LINEAR REGRESSION

1. Linear Regression Model

1.1. Model and Notations

Suppose there are N subjects in the system. For the ith subject, we could collect a continuous type response $y_i \in \mathbb{R}$ and an associated p-dimensional covariate vector $x_i = (x_{i1}, \dots, x_{ip})^{\top} \in \mathbb{R}^p$. The linear regression model takes the following form,

$$y_i = x_i^{\top} \beta + \varepsilon_i. \tag{1.1}$$

Write $\mathbf{y} = (y_1, \dots, y_N)^{\top}$, $\mathbf{X} = (x_1, \dots, x_N)^{\top} \in \mathbb{R}^{N \times p}$, and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_N)^{\top} \in \mathbb{R}^N$. Then the linear regression can be written in a matrix form as

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}.\tag{1.2}$$

Denote X_j as the jth column of **X**. Then we can add an intercept term by letting $X_1 = \mathbf{1}$.

Comment:

- 1. Quantitative inputs & its transformations (log, squares) & basis expansions $(X_2 = X_1^2, X_3 = X_1^3)$
- 2. Qualitative inputs*: dummy variable coding.
- 3. Interaction between variables.

1.2. Model Assumptions

- (A1) The relationship between response (y) and covariates (X) is linear;
- (A2) **X** is a non-stochastic matrix and rank(**X**) = p;
- (A3) $E(\varepsilon) = \mathbf{0}$. This implies $E(\mathbf{y}) = \mathbf{X}\beta$;

(A4) $\operatorname{cov}(\varepsilon) = E(\varepsilon \varepsilon^{\top}) = \sigma^2 I_N$; (Homoscedasticity)

(A5) ε follows multivariate normal distribution $N(\mathbf{0}, \sigma^2 I_N)$ (Normality)

Remark: X could include intercept term. The assumption A2 can be further relaxed that X can be random matrix. The above assumptions can replaced by the following:

 $(A2^*)$ X is a full rank matrix with probability 1;

(A3*)
$$E(\varepsilon|\mathbf{X}) = \mathbf{0}$$
;

(A4*)
$$E(\varepsilon \varepsilon^{\top} | \mathbf{X}) = \sigma^2 I_N;$$

(A5*)
$$\varepsilon | \mathbf{X} \sim N(\mathbf{0}, \sigma^2 I_N).$$

A sufficient condition for (A2*) is that $\lambda_{\min}(\mathbf{X}^{\top}\mathbf{X}) \to \infty$ a.s.

2. Model Estimation

Ordinary least squares (OLS) estimation:

$$RSS(\beta) = \sum_{i=1}^{N} \{y_i - f(x_i)\}^2 = \sum_{i=1}^{N} \{y_i - \beta_0 - \sum_{j=1}^{N} x_{ij} \beta_j\}^2.$$

Comment:

1. This criterion is valid if y_i 's are conditionally independently given the inputs x_i .

Rewrite $RSS(\beta)$ using a matrix form as

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta).$$

Differentiating with respect to β we require

$$\frac{\partial RSS(\beta)}{\partial \beta} = -2(\mathbf{y} - \mathbf{X}\beta)^{\mathsf{T}} \mathbf{X} = 0.$$

Solution:

$$\widehat{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

Comment:

- 1. Here we implicitly assume that \mathbf{X} is full rank, hence $\mathbf{X}^{\top}\mathbf{X}$ is positive definite.
- 2. Fitted values:

$$\widehat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{H}\mathbf{y} \tag{2.1}$$

The residual vector $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to the column space of \mathbf{X} (pls verify by yourself.) Hence $\hat{\mathbf{y}}$ is the *orthogonal projection* of \mathbf{y} onto the column space of \mathbf{X} . The matrix \mathbf{H} is called "hat" matrix or projection matrix.

- 3. The residual sum of squares $RSS(\beta)$ can be used as a goodness-of-fit measure;
- 4. If **X** is not of full rank (e.g., if two of the inputs are perfectly correlated)? Will $\widehat{\beta}$ or $\widehat{\mathbf{y}}$ change?

Homework: Prove that the OLS estimator $\widehat{\beta}$ is the same as the maximum likelihood estimator.

3. Statistical Inference

3.1. Mean and Variance of the OLS Estimator

Assume assumptions (A1)–(A4), we then have

$$E(\widehat{\beta}) = \beta, \quad \text{cov}(\widehat{\beta}) = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^{2}.$$

Typically σ^2 is estimated by

$$\widehat{\sigma}^2 = \frac{1}{N - p} \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2, \tag{3.1}$$

where $\widehat{y}_i = x_i^{\top} \beta$ is the fitted value of the *i*th subject.

Theorem 1. (Gauss-Markov Theorem) Assume conditions A1-A4. Then $\widehat{\beta}$ is the best linear unbiased estimator (BLUE), provided it exists.

It implies, $\widehat{\beta}$ has the smallest variance over all linear unbiased estimator $\widetilde{\beta}$, i.e., $\widetilde{\beta} = \sum_i w_i y_i$ and $E(\widetilde{\beta}) = \beta$. Here the smallest variance means that for any $\eta \in \mathbb{R}^p$ with $\|\eta\| = 1$, $\operatorname{var}(\eta^{\top}\widehat{\beta}) \leq \operatorname{var}(\eta^{\top}\widetilde{\beta})$.

Homework:

- (1) Prove the Gauss-Markov Theorem;
- (2) Prove $E(\widehat{\sigma}^2) = \sigma^2$.

3.2. Sampling Properties

Assume conditions A1–A5. Then

$$\widehat{\beta} \sim N(\beta, (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\sigma^2)$$
 (3.2)

$$(N-p)\widehat{\sigma}^2 \sim \sigma^2 \chi_{N-p}^2 \tag{3.3}$$

In addition, $\widehat{\beta}$ is independent with $\widehat{\sigma}^2$. It is implied by (3.2) that $R(\widehat{\beta} - \beta) \sim N(\mathbf{0}, R(\mathbf{X}^{\top}\mathbf{X})^{-1}R^{\top}\sigma^2)$.

Homework: Prove (3.2) and (3.3).

Hypothesis test: $H_0: \beta_j = 0$ v.s. $H_1: \beta_j \neq 0$

Q: Suppose σ^2 is known. In this case, R = ?.

Z-score:

$$z_j = \frac{\widehat{\beta}_j}{\widehat{\sigma}\sqrt{v_j}},$$

where v_j is the jth diagonal element of $(\mathbf{X}^{\top}\mathbf{X})^{-1}$.

Under the null: z_j follows t-distribution with N-p degrees of freedom (if N is large we could also use normal quantiles because the differences between normal and t-distribution are negligible).

Test the significance of groups of coefficients simultaneously:

For instance, suppose we have p_1 covariates in total. $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p_0} = 0$,

 H_1 : there exists at least one j ($1 \le j \le p_0$), such that $\beta_j \ne 0$. use F statistic:

$$F = \frac{(RSS_0 - RSS_1)/(p_1 - p_0)}{RSS_1/(N - p_1)}$$

The F statistic follows F distribution $F(p_1 - p_0, N - p_1)$ with $p_1 = p$.

Q:

1. what is RSS_0 and what is RSS_1 ?

Answer: RSS₀ is the residual sum of squares when we drop X_1, \dots, X_{p_0} ; RSS₁ is defined for the full model.

2. prove the F statistic is equivalent to the t-test when dropping the single coefficient.

4. Goodness-of-fit

Define $\widehat{y}_i = x_i^{\top} \widehat{\beta}$. Let the intercept be included in the regression model. Define the total sum of squares (TSS) and explained sum of squares (ESS) as follows

$$TSS = \sum_{i} (y_i - \overline{y})^2, \quad ESS = \sum_{i} (\widehat{y}_i - \overline{y})^2.$$

It can be proved that

$$TSS = ESS + RSS.$$

HW: Prove the above equation.

Define the R-squares of the regression model as follows

$$R^2 = 1 - \frac{\text{RSS}}{\text{TSS}} = \frac{\text{ESS}}{\text{TSS}}.$$
 (4.1)

Adjusted R-squares:

Adjusted
$$R^2 = 1 - \frac{\text{RSS}/(n-p)}{\text{TSS}/(n-1)}$$
. (4.2)

5. Model Selection

1. Subset Selection

- 1.1 Best-subset Selection: time consuming
- 1.2 Forward-stepwise selection (greedy algorithm): Starts with the intercept, and then sequentially adds into the model the predictor that most improves the fit.
- 1.3 Backward-stepwise selection: starts with the full model, and sequentially deletes the predictor that has the least impact on the fit. (can be only used when N > p).
- 1.4 Stepwise-selection: consider both forward and backward moves at each step, and select the "best" of the two (minimize AIC/BIC criterion).

AIC =
$$-\frac{2}{N}\mathcal{L}(\beta) + 2\frac{d}{N}$$
.
BIC = $-2\mathcal{L}(\beta) + (\log N)d$

where $\mathcal{L}(\beta)$ denotes the log-likelihood and d is the number of parameters to be estimated.

Q: Could you tell the difference here?

Comment:

- 1. There are other criterions including C_p and many others. See Chapter 7.4–7.7 for more details.
- 2. BIC can consistently select the true model.

2. Shrinkage Methods

2.1 Ridge Regression:

$$\widehat{\beta}^{ridge} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j} x_{ij} \beta_j \right)^2 + \lambda \sum_{j} \beta_j^2 \right\}$$

Here λ is a tuning parameter which controls the amount of shrinkage.

$$RSS(\lambda) = (\mathbf{y} - \mathbf{X}\beta)^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^{\mathsf{T}} \beta$$

Q: the solution takes the form?

$$\widehat{\beta}^{ridge} = (\mathbf{X}^{\top} \mathbf{X} + \lambda I)^{-1} \mathbf{X}^{\top} \mathbf{y}.$$

Note: In the case of orthonormal inputs, the ridge estimates are scaled version of the least squares estimates, i.e., $\hat{\beta}^{ridge} = \hat{\beta}/(1+\lambda)$.

See Chapter 3.4.1 of Elements for interpretations of ridge regressions from the aspect of SVD decomposition.

2.2 Lasso Regression: $\sum_j \beta_j^2 \to \sum_j |\beta_j|.$