23 Connected Spaces

Exercise 23.1. Let \mathcal{T} and \mathcal{T}' be two topologies on X. If $\mathcal{T}' \supseteq \mathcal{T}$, what does connectedness in one topology imply about connectedness in the other?

Solution. The statement of X being connected is a universal quantifier over open sets, which means that if X is connected in \mathcal{T}' and $\mathcal{T}' \supseteq \mathcal{T}$, then X is also connected in \mathcal{T} .

This applies for any statement which is a universal quantifier like this. If it were an existential quantifier, then the converse would hold instead. If it were a mix, then we can't use this method. \Box

Exercise 23.2. Let A_n be a sequence of connected subspaces of X such that $A_n \cap A_{n+1}$ is nonempty for each n. Show that $\bigcup A_n$ is connected.

Solution. Let $B_n = \bigcup_{k=1}^n A_k$. Each individual B_n is connected by an inductive argument, so we have

$$\bigcup A_n = \bigcup B_n$$

is connected since all of the B_n have some $a \in A_1$ in common.

Exercise 23.3. Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X; let A be a connected subspace of X. Show that if $A \cap A_{\alpha} \neq \emptyset$ for all α , then $A \cup \bigcup A_{\alpha}$ is connected.

Solution. Suppose $A \cup \bigcup A_{\alpha}$ is separated as $U \cup V$. Assume WLOG that $A \subseteq U$. Then each A_{α} intersects U, so each A_{α} is contained in U. Therefore, $A \cup \bigcup A_{\alpha} \subseteq U$, contradicting the assumption that V is empty. \square

Exercise 23.4. Show that if X is an infinite set, it is connected in the finite complement topology.

Solution. Suppose that $X=U\cup V$ is a separation of X. Then

$$U \cap V = X - (X - U) \cup (X - V)$$

is infinite, so clearly U and V aren't disjoint.

Exercise 23.5. A space is totally disconnected if it's only connected subspaces are one-point sets. Show that if X has the discrete topology, then X is totally disconnected. Does the converse hold?

Solution. Suppose X has the discrete topology; let $A\subseteq X$ have two points $a,b\in A$. Then the partition $A=\{a\}\cup (A-\{a\})$ is a separation of A. Therefore, X is totally disconnected.

Example 4 shows that $\mathbb Q$ is totally disconnected, so the converse doesn't hold. $\hfill\Box$

Exercise 23.6. Let $A \subseteq X$. Show that if C is a connected subspace of X that intersects both A and X-A, then C intersects $\mathrm{Bd}(A)$.

Solution. If C didn't intersect Bd(A), we could write

$$C = (C \cap \operatorname{Int}(A)) \cup (C \cap \operatorname{Int}(X - A)),$$

which is a separation of C, contradicting that C is connected.

Exercise 23.7. Is the space \mathbb{R}_{ℓ} connected?

Solution. No, it is totally disconnected in fact. We have $\mathbb{R}=(-\infty,x)\cup[x,\infty)$ for all $x\in\mathbb{R}$.

Exercise 23.8. Determine whether or not \mathbb{R}^{ω} is connected in the uniform topology.

Solution. We can actually just use the same proof as with the box topology, separating \mathbb{R}^{ω} into bounded and unbounded sequences.

Exercise 23.9. Let A be a proper subset of X and let B be a proper subset of Y. If $X \times Y$ is connected, show that

$$(X \times Y) - (A \times B)$$

is connected.

Solution. It helps to visualize this. Let $C(x \times y) = (X \times \{y\}) \cup (\{x\} \times Y)$ be the "plus shape" centered at $x \times y$. Each of these individually is connected. Furthermore, we have

$$(X\times Y)-(A\times B)=\bigcup_{x\in X-A}\bigcup_{y\in Y-B}C(x\times y),$$

and each union has at least one common point, so the entire thing is connected.

Exercise 23.10. Let $\{X_{\alpha}\}_{{\alpha}\in J}$ be an indexed family of connected spaces; let $X=\prod X_{\alpha}$. Let $a=(a_{\alpha})$ be a fixed point.

- (a) Given any finite subset $K \subseteq J$, let X_K denote the subspace of X consisting of all points $x = (x_\alpha)$ such that $x_\alpha = a_\alpha$ for each $\alpha \notin K$. Show that X_K is connected.
- (b) Show that the union Y of all X_K is connected.
- (c) Show that $X = \overline{Y}$, so that X is connected.

Solution. (a) X_K is homeomorphic to a finite product, thus it is connected.

- (b) All X_K have the common point a, so $Y = \bigcup X_K$ is connected.
- (c) Let $b=(b_{\alpha})$ be any point, and let $\prod U_{\alpha}$ be a neighborhood of (b_{α}) , where $U_{\alpha}=X_{\alpha}$ for all but finitely many α . Let K denote the finitely many indices where $U_{\alpha}\neq X_{\alpha}$. Then the sequence

$$c_{\alpha} = \begin{cases} b_{\alpha} & \alpha \in K \\ a_{\alpha} & \alpha \notin K \end{cases}$$

is in both U and X_K , thus b is in the closure of Y. Since b was arbitrary, we have $\bar{Y} = X$, which is connected because Y is connected.

Exercise 23.11. Let $p:X\to Y$ be a quotient map. Show that if each set $p^{-1}(\{y\})$ is connected, and if Y is connected, then X is connected.

Solution. Suppose $X=U\cup V$ is a separation. Then each $p^{-1}(\{y\})$ must lie within either U or V, thus U and V are saturated. But this implies p(U) and p(V) form a separation of Y, which contradicts that Y is connected. \square

Exercise 23.12. Let $Y \subseteq X$; let X and Y be connected. Show that if A and B form a separation of X - Y, then $Y \cup A$ and $Y \cup B$ are connected.

Solution. It REALLY helps to draw this.

By the symmetry of the problem, we only need to show that $Y \cup A$ is connected.

Suppose that $Y \cup A$ was separated as $U \cup V$, where WLOG we assume that $Y \subseteq U$. Note that this implies $V \subseteq A$. We will show that V is open and closed in X.

Since $V \subseteq A$, we have

$$V$$
 open in $Y \cup A \implies V$ open in $A \implies V$ open in X .

A similar argument applies to show that V is closed in X, thus V and X-V form a separation of X.