#### INTRODUCTION TO NEURAL NETWORKS

Lecture 2. Linear Regression & Logistic Regression

Dr. Jingxin Liu

School of AI and Advanced Computing



## **Table of Contents & Learning Goals**

#### **Table of Contents:**

- I. Linear Regression
- II. Logistic Regression

#### **Learning Goals:**

- Formulate a machine learning task mathematically
- Derive both the closed-form solution and the gradient descent updates for linear regression and logistic regression
- Learn some common terms in machine learning glossary

### Linear Regression – Flat price prediction

#### Flat price prediction - regression problem

| Living Area (m²) | Price ( <i>M Yuan</i> ) |
|------------------|-------------------------|
| 120              | 5.4                     |
| 95               | 4.1                     |
| 143              | 7.1                     |
| 78               | 3.9                     |
| 124              | 5.9                     |
| 131              | 6.3                     |
|                  |                         |



### Linear Regression – Flat price prediction



### **Linear Regression** – Notations

|        | Living Area ( <i>m</i> <sup>2</sup> ) | Price ( <i>M Yuan</i> ) |
|--------|---------------------------------------|-------------------------|
|        | 120                                   | 5.4                     |
|        | 95                                    | 4.1                     |
|        | 143                                   | 7.1                     |
|        | 78                                    | 3.9                     |
|        | 124                                   | 5.9                     |
|        | 131                                   | 6.3                     |
| $\int$ | •••                                   |                         |

#### **Notations:**

m = number of training examples

x = input variables / feature

y = output variables / target variables

(x, y) one pair of training example

 $(x^i, y^i)$  i th training example

 $X = \{x^1, x^2, \dots, x^i, \dots, x^m\}$  Feature set of the training set

 $Y = \{y^1, y^2, \dots, y^i, \dots, y^m\}$  Target set of the training set

### **Linear Regression** – Notations

| Living Area<br>( <i>m</i> ²) | # Bedroom           | Price (M<br>Yuan) |
|------------------------------|---------------------|-------------------|
| 120                          | 3                   | 5.4               |
| 95                           | 2                   | 4.1               |
| 143                          | 4                   | 7.1               |
| 78                           | 2                   | 3.9               |
| 124                          | 4                   | 5.9               |
| 131                          | 3                   | 6.3               |
|                              |                     |                   |
| 1 <sup>st</sup> dim          | 2 <sup>nd</sup> dim |                   |

#### Notations(cont.):

 $x_1 = 1^{st} \text{ dim of X / } 1^{st} \text{ feature}$ 

 $x_i = j^{\text{th}} \text{ dim of X } / j^{\text{th}} \text{ feature}$ 

n = number of dimensions/features

$$X = \begin{bmatrix} x_1^1 & \cdots & x_n^1 \\ \vdots & \ddots & \vdots \\ x_1^m & \cdots & x_n^m \end{bmatrix}$$
 1st example with  $n$  dim

## **Linear Regression** – Learning



#### Linear Regression - Learning Algorithm

The linear mapping function / hypothesis / model / learning algorithm can be represented as

$$f(x) = \theta_0 + \theta_1 x_1$$

$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n = \hat{y}$$

$$f(x) = f_{\theta}(x) = \sum_{i=0}^{n} \theta_i x_i = \hat{y} \qquad (x_0 = 1)$$



 $\theta$  are parameters of learning algorithms

 $\hat{y}$  is the predicted result of f(x)

The job of training is to use the training set to choose or learn appropriate parameters  $\theta$  of learning algorithms.

### Linear Regression - Loss Function

Some of these linear fits are better than others. In order to quantify how good the fit is, we define a **loss function**.





The best model with respect to  $\theta$  should have the minimum sum of  $\mathcal{L}$  on the training set.

When we combine our model f(x) and loss function  $\mathcal{L}$ , we get an **optimization problem**.

### Linear Regression - Cost Function

To solve the optimization problem, we try to minimize a **cost function** with respect to the model parameters  $\theta$ .

For linear regression, the cost function is simply the loss, averaged over all the training examples (MSE, Mean Squared Error).

$$\mathcal{J}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^i) - y^i)^2$$

Note the difference between the loss function and the cost function. The loss is a function of the predictions and targets, while the cost is a function of the model parameters.



Machine learning behind the scenes

Source: <u>https://me.me/i/machine-learning-gradient-descent-machine-learning-machine-learning-behind-the-ea8fe9fc64054eda89232d7ffc9ba60e</u>

$$\mathcal{J}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^i) - y^i)^2$$
 second-order equation



To get the gradient / slope, we take the derivative of cost function at  $\theta$ .

When a function is multivariate, we use partial derivatives to get the slope of a function at a given point.



In order to do gradient descent, we require two data points:

a direction -> partial derivative a learning rate ->  $\alpha$  (alpha) (set by yourself)

Mathematically the formula of gradient descent is:

Repeat until convergence {





$$\theta_{j} \leftarrow \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} \mathcal{J}(\theta)$$

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} \mathcal{J}(\theta)$$

$$\theta_{1} \coloneqq \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} \mathcal{J}(\theta)$$

$$\frac{\partial}{\partial \theta_{j}} \mathcal{J}(\theta) = \frac{\partial}{\partial \theta_{j}} \left(\frac{1}{2m} \sum_{i=1}^{m} (f(x_{i}) - y_{i})^{2}\right)$$

$$\frac{\partial}{\partial \theta_{j}} \mathcal{J}(\theta) = \frac{1}{m} \sum_{i=1}^{m} (f(x_{i}) - y_{i}) \cdot \frac{\partial}{\partial \theta_{j}} (f(x_{i}) - y_{i})$$

$$\frac{\partial}{\partial \theta_{j}} \mathcal{J}(\theta) = \frac{1}{m} \sum_{i=1}^{m} (f(x_{i}) - y_{i}) \cdot \frac{\partial}{\partial \theta_{j}} [(\theta_{0}x_{0} + \dots + \theta_{j}x_{j} + \dots + \theta_{n}x_{n}) - y_{i}]$$

$$\frac{\partial}{\partial \theta_{i}} \mathcal{J}(\theta) = \frac{1}{m} \sum_{i=1}^{m} (f(x_{i}) - y_{i}) \cdot x_{i}$$

$$\frac{\partial}{\partial \theta_j} \mathcal{J}(\theta) = \frac{1}{m} \sum_{i=1}^m (f(x_i) - y_i) \cdot x_i \qquad \theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} \mathcal{J}(\theta)$$

Therefore,

$$\theta_j \coloneqq \theta_j - \alpha \cdot \frac{1}{m} \sum_{i=1}^m (f(x_i) - y_i) \cdot x_i$$

So consequently,

Repeat until convergence { 
$$\theta_j \coloneqq \theta_j - \alpha \cdot \frac{1}{m} \sum_{i=1}^m (f(x_i) - y_i) \cdot x_i$$
 }



### Linear Regression - Batch GD vs SGD

#### **Batch Gradient Descent:**

Batch Gradient Descent involves calculations over the full training set at each step as a result of which it is very slow on very large training data.

#### **Stochastic Gradient Descent (SGD):**

SGD is stochastic in nature i.e it picks up a "random" instance of training data at each step and then computes the gradient making it much faster as there is much fewer data to manipulate at a single time, unlike Batch GD.

### Logistic Regression - Notations

| Living Area (m²) | # Bedroom | Luxury |
|------------------|-----------|--------|
| 120              | 3         | Yes    |
| 95               | 2         | No     |
| 143              | 4         | No     |
| 78               | 2         | Yes    |
| 124              | 4         | No     |
| 131              | 3         | Yes    |
|                  |           |        |

#### **Notations:**

$$X = \begin{bmatrix} x_1^1 & \cdots & x_n^1 \\ \vdots & \ddots & \vdots \\ x_1^m & \cdots & x_n^m \end{bmatrix}$$

$$Y = \{0, 1\}$$
 
$$\begin{cases} 0 : \text{`Negative Class'} \\ 1 : \text{`Positive Class'} \end{cases}$$

## **Logistic Regression**

| Living Area (m²) | # Bedroom | Luxury |
|------------------|-----------|--------|
| 120              | 3         | Yes    |
| 95               | 2         | No     |
| 143              | 4         | No     |
| 78               | 2         | Yes    |
| 124              | 4         | No     |
| 131              | 3         | Yes    |
|                  |           | •••    |





For linear regression

$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

The idea in logistic regression is to cast the problem in form of generalized linear regression model.



$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
 unchanged

$$\hat{y} \in (-\infty, +\infty) \, \dashrightarrow \hat{y} \in \{0, 1\}$$

Predict the probability that y = 1  $p \in [0,1]$  Threshold = 0.5

$$y = \begin{cases} 0 & if \ p < 0.5 \\ 1 & if \ p \ge 0.5 \end{cases}$$

So, instead of predict  $\hat{y}$ , we need to predict the probability p

But the predicted output may  $< 0 \ or > 1$ 

Squeezes the output from  $(-\infty, +\infty)$  to [0,1].

#### Sigmoid (logistic) function



$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
 mapping function in linear regression

$$h(x) = sigmoid(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n)$$
 mapping function in logistic regression

where 
$$sigmoid(z) = \frac{1}{1 + e^{-z}}$$



$$h(x) = h_{\theta}(x) = \frac{1}{1 + e^{-\sum_{0}^{n} \theta_{j} x_{j}}}$$
  $0 \le h(x) \le 1$ 

h(x) estimated probability that y = 1 on input x

h(x) estimated probability that y = 1 on input x

$$h(x)=P(y=1|x;\theta)$$
 Probability that  $y=1$ , given  $x$ , parameterized by  $\theta$  
$$P(y=1|x;\theta)+P(y=0|x;\theta)=1$$
 
$$P(y=0|x;\theta)=1-P(y=1|x;\theta)$$

So consequently,

$$h(x)$$
 is the probability ' $y = 1$ '  $1 - h(x)$  is the probability ' $y = 0$ '

$$\mathcal{L} = \frac{1}{2}(\hat{y} - y)^2 = \frac{1}{2}(f(x) - y)^2$$
 Loss function for linear regression

We want to assign more punishment when predicting 1 while the actual is 0 and when predict 0 while the actual is 1. The loss function of logistic regression is doing this exactly which is called **Logistic Loss**.

$$\mathcal{L} = \begin{cases} -\log(h(x)) & \text{if } y = 1\\ -\log(1 - h(x)) & \text{if } y = 0 \end{cases}$$

$$if y = 1$$

$$if y = 0$$

Loss function for logistic regression





### Logistic Regression - Lost Function & Cost Function

$$\mathcal{L} = \begin{cases} -\log(h(x)) & \text{if } y = 1\\ -\log(1 - h(x)) & \text{if } y = 0 \end{cases}$$

It can be written as one single formula which brings convenience for calculation:

$$\mathcal{L} = -y \cdot \log(h(x)) - (1 - y)\log(1 - h(x))$$

So the cost function of the model is the summation from all training data samples:

$$\mathcal{J}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L} = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^i \cdot \log\left(h(x^i)\right) + \left(1 - y^i\right) \cdot \log(1 - h(x^i)) \right]$$

### Logistic Regression - Batch GD for Logistic Regression

$$\min_{\theta} \mathcal{J}(\theta)$$

Again, we use gradient descent for optimization.

Repeat until convergence {
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} \mathcal{J}(\theta)$$
}

Repeat until convergence { 
$$\theta_j \coloneqq \theta_j - \alpha \cdot \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i) \cdot x_i$$
 }

Surprise!

## **Logistic Regression**

$$\begin{split} \mathcal{Z} &= \sum_{J=1}^{N} \theta_{J} X_{i} \Rightarrow h(x) = \frac{1}{1+e^{-\frac{\alpha}{2}}} \Rightarrow \mathcal{L} = -\frac{g}{1} \log(hx_{3}) - (1-g) \log(1-hx_{3}) \Rightarrow J(\theta_{3}) = \frac{1}{m} \sum_{j=1}^{m} \mathcal{L} \\ \text{we need to find } \frac{\partial J(\theta)}{\partial \theta}, \quad Jet \quad A = -\frac{g}{1} \log(hx_{3}), \quad B = -(1-g) \cdot \log(1-hx_{3}) \\ \text{To find } \frac{\partial A}{\partial \theta}, \quad To find \frac{\partial B}{\partial \theta}, \\ \frac{\partial A}{\partial \theta} &= \frac{\partial A}{\partial h(x)} \cdot \frac{\partial Z}{\partial Z} \quad \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac{\partial h(x)}{\partial Z} \cdot \frac{\partial Z}{\partial \theta} \\ &= -\frac{M}{h^{\alpha}} \cdot \frac$$

#### Conclusion

#### Regression



**Linear Regression** 



$$\mathcal{L} = \frac{1}{2}(\hat{y} - y)^2 = \frac{1}{2}(f(x) - y)^2$$



$$\mathcal{J}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^i) - y^i)^2$$



#### Classification



Logistic Regression

$$h(x) = h_{\theta}(x) = \frac{1}{1 + e^{-\sum_{0}^{n} \theta_{j} x_{j}}}$$

$$\mathcal{L} = -y \cdot \log(h(x)) - (1 - y)\log(1 - h(x))$$

$$\mathcal{J}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^i) - y^i)^2 \qquad = -\frac{1}{m} \sum_{i=1}^{m} [y^i \cdot \log(h(x^i)) + (1 - y^i) \cdot \log(1 - h(x^i))]$$

**Gradient Descent** 

#### **Conclusion**

Supervised Learning



**Classification / Regression** 



**Choose an algorithm** 

$$f(x) = \hat{y}$$

Loss function

**Cost function** 

Optimizer