Green Fund HACK-A-THON

Startup Session November 16th, 2020

Background and Funding

The UNCG Green Fund awarded funds to

analyze smart-meter data and create an online dashboard to browse results

- Project consisted of two parts:
 - Summer 2020
 - Download, clean, and analyze data
 - Write reports for Facilities Operations and the Green Fund
 - Fall 2020
 - · Create an interactive dashboard to display results
 - Host competition

Background and Preliminary Work

Work already done:

- Collection of smart-meter data
 - Hourly observations of the meter reading in nearly 81 meters on campus.
- Collection of weather data
 - · North Carolina Climate Office.
 - Hourly observations for average temperature, dewpoint temperature, relative humidity, atmospheric pressure, wind speed, and precipitation.
- Collection of classroom occupancy data
 - Office of the registrar.
- Data Cleaning
- Used linear models to predict hourly energy consumption

Hack-a-thon

Create a dashboard that...

- Displays data and results from prior work.
 - Web-Dashboard
 - Interactive
- Benefits:
 - Helps UNCG Facilities Operations make decisions.
 - Is accessible to the public about UNCG energy consumption.
 - Is the basis for more advanced data and modeling projects.

Setup

Github Repository:

https://github.com/UNCG-DAISY/Green Hackathon-Fall2020

The repository contains the following structure:

- /data Datasets for the dashboard.
- /documentation All related documentation for the Hackathon.
- /src Python scripts showing how to download new data and model the data.

Setup: Data

./data/

- ./data/Analysis/ Merged and modeled data from meters, weather, and occupancy.
 - This data is what you are using for dashboard.
- Each file contains raw observed data and predicted data for different meters of the buildings.

Setup: Data

./data/Analysis/

Data: Meter Data Format

Example:

- ./data/Analysis/Baseball results.csv
- Actual Recorded Value
- Predicted Value from Linear Model
- Obs_ci_lower Lower confidence interval of prediction
- Obs_ci_upper Upper confidence interval of prediction
- Datetime

	4	А	В	С	D	E	F
	1	Actual	Predicted	obs_ci_lower	obs_ci_upper	Datetime	
	2	127	192.3790244	138.6748549	246.083194	2015-06-01 00:00:00-04:00	
	3	125	188.5778336	134.8745653	242.2811018	2015-06-01 01:00:00-04:00	
	4	140	189.8234206	136.1206239	243.5262173	2015-06-01 02:00:00-04:00	
	5	165	187.9042847	134.2015212	241.6070482	2015-06-01 03:00:00-04:00	
el	6	206	196.2703393	142.5675739	249.9731048	2015-06-01 04:00:00-04:00	
ار	7	272	213.3199761	159.6162249	267.0237274	2015-06-01 05:00:00-04:00	
	8	272	222.9797303	169.2758228	276.6836377	2015-06-01 06:00:00-04:00	
	9	263	234.6066667	180.9022479	288.3110856	2015-06-01 07:00:00-04:00	
	10	266	254.7411219	201.0364786	308.4457651	2015-06-01 08:00:00-04:00	
	11	284	274.3643936	220.6608314	328.0679558	2015-06-01 09:00:00-04:00	
	12	299	289.6183209	235.913328	343.3233137	2015-06-01 10:00:00-04:00	
	13	301	300.8565731	247.1482747	354.5648716	2015-06-01 11:00:00-04:00	
	14	294	301.6438047	247.9328363	355.354773	2015-06-01 12:00:00-04:00	

Setup: Model

The prediction was done using a linear regression model. (Ordinary Least Squares - OLS)

• The code to do this (for reference) is available in Model Update.py

Setup Coding:

- Requirements:
 - Web-Interface,
 - Interactive,
 - Responsive (Ability to switch between mobile and desktop browser)
- Suggested:
 - Python
 - Plotly https://plotly.com/
 - Dash https://plotly.com/dash

Tasks and Rubric

You will be graded out of 100 points:

- Tasks (60 points)
 - Were you able to complete all tasks?
- Style and Appearance (15 points)
 - Correct labels, spelling, grammar
 - UNCG brand guide, "funded by the UNCG Green Fund"
- Usability (10 points)
- Programs and Documentation (15 points)
 - Proper Github repository etiquette and documentation of all your code.

Task 1 (40 points)

Create a real-time interactive plot of energy consumption and prediction.

- Subtask 1: static plot of gathered data
 - Horizontal axis is time, vertical axis is energy consumption
 - User chooses:
 - 1) which meter (or meters) to plot
 - 2) what time range to plot
 - 3) what unit of time to use ('total consumption' or 'average hourly consumption')

Task 1 Continued

Seven possibilities for graphs:

Horizontal Axis - Hour (e.g. 1:00AM Jan 1, 2015 - 3:00PM Sep 2, 2020)

• Vertical Axis - Hourly Energy Consumption

Horizontal Axis - Day (e.g. Jan 1, 2015 - Sep 2, 2020)

- Vertical Axis Total consumption (for each day)
- OR
- Vertical Axis Average hourly consumption (by day)

Horizontal Axis - Week (e.g. first week of 2020 - twentieth week of 2020)

- Vertical Axis Total consumption (for each week)
- OR
- Vertical Axis Average hourly consumption (by week)

Horizontal Axis - Month (e.g. Jan 2019 - Dec 2020)

- Vertical Axis Total consumption (for each month)
- OR
- **Vertical Axis** Average hourly consumption (by month)

Task 1 Continued

Subtask 2: Predictive Plot

- For each graph option, give the user the option to plot predicted values
- Predicted values are summed up or averaged out depending on the actual values plotted
- For example: average hourly consumption by month is plotted alongside average predicted hourly consumption by month.
- For **only** hourly energy consumption, the graph must allow the user to plot the prediction intervals.

Task 1 Continued Examples

Average Hourly Consumption by Month

Actual and Predicted Values

Task 2 (20 points)

Create a reactive (interactive) plot of average predictions by group.

- These graphs will compare actual average consumption to predicted average consumption.
- The user will choose:
 - Time Category (hour of day, day of week, week of year, month)
 - Meter to plot
 - Time range of data to include in calculations (can only include 2020 and beyond)

Task 2 Examples

Style and Appearance (15 points)

- Follow the UNCG Brand Guide as best as possible.
 - https://uc.uncg.edu/uncg-brand-guide/
 - - Use university colors where applicable.
- Include the phrase "funded by the UNCG Green Fund" on the front page.
- Use logos of Bryan School and Computer Science.
- The dashboard must be appropriately labeled (including the axis and plot description), including spelling and capitalization.
 - · Clearly communicate what the output is.
 - Labels for meters are provided under "Meter Names and Labels.xlsx"

Usability (10 points)

- How easy will the dashboard be to use and understand?
 - For Facilities Operations staff?
 - For students?
 - For community members?
- Providing 'help' options or explanations of graphs/options could help in this category.

Programs and Documentation (15 points)

- Code should be flexible, commented, and well-documented.
- Must submit brief documentation (e.g. .text document)
- Clear documentation will be useful if ...
 - Code breaks
 - Future students or projects expand on your dashboard

Rules

- All code and elements of your project must be created during the event.
 - You may incorporate preexisting material that is freely available to the public (e.g. stack overflow questions, documentation). But provide references.
- You may not communicate with other teams or seek the help of anyone not on your team.
- You may ask questions to Dr. Mohanty and Will Queen about the data and instructions only.
 - We will not give you feedback on how the dashboard looks, how many points we would give you, etc.

Deadlines and Prizes

- Final materials due November 23 at 11:59PM
 - Dr. Mohanty, <u>sdmohant@uncg.edu</u>
 - Will Queen, jwqueen@uncg.edu
- Presentations will be on December 2 from 3:00-5:00PM
 - If all team members cannot make this time, we will make accommodations

```
1st place - $1,000
```

Questions

