Regressao2

May 29, 2019

1 0. Introdução

Trabalho:

Aluno: Maicon Dall'Agnol

R.A.: 151161868

Disciplina: Tópico em Aprendizado de Máquina

Objetivos:

- Escolha dois conjuntos de dados para trabalhar o problema de regressão. Separe cada dataset em conjunto de treinamento e conjunto de teste. Explique o seu critério de separação e o método utilizado.
- Você deverá implementar soluções para cada dataset usando:
- regressão linear (ou regressão múltipla)
- regressão polinomial
- SVR (use os kernels linear, sigmoide, RBF e polinomial)
- rede neural (MLP ou RBF).
- Descreva os parâmetros/arquiteturas de cada modelo.
- Compare os resultados (para treinamento e teste) com as medidas de desempenho SEQ, EQM, REQM, EAM e rš, e verifique qual a melhor opção dentre os métodos implementados que melhor se ajusta a seus dados.
- Você deverá fazer a visualização dos dados originais com os dados ajustados em cada experimento, tanto para o conjunto de treinamento quanto para o de teste. Os gráficos devem conter títulos nos eixos e legenda. Comente os resultados encontrados na visualização.

1.1 0.1 Dependências

Para realização da tarefa foram utilizados as seguintes bibliotecas:

```
In [1]: #Utils
    import pandas as pd
    import numpy as np
    import pandas_profiling
```

```
import math
#Preprocess
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
# Split
from sklearn.model_selection import train_test_split
# Regressores
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.neural_network import MLPRegressor
#Metricas
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
#Visualização
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

1. Dados

Histórico de tempo em Szeged, Hungria - de 2006 a 2016 Fonte: https://www.kaggle.com/budincsevity/szeged-weather

2.1 1.1 Informações sobre os dados:

Atributos:

- time
- summary
- precipType
- temperature
- apparentTemperature
- humidity
- windSpeed
- windBearing
- visibility
- loudCover
- pressure

2.2 Importando Dataset

In [2]: data = pd.read_csv('dados/weatherHistory.csv')

In [3]: data = data.sample(10000).reset_index(drop=True,)

In [4]: pandas_profiling.ProfileReport(data)

Out[4]: <pandas_profiling.ProfileReport at 0x7fd9ec1eaf98>

In [5]: data_raw = data.copy()

In [6]: data_raw.drop(columns=['Formatted Date', 'Precip Type', 'Loud Cover', 'Apparent Temperatus

2.3 Visualização

In [7]: sns.pairplot(data_raw)

Out[7]: <seaborn.axisgrid.PairGrid at 0x7fd9bf671c88>

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9bf4c5860>

In [9]: data_raw.plot.box()

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9bc2ea390>

2.4 Escalonando

```
In [10]: scaler = StandardScaler().fit(data_raw)
         data_scaled = scaler.transform(data_raw)
In [11]: data_scaled_df = pd.DataFrame(data_scaled, columns=data_raw.columns)
In [12]: data_scaled_df.head()
Out[12]:
            Temperature (C) Humidity Wind Speed (km/h)
         0
                   0.214510 0.681941
                                               -1.081307
                  -0.468636 0.630496
                                                0.058355
         1
         2
                   0.043288 -0.089742
                                                0.775576
                   0.083917 -1.941780
                                                0.694337
                  -0.205129 0.784832
                                               -0.617086
In [13]: data_scaled_df.plot.box()
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9bc1feb70>

2.5 Utilidades

2.6 Separando conjuntos de Treino e Teste

Para a separação utilizou-se do train_test_split que divide o conjunto em treino e teste aleatóriamente

```
In [16]: train, test = train_test_split(data_scaled_df, test_size = 0.2, shuffle=True)
    x_train = train.drop(columns=['Temperature (C)'])
    y_train = train['Temperature (C)']
```

```
x_test = test.drop(columns=['Temperature (C)'])
y_test = test['Temperature (C)']
```

2.7 Aplicando a Regressão

2.7.1 Regressão Linear

2.8 Avaliação para Teste

2.9 Avaliação para Treino

2.10 SVR

2.10.1 Kernel RBF

2.11 Avaliação para Teste

```
plt.title('Predito e Original',fontsize=15)
plt.legend(['Original', 'Predito'])
plt.show()
```


2.12 Avaliação para Treino

2.12.1 Kernel Linear

2.13 Avaliação para Teste

2.14 Avaliação para Treino

2.14.1 Kernel Sigmoide

2.15 Avaliação para Teste

2.16 Avaliação para Treino

2.16.1 Kernel Polinomial

2.17 Avaliação para Teste

2.18 Avaliação para Treino

2.19 Redes Neurais

2.19.1 Kernel Linear

2.20 Avaliação para Teste

2.21 Avaliação para Treino

3 Resultados

Out[63]:		Algoritmo	EQM	R2	REQM	\
	0	Regressão Linear - Teste	0.592699	0.405625	0.769870	
	1	SVR - RBF - Teste	0.599608	0.398697	0.774343	
	2	SVR - Linear - Teste	0.601256	0.397044	0.775407	
	3	SVR - Sigmoide - Teste	51226.694361	-51370.514410	226.333149	
	4	SVR - Polinomial - Teste	0.697636	0.300392	0.835246	
	5	MI.P - Teste	0.583083	0.415269	0.763599	

SEQ

- 0 1.185398e+03
- 1 1.199215e+03
- 2 1.202513e+03
- 3 1.024534e+08
- 4 1.395272e+03
- 5 1.166166e+03

```
In [65]: metricas_teste = round(metricas_teste, 3)
In [66]: metricas_teste
Out [66]:
                           Algoritmo
                                            EQM
                                                        R2
                                                               REQM
                                                                               SEQ
            Regressão Linear - Teste
                                          0.593
                                                      0.406
                                                               0.770 1.185398e+03
         0
                   SVR - RBF - Teste
         1
                                          0.600
                                                      0.399
                                                               0.774 1.199215e+03
         2
                SVR - Linear - Teste
                                          0.601
                                                      0.397
                                                               0.775 1.202513e+03
              SVR - Sigmoide - Teste 51226.694 -51370.514
                                                            226.333 1.024534e+08
         4 SVR - Polinomial - Teste
                                          0.698
                                                      0.300
                                                               0.835 1.395272e+03
                         MLP - Teste
                                          0.583
                                                      0.415
                                                               0.764 1.166166e+03
         5
In [67]: metricas_teste.to_excel('regressao2_metricas_teste.xlsx')
In [68]: metricas_treino = pd.DataFrame(lista_metricas_treino)
         metricas treino
Out [68]:
                            Algoritmo
                                                EQM
                                                                R2
                                                                          REQM \
          Regressão Linear - Treino
                                           0.584740
                                                          0.415589
                                                                      0.764683
                   SVR - RBF - Treino
         1
                                                          0.423032
                                                                      0.759798
                                           0.577293
         2
                SVR - Linear - Treino
                                                          0.408227
                                                                      0.769484
                                           0.592106
         3
              SVR - Sigmoide - Treino
                                       52816.201340 -52785.446344
                                                                    229.817757
         4 SVR - Polinomial - Treino
                                           0.755123
                                                          0.245303
                                                                      0.868978
         5
                         MLP - Treino
                                           0.574974
                                                          0.425350
                                                                      0.758270
                     SEQ
         0 4.677922e+03
         1 4.618342e+03
         2 4.736851e+03
         3 4.225296e+08
         4 6.040982e+03
         5 4.599792e+03
In [69]: metricas_treino = round(metricas_treino, 3)
In [70]: metricas_treino.to_excel('regressao2_metricas_treino.xlsx')
```