Econ899b PS4

Hiroaki Shirai

December 15, 2021

1. The expected value function can be written as follows:

$$\begin{split} \bar{V} &= E_{\epsilon}[V(i,c,p,\epsilon)] \\ &= E_{\epsilon}[\max_{a} U(a|i,c,p,\epsilon) + \beta \sum_{} E[V(i',c',p',\epsilon']Pr(c',p'|c,p,a)]] \\ &= E_{\epsilon}[\max_{a} \mathbbm{1}(a=1)(\alpha c-p) + \mathbbm{1}(a=1)\mathbbm{1}(i>1)\alpha c + \mathbbm{1}(a=1)\mathbbm{1}(i=1)\lambda \mathbbm{1}(c>0) + \epsilon(a) \\ &+ \beta \sum_{} E[V(i',c',p',\epsilon']Pr(c',p'|c,p,a)]] \end{split}$$

Let $v(a,i,c,p) = \mathbbm{1}(a=1)(\alpha c-p) + \mathbbm{1}(a=1)\mathbbm{1}(i>1)\alpha c + \mathbbm{1}(a=1)\mathbbm{1}(i=1)\lambda \mathbbm{1}(c>0) + \beta\sum E[V(\cdot)]Pr(c',p'|c,p,a)]$. Then,

$$E_{\epsilon}[\max_{a} v(a, i, c, p) + \epsilon(a)] = \ln(\sum_{a} \exp(v(\cdot))) + \gamma$$

The Table is (1).

```
I
   C
       P
                   EV
   0
0
       4
           61.12785224254987
1
   0
       4
           65.01024882086212\\
2
   0
       4
           68.48210863284643
3
   0
       4
           71.66875693503552
   0
4
           74.63022715292597
   0
5
       4
           77.39429444746555
6
   0
       4
           79.95878691331467
   0
7
       4
            82.2632871179156\\
8
   0
           84.07324859344968
0
   1
       4
           58.49101865421765
1
   1
           63.12785224254987
2
   1
       4
           67.01024882086212\\
3
   1
       4
           70.48210863284643\\
   1
4
       4
           73.66875693503552
5
   1
       4
           76.63022715292594\\
6
   1
       4
           79.39429444746558
7
   1
           81.95878691331467
       4
                                                             (1)
8
   1
       4
            84.2632871179156
0
   0
           63.24416119042413
   0
1
       1
           66.89462073690096
2
   0
       1
           70.20312375430869\\
3
   0
       1
           73.26050214629285
   0
4
       1
           76.11022495925096\\
   0
5
       1
           78.76597733882473
6
   0
           81.20090619366847
7
   0
           83.28155981827642
8
   0
       1
           84.27758186000644
0
   1
           61.025485862098925
       1
   1
1
           65.24416119042414
2
   1
       1
           68.89462073690099
3
   1
       1
           72.20312375430869\\
4
   1
       1
           75.26050214629282\\
5
   1
           78.11022495925093
6
   1
           80.76597733882475
7
   1
       1
           83.20090619366847
8
   1
       1
           85.28155981827642
```

2. The result is (2). The difference between the true an implied is too small.

I	C	P	EV	\hat{EV}	
0	0	4	61.12785224254987	60.71685415008766	
1	0	4	65.01024882086212	64.59361123596021	
2	0	4	68.48210863284643	68.05323953115087	
3	0	4	71.66875693503552	71.21078777903563	
4	0	4	74.63022715292597	74.128187694844	
5	0	4	77.39429444746555	76.80253283552119	
6	0	4	79.95878691331467	79.20529891994728	
7	0	4	82.2632871179156	81.24124984308239	
8	0	4	84.07324859344968	82.64595938571622	
0	1	4	58.49101865421765	58.0797578508909	
1	1	4	63.12785224254987	62.71421645611459	
2	1	4	67.01024882086212	66.592322238919	
3	1	4	70.48210863284643	70.05278380353798	
4	1	4	73.66875693503552	73.2073673946673	
5	1	4	76.63022715292594	76.12787686979966	
6	1	4	79.39429444746558	78.77931511201233	
7	1	4	81.95878691331467	81.06049632164435	
8	1	4	84.2632871179156	83.17556592207703	(2)
0	0	1	63.24416119042413	62.829230140790884	
1	0	1	66.89462073690096	66.46700616878599	
2	0	1	70.20312375430869	69.75722184911152	
3	0	1	73.26050214629285	72.78251015847485	
4	0	1	76.11022495925096	75.56841086673374	
5	0	1	78.76597733882473	78.10017998173997	
6	0	1	81.20090619366847	80.29875755014329	
7	0	1	83.28155981827642	82.06923576093345	
8	0	1	84.27758186000644	82.65905072376842	
0	1	1	61.025485862098925	60.61447742610977	
1	1	1	65.24416119042414	64.82752674093717	
2	1	1	68.89462073690099	68.47022110976287	
3	1	1	72.20312375430869	71.76423459119239	
4	1	1	75.26050214629282	74.78554697997075	
5	1	1	78.11022495925093	77.49062843672597	
6	1	1	80.76597733882475	80.07072261396762	
7	1	1	83.20090619366847	82.28185545507503	
8	1	1	85.28155981827642	83.02656430722752	

3. The log-likelihood function is

$$\sum_{i} a_{i} \log Pr_{i}(s) + (1 - a_{i}) \log(1 - Pr_{i}(s))$$

where $Pr_i(s)$ is the conditional choice probability.

4. The loglikihood has the following shape. And, the results are the following: MLE: -4.300628278478276 NFP: -4.300628278478276. Although these values are not matched with results, the value is relatively similar with the true value. Since MLE and NFP yield the same result, there would be a bug in my code.

