GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I &II (NEW) EXAMINATION - SUMMER-2019

Subject Code: 3110014 Date: 06/06/2019

Subject Name: Mathematics – I

Time: 10:30 AM TO 01:30 PM Total Marks: 70

- **Instructions:**
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- Q.1 (a) Use L'Hospital's rule to find the limit of $\lim_{x\to 1} \left(\frac{x}{x-1} \frac{1}{\ln x}\right)$.

 (b) Define Gamma function and evaluate $\int_0^\infty e^{x^2} dx$.

 (c) Evaluate $\int_0^3 \int_{\frac{\sqrt{x}}{3}}^1 e^{y^2} dy dx$.

 O3

 04

 07
- Q.2 (a) Define the convergence of a sequence (a_n) and verify whether the sequence whose n^{th} term is $a_n = \left(\frac{n+1}{n-1}\right)^n$ converges or not.
 - (b) Sketch the region of integration and evaluate the integral $\iint_R (y 2x^2) dA$ where R is the region inside the square |x| + |y| = 1.
 - (c) (i) Find the sum of the series $\sum_{n\geq 2} \frac{1}{4^n}$ and $\sum_{n\geq 1} \frac{4}{(4n-3)(4n+1)}$. (ii) Use Taylor's series to estimate $sin38^\circ$.
 - OR
 - (c) Evaluate the integrals $\int_0^\infty \int_0^\infty \frac{1}{(1+x^2+y^2)^2} dx dy \quad \text{and} \quad \int_0^1 \int_{\sqrt[3]{z}}^1 \int_0^{\ln 3} \frac{\pi e^{2x} \sin \pi y^2}{y^2} dx dy dz.$
- Q.3 (a) If an electrostatic field E acts on a liquid or a gaseous polar dielectric, the net dipode moment P per unit volume is $P(E) = \frac{e^E + e^{-E}}{e^E e^{-E}} \frac{1}{E}$. Show that $\lim_{E \to 0^+} P(E) = 0$.
 - (b) For what values of the constant k does the second derivative test guarantee that $f(x,y) = x^2 + kxy + y^2$ will have a saddle point at (0,0)? A local minimum at (0,0)?
 - (c) Find the series radius and interval of convergence for $\sum_{n=0}^{\infty} \frac{(3x-2)^n}{n}$. For what values of x does the series converge absolutely?

OR

- Q.3 (a) Determine whether the integral $\int_0^3 \frac{dx}{x-1}$ converges or diverges. 03
 - (b) Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.

(c)	Check		convergence			series	07		
$\sum_{n=1}^{\infty} \frac{(lnn)^3}{n^3}$ and $\sum_{n=0}^{\infty} (-1)^n (\sqrt{n+\sqrt{n}} - \sqrt{n})$.									

Q.4 (a) Show that the function
$$f(x,y) = \frac{2x^2y}{x^4+y^2}$$
 has no limit as (x,y) approaches to $(0,0)$.

(b) Suppose
$$f$$
 is a differentiable function of x and y and $g(u, v) = f(e^u + sinv, e^u + cosv)$. Use the following table to calculate $g_u(0,0), g_v(0,0), g_u(1,2)$ and $g_v(1,2)$.

$\frac{\partial u}{\partial x}$							
	f	g	f_{x}	f_y			
(0,0)	3	6	4	8			
(1,2)	6	3	2	5			

(c) Find the Fourier series of
$$2\pi$$
 -periodic function $f(x) = 07$ $x^2, 0 < x < 2\pi$ and hence deduce that $\frac{\pi^2}{6} = \sum_{n=0}^{\infty} \frac{1}{n^2}$.

OR

Q.4 (a) Verify that the function
$$u = e^{-\alpha^2 k^2 t} \cdot sinkx$$
 is a solution f the heat conduction euation $u_t = \alpha^2 u_{xx}$.

(b) Find the half-range cosine series of the function
$$f(x) = \begin{cases} 2, & -2 < x < 0 \\ 0, & 0 < x < 2 \end{cases}$$

(c) Find the points on the sphere
$$x^2 + y^2 + z^2 = 4$$
 that are closest to and farthest from the point $(3,1,-1)$.

Q.5 (a) Find the directional derivative
$$D_u f(x, y)$$
 if $f(x, y) = x^3 - 3xy + 4y^2$ and u is the unit vector given by angle $\theta = \frac{\pi}{6}$. What is $D_u f(1,2)$?

(b) Find the area of the region bounded y the curves
$$y = sinx$$
, $y = 04$ $cosx$ and the lines $x = 0$ and $x = \frac{\pi}{4}$.

Prove that
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
 is diagonalizable and use it to find A^{13} .

OR

Q.5 (a) Define the rank of a matrix and find the rank of the matrix
$$A = \begin{bmatrix} 2 & -1 & 0 \\ 4 & 5 & -3 \\ 1 & -4 & 7 \end{bmatrix}$$
.

(b) Use Gauss-Jordan algorithm to solve the system of linear equations
$$2x_1 + 2x_2 - x_3 + x_5 = 0$$

$$-x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0$$

$$x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0$$

$$x_1 + x_2 - 2x_3 - x_5 = 0$$

$$x_3 + x_4 + x_5 = 0$$

(c) State Cayley-Hamilton theorem and verify if for the matrix
$$A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix}$$
.

07