Transfer-Meta Framework for Cross-domain Recommendation to Cold-Start Users

1.Motivation

Cold-start problems are enormous challenges in practical recommender systems.

Cross-domain recommendation (CDR) aims to leverage rich information from an auxiliary (source) domain to improve the performance of recommender systems in the target domain.

CDR is promising to solve cold-start problem.

Mapping-based CDR methods are popular, which learns a mapping function to transform the user representation of source domain to the target domain based on overlapping users. However, these methods **ignore** the **generalization ability of mapping**.

With the advantage of **meta-learning**, we proposed a novel framework **TMCDR**.

2.Method

- Transfer stage: two pre-trained models
- Meta stage: a task-oriented meta network

Algorithm 1 Transfer-Meta framework for CDR (TMCDR)

Input: Given user and item sets of source and target domains, U^s, U^t, V^s, V^t . The overlapping user set U^o . The rating matrix R^s, R^t .

Input: Task-oriented meta network f_{θ} .

Input: The step size (learning rate) λ , α .

Transfer Stage:

- A pre-trained source model contains us, vs.
- A pre-trained target model contains u^t, v^t.

Meta Stage: utilize the source embedding of overlapping users \mathbf{u}^s and the target item embedding \mathbf{v}^t to optimize the task-oriented meta network f_θ .

- (1) randomly initialize θ .
- (2) while not converge do:
- (3) sample batch of user groups {U₁, ..., U_n} from U^o.
- (4) for $U_i \in \{U_1, ..., U_n\}$ do:
- (5) divide U_i into two disjoint sets U_a, U_b
- define two training sets D_a, D_b with U_a, U_b
- (7) evaluate loss \mathcal{L}_{θ} with D_a
- (8) compute updated parameter $\theta' = \theta \lambda \frac{\partial \mathcal{L}_{\theta}}{\partial \theta}$
- (9) evaluate loss $\mathcal{L}_{\theta'_i}$ with D_b
- (10) update $\theta = \theta \alpha \sum_{U_i \in \{U_1,...,U_n\}} \frac{\partial \mathcal{L}_{\theta_i'}}{\partial \theta}$
- (11) end while

Test Stage: for a cold-start user u, we use $f_{\theta}(\mathbf{u}^s)$ as the user embedding for prediction.

3.Experiments

- Dataset: Amazon, Douban
- Metrics: AUC, NDCG@10

Method	AUC Sce	NDCG@10	AUC	NDCG@10	
	Sce	nario1			
CMF		Scenario1		Scenario2	
	0.6490	0.1696	0.6996	0.2076	
BPR	0.7226	0.2182	0.7160	0.2379	
ListRank-MF	0.6648	0.1709	0.7232	0.2204	
CML	0.6470	0.1408	0.6986	0.2147	
CST	0.7240	0.2137	0.7124	0.2324	
SSCDR	0.7245	0.0089	0.6745	0.0013	
EMCDR_MFori	0.6942	0.1978	0.6511	0.1747	
EMCDR_MF	0.7271	0.2103	0.6923	0.1985	
TMCDR_MF	0.7501*	0.2246^{*}	0.7253*	0.2427^{*}	
	Scenario3		Scenario4		
CMF	0.7769	0.3066	0.7295	0.2349	
BPR	0.7737	0.3065	0.7199	0.2150	
ListRank-MF	0.7640	0.2902	0.7409	0.2277	
CML	0.8191	0.3548	0.7857	0.2647	
CST	0.7995	0.2960	0.7842	0.2563	
SSCDR	0.7956	0.3080	0.6545	0.1628	
EMCDR_MFori	0.7273	0.2284	0.7307	0.1990	
EMCDR_MF	0.8011	0.3055	0.7936	0.2670	
TMCDR_MF	0.8282*	0.3334	0.8056*	0.2775*	
	Scenario5		Scenario6		
CMF	0.8465	0.3420	0.8339	0.3764	
BPR	0.8108	0.3283	0.8138	0.3659	
ListRank-MF	0.8136	0.3106	0.8191	0.3281	
CML	0.8466	0.3409	0.8405	0.3707	
CST	0.8524	0.3405	0.8406	0.3742	
SSCDR	0.8144	0.2925	0.8317	0.3644	
EMCDR_MFori	0.7307	0.1990	0.7627	0.2703	
EMCDR_MF	0.8438	0.3322	0.8297	0.3702	
TMCDR_MF	0.8589*	0.3483*	0.8442^{*}	0.3778*	

