

EXERCICE N°1:

10'

3 points

#わわわ

Déterminer dans chaque cas la fonction dérivée de la fonction f indiquée tout en précisant le domaine de dérivabilité de f.

$$f(x) = -3x^4 + 2x^3 - 5 \; ; f(x) = \frac{3x - 1}{2x + 1} \; ; \; f(x) = \frac{-x^2 + 3x - 1}{x + 1} \; ; \; f(x) = \frac{-2x + 1}{x^2 + 1}$$

$$f(x) = -3\sqrt{-2x+3}$$
; $f(x) = \frac{-3}{x^2-4}$; $f(x) = \frac{4}{(-x^2+1)^3}$; $f(x) = \sqrt{x^2+x+1}$

$$f(x) = \sqrt{-2x^2 + 3x - 1}$$
; $f(x) = (-3x^2 + 2x)^4$; $f(x) = \frac{2x - 1}{\sqrt{x + 1}}$; $f(x) = \sqrt{3x + 1}$

$$f(x) = 2(x^3 + 2x)^3$$
; $f(x) = (x^2 - x)\sqrt{-x^2 + 9}$; $f(x) = (x^2 + x)^3(-x^2 + 1)^4$

EXERCICE N°2:

20'

5 points

Soit f la fonction définie par $f(x) = (x-1)\sqrt{2x+1}$

- 1) Déterminer le domaine de définition de f.
- 2) a) Etudier la dérivabilité de f à droite en $-\frac{1}{2}$ et interpréter graphiquement le résultat obtenu.
 - b) Montrer que f est dérivable sur $\left] -\frac{1}{2}$, $+\infty \right[$ et calculer f'(x) pour tout $x \in \left] -\frac{1}{2}$, $+\infty \right[$.
 - c) Calculer alors $\lim_{x\to 4} \frac{(x-1)\sqrt{2x+1}-9}{x-4}$
- 3) a) Dresser le tableau de variation de f.
 - b) En déduire que f admet un minimum absolu que l'on précisera.
 - c) Montrer alors que pour tout $x \in \left[-\frac{1}{2}, 1\right] : \sqrt{2x+1} \le \frac{1}{1-x}$

EXERCICE N°3:

15'

4 points

1) Soit f une fonction dérivable et strictement positive sur \mathbb{R} telle que la tangente à C_f au point d'abscisse 0 est Δ : y=x+4. Soit g la fonction définie par $g=\sqrt{f}$ alors la tangente à C_g au point d'abscisse 0 a pour équation :

a)
$$y = x + 2$$

b)
$$y = \frac{1}{2}x + 4$$

c)
$$y = \frac{1}{4}x + 2$$

2) Soit f une fonction dérivable sur \mathbb{R} telle que f'(1) = 1 et soit g la fonction définie par :

$$g(x) = f(2x - 1)$$
 alors : a) g n'est pas dérivable en 1

b)
$$g'(1) = 2$$
 c) $g'(1) = 1$

c)
$$g'(1) = 1$$

Le graphique ci-contre représente une fonction f définie sur \mathbb{R} et dérivable en -2, 2 et 4.

15'

2) Déterminer graphiquement
$$f'(-2)$$
, $f'(2)$ et $f'(4)$.

3) Déterminer
$$\lim_{x \to -2} \frac{x^2 + 2x}{f(x) - 4}$$

4) En utilisant des approximations affines, donner une valeur approché des réels suivant :

$$f(-1,99)$$
 et $f(4,001)$.

EXERCICE N°5:

15'

5points

On donne ci-contre la courbe représentative (C) d'une

fonction f définie et dérivable sur \mathbb{R} ainsi que les tangentes à (C) aux points d'abscisses 0 et 2.

1) a) Par lecture graphique, calculer

$$f(0), f(2), f'(0)$$
 et $f'(2)$.

b) Déterminer
$$\lim_{x\to 0} \frac{x^2-x}{f(x)-1}$$

c) En utilisant une approximation affine, donner

une valeur approché du réel f(0,0001).

2) On admet que : $\forall x \in \mathbb{R}$; $f(x) = (ax + 1)^n$ où a est un Réel et $n \in \mathbb{N}^* \setminus \{1\}$.

a) Calculer
$$f'(x)$$
 pour tout $x \in \mathbb{R}$.

b) En utilisant ce qui précède, calculer a et n.

EXERCICE N°6:

15'

5points

Soit f la fonction définie par $f(x) = \frac{3x}{2x-1}$ On désigne par C_f sa courbe représentative dans un repère orthonormé $(0, \vec{t}, \vec{j})$.

1) Montrer que f est dérivable sur $\mathbb{R}\setminus\left\{\frac{1}{2}\right\}$, et que pour tout $x\in\mathbb{R}\setminus\left\{\frac{1}{2}\right\}$; $f'(x)=\frac{-3}{(2x-1)^2}$

2) Soit la droite Δ : y = -3x.

a) Montrer qu'il existe deux tangentes T_1 et T_2 à C_f parallèles à la droite Δ .

b) Donner une équation cartésienne de chacune des tangentes T_1 et T_2

EXERCICE N°7:

15'

5points

1000

Le graphique ci-dessous représente une fonction f définie sur \mathbb{R} .

- 1) La fonction f est-elle dérivable en -2?
- 2) Déterminer graphiquement $f'_g(-2)$; $f'_d(-2)$ et f'(1)
- 3) Dresser le tableau de variation de f.

EXERCICE N°8:

15'

5points

Dans la figure ci-dessous on a représenter graphiquement la courbe (C)d'une fonction f dans un repère $(0, \vec{t}, \vec{j})$. La droite Δ : $y = \frac{1}{2}x + 1$ est une asymptote à (C) au voisinage de $+\infty$ et la droite Δ' : y = 1 est une asymptote à (C) au voisinage de $-\infty$.

- 1) Justifier la dérivabilité de f en 0 et donner f'(0).
- 2) a) Justifier la dérivabilité de f à droite en 1 et donner $f'_{d}(1)$.
 - b) Justifier la dérivabilité de f à gauche en 1 et donner $f'_{a}(1)$.
 - c) La fonction f est-elle dérivable en 1 ? Pourquoi ?1
- 3) Donner les asymptotes à la courbe (C)
- 4) Calculer $\lim_{x \to +\infty} \left(f(x) \frac{1}{2}x \right)$ et $\lim_{x \to -\infty} (f(x) + x)$

EXERCICE N°9:

15'

5points

Soit la fonction f définie sur \mathbb{R} par $\begin{cases} f(x) = \sqrt{1-x} + 1 & \text{si } x \leq 1 \\ f(x) = mx^2 + 2x - 2 & \text{si } x > 1 \end{cases}$ où m est un paramètre réel.

- 1) Calculer $\lim_{x \to -\infty} f(x)$
- 2) Calculer $\lim_{x\to +\infty} f(x)$ (On distinguera trois cas : m>0, m<0 et m=0).
- Montrer que f est continue sur chacun des intervalles :]-∞, 1[et]1, +∞[.
- 4) Pour quelle valeur de m; f est continue en 1?
- 5) Dans la suite de l'exercice on prend m = 1.
 - a) Etudier la dérivabilité de f à droite en 1.
 - b) Etudier la dérivabilité de f à gauche en 1.
 - c) la fonction f est-elle dérivable en 1 ?
- 6) a) Justifier la dérivabilité de f en tout réel $x \in]-\infty$, 1[. et calculer f'(x).
 - b) Justifier la dérivabilité de f en tout réel $x \in]1$, $+\infty[$ et calculer f'(x).
- 7) Donner une équation cartésienne de la tangente à (C) au point d'abscisse 0.
- 8) Soit $a \in \mathbb{R} \setminus \{1\}$ et A le point de (C) d'abscisse a. Déterminer le point A pour que la tangent T à (C) en A soit parallèle à la droite Δ : $y = -\frac{x}{2} + 1$.

EXERCICE N°10:

15'

5points

- I/ Soit la fonction f définie par : $f(x) = \frac{x^2 + 3x}{x 1}$ On désigne par C_f la courbe représentative de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.
- 1) Montrer que f est dérivable sur $\mathbb{R}\setminus\{1\}$ et que $\forall x\in\mathbb{R}\setminus\{1\}$ on a $f'(x)=\frac{x^2-2x-3}{(x-1)^2}$
- 2) a) Déterminer les points de C_f où la tangente est parallèle à la droite $(0, \vec{\iota})$.
 - b) Déterminer les points de C_f où la tangente est parallèle à la droite Δ : y = -3x + 1
- II/ Soit la fonction g définie sur \mathbb{R} par : $\begin{cases} g(x) = f(x) & \text{si } x \leq 0 \\ g(x) = \sqrt{x^2 + 2x} & \text{si } x > 0 \end{cases}$
- 1) Montrer que g est continue en 0.
- 2) Etudier la dérivabilité de g en 0 et interpréter le résultat graphiquement.
- 3) a) Justifier que g est dérivable sur chacun des intervalles $]-\infty$, 0[et]0, $+\infty[$ et calculer g'(x) sur chacun de ces intervalles.
 - b) Déterminer le signe de g'(x) sur chacun des intervalles $]-\infty$, 0[et]0, $+\infty[$.
 - c) Dresser le tableau de variation de g.
- 4) Déterminer les extrémums de g et préciser leurs natures.

EXERCICE N°11:

15'

5points

Soit f la fonction définie sur \mathbb{R} par : $\begin{cases} f(x) = \frac{x^3 + 2x + 1}{2x - 1} & \text{si } x > 1 \\ f(x) = x^2 + 3 & \text{si } x \leq 1 \end{cases}$

On désigne par (C_f) sa courbe représentative

- 1) a) Montrer que f est continue sur chacun des intervalles] $-\infty$, 1[et]1, $+\infty$ [
 - b) Etudier la continuité de f en 1.
 - c) Donner alors le domaine de continuité de f.
- 2) Montrer que f est dérivable sur chacun des intervalles $]-\infty$, 1[et]1, $+\infty$ [.
- 3) a) Etudier la dérivabilité de f à gauche en 1.
 - b) Etudier la dérivabilité de f à droite en 1.
 - c) La fonction f est -elle dérivable en 1?
- 4) En déduire le domaine de dérivabilité de f.
- 5) Calculer f'(x) pour tout $x \in \mathbb{R} \setminus \{1\}$

EXERCICE N°12:

15'

5points

Soit f la fonction définie sur
$$\mathbb{R}$$
 par :
$$\begin{cases} f(x) = \frac{1+x^2}{1-x} & \text{si } x < 0 \\ f(x) = 1 + x\sqrt{x} & \text{si } x \ge 0 \end{cases}$$

On désigne par C_f sa courbe.

- 1) a) Calculer $\lim_{x \to -\infty} f(x)$.
 - b) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$
 - c) Montrer que la droite y = -x 1 est une asymptote à C_f au voisinage de $-\infty$.
- 2) Montrer que f est continue sur \mathbb{R} .
- 3) a) Etudier la dérivabilité de f à gauche et à droite en 0. Conclure.
 - b) Interpréter les résultats obtenus graphiquement.
 - c) Calculer f'(x) pour tout $\in \mathbb{R}^*$.
- 4) Ecrire les équations cartésiennes des demi tangentes T_1 et T_2 à C_f au point d'abscisse 0.

EXERCICE N°13:

15'

5points

Soit la fonction
$$f$$
 définie sur $\mathbb R$ par
$$\begin{cases} f(x)=x^2+bx-1 & \text{si } x<0\\ f(x)=2\sqrt{x}-x+b+1 & \text{si } x>0\\ f(0)=-1 \end{cases} b\in \mathbb R$$

1) Déterminer les limites suivantes : $\lim_{x \to -\infty} f(x)$; $\lim_{x \to +\infty} f(x)$; $\lim_{x \to +\infty} \frac{f(x)}{x}$; $\lim_{x \to +\infty} (f(x) + x)$

- a) Montrer que f est continue sur chacun des intervalles]-∞, 0[et]0, +∞[
 - b) Déterminer b pour que f soit continue sur \mathbb{R} .
- 3) Dans la suite de l'exercice on prend b = -2.
- a) Montrer que f est dérivable à gauche en 0 puis donner une équation cartésienne de la demi-tangente à C_f au point d'abscisse 0.
- b) Etudier la dérivabilité de f à droite en 0 et interpréter géométriquement le résultat obtenu.
- 4) a) Montrer que f est dérivable au point a = 4.
 - b) Ecrire une équation de la tangente T à C_f au point d'abscisse 4.
 - c) Déterminer le réel m pour que T soit perpendiculaire à la droite Δ_m : mx 2y + 1 = 0
- 5) Soit $a \in]-\infty$, 0[.
 - a) Calculer f'(a) puis écrire une équation de la tangente T' à \mathcal{C}_f au point d'abscisse a.
 - b) Montrer qu'il existe une seule tangente à C_f passant par le point A(0, -5)
 - c) Donner une équation de cette tangente.

EXERCICE N°14:

15'

5points

カロロカ

La courbe ci-contre représentée est la courbe d'une fonction . Par lecture graphique répondre aux questions suivantes.

- 1) $D_f = \cdots$
- 8) $f'_{a}(-2)$
- 2) $\lim_{x \to -\infty} f(x)$ 9) $f'_d(-2)$
- 3) $\lim_{x \to +\infty} f(x)$ 10) f'(0)
- 4) $\lim_{x \to -1^{-}} f(x)$ 11) $f'_{g}(1)$
- 5) $\lim_{x \to -1^+} f(x)$ 12) $f'_g(3)$
- 6) $\lim_{x \to 1^+} \frac{f(x)+2}{x-1}$ 13) $\lim_{x \to 3^+} \frac{f(x)-1}{x-3}$
- Le domaine de continuité de f est
- 14) Le domaine de dérivabilité de f est

EXERCICE N°15:

15'

5points

リのわり

La courbe C_f ci-dessous représentée est la courbe d'une fonction f définie sur \mathbb{R}^*

- * La droite Δ d'équation y = x 4 est une asymptote à C_f au voisinage de $+\infty$.
- * La droite d'équation x = 0 est une asymptote à C_f .

- * La droite T est la tangente à C_f au point A.
- * La courbe C_f admet deux demi tangentes au point B et une tangente horizontale au point C .
- 1) Déterminer $\lim_{x\to 0^+} f(x)$; $\lim_{x\to +\infty} (f(x)-x)$
- 2) a) Déterminer f'(1); f'(2) et $f'_{d}(-1)$
 - b) Donner une approximation affine de f(0,998)
- 3) Déterminer $\lim_{x \to -1^-} \frac{f(x)-1}{x+1}$
- 4) Soit g la fonction définie sur]0, 2[par $g(x) = \sqrt{f(x)} + x$
 - a) Montrer que $\lim_{x \to 1} \frac{g(x) g(1)}{x 1} = -\frac{1}{2}$
- b) Donner alors une équation cartésienne de la tangente à la courbe de g au point d'abscisse 1.

