Canonical Correlation Analysis (CCA)

Foundations of Data Analysis

March 27, 2020

Example: Psych Measures vs. Test Scores

	locus_of_control	self_concept	motivation	read	write	math	science	female
0	-0.84	-0.24	1.00	54.8	64.5	44.5	52.6	1
1	-0.38	-0.47	0.67	62.7	43.7	44.7	52.6	1
2	0.89	0.59	0.67	60.6	56.7	70.5	58.0	0
3	0.71	0.28	0.67	62.7	56.7	54.7	58.0	0
4	-0.64	0.03	1.00	41.6	46.3	38.4	36.3	1

Question: Are these psychological measures related to scores on standardized tests?

(see CCA.ipynb for code details)

Pairwise Relationships

Pairwise Correlations: 0.3735 0.0606 0.2106 0.3588 0.0194 0.2542 0.3372 0.0535 0.1950 0.3246 0.0698 0.1156

Canonical Correlation Analysis (CCA)

Group your data table into two sets of variables:

$$X: n \times d_X$$
 $Y: n \times d_Y$

Find a single dimension in X and single dimension in Y that are maximally correlated

Math of CCA

Unit vector in X data: $u \in \mathbb{R}^{d_X}$, ||u|| = 1Unit vector in Y data: $v \in \mathbb{R}^{d_Y}$, ||v|| = 1

Projected data:

$$\langle x_i - \mu_X, u \rangle, \qquad \langle y_i - \mu_Y, u \rangle$$

or, using centered data matrices, \tilde{X}, \tilde{Y} :

$$\tilde{X}u$$
, $\tilde{Y}v$

Maximize correlation in projected data:

$$(u', v') = \arg\max_{u,v} \operatorname{corr}(\tilde{X}u, \tilde{Y}v)$$

Math of CCA

Let
$$\Sigma_{XX} = \operatorname{cov}(X, X), \Sigma_{YY} = \operatorname{cov}(Y, Y), \Sigma_{XY} = \operatorname{cov}(X, Y)$$

Goal: find u, v that maximize the correlation:

$$\rho = \frac{u^T \Sigma_{XY} v}{\sqrt{u^T \Sigma_{XX} u} \sqrt{v^T \Sigma_{YY} v}}$$

CCA Solution

u is the eigenvector with largest eigenvalue of

$$\Sigma_{XX}^{-1}\Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{YX}$$

v is the eigenvector with largest eigenvalue of

$$\Sigma_{YY}^{-1}\Sigma_{YX}\Sigma_{XX}^{-1}\Sigma_{XY}$$

Just like PCA, we can then proceed to find the dimensions with the **second most** correlation, etc.

Example: Psych vs. Test

Pairwise Correlations: 0.3735 0.0606 0.2106 0.3588 0.0194 0.2542 0.3372 0.0535 0.1950 0.3246 0.0698 0.1156

Example: Psych vs. Test

```
Psych Canonical Components:
Control 0.876809 - 0.429422
Self -0.174754 -0.496948
Motivation 0.447959 0.755662
Academic Canonical Components:
Read
          0.617204 0.012375
          0.743148 0.676109
Write
Mat.h
         0.253335 0.021393
Science -0.051115 - 0.926878
```

First Canonical Correlation = 0.4464364824283061 Second Canonical Correlation = 0.15335902492287964

Example: Psych vs. Test

