Versuchsbericht zu

A3 – Absorption von β - und γ -Strahlung

Gruppe Mi 11

Alex Oster(a_oste16@uni-muenster.de)

Jonathan Sigrist(j_sigr01@uni-muenster.de)

durchgeführt am 25.04.2018 betreut von

Inhaltsverzeichnis

1	Kurzfassung	1
2	Methoden 2.1 Aufbau	1
		1
3	Durchführung und Datenanalyse	1
4	Diskussion	1
5	Schlussfolgerung	2
6	Anhang	3
	6.1 Unsicherheitsrechnung	3
	6.2 anderes	3

1 Kurzfassung

rwarteten Werten lagen.

2 Methoden

Dieser Abschnitt befasst sich mit dem Aufbau des Franck-Hertz-Versuches, so wie auch den dabei auftretenden Unsicherheiten.

2.1 Aufbau

2.2 Unsicherheiten

Jegliche Unsicherheiten werden nach GUM bestimmt und berechnet¹. Bei der Rechnung mit Werten mit Unsicherheiten wurde die Python Bibliohek "uncertainties" herangezogen, welche ihrerseits nach obigen Regeln rechnet.

Für digitale Messungen wird eine Unsicherheit von $u(X)=\frac{\Delta X}{\sqrt{3}}$, bei analogen Messungen eine von $u(X)=\frac{\Delta X}{\sqrt{6}}$ angenommen.

3 Durchführung und Datenanalyse

4 Diskussion

¹Die Gleichungen dazu finden sich im Anhang unter 1, 2.

5 Schlussfolgerung

6 Anhang

6.1 Unsicherheitsrechnung

$$x = \sum_{i=1}^{N} x_i; \quad u(x) = \sqrt{\sum_{i=1}^{N} u(x_i)^2}$$

Abbildung 1: Formel für kombinierte Unsicherheiten des selben Typs nach GUM.

$$f = f(x_1, \dots, x_N); \quad u(f) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} u(x_i)\right)^2}$$

Abbildung 2: Formel für sich fortpflanzende Unsicherheiten nach GUM.

6.2 anderes