洲江水学

本科实验报告

课程名称:		电子电路设计实验 1			
姓	名:				
学	院:	信息与电子工程学院			
	系:				
专	业:	电子科学与技术			
学	号:				
指导教师:		李锡华、叶险峰、施红军			

2019年 11月 18日

专业: <u>电子科学与技术</u> 姓名: <u>——</u> 学号: <u>—</u>

日期: <u>2019/11/18</u> 地点: <u>东 4-216</u>

课程名称: 电子电路设计实验 1 指导老师: 李锡华、叶险峰、施红军 成绩: _

实验名称: 一阶 RC 电路的瞬态响应过程实验研究 实验类型: 探究型 同组学生姓名: 陈健

一、实验目的 二、实验任务与要求

三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3 完整的实验电路……)

四、主要仪器设备

五、实验步骤与过程

六、实验调试、实验数据记录

七、实验结果和分析处理

八、讨论、心得

一、实验目的

- 1、熟悉一阶 RC 电路的零状态响应、零输入响应过程。
- 2、研究一阶 RC 电路在零输入、阶跃激励情况下,响应的基本规律和特点。
- 3、学习用示波器观察分析 RC 电路的响应。
- 4、从响应曲线中求 RC 电路的时间常数。

二、实验原理

ìΤ

线

1、一阶 RC 电路的零输入响应(放电过程)

电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应,即电路初始状态不为零,输入为零所引起的电路响应。实际上是电容器 C 的初始电压经电阻 R 放电过程。在图 9.8.1 中,先让开关 K 合于位置 a,使电容 C 的初始电压值 $u_C(0^\circ) = U_O$,再将开关 K 转到位置 b。电容器开始放电,放电方程 为:

$$u_C + RC \frac{du_C}{dt} = 0$$
 $(t \ge 0)$

可以得出电容器上的电压和电流随时间变化的规律:

$$\begin{split} u_C(t) &= u_C(0_-)e^{-\frac{t}{RC}} = U_0e^{-\frac{t}{\tau}} & (t \ge 0) \\ i_C(t) &= -\frac{u_C(0_-)e^{-\frac{t}{RC}}}{R} = -\frac{U_0}{R}e^{-\frac{t}{\tau}} & (t \ge 0) \end{split}$$

τ=RC 为时间常数。

图 9.8.2 由零输入响应曲线测量时间常数

2、一阶 RC 电路的零状态响应(充电过程)

所谓零状态响应是指初始状态为零,而输入不为零所产生的电路响应。一阶 RC 电路在阶跃信号激励下的零状态响应实际上就是直流电源经电阻 R 向 C 充电的过程。在图 9.8.1 所示的一阶电路中,先让开关 K 合于位置 b,当 t=0 时,将开关 K 转到位置 a。电容器开始充电,充电方程为:

$$u_C + RC \frac{du_C}{dt} = U_S \qquad (t \ge 0)$$

初始值: u_C(0-)=0

可以得出电压和电流随时间变化的规律:

$$u_{C}(t) = U_{S}\left(1 - e^{-\frac{t}{RC}}\right) = U_{S}\left(1 - e^{-\frac{t}{\tau}}\right) \quad (t \ge 0)$$

$$i_C(t) = \frac{U_S}{R} e^{-\frac{t}{RC}} = \frac{U_S}{R} e^{-\frac{t}{\tau}}$$
 $(t \ge 0)$

实验名称: 一阶 RC 电路的瞬态响应过程实验研究

τ=RC 为时间常数。

3、方波响应

当方波信号激励加到 RC 两端时,在电路的时间常数远小于方波周期时,可以视为零状态响应和零输入响应的多次过程。方波的前沿相当于给电路一个阶跃输入,其响应就是零状态响应;方波的后沿相当于在电容具有初始值 uc(0)时,把电源用短路置换,电路响应转换成零输入响应。

当方波的 1/2 周期小于电路的时间常数时,方波前后沿对应的只是瞬态过程的一小部分。不能实现准确测量!

由于方波是周期信号,可以用普通示波器显示出稳定的响应图形,便于观察和作定量分析。

订 三、实验方案设计

 V_{CC} V_{K1} V_{CC} V_{K1} V_{K2} V_{K2} V_{K2} V_{K2} V_{K3} V_{K4} V_{K4} V_{K5} V_{K4} V_{K5} V_{K5}

图 9.8.4 重复激励的零状态响应观测实验电路

四、主要仪器设备 示波器、实验电路板、直流稳压源(提供 12V 电压)

线

装

实验名称: 一阶 RC 电路的瞬态响应过程实验研究

五、实验任务与步骤

- 1、用示波器观察 RC 电路的零输入响应、零状态响应,描绘响应曲线,求出电路的时间常数。
- 2、更换电路中电阻、电容的大小,重新测量电路的各种响应,分别求出每次测量的时间常数。
- 3、理论计算电路的时间常数,并与实验测量值比较。

六、实验数据记录及处理

表 1 实验数据记录及处理

_											
	电路状态		接入电 路 R/Ω	接入电容 C/pF	波形图	τ(测量值)/ms	τ (理论值)/ms	相对误差/%			
	零状态 响应(充 电)	1	750	10×10^4	图 1	0.08	0.075	6.7			
		2	9100	10×10^4	图 2	0.95	0.91	4.4			
	零输入 响应(放 电)	3	4300	10×10^3	图 3	0.044	0.043	2.33			
		4	4300	22×10^4	图 4	0.90	0.946	4.86			

图 1

装订

线

图 2

图 3

装

订

线

实验名称: 一阶 RC 电路的瞬态响应过程实验研究

图 4

线

订

装

七、思考题

1、什么是零输入响应、零状态响应?

答:零输入响应是指电路在无激励情况下,由储能元件的初始状态引起的响应,即电路初始状态不为零,输入为零所引起的响应(放电过程)。零状态响应是指初始状态为零,而输入不为零所产生的的电路响应(充电过程)。

- 2、在用示波器观察 RC 电路响应时如何才能使示波器的扫描与电路激励同步?
- 答:将触头与测试点勾住,架子夹住接地点,转动示波器上的TIME/DIV 旋钮,使得示波器上的图像从杂乱无章到稳定不变,即扫描与激励同步。
- 3、什么是时间常数?它在电路中起什么作用?

答:时间常数是指一个物理量从最大值衰减到最大值的 1/e 所需要的时间。在 RC 电路零输入响应中,电容电压总是从初始值 $u_c(0)$ 按指数衰减到 0,则电容电压从 $u_c(0)$ 衰减到 1/e $u_c(0)$ 的时间即为时间常数。在 RC 电路零状态响应中,电容电压从初始值上升至与初始值差值的 63.2%处所需时间为时间常数。

八、讨论、心得

本次实验主要的难点在于用示波器比较准确地测出时间常数。在电路实验课上我们为了准确测出时间常数,用了光标法测时间间隔,每次都要将光标在电压和时间之间换来换去,浪费了很多时间,到下课时才结束实验。测出来的结果误差却很大,尤其是电路零状态响应,750Ω的电阻误差居然到了百分之二十多。后来周三时我去实验室重做了实验,这次是通过计算出时间常数对应的电压差,把光标定位好后直接在示波器上读数的方法,终于把误差降下来了。我感觉以后的实验课要通过合适的方法提高实验的效率。

此外,通过本次实验,我看到了RC电路瞬态响应的真实图像,非常直观,非常深刻,相信对电路学习会有很大的帮助。