

FACULTY OF SCIENCE

COMP 424 - ARTIFICIAL INTELLIGENCE

Project Report: Saboteur

Authors:

• Haoran Du (ID: 260776911)

• Cameron Cherif (ID: 260784819)

CONTENTS CONTENTS

Contents

1	Introduction			3
2	Technical Approach			
	2.1	Descri	iption	. 3
	2.2	Motiva	ation	. 6
	2.3	Theore	etical Basis	. 6
		2.3.1	Hill Climbing	. 6
		2.3.2	Simulated Annealing	. 7
		2.3.3	Divide and Conquer	. 7
3	Summary of Result			7
4	1 Reflect upon the Approach			
5	Future Improvements			10

1 Introduction

The project is based on a on a specific version of a card game called Saboteur, which was originally introduced back in 2004. In this version, there are 5 types of cards available, namely Tile, Malus, Bonus, Destroy, and Map, on a restricted board of size (15,15). The goal of the project is to implement a computer agent with artificial intelligence called StudentPlayer defined in public class StudentPlayer extends SaboteurPlayer. The AI agent is supposed to beat another predefined agent whose move in the game is set to be random.

There are many constrains to our project, both from the scope of the project itself and several external factors. In the end, the result we obtained was satisfactory. We had a success rate of 33.33% from our testing rounds of play and we have satisfied all the requirements from the project specification document.

2 Technical Approach

2.1 Description

Our strategy is a modified version of the Local Optimization Search to head towards the gold nugget objectives, which is based on the knowledge of Hill Climbing and Simulated Annealing we learned in class. In short, our general strategy is to use the Map cards to find the location of the goal, drop cards that are deemed discardable along the way (to maximize the chances of having a favourable hand), and build a path with the best Tile card in hand, determined by the Local Optimization search, towards the goal.

There is also an idea of critical region which was integrated in the approach. The critical region in the game is defined to be the area below row 8. Inside the region, since it is close to the target, a special aggressive approach was chosen as using the Malus card whenever possible to reduce the winning possibility of the enemy. Thus, the setup of the critical region was not only to ensure that there are enough cards to build a path to the gold nugget with the help of the cards from the enemy in the beginning, but also to steer the enemy away from winning on the path we built or blocked the path.

The details of our approach is listed below in the same order as the logic of our StudentPlayer class:

- 1. Check if the enemy has played a Malus upon the player. If yes, use the Bonus card in hand if possible.
- 2. If the location of gold nugget is still unknown, use the Map card in in hand if possible.
- 3. Drop the dead-end Tile cards in hand if possible to maximize the chances of having a hand of more utility. The dead-end Tile cards are defined as in public static final ArrayList<String> deadEndTileNames in the class constructor. The reason for this discarding move is based on the fact the enemy is completely in random. Hence, we believe it is better to discard those cards in exchange of a potential better hand rather than use those to block the path of the other, since the latter also increases the chance polluting the potential path down to the goal. The over 300 runs of the game we ran proved our prediction.
- 4. Use the Destroy cards in hand if possible to destroy all dead-end Tile cards currently on the board below the entrance. This is to maximize the chance of successfully reaching down to row 12.
- 5. Check the previous conditions. If there is still no viable option available, do as in Listing 1:

```
for (SaboteurMove mov : moves) {
   if (mov.getPosPlayed()[0] >= 5) {
      if (mov.getPosPlayed()[1] <= 7 && (mov.getPosPlayed()[1] >= 3))
      return moves.indexOf(mov);
   }
}
```

Listing 1: A simple greedy approach when the gold location is unknown.

- 6. Repeat previous steps until the gold nugget location is revealed.
- 7. Once the gold location is known, discard the Map cards in hand.
- 8. Check if the cards has reached down to the critical region (below row 8). If not, perform simple greedy approach in Listing 1.
- 9. If reached the critical region, play the Malus card in hand at once. As stated before, this is a special aggressive approach to reduce the winning possibility of

the enemy and to reduce the chance that the planned path is being blocked a dead-end Tile.

10. Next, perform enhanced greedy algorithm in Listing 2 where playing the cross-shape and vertical-stroke shape Tile cards has higher preference in the move.

```
// the + and | tiles in the critical area have priority
          boolean hasTileVer = false;
          for (SaboteurCard card : cards){
              if (card.getName().equals("Tile:8")
              card.getName().equals("Tile:0")
              card.getName().equals("Tile:6")
              card.getName().equals("Tile:6_flip")){
                  hasTileVer = true;
                  break;
              }
10
          }
11
          if (!hasTileVer) {
12
              for (SaboteurMove mov : moves) {
13
                  if (mov.getPosPlayed()[0] > 8) {
14
                       if (Math.abs(mov.getPosPlayed()[1] - goldCoord[1]) <= 1)</pre>
15
                           return moves.indexOf(mov);
                  }
17
              }}
          else{
19
              for (SaboteurMove mov : moves){
20
                  if (mov.getPosPlayed()[0] > 8 && mov.getPosPlayed()[0] < 12
21
                  && Math.abs(mov.getPosPlayed()[1] - goldCoord[1]) <= 1
22
                  && (mov.getCardPlayed().getName().equals("Tile:8")
23
                  mov.getCardPlayed().getName().equals("Tile:0")
24
                  mov.getCardPlayed().getName().equals("Tile:6")
                  mov.getCardPlayed().getName().equals("Tile:6_flip") ))
26
                       return moves.indexOf(mov);
              }}
28
```

Listing 2: Enhanced greedy approach

2.2 Motivation

There were several other methods that were discussed before we started writing the code, including turning the game into a Constraint Satisfaction Problem (CSP), similar to the 4 queens problem we studied. However, due to the complexity of the Saboteur game, we believed that the CSP approach will not be feasible for us to achieve on time. There was also an attempted approach by Haoran Du of forming the game into a Minimax tree. In the end, the team decided to switch to the Local Search Optimization approach in the end based on the following reasons:

- 1. There is a total of 56 cards distributed among the players, both starting with 7 cards. Thus, there are only 46 turns, or 23 rounds to discard cards that do not fit one's strategy. Furthermore, only two Malus cards are present in the deck, for twice as many Bonus cards. It increases the chances of countering a Malus, which is unfavourable for an aggressive strategy. However, 6 Map cards are in the deck, thus composing almost a ninth of the deck, favouring a greedy strategy. Three Destroy cards can also compose the deck, which allow the destruction of a tile placed on the board, favourable for path building when one of the 9 dead-end tiles available in the deck are placed. The remaining 28 cards are tunnel tiles permitting route building in various directions.
- 2. We believe that in order to beat a random agent, the best move would be perform a Local Optimization each time after the enemy has played instead of planning a path from the beginning. We don't suppose a very complex approach or would have a lot more advantages than a greedy algorithm when facing something random.
- 3. The enemy is completely random rather than rational. Hence, it is almost impossible to make predictions to the next move of the enemy based on which card was played in the last round. This would make several approaches very hard, for example calculating heuristics of the move, or deciding the min/max agent in $\alpha \beta$ pruning, if also considering the complexity of the moves or tiles.

2.3 Theoretical Basis

2.3.1 Hill Climbing

Hill climbing is a very powerful method using greedy algorithm to determine the local optimization of a problem. It basically compares the outcome of all its available neighbors and choose the best among them. It has the problem of stuck in a local maximum.

In this project, all the cards in hand of the agent is considered neighbors. We used the local greedy search to choose the one that has the best chance to reaching down to the (potential) gold location. The details can be seen in Listing 1 and 2.

2.3.2 Simulated Annealing

Simulated Annealing is an improved version of Hill Climbing. It allows random nongreedy moves to escape the local maximum. In out problem, the default return move is chosen randomly from the list of all moves available. Also, the malus card is only used once inside the critical region, which is a form let the random player doing the process of Simulated Annealing.

2.3.3 Divide and Conquer

A divide-and-conquer algorithm works by recursively breaking down a problem into sub-problems, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem. In this project, the use of the critical region divides the game into two sub-problems. The first one is that when being outside the critical region, we allow bad moves and simply going down using Listing 1. The second one is that when being inside the critical region, we use a more dedicated approach to move as close and as fast to the gold tile as possible. This idea of Divide and Conquer makes the solution easier to approach.

3 Summary of Result

The result we obtained was satisfactory. We achieved a success rate of 33.33% from our over 300 rounds of testing. we have satisfied all the requirements from the project specification document. The RAM we used is lower than 500 MB. The calculating time of our algorithm is smaller than 2 seconds. We did not use File I/O in out program.

4 Reflect upon the Approach

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor.

Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

5 Future Improvements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor.

Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Students' contributions

Both of student partners worked together to understand the problem and write the code in this project.