11 de outubro de 2016

Fórmulas FNC e FND

Uma fórmula FNC F sobre as variáveis x_1, \ldots, x_n é a conjunção de disjunções de literais (uma das variáveis ou a tua negação).

$$F = C_1 \wedge \cdots \wedge C_s$$

Onde cada cláusula C_i é a disjunção de literais e s é o tamanho de F.

Se cada clásula tem no máximo k literais então dizemos que F tem largura k e dizemos que F é uma k-FNC.

Fórmulas FNC e FND

Uma fórmula FND F por outro lado é a disjunção de conjuções de literais.

$$F = T_1 \lor \cdots \lor T_s$$

Onde cada termo T_i é a conjunção de literais e s é o tamanho de F.

De novo, se cada termo tem no máximo k literais então F tem largura k e F é uma k-FND.

Uma árvore de decisão é algo como a imagem abaixo:

- Cada nodo leva o label de uma das variáveis.
- Começando do nodo mais alto, o algoritmo ramifica para a direita ou à esquerda dependendo do valor da variável lida.
- As folhas guardam o valor da função em cada entrada que chega nela.

Denotamos a sáida de uma árvore de decisão T sobre a entrada x por T(x). Se f é tal que f(x) = T(x) para todos os x então dizemos que T computa a função f.

▶ Por exemplo, a árvore de decisão do slide anterior computa a função que Majority₃, que é 1 se e somente se o número de 1s na entrada é pelo menos 2.

O tamanho de T é o número de folhas e tua profundidade é o maior camnho do nodo mais alto até uma das folhas.

A árvore do slide anterior tem tamanho 6 e profundidade 3.

É importante notar que árvores de decisão são mais fracas do que fórmulas FNC (FND).

- Se T é uma árvore de decisão de tamanho s e profundidade d então existe uma fórmula FND (FNC) F tal que F(x) = T(x), para todos x, de tamanho ≤ s e largura ≤ d.
 - ▶ FND: Cada caminho P da árvore tal que T(P) = 1 define uma cláusula.
 - ▶ FNC: Cada caminho P da árvore tal que T(P) = 0 define um termo.

 $\acute{\rm E}$ importante notar que árvores de decisão são mais fracas do que fórmulas FNC (FND).

$$F = (\overline{x}_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x}_2 \wedge x_3) \vee (x_1 \wedge x_2)$$

 $\acute{\rm E}$ importante notar que árvores de decisão são mais fracas do que fórmulas FNC (FND).

$$F = (x_1 \lor x_2) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3)$$

Circuitos

Um circuito Booleano é composto de portas lógicas computando uma das funções em $\{\land,\lor,\lnot\}$ e fios ligando estas portas lógicas como mosta a figura abaixo:

Este circuitos tem 4 variáveis de entrada (sem contar a negação de cada variável). Todos circuitos tem uma única porta lógica no nível mais alto, o valor desta porta lógica é a saída do circuito.

Circuitos

Nós dizemos que um circuito C com n variáveis de entrada computa $f:\{0,1\}^n \to \{0,1\}$ se C(x)=f(x), para todos $x \in \{0,1\}^n$.

- O circuito do slide anterior computa a função Parity₄.
 - ▶ Parity₄(x) = 1 se e somente se $x_1 + x_2 + x_3 + x_4 \equiv 1 \pmod{2}$.

O tamanho de um circuito é o número de portas lógicas e a tua profundidade é o tamanho do maior caminho de uma variável de entrada até a porda de saída.

- ▶ O nosso circuito para *Parity*₄ tem tamanho 11 e profundidade 4.
- ▶ Em geral, Parity_n tem um circuito de tamanho $\mathcal{O}(n)$ e profundidade $\mathcal{O}(\log n)$.

Circuitos

Pela lei de De Morgan nós podemos empurrar as portas ¬ para as variáveis de entrada.

▶ Se o circuito original tinha tamanho S então o circuito resultante tem tamanho $\leq 2S$.

O circuito acima também computa $\mathsf{Parity_4}$ e tem tamanho 15.

Complexidade de circuitos

Dada uma função $f:\{0,1\}^n \to \{0,1\}$ nós queremos saber qual é o menor circuito que computa f.

- ▶ Seja \mathscr{C} o conjunto de circuitos que computam f.

Se $f:\{0,1\}^* \to \{0,1\}$ então temos que definir uma sequência de circuitos $\{C_n\}_{n\geq 1}$ onde cada C_n computa f restrita à strings de tamanho n.

- ▶ Size(f) = $\mathcal{O}(g)$ se existem constantes c e n_0 tal que $|C_n| \leq cg(n)$, para todos $n \geq n_0$.
- ▶ Como já comentamos, Size(Parity) = $\mathcal{O}(n)$.

Complexidade de circuitos: P/poly

Algumas classes de complexidade de circuitos:

- ▶ P/poly : circuitos de tamanho polinomial.
 - Contém toda a classe P.
 - Contém todas as linguagens unárias.
 - Logo contém alguns problemas indecidíveis.
 - ► A tua versão (P-)uniforme (ou logspace-uniforme) coincide com a classe P.

Complexidade de circuitos: P/poly

- ▶ Problema em aberto: NP ⊆ P/poly?
 - ▶ NP $\not\subseteq$ P/poly implicaria em P \neq NP.
 - ▶ Teorema de Karp-Lipton: $NP \subseteq P/poly \Rightarrow PH = \Sigma_2^p$.
- ▶ Problema em aberto: Existe, para todo $k \ge 1$, uma linguagem em P que não admite circuitos de tamanho n^k ?
 - Suponha que P ≠ NP, isto é verdade porque a classe NP não admite circuitos pequenos ou é porque circuitos para problemas em P são pequenos demais?

Complexidade de circuitos: NC e AC

Algumas classes de complexidade de circuitos:

- ▶ NCⁱ: circuitos de tamanho polinomial e profundidade logⁱ n.
- $ightharpoonup NC = \bigcup_{i>0} NC^i$.
 - Exemplo: computar a determinante de uma matriz está em NC.
- ► ACⁱ: circuitos de tamanho polinomial, profundidade logⁱ n e fan-in arbitrário.
- $ightharpoonup AC = \bigcup_{i>0} AC^i$.
- ▶ $NC^0 \subseteq AC^0 \subseteq NC^1 \subseteq AC^1 \subseteq \cdots \Rightarrow NC = AC$.

Complexidade de circuitos: NC e AC

Um circuito AC^0 é qualquer circuito com fn-in arbitrário e que alterna portas \vee e portas \wedge .

Por exemplo, o seguite circuito é um circuito AC⁰ para Parity₄.

▶ Todas fórmulas FNC e FND são circuitos AC⁰.

Tribes

A função Tribes $_{w,s}:\{0,1\}^{ws} \to \{0,1\}$ é definida da seguinte forma:

Tribes_{w,s}
$$(x) = \bigvee_{i=1}^{s} (x_{1,i} \wedge x_{2,i} \wedge \cdots \wedge x_{w,i}).$$

Onde as variáveis são indexadas por $(i,j) \in [w] \times [s]$.

- ▶ Tribes_{w,s} é trivialmente computável por um circuito FND de tamanho s+1.
- ► Toda árvore de decisão que computa Tribes_{w,s} tem que ter profundidade ws — Tribes_{w,s} é evasiva.

Tribes_n

Nós estamos mais interessados na seguinte escolha de parâmetros:

▶ Para cada $w \ge 1$, escolhemos s o maior inteiro tal que

$$(1-2^{-w})^s = \Pr[\mathsf{Tribes}_{w,s}(x) = 0] \ge 1/2.$$

 \triangleright n = ws.

Desta forma temos que Tribes $_n$ é uma função "imparcial", os valores 1 e 0 aparece com basicamente a mesma probabilidade. Também temos que

- $> s = \Theta(\frac{n}{\log n}).$
- $w = \log n \log \log n o(1).$

Na verdade, $s \approx 2^w \ln(2)$ e portanto $(1-2^{-w})^s \to 1/2$ com $w \to \infty$.

Teorema de Baker-Gill-Solovay

O teorema de Baker-Gill-Solovay diz que existem oráculos A e B tais que

- $\triangleright P^A = NP^A$.
- $ightharpoonup P^B \neq NP^B$.

Nós podemos provar que existe B tal que $P^B \neq NP^B$ (a parte não-trivial do teorema) usando o fato que a função Tribes_n é evasiva.

Teorema de Baker-Gill-Solovay - Prova

Seja M uma máquina de Turing de tempo polinomial que tem uma fita de oráculo e $x \in \{0,1\}^*$. Nós consideramos o seguinte:

- \mathcal{X} um subconjunto finito de $\{0,1\}^*$.
- $A \subseteq \{0,1\}^* \setminus \mathcal{X}$ um oráculo.
- ▶ $T_{M^A,x}^{\mathcal{X}}$ uma árvore de decisão que recebe a string característica de um oráculo subconjunto de \mathcal{X} .
 - A string característica de $B \subseteq \mathcal{X}$ é a string x_B que é 1 no *i*-ésimo bit se a *i*-ésima string em \mathcal{X} (sobre alguma enumeração das strings binárias) está em B.
- $T_{M^A,x}^{\mathcal{X}}(x_B) = 1 \iff M^{A \cup B}(x) = 1.$

Teorema de Baker-Gill-Solovay - Prova

Se M é uma máquina de Turing de tempo polinomial e $x \in \{0,1\}^*$.

Teorema de Baker-Gill-Solovay - Prova

No caso especial em que $\mathcal{X} = \{0,1\}^n$, n = |x|.

- ▶ $T_{M^{A},x}^{\{0,1\}^n}$ tem profundidade polilogarítmica (o que é $\ll n$).
- ▶ Pois se M roda em tempo $\leq n^c$ então M faz no máximo n^c consultas ao oráculo.
- $\qquad \qquad n^c = \mathsf{polylog}(2^n).$