Course Code	Course Title	L	Т	Р	С
PMDS503L	Statistical Inference	2	0	0	2
Pre-requisite	NIL	Syllabus version			
		1.0			

Course Objectives

- 1. Understand the types of questions that the statistical method addresses for decision making.
- 2. Apply statistical methods to hypotheses testing and inference problems.
- 3. Interpret the results in a way that addresses the question of interest.
- 4. Communicate the purposes of the analyses, the findings from the analysis, and the implications of those findings.

Course Outcomes

At the end of the course students will be able to:

- 1. Describe the criteria required of good point estimators, and check whether or not a proposed estimator within a stated statistical model satisfies these criteria.
- 2. Apply the principle of maximum likelihood, minimum variance and moment estimation methods to obtain point and interval estimates of parameters in one-parameter and multi-parameter statistical models.
- 3. Construct the hypothesis tests in some common models (including Normal models), correctly using the terms null hypothesis, alternative hypothesis, test statistic, rejection region, significance level, power and p-value.
- 4. Apply the parametric (Z, t, F, Chi-square) tests and interpret the results.
- 5. Develop the non-parametric tests, with due regard to the underlying assumptions.

Module:1 Introduction to Estimation

6 hours

Population, sample, parameter and statistic; characteristics of a good estimator; Consistency – Invariance property of Consistent estimator, Sufficient condition for consistency; Unbiasedness; Sufficiency – Factorization Theorem – Minimal sufficiency; Efficiency – Most efficient estimator, likelihood equivalence and uniformly minimum variance unbiased estimator.

Module:2 | Methods of Estimation

6 hours

Methods of point estimation – Maximum likelihood estimation, method of minimum variance, method of moment estimator, concept of BLUE.

Module:3 Interval Estimation

2 hours

Methods of Interval estimation - Confidence limits and confidence coefficient, Construction of confidence intervals for population parameters.

Module:4 | Testing of hypotheses

2 hours

Null Hypothesis, Alternative Hypothesis, Types of errors, power of a test, most powerful tests; Neyman-Pearson Fundamental Lemma and its applications; Uniformly most powerful tests; Likelihood Ratio tests.

Module:5 | Large sample tests

4 hours

Large sample properties; Tests of significance (under normality assumption)- Test for a population mean, proportion; Test for equality of two means and proportions; Test for variance. Sequential Probability Ratio Test.

Mod	dule:6	Small sample tests				4 hours		
	Student's t-test, test for a population mean, equality of two population means,							
paired t-test, F-test for equality of two population variances; Chi-square test for								
goodness of fit - test for independence of attributes.								
Mod	Module:7 Non-parametric tests				4 hours			
Sign test, Signed rank test, Median test, Mann-Whitney -test, Run test, Kolmogorov –Smirnov test and Kruskal – Wallis-H-test.								
		Contemporary Issues				2 hours		
		-						
			٦	Total Lec	ture hours	30 hours		
Text Book(s)								
1	Robert V Hogg, Elliot A Tannis and Dale L. Zimmerman, Probability and							
	Statistical Inference, 2020, 10 th Edition, Pearson.							
2	Manoj Kumar Srivastava and Namita Srivastava, Statistical Inference- Testing							
	of Hypotheses, 2014, Prentice Hall of India.							
Reference Book(s)								
1								
2	B. K. Kale and K. Muralidharan, Parametric Inference, 2016, Narosa Publishing							
	House							
3	Marc S. Paolella, Fundamental statistical inference: A computational approach,							
	2018, Wiley.							
Mode of evaluation: CAT, Assignment , Quiz and FAT								
Recommended by Board of Studies 15-02-2024								
App	roved b	y Academic Council	No. 73	Date	14-03-2024			