

组合优化理论

第3章 对偶理论

主讲人,陈安龙

一、问题的提出

对偶性是线性规划问题的最重要的内容之一。每一个线性规划(LP)必然有与之相伴而生的另一个线性规划问题,即任何一个求 maxZ 的LP都有一个求 minZ 的LP。其中的一个问题叫"原问题",记为"P",另一个称为"对偶问题",记为"D"。

例1、资源的合理利用问题 已知资料如表所示,问应如 何安排生产计划使得既能充分 利用现有资源又使总利润最大?

单件 产 消耗 品 资源	甲	乙	资源限制
A	5	2	170(钢材)
В	2	3	100(煤炭)
C	1	5	150(设备)
单件利润	10	18	

数学模型:

$$\max Z = 10x_1 + 18x_2$$

$$\begin{cases} 5x_1 + 2x_2 \le 170 \\ 2x_1 + 3x_2 \le 100 \end{cases} (原问题)$$

$$x_1 + 5x_2 \le 150$$

$$x_1, x_2 \ge 0$$

下面从另一个角度来讨论这个问题:

假定:该厂的决策者不是考虑自己生产甲、乙两种产品,而 是将厂里的现有资源用于接受外来加工任务,只收取加工费。 试问该决策者应制定怎样的收费标准(合理的)?

分析问题:

- 1、每种资源收回的费用不能低于自己生产时的可获利润;
- 2、定价又不能太高,要使对方能够接受。

设y₁,y₂,y₃分别为三种资源的收费单价,所以有下式:

$$5y_1 + 2y_2 + y_3 \ge 10$$

$$2y_1 + 3y_2 + 5y_3 \ge 18$$

$$y_1, y_2, y_3 \ge 0$$

就目标而言,用下式可以表达:

$$W = 170y_1 + 100y_2 + 150y_3$$

一般而言,W越小越好,但因需双方满意,故

$$\min W = 170y_1 + 100y_2 + 150y_3$$
 为最好。

该问题的数学模型为:

$$\min W = 170y_1 + 100y_2 + 150y_3$$

$$\begin{cases} 5y_1 + 2y_2 + y_3 \ge 10 \\ 2y_1 + 3y_2 + 5y_3 \ge 18 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$
 (对偶问题)

模型对比:

$$\max Z = 10x_1 + 18x_2$$

$$\begin{cases} 5x_1 + 2x_2 \le 170 \\ 2x_1 + 3x_2 \le 100 \end{cases} \quad (原问题)$$

$$x_1 + 5x_2 \le 150$$

$$x_1, x_2 \ge 0$$

$$\min W = 170y_1 + 100y_2 + 150y_3$$

$$\begin{cases} 5y_1 + 2y_2 + y_3 \ge 10 \\ 2y_1 + 3y_2 + 5y_3 \ge 18 \end{cases} \quad (对偶问题)$$

$$y_1, y_2, y_3 \ge 0$$

© Combination Optimization PPT was designed by Chen Anlong, @UESTC.edu.cn

对偶问题的形式

定义 设原线性规划问题为

则称下列线性规划问题

Min
$$W = b_{1}y_{1} + b_{2}y_{2} + \dots + b_{m}y_{m}$$

$$\begin{cases} a_{11}y_{1} + a_{21}y_{2} + \dots + a_{m1}y_{m} \geq c_{1} \\ a_{12}y_{1} + a_{22}y_{2} + \dots + a_{m2}y_{m} \geq c_{2} \\ \dots \\ a_{1n}y_{1} + a_{2n}y_{2} + \dots + a_{mn}y_{m} \geq c_{n} \\ y_{i} \geq 0 (i = 1, 2, \dots, m) \end{cases}$$

为其对偶问题,其中 $y_i(i=1,2,...,m)$ 称为 \underline{N} 称为 \underline{N} 称为 \underline{N} 不是。 上述对偶问题称为 \underline{N} 不是对偶问题。

原问题简记为(P),对偶问题简记为(D)

对偶问题的矩阵形式

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}; b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$C = [c_1, c_2, \cdots, c_n]$$

$$Y = [y_1, y_2, \cdots, y_m]$$

原始问题(P)

$$Max Z=CX$$

s.t.
$$AX \leq b$$

$$X \ge \theta$$

对偶问题(D)

s.t.
$$YA \ge C$$

$$Y \ge 0$$

原始问题与对偶问题的对应关系

Min w		Max z							
		<i>x</i> ₁ ≥0	<i>x</i> ₂ ≥0	•••	$x_n \ge 0$				
		x_1	x_2	•••	\boldsymbol{x}_n				
y ₁ ≥0	y_1	a ₁₁	a ₁₂	•••	a _{1n}	≤ <i>b</i> ₁			
y ₂ ≥0	<i>y</i> ₂	<i>a</i> ₂₁	a ₂₂	•••	a_{2n}	≤b ₂			
	i	i	i	i	i	•			
y _m ≥0	$y_{\mathbf{m}}$	a _{m1}	a_{m2}	•••	$a_{ m mn}$	≤ <i>b</i> _m			
		≥ <i>c</i> ₁	≥c ₂	•••	≥ <i>c</i> _m				

例1: 求线性规划问题的对偶规划

Max
$$z = 5x_1 + 6x_2$$

 $5x_1 - 2x_2 \le 7$
 $4x_1 + x_2 \le 9$
 $x_1, x_2 \ge 0$

解: 由原问题的结构可知为对称型对偶问题

Min
$$w = 7y_1 + 9y_2$$

 $\begin{cases} 3y_1 + 4y_2 \ge 5 \\ -2y_1 + y_2 \ge 6 \\ y_1, y_2 \ge 0 \end{cases}$

例2: 求线性规划问题的对偶规划

Max
$$Z = 5x_1 - 6x_2$$

 $5x_1 - 2x_2 \le 7$
 $4x_1 + x_2 \ge 9$
 $x_1, x_2 \ge 0$

解:由原问题的结构可知不是对称型对偶问题,可先化为对称型,再求其对偶规划。

Max
$$Z = 5x_1 - 6x_2$$
 Min $W = 7y_1 - 9y_2$
 $5.t$
$$\begin{cases} 3x_1 - 2x_2 \le 7 \\ -4x_1 - x_2 \le -9 \end{cases}$$
 s.t
$$\begin{cases} 3y_1 - 4y_2 \ge 5 \\ -2y_1 - y_2 \ge -6 \end{cases}$$
 $y_1, y_2 \ge 0$

例3: 求线性规划问题的对偶规划

Max
$$Z = 5x_1 + 6x_2$$

 $5x_1 - 2x_2 = 7$
 $4x_1 + x_2 \le 9$
 $x_1, x_2 \ge 0$

解: 由原问题的结构可知不是对称型对偶问题,

可先化为对称型,再求其对偶规划。

上式已为对称型对偶问题,故可写出它的对偶规划

Min
$$Z = 7 y'_1 - 7 y''_1 + 9 y_2$$

$$\begin{cases} 3y'_1 - 3y''_1 + 4 y_2 \ge 5 \\ -2y'_1 + 2y''_1 + y_2 \ge 6 \end{cases}$$

$$y'_1, y''_1, y_2 \ge 0$$

令
$$y_1 = y_1' - y_1''$$
 则上式化为

Min
$$Z = 7y_1 + 9y_2$$
 Max $Z = 5x_1 + 6x_2$ $3y_1 + 4y_2 \ge 5$ $3x_1 - 2x_2 = 7$ $4x_1 + x_2 \le 9$ $x_1, x_2 \ge 0$

Max
$$Z = 5x_1 + 6x_2$$

 $5x_1 - 2x_2 = 7$
 $4x_1 + x_2 \le 9$
 $x_1, x_2 \ge 0$

对偶关系对应表

原	问题 (或对偶问题)	对偶问题 (或原问题)				
	目标函数 max	目标函数 min				
约	m^	n^				
束	\leq	≥0	变			
条	>	≪0	量			
件	=	无约束				
	n^	m个	约			
变	≥0	>	束			
量	≪0	\leq	条			
	无约束	=	件			
	约束条件右端项	目标函数变量的系数				
	目标函数变量的系数	约束条件右端项				

对偶问题的基本性质

定理1 对偶问题(D)的对偶就是原问题(P)。

定理2 (弱对偶定理)

若 X 和 Y 分别为原问题(P)及其对偶问题(D)的任意可行解, 则有 $CX \leq Yb$ 成立。

证明: (P)
$$\max z = \sum_{j=1}^n c_j x_j$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & (i=1,\dots,m) \\ x_{j} \geq 0 & (j=1,\dots,n) \end{cases}$$

$$\mathbf{(D)} \quad \min w = \sum_{i=1}^{m} b_i y_i$$

$$s.t. \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & (i = 1, \dots, m) \\ x_{j} \geq 0 & (j = 1, \dots, n) \end{cases} s.t. \begin{cases} \sum_{i=1}^{m} a_{ij} y_{i} \geq c_{j} & (j = 1, \dots, n) \\ y_{i} \geq 0 & (i = 1, \dots, m) \end{cases}$$

$$\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n} (\sum_{i=1}^{m} a_{ij} y_{i}) x_{j} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_{j} y_{i}$$

$$\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_{j} y_{i}$$

$$\sum_{j=1}^{m} b_{i} y_{i} \geq \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_{j} y_{i}$$

$$\sum_{j=1}^{n} c_j x_j \leq \sum_{i=1}^{m} b_i y_i$$

或者证明:

(P) Max
$$Z = CX$$

s.t
$$\begin{cases} AX \le b \\ X \ge 0 \end{cases}$$

所以
$$Yb \ge YAX \ge CX$$

推论1

若 X 和 Y 分别为原问题(P)及其对偶问题(D)的一对可行解,则问题(P)及问题(D)的都有最优解。

证明: 当X和Y为原问题和对偶问题的一个可行解

有

 $AX \leq b$

 $YA \geq C$

 $YAX \leq Yb$

 $YAX \ge CX$

原问题目标函数值

 $CX \le YAX \le Yb$

对偶问题目标函数值

所以原问题的目标函数值有上界,即可找到有限 最优解;对偶问题有下界,也存在有限最优解。

推论2: 若原问题(P)有可行解,但无有限最优解,则对偶问题(D)无可行解。

证明:使用反正法:假设原问题(P)有可行解,对偶问题(D)也存在可行解

由推论1知,原问题(P)和对偶问题(D)都有最优解,则与原问题无最优解矛盾。

定理 3: (对偶定理) 如果 (P) 问题 ((D) 问题) 有最优解,那么(D) 问题 ((P) 问题) 也有最优解,且目标函数值相等。

证明: 用单纯形法求原问题的最优解:

(P)
$$\max z = \sum_{j=1}^{n} c_{j} x_{j}$$
 $\max z = \sum_{j=1}^{n} c_{j} x_{j} + 0 \sum_{i=1}^{m} x_{si}$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} & (i = 1, \dots, m) \\ x_{j} \ge 0 & (j = 1, \dots, n) \end{cases}$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} + x_{si} = b_{i} & (i = 1, \dots, m) \\ x_{j} \ge 0, x_{si} \ge 0 & (j = 1, \dots, n) \end{cases}$$

	$c_j \rightarrow$	•	C_1	• • •	C_k	•••	C_n	0	• • •	0	•••	0	
C_{B}	基	b	x_1	• • •	\mathcal{X}_k	•••	\mathcal{X}_n	\mathcal{X}_{s1}	• • •	\mathcal{X}_{sl}	• • •	X_{sm}	θ_i
0 : 0 : 0	:	$egin{array}{c} dots \ \dot{b}_l \end{array}$	a_{l1}		$\begin{bmatrix} a_{lk} \end{bmatrix}$	•••		1 : 0 : 0		0 : 1 : 0	•••	0 : 0 : 1	$\begin{vmatrix} \theta_1 \\ \vdots \\ \theta_l \\ \vdots \\ \theta_m \end{vmatrix}$
	$c_j - z$		$\delta_{_{1}}$	• • •		• • •	δ_n	0	• • •	0	• • •	0	

$$\max_{\mathbf{S.t.}} z = \sum_{j=1}^{n} c_{j} x_{j} + 0 \sum_{i=1}^{m} x_{si} \qquad \boldsymbol{\sigma}_{j} = \boldsymbol{c}_{j} - \boldsymbol{z}_{j} = \boldsymbol{c}_{j} - \sum_{i=1}^{m} c_{i} a_{ij} = \boldsymbol{c}_{j} - \boldsymbol{C}_{B} \boldsymbol{P}_{j}$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} + x_{si} = b_{i} & (i = 1, \dots, m) \\ x_{j} \ge 0, x_{si} \ge 0 & (j = 1, \dots, n) \end{cases}$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} + x_{si} = b_{i} & (i = 1, \dots, m) \\ x_{j} \ge 0, x_{si} \ge 0 & (j = 1, \dots, n) \end{cases}$$

$$\begin{cases} AX + IX_{s} = b \\ X \ge 0, X_{s} \ge 0 \end{cases}$$

	$c_j \rightarrow$	•	c_1	• • •	C_k	•••	C_n	0	• • •	0	• • •	0	
C_B		b	\mathcal{X}_1	•••	\mathcal{X}_k	•••	\mathcal{X}_n	x_{s1}	• • •	X_{sl}	• • •	X_{sm}	θ_i
0	x_{s1}			• • •		• • •	a_{1n}	1	• • •	0	• • •	0	$\theta_{\!\scriptscriptstyle 1}$
•					()		a_{ln}			•			
0	x_{sl}	b_l	a_{l1}	• • •	a_{lk}	• • •	a_{ln}	0	• • •	1	• • •	0	\leftarrow
•	•		:		a_{mk}		\vdots a_{mn}			•			•
	\mathcal{X}_{sm}	b_{m}	a_{m1}	• • •	a_{mk}	• • •	a_{mn}	0	• • •	0	• • •	1	$\theta_{\scriptscriptstyle m}$
_ ($c_j - z$	j	$\delta_{_{1}}$	• • •	δ_k	• • •	δ_{n}	0	• • •	0	• • •	0	-

$$\max_{S.t.} z = CX + 0X_{s}$$

$$\begin{cases} AX + IX_{s} = b \\ X \ge 0, X_{s} \ge 0 \end{cases}$$

基变量	基变量	基可	非基变量	基变量	
系数		行解	X	X_s	
0	X_{s}	b	\boldsymbol{A}	I	
($c_j - z_j$		C	0	

基变量	基变量	基可	非基变量	基变量	
系数		行解	X	X_s	
0	X_s	b	$oldsymbol{A}$	I	
($c_j - z_j$		C	0	

基变量	基变量	基可	非基变量	基变量
系数		行解	X_B X_N	X_s
0	X_s	b	B N	I
($c_j - z_j$		C_B C_N	0

基变量 基变量 系数		基可	非基变量	基变量
		行解	X_B X_N	X_s
0	X_s	b	B N	I
	$c_j - z_j$		C_B C_N	0

B-1存在 进行初等行变换

基变量	基变量	基可	基变量	非基变量		
系数		行解	X_B	X_N	X_s	
C_B	X_B	B-1b	I	B-1N	B-1	
	$c_j - z_j$		0	$C_N - C_B B^{-1} N$	C_BB^{-1}	

表中的检验数 C_i - Z_i 的推导过程如下:

$$\max_{s.t.} z = CX + 0X_{s}$$

$$\begin{cases} AX + IX_{s} = b \\ X \ge 0, X_{s} \ge 0 \end{cases}$$

$$X_{B} = (x_{1},...,x_{m})^{T}$$
, $X_{N} = (x_{m+1},...,x_{n})^{T}$
 $A = (B, N)$ $C = (C_{B}, C_{N})$

$$(B \quad N) \begin{pmatrix} X_B \\ X_N \end{pmatrix} + IX_s = b$$

$$Z = C_B X_B + C_N X_N + 0X_s$$

$$BX_B + NX_N + IX_s = b$$

$$X_B = B^{-1}b - B^{-1}NX_N - B^{-1}X_s$$

$$Z = C_B (B^{-1}b - B^{-1}NX_N - B^{-1}X_S) + C_N X_N + 0X_S$$

$$Z = C_B B^{-1} b + 0 X_B + (C_N - C_B B^{-1} N) X_N - C_B B^{-1} X_s$$

若
$$C_N$$
- $C_B B^{-1} N \le 0$ - $C_B B^{-1} \le 0$

$$-C_BB^{-1} \leq 0$$

最优解
$$X^* = B^{-1}b$$

最优值= $C_BB^{-1}b$

(P) Max
$$Z = CX$$

s.t
$$\begin{cases} AX \le b \\ X \ge 0 \end{cases}$$

(D)
$$Min$$
 $W = Yb$

$$S.t \begin{cases} YA \ge C \\ Y \ge 0 \end{cases}$$

此时对偶问题D的目标函数值: $w = Yb = C_BB^{-1}b$

由最优性定理知,Y是D的最优解。

推论:

若一对对偶问题中的任意一个有最优解,则另一个 也有最优解,且目标函数最优值相等。

- 一对对偶问题的关系,有且仅有下列三种:
- 1. 都有最优解,且目标函数最优值相等;
- 2. 两个都无可行解;
- 3. 一个问题无界,则另一问题无可行解。

定理5 (互补松弛定理)

若 X 和 Y 分别为(P)和(D)的可行解,则 X、Y 为最优解的

充分必要条件是
$$\begin{cases} Y(b-AX)=0\\ (YA-C)X=0 \end{cases}$$
 同时成立。

(必要性) 原问题

Max
$$Z = CX$$

$$S.t \begin{cases} AX + X_s = b \\ X, X_s \ge 0 \end{cases}$$

对偶问题

Min
$$W = Yb$$

$$S.t \begin{cases} YA - Y_s = c \\ Y, Y_s \ge 0 \end{cases}$$

$$AX + X_s = b \quad (X_s = b - AX) \quad YA - Y_s = C \quad (Y_s = YA - C)$$

$$YA - Y_s = C (Y_s = YA - C)$$

$$Z = CX = (YA - Y_s)X = YAX - Y_sX$$

$$YX_s + Y_s X = 0$$

$$W = Yb = Y(AX + X_s) = YAX + YX_s$$

原始问题和对偶问题变量、松弛变量的维数

原始问题的变量 原始问题的松弛变量

对偶问题的变量 对偶问题的松弛变量

$$x_j y_{m+j} = 0$$
 $y_i x_{n+i} = 0$ $(i=1,2,...,m; j=1,2,...,n)$ 在一对变量中,其中一个大于0,另一个一定等于0

 $\min Z = 3x_1 + 4x_2 + 2x_3 + 5x_4 + 9x_5$

例、已知

$$\begin{cases} x_2 + x_3 - 5x_4 + 3x_5 \ge 2 \\ x_1 + x_2 - x_3 + x_4 + 2x_5 \ge 3 \\ x_{1-5} \ge 0 \end{cases}$$

试通过求对偶问题的最优解来求解原问题的最优解。

解:对偶问题为

$$\max W = 2y_1 + 3y_2$$

$$\begin{cases} y_2 \le 3 & (1) \\ y_1 + y_2 \le 4 & (2) \\ y_1 - y_2 \le 2 & (3) \\ -5y_1 + y_2 \le 5 & (4) \\ 3y_1 + 2y_2 \le 9 & (5) \\ y_1, y_2 \ge 0 \end{cases}$$

$$\min Z = 3x_1 + 4x_2 + 2x_3 + 5x_4 + 9x_5$$

$$\max W = 2y_1 + 3y_2$$

$$y_2 \leq 3$$

$$y_2 \le 3 \qquad (1)$$

$$y_2 \le 4 \qquad (2)$$

$$y_1 + y_2 \le 4 \quad (2$$

$$y_1 - y_2 \le 2 \quad (3)$$

$$-5y_1 + y_2 \le 5 \quad (4)$$

$$3y_1 + 2y_2 \le 9 \quad (5)$$

$$y_1, y_2 \geq 0$$

用图解法求出: $Y^*=(1,3)$, W=11。

将 $y_1^*=1$, $y_2^*=3$ 代入对偶约束条件,

(1) (2) (5) 式为紧约束, (3) (4) 为松约束。

令原问题的最优解为 $X^* = (x_1, x_2, x_3, x_4, x_5)^T$,则根据互补松弛条件,

必有
$$x_3 = x_4 = 0$$

2017年10月13日

又由于y*1>0, y*2>0, 原问题的约束必为等式,即

$$\begin{cases} x_2 + 3x_5 = 2 \\ x_1 + x_2 + 2x_5 = 3 \end{cases}$$

$$\begin{cases} x_1 = 1 + x_5 \\ x_2 = 2 - 3x_5 \end{cases}$$

此方程组为无穷多解

令
$$x_5 = 0$$
, 得到 $x_1 = 1$, $x_2 = 2$ 即 $X_1^* = (1,2,0,0,0)^T$ 为原问题的一个最优解 $Z^* = 11$

再令 $x_5 = 2/3$,得到 $x_1 = 5/3$, $x_2 = 0$ 即 $X*_2 = (5/3,0,0,0,2/3)$ T也是原问题的一个最优解 $Z^* = 11$

例、已知原问题的最优解为

$$X^* = (0, 0, 4)^T, Z=12$$
.

试求对偶问题的最优解。

$$\max Z = x_1 + 4x_2 + 3x_3$$

$$\begin{cases} 2x_1 + 3x_2 - 5x_3 \le 2 \\ 3x_1 - x_2 + 6x_3 \ge 1 \\ x_1 + x_2 + x_3 = 4 \\ x_1 \ge 0, x_2 \le 0, x_3$$
无约束

Min
$$W = 2y_1 + y_2 + 4y_3$$

$$\begin{cases} 2y_1 + 3y_2 + y_3 \ge 1 & (1) \\ 3y_1 - y_2 + y_3 \le 4 & (2) \\ -5y_1 + 6y_2 + y_3 = 3 & (3) \\ y_1 \ge 0, y_2 \le 0, y_3$$
无约束

将 $X^* = (0, 0, 4)$ T代入原问题中,有下式:

$$\begin{cases} 2x_1 + 3x_2 - 5x_3 = -20 < 2 \\ 3x_1 - x_2 + 6x_3 = 24 > 1 \\ x_1 + x_2 + x_3 = 4 = 4 \end{cases}$$

所以,根据互补松弛条件,必有 $y_1^* = y_2^* = 0$,代入对偶问题(3)式, $y_3 = 3$ 。因此,对偶问题的最优解为 $Y^* = (0, 0, 3)$,W = 12 。

对偶单纯形法

对偶单纯形法是应用对偶原理求解原始 线性规划的一种方法——在原始问题的单 纯形表格上进行对偶处理。

注意: 不是解对偶问题的单纯形法!

对偶单纯形法的基本思想

1、对"单纯形法"求解过程认识的提升

从更高的层次理解单纯形法

初始可行基(对应一个初始基本可行解)

→迭代→另一个可行基(对应另一个基本可行解), 直至所有检验数≤0为止。

所有检验数≤0意味着

$$C_N - C_B B^{-1} N \le 0 \Longrightarrow YA \ge C$$

说明原始问题的最优基也是对偶问题的可行基。 换言之,当原始问题的基B既是原始可行基又是对 偶可行基时,B成为最优基。

定理6 B是线性规划的最优基的充要条件是: B是可行基,同时也是对偶可行基。

$$Max Z = CX$$

LP原问题:

$$s.t. \begin{cases} \mathbf{AX} = \mathbf{b} \\ \mathbf{X} \ge 0 \end{cases}$$

若B是A中的一个基

可行基

B对应的解是基本 可行解,则B是可

对偶可行基

若单纯形乘子 $Y = C_R B^{-1}$ 是 对偶问题的可行解,则B 是对偶可行基

 $\mathbf{C}_{R}\mathbf{B}^{-1}$ 是对偶 问题的可行解

检验数 $\sigma_{\rm N} \leq 0$

$$\mathbf{Y}\mathbf{A} \geq \mathbf{C} \longrightarrow \mathbf{C}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{A} \geq \mathbf{C} \longrightarrow \mathbf{C} - \mathbf{C}_{\mathbf{B}}\mathbf{B}^{-1}\mathbf{A} \leq 0 \longrightarrow \sigma_{N} \leq 0$$

证明:

$$\mathbf{C} - \mathbf{C}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{A} \leq \mathbf{0}$$

$$(\mathbf{C}_B : \mathbf{C}_N) - \mathbf{C}_B \mathbf{B}^{-1}(\mathbf{B} : \mathbf{N}) \leq \mathbf{0}$$

$$(\mathbf{C}_B : \mathbf{C}_N) - (\mathbf{C}_B \mathbf{B}^{-1} \mathbf{B} : \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N}) \leq \mathbf{0}$$

$$(\mathbf{C}_B - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{B} : \mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N}) \le \mathbf{0}$$

$$\mathbf{C}_{B} - \mathbf{C}_{B} \mathbf{B}^{-1} \mathbf{B} = \mathbf{0}$$

$$\mathbf{C}_{N} - \mathbf{C}_{B} \mathbf{B}^{-1} \mathbf{N} \leq \mathbf{0}$$

$$\boldsymbol{\sigma}_{N} \leq 0$$

单纯形法的求解过程就是:

在保持原始可行的前提下(b列保持≥0),

通过逐步迭代实现对偶可行(检验数行≤0)。

2、 对偶单纯形法思想:

换个角度考虑LP求解过程:保持对偶可行的前提下(检验数行保持≤0),通过逐步迭代实现原始可行(b列≥0,从非可行解变成可行解)。

三、对偶单纯形法的实施

- 1、使用条件: ①检验数全部≤0;
 - ②解答列至少一个元素 < 0;
- 2、实施对偶单纯形法的基本原则:

在保持对偶可行的前提下进行基变换——每一次迭 代过程中取出基变量中的一个负分量作为换出变量 去替换某个非基变量(作为换入变量),使原始问题的 非可行解向可行解靠近。

3、计算步骤:

求解如右的LP问题:

$$max z = cx$$

$$s.t. Ax = b$$

$$x \ge 0$$

Step1 建立初始单纯形表,计算检验数行。

	c	c_1	c_2	• • •	c_m	c_{m+1}	c_{m+2}	• • •	$\boldsymbol{c}_{\boldsymbol{n}}$	
c_B	x_B	x_1	x_2	• • •	x_m	x_{m+1}	x_{m+2}	• • •	\boldsymbol{x}_n	b
c_1	x_1	1	0	• • •	0	a'_{1m+1}	a'_{1m+2}	• • •	a'_{1n}	b'_1
c_2	x_2	0	1	• • •	0	a'_{2m+1}	a'_{2m+2}	• • •	a'_n	b_2'
	•	•	•	•	•	•	•	•	•	•
c_m	x_m	0	0	• • •	1	a'_{mm+1}	a'_{mm+2}	• • •	a'_{mn}	b'_m
检验	企数	0	0	• • •	0	σ_{m+1}	$\sigma_{\scriptscriptstyle{m+2}}$	• • •	σ_{n}	-z ⁽⁰⁾

Step 2 若 $b'=B^{-1}b \ge 0$,则停止计算,当前的解 $x = B^{-1}b$ 即为原问题的最优解,否则转入下一步;

Step 3 确定换出基变量:

转 Step 2

则取 x_i 为换出基变量;

Step 4 若 $a_{ij} \ge 0$ ($j = 1, 2, \dots, n$) 则停止计算,原问题无可行解,否则转入下一步;

 Step 5
 确定换入基变量: 若
 $\theta = \min \left\{ \frac{\sigma_j}{a_{ij}'} \middle| a_{ij}' < 0, 1 \le j \le n \right\} = \frac{\sigma_k}{a_{ik}'}$

 则取 x_k 为换入基变量

Step 6 以 a_{lk} 为主元,将主元素变成1,主元列变成单位向量,得到新的单纯形表。

循环以上步骤,直至求出最优解。

3、举例——用对偶单纯形法求解LP:

Min W =
$$2x_1 + 3x_2 + 4x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 \ge 3 \\ 2x_1 - x_2 + 3x_3 \ge 4 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

化为标准型 →

$$Max Z = -2x_1 - 3x_2 - 4x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 3 \\ 2x_1 - x_2 + 3x_3 - x_5 = 4 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

将两个等式约束两边分别乘以-1,得

Max
$$Z = -2x_1 - 3x_2 - 4x_3$$

$$\begin{cases}
-x_1 - 2x_2 - x_3 + x_4 = -3 \\
-2x_1 + x_2 - 3x_3 + x_5 = -4 \\
x_1, x_2, x_3, x_4, x_5 \ge 0
\end{cases}$$

以此形式进行列表求解, 满足对偶单纯形法的基本 条件,具体如下:

$c_j \rightarrow$	-2	-3	-4	0	0	
$C_{\scriptscriptstyle B} X_{\scriptscriptstyle B} b$	\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5	
0 <i>x</i> ₄ -3	-1	-2	-1	1	0	
0 x_5 -4	-2	1	-3	0	1	
$c_j - z_j$	-2			0	0	

换出变量
$$x_5$$
 $\theta = \min \left\{ \frac{-2}{-2}, -, \frac{-4}{-3} \right\} = 1$ 换入变量 x_1

$c_j \rightarrow$	-2	-3	-4	0	0	
$C_{\scriptscriptstyle B} X_{\scriptscriptstyle B} b$	\mathcal{X}_1	\mathcal{X}_2	x_3	\mathcal{X}_4	X_5	
0 <i>x</i> ₄ -3	-1	-2	-1	1	0	
$0 x_5 -4$	[-2]	1	-3	0	1	
$c_j - z_j$	-2	-3	-4	0	0	
0 X ₄ -1	0	[-5/2]	1/2	1	-1/2	
-2 <i>x</i> ₁ 2	1	-1/2	3/2	0	-1/2	
$c_j - z_j$	0	-4	-1	0	-1	
-3 x ₂ 2/5	0	1	-1/5	-2/5	1/5	
-2 X ₁ 11/5	1	0	7/5	-1/5	-2/5	
$c_j - z_j$	0	0	-9/5	-8/5	-1/5	

		c_j	-2	-3	-4	0	0
$C_{\rm B}$	$\mathbf{X_{B}}$	b X _j	X ₁	\mathbf{X}_2	2 X ₃	X ₄	X ₅
-3	\mathbf{x}_2	2/5	0	1	-1/5	-2/5	1/5
-2	\mathbf{x}_1	11/5	1	0	7/5	-1/5	-2/5
cj-zj		0	0	0	-3/5	-8/5	-1/5

最优解: $X*=(11/5, 2/5, 0, 0, 0)^T$,

最忧值: $minW = -maxZ^* = -[11/5 \times (-2) + 2/5 \times (-3)] = 28/5$

$$Max z = -6x_1 - 3x_2 - 2x_3$$

Max z=-6x₁-3x₂-2x₃

$$\begin{cases} x_1 + x_2 + x_3 - x_4 = 20\\ \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{4}x_3 - x_5 = 6\\ 2x_1 + x_2 + x_3 - x_6 = 10\\ x_j \ge 0,$$
 対一切j

	\mathbf{C}_{j}			-3	-2	0	0	0
C _B	\mathbf{X}_{B}	b	\mathbf{X}_1	\mathbf{X}_2	X 3	X_4	X_5	\mathbf{X}_{6}
0	X_4	-20	-1	-1	-1	1	0	0
0	X 5	-6	-1/2	-1/2	-1/4	0	1	0
0	X_6	-10	-2	-1	-1	0	0	1
\mathbf{Z}_{j}			0	0	0	0	0	0
	C_j – Z_j		-6	-3	-2	0	0	0

找到一个满足最优检验的初始基本解

检验当前解不可行,选择b最小一行的变量作为换出变量换入变量 $min\{c_i-z_i/a_{ij}\}$

检验当前解不可行,选择b最小一行的变量作为换出变量; 换入变量min{c_i-z_i/a_{ii}}

C _j			-6	-3	-2	0	0	0
Св	\mathbf{X}_{B}	b	\mathbf{X}_1	\mathbf{X}_2	X 3	X_4	X 5	X 6
-2	X 3	20	1	1	1	-1	0	0
0	X 5	-1	-1/4	-1/4	0	-1/4	1	0
0	X_6	10	1	0	0	-1	0	1
\mathbf{Z}_{j}			-2	-2	-2	2	0	0
	C_j – Z_j		-4	-1	0	-2	0	0

\mathbf{C}_{j}			-6	-3	-2	0	0	0
Св	XB	b	\mathbf{X}_1	X 2	X ₃	X_4	X 5	\mathbf{X}_6
-2	X 3	16	0	0	1	-2	4	0
-3	\mathbf{X}_2	4	1	1	0	1	-4	0
0	X_6	10	-1	0	0	-1	0	1
	\mathbf{Z}_{j}		-3	-3	-2	1	4	0
	C_j – Z_j		-3	0	0	-1	-4	0

最优解: X*=(0,4, 16, 0, 0,10)T,

最忧值: $\max Z^* = -[4 \times (-3) + 16 \times (-2)] = 44$

4、举例——用对偶单纯形法求解LP:

将三个等式约束两边分别乘以-1,然后列表求解如下:

		c_j	-3	-9	0	0	0
$C_{\rm B}$	$\mathbf{X}_{\mathbf{B}}$	\mathbf{b} $\mathbf{y_j}$	$\mathbf{y_1}$	\mathbf{y}_2	y_3	\mathbf{y}_4	y_5
0	\mathbf{y}_3	-2	(-1)	-1	1	0	0
0	y_4	-3	-1	-4	0	1	0
0	y_5	-3	-1	-7	0	0	1
	-Z	0	-3	-9	0	0	0
比		值	-3/-1	-9/-1	[

		c_j	-3	-9	0	0	0
$C_{\rm B}$	$\mathbf{X}_{\mathbf{B}}$	\mathbf{b} $\mathbf{y_j}$	$\mathbf{y_1}$	\mathbf{y}_2	y_3	y_4	y_5
-3	$\mathbf{y_1}$	2	1	1	-1	0	0
0	y_4	-1	0	$\left(-3\right)$	-1	1	0
0	\mathbf{y}_5	-1	0	-6	-1	0	1
	-Z	6	0	-6	-3	0	0
t	比	值		-6/-3	-3/-1		

		c_j	-3	-9	0	0	0
$C_{\mathbf{B}}$	$\mathbf{X_{B}}$	b y _j	$\mathbf{y_1}$	y_2	y_3	y ₄	y_5
-3	$\mathbf{y_1}$	5/3	1	0	-4/3	1/3	0
-9	y_2	1/3	0	1	1/3	-1/3	0
0	\mathbf{y}_5	1	0	0	1	-2	1
	-Z	8	0	0	-1	-2	0

最优解是Y*=(5/3, 1/3, 0, 0, 1) T,

目标函数最优值为W_{min}=-Z_{max}=8