SECTION 1

ANS TO QUESTION 1

TENSORFLOW

TensorFlow is an open-source machine learning (ML) and deep learning (DL) frameworks. Developed by Google, it is used AI research and industry applications. Tendorflow was released in 2015.

PYTORCH

PyTorch is an open source machine learning library, released by Facebook's AI Research lab in 2016. It can be used across a range of tasks, but is particularly focused on training and inference of deep learning tasks, like computer vision and natural language processing.

COMPARING AND CONSTRASTING

TENSORFLOW

Better for production (scalability, deployment)
Stronger mobile support (**TF lite**)
Better TPU intergration (Google Cloud)
Harder to debug(TF 1.x)
Less intuitive API (before TF 2.x)

PYTORCH

Preferred for research (easier prototyping)
More Pythonic & intuitive
Dynamic graphs (better for RNNs, GANs)
Historically weaker in production (improving with TorchScript)
Less optimized for mobile (compared to TF Lite)

Use Case	Recommended Framework
Research & Academia	PyTorch (dominant in papers)
Production & Large-Scale Deployment	TensorFlow (better tooling)
Beginner Learning DL	PyTorch (easier to understand)
Google Cloud/TPUs	TensorFlow
Cutting-Edge Models (NLP, GANs)	PyTorch (Hugging Face, OpenAI)

- PyTorch is for research and is growing in industry.
- TensorFlow is better for production but has lost some research dominance.
- PyTorch is becoming more production-ready, while TensorFlow is simplifying its API.

Both are good and are used for different purpose but i prefer TensorFlow because it is best for production, scalability and deployment

ANS TO QUESTION 2

Jupyter Notebook is an interactive, web-based computing environment that is used in AI/ML development due to its flexibility, visualization capabilities, and ease of use.

Two uses in AI development is

- a. Prototyping and Experimentation:
 Execute AI/ML models step by step and see results immediately
 No need to re-run entire script for small changes
- b. Data exploration and visualization:For plots, tables and image render inline

With the use of pandas and matplotlib data can be cleaned, analysed and visualized before training.

ANS TO QUESTION 3

SpaCy is a modern, industrial-strength NLP library that significantly outperforms basic Python string operations (e.g., split(), replace(), regex) in efficiency, accuracy, and functionality.

The following why SpaCy is favourable to Python string operation

- 1. Tokenization: spaCy uses Linguistic rules and machine learning while python used splitting eg str.split()
- 2. Named Entity Recognition(NER): spaCy uses pre-trained ML models while python uses regex patterns(manual rules)
- 3. Sentence Segmentation: spaCy uses statistical model and rules while python uses splits on period.
- 4. Efficiency and Scalability: SpaCy is built for large scale text processing
- 5. For tasks like data extraction and chatbots, spaCy saves lots of hours when compared to python string operation.

SECTION 2

TARGET APPLICATION

Scikit-learn is good for ML task like linear regression and k-means clustering. It uses small files like CSV

TensorFlow is good for deep learning and neural networks. For chatbots and image recognition. It uses large and unstructured data

Scikit-learn is great for math problems

TensorFlow is needed for advanced AI tasks

EASE OF USE FOR BEGINNERS

Scikit-learn requires less code thus making it easier to learn and does not require GPU

TensorFlow requires a GPU as CPU is slow when used for deep learning. It requires more code, data processing and training loop

Scikit-learn is easier for beginners

Start with Scikit-learn if you're new to ML.

Learn TensorFlow later if you want to work with AI (e.g., image/text processing).

COMMUNITY SUPPORT

Scikit-learn has a lot of tutorials eg Kaggle and youtube, fewer updates that makes it more stable thus making it more beginner friendly.

TensorFlow has a large community backed by Google and its fast changing in terms of update.

Summary Table

Feature	Scikit-learn	TensorFlow
Best for	Classical ML	Deep Learning
Ease of Use	Very easy	Moderate to hard
GPU Needed?	No	Yes (for big models)
Code Length	Short (3-5 lines)	Longer (10+ lines)
Community	Stable & simple	Large & fast-moving