Introduction to Statistical Analysis

Stat Bootcamp
Session 2

Sema Barlas

Discrete Probability Distributions

Statistics

Person #	1	2	3	4	5	6	7	8	9	10
X: Clicked?	N	Υ	Υ	Υ	N	N	Υ	Υ	N	N
P	0	.5	.667	.75	.6	.5	.571	.625	.556	.5

$$P(X) = \frac{N(X=Y)}{N(X=Y \text{ or } X=N)} = \frac{5}{10} = .5$$

Probability, p is given.

Whether a person would click the ad -> Bernoulli Trial.

Sample space: Yes and No (success and failure)

Probability, p and N are given.

Whether at least two people out of 10 would click the ad – Binomial trial.

X: # of people clicking

Probability

- You have 3 unique exposures to an ad in one hour. What is the probability for that at least 2 exposures are clicked $> p(x \ge 2)$.
- Outcome for a single experiment: 2, Replication: 3
- Total number of outcomes in sample space: 2³ = 8

Sample Space	YYY	YYN	YNY	YNN	NYY	NNY	NNY	NNN
X	3	2	2	1	2	1	1	0
p	1/8	1/8	1/8	1/8	1/8	1/8	1/8	<mark>1/</mark> 8

•
$$p(x \ge 2) = p(x=3) + p(x=2) = \frac{1}{8} + \frac{3}{8} = \frac{4}{8} = 0.5$$

$$\sum_{i=1}^{8} P(O_i) = 1$$

Complement

- Complement of event A, A', is the set of all outcomes that are not in A.
- A: at least two clicks {YYY, YYN, NYY, YNY}
- A': {NNN, NNY, NYN, YNN}

$$P(A) \ge 0$$

 $P(A) \le 1$
 $P(S) = 1$
 $P(A) + P(A') = 1$
 $P(A) = 1 - P(A')$
 $P(A') = 1 - P(A)$

Union and Intersection

- Union: A or B -> A U B
- Intersection: A and B → A ∩ B
- A: at least two clicks {YYY, YYN, NYY, YNY}
- B: at least one click {YYY, YYN, NYY, YNY, NYN, YNN, NNY}
- A ∩ B: {YYY, YYN, NYY, YNY}
- A U B : {YYY, YYN, NYY, YNY, NYN, YNN, NNY}
- Events are disjoint or independent if $A \cap B = \emptyset \rightarrow P(A \cap B) = 0$.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Application

Books	C1	C2	C3	C4
Α	1	1	0	0
В	0	1	1	0
С	1	1	0	1
D	1	0	1	1

Jaccard similarity between customers = C1 ∩C2 / C1 U C2 = 2/4

Permutation

- There are 3 (n) web pages on your web site and visitors can access from one page to all other pages. Visitors usually select 2 pages (k). How many ways are there to select the 2 pages?
- 12, 13, 21, 23, 31, 32 (ordered subsets)
- 3*2

•
$$P_{k,n} = \frac{n!}{(n-k)!} = \frac{3!}{(3-2)!} = \frac{3*2*1}{1} = 6$$

• $P_{2,4} = \frac{4!}{(4-2)!} = \frac{4*3*2*1}{2} = 12$

•
$$P_{2,4} = \frac{4!}{(4-2)!} = \frac{4*3*2*1}{2} = 12$$

Combination

- There are 3 (n) web pages on your web site and visitors can access from one page to all other pages. Visitors usually select 2 pages (k).
 Which 2 pages are selected?
- 21, 13, 23 (unordered subsets)

•
$$\binom{n}{k} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!} = \frac{3*2*1}{2*1*1} = 3$$

Conditional Probability

	B - faulty	B' – not faulty
Line A	2	6
Line A'	1	9

$$P(A) = \frac{8}{18} = 0.44$$

P(A) =
$$\frac{8}{18}$$
 = 0.44
P(A|B) = $\frac{2}{3}$ = $\frac{\frac{2}{18}}{\frac{3}{18}}$ = $\frac{P(A \cap B)}{P(B)}$

Reading Habits

A: Art, B: Books, C: Cinema

Read Regularly	А	В	С	A ∩ B	A ∩ C	B ∩ C	A∩B∩C
Р	.14	.23	.37	.08	.09	.13	.05

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{.08}{.23} = .348$$

$$P(A \mid BUC) = \frac{P(A \cap (BUC))}{P(BUC)} = \frac{.04 + .05 + .03}{.47} = .225$$

P(A|reads at least one) = P(A|AUBUC)

$$= \frac{P(A \cap (A \cup B \cup C))}{(A \cup B \cup C)}$$

$$= \frac{P(A)}{(A \cup B \cup C)} = \frac{.14}{.49} = .286$$

$$P(AUB|C) = \frac{P((AUB)\cap C)}{P(C)} = \frac{.04 + .05 + .08}{.37} = .459$$

Multiplication Rule for $P(A \cap B)$

•
$$P(A \cap B) = P(A|B) * P(B)$$

Player Brand	Market Share	Repair Rate
Α	50%	25%
В	30%	20%
С	20%	10%

- Probability that a consumer bought Brand A that will need repair?
- Probability that customer has a player that will need repair?
- Given that player needs repair, what is the probability that it is brand A? Brand B? Brand C?

Independence

- If two events A and B are independent:
- P(A|B) = P(A)
- $P(A \cap B) = P(A) * P(B)$

Α	В	АВ	0
.40	.11	.04	.45

 What is the probability that blood phenotypes of two randomly selected individuals match?

Binomial Probability Distribution

- The experiment consists of a sequence of n smaller experiments called trials,
 where n is fixed in advance of the experiment.
- Each trial can result in one of the same two possible outcomes, success (S) or Failure (F).
- The trials are independent, so that the outcome on any particular trial does not influence the outcome on any other trial.
- The probability of success P(S) is constant from trial to trial; we denote this probability by p.
- Examples: The number of heads when one flips a coin 10 times. Number of customers who pay with credit card among 10 customer who visit the store.
- b(x; n, p)
- $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$

Example

- 20% of customers click your ad.
- Select random 5 people
- X: # of customers who click your ad.
- What is the probability that at most 3 customers click your ad?

•
$$P(X=3) = b(3; 5, .20) = {5 \choose 3}.20^3.80^2 = .0512$$

•
$$P(X=2) = {5 \choose 2}.20^2.80^3 = 0.2048$$

•
$$P(X=1) = {5 \choose 1}.20^1.80^4 = 0.4096$$

•
$$P(X=0) = .80^5 = 0.32768$$

Answer: 0.99328

• Mean =
$$E(X)$$
 = $np = 5*.20 = 1$

Variance(X) = np(1-p)

Flipping a Fair Coin 10 Times

0	1	2	3	4	5	6	7	8	9	10
.0001	.001	.044	.117	.205	.246	.205	.117	.044	.001	.0001

Binomial Distribution

The Poisson Distribution

- $p(x; \mu) = \frac{e^{-\mu}\mu^x}{x!}$, $\mu > 0$ and $x \ge 0$
- # of visitors to a web page in an hour, $\mu = 4.5$
- What is the probability that 5 people visits the webpage in an hour?
- $p(x = 5) = \frac{e^{-4.5}4.5^x}{5!} = 0.1708$
- When n -> ∞ , binomial approaches poisson. If n>50 and μ =np <5 we may use Poisson rather than binomial.
- $Mean = variance = \mu$

Example

• An article in the Los Angeles Times (Dec 3, 1993) repots that 1 in 200 people carry the defective gene that causes inherited colon cancer. In a sample of 1000 individuals, what is the approximate distribution of the number who carry the gene? What is $p(5 \le x \le 8)$?

Histogram of pdist

$$p(x = 5) = \frac{e^{-5}5^{5}}{5!} = 0.175$$

$$p(x = 6) = \frac{e^{-5}5^{6}}{6!} = 0.146$$

$$p(x = 7) = \frac{e^{-5}5^{7}}{7!} = 0.104$$

$$p(x = 8) = \frac{e^{-5}5^{8}}{8!} = 0.065$$

$$P(5 \le x \le 8) = 0.491$$

Continues Distributions Normal Distribution

	Population Parameters	Sample Statistics
Mean	μ	\bar{x}
Variance	σ^2	Var
Standard Deviation	σ	S

Standard Normal Distribution

Hypotheses

Non-Directional Hypotheses

- H0: μ = 100

- H1: μ ≠ 100

Directional Hypotheses

- H0: μ ≤ 100

- H1: μ > 100

Decision Making

	True State			
Decision	НО	H1		
H0	Confidence	Type II mistake β		
H1	Type I mistake α	Power		

μ = 100, σ =10, α =0.05

Child	Seconds of Concentration	Z	p
1	75		
2	81		
3	89		
4	99		
5	115		
6	127		
7	138		
8	139		
9	142		
10	148		

H0: Child comes from the distribution with μ =100 and σ =10.

HA: Child does not comes from the distribution with μ =100 and σ =10.

μ = 100 and σ =10

Child	Seconds of Concentration	z	р	Decision	Error Type
1	75	-2.50	0.006	Reject Null	Type I
2	81	-1.90	0.029	Reject Null	Type I
3	89	-1.10	0.136	Retain Null	Type II
4	99	-0.10	0.460	Retain Null	Type II
5	115	1.50	0.067	Retain Null	Type II
6	127	2.70	0.004	Reject Null	Type I
7	138	3.80	< 0.001	Reject Null	Type I
8	139	3.90	<0.001	Reject Null	Type I
9	142	4.20	< 0.001	Reject Null	Type I
10	148	4.80	<0.001	Reject Null	Type I

A test with \bar{x} =54.1 and s=13.41

 Top 10% will get an A. So, what is the cut-off point, assuming that the scores are normally distributed.

•
$$Z = \frac{x - 54.1}{13.41}$$
, $x = 54.1 + 13.41*z$, $x = \bar{x} + \sigma^*z$

- Z=1.28
- x=71.26

A test with \bar{x} =54.1 and s=13.41

 What proportion of students would have scores > 65?

•
$$z = \frac{65 - 54.1}{13.41} = 0.81$$

- P(z<0.81) = 0.791
- P(z>0.81) = 1-0.791 = 0.209

A test with \bar{x} =54.1 and s=13.41

- Less than 30?
- Between 45 and 85

Sampling Distribution

- Central Limit Theorem: Distribution of means approaches normal even when the underlying population is not normal.
- $\mu_{\bar{x}} = \mu$
- Standard error of the mean, $\sigma_{\bar{\chi}} = \frac{\sigma}{\sqrt{n}}$