Pesquisa Operacional

MÉTODO SIMPLEX

 Algoritmo Simplex foi desenvolvido por George Dantzig e Koopmans em 1946, quando trabalhavam no departamento da Força Aérea Americana.

É considerado por muitos como um dos principais algoritmos inventados no século XX.

Problema I

Uma marcenaria deseja estabelecer uma programação diária de produção. Atualmente a oficina faz apenas dois produtos: *mesa* e *armário*, ambos de um só modelo. Para efeito de simplificação, vamos considerar que a marcenaria tem limitações em somente dois recursos: *madeira* e *mão de obra*, cujas disponibilidades diárias são mostradas na tabela abaixo:

Recurso	Disponibilidade
Madeira	12 m ²
Mão de obra	8 homens-hora

O processo de produção é tal que, para fazer 1 mesa, a fábrica gasta 2 m² de madeira e 2 homens-hora de mão de obra. Para fazer um armário, a fábrica gasta 2 m² de madeira e 1 homem-hora de mão de obra.

Além disso, o fabricante sabe que cada mesa dá um lucro de 6 u.m. e cada armário dá um lucro de 2 u.m. O problema do fabricante é encontrar o programa de produção que maximiza o lucro total.

Modelagem

Variáveis: x: quantidade de mesas produzidas

y: quantidade de armários produzidos

Função Objetivo: Máximo lucro: L = 6x + 2y

Restrições: Matéria prima: $2x + 2y \le 12$

Mão de obra: $2x + 1y \le 8$

Não negatividade: $x, y \ge 0$

Resolução Gráfica

Ponto	Х	у	L = 6x + 2y
А	0	0	0
В	0	6	12
С	2	4	20
D	4	0	24

MÉTODO SIMPLEX

Forma Padrão:

(1) Escrever inequações como equações:

Matéria Prima:
$$2x + 2y \le 12$$

$$\Rightarrow$$
 2x + 2y + 1f₁ = 12

Mão de Obra:
$$2x + 1y \le 8$$

$$\Rightarrow$$
 2x + 1y + 1f₂ = 8

Não negatividade:

$$x, y, f_1, f_2 \ge 0$$

MÉTODO SIMPLEX

Forma Padrão:

(2) Variáveis da Função Objetivo devem estar no lado esquerdo da igualdade:

Função Objetivo: L = 6x + 2y

$$\Rightarrow$$
 L - 6x - 2y - 0.f₁ - 0.f₂ = 0

MÉTODO SIMPLEX

FORMA PADRÃO:

Matéria Prima: $2x + 2y + 1f_1 = 12$

Mão de Obra: $2x + 1y + 1f_2 = 8$

Não negatividade: $x, y, f_1, f_2 \ge 0$

Função Objetivo: L - $6x - 2y - 0.f_1 - 0.f_2 = 0$

TABELA I

Matéria Prima: $2x + 2y + 1f_1 + 0f_2 = 12$

Mão de Obra: $2x + 1y + 0f_1 + 1f_2 = 8$

Função Objetivo: L - $6x - 2y - 0.f_1 - 0.f_2 = 0$

Não negatividade: $x, y, f_1, f_2 \ge 0$

Var. Básicas	x	У	f ₁	f ₂	Mão Direita
	2	2	1	0	12
	2	1	0	1	8
L	-6	-2	0	0	0

TABELA I

Var. Básicas	×	У	f ₁	f ₂	Mão Direita
f ₁	2	2	1	0	12
f ₂	2	1	0	1	8
L	-6	-2	0	0	0

 $f_1 = 12$: inicialmente há disponível, na empresa, 12 m² de madeira.

 $f_2 = 8$: inicialmente há disponível, na empresa, 8 homens-hora de trabalho.

Lucro inicial: L = 0

$$x = y = 0$$

É solução Ótima??

VB	x	у	f ₁	f ₂	MD
f ₁	2	2	1	0	12
f ₂	2	1	0	1	8
L	-6	-2	0	0	0

VB	x	у	$\mathbf{f_1}$	f ₂	MD
f ₁	2	2	1	0	12
f ₂	2	1	0	1	8
L	-6	-2	0	0	0

Coluna Pivotal

VB	X	у	f ₁	f ₂	MD
f ₁	2	2	1	0	12
f ₂	2	1	0	1	8
L	-6	-2	0	0	0

VB	X	у	f ₁	f ₂	MD
f ₁	2	2	1	0	12
f ₂	2	1	0	1	8
L	-6	-2	0	0	0

Pivô

VB	X	у	f ₁	f ₂	MD
f ₁	2	2	1	0	12
f ₂	2	1	0	1	8
L	-6	-2	0	0	0

$$NL_2* = L_2/2$$

$$NL_2$$
* = $L_2/2$

$$x: 2/2 = 1$$

y:
$$\frac{1}{2} = 0.5$$

$$f_1: 0/2 = 0$$

$$f_2$$
: $\frac{1}{2} = \frac{0.5}{1}$

MD:
$$8/2 = 4$$

Tabela II

VB	X	у	f ₁	f ₂	MD
$\mathbf{f_1}$					
X	1	0,5	0	0,5	4
L					

Nova Linha =
$$\begin{pmatrix} \text{Linha} \\ \text{Antiga} \end{pmatrix}$$
 - $\begin{pmatrix} \text{n}^{\circ} & \text{que est\'a nesta linha} \\ \text{e} & \text{na Coluna Pivotal} \end{pmatrix} x \begin{pmatrix} \text{nova Linha} \\ \text{Pivotal} \end{pmatrix}$

VB	X	у	f ₁	f ₂	MD
f ₁	2	2	1	0	12
x	2	1	0	1	8
L	-6	-2	0	0	0

$$NL_1^* = L_1 - 2. NL_2^*$$

 $NL_2^* = L_2/2$

$$NL_1 = L_1 - 2. NL_2*$$

$$x: 2-2.1 = 0$$

y:
$$2-2.0,5=1$$

$$f_1$$
: $1-2.0 = 1$

$$f_2$$
: $0-2.0,5=-1$

MD:
$$12 - 2.4 = 4$$

Tabela II

VB	X	у	f ₁	f ₂	MD
f ₁	0	1	1	-1	4
X	1	0,5	0	0,5	4
L					

Nova Linha =
$$\begin{pmatrix} \text{Linha} \\ \text{Antiga} \end{pmatrix}$$
 - $\begin{pmatrix} \text{n}^{\circ} & \text{que est\'a nesta linha} \\ \text{e} & \text{na Coluna Pivotal} \end{pmatrix} x \begin{pmatrix} \text{nova Linha} \\ \text{Pivotal} \end{pmatrix}$

VB	X	у	f ₁	f ₂	MD
f ₁	2	2	1	0	12
f ₂	2	1	0	1	8
L	-6	-2	0	0	0

$$NL_1^* = L_1 - 2. NL_2^*$$

 $NL_2^* = L_2/2$
 $NL_3^* = L_3 - (-6). NL_2^*$

$$NL_3 = L_3 + 6. NL_2*$$

$$x: -6 + 6.1 = 0$$

y:
$$-2 + 6.0,5 = 1$$

$$f_1: 0 + 6.0 = 0$$

$$f_2$$
: $0 + 6.0,5 = 3$

MD:
$$0 + 6.4 = 24$$

Tabela II

VB	X	у	f ₁	f ₂	MD
f ₁	0	1	1	-1	4
X	1	0,5	0	0,5	4
L	0	1	0	3	24

Tabela II

VB	X	У	f ₁	f ₂	MD
f ₁	0	1	1	-1	4
X	1	0,5	0	0,5	4
L	0	1	0	3	24

É solução ótima??

 $f_1 = 4$: ainda há disponível, na empresa, 4 m² de madeira.

x = 4: devem ser fabricada 4 mesas.

Lucro Máximo: L = 24 u.m.

$$y = f_2 = 0$$

Exercício

Uma empresa fabrica dois tipos de produtos, feitos de madeira compensada. Cada produto do tipo A necessita de 5 minutos para o corte e 10 minutos para a montagem; cada produto do tipo B precisa de 8 minutos para o corte e 8 minutos para a montagem. Dispõe-se de 3 horas e vinte minutos para o corte e 4 horas para a montagem. O lucro é de 5 u.m. para cada produto do tipo A e de 6 u.m. para cada produto do tipo B. Suponha que toda a produção é vendida. Quantas unidades de cada produto a empresa deverá produzir para maximizar o lucro?

Solução

Inicialmente precisamos modelar o problema.

Xa = Quantidade do prod. tipo a.

Xb = Quantidade do prod. tipo b.

• L = 5 Xa + 6 Xb

Restrições:

Corte: $5 Xa + 8 Xb \le 200$

Montagem: $10 \text{ Xa} + 8 \text{ Xb} \leq 240$

Xa; Xb; f1; $f2 \ge 0$

Método simplex

		Tabela 1				
	Var.					
Linha	Básicas	Xa	Xb	f1	f2	M.D. =
L1	f1	5	8	1	0	200
L2	f2	10	8	0	1	240
L3	L	-5	-6	0	0	0

Escolha do Pivô

		ĺ	$\mathcal{O}V(c)$			
1-4			·			
Var.		و				1 216
isicas X	a X	<u>b</u>	f1	f2	M.D. =	
f1 /5	5 8	3	1	0	200	LINA, PIVO
f2 1	0 8	3	0	1	240	
L -!	5(6	0	0	0	
	, l					
	fisicas X f1 25 f2 10 L -!	fsicas Xa X f1 5 8 f2 10 8 L -5 -	fisicas Xa Xb f1 5 8 f2 10 8 L -5 -6	fisicas Xa Xb f1 f1 5 8 1 f2 10 8 0 L -5 -6 0	fisicas Xa Xb f1 f2 f1 f1 f2 f1 f2 f1 f1 f2 f1 f2 f1 f1 f2 f1 f1 f1 f2 f1 f1 f1 f1 f1 f1 f2 f1	sicas Xa Xb f1 f2 M.D. = f1 5 8 1 0 200 f2 10 8 0 1 240 L -5 -6 0 0 0

O que mais impacta no lucro está na coluna Xb

L1 f1 5 8 1 0 200

NL1 = L1/8

		Tabela 2				
Linha	Var. Básicas	Xa	Xb	f1	f2	M.D. =
NL1	Xb	0,625	1	0,125	0	25
L2	f2					
L3	L					

L2 f2 10 8 0 1 240

NL2 = L2 - (8* NL1)

		Tabela 2				
Linha	Var. Básicas	Xa	Xb	f1	f2	M.D. =
NL1	Xb	0,625	1	0,125	0	25
NL2	f2	5	0	(-1)	1	40
L3	L					

14	£∢	_	\sim	4	\wedge	200
	TI	–	×			71 11 1
		. 1			l l	

$$NL3 = L3 - (-6*NL1)$$

		Tabela 2				
Linha	Var. Básicas	Xa	Xb	f1	f2	M.D. =
NL1	Xb	0,625	1	0,125	0	25
NL2	f2	5	0	(-1)	1	40
NL3	L	-1,25	0	0,75	0	150

Escolhendo o novo Pivô

			\wedge			
		Tabela 2	1100			
Linha	Var. Básicas	Xa	Xb	f1	f2	M.D. =
NL1	Xb	0,625	1	0,125	0	25
NL2	f2	5	0	(-1)	1	40
NL3	L	-1,25	0	0,75	0	150

Vamos zerar Xa da linha 2

NL2 f2 5 0 (-1) 1 40

NNL2 = NL2/5

		Tabela 3				
Linha	Var. Básicas	Xa	Xb	f1	f2	M.D. =
NL1	Xb	0,625	1	0,125	0	25
NNL2	Xa	1	0	(-0,2)	0,2	8
NL3	L	-1,25	0	0,75	0	150

NL1	Xh	0,625	1	0,125	0	25

NNL1= NL1-(0,625*NNL2)

		Tabela 3				
Linha	Var. Básicas	Xa	Xb	f1	f2	M.D. =
NNL1	Xb	0	1	0,25	-0,125	20
NNL2	Xa	1	0	(-0,2)	0,2	8
NL3	L	-1,25	0	0,75	0	150

NL3	L	-1,25	0	0,75	0	150
IIL	—	1,25	•	O_{I}		100

NNL3 = NL3 - (1,25*NNL2)

		Tabela 3				
Linha	Var. Básicas	Xa	Xb	f1	f2	M.D. =
NNL1	Xb	0	1	0,25	-0,125	20
NNL2	Xa	1	0	(-0,2)	0,2	8
NNL3	L	0	0	0,5	0,25	160

		Tabela 3				
Linha	Var. Básicas	Xa	Xb	f1	f2	M.D. =
NNL1	Xb	0	1	0,25	-0,125	20
NNL2	Xa	1	0	(-0,2)	0,2	8
NNL3	L	0	0	0,5	0,25	160

Temos então como solução:

$$Xb = 20$$

$$Xa = 8$$

$$L = 160$$

Exercício Resolver Método Simplex

Problema 1.

• Um agricultor deseja cultivar duas variedades de cereais. Digamos tipo A e B, em uma área restrita a um hectare, sendo que cada are cultivado pelo cereal A produz 8 sacas e para o B 10 sacos. Para o plantio, cada are cultivado pelo cereal A precisa de 3 homens hora e o cultivado pelo cereal B, precisa de 2 homens hora, sendo que a disposição máxima de homens hora é de 240. O custo de um homem hora é de R\$ 20,00. A demanda máxima é limitada pelo mercado consumidor de 480 sacos do cereal A, a um preço de R\$ 15,00 por saco e 800 sacos do cereal B, a um preço de R\$12,00 por saco. O agricultor deseja planejar a sua produção de modo a maximizar o seu lucro.