Rethinking Aleatoric and Epistemic Uncertainty

Freddie Bickford Smith, Jannik Kossen, Eleanor Trollope, Mark van der Wilk, Adam Foster, Tom Rainforth

August 29, 2025

Presented by Mian Wei

Aleatoric vs. Epistemic Uncertainty

We have a model to predict preterm birth, but there is predictive uncertainty. Should we use it cautiously, or should we collect more data and/or change the model?

- Aleatoric: Even with perfect features, some patients with identical profiles will deliver early, while others won't.
 - Epistemic: Your dataset might be missing key variables or need better modeling.

Aleatoric vs. Epistemic Uncertainty

- Aleatoric: unavoidable risk \rightarrow best to hedge.
- Epistemic: knowledge gap \rightarrow best to reduce it.

Uncertainty Decomposition

Figure: Adapted from [Che22]

- Parametric: uncertainty related to model parameter estimations under current model specification.
- **Structural**: the discrepancy between the assumed model specification and the true, unknown data-generating process

An area of ongoing debate

- Model-based prediction vs. the true data-generating process
- Uncertainty on unseen data
- Uncertainty vs. prediction accuracy
- Different approaches to epistemic uncertainty: density-based, information-based, variance-based,
 ...

Contribution of this paper:

- A critique of the popular uncertainty decomposition view
- A new decision-based framework for uncertainty

Notations

- an action, $a \in \mathcal{A}$
- ullet a ground-truth variable, $z \in \mathcal{Z}$
- a loss function, $\ell: \mathcal{A} \times \mathcal{Z} \to \mathbb{R}$
- a policy $\pi \in \Pi$ that controls data generation
- some training data $y_{1:n} \sim p_{train}(y_{1:n}|\pi)$
- predictive model $p_n(z) = p(z; y_{1:n})$ or the predictive distribution $p_n(z) = \mathbb{E}_{p_n(\theta)}[p_n(z|\theta)]$, where $\theta \sim p_n(\theta) = p(\theta; y_{1:n})$ is a set of stochastic model parameters
- data generating process, $p_{train}(y_i|\pi(y_{< i},y_{< i})$
- a ground-truth realization of z or a reference distribution, $p_{eval}(z)$

A Popular Decomposition View

Usual formula

$$\underbrace{\mathsf{EIG}_{\theta}}_{\text{"epistemic"}} = \underbrace{\mathsf{H}\big[p_n(z)\big]}_{\text{"total"}} - \underbrace{\mathbb{E}_{p_n(\theta)}\big[\mathsf{H}(p_n\big[z\mid\theta)\big]\big]}_{\text{"aleatoric"}}$$

- H: Shannon entropy
- EIG_{θ} : the expected information gain about θ from observing z

For finite n, epistemic and aleatoric uncertainty are only estimators of the true quantities and can be highly inaccurate.

A Popular Decomposition View

Aleatoric uncertainty

"captures noise inherent in the observations"

$$\mathrm{H}[p_{\mathrm{train}}(y_{1:n}|\pi)]$$
 or $\mathrm{H}[p_{\mathrm{eval}}(z)]$

 \neq

"cannot be reduced even if more data were to be collected"

$$H[p_{\infty}(z)]$$

Expected parameter-conditional predictive entropy $\mathbb{E}_{p_n(\theta)}[\mathrm{H}[p_n(z|\theta)]]$

Epistemic uncertainty

"uncertainty in the model parameters"

$$H[p_n(\theta)]$$

#

"can be explained away given enough data"

$$H[p_n(z)] - H[p_{\infty}(z)]$$

Expected information gain in the model parameters

$$H[p_n(z)] - \mathbb{E}_{p_n(\theta)}[H[p_n(z|\theta)]]$$

Model world \neq Real world

Decision-Based Fr

• Bayes-optimal action:

$$a_n^* = \arg\min_{a} \mathbb{E}_{p_n(z)}[\ell(a, z)]$$

Loss-grounded uncertainty measure:

$$h[p_n(z)] = \mathbb{E}_{p_n(z)}[\ell(a_n^*, z)]$$

Takeaway: The choice of loss (and thus the uncertainty measure) depends on the decision problem at hand.

Definition:

$$UR_z(y_{1:m}^+) = h[p_n(z)] - h[p_{n+m}(z)].$$

 $EUR_z^{\text{true}}(\pi, m) = \mathbb{E}_{p_{\text{train}}(y_{1:m}^+|\pi)}[UR_z(y_{1:m}^+)].$

Definition:

$$UR_z(y_{1:m}^+) = h[p_n(z)] - h[p_{n+m}(z)].$$

 $EUR_z^{\text{true}}(\pi, m) = \mathbb{E}_{p_{\text{train}}(y_{1:m}^+|\pi)}[UR_z(y_{1:m}^+)].$

As $m \to \infty$, the decomposition:

$$h[p_n(z)] = \underbrace{EUR_z^{\mathsf{true}}(\pi, \infty)}_{\mathsf{Reducible}} + \underbrace{\mathbb{E}_{p_{\mathsf{train}}(y_{1:m}^+ \mid \pi)}[h[p_\infty(z)]]}_{\mathsf{Irreducible}}.$$

Definition:

$$UR_z(y_{1:m}^+) = h[p_n(z)] - h[p_{n+m}(z)].$$

 $EUR_z^{\text{true}}(\pi, m) = \mathbb{E}_{p_{\text{train}}(y_{1:m}^+|\pi)}[UR_z(y_{1:m}^+)].$

As $m \to \infty$, the decomposition:

$$h[p_n(z)] = \underbrace{EUR_z^{\mathsf{true}}(\pi, \infty)}_{\mathsf{Reducible}} + \underbrace{\mathbb{E}_{p_{\mathsf{train}}(y_{1:m}^+|\pi)}[h[p_\infty(z)]]}_{\mathsf{Irreducible}}.$$

Compared with popular split:

$$H[p_n(z)] = \underbrace{\mathbb{E}_{p_n(\theta)}[H(p_n(z \mid \theta))]}_{\text{aleatoric}} + \underbrace{H[p_n(z)] - \mathbb{E}_{p_n(\theta)}[H(p_n(z \mid \theta))]}_{\text{BALD/epistemic}}$$

Definition:

$$UR_z(y_{1:m}^+) = h[p_n(z)] - h[p_{n+m}(z)].$$

 $EUR_z^{\text{true}}(\pi, m) = \mathbb{E}_{p_{\text{train}}(y_{1:m}^+|\pi)}[UR_z(y_{1:m}^+)].$

As $m \to \infty$, the decomposition:

$$h[p_n(z)] = \underbrace{EUR_z^{\mathsf{true}}(\pi, \infty)}_{\mathsf{Reducible}} + \underbrace{\mathbb{E}_{p_{\mathsf{train}}(y_{1:m}^+|\pi)}[h[p_\infty(z)]]}_{\mathsf{Irreducible}}.$$

Compared with popular split:

$$H[p_n(z)] = \underbrace{\mathbb{E}_{p_n(\theta)}[H(p_n(z \mid \theta))]}_{\text{aleatoric}} + \underbrace{H[p_n(z)] - \mathbb{E}_{p_n(\theta)}[H(p_n(z \mid \theta))]}_{\text{BALD/epistemic}}$$

- Paper's: decision/loss grounded, any learner, depends on data process.
- BALD: an *estimator*, not a universal decomposition.

EUR in Practice

Problem: We cannot access the true data-generating process or infinite data.

So we approximate with:

- Use model-based simulator $p_n(y_{1:m}^+ \mid \pi')$ instead of true p_{train} .
- Use approximate update $q_{n+m}(z)$ instead of true $p_{n+m}(z)$.

EUR in Practice

Problem: We cannot access the true data-generating process or infinite data.

So we approximate with:

- Use model-based simulator $p_n(y_{1:m}^+ \mid \pi')$ instead of true p_{train} .
- Use approximate update $q_{n+m}(z)$ instead of true $p_{n+m}(z)$.

Estimator:

$$EUR_{z}^{\text{est}}(\pi',m) = h[p_{n}(z)] - \mathbb{E}_{p_{n}(y_{1:m}^{+}|\pi')}[h[q_{n+m}(z)]].$$

EUR in Practice

Problem: We cannot access the true data-generating process or infinite data.

So we approximate with:

- Use model-based simulator $p_n(y_{1:m}^+ \mid \pi')$ instead of true p_{train} .
- Use approximate update $q_{n+m}(z)$ instead of true $p_{n+m}(z)$.

Estimator:

$$EUR_z^{\text{est}}(\pi',m) = h[p_n(z)] - \mathbb{E}_{p_n(y_{1:m}^+|\pi')}[h[q_{n+m}(z)]].$$

Sources of error:

- **1** Simulator mismatch $(p_n \text{ vs } p_{\text{train}})$.
- ② Update approximation $(q_{n+m} \text{ vs } p_{n+m})$.

Predictive Uncertainty

- $h[p_n(z)] = \mathbb{E}_{p_n(z)}[\ell(a_n^*, z)]$
- How uncertain *my model* thinks the future is
- Subjective, depends on $p_n(z)$

Predictive Uncertainty

- $\bullet \ h[p_n(z)] = \mathbb{E}_{p_n(z)}[\ell(a_n^*, z)]$
- How uncertain my model thinks the future is
- Subjective, depends on p_n(z)

Predictive Performance

- ullet Perf $(p_n) = \mathbb{E}_{p_{\mathsf{eval}}}[\ell(a_n^*, z)]$
- How good the predictions are compared with reality
- Requires $p_{\text{eval}}(z)$

Predictive Uncertainty

- $h[p_n(z)] = \mathbb{E}_{p_n(z)}[\ell(a_n^*, z)]$
- How uncertain my model thinks the future is
- Subjective, depends on p_n(z)

Predictive Performance

- ullet Perf $(p_n) = \mathbb{E}_{p_{\mathsf{eval}}}[\ell(a_n^*, z)]$
- How good the predictions are compared with reality
- Requires $p_{\text{eval}}(z)$

Data Dispersion

- Dispersion = entropy/variance of p_{eval}(z)
- How random the world really is, regardless of the model
- World-based, not model-based

- **Prop 1:** Bayes estimator under quadratic loss = the posterior mean.
- **Prop 2:** $h[p_n(z)]$ is the Bayes estimator of expected performance under p_{eval} .
- **Prop 3:** $\mathbb{E}_{p_n(\theta)}[h[p_n(z \mid \theta))]$ is the Bayes estimator of data dispersion $h[p_{\text{eval}}(z)]$.

Prop 1: Bayes estimator under quadratic loss = the posterior mean.

Prop 2: $h[p_n(z)]$ is the Bayes estimator of expected performance under p_{eval} .

Prop 3: $\mathbb{E}_{p_n(\theta)}[h[p_n(z \mid \theta))]$ is the Bayes estimator of data dispersion $h[p_{\text{eval}}(z)]$.

Takeaway: Model-based uncertainty \neq truth; only *estimators* of performance/dispersion.

Re-reading BALD

Re-reading BALD

Takeaway:

- BALD is not the "epistemic uncertainty" truth. It's an estimator, and often poor for long-run reducibility.
- But good proxy for short-run parameter $IG \rightarrow$ explains success in active learning.

Decision-Theoretic Framework

Accommodation

Is it worth reading? Maybe.

- Uncertainty is decision-specific, not one-size-fits-all.
- Oecomposition: reducible vs. irreducible (depends on DGS, not just model).
- Model-based quantities are estimators, not ground truths.
- BALD works in practice by estimating short-run parameter IG.

Cons:

- The authors claim their decomposition is better, but the argument is unconvincing, as there are no experiments, no rigorous proof, and no empirical validation.
- More like a conceptual critique + framework clarification paper.

Thank you! Any questions?

Shuo Chen.

Introduction and exemplars of uncertainty decomposition. arXiv preprint arXiv:2211.15475, 2022.