Departamento de Matemática - UFV MAT 131-Introduao a Algebra

Primeira Avaliação - PER2

25 de fevereiro de 2021

QUESTÕES OBJETIVAS - MÚLTIPLA ESCOLHA

1. (3 pontos) Indicar a única afirmação verdadeira:

(a)
$$v(p \longrightarrow q) = F$$
 e $v(q \longrightarrow p) = F$, somente quando $v(p) = V$ e $v(q) = F$

(b) Se
$$v(p \lor q) = V$$
 e $v(p \land q) = F$, então $v(p) = v(q)$

(c)
$$v(p \longleftrightarrow q) = F$$
 ou $v(p \land q) = F$ quando $v(p) \neq v(q)$

2. (2 pontos) Uma proposição composta é formada a partir de n proposições simples. As n primeiras colunas contêm 64 valores V e 64 valores F, cada uma. É correto afirmar:

(a)
$$n = 7$$

(b)
$$n = 6$$

(c)
$$2^n = 64$$

3. (2 pontos) Marcar a opção que representa um raciocínio lógico válido:

(a)
$$((p \longrightarrow t) \land (\sim q \lor s)) \longrightarrow (p \longrightarrow t)$$

(b)
$$p \longrightarrow (p \land q)$$

(c)
$$(p \lor q) \longrightarrow q$$

4. (3 pontos) A formalização correta do enunciado: "O polinômio $p(x) = x^2 - 3x - 18$ possui exatamente uma raiz real negativa"

(a)
$$\exists a \in \mathbb{R} : a < 0, p(a) = 0$$

(b)
$$\forall a \in \mathbb{R} : p(a) = 0$$

(c)
$$\exists ! a \in \mathbb{R} : a < 0, p(a) = 0$$

QUESTÕES DISCURSIVAS

1. (2 pontos) Determinar a proposição equivalente mais simples à proposição

$$\sim \{ \sim [p \lor (\sim q \longrightarrow p)] \lor \sim [(p \longleftrightarrow \sim q) \longrightarrow (q \land \sim p)] \}$$

- 2. (2 pontos) Estabelecer a validade do seguinte argumento: "Se x=0, então x+y=y. Se y=z então $x+y\neq y$. Portanto, se x=0 então $y\neq z$ "
- 3. (3 pontos) Sejam $x, y \in \mathbb{N}$. Mostre que se $x \cdot y$ é par, então x é par ou y é par.
- 4. (3 pontos) Mostre que para todo $n \in \mathbb{N}, 1 + 3 + 3^2 + \ldots + 3^n = \frac{3^n 1}{2}$.

Boa Prova!