WEEK 3 DISCUSSION WORKSHEET: BOOLEAN ALGEBRA

- (1) Evaluate the logical expressions with x = y = 1 and w = z = 0
 - (a) $xy\overline{wz}$
 - (b) $x\overline{y} + z(\overline{w+z})$
 - (c) $\overline{z}y\overline{x}(1+w)$
 - (d) $xy\overline{z} + z\overline{w}$
 - (e) $\overline{(z+y)(w+x)}$
- (2) Use the laws of Boolean algebra to show that the two Boolean expressions in each pair are equivalent.
 - (a) $xy + x\overline{y} = x$
 - (b) x + xy = x
 - (c) $x(\overline{y} + x) = x$
 - (d) $\overline{x+\overline{y}} + \overline{x}\overline{y} = \overline{x}$
- (3) A function f is defined by

x	y	z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- (a) The function g is defined as $g(x,y,z) = \overline{xy}z + \overline{x}yz + xyz$ Give a set of values for the variables x, y, and z, for which the functions f and g have different output values
- (b) The function g is defined as $h(x,y,z) = \overline{xy}z + \overline{x}y\overline{z} + \overline{x}yz + xy\overline{z}$ Give a set of values for the variables x, y, and z, for which the functions f and h have different output values
- (4) For each expression below, give an equivalent expression that uses only the NAND operation. Then give an equivalent expression that uses only the NOR operation.
 - (a) $\overline{x} + y$
 - (b) \overline{xy}
 - (c) (x+y)z

(5) Give an equivalent Boolean expression for each circuit. Then use the laws of Boolean algebra to find a simpler circuit that computes the same function.

