

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

Skrivtid: 08:00–13:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Del A på tentamen utgörs av de tre första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De tre följande uppgifterna utgör del B och de tre sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

2

DEL A

1. Planet H_1 ges av ekvationen 3x + 2y + 2z = 0, och H_2 ges av ekvationen x + 2y - 2z = 0. Linjen L är skärningen av H_1 och H_2 .

(a) Bestäm en bas för skärningslinjen
$$L$$
. (2 p)

(b) Avgör om linjen
$$L$$
 är med i delrummet $V = \operatorname{Span}(\vec{u}, \vec{v}, \vec{w})$, där

$$\vec{u} = \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \quad \text{och} \quad \vec{w} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}.$$

2. Klimatstatistiken visar att vintermedeltemperaturen i Stockholms län förändras enligt följande tabell (temperaturen är avrundat till heltal grader)

Period 0 (1961-1970)
$$-5^{\circ}C$$

Period 1 (1971-1980)
$$-2^{\circ}C$$

Period 2 (1981-1990)
$$-3^{\circ}C$$

Period 3 (1991-2000)
$$-1^{\circ}C$$

Period 4 (2001-2010)
$$-1^{\circ}C$$

Bestäm en funktion på formen T(k)=Ak+B som stämmer bäst med dessa värden i minstakvadratmening. Här är k nummer av perioden och T(k) är medeltemperaturen i period k.

(4 p)

3. Låt

$$A = \left[\begin{array}{ccc} 3 & -4 & 8 \\ 2 & -3 & 8 \\ 0 & 0 & 1 \end{array} \right].$$

(a) Bestäm alla egenvärden och egenvektorer till matrisen A. (2 \mathbf{p})

(b) Beräkna
$$A^{11}\vec{v}$$
 där $\vec{v} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$.

DEL B

- 4. Låt U vara lösningsmängden, i \mathbb{R}^3 , av ekvationen 2x+y=0. Låt $\vec{v}=\begin{bmatrix}1\\0\\115\end{bmatrix}$.
 - (a) Bestäm en ortonormalbas β till U
 - (b) Utvidga basen β till en ortonormalbas för \mathbb{R}^3 . (1 p)
 - (c) Bestäm vektorn $\operatorname{proj}_{U}(\vec{v})$. (1 p)
- 5. Finns det något värde på a för vilket de tre planen

$$ax + y - z = 1$$
, $y + 2z = 7$, $x + z = 2$,

har en rät linje gemensam? Bestäm i så fall för alla sådana a denna linjes ekvation på parameterform. (4 **p**)

- 6. Avbildningen $R: \mathbb{R}^3 \to \mathbb{R}^3$ är en rotation med följande egenskaper: rotationsaxeln l är linjen $x_1 = x_2 = x_3$; positiva x_1 -axeln avbildas till positiva x_2 -axeln; positiva x_2 -axeln avbildas till positiva x_3 -axeln; positiva x_3 -axeln avbildas till positiva x_1 -axeln.
 - (a) Bestäm matrisrepresentationen av avbildningen R i standardbas. (1 p)
 - (b) Bestäm alla egenvärdena och egenvektorer av avbildningen. (1 p)
 - (c) I planet som är vinkelrätt mot linjen l verkar avbildningen R som en rotation. Bestäm rotationsvinkeln. (2 p)

DEL C

- 7. (a) Bestäm en 2×2 -matris A vars nollrum och kolonnrum överensstämmer. (2 p)
 - (b) Visa att det inte finns någon 3×3 -matris med ovanstående egenskap. (2 p)
- 8. Bestäm vilka samband mellan talen a, b, c som krävs för att matrisen

$$\begin{bmatrix} a & 1 & 2 \\ 0 & b & -1 \\ 0 & 0 & c \end{bmatrix}$$

blir diagonaliserbar.

- 9. Låt V vara ett n-dimensionellt vektorrum och $L \colon V \to V$ en linjär avbildning som uppfyller att L(L(v)) = L(v) för alla $v \in V$.
 - (a) Visa att den enda vektor som ligger i både Range(L) och Null(L) är nollvektorn.

(2 p)

(4 p)

(b) Visa att det finns en bas \mathcal{B} till V sådant att matrisrepresentationen av L m.a.p. basen \mathcal{B} är en diagonalmatris där alla diagonalelement är antingen 0 eller 1. (2 p)