

A simple Bayesian regression model

Alicia Johnson Associate Professor, Macalester College

Chapter 3 goals

- Engineer a simple Bayesian regression model
- Define, compile, and simulate regression models in RJAGS
- Use Markov chain simulation output for posterior inference & prediction

Modeling weight

 Y_i = weight of adult i (kg)

Model

 $Y_i \sim N(m,s^2)$

 Y_i = weight of adult i (kg)

Model

 $Y_i \sim N(m,s^2)$

$$Y_i$$
 = weight of adult i (kg)
 X_i = height of adult i (cm)

$$Y_i \sim N(m_i, s^2)$$

$$Y_i$$
 = weight of adult i (kg)
 X_i = height of adult i (cm)

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

$$Y_i$$
 = weight of adult i (kg)
 X_i = height of adult i (cm)

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

$$Y_i$$
 = weight of adult i (kg)
 X_i = height of adult i (cm)

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

$$Y_i$$
 = weight of adult i (kg)
 X_i = height of adult i (cm)

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

$$Y_i$$
 = weight of adult i (kg)
 X_i = height of adult i (cm)

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

Bayesian regression model

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

- $a = ext{y-intercept}$ value of m_i when $X_i = 0$
- b = slope
 rate of change in weight (kg) per 1 cm
 increase in height
- ullet s = residual standard deviation individual deviation from trend m_i

height

Priors for the intercept & slope

Priors for the intercept & slope

Priors for the intercept & slope

Prior for the residual standard deviation

Prior for the residual standard deviation

Bayesian regression model

Let's practice!

Bayesian regression in RJAGS

Alicia Johnson Associate Professor, Macalester College

Bayesian regression model

$$Y_i$$
 = weight of adult i (kg)
 X_i = height of adult i (cm)

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

$$egin{aligned} a &\sim N(0, 200^2) \ b &\sim N(1, 0.5^2) \ s &\sim Unif(0, 20) \end{aligned}$$

Prior insight

Insight from the observed weight & height data


```
Y_i \sim N(m_i, s^2) \ m_i = a + b X_i
```

```
> wt_mod <- lm(wgt ~ hgt, bdims)
> coef(wt_mod)
(Intercept) hgt
-105.011254 1.017617
> summary(wt_mod)$sigma
[1] 9.30804
```



```
weight_model <- "model{
    # Likelihood model for Y[i]

# Prior models for a, b, s

}"</pre>
```

```
weight_model <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {

    }

# Prior models for a, b, s

}"</pre>
```

ullet $Y_i \sim N(m_i, s^2)$ for i from 1 to 507


```
weight_model <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))
    }

# Prior models for a, b, s
}"</pre>
```

ullet $Y_i \sim N(m_i, s^2)$ for i from 1 to 507

```
weight_model <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))
        m[i] <- a + b * X[i]
    }

# Prior models for a, b, s</pre>
```

 $oldsymbol{\cdot} Y_i \sim N(m_i, s^2) ext{ for } i ext{ from 1 to 507} \ m_i = a + b X_i$

NOTE: use "<-" not "~"

```
weight_model <- "model{
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] ~ dnorm(m[i], s^(-2))
        m[i] <- a + b * X[i]
    }

# Prior models for a, b, s
    a ~ dnorm(0, 200^(-2))
    b ~ dnorm(1, 0.5^(-2))
    s ~ dunif(0, 20)

}"</pre>
```

- $oldsymbol{\cdot} Y_i \sim N(m_i, s^2) ext{ for } i ext{ from 1 to 507} \ m_i = a + b X_i$
- $egin{aligned} ullet & a \sim N(0,200^2) \ & b \sim N(1,0.5^2) \ & s \sim Unif(0,20) \end{aligned}$

COMPILE the regression model

```
# COMPILE the model
weight_jags <- jags.model(textConnection(weight_model),
    data = list(X = bdims$hgt, Y = bdims$wgt),
    inits = list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 2018))</pre>
```

```
> dim(bdims)
[1] 507 25

> head(bdims$hgt)
[1] 174.0 175.3 193.5 186.5 187.2 181.5

> head(bdims$wgt)
[1] 65.6 71.8 80.7 72.6 78.8 74.8
```


SIMULATE the regression model

```
# COMPILE the model
weight_jags <- jags.model(textConnection(weight_model),
    data = list(X = bdims$hgt, Y = bdims$wgt),
    inits = list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 2018))

# SIMULATE the posterior
weight_sim <- coda.samples(model = weight_jags,
    variable.names = c("a", "b", "s"),
    n.iter = 10000)</pre>
```


Addressing Markov chain instability

- Standardize the height predictor (subtract the mean and divide by the standard deviation).
- Increase chain length.

Posterior insights

Let's practice!

Posterior estimation & inference

Alicia Johnson Associate Professor, Macalester College

Bayesian regression model

$$Y_i$$
 = weight of adult i (kg)
 X_i = height of adult i (cm)

$$Y_i \sim N(m_i, s^2) \ m_i = a + b X_i$$

$$egin{aligned} a &\sim N(0, 200^2) \ b &\sim N(1, 0.5^2) \ s &\sim Unif(0, 20) \end{aligned}$$


```
> summary(weight sim big)
1. Empirical mean and standard deviation for each variable,
  plus standard error of the mean:
              SD Naive SE Time-series SE
     Mean
a -104.038 7.85296 0.0248332
                                0.661515
    1.012 0.04581 0.0001449 0.003849
   9.331 0.29495 0.0009327
                           0.001216
2. Quantiles for each variable:
      2.5%
                         50%
                25%
                                      97.5%
a -118.6843 -109.5171 -104.365 -99.036 -87.470
    0.9152
           0.9828
                    1.014 1.044
                                     1.098
    8.7764
           9.1284
                    9.322
                             9.524
                                     9.933
```

posterior mean of $a \approx$ -104.038

posterior mean of $b \approx 1.012$

Posterior mean trend:

$$m_i = -104.038 + 1.012X_i$$

Markov chain output:

Posterior uncertainty

Posterior mean trend:

$$m_i = -104.038 + 1.012X_i$$

Markov chain output:

Posterior credible intervals

Posterior credible intervals

```
> summary(weight sim big)
1. Empirical mean and standard deviation for each variable,
  plus standard error of the mean:
              SD Naive SE Time-series SE
     Mean
a -104.038 7.85296 0.0248332
                                0.661515
    1.012 0.04581 0.0001449 0.003849
  9.331 0.29495 0.0009327 0.001216
2. Quantiles for each variable:
      2.5%
                         50%
                25%
                                      97.5%
a -118.6843 -109.5171 -104.365 -99.036 -87.470
    0.9152
           0.9828 1.014 1.044
                                    1.098
    8.7764
           9.1284
                    9.322
                            9.524
                                     9.933
```

95% posterior credible interval for a: (-118.6843, -87.470)

95% posterior credible interval for b: (0.9152, 1.098)

Posterior credible intervals

Interpretation

In light of our priors & observed data, there's a 95% (posterior) chance that b is between 0.9152 & 1.098 kg/cm.

Posterior probabilities


```
> table(weight_chains$b > 1.1)

FALSE TRUE
97835 2165

> mean(weight_chains$b > 1.1)
[1] 0.02165
```

Interpretation:

There's a 2.165% posterior chance that b exceeds 1.1 kg/cm.

Let's practice!

Posterior prediction

Alicia Johnson Associate Professor, Macalester College

Posterior trend

$$Y \sim N(m,s^2) \ m = a + b X$$

Posterior trend

$$Y \sim N(m,s^2) \ m = a + b X$$

Posterior mean trend

$$m = -104.038 + 1.012X$$

Posterior trend when height = 180 cm

$$Y \sim N(m,s^2) \ m = a + b X$$

Posterior mean trend

$$m = -104.038 + 1.012X$$

Estimating posterior trend when height = 180 cm

Estimating posterior trend when height = 180 cm

```
> -104.038 + 1.012 * 180
[1] 78.122
> weight chains <- weight chains %>%
    mutate(m 180 = a + b \times 180)
> head(weight_chains)
          a b s m 180
1 -113.9029 1.072505 8.772007
                               79.1\overline{4}803
2 -115.0644 1.077914 8.986393
                               78.96014
3 -114.6958 1.077130 9.679812
                               79.18771
4 -115.0568 1.072668 8.814403
                               78.02352
5 -114.0782 1.071775 8.895299
                               78.84138
6 -114.3271 1.069477 9.016185
                                78.17877
> -113.9029 + 1.072505 * 180
[1] 79.148
```

Posterior distribution of trend

```
> -104.038 + 1.012 * 180

[1] 78.122

> head(weight_chains$m_180)

[1] 79.14803

[2] 78.96014

[3] 79.18771

[4] 78.02352

[5] 78.84138

[6] 78.17877
```

Mean weight at height = 180 cm

Credible interval for posterior trend

Mean weight at height = 180 cm

Visualizing posterior trend

Posterior trend vs posterior prediction

Posterior *mean* weight (or trend) among *all* 180 cm tall adults

```
> -104.038 + 1.012 * 180
[1] 78.122
```

Posterior *predicted* weight of a *specific* 180 cm tall adult

```
> -104.038 + 1.012 * 180
[1] 78.122
```

Predicting weight when height = 180 cm

```
Y\sim N(m_{180},s^2)
m_{180} = a + b * 180
 > head(weight chains, 3)
           a b s m 180
 1 - 113.9029 \ 1.072505 \ 8.772007 \ 79.1\overline{4}803
 2 -115.0644 1.077914 8.986393
                                 78.96014
 3 -114.6958 1.077130 9.679812
                                 79.18771
 > set.seed(2000)
 > rnorm(n = 1, mean = 79.14803, sd = 8.772007)
 [1] 71.65811
 > rnorm(n = 1, mean = 78.96014, sd = 8.986393)
 [1] 75.78894
 > rnorm(n = 1, mean = 79.18771, sd = 9.679812)
 [1] 87.80419
```

Posterior predictive distribution

Posterior prediction interval

Let's practice!