به نام خدا

تمرین کامپیوتری سری سوم درس مخابرات دیجیتال اسودی

مهلت تحویل ۹۷/۹/۲۳

۱. در این تمرین به شبیه سازی مدولاسیون BPSK و راندمان احتمال خطای آن در کانال AWGN خواهید پرداخت:

میدانیم مدولاسیون BPSK یک سیگنالینگ یک بعدی است. بنابراین معادل برداری سیگنال دریافتی به سادگی به صورت ذیل قابل توصیف است:

$$r = s_m + n$$
, $m = 1,2$

که $s_m \in \{\pm arepsilon_b\}$ و $n \sim \mathcal{N}\left(0, rac{N_0}{2}
ight)$ و را طی کنید:

- یک رشته 10^6 بیتی تصادفی از 0 و 1 های هم احتمال تولید کنید.
 - یک رشته 10^6 نمونهای از نویز با توزیع مذکور تولید کنید.
- با استفاده از دو رشته مذکور، رشته دریافتی را مطابق با رابطه فوق تشکیل دهید (طول رشته دریافتی 10^6 نمونه است).
 - √ قاعده تصمیم گیری MAP را به دریافتی اعمال و رشته بیت متناظر (دریافتی) را استخراج کنید.
- ✓ دو رشته بیت ارسالی و دریافتی را مقایسه کنید و نسبت تعداد خطاها به کل بیتها را بیابید. این نسبت، تخمینی از احتمال خطای بیت است.

 γ_b ومنحنی احتمال خطای حاصل از شبیهسازی را بر حسب q_b انجام دهید و منحنی احتمال خطای حاصل از شبیهسازی را بر حسب q_b ازمایش فوق را برای γ_b در گستره q_b الی q_b الی q_b و انجام دهید و از انطباق نسبتا دقیق دو منحنی مطمئن q_b را نیز بر روی همان شکل رسم کنید و از انطباق نسبتا دقیق دو منحنی مطمئن شوید. محور عمودی لگاریتمی مقیاس بندی شود.

راهنمایی:

- برای تولید رشته باینری مذکور میتوانید از تابع randint استفاده کنید.
- برای تولید رشته نویز می توانید از تابع wgn استفاده کنید. توجه کنید ورودی سوم این تابع، توان (واریانس) نویز است که باید برحسب dB وارد شود.
 - برای اندازه گیری احتمال خطای بیت، می توانید از تابع biterr استفاده کنید.
- وشن است آنچه که اهمیت دارد نسبت ε_b/N_0 است و نه مقادیر ε_b و ε_b . پس در شبیهسازی برای سادگی میتوان برای تنظیم $\gamma_b=\varepsilon_b/N_0$ مقدار ε_b مقدار ε_b مقدار ثابت 1 در نظر گرفت و ε_b را برای دست یافتن به SNR مورد نظر تنظیم نمود.

لطفا قبل از ارسال پروژه اطلاعیه نحوه ارسال تمرینات را مطالعه فرمایید

موفق باشيد.