[utf8]inputenc

Outline

Abstract

PROBLEM:

EXPLANATION:

Abstract

• This document contains the explanation of question 9.12 of Papoulis Pillai Probability book of chapter sequence of random variables.

ASSIGNMENT-9

MUSKAN JAISWAL -cs21btech11037

May 2022

Consider a general one-dimensional random walk on the possible states e_o, e_1, e_2, \ldots Let S_n represent the location of the particle at time n on a straight line such that at each interior state e_j , the particle either moves to the right to e_{j+1} with probability P_j , or to the left to e_{j-1} with probability q_i or remains where it is at e_i .

At state e_0 it can either stay at the same position with probability r_0 or move to the right to e_1 with probability P_1 .

The transition matrix for the given problem is:-

$$\begin{pmatrix} r_0 & p_0 & 0 & 0 & \dots \\ q_1 & r_1 & p_1 & 0 & \dots \\ 0 & q_2 & r_2 & p_2 & \dots \\ 0 & 0 & q_3 & r_3 & p_3 \end{pmatrix}$$

Random walk on a line with $r_0 + p_0 = 1$

$$q_i + r_i + p_i = 1$$
 i=1,2,3,.....

Thus,
$$P_{00} = r_0 \ p_{01} = p_0 \ p_{0j} = 0, j > 1$$

and for
$$i \geq 1$$

$$p_{ij} = \{ p_i > 0 j = i+1 \}$$

$$r_i >= 0$$
j $=$ i

$$q_i > 0$$
 j=i-1

0 otherwise }

The model with $p_i = p$, $q_i = 1 - p$, $r_i = 0$ for i > 1, and r_0 corresponds to the gambler's ruin problem.

Here, the distribution of distance d_N travelled after a given number of steps. Let n_1 be the number of steps travelled towards left and total steps be N.

$$\begin{split} &d_N = 2n_1 - N \\ &d = a_1 + a_2 + a_n \\ &< d \ge < (a_1 + a_2 + a_3 + a_4 + a_n) > \\ &< d \ge < a_1 > + < a_2 > + < a_3 > + < a_4 > < a_n > \\ &d \ge 0 \text{ {As, } } la_i > = 0 \text{ if there is equal probability to move forward or backward and the steps taken are equal in distance.} \end{split}$$

Average of D^2

We expect that after N steps, we are \sqrt{N} steps away from where we start,