

Course Number and Name: MAT 171 Section Name - Unified Calculus I

Term Dates: Section Start Date - Section End Date

Meeting Location: Section Meeting Building Section Meeting Room

Meeting Days & Times: Section Meeting Days; Section Start Time - Section End Time

Lecture/Lab Hours: 4.00 Lecture Hours

Credits: 4.00

Prerequisite(s): MAT-144 or MAT-155; ENG-097

Corequisite(s): Course Coreqs

Course Description: This course is a college level study in Calculus. Topics include: analytic geometry; limits and continuity; differentiation and integration of algebraic and transcendental functions; extrema; definite and indefinite integrals; applications to

geometric and physical problems.

Course Learning Outcomes

Upon successful completion of this course, students will be able to:

- 1. Calculate the limit of a function at a point using numerical, graphical and analytical techniques, and use the limit to classify a function as continuous or discontinuous at a point.
- 2. Use derivatives to solve a variety of "real-world" problems including related rates, optimization, and rectilinear motion.
- 3. Determine the derivatives of algebraic, trigonometric, logarithmic and exponential functions as well as functions defined implicitly.
- 4. Construct a detailed graph of a nontrivial function using limits and information about its first and second derivative to identify asymptotes, extrema, and points of inflection, increasing/decreasing intervals and concave up/concave down intervals.

- 5. Apply basic techniques and the method of substitution to determine the definite and indefinite integrals of algebraic, trigonometric, logarithmic and exponential functions.
- 6. Use the Fundamental Theorem of Calculus to evaluate definite integrals, with specific application to finding the area under a curve.

Course Materials

Calculus

ISBN: 9780357749166

Authors: Ron Larson, Bruce Edwards

Publication Date: 2023-01-01

available Edition: 12th Edition

Grading

Letter Grade	Percentage
А	90-100
B+	87-89
В	80-86
C+	77-79
С	70-76
D+	67-69
D	60-66
F	< 60

Class Schedule

The exact schedule of topics will be determined by the instructor.

	CLASS	CLASS	TEXT ASSIGNMENT	
UNITS	WEEKS	MTGS.	CHAP. PAGES	TOPICS

	CLASS	CLASS	TEXT ASSIGNMENT		
UNITS	WEEKS	MTGS.	CHAP. F	PAGES	TOPICS
1	2 1/4	1	P1 –	2-40	Prerequisites
			P4		LIMITS & THEIR
				46-50	PROPERTIES
			1.1		A Preview of Calculus
		1	1.2	52-58	Finding Limits Graphically
					and Numerically
		2	1.3	63-70	Evaluating Limits
					Analytically
					(Squeeze Theorem is
					optional)
		2	1.4	74-82	Continuity and One-Sided
					Limits
		1	1.5	87-91	Infinite Limits
		2			REVIEW & TEST #1
		9			
II	3				DIFFERENTIATION
		2	2.1	100-106	The Derivative and the
					Tangent Line Problem
		2	2.2	110-117	Basic Differentiation Rules
					and Rates of Change
		2	2.3	122-128	The Product and Quotient
					Rules and Higher-Order
					Derivatives
		1	2.4	133-139	The Chain Rule
		1	2.5	144-148	Implicit Differentiation
		2	2.6	152-156	Related Rates
		2			REVIEW & TEST II
		12			

	CLASS	CLASS	TEXT ASSIGNMENT		
UNITS	WEEKS	MTGS.	CHAP. F	PAGES	TOPICS
Ш	3 ¾				APPLICATIONS OF
					DIFFERENTIATION
		1	3.1	166-170	Extrema on an Interval
		1	3.2	174-177	Rolle's Theorem and the
					Mean Value Theorem
		2	3.3	181-186	Increasing and Decreasing
					Functions and the First
					Derivative Test
		2	3.4	191-195	Concavity and the Second
					Derivative Test
		2	3.5	199-205	Limits at Infinity
		2	3.6	209-214	A Summary of Curve
					Sketching
		2	3.7	219-223	Optimization Problems
		1	3.9	235-239	Differentials
		2			REVIEW & TEST III
		15			
IV	4 1/2				INTEGRATION
		2	4.1	248-254	Antiderivatives and
					Indefinite Integration
		1	4.2	258-266	Area (light on finding areas
					by the limit definition)
		1	4.3	270-276	Riemann Sums and
					Definite Integrals
		2	4.4	281-291	The Fundamental
					Theorem of Calculus
		2	4.5	296-304	Integration by Substitution
		2	5.1	314-320	The Natural Logarithmic
					Function: Differentiation
		2	5.2	324-329	Integration
		1	5.3	333-338	Inverse Functions

	CLASS	CLASS	TEXT ASSIGNMENT		
UNITS	WEEKS	MTGS.	CHAP. PAGES		TOPICS
		3	5.4	342-347	Exponential Functions:
					Differentiation and
					Integration
		2			REVIEW & TEST # 4
		18			

Experiential Learning

Students must complete an experiential learning activity that connects course content to career applications. This activity may be a content specific assignment or practical skill that is applied within a course assignment. This assignment supports the general education learning outcomes of scientific/critical thinking and quantitative reasoning; oral and written communication; and information literacy/technological competency.

Academic Policies

See College Catalog for more information: http://onlinecatalog.ucc.edu/content.php?catoid=10&navoid=2858

Americans with Disabilities Act (ADA)

Union College offers reasonable accommodations and/or services to persons with disabilities. Any student who has a documented disability and wishes to self-identify should contact the Coordinator of Disability Support Services at (908) 709-7164, or email disabilitysvc@ucc.edu. Accommodations are individualized and in accordance with Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1992. In order to receive accommodations, students must be registered with Disability Support Services. Students should register with the office as soon as possible. Accommodations are not official until the Faculty Accommodations Alert Form(s) are issued from the student to his/her instructor(s).

Family Educational Rights and Privacy Act (FERPA)

The FERPA Statement can be found at https://www.ucc.edu/admissions/the-family-education-rights-and-privacy-act/.

Equal Opportunity Statement

Union College does not discriminate and prohibits discrimination, as required by state and/or federal law, in all programs and activities, including employment and access to its career and technical programs.

Union College Mission Statement

Transforming Our Community. . . One Student at a Time

Suggested Teaching Methodologies

- 1. Lecture
- 2. Active learning/problem-solving activities
- 3. Independent practice
- 4. Discussion
- 5. Technology (Maple, Converge, Derive) supports course objectives to be determined at the discretion of the instructor

Mapping Course Learning Outcomes to Learning Activities and Evaluation Methods

Course Learning Outcomes (CLO's)	Learning Activities	Evaluation Methods
Calculate the limit of a	Mix of the following as appropriate:	Written assignments
function at a point using numerical, graphical and	Lecture	Quizzes & Tests
analytical techniques, and	Class Discussion	Classroom discussion
use the limit to classify a	Student Practice	
function as continuous or	Group Work	
discontinuous at a point.	Homework – textbook/software	
Use derivatives to solve a	Mix of the following as	Written assignments

variety of "real-world" problems including related rates, optimization, and rectilinear motion.	 appropriate: Lecture Class Discussion Student Practice Group Work Homework – textbook/software 	Quizzes & Tests Classroom discussion
Determine the derivatives of algebraic, trigonometric, logarithmic and exponential functions as well as functions defined implicitly.	Mix of the following as appropriate: • Lecture • Class Discussion • Student Practice • Group Work • Homework – textbook/software	Written assignments Quizzes & Tests Classroom discussion
Construct a detailed graph of a nontrivial function using limits and information about its first and second derivative to identify asymptotes, extrema, and points of inflection, increasing/decreasing intervals and concave up/concave down intervals.	Mix of the following as appropriate: • Lecture • Class Discussion • Student Practice • Group Work • Homework – textbook/software	Written assignments Quizzes & Tests Classroom discussion
Apply basic techniques and the method of substitution to determine the definite and indefinite integrals of algebraic, trigonometric, logarithmic and exponential functions. Use the Fundamental Theorem of Calculus to	Mix of the following as appropriate: • Lecture • Class Discussion • Student Practice • Group Work • Homework – textbook/software Mix of the following as appropriate: • Lecture	Written assignments Quizzes & Tests Classroom discussion Written assignments Quizzes & Tests

evaluate definite integrals,	Class Discussion	Classroom
with specific application to	Student Practice	discussion
finding the area under a	Group Work	
curve.	Homework – textbook/software	

Please note: all programs must integrate in one or more courses, discipline-specific course learning outcomes that reflect the College learning outcomes of scientific/critical thinking and quantitative reasoning, oral/written communication, and information literacy.