Differential and Integral Calculus : Recitations

Aakash Jog

2014-15

Contents

1	Instructor Information	5
Ι	Sequences and Series	6
1	Sequences	6
	Recitation 1 – Exercise 1	6
	Recitation 1 – Solution 1	6
	Recitation 1 – Exercise 2	6
	Recitation 1 – Solution 2	7
	Recitation 1 – Exercise 3	7
	Recitation 1 – Solution 3	7
	Recitation 1 – Exercise 4	7
	Recitation 1 – Solution 4	8
	Recitation 1 – Exercise 5	8
	Recitation 1 – Solution 5	8
	1.1 Limit of a Function by Heine	9
	Recitation 2 – Exercise 1	9
	Recitation 2 – Solution 1	9

© (§ (§)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

	1.2 Sub-sequences																							9
	Recitation 2 – Exercise 2.																							10
	Recitation 2 – Solution 2.																							10
2	Series																							11
	Recitation 2 – Exercise 3.																							11
	Recitation 2 – Solution 3.																							12
	Recitation 2 – Exercise 4.																							12
	Recitation 2 – Solution 4.																							12
	Recitation 2 – Exercise 5.																							12
	Recitation 2 – Solution 5.																							12
	2.1 Comparison Tests for	Р	os	it	ive	e S	Se	ri	es															13
	Recitation 3 – Exercise 1.																							13
	Recitation 3 – Solution 1.																							13
	Recitation 3 – Exercise 2.																							13
	Recitation 3 – Solution 2.																							14
	Recitation 3 – Exercise 3.																							14
	Recitation 3 – Solution 3.																							14
	Recitation 3 – Exercise 4.																							14
	Recitation 3 – Solution 4.																							14
	Recitation 3 – Exercise 5.																							15
	Recitation 3 – Solution 5.																							15
	2.2 d'Alembert Criteria (l	Ra	ati	io	Т	es	t)																	15
	,																							16
	Recitation 3 – Solution 6.																							16
	2.3 Cauchy Criteria (Cau																							17
	Recitation 3 – Exercise 7.		-																					17
																								17
	2.4 Leibniz's Criteria																							17
	Recitation 3 – Exercise 8.																							18
																								18
	0 × T · 1 m																							18
	Recitation 3 – Exercise 9.																							18
	Recitation 3 – Solution 9.																							18
	Recitation 4 – Exercise 1.																							19
	Recitation 4 – Solution 1.																							19
	Recitation 4 – Exercise 2.																							20
	Recitation 4 – Solution 2.	•																						20
	Recitation 4 – Exercise 3.	•	•															-		-	•			20
	Recitation 4 – Solution 3	•	•	•	-	-	-	-	-	-	•	-	-	-	•	•	•	•	•	•	•	-	-	20

3	Power Series	21
	Recitation 4 – Exercise 4	21
	Recitation 4 – Solution 4	22
	Recitation 4 – Exercise 5	23
	Recitation 4 – Solution 5	23
	3.1 Power Series Representation of a Function	23
	3.2 Differentiation and Integrations of Power Series	23
	Recitation 5 – Exercise 1	23
	Recitation 5 – Solution 1	24
	Recitation 5 – Exercise 2	24
	Recitation 5 – Solution 2	24
	Recitation 5 – Exercise 3	25
	Recitation 5 – Solution 3	25
4	Sequences of Functions	26
-	Recitation 5 – Exercise 4	26
	Recitation 5 – Solution 4	26
	4.1 Supremum and Infimum of Sets	27
	Recitation 6 – Exercise 1	27
	Recitation 6 – Solution 1	27
	Recitation 6 – Exercise 2	28
	Recitation 6 – Solution 2	28
	Recitation 6 – Exercise 3	28
	Recitation 6 – Solution 3	29
	Recitation 7 – Exercise 1	29
	Recitation 7 – Solution 1	29
	Recitation 7 – Exercise 2	29
	Recitation 7 – Solution 2	30
	Recitation 7 – Exercise 3	31
	Recitation 7 – Solution 3	31
	Recitation 7 – Exercise 4	33
	Recitation 7 – Solution 4	33
5	Series of Functions	33
9	Recitation 7 – Exercise 5	34
	Recitation 7 – Solution 5	34
	Recitation 7 – Exercise 6	35
	Recitation 7 – Solution 6	35
	Recitation 7 – Exercise 7	35
	Recitation 7 – Solution 7.	35
	5.1 Weierstrass M-test	36

Recitation 8 – Exercise 1	36
Recitation 8 – Solution 1	36
Recitation 8 – Exercise 2	36
Recitation 8 – Solution 2	36
Recitation 8 – Exercise 3	37
Recitation 8 – Solution 3	37
5.2 Application of Uniform Convergence	38
Recitation 8 – Exercise 4	38
Recitation 8 – Solution 4	39
Recitation 8 – Exercise 5	39
Recitation 8 – Solution 5	39
Recitation 8 – Exercise 6	40
Recitation 8 – Solution 6.	41

1 Instructor Information

Michael Bromberg

 $\hbox{E-mail: micbromberg@gmail.com}$

Part I

Sequences and Series

1 Sequences

Recitation 1 – Exercise 1.

Prove:

$$\lim_{n \to \infty} \frac{2n^2 + n + 1}{n^2 + 3} = 2$$

Recitation 1 – Solution 1.

Let

$$\varepsilon > 0$$

$$\left| \frac{2n^2 + n + 1}{n^2 + 3} - 2 \right| = \left| \frac{2n^2 + n + 1 - 2n^2 - 6}{n^2 + 3} \right|$$

$$= \left| \frac{n - 5}{n^2 + 3} \right|$$

$$\leq \left| \frac{n - 5}{n^2} \right|$$

$$\leq \frac{1}{n}$$

$$< \varepsilon$$

Therefore, let $N = \left[\frac{1}{\varepsilon}\right] + 1$. Hence, for this N, $|a_n - L| < \varepsilon$. Therefore, $\lim_{n \to \infty} \frac{2n^2 + n + 1}{n^2 + 3} = 2$.

Recitation 1 – Exercise 2.

Prove

$$\lim_{n \to \infty} \frac{n^3 + \sin n + n}{2n^4} = 0$$

Recitation 1 – Solution 2.

Let $\varepsilon > 0$

$$\left| \frac{n^3 + \sin n + n}{2n^4} \right| \le \left| \frac{n^3 + 1 + n}{2n^4} \right|$$
$$\le \left| \frac{3n^3}{2n^4} \right| = \frac{3}{2} \cdot \frac{1}{n} < \varepsilon$$

Therefore, let $N = \left[\frac{3}{2\varepsilon}\right] + 1$. Hence, for this N, $|a_n - L| < \varepsilon$. Therefore, $\lim_{n \to \infty} \frac{n^3 + \sin n + n}{2n^4} = 0$

Recitation 1 – Exercise 3.

Calculate $\sqrt[3]{n^3 + 3n} - n$.

Recitation 1 – Solution 3.

$$a^{n} - b^{n} = (a - b) \cdot (a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

Therefore, let

$$a = \sqrt[3]{n^3 + 3n}$$
$$b = \sqrt[3]{n^3}$$

$$a - b = \frac{a^3 - b^3}{a^2 + ab + b^2}$$

$$\therefore \sqrt[3]{n^3 + 3n} - n = \frac{n^3 + 3n - n^3}{(n^3 + 3n)^{2/3} + (n^3 + 3n)^{1/3}n + n^2}$$

$$= \frac{3}{\left(\frac{n^3 + 3n}{n^{3/2}}\right)^{2/3} + \left(\frac{n^3 + 3n}{n^3}\right)^{1/3n} + n}$$

Therefore, the limit is 0.

Recitation 1 – Exercise 4.

Prove

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

Recitation 1 – Solution 4.

$$0 \le \frac{n!}{n^n} = \frac{1}{n} \frac{2}{n} \dots \frac{n}{n} \le \frac{1}{n}$$

Therefore, by the Sandwich Theorem, $\lim_{n\to\infty} \frac{n!}{n^n} = 0$.

Recitation 1 – Exercise 5.

Let $a_1 = 3$, $a_{n+1} = 1 + \sqrt{6 + a_n}$. Prove that a_n converges and find its limit.

Recitation 1 – Solution 5.

If possible, let $\lim_{n\to\infty} a_n = l$.

$$a_{n+1} = 1 + \sqrt{6 + a_n}$$

Taking the limit on both sides,

$$l = 1 + \sqrt{6 + l}$$

$$\therefore l - 1 = \sqrt{6 + l}$$

$$\therefore l = \frac{3 \pm \sqrt{29}}{2}$$

As
$$a_n \ge 0$$
, $l = \frac{3 + \sqrt{29}}{2}$.

$$a_2 = 1 + \sqrt{6 + a_1}$$
$$= 1 + \sqrt{6 + 3}$$
$$= 4$$

$$a_1 > a_1 > a_1$$

If possible, let $a_n \ge a_{n-1}$. Therefore,

$$a_{n+1} = 1 + \sqrt{6 + a_n}$$

$$\geq 1 + \sqrt{6 + a_{n+1}} = a_n$$

Therefore by induction, $\{a_n\}$ is monotonically increasing.

$$a_1 = 3$$

$$\therefore a_1 \le 5$$

If possible, let $a_n \leq 5$. Therefore,

$$a_{n+1} = 1 + \sqrt{6 + a_n} \le q + \sqrt{11} \le 5$$

Therefore by induction, $\{a_n\}$ is bounded from above by 5.

1.1 Limit of a Function by Heine

Definition 1.

$$\lim_{x \to x_0} f(x) = l$$

if for every sequence x_n , such that $\lim_{n\to\infty} x_n = x_0$,

$$\lim_{n \to \infty} f(x_n) = l$$

Theorem 1. If f is continuous at x_0 and $x_n \to x_0$, then

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f_{x_0}$$

Recitation 2 – Exercise 1.

Calculate $\lim_{n\to\infty} \sqrt[n]{n}$.

Recitation 2 – Solution 1.

Let

$$f(x) = x^{1/x}$$

Therefore,

$$\lim_{x \to \infty} x^{1/x} = \lim_{x \to \infty} e^{\frac{\ln x}{x}}$$

$$= 1$$

1.2 Sub-sequences

Recitation 2 – Exercise 2.

Find all partial limits and $\overline{\lim}$ and $\underline{\lim}$ of

$$a_n = \left(\cos\frac{\pi n}{4}\right)^n$$

Recitation 2 – Solution 2.

Let $k, z \in \mathbb{Z}$

$$\cos \frac{\pi n}{4} = \cos \frac{\pi (n+k)}{4}$$

$$\therefore \frac{\pi n}{4} = \frac{\pi (n+k)}{4} + 2\pi z$$

$$\therefore \pi n = \pi (n+k) + 8\pi z$$

$$\therefore k = 8z$$

Therefore,

$$a_{8k} = \left(\cos\frac{\pi \cdot 8k}{4}\right)^{8k}$$

$$= (\cos(2\pi k))^{8k}$$

$$= 1$$

$$a_{8k+1} = \left(\cos\frac{\pi \cdot (8k+1)}{4}\right)^{8k+1}$$

$$= \left(\cos\frac{\pi}{4}\right)^{8k+1}$$

$$= \left(\frac{\sqrt{2}}{2}\right)^{8k+1}$$

$$= \left(\cos\frac{\pi \cdot (8k+2)}{4}\right)^{8k+2}$$

$$= \left(\cos\frac{\pi}{2}\right)^{8k+2}$$

Therefore,

$$\lim_{k \to \infty} a_{8k} = 1$$

$$\lim_{k \to \infty} a_{8k+1} = \lim_{k \to \infty} \left(\frac{\sqrt{2}}{2}\right)^{8k+1}$$

$$= 0$$

Similarly,

$$\lim_{k \to \infty} a_{8k+2} = 0$$

$$\lim_{k \to \infty} a_{8k+3} = 0$$

$$\lim_{k \to \infty} a_{8k+4} = \lim_{k \to \infty} (-1)^{8k+4}$$

$$= 1$$

$$\lim_{k \to \infty} a_{8k+5} = 0$$

$$\lim_{k \to \infty} a_{8k+6} = 0$$

$$\lim_{k \to \infty} a_{8k+7} = 0$$

Therefore, $\{a_n\}$ has two partial limits, 0 and 1.

$$\overline{\lim}a_n = 1$$
$$\underline{\lim}a_n = 0$$

2 Series

Definition 2 (Convergence of a series). Let $\{a_n\}$ be a sequence. Let S_n be a sequence of partial sums of a_n , s.t.

$$S_n = \sum_{k=1}^n a_k$$

The series $\sum_{k=1}^{\infty} a_k$ is said to converge to l if

$$\lim_{n \to \infty} S_n = l$$

that is,

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} S_n$$

Recitation 2 - Exercise 3.

Does
$$\sum_{k=0}^{\infty} q^k$$
 where $-1 < q < 1$ converge?

Recitation 2 – Solution 3.

$$\sum_{k=0}^{\infty} q^k = \lim_{n \to \infty} \sum_{k=0}^n q^k$$
$$= \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q}$$
$$= \frac{1}{1 - q}$$

Therefore, the series converges.

Recitation 2 – Exercise 4.

Does
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$
 converge?

Recitation 2 – Solution 4.

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)$$

$$= 1$$

Recitation 2 – Exercise 5.

Does
$$\sum_{k=1}^{\infty} \left(1 + \frac{1}{k}\right)^k$$
 converge?

Recitation 2 – Solution 5.

$$\lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k = e$$
$$\therefore \lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k \neq 0$$

Therefore, the necessary condition is nt satisfied. Hence, the series does not converge.

2.1 Comparison Tests for Positive Series

Theorem 2 (First Comparison Test). If $a_n \ge 0$, $b_n \ge 0$, and $a_n \le b_n$, then

- 1. If $\sum b_n$ converges, then $\sum a_n$ converges.
- 2. If $\sum a_n$ diverges, then $\sum b_n$ diverges.

Theorem 3 (Second Comparison Test). If $a_n \geq 0$, $b_n \geq 0$ and

$$\lim_{n\to\infty}\frac{a_n}{b_n}=l$$

where $0 < l < \infty$, then $\sum a_n$ and $\sum b_n$ converge or diverge simultaneously.

Recitation 3 – Exercise 1.

Suppose the sequence a_n satisfies the condition

$$a_{n+1} - a_n > \frac{1}{n}$$

 $\forall n \in \mathbb{N}.$

Prove that $\lim_{n\to\infty} a_n = \infty$.

Recitation 3 – Solution 1.

$$a_{n+1} = a_{n+1} - a_n + a_n - a_{n-1} + a_{n-1} - a_{n-2} + \dots + a_2 - a_1 + a_1$$

$$= \sum_{k=1}^{n} (a_{k+1} - a_k) + a_1$$

$$\geq \sum_{k=1}^{n} \frac{1}{k} + a_1$$

As the harmonic series diverges, $\sum_{k=1}^{n} \frac{1}{k} + a_1$ diverges.

Therefore, by the First Comparison Test, $\sum_{k=1}^{\infty} (a_{k+1} - a_k)$ diverges.

Recitation 3 – Exercise 2.

Check the convergence of $\sum_{n=2}^{\infty} \frac{n + \sin n}{n^3 + \cos \pi n}$.

Recitation 3 – Solution 2.

The series is non-negative. Therefore, the comparison tests are applicable.

$$\frac{n+\sin n}{n^3+\cos \pi n} \le \frac{n+1}{n^3-1}$$

$$\therefore \frac{n+\sin n}{n^3+\cos \pi n} \le \frac{2n}{n^3-\frac{n^3}{2}} \le \frac{4}{n^2}$$

Therefore, by the First Comparison Test, as $\frac{4}{n^2}$ converges, $\sum_{n=2}^{\infty} \frac{n + \sin n}{n^3 + \cos \pi n}$ also converges.

Recitation 3 – Exercise 3.

Let $a_n \geq 0$ and suppose that $\sum a_n$ converges. Prove that $\sum a_n^2$ converges. Is it true without the assumption $a_n \ge 0$?

Recitation 3 – Solution 3.

As $\sum a_n$ converges, $\lim_{n\to\infty} a_n = 0$. Therefore, $\exists N\in\mathbb{N}$, such that $\forall n>N,\ a_n<1$. Therefore, $\forall n>N,\ a_n^2\leq a_n$. Hence, as $\sum\limits_{n=N+1}^{\infty}a_n$ converges, $\sum\limits_{n=N+1}^{\infty}a_n^2$ also converges. Hence, $\sum_{n=1}^{\infty} a_n$ also converges.

This is not true without the assumption $a_n \geq 0$, as the argument $a_n^2 \leq a_n$ does not hold.

Recitation 3 – Exercise 4.

For which α does $\sum \left(\sqrt{n+1} - \sqrt{n}\right)^{\alpha/2}$ converge?

Recitation 3 – Solution 4.

$$\sum \left(\sqrt{n+1} - \sqrt{n}\right)^{\alpha/2} = \sum \left(\frac{n+1-n}{\sqrt{n+1} + \sqrt{n}}\right)^{\alpha/2}$$
$$= \sum \left(\frac{1}{\sqrt{n+1} - \sqrt{n}}\right)^{\alpha/2}$$

The series is positive. Therefore, the comparison tests are applicable.

Comparing with
$$\left(\frac{1}{\sqrt{n}}\right)^{\alpha/2}$$
,

$$\frac{\left(\frac{1}{\sqrt{n+1}+\sqrt{n}}\right)^{\alpha/2}}{\left(\frac{1}{\sqrt{n}}\right)^{\alpha/2}} = \left(\frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\right)^{\alpha/2}$$
$$\therefore \lim_{n\to\infty} \left(\frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}\right)^{\alpha/2} = \left(\frac{1}{2}\right)^{\alpha/2}$$

$$\sum \frac{1}{n^{\alpha/2}}$$
 converges if and only if $\frac{\alpha}{4} > 1$, i.e. if an inly if $\alpha > 4$.

By the Second Comparison Test, $\sum \frac{1}{n^{\alpha/4}}$ and the series converge or diverge simultaneously.

Therefore, the series converges for $\alpha > 4$.

Recitation 3 – Exercise 5.

Check the convergence of $\sum_{n=1}^{\infty} \sin \frac{1}{n}$.

Recitation 3 – Solution 5.

$$\forall n \in \mathbb{N}, \sin \frac{1}{n} \ge 0$$

$$\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1$$

Therefore, by Second Comparison Test, $\sum \frac{1}{n}$ and $\sum \sin \frac{1}{n}$ diverge simultaneously.

2.2 d'Alembert Criteria (Ratio Test)

Definition 3 (Absolute and conditional convergence). The series $\sum a_n$ is said to converge absolutely if $\sum |a_n|$ converges. The series $\sum a_n$ is said to converge conditionally if it converges but $\sum |a_n|$ diverges.

Theorem 4. If the series $\sum a_n$ converges absolutely then it converges.

Theorem 5 (d'Alembert Criteria (Ratio Test)). 1. If

$$\lim_{n \to \infty} \left| \frac{a_{n-1}}{a_n} \right| = L < 1$$

then $\sum a_n$ converges absolutely.

2. If

$$\lim_{n \to \infty} \left| \frac{a_{n-1}}{a_n} \right| = L > 1$$

(including $L = \infty$), then $\sum a_n$ converges diverges.

3. If L = 1, the test does not apply.

Recitation 3 – Exercise 6.

Check the convergence of $\sum \frac{(-1)^n \cdot n^{1000}}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}$.

Recitation 3 – Solution 6.

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n \cdot n^{1000}}{1 \cdot \dots \cdot (2n-1)} \right| = \sum_{n=1}^{\infty} \frac{n^{1000}}{1 \cdot \dots \cdot (2n-1)}$$

Therefore, by the d'Alembert Criteria (Ratio Test),

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)^{1000}}{1 \cdot \dots \cdot (2n+1)}}{\frac{n^{1000}}{1 \cdot \dots \cdot (2n-1)}}$$

$$= \left(\frac{n+1}{n}\right)^{1000} \cdot \frac{1}{2n+1}$$

$$\therefore \lim_{nto\infty} \left(\frac{n+1}{n}\right)^{1000} \cdot \frac{1}{2n+1} = 0$$

$$\therefore \left(\frac{n+1}{n}\right)^{1000} \cdot \frac{1}{2n+1} < 1$$

Therefore, by the d'Alembert Criteria (Ratio Test), the series converges absolutely, and hence converges.

2.3 Cauchy Criteria (Cauchy Root Test)

Theorem 6 (Cauchy Criteria (Cauchy Root Test)). 1. If

$$\overline{\lim} \sqrt[n]{|a_n|} = L < 1$$

then $\sum a_n$ converges absolutely.

2. If

$$\overline{\lim} \sqrt[n]{|a_n|} = L > 1$$

(including $L = \infty$), then $\sum a_n$ diverges.

3. If L = 1, the test does not apply.

Recitation 3 – Exercise 7.

Check the convergence of $\sum \left(1 - \frac{2}{n}\right)^{n^2}$.

Recitation 3 – Solution 7.

$$\sqrt[n]{\left(1 - \frac{2}{n}\right)^{n^2}} = \left(1 - \frac{2}{n}\right)^n$$

$$\therefore \lim_{n \to \infty} \left(1 - \frac{2}{n}\right)^n = e^{-2}$$

$$\therefore \lim_{n \to \infty} \left(1 - \frac{2}{n}\right)^n < 1$$

Therefore, by the Cauchy Criteria (Cauchy Root Test), $\sum \left(1 - \frac{2}{n}\right)^{n^2}$ converges.

2.4 Leibniz's Criteria

Definition 4 (Alternating series). The series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$, where all $a_n > 0$ or all $a_n < 0$ is called an alternating series.

Theorem 7 (Leibniz's Criteria for Convergence). If an alternating series $\sum (-1)^{n-1} a_n$ with $a_n > 0$ satisfies

1. $a_{n+1} \leq a_n$, i.e. $\{a_n\}$ is monotonically decreasing.

$$2. \lim_{n \to \infty} a_n = 0$$

then the series $(-1)^{n-1}a_n$ converges.

Recitation 3 – Exercise 8.

Prove or disprove: There exists $\{a_n\}$, such that $\sum a_n$ converges and $\sum (1 + a_n)a_n$ diverges.

Recitation 3 – Solution 8.

Let
$$a_n = \frac{(-1)^n}{\sqrt{n}}$$
.

Therefore, by Leibniz's Criteria for Convergence, $\sum \frac{(-1)^n}{\sqrt{n}}$ converges.

$$\sum (1+a_n)a_n = \sum \left(1 + \frac{(-1)^n}{\sqrt{n}}\right) \frac{(-1)^n}{\sqrt{n}}$$
$$= \sum \left(\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}\right)$$

Therefore, as $\sum \frac{1}{n}$ diverges, and $\sum \frac{(-1)^n}{\sqrt{n}}$ converges, $\sum \left(\frac{1}{n} + \frac{(-1)^n}{\sqrt{n}}\right)$ diverges.

2.5 Integral Test

Theorem 8 (Integral Test). If $f(x):[1,\infty)\to[0,\infty)$ is monotonically decreasing. Then, $\sum_{n=1}^{\infty}f(n)$ and $\int_{1}^{\infty}f(x)\,\mathrm{d}x$ converge or diverge simultaneously.

Recitation 3 – Exercise 9.

Check the convergence of $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

Recitation 3 – Solution 9.

Let

$$f(x) = \frac{1}{x \ln x}$$

f(x) is monotonically decreasing. Therefore, the Integral Test is applicable. Therefore,

$$\int_{2}^{\infty} \frac{1}{x \ln x} dx = \int_{\ln 2}^{\infty} \frac{1}{y} dy$$
$$= \ln y \Big|_{\ln 2}^{\infty}$$
$$= \infty$$

Therefore, by the integral test, $\sum \frac{1}{n \ln n}$ diverges.

Recitation 4 – Exercise 1.

Let $d_n \geq 0$ and suppose

$$\sum_{n=0}^{\infty} d_n = \infty$$

Prove that

$$\sum_{n=0}^{\infty} \frac{d_n}{1 + d_n} = \infty$$

Recitation 4 – Solution 1.

If possible, let d_n be a bounded sequence. Then there exists M, such that $d_n \leq M, \, \forall n \in \mathbb{N}.$

Therefore,

$$\frac{d_n}{1+d_n} \ge \frac{d_n}{1+M}$$

Therefore, by the Second Comparison Test, as $\sum d_n$ diverges, $\sum \frac{d_n}{1+d_n}$ also diverges.

If d_n is not bounded, then there is a subsequence d_{n_k} which diverges. Therefore,

$$\frac{d_{n_k}}{1+d_{n_k}} = \frac{1}{\frac{1}{d_{n_k}}+1}$$

$$\therefore \lim_{k\to\infty} \frac{d_{n_k}}{1+d_{n_k}} = 1$$

Therefore,

$$\lim_{n \to \infty} \frac{d_n}{1 + d_n} \neq 0$$

Therefore, the necessary condition for convergence is not fulfilled. Therefore, the series converges.

Recitation 4 – Exercise 2.

Let

$$d_n = \begin{cases} 1 & ; & n = k^2, k \in \mathbb{N} \\ 0 & ; & n \neq k^2, k \in \mathbb{N} \end{cases}$$

Does
$$\sum \frac{d_n}{1 + n \cdot d_n}$$
 diverge?

Recitation 4 – Solution 2.

$$d_{n} = \begin{cases} 1 & ; & n = k^{2}, k \in \mathbb{N} \\ 0 & ; & n \neq k^{2}, k \in \mathbb{N} \end{cases}$$
$$\therefore \frac{d_{n}}{1 + n \cdot d_{n}} = \begin{cases} \frac{1}{1 + k^{2}} & ; & n = k^{2}, k \in \mathbb{N} \\ 0 & ; & n \neq k^{2}, k \in \mathbb{N} \end{cases}$$

As $\frac{1}{1+k^2} \le \frac{1}{k^2}$ and as $\frac{1}{k^2}$ converges, $\sum \frac{1}{1+k^2}$ also converges.

Recitation 4 – Exercise 3.

Let a_n be a sequence such that $|a_{n+1} - a_n| \le b_{n+1}$ for all $n \in \mathbb{N}$ where $\sum b_k$ converges. Prove that $\{a_n\}$ converges.

Recitation 4 – Solution 3.

Let $\varepsilon > 0$.

$$|a_m - a_n| = |a_m - a_{m-1} + a_{m-1} + \dots - a_n|$$

$$\leq \sum_{k=n+1}^m |a_k - a_{k-1}|$$

$$\leq \sum_{k=n+1}^m b_k$$

Therefore, as $\sum b_n$ converges, the series satisfies the Cauchy Criteria (Cauchy Root Test). Therefore, there exists N, such that $\forall m > n > N$, $\left|\sum_{k=n+1}^{m} b_k\right| < \varepsilon$. Therefore, for m > n > N,

$$|a_m - a_n| \le \sum_{k=n+1}^m b_n < \varepsilon$$

3 Power Series

Definition 5 (Power series). A power series around x_0 is a function of the form

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

where $\{a_n\}$ is a sequence of real numbers.

Theorem 9 (Abel's Theorem). For every power series $\sum a_n(x-x_0)^n$, there exists $R \in [0,\infty]$, such that for all x satisfying $|x-x_0| < R$, the series converges and for all x satisfying $|x-x_0| > R$ the series diverges.

Theorem 10 (Cauchy's Formula for Radius of Convergence).

$$R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$$

Theorem 11 (Hadamard's Formula for Radius of Convergence). If $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|$ exists, then

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = R$$

Recitation 4 – Exercise 4.

Find the domain of convergence of $\sum_{n=1}^{\infty} \frac{(2x-4)^n}{n}$.

Recitation 4 - Solution 4.

$$\sum_{n=1}^{\infty} \frac{(2x-4)^n}{n} = \sum_{n=1}^{\infty} \frac{2^n (x-2)^n}{n}$$

Therefore, by Cauchy's Formula for Radius of Convergence,

$$R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$$

$$= \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{2^n}{n}}}$$

$$= \frac{1}{\lim_{n \to \infty} \frac{2}{\sqrt[n]{n}}}$$

$$= \frac{1}{2}$$

Therefore, the series converges for

$$|x-2| < \frac{1}{2}$$

and diverges for

$$|x-2| > \frac{1}{2}$$

If
$$x = \frac{5}{2}$$
,

$$\sum_{n=1}^{\infty} \frac{2^n}{n} \left(\frac{5}{2} - 2\right)^n$$

$$= \sum_{n=1}^{\infty} \frac{1}{n}$$

Therefore, the series diverges.

If
$$x = \frac{3}{2}$$
,

$$\sum_{n=1}^{\infty} \frac{2^n}{n} \left(\frac{3}{2} - 2 \right)^n$$

$$= \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

Therefore, by Leibniz's Criteria for Convergence, the series converges. Therefore, the domain of convergence is $\left[\frac{3}{2}, \frac{5}{2}\right)$.

Recitation 4 – Exercise 5.

Find the radius of convergence of $\sum_{n=0}^{\infty} n! x^{n!}$.

Recitation 4 – Solution 5.

$$\frac{1}{\sqrt[n]{a_n}} = x + x + 2x^2 + 6x^6 + 24x^{24} + \dots$$

Therefore,

$$a_n = \begin{cases} n & ; \quad n = k^2 \\ 0 & ; \quad n \neq k^2 \end{cases}$$

Therefore,

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{a_n}}$$
$$= \frac{1}{\lim_{k \to \infty} \sqrt[k!]{k!}}$$
$$= 1$$

3.1 Power Series Representation of a Function

Theorem 12. The power series representation of a function f(x) is equal to its Taylor series if and only if $\lim_{n\to\infty} R_n(x) = 0$, where $R_n(x)$ is the Lagrange remainder.

3.2 Differentiation and Integrations of Power Series

Recitation 5 – Exercise 1.

Find the power series representation of $\tan^{-1} x$.

Recitation 5 – Solution 1.

$$\frac{d \tan^{-1} x}{dx} = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

Integrating term by term,

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} + c$$

As $\tan^{-1} 0 = 0$, c = 0. Therefore,

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

Recitation 5 – Exercise 2.

Find an explicit formula for $\sum_{n=1}^{\infty} x^n n^2$.

Recitation 5 – Solution 2.

$$\sum_{n=1}^{\infty} x^n n^2 = x \cdot \sum_{n=1}^{\infty} x^{n-1} n^2$$

Let

$$g(x) = \sum_{n=1}^{\infty} n^2 x^{n-1}$$

Integrating term by term,

$$\int g(x) dx = \sum_{n=1}^{\infty} n^2 \frac{x^n}{n}$$
$$= \sum_{n=1}^{\infty} nx^n$$
$$= x \cdot \sum_{n=1}^{\infty} nx^{n-1}$$

Let

$$h(x) = \sum_{n=1}^{\infty} nx^{n-1}$$
$$\therefore \int h(x) dx = \frac{x}{1-x}$$

Therefore, inside radius of convergence R = 1, differentiating $\int h(x) dx$,

$$h(x) = \frac{1 - x + x}{(1 - x)^2}$$

$$= \frac{1}{(1 - x)^2}$$

$$\therefore \int g(x) \, dx = xh(x)$$

$$= \frac{x}{(1 - x)^2}$$

$$\therefore g(x) = \frac{(1 - x)^2 + 2(1 - x)x}{(1 - x)^4}$$

$$\therefore \sum_{n=1}^{\infty} x^n n^2 = x \cdot \frac{(1 - x)^2 + 2(1 - x)x}{(1 - x)^4}$$

Recitation 5 – Exercise 3.

Find the sum $\sum_{n=1}^{\infty} \frac{1}{n2^n}$.

Recitation 5 – Solution 3.

Let

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$

be a power series with radius R. Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{n2^n} = f\left(\frac{1}{2}\right)$$

Therefore,

$$f'(x) = \sum_{n=1}^{\infty} x^{n-1}$$
$$= \frac{1}{1-x}$$
$$\therefore f(x) = -\ln(1-x) + c$$

As f(0) = 0, c = 0. Therefore,

$$f(x) = -\ln(1-x)$$

Therefore,

$$f\left(\frac{1}{2}\right) = -\ln\left(\frac{1}{2}\right)$$
$$= \ln 2$$

4 Sequences of Functions

Definition 6 (Point-wise convergence and domain of convergence). $\{f_n\}$ is said to converge point-wise in some domain $E \subset D$ if $\forall x \in E$, the sequence $\{f_n(x)\}$ converges. In this case, E is said to be a domain of convergence of $\{f_n\}$.

Recitation 5 – Exercise 4.

Let $f(x): \mathbb{R} \to \mathbb{R}$ be some function such that $\lim_{x \to \infty} f(x) = 0$. Let $f_n(x) = f(nx)$. What is the domain of convergence of f_n ? What is the limit function?

Recitation 5 – Solution 4.

Let x be a particular number in $(0, \infty)$.

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f(nx)$$

Therefore, as $\lim_{x\to\infty} f(x) = 0$,

$$\lim_{n \to \infty} f_n(x) = 0$$

Therefore the domain of convergence is $(0, \infty)$ and the limit function is a constant 0.

Although the all functions in $\{f_n\}$ are continuous, the limit function is not continuous.

Definition 7 (Uniform convergence). A sequence of functions $\{f_n\}$ is said to converge uniformly to f in the domain E, if $\forall \varepsilon$, $\exists N$ such that $\forall n > N$ and $\forall x \in E$, $|f_n(x) - f_n(x)| < \varepsilon$. If f_n converges to f uniformly in E, it is denoted as $f_n \stackrel{E}{\Longrightarrow} f$.

4.1 Supremum and Infimum of Sets

Definition 8 (Supremum). Let $A \subseteq \mathbb{R}$ be a bounded set. M is said to be the supremum of A if

- 1. $\forall x \in A, x \leq M$, i.e. M is an upper bound of A.
- 2. $\forall \varepsilon, \exists x \in A, \text{ such that } x > M \varepsilon.$

That is, the supremum of A is the least upper bound of A. The supremum may or may not be in A.

Definition 9 (Infimum). Let $A \subseteq \mathbb{R}$ be a bounded set. M is said to be the infimum of A if

- 1. $\forall x \in A, x \geq M$, i.e. M is an upper bound of A.
- 2. $\forall \varepsilon, \exists x \in A, \text{ such that } x < M \varepsilon.$

That is, the infimum of A is the greatest lower bound of A. The infimum may or may not be in A.

Theorem 13. Every bounded set A has a supremum and an infimum.

Theorem 14. $f_n \stackrel{E}{\Longrightarrow} f$ if and only if

$$\lim_{n \to \infty} (\sup\{|f_n(x) - f(x)| : x \in E\}) = 0$$

Recitation 6 – Exercise 1.

Let $f_n(x) = x^n$. Does $\{f_n\}$ converge uniformly?

Recitation 6 – Solution 1.

$$f(x) = \begin{cases} 0 & ; & x \in [0, 1] \\ 1 & ; & x = 1 \end{cases}$$

If the convergence is uniform in [0, 1],

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |f_n(x) - f(x)| = 0$$

Let $x = 1 - \frac{1}{n}$.

Therefore, as the supremum is a upper bound,

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| \ge \left| f_n \left(1 - \frac{1}{n} \right) - f \left(1 - \frac{1}{n} \right) \right|$$

$$\therefore \sup_{x \in [0,1]} |f_n(x) - f(x)| \ge \left| \left(1 - \frac{1}{n} \right)^n - 0 \right|$$

$$\therefore \lim_{n \to \infty} \sup_{x \in [0,1]} |f_n(x) - f(x)| \ge \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$

$$\therefore \lim_{n \to \infty} \sup_{x \in [0,1]} |f_n(x) - f(x)| \ge \frac{1}{e}$$

$$\therefore \lim_{n \to \infty} \sup_{x \in [0,1]} |f_n(x) - f(x)| \ne 0$$

Therefore, the convergence is not uniform.

Recitation 6 – Exercise 2.

Let $f_n(x) = x + \frac{1}{n}$, $x \in \mathbb{R}$. What is its domain of convergence? What is the limit function? Is the convergence uniform?

Recitation 6 – Solution 2.

 $\forall x \in \mathbb{R},$

$$\lim_{n \to \infty} \left(x + \frac{1}{n} \right) = x$$

Therefore $\{f_n\}$ converges pointwise to x, in \mathbb{R} .

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} \left| x + \frac{1}{n} - x \right|$$
$$= \frac{1}{n}$$
$$\therefore \lim_{n \to \infty} \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = 0$$

Therefore, the convergence is uniform.

Recitation 6 – Exercise 3.

Let $f_n:[0,\infty)\to\mathbb{R}$.

$$f_n(x) = \begin{cases} 1 & ; & n \le x \le n+1 \\ 0 & ; & \text{otherwise} \end{cases}$$

Dows f_n converge pointwise in $[0, \infty)$? Dows f_n converge uniformly in $[0, \infty)$?

Recitation 6 – Solution 3.

For every x, the sequence $\{f_n(x)\}$ will be of the form $\{0,\ldots,0,1,0,\ldots,0\}$ with 1 only when $n \leq x \leq n+1$. Therefore,

$$\lim_{n \to \infty} f_n(x) = 0$$
$$= f(x)$$

Therefore, f_n converges pointwise in $[0, \infty)$.

$$\sup_{x \in [0,\infty)} |f_n(x) - f(x)| = \max_{x \in [0,\infty)} f_n(x)$$

= 1

Therefore, as the limit of the supremum is not 0, the convergence is not uniform.

Theorem 15. If $f_n \stackrel{D}{\Longrightarrow} f$ and all f_n are continuous is D, then f is also continuous, i.e. uniform convergence preserves continuity.

Recitation 7 – Exercise 1.

Does x^n converge to

$$f(x) = \begin{cases} 0 & ; & x \in [0, 1) \\ 1 & ; & x = 1 \end{cases}$$

Recitation 7 – Solution 1.

If possible, let x^n converge to f(x).

Therefore, as all $f_n(x)$ are continuous, and as uniform convergence preserves continuity, f(x) also must be continuous.

This contradicts the definition of f(x).

Therefore, the x^n does not converge to f(x).

Recitation 7 – Exercise 2.

Check if $f_n(x) = \frac{x}{1+n^2x^2}$ converges uniformly in [0, 1].

Recitation 7 – Solution 2.

$$\lim_{n \to \infty} f_n(x) = 0$$
$$= f(x)$$

Therefore,

$$\sup_{[0,1]} |f_n(x) - f(x)| = \sup_{[0,1]} |f_n(x) - 0|$$

$$= \sup_{[0,1]} \left| \frac{x}{1 + n^2 x^2} \right|$$

$$= \sup_{[0,1]} \frac{x}{1 + n^2 x^2}$$

As the function is continuous and the interval is closed, by the Weierstrass theorem, the function has a maximum. Therefore,

$$\sup_{[0,1]} |f_n(x) - f(x)| = \max_{[0,1]} \frac{x}{1 + n^2 x^2}$$

Differentiating to find the maximum,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x}{1+n^2 x^2} \right) = \frac{1+n^2 x^2 - 2x^2 n^2}{(1+n^2 x^2)}$$
$$= \frac{1-x^2 n^2}{(1+n^2 x^2)^2}$$

Therefore,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x}{1 + n^2 x^2} \right) = 0$$

$$\iff \frac{1 - x^2 n^2}{(1 + n^2 x^2)^2} = 0$$

$$\iff 1 = x^2 n^2$$

$$\iff x = \frac{1}{n}$$

Therefore, the values of the function at the critical points and the end points

are,

$$f_n(0) = 0$$

$$f_n(1) = \frac{1}{1+n^2}$$

$$f_n\left(\frac{1}{n}\right) = \frac{\frac{1}{n}}{1+n^2\frac{1}{n^2}}$$

$$= \frac{1}{2n}$$

Therefore, the maximum is at $x = \frac{1}{2n}$. Therefore,

$$\max_{[0,1]} \frac{x}{1 + n^2 x^2} = f_n \left(\frac{1}{n}\right)$$
$$= \frac{1}{2n}$$

Therefore

$$\lim_{n \to \infty} \sup_{[0,1]} |f_n(x) - f(x)| = \lim_{n \to \infty} \max_{[0,1]} \frac{x}{1 + n^2 x^2}$$
$$= \lim_{n \to \infty} \frac{1}{2n}$$
$$= 0$$

Therefore, the convergence is uniform.

Recitation 7 – Exercise 3.

Check the pointwise and uniform convergence of $f_n(x) = x^n - x^{n+1}$ in [0,1].

Recitation 7 – Solution 3.

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n - x^{n+1}$$

$$= 0$$

$$= f(x)$$

Therefore the function converges pointwise in [0, 1].

$$\sup_{[0,1]} |f_n(x) - f(x)| = \sup_{[0,1]} x^n - x^{n+1}$$

As the function is continuous and the interval is closed, by the Weierstrass theorem, the function has a maximum. Therefore,

$$\sup_{[0,1]} x^n - x^{n+1} = \max_{[0,1]} x^n - x^{n+1}$$

Differentiating to find the maximum,

$$\frac{d(x^n - x^{n+1})}{dx} = nx^{n-1} - (n+1)x^n$$

Therefore,

$$\frac{\mathrm{d}(x^n - x^{n+1})}{\mathrm{d}x} = 0$$

$$\iff nx^{n-1} - (n+1)x^n = 0$$

$$\iff n - (n+1)x = 0$$

$$\iff x = \frac{n}{n+1}$$

Therefore, the values of the function at the critical points and the end points are

$$f_n(0) = 0$$

$$f_n(1) = 0$$

$$f_n\left(\frac{n}{n+1}\right) = \left(\frac{n}{n+1}\right)^n - \left(\frac{n}{n+1}\right)^{n+1}$$

Therefore,

$$\max_{[0,1]} x^n - x^{n+1} = f_n \left(\frac{n}{n+1} \right)$$
$$= \left(\frac{n}{n+1} \right)^n - \left(\frac{n}{n+1} \right)^{n+1}$$

Therefore,

$$\lim_{n \to \infty} \sup_{[0,1]} |f_n(x) - f(x)| = \lim_{n \to \infty} \max_{[0,1]} \left(\frac{n}{n+1}\right)^n - \left(\frac{n}{n+1}\right)^{n+1}$$

$$= \frac{1}{e} - \frac{1}{e}$$

$$= 0$$

Therefore, the convergence is uniform.

Theorem 16 (Cauchy's Theorem). $\{f_n\}$ converges uniformly in D if and only if $\forall \varepsilon \in N$, $\exists N$, such that $\forall m, n > N$ and $\forall x \in D$,

$$|f_n(x) - f(x)| < \varepsilon$$

Recitation 7 – Exercise 4.

Let $\{f_n\}$ be a sequence of function in D such that $\forall x \in D, |f_{n+1}(x) - f_n(x)| \le$ a_n , where $\sum_{n=1}^{\infty} a_n$ converges. Prove that $\{f_n\}$ converges uniformly in D.

Recitation 7 – Solution 4.

As $\sum a_n$ converges, $\exists N$ such that $\forall m > n > N$, $\left| \sum_{k=n}^m a_k \right| < \varepsilon$.

Therefore, for all m > n > N and $x \in D$,

$$|f_{m}(x) - f_{n}(x)| = |f_{m}(x) - f_{m-1}(x) + f_{m-1}(x) - \dots - f_{n}(x)|$$

$$\leq |f_{m}(x) - f_{m-1}(x)| + |f_{m-1}(x) - f_{m-2}(x) + \dots + |f_{n+1}(x) - f_{n}(x)|$$

$$\therefore |f_{m}(x) - f_{n}(x)| \leq \sum_{k=n}^{m-1} |f_{k+1}(x) - f_{k}(x)|$$

$$\therefore |f_{m}(x) - f_{n}(x)| \leq \sum_{k=n}^{m-1} a_{k}$$

$$\therefore |f_{m}(x) - f_{n}(x)| \leq \varepsilon$$

Therefore, $\{f_n\}$ satisfies Cauchy's criterion for uniform convergence.

Series of Functions 5

Definition 10 (Pointwise convergence of series of functions). Let $\{f_n\}$ be a sequence of functions defined in D. Let $S_n(x) = \sum_{k=1}^n f_k(x)$.

If $S_n(x)$ converges for every $x \in D$ to a limit S, the series formed by $\{f_n\}$ is said to converge pointwise in D. It is denoted as

$$\sum_{k=1}^{\infty} f_k(x) = \lim_{n \to \infty} S_n(x) = S_x$$

Definition 11 (Uniform convergence of series of functions). The series $\sum_{k=1}^{\infty} f_k(x)$ is said to converge uniformly in D if $S_n \stackrel{D}{\Longrightarrow} S$.

Theorem 17. If $\sum_{k=1}^{\infty} f_k(x)$ converges uniformly in D, then the general term $f_k(x)$ must uniformly converge to 0 in D.

Recitation 7 - Exercise 5.

Check the uniform convergence of $\sum_{n=1}^{\infty} \frac{x^n}{n^2} - \frac{x^{n+1}}{(n+1)^2}$ in [-1,1].

Recitation 7 – Solution 5.

$$S_n(x) = \sum_{k=1}^n \frac{x^k}{k^2} - \frac{x^{k+1}}{(k+1)^2}$$
$$= \frac{x^1}{1^2} - \frac{x^{n+1}}{(n+1)^2}$$

Therefore,

$$\lim_{n \to \infty} S_n(x) = \lim_{n \to \infty} x = \frac{x^{n+1}}{(n+1)^2}$$
$$= x$$
$$= S(x)$$

Therefore,

$$\sup_{[-1,1]} |S_n(x) - S(x)| = \sup_{[-1,1]} \left| -\frac{x^{n+1}}{(n+1)^2} \right|$$

$$\leq \frac{1}{(n+1)^2}$$

Therefore,

$$\lim_{n \to \infty} \sup_{[-1,1]} |S_n(x) - S(x)| \le \lim_{n \to \infty} \frac{1}{(n+1)^2}$$

$$\therefore \lim_{n \to \infty} \sup_{[-1,1]} |S_n(x) - S(x)| \le 0$$

Therefore the convergence is uniform.

Theorem 18. If $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly in D to S(x) and the functions f_n are continuous in D, then the S(x) is also continuous in D.

Theorem 19. A Leibniz series, i.e. a series of the form $\sum_{n=1}^{\infty} (-1)^n a_n$, with a_n monotonically decreasing and $\lim_{n\to\infty} a_n = 0$, converges, and

$$\sum_{k=n}^{m} (-1)^k a_k \le a_n$$

Recitation 7 – Exercise 6.

Check for pointwise and uniform convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + \sqrt{n}}$ in \mathbb{R} .

Recitation 7 – Solution 6.

For $x \in \mathbb{R}$, $\frac{1}{x^2 + \sqrt{n}}$ is monotonically decreasing to 0 as $n \to \infty$.

Therefore, for $x \in \mathbb{R}$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + \sqrt{n}}$ is a Leibniz series. Hence, it converges pointwise.

$$\left| \sum_{k=n}^{m} \frac{(-1)^n}{x^2 + \sqrt{k}} \right| \le \frac{1}{x^2 + \sqrt{n}}$$

$$\le \frac{1}{\sqrt{n}}$$

Therefore,

$$\lim_{n \to \infty} \left| \sum_{k=n}^{m} \frac{(-1)^n}{x^2 + \sqrt{k}} \right| = 0$$

Therefore, $\forall \varepsilon > 0$, there exists N such that $\forall m > n > N$, and $\forall x \in \mathbb{R}$,

$$\left| \sum_{k=n}^{m} \frac{(-1)^n}{x^2 + \sqrt{k}} \right| \le \frac{1}{\sqrt{n}} < \varepsilon$$

Therefore, $\left|\sum_{k=n}^{m} \frac{(-1)^n}{x^2 + \sqrt{k}}\right|$ satisfies Cauchy's criterion for uniform convergence. Hence it converges uniformly.

Recitation 7 – Exercise 7.

Show that $\sum_{n=1}^{\infty} 3^n \sin\left(\frac{1}{4^n x}\right)$ does not converge uniformly in $(0, \infty)$.

Recitation 7 – Solution 7.

For any $x \in (0, \infty)$, as $\sin\left(\frac{1}{4^n x}\right) \le \frac{1}{4^n x}$,

$$\left| 3^n \sin(\frac{1}{4^n x}) \right| \le 3^n \frac{1}{4^n x}$$

Therefore, as $\sum \left(\frac{3}{4}\right)^n \cdot \frac{1}{x}$ converges, by the First Comparison Test, $\sum \left|3^n \sin\left(\frac{1}{4^n x}\right)\right|$ also converges.

Therefore, $\sum 3^n \sin(\frac{1}{4^n x})$ converges absolutely. Hence, it converges.

$$\lim_{n \to \infty} 3^n \sin\left(\frac{1}{4^n x}\right) = \lim_{n \to \infty}$$

$$\neq 0$$

Therefore as the general element does not tend to 0, the series does not converge uniformly in $(0, \infty)$.

5.1 Weierstrass M-test

Theorem 20 (Weierstrass M-test). If $|u_k(x)| \le c_k$ on D for $k \in \{1, 2, 3, ...\}$ and the numerical series $\sum_{k=1}^{\infty} c_k$ converges, then the series of functions $\sum_{k=1}^{\infty} u_k(x)$ converges uniformly on D.

Recitation 8 – Exercise 1.

Show that $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$ converges uniformly in [0,1].

Recitation 8 – Solution 1.

$$\left| \sin \frac{x}{n^2} \right| \le \left| \frac{x}{n^2} \right|$$

$$\therefore \left| \sin \frac{x}{n^2} \right| \le \frac{1}{n^2}$$

Therefore, as $\sum \frac{1}{n^2}$ converges in [0, 1], by Weierstrass M-test, the series converges uniformly in [0, 1].

Recitation 8 - Exercise 2.

Does $\sum \frac{(-1)^n}{x+n}$ converge on [0,1]?

Recitation 8 – Solution 2.

$$\max_{[0,1]} |f_n| = \max_{[0,1]} \frac{1}{x+n}$$
$$= \frac{1}{n}$$

Therefore, as $\sum \frac{1}{n}$ diverges, the Weierstrass M-test does not apply. However, $\forall x \in [0,1], \sum \frac{(-1)^n}{x+n}$ is a Leibniz series. For a Leibniz series, the uniform convergence of the general term to 0 is a necessary and sufficient

condition for the convergence of the series. Therefore, in [0, 1],

$$\lim_{n \to \infty} \frac{1}{x+n} = 0$$

Therefore, as the general term goes to 0, the series converges.

Recitation 8 – Exercise 3.

Does $\sum \frac{n^2x}{1+n^7x^2}$ converge uniformly in \mathbb{R} ?

Recitation 8 – Solution 3.

As the function is even,

$$\sup_{\mathbb{R}} \left| \frac{n^2 x}{1 + n^7 x^2} \right| = \sup_{[0, \infty)} \left| \frac{n^2 x}{1 + n^7 x^2} \right|$$

$$\sup_{[0, \infty)} \frac{n^2 x}{1 + n^7 x^2}$$

Let

$$f_n(x) = \frac{n^2 x}{1 + n^7 x^2}$$

Therefore,

$$f_n'(x) = \frac{n^2(1+n^7x^2) - n^9 \cdot 2x^2}{(1+n^7x^2)^2}$$

Therefore, maximizing $f_n(x)$,

$$f_n'(x) = 0$$

$$\iff n^2(1 + n^7x^2 - n^7 \cdot 2x^2) = 0$$

$$\iff 1 - n^7x^2 = 0$$

$$\iff x = \sqrt{\frac{1}{n^7}}$$

Therefore, as $f_n'(x) \geq 0 \iff x \in \left[0, \sqrt{\frac{1}{n^7}}\right]$ and $f_n'(x) \leq 0 \iff x \in \left[\sqrt{\frac{1}{n^7}}, \infty\right), x = \sqrt{\frac{1}{n^7}}$ is a global maximum of f_n in $[0, \infty)$.

Therefore,

$$\sup_{\mathbb{R}} \left| \frac{n^2 x}{1 + n^7 x^2} \right| = \frac{n^2 \sqrt{\frac{1}{n^7}}}{1 + 1}$$
$$= \frac{n^2}{2n^{\frac{7}{2}}}$$
$$= \frac{1}{2n^{\frac{3}{2}}}$$

Therefore, as $\sum \frac{1}{2n^{\frac{3}{2}}}$ converges, by the Weierstrass M-test, $\sum \frac{n^2x}{1+n^7x^2}$ converges uniformly in \mathbb{R} .

5.2 Application of Uniform Convergence

Theorem 21 (Changing the order of integration and infinite summation). If the functions $u_k(x)$, $k \in \{1, 2, 3, ...\}$ are integrable on [a, b] and the series $\sum_{k=1}^{\infty} u_k(x)$ converges uniformly on [a, b] then

$$\int_{a}^{b} \left(\sum_{k=1}^{\infty} u_k(x) \right) dx = \sum_{k=1}^{\infty} \int_{a}^{b} u_k(x) dx$$

Theorem 22 (Changing the order of integration and limit). If the functions $f_n(x)$ are integrable on [a,b] and converge uniformly to f on [a,b], then

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \lim_{n \to \infty} f_n(x) dx = \int_{a}^{b} f(x) dx$$

Additionally,

$$\int_{a}^{x} f_n(t) dt \xrightarrow{[a,b]} \int_{a}^{x} f(t) dt$$

Recitation 8 – Exercise 4.

Is
$$\sum_{n=1}^{\infty} \int_{0}^{2} \frac{(-1)^{n+1}}{x+n} = \int_{0}^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{x+n}$$
?

Recitation 8 – Solution 4.

As $\sum \frac{(-1)^{n+1}}{x+n}$ converges uniformly in [0, 2], by Theorem 21, the equality holds.

Recitation 8 – Exercise 5.

Is
$$\int_{0}^{1} \left(\sum_{n=1}^{\infty} x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}} \right) dx = \sum_{n=1}^{\infty} \int_{0}^{1} \left(x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}} \right) dx$$
?

Recitation 8 – Solution 5.

$$\sum_{n=1}^{N} x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}} = -x + \frac{1}{x^{2N+1}}$$

$$\therefore \lim_{n \to \infty} \sum_{n=1}^{\infty} x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}} = \sum_{n=1}^{\infty} x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}}$$

$$\lim_{n \to \infty} -x + \frac{1}{x^{2N+1}}$$

Therefore,

$$\sum_{n=1}^{\infty} x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}} = \begin{cases} 1 - x & ; & x \in (0,1] \\ 0 & ; & x = 0 \end{cases}$$

Therefore, as the limit function is not continuous but the function $x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}}$ is continuous, the convergence is not uniform. Therefore, Theorem 21 is not applicable.

Therefore, checking directly,

$$\int_{0}^{1} \left(\sum_{n=1}^{\infty} x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}} \right) dx = \int_{0}^{1} 1 - x dx$$
$$= \frac{1}{2}$$

$$\sum_{n=1}^{\infty} \int_{0}^{1} \left(x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}} \right) dx = \sum_{n=1}^{\infty} \left(\frac{x^{\frac{1}{2n+1}+1}}{\frac{1}{2n+1}+1} - \frac{x^{\frac{1}{2n-1}+1}}{\frac{1}{2n-1}+1} \Big|_{0}^{1} \right)$$

$$= \sum_{n=1}^{\infty} \left(\frac{2n+1}{2n+2} - \frac{2n-1}{2n} \right)$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \frac{2n+1}{2n+2} - \frac{2n-1}{2n}$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \frac{2N+1}{2N+2} - \frac{2 \cdot 1 - 1}{2}$$

$$= \lim_{N \to \infty} \frac{2N+1}{2N+2} - \frac{1}{2}$$

$$= 1 - \frac{1}{2}$$

$$= \frac{1}{2}$$

Therefore, although the convergence is not uniform, the equality holds.

Theorem 23 (Changing the order of differentiation and infinite summation). If the functions $u_k(x)$, $k \in \{1, 2, 3, ...\}$ are differentiable on [a, b] and the derivatives are continuous on [a, b], and the series $\sum_{k=1}^{\infty} u_k(x)$ converges pointwise on [a, b] and the series $\sum_{k=1}^{\infty} u_k'(x)$ converges uniformly on [a, b], then,

$$\left(\sum_{k=1}^{\infty} u_k(x)\right)' = \sum_{k=1}^{\infty} u_k'(x)$$

Recitation 8 – Exercise 6.

If
$$\sum_{n=1}^{\infty} \left(\tan^{-1} \frac{x}{n^2} \right)' = \left(\sum_{n=1}^{\infty} \tan^{-1} \frac{x}{n^2} \right)$$
?

Recitation 8 – Solution 6.

$$\left(\tan^{-1}\frac{x}{n^2}\right)' = \frac{1}{\left(1 + \left(\frac{x}{n^2}\right)^2\right)n^2}$$

$$= \frac{1}{n^2 + \frac{x^2}{n^2}}$$

$$= \frac{n^2}{n^4 + x^2}$$

$$\therefore \left(\tan^{-1}\frac{x}{n^2}\right)' \le \frac{1}{n^2}$$

Therefore, as $\sum \frac{1}{n^2}$ converges, by the Weierstrass M-test, $\sum \left(\tan^{-1} \frac{x}{n^2}\right)'$ converges uniformly.

By Lagrange's Mean Value Theorem, for c between 0 and x,

$$\frac{\tan^{-1} x - \tan^{-1} 0}{x - 0} = (\tan^{-1})'(c)$$

$$\therefore \frac{|\tan^{-1} x|}{|x|} = \frac{1}{1 + c^2}$$

$$\therefore |\tan^{-1} x| \le 1$$

$$\therefore |\tan^{-1} x| \le |x|$$

Therefore,

$$\left| \tan^{-1} \frac{x}{n^2} \right| \le \left| \frac{x}{n^2} \right|$$

Therefore, as $\forall x \in \mathbb{R} \sum \frac{x}{n^2}$ converges pointwise, $\sum \tan^{-1} \frac{x}{n^2}$ also converges on \mathbb{R}

Therefore, by Theorem 23, the equality holds.