Ejercicio 02 MRUA problema resuelto

Una fórmula 1 que parte del reposo alcanza una velocidad de 216 km/h en 10 s. Calcula su aceleración.

Sol.: 6 m/s2

R//

1- Análisis y clasificación del enunciado del problema en sus elementos

Elemento	Valor					
Captura de Datos	Velocidad inicial 0km/h Velocidad final 216km/h					
	Tiempo 10s Velocidad inicial x 1000/3600=Vi en m/s					
Operaciones Aritméticas	Velocidad final x 1000/3600=Vf en m/s					
	Vf en m/s menos Vi en m/s El resultado de Vf-Vi dividido entre tiempo					
Preguntas Preguntas	¿cuál ha sido su aceleración?					
Observaciones						
	Pasar k/h a m/s.					

2- Diagrama Entrada - Proceso - Salida

3- Análisis de Procesos Aritméticos

Para pasar Velocidad inicial de km/h a m/s lo multiplico por 1000 y lo divido entre 3600 Para pasar Velocidad final de km/h a m/s lo multiplico por 1000 y lo divido entre 3600 Tomo velocidad final menos velocidad inicial Divido el resultado entre tiempo

4- Diseño Interfaz Hombre - Máquina

5- Algoritmos

Paso	Descripción				
0.	INICIO				
1.	Declarar variable de velocidad inicial				
2.	Leer variable de velocidad inicial (vi)				
3.	Declarar variable de medición de velocidad inicial				
4.	Leer variable de medición de velocidad inicial (km/h)				
5.	Declarar variable de velocidad final				
6.	Leer variable de velocidad final (vf)				
7.	Declarar variable de medición de velocidad final				
8.	Leer variable de medición de velocidad final (km/h)				
9.	Declarar variable de tiempo				
10.	Leer variable de tiempo (t)				
11.	Declarar variable de medición de tiempo				
12.	Leer variable de medición de tiempo (seg)				
13.	Si (vi) tiene medición de (km/h), (vi) se multiplica por				
	1000 y se divide entre 3600, actualizar variable (vi)				
14.	Si (vf) tiene medición de (km/h), (vf) se multiplica por				
	1000 y se divide entre 3600, actualizar variable (vf)				
15.	- (-)				
1.0	3600, actualizar variable (t)				
16.	Tomo (vf) y lo resto con (vi) = (vf-vi)				
17.	Escribir resultado (vf-vi) como resultado (vf-vi)				
18.	Tomo (vf-vi) y lo divido entre (t) = (A)				
19.	Escribo (A) como resultado de aceleración FIN				
20.	FIIN				

6. Tabla de Datos

Identificador	Tipo	Tipo Dato	Valor	Ámbito			Observations	Documentación
			Inicial	Е	Р	S	Observaciones	Documentacion
vi	Variable	Real	0,0	E				Variable donde se va a almacenar un dato ingresado por el usuario.
vf	Variable	Real	0,0	E				Variable donde se va a almacenar un dato ingresado por el usuario.
t	Variable	Real	0,0	Е				Variable donde se va a almacenar un dato ingresado por el usuario.
Km/h	variable	Entero	0	E				Variable donde se va a almacenar un dato ingresado por el usuario.
seg	variable	Entero	0	E				Variable donde se va a almacenar un dato ingresado por el usuario.
hora	variable	Entero	0	Е				Variable donde se va a

						almacenar un dato ingresado por el usuario.
Vf-vi	variable	Real	0,0	P		Variable donde se ejecuta una operaci ó n aritm é tica.
t2	variable	Real	0,0	P		
A	variable	Real	0,0	P	S	Variable donde se va a almacenar una de las respuestas de una operaci ó n aritm é tica.

7. Tabla de Expresiones Aritméticas y Computacionales

Expresiones Aritméticas	Expresiones Computacionales
m/s= (km/h) *(1000) / (3600)	V_m/s=(km/h) *(1000) / (3600)
a = ((vf) - (vi)) / (t)	V_a = ((v_vf) – (v_vi)) / (v_t)
t2= (t)*(t)	v_t2 = (v_t) + (v_t)
d= (a)*(T2) / 2	V_d= (v_a) *(v_T2) / (2)

8. Diagrama de Flujo de Datos

9. Prueba de Escritorio

Esta en el Excel

10. Pseudocódigo

Algoritmo aceleracion2

// enunciado=Un fórmula 1 que parte del reposo alcanza una velocidad de 216 km/h en 10 s. Calcula su aceleración.

// CREADO POR: HERNAN ALBERTO LONDOÑO VELEZ

// FECHA:20/02/2023

// VERSION: 1.0

// DEFINICION:

Definir v_vi Como Real // VARIABLE QUE ALMACENA EL VALOR DE VELOCIDAD INICIAL

Definir v_vf Como Real // VARIABLE QUE ALMACENA EL VALOR DE VELOCIDAD FINAL

Definir v_t Como Real // VARIABLE QUE ALMACENA EL VALOR DE TIEMPO

Definir v_mvi Como Entero // VARIABLE QUE ALMACENA LA MEDICION DE VELOCIDAD DE VELOCIDAD INICIAL

Definir v_mvf Como Entero // VARIABLE QUE ALMACENA LA MEDICION DE VELOCIDAD DE VELOCIDAD FINAL

Definir v_mt Como Entero // VARIABLE QUE ALMACENA LA MEDICION DE VELOCIDAD DE TIEMPO

Definir v_vi2 Como Real // VARIABLE QUE ALMACENA EL VALOR DE VELOCIDAD INICIAL EN M/S

Definir v_vf2 Como Real // VARIABLE QUE ALMACENA EL VALOR DE VELOCIDAD FINAL EN M/S

Definir v_t2 Como Real // VARIABLE QUE ALMACENA TIEMPO EN SEGUNDOS

Definir vf_vi Como Real // VARIABLE QUE ALMACENA EL RESULTADO DE UNA OPERACION ARITMETICA DE VF-VI

Definir v_a Como Real // VARAIABLE QUE ALMACENA EL RESULTADO DE UNA OPERACION ARITMETICA DE ACELERACION

// VALOR INICIAL

v_vi <- 0.0

v_vf <- 0.0

v_t <- 0.0

v mvi <- 0

v mvf <- 0

v mt <- 0

v_vi2 <- 0.0

 $v_vf2 < -0.0$

v_t2 <- 0.0

vf_vi <- 0.0

v_a <- 0.0

// INICIO

// ENTRADA DE DATOS

Escribir 'escribe velocidad inicial'

Leer v vi

// ENTRADA DE DATOS

Escribir 'si velocidad inicial esta en m/s escriba 1, si esta en

km/h escriba 2'

Leer v_mvi

// ENTRADA DE DATOS

Escribir 'escribe velocidad final'

Leer v_vf

// ENTRADA DE DATOS

Escribir 'si velocidad final esta en m/s escriba 1, si esta en km/h escriba 2' Leer v mvf // ENTRADA DE DATOS Escribir 'escribir tiempo' Leer v_t // ENTRADA DE DATOS Escribir 'si tiempo esta en segundos escriba 1, si esta en minutos escriba 2, si esta en horas escriba 3' Leer v_mt Escribir '-----' // PROCESO Segun v_mvi Hacer // SE CONVIERTE LOS KM/H A M/S DE LA VELOCIDAD INICIAL 1: v_vi2 <- v_vi 2: v_vf2 <- v_vi*1000/3600 FinSegun Escribir 'velocidad inicial en m/s es:',v_vi2 // PROCESO // PROCESO Segun v_mvf Hacer // SE CONVIERTE LOS KM/H A M/S DE LA VELOCIDAD FINAL 1: v_vf2 <- v_vf 2: v_vf2 <- v_vf*1000/3600 FinSegun

```
Escribir 'velocidad final en m/s es:',v_vf2
               // PROCESO
               // PROCESO
                Segun v_mt Hacer // SE CONVIERTEN LAS HORAS Y
MINUTOS A SEGUNDOS DEL TIEMPO
                 1:
                      v_t2 <- v_t
                 2:
                      v_t2 <- v_t*60
                 3:
                      v_t2 <- v_t*3600
                FinSegun
                Escribir 'tiempo en segundos es:',v_t2
               // PROCESO
                Escribir '-----'
               // SALIDA
                Escribir 'las soluciones son:'
               // SALIDA
               vf_vi <- v_vf2-v_vi2 // SE RESTA VELOCIDAD FINAL (EN M/S)
CON VELOCIDAD INICIAL (EN M/S)
               v_a <- vf_vi/v_t2 // SE DIVIDE EL RESULTADO DE LA RESTA
ANTERIOR ENTRE TIEMPO (EN SEGUNDOS) PARA OBTENER LA
ACELERACION
               // SALIDA
                Escribir 'la aceleracion es:',v_a,'m/s2'
               // FIN
FinAlgoritmo
```