PRACOWNIA FIZYCZNA 1

Instytut Fizyki - Centrum Naukowo Dydaktyczne Politechnika Śląska

P1-M4. Pomiar modułu Younga metodą rozciągania*

Zagadnienia

Moduł Younga, jednostka. Prawo Hooka.

1 Układ pomiarowy

Wyznacza się moduł Younga stali, z której wykonany jest drut o długości l i średnicy d.

2 Pomiary

- 1. Przy pomocy taśmy mierniczej zmierzyć długość drutu l.
- 2. Wykorzystując śrubę mikrometryczną 10-krotnie zmierzyć średnicę drutu d w różnych miejscach, na całej długosci drutu.

dług	gość c	lrutu	l, m							
średnica drutu d, mm										
1	2	3	4	5	6	7	8	9	10	

- 3. Obciążyć drut ciężarkiem pomocniczym, niewycechowanym.
- 4. Wyzerować skalę czujnika obracając jego zewnętrznym pierścieniem.
- 5. Zmierzyć wydłużenie drutu zmieniając obciążenia według tabelki.

masa	wydłużenie $\Delta l, \mathrm{mm}$							
ciężarków, kg	1	2	3	4	5	Δl_{sr} , mm		
0								
0.5								
1.0								
1.5								
2.0								
2.5								
2.0								
1.5								
1.0								
0.5								
0								

6. Jeżeli po zdjęciu obciążenia czujnik wydłużenia będzie wskazywał wartość różniącą się od zera o więcej niż 0.02 mm, należy go wyzerować i pomiary powtórzyć.

^{*}Opracowanie: dr inż. Alina Domanowska

3 Opracowanie wyników pomiarów

- 1. Obliczyć wartość średnią średnicy drutu d_{sr} oraz niepewność statystyczną $u_a(d_{sr})$, jako odchylenie standardowe wartości średniej, pomnożone przez odpowiedni współczynnik Studenta Fishera.
- 2. Obliczyć niepewność pomiarową $u_b(d)$, wynikającą z użytego narzędzia pomiarowego.
- 3. Obliczyć niepewność całkowitą pomiaru średnicy drutu

$$u(d) = \sqrt{u_a^2(d_{sr}) + u_b^2(d)}.$$

- 4. Obliczyć wartości średnie wydłużeń Δl .
- 5. Obliczyć niepewności statystyczne wydłużeń $u_a(\Delta l_{sr})$, jako odchylenia standardowe wartości średniej, pomnożone przez odpowiedni współczynnik Studenta Fishera.
- 6. Obliczyć niepewność pomiarową $u_b(\Delta l)$, wynikającą z użytego narzędzia pomiarowego.
- 7. Obliczyć całkowitą niepewność pomiaru wydłużenia dla każdego obciążenia

$$u(\Delta l) = \sqrt{u_a^2(\Delta l_{sr}) + u_b^2(\Delta l)}.$$

- 8. Sporządzić wykres zależności wydłużenia drutu od siły naciągającej $\Delta l = f(F)$, gdzie F = mg. Nanieść słupki niepewności Δl .
- 9. Metodą regresji liniowej obliczyć współczynniki prostej dopasowania zależności liniowej wraz z niepewnościami standardowymi. Zapisać wyniki w prawidłowym formacie, wraz z niepewnościami i jednostkami.
- 10. Nanieść na wykres prostą regresji. Czy prosta mieści się w zakresie słupków niepewności?
- 11. Posługując się prawem Hooka, udowodnić zależność

$$E = \frac{4l}{\pi a d^2}, \ \frac{N}{m^2},$$

gdzie a jest wspólczynnikiem nachylenia prostej regresji.

- 12. Obliczyć moduł Younga dla stali, z której jest wykonany drut.
- 13. Korzystając z prawa prpropagacji niepewności obliczyć niepewność u(E).
- 14. Zapisać wynik w odpowiednim formacie wraz z niepewnością i jednostką.
- 15. Obliczyć niepewność rozszerzoną. Zapisać w poprawnym formacie.
- 16. Przeprowadzić test zgodności otrzymanej wartości z wartością tabelaryczną dla stali.