Mathematical Biology

January 18, 2018

C(ONTENTS	2
C	Contents	
0	Miscellaneous	3
1	Birth-death models	4

0 Miscellaneous

Course notes online: Julia Gog(www.damtp.cam.ac.uk/research/dd/teaeching, 2013-2017), Peter Haynes(www.damtp.cam.ac.uk/user/phh/mathbio.html)

Moodle page: Handwritten notes by lecture; Matlab/Python programming examples; solved exercises.

This course involves 3 models: Deterministic temporal models (11 lectures), Stochastic temporal models (5 lectures), Deterministic spatio-temporal models (8 lectures).

The focus of this course is biochemical reactions and population processes.

(some introductory speech)

Example. (1, Transient population) If we use n(t) to denote the size of a population, we may want to model $\frac{dn}{dt} = f(n)$ by an ODE, or maybe if we have several components $\mathbf{n}(t)$ then we may want to model $\frac{d\mathbf{n}}{dt} = \mathbf{f}(\mathbf{n})$ which is a system of ODEs.

Note that although n should be an integer (discrete), when n >> 1 we may model it with continuous equations.

Example. (2) $n \to \partial_t P(n,t) = W \cdot P(n,t)$, Markov processes. Here P(n,t) is a probability(?), n being a state, and W being the transition matrix.

Example. (3)

If we include spatial aspect, we may have n(t) becoming n(x,t). Now there might be 'diffusion': $\partial_t n(x,t) = f(n(x,t)) + D\nabla^2(x,t)$ where $\nabla^2 = \frac{\partial^2}{\partial x^2}$; this is the reaction-diffusion equation.

4

1 Birth-death models

The general idea is that we have a population of size n(t); per capita per unit time, we have births of rate b and deaths of rate d. Then we can write

$$n(t + \Delta t) = n(t) + bn\Delta t - dn\Delta t$$

So we have an ODE

$$\frac{dn}{dt} = (b - d)n = rn$$

where r = b - d. This has an easy solution $n(t) = n_0 e^{rt}$, assuming r is a constant. We see that if r is positive then the population grows exponentially, and if r is negative then the population decreases to 0 asymptotically.

Now probably b and d are related to n by b(n)=bn and $d(n)=dn^2$ due to competition. Then we have

$$\frac{dn}{dt} = bn - dn^2$$

which we can definitely rewrite as

$$\frac{dn}{dt} = \alpha n(1 - n)$$

by some change of variable on n. Now

$$\frac{dn}{n(1-n)} = \alpha dt$$

$$\implies \frac{dn}{n} + \frac{dn}{1-n} = \alpha dt$$

$$\implies \ln n - \ln(1-n) = \alpha t + c$$

$$\implies n = \frac{n_0 e^{\alpha t}}{(1-n_0) + n_0 e^{\alpha t}}$$

where we are given that $t=0, n=n_0$. If $t\gg \frac{1}{\alpha}$, when $t\to\infty$ we have $n(t)\to 1$. Now we can investigate if the population size is stable, and if it has any fixed points.