- 无机钙钛矿数据库特征方案
 - 賞 数据库概述
 - 🕹 特征体系详细设计
 - 1. 李-辛-商复形特征 (Lie-SympQuotient Complex Transformer)
 - 1.10-单纯形特征:原子特征(23维)
 - 1.21-单纯形特征: 化学键特征(15维)
 - 1.32-单纯形特征: 三体相互作用特征(18维)
 - 1.4 全局特征: Casimir不变量与结构统计(25维)
 - 2. XRD衍射特征【专属特征】(14维)
 - 衍射峰位置特征
 - 强度归一化处理
 - 峰形统计特征
 - 3. 量子化学特征
 - 3.1 基础样本信息(4维)
 - 3.2 A位阳离子特征(16维)
 - 3.3 B位金属特征(16维)
 - 3.4 X位阴离子特征(15维)
 - 3.5 离子间相互作用特征(6维)
 - 3.6 晶体结构信息(6维)
 - 3.7 结构几何特征(3维)
 - 3.8 全局物理特征(6维)
 - 3.9 工艺参数(5维)
 - 3.10 文本特征(6维)
 - 4.性能目标特征(9维)
 - 💣 数据库优势
 - 1. XRD结构表征精确性
 - 2. 无机钙钛矿结构稳定性
 - 3. 材料成分优化

无机钙钛矿数据库特征方案

勤数据库概述

本数据库专门针对无机钙钛矿材料(如CsPbl3、CsSnl3、BaZrO3等),整合了四个核心特征 设计体系:

1. 李-辛-商复形特征 (Lie-SympQuotient Complex Transformer): 基于数学群论的严

谨结构特征

2. XRD衍射特征: X射线衍射专属特征(**专属特征**) 3. 量子化学特征:基于密度泛函理论的电子结构特征

4. 目标性能特征:实验测量的器件性能指标

总特征维度: 188维

≤ 特征体系详细设计

1. 李-辛-商复形特征 (Lie-SympQuotient Complex **Transformer**)

数学背景说明: 李代数描述连续对称性(如旋转),辛代数描述相空间动力学(如载流 子运动),商代数处理周期性结构的等价关系。这些数学工具能够精确捕捉钙钛矿晶体 的对称性、动力学性质和周期性结构特征。

1.10-单纯形特征:原子特征(23维)

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
atomic_number	原子序数	int	元素表	pymatgen	元素的唯一标 识,决定核电荷 数
group_number	族 数	int	元素表	pymatgen	价电子构型,影 响化学键合能力
period_number	周 期 数	int	元素表	pymatgen	电子壳层数,影 响原子半径

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
atomic_mass	原子质量	float	元素表	pymatgen	原子质量,影响 晶格振动频率
electronegativity	电 负 性	float	Pauling	pymatgen	吸引电子能力, 决定键的极性
valence_electrons	价电子数	int	电子构型	pymatgen	参与化学键合的 电子数
ionization_energy	电离能	float	实验值	pymatgen	失去电子所需能 量,影响离子稳 定性
electron_affinity	电子亲和能	float	实验值	pymatgen	获得电子释放的 能量,影响阴离 子形成
oxidation_state	氧 化 态	int	化学分析	pymatgen	原子的实际电荷 状态
covalent_radius	共 价 半 径	float	实验值	pymatgen	共价键长度的一 半,预测键长
ionic_radius	离子半径	float	Shannon	pymatgen	离子键长度的组成部分

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
van_der_waals_radius	范德华半径	float	实验值	pymatgen	非键接触距离, 影响分子间作用
coordination_number	配 位 数	int	结构分析	pymatgen	周围配位原子 数,决定局部几 何
is_metal	金 属 性	bool	分类	pymatgen	是否为金属,影 响导电性
is_transition_metal	过渡金属性	bool	分类	pymatgen	是否为过渡金 属,d轨道是否 参与
is_lanthanoid	镧系元素性	bool	分类	pymatgen	是否为镧系元 素,f轨道效应
tolerance_factor_contrib	容忍因子贡献	float	几何计算	自定义	对Goldschmidt 容忍因子的贡献
octahedral_preference	八面体偏好	float	化学规则	化学规则	形成八面体配位 的倾向

特征名称	中文名称	数据类型	数据来源	计算库	物理意义
frac_coord_x	分 数 坐 标x	float	晶体学	pymatgen	晶胞内x方向的相 对位置
frac_coord_y	分 数 坐 标y	float	晶体学	pymatgen	晶胞内y方向的 相对位置
frac_coord_z	分 数 坐 标z	float	晶体学	pymatgen	晶胞内z方向的相 对位置
quotient_hash	商等价类散列	int	数学计算	hashlib	周期性结构的等 价类标识
avg_site_valence	平均位点价态	float	键价分析	pymatgen	位点的平均键 价,反映键合稳 定性

1.21-单纯形特征: 化学键特征(15维)

特征名称	中文名称	数据类 型	数据 来源	计算库	物理意义
bond_distance	键长	float	结构 分析	pymatgen	原子间距离,反映键强 度

特征名称	中文名称	数据类 型	数据 来源	计算库	物理意义
distance_inverse	距离倒数	float	数学 计算	numpy	库仑作用强度,距离越 近作用越强
bond_direction_x	键方向x 分量	float	几何 计算	numpy	键在x方向的单位向量 分量
bond_direction_y	键方向y 分量	float	几何 计算	numpy	键在y方向的单位向量 分量
bond_direction_z	键方向z 分量	float	几何 计算	numpy	键在z方向的单位向量 分量
rbf_expansion_1	径向基函 数1	float	数学 展开	math.exp	短程距离的高斯展开, 捕捉近邻效应
rbf_expansion_2	径向基函 数2	float	数学展开	math.exp	中程距离的高斯展开
rbf_expansion_3	径向基函 数3	float	数学 展开	math.exp	长程距离的高斯展开
crosses_boundary	跨越边界	bool	几何 判断	pymatgen	键是否跨越晶胞边界
periodic_phase_x	周期相位 x	float	相位 计算	math	布里渊区中x方向的相 位
periodic_phase_y	周期相位 y	float	相位计算	math	布里渊区中y方向的相 位
wrap_vec_x	周期包装 向量x	int	周期 性	pymatgen	x方向跨越的晶胞数
wrap_vec_y	周期包装 向量y	int	周期 性	pymatgen	y方向跨越的晶胞数
wrap_vec_z	周期包装 向量z	int	周期 性	pymatgen	z方向跨越的晶胞数
lie_bracket_mag	李括号幅 值	float	李代 数	geomstats	旋转生成元的李括号运 算结果

1.3 2-单纯形特征: 三体相互作用特征(18维)

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
edge_length_1	三角形边 长1	float	几 何 计 算	pymatgen	三体相互作用中 的最短边
edge_length_2	三角形边 长2	float	几何计算	pymatgen	三体相互作用中 的中等边
edge_length_3	三角形边 长3	float	几 何 计 算	pymatgen	三体相互作用中 的最长边
triangle_area	三角形面 积	float	几 何 计 算	trimesh	三体相互作用的 几何强度
triangle_perimeter	三角形周 长	float	几何计算	numpy	三体相互作用的 总几何尺度
shape_factor	形状因子	float	几何计算	自定义	12√3 × 面积 / 周长 2 ,量化三 角形形状(等边 三角形值为 1)
rbf_area_small	小面积径 向基函数	float	数学展开	math.exp	小尺度三体相互 作用的敏感性
rbf_area_medium	中面积径 向基函数	float	数学展开	math.exp	中等尺度三体相互作用的敏感性

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
rbf_area_large	大面积径 向基函数	float	数学展开	math.exp	大尺度三体相互 作用的敏感性
octahedral_indicator	八面体指 示器	float	化学规则	化学规则	是否倾向于形成 八面体配位
angle_strain	角度应变	float	几 何 计 算	math.acos	偏离理想键角的 程度
coordination_type	配位类型	int	结构分析	pymatgen	配位环境的类型 编码
tilt_gen_x	x轴倾斜 生成元	float	李 代 数	geomstats	绕x轴的无穷小 旋转生成元
tilt_gen_y	y轴倾斜 生成元	float	李 代 数	geomstats	绕y轴的无穷小 旋转生成元
tilt_gen_z	z轴倾斜 生成元	float	李 代 数	geomstats	绕z轴的无穷小 旋转生成元
casimir_C2	二阶 Casimir 不变量	float	群 论	sympy	旋转群的二阶不 变量,表征倾斜 能量
glazer_cont_param	Glazer连 续参数	float	晶 体 学	numpy	八面体倾斜的连 续化描述

特征名称	中文名称	数据 类型	据来源	计算库	物理意义
<pre>mean_bond_angle_variance</pre>	平均键角 方差	float	统计计算	pymatgen	配位几何的畸变 程度

数

1.4 全局特征: Casimir不变量与结构统计(25维)

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
casimir_2_so3	SO(3)二次 Casimir不 变量	float	群 论	sympy	总角动量平 方J ² ,表征 旋转对称性
casimir_2_u1	U(1)二次 Casimir不 变量	float	群论	numpy	电荷平方 Q ² ,表征电 荷守恒
symplectic_casimir	辛Casimir 不变量	float	辛 几 何	sympy	相空间体积 守恒,载流 子输运稳定 性
symplectic_gen_x	x方向辛生 成元	float	辛 几 何	geomstats	载流子x方向 动态演化的 生成元
symplectic_gen_y	y方向辛生 成元	float	辛 几 何	geomstats	载流子y方 向动态演化 的生成元
symplectic_weighted_casimir	有效质量 加权辛 Casimir	float	辛 几 何	sympy	有效质量加 权的相空间 不变量,输 运性质代理

特征名称	中文名称	数据 类型	数据来源	计算库	物理意义
casimir_4_so3	SO(3)四次 Casimir不 变量	float	群论	sympy	四阶角动量 不变量,高 阶对称性
casimir_mixed	混合 Casimir不 变量	float	群 论	自定义	角动量与电 荷的耦合不 变量
<pre>mean_bond_length</pre>	平均键长	float	统 计	numpy	整体键长尺 度,影响晶 格常数
mean_tilt_angle	平均倾斜 角	float	统 计	numpy	八面体倾斜 的平均程度
octahedral_count	八面体数 量	int	计 数	pymatgen	结构中八面 体配位的数 量
glazer_mode_ratio	Glazer模 式占比	float	晶 体 学	自定义	不同倾斜模 式的分布比 例
lie_dielectric_casimir	李介电 Casimir不 变量	float	群 论	sympy	介电响应的 旋转不变量
symplectic_dielectric_gen	辛介电生 成元	float	辛 几 何	geomstats	介电响应的 相空间动态 生成元
lie_polarization_casimir	李极化 Casimir不 变量	float	群论	sympy	极化各向异 性的李代数 不变量
lie_energy_casimir	李能量 Casimir不 变量	float	群论	sympy	晶格能的混 合不变量
quotient_volume_metric	商体积度 量	float	商 代	pymatgen	晶胞体积的 周期等价类

特征名称	中文名称	数据 类型	致 据 来 源	计算库	物理意义
			数		表示
quotient_density_hash	商密度散 列	int	商 代 数	hashlib	密度分布的 周期等价标 识
volume_per_fu	每化学式 单元体积	float	几 何	pymatgen	结构紧密程 度,影响密 度
packing_fraction	堆积分数	float	几 何	pymatgen	空间利用效 率
lattice_anisotropy_ratio	晶格各向 异性比	float	几 何	pymatgen	晶格参数的 各向异性程 度
bond_valence_std	键价标准 差	float	统 计	pymatgen	键价分布的 均匀性
symplectic_absorption_gen	辛吸收生 成元	float	辛 几 何	geomstats	光吸收过程 的相空间动 态生成元, 光学性质代 理
quotient_bartel_tau	商Bartel 稳定因子	float	商 代 数	pymatgen	Bartel稳定 因子的商空 间表示
quotient_tau_prob	商稳定概 率	float	商 代 数	pymatgen	结构稳定概 率的周期等 价类表示

数

Bartel稳定性判据说明: τ < 4.18 表示高概率形成钙钛矿结构

2. XRD衍射特征【专属特征】(14维)

XRD背景说明: X射线衍射是无机晶体结构表征的金标准,通过分析衍射峰的位置、强度和峰形,可以精确确定晶体结构、相纯度和晶粒尺寸等关键信息。

基于Materials Project API的完整XRD衍射特征

特征名称	中文名 称	数据 类型	数据 来源	计算库	物理意义
xrd_peak1_2theta	第1强 峰2 0 角	float	MP API	pymatgen	最强衍射峰位 置,主要相结 构特征
xrd_peak2_2theta	第2强 峰2 0 角	float	MP API	pymatgen	第二强峰位 置,结构精细 特征
xrd_peak3_2theta	第3强 峰2θ角	float	MP API	pymatgen	第三强峰位 置,结构完整 性指标
xrd_peak4_2theta	第4强 峰2 0 角	float	MP API	pymatgen	第四强峰位 置,相纯度判 断
xrd_peak5_2theta	第5强 峰2 0 角	float	MP API	pymatgen	第五强峰位 置,杂质相检 测
xrd_peak2_intensity_ratio	第2峰 强度比	float	MP API	归一化	相对于最强峰 的强度比,结 构取向程度
xrd_peak3_intensity_ratio	第3峰 强度比	float	MP API	归一化	第三峰强度 比,晶体完整 性
xrd_peak4_intensity_ratio	第4峰 强度比	float	MP API	归一化	第四峰强度 比,相对含量
xrd_peak5_intensity_ratio	第5峰 强度比	float	MP API	归一化	第五峰强度 比,微量相检 测
xrd_average_fwhm	平均半 峰全宽	float	统计 计算	numpy	平均峰宽,反 映晶粒尺寸和 微应变

特征名称	中文名 称	数据 类型	数据 来源	计算库	物理意义
xrd_peak_count	峰数量	int	统计 计算	计数	检测到的衍射 峰总数,结构 复杂度指标
xrd_intensity_entropy	强度分 布熵	float	统计 计算	信息熵	强度分布的离 散程度,结构 有序性
xrd_peak_width_variance	峰宽方 差	float	统计 计算	方差	峰宽分布的方 差,晶粒尺寸 分布均匀性
xrd_phase_confidence	XRD相 置信度	float	统计 计算	自定义	相鉴定的置信 度,1-(熵/最大 熵)

■ XRD特征计算详细说明

衍射峰位置特征

基于Bragg方程 $n\lambda = 2d_hkl \cdot sin\theta$ 和结构因子计算:

• Cu Kα辐射: λ=1.5406 Å,标准实验条件

• **峰位精度**: ±0.01°2θ, 适合结构相鉴定

角度范围: 10° ≤ 2θ ≤ 80°,覆盖主要衍射信息

强度归一化处理

• 第1强峰:作为基准峰,强度比固定为1.0(隐含特征)

• **第2-5强峰强度比** = 该峰强度 / 第1强峰强度

• 消除样品影响: 归一化处理消除样品量、晶粒取向等实验因素

峰形统计特征

• 平均FWHM: 所有检测峰的半峰全宽平均值,反映晶粒尺寸和微应变

 $FWHM_avg = \Sigma(FWHM_i) / N_peaks$

• **峰宽方差**: FWHM分布的方差,反映峰宽分布均匀性

```
\sigma^2_FWHM = \Sigma(FWHM_i - FWHM_avg)<sup>2</sup> / (N_peaks - 1)
```

- 峰数量: 阈值以上衍射峰总数,反映晶体结构复杂度
- 强度分布熵: 量化强度分布的离散程度

```
S = -\Sigma(p_i \times ln(p_i)), p_i = I_i / \Sigma(I_j)
```

3. 量子化学特征

量子化学背景说明:基于密度泛函理论(DFT)计算和实验测量的电子结构、几何结构和 热力学性质,这些特征直接关联材料的基本物理化学性质。

3.1 基础样本信息(4维)

特征名称	中文名称	数据类 型	数据来源	计算 库	物理意义
sample_id	样本标识 符	str	人工编 号	-	样本的唯一标识
chemical_formula	化学分子 式	str	化学分 析	-	样本的化学组成
composition_string	组成描述	str	化学分 析	-	详细的组成信息
crystal_structure_file	结构文件 路径	str	CIF文 件	-	晶体结构数据文件 的路径

3.2 A位阳离子特征(16维)

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理意义
a_site_ionic_radius	A位离子 半径	float	Shannon半径	查 表	A位 阳 离
					ユ

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理意义
					的有效半径
a_site_oxidation_state	A位氧化 态	int	电荷平衡	分析	A伽离子的氧化态
a_site_coordination_number	A位配位 数	int	CIF+CrystalNN	分析	A阳离子的配位原子数位
a_site_ionic_polarizability	A位离子 极化率	float	文献数据	查表	A位离子的极化能力
a_site_bader_charge	A位 Bader电	float	DFT+Bader分 析	DFT	——— 基 于

特征名称	中文名称	数据 类型	数据来源	计 算 库	物 理 意 义
	荷				电
					子
					密
					度
					分
					析 的
					实
					际
					电
					荷
					基
					于
					轨
					道
	A位	<i>c</i> 1 .			布
a_site_mulliken_charge	Mulliken	float	DFT+布居分析	DFT	居八
	电荷				分 析
					的
					电
					荷
					 原
					子
	• () ±⁄2 -				处
a_site_electrostatic_potential	A位静电	float	DFT计算	DFT	的
	势				静
					电
					势
a_site_electron_density	A位电子	float	DFT电荷密度	DFT	原
	密度				子
					处
					的
					电

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理意义
					子密度
a_site_bond_order_sum	A位键级 和	float	DFT键合分析	DFT	所有键级的总和
a_site_local_dos_fermi	A位费米 能级DOS	float	DFT态密度	DFT	费米能级处的态密度
a_site_ionization_energy_eff	A位有效 电离能	float	DFT轨道能级	DFT	失去电子的有效电离能
a_site_electron_localization	A位电子 局域化	float	ELF分析	DFT	电子局域

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理意义
					化 函 数 值
a_site_magnetic_moment_local	A位局域 磁矩	float	DFT磁性计算	DFT	原子的局域磁矩
a_site_s_band_width	A位s带宽 度	float	DFT态密度	DFT	s电子能带的宽度
a_site_charge_transfer_energy	A位电荷 转移能	float	DFT光谱计算	DFT	电荷转移跃迁所需的能量
a_site_covalency_index	A位共价 指数	float	DFT键性分析	DFT	

特征名称	中文名和	数 扩 大 类型	数据来源	计 算 库	物 理 意 义
3.3 B位金属特征(16维)					键 的 程 度
特征名称	中文名 称	数据	数据来源	计算	物理意义
b_site_ionic_radius	B位离 子半径	float	Shannon半径	库 查表	B位金 属离子 的有效 半径
b_site_oxidation_state	B位氧 化态	int	电荷平衡+BV	分 析	B位金 属的氧 化态
b_site_coordination_number	B位配 位数	int	CIF+CrystalNN	分 析	B位金 属的配 位原子 数
b_site_d_electron_count	B位d 电子数	int	电子构型	查 表	B位金 属d轨 道的电 子数
b_site_bader_charge	B位 Bader 电荷	float	DFT+Bader分 析	DFT	基于电 子密度 分析的 实际电 荷
b_site_d_band_center	B位d 带中心	float	DFT能带分析	DFT	d电子 能带的

重心位

特征名称	中文名 称	数据 类型	数据来源	计 算 库	物理意义
					置,影 响催化 活性
b_site_d_band_width	B位d 带宽度	float	DFT态密度	DFT	d电子 能带的 宽度, 反映d 轨道程度
<pre>b_site_crystal_field_splitting</pre>	B位晶 体场分 裂	float	DFT+配体场	DFT	配体场 导致的 d轨道 能级分 裂
b_site_covalency_parameter	B位共 价性参 数	float	DFT键合分析	DFT	B-X键 的共价 性程度
b_site_charge_transfer_energy	B位电 荷转移 能	float	DFT光谱计算	DFT	电荷转 移跃迁 所需的 能量
b_site_magnetic_moment	B位磁 矩	float	DFT磁性计算	DFT	B位原 子的磁 矩大小
b_site_spin_density	B位自 旋密度	float	DFT自旋计算	DFT	B位原 子处的 自旋密 度
b_site_orbital_mixing	B位轨 道混合	float	DFT轨道分析	DFT	不同轨 道间的 混合程 度

特征名称	中文名 称	数据 类型	数据来源	计 算 库	物理意义
b_site_electron_localization	B位电 子局域 化	float	ELF分析	DFT	电域数 反子程
b_site_bond_valence_sum	B位键 价和	float	键价分析	分 析	键价方 法计算 的总键 价
b_site_effective_coordination	B位有 效配位 数	float	键价+几何	分 析	考虑键 强度的 有效配 位数
3.4 X位阴离子特征(15维)					
3.4人以内内丁特证(13年)					
特征名称	中文名称	数据 类型	数据来源	计 算 库	物理 意义
	中文名称 X位离子 半径		致 据来源	算	
特征名称	X位离子	类型	致 据来源	算 库 查	意义 X位 阴离 子

配位

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理意义
					原子 数
x_site_bader_charge	X位 Bader电 荷	float	DFT+Bader分 析	DFT	基电密分的际荷于子度析实电
x_site_mulliken_charge	X位 Mulliken 电荷	float	DFT布居分析	DFT	基节 轨 布 分 的 荷
x_site_p_band_center	X位p带 中心	float	DFT能带分析	DFT	p电 子能 带的 重心 位置
x_site_p_band_width	X位p带 宽度	float	DFT态密度	DFT	p电 子能 带的 宽度
x_site_electron_affinity_eff	X位有效 电子亲和 能	float	DFT轨道能级	DFT	获得 电子 的有 效亲 和能
x_site_polarizability_tensor	X位极化 率张量	float	DFT响应计算	DFT	极化 率张 量的 迹, 整体

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理 意义
					极化 能力
x_site_charge_density_min	X位电荷 密度最小 值	float	DFT电荷分析	DFT	原周电密的小
x_site_electrostatic_potential	X位静电 势	float	DFT静电计算	DFT	原子 处的 静电 势
x_site_bond_order_to_b	X-B键级	float	DFT键合分析	DFT	X位 与B 位的键 级度
x_site_covalency_index	X位共价 指数	float	DFT键性分析	DFT	参与 共价 键的 程度
x_site_hardness_parameter	X位硬度 参数	float	DFT+HSAB理 论	DFT	软酸理中硬参
x_site_electron_localization	X位电子 局域化	float	ELF分析	DFT	电子 局域 化函 数值

3.5 离子间相互作用特征(6维)

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理意义
a_b_size_ratio	A-B 离子 半径 比	float	rA/rB	计 算	A位与B位离 子半径比, 影响结构稳 定性
a_x_size_ratio	A-X 离子 半径 比	float	rA/rX	计 算	A位与X位离 子半径比
b_x_size_ratio	B-X 离子 半径 比	float	rB/rX	计 算	B位与X位离 子半径比
electronegativity_variance	电负 性方 差	float	$\sigma^2(\chi A, \chi B, \chi X)$	计 算	三种离子电 负性差异的 方差
hardness_mismatch_factor	硬度 失配 因子	float	HSAB分析	计 算	软硬酸碱匹 配程度
ionic_potential_ratio	离子 势比 值	float	(qA/rA²)/(qB/rB²)	计 算	不同离子静 电势的比值

3.6 晶体结构信息(6维)

特征名称	中文名称	数据类型	数据来源	计算库	物理意义
lattice_a	晶格参数a	float	CIF文件	晶体学	晶胞在a方向的长度
lattice_b	晶格参数b	float	CIF文件	晶体学	晶胞在b方向的长度
lattice_c	晶格参数c	float	CIF文件	晶体学	晶胞在c方向的长度
lattice_alpha	晶格角α	float	CIF文件	晶体学	b和c轴之间的夹角
lattice_beta	晶格角β	float	CIF文件	晶体学	a和c轴之间的夹角
lattice_gamma	晶格角γ	float	CIF文件	晶体学	a和b轴之间的夹角

3.7 结构几何特征(3维)

特征名称	中文 名称	数据 类型	数据来源	计 算 库	物理意义
tolerance_factor	容忍 因子t	float	Goldschmidt公式	计 算	结构稳 定性的 几何判 据
octahedral_factor	八面 体因 子µ	float	几何计算	计 算	八面体 配位的 几何适 应性
tolerance_oct_interaction	容忍- 八面 体交 互项	float	tolerance_factor * octahedral_factor	计算	两个几 何因子 的耦合 效应

▶ 容忍因子计算说明

• 无机离子半径: 统一采用Shannon半径,确保同一配位数

八面体因子稳定范围: 0.414 ≤ µ ≤ 0.732

3.8 全局物理特征(6维)

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理意义
formation_energy	形成能	float	DFT/MP	DFT	从质成合的量化单形化物能变
decomposition_energy	分 解	float	DFT/MP	DFT	分解为稳

特征名称	中文名称	数据 类型	数据来源	计 算 库	物理意义
	能				定相 所需 的能 量
energy_above_hull	相图稳定性	float	DFT/MP	DFT	相于稳相能差
bulk_modulus	体 模 量	float	DFT	DFT	材的积缩量反机性料体压模,映械质
electrostatic_potential_mean	平均静电势	float	DFT+Bader	DFT	整静势平值
micro_macro_charge_bridge	微观宏观电荷桥	float	avg(a_site_bader_charge + b_site_bader_charge) * electrostatic_potential_mean	自定义	微电与观电的合多度观荷宏静势耦,尺电

特征名称	中文名	数据 类型	数据来源	算	物理 意义
	称	X _		库	<i>7</i> 0.7~

荷效 应

3.9 工艺参数(5维)

特征名称	中文 名称	数据类 型	数据 来源	计算 库	物理意义
annealing_temperature	退火 温度	float	实验 记录	实验	热处理温度,影响晶 体质量
annealing_time	退火 时间	float	实验 记录	实验	热处理时间,影响晶 粒生长
solution_concentration	溶液 浓度	float	实验 记录	实验	前驱体溶液浓度,影 响薄膜厚度
spin_speed	旋涂 转速	float	实验 记录	实验	旋涂工艺转速,影响 薄膜均匀性
spin_time	旋涂 时间	float	实验 记录	实验	旋涂工艺时间,影响 薄膜质量

3.10 文本特征(6维)

特征名称	中文名称	数据类 型	数据来 源	计算 库	物理意义
synthesis_method	合成方法	str	文献记 录	文本	材料制备的工艺路 线
solvent_type	溶剂类型	str	实验记 录	文本	使用的溶剂种类
additive_type	添加剂类 型	str	实验记 录	文本	添加的改性剂种类
surface_treatment	表面处理	str	实验记 录	文本	表面修饰或处理方 法

特征名称	中文名称	数据类 型	数据来 源	计算 库	物理意义
device_architecture	器件结构	str	器件设 计	文本	太阳能电池的器件 架构
encapsulation	封装方式	str	器件处 理	文本	器件的封装保护方 法

4. 性能目标特征(9维)

特征名称	中文 名称	数据 类型	数据来源	计 算 库	物理意义
power_conversion_efficiency	光电 转换 效率	float	IEC 60904	测试	太阳能电池 的能量转换 效率
open_circuit_voltage	开路 电压	float	J-V测试	测试	无外部负载 时的最大电 压
short_circuit_current	短路 电流	float	J-V测试	测试	短路条件下 的最大电流
fill_factor	填充 因子	float	J-V测试	测试	J-V曲线的 方形度,反 映器件质量
band_gap	带隙	float	DFT计算或自动 UV-Vis光谱(高 通量光谱仪)	计 算	价带顶与导 带底之间的 能量差
thermal_stability_index	热稳 定性 指数	float	自动TGA/DSC测 试或加速老化实 验	测试	材料在高温下的稳定性
moisture_stability_index	湿度 稳定 性指 数	float	自动湿度 chamber测试	测试	材料在潮湿 环境下的稳 定性

特征名称	中文 名称	数据 类型	数据来源	计 算 库	物理意义
exciton_binding_energy	激子 结合 能	float	DFT计算	计 算	电子-空穴 对的结合 能,影响载 流子分离
charge_carrier_lifetime	载流 子寿 命	float	电学测试	测试	载流子的平 均寿命,影 响器件性能

⑥ 数据库优势

1. XRD结构表征精确性

• **峰位信息**:5维精确峰位,实现准确相鉴定和结构精修

• 强度归一化: 4维强度比消除实验条件影响,提高数据可比性

• **峰形分析**: 5维峰宽统计反映晶粒尺寸和应变状态,材料质量评估

2. 无机钙钛矿结构稳定性

• **结构对称性**:无有机分子干扰,纯无机框架的精确对称性分析

• **高温稳定性**:适合高温应用场景的稳定性预测和相变行为分析

• 相变行为:通过XRD特征捕捉温度诱导的相变,预测工作温度范围

3. 材料成分优化

• **A位离子替换**: Cs+, Rb+, K+, Ba²⁺, Sr²⁺等碱金属/碱土金属离子的系统优化

• **B位金属调控**: Pb/Sn混合、过渡金属掺杂的电子结构调控

• **卤素工程**: I/Br/Cl混合卤素的带隙连续调控和稳定性平衡