

Team Presentation

Esteban VergaraProgrammer
Researcher

Miguel Cock Researcher Designer

Juan
Sebastián
Camacho
Researcher
Writer

Andrea
Serna
Literature
review

Mauricio
Toro
Data
preparation

Problem Statement

Streets of Medellín, Origin and Destination

Constrained
Shortest
Paths

DIJKSTRA_PATHFINDER(harassmentRisk)

Origin and

Destination

exceeding a

weighted-average risk

of harassment r

Second Algorithm

Streets
of Medellín,
Origin and
Destination

Path with the lowest weighted-average risk of harassment without exceeding a distance d

Algorithm Explanation

DIJKSTRA for the Constrained Shortest Path

Algorithm Complexity

	Time Complexity	Memory Complexity
DIJKSTRA_ PATHFINDER	O(n ²)	O(V²+E)

Time and memory complexity of our DIJKSTRA_PATHFINDER.

V is the number of vertex (Nodes) and E is the number of Edges (Conections between nodes). Dijsktra works with graphos, so, with the specifications of the worked graph, we can know the both complexities

