

What is claimed is:

1 1. A method of depositing a metal layer on a wafer, the method comprising:
2 immersing the wafer in an electrolytic solution containing metal ions; and
3 biasing the wafer negatively with respect to the electrolytic solution so as to
4 create a current flow between the electrolytic solution and the wafer and thereby
5 electroplate a metal layer on a surface of the wafer by first biasing the wafer to produce
6 a first current density, then secondly biasing the wafer to produce a second current
7 density, the second current density being greater than zero and less than the first
8 current density.

1 2. The method as in claim 1, wherein the biasing the wafer further includes,
2 after the secondly biasing, thirdly biasing the wafer to produce a third current density,
3 the third current density being greater than the second current density.

1 3. The method as in claim 1, wherein the biasing the wafer further includes,
2 after the secondly biasing, thirdly biasing the wafer to produce a third current density,
3 the third current density being greater than the first current density.

1 4. The method as in claim 3, wherein the biasing the wafer negatively
2 includes, after the thirdly biasing, further electroplating using a succession of steps of
3 increasing current densities, the succession of steps beginning with a fourth step having
4 a fourth current density being greater than the third current density.

1 5. The method as in claim 4, wherein a film deposition rate produced by the
2 second current density is less than 0.01 times as great as an average film deposition
3 rate during the thirdly biasing and the succession of steps.

1 6. The method as in claim 3, wherein the first biasing, the secondly biasing,
2 and the thirdly biasing are carried out in-situ.

1 7. The method as in claim 3, wherein the first current density lies within a
2 range of 0.003 to 0.08 amps/cm² and the third current density lies within a range of
3 about 0.003 to 0.08 amps/cm².

1 8. The method as in claim 1, wherein the second current density is no
2 greater than 0.0016 amps/cm².

1 9. The method as in claim 8, wherein the secondly biasing takes place for a
2 time of 1 to 30 seconds.

1 10. The method as in claim 1, wherein the second current density produces a
2 film deposition rate no greater than 45 Å/minute.

1 11. The method as in claim 1, wherein the first biasing takes place for a first
2 time of 1 to 15 seconds and the secondly biasing takes place for a second time of 1 to
3 30 seconds.

1 12. The method as in claim 1, wherein the metal ions are copper ions and the
2 metal layer comprises copper.

1 13. The method as in claim 1, wherein the surface includes an upper portion
2 and an opening extending downwardly therefrom and the biasing the wafer negatively
3 produces the metal layer substantially completely filling the opening.

1 14. The method as in claim 13, wherein the opening is a via that includes a
2 width no greater than 0.25 microns.

1 15. The method as in claim 1, wherein the electrolytic solution is in a bath and
2 includes a flow rate of 5-20 liters per minutes.

1 16. The method as in claim 1, wherein the electrolytic solution includes an
2 accelerator having a concentration of about 1-16 milliliters/liter and a suppressor having
3 a concentration of about 1-10 milliliters/liter.

1 17. The method as in claim 1, further comprising depositing a seed layer on
2 the surface prior to the biasing.

1 18. A method of electrochemically depositing a metal layer on a wafer, the
2 method comprising:

3 depositing a seed layer on a surface of the wafer;
4 electroplating the metal layer on the wafer by:
5 first immersing the wafer in a first electrolytic solution containing metal ions and
6 first biasing the wafer negatively with respect to the first electrolytic solution so as to
7 create a first current flow and a first current density;
8 then immersing the wafer in a second electrolytic solution that contains metal
9 ions and secondly biasing the wafer negatively with respect to the second electrolytic
10 solution so as to create a second current flow and a second current density, the second
11 current density being greater than zero and less than the first current density; and
12 then immersing the wafer in a third electrolytic solution that contains metal ions
13 and thirdly biasing the wafer negatively with respect to the third electrolytic solution so
14 as to create a third current flow and a third current density, the third current density
15 being greater than the second current density.

1 19. The method as in claim 18, wherein immersing the wafer in a second
2 electrolytic solution takes place for a time of 1 to 30 seconds and includes the second
3 current density being no greater than 0.0016 amps/cm².

1 20. The method as in claim 18, wherein the third current density is greater
2 than the first current density.

1 21. A process recipe for electroplating a metal film onto a substrate by
2 electrochemical deposition, comprising a first step with a first bias to create a first
3 current density between the substrate and an electrolytic solution, a second step
4 following the first step and having a second bias to create a second current density
5 between the substrate and the electrolytic solution, the second current density being
6 greater than zero and less than the first current density, and subsequent steps of
7 continuously increasing current densities beginning with a third step that follows the
8 second step and has a third bias that creates a third current density between the
9 substrate and the electrolytic solution, the third current density being greater than the
10 first current density.

1 22. The process recipe as in claim 21, wherein the second current density is
2 no greater than 0.0016 amps/cm² and produces a deposition rate less than about 50
3 Å/minute.

1 23. The process recipe as in claim 21, wherein the second step includes a
2 time of 1 to 30 seconds, the first current density lies within a range of 0.003 to 0.08
3 amps/cm² and the third current density lies within a range of about 0.003 to 0.08
4 amps/cm².