282

En los ejercicios 55 al 62 calcule $proy_v u$.

55.
$$\mathbf{u} = -12\mathbf{i} - 2\mathbf{j}$$
; $\mathbf{v} = -3\mathbf{i} + 7\mathbf{j}$

56.
$$\mathbf{u} = 14\mathbf{i}$$
; $\mathbf{v} = \mathbf{i} - \mathbf{j}$

57.
$$\mathbf{u} = -8\mathbf{i} + 3\mathbf{j}$$
; $\mathbf{v} = 2\mathbf{i} + 4\mathbf{j}$

58.
$$\mathbf{u} = 7\mathbf{i} + 5\mathbf{j}$$
; $\mathbf{v} = 9\mathbf{i} + 2\mathbf{j}$

59.
$$\mathbf{u} = 3\mathbf{i} + 2\mathbf{j}$$
; $\mathbf{v} = \mathbf{i} - 3\mathbf{j}$

60.
$$\mathbf{u} = 2\mathbf{i} - 5\mathbf{j}$$
; $\mathbf{v} = -3\mathbf{i} - 7\mathbf{j}$

61.
$$\mathbf{u} = 7\mathbf{i} + 7\mathbf{j}$$
; $\mathbf{v} = -6\mathbf{j}$

62.
$$\mathbf{u} = 4\mathbf{i} - \mathbf{j}$$
; $\mathbf{v} = -3\mathbf{i} + 6\mathbf{j}$

63. Sean
$$P = (3, -2), Q = (4, 7), R = (-1, 3) y S = (2, -1)$$
. Calcule proy _{\overrightarrow{PQ}} \overrightarrow{RS} y proy _{\overrightarrow{RS}} \overrightarrow{PQ} .

En los ejercicios 64 al 67 encuentre la distancia entre los dos puntos dados.

67.
$$(0, -7, -7)$$
; $(-6, -6, -6)$

En los ejercicios 68 al 71 encuentre la magnitud y los cosenos directores del vector dado.

68.
$$\mathbf{v} = -5\mathbf{i} + 7\mathbf{j} - 5\mathbf{k}$$

69.
$$v = i - 2j - 3k$$

70.
$$\mathbf{v} = \pi \mathbf{i} - 2\pi \mathbf{j} + 2\pi \mathbf{k}$$

71.
$$\mathbf{v} = -\mathbf{i} + 4\mathbf{j} + 8\mathbf{k}$$

72. Encuentre un vector unitario en la dirección de
$$\overrightarrow{PQ}$$
, donde $P = (3, -1, 2)$ y $Q = (3, -1, 2)$.

73. Encuentre un vector unitario cuya dirección sea opuesta a la de
$$\overrightarrow{PQ}$$
, donde $P = (1, -3, 0)$ y $Q = (0, 4, -3)$.

En los ejercicios 74 al 83 sean $\mathbf{u} = -2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, $\mathbf{v} = -7\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$ y $\mathbf{w} = \mathbf{i} + \mathbf{j} + \mathbf{k}$. Calcule:

75.
$$3v + 5w$$

77.
$$proy_{\mathbf{w}}(proy_{\mathbf{v}}\mathbf{u})$$

78.
$$proy_{\mathbf{w}} \mathbf{u}$$

79.
$$2\mathbf{u} - 4\mathbf{v} + 7\mathbf{w}$$

80.
$$2\mathbf{u} + 6\mathbf{v} + 3 \text{ proy}_{\mathbf{w}} \mathbf{v}$$

81.
$$\mathbf{u} \cdot \mathbf{w} - \mathbf{w} \cdot \mathbf{v}$$

En los ejercicios 84 al 87 encuentre el producto cruz $\mathbf{u} \times \mathbf{v}$.

84.
$$\mathbf{u} = -8\mathbf{i} + 3\mathbf{j}$$
; $\mathbf{v} = 2\mathbf{j} + 4\mathbf{k}$

85.
$$\mathbf{u} = 10\mathbf{i} + \mathbf{j} - 8\mathbf{k}$$
; $\mathbf{v} = -7\mathbf{i} - 5\mathbf{j} + 7\mathbf{k}$

86.
$$\mathbf{u} = 4\mathbf{i} - \mathbf{j} + 7\mathbf{k}$$
; $\mathbf{v} = -7\mathbf{i} + \mathbf{j} - 2\mathbf{k}$

87.
$$\mathbf{u} = -\mathbf{i} + \mathbf{j} - 4\mathbf{k}$$
; $\mathbf{v} = -3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$

88. Encuentre dos vectores unitarios ortogonales a
$$\mathbf{u} = \mathbf{i} - \mathbf{j} + 3\mathbf{k}$$
 y $\mathbf{v} = -2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$.

89. Calcule el área del paralelogramo con vértices adyacentes
$$(1, 4, -2), (-3, 1, 6)$$
 y $(1, -2, 3)$.

En los ejercicios 90 al 95 encuentre una ecuación vectorial, las ecuaciones paramétricas y las simétricas de la recta dada.

91. Contiene a
$$(1, -7, 7)$$
 y $(-1, 0, 7)$

93. Contiene a
$$(-3, 5, -4)$$
 y es paralela al vector $\mathbf{i} - \mathbf{j} + \mathbf{k}$