PUISSANCES

I) DÉFINITION

1) Rappels

$$4^{2} =$$

$$(-4)^2 =$$

$$a^2 =$$

Si a est un nombre :

$$5^3 =$$

$$a^3 =$$

2) Cas général

Soit *a* un nombre et *n* un entier strictement positif, le produit de n facteurs tous égaux à a est noté : a^n

$$a^n = \underbrace{a \times a \times a \times \dots \times a}_{n \text{ facteurs}}$$

Remarques:

- a^n se lit « a exposant n » ou « a puissance n »
- a^2 se lit aussi « a au carré » et a^3 se lit aussi « a au cube ».
- Par convention, on pose : $a^0 = 1$ (Attention 0^0 n'est pas calculable)
- Ne pas confondre a^2 et 2a: $a^2 = a \times a$ et 2a = a + a

Ex:

$$A = (-3)^2 = ($$
 $) \times ($ $) = D = 7,5^0 =$

$$D = 7.5^0 =$$

$$B = -3^2 =$$

$$E = 7,5^1 =$$

$$C = (-3)^3 =$$

$$H = \left(\frac{3}{2}\right)^3 =$$

3) Priorités entre les opérations

Dans une expression, les calculs à faire en premier sont dans l'ordre :

• les calculs situés dans les parenthèses les plus intérieures,

- les multiplications et les divisions,
- les additions et les soustractions.

Quand des opérations ont le même ordre de priorité, on effectue le calcul de gauche à droite.

Ex:

$$A = 2 \times 5^3$$

$$B = 5(3^2 + 6) \div 3 - 2^3$$

$$B = 5(3^2+6) \div 3-2^3$$
 $C = (-2)^4 \times 2^2-2^2$

4) Puissances et signes

Ex:

$$A = (-2)^0 =$$

$$C = (-2)^2 =$$

$$E = (-2)^4 =$$

$$G = (-1)^{2020} =$$

$$B = (-2)^1 =$$

$$D = (-2)^3 =$$

$$F = (-2)^5 =$$

Un nombre négatif élevé à une puissance paire est toujours Un nombre négatif élevé à une puissance impaire est toujours

II) PROPRIÉTÉS

1) Puissances d'un même nombre

a étant un nombre non nul, m et n étant des entiers relatifs, on a les règles de calcul suivantes :

Règle	Exemple		
$a^n \times a^m =$	$3^{4} \times 3^{2} = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{4+2}$		
$\frac{a^n}{a^m}$ =	$\frac{3^4}{3^2} = \frac{3 \times 3 \times 3 \times 3}{3 \times 3} = 3^{4-2}$		
$\frac{1}{a^n}$ =	$\frac{1}{3^2} = \frac{3^0}{3^2} = 3^{0-2} = 3^{-2}$		
$(a^n)^m =$	$(4^{2})^{3} = (4 \times 4) \times (4 \times 4) \times (4 \times 4) = 4^{2 \times 3}$		

2) Puissances de même exposant

a et b étant deux nombres non nuls, n étant un entier relatif :

Règle	Exemple		
$a^n \times b^n =$	$3^2 \times 5^2 = 3 \times 3 \times 5 \times 5 = (3 \times 5)^2$		
$\frac{a^n}{b^n}$ =	$\frac{2^3}{5^3} = \frac{2 \times 2 \times 2}{5 \times 5 \times 5} = \left(\frac{2}{5}\right)^3$		

Attention:

Il n'y a hélas pas de règle avec $a^n + b^n$ ou $a^n - b^n$!

III) PUISSANCES DE 10

1) Première approche

n étant un entier positif :

$$10^{0} =$$

$$10^{1} =$$
 $10^{-1} =$

$$10^2 = 10^{-2} =$$

$$10^3 = 10^{-3} =$$

$$10^n = 100.....01$$

$$10^{-n} = 0.00.....01$$

Sur la calculatrice, chercher la touche : $\boxed{10^x}$ ou $\boxed{10^{\bullet}}$ ou $\boxed{\rm EE}$

2) Propriétés:

- Multiplier un nombre par 10^n revient à décaler la virgule de n chiffres vers la droite.
- Multiplier un nombre par 10^{-n} revient à le diviser par 10^{n} et donc à décaler la virgule de n chiffres vers la gauche.

Ex:

$$A = 12,3456 \times 10^3 =$$

$$B = 12,3456 \times 10^{-4} =$$

3) Notation scientifique

Définition:

La notation scientifique d'un nombre est son écriture sous la forme : $a \times 10^n$ avec $1 \le a < 10$

Ex: Donner la notation scientifique des nombres suivants :

$$0,00010123 =$$

$$34,1 =$$

$$6300 \times 10^{27} =$$

Remarque:

Écrire des nombres en notation scientifique permet de les comparer facilement en mettant en évidence leurs ordres de grandeur. Cette notation est très utilisée en physique.

4) Puissances de 10 et unités :

téra	giga			unité			nano
10 ¹²		10^6		10^{0}		10^{-6}	
Т			k		m		