Lecture 22: NP-Completeness

Polynomial-Time Reductions

- Intuitively, $L_1 \leq_P L_2$ means L_1 is no harder than L_2 .
- Given an algorithm A_2 for the decision problem L_2 , we can develop an algorithm A_1 to solve L_1 :

• If A_2 is polynomial-time algorithm, so is A_1 .

Theorem

If $L_1 \leq_P L_2$ and $L_2 \in \mathbf{P}$, then $L_1 \in \mathbf{P}$.

Reduction between Decision Problems

Lemma (Transitivity of the relation \leq_P)

If $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$, then $L_1 \leq_P L_3$.

Proof.

- Since $L_1 \leq_P L_2$, there is a polynomial-time reduction f_1 from L_1 to L_2 .
- Similarly, since $L_2 \leq_P L_3$, there is a polynomial-time reduction f_2 from L_2 to L_3 .
- Note that $f_1(x)$ can be calculated in time polynomial in size(x). In particular this implies that $size(f_1(x))$ is polynomial in size(x). $f(x) = f_2(f_1(x))$ can therefore be calculated in time polynomial in size(x).
- Furthermore x is a yes-input for L_1 if and only if f(x) is a yes-input for L_3 (why). Thus the combined transformation defined by $f(x) = f_2(f_1(x))$ is a polynomial-time reduction from L_1 to L_3 . Hence $L_1 \leq_P L_3$.

The Class **NP**-Complete (**NPC**)

We have finally reached our goal of introducing class NPC.

Definition

The class **NPC** of **NP**-complete problems consists of all decision problems L such that

- \bullet $L \in NP$;
- ② for every $L' \in \mathbf{NP}$, $L' \leq_P L$.

Intuitively, **NPC** consists of all the hardest problems in **NP**.

NP-Completeness and Its Properties

Let *L* be any problem in **NPC**.

Theorem

- If there is a polynomial-time algorithm for L, then there is a polynomial-time algorithm for every $L' \in \mathbf{NP}$.
- ② If there is no polynomial-time algorithm for L, then there is no polynomial-time algorithm for any $L' \in \mathbf{NPC}$.

Proof.

- **1** By definition of **NPC**, for every $L' \in \mathbf{NP}$, $L' \leq_P L$. Since $L \in \mathbf{P}$, by the theorem on Slide 6, $L' \in \mathbf{P}$.
- 2 By the previous conclusion.

NP-Completeness and Its Properties

According to the above theorem, either

- 1 all NP-Complete problems are polynomial time solvable, or
- 2 all NP-Complete problems are not polynomial time solvable.

This is the major reason we are interested in NP-Completeness.

The Classes P, NP, and NPC

Recall

 $P \subseteq NP$.

Question 1

Is $NPC \subseteq NP$?

Yes, by definition!

Question 2

Is P = NP?

Open problem! Probably very hard

It is generally believed that $\mathbf{P} \neq \mathbf{NP}$.

The Classes P, NP, and NPC

The Class **NP**-Complete (**NPC**)

From the definition of **NP**-complete, it appears impossible to prove one problem $L \in \mathbf{NPC}$!

- By definition, it requires us to show every $L' \in \mathbf{NP}$, $L' \leq_P L$.
- But there are infinitely many problem in NP, so how can we argue there exists a reduction from every L' to L?
- To prove the first **NP**-complete problem, we have to use the definition of **NP**, and the simplicity of the TM helps again.

Once we have proved the first **NP**-complete problem, by to the transitivity property of the relation \leq_p , we have an easier way to show that a problem $L \in \mathbf{NPC}$:

- (a) $L \in NP$;
- (b) for some $L' \in \mathbf{NPC}$, $L' \leq_P L$.

Proof.

Let L'' be any problem in **NP**. Since L' is **NP**-complete, $L'' \leq_p L'$. Since $L' \leq_p L$, by transitivity, $L'' \leq_p L$.

Cook's Theorem (Cook-Levin Theorem)

3-SAT ∈ **NPC**

Theorem

3- $SAT \in NPC$.

Proof.

Cook's Theorem actually proves that SAT \in **NPC** when the formula is in conjunctive normal form. We will reduce this problem to 3-SAT. Given a Boolean formula in conjunctive normal form, with k>3 literals, say $C=(\lambda_1\vee\lambda_2\vee\cdots\vee\lambda_k)$, we introduce new variables y_1,\ldots,y_{k-1} and replace C with

$$(\lambda_1 \vee \lambda_2 \vee y_1) \wedge (\overline{y_1} \vee \lambda_3 \vee y_2) \wedge (\overline{y_2} \vee \lambda_4 \vee y_3) \wedge \cdots \\ \wedge (\overline{y_{k-4}} \vee \lambda_{k-2} \vee y_{k-3}) \wedge (\overline{y_{k-3}} \vee \lambda_{k-1} \vee \lambda_k)$$

The transformed formula is satisfiable iff the original formula is satisfiable (why?).

Proving that problems are **NPC**

From SAT and 3-SAT, we will show the following problems are **NP**-complete.

- O DCLIQUE:
 - by showing 3-SAT \leq_{P} DCLIQUE
 - The reduction used is not natural.
- Decision Vertex Cover (DVC):
 - by showing DCLIQUE \leq_P DVC
 - The reduction used is very natural.
- Oecision Independent Set (DIS):
 - by showing $DCLIQUE \leq_P DIS$
 - The reduction used is very natural.

Problem: CLIQUE

Definition (Clique)

A clique in an undirected graph G = (V, E) is a subset $V' \subseteq V$ of vertices such that each pair $u, v \in V'$ is connected by an edge $(u, v) \in E$. In other words, a clique is a complete subgraph of G

Example

• a vertex is a clique of size 1, an edge a clique of size 2.

Find a clique with 4 vertices

CLIQUE

Find a clique of maximum size in a graph.

NPC Problem: DCLIQUE

The Decision Clique Problem DCLIQUE

Given an undirected graph G and an integer k, determine whether G has a clique with k vertices.

Theorem

 $DCLIQUE \in NPC$.

Proof

We need to show two things.

- (a) That $\mathrm{DCLIQUE} \in \mathbf{NP}$ and
- (b) That there is some $L \in \mathbf{NPC}$ such that

$$L \leq_P \text{DCLIQUE}.$$

Proof that $DCLIQUE \in NPC$

Claim (a)

DCLIQUE ∈ **NP**

Proof.

Proving (a) is easy.

- A certificate will be a set of vertices $V' \subseteq V$, |V'| = k that is a possible clique.
- To check that V' is a clique all that is needed is to check that all edges (u, v) with $u \neq v, u, v \in V'$, are in E.
- This can be done in time $O(|V|^2)$ if the edges are kept in an adjacency matrix (and even if they are kept in an adjacency list how?).

Claim (b)

There is some $L \in \mathbf{NPC}$ such that $L \leq_P \mathrm{DCLIQUE}$.

To prove (b) we will show that $3-SAT \leq_P DCLIQUE$.

- This will be the hard part.
- We will do this by building a 'gadget' that allows a reduction from the 3-SAT problem (on logical formulas) to the DCLIQUE problem (on graphs, and integers).

Recall that the input to 3-SAT is a logical formula ϕ of the form

$$\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_n$$

where each clause C_i is a triple of the form

$$C_i = y_{i,1} \vee y_{i,2} \vee y_{i,3}$$

where each literal $y_{i,j}$ is a variable or the negation of a variable.

Example

$$C_1 = (x_1 \lor \neg x_2 \lor \neg x_3), \ C_2 = (\neg x_1 \lor x_2 \lor x_3), \ C_3 = (x_1 \lor x_2 \lor x_3)$$

We will define a polynomial transformation f from 3-SAT to DCLIQUE

$$f:\phi\mapsto (G,k)$$

that builds a graph G and integer k such that ϕ is a Yes-input to 3-SAT if and only if (G, k) is a Yes-input to DCLIQUE.

- Suppose that ϕ is a 3-SAT formula with n clauses, i.e., $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_n$.
- We start by setting k = n.
- We now construct the graph G = (V, E).
- For each clause $C_i = x_{i,1} \lor x_{i,2} \lor x_{i,3}$ we create 3 vertices, v_1^i, v_2^i, v_3^i , in V so G has 3n vertices. We will label these vertices with the corresponding variable or variable negation that they represent. (Note that many vertices might share the same label) Example
- 2 We create an edge between vertices v_j^i and $v_{j'}^{i'}$ if and only if the following two conditions hold:
 - (a) v_j^i and $v_{j'}^{i'}$ are in different triples, i.e., $i \neq i'$, and
 - (b) v_j^i is not the negation of $v_{j'}^{i'}$. Example

Note that the transformation maps all 3-SAT inputs to some DCLIQUE inputs, i.e., it does not require that all DCLIQUE inputs have pre-images from 3-SAT inputs.

Example

$$\phi = C_1 \wedge C_2 \wedge C_3 C_1 = (x_1 \vee \neg x_2 \vee \neg x_3), C_2 = (\neg x_1 \vee x_2 \vee x_3), C_3 = (x_1 \vee x_2 \vee x_3)$$

Return

- Observe that the assignment X_1 =false, X_2 =false, X_3 =true satisfies ϕ (a yes-input for 3-SAT).
- This corresponds to the clique of size 3 comprising the $\neg x_2$ node in C_1 , the x_3 node in C_2 , and the x_3 node in C_3 (a yes-input for DCLIQUE).

Correctness

We claim that a 3-CNF formula ϕ with k clauses is satisfiable if and only if $f(\phi) = (G, k)$ has a clique of size k.

- \Rightarrow : Suppose ϕ is satisfiable. Consider the satisfying truth assignment.
 - Each of the k clauses has at least one true literal.
 - Select one such true literal from each clause.
 - Observe that these true literals must be logically consistent with each other (i.e., for any i, x_i and $\neg x_i$ will not both appear).
 - Recall that in our construction of G we connect a pair of vertices if they are in different clauses and are logically consistent.
 - Thus, for every pair of these literals, there must be an edge in G connecting the corresponding vertices.
 - Thus these *k* vertices must form a clique.

- \leftarrow : Suppose G has a clique of size k.
 - Observe that there is no edge between vertices in the same clause.
 - Hence, each clause 'contributes' exactly one vertex to the clique.
 - Moreover, since the construction of G connects only logically consistent vertices by an edge, every vertex in the clique must be logically consistent.
 - Hence we can assign all the vertices in the clique to be true, and this truth assignment makes ϕ satisfiable.

- Note that the graph G has 3k vertices and at most 3k(3k-1)/2 edges and can be built in $O(k^2)$ time
- So f is a polynomial-time reduction.
- We have therefore just proven that $3\text{-SAT} \leq_P \text{DCLIQUE}$.
- Since we already know that 3-SAT ∈ NPC and have seen that DCLIQUE ∈ NP, we have just proven that DCLIQUE ∈ NPC.

Problem: Independent Set

Definition

An independent set is a subset I of vertices in an undirected graph G such that no pair of vertices in I is joined by an edge of G.

Example

Optimization Problem

Given an undirected graph G, find an independent set of maximum size.

NPC Problem: Decision Independent Set (DIS)

Decision Problem (DIS)

Given an undirected graph G and an integer k, does G contain an independent set consisting of k vertices?

Theorem

 $DIS \in NPC$.

Proof.

It is very easy to see that $DIS \in NP$.

• A certificate is a set of vertices $S \subseteq V$ with |S| = k and, in $O(|S|^2) = O(|V|^2)$ time we can check whether or not S is an independent set.

In the next slide we will see that $\overline{DCLIQUE} \leq_P \overline{DIS}$, completing the proof.

$DIS \in NPC$: Complement of a Graph

Definition

The complement of a graph G = (V, E) is defined by $\overline{G} = (V, \overline{E})$, where

$$\overline{E} = \{(u, v) \mid u, v \in V, u \neq v, (u, v) \notin E\}.$$

Example

DIS ∈ NPC

We can define a transformation from DCLIQUE to DIS:

$$f: (G = (V, E), k) \mapsto (\overline{G} = (V, \overline{E}), k)$$

Claim

We claim (G, k) is a yes-input to DCLIQUE if and only if (\bar{G}, k) is a yes-input to DIS.

Proof.

 \Rightarrow : Let $V^{'}$ be a clique of size k of G. Hence in \overline{G} , there is no edge between any pair of vertices in $V^{'}$ which means $V^{'}$ is a IS of \overline{G} of size k. \Leftarrow : Let $V^{'}$ be a IS of size k in \overline{G} . Hence in G, every pair of vertices in $V^{'}$ will be connected by an edge. Hence $V^{'}$ is a clique of G of size K. \square

Moreover, f can be calculated in polynomial time. We have just shown that $\overline{DCLIQUE} \leq_P \overline{DIS}$ and completed the proof that $\overline{DIS} \in \overline{NPC}$.

Problem: VC

Definition (Vertex Cover)

A vertex cover of G is a set of vertices such that every edge in G is incident to at least one of these vertices.

Example

Find a vertex cover of G of size two

NPC Problem: DVC

The Vertex Cover Problem (VC)

Given a graph G, find a vertex cover of G of minimum size.

The Decision Vertex Cover Problem (DVC)

Given a graph G and integer k, determine whether G has a vertex cover with k vertices.

NPC Problem: DVC...

Theorem

 $DVC \in NPC$.

Proof.

- Previously we showed that DVC \in **NP**.
- We now show that DCLIQUE \leq_P DVC.

• The conclusion then follows from the fact that $\mathrm{DCLIQUE} \in \mathbf{NPC}.$

Proof: $DVC \in NPC$

Proof.

Let k' = |V| - k. We define a transformation f from DCLIQUE to DVC:

$$f: (G = (V, E), k) \mapsto (\overline{G} = (V, \overline{E}), k')$$

• f can be computed (that is, \overline{G} and k' can be determined) in time $O(|V|^2)$ time.

Proof: $DVC \in NPC...$

Claim

We claim that a graph G has a clique of size k (yes-input of DCLIQUE) if and only if the complement graph \overline{G} has a vertex cover of size |V| - k (a yes-input of DVC).

Proof.

 \Rightarrow :

- Let V' be a clique of size k in G, then in \overline{G} , there is no edge between any two vertices in V'.
- Hence $V'' = V \setminus V'$ is a vertex cover of \bar{G} ;
- note that this is a vertex cover of size k' = |V| k.

Proof: $DVC \in NPC...$

Let V' be a vertex cover of \overline{G} of size |V| - k.

Let $V'' = V \setminus V'$.

• Note that |V''| = k.

Vertices in G' not in the veretex cover (no edge between them)

By the definition of vertex cover, for any $u, v \in V''$, then $(u, v) \notin \bar{E}$. Thus $(u, v) \in E$. Therefore V'' is a clique of size k in G.

NP-Hard Problems

Definition

A problem L is **NP**-hard if problem in **NPC** can be polynomially reduced to it (but L does not need to be in **NP**).

In general, the optimization versions of $\ensuremath{\mathbf{NP}}$ -Complete problems are $\ensuremath{\mathbf{NP}}$ -Hard.

Example

VC: Given an undirected graph G, find a minimum-size vertex cover. DVC: Given an undirected graph G and k, is there a vertex cover of size k?

If we can solve the optimization problem VC, we can easily solve the decision problem DVC.

- Simply run VC on graph G and find a minimum vertex cover S.
- Now, given (G, k), solve DVC(G, k) by checking whether $k \ge |S|$. If $k \ge |S|$, answer Yes, if not, answer No.

Epilogue: How to Deal with Hard Problems

- Heuristics: All the hardness results (undecidability, NP-hardness) hold for any algorithm that solves the problem in general (worst-case analysis). There are many efficient algorithms solving these problems for typical cases.
 - They run fast on typical inputs and find the optimal solutions (they may be slow on some contrived inputs).
 - They run fast on all inputs and typically find near-optimal solutions (they may return bad solutions on some contrived inputs).
- Approximation algorithms: All the hardness results show that finding the optimal solutions is difficult, but there are efficient algorithms for finding solutions that are at most c times worse than the optimal ones.
- Average-case analysis: By assuming the input follows some distribution, it is possible to design algorithms whose running time is good on average.