Honor 5-6

1. How might the following synthesis be carried out:

E) None of these syntheses is satisfactory. Ans:

2. How might the following synthesis be carried out:

A)
$$C_6H_6$$
 CH_3CH_2Cl Cl_2 product

B) C_6H_6 Cl_2 CH_3CH_2Cl product

C) C_6H_6 CH_3CCl Cl_2 product

C) C_6H_6 CH_3CCl Cl_2 product

C) C_6H_6 CH_3CCl Cl_2 CH_3CH_2Cl product

C) C_6H_6 CH_3CCl Cl_2 CH_3Cl_3 product

C) C_6H_6 CH_3CCl Cl_2 CH_3Cl_3 product

C) C_6H_6 CH_3CCl Cl_2 CH_3Cl_3 product

C) C_6H_6 CH_3CCl Cl_2 product

C) C_6H_6 CH_3CCl Cl_2 product

E) None of these syntheses is satisfactory. Ans:

- 3. Which is the best sequence of reactions for the preparation of \underline{p} -bromostyrene from ethylbenzene?
 - A) ethylbenzene $\frac{\text{NBS, hv}}{\text{CCl}_4}$ $\xrightarrow{\text{Fe}}$ $\frac{\text{KOH}}{\text{CH}_3\text{CH}_2\text{OH}}$ product
 - ethylbenzene $\xrightarrow{\text{Br}_2}$ $\xrightarrow{\text{NBS, hv}}$ $\xrightarrow{\text{KOH}}$ product
 - C) ethylbenzene $\xrightarrow{\text{NBS, hv}}$ $\xrightarrow{\text{KOH}}$ $\xrightarrow{\text{Br}_2}$ product $\xrightarrow{\text{CCl}_4}$ $\xrightarrow{\text{CH}_3\text{CH}_2\text{OH}}$ $\xrightarrow{\text{Fe}}$ product
 - D) ethylbenzene $\frac{\text{ZnO}}{630 \, ^{\circ}\text{C}} \xrightarrow{\text{Br}_2}$ product
 - E) None of these syntheses is satisfactory. Ans:
- 4. Which is the best sequence of reactions for the following transformation?

- (A) i) HNO₃, H₂SO₄; ii) CH₃MgBr, Et₂O; iii) H₃O⁺, heat
- B) i) CH₃MgBr, Et₂O; ii) H₃O⁺, heat; iii) HNO₃, H₂SO₄
- C) i) HNO₃, H₂SO₄; ii) NaBH₄, H₂O; iii) H₃O⁺, heat
- D) i) HNO₃, H₂SO₄; ii) LiAlH₄, H₂O; iii) H₃O⁺, heat
- E) None of these syntheses is satisfactory.

Ans:

5. Which is the best sequence of reactions for the following transformation?

- (A) i) HNO_3 , H_2SO_4 ; ii) CH_3MgBr , Et_2O ; iii) H_2O , NH_4Cl
- B) i) CH_3MgBr , Et_2O ; ii) H_3O^+ , heat; iii) HNO_3 , H_2SO_4
- C) i) HNO₃, H₂SO₄; ii) NaBH₄, H₂O; iii) H₃O⁺, heat
- D) i) HNO₃, H₂SO₄; ii) LiAlH₄, H₂O; iii) H₃O⁺, heat
- E) None of these syntheses is satisfactory.

Ans:

6. Which is the best sequence of reactions for the following transformation?

$$H \longrightarrow NO_2$$

- (A) i) HNO₃, H₂SO₄; ii) CH₃MgBr, Et₂O; iii) H₂O, NH₄Cl
- B) i) CH₃MgBr, Et₂O; ii) H₃O⁺, heat; iii) HNO₃, H₂SO₄
- c) i) HNO₃, H₂SO₄; ii) NaBH₄, H₂O; iii) H₃O⁺, heat
- D) i) HNO_3 , H_2SO_4 ; ii) $LiAlH_4$, H_2O ; iii) H_3O^+ , heat
- E) None of these syntheses is satisfactory.

Ans:

7. Which compound is capable of undergoing both $S_N 1$ and $S_N 2$ reactions in ordinary nonacidic solvents?

- A) 1
- B) II
- C) III
- D) IV
- E) V

Ans:

8. Suggest a reasonable synthetic strategy for the synthesis of 4-methyl-1-phenyl-1-pentanol from 4-methylpentanoyl chloride, (CH₃)₂CHCH₂COCl Ans:

9. When the following substance is treated with Br₂/FeBr₃, the major product is obtained in good yield, and only very small amounts of minor products are found. What is this major product and why are the minor products not formed to any significant degree? Explain clearly.

10. Suggest a reasonable synthetic strategy for the synthesis of 6-methyl-3-phenyl-3-heptanol from 4-methylpentanoyl chloride, (CH₃)₂CHCH₂COCl
Ans:

4-methylpentanoyl chloride

6-methyl-3-phenyl-3-heptanol

Pan a synthesis to make the following products: