Applied Machine Learning

Bayes Classifier

Computer Science, Fall 2022 Instructor: Xuhong Zhang

Thomas Bayes 1702-1761

• We can build a histogram for "Antenna Length" with more data

- Q: We want to classify an insect we have found. Its antennae are 3 units long. How can we classify it?
- We can just ask ourselves, give the distributions of antennae lengths we have seen, is it more probable that our insect is a **Grasshopper** or a **Katydid**.
- There is a formal way to discuss the most probable classification

$p(c_i | d)$ = probability of class c_i , given that we have observed d

$$P(Grasshopper | 3) = 10 / (10 + 2) = 0.833$$

$$P(Katydid | 3) = 2/(10 + 2) = 0.166$$

$p(c_i | d)$ = probability of class c_i , given that we have observed d

$$P(Grasshopper | 7) = 3 / (3 + 9) = 0.250$$

$$P(Katydid | 7) = 9/(3+9) = 0.750$$

$p(c_j | d)$ = probability of class c_j , given that we have observed d

$$P(Grasshopper | 5) = 6 / (6 + 6) = 0.500$$

$$P(Katydid | 5) = 6/(6+6) = 0.500$$

- Naïve Bayes
- Simple Bayes
- Idiot Bayes

Find out the probability of the previously unseen instance belonging to each class, then simply pick the most probable class.

Essential Probability Concepts

- Marginalization: $P(B) = \sum_{v \in Val(A)} P(B \land A = v)$
- Conditional Probability: $P(A|B) = \frac{P(A \land B)}{P(B)}$
- Bayes' Rule: $P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$
- Independence:

$$A \perp B \leftrightarrow P(A \land B) = P(A) \times P(B)$$

$$\leftrightarrow P(A|B) = P(A)$$

$$A \perp B|C \leftrightarrow P(A \land B|C) = P(A|C) \times P(B|C)$$

Bayesian classifiers use Bayes theorem, which says

 $\circ p(c_j|d) = \frac{p(d|c_j)p(c_j)}{p(a)}$

This is what we are trying to compute

We can imagine that being in class c_j , because we have feature d with some probability

- $\sqrt{p(c_j|d)}$: probability of instance d being in class c_j
- $\checkmark p(d|c_i)$: probability of generating instance d given class c_i
- $\checkmark p(c_j)$: probability of occurrence of class c_j
- $\checkmark p(d)$: probability of instance d occurring

This is just how frequent the class c_j is in our database

It is the same for all classes, so we can ignore it

• Q: Assume we have two classes

$$C_1$$
 = male and C_2 = female

 We have a person whose sex we do not know, say "drew" or d.

• Classifying drew as male or female is equivalent to ask is it more probable that drew is male or female, i.e. which is greater p(male|drew) or p(female|drew)

Note: Some name can be neutral. For example, "Taylor" can be a male or female name

- o Female:
 - Taylor Mayne Pearl Brooks
 - Taylor-Anne Crichton
- o Male:
 - Taylor Daniel Lautner
 - Tayler Michel Momsen

What is the probability of being called "drew" given that you are a male?

What is the probability of being a male?

What is the probability of being calle male

"drew" given at you are o

$$p(\text{male}|drew) = \frac{p(drew|\text{male})p(\text{male})}{o(drew)}$$

What is the probability of being named "drew"?

Name	Sex
Drew	Male
Claudia	Female
Drew	Female
Drew	Female
Alberto	Male
Karin	Female
Nina	Female
Sergio	Male

We can apply Bayes rule to figure out which category is more likely:

$$p(\text{male}|drew) = \frac{p(drew|\text{male})p(\text{male})}{o(drew)}$$

$$p(\text{male} \mid drew) = \frac{1/3 * 3/8}{3/8} = \frac{0.125}{3/8}$$

$$p(\text{female} \mid drew) = \frac{2/5 * 5/8}{3/8} = \frac{0.250}{3/8}$$

- So far, we considered one feature (the "antennae length" or the "name") of the data.
- o What if we have more than one feature? And how to use all the features?

Find out the probability of the previously unseen instance belonging to each class, then simply pick the most probable class.

Name	Over 170cm	Eye	Hair length	Sex
Drew	No	Blue	Short	Male
Claudia	Yes	Brown	Long	Female
Drew	No	Blue	Long	Female
Drew	No	Blue	Long	Female
Alberto	Yes	Brown	Short	Male
Karin	No	Blue	Long	Female
Nina	Yes	Brown	Short	Female
Sergio	Yes	Blue	Long	Male

o To simplify the task, naïve Bayesian classifiers assume attributes have independent distributions, and thereby estimate:

$$p(x|c_j) = p(x^1|c_j) \times p(x^2|c_j) \times \cdots \times p(x^d|c_j)$$

The probability of class
Cj generating instance x,
equals...

The probability of class Cj generating the observed value for feature 1, multiplied by...

The probability of class Cj generating the observed value for feature 2, multiplied by...

$$p(x|c_j) = p(x^1|c_j) \times p(x^2|c_j) \times \cdots \times p(x^d|c_j)$$

In case for Officer Drew, the features are blue-eyed, over 170 cm tall, and has long hair

$$p(\text{officer drew}|c_j) = p(\text{over } 170cm = yes|c_j) \times p(\text{eye color} = \text{blue}|c_j) \times \cdots$$

$$p(\text{officer drew}|\text{Female}) = \frac{2}{5} \times \frac{3}{5} \times \cdots$$

$$p(\text{officer drew}|\text{male}) = \frac{2}{3} \times \frac{2}{3} \times \cdots$$

Graphic representation

The arrow indicates a class condition, and each class causes certain features with a certain probability

Properties

Naïve Bayes is not sensitive to irrelevant features

Suppose we are trying to classify a person's sex based on some features, including eye color. (eye color is completely irrelevant to a a person's gender)

$$p(\text{Jessica}|c_j) = p(\text{wears_dress} = yes|c_j) \times p(\text{eye color} = \text{brown}|c_j) \times \cdots$$

Assumption: good enough estimates of the probabilities -- the more data the better.

$$p(\text{Jessica}|\text{Female}) = \frac{9,975}{10,000} \times \frac{9,000}{10,000} \times \cdots$$

$$p(\text{Jessica}|\text{male}) = \frac{2}{10,000} \times \frac{9,001}{10,000} \times \cdots$$
 Almost the same

- Properties (cont.)
 - It is fast and space efficient

With a single scan of the entire dataset, we can look up all the probabilities and store them in a table.

For $d_1, d_{2,:}$

Sex	Over190 _{cm}	
Male	Yes	0.15
100000	No	0.85
Female	Yes	0.01
	No	0.99

Sex	Long Hair	
Male	Yes	0.05
	No	0.95
Female	Yes	0.70
100000	No	0.30

Similarly for all the other features.

o But be cautious here:

Naïve Bayes assumes independence of features

Sex	Over 6 foot	
Male	Yes	0.15
	No	0.85
Female	Yes	0.01
	No	0.99

Sex	Over 200 pounds	
Male	Yes	0.11
	No	0.80
Female	Yes	0.05
	No	0.95

Question:

Can the feature "Over 6 foot" and "Over 200 pounds" be completely independent to each other?

Solution: Consider the relationships between features.

Sex	Over 200 pounds & Over 6 foot	
Male	Yes and Yes	0.11
	No and Yes	0.59
	Yes and No	0.05
	No and No	0.35

- Another disadvantage:
- When we estimate probabilities, sometimes we estimate them by counting from the training data. **But counting might be zero**.
 - Fix by using Laplace smoothing: adding 1 to each count

$$P(d_i = v | C_j = k) = \frac{c_v + 1}{\sum_{v' \in Val(d_i)} c_{v'} + |values(d_i)|}$$

- \square c_v is the count of training instance with a value of v for attribute i and class label k.
- $\square \sum_{v' \in Val(d_i)} c_{v'}$ is the number of instances for class k.
- \square | $values(d_i)$ | is the number of values d_i can take on

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	false	no
Sunny	80	90	true	no
Overcast	83	86	false	yes
Rainy	70	96	false	yes
Rainy	68	80	false	yes
Rainy	65	70	true	no
Overcast	64	65	true	yes
Sunny	72	95	false	no
Sunny	69	70	false	yes
Rainy	75	80	false	yes
Sunny	75	70	true	yes
Overcast	72	90	true	yes
Overcast	81	75	false	yes
Rainy	71	91	true	no

Q:

 $x = \{\text{overcast, 66, 90, true}\}\$ Play or not play?

 Prior probability for target variable : Play

$$P(play = yes) = 9/14$$

 $P(play = no) = 5/14$

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	false	no
Sunny	80	90	true	no
Overcast	83	86	false	yes
Rainy	70	96	false	yes
Rainy	68	80	false	yes
Rainy	65	70	true	no
Overcast	64	65	true	yes
Sunny	72	95	false	no
Sunny	69	70	false	yes
Rainy	75	80	false	yes
Sunny	75	70	true	yes
Overcast	72	90	true	yes
Overcast	81	75	false	yes
Rainy	71	91	true	no

Q:

 $x = \{\text{overcast, 66, 90, true}\}$ Play = yes or no?

Likelihood p(x|play)

P(x|yes) = p(overcast|yes) $\times p(66|yes) \times p(90|yes)$ $\times p(true|yes)$

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	false	no
Sunny	80	90	true	no
Overcast	83	86	false	yes
Rainy	70	96	false	yes
Rainy	68	80	false	yes
Rainy	65	70	true	no
Overcast	64	65	true	yes
Sunny	72	95	false	no
Sunny	69	70	false	yes
Rainy	75	80	false	yes
Sunny	75	70	true	yes
Overcast	72	90	true	yes
Overcast	81	75	false	yes
Rainy	71	91	true	no

Q:
x = {overcast, 66, 90, true}
Play = yes or no?
Likelihood p(x|play)

$$P(x|no) = p(overcast|no)$$

$$\times p(66|no) \times p(90|no)$$

$$\times p(true|no)$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	false	no
Sunny	80	90	true	no
Overcast	83	86	false	yes
Rainy	70	96	false	yes
Rainy	68	80	false	yes
Rainy	65	70	true	no
Overcast	64	65	true	yes
Sunny	72	95	false	no
Sunny	69	70	false	yes
Rainy	75	80	false	yes
Sunny	75	70	true	yes
Overcast	72	90	true	yes
Overcast	81	75	false	yes
Rainy	71	91	true	no

Q:
x = {overcast, 66, 90, true}
Play = yes or no?
Likelihood p(x|play)

$$P(x|no) = p(overcast|no)$$

$$\times p(66|no) \times p(90|no)$$

$$\times p(true|no)$$

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	false	no
Sunny	80	90	true	no
Overcast	83	86	false	yes
Rainy	70	96	false	yes
Rainy	68	80	false	yes
Rainy	65	70	true	no
Overcast	64	65	true	yes
Sunny	72	95	false	no
Sunny	69	70	false	yes
Rainy	75	80	false	yes
Sunny	75	70	true	yes
Overcast	72	90	true	yes
Overcast	81	75	false	yes
Rainy	71	91	true	no

Q:

 $x = \{\text{overcast, 66, 90, true}\}$ Play = yes or no?

Likelihood p(x|play)

$$p(overcast|no)$$

$$= (0+1)/(5+3)$$

- 0 instance where
 Outlook = overcast and play = no
- Total instances is 5 where play=no
- Outlook has 3 unique values

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	false	no
Sunny	80	90	true	no
Overcast	83	86	false	yes
Rainy	70	96	false	yes
Rainy	68	80	false	yes
Rainy	65	70	true	no
Overcast	64	65	true	yes
Sunny	72	95	false	no
Sunny	69	70	false	yes
Rainy	75	80	false	yes
Sunny	75	70	true	yes
Overcast	72	90	true	yes
Overcast	81	75	false	yes
Rainy	71	91	true	no

Q:

 $x = \{\text{overcast, 66, 90, true}\}$ Play = yes or no?

Likelihood p(x|play)

$$p(\text{overcast}|\text{yes})$$
$$= (4+1)/(9+3)$$

- 4 instances where
 Outlook = overcast and play = yes
 - Total instances is 9 where play=yes
- Outlook has 3 unique values

o In practice, we use log-probabilities to prevent underflow.

In practice, the independence assumption doesn't often hold true, but Naïve Bayes performs very well despite it

$$\log(P(x)) = \operatorname{argmax} P(C = k) + \sum_{i=1}^{d} \log P(x^{i}|Y = k)$$

- o For each class label k
 - Estimate P(C = k) from the data
 - For each value $x^{i,j}$ of each attribute x^i
 - Estimate $P(x^{i,j}|C=k)$

Bayes Classifier: prediction

Play?	P(Play)
yes	3/4
no	1/4

'	Temp	Play?	P(Temp Play)
	warm	yes	4/5
	cold	yes	1/5
	warm	no	1/3
I	cold	no	2/3

Question Predict label for

x = (rainy, warm, normal)

$$P(play|x) \propto \log P(play) + \log P(rainy|play)$$

 $+ \log P(warm|play) + \log P(normal|play)$
 $\propto \log \frac{3}{4} + \log \frac{1}{5} + \log \frac{4}{5} + \log \frac{2}{5} = -1.319$

$$P(\neg play|x) \propto \log P(\neg play) + \log P(\text{rainy}|\neg play) + \log P(\text{norm}; \neg play) + \log P(\text{norm}; \neg play)$$

$$\propto \log \frac{1}{4} + \log \frac{2}{3} + \log \frac{1}{3} + \log \frac{1}{3} = -1.732$$

SkyPlay?P(Sky | Play)sunnyyes4/5rainyyes1/5sunnyno1/3rainyno2/3

ŀ	lumid	Play?	P(Humid Play)
	high	yes	3/5
	norm	yes	2/5
	high	no	2/3
L	norm	no	1/3

Predict PLAY

- Can also be used for computing probabilities (Not just predicting labels)
 - NB classifier gives predictions, not probabilities, because we ignore P(X) (the denominator in Bayes rule)
 - For each possible class label c_k , the class probability is given by

$$P(C = k | X = x) = \frac{P(C = k) \prod_{i=1}^{d} P(X_i = x_i | C = k)}{\sum_{k'=1}^{\# of \ classes} P(C = k') \prod_{i=1}^{d} P(X_i = x_i | C = k')}$$

- For **continuous inputs** *X*, we can also use the previous argmax as the basis for designing a Naïve Bayes classifier.
 - One common approach is to assume that for each discrete value k of C, the distribution of each continuous x^i is Gaussian, and is defined by a mean and standard deviation specific X^i and k.
 - Then we must estimate the mean and standard deviation of each of these Gaussians:

$$\mu_{ik} = E[X^i | C = k]$$

$$\sigma_{ik}^2 = E[(X^i - \mu_{ik})^2 | C = k]$$

for each attribute X^i and each possible value k of C.

 \circ We must also estimate the priors on C as well

$$\pi_k = P(C = k)$$

- ✓ The model summarizes a Gaussian Naïve Bayes classifier, which assumes that the data X is generated by a mixture of class-conditional (i.e., dependent on the value of the class variable Y) Gaussians.
- \checkmark The naïve Bayes assumption introduces the additional constraint that the attribute values X^i are independent of one another within each of these mixture components.
- ✓ We might introduce additional assumptions to further restrict the number of parameters or the complexity of estimating them.
 - For example, we can assume that noise in the observed X^i comes From a common source, then all of the σ_{ik} are identical, regardless of the attribute i or class k.