```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as seaborn
import warnings
warnings.filterwarnings("ignore")
df=pd.read_excel("Churn_Modelling.xlsx")
df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	I
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8
2	3	15619304	Onio	502	France	Female	42	8	15
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	12
4									-

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns):

200	00100000	,					
#	Column	Non-Null Count	Dtype				
0	RowNumber	10000 non-null	int64				
1	CustomerId	10000 non-null	int64				
2	Surname	10000 non-null	object				
3	CreditScore	10000 non-null	int64				
4	Geography	10000 non-null	object				
5	Gender	10000 non-null	object				
6	Age	10000 non-null	int64				
7	Tenure	10000 non-null	int64				
8	Balance	10000 non-null	float64				
9	NumOfProducts	10000 non-null	int64				
10	HasCrCard	10000 non-null	int64				
11	IsActiveMember	10000 non-null	int64				
12	EstimatedSalary	10000 non-null	float64				
13	Exited	10000 non-null	int64				
<pre>dtypes: float64(2), int64(9), object(3)</pre>							
memory usage: 1.1+ MB							

df.drop(columns=["RowNumber","CustomerId","Surname"],inplace=True)

df

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCr(
0	619	France	Female	42	2	0.00	1	
1	608	Spain	Female	41	1	83807.86	1	
2	502	France	Female	42	8	159660.80	3	
3	699	France	Female	39	1	0.00	2	
4	850	Spain	Female	43	2	125510.82	1	
9995	771	France	Male	39	5	0.00	2	
9996	516	France	Male	35	10	57369.61	1	
9997	709	France	Female	36	7	0.00	1	
9998	772	Germany	Male	42	3	75075.31	2	
9999	792	France	Female	28	4	130142.79	1	
10000 rows × 11 columns								

```
{\it from \ sklearn.preprocessing \ import \ Label Encoder}
```

```
le=LabelEncoder()
df["Geography"]=le.fit_transform(df["Geography"])
le1=LabelEncoder()
df["Gender"]=le1.fit_transform(df["Gender"])
```

df

		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCr(
	0	619	0	0	42	2	0.00	1	
	1	608	2	0	41	1	83807.86	1	
	2	502	0	0	42	8	159660.80	3	
	3	699	0	0	39	1	0.00	2	
	4	850	2	0	43	2	125510.82	1	
	9995	771	0	1	39	5	0.00	2	
	9996	516	0	1	35	10	57369.61	1	
	9997	709	0	0	36	7	0.00	1	
	9998	772	1	1	42	3	75075.31	2	
	9999	792	0	0	28	4	130142.79	1	
	10000	rows × 11 colum	ns						
4									>

```
x=df.iloc[:,:-1]
x
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCr(
0	619	0	0	42	2	0.00	1	
1	608	2	0	41	1	83807.86	1	
2	502	0	0	42	8	159660.80	3	
3	699	0	0	39	1	0.00	2	
4	850	2	0	43	2	125510.82	1	
9995	771	0	1	39	5	0.00	2	
9996	516	0	1	35	10	57369.61	1	
9997	709	0	0	36	7	0.00	1	
9998	772	1	1	42	3	75075.31	2	
9999	792	0	0	28	4	130142.79	1	
10000 rows × 10 columns								>

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x=sc.fit_transform(x)

х

```
array([[-0.32622142, -0.90188624, -1.09598752, ..., 0.64609167, 0.97024255, 0.02188649],
[-0.44003595, 1.51506738, -1.09598752, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.53679418, -0.90188624, -1.09598752, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[ 0.60498839, -0.90188624, -1.09598752, ..., -1.54776799, 0.97024255, -1.00864308],
[ 1.25683526, 0.30659057, 0.91241915, ..., 0.64609167,
```

```
-1.03067011, -0.12523071],
     [ 1.46377078, -0.90188624, -1.09598752, ..., 0.64609167,
      -1.03067011, -1.07636976]])
y=df["Exited"].values
У
  array([1, 0, 1, ..., 1, 1, 0])
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.30,random_state=1)
import tensorflow as tf
from tensorflow.keras import Sequential # it is used to build NN
from tensorflow.keras.layers import Dense # it is used to add hidden layers
from sklearn.metrics import classification_report #evaulation
#builind NN
#step 1-: init a model
ann=Sequential()
#step2-: add layers to model
ann.add(Dense(units=12,activation="relu")) #HL
ann.add(Dense(units=1,activation="sigmoid"))
#step3-: establish connection with layers
ann.compile(optimizer="adam",loss="binary_crossentropy",metrics=["accuracy"])
#step4-: fit the model
ann.fit(xtrain,ytrain,epochs=100,batch_size=32)
#step5-: make predictions
ypred=ann.predict(xtest)
  Epoch 1/100
  219/219 [===
        Epoch 2/100
  Epoch 3/100
  219/219 [============= - 0s 2ms/step - loss: 0.4357 - accuracy: 0.8109
  Epoch 4/100
  Epoch 5/100
  219/219 [============= - 0s 2ms/step - loss: 0.4114 - accuracy: 0.8274
  Epoch 6/100
  Epoch 7/100
  219/219 [====
         Epoch 8/100
  Epoch 9/100
  Epoch 10/100
  219/219 [=====
         Epoch 11/100
  Epoch 12/100
  Epoch 13/100
  Epoch 14/100
  Epoch 15/100
  219/219 [=====
         Epoch 16/100
  Epoch 17/100
  Epoch 18/100
  Epoch 19/100
  Epoch 20/100
  Epoch 21/100
```

```
Epoch 22/100
Epoch 23/100
Epoch 24/100
Epoch 25/100
Epoch 26/100
Epoch 27/100
Epoch 28/100
Epoch 29/100
```

ypred

```
#step6-: Set the threshold
ypred=np.where(ypred>0.5,1,0)
ypred
```

array([[0], [0], [0], ..., [0], [0],

[0]])

print(classification_report(ytest,ypred))

	precision	recall	f1-score	support
0	0.88	0.96	0.92	2373
1	0.76	0.48	0.59	627
accuracy			0.86	3000
macro avg	0.82	0.72	0.75	3000
weighted avg	0.85	0.86	0.85	3000