



PROJETO FINAL Wireless Power Transfer

Eletromagnetismo e Ondulatória

Gabriel O. | João Victor P. | Pedro M. | Sarah P.



# Insper



#### Primeira evidencia de transmissão de energia



Relações entre corrente elétrica e campo magnético



Transmissão de energia por indução

#### Objetivo do Projeto



TRANSMISSÃO DE ENERGIA SEM FIO



**VALIDAR SIMULAÇÕES** 

## Wireless Power Transfer



Desenho esquemático do modelo de transmissão de energia sem fio com duas bobinas



# SUMÁRIO

CIRCUITOS E MODELOS MONTAGEM SIMULAÇÃO

- Circuitos utilizados
- Equações

- Montagem das Bobinas
- Simulações com Parâmetros

MEDIÇÕES VALIDAÇÃO

- Resultados finais
- Vídeos
- Validação do modelo



## Circuito Esquemático do WPT

Parecido com o circuito de um transformador, mas com uma diferença: capacitores!



#### Malha 1

$$V_1 = (R_1 + X_{C_1} + X_{L_1}) \cdot \dot{I_1} - X_M \cdot \dot{I_2}$$

### Malha 2

$$X_{M} \cdot \dot{I}_{1} = \left( X_{L_{2}} + R_{2} + \frac{1}{\frac{1}{X_{C_{2}}} + \frac{1}{R_{C}}} \right) \cdot \dot{I}_{2}$$

## Frequência de Ressonância

Por que utilizar um capacitor?

Impedâncias do capacitor e do indutor se cancelam

Aumento na eficiência de transmissão entre duas bobinas pelo ar

$$f_{res} = \frac{1}{2\pi\sqrt{LC}}$$

#### Tensão no Capacitor fora da $f_{res}$ (circuito RLC)



Tensão no Capacitor na  $f_{res}$  (circuito RLC)



## Bobinas – Parâmetros Construtivos

#### Parâmetros gerais

Número de espiras = 44 voltas Diâmetro = 130 mm Comprimento do núcleo = 50 mm

#### **Bobina Primária**

Indutância real = 296.6  $\mu$ H Resistência real = 412 m $\Omega$ 

#### **Bobina Secundária**

Indutância real =  $270.2 \,\mu\text{H}$ Resistência real =  $412.3 \,\text{m}\Omega$ 



#### Calculo de Indutores com Núcleo de Ar







## Cálculo dos Parâmetros do Circuito

A partir do valor de indutância da bobina, pode-se calcular os demais valores para o circuito



Pares de Capacitância e Frequência de Ressonância (segundo disponibilidade e indutância escolhida)

| Capacitância | Frequência de Ressonância |
|--------------|---------------------------|
| 0,1μF        | 29,223 kHz                |
| $0,15\mu F$  | 23,861 <i>kHz</i>         |
| $0,47\mu F$  | 13,479 <i>kHz</i>         |
| $1 \mu F$    | 9,241 <i>kHz</i>          |
| 4,7μF        | 4,262 <i>kHz</i>          |



Qual escolher?

Devido um problema no circuito primário (não identificado), a tensão só se mantinha estável para frequências altas



Por isso, elegeu-se o capacitor de  $0, 1\mu F$ 

Além disso, utilizou-se um resistor de carga ( $R_C$ ) de  ${f 100~\Omega}$ 



## Circuito Primário

Gerador não produz potência suficiente para alimentar a bobina







## Circuito Secundário





#### Especificação Elétrica

C1 = 0,1e-6 L1 = 296,6e-6

C2 = 0.1e-6 L2 = 280.2e-6

 $RC = 100\Omega$  Vp = 5V

f = 29.223Hz

Circuitos e Modelos



## Simulações

A partir desses valores, quais são os valores esperados?







## Simulações

A partir desses valores, quais são os valores esperados?



# VALORES MÁXIMOS

Tensão Real: 6.04 V

K ótimo: 0.24

$$P_{Real} = \frac{U_{Real}^2}{R_c} = \frac{6.04^2}{100}$$

$$P_{Real} = 0.36 W$$

Montagem



## Circuito Funcionando: Vídeo

Medições para cada distância e demonstração com LEDs





## Medições Realizadas

| Distância (cm) | Tensão Medida (V) | Potência Calculada (W) |
|----------------|-------------------|------------------------|
| 0              | 5,02              | 0,252004               |
| 1              | 5,32              | 0,285156               |
| 2              | 4,93              | 0,243049               |
| 3              | 4,45              | 0,198025               |
| 4              | 4,78              | 0,228484               |
| 5              | 4,29              | 0,184041               |
| 6              | 3,65              | 0,133225               |
| 7              | 3,25              | 0,105625               |
| 8              | 2,69              | 0,072361               |
| 9              | 2,44              | 0,059536               |
| 10             | 2,01              | 0,040401               |
| 11             | 1,8               | 0,0324                 |
| 12             | 1,72              | 0,029584               |
| 13             | 1,48              | 0,021904               |
| 14             | 1,32              | 0,017424               |
| 15             | 1,24              | 0,015376               |
| 16             | 1                 | 0,01                   |

## Validação

Os valores estão condizentes com a simulação?



Formato do Gráfico: distância e coeficiente de acoplamento



Tensões máximas medidas e potência calculada

Simulação  $\begin{array}{c|c} V2_{m\acute{a}x} \colon 6.04 \text{ V} \\ P_{Real} \colon 0.36 \text{ W} \end{array} \text{ Medição } \begin{array}{c|c} V2_{m\acute{a}x} \colon 5,34 \text{ V} \\ P_{Real} \colon 0,28 \text{ W} \end{array}$ 

SIMULAÇÃO ≈ REALIDADE







