Homework 2

Seven Lewis

4/12/24

1. True or False

1) The set $\{(1,1),(2,2),(3,3),(2,3)\}$ is a function.

False

2) Every regular language can be recongized by a deterministic finite automaton (DFA).

True

3) The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 + 1$ is surjective.

False

4) Nondeterminist finite automaton (NFA) are more powerful than DFAs in terms of the types of languages they can recongize.

False

5) The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 - x$ is injective.

False

6) Every NFA can be converted into an equivalent DFA

True

7) Let R be the relation on the set $\{1,2,3,4\}$ such that $R = \{(1,2),(2,3),(3,1)\}$. The relation R is both reflexive and symmetric.

False

8) A given string from a regular expression can always be converted to a NFA.

True

9) The relation $R = \{(a,b)|a$ is younger than $b\}$ on the set of all people. R is Reflexive.

$\operatorname{Fals}\epsilon$

10) A DFA can use empty string (ε) transitions.

False

Prove using mathematical induction that for all integers $n \geq 1$:

$$1 + 4 + 7 + \dots + (3n - 2) = \frac{n(3n - 1)}{2}$$

Proof:

Basis Step: n=1

$$(3(1) - 2) = \frac{(1)(3(1) - 1)}{2}$$

1 = 1 \checkmark True.

Inductive Step: n = k + 1

Assume
$$1 + 4 + 7 + \dots + (3k - 2) = \frac{k(3k - 1)}{2}$$

Observe that:

$$1+4+7+\dots+(3(k+1)-2) =$$

$$1+4+7+\dots+(3k-2)+(3(k+1)-2) =$$

$$\frac{k(3k-1)}{2}+(3(k+1)-2) =$$

$$\frac{k(3k-1)+2(3(k+1)-2)}{2} =$$

$$\frac{(3k^2-k)+(6k+2)}{2} =$$

$$\frac{(k+1)(3k+2)}{2} = \frac{(k+1)(3(k+1)-1)}{2}$$

Therefore, $1 + 4 + 7 + \dots + (3(n+1) - 2) = \frac{(n+1)(3(n+1) - 1)}{2}$ for all integers $n \ge 1$.

3.

Convert the following NFA to a DFA.

4.

Convert the following regular expression to an NFA: $bb(ab)^*aa$

