

SISTEMAS DISTRIBUIDOS

Primer Cuatrimestre 2020

Laboratorio Nº 2

Todos los códigos fuente deberán subirse de forma independiente y luego se deberá subir el archivo con las respuestas.

Registro:	 Apellido y Nombre:	
Registro:	 Apellido y Nombre:	

Ejercicios a Resolver

- 1. Si el paradigma de comunicación es asincrónico, ¿es también persistente? Explique su respuesta y brinde un ejemplo.
- 2. Dos divisiones de la armada de Rocolandia, Rojos y Azules, están acampados en 2 colinas cercanas. En el valle que está entre las 2 colinas está ubicada la división enemiga Zapatilandia. Las divisiones de Rocolandia están seguras donde están ubicados sus campamentos, y pueden intercambiar confiadamente mensajes a través del valle. ¿Pueden llegar a un acuerdo para atacar al enemigo en forma conjunta si el modelo de sistema es asincrónico? Justifique.
- 3. Considere un cliente de correo electrónico y conteste las siguientes preguntas. Explique las respuestas.
 - a) ¿Cuál modelo de comunicación le parece el más apropiado?
 - b) ¿Utilizaría algún nivel de sincronismo?
- 4. Realizar un experimento para obtener el tiempo de ejecución en la escritura de un pipe y en la escritura de un archivo. El nombre del archivo fuente debe comenzar con la palabra escribir. Explique brevemente los resultados obtenidos. La precisión de las mediciones tienen que estar en microsegundos.
- 5. Realizar un experimento para obtener el tiempo de ejecución en la creación de una cola de mensajes y la escritura de un mensaje. El nombre del archivo fuente debe *colamen*. Explique brevemente los resultados obtenidos. La precisión de las mediciones tienen que estar en nanosegundos.
- 6. ¿Qué es el binder? Enumere las formas de ubicar un binder. Explique la sobrecarga que se produce en la comunicación para cada uno de los casos.

7. Considere la información de la figura 1

a) ¿Qué representa el código de la figura 1? Explique cada uno de los elementos.

```
#define TAMANO_BLOQUE 512
struct stat_archivo
                                                            struct camino_t
int hubo_error;
                                                              char nombre[512];
char descripcion_error[255];
                    /* protección */
/* nro de enlaces físicos */
       st_mode;
                                                            typedef struct nodo* lista;
int
       st_nlink;
                                                            struct nodo
       st_uid;
                  /* ID del usuario propietario */
int
       st_gid;
                 /* ID del grupo propietario */
                                                                  char nombre[255];
long int st_size; /* tamaño total en bytes */
                                                                 lista siguiente;
unsigned long st_blksize; /* tamaño de bloque
para el sistema. de archivo E/S */
                                                            struct entradas_directorio
unsigned long st_blocks; /* nro de bloques asig */
                                                              lista entradas;
struct archivo_escritura
                                                              int hubo_error;
                                                             char descripcion_error[255];
     char nombre[512];
     long desplazamiento;
                                                            struct cambiar_nombre
     int datos[TAMANO_BLOQUE];
     int datos_size;
                                                                 char antiguo[512];
     int hubo_error;
                                                                 char nuevo[512];
     char descripcion_error[255];
                                                            struct cadena
struct archivo_lectura
                                                                 int hubo_error;
     char nombre[512];
                                                                 char descripcion_error[255];
     long desplazamiento;
                                                                 char nombre[512];
     int datos_size;
                                                            struct error
struct archivo_atributos
                                                                 int hubo_error;
     char nombre[512]:
                                                                 char descripcion_error[255];
     int modo;
program FILESERVER
     version PRIMERA
        error escribir(archivo_escritura archivo) =1;
        archivo_escritura leer(archivo_lectura entrada) =2;
        stat_archivo obtener_atributos(camino_t camino) =3;
        error modificar_atributos(archivo_atributos archivo) =4;
        error borrar_archivo(camino_t camino) =5;
        error crear_archivo(camino_t camino) =6;
        cadena directorio_actual() =7;
        error cambiar directorio(camino t nombre) =8;
        error crear directorio(archivo atributos directorio) =9;
        entradas_directorio listar_directorio(camino_t nombre) =10;
        error renombrar(cambiar_nombre nombres) =11;
    } = 1;
```

Figura 1: Código

- b) ¿Qué se puede generar a partir de esta código?
- 8. Realizar un cliente que solicite a un servidor las siguientes consultas:
 - a) Su tiempo local. El formato que se debe observar es el siguiente: *Thu Oct 5 20:10:27 2011*.
 - b) El nombre de la máquina.
 - c) La cantidad de usuarios logueados.

Debe estar implementado con RPC.