

# **Introduction to Cloud Computing**



### In few words...



- « On-demand Software services over a network »
- Cloud computing is a major trend in Software.
- Cloud computing is a technical...
- ... a commercial...
- ... and an organizational revolution.



# History





- Amazon is one of the biggest online stores
- It hosts and manages its own infrastructure
- This infrastructure is huge (several thousands of servers)
- Critical period => load picks (e.g. Christmas)
- Many servers stopped most of the time
- Idea: why not rent them? That was in the 2000's...



### Amazon Web Services



- In 2006, Amazon launched Amazon Web Services
- Virtual Software infrastructure (VMs, network, etc)
- Need an account
- « Pay for what you use »
- Manageable through a web interface
- Manageable through a REST API



## A Growing Eco-System since then...

















... and went beyond just infrastructures.

## **Cloud Computing**



### General



Source: wikipedia

Cloud computing



### General

- 3 main levels are identified
  - Infrastructure as a Service (laaS)
  - Platform as a Service (PaaS)
  - Software as a Service (SaaS)
- Solutions made available to clients

« Pay for what you use »

Application Desktops Monitoring Collaboration Content Communication **Platform** South of the state and the state of the stat Identity Object Storage Database Infrastructure Compute Network Block Storage Phones

Source: wikipedia



### laaS

- Infrastructure as a Service
  - Virtualization platform (VMs)
  - Manage VMs, networks, storage...
  - Manageable through an API (e.g. REST) or a user interface
- Each platform has its own API, but...
  - Amazon Web Services' API is considered as the standard de facto
  - Platforms generally support AWS' API and their own one
- Attempts to create standards (OCCI Infrastructure)
  - Implemented and supported by some platforms
  - Rarely deployed in production
- Many projects provide client libraries
  - Per-laaS ou multi-laaS (e.g. Apache JClouds)



### PaaS

### Platform as a Service

- Generally built and deployed upon a laaS
- Platforms to host applications and benefit from laaS features
- Generally also cover compilation, test and deployment
- These platforms target developers
  - REST / CLI / Web access
  - Simple integration (push on Git, commit on SVN, etc)
- Highly concurrent domain
  - Most of the PaaS are open source
  - They try to create communities (of both users and clients)
- Support for usual application patterns
  - Web application, JEE, NodeJS, etc.



### SaaS

- Software as a Service
  - Generally built and deployed upon a PaaS / laaS
- These solutions target end-users
  - Example: accountancy application, chat, messaging, etc.
  - « Pay for what you use »
- Each level brings higher value for its users
  - laaS provide infrastructure
  - PaaS provide solutions for application developers
  - SaaS designate applications (which provide solutions for users)
- XaaS
  - « Everything as a Service »
  - Extension of cloud concepts for whatever you want



### **Buzz Word**

- « Cloud » is also a buzz word
  - Marketing people broadcast the word everywhere
- For general publics, « cloud » means their data are hosted...
- ... somewhere over internet
  - Not saved locally
  - Available (and thus sharable) to any connected device
  - There is not mandatory a real cloud infrastructure behind
- Not really related to cloud computing as understood by companies and organizations
  - Users will not lost data
  - Way for companies to access and explore user data (business goal)



## Technical VS. Commercial



### **Technical Overview**

#### laaS

- Virtualization platform with an API
- It is thus possible to build self-adapting applications

#### PaaS

- Macro-applications to manage development workflows
- They benefit from laaS features (on-demand infrastructure, scalability, load picks, etc)
- Support one or many programming languages
- Support one or many programming frameworks

#### SaaS

- They benefit from laaS and PaaS features
- Coherent with PaaS limits
- Developers can focus on features



### Commercial Overview

The laaS / PaaS / SaaS trinity...

Source: qarea.com



- ... is most of all a set of business models
  - Technically, you could directly build a SaaS upon a laaS
  - Technically, you could build a SaaS upon any infrastructure
  - Technically, you could build a PaaS upon usual servers
- laaS = rent infrastructure
- PaaS = rent developer tools and sell one-click hosting
- SaaS = sell services to end-users



### Cloud Philosophy

# « Pay for what you use »

... and this can apply to any Software solution, provided you make it available through an API over a network.



## Public / Private / Hybrid Clouds



### Public / Private / Hybrid Clouds

- Public clouds designate cloud solutions available to anyone
  - IaaS: AWS, Microsoft Azure, etc.
  - PaaS: Heroku, etc.
  - SaaS: hosted by any external service provider.
- Private clouds designate internal cloud solutions
  - For a company, install its own cloud solution.
  - IaaS: Openstack, Open Nebula, etc.
  - PaaS: Openshift, Cloud Foundry, etc.
  - SaaS: hosted by the company or the organization itself.
- Hybrid clouds associate public and private clouds



### Example: US weather forecast (from a real story)

- Main infrastructure hosted on a private cloud
  - Keep their data safe
  - Hand on the infrastructure
- Weather disaster made a part of the private cloud unavailable
  - Degraded service provided to users
  - The disaster made people eager to get weather forecast
  - Hence a high demand the infrastructure cannot face
- Applications were quickly deployed to AWS (public cloud)
  - Very fast deployment + Bigger infrastructure
  - In less than a couple of hours, the service quality was restored



## Pros and Cons

|                | Pros                                                                                                  | Cons                                                                  |
|----------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Private Clouds | <ul><li>Hands on the infrastructure</li><li>Keep data private</li><li>Custom configurations</li></ul> | - Complex to manage                                                   |
| Public Clouds  | <ul><li>Generally big infrastructures</li><li>The hard part is managed by the hosting</li></ul>       | - Data can leak (PRISM) - Care must be taken about the cloud location |
| Hybrid Clouds  | - Best of both worlds - Generally, the public cloud is used in case of problem or pick load           | - Requires a good design - Requires unambiguous procedures            |



## Cloud Brokers



### **Cloud Brokers**

### Cloud brokers are proxies to cloud infrastructures

- Since « you pay for what you use »...
- ... it was reasonable to think one could change its cloud provider when prices were too high.
- « Trading for cloud providers »

### Cloud brokers handle...

- ... user accounts, permissions and quotas
- ... runtime infrastructure (VMs, configuration, etc).

### Example

ManagelQ (basis of RedHat's Cloud Forms)



## Impact in Companies and Organizations



## A Major Impact

- Cloud computing is not just a technical change
- It has a major impact on business organizations
  - Classic approach: 1 project => affected machines
  - Cloud approach: share the infrastructure

#### Team relations

- No relations required between dev' projects and infrastructure teams
- Dev' focus on their applications
- Infrastructure people monitor and manage the servers

### Business Impact

- No need of a huge amount of money to start a project
- Start small and grow, rent what you need => new business players



### Example: Netflix

- Netflix is an on-demand video provider
  - Internet access
  - Watch films and TV series on any device
  - All over the world (or almost)

### Netflix infrastructure

- Most of Netflix's infrastructure is hosted by AWS
- A small part is hosted privately
- Scale the infrastructure up or down depending on user connections

### Developments

- Netflix developed quite a lot of tools for AWS
- https://github.com/netflix



# Thanks for your attention

### **LINAGORA** - headquarters

80, rue Roque de Fillol 92800 PUTEAUX FRANCE **Phone:** +33 (0)1 46 96 63 63

Info: info@linagora.com

Web: www.linagora.com





