5

10

MINIMUM BAYES ERROR FEATURE SELECTION

IN SPEECH RECOGNITION

Abstract of the Disclosure

In connection with speech recognition, the design of a linear transformation $\theta \in \Re^{p \times n}$, of rank $p \times n$, which projects the features of a classifier $\mathbf{x} \in \Re^n$ onto $\mathbf{y} = \theta \mathbf{x} \in \Re^p$ such as to achieve minimum Bayes error (or probability of misclassification). Two avenues are explored: the first is to maximize the θ -average divergence between the class densities and the second is to minimize the union Bhattacharyya bound in the range of θ . While both approaches yield similar performance in practice, they outperform standard linear discriminant analysis features and show a 10% relative improvement in the word error rate over known cepstral features on a large vocabulary telephony speech recognition task.