Phạm Quốc Việt - 20119307

Kiểm tra TT VSLI

Thời gian: 3 giờ (8g-11g)

<u>Bài 1</u>: (4 điểm)

Cho một hàm logic sau:

$$Y = F(D, C, B, A) = \sum (0,1,4,5,7,10,14,15) + d(2,8,11,13).$$

- a. Lập bảng trạng thái.
- b. Rút gọn hàm logic dùng bìa K.
- c. Thiết kế mạch chỉ dùng các cổng NAND có hai ngõ vào, mô phỏng và đánh giá dạng sóng kết quả và các thông số.

Bài 2: (2 điểm)

Mô phỏng T-FF từ D-FF và đánh giá các thông số của T-FF.

Bài 3: (4 điểm)

Thiết kế một thanh dịch 4 bit có yêu cầu: Có reset và khi reset tích cực thì 4 ngõ ra bằng không, có hai xung clock CLK1 và CLK2 được sử dụng để dịch bit và dịch nửa byte (nibble, semioctet).

- a. Vẽ sơ đồ nguyên lý mạch.
- b. Mô phỏng và đánh giá dạng sóng và các thông số.

<u>Yêu cầu</u>: SV nộp file báo cáo theo định dạng PDF có tên file là HoVaTen.pdf qua trang dạy học số.

<u>Bài 1</u>: (4 điểm)

Cho một hàm logic sau:

$$Y = F(D, C, B, A) = \sum (0,1,4,5,7,10,14,15) + d(2,8,11,13).$$

a. Lập bảng trạng thái.

D	C	В	A	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	X
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	X
1	0	0	1	0
1	0	1	0	1
1	0	1	1	X
1	1	0	0	0
1	1	0	1	X
1	1	1	0	1
1	1	1	1	1

b. Rút gọn hàm logic dùng bìa K.

DC	00	01	11	10
BA				
00	1	1	0	X
01	1	1	X	0
11	0	1	1	X
11	U		1	Λ
10	X	0	1	1

DC	00	01	11	10
BA				
				**
00	1	1	0	X
01	1	(1	X	0
01	1	1	A	U
11	0	1	1	X
10	X	0	1	1

$$\Rightarrow$$
 Y = D'B' + CA + DB

$$\Rightarrow$$
 Y = [D'B' + CA + DB]"

$$\Rightarrow$$
 Y = [(D'.B')'.(CA +DB)']'

$$\Rightarrow$$
 Y = [(D'.B')'.(CA)'(DB)']'

c. Thiết kế mạch chỉ dùng các cổng NAND có hai ngõ vào, mô phỏng và đánh giá dạng sóng kết quả và các thông số.

Hình 1: sơ đồ nguyên lý

THÔNG SỐ:

Voltage 1	1.2 V.	off =
Voltage 2	O V <u>ř</u>	off =
Delay time	¥	off =
Rise time	lp sį	off =
Fall time	lp sį	off =
Pulse width	10u s <u>i</u>	off =
Period	20u s <u>i</u>	off =
Eroquoney name for 1 Ineried	¥	nff =

Hình 2: thông số A

Voltage 1	1.2 V <u>i</u>	off =
Voltage 2	O Vį̇̃	off =
Delay time	Ĭ.	off =
Rise time	1p si	off =
Fall time	1p si	off =
Pulse width	20u s <u>i</u>	off =
Period	40u s <u>i</u>	off =
Frequency name for 1/period	Ĭ	off =

Hình 3: thông số B

Voltage 1	O VŽ	off =
Voltage 2	1.2 V	off =
Delay time	<u>I.</u>	off =
Rise time	1p s <u>š</u>	off =
Fall time	1p s <u>š</u>	off =
Pulse width	30u sį	off =
Period	60u s <u>i</u>	off =
Frequency name for 1/period	Ĭ.	off —

Hình 4: thông số C

Voltage 1	1.2 V	off _
Voltage 2	O A	off =
Delay time	Ĭ.	off =
Rise time	1p s≝	off =
Fall time	1p s≝	off =
Pulse width	40u s <u>i</u>	off =
Period	80u s <u>i</u>	off =
Franciancy name for 1/nerind	Y	nff =

Hình 5: thông số D

Kết quả mô phỏng:

Hình 6: kết quả mô phỏng

Ở thời điểm 0u (s) tới 10u (s), khi xung DCBA = 0100 thì ngỗ ra Y=1 Ở thời điểm 10u (s) tới 20u (s), khi xung DCBA = 0101 thì ngỗ ra Y=1 Ở thời điểm 20u (s) tới 30u (s), khi xung DCBA = 0110 thì ngỗ ra Y=0 Ở thời điểm 30u (s) tới 40u (s), khi xung DCBA = 0011 thì ngỗ ra Y=0 Ở thời điểm 40u (s) tới 50u (s), khi xung DCBA = 1000 thì ngỗ ra Y=0 Ở thời điểm 10u (s) tới 10u (s), khi xung DCBA = 1000 thì ngỗ ra 10u C thời điểm 10u (s) tới 10u (s), khi xung DCBA = 1000 thì ngỗ ra 10u C thời điểm 10u (s) tới 10u (s), khi xung DCBA = 1000 thì ngỗ ra 10u C thời điểm 10u (s) tới 10u (s), khi xung DCBA = 1000 thì ngỗ ra 10u C thời điểm 10u (s) tới 10u (s), khi xung DCBA = 1000 thì ngỗ ra 10u C thời điểm 10u (s) tới 10u (s), khi xung DCBA = 1000 thì ngỗ ra 10u C thời điểm 10u (s) tới 10u C thời điểm 10u (s) tới 10u C thời điểm 10u C thời 10u C thời điểm 10u C thời điểm 10u C thời 10u C thời 10u C thời điểm 10u C thời 10u C thời 10u C thời điểm 10u C thời 10u C

Mô phỏng T-FF từ D-FF và đánh giá các thông số của T-FF.

Sơ đồ nguyên lý T-FF ở hình 1:

Hình 7: Sơ đồ nguyên lý T-FF

T-FF sau khi đóng gói như hình 2 bên dưới:

Hình 8: T-FF sau khi đóng gói

Ta sẽ set nguồn cho các ngõ vào như hình 3 bên dưới:

Hình 9: set thông số ngõ vào của T-FF Thông số:

Hình 10: thông số xung CLK

Hình 11: thông số CLR

Hình 12: thông số SET

Hình 13: thông số T Sau khi ta set nguồn cho ngõ vào thì sẽ tiến hành mô phỏng:

Hình 14: kết quả mô phỏng của T-FF

Phân tích:

Ở thời điểm 0u (s) tới 10u (s), khi xung CLR = 0, SET = 0 thì ngõ ra Q = 1 và $\sim Q = 1$ Ở thời điểm 10u (s) tới 20u (s), khi xung CLR = 0, SET = 1 thì ngõ ra Q = 0 và $\sim Q = 1$. Ở thời điểm 20u (s) tới 30u (s), khi xung CLR = 1, SET = 0 thì ngõ ra Q = 1 và $\sim Q = 0$ Ở thời điểm 31u (s), khi xung CLK cạnh lên, T = 1, CLR = 1, SET = 1 thì ngõ ra Q = 1 và $\sim Q = 1$ do không đổi trạng thái.

 \mathring{O} thời điểm 33u (s) tới 34u (s), khi xung CLK cạnh lên, T = 0, CLR = 1 ,SET = 1 thì ngõ ra Q=0 và $\sim Q=1$ do đảo trạng thái.

Tsu(setup time) = 693,504 n(s)

Hình 15: vùng thời gian thiết lập

t Th(hold time) = 509,304 n(s)

Hình 16: vùng thời gian giữ

❖ Thời gian từ xung CLK tới Q = 999.164n (s)

Hình 17: thời gian từ cung CLK tới Q

❖ Thời gian từ xung CLK tới Q' = 998.457 (s)

Hình 18: thời gian từ xung CLK tới Q'

❖ Tính công suất của FFT:

Hình 19: dạng sóng mô phỏng nguồn và dòng

Hình 20: dạng sóng mô phỏng công suất tức thời

Pmax = 3.67m W

Pmin = 10,25n W

Hình 21: công suất trung bình là 93.97n W