Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών

Πράξεις με δυαδικούς αριθμούς

(λογικές πράξεις)

http://di.ionio.gr/~mistral/tp/csintro/

Μ.Στεφανιδάκης

Πράξεις με δυαδικούς αριθμούς

- Εισαγωγή
- Ο υπολογιστής μπορεί να εκτελέσει
 - Λογικές πράξεις (δυαδικής λογικής)
 - Αριθμητικές πράξεις
- Οι πράξεις εκτελούνται
 - Σε ομάδες bits: "δυαδικούς αριθμούς"

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Εκτέλεση πράξεων • Εισαγωγή υπολογιστικό σύστημα πρόγραμμα ελέγχου ρολόι μονάδα (clock) ελέγχου "Μνήμη" δεδομένα εισόδου τμήμα επεξεργασίας δεδομένων δεδομένα εξόδου Επέξεργασία: ψηφιακά δυαδικά κυκλώματα Ποιες κατηγορίες Εκτελούν πράξεις μεταξύ σειρών 0 και 1... πράξεων; ...οι οποίες αναπαριστούν δυαδικούς αριθμούς Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς" 2

Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική

- Εισαγωγή • Δυαδική λογική
- Η δυαδική λογική ταιριάζει με την τεχνολογία του τρανζίστορ
 - 2 καταστάσεις: ON-OFF, 1-0
 - Ψηφιακά ηλεκτρονικά (2 στάθμες)
- Δυαδική άλγεβρα Boole
 - Λογική άλγεβρα
 - Συσχέτιση με διακοπτικά κυκλώματα
 - Η εργασία του Shannon (1938)

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Ποσότητες Δυαδικής Λογικής

• Εισαγωγή

Δυαδική λογική

Στη δυαδική λογική άλγεβρα

- Υπάρχουν 2 "ποσότητες" (σύμβολα):
 - Αληθές ή 1 ή ΝΑΙ
 - Ψευδές ή 0 ή ΟΧΙ
- Ένα δυαδικό ψηφίο (bit) έχει τιμή 0 ή 1

• Στα ψηφιακά ηλεκτρονικά κυκλώματα:

- 0 ή "χαμηλή τάση" ή "η μια φορά ρεύματος"
- 1 ή "υψηλή τάση" ή "η άλλη φορά ρεύματος"
- Ανάλογα με την τεχνολογία, ένα bit αναπαρίσταται με αντίστοιχη κατάσταση σε ένα ηλεκτρονικό κύκλωμα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

5

Bits & Bytes

- Εισαγωγή
- Δυαδική λογική

• Bit

 Η μικρότερη λογική ποσότητα - η μικρότερη μονάδα δεδομένων - 0 ή 1.

Byte

- Ομάδα 8 bits
- Η ελάχιστη ποσότητα που μπορεί να χειριστεί ο υπολογιστής κατά την εκτέλεση μιας πράξης
- Μια σειρά από bytes αναπαριστά έναν δυαδικό "αριθμό"
 - Αποθήκευση: σε καταχωρητές ή στη μνήμη

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

.

Πράξεις Δυαδικής Λογικής

• Εισαγωγή • Δυαδική λογική

- Στη δυαδική λογική άλγεβρα
- Καθορίζονται λογικές πράξεις μεταξύ των λογικών ποσοτήτων 0 και 1 (bits)
- Στα ψηφιακά ηλεκτρονικά κυκλώματα:
 - Κύκλωμα δέχεται ως είσοδο την ηλεκτρική αναπαράσταση των 0 και 1
 - Και παράγει στην έξοδό του την ηλεκτρική αναπαράσταση του αποτελέσματος μιας λογικής πράξης
 - Το κύκλωμα υλοποίησης της λογικής πράξης ονομάζεται πύλη (gate).

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Αογικές πράξεις με bits • Μονομελής λογική πράξη • ΝΟΤ (αντιστροφή) • Διμελείς λογικές πράξεις • ΑΝD (λογικό-ΚΑΙ) • ΟR (λογικό-Η) • ΧΟR (αποκλειστικό-Η)

Βασικές Λογικές Πράξεις

- Εισαγωγή • Δυαδική Λογική
- Αποκλειστικό Ή (XOR)
 - το αποτέλεσμα είναι 1, όταν μόνο το X ή μόνο το Υ είναι 1
 - 1 XOR X = X XOR 1 = NOT X
 - \bullet 0 XOR X = X XOR 0 = X
 - $XXOR\ Y = A \cdot B' + A' \cdot B$

Πίνακας Αλήθειας

X	Y	XOF
0	0	0
0	1	1
1	0	1
1	1	0

X XOR Y – ή Χ⊕Υ σύμβολο πύλης ΧΟΚ

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

21

Λογικές πράξεις σε ομάδες bits

- Λογικές Πράξεις Ο υπολογιστής μπορεί να εφαρμόσει λογικές πράξεις στα δεδομένα μας
 - Δεδομένα = σειρές από 0 και 1
 - Όχι όμως σε μεμονωμένα bits!!
 - Αλλά: σε ομάδες των 8, 16, 32 ή 64 bits ταυτόχρονα

$$A_n ... A_1 ... A_2 A_1 A_0$$
 op (=AND, OR,XOR)
 $B_n ... B_1 ... B_2 B_1 B_0$
 $Y_n ... Y_1 ... Y_2 Y_1 Y_0$
 $Y_1 = A_1$ op B_1

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

23

Βασικές Λογικές Πράξεις

- Εισαγωγή
- Δυαδική Λογική
- XNOR: Η συμπληρωματική συνάρτηση της ΧΟΡ
 - το αποτέλεσμα είναι 1, όταν τα Χ και Υ είναι
 - συνάρτηση "ισοδυναμίας" Πίνακας Αλήθειας

Υλοποίηση πύλης XNOR: χρησιμοποιώντας συνδυασμούς άλλων πυλών X xnor Y = XY+X'Y'

Y X **XNOR** 0 0 1 0 1 0 1 0 0 1

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

22

Ο τελεστής ΝΟΤ σε δυαδικούς αριθμούς

• Λογικές πράξεις

Η "μέθοδος" του υλικού (hardware): πολλαπλές ίδιες μονάδες εκτελούν την ίδια λειτουργία παράλληλα

• Η έξοδος Υ εξαρτάται μόνο από την είσοδο Α

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Μάσκες

- Λογικές Πράξεις
- Για να αλλάξουμε την τιμή μεμονωμένων bits μέσα σε μια ομάδα

25

- Για να θέσουμε επιλεγμένα bits σε 1
- Για να θέσουμε επιλεγμένα bits σε 0
- Για να αντιστρέψουμε επιλεγμένα bits
- Χωρίς να επηρεάζουμε τα υπόλοιπα!
 - αυτά διατηρούν την τιμή τους, είτε 0 είτε 1
- Μάσκα: σειρά bits, επιλεγμένη ώστε:

Bits Εισόδου op Μάσκα → Νέα ομάδα bits

- op = AND, OR $\dot{\eta}$ XOR
- Νέα ομάδα περιέχει το επιθυμητό αποτέλεσμα

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"

Ο τελεστής ΟR σε δυαδικούς αριθμούς

Μάσκα AND: για να θέσουμε bits στο 0

• Λογικές πράξεις

• Ζητούμενο: σε λέξη των 8 bits να τεθούν σε 0 τα 3 λιγότερο σημαντικά bits.

Λέξη: 1 0 0 1 1 0 1 0 AND

Μάσκα: <u>1 1 1 1 1 0 0 0</u> Νέα: <u>1 0 0 1 1 0 0 0</u>

- Η AND μάσκα περιέχει:
 - 0 στα bits που θα γίνουν 0

0 AND X = 01 AND X = X

• 1 στα bits που θα παραμείνουν ως έχουν

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Μάσκα OR: για να θέσουμε bits στο 1

• Λογικές πράξεις • Ζητούμενο: σε λέξη των 8 bits να τεθούν σε 1 τα bits 0,4 και 5.

> 10011000 Λέξη: OR

Μάσκα: $0\ 0\ 1\ 1\ 0\ 0\ 0\ 1$ 10111001

Νέα:

Η ΟΚ μάσκα περιέχει:

• 1 στα bits που θα γίνουν 1

• 0 στα bits που θα παραμείνουν ως έχουν

29

0 OR X = X1 OR X = 1

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Πράξεις με δυαδικούς αριθμούς"

Μάσκα XOR: για να αντιστρέψουμε bits

• Ζητούμενο: σε λέξη των 8 bits να αντιστραφούν τα bits 3,6 και 7.

10011000 Λέξη: XOR

Μάσκα: 11001000

01010000 Νέα:

• Η ΧΟΚ μάσκα περιέχει:

- 1 στα bits που θα αντιστραφούν
- 0 στα bits που θα παραμείνουν ως έχουν

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Πράξεις με δυαδικούς αριθμούς"