Fakultät Informatik *INF* Studiengang Informatik

Prof. Dr.-Ing. Holger Stahl

Probeklausur Technische Grundlagen der Informatik

Version B - Semester: INF-B 1

Datum:	20. Uranus 2030, 14:00 Uhr	Nachname:	
Dauer:	90 min	Vorname:	
Prüfer:	Prof. DrIng. Holger Stahl	MatrNr.:	

- Zugelassene Hilfsmittel: Auf DIN A4 ausgedrucktes Originalmanuskript mit handschriftlichen Ergänzungen, sowie Taschenrechner
 - Mobiltelefone (auch sog. Smartphones und -watches) sind abzuschalten und wegzupacken!
- Teilaufgaben, zu deren Lösung Ergebnisse aus vorangegangenen Aufgaben nicht unbedingt erforderlich sind, wurden mit einem Stern (*) gekennzeichnet.
- Ergebnisse können nur dann gewertet werden, wenn der Rechenweg klar erkennbar ist.
- In Diagrammen müssen beide Achsen beschriftet sein.
- Ergänzen Sie unvollständige Angaben durch eigene, plausible Annahmen.
- Rotstift darf nicht verwendet werden.
- Das Öffnen der seitlichen Klammern wird als Unterschleif gewertet.
- Dieses Aufgabenheft umfasst 12 Seiten. Maximal sind 90 Punkte erreichbar.

Zusätzlich zu diesen 90 Punkten können Sie bis zu 12 Punkte Überhang einbringen:

Überhangpunkte für die aktive Teilnahme an der Vorlesung: Für die Vorbereitung der Praktikumsversuche, sowie für die Durchführung der praktischen Übungen gab es insgesamt 4 · 2½ zusätzliche Bonuspunkte. Außerdem wurden zum Abschluss der Vorlesungskapitel 2 und 5 Verständnistests im *Learning Campus* angeboten, für die Sie jeweils 1 Bonuspunkt sammeln konnten. Insgesamt waren somit 12 Punkte erzielbar. Dieser zusätzliche Überhang wird Ihnen auch für eventuelle Wiederholungen oder eine spätere Teilnahme an der schriftlichen Prüfung in den Folgesemestern gutgeschrieben.

Bewertung (vom Prüfer auszufüllen):

Aufgabe	1	2	3	4	5	6	7	8	9	Überhang Verständnistests	Σ
Erreichte Punktzahl	10	11	18	8	10	8	10	8	7	12	102

TEIL I: GRUNDLAGEN DER ELEKTROTECHNIK

1. Aufgabe: Energieversorgung eines Flugmodells (10 Punkte)

Eine Drohne (sog. *Quadrocopter*) wird mit einem Akku betrieben, der eine Kapazität (d.h. gespeicherte Ladung) von 4 Ah aufweist, und als <u>ideale Spannungsquelle</u> mit 12 V betrachtet werden kann. Während des Betriebs wird folgende elektrische Leistung benötigt:

- 120 W im stationären Schwebeflug, und
- 100 W im Vorwärtsflug mit der Reisegeschwindigkeit von 40 km/h.
- a)* Wie <u>lang</u> kann die Drohne maximal im Schwebeflug gehalten werden?
- b)* Welche Reichweite (d.h. maximale Entfernung vom Startplatz mit Rückkehr) hat die Drohne?
- c) Um wieviele Sekunden reduziert sich die Flugzeit im stationären Schwebeflug, wenn zusätzlich eine Beleuchtung betrieben wird, welche den Akku mit 100 mA belastet?

In der Praxis ist der Akku eine <u>reale Spannungsquelle</u> <u>mit einem Innenwiderstand</u>:

d)* Erklären Sie kurz, warum der Innenwiderstand die Flugzeit reduzieren wird!

2. Aufgabe: Dimensionierung einer Transistorschaltung (11 Punkte)

Mit dem Einplatinenrechner "Arduino" soll eine Alarmanlage aufgebaut werden. Der Arduino soll einen Scheinwerfer ansteuern, der bei einer Spannung von 24 V eine Leistung von 12 W aufnimmt. Der Ausgang des Rechners liefert (je nach Schaltzustand) eine Spannung von 0 V oder 5 V, und er darf mit maximal 40 mA belastet werden. Als Schalter soll ein Silizium-Bipolartransistor verwendet werden, der eine Stromverstärkung von $\beta = 200$ aufweist. Folgendes Bild zeigt den Steuerstromkreis am Arduino; der Laststromkreis muss (Teilaufgabe c) noch vervollständigt werden:

- a)* Ist der Transistor vom Typ "npn" oder "pnp" (Zutreffendes einkringeln!)?
- b)* Warum macht es Sinn, für den geplanten Zweck eine Emitterschaltung zu verwenden?

- c)* Vervollständigen Sie den Laststromkreis so, dass der Transistor den Scheinwerfer schalten kann!
- d)* Bestimmen Sie einen sinnvollen Wert für den Vorwiderstand R_V aus der E12-Reihe, so dass der Transistor "satt" durchschaltet, ohne den Rechnerausgang zu überlasten.

3. Aufgabe: Betrieb mehrerer LEDs (18 Punkte)

Zur Illumination eines Flugmodells sollen mehrere LEDs an einer Spannung von 12 V betrieben werden. Es kommen vier rote LEDs (Flussspannung $U_F = 2,1$ V) und vier blaue LEDs ($U_F = 3,4$ V) zum Einsatz. Die LEDs sollen jeweils mit einem Strom von 10 mA betrieben werden.

a)* Erklären Sie, warum LEDs niemals direkt (d.h. ohne Vorwiderstand) an eine Spannungsquelle angeschlossen werden dürfen!

Die vier LEDs werden jeweils mit Vorwiderständen versehen und – zunächst – <u>parallelg</u>eschaltet:

- b)* Berechnen Sie die Werte der Vorwinderstände $R_{v,rot}$ und $R_{v,blau}$!
- c)* Wie groß sind der Gesamtstrom I und der elektrische Wirkungsgrad η_{el} der Schaltung?

Der Gesamtstrom lässt sich <u>signifikant reduzieren</u> (bei gleicher Helligkeit der LEDs!), indem diese in einer Kombination aus Reihen- und Parallelschaltung betrieben werden:

- d)* Skizzieren Sie diese Schaltung mit der 12V-Quelle, den 8 LEDs, sowie den Vorwiderständen und berechnen Sie den/die Widerstandswert(e)! <u>Hinweis:</u> Es gibt mehrere sinnvolle Lösungen!
- e) Wie groß sind der Gesamtstrom und der elektrische Wirkungsgrad jetzt?

Eventuell benötigter zusätzlicher Platz zur Lösung anderer Aufgaben dieser Prüfung:

4. Aufgabe: Parameter einer Mischspannung (8 Punkte)

In dem Demoprogramm **SpannungsartenMessung.exe** wird folgender Signalverlauf über der Zeit angezeigt:

- b)* Bestimmen Sie die Frequenz des Signals.
- c)* Bestimmen Sie den Scheitelwert und den Gleichanteil.

d) Wie groß ist der Effektivwert?

TEIL II: SIGNALE UND SYSTEME

5. Aufgabe: Faltung (10 Punkte)

Ein zeitkontinuierliches LTI-System (Impulsantwort h(t)) wird mit dem <u>periodischen</u> Eingangssignal x(t) beaufschlagt:

 \Rightarrow Skizzieren Sie das Ausgangssignal y(t)!

6. Aufgabe: Filterung eines periodischen Rechtecksignals (10 Punkte)

In dem Demoprogramm FaltungIstFilterung.exe dient ein periodisches Rechtecksignal als Eingangssignal eines Filters (LTI-System). Links dargestellt ist das Eingangssignal x(t), darunter das Amplitudenspektrum $|\underline{X}(f)|$. Rechts dargestellt ist die Impulsantwort h(t) des Filters, darunter dessen Amplitudenfrequenzgang $|\underline{H}(f)|$:

- a)* Welcher Filtertyp (*Tief-*, *Hoch-*, *Bandpass*, *Bandsperre*) liegt vor (Zutreffendes einkringeln!)?
- b)* Skizzieren Sie das Amplitudenspektrum $|\underline{Y}(f)| \bullet^{\mathsf{FT}} \circ y(t)$ des Ausgangssignals in das Diagramm rechts:

<u>Hinweis:</u> Relative Amplituden ohne Achsenskalierung genügen!

c) Skizzieren Sie das Ausgangssignal y(t) in das Diagramm rechts:

<u>Hinweis:</u> Achten Sie hier auf eine plausible Amplitude des Signals!

7. Aufgabe: Signale & Systeme – Verschiedenes (8 Punkte)

Kennzeichnen Sie die folgenden Aussagen mit W für "wahr", mit 🗜 für "falsch", oder mit 🗌 für "weiß ich nicht".

Jede **korrekt** beurteilte Aussage wird mit **+1 Punkt** bewertet, jede **nicht korrekt** beurteilte Aussage wird mit **-1 Punkt** bewertet. Ansonsten erhalten Sie **0 Punkte** für die betreffende Aussage. Zu erreichen sind somit maximal 5 Punkte für Teilaufgabe *a*) und 3 Punkte für *b*). Jede Teilaufgabe wird mit mindestens 0 Punkten unabhängig von der anderen gewertet.

a)* Betrachtet wird das folgende Kurzzeitspektrum eines Sprachsignals, aufgenommen mit dem Demoprogramm AudioSignalUndSpektrum.exe:

Das Signal ist stimmhaft (es könnte z.B. ein Vokal sein).
Das Signal könnte der gesprochene Zischlaut (s) sein.
Die <u>Grundfrequenz</u> des Signals liegt bei etwa $f_0 = 460$ Hz.
Die <u>erste Oberwelle</u> des Signals liegt bei etwa $f_0 = 460$ Hz.
Das Signal wurde wahrscheinlich von einer Frau erzeugt, nicht von einem Mann

b)* Quantisierung

Ein	Signal soll linear quantisiert werden, bevor es abgetastet wird. Es wird gefordert, dass der
Dyn	amikumfang mindestens $D_{\text{max}} = 75 \text{ dB}$ beträgt. Welche Bedingung muss dazu erfüllt sein?
	Die Wortbreite muss mindestens $m \ge 7$ Bit betragen.
	Die Wortbreite muss mindestens $m \ge 13$ Bit betragen.
	Die geforderte Dynamik ergibt sich automatisch, wenn das Abtasttheorem erfüllt ist!

8. Aufgabe: *Abtastung* (8 Punkte)

Ein Signal x(t) mit dem unten dargestellten Spektrum $\underline{X}(t)$ wird mit der Periode $T_S = 2 \text{ ms}$ abgetastet. Es entsteht die Impulsfolge $x_S(t)$; durch ideale Tiefpassfilterung wird daraus $x_r(t)$ rekonstruiert:

a)* Welche Bedingung muss das Signal x(t) erfüllen, damit es rekonstruiert werden kann?

Im Folgenden gilt: $B = \frac{1}{4 \cdot T_S}$

b)* Skizzieren Sie das Fourier-Spektrum $\underline{X}_{S}(f) \bullet^{FT} O x_{s}(t)$.

c) In welchem Bereich muss die Abschneidefrequenz f_r des Rekonstruktionsfilters liegen, damit gilt: $x_r(t) = x(t)$?

9. Aufgabe: Fourierreihe (7 Punkte)

Kennzeichnen Sie die folgenden Aussagen mit **W** für "wahr", mit **f** für "falsch", oder

mit für "weiß ich nicht".

Jede **korrekt** beurteilte Aussage wird mit **+1 Punkt** bewertet, jede **nicht korrekt** beurteilte Aussage wird mit **-1 Punkt** bewertet. Ansonsten erhalten Sie **0 Punkte** für die betreffende Aussage. Die Aufgabe wird mit mindestens 0 Punkten gewertet.

a) Betrachten Sie das unten dargestellte periodische Signal $\tilde{x}(t)$:

	Das Signal $\tilde{x}(t)$	enthält einen	Gleichanteil
--	---------------------------	---------------	--------------

Der Koeffizient \underline{X}_0 der zugehörigen Fourierreihenentwicklung ist Null.
Der Koeffizieht $\underline{x_0}$ der zugehöffgen Fourieffenenemwickfung ist $\underline{\text{Nun}}$.

Die Fourierkoeffizienten
$$\underline{X}_k$$
 sind rein imaginär für alle $k = 1, 2, 3, ...$

Die Fourierkoeffizienten
$$\underline{X}_k$$
 sind rein reell für alle $k = 1, 2, 3, ...$

Von Null verschieden sind nur Fourierkoeffizienten
$$\underline{X}_k$$
 für ungerade $k = 1, 3, 5, ...$

Die Grundfrequenz ergibt sich zu
$$f_0 = \frac{1}{30}$$
 Hz

Eventuell benötigter zusätzlicher Platz zur Lösung der Aufgaben:

