

OSI Model and Network Commands

OSI Model

OSI Reference Model

- OSI Reference Model internationally standardised network architecture.
- OSI = Open Systems Interconnection: deals with open systems, i.e. systems open for communications with other systems.
- Specified in ISO 7498.
- Model has 7 layers.

Layers 1-4 relate to communications technology.

Layers 5-7 relate to user applications.

Communications subnet boundary

Layer 7: Application Layer

- Level at which applications access network services.
- Represents services that directly support software applications for file transfers, database access, and electronic mail etc.

Layer 6: Presentation Layer

- Related to representation of transmitted data
 - ✓ Translates different data representations from the Application layer into uniform standard format
- Providing services for secure efficient data transmission
 - ✓ e.g. data encryption, and data compression.

Layer 5: Session Layer

- Allows two applications on different computers to establish, use, and end a session.
 - ✓ e.g. file transfer, remote login
- Establishes dialog control
 - ✓ Regulates which side transmits, plus when and how long it transmits.
- Performs token management and synchronization.

- Manages transmission packets
 - Repackages long messages when necessary into small packets for transmission
 - ✓ Reassembles packets in correct order to get the original message.
- Handles error recognition and recovery.
 - ✓ Transport layer at receiving acknowledges packet delivery.
 - ✓ Resends missing packets

Layer 3: Network Layer

- Manages addressing/routing of data within the subnet
 - Addresses messages and translates logical addresses and names into physical addresses.
 - ✓ Determines the route from the source to the destination computer
 - Manages traffic problems, such as switching, routing, and controlling the congestion of data packets.
- Routing can be:
 - ✓ Based on static tables
 - ✓ determined at start of each session
 - ✓ Individually determined for each packet, reflecting the current network load.

Layer 2: Data Link Layer

- Packages raw bits from the Physical layer into frames (logical, structured packets for data).
- Provides reliable transmission of frames
 - ✓ It waits for an acknowledgment from the receiving computer.
 - Retransmits frames for which acknowledgement not received

Layer 1: Physical Layer

- Transmits bits from one computer to another
- Regulates the transmission of a stream of bits over a physical medium.
- Defines how the cable is attached to the network adapter and what transmission technique is used to send data over the cable. Deals with issues like
 - ✓ The definition of 0 and 1, e.g. how many volts represents a 1, and how long a bit lasts?
 - ✓ Whether the channel is simplex or duplex?
 - ✓ How many pins a connector has, and what the function of each pin is?

Application	
Presentation	Application
Session	
Transport	TCP
Network	IP
Data Link	Network Interface
Physical	Hardware

- Explicit Presentation and session layers missing in Internet Protocols
- Data Link and Network Layers redesigned

- In OSI model, each layer provide services to layer above, and 'consumes' services provided by layer below.
- Active elements in a layer called entities.
- Entities in same layer in different machines called peer entities.

Connections

- Layers can offer connection-oriented or connectionless services.
- Connection-oriented like telephone system.
- Connectionless like postal system.
- Each service has an associated Quality-of-service (e.g. reliable or unreliable).

Reliability

- Reliable services never lose/corrupt data.
- Reliable service costs more.
- Typical application for reliable service is file transfer.
- Typical application not needing reliable service is voice traffic.
- Not all applications need connections.

hostname

hostname with no options displays the machine's hostname

hostname -d displays the domain name the machine belongs to

hostname -f displays the fully qualified host and domain name

hostname -i displays the IP address for the current machine

ping

- It sends packets of information to the user-defined source. If the packets are received, the destination device sends packets back. Ping can be used for two purposes
 - 1. To ensure that a network connection can be established.
 - 2. Timing information as to the speed of the connection.

If you do ping www.google.com it will display its IP address.

BIA

Network commands

ifconfig

View network configuration, it displays the current network adapter configuration.
 It is handy to determine if you are getting transmit (TX) or receive (RX) errors.

netstat

Most useful and very versatile for finding a connection to and from the host. You
can find out all the multicast groups (network) subscribed by this host by
issuing "netstat -g"

Nslookup

- If you know the IP address it will display hostname. To find all the IP addresses for a
 given domain name, the command nslookup is used. You must have a connection to
 the internet for this utility to be useful,
- You can also use the **nslookup** to convert hostname to IP Address and from IP Address from the hostname.

Y

traceroute

A handy utility to view the number of hops and response time to get to a remote system or website is traceroute. Again you need an internet connection to make use of this tool.

finger

View user information, displays a user's login name, real name, terminal name and write status. this is pretty old Unix command and rarely used nowadays.

• <u>telnet</u>

Connects destination host via the telnet protocol, if telnet connection establishes on any port means connectivity between two hosts is working fine.

hostname

hostname with no options displays the machine's hostname

hostname -d displays the domain name the machine belongs to

hostname – **f** displays the fully qualified host and domain name

hostname –i displays the IP address for the current machine

Thank You!!

