大数据分析技术

Chap. 12 Regression model

王怡洋 副教授

大连海事大学 信息科学技术学院

Chap. 12.1 Univariate Linear regression revisit

Chap. 12.2 Multilinear regression

Chap. 12.3 Logistic regression

Chap. 12.4 Deep learning

注:该ppt请不要传播,◎。

12.1 Univariate Linear regression revisit

• Wind speed \rightarrow SOG

m: the number of training examples

x: "input" variable/feature (wind speed) $\mathbf{x} = (x_1, x_2, \dots, x_m)^{\mathsf{T}}$

 \mathbf{y} : ground truth/label (\mathbf{SOG}) $\mathbf{y} = (y_1, y_2, \dots, y_m)^{\mathsf{T}}$

z: "output" variable/target (prediction) $\mathbf{z} = (z_1, z_2, \dots, z_m)^{\mathsf{T}}$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \arg\min_{\mathbf{w}} \sum\nolimits_{i=1}^m (f(x_i; \mathbf{w}) - y_i)^2$$

Gradient descent Alg.: $\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \nabla \mathcal{L}(\mathbf{w}^t)$

12.2 Multivariate linear regression

NAME	NOTES	
SOG (kn)	Speed over ground,	对地速度
DRAUGHT (m)	吃水	
COG (°)	Course over ground,	对地航向
HDG (°)	Heading, 船艏向	
CURRENT (°)	流向	
TRUE WIND (°)	风向	15
WAVE (°)	风浪方向	14 × × ×
SWELL(°)	涌浪方向	12 - * * * * * * * * * * * * * * * * * *
CURRENT (kn)	流速	11 -xx
TRUE WIND (m/s)	风速	90S 10
WAVE (m)	浪高	8
SWELL (m)	涌浪高度	7
GUST (m/s)	阵风风速	6 -
SEAS (m)	耦合浪高	5 0

12.2.1 Notations

m: the number of training examples

Pre.

x: "input" variable/feature (wind speed)
$$\mathbf{x} = (x_1, x_2, \dots, x_m)^{\mathsf{T}}$$

$$\mathbf{y}$$
: ground truth/label (\mathbf{SOG}) $\mathbf{y} = (y_1, y_2, \dots, y_m)^{\mathsf{T}}$

z: "output" variable/target (prediction)
$$\mathbf{z} = (z_1, z_2, \dots, z_m)^{\mathsf{T}}$$

m: the number of training examples

n: the number of features

x: "input" variables/features (attribute features)

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m)^{\mathsf{T}} \in \mathbb{R}^{m \times n}$$
 (all training data)

$$\mathbf{x}_{i,\cdot} = (x_{i,1}, x_{i,2}, \dots, x_{i,n})^{\mathsf{T}} \in \mathbb{R}^{\mathsf{n}}$$
 (the ith sample with *n* features)

New

y: ground truth/label (SOG)

$$\mathbf{y} = (y_1, y_2, \cdots, y_m)^{\mathsf{T}} \in \mathbb{R}^{\mathsf{m}}$$

z: "output" variable/target (prediction)

$$\mathbf{z} = (z_1, z_2, \cdots, z_m)^{\mathsf{T}} \in \mathbb{R}^m$$

12.2.2 Function hypothesis

12.2.3 Loss function

$$\min_{w_o, w_1} (f(x_i; \mathbf{w}) - y_i)^2$$

$$\min_{\mathbf{w}_{o}, \mathbf{w}_{1}} (f(x_{i}; \mathbf{w}) - y_{i})^{2}$$

$$\min_{\mathbf{w}} \sum_{i=1}^{m} (f(x_{i}; \mathbf{w}) - y_{i})^{2}$$

$$\min_{w_o, w_1} \frac{1}{2m} \sum_{i=1}^m (w_o + w_1 x_i - y_i)^2$$

Let's define:
$$\mathcal{L}(w_o, w_1) = \frac{1}{2m} \sum_{i=1}^m (w_o + w_1 x_i - y_i)^2$$

$$\min_{w_o, w_1} \mathcal{L}(w_o, w_1)$$

loss/cost function (squared error function)

- Different hypothesis on f, different \mathcal{L}
- Different w_o and w_1 , different value of \mathcal{L} .
- The best w_0 and w_1 are corresponding to the lowest value of \mathcal{L} , which are defined as \mathbf{w}^* , i.e.

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathcal{L}(\mathbf{w})$$

 $\mathcal{L}(w_0^*, w_1^*)$ is the best predictor under the linear hypothesis

New

$$\min_{w_0, w_1, \dots, w_n} \frac{1}{2m} \sum_{i=1}^m (w_0 + w_1 x_{i,1} + \dots + w_n x_{i,n} - y_i)^2$$

Let's define:

$$\mathcal{L}(w_0, w_1, \cdots, w_n) = \frac{1}{2m} \sum_{i=1}^{m} (w_0 + w_1 x_{i,1} + \cdots + w_n x_{i,n} - y_i)^2$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^{n+1}} \frac{1}{2m} \sum_{i=1}^m (f(\mathbf{x}_i; \mathbf{w}) - y_i)^2$$

12.2.4 Gradient descent

Gradient descent Alg.: $\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \nabla \mathcal{L}(\mathbf{w}^t)$ Learning rate

Pre.

$$\begin{bmatrix} w_0^{t+1} \\ w_1^{t+1} \end{bmatrix} = \begin{bmatrix} w_0^t \\ w_1^t \end{bmatrix} - \alpha \begin{bmatrix} \frac{1}{m} \sum_{i=1}^m (w_0^t + w_1^t x_i - y_i) \\ \frac{1}{m} \sum_{i=1}^m (w_0^t + w_1^t x_i - y_i) x_i \end{bmatrix} = \begin{bmatrix} w_0^t \\ w_1^t \end{bmatrix} - \frac{\alpha}{m} \sum_{i=1}^m ((\mathbf{w}^t)^{\mathsf{T}} \begin{bmatrix} 1 \\ x_i \end{bmatrix} - y_i) \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$

New

$$\begin{bmatrix} w_0^{t+1} \\ w_1^{t+1} \\ \vdots \\ w_n^{t+1} \end{bmatrix} = \begin{bmatrix} w_0^t \\ w_1^t \\ \vdots \\ w_n^t \end{bmatrix} - \alpha \begin{bmatrix} \frac{1}{m} \sum_{i=1}^m \left(w_0^t + w_1^t x_{i,1} + \dots + w_n^t x_{i,n} - y_i \right) \\ \frac{1}{m} \sum_{i=1}^m \left(w_0^t + w_1^t x_{i,1} + \dots + w_n^t x_{i,n} - y_i \right) x_{i,1} \\ \vdots \\ \frac{1}{m} \sum_{i=1}^m \left(w_0^t + w_1^t x_{i,1} + \dots + w_n^t x_{i,n} - y_i \right) x_{i,n} \end{bmatrix} = \begin{bmatrix} w_0^t \\ w_1^t \\ \vdots \\ w_n^t \end{bmatrix} - \frac{\alpha}{m} \sum_{i=1}^m \left((\mathbf{w}^t)^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x}_i \end{bmatrix} - y_i \right) \begin{bmatrix} 1 \\ \mathbf{x}_i \end{bmatrix}$$

12.2.5 A unified framework

m: the number of training examples

n: the number of features

x: "input" variables/features (attribute features)

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m)^{\mathsf{T}} \in \mathbb{R}^{\mathbf{m} \times \mathbf{n}}$$

$$\mathbf{x}_{i,\cdot} = \left(x_{i,1}, x_{i,2}, \cdots, x_{i,n}\right)^{\mathsf{T}} \in \mathbb{R}^{\mathsf{n}}$$

y: ground truth/label

$$\mathbf{y} = (y_1, y_2, \cdots, y_m)^{\mathsf{T}} \in \mathbb{R}^{\mathrm{m}}$$

z: "output" variable/target (prediction)

$$\mathbf{z} = (z_1, z_2, \cdots, z_m)^{\mathsf{T}} \in \mathbb{R}^{\mathsf{m}}$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^{n+1}} \frac{1}{2m} \sum_{i=1}^m (f(\mathbf{x}_i; \mathbf{w}) - y_i)^2$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \nabla \mathcal{L}(\mathbf{w}^t)$$

$$\begin{bmatrix} w_0^{t+1} \\ w_1^{t+1} \\ \vdots \\ w_n^{t+1} \end{bmatrix} = \begin{bmatrix} w_0^t \\ w_1^t \\ \vdots \\ w_n^t \end{bmatrix} - \frac{\alpha}{m} \sum_{i=1}^m \left((\mathbf{w}^t)^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x}_i \end{bmatrix} - y_i \right) \begin{bmatrix} 1 \\ \mathbf{x}_i \end{bmatrix}$$

12.2.6 More discussions – part I

$$\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^{n+1}} \frac{1}{2m} \sum_{i=1}^m (f(\mathbf{x}_i; \mathbf{w}) - y_i)^2 \qquad f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$$

• Thus the optimal \mathbf{w}^* satisfies:

$$X^{\mathsf{T}}(X\mathbf{w}^* - \mathbf{y}) = 0$$

• See the computation in the brackets:

$$\mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x}_i \end{bmatrix} - y_i = \begin{bmatrix} 1 & \mathbf{x}_i^{\mathsf{T}} \end{bmatrix} \mathbf{w} - y_i$$

• Thus we have:

$$\sum_{i=1}^{m} \left(\mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x}_{i} \end{bmatrix} - y_{i} \right)^{2} = \left\| \begin{bmatrix} 1 & \mathbf{x}_{1}^{\mathsf{T}} \\ 1 & \mathbf{x}_{2}^{\mathsf{T}} \\ \vdots \\ 1 & \mathbf{x}_{m}^{\mathsf{T}} \end{bmatrix} \mathbf{w} - \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{bmatrix} \right\|^{2}$$

• Let's define:

$$\mathbb{X} = \begin{bmatrix} 1 & \mathbf{x}_1^{\mathsf{T}} \\ 1 & \mathbf{x}_2^{\mathsf{T}} \\ \vdots \\ 1 & \mathbf{x}_m^{\mathsf{T}} \end{bmatrix} \in \mathbb{R}^{m \times (n+1)}$$

Then with $\mathbf{y} = (y_1, y_2, \dots, y_m)^{\mathsf{T}} \in \mathbb{R}^{\mathsf{m}}$, we have:

$$\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^{n+1}} \frac{1}{2m} \|\mathbf{x}\mathbf{w} - \mathbf{y}\|^2$$
$$= \arg\min_{\mathbf{w} \in \mathbb{R}^{n+1}} \frac{1}{2m} (\mathbf{x}\mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{x}\mathbf{w} - \mathbf{y})$$

• Ref: details of derivation

$$\partial ((\mathbf{y} - \mathbf{X}\mathbf{w})^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\mathbf{w}))$$

$$= \partial (\mathbf{y} \mathbf{y} - \mathbf{y}^{\mathsf{T}} \mathbf{X}\mathbf{w} - \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}\mathbf{w})$$

(Since
$$\mathbf{y}^{\mathsf{T}} \mathbb{X} \mathbf{w} = (\mathbb{X} \mathbf{w})^{\mathsf{T}} \mathbf{y} = \mathbf{w}^{\mathsf{T}} \mathbb{X}^{\mathsf{T}} \mathbf{y}$$
, then)
= $\partial (-2\mathbf{w}^{\mathsf{T}} \mathbb{X}^{\mathsf{T}} \mathbf{y} + \mathbf{w}^{\mathsf{T}} \mathbb{X}^{\mathsf{T}} \mathbb{X} \mathbf{w})$

(Since
$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^{\mathsf{T}} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$
, then)

$$= -2 \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} + \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}$$

$$= -2 \mathbf{X}^{\mathsf{T}} \mathbf{y} + 2 \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}$$

• Thus we need to solve the following linear equation:

$$\mathbb{X}^{\mathsf{T}}\mathbb{X}\mathbf{w}^{*}=\mathbb{X}^{\mathsf{T}}\mathbf{v}$$

• If X^TX is full rank, then:

$$\mathbf{w}^* = (\mathbb{X}^{\mathsf{T}}\mathbb{X})^{-1}\mathbb{X}^{\mathsf{T}}\mathbf{y}$$

12.2.7 More discussions – part II

$$\mathbf{w}^{t+1} = \mathbf{w}^{t} - \alpha \nabla \mathcal{L}(\mathbf{w}^{t})$$

$$\begin{bmatrix} w_{0}^{t+1} \\ w_{1}^{t+1} \\ \vdots \\ w_{n}^{t+1} \end{bmatrix} = \begin{bmatrix} w_{0}^{t} \\ w_{1}^{t} \\ \vdots \\ w_{n}^{t} \end{bmatrix} - \frac{\alpha}{m} \sum_{i=1}^{m} \left((\mathbf{w}^{t})^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x}_{i} \end{bmatrix} - y_{i} \right) \begin{bmatrix} 1 \\ \mathbf{x}_{i} \end{bmatrix} = \begin{bmatrix} w_{0}^{t} \\ w_{1}^{t} \\ \vdots \\ w_{n}^{t} \end{bmatrix} - \alpha \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} \left(w_{0}^{t} + w_{1}^{t} x_{i,1} + \dots + w_{n}^{t} x_{i,n} - y_{i} \right) \\ \frac{1}{m} \sum_{i=1}^{m} \left(w_{0}^{t} + w_{1}^{t} x_{i,1} + \dots + w_{n}^{t} x_{i,n} - y_{i} \right) x_{i,1} \\ \vdots \\ \frac{1}{m} \sum_{i=1}^{m} \left(w_{0}^{t} + w_{1}^{t} x_{i,1} + \dots + w_{n}^{t} x_{i,n} - y_{i} \right) x_{i,n} \end{bmatrix}$$

$$\begin{split} w_0^{t+1} &= w_0^t - \alpha \frac{1}{m} \sum_{i=1}^m \left(w_0^t + w_1^t x_{i,1} + \dots + w_n^t x_{i,n} - y_i \right) \\ w_1^{t+1} &= w_1^t - \alpha \frac{1}{m} \sum_{i=1}^m \left(w_0^t + w_1^t x_{i,1} + \dots + w_n^t x_{i,n} - y_i \right) x_{i,1} \\ &\vdots \\ w_n^{t+1} &= w_n^t - \alpha \frac{1}{m} \sum_{i=1}^m \left(w_0^t + w_1^t x_{i,1} + \dots + w_n^t x_{i,n} - y_i \right) x_{i,n} \end{split}$$

• Gradient descent algorithm

• Coordinate descent algorithm (faster ©)

$$w_0^{t+1} = w_0^t - \alpha \frac{1}{m} \sum_{i=1}^m \left(w_0^t + w_1^t x_{i,1} + \dots + w_n^t x_{i,n} - y_i \right)$$

$$w_1^{t+1} = w_1^t - \alpha \frac{1}{m} \sum_{i=1}^m \left(w_0^{t+1} + w_1^t x_{i,1} + \dots + w_n^t x_{i,n} - y_i \right) x_{i,1}$$

$$\vdots$$

$$w_n^{t+1} = w_n^t - \alpha \frac{1}{m} \sum_{i=1}^m \left(w_0^{t+1} + w_1^{t+1} x_{i,1} + \dots + w_n^t x_{i,n} - y_i \right) x_{i,n}$$

12.3 Logistic regression

- Continuous variable
- x ↑, y ↑

• Suppose we don't care about the exact prediction of SOG, we just want to know whether SOG is larger than the service speed, or not.

- Discrete variable
- Contain two class, one is "larger" than the service speed, the other one is "smaller" than the service speed
- Can we use linear regression to solve this task? ⊗

 \mathbf{y} : ground truth/label (not SOG, but $\{0, 1\}$) $\mathbf{y} = (y_1, y_2, \dots, y_m)^{\mathsf{T}} \in \{0, 1\}^m$

z: "output" variable/target (prediction: closer to 1/closer to 0)

12.3.1 Ideal alternatives

• Linear regression:

$$z := f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$$
 Let $\hat{\mathbf{x}} := \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$

• Find an *unit-step function*, such that:

$$g(z) = \begin{cases} 0, & z < 0 \\ 0.5, & z = 0 \\ 1, & z > 0 \end{cases}$$

- Discontinuity 🖾, we need to find a surrogate function
- Logistic/sigmoid function

$$u := g(z) = \frac{1}{1 + e^{-z}}$$
 $(= \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}}\hat{\mathbf{x}}}})$

12.3.2 Log-odds

• Logistic/sigmoid function

$$u := g(z) = \frac{1}{1 + e^{-z}} \qquad (= \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}}}})$$

Make a transformation

$$ln\frac{u}{1-u} = \mathbf{w}^{\mathsf{T}}\hat{\mathbf{x}}$$

- If we regard u as the probability of class "larger", then 1-u can be seen as the probability of class "smaller"
- Thus, $\frac{u}{1-u}$ can be seen as the odds (see wikipedia), thus the log-odds (the logarithm of the odds) for the label "larger" is a linear combination of input features

12.3.3 Graphics mode

• Logistic/sigmoid function

$$u := g(z) = \frac{1}{1 + e^{-z}} \qquad (= \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}}}\hat{\mathbf{x}}})$$

$$f(\mathbf{x}; w) = g\left(\mathbf{w}^{\mathsf{T}}\begin{bmatrix}1\\\mathbf{x}\end{bmatrix}\right) = \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}}\begin{bmatrix}1\\\mathbf{x}\end{bmatrix}}}$$

For reference:

- Loss function: cross-entropy
- Optimization algorithm

12.3.4 Decision boundary

• Logistic/sigmoid function

$$f(\mathbf{x}; \mathbf{w}) = g\left(\mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}\right) = \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}}}$$

$$f(\mathbf{x}; \mathbf{w}) = 1 \text{ if } f(\mathbf{x}; \mathbf{w}) \ge 0.5, \text{ or equally, } \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} \ge 0$$

$$f(\mathbf{x}; \mathbf{w}) = 0 \text{ if } f(\mathbf{x}; \mathbf{w}) < 0.5, \text{ or equally, } \mathbf{w}^{\mathsf{T}} \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} < 0$$

Suppose that we have

$$f(\mathbf{x}; \mathbf{w}) = g(w_0 + w_1 x_1 + w_2 x_2)$$

and the parameters have already been optimized.

$$w_0 = -3; w_1 = 1; w_2 = 1$$

• From the above, we know:

$$f(\mathbf{x}; \mathbf{w}) = 1 \text{ if } -3 + x_1 + x_2 \ge 0$$

 $f(\mathbf{x}; \mathbf{w}) = 0 \text{ if } -3 + x_1 + x_2 < 0$

• So, its decision boundary is:

$$x_1 + x_2 = 3$$

on which,

$$f(\mathbf{x}; \mathbf{w}) = 0.5$$

12.3.5 Limitation of Logistic regression

• If you insist on using Logistic regression, you may need feature transformation

our goal:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$$

we design:

$$x'_1$$
 is the distance to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ x'_2 is the distance to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

It works! ☺

 However, the trouble is: most time, we don't know how to do feature transformation

12.3.6 Cascading Logistic regression

• simulate feature transformation by Logistic regression

We can built a cascade of Logistic regression in any structure! ©

12.4 Deep learning

12.4.1 Define a set of function

- Different connection leads to different structures; all the weights in the "neurons" make up the network parameter
- Fully-connected feedforward network

- Suppose you already know all the parameters (weights) in this neural network, then it is a function that maps the input vector to a specific output vector
- If we don't know the parameters, but the network structure is given, which means, we have already define a function set

ILSVRC (*ImageNet Large Scale Visual Recognition Challenge*)

12.4.2 Deep means many hidden layers

AlexNet (2012)

VGG (2014)

GoogLeNet (2014)

ResNet (2015)

12.4.3 Highly nonlinear function

• Thus a neural network actually does a series of matrix operations

$$f(\mathbf{x}; \mathbf{\theta}) = g\left(\mathbf{W}_{L}^{\mathsf{T}} \cdots g\left(\mathbf{W}_{2}^{\mathsf{T}} g\left(\mathbf{W}_{1}^{\mathsf{T}} \mathbf{x}\right)\right)\right)$$

- A highly nonlinear function (is able to fit any function in theory)
- Only the input and output dimension are fixed

12.4.4 Feature extractor

• Logistic regression:

linear separable

• Neural network:

12.4.5 Discussions

• Step 1. Define a function set

- ① any neuron number
- 2 any layer number
- 3 many nonlinear function to choose
- 4 any connection mode
- (5) linear + nonlinear? nonlinear + linear?
- 6 other style, e.g. residual unit, convolution, batch normalization, ...

Step 2. Define the loss function

- ① regression: square error function, ...
- 2 classification: cross entropy, ...
- ③ ...

Step 3. Optimize parameters

- ① A family of gradient descent
- ② Others
- 3 backpropagation

Questions:

- ① How many neurons?
- 2 How many layers?
- (3) How to choose nonlinear function?
- 4 How to connect?
- ⑤ ...
- 6 Can the structure be automatically determined? (evolutionary algorithm)
- 7 Does it converge? (local optimal)
- (8) ...
- 9 Why deep?

```
      8 layers
      19 layers
      22 layers
      152 layers

      16.4%
      7.3%
      6.7%
      3.57%
```

AlexNet (2012) VGG (2014) GoogLeNet (2014) ResNet (2015)

bigger function space

12.4.6 Why deep

8 layers	19 layers	22 layers	152 layers
16.4%	7.3%	6.7%	3.57%

AlexNet (2012) VGG (2014) GoogLeNet (2014) ResNet (2015)

Any continuous function $f: \mathbb{R}^n \to \mathbb{R}^m$ can be realized by a network with one hidden layer, by giving enough hidden neurons.

Universality theorem

From http://neuralnetworksanddeeplearning.com/chap4.html

- more parameters, bigger function space
- Why "deep" learning not "fat" learning?
- Q. Can you compare a "fat and short" network with a "thin and tall" network:

be careful to keep the same number of parameters!

Size	Characteristics	Color	Group
O Smallest	O Hypoallergenic	O White	О Тоу
O Small	O Fluffy	O Black	Sporting
O Medium	 Best family 	O Blue	Hound
O Large	 Smartest 	O Brown	O Terrier
Giant	 Best guard 	O Red	Working
	 Kid friendly 	O Grey	 Herding
	 Best watch 	O Golden	
	 Easy to train 		
	Low shedding		

• Modularization: cut a big complex problem into small simple sub-problems

