Problem Set 8 PHYS 18500

8 Final Exam Review

- 12/4: **1.** Kibble and Berkshire (2004), Q7.2. Where is the center of mass of the Sun-Jupiter system? (The mass ratio is $M_S/M_J = 1047$. The semi-major axis of Jupiter's orbit is 5.20 AU, where $1 \text{ AU} = 1.50 \times 10^8 \text{ km}$ is the semi-major axis of the Earth's orbit.) Through what angle does the Sun's position as seen from the Earth oscillate because of the gravitational attraction of Jupiter?
 - 2. Kibble and Berkshire (2004), Q9.6.
 - A) A simple pendulum supported by a light rigid rod of length l is released from rest with the rod horizontal. Find the reaction at the pivot as a function of the angle of inclination.
 - B) For the cube of Problem 9.1 (a uniform solid cube of edge length 2a suspended from a horizontal axis along one edge), find the horizontal and vertical components of the reaction on the axis as a function of its angular position. Compare your answer with the corresponding expressions for the equivalent simple pendulum.
 - 3. Kibble and Berkshire (2004), Q9.16. A uniformly charged sphere is spinning freely with angular velocity $\vec{\omega}$ in a uniform magnetic field \vec{B} . Taking the z-axis in the direction of $\vec{\omega}$, and \vec{B} in the xz-plane, write down the moment about the center of the magnetic force on a particle at \vec{r} . Evaluate the total moment of the magnetic force on the sphere, and show that it is equal to $(q/2M)\vec{J}\times\vec{B}$, where q and M are the total charge and mass, respectively. Hence show that the axis will precess around the direction of the magnetic field with precessional angular velocity equal to the Larmor frequency

$$\omega_{\rm L} = \frac{qB}{2M}$$

What difference would it make if the charge distribution were spherically symmetric, but non-uniform?

- 4. Kibble and Berkshire (2004), Q12.5. Consider a simple pendulum of mass m and length l, hanging in a trolley of mass M running on smooth horizontal rails. The pendulum swings in a plane parallel to the rails. Use the position x of the trolley and the angle of inclination θ of the pendulum as generalized coordinates. Find the Hamiltonian of this pendulum. Show that x is ignorable. To what symmetry does this correspond?
- 5. A bead of mass m is on a circular hoop of radius R, oriented vertically (i.e., with its radius lined up with \hat{k}). The hoop is rotating at constant rate ω about \hat{k} .
 - A) Find the Hamiltonian for the system.
 - B) Find Hamilton's equations of motion.
 - C) Find and classify the fixed points of the system for all values of $\omega > 0$. For what value of ω does a bifurcation occur?
 - D) Draw a bifurcation diagram using the parameter $\gamma = R\omega^2/g$, i.e., draw a plot in the γ - θ plane where solid lines represent stable fixed points, and dashed lines represent unstable fixed points. (Hint: This is called a **pitchfork bifurcation**.) Sketch an example trajectory $\theta(t)$ if $\omega(t)$ is being slowly turned up via

$$\omega(t) = \sqrt{\frac{gat}{R}}$$

where $a \ll \sqrt{g/l}$.