DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 1 | Part 1

Welcome

Advanced Data Structures and Algorithms

(for data science)

Brand new.

- Modeled (partly) after CSE 100/101.
- But with more data science flavor.

Roadmap

- Advanced Data Structures
 - Dynamic Arrays
 - AVL Trees
 - Heaps
 - Disjoint Set Forests
- Nearest Neighbor Queries
 - KD-Trees
 - Locality Sensitive Hashing

Roadmap

- Strings
 - Tries and Suffix Trees
 - Knuth-Morris-Pratt and Rabin-Karp string search
- Algorithm Design
 - Divide and Conquer
 - Greedy Algorithms
 - Dynamic Programming (Viterbi Algorithm)
 - Backtracking, Branch and Bound
 - Linear Time Sorting; Sort with Noisy Comparator

Roadmap?

- Sketching and Streaming
 - Count-min-sketch
 - Bloom filters
 - Reservoir Sampling
- Theory of Computation
 - ► NP-Completeness and NP-Hardness
 - Computationally-hard problems in ML/DS

Roadmap??

- Other
 - Regular Expressions
 - ► Linear Programming
 - ▶ ?

Prerequisite Knowledge

- Python
- Basic Data Structures and Algorithms
 - ▶ DSC 30, DSC 40B¹

¹outside of Winter 2019

(syllabus)

Lecture 1 | Part 2

Review of Time Complexity Analysis

Time Complexity Analysis

- Determine efficiency of code without running it.
- Idea: find a formula for time taken as a function of input size.

Advantages of Time Complexity

- 1. Doesn't depend on the computer.
- 2. Reveals which inputs are slow, which are fast.
- 3. Tells us how algorithm scales.

Counting Operations

Abstraction: certain basic operations take constant time, no matter how large the input data set is.

- Example: addition of two integers, assigning a variable, etc.
- Idea: count basic operations

Example

```
def mean(numbers):
    total = 0
    n = len(numbers)
    for x in numbers:
        total += x
    return total / n
```

Theta Notation, Informally

- \triangleright $\Theta(\cdot)$ forgets constant factors, lower-order terms.
- ightharpoonup f(n) = Θ(g(n)) if f(n) "grows like" g(n).

$$5n^3 + 3n^2 + 42 = \Theta(n^3)$$

Theta Notation Examples

$$\triangleright$$
 4n² + 3n - 20 = $\Theta(n^2)$

$$ightharpoonup 3n + \sin(4\pi n) = \Theta(n)$$

$$\triangleright 2^n + 100n = \Theta(2^n)$$

Definition

We write $f(n) = \Theta(g(n))$ if there are positive constants N, c_1 and c_2 such that for all $n \ge N$:

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

Main Idea

If $f(n) = \Theta(g(n))$, then f can be "sandwiched" between copies of g when n is large.

Other Bounds

- F = Θ(g) means that f is both **upper** and **lower** bounded by factors of g.
- Sometimes we only have (or care about) upper bound or lower bound.

We have notation for that, too.

Big-O Notation, Informally

- Sometimes we only care about upper bound.
- f(n) = O(g(n)) if f(n) "grows at most as fast" as g(n).
- Examples:
 - \triangleright 4 $n^2 = O(n^{100})$
 - $\blacktriangleright 4n^2 = O(n^3)$
 - \blacktriangleright 4n² = O(n²) and 4n² = $\Theta(n^2)$

Definition

We write f(n) = O(g(n)) if there are positive constants N and c such that for all $n \ge N$:

$$f(n) \le c \cdot g(n)$$

Big-Omega Notation

- Sometimes we only care about lower bound.
- Intuitively: $f(n) = \Omega(g(n))$ if f(n) "grows at least as fast" as g(n).
- Examples:
 - $\blacktriangleright 4n^{100} = \Omega(n^5)$
 - \triangleright 4 $n^2 = \Omega(n)$
 - \blacktriangleright 4n² = Ω(n²) and 4n² = Θ(n²)

Definition

We write $f(n) = \Omega(g(n))$ if there are positive constants N and c such that for all $n \ge N$:

$$c_1 \cdot g(n) \leq f(n)$$

Sums of Theta

If
$$f_1(n) = \Theta(g_1(n))$$
 and $f_2(n) = \Theta(g_2(n))$, then
$$f_1(n) + f_2(n) = \Theta(g_1(n) + g_2(n))$$

$$= \Theta(\max(g_1(n), g_2(n)))$$

Useful for sequential code.

Products of Theta

If
$$f_1(n) = \Theta(g_1(n))$$
 and $f_2(n) = \Theta(g_2(n))$, then
$$f_1(n) \cdot f_2(n) = \Theta(g_1(n) \cdot g_2(n))$$

Example

```
def foo(n):
    for i in range(3*n + 4, 5n**2 - 2*n + 5):
        for j in range(500*n, n**3):
            print(i, j)
```

Linear Search

- Given: an array arr of numbers and a target t.
- Find: the index of t in arr, or None if it is missing.

```
def linear_search(arr, t):
    for i, x in enumerate(arr):
        if x == t:
        return i
    return None
```

Exercise

What is the time complexity of linear_search?

The Best Case

- When t is the very first element.
- ► The loop exits after one iteration.
- ► Θ(1) time?

The Worst Case

- When t is not in the array at all.
- ► The loop exits after *n* iterations.
- \triangleright $\Theta(n)$ time?

Time Complexity

- linear_search can take vastly different amounts of time on two inputs of the same size.
 - Depends on actual elements as well as size.
- ► There is no single, overall time complexity here.
- Instead we'll report best and worst case time complexities.

Best Case Time Complexity

How does the time taken in the **best case** grow as the input gets larger?

Definition

Define $T_{\text{best}}(n)$ to be the **least** time taken by the algorithm on any input of size n.

The asymptotic growth of $T_{\text{best}}(n)$ is the algorithm's best case time complexity.

Best Case

- In linear_search's best case, T_{best}(n) = c, no matter how large the array is.
- ► The **best case time complexity** is $\Theta(1)$.

Worst Case Time Complexity

How does the time taken in the worst case grow as the input gets larger?

Definition

Define $T_{\text{worst}}(n)$ to be the **most** time taken by the algorithm on any input of size n.

The asymptotic growth of $T_{worst}(n)$ is the algorithm's worst case time complexity.

Worst Case

- In the worst case, linear_search iterates through the entire array.
- ► The worst case time complexity is $\Theta(n)$.

Faux Pas

- Asymptotic time complexity is not a complete measure of efficiency.
- \triangleright $\Theta(n)$ is not always better than $\Theta(n^2)$.
- ► Why?

Faux Pas

Why? Asymptotic notation "hides the constants".

$$T_1(n) = 1,000,000n = \Theta(n)$$

$$T_2(n) = 0.00001n^2 = \Theta(n^2)$$

▶ But $T_1(n)$ is worse for all but really large n.

Main Idea

Asymptotic time complexity is not the **only** way to measure efficiency, and it can be misleading.

Sometimes even a $\Theta(2^n)$ algorithm is better than a $\Theta(n)$ algorithm, if the data size is small.

DSC 190 DATA STRUCTURES & ALGORITHMS

Lecture 1 | Part 3

Arrays and Linked Lists

Memory

To access a value, we must know its **address**.

Sequences

- How do we store an ordered sequence?
 - e.g.: 55, 22, 12, 66, 60
- Array? Linked list?

Arrays

- Store elements contiguously.
 - e.g.: 55, 22, 12, 66, 60

NumPy arrays are... arrays.

Allocation

- Memory is shared resource.
- A chunk of memory of fixed size has to be reserved (allocated) for the array.
- ▶ The size has to be known beforehand.

Arrays

- To access an element, we need its address.
- **Key:** Addresses are easily calculated.
 - For kth element: address of first + ($k \times 64$ bits)
- Therefore, arrays support Θ(1)-time access.

Downsides of Arrays

- Homogeneous; every element must be same size.
- ► To resize the array, a totally new chunk of memory has to be found; old values copied over².

²In worst case: see realloc

Array Time Complexities

- ightharpoonup Retrieve kth element: Θ(1) (good).
- Append element at end: $\Theta(n)$ (bad)³.
- ▶ Insert/remove in middle: $\Theta(n)$ (bad).
- Allocation: $\Theta(n)$ if initialized, else $\Theta(1)$

³At least on average. See: realloc

⁴On Linux this is done lazily, as can be seen by timing np.zeros

```
>>> arr = np.array([1, 2, 3])
>>> np.append(arr, 4) # takes Theta(n) time!
array([1, 2, 3, 4])
```

```
results = np.array([])
for i in np.arange(100):
    result = run_simulation()
    results = np.append(results, result)
```

This was bad code!

We allocate/copy a quadratic number of elements:

$$1 + 2 + 3 + ... + 100$$
 = 100×101 = 100×101 = 100×101 = 100×101

Better: pre-allocate.

```
results = np.empty(100)
for i in np.arange(100):
    results[i] = run_simulation()
```

(Doubly) Linked Lists

- Scatter elements throughout memory.
- For each, store address of next/previous.

Linked Lists

Each element has an address.

- Keep track of the address of first/last elements.
- Have to find address of middle elements by looping.

Linked List Time Complexities

- Retrieve kth element:
 - \triangleright $\Theta(k)$ if you don't know address (bad)⁵
 - Θ(1) if you do
- ightharpoonup Append/pop element at start/end: $\Theta(1)$ (good).
- ► Insert/remove kth element:
 - \triangleright $\Theta(k)$ if you don't know address (bad)
 - \triangleright $\Theta(1)$ if you do
- Allocation not needed! (good)

⁵assumes search starts from beginning

Tradeoffs

- Arrays are better for numerical algorithms.
 - Arrays have good cache performance.
- Linked lists are better for stacks and queues.

Main Idea

Different data structures optimize for different operations.