DIGITAL CIRCUITS

Week-6, Lecture-4 K-map

Sneh Saurabh 7th September, 2018

Digital Circuits: Announcements/Revision

Digital Circuits Combinational Circuit Design

K-Map: Bigger combination, fewer literals

- The number of adjacent squares that may be combined must always represent a number that is a power of two, such as 1, 2, 4, and 8 [otherwise number of literals will not reduce]
- As more adjacent squares are combined, we obtain a product term with fewer literals

For three variables function:

- One square represents one minterm, giving a term with three literals
- Two adjacent squares represent a term with two literals
- Four adjacent squares represent a term with one literal
- Eight adjacent squares encompass the entire map and produce a function that is always equal to 1

K-Map: Three variables simplification (reuse squares)

Simplify $F(x, y, z) = \Sigma m(0, 2, 4, 5, 6)$

- First represent the given function on K-map
- Find possible adjacent squares:
 - $> m_0, m_2, m_4 \text{ and } m_6 := z'$
 - $ightharpoonup m_4$ and m_5 : = xy'z' + xy'z = xy'

$$f(x,y,z)=z'+xy'$$

- The same square is allowed to be combined multiple times (in different combinations)
- It is better to combine squares than leave it isolated (combination reduces number of literals)

K-Map: Three variables simplification (from SOP)

Problem: F(A, B, C) = A'C + A'B + AB'C + BC

- Express the above function as a sum of minterms
- Find the minimal sum-of-products expression
- First represent the given function on the K-map
 - ➤ Mark 1 in K-map corresponding to each product term
 - Product term is identified on K-map by intersection of literals
- Given K-map, expressing a function in minterm is straightforward

$$F(A, B, C) = \Sigma m(1, 2, 3, 5, 7)$$

- Combine squares:
 - $\triangleright m_1, m_3, m_5$ and m_7 : C
 - $> m_3$ and m_2 : A'B

K-Map: Four variables

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m ₁₅	m ₁₄
m_8	m_9	m_{11}	m_{10}

- Four variables:
 - ➤ Sixteen minterms: 16 squares
- Rows/columns are arranged as Gray code
 - ➤ Only one bit changes in value from one adjacent column/row to the next
- Minterm corresponding to each square is obtained by concatenation of row-number and column-number
 - \triangleright Example: Consider square in second row, third column m_7 : row is 01 and column is 11

K-Map: Four variables minimization

- Procedure similar as for three variables
 - > Combine adjacent squares to get rid of literals
- K-map is considered to lie on a surface with:
 - top and bottom edges touch each other to form adjacent squares
 - > right and left edges touch each other to form adjacent squares
 - $\succ m_3$ and m_{11} are adjacent
 - $\succ m_{12}$ and m_{14} are adjacent

K-Map: Bigger combination, fewer literals

For four variables function:

- One square represents one minterm, giving a term with four literals
- Two adjacent squares represent a term with three literals
- Four adjacent squares represent a term with two literals
- Eight adjacent squares represent a term with one literal
- Sixteen adjacent squares encompass the entire map and produce a function that is always equal to 1

K-Map: Four variables simplification

Simplify:
$$F(w, x, y, z) = \Sigma m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$

First represent the given function on K-map

- Find possible adjacent squares:
 - $rac{1}{2}m_0, m_1, m_4, m_5, m_{12}, m_{13}, m_8 \text{ and } m_9 := y'$
 - $ightharpoonup m_2$, m_6 , m_0 and m_4 : = w'z'
 - $> m_6, m_{14}, m_4$ and $m_{12} := xz'$

$$f(x,y,z) = y' + w'z' + xz'$$

K-Map: Four variables simplification (from SOP)

Problem:

Simplify the Boolean function F(A,B,C,D) = A'B'C' + B'CD' + A'BCD' + AB'C'

- First represent the given function on the Kmap
 - \triangleright A'B'C': m_0 and m_1 , B'CD': m_2 and m_{10}
 - > A'BCD': $m_6 AB'C'$: m_8 and m_9
- Combine squares:
 - $> m_0, m_1, m_8$ and m_9 : B'C'
 - $> m_0, m_2, m_8 \text{ and } m_{10}$: B'D'
 - $> m_2$ and m_6 : A'CD'
- F(A,B,C) = B'C' + B'D' + A'CD'

K-Map: Five variables

- Five variables: 32 minterms: 32 squares
- Two four-variable K-maps can be used to represent the function
- Two K-maps differ by one variable: A = 0 and A = 1
 - ightharpoonup Minterms m_0 to m_{15} : belong to A=0
 - ightharpoonup Minterms m_{16} to m_{31} : belong to A=1
- Each four-variable K-map retains the previously defined adjacency when taken separately
- Each square in A=0 K-map is adjacent to corresponding square in A=1 K-map $(m_4 \text{ and } m_{20})$, $(m_{15} \text{ and } m_{31})$,

K-Map: Five variables representation

Simplify:

 $F(A, B, C, D, E) = \Sigma m(0, 2,4,6,9,13,21,23,25,29,31)$

- First represent the given function on the K-map
- Minterms m_0 to m_{15} : belongs to A = 0: Six terms
- Minterms m_{16} to m_{31} : belongs to A = 1: Five Terms

K-Map: Five variables simplification

- Find possible adjacent squares
- Four squares in A = 0 are combined: A'B'E'
- Four squares in the last two rows in both A = 0 and A = 1 can be combined: BD'E
- Four squares in the center for A = 1: ACE

$$f(A, B, C, D, E) = A'B'E' + BD'E + ACE$$