Package 'snazzieR'

May 11, 2025

Type Package

Version 0.1.1

Title Chic and Sleek Functions for Beautiful Statisticians

Maintainer Aidan J. Wagner < Jesus But For Gay People@proton.me>

A sleek color palette and kable styling to make your regression results look sharper than they are.
Includes support for Partial Least Squares (PLS) regression via both the SVD and NIPALS algorithms,
along with a unified interface for model fitting and fabulous LaTeX and console output formatting.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports ggplot2, knitr, kableExtra, dplyr, stats
RoxygenNote 7.3.2
Depends R (>= $4.1.0$)
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Aidan J. Wagner [aut, cre]
Author Andah V. Wagner [aut, etc]
Contents
ANOVA.summary.table
color.ref
colors
eigen.summary
format.pls
model.equation
model.summary.table
pls.regression
snazzieR.theme
SVD.pls
5 v D. pis
Index 13

2 color.ref

```
ANOVA.summary.table
```

Generate a Summary Table for ANOVA Results

Description

This function creates a summary table for ANOVA results, including degrees of freedom, sum of squares, mean squares, F-values, and p-values. The table is formatted for LaTeX output using the 'kableExtra' package.

Usage

```
ANOVA.summary.table(model, caption)
```

Arguments

model A model object for which ANOVA results are computed (e.g., output from 'lm()'

or 'aov()').

caption A character string to be used as the caption for the table.

Value

A LaTeX-formatted table generated by 'kableExtra::kable()'.

Examples

```
# Fit a linear model
model <- lm(mpg ~ wt + hp, data = mtcars)
# Generate the ANOVA summary table
ANOVA.summary.table(model, caption = "ANOVA Summary")</pre>
```

color.ref

Display a Color Reference Palette

Description

This function generates a plot displaying a predefined color palette with color codes for easy reference. The palette includes shades of Red, Orange, Yellow, Green, Blue, Purple, and Grey.

Usage

```
color.ref()
```

colors 3

Details

	Deep	Dark	Regular	Light	Pale
Grey	#151315	#403A3F	#6F646C	#9E949B	#CFC9CD
Purple	#271041	#4E2183	#743496	#A06CDA	#CAADEB
Blue	#002429	#004852	#008C9E	#1FE5FF	#85F1FF
Green	#304011	#54711E	#83B02F	#ABD45E	#C4E18E
Yellow	#9d7f06	#CEA708	#e8d206	#ffe373	#FFF8DC
Orange	#6F4B0B	#A77011	#E99F1F	#F0BF6A	#F4CF90
Red	#590d21	#9f193d	#C31E4A	#e66084	#f1a7bb

Value

A plot displaying the color palette.

Examples

color.ref()

colors

SnazzieR Color Palette

Description

A collection of named hex colors grouped by hue and tone. Each color is available as an exported object (e.g., Red, Dark. Red).

Usage

color.list

4 colors

Format

Each color is a character string representing a hex code.

An object of class character of length 1.

An object of class list of length 35.

Details

This palette consists of named hex colors. Each color's name (e.g., Dark . Red) is available as an exported object.

Swatch images are embedded below (not selectable):

Color	Swatch	Color	Swatch	Color	Swatch
Deep.Red		Deep.Green		Deep.Grey	
Dark.Red		Dark.Green		Dark.Grey	
Red		Green		Grey	
Light.Red		Light.Green		Light.Grey	
Pale.Red		Pale.Green		Pale.Grey	
Deep.Orange		Deep.Blue			
Dark.Orange		Dark.Blue			
Orange		Blue			
Light.Orange		Light.Blue			
Pale.Orange		Pale.Blue			
Deep. Yellow		Deep.Purple			
Dark.Yellow		Dark.Purple			
Yellow		Purple			
Light.Yellow		Light.Purple			
Pale.Yellow		Pale.Purple			

For the full list and hex codes, use names (color.list) or see ?color.list.

See Also

color.list, color.ref

eigen.summary 5

eigen.summary

Summarize Eigenvalues and Eigenvectors of a Covariance Matrix

Description

This function computes the eigenvalues and eigenvectors of a given covariance matrix, ensures sign consistency in the eigenvectors, and outputs a formatted LaTeX table displaying the results.

Usage

```
eigen.summary(
  cov.matrix,
  caption = "Eigenvectors of Covariance Matrix",
  space_after_caption = "5mm"
)
```

Arguments

```
cov.matrix A square numeric matrix representing the covariance matrix.

caption A character string specifying the table caption (default: "Eigenvectors of Covariance Matrix").

space_after_caption
    A character string specifying the space after the caption in LaTeX (default: "5mm").
```

Value

A LaTeX formatted table displaying the eigenvectors and eigenvalues.

Examples

```
cov_matrix <- matrix(c(4, 2, 2, 3), nrow = 2)
eigen.summary(cov_matrix)</pre>
```

format.pls

Format PLS Model Output as LaTeX or Console Tables

Description

Formats and displays Partial Least Squares (PLS) model output from pls.regression() as either LaTeX tables (for PDF rendering) or console-friendly output.

Usage

```
## S3 method for class 'pls'
format(x, ..., include.scores = TRUE, latex = FALSE)
```

6 model.equation

Arguments

A list returned by pls.regression() (class "pls") containing PLS model components.

Further arguments passed to or from methods (unused).

include.scores

Logical. Whether to include score matrices (T and U). Default is TRUE.

latex

Logical. If TRUE, produces LaTeX output (for PDF rendering). If FALSE, prints to console. Default is FALSE.

Value

When latex = TRUE, returns a knitr::asis_output object (LaTeX code). When FALSE, prints formatted tables to console.

model.equation

Generate a Model Equation from a Linear Model

Description

This function extracts and formats the equation from a linear model object. It includes an option to return the equation as a LaTeX-formatted string or print it to the console.

Usage

```
model.equation(model, latex = TRUE)
```

Arguments

model A linear model object (e.g., output from 'lm()').

latex A logical value indicating whether to return a LaTeX-formatted equation (default: TRUE). If FALSE, the equation is printed to the console.

Value

If 'latex' is TRUE, the equation is returned as LaTeX code using 'knitr::asis_output()'. If FALSE, the equation is printed to the console.

Examples

```
# Fit a linear model
model <- lm(mpg ~ wt + hp, data = mtcars)
# Get LaTeX equation
model.equation(model)
# Print equation to console
model.equation(model, latex = FALSE)</pre>
```

model.summary.table 7

```
model.summary.table
```

Generate a Summary Table for a Linear Model

Description

This function creates a summary table for a linear model, including coefficients, standard errors, p-values, and model statistics (e.g., MSE, R-squared). The table is formatted for LaTeX output using the 'kableExtra' package.

Usage

```
model.summary.table(model, caption)
```

Arguments

model A linear model object (e.g., output from 'lm()').
caption A character string to be used as the caption for the table.

Value

A LaTeX-formatted table generated by 'kableExtra::kable()'.

Examples

```
# Fit a linear model
model <- lm(mpg ~ wt + hp, data = mtcars)
# Generate the summary table
model.summary.table(model, caption = "Linear Model Summary")</pre>
```

NIPALS.pls

Partial Least Squares Regression via NIPALS (Internal)

Description

This function is called internally by pls.regression and is not intended to be used directly. Use pls.regression(..., calc.method = "NIPALS") instead.

Performs Partial Least Squares (PLS) regression using the NIPALS (Nonlinear Iterative Partial Least Squares) algorithm. This method estimates the latent components (scores, loadings, weights) by iteratively updating the X and Y score directions until convergence. It is suitable for cases where the number of predictors is large or predictors are highly collinear.

Usage

```
NIPALS.pls(x, y, n.components = NULL)
```

8 NIPALS.pls

Arguments

 \times A numeric matrix or data frame of predictors (X). Should have dimensions $n \times p$.

Y A numeric matrix or data frame of response variables (Y). Should have dimensions $n \times q$.

n.components Integer specifying the number of PLS components to extract. If NULL, it defaults to qr(x) \$rank.

Details

The algorithm standardizes both x and y using z-score normalization. It then performs the following for each of the n.components latent variables:

- 1. Initializes a random response score vector u.
- 2. Iteratively:
 - Updates the X weight vector $w = E^{T}u$, normalized.
 - Computes the X score t = Ew, normalized.
 - Updates the Y loading $q = F^{\top}t$, normalized.
 - Updates the response score u = Fq.
 - Repeats until t converges below a tolerance threshold.
- 3. Computes scalar regression coefficient $b = t^{\top}u$.
- 4. Deflates residual matrices E and F to remove current component contribution.

After component extraction, the final regression coefficient matrix $B_{original}$ is computed and rescaled to the original data units. Explained variance is also computed component-wise and cumulatively.

Value

A list with the following elements:

model.type Character string indicating the model type ("PLS Regression").

T Matrix of X scores $(n \times H)$.

U Matrix of Y scores $(n \times H)$.

W Matrix of X weights $(p \times H)$.

C Matrix of normalized Y weights $(q \times H)$.

P_loadings Matrix of X loadings $(p \times H)$.

Q_loadings Matrix of Y loadings $(q \times H)$.

B_vector Vector of regression scalars (length H), one for each component.

coefficients Matrix of regression coefficients in original data scale ($p \times q$).

intercept Vector of intercepts (length q). Always zero here due to centering.

X_explained Percent of total X variance explained by each component.

Y_explained Percent of total Y variance explained by each component.

X_cum_explained Cumulative X variance explained.

Y_cum_explained Cumulative Y variance explained.

pls.regression 9

References

Wold, H., & Lyttkens, E. (1969). Nonlinear iterative partial least squares (NIPALS) estimation procedures. *Bulletin of the International Statistical Institute*, 43, 29–51.

Examples

```
## Not run:
X <- matrix(rnorm(100 * 10), 100, 10)
Y <- matrix(rnorm(100 * 2), 100, 2)
model <- pls.regression(X, Y, n.components = 3, calc.method = "NIPALS")
model$coefficients
## End(Not run)</pre>
```

pls.regression

Partial Least Squares (PLS) Regression Interface

Description

Performs Partial Least Squares (PLS) regression using either the NIPALS or SVD algorithm for component extraction. This is the main user-facing function for computing PLS models. Internally, it delegates to either NIPALS.pls() or SVD.pls().

Usage

```
pls.regression(x, y, n.components = NULL, calc.method = c("SVD", "NIPALS"))
```

Arguments

X	A numeric matrix or data frame of predictor variables (X), with dimensions $n \times n$
	p.
У	A numeric matrix or data frame of response variables (Y), with dimensions n \boldsymbol{x}
	q.
n.components	Integer specifying the number of latent components (H) to extract. If NULL, defaults to the rank of $\mathtt{x}.$
calc.method	Character string indicating the algorithm to use. Must be either "SVD" (default) or "NIPALS".

Details

This function provides a unified interface for Partial Least Squares regression. Based on the value of calc.method, it computes latent variables using either:

- "SVD" A direct method using the singular value decomposition of the cross-covariance matrix $(X^{\top}Y)$.
- "NIPALS" An iterative method that alternately estimates predictor and response scores until convergence.

The outputs from both methods include scores, weights, loadings, regression coefficients, and explained variance.

10 snazzieR.theme

Value

```
A list (from either SVD.pls() or NIPALS.pls()) containing:
```

model.type Character string ("PLS Regression").

T, U Score matrices for X and Y.

W, C Weight matrices for X and Y.

P_loadings, Q_loadings Loading matrices.

B_vector Component-wise regression weights.

coefficients Final regression coefficient matrix (rescaled).

intercept Intercept vector (typically zero due to centering).

X_explained, **Y_explained** Variance explained by each component.

X_cum_explained, Y_cum_explained Cumulative variance explained.

References

Abdi, H., & Williams, L. J. (2013). Partial least squares methods: Partial least squares correlation and partial least square regression. *Methods in Molecular Biology (Clifton, N.J.)*, 930, 549–579. doi:10.1007/9781627030595_23

de Jong, S. (1993). SIMPLS: An alternative approach to partial least squares regression. *Chemometrics and Intelligent Laboratory Systems*, 18(3), 251–263. doi:10.1016/01697439(93)85002X

See Also

```
SVD.pls, NIPALS.pls
```

Examples

```
## Not run:
X <- matrix(rnorm(100 * 10), 100, 10)
Y <- matrix(rnorm(100 * 2), 100, 2)

# Using SVD (default)
model1 <- pls.regression(X, Y, n.components = 3)

# Using NIPALS
model2 <- pls.regression(X, Y, n.components = 3, calc.method = "NIPALS")
## End(Not run)</pre>
```

snazzieR.theme

A Custom ggplot2 Theme for Publication-Ready Plots

Description

This theme provides a clean, polished look for ggplot2 plots, with a focus on readability and aesthetics. It includes a custom color palette and formatting for titles, axes, and legends.

SVD.pls

Usage

```
snazzieR.theme()
```

Value

A ggplot2 theme object.

Examples

```
library(ggplot2)
ggplot(mtcars, aes(x = wt, y = mpg)) +
  geom_point() +
  snazzieR.theme()
```

SVD.pls

Partial Least Squares Regression via SVD (Internal)

Description

This function is called internally by pls.regression and is not intended to be used directly. Use pls.regression(..., calc.method = "SVD") instead.

Performs Partial Least Squares (PLS) regression using the Singular Value Decomposition (SVD) of the cross-covariance matrix. This method estimates the latent components by identifying directions in the predictor and response spaces that maximize their covariance, using the leading singular vectors of the matrix $R = X^{T}Y$.

Usage

```
SVD.pls(x, y, n.components = NULL)
```

Arguments

- x A numeric matrix or data frame of predictors (X). Should have dimensions $n \times p$.
- Y A numeric matrix or data frame of response variables (Y). Should have dimensions $n \times q$.
- n.components Integer specifying the number of PLS components to extract. If NULL, defaults to qr(x) \$rank.

Details

The algorithm begins by z-scoring both x and y (centering and scaling to unit variance). The initial residual matrices are set to the scaled values: $E = X_scaled$, $F = Y_scaled$.

For each component h = 1, ..., H:

- 1. Compute the cross-covariance matrix $R = E^{T} F$.
- 2. Perform SVD on $R = UDV^{\top}$.
- 3. Extract the first singular vectors: w = U[1, 1], q = V[1, 1].
- 4. Compute scores: t = Ew (normalized), u = Fq.

12 SVD.pls

- 5. Compute loadings: $p = E^{\top}t$, regression scalar $b = t^{\top}u$.
- 6. Deflate residuals: $E \leftarrow E tp^{\top}$, $F \leftarrow F btq^{\top}$.

After all components are extracted, a post-processing step removes components with zero regression weight. The scaled regression coefficients are computed using the Moore–Penrose pseudoinverse of the loading matrix P, and then rescaled to the original variable units.

Value

A list containing:

model.type Character string indicating the model type ("PLS Regression").

T Matrix of predictor scores $(n \times H)$.

U Matrix of response scores $(n \times H)$.

W Matrix of predictor weights $(p \times H)$.

C Matrix of normalized response weights $(q \times H)$.

P_loadings Matrix of predictor loadings ($p \times H$).

Q_loadings Matrix of response loadings $(q \times H)$.

B_vector Vector of scalar regression weights (length H).

coefficients Matrix of final regression coefficients in the original scale ($p \times q$).

intercept Vector of intercepts (length q). All zeros due to centering.

X explained Percent of total X variance explained by each component.

Y_explained Percent of total Y variance explained by each component.

X_cum_explained Cumulative X variance explained.

Y_cum_explained Cumulative Y variance explained.

References

Abdi, H., & Williams, L. J. (2013). Partial least squares methods: Partial least squares correlation and partial least square regression. *Methods in Molecular Biology (Clifton, N.J.)*, 930, 549–579. doi:10.1007/9781627030595_23

de Jong, S. (1993). SIMPLS: An alternative approach to partial least squares regression. *Chemometrics and Intelligent Laboratory Systems*, 18(3), 251–263. doi:10.1016/01697439(93)85002X

Examples

```
## Not run:
X <- matrix(rnorm(100 * 10), 100, 10)
Y <- matrix(rnorm(100 * 2), 100, 2)
model <- pls.regression(X, Y, n.components = 3, calc.method = "SVD")
model$coefficients
## End(Not run)</pre>
```

Index

```
* datasets
                                            model.summary.table,7
   colors, 3
                                            NIPALS.pls, 7, 10
* internal
   NIPALS.pls, 7
                                            Orange (colors), 3
   SVD.pls, 11
                                            Pale.Blue (colors), 3
{\tt ANOVA.summary.table, 2}
                                            Pale. Green (colors), 3
Blue (colors), 3
                                            Pale. Grey (colors), 3
                                            Pale.Orange (colors), 3
color.list,4
                                            Pale.Purple (colors), 3
color.list(colors), 3
                                            Pale.Red(colors), 3
color.ref, 2, 4
                                            Pale. Yellow (colors), 3
colors, 3
                                            pls.regression, 6, 7, 9, 11
                                            Purple (colors), 3
Dark.Blue (colors), 3
Dark.Green (colors), 3
                                            Red (colors), 3
Dark. Grey (colors), 3
Dark.Orange (colors), 3
                                            snazzieR.theme, 10
Dark.Purple (colors), 3
                                            SVD.pls, 10, 11
Dark.Red(colors), 3
                                            Yellow (colors), 3
Dark.Yellow(colors), 3
Deep.Blue (colors), 3
Deep.Green (colors), 3
Deep.Grey (colors), 3
Deep.Orange (colors), 3
Deep.Purple (colors), 3
Deep.Red(colors), 3
Deep.Yellow(colors), 3
eigen.summary, 5
format.pls, 5
Green (colors), 3
Grey (colors), 3
Light.Blue (colors), 3
Light. Green (colors), 3
Light.Grey (colors), 3
Light.Orange (colors), 3
Light.Purple (colors), 3
Light.Red(colors), 3
Light. Yellow (colors), 3
model.equation, 6
```