in kaltem, leichter in siedendem Wasser mit gelber Farbe und grüner Fluorescenz; die Lösung in Alkohol fluoresciert sehr stark gelblich grün; die Färbung der gelbgrün fluorescierenden Lösung in konz. Schwefelsäure wird durch Eiszusatz nicht verändert (K., D.).

f) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-32}O_2$.

1. Aminoderivate der Monooxy-Verbindungen CasHanOa.

1. Aminoderivate des 3-Oxy-1.1.3-triphenyl-phthalans $C_{M}H_{M}O_{2}$ (Bd. XVII, S. 149).

8 · Oxy · 1.3 · diphenyl · 1 · [4 · dimethylamino · phenyl] · phthalan $C_{55}H_{55}O_{5}N = C_{6}H_{4} \cdot C(C_{6}H_{5})(OH)$ O. Eine von Pérard, C.r. 143, 237; 146, 935 mit dieser Formel beschriebene Verbindung ist nach dem Literatur-Schlußtermin der 4. Aufl. dieses

- Handbuchs [1. I. 1910] von Pérard, A. ch. [9] 7, 347 ff., 360, 361; 8, 34 als 3-Oxy-1.1-diphenyl-3-[4-dimethylamino-phenyl]-phthalan bezw. 2-[4-Dimethylamino-benzoyl]-triphenyl-carbinol, Bd. XIV. S. 244, erkannt worden.
- 8 Alkyloxy 1.1 diphenyl 3 [4 dimethylamino phenyl] phthalane $C_6H_4 \stackrel{C[C_6H_4 \cdot N(CH_5)_3](O \cdot Alk)}{C(C_6H_5)_3}$ O. Verbindungen, denen vielleicht diese Konstitution zukommt. s. bei 2-[4-Dimethylamino-benzoyl]-triphenylcarbinol, Bd. XIV, S. 245.
- 8 Oxy-1-phenyl-1.3 bis-[4-dimethylamino-phenyl]-phthalan $C_{30}H_{30}O_2N_2 = C_0H_4 < \frac{C[C_0H_4 \cdot N(CH_2)_2](OH)}{C(C_0H_5)[C_0H_4 \cdot N(CH_2)_2]} > 0$ ist desmotrop mit 4'-Dimethylamino-2-[4-dimethylamino-benzoyl]-triphenylcarbinol, Bd. XIV, S. 245.
- $\begin{array}{lll} \textbf{8 Oxy 1.1.8 tris [4 dimethylamino phenyl] phthalan} & C_{32}H_{35}O_{2}N_{3} = \\ C_{6}H_{4} & \overbrace{C[C_{6}H_{4} \cdot N(CH_{2})_{2}](OH)} & O & \text{ist desmotrop mit 4'.4''-Bis-dimethylamino-2-[4-dimethylamino-benzoyl]-triphenylcarbinol, Bd. XIV, S. 245.} \end{array}$
- 2. Aminoderivat des 1.3-Diphenyl-1-[4-oxy-phenyl]-phthalans $C_{36}H_{30}O_2$. 1.3-Bis-[4-dimethylamino-phenyl]-1-[4-methoxy-phenyl]-phthalan $C_{31}H_{32}O_2N_2 = C_6H_4 \underbrace{C(C_6H_4 \cdot O \cdot CH_3)[C_6H_4 \cdot N(CH_3)_2]}_{C(C_6H_4 \cdot O \cdot CH_3)[C_6H_4 \cdot N(CH_3)_2]}$ O. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. bei 4"-Dimethylamino-4'-methoxy-2-[4-dimethylamino-benzoyl]-triphenylcarbinol, Bd. XIV, S. 281.
- 2. Aminoderivat des 3-0xy-1.3-diphenyl-1-p-tolyl-phthalans $C_{27}H_{22}O_{2}$.
 3-Oxy-1.3-bis-[4-dimethylamino-phenyl]-1-p-tolyl-phthalan $C_{21}H_{32}O_{2}N_{3}=C_{6}H_{4}\cdot N(CH_{3})_{3}[OH)$ ist desmotrop mit 4"-Dimethylamino-4'-methyl-2-[4-dimethylamino-benzoyl]-triphenylcarbinol, Bd. XIV, S. 246.
- 3. Aminoderivate der Monooxy-Verbindungen $C_{28}H_{24}O_{2}$.
- 1. Aminoderivat des 3-Oxy-1.3-diphenyl-1-[4-äthyl-phenyl]-phthalans $C_{18}H_{14}O_{1}$.
- $\begin{array}{lll} \textbf{8-Oxy-1.8-bis-[4-dimethylamino-phenyl]-1-[4-\ddot{a}thyl-phenyl]-phthalan $C_{33}H_{34}O_2N_2$} \\ = C_0H_4 & C(C_0H_4\cdot N(CH_2)_2)(OH) & O \text{ ist desmotrop mit 4"-Dimethylamino-4'-$athyl-2-[4-dimethylamino-benzoyl]-triphenylcarbinol, Bd. XIV, S. 247.} \\ \end{array}$
- 2. Aminoderivat des 3 Oxy 1.3 diphenyl-1-[3.4 dimethyl phenyl]-phthalans $C_{12}H_{14}O_{2}$.
- - 2. Aminoderivate der Dioxy-Verbindungen.
 - a) Aminoderivate der Dioxy-Verbindungen $C_n H_{2n} O_3$.

 Di-l-erythrosimin $C_0 H_{15} O_0 N = \begin{bmatrix} H_2 C \cdot CH(OH) \cdot CH(OH) \cdot CH \\ O & \end{bmatrix}_3 NH$ s. Bd. I, S. 855.
 - b) Aminoderivate der Dioxy-Verbindungen $C_nH_{2n-14}O_3$.

Dihydromethylmorphimethin $C_{19}H_{25}O_9N=0< C_{14}H_{11}(OH)(O\cdot CH_9)\cdot CH_2\cdot CH_2\cdot N(CH_9)_9$ und dessen Derivate s. bei Morphin, Syst. No. 4785.

 $\begin{array}{lll} \textbf{Methylmorphimethindichlorid} & C_{19}H_{19}O_{3}NCl_{2} = O < C_{14}H_{2}Cl_{2}(OH)(O \cdot CH_{2}) \cdot CH_{2} \cdot CH_{2} \cdot N(CH_{3})_{3} \text{ s. Syst. No. 4785.} \end{array}$

c) Aminoderivate der Dioxy-Verbindungen C_nH_{2n-16}O₃.

Methylmorphimethine $C_{19}H_{22}O_2N=O< C_{14}H_9(OH)(O\cdot CH_2)\cdot CH_2\cdot CH_2\cdot N(CH_3)_2$, ihre Analogen und Derivate s. bei Morphin, Syst. No. 4785.

d) Aminoderivate der Dioxy-Verbindungen C_nH_{2n-24}O₃.

Aminoderivate der Dioxy-Verbindungen $C_{19}H_{14}O_{3}$.

1. Aminoderivat des 3.9-Dioxy-9-phenyl-xanthens $C_{19}H_{14}O_{2}$ (Bd. XVII, S. 169).

6-Amino-3.9-dioxy-9-phenyl-xanthen, 6-Amino-3-oxy-9-phenyl-xanthydrol $C_{19}H_{18}O_2N$, Formel I.

I.
$$H_{2N}$$
. OH II. H_{2N} . $OC(C_0H_5)(OH)$ OH

Anhydroverbindung, 6 - Amino - 9 - phenyl - fluoron $C_{10}H_{13}O_2N$, Formel II, s. S. 617.

2. Aminoderivat des 9-Oxy-9-[2-oxy-phenyi]-xanthens C₁₂H₁₄O₂.

3.6-Bis-dimethylamino-9-oxy-9-[4-dimethylamino-2-oxy-phenyl]-xanthen, 3.6-Bis-dimethylamino-9-[4-dimethylamino-2-oxy-phenyl]-xanthydrol C₃₄H₂₀O₃N₃, s. nebenstehende Formel. B. Das salzsaure Salz entsteht beim Erhitzen von 3-Dimethylamino-phenol mit Phosgen auf 160° (v. MEYENBURG, B. 29, 509, 510). — Salzsaures Salz [C₃₅H₂₆O₂N₃]Cl. (CH₃)₂N. (CH₃)₂N. (CH₃)₂N. (CH₃)₂N. (CH₃)₂N. (CH₃)₂N. (CH₃)₂N. (CH₃)₃N. (CH₃)₄N. (CH₃)₄N. (CH₃)₅N. (CH₃)

3. Aminoderivate der Trioxy-Verbindungen.

a) Aminoderivate der Trioxy-Verbindungen $C_nH_{2n}O_4$.

1. Aminoderivate der Trioxy-Verbindungen $C_5H_{10}O_4$.

Pentosimine (1-Amino-pentosen) $C_5H_{11}O_4N=O< C_5H_4(OH)_5\cdot NH_2$ sind bei den entsprechenden Pentosen eingeordnet, z. B. l-Arabinosimin in Bd. I, S. 864.

N-Aryl-Derivate sind bei den entsprechenden Aminen eingeordnet, so Verbindung aus l-Arabinose und Anilin Bd. XII, S. 228; Benzidinderivat der l-Arabinose Bd. XIII, S. 227.

2. Aminoderivat einer Trioxy-Verbindung $C_6H_{18}O_4$.

Verbindung aus l-Rhamnose und Anilin $C_{19}H_{17}O_4N=C_6H_{11}O_4\cdot NH\cdot C_6H_5$ bezw. $C_6H_{18}O_4\cdot N\cdot C_8H_5$ s. Bd. XII, S. 228; vgl. a. 4. Hauptabteilung, Kohlenhydrate.

b) Aminoderivate der Trioxy-Verbindungen $C_nH_{2n-16}O_4$.

Oxymethylmorphimethin $C_{19}H_{26}O_4N=O< C_{14}H_2(OH)_2(O\cdot CH_2)\cdot CH_2\cdot CH_2\cdot N(CH_2)_2$ bezw. desmotrope Formen s. bei Morphin, Syst. No. 4785.

4. Aminoderivate der Tetraoxy-Verbindungen.

Hexosimine (1-Amino-hexosen) $C_0H_{12}O_5N = O < C_0H_7(OH)_4 \cdot NH_2$ sind bei den entsprechenden Hexosen eingeordnet, z. B. d-Glykosimin in Bd. I, S. 902.

N-Aryl-Derivate $C_0H_{12}O_5N \cdot Ar$ sind bei den entsprechenden Aminen Ar · NH₂ behandelt, z. B. Verbindung der d-Glykose mit Anilin Bd. XII, S. 229, mit β -Naphthylamin Bd. XII, S. 1283, mit o-Phenylendiamin Bd. XIII, S. 20, mit p-Phenetidin Bd. XIII, S. 459, mit Anthranilsaure Bd. XIV, S. 336.

N-Carbaminyl-Derivate (Ureide) sind bei Kohlensäure-Derivaten eingeordnet, z. B. d-Glykoseureid Bd. III, S. 60. Die substituierten Carbaminyl-Derivate CoH₁₂O₂N. CO·NH·R sind bei den Aminen R·NH, behandelt, z. B. d-Glykose-methylureid Bd. IV,

8. 66, d-Glykose-[ω -phenyl-ureid] Bd. XII, S. 355.

F. Oxo-amine.

1. Aminoderivate der Monooxo-Verbindungen.

- a) Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-2}O_2$.
- 1. Aminoderivate des Butyrolactons C₄H₆O₂ (Bd. XVII, S. 234).

 $\alpha\text{-Amino-butyrolacton}\quad C_4H_7O_2N = \frac{H_1C--CH\cdot NH_2}{H_2C\cdot O\cdot CO}. \quad B. \text{ des Hydrochlorids und Hydrobromids s. bei } \gamma\text{-Oxy-}\alpha\text{-amino-buttersäure (Bd. IV, S. 514)}. \quad Das freie } \alpha\text{-Amino-butyrolacton entsteht aus den Salzen durch Behandeln mit Kaliumcarbonat in wenig Wasser und$ Extraktion mit Åther (E. FISCHER, BLUMENTHAL, B. 40, 111). — Farbloser Sirup. Sehr leicht löslich in Wasser. — Verwandelt sich leicht in 3.6-Dioxo-2.5-bis-[β-oxy-āthyl]-piperazin (Syst. No. 3637). — Salze: E. F., B. — C₄H₂O₂N + HCl (im Vakuum über Schwefelsäure). F: 201—203° (korr.) (Zers.). — C₄H₂O₂N + HCl + H₂O. Prismen (aus verd. Alkohol). F: ca. 90°. Verliert das Krystallwasser schon im Vakuum über Schwefelsaure. Leicht löslich in Wasser, sehr schwer in Alkohol, fast unlöslich in Äther, Essigester, Chloroform und Petroläther. — $C_4H_7O_2N+HBr$. Doppelpyramiden (aus heißem Alkohol). F: 227° (korr.) (Zers.). Sehr leicht löslich in Wasser, ziemlich schwer in heißem Alkohol, unlöslich in Äther.

 $\mathbf{H_{a}C}$ — $\mathbf{CH} \cdot \mathbf{NH} \cdot \mathbf{CO} \cdot \mathbf{C_{0}H_{5}}$. B. Bei kurzem α-Bensamino-butyrolacton $C_{11}H_{11}O_3N = \frac{H_2C - CH \cdot NH \cdot CO \cdot C_6H_5}{H_4C \cdot O \cdot CO}$. B. Bei kurzem Kochen von γ-Oxy-α-benzamino-buttersäure (Bd. IX, S. 256) in Wasser (E. F., B., B. 40, 112; Sörensen, Andersen, H. 56, 274, 295; C. 1908 II, 683, 684). — Krystalle (aus Wasser). F: 142° (korr.) (F., B.), 144—145° (Maquennescher Block) (S., A.). Löslich in Wasser; die wäßr. Lösung reagiert neutral; leicht löslich in kaltem Essigester, Chloroform und Aceton, löslich in warmem Alkelich in kalten reagienten Alkelich (F. R.). (F., B.; S., A.). Löslich in kalten verdünnten Alkalien (F., B.).

2. Aminoderivate der Monooxo-Verbindungen $C_aH_aO_s$

1. Aminoderivate des y-Methyl-butyrolactons C₅H₆O₂ (Bd. XVII, S. 235). α - Amino - γ - methyl - butyrolacton, α - Amino - γ - valerolacton $C_5H_5O_5N=H_5N\cdot HC$ — CH_2

OC·O·CH·CH₂. B. Das Hydrochlorid entsteht durch Einleiten von Chlorwasserstoff in eine alkoh. Lösung von γ-Oxy-α-amino-n-valeriansäure (Bd. IV, S. 519); man erhält das freie Lacton durch Behandeln des Hydrochlorids mit Kaliumcarbonat in wenig Wasser und Extraktion mit Ather (E. FISCHER, LEUCHS, B. 85, 3798). — Basisch riechendes, hygroskopisches Öl. Kp.: 123—125°. — Liefert beim Aufbewahren für sich oder in äther. Lösung 3.6-Dioxo-2.5-bis- $[\beta$ -oxy-propyl]-piperazin (Syst. No. 3637). — $C_8H_9O_2N+HCl$. Krystalle (aus Alkohol). Schmilzt unter Zersetzung bei 198—200° (korr).

 α - Anilino - γ - methyl - butyrolacton, α - Anilino - γ - valerolacton $C_{11}H_{13}O_1N = C_2H_3 \cdot NH \cdot HC$ CH₂

R

Man settint sinc at how T Anilino - γ - anilino - relative - relat $OC \cdot O \cdot CH \cdot CH_2$. B. Man sättigt eine äther. Lösung von γ -Oxy- α -anilino-n-valeriansäure-nitril (Bd. XII, S. 506) mit trocknem Chlorwasserstoff, behandelt das salzsaure Nitril mit konz. Salzsäure, löst das Reaktionsprodukt in Wasser und versetzt die filtrierte wäßrige Lösung tropfenweise mit Ammoniak (v. Miller, Plöchl, Münch, B. 27, 1294). — Nadeln (aus Äther). F: 59° (Zers.). Leicht löslich in Alkohol, Äther und Benzol.

α-[ω-Phenyl-ureido]-γ-methyl-butyrolacton, α-[ω-Phenyl-ureido]-γ-valerolacton $C_{18}H_{14}O_{2}N_{3}=$ $C_{18}H_{14}O_{3}N_{3}=$ $O_{C}^{C}\cdot O\cdot CH\cdot CH_{3}$ $O_{C}^{C}\cdot O\cdot CH\cdot CH_{3$

 $\begin{array}{l} \gamma \cdot [\beta \cdot \text{Naphthalinsulfamino-methyl}] \cdot \text{butyrolacton, } \delta \cdot [\beta \cdot \text{Naphthalinsulfamino}] \\ \gamma \cdot \text{valerolacton } C_{14}H_{18}O_4\text{NS} = \\ \frac{H_2\text{C} - \text{CH}_2}{\text{OC} \cdot \text{O} \cdot \text{CH} \cdot \text{CH}_2 \cdot \text{NH} \cdot \text{SO}_2 \cdot \text{C}_{10}H_2} \\ \text{oC} \cdot \text{O} \cdot \text{CH} \cdot \text{CH}_2 \cdot \text{NH} \cdot \text{SO}_2 \cdot \text{C}_{10}H_2 \\ \text{oC} \cdot \text{O} \cdot \text{CH} \cdot \text{CH}_2 \cdot \text{NH} \cdot \text{SO}_2 \cdot \text{C}_{10}H_2 \\ \text{alkal. Lösung von } \gamma \cdot \text{Oxy} \cdot \delta \cdot \text{amino-n-valeriansäure (Bd. IV, S. 519) mit } \beta \cdot \text{Naphthalinsulfo-chlorid in Ather und thersattigt mit Salzsäure (Leuchs, Spiettertösser, B. 40, 305).} \\ \text{Tafeln (aus verd. Alkohol). } F: 143-144^{\circ} \text{ (korr.)}. \text{ Sehr leicht löslich in Chloroform, Essigester und Aceton, sehr schwer in Alkohol und Benzol, fast unlöslich in Ather und Petroläther.} \\ \end{array}$

$$\begin{split} & \gamma\text{-}[(\beta\text{-Naphthalinsulfonyl-methylamino})\text{-methyl]-butyrolacton, } \delta\text{-}[\beta\text{-Naphthalinsulfonyl-methylamino}]\text{-}\gamma\text{-valerolacton } C_{1e}H_{17}O_{4}NS = \\ & \frac{H_{2}C - CH_{2}}{OC \cdot O \cdot CH \cdot CH_{2} \cdot N(CH_{3}) \cdot SO_{2} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{2} \cdot N(CH_{3}) \cdot SO_{2} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{2} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot SO_{3} \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3} \cdot N(CH_{3}) \cdot C_{10}H_{7}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3}} \\ & \frac{C_{10}H_{17}O_{4}NS}{OC \cdot O \cdot CH \cdot CH_{3}} \\ & \frac{C_{10}H_{17}O_{4}NS}{O$$

- B. Man kocht 1-Methyl-5-oxy-piperidon-(2) (Syst. No. 3239) mit Natronlauge, schüttelt die Lösung (der nicht isolierten γ -Oxy- δ -methylamino-n-valeriansäure) mit β -Naphthalin-sulfochlorid in Äther und übersättigt mit Salzsäure (L., Spl., B. 40, 306). Tafeln. F: 82° bis 83°
 - 2. Aminoderivat des α -Methyl-butyrolactons $C_zH_0O_2$ (Bd. XVII, S. 237).

 $\beta\text{-Anilino-}\alpha\text{-methyl-butyrolacton} \quad C_{11}H_{13}O_{2}N = \frac{C_{0}H_{5}\cdot NH\cdot HC - CH\cdot CH_{3}}{H_{2}C\cdot O\cdot CO}. \quad B. \quad Man$

reduziert β-Anilino-α-methyl-Δ^{α,β}-crotonlacton (Bd. XVII, S. 413) mit Natrium und heißem Amylalkohol, versetzt mit Wasser, säuert die wäßr. Lösung an und kocht kurze Zeit (Wolff, A. 288, 22). — Nadeln oder Blätter (aus Wasser). F: 92°. Leicht löslich in Chloroform und Benzol, löslich in Alkohol und Äther, sehr schwer löslich in kaltem Ligroin. — Reduziert Febilingsche Lösung beim Erwärmen. Wird durch Aufkochen mit verd. Salzsäure nicht verändert.

- 3. Aminoderivate des α, γ, γ -Trimethyl-butyrolactons $C_7H_{12}O_2$ (Bd. XVII, 8. 242).
- α-Amino-α.γ.γ-trimethyl-butyrolacton $C_7H_{13}O_2N=\frac{(H_2N)(CH_3)C-CH_2}{OC\cdot O\cdot (CH_3)_2}$. B. Durch Kondensation von Discetonskohol (Bd. I, S. 836) mit Kaliumcyanid und Ammoniumchlorid und nachfolgende Verseifung des Reaktionsprodukts mit konz. Salzsäure (Kohn, M. 29, 512; K., Bum, M. 30, 738). Blättrige Krystallmasse. F: 30—34°; K_{14-14} : 122° bis 124° (K.). Pikrat $C_7H_{13}O_2N+C_2H_2O_7N_3$. Gelbes, krystallinisches Pulver (aus heißem Wasser oder verd. Alkohol). F: 145—146°; wird beim Aufbewahren braun (K., B.).

α - Methylamino - α.γ.γ - trimethyl - butyrolaeton $C_8H_{15}O_8N = (CH_8 \cdot NH)(CH_8)C$ — CH_2

OC·O·C(CH₂)₂
B. Durch Kondensation von Discetonalkohol (Bd. I, S. \$36) mit Kaliumcyanid und Methylaminhydrochlorid und nachfolgende Verseifung des Reaktionsprodukts mit konz. Salzsäure (K., M. 29, 514; K., B., M. 30, 738). — Fast geruchloses Ol. Kp₁₈: 108—111° (K.). — Pikrat C₂H₁₈O₂N + C₆H₂O₇N₃. Orangegelbe Nadeln. F: 179° (K., B.).

 α - Dimethylamino - $\alpha \gamma \gamma$ - trimethyl - butyrolation $C_0H_{17}O_2N=$ [(CH₃)₂N](CH₃)C——CH₂

OC O C(CH₃)₂. B. Durch Kondensation von Diacetonalkohol (Bd. I, S. 836) mit Kaliumcyanid und Dimethylaminhydrochlorid unter Zusatz von etwas freiem Dimethylamin und nachfolgende Verseifung des Reaktionsprodukts mit konz. Salzsäure (K., M. 29, 515; K., B., M. 30, 739). — Kp₁₁: 111° (K., B.). — Pikrat C₂H₁₇O₂N + C₃H₃O₇N₃. Citronengelbe Nadeln. F: 175° (K., B.). — $2C_3H_{17}O_2N + 2HCl + PtCl_4$. Orangerote Tafeln (K.; K., B.). Sehr schwer löslich in Alkohol, leicht in Wasser (K.).

 $\label{eq:Hydroxymethylat} \textbf{Hydroxymethylat} \quad \textbf{C}_{10}\textbf{H}_{21}\textbf{O}_{2}\textbf{N} = \textcolor{blue}{[\textbf{HO}\cdot(\textbf{CH}_{2})_{3}\textbf{N}](\textbf{CH}_{2})\textbf{C}} - \textbf{CH}_{2}$ Das Jodid $OC \cdot O \cdot C(CH^3)^3$ entsteht aus a-Dimethylamino-a.y.y-trimethyl-butyrolacton und Methyljodid (K., M. 29, 517). Aus dem Jodid erhält man das Chlorid durch Umsetzung mit Silberchlorid (K.). Jodid. Sirup. — $C_{10}H_{20}O_2N \cdot Cl + AuCl_3$. Gelber Niederschlag. — $2C_{10}H_{20}O_2N \cdot Cl + PtCl_4$. Nadeln und Spieße.

 α - Athylamino - $\alpha \gamma \gamma$ - trimethyl - butyrolacton $C_0H_{17}O_0N=$ $(C_0H_5 \cdot NH)(CH_3)C - CH_2$

. B. Durch Kondensation von Diacetonalkohol (Bd. I, S. 836)

OC·O·C(CH₃)₂. B. Durch Kondensation von Diacetonalkonol (Bd. 1, S. 850) mit Kaliumcyanid und Äthylaminhydrochlorid unter Zusatz von etwas wäßriger Äthylamin-Lösung und nachfolgende Verseifung des Reaktionsprodukts mit konz. Salzsäure (K., B., M. 30, 741). — Fast farblose Flüssigkeit. Kp₁₅: 138—140°. — 2C₉H₁₇O₂N + 2HCl + PtCl₄.

 α -[Methyl-(β -oxy- $\ddot{\alpha}$ -oxy- $\ddot{\alpha}$ - γ - γ -trimethyl-butyrolacton-hydroxymethylat

 $(HO \cdot CH_2 \cdot CH_2)(CH_3)_2N(OH) > C - CH_2$ $C_{11}H_{23}O_4N =$ **B**. Das Jodid entsteht, wenn man α -Methylamino- α , γ - γ -trimethyl-butyrolacton in Wasser mit Äthylenoxyd behandelt und

das erhaltene sirupõse α -[Methyl- $(\beta$ -oxy-āthyl)-amino]- α . γ - γ -trimethyl-butyrolacton in Methyljodid auflöst (K., M. 30, 405). — Jodid. Krystalle. — C₁₁H₂₂O₃N·Cl+AuCl₃. Krystalle.

 α - [ω - Phenyl - thioureido] - $\alpha.\gamma.\gamma$ - trimethyl - butyrolacton $C_{14}H_{18}O_{2}N_{2}S =$ $(C_aH_a \cdot NH \cdot CS \cdot NH)(CH_a)C - CH_a$

OC O \cdot C(CH₃)₂. B. Aus 1 Mol α -Amino- α . γ . γ -trimethyl-butyrolacton

und 1 Mol Phenylsenföl (K., M. 29, 513). — Krystalle (aus heißem Alkohol). F: 195—198°.

 $\begin{array}{c} \text{C}_{6}\text{H}_{8}\cdot\text{NH}\cdot\text{CS}\cdot\text{N(CH}_{9}) > \text{C} \\ \text{CH}_{3} > \text{C} \\ \text{CH}_{2} \end{array} > \begin{array}{c} \text{CH}_{2} \\ \text{C} \\ \text{C} \end{array}$ α -[N-Methyl-N'-phenyl-thioureido]- α - γ - γ -trimethyl-butyrolaeton $C_{1h}H_{2n}O_{2}N_{2}S =$. B. Aus 1 Mol α-Methylamino-α.γ.γ-trimethyl-butyro-

OC·O·C(CH₂), lacton und 1 Mol Phenylsenföl (K., M. 29, 514). — Blättrige Krystalle (aus heißem Alkohol). F: 152-154°.

 α -[N-Äthyl-N'-phenyl-thioureido]- α . γ - γ -trimethyl-butyrolacton $C_{18}H_{\bullet \circ}O_{\circ}N_{\circ}S =$ $C_{\bullet}H_{5} \cdot NH \cdot CS \cdot N(C_{\bullet}H_{5}) > C$ CH_{\bullet} CH_{\bullet}

B. Aus α-Athylamino-α.γ.γ-trimethyl-butyrolacton OCOCCH3)

und Phenylsenföl in Äther (Kohn, Bum, M. 30, 742). — Weißes, sandiges Pulver (aus ca. 90% igem Alkohol). F: 168°.

 α - Äthylnitrosamino - $\alpha.\gamma.\gamma$ - trimethyl - butyrolacton $C_0H_{16}O_3N_2$ =

ON·N(C,H,) В. Aus α -Athylamino - α . γ . γ -trimethyl - butyrolacton beim $O\dot{C} \cdot O \cdot \dot{C}(CH_3)_2$

Behandeln mit Kaliumnitrit und verd. Schwefelsäure (K., B., M. 30, 742). — Farblose Nädelchen (aus Äther). F: 67°.

4. Aminoderivat des γ . γ -Dimethyl- β -äthyl-butyrolactons $C_8H_{14}O_2$.

 $\gamma \cdot \gamma$ - Dimethyl - β - [β - amino - äthyl] - butyrolacton $C_8H_{15}O_2N = H_2C - CH \cdot CH_2 \cdot CH_2 \cdot NH_2$ Man erwärmt 10 Tle. Methoäthylheptanonolid - oxim OC·O·C(CH₂)₂ (Bd. XVII, 8. 429) 1 Stde. mit 100 Tln. konz. Schwefelsäure auf 100°, gießt auf Eis und kocht (Bd. XVII, 8. 429) 1 Stde. mit 100 Tln. konz. Schwefelsäure auf 100°, gießt auf Eis und kocht (Bd. XVII, 8. 429) 1 Stde. mit 100 Tln. konz. Schwefelsäure auf 100°, gießt auf Eis und kocht die wäßr. Lösung 3 Stdn. (Tiemann, B. 29, 2619). — Ol. — $2C_6H_{15}O_2N + 2HCl + PtCl_4$. Gelbe Blättchen. Schwer löslich in Alkohol, löslich in kaltem Wasser.

b) Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-4}O_2$.

1. Aminoderivate des 2-0xo-furan-dihydrids-(2.5) C4H4O2 (Bd. XVII, S. 249).

8-Anilino-2-oxo-furan-dihydrid-(2.5), α -Anilino- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{10}H_{\phi}O_{\phi}N=HC$ — $C\cdot NH\cdot C_{\phi}H_{\phi}$ ist desmotrop mit 3-Phenylimino-2-oxo-furantetrahydrid, α -Phenylimino-butvrolacton, Bd. XVII, S. 403.

4-Chlor-3-anilino-2-oxo-furan-dihydrid-(2.5), β -Chlor- α -anilino- $\Delta^{\alpha,\beta}$ -croton-lacton $C_{10}H_8O_8NCl= {ClC=-C\cdot NH\cdot C_6H_5\over H_2C\cdot O\cdot CO}$ ist desmotrop mit 4-Chlor-3-phenylimino-2-oxo-furantetrahydrid, β -Chlor- α -phenylimino-butyrolacton, Bd. XVII, S. 403.

4-Brom-3-anilino-2-oxo-furan-dihydrid-(2.5), β -Brom- α -anilino- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{10}H_0O_8NBr = {BrC - C \cdot NH \cdot C_6H_5 \over H_2C \cdot O \cdot CO}$ ist desmotrop mit 4-Brom-3-phenylimino-2-oxo-furantetrahydrid, β -Brom- α -phenylimino-butyrolacton, Bd. XVII, S. 403.

4-Anilino-2-oxo-furan-dihydrid-(2.5), β -Anilino- $\Delta^{\alpha,\beta}$ -crotonlacton, Anilid der Tetronsäure $C_{10}H_9O_3N = \begin{array}{c} C_6H_5 \cdot NH \cdot C = CH \\ H_2 \dot{C} \cdot O \cdot \dot{C}O \end{array}$ ist desmotrop mit 4-Phenylimino-2-oxo-furantetrahydrid, β -Phenylimino-butyrolacton, Bd. XVII, S. 404.

3.4-Dichlor-5-methylanilino-2-oxo-furan-dihydrid-(2.5), $\alpha.\beta$ -Dichlor- γ -methylanilino - $\Delta^{\alpha.\beta}$ - crotonlacton, Mucochlorsäure - pseudomethylanilid $C_{11}H_{\gamma}O_{2}NCl_{2} = ClC = CCl$ C₂H₅·N(CH₃)·HC·O·CO

Alkohol (DIECKMANN, PLATZ, B. 37, 4841 Anm.). — Krystalle (aus Alkohol). F: 141°.

4-Anilino-3-benzamino-2-oxo-furan-dihydrid-(2.5), β -Anilino- α -benzamino- $\Delta^{\alpha,\beta}$ - orotonlacton, Anilid der α -Benzamino-tetronsäure $C_{17}H_{14}O_3N_3=C_6H_6\cdot NH\cdot C$ — $C\cdot NH\cdot CO\cdot C_6H_5$ bezw. desmotrope Formen. B. Aus α -Benzamino-tetronsäure $H_2C\cdot O\cdot CO$ (8. 623) beim Kochen mit Anilin (Wolff, Lütteinghaus, A. 312, 143). — Prismen (aus

2. Aminoderivate des 2-0x0-3-methyl-furan-dihydrids-(2.5) $C_bH_aO_2$

Alkohol). F: 191-192°. Löslich in Chloroform.

(Bd. XVII, S. 253).

4-Amino-2-oxo-3-methyl-furan-dihydrid-(2.5), β -Amino- α -methyl- $\Delta^{\alpha,\beta}$ -oroton-lacton, Amid der α -Methyl-tetronsäure $C_5H_7O_2N = \frac{H_2N \cdot C - C \cdot CH_3}{H_2C \cdot O \cdot CO}$ ist desmotrop mit β -Imino- α -methyl-butyrolacton, Bd. XVII, S. 418.

4-Anilino-2-oxo-8-methyl-furan-dihydrid-(2.5), β-Anilino-α-methyl- $\Delta^{\alpha,\beta}$ -croton-lacton, Anilid der α-Methyl-tetronsäure $C_{11}H_{11}O_2N= \begin{array}{c} C_6H_5\cdot NH\cdot C=C\cdot CH_3\\ H_2\dot{C}\cdot O\cdot \dot{C}O \end{array}$ ist desmotrop mit β-Phenylimino-α-methyl-butyrolacton, Bd. XVII, S. 413.

4-Phenylnitrosamino-2-oxo-3-methyl-furan-dihydrid-(2.5), β -Phenylnitrosamino- α -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton $C_{11}H_{10}O_3N_3= \begin{array}{c} ON\cdot N(C_6H_5)\cdot C - C\cdot CH_2\\ H_2\dot{C}\cdot O\cdot \dot{C}O \end{array}$. B. Aus β -Anilino- α -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton (Bd. XVII, S. 413) in Eisessig beim Behandeln mit Natriumnitrit (Wolff, A. 288, 22). — Gelbe Nådelchen (aus verd. Alkohol). F: 103—104° (Zers.) Leicht löslich in Alkohol und Ather.

3. Aminoderivat des Campholactons C, H₁₄O₃ (Bd. XVII, S. 259).

Lacton der 2-Amino-1,2.3-trimethyl-cyclopentanol-(3)-carbonsäure-(1), Aminocampholacton $C_9H_{18}O_2N$, s. nebenstehende Formel. B. Bei der Reduktion von Nitrocampholacton (Bd. XVII, S. 260) mit Zinn und Salzsäure (Scheyver, Soc. 78,

565). — Wasserhaltige Tafeln (aus Wasser). Schmilzt wasserhaltig bei 39°, wasserfrei bei 66°. Leicht löslich in Äther und Wasser, schwer in Petroläther. — $C_9H_{16}O_3N+HCl$. Farblose Prismen. Zersetzt sich oberhalb 200°, ohne zu schmelzen. — Mit Platinchlorid entsteht nicht das Chloroplatinat des Lactons, sondern das der (nicht isolierten) 2-Amino-1.2.3-trimethyl-cyclopentanol-(3)-carbonsäure-(1) $2C_9H_{17}O_3N+2HCl+PtCl_4$ [goldgelbe Nadeln, sehr leicht löslich in Wasser].

4. Aminoderivate der Monooxo-Verbindungen $C_{10}H_{16}O_2$.

1. Aminoderivat des Dihydro- β -campholenolacions $C_{10}H_{16}O_3$ (Bd. XVII, S. 262).

Lacton der 1-Amino-2-oxy-2.3.3-trimethyl-cyclopentylessigsäure, Amino-dihydro- β -campholenolacton $C_{10}H_{17}O_2N$, s. nebenstehende Formel. B. Beim Kochen von Nitro-dihydro- β -campholenolacton (Bd. XVII, S. 263) mit Zinn und Eisessig (Kachler, Spitzer, M. 4, 650; Béhal, Blaise, Bl. [3] 15, 29). — Geht durch Einw. von salpetriger Säure in Campholenolacton (Bd. XVII, S. 301) über (Tiemann, B. 30, 413). — Salze: K., Sp. — $C_{10}H_{17}O_2N + HCl$. Blätter. Schmilzt unter Zersetzung bei 250°. Leicht löslich in Wasser. — $2C_{10}H_{17}O_2N + 2HCl + PtCl_4$. Gelbe Krystalle. Schwer löslich in Wasser.

2. Aminoderivate des 6.8 - Oxido - p - menthanons - (2) $C_{10}H_{16}O_2$ (Bd. XVII, S. 265).

Oxim des 1-Amino-6.8-oxido-p-menthanons-(2), Pinolnitrolamin $C_{10}H_{18}O_2N_2 = \frac{O}{CH_2N)(CH_3)C} = \frac{O}{C(:N\cdot OH)\cdot CH_2} CH \cdot C(CH_3)_2$. B. Beim Übergießen von Pinolnitrosochlorid (Bd. XVII, S. 45) mit alkoh. Ammoniak (Wallach, Otto, A. 253, 262). — Zähe Masse. Kp₁₄: 129—130°. — $C_{10}H_{18}O_3N_2 + HCl$. Krystalle (aus Wasser oder verd. Alkohol).

Oxim des 1-Anilino-6.8-oxido-p-menthanons-(2), Pinolnitrolanilin $C_{16}H_{25}O_{5}N_{5}=$ = $C_{6}H_{5}\cdot NH\cdot C_{16}H_{16}O(:N\cdot OH)$. B. Aus Pinolnitrosochlorid (Bd. XVII, S. 45) und Anilin in Alkohol (W., O., A. 253, 266). — Blättchen. F: 174—175°. Leicht löslich in Alkohol und Ather. — $C_{16}H_{25}O_{5}N_{2}+HCl$.

Oxim des 1-Bensylamino-6.8-oxido-p-menthanons-(2), Pinolnitrolbensylamin $C_{17}H_{24}O_2N_3=C_8H_5\cdot CH_2\cdot NH\cdot C_{10}H_{16}O(:N\cdot OH)$. B. Aus Pinolnitrosochlorid (Bd. XVII, 8. 45) und Benzylamin (W., O., A. 253, 264). — Prismen (aus trocknem Ather). F: 135° bis 136°. Krystallisiert aus Alkohol mit 1 Mol C_2H_6O . — $C_{17}H_{24}O_2N_2+HCl$. Leicht löslich in Wasser.

Oxim des 1- β -Naphthylamino-6.8-oxido-p-menthanons-(2), Pinolnitrol- β -naphthylamin $C_{20}H_{24}O_2N_2=C_{10}H_7\cdot NH\cdot C_{10}H_{11}O(:N\cdot OH)$. B. Aus Pinolnitrosochlorid (Bd. XVII, 8. 45) und β -Naphthylamin (W., O., A. 253, 266). — Krystalle (aus Alkohol-Äther). F: 194° bis 195°. Schwer löslich in heißem Alkohol, unlöslich in Wasser.

c) Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-6}O_2$.

2 - Anilinoacetyl - thiophen, ω - Anilino - acetothienon $C_{11}H_{11}ONS = HC$ —CH . B. Durch Vermischen der konzentrierten alkoholischen $H^{\circ}_{C} \cdot S \cdot C \cdot CO \cdot CH_{2} \cdot NH \cdot C_{6}H_{5}$. B. Durch Vermischen der konzentrierten alkoholischen Lösungen von 1 Mol 2-Bromacetyl-thiophen (Bd. XVII, S. 288) und 2 Mol Anilin unter Kühlung (Brunswig, B. 19, 2892). — Blättehen (aus Ligroin). F: 80°.

Acetylderivat $C_{14}H_{13}O_{2}NS = SC_{4}H_{3}\cdot CO\cdot CH_{2}\cdot N(C_{8}H_{5})\cdot CO\cdot CH_{2}$. B. Aus ω -Anilino-acetothienon und Acetylchlorid (B., B. 19, 2892). — Braune Krystalle (aus Alkohol). F: 141,5°. Schwer löslich in Alkohol, leicht in Äther.

2-[Phenylnitrosamino-acetyl]-thiophen, ω -Phenylnitrosamino-acetothienon $C_{12}H_{16}O_2N_2S=SC_2H_3\cdot CO\cdot CH_2\cdot N(C_2H_3)\cdot NO.$ B. Man verteilt ω -Anilino-acetothienon in Alkohol, leitet Stickovyde ein, bis Lösung erfolgt, und fällt mit Wasser (B., B. 19, 2893). — Rhomben (aus Alkohol). F: 81°. Sehr schwer löslich in Wasser, schwer in kaltem Alkohol, leicht in Ather.

d) Aminoderivate der Monooxo-Verbindungen C_nH_{2n-8}O₂.

8.5.6 - Tribrom - 2 - anilino - 1.1¹ - oxido - 1 - methyl - cyclohexadien - (2.5) - on - (4) $C_{18}H_8O_8NBr_3 = OC < \frac{CBr : C(NH \cdot C_8H_8)}{CBr} > C < \frac{CH_2}{O}$. Eine Verbindung · $C_{18}H_8O_8NBr_3$, der vielleicht diese Konstitution zukommt, s. Bd. XII, S. 134.

e) Aminoderivate der Monooxo-Verbindungen C_nH_{2n-10}O₂.

1. Aminoderivate des Phthalids CaHeO, (Bd. XVII, S. 310).

- **3-Amino-phthalid** $C_8H_7O_2N=C_6H_4$ CO_{CO} o ist desmotrop mit Phthalaldehydsaureimid $HN:CH\cdot C_6H_4\cdot CO_2H$, Bd. X, S. 668.
- 8-Anilino-phthalid $C_{14}H_{11}O_2N = C_6H_4 \stackrel{CH(NH \cdot C_6H_5)}{CO}O$ ist desmotrop mit Phthalaldehydsäure-anil $C_6H_5 \cdot N : CH \cdot C_6H_4 \cdot CO_2H$, Bd. XII, S. 521.
- 3-Methylanilino-phthalid, Phthalaldehydsäure-pseudomethylanilid $C_{15}H_{13}O_2N=C_6H_4$ CH[N(CH₂)·C₆H₅] O. B. Aus Phthalaldehydsäure (Bd. X, S. 666) und Methylanilin in Alkohol (Glogauer, B. 29, 2039). Krystalle (aus Alkohol). F: 150°. Unlöslich in Soda. Zerfällt bei der Einw. von wäßr. Ammoniak in Phthalaldehydsäure und Methylanilin.
- $\textbf{3-p-Toluidino-phthalid} \quad C_{15}H_{15}O_2N = C_6H_4\underbrace{CH(NH\cdot C_6H_4\cdot CH_3)}_{CO} \\ \textbf{O} \quad \text{ist desmotrop} \\ \textbf{mit Phthalaldehydsäure-p-tolylimid } \quad CH_3\cdot C_6H_4\cdot N: CH\cdot C_6H_4\cdot CO_2H, \quad \textbf{Bd. XII, S. 971.} \\ \textbf{O} \quad
- 3-[2-Nitro-4-methyl-anilino]-phthalid $C_{15}H_{18}O_4N_2 = C_6H_4 \underbrace{CH[NH\cdot C_6H_2(NO_2)\cdot CH_3]}_{CO}O$ ist desmotrop mit Phthalaldehydsäure-[2-nitro-4-methyl-anil] $CH_3\cdot C_6H_2(NO_2)\cdot N:CH\cdot C_6H_4\cdot CO_2H$, Bd. XII, S. 1005.
- 3-Naphthylamino-phthalid $C_{18}H_{18}O_2N=C_6H_4$ $CH(NH\cdot C_{10}H_7)$ O ist desmotrop mit Phthalaldehydsäure-naphthylimid $C_{10}H_7\cdot N:CH\cdot C_6H_4\cdot CO_2H$, Bd. XII, S. 1250, 1303.
- $\textbf{N.N'-Di-[phthalidyl-(3)]-benzidin} \quad C_{33}H_{30}O_4N_2 = \begin{bmatrix} OC < \overset{C_0H_4}{O} > CH \cdot NH \cdot C_0H_4 \end{bmatrix}_3 \text{ ist desmotrop mit N.N'-Bis-[2-carboxy-benzal]-benzidin } \\ [HO_3C \cdot C_6H_4 \cdot CH : N \cdot C_6H_4]_3, Bd. XIII, S. 232.$
- 6 Amino phthalid C₈H₇O₂N, s. nebenstehende Formel ¹). B. Durch Reduktion von 6-Nitro-phthalid (Bd. XVII, S. 313) in Alkohol mit Zinn und Salzsäure (Hoenig, B. 18, 3448) oder besser mit Ammonium-hydrosulfid (Teppema, R. 42 [1923], 40). Prismen (aus Chloroform). F: 178° (H.). Fast unlöslich in kaltem Wasser, schwer löslich in Alkohol, Äther und Benzol, etwas leichter in Chloroform (H.). Heiße Kalilauge liefert 5-Amino-2-oxymethyl-benzoesäure (in Bd. XIV, S. 601 entsprechend der früheren Konstitutionsauffassung als 4-Amino-2-oxymethyl-benzoesäure aufgeführt) (H.). Hydrochlorid. Nadeln. Leicht löslich in Wasser (H.). 2C₈H₇O₂N + 2HCl + PtCl₄ (bei 110°). Gelbe Rhomboeder (H.).
 - 3.3-Diamino-phthalid $C_8H_8O_2N_2=C_6H_4 < CO > CO > 0$. Vgl. hierzu Bd. XVII, S. 482.

2. Aminoderivate der Monooxo-Verbindungen $\mathrm{C_9H_8O_2}$.

1. Aminoderivate des 2-Oxo-chromans C₂H₈O₂ (Bd. XVII, S. 315).

 $\begin{array}{lll} \textbf{3.4-Dibrom - 3-bensamino - 2-oxo-chroman,} & \textbf{3-Bensamino - cumarin - dibromid} \\ \textbf{C}_{16}\textbf{H}_{11}\textbf{O}_{3}\textbf{NBr}_{2} & = \textbf{C}_{6}\textbf{H}_{4} \\ \textbf{O}_{0} & \textbf{CO} & \textbf{S. Bd. XVII, S. 487.} \\ \end{array}$

Verbindung C₁₈H₁₈O₃N, Formel I bezw. II, s. Syst. No. 4190.

I.
$$CH \xrightarrow{CH_2} N(:0):C(CH_3)_8$$

$$O \xrightarrow{CO}$$

$$II. \qquad O \xrightarrow{CH} \xrightarrow{CH_2} N \xrightarrow{O} C(CH_3)_8$$

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von TEPPEMA, R. 42, 40.

4 - Diacetylamino - 2 - oxo - chroman, 4 - Diacetylamino - 8.4 - dihydro - cumarin
$C_{12}H_{13}O_4N = C_6H_4$ $C_{12}H_{13}O_4N = C_6H_4$ $C_{13}H_{13}O_4N = C_6H_4$ $C_{14}H_{13}O_4N = C_6H_4$ $C_{15}H_{13}O_4N = C_6H_4$
S. 604) beim Kochen mit Essigsäureanhydrid und mehrmaligen Abdampfen mit Alkohol (Posner, B. 42, 2531). — Krystalle (aus 50%) igem Alkohol). F: 116—117%. Unlöslich in kaltem Wasser, ziemlich leicht löslich in Alkohol; unlöslich in verd. Säuren und Alkalicarbonaten.

2. Aminoderivat des 3-Methyl-phthalids C.H.O. (Bd. XVII, S. 318).

6 - Amino - 3 - methyl - phthalid C₂H₂O₂N, s. nebenstehende Formel. B. Durch Reduktion von 6 - Nitro - 3 - methyl - phthalid (Bd. XVII, S. 319) mit Zinn und Salzsäure auf dem Wasserbad (GIEBE, B. 29, 2542). — Nadeln. F: 126—127°. Löslich in Alkohol, Äther und Chloroform; löslich in Säuren und Alkalien. — Hydrochlorid. Schwer löslich.

3. Aminoderivate der Monooxo-Verbindungen $C_{10}H_{10}O_2$.

- 1. Aminoderivat des 1-a-Furyl-cyclohexen-(3)-ons-(5) C₁₀H₁₀O₂.
- 8 Anilino 1 α furyl cyclohexen (3) on (5) $C_{16}H_{15}O_2N = HC$ —CH $HC \cdot O \cdot U \cdot HC < CH_2 CO$ $CH_3 \cdot C(NH \cdot C_6H_5) > CH$ ist desmotrop mit 1- α -Furyl-cyclohexandion-(3.5)-monoanil, α -Furyl-dihydroresorcin-monoanil, Bd. XVII, S. 465.

2. Aminoderivat des 2-Oxo-4-methyl-chromans C₁₀H₁₀O₂ (Bd. XVII, S. 320).

3.4 - Dibrom -7 - dimethylamino -2 - oxo -4 - methyl - chroman, 7 - Dimethylamino-4-methyl-cumarin-dibromid C₁₂H₁₃O₂NBr₂, s. nebenstehende Formel. B. Aus 7-Dimethylamino-4-methyl-cumarin und Brom in kaltem Chloroform (v. Pechmann, Schaal, B. 32, 3693). — Nädelchen (aus Eisessig). F: 210° (Zers.). — Bei der Einw. von Wasser oder wasserhaltigen Flüssigkeiten entsteht 3-Brom-7-dimethylamino-4-methyl-cumarin.

4. Aminoderivat des 3,3,6-Trimethyl-phthalids C₁₁H₁₂O₂ (Bd. XVII, S. 324).

5-Amino-3.3.6-trimethyl-phthalid, Aminocannabinolacton $C_{11}H_{12}O_2N$, s. nebenstehende Formel. B. Aus 5-Nitro-3.3.6-trimethyl-phthalid (Bd. XVII, S. 324) durch Reduktion mit Zinn und Salzsäure oder mit Jodwasserstoffsäure und Phosphor in Eisessig (Wood, Spivey, Easterfield, Soc. 75, 32). — Farblose Nadeln (aus heißem Wasser). F: 119°. — $C_{11}H_{13}O_2N + 2HCl + PtCl_4$.

5. Aminoderivate des 3.3-Diäthyl-phthalids $C_{18}H_{14}O_{3}$ (Bd. XVII, 8. 325).

6-Amino-3.3-diäthyl-phthalid $C_{19}H_{15}O_{2}N$, s. nebenstehende Formel. B. Durch Reduktion von 6-Nitro-3.3-diäthyl-phthalid mit Eisenpulver und Eisessig (Bauer, B. 41, 504). — Nadeln (aus Alkohol).

F: 165°. Die Lösungen in Methanol und Alkohol fluorescieren blau. — Wird durch Chromaëure in Eisessig oder durch Kaliumdichromat, Natriumdichromat oder Kaliumpermanganat in verd. Schwefelsäure zu 3.3.3'.3'-Tetraäthyl-[6.6'-azophthalid] (S. 645) oxydiert. Durch Diazotieren mit Natriumnitrit und verd. Salzsäure und Erwärmen der Diazoniumlösung auf dem Wasserbad erhält man 6-Oxy-3.3-diäthyl-phthalid (S. 23). — $2C_{12}H_{15}O_{2}N + 2HCl + PtCl_{4}$.

6-Acetamino-3.3-diäthyl-phthalid $C_{14}H_{17}O_2N$, s. neben-characteristics of the control of the stehende Formel. B. Man erwarmt 1 Gew.-Tl. 6-Amino-3.3-diäthyl-phthalid mit 4 Gew.-Tln. Essigsäureanhydrid einige Stunden auf dem Wasserbad (B., B. 41, 505). — Wasserhaltige Nadeln (aus Wasser). Schmilzt wasserfrei bei 121,5—122,5°.

6. Aminoderivat einer Monooxo-Verbindung $C_{15}H_{20}O_2$.

Aminoderivat aus Santoninoxim (,,Santoninaminamin) $C_{15}H_{21}O_2N$, s. nebenstehende Formel¹). B. Das Sulfat entsteht durch Reduktion von Santoninoxim (Bd. XVII, S. 506) mit Zinkstaub in alkoholisch-schwefelsaurer Lösung bei 30—40°; man zerlegt es durch Soda (Gucci, Grassi-Cristaldi, G. 22 I, 3). — Nadeln (aus Äther). F: 96°; sehr leicht löslich in Wasser (Gu., Gr.-C., G. 22 I, 6). — Sehr unbeständig; zerfällt schon beim Kochen mit Wasser in Ammoniak und Hyposantonin (Bd. XVII, S. 346) (Gu., Gr.-C., G. 22 I, 11). Bei der Einw. von Natriumnitrit und Essigsäure in der Kälte erhält man Hyposantonin und Stickstoff (Gu., Gr.-C., G. 22 I, 9). — $C_{15}H_{21}O_2N + HCl$ (Gu., Gr.-C., R. A. L. [4] 7 II, 35). Frismen (aus Alkohol). Monoklin sphenoidisch (Bucca, G. 22 I, 7; vgl. Groth, Ch. Kr. 5, 462). F: 199°; sehr leicht löslich in warmem Wasser und Alkohol; [α] $_{0}^{\text{in}}$: —136,8° (Wasser; c = 2) (Gu., Gr.-C., G. 22 I, 4, 5; R. A. L. [4] 7 II, 35). [α] $_{0}^{\text{in}}$: —103,7° (Wasser; c = 1,5) (Gu., Gr.-C., G. 22 I, 5). — $2C_{15}H_{21}O_2N + 2Hcl + PtCl_4$. Orangerote Krystalle (Gu., Gr.-C., G. 22 I, 8).

f) Aminoderivate der Monooxo-Verbindungen $C_n H_{2n-12} O_2$.

1. Aminoderivate der Monooxo-Verbindungen $C_9H_6O_{2}$

- 1. Aminoderivate des Cumarins C₂H₄O₂ (Bd. XVII, S. 328).
- 8-Acetylanilino-cumarin $C_{17}H_{13}O_3N=C_6H_4$ $CH:C\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Beim Erwärmen von 1 Mol Salicylaldehyd mit 1 Mol des Natriumsalzes der Acetylanilinoessigsäure (Bd. XII, S. 476) und überschüssigem Essigsäureanhydrid (Rebuffat, G. 19, 57). Farblose Prismen (aus Äther-Alkohol). F: 155—156°. Löslich in Alkalilaugen, unlöslich in Alkalicarbonat-Lösungen.
- 8-Bensamino-cumarin $C_{16}H_{11}O_{5}N=C_{6}H_{4}$ $CH:C\cdot NH\cdot CO\cdot C_{6}H_{5}$ ist desmotrop mit 2-Oxo-3-benzimino-chroman, Bd. XVII, S. 487.
- 4-Anilino-cumarin, Anilid der Benzotetronsäure $C_{18}H_{11}O_8N=C_8H_4$ C_6H_4 C_6H_5 :CH ist desmotrop mit 2-Oxo-4-phenylimino-chroman (Anil der Benzotetronsäure), Bd. XVII, S. 488.
- 4-o-Toluidino-cumarin, o-Toluidid der Bensotetronsäure $C_{16}H_{13}O_2N=C_6H_4\cdot CH_4\cdot CH_2$: ist desmotrop mit 2-Oxo-4-o-tolylimino-chroman (o-Tolylimid der Benzotetronsäure), Bd. XVII, S. 488.
- 6-Amino-cumarin C₂H₇O₂N, s. nebenstehende Formel. B. Aus
 6-Nitro-cumarin durch Einw. von Ferrosulfat und Ammoniak (Taege,
 B. 20, 2110; Ar. 229, 75) oder von Eisenfeile in verd. Essigsäure (FraPolli, Chiozza, A. 95, 253) oder Salzsäure (Morgan, Micklethwait, Soc. 85, 1233). Durch
 elektrolytische Reduktion von 3-Nitro-zimtsäure oder ihrem Äthylester in konz. Schwefelsäure
 (Gattermann, B. 27, 1937, 1938; Bayer & Co., D. R. P. 82445; Frdl. 4, 60). Hellgelbe
 Nadeln (aus Wasser oder Benzol). F: 163—164° (Mo., Mi.), 164° (T., Ar. 229, 75), 168° (G.),
 168—170° (F., Ch.). Schwer löslich in kaltem, leicht in heißem Wasser und heißem Alkohol,
 fast unlöslich in Äther (F., Ch.; T., Ar. 229, 75) und Chloroform (T., Ar. 229, 75). Unlöslich
 in Sodalösung (G.). Wird durch siedende Alkalilauge zersetzt (F., Ch.). Reagiert mit
 diazotiertem 6 Amino cumarin unter Bildung von 6.6′ Diazoamino cumarin (S. 652)
 (Mo., Mi.). Hydrochlorid. Farblose Krystalle. Löslich in Wasser, schwer löslich in
 Alkohol (Mo., Mi., Soc. 85, 1231, 1233). Sulfat. Farblose Krystalle. Löslich in Wasser (Mo.,
 Mi.). 2C₅H₇O₂N + 2HCl + PtCl₄. Rote Nadeln. Löslich in warmem Wasser (T., Ar. 239, 76).

¹) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von Clemo, Hawoeth, Walton, Soc. 1929, 2368; 1930. 1110; Cl., Ha., Soc. 1930, 2579; Ruzicka, Eighenberger, Helv. 13, 1117; TSCHITSCHIBABIN, SCHTSCHUKINA, B. 63, 2793; Wedekind, Tettweiler, B. 64, 387, 1796 über die Konstitution des Santonins.

- 6-Methylamino-cumarin C₁₀H₂O₂N = CH₃·NH·C₂H₃·CH:CH von 6-[Benzolsulfonyl-methylamino]-cumarin mit konz. Salzsäure im Rohr auf 150—170° (Morgan, Micklethwart, Soc. 85, 1237, 1238). Gelbe Nadeln (aus Petroläther). F: 105° bis 106°.
- 6-Dimethylamino-cumarin $C_{11}H_{11}O_2N = (CH_3)_2N \cdot C_6H_3 < CH \cdot CH$. B. Durch Exhitzen von Trimethyl-[cumarinyl-(6)]-ammoniumbromid (8. u.) auf 120° (Mo., Mr., Soc. 85, 1237). Orangegelbe Nadeln (aus Petroläther). F: 85—86°.

Trimethyl-[cumarinyl-(6)]-ammoniumhydroxyd, 6-Dimethylamino-cumarinhydroxymethylat $C_{12}H_{15}O_3N=(CH_3)_3N(OH)\cdot C_6H_3$ CH:CH O—CO B. Das Bromid entsteht durch Erhitzen von bromwasserstoffsaurem 6-Amino-cumarin mit überschüssigem Methylalkohol im Rohr auf 160° (Mo., Mr., Soc. 85, 1237). Das Jodid bildet sich beim Kochen von 1 Mol 6-Amino-cumarin mit 3 Mol Methyljodid und 2 Mol Kaliumhydroxyd in alkoh. Lösung oder beim Erhitzen von 6-Dimethylamino-cumarin mit Methyljodid in Alkohol (Mo., Mr., Soc. 85, 1237). — $C_{12}H_{14}O_3N\cdot Br$. Farblose Nadeln (aus Alkohol). F: 229°; leicht löslich in Wasser, schwer in absol. Alkohol (Mo., Mr., Soc. 85, 1237). — $C_{12}H_{14}O_2N\cdot I$. Farblose Nadeln (aus Alkohol). F: 202—207° (Zers.) (Mo., Mr., Soc. 85, 1237). — $2C_{12}H_{14}O_2N\cdot Br + PtBr_4 + 2H_2O$. Orangerote Prismen; gibt bei ca. 110° Wasser ab und schmilzt bei 218—220°; schwer löslich (Mo., Mr., Soc. 89, 865).

- 6-Äthylamino-cumarin $C_{11}H_{11}O_2N=C_2H_5\cdot NH\cdot C_6H_3$ CH:CH von 6-[Benzolsulfonyl-āthylamino]-cumarin mit konz. Salzsāure auf 150—170° (Mo., Mi., Soc. 85, 1237, 1238). Gelbe Blättchen oder Nadeln (aus Petroläther). F: 83°.
- 6-Bensalamino-cumarin $C_{16}H_{11}O_2N = C_6H_5 \cdot CH : N \cdot C_6H_3 < CH : CH \\ O CO$. B. Aus 6-Amino-cumarin und Benzaldehyd in Eisessig (Mo., Mr., Soc. 85, 1234). Blaßgelbe Nadeln (aus Benzol). F: 150—152°.
- 6-Formamino-cumarin $C_{10}H_7O_3N = OHC\cdot NH\cdot C_6H_3$ O-CO B. Aus 6-Amino-cumarin und Ameisensäure (Mo., Mi., Soc. 85, 1233, 1234). Ferblose Krystalle (aus Wasser). F: 175—176° (Mo., Mi., Soc. 85, 1234). Wird durch konz. Salzsäure unter Bildung von 6-Amino-cumarin hydrolysiert (Mo., Mi., Soc. 89, 865).
- 6-Acetamino-cumarin $C_{11}H_{\bullet}O_{3}N=CH_{3}\cdot CO\cdot NH\cdot C_{\bullet}H_{3}\cdot CH\cdot CH$. B. Beim Kochen von 6-Amino-cumarin mit Essigsäureanhydrid (Gattermann, B. 27, 1937). Farblose Nadeln (aus Wasser). F: 216—217° (G.; Mo., Mi., Soc. 89, 866). $C_{11}H_{\bullet}O_{3}N+HI+2I$. B. Aus 6-Acetamino-cumarin und Jod in konz. Jodwasserstoffsäure (Mo., Mi.). Dunkelbraune Krystalle. $2C_{11}H_{\bullet}O_{3}N+HCl+AuCl_{3}+2H_{2}O$. Gelbes Pulver (Mo., Mi.). $4C_{11}H_{\bullet}O_{3}N+2HCl+2HCl_{4}+2H_{3}O$. Blaßgelbe Krystalle. Bräunt sich gegen 115° unter Verlust von Wasser und zersetzt sich bei höherer Temperatur; wird durch Wasser unter Bildung von 6-Acetamino-cumarin zersetzt (Mo., Mi.).
- 6-Propionylamino-cumarin $C_{12}H_{11}O_3N = C_2H_5 \cdot CO \cdot NH \cdot C_6H_3 \cdot CO \cdot NH \cdot C_6H_5 \cdot CO \cdot B$. Durch Kochen von 6-Amino-cumarin mit Propionsäure und Propionsäureanhydrid (Mo., Mi., Soc. 89, 866). Farblose Nadeln (aus Wasser). F: 186—188°.
- 6-Benzamino-cumarin $C_{16}H_{11}O_3N = C_6H_5 \cdot CO \cdot NH \cdot C_6H_3 \cdot CH \cdot CH$. Farblose Nadeln (aus Alkohol). F: 173° (Gattermann, B. 27, 1937).
- 6-Bensolsulfamino-cumarin $C_{15}H_{11}O_4NS = C_6H_5 \cdot SO_4 \cdot NH \cdot C_6H_3 \cdot CH \cdot CH$. B. Aus 6-Amino-cumarin und Benzolsulfochlorid in Gegenwart von Natriumcarbonat-Lösung (Mo., Mr., Soc. 85, 1234). Farblose Krystalle (aus Wasser oder Benzol). F: 1599.

- 6-[Benzolsulfonyl-methylamino]-cumarin $C_{12}H_{12}O_2NS =$
- CeHe·SO2·N(CH2)·CeH3 CH:CH O-CO B. Durch Erhitzen einer alkoh. Lösung von 6-Benzolsulfamino-cumarin mit Methyljodid und Kaliumhydroxyd (Mo., Mr., Soc. 85, 1237, 1238). — Farblose Prismen. F: 165-167°.
 - 6-[Benzolsulfonyl-äthylamino]-cumarin C₁₇H₁₈O₄NS =
- $C_6H_5 \cdot SO_2 \cdot N(C_2H_5) \cdot C_6H_3 \cdot CO \cdot B$. Analog der vorhergehenden Verbindung. Farblose Prismen (aus Benzol + Petroläther). F: 124° (Mo., Mr., Soc. 85, 1238).
- 6-Methylnitrosamino-cumarin $C_{10}H_8O_3N_2 = ON \cdot N(CH_2) \cdot C_0H_3 \cdot CH_3 \cdot CH_3 \cdot CO \cdot CO$ Farblose Nadeln (aus Benzol + Petroläther). F: 168-169°; schwer löslich in Petroläther (Mo., Mr., Soc. 85, 1238).
- 6-Äthylnitrosamino-cumarin $C_{11}H_{10}O_3N_2 = ON \cdot N(C_2H_3) \cdot C_6H_3 \cdot$ Behandeln von 1 Mol 6-Äthylamino-cumarin in salzsaurer Lösung mit 1 Mol Natriumnitrit (Mo., Mr., Soc. 85, 1238). — Farblose Nadeln (aus Petroläther), die sich an der Luft braun färben. F: 90°.
 - 2. Aminoderivat des 3-Methylen-phthalids C.H.O. (Bd. XVII, S. 333).
- 8-Aminomethylen-phthalid $C_9H_7O_9N = C_6H_4 < C(:CH \cdot NH_9) > 0$ ist desmotrop mit 3-Iminomethyl-phthalid, Bd. XVII, S. 491.
- 2. Aminoderivate der Monooxo-Verbindungen $C_{10}H_8O_2$.
 - 1. Aminoderivate des 4-Methyl-cumarins C₁₀H₈O₂ (Bd. XVII, S. 336).
- C(CH₃)>CH 7-Amino-4-methyl-cumarin C₁₀H₂O₂N, s. nebenstehende Formel. B. Durch längeres Kochen von 3-Amino-phenol mit Acetessigester und wasserfreiem Zinkchlorid in alkoh. Lösung, neben anderen Produkten (v. Pechmann, Schwarz, B. 32, 3696, 3699; vgl. v. P., B. 32, 3685). — Braungelbe Stäbchen (aus Alkohol). F: 223°; unlöslich in Wasser und verd. Essigsäure, schwer löslich in Alkohol, Chloroform und Äther, leichter in Eisessig; die Lösungen fluorescieren blau (v. P., Schw., B. 32, 3696, 3697). Unlöslich in Alkalien in der Kälte, löslich in der Wärme (v. P., Schw., B. 32, 3697). Wird aus mineralsauren Lösungen durch Wasser nicht gefällt (v. P., Schw., B. 32, 3697). — Liefert durch Diazotieren und Verkochen der Diazoniumsalz-Lösung 4-Methyl-umbelliferon (S. 31) (v. P., Schw., B. 32, 3698).
 - 7-Methylamino-4-methyl-cumarin $C_{11}H_{11}O_2N = CH_3 \cdot NH \cdot C_6H_3 \cdot C(CH_3) \cdot CH_3$

Durch längeres Kochen von 3-Methylamino-phenol mit Acetessigester und Zinkchlorid in alkoh. Lösung (v. P., Sonw., B. 32, 3697). — Gelbe Nädelchen mit 1 H₂O (aus verd. Alkohol). F: 123°. Die Lösungen in organischen Solvenzien fluorescieren grünlichblau. Unlöslich in kalten, löslich in kochenden Alkalien. Löst sich in starken Mineralsäuren und ist aus diesen Lösungen durch Wasser fällbar.

7-Dimethylamino-4-methyl-cumarin $C_{12}H_{13}O_2N = (CH_2)_2N \cdot C_6H_3 < C(CH_2):CH_3$

Durch längeres Kochen von 3-Dimethylamino-phenol mit Acetessigester und wasserfreiem Zinkchlorid in alkoh. Lösung (v. Pechmann, Schaal, B. 32, 3690; vgl. v. P., B. 30, 277; 32, 3683). Beim Erhitzen von Trimethyl-[4-methyl-cumarinyl-(7)]-ammoniumjodid über den Schmelzpunkt (v. P., Schwarz, B. 32, 3698). — Gelbliche, grünschillernde Nadeln mit 3 H₂O (aus verd. Alkohol), die an der Luft verwittern; F: 143°; löslich in den meisten Lösungsmitteln in der Wärme außer in Wasser und Ligroin; die Lösungen fluorescieren blau (v. P., Scha.). Bildet mit Mineralsäuren krystallisierende Salze, deren Lösungen schwach kupferrot fluorescieren (v. P., B. 30, 278; v. P., Scha.). Löst sich in kochender 50°/ojegr Kalilauge (v. P., Scha.). — Bei der Einw. von 1 Mol Brom in kaltem Chloroform entsteht 7-Dimethylamino-4-methyl-cumarin-dibromid (S. 607) (v. P., Scha.). Wird durch Salpetersäure je nach den Bedingungen in x-Nitro-7-dimethylamino-4-methyl-cumarin oder x.x-Dinitro-7-dimethylamino-4-methyl-cumarin übergeführt (v. P., Scha.). Liefert beim Verschmelzen mit Atzalkalien eine Verbindung C₂₂H₂₂O₂N₂ (S. 611) und wenig 4-Dimethylamino-2-oxyacetophenon (v. P., Scha.). Durch längeres Kochen von 3-Dimethylamino-phenol mit Acetessigester und wasserfreiem

Verbindung C₂₂H₂₅O₂N₂. Das Molekulargewicht ist ebullioskopisch in Chloroform und kryoskopisch in Benzol bestimmt (v. P., Scha., B. 32, 3692).—B. Neben wenig 4-Dimethylamino-2-oxy-acetophenon beim Verschmelzen von 1 Tl. 7-Dimethylamino-4-methyl-cumarin mit 5 Tln. Kaliumhydroxyd und wenig Wasser (v. P., Scha.). — Fleischrote Krystalle (aus Alkohol). F: 142°. Unlöslich in Wasser und Essigsäure, löslich in organischen Lösungsmitteln. Löslich in Mineralsäuren, unlöslich in Alkalien.

Trimethyl-[4-methyl-cumarinyl-(7)]-ammoniumhydroxyd, 7-Dimethylamino-4-methyl-cumarin-hydroxymethylat $C_{18}H_{17}O_3N = (CH_3)_3N(OH) \cdot C_6H_3 \stackrel{C(CH_3):CH}{\bigcirc ----}CO$. Jodid C₁₃H₁₆O₂N·I. B. Durch mehrstündiges Erhitzen von 7-Amino-4-methyl-cumarin mit Methyljodid im Rohr suf 100° (v. P., Schwarz, B. 32, 3698; vgl. v. P., B. 32, 3685). Nadeln (aus Wasser). Schmilzt, rasch erhitzt, bei 188° unter Zerfall in Methyljodid und 7-Dimethylamino-4-methyl-cumarin (v. P., Schw.; vgl. v. P.). Schwer löslich in kaltem, leicht in heißem Wasser, sehr schwer in Alkohol; die verd. Lösungen fluorescieren blau (v. P., Schw.).

7-Äthylbensylamino-4-methyl-cumarin $C_{19}H_{19}O_{9}N =$ $C_6H_5 \cdot CH_2 \cdot N(C_2H_5) \cdot C_6H_8 \cdot C(CH_2) \cdot CH$ B. Durch Kochen von 3-Äthylbenzylaminophenol mit Acetessigester und Zinkchlorid in absol. Alkohol (Bülow, Sprösser, B. 41, 488, 494). Entsteht auch durch Kochen von 3-Äthylbenzylamino-phenol mit Acetondicarbonsäurediäthylester und alkoh. Zinkehlorid-Lösung und nachfolgendes Destillieren des harzigen Reaktionsprodukts unter vermindertem Druck oder Kochen mit verd. Kalilauge (B., Sp.). — Blättchen (aus verd. Alkohol). F: 88°. Löslich in Äther, Benzol, Chloroform, Eisessig, Ligroin, Schwefelkohlenstoff und Alkohol, kaum löslich in Wasser und verd. Alkalilauge. Die alkoh. Lösung zeigt blaue, die essigsaure Lösung mehr grünliche Fluorescenz.

7-Acetamino-4-methyl-cumarin $C_{13}H_{11}O_3N = CH_3 \cdot CO \cdot NH \cdot C_0H_3 \cdot CO \cdot NH \cdot CO \cdot NH \cdot C_0H_3 \cdot CO \cdot NH \cdot CO \cdot NH \cdot C_$ B. Beim Erwärmen von 7-Amino-4-methyl-cumarin mit Essigsäureanhydrid auf dem Wasserbad (v. Pechmann, Schwarz, B. 32, 3697). — Farblose Nädelchen (aus verd. Essigsäure oder wäßr. Aceton). F: 270°.

7-Bensamino-4-methyl-cumarin $C_{17}H_{18}O_8N = C_8H_8 \cdot CO \cdot NH \cdot CO \cdot NH \cdot C_8H_8 \cdot CO \cdot NH \cdot CO \cdot NH \cdot$ B. Beim Erwärmen einer Lösung von 7-Amino-4-methyl-cumarin in Chloroform mit Benzoylchlorid in Gegenwart von Soda (v. P., Schw., B. 32, 3697). — Rotstichige Nadeln (aus Essigsaure oder Aceton). F: 249-250°.

- 7 Methylnitrosamino 4 methyl cumarin $C_{11}H_{10}O_3N_3$ $\mathrm{ON} \cdot \mathrm{N}(\mathrm{CH_3}) \cdot \mathrm{C_0H_2} \overset{\mathrm{C}(\mathrm{CH_2}) : \mathrm{CH}}{\mathrm{CO}}.$ B. Beim Behandeln von 7-Methylamino-4-methyl-cumarin in schwefelsaurer Lösung mit Nitrit (v. P., Schw., B. 32, 3697). — Dunkelgelbe Nädelchen (aus Alkohol). F: 189°.
- 8 Brom 7 dimethylamino 4 methyl cumarin

 C₁₃H₁₃O₃NBr, s. nebenstehende Formel. B. Durch Behandeln
 von 7-Dimethylamino-4-methyl-cumarin-dibromid (S. 607) mit
 verd. Alkohol (v. P., SCHAAL, B. 32, 3694). Farblose Nadeln. F: 169°. Die Lösungen in Alkohol, Eisessig oder Chloroform fluorescieren grünlich. — Durch Einw. von Brom in Chloroform entstehen zwei isomere 3.6- oder 3.8-Dibrom-7-dimethylamino-4-methyl-cumarine. Wird von siedender alkoh. Kalilauge in 6-Dimethylamino-3-methyl-cumaron-carbonsaure-(2) (S. 631) übergeführt.
- 8.6 oder 8.8 Dibrom 7 dimethylamino 4 methyl cumarin vom Schmelspunkt 126° $C_{12}H_{11}O_2NBr_2 = (CH_2)_2N \cdot C_6H_2Br < C(CH_2)_2 \cdot CBr$. Neben 3.6- oder 3.8 Dibrom-7-dimethylamino-4-methyl-cumarin vom Schmelzpunkt 1840 (s. u.) durch Einw. von Brom auf 3-Brom-7-dimethylamino-4-methyl-cumarin in Chloroform (v. P., Scha., B. 32, 3694). — Nadeln (aus Alkohol). F: 1260.
- 3.6 oder 3.6 Dibrom 7 dimethylamino 4 methyl cumarin vom Schmelzpunkt 184° $C_{19}H_{11}O_{9}NBr_{9} = (CH_{3})_{2}N \cdot C_{9}H_{2}Br$ O

 C(CH₃): CBr
 O

 B. s. im vorangehenden Artikel.

 Nadeln (aus Chloroform + Ather). F: 184° (v. P., Scha., B. 32, 3694).

- x-Nitro-7-dimethylamino-4-methyl-cumarin $C_{12}H_{12}O_4N_2=O_2N\cdot C_{10}H_6O_2\cdot N(CH_6)_2$. B. Durch Zufügen der berechneten Menge Salpetersäure zu einer Lösung von 7-Dimethylamino-4-methyl-cumarin in 50 Tln. Eisessig (v. P., Scha., B. 32, 3693). Gelbe Nadeln (aus verd. Alkohol). F: 159°. Löslich in den meisten Lösungsmitteln mit gelber Farbe. Unlöslich in Säuren.
- x.x-Dinitro-7-dimethylamino-4-methyl-cumarin $C_{12}H_{11}O_{6}N_{2}=(O_{2}N)_{2}C_{10}H_{5}O_{3}$. N(CH₃)₂. B. Durch Einw. von etwas mehr als 2 Mol Salpetersäure auf eine Lösung von 7-Dimethylamino-4-methyl-cumarin in 10 Tln. Eisessig (v. P., Scha., B. 32, 3693). Gelbe Nadeln (aus Eisessig). F: 255—260° (Zers.). Schwer löslich in den gewöhnlichen Lösungsmitteln.
 - 2. Aminoderivate des 7-Methyl-cumarins C₁₀H₄O₄ (Bd. XVII, S. 337).
- 4 Äthylamino 7 methyl cumarin, Äthylamid der 7-Methyl-benzotetronsäure C₁₂H₁₃O₂N, s. nebenstehende Formel, ist desmotrop mit 2-Oxo-4-äthylimino-7-methyl-chroman (Äthylimid der 7-Methyl-benzotetronsäure), Bd. XVII, S. 493.
- 4-Anilino-7-methyl-cumarin, Anilid der 7-Methyl-bensotetronsäure $C_{16}H_{18}O_{2}N=CH_{3}\cdot C_{6}H_{5}\cdot C_{6}H_{5}$ ist desmotrop mit 2-Oxo-4-phenylimino-7-methyl-chroman (Anil der 7-Methyl-benzotetronsäure), Bd. XVII, S. 494.
- 4-p-Toluidino-7-methyl-cumarin, p-Toluidid der 7-Methyl-bensotetronsäure $C_{17}H_{16}O_2N=CH_3\cdot C_6H_3\cdot C_6H_3\cdot C_6H_4\cdot CH_3):CH$ ist desmotrop mit 2-Oxo-4-p-tolylimino-7-methyl-chroman (p-Tolylimid der 7-Methyl-benzotetronsäure), Bd. XVII, S. 494.
- 3. Aminoderivat des 3.4-Dimethyl-cumarins C₁₁H₁₀O₂ (Bd. XVII, S. 341).
- 7 Åthylbensylamino 3.4 dimethyl cumarin $C_{20}H_{21}O_{2}N$, s. nebenstehende Formel. B. Durch Kochen von 3-Åthylbenzylamino-phenol mit α -Methyl-acetessig-säure-äthylester und Zinkchlorid in alkoh. Lösung (Bülow, Sprösser, B. 41, 488, 495). Krystalle (aus Alkohol). F: 116,5°. Löslich in den gebräuchlichen organischen Lösungsmitteln, unlöslich in Wasser und verd. Alkalilauge. Sehr verd. Lösungen zeigen blaue Fluorescenz.
- 4. Aminoderivat des 4-Methyl-3-äthyl-cumarins C12H12O2.

7-Dimethylamino-4-methyl-3-äthyl-cumarinC₁₄H₁₇O₂N,
s. nebenstehende Formel. B. Durch längeres Kochen von
3-Dimethylamino-phenol mit α-Äthyl-acetessigester und Zinkchlorid in alkoh. Lösung (v. PECHMANN, SCHAAL, B. 32, 3695). — Krystalle aus Alkohol
vom Schmelzpunkt 89°; Krystalle aus Benzol-Ligroin vom Schmelzpunkt 135°. Löslich
in den meisten Solvenzien, auch in viel heißem Wasser mit violetter Fluorescenz.

g) Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-16}O_2$.

h) Aminoderivate der Monooxo-Verbindungen C_nH_{2n-18}O₂.

1. Aminoderivate des Xanthons C13H4O2 (Bd. XVII, S. 354).

1-Amino-10-thio-xanthon C₁₃H₂ONS, s. nebenstehende Formel.

B. Durch Einw. von konz. Schwefelsäure auf 3'-Amino-diphenylsulfid-carbonsäure-(2) (Bd. XIII, S. 426); zur Reinigung stellt man mit Essigsäureanhydrid das Acetylderivat [Nadeln (aus Eisessig); F: 273°] her, trägt dieses unter Zufügen von wenig Wasser in konz. Schwefelsäure ein, kocht und fällt mit Ammoniak (F. Mayer, B. 42, 3065). — Graubraune Nadeln. F: 249—250°. Die Lösung in Schwefelsäure fluoresciert grün.

2-Amino-10-thio-xanthon C₁₂H₂ONS, s. nebenstehende Formel.

B. Beim Kochen von 2-Nitro-thioxanthon (Bd. XVII, S. 358) mit Zinn-chlorür in Eisessig (F. M., B. 42, 3056). Durch Erwärmen von

4'-Amino-diphenylsulfid-carbonsäure-(2) (Bd. XIII, S. 535) mit konz. Schwefelsäure auf dem Wasserbad (F., M.). — Gelbbraune Blättchen (aus Nitrobenzol). F: 221—222°. Ziemlich leicht löslich in Chloroform und Eisessig, schwerer in Benzol, sehr schwer in Alkohol. Die Lösung in Schwefelsäure fluoresciert grün. — Liefert beim Erhitzen mit Glycerin, Schwefelsäure und Nitrobenzol die Verbindung C₆H₄ CO CH:CH (Syst. No. 4285). — C₁₃H₆ONS + HCl. Hygroskopische Nadeln, die an der Luft gelb werden. Zersetzt sich bei 230°.

- **2-Acetamino-10-thio-xanthon** $C_{18}H_{11}O_{2}NS = C_{6}H_{4} < \frac{CO}{S} > C_{6}H_{2} \cdot NH \cdot CO \cdot CH_{2}$. B. Aus 2-Amino-10-thio-xanthon und Essigsäureanhydrid (F. M., B. 42, 3057). Blättchen (aus Essigsäureanhydrid). F: 236—237°.
- 3 Amino xanthon C₁₂H₂O₂N, s. nebenstehende Formel.

 B. Durch Reduktion von 3-Nitro-xanthon mit Zinnehlorür und wäßrig-alkoholischer Salzsäure (Ullmann, Wagner, A. 355, 363).

 Hellgelbe Nadeln (aus Alkohol oder Toluol). F: 232°. Leicht löslich in Alkohol, heißem Benzol und heißem Toluol, unlöslich in Ligroin. Die fast farblose Lösung in Alkohol fluoresciert blau; auf Zusatz von Salzsäure schlägt die Fluorescenz in Grün und die Färbung in Gelb um. Die Lösung in konz. Schwefelsäure ist gelb und fluoresciert blaugrün.

8-Amino-10-thio-xanthon C₁₃H₂ONS, s. nebenstehende Formel.

B. Durch Einw. von konz. Schwefelsäure auf 5-Amino-diphenylsulfid-carbonsäure-(2) (Bd. XIV, S. 579) (F. MAYER, B. 42, 3067). — Krystalle (aus Eisessig). F: 246°. — Liefert ein bei 267° schmelzendes Acetylderivat.

4-Amino-10-thio-xanthon C₁₈H₉ONS, s. nebenstehende Formel.

B. Durch Erwärmen von 2'-Amino-diphenylsulfid-carbonsäure-(2) (Bd. XIII,
S. 399) mit konz. Schwefelsäure auf dem Wasserbad (F. M., B. 42, 3063).

Durch Reduktion von 4-Nitro-thioxanthon (Bd. XVII, S. 359) (F. M.).

Blättchen (aus Benzol). F: 202—203°. Fluoresciert in Schwefelsäure mit grüner Farbe.

4-Acetamino-10-thio-xanthon $C_{15}H_{11}O_3NS = C_6H_4 \stackrel{CO}{\underset{S}{\smile}} C_6H_3 \cdot NH \cdot CO \cdot CH_3$. B. Durch Kochen von 4-Amino-10-thio-xanthon mit Essigsäureanhydrid (F. M., B. 42, 3063). — Krystalle (aus Eisessig). F: 233—234°.

2.7-Diamino-xanthon, β -Diaminoxanthon $C_{13}H_{10}O_3N_3$, s. nebenstehende Formel. B. Durch Einw. von Zinn und Salzsäure auf 2.7-Dinitro-xanthon (Bd. XVII, S. 357) (Graebe, B. 16, 862; A. 254, 287) in Alkohol (Perkin, Soc. 43, 190). — Orangefarbene Nadeln (aus Benzol), rubinrote Nadeln (aus ca. 43% igem Alkohol). Schmilzt noch nicht bei 300° (G., A. 254, 287). Sehr schwer löslich in siedendem Wasser (P.). — Beim Erhitzen mit verd. Salzsäure auf 220—260° entsteht 2.7-Dioxy-xanthon (S. 116) (G., B. 16, 863; A. 254, 300; Arbenz, A. 257, 86). Liefert beim Diazotieren und Verkochen eine in Alkalien unlösliche gelbrote oder braune Substanz (G.). — $C_{12}H_{10}O_2N_3 + 2HCl$. Gelbliche Krystalle. Leicht löslich in Wasser (G., A. 254, 287). — $C_{13}H_{10}O_2N_3 + 2HCl$. Gelb. Schwer löslich in Wasser (G., A. 254, 287). — $C_{12}H_{10}O_2N_3 + 2HCl$. Rotbraune Nadeln. Zersetzt sich bei 100° (P.). — $C_{13}H_{10}O_3N_3 + 2HCl + PtCl_4$. Blaßgelbe, mikroskopische Nadeln. Zersetzt sich bei 100°; geht beim Behandeln mit Alkohol oder Wasser in das Salz $2C_{13}H_{10}O_3N_3 + 2HCl + PtCl_4$ über (P.).

2.7-Bis-diacetylamino-xanthon $C_{21}H_{12}O_6N_3=(CH_3\cdot CO)_2N\cdot C_6H_3 < {}^{CO}_{O}>C_6H_3\cdot N(CO\cdot CH_2)_3$. B. Durch Erhitzen von 2.7-Diamino-xanthon mit Essigsäureanhydrid und Natriumscetat (G., A. 254, 287). — Farblose Nadeln (aus Alkohol). F: 246°.

- 3.6 Bis dimethylamino xanthon C₁₇H₁₈O₂N₂, s. nebenstehende Formel. B. Durch Erwärmen eines Farbsalzes des 3.6-Bis-dimethylamino-xanthydrols (8. 596) mit Kaliumferricyanid in alkal. Lösung auf dem Wasserbad (Biehenneger, J. pr. [2] 54, 235). Durch Erwärmen von Dioxytetramethylrosaminsulfonsäure (8. 636) mit verd. Kalilauge im Wasserbad (Liebermann, Glawe, B. 37, 203). Gelbliche Prismen (aus Alkohol), Nadeln (aus Essigsäure). F: 240° (L., G.), 240—242° (B.). Löslich in heißem Methylalkohol, Äthylalkohol, Aceton, Chloroform und Schwefelkohlenstoff, ziemlich leicht in Benzol, schwer in Äther und heißem Ligroin (B.). Die Lösungen in Alkohol, Aceton und Chloroform fluorescieren violett (R. Meyer, Ph. Ch. 24, 494; vgl. B.; B., Topaloff, J. pr. [2] 65, 509). Fluorescenzspektrum in alkoh. Lösung: Stark, M., Phys. Z. 8, 251; C. 1907 I, 1526. Löst sich in konz. Schwefelsäure mit violetter Fluorescenz, in verd. Mineralsäuren mit gelber Farbe und grüner Fluorescenz (M.; vgl. B.). Die Salze werden durch Wasser oder Alkohol zersetzt (B.). Unlöslich in Alkalien (M.). Wird durch Zinn und Salzsäure zu 3.6-Bis-dimethylamino-xanthens (B.). C₁₇H₁₈O₂N₂ + HCl. Gelbrote Nadeln (B.). 2C₁₇H₁₈O₂N₂ + 2HCl + PtCl₄ (B.; L., G.). Rotgelb, krystallinisch (B.).
- x.x. Tribrom 3.6 bis dimethylamino xanthon $C_{17}H_{18}O_{2}N_{2}Br_{3} = C_{18}H_{2}O_{2}Br_{3}$ [N(CH₃)₂]₃. B. Durch Versetzen einer heißen Lösung von 0,25 g 3.6-Bis-dimethylamino-xanthon in 50 cm³ Eisessig mit 2 cm³ einer Lösung von Brom in Eisessig (1 Vol. Brom, 9 Vol. Eisessig) und Zerlegen des entstandenen bromwasserstoffsauren Salzes durch Erhitzen auf 140° oder durch Fällen seiner sauren Lösung mit Ammoniak (B., J. pr. [2] 54, 238). Krystalle (aus Benzol + Ligroin). $C_{17}H_{18}O_{2}N_{2}N_{3}$ Br₃ + 3HBr. Gelbe Krystalle. Unlöslich in kaltem Eisessig, schwer löslich in Äther.
- 3.6 Bis dimethylamino 10 thio xanthon $C_{17}H_{18}ON_8S$, s. nebenstehende Formel. B. Durch Erwärmen von Thiopyronin (S. 596) mit alkal. Permanganat. Lösung auf dem Wasserbad (Bieheinger, Topaloff, J. pr. [2] 65, 506). Entsteht auch (neben 3.6-Bis-dimethylamino-thioxanthen) durch kurzes Erwärmen einer alkoholisch-alkalischen Lösung der Farbbase des Thiopyronins (B., T.). Krystalle mit 2 CHCl₂ (aus Chloroform); gelbe Prismen (aus Alkohol und Benzol), die nach dem Trocknen im Anilinbad bei 288° schmelzen. Ist beim Erhitzen teilweise unzersetzt flüchtig. Sehr schwer löslich in heißem Alkohol, Essigester und Ligroin, ziemlich schwer in heißem Benzol und Aceton, leicht in heißem Chloroform. Die Lösung in Ligroin ist farblos, die übrigen Lösungen sind gelb. Die alkoh. Lösung fluoresciert grünstichig blau. Die Lösung in Eisessig zeigt grüne Fluorescenz. Wird von konz. Schwefelsäure mit gelber Farbe und intensiv grüner Fluorescenz aufgenommen; beim Verdünnen mit viel Alkohol geht die Fluorescenz in Blau über und verschwindet nach Zusatz von Wasser. $C_{17}H_{18}ON_8S + 2HCl + 31/8H_8O$. Rotgelb, krystallinisch. $2C_{17}H_{18}ON_8S + 4HCl + PtCl_4$. Gelbe Nadeln.
- 3.6 Bis dimethylamino 10 thio xanthon S dioxyd, 3.6 Bis dimethylamino-bensophenonsulfon $C_{17}H_{18}O_3N_8S = (CH_3)_8N \cdot C_6H_3 < \frac{CO}{SO_3} > C_6H_3 \cdot N(CH_3)_8$. B. Durch Kochen des entsprechenden 4-Dimethylamino-anils (s. u.) mit Säuren (Sachs, B. 33, 962, 965). Gelber Niederschlag (aus Chloroform + Äther). F: 317° (korr.). Unzersetzt sublimierber. Ziemlich leicht löslich in Chloroform, schwer in Eisessig, unlöslich in Äther, Benzol, Aceton, Ligroin und Essigester.
- 4 Dimethylamino anil $C_{23}H_{28}O_2N_4S = (CH_3)_2N \cdot C_6H_3 \cdot \frac{C[:N \cdot C_6H_4 \cdot N(CH_3)_2]}{SO_2} C_6H_3 \cdot N(CH_3)_2$. B. Durch Versetzen einer siedenden Lösung von 3.6-Bis-dimethylamino-thioxanthen-S-dioxyd (S. 592) und 4-Nitroso-dimethylanilin in Alkohol mit Natronlauge (S., B. 38, 965). Orangerotes Pulver. Sehr schwer löslich in allen Lösungsmitteln.
- x.x.x Tribrom 8.6 bis dimethylamino 10 thio xanthon $C_{17}H_{18}ON_2Br_2S = C_{12}H_2OBr_2S[N(CH_2)_2]_2$. B. Durch Versetzen einer heißen Lösung von 3.6-Bis-dimethylamino-10-thio-xanthon in Eisessig mit einer Lösung von Brom in Eisessig und Zerlegen des entstandenen bromwasserstoffsauren Salzes durch Ammoniak (BIEHRINGER, TOPALOFF, J. pr. [2] 65, 511). Rote Blättchen (aus Aceton). $C_{17}H_{18}ON_2Br_2S + HBr$. Tafeln. F: 235° (Zers.).

x.x-Diamino-xanthon, α -Diaminoxanthon $C_{13}H_{10}O_3N_3=C_{13}H_3O_5(NH_3)_2$. B. Durch Reduktion von x.x-Dinitro-xanthon (Bd. XVII, S. 357) mit Zinn und Salzsäure (Graebe, A. 354, 288). — Gelbe Nadeln (aus Alkohol). F: 209°. Unlöslich in Wasser, löslich in Alkohol, Äther, Chloroform und Benzol. — Einw. von verd. Salzsäure bei 230—260° liefert eine Verbindung $C_{13}H_3O_3$ (gelbe Nadeln, F: 229°; mit gelber Farbe in Alkalilauge löslich) (G.). Liefert mit Essigsäureanhydrid ein Acetylderivat (Nadeln, F: 233°). — $C_{13}H_{10}O_3N_3 + 2$ HCl. Hellgelb, krystallinisch. Leicht löslich in Wasser.

2. Aminoderivate der Monooxo-Verbindungen $C_{14}H_{10}O_{2}$.

- 1. Aminoderivat des 2-Oxo-3-phenyl-cumarans $C_{14}H_{19}O_{2}$ (Bd. XVII, S. 360). 3-Acetamino-2-oxo-3-phenyl-cumaran, Lacton der α -Acetamino-2-oxy-diphenylessigsäure $C_{16}H_{18}O_{3}N = C_{6}H_{4} - C(C_{6}H_{5})(NH \cdot CO \cdot CH_{3}) - CO$. B. Durch Kochen des Hydrochlorids der α -Amino-2-oxy-diphenylessigsäure (Bd. XIV, S. 630) mit Essigsäure-anhydrid und wasserfreiem Natriumacetat (Cramer, B. 31, 2817). — Nadeln (aus Alkohol). F: 225—228°. Unlöslich in Benzol, löslich in heißer Alkohol. Unlöslich in verd. Salzsäure und heißer verdünnter Sodalösung, löslich in heißer Kalilauge.
 - 2. Aminoderivate des 3-Phenyl-phthalids C14H10O2 (Bd. XVII, S. 361).
- **8-Anilino-8-phenyl-phthalid** $C_{20}H_{15}O_{2}N=C_{6}H_{4}$ $C(C_{6}H_{5})(NH\cdot C_{6}H_{5})>0$ s. bei 2-Benzoesäure-pseudoanilid, Bd. XII, S. 524.
- **8-p-Anisidino-8-phenyl-phthalid** $C_{21}H_{17}O_3N=C_6H_4$ CO_6H_4 $O\cdot CH_4$ $O\cdot C$
- 8-[4-Dimethylamino-phenyl]-phthalid $C_{18}H_{18}O_8N = C_8H_4$ $CH[C_8H_4 \cdot N(CH_9)_8]$ O.

 B. Durch Kondensation von o-Phthalaldehydsäure mit Dimethylanilin in Gegenwart von Chlorwasserstoff oder trockner Oxalsäure (Ebert, Ch. Z. 19, 2039). Durch Reduktion von 4'-Dimethylamino-benzophenon-carbonsäure-(2) in Wasser mit Natriumamalgam bis zur Entfärbung und Ansäuern mit Essigsäure (Haller, Guyot, C. r. 126, 1249; Bl. [3] 25, 200). Entsteht auch aus derselben Säure durch 2-stündiges Erwärmen mit Zinkstaub und Ammoniak und Ansäuern der fültrierten Lösung (Limpricht, A. 300, 234). Blättchen (aus Alkohol oder Chloroform). F: 186° (E.), 188° (L.; H., G.). Löslichkeit in organischen Lösungsmitteln: E.; L.; H., G. Löst sich in warmer Natronlauge und wird aus dieser Lösung durch Essigsäure unverändert ausgefällt (L.; vgl. H., G.). Leicht löslich in Salzsäure; die Lösung in kalter konzentrierter Schwefelsäure ist farblos (E.).
- 8.4.7-Trichlor-3-[4-dimethylamino-phenyl] phthalid $C_{16}H_{12}O_2NCl_3$, s. nebenstehende Formel. Vgl. 3.6-Dichlor-2-[4-dimethylamino-benzoyl]-benzoylchlorid $(CH_3)_2N\cdot C_6H_4\cdot CO\cdot C_6H_2Cl_2\cdot COCl$, Bd. XIV, S. 663.
- 3 [2 oder 3 Nitroso 4 dimethylamino phenyl] phthalid $C_{16}H_{14}O_3N_2 = C_6H_4$ CH[$C_6H_6(NO)\cdot N(CH_9)_2$] O. Das unter dieser Formel von LIMPRICHT, A. 300, 235 beschriebene Produkt ist nach O. FISCHER, J. pr. [2] 92 [1915], 59 nicht einheitlich gewesen.
- $\begin{array}{c} \textbf{4.7-Dichlor-3-amino-3-[4-dimethylamino-phenyl]-phthalid $C_{1e}H_{1e}O_{2}N_{2}Cl_{2}$, s. nebenstehende Formel. Vgl. 3.6-Dichlor-2-[4-dimethylamino-benzoyl]-benzamid $(CH_{3})_{2}N\cdot C_{6}H_{4}$ CO·$C_{6}H_{2}Cl_{2}\cdot CO\cdot NH_{2}$, Bd. XIV, S. 663. \\ \hline \\ Cl. \\ Cl. \\ \hline \\ Cl. \\ C$
- 3. Aminoderivate der Monooxo-Verbindungen $C_{18}H_{12}O_2$.
- 1. Aminoderivat des 2 Oxo 5 methyl 3 phenyl cumarans $C_{15}H_{12}O_2$ (Bd. XVII, S. 365).
- 3-Acetamino-2-oxo-5-methyl-3-phenyl-cumaran, CH₃· C(C₆H₅)(NH·CO·CH₃) CO
 Lacton der α-Acetamino-6-oxy-3-methyl-diphenylessigsäure C₁₇H₁₅O₅N, s. nebenstehende Formel. B. Durch
 Kochen von α-Amino-6-oxy-3-methyl-diphenylessigsäure (Bd. XIV, S. 631) mit Essigsäureanhydrid und wasserfreiem Natriumacetat (CRAMER, B. 31, 2819). Nadeln (aus Alkohol).
 F: 214—216°. Löslich in Alkohol, heißem Wasser und Benzol.

2. Aminoderivat des 3-p-Tolyl-phthalids C₁₈H₁₈O₂ (Bd. XVII, S. 366).

3-[3-Amino-4-methyl-phenyl]-phthalid C₁₂H₁₃O₂N, s. nebenstehende Formel. B. Beim Behandeln einer alkoh. Lösung von 3-[3-Nitro-4-methyl-phenyl]-phthalid (Bd. XVII, S. 366) mit saurer Zinnchlorür-Lösung (Lmp-Bicht, A. 314, 256). Neben 3'-Amino-4'-methyl-diphenylmethan-carbon-săure-(2) durch Einw. von Zinkstaub und Ammoniak auf eine alkoh. Lösung von 3-[3-Nitro-4-methyl-phenyl]-phthalid (L., A. 314, 257) oder von 3'-Nitro-4'-methyl-benzophenon-carbonsăure-(2) (L., A. 314, 257) oder von 3'-Nitro-4'-methyl-benzophenon-carbonsăure-(2) (L., A. 314, 257). — Tafeln. F: 144°; leicht löslich in Alkohol, schwer in Äther (L., A. 314, 256). — Durch Einw. von Zinkstaub und Ammoniak entsteht 3'-Amino-4'-methyl-diphenylmethan-carbonsăure-(2) (L., A. 314, 257). — C₁₂H₁₂O₂N+HCl. Nadeln. Zersetzt sich bei 205°; ziemlich leicht löslich in Wasser und Alkohol; wird beim Kochen mit Wasser zerlegt (L., A. 314, 257). — Nitrat. Nadeln (aus Wasser). Schwerer löslich als das Hydrochlorid (L., A. 314, 257).

3. Aminoderivate des 3.6 - Dimethyl - xanthons C₁₂H₁₂O₂ (Bd. XVII, S. 367).

x.x-Diamino-[8.6-dimethyl-xanthon] $C_{18}H_{14}O_8N_8=C_{18}H_{10}O_8(NH_8)_8$. B. Durch Behandeln einer Suspension von x.x-Dinitro-[3.6-dimethyl-xanthon] (Bd. XVII, S. 367) in Salzsäure und Eisessig mit Zinn (Borr, MILLER, Soc. 55, 54). — Ähnelt in Aussehen und Löslichkeit dem x.x.x.x-Tetrasmino-[3.6-dimethyl-xanthon] (s. u.).

x.x.x.x-Tetraamino-[3.6-dimethyl-xanthon] $C_{18}H_{16}O_{2}N_{4}=C_{15}H_{8}O_{2}(NH_{2})_{4}$. B. Analog der vorhergehenden Verbindung (B., M., Soc. 55, 53). — Grünlichgelbes Pulver. Schmilzt noch nicht bei 300°. Fast unlöslich in Benzol, schwer löslich in Alkohol und Äther; löslich in Säuren. Die saure Lösung gibt mit Natriumhypochlorit eine dunkelrotbraune Färbung.

i) Aminoderivate der Monooxo-Verbindungen C_nH_{2n-20}O₂.

1. Aminoderivate des 3-Methyl-2-benzoyl-cumarons $C_{16}H_{12}O_2$.

5-Amino-3-methyl-2-bensoyl-cumaron C₁₆H₁₈O₂N, s. H₂N. C. CH₃ nebenstehende Formel. B. Durch 5—6-stündiges Erhitzen von 5-Acetamino-3-methyl-2-benzoyl-cumaron mit 35°/qiger alkoholischer Salzsäure im geschlossenen Rohr auf 120° (Kunckell, Kesseler, B. 36, 1261). — Goldgelbe Blättchen (aus Alkohol). F: 138°. Leicht löslich in Äther, schwerer in Alkohol, Benzol und Chloroform. — Hydrochlorid. Farblose Nadeln. F: 245°.

5-Acetamino-3-methyl-2-bensoyl-cumaron $C_{18}H_{15}O_3N=CH_3\cdot CO\cdot NH\cdot C_9H_3\cdot CO\cdot C_9H_5$. B. Durch 3—4-stündiges Kochen von 5-Acetamino-2-oxy-acetophenon mit ω -Brom-acetophenon in alkoholisch-alkalischer Lösung (Ku., K., B. 36, 1260). — Blaßgelbe Nadeln (aus Alkohol). F: 178—179°. Leicht löslich in Alkohol und Äther, schwer in Ligroin und Benzol. Die gelbe Lösung in konz. Schwefelsäure wird beim Kochen kirschrot, auf Zusatz von Wasser farblos.

Oxim $C_{18}H_{16}O_3N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3 \stackrel{C(CH_3)}{\bigcirc} C \cdot C(:N \cdot OH) \cdot C_6H_5$. B. Durch Kochen von 5-Acetamino-3-methyl-2-benzoyl-cumaron mit etwas mehr als der berechneten Menge Hydroxylamin in Alkohol (Ku., Kz., B. 36, 1261). — F: 192°.

2. Aminoderivate der Monooxo-Verbindungen $\mathrm{C_{18}H_{16}O_{2}}$

1. Aminoderivat des α-Benzyl-β-benzal-butyrolactons (?) C₁₈H₁₆O₂.

γ-Oxy-α-[2-benzamino-benzyl]-β-[2-benzamino-benzal]-buttersäure (?) (Bd. XIV, S. 632) mit Wasser (Reisser, B. 38, 3418, 3424). — Tafeln (aus wäßr. Aceton). Sohmilzt nach vorherigem Sintern bei 268—269°. Kaum löslich in Wasser, Alkohol, Äther und Ligroin, sohwer in Benzol, leichter in Chloroform, ziemlich leicht in heißem Aceton und Eisessig. Unlöslich in kalter, sehr schwer in heißer wäßriger Natronlauge. — Leicht löslich in warmer alkoholischer Natron-

lauge unter Rückbildung von γ-Oxy-α-[2-benzamino-benzyl]-β-[2-benzamino-benzal]-buttersäure(?). Liefert beim Erhitzen mit rauchender Salzsäure im Rohr auf 160—170° ein Produkt, das mit Benzoylchlorid und Natronlauge die Verbindung der nebenstehenden Formel (Syst. No. 3573) gibt.

2. Aminoderivat des 3-Methyl-2-[2.5-dimethyl-benzoyl]-cumarons $C_{18}H_{16}O_{1}$.

5 - Acetamino - 3 - methyl - 2 - [2.5 - dimethyl-benzoyl]-cumaron C₂₀H₁₀O₃N, s. nebenstehende Formel. B. Durch Erhitzen von 5-Acetamino-2-oxy-acetophenon mit Chlormethyl-[2.5-dimethyl-phenyl]-keton in alkoholisch-alkalischer Lösung (Kunckell, Kesseler, B. 36, 1262). — Farblose Nadeln (aus Alkohol). F: 200—205° (Zers.).

k) Aminoderivate der Monooxo-Verbindungen C_nH_{2n-26}O₂.

1. Aminoderivate des 9-Phenyl-fluorons C₁₀H₁₂O₂ (Bd. XVII, S. 390).

6-Amino-9-phenyl-fluoron C₁₈H₁₃O₂N, s. nebenstehende Formel. B. Durch Kochen von 6-Acetamino-9-phenyl-fluoron mit konz. Salzsäure in Alkohol (Kehrmann, Dengler, B. 41, 3444). — Dunkelrote, grünglänzende Nadeln. F: 305°. Fast unlöslich in Wasser. — Liefert durch Diazotieren und Verkochen der schwefelsauren Lösung 6-Oxy-9-phenyl-fluoron (S. 68), bei der Einw. von kaltem Alkohol auf die Diazoniumverbindung 9-Phenyl-fluoron. — Hydrochlorid. Hellrote, blauschimmernde Blättchen. Ziemlich leicht löslich in Wasser mit gelblichroter Farbe und grüner Fluorescenz.

Hydroxymethylat des 6 - Dimethylamino - 9 - phenyl - fluoron - methylimids $C_{23}H_{24}O_2N_2 = (CH_2)_2N \cdot C_0H_3 < C(C_0H_5) > C_0H_3 : N(CH_3)_2 \cdot OH$. — Chlorid, Tetramethylrosamin $C_{23}H_{22}ON_2 \cdot Cl$ s. S. 598.

6-Acetamino-9-phenyl-fluoron $C_{21}H_{15}O_3N = CH_3 \cdot CO \cdot NH \cdot C_0H_3 - \frac{C(C_0H_5)}{O} \cdot C_0H_3 \cdot O$.

B. Durch Erhitzen von Benzotrichlorid mit 3-Acetamino-phenol in Nitrobenzol auf 150—160°, neben N.N'-Diacetyl-rosamin und anderen Produkten (Kehrmann, Dengler, B. 41, 3440, 3443). — Chromrote Nadelbüschel (aus Alkohol + Benzol). Schmilzt oberhalb 360°. Unlöslich in Wasser. Leicht löslich in der Wärme in Alkohol, Eisessig und Benzol mit orangegelber Farbe und starker grüngelber Fluorescenz. Unlöslich in verd. Alkalien. Löslich in sehr verdünnten warmen Mineralsäuren unter Bildung hellgelber, stark grün fluorescierender Salze, die durch viel Wasser hydrolysiert werden. Die gelbe Lösung in konz. Schwefelsäure fluoresciert stark grün; ihre Farbe wird durch Zusatz von Eis nicht geändert. — Wird durch konz. Salzsäure in heißem Alkohol zu 6-Amino-9-phenyl-fluoron verseift.

2. Aminoderivate des 3.3-Diphenyl-phthalids $C_{20}H_{14}O_{2}$ (Bd. XVII, S. 391).

3.3-Bis-[4-amino-phenyl]-phthalid C₂₀H₁₆O₂N₂ = C₆H₄ C(C₆H₄·NH₂) O. B. Man behandelt 3.3-Diphenyl-phthalid mit Salpetersäure (D: 1,5) und reduziert das Reaktionsgemisch mit Zinn und Salzsäure; man fällt die Lösung nach Entfernen des Zinns durch Schwefelwasserstoff mit Natriumcarbonat und löst den Niederschlag in heißem Alkohol; beim Erkalten fällt zunächst 3.3-Bis-[4-amino-phenyl]-phthalid aus, während beim Eindampfen der alkoh. Lösung ein isomeres Diamino-diphenylphthalid (Krystallkrusten; F: 205°) abgeschieden wird (Baeyer, B. 12, 642; A. 202, 66). — Tafeln. F: 179—180° (B.). Ist in amorphem Zustand in Alkohol und Äther ziemlich leicht löslich, schwerer im krystallisierten Zustand; in Benzol und Wasser schwer, in Ligroin unlöslich (B.). Löst sich in Salzsäure ohne Färbung, in Essigsäure mit rotvioletter Farbe (B.; vgl. O. FISCHER, RÖMER, B. 42, 2936). Beim Erwärmen mit Kaliumnitrit in saurer Lösung entsteht Phenolphthalein (S. 143) (B.). Beim Erhitzen mit konz. Schwefelsäure bildet sich Anthrachinon (B). Liefert beim Erhitzen mit Methyljodid in methylalkoholischer Lösung unter Druck bei 110° Dimethylanilinphthalein-bis-jodmethylat (F., R.).

8.8 - Bis - [4 - dimethylamino - phenyl] - phthalid, Dimethylanilinphthalein $C_{34}H_{34}O_2N_2 = C_6H_4 \cdot C[C_6H_4 \cdot N(CH_3)_2]_2 = 0$. B. Durch Erhitzen von 1 Mol Phthalsäureanhydrid mit 2 Mol Dimethylanilin in Gegenwart von Zinkchlorid zuerst auf 100°, dann

auf 120—125° (O. FISCHER, A. 206, 93). Neben 4.4′-Bis-dimethylamino-diphenylmethan und Phthalgrün bei mehrstündigem Erwärmen von 10 Tln. Phthalylchlorid mit 12 Tln. Dimethylanilin und 10—12 Tln. Zinkehlorid auf dem Wasserbad (O. F., B. 12, 1692; A. 206, 103). Beim Erwärmen äquimolekularer Mengen 4′-Dimethylamino-benzophenon-carbonsäure-(2) (Bd. XIV, S. 661) und Dimethylanilin in Gegenwart von Essigsäureanhydrid, Phosphortrichlorid oder Phosphoroxychlorid (Haller, Guvor, C. r. 119, 206; Bl. [3] 25, 316). — Farblose Prismen oder Rhomboeder (aus Benzol oder Alkohol). F: 192° (F., Römer, B. 42, 2936). Destilliert in kleinen Mengen unzersetzt; leicht löslich in Benzol und Toluol, etwas schwerer in Äther, ziemlich schwer in Methyl- und Äthylalkohol, sehr schwer in Ligroin, unlöslich in Wasser (F., A. 206, 95). Bildet Salze mit 1 und 2 Äquivalenten Säure; die Salze mit 2 Äquivalenten Säure sind ziemlich unbeständig (F., A. 206, 96). — Beim Behandeln mit Zinkstaub und Eisesaig oder mit Zinkstaub und Salzsäure entsteht Dimethylanilinphthalin (Bd. XIV, S. 549) (F., B. 10, 952; A. 206, 101; H., G.). Beim Eintragen in rauchende Salpetersäure wird Hexanitrodimethylanilinphthalein erhalten (F., A. 206, 99). Beim Schmelzen mit der 4—5-fachen Menge Kaliumhydroxyd und etwas Wasser tritt Zersetzung in Dimethylanilin, Phthalsäure und Benzoesäure ein (F., A. 206, 100). Beim Erwärmen mit überschüssigem Methyljodid in methylalkoholischer Lösung auf 100—110° entsteht Dimethylanilinphthalein-bis-jodmethylat (F., A. 206, 98). Beim Erhützen mit Methylalkohol und Zinkchlorid unter Druck auf 120—125° wird ein Farbsalz des 4′4′'Bis-dimethylamino-triphenylcarbinol-carbonsäure-(2)-methylesters (Bd. XIV, S. 633) erhalten (F., R., B. 42, 2935). — Salze: F., A. 206, 96. — C24H2402N3+HCl. Farblose Krystalle (aus verd. Alkohol). Ziemlich schwer löslich in Wasser. — C24H2402N3+2HCl. Farblose krystallenischer Niederschlag. Hygroskopisch. Sehr leicht löslich in Wasser. Geht bei längerem Liegen, beim Erwärmen auf 100° oder bei starkem Verdünnen der L

3.3-Bis-[4-dimethylamino-phenyl] - phthalid - bis - hydroxymethylat, Dimethylamilinphthalein-bis-hydroxymethylat $C_{26}H_{35}O_4N_5 = C_6H_4 \overline{C[C_6H_4 \cdot N(CH_3)_5 \cdot OH]_8}O$. — Dijodid $C_{26}H_{20}O_5N_2I_5$. B. Durch Erhitzen von 3.3-Bis-[4-amino-phenyl]-phthalid mit Methylgidid in methylalkoholischer Lösung unter Druck auf 110° (Ö. Fischer, Römer, B. 42, 2934). Beim Erwärmen einer methylalkoholischen Lösung von Dimethylanilinphthalein mit überschüssigem Methyljodid auf 100—110° (F., A. 206, 98). — Farblose Nadeln. Schmilzt unter Zersetzung gegen 185°; sehr leicht löslich in warmem, schwerer in kaltem Wasser, leicht in Methyl- und Äthylalkohol (F.).

8.3-Bis-[4-diāthylamino-phenyl]-phthalid, Diāthylanilinphthalein $C_{18}H_{28}O_{2}N_{2}=C_{6}H_{4}\cdot N(C_{2}H_{4}\cdot N(C_{3}H_{5})_{1})$ 0. B. Durch Kondensation von 4'-Diāthylamino-benzophenon-carbonsaure-(2) (Bd. XIV, S. 662) mit Diāthylanilin in Gegenwart von Essigsäureanhydrid oder Phosphortrichlorid (HALLER, GUYOT, C. r. 126, 1251). — Blätter oder Nadeln. F: 128°. Ziemlich schwer löslich in Alkohol und Äther, leichter in Chloroform und Benzol.

3-[4-Dimethylamino-phenyl]-8-[3-nitro-4-dimethyl-amino-phenyl]-phthalid C₂₄H₂₅O₄N₃, s. nebenstehende
Formel. B. Durch Erhitzen aquimolekularer Mengen Dimethylanilin und 3'-Nitro-4'-dimethylamino-bensophenon- (CH₃)₂N · N(CH₃)₂ carbonsaure-(2) (Bd. XIV, S. 667) in Gegenwart von Essigsaureanhydrid auf dem Wasserbad (H., G., C. r. 132, 748). — Orangefarbene Prismen (aus Chloroform + Alkohol). F: 175°. Leicht löslich in der Wärme in Chloroform und Benzol, sohwer in Alkohol und Äther.

Hexanitro-[8.3-bis-(4-dimethylamino-phenyl)-phthalid], Hexanitrodimethylanilinphthalein $C_{34}H_{18}O_{14}N_3=(O_3N)_4C_{36}H_4O_3[N(CH_3)_3]_2$. B. Durch Eintragen von Dimethylanilinphthalein in rauchende Salpetersäure (O. Fischer, A. 206, 99). — Gelbe Tafeln (aus Eisessig). Zersetzt sich völlig gegen 230°. Schwer löslich in Alkohol und Äther, ziemlich leicht in heißem Eisessig.

8 - [4 - Dimethylamino - phenyl] - 3 - [4 - dimethyl - amino - 2 - acetamino - phenyl] - phthalid $C_{24}H_{27}O_3N_3$, s. nebenstehende Formel. B. Durch Kondensation von 4'-Dimethylamino - benzophenon - carbonsāure - (2) (Bd. XIV, (CH₃)₂N. (CH₃)₂N. S. 661) mit N.N-Dimethyl-N'-acetyl-m-phenylendiamin in Gegenwart von Essigsäureanhydrid (Haller, Guyot, C. r. 132, 748). — Farblose Prismen. F: 209°. Löslich in Alkohol.

8-[4-Dimethylamino-phenyl]-3-[3-amino-4-dimethylamino-phenyl]-phthalid $C_{24}H_{25}O_2N_3$, s. nebenstehende Formel. B. Durch Reduktion von 3-[4-Dimethylamino-phenyl]-3-[3-nitro-4-dimethylamino-phenyl]-phthalid (CH₃)₂N. Ni(CH₃)₂ mit Zinnchlorür und Salzsäure (H., G., C. r. 132, 748). — Farblose Nadeln. F: 179°.

3-[4-Dimethylamino-phenyl]-3-[4-dimethyl-amino-3-acetamino-phenyl]-phthalid $C_{26}H_{27}O_3N_3$, s. nebenstehende Formel. B. Durch Erhitzen von 3-[4-Dimethylamino-phenyl]-3-[3-amino-4-dimethyl-amino-phenyl]-phthalid mit überschüssigem Essigsäureanhydrid (H., G., C. r. 132, 748). — Farblose Prismen (aus Alkohol + Chloroform). F: 157°.

8.3-Bis-[4-diäthylamino-2-acetamino-phenyl]-phthalid C₃₂H₃₆O₄N₄, s. nebenstehende Formel. B. Durch Erhitzen von Phthalsäureanhydrid mit N.N-Diathyl-N'-acetyl-m-phenylendiamin in Gegenwart von Essigsäureanhydrid auf 140—150° (Höchster Farbw., D. R. P. 49850; Frdl. 2, 110; Grandmougin, Lang, B. 42, 4015). — Farblose Prismen. F: 246° (G., L.), 248° (H. F.). Unlöslich in Wasser, schwer löslich in kaltem Alkohol und Äther, leichter in heißem Alkohol (H. F.). — Färbt sich bei längerem Aufbewahren an der Luft rötlich (H. F.). Beim Kochen mit 20°/ojger Salzsäure entsteht 2-[3.6-Bis-diäthylamino-acridyl-(9)]-benzoesäure (Tetraäthylflaveosin; Syst. No. 3439) (H. F.; G., L.).

3. Aminoderivat des 3.3-Di-p-tolyl-phthalids C22H18O2 (Bd. XVII, S. 394).

8.3-Bis-[8-amino-4-methyl-phenyl]-phthalid C₁₃H₂₀O₂N₂, s. nebenstehende Formel. B. Durch mehrstündiges Digerieren von 3.3-Bis-[3-nitro-4-methyl-phenyl]-phthalid (Bd. XVII, S. 394) mit der berechneten Menge Zinnchlorür unter Zusatz von Salzsaure in alkoh. Lösung (Limpricht, A. 299, 293) oder in Eisessig-Lösung (Baeyer, A. 354, 184). — Prismen (aus Aceton). F: 197° (B.). — Beim Diazotieren mit Amylnitrit in alkoholisch-schwefelsaurer Lösung entsteht ein krystallinisches Bis-diazoniumsulfat, das beim Erwärmen mit Wasser auf etwa 60° 3.3-Bis-[3-oxy-4-methyl-phenyl]-phthalid (S. 154) liefert (B.; vgl. L.).

2. Aminoderivate der Dioxo-Verbindungen.

- a) Aminoderivate der Dioxo-Verbindungen C_nH_{2n-4}O₃.
- 1. Aminoderivate der Dioxo-Verbindungen C4H4O2.
- 2. Aminoderivate des Bernsteinsäureanhydrids $C_4H_4O_3$ (Bd. XVII, S. 407). [$\alpha.\alpha'$ Bis acetylanilino bernsteinsäure] anhydrid $C_{20}H_{18}O_5N_2=CH_3\cdot CO\cdot N(C_6H_5)\cdot HC$ — $CH\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Beim Erwärmen von $\alpha.\alpha'$ -dianilino-

OC·O·CO
bernsteinsaurem Natrium (Bd. XII, S. 561) mit Essigsäureanhydrid auf 50—60° (Junghahn, Reisser, B. 26, 1771). — Nädelchen (aus Benzol + Ligroin). F: 192°. Unlöslich in Ligroin, löslich in heißem Benzol und Alkohol, leicht löslich in Eisessig.

α.α'-Bis-[acetyl-p-toluidino]-bernsteinsäure (Bd. XII, S. 980) mit Essigsäureanhydrid (J., R., B. 26, 1770). — Mikrokrystallinischer Niederschlag. Schmilzt gegen 232° unter Gasentwicklung. Unlöslich in Wasser, schwer löslich in heißem Alkohol, leichter in Eisessig.

2. Aminoderivat des Methylbernsteinsäureanhydrids $C_8H_6O_8$ (Bd. XVII, S. 414).

[\$\alpha\$-Acetylanilino-\$\alpha\$-methyl-bernsteins\text{\text{aure}}]-anhydrid, [\$\beta\$-Acetylanilino-brensweins\text{\text{aure}}]-anhydrid \$C_{12}H_{13}O_4N\$ = \$\begin{array}{c} \frac{H_2C}{OC} \cdot \cdot C(CH_2) \cdot N(C_6H_5) \cdot CO \cdot CH_2 \\ OC \cdot CO \cdot CH_3 \cdot \text{N}\$. \$B\$. Beim Kochen von \$\beta\$-Anilino-brenzweins\text{\text{aure}} (Bd. XII, 8.509) mit Acetylchlorid (Ansch\text{\text{UTZ}}, \$A\$. 261, 146). \$\cdot Tafeln (aus Ather). Monoklin prismatisch (Hintze, Jander, \$A\$. 261, 147; vgl. \$Groth, \$Ch. \$Kr\$. 4, 251). \$\text{F}\$: 136°. Schwer l\text{\text{\text{S}}} in Ather, leicht in Chloroform und Benzol.

- 3. Aminoderivat des [$\alpha.\alpha'$ -Dimethyl-bernsteinsäure]-anhydrids ${\rm C_6H_6O_3}$ (Bd. XVII, S. 417).
- [α Amino $\alpha.\alpha'$ dimethyl bernsteinsäure] anhydrid $C_6H_9O_3N=CH_3\cdot HC$ — $C(CH_3)\cdot NH_2$ B. Durch Erwärmen von [α -Amino- $\alpha.\alpha'$ -dimethyl-bernsteinsäure]-imid (Syst. No. 3427) mit Barytwasser und Zerlegen des erhaltenen Bariumsalzes durch Schwefelsäure (Molinari, B. 33, 1413). Krystalle (aus Wasser). Monoklin prismatisch

säure]-imid (Syst. No. 3427) mit Barytwasser und Zerlegen des erhaltenen Bariumsalzes durch Schwefelsäure (Molinabi, B. 33, 1413). — Krystalle (aus Wasser). Monoklin prismatisch (Abtun, B. 33, 1413). F: 164—165°. Sehr leicht löslich in Wasser, schwerer in Methylalkohol und Äthylalkohol, unlöslich in Äther. — Liefert bei der Behandlung mit Methyljodid und methylalkoholischer Kalilauge Dimethylfumarsäure.

b) Aminoderivate der Dioxo-Verbindungen C_nH_{2n-6}O₈.

- 1. Aminoderivate des Maleinsäureanhydrids C4H2O3 (Bd. XVII, S. 432).
- 4-Halogen-3-anilino-5-oxo-2-phenylimino-furandihydrid, α' -Halogen- α -anilino-maleinsäure- α -isoanil $C_{16}H_{11}O_2N_3Hlg = \begin{array}{c} HlgC = C \cdot NH \cdot C_6H_5 \\ OC \cdot O \cdot C \cdot N \cdot C_6H_5 \end{array}$ ist desmotrop mit 4-Halogen-5-oxo-2.3-bis-phenylimino-furantetrahydrid, α' -Halogen- α -phenylimino-bernsteinsäure- α -isoanil, Bd. XVII, S. 554, 555.
- $\begin{array}{ll} \textbf{4-Halogen-8-anilino-2-oxo-5-phenylimino-furandihydrid,} & \alpha'-\textbf{Halogen-}\alpha-anilino-\textbf{MlgC} & C\cdot \textbf{NH} \cdot \textbf{C}_6\textbf{H}_5 \\ \textbf{maleinsäure-}\alpha'-\textbf{isoanil} & \textbf{C}_{16}\textbf{H}_{11}\textbf{O}_2\textbf{N}_2\textbf{Hlg} = & \textbf{C}_6\textbf{H}_5 \cdot \textbf{N} \cdot \textbf{C} \cdot \textbf{O} \cdot \textbf{CO} \\ \textbf{C}_6\textbf{H}_5 \cdot \textbf{N} \cdot \textbf{C} \cdot \textbf{O} \cdot \textbf{CO} & \textbf{ist desmotrop mit 4-Halogen-2-oxo-3.5-bis-phenylimino-furantetrahydrid,} & \alpha'-\textbf{Halogen-}\alpha-\textbf{phenylimino-bernstein-säure-}\alpha'-\textbf{isoanil,} & \textbf{Bd.} & \textbf{XVII,} & \textbf{S.} & \textbf{555.} \\ \end{array}$
- 4-Brom-3-anilino-2.5-bis-phenylimino-furandihydrid, Dianil des α' -Brom-a-anilino-maleinsäure-anhydrids $C_{22}H_{16}ON_2Br = \frac{BrC-C\cdot NH\cdot C_6H_5}{C_6H_5\cdot N\cdot C\cdot O\cdot C\cdot N\cdot C_6H_5}$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. Bd. XII, S. 134.
- $\begin{array}{c} \textbf{8.4 Dianilino 2.5 dioxo furandihydrid}\,, & \textbf{Dianilino maleins \"aureanhydrid}\,, \\ \textbf{C}_{16}\textbf{H}_{12}\textbf{O}_{3}\textbf{N}_{2} = & \begin{matrix} \textbf{C}_{6}\textbf{H}_{5} \cdot \textbf{NH} \cdot \textbf{C}_{6} + \textbf{C}_{5} \\ \textbf{OC} \cdot \textbf{OC} \end{matrix} \\ \begin{matrix} \textbf{OC} \cdot \textbf{OC} \\ \textbf{OO} \end{matrix} \\ \begin{matrix} \textbf{OC} \cdot \textbf{OC} \end{matrix} \\ \begin{matrix} \textbf{OC} \cdot \textbf{OC} \\ \textbf{OO} \end{matrix} \\ \begin{matrix} \textbf{OC} \cdot \textbf{OC} \\ \textbf{OC} \end{matrix} \\ \begin{matrix} \textbf{OC} \cdot \textbf{OC} \end{matrix} \end{matrix} \\ \begin{matrix} \textbf{OC} \cdot \textbf{OC} \end{matrix} \\ \begin{matrix} \textbf{OC} \cdot \textbf{OC} \end{matrix} \\ \begin{matrix} \textbf{OC} \cdot \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \\ \begin{matrix} \textbf{OC} \cdot \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \\ \begin{matrix} \textbf{OC} \cdot \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} \textbf{OC} \cdot \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \begin{matrix} \textbf{OC} \begin{matrix} \textbf{OC} \textbf{OC} \end{matrix} \begin{matrix} \textbf{OC}$
- 2. Aminoderivat des 3.4-Dioxo-[1.4-pyran]-dihydrids $C_6H_4O_3$ (Bd. XVII, 8. 435).
- $\begin{array}{l} \textbf{2(P) Amino 8.4 dioxo [1.4 pyran] dihydrid bezw. 2(P) Amino 8 oxy pyron (4) } \\ \textbf{C_8H_5O_3N} = & \begin{matrix} \textbf{HC \cdot CO \cdot CO} \\ \textbf{HC O CH \cdot NH_2} \end{matrix} \\ \textbf{HC O CH \cdot NH_2} \end{matrix} \\ \begin{array}{l} \textbf{bezw.} & \begin{matrix} \textbf{HC \cdot CO \cdot C \cdot OH} \\ \textbf{HC O C \cdot NH_2} \end{matrix} \\ \textbf{HC O C \cdot NH_2} \end{matrix} \\ \end{array} \\ \textbf{s. 2(?) Amino pyromekonsäure,} \\ \textbf{8. 623.} \end{array}$

3. Aminoderivat des β -0xo- α -āthyliden-butyrolactons $C_6H_6O_8$.

 $\begin{array}{l} \beta\text{-Oxo-}\alpha\text{-}[\alpha\text{-anilino-athyliden}]\text{-butyrolacton, }\alpha\text{-}[\alpha\text{-Anilino-athyliden}]\text{-tetronsaure,}\\ ,,\alpha\text{-Acetyl-tetronsaure-anilid"} & C_{12}H_{11}O_{2}N = \begin{matrix} \text{OC} & \text{C:C(NH\cdot C_{6}H_{5})\cdot CH_{2}}\\ H_{2}\dot{\text{C}}\cdot\text{O}\cdot\dot{\text{CO}} \end{matrix} & \text{ist desmotrop} \\ \text{mit }\beta\text{-Oxo-}\alpha\text{-}[\alpha\text{-phenylimino-athyl}]\text{-butyrolacton, }\alpha\text{-}[\alpha\text{-Phenylimino-athyl}]\text{-tetronsaure,} & \text{Bd. XVII, S. 556.} \end{array}$

- c) Aminoderivate der Dioxo-Verbindungen C_n H_{2n-8} O₃.
- 1. Aminoderivat des [α -Methylen-glutaconsäure]-anhydrids $C_0H_4O_3$. [α -Aminomethylen-glutaconsäure]-anhydrid $C_0H_5O_3N=\frac{HC:CH\cdot C:CH\cdot NH_2}{OC-O-CO}$ ist desmotrop mit [α -Iminomethyl-glutaconsäure]-anhydrid, Bd. XVII, S. 559.
- 2. Aminoderivat des 4.6 Dioxo-2 methyl-5-äthyliden [1.4 pyran] dihydrids $C_8H_8O_8$.

 $\begin{array}{l} \bf 5^1\text{-}Amino-4.6\text{-}dioxo-2\text{-}methyl-5\text{-}\"{a}thyliden-[1.4\text{-}pyran]-dihydrid} \ C_8H_9O_3N = CH_3\cdot C(NH_9); C\cdot CO\cdot CH \\ OC-O-C\cdot CH_2 \end{array}$ bezw. seine Arylderivate sind desmotrop mit 4.6-Dioxo-5¹-imino-

2-methyl-5-āthyl-[1.4-pyran]-dihydrid, Monoimid der Dehydracetsäure CH₂·C(:NH)·HC·CO·CH

OC-O-C-CH₂ bezw. dessen Arylderivaten, Bd. XVII, S. 564.

d) Aminoderivate der Dioxo-Verbindungen $C_n H_{2n-12} O_8$.

[3-Amino-phthalsäure]-anhydrid C₂H₅O₂N, s. nebenstehende Formel. H₂N B. Man löst [3-Amino-phthalsäure]-imid (Syst. No. 3427) in 10% iger Kalilauge und neutralisiert genau mit 10% iger Salzsäure (Boger, Jouard, Am. Soc. 31, 487). — Hellgelbe Nadeln (aus absol. Alkohol). F: 193—1940 (korr.). Löslich in Alkohol, Aceton und Chloroform mit starker Fluorescenz, unlöslich in Benzol und Ligroin. — Gibt bei der Einw. von heißer konzentrierter Salzsäure das Hydrochlorid der 3-Amino-phthalsäure (Bd. XIV, S. 552).

Monoacetylderivat $C_{10}H_7O_4N=CH_3\cdot CO\cdot NH\cdot C_6H_3 < {CO\atop CO}>0$. B. Bei der Einw. von Essigsäureanhydrid auf [3-Amino-phthalsäure]-anhydrid oder 3-Amino-phthalsäure oder deren Hydrochlorid (Boger, Jouard, Am. Soc. 31, 488) oder auf Zink-acetat-[3-amino-phthalat] (Bd. XIV, S. 553) (Kahn, B. 36, 2536). — Farblose Nadeln (aus Alkohol). F: 185° bis 186° (korr.) (B., J.), 181° (K.). — Gibt beim Erhitzen mit Anilin [3-Acetamino-phthalsäure]-anil (Syst. No. 3427) (B., J.).

[4 - Amino - phthalsäure] - anhydrid C₈H₈O₃N, s. nebenstehende Formel. B. Aus 4-Amino-phthalsäure bei 2-stdg. Erhitzen auf 180—200° (BOGERT, RENSHAW, Am. Soc. 80, 1140). — Hellachsfarbene Substanz, die bei höherer Temperatur Wasser abgibt, ohne zu schmelzen. Schwer löslich in den gebräuchlichen Lösungsmittein. Löst sich langsam in kalter Kalilauge unter Rückbildung von 4-Amino-phthalsäure.

Monoacetylderivat $C_{10}H_7O_4N = CH_3 \cdot CO \cdot NH \cdot C_6H_3 < {CO \atop CO} > 0$. B. Aus 4-Aminophthalsaure bei der Einw. von Essigsäureanhydrid oder Acetylchlorid (B., R., Am. Soc. 30, 1140). — Nadeln (aus Acetylchlorid + Essigester). F: 206—207° (korr.). Löslich in Aceton, Alkohol und Essigester, schwer löslich in Äther.

e) Aminoderivate der Dioxo-Verbindungen C_nH_{2n-18}O₈.

[3-Amino-naphthalin-dicarbonsäure-(1.8)]-anhydrid, [3-Amino-naphthalsäure]-anhydrid C₁₈H₇O₂N, s. nebenstehende Formel. B. Durch OC CO Reduktion von [3-Nitro-naphthalsäure]-anhydrid mit Eisen und Salzsäure (ANSELM, ZUCKMAYER, B. 32, 3286) oder mit Zinnchlorür und Salzsäure in Alkohol (GRAEBE, BRIONES, A. 327, 34). — Gelbe Krystalle. Schmilzt nicht bis 360° (G., B.). Sehr schwer löslich in neutralen Lösungsmitteln; löst sich in konz. Schwefelsäure mit gelbbrauner Farbe und blaugrüner Fluorescenz; löslich auch in heißer verdünnter Salzsäure (A., Z.). — Bei der Destillation mit Kalk entsteht β-Naphthylamin (G., B.).

Monoscetylderivat $C_{14}H_{\bullet}O_{4}N = CH_{2}\cdot CO\cdot NH\cdot C_{10}H_{\delta} < {CO\atop CO}>0$. B. Durch Kochen von [3-Amino-naphthalsäure]-anhydrid mit Essigsäureanhydrid und etwas Natriumacetat (A., Z., B. 32, 3286). — Gelbliche Nädelchen (aus Eisessig). Schwer löslich in kaltem Alkohol und Benzol, unlöslich in Wasser.

f) Aminoderivate der Dioxo-Verbindungen C_nH_{2n-22}O₈.

[3.3'- Diamino-stilben - $\alpha.\alpha'$ - dicarbonsäure] - anhydrid, Bis-[3-amino-phenyl] - maleinsäureanhydrid $C_{16}H_{18}O_3N_3$, s. nebenstehende Formel. B. Aus 3.3'-Diamino- $\alpha.\alpha'$ -dicyan-stilben (Bd. XIV, S. 573) durch Erhitzen mit alkoh. Kalilauge und Ansäuern der Lösung mit Essigsäure (Heller, A. 358, 360). — Hellrote Krystalle (aus Äthylenbromid). Sehr schwer löslich in fast allen Lösungsmitteln.

3. Aminoderivate der Trioxo-Verbindungen.

 $\begin{array}{lll} \textbf{4-Anilino-2.5-dioxo-3-phenylimino-furantetrahydrid} & C_{16}H_{19}O_8N_8 = \\ C_6H_5\cdot N:C--CH\cdot NH\cdot C_6H_5 & \\ OC\cdot O\cdot CO & \\ \end{array} \\ \begin{array}{lll} \text{Vgl. hierzu 3.4-Dianilino-2.5-dioxo-furandihydrid, Dianilino-maleinsäureanhydrid, S. 620.} \end{array}$

G. Oxy-oxo-amine.

1. Aminoderivate der Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen.

a) Aminoderivate der Oxy-oxo-Verbindungen C_nH_{2n-2}O₃.

α-Amino-γ-[4-brom-phenoxymethyl]-butyrolacton, α-Amino-δ-[4-brom-phenoxy]-γ-valerolacton $C_{11}H_{12}O_2NBr = OC \cdot O \cdot CH \cdot CH_2 \cdot O \cdot C_6H_4Br$. B. Aus α-Brom-δ-[4-brom-phenoxy]-γ-valerolacton (S. 3) und flüssigem Ammoniak bei 25° oder 25°/ojem wäßrigem Amminiak bei 100° im Druckrohr (E. FISCHER, KRÄMER, B. 41, 2734). — Blättchen (aus Wasser). F: ca. 230° (korr.) (Zers.). Ziemlich schwer löslich in heißem Wasser, sehr schwer in heißem Alkohol. — Gibt beim Behandeln mit verd. Alkalien α-Amino-γ-οxy-δ-[4-brom-phenoxy]-valeriansäure (Bd. VI, S. 201). Liefert beim Erhitzen mit gesättigter Bromwasserstoffsäure auf 100° ein Reaktionsprodukt, das beim Kochen mit Wasser das bei HO·HC — CH₂
261° schmelzende γ-Oxy-prolin $H_0 \cdot H \cdot CH \cdot CO_2 \cdot H$ (Syst. No. 3323) und α-Amino-γ-δ-dioxy-valeriansäure (Bd. IV, S. 521) gibt. — $C_{11}H_{12}O_2NBr + HCl.$ F: ca. 229° (korr.) (Zers.)-Leicht löslich in Wasser. — $C_{11}H_{12}O_3NBr + HBr$ (bei 100°). Stäbchen (aus wenig konzentrierter Bromwasserstoffsäure). F: ca. 235° (korr.) (Zers.). Leicht löslich in Wasser.

b) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-4} O_3$.

Aminoderivate der Oxy-oxo-Verbindungen C4H4O3.

- 1. Aminoderivate des 4-Oxy-2-oxo-furan-dihydrids-(2.5) $C_4H_4O_3$ (8. 6). 8-Amino-4-oxy-2-oxo-furan-dihydrid-(2.5), α -Amino- β -oxy- $\Delta^{\alpha,\beta}$ -crotonlacton, HO·C==C·NH.
- $\alpha\text{-}\mathbf{Amino\text{-}tetrons\"{a}ure} \ \ C_4H_5O_3N = \frac{\mathbf{HO}\cdot\mathbf{C} = -\mathbf{C}\cdot\mathbf{NH_2}}{\mathbf{H_2C}\cdot\mathbf{O}\cdot\mathbf{CO}} \ \ \text{bezw. desmotrope Formen. } \textit{B. Durch}$

Reduktion von α-Nitro-tetronsäure (Bd. XVII, S. 406) mit Natriumamalgam oder in saurer Lösung mit Zink oder Zinn (Wolff, Lütteinghaus, A. 312, 140). — Nadeln (aus Wasser + Alkohol). Färbt sich bei 150° gelb, später braun und verkohlt oberhalb 250°; sehr leicht löslich in Wasser, sehr schwer in Äther, Alkohol und Chloroform (W., L.). Gibt mit Eisenchlorid eine allmählich verblassende hellrote, mit Kupfereate eine olivgrüne, in Rot übergehende Färbung. Wirkt reduzierend auf Silber-, Kupfer- und Eisensalze (W., L.). Läßt sich durch salpetrige Säure in Diazotetronsäure C₄H₂O₃N₂ (Syst. No. 4640) überführen (W., L.; vgl. Sohboeter, B. 42, 2348 Anm.).

3-Bensamino-4-oxy-2-oxo-furan-dihydrid-(2.5), α -Bensamino- β -oxy- $\Delta^{\alpha,\beta}$ -croton-lacton, α -Bensamino-tetronsäure $C_{11}H_{9}O_{4}N = \begin{array}{c} HO \cdot C = C \cdot NH \cdot CO \cdot C_{6}H_{5} \\ H_{8}C \cdot O \cdot CO \end{array}$ bezw. desmo-

- trope Formen. B. Neben O.N-Dibenzoyl-[α-amino-tetronsāure] aus α-Amino-tetronsāure und überschüssigem Benzoylchlorid in alkal. Lösung (Wolff, Lüttringhaus, A. 312, 141). Nadeln (aus siedendem Alkohol) oder vierseitige Prismen (aus heißem Benzol). F: 178°. Gibt mit Eisenchlorid eine violettrote Färbung. Beim Kochen mit Anilin entsteht das Anilid der α-Benzamino-tetronsäure (S. 604).
- 3-Bensamino-4-bensoyloxy-2-oxo-furan-dihydrid-(2.5), α -Bensamino- β -bensoyloxy $\Delta^{\alpha,\beta}$ crotonlacton (O.N Dibensoyl [α amino tetronsäure]) $C_{18}H_{18}O_{5}N = C_{6}H_{5}\cdot CO\cdot CO\cdot C=C\cdot NH\cdot CO\cdot C_{6}H_{5}$ ist desmotrop mit 4-Benzoyloxy-2-oxo-3-benzimino-furantetrahydrid, S. 80.
- 2. Aminoderivat des 5-Oxy-2-oxo-furan-dihydrids-(2.5) $C_4H_4O_3$ (8. 6). 4-Halogen-3-arylamino-5-alkyloxy-2-oxo-furan-dihydrid-(2.5), β -Halogen-HlgC= $C \cdot NH \cdot Ar$ at desmotrop mit 4-Halogen-5-alkyloxy-2-oxo-3-arylamino-furantetrahydrid, S. 80, 81.

c) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-6} O_8$.

2 (?) - Amino - 3 - oxy - pyron - (4), 2 (?) - Amino - pyromekonsäure $C_5H_5O_5N = HC \cdot CO \cdot C \cdot OH$ (?) bezw. desmotrope Formen. B. Durch Behandeln von 2(?)-Nitro-pyromekonsäure (Bd. XVII, S. 437) mit Zinn und verd. Salzsäure und Zersetzen des Hydrochlorids mit Ammoniak (Ost, J. pr. [2] 19, 193). — Nadeln (aus Wasser). Leicht löslich in heißem Wasser, ziemlich schwer in kaltem. Die wäßr. Lösung reagiert neutral. Eisenchlorid färbt sie indigoblau, dann grün, schließlich blutrot. Reduziert Silbernitrat schon in der Kälte. — $C_5H_5O_3N + HCl + H_2O$. Säulen (aus Wasser). Sehr leicht löslich in Wasser. Beständig gegen siedendes Wasser. Gibt ein leicht lösliches Chloroplatinat.

- d) Aminoderivate der Oxy-oxo-Verbindungen $C_nH_{2n-10}O_3$.
- 1. Aminoderiyate der Oxy-oxo-Verbindungen $C_8H_6O_3$.
 - 1. Aminoderivat des 3-Oxy-phthalids C₃H₆O₃ (S. 17).
- 8 Anilino 8 methoxy phthalid $C_{18}H_{18}O_8N=C_0H_4$ $C(O\cdot CH_2)(NH\cdot C_0H_5)$ O s. Bd. XII, S. 313.

2. Aminoderivat des 6-Oxy-phthalids C₂H₂O₃ (S. 18). Br 4.5.7-Tribrom-3-anilino-6-oxy-phthalid C₁₄H₂O₃NBr₃, Br s. nebenstehende Formel, ist desmotrop mit 3.4.6-Tribrom-5-oxy-2-phenyliminomethyl-benzoesäure, Tribrom-oxy-phthalaldehyd-säure-anil, Bd. XII, S. 540.

2. Aminoderivate des 6-0xy-3.3-diäthyl-phthalids $C_{19}H_{14}O_2$ (8. 23).

5.7 - Diamino - 6 - methoxy - 8.3 - diäthyl - phthalid

C₁₂H₁₈O₃N₂, s. nebenstehende Formel. B. Aus 5.7-Dinitro-6-methoxy-3.3-diāthyl-phthalid (S. 23) durch Behandlung mit Eisen und
Eisessig (BAUER, B. 41, 507). — Krystalle (aus Alkohol). F: 205°
bis 206°. Leicht löslich in verd. Säuren. Die alkoh, Lösung fluoresciert blau.

N.N'-Diacetylderivat $C_{17}H_{22}O_5N_2 = (CH_3 \cdot CO \cdot NH)_2(CH_3 \cdot O)C_6H \underbrace{C(C_2H_5)_2}_{C(C_2H_5)_2}O$. B. Beim Aufkochen von 5.7-Diamino-6-methoxy-3.3-diathyl-phthalid mit Essigsäureanhydrid (B., B. 41, 507). — Nadeln (aus verd. Essigsäure). F: 131,5°. Leicht löslich in Alkohol.

- e) Aminoderivate der Oxy-oxo-Verbindungen $C_nH_{2n-12}O_3$.
- 1. Aminoderivate des 6-0xy-cumarins $C_0H_6O_2$ (S. 26).

x-Amino-6-methoxy-cumarin $C_{10}H_{2}O_{3}N=\frac{H_{2}N}{CH_{3}\cdot O}>C_{6}H_{2}\cdot \frac{CH:CH}{O-CO}$. B. Man reduziert x-Nitro-6-methoxy-cumarin (S. 26) mit Eisen und Essigsäure (Biginelli, G. 27 II, 352). — Prismatische, blau fluorescierende Krystalle (aus Alkohol). F: 222—223°. Verdünnte wäßrige und alkoholische Lösungen fluorescieren sehr stark. Kocht man die wäßr. Lösung mit Kaliumnitrit und Schwefelsäure, so entsteht eine rote unlösliche Verbindung $C_{20}H_{15}O_{7}N$ (?).

Acetylderivat $C_{12}H_{11}O_4N = \frac{CH_2 \cdot CO \cdot NH}{CH_2 \cdot O} > C_6H_2 \cdot \frac{CH \cdot CH}{O - CO}$. B. Beim Kochen von x-Amino-6-methoxy-cumarin mit Essigsäureanhydrid (B., G. 27 II, 353). — Gelbe Nadeln. F: 207—208°, nach dem Erstarren 211—212°.

x.x-Diamino-6-methoxy-cumarin $C_{10}H_{10}O_3N_2=(H_2N)_3(CH_2\cdot O)C_6H < CH\cdot CH O_CO$. B. Man reduziert x.x-Dinitro-6-methoxy-cumarin (S. 27) mit Eisen und Essigsäure (B., G. 27 II, 350). — Nadeln oder Blättchen (aus Alkohol). F: 227—228°. Kaum löslich in Wasser, löslich in Alkohol. Verwandelt sich beim Diazotieren in eine schwarze, unlösliche, nicht sublimierbare Substanz.

- 2. Aminoderivate des 7-0xy-4-methyl-cumarins (4-Methyl-umbelliferons) $C_{10}H_{4}O_{3}$ (S. 31).
- 6 (?)-Amino-7-methoxy-4-methyl-cumarin, 6 (?)-Amino-4-methyl-umbelliferon-methyläther $C_{11}H_{11}O_3N$, s. nebenstehende Formel. B. Durch Reduktion von 6(?)-Nitro-4-methyl-umbelliferon-methyläther (S. 33) mit Zinnchlorür und Salzsäure (v. Pechmann, Obermiller, B. 34, 671). Plättchen (aus Eisessig-Alkohol). F: 221—222°. Die alkoh. Lösung fluoresciert grün, die schwefelsaure rotviolett.
- 8-Amino-7-oxy-4-methyl-cumarin, 8-Amino-4-methyl-umbelliferon C₁₀H₂O₂N, s. nebenstehende Formel. B. Durch Reduktion von 8-Nitro-4-methyl-umbelliferon (S. 33) mit Zinnchlordr und Salztion von 8-Nitro-4-methyl-umbelliferon (S. 33) mit Zinnchlordr und Salztion (v. Pechmann, Cohen, B. 17, 2137; v. P., Obermiller, B. 34, H₂N 668). Strohgelbe Nädelchen (aus Anilin + Alkohol). Zersetzt sich zum Teil bei 240—250° und ist bei 269—270° völlig geschmolzen (v. P., O.). Schwer löslich in den gewöhnlichen Lösungsmitteln (v. P., C.), leicht löslich in heißem Eisessig, Nitrobenzol und Anilin (v. P., O.). Löslich in Alkalien und Alkalicarbonaten mit gelber Farbe; die Lösungen in Alkalicarbonaten und in konz. Schwefelsäure fluorescieren blau (v. P., C.; v. P., O.). Die alkoh. Lösung wird durch Eisenchlorid intensiv grün gefärbt (v. P., C.). Liefert mit salpetriger Säure 8-Diazo-4-methyl-umbelliferon C₁₀H₄O₂N₂ (S. 652) (v. P., O.). 2C₁₀H₄O₂N + H₂SO₄ + 2H₂O. Äußerst schwer löslich in kaltem Wasser (v. P., C.).

8-Amino-7-methoxy-4-methyl-cumarin, 8-Amino-4-methyl-umbelliferon-methyläther $C_{11}H_{11}O_3N = \frac{CH_3 \cdot O}{H_4N} > C_8H_4 \cdot \frac{C(CH_3) \cdot CH}{O}$. B. Durch Reduktion von 8-Nitro-4-methyl-umbelliferon-methyläther (8. 33) mit Zinnchlorür und Salzsäure (v. Pechmann, Obermuller, B. 34, 671). — Gelbliche Nädelchen (aus 30% jegem Alkohol). F: 161%. Die Lösungen fluorescieren nicht.

8-Acetamino-7-oxy-4-methyl-cumarin, 8-Acetamino-4-methyl-umbelliferon $C_{12}H_{11}O_4N = HO > C_6H_2 O_1O$. B. Entsteht durch Umlagerung bei der Reduktion von 8-Nitro-4-methyl-umbelliferon-acetat mit Zinnehlorür und Salzsäure in Eisessig (v. P., O., B. 34, 672). Aus der Diacetylverbindung durch Behandeln mit konz. Salzsäure in der Kälte (v. P., O.). — Nädelchen (aus Eisessig). F: 290°. Schwer löslich in Alkohol, unlöslich in Benzol und Chloroform. Löslich in Alkalilaugen und Sodalösung. Die Lösungen in Alkohol, Alkalien und konz. Schwefelsäure fluorescieren rotstichig blau. Eisenehlorid gibt eine braungrüne Farbreaktion. — Beim Erhitzen über den Schmelzpunkt entsteht O.N-Äthenyl-[8-amino-4-methyl-umbelliferon] $CH_3 \cdot C < O > C_6H_2 \cdot O$ (Syst. No. 4444).

8-Diacetylamino-7-oxy-4-methyl-cumarin, 8-Diacetylamino-4-methyl-umbelliferon $C_{14}H_{18}O_{8}N=\frac{HO}{(CH_{3}\cdot CO)_{2}N}C_{6}H_{12}C_{0}H_{12}C_{0}$. B. Durch Lösen von O.N.N-Triacetyl-[8-amino-4-methyl-umbelliferon] in alkoh. Kalilauge (v. P., O., B. 34, 674). — Nädelchen (aus Essigsäure). F: 261—262°. Schwer löslich in Eisessig, sehr schwer in Alkohol. Die alkal. Lösungen fluorescieren blau. — Wird von kalter konzentrierter Salzsäure zur Monoacetylverbindung verseift. Liefert beim Erhitzen über den Schmelzpunkt O.N-Äthenyl-[8-amino-4-methyl-umbelliferon].

8-Diacetylamino-7-acetoxy-4-methyl-cumarin, O.N.N-Triacetyl-[8-amino-4-methyl-umbelliferon] $C_{16}H_{15}O_6N = \frac{CH_3 \cdot CO \cdot O}{(CH_3 \cdot CO)_2N} \cdot C_6H_2 \cdot \frac{C(CH_3) \cdot CH}{O}$. B. Durch 10 bis 15 Minuten langes Kochen von 8-Amino-4-methyl-umbelliferon mit der 3-fachen Menge Essigsäureanhydrid und etwas Natriumacetat (v. P., O., B. 34, 674). — Nadeln (aus verd. Essigsäure), Prismen (aus Benzol). F: 183—184°. Sehr leicht löslich in Chloroform, leicht in Alkohol, Eisessig und Benzol. — Zerfällt oberhalb des Schmelzpunkts unter Bildung von O.N-Äthenyl-[8-amino-4-methyl-umbelliferon]. Wird von alkoh. Kalilauge unter Bildung von 8-Diacetylamino-4-methyl-umbelliferon gelöst.

f) Aminoderivate der Oxy-oxo-Verbindungen C_nH_{2n-18}O₃.

Aminoderivate der Oxy-oxo-Verbindungen $C_{14}H_{10}O_3$.

- 1. Aminoderivate des 3-Oxy-3-phenyl-phthalids $C_{14}H_{10}O_3$ (S. 48).
- 3-Methoxy-3-[4-dimethylamino-phenyl]-phthalid, [2-(4-Dimethylamino-benzoyl)-benzoesäure]-pseudomethylester $C_{17}H_{17}O_3N=C_6H_4$ C(O·CH₃)[C₆H₄·N(CH₂)₂] O¹). B. Man behandelt 2-[4-Dimethylamino-benzoyl]-benzoesäure (Bd. XIV, S. 661) mit Thionylchlorid in Schwefelkohlenstoff, löst das Reaktionsprodukt in absol. Methylalkohol und versetzt die Lösung mit kalter konzentrierter Sodalösung (Pébard, C. r. 146, 935; A. ch. [9] 7 [1917], 398). Blättchen (aus siedendem Methylalkohol). F: 116°. Sehr schwer löslich in Äther, leicht in Benzol. Liefert bei der Einw. von Phenylmagnesiumbromid 2-[4-Dimethylamino-benzoyl]-triphenylcarbinol bezw. 5-Oxy-2.2-diphenyl-5-[4-dimethylamino-phenyl]-3.4-benzo-furan-dihydrid-(2.5) (Bd. XIV, S. 244).
- 4.7 Dihalogen 8 alkyloxy 3 [4 dialkylamino-phenyl]-phthalid, s. nebenstehende Formel. Vgl. 3.6-Dihalogen 2 [4 dialkylamino benzoyl] benzoesäure alkylester Alk₂N·C₆H₄·CO·C₆H₂Hig₂·CO₃·Alk, Bd. XIV, S. 663—666.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von EGEREE, H. MEYER, M. 34, 69 und von v. AUWERS, HEINZE, B. 52, 586 sowie einer Priv.-Mitt. von H. MEYER.

4.7 - Dihalogen - 8 - acetoxy - 8 - [4 - dialkylamino - phenyl] - phthalid $C_6H_2Hlg_3$ $CO \cdot CO \cdot CH_3$)($C_6H_4 \cdot NAlk_4$) O. Vgl. Essigsäure-[3.6-dihalogen-2-(4-dialkylamino-benzoyl)-benzoesäure]-anhydrid $Alk_2N \cdot C_6H_4 \cdot CO \cdot C_6H_2Hlg_3 \cdot CO \cdot O \cdot CO \cdot CH_4$, Bd. XIV, S. 663 bis 666.

- $\begin{array}{c} \textbf{4.5.6.7 Tetrachlor 8 alkyloxy 8 [4 dialkylamino phenyl] phthalid} \\ \textbf{C}_{6}\textbf{Cl}_{4} \hline \textbf{CO} \\ \textbf{C}_{6}\textbf{Cl}_{4} \hline \textbf{NAlk}_{2} \hline \textbf{O}. & \textbf{Vgl. 3.4.5.6-Tetrachlor-2-[4-dialkylamino-benzoyl]-benzoesäure-alkylester} \\ \textbf{Alk}_{2}\textbf{N} \cdot \textbf{C}_{6}\textbf{H}_{4} \cdot \textbf{CO} \cdot \textbf{C}_{6}\textbf{Cl}_{4} \cdot \textbf{CO}_{3} \cdot \textbf{Alk}, \\ \textbf{Bd. XIV, S. 664-665.} \end{array}$
- 4.5.6.7 Tetrachlor 3 acetoxy 3 [4 dialkylamino phenyl] phthalid C_6Cl_4 CO $CO \cdot CH_3$ CO $CO \cdot CH_4 \cdot NAlk_3$ O. Vgl. Essigsäure-[3.4.5.6-tetrachlor-2-(4-dialkylamino-benzoyl)-benzoesäure]-anhydrid $Alk_2N \cdot C_6H_4 \cdot CO \cdot C_6Cl_4 \cdot CO \cdot CO \cdot CH_3$, Bd. XIV, S. 664 bis 665.
- 2. Aminoderivate des 3 [4 Oxy phenyl] phthalids $C_{14}H_{10}O_3$ (8. 49). 3 p Anisidino 3 [4 methoxy phenyl] phthalid $C_{12}H_{19}O_4N = C_6H_4 \cdot C(C_6H_4 \cdot O \cdot CH_3)(NH \cdot C_6H_4 \cdot O \cdot CH_3) = 0$. Vgl. 2 Anisoyl benzoesäure p anisidid $C_{22}H_{19}O_4N = CH_3 \cdot O \cdot C_6H_4 \cdot CO \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$, Bd. XIII, S. 498.
- 3-[3-Amino-4-oxy-phenyl]-phthalid $C_{14}H_{11}O_3N=C_6H_4$ $CH[C_6H_6(OH)\cdot NH_2]$ 0. B. Durch Reduktion von 3-[3-Nitro-4-oxy-phenyl]-phthalid (8. 50) mit Zinn und Salzsäure (BISTRZYCKI, YSSEL DE SCHEPPER, B. 31, 2801). Gelbliche Prismen oder körnige Kryställohen (aus Alkohol). F: 229—230°. Ziemlich leicht löslich in heißem Benzol und Alkohol.

g) Aminoderivate der Oxy-oxo-Verbindungen $C_nH_{2n-26}O_8$.

1. Aminoderivat des 9-[2-0xy-phenyl]-fluorons $C_{19}H_{12}O_3$.

Hydroxymethylat des 6 - Dimethylamino-9 - [4 - dimethylamino-2-oxy-phenyl]-fluoron - methylimids $C_{25}H_{29}O_3N_3$, s. nebenstehende Formel. — Chlorid $C_{28}H_{28}O_2N_3$ Cl, s. S. 600.

N(CH₃)2

2. Aminoderivate der Oxy-oxo-Verbindungen $C_{20}H_{14}O_{8}$.

- 1. Aminoderivat des 6-Oxy-3.3-diphenyl-phthalids CmH14O2.
- - 2. Aminoderivat des 3-Phenyl-3-[4-oxy-phenyl]-phthalids $C_{10}H_{14}O_{1}$ (S. 72).
- 8 [4 Dimethylamino phenyl] 3 [4 oxy phenyl] phthalid, Dimethylanilin phenol phthalein C₂₂H₁₉O₂N, s. nebenstehende Formel. B. Aus 2-[4-Dimethylamino-benzoyl] benzoesäure (Bd. XIV, S. 661) und Phenol in Gegenwart von 80% iger Schwefelsäure (O. Fischer, Römer, B. 42, 2937). Krystalle mit 1 C₆H₆ (aus Benzol). F: 122—123%. Löslich in Natronlauge und in heißer alkoholischer Zinkehlorid-Lösung mit rotvioletter Farbe.

3. Aminoderivat des 3-Phenyl-3-[4-oxy-3-methyl-phenyl]-phthalids C₂₁H₁₆O₃.

8-[4-Dimethylamino-phenyl]-8-[4-oxy-8-methylphenyl]-phthalid, Dimethylanilin-o-kresol-phthalein $C_{33}H_{21}O_3N$, s. nebenstehende Formel. B. Aus 2-[4-Dimethylamino-benzoyl]-benzoesäure und o-Kresol in Gegenwart von 80% iger Schwefelsäure (O. Fischer, Römer, B. 42, 2938). — Blättchen mit 1 C. (aus Benzol). F: 110-112º.

$$\begin{array}{c|c} C_6H_4 & CO > O \\ CH_3 & & \\ HO & & \\ \end{array} \\ \begin{array}{c|c} N(CH_3)_2 \\ \end{array} \\ Blättchen \ mit \ 1 \ C_6H_6 \ (aus$$

2. Aminoderivate der Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen.

- a) Aminoderivate der Oxy-oxo-Verbindungen C_nH_{2n-10}O₄.
- 1. Aminoderivate der Oxy-oxo-Verbindungen C₈H₈O₄.
 - 1. Aminoderivat des 4.5-Dioxy-phthalids C₈H₆O₄ (S. 88).

7-Amino-4.5-dimethoxy-phthalid, 7-Amino-pseudomekonin $C_{10}H_{11}O_4N$, s. nebenstehende Formel. B. Beim Erwärmen von 7-Nitro-Wasserbad (Salomon, B. 20, 887). — F: 165°. Leicht löslich in kaltem Benzol, löslich in verd. Essigsäure.

Aminoderivate des 6.7-Dioxy-phthalids C₈H₆O₄ (S. 89).

8-Anilino-7-oxy-6-methoxy-phthalid $C_{15}H_{13}O_4N$, Formel I, ist desmotrop mit Methylathernoropiansaure-anil, Bd. XII, S. 540.

8-Anilino-6.7-dimethoxy-phthalid, 3-Anilino-mekonin $C_{16}H_{16}O_4N$, Formel II, ist desmotrop mit Opiansäure-anil, Bd. XII, S. 540.

- 3-Äthylanilino-6.7-dimethoxy-phthalid, 3-Äthylanilino-mekonin $C_{10}H_{10}O_4N =$ $(\mathrm{CH_3}\cdot\mathrm{O})_2\mathrm{C}_6\mathrm{H}_2\underbrace{\mathrm{CH}[\mathrm{N}(\mathrm{C}_2^{\circ}\mathrm{H}_5)\cdot\mathrm{C}_6\mathrm{H}_5]}_{\mathrm{CO}}\mathrm{O}.\quad B. \ \, \text{Aus Opiansāure (Bd. X, 8. 990) und Äthylanilin}$ in Alkohol (Liebermann, B. 29, 182). — Blätter (aus Alkohol). F: 116-117°. — Zerfällt beim Behandeln mit Soda-Lösung oder wäßr. Ammoniak in Opiansäure und Äthylanilin.
- $8-\alpha$ -Naphthylamino-6.7-dimethoxy-phthalid, $8-\alpha$ -Naphthylamino-mekonin $C_{30}H_{17}O_4N = (CH_3 \cdot O)_2C_6H_2 \underbrace{CH(NH \cdot C_{10}H_7)}_{CO}O \text{ ist desmotrop mit Opians&ure-α-naphthyl-$ -coimid. Bd. XII, S. 1251.
- 8 β Naphthylamino 7 oxy 6 methoxy phthalid $C_{19}H_{15}O_4N$ = (CH, ·O)(HO)C₂H₂CH(NH·C₁₀H₇) O ist desmotrop mit 6-Oxy-5-methoxy-2-[β-naphthyl----COiminomethyl]-benzoesäure, Bd. XII, S. 1304.
- $8-\beta$ -Naphthylamino-6.7-dimethoxy-phthalid, $8-\beta$ -Naphthylamino-mekonin $C_{20}H_{17}O_4N = (CH_3 \cdot O)_3C_6H_3 - \frac{CH(NH \cdot C_{10}H_7)}{CO}O$ ist im Anschluß an die desmotrope Verbindung, 5.6-Dimethoxy-2- $[\beta$ -naphthyliminomethyl]-benzoesäure, Bd. XII, 8. 1304 abgehandelt.
- 8-[4-Oxy-anilino] 6.7 dimethoxy phthalid, 8 [4 Oxy anilino] mekonin $C_{16}H_{15}O_8N = (CH_2 \cdot O)_8C_6H_2 \cdot \frac{CH(NH \cdot C_6H_4 \cdot OH)}{CO}O$ ist desmotrop mit Opiansāure-[4-oxyanil], Bd. XIII, S. 498.
- 8 p Phenetidino 6.7 dimethoxy phthalid, 8 p Phenetidino mekonin $C_{18}H_{19}O_{5}N = (CH_{4}\cdot O)_{8}C_{6}H_{2} - \frac{CH(NH\cdot C_{5}H_{4}\cdot O\cdot C_{2}H_{5})}{COO} \quad \text{ist} \quad \text{desmotrop} \quad \text{mit} \quad \text{Opians&ure-}$ [4-athoxy-anil], Bd. XIII, S. 498. 40*

N.N' - Bis - [6.7 - dimethoxy - phthalidyl - (3)] - benzidin $C_{xx}H_{xx}O_{x}N_{x} =$ $OC = O_6H_8(O \cdot CH_9)_8 = CH \cdot NH \cdot C_6H_4 -$ ist desmotrop mit N.N'-Bis-[3.4-dimethoxy-2-carboxy-benzal]-benzidin, Bd. XIII, S. 232

- 4-Brom-8-anilino-6.7-dimethoxy-phthalid, 4-Brom-8-anilino-mekonin C₁₆H₁₄O₄NBr, s. nebenstehende Formel, ist desmotrop mit 3-Brom-5.6-dimethoxy-2-phenyliminomethyl-benzoesaure, Bd. XII. 8.541.
 - CH(NH · CaHs) CHa · O CO CHa·O
- 4-Brom $8-\beta$ naphthylamino 6.7 dimethoxy phthalid. 4-Brom $8-\beta$ naphthylamino-mekonin $C_{00}H_{16}O_{4}NBr = (CH_{5}\cdot O)_{0}C_{4}HBr = (CH(NH\cdot C_{10}H_{7})) O$ ist desmotrop mit -CO-3-Brom-5.6-dimethoxy-2- $[\beta$ -naphthyliminomethyl]-benzoesäure, Bd. XII, S. 1305.
- 4-Nitro-3-anilino-6.7-dimethoxy-phthalid, 4-Nitro-3-anilino-mekonin $C_{16}H_{14}O_6N_9$, s. nebenstehende Formel, ist desmotrop mit 3-Nitro-5.6-dimethoxy-2-phenyliminomethyl-benzoesaure, Bd. XII,
 - CH(NH · CaHs) CO CH . O
- 4-Nitro-8- β -naphthylamino-6.7-dimethoxy-phthalid, 4-Nitro-8- β -naphthyl $amino-mekonin C_{20}H_{10}O_{0}N_{3}=(CH_{2}\cdot O)_{0}(O_{2}N)C_{0}H \\ \leq CH(NH\cdot C_{10}H_{7}) \\ \geq O \quad ist \quad desmotrop \quad mit$ CO-3-Nitro-5.6-dimethoxy-2- $[\beta$ -naphthyliminomethyl]-benzoesāure, Bd. XII, S. 1305.
- 4 Amino 6.7 dimethoxy phthalid, 4 Amino mekonin C₁₀H₁₁O₄N, s. nebenstehende Formel. B. Beim Erwärmen von 4-Nitromekonin (S. 90) mit Eisenfeile und 50% iger Essigsäure auf dem Wasserbad (Salomon, B. 20, 887). — F: 171%. Sehr schwer löslich in kaltem Benzol. Unlöslich in Ammoniak, löslich in verd. Säuren.
- H₂N CHS CO CHa·O
- 2. Aminoderivat des 6.7-Dioxy-3-āthyl-phthalids $C_{10}H_{10}O_4$ (8. 92).
- 4(?)-Amino-6.7-dimethoxy-3-äthyl-phthalid, 4(?)-Amino-3-äthyl-mekonin C₁₃H₁₅O₄N, s. nebenstehende Formel. B. Durch Reduktion von 4(?)-Nitro-3-äthyl-mekonin (8. 92) mit Zinn und Salzsaure (Mermod, Simonis, B. 41, 985). — Prismen (aus Wasser oder Benzol). F: 158° . — $C_{12}H_{15}O_4N + HCl$. Nadeln. F: 196° CH₃·O CH₃·O CH₃·O CH₃·O CH₃·O CH₃·O (Zers.). — $C_{12}H_{15}O_4N + HCl + AuCl_2$. Dunkelgrüner Niederschlag. Zersetzt sich bei ca. 200° . — $2C_{12}H_{15}O_4N + 2HCl + PtCl_4$. Braune Nadeln. Zersetzt sich bei 172° .
 - CH(CaHa)
 - b) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-16} O_4$.

Ketodihydromethylmorphimethin, Oxymethylmorphimethin C10H20eN = $O < C_{12}H_2(OH)(O \cdot CH_2)(:O) \cdot CH_2 \cdot CH_2 \cdot N(CH_2)_2$ bezw. desmotrope Formen s. bei Morphin, Syst. No. 4785.

c) Aminoderivate der Oxy-oxo-Verbindungen C_nH_{2n-18}O₄.

Acetomethylmorphimethin $C_{a1}H_{aa}O_{a}N = O < C_{14}H_{a}(OH)(O \cdot CH_{a})(OO \cdot CH_{a}) \cdot OH_{a} \cdot CH_{a}$ N(CH₂), sowie das Jodmethylat seines O-Acetylderivats s. bei Morphin, Syst. No. 4785.

- d) Aminoderivate der Oxy-oxo-Verbindungen $C_nH_{2n-20}O_4$.
- 6.7 Dioxy 2 [4 dimethylamino benzal] cumaranon C₁₇H₁₈O₄N, s. nebenstehende Formel. a) Praparat von Friedlander, Löwy. B. Aus HO ω-Chlor-gallacetophenon (Bd. VIII, S. 394) und p-Di-

methylamino-benzaldehyd durch Einw. von Natronlauge (FRIEDLÄNDER, LÖWY, B. 29, 2434). — Dunkelrote Täfelchen. F: 203°. Sehr schwer löslich in den gebräuchlichen Lösungsmitteln.

b) Praparat von Feuerstein, Brass. B. Beim Versetzen einer Lösung von 6.7-Dioxycumaranon (Bd. XVII, S. 176) und p-Dimethylamino-benzaldehyd in siedendem Alkohol mit rauchender Salzsäure (Feuerstein, Brass, B. 37, 823). — Blauviolett schimmernde Krystalle (aus Anisol). F: 281°. Sehr schwer löslich in den gebräuchlichen Lösungsmitteln. Die Lösungen in Ather und Anisol fluorescieren. Löst sieh in Alkalien mit blutroter, in konz. Schwefelsäure mit orangeroter Farbe. — Färbt Baumwolle auf Tanninbeize hellrot, auf Aluminiumbeize rotbraun, auf Eisenbeize braun und gechromte Seide orange.

Diacetylderivat $C_{21}H_{19}O_6N = (CH_3 \cdot CO \cdot O)_3C_6H_2 < {CO \choose O} > C \cdot CH \cdot C_6H_4 \cdot N(CH_3)_3$.

- a) Prāparat von Friedlander, Löwy. Hellrote Nadeln. F: 182° (Fr., L., B. 29, 2434). b) Prāparat von Feuerstein, Brass. B. Beim Kochen von 6.7-Dioxy-2-[4-dimethylamino-benzal]-cumaranon mit Essigsäureanhydrid und entwässertem Natriumacetat (Fruerstein, Brass, B. 37, 823). Violettglänzende Nadeln (aus Alkohol). F: 215°. Färbt mit Tannin behandelte Baumwolle rot.
- 6.7-Dioxy-2-[3-nitro-4-dimethylamino-benzal]cumaranon C₁₇H₁₄O₆N₂, s. nebenstehende Formel. B.
 Beim Versetzen einer Lösung von 6.7-Dioxy-cumaranon
 (Bd. XVII, S. 176) und 3-Nitro-4-dimethylamino-benzaldehyd in siedendem Alkohol mit etwas rauchender Salzsäure (Feuerstein, Brass, B.
 37, 824). Rote Nadeln. Schmilzt oberhalb 250°. Sehr leicht löslich in Alkohol, löslich in
 heißem Wasser, unlöslich in Äther. Löst sich in Alkalien mit kirschroter, in konz. Schwefelsäure mit roter Farbe. Färbt Baumwolle auf Tanninbeize gelb, auf Eisenbeize gelbstichig
 braun, auf Aluminiumbeize lebhaft orange, auf Chrombeize braun.

Diacetylderivat $C_{s1}H_{1s}O_sN_s = (CH_s \cdot CO \cdot O)_sC_sH_s \cdot CO \cdot C_sH_s(NO_s) \cdot N(CH_s)_s$. B. Beim Kochen von 6.7-Dioxy-2-[3-nitro-4-dimethylamino-benzal]-cumarano mit Essigsäure-anhydrid und Natriumacetat (F., B., B. 37, 825). — Gelbrote Krystalle. F: 212°. Sehr schwer löslich in heißem Wasser und Alkohol, unlöslich in Äther.

e) Aminoderivate der Oxy-oxo-Verbindungen C_nH_{2n-22}O₄.

6.7-Dioxy-2-[4-dimethylamino-cinnamal]cumaranon C₁₉H₁₇O₄N, s. nebenstehende Formel.

B. Beim Versetzen einer Lösung von 6.7-Dioxycumaranon (Bd. XVII, S. 476) und p-Dimethyl.

amino-zimtaldehyd in siedendem Alkohol mit rauchender Salzsäure (Feuerstein, Brass,

B. 37, 826). — Dunkelviolette Krystalle. F: 262°. Löslich in Wasser, Alkohol und Äther;
die äther. Lösung fluoresciert. Löst sich in konz. Schwefelsäure mit orangeroter, in verd.

Alkalien mit kirschroter Farbe. Färbt Baumwolle auf Tanninbeize lebhaft rot, auf Aluminiumbeize hellrot, auf Eisenbeize rötlichbraun und gechromte Seide orange.

Diacetylderivat $C_{22}H_{21}O_6N = (CH_3 \cdot CO \cdot O)_2C_6H_2 < {CO \atop O} > C \cdot CH \cdot CH \cdot CH \cdot C_6H_4 \cdot N(CH_3)_2$.

B. Beim Kochen von 6.7-Dioxy-2-[4-dimethylamin-cinnamal]-cumaranon mit Essigsäureanhydrid und Natriumacetat (Feuerstein, Brass, B. 37, 827). — Dunkelrote Nadeln. F: 206. Löslich in Wasser, Alkohol und Ather. Färbt mit Tannin behandelte Baumwolle rosa.

f) Aminoderivate der Oxy-oxo-Verbindungen C_nH_{2n-26}O₄.

Aminoderivate der Oxy-oxo-Verbindungen $C_{20}H_{14}O_4$.

1. Aminoderivate des 3-Phenyl-3-[3.4-dioxy-phenyl]-phthalids CnoH14O4.

8-[4-Dimethylamino-phenyl]-3-[3.4-dioxy-phenyl]phthalid, Dimethylanilin-brenscatechin-phthalein
C₂₈H₁₉O₄N, s. nebenstehende Formel. B. Beim Behandeln
von 4'-Dimethylamino-benzophenon-carbonsäure-(2) mit Brenzcatechin und 73-80% iger Schwefelsäure (O. FISCHER, RÖMER, B. 42, 2937). — Säulen mit
1 C₄H₄ (aus Benzol). F: 135%. Löst sich in Natronlauge mit violettroter Farbe; mit alkoh.
Zinkehlorid-Lösung entsteht eine blaurote Färbung.

3-[4-Dimethylamino-phenyl]-3-[4-oxy-3-methoxy-phenyl]-phthalid, Dimethylanilin-guajacol-phthalein C₂₃H₂₁O₄N, s. nebenstehende Formel. B. Beim Stehenlassen einer Lösung von 4'-Dimethylamino-benzophenon-carbon-säure-(2) und Guajacol in 73°/oiger Schwefelsäure (O. Fischer, Römer, B. 42, 2937). — Tafeln (aus Benzol). F: 172—173°. Löslich in Alkalien mit rotvioletter Farbe, die auf Zusatz von Mineralsäuren verschwindet. Färbt sich beim Erwärmen mit alkoh. Zinkohlorid-Lösung oder bei Einw. von alkoh. Salzsäure und etwas Phosphoroxychlorid rotviolett.

- 2. Aminoderivate des 3.3 Bis [4 oxy phenyl] phthalids (Phenol-phthaleins) $C_{10}H_{14}O_4$ (8. 143).
- 3.3-Bis-[3-amino-4-oxy-phenyl]-phthalid, 3'.3"-Diamino-phenolphthalein C₂₀H₁₆O₄N₂, s. nebenstehende Formel. B. Durch Erhitzen von 3'.3"-Dinitro-phenolphthalein (S. 152) mit überschüssiger alkoholischer Kaliumhydrosulfid-Lösung oder mit Zinnehlorür und konz. Salzsäure in Eissesig (Gattermann, B. 32, 1131; vgl. Errera, Bertr, G. 26 I, 266). Krystallinisches Pulver (aus verd. Alkohol) (G.). F: 262—263° (korr.) (Thiel, Diehl, C. 1927 II, 2672). Die intensiv blauen Lösungen in Alkalien entfärben sich rasch an der Luft (G.).
- 3'.3"- Diamino phenolphthalein dimethyläther $C_{22}H_{20}O_4N_2 = C_6H_4 \stackrel{CO}{\longrightarrow} O$ $C[C_6H_3(NH_2)\cdot O\cdot CH_3]_2$ B. Beim Kochen von lactoidem 3'.3"-Dinitro-phenolphthalein-dimethyläther (S. 152) mit Zinn und Salzsäure (Errera, Bertè, G. 26 I, 272). Amorphes Pulver. Unlöslich in Wasser, löslich in den gewöhnlichen Lösungsmitteln. Unlöslich in Alkalien, löslich in verd. Mineralsäuren. Gibt mit Kaliumnitrit in schwefelsaurer Lösung ein ziegelrotes Pulver (unlöslich in Wasser, sehr schwer löslich in Alkohol und anderen Lösungsmitteln, vielleicht ein Dinitroguajacolphthalein $C_{22}H_{16}O_{10}N_2$?).
- 5'.5" Dibrom 8'.3" diamino phenolphthalein

 C₂₀H₁₄O₄N₂Br₂, s. nebenstehende Formel. B. Beim Kochen von
 5'.5" Dibrom 3'.3" dinitro-phenolphthalein (S. 152) mit Zinn
 und Salzsäure (Errera, Berrè, G. 26 I, 269). Blaßgelbes
 amorphes Pulver (aus Benzol durch Petroläther). Löslich in Alkohol
 und Benzol, schwer löslich in Chloroform, unlöslich in Petroläther
 und Wasser. Die Lösungen in Alkalien sind blau. C₂₀H₁₄O₄N₂Br₂ + 2 HCl. Täfelchen.
 Zersetzt sich vor dem Schmelzen. Leicht löslich in Alkohol und Wasser, schwer in konz.
 Salzsäure.

H. Amino-carbonsäuren.

- 1. Aminoderivate der Monocarbonsäuren.
- a) Aminoderivate der Monocarbonsäuren C_nH_{2n-6}O₃.
- 1. Aminoderivat der Brenzschleimsäure $C_5H_4O_2$ (S. 272).
- $\begin{array}{ll} \textbf{5-Amino-furan-carbons\"{a}ure-(2)-\ddot{a}thylester, 5-Amino-brensschleims\"{a}ure-\ddot{a}thylester C_7H_9O_9N = & HC \\ \hline & H_2N \cdot \overset{\circ}{C} \cdot O \cdot \overset{\circ}{C} \cdot CO_3 \cdot C_2H_5 \\ \hline & \text{carbons\"{a}ure-(2)-\ddot{a}thylester, S. 394.} \end{array}$

2. Aminoderivat der α -Furylessigs äure $C_eH_eO_3$ (S. 293) bezw. Schwefelanalogon.

Anilino- α -furyl-essigsäure-nitril, N-Phenyl-C- α -furyl-glycin-nitril $C_{12}H_{10}ON_2=HC-CH$ $H_C^{"}\cdot O\cdot C\cdot CH(NH\cdot C_0H_5)\cdot CN$ B. Man versetzt ein Gemisch von Furfurol und Blausaure mit 1—2 Tropfen einer konz. Lösung von Kaliumhydroxyd, Kaliumcarbonat oder Kaliumoyanid, läßt erkalten, säuert mit Schwefelsäure oder Salzsäure schwach an und fügt die äquivalente Menge Anilin zu (Ulträß, R. 28, 255). — Krystalle (aus Tetrachlorkohlenstoff). F: 74°. Leicht löslich in Benzol, Alkohol und Aceton, schwer in Tetrachlorkohlenstoff, sehr schwer in Petroläther.

Amino - α - thienyl - essigsäure, C - α - Thienyl - glycin $C_6H_7O_2NS = HC — CH$ $HC \cdot S \cdot C \cdot CH(NH_2) \cdot CO_2H$ B. Beim Behandeln von Oximino α -thienylessigsäure (S. 407) mit Zinn und Salzsäure (Bradley, B. 19, 2122). — Blättchen oder Körnchen. Zersetzt sich bei ca. 235—240°, ohne zu schmelzen. — $Cu(C_6H_6O_2NS)_2 + H_2O$. Hellblaue Krystalle. — $C_6H_7O_2NS + HCl$. Blättchen (aus Wasser + Alkohol).

b) Aminoderivate der Monocarbonsäuren C_nH_{2n-8}O₃.

 α - Bensamino - β - [α - furyl] - acrylsäure, Furfurylidenhippursäure $C_{14}H_{11}O_4N=OC_4H_3\cdot CH:C(NH\cdot CO\cdot C_6H_5)\cdot CO_2H$ ist desmotrop mit α -Benzimino- β -[α -furyl]-propionsäure, S. 409.

c) Aminoderivate der Monocarbonsäuren C_nH_{2n-12}O₃.

1. Aminodérivate der Cumaron-carbonsäure-(2) $\mathrm{C_9H_6O_3}$ (S. 307) bezw. Schwefelanaloga.

3-Amino-thionaphthen-carbonsäure-(2) bezw. 3-Imino-thionaphthen-dihydrid-carbonsäure-(2) C₅H₇O₅NS = C₆H₄ C(NH₂) C·CO₂H bezw. C₆H₄ C(:NH) CH·CO₂H.

B. Aus S·[2-Cyan-phenyl]-thioglykolsäure (Bd. X, S. 132) durch Erwärmen mit 25°/ojeer Natronlauge auf 60° (Friedländer, A. 351, 416; Kalle & Co., D. R. P. 184496, 190674; C. 1907 II, 434; 1908 I, 424). — Nadeln (aus Äther + Ligroin). Zersetzt sich bei 140—146°, je nach der Schnelligkeit des Erhitzens (F.). Sehr schwer löslich in Wasser (F.). Löslich in Essigester und Alkohol; die verd. Lösungen fluorescieren intensiv blauviolett (F.). — Beim Kochen mit Wasser entsteht 3-Amino-thionaphthen (F.). Liefert beim Erhitzen mit verd. Säuren 3-Oxy-thionaphthen (Bd. XVII, S. 119) (F.; K. & Co., D. R. P. 190674), mit verd. Alkalien 3-Oxy-thionaphthen-carbonsäure-(2) (S. 347) und 3-Oxy-thionaphthen (K. & Co., D. R. P. 184496). — Natriumsalz. Blättchen. Leicht löslich in Wasser, fast unlöslich in Natronlauge (F.; K. & Co., D. R. P. 184496). — Ba(C₉H₆O₂NS)₂. Blättchen. Sehr schwer löslich in Wasser (F.).

5-Chlor-3-amino-thionaphthen-carbonsäure-(2) bezw. 5-Chlor-3-imino-thionaphthendihydrid-carbonsäure-(2) C₂H_eO₂NClS, Formel I bezw. II. B. Aus S-[4-Chlor-2-cyan-phenyl]-thiogly-kolsåure (Bd. X, S. 133) durch I. Cl. C:NH₂ Kolsåure (Bd. X, S. 133) durch I. g. CO₂H II. Cl. C:NH Erwärmen mit 20% jeger Natron-lauge auf 70% (Kalle & Co., D. R. P. 202696; C. 1908 II, 1477). — Gibt durch Koehen mit verd. Schwefelsäure 5-Chlor-3-oxy-thionaphthen (Bd. XVII, S. 121).

2. Aminoderivat der 3-Methyl-cumaron-carbonsäure-(2) $C_{10}H_aO_a$ (8. 309).

6-Dimethylamino-3-methyl-cumarins aure C₁₃H₁₃O₃N, s. nebenstehende Formel. B. Durch Einw. von siedender, 10°/o; ier-alko-holischer Kalilauge auf 7-Dimethylamino-4-methyl-cumarin in (S. 611) (v. Pechmann, Schaal, B. 32, 3694). — Graue, benzolhaltige Nadeln (aus Benzol). Gibt bei 110° das Benzol ab. Schmilzt bei 165° unter Kohlensäure-Entwicklung. Unlöslich in Ligroin, löslich in den meisten übrigen Lösungsmitteln. Löslich in Mineralsäuren. Die alkal. Lösung fluoresciert blau. Gibt in alkoh. Lösung mit Ferriohlorid eine blaugrüne Färbung. — Beim Erhitzen bis zur Beendigung der Kohlensäure-Entwicklung entsteht 6-Dimethylamino-3-methyl-cumaron.

d) Aminoderivate der Monocarbonsäuren C_nH_{2n-16}O₈.

 $\alpha - [4 - Amino - phenyl] - \beta - [\alpha - furyl] - acrylsäure - nitril, 4-Amino - \alpha - furfuryliden-$ HC-CH phenylessigsäure-nitril $C_{18}H_{10}ON_2 = \frac{1}{HC} \cdot O \cdot C \cdot CH : C(CN) \cdot C_2H_4 \cdot NH_2$. B. Man versetzt eine heiße alkoh. Lösung von 4-Amino-benzyleyanid mit Natriumathylat und Furfurol (Freund, Immerwahr, B. 28, 2854). — Nadeln (aus Alkohol). F: 111—112°.

Discotylderivat $C_{17}H_{14}O_{2}N_{3} = OC_{4}H_{2} \cdot CH : C(CN) \cdot C_{4}H_{4} \cdot N(CO \cdot CH_{3})_{3}$. B. Aus 4-Discotylamino-benzylcyanid durch Einw. von Furfurol und Natriumäthylat (FREUND, IMMERWAHR, B. 23, 2855). — Hellgelbe Krystalle (aus Alkohol). F: 203—204°.

- 4-[ω -Allyl-thioureido]- α -furfuryliden-phenylessigsäure-nitril $C_{17}H_{18}ON_8S=OC_4H_4\cdot CH:C(CN)\cdot C_6H_4\cdot NH\cdot CS\cdot NH\cdot CH_2\cdot CH:CH_3$. B. Durch kurzes Erhitzen von 4-Aminobenzyloyanid mit der berechneten Menge Allylsenföl und nachfolgende Kondensation des entstandenen (nicht näher beschriebenen) 4-[w-Allyl-thioureido]-benzylcyanids mit Furfurol in Gegenwart von alkoh. Natriumäthylat-Lösung (F., I., B. 23, 2855). — Hellgelbes Pulver. F: 206-208°. Unlöslich in Alkohol und den meisten übrigen Lösungsmitteln. Wird durch heißen Eisessig zersetzt.
- 4-[ω -Phenyl-thioureido]- α -furfuryliden-phenylessigsäure-nitril $C_{eq}H_{15}ON_{2}S=OC_{4}H_{2}\cdot CH:C(CN)\cdot C_{6}H_{4}\cdot NH\cdot CS\cdot NH\cdot C_{6}H_{5}$. B. Man erhitzt 4-Amino-benzyleyanid mit Phenylsenföl und kondensiert das (nicht näher beschriebene) 4-[ω -Phenyl-thioureido]-benzylcyanid vom Schmelzpunkt 140—141° mit Furfurol in Gegenwart von alkoh. Natriumäthylat-Lösung (F., I., B. 28, 2856). — Krystalle (aus Alkohol). F: 159-160°.

2. Aminoderivate der Dicarbonsäuren.

- 1. Aminoderivat der Furan-dicarbonsäure-(2.3) C.H.O. (8. 327).
- 5- $[\omega$ -Phenyl-ureido]-8-cyan-furan-carbonsäure-(2)-äthylester $C_{15}H_{12}O_4N_2=$ HC---C·CN ist desmotrop mit 5-Anilinoformylimino-3-cyan-furan-CaH. NH · CO · NH · C · O · CO · CO. · C. H. dihydrid-(4.5)-carbonsaure-(2)-athylester, S. 489.
- 2. Aminoderivat der β -[α -Furyl]-isobernsteinsäure $C_nH_nO_n$ (S. 332). β - Anilino - β - [α - furyl] - isobernsteinsäure - diäthylester $C_{18}H_{21}O_{2}N = HO$ —CH -CH $HC \cdot O \cdot C \cdot CH(NH \cdot C_0H_S) \cdot CH(CO_S \cdot C_0H_S)_S$. B. Bei mehrtägigem Stehenlassen einer Lösung von äquimolekule von äquimolekularen Mengen Furfurylidenmalonsäure-diäthylester (S. 338) und Anilin in absol. Äther (Goldstein, B. 28, 1455). — Krystalle (aus Alkohol). F: 72—73°.

J. Amino-oxy-carbonsauren.

Aminoderivate der Oxy-carbonsäuren mit 4 Sauerstoffatomen.

a) Aminoderivate der Oxy-carbonsäuren C_nH_{2n-12}O₄.

5-Amino-8-oxy-thionaphthen-carbonsaure-(2) bezw. 5-Amino-8-oxo-thionaphthendihydrid-carbonsäure-(2) C.H.O.NS, Formel I bezw. II. B. Durch Einwirkung

von Alkalien auf (nicht näher beschriebene) S-[4-Amino-2-carboxy-phenyl]-thioglykolsäure (Höchster Farbw., D. R. P. 201837; C. 1908 II, 1309). — Gibt bei der Kondensation mit Isatin einen Wolle rötlichgrau färbenden Küpenfarbstoff.

6-Amino-8-oxy-thionaphthen-carbonsäure-(2) bezw. 6-Amino-8-oxo-thionaphthendihydrid-carbonsäure-(2) $C_9H_7O_3NS$, Formel I oder II. B. Durch Einw. von Alkalien auf (nicht näher beschriebene) S-[5-Amino-2-carboxy-phenyl]-thioglykolsäure (Höchster

Farbw., D. R. P. 201837; C. 1908 II, 1309). — Gibt bei vorsichtiger Oxydation 6.6'-Diaminothioindigo $H_2N \cdot C_6H_3 < {CO \atop S} > C \cdot C < {CO \atop S} > C_6H_3 \cdot NH_2$ (Syst. No. 2933) (H. F., D. R. P. 198644; C. 1908 I, 2119). Beim Erhitzen mit Isatin in Eisessig entsteht ein Wolle gelborange färbender Küpenfarbstoff (H. F., D. R. P. 201837).

b) Aminoderivate der Oxy-carbonsäuren C_nH_{2n-26}O₄.

2-[6-Dimethylamino-9-oxy-2-methyl-xanthyl]-benzoesäure-äthylester, 6-Dimethylamino-2-methyl-9-[2-carbäthoxy-phenyl]-xanthydrol C₂₅H₃₅O₄N, Formel III.

B. Das salzsaure Farbsalz entsteht beim Einleiten von Chlorwasserstoff in die siedende absolut-alkoholische Lösung des 6-Dimethylamino-2-methyl-fluorans, Formel IV (Syst. No. 2933) (NOELTING, DZIEWOŃSKI, B. 39, 2745). — Beim Behandeln des salzsauren Salzes

$$(OH_2)_2N \cdot O(OH) \cdot OH_3 \cdot OH_4 \cdot OH_3 \cdot O$$

mit Alkalilauge, mit Soda- oder Natriumdicarbonat-Lösung sowie mit feuchtem Silberoxyd entsteht 6-Dimethylamino-2-methyl-fluoran; beim Behandeln mit alkoh. Kalilauge bildet sich 2-[6-Dimethylamino-9-äthoxy-2-methyl-xanthyl]-benzoesäure-äthylester. Mit alkoh. Ammoniak entsteht die Verbindung der Formel V (Syst. No. 4383). — [CasHato] (1+5Hato). Hellrote, goldglänzende Nadeln (aus salzsäurehaltigem Wasser). F: 95° Sehr leicht löslich in Alkohol, ziemlich löslich in Wasser. Färbt mit Tannin behandelte Baumwolle gelbstichig rot.

2 - [6 - Dimethylamino - 9 - äthoxy - 2 - methyl - C₆H₄· CO₂· C₂H₅

xanthyl] - benzoesäure - äthylester, 6 - Dimethyl - amino - 2 - methyl - 9 - [2 - carbäthoxy - phenyl] - xant - hydroläthyläther C₂₇H₂₉O₄N, s. nebenstehende Formel.

B. Durch Behandeln des salzsauren Salzes des 2 - [6 - Dimethylamino - 9 - oxy - 2 - methyl - xanthyl] - benzoesäure - äthylesters mit alkoh. Kalilauge (N., D., B. 39, 2747). — Prismen (aus Alkohol). F: 105°. Leicht löslich in Alkohol, Äther und Benzol.

Gibt mit heißer verdünnter Salzsäure das salzsaure Salz des 2 [6 - Dimethylamino - 9 - oxy - 2 - methyl - xanthyl] - benzoesäure - äthylesters zurück.

K. Amino-oxo-carbonsäuren.

1. Aminoderivate der Oxo-carbonsäuren mit 4 Sauerstoffatomen.

a) Aminoderivate der Oxo-carbonsäuren C_nH_{2n-12}O₄.

1. Aminoderivate der 3-0x0-cumaran-carbonsäure-(2) $\mathrm{C_pH_6O_4}$ (8. 418) bezw. Schwefelanaloga.

5-Amino-3-oxo-thionaphthendihydrid - carbonsäure - (2) H-O₂NS, s. nebenstehende Formel, ist desmotrop mit 5-Amino-3-oxy-thionaphthen-carbonsäure-(2), S. 632.

6-Amino-3-oxo-thionaphthendihydrid - carbonsäure - (2) $C_bH_2O_bNS$, s. nebenstehende Formel, ist desmotrop mit 6-Amino-3-oxy-thionaphthen-carbonsäure-(2), s. o.

2. Aminoderivate der γ -Phenyl-butyrolacton- β -carbonsäure $C_{11}H_{10}O_4$ (S. 420).

 $\begin{array}{l} \gamma\text{-}[4\text{-}Amino\text{-}phenyl]\text{-}butyrolacton-}\beta\text{-}carbons\"{a}ure, \ \gamma\text{-}[4\text{-}Amino\text{-}phenyl]\text{-}paracons\"{a}ure } C_{11}H_{11}O_4N = \begin{array}{l} H_1C & \text{-}CH \cdot CO_2H \\ OC \cdot O \cdot CH \cdot C_2H_4 \cdot NH_2 \end{array} . \\ \text{B. Das Hydrochlorid entsteht beim Behandelm } \\ \text{von } \gamma\text{-}[4\text{-}Nitro\text{-}phenyl]\text{-}paracons\~{a}ure } (S.\ 422) \text{ mit Zinn und konz. Salzs\~{a}ure } (Salomonson, R.\ 6,\ 17). \\ - C_{11}H_{11}O_4N + HCl. \quad Krystalle. \end{array}$

b) Aminoderivate der Oxo-carbonsäuren C_nH_{2n-14}O₄.

4-Anilino-cumarin-carbonsäure-(3)-äthylester, Anilid des Benzotetronsäure-(arbonsäure-(3)-äthylesters] $C_{18}H_{18}O_4N = C_6H_4 < \begin{array}{c} C(NH \cdot C_6H_5) : C \cdot CO_2 \cdot C_2H_5 \\ CO \end{array}$ s. 2-Oxo-4-phenylimino-chroman-carbonsäure-(3)-äthylester, Anil des Benzotetronsäure-(carbonsäure-(3)-äthylesters], S. 469.

c) Aminoderivate der Oxo-carbonsäuren C_nH_{2n-28}O₄.

6-Amino-9-[2-carboxy-phenyl]-fluoronimid, 4"-Amino-2.2"-oxido-fuchsonimid-carbonsäure-(2') bezw. Lacton der 2-[8.6-Diamino-9-oxy-xanthyl]-benzoesäure, 3.6-Diamino-fluoran $C_{20}H_{14}O_2N_2$, Formel I bezw. II, Rhodamin s. Syst. No. 2933.

6-Äthylamino-9-[2-carbomethoxy-phenyl]-fluoronäthylimid $C_{25}H_{24}O_3N_2$, s. nebenstehende Formel. Hierüber und über den entsprechenden Äthylester vgl. bei N.N'-Diäthyl-rhodamin, Syst. No. 2933.

$$C_2H_5 \cdot HN \cdot \bigcirc C_2H_5$$

CoH4 · CO2 · CH3

2. Aminoderivate der Oxo-carbonsäuren mit 5 Sauerstoffatomen.

6-Amino-komensäure $C_0H_5O_5N=H_2N\cdot C_5H_2O_3\cdot CO_2H$ s. S. 635.

3. Aminoderivate der Oxo-carbonsäuren mit 7 Sauerstoffatomen.

[4.4'-Diamino-diphenyl-tetracarbonsäure-(2.3.2'.8')]-2.3-anhydrid, [Benzidintetracarbonsäure-(2.3.2'.8')]-2.3-anhydrid $C_{1e}H_{10}O_7N_2$, Formel III. B. Das Dikaliumsalz entsteht beim Kochen von [Benzidin-tetracarbonsäure-(2.3.2'.3')]-dianhydrid (Formel IV,

Syst. No. 2933) mit Kaliumcarbonat-Lösung (Claus, Hemmann, B. 16, 1759). Das Monoammoniumsalz entsteht durch Verdampfen der ammoniakalischen Lösung des [Benzidintetracarbonsäure-(2.3.2'.3')]-dianhydrids (C., H.). — NH₄C₁₆H₆O₇N₂. Gelbe, prismatische Krystelle. — Na₂C₁₆H₆O₇N₂. Hellgraues Pulver. Löslich in Wasser mit brauner Farbe. — K₄C₁₆H₆O₇N₂ + 5H₂O. Gelbe Krystalle. Verwittert bei gewöhnlicher Temperatur und gibt bei 110⁶ das Krystallwasser vollständig ab. — Ag₂C₁₆H₆O₇N₂. Hellgelbes Pulver. Zersetzt sich rasch am Licht und beim Erhitzen in feuchtem Zustand. — PbC₁₆H₆O₇N₃. Schwefelgelbes, amorphes Pulver.

L. Amino-oxy-oxo-carbonsäuren.

1. Aminoderivate der Oxy-oxo-carbonsäuren mit 5 Sauerstoffatomen.

6-Amino-komensäure $C_6H_5O_5N=\frac{H \cdot C \cdot CO \cdot CH}{H_5N \cdot C - O - C \cdot CO_3H}$ bezw. desmotrope Formen. B. Beim Behandeln von 6-Nitro-komensäure-äthylester mit Zinn und Salzsäure (Reibstein, J. pr. [2] 24, 281). — Nädelchen mit $1H_2O$ (aus heißem Wasser). Schwer löslich in kaltem Wasser und Alkohol, fast unlöslich in Äther. Gibt mit wenig Eisenchlorid eine indigoblaue Parabara die durch mehr Piscophlorid in Pot überseht and gulatzt wassehwindet. — C.H.O.N Färbung, die durch mehr Eisenchlorid in Rot übergeht und zuletzt verschwindet. — $C_0H_0O_5N + HCl + 3H_0O$. Schuppen. Verliert bei 110^0 das Krystallwasser und alle Salzsäure. Wird von kaltem Wasser hydrolysiert.

2. Aminoderivate der Oxy-oxo-carbonsäuren mit 6 Sauerstoffatomen.

6-Methoxy-3-[4-dimethylamino-2-oxy-phenyl]-phthalid- $CH_2 \cdot O$ carbonsäure-(3) $C_{18}H_{17}O_6N$, s. nebenstehende Formel. B. Bei mehrstündigem Stehenlassen von 5-Methoxy-phthalonsäure (Bd. X, S. 1019) und 3-Dimethylamino-phenol mit konz. Schwefelsäure (Fritson, A. 296, 360). — Farblose Nadeln, die an der Luft violett werden. F: 180°.

M. Amino-sulfonsäuren.

1. Aminoderivate der Monosulfonsäuren.

a) Aminoderivate der Monosulfonsäuren C_n H_{2n-16} O₄ S.

2.7 - Diamino - diphenylensulfon - sulfonsäure - (3?), SO3H(?) Benzidinsulfon-sulfonsäure $C_{13}H_{10}O_5N_2S_2$, s. nebenstehende Formel. Zur Konstitution vgl. Friedlander, Frdl. 1, 500.

— B. Neben Benzidinsulfon-disulfonsäure und anderen Produkten beim Erhitzen von Benzidinsulfon (S. 591) mit rauchender Schwefelsäure auf 130—160° (Griess, Duisberg, B. 22, 2468, 2469; vgl. BAYER & Co., D.R.P. 27954, 33088; Frdl. 1, 495, 499). — Hellgelbe Nädelchen mit 2H₄O; sehr schwer löslich in heißem Wasser, fast unlöslich in Alkohol (G., D.). — Liefert eine in Wasser unlösliche, rotbraune Tetrazoverbindung (G., D.). Verwendung dieser Tetrazoverbindung zur Darstellung von Azofarbstoffen: B. & Co., D. R. P. 27954. — Ca(C₁₂H₂O₅N₂S₂)₂ +8¹/₂H₂O. Gelbe Nädelchen. Ziemlich leicht löslich in heißem Alkohol, leicht in heißem, sehwer in kaltem Wasser (G., D.). — Ba(C₁₂H₂O₅N₂S₂)₂ +3¹/₂H₂O. Goldgelbe Nädelchen. In Wasser gelwaren läslich als des Calairungst (G. D.) In Wasser schwerer löslich als das Calciumsalz (G., D.).

b) Aminoderivate der Monosulfonsäuren C_nH_{2n-24}O₄S.

CH(C6H4 · 8O8H) 8.6-Bis-dimethylamino-9-[x-sulfo-phenyl] - xanthen, Tetramethylleukorosamin-sulfonsäure $C_{23}H_{24}O_4N_2S$, s. nebenstehende Formel. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-2.2'-dioxy-triphenylmethan (Bd. XIII, · N(CH3)2 S. 820) mit konz. Schwefelsäure auf dem Wasserbad (BIEHRINGER, J. pr. [2] 54, 253). Rötliche Nadeln (aus Wasser), deren Lösung starke Fluorescenz zeigt (Liebermann, Glawe, B. 37, 208). — Durch Oxydation mit Eisenchlorid oder salpetriger Säure entsteht Tetramethylrosaminsulfonsäure (S. 636) (B.). — NaC₂₃H₂₃O₄N₂S (bei 75°). Tafeln (aus Alkohol); blaßrote, blauschimmernde Nadeln (aus Wasser). und Alkohol, sehr schwer in heißem Aceton (B.).

2. Aminoderivate der Disulfonsäuren.

2.7-Diamino-diphenylensulfon-disulfonsäure-(8.6?), Benzidinsulfon - disulfonsäure C₁₂H₁₀O₂N₂S₃, s. nebenstehende Formel. Zur Konstitution vgl. FRIEDLÄNDER, Frdl. - B. s. im Artikel Benzidinsulfon-monosulfon-SO2H(?) saure. Zur Darstellung aus Benzidin oder Benzidinsulfat durch Erhitzen mit rauchender Schwefelsäure von 40% H2N SO2 NH2
Anhydridgehalt anfangs auf 100%, dann auf 150% vgl. BAYEB & Co., D. R. P. 33088; Frdl. Anhydriagenait aniangs auf 100°, dann auf 150° vgl. BAYER & Co., D. R. P. 33088; Frat. 1, 499. — Hellgelbe Nadeln mit 1½H₂O; ziemlich leicht löslich in heißem Wasser, schwer in Alkohol; fast unlöslich in kalter Salzsäure und verd. Schwefelsäure (Griess, Duisberg, B. 22, 2471). — Liefert eine hellgelbe Tetrazoverbindung (G., D.). Verwendung dieser Tetrazoverbindung zur Darstellung von Azofarbstoffen: G., D.; B. & Co., D. R. P. 27954, 51497; Fral. 1, 497; 2, 408; vgl. Schultz, Tab. No. 361. — Natriumsalz. Gelbe Nadeln. Sehr leicht löslich in heißem, schwer in kaltem Wasser, unlöslich in Alkohol (G., D.). — Bec. H. O. N. 341. D. Nathan Schwen läslich in heißem Wasser, unlöslich in Alkohol (G., D.). — $BaC_{12}H_{9}O_{8}N_{2}S_{3}+4^{1}/_{2}H_{2}O$. Nadeln. Schwer löslich in heißem Wasser, unlöslich in Alkohol

N. Amino-oxy-sulfonsäuren.

1. Aminoderivate von Sulfonsäuren der Monooxy-Verbindungen.

8.6-Bis-dimethylamino-9-oxy-9-[x-sulfo-phenyl]-xanthen, 8.6-Bis-dimethyl-

amino-9-[x-sulfo-phenyl]-xanthydrol C₂₂H₂₄O₅N₃S, Formel I.

Anhydroverbindung, Anhydro-[6-dimethylamino-9-(x-sulfo-phenyl)fluoron-methylimid-hydroxymethylat-(3)], Tetramethylrosaminsulfonsäure
C₂₅H₂₅O₅N₅S, Formel II. B. Durch Oxydation der Tetramethylleukorosaminsulfonsäure (S. 635) mit Eisenchlorid oder salpetriger Saure (BIEHRINGER, J. pr. [2] 54, 255). — Goldgrün-

I.
$$(CH_3)_2N$$
. $(CH_3)_2N$. $(CH_3)_2$ II. $(CH_3)_2N$. $(CH_3)_2N$. $(CH_3)_2N$.

glänzende Blättchen (aus Alkohol). Die roten Lösungen in Wasser und Alkohol fluorescieren stark gelb (B.). Löslich in Säuren und heißer Natronlauge (B.). — Zerfällt bei mehrstündigem Erhitzen mit 10% gier Kalilauge im Wasserbad in 4-Dimethylamino-2-oxy-benzophenon-sulfonsäure-(x') (Bd. XIV, S. 869) und 3-Dimethylamino-phenol (LIEBERMANN, GLAWE, B. 37, 208; vgl. B.). Färbt Seide ähnlich wie Dioxytetramethylrosaminsulfonsäure (L., B. 36, 2929).

2. Aminoderivate von Sulfonsäuren der Trioxy-Verbindungen.

8.6-Bis-dimethylamino-9-oxy-9-[8.4-dioxy-5(?)-sulfo-phenyl]-xanthen, 8.6-Bisdimethylamino-9-[8.4-dioxy-5(?)-sulfo-phenyl]-xanthydrol C₂₅H₂₄O₇N₂S, Formel III.

Anhydroverbindung, Anhydro-[6-dimethylamino-9-(3.4-dioxy-5(?)-sulfo-phenyl)-fluoron-methylimid-hydroxymethylat-(3)] oder 4'.4"-Bis-dimethylamino-3-oxy-2'.2"-oxido-fuchson-sulfon-săure (5?) C₂₂H₂₃O₆N₂S, Formel IV oder V, Dioxytetramethylrosaminsulfonsăure B.

Durch Erhitzen von Leukoprotorot (Bd. XIII, S. 844)

Wesserbed (Leurenaux) mit konz. Schwefelsäure im Wasserbad (LIEBERMANN, B. 86, 2927). — Rote, goldglänzende Blättchen mit 1H₂O; verliert das Krystallwasser bei 135—140° (L.).

Leicht löslich in heißem, fast unlöslich in kaltem Wasser (L.). Die roten Lösungen fluorescieren stark (L.). — Liefert beim Erwärmen mit verd. Kalilauge 3.6-Bis-dimethylamino-xanthon (S. 614) (L., Glawe, B. 37, 203). Färbt Seide blaurot, Baumwolle auf Tonerdebeise cochenillerot (L.).

O. Amino-oxo-sulfonsäuren.

6-Amino-9-[2-sulfo-phenyl]-fluoron-imid, 4"-Amino-2.2"-oxido-fuchsonimid-sulfonsäure-(2') bezw. Sulton des 3.6-Diamino-9-oxy-9-[2-sulfo-phenyl]-xanthens

 $C_{19}H_{14}O_4N_2S$, Formel I bezw. II, m-Aminophenolsulfonphthalein, m-Aminophenolsulfurein s. Syst. No. 2991.

VIII. Hydroxylamine.

A. Hydroxylaminoderivate der Stammkerne.

1. Monohydroxylamine $C_nH_{2n-1}O_2N$.

9-Hydroxylamino-2.9-oxido-p-menthan, Dihydrocarvoxyd-hydroxylamin C₁₀H₁₉O₂N, s. nebenstehende Formel. B. Entsteht neben einer isomeren Verbindung vom Schmelzpunkt 164—165° bei kurzem Kochen von Dihydrocarvoxyd (Bd. XVII,
S. 44) in alkoh. Lösung mit salzsaurem Hydroxylamin und Kalilauge (Wallach, Schradder,
A. 279, 386). Entsteht als Hauptprodukt bei der Einw. von Hydroxylamin auf Dihydrocarvoxyd in Alkohol (Semmler, B. 36, 767). — F: 111—112° (W., Sch.), 113—114° (Se.).
Unlöslich in Alkalien, sehr leicht löslich in Säuren; liefert beim Erwärmen mit verd. Säuren
Dihydrocarvoxyd zurück (Se.). Reagiert nicht mit Brom (Se.). Beim Erhitzen mit alkoh.
Kalilauge auf 160° entstehen Ammoniak, 1-Methyl-cyclohexanol-(2)-[α-propionsäure]-(4)
(Bd. X, S. 18) und ihr (nicht isoliertes) Nitril sowie andere Produkte (Se.). — C₁₀H₁₉O₂N
+HCl. F: 93° (Se.).

O-Bensoylderivat $C_{17}H_{25}O_3N=C_{10}H_{17}O\cdot NH\cdot O\cdot CO\cdot C_6H_5$. B. Aus Dihydrocarvoxydhydroxylamin und Benzoylchlorid (Semmler, B. 36, 768). — Krystallinisch. F: 144°.

2. Monohydroxylamine C_nH_{2n-9}O₂N.

1. 3-Hydroxylamino-cumaron bezw. 3-0ximino-cumaran, Cumaranon-oxim $C_8H_7O_2N = C_6H_4 \xrightarrow{C(NH \cdot OH)} CH$ bezw. $C_6H_4 \xrightarrow{C(:N \cdot OH)} CH_2$. B. Aus Cumaranon (Bd. XVII, S. 118) in tiblicher Weise (Stoermer, Bartsch, B. 33, 3178; St., König, B. 39, 496). — Krystalle (aus verd. Alkohol). F: 159° (St., B.). Löslich in heißem Alkohol und Ather (St., B.). — Bei der Reduktion mit Natriumamalgam in alkoholisch-essigsaurer Lösung entsteht 3-Amino-cumaran (S. 585) (St., K.).

2. Hydroxylamine C.H.O.N.

1. 3-Hydroxylamino-5-methyl-cumaron bezw. 3-Oximino-5-methyl-cumaran, 5-Methyl-cumaranon-oxim $C_1H_2O_2N$, Formel III bezw. IV. B. Beim

III.
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Kochen von 5-Methyl-cumaranon (Bd. XVII, S. 123) mit Hydroxylaminhydrochlorid in alkoholisch-wäßriger Lösung unter Zusatz von Soda (Fries, Finck, B. 41, 4278). — F: 144° (STORRMER, BARTSCH, B. 83, 3181), 144—145° (AUWERS, MÜLLER, B. 41, 4237), 148° (Fr., Fi.).

2. 3-Hydroxylamino-6-methyl-cumaron bezw. 3-Oximino-6-methyl-cumaran, 6-Methyl-cumaranon-oxim C.H.O.N, Formel I bezw. II. B. Beim Kochen von 6-Methyl-cumaranon (Bd. XVII, S. 124) mit. Hydroxylaminhydrochlorid in

alkoholisch-wäßriger Lösung unter Zusatz von Soda (Fries, Finck, B. 41, 4279; Fi., Dissertation [Marburg 1908], S. 42). — Farblose Nadeln (aus Alkohol). F: 151° (Stoermer, Bartsch, B. 33, 3180), 156° (Higginbotham, Stephen, Soc. 117 [1920], 1541), 165° (Fr., Fi.; Fi.). Löslich in Natronlauge und konz. Schwefelsäure ohne Färbung (Fr., Fi.; Fi.).

3. 3-Hydroxylamino-7-methyl-cumaron bezw. 3-Oximino-7-methyl-cumaran, 7-Methyl-cumaranon-oxim C.H.O.N, Formel III bezw. IV. Gelblich. F: 148° (Stoermer, Bartsch, B. 33, 3180). Löslich in Äther, Benzol und Alkohol.

3. 3-Hydroxylamino-5.7-dimethyl-cumaron bezw. 3-0ximino-5.7-dimethyl-cumaran, 5.7-Dimethyl-cumaranon-oxim $C_{10}H_{11}O_{2}N$, Formel V bezw. VI. F: 148° (Stoermer, Bartson, B. 33, 3181).

3. Monohydroxylamine $C_nH_{2n-15}O_2N$.

9-Hydroxylamino-xanthen, N-Xanthyl-hydroxylamin $C_{13}H_{11}O_{2}N=C_{6}H_{4}$ CH(NH·OH) $C_{6}H_{4}$. B. Aus Xanthydrol (Bd. XVII, S. 129) und Hydroxylamin (Fosse, C. r. 143, 760; Bl. [3] 35, 1005; vgl. F., A. ch. [9] 6 [1916], 31). — Nadeln. F: 140° (Zers.). — Liefert bei der Einw. von heißer alkoholischer Salzsäure Hydroxylaminhydrochlorid, Xanthen und Acetaldehyd. Geht beim Erhitzen auf 150° in Dixanthyl (Syst. No. 2685) über.

B. Oxy-hydroxylamine.

4-Hydroxylamino-5'-oxy-3.7.6'-trimethoxy-[indeno-2'.1':3.4-chromen] - dihydrid - (3.4)\dagger*1, Trimethylbrasilein-hydroxylamin C₁₈H₂₁O₆N, s. nebenstehende Formel. B. Durch Einw. von 1 Mol Hydroxylamin auf Brasilein-trimethyläther (S. 196) in Methanol (Engells, W. H. Perrin, Robinson, Soc. 93, 1135). — Farblose Prismen. Zersetzt sich bei 150°. Schwer löslich in Wasser und Alkohol. — Beim Kochen mit Essigsäure, Soda oder Ammoniak wird Brasileintrimethyläther regeneriert.

C. Oxo-hydroxylamine.

Hydroxylaminoderivate der Monooxo-Verbindungen.

a) Hydroxylaminoderivate der Monooxo-Verbindungen $C_nH_{2n-4}O_2$.

Lacton der 2-Hydroxylamino-1.2.3-trimethyl-cyclopentanol-(3)-carbonsäure-(1), Hydroxylaminocampholacton $O_0H_{15}O_3N$, s. nebenstehende Formel. B. Aus Nitrocampholacton (Bd. XVII, S. 260) durch Reduktion mit Zink-

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

staub und Eisessig (SCHEYVER, Soc. 73, 563). — Prismen (aus Wasser). F: 148°. Leicht löslich in heißem Wasser und Äther, schwer in Petroläther. Hat schwach basischen Charakter. — Reduziert ammoniakalische Silberlösung in der Kälte. Wird von Eisenchlorid zu Nitrosocampholacton (Bd. XVII, S. 260) oxydiert.

b) Hydroxylaminoderivate der Monooxo-Verbindungen $C_nH_{2n-10}O_2$.

4-Hydroxylamino-3.4-dihydro-cumarin $C_9H_9O_2N = C_6H_4 \stackrel{CH(NH\cdot OH)\cdot CH_2}{O}$. B. Das Hydrochlorid entsteht aus β-Hydroxylamino-hydro-o-cumarhydroxamsäure (Bd. XV, S. 59) oder ihrem Oximhydrat (Bd. XV, S. 60) beim Behandeln mit rauchender Salzsäure (Francesconi, Cusmano, R. A. L. [5] 18 II, 186; G. 40 I [1910], 208). — Öl, das sich bald unter Abscheidung von Cumarin zersetzt. — C₂H₂O₂N + HCl. Nadeln; färbt sich gegen 140° und zersetzt sich bei ca. 160°. Ziemlich löslich in Wasser. Reduziert kalte Fehlingsche Lösung. 2 - Oxy - 2.4 - bis - hydroxylamino - chroman $C_9H_{12}O_4N_2 =$ CH(NH·OH)·CH. hydroxamsäure, Bd. XV, S. 59. 4 - [O oder N - Methyl - hydroxylamino] - 3.4 - dihydro - cumarin $C_{10}H_{11}O_3N = CH(NH \cdot O \cdot CH_3) \cdot CH_2$ oder $C_6H_4 \cdot O$ oder $C_6H_4 \cdot O$. B. Beim Behandeln von B. Beim Behandeln von β-Hydroxylamino-hydro-o-cumarhydroxamsäure (Bd. XV, S. 59) mit Dimethylsulfat und Kalilauge (F., C., G. 39 I, 197). — Krystalle (aus Essigester + Ather). F: 167—168°; zersetzt sich bei 182°. Sehr schwer löslich in Ather, ziemlich löslich in Alkohol und Essigester. Löslich in siedendem Wasser mit gelber, in Sodalösung mit gelbgrüner Farbe. Leicht löslich in siedender konzentrierter Salzsäure. Verbindung C₁₂H₁₃O₃N, Formel I bezw. II, s. Syst. No. 4190. II. CH CH₂ N O C(CH₃)₃ I. CH CH₂ N(:0):C(CH₈)s

c) Hydroxylaminoderivate der Monooxo-Verbindungen $C_nH_{2n-26}O_2$.

6-Methyl-3-[\alpha-hydroxylamino-benzyl]-1-thio-flavanon C₂₃H₂₁O₂NS, s. nebenstehende Formel. B. Aus 6-Methyl-3-benzal-1-thio-flavanon (Bd. XVII, S. 397) in alkoh. Lösung durch Behandeln mit Hydroxylaminhydrochlorid und Natronlauge (Auwers, Arnot, B. 42, 2710). — Nadeln und Blättchen (aus Benzol). F: 174—176° (Zers.). Unlöslich in wäßr. Laugen.

IX. Hydrazine.

A. Hydrazinoderivate der Stammkerne.

1. Monohydrazine C_nH_{2n+2}ON₂.

 $\alpha\text{-Hydrazino-}\alpha\text{--äthyl--äthylenoxyd}\quad C_4H_{10}ON_2=H_2C_{\overbrace{O}}C(C_2H_5)\cdot NH\cdot NH_2.$

2. Monohydrazine C_nH_{2n-8}ON₂.

- 1. 3-Hydrazino-cumaron bezw. Cumaranonhydrazon $C_8H_8ON_2 = C_8H_4 \frac{C(NH \cdot NH_2)}{O}$ CH bezw. $C_8H_4 \frac{C(:N \cdot NH_2)}{O}$ CH₂.
- 3 Semicarbasino cumaron bezw. Cumaranonsemicarbason $C_pH_pO_2N_3 = C_eH_4 \xrightarrow{C(NH\cdot NH\cdot CO\cdot NH_2)}CH$ bezw. $C_eH_4 \xrightarrow{C(:N\cdot NH\cdot CO\cdot NH_2)}CH_2$. Gelbliche, krystallinische Masse (aus Alkohol). F: 231°; fast unlöslich in Wasser und verd. Alkohol (Stoermer, Bartsch, B. 33, 3178).

2. Hydrazine C.H.10ON2.

1. 3-Hydrazino-5-methyl-cumaron bezw. 5-Methyl-cumaranon-hydrazon $C_0H_{10}ON_2$, Formel I bezw. II.

3-Semicarbasino-5-methyl-cumaron bezw. 5-Methyl-cumaranon-semicarbason $C_{10}H_{11}O_2N_{20}$ Formel III bezw. IV. Gelbliche Kryställchen (Stoermer, Bartsch, B. 33, 3181).

F: 230—232° (Auwers, Müller, B. 41, 4237), 230° (Storrmer bei Au., M., B. 41, 4237), 228° (Higginbotham, Stephen, Soc. 117 [1920], 1541).

2. 3-Hydrazino-6-methyl-cumaron bezw. 6-Methyl-cumaranon-hydrazon $C_0H_{10}ON_2$, Formel V bezw VI.

3-Semicarbazino-6-methyl-cumaron bezw. 6-Methyl-cumaranon-semicarbazon $C_{10}H_{11}O_2N_4$, Formel VII bezw. VIII. Gelblich. F: 208° ; leicht löslich in heißem Alkohol, weniger in Äther (Stoermer, Bartsch, B. 83, 3180).

3. 3-Hydrazino-7-methyl-cumaron bezw. 7-Methyl-cumaranon-hydrazon $C_0H_{10}\mathrm{ON}_2$, Formel IX bezw. X.

3-Semicarbasino-7-methyl-cumaron bezw. 7-Methyl-cumaranon-semicarbason $C_{10}H_{11}O_2N_3$, Formel XI bezw. XII. Gelbliche Kryställchen (aus verd. Alkohol) (Stoermer, Bartsch, B. 83, 3180). F: 237—238° (St. bei v. Auwers, B. 49 [1916], 814; v. Au.).

3. Monohydrazine C_nH_{2n-14}ON₂.

2-Hydrazino-diphenylenoxyd C₁₂H₁₀ON₂, s. nebenstehende Formel. B. Man behandelt das Natriumsalz der Diphenylenoxyddiazosulfonsäure-(2) (S. 643) mit Zinkstaub in siedender schwach essigsaurer Lösung und kocht das erhaltene (nicht näher beschriebene) Natriumsals des 2-[\$\beta\$-Sulfo-hydrazino]-diphenylenoxyds mit Salzsäure (Borsche, Bothe, B. 41, 1942).— Blättehen (aus verd. Alkohol). F: 152°. Ziemlich veränderlich.— C₁₂H₁₀ON₂ + HCl. Blättehen (aus verd. Salzsäure). F: 225°.

B. Oxy-hydrazine.

2 - [4 - Phenylhydrazino - 3.5 - dioxy - phenyl] - furan, 2-Phenylhydrasino-5- α -furyl-resorcin $C_{1c}H_{1d}O_3N_2$, s. nebenstehende Formel. Vgl. hierzu das 4-Phenylhydrason des 1- α -Furyl-cyclohexantrions-(3.4.5), Bd. XVII, S. 567.

C. Oxo-hydrazine.

- 1. Hydrazinoderivate der Monooxo-Verbindungen.
- a) Hydrazinoderivate der Monooxo-Verbindungen C_nH_{2n-2}O₂. $\alpha - [\beta - \text{Phenyl} - \text{hydrazino}] - \gamma - \text{methyl} - \text{butyrolacton}, \quad \alpha - [\beta - \text{Phenyl} - \text{hydrazino}] - \text{Horolacton} C. H. O. N. = \frac{C_0 H_0 \cdot \text{NH} \cdot \text{NH} \cdot \text{HC}}{C H_1}$ Herolacton C. H. O. N. = $\frac{C_0 H_0 \cdot \text{NH} \cdot \text{NH} \cdot \text{HC}}{C H_1}$ Mon gibt Shoreshiesian OC·O·CH·CH₃. B. Man gibt überschüssige ν -valerolacton $C_{11}H_{14}O_{\bullet}N_{\bullet} =$ Blausäure zu Phenylhydrazin, fügt Aldol in Äther zu und verseift das erhaltene Nitril mit konz. Salzsäure in der Kälte (Münch, B. 27, 1295). — Blättchen (aus Äther). F: 113°. Schwer löslich in Wasser, ziemlich leicht in Alkohol.
- b) Hydrazinoderivate der Monooxo-Verbindungen C_nH_{2n-4}O₂.
- 1. Hydrazinoderivat des Δα.β-Crotonlactons C.H.O. (Bd. XVII, S. 249). 4-Phenylhydrazino-2-oxo-furan-dihydrid-(2.5), β -Phenylhydrazino- $\Delta^{\alpha\beta}$ -crotonlacton, Phenylhydrazid der Tetronsäure $C_{10}H_{10}O_2N_2 = \begin{array}{c} C_0H_5\cdot NH\cdot NH\cdot C \longrightarrow CH \\ -1 & -1 \end{array}$ desmotrop mit 2-Oxo-4-phenylhydrazono-furantetrahydrid, β -Phenylhydrazono-butyrolacton, Phenylhydrazon der Tetronsäure, Bd. XVII, S. 405.
- 2. Hydrazinoderivat des α -Methyl- $\Delta^{\alpha,\beta}$ -crotonlactons $C_bH_eO_a$ (Bd. XVII,
- 4-Phenylhydrazino-2-oxo-3-methyl-furan-dihydrid-(2.5), β -Phenylhydrazino- α -methyl- $\Delta^{\alpha,\beta}$ -crotonlacton, Phenylhydrazid der α -Methyl-tetronsäure $C_{11}H_{12}O_2N_2=$ $C_6H_5 \cdot NH \cdot NH \cdot C = C \cdot CH_3$ ist desmotrop mit 2-Oxo-4-phenylhydrazono-3-methyl-furan-H.C.O.CO tetrahydrid, β -Phenylhydrazono- α -methyl-butyrolacton, Phenylhydrazid der α -Methyltetronsäure, Bd. XVII, S. 414.
- 3. Hydrazinoderivat des α -Äthyl- $\varDelta^{\alpha,\beta}$ -crotonlactons $C_aH_aO_a$.
- 4 Phenylhydrazino 2 oxo 3 äthyl furan-dihydrid (2.5), β -Phenylhydrazino - α -äthyl- $\Delta^{\alpha,\beta}$ -crotonlacton, Phenylhydrazid der α -Äthyl-tetronsäure $C_{12}H_{14}O_{2}N_{2}=$ $C_6H_5 \cdot NH \cdot NH \cdot C = C \cdot C_2H_5$ ist desmotrop mit 2-0xo-4-phenylhydrazono-3-athyl-furantetrahydrid, β -Phenylhydrazono- α -äthyl-butyrolacton, Phenylhydrazon der α -Äthyl-tetronsäure, Bd. XVII, S. 416.
- c) Hydrazinoderivate der Monooxo-Verbindungen $C_nH_{2n-10}^{\cdot}O_2$.
- 1. Hydrazinoderivat des Phthalids C₂H₄O₂ (Bd. XVII, S. 310). 3 - $[\alpha\beta$ - Diphenyl - hydrazino] - phthalid, N - [Phthalidyl - (3)] - hydrazobenzol $C_{20}H_{16}O_2N_2=C_6H_4<\underset{CO}{\text{CH}}>0^{\text{N}(C_6H_5)\cdot\text{NH}\cdot C_6H_5}$. Beim Vermischen der heißen, konzentrierten alkoholischen Lösungen von Phthalaldehydsäure und Hydrazobenzol (Allendorff, B. 24, 2350). — Nadeln (aus Alkohol). F: 202—203° (Zers.). Leicht löslich in Chloroform, Aceton und Benzol, ziemlich schwer in absol. Alkohol und Äther, unlöslich in Ligroin; unlöslich in Natronlauge. Verbindet sich nicht mit Hydroxylamin.

2. Hydrazinoderivat des 3.3-Diäthyl-phthalids C₁₂H₁₄O₂ (Bd. XVII, S. 325).

N.N'- Bis - [8.8 - diathyl- phthalidyl- (6)]hydragin C₃₆H₃₈O₄N₃, a. nebenstehende Formel.

B. Bei der Reduktion von 3.3.3'.3'-Tetraäthyl[6.6'.azonbtbelid] (2.45') - ''. C. [6.6'azophthalid] (S. 645) mit Schwefelwasserstoff in alkoholisch-ammoniakalischer Lösung (BAUEB, B. 41, 508). — Nadeln (aus Alkohol). Färbt sich bei ca. 190° gelb und schmilzt bei 206—208°. Leicht löslich in heißem Alkohol, löslich in Benzol und Aceton, schwer löslich in Ligroin, unlöslich in Wasser. - Gibt beim Erwärmen mit konz. Salzsäure 6-Amino-3.3-diäthvl-phthalid und 3.3.3'.3'-Tetraäthvl-[6.6'-azophthalid].

d) Hydrazinoderivate der Monooxo-Verbindungen $C_n H_{2n-12} O_{2n}$

4-Phenylhydrazino-2-oxo-[1.2-chromen], 4-Phenylhydrazino-cumarin, Benzo-onsäure-phenylhydrazid $C_{16}H_{18}O_{2}N_{2}=C_{6}H_{4}C_{16}C_$ tetronsäure-phenylhydrazid $C_{15}H_{12}O_2N_2 = C_6H_4$ dung, der vielleicht diese Konstitution zukommt, s. Bd. XVII, S. 488.

- 6-Hydrazino-2-oxo-[1.2-chromen], 6-Hydrazino-cumarin Han NH. C.H.O.N., s. nebenstehende Formel. B. Durch Diazotieren von 6-Amino-cumarin mit Natriumnitrit und Salzsäure und Reduktion des Diazoniumsalzes mit Zinnehlorür und Salzsäure (Morgan, Micklethwaft, Soc. 85, 1236). Gelbe Nadeln (aus Benzol). F: 165-1670. - Reduziert leicht Fehlingsche Lösung. Beim Kochen mit Kupfersulfat-Lösung entsteht Cumarin.
- 6 Benzalhydrazino cumarin $C_{16}H_{18}O_2N_3$, s. neben- $C_{6}H_5\cdot CH:N\cdot NH$. stehende Formel. B. Aus 6-Hydrazino-cumarin und Benzaldehyd in Eisessig (Mo., Mi., Soc. 85, 1236). — Hellgelbe Nadeln (aus Benzol). F: 190-194°.
- 6 $[\beta$ Acetyl hydrazino] cumarin $C_{11}H_{10}O_3N_2$, s. nebenstehende Formel. B. Aus 6-Hydrazino-cumarin und Essigsäureanhydrid in wäßr. Suspension bei gewöhnlicher Temperatur (Mo., Mr., Soc. 85, 1236). — F: 163°.

2. Hydrazinoderivate der Dioxo-Verbindungen.

Tetronsäure - azo - acetessigsäure - äthylester $C_{10}H_{12}O_6N_2 = OC - CH \cdot NH \cdot N : C(CO_2 \cdot C_2H_6) \cdot CO \cdot CH_3$ s. Bd. XVII, S. 553. H.C.O.CO

D. Oxy-oxo-hydrazine.

 $8 - [\alpha.\beta - Diphenyl - hydrazino] - 6.7 - dimethoxy-$ **CH**20 N(CaHs) · NH · CaHs phthalid, N - [6.7 - Dimethoxy - phthalidyl - (3)]hydrazobenzol, Opianylhydrazobenzol $C_{22}H_{20}O_4N_2$, s. nebenstehende Formel. B. Beim Aufkochen der CH3.0. CH₃·O konzentrierten alkoholischen Lösungen von Opiansäure (Bd. X, S. 990) und Hydrazobenzol (BISTRZYCKI, B. 21, 2520). — Blätter (aus Benzol). F: 186—188°. Fast unlöslich in Äther und Ligroin, ziemlich löslich in heißem Alkohol und Chloroform; unlöslich in verd. Alkalien. - Beim Erhitzen mit Phenylhydrazin und Alkohol auf 140° entsteht 7.8-Dimethoxy-2-phenylphthalazon-(1) (Syst. No. 3636).

4-Brom-8- $[\alpha.\beta$ -diphenyl-hydrazino]-6.7-dimethoxy-phthalid, N-[4-Brom-6.7-dimethoxy-phthali--N(CeH5) · NH · CeH5 dyl-(3)]-hydrazobenzol C₂₂H₁₉O₄N₂Br, s. nebenstehende Formel. B. Bei kurzem Kochen der konzentrierten alkoholischen Lösung von Bromopiansäure CH₂O (Bd. X, S. 995) und Hydrazobenzol (Tust, B. 25, 2000). — Blättchen (aus Benzol). Schmilzt unter Gelbfärbung bei 211°. Ziemlich leicht löslich in heißem Alkohol, Chloroform und Benzol, unlöslich in Äther und Ligroin.

E. Hydrazino-oxo-carbonsäuren.

 $\begin{array}{lll} \textbf{4-Phenylhydrazino-cumarin-carbons\"{a}ure-(3)-\"{a}thylester, \ Phenylhydrazid \ des } \\ \textbf{Bensotetrons\"{a}ure-[carbons\"{a}ure-(3)-\"{a}thylesters]} & C_{18}H_{16}O_4N_2 = \\ C_6H_4 & C_6H_5):C\cdot CO_2\cdot C_2H_5 \\ O & \text{s. } 2\text{-Oxo-4-phenylhydrazono-chroman-carbons\"{a}ure-(3)-\"{a}thylesters, \ Phenylhydrazon \ des \ Benzotetrons\"{a}ure-[carbons\~{a}ure-(3)-\"{a}thylesters], \ S. \ 469. \end{array}$

F. Hydrazino-oxy-oxo-carbonsäuren.

4 - Phenylhydrazino - 5.7 - dioxy - cumarin - carbonsäure - (6 oder 8) - äthylester $C_{18}H_{16}O_8N_2$, Formel I oder II, s. 5.7-Dioxy-2-oxo-4-phenylhydrazono-chroman-carbonsäure (6 oder 8)-äthylester, S. 555.

I.
$$C_2H_5 \cdot O_2C \cdot C(NH \cdot NH \cdot C_6H_5) \subset CH$$
HO
$$C_2H_5 \cdot O_2C \cdot C(NH \cdot NH \cdot C_6H_5) \subset CH$$

$$C_2H_5 \cdot O_2C \cdot CO$$

$$C_2H_5 \cdot O_2C \cdot CO$$

X. Azo-Verbindungen.

(Verbindungen, die vom Typus R.N:NH ableitbar sind; vgl. dazu "Leitsätze", Bd. I, S. 10—11, § 12a).

A. Mono-azo-derivate der Stammkerne.

Verbindung $C_{12}H_8ON_2 = C_6H_4 C_O C_4H_3 \cdot N: NH$.

Diphenylenoxyd - $\langle 2 \text{ azo } 4 \rangle$ - phenol $C_{1s}H_{1s}O_{1}N_{s}$, s. nebenstehende Formel. B. Man diazotiert 2-Amino-diphenylenoxyd und kuppelt in alkal. Lösung mit Phenol (Borsche, Bothe, B. 41, 1942). — Rotbraune Krystalle (aus Alkohol). F: 199°.

Diphenylenoxyd - diazosulfonsäure - (2) $C_{12}H_2O_4N_2S$, s. nebenstehende Formel. B. Das Natriumsalz entsteht, wenn man diazotiertes 2-Amino-diphenylenoxyd-hydrochlorid mit Natriumsalz liefert beim Kochen mit Zinkstaub und stark verdünnter Essigsäure und Aufkochen des entstandenen Natriumsalzes des 2- $[\beta$ -Sulfo-hydrazino]-diphenylenoxyds mit Salzsäure 2-Hydrazino-diphenylenoxyd. — Na $C_{12}H_2O_4N_2S$. Gelbes Krystallpulver (aus Wasser).

B. Bis-azo-derivate der Stammkerne.

Verbindung C₂₀H₁₂ON₄, Formel III.

4'.4"-Bis-benzolaso-[dinaphtho-1'.2': 2.8; 2".1": 4.5-furan] 1), Bis-benzolaso- α -dinaphthylenoxyd $C_{33}H_{30}ON_4$, Formel IV. B. Durch Erwärmen von 4.4'-Bis-benzolazo-1.1'-dioxy-dinaphthyl-(2.2') (Bd. XVI, S. 204) mit konz. Schwefelsäure auf dem Wasserbad

und Eingießen des Reaktionsprodukts in Wasser; man erwärmt den Niederschlag mit Natronlauge, löst ihn in Phenol und fällt durch Alkohol (Witt, Dedichen, B. 80, 2665). — Orangerote Krystalle (aus Xylol). F: 290—291° (Zers.). Löslich in konz. Schwefelsäure mit blauer Farbe.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

C. Azoderivate der Oxy-Verbindungen.

1. Azoderivate der Monooxy-Verbindungen.

Azoderivate der Monooxy-Verbindungen CaH6O2.

- 1. Azoderivat des 2-Oxy-cumarons C₈H₆O₂ bezw. Schwefelanslogon.
- **3-Benzolazo-2-oxy-thionaphthen** $C_{14}H_{10}ON_2S = C_6H_4 \xrightarrow{C(N:N\cdot C_6H_5)} C\cdot OH$ ist desmotrop mit Thionaphthenchinon-phenylhydrazon-(3), Bd. XVII, S. 469.
- 2. Azoderivat des 3-Oxy-cumarons C₈H₆O₂ (Bd. XVII, S. 118) bezw. Schwefelanalogon.
- 2-Benzolazo-3-oxy-thionaphthen bezw. Thionaphthenchinon-phenylhydrazon-(2) $C_{14}H_{10}ON_3S = C_6H_4 < \stackrel{C(OH)}{S} C\cdot N: N\cdot C_6H_5$ bezw. $C_6H_4 < \stackrel{CO}{S} > C: N\cdot NH\cdot C_6H_5$. Zur Konstitution vgl. Auwers, Müller, A. 381 [1911], 281, 290. B. Aus Benzoldiazoniumchlorid und 3-Oxy-thionaphthen-carbonsäure-(2) in alkal. Lösung (Friedländer, M. 30, 353). Orangegelbe Nädelchen (aus Solventnaphtha). F: 191—192°; schwer lösich in organischen Lösungsmitteln (F.). Löslich in heißer Sodalösung mit gelber, in kalter Natronlauge mit orangegelber Farbe (F.). Konzentrierte Schwefelsäure löst mit roter Farbe (F.).
- 2-[4-Nitro-benzolazo]-8-oxy-thionaphthen bezw. Thionaphthenchinon-[4-nitro-phenylhydrazon]-(2) $C_{14}H_9O_3N_3S = C_0H_4 \underbrace{C(OH)}_S C\cdot N: N\cdot C_0H_4\cdot NO_3$ bezw.
- $C_6H_4 < {^{CO}_8} > C:N\cdot NH\cdot C_6H_4\cdot NO_2$. B. Aus 4-Nitro-benzoldiazoniumsalz und 3-Oxy-thionaphthen-carbonsäure-(2) in alkal. Lösung (Fr., M. 30, 354). Orangerote Nadeln (aus Solventnaphtha). Sehr schwer löslich in niedrigsiedenden Lösungsmitteln. Löslich in konz. Sohwefelsäure mit kirschroter, in Natronlauge oder heißer Sodalösung mit blauvioletter Farbe.

2. Azoderivate der Pentaoxy-Verbindungen.

Azoderivate der 3.5.7.3′.4′-Pentaoxy-flavane (Catechin und Epicatechin) $C_{15}H_{14}O_6.$

a) Azoderivate des d-Catechins C₁₅H₁₄O₆ (Bd. XVII, S. 210).

x.x - Bis - benzolazo - 3.5.7.8'.4'- pentaoxy - flavan, Bis - benzolazo - d - catechin $C_{27}H_{22}O_6N_4=C_{18}H_{12}O_6(N:N\cdot C_6H_5)_2$. B. Beim Behandeln von d-Catechin in verd. Natriumacetat-Lōsung mit Benzoldiazoniumsulfat unter Eiskühlung (Perkin, Yoshitake, Soc. 81, 1164; vgl. Etti, M. 2, 552). — Lachsrote Nadeln. Sintert bei 185° und schmilzt bei 193—195° unter Zersetzung. Fast unlöslich in heißem Alkohol; löslich in verd. Alkalien mit orangeroter Farbe.

Triacetylderivat $C_{23}H_{26}O_{9}N_{4}=C_{15}H_{9}O_{3}(N:N\cdot C_{8}H_{8})_{3}(O\cdot CO\cdot CH_{2})_{3}$. B. Beim Kochen von Bis-benzolazo-d-catechin mit Essigsäureenhydrid (P., Y., Soc. 81, 1165). — Orangerote Nadeln. F: 253—255°. Leicht löslich in Benzol, fast unlöslich in Alkohol.

b) Azoderivate des dl-Catechins C₁₈H₁₄O₆ (Bd. XVII, S. 213).

Bis-benzolazo-dl-catechin C₂₇H₂₃O₂N₄ = C₁₅H₁₃O₂(N:N·C₆H₅)₂. B. Aus Acacatechin (Gemisch von dl-Catechin und etwas l-Epicatechin; vgl. Freudenberg, Purrmann, A. 437 [1924], 279) beim Behandeln mit Benzoldiazoniumsulfat in verd. Natriumacetat-Losung unter Eiskühlung (Perkin, Yoshitake, Soc. 81, 1170). — Lachsrote Nadeln. F: 198—200° (Zers.). Sehr schwer löslich in den meisten Lösungsmitteln; löslich in verd. Alkalien mit orangeroter Farbe.

Triacetylderivat $C_{22}H_{23}O_2N_4 = C_{15}H_2O_3(N:N\cdot C_6H_5)_2(O\cdot CO\cdot CH_2)_3$. B. Beim Kochen von Bis-benzolazo-dl-catechin mit Essigsäureanhydrid (P., Y., Soc. 81, 1170). — Orangerote Blätter. F: 227—229°. Leicht löslich in Benzol und Eisessig.

c) Azoderivate des d-Epicatechins C₁₅H₁₄O₄ (Bd. XVII, S. 213).

Bis-benzolazo-d-epicatechin $C_{27}H_{22}O_4N_4=C_{15}H_{12}O_4(N:N\cdot C_6H_5)_2$. B. Beim Behandeln von d-Epicatechin in verd. Natriumacetat-Lösung mit Benzoldiazoniumsulfat unter Eiskühlung (Perkin, Yoshitake, Soc. 81, 1168). — Orangerote Nadeln. F: 215—217°. Unlöslich in Alkohol; löslich in Alkalien mit orangeroter Farbe.

Triacetylderivat $C_{33}H_{38}O_9N_4 = C_{15}H_9O_3(N:N\cdot C_0H_5)_3(O\cdot CO\cdot CH_3)_3$. F: 250—253° (P., Y., Soc. 81, 1168).

D. Azoderivate der Oxo-Verbindungen.

- 1. Azoderivate der Monooxo-Verbindungen.
- a) Azoderivate der Monooxo-Verbindungen $C_n H_{2n-10} O_2$.
- 1. Azoderivat des Phthalids CaHaO, (Bd. XVII, 8. 310).
- 6.6'-Azophthalid C₁₆H₁₀O₄N₂, s. nebenstehende Formel. B. Aus 6-Nitro-phthalid (Bd. XVII, S. 313) durch Reduktion mit Natriumamalgam in alkal. Lösung und nachfolgendes Ansäuern der Lösung (Bogert, Boroscher, Am. Soc. 23, 761). Rote Krystalle (aus verd. Alkohol). Schmilzt unter Zersetzung bei 260—280°. Schwer löslich in heißem Wasser, löslich in heißem Alkohol und Eisessig.
- 2. Azoderivat des 2-0xo-chromans C.H.O. (Bd. XVII, S. 315).

4-Bensolazo-2-oxo-chroman (?), 4-Bensolazo-3.4-dihydro-cumarin (?) $C_{15}H_{15}O_{8}N_{8} = C_{6}H_{4} CH(N:N\cdot C_{6}H_{5})\cdot CH_{2}$ (?) s. Bd. XVII, S. 489.

3. Azoderivat des 3.3-Diäthyl-phthalids C12H14O2 (Bd. XVII, S. 325).

8.3.3'.3' - Tetraäthyl - [6.6' - asophthalid]
C₃₄H₃₆O₄N₃, s. nebenstehende Formel. B. Bei
der Öxydation von 6-Amino-3.3-diāthyl-phthalid
mit Chromtrioxyd in Eisessig oder mit Kaliumdichromat, Natriumdichromat oder Kaliumpermanganat in verd. Schwefelsäure (BAUER, B. 41, 507). — Orangegelbe Blättchen (aus
Alkohol). F:174—175°. Leicht löslich in heißem Alkohol, Benzol und Äther, schwerer in Ligroin.
— Liefert bei der Reduktion mit Schwefelwasserstoff in alkoholisch-ammoniakalischer Lösung
N.N'-Bis-[3.3-diāthyl-phthalidyl-(6)]-hydrazin (S. 642).

b) Azoderivate der Monooxo-Verbindungen C_nH_{2n-12}O₂.

1. Azoderivate des Cumarins C.H.O. (Bd. XVII, S. 328).

6-Benzolaso-cumarin C₁₅H₁₀O₂N₂, s. nebenstehende Formel.

B. Man kocht Cumarin mehrere Stunden mit Kaliumcarbonat.

Lösung oder erwärmt es kurze Zeit mit Kaliumes gibt zu der erhaltenen Lösung von cumarinsaurem Kalium Benzoldiazoniumchlorid-Lösung unter Zusatz von etwas Kaliumcarbonat oder Natriumacetat und säuert die Lösung an (Borsche, B. 37, 348; MITCHELL, Soc. 87, 1230). 6-Benzolazo-cumarin entsteht ferner beim Erhitzen von 5-Benzolazo-salioylaldehyd mit wasserfreiem Natriumacetat und Acetanhydrid auf 180° (B.). — Goldgelbe Nadeln (aus Toluol). F: 163° (korr.) (M.), 158° (B.). Unlöslich in den meisten Lösungsmitteln, leicht löslich in Chloroform (M.). Absorptionsspektrum in alkalischalkoholischer Lösung: Hewitt, Mitchell, Soc. 91, 1264.

[2-Nitro-benzol]-〈1 azo 6〉-cumarin C₁₅H₀O₄N₂, s. nebenstehende Formel. B. Durch kurzes Erwärmen von Cumarin mit Kalilauge, Behandeln der erhaltenen Lösung von cumarinsaurem Kalium mit 2-Nitro-benzoldiazoniumchlorid-Lösung und etwas Natriumacetat und Ansäuern (MITCHELL, Soc. 87, 1231). — Gelbe Krystallrosetten (aus Toluol). F: 230°. Löslich in Chloroform, schwer löslich in den meisten übrigen Lösungsmitteln.

[3-Nitro-benzol]-\(\frac{1}{azo}\ 6\)-cumarin C₁₅H₉O₄N₈, s. nebenstehende Formel. B. Analog [2-Nitro-benzol]-\(\frac{1}{azo}\ 6\)-cumarin (M., Soc. 87, 1231). — Rotbraune Krystalle (aus Pyridin + Toluol).

F: 225°. Löslich in Pyridin und Chloroform, schwer löslich in Toluol, fast unlöslich in Alkohol.

Cumarin - $\langle 6$ ago 1 \rangle - naphthol - (2) $C_{19}H_{12}O_{2}N_{2}$, s. nebenstehende Formel. B. Man diazotiert 6-Amino-cumarin und kuppelt das Diazoniumsalz mit β -Naphthol in alkal. Lösung (Morgan, Micklethwart, Soc. 85, 1234). — Braunrote Nadeln (aus Eisessig). F: 222°. Löslich in wäßr. Alkalien.

[Benzol-sulfonsäure - (1)] - $\langle 4$ azo 6 \rangle - cumarin $C_{18}H_{10}O_5N_2S$, s. nebenstehende Formel. B. Aus cumarinsaurem Kalium und diazotierter Sulfanilsäure in alkal. Lösung; man fällt den Farbstoff mit Salzsäure (Borsche, Streitberger, B. 37, 4127). — Rotgelbe Nadeln (aus Wasser).

Cumarin - (6 azo 2) - [4 - brom - naphthylamin - (1)]

C₁₉H₁₂O₂N₃Br, s. nebenstehende Formel. B. Aus diazotiertem
6-Amino-cumarin und 4-Brom-naphthylamin-(1) in wäßrigalkoholischer Lösung (Morgan, Micklethwart, Winfield,
Soc. 85, 751). — Braunrote Krystalle (aus Eisessig). F: 240°
bis 241°. Schwer löslich in den gebräuchlichen Lösungsmitteln.

2. Azoderivate des 4.6-Dimethyl-cumarins $C_{11}H_{10}O_{2}$ (Bd. XVII, S. 341).

8-Benzolazo-4.6-dimethyl-cumarin $C_{17}H_{14}O_2N_2$, s. nebenstehende Formel. B. Man löst 4.6-Dimethyl-cumarin in siedender Kalilauge, gibt zu der mit Wasser und Eis verdünnten Lösung Benzoldiszoniumehlorid-Lösung und säuert an (Hewitt, Mitchell, $C_{2}H_{5}\cdot N:N$ Soc. 89, 15). — Orangerote Nadeln (aus Alkohol). F: 199—200°. Löslich in Alkohol und Chloroform, unlöslich in Petroläther. Unlöslich in kalter, unter Aufspaltung löslich in siedender Alkalilauge.

[2 - Nitro - benzol] - $\langle 1$ azo 8 \rangle - [4.6 - dimethyl - cumarin] $C_{17}H_{15}O_4N_3$, s. nebenstehende Formel. B. Analog 8-Benzolazo-4.6-dimethyl-cumarin (H., M., Soc. 89, 15). — Scharlachrote Nadeln (aus Chloroform). F: 250° (Zers.). Schwer löslich in Alkohol, löslich in Pyridin.

NOS CH COCHES CH

[3 - Nitro - benzol] - $\langle 1$ azo 8 \rangle - [4.6 - dimethyl - cumarin] $C_{17}H_{13}O_4N_3$, s. nebenstehende Formel. B. Analog 8-Benzolazo-4.6-dimethyl-cumarin (H., M., Soc. 89, 15). — Rotbraune Tafeln mit 1 CHCl₂ (aus Chloroform). F: 212°. Löslich in Eisessig, ziemlich schwer löslich in Alkohol.

CH₃. C(CH₃) CH NO₂ O CO

[4-Nitro-benzol]- $\langle 1$ azo 8 \rangle -[4.6-dimethyl-cumarin] $C_{17}H_{13}O_4N_5$, s. nebenstehende Formel. B. Analog 8-Benzol-azo-4.6-dimethyl-cumarin (H., M., Soc. 89, 16). — Braune Krystalle (aus Chloroform). F: 229°. Löslich in Pyridin, O_2N - $\langle 0 \rangle$ sohwer löslich in Benzol, unlöslich in Petroläther.

c) Azoderivate der Monooxo-Verbindungen C_nH_{2n-18}O₂.

- 6-Benzolazo 4-methyl-7.8-benzo-cumarin $C_{20}H_{14}O_2N_2$, s. nebenstehende Formel. B. Man löst 4-Methyl-7.8-benzo-cumarin (Bd. XVII, S. 362) in Kalilauge, versetzt die Lösung CaHs · N · N · mit Benzoldiazoniumchlorid und säuert an (HEWITT, MITCHELL, Soc. 89, 17). — Orangebraune Nadeln (aus Pyridin). F: 207°; löslich in Chloroform und Alkohol, unlöslich in Petroläther (H., M., Soc. 89, 18). Absorptionsspektrum in alkalisch-alkoholischer Lösung: H., M., Soc. 91, 1265.
- [2-Nitro-benzol] $\langle 1 \text{ ago } 6 \rangle$ [4-methyl-7.8 benzocumarin] C₂₀H₁₂O₄N₂, s. nebenstehende Formel. B. Analog der vorangehenden Verbindung (H., M., Soc. 89, 18). — Braune Flocken (aus Pyridin). F: 268°; löslich in Chloroform, ziemlich schwer löslich in Alkohol, unlöslich in Petroläther (H., M., Soc. 89, 18). Absorptionsspektrum in alkalisch-alkoholischer Lösung: H., M., Soc. 91, 1265.
- $[8-Nitro-benzol]-\langle 1 azo 6 \rangle-[4-methyl-7.8-benzo$ cumarin] C₂₀H₁₃O₄N₃, s. nebenstehende Formel. B. Analog 6-Benzolazo-4-methyl-7.8-benzo-cumarin (H., M., Soc. 89, 18). — Braune Nadeln (aus Chloroform). F: 239°; löslich in Pyridin, sehr schwer löslich in Alkohol (H., M., Soc. 89, 18). Absorptionsspektrum in alkalisch-alkoholischer Lösung: H., M., Soc. 91, 1265.

[4-Nitro-benzol] - $\langle 1$ azo $\delta \rangle$ - [4-methyl-7.8-benzocumarin] $C_{50}H_{12}O_4N_5$, s. nebenstehende Formel. B. Analog 6-Benzolazo-4-methyl-7.8-benzo-cumarin (H., M., Soc. 89, 18). — Rotbraune Krystalle (aus Toluol). F: 270—271°; leicht löslich in Toluol, schwer in Alkohol; löslich in siedender Alkalilauge mit blauer Farbe (H., M., Soc. 89, 18). Absorptionsspektrum in alkalisch-alkoholischer Lösung: H., M., Soc. 91, 1265.

C(CH₃)>CH . N:N

d) Azoderivate der Monooxo-Verbindungen $C_n H_{2n-20} O_2$.

6-Benzolazo -3-phenyl-cumarin $C_{21}H_{14}O_2N_2$, s. neben- $C_{2}H_5\cdot N:N$ stehende Formel. B. Man löst 3-Phenyl-cumarin in siedender Natriumāthylat-Lösung, versetzt mit Benzoldiazoniumchlorid und fällt mit Essigsäure (Borsche, Streitberger, B. 37, 4132). — Rotbraune Nadeln (aus verd. Essigsäure), orangegelbe Blättchen (aus Alkohol). F: 205°.

CH⊗_C · CeHs [Benzol-sulfonsäure - (1)] - $\langle 4 \text{ azo } 6 \rangle$ - [8-phenyl -HO28. cumarin] C₁₁H₁₄O₅N₁S, s. nebenstehende Formel. B. Analog der vorangehenden Verbindung (B., St., B. 37, 4132). — Orangefarbene Nadeln (aus Alkohol).

2. Azoderivate der Dioxo-Verbindungen.

a) Azoderivate der Dioxo-Verbindungen C_nH_{2n-4}O₃.

 $\begin{aligned} \textbf{Bensolasotetrons\"{a}ure} & & & & & & & & & & & & & \\ \textbf{C}_{10}\textbf{H}_8\textbf{O}_8\textbf{N}_2 &= & & & & & & & \\ \textbf{H}_8\overset{1}{\text{C}}\cdot\textbf{O}\cdot\overset{1}{\text{CO}} & & & & & & \\ \textbf{bezw}. & & & & & & & \\ \end{aligned}$

 $\begin{array}{lll} & \text{HO} \cdot \textbf{C} & & \textbf{C} \cdot \textbf{N} : \textbf{N} \cdot \textbf{C}_{\theta} \textbf{H}_{\delta} \\ & & \textbf{Vgl. hierzu 2.4-Dioxo-3-phenylhydrazono-furantetrahydrid, Bd. XVII,} \end{array}$ H'G-0-G0 S. 553.

Tetronsäure - aso - acetessigsäureäthylester $C_{10}H_{19}O_8N_2 = OC - CH \cdot N : N \cdot CH(CO_2 \cdot C_2H_3) \cdot CO \cdot CH_3$ H.C. O.CO $H_2 \cdot C_3 H'C·O·CO s. Bd. XVII, S. 553.

 $\begin{array}{ll} \textbf{Tetrons\"{a}urediasosulfons\"{a}ure} & C_4H_4O_6N_2S = \frac{OC - CH \cdot N : N \cdot SO_3H}{H_2C \cdot O \cdot CO} & \text{bezw.} \\ \textbf{HO} \cdot C = C \cdot N : N \cdot SO_3H & \text{s. Bd. XVII, S. 553.} \\ \textbf{H_4C} \cdot O \cdot CO & \text{s. Bd. XVII, S. 553.} \end{array}$

- b) Azoderivate der Dioxo-Verbindungen C_nH_{2n-6}O₃.
- 1. Azoderivat des 3.4-Dioxo-[1.4-pyran]-dihydrids $\mathrm{C_5H_4O_3}$ (Bd. XVII, S. 435).

 $\begin{array}{c} \textbf{Bensolasopyromekons\"{a}ure} \quad \textbf{C}_{11}\textbf{H}_8\textbf{O}_3\textbf{N}_2 = \frac{\textbf{HC}\cdot\textbf{CO}\cdot\textbf{CO}}{\textbf{HC}-\textbf{O}-\textbf{CH}\cdot\textbf{N}:\textbf{N}\cdot\textbf{C}_6\textbf{H}_5} \quad \text{bezw.} \\ \textbf{HC}\cdot\textbf{CO}\cdot\textbf{C}\cdot\textbf{OH} \quad \\ \textbf{HC}-\textbf{O}-\textbf{C}\cdot\textbf{N}:\textbf{N}\cdot\textbf{C}_6\textbf{H}_5 \quad \textbf{Vgl. hierzu} \quad \textbf{3.4-Dioxo-2-phenylhydrazono-[1.4-pyran]-dihydrid, Bd.} \\ \textbf{XVII. 8. 558.} \end{array}$

2. Azoderivat des 4.6-Dioxo-2-methyl-[1.4-pyran]-dihydrids $\rm C_eH_eO_3$ (Bd. XVII, 8. 442).

- c) Azoderivate der Dioxo-Verbindungen $C_n H_{2n-10} O_3$. 4 - Benzolazo - 1 - α - furyl - cyclohexandion - (3.5) $C_{16}H_{14}O_2N_2 =$
- HC—CH
 HC.O.C.HC.<CH₂·CO>CH·N:N·C₆H₅. Vgl. hierzu das 4-Phenylhydrazon des 1- α -Furylcyclohexantrions-(3.4.5), Bd. XVII, S. 567.
 - d) Azoderivate der Dioxo-Verbindungen $C_nH_{2n-12}O_3$.

4 - Benzolazo - 1.3 - dioxo - isochroman , Benzolazohomophthalsäureanhydrid $C_{18}H_{10}O_3N_2 = C_6H_4 < CO$ O . Vgl. hierzu 1.3 - Dioxo - 4 - phenylhydrazono - isochroman , Bd. XVII, 8. 568.

E. Azoderivate der Oxy-oxo-Verbindungen.

1. Azoderivate der Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen.

Azoderivate der Oxy-oxo-Verbindungen C.H.2n-12O3.

1. Azoderivat des 7-0 xy-4-methyl-cumarins $C_{10}H_{e}O_{a}$ (S. 31).

7-Oxy-4-methyl-cumarin-diazosulfonsäure-(8), 4-Methyl-umbelliferon-diazosulfonsäure-(8) $C_{10}H_8O_6N_1S$, s. nebenstehende Formel, ist desmotrop mit dem 8-Sulfohydrazon des 7.8-Dioxo-4-methyl-cumarin-dihydrids-(7.8), Bd. XVII, S. 568.

HO C(CH₂) CH O CO HO₂S₄ N; N 2. Azoderivate des Lactons der α -[1.7-Dioxy-5.8-dimethyl-1.2.3.4-tetrahydro-naphthyl-(2)] - propionsäure, Azoderivate des Desmotroposantonins $C_{18}H_{18}O_{8}$ (8. 38).

Benzolasoderivat des gewöhnlichen Desmotroposantonins C₂₁H₂₂O₂N₂, s. nebenstehende Formel.

B. Durch Versetzen einer alkal. Lösung von gewöhnlichem
Desmotroposantonin mit Benzoldiazoniumchloridlösung
bei 0° und Ansäuern der Flüssigkeit (Wederind),
O. Schmidt, B. 36, 1391; C. r. 135, 44). — Gelbe Nadeln
(aus Benzol). F: 260°; sehr schwer löslich in Alkohol, Äther und Aceton, leichter in Benzol
und Eisessig, am leichtesten in Chloroform; schwer löslich in Alkalien, unlöslich in Alkalicarbonaten (W., O. Sch., B. 36, 1390, 1391). — Bei der Behandlung mit Zinnohlorür und
Salzsäure entsteht das salzsaure Salz der rechtsdrehenden aminodesmotroposantonigen
Säure (Bd. XIV, S. 628) (W., H. 43, 241).

[2 - Nitro - benzolazo] - derivat des gewöhnlichen Desmotroposantonins $C_0H_{21}O_5N_3=O_5N\cdot C_0H_4\cdot N:N\cdot C_{15}H_{17}O_5$. B. Analog der vorhergehenden Verbindung (W., O. Sch., B. 36, 1392). — Dunkelrote Nadeln (aus Benzol). F: 275° (Zers.). Unlöslich in allen Lösungsmitteln in der Kälte.

p-Toluolazoderivat des gewöhnlichen Desmotroposantonins $C_{23}H_{24}O_3N_2 = CH_3 \cdot C_4H_4 \cdot N : N \cdot C_{12}H_{17}O_3$. B. Analog der vorhergehenden Verbindung (W., O. Sch., B. 36, 1391). — Hellrote Krystalle (aus Alkohol). F: 275° (bei raschem Erhitzen). Schwer löslich in kaltem Alkohol und Benzol, ziemlich leicht in Chloroform.

[4 - Carboxy - benzolazo] - derivat des gewöhnlichen Desmotroposantonins $C_{22}H_{22}O_5N_2 = HO_3C \cdot C_6H_4 \cdot N \cdot N \cdot C_{15}H_{17}O_3$. B. Durch Kupplung von gewöhnlichem Desmotroposantonin mit diazotierter 4 - Amino - benzoesäure (W., O. Sch., B. 36, 1392). — Hellrote Krystalle (aus Alkohol). Zersetzt sich bei 260°. Schwer löslich in kaltem Benzol, Chloroform und Alkohol. Löst sich in Soda langsam mit gelber Farbe, die auf Zusatz von Natronlauge in Rot umschlägt.

[4 - Sulfo - benzolazo] - derivat des gewöhnlichen Desmotroposantonins $C_{21}H_{22}O_6N_18=HO_28\cdot C_6H_4\cdot N:N\cdot C_{12}H_{17}O_3$. B. Beim Versetzen einer eiskalten Lösung von gewöhnlichem Desmotroposantonin in überschüssiger Natronlauge mit diazotierter Sulfanilsäure (W., O. Sch., B. 36, 1392). — Rote Blättchen. F: 269°. Schwer löslich in Äther, Benzol und Chloroform, leicht in Eisessig. Die rotgelbe Lösung in Soda wird auf Zusatz von Natronlauge dunkelviolett.

2. Azoderivate der Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen.

a) Azoderivate der Oxy-oxo-Verbindungen C_nH_{2n-18}O₄.

4.x-Bis-benzolazo-1.7-dioxy-xanthon, 4.x-Bis-benzolazo-euxanthon $C_{15}H_{15}O_4N_4=C_{15}H_4O_5(OH)_5(N:N\cdot C_6H_5)_8$. B. Aus 1 Mol Euxanthon (S. 113) in verd. Alkali und 2 Mol Benzol-diazoniumsulfat; man kocht den erhaltenen Niederschlag mit Alkohol aus und krystallisiert ihn aus Eisessig + Nitrobenzol um (Perkin, Soc. 73, 671). — Ziegelrote Nadeln. F: 249° bis 250° (Zers.). Leicht löslich in siedendem Nitrobenzol.

Diacetylderivat $C_{20}H_{20}O_0N_4 = C_{13}H_4O_2(O\cdot CO\cdot CH_2)_2(N:N\cdot C_0H_5)_2$. B. Durch Kochen von 4.x-Bis-benzolazo-euxanthon mit Essigsäureanhydrid (P.). — Hellockerfarbene Nadeln (aus Toluol). F: 197—199°. Schwer löslich in Essigsäure, leichter in Toluol.

b) Azoderivate der Oxy-oxo-Verbindungen C_nH_{2n-20}O₄.

6.8-Bis-benzolaso-5.7-dioxy-flavon, 6.8-Bis-benzolaso-chrysin C₂₇H₁₈O₄N₄, s. nebenstehende Formel. B. Beim Versetzen einer alkal. Lösung von Chrysin (S. 124) mit überschüssiger Benzoldiazoniumsulfat-Lösung; der erhaltene Niederschlag wird wiederholt mit Alkohol ausgekocht, dann in wenig heißem Nitrobenzol gelöst und durch Alkohol gefällt (Perkin, Soc. 73, 669). — Orangefarbene Nadeln. Schmilzt, langsam erhitzt, bei 251—252° unter Zersetzung. Sehr schwer löslich in kochendem Alkohol, etwas leichter in Eisessig und Nitrobenzol. Unlöslich in Alkalilauge. — Beim Kochen mit Essigsäureanhydrid entsteht kein Acetylderivat.

3. Azoderivate der Oxy-oxo-Verbindungen mit 5 Sauerstoffatomen.

a) Azoderivate der Oxy-oxo-Verbindungen C_nH_{2n-10}O₅.

6.7.6'.7'-Tetramethoxy-3.8'-diacetoxy-[4.4'-asophthalid] $C_{24}H_{22}O_{12}N_2$, s. untenstehende Formel. B. Durch Kochen von Azoopiansäure (Bd. XVI, S. 266) mit wasserfreiem Natriumacetat und Essigsäureanhydrid (Claus, Predari, J. pr. [2] 55, 182). — Gelbe

Krystalle (aus verd. Essigsäure). F: 210°. Unlöslich in Wasser, Alkohol, Äther, Benzol und Chloroform, leicht löslich in Eisessig. Löslich in konz. Schwefelsäure mit dunkelvioletter Farbe. Unlöslich in verd. Alkalilauge.

b) Azoderivate der Oxy-oxo-Verbindungen C_nH_{2n-18}O₅.

4.x-Bis-benzolazo-1.7-dioxy-3-methoxy-xanthon, 4.x-Bis-benzolazo-gentisin $C_{26}H_{18}O_5N_4=C_{13}H_2O_2(OH)_2(O\cdot CH_3)(N:N\cdot C_6H_5)_2$. B. Aus Gentisin (S. 173), verd. Alkalilauge und überschüßsigem Benzoldiazoniumsulfat; der erhaltene Niederschlag wird mit Alkohol ausgekocht und dann aus Eisessig + Nitrobenzol umkrystallisiert (Perkin, Soc. 73, 673). — Scharlachrote Nadeln. F: 251—252° (Zers.). Leicht löslich in heißem Nitrobenzol, fast unlöslich in Alkohol.

Diacetylderivat $C_{20}H_{22}O_7N_4=C_{13}H_2O_2(O\cdot CH_3)(O\cdot CO\cdot CH_3)_3(N:N\cdot C_8H_5)_2$. B. Bei 3-stdg. Kochen von 4.x-Bis-benzolazo-gentisin mit Essigsäureanhydrid (P., Soc. 78, 673). — Orangerote Nadeln (aus Toluol). F: 218—220°. Sehr schwer löslich in Alkohol, löslich in heißer Essigsäure.

c) Azoderivate der Oxy-oxo-Verbindungen C_nH_{2n-20}O₅.

8.x-Bis-benzolazo-5.7.4'-trioxy-flavon, 8.x-Bis-benzolazo-apigenin C_2 , $H_{18}O_5N_4=C_{12}H_{5}O_5(OH)_5(N:N\cdot C_5H_5)_2$. B. Aus Apigenin (S. 181) in verd. Soda-Lösung und Benzoldiazoniumsulfat (Perkin, Soc. 71, 808; 73, 666). — Orangefarbene Nadeln (aus Nitrobenzol). Schmilzt, rasch erhitzt, bei 290—292°. Unlöslich in den gewöhnlichen Lösungsmitteln; löslich in Nitrobenzol; sehr sohwer löslich in Alkalilauge.

Monoacetylderivat $C_{29}H_{20}O_6N_4 = C_{15}H_5O_3(OH)_2(O\cdot CO\cdot CH_2)(N:N\cdot C_6H_5)_3$. B. Beim Kochen von 8.x-Bis-benzolazo-apigenin mit überschüssigem Essigsäureanhydrid (P., Soc. 78, 667). — Orangerote Nadeln. Schmilzt, rasch erhitzt, bei 277—280°. Unlöslich in Alkalilauge.

4. Azoderivate der Oxy-oxo-Verbindungen mit 6 Sauerstoffatomen.

x.x-Bis-benzolazo-5.7.2'.4'.-tetraoxy-3-oxo-flavan bezw. x.x-Bis-benzolazo-3.5.7.2.'4'-pentaoxy-flaven $C_{17}H_{20}O_6N_4=C_{15}H_{10}O_6(N:N\cdot C_6H_5)_8$, Bis-benzolazo-cyanomaclurin. B. Beim Versetzen einer wäßr. Lösung von Cyanomaclurin (S. 209) mit Benzoldiazoniumsulfat in Gegenwart von etwas Kaliumacetat (Perkin, Cope, Soc. 67, 942).—Scharlachrote Nadeln (aus Alkohol). Sintert bei 225° und schmilzt bei 245—247° unter Zersetzung (P., Soc. 87, 718). Löslich in verd. Alkalien mit orangeroter Farbe (P., C.).—Färbt ungebeizte Wolle und Seide orangegelb (P., C.).

Triacetylderivat $C_{33}H_{36}O_9N_4=C_{15}H_7O_3(O\cdot CO\cdot CH_3)_5(N:N\cdot C_6H_5)_8$. B. Durch 3-stdg-Kochen von Bis-benzolazo-oyanomaclurin mit Essigsäureanhydrid (P., Soc. 87, 718). — Orangerote Nadeln (aus Benzol). F: 209—210°.

5. Azoderivate der Oxy-oxo-Verbindungen mit 7 Sauerstoffatomen.

x.x-Bis-benzolazo-5.7.2'.4'-tetraoxy-3.4-dioxo-flavan bezw. x.x-Bis-benzolazo-3.5.7.2.'4'-pentaoxy-flavon $C_{27}H_{18}O_7N_4=C_{15}H_8O_7(N:N\cdot C_6H_5)_g$, x.x-Bis-benzolazo-morin. B. Beim Eintragen von überschüssigem Benzoldiazoniumsulfat in eine Lösung von Morin (S. 239) in überschüssiger verdünnter Alkalilauge; man kocht den Niederschlag mit Alkohol aus, löst ihn in wenig Nitrobenzol und fällt durch Essigsäure (Perkin, Soc. 73, 670). — Rotbraune Nadeln. Unlöslich in heißem Alkohol und Essigsäure, ziemlich leicht löslich in Nitrobenzol; unlöslich in kalter verdünnter Alkalilauge.

F. Azoderivate der Oxy-oxo-carbonsäuren.

6.7.6'.7'-Tetramethoxy-3.3'-bis-carboxymethyl-[4.4'-azophthalid], [4.4'-Azomekonin]-diessigsäure-(3.3') $C_{24}H_{22}O_{12}N_2$, s. untenstehende Formel. B. Beim Kochen von 4-Nitro-mekonin-essigsäure-(3) (S. 543) mit Ammoniak und Zinkstaub (Kleemann,

$$O \leftarrow CH^{2} \leftarrow CO^{5}H$$

$$O \leftarrow CH^{2} \leftarrow CH^{2} \leftarrow CO^{5}H$$

$$O \leftarrow CH^{2} \leftarrow CH^{2} \leftarrow CO^{5}H$$

$$O \leftarrow CH^{2} \leftarrow CH^{2} \leftarrow CO^{5}H$$

B. 20, 880). — Gelbe Krystalle. Bräunt sich bei 250° und schmilzt bei 257° unter Verkohlung. Unlöslich in Wasser. Löst sich in warmem Alkohol unter Zersetzung. Löst sich unzersetzt in konz. Schwefelsäure mit blauvioletter Farbe.

G. Azoderivate der Amine.

3(?) - Benzolazo - 2 - amino - thiophen, Benzolazothiophenin $C_{10}H_9N_3S = HC - C \cdot N : N \cdot C_6H_8(?)$ ist desmotrop mit 2-Imino-3(?)-phenylhydrazono-thiophendihydrid, $HC \cdot S \cdot C \cdot NH_2$ Bd. XVII, S. 432.

XI. Diazo-Verbindungen.

(Vgl. die Einleitung zu isocyclischen Diazo-Verbindungen, Bd. XVI, S. 426).

A. Oxo-diazo-Verbindungen.

Cumarin - diasoniumhydroxyd - (6) C₉H₆O₃N₃, s. nebenstehende Formel. B. Das Sulfat entsteht beim Behandeln von 6-Amino-cumarin in Eisessig mit Amylnitrit und konz. Schwefelsäure (Mobgan, Micklethwait, Soc. 85, 1235). Eine Lösung des Chlorids entsteht bei der Behandlung von 6-Amino-cumarin mit Natriumnitrit und Salzsäure (M., M.). — Das Chlorid liefert bei der Reduktion mit Zinnchlorür und Salzsäure 6-Hydrazino-cumarin (8. 642). Kuppelt mit β-Naphthol unter Bildung von Cumarin-(6azo1)-naphthol-(2). — Sulfat C.H.₃O₃N₂·O·SO₃H. Farblose Krystalle (aus Wasser durch Alkohol + Äther). Leicht löslich in kaltem Wasser.

 $\begin{array}{c} \textbf{Tetrons \"{a}ure diagosulfons \"{a}ure} & \textbf{C}_{\textbf{c}}\textbf{H}_{\textbf{c}}\textbf{O}_{\textbf{c}}\textbf{N}_{\textbf{s}}\textbf{S} = \frac{\textbf{OC} - \textbf{CH} \cdot \textbf{N} : \textbf{N} \cdot \textbf{SO}_{\textbf{s}}\textbf{H}}{\textbf{H}_{\textbf{s}}\dot{\textbf{C}} \cdot \textbf{O} \cdot \dot{\textbf{CO}}} \\ \textbf{bezw.} \end{array}$

HO·C—C·N:N·SO₃H bezw. weitere desmotrope Formen s. Bd. XVII, S. 553.

B. Oxy-oxo-diazo-Verbindungen.

O(OH8)≤OH 7 - Oxy - 4 - methyl - cumarin - diazoniumhydroxyd - (8), 4-Methyl-umbelliferon-diazoniumhydroxyd-(8) C₁₀H₈O₄N₂, s. ÒΟ nebenstehende Formel. B. Das Chlorid entsteht beim Eindunsten einer Lösung des Diazoanhydrids (s. u.) in konz. Salzsäure im Vakuum Ho-(N:)N (V. PECHMANN, OBERMILLER, B. 34, 669). — Chlorid C₁₀H₇O₂N₂·Cl. Gelbe bis gelbbraune Prismen. Färbt sich am Licht rot. Zersetzt sich beim Erhitzen, ohne zu schmelzen.

Anhydro - [7 - oxy-4-methyl - cumarin-diazoniumhydroxyd-(8)], 8-Diazo-4-methyl-umbelliferon bezw. 8-Diazid ĊΟ. II. o Ċо des 7.8 - Dioxo - 4 - methyl - cumarin-dihydrids (7.8) C₁₀H₆O₂N₃, Formel I bezw. II. Zur Konstitution vgl. Bd. XVI, S. 520. B. Durch Einw. von Natriumnitrit auf eine eiskalte salzsaure Lösung von 8-Amino-4-methylumbelliferon (S. 624) im Dunkeln (v. Pechmann, Obermiller, B. 34, 668). — Gelbrote Nadeln oder Prismen. Wurde in zwei Formen erhalten, von denen die eine bei 173—175°, die andere, nur manchmal erhaltene, schon bei 135—136° verpufft. Ist im Dunkeln aus Wasser umkrystallisierbar. Leicht löslich in heißem Wasser sowie in Alkohol, Eisessig und konz. Säuren. Die Lösung in Wasser ist rotgelb; die gelben Lösungen in Säuren zersetzen sich am Licht rasch unter Abscheidung roter Flocken. — Liefert bei der Reduktion mit Zinnchlorür in saurer Lösung (nicht näher beschriebenes) 8-Hydrazino-4-methyl-umbelliferon. Beim Erwärmen der mineralsauren Lösungen mit Kupferpulver entsteht 4-Methyl-umbelliferon (8. 31). Liefert mit Kaliumsulfit das Kaliumsalz der 4-Methyl-umbelliferon-diazosulfonsäure-(8) (Bd. XVII, S. 568). Mit Pikrinsaure liefert das bei 1755 verpuffende Diazoanhydrid rote, bei 176-180° verpuffende Prismen; aus dem bei 135° verpuffenden Diazoanhydrid entstehen rote Nädelchen, die bei 160-165° verpuffen. Die roten alkalischen Lösungen des Diazoanhydrids geben mit Resorcin und 4-Methyl-umbelliferon rote Kupplungsprodukte, mit R-Salz ein blaues Produkt.

7-Oxy-4-methyl-cumarin-diazosulfonsäure-(8), 4-Methyl-umbelliferon-diazosulfonsäure-(8) C₁₀H₈O₆N₂S, s. nebenstehende Formel, ist desmotrop mit dem 8-Sulfohydrazon des 7.8-Dioxo-4-methyl-cumarin-dihydrids-(7.8), Bd. XVII, S. 568. HO38-N:N

XII. Triazene.

1 - [4 - Nitro - phenyl] - 3 - [cumarinyl - (6)] - triazen, 6-[4-Nitro-benzoldiazoamino]-cumarin $C_{15}H_{10}O_4N_4$, s. nebenstehende Formel. B. Aus 4-Nitro-benzoldiazoniumchlorid und 6-Amino-cumarin in alkoh. Lösung (Morgan, Micklethwart, Soc. 85, 1234). — Gelbe Krystalle (aus Essigester oder Aceton). Zersetzt sich bei langsamem Erhitzen bei 218—225°. Sehr schwer löslich in organischen Lösungsmitteln.

1 - [4 - Brom - 5.6.7.8 - tetrahydro - naphthyl - (1)] -NaH. 8 - [cumarinyl-(6)]-triazen, 5 - [Cumarin-6-diazeamino]-8 - brom - naphthalin - tetrahydrid-(1.2.3.4) $C_{19}H_{12}O_{2}N_{2}Br$, s. nebenstehende Formel. B. Aus diazotiertem 6-Amino-H2 cumarin und 8-Brom-5-amino-naphthalin-tetrahydrid-(1.2.3.4) (MORGAN, MICKLETHWAIT, WINFIELD, Soc. 85, 750). — Braungelbe Krystalle. Zersetzt sich bei 165—168°. Schwer löslich in organischen Lösungsmitteln.

1.8 - Di - [cumarinyl - (6)] - triasen, 6.6'-Diazo -HC OH CH≪CH NaH . aminocumarin C₁₈H₁₁O₄N₃, s. nebenstehende Formel. B. Bei Einw. von Cumarin-diazoniumchlorid-(6) auf 6-Amino-cumarin in wäßrig-alkoholischer Lösung (Morgan, Micklethwait, Soc. 85, 1234). — Braungelber Niederschlag. F: 230—234°. Sehr schwer löslich in organischen Lösungsmitteln. — Wird durch Mineralsäuren in 6-Amino-cumarin und dessen Diagoniumsalz gespalten.

XIII. C-Phosphor-Verbindungen.

1. Phosphine.

A. Phosphine der Stammkerne.

 $\alpha\text{-Furylphosphin } C_4H_5OP = \frac{HC-CH}{HC\cdot O\cdot C\cdot PH_2} \text{ (systematische Stammverbindung der nachstehenden Schwefelverbindungen).}$

Diäthyl- α -thienyl-phosphin $C_3H_{13}SP=\frac{HC-CH}{HC\cdot S\cdot C\cdot P(C_2H_5)_3}$. B. Aus α -Thienyl-dichlorphosphin und Diäthylzink in Äther (Sachs, B. 25, 1517). — Farblose, durchdringend riechende Flüssigkeit. Kp.: 225°.

Methyl - diäthyl - α - thienyl - phosphoniumhydroxyd $C_0H_{17}OSP = SC_4H_3 \cdot P(CH_2)$ $(C_0H_0)_3 \cdot OH$. B. Das Jodid entsteht aus Diāthyl- α -thienyl-phosphin und Methyljodid in äther. Lösung (S., B. 25, 1517). — $C_0H_{16}SP \cdot I$. Farbloses Pulver. F: 122°. Leicht löslich in Wasser und Alkohol, unlöslich in Äther. — $2C_0H_{16}SP \cdot Cl + PtCl_4$. Gelber, krystallinischer Niederschlag.

P.P. Dichlor - α - thienylphosphin, α - Thienyl - dichlorphosphin C₄H₃Cl₂SP = SC₄H₃·PCl₂. B. Man leitet die Dämpfe von Thiophen und Phosphortrichlorid durch ein glühendes, mit Bimsstein gefülltes Rohr (Sachs, B. 25, 1514). — Öl. Kp. 218°. — Zerfällt beim Behandeln mit Wasser in Thiophen-phosphinigsäure-(2) und Salzsäure. Liefert mit Chlor α-Thienylorthophosphinsäure-tetrachlorid.

B. Oxo-phosphine.

 $\mbox{Verbindung $C_0H_0O_0P$} = \begin{bmatrix} \mbox{CH}_3 \cdot \mbox{C} & \mbox{O} \\ \mbox{OO} & \mbox{O} \end{bmatrix}_3 P(?) \mbox{ s. Bd. III, 8. 613.}$

2. Phosphinigsäuren.

Furan-phosphinigsäure-(2) $C_4H_5O_3P= \frac{HC-CH}{HC\cdot O\cdot C\cdot P(OH)_3} \frac{HC-CH}{HC\cdot O\cdot C\cdot P(OH)_3}$ bezw. $H^{\parallel}_{U\cdot O\cdot C\cdot P(C)\cdot OH}$ (systematische Stammverbindung der nachstehenden Schwefelverbindung). Thiophen - phosphinigsäure - (2), α - Thienylphosphinigsäure $C_4H_5O_3SP=HC-CH$ HC-CH H

3. Phosphinsäuren.

Furan-phosphinsaure-(2) $C_4H_5O_4P=\frac{HC-CH}{HC\cdot O\cdot C\cdot PO(OH)_2}$ (systematische Stammverbindung der nachstehenden Schwefelverbindungen).

Thiophen - phosphinsäure - (2), α - Thionylphosphinsäure $C_4H_5O_3SP=HC$ —CH

HC·S·C·PO(OH)₂. B. Beim Erwärmen von α-Thienylorthophosphinsäure-tetrachlorid mit HC·S·C·PO(OH)₂. Wasser (Sacris, B. 25, 1516). — Krystalle (aus Wasser). F: 159°. Leicht löslich in Wasser und Alkohol, löslich in Äther, unlöslich in Benzol. — Ag₂C₄H₂O₃SP. Niederschlag. Löslich in überschüssigem Ammoniak und in Salpetersäure.

 α -Thienylphosphinsäure-dichlorid $C_4H_2OCl_2SP = SC_4H_2 \cdot POCl_2$. B. Beim Einleiten von trocknem Schwefeldioxyd in α-Thienylorthophosphinsäure-tetrachlorid (S., B. 25, 1516). — Kp: 258—260°.

α-Thienylorthophosphinsäure-tetrachlorid $C_4H_2Cl_4SP=SC_4H_2\cdot PCl_4\cdot B$. Man leitet Chlor in α-Thienyl-dichlorphosphin (Sachs, B. 25, 1516). — Feste Masse. — Liefert mit Wasser erst α-Thienylphosphinsäure-dichlorid, dann α-Thienylphosphinsäure.

XIV. C-Magnesium-Verbindungen.

 $\textbf{a-Thienylmagnesiumjodid} \quad C_4H_4ISMg = \underbrace{\Pi_{ii}^{ij}}_{HC \cdot S} \underbrace{\ddot{i}}_{C \cdot MgI}$ HC-CH B. Aus 2-Jod-thiophen und einem geringen Überschuß von Magnesium in wasserfreiem Äther (Thomas, C. r. 146, 643; Bl. [4] 5, 731). — Liefert mit Aceton Dimethyl-α-thienyl-carbinol (Bd. XVII, S. 113) und 2-Isopropenyl-thiophen (Bd. XVII, S. 47). Bei der Einw. von Benzophenon erhält man Diphenyl-α-thienyl-α-th

XV. C-Quecksilber-Verbindungen.

1. Verbindungen die vom Typus R.HgH ableitbar sind.

(Vgl. dazu "Leitsätze", Bd. I, S. 10-11, § 12a).

Bis-[1.8-oxido-p-menthyl-(2)]-quecksilber, Quecksilberdicineolyl $C_{20}H_{24}O_2Hg$, s. nebenstehende Formel. B. Durch Einw. alkal. Zinnchlorur-Lösung auf Chlormercuricineol (S. 655) (SAND, SINGER, B. 35, 3176). — Wird von Mineralsäuren leicht in Terpineol, Wasser und Mercurisalz gespalten. Atherische Oxalsäurelösung liefert das Salz $[C_{10}H_{17}O\cdot Hg\cdot O\cdot CO-]_2 + HgC_2O_4 + \frac{1}{2}C_2H_2O_4(?)$ (weißer Niederschlag).

2. Verbindungen R·Hg·OH.

Hydroxymercuri-Verbindungen.

A. Mono-hydroxymercuri-Verbindungen.

1. Verbindungen $C_nH_{2n-1}O \cdot Hg \cdot OH$.

1. 51-Hydroxymercuri-2.5-dimethyl-2-äthyl-furantetrahydrid, [5-Methyl-5-äthyl-tetrahydrofurfuryl]-quecksilberhydroxyd CaH,aO,Hg H₂C—CH₂

HO·Hg·CH₂·HC·O·C(CH₃)·C₂H₅. Nur in Form des Jodids bekannt. — Jodid, "Quecksilberäthylhexenoxydjodid" OC₄H₅(CH₂)(C₂H₅)·CH₂·HgI. B. Aus 3-Methyl-hepten-(6)-ol-(3) (Bd. I, S. 449) durch sukzessive Behandlung mit einer wäßr. Lösung von Mercuriacetat und mit allauge und Kallumjodid (Sand, Singer, A. 329, 175, 176). Platten (aus Ather). F: 44°. Liefert beim Schütteln mit äther. Jod-Lösung ein gesättigtes öliges Jodid C₈H₁₅OI. Mit Salzsäure erhält man 3-Methyl-hepten-(6)-ol-(3) zurück.

2. 3-Hydroxymercuri-2.2.6.6-tetramethyl-pyrantetrahydrid, [2.2.6.6-Tetramethyl-tetrahydropyryl-(3)] - quecksilberhydroxyd $C_pH_{10}O_2Hg =$

 $H_sC \cdot CH_s \cdot CH \cdot Hg \cdot OH$ $(CH_s)_sC - O - C(CH_s)_s$ Im freien Zustand unbekannt. Das Jodid existiert in zwei Formen.

Labiles Jodid, "labiles (β)-Quecksilberdimethylheptenoxydjodid" OC,H₂(CH₂)₄·HgI. B. Entsteht neben den beiden "Quecksilberdimethylheptandioljodiden" (Bd. IV, S. 687) und dem stabilen Isomeren, wenn man eine konzentrierte wäßrige Lösung von Mercuriacetat mit 2.6-Dimethyl-hepten-(2)-ol-(6) schüttelt, nach kurzer Zeit stark alkalisch macht, mit Äther wäscht und die filtrierte wäßrige Lösung mit Kaliumjodid fällt (Sand, Singer, B. 35, 3184; A. 329, 169). — Öl. Sehr leicht löslich in Alkohol, leicht in Äther und Benzol. Sehr schwer löslich in Kalilauge. Wird durch Alkali leicht in die stabile Verbindung umgelagert.

Stabiles Jodid, "stabiles (α)-Quecksilberdimethylheptenoxydjodid" OC₂H₅(CH₂)₄·HgI. B. Siehe bei der labilen Verbindung. — Farblose Krystalle (aus Alkohol). F: 108—110°; färbt sich am Licht gelb; schwer löslich in kaltem Alkohol (Sa., Si., A. 329, 170).

2. Verbindungen $C_n H_{2n-3} O \cdot Hg \cdot OH$.

2-Hydroxymercuri-1.8-oxido-p-menthan, Hydroxymercuri-cineol, "Quecksilber-cineolhydroxyd" C₁₀H₁₈O₂Hg, s. nebenstehende

Formel. Nur in Form von Salzen bekannt. — B. Das Jodid entsteht neben dem stabilen und dem labilen Jodmercuri-trans-terpin (Bd. XVI, S. 966) durch Einw. von Mercurisalzen auf dl-α-Terpineol (Bd. VI, S. 58) in Gegenwart von Alkali; man trennt durch fraktioniertes Fällen der stark alkal. Lösung mit Kaliumjodid-Lösung (Sand, Singer, B. 35, 3174). — Chlorid, Chlormercuricineol OC₁₀H₁₇·HgCl. Nadeln (aus Alkohol). F: 162°. Löslich in Alkalien. Läßt sich mit Natriumamalgam und Wasser zu Cineol (Bd. XVII, S. 24) reduzieren. Mit alkal. Zinnehlerür-Lösung entsteht Quecksilberdicineolyl (S. 654). — Jodid, Jodmercuricineol OC₁₀H₁₇·HgI. Prismen (aus Alkohol). F: 152—154° (Zers.). Sehr leicht löslich in Benzol und Chloroform, schwer in Äther und kaltem Alkohol, unlöslich in wäßr. Kaliumjodid-Lösung und in Alkalien. Wird von starken Mineralsäuren unter Zersetzung gelöst. Einw. von äther. Jod-Lösung: Sa., Si., B. 35, 3177.

3. Verbindungen C_nH_{2n-5}O·Hg·OH.

- 1. 2-Hydroxymercuri-furan $C_4H_4O_2Hg = \frac{HC--CH}{HC\cdot O\cdot C\cdot Hg\cdot OH}$ (systematische Stammverbindung der nachstehenden Schwefelverbindung).
- 2 Hydroxymercuri thiophen, α Thienylquecksilberhydroxyd C₄H₄OSHg = HC—CH
 HC·S·C·Hg·OH
 steht neben 2.5-Bis-chlormercuri-thiophen beim Schütteln von Thiophen mit Quecksilberchlorid in alkoholisch-wäßriger Lösung unter Zusatz von Natriumacetat (Volhard, A. 267, 176). Blättchen (aus Alkohol). F: 183°. Fast unlöslich in kaltem Wasser, schwer löslich in Alkohol und in heißem Wasser. In kleinen Mengen oberhalb 100° unzersetzt sublimierbar. Beim Behandeln mit Salzsäure erhält man Thiophen. Liefert beim Erhitzen mit Acetylchlorid im Wasserbad Methyl-α-thienyl-keton(Bd. XVII, S. 287), mit Benzoylchlorid Phenyl-α-thienyl-keton (Bd. XVII, S. 348).
- 2. Verbindungen $C_8H_6O_2Hg = C_5H_5O\cdot Hg\cdot OH$.
- 1. 5 Hydroxymercuri 2 methyl furan $C_{i}H_{i}O_{i}Hg = \frac{HU UH}{HO \cdot Hg \cdot C \cdot O \cdot C \cdot CH_{3}}$ (systematische Stammverbindung der nachstehenden Schwefelverbindung).

- 5 Hydroxymercuri 2 methyl thiophen. [5-Methyl-thienyl-(2)]-quecksilber-HC—CH hydroxyd $C_8H_6OSHg = HO \cdot Hg \cdot C \cdot S \cdot C \cdot CH_3$. Nur in Form des Chlorids bekannt. — Chlorid $SC_4H_3(CH_3) \cdot HgCl$. B. Beim Schütteln von 2-Methyl-thiophen mit Mercurichlorid in alkoholisch-wäßriger Lösung in Gegenwart von Natriumscetat (Volhard, A. 267, 180). Nadeln (aus Alkohol). F: 197°. Unlöslich in Wasser und Äther. Beim Erwärmen mit Benzoylchlorid im Wasserbad entsteht 2-Methyl-5-benzoyl-thiophen (Bd. XVII, S. 350).
- 2. 2 oder 5 Hydroxymercuri 3 methyl furan $C_tH_tO_2Hg = \frac{HC-C\cdot CH_2}{HC\cdot O\cdot C\cdot Hg\cdot OH}$

verbindung).

2 oder 5 - Hydroxymercuri - 3 - methyl - thiophen, [3 oder 4 - Methyl - thienyl - (2)] - Quecksilberhydroxyd $C_5H_6OSHg = HC - C \cdot CH_3$ oder $HC - C \cdot CH_3$ $HC - C \cdot CH_3$ Oder $HO \cdot Hg \cdot C \cdot S \cdot CH$ Konstitution vgl. Steinkoff, Bauermeister, A. 403 [1914], 50. — Nur in Form des Chlorids bekannt. — Chlorid $SC_4H_6(CH_3) \cdot HgCl$. B. Aus 3 - Methyl - thiophen und Mercurichlorid analog der vorhergehenden Verbindung, neben 2.5-Bis-chlormercuri-3-methyl-thiophen (Volhard, A. 267, 182). Farblose Nadeln (aus Alkohol).

2 oder 5 - Hydroxymercuri - 3 - isopropyl - furan $C_7H_{10}O_2Hg = C \cdot CH(CH_2)_2$ oder $HC - C \cdot CH(CH_3)_2$ (systematische Stammverbindung der $\mathbf{oder} \ \mathbf{HO} \cdot \mathbf{Hg} \cdot \overset{\parallel}{\mathbf{C}} \cdot \mathbf{O} \cdot \overset{\parallel}{\mathbf{C}} \mathbf{H}$ HC.O.C.Hg.OH nachstehenden Schwefelverbindung).

2 oder 5-Hydroxymercuri-3-isopropyl-thiophen, [3 oder 4-Isopropyl-thienyl-(2)]-

Zur Konstitution vgl. Steinkoff, Bauermeister, A. 403 [1914], 50. — Nur in Form des Chlorids bekannt. — Chlorid SC₄H₄(C₃H₇)·HgCl. B. Beim Schütteln von 3-Isopropyl-thiophen mit Mercurichlorid in alkoholisch-wäßriger Lösung in Gegenwart von Natrium-acetat, neben 2.5-Bis-chlormercuri-3-isopropyl-thiophen (Volhard, A. 267, 183). Farblose Nadeln (aus Alkohol). F: 137°. Löslich in Äther.

B. Bis-hydroxymercuri-Verbindungen.

Verbindungen $C_nH_{2n-6}O(Hg\cdot OH)_{\bullet}$.

- 1. 2.5 Bis hydroxymercuri furan $C_4H_4O_8Hg_8=\frac{1}{HO\cdot Hg\cdot C\cdot O\cdot C\cdot Hg\cdot OH}$ matische Stammverbindung der nachstehenden Schwefelverbindung).
- 2.5-Bis-hydroxymercuri-thiophen $C_4H_4O_2SHg_2 = HO \cdot Hg \cdot C \cdot S \cdot C \cdot Hg \cdot OH$. Zur Konstitution vgl. STEINKOFF, BAUERMEISTER, A. 403 [1914], 51. — Nur in Form des Dichlorids bekannt. — Dichlorid SC₄H₂(HgCl)₂. B. siehe bei 2-Chlormercuri-thiophen (S. 655). Weißes, erdiges Pulver. Unlöslich in indifferenten Lösungsmitteln; wird von Säuren und Alkalien kaum angegriffen (Volhard, A. 267, 177). Liefert beim Erwärmen mit Jod und Wasser 2.5-Dijodthiophen.
- 2. 2.5 Bis hydroxymercuri 3 methyl furan $C_{\mu}H_{e}O_{2}Hg_{2} =$ HC-C·CH. (systematische Stammverbindung der nachstehenden Schwefel-HO·Hg·C·O·C·Hg·OH verbindung).
- $\textbf{2.5-Bis-hydroxymercuri-3-methyl-thiophen} \ \textbf{C}_{\textbf{z}}\textbf{H}_{\textbf{0}}\textbf{O}_{\textbf{2}}\textbf{S}\textbf{H}\textbf{g}_{\textbf{z}} = \underbrace{\textbf{HO}\cdot\textbf{Hg}\cdot\textbf{C}\cdot\textbf{S}\cdot\textbf{C}\cdot\textbf{Hg}\cdot\textbf{OH}}_{\text{H}}.$ Zur Konstitution vgl. STEINKOPF, BAUERMEISTER, A. 408 [1914], 50. — Ist nur in Form des

Dichlorids bekannt. — Dichlorid SC₄H(CH₃)(HgCl)₃. B. s. bei 2 oder 5-Chlormercuri-3-methylthiophen (S. 656). Weiß. Unlöslich; wird auch von konz. Salpetersäure nur schwer angegriffen (Volhard, A. 267, 182).

3. 2.5 - Bis - hydroxymercuri - 3 - isopropyl - furan $C_7H_{10}O_8Hg_8 = HC - C \cdot CH(CH_3)_2$ (systematische Stammverbindung der nachstehenden Schwefel-

HO·Hg·Č·O·Č·Hg·OH verbindung).

2.5 · Bis · hydroxymercuri · 3 · isopropyl · thiophen $C_7H_{10}O_2SHg_2 =$

HC—C·CH(CH₃)₂. Zur Konstitution vgl. Steinkoff, Bauermeister, A. 403 [1914], HO·Hg·C·S·C·Hg·OH
50.— Ist nur in Form des Dichlorids bekannt. — Dichlorid SC₄H(C₃H₇)(HgCl)₂. B. s. bei 2 oder 5-Chlormercuri-3-isopropyl-thiophen (S. 656). Weiß. Unlöslich. Wird auch von konz. Salpetersäure nur schwer angegriffen (Volhard, A. 267, 183).

C. Tetrakis-hydroxymercuri-Verbindungen.

Tetrakis-hydroxymercuri-furan $C_4H_4O_5Hg_4=OC_4(Hg\cdot OH)_4$ (systematische Stammverbindung der nachstehenden Schwefelverbindungen).

Tetrakis-hydroxymercuri-thiophen $C_4H_4O_4SHg_4 = \frac{HO \cdot Hg \cdot C - C \cdot Hg \cdot OH}{HO \cdot Hg \cdot C \cdot S \cdot C \cdot Hg \cdot OH}$. Ist

nur in Form des Tetrachlorids bekannt. — Tetrachlorid SC₄(HgCl)₄. B. Aus Tetrakis-acetoxymercuri-thiophen beim 3—4-stdg. Erhitzen mit Natriumchlorid-Lösung im Wasserbad (Paolini, G. 37 I, 60; vgl. P., Silbermann, G. 45 II [1915], 388). — Mikrokrystallinisches Pulver. Schmilzt nicht bis 270°. Zersetzt sich am Licht langsam unter Gelbfärbung. Unlöslich.

Tetrakis-acetoxymercuri-thiophen $C_{12}H_{12}O_8SHg_4 = CH_3 \cdot CO \cdot O \cdot Hg \cdot C - C \cdot Hg \cdot O \cdot CO \cdot CH_3$ $CH_3 \cdot CO \cdot O \cdot Hg \cdot C \cdot S \cdot C \cdot Hg \cdot O \cdot CO \cdot CH_3$ Be im Erwärmen von Thiophen mit Quecksilberacetat in Eisessig auf dem Wasserbad (Paolini, Silbermann, G. 45 II [1915], 388; vgl. P., G. 37 I, 60). — Löslich in heißem Eisessig, sonst unlöslich (P., S.). Liefert beim Erhitzen mit Natriumchlorid-Lösung im Wasserbad Tetrakis-chlormercuri-thiophen (P.).

Register für den achtzehnten Band.

Vorbemerkungen s. Bd. I, S. 939, 941.

Acetoxy-lapachon 111.

phthalid 49.

pyron 11, 12.

Acetoxy-phthalid 17.

propylchromon 38.

· maleinsäureanhydrid 84.

Acetoxy-benzoylencumarin

14Ŏ.

A.

nitril 533.

benzoflavon 70.

benzoylcumaron 60.

benzoflavonolacetat 142.

Acetoxymethyl-acetylchros Acacetin 182. benzylchromon 63. Acenaphthenmethylmercaptos brasanchinon 140. mon 108. thionaphthenindigo 154. brasanchinon 140. camphansäure 523. camphersäureanhydrid 86. Acet- s. auch Acetyl-. brenzschleimsäure 346. Acetamino-brenzschleimsäure carbathoxyphenylfluoron butyrolacton 2. carboxybenzylcumarin cumarin 609. chromon 25. - diathylphthalid 607. cumarin 26, 28. chromon 30, 31. - cumarincarbonsaure 529. - furancarbonsäure 395. crotonlacton 8. - methylbenzoylcumaron cumarincarbonsaureathyl= crotonlactoncarbonsaure ester 529. 522. — methylcumarin 611. cyanbenzocumarin 533. cumarin 31, 32, 34. methyldimethylbenzoyl= cumarincarbonsaureathyl= diacetoxybenzalcumara= cumaron 617. non 192. ester 532. diphenylacetylbutyrolacs -- methylumbelliferon 625. diacetylaminomethyl= oxomethylphenylcumaran cumarin 625. ton 137. Acetoxydihydroisocumarinflavon 64. oxophenylcumaran 615. carbonsäure 526. furfurol 15. furfurylidendiacetat 15. oxydiphenylessigsäure, carbonsäuremethylester Lacton 615. 526. xanthon 50. Acetoxy-naphthalid 44. - oxymethylcumarin 625. Acetoxydimethyl-butyrolac= naphthalsäureanhydrid — oxymethyldiphenylessig= ton 3. säure, Lacton 615. butyrolactoncarbonsäure 112. oxythionaphthen 595. 518. naphthoflavon 70. -- phenylfluoron 617. Acetoxyoxo-dimethylbutyro chromon 37. thionaphthen 586. - cumaroncarbonsäureäthyl= lacton 82. — thioxanthon 613. ester 351. diphenylcumaran 71. Acet-essigesterthenoylhydr= fluoron 55. — diphenylcumaransulfon= azon 291. glutarsäureanhydrid 82. saure 577. — essigsäureäthylesterfur= pyron 16. diphenylfurandihydrid 63. diphenylnitrobenzylfuran: furoylhydrazon 280. Acetoxydioxo-benzalfuran dihydrid 77. -- fluorescein 51. tetrahydrid 107. Acetimino-furandihydridear dimethylbenzochroman= methylfurandihydrid 8. bonsäure 395. dihydrid 111. methylfurandihydridcar oxythionaphthendihydrid methyläthylchromen 108. bonsäure 522. Acetoxydiphenyl-benzals trichlormethylfurandis thionaphthendihydrid 586. butyrolacton 77. bydrid 8. Acetoxypentamethoxyflavon Aceton-furfuroylhydrazon crotonlacton 63. 280. nitrobenzylcrotonlacton 258. Acetoxyphenyl-benzylbutyros thenoylhydrazon 291. 77. Acetonylmekonin 170. valerolacton 57. lacton 57. Acetoxy-athylchromon 36. Acetoxy-flavon 58, 59. bernsteinsäureanhydrid benzocumarincarbonsaures flavonolacetat 129, äthylester 532. cumarin 60. benzocumarincarbonsaure= itaconsäureanhydrid 107. glutarsäureanhydrid 81.

- hexadecandicarbonsäure:

 $is opropyl flavo no lace {\bf tat}$

anhydrid 83.

137.

Acetoxy-pyronearbonsaures athylester 524.

— tetramethoxyflavonols methyläther 258.

tetramethylglutarsäures
 anhydrid 83.

- trichlormethylcrotonlacton

- trimethylbutyrolacton 4.

— valerolacton 2.

- xanthon 45, 46, 47.

Acetyl- s. auch Acet-. Acetyl-äpfelsäureanhydrid 81.

— athylpulvinsaure 535.

amino- s. Acetamino-.
 angelicalacton, Carbanils säureester seiner Enols

säureester seiner Enolform 16.

— anhydrocitronensäure 539.

anhydrocitronensäures methylester 539.

anhydrocochenillesäure
 545.

 anhydrocochenillesäures methylester 545.

— anilinobrenzweinsäures anhydrid 620.

anilinocumarin 608.anilinomethylbernstein

säureanhydrid 620.

— benzotetronsäure 26.

bromisobrenzschleimsäure
12.

chlormekensäureäthylester 505.

dehydrodiacetylresacetos phenon 108.

desmotroposantonin 40, 42.

— fluoresceinäthyläther, chinoider 537.

furfuroylhydrazin 280.furylacrylsäureäthylester

416.
— furylbuttersäure 414.

— furylvinylessigsäure 417.

hydrazinocumarin 642.
hydrosantonid 24.

— isobrenzachleimsäure 11.

isodesmotroposantonin 41.
komensäureäthylester 524.

- lävodesmotroposantonin 42.

- lävulinsäure 2.

— methylbenzotetronsäure 34.

 methylbenzotetronsäures carbonsäureäthylester
 532.

methylcarboxybenzylsumbelliferon 534.
 methyltetronsäure 8.

 oximinothienylessigsäure 407.

- oxy- s. Acetoxy-.

pulvinsäureäthylester 535.

Acetyl-pulvinsauremethylsester 535.

— pulvinsāurenitril 535. — pyromekonsāure 12.

- tetronsäureamid 621.

- tetronsäureanilid 621.

thenoylhydrazin 291.
trichlorphenomalsäure 8.

 trimethyläpfelsäureanhys drid 82.

trimethylitamalsäures
 anhydrid 83.

— umbelliferoncarbonsäure 529.

 umbelliferoncarbonsäures äthylester 529.

— vulpinsäure 535. — xanthylamin 588.

- xanthylbuttersäureäthylsester 443.

Aconsaure 395.

Äscorceindisulfonsäure 578. Äsculamein 91.

Asculetin 98.

Asculetin-äthyläther 99.

— carbonsäure 544. — carbonsäureäthylester 544.

— diacetat 100.

- diathylather 100.

- dimethyläther 99.

— dimethyläthercarbonsäure 544.

— methyläther 99.

— methylätheracetat 100. Äthoxalylacetylfurfurenyls amidin 279.

Äthoxy-acetoxyflavon 128, 129.

acetoxyxanthon 115.
acetylbenzocumarin 134.

- äthylacetylvalerolacton 83.

äthylchromon 36.
äthylcrotonlacton 8.

äthylerotoniaeton 8.
anisalflavanon 154.

 benzaldiphenylmethylens bernsteinsäureanhydrid 156.

benzalflavanon 76.
benzalphthalid 62.
Äthoxybenzocumarincarbon

Äthoxybenzocumarincarbons säure-äthylester 533.

— nitril 533.

Athoxy-benzoflavon 70.

benzylchromon 63.
benzylphthalid 54.

bisdimethylaminophenyls phthalid 626.

brombenzylphthalid 54.
carbāthoxyphenylfluoron

536. — caronsāureanhydrid 85.

— chromon 25.

chromoncarbonsāure 527.
 cumalindicarbonsāuredis

äthylester 553.

Äthoxy-cumarilsäure 348.

- cumarin 26, 28.

— cumarincarbonsäure 527. — cumarincarbonsäureäthyl

ester 527.
— cyanbenzocumarin 533.

 dimethylaminomethyls xanthylbenzoesäureäthyls ester 633.

dimethylchromon 36.

— dioxoflavan 129.

dioxomethyläthylchromen
 108.

Äthoxydiphenyldibenzoylpyrandihydrid-carbonsaure 549.

— carbonsäureäthylester 549.

Athoxy-flavanon 51.
— flavanonoxim 52.

- flavon 58, 59.

- flavonol 129.

- flavonolacetat 129.

 furylisobernsteinsäures diäthylester 360.

- hydrocumarilsäure 346.

maleinsäureanhydrid 84.
methoxyāthoxybenzals

cumaranon 192. Äthoxymethyl-acetylchromon

108.
— acetylcumarin 109.

- acetylvalerolacton 82.

— äthylacetylbutyrolacton 83.

— chromon 30.

- crotonlacton 8.

 crotonlactoncarbonsaures äthylester 522.

— cumarilsäure 349.

— cumarin 34.

cumarincarbonsāureāthylsester 531.

cumarincarbonsăurenitril
 532.

— pyron 13.

Äthoxynaphthoflavon 70. Äthoxyoxo-äthylfurandihysdrid 8.

— diphenylcumaran 71.

diphenylcumaransulfonsäure 577.

 furandihydridcarbonsäures äthylester 521.

methylfurandihydrid 8.
methylfurandihydridcars

bonsäureäthylester 522.
— methylphenylcumaran 53.

- phenylbenzocumaran 67.

- phenylcumaran 47.

— phenylisochroman 53.
 Äthoxyphenyl-dihydroisocusmarin 53.

— isocumarin 60.

maleinsäureanhydrid 106.

Athoxy-phenyloxynaphthylessigsaure, Lacton 67. phthalid 17, 18. - phthalidearbonsaure 525. - phthalidearbonsauremethylester 525. phthalidyläthylmalons säurediäthylester 556. - phthalidylidenessigsäure 530. phthalidylmalonsäuredis athylester 555. - phthalsaureanhydrid 95. phthalylessigsäure 530. pyron 11, 12. Athoxypyron-carbonsaure 524. carbonsäureäthylester 524. carbonsāureamid 524. dicarbonsăure 552. — dicarbonsäurediäthylester 553. Athoxy-trichlormethylphthas lid 20. trimethylbutyrolacton 4. Athoxyveratral-cumaranon 1**9**2. flavanon 202. Äthvläther-komensäure 524. - komensäureäthylester 524. – komensäureamid 524. mekonsāure 552. pulvinsäuremethylester 535. Athyläthoxyphthalidylmalonsäurediäthylester 556. Athylamino-carbomethoxys phenylfluoronathylimid 634. cumarin 609. trimethylbutyrolacton 603. Äthylanhydrodibenzilacetessig-saure 549. saureathylester 549. Athylanilino-dimethoxyphthalid 627. mekonin 627. Äthylbenzylamino-dimethylcumarin 612. methylcumarin 611. Athylbergaptensäure 356. Athylbrenzschleimsäure-amidchlorid 278. imidchlorid 278. Athylbutyrolacton-carbons saure 375, 376. essigsaure 383. Äthyldicarbathoxyglutacons isoimid 507. Athylenoxyd-carbonsaure 261. dicarbonsaure 318. Athylensulfiddicarbonsaurediathylester 319. Athyl-furfurylamin 585. - furylacrylature 302.

Äthyl-furylpropionsäure 299. kämpferolmethylätherdi: äthyläther 228. luteolin 228. mekonin 92. nitrosaminocumarin 610. nitrosaminotrimethylbutys rolacton 603. oxyphthalidylmalonsäure 555. paraconsaure 375, 376. phenylglycidsäureäthyl= ester 306. phenylthioureidotrime= thylbutyrolacton 603. pulvinsaure 481. pulvinsäuremethylester pyrandicarbonsäure 336. tetronsäureäthyläther 8. thienylformhydroximsäure thiophencarbonsäure 296. trimethylenoxydcarbons saure 265. umbelliferon 36. valerolactoncarbonsaure 387. xanthophansäure 562. xanthylacetessigsäureäthylester 443. Aldehydo- s. Formyl-. Allofurylacrylsäure 301. Allylthioureidofurfuryliden= phenylessigsäurenitril 632. Amine 583. Amino-athylcumaron 586. āthylidentetronsāure 621. athylmekonin 628. athylthiophen 585. benzylfuran 587. brenzschleimsäureäthylester 394. bromphenoxymethylbus tyrolacton 622. bromphenoxyvalerolacton 622 butyrolacton 601. campholacton 604 cannabinolacton 607. carbonsauren 630. cumaran 585. cumarin: 608. diathylphthalid 607. dihydrocampholenolacton dimethoxyathylphthalid dimethoxyphthalid 627, 628. dimethylbernsteinsaureanhydrid 620. dioxofurantetrahydrid 619.

Amino-dioxomethyläthylidens pyrandihydrid 621. dioxopyrandihydrid 620. dioxyphenylxanthen, hydroverbindung 600. diphenylenoxyd 587. furancarbonsaureathylester 394. Aminofurfuryliden-acetophes non 612. furfuroylhydrazin 281. — phenylessigsäurenitril 632. Amino-hexosen, ihre N-Aryls Derivate und Ureide 601. komensäure 635. mekonin 628. Aminomethoxy-cumarin 624. methylcumarin 624, 625. Aminomethyl-benzoylcumas ron 616. but vrolacton 601. cumarin 610. furan 584. phenylphthalid 616. phthalid 607. umbelliferon 624. umbelliferonmethyläther 624, 625. Amino-naphthalindicarbons säureanhydrid 622. naphthalsäureanhydrid 622. Aminooxido-fuchsonimidcar= bonsaure 634. fuchsonimidsulfonsäure 637. menthanon, Oxim 605. Aminooxo-butyrolacton 619. carbonsäuren 633. methylfurandihydrid 604. sulfonsäuren 637. thionaphthendihydridcarbonsaure 632, 633. Aminooxy-carbonsauren 632. crotoniacton 623 methylcumarin 624. naphthylfurylmethan 597. naphthylmethylfuran 597. oxocarbonsauren 635. oxofurandihydrid 623. phenylphthalid 626. phenylxanthydrol, Anhys droverbindung 600. pyron 623. sulfonsäuren 636 thionaphthen 595. thionaphthencarbonsaure 632, 633. trimethylcyclopentylessigsaure, Lacton 605. Amino-pentosen und ihre N-Aryl-Derivate 600. phenoisulfonphthalein 637. phenolsulfurein 637.

Aminophenyl-butyrolactons carbonsaure 634.

fluoron 617.

- furylacrylsäurenitril 632.

paraconsaure 634. propylfuran 587.

Amino-phthalid 606.

- phthalsaureanhydrid 621.

propylenoxyd 583.

— pseudomekonin 627

— pyromekonsaure 623. - sulfonsäuren 635.

- tetronsäure 623.

 thienylessigsäure 631. - thionaphthen 586.

 thionaphthencarbonsäure 631.

thioxanthon 613.

trimethylbutyrolacton 602.

- trimethylcyclopentanolcarbonsaure, Lacton 604.

trimethylphthalid 607.

 valerolacton 601. - xanthon 613.

Amyl-butyrolactonessigsäure

crotonlactonessigsaure 403. Amylentricarbonsaureanhy: drid 464.

Angelicalacton, Dioxyvaleros lacton aus — 79.

Anhydro-aconiteaure 463.

athyltricarballylsaure 455. - brasilsäure 530.

camphoronsaure 456, 459.

Anhydrocamphoronsäureathylester 458.

anhydrid 458.

– anilid 458

chlorid 458. methylester 457.

Anhydro-carboxynaphthals saure 477.

citronensäuremethyläther 539.

cochenillesaure 545.

 dibenzilacetessigsāures athylester 501.

dichlorhemimellitsäure

dimethylaconitsaure 464.

 dimethylaminodioxysulfos phenylfluoronmethylimidhydroxymethylat

dimethylaminosulfophes nylfluoronmethylimidhydroxymethylat 636.

dimethyltricarballylsaure 455.

dioxydihydrolapachol 110. dioxymethylcarboxyphenylbenzoylbenzopyranol 549.

Anhydro-dioxymethylphenylcarboxybenzoylbenzopyranol 549.

ioxyphenylbenzopyranol 59.

dioxyphenyldimethoxy. phenylbenzopyranol 201.

glykonsäure 359. hemimellitsaure 468.

homocamphoronsaure 460.

homoisomuscarin 583.

mannonsaure 359.

mannozuckersäure 364. methylaconitsaure 464.

oxymethylcumarindiazos niumhydroxyd 652.

oxyphenylbenzopyranols carbonsaure 444.

prehnitsäure 508.

pyrogallolketon 208.

tetramethyltricarballylsaure 460. tricarballylsaure 451.

trimellitsäure 468.

trimethyltricarballylsäure 456.

Anilino-acetothienon 605.

acetylthiophen 605. athylidentetronsaure 621.

benzaminocrotonlacton 604.

benzaminooxofurandihy: drid 604.

cumarinearbonsaureathyl= ester 469.

cumarincarbonsăureanilid 469.

dibenzoxanthen 588. dinaphthopyran 588.

dioxophenyliminofurantetrahydrid 622.

formylamino- s. Phenyls ureido-.

formyliminocyanfurandi: hydridcarbonsaureathyls ester 489.

formyloxymethylpyron 13. formyloxytrimethylbutys

rolacton 5.

furylcyclohexenon 607. - furylessigsäurenitril 631.

furylisobernsteinsäuredis äthylester 632.

mekonin 627.

methylbutyrolacton 601,

methylcumarincarbons säureäthylester 474.

methylcumarincarbons saureanilid 474.

oxidomenthanon, Oxim

oxofurandihydrid 604. oxomethylfurandihydrid 604.

Anilinovalerolacton 601. Anisaleumaranon 61. Anisidinomethoxyphenylphthalid 626.

Anisoyl-benzoesāurepseudos methylester 118.

cumaron 60.

Anthracengelb 104. Antiaronsaurelacton 161. Apigenin 181.

Apigenin-diacetat 183. diäthyläther 182.

diäthylätheracetat 183.

dimethyläther 182. dimethylätheracetat 183.

methyläther 182.

methylätherdiacetat 183.

triacetat 183.

- tribenzoat 183. - trimethyläther 182.

Arabonsäurelacton 157, 158. Azo-mekonindiessigsäure 651.

- phthalid 645. verbindungen 643.

B.

Balbianos Säure 321. Benzal-aminocumarin 609.

anhydroglykopyrogallol **132**.

anisalbernsteinsaure: anhydrid 141. Benzaldehyd-furfuroyls hydrazon 280.

thenovlhydrazon 291. Benzal-furfurenylamidrazon 281.

hydrazinocumarin 642. Benzamino-anilinocrotons lacton 604.

benzylbenzaminobenzals butyrolacton 616.

brenzschleimsäureäthylester 395.

brommethylbutyrolacton 602.

butyrolacton 601. cumarin 608, 609.

furancarbonsaureathyl-

ester 395. furylacrylsäure 409.

methylcumarin 611. oxycrotonlacton 623.

oxyoxofurandihydrid 623. tetronsaure 623.

tetronsaureanilid 604.

Benz-furilsäure 351. furoin 43.

furoinoxim 43.

furoinoximacetat 43. Benzidin-sulfon 591.

sulfondisulfonsäure 636.

sulfonsulfonsaure 635.

Benzidintetracarbonsäures anhydrid 634. Benzimino-furandihydrid carbonsäureäthylester - furylpropionsäure 409. Benzo-chromoncarbonsäure 438. - c**öroxonol 78**. — cöroxonoläthvläther 78. — cumaranoncarbonsăures athylester 352. cumarincarbonsăure 438. cumarindisulfonsăure 574. - cumaroncarbonsaure 313. flavonol, Acetylderivat 69. Benzoingelb 155. Benzoingelb-diacetat 155. dibromid 154. Benzolazo-cumarin 645. dihydrocumarin 645. — dimethylcumarin 646. — dioxoisochroman 648. furvlcyclohexandion 648. methylbenzocumarin 647. — oxovalerolactoncarbon² säure 489. - oxythionaphthen 644. — phenylcumarin 647. Benzol-dibromresorcins phthalein 143. pyrogallolphthalein 200. resorcinphthalein 143. Benzolresorcinphthalein-ans hvdrid 143. diacetat 143. Benzolsulfaminocumarin 609. Benzolsulfonsăureazo-cumarin 646. – phenylcumarin 647. Benzolsulfonvl-athylaminos cumarin 610. methylaminocumarin 610. oxycumarincarbonsăures methylester 529. umbelliferoncarbonsäures methylester 529. Benzophenontricarbonsaures anhydrid 500. Benzotetronsäureäthyläther 26 Benzotetronsäureäthvläthercarbonsaure 527. carbonsäureäthylester 527. Benzotetronsäurecarbonsäureäthylester 469. amid 469. - anilid 469.

- nitril 470,

saure 545.

phenylhydrazid 470.

Benzoylanhydrocochenilles

Benzovl-benzoesäurepseudos methylester 48. benzyltetronsaure 35. bromisobrenzschleimsäure 12. furfuroylhydrazin 280. furfuroylhydroxylamin furfurylidenessigsäure 437. - furylacrylsäureäthylester 437. hydrosantonid 24. isobrenzschleimsäure 11. methylphenyltetronsäure methyltetronsäure 8. Benzoyloxo-dimethylbutyls tetronsaure 86. phenyltetrahydrofuryls propionsäure 479. Benzoyloxy-benzamino crotonlacton 80. benziminobutyrolacton 80. benzylcrotonlacton 35. butyrolacton 1. crotonlacton 6. cumarincarbonsaureathylester 530. diathylphthalid 23. dimethylbutyrolactons carbonsaure 518. dimethylcumaroncarbons säureäthylester 351. dioxodimethobutylfurans dihydrid 86. Benzoyloxymethyl-crotons lacton 8. crotonlactoncarbonsaure 522. cumarin 32. - flavon 64. - furfurol 15. phenylcrotoniacton 35. pyron 13. Benzoyloxyoxo-benzamino: furandihydrid 80. benziminofurantetrahydrid 80. dimethylbutylcrotonlacton diphenylcumaran 71. furandihydrid 6. - methylfurandihydrid 8. methylfurandihydrids carbonsaure 522. phenyläthylidenfurans dihydrid 44. Benzoyloxy-phenylcumarin 6Ŏ. pyron 11. xanthon 45, 46, 47. Benzoyl-pulvinsäurenitril 535. tetronsaure 6.

athylester 530. Benzyl-aminooxidos menthanon. Oxim 605. benzovltetronsäure 35. butyrolactoncarbonsaure 425. butyrolactonsulfonsaure 574. hemipinsäureisoimid 168. oxyoxophenylbenzo: cumaran 67. oxyphenyloxynaphthyls essigsaure, Lacton 67. oxypyron 11. paraconsaure 425. Bergenin 260. Bi- s. auch Bis- und Di-. Bicycloheptanolcarbonsaures essigsäure, Lacton 415. Bis- s. auch Di-. Bisacetamino-oxyphenyls xanthen 598 phenylxanthydrol 598. Bisacetylanilinobernsteinsäureanhydrid 619. Bisacetylmercapto-dimethylthiopyron 85. methylthiopyron 84. oxodimethylpentiophen oxodimethylthiopyran 85. oxomethylpentiophen 84. oxomethylthiopyran 84. thiodimethylpyron 85. thiomethylpyron 84. Bisacetyltoluidinobernsteins saureanhydrid 619. Bisäthoxyphenyltetrahydropyron 122. pyrondicarbonsaure 563. pyronoxim 123. Bisathylaminodimethyls xanthen 593. Bisäthylmercapto-dimethyl= thiopyron 85. diphenylthiopyron 138. oxodimethylpenthiophen oxodimethylthiopyran 85. oxodiphenylpenthiophen 138 oxodiphenylthiopyran 138. thiodimethylpyron 85. thiodiphenylpyron 138. thiopyronearbonsaure 541. thiopyrondicarbonsaure thiopyrondicarbonsaurediathylester 562.

Benzovl-thenovlhydrazin 291.

umbelliferoncarbonsaures

Bisamino-furfurylidenhydrazin 281. methylphenylphthalid 619. - oxyphenylphthalid 630. phenylmaleinsäures anhydrid 622 phenylphthalid 617. Bisanilinoformylmercaptodiphenylthiopyron 138. oxodiphenylpenthiophen 138. oxodiphenylthiopyran 138. thiodiphenylpyron 138. — thiopyrondicarbonsäures diathylester 562. Bisbenzolazo-apigenin 650. – catechin 644. — chrysin 649. — cyanomaclurin 650. — dinaphthofuran 643. — dinaphthylenoxyd 643. — dioxyflavon 649. — dioxymethoxyxanthon 650. dioxyxanthon 649. epicatechin 645. euxanthon 649. gentisin 650. - morin 651 – pentaoxyflavan 644. - pentaoxyflaven 650. - pentaoxyflavon 651. tetraoxydioxoflavan 651. - tetraoxyoxoflavan 650. – trioxyflavon 650. Bisbenzoylmercapto-dimethylthiopyron 85. – diphenylthiopyron 138. oxodimethylpenthiophen oxodimethylthiopyran 85. oxodiphenylpentiophen oxodiphenylthiopyran 138. — thiodimethylpyron 85. thiodiphenylpyron 138. — thiopyrondicarbonsaures diathylester 562. Bisbenzylmercapto-dimethyls thiopyron 85. diphenylthiopyron 138. oxodimethylpenthiophen oxodimethylthiopyran 85. oxodiphenylpentiophen 138 - oxodiphenylthiopyran 138.

thiodimethylpyron 85.

Bisbromdimethoxyphthalis

phthalid 232.

dyläther 166.

thiodiphenylpyron 138.

Bisbisnitrobenzoyloxyphenyl-

Bisbrom-methylpyrondicars bonsäurediäthylester 494. nitrooxyphenylphthalid 152. Biscarbathoxymethyl= mercaptothiopyron: dicarbonsäurediäthylester 562. Biscarboxy-cumaronylmethyläther 349. methylmercaptothios pyrondicarbonsauretetraäthylester 562. phenylfurantetrahydrid phenylphthalid 501. Bischlormethoxyphthalsäures anhydrid 167. Bischlormethyläther= norhemipinsäureanhydrid Biscumaronylmethyläther= dicarbonsaure 349. Bisdiacetoxyphenylphthalid Bisdiacetylaminoxanthon 614. Bisdiathylamino-acetaminophenylphthalid 619. oxyphenylxanthen 598. oxyxanthen 596. phenylphthalid 618. phenylxanthydrol 598. xanthydrol 596. Bisdiathylphthalidylhydrazin 642. Bisdibenzoxanthyl-amin 589. toluidin 589. Bisdibenzoyloxyphenyls phthalid 232. Bisdibrom-methylpyrondicarbonsäurediäthylester oxyphenylphthalid 149. Bisdijodoxyphenylphthalid 151. Bisdimethoxy-phenylfulgid 254.phenylphthalid 232. phthalidyläther 165. Bisdimethylamino-benzs hydrylfuran 593. benzhydrylthiophen 593. benzophenonsulfon 614. dimethylaminooxyphenyl: xanthydrol 600. dimethylaminophenyls xanthen 595. dimethylxanthen 593. dioxysulfophenyls xanthydrol, Anhydros verbindung 636 methylendiphenylsulfon

oxybenzhydrylthiophen 597. oxydimethylaminooxy: phenylxanthen 600. oxydimethylaminophenyl= xanthydrol 600. oxydioxysulfophenyls xanthen, Anhydroverbindung 636. oxymethylxanthen 597. oxyoxidofuchsonsulfon: säure 636. oxyphenylxanthen 598. oxysulfophenylxanthen, Anhydroverbindung 636. oxythioxanthen 596. oxyxanthen 596. phenylbenzofuran 594. phenylfurylmethan 593. phenylphthalan 593. phenylphthalid 617. phenylphthalidbishydr= oxymethylat 618. phenylthienylcarbinol 597. phenylthienylmethan 593. phenylxanthydrol 598. sulfophenylxanthen 635. sulfophenylxanthydrol, Anhydroverbindung 636. thioxanthen 592. thioxanthendioxvd 592. thioxanthon 614. thioxanthondioxyd 614. – thioxanthydrol 596. xanthen 591. xanthon 614. xanthydrol 596. Bisdinaphthopyryl-amin 589. toluidin 589. Bisdinitrooxyphenylphthalid Bisdioxyphenyl-butyrolacton 210. phthalid 231. Bisformylfurfuryläther 15. Bisfurfuroylamino-athan 278. valeriansaure 278. Bishydrocumarilylhydrazin 305. Bishydroxymercuri-isopropyls thiophen, Dichlorid 657. methylthiophen. Dichlorid thiophen, Dichlorid 656. Bisiminofurfurylhydrazin 281. Bismethoxybenzoyloxy phenylphthalid 232 Bismethoxyphenyl-fulgid 198. tetrahydropyron 122. tetrahydropyrondicarbons säure 563.

Bisdimethylamino-methyl=

xanthydrol 597.

Bismethoxyphenyltetrahydropyron-dicarbonsauredimethylester 564. oxim 123. Bismethylmercapto-dimethyls thiopyron 85. diphenylthiopyron 138. - methylthiopyron 84. oxodimethylpenthiophen - oxodimethylthiopyran 85. oxodiphenylpenthiophen oxodiphenylthiopyran 138. - oxomethylpentiophen 84. oxomethylthiopyran 84. thiodimethylpyron 85. - thiodiphenylpyron 138. - thiomethylpyron 84. - thiopyronearbonsaure 541. - thiopyrondicarbonsaure 561. thiopyrondicarbonsaurediathylester 561. Bisnitrobenzoyloxy-benzyls butyrolacton 93. phenylvalerolacton 93. Bisnitro-dimethoxyphthalis dyläther 167. oxyphenylphthalid 152, phthalidyläther 18. Bisoxidomenthylquecksilber 654. Bisoximinomethylfurfuryl= äther 15. Bisoxodiphenylcumaranyls äther 71. Bisoxy-aminophenylphthalid carboxyphenylphthalid methoxyphenylphthalid methylphenylphthalid 153, Bisoxynaphthyl-crotonlacton 156. phthalid 157. Bisoxyphenyl-naphthalid 156. phthalid 143. Bisphenyliminomethylfurfuryläther 15. Bisphthalidylidenmethyläther Bispropylmercapto-diphenylthiopyron 138. oxodiphenylpenthiophen oxodiphenylthiopyran 138. thiodiphenylpyron 138. Bispropyloxyphenyltetrahydro-pyron 123. pyronoxim 123.

Bistrichloroxidoisobutvrvlathylendiamin 262. Bistrimethoxyphenylphthalid 260. Bistrioxyphenylbutyrolacton 256. Borneolglykolsäure, Lacton 16. Brasilein 194. Brasilein-dimethyläther 195. trimethylather 196. Brasilsäure 543. Brenzcatechinphthalein 231. Brenzcatechinphthaleintetraacetat 232. tetrabenzoat 232. tetrakisnitrobenzoat 232. Brenzschleimsäure 272. Brenzschleimsäure-acetylhydrazid 280. äthylamid 277. athylester 275. athylestertetra bromid 263. äthylestertetrachlorid 263. - amid 276. - amidhydrazon 280. amidin 279. amidtetrabromid 263. - anhydrid 276. — anilid 277. - azid 281. benzalhydrazid 280. benzoylhydrazid 280. chlorid 276. hydrazid 279. hydroxylamid 279. imidhydrazid 280. iminoathylather 278. iminomethyläther 278. isobutylester 275. isopropylester 275. isopropylidenhydrazid 280. methylamid 277. methylester 274. nitril 278. phenylester 275. phenylhydrazid 280. propylester 275. sulfonsaure 579, 581. sulfonsăurediamid 581. tetrabromid 263. toluidid 277. Bromacetonylmekonin 171. Bromacetoxy-dimethylcumas roncarbonsäureäthvlester 351. methylcrotonlactoncarbon= saure 522.

Brom-acetylisobrenzschleims săure 12. äsculetindiäthyläther 100. Bromathoxy-anilinocrotons lacton 81. cumarin 28. flavanon 52. oxoanilinofurandihydrid oxophenyliminofurantetrahydrid 81. oxophenylisochroman 53. phenyldihydroisocumarin phenyliminobutyrolacton 81. Brom-athylmekonin 92. amylbutyrolactonessigs saure 394. anhydrocamphoronsäure **458**. Bromanhydrocamphorons saure-chlorid 459. methylester 459. Bromanilino-bisphenyliminos furandihydrid 620. maleinsäureanhydrid, Dis anil 620. mekonin 628. oxofurandihydrid 604. Brombenzaminovalerolacton 602. Brombenzoyl-isobrenzschleims säure 12. oxycumarincarbonsaures methylester 529. .oxypyron 12. umbelliferoncarbonsaures methylester 529. Brom-bisphenyliminoanilinos furandihydrid 620. brenzschleimsäure 284. Brombrenzschleimsäure-sulfamid 580. sulfonsaure 580, 582. sulfonsaurediamid 581. tetrabromid 263. Brombromfurylacrylsäure 301. Brombrommethyl-acetylcros tonlactoncarbonsaures athylester 465. brenzschleimsäure 295. Brombromphenoxy-methyl* butyrolacton 3. methylbutyrolactoncarbonsaure 516. valerolacton 3. valerolactoncarbonsaure Brom-camphansaure 403. carpinsaure 384.

phenylbutyrolacton 21.

oxomethylfurandihydrids

carbonsaure 522.

pyron 12.

Brom-chlormethylbutyros lactoncarbonsaureathyl= ester 373.

- cumalincarbonsaure 406.

- cumarilsāure 308.

- cumarindiazoaminonaph= thalintetrahydrid 652.

- daphnetindiäthyläther 101. Bromdiathoxy-benzalcumara= non 132.

cumarin 100, 101.

- flavanon 119, 120.

Bromdimethoxy-acetonyl= phthalid 171.

athoxyphthalid 166.

— äthylphthalid 92.

benzalcumaranon 132.

- cumarilsäure 354.

— diphenylhydrazinophtha: lid 642.

— flavanon 119, 121.

- methylcumarin 104.

- methylphthalid 91. - oximinophthalid 168.

oxooximinophthalan 168.

phthalid 88, 90.

phthalidylhydrazobenzol

Bromdimethylaminomethyl= cumarin 611.

Bromdimethylbutyrolactoncarbonsaure 380, 381, 382; s. auch Bromterebinsăure.

carbonsăureanilid 380.

- carbonsäurenaphthylamid 380.

carbonsăuretoluidid 380. - essigsaure 388.

Bromdimethyl-cumalinearbons säure 412.

paraconsăure 380.

pyroncarbonsaure 412.

 thiophencarbonsaure 298. Bromdioxy-triphenylessigs

saure, Lacton 71. xanthon 117.

Bromdiphenyl-butyrolactons essigsaure 442

hydrazinodimethoxy: phthalid 642.

 paraconsăure 440. Bromdistyryltetrahydropyron-

carbonsaure 448. Bromfurfuryliden-malonsäures äthylesternitril 339.

phenylacetonitril 313. Brom-furylacrylsaure 301.

— hexylisoparaconsaure 394. Bromisobutyl-isoparaconsaure 391

- paraconsaure 390. Brom-isodehydracetsäure 412.

 isopropylbutyrolactonessigs saure 391.

Brom-isoterebinsäure 377. komensäure 462.

mekonin 90.

mesitencarbaminäthyl= athersaure 412.

Brommethoxy-äthoxyflava= non 120.

anilinocrotonlacton 81.

cumarin 28. diathoxyflavanon 178.

isopropylflavanon 57.

methylpyron 14.

oxoanilinofurandihydrid

oxophenyliminofurantetra-

hydrid 81. phenylanisylbutyrolacton

phenylbutyrolacton 21.

phenyliminobutyrolacton

phenylmethoxybenzyl= butyrolacton 123.

pyron 12.

Brommethyl-athylparacon= säure 387.

brenzschleimsäure 294.

bromacetylcrotonlactons carbonsaureathylester 465.

butyrolactonessigsäure 377.

caprolactoncarbonsaure 387.

cumarilsăure 309.

cyclopropanoldicarbon= saure, Lacton 397.

diphenylparaconsăure 442.

furandicarbonsaure 331. furansulfonsäureamid 570.

iminoäthylglutaconsäures äthylester 412. mekonin 91.

paraconsăure 373.

phenylcumalincarbons saureathylester 436.

phenylparaconsäure 426.

phenylpyroncarbonsäures äthylester 436.

phthalidcarbonsaure 420. umbelliferon, Dibromid

Brommethylvalerolacton-carbonsaure 380.

carbonsăureanilid 380.

carbonsäurenaphthylamid

carbonsăuretoluidid 380. essigsäure 388.

Bromnaphthylaminomekonin 628. Bromnitro-brenzschleimsäure

phenyläthylen 304.

Bromnitrophenylglycidsäure 304.

Bromopiansäure-anhydrid 166.

pseudoäthylester 166.

pseudomethylester 166. Bromoxidobehensäure 269. Bromoxo-anilinofurandihydrid

dihydrofurylessigsäure 396.

dimethyldihydrofluoron

distyrylpyrantetrahydrids carbonsaure 448.

Bromoxomethylbutyrolactoncarbonsaure 453.

carbonsäureäthylester 454. Bromoxovalerolacton-carbons

săure 453. carbonsäureäthylester 454. Bromoxy-athoxytrioxodis

hydrindylcarbonsaure, Lacton 233.

aminodimethylpyrancars bonsäureäthylester 412.

cumarincarbonsaure 530.

dibrompropylvalerolacton

dihydromuconsaure, Lacs ton 396.

dimethylacetylcumarindis bromidcarbonsaureathyl: ester 546.

dimethylcumaroncarbons säureäthylester 351. diphenylbutyrolacton 56.

- lapachon 111.

mesitendicarbonsaures

athylesterimid 412. methoxytrioxodihydrindyl= carbonsaure, Lacton 232.

Bromoxymethyl-athylbutyros lacton 4.

brenzschleimsäure 346.

butyrolactoncarbonsaure: amid 516.

caprolacton 4.

crotonlactoncarbonsäure

crotonlactoncarbonsaure: äthylester 454. cumarilsaure 349.

Bromoxyoxo-dimethylcyans pyrandihydrid 523.

diphenylcumaran 71.

- phenylcumaran 48. Bromoxy-phenylbutyrolacton

valerolactoncarbonsäure:

amid 516. Brompelargolactonessigsäure 394.

Bromphenoxy-crotonlacton

oxofurandihydrid 6.

666 Bromphenyl-benzylbutyros lactonessigsaure 442. butvrolactoncarbonsaure 422, 423. butyrolactonessigsäure 426. - cyandihydroisocumarin 440. dihydroisocumarincarbons saurenitril 440. furfurvlidenacetonitril 313. — furylacrylsäurenitril 313. paraconsăure 422. sulfoncumarin 25. Bromphthalidcarbonsäurebromessigsäure 497. essigsaure 496. Brom-phthalidylessigsäure - phthalylessigsäure 432.

Brompropyloxy-anilinocrotons lacton 81.

oxoanilinofurandihydrid 81. oxophenyliminofurantetras

hydrid 81. phenyliminobutyrolacton

Brom-pseudomekonin 88.

pulvinsaure 482.

pyromekonsäuremethyl= åther 12.

sulfamidbrenzschleimsäure 580.

— sulfobrenzschleimsäure 580, 582.

— sulfobrenzschleimsäuredi= amid 581.

terebinsäure 380.

 tetrahydronaphthylcumas rinyltriazen 652.

Bromthiophen-carbonsaure 291

dicarbonsăure 327.

 sulfonsăure 569. Brom-tolylcyandihydroisos

cumarin 441.

 tolyldihydroisocumarins carbonsăurenitril 441. triacetsaurelactonmethyl-

ather 14.

trimethoxyphthalid 166. trimethylbrasilon 227.

 trimethylbutyrolactons carbonsaure 389.

trioxytetramethylfluoron

Bromumbelliferon-äthyläther

- carbonsaure 530.

- methyläther 28.

Butantetracarbonsaure, Monoanhydrid der hochschmelzenden 502. Butin 178.

Butin-triacetat 178.

tribenzoat 179.

- trimethyläther 178.

Butylphthalidcarbonsäure 428.

Butyrofuronsäure 299. Butyrolacton-carbonsaure 370, 371.

carbonsăureessigsăure 484.

carbonsäureisobuttersäure 486.

dicarbonsaure 483.

diessigsäure 485.

essigsäure 371; Äthylester s. auch 374.

propionsāure 375.

Butyrylxanthylamin 588.

C.

Callopisminsäure 481. Camphansaure 400, 401, 403. Campheniloldicarbonsäures lacton 415.

Camphersäureanhydrid-sulfobromid 576.

sulfochlorid 575.

sulfonsäure 575.

Campherylmalonsäurediäthyls ester 495.

Campholenoxydsäure 272. Campholenoxydsäure-äthyls

ester 272. amid 272.

benzylester 272.

methylester 272.

Camphoransäure 486, 487, 488. Camphosäureanhydrid 466.

Camphotricarbonsaureanhys drid 467.

Cannabinolactonsăure 424. Cantharidin 415. Cantharidinsäure 326.

Cantharidinsäure-aminoäthylamid 326.

dimethylester 326.

phenylhydrazid 326. Cantharoximsäure 415.

Cantharsaure 414. Cantharsaure-athylester 415.

methylester 415.

Caprinolactoncarbonsaure 393. Caprolacton-carbonsaure 374,

dicarbonsaurediathylester 485.

Capryl- s. Octyl-. Carbacetessigsaure 409. Carbathoxykomensaureathylester 524.

Carbathoxyphenyl-xanthoxoniumchlorid 353.

xanthyliumchlorid 353.

Carbomethoxyphenyl-xanthos xoniumchlorid 353.

xanthyliumchlorid 353.

Carbonsäuren 261.

Carbonsäuren s. auch Mono= carbonsauren, Dicarbons sähren haw.

Carbonsäurensulfonsäuren 579.

Carbopyrotritarsäure 335.

Carboxy-apocamphersäurean= hydrid 466.

benzalphthalid 444.

benzotetronsäure. Derivate 469, 527.

Carboxybenzoyl-diphenylen= oxyd 448.

naphthalindicarbonsaure= anhydrid 501.

naphthalsäureanhydrid **5**01.

phthalid 478.

Carboxybenzyl-phthalid 440.

phthalidcarbonsaure 499.

Carboxy-corniculariacton 447. methylcarboxyphenylbus tyrolacton 497.

Carboxyphenyl-buttersäure **42**5.

butyrolactonessigsäure497.

dihydroisocumarincarbon= säure, Monoamid 499.

phthalidcarbonsäure 499. - xanthydrol, Lacton 352.

Carboxy-tetrinsäure, Äthylester 451.

tetronsäure 450.

triacetsäurelactonanilid

Carbuvinsäure 335.

Catechon-tetramethyläther 239.

trimethyläther 238.

Chelidonsäure 490. Chelidonsäure-äthylester 491.

diathylester 492.

diamid 492.

dimethylester 491.

Chinasaure, Lacton 163. Chinid 163.

Chinid-triacetat 163. tribenzoat 163.

Chitarsaure 359.

Chitoheptonsaure 363.

Chitonsaure 359. Chitose 161.

Chitosoxim 161.

Chloracetoxymethylcumarin

Chlorathoxy-dimethylphenyls iminobutyrolacton 80.

oxodimethylphenyliminofurantetrahydrid 80.

Chlorathoxy-oxoxylidinofurandihydrid 80.

- xylidinocrotonlacton 80.

Chlor-aminothionaphthens carbonsaure 631.

anilinooxofurandihydrid
 604.

 benzotetronsäurecarbons säureäthylester 470.

benzoyloxymethylcumasrin 33.

brenzschleimsäure 282.
 Chlorbrenzschleimsäure-sulfzamid 580.

— sulfonsäure 579, 581.

sulfonsäurediamid 580.
 Chlorbrom-furansulfonsäure

Chlorbrom-furansulfonsäure 568.

phthalidylessigsäure 420.
valerolactoncarbonsäures

äthylester 373. Chlor-chelidonsäurediäthylsester 492.

 chlormethylbutyrolacton= carbonsäureäthylester 373.

- citropten 97.

- cumalinearbonsaure 406.

— cumarilsaure 308.

cumarincarbonsāureāthylsester 430.

 diacetoxydimethylcumas roncarbonsäureäthylester 356.

dibenzoyloxydimethylscumaroncarbonsäuresäthylester 356.

 — dibrombrenzschleimsäure 286.

dibromcitropten 98.

 dichlormethylglycidsäures amid 262.

Chlordihydro-furandicarbons saure 324.

— mekensäure 505.

Chlordimethoxy-cumarilsäure 354.

- cumarin 97.

— phthalid 90.

Chlordimethyl-crotonlactons carbonsaure 398.

cumalinearbonsäureäthylsester 412.

 furandihydridearbonsäure 270.

isocumarilsäureäthylätherschinon 474.

- paraconsăure 379.

— pyroncarbonsäureäthylsester 412.

Chlordioxodimethylcumarons dihydridcarbonsäures äthylester 474. Chlordioxy-dimethylcumarons carbonsäureäthylester 356.

- methylcumarin 104.

Chlor-furandihydriddicarbon= saure 324.

 furfurylidencrotonsäure 302.

furfurylidenphenylacetos
 nitril 312.

furylacrylsäure 301.

furylbutadiencarbonsäure 302.

— iminothionaphthendihys dridearbonsaure 631.

 isodehydracetsäureäthyl= ester 412.

- komansäure 405.

- komensäure 462.

— mekensäure 505.

mekensäureäthylester 505.mekonin 90.

- mercuricineol 655.

Chlormethoxy-oxotoluidinos furandihydrid 80.

— oxotolyliminofurantetra:

hydrid 80.
— toluidinocrotonlacton 80.

— tolyliminobutyrolacton 80. Chlormethyl-äthernorhemis

pinsäureanhydrid 167. — butyrolactoncarbonsäures äthylester 373.

— carbăthoxyacetylbutyros lacton 454.

carbomethoxyacetylbutys
 rolacton 454.

cumarilsäureäthylester310.
 cumarincarbonsäureäthyls

ester 433.

daphnetin 104.
 dihydrofurancarbonsäures
 äthylesteressigsäureäthyls

ester 325. — trimethylenoxyddicarbons säurediamid 320.

— umbelliferon 32.

Chlormethylumbelliferon-acestat 33.

- benzoat 33.

Chlornitro-brenzschleimsäure 288.

288. — phenylglycidsäure 304.

Chloroxo-anilinofurandihysdrid 604.

 dimethylfurandihydrids carbonsäure 398.

— phenyldihydrofurylidens phenylacetonitril 447.

Chloroxy-dihydrosantonin 94.
— dimethylcumarin 37.

 furantetrahydriddicarbons säure 360.

- methylcumarin 32.

Chloroxytetrahydrofurans dicarbonsäure 360.

Chlorphenoxy-crotonlacton 6. — maleinsäureanhydrid 84.

oxofurandihydrid 6.
 Chlorphenyl-butyrolactone

Chlorphenyl-butyrolactoncarsbonsäure 421.

— cyanbenzalcrotonlacton

447.

furfurylidenacetonitril 312.
furvlacrylsäurenitril 312.

 isopropylidenparaconsäure 435.

— paraconsăure 421.

— sulfoncumarin 25.

Chlor-phthalylessigsäure 432. — pyromekensäure 505.

— pyromekensaure 505. — pyroncarbonsäure 405.

— santonin 94.

- sulfamidbrenzschleimsäure 580.

- sulfobrenzschleimsäure 579, 581.

 sulfobrenzschleimsäuredis amid 580.

terebilensäure 398.
terebinsäure 379.

Chlorthiophen-carbonsäure 291.

— sulfonsäure 569.

Chlorvalerolacton-carbons säureäthylester 373.

— malonylsäureäthylester 454.

 malonylsäuremethylester 454.

Chromon-carbonsäure 428.

— carbonsäureäthylester 429.

— carbonsäureamid 429. Chrysatropasäure 99.

Chrysin 124. Chrysin-äthyläther 125.

Chrysin-äthyläther 125.
— diacetat 125.

— isoamyläther 125.

— methyläther 125. — methylätheracetat 125.

Cinchonsäure 483. Cinensäure 266, 267.

Cinensäure-äthylester 267.
— amid 267.

— methylester 267. — nitril 267.

Cineolsäure 322.

Cineolsäure-äthylester 323.
— allylamid 323.

— allylamid 323. — amid 323.

— anilid 323.

- anilidmethylester 323.

— diathylamid 323.

— diäthylester 323. — dimethylester 323.

— phenylhydrazid 323.

— toluidid 323.

Cinnamenyl- s. Styryl-. Citracumalsäure 511.

Citropten 97. Citroptendibromid 91. Coccinsăureanhydrid 102. Cöroxoniumsalze 74. Cöroxonol 74. Cöroxonol-äthyläther 75. - isobutyläther 75. - methyläther 75. - propyläther 75. Cörthioniumsalze 75. Cörthionol 75. Cörulein 234. Cörulein-äthyläther 234. - methyläther 234. triacetat 235. Corulin 233. Crotonlacton-bromessigsäure 396. — carbonsäure 395. essigsäure 396. Cumalincarbon-säure 404, 405. säurediessigsäure 511. Cumalinsaure 405. Cumarancarbonsăure 305. Cumaranon-carbonsäure, Ester 347. oxim 637. - semicarbazon 640. Cumaransulfonsäure, Chlorid 570; Amid 571. Cumaranyl-amin 585. - carbamidsäureäthvlester 585, 586. carbamidsäurephenylester 585. urethan 585, 586. Cumarilsäure 307. Cumarilsäure-äthylester 308. — amid 308. - anilid 308. - azid 308. chlorid 308. – hvdrazid 308. — nitril **30**8. phenylester 308. Cumarilyl-ameisensäure 431. chlorid 308. hydrazin 308. Cumarin-azobromnaphthyl= amin 646. azonaphthol 646. carbonsăure 429, 430. carboylcumarsăure 548. — diazoaminobromnaphtha: lintetrahydrid 652 — diazoniumhydroxyd 651. — disulfonsaure 574. - sulfonsäure 574. Cumarinylpropionsäure 434. Cumaron-carbonsaure 307. dicarbonsăure 340. Cumaronylglyoxylsäure 431. Cyanacetylthiophen 408.

Cyan-benzalphthalid 444. benzodihydrocumarins cyanessigsäureäthylester 512. benzotetronsäure 470. bromfurylacrylsäureäthyl= ester 339. cumarin 430. cumaron 308. dibenzoxanthylessigsäure= äthylester 343. dinaphthopyrylessigsäures äthylester 343. diphenylenoxyd 313. furan 278. Cyanfurfuryliden-acetamid 339. acetylchlorid 339. essigsäure 338. essigsäureäthylester 338. Cyanfurylacryl-säure 338. säureäthylester 338. saureamid 339. säurechlorid 339. Cyanfurylpropion-saure 332. säureäthylester 332. Cyanmentholcarbonsäure, Lacton 404. Cyannitrofuryl-acrylsäure 339. acrylsäureäthylester 339. Cvanomaclurin 209. Cvan-propylenoxyd 261. thiophen 290 valerolacton 372. Cvanxanthylessig-säure 341. säureäthylester 342. Cyclo-pentantricarbonsaure anhydrid 466. propantricarbonsaureans hydrid 463. D. Daphnetin 100. Daphnetin äthyläther 101.

Dapinetin-anylatine 101.

— diacetat 101.

— diāthylāther 101.

— dibenzoat 101.

Datiscetin 214.

Datiscetin-tetraacetat 214.

— tetrabenzoat 214.

— tetrabenzolsulfonat 214.

Decarbousninsäure 546.

Dehydracetsäurecarbonsäure 493.

Dehydro-acetylpäonol 30.

acetylresacetophenon 30.
 benzalbisbenzoylessigsäure 343.

diacetyllävulinsäure 413.
diacetylpäonol 108.

phenylhydrazon 108. diacetylresacetophenon 107. furfuralphenylhydrazon irenoxylacton 24. methylacetylpäonol 36. propionylessigsäurecarbons säure 495. schleimsäure 328. Dehvdroschleimsäure-äthyl= ester 329. amid 330. anhydrid 330. diathylester 329. diamid 330. dianilid 330. dibutylester 330. dichlorid 330. diisoamylester 330. diisobutylester 330. diisopropylester 329. dimethylester 329. dipropylester 329. methylester 329. Desmotropo-chromosantonin 42. santonin 38, 39, 42; Azoderivate 649. santoninsäure 38. Di- s. auch Bis-. Diacet- s. auch Diacetyl-. Diacetamino- s. Bisacetaminobzw. Diacetylamino-. Diacetoxyacetoxy-benzalcus maranon 192; s. auch 191. phenyläthylcumarin 196. Diacetoxy-benzoflavon 142. benzoflavonolacetat 200. benzylbutyrolacton 93. chromon 96, 97. cumarin 97, 100, 101. diacetoxyphenylcumarin diphenylvalerolacton 124. flavon 125, 126, 127, 128, 129, 130, 131. flavonolacetat 185, 187, 188, 189, 190. flavonolmethyläther 185. hydrofluoransäure 358. isopropylflavon 137. isopropylflavonolacetat **197**. maleinsäureanhydrid 164. methylchromon 103. methylcumarin 104. methylflavon 135, 136. methylfurfurylacetat 15. naphthalid 109. nitrobenzalcumaranon 133.

Dehydro-diacetylpaonols

Diacetoxyphenyl-benzylbutyrolacton 124. cumarin 131. - maleinsäureanhydrid 172. valerolacton 93. Diacetoxy-phthalsaureanhydrid 169. pyroncarbonsaureathylester 541. — tetrahydrofurandicarbon• saure 365. tetrahydrofurandicarbons saurediathylester 365. tetramethoxyazophthalid 650. xanthon 112, 113, 115, 116, 117. Diacetylamino-acetoxys

Diacetyl- s. auch Diacet-. methylcumarin 625. dihydrocumarin 607. methylumbelliferon 625. – oxochroman 607.

 oxymethylcumarin 625. Diacetyl-fluorescin 358. - hydrochinonphthalin 358.

 isozuckersaure 365. isozuckersäurediäthylester

– norisozuckersāure 364. - rosamin und seine Carbis nolbase 598.

— traubensäureanhydrid 163. - weinsäureanhydrid 162.

Diathoxyacetoxy-flavon 181, 183.

isoflavon 191. Diathoxy-chromon 96. – cumarilsäure 355.

— cumarin 100, 101. — flavanon 119, 120.

flavon 126, 127, 128.

- hydrofluoransäure 358. hydrofluoransäureäthylester 358.

phthalid 89.

phthalidearbonsäure 542.

phthalidearbonsaures methylester 542.

phthalsaureanhydrid 168. trichlormethylphthalid 92.

- xanthon 113, 115. Diäthyläthylenoxydoarbons

säure 266. Diathylaminophenyl-dibenzos xanthen 590.

- dinaphthopyran 590. Diathyl-anilinphthalein 618.

– furfurenylamidin 279. glycidsäure 266.

- oxidopropylamin 583. thienylphosphin 653.

Diamine 591. Diaminodifurylazimethylen 281.

Diaminodimethyl-diphenylens oxyd 592.

diphenylensulfon 592.

xanthen 592. xanthon 616.

Diamino-dinaphthofuran 594. dinaphthylenoxyd 594.

diphenylenoxyd 591.

diphenylensulfon 591. Diaminodiphenylensulfon-dis

sulfonsaure 636. sulfonsaure 635.

Diaminodiphenyl-phthalid 617.

tetracarbonsäureanhydrid 634.

Diaminomethoxy-cumarin 624

diathylphthalid 624. Diamino-methyldiphenylens sulfon 592

methylendiphenylsulfon 592.

oxyxanthylbenzoesäure, Lacton 634.

phenolphthalein 630. phenolphthaleindimethylather 630.

stilbendicarbonsäureans hydrid 622.

thioxanthendioxyd 592. xanthon 613, 615.

Dianilino-dioxofurandihydrid **62**0.

diphenylensulfon 591.

maleinsäureanhydrid 620. Dianisalbernsteinsäurean-

hydrid 198. Diazoaminocumarin 652. Diazo-methylumbelliferon

verbindungen 651.

Dibenzoxanthyl-acetessigs säureäthylester 450. bernsteinsäure 343.

cyanessigsäureäthylester 343.

essigsaure 317.

isobuttersäure 318. isovaleriansaure 318.

malonsaure 343 propionsāure 318.

Dibenzoylaminotetronsäure

Dibenzoyloxy-chromon 96. cumarin 101.

maleinsäureanhydrid 164. xanthon 115.

Dibenzoylweinsäureanhydrid 162.

Dibrom-asculetin 100.

athoxyacetoxyxanthon

athoxycrotoniacton 7. athoxycumarin 26, 29.

athoxycumarincarbonsaureathylester 527.

athoxyoxofurandihydrid 7. allyloxycrotonlacton 7.

allyloxyoxofurandihydrid

apigenin 183.

apigenintrimethyläther 183.

Dibrombenzotetronsäureathylather 26.

äthyläthercarbonsäureathylester 527.

carbonsäureäthvlester 470. carbonsaurenitril 470.

Dibrombrenzschleim-säure 285.

săurenitril 286. säuresulfonsäure 582.

Dibrom-bromfurylpropions saure 296.

bromphenylfurylpropios nitril 312.

cantharidinsäurediacetyl= phenylhydrazid 327.

chelidonsäureäthylester

chelidonsäurediäthylester 492.

chrysin 125.

chrysindimethyläther 125.

chrysinisoamyläther 126. chrysinmethyläther 125.

citropten 98.

cumarilsaure 309.

cyanbenzotetronsäure 470.

cyanfuran 286.

diaminophenolphthalein

Dibromdimethoxy-cumarin

dihydrocumarin 91. flavon 125.

oxyphenylphthalid 175.

Dibromdimethyl-aminos methylcumarin 611.

aminooxomethylchroman 607.

phenolphthalein 153.

Dibromdinitro-phenols phthalein 152.

phenolphthaleindiacetat 152.

Dibromdioxodimethyltetrahydroxanthydrol-athylather 55.

methyläther 55.

Dibromdioxy-adipinsaure. Lacton 517. chromon 102. cumarin 100. - dioxochromancarbonsäures äthylester 555. dioxoflavan 186. - flavon 125. flavonol 186. - fluoresceinäthyläther, chinoider 558. methoxydioxoflavan 217. methoxyflavonol 217. phenylbenzoylencumaran phenylphthalid 118. - xanthon 113, 116. Dibrom-diphenyltetrahydros pyrondicarbonsăurediäthylester 500. euxanthon 116. Dibromeuxanthon-athylather 116. - āthvlātheracetat 116. - methyläther 116. Dibromfuran-sulfonsäure 568. tetrahvdriddicarbonsäure **320**. Dibrom-galangin 186. isocarbopyrotritarsäures äthylester 465. kämpferolmethyläther 217. — komensäure 462. - kresolphthalein 153. — luteolin 213. luteolintetramethyläther Dibrommethoxy-crotonlacton cumarin 29. — diacetoxyflavanon 186. - methylphthalsäures anhydrid 103. oxofurandihydrid 7. – oxomethylchroman 22. — phenylbrommethoxybens zylbutyrolacton 124. Dibrommethyl-brenzschleims säure 295. cumarilsaure 309. furancarbonsăuredibrom= essigsäure 334. — furancarbonsäuredibroms essigsäureäthylester 335. Dibrom-nitrobrenzschleims saure 288. - oxodimethylaminomethylchroman 607. oxophenyliminothiophens tetrahydriddicarbonsäurediäthylester 502. Dibromoxyathoxyxanthon 116.

Dibromoxy-dimethylcuma: roncarbonsäureäthylester dioxochroman 102. hydrochinonphthalein= athyläther, chinoider 558. isoamyloxyflavon 126. methoxyflavon 125. methoxyxanthon 116. methylcumarin 31. methylphthalsäureanhy: drid 103. oxophenylcumaran 48. phenylmekonin 175. phenylphthalid 49. xanthon 46, 47. Dibrom-pentaoxyflavon 249. phenolphthaleindimethyläther, lactoider 149. Dibromphenyl-athylparacon= saure 428. furancarbonsäureäthyl= esteressigsäure 341. furylpropionitril 312. Dibrom-phenythronsaures äthylester 341. propyloxycrotonlacton 7. propyloxyoxofurandis hydrid 7. quercetin 249. resorcinbenzein 69. rhamnazin 250. sulfobrenzschleimsäure Dibromtetra-hydrofurandis carbonsăure 320. methoxyflavon 213. oxydioxoflavan 249. - oxyflavon 213. oxyflavonol 249. Dibromthiophen-carbonsaure 292. disulfonsaure 571. sulfonsäure 568. Dibromtrimethoxyflavon 183. Dibromtrioxy-flavon 183, 186. methoxyflavon 217. triphenylmethancarbon= saure, Lacton 143. Dibromumbelliferon-äthyl= äther 29. methyläther 29. Dicarbathoxyglutaconisoimid Dicarbonsauren CnH_{2n-4}O₅ 318. $C_n H_{2n-6} O_5$ 323. $C_nH_{2n-8}O_b$ 327. $C_nH_{2n-10}O_5$ 337. Cn H2n-12O5 340. $C_nH_{2n-14}O_5$ 340. $C_nH_{2n-16}O_5$ 340. $-C_nH_{2n-20}O_5$ 341.

CnH2n-28O5 343. - Cn H2n-82O5 343. Dichlor-acetoxydimethylcumaroncarbonsăure: äthylester 351. athoxycrotonlacton 7. äthoxycumarin 26. athoxycumarinearbon: säureäthylester 527. äthoxyoxofurandihydrid 7. allyloxycrotoniacton 7. allyloxyoxofurandihyd= benzotetronsäureäthyl= äther 26. benzotetronsäureäthyl= äthercarbonsäureäthyl= ester 527. benzotetronsäurecarbon: säureäthylester 470. brenzschleimsäure 282, 283. brenzschleimsäuresulfon: saure 580, 581. brombrenzschleimsäure 285. chelidonsäurediäthylester 492. citropten 98. dimethoxycumarilsäure 354. dimethoxycumarin 98. dioxyxanthon . 116. euxanthon 116. hydrofluoransäure 317. komansäure 405. methoxycrotonlacton 6. methoxyoxofurandihydrid methylanilinocrotonlacton 604 methylanilinooxofuran= dihydrid 604. methylparaconsäure 372. nitrobrenzschleimsäure 288. oxomethylanilinofuran: dihydrid 604. oxydimethylcumaron= carbonsaure 351. oxyoxotrichlormethyliso: chroman 22. phenylbutyrolactoncars bonsaure 421, 422. phenylparaconsäure 421, phthalidylessigsäure 419. propyloxycrotonlacton 7. propyloxyoxofurandihy: drid 7. pyroncarbonsaure 405.

Dicarbonsauren Cn H2n-24 O5

Dichlor-sulfobrenzschleims saure 580, 581. thienylphosphin 653. valerolactoncarbonsäures äthylester 373. – xanthylbenzoesäure 317. Dicinnamoylweinsäureanhys drid 163. Dicumaranylharnstoff 585. Dicumarinyltriazen 652. Dicyanthiophen 331. Difurfuroyl-athylendiamin – hydrazin 280. - hydroxylamin 279. - ornithin 278. - resorcin 275. weinsäurediäthylester 276. weinsäuredimethylester 276. Difurfurvl-harnstoff 585. - hydrazidin 281. tartramid 585. Difurylhydrazidin 281. Digitalonsäure, Lacton 159. Digitoflavon 211. Digitoxonsăurelacton 79. Digitoxosecarbonsaure, Lacs ton 161. Dihydro-asculetin 91. äsculetinsulfonsäure 577. - brasilinsäurelacton 209. carvoxydhydroxylamin 637. Dihydroflavaspidsäure-xans then 252xanthenäthyläther 253. - xanthenmethyläther 253. Dihydro-furandicarbonsäure 323, 324, 325. hämatoxylinsäurelacton 238. isocumarincarbonsäure 419. Dihydropyrancarbonsäureäthylesteressigsäure 325. äthylesteressigsäureäthyl= ester 325. essigsäure 325. Diiso-butyrylweinsäureanhys drid 162. pyromucylphosphat 11. Dijod-acetylbenzotetronsäures athylather 107. athoxyacetylcumarin 107. Dijodathoxycumarincarbons säure-äthylester 528.

Dijodbenzotetronsäure-äthyl=

ester 528.

äthercarbonsäureäthyl=

Dimethoxybenzylimino-Dijodbenzotetronsäurecarbonsäure-amid 471. phthalid 168. nitril 471. Dimethoxycarbomethoxy: phenylhydrazid 471. phenyl-xanthoxoniums Dijodchrysin 126. salze 363. Dijodcyanbenzotetron-säure xanthyliumsalze 363. 471. Dimethoxy-carboxymethoxysäureäthvläther 528. phenylmetamekonin 238. Dijoddioxyflavon 126. chromon 96, 97. Dimercapto-diexodithiodis chromoncarbonsäure 544. pyryldisulfidtetracarbon= cumarin 97, 99. säuretetraäthylester 510. cumarincarbonsaure 544. oxopenthiophencarbons Dimethoxycumaronyl-acrylsăure 489. säure 356. oxopenthiophendicarbon= acrylsäuremethylester 356. saure 509. propionsăure 356. Dimercaptothiopyron-carbon= Dimethoxy-diacetoxyflavonols saure 489. acetat 248. dicarbonsaure 509. dibenzoyloxyflavonolben= Dimercaptothiopyrondicars zoat 249. bonsaure-athylesteramid dihydroisocumarin 91. Dimethoxydimethoxydiäthylester 510. benzoylphthalid 251 · diamid 511. carboxybenzoylphthalid Dimethoxyacetonylphthalid 170. carboxybenzylphthalid Dimethoxyacetoxy-benzo-563. flavon 200. carboxymethoxyphenyls flavon 181, 183, 185, 186, phthalid 238. 187, 188, 189, 190. cumaronylmethylbenzoes isoflavon 191. säure 366. — isopropylflavon 197. cumaronylmethylbenzoemethylcumarin 170. säuremethylester 367. methylisoflavon 194. Dimethoxydioxo-benzoflavan phthalid 165. xanthon 174. flavan 185, 186, 187, 188, 189, 190 Dimethoxyathoxy-acetoxys flavon 223. isopropylflavan 196. dioxoflavan 222. - methylchroman 170. — flavanon 178. Dimethoxy-dioxybenzals - flavon 181. cumaranon 224. flavonol 222. diphenylhydrazinophtha: flavonolacetat 223. lid 642. - oximinoflavanon 223 - flavanon 119, 120, 121. - flavon 126, 128, 129. oxooximinoflavan 223. phthalid 165. — flavonol 185, 186, 187; 188, Dimethoxyäthyl-anilino 189, 190. phthalid 627. flavonolacetat 185, 187, 188, 189, 190. phthalid 92. hydrazonophthalid 168. Dimethoxyamino-äthylphtha = lid 628. Dimethoxyisopropyl-flavanon phthalid 627, 628. 124. Dimethoxy-anisalflavanon flavonol 196. – flavonolacetat 197. 202. benzalcumaranon 132; s. phthalid 93. auch 133. Dimethoxymethoxy-carboxybenzoflavanon 141. methoxyphenylphthalid benzoflavonol 199. benzoflavonolacetat 200. - cumaronylmethylbenzoes säure 361. benzoyl-s. auch Veratroyl-. benzoylchroman 122. phenylphthalid 176. Dimethoxymethylchromon - benzoylcumaran 121. - carbonsäureäthylester 471. benzoylmetamekonin 251. 103.

Dimethoxymethyl-cumarilsaure 355. cumarilsäureäthylester 355. - cumarin 104. — phthalid 91.

Dimethoxyoximino-benzoflas vanon 200.

flavanon 185, 188, 189, 190. 186, 187,

– isopropylflavanon 197. Dimethoxyoxo-amylphthalid 172.

 benzyliminophthalan 168. butylphthalid 171.

- hydrazonophthalan 168. isoamylphthalid 172.

Dimethoxyoxooximino-benzos flavan 200.

- flavan 185, 186, 187, 188, 189, 190.

- isopropylflavan 197. Dimethoxy-oxymethoxybens zovlphthalid 251.

oxymethoxyphenylphthas lid 208.

 oxymethylphenylphthalid 179.

- oxyphenylphthalid 175. phenacylphthalid 194.

phenanthrendicarbons säureanhydrid 198.

Dimethoxyphenyl-crotonlacs tonoxalylsaureathylester 556.

- cumarilsaure 357.

cumarin 131.

- itaconsäureanhydrid 173.

phthalid 117.

Dimethoxyphthalid 88, 89. Dimethoxyphthalid-carbons saure 542.

carbonsauremethylester 542.

Dimethoxyphthalidyl-essig* saure 542.

essigsäureäthylester 543. hydrazobenzol 642.

Dimethoxy-phthalsaureanhydrid 167, 168, 169.

propionyloxyphthalid 165. propylphthalid 93.

Dimethoxypyroncarbon-saure

saurehvdroxylamid 541. säuremethylester 540. Dimethoxy-triacetoxyflavon

248.

- tribenzovloxyflavon 249. trichlormethylphthalid 91.

- veratralflavanon 233. - xanthon 114, 117.

Dimethyl-acetylfurancarbons saure 413.

apfelsaure, Lacton 374. äpfelsäureanhydrid 82.

athoxymethylphenylcros tonovlcumaran 65.

äthylenoxydcarbonsäure

äthylglycidsäureäthylester

äthylpentoxylactonsäure 520.

Dimethylamino-athoxymes thylxanthylbenzoesäureathylester 633.

äthylbutyrolacton 603. benzovlbenzoesäurepseus

domethylester 625.

cumarin 609.

cumarinhydroxymethylat 609.

dimethylaminooxyphenyls fluoronmethylimid, Chlormethylat 626.

Dimethylaminomethyl-athyl cumarin 612.

carbathoxyphenylxanthy. drol 633.

carbathoxyphenylxanthy: droläthyläther 633.

cumarilsaure 631.

cumarin 610. cumarindibromid 607.

 cumarinhydroxymethylat 611.

cumaron 586.

- cumaroncarbonsaure 631. Dimethylaminooxy-dimethyls aminophenylfluoronmethylimid, Chlormethylat 626.

methylxanthylbenzoes säureäthylester 633.

Dimethylaminophenyl-aminodimethylaminophenylphthalid 619.

dibenzoxanthen 590.

dimethylaminoacetaminophenylphthalid 618, 619. dinaphthopyran 590.

dioxyphenylphthalid 629. fluoronmethylimid,

Chlormethylat 617. methoxybenzoyloxyphes

nylphthalid 630. nitrodimethylaminophes

nylphthalid 618. oxymethoxyphenylphtha-

lid 630. oxymethylphenylphthalid 627.

oxyphenylphthalid 626. - phthalid 615.

Dimethylaminotrimethyls butyrolacton 603.

Dimethylanilin-brenzcatechinphthalein 629.

guajacolphthalein 630. kresolphthalein 627.

phenolphthalein 626. phthalein 617.

phthaleinbishydroxymethylat 618.

Dimethyl-bicycloheptanoldis carbonsaure, Lacton 415.

brenzschleimsäure 298.

butantricarbonsaureanhydrid 456.

Dimethylbutyrolacton-carbonsaure 377, 381, 382.

carbonsaureathylester 381; s. auch 379.

carbonsäurebuttersäure

carboneaureessigsaure 486. carbonsăurepropionsăure 488.

dicarbonsaure 485.

essigsäure 384, 387, 388.

malonsäure 486. propionsaure 391.

Dimethylcaprolactondicarbonsaure 488.

Dimethylcarbathoxyphenylxanthoxoniumchlorid 353.

 xanthyliumchlorid 353. Dimethylcarbomethoxyphes nyl-xanthoxoniumsalze 353.

xanthyliumsalze 353. Dimethyl-carboxyphenylxants hydrol, Lacton 353.

chlorbenzalparaconsăure 435.

chromonearbonsäure 434. cöroxonol 76.

coroxonolathylather 76. coroxonolmethyläther 76.

crotonlactoncarbonsaure 397, 398.

crotonlactonessigsaure 399. cumalincarbonsaure 409.

cumarancarbonsaure 307.

cumaranonoxim 638. cumarilsaure 310.

cumaroncarbonsăure 310.

cuminal butyrolactonearbonsaure 435.

cuminalparaconsaure 435. evelobutantricarbonsaures

anhydrid 466. cyclohexenoldicarbons REGISTER. 673

Dimethyl-cyclohexenoldicars bonsäureanhydrid. Aces tylderivat 87.

- dihydrocumarilsäure 307.

- dimethoxyphenylfulgid173. — diphenylbûtyrolactoncar≠ bonsaure 443.
- furancarbonsäure 296, 297. 298
- furandicarbonsäure 335.
- furantetrahydridcarbonsäure 265.
- furantetrahydridsulfons säure 567.
 - furylfulgensäure 340.
- furylhydracrylsäure 346.
- glutolactonsäure 377.
- glycidsäure 264.
- heptyläthylenoxydcarbon= säureäthylester 268.
- heptylglycidsäureäthyls ester 268.
- hexoxylactonsäure 519.
- hexyläthylenoxydcarbon= säureäthylester 267—268.
- hexylglycidsäureäthylester 267<u>–</u>268.
- hydrofluoransäure 317.
- isopropylidenbutyrolacs toncarbonsaureathylester
- methoxymethylphenylcro: tonoylcumaran 65.
- methoxyphenylfulgid 110. – methylen- s. Isopropylis
- den-- nonyläthylenoxydcarbon: säureäthylester 268.
- nonylglycidsäureäthylester **268**.
- önantholactondicarbons saure 488.
- önantholactontricarbon= säure 509.
- paraconsaure 377, 381. pentantricarbonsaures
- anhydrid 460.
- pentoxylactonsăure 517.
- phenolphthalein 153. phenylglycidsäureäthyl-
- ester 307. phthalidcarbonsäure 424.
- phthalidylessigsäure 427. propylathylenoxydcarbon=
- säureäthylester 266. propylglycidsäureäthyl=
- ester 266. pyroncarbonsăure 409,
- 412. pyrondicarbonsăuredis äthylester 494.
- tetrahydrobrenzschleim: saure 265.

Dimethyl-tetrahydrofurans carbonsäure 265.

- tetrahydropyrondicarbon* saure, Ester 486.
- thenovlameisensäure 413.
- thienylglyoxylsäure 413. thiophencarbonsäure 296,
- thiophensulfonsäureamid 57Ō.
- thiopyrondicarbonsaures diäthylester 495.
- thiopyrondisulfonsäure **573**.
- tolylglycidsäureäthylester 307.
- tricarballylsäure, Anhydrid 455, 456.
- umbelliferon 37.
- Dimethylvalerolacton-carbonsäure 387, 388, 389.
- dicarbonsaure 486. propionsäureäthylester **39**2.
- Dimethylxanthylbenzoesäure
- Dinaphthopyryl-acetessigs säureäthylester 450.
- bernsteinsäure 343.
- cyanessigsäureäthylester 343.
- essigsäure 317.
- isobuttersäure 318.
- isovaleriansäure 318.
- malonsäure 343. propionsaure 318.
- Dinaphthylenoxydtetrasulfonsäure 572.
- Dinitro-chrysin 126.
- chrysindiacetat 126. diacetoxyflavon 126.
- dihydrobrasilinsäurelacton
- dimethoxyphthalsäures anhydrid 168.
- dimethylaminomethylcus marin 612.
- dimethylphenolphthalein 154.
- dioxyflavon 126.
- dioxymethoxyxanthon
- 174
- gentisin 174.
- guajacolphthalein 630. hemipinsäureanhydrid 168.
- hydrofluoransaure 317.
- kresolphthalein 154. methoxybrasanchinon 140.
- methoxycumarin 27.
- methoxydiathylphthalid 23.
- methylcyanbenzalphthas lid 446.

Dinitro-methylumbelliferon

- oxydiathylphthalid 23. oxymethylcumarin 31, 33.
- oxyphenylphthalid 50.
- phenolphthalein 152. phenolphthaleindimethyl-
- äther, lactoider 152. phenolphthaleinmethyl=
- äther, lactoider 152. phthalidylbenzoesäure 439.
- pseudotetramethylhäma: toxylon 367.
- tetramethoxyacetoxy. brasan 367.
- xanthylbenzoesäure 317. Dioxalbernsteinsäurelacton,
- Di- und Triäthylester 513. Dioxoathyl-phenylfurantetras hydridcarbonsäure 475.
- propionylpyrandihydrids carbonsaure 495.
- propylfurantetrahydrid= carbonsaure 460.
- Dioxoamino-furantetrahydrid 619.
- methyläthylidenpyrandis hydrid 621.
- pyrandihydrid 620.
- Dioxo-benzochromancarbons saure, Derivate 477, 478.
- benzolazoisochroman 648. carboxybenzoylphthalan
- cyanbenzochroman 478. dianilinofurandihydrid 620.
- dihydrofurylessigsäure 463.
- dimethylisochromancars bonsäure 475.
- Dioxodioxyphenyl-benzochroman 199.
 - chroman 190.
- Dioxofurantetrahydrid-carbonsaure 450.
 - dicarbonsaure 502.
- dicarbonsăureessigsăure, Ester 512. sulfonsäure 575.
- Dioxomethoxyphenylanisoyls
- pyrandihydrid 230. Dioxomethyl-acetylpyrandis hydridcarbonsaure 493.
- athylfurandihydridearbons saure 465.
- äthylfurantetrahydridcarbonsaure 455.
- carboxybenzylisochroman
- cumarindihydrid, Diazid des 652.

Dioxomethyl-dihydrofuryls propionsäure 464.

furantetrahydridcarbons
 säure 451.

 isochromanyltoluylsäure 479.

 phenylfurantetrahydrids carbonsäureäthylester 475.

phenylpyrantetrahydrids
 carbonsäurenitril 475.

pyrandihydridcarbons
 säureanilid 464.

Dioxomethyltetrahydrofurylisden-essigsäure 464.

— propionsaure 464. Dioxooxyoxoformylphenylathylisochroman 230.

Dioxooxyphenyl-benzochrosman 141, 142.

— chroman 130.

— furantetrahydrid 103. Dioxophenyl-furantetrahys dridcarbonsäureäthyls

ester 472.
— iminoanilinofurantetras hydrid 622.

— oxybenzalpyrandihydrid 140.

140. — oxybenzylpyrandihydrid 139.

tetra hydrofuryliden phenylessigsäure 480.

Dioxophthalan-carbonsäure 468.

dicarbonsäure 508.
 Dioxopyrandihydrid-carbonsäure 461, 463.

— dicarbonsäure 503.

tricarbonsäureester 513.
 Dioxotetrahydro-furylessigssäure 451.

furylidenessigsäure 463.
Dioxothienylbutter-säure 467.
säureäthylester 468.

Dioxy-äthoxytrioxotrimethyladibutylxanthendihydrid 253.

äthyldioxyphenylchromon
 228.

 äthylpyrantetrahydridtes tracarbonsäuretetraäthyls ester 370.

aminophenylxanthen, Anshydroverbindung 600.

anisalcumaranon 192.
anthracumarin 198.

anthronylidenessigsäure,
 Lacton 140.

benzalbenzocumaranon
 142.

benzalcumaranon 132, 134.
benzoflavon 141, 142.

Dioxy-benzoflavonol 199.

— benzotetronsäurecarbons

säureäthylester 554.

— benzoylencumarin 198. — benzylbutyrolacton 93.

Dioxybisbenzolazo-flavon 649.

- xanthon 649.

Dioxybutyrolacton 78.

Dioxybutyrolacton-carbons saure 538.

dioxypropionsäure 561.glykolsäure 550.

Dioxy-camphoceansaure, Lacton 9.

— caprolacton 79.

— capronsäure, Lacton 3.

Dioxycarbomethoxyphenylxanthoxoniumchlorid 362.

— xanthyliumchlorid 362.

Dioxy-carboxyphenyls xanthydrol, Lacton 362, 363.

- chlorbenzalcumaranon 133.

— chromon 96, 97, 102.

— cinnamalcumaranon 139. — crotonlacton 80.

— cumarin 97, 98, 100, 101. Dioxycumarin-carbonsaure

544. — carbonsäureäthylester 544.

Dioxy-cumaron 17.

— cyclopentylisobuttersäure,
Lacton 9.

— diäthylglutarsäure, Lacton

dichlorbenzalcumaranon
 133.

Dioxydihydro-campholens säure, Lacton 9.

— cumarin 91.

cumarinsulfonsäure 577.
cyclogeraniumsäure,

Lacton 10.
— isocumarin 91.

— pulegensäure, Lacton 9.

Dioxydimethoxy-dioxoflavan 246.

flavon 212.flavonol 246.

Dioxydimethyl-adipinsaure, Lacton 519.

äthylglutarsäure, Lacton
 520.

— aminobenzalcumaranon

— aminocinnamalcumaranon 629.

 carboxybenzoylbenzos pyryliumsalze 556. Dioxydimethyl-glutarsäure, Lacton 517, 518.

hydrofluoransäure 359.
oxyphthalidylbenzos

pyryliumsalze 556.

— tetrahydronaphthylpropionsäure und ihr Lacton 38.

— xanthoxoniumchlorid 55.

xanthylbenzoesäure 359.
xanthyliumchlorid 55.

Dioxydioxo-benzoflavan 199.

 dioxyphenylchroman 239, 242, 250.

- flavan 184, 186, 187, 188, 189, 190.

- furantetrahydrid 162.

— isopropylflavan 196.

— isopropylphenylchroman 196.

- oxyphenylchroman 214, 218, 219, 224.

— phenylchroman 184, 186.

— phthalan 167, 168, 169. — trimethyldibutyryl:

tetrahydroxanthen 252.

— trioxyphenylchroman 257.

Dioxydioxy.äthylbutyros

Dioxydioxy-athylbutyros lacton 203.

oxopropylbutyrolacton
 237.

- phenylchromon 210, 211, 219, 220, 221.

— propylbutyrolacton 206. Dioxydiphenyl-essigsäure,

Lacton 48.

— valerolacton 124.

Dioxy-flavon 124, 126, 127,

128, 129, 130.

— flavonol 184, 186, 187, 188,

189, 190.
— flavonolmethyläther 185.

— fluoresceinäthyläther, chinoider 557; s. auch Galleinäthyläther.

 furandicarbonsäures diäthylester 366.

furantetrahydriddicarbons
 säure 364.

— glutarsaure, Lacton 515, 516.

 hexahydroisophthalsäures anhydrid 164.

 hexylpyrantetrahydrids tetracarbonsäuretetras äthylester 370.

- hydrocumarin 91.

hydrofluoransäure 358.
hydrofluoransäureäthyls

ester 358.

— isobutylbutyrolacton 79.

Dioxyisopropyl-flavon 136.
— flavonol 196.

Dioxyisopropylphenyls chromon 136.

Dioxymethoxy-bisbenzolazos xanthon 650.

- caprolacton 159.
- cumarin 169.
- dioxoflavan 215.flavon 182, 185.
- flavonol 215.
- hydrofluoransäuremethylsester, Chlorid 362.
- tetraoxybutylisocumarin 260.
- trioxotrimethyldibutyl= xanthendihydrid 253.

- xanthon 173.

- Dioxymethyl-äthylglutars säure, Lacton 519, 520.
- benzalcumaranon 136.
 butyrolacton 79.
- butyrolactoncarbonsäure 538.
- 538.
 carboxybenzoylcumarin
 557.
- carboxybenzylcumarin547.
- carboxyphenylbenzoyls benzopyranol, Anhydros verbindung 560.
- chromon 103.cumarilsäure 355.
- cumarilsäureäthylester 355.
- cumarin 104.
- cumaroncarbonsaure 355.
- cyclohexylessigsäure, Lacston 9.
- cyclopentenocumarin 109.
 dioxyphenylchromon 225.
- dioxypropylbutyrolacton 206.
- diphenylessigsäure, Lacton
 53.
- flavon 135, 136.
- isocumarin 105.
- oxymethylbutyrolacton
- oxyphthalidylcumarin 557.
 phenylcarboxybenzoyls
- benzopyranol, Anhydros verbindung 560.
 — phenylphthalid 121.
- propylglutarsäure, Nitril des Lactons 520.
- pyrantetrahydridtetras carbonsäuretetraäthyls ester 370.
- triphenylessigsäure, Lacston 73.
- xanthon 118.
- xanthoxoniumsalze 51.
 xanthyliumsalze 51.
- Dioxynaphthoflavonol 199.

- Dioxynitro-benzalcumaranon 133.
- dimethylaminobenzals cumaranon 629.
- phenylbutyrolacton 92.
 Dioxyoxo-äthyldioxyphenylschromen 228.
- benzalcumaran 132.
- chroman 91.
- chromen 96, 97, 98, 100, 101, 102.
- chromencarbonsäure 544.
 cinnamalcumaran 139.
- dibenzopyrancarbonsäure
 546.
- dioxyphenylchroman 209.
 dioxyphenylchromen 210, 211, 224.
- diphenylcumaran 142.
- furandihydrid 80. — isochroman 91.
- Dioxyoxomethyl-benzals cumaran 136.
- carboxybenzylchromen 547.
- chromen 103, 104.
- cyclopentenochromen 109.
 dioxyphenylchromen 225.
- isochromen 105.
- xanthen 118. Dioxyoxo-nitrocinnamal
- cumaran 139. — oxybenzalcumaran 191.
- oxyphenyläthylchromen 196.
- oxyphenylchromen 180,
 181, 190.
 oxyphenylcumaran 174.
- phenylchromen 124, 126, 131; s. auch 129.
- phenylhydrazonochromans carbonsäureäthylester
- phenylisochromen 131.— phthalan 87.
- pyrancarbonsāure 540.
- salicylalcumaran 191. — xanthen 112, 113, 116, 117.
- Dioxyoxy-āthylbutyrolacton 158, 160.
- benzalcumaranon 191.
 Dioxyoxymethyl-butyros
 lacton 157.
- dioxyāthylbutyrolacton
 236.
- formylfurantetrahydrid 161.
- furylglykolsäure 363.
- tetrahydrobrenzschleims säure 359.
- tetrahydrofurancarbons säure 359.
- tetrahydrofurfurol 161.

- Dioxyoxy-methylvalerolacton 161.
- oxoäthylbutyrolaeton 207. Dioxyoxyphenyl-äthyls
- cumarin 196. — chromon 180, 181,
- chromon 180, 181, 186, 187, 188, 189, 190.cumaranon 174.
- Dioxypentaoxyamylbutyroslacton 260.
- Dioxyphenyl-benzoylens cumaron 155.
- benzylbutyrolacton 124.
- buttersäure, Lacton 20.
 butyrolacton 92.
- chromencarbonsäure 357.
- chromon 124, 126, 128, 129.
- cumarin 131.
- dimethylaminophenyls phthalid 629.
- hydrazinocumarincarbonsäureäthylester 555.
- hydrazinophenylfuran 641.
- isocumarin 131. — phthalid 118.
- propionsäure, Lacton 19.
- valerolacton 93. Dioxyphthalidylessig-säure
- 542. — säureäthylester 542.
- Dioxyphthalsäureanhydrid 167, 168, 169. Dioxypyrantetrahydrid-
- dicarbonsaure 505.

 tetracarbonsauretetras
- äthylester 370. Dioxypyroncarbon-säure 540.
- säureäthylester 541.
- säuremethylester 540. Dioxysalicylalcumaranon 191. Dioxytetrahydrofurans
 - dicarbon-säure 364.

 säurediäthylester 365.
- saurediamid 366.
- säuredianilid 366.
 säuredimethylester 365.
- Dioxytetra-hydropyrans dicarbonsaure 366.
- methylrosaminsulfonsäure 636.
- oxotrimethyldibutyls
 xanthentetrahydrid 252.
 - oxyamylbutyrolacton 255.
 oxybutylbutyrolacton 255.
- Dioxy-thionaphthencarbons saure 354.
- thiopyrantetrahydrids tetracarbonsäuretetras äthylester 370.
- triäthoxyflavon 247.

Dioxy-tricarboxyphenylxanthydrol 369.

— trimethoxyflavon 240.

— trimethylglutarsaure, Lac-

ton 520.

— trioxybutylbutyrolacton

236.
— trioxypropylbutyrolacton
235.

Dioxytriphenylessig-saure, Lacton 70, 72.

säuresulfonsäure, Lacton
 576.

Dioxy-valerolacton 79.

valerolactonessigsäure 539.
xanthon 112, 113, 116, 117.

— xanthonoxim 116.

xanthydrolcarbonsäure,
 Anhydroverbindung 361.

xanthylbenzoesäure 358.
 Diphenacetylweinsäures anhydrid 163.

Diphenylacetyl-āthylenoxydsessigsäure 442.

— āthylenoxydpropionsäure

443. — propylenoxydcarbonsäure

442. Diphenyl-aconsaure 445.

 äthoxyphenylfulgid 156.
 äthylenoxydcarbonsäure 314.

benzidinsulfon 591.

 bisdimethylaminophenylphthalan 594.

brenztraubensäure 314.
 brenztraubensäureäthyleester 314.

— carbinoldicarbonsāure,
 Lacton 439.

carbinoltricarbonsăure,
 Lacton 499.

— crotonlactoncarbonsaure . 445.

crotonlactonessigsäure 446.
 cumalinearbonsäureäthylsester 447.

 dimethoxyphenylfulgid 202.

— dimethylaminophenylphthalan 589.

Diphenylenoxyd-azophenol 643.

carbonsāure 313, 314.
diazosulfonsāure 643.

— disulfonsaure 572.

Diphenylfuran-carbonsaure 316.

— dicarbonsaure 342.

— tetrabromidcarbonsāure 315.

Diphenylfurfurylidens furfurenylhydrazidin 281.

Diphenyl-furylbutadiendicarbonsaure 343.

— furylfulgensäure 343. — glycidsäure 314.

hydrazinodimethoxys
 phthalid 642.

- hydrazinophthalid 641.

 ketoctolactonsäure 479.
 methoxyphenylfulgid 155, 156.

Diphenylmethylen-äthoxysbenzalbernsteinsäuresanhydrid 156.

anisalbernsteinsäures
 anhydrid 156.

 furfurylidenbernsteinsäure 343.

— methoxybenzalbernsteins säureanhydrid 155.

 veratralbernsteinsäures anhydrid 202.

Diphenyl-octolactonsäure 443.

— phthalidcarbonsäure 448,

— pyroncarbonsäure 447. — pyrondicarbonsäure∗

diäthylester 500.
— tetrahydropyrondicarbons

saure 500.

— thiopyrondisulfonsaure 575.

— valerolactonessigsäure 442. Diphthalidyläther 17. Diphthalyllactonsäure 478.

Diresorcinphthalein 233. Distyryltetrahydropyroncarbonsäure 448.

— carbonsäureāthylester 448. Disulfhydryldioxodithio-

dipyryldisulfidtetrascarbonsäuretetraäthylsester 562.

Disulfhydryloxothiopyrancarbonsäure 489.

— dicarbonsaure 509.

 dicarbonsaureathylesteramid 511.

dicarbonsäurediäthylester
510.
dicarbonsäurediamid 511.

Disulfonsäuren 571. Diterpo-dilacton 386.

— lactonsäure 386. Diterpoxylsäure 386. Diterpylsäure 386.

Dithenoylhydrazin 291. Dithion-dicyanthiophens

tetrahydriddicarbonsaurediäthylester 515. thiophentetrahydrids

thiophentetrahydrids tetracarbonsäuretetras äthylester 515. Diveratralbernsteinsäures anhydrid 254.

Dixanthyl-harnstoff 588.

— thioharnstoff 588.

E.

Eosin 8 537. Eosin spritlöslich 537.

Eosin-athylather, chinoider 537.

diāthylāther, chinoider
 537.

— methyläther, chinoider 537.

Epi-cyanhydrin 261. — hydrinamin 583.

— hydrincarbonsäure 261.

Epoxy- s. auch Oxido-. Epoxy-menthanolon, Oxime

der Alkyläther 10.
— octanolal 5.

Erythronsäure, Lacton 78. Essigsäure-cyanfurfuryliden

essigsäureanhydrid 338. — cyanfurylacrylsäureanhydrid 338.

 dehydroschleimsäures anyhdrid 330.

 furfurylidencyanessigsäureanhydrid 338.

Eudoxin 152. Euxanthon 113. Euxanthon-äthyläther 115.

— äthylätheracetat 115.

— diacetat 115.

— diäthyläther 115. — dibenzoat 115.

— dimethyläther 114.

— methyläther 114. — oxim 116.

— oxim 110.

F.

Fisetin 221.
Fisetindimethylather-athylather 222—223.

— äthylätheracetat 223.

Fisetin-sulfonsäure 579.
— tetrascetat 223.

tetraäthyläther 223.tetrabenzoat 223.

— tetramethyläther 222.

— trimethyläther 222. — trimethylätheracetat 22

— trimethylätheracetat 223. Flavonolacetat 58.

Fluorencarboylbenzoesäures pseudomethylester 75.

Fluorenoncarboylbenzoesäurepseudomethylester 155.

Fluorescein-äthyläther, chinoider 536. diathylather. chinoider 536. - dimethyläther, chinoider - methyläther, chinoider 536. Fluorescin 358. Fluorescin-äthylester 358. - diacetat 358. diathyläther 358. — diäthylätheräthylester 358. Formaminocumarin 609. Formylbrenzschleimsäure 408. Formylfurfuryl-acetat 15. - alkohol 14. – benzoat 15. Fraxetin 169. Fraxetindimethyläther 169. Fructoheptonsaure, Lacton 236 Fucohexonsäure, Lacton 206. Fuconsaure, Lacton 159. Fumarylglycidsaure 318. Fural- s. Furfuryliden-. Furan-carbonsaure 272. carbonsăuresulfonsăure 579, 581. dicarbonsaure 327, 328. dihydriddicarbonsäure 323. 324. tetrahydriddicarbonsaure 319. thiocarbonsaureamid 289. Furfur-acrylsäure 300. - acrylursäure 300. Furfurenvl-amidin 279. amidrazon 280. Furfurhydroxam-säure 279. saurebenzoat 279. Furfurimino-äthyläther 278. methyläther 278. Furfurisobutyraldol 16. Furfurolcarbonsaure 408. Furfuroylalanin 277. Furfuroylamino-bernsteins saure 278. bernsteinsäureamid 278. – essigsäure 277. - phenylessigsäure 277. propionsaure 277. Furfuroyl-asparagin 278. - asparaginsaure 278. chlorid 276. Furfuroylessigsaure-athylester 408 athylesteroxim 408. äthylestersemicarbazon 408 Furfuroyl-furfurenylamidrazon 281. glycin 277.

Furfurovl-hydrazin 279. hydroxylamin 279. isobrenzschleimsäure 276. oxypyron 276. phenylhydrazin 280. Furfuryl-amin 584. bernsteinsäure 336. buttersäure 299. carbamidsäureäthylester essigsäure 295. - hydrazidin 281. Furfuryliden-acetessigsäures äthylester 416. acetylglycin 300. acetylnaphthol 66. aminooxynaphthylfuryl* methan 597. benzoylessigsäureäthyl= ester 437. bernsteinsäure 340. bisacetessigester 553. bisacetondicarbonsauredis mothylester 566. brenztraubensäure 416. - buttersäure 302. chinacetophenonmethyls äther 110. crotonsäure 302 cyanacetamid 339. cyanacetylchlorid 339. cyanessigsäure 338. cyanessigsäureäthylester 338. essigsäure 300. - hippursäure 409. lāvulinsāure 416, 417. – malonitril 339. malonsäure 337. Furfurylidenmalonsäureäthylesternitril 338. amidnitril 339. chloridnitril 339. dinitril 339. nitril 338. Furfuryliden-paonol 109. phenylacetonitril 312. phenylessigsäure 312. propionsaure 302. Furfuryl-lävulinsäure 414. malonsaure 332. urethan 585. Furomethyl- s. Furfuryl-. Furoyl-chlorid 276. furfurhydrazin 281. – furylhydrazidin 281. Furyl (Bezeichnung) 701. Furyl-acrylsäure 300, 301. - äthylendicarbonsäure 337. atropasaure 312. - benzoldicarbonsaure 340. – benzylamin 587. — bernsteinsäure 332. — bernsteinsäureäthylester»

nitril 332.

Furvlbernsteinsäure-amid 332. bisbenzalhydrazid 332. diamid 332. dihydrazid 332. nitril 332. Furylbrenzweinsäure 336. Furvlbutadien-carbonsäure 302. dicarbonsäurediäthylester 340. Furyl-cyanid 278. cyclohexandioncarbons saureathylester 468. cvclohexanolontricarbons säureessigsäuretetrame* thylester 566. glutarsäure 336. – hydrazidin 281. Furyliden- s. a. Furfuryliden-. Furyl-isobernsteinsäure 332. isophthalsäure 340. itaconsaure 340. methacrylsäure 302. propantricarbonsaure 344. propionsaure 295. propylendicarbonsaure 340. G. Galakto-metasaccharin 160.

Galaheptonsäure, Lacton 236. metasaccharonsaure, Lacton 539. Galaktonsäure, Lacton 205. Galangin 184. Galangin-dimethylather 185. dimethylätheracetat 185. – methyläther 185. methylätherdiacetat 185. triacetat 185. Galacetonsaure, Lacton 255. Gallacetein 224. Gallein-äthyläther, chinoider methyläther, chinoider 558. tetraäthyläther, chinoider tetramethyläther, chinoider 558. Gallin 368. Gallin-tetrascetat 368. tetramethyläthermethyl= ester 368. Gelseminsäure 99. Genistein 190 Genistein-diäthyläther 191. diathylätheracetat 191. dimethyläther 190. dimethylätheracetat 191. triacetat 191. Gentianin 173.

Gentisein 173.

Gentisein-dimethyläther 174. dimethylätheracetat 174. — methyläther 173. methylätherdiacetat 174. methylätherdibenzoat 174. triacetat 174. Gentisin 173. Gentisin-diacetat 174. dibenzoat 174. Glycid-amin 583. saure 261. Glykoheptonsäure, Lacton Glykonsäure, Lacton 203. Glyko-octonsäure, Lacton 255. octonsaurephenylhydrazid pentaoxypimelinsäure, Lacton 561. Glykuron 207. Glykuronsäure, Lacton 207. Gossypetin 257. Guajacol-phthalein 232. phthaleindibenzoat 232. Gulonsäure, Lacton 204.

H.

Hämatein 227.

Hämateintetramethyläther Hāmatinsāure, Anhydrid der dreibasischen 464. Hemipinsäureanhydrid 167. Hept-s. auch Onanth-. Heptaoxy-diphenylcarbons saure, Lacton 256. pelargolacton 260. Hexa-acetoxyflavon 258; s. auch 257. äthoxyflavon 258. benzoyloxyflavon 258. Hexanitro-bisdimethylaminophenylphthalid 618. dimethylanilinphthalein 618. orcinaurin 201. Hexan-tetracarbonsaure, Monoanhydrid 502. tricarbonsäureanhydrid 456. Hexaoxy-caprylolacton 255. diphensaure, Monolacton -- diphenylcarbonsäure, Lacs ton 237. flavon 256, 257.

– oxodibenzopyran 256.

Hexyl-butyrolactoncarbons

rivate und Ureide 601.

 pelargolacton 255. Hexosimine, ihre N-Aryl-De-

saure 393.

isaconsaure 403.

Hexyl-isoparaconsaure 394. paraconsăure 393. pyrandicarbonsaure 337. Homo-camphansaure 403. gentisinsaure, Lacton 17. isopilopsäure 383. pilopic acid 383. pilopinsāure 383. pilopsäure 383. terpenovlameisensäure 459. terpenylsäure 391. umbelliferon 33. umbelliferonacetat 34. Hydratocantharsäureanhy: drid, Acetylderivat 87. Hydrazine 639. Hydrazino-cumarin 642. diphenylenoxyd 640. oxochromen 642. Hvdroalantolactoncarbons săure 417. Hydrochinon-phthalin 358. phthalinäthylester 358. phthalindiacetat 358. succinein 210. Hydrocumaril-säure 305. săureazid 305. Hydro-cumarilylhydrazin 305. dicumarinsaure 534. diphthalyllactonsäure 440. fluoransäure 316. mekonsäure 505. santonid 24. Hydroxylamine 637. Hydroxylamino-campholacs ton 638. cumaron 637. dihydrocumarin 639. dimethylcumaron 638. methylcumaron 637, 638. oxidomenthan 637. oxytrimethoxyindeno: chromendihydrid 638. trimethylcyclopentanol=

carbonsaure, Lacton 638. xanthen 638. Hydroxymercuri-cineol 655. dimethyläthylfurantetrahydrid, Jodid 654.

isopropylthiophen, Chlorid 656.

methylthiophen, Chlorid 656.

oxidomenthan 655. tetramethylpyrantetra: hydrid, Jodid 655.

thiophen, Chlorid 655. verbindungen 654.

Imidotetroncarbonsaureathyl= ester 451. Iminoathylphenylglutacons säureäthylester 436.

Imino-furandihydridcarbons säureäthylester 394. furfurylfurfuroylhydrazin Iminothionaphthen-dihydrid dihydridcarbonsaure 631. Irigenin 259. Irigenin-diacetat 259. dibenzoat 259. triacetat 259. Isoamyl-ätherkomensäures äthylester 524. oxypyroncarbonsaure: athylester 524. Isobrenzschleimsäure-äthyl= äther 11. benzyläther 11. - methyläther 11. Isobutaconsăure 399. Isobutylaconsäure 399. Isobutylanhydrodibenzilacetessig-saure 549. säureäthylester 549. Isobutyl-butyrolactoncarbon= säure 390. crotonlactoncarbonsaure 399. cyanvalerolacton 393. – isaconsāure 399. - isoparaconsăure 391. Isobutyloxydiphenyldibens zoylpyrandihydrid-cars bonsaure 549. carbonsäureäthylester 549. Isobutyl-paraconsaure 390. valerolactoncarbonsaure 392, 393 Iso-butyrothienonsulfonsäure **573.** cantharidin 87. carbopyrotritarsäure 465. citronensäurelacton 483. cumarincarbonsaure 430, 431. cumarinvlbenzoesăure 444. dehydracetsäure 409. Isodehydracetsäure-äthylester methylester 410. Isodehydrodiacetylpäonol 108. Isodesmotropo-santonin 40. santoninsäure 38. Isodimethyl-athylpentoxy. lactonsäure, Amid und

Nitril 521.

saure 479.

- hexoxylactonsäure 519.

pentoxylactonsäure 517.

Iso-dioxycapronsaure, Lacton

diphenylketoctolactons

euxanthinsäure 114.

euxanthon 113, 116.

Isoeuxanthon-diacetat 113. - diäthyläther 113. - methyläther 113. — methylätheracetat 113. Isoisopropylphenylparacon= saure 428. Isonitroso- s. Oximino-. Iso-phenylparaconsaure 422. photosantonsäurelacton 93. pilopsäure 376. Isopropyl-benzoflavonol, Aces tylderivat 73. butyrolactoncarbonsäure 382, 383. butyrolactonessigsäure391. crotonlactonessigsäure 399. – cumaranoncarbonsäure: äthylester 427. Isopropyliden-anisylidenbern= steinsäureanhydrid 110. furfurylidenbernsteinsäure — methoxybenzylidenbern= steinsäureanhydrid 110. veratrylidenbernstein= säureanhydrid 173. Isopropyl-isoparaconsäure 387. – isophthalsäure 425. – mekonin 93. — naphthoflavonol, Acetyls derivat 73. — paraconsäure 383. Isopropylphenyl-butyrolacs toncarbonsäure 428. isopropylidenbutyrolacs toncarbonsaure 435. isopropylidenparaconsäure 435. paraconsäure 428. Isopropyl-thenoylameisen: säure 413. thienylglyoxylsäure 413. thienylquecksilberchlorid valerolactoncarbonsäure 392. Isopyromucyl-acetat 11. – benzoat 11. — phosphat 11. pyromucat 276. Iso-rhamnetin 246. - rhamnetintetraacetat 248. – rhamnonsäure, Lacton 159. - saccharin 161. - saccharinsäure, Lacton 161. terebilensäure 397. terebinsäure 376. - triacetylchinid 163.

valerylxanthylamin 588.

– vulpinsäure 481.°

zuckersäure 364.

Isozuckersäure-diäthylester

diamid 366. dianilid 366.

dimethylester 365. Itaweinsäurelacton 516.

Jervasäure 490. Jod-dimethoxyphthalid 90. mekonin 90.

Jodmercuri- s. auch Hydroxy= mercuri-.

Jodmercuricineol 655. Jodmethoxyphenyl-anisyl= butyrolacton 124.

butyrolacton 22. methoxybenzylbutyrolac=

ton 124. Jod-oxybenzalvalerolacton 38. oxychromanoncarbonsäure

525. oxymethoxyphenylbuty: rolacton 92.

oxyoxochromancarbon= säure 525.

oxyphenylbutyrolacton 21. oxystyrylbutyrolacton 38.

phenylsulfoncumarin 26. Jodthiophen-carbonsäure 292. disulfonsaure 572.

Joniregentricarbonsäureanhy = drid 475.

K.

Kämpferid 215. Kämpferiddibenzoat 217. Kämpferol 214.

Kämpferol-methyläther 215,

methylätherdiäthyläther

methylätherdibenzoat 217. methyläthertriacetat 217.

methyläthertribenzoat 217.

tetraacetat 217. trimethyläther 216.

trimethylätheracetat 216.

Keto- s. Oxo-. Komansäure 405. Komensäure 461.

Komensäure-äthylester 462.

äthylestercarbonsäure: āthvlester 524. amid 462.

Kresolphthalein 153. Kresoxy-cumarin 25.

dimethyldihydrocumarin

dimethylhydrocumarin 22. methylenphthalid 29.

L.

Lactylaminocumarin 609. Lävodesmotropo-santonin 41. santoninsaure 38. Lanocerinsäure, Lacton 6. Leuko-thiophengrun 593. thiopyronin 592. Limettin 97. Lotoflavin 210.

Luteolin 211.

Luteolin-dimethyläther 212. methyläther 211.

methyläthertriacetat 213. methyläthertribenzoat 213.

tetraacetat 213.

tetraäthyläther 212.

tetrabenzoat 213. triäthyläther 212.

triäthylätheracetat 212.

tribenzoat 213. tribenzolsulfonat 213.

trimethyläther 212.

trimethylätheracetat 212. trimethylätheräthyläther 212.

Luteosäure 564. Lyxonsäure, Lacton 158.

M.

Magnesiumverbindungen 654. Maltol, Carbanilsäureester 13. Maltol-benzoat 13.

methyläther 13.

Manno-heptonsäure, Lacton 236. hepturonsäurelacton 237.

nononsäure, Lacton 260. Mannonsäure, Lacton 204,

Manno-octonsäure, Lacton

zuckersäure, Phenylhydrs azid des Monolactons 550. Mekonin 89.

Mekonin-dimethylketon 170.

essigsäure 542.

essigsäureäthylester 543. Mekoninmethyl-äthylketon

isopropylketon 172.

isopropylketoxim 172.phenylketon 194.

propylketon 172. Mekonsäure 503.

Mekonsäure-äthylester 506.

amid 506.

diäthylester 506. diamid 506.

Meletin 242.

Mentholdicarbonsāurenitril, Lacton 404.

Mercaptotetrahvdrothienvlis denthiobuttersaure 345. Mesiten-carbaminäthyläthers saure 411. carbaminmethyläthersäure - lactoncarbonsăure 409. Meta-hemipinsäureanhydrid 189 mekonin 89. — mekonincarbonsäure 542. - saccharin 159. saccharinsaure, Lacton 159. Methoxyacetoxy-benzoflavon 141, 142. chromon 97. cumarin 100. - flavon 125, 129, 130, 131. isopropylflavon 137. - phenylcumarin 131. xanthon 113. Methoxyathoxy-cumaronyls acrylsaure 356. flavanon 120. — flavon 127, 128. Methoxy-athylchromon 35. - aminocumarin 624. aminomethylcumarin 624, Methoxybenzal- s. a. Anisal-. Methoxybenzal-cumaranon60. diphenylmethylenbernsteinsaureanhydrid 155. flavanon 76. Methoxybenzo-cumarincars bonsaureathylester 532. - flavanon 68. flavon 70. - flavonol 141, 142. flavonolacetat 141, 142. Methoxybenzoyl- s. Anisoyl-. Methoxy-benzoyloxyphenyldimethylaminophenylphthalid 630. brasanchinon 139. - carbomethoxyphenylfluoron 536. carboxymethoxyphenyls metamekonin 209. carboxymethoxyphenyl. phthalid 118. caronsaureanhydrid 85. chlorbenzylflavanon 73. - chromon 25. chromoncarbonsāure 527. chromonessigsäure 530. — cumalindicarbonsăuredis methylester 552. cumarilsaure 348. - cumarin 26, 27. Methoxycumarin-carbonsaure 528. 529. carbonsauremethylester

528, 529.

Methoxycumarin-oxim 28. phenylhydrazon 28. Methoxy-diacetoxyflavon 183, 185. diacetoxy-flavonolacetat 217. diacetoxyxanthon 174. diathoxyflavanon 177. diathoxyflavon 184. – diäthylphthalid 23. diaminocumarin 624. diaminodiäthylphthalid dibenzoyloxyflavonolben= zoat 217. dibenzoyloxyxanthon 174. Methoxydimethylamino-oxy. phenylphthalidcarbonsaure 635. phenylphthalid 625. Methoxydimethyl-chromon 36. cumarilsaure 350. cumarilsaureathylester 350. Methoxydioxo-benzoflavan 141, 142. flavan 129, 130. - isopropylflavan 136. methyläthylchromen 108. Methoxy-diphenylcrotons lacton 62. flavanon 51, 52. flavon 59. flavonol 129, 130. flavonolacetat 129, 130, 131. flavonolmethyläther 129. fluorenonylphthalid 155. fluorenylphthalid 75. hydrocumarilsäure 346. Methoxyisopropyl-flavanon **57**, 58. flavon 65. flavonol 136. flavonolacetat 137. Methoxymethoxyphenylphthalid 118 Methoxymethyl-acetylchros mon 108. acetylchromonphenylhydrazon 108. acetylcumarin 108, 109. brasanchinon 140. chromon 30. crotonlacton 8. cumarilsaure 348. cumarilsäureäthylester cumarilsäuremethylester 348. cumarin 32, 34. cumarinearbonsaureathylester 531. <u>cumarincarbonsăurenitril</u> 532.

Methoxymethylenphthalid 29. Methoxymethyl-flavon 64. pyron 13. veratroylcumaran 179. Methoxy-naphthalsaureans hydrid 112. naphthoflavanon 68. naphthoflavon 70. naphthylphthalid 67. nitromethylphthalid 20. oximinobenzoflavanon 141, 142. oximinoflavanon 129, 130, Methoxyoxodiphenyl-cumaran cumaransulfonsaure 577. – furandihydrid 62. Methoxyoxo-methylfurans dihydrid 8. oximinobenzoflavan 141. oximinoflavan 129. phenylbenzocumaran 67. phenylchlorbenzylchroman thionaphthendihydrids carbonsaure 354. Methoxyoxy-dimethylaminos phenylphthalidcarbons saure 635. phenylphthalid 118. Methoxyphenyl-anisalparas consaure 547. anisylbutyrolacton 123. butyrolacton 21. cumarilsaure 352. fluoron 69. methoxybenzylbutyros lacton 123. oxynaphthylessigsäure, Lacton 67. phthalid 48, 49. pseudomekonin 176. Methoxy-phthalid 17, 18. phthalidcarbonsaure 525. phthalidearbonsauremethylester 525. phthalidylphenoxyessigs saure 118. phthalsäureanhydrid 95. pyron 11, 12. pyrondicarbonsauredimethylester 552. tetraacetoxyflavon 248. tetrapropionyloxyflavon 249. thiocumarin 29. tolylphthalid 54. triacetoxyflavon 213, 217. triacetoxyflavonolacetat

- Methoxy-tribenzoyloxyflavon 213, 217.
- trichlormethylphthalid 20.
- trioxotrimethylflavens tetrahydrid 197.
- tripropionyloxyflavonols propionat 249.
- veratralcumaranon 192.
- xanthon 45, 46, 47.

Methronsaure 333

Methronsäure-äthylester 334.

- diäthylester 334.
- dimethylester 334.
- methylester 334.
- Methylacetylbenzotetronsäure **Š4.**

Methylacetylbenzotetron= säure-äthyläther 109.

- carbonsäureäthylester 532.
- methyläther 109.
- propyläther 109. Methylacetyl-crotonlacton=
- carbonsaure 465.
 - tetronsäure 8.
- umbelliferonmethyläther 108.

Methyl-aconsaure 397. äsculetin 104.

Methyläthernoropiansäurepseudoäthylester 165.

pseudomethylester 164.

- Methylätherpulvinsäureathylester 535.
- amid 535.
- methylester 535.
- propylester 535.

Methylathoxymethylacetyl= butyrolacton 82.

Methylathyl-aconsaure 398.

- āthylenoxydcarbonsäure 265.
- butyrolactoncarbonsäure 387.
- crotonlactoncarbonsäure

Methyläthylen-oxydcarbons saure 262.

- oxyddicarbonsäure 319.
- sulfidcarbonsauremethyl= ester 263.

Methyläthyl-furancarbonsäure

- glycidsäure 265.
- paraconsaure 387.
- pentoxylactonsäure 519.
- phenylglycidsäureäthylester 307.
- tetrahydrofurfurylquecks silberjodid 654.
- Methylamino-cumarin 609. methylcumarin 610.
- trimethylbutyrolacton 602.

- Methyl-anilinophthalid 606. anisalcrotonlacton 43.
- benzocumaroncarbonsaure
- Methylbenzotetronsäureäthyläther 34.
- äthyläthercarbonsäures äthylester 531.
- Methylbenzotetronsäures carbonsäure-äthylamid
- äthvlester 473.
- anilid 474.
- methylphenylhydrazid 474.
- nitril 473, 474.
- phenetidid 474.
- phenylhydrazid 474.
- Methylbenzotetronsäuremethyläther 34.
- methyläthercarbonsäure: äthylester 531.
- propyläther 34.
- propyläthercarbonsäure= äthylester 531.
- Methyl-benzoyltetronsäure 8. benzylglycidsäureäthyl= ester 306.
- bergaptensäure 356.
- bergaptensäuremethyl= ester 356.
- brenzschleimsäure 294.
- Methylbrenzschleimsäuresulfamid 582.
- sulfonsäure 582.
- sulfonsäurediamid 582. tetrabromid 265.
- Methylbromäthylbutyros lactoncarbonsaure 387.
- Methylbutyrolacton-carbon= säure 371, 372, 373, 374. carbonsäureessigsäure 485.
- dicarbonsaure 484.
- essigsäure 375, 376.
- isobuttersäure 390.
- Methylcaprinolactoncarbon= saure 394.
- Methylcarboxybenzoyl-daphs netin 557.
- umbelliferon 547.
- Methylcarboxybenzyl-acetyls umbelliferon 534.
 - daphnetin 547.
- umbelliferon 534.
- Methylcarboxy-phenylfluorons athylesterdimethyls imoniumchlorid 449.
- tetramethylensulfonium= hydroxyd 264.
- Methyl-chitosid 161.
- chloracetylcumaranon 38.
- chlormethyldihydrofurans carbonsaure 270.

- Methyl-chromoncarbonsaure **432, 433**.
- cöroxonol 76.
- cöroxonoläthyläther 76.
- cörthionol 76.
- crotonlactonearbonsäure
- crotonlactonessigsäure 397. — cumalindicarbonsäuredis
- äthylester 492-493. cumaranonoxim 637, 638.
- cumaranonsemicarbazon 640.
- cumarilsäure 309, 310.
- cumarincarbonsaure 433.
- cumarinsulfonsäure 574.
- cumaroncarbonsaure 309.
- cyanbenzalphthalid 445.
- cyanbenzotetronsäure 473, 474.
- Methylcyanbenzotetronsäureäthyläther 532.
- methyläther 532.
- propyläther 532.
- Methyl-cyanbutyrolacton 372. cyclopropanoldicarbon:
- säure, Lacton 397.
- cyclopropencarbonsäure
- daphnetin 104.
- Methyldehydrohexon-carbon= säure 269.
- dicarbonsäure 325.
- dicarbonsäureäthylester
- dicarbonsäurediäthylester **32**5.
- Methyl-dehydropentoncarbon= säure 269.
- diathylthienylphosphos niumhydroxyd 653.
- dibenzyltricarbonsaure= anhydrid 479.
- dihvdrofurancarbonsaure 269.
- dihydropyrancarbonsäure
- dimethylcarboxyphenylglutaconsäure 411.
- diphenylaconsaure 446. diphenylcrotonlactoncars
- bonsäure 446. euxanthon 118.
- --- flavonolbenzoat 64.
- fluoronylbenzoesäure≠ athylesterdimethylimoniumchlorid 449.
- furancarbonsäure 293, 294. Methylfurancarbonsaure-acet= essigsäurediäthylester
 - äthylesteressigsäure 333.
- äthylesteressigsäureäthyls ester 333, 334.

Methylfurancarbonsäure-essigsaure 332, 333.

essigsäureäthylester 334. essigsäuremethylester 334.

methylesteressigsäures methylester 334.

- propionsaure 336.

— sulfonsäure 582.

Methyl-furandihydridearbons säure 269.

– furfurylamin 584.

furfurylidenessigsäure 302.

Methylfuryl-acrylsäure 302. cyclohexanolondicarbon=

säurediäthylester 553. — cyclohexenoncarbonsäure:

athylester 425.

 cyclohexenondicarbons saurediathylesteroxim

pentadiendicarbonsäure

Methyl-genisteindimethyläther 193.

genisteindimethyläther: acetat 194.

– glycidsäure 262.

— heptyläthylenoxydcarbon= säureäthylester 267.

— heptylglycidsäureäthyl= ester 267.

— hexylbutyrolactoncarbons säure 394.

hexylparaconsäure 394.

- hydrobergaptensäure 356. hydroxylaminobenzylthios

flavanon 639. hydroxylaminodihydros cumarin 639.

— iminoāthylglutaconsāures äthylester 411.

- iminoäthylglutaconsäuremethylester 410.

Methylisobutyl-butyrolactons carbonsaure 393.

cyanbutyrolacton 393.

— paraconsăure 393. Methyliso-glycidsäure 262.

hexylathylenoxydcarbon=

säureäthylester 267. hexylglycidsäureäthylester

Methylisopropyl-butyros lactoricarbonsaure 392

chromoncarbonsaure 435.

valerolactoncarbonsaure

Methyl-kämpferoltrimethylather 225.

luteolin 225.

luteolintrimethyläther 225.

— lut-olintrimethylätheracetat 225.

- mekonin 91.

Methyl-mercaptooxothionaph thendihydridcarbonsaure 354.

methoäthylolcyclopenta: nolcarbonsäure, Lacton 9.

methoxyphenylglycids säureäthylester 347.

methronsäure 336.

 methylpentamethylenglys cidsäureäthylester 271.

- naphthofurancarbonsäure 314.

 naphthylglycidsäureäthyls ester 313.

 nitrophenylcumalinearbons säureäthylester 437.

- nitrophenylpyroncarbon= säureäthylester 437.

- nitrosaminocumarin 610. nitrosaminomethylcumarin

nonyläthylenoxydcarbon= säureäthylester 268.

nonylglycidsäureäthylester **268**.

Methyloxy-athylaminotris methylbutyrolactonhydroxymethylat 603.

athylidencrotonlacton, Carbanilsäureester des 16.

äthylidencrotonlactoncar= bonsäure 465.

- benzalcumaranon 64, 65. methylbutyrolactonessig*

saure 519. phthalidyldaphnetin 557.

phthalidylumbelliferon 547.

propylbernsteinsäure, Lacton 382.

propylbutyrolacton 5.

Methyl-paraconsaure 372, 374. pentamethylenglycidsäure: äthylester 271.

pentantricarbonsaures anhydrid 456.

Methylphenyl-aconsäure 434. äthylenoxydcarbonsäure

- benzoyltetronsäure 35.

— butyrolactoncarbonsäure 426, 427.

- carboxyglutarsäureanhysdrid, Nitril 475.

crotonlactoncarbonsaure 434.

cumalincarbonsaureathyl= ester 436.

cyanglutarsäureanhydrid 475.

Methylphenylfuran-carbons saure 311, 312.

carbonsaureathylester 312.

Methylphenylfuran-carbons sauremethylamid 312.

dicarbonsaure 341.

Methylphenyl-glycidsäure 305. glycidsäureäthylester 305.

glycidsäureamid 306. – paraconsäure 426, 427.

- pyroncarbonsäureäthyl= ester 436.

thioureidotrimethylbuty: rolacton 603.

Methyl-phthalidylidenphenyl= essigsäurenitril 445.

propyläthylenoxydcarbon: saure 266.

propylglycidsäure 266.

pulvinsäure 480.

pulvinsäureäthylester 535.

pulvinsäurepropylester **53**5.

pyrandicarbonsäure 331.

pyrandihydridearbonsäure 269.

pyrondicarbonsäuredi= äthylester 492-493.

salicylalcumaranon 64, 65. Methyltetrahydrofuryliden-

bernsteinsäure 326. propionsaure 270.

Methyltetronsäure-äthyläther

methyläther 8.

Methyl-tetrose, Dioxyvaleros lacton aus -79.

thenovlameisensäure 409.

thienylglyoxylsäure 409. thienylquecksilberchlorid

656. - thio- s. auch Methylmercapto-.

thiocumarilsäureäthylester

310. thiophencarbonsäure 293,

294, 295. thiophensulfonsäure 570.

thiopyrondisulfonsaure **573**.

tolylglycidsäureäthylester **3**06.

trimethylendaphnetin 109. trimethylenumbelliferon

umbelliferon 31, 33.

Methylumbelliferon-acetat 32, 34.

benzoat 32.

- diazoniumhydroxyd 652. diazosulfonsaure 648.

essigsaure 532.

methyläther 32; Dibromid

Methylvalerolacton-carbon= saure 374, 377, 381.

essigsäure 388. Monoamine 583.

Monocarbonsäuren $C_nH_{2n-2}O_8$ 261. $C_nH_{2n-4}O_8$ 269. $-C_{n}H_{2n-6}O_{3}$ 272. $-C_nH_{2n-8}O_3$ 300. CnH2n-10Os 302.
CnH2n-11OOs 307.
CnH2n-12Os 307.
CnH2n-14Os 311.
CnH2n-16Os 312.
CnH2n-18Os 313. $-C_nH_{2n-22}O_3$ 316. $-C_nH_{2n-26}O_3$ 316. $-C_nH_{2n-80}O_8$ 317. Mono-chlordiparaconsäure 372. -- sulfinsäuren 566. — sulfonsäuren 567. Morin 239. Morin-dimethyläther 240. - pentamethyläther 241. - saure 239. — sulfonsäure 579. — tetraacetat 241. — tetraäthvläther 241. tetraäthylätheracetat 241. — tetramethyläther 240. - tetramethylätheracetat **241**. trimethyläther 240. Morphenolchinon 137. Mucobromsäurepseudo-āthyl= ester 7. — allylester 7. - methylester 7. propylester 7. Mucochlorsäurepseudo-äthyl= ester 7. – allylester 7. — methylanilid 604. - methylester 6. propylester 7. Mucolactonsäure 396. Myricetin 257. Myricetin-hexaacetat 258. – hexaäthyläther 258. hexabenzoat 258. — pentamethyläther 258. pentamethylätheracetat 258.

N.

Naphthalin-sulfaminomethyls butyrolacton 602.

— sulfaminovalerolacton 602.

— sulfonylmethylaminos methylbutyrolacton 602.

— sulfonylmethylaminos valerolacton 602.

— tricarbonsäureanhydrid 477.

Naphtharonylidenessigsäure,

Derivate 438.

Naphtho-chromoncarbonsäure
438.
— cumarincarbonsäure 438.
— flavonol, Acetylderivat 69.

— furancarbonsäure 313. Naphthol-furalamin 597.

— phthalein 157. Naphtho-pyronear

Naphtho-pyroncarbonsäure 438.

tetronsäurecarbonsäure,
 Derivate 477, 478, 532,
 533.

Naphthoylbenzoesäures pseudomethylester 67. Naphthylamino-dibenzoxansthen 589.

— dinaphthopyran 589.

— mekonin 627.

— oxidomenthanon, Oxim 605.

Nitro-acetonylmekonin 171.
— acetoxymethylcumarin 33.

— äthoxyphthalid 18. — äthylmekonin 92.

— anilinomekonin 628.

— apigenin 183.

Nitrobenzolazo-cumarin 646.

dimethylcumarin 646.
methylbenzocumarin 647.

— oxythionaphthen 644. Nitro-benzoldiazoaminocuma =

rin 652.
— benzoylbenzoesäurepseu-

domethylester 49.

— benzoyloxymethylcumarin
31.

— brenzschleimsäure 287. Nitrobrenzschleimsäure-

äthylester 288. — amid 288.

- anilid 288.

- chlorid 288.

- methylester 287.

— metnylester 28 — toluidid 288.

Nitro-canna binolactons äure 425.

- catechontrimethyläther 239.

— citropten 98.

— desmotroposantonin 40.

Nitrodimethoxy-acetonyls phthalid 171.
— acetoxyphthalid 166.

- äthoxyphthalid 166.

- äthylphthalid 92.

— cumarin 98.

— oxyphenylphthalid 175. — phthalid 88, 90.

— phthalidylessigsäure 543.

phthalsäureanhydrid 168.
 stilbendicarbonsäureanhys

drid 197. Nitrodimethyl-aminomethyl=

cumarin 612.

— phthalidearbonsäure 425.

Nitrodioxytriphenylessigssäure, Lacton 71.

Nitroformylbenzoesäurepseudoäthylester 18.

— pseudomethylester 18. Nitrofuransulfonsäure 567. Nitrofurfuryliden-malonitril 339.

malonsäureäthylesternitril
 339.

malonsäurediäthylester 339.

malonsäuredinitril 339.
malonsäurenitril 339.

— phenylacetonitril 313.

Nitro-hemipinsäureanhydrid 168.

— isocarbopyrotritarsäures äthylester 465.

komensäureäthylester 463.mekonin 90.

- mekonin 90.

— mekoninessigsäure 543. Nitromethoxy-cumarin 26.

— methylcumarin 33. — phenylmilchsäurelacton

19.

phenylphthalid 49.phthalid 18.

Nitromethyl-acetylerotonlacs toncarbonsäureäthylester 465.

— cumarilsäure 310. — umbelliferon 33.

- umbelliferonacetat 33.

umbelliferonmethyläther
 33.

Nitronaphthylaminomekonin 628.

Nitroopiansäure-anhydrid 167.
— pseudoäthylester 166.

pseudomethylester 166.
 Nitrooxo-methylbutyrolac

toncarbonsäure 454.
— valerolactoncarbonsäure

— valerolactoncarbonsaure 454. Nitroovy demotroposantoni

Nitrooxy-demotroposantonin 105.

methoxycumaroncarbons
 saure 355.

methoxyformylcumaron

102. — methylcumarin 31, 33.

oxodiphenylcumaran 71.phenylmekonin 175.

— phenylphthalid 50.

-- trimethoxydioxoflavandishydrid 239.

Nitrophenyl-butyrolactons carbonsäure 422.

- cumarinyltriazen 652.

- cyanisocumarin 444.

 — dihydropyrancarbonsāure 311.

-- furfurylidenacetonitril 313.

— furylacrylsäurenitril 313.

Nitrophenyl-glycidsaure 303, 304.

glycidsauremethylester 304.

 isocumarincarbonsăures nitril 444.

- paraconsăure 422. Nitropseudomekonin 88. Nitropseudotetramethyl-

hāmatoxylon 367. - hamatoxylonmethylester 367.

Nitropseudotrimethyl-brasis lon 362

 brasilonmethylester 362. Nitroso-dimethylaminophes nylphthalid 615.

oxyphenylphthalid 50. Nitro-tetramethoxyacetoxy

brasan 367. thenoylameisensäure 408.

- thienylglyoxylsaure 408.

 thiophencarbonsaure 292. - thiophensulfonsaure 569. trimethoxyacetoxybrasan

362.

- trimethoxyphthalid 166. - trioxyflavon 183.

Norhemipinsäureanhydrid 167.

Norisozucker-säure 364. - saurediathylester 364. Normekonin 89.

Normekonin-essigsäure 542.

- essigsäureäthylester 542. methyläther 89.

Normetahemipinsäurearhy: drid 169. Nosophen 151.

0.

Oct- s. auch Okt-. Octylthiophendicarbonsäure 337.

Onanth- s. auch Hept-. Onantholacton-carbonsaure 382.

essigsäure 391.

Okt- s. auch Oct-. Oktabromtetrahydropyrotris tarsaure 265.

Opiansaureanhydrid 165. Opiansäurepseudo-athylester 165.

amylester 165.

- chlorid 90.

— geranylester 165.

methylester 164.

 propylester 165. Opianylhydrazobenzol 642. Orcin-aurin 201.

- phthalin 359.

Oxalcitronensäurelacton. Ester 512.

Oxido- s. auch Epoxy-. Oxidoāthyl-buttersāure 265.

valeriansaure 266. Oxidoaminofuchsonimid-carbonsaure 634.

sulfonsaure 637.

Oxido-aminomenthanon, Oxim 605.

anilinomenthanonoxim 605.

behensäure 268.

benzylaminomenthanon. Oxim 605.

bernsteinsäure 318.

borneolearbonsaure 346.

brenzweinsäure 319.

buttersäure 261, 262. - butyronitril 261.

cyclohexylessigsäureäthylester 270.

Oxidodimethyl-buttersäures athylester 265.

caprinsaureathylester 268. capronsaureathylester 266. caprylsäureäthylester 267.

evelohexandicarbonsaure 326.

cvclohexvlessigsäureäthvls

ester 271. diphenylglutarsaure 342.

hexahydrophthalsäure 326.

- laurinsäureäthylester 268. pelargonsäureäthylester

267-268. valeriansäureäthylester 266.

Oxidodiphenyl-acetylbutters saure 442.

propionsaure 314. Oxido-hexahydrocuminsäure

272. hydroxylaminomenthan

637. hydroxymercurimenthan

655. isobuttersäure 262.

isovaleriansāure 264.

- menthanolon, Oxime der Alkyläther 10.

methoathylcvclohexans carbonsaure 272.

methoxyphenylisobuttersäureäthylester 347.

Oxidomethyl-buttersaure 264. caprinsaureathylester 267.

capronsaure 266.

cyclohexylessigsäureäthylester 271.

diphenylacetylbuttersäure 443.

laurinsäureäthylester 268.

valeriansaure 265.

Oxido-naphthylaminomens thanon. Oxim 605.

oxodiphenylcapronsaure 442.

oxomethyldiphenylcaprons saure 443.

Oxidophenyl-buttersäure 305. propionsaure 302.

tolylpropionsaure 315. Oxido-propionsaure 261.

propylamin 583. stearinsaure 268.

Oxidotrimethyl-cyclopentans essigsäure 272.

cyclopentylessigsaure 272.

- glutarsäure 321.

Oxidotrimethylglutarsäurediathylester 322.

dimethylester 321. naphthylamid 322.

Oximidotetroncarbonsaureäthylester 451.

Oximino-cumaran 637

dimethylcumaran 638.

furylpropionsaureathylester 408.

methylbutyrolactoncarbonsaure 452.

methylcumaran 637, 638. methylfurfurvlalkohol 15.

thienylessigsaure 407.

valerolactoncarbonsaure 452.

Oxoacetamino-methylphenyls cumaran 615.

phenylcumaran 615. Oxoathyl-iminopyrandihydriddicarbonsauredi. athylester 507.

onantholactoncarbonsaure 460.

propylbutyrolactoncarbonsaure 460.

Oxoamine 601.

Oxoamino-butyrolacton 619. carbonsauren 633.

methylfurandihydrid 604.

– sulfonsäuren 637. thionaphthendihydrid*

carbonsaure 632, 633. Oxoamyl-dihydrofurylessig* saure 403.

mekonin 172

Oxoanilino-athylidenbutyros lacton 621.

benzaminofurandihydrid 604.

furandihydrid 604.

 methylfurandihydrid 604. Oxo-anisalcumaran 62.

benzaminoanilinofurans dihvdrid 604.

benzochromencarbonsäure

- Oxobenzo-chromenmalonylsäureäthylester 479.
- cumarancarbonsäureäthylsester 352.
- cumaranylidenessigsäure,
 Derivate 438.
- cumarinylpropionsäures
 äthylester 479.
- Oxo-benzolazovalerolactons carbonsaure 489.
- biscarboxyphenylphthalan
 501.
- bisdioxyphenylphthalan
 231.
- bisoxymethylphenyls phthalan 153, 154.
- Oxobisoxynaphthyl-furans dihydrid 156.
- phthalan 157.
- Oxo-bisoxyphenylphthalan 143.
- butylendicarbonsäuredisäthylester 522.
- Oxobutyl-mekonin 171.
- phthalancarbonsäure 428. Oxobutyrolacton-carbonsäure
- dicarbonsäureessigsäure, Ester 512.
- essigsäureäthylester 451.
- Oxocarbonsäuren
- mit 4 O-Atomen 370.
 mit 5 O-Atomen 450.
- mit 6 O-Atomen 483.
- mit 7 O-Atomen 502.
- mit 8 O-Atomen 509.
- mit 9 O-Atomen 509.
 mit 9 O-Atomen 512.
- mit 10 O-Atomen 514.mit 11 O-Atomen 515.
- Oxocarboxy-benzylphthalancarbonsäure 499.
- phenylisochromancarbonssäure, Monoamid 499.
- phenylphthalancarbons
 säure 499.
- Oxochromen-carbonsäure 428, 429, 430.
- malonylsäureäthylester 476.
- propionsäure 434. Oxo-cumarancarbonsäure,
- Ester 347.
- cumarinylpropionsäures äthylester 476.
- diacetylaminochroman 607.
- diazoverbindungen 851. Oxodihydrofuryl-bromessigs
- säure 396. — essigsäure 396.
- Oxodimethoxyphenyldihydrofurylglyoxylsäureäthylester 556.

- Oxodimethyl-acetyldihydros cumarincarbonsäures äthylester 546.
- äthylfurancarbonsäure 413.
 butylbenzoyltetronsäure
- 86.
- chromencarbonsäure 434. — dihydrofurylessigsäure 399.
- furandihydridearbonsäure 397, 398.
- isopropylidenfurantetrashydridearbonsäureäthylsester 399.
- phthalancarbonsäure 424.
 pyrancarbonsäure 409,
- pyrandicarbonsäuredisäthylester 494.
- pyrandihydriddicarbons säurediäthylester 490.
- pyrantetrahydriddicarbons
 säure, Ester 486.
- tetrahydrofurylmalons säure 486.
- Oxodioxybenzal-benzocumas ran 142.
- cumaran 134.
- thionaphthendihydrid 134.
- Oxodioxy-methylphenyls phthalan 121.
- phenylchromen 128.phenylphthalan 118.
- Oxodiphenyl-dibenzoylpyrans tetrahydridcarbonsäures
- äthylester 501.
 dihydrofurylessigsäure 446.
 furandihydridearbonsäure
- 445.
 phthalancarbonsäure 448,
- 449.
- pyrancarbonsäure 447.
 pyrandicarbonsäuredisäthylester 500.
- pyrantetrahydriddicars
 bonsäure 500.
- Oxodistyrylpyrantetrahydrid = carbon-säure 448.
- säureäthylester 448.
- Oxodithionthiopyrantetrashydrid-carbonsaure 489.
- dicarbonsäure 509.dicarbonsäureäthylesters
- amid 511.
 dicarbonsäurediäthylester
- dicarbonsäurediamid 511.

 Oxofurandihydrid carbonsäure
- Oxofurfuryliden-buttersäures äthylester 416.
- valeriansaure 417.
- Oxofurfurylvaleriansäure 414. Oxofurylamylencarbonsäure 416.

- Oxofuryl-butylencarbonsaures āthylester 416.
- capronsaure 414.
 - pentadiencarbonsäure 418.
 propionsäureäthylester
- 408. — vinylessigsäure 416.
- Oxo-heptylendicarbonsäure 299.
- hydrazine 641.
- hvdrazinochiomen 642.
- hydroxylamine 638.
- Oxoimino-furantetrahydrids carbonsäureäthylester 451.
- methyldioxomethyldihys dropyrylhexylencarbons säureäthylester 508.
- Oxoiminophenylfurantetrashydridearbon-säure 472.
- säureäthylester 473. Oxoiminopyrandihydrid-dis
- carbonsäurediäthylester 506.
- tricarbonsäuretriäthylester
 513.
- Oxo-isoamylmekonin 172.
- isobutylfurandihydrids carbonsäure 399.
- isochromancarbonsäure 418, 419.
- isochromencarbonsäure 430, 431.
- Oxoisopropyl-cumarancarbons säureäthylester 427.
- dihydrofurylessigsäure 399.
- Oxomethoxy-benzalcumeran 61.
- phenylparaconsäures
 äthylester 545.
- Oxomethyl-äthylbutyros lactoncarbonsäure 455.
- äthylfurandihydridearbons
 säure 398.
- benzalfurandihydridcarbonsäureäthylester 437.
- butyrolactoncarbonsäure 451.
- caprolactoncarbonsaure 455.
- chromencarbonsäure 432, 433.
- dihydrofurylessigsäure 397.
- diphenylfurandihydrids carbonsäure 446.
- furancarbonsäure 408.
- furandihydridearbonsäure 397.
- isopropylchromencarbons säure 435.
- oxybenzalcumaran 64, 65.
- phenylbutyrolactoncarbonsäureäthylester 475.

Oxomethyl-phenylfurans dihydridearbonsäure 434.

phenylparaconsäureäthylsester 475.

 phenylpyrancarbonsäures äthylester 436.

— pyrandicarbonsäuredisäthylester 492—493.

- salicylalcumaran 64, 65. - thionaphthendihydrids

carbonsäure 350. Oxo-naphthofurandihydridcarbonsäureäthylester

352.
— nitrophenylparaconsäures
äthylester 472.

Oxooximino-furantetrahysdridcarbonsäureäthylsester 451.

 methylfurantetrahydrids carbonsäure 452.

thienylbuttersäure 467.
 Oxooxo-dimethyltetrahydrofurylbuttersäure 459.

 phenylcarboxyāthylphenylfurantetrahydridearbonsāure, Dinitril 509.

trimethyltetrahydrofurylsisobernsteinsäurediäthylsester 503.

Oxooxy-benzalcumaran 61.
— benzalthionaphthendihy-

drid 61.
— methylphenylphthalan 54.
Oxooxynaphthyl-furylpro-

pylen 66. – phthalan 68.

Oxooxyphenyl-benzochromen 70.

- carboxyāthylchromen 534.

— chromen 59.

cumarinylpropylencarbons
 säure 548.

paraconsāureāthylester
 545.

- phthalan 49.

Oxopenthiophentetrahydrids dicarbonsäurediäthyls ester 484.

Oxophenylbenzoylfuran-dihydridcarbonsäureäthylester 482.

tetrahydridcarbonsäure
 479.

Oxophenyl-benzyldihydrofurylessigsäure 446.

butyrolactoncarbonsäures
 åthylester 472.

— caprolactonearbonsaure 475.

 carboxyäthylphenylbutys rolactonearbonsäure, Disnitril 509.

carboxybenzalbutyros
 lacton 480.

Oxophenyl-cyanäthylphenylcyanbutyrolacton 509.

dihydrofurylidenphenylsessigsäure 447.

Oxophenyldioxyphenylphthalan 143.

propylencarbonsäure 357.
 Oxophenylhydrazino-äthylfurandihydrid 641.

- furandihydrid 641.

— methylfurandihydrid 641.

Oxophenylhydrazono-chrosmancarbonsäureäthylsester 469.

- chromancarbonsäurephes nylhydrazid 470.

furantetrahydridcarbons
 säureäthylester 451.

 methylfurantetrahydrid= carbonsäure 452.

 methylfurantetrahydrids carbonsäureäthylester 453.

 valerolactonearbonsäure 489.

Oxophenylimino-benzalcyans thiophentetrahydridcars bonsäureäthylester 509.

 benzalthiophentetrahys driddicarbonsäuredis åthylester 509.

 chromancarbonsäures äthylester 469.

 chromancarbonsăureanilid 469.

 — cyanthiophentetrahydrids carbonsäureäthylester
 502.

 methylchromancarbons säureäthylester 474.

— methylchromancarbon=

säureanilid 474. — pyrandihydriddicarbons säurediäthylester 507.

 salicylalcyanthiophens tetrahydridcarbonsäures äthylester 563.

 salicylalthiophentetrahys driddicarbonsäuredis äthylester 563.

 thiophentetrahydriddicars bonsäurediäthylester 502.
 Oxophenylmethoxyphenyl-

acetylbutyrolacton 198.
— benzalfurandihydrid 77.

benzoylbutyrolacton 202.butyrolacton 135.

furandihydrid 62, 63.
 Oxophenyl-nitrosaminomesthylfurandihydrid 604.

 oxophenylcarboxyäthyls furantetrahydridcarbonsäure, Dinitril 509.

 oxophenyltetrahydrofurylbuttersäure 479. Oxophenyl-oxymethylphenyl-phthalan 73.

oxyphenylphthalan 72.paraconsäureäthylester

— phthalancarbonsaure 439,

440.

— pyrancarbonsäureäthylsester 436.

pyrandicarbonsäuredisäthylester 498.

— trioxyphenylphthalan 200. Oxophthalan-carbonsäure 418.

dicarbonsaure 496.
tricarbonsaure 511.

Oxopropylfurandihydridcarbonsäure 398.

Oxopyran-carbonsäure 404, 405.

carbonsāurediessigsāure
 511.

— dicarbonsaure 490.

— tetracarbonsäuretetras äthylester 514.

Oxosalicylal-cumaran 61.
— thionaphthendihydrid 61.

Oxo-sulfonsäuren 573. — tetrahydrofurfurylmalons

säurediäthylester 485. — thienylessigsäure 407. Oxothio-naphthendihydrids

carbonsäure 347.

— pyrantetrahydriddicarbonsäurediäthylester 484.

Oxotrimethyl-glutarsäure 321.
— oxymethylisochroman 24.
Oxotrioxyphenylphthalan 176.

Oxotrioxyphenylphthalan 176. Oxovalerolacton-carbonsäure 451.

— tricarbonsäure, Ester 512. Oxoveratralcumaran 134.

Oxoxanthen-carbonsäure 437.
— dicarbonsäure 499.

Oxyacetamino-diphenylessigs säure, Lacton 615.

methylcumarin 625.
methyldiphenylessigsäure,

Lacton 615.
— thionaphthen 595.

Oxyacetiminothionaphthens dihydrid 595.

Oxyacetoxybenzhydrylnaphs thochinoncarbonsäure, Lacton 203.

Oxyacetoxytriphenylessigsäure, Lacton 71.

— säuresulfonsäure, Lacton 577.

Oxyacetyl-benzocumarin 134.
— cumaron 35.

Oxyadipinsäure, Lacton 371. Oxyathoxy-cumarin 99, 101.

— diphenylessigsäure, Lacton

— flavon 125, 128, 129.

Oxyathoxy-methyldiphenylessigsaure, Lacton 53. trioxodihydrindylcarbon= saure, Lacton 232. Oxyathoxytriphenylessigsäure, Lacton 71. säuresulfonsäure, Lacton 577. Oxyathoxyxanthon 115. Oxyathyl-bernsteinsaures lactonāthylester 374. butyrolacton 3. — chromon 35, 36. - cumarin 36. phenylbutyrolacton 23. Oxvamine 595. Oxyamino-äthylidenbutyros lacton 621. carbonsäuren 632. - chromencarbonsäure 429. - crotonlacton 623. Oxyaminodimethylpyrans carbonsäure-äthylester - methylester 410. Oxvamino-methylcumarin 624. methylphenylpyrancarbon= säureäthylester 436. phenylphthalid 626. - phenylxanthydrol, Anhys droverbindung 600. pyron 623. — sulfonsäuren 636. thionaphthen 595. thionaphthencarbonsäure 632, 633. — trimethylcyclopentyls essigsāure, Lacton 605. Oxy-anilinomekonin 627. - anthracumarin 140. - benzalcumaranon 61. benzaminocrotonlacton Oxybenzo-cumarincarbons säure, Derivate 477, 478, 532, 533. - cumarintetrahydrid 44. cumaroncarbonsäureäthyls ester 352. - flavon 70; Acetylderivat 69. flavonol 141, 142. Oxy-benzolazothionaphthen - benzoxanthon 66, 67. Oxybenzoyl-benzoesäures pseudomethylester 118. - cumaron 60.

Oxybenzoylen-cumarin 140.

essigsäure, Lacton 71.

Oxybenzoyloxytriphenyls

- cumaron 65.

Oxybenzyl-butyrolacton 22. Oxycrotonlacton 6. chromon 63. Oxycrotonlacton-carbonsaure fluoron 72. 450. furylketon 43. dicarbonsăureessigsaure, furylketoxim 43. Ester 512. - furylketoximacetat 43. essigsäureäthylester 451. phthalid 53. Oxy-cumalinearbonsaure 463. Oxybisacetaminophenyl= - cumarilsäure, Ester 347. xanthen 598 - cumarin 26, 27, 29. Oxybisdiäthylamino-phenyl= cumarincarbonsăure xanthen 598. 529; Derivate s. auch 469, xanthen 596. 527. Oxybisdimethylamino-benz= Oxycumarincarbonsäurehydrylthiophen 597. āthvlester 528, 529; s. dioxysulfophenylxanthen, auch Benzotetronsäures Anhydroverbindung 636. carbonsäureäthylester. methylxanthen 597. methylester 529. oxydimethylaminophenyl: Oxy-cumarinylessigsäure 530. xanthen 600. cumaroncarbonsäure, phenylxanthen 598. Ester 347. sulfophenylxanthen, cyanbenzocumarin 478. Anhydroverbindung 636. dehydracetsäure 466. thioxanthen 596. – diacetoxyflavon 183. xanthen 596. — diacetylaminomethyl² Oxybishydroxylamino: cumarin 625. chroman 639. Oxydiäthoxy-flavon 181, 182. Oxybisoxymethyl-butyros isoflavon 191. lacton 161. phenylphthalid 200. Oxydiathyl-butyrolactons Oxy-brasanchinon 139. carbonsaure 520. brenzschleimsäure 345. phthalid 23. brommethyldibrompropyls Oxy-diaminoxanthylbenzoes säure, Lacton 634. butyrolacton 5. diaterpenylsäure, Lacton butyrolacton 1. Oxybutyrolacton-carbonsäure 519. 515, 516. — dibenzofluoron 77. dicarbonsăure 551. dihydrocumarin 19. Oxy-camphansäure 523. Oxydihydroisocumarincarboncamphersäure, Lacton 400, säure 525. 401. – säuremethylester 526. camphoceanlacton 9. Oxydimethoxy-äthoxyflavon camphoronsäure 486. camphotricarbonsaure, benzoflavon 199. Lacton 490. Oxydimethoxycumarins caprolacton 3. carbon-saure 554. carbathoxyphenylfluoron säureäthylester 554. Oxydimethoxy-flavon 181, carbomethoxyphenyls 182, 185, 186, 187, 188, fluoron 536. 189, 190. Oxycarbonsäuren – hydrofluoransäuremethyl= mit 4 O-Atomen 344. ester, Salze 363. mit 5 O-Atomen 354. isoflavon 190. mit 6 O-Atomen 359. isopropylflavon 196. -.. mit 7 O-Atomen 363. - methylcumarin 170. mit 9 O-Atomen 368. methylflavon 193. mit 10 O-Atomen 369. methylflavonolmethyl: mit 11 O-Atomen 370. Oxy-carboxyphenylmethylen: ather 225. methylisoflavon 193. benzoylchromen 538. phenanthrencarbonsäure, chelidonsäure 503. Lacton 137. chlormethoxyphthalsäure= phthalid 164. anhydrid 167. stilbencarbonsäure, Lacton chromon 24, 25. 134 chromonearbonsaure 530; - xanthon 174. Derivate s. auch 527.

Oxydimethyl-acetylcumarins carbonsäureäthylester 546.

 äthylbutyrolactoncarbons säure 520.

äthyleyanbutyrolaeton
 521.

 aminomethylxanthyls benzoesäureäthylester 633.

- benzylbutyrolacton 24.

— butyrolacton 3.

Oxydimethylbutyrolactons carbon-saure 517, 518.

- säureäthylester 518.

— säuremethylester 518. Oxydimethyl-chromon 36.

cumarilsäureäthylester 350.

- cumarin 37.

— cumaroncarbonsäure 350.

dioxymethylphenylfluoron
 201.

- fluoron 54.

— furylpropionaldehyd 16.

furylpropionsäure 346.
 Oxydimethylhydrofluoransäure-äthylester, Salze

353. - methylester, Salze 353.

Oxydimethyl-isocumarilsäure 350.

isopropylbutyrolacton 5.paraconsäure 517.

— phenolphthalein 200.

— phenylbutyrolacton 23.

— phenylphthalid 56.
— phenylyslerolacton 24.

phenylvalerolacton 24.
valerolacton 4.

— valerolactoncarbonsaure

519, 520. - xanthon 55.

Oxydioxo-āthylbenzochromen

134.
— äthylfurandihydrid 84.

- äthylidenfurantetrahydrid 84.

- benzoflavan 141, 142.

brasandihydrid 139.chroman 101, 102.

— dimethyläthylchromenscarbonsäureäthylester 548

 dimethylbenzochromans dihydrid 111.

— dimethylfurantetrahydrid 81, 82.

- dioxyphenylchroman 219, 220, 221.

flavan 128, 129, 130.furantetrahydrid 80.

Oxydioxoisopropyl-flavan 136.

— phenylchroman 136.

Oxydioxomethyl-athyl-chromen 107, 108, 109.

äthylidenpyrandihydrid
 86.

- äthylpyran 86.

- brasandihydrid 140.

- phthalan 102.

phthalancarbonsaure 545.
 Oxydioxo-oxyphenylchroman 186, 187, 188, 189.

- phenylchroman 128, 129.

— phthalan 94, 95.

tetrahydrofurylglyoxylssäure, Bisphenylhydrazon
 552.

valerolactoncarbonsäure,
 Bisphenylhydrazon 552.
 Oxydioxy-äthylbutyrolacton

159, 160.

benzalcumaranon 192.

phenylbenzochromon 199.
phenylchromon 184, 190.

propylbutyrolecton 161.
 propylvalerolecton 162.

Oxydiphenyl-benzalbutyroslacton 77.

benzoylfurantetrahydrid
 73.

benzoyltetrahydrofuran
 73.

benzylcrotonlacton 77.

- butyrolacton 56.

butyrolactonessigsäure
 533.

crotonlacton 62.
 dibenzoylpyrandihydrids
 carbonsäure 549.

dimethylaminophenyls
 phthalan 598.

- valerolacton 57.

Oxy-flavon 58, 59.
— flavonol 128, 129, 130.

— fluorenylphthalid 75.

— fluoron 45.

— fluoroncarbonsāure 533.

— formyldioxoisochromanyls acetophenon 230.

— formylfuran 12, 13. — furancarbonsäure 345.

Oxyfurantetrahydrid-carbonsaure 344.

- dicarbonsaure 360.

Oxy-furfurol 12.
— furfuroyloxyphenanthren

276.
— glutarsāure, Lacton 370.

- hexylbutyrolactoncarbons saure 521.

hexylparaconsāure 521.
homocamphersāure,

Lacton 403. — hydrazine 641.

- hydrochinonphthaleins äthyläther 557.

— hydrocumarin 19.

Oxyhydrofluoransäure-äthylsester. Salze 353.

— methylester, Salze 352. Oxyhydroxylamire 638. Oxyimino-butyrolaeton 80.

— furandihydridearbonsäureäthylester 451.

Oxyiminophenylfurandihysdridcarbon-säure 472.
— säureäthylester 473.

Oxy-isoamyloxyflavon 125.

isobutylbutyrolacton 5.
 isocamphoronsäurelacton 486.

isoheptolacton 3.

Oxyisopropyl-benzoflavon, Acetylderivat 73.

butyrolacton 3, 4.flavon 65.

— flavon 65. — flavonol 136.

— malonsäure, Lacton 374. — phenylbenzochromon,

Acetylderivat 73.

— phenylchromon 65.

Oxy-isoterebinsaure 517.

--- jonolacton 10. --- komensäure 540.

komensäure 540.
komensäureäthylester 541.

- komensäuremethylester 540.

- lapachon 111.

mandelsäure, Lacton 17.

— menthenylmalonsāure, Derivate des Lactons 415. Oxymesitendicarbonsāure-

athylesterimid 411.
— methylesterimid 410.

Oxymethoxyāthoxy-āthylflavonolāthylāther 228.

- flavonoläthyläther 216.

phthalid 165.
 Oxymethoxy-benzoflavon

141, 142.

— benzoylmetamekonin 251.

Oxymethoxycarbomethoxysphenyl-xanthoxoniumschlorid 362.

- xanthyliumchlorid 362. Oxymethoxy-chromanon-

essigsaure 543. chromon 96.

- cumarin 99.

— diathoxyathylflavon 228.

diathoxyflavon 216.dioxotrimethylflavens

dihydrid 197. — flavon 125, 129, 130.

- furfurylidenseetophenon 109, 110.

isopropylflavon 136.
methylflavon 135, 136.

- methylflavon 135, 136. - methylmethoxynhenylcumaranon 179.

- oxyathylbutyrolacton 159.

REGISTER. 689

- Oxymethoxyphenyl-cumarin
- dimethylaminophenylphthalid 630.
- metamekonin 208.
- phthalid 118.
- Oxymethoxy-phthalid 89. stilbencarbonsaure, Lacton
- 61. 62.
- thionaphthencarbonsäure 354.
- tribenzoyloxyflavon 249.
- trioxodihydrindylcarbon= säure, Lacton 232.
- triphenylessigsäure, Lacton 71.
- triphenylessigsäuresulfon= säure, Lacton 577.
- xanthon 112, 113, 114. Oxymethylacetyl-chromon
- 107. cumarin 108, 109. Oxymethyläthyl-butyros lactoncarbonsaure 519,
- cyanbutyrolacton 519.
- evanvalerolacton 521.
- valerolactoncarbonsäure 520.
- Oxymethyl-brasanchinon 140.
- brenzschleimsäure 345.
- butyrolacton 2.
- Oxymethylbutyrolactoncarbonsäureäthylester
- dicarbonsaure 551.
- essigsäure 517.
- Oxymethyl-caprolacton= carbonsaure 519.
- carboxybenzoylcumarin 547.
- carboxybenzylcumarin 534.
- carboxyphenylbenzoyls benzopyranol, Anhydro-verbindung 548.
- chloracetylcumaron 38.
- chromon 30.
- chromonearbonsäure 531.
- crotonlacton 7.
- crotonlactoncarbonsăure 451.
- cumarilsäure 348, **34**9.
- cumarilsäureäthylester **348**.
- cumarin 31, 33, 34. - cumarincarbonsäure, Deris
- vate 473, 531. cumarindiazonium=
- hydroxyd 652.
- cumarindiazosulfonsaure
- cumarinylessigsäure 532. cumaroncarbonsaure 348, 349.

BEILSTEINS Handbuch. 4. Aufl. XVIII.

- Oxymethyl-cumaroncarbons saureathylester 349; s. auch Oxymethylcumarilsäureäthylester.
- cyclopentenocumarin 44. dioxyphenylchromon 193.
- dioxypropylbutyrolacton 162
- Oxymethylen-benzovlflavencarbonsaure 538.
- carboxybenzoylflaven 538. Oxymethyl-flavon 63, 64.
- fluoron 51.
- formylfuran 14.
- furancarbonsäure 345. furfuraldoxim 15.
- furfurol 14.
- furfurolnitrophenylhydr= azon 16.
- furfurolphenylhydrazon
- mercaptothionaphthens carbonsäure 354.
- oxyphenylchromon 135, 136.
- oxyphthalidylcumarin 547. oxypropylbutyrolacton 80.
- Oxymethylphenyl-butyros lactoncarbonsäure 526.
- carboxybenzoylbenzo: pyranol, Anhydroverbin=
- dung 548. chromon 63,
- mekonin 179.
- phthalid 54. Oxymethyl-phthalsäureanhy=
- drid 102. propylbutyrolactoncarbon=
- säurenitril 520. propyleyanbutyrolacton **520**.
- pyron 13.
- thionaphthencarbonsaure
- valerolactoncarbonsăure 517.
- xanthon 50, 51.
- Oxynaphthal-aldehydsäure, Diacetylderivat der cyclo-Form 109.
- säureanhydrid 111.
- Oxynaphtho-flavonol 141,142.
- furancarbonsaureathylester 352.
- Oxynaphthyl-furylvinylketon
- phthalid 67, 68.
- Oxynitro-benzolazothionaphs then 644.
- benzylphthalid 54.
- methoxyphenylpropion= săure, Lacton 19.
- Oxyoxido-bisdimethylamino fuchsonsulfonsaure 636.
- caprylaldehyd 5.

- Oxyoxido-caprylsäure 345. dioxophenanthrendihy: drid 137.
- fuchsondicarbonsaure 559.
- isoamylnaphthochinon
- phenanthrenchinon 137. Oxyoximinofurandihydrid= carbonsäureäthylester
- Oxyoxo-äthylchromen 35, 36.
- äthylcumaron 35.
- amine 622.
- aminocarbonsāuren 635. - aminofurandihydrid 623.
- benzaminofurandihydrid
- benzochromencarbonsäure, Derivate 477, 478, 532, 533.
- benzocöroxan 78.
- benzoxanthen 66.
- benzylchromen 63.
- benzylphthalan 53.
- bisoxymethylphenyl= phthalan 200.
- butyrolacton 80.
- butyrolactonoxalylsäure, Bisphenylhydrazon 552.
- Oxyoxocarbonsauren mit 5 O-Atomen 515.
- mit 6 O-Atomen 538.
- mit 7 O-Atomen 550.
- mit 8 O-Atomen 561.
- mit 9 O-Atomen 564. Oxyoxo-chroman 19.
- chromen 24, 25, 26, 27, 29.
- chromencarbonsäure 528. 529, 530; Derivate s. auch 469, 527.
- chromenessigsäure 530.
- cöroxan 74.
- cörthian 75.
- cumaran 17.
- diäthylphthalan 23.
- diazoverbindungen 652.
- dibenzopyrantetrahydrid 44.
- dihydrofurylessigsäure; äthylester 451.
- dimethopropylfuran 16.
- dimethoxymethylphenyl= pyrandihydridcarbon= säure 555.
- Oxyoxodimethyl-butyrolacton 81.
- chromen 36, 37. cöroxan 76.
- cyanpyrandihydrid 522. furan 14.
- phenylphthalan 56. pyrandihydridcarbon:
- säurenitril 522. xanthen 55.

Oxyoxodioxybenzalcumaran	Oxyoxophenyl-chroman 52.	Oxyoxoverbindungen
192.	- chromen 58, 60.	$ C_nH_{2n-22}O_5$ 197.
Oxyoxodioxyphenyl-chroman	— cumaran 48.	$-C_nH_{2n-24}O_3$ 66.
178.	dihydrofurylidenphenyl-	$-C_nH_{2n-24}O_4$ 139.
chromen 184.	essigsaure 480.	$-C_nH_{2n-24}O_5$ 198.
cumaran 175.	phthalan 48.	$-C_nH_{2n-24}O_6$ 229.
Oxyoxodiphenyl-benzalfuran=	Oxyoxo-phthalan 17, 18.	$-C_nH_{2n-24}O_7$ 253.
tetrahydrid 77.	— propylchromen 38.	$-C_nH_{2n-26}O_8$ 68.
— cumaran 70, 72.	— pyrancarbonsäure 461,	$-C_nH_{2n-26}O_4$ 141.
— cumaransulfonsäure 576.	463.	$-C_{n}H_{2n-26}O_{5}$ 199.
— furandihydrid 62.	— pyrandicarbonsäure 503.	$-C_nH_{2n-26}O_6$ 231.
Oxyoxo-fluorenylphthalan 75.	— pyrantricarbonsäure,	$-C_{n}H_{2n-26}O_{7}$ 254.
— furandihydrid 6.	Di- u. Triäthylester 513.	$-C_{n}H_{2n-26}O_{8}$ 260.
Oxyoxofurandihydrid-carbons	- sulfonsäuren 576.	$-C_nH_{2n-28}O_8$ 74.
săure 450.	- tetramethylisochroman 24.	$-C_nH_{2n-28}O_4$ 154.
— dicarbonsäureessigsäure,	- thionaphthendihydrid	$-C_nH_{2n-28}O_5$ 201.
Ester 512.	carbonsäure 354.	$-C_{n}H_{2n-28}O_{6} 232.$
— sulfonsäure 575.	— tolylphthalan 54.	$- C_{n}H_{2n-30}O_{8} 77.$
Oxyoxo-hydrazine 642.	- trimethylisochroman 23.	$-C_{n}H_{2n-30}O_{4}$ 154.
— iminofurantetrahydrid 80.	— trioxyphenylchromen 213.	$-C_{n}H_{2n-30}O_{5}$ 202.
— indenocumaron 65.	Oxyoxoverbindungen	$-C_{n}H_{2n-30}O_{6}$ 234.
— isochromancarbonsäure	$C_nH_{2n-2}O_8$ 1.	$- C_{n}H_{2n-32}O_{4} 155.$
525.	$-C_{n}H_{2n-2}O_{4} 78.$	$- C_{n}H_{2n-32}O_{5} 202.$
Oxyoxoisopropylphenyl-	$-C_nH_{2n-2}O_5 157.$	
benzochromen, Acetyl-		- C _n H _{2n} -34 O ₈ 78.
derivat 73.	$-C_{n}H_{2n-2}O_{6}$ 203.	- C _n H _{2n-34} O ₅ 203.
- chromen 65.	$-C_nH_{2n-2}O_7$ 235.	$-C_{n}H_{2n-36}O_{4}$ 156.
	$-C_{n}H_{2n-2}O_{8}$ 255.	$-C_nH_{2n-38}O_4$ 157.
Oxyoxomethyläthyliden:	$-C_{n}H_{2n-2}O_{9}$ 260.	Oxyoxoxenthen 45, 46, 47.
furan-dihydrid, Carbanil	$-C_{n}H_{2n-4}O_{8}6.$	Oxyoxy-äthylbutyrolacton 79.
säureester 16.	$-C_{n}H_{2n-4}O_{4}$ 80.	— benzalcumaranon 134.
— dihydridcarbonsäure 465. Oxyoxomethyl-carboxyben:	$-C_{n}H_{2n-4}U_{5}$ 162.	Oxyoxymethyl-butyrolacton-
	$-C_nH_{2n-4}O_6$ 207.	essigsäure 539.
zylchromen 534. — chromen 30, 31, 33, 34.	$-C_{n}H_{2n-4}O_{7}$ 237.	 dioxypropylbutyrolacton
	$-C_{n}H_{2n-6}O_{3}$ 10.	206.
- chromencarbonsaure 531.	$-C_{n}H_{2n-6}O_{4}$ 83.	Oxyoxyphenyl-benzochromon
— chromenessigsäure 532. — cöroxan 76.	$-C_{n}H_{2n-6}O_{5}$ 164.	141, 142.
- corthian 76.	$-C_nH_{2n-8}O_4$ 86.	chromon 126, 127, 128,
	$-C_{n}H_{2n-10}O_{3}$ 17.	130.
- cyclopentenochromen 44.	$-C_nH_{2n-10}O_4$ 87.	— phthalid 118.
— dioxymethylphenylcumas	$-C_{n}H_{2n-10}O_{5}$ 164.	— valerolacton 80.
ran 180.	$-C_{n}H_{2n-12}O_{3}$ 24.	Oxyoxypropylvalerolacton 80.
— dioxyphenylchromen 193.	$-C_{n}H_{2n-12}O_{4}$ 94.	Oxyparaconsäure 516.
diphenylcumaran 73.	$-C_{n}H_{2n-12}O_{5}$ 167.	Oxypentamethoxy-diphens
— furan 12.	$-C_{n}H_{2n-12}O_{9}$ 260.	säuremethylester,
— furandihydrid 7.	- C _n H _{2n-14} O ₈ 43.	Lacton 565.
— furandihydridcarbonsäure	$-C_{n}H_{2n-14}O_{4}$ 106.	- flavon 258.
451.	$-C_{n}H_{2n-14}O_{5}$ 172.	
- oxyphenylchromen 135, 136.	$-C_{n}H_{2n-16}O_{3}$ 44.	Oxyphenyl-athylphenylbuty:
	$-C_nH_{2n-16}O_4$ 109.	rolactoncarbonsaure 533.
— phenylchromen 63, 64.	$-C_{n}H_{2n-16}O_{5}$ 173.	- äthylphenylparaconsäure
— phenylcumaran 53.	$-C_nH_{2n-16}O_6$ 208.	533.
— pyran 13.	C _n H _{2n-18} O ₈ 44.	— benzalcrotoniacton, Aces
— xanthen 50, 51. Oxyoxo-naphthylphthalan 67.	$-C_nH_{2n-18}O_4$ 111.	tylderivat 66.
	$-C_{n}H_{2n-18}O_{5}$ 173.	- benzochromon 70; Acetyl
Orverse with a second	$-C_{n}H_{2n-18}O_{6}$ 208.	derivat 69.
Oxyoxooxyphenyl-chromen	$-C_nH_{2n-18}O_7$ 237.	- benzopyranolcarbonsäure
· 126, 127, 128.	$-C_{n}H_{2n-18}O_{8}$ 256.	357.
— phthalan 118.	$-C_nH_{2n-20}O_8$ 58.	— benzylbutyrolacton 56, 57.
Oxyoxophenyl-benzalfurans	$-C_{n}H_{2n-20}O_{4}$ 124.	bernsteinsäureanhydrid
dihydrid, Acetylderivat	$-C_{n}H_{2n-20}O_{5}$ 180.	103.
66.	$-C_{n}H_{2n-20}O_{6}$ 210.	— butyrolacton 20.
- benzochromen, Acetyl	$-C_{n}H_{2n-20}O_{7}$ 239.	- butyrolactoncarbonsäures
derivat 69.	$-C_{n}H_{2n-20}O_{8}$ 256.	äthylester 526.
— benzoylpyran 140.	$- C_{n}H_{2n-22}O_{8} 65.$	carbathoxybenzopyr-
— benzoylpyrandihydrid 139.	$-C_nH_{2n-22}O_4$ 137.	oxoniumsalze 357.

Oxyphenyl-carbathoxybenzos pyryliumsalze 357.

carboxybenzalcrotonlacton

- carboxybenzopyroxonium= salze 357.

 carboxybenzopyrylium= salze 357.

- chromon 58, 59.

- cumarin 60.

cumarinylpropionsäure 534.

 dihydrocumarin 52. dimethylaminophenyls

phthalid 626.

– fluoron 68.

 hydrazonofurandihydrids carbonsäureäthylester

hydrocumarin 52.

 isopropylphenylbutyro; lacton 58.

-- mekonin 175.

methoxyphenylbutyros lacton 122.

- methylencarboxybenzoyls chromen 538.

paraconsäureäthylester 526.

phthalid 48, 49.

valerolacton 22.

Oxy-phthalid 18.

 phthalidyläthylmalons saure 555.

phthalsäureanhydrid 94,

pimelinsäure, Lacton 375.

-- propylchromon 38.

 propylvalerolacton 5. Oxypyron-carbonsäure 461, 463.

– dicarbonsäure 503.

— tricarbonsäure, Ester 513.

Oxy-santonin 106. styrogallol 230.

Oxysulfo-naphthalindicarbon= saureanhydrid 578.

naphthalsäureanhydrid 578.

Oxy-terebinsäure 517.

- terpenylsäure 519.

 terpenylsäuremethylester 519.

Oxytetra-acetoxyflavon 241,

- athoxyflavon 241, 247.

 hydrobrenzschleimsäure 344.

 hydrofurancarbonsäure **344**.

hydrofurandicarbonsaure

methoxyflavon 240, 247, 250.

Oxy-tetramethoxyflavonols methyläther 258.

tetramethylbutyrolacton 5. — thionaphthencarbonsäure 347.

- tolylphthalid 54.

triacetoxyflavonolacetat 241, 248.

Oxytriäthoxy-dioxoflavan 247.

flavon 212

flavonol 247.

 flavonoläthyläther 241, 247.

Oxy-tribenzolsulfonyloxy= flavon 213.

tribenzoyloxyflavon 213. trichlormethylphthalid 20.

Oxytrimethoxy-diacetoxy= isoflavon 259.

dibenzoyloxyisoflavon 259.

dioxoflavan 240.

– dioxoflavandihydrid 238. - flavon 212, 216, 218, 219, 220, 221, 222.

flavonol 240.

 flavonolmethyläther 240. 247.

hydroxylaminoindeno= chromendihydrid 638. methylflavon 225.

Oxytrimethyl-butyrolacton 4.

butyrolactoncarbonsäure **520.**

carboxycyclopentylmethy: lenmalonsäure, Diäthylesterlacton 495.

valerolacton 5.

Oxy-trioxyphenylchromon 213.

valerolacton 2.

valerolactoncarbonsaure: äthylester 516.

valerolactontricarbonsäure 564.

xanthon 45, 46, 47.

P.

Panicolsaureanhydrid 93. Paracon-săure 371.

- sāureessigsāure 484.

Para-datiscetin 244. morin 240.

- saccharin 160.

saccharinsaure, Lacton 160.

saccharon 539.

saccharonsaure, Lacton 539.

Pelargolactonessigsaure 394. Pentaacetoxy-coroxen 233.

- flavon 248, 250.

Penta-acetoxyflavonolacetat 258; s. auch 257.

äthoxyflavonoläthyläther 258.

benzoyloxyflavon 249.

benzoyloxyflavonol* benzoat 258.

Pentabrom-acetoxyphthalid

– oxyphthalid 19.

pyrotritarsāure 298.

resorcinbenzein 69.

 resorcinphenylacetein 72. tetrahydrobrenzschleim=

saure 263.

Penta-chloroxyoxomethylisochroman 22.

methoxyflavon 241, 247. — mechoxyoxodibenzopyran=

carbonsäuremethylester 565.

methylenglycidsäureäthyl= ester 270.

Pentantricarbonsaureanhyd= rid 455.

Pentaoxybisbenzolazo-flavan 644.

flaven 650.

— flavon 651.

Pentaoxy-caprylolacton 236.

carboxyphenylfluoren. Lacton 233.

cöroxen 233.

--- dioxoflavan 256, 257.

-- flaven 209.

- flavon 239, 242, 250.

- flavonol 25d, 257. – flavonsulfonsäure 579.

fluorenylbenzoesäure, Lacs ton 233.

önantholacton 235.

oxocoroxan. Anhydroverbindung 254.

oxodibenzopyran 237.

oxodibenzopyrancarbon. saure 564.

pimelinsäure, Lacton 561.

xanthendicarbonsaure, Anhydroverbindung 369.

Pentosimine und ihre N-Aryl-Derivate 600.

Perchlormekylen 461. Phenacetylxanthylamin 588. Phenacylmekonin 194.

Phenanthrenhydrochinons pyromucat 276.

Phenetidinomekonin 627. Phenol-naphthalein 156.

phthalein 143. Phenolphthalein-äthyläther,

lactoider 147. bisphenylcarbamat 148.

diacetat 147.

discetatoximacetat 148.

diathyläther, lactoider 147.

44*

Phenolphthalein-dibenzoat 148.

dibenzoatoximbenzoat
 148.

- dibenzolsulfonat 148.

— dibenzyläther 147. — dicinnamat 148.

— diisovalerianat 147.

- dimethyläther, lactoider

- disalicylat 148.

— methyläther, lactoider 146.

Phenoxy-chlormaleinsäureanhydrid 84.
— methylbutyrolactoncar-

bonsäure 516.
— methylenphthalid 29.

oxophenylbenzocumaran
67.

- phenyloxynaphthylessigsaure, Lacton 67.

 valerolactoncarbonsaure 516.

Phenuvinsaure 312.

Phenyl-acetoxyphenylphthas lid 72.

acetylbutyrolactoncarbons
 saure 475.

acetylparaconsäure 475.
äthylenoxydcarbonsäure

- atnylenoxydearbonse 302.

— aminophenylxanthen 589. Phenylbenzoyl-caprolactons

carbonsäure 479.
— crotonlactoncarbonsäure-

äthylester 482.

oxyäthylidencrotoniacton

- paraconsăure 479.

Phenyl-benzylerotonlactonsesigsäure 446.

bromisoparaconsāure 423.
 butantricarbonsāureans
 hydrid 475, 476.

Phenylbutyrolacton-carbons

saure 420, 423.
— dicarbonsaure 497.

— dicarbonsaure 497. — essigsaure 425.

Phenyl-carboxybenzalcrotonslacton 447.

 chloroxophenyldihydrofurylidenacetonitril 447.

- cumalinearbonsaureathylsester 436.

cumalindicarbonsăuredisăthylester 498.

cumaranylharnstoff 586.
cumarindisulfonsaure 575.

cumarinsulfonsäure 574.
cyanbutyrolacton 424.

— cyanisocumarin 444.

- daphnetin 131.

 dehydrohexoncarbonsäure 310. Phenyl-dibromdioxyphenyl-phthalid 143.

dibromoxyphenylphthalid
72.
dicarbathoxyglutaconisos

imid 507.
— dihydropyrancarbonsäure

310.

dihydroumbelliferon 52.
 dimethylaminophenylxansthen 589.

 dioxophenyltetrahydrofurylidenessigsäure 480.

 dioxotetrahydrofuryls propionsäure 475.

- dioxyphenylphthalid 143.

Phenyldiphenylmethylenbutyrolactoncarbonsäure 449.

— paraconsăure 449.

Phenylen-essigsäureglykolsäure, Lacton 418.

 naphthylenoxydtetrasulfonsäure 572.

Phenylfluorenyliden-butyrolactoncarbonsäure 450.

paraconsäure 450.

Phenylfurancarbonsäureäthylesteressigsäure 341.

- äthylesteressigsäureäthylester 341.

— essigsäure 341.

Phenylfurfuroyl-carbinol 43. — hydrazin 280.

Phenylfurfuryliden-acetonitril

- crotonsaure 314.

— essigsäure 312. Phenylfuryl-acrylsäure 312.

– acrylsäurenitril 312.

— butadiencarbonsaure 314. — glycinnitril 631,

— glykolsaure 351.

— methylamin 587. — propylamin 587.

— propylharnstoff 587.

Phenyl-glycidsäure 302.

— glycidsäureäthylester 303.

— hydrazidotetroncarbons

säureäthylester 451. Phenylhydrazino-cumarincar

Phenylhydrazino-cumarincarbonsäureäthylester 469.

cumarincarbonsāurephernylhydrazid 470.

— dioxyphenylfuran 641.

- furylresorcin 641.

methylbutyrolaeton 641.
 oxoāthylfurandihydrid

oxoāthylfurandihydrid
 641.

- oxofurandihydrid 641.

oxomethylfurandihydrid
 641.

- valerolacton 641.

Phenylhydrazono-methylbutyrolactoncarbonsaure 452.

methylbutyrolactonears
 bonsäureäthylester 453.

 valerolactonearbonsăure 452.

— valerolactoncarbonsāureäthylester 453. Phenyl-iscoumarincarbonsāus

Phenyl-isocumarincarbonsāus renitril 444.

— mekonin 117.
Phenylmethoxyphenyl-

benzalcrotoniacton 77.

— crotoniacton 62. 63.

— fulgid 141. — glycidsāure 352.

Phenylnitrophenyl-cumalincarbonsäureäthylester 447.

pyroncarbonsäureäthylsester 447.

Phenylnitrosamino-acetothienon 605.

- acetylthiophen 605.

methylcrotonlacton 604.
oxomethylfurandihydrid 604.

Phenyloxodimethyldihydros furylidenpropylencarbons säure 437.

Phenyloxophenyl-carboxys

athylbutyrolactonear

bonsaure, Dinitril 509.

— cyanāthylcyanbutyros lacton 509.
 — dihydrofurylidenessigsāure

447.
— tetrahydrofurylbutter

tetrahydrofuryibuttersäure 443.

Phenyloxy-methylphenyls phthalid 73. — oxophenyldihydrofurys

lidenessigsäure 480. Phenyloxyphenyl-äthylbutys rolactonearbonsäure 533.

āthylidenbutyrolactoncars
 bonsāure 534.

— āthylidenparaconsāure
 534.

äthylparaconsäure 533.
phthalid 72.

Phenylparaconsaure 420. Phenylphenyl-dicarboxypropylidenvalerolacton 500.

— furylpropylthioharnstoff 587.

vinylbutyrolactoncarbons
 säurenitril 446.

vinyleyanbutyrolacton
 446.

Phenyl-phthalidearbonsaure 439, 440.

- propylenoxydearbonsaure

 pyroncarbonsäureäthylester 436. - pyrondicarbonsauredis athylester 498 - sulfoncumarin 25. - tetronsaurecarhonsaures athylester 473. - thenoylharnstoff 290, 293. thioureidofurfurylidens phenylessigsäurenitril 632. thioureidotrimethylbuty. rolacton 603. Phenyltolyl-athylenoxydearbonsaure 315. brenztraubensäure 315. - brenztraubensäureäthylester 315. glycidsaure 315. Phenyl-tribromoxydioxoisoindolin 95. trioxyphenylphthalid 200. - umbelliferon 60. Phenylumbelliferon-acetat 60. benzoat 60. Phenylureido-cyanfurancarbonsaureathylester 489. methylbutyrolacton 602. - valerolacton 602. Phenylvalerolacton-carbonsaure 425, 426, 427. sulfonsaure 574. Phenylxanthylthioharnstoff 588. Phenythronsaure 341. Phenythronsaure-athylester 341. diathylester 341. Phosphine 653. Phosphinigasuren 653. Phosphinsäuren 653. Phosphorsaure-diisopyromus cylester 11. triisopyromucylester 11. Photo-santonin 417. santonlactonsaure 417. Phthalaldehydsäurephthalidylester 17. pseudoathylester 17. - pseudomethylanilid 606. — pseudomethylester 17. Phthalid-carbonsaure 418. dicarbonsăure 496. - oxalester 471. - oxalsaure 471. - oxalylsaure 471. sulfonsaure 573. tricarbonsaure 511. Phthalidyl-acetat 17. benzoesāure 439. bromessignaure 419. – chlorbromessigsäure 420.

Phenyl-pyrandihydridearbons

- pyromucursaure 277.

- pyromycursaure 277.

saure 310.

Phthalidyl-dichloressigsaure 419. essignaure 419. glyoxylsaure 471. glyoxylsäureäthylester 471. hydrazobenzol 641. Phthalidyliden- s. anch Phthalyl-. Phthalidyliden-disalicylsaure 564. essigsāure 431. phenylessigsäurenitril 444. propionsaure 434. toluylaaure 444. Phthalidyl-propionsaure 424. pyrogallol 176. resorcin 118. toluylsaure 440. Phthalonsauredimethylester 525. Phthalyl- s. auch Phthalidylis den-. Phthalyl-acetessigester 476. acetessigsäureäthylester biscyanessigsaureathylester 515. bromessigsaure 432. chlorenigsaure 432. cyanessigsäureäthylester 498. diessigsaure 497. dimalonsauretetraathylester 514. essigsāure 431. malonsaurediathylester propionsaure 434. Pilopic acid 376. Pilopinsaure 376. Pilopeaure 376. Pinolisonitroso-athylat 10. methylat 10. Pinolnitrol-amin 605. anilin 605. benzylamin 605. naphthylamin 305. Podophyllsaure 555. Propaconsaure 398. Propionyl-apfelsaureanhydrid aminocumarin 609. - xanthylamin 588. Propyl-aconsaure 398. athorpulvinsauremethylester 535. butyrolactoncarbonsaure 382. butyrolactonessigsaure 391. crotoniactoncarbonsaure 398. Propylenoxydcarbonsaure

261. 262.

Propylen-oxyddicarbonsaure sulfidearbonsauremethylester 263. Propylmekonin 93. Propyloxymethyl-acetylcumarin 109. cumarin 34. cumarinearbonsaureathylester 531. *cumarincarbonsăurenitril* Propyl-paraconsaure 382. phenylglycidsäureäthylsester 307. pulvinsaure 481. pulvinsauremethylester 535. thenoylameisensäure 413. thienylglyoxylsaure 413. thiophencarbonsaure 299. Pseudo-mekonin 88. tetramethylhamatoxylon 366. tetramethylhamatoxylonmethylester 367. trimethylbrasilon 361. trimethylbrasilonmethylester 361. Pulegon-cyanessigsaure. Lacton 416. malonsaureathylester, Lacton 418. malonsauremethylester. Lacton 415. Pulvin-aminsaure 481. anilinsäure 482. dimethylaminaaure 481. hydroxamsaure 482 methylaminsaure 481. naphthylaminsaure 482. Pulvinon, Acetylderivat 66. Pulvin-phenylhydrasinsaure 482 saure 480. Pulvinsaure-athylester 481. amid 481. anilid 482 - dimethylamid 481. dimethylester 535. methylamid 481. methylester 480. naphthylamid 482. nitril 482. phenylhydrazid 482. propylester 481. Pyran-dicarbonsaure 331. dihydridearbonsaureessigsaure 325. Pyrogallolsuccinein 256. Pyromekonsäure-äthyläther methyläther 12. Pyro-mucamid 276. mucursaure 277.

Resorcin-phenylacetein 72.

Pyromucyl- s. auch Furfuroyl-Pyromucylchlorid 276. Pyromycursäure 277. Pyron-carbonsäure 404, 405. carbonsăurediessigsăure dicarbonsaure 490. Pyronin B und seine Carbinols base 596. Pyronin G und seine Carbinols base 596; Leukobase 591. Pyrontetracarbonsäuretetras äthylester 514. Pyrotritarsaure 297. Pyrotritarsäure-äthylester 298. methylester 298.

Quecksilber-äthylhexenoxydjodid 654. cineolhydroxyd 655. dicineolyl 654. dimethylheptenoxydjodid 655 verbindungen 654. Quercetagetin 256. Quercetin 242. Quercetin-dimethyläther 246. dimethyläthertriacetat 248. dimethyläthertribenzoat 249. methvläther 245, 246. methyläthertetraacetat 248. methyläthertetrapropionat 249. pentaacetat 248. pentabenzoat 249. – pentamethyläther 247. - saure 244. - tetraacetat 248. - tetraäthyläther 247. tetraäthylätheracetat 248. - tetramethyläther 247. - tetramethylätheracetat 248. - triäthyläther 247. Quercimerinsaure 244.

R.

Resomorin 221. Resomorin-tetraacetat 221. trimethyläther 221. trimethylätheracetat 221. Resorcin-anthrachinon 156. - benzein 68. dipyromucat 275.

salicylat 45 Anm. Rhamnazin 246. Rhamnazin-triacetat 248. tribenzoat 249. Rhamnetin 245. Rhamnetin-tetraacetat 248. tetrapropionat 249. tribenzoat 249. Rhamno-citrin 216, 245. citrintriacetat 217. heptonsäure, Lacton 236. hexonsäure, Lacton 206. lutin 214. Rhamnonsäure, Lacton 158. Rhamnooctonsäure, Lacton Rhodan-acetothienon 14, acetylthiophen 14. Rhodeonsäure, Lacton 159. Ribonsäure, Lacton 157. Ribotrioxyglutarsäure, Lacton 538. Robigenin 214.

S.

Saccharin 160.

Saccharinsaure, Lacton 160. Saccharon 538. Saccharonsäure, Lacton 538. Salicoylresorcin 45. Salicylalcumaranon 61. Salicylaldehydthenoylhydr: azon 291. Santonin-amin 608. chlorhydrin 94. oxim, Aminoderivat aus - 608. Santorsäure, Monoanhydrid Schleimsäure, Monolacton **551.** Scopoletin 99. Scutellarein 210, 224. Semicarbazino-äthyläthylens oxvd 639. cumaron 640. methylcumaron 640. Sophoretin 242. Styrogallol 198. Styryl-butyrolactoncarbons saure 435. paraconsaure 435; Dis bromid 428.

ester 490.

nitril 490.

saure 582.

malonsaureathylester-

Sulfamidmethylbrenzschleim:

Sulfhydryltetrahydrothies nylidenthiobuttersaure 345. Sulfinsäuren 566. Sulfo-brenzschleimsäure 579, brenzschleimsäurediamid camphersäureanhydrid methylbrenzschleimsäure methylbrenzschleimsäures diamid 582. naphthalindicarbonsaure: anhydrid 576. naphthalsäureanhydrid 576. Sulfonsäuren 567. Sulfonsäurencarbonsäuren Sulfooxy-naphthalindicarbon = saureanhydrid 578. naphthalsäureanhydrid 578. Sulfotetronsauren 575.

T.

Tektochrysin 125.

Terebilensäure 397.

Terebinsaure 377. Terpenylsäure 384, 386. Tetraacetoxy-flavon 213, 214, 217, 219, 220, 221, 223. flavonolacetat 248, 250. hydrofluoransäure 368. xanthendicarbonsaure 369. xanthon 208. Tetraacetyl-gallin 368. norisozuckersäurediäthylester 365. Tetraäthoxy-acetoxyflavon 241, 248. flavon 212, 223. Tetraäthyl-azophthalid 645. rosamin und seine Carbis nolbase 598. Tetra-aminodimethylxanthon benzolsulfonyloxyflavon Tetrabenzoyloxy-flavon 213,

214, 223. flavonolbenzoat 249. Tetrabromäthoxy-carbaths Succinyl-cyanessigsaureathyloxyphenylfluoron 537. tetraacetoxyflavon 242. Tetrabrom-dioxytricarboxymalonsäurediäthylester

phenylxanthydrol 369. dioxyxanthon 113, 117.

diphenylfurantetrahydrid. carbonsaure 315.

Tetrabromfluorescein-äthyläther, chinoider 537.

diāthylāther, chinoider
537.
methylāther, chinoider

537. Tetrabrom-genistein 191.

— hexaoxyflavon 259.

- isoeuxanthon 113.

- methronsäure 334.

— methronsäureäthylester 335.

methylfurancarbonsäures propionsäure 337.

methylmethronsäure 337.
methyltetrahydrobrenz

schleimsäure 265.

__ morin 241.

Tetrabrommorin-āthyläther 242.

äthyläthertetraacetat 242.
pentaacetat 242.

Tetrabrom-myricetin 259.

— orcinaurin 201.

Tetrabromoxy-carbathoxyphenylfluoron 537.

carbomethoxyphenyls fluoron 537.

carboxyphenylfluoron 537.

phthalid 19.

Tetrabrom-pentaacetoxy flavon 242.

— pentaoxydioxoflavan 259.

- pentaoxyflavon 241.

pentaoxyflavonol 259.
phenolphthalein 149.

Tetrabromphenolphthaleinäthyläther, lactoider 150.

 — āthylātheracetat, lactoides 150.

- diacetat 150.

diāthylāther, lactoider 150.

dimethyläther, lactoider
 150.

Tetrabrompyrotritar-saure 298.

— säuretetrabromid 265. Tetrabromresorein-benzein 69.

— phenylacetein 72.

Tetrabromtetraacetoxys flavonol-acetat 242.

äthyläther 242.
 Tetrabromtetrahydrobrenzschleim-säure 263.

säureäthylester 263.
säureamid 263.

Tetrabromtetraoxotetras methyloktahydroxanthys drolmethyläther 208.

Tetrabromtetraoxy-athoxy

flavon 242. — dioxoflavan 241.

- flavonol 241.

- flavonoläthyläther 242.

Tetrabromtrioxy-isoflavon

- xanthylbenzoltricarbons säure 369.

Tetracarbonsäuren 344.

Tetrachlor-benzoylbenzoes säurepseudomethylester

bisdibromoxyphenyls
 phthalid 151.

bisoxyphenylphthalid 148.

 dimethoxyfluoresceins dimethyläther, chinoider 557; s. auch Tetrachlorgalleintetramethyläther.

Tetrachlorgallein-athylather, chinoider 559.

 methyläther, chinoider 559.

tetramethyläther, chinosider 559.

Tetrachlor-gallintetraacetat 368.

— methoxyphenylphthalid 49.

 oxyhydrochinonphthaleins tetramethyläther, chinos ider 558.

— phenolphthalein 148. Tetrachlorphenolphthaleindiacetat 149.

 dimethyläther, lactoider 149.

— methyläther, lactoider 149. Tetrachlor-tetraacetoxys

xanthylbenzoesäure 368.

— tetrabromphenolphthalein
151.

Tetrachlortetra bromphenolphthalein-diacetat 151.

diathyläther, lactoider 151.
 dimethyläther, lactoider

151.

Tetrachlortetrahydrobrenzschleimsäureäthylester 263.

Tetrahydro-furandicarbons saure 319.

furylendibenzoesäure 342. thiophencarbonsäure 263.

Tetrahydrothiophencarbons säure-äthylester 264.

hydroxymethylat 264.
methylester 264.

Tetrahydro-thiophendicarbons säure 320.

 thiopyrondicarbonsaures diathylester 484.

Tetrajod-dioxytricarboxysphenylxanthydrol 369.

— phenolphthalein 151.

trioxyxanthylbenzoltricarbonsäure 369.

Tetrakisacetoxymercuristhiophen 657.

Tetrakishydroxymercurithiophen, Tetrachlorid 657.

Tetramethoxy-acetoxyflavon 241, 248, 250.

- benzoincarbonsäure 251.

biscarboxymethylazosphthalid 651.

brasanchinon 253.diacetoxyazophthalid 650.

dioxodibenzocumarons
 dihydrid 253.

- dioxoflavan 247, 250.

dioxoflavandihydrid 239.
diphthalyllactonsäure 565.

flavanon 209, 210.flavon 214, 222.

— flavonol 247, 250.

— flavonol 247, 250. — flavonolacetat 250.

 flavonolmethyläther 241, 247.

hydrodiphthalyllactonsäure 563.

hydrofluoransäuremethylsester 368.

 oximinoflavanon 241, 249, 251.

— oxooximinoflavan 241, 249, 251.

Tetra-methylapigenin 197.
— methylenumbelliferon 44.

Tetramethyl-glykonsäurelacton 203.

— hāmatoxylon 251.

hāmatoxylonoxim 252.
 hāmatoxylonoximacetat
 252.

 leukorosaminsulfonsäure 635.

— rosamin und seine Carbinolbase 598.

— rosaminsulfonsäure 636.

tetrahydropyrylquecks
 silberjodid 655.

Tetranitro-apigenin 184.

oxydimethyldinitrodioxysmethylphenylfluoron 201.
 phenolphthalein 152.

resorcinphenylacetein 73.

— trioxyflavon 184.

Tetraoxy-āthylflavon 228.
— anthronylidenessigsāure,

Lacton 230.
— caprolacton 203.

cöroxenol 233.cöroxon 233.

 cōroxonol, Anhydroverbindung 254.

dimethyldiphenylessigs
 säure, Lacton 180.

— dioxobisbenzolazoflavan

dioxoflavan 239, 242, 250.
dioxoflavansulfonsaure 579.

Tetraoxy-dioxopropylfurans tetrahvdrid 237. dioxyphenylchromon 256, - diphenylessigsäure, Lacton - flavon 210, 211, 213, 214, 218, 219, 220, 221. - flavonol 239, 242, 250. — flavonsulfonsäure 579. --- hydrofluoransäure 368. — isoflavon 224. — methoxyflavon 245, 246. — methylflavon 225. – önantholacton 206. oxobisbenzolazoflavan 650. oxocöroxan 233. — oxoflavan 209. oxoönantholacton 237. — oxoxanthen 208. oxymethylcaprolacton 236. — triphenylmethancarbons saure, Lacton 200. xanthendicarbonsaure 368. - xanthon 208. xanthydroldicarbonsäure Anhydroverbindung 369. xanthylbenzoesäure 368. Tetrasulfonsäuren 572. Tetronsäure-carbonsäure 450. essigsäureäthylester 451. - sulfonsäure 575. Thenoyl-acetonitril 408. ameisensäure 407. – aminoessigsāure 290. — brenztraubensäure 467. — brenztraubensäureäthylester 468. – glycin 290. – hydrazin 291. Thenylidenessigsaure 301. Thienyl-acrylsaure 301. äthylamin 585. cyanid 290. – dichlorphosphin 653. – essigsäure 293. – glycin 631. - glykolsäure 345. glyoxylsäure 407. Thienylglyoxylsäure-äthylester 407. äthylesteroxim 407. amid 408. — methylester 407. — methylesteroxim 407. oxim 407. - oximacetat 407. phenylhydrazon 407. Thienyl-magnesium jodid 654. orthophosphinsäuretetra= chlorid 654. phosphinigsäure 653. - phosphinsäure 653.

Thionyl-phosphinsäuredichlorid 654. quecksilberchlorid 655. Thio-acetaminoxanthon 613. aminoxanthon 613. Thiobisdimethylaminoxanthon 614. xanthondioxyd 614. Thio-brenzschleimsäureamid 289. dimethylpyrondicarbonsäurediäthylester 495. dimethylpyrondisulfons saure 573. diphenylpyrondisulfon= saure 575. methylhydroxylamino: 589. benzylflavanon 639. methylpyrondisulfonsäure 573 Thionaphthen-chinonnitrophenylhydrazon 644. ehinonphenylhydrazon 644. dicarbonsaure 340. Thiondimethylpyrandicarbons saurediathylester 495. Thiophencarbonsaure 289, 292. Thiophencarbonsaure-acetyl= hydrazid 291. äthylester 289. amid 290, 293. amidoxim 290. anilid 290. 254. azid 291. benzalhydrazid 291. benzoylhydrazid 291. chlorid 290. hydrazid 291. iminoäthyläther 290. isopropylidenhydrazid 291. nitril 290. salicylalhydrazid 291. Thiophen-dicarbonsaure 327, 330. dicarbonsăuredinitril 331. disulfonsaure 571. disulfonsaurediamid 572; s. auch 571. grün und seine Carbinols base 597. phosphinigsäure 653. phosphinsaure 653. saure 289, 292. sulfinsaure 566. sulfonsaure 567, 568. tetracarbonsauretetra= methylester 344. tetrahydridcarbonsäure tetrahydriddicarbonsäure

tricarbonsauretrimethyl-

ester 344.

Thiophenursäure 290. Thiopyronbiscarbonsaureäthylester-disulfinsäure disulfonsaure 583. Thio-pyronin und seine Carbinolbase 596. tetrahydropyrondicarbon-säurediäthylester 484. umbelliferonmethyläther Threonsaure, Lacton 79. Tolidingulfon 592. Tolubenzylphthalidcarbonsaurenitril 441. Toluidino-dibenzoxanthen dinaphthopyran 589. Toluylbenzoesäurepseudomethylester 54. Tolyl-cyanisocumarin 445. dihydroisocumarincarbonsăurenitril 441. isocumarincarbonsăures nitril 445. Tolyloxy- s. Kresoxy-. Tolylphthalidylidenessigsaurenitril 445. Triacetoxy-benzoflavon 200. benzoylenfluoron 235. brasanchinon 229. carbathoxyphenylfluoron diacetoxyphenylfluoron dibromcarbathoxyphenylfluoron 558. flavanon 178. flavon 181, 183, 184, 185, 186, 187, 188, 189, 190. flavonolacetat 214, 217, 219, 220, 221, 223. isoflavon 191. isopropylflavon 197. methylflavon 193. methylfluoron 176. xanthon 174. Triacetsäure-lacton, Anhydrid lactonäthyläther 13. lactonmethyläther 13. Triacetyl-aminomethylumbelliferon 625. chinid 163. chlorgalaktonsäurelacton dibromoxyhydrochinon. phthaleinäthyläther, chinoider 558. oxyhydrochinonphthalein= athylather, chinoider 558. schleimsäureäthylester,

Lacton 551.

Triäthoxyacetoxyflavon 212.

Trimethoxy-cumarin 169.

cumarincarbonsaure 554.

Triathoxy-acetoxyflavonols athylather 241, 248. carbathoxyphenylfluoron flavonoläthyläther 223. Triathyloxidopropylammoniumhydroxyd 583. Triamine 595. Triazene 652. Tribenzolsulfonyloxyflavonolbenzolsulfonat 214. Tribenzoyl-chinid 163. chitose 161. Tribenzoyloxy-flavanon 179. flavon 183 flavonolbenzoat 214, 223. Tribromacetoxy-phthalid 19. phthalsaureanhydrid 95. Tribrom-asculetin 100. anilinooxidomethylevelohexadienon 606. Tribrombisdimethylaminothioxanthon 614. xanthon 614. Tribrom-brenzschleimsäure – diacetoxycumarin 98; s. auch 100. - diacetoxyphthalid 88. - diathylaminomethylcumarin 612. dimethoxyflavanon 119. dimethoxyphthalid 87. — dioxychromon 102. - dioxycumarin 100. — dioxyxanthon 117. kampferol 217. methoxyacetoxyphthalid mothoxyphthalaldehydsaurepseudomethylester methylfurancarbonsaures essignaure 333. oxidoanilinomethylcyclohexadienon 606. oxodimethylcumarondihydridearbonsaureathylester 424. Tribromoxy-cumarin 29.

dimethylacetyldihydrooumarincarbonsaureathylester 544: - dimethylisocumarilsaures athylester 424. dioxochroman 102. - dioxophenylisoindolin 95. hexahydroterephthalsäure methylester, Lacton 399. methoxyphthalid 87.
oxomethylchroman 22. oxophenylhydrazonophthalan 96. oxophenyliminophthalan

Tribromoxy-phenylhydrazonophthalid 96. phenyliminophthalid 95. phthalaldehydsäurepseudomethylester 87. phthalid 18. phthalsaureanhydrid 95. phthalsaureanil 95. phthalsaureisoanil 95. Tribromquercetin-methyläther 250. pentascetat 244. Tribrom-rhamnetin 250. tetramethoxyflavanon 210. tetraoxyflavon 217. tetraoxymethoxyflavon 250. thiobisdimethylaminoxanthon 614. thiophensulfonsäure 569. trimethoxyflavanon 176. trioxydioxoflavan 217. trioxyflavonol 217. trioxymethoxydioxoflavan trioxymethoxyflavonol umbelliferon 29. Tricarbāthoxyglutaconisoimid 513. Tricarbonsäuren 344. Trichlor-brenzschleimsäure 283. citropten 98. dimethoxycumarin 98. dioxyhydrindencarbonsaure, Lacton 35. dioxyphenoxycrotonsaures athylester 349. methylmekonin 91. methylparaconsäure 372. oxidoisobutyramid 262. oxodimethylcumarondis hydridcarbonsaureathylester 424. oxydimethylisocumarilsaureathylester 424. oxymethylcumaroncarbon**saure 349** thiophensulfonsäures anhydrid 568. Triisopyromucylphosphat 11. Trijodorcinaurin 201. Trimethoxyacetoxy-flavon 212, 216, 218, 219, 220, 221, 223. flavonolmethyläther 241, 248. methylflavon 225. Trimethoxy-athoxyflavon 212. benzoylcumaran 179. brasanchinhydron 230. brasanchinon 229. carbomethoxyphenyl. fluoron 558.

dioxodibenzocumarondis nydrid 229. dioxoflavan 216, 218, 219, 220, 221, 222. flavanon 176, 177, 178. flavon 182, 184. flavonol 216, 218, 219, 220, 221, 222. flavonolacetat 216, 219, 220, 221, 223. flavonolmethyläther 222. methylcumarin 170. oximinoflavanon 217, 218, 219, 220, 221, 223. oxooximinoflavan 217, 218, 219, 220, 221, 223. phthalid 164. tetrachlorcarbomethoxys phenylfluoron 558, 559. triacetoxyisoflavon 259. Trimethyl-acetoxymethylbernsteinsäureanhydrid acetyläpfelsäureanhydrid acetylitamalsäureanhy= drid 83. äpfelsäure, Lacton 382. āthylenoxydearbonsāureathylester 265. brasileinhydroxylamin 638. brasilon 225. brasilonoxim 227. brasilonoximacetat 227. butyrolactoncarbonsaure 388, 389. butyrolactondicarbons saure 486. cumarinylammonium. hydroxyd 609. cyclohexandiolcarbon= săure, Lacton 10. cyclohexanoldicarbon. saure, Lacton 404. cyclopentandiolessigsaure. Lacton 9. cyclopentandiolglykolsaure, Lacton 83. dicarboxyacetylbutyrolacton. Diathylester 503. Trimethylendisaccharin 160. Trimethyl-furfurylammos niumhydroxyd 585. glycidsäureäthylester 265. glykonsäurelacton 203. hexanolidsäure 390. methylcumarinylammoniumjodid 611. oxidopropylammonium: hydroxyd 583. paraconsaure 389. paraconylmalonsauredi. athylester 503.

Trimethylpyrantetrahydridcarbonsaure 266. dicarbonsăure 322. Trimethyltetrahydropyrancarbonsaure 266. dicarbonsăure 322 Trimethyl-thiophencarbons saure 299. trimethylenoxyddicarbon= säure 321. Trinitro-apigenin 183. dioxyxanthon 116. euxanthon 116. — oxycumarin 29. trimethoxybrasanchinon 229. — trioxyflavon 183. - umbelliferon 29. Trioxo-athylpropylpyrandihy dridearbonsaure 495. dimethyläthylchromendi= hydridcarbonsaureathylester 546. methyläthylpyrandihys dridcarbonsaure 493. Trioxy-anthronylidenessig= saure, Lacton 198. benzhydrylnaphthoesäure, Lacton 156. – benzoflavon 199. benzoylenfluoron 234. — bisbenzolazoflavon 650. — bromphenylfluoron 199. - butandicarbonsaure, Lacton 539. — caprolacton 158, 159. — carbāthoxyphenylfluoron 557, 558. carbomethoxyphenyls fluoron 558. carboxynaphthylfluoron 560. - dehydroiren 24. dibromearbäthoxyphenyls fluoron 558. dimethoxyflavon 240, 246. Trioxydioxo-athylfurantetrahydrid 207. dioxyphenylchroman 256, – flavan 214, 218, 219, 220, 221. flavansulfonsäure 579. Trioxydioxyphenyl-chromen chromon 239, 242, 250. fluoron 254. Trioxy-diphensaure, Lacton 546. - flavanon 178.

- flavon 180, 181, 184, 186, 187, 188, 189, 190.

221

flavonol 214, 218, 219, 220,

fluorondicarbonsaure 565.

REGISTER. Trioxv-hvdrofluoransäures methylester, Chlorid 362. isoflavon 190. Trioxyisopropyl-flavon 196. phenylchromon 196. Trioxymethoxy-dioxoflavan 245, 246. flavon 211, 215; s. auch Rhamnocitrin. flavonol 245, 246. Trioxymethyl-benzalcarboxys benzovlaceton, Salze 556. benzaloxyphthalidylace= ton, Salze 556. cumarin 170. flavon 193. – fluoron 176. furantetrahydridcarbon= säure 359. isocumarin 170. valerolacton 160. Trioxy-nitrooxyphenylfluoron **23**1. nitrophenylfluoron 199. önantholacton 161. Trioxyoxo-caprolacton 207. dimethylfurantetrahydrid methylchromen 170. methylisochromen 170. oxyphenylchromen 210. phthalan 164. trimethyldibutyryls dihydroxanthen 252. xanthen 173 Trioxyoxyphenyl-chromon 210, 214, 218, 219, 224. fluoron 231. Trioxyphenyl-chromon 184, 186. fluoron 199 phthalid 176. Trioxy-tetrachlorearbathoxys phenylfluoron 559. tetrachlorearbomethoxy= phenylfluoron 559. tetramethylfluoron 180. trimethoxyisoflavon 259. trimethylcyclopentylessig= saure, Lacton 83. trioxotrimethyldibutyls xanthendihydrid 252. trioxyphenylchromon 257. triphenylessigsaure, Lacton 142. triphenylmethancarbons saure, Lacton 143. valerolacton 157. valerolactoncarbonsaure 550. xanthencarbonsaure, hydroverbindung 361. xanthon 173. xanthylbenzoltricarbon* saure 369.

Triphenyl-aminophenylphthalan 590. carbinoldicarbonsaure. Lacton 448, 449. carbinoltricarbonsaure, Lacton 501. cyanpimelinsäureanhydrid 483. dimethylaminophenyl: phthalan 590. pyrandicarbonsäure 343. Tripropionylschleimsäure= äthylester, Lacton 551. U. Umbelliferon 27. Umbelliferon-acetat 28. — äthyläther 28. carbonsaure 528, 529. Umbelliferoncarbonsäureäthylester 529; s. auch methylester 529. Umbelliferon-essigsäure 530. essigsäureäthylester 531. methyläther 27. Umbelliferonmethyläthercarbonsaure 529. carbonsäuremethylester 529. oxim 28. phenylhydrazon 28. Uvinsaure 297. Valacten-bernsteinsäure 326. propionsaure 270. Valerolacton-carbonsaure 371, 372, 373; Äthylester s. auch 374. carbonsăureessigsaure 485. dicarbonsäure 483, 484. essigsäure 375, 376. isobuttersäure 390. malonsäurediäthylester 485. Veratralbernsteinsäureanhy: drid 173. Veratroyl-chroman 122. cumaran 121. cumaron 132. - Cullaioung C₄H₄O₂ 274.
- C₄H₃O₃Br 274.
- C₅Cl₅ 461.
- C₅H₆O₃ 396.
- C₅H₅O₅Br 540.
- C₅H₅O₃Br 453. C.H.O. 397. C₆H₁₀O₅ 464. C₇H₆O₅ 245. C₇H₁₀O₄ 376, 518.

C.H.O.Br. 333.

Washington of CTC O CL OCC	WT 1. 1	
Verbindung C ₇ H ₆ O ₂ Cl ₂ 298.	Verbindung C ₁₆ H ₁₂ O ₆ 224.	Verbindung C ₂₆ H ₃₄ O ₁₀ 514.
$- C_7 \mathbf{H_6} O_5 \mathbf{Br_2} 331.$	$-C_{16}H_{20}O_{6}$ 387.	$-C_{26}H_{24}O_5N_2^2$ 252.
C'H 0 444	O16112006 001.	- U261124U5112 202.
$\begin{array}{lll} - & C_{0}^{1}H_{10}O_{3} & 411. \\ - & C_{0}H_{0}O_{3}N_{3} & 339. \end{array}$	- C ₁₆ H ₁₈ ON ₃ 287. - C ₁₆ H ₁₈ O ₄ N ₃ 334.	$\begin{array}{lll} & - & C_{27}H_{26}O_5N_2 & 227. \\ & - & C_{28}H_{28}O_6N_2 & 252. \end{array}$
$- C_8H_6O_9N_9$ 339.	- C.H.O.N. 334.	— CHO.N. 252
$- C_8 H_8 O_5 Br_2 331.$	$\begin{array}{l} - C_{16}H_{18}O_{7}K_{2} & 476. \\ - C_{16}H_{25}O_{2}N & 417. \end{array}$	O H OND 500
CIT ON TOO	- U ₁₆ H ₁₈ U ₇ K ₂ 470.	$-C_{29}H_{23}ONBr_2$ 590.
— C ₈ H ₁₃ O ₄ N ₃ 523. — C ₈ H ₆ O ₄ NBr 304.	- C16HerON 417.	— C ₃₀ H ₅₈ O ₃ 6.
- C.H.O.NBr 304	- C ₁₆ H ₂₇ O ₅ N 553.	$ \begin{array}{l} -C_{33}H_{30}O_{13}S_{3} & 510. \\ -C_{34}H_{30}O_{3}N_{4} & 159, 160, 161. \\ -C_{37}H_{34}O_{13} & 215. \\ -C_{44}H_{41}O_{3}N & 448. \\ \end{array} $
O'TT O 270	O161127 O514 555.	U ₈₈ II ₈₀ U ₁₅ U ₉ 51U.
$-C_{1}H_{12}O_{2}$ 372.	$\begin{array}{l} - C_{17} H_{14} O_6 215. \\ - C_{17} H_{13} O_8 N_3 287. \end{array}$	C ₂₄ H ₂₀ O ₂ N ₄ 159, 160, 161.
- C.H ₁₄ O ₄ 392. - C.H ₁₆ O ₃ 323.	- C.H.O.N 287	C"H"O 345
OH 0 202	017111303113 201.	- 0 ₃₇ 11 ₃₄ 0 ₁₃ 210.
- U ₂ H ₁₆ U ₃ 323.	$-C_{18}H_{12}O_5$ 357.	$-C_{44}H_{41}O_{7}N$ 448.
UaDaUaDra 102.	$-C_{18}H_{18}O_{6}$ 230.	$-C_{48}H_{42}ON_{10}$ 231.
C TI O Cl 279	Clarifo 400	TT. 048114201110 2011
— C.H.O.Cl 372.	$-C_{18}H_{16}O_4$ 137.	Violein 234.
$-C_0H_0O_8N$ 411.	$-C_{18}H_{16}O_{5}$ 357.	Vulpinsäure 480.
C ₂ H ₁₃ O ₂ Cl 270.	C'H O 500	
Opinigo of 270.	$-C_{18}H_{20}O_{8}$ 562.	Vulpinsäure-äthyläther 535.
— С ₁₀ H ₈ O ₆ 466.	- C ₁₀ H ₀₀ O ₁₀ 365.	— methyläther 535.
$-C_{10}H_{10}O_{2}$ 21.	$\begin{array}{lll} & - C_{18} H_{26} O_{12} & 365. \\ & - C_{18} H_{14} O_{4} N_{8} & 477. \end{array}$	
C10111003 21.	01811404114	— propyläther 535.
$-C_{10}H_{10}O_{6}$ 466.	$-C_{16}H_{16}O_{6}Br_{4}$ 180.	i
$-C_{10}H_{10}O_{3}$ 10.	$\begin{array}{c} - C_{18}^{1}H_{16}^{1}O_{6}^{1}Br_{4} & 180. \\ - C_{18}H_{17}^{1}ON_{3} & 287. \\ - C_{18}H_{17}^{1}O_{5}N & 194. \end{array}$	\
O TT O (T) V C 070	01811170113 201.	w.
$- C_{10}H_{18}O_4$ (Bd. X, S. 373),	$- C_{18}H_{12}O_{5}N$ 194.	****
Lacton der 10.	- C ₁₈ H ₁₂ O ₈ NCl 447.	TT7 1 1 1
	0181112031101 1111	Weinsäurebisfurfurylamid
— C ₁₀ H ₅ O ₄ Cl 432.	$-C_{19}H_{14}O_{6}$ 230.	585.
— C ₁₀ H ₆ O ₃ Cl ₄ 35. — C ₁₀ H ₁₁ O ₃ N 306.	$\begin{array}{c} - C_{19}H_{16}O_5 & 135. \\ - C_{19}H_{18}O_6 & 224. \end{array}$	000.
C H O N 206	C TT O 994	
- U ₁₀ H ₁₁ U ₂ N 300.	$ C_{19}H_{18}O_6$ 224.	
$-C_{10}H_{11}O_{8}N$ 21.	- CHO. 170.	X.
C'T'ON ARE	$\begin{array}{l} - C_{19}H_{18}O_{9} \ 170. \\ - C_{19}H_{16}O_{4}N_{3} \ 43. \end{array}$	
$-C_{10}H_{18}O_4N$ 465.	U ₁₉ H ₁₆ U ₄ N ₂ 43.	37 13 31 3 11 34
$-C_{10}H_{15}O_{2}Br$ 10.	$\begin{array}{l} - C_{19}^{N}H_{17}^{N}O_{3}N_{3}^{2} 287. \\ - C_{20}^{N}H_{12}^{12}O_{4}^{2} 71. \end{array}$	Xanthendicarbonsäuresulfons
CHON 185	C H 0 74	sāure 583.
$-C_{10}H_{17}O_{3}N_{3}$ 465,	- U201112U4 /1.	
$-C_{11}H_6O_4$ 11.	- ConH14O2 230.	Xanthon-carbonsäure 437.
$- \underbrace{\mathbf{C_{11}H_{9}O_{9}Br}}_{130.} 30.$	$\begin{array}{lll} & - & C_{20}H_{20}O_5 & 192, & 193. \\ & - & C_{20}H_{20}O_6 & 215. \end{array}$	— dicarbonsāure 499.
Olinia Cabi ac.	- U201120U5 102, 103.	
Cha Har Oa No. 277.	- CenHenOa 215.	- disulfonsäure 574.
$\begin{array}{l} - C_{11}H_{10}O_{1} \text{ oder } C_{11}H_{12}O_{2}477. \\ - C_{12}H_{12}O_{1}N_{1}453. \end{array}$	- C.H.O. 252	Xanthyl-acetamid 588.
- 01911100 0 0 0 0 0 191118 0 9 477.	- C ₂₀ H ₂₂ O ₆ 252. - C ₂₀ H ₁₈ O ₂ N ₄ 466.	
$ U_{19}H_9U_4N$ 453.	$- C_{90}H_{18}O_{9}N_{4}$ 466.	and the same of th
$-C_{19}H_{10}O_{9}N_{9}$ 453.	- C.H.O.N. 477	441.
C19221009219 200.	- C ₃₀ H ₁₈ O ₄ N ₃ 477. - C ₃₀ H ₁₈ O ₅ N ₃ 197.	- acetonitril 315.
$\begin{array}{lll} & - & C_{13}H_{10}O_7N_3 & 453. \\ & - & C_{13}H_{11}O_5N & 453. \end{array}$	$-C_{90}H_{19}U_{5}N$ 197.	
- C.H.O.N 453	- C ₂₀ H ₂₂ O ₇ N ₂ 540.	→ benzoesäure 316.
CITTO CIL SOC.	O TE ON APP	- benzoylessigsäureäthyl-
— C ₁₂ H ₁₅ O ₆ Cl 205.	$\begin{array}{l} (C_{21}H_{10}O_{2})_{x} & 155. \\ C_{21}H_{22}O_{6} & 215. \end{array}$	
- C ₁₂ H ₁₀ O ₄ N ₂ Br ₂ S ₃ 515.	— C. H. O. 215.	ester 449.
O TO PAR	C H O 959	— butyramid 588.
— C ₁₈ H ₈ O ₃ 615.	— CuH ₂₄ O ₆ 252.	
$-C_{18}H_{10}O_4$ 174.	$\begin{array}{l} - C_{11}H_{32}O_4 496. \\ - C_{31}H_{15}O_5N 201. \end{array}$	— carbamidsäureäthylester
C10 TT C 944	C"T O N 904	588.
$\begin{array}{lll} - & C_{13}H_{13}O_5 & 244. \\ - & C_{13}H_{13}O_6 & 494. \end{array}$	- Unit 15 Unit 201.	
U ₁₉ H ₁₉ O ₄ 494.	$- C_{91}H_{16}O_{9}N_{9}$ 99.	— cyanessigsäure 341.
$-C_{14}H_{13}O_4$ 311.	$\begin{array}{l} - C_{31} H_{16} O_{3} N_{3} 99. \\ - C_{31} H_{17} O_{6} N_{3} 362. \end{array}$	— cyanessigsäureäthylester
01411104 0111	Control of the	342.
$\begin{array}{lll} & - C_{14}H_{30}O_{13} & 365. \\ & - C_{14}H_{13}O_{4}N_{3} & 453. \\ & - C_{14}H_{13}O_{4}N_{3} & 453. \end{array}$	- C ₂₂ H ₁₈ O ₇ 195.	
— C. H. O. N. 453.	- CarHanO., 546.	— essigsäure 315.
O H O N 224 479	O T O N 267	— hydroxylamin 638.
- U ₁₄ H ₁₄ U ₄ N ₃ 334, 470.	- U ₂₂ II ₁₈ U ₁₁ N ₂ 307.	
$\begin{array}{llll} & - & C_{14} \overline{H}_{14} O_4 N_3 & 334, 476. \\ & - & C_{14} \overline{H}_{19} O_6 N_3 & 494. \end{array}$	- C ₃₃ H ₃₅ O ₁₁ 546. - C ₃₃ H ₁₆ O ₁₁ N ₃ 367. - C ₃₃ H ₁₉ O ₂ N 367.	— isovaleramid 588.
- C ₁₄ H ₁₇ O ₄ N ₂ Br 321.	- C ₂₂ H ₂₂ O ₁₀ S ₆ 510.	— isovaleriansāure 315.
U141117U4119DI 321.	- 0331133 01006 010.	— malonsäure 341.
U14H10U2NaBr 321.	— C ₂₂ H ₂₈ O ₂ N ₂ 611.	
C T O 430	- C ₃₅ H ₁₄ O ₅ 357.	— malonsäureäthylesternitril
U ₁₈ H ₁₀ U ₄ 438.	- C251114O5 001.	342.
C ₁₅ H ₁₆ O ₄ 439. C ₁₅ H ₁₆ O ₅ 411.	$\begin{array}{l} - C_{33}H_{18}O_4 & 154. \\ - C_{33}H_{18}O_5 & 201. \end{array}$	1
$-\frac{C_{18}H_{18}O_{7}}{C_{18}H_{18}O_{7}}$ 508.	- C.H.O. 201	— malonsäurenitril 341.
— 01871807 000.	O TT O N A F 4	- phenacetamid 588.
$-C_{15}H_{20}O_{7}$ 508.	- U ₂₃ H ₁₉ U ₄ N 104.	
- C.H.O. 160	$-C_{34}H_{18}O_{5}$ 51, 135 359.	— phenylacetamid 588.
C157790 C10 100.	O II O 70	— propionamid 588.
- C ₁₈ H ₁₀ O ₁₀ 160. - C ₁₈ H ₁₀ O ₂ Br ₂ 53. - C ₁₈ H ₁₁ O ₂ Br ₃ 53.	— C ₃₄ H ₃₀ O ₆ 72.	
C. H. O. Br. 53.	$\begin{array}{l} - C_{24}H_{30}O_{8} & 195. \\ - C_{24}H_{14}O_{2}Cl_{1} & 156. \end{array}$	— semicarbazid 588.
O H O D. EE	C"H O'CI 458	— urethan 588.
$$ $U_{18}\Pi_{11}U_{8}D\Gamma_{8}$ 00.	- OHTHOSOM 100.	
CHO.N. 477.	$- C_{95}H_{18}O_{7}$ 230.	Xylonsäure, Lacton 158.
C. II. O. M. 30	C.H.O.N. oder	
U18II 16U7112 38.	- 0521183 O4118 OGG	
$\begin{array}{lll} & - & C_{15} \overline{H}_{16} O_7 N_3 & 39. \\ & - & C_{15} \overline{H}_{17} O_6 N & 105, 106. \end{array}$	C. H. O.N. 226	Z.
	Ceging/Carts and.	
C H O 12K	- C. H. ON. 415	20.
$\begin{array}{lll} & - & C_{10}H_{12}O_4 & 135. \\ & - & C_{10}H_{12}O_5 & 357. \end{array}$	- C ₃₅ H ₁₆ O ₇ 230. - C ₃₅ H ₃₄ O ₄ N ₂ oder - C ₃₅ H ₃₄ O ₄ N ₃ 226. - C ₃₅ H ₃₅ ON ₃ 415. - C ₃₆ H ₁₆ O ₇ 114.	Zuckersäure, Monolacton 550.

Berichtigungen, Verbesserungen, Zusätze.

(Siehe auch die Verzeichnisse am Schluß der früheren Bände.)

Zu Band I.

Seite 732 Zeile 5-6 v. o. statt: "NC·CH₂·CH₂·CH₂·CH₂·C(OH)(CN)·CH₂·CH₃" lies: "NC·CH.·CH.·C(OH)(CN)·CH.·CH.".

Zu Band II.

24 Zeile 9 v. u. vor: "H., C. r. 188," füge ein: "H., D.; vgl.".
435 " 22 v. o. statt: "einer Säure C₇H₁₀O₄" lies: "α-Äthyliden-glutarsäure".
435 " 23 v. o. nach: "2370" füge zu: "; F., EGGERT, B. 31, 1998".
777 " 6 v. u. statt: "Barythydrat-Lösung (1 Mol.-Gew.)" lies: "Barythydrat-Lösung (1¹/₂ Mol.-Gew.)".

Zu Band III.

 $CH_3 \cdot CH \cdot S$ $CH_3 \cdot S$ $C: NH + HCl + SnCl_3$ lies: Seite 179 Zeile 2 v. o. statt: ,

CH. CH · S CH₂·SC:NH+2HCl+SnCl₂".

2 v. o. zwischen: ,,des" und: ,,α-Methyl-paraconsäure-äthylesters" schalte ein: ,,rohen, wahrscheinlich α-Äthoxymethylen-brenzweinsaureester enthaltenden".

552

7 v. o. streiche: "(D: 1,155)". OC—CH₃—C—O—CO 13 v. u. statt: "C₂H₅·O₂C·C=C(CH₂)—C—C(CH₂)=C·CO₂·C₂H₅ 639 OC-CH2-C-O-CO

 $C_2H_4 \cdot O_2C \cdot C = C(CH_2) - C - C(CH_2) = C \cdot CO \cdot CH_2$

15 v. u. ("Natrium erzeugt") bis Zeile 9 v. u. ("....; 75, 809)") ersetze 791 durch den Passus: "Acetondicarbonsäurediäthylester liefert mit Natrium je nach den Reaktionsbedingungen 3.5-Dioxy-2.4-dicarbāthoxy-phenylessigsāure-āthylester (Bd. X, S. 586) oder 5.7 - Dioxy - benzotetronsäure - carbonsäure - (6 oder 8) athylester (Syst. No. 2626) (Cornelius, v. Pech., B. 19, 1448; v. Pech., Wolmann, B. 31, 2015; Jerdan, Soc. 71, 1106; 75, 809; vgl. Leuces, Speeling, B. 48 [1915], 138; Sonn, B. 50 [1917], 138)".

Zu Band IV.

Seite 11 Zeile 13 v. u. statt: "Leicht" lies: "Schwer". 11 ,, 12 v. u. statt: ,,Schwer" lies: ,,Sehr leicht".

Zu Band V.

Seite 740 Zeile 1 v. o. statt: "konz. Kalilauge" lies: "konz. alkoh. Kalilauge".

Zu Band VI.

Seite 111 Zeile 21 v. u. nach: "LINNEMANN, ZOTTA, A. Spl. 8, 254" füge zu: "; Z., A. 174, 87, 90".
" 296 " 12 v. o. statt: "siedender Lösung" lies: "siedendem Ligroin".

" 14 v. u. statt: "Ather" lies: "Aceton".

Zu Band VII.

Seite 398 Zeile 15 v. u. , , 400 ,, 10 v. o. } statt: ,,in Toluol, c = " lies: ,,in Toluol, p = ".

Zu Band VIII.

Seite 238 Zeile 23 v. o. statt: "Hexachlor-o-chinomono-" lies: "Hexachlor-o-chinobis-"; in QCI CO

der zugehörigen Formel statt: CCO.CH. lies: OCI · CCI C COH

Zu Band X.

Seite 383 Zeile 9-10 v. o. statt: "Nitrooxydihydrotrimethylbrasilon (S. 380)" lies: "Trimethylbrasilon C₁₀H₁₈O₆ (Syst. No. 2568)". 913 1 v. u. statt: "Verestern" lies: "Versetzen".

Zu Band XI.

Seite 374 Zeile 3 v. u. statt: ,,373" lies: ,,378".

Zu Band XIII.

Seite 727 Zeile 17 und 11 v. u. statt: "Benzin" lies: "Benzol".
" 728 " 20 v. o. statt: "Benzin" lies: "Benzol".

Zu Band XV.

Seite 136 Zeile 20 v. o. statt: ,,35 II" lies: ,,36 II" ,, 259 Textzeile 22 v. u. statt: ,,908" lies: ,,308".

Zu Band XVI.

Seite 314 Zeile 15 v. o. statt: ,,S. 307" lies: ,,S. 308".

,, 510 ,, 3 v. u. statt: ,,C₁₀H₇·N₂·E·SO₂·C₁₀H₁₇" lies: ,,C₁₀H₇·N₂·S·SO₂·C₁₀H₇".

,, 690 ,, 22 v. o. statt: ,,A. 414" lies: ,,A. 411".

Zu Band XVII.

Seite IV Spalte 1 Zeile 8 v. o. statt: "Trimethylenoxyd" lies: "Trimethyläthylenoxyd".
" 27 Fußnote statt: "Furyl-(1)" lies: "Furyl-(2)" und statt: "Furyl-(2)" lies: "Furyl-(3)".
" 118 Zeile 19—22 v. o. Die rechtsstehende Formel muß richtig heißen:

$$\left[\begin{array}{|c|c|} \hline & CH & CH \\ \hline & & c & C_0H_5 \\ \hline & & Ac^- \\ \end{array}\right]^+$$

4 v. u. bei Formel V füge zu: "+H₂0" 186

5-4 v. u. statt: "-furfurenylhydrazin" lies: "-furfurenylhydrazidin". $C(C_2H_2)_2 \cdot CO$

C(C₈H₈)·CO lies: "C₈H₄ OO NH 19 v. u. statt: ,,C,H, CO__NH 498

612 Spalte 2 vor: ,,— C₂H₁₀O₄N₂ 48". schalte ein: ,,— C₂H₁₀O₂Br₄ 48.".

Zu Band XVIII.

32 Zeile 6 v. o. statt: "7-Amino-4-methyl-umbelliferon" lies: "7-Amino-4-methyl-Seite oumarin'

8 und 9 v. o. statt: ,,5-Oxy-phenol-phthalein" lies: ,,5 oder 6-Oxy-phenol-95 phthalein"

13 v. o. hinter: "1953" füge ein: "; A. 161, 80". 22 v. u. statt: "beim Kochen in Gegenwart von etwas" lies: "nach dem 160 Erhitzen mit".

; ;

•			7.	
				*

Indian Agricultural Research Institute (Pusa) LIBRARY, NEW DELHI-110012

This book can be issued on or before			
Return Date	Return Date		