# Query Processing

### Dr Paolo Guagliardo

dbs-lecturer@ed.ac.uk



Fall 2018

Declarative queries (SQL, relational calculus) must be translated into a procedural language (relational algebra) to be executed

- ► Several ways (evaluation plans) to obtain the same answers
- Several algorithms available for each operator
- ► How do we find a **good** procedural query to execute?



# The system catalog (1)

Contains metadata and statistics about the database which are used to find the best way to evaluate a query

System-wide information, such as the page size

#### For each table

- table name, file name and file structure
- attribute names and types
- name of indexes on the table
- integrity constraints

#### For each index

- index name and structure (B-tree or hash)
- attributes of the search key

# The system catalog (2)

Commonly stored statistics about tables and indexes

Cardinality: number of tuples in each table

Size: number of pages for each table

Index cardinality: number of distinct search key values

of each index

Index size: number of pages for each index

Index height: number of non-leaf levels of each tree index

Index range: min & max values of search key in each index

### Access paths

Access path: a way in which the rows of a table can be retrieved

- A file scan
- ► An index plus a matching selection condition

#### For a condition $\theta$ in CNF

- A hash index matches  $\theta$  if there is a conjunct A = value for each attribute A in the search key of the index
- A tree index matches  $\theta$  if there is a conjunct A op value for each attribute A in a prefix of the search key of the index

where **op** 
$$\in \{<, \leq, =, \neq, \geq, >\}$$

# Examples of access paths (1)

Suppose we have a relation R over attributes A,B,C,D and the following selection conditions:

 $\theta_1 : A = 1 \land B = 2 \land C = 0$ 

 $\theta_2 : A = 1 \wedge B < 2 \wedge C = 0$ 

 $\theta_3$ :  $A=1 \wedge C=0$ 

A hash index for R on the search key (A, B, C)

lacktriangle Matches  $heta_1$ , but does **not** match  $heta_2$  and  $heta_3$ 

A tree index for R on the search key (A, B, C)

lacktriangle Matches  $heta_1$  and  $heta_2$ , but not  $heta_3$ 

# Examples of access paths (2)

Suppose we have a relation R over attributes A, B, C, D

#### Consider the condition $A = 1 \land B = 2 \land C = 0$

An index (hash or tree) on the search key (B, C)

- ightharpoonup can be used to retrieve tuples matching  $B=2 \wedge C=0$
- lacktriangleright retrieved tuples must be additionally filtered by A=1

#### Consider the condition $B = 2 \land C = 0 \land D > 3$

If we have an index on (B,C) and a tree index on  $\mathcal D$ 

- both indexes match (different parts of) the condition
- we can choose one of the indexes to retrieve tuples
- ▶ the conjuncts that are not matched must be checked

# Selectivity of access paths

Total number of pages retrieved when an access path is used

Most selective access path: retrieves the fewest pages

Selectivity depends on the conjuncts an index matches

- each conjunct acts as a filter on the table
- Reduction factor: the fraction of tuples satisfying a given conjunct
- can be estimated using information in the system catalog

#### Evaluation of selection

### Given a selection $\sigma_{\theta}(R)$

- If no index on R matches  $\theta$  we have to scan R
- ▶ If one or more indexes on R match  $\theta$ 
  - 1. use the **most selective** index to retrieve matching rows
  - 2. apply remaining conjuncts in  $\theta$  to the retrieved rows

### Evaluation of projection

Scan table or index (with an appropriate search key) and output required subset of fields for each tuple

### Duplicate elimination

Sort the table first, then do one pass to eliminate duplicates

### Projection with duplicate elimination

- 1. Scan R and produce tuples with desired attributes
- 2. Sort the tuples using all attributes as sorting key
- 3. Scan the sorted result to discard duplicates

If R has M pages, this costs  $O(M \log M)$  I/Os

### Improvement:

- Scan in (1) can be combined with first pass of sorting
- Scan in (3) can be combined with last pass of sorting

### Join processing

Join is the most common and expensive operation

### Several available join algorithms

- ► Nested Loops Join
- ► Block Nested Loops Join
- ► Index Nested Loop Join
- Sort-Merge Join
- ► Hash Join

### **Nested Loops Join**

Simplest algorithm to compute  $R \bowtie_{\theta} S$ 

- 1. for each page  $P_R$  of R do
- 2. **for each** page  $P_S$  of S **do**
- 3. **for each** tuple  $r \in P_R$  **do**
- 4. for each tuple  $s \in P_S$  do
- 5. **if** rs satisfies  $\theta$  **then**
- 6. add rs to result

R is the outer relation (scanned once) S is the inner relation (scanned multiple times)

If R has M pages and S has N pages, the cost is  $M+M\cdot N$  I/Os If R has m tuples and S has n tuples, the CPU cost is  $O(m\cdot n)$ 

### Block Nested Loops Join

If we have B buffer pages available we can:

- ▶ read R in blocks of B-2 pages
- ightharpoonup use one buffer page for reading the pages of S
- use one buffer page for output
- 1. for each block  $B_R$  of B-2 pages of R do
- 2. **for each** page  $P_S$  of S do
- 3. **for each** tuple  $r \in B_R$  **do**
- 4. for each tuple  $s \in P_S$  do
- 5. **if** rs satisfies  $\theta$  **then**
- 6. add rs to result

If R has M pages and S has N pages, cost is  $M + \left\lceil \frac{M}{B-2} \right\rceil \cdot N$  I/Os

### Index Nested Loops Join

If there is an index matching the join condition, make the indexed relation be the inner one

- 1. for each  $P_R$  of R do
- 2. **for each matching** page  $P_S$  of S **do**
- 3. **for each** tuple  $r \in P_R$  **do**
- 4. for each tuple  $s \in P_S$  do
- 5. **if** rs satisfies condition **then**
- 6. add rs to result

Cost depends on the index and the number of matching tuples Better than simple nested loops: it does not enumerate  $R \times S$ 

### Sort-merge join (1)

```
Consider R \bowtie_{\theta} S where \theta is R.A_1 = S.B_1 \wedge \cdots \wedge R.A_n = S.B_n
 1. Sort R on X = A_1, \ldots, A_n and S on Y = B_1, \ldots, B_n
 2. Set r := first tuple of R and s := first tuple of S
 3. while r \neq \mathsf{EOF} and s \neq \mathsf{EOF} do
         while r[X] < s[Y] do \{ r := next(R) \}
 4.
         while r[X] > s[Y] do \{s := next(S)\}
 5.
         Set p := s
 6.
         while r[X] = s[Y] do
 7.
 8.
            p := s
            while r[X] = p[Y] do
 9.
10.
                Add rp to result
                p := \mathsf{next}(S)
11.
12.
            r := \mathsf{next}(R)
13.
         Set s := p
```

# Sort-merge join (2)

Works only for equijoins (the condition is a conjunction of equalities)

#### Cost

- ▶ Sorting R costs  $O(M \log M)$  if R has M pages
- lacksquare Sorting S costs  $O(N \log N)$  if S has N pages
- Merging phase costs M+N I/Os if no partition of S is scanned multiple times otherwise  $O(M\cdot N)$  in the worst case

Typically the merging phase is just a single scan of each relation

- ▶ if at least one relation has **no duplicates** in the join attributes
- this is the case for key-foreign key joins (very common)

### Hash join (1)

Consider  $R \bowtie_{\theta} S$  where  $\theta$  is  $R.A_1 = S.B_1 \wedge \cdots \wedge R.A_n = S.B_n$ 

Partitioning phase: split R and S into partitions using a hash function on the values of  $\underbrace{A_1,\ldots,A_n}_{X}$  and  $\underbrace{B_1,\ldots,B_n}_{Y}$ 

1. Choose number of buckets  $\boldsymbol{k}$  and appropriate hash function  $\boldsymbol{h}$ 

for each 
$$r \in R$$
 do 
$$i := h(r[X])$$
 
$$H_i^R := H_i^R \cup \{r\}$$

$$\begin{aligned} & \textbf{for each } s \in S \textbf{ do} \\ & i := h(s[Y]) \\ & H_i^S := H_i^S \cup \{s\} \end{aligned}$$

Probing phase: compare tuples in each partition of R only with tuples in the corresponding partition of S

$$\begin{aligned} & \textbf{for} \ i=1,\ldots,k \ \textbf{do} \\ & \text{read} \ H_i^R \ ; \ \text{read} \ H_i^S \\ & \text{add} \ H_i^R \bowtie_{\theta} H_i^S \ \text{to result} \end{aligned}$$

# Hash join (2)

Works only for equijoins (the condition is a conjunction of equalities)

#### Cost

- Partioning phase: scan R and S once and write them out once Cost is 2(M+N) I/Os if R has M pages and S has N pages
- Probing phase: scan each partition once  $(M+N\ \text{I/Os})$  if there are no **overflows**

Total cost is 3(M+N)

If there are overflows, recursive partitioning is used The cost becomes  $O((M+N)\log(M+N))$ 

### Other operations

### Set operations

- Expensive aspect is given by duplicate elimination
- Same technique as for projection (using sorting)

### Group by

- ► Typically implemented through sorting
- ► If there is a **tree index** matching the grouping attributes tuples can be retrieved in appropriate order without sorting

### Aggregation

Carried out using temporary counters in main memory

# Query optimization

Query plan: relational algebra tree extended with annotations

- which access path to use for each table
- which implementation method to use for each operator

### Optimization involves the following steps:

- 1. Enumerating alternative plans to evaluate the query
- 2. Estimating the cost of each enumerated plan
- 3. Choosing the plan with the lowest estimated cost

SELECT A, B, D FROM R, S WHERE A=1 AND B=C AND D>5



# Pipelined evaluation

Pipelining: the result of an operator is passed directly to the next

Materialization: intermediate result is written to a temporary table

A unary operator is applied on-the-fly if its input is pipelined

#### Iterator interface

- ► Hides the internal implementation details of each operator
- Supports functions:

open initialize, allocate buffers, pass arguments in
get\_next retrieve and process tuples from input nodes
close deallocate buffers and state information

### Alternative plans

- ► Selections and cross-products can be combined into joins
- Joins can be extensively reordered
- ► Selections and projections can be pushed ahead of joins



# Using indexes

If there are indexes, other plans may be available



#### Join order

Join is associate and commutative

⇒ many combinations of binary joins to get same result

Linear trees: at least one child of each join node is a base table

Left-deep trees: the right child of each join node is a base table

Bushy trees: non-linear trees

Advantages of left-deep trees:

- if too many alternatives we need to prune the search space
- allow us to generate fully pipelined plans

### Estimating plan cost

I/O cost given by:

- 1. Reading the input tables (possibly more than once)
- 2. Materializing intermediate results (if needed)
- 3. Sorting final result (for duplicate elimination and ordering)

### Estimating result size

Selection: input size multiplied by reduction factor of condition

Join: max result size (= product of input tables sizes) multiplied by reduction factor of the join condition

Reduction factors are estimated using statistics periodically collected about (a sample of) the data

### Reduction factor

$$RF(A=c) \simeq \frac{1}{m}$$

where m is the number of distinct values in  $\boldsymbol{A}$ 

$$RF(A=B) \simeq \frac{1}{\max(m,n)}$$

 $RF(A=B) \simeq \frac{1}{\max(m,n)}$  where m and n are the number of distinct values in A and B

$$RF(A > c) \simeq \max(0, \frac{H-c}{H-L})$$

where H and L are the highest and lowest values in A

$$RF(\theta_1 \wedge \theta_2) \simeq RF(\theta_1) \cdot RF(\theta_2)$$

$$RF(\theta_1 \vee \theta_2) \simeq \min(1, RF(\theta_1) + RF(\theta_2) - RF(\theta_1) \cdot RF(\theta_2))$$

$$RF(\neg \theta) \simeq 1 - RF(\theta)$$