Mini Topics On RSA and Discrete Logarithm Problem

賴奕甫

Contents

- Mini Topics on RSA Encryption
- RSA bit Security
- DLP bit Security

自我介紹

- 賴奕甫 (男)
- 82 (1993) 年生
- 台大數學所碩二(已通過口試)
- 興趣:半夜慢跑, 摺紙

Chinese Remainder Theorem

中國南北朝時期(公元5世紀)的數學著作《孫子算經》卷下第二十六題, 叫做「物不知數」問題,原文如下:

有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二。問物幾何?

$$\begin{cases} x = 2 \mod 3 \\ x = 3 \mod 5 \\ x = 2 \mod 7 \end{cases}$$

Chinese Remainder Theorem

Chinese Remainder Theorem:

Given n, m with gcd(n, m) = 1.

```
For x \in \mathbb{Z}_{n*m},

\phi(x) = (x \pmod{n}, x \pmod{m})
```

Then the natural homomorphism $\phi: \mathbb{Z}_{n*m} \to \mathbb{Z}_n \times \mathbb{Z}_m$ is an isomorphism.

<sketch>

"Well-defined"

"hom"

"surjective"

RSA Encryption (Notation)

- Public Key :(N = p * q, e)
- $(p,q: distinct primes, gcd(e,\phi(N)) = 1)$

• Private Key: d

$$(de = 1 \pmod{\phi(N)})$$

Message: $m \in \mathbb{Z}_N$

Decryption:

$$c^d = m \in \mathbb{Z}_N$$

Encryption:

$$c = m^e \pmod{N}$$

Mini Topics on RSA encryption.

• The following content is not about the factoring algorithms but about some little topics in usage or on parameter settings in the RSA encryption.

RSA

- Can $\phi(N)$ be leaked?
- d can be chosen to be $de = 1 \pmod{lcm(p-1, q-1)}$
- What if e is chosen too small (e = 3)?
- Can N be a domain parameter? Can we only choose new d if the old one is exposed
- Can d chosen to be small? (for speeding up decryption)
- Is the least significant bit encryption of RSA as secure as the whole?

Can $\phi(N)$ be leaked?

Solve *q* by the following steps:

- Assume $\phi(N) = (p-1)(q-1)$ is given
- Public Key N = pq
- Write

$$p = N/q$$

• Then

$$\phi(N) = (N/q - 1)(q - 1)$$

$$\Rightarrow \phi(N)q = (N - q)(q - 1)$$

• ⇒?

d can be chosen to be

$$de = 1 \pmod{lcm(p-1, q-1)}$$

• Show the **correctness**:

$$m^{de} = m \pmod{N}$$
 for any $m \in \mathbb{Z}_N$

cproof>:

Consider Chinese remainder theorem, it suffices to proof

$$m^{de} = m \pmod{p}$$

 $m^{de} = m \pmod{q}$

<case:p|m or q|m>: HOLDS!

<case: $p \nmid m$ and $q \nmid m>$:

It suffices to show

$$m^{de-1} = 1 \pmod{p}$$

Show the correctness:

$$m^{de} = m \pmod{N}$$
 for any $m \in \mathbb{Z}_N$

continued)

 $\langle case : p \nmid m \text{ and } q \nmid m \rangle :$

Since

$$lcm(p-1,q-1) \mid de-1,$$

 $p-1 \mid lcm(p-1,q-1),$ and
 $m^{p-1} = 1 \pmod{p}$ (Fermat's little theorem)

$$m^{lcm(p-1,q-1)} = 1 \pmod{p}$$
,

SO

$$m^{de-1} = 1 \pmod{p}$$

What if *e* is chosen too small?

-Hastad's Broadcast Attack

- Take e = 3 for example
- Assumption:
 - There are 3 people use RSA encryption with public key $(N_1, e), (N_2, e), (N_3, e)$ (relatively prime N_1, N_2, N_3)
 - They receive a cipher c_i from the same message m with their own public keys. $(m < N_i \text{ for all } i)$
- Oscar collects $(N_i, e = 3)$, and c_i . By CRT, $\exists ! \ c \in \mathbb{Z}_{N_1 N_2 N_3}$ satisfies

$$\begin{cases} c = c_1 \mod N_1 \\ c = c_2 \mod N_2 \\ c = c_3 \mod N_3 \end{cases}$$

What if *e* is chosen too small?

-Hastad's Broadcast Attack

• Oscar collects $(N_i, e = 3)$, and c_i . By CRT, $\exists ! \ c \in \mathbb{Z}_{N_1 N_2 N_3}$ satisfies

$$\begin{cases} c = c_1 = m^3 \mod N_1 \\ c = c_2 = m^3 \mod N_2 \\ c = c_3 = m^3 \mod N_3 \end{cases}$$

- Hence, $c = m^3 \mod N_1 N_2 N_3$
- Notice that $m^3 < N_1 N_2 N_3$
- ⇒?

Example

• (See)

If e = 3, then half of bits of d are exposed (roughly).

Assume primes p, q > 5 and $d < \phi(N)$. Claim: $e = 3 \Rightarrow ed = 1 + 2\phi(N)$ of> Write $ed = 1 + k\phi(N) = 1 + k(p-1)(q-1)$ Known $0 < k \le e = 3$ Calculate $(p - 1 \mod 3)$ gcd(p,3) = 1 and gcd(p-1,3) = 1 $\therefore p - 1 = 1 \bmod 3$ Similarly, $q - 1 = 1 \mod 3$. Hence, $k = 2 \mod 3$, so k = 2

If e = 3, then half of bits of d are exposed (roughly).

• Let
$$d' = \left[\frac{1}{e} (1 + kN) \right] = \left[\frac{1}{e} (1 + 2N) \right].$$

• Claim |d' - d|

<Proof>

Write
$$d' = \left[\frac{1}{e}(1+2N)\right] = \frac{1}{e}(1+2N) + \epsilon$$
 for some ϵ , $|\epsilon| < 0.5$

Then
$$|d' - d| = ?$$

If e = 3, then the linear relation of messages can not be known.

Assumption:

- Alice uses RSA encryption with her public key (N, e = 3)
- Encrypting m_1 and m_2 with a linear relation $m_2 = am_1 + b$
- Given two ciphertexts c_1 , c_2 and the coefficients a and b

Oscar calculates

$$\frac{b(c_2 + 2a^3c_1 - b^3)}{a(c_2 - a^3c_1 + 2b^3)} \bmod N$$

$$\frac{b(c_2 + 2a^3c_1 - b^3)}{a(c_2 - a^3c_1 + 2b^3)} = ? \mod N$$

Example

• (See)

Can *N* be a domain parameter?

Can we only choose new d (and e) if the old one is exposed?(With the same N)

- Claim: Given e. "Knowing $d \Leftrightarrow \text{Factoring } N$ "
- " \Leftarrow ": Obviously, "Factoring N" \Rightarrow "Obtain $\phi(N)$ " \Rightarrow "Getcha d"
- "⇒": The proof is an algorithm:

Main idea: find x,
$$x^2 = 1 \pmod{N}$$

Since $N = pq \mid (x+1)(x-1)$,
if $x \neq \pm 1 \pmod{N}$,
then $gcd(x \pm 1, N)$ will factor N .

Intuition:
$$m^{de-1} = 1 \pmod{N}$$
 if $gcd(m, N) = 1$ $m^{2^t r} = 1 \pmod{N}$ if $gcd(m, N) = 1$

if the old one is exposed: (with the same iv)

Remark: You can further prove that the algorithm Can we only is able to factor N with probability greater than ½ for each choice of *m*

- " \Rightarrow " : Main idea: find x, $x^2 = 1 \pmod{N}$ Write $k = de - 1 = 2^t r$, where r is odd

• Claim: Given e. "Knowing $d \Leftrightarrow \text{Factoring } N$ "

- 1. Choose $m \in \{2, ..., N-1\}$ at random Say gcd(N, m) = 1 (why)
- 2. If $m^r = 1 \pmod{N}$ then back to 1.
- 3. Compute $2^{1}r$, $2^{2}r$, $2^{3}r$, ... until $2^{t'}r = 1 \pmod{N}$ first occurs.
- 4. If $m^{2^{t'-1}r} = \pm 1 \pmod{N}$ then back to 1.
- 5. Else factor N by $gcd(m^{2^{t'-1}r} \pm 1, N)$

Can *N* be a domain parameter?

- Given e. "Knowing $d \Leftrightarrow \text{Factoring } N$ "
- Hence,

it's insecure that a group uses the same composite N with different e_i , d_i

Question:

Dose the other choice of d ($de = 1 \mod lcm(p-1, q-1)$) alter the result?

- Given *e*. "Knowing $d \Leftrightarrow \text{Factoring } N$ "
- $de = 1 \pmod{N}$
- $de = 1 \pmod{lcm(p-1, q-1)}$

Example

• (See)

This is a Kitten Licking Its Paw!

Can d be chosen to be small? (for speeding up decryption)

Wiener' s Attack:

Given *N*, *e*. Assume $q and <math>d < \frac{1}{3}N^{\frac{1}{4}}$ Then there is an efficient way of factoring *N*.

• Goal: $de = 1 \pmod{\phi(N)}$ $\Leftrightarrow \qquad de - k\phi(N) = 1$ Find k/d

Continued Fraction

•
$$\chi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}}$$

where a_0 is an integer and a_i is non-negative integer for $i \ge 0$

is said to be a continued fraction expression of x, denoted $[a_0; a_1, a_2, ...]$.

• Any rational number can be written as a continued fraction form

Ex.
$$\frac{44}{7} = 6 + \frac{2}{7} = 6 + \frac{1}{\frac{7}{2}} = 6 + \frac{1}{3 + \frac{1}{2}} = [6; 3, 2]$$

$$= 6 + \frac{1}{3 + \frac{1}{1 + \frac{1}{4}}} = [6; 3, 1, 1]$$

Convergents

 You can also use the Euclidean algorithm to compute a continued fraction expression

$$\begin{array}{r}
 1234 = 567 * 2 + 100 \\
 567 = 100 * 5 + 67 \\
 100 = 67 * 1 + 33 \\
 67 = 33 * 2 + 1
 \end{array}
 = 2 + \frac{1}{567} = 2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{33}}}$$

• Let $x = [a_0; a_1, a_2, ...]$, y is said to be the i^{th} convergent of x if

$$y = [a_0; a_1, a_2, ..., a_i]$$

Origin:

Rational Approximation by Continued Fraction

Theorem. Let x be irrational, and let k/d be a rational number in lowest terms with d > 0. Suppose that

$$\left|x - \frac{k}{d}\right| < \frac{1}{2d^2}.$$

Then k/d is a convergent in the continued fraction expansion for x

Origin:

Rational Approximation by Continued Fraction

Theorem. be irrational, and let k/d be a rational number in lowest terms with d > 0. Suppose that

$$\left| \frac{e}{N} \right| < \frac{k}{d} < \frac{1}{2d^2}.$$

Then k/d is a convergent in the continued fraction expansion for $\lambda^{\frac{e}{N}}$

$$de = 1 \pmod{\phi(N)}$$

$$\Leftrightarrow de - k\phi(N) = 1$$

Wiener's Attack:

Given N, e. Assume $q and <math>d < \frac{1}{3}N^{\frac{1}{4}}$ Then there is an efficient way of factoring N.

• Wiener' s Lemma.

Given N, e, where
$$N = pq$$
 and $de - k\phi(N) = 1$

Assume
$$q and $d < \frac{1}{3}N^{\frac{1}{4}}$$$

Then

$$\left|\frac{e}{N} - \frac{k}{d}\right| < \frac{1}{2d^2}.$$

Corollary.

Using the condition above.

Then k/d is a convergent in the continued fraction expansion for e/N

Wiener's Lemma.

$$N = pq$$

$$de - k\phi(N) = 1.$$

$$q
$$d < \frac{1}{3}N^{\frac{1}{4}}$$$$

Then,

$$\left|\frac{e}{N} - \frac{k}{d}\right| < \frac{1}{2d^2}.$$

<Proof>

$$\left| \frac{e}{N} - \frac{k}{d} \right| = \left| \frac{1 + k\phi(N) - Nk}{dN} \right|$$

$$< \left| \frac{3k\sqrt{N}}{dN} \right| < \left| \frac{3k}{d\sqrt{N}} \right|$$

$$< \left| \frac{3k}{d\sqrt{N}} \right| < \left| \frac{3k}{d\sqrt{N}} \right|$$

$$= -(p+q-1)$$

$$> -3q$$

$$d\phi(N) \ge de > k\phi(N)$$

$$\Rightarrow d > k$$

> -3q

 $>-3\sqrt{N}$

Example: Wiener's Attack

• (see)

Take a look at SP800-56B

• (See)

Bit Security of RSA Problem

Is the least significant bit in the encryption of RSA as secure as the whole?

賴奕甫

RSA Problem

RSA Problem :

```
Given (N, e) and c = m^e \pmod{N},
where N = pq, p, q: distinct odd primes
de = 1 \pmod{\phi(N)}
```

Find $(m \pmod{N})$

A Fact:

Factoring Problem ≥ RSA problem is known

Factoring Problem ≥ RSA problem

or

Factoring Problem = RSA problem

is unknown

RSA Problem

RSA Problem :

```
Given (N, e), where N = pq, p, q: distinct odd primes de = 1 \pmod{\phi(N)}
```

 $f(x) = x^e \mod N$ is a one-way function

RSA Problem :

$$f(x) = x^e \mod N$$
 is a one-way function

- Even though RSA problem may be hard,
 that does NOT mean we can know nothing from it.
- For example, given $c = f(m) = m^e \mod N$, we can know its

Jacobi symbol value
$$\left(\frac{m}{N}\right)$$
, since e is odd. $\left(\left(\frac{m}{N}\right) = \left(\frac{m}{N}\right)^e = \left(\frac{c}{N}\right)\right)$

The least significant bit secure of RSA

Even though I accept

$$f(x) = x^m \mod N$$
 is a one-way function,

it only means I accept it's hard to find the whole inverse element.

Is it still hard to find out the parity (lsb) of the inverse element?

In a Simple Usage

We don't have to invert whole m^e but recover some bits from m^e Is RSA remain secure in this way?

Inverting the LSB ⇔ Solving RSA Problem

- Let N = pq, e, d represent the RSA parameter
- The following calculation is under \mathbb{Z}_N
- $c = m^e$, define

$$Parity(c) \coloneqq \begin{cases} 1 & if \ lsb \ of \ m \ is \ 1 \\ 0 & if \ lsb \ of \ m \ is \ 0 \end{cases}$$

$$Half(c) \coloneqq \begin{cases} 1 & if \ m \in [0, \frac{1}{2}N) \\ 0 & o.w \end{cases}$$

Inverting the LSB ⇔ Solving RSA Problem

$$Parity(c) \coloneqq \begin{cases} 1 & \text{if } lsb \text{ of } m \text{ is } 1 \\ 0 & \text{if } lsb \text{ of } m \text{ is } 0 \end{cases} \quad Half(c) \coloneqq \begin{cases} 0 & \text{if } m \in [0, \frac{1}{2}N) \\ 1 & \text{o.w} \end{cases}$$

Having an oracle of $Half(c) \Leftrightarrow Having an oracle of Parity(c)$ (Why?)

Inverting the LSB ⇔ Solving RSA Problem

• For
$$c = m^e$$
, we have
$$Half(c) = 0 \Leftrightarrow m \in [0, \frac{1}{2}N)$$
$$Half(2^ec) = 0 \Leftrightarrow m \in [0, \frac{1}{4}N) \cup [\frac{2}{4}N, \frac{3}{4}N)$$

It follows that

Having an oracle of $Half(c) \Leftrightarrow Solving RSA Problem$.

Since

Having an oracle of $Half(c) \Leftrightarrow Having an oracle of Parity(c)$,

We know

Inverting the LSB ⇔ Solving RSA Problem.