Reduction

- A Reduction is an algorithm for transforming one problem into another problem.
- Why we need reduction?
 - Solve a problem that is similar to a problem we've already solved.
 - Prove that a problem is hard to solve.
- Examples of reduction:
 - 1. Mapping Reduction (i.e. Many-One Reduction)

$$L_1 \leq_M L_2$$

2. Turing Reduction

$$L_1 \leq_T L_2$$

- 3. Karp Reduction (i.e. Polynomial-time Mapping Reduction)
- 4. Cook Reduction (i.e. Polynomial-time Turing Reduction)
- Examples:

1.
$$a \cdot b \leq_T a^2$$
 since $a \cdot b = rac{(a+b)^2 - a^2 - b^2}{2}$. (Turing Reduction)

2. $Max\ Flow \leq_M Maximum\ Matching$. (Mapping Reduction)

Def 4.4(Mapping Reduction) Let $L_1,L_2\subseteq\{0,1\}^*$. Say L_1 is mapping reducible to L_2 , denoted by $L_1\leq_M L_2$, if there is a computable function $\phi:\{0,1\}^*\to\{0,1\}^*$ s.t. $x\in L_1\Leftrightarrow\phi(x)\in L_2$ for any x.

Prop 4.5

- 1. For any L, $L \leq_M L$.
- 2. $L_1 \leq_M L_2 \Leftrightarrow \bar{L_1} \leq_M \bar{L_2}$.
- 3. If $L_1 \leq_M L_2, L_2 \leq_M L_3$, then $L_1 \leq_M L_3$.

Def 4.6(Oracle Turing Machine) A k-tape TM with an oracle for language L is a k-tape TM with 2 additional states q_{ask} and $q_{response}$. The first k-1 tapes are input and work tapes. The last tape is the oracle tape. When it enters q_{ask} , the following actions are performed in one step:

- 1. The string z that is written on the oracle tape is erased.
- 2. If $z \in L$, symbol 1 is written to the leftmost cell of the oracle tape. Otherwise, 0 is written.
- 3. The oracle tape head is moved to the leftmost.
- 4. The machine enters $q_{response}$ state.
- Similarly, we can define a TM with an oracle function f.

Def 4.7 Let $L_1, L_2 \subseteq \{0,1\}^*$. L_1 is Turing reducible to L_2 , denoted by $L_1 \leq_T L_2$, if there is an oracle TM, with an oracle for L_2 , that decides L_1 .

- 1. For any decidable languages L_1 and L_2 , we have $L_1 \leq_T L_2$.
- 2. If $L_1 \leq_T L_2, L_2 \leq_T L_3$, then $L_1 \leq_T L_3$.
- 3. For any L, $L \leq_T L$, and $L \leq_T \bar{L}$.
- 4. If $L_1 \leq_M L_2$, then $L_1 \leq_T L_2$.

Def 4.14(Nontrivial Property of Languages) Property P is about the language recognized by TMs if, whenever L(M)=L(N), P contains $\langle M \rangle \Leftrightarrow P$ contains $\langle N \rangle$. The property is nontrivial if there is a TM_{α} s.t. $\alpha \in P$, and $\exists TM_{\beta}$ s.t $\beta \notin P$.

Thm 4.15(Rice's Theorem) Any nontrivial property about the language recognized by TMs is undecidable.

Proof: WLOG(Without Loss of Generality), assume $\phi \notin P$. Assume for contradiction that P is decidable by a TM M_P .

Since P is nontrivial, pick an arbitrary $\beta \in P$. (Since $\phi \notin P$, the empty TM (that always rejects) is not in P)

We construct a TM M_{accent} as follows:

- 1. On input (α, x) , construct TM M_P , $\gamma = \gamma(\alpha, x)$ as follows:
 - a. Simulate M_{α} on input x until M_{α} accepts x. Otherwise, make M_{α} loop forever.
 - b. Simulate M_{eta} on input y and accept if and only if M_{eta} accepts.
- 2. Run M_P on input γ , accept if and only if M_P accepts.

Claim M_{accept} decides L_{accept}

- Case 1: $(\alpha,x)\in L_{accept}$, $L(M_{\gamma})=L(M_{eta})$. So, M_P accepts γ .
- Case 2: $(\alpha, x) \notin L_{accept}$, $L(M_{\gamma}) = \phi$. So, M_P rejects γ .

Q.E.D.

Post Correspondence Problem(PCP)

- Domino $\left[\frac{a}{ab}\right]$
- A Collection of Dominos $\{\left[\frac{b}{ca}\right],\left[\frac{a}{ab}\right],\left[\frac{ca}{a}\right],\left[\frac{abc}{c}\right]\}$
- A Match $\left[\frac{a}{ab}\right] \cdot \left[\frac{b}{ca}\right] \cdot \left[\frac{ca}{a}\right] \cdot \left[\frac{a}{ab}\right] \cdot \left[\frac{abc}{c}\right]$
- The PCP is to determine whether a collection of dominos has a match.

Formally, an instance of PCP is $P=\{[rac{t_1}{b_1}]\cdot\ldots\cdot[rac{t_k}{b_k}]\}$, where $t_i,b_i\in\Sigma^*$. A match is a sequence i_1,i_2,\ldots,i_l , where

$$t_{i_1}t_{i_2}\ldots t_{i_l}=b_{i_1}b_{i_2}\ldots b_{i_l}$$

 $PCP = \{\langle P \rangle | P \ has \ a \ match \}.$

Proof idea: Reduce L_{accept} to PCP. Given any α, x , construct a PCP instance $P_{\alpha,x}$ s.t. M_{α} accepts $x \Leftrightarrow P_{\alpha,x}$ has a match.

Proof: Since L_{accept} is undecidable, we can conclude PCP is undecidable.

Given a TM_{lpha} and input w, construct a PCP instance P=P(lpha,w) s.t.

- 1. If M_{α} accepts w, then $P \in PCP$.
- 2. If M_{α} does not accept w, then $P \notin PCP$.

Goal:

- 1. $L_{accept} \leq_M MPCP$
- 2. $MPCP \leq_M PCP$

• Handle 3 technical points:

- 1. M never attempts to move its head off the leftmost end of the tape.
- 2. If $w=\epsilon$, use the string in place \sqcup in place of w.
- 3. Modify PCP to require that a match starts with $\left[\frac{t_1}{b_1}\right]$.

Let
$$MPCP = \{\langle P \rangle | P \in PCP \ and \ \exists \ a \ match \ that \ starts \ with \ [\frac{t_1}{b_1}]\}.$$

Let
$$M_{lpha}=(Q,\Sigma,\Gamma,\delta,q_0,q_{accept},q_{reject}).$$

Algorithmically construct P'=P'(lpha,w) s.t. $P'\in MPCP\Leftrightarrow M_lpha$ accepts w.

Part 1. Put $\left[\frac{\#}{\#q_0w_1...w_n\#}\right]$ into P' as the first domino.

Part 2. For every $a,b\in \Gamma$, and every $q,r\in Q$, if $\delta(q,a)=(r,b,R)$, put $[rac{qa}{br}]$ into P'.

Part 3. If $\delta(q,a)=(r,b,L)$, put $[rac{cqa}{rcb}]$ into P' for every $c\in \Gamma$.

Part 4. For every $a \in \Gamma$, put $\left[\frac{a}{a}\right]$ into P'.

Part 5. Put $[\frac{\#}{\#}], [\frac{\#}{\sqcup \#}]$ into P'.

Part 6. For every $a\in \Gamma$, put $[rac{aq_{accept}}{q_{accept}}], [rac{q_{accept}}{q_{accept}}]$ into P'.

Part 7. Put $[rac{q_{accept}\#\#}{\#}]$ into P'.

We claim M_{lpha} accepts $w \Leftrightarrow P' \in MPCP$.