Decision Tree

DT Regression

DT clussification.

ODT classifier -

Two Teenwque

OID3

(2) CART

Entropy and aini Index -We use it to split dataset

Information Gain

Regre stion 0/8 weigh heigh BMI (60 (80

DT classifies

outlook	temp	humidit	y wind	play	
Sunny	H	H	/	N	
Sunny	K	H	S	H	
over cart	Ĥ	H	ω	Y	
son	M	Н	W	Y	
ran	C	7	W	\vee	
zein	C	N	S	N	
overeart	C	N	W	\forall	
sunm	M	H	ω	\sim	
sunny	C	W	W	\rightarrow	
ran	W	\sim	ω	Y	
84NNY	~	\sim	S	4	
overcust	\sim	H	ς	\vee	
overcupt	C	N	W	7	
Sen	\sim	H	2	N	

1) Feature and be numeric and categorical 2 old can be numeric and categorical.

9y/SM

2y/3N

Quttook

3y/2N

Gyrony

Tovercast

Toward

Towar

For each feature we have to do the same process like we did above.

Entropy and gini impurity will decide which feature is do complete classification.

@ Entropy (H)

sinary des loge (Pred - Prolotoge (Pro)

multiduss

H = -Pc, log(Pc,) - Pc, log(R2) - Pc, log (Pc3) -

Example - $\frac{6y}{3N}$ $\frac{3y}{3N}$ $\frac{3y}{5N}$ $\frac{7}{5}$

$$C_1 = -\frac{3}{6} \log \left(\frac{3}{6}\right) - \frac{3}{6} \log \frac{3}{6}$$

= 1 impure split

$$c_2 = -\frac{3}{3} \log \frac{3}{3} - \frac{0}{3} \log \frac{0}{3}$$

= 0 pure slint

Imp For the pure split of devid / feedure entropy value = 0

for impule split

Entropy value = 1

D'Gini Impurities - G.I.

$$G.J. = 1 - \sum_{j=1}^{n} (p)^{2}$$

binary class

a.j. =
$$1 - \sum_{i=1}^{n} [(Pc_i)^2 + (Pc_i)^2]$$

multi class

$$G_{i} = 1 - \sum_{i=1}^{n} \left[(PC_{i})^{2} + (PC_{2})^{2} + \cdots \right]$$

$$C_1 = 1 - \left[\frac{2}{4} \right]^2 + \left[\frac{2}{4} \right]^2$$

 $c_2 = \left[-\left(\frac{2}{2}\right)^2 + \left(\frac{0}{2}\right)^2\right]$

=> Range of Entropy is = 0 to]

=) Range of G.I is = 0 to 0.5

@ Information Ceein -

Mill tell us among the all feature which is best for root node.

 $goin(S,f) = H(S) - \sum \frac{|Sv|}{|S|} H(Sv)$

For eg: We have two feature f, and f. $\frac{9\gamma/5N}{6\gamma/2N} \frac{f_2}{3\gamma/3N} \frac{7\gamma/3N}{4\gamma/5N}$

 $H(s) = -\frac{9}{14} \log \frac{9}{19} - \frac{5}{19} \log \frac{5}{19}$

H = 0.99

C1 = 0.8/

(2 =

= 0.29

Information
$$F_1$$
 F_2 F_3 0.049 0.009

- Bigger dataset pre pruning
- 3) small datast post-prinny.

