

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

SRINIVASA RAMANUJAN THE MAN WHO KNEW INFINITY

UNIT -1 Multiple Integrals

Tutorial Sheet -3

		Tutorial Sheet -3	
Sl.No. Questions		Questions	Answer
		Part - A	
1	Evaluate $\int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^2 dr d\theta$		$\frac{32}{9}$
2	Evaluate $\int_{0}^{\pi/2} \int_{0}^{\infty} \frac{r dr d\theta}{(r^2 + a^2)^2}$		$\frac{\pi}{4a^2}$
3	Change into polar co-ordinates $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$		$\int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^2} r dr d\theta$
4	Evaluate $\int_{0}^{2\pi} \int_{0}^{\pi}$	$\int_{0}^{a} r^{4} dr d\phi d\theta$	$\frac{2\pi^2 a^5}{5}$
5	Evaluate $\int_{0}^{\log a}$	$\int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dz dy dx$	
		Part - B	
6	bounded by c	$\frac{dzdydx}{-x^2-y^2-z^2}$ Where V is the region of space o-ordinate planes and the sphere $X^2+Y^2+Z^2=1$ and the positive octant	$\frac{\pi^2}{8}$
7		ume of the tetrahedron bounded by the planes $x=0$, $y=0$,	125 6
8	Find the volu	me of the tetrahedron bounded by the plane c = 1 and all co-ordinate planes	$\frac{abc}{6}$
9	Find the volu	me bounded by the cylinder $x^2 + y^2 = 4$ and the $z = 0$	16π
10		me of Sphere $x^2 + y^2 + z^2 = a^2$ using triple	$\frac{4\pi a^3}{3}$

Co-Ordinators: Dr.Sundarammal Kesavan, Dr.V.Srinivasan, Dr.N.Parvathi, Dr.N.Balaji