III ABAQUS ME 498CM Fall 2015

Meshing

Meshing Workflow

Assign mesh attributes and set mesh controls Generate mesh Refine mesh Verify mesh Optimize mesh

OBJECTIVE—balance results accuracy against rate of convergence

CREATION—seeding, element type, remeshing techniques

VERIFICATION—element quality, shape factor, aspect ratio, element degeneracy

REMESHING/REFINEMENT—based on results of analysis incl. large deformations or gradients

Dependent v. Independent

Dependent

Instance is a pointer to the meshed original part

Independent

An independent part instance is a copy of the geometry of the original part

Module: Mesh

No customization allowed: cannot modify geometry, partition, virtual topology

How to Switch:

- 1. In the context bar, change the Object
- 2. In the model tree, right click the instance name

Model: \$\dagger\$ Model-1

Object:

Assembly

Mesh Attributes

- Element shape control
- Seed assignment and bias

Mesh Attributes: Curvature Control

- Seed distribution based on edge curvature and target element size
- Accounts for deviation factor and minimum size factor

Meshing techniques

- Top-down meshing
 - Structured meshing
 - Swept meshing
 - Free meshing
- Unmeshable part
 - Bottom-up meshing

Structured Meshing

Swept Mesh

to the target side.

Free Meshing

Bottom-Up Meshing

Example 17.11.10

Computational Science and Engineering

Refinement by Partitioning

Refinement by Partitioning

Refinement by Partition

Refinement by virtual topology

Mesh Verification

Shape Factor: triangular and tetrahedral elements

Aspect Ratio:

Ratio between longest and shortest edge of a element.

Selection criterion	Quadrilateral	Triangle	Hexahedra	Tetrahedra	Wedge
Shape factor	N/A	0.01	N/A	0.0001	N/A
Smaller face corner angle	10	5	10	5	10
Larger face corner angle	160	170	160	170	160
Aspect ratio	10	10	10	10	10

Element Library

Element Library

+ gap/contact elements, etc.

Element Naming Convention

Element Selection & Properties

One-Dimensional

Lines

Two-Dimensional

Triangles

Quadrilaterals

CPE4 = CAX4R = S4R = DC2D4 = AC2D4

no checking of DOFs in CAE

Three-Dimensional

Tetrahe dra

Triangular prisms (wedges)

Hexahedra

Reduced Integration

Hourglassing

Shear Locking

