Route Q — Quantum Applications of the Anomaly–Cohomology Framework

Geometric phases, structural topological terms, selection rules, and SPT classification (math-only)

Evan Wesley, with Octo White, Claude, Gemini, and O3

August 5, 2025

Abstract

This module translates the anomaly–cohomology machinery developed for the cosmological decade index into quantum-mechanical language. We give derivations and recipes for: (i) geometric phases and Berry holonomy (including time-reversal/Pin effects), (ii) structural corrections to effective Hamiltonians by topological terms, (iii) anomaly-driven selection rules in quantum transitions, and (iv) a practical AHSS/bordism pipeline for classifying symmetry-protected topological (SPT) phases in condensed-matter systems.

Contents

1	Geometric phases and Berry holonomy via cohomology/bordism	2
	1.1 Adiabatic families and line bundles	2
	1.2 Antiunitary symmetries and Pin structures	2
2	Structural topological terms in effective actions	2
	2.1 Particle on a ring: Aharonov–Bohm energy correction	2
	2.2 Spin coherent states and Haldane θ term	2
3	Anomaly-driven selection rules in quantum transitions	3
	3.1 Global anomalies as 1D invertible phases	3
4	SPT classification recipe via AHSS (practical)	3
	4.1 General pipeline	3
	4.2 Example: 3D fermionic topological insulator (class AII)	3
	4.3 Example: 1D bosonic Haldane phase	
5	Bridge back to the decade index	4
6	How to deploy Route Q (no code)	4
7	Falsifiable predictions (quantum)	4

1 Geometric phases and Berry holonomy via cohomology/bordism

1.1 Adiabatic families and line bundles

Let $\{H(\lambda)\}_{\lambda \in X}$ be a gapped family of Hamiltonians on a finite-dimensional Hilbert space, with a rank-1 ground-state vector bundle $L \to X$. The Berry connection A is a U(1) connection on L; its curvature $F = \mathrm{d}A$ has first Chern class $c_1(L) = [F/2\pi] \in H^2(X;\mathbb{Z})$. A closed loop $\gamma \subset X$ accumulates geometric phase

$$\varphi(\gamma) = \oint_{\gamma} A = \int_{\Sigma: \partial \Sigma = \gamma} F \mod 2\pi, \tag{1}$$

and the corresponding holonomy is $\exp(i\varphi(\gamma))$.

Proposition 1.1 (Quantization and stability). If $c_1(L) \neq 0$, the set of Berry phases over loops represents a nontrivial subgroup of U(1) determined by $H_2(X; \mathbb{Z})$. Any continuous deformation of $H(\lambda)$ that preserves the gap keeps $c_1(L)$ invariant.

1.2 Antiunitary symmetries and Pin structures

Suppose an antiunitary symmetry T acts on the family and reverses time. If $T^2 = +1$ (class AI), the appropriate background structure is Pin^+ ; if $T^2 = (-1)^F$ (class AII), it is Pin^- . The Berry line bundle is then promoted to a real/quaternionic bundle; the mod-2 invariants are Stiefel-Whitney classes w_i .

Proposition 1.2 (\mathbb{Z}_2 quantization under time reversal). Let X admit a T-invariant loop γ with the T-action reversing orientation. If $T^2 = (-1)^F$ (Pin^- case), the Berry phase on γ is $\varphi(\gamma) \in \{0, \pi\}$ mod 2π . Equivalently, the holonomy is a \mathbb{Z}_2 class detected by w_1 on the associated bundle. \square

Remark 1.3 (Kramers degeneracy and w_2). In class AII, a rank-1 complex bundle is obstructed globally; the relevant obstruction is w_2 of the real bundle underlying the Kramers pair. Nontrivial w_2 forces a \mathbb{Z}_2 holonomy (Berry phase π) on certain loops and protects degeneracies.

2 Structural topological terms in effective actions

2.1 Particle on a ring: Aharonov–Bohm energy correction

Consider a particle of moment of inertia I on S^1 in an Aharonov–Bohm flux Φ . The Euclidean action includes a topological term $i\frac{q\Phi}{\hbar}\operatorname{wind}(\theta)$. Energy levels are

$$E_n(\Phi) = \frac{\hbar^2}{2I} \left(n - \frac{\Phi}{\Phi_0} \right)^2, \qquad \Phi_0 = \frac{h}{q}, \quad n \in \mathbb{Z}.$$
 (2)

This realizes $E = E_{\rm std} + \hbar\omega \cdot N_{\rm top}$ with $N_{\rm top} = n$ and $\omega = \hbar/(2I)$.

2.2 Spin coherent states and Haldane θ term

For a spin-s quantum rotor, the path integral contains the Berry (Wess–Zumino) term $S_B = s \Omega[\hat{n}]$, the area on S^2 . In 1D antiferromagnets, the continuum limit yields a θ -term with $\theta = 2\pi s$; integer $s \Rightarrow \theta = 0$ (gapped), half-integer $s \Rightarrow \theta = \pi$ (critical/protected).

Proposition 2.1 (Topological quantization and spectral parity). If the effective action contains $ik \int d\theta$ with integer k (winding number density), then spectra and selection rules shift by k quanta: transitions changing k by an odd unit are forbidden when coupled to a Pin^{\pm} background that detects the parity of k.

3 Anomaly-driven selection rules in quantum transitions

3.1 Global anomalies as 1D invertible phases

In 0+1D, a global anomaly corresponds to a nontrivial element in the deformation classes of reflection-positive invertible phases with background symmetry. Coupling a quantum system to such a background assigns a phase $\nu(\gamma) \in U(1)$ to parameter loops γ .

Proposition 3.1 (Selection rule from anomaly phase). If there exists a loop γ in parameter space such that the path integral picks a phase $\nu(\gamma) = -1$ (a \mathbb{Z}_2 anomaly), then any process requiring an odd number of traversals of γ has vanishing amplitude. Equivalently, the transition operator anticommutes with the anomaly character and is projected out.

Remark 3.2 (Pin[±] diagnostic). Placing the system on non-orientable probe loops (crosscaps in the worldline) implements time-reversal twists; the induced sign is the Arf–Brown–Kervaire invariant in simple models. Nontrivial ABK yields a robust \mathbb{Z}_2 selection rule.

4 SPT classification recipe via AHSS (practical)

4.1 General pipeline

Given spatial dimension d, statistics (bosonic/fermionic), and symmetry G (including crystalline), the SPT classification at low energies is computed by

$$E_2^{p,q} = H^p(BG; \ \Omega_q^{\text{structure}}) \ \Rightarrow \ \Omega_{p+q}^{\text{structure}}(BG),$$
 (3)

where structure = Spin, Pin^{\pm} , ... and total degree is d+1. The steps are:

- 1. Compute low-degree bordism coefficients $\Omega_q^{\text{structure}}$ (just ranks and torsion needed).
- 2. Compute $H^p(BG;\cdot)$ in degrees $p \leq d+1$ (mod torsion relevant to the problem).
- 3. Identify differentials d_r by naturality (restrictions to subgroups) and Steenrod operations.
- 4. Read off survivors at E_{∞} and resolve extension problems (usually by physical arguments or subgroup data).

4.2 Example: 3D fermionic topological insulator (class AII)

Let d=3, fermions with $G=U(1) \rtimes \mathbb{Z}_2^T$ and $T^2=(-1)^F$ (Pin⁻). The classification yields a \mathbb{Z}_2 strong index. The bulk topological term is the axion coupling $\theta \frac{e^2}{2\pi h} \int F \wedge F$ with $\theta=\pi \mod 2\pi$; surfaces carry half-quantized Hall response when gapped by symmetry breaking.

4.3 Example: 1D bosonic Haldane phase

Let d = 1, bosons with $G = \mathbb{Z}_2 \times \mathbb{Z}_2^T$ (spin rotations by π and time reversal). The AHSS/bordism computation gives a nontrivial \mathbb{Z}_2 SPT protected by G; edges host symmetry-protected Kramers doublets (degeneracy that cannot be removed without breaking G).

5 Bridge back to the decade index

The same structural ingredients appear in cosmology:

- Discrete parity bookkeeping (AHSS rank m) vs. continuous phase optimization (macro-fold depth q).
- Anomaly phases on non-orientable probes (Pin) enforce uniform reflection positivity; the minimal extensive counterterm is the cosmological constant, with decades $\mathcal{I}_{10}(m) = 2^m 1 m + 3$.
- In quantum systems, the same phases enforce selection rules and quantized responses.

6 How to deploy Route Q (no code)

- 1. Choose a system and symmetry G. Determine if time reversal or spatial inversion acts antiunitarily and pick Spin/Pin^{\pm}.
- 2. Compute the E_2 page. Only low degrees are needed; tabulate torsion/ranks.
- 3. Use subgroup naturality. Restrict to simple subgroups to fix differentials and prove survival.
- 4. Extract invariants. Survivors at E_{∞} are the SPT indices; map them to measurable quantities (Berry \mathbb{Z}_2 phase, quantized pump, surface Hall response, edge degeneracy).
- 5. State selection rules. Formulate allowed/forbidden transitions based on anomaly characters.

7 Falsifiable predictions (quantum)

- Quantized holonomy: In class AII, a T-reversing loop in parameter space yields Berry phase 0 or π only. Any continuous deformation preserving the gap cannot change it.
- Edge degeneracy: Protected Kramers doublets at 1D SPT edges (Haldane-type) persist until G is broken.
- Axion response: For 3D AII insulators, $\theta = \pi \mod 2\pi$ implies half-quantized surface Hall conductance on symmetry-breaking terminations.