O.3 Termodinamical

A.)
$$\{A\}$$
 $\{ab, k\}$ $\{ab,$

b.)
$$dv = dQ - dw$$
 $dw = 0$ $dv = nc_v dT$
 $nc_v dT = dQ$ $nc_v \frac{dT}{de} = \frac{dQ}{de}$

La leg de Fourier dice: $\frac{dQ}{de} = -KA$ $\frac{DT}{DX}$ $AX = R$
 $\therefore nc_v \frac{dT}{de} = -KA$ $\frac{DT}{Q}$ $(= \frac{KA}{N_v R})$

Para T_z : $\frac{dT_z}{de} = -((T_z - T_z))$

Evaluando en $6 = 0$:

 $\frac{dT_z}{de} = -((T_v - T_v^0))$
 $\frac{dT_z}{de} = -((T_v^0 - T_v^0))$

C.)
$$T_1 = -((T_1 - T_2) T_2) = ((T_1 - T_2) DCT) = T$$
 $T_1(D+C) - CT_2 = 0 T_2(D+C) - CT_1 = 0$
 $P+C - C$
 $-C D+C = CD+C = CD+C = D^2 + 2DC$
 $(B^2 + 2DC)T = 0 = T_1 = 2CT_2 = D^2 + 2DC$
 $(B^2 + 2DC)T = 0 = T_1 = 2CT_2 = D^2 + 2DC$
 $T_1 = A = 2CC + B$
 $T_2 = CCC = 2CCC + DC$
 $T_1 = A = 2CCC + B$
 $T_2 = CCCC = 2CCC + DC$
 $T_1 = A = 2CCC + B$
 $T_2 = A = 2CCC + B$
 $T_2 = A = 2CCC + B$
 $T_3 = A = 2CCC + B$
 $T_4 = A = 2CCC + B$
 $T_5 = A = 2CCC + B$
 $T_6 = CCCC + CCCC + CCCC + CCCC$
 $T_7 = A = 2CCC + CCCC$
 $T_7 = A = 2CCC + CCCC$
 $T_7 = A = 2CCC$
 $T_$

