

Computação Neuromórfica

O que é isso? Como se usa Python nisso?

AGENDA

- Neurociência
- Computação
- Computação Neuromórfica
- Lei de Moore
- Implicações Sociais
- Python

Neurociência

- 1970 Sociedade de Neurociências
- Interdisciplinaridade
 - -> Medicina, biologia, psicologia, física, química e matemática
- Níveis de Análise:
 - -> Moleculares
 - -> Celulares
 - -> Sistemas
 - -> Comportamentais
 - -> Cognitivas
- Observação, replicação, interpretação, verificação

Computação

Software

 Conjunto de componentes lógicos de um computador ou sistema de processamento de dados; programa, rotina ou conjunto de instruções que controlam o funcionamento de um computador; suporte lógico.

Hardware

- Equipamento mecânico necessário para realização de uma determinada atividade.
- Conjunto dos componentes físicos (material eletrônico, placas, monitor, equipamentos periféricos etc.) de um computador.

Computação Neuromórfica

- Também conhecida como Engenharia Neuromórfica
- Interdisciplinar
- Emular a funcionalidade, principalmente do encéfalo
- O encéfalo não executa instruções codificadas, mas disparos entre as sinapses
- 10[^]16 sinapses por Segundo
- Explorar propriedades físicas e biológicas
- Imitar o comportamento humano
- Usar tecnologia CMOS VLSI através da aplicação de descobertas da cognição

Lei de Moore

Níveis de implementação

TABLE I Brain vs Computer

Sl.no	Comparison table			
	Functionality	Brain	Computer	
1	Perception	Sense organs	Sensors	
2	Data	Spikes	Current	
3	Basic component	Neuron	Transistor	
4	Signal processing	Analogous/mixed	Digital	
5	Transmission	Synaptic activity	Wires	
6	Hardware	Brain	Processor	
7	Software	Wetware/ Mind	Operating system	
8	Memory	hippocampus	Gate capacitance	
9	Storage	Monolithic	Modular	
10	Logic	Fuzzy	Digital 0/1	
11	Connectivity	High	Poorly connected	
12	Fan-out	High	Very low	
13	Speed	Individually slow Collectively fast	Individually fast collectively slow	
14	Power consumption	Low	High	
15	Reliabilty	Redundant	Fault-sensitive	
16	Cognition	Exhibited	Yet to exhibit	

TABLE II LEVELS OF IMPLEMENTATION

levels	Neuromorphic Correspondence for Implementation Hierarchy			
	Hierarchy	Neuroscience	Electrical science	
7	Behavior Level	Mind	Architecture	
6	System Level	Brain system	Macro Block	
5	Circuit Level	Local Neuronal population	Block/Cell	
4	Component Level	Single Neuron	Perceptron	
3	Device Level	Synapses	CMOS/ Memristors	
2	Membrrane Level	Channel Ions	Transistor	
1	Protein/ Genetic	Genes		

Retirado da referência 1

O encéfalo não executa instruções codificadas, mas disparos entre as sinapses

Retirado da referência 7

Retirado da referência 7

Implicações Sociais

- Distúrbios Neurais
- Implantação de sistemas artificiais

Python

Bibliotecas

- Numpy
- Matplotlib
- Nipy

Exemplos

- PCSIM
- Nengo
- PyNN
- PyNCS

NUMPY

Integração com C/C++ e Fortran

Álgebra linear, transformada de Fourier e números aleátorios

Array N-dimensional

Matplotlib

Gráficos

Uma ótima opção ao MATLAB

Nipy

- Nibabel leitura de neuroimagens
- Niitime análise de estrutura e função de dados de neuroimagens
- Nilearn aprendizagem estatística
- PyMVPA análise de aprendizagem estatística em grandes conjuntos de dados

Dúvidas??

Contatos

- http://carolinedantas.com/
- @_caaddss (twitter)
- dantascaroline@outlook.com

- 1. AHMED, Mohammed Riyaz; SUJATHA, B. K. A review on methods, issues and challenges in neuromorphic engineering. In:
 Communications and Signal Processing (ICCSP), 2015 International Conference on. IEEE, 2015. p. 0899-0903. Disponível em:
 https://ieeexplore.ieee.org/abstract/document/7322626/>. Acesso em: 09 jan. 2018.
- 2. BASS, Nils A. **On the concept of space in neuroscience**. Current Opinion in Systems Biology, 2017, 1:32-37. Disponível em: https://www.sciencedirect.com/science/article/pii/S2452310016300221. Acesso em: 30 jan. 2018.
- BULLMORE, Ed; SPORNS, Olaf. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, v. 10, n. 3, p. 186, 2009. Disponível em: https://www.nature.com/articles/nrn2575. Acesso em: 30 jan. 2018.
- 4. CURTO, Carina. What can topology tell us about the neural code?. Bull Amer Math Soc 2017, 54(1):63-78. Disponível em: http://www.ams.org/journals/bull/2017-54-01/S02730979-2016-01554-0/. Acesso em: 20 jan. 2018
- JANG, Jun-Woo et al. ReRAM-based synaptic device for neuromorphic computing. In: Circuits and Systems (ISCAS), 2014 IEEE International Symposium on. IEEE, 2014. p. 10541057. Disponível em: https://ieeexplore.ieee.org/abstract/document/6865320/. Acesso em: 08 jan. 2018.
- 6. KANDEL, Eric et al. Princípios de Neurociências-5. AMGH Editora, 2014.
- 7. Kasabov, N., Sengupta, N. and Scott, N., 2016, September. From von neumann, John Atanasoff and ABC to Neuromorphic computation and the NeuCube spatio-temporal data machine. In Intelligent Systems (IS), 2016 IEEE 8th International Conference on (pp. 15-21). IEEE.Acesso em: 09 ja.n. 2018
- 8. KONG, Xiangnan; YU, Philip S., Brain network analysis a data mining perspective. ACM SIGKDD Explorations Newsletter 15.2 (2014): 30-38. Disponível em: https://dl.acm.org/citation.cfm?id=2641196. Acesso em: 12 fev. 2018.
- 9. LEVI, RAN. "A TOPOLOGICAL TOOLBOX FOR NEUROSCIENCE.". Disponível em: http://www.sci.kyoto-u.ac.jp/ja/ upimg/kce/dULKCg/files/Kyoto-July-17-Prelim.pdf>. Acesso em: 30 jan. 2018.
- 10. LOPES, Isaías L., PINHEIRO, Carlos A.M., SANTOS, Flávia A. O., Inteligência Artificial. 1. Ed. Rio de Janeiro: Elsevier, 2014. 173p
- 11. MULLER, Eilif, et al. (2015) Python in neuroscience. Front. Neuroinform. 9:11. Disponível em: https://www.frontiersin.org/articles/10.3389/fninf.2015.00011/full. Acesso em: 09 jan. 2018.
- 12. REIMANN, Michael W., et.al. Clique of neurons bound into cavities provide on missing link between structure and function. Front. Comput. Neurosci. 11:48. Disponivel em: https://www.frontiersin.org/articles/10.3389/fncom.2017.00048/full. Acesso em: 20 jan. 2018.
- 13. SPORNS,Olaf. Contributions and challenges for networks models in cognitive neuroscience. Nature Neuroscience. 17(5) 652-660. Disponível em: https://www.nature.com/articles/nn.3690. Acesso em: 30 jan. 2018