Introduction to **Econometrics**

FIFTH EDITION

Christopher Dougherty
London School of Economics and Political Science

Contents

INT	RODUCTION	1
Why	study econometrics?	1
Aim	of this text	2
Mat	hematics and statistics prerequisites for studying econometrics	2
	itional resources	3
	nometrics software	4
	IEW: RANDOM VARIABLES, SAMPLING, ESTIMATION,	
ANI	INFERENCE	5
R.1	The need for a solid understanding of statistical theory	5
R.2	Discrete random variables and expectations	7
	Discrete random variables	7
	Expected values of discrete random variables	8
	Expected values of functions of discrete random variables	9
	Expected value rules	10
	Population variance of a discrete random variable	11
	Fixed and random components of a random variable	12
R.3	Continuous random variables	14
	Probability density	14
R.4	Population covariance, covariance and variance rules,	
	and correlation	19
	Covariance	19
	Independence of random variables	19
	Covariance rules	20
	Variance rules	21
	Correlation	22
R.5	• · ·	
	and estimators	23
	Sampling	23
	Estimators	24

R.6		ness and efficiency	27 27
	Unbiasedn	ess	28
	Efficiency Conflicts b	etween unbiasedness and minimum variance	31
R. 7		es of variance, covariance, and correlation	33
R.8		nal distribution	35
R.9	Hypothes		37
14.5	Formulatio	on of a null hypothesis and development of its implications lity, freakiness, and the significance level	37 38
R.10	Type II er	eror and the power of a test	43
R.11	t tests		49
	The reject/	fail-to-reject terminology	52
R.12	Confiden	ce intervals	53
R.13	One-side	d tests	58
		$H_{1}: \mu = \mu_{1}$	58
		$\inf_{H_0: \mu = \mu_0} \text{from } H_0: \mu = \mu_0, \ H_1: \mu = \mu_1 \text{ to } H_0: \mu = \mu_0, \ H_1: \mu > \mu_0$	64 64
	H_0 : $\mu = \mu_0$: One-sided	$H_1: \mu < \mu_0$	65
		special case: H_0 : $\mu = 0$	65
	Anomalou		66
	Justificatio	on of the use of a one-sided test	66
R.14		ty limits and consistency	68
	Probabilit		68
	Consistence Why is con	cy nsistency of interest?	70 71
	Simulation	·	73
R.15	Converge	ence in distribution and central limit theorems	76
		listributions	77
Key t	erms		81
Appe	endix R.1	Unbiased estimators of the population covariance	
• • •		and variance	81
Appe	endix R.2	Density functions of transformed random variables	83
1 S	IMPLE RE	GRESSION ANALYSIS	85
1.1	The simpl	e linear model	85
1.2	Least squa	ares regression with one explanatory variable	87
1.3		of the regression coefficients	89
	Least squar	res regression with one explanatory variable: the general case	92
	Two decom	ipositions of the dependent variable	95
		model without an intercept	96
1.4	Interpreta	tion of a regression equation	98
	Changes in	the units of measurement	100

		Contents	хi
1.5	Two important results relating to OLS regressions	105	
	The mean value of the residuals is zero	106	
	The sample correlation between the observations on X and the		
	residuals is zero	106	
1.6	Goodness of fit: R ²	107	
1.0	Example of how R^2 is calculated	109	
	Alternative interpretation of R ²	110	
17			
Key	terms	111	
2	PROPERTIES OF THE REGRESSION COEFFICIENTS AND		
	HYPOTHESIS TESTING	113	
		113	
2.1	Types of data and regression model	113	
2.2	Assumptions for regression models with nonstochastic regressors	114	
2.3	The random components and unbiasedness of the OLS regression		
	coefficients	118	
_	The random components of the OLS regression coefficients	118	
	The unbiasedness of the OLS regression coefficients	122	
	Normal distribution of the regression coefficients	124	
2.4	A Monte Carlo experiment	126	
2.5	Precision of the regression coefficients	130	
4.5	Variances of the regression coefficients	130	
	Standard errors of the regression coefficients	133	
	The Gauss–Markov theorem	137	
2.			
2.6	Testing hypotheses relating to the regression coefficients	139	
	0.1 percent tests	144	
	p values	144	
	One-sided tests	145	
	Confidence intervals	147	
2.7	The F test of goodness of fit	150	
	Relationship between the F test of goodness of fit and the t test on the slop	e	
	coefficient in simple regression analysis	152	
Key	terms	153	
Арр	endix 2.1 The Gauss-Markov theorem	154	
3 1	MULTIPLE REGRESSION ANALYSIS	156	
3.1	Illustration: a model with two explanatory variables	156	
3.2	Derivation of the multiple regression coefficients	158	
	The general model	160	
	Interpretation of the multiple regression coefficients	161	
3.3	Properties of the multiple regression coefficients	164	
	Unbiasedness	165	
	Efficiency	166	
	,		

XIII Contents

	Precision of the multiple regression coefficients	166
	t tests and confidence intervals	169
3.4	Multicollinearity	171
	Multicollinearity in models with more than two explanatory variables	174
	Examples of multicollinearity	174
	What can you do about multicollinearity?	175
3.5	Goodness of fit: R ²	180
	F tests	182
	Further analysis of variance	184
	Relationship between F statistic and t statistic	186
3.6	Prediction	189
	Properties of least squares predictors	191
Key	terms	195
4 1	NONLINEAR MODELS AND TRANSFORMATIONS	
	OF VARIABLES	197
4.1	Linearity and nonlinearity	197
4.2	Logarithmic transformations	201
	Logarithmic models	201
	Semilogarithmic models	205
	The disturbance term	208
	Comparing linear and logarithmic specifications	209
4.3	Models with quadratic and interactive variables	214
	Quadratic variables	215
	Higher-order polynomials	217
	Interactive explanatory variables	218
	Ramsey's RESET test of functional misspecification	222
4.4	Nonlinear regression	225
Key	terms	228
5 I	DUMMY VARIABLES	230
5.1	Illustration of the use of a dummy variable	230
	Standard errors and hypothesis testing	234
5.2	Extension to more than two categories and to multiple	
	sets of dummy variables	237
	Joint explanatory power of a group of dummy variables	240
	Change of reference category	240
	The dummy variable trap Multiple sets of dummy variables	242
<i>-</i> 3	-	244
5.3	Slope dummy variables	250
	Joint explanatory power of the intercept and slope dummy variables	252

		Contents	Xiii
5.4	The Chow test Relationship between the Chow test and the F test of the explanatory	255	
	power of a set of dummy variables	258	
Key	terms	259	
6	SPECIFICATION OF REGRESSION VARIABLES	261	
6.1	Model specification	261	
6.2	The effect of omitting a variable that ought to be included	262	
	The problem of bias	262	
	Invalidation of the statistical tests	265	
	R ² in the presence of omitted variable bias	267	
6.3	The effect of including a variable that ought not to be included	272	
6.4	Proxy variables	276	
	Unintentional proxies	278	
6.5	Testing a linear restriction	280	
	F test of a linear restriction	281	
	The reparameterization of a regression model	282	
	t test of a linear restriction	284	
	Multiple restrictions	285	
	Zero restrictions	285	
Key	terms	286	
7	HETEROSKEDASTICITY	290	
7.1	Heteroskedasticity and its implications	290	
	Possible causes of heteroskedasticity	293	
7.2	Detection of heteroskedasticity	295	
	The Goldfeld-Quandt test	296	
	The White test	297	
7.3	Remedies for heteroskedasticity	299	
	Weighted least squares	299	
	Mathematical misspecification	303	
	Robust standard errors	305	
	How serious are the consequences of heteroskedasticity?	306	
Key	terms	308	
8 5	STOCHASTIC REGRESSORS AND MEASUREMENT ERRORS	311	
8.1	Assumptions for models with stochastic regressors	311	
8.2	Finite sample properties of the OLS regression estimators	313	
	Unbiasedness of the OLS regression estimators	313	
	Precision and efficiency	314	

8.3	Asymptotic properties of the OLS regression estimators	315
	Consistency	316
	Asymptotic normality of the OLS regression estimators	317
8.4	The consequences of measurement errors	317
	Measurement errors in the explanatory variable(s)	318
	Measurement errors in the dependent variable	320
	Imperfect proxy variables	322
	Example: Friedman's permanent income hypothesis	322
8.5	Instrumental variables	327
	Asymptotic distribution of the IV estimator	330
	Multiple instruments	337
	The Durbin-Wu-Hausman specification test	338
Key	terms	340
9 S	IMULTANEOUS EQUATIONS ESTIMATION	343
9.1	Simultaneous equations models: structural and reduced	
	form equations	343
9.2	Simultaneous equations bias	345
	A Monte Carlo experiment	348
9.3	Instrumental variables estimation	351
	Underidentification	354
	Exact identification	355
	Overidentification	356
	Two-stage least squares	357
	The order condition for identification	358
	Unobserved heterogeneity	360
	Durbin-Wu-Hausman test	361
Key	terms	362
10	BINARY CHOICE AND LIMITED DEPENDENT VARIABLE	
	MODELS, AND MAXIMUM LIKELIHOOD ESTIMATION	367
10.1	The linear probability model	367
10.2		372
	Generalization to more than one explanatory variable	374
	Goodness of fit and statistical tests	375
10.3	•	378
10.4	9	381
10.5	1	386
10.6	intelliou estillation	391
	Generalization to a sample of n observations	395
	Generalization to the case where σ is unknown	395

		Contents	XV
	Application to the simple regression model	398	
	Goodness of fit and statistical tests	400	
Key t	Key terms		
Appe	ndix 10.1 Comparing linear and logarithmic specifications	402	
11	MODELS USING TIME SERIES DATA	405	
11.1	Assumptions for regressions with time series data	405	
11.2	Static models	408	
11.3	Models with lagged explanatory variables	413	
	Estimating long-run effects	415	
11.4	Models with a lagged dependent variable	416	
	The partial adjustment model	419	
	The error correction model	421	
	The adaptive expectations model	421	
	More general autoregressive models	424	
11.5	Assumption C.7 and the properties of estimators		
	in autoregressive models	427	
	Consistency	429	
	Limiting distributions	431	
	t tests in an autoregressive model	432	
11.6	Simultaneous equations models	435	
11.7	Alternative dynamic representations of time series processes	438	
	Time series analysis	439	
	Vector autoregressions	441	
Key t	erms	443	
12	AUTOCORRELATION	445	
12.1	Definition and consequences of autocorrelation	445	
144.1	Consequences of autocorrelation	447	
	Autocorrelation with a lagged dependent variable	449	
12.2	Detection of autocorrelation	449	
	The Breusch-Godfrey test	450	
	The Durbin-Watson test	451	
12.3	Fitting a model subject to AR(1) autocorrelation	455	
0	Issues	456	
	Inference	457	
	The common factor test	460	
12.4	Apparent autocorrelation	467	
12.5	Model specification: specific-to-general versus general-to-specific	472	
	Comparison of alternative models	473	
	The general-to-specific approach to model specification	475	

Key t	erms	476
•	ndix 12.1 Demonstration that the Durbin-Watson d statistic approximates $2 - 2\rho$ in large samples	477
13	NTRODUCTION TO NONSTATIONARY TIME SERIES	478
13.1	Stationarity and nonstationarity Stationary time series Nonstationary time series Deterministic trend	478 478 484 487 488
13.2	Spurious regressions Spurious regressions with variables possessing deterministic trends Spurious regressions with variables that are random walks	490 491 491
13.3	Graphical techniques for detecting nonstationarity	501
13.4	Tests of nonstationarity: the augmented Dickey–Fuller <i>t</i> test Untrended process Trended process	506 507 510
13.5	Tests of nonstationarity: other tests The Dickey–Fuller test using the scaled estimator of the slope coefficient The Dickey–Fuller F test Power of the tests Further tests Tests of deterministic trends Further complications	513 513 516 516 518 518 518
13.6	Cointegration	519
13.7	Fitting models with nonstationary time series Detrending Differencing Error correction models	524 524 525 526
Key to	erms	528
14 I	NTRODUCTION TO PANEL DATA MODELS	529
14.1	Reasons for interest in panel data sets	529
14.2	Fixed effects regressions Within-groups fixed effects First differences fixed effects Least squares dummy variable fixed effects	531 533 534
14.3	Random effects regressions Assessing the appropriateness of fixed effects and random effects estimation Random effects or OLS? A note on the random effects and fixed effects terminology	535 537 539 541 541

	Contents	xvii
14.4 Differences in differences	544	
Key terms	546	
APPENDIX A: Statistical tables	547	
APPENDIX B: Data sets	565	
Bibliography	577	
Author index	581	
Subject index	582	•