werewolf
Serbian (SRB)

Werewolf

U prefekturi Ibaraki postoji N gradova i M puteva. Gradovi su označeni brojevima od 0 do N-1 u rastućem redosledu po broju stanovnika. Svaki put spaja dva različita grada i dvosmeran je. Moguće je stići od bilo kog do bilo kog drugog grada pomoću ovih puteva.

Pavle je isplanirao Q putovanja, koja su označena brojevima od 0 do Q-1. Putovanje sa rednim brojem i ($0 \le i \le Q-1$) se sastoji od toga da se krene od grada S_i i dođe do grada E_i .

Pavle je vukodlak. Ovo u prevodu znači da on ima dve forme: **Pavle formu** i **Šebez formu**. Na početku svakog putovanja Pavle je u svojoj ljudskoj (Pavle) formi. Na kraju svakog putovanja, Pavle mora biti u Šebez formi. Ovo znači da će Pavle nekad u toku putovanja da se **transformiše** (da se pretvori iz Pavla u Šebeza) tačno jednom i to mora da se desi u nekom gradu (možda S_i ili E_i).

Živeti kao vukodlak nija lako. Neophodno je da Pavle zaobilazi gradove sa malom populacijom kada je u Pavle formi i da zaobilazi gradove sa velikom populacijom kada je u Šebez formi. Tačnije, za svako putovanje i, postoje brojevi (ograničenja) L_i i R_i koji zadovoljavaju $0 \leq L_i \leq R_i \leq N-1$. Ovo znači da kod putovanja sa rednim brojem i Pavle mora zaobići gradove $0,1,\ldots,L_i-1$ kada je u Pavle formi i mora zaobići gradove $R_i+1,R_i+2,\ldots,N-1$ kada je u Šebez formi. Dakle, u putovanju i Pavle može da se transformiše jedino u jednom od gradova L_i,L_i+1,\ldots,R_i .

Za svako putovanje, vaš zadatak je da odredite da li je moguće da Pavle otputuje od grada S_i do grada E_i tako da budu ispoštovana gore pomenuta ograničenja. Dužine Pavlovih putovanja (broj puteva na njima) mogu biti proizvoljno velike.

Detalji implementacije

Potrebno je da implementirate sledeću funkciju:

```
int[] check_validity(int N, int[] X, int[] Y, int[] S, int[] E, int[]
L, int[] R)
```

- N: broj gradova.
- X i Y: nizovi dužine M. Za svako j ($0 \le j \le M-1$), grad X[j] je direktno povezan sa gradom Y[j] jednim putem.

• S, E, L i R: nizovi dužine *Q* koji predstavljaju putovanja.

Obratite pažnju, vrednosti M i Q su dužine nizova i mogu se dobiti onako kako je navedeno u napomeni o implementaciji.

Funkcija check_validity se zove tačno jednom za svaki test primer. Ova funkcija treba da vrati niz A celih brojeva dužine Q. Vrednost A_i ($0 \le i \le Q-1$) mora biti jednaka 1 ako je moguće da Pavle otputuje od grada S_i do grada E_i zaobilazeći gradove $0,1,\ldots,L_i-1$ dok je u Pavle formi, i gradove $R_i+1,R_i+2,\ldots,N-1$ dok je u Šebez formi. U suprotnom, ova vrednost mora biti jednaka 0.

Primer

Neka je
$$N=6$$
, $M=6$, $Q=3$, $X=[5,1,1,3,3,5]$, $Y=[1,2,3,4,0,2]$, $S=[4,4,5]$, $E=[2,2,4]$, $L=[1,2,3]$, i $R=[2,2,4]$.

Grejder zove funkciju check_validity(6, [5, 1, 1, 3, 3, 5], [1, 2, 3, 4, 0, 2], [4, 4, 5], [2, 2, 4], [1, 2, 3], [2, 2, 4]).

Za putovanje pod rednim brojem 0, Pavle može da otputuje od grada 4 do grada 2 na sledeći način:

- Pavle započinje u gradu 4 (Trenutno je u Pavle formi)
- Pomeri se u grad 3 (I dalje je u Pavle formi)
- Pomeri se u grad 1 (Još uvek je u Pavle formi)
- Transformiše se u Šebeza (Sad je u Šebez formi)
- Pomeri se u grad 2 (I sada je u Šebez formi)

Za putovanja pod rednim brojem 1 i 2 nije moguće doći od početnog do krajnjeg grada.

Dakle, Vaša funkcija treba da vrati niz [1,0,0].

Fajlovi sample-01-in.txt i sample-01-out.txt u zipovanom dodatku odgovaraju ovom primeru. Drugi primeri ulaza/izlaza su takođe dostupni u ovom dodatku.

Ograničenja

- 2 < N < 200000
- $N-1 < M < 400\,000$
- $1 \le Q \le 200\,000$
- Za svako $0 \le j \le M-1$
 - $0 \le X_i \le N-1$
 - $0 \le Y_i \le N 1$
 - $\circ X_j \neq Y_j$
- Moguće je putovati od bilo kog do bilo kog drugog grada koristeći date puteve.
- Svaki par gradova je direktno povezan najviše jednim putem. Drugim rečima, za svako $0 \le j < k \le M-1$, važi $(X_i, Y_i) \ne (X_k, Y_k)$ i $(Y_i, X_i) \ne (X_k, Y_k)$.
- Za svako $0 \le i \le Q-1$
 - $\circ \ 0 \leq L_i \leq S_i \leq N-1$
 - $\circ \ 0 \leq E_i \leq R_i \leq N-1$
 - $\circ S_i
 eq E_i$
 - $\circ \ L_i \leq R_i$

Podzadaci

- 1. (7 poena) $N \le 100$, $M \le 200$, $Q \le 100$
- 2. (8 poena) $N \leq 3\,000$, $M \leq 6\,000$, $Q \leq 3\,000$
- 3. (34 poena) M=N-1 i nijedan grad nije direktno povezan sa više od 2 grada (gradovi su povezani u liniju)
- 4. (51 poen) Bez dodatnih ograničenja

Priloženi grejder

Priloženi grejder učitava ulaz u sledećem formatu:

- prvi red: N M Q
- (2+j)-ti red $(0 \le j \le M-1)$: $X_j Y_j$
- (2+M+i)-ti red $(0 \le i \le Q-1)$: $S_i E_i L_i R_i$

Priloženi grejder štampa povratnu vrednost funkcije check_validity u sledećem formatu:

• (1+i)-ti red $(0 \le i \le Q-1)$: A_i