期末复习

网络协议分析

重要章节: IP 协议

第一章: 网络协议、网络协议分层(计算机网络)

链路层协议: PPP 协议(了解)、以太网协议(计算机网络)、硬件设备

ARP 协议:原理、工作流程等

IP 协议:分片、校验和、5 类地址类型、进制转化,根据掩码与 IP 地址求子网地址范围,有关子网的计算,子网划分(定长划分、变长划分), IP 选路(直接、间接交付)、路由表的设计、路由聚合等

路由协议(计算机网络): RIP 协议(协议原理,路由表更新方法)、 OSPF 协议(协议原理、最短路径优先算法、分层路由与 5 类链路通告)

传输层协议: 出错控制、流量控制、拥塞控制、连接管理

网络协议帧分析

通过 WireShark 抓包软件抓取了一个完整的 Ethernet 数据帧,如下所示。请回答下列问题:

C8 8D 83 A9 F6 F7 98 EE

CB 2E 76 9E 08 00 45 00

00 28 60 CE 40 00 40 06

33 4B 0A 19 0B 0D 65 25

2C 6C CF 9C 01 BB D3 4E

69 7A 75 FB 2B 6A 50 14

00 00 59 93 00 0

该数据帧的数据来自于网络层什么协议? IP

网络协议帧分析

通过 WireShark 抓包软件抓取了一个完整的 Ethernet 数据帧,如下所示。请回答下列问题:

C8 8D 83 A9 F6 F7 98 EE

CB 2E 76 9E 08 00 45 00

00 28 60 CE 40 00 40 **06**

33 4B 0A 19 0B 0D 65 25

2C 6C CF 9C 01 BB D3 4E

69 7A 75 FB 2B 6A 50 14

00 00 59 93 00 0

该数据帧的数据来自于运输层什么协议? TCP (06), 如果 UDP 是 17

IP header

Total length VER HLEN DS 4 bits 16 bits 4 bits 8 bits **Identification Fragmentation offset** Flags 16 bits 3 bits 13 bits **Header checksum** Time To Live **Protocol** 8 bits 8 bits 16 bits **Source IP address** 32 bits **Destination IP address** 32 bits **Option**

网络协议帧分析

通过 WireShark 抓包软件抓取了一个完整的 Ethernet 数据帧,如下所示。请回答下列问题:

C8 8D 83 A9 F6 F7 98 EE

CB 2E 76 9E 08 00 45 00

00 28 60 CE 40 00 40 06

33 4B 0A 19 0B 0D 65 25

2C 6C CF 9C 01 BB D3 4E

69 7A 75 FB 2B 6A 50 14

00 00 59 93 00 0

该数据帧的源主机 IP 地址是多少? 10.25.11.13

网络协议帧分析

通过 WireShark 抓包软件抓取了一个完整的 Ethernet 数据帧,如下所示。请回答下列问题:

C8 8D 83 A9 F6 F7 98 EE

CB 2E 76 9E 08 00 45 00

00 28 60 CE 40 00 40 06

33 4B 0A 19 0B 0D 65 25

2C 6C CF 9C 01 BB D3 4E

69 7A 75 FB 2B 6A 50 14

00 00 59 93 00 0

该数据帧的数据帧的源端口是多少? 53148 目的端口是多少? 443

数据报大小与网络 MTU

- 每个 IP 分组都封装在帧中传输
 - 在 Internet 中,数据报可能穿越多种不同的物理网络到 达目的地
 - MTU (Maximum Transfer Unit): 物理网络所能传输的数据 的最大长度
 - 不同物理网 , MTU 不同!
- 如何确定分组的大小?(IP 的解决思路)
 - IP 向高层隐藏底层网络,方便用户通信, IP 协议自己 处理不同物理网络的 MTU 要求
 - 方法:
 - 对于高层协议■数据报最大长度 = 216Byte (独立于任何物理网 络的 MTU)
 - 面对物理网络≤提供 Fragmentation (分片) 和 reassembly (重组) 机制

Fragmentation (分片)

Fragmentation: 在MTU较小的网络上,IP将较长的数据报划分成更小的部分 MT MT KUV Fragment NET₁ NET, 分片的大小: 最接近网络的 MTU 600 1200 0 H Data Н Data 1 Н Data 3 Data 2 Offset = 0**Offset** = 600/8 = 75

TCP/IP Protocol Analysis

Offset = 1200/8 = 150

Fragmentation Operation

- To be fragmented by routers and a source host
- A datagram can be fragmented more than once
- An IP header must be included in each fragment
 - All fragments have the same identification number as the original datagram
 - The values of the three fields must be changed :
 - Flags, Fragmentation offset, Total length
 - Checksum must be recalculate
- The reassembly of datagram is done only by the destination host
 - 原因
 - Each fragment is an independent datagram
 - Maybe travel through different routes

Fragmentation Example

Reassembly (重组操作)

- Only by destination host
 - Connectionless → 各分片的传输路径可不同
 - 有重组时限 Reassembly Timer
 - 若丢失分片,则无法重组 IP 分组
- 目的主机能区分和重组不同的源 IP 报文

如何重组——重组表

- 重组表的功能:
 - 找出一个分片属于哪一个原始的数据报
 - 将属于同一个数据报的分片进行排序

分片长度 =400 Offset=50 M=1

(源 IP , IP 标识) 决定分片属于哪一个原 始的数据报

A predetermined amount of time in which all fragments must arrive

Checksum

- RFC 1071 (RFC 1141 , 1624 , 1936) , 附录 C
- IP 分组的校验和只包括分组首部,而不包括数据

Example

Checksum: 0x D190

11010001 10010000

01000101 00000000

0000000 00011110

0000000 0000001

0000000 00000000

00001010 00010001

0000000 00000000

01100100 00001100

00001110 00000101

子网划分方法

- Fix length subnetting (定长子网划分)
 - 共享同一 IP 网络前缀(Net id + Subnet id)的子网大小相同
 - 划分依据:子网数量与子网内主机数量折中
 - •特点:划分简单,地址分配较浪费
- Variable length subnetting (变长子网划分)
 - 共享同一 IP 网络前缀(Netid)的子网大小不同
 - 划分依据:子网内的主机数量
 - 特点:灵活、高效利用地址空间
 - 变长子网掩码(Variable-Length Subnet Mask , VLSM)

Subnetting Example 4

本子网内主机数 + 本子网内路由器接口数 + 2

Example 3 —— 定长划分

假设使用 B 类地址块

129.1.0.0/26

Net 2: 129.1.0.64/26

Net 1:

Net 3: 129.1.0.128/26

Example 3 —— 变长划分

Net 1: 211.1.0.0/27

Net 2: 211.1.0.32/29

Net 3: 211.1.0.64/26

Net 4: 211.1.0.128/26

Net 5: 211.1.0.192/26

VLS

M

Discussion 1

- Net 1(/27):
 211.1.0.0/27
 211.1.0.02/411.0.32729
- Net 2(/29):
- 211.1.0.32 ~ 211.1.0.39
 Net 3(/26) :
 211.1.0.64/26
 211.1.0.64 ~ 211.1.0.127
- Net 4(/26):
 211.1.0.128/26
 211.1.0.128 ~ 211.1.0.191
- Net 5(26):
 211.1.0.192/26
 211.1.0.192 ~ 211.1.0.255

掩码中 0 bit 个数 ⇒32-27 = 5 子网中 IP 地址个数 ⇒25 = 32

问题:不能 Net3的IP地址范围能否是 211.1.0.40~ 211.1.0.103 ?

40 0010100064 01000000

Discussion 2

- 为 Net 4 分配 IP 地址
 - 211.1.0.128/26 (211.1.0.128 ~ 211.1.0.191)
- 分析
 - 需要分配 IP 地址的设备:路由器、主机
 - 可以分配的 IP 地址: 211.1.0.129 ~ 211.1.0.190
- 解答
 - 路由器接入 Net 4 的接口 IP 地址: 211.1.0.129
 - Net 4中的主机 IP 地址:211.1.0.130 ~ 211.1.0.190

Assign IP Address

• Net 2: 211.1.0.32/29 211.1.0.32 ~ 211.1.0.38

• Net 4: 211.1.0.128/26211.1.0.128 ~ 211.1.0.190

Example 3 -

Net 1: 211.1.0.0/29

Net 2: 211.1.0.64/26

Net 3: 211.1.0.128/26

如果: Net 4: 211.1.0.192/28

那么 Net 5

211.1.1.0/26

Example 3 —— 编址技巧

Net 2: 211.1.0.0/26

Net 3: 211.1.0.64/26

Net 5: 211.1.0.128/26

Net 4: 211.1.0.192/28

Net 1: 211.1.0.208/29

```
按照子网空间的大小,从大到小逐次确定变
长掩码长度
```

- Net2 , Net3 , Net5 (Hostid = 6bit)
- Net4 (Hostid = 4bit)
- Net1 (Hostid = 3bit)
- 第一个掩码: /26,将地址空间分为4个1级子网(地址空间=64)
 - 三个1级子网地址空间分配给Net2, Net3, Net5
- 对于剩下的那个1级子网空间(64),使用第二个掩码:/28,将地址空间分为4个2级子网(地址空间=16)
 - 给 Net4 分配—个 2 级子网

使用第三个掩码: /29 , 将剩下的某个 2级子网分成 2 个 3 级子网(地址空间 = 8)

Example 3 —— 编址技巧

- 第一个掩码: /26, 将某个 C 类地址空间分为 4 个 1 级子网(地址空间 = 64)
- · 第二个掩码: /28, 将剩下的某个1级子网地址空间分为4个2级子网(地址空间=16)
- 第三个掩码: /29 , 将剩下的某个 2 级子网分成 2 个 3 级子网 (地址空间 = 8)
 Address space

Example 2

• 路由器 R1 的路由表如下:

Mask	Destination	Next Hop	Interface
255.255.0.0	110.70.0.0		m0
255.255.0.0	180.14.0.0		m2
255.255.0.0	190.17.0.0		m1
255.255.0.0	130.4.0.0	190.17.6.5	m1
255.255.0.0	135.9.0.0	190.17.6.5	m1
255.255.0.0	140.6.0.0	180.14.2.5	m2
0.0.0.0	0.0.0.0	110.70.4.6	m0

根据以上路由表画出网络拓扑图。

Solution

Mask	Destination	Next Hop	
Interface			
255.255.0.0	110.70.0.0		m0
255.255.0.0	180.14.0.0		m2
255.255.0.0	190.17.0.0		m1
255.255.0.0	130.4.0.0	190.17.6.5	m1
255.255.0.0	135.9.0.0	190.17.6.5	m1
255.255.0.0	140.6.0.0	180.14.2.5	m2
120 4 0 0/16	_ 0.0.0.0	110.70.4.6	m0
130.4.0.0/16	100 17	0.0/16	
135.0.0.0/16	6.5 190.17.	0.0716	
135.9.0.0/16	m1	~m0	
	R1 🚅	110.70.0	0.0/16
140.6.0.0/16	m2		
	2.5	0.0/16	的其余
	ICP/II- Allaly	510	部分

Updating the Routing Table

RIP Message from R_B

Dst.	Metric
NET1	1
NET3	1
NET4	3
NET5	2
NET6	2

RIP Message from R_B
after increment

	Dst.	Metric
	NET1	1 2 1
> [NET3	2
	NET4	4
	NET5	3
	NET6	3

R_A 路由表

Dst.	Nexthop	Metric
NET1	-	1
NET2	R _E	2
NET3	$R_{\rm B}$	2
NET4	$R_{\scriptscriptstyle E}$	2
NET5	R _E	3
NET6	R_{e}	2

R_A's RIP Message

Dst.	Metric
NET1	1
NET2	2
NET3	2
NET4	2
NET5	3
NET6	3

Transport Layer Protocol

- Responsibilities
 - To create a process-to-process communication
 - 使用两个端点地址(IP +端口号)通信
 - To provide a flow-control and error-control mechanism at the transport layer
 - Error control: ARQ > Window based control
 - Acknowledgement packet
 - Time-out
 - Retransmission
 - Flow control: sliding window protocol → Window based control
 - To provide a congestion control
 - To provide a *connection mechanism* for the processes
- TCP: a connection-oriented, reliable transport protocol

拥塞举例

