This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DIALOG(R) File 347: JAPIO (c) 1999 JPO & JAPIO. All rts. reserv.

03342739 **Image available** VENTILATING AND AIR CONDITIONING DEVICE

PUB. NO.: 03-005639 JP 3005639 A۱

January 11, 1991 (19910111) PUBLISHED:

INVENTOR(s): ISHIZUKA ICHIRO

APPLICANT(s): MATSUSHITA SEIKO CO LTD [000624] (A Japanese Company or

Corporation), JP (Japan) 01-138386 [JP 89138386] APPL. NO.: May 31, 1989 (19890531) FILED:

[5] F24F-003/147; F24F-007/007; F24F-007/08; F24F-007/10 INTL CLASS:

24.2 (CHEMICAL ENGINEERING -- Heating & Cooling) JAPIO CLASS:

Section: M, Section No. 1094, Vol. 15, No. 113, Pg. 70, March JOURNAL:

18, 1991 (19910318)

ABSTRACT

PURPOSE: To always perform the ventilation without increasing the cooling or heating load so that the polluted air and pollutant generated in the room may be precluded from proliferating by automatically determining the need for cleaning the circulation air diverted to the heating/cooling section and switching the damper position in accordance with the degree of pollution of circulation air.

CONSTITUTION: The circulation air which is sucked into the suction grills 19a-19f of respective rooms to pass through the circulation duct 18 to the air diverting section 9 of the ventilating and conditioning device 1 is divided into the heating/ cooling section and the ventilating section. When the circulated air directly guided to the heating/cooling section is polluted, the control section 15 controls the actuating section 13 in response to the signal from the sensor 14 to cause the damper 12 to open the air cleaning device 1 and close the bypass duct 11. Therefore, the circulation air passes through the cleaning device 1 and then is blown by the fan 3 to be mixed with fresh air. It is then heated or cooled by the coil 4, and passes through the feed air duct 16 to be delivered into the rooms from the grills 17a-17f to conduct the air cleaning in addition to the full time ventilation and the space heating or cooling.

: 出願公告 g30—5638

> 92 38 40 85 36 33

)温度でペンタクロルチ よる混和の促進を明かに

n機中でブタジェン65重 ル35重量分から成る混合 間及び30分間可塑化すれ スの方法による塑性係数

2の塑性係数

2・5%ペンタクロル チオフエノール添加

度 塑性係数 ゴム温度 (°C) 370 145) 310 142

求の範囲

に詳記するように、単に まの塩素原子と1個のブル 方所の五置換チオフェノー をしない或は和硫した天然 ノタジェン重合体に対する まを特徴とする、天然コム ジェン重合物の可塑化方

記.

ールを和硫しない天然ゴム タジェン重合体に対する可 成る特許請求の範囲に記載

ールを和硫した天然ゴムス ジェン重合体への再生KE の範囲の記載の方法。 特許庁

特 許 公 報

特許出願公告 昭30-5639

公告 昭 30.8.13 出願 昭 28.5.11 優先権主張 1952.5.12 (アメリカ国)

明 者 ブーサー、シー、スカ

アルバート、ハーシバ ーガー

イー、アイ、デユポン 願 人 ド、ヌムール、アンド コンパニー

代理人 弁理士 後 村 成 久

特願 昭 28—8385

アメリカ合衆国ニユーヨーク州バツファロー、ウインストンロード202

同 所

アメリカ合衆国デラウェア州 ウイルミントン

(全9頁)

改良された物理的性質を有**するポリ**ェチレンテレ フタール酸エステル薄膜の製法

図面の略解

0

発

同

出

25 H

第1図は薄膜を成形し且つ縦方向に伸すに適する装置の配列を図示したものである。第2図は薄膜を横方向に伸し且つ加熱し固定する装置の一例を図示したものである。第3図は無定形のポリエチレンテレフタール酸エステルの薄膜に対する応力一歪を図表で示したものである。第4図は25℃乃至90℃の範囲の温度に於ける応力一歪の一系列を図表で示したものである。第5図はポリエチレンテレフタール酸エステルの薄膜つ引き伸した試料の温度に対する複屈折を図示したものである。

発明の詳細なる説明

この発明は改良された物理的性質を有するポリ エチレンテレフタール酸エステル薄膜の製造方法 に関する。

ボリエチレンテレフタール酸エステルはエチレングリコール及びテレフタール酸の縮合或は成る べくはエチレングリコールとテレフタール酸のデフルキルエステル例へばデメチルテレフタール酸 エステルとの間のエステル交換反応によつて製造される。ボリエチレンテレフタール酸エステルの 薄膜は鎔融した重合体を狭い孔を通して押し出す こと及び重合体を薄膜の形態で冷却することにつて製造される。孔の開口はキャリパーによつて希望する大さに調整される。このような薄膜は不質的に多数の優れた物理的性質を有する。その優れた性質は非常に多種な用途例へば包装、誘電体のような電気的な用途、保護用の被覆、ガラス代用品に対してその薄膜を有用なものとする。しか

しながら伸張力、衝撃力、屈曲性、水蒸気及び有機質蒸気の渗透性及び伸張率のような或種の物理 的性質は他の薄膜組成物のそれらの性質に対抗し 得ない。この事は多くの用途特に電気工業に於て 分子の配列されないポリエチレンテレフタール酸 エステル薄膜の広範な使用を禁止するものである。

それ故本発明の目的は物理的、化学的及び電気的な性質の優れた結合を有するポリエチレンテレフタール酸エステルの薄膜を提供することである他の目的は機械方向及び横方向の両者を測定した時実質上均等な機械的性質を有するポリエチレンテレフタール酸エステルの薄膜を提供することである。更に別な目的はポリエチレンテレフタール酸エステルの薄膜を二つの軸方向に伸す方法を提供することである。なほ他の目的は相当な速度でポリエチレンテレフタール酸エステルの薄膜を二つの軸方向に連続的に伸ばす方法を提供することである。

本発明によればポリエチレンテレフタール酸エステル薄膜の物理的性質は実質上無定形のポリエチレンテレフタール酸エステル薄膜を80℃—90℃の間の温度で2.5倍以上にして3.25倍を超えないで縦に伸ばしその後前記薄膜を95℃—110℃の範囲内の温度で2.5倍以上にして3.25倍を超えないで横に伸ばすことによつて改良され二つの軸方向に伸ばされた薄膜が製造される。

ここで用いられる縦伸しなる言葉は薄膜が最初 に伸ばされる方法を意味し横の伸しは第2の方向

上記の温度は薄膜が受ける温度即ち薄膜上の問 囲の温度を表す。薄膜内に発生する伸張熱によつ て、この操作中の如何なる時期に於ても薄膜の実 際の温度は通常その直接周辺の温度より高い。

普通の薄膜押し出し装置及び織成した物質を縫及び横に連続的に伸ばすように設計された普通の装置は前文にその梗概を示した本発明の方法を行うために使用される。本発明の方法を実施するために特に適する装置の普通の配置は図面の第1図及び第2図に記載されている。それらの図面は薄膜の成形及び縦に伸ばす装置(第1図)並びに横に伸ばし且つ加熱一固定する装置の配置を図示したものである。

第1図及び第2図に憩いて鎔融したポリエチレ ンテレフタール酸エステルは60-80°Cに維持され た冷却ドラムW上に漏斗Vの狭い溝孔を通して上 から下に270℃—315℃の温度で抑し出される。ド ラム表面の線速度は薄膜を押し出す線速度の約1.5 -10倍速い。固定した後約20in幅の薄膜Pは事実 上二つの主要な部分即ち縦伸し部分及び横伸し部 分から成る装置中で初め縦に次で横に連続的に伸 ばされる。縦伸し装置は異なる垂直及び水平面内 にある並列に配置された19個の水平ロールから成 る。A-Eを含む最初の5個のロールは自から遅 く駆動するコールであり、1-9を含む次の9個 のロールは接近して置かれた自から積極的には認 動しない遊びロールである。そしてF一丁を含む 最後の5個のロールは自から遠く駆動するロール である。実際の伸しは遊びロール上で行はれ総伸 しの範囲は自から駆動する遅いロールと速いロー ルとの線速度の差によつて決定される。総てのロ ールは内部から加熱(示されていないが総ての普 通の都合のよい方法で)され80で-90℃の範囲内 通常は85℃-90℃の範囲内に維持される。本発明 の方法を説明するために使用される特別な装置に 於ては伸しロール中の薄膜の実際の長さは常に約 21 fl である。この長さは遅いロール、游びロール 及び速いロール上に夫々6年、9年及び6年の長さ で分布している。

この区域は約10㎡の長さでその温度は90℃-95 での範囲内である。第2の区域は横伸しの開始から終末までの間の部分を要はす。この区域は20㎡の長さでその温度は95℃-110℃の範囲内に 維持される。第3の区域は下文に於ては海熱量12を通過する時150℃-250℃の範囲内の高温に加熱され且つ横の張力を受けた状態に維持される。この加熱一固定区域は20㎡の 長さである。横伸し部分の最後の区域は大気中に開口し、そして 薄膜を漸次冷却するに役立つ。この区域は10㎡の長さである。

鎔融したボリエチレンテレフタール酸エステルは成形した薄膜を固定する時実質上無定形(非一結晶性)であるような条件の下で薄膜に成形される。これは前文に記載したように重合体を鎔融した状態から急速に冷却するに充分な湿低い温度に維持した成形ドラム上に鎔融物を押し出すことに維持した成形ドラム上に鎔融物を押し出すことによつて最も都合より造成される。薄膜は縦伸し処理の点までは実質上無定形で留まる。その後結晶度は分子の配列度と共に本発明の二つの軸方向に伸す方法の条件に影響を及ぼすものである。一般に薄膜が一層結晶性即ち密度が増大しての薄膜を伸すに要する力に比較して著しく増大するものである。

既述した形式の装置で連続的にポリエチレンデレフタール酸エステル薄膜を2個の軸方向に伸す際には成るべく薄膜を毎分少くとも400%ー般には毎分1000-1500%の範囲内の速度で伸すのがよい。連続方法に於ては薄膜生産連門を高めるために最高の速度が望ましく毎分2000 100%程度の

高速が本発明の方法に於て使発明の方法は速い伸し速度で電気的性質の最適な組合せをに分子の配列されたボリエチェステル薄膜を得るための臨のである。従来記載された伸400%の伸し速度は毎分約15つ対し、ここに記載した特別な2000%の伸し速度は毎分約16

本発明の2軸方向に伸す方 限界は主として三つの点を考 即ち(1)分子配列の効率(2) (3)ポリエステル薄膜の結晶 即ち少くとも毎分 400 %の遠 レフタール酸エステル薄膜を に必要な一般的な事項として 80℃の温度で行はれねばなら し工程は伸しに必要な力を最 薄膜の破損を避けるために最 よりも幾分高温で行はれねば 温度は温度によつて最初に誘 力学的な量を表したカーブ中 る温度を観察することによつ は密度線膨脹、比容、比熱、 或は温度に対する屈折率を示 れる。

ポリエチレンテレフタール 伸ばす際に薄膜が受ける作用 F 出 願 公 告 330—5639

トに事実上4個の区域に 克の両側上に鎖体に列ん 3成る。薄膜が縦伸し部 の枠は縦に伸びた、薄 英を横に伸ばすために外 従伸し部分の終りから横 巨離で表される。この区 う現はれる時の温度を実 であるが下文に於ては予

さでその温度は90℃-95 の区域は横伸しの開始か 表はす。この区域は20 ft -110℃の範囲内に維持 文に於ては加熱室12を通過 田内の高温に加熱され且 に維持される。この加熱 である。横伸し部分の 印し、そして 薄膜を漸 の区域は10 ft の長さであ

で連続的にポリエチレンデ 薄膜を2個の軸方向に伸す 毎分少くとも400%一般に 範囲内の速度で伸すのがよ 薄膜生産速度を高めるため く毎分2000—4000%程度の

高速が本発明の方法に於て使用される。それ故本 発明の方法は速い伸し速度で物理的、化学的及び 電気的性質の最適な組合せを有する2個の軸方向 に分子の配列されたポリエチレンテレフタール酸 エステル薄膜を得るための臨界条件を明示するも のである。従来記載された伸張装置に於ては毎分 400%の伸し速度は毎分約15ヤードに相当するに 対し、ここに記載した特別な装置に於ては毎分 2000%の仲し速度は毎分約100ャードに相当する 本発明の2軸方向に伸す方法の臨界的な温度の 限界は主として三つの点を考慮して決定される。 即ち(1)分子配列の効率(2)伸しに要する力及び (3)ポリエステル薄膜の結晶度。利用し得る速度 即ち少くとも毎分400%の速度でポリエチレンテ レフタール酸エステル薄膜を連続的に伸ばすため に必要な一般的な事項として縦の伸しは少くとも 80℃の温度で行はれねばならない。そして横の伸 し工程は仲しに必要な力を最少に維持し、そして 薄膜の破損を避けるために最初の伸し工程の温度 よりも幾分高温で行はれねばならない。この最低 温度は温度によつて最初に誘導される重合体の熱 力学的な量を表したカーブ中に不連続点が生起す る温度を観察することによつて定められる。これ は密度線膨脹、比容、比熱、音波係数初期弾性率 或は温度に対する屈折率を示した図表から観測さ れる。

一般に重合体固有の粘度によつて最初の方向の伸しが行はれる上記の最低温度は80℃—85℃の範囲内である。それ故下文に例示するように最初の方向或は縦の伸しは80℃—90℃の範囲内の温度で行はれねばならない。その結果薄膜を伸ばすに要する力は実質上最少である。そしてこの温度に於て薄膜は張力を受けた状態の下で薄膜の全面に反びて増一に引伸ばされる。更に第2方向の伸しは薄膜が縦に伸ばされる温度よりも幾分高い温度に放て行はれればならない。これは薄膜が横城の方向に分子配列されて一層丈夫な薄膜となつているためである。結晶が生ずるために第2方向に伸ばする力の総量は増大する。それ故一層高い温度即ち5℃—20℃高い温度で第2方向の伸しを行ふことによつて伸しに要する力は最少に維持される。

ポリエチレンテレフタール酸エステルの薄膜を 伸ばす際に薄膜が受ける作用を更に深く考慮する

ために無定形のポリエチレンテレフタール酸エス・ テル薄膜に対する応力―歪図を表はす第3図を参 **照されたい。この図表は下文に示すような多数の** 重要な事項を含む。第3図の線図は応力が歪に比 例する勾配の急な直線で始まる。低い伸長率に於 けるこの比率は初期弾性率Mと呼ばれ、薄膜の硬 度の標準である。カーブの方向に於ける突然の変 化は降伏点Ypと呼ばれ、これはその点に於ける 張力及び伸長率に関連して定まる。屡第2の小ビ ークが生じ、これは第2降伏点Yp2と呼ばれる。 この点を越えれば薄膜は張力を殆ど或は全く増大 することなく伸長する。この区域の最低張力の強 さを伸しの力 SF と称する。 薄膜が伸すことに対 して抵抗し初める点を増力点 RP 点と呼ぶ。最後 にカーブの終りに於て伸張力T及び破壊伸長Eが 存在する。カーブの下方の空地は伸しに要する仕 事WSを表はす。

80℃以下の種々な温度に於て無定形のポリエチレンテレフタール酸エステル薄膜を伸すに要する 仕事を確めるために一連の応力一歪図がこれらの 資料を得るために図示される。第4図は25℃乃至 90℃の範囲の温度に於ける一連の応力一歪図であ る。表【は第4図を図表で示すために使用された 資料の表である。その中には図表から得られた種 種な資料も含まれてゐる。

表 【 無定形の未だ伸されないポリエチレンテレフ

タール酸エステルの有する応力―歪に対する温度の影響

温度	率 Psi	降伏点 の張力 Psi	伸す力 Psi	3倍伸すた めの仕事 (inlb _s / in')
25	280000	8800	5600	12000
40	208000	7600	5200	10700
50	208000	6800	4700	
60	208000	6200	4000	7500
66	196000	4000	2500	
74	160000	2400	1230	
80	66000	1440	685	872
85	13000,	650	650	530
90	1000	200	200	320
9 5	960	150	150	
100	820	160	130	
120	450	60		

第4図の応力一歪図に示されるように無定形の ポリエチレンテレフタール酸エステルの薄膜は80 m C-85
m C以下の温度に於て均一には引き伸ばされ ない。これは張力が縦方向に加へられた時一つの 横線から引き伸ばされ、その作用が薄膜の全表面 に亙つて均一でないことを意味する。これは25℃ 40℃及び60℃に於ける応力―歪図中に示されてゐ る。これらの温度に於ては第2の降伏点が現はれ 張力は高荷重値まで殆ど直線状に増大し急に約25 %減少し、その後鋭く再び増大し、そして最後に 或る一定の高さまで減少し、この高さに於ては殆 ど或は全く荷重の変化なしに伸張される。第2の 降伏点は引き伸しの第2の線を形成するためにあ ると信じられてゐる。更に表1は無定形のポリエ チレンテレフタール酸ェステルの薄膜を80℃—90 Cの範囲内の温度で伸すに要する仕事の最少量を 明瞭に示す。

本発明の方法の第1方向(縦方向)の伸し工程 に於て前述の説明はポリエステルの薄膜を伸すに 要する仕事に対し温度の影響を考慮すべきことを 示唆する。無定形の薄膜を伸すためには $80 \, \mathrm{C}-90$ びが最適である。種々な伸し温度に於ける分子配 列の効率も亦最適な物理的化学的及び電気的性質 の組合せを有する二つの軸方向に伸された薄膜を 製造するためには臨界的な要素である。X一線廻 折、偏向赤外線吸収、水中に於ける膨潤、熱によ る収縮粘級性或は伸張率のようなMD(機械方向) 及びTD(横方向)の物理的性質の比較及び複屈折 率の測定のような種々の技術がポリエステル薄膜 の分子配列の測定に使用される。ポリエチレンテ レフタール酸エステル薄膜の分子配列の測定には 複屈折率の測定が選れる。複屈折率は無単位の数 であり、分子配列の軸に平行方行と垂直方向の膜 の屈折率の差異から直接測定される。分子の配列 されたポリエチレンテレフタール酸のような複屈 折を起す薄膜が分子配列の軸(例へばシート面へ の垂線) に垂直に当る平面偏光の磁束を通す時に その光線は互に直角に偏向された2個の磁束に分 かれ、その一方は他方よりも早く進む。それらの 線束が薄膜から出る時その一方が他方より先に進 んだ距離は試料の遅れ(通常ミリミクロンで表す) として知られ、それは薄膜の厚さ及び 複屈折率 Dnに関する方程式によつて表される。

遅れ=厚さ×被屈折率

厚さは容易に測ることが可能であり遅れは目 盛のある石英楔のような補整器によつて測定され る。

複屈折率は分子配列の程度を直接測るものであ るから伸ばされたポリエチレンテレフタール酸ェ ステルの試料の分子配列は25℃から120℃までの 引き伸し温度に対する複屈折率を表示することに よつて種々な引き伸し温度に於て測定される。複 屈折率の値が高ければ高い程分子の配列度は大き いことを諒解すべきである。第5図は一方向に 3.5 倍引き伸ばされた ポリエチレンテレフタール 酸エステル 薄膜の試料 (厚さ0.002in) の引き伸 は長さ6in幅10inであつた。そして示した種々な 温度で引き伸した後複屈折率の測定は試料の中心 部分で行はれた。薄膜は比較的低温に於てはよく 引き伸されなかつたので25℃及び50℃で伸される べき試料はその伸長性を増すために最初 120℃で 15秒表加熱され、その後空気で冷された。

第5 図に示されるように温度が明かに80 で-85 でを超える時分子配列の能率は急速に低下する。それ故無定形のポリエチレンテレフタール酸エステル薄膜を伸すに要する仕事の量に関する前述の考慮を綜合して80 で-90 での範囲内の温度が最初の方向或は縦方向の伸しに最適である。好ましい温度は約85 でである。

一般にポリエチレンテレフタール酸エステル薄膜が最初或は縦方向に伸される温度範囲に関して90℃以上の温度に於て伸すことは実質上分子配列を起す結果とならない。他方80℃以下の温度で伸すことは引き伸しが種々な分界線から起るといる事実から見て実質上不均一な分子配列を生する結果となる。そして薄膜の全満断面積に亙つて均一には伸されない。

一方向だけに伸したボリェチレンテレフタール酸エステル薄膜を横方向に伸すことに関して考慮すべき主要素は(1)第2方向に薄膜を伸すに要する仕事及び(2)薄膜が結晶する度である。実際には 薄膜が一層結晶すればする速程第2の方向に伸すに要する仕事は大きくなくなるのであるからこれ ちの要素は直接結び附いたものである。更に最初の方向に伸した後に薄膜に附与された分子配列の程度も亦第2の方向に薄膜を伸すに要する仕事の量を増大する。それ故第2の方下 よ芸向方に伸

す間薄膜の温度を上昇する どなくする外に必要とする に役立つ。

縦方向に 3 倍伸した薄膜は一般に薄膜が約10—14% す。更にポリエチレンテレ膜を両方向に 3 倍伸ばしたてある。そして 200℃ 附近程によって約40—42% 結晶る。

ポリエチレンテレフター

温に曝露する時結晶が始ま で附近にまで上昇するにつ 明かに 200で 以上に上昇す けると同様に再び減少する と一方向或は両方向に伸す ボリエステル薄膜の結晶度 本発明の温度条件ので 以上の範囲に伸ばした(少 し速度で)釣合のとれた薄膜を縦方向に約3.25倍以上 起るために薄膜を破損する

薄膜が分子配列されてゐる ゐるために縦方向の伸しよ ならない。それ故薄膜を伸 を使用することによつて最 向に3.25倍以上ポリエチレ テル薄膜を伸す際の結晶度 結晶度よりも高い。

摘したように第2方向の伸

それ故実用される速度即で連続的に伸し、縦横の釣ためには薄膜を縦方向に3. 米ない。その理由は詳述し件の下でさへも薄膜を横方とすれば薄膜の破損が起る

横方向に伸す際に温度をことは急速な結晶を著しく 薄膜の破損する可能性を増 に薄膜を伸すに要する仕事 上横方向に伸す際には経方 在する相当量の無定形の重 上の温度で横に伸すことは 列を伴はないで伸長する結 い可能であり遅れは目 を器によつて測定され

変を直接測るものであ レンテレフタール酸エ 25℃から120℃ までの 折率を表示することに に於て測定される。複 程分子の配列度は大き る。第5図は一方向に エチレンテレフタール 享さ0.002in) の引き伸) 図表である。 薄膜試料 :。そして示した種々な で率の測定は試料の中心 Ł較的低温に於てはよく 5℃及び50℃で伸される 曽すために最初 120℃ で 空気で冷された。

こ温度が明かに80℃-85 能率は急速に低下する。 レンテレフタール酸エス 仕事の量に関する前述の での範囲内の温度が最初 に最適である。好ましい

レフタール酸エステル薄 される温度範囲に関して けことは実質上分子配列 他方80℃以下の温度で伸 :な分界線から起るといる ヨーな分子配列を生する結)全横断面積に亙つて均一

ドリエチレンテレフタール 匀に伸すことに関して考慮 2 方向に薄膜を伸すに要す 晶する度である。実際には する速程第2の方向に伸す なくなるのである。更に伸す なたものである。更に別の 膜に附与された分子配列の 薄膜を伸すに要する仕事の 第2の方向或は質向方に伸 す間薄膜の温度を上昇することは薄膜の破損を殆 となくする外に必要とする仕事を最少に維持する に役立つ。

縦方向に3倍伸した薄膜の密度を測定した結果は一般に薄膜が約10—14%結晶してゐることを示す。更にポリエチレンテレフタール酸エステル薄膜を両方向に3倍伸ばした後は約20—25%結晶してゐる。そして200℃附近に於ける加熱—固定工程によつて約40—42%結晶した最後の薄膜を得る。

ポリエチレンテレフタール酸エステル薄膜を高温に曝露する時結晶が始まり 結晶度は温度が 200 TM近にまで上昇するにつれて増大する。温度が明かに 200 T以上に上昇する時結晶度は低温に於けると同様に再び減少する。更に高温に曝すことと一方向或は両方向に伸すこととの組合せは一層ポリエステル薄膜の結晶度を増加する。

本発明の温度条件の下で両方向に於て約3.25倍以上の範囲に伸ばした(少くとも毎分400%の伸し速度で)釣合のとれた薄膜を製造する試みは薄膜を縦方向に約3.25倍以上伸す時は高度の結晶が起るために薄膜を破損する結果となる。上文に指摘したように第2方向の伸しに対する温度条件は薄膜が分子配列されてゐるばかりでなく結晶してゐるために縦方向の伸しよりも一層高くなければならない。それ故薄膜を伸すに要する仕事は高温を使用することによつて最少に維持される。縦方向に3.25倍以上ボリエチレンテレフタール酸エステル薄膜を伸す際の結晶度は3倍に伸した薄膜の結晶度よりも高い。

それ故実用される速度即ち少くとも毎分400% で連続的に伸し、縦横の釣合つた薄膜を製造する ためには薄膜を縦方向に3.25倍以上伸すことは出 来ない。その理由は詳述したような最適な温度条 件の下でさへも薄膜を横方向に同じ程度に伸そう とすれば薄膜の破損が起るからである。

横方向に伸す際に温度を110℃以上に上昇することは急速な結晶を著しく促進し、これによつて 薄膜の破損する可能性を増大するに加へて横方向 に薄膜を伸すに要する仕事の量を増大する。その 上横方向に伸す際には縦方向に伸した薄膜中に存 在する相当量の 無定形の重合体がある。110℃以 上の温度で横に伸すことは認め得る程度の分子配 列を伴はないで伸長する結果となり、これは殆ど 完全に無定形なまだ伸されない重合薄膜を90℃以上の温度で縦方向に伸すのと同じ作用を与へる。それ故 95℃—110℃ の温度範囲は 一様な 平面上 (uni plan arity)の点に二軸方向に分子の配列された縦横の釣合のとれた薄膜を製造するためには 臨界的なものである。例へばこの形式の分子配列は卓面上のその卓面に平行した最長の方向で一群の鉛筆を置き総ての商品マークを上向けにするだけでそれ以外は一様に配列されてゐないようなものと類似してゐる。

二軸方向に分子の配列されたポリエチレンテレ フタール酸ニステル薄膜の熱一老化性を測定する ことは175℃までの高温に曝す際の脆弱化に抗す るためにはその重合体の薄膜が相当程度に分子配 列されねばならないことを指示するために有用で ある。二軸方向に2倍及び二軸方向に2.5倍伸ば された分子の配列されたポリエチレンテレフター ル酸エステル薄膜は夫々 (実験は 0.001 in の薄膜 で行はれた) 二軸方向に 3 倍伸ば された 0.001 in のポリエチレンテレフタール酸エステル薄膜の伸 長率に於ける最低の減少と比較する時伸長率に於 て急速な減少を受ける。例へば175℃に250時間暴 **露した後二軸方向に2倍伸したポリエチレンテレ** フタール酸エステル薄膜の伸長率は二軸方向に 3 倍伸した薄膜の伸長率に於ける30%の減少と比較 して約83%低下するに対し、二軸方向に2.5倍伸 した薄膜の伸長率は53%低下する。更に175℃に 500時間曝した後二軸方向に 2 倍及び2.5倍停した ポリエステル薄膜は夫々約98%及び92%に達する 伸長率の減少を受けるに対し、二軸方向に3倍伸 した薄膜の伸長率の減少は元の伸長率の 僅か 約 50%に達するに過ぎない。これらの比較するため の数字を得るために用ひられる測定は24℃で35% の相対湿度で行はれた。このような熱一老化性は 二軸方向に3倍に伸したポリエチレンテレフター ル酸エステル薄膜の最初の優れた物理的性質と共 に伸しの範囲といふ言葉で表現されるような必要 とする分子配列度に関する下の限界を設定するに 役立つ。かくしてポリエチレンテレフタール設工 ステル薄膜の一般的な用途、特に電気的な用途に 関しては二軸方向に少くとも2.5倍及び成るべく は二軸方向に3倍に伸した薄膜が良好な誘電体即 ち電気的、物理的及び化学的性質に必要な総ての 適応性に関して優れたものであり、且つ温度湿度

等の種々な条件の下に於てこれらの性質をよく発 現するものである。

この発明の方法によつて製造された二軸方向に 配列され(両方向に3倍伸ばされた)加熱一固定 されたポリエチレンテレフタール酸エステル薄膜 は約40-42%が結晶である。即ち1公当り1.39-1.40gの密度を有する。結晶の総量のほどをは加 熱一固定工程即ち横の張力を 受けてゐる間に 150 -250℃の範囲内の温度に短時間曝す間に生する。 二軸方向に分子の配列された薄膜の結晶は加熱一 固定に好ましい温度即ち200℃附近で急速に生ず る。二軸方向に伸ばした(両方向に3倍)ポリエ チレンテレフタール酸エステル薄膜の結晶性はほ ぼ5-10秒で20%から約40%増大する。速い速度 で伸すことが望ましいのであるから、前文に記載 した装置の200℃に維持された加熱一固定帯の長 さは充分な加熱一固定が最高の実用的な伸し速度 で行はれるように設計される。一般に前文に述べ た普通の包装、電気的用途その他の大多数の用途 に対して好ましい二軸方向に分子配列された釣合 のとれた薄膜は両方向に3倍伸ばされ且つ200℃ 附近で加熱―固定されたものである。本発明の方 法によつて製造されたこの薄膜は大約40%が結晶 であり、二色比は実質上1で薄膜は高度に透明で ある。他方40-42%程度結晶した伸されない薄膜 は不透明である。

一般に釣合のとれた薄膜は両方向に同じ程度例 へば二軸方向に3倍伸されたものである。このこ とは伸されない薄膜の長さ幅及び厚さの中の一元 が他の元が伸されてゐる間実質上一定に保持され るように見せかけるものである。或種の物理的性 質を測定する際に避けることの出来ない誤差の節 囲を除いて釣合のとれた薄膜の物理的性質は両方 向に於て実質上同一である。他方二軸方向に伸さ れた釣合のとれた薄膜の分子配列度も亦両方向に 於て実質上同一である。これは二色比(薄膜の機 械方向に夫々平行及び垂直な優光振動の方向に対 する赤外線吸収の比率)を算定することによつて 決定される。釣合のとれた薄膜は1.00の二色比を 有する。例へは一方向に伸された薄膜((機械方向 に 3 倍)(MD))は2.93の二色化を有する。他方横 方向の張力を受けてゐる間に加熱一固定された二 軸方向に伸された(3倍)ポリエチレンテレフタ ール酸エステル薄膜(こゝに記載した。」で伸し

た)の試料は1.17の二色比を示しこれは完全に釣合のとれたシートにほど近いことを示す。しかしながら本発明を説明する際実質上両方向に同じ程度に本文記載の装置及び方法で伸された薄膜は一に近い二色比を有し、縦及び横の両方向で測定する時実質上同一の物理的性質を有する。そしてこれは釣合のとれた薄膜に属するものである。

勢合のとれた薄膜の改良された機械的な性質は 非常に薄い薄膜例へば0.0001 im —0.0025 im の場合 に明瞭に示される。これらの非常に薄い薄膜の強 韧性及び一般の耐久性は高度に優れたものであり そして0.00025 in 附近の薄膜は誘電体としての広 範な用途の外に軽い包装用に非常に多く使用され る。0.00025 in の薄膜の 屈曲性の寿命は0.0005 in の薄膜のそれより約3倍長く0.001 in の薄膜のそれより約3倍長く0.001 in の薄膜のそれより約5倍長い。一般に二軸方向に分子の配列 されたボリエチレンテレフタール酸エステル薄膜 の優れた伸張力に加へてこの個有の性質は上記の 用途に対する二軸方向に分子の配列されたボリエ ステル薄膜の広範な適応性を提供するものであ る。

両方向に約3倍伸された薄膜が物理的、化学的及び電気的性質の実質上最適な組合せを有することの更に明かな証拠は二軸方向に2.5倍以下に伸されたポリエチレンテレフタール酸エステル薄膜が本発明の方法に従つて伸した後屡或る種の不規則性を示すことである。これらの不規則性は透明な薄膜中に細かいひび或は白い区域を形成して現はれる。そしてこれらは本発明の加熱一固定工程の後に発現するように思はれる。

次の例はこの現象を説明するに役立つ。

無定形のポリェチレンテレフクール酸エステル 薄膜を前文に記載した伸し装置中で処理し、薄膜 を80℃乃至90℃の温度で縦方向に1.8倍伸す。その後薄膜は90℃-95℃の間の温度で予熱帯に送りれ、それから後薄膜は横方向に連続的に3.0倍伸 ばされる。最後に二軸方向に伸された薄膜は横の 張力を受けてゐる間に約150℃で加熱--- 固定される。伸ばされない薄膜の厚さは約0.010 in であり 得られる伸された薄膜は約0.001 in であり 得られる伸された薄膜は約0.001 in である。加熱 一-- 固定工程の結果として種々な不規則な個所が細いひび或は白い斑点の形で薄膜中に形成される。 これは薄膜全体の透明度を損じ、 いらの区域中 に不均一な結晶が生ずるためであって信じられて ゐる。

前文に記載した方法と同りエチレンテレフタール配の.050m)を両方向に 2.5 の温度で加熱一固定した。或は白い斑点の形で 2.3 のた。しかし単位面積当りのの数は前の例の薄膜中の数に両方向に 2.5 倍以上の範囲内で加熱一固定され、規則な個所の形成は現れた特許 請求

本文に詳記するようにリレンテレフタール酸エスラの間の温度に於て 2.5 以上にして3 薄膜を横に伸ばして二軸に造しそして10元でもでして前記二軸方向レー250℃の範囲内の温度レとを特徴とするポリエチリ

午出 願 公 告 630-5639~

七を示しこれは完全に釣 をいことを示す。しかし 祭実質上両方向に同じ程 方法で伸された薄膜は一 及び横の両方向で測定す 生質を有する。そしてこ 属するものである。

良された機械的な性質は 2001 in —0.0025 in のの非常にある。 の非常に海に海に海に海に海に海にではいる。 一方の非常に移動した。 一方の非常に多くし、0005 in のでは、 一方のでは、1000 in のでのののでは、 では、2001 in のでのでのでは、 では、2001 in のでのでのでは、 では、2001 in のでのでのでは、 では、2001 in のでのでのでは、 では、2001 in のでのでは、 では、2001 in のでのでは、 では、2001 in のでのできた。 では、2001 in のでのできた。 では、2001 in のでのできた。 では、2001 in のできた。 では、2001

た薄膜が物理的、化学的 最適な組合せを有するこ 軸方向に 2.5 倍以下に伸 フタール酸エステル薄膜 伸した後屡或る種の不規 これらの不規則性は透明 は白い区域を形成して現 、本発明の加熱一固定工程 はれる。

は明するに役立つ。

ある。

前文に記載した方法と同様な方法で無定形のボリエチレンテレフタール酸エステル 薄膜(厚さ0.050in)を両方向に2.5倍伸し、そして約200℃の温度で加熱一固定した。この薄膜も亦細いひび或は白い斑点の形で2.3の不規則な個所を示した。しかし単位面積当りのこれらの不規則な個所の数は前の例の薄膜中の数より明かに少ない。一般に両方向に2.5倍以上伸され且つ150℃—250℃の範囲内で加熱一固定された薄膜ではこれらの不規則な個所の形成は現れない。

特許請求の範囲

本文に詳記するように実質上無定形のポリエチレンテレフタール酸エステルの薄膜を80℃—90℃の間の温度に於て 2.5 以上にして3.25倍を超えないで縦に伸ばしその後 95℃—110℃ の範囲内の温度に於て 2.5 以上にして3.25倍を超えないで前記薄膜を横に伸ばして二軸方向に伸ばした薄膜を製造しそして前記二軸方向に伸ばした薄膜を 150℃—250℃ の範囲内の 温度に於て加熱—固定することを特徴とするポリエチレンテレフタール酸エス

テル南膜の物理的性質を改良する方法。

附 記

- 1 縦方向に伸ばした薄膜を横に伸ばす前に90°C —95°C の間の温度に予熱する特許請求の範囲記載の方法。
- 2 加熱固定する間満膜を横方向に張力を受けた 状態に維持する特許請求の範囲記載の方法。
- 3 薄膜が縦及び横方向の各々に於て 2.5 倍乃至 3.25倍に伸ばされる特許請求の範囲並びに附記 第1項及び第2項の何れかに記載する方法。
- 4 薄膜を縦及び横方向の各々に於て実質上同一 範囲に伸ばす特許請求の範囲並びに附記第1項 乃至第3項の何れかに記載する方法。
- 5 実質上無定形のポリエチレンテレフタール酸 エステルの薄膜を連続的に成形し連続的に縦に 伸ばしその後連続的に横に伸ばし次で連続的に 加熱一固定する特許請求の範囲並びに附記第1 項乃至第4項の何れかに記載する方法。
- 6 薄膜を少くとも毎分400%の速度で縦及び横 方向に連続的に伸ばす附記第5項記載の方法。

第3図

第4図

出願公告。 30—5639

第5図

