20053722 Bryan Hoang
Student Number Name

2.

(a) By conditioning on N, show that the moment generating function of Y is given by

$$m_Y(t) = m_N(\ln(m_X(t))) \tag{1}$$

Solution:

Proof. We begin with the LHS of (1).

LHS =
$$m_Y(t)$$

= $E[e^{tY}]$ by definition of $m_Y(t)$
= $E[E[e^{tY}|N]]$ by the law of total expectation
= $\sum_{n=0}^{\infty} E[e^{tY}|N=n]p_N(n)$ where p_N is the pmf of N
= $1 + \sum_{n=1}^{\infty} E[e^{t\sum_{i=1}^{n} X_i}]p_N(n)$ by the definition of Y
= $1 + \sum_{n=1}^{\infty} E[\prod_{i=1}^{n} e^{tX_i}]p_N(n)$ since the X_i 's are iid w.r.t. X
= $\sum_{n=0}^{\infty} m_X(t)^n p_N(n)$
= $E[m_X(t)^N]$ by the law of the unconscious statistician
= $E[e^{\ln(m_X) \cdot N}]$
= $m_N(\ln(m_X(t)))$
= RHS

(b) Let N have a $Poisson(\lambda)$ distribution and suppose N independent Bernoulli trials are conducted, where the probability of success in each trial is p. Let Y denote the total number of successes in the conducted trials. Compute the moment generating function of Y and use this to determine the distribution of Y.

Solution:

Let X_i be the indicator function for the success of the *i*th experiment, $i \in \{1, ..., N\}$, which implies that the X_i 's are iid to $X \sim \text{Bernoulli}(p)$. Then

$$Y = \begin{cases} \sum_{i=1}^{N} X_i & \text{if } N \in \mathbb{Z}_{\geq 1} \\ 0, & \text{if } N = 0 \end{cases}$$

20053722 Student Number Bryan Hoang Name

From the lecture material, we know that

$$m_N(t) = e^{\lambda(e^t - 1)}, \quad \forall t \in \mathbb{R}$$

Computing the mgf of X gives us

$$m_X(t) = \mathbb{E}\left[e^{tX}\right]$$

 $= \sum_{x=0}^{1} e^{tx} p_X(x)$ where p_X is the pmf of X
 $= 1 - p + pe^t, \quad \forall t \in \mathbb{R}$

By part \mathbf{a} , the mgf of Y is

$$m_Y(t) = m_N(\ln(m_X(t)))$$

$$= m_N(\ln(1 - p + pe^t))$$

$$= e^{\lambda \left(e^{\ln(1 - p + pe^t)} - 1\right)}$$

$$= e^{\lambda(1 - p + pe^t - 1)}$$

$$= e^{(\lambda p)(e^t - 1)}$$

which is the mgf of a random variable with a $Poisson(\lambda p)$ distribution. Thus, $Y \sim Poisson(\lambda p)$.