

CFD Lab

The Lattice-Boltzmann Method (LBM)

Nikola Tchipev 25.04.2014

Outline

Intro

Molecular Dynamics

Lattice Gas Cellular Automata

Lattice-Boltzmann Method

References

LBM - a different story

- Macroscale:
 - Finite Difference Methods (FDM)
- Mesoscale:
 - Lattice-Boltzmann Method (LBM)
- Microscale:
 - Molecular Dynamics (MD)

LBM

- fluid solver, but we don't solve NSE
- based on statistical mechanics
- · new (and still evolving) method
- easy to program
- already a factor in the automotive industry

What assumptions did we have in Worksheet 1?

What assumptions did we have in Worksheet 1?

• inscompressible, isothermal, Newtonian, ...

What assumptions did we have in Worksheet 1?

- inscompressible, isothermal, Newtonian, ...
- continuum assumption

What assumptions did we have in Worksheet 1?

- inscompressible, isothermal, Newtonian, ...
- · continuum assumption

Can we solve *any* flow problem with NSE? Flow in a carbon nanotube?

The continuum assumption

Fluids in reality

composed of atoms and molecules, empty space in between

Fluids under the continuum assumption

composed of continuous matter, filling the entire space

When is the continuum assumption valid?

The continuum assumption

Continuum assumption is valid for

$$Kn \ll 1.$$
 (1)

Kn: Knudsen number

$$Kn = \frac{\lambda}{L_c},$$
 (2)

 L_c : characteristic length

 λ : mean free path

• air at STP: $\lambda \approx \mathcal{O}(nm)$

Thought experiment

Small particle in fluid at rest

- $\Rightarrow \vec{u} = 0$ identically
- L_c diameter of particle.
- as *L_c* decreases, *Kn* increases
- as Kn approaches 1, the particle begins to feel collisions with individual molecules
- Brownian motion kicks in!

But NSE (or the Stokes Eq.) predict no motion of the particle!

Outline

Intro

Molecular Dynamics

Lattice Gas Cellular Automata

Lattice-Boltzmann Method

References

Molecular Dynamics

Nano-, Micro- things:

Nano-, Microfluidics

Applications

- nanotubes, -pores, -filters...
- Lab-on-a-chip
- pop-up touch screens?

Can we solve any flow problem with MD?

Largest MD simulation - 4×10^{12} particles. 1 milliliter of water - 3×10^{22} particles

Statistical noise

Need to sample:

- in space
- in time
- Monte-Carlo-type

mean speed: 0.17, max speed: 12.4

Outline

Intro

Molecular Dynamics

Lattice Gas Cellular Automata

Lattice-Boltzmann Method

References

Lattice Gas Cellular Automata

LGCA

- reduce MD computational complexity
- replace molecule-to-molecule force calculations by rigid body collisions

Cellular Automaton

- Conway's Game of Life (CGL)
- regular grid of cells
- each cell can have a discrete number of states. (alive or dead in CGL)

The Lattice in LGCA and LBM

lattice \approx graph

- at the end of a timestep, particles can reside only at vertices
- during a timestep, particles can travel only along one edge

The Lattice in LGCA and LBM

Discretize space and velocity

Macro-view

no big deal, we always discretize

Micro-view

very big deal! Only one of several velocities $\{\vec{c}_i\}_{i=0,...,n}$ allowed. This restricts:

- velocity direction
- · velocity magnitude
- information transfer (LGCA and LBM are fully explicit schemes)

Note a lattice may include $\vec{c}_i = 0$: stationary particles.

LGCA

Exclusion principle

no two particles can have the same position AND velocity at the same time

State of a cell

a few boolean variables:

- $n_i(\vec{r}, t) = 1$ if we have a particle at position \vec{r} , with velocity \vec{c}_i , at time t
- $n_i(\vec{r},t) = 0$ otherwise

LGCA

Algorithm

```
while (t != t_{end}) {
```

- 1. collide handle multiple particles present at the same site
- 2. stream travel the respective edge
- $3. \ t = t + \Delta t$

Stream

$$n_i^{in}(\vec{r} + \vec{c}_i \Delta t, t + \Delta t) = n_i^{out}(\vec{r}, t)$$
(3)

Collide

$$n_i^{out}(\vec{r},t) = n_i^{in}(\vec{r},t) + \Omega_i(n_i^{in}(\vec{r},t))$$
(4)

 Ω : collision operator Rigid body collisions:

· conserve mass (number of particles):

$$\sum_{i} n_{i}^{in} = \sum_{i} n_{i}^{out} \tag{5}$$

conserve momentum

$$\sum_{i} n_{i}^{in} \vec{c}_{i} = \sum_{i} n_{i}^{out} \vec{c}_{i}$$
 (6)

Square lattice collision

Hexagonal lattice collision

image: [1]

- probabilistic
- look-up table

Some boundary conditions

image: [1]

Some boundary conditions

image: [1]

No-slip in LGCA

- very easy
- very convenient

Some boundary conditions

image: [1]

No-slip in LGCA

- very easy
- very convenient

regular grid + easy No-slip BC

- very well suited for handling complex geometries
- no Meshing!

A flow problem

image: [1]

LGCA

NSE can be mathematically recovered from LGCA!

Recap

- very fast and simple compared to MD
- perfect for flow in complex geometries
- easy to parallelize
- statistical noise?

Outline

Intro

Molecular Dynamics

Lattice Gas Cellular Automata

Lattice-Boltzmann Method

References

LBM

LGCA + statistics (statistical mechanics) + additional assumptions Replace boolean n_i with real f_i .

Algorithm

```
while (t != t_{end}) {
```

- 1. collide handle f_i 's at the same site
- 2. stream travel the respective edge
- $3. \ t = t + \Delta t$

The f_i

 $f(\vec{x}, \vec{v}, t)$: probability density function for finding particles with velocity \vec{v} at (\vec{x}, t)

$$f \in \mathbb{R}, f \in (0,1)$$

The LBM lattices

DnQm notation:

- n: number of dimensions
- m: number of directions

other possibilities: D2Q5, D2Q7, D3Q15, D3Q19

Macroscopic quantities

Given $\{f_i\}$, compute $\{\rho, u, p\}$:

density:

$$\rho(\vec{x},t) = \sum_{i=0}^{Q-1} f_i \approx 1$$

momentum:

$$\vec{u}(\vec{x},t)\rho(\vec{x},t) = \sum_{i=0}^{Q-1} f_i \cdot c_i$$

pressure:

$$p = \rho \cdot c_s^2$$

 $c_s = \frac{1}{\sqrt{3}}$: speed of sound local operations

Given $\{\rho, u\}$, can we compute $\{f_i\}$?

The equilibrium distribution

$$f_i^{eq}(\rho, u)$$

a specific mapping from $\{\rho, u\}$ to $\{f_i\}$:

$$f_i^{eq} = w_i \rho \left(1 + \frac{\vec{c}_i \cdot \vec{u}}{c_s^2} + \frac{1}{2c_s^4} (\vec{c}_i \cdot \vec{u})^2 - \frac{1}{2c_s^2} \vec{u} \cdot \vec{u} \right),$$

 w_i - weights, depending on the chosen lattice. E.g. D2Q9:

$$w_i = \begin{cases} \frac{4}{9} & \text{if } ||c_i|| = 0\\ \frac{1}{9} & \text{if } ||c_i|| = 1\\ \frac{1}{36} & \text{if } ||c_i|| = \sqrt{2} \end{cases}$$

· needed for IC, BC and collisions

The equilibrium distribution

 $f^{eq} \approx \text{Normal distribution}$

The equilibrium distribution

feq - Maxwell Boltzmann equilibrium distribution

$$f^{eq}(\vec{x}, \vec{c_i}, t) = \left(\frac{m}{2\pi k_B T}\right)^{D/2} \cdot \exp\left(-\frac{m(\vec{c_i} - \vec{u}(\vec{x}, t))^2}{2k_B T}\right),$$

it assumes an ideal gas:

$$pV = Nk_bT$$

$$p = \frac{N}{V} \times const = \rho \times const$$

Moreover, the form

$$f_i^{eq} = w_i \rho \left(1 + \frac{\vec{c}_i \cdot \vec{u}}{c_s^2} + \frac{1}{2c_s^4} (\vec{c}_i \cdot \vec{u})^2 - \frac{1}{2c_s^2} \vec{u} \cdot \vec{u} \right),$$

assumes $u \ll c_i$.

So, we assume a low Mach number:

$$Ma = \frac{u}{c_s} << 1$$

 c_s - speed of sound, information transfer

$$c_s = const \times \sqrt{k_b T}$$

weakly compressible flow

Collision

BGK approximation

Bhatnagar-Gross-Krook approximation

$$\Omega_i = -rac{1}{ au}(f_i - f_i^{eq}(
ho, u))$$

 $\tau \in (0.5, 2.0)$ - relaxation "time"

$$\tau = \frac{\nu}{c_s^2} + 0.5$$

 ν - kinematic viscosity

we model "weak departure from equilibrium state of an ideal gas"

Why collision is local

Why collision is local

Collision with intuition

collision:
$$f_i := f_i + \Omega_i$$

$$f_i := f_i - \frac{1}{\tau} \left(f_i - f_i^{eq} \right)$$

Let
$$\omega = \frac{1}{\tau} \in (0.5, 2.0)$$
:

$$f_i := (1 - \omega)f_i + \omega f_i^{eq},$$

Collision with intuition

collision:
$$f_i := f_i + \Omega_i$$

$$f_i := f_i - \frac{1}{\tau} \left(f_i - f_i^{eq} \right)$$

Let
$$\omega = \frac{1}{\tau} \in (0.5, 2.0)$$
:

$$f_i := (1 - \omega)f_i + \omega f_i^{eq},$$

SOR update rule?

Channel with a narrowing, flow from left to right:

Channel with a narrowing, flow from left to right:

Velocity magnitude at high Re:

Channel with a narrowing, flow from left to right:

Velocity magnitude at high *Re*:

.. at low Re:

Collision and streaming

Combined update rule

$$f_{i}\left(\vec{x}+c_{i}\Delta t,t+\Delta t\right)=f_{i}\left(\vec{x},t\right)-\frac{1}{\tau}\left(f_{i}\left(\vec{x},t\right)-f_{i}^{eq}\left(\rho\left(\vec{x},t\right),u\left(\vec{x},t\right)\right)\right)$$

Implementation

collide:

$$f_i^*(\vec{x},t) := f_i(\vec{x},t) - \frac{1}{\tau} \left(f_i(\vec{x},t) - f_i^{eq} \left(\rho(\vec{x},t), u(\vec{x},t) \right) \right)$$

stream:

$$f_i(\vec{x}+c_i\Delta t,t+\Delta t)=f_i^*(\vec{x},t)$$

NSE can be recovered!

multiscale Chapman Enskog analysis

The continuous case

We are solving the continuous Boltzmann equation

$$\frac{\partial f}{\partial t} + \vec{\mathbf{v}} \cdot \nabla = \Omega$$

with our particular Lattice space- and velocity discretization.

· density:

$$\rho(\vec{x},t) = \int_{\mathbb{R}^D} f(\vec{v}) d\vec{v}$$

momentum:

$$\vec{u}(\vec{x},t)\rho(\vec{x},t) = \int_{\mathbb{R}^D} f(\vec{v}) \cdot \vec{v} d\vec{v}$$

Stability

We made many assumptions ...

- $\rho \approx 1$
- u << 1
- ν can't get arbitrarily small
 ⇒ how to control Re?
- ,

Pros

- can handle continuum problems (e.g. cars), but also higher Kn numbers
- coupling to MD
- closer to true physical description than NSE: turbulence, diffusion, multi-component flows

Cons

Homework: compare with NSE

Outline

Intro

Molecular Dynamics

Lattice Gas Cellular Automata

Lattice-Boltzmann Method

References

References

[1] Bastien Chopard, Introduction to Lattice Gas Cellular Automata, theory.physics.unige.ch/cours/outils/fichiers/lga.ps