Sabbir Ahmed

DATE: April 10, 2018 **MATH 407:** HW 08

3.4 • Show that \mathbb{Z}_5^{\times} is not isomorphic to \mathbb{Z}_8^{\times} by showing that the first group has an element of order 4 but the second group does not

The elements in each of the groups

$$\{[1], [2], [3], [4]\} \in \mathbb{Z}_5^{\times}, \ o(\mathbb{Z}_5^{\times}) = 4$$

$$\{[1], [3], [5], [7]\} \in \mathbb{Z}_8^{\times}, \ o(\mathbb{Z}_8^{\times}) = 4$$

In \mathbb{Z}_5^{\times}

$$[2]^4 = [1], o([2]) = 4$$

$$[3]^4 = [1], o([3]) = 4$$

$$[4]^2 = [1], \ o([4]) = 2$$

Therefore, \mathbb{Z}_5^\times is a cyclic group with generators [2] and [3] In \mathbb{Z}_8^\times

$$[3]^2 = [1], \ o([3]) = 2$$

$$[5]^2 = [1], \ o([5]) = 2$$

$$[7]^2 = [1], \ o([7]) = 2$$

No elements in \mathbb{Z}_8^\times is of the same order as its group order which implies \mathbb{Z}_8^\times is non-cyclic

Therefore, \mathbb{Z}_5^{\times} is not isomorphic to \mathbb{Z}_8^{\times} since the first group is cyclic unlike the latter $\ \ \Box$

7 Let G be a group. Show that the group (G,*) defined in Exercise 3 of Section 3.1 is isomorphic to G.

Given (G, *) is a group where $a * b = b \cdot a$

Let
$$\phi:(G,*)\to (G,\cdot)$$
 as

$$\phi(a) = \phi(e * a)$$

$$= a * e$$

$$= a, \ \forall \ a \in (G, *)$$

We need to show $\phi(a*b) = \phi(a) \cdot \phi(b)$

$$\phi(a * b) = b \cdot a$$

$$= b * e \cdot a * a$$

$$= \phi(b) \cdot \phi(a)$$

11 Let G be the set of all matrices in $GL_2(\mathbb{Z}_3)$ of the form $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$. That is, $m,b\in\mathbb{Z}_3$ and $m\neq [0]_3$. Show that G is a subgroup of $GL_2(\mathbb{Z}_3)$ that is isomorphic to S_3 .

Given

$$G = \left\{ \left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{ccc} 1 & 1 \\ 0 & 1 \end{array} \right], \left[\begin{array}{ccc} 1 & 2 \\ 0 & 1 \end{array} \right], \left[\begin{array}{ccc} 2 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{ccc} 2 & 1 \\ 0 & 1 \end{array} \right], \left[\begin{array}{ccc} 2 & 2 \\ 0 & 1 \end{array} \right] \right\}$$

The non-empty, finite set G is a subgroup if $xy^{-1} \in G$, $\forall x, y \in G$

Let
$$\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$$
, $\begin{bmatrix} n & a \\ 0 & 1 \end{bmatrix} \in G$, where $m, n \neq [0]_3$ Then

$$\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} n & a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} mn & b+am \\ 0 & 1 \end{bmatrix}$$

Since $m, n \neq [0]_3$, then $mn \neq [0]_3$

Therefore
$$\begin{bmatrix} & \text{mn} & \text{b+am} \\ & 0 & 1 \end{bmatrix} \in G \text{, and } G \text{ is a subgroup of } GL_2(\mathbb{Z}_3)$$

$$\text{Also, if } a = \begin{bmatrix} & 1 & 1 \\ & & 1 \\ & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} & 2 & 1 \\ & & 0 & 1 \end{bmatrix}, a,b \in G,$$

then

$$a^{3} = \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}^{3}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$b^{2} = \begin{pmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}^{2}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$a^{2}b = \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}^{2} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$= ba$$

Therefore, G is similar to $S_3=\{e,a,a^2,b,ab,a^2b\}$, where $a^3=e$, $b^2=e$, $ba=a^2b$

Thus, let $\phi:G\to S_3$ as

$$\phi\left(\left[\begin{array}{cc}1&1\\\\0&1\end{array}\right]\right) = (1,2,3)$$

$$\phi\left(\left[\begin{array}{cc}2&1\\0&1\end{array}\right]\right)=(1,2)$$

Then

$$\phi\left(\left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\right)^{i} \left(\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}\right)^{i}\right) = (1, 2, 3)^{i} (1, 2)^{i}, \ i = 0, 1, 2, \ j = 0, 1$$

Which is both one-to-one and onto

14 Let $G = \{x \in \mathbb{R} \mid x > 0 \text{ and } x \neq 1\}$, and define * on G by $a*b = a^{\ln b}$. Show that G is isomorphic to the multiplicative group \mathbb{R}^{\times} . (See Exercise 9 of Section 3.1.)

Assume $\phi:G\to\mathbb{R}^{\times}$ is one-to-one and onto Let $y\neq 0\in\mathbb{R}^{\times}$, such that $e^y>0\in G$

$$\phi(e^y) = \ln e^y$$
$$= y$$

17 Let $\phi:G_1\to G_2$ be a group isomorphism. Prove that if H is a subgroup of G_1 , then $\phi(H)=\{y\in G_2\mid y=\phi(h) \text{ for some } h\in H\}$ is a subgroup of G_2 .

Since $\phi:G_1\to G_2$ is a group isomorphism, $\phi(e_1)=e_2$ Since H is a subgroup,

$$e_1 \in H$$

 $\Rightarrow e_2 \in \phi(H)$

A non-empty set G is a subgroup if $xy^{-1} \in G$, $\forall \ x,y \in G$ Let $x,y \in \phi(H)$

Then, there exists $h_1, h_2 \in H$, such that

$$\phi(h_1) = x$$
$$\phi(h_2) = y$$

Also, since ϕ is homomorphic,

$$\phi(h_2^{-1}) = (\phi(h_2))^{-1}$$

$$= y^{-1}$$

$$\phi(h_1 h_2^{-1}) = \phi(h_1)\phi(h_2^{-1})$$

$$= xy^{-1}$$

Since H is a subgroup, $h_1h_2^{-1} \in H$, $\forall \ h_1, h_2 \in H$ Therefore,

$$\phi(h_1 h_2^{-1}) = xy^{-1}$$
$$\in \phi(H)$$

That is, $\phi(h_1h_2^{-1}) \in \phi(H)$, $\forall x, y \in \phi(H)$

24 Let $G = \mathbb{R} - \{-1\}$. Define * on G by a*b = a+b+ab. Show that G is isomorphic to the multiplicative group \mathbb{R}^{\times} . (See Exercise 13 of Section 3.1.)

Hint: Remember that an isomorphism maps identity to identity. Use this fact to help find the necessary mapping.

Let
$$\phi: G \to \mathbb{R}^{\times}$$
 as $\phi(a) = 1 + a$

Let a = b

Then, 1 + a = 1 + b

Therefore, $\phi(a)=\phi(b)$ and ϕ is well defined

Let $\phi(a) = \phi(b)$

Then 1 + a = 1 + b, which implies a = b

Therefore, ϕ is one-to-one

Let $x \in \mathbb{R}^{\times}$

Therefore, $x \neq 0$ and $\exists y = x - 1 \in G$

Since $\phi(x-1) = 1 + x - 1 = x$, ϕ is also onto

To show $\phi(a*b) = \phi(a)\phi(b)$, consider

$$\phi(a*b) = 1 + (a*b)$$

$$= 1 + a + b + ab$$
$$= (1 + a)(1 + b)$$
$$= \phi(a)\phi(b)$$

Therefore, $G \cong \mathbb{R}^{\times}$

26 Let G_1 and G_2 be groups. A function from G into G_2 that preserves products but is not necessarily a one-to-one correspondence will be called a group homomorphism, from the Greek word *homos* meaning same. Show that $\phi: \operatorname{GL}_2(\mathbb{R}) \to \mathbb{R}^\times$ defined by $\phi(A) = \det(A)$ for all matrices $A \in \operatorname{GL}_2(\mathbb{R})$ is a group homomorphism.

Consider $\phi(A) = \det(A)$

Since $\mathsf{GL}_2(\mathbb{R})$ is a field, it is also abelian, and therefore

$$\det(AB) = \det(A)\det(B)$$

Thus,

$$\phi(AB) = \det(AB)$$

$$= \det(A)\det(B)$$

$$= \phi(A)\phi(B)$$

3.5 2 Let G be a group and let $a \in G$ be an element of order 30. List the powers of a that have order 2, order 3 or order 5.

$$(a^{15})^2 = e$$

$$(a^{10})^3 = e$$

$$(a^{20})^3 = e$$

$$(a^6)^5 = e$$

$$(a^{12})^5 = e$$

$$(a^{18})^5 = e$$

$$(a^{24})^5 = e$$

Therefore,

the powers of a of order 2 is a^{15}

the powers of a of order 3 are a^{10}, a^{20}

the powers of a of order 5 are $a^6, a^{12}, a^{18}, a^{24}$

- **3** Give the subgroup diagrams of the following groups.
 - a \mathbb{Z}_{24}

The generators of \mathbb{Z}_{24} are $\langle 1 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 4 \rangle, \langle 6 \rangle, \langle 8 \rangle, \langle 12 \rangle, \langle 0 \rangle$

$$\langle 1 \rangle = \mathbb{Z}_{24}$$

$$\langle 2 \rangle = \{2,4,6,8,10,12,14,16,18,20,22,0\}$$

$$\langle 3 \rangle = \{3,6,9,12,15,18,21,0\}$$

$$\langle 4 \rangle = \{4, 8, 12, 16, 20, 0\}$$

$$\langle 6 \rangle = \{6, 12, 18, 0\}$$

$$\langle 8 \rangle = \{8, 16, 0\}$$

$$\langle 12 \rangle = \{12, 0\}$$

$$\langle 0 \rangle = \{0\}$$

Figure 1: Subgroup Diagram of \mathbb{Z}_{24}

b \mathbb{Z}_{36}

The generators of \mathbb{Z}_{36} are $\langle 1 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 6 \rangle, \langle 9 \rangle, \langle 12 \rangle, \langle 18 \rangle, \langle 0 \rangle$

- $\langle 1 \rangle = \mathbb{Z}_{36}$
- $\langle 2 \rangle = \{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,0\}$
- $\langle 3 \rangle = \{3,6,9,12,15,18,21,24,27,30,33,0\}$
- $\langle 4 \rangle = \{4,8,12,16,20,24,28,32,0\}$
- $\langle 6 \rangle = \{6, 12, 18, 24, 30, 0\}$
- $\langle 9 \rangle = \{9, 18, 27, 0\}$
- $\langle 12 \rangle = \{12, 24, 0\}$
- $\langle 18 \rangle = \{18, 0\}$
- $\langle 0 \rangle = \{0\}$

Figure 2: Subgroup Diagram of \mathbb{Z}_{36}

10 Find all cyclic subgroups of $\mathbb{Z}_6\times\mathbb{Z}_3$

All the cyclic subgroups by checking the multiples of all elements in the group

$$\langle (0,0) \rangle = \{(0,0)\}$$

$$\langle (0,1) \rangle = \{(0,0),(0,1),(0,2)\}$$

$$= \langle (0,2) \rangle$$

$$\langle (1,0) \rangle = \{(0,0),(1,0),(2,0),(3,0),(4,0),(5,0)\}$$

$$= \langle (5,0) \rangle$$

$$\langle (1,1) \rangle = \{(0,0),(1,1),(2,2),(3,0),(4,1),(5,2)\}$$

$$= \langle (5,2) \rangle$$

$$\langle (1,2) \rangle = \{(0,0),(1,2),(2,1),(3,0),(4,2),(5,1)\}$$

$$= \langle (5,1) \rangle$$

$$\langle (2,0) \rangle = \{(0,0),(2,0),(4,0)\}$$

$$= \langle (4,0) \rangle$$

$$\langle (2,1) \rangle = \{(0,0),(2,1),(4,2)\}$$

$$= \langle (4,2) \rangle$$

$$\langle (2,2) \rangle = \{(0,0),(2,2),(4,1)\}$$

$$= \langle (4,1) \rangle$$

$$\begin{split} \langle (3,0) \rangle &= \{ (0,0), (3,0) \} \\ \langle (3,1) \rangle &= \{ (0,0), (3,1), (0,2), (3,0), (0,1), (3,2) \} \\ &= \langle (3,2) \rangle \end{split} \endaligned \Box$$

- 12 Let a,b be positive integers, and let $d=\gcd(a,b)$ and $m=\mathsf{lcm}(a,b)$. Use Proposition 3.5.5 to prove that $\mathbb{Z}_a\times\mathbb{Z}_b\cong\mathbb{Z}_d\times\mathbb{Z}_m$
- 13 Show that in a finite cyclic group of order n, the equation $x^m = e$ has exactly m solutions, for each positive integer m that is a divisor of n.
- 17 Let G be the set of all 3×3 matrices of the form $\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$.
 - **a** Show that if $a,b,c\in\mathbb{Z}_3$, the G is a group with exponent 3. Consider

$$\left(\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \right)^{2} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & a+a & b+ac+b \\ 0 & 1 & c+c \\ 0 & 0 & 1 \end{bmatrix}$$

$$\left(\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \right)^{3} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a+a & b+ac+b \\ 0 & 1 & c+c \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3a & 3b+3ac \\ 0 & 1 & 3c \\ 0 & 0 & 1 \end{bmatrix}$$

Since G has an exponent of 3,

$$\begin{bmatrix} 1 & 3a & 3b+3ac \\ 0 & 1 & 3c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

b Show that if $a,b,c\in\mathbb{Z}_2$, the G is a group with exponent 4.

Consider

$$\left(\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \right)^{2} = \left[\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \right] \left[\begin{array}{cccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right]$$

$$= \begin{bmatrix} 1 & a+a & b+ac+b \\ 0 & 1 & c+c \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \left[\begin{array}{ccc} 1 & 0 & ac \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$\left(\begin{bmatrix} 1 & 0 & ac \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)^{2} = \begin{bmatrix} 1 & 0 & ac \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & ac \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \left[\begin{array}{cccc} 1 & 0 & ac+ac \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$= \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

19 Let $n=2^k$ for k>2. Prove that \mathbb{Z}_n^{\times} is not cyclic.

Hint: Show that ± 1 satisfy the equation $x^2=1$, and that this is impossible in any cyclic group.

Let $x = \frac{n}{2} + 1$. Then

$$x = \left(\frac{n}{2} + 1\right)^{2}$$

$$= \left(\frac{2^{k}}{2} + 1\right)^{2}$$

$$= (2^{k-1} + 1)^{2}$$

$$= 2^{2k-2} + 1 + 2^{k}$$

$$= 1 + 2^{k}(2^{k} + 1)$$

Therefore, $x^2 - 1 \equiv 0 \pmod{2^k}$, or $x^2 = 1$

Now let $x = \frac{n}{2} - 1$. Then

$$x = \left(\frac{n}{2} - 1\right)^{2}$$

$$= \left(\frac{2^{k}}{2} - 1\right)^{2}$$

$$= (2^{k-1} - 1)^{2}$$

$$= 2^{2k-2} + 1 - 2^{k}$$

$$= 1 + 2^k (2^k - 1)$$

Therefore, $x^2 - 1 \equiv 0 \pmod{2^k}$, or $x^2 = 1$

Therefore, the solutions to $x^2=1$ are $\pm 1, \frac{n}{2}\pm 1$

Therefore, the order of \mathbb{Z}_n^{\times} are even, which is not possible in a cyclic group

Therefore, \mathbb{Z}_n^{\times} is not cyclic (by contradiction)