CS 511 Formal Methods, Fall 2024	Instructor	Assaf Kfoury
Homework Assignment	2	
September 19, 2024	Lucas	Miguel Tassis

Exercise 1

(Some ideas were from the example of the proof of length of two lists on Wikipedia) The exercise asks us to use structural induction on $t \in A^*$ to prove the property P(t) defined by:

$$P(t) \stackrel{\text{def}}{=} \text{for all } s \in A^* \text{ it holds that } \text{reverse}(s \cdot t) = \text{reverse}(t) \cdot \text{reverse}(s)$$

To prove this property by structural induction, we also have to use the definition of the reverse function. Using the definition on page 7 in Lecture Slides 6, we have that $\operatorname{reverse}(s \cdot x) \stackrel{\text{def}}{=} x \cdot \operatorname{reverse}(s)$ and $\operatorname{reverse}(\varepsilon) \stackrel{\text{def}}{=} \varepsilon$.

Base step: In the base case, we have that $t = \varepsilon$ (empty string), thus:

```
\begin{aligned} \operatorname{reverse}(s \cdot t) &= \operatorname{reverse}(s \cdot \varepsilon) \\ &= \operatorname{reverse}(s) \\ &= \varepsilon \cdot \operatorname{reverse}(s) \\ &= \operatorname{reverse}(t) \cdot \operatorname{reverse}(s) \end{aligned}
```

Thus, we have that the property holds up in the base case.

Inductive step: Consider that we denote the string $t = w \cdot x$, where x is the last character of the string t. To prove by structural induction, we will assume that P(w) is true, and prove that the property still holds for $P(t = w \cdot x)$. If we apply reverse $(s \cdot t)$:

```
\begin{aligned} \operatorname{reverse}(s \cdot t) &= \operatorname{reverse}(s \cdot (w \cdot x)) \\ &= \operatorname{reverse}((s \cdot w) \cdot x) \\ &= x \cdot \operatorname{reverse}(s \cdot w) & \operatorname{reverse} \text{ definition} \\ &= x \cdot (\operatorname{reverse}(w) \cdot \operatorname{reverse}(s)) & \operatorname{induction hypothesis} \\ &= (x \cdot \operatorname{reverse}(w)) \cdot \operatorname{reverse}(s) \\ &= \operatorname{reverse}(w \cdot x) \cdot \operatorname{reverse}(s) \\ &= \operatorname{reverse}(t) \cdot \operatorname{reverse}(s) \end{aligned}
```

Since the property still holds for P(t), we proved by structural induction that:

$$P(t) \stackrel{\text{def}}{=} \text{for all } s \in A^* \text{ it holds that } \text{reverse}(s \cdot t) = \text{reverse}(t) \cdot \text{reverse}(s)$$

Exercise 2

(From LCS, page 87: Exercise 1.4.15)

We have to use mathematical induction on n to show that:

$$((\phi_1 \land (\phi_2 \land (\cdots \land \phi_n) \cdots) \rightarrow \psi) \rightarrow ((\phi_1 \rightarrow (\phi_2 \rightarrow (\cdots (\phi_n \rightarrow \psi) \cdots)))))$$

Base step: First, we have to show that the statement holds for the base case, which is n = 1. In this case, we have $(\phi_1 \to \psi) \to (\phi_1 \to \psi)$, which is true. So the statement holds for the base case.

Inductive step: Now, we have to show that if the statement is holds for n = k (induction hypothesis), then k + 1 also holds. Using natural deduction on k + 1:

1.
$$((\phi_1 \land (\phi_2 \land (\cdots \land (\phi_k \land \phi_{k+1}) \cdots)) \rightarrow \psi)$$
 premise
2. $(\phi_1 \land (\phi_2 \land (\cdots \land \phi_k) \cdots))$ assumption
3. ϕ_{k+1} assumption
4. $(\phi_1 \land (\phi_2 \land (\cdots \land (\phi_k \land \phi_{k+1}) \cdots))$ $\land i \ 2,3$
5. ψ $\rightarrow e \ 1,4$
6. $\phi_{k+1} \rightarrow \psi$ $\rightarrow i \ 3-5$
7. $(\phi_1 \land (\phi_2 \land (\cdots \land \phi_k) \cdots) \rightarrow (\phi_{k+1} \rightarrow \psi))$ $\rightarrow i \ 2-6$
8. $(\phi_1 \rightarrow (\phi_2 \rightarrow (\cdots (\phi_k \rightarrow (\phi_{k+1} \rightarrow \psi) \cdots))))$ induction hypothesis

Thus, we showed by mathematical induction that the statement holds.

Problem 1

(b) (LEM) is derivable from (PBC)

(c) $(\neg \neg E)$ is derivable from (LEM)

The only way I found of deriving $(\neg\neg E)$ from (LEM) was by also using disjunctive syllogism (Wikipedia). Disjunctive syllogism is: $p \lor q, \neg p \vdash q$. I tried proving it (in order to use it in the exercise), but couldn't do it without using $(\neg\neg E)$. I don't know if there is another way of proving disjunctive syllogism without either $(\neg\neg E)$ or (PBC). Most of the places I searched also used one of the two to prove it (for example). I decided to put the proof here because it was the only one I could find, but I think it might involve the use of other rules beside LEM (which probably goes against the idea of the exercise).

1.	$\neg p \vee p$	LEM
2.	$\neg \neg p$	assumption
3.	p	disjunctive syllogism
4.	$\neg \neg p \to p$	\rightarrow i 2 -3

Exercise 3

The Lean template file with the solutions is available on GitHub.

Exercise 4

The Lean template file with the solutions is available on GitHub.

Problem 2

The Lean template file with the solutions is available on GitHub.