

Matriz de Confusão, Precisão, Sensibilidade, Curva ROC e AUC

Acurácia e Erro Total

$$acurácia = \frac{Total\ de\ acertos}{Total\ de\ itens}$$

Exemplo de Cálculo de Acurácia

Resposta Correta	Resposta do Modelo
SIM	SIM
SIM	NÃO
NÃO	NÃO
SIM	SIM
NÃO	NÃO

$$acurcupa cia = rac{4}{5} = 80\%$$

Problema com a Acurácia

- Pode ser enganosa em casos de desbalanceamentos
- Não transmite o tipo de erro que o modelo está fazendo

Conjunto de Dados
Sim
Não
Não

O que é a Matriz de Confusão?

- Linhas representam as classes reais
- Colunas representam as classes preditas

		Valor Predito	
		Sim Não	
a F	Sim	Verdadeiro Positivo (TP)	Falso Negativo (FN)
Real	Não	Falso Positivo (FP)	Verdadeiro Negativo (TN)

Y_test	Y_pred
SIM	SIM
SIM	NÃO
SIM	NÃO
NÃO	NÃO
SIM	SIM
SIM	SIM
NÃO	SIM
NÃO	SIM
NÃO	SIM
SIM	SIM
NÃO	NÃO
SIM	SIM

		Sim	Não
(Cal	Sim		
	Não		

Y_test	Y_pred
SIM	SIM
SIM	NÃO
SIM	NÃO
NÃO	NÃO
SIM	SIM
SIM	SIM
NÃO	SIM
NÃO	SIM
NÃO	SIM
SIM	SIM
NÃO	NÃO
SIM	SIM

		Sim	Não
NC COL	Sim	5	
-	Não		

Y_test	Y_pred
SIM	SIM
SIM	NÃO
SIM	NÃO
NÃO	NÃO
SIM	SIM
SIM	SIM
NÃO	SIM
NÃO	SIM
NÃO	SIM
SIM	SIM
NÃO	NÃO
SIM	SIM

		Sim	Não
Cal	Sim	5	
■	Não		2

Y_test	Y_pred
SIM	SIM
SIM	NÃO
SIM	NÃO
NÃO	NÃO
SIM	SIM
SIM	SIM
NÃO	SIM
NÃO	SIM
NÃO	SIM
SIM	SIM
NÃO	NÃO
SIM	SIM

		Sim	Não
וכמו	Sim	5	2
⊣	Não		2

Y_test	Y_pred
SIM	SIM
SIM	NÃO
SIM	NÃO
NÃO	NÃO
SIM	SIM
SIM	SIM
NÃO	SIM
NÃO	SIM
NÃO	SIM
SIM	SIM
NÃO	NÃO
SIM	SIM

		Sim	Não
ıcaı	Sim	5	2
	Não	3	2

Sensibilidade

- Avalia a capacidade do modelo de detectar corretamente os resultados positivos que são verdadeiramente positivos
- "De todos que a resposta é 'SIM', quantos o modelo detectou"
- Uma sensibilidade alta indica que o modelo consegue detectar a classe positiva

$$sensibilidade = rac{VP}{VP + FN}$$

Exemplo de Sensibilidade

Y_test	Y_pred	
SIM	SIM	
SIM	NÃO	
SIM	NÃO	
NÃO	NÃO	
SIM	SIM	
SIM	SIM	
NÃO	SIM	
NÃO	SIM	
NÃO	SIM	s
SIM	SIM	
NÃO	NÃO	
SIM	SIM	

		Sim	Não	
al	Sim	5	2	
Real	Não	3	2	

$$sensibilidade = rac{VP}{VP + FN} = rac{5}{5+2} pprox 71.43\%$$

Especificidade

- Avalia a capacidade do modelo de detectar corretamente os resultados negativos que são verdadeiramente negativos
- "De todos que a resposta é 'NÃO', quantos o modelo detectou"
- Uma especificidade alta indica que o modelo consegue detectar a classe negativa

$$especificidade = rac{VN}{VN + FP}$$

Exemplo de Especificidade

Y_test	Y_pred
SIM	SIM
SIM	NÃO
SIM	NÃO
NÃO	NÃO
SIM	SIM
SIM	SIM
NÃO	SIM
NÃO	SIM
NÃO	SIM
SIM	SIM
NÃO	NÃO
SIM	SIM

		Sim	Não
aı	Sim	5	2
1/(Não	3	2

$$especificidade = rac{VN}{VN + FP} = rac{2}{2+3} = 40\%$$

Precisão

- Avalia o número de vezes que o modelo acertou em relação ao total de vezes que o modelo previu uma classe
- "De todos que o modelo respondeu 'SIM", quantos o modelo acertou"
- Uma precisão alta indica que o modelo está confiante em prever esta classe

$$precis$$
ã $o = rac{VP}{VP + FP}$

Exemplo de Precisão

Y_test	Y_pred
SIM	SIM
SIM	NÃO
SIM	NÃO
NÃO	NÃO
SIM	SIM
SIM	SIM
NÃO	SIM
NÃO	SIM
NÃO	SIM
SIM	SIM
NÃO	NÃO
SIM	SIM

		Sim	Não	
Keal	Sim	5	2	
	Não	3	2	

$$precis$$
ã $o=rac{VP}{VP+FP}=rac{5}{5+3}=62.5\%$

F1 - Score

- Junta a precisão e a sensibilidade para uma classe em uma única métrica
- É uma média harmônica entre precisão e sensibilidade
- Existe uma versão com outros pesos: F-beta score

$$F1 = 2 \times \frac{Precision * Recall}{Precision + Recall}$$

$$F1 = 2 \cdot \frac{0.7143 \cdot 0.625}{0.7143 + 0.625} = 0.66$$

Espaço ROC

- Espaço em que o eixo Y
 representa a taxa de verdadeiros
 positivos (sensibilidade) e o Eixo
 X representa a taxa de falsos
 positivos (1 especificidade)
- Pode ser usado para comparar modelos
- Comparar seu modelo com um modelo aleatório

Curva ROC

- -Após termos um modelo em mãos, podemos calcular sua sensibilidade e especificidade e plotar como um ponto no Espaço ROC
- -Alguns modelos possuem algum "limite" a ser definido (Reg. Log. por exemplo)
- -Se treinarmos vários modelos alterando esse limite, teremos vários pontos no Espaço ROC, sendo possível traçar uma curva com esses pontos

Curva ROC

AUC

AUC

E para generalizar?

E para generalizar?

gold labels				
	urgent	normal	spam	
urgen	8	10	1	$\mathbf{precision}_{\mathbf{u}} = \frac{8}{8+10+1}$
system output norma	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
spam	3	30	200	precisions= $\frac{200}{3+30+200}$
	recallu =	recalln =	recalls =	
	8	60	200	
8+5+3 10+60+30 1+50+200				

E para generalizar?

Referências

ROC and AUC, Clearly Explained! - StatQuest

(https://www.youtube.com/watch?v=4jRBRDbJemM)

Machine Learning Fundamentals: The Confusion Matrix - StatQuest

(https://www.youtube.com/watch?v=vP06aMoz4v8)

Machine Learning Fundamentals: Sensitivity and Specificity - StatQuest

(https://www.youtube.com/watch?v=vP06aMoz4v8)

Referências

Inteligência Artificial - Uma Abordagem de Aprendizado de Máquina

André Carlos Ponce de Leon Ferreira Et Al. Carvalho

Dúvidas?

Obrigado!!