机器学习大作业

描述数据集

选取 Iris 花卉分类数据集。该数据集含有 150 条数据,每条数据含有 5 个字段。其中没有无效数据,含有三条重复数据。去除重复数据后剩余 147 条。

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

该数据集含有三类,分别为 Iris-setosa , Iris-versicolor , Iris-virginica , 三种 类别的数据量接近均等,如图

根据数据均值绘制图像:

将输入数据映射到二维绘制图表

使用 BP 网络分类

定义 BP 网络

4 10 ReLU 10 ReLU 3

尝试了 ReLU , Sigmoid , Tanh 作为激活函数,并尝试了单层,双层和三层网络,训练30轮后分类准确度如下表

-	ReLU	Sigmoid	Tanh
单层	90%	66.67%	63.33%
双层	93.33%	63.33%	86.67%
三层	83.33%	33.33%	76.67%

-	ReLU	Sigmoid	Tanh	
単层	100%	96.67%	100%	
双层	86.67%	93.33%	86.67% 80.00%	
三层	83.33%	63.33%		

影响

对于Iris 数据集,ReLU 和 Tanh 在单层网络中表现最佳。ReLU 在单层网络中达到了100%的准确度,但在多层网络中效果不如单层网络。Tanh 在单层网络中表现也非常好,而 Sigmoid 的表现相对不如前两者。

单层网络在这个任务中表现最佳,随着层数增加,网络的性能并没有提升,反而有所下降。

朴素贝叶斯分类

分类结果:

Classification	Report: precision	recall	f1-score	support
0 1 2	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	10 9 11
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	30 30 30
Confusion Matr [[10 0 0] [0 9 0] [0 0 11]]	ix:			

和BP网络对比

通过比较朴素贝叶斯分类器和 BP 神经网络在 Iris 数据集上的分类结果,可以看到它们的性能和适用场景的不同。下面我们详细比较它们:

朴素贝叶斯分类器

• 测试准确率: 100%

• 分类报告:

○ 精确度、召回率和 F1-score 均为 1.00。

• 混淆矩阵:

```
1 [[10 0 0]
2 [ 0 9 0]
3 [ 0 0 11]]
```

• 优点:

- 简单快速, 计算效率高。
- 对小规模数据集效果很好。
- 对特征独立性假设的敏感度较低。

• 缺点:

- 特征独立性假设在实际应用中通常不成立。
- 对于复杂数据集,可能表现不如复杂模型。

BP 神经网络

• 测试准确率 (100轮后):

• 单层 ReLU: 100%

○ 单层 Sigmoid: 96.67%

○ 单层 Tanh: 100%

。 双层 ReLU: 86.67%

。 双层 Sigmoid: 93.33%

• 双层 Tanh: 86.67%

• 三层 ReLU: 83.33%

• 三层 Sigmoid: 63.33%

○ 三层 Tanh: 80.00%

• 优点:

- 强大的拟合能力,适用于复杂数据集和非线性关系。
- 可通过调整网络结构和超参数优化性能。

• 缺点:

- 训练时间较长, 计算资源消耗大。
- 需要更多的数据进行有效训练。
- 需要精心调整超参数和网络结构。

比较分析

1. 准确率:

在 Iris 数据集上, 朴素贝叶斯分类器和最佳配置的 BP 神经网络 (单层 ReLU 或单层 Tanh) 都达到了 100% 的测试准确率。

2. 训练时间和资源:

- 朴素贝叶斯分类器训练时间极短, 计算资源消耗低, 非常高效。
- BP 神经网络训练时间较长,尤其是层数增加时,需要更多的计算资源。

3. 模型复杂度:

- 朴素贝叶斯分类器结构简单,容易实现和理解。
- BP 神经网络结构复杂,灵活性更高,但需要更多的经验和技巧进行调优。

4. 适用性:

- 对于简单、独立特征的数据集,朴素贝叶斯分类器效果很好。
- 对于复杂数据集和需要捕捉非线性关系的任务,BP 神经网络更为合适。

总结

对于 Iris 数据集这样相对简单的数据集,朴素贝叶斯分类器和 BP 神经网络都能取得很好的结果,甚至达到 100% 的准确率。但在实际应用中,选择合适的模型需要综合考虑数据集的复杂性、计算资源和时间等因素。朴素贝叶斯分类器适合简单任务和快速原型设计,而 BP 神经网络则适合更复杂的任务和需要高精度的应用。