Section 11.1 Solutions

39,41,51

39]
$$f(x) = x^3 - 3x + 5$$

 $f(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x + 1)(x - 1)$
 $f(x) = 0$ at $x = -1, 1$
Intervals $(x + 1)(x - 1)$
 $(-\infty, -1) = -1 + 3 + 5 = 7$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 1) = -1 + 3 + 5 = 3$
 $(-1, 2) = -1 + 3 + 5 = 3$
 $(-1, 3) = -1 + 3 + 5 = 3$
 $(-1, 3) = -1 + 3 + 5 = 3$
 $(-1, 3) = -1 + 3 + 5 = 3$
 $(-1, 3) = -1 + 3 + 5 = 3$
 $(-1, 3) = -1 + 3 + 5 = 3$

41)
$$f(x) = -3x^3 - 9x^2 + 72x + 20$$

 $f(x) = -9x^2 - 18x + 72 = -9(x^2 + 2x - 8) = -9(x + 4)(x - 2)$
 $f'(x) = 0$ at $x = -4$, 2
 $f(-4) = 192 - 144 - 288 + 20 = -220$
 $f(2) = -24 - 36 + 144 + 20 = 104$
Tutervals $\left| -(x + 4)(x - 2) \right|$
 $\left(-(-4), 2 \right) - - - = - decreasing$
 $\left(-(-4), 2 \right) - + - = + 1$
 $\left(2, \infty \right) - + + = - 1$

Min at (-4, -220) Max at (2, 104)

51)
$$f(x) = x^3 - 3x + 1$$
 $f(0) = 1$
 $f(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x + 1)(x - 1)$
 $f(x) = 0$ at $x = -1$, 1 $f(-1) = -1 + 3 + 1 = 3$
 $f(1) = 1 - 3 + 1 = -1$
 $f(x) = 0$ $f(x) =$

Section (1.1 Solution

#47]
$$f(x) = (x^2 - 4)^{-2/3}$$
 $f(x) = \frac{2}{3}(x^2 - 4)^{-1/3}(2x) = \frac{4x}{3(x^2 + 4)^{1/3}}$
 $f(x) = ND$ at $x = -2, 2$ $f(2) = f(2) = 0$
 $f(3) = 2$

Intervals $f(3) = \frac{4x}{3}$
 $f(3) = \frac{4x}{3}$
 $f(4) = \frac{2}{3}(x^2 + 4)^{1/3}$
 $f(2) = \frac{4x}{3}(x^2 + 4)^{1/3}$
 $f(2) =$

Maximum at (0, 2JZ)