及門 SESSION DE 1992

concours externe de recrutement de professeurs agrégés

section : mathématiques

composition d'analyse

Les candidats composeront sur du papier de composition quadrillé 5×5 .

Tout document est interdit.

Calculatrice électronique de poche -y compris calculatrice programmable et alphanumérique -a fonctionnement autonome, non imprimante, autorisée conformément à la circulaire n^o 86-228 du 28 juillet 1986.

PREAMBULE

<u>Dans tout le problème</u>, n désigne un entier strictement positif.

Les symboles $\mathbb Z$, $\mathbb R$, $\mathbb R_+$, $\mathbb C$ représentent respectivement les entiers relatifs , les nombres réels , réels positifs ou nuls et les nombres complexes .

Soit $\begin{pmatrix} a_k \end{pmatrix}_{k\geq 1}$ une suite de nombres réels ou complexes; la notation $\downarrow^{+\infty}$ $\downarrow^{-\infty}$ $\downarrow^{-\infty}$

La première partie ne concerne que la variable réelle , les deux autres parties utilisent les fonctions holomorphes .

Tournez la page S.V.P.

LA FONCTION GÉNÉRATRICE DES PARTITIONS.

A

Une partition de n est une suite finie et décroissante d'entiers $r_1 \ge r_2 \ge \ldots \ge r_s > 0$ telle que $\sum_{k=1}^r r_k = n$.

Par exemple les partitions de 3 sont : (3); (2,1); (1,1,1) . On note, dans tout le problème, p(n) le nombre des partitions de n .

- 1) Donner les partitions de 4 et de 5, ainsi que p(4) et p(5).
- 2) Montrer que p(n) est aussi le nombre de suites $\left\{y_k\right\}_{k\geq 1}$ où pour tout $k\geq 1$, y_k est un entier positif ou nul et telles que :

$$\sum_{k=1}^{+\infty} k y_k = n$$

- 3) Soit t un nombre réel tel que 0<t<1
 - a) Montrer que la suite $\left(\begin{array}{ccc} u_N &=& \displaystyle \prod_{k=1}^{k=N} & \frac{1}{1-t^k} \end{array} \right)_{N\geq 1}$

est strictement croissante et convergente.

Dans toute la suite du problème, on note
$$f(t) = \prod_{k=1}^{\infty} (1-t^k)^{-1}$$

b) Pour tout entier N≥1, justifier l'égalité suivante :

$$\prod_{k=1}^{k=N} \frac{1}{1-t^k} = 1 + \sum_{n=1}^{n=N} p(n) t^n + \sum_{n=N+1}^{+\infty} a_n(N) t^n$$

où les coefficients $a_n(N)$ sont des entiers dont on donnera une interprétation combinatoire et tels que $0 \le a_n(N) \le p(n)$.

c) Montrer que :
$$f(t) = 1 + \sum_{n=1}^{+\infty} p(n) t^n$$

d) Etablir que : Ln
$$f(t) = \sum_{k=1}^{+\infty} \frac{1}{k} \left(\frac{t^k}{1-t^k} \right)$$
 où Ln représente la fonction logarithme népérien .

В

Soit α un réel strictement positif et h une fonction, définie sur $\mathbb R$, de période 2π et telle que pour $0<u<2\pi$ on ait $h(u)=e^{\alpha u}$.

- 1) Pour rélément de Z, calculer $c_r = \frac{1}{2\pi} \int_0^{2\pi} h(u) e^{-iru} du$
- 2) Etablir l'égalité: $\frac{1}{e^{2\pi\alpha} 1} = -\frac{1}{2} + \frac{1}{2\pi\alpha} + \frac{1}{\pi} \sum_{r=1}^{+\infty} \frac{\alpha}{\alpha^2 + r^2}$
- 3) Déduire de l'égalité précédente que : $\sum_{r=1}^{+\infty} \frac{1}{r^2} = \frac{\pi^2}{6}$

C

Soit x un réel strictement positif, on pose :

$$F(x) = \prod_{k=1}^{+\infty} \left(1 - e^{-2\pi kx} \right)^{-1}$$

- 1) Montrer que F(x) est défini.
- 2) Montrer que:

$$\pi \text{ Ln } F(x) - \frac{\pi^2}{12 \times n^{2+\infty}} = \lim_{n \to +\infty} \sum_{k=1}^{k=n} \left(-\frac{\pi}{2 k} + \sum_{r=1}^{+\infty} \frac{1}{r^2 x^{-1} + k^2 x} \right)$$

(Indication: Utiliser A.3.d., B.2 et 3.)

Agrégation externe Analyze-1992-

- 3) Soit u un réel strictement positif :
 - a) Etablir les inégalités suivantes :

$$0 \le \int_{n}^{+\infty} \frac{dv}{u + x^{-1} v^{2}} - \sum_{r=n+1}^{+\infty} \frac{1}{u + x^{-1} r^{2}} \le \frac{x}{n^{2}}$$

b) En posant : $\Sigma = \Sigma + \Sigma$, dans le membre de droite r=1 r=1 r=n+1

de l'égalité du C)2), montrer que :

$$\pi \text{ Ln } F(x) - \frac{\pi^2}{12x} - \pi \text{ Ln } F\left(\frac{1}{x}\right) + \frac{\pi^2 x}{12} = \lim_{n \to +\infty} \int_{x^{-1}}^{x} \left(\sum_{k=1}^{k=n} \frac{n}{n^2 w^2 + k^2} \right) dw$$

- 4) a) Montrer que : $\int_{x^{-1}}^{x} \left(\int_{0}^{1} \frac{du}{u^{2} + u^{2}} \right) dw = \frac{\pi}{2} \operatorname{Ln} x$
 - b) En déduire l'équation fonctionnelle :

$$e^{\pi x/12}$$
 $F(x) = x^{1/2}$ $e^{\pi/(12x)}$ $F\left(\frac{1}{x}\right)$

Il La fonction éta de Dedekind.

Dans toute la suite du problème, Re z , Im z et |z| sont respectivement la partie réelle, la partie imaginaire et le module du nombre complexe z; pour z appartenant à $\mathbb{C} \setminus \mathbb{R}_+$, l'argument de z, noté Arg z , est tel que $0 < \text{Arg } z < 2\pi$; H désigne le demi-plan ouvert : { $z \in \mathbb{C} \mid \text{Im } z > 0$ } et i le nombre complexe tel que $i^2 = -1$ et $i \in \mathbb{H}$.

A

1) Montrer que l'application : $H \rightarrowtail \mathbb{C} \setminus \mathbb{R}_+$ est une $z \longmapsto z^2$ bijection holomorphe entre deux ouverts de \mathbb{C} ,dont l'application holomorphe réciproque est :

$$\mathbb{C} \setminus \mathbb{R}_{+} \longrightarrow \mathbb{H}$$

$$z = re^{i\theta}, (r > 0; 0 < \theta < 2\pi) \longrightarrow \sqrt{z} = r^{1/2} e^{i\theta/2}$$

- Dans toute la suite du problème, le symbole désignera l'application précédente (branche holomorphe dans $\mathbb{C} \setminus \mathbb{R}_+$ de \sqrt{z}). Pour éviter toute confusion, l'habituelle application racine carrée dans \mathbb{R}_+ est notée dans tout le texte : $r \mapsto r^{-1/2}$
- - a) Pour tout z de Ω et pour tout n , 1 + $a_n(z) \neq 0$.
- b) la série $\sum_{n=1}^{+\infty} |a_n(z)|$ converge uniformément sur tout compact de $\dot{\Omega}$.

Alors
$$\prod_{n=1}^{+\infty} \left(1 + a_n(z)\right)$$
 définit une fonction

holomorphe sur Ω , ne s'annulant en aucun point de Ω .

Montrer que l'expression
$$\eta(z) = e^{i\pi z/12} \prod_{n=1}^{+\infty} \left(1 - e^{2i\pi nz}\right)$$

définit une fonction holomorphe sur ${\tt H}$, ne s'annulant en aucun point de ${\tt H}$.

- 3) Etablir, pour tout z de H, les égalités suivantes :
- a) $\eta(z+1) = e^{i\pi/12} \eta(z)$

b)
$$\eta\left(-\frac{1}{z}\right) = e^{-i\pi/4} \sqrt{z} \eta(z)$$

(Indication: Etablir d'abord cette relation pour z = ix avec x>0, et conclure en énonçant avec soin le théorème utilisé.)

4) Soit x>0 ; donner, quand x tend vers zéro, la limite et un équivalent de $\eta(ix)$.

В

Soient a,b,c,d des éléments de \mathbb{Z} tels que : ad - bc = 1 avec (c > 0) ou (c = 0 et d = -1).

On note $g_{a,b,c,d}$ l'application : $z \in H \longrightarrow z' = \frac{az + b}{cz + d}$

Dans toute la suite du problème, on appelle Γ l'ensemble de toutes les applications g_{a,b,c,d} précédentes.

On admettra que Γ est un groupe pour la composition des applications dont les éléments sont des bijections de Π sur Π lui-même .

1) En écrivant z = x + iy, z' = x' + iy' avec x,y,x',y' réels, montrer que :

$$\frac{y}{y'} = (cx + d)^2 + c^2 y^2$$

2) Soit z un élément de H, montrer qu'il existe un élément g° de Γ vérifiant les deux conditions suivantes :

a) Im
$$g^{\circ}(z) = Max (Im g(z))$$

 $g \in \Gamma$

(Indication: on pourra considérer la norme euclidienne :

$$(c,d) \mapsto \left((cx + d)^2 + c^2 y^2 \right)^{1/2}$$
.)

b) Im
$$g^{\circ}(z) \geq \frac{3}{2}$$

C

On admettra que le groupe
$$\Gamma$$
 est engendré par :
$$(\gamma_0 = g_{-1,-1,0,-1} : z \mapsto z+1) \text{ et } (\gamma_1 = g_{0,-1,1,0} : z \mapsto -\frac{1}{z})$$

1) a) Montrer que pour tout élément z de H et tout élément $g_{a,b,c,d}$ de Γ ,on a l'égalité suivante :

$$\left[\eta \left(g_{a,b,c,d}(z) \right) \right]^{24} = \left[cz + d \right]^{12} \left[\eta (z) \right]^{24}$$

(Indication : Expliquer que si cette relation est vraie pour un élément g de Γ , elle est alors vraie pour γ_{\circ} g , γ_{\circ}^{-1} g et γ_{1} g .)

b) En déduire que :

$$\eta \left(g_{a,b,c,d}(z) \right) = \omega \sqrt{cz + d} \eta (z)$$

où ω est une racine $24^{\text{\'eme}}$ de l'unité qui dépend de $g_{a,b,c,d}$, mais qui ne dépend pas de z appartenant à H .

- 2) On suppose que la fonction η possède un prolongement analytique sur un ouvert connexe Ω contenant strictement H.
- a) Montrer que si Ω contient un point rationnel de l'axe réel, le prolongement de η s'annule en ce point .

(Indication: Utiliser II.A.4 et II.C.1.b)

- b) En déduire qu'un tel ouvert Ω n'existe pas .
- 3) a) Etendre à tout nombre complexe t , tel que |t|<1 ,

la relation :
$$f(t) = \prod_{k=1}^{+\infty} \frac{1}{1-t^k} = 1 + \sum_{n=1}^{+\infty} p(n) t^n$$

b) Justifier, pour tout élément z de H, l'égalité :

$$\eta(z)$$
 f($e^{2i\pi z}$) = $e^{i\pi z/12}$

4) Sur quel ouvert connexe maximal de ${\bf C}$, la fonction ${\bf f}$ admet-elle un prolongement analytique ?

 $(\underline{Indication}: Etudier \ z \ \longmapsto \ e^{2i\pi z} \quad \text{au voisinage d'un point}$ réel et utiliser II.C.2 .)

- <u>Dans toute la suite du problème</u> on appellera f ce prolongement analytique maximal .
- 5) La fonction η est-elle bornée sur H? La fonction f s'annule-t-elle? Déterminer Inf |f| et Sup |f|.

III LE DÉVELOPPEMENT ASYMPTOTIQUE DE HARDY ET RAMANUJAN

A

Soient α, β et ρ des réels strictement positifs et tels que : $\alpha \rho > \beta/\rho$.

On définit les trois chemins orientés suivants : $L^+=\{\ u\in \mathbb{R}\ |\ 0\le u\le \rho\ \}$ orienté à u croissant.

 $C = \{ u \in \mathbb{C} \setminus \mathbb{R}_{+} | 0 < \text{Arg } u < 2\pi \text{ et } |u| = \rho \}$ orienté à Arg u croissant.

L = { u ∈ \mathbb{R} | 0≤u≤ ρ } orienté à u décroissant.

On convient de définir $\sqrt{u} = u^{1/2}$ pour u élément de L^+ et $\sqrt{u} = -u^{1/2}$ pour u élement de L^- .

on pose:
$$J(\alpha,\beta) = \sum_{\Delta \in \{L^+,C,L^-\}} -\alpha u - \frac{\beta}{u} \qquad \frac{d u}{\sqrt{u}}$$

1) Montrer que $J(\alpha,\beta)$ existe.

2) Justifier l'égalité :
$$-\frac{\partial J}{\partial \alpha}(\alpha,\beta) = \int_{\Delta} e^{-\alpha u - \frac{\beta}{u}} \sqrt{u} du$$

Soient les deux expressions :

$$v = \alpha^{1/2} \sqrt{u} + \frac{\beta^{1/2}}{\sqrt{u}}$$
 et $w = \alpha^{1/2} \sqrt{u} - \frac{\beta^{1/2}}{\sqrt{u}}$

 $\underline{\text{On convient}}$ aussi de noter v et w les changements de variable définis successivement sur L^+ , C et L^- au moyen des deux expressions précédentes

- 3) Représenter graphiquement
 - a) La réunion des chemins orientés $v(L^{+}), v(C)$ et $v(L^{-})$.
- b) La réunion des chemins orientés $w(L^+), w(C)$ et $w(L^-)$. (<u>Indication</u>: v(C) et w(C) sont des demi-ellipses.)

4) On admet que :
$$\int_{-\infty}^{+\infty} e^{-v^2} dv = \pi^{1/2}$$

- a) Calculer v^2 et w^2 , montrer que : $\frac{du}{\sqrt{u}} = \alpha^{-1/2}$ (dv + dw)
- b) établir l'égalité :

$$J(\alpha,\beta) = \left(\frac{\pi}{\alpha}\right)^{1/2} \left[e^{-2(\alpha\beta)^{1/2}} - e^{2(\alpha\beta)^{1/2}}\right]$$

B

Le calcul d'un développement asymptotique de p(n) est l'objet de la partie III et comportera trois étapes.

<u>Première étape</u>: On exprime p(n) comme une intégrale curviligne et on majore une partie négligeable de cette intégrale.

On pose désormais :
$$m = n - \frac{1}{24}$$
 et $d = \pi \left(\frac{2}{3}\right)^{1/2}$;
 ϵ est un réel tel que 0 < ϵ < $\frac{1}{8}$ et dont la valeur sera choisie

ultérieurement. On définit les trois segments suivants sur Im $z = \varepsilon$:

$$L_{1} = \{ z \mid -\frac{1}{2} \le \text{Re } z \le -(2\varepsilon)^{1/2} \text{ et Im } z = \varepsilon \}$$

$$L_{2} = \{ z \mid -(2\varepsilon)^{1/2} \le \text{Re } z \le (2\varepsilon)^{1/2} \text{ et Im } z = \varepsilon \}$$

$$L_{3} = \{ z \mid (2\varepsilon)^{1/2} \le \text{Re } z \le \frac{1}{2} \text{ et Im } z = \varepsilon \}$$

Le segment L₁ U L₂ U L₃ étant orienté à Re z croissant,

montrer que :
$$p(n) = \int e^{-2i\pi mz} \frac{dz}{\eta(z)}$$
$$L_1 \cup L_2 \cup L_3$$

(<u>Indication</u>: Utiliser II.C.3.b.)

 \gtrsim 2) Soit z élément de L₁ U L₃; montrer qu'il existe un élément $g_{a,b,c,d}$ de Γ tel que ,si on pose $y' = Im g_{a,b,c,d}(z)$, on a successivement :

a)
$$y' \ge \frac{3^{1/2}}{2}$$
 et $c \ge 2$
b) $y' \le \frac{1}{4 \epsilon}$ et $\frac{1}{|\eta(z)|} \le \frac{1}{|\eta \cdot g_a| \cdot c \cdot d^{(z)}|}$

Montrer qu'il existe un réel K_{1} ne dépendant pas de ϵ , et tel que pour tout z de L_1 U L_3 on ait :

$$\frac{1}{|\eta(z)|} \leq K_1 e^{\pi/(48\varepsilon)}$$

En choisissant ε au mieux, établir l'inégalité :

$$\left| \int_{L_1 \cup L_3} e^{-2i\pi mz} \frac{dz}{\eta(z)} \right| \leq K_1 e^{\frac{d}{2} m^{1/2}}$$

On donnera désormais à ϵ la valeur obtenue dans cette question.

C

Deuxième étape : Dans la partie principale de l'intégrale donnant p(n) on remplace $1/\eta(z)$ par une fonction plus simple et on majore l'erreur commise.

1) Montrer que, pour tout z de H, on a :

$$\frac{1}{\eta(z)} = e^{-i\pi/4} e^{i\pi/(12z)} \sqrt{z} f \left(e^{-2i\pi/z} \right)$$

2) Etablir l'existence d'un réel K_2 ne dépendant pas de m et tel que :

$$\left| \int_{L_2} e^{-2i\pi mz} \frac{dz}{\eta(z)} - e^{-i\pi/4} \int_{L_2} e^{-2i\pi \left(mz - \frac{1}{24z}\right)} \sqrt{z} dz \right| \le K_2 e^{\frac{d}{4} m^{1/2}}$$

(Indication :ceci revient à remplacer $f(e^{-2i\pi/z})$ par 1.)

3) En faisant le changement de variable u = iz, obtenir :

$$e^{-i\pi/4} \int_{L_2}^{-2i\pi \left(mz - \frac{1}{24z}\right)} \sqrt{z} dz = -\int_{L_2'}^{-2\pi \left(mu + \frac{1}{24u}\right)} \sqrt{u} du$$

où L_2' est un segment orienté que l'on précisera .

D

<u>Troisième étape</u>: Dans la dernière intégrale obtenue, on remplace le chemin L_2' par un autre chemin. Il faut donc estimer l'erreur commise avant d'utiliser, par un passage à la limite, les calculs du III.A.

Soit δ un réel tel que $0<\delta<(2\epsilon)^{1/2}$, on définit un chemin fermé, de classe C^1 par morceaux, orienté dans le sens direct, au moyen de la figure ci-contre, où C'_δ est un arc inclus dans le cercle de centre 0 et de rayon 1. On rappelle que les éléments de L'_2 ont pour partie réelle $-\epsilon$.

1) Montrer l'existence d'une constante K_3 ,ne dépendant ni de δ ni de n , telle que :

$$\left| \int_{L_{3}^{\prime}}^{} U L_{4}^{\prime} U L_{7}^{\prime} U L_{8}^{\prime} \right| \sqrt{u} du \leq K_{3} e^{\frac{d}{4} m^{1/2}}$$

2) Montrer que :

$$\lim_{\delta \to 0} \int_{L_{\delta}'}^{\infty} U C_{\delta}' U L_{\delta}'$$

$$= -\frac{\partial J}{\partial \alpha} (2\pi m, \pi/12)$$

$$\int_{L_{\delta}'}^{\infty} U C_{\delta}' U L_{\delta}'$$

3) En prenant m comme infiniment grand principal, donner un développement asymptotique de p(n).