Cálculo I

Pedro H A Konzen

10 de junho de 2019

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados temas introdutórios sobre cálculo de funções de uma variável.

Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Capa						
Li	Licença					
Prefácio						
Su	ımár	io		vi		
1	Fun	damer	ntos sobre funções	1		
	1.1	Defini	ção e gráfico	1		
	1.2		de funções	4		
		1.2.1	Funções lineares	4		
		1.2.2	Funções potência	5		
		1.2.3	Funções polinomiais	8		
		1.2.4	Funções racionais	9		
		1.2.5	Funções algébricas	9		
		1.2.6	Funções transcendentes	10		
		1.2.7	Funções definidas por partes	10		
	1.3	-	es trigonométricas	11		
		1.3.1	Seno e cosseno	11		
		1.3.2	Tangente, cotangente, secante e cossecante	14		
		1.3.3	Identidades trigonométricas	16		
	1.4	Opera	ções com funções	17		
	1.1	1.4.1	Somas, diferenças, produtos e quocientes	17		
		1.4.2	Funções compostas	17		
		1.4.3	Translações, contrações, dilatações e reflexões de gráficos	-		
		1.4.4	Translações	18		
		1.4.5	Dilatações e contrações			

		1.4.6 Reflexões
	1.5	Propriedades de funções
		1.5.1 Funções crescentes ou decrescentes 19
		1.5.2 Funções pares ou ímpares
		1.5.3 Funções injetoras
	1.6	Funções exponenciais
	1.7	Funções logarítmicas
		,
2	Lim	
	2.1	Noção de limites
		2.1.1 Limites da função constante e da função identidade 25
	2.2	Regras para o cálculo de limites
		2.2.1 Indeterminação 0/0
	2.3	Limites laterais
	2.4	Limites e desigualdades
		2.4.1 Teorema do confronto
		2.4.2 Limites envolvendo $(\operatorname{sen} x)/x \dots 39$
	2.5	Limites no infinito
		2.5.1 Assíntotas horizontais
		2.5.2 Assíntotas oblíquas
	2.6	Limites infinitos
		2.6.1 Assíntotas verticais
	2.7	Continuidade
3	\mathbf{Der}	ivadas 53
	3.1	Retas tangentes e derivadas
		3.1.1 A derivada em um ponto
	3.2	Função derivada
	3.3	Regras básicas de derivação
		3.3.1 Multiplicação por constante e soma 60
		3.3.2 Produto e quocientes
		3.3.3 Derivadas de funções exponenciais 64
		3.3.4 Derivadas de ordens mais altas
	3.4	Taxa de variação
	3.5	Derivadas de funções trigonométricas
	3.6	Regra da cadeia
	3.7	Diferenciabilidade da função inversa
		3.7.1 Derivadas de funções trigonométricas inversas 70

	3.8	Derivação implícita	71					
4	Apl	licações da derivada	7 3					
	_	Extremos de funções	73					
		4.1.1 Exercícios resolvidos						
		4.1.2 Exercícios						
	4.2	Teorema do valor médio						
		4.2.1 Teorema de Rolle	80					
		4.2.2 Teorema do valor médio	81					
	4.3	Teste da primeira derivada	83					
5	Integração							
		Integrais indefinidas	86					
		5.1.1 Regras básicas de integração						
		5.1.2 Exercícios						
	5.2							
	5.3	Integração por partes						
\mathbf{R}	espos	stas dos Exercícios	92					
\mathbf{R}	e ferê	ncias Bibliográficas	93					
Ín	indica Ramissivo							

Capítulo 1

Fundamentos sobre funções

Ao longo deste capítulo, contaremos com o suporte de alguns códigos Python com o seguinte preâmbulo:

```
from sympy import *
init_printing()
var('x')
```

1.1 Definição e gráfico

Uma **função** de um conjunto D em um conjunto Y é uma regra que associa um único elemento $y \in Y^1$ a cada elemento $x \in D$. Costumeiramente, identificamos uma função por uma letra, por exemplo, f e escrevemos f: $D \to Y$, y = f(x), para denotar que a função f toma valores de entrada em D e de saída em Y.

O conjunto D de todos os possíveis valores de entrada da função é chamado de **domínio**. O conjunto de todos os valores f(x) tal que $x \in D$ é chamado de **imagem** da função.

Ao longo do curso de cálculo, as funções serão definidas apenas por expressões matemáticas. Nestes casos, salvo explicitado o contrário, suporemos que a função tem números reais como valores de entrada e de saída. O domínio e a imagem deverão ser inferidos da regra algébrica da função ou da aplicação de interesse.

 $^{^{1}}y \in Y$ denota que y é um elemento do conjunto Y.

Exemplo 1.1.1. Determinemos o domínio e a imagem de cada uma das seguintes funções:

- $y = x^2$:
 - Para qualquer número real x, temos que x^2 também é um número real. Então, dizemos que seu domínio (natural)² é o conjunto $\mathbb{R} = (-\infty, \infty)$.
 - Para cada número real x, temos $y=x^2\geq 0$. Além disso, para cada número real não negativo y, temos que $x=\sqrt{y}$ é tal que $y=x^2$. Assim sendo, concluímos que a imagem da função é o conjunto de todos os números reais não negativos, i.e. $[0,\infty)$.
- y = 1/x:
 - Lembremos que divisão por zeros não está definida. Logo, o domínio desta função é o conjunto dos números reais não nulos, i.e. $(-\infty,0) \cup (0,\infty)$.
 - Primeiramente, observemos que se y=0, então não existe número real tal que 0=1/x. Ou seja, 0 não pertence a imagem desta função. Por outro lado, dado qualquer número $y\neq 0$, temos que x=1/y é tal que y=1/x. Logo, concluímos que a imagem desta função é o conjunto de todos os números reais não nulos, i.e. $(-\infty,0)\cup(0,\infty)$.
- $y = \sqrt{1 x^2}$:
 - Lembremos que a raiz quadrada de números negativos não está definida. Portanto, precisamos que:

$$1 - x^2 \ge 0 \Rightarrow x^2 \le 1 \tag{1.1}$$

$$\Rightarrow -1 \le x \le 1. \tag{1.2}$$

Donde concluímos que o domínio desta função é o conjunto de todos os números x tal que $-1 \le x \le 1$ (ou, equivalentemente, o intervalo [-1,1]).

Com o SymPy, podemos usar o comando

 $^{^2}$ O **domínio natural** é o conjunto de todos os números reais tais que a expressão matemática que define a função seja possível.

reduce inequalities(1-x**2>=0,[x])

para resolvermos a inequação $1 - x^2 \ge 0$.

– Uma vez que $-1 \le x \le 1$, temos que $0 \le 1 - x^2 \le 1$ e, portanto, $0 \le \sqrt{1 - x^2} \le 1$. Ou seja, a imagem desta função é o intervalo [0, 1].

O **gráfico** de uma função é o conjunto dos pares ordenados (x, f(x)) tal que x pertence ao domínio da função. Mais especificamente, para uma função $f: D \to \mathbb{R}$, o gráfico é o conjunto

$$\{(x, f(x))|x \in D\}.$$
 (1.3)

O **esboço do gráfico** de uma função é, costumeiramente, uma representação geométrica dos pontos de seu gráfico em um plano cartesiano.

Exemplo 1.1.2. A Figura 1.1 mostra os esboços dos gráficos das funções $f(x) = x^2$, g(x) = 1/x e $h(x) = \sqrt{1-x^2}$.

Figura 1.1: Esboço dos gráficos das funções $f(x) = x^2$, g(x) = 1/x e $h(x) = \sqrt{1-x^2}$ dadas no Exemplo 1.1.2.

Para plotarmos os gráficos destas funções usando SymPy podemos usar os seguintes comandos:

Exercícios

Em construção ...

1.2 Tipos de funções

Nesta seção, vamos ressaltar alguns tipos de funções que aparecerem com frequência nos estudos de cálculo.

1.2.1 Funções lineares

Uma **função linear** é uma função da forma f(x) = mx + b, sendo m e b parâmetros³ dados. Recebe este nome, pois seu gráfico é uma linha (uma reta)⁴.

Quando m=0, temos uma **função constante** f(x)=b. Esta tem domínio $(-\infty,\infty)$ e imagem $\{b\}$. Por outro lado, toda função linear com $m\neq 0$ tem $(-\infty,\infty)$ como domínio e imagem.

Exemplo 1.2.1. A Figura 1.2 mostra esboços dos gráficos das funções lineares f(x) = -5/2, f(x) = 2 e f(x) = 2x - 1.

Figura 1.2: Esboços dos gráficos das funções lineares y = -5/2, y = 2 e y = 2x - 1 discutidas no Exemplo 1.2.1.

 $^{^3 {\}rm n\'umeros}$ reais.

⁴Não confundir com o conceito de linearidade de operadores.

Observação 1.2.1. O lugar geométrico do gráfico de uma função linear é uma reta (ou linha). O parâmetro m controla a inclinação da reta em relação ao eixo x^5 . Quando m = 0, temos uma reta horizontal. Quando m > 0 temos uma reta com inclinação positiva (crescente) e, quando m < 0 temos uma reta com inclinação negativa. Verifique!

Quaisquer dois pontos (x_0, y_0) e (x_1, y_1) , com $x_0 \neq x_1$, determinam uma única função linear (reta) que passa por estes pontos. Para encontrar a expressão desta função, basta resolver o seguinte sistema linear

$$mx_0 + b = y_0 \tag{1.4}$$

$$mx_1 + b = y_1 \tag{1.5}$$

Subtraindo a primeira equação da segunda, obtemos

$$m(x_0 - x_1) = y_0 - y_1 \Rightarrow m = \frac{y_0 - y_1}{x_0 - x_1}.$$
 (1.6)

Daí, substituindo o valor de m na primeira equação do sistema, obtemos

$$\frac{y_0 - y_1}{x_0 - x_1} x_0 + b = y_0 \Rightarrow b = -\frac{y_0 - y_1}{x_0 - x_1} x_0 + y_0. \tag{1.7}$$

Ou seja, a expressão da função linear (equação da reta) que passa pelos pontos (x_0, y_0) e (x_1, y_1) é

$$y = \underbrace{\frac{y_0 - y_1}{x_0 - x_1}}(x - x_0) + y_0. \tag{1.8}$$

1.2.2 Funções potência

Uma função da forma $f(x) = x^n$, onde $n \neq 0$ é uma constante, é chamada de **função potência**.

Funções potências têm comportamentos característicos, conforme o valor de n. Quando n é um inteiro positivo ímpar, seu domínio e sua imagem são $(-\infty,\infty)$. Veja a Figura 1.3.

⁵eixo das abscissas

Figura 1.3: Esboços dos gráficos das funções potências $y=x,\ y=x^3$ e $y=x^5.$

Funções potências com n positivo par estão definidas em toda parte e têm imagem $[0,\infty)$. Veja a Figura 1.4.

Figura 1.4: Esboços dos gráficos das funções potências $y=x^2,\ y=x^4$ e $y=x^6.$

Funções potências com n inteiro negativo ímpar não são definidas em x=0, tendo domínio e imagem igual a $(-\infty,0)\cup(0,\infty)$. Também, quando n inteiro negativo par, a função potência não está definida em x=0, tem domínio $(-\infty,0)\cup(0,\infty)$, mas imagem $(0,\infty)$. Veja a Figura 1.5.

Figura 1.5: Esboços dos gráficos das funções potências y=1/x (esquerda), $y=1/x^2$ (direita).

Há, ainda, comportamentos característicos quando $n=1/2,\,1/3,\,3/2$ e 2/3. Veja a Figura 1.6.

Figura 1.6: Esboços dos gráficos das funções potências. Esquerda $y=\sqrt{x}$ e $y=\sqrt{x^3}$. Direita: $y=\sqrt[3]{x}$ e $y=\sqrt[3]{x^2}$.

1.2.3 Funções polinomiais

Uma função polinomial (polinômio) tem a forma

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \tag{1.9}$$

onde a_i são coeficientes reais, $a_n \neq 0$ e n é inteiro não negativo, este chamado de **grau do polinômio**.

Polinômios são definidos em toda parte⁶. Polinômios de grau ímpar tem imagem $(-\infty, \infty)$. Entretanto, a imagem polinômios de grau par dependem de cada caso. Iremos estudar mais propriedades de polinômios ao longo do curso de cálculo. Veja a Figura 1.7.

Figura 1.7: Esboços dos gráficos das funções polinomiais. Esquerda $p(x) = x^3 - 2.5x^2 - 1.0x + 2.5$. Direita: $q(x) = x^4 - 3.5x^3 + 1.5x^2 + 3.5x - 2.5$.

Quando n=0, temos um polinômio de grau 0 (ou uma função constante). Quando n=1, temos um polinômio de grau 1 (ou, uma função linear). Ainda, quando n=2 temos uma função quadrática (ou polinômio quadrático) e, quando n=3, temos uma função cúbica (ou polinômio cúbico).

⁶Uma função é dita ser definida em toda parte quando seu domínio é (∞, ∞)

1.2.4 Funções racionais

Uma função racional tem a forma

$$f(x) = \frac{p(x)}{q(x)},\tag{1.10}$$

onde p(x) e $q(x) \not\equiv 0$ são polinômios.

Função racionais não estão definidas nos zeros de q(x). Além disso, suas imagens dependem de cada caso. Estudaremos o comportamento de funções racionais ao longo do curso de cálculo. Veja a Figura 1.8.

Figura 1.8: Esboço do gráfico da função racional $f(x) = \frac{x^2 - x - 2}{x^3 - x^2 + x - 1}$.

1.2.5 Funções algébricas

Funções algébricas são funções definidas a partir de somas, subtrações, multiplicações, divisões ou extração de raízes de funções polinomiais. Estudaremos estas funções ao longo do curso de cálculo.

1.2.6 Funções transcendentes

Funções transcendentes são funções que não são algébricas. Como exemplos, temos as funções trigonométricas, exponencial e logarítmica, as quais introduziremos nas próximas seções.

1.2.7 Funções definidas por partes

Funções definidas por partes são funções definidas por diferentes expressões matemáticas em diferentes partes de seu domínio.

Exemplo 1.2.2. Consideremos a seguinte função definida por partes:

$$f(x) = \begin{cases} -x & , x < 0, \\ x^2 & , x \ge 0 \end{cases}$$
 (1.11)

Observemos que tanto o domínio como a imagem desta função são $(-\infty, \infty)$. A Figura 1.9 mostra o esboço do gráfico desta função.

Figura 1.9: Esboço do gráfico da função definida por partes f(x) dada no Exemplo 1.2.2.

Um exemplo de função definida por partes fundamental é a **função valor absoluto**⁷

$$|x| = \begin{cases} x & , x \le 0 \\ -x & , x < 0 \end{cases} \tag{1.12}$$

Vejamos o esboço do seu gráfico dado na Figura 1.10.

Figura 1.10: Esboço do gráfico da função valor absoluto y = |x|.

Exercícios

Em construção ...

1.3 Funções trigonométricas

1.3.1 Seno e cosseno

As funções trigonométricas seno y = sen(x) e cosseno y = cos(x) podem ser definidas a a partir do círculo trigonométrico (veja a Figura 1.11). Seja x o ângulo⁸ de declividade da reta que passa pela origem do plano cartesiano

⁷Esta função também pode ser definida por $|x| = \sqrt{x^2}$.

⁸Em geral utilizaremos a medida em radianos para ângulos.

(reta r na Figura 1.11). Seja, então, (a,b) o ponto de interseção desta reta com a circunferência unitária⁹. Então, definimos:

$$\operatorname{sen}(x) = a, \qquad \cos(x) = b. \tag{1.13}$$

A partir da definição, notemos que ambas funções têm domínio $(-\infty,\infty)$ e imagem [-1,1].

Figura 1.11: Funções seno e cosseno no círculo trigonométrico.

Na Figura 1.12 podemos extrair os valores das funções seno e cosseno para

⁹Circunferência do círculo de raio 1.

os ângulos fundamentais. Por exemplo, temos

$$\operatorname{sen}\left(\frac{\pi}{6}\right) = \frac{1}{2}, \qquad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2},\tag{1.14}$$

$$\operatorname{sen}\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}, \qquad \cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}, \tag{1.15}$$

$$\operatorname{sen}\left(\frac{8\pi}{6}\right) = -\frac{\sqrt{3}}{2}, \qquad \cos\left(\frac{8\pi}{6}\right) = -\frac{1}{2}, \tag{1.16}$$

$$\operatorname{sen}\left(\frac{11\pi}{6}\right) = -\frac{1}{2}, \qquad \cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2}, \tag{1.17}$$

(1.18)

As funções seno e cosseno estão definidas no SymPy como sin e cos, respectivamente. Por exemplo, para computar o seno de $\pi/6$, digitamos: $\sin(pi/6)$

Figura 1.12: Funções seno e cosseno no círculo trigonométrico.

Uma função f(x) é dita **periódica** quando existe um número p, chamado de período da função, tal que

$$f(x+p) = f(x) \tag{1.19}$$

para qualquer valor de x no domínio da função. Da definição das funções seno e cosseno, notemos que ambas são periódicas com período 2π , i.e.

$$sen(x + 2\pi) = sen(x), cos(x + 2\pi) = cos(x), (1.20)$$

para qualquer valor de x.

Na Figura 1.13, temos os esboços dos gráficos das funções seno e cosseno.

Figura 1.13: Esboços dos gráficos das funções seno (esquerda) e cosseno (direita).

1.3.2 Tangente, cotangente, secante e cossecante

Das funções seno e cosseno, definimos as funções tangente, cotangente, secante e cossecante como seguem:

$$tg(x) := \frac{\operatorname{sen}(x)}{\cos(x)}, \qquad \cot g(x) := \frac{\cos(x)}{\operatorname{sen}(x)}, \tag{1.21}$$

$$tg(x) := \frac{\operatorname{sen}(x)}{\cos(x)}, \qquad \cot g(x) := \frac{\cos(x)}{\sin(x)}, \qquad (1.21)$$

$$\sec(x) := \frac{1}{\cos(x)}, \qquad \csc(x) := \frac{1}{\sin(x)}. \qquad (1.22)$$

No SymPy, as funções tangente, cotangente, secante e cossecante podem ser computadas com as funções tan, cot, sec e csc, respectivamente. Por exemplo, podemos computar o valor de $\csc(\pi/4)$ com o comando

csc(pi/4)

Na Figura 1.14, temos os esboços dos gráficos das funções tangente e cotangente. Observemos que a função tangente não está definida nos pontos $(2k+1)\pi/2$, para todo k inteiro. Já, a função cotangente não está definida nos pontos $k\pi$, para todo k inteiro. Ambas estas funções têm imagem $(-\infty, \infty)$ e período π .

Figura 1.14: Esboços dos gráficos das funções tangente (esquerda) e cotangente (direita).

Na Figura 1.15, temos os esboços dos gráficos das funções secante e cossecante. Observemos que a função secante não está definida nos pontos $(2k+1)\pi/2$, para todo k inteiro. Já, a função cossecante não está definida nos pontos $k\pi$, para todo k inteiro. Ambas estas funções têm imagem $(-infty,1] \cup [1,\infty)$ e período π .

Figura 1.15: Esboços dos gráficos das funções tangente (esquerda) e cotangente(direita).

1.3.3 Identidades trigonométricas

Aqui, vamos apresentar algumas identidades trigonométricas que serão utilizadas ao longo do curso de cálculo. Comecemos pela identidade fundamental

$$sen^2 x + cos^2 x = 1. (1.23)$$

Desta decorrem as identidades

$$tg^2(x) + 1 = sec^2 x,$$
 (1.24)

$$1 + \cot^2(x) = \csc^2(x).$$
 (1.25)

Das seguintes fórmulas para adição/subtração de ângulos

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y), \tag{1.26}$$

$$sen(x \pm y) = sen(x)cos(y) \pm cos(x)sen(y), \tag{1.27}$$

seguem as fórmulas para ângulo duplo

$$\cos(2x) = \cos^2 x - \sin^2 x,\tag{1.28}$$

$$\operatorname{sen}(2x) = 2\operatorname{sen} x \cos x. \tag{1.29}$$

Também, temos as fórmulas para o ângulo metade

$$\cos^2 x = \frac{1 + \cos 2x}{2},\tag{1.30}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}.\tag{1.31}$$

Em construção ...

1.4 Operações com funções

1.4.1 Somas, diferenças, produtos e quocientes

Sejam dadas as funções f e g com domínio em comum D. Então, definimos as funções

- $(f \pm g)(x) := f(x) \pm g(x)$ para todo $x \in D$;
- (fg)(x) := f(x)g(x) para todo $x \in D$;
- $\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}$ para todo $x \in D$ tal que $g(x) \neq 0$.

Exemplo 1.4.1. Sejam $f(x) = x^2 e g(x) = x$. Temos:

- $(f+g)(x) = x^2 + x$ e está definida em toda parte.
- $(g-f)(x) = x x^2$ e está definida em toda parte.
- $(fg)(x) = x^3$ e está definida em toda parte.
- $\left(\frac{f}{a}\right)(x) = \frac{x^2}{x}$ e tem domínio $(-\infty, \infty) \setminus \{0\}^{10}$.

1.4.2 Funções compostas

Sejam dadas as funções f e g. Definimos a **função composta** de f com g por

$$(f \circ g)(x) := f(g(x)). \tag{1.32}$$

Seu domínio consiste dos valores de x que pertençam ao domínio da g e tal que g(x) pertença ao domínio da f.

Exemplo 1.4.2. Sejam $f(x) = x^2$ e g(x) = x + 1. A função composta $(f \circ g)(x) = f(g(x)) = f(x + 1) = (x + 1)^2$.

The structure of the s

1.4.3 Translações, contrações, dilatações e reflexões de gráficos

Algumas operações com funções produzem resultados bastante característico no gráfico de funções. Com isso, podemos usar estas operações para construir gráficos de funções mais complicadas a partir de funções básicas.

1.4.4 Translações

Dada uma função f e uma constante $k \neq 0$, temos que a o gráfico de y = f(x) + k é uma translação vertical do gráfico de f. Se k > 0, observamos uma translação vertical para cima. Se k < 0, observamos uma translação vertical para baixo.

Translações horizontais de gráficos podem ser produzidas pela soma de uma constante não nula ao argumento da função. Mais precisamente, dada uma função f e uma constante $k \neq 0$, temos que o gráfico de y = f(x+k) é uma translação horizontal do gráfico de f em k unidades. Se k>0, observamos uma translação horizontal para a esquerda. Se k<0, observamos uma translação horizontal para a direita.

1.4.5 Dilatações e contrações

Sejam dados uma função f e uma constante α . Então, o gráfico de:

- $y = \alpha f(x)$ é uma dilatação vertical do gráfico de f, quando $\alpha > 1$;
- $y = \alpha f(x)$ é uma contração vertical do gráfico de f, quando $0 < \alpha < 1$;
- $y = f(\alpha x)$ é uma contração horizontal do gráfico de f, quando $\alpha > 1$;
- $y = f(\alpha x)$ é uma dilatação horizontal do gráfico de f, quando $\alpha < 1$.

1.4.6 Reflexões

Seja dada uma função f. O gráfico da função y = -f(x) é uma reflexão em torno do eixo x do gráfico da função f. Já, o gráfico da função y = f(-x) é uma reflexão em torno do eixo y do gráfico da função f.

Em construção ...

1.5 Propriedades de funções

1.5.1 Funções crescentes ou decrescentes

Uma da função f é dita crescente quando $f(x_1) < f(x_2)$ para todos $x_1 < x_2$ no seu domínio. É dita não decrescente quando $f(x_1) \le f(x_2)$ para todos os $x_1 < x_2$ no seu domínio. Analogamente, é dita decrescente quando $f(x_1) > f(x_2)$ para todos $x_1 < x_2$. E, por fim, é dita não crescente quando $f(x_1) \ge f(x_2)$ para todos $x_1 < x_2$, sempre no seu domínio.

Exemplo 1.5.1. Vejamos os seguintes casos:

- A função identidade f(x) = x é crescente.
- A função exponencial $f(x) = e^{-x}$ é decrescente.
- A seguinte função definida por partes

$$f(x) = \begin{cases} x+1 & ,x \le 0, \\ 2 & ,0 < x \le 1, \\ (x-1)^2 + 2 & ,x > 1 \end{cases}$$
 (1.33)

é não decrescente.

1.5.2 Funções pares ou ímpares

Uma dada **função** f é dita **par** quando f(x) = f(-x) para todo x no seu domínio. Ainda, é dita **ímpar** quando f(x) = -f(-x) para todo x no seu domínio.

Exemplo 1.5.2. Vejamos os seguintes casos:

- $f(x) = x^2$ é uma função par.
- $f(x) = x^3$ é uma função par.

- $f(x) = \operatorname{sen} x$ é uma função ímpar.
- $f(x) = \cos x$ é uma função par.
- f(x) = x + 1 não é par nem ímpar.

1.5.3 Funções injetoras

Uma dada **função** f é dita **injetora** quando $f(x_1) \neq f(x_2)$ para todos $x_1 \neq x_2$ no seu domínio.

Exemplo 1.5.3. Vejamos os seguintes casos:

- $f(x) = x^2$ não é uma função injetora.
- $f(x) = x^3$ é uma função injetora.
- $f(x) = e^x$ é uma função injetora.

Função injetoras são funções invertíveis. Mais precisamente, dada uma função injetora y = f(x), existe uma única função g tal que

$$g(f(x)) = x, (1.34)$$

para todo x no domínio da f. Tal função g é chamada de **função inversa** de f é comumente denotada por f^{-1} . 11

Exemplo 1.5.4. Vamos calcular a função a função inversa de $f(x) = x^3 + 1$. Para tando, escrevemos

$$y = x^3 + 1. (1.35)$$

Então, isolando x, temos

$$x = \sqrt[3]{y - 1}. (1.36)$$

Desta forma, concluímos que $f^{-1}(x) = \sqrt[3]{x-1}$. Verifique que $f^{-1}(f(x)) = x$ para todo x no domínio de f!

Observação 1.5.1. Os gráficos de uma dada função injetora f e de sua inversa f^{-1} são simétricos em relação a **reta identidade** y=x.

¹¹Observe que, em geral, $f^{-1} \neq \frac{1}{f}$.

Em construção ...

1.6 Funções exponenciais

Uma função exponencial tem a forma

$$f(x) = a^x, (1.37)$$

onde $a \neq 1$ é uma constante positiva e é chamada de **base** da função exponencial.

Funções exponenciais estão definidas em toda parte e têm imagem $(0, \infty)$. O gráfico de uma função exponencial sempre contém os pontos (-1,1/a), (0,1) e (1,a). Veja a Figura 1.16.

Figura 1.16: Esboços dos gráficos de funções exponenciais: (esquerda) $f(x) = a^x$, a > 1; (direita) $g(x) = a^x$, 0 < a < 1.

Observação 1.6.1. Quando a base é o número de Euler $e \approx 2,718281828459045$, chamamos $f(x) = e^x$ de função exponencial natural. No SymPy, o número de Euler é obtido com a constante E:

>>> float(E)

2.718281828459045

Em construção ...

1.7 Funções logarítmicas

A função logarítmica $y = \log_a x$, a > 0 e $a \neq 1$, é a função inversa da função exponencial $y = a^x$. Veja a Figura 1.17. O domínio da função logarítmica é $(0,\infty)$ e a imagem $(-\infty,\infty)$.

Figura 1.17: Esboços dos gráficos de funções logarítmicas: (esquerda) $y = \log_a x, \, a > 1$; (direita) $y = \log_a x, \, 0 < a < 1$.

Observação 1.7.1. Quando a base é o número de Euler $e \approx 2,718281828459045$, chamamos $y = \log_e x$ de função exponencial natural e denotamo-la por $y = \ln x$.

No SymPy, podemos computar $\log_a x$ com a função $\log(x,a)$. O $\ln x$ é computado com $\log(x)$.

Observação 1.7.2. Vejamos algumas propriedades dos logaritmos:

- $\log_a x = y \Leftrightarrow a^y = x;$
- $\log_a 1 = 0$;
- $\log_a a = 1$;

- $\log_a a^x = x;$
- $a^{\log_a^x} = x;$
- $\log_a xy = \log_a x + \log_a y;$
- $\log_a \frac{x}{y} = \log_a x \log_a y;$
- $\log_a x^r = r \cdot \log_a x$.

Em construção ...

Capítulo 2

Limites

Ao longo deste capítulo, ao apresentarmos códigos Python estaremos assumindo os seguintes comandos prévios:

```
from sympy import *
init_printing()
var('x')
```

2.1 Noção de limites

Seja f uma função definida em um intervalo aberto em torno de um dado ponto x_0 , exceto talvez em x_0 . Quando o valor de f(x) é arbitrariamente próximo de um número L para x suficientemente próximo de x_0 , escrevemos

$$\lim_{x \to x_0} f(x) = L \tag{2.1}$$

e dizemos que o limite da função $f \in L$ quando x tende a x_0 .

Exemplo 2.1.1. Consideremos a função

$$f(x) = \frac{(x^2 - 1)(x - 2)}{(x - 1)(x - 2)}. (2.2)$$

Na Figura 2.1, temos um esboço do gráfico desta função.

Figura 2.1: Esboço do gráfico da função f(x) dada no Exemplo 2.1.1.

Vejamos os seguintes casos:

• $\lim_{x\to 0} f(x) = 1 = f(0)$.

No SymPy, podemos computar este limite com o comando

$$limit((x**2-1)*(x-2)/((x-1)*(x-2)),x,0)$$

• $\lim_{x\to 1} f(x) = 2$, embora f(1) não esteja definido.

• $\lim_{x\to 2} f(x) = 3$, embora f(2) também não esteja definido. Verifique!

2.1.1 Limites da função constante e da função identidade

Da noção de limite, temos

$$\lim_{x \to x_0} k = k,\tag{2.3}$$

25

seja qual for a constante k. Vejamos a Figura 2.2.

Figura 2.2: Esboço do gráfico de uma função constante f(x) = k.

Exemplo 2.1.2. Vejamos os seguintes casos:

a)
$$\lim_{x \to -1} 1 = 1$$

b)
$$\lim_{x \to 2} -3 = -3$$

c)
$$\lim_{x \to \pi} \sqrt{2} - e = \sqrt{2} - e$$

Também da noção de limites, podemos inferir que

$$\lim_{x \to x_0} x = x_0, \tag{2.4}$$

seja qual for o ponto x_0 . Vejamos a Figura 2.3.

Figura 2.3: Esboço do gráfico da função identidade f(x)=x.

Exemplo 2.1.3. Vejamos os seguintes casos:

$$a) \lim_{x \to -1} x = -1$$

$$b) \lim_{x \to 2} x = 2$$

c)
$$\lim_{x \to \pi} x = \pi$$

Exercícios

 ${f E}$ 2.1.1. Considere que uma dada função f tenha o seguinte esboço de

gráfico:

Forneça o valor dos seguintes limites:

- a) $\lim_{x \to -1} f(x)$
- b) $\lim_{x \to 1} f(x)$
- c) $\lim_{x \to 2} f(x)$
- $d) \lim_{x \to 2} f(x)$
- e) $\lim_{x \to 3} f(x)$

 ${\bf E}$ 2.1.2. Considerando a mesma função do exercício anterior (Exercícios 2.1.1), forneça

- $1. \lim_{x \to -\frac{3}{2}} f(x)$
- $2. \lim_{x \to 0} f(x)$
- $3. \lim_{x \to \frac{3}{4}} f(x)$

E 2.1.3. Forneça o valor dos seguintes limites:

- a) $\lim_{x \to 2} 2$
- b) $\lim_{x \to -2} 2$
- c) $\lim_{x\to 2} -3$
- d) $\lim_{x \to e} \pi$

E 2.1.4. Forneça o valor dos seguintes limites:

- a) $\lim_{x \to 2} x$
- b) $\lim_{x \to -2} x$
- c) $\lim_{x \to -3} x$
- $d) \lim_{x \to e} x$

2.2 Regras para o cálculo de limites

Sejam dados os seguintes limites

$$\lim_{x \to x_0} f(x) = L_1 \qquad e \qquad \lim_{x \to x_0} g(x) = L_2, \tag{2.5}$$

com x_0, L_1, L_2 números reais. Então, valem as seguintes regras:

• Regra da multiplicação por um escalar:

$$\lim_{x \to x_0} k f(x) = k \lim_{x \to x_0} f(x) = k L_1, \tag{2.6}$$

para qualquer número real k.

• Regra da soma:

$$\lim_{x \to x_0} f(x) + g(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = L_1 + L_2$$
 (2.7)

• Regra do produto:

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = L_1 \cdot L_2$$
 (2.8)

• Regra do quociente:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{L_1}{L_2},\tag{2.9}$$

desde que $L_2 \neq 0$.

• Regra da potenciação:

$$\lim_{x \to x_0} (f(x))^s = L_1^s, \tag{2.10}$$

se L_1^s é um número real.

Podemos usar essas regras para calcularmos limites.

Exemplo 2.2.1. Vejamos os seguintes casos:

a) $\lim_{x \to -1} 2x$

$$\lim_{x \to -1} 2x = 2 \lim_{x \to -1} x$$

$$= 2 \cdot (-1) = -2$$
(2.11)
(2.12)

$$= 2 \cdot (-1) = -2 \tag{2.12}$$

No SymPy, podemos computar este limite com

limit(2*x,x,-1)

b) $\lim_{x \to 2} x^2 - 1$

$$\lim_{x \to 2} x^2 - 1 = \lim_{x \to 2} x^2 - \lim_{x \to 2} 1$$

$$= \left(\lim_{x \to 2} x\right)^2 - \lim_{x \to 2} 1$$
(2.13)
(2.14)

$$= \left(\lim_{x \to 2} x\right)^2 - \lim_{x \to 2} 1 \tag{2.14}$$

$$=2^2 - 1 = 3. (2.15)$$

No SymPy, podemos computar este limite com

limit(x**2-1,x,-1)

c)
$$\lim_{x \to -1} \sqrt{1 - x^2}$$
.

$$\lim_{x \to -1} \sqrt{1 - x^2} = \sqrt{\lim_{x \to -1} 1 - x^2} \tag{2.16}$$

$$= \sqrt{\lim_{x \to -1} 1 - \left(\lim_{x \to -1} x\right)^2} \tag{2.17}$$

$$=\sqrt{1-(-1)^2}\tag{2.18}$$

$$=0. (2.19)$$

No SymPy, podemos computar este limite com

limit(sqrt(1-x**2),x,-1)

d)
$$\lim_{x\to 0} \frac{(x^2-1)(x-2)}{(x-1)(x-2)}$$

$$\lim_{x \to 0} \frac{(x^2 - 1)(x - 2)}{(x - 1)(x - 2)} = \frac{\lim_{x \to 0} (x^2 - 1)(x - 2)}{\lim_{x \to 0} (x - 1)(x - 2)}$$
(2.20)

$$= \frac{\lim_{x \to x_0} (x^2 - 1) \lim_{x \to 0} (x - 2)}{\lim_{x \to 0} (x - 1) \lim_{x \to 0} (x - 2)}$$
(2.21)

$$=\frac{-2}{-2}=1. (2.22)$$

Proposição 2.2.1. (Limites de polinômios) Se $p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-1} x^{n-1}$ $\cdots + a_0$, então

$$\lim_{x \to b} p(x) = p(b) = a_n b^n + a_{n-1} b^{n-1} + \dots + a_0, \tag{2.23}$$

para qualquer número real b dado.

Demonstração. Segue das regras da soma, da multiplicação por escalar e da potenciação. Vejamos

$$\lim_{x \to b} p(x) = \lim_{x \to b} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
 (2.24)

$$= \lim_{x \to b} a_n x^n + \lim_{x \to b} a_{n-1} x^{n-1} + \dots + \lim_{x \to b} a_0$$
 (2.25)

$$= \lim_{x \to b} a_n x^n + \lim_{x \to b} a_{n-1} x^{n-1} + \dots + \lim_{x \to b} a_0$$
 (2.25)
$$= a_n \left(\lim_{x \to b} x \right)^n + a_{n-1} \left(\lim_{x \to b} x \right)^{n-1} + \dots + a_0$$
 (2.26)

$$= a_n b^n + a_{n-1} b^{n-1} + \dots + a_0 = p(b).$$
 (2.27)

Exemplo 2.2.2.

$$\lim_{x \to \sqrt{2}} 2x^4 - 2x^2 + x = 2(\sqrt{2})^4 - 2(\sqrt{2})^2 + \sqrt{2} = 4 + \sqrt{2}.$$
 (2.28)

No SymPy, podemos computar este limite com o comando

limit(2*x**4-2*x**2+x,x,sqrt(2))

Proposição 2.2.2. (Limite de funções racionais) Sejam r(x) = p(x)/q(x) é uma função racional e b um número real tal que $q(b) \neq 0$. Então,

$$\lim_{x \to b} \frac{p(x)}{q(x)} = \lim_{x \to b} \frac{p(b)}{q(b)}.$$
(2.29)

Demonstração. Segue da regra do limite do quociente e da Proposição 2.2.1:

$$\lim_{x \to b} \frac{p(x)}{q(x)} = \frac{\lim_{x \to b} p(x)}{\lim_{x \to b} q(x)}$$
(2.30)

$$=\frac{p(b)}{q(b)}. (2.31)$$

Exemplo 2.2.3.

$$\lim_{x \to 0} \frac{(x^2 - 1)(x - 2)}{(x - 1)(x - 2)} = \frac{(0^2 - 1)(0 - 2)}{(0 - 1)(0 - 2)} = 1. \tag{2.32}$$

No SymPy, podemos computar este limite com o comando

$$limit((x**2-1)*(x-2)/((x-1)*(x-2)),x,0)$$

2.2.1 Indeterminação 0/0

Quando f(a) = 0 e g(a) = 0, dizemos que

$$\lim_{x \to a} \frac{f(x)}{g(x)} \tag{2.33}$$

é uma indeterminação do tipo 0/0. Em vários destes casos, podemos calcular o limite eliminando o fator em comum (x - a).

Exemplo 2.2.4.

$$\lim_{x \to 2} \frac{(x^2 - 1)(x - 2)}{(x - 1)(x - 2)} = \lim_{x \to 2} \frac{x^2 - 1}{x - 1} = 3. \tag{2.34}$$

No SymPy, podemos computar o limite acima com

$$limit((x**2-1)*(x-2)/((x-1)*(x-2)),x,2)$$

Quando o fator em comum não aparece explicitamente, podemos tentar trabalhar algebricamente de forma a explicitá-lo.

Exemplo 2.2.5. No caso do limite

$$\lim_{x \to 1} \frac{x^3 - 3x^2 - x + 3}{x^2 + x - 2} \tag{2.35}$$

temos que o denominador $p(x) = x^3 - 3x^2 - x + 3$ se anula em x = 1, assim como o denominador $q(x) = x^2 + x - 2$. Assim sendo, (x - 1) é um fator em comum entre p(x) e q(x). Para explicitá-lo,

$$\frac{p(x)}{x-1} = x^2 - 2x - 3$$
 e $\frac{q(x)}{x-1} = x + 2.$ (2.36)

No SymPy, podemos computar estas divisões com os seguintes comandos

simplify((
$$x**3-3*x**2-x+3$$
)/($x-1$))
simplify(($x**2+x-2$)/($x-1$))

Realizadas as divisões, temos

$$p(x) = (x-1)(x^2 - 2x - 3)$$
 e $q(x) = (x-1)(x+2)$. (2.37)

Com isso, temos

$$\lim_{x \to 1} \frac{x^3 - 3x^2 - x + 3}{x^2 + x - 2} = \lim_{x \to 1} \frac{(x - 1)(x^2 - 2x - 3)}{(x - 1)(x + 2)} \tag{2.38}$$

$$-\lim_{x \to 1} \frac{x^2 - 2x - 3}{x + 2} = -\frac{4}{3}.$$
 (2.39)

Exemplo 2.2.6. No caso de

$$\lim_{x \to 0} \frac{\sqrt{1 - x} - 1}{x} \tag{2.40}$$

temos uma indeterminação do tipo 0/0 envolvendo uma raiz. Neste caso, podemos calcular o limite usando de racionalização

$$\lim_{x \to 0} \frac{\sqrt{1-x} - 1}{x} = \lim_{x \to 0} \frac{\sqrt{1-x} - 1}{x} \frac{\sqrt{1-x} + 1}{\sqrt{1-x} + 1}$$
 (2.41)

$$= \lim_{x \to 0} \frac{1 - x - 1}{x(\sqrt{1 - x} + 1)} \tag{2.42}$$

$$-\lim_{x \to 0} \frac{-x}{x(\sqrt{1-x}+1)} \tag{2.43}$$

$$= \lim_{x \to 0} \frac{-1}{\sqrt{1-x}+1} = -\frac{1}{2}.$$
 (2.44)

Com o SymPy, podemos computar este limite com

limit((sqrt(1-x)-1)/x,x,0)

Exercícios

E 2.2.1. Assumindo que o $\lim_{x\to 2} f(x) = L$ e que

$$\lim_{x \to 2} \frac{f(x) - 2}{x + 2} = 1,\tag{2.45}$$

forneça o valor de L.

Em construção ...

2.3 Limites laterais

Seja dada uma função f definida para todo x em um intervalo aberto (L, a), sendo a um número real com L < a podendo ser $L = -\infty$. O **limite lateral** à esquerda de f no ponto a é denotado por

$$\lim_{x \to a^{-}} f(x) \tag{2.46}$$

e é computado tendo em vista a tendência da função apenas para pontos x < a. Em outras palavras, o

$$\lim_{x \to a^{-}} f(x) = L \tag{2.47}$$

quando f(x) pode ser tomado arbitrariamente próximo de L, desde que tomemos x < a suficientemente próximo de a.

Para uma função f definida para todo x em um intervalo aberto (a, L), sendo a um número real com L > a podendo ser $L = \infty$, o **limite lateral à direita** de f no ponto a é denotado por

$$\lim_{x \to a^+} f(x) \tag{2.48}$$

e é computado tendo em vista a tendência da função apenas para pontos x>a. Em outras palavras, temos

$$\lim_{x \to a^+} f(x) = L,\tag{2.49}$$

quando f(x) pode ser tomado arbitrariamente próximo de L, desde que tomemos x > a suficientemente próximo de a.

Observação 2.3.1. Por inferência direta, temos

$$\lim_{x \to a^{\pm}} k = k \quad e \quad \lim_{x \to a^{\pm}} x = a^{\pm}, \tag{2.50}$$

onde a e k são quaisquer números reais.

E 2.3.1. Vamos calcular

$$\lim_{x \to 0^-} |x|. \tag{2.51}$$

Por definição, temos

$$|x| := \begin{cases} x & , x \ge 0, \\ -x & , x < 0. \end{cases}$$
 (2.52)

Como estamos interessados no limite lateral à esquerda de x=0, trabalhamos com x<0 e, então

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{-}} -x = -\lim_{x \to 0^{-}} x = 0.$$
 (2.53)

Analogamente, calculamos

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0. \tag{2.54}$$

Verifique!

Usando o SymPy, podemos computar os limites acima com os seguintes comandos:

limit(abs(x),x,0,'-')limit(abs(x),x,0,'+')

Teorema 2.3.1. Existe o limite de uma dada função f no ponto x = a e $\lim_{x\to a} f(x) = L$ se, e somente se, existem e são iguais a L os limites laterais à esquerda e à direita de f no ponto x = a.

E 2.3.2. No exemplo anterior (Exemplo 2.3.1), vimos que

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{+}} |x| = 0. \tag{2.55}$$

Logo, pelo teorema acima (Teorema 2.3.1), podemos concluir que

$$\lim_{x \to 0} |x| = 0. \tag{2.56}$$

E 2.3.3. Vamos verificar a existência de

$$\lim_{x \to 0} \frac{|x|}{x}.\tag{2.57}$$

Começamos pelo limite lateral à esquerda, temos

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x}$$

$$= \lim_{x \to 0^{-}} -1 = -1.$$
(2.58)

$$= \lim_{r \to 0^{-}} -1 = -1. \tag{2.59}$$

Agora, calculando o limite lateral à direta, obtemos

$$\lim_{x \to 0^{+}} \frac{|x|}{x} = \lim_{x \to 0^{+}} \frac{x}{x}$$

$$= \lim_{x \to 0^{+}} 1 = 1.$$
(2.60)
(2.61)

$$= \lim_{r \to 0^+} 1 = 1. \tag{2.61}$$

Como os limites laterais à esquerda e à direita são diferentes, concluímos que não existe o limite de |x|/x no ponto x=0.

No Sympy, por padrão o limite computado é sempre o limite lateral à direita. È por isso que o comando

limit(abs(x)/x,x,0)

fornece o valor 1 como saída.

Exercícios

Em construção ...

2.4 Limites e desigualdades

Se f e g são funções tais que f(x) < g(x) para todo x em um certo intervalo aberto contendo a, exceto possivelmente em x = a, e existem os limites de f e g no ponto x = a, então

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x). \tag{2.62}$$

Observe que a tomada do limite não preserva a desigualdade estrita.

E 2.4.1. As funções $f(x) = x^2/3$ e $g(x) = x^2/2$ são tais que f(x) < g(x) para todo $x \neq 0$. Ainda, temos

$$\lim_{x \to 0} f(x) = 0 \quad \text{e} \quad \lim_{x \to 0} g(x) = 0. \tag{2.63}$$

Observação 2.4.1. A preservação da desigualdade também ocorre para limites laterais. Mais precisamente, se f e g são funções tais que f(x) < g(x) para todo x < a e existem os limites lateral à esquerda de f e g no ponto x = a, então

$$\lim_{x \to a^{-}} f(x) \le \lim_{x \to a^{-}} g(x). \tag{2.64}$$

Vale o resultado análogo para limite lateral à direito. Escreva-o!

2.4.1 Teorema do confronto

Teorema 2.4.1. (Teorema do confronto) Se $g(x) \le f(x) \le h(x)$ para todo x em um intervalo aberto contendo a, exceto possivelmente em x = a, e

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L,$$
(2.65)

então

$$\lim_{x \to a} f(x) = L.
\tag{2.66}$$

Demonstração. Da preservação da desigualdade, temos

$$\lim_{x \to a} g(x) \le \lim_{x \to a} f(x) \le \lim_{x \to a} h(x) \tag{2.67}$$

donde

$$L \le \lim_{x \to a} f(x) \le L. \tag{2.68}$$

E 2.4.2. Toda função f(x) tal que $-1 + x^2/2 \le f(x) \le -1 + x^2/3$, para todo $x \ne 0$, tem

$$\lim_{x \to 0} f(x) = -1. \tag{2.69}$$

Observação 2.4.2. O Teorema do confronto também se aplica a limites laterais.

Exemplo 2.4.1.

$$\lim_{x \to 0} \text{sen } x = 0. \tag{2.70}$$

De fato, começamos assumindo $0 < x < \pi/2$. Tomando O = (0,0), A = (1,0) e $P = (\cos x, \sin x)$, observamos que

Área do triâng.
$$OAP <$$
 Área do setor OAP , (2.71)

i.e.

$$\frac{\operatorname{sen} x}{2} < \frac{x}{2} \Rightarrow \operatorname{sen} x < x,\tag{2.72}$$

para todo $0 < x < \pi/2$.

É certo que sen x < -x para $-\pi/2 < x < 0$. Com isso e o resultado acima, temos

$$sen x \le |x|, \quad -\pi/2 < x < \pi/2.$$
(2.73)

Lembrando que sen x é uma função ímpar, temos

$$-|x| \le -\sin x = \sin -x, \quad -\pi/2 < x < \pi/2.$$
 (2.74)

Logo, de (2.73) e (2.74), temos

$$-|x| \le \operatorname{sen} x \le |x|. \tag{2.75}$$

Por fim, como

$$\lim_{x \to 0} -|x| = \lim_{x \to 0} |x| = 0, \tag{2.76}$$

do Teorema do confronto, concluímos

$$\lim_{x \to 0} \sec x = 0. \tag{2.77}$$

Observação 2.4.3. Do exemplo anterior (Exemplo 2.4.1), podemos mostrar que

$$\lim_{x \to 0} \cos x = 1. \tag{2.78}$$

De fato, da identidade trigonométrica de ângulo metade (1.31)

$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2} \tag{2.79}$$

temos

$$\cos x = 1 + 2\sin^2\frac{x}{2}. (2.80)$$

Então, aplicando as regras de cálculo de limites, obtemos

$$\lim_{x \to 0} \cos x = \lim_{x \to 0} \left[1 + 2 \operatorname{sen}^2 \frac{x}{2} \right]$$
 (2.81)

$$= 1 + 2\left(\lim_{x \to 0} \sin \frac{x}{2}\right)^2. \tag{2.82}$$

Agora, fazemos a mudança de variável y=x/2. Neste caso, temos $y\to 0$ quando $x\to 0$ e, então

$$\lim_{x \to 0} \sin \frac{x}{2} = \lim_{y \to 0} \sin y = 0. \tag{2.83}$$

Então, retornando a equação (2.82), concluímos

$$\lim_{x \to 0} \cos x = 1. \tag{2.84}$$

2.4.2 Limites envolvendo $(\operatorname{sen} x)/x$

Verificamos o seguinte resultado

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1. \tag{2.85}$$

Para verificarmos este resultado, calcularemos os limites laterais à esquerda e à direita. Começamos com o limite lateral a direita e assumimos $0 < x < \pi/2$. Sendo os pontos O = (0,0), $P = (\cos x, \sin x)$, A = (1,0) e $T = (1, \operatorname{tg} x)$, observamos que

Área do triâng. OAP < Área do setorOAP < Área do triâng. OAT. (2.86)

Ou seja, temos

$$\frac{\operatorname{sen} x}{2} < \frac{x}{2} < \frac{\operatorname{tg} x}{2}.\tag{2.87}$$

Multiplicando por 2 e dividindo por sen x^1 , obtemos

$$1 < \frac{x}{\operatorname{sen} x} < \frac{1}{\operatorname{cos} x}.\tag{2.88}$$

Tomando os recíprocos, temos

$$1 > \frac{\operatorname{sen} x}{x} > \operatorname{cos} x. \tag{2.89}$$

Agora, passando ao limite

$$1 = \lim_{x \to 0^+} 1 \ge \lim_{x \to 0^+} \frac{\sin x}{x} \ge \lim_{x \to 0^+} \cos x = 1. \tag{2.90}$$

Logo, concluímos que

$$\lim_{x \to 0^+} \frac{\sin x}{x} = 1. \tag{2.91}$$

Agora, usando o fato de que sen x/x é uma função par, temos

$$\lim_{x \to 0^{-}} \frac{\sin x}{x} = \lim_{x \to 0^{-}} \frac{\sin(-x)}{-x}$$
 (2.92)

$$= \lim_{x \to 0^+} \frac{\sin x}{x} = 1. \tag{2.93}$$

Calculados os limites laterais, concluímos o que queríamos.

Exemplo 2.4.2. Com o resultado acima e as regras de cálculo de limites, temos

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0. \tag{2.94}$$

Veja o Exercício 2.4.5.

 $[\]frac{1}{1} \operatorname{sen} x > 0 \text{ para todo } 0 < x < \pi/2.$

Exercícios

E 2.4.3. Supondo que $1-x^2/3 \le u(x) \le 1-x^2/2$ para todo $x \ne 0$, determine o $\lim_{x\to 0} u(x)$.

E 2.4.4. Calcule

$$\lim_{x \to 0} \frac{\sin 3x}{6x}.\tag{2.95}$$

E 2.4.5. Calcule

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x}.\tag{2.96}$$

E 2.4.6. Calcule

$$\lim_{x \to 0} \frac{\cos(3x) - 1}{6x}.\tag{2.97}$$

Em construção ...

2.5 Limites no infinito

Limites no infinito descrevem a tendência de uma dada função f(x) quando $x \to -\infty$ ou $x \to \infty$.

Dizemos que o limite de f(x) é L quando x tende a $-\infty$, se os valores de f(x) são arbitrariamente próximos de L para valores de x suficientemente pequenos. Neste caso, escrevemos

$$\lim_{x \to -\infty} f(x) = L. \tag{2.98}$$

Analogamente, dizemos que o limite de f(x) é L quando x tende ∞ , se os valores de f(x) são arbitrariamente próximos de L para valores de x suficientemente grandes. Neste caso, escrevemos

$$\lim_{x \to \infty} f(x) = L. \tag{2.99}$$

Exemplo 2.5.1. Vejamos os seguintes casos:

a)
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

$$b) \lim_{x \to \infty} \frac{1}{x} = 0$$

Supondo que $L,\,M$ e k são números reais e

$$\lim_{x \to \pm \infty} f(x) = L \quad e \quad \lim_{x \to \pm \infty} g(x) = M. \tag{2.100}$$

Então, temos as seguintes regras para limites no infinito:

• Regra da soma/diferença

$$\lim_{x \to +\infty} (f(x) \pm g(x)) = L \pm M \tag{2.101}$$

• Regra do produto

$$\lim_{x \to \pm \infty} f(x)g(x) = LM \tag{2.102}$$

• Regra da multiplicação por escalar

$$\lim_{x \to \pm \infty} kf(x) = kL \tag{2.103}$$

• Regra do quociente

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0.$$
 (2.104)

• Regra da potenciação

$$\lim_{x \to \pm \infty} (f(x))^k = L^k, \text{ se } L^k \in \mathbb{R}.$$
 (2.105)

Exemplo 2.5.2.

$$\lim_{x \to \infty} \frac{1}{x^2} + 1 = \lim_{x \to \infty} \frac{1}{x^2} + \lim_{x \to \infty} 1$$
 (2.106)

$$= \left(\lim_{x \to \infty} \frac{1}{x}\right)^2 + 1\tag{2.107}$$

$$= 0^2 + 1 = 1. (2.108)$$

Exemplo 2.5.3. (Limites no infinito de funções racionais) Consideramos o seguinte caso

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2 - 3x^3}.$$
 (2.109)

Observe que não podemos usar a regra do quociente diretamente, pois, por exemplo, não existe o limite do numerador. Para contornar este problema, podemos multiplicar e dividir por $1/x^3$ (grau dominante), obtendo

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2 - 3x^3} \frac{\frac{1}{x^3}}{\frac{1}{x^3}} = \lim_{x \to \infty} \frac{1 - \frac{2}{x^2} + \frac{1}{x^3}}{\frac{2}{x^3} - 3}.$$
 (2.110)

Então, aplicando a regras do quociente, da soma/subtração e da multiplicação por escalar, temos

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2 - 3x^3} = \lim_{x \to \infty} \frac{1 - \frac{2}{x^2} + \frac{1}{x^3}}{\frac{2}{x^3} - 3} = -\frac{1}{3}.$$
 (2.111)

Observação 2.5.1. Dados dois polinômios $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ e $q(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0$, temos

$$\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}.$$
 (2.112)

Exemplo 2.5.4. Retornando ao exemplo anterior (Exemplo 2.5.3), temos

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2 - 3x^3} = \lim_{x \to \infty} \frac{x^3}{-3x^3} = -\frac{1}{3}.$$
 (2.113)

2.5.1 Assíntotas horizontais

A reta y = L é uma assíntota horizontal do gráfico da função y = f(x) se

$$\lim_{x \to -\infty} f(x) = L \quad \text{ou} \quad \lim_{x \to \infty} f(x) = L. \tag{2.114}$$

Exemplo 2.5.5. No Exemplo 2.5.3, vimos que

$$\lim_{x \to \infty} \frac{x^3 - 2x + 1}{2 - 3x^3} = \lim_{x \to \infty} \frac{x^3}{-3x^3} = -\frac{1}{3}.$$
 (2.115)

Logo, temos que y = -1/3 é uma assíntota horizontal do gráfico desta função.

43

Figura 2.4: Esboço do gráfico da função $f(x) = \frac{x^3 - 2x + 1}{2 - 3x^3}$.

Também, temos

$$\lim_{x \to -\infty} \frac{x^3 - 2x + 1}{2 - 3x^3} = \lim_{x \to \infty} \frac{x^3}{-3x^3} = -\frac{1}{3}.$$
 (2.116)

O que reforça que y=-1/3 é uma assíntota horizontal desta função. Veja a Figura 2.4.

Exemplo 2.5.6. (Função exponencial natural)

$$\lim_{x \to -\infty} e^x = 0, \tag{2.117}$$

donde temos que y=0 é uma assíntota horizontal da função exponencial natil.

Também, temos

$$\lim_{x \to \infty} e^{-x} = 0, \tag{2.118}$$

e, portanto, y=0 é assínto
ta horizontal do gráfico da recíproca da função exponencial natural.

2.5.2 Assíntotas oblíquas

Além de assíntotas horizontais e verticais, gráficos de funções podem ter assintota oblíquas. Isto ocorre, particularmente, para funções racionais cujo grau do numerador é maior que o do denominador.

Figura 2.5: Esboço do gráfico da função $f(x) = \frac{x^2 - 1}{5x - 4}$.

Exemplo 2.5.7. Consideremos a função racional

$$f(x) = \frac{x^2 - 1}{5x - 4}. (2.119)$$

Para buscarmos determinar a assíntota oblíqua desta função, dividimos o numerador pelo denominador, de forma a obtermos

$$f(x) = \underbrace{\left(\frac{x}{5} + \frac{4}{25}\right)}_{\text{guoriente}} + \underbrace{\frac{-\frac{9}{25}}{5x - 4}}_{\text{resto}}.$$
 (2.120)

Observamos, agora, que o resto tende a zero quando $x \to \pm \infty$, i.e. $f(x) \to \frac{x}{5} + \frac{4}{25}$ quando $x \to \pm \infty$. Com isso, concluímos que $y = \frac{x}{5} + \frac{4}{25}$ é uma assíntota oblíqua ao gráfico de f(x). Veja a Figura 2.5.

Observação 2.5.2. Analogamente à assintotas oblíquas, podemos ter outros tipos de assíntotas determinadas por funções de diversos tipos, por exemplo, assíntotas quadráticas.

Exercícios

Em construção ...

2.6 Limites infinitos

O limite de uma função nem sempre existe. Por exemplo,

$$\lim_{x \to 0} \frac{1}{x^2}.\tag{2.121}$$

Entretanto, como é o caso acima, em muitos casos podemos concluir mais sobre a tendência da função. Por exemplo, no caso acima, quando $x \to 0$ os valores de f(x) crescem arbitrariamente, i.e. $f(x) \to \infty$.

Mais precisamente, dizemos que o limite de uma dada função f(x) é infinito quando x tende a um número a, quando f(x) torna-se arbitrariamente grande para valores de x suficientemente próximos de a. Neste caso, escrevemos

$$\lim_{x \to a} f(x) = \infty. \tag{2.122}$$

Similarmente, definimos os limites laterais

$$\lim_{x \to a^{-}} f(x) = \infty \quad e \quad \lim_{x \to a^{+}} f(x) = \infty.$$
 (2.123)

Exemplo 2.6.1.

$$\lim_{x \to 0} \frac{1}{|x|} = \infty.
\tag{2.124}$$

Observe que 1/|x| torna-se arbitrariamente grande para valores de x suficientemente próximos a a.

Analogamente, dizemos que o limite de uma dada função f(x) é menos infinito quando x tende a a, quando f(x) torna-se arbitrariamente pequeno para valores de x suficientemente próximos de a. Neste caso, escrevemos

$$\lim_{x \to a} f(x) = -\infty. \tag{2.125}$$

46

De forma similar, definimos os limites laterais $f(x) \to -\infty$ quando $x \to a^{\pm}$.

Exemplo 2.6.2.

$$\lim_{x \to 0} \frac{-1}{|x|} = -\infty. \tag{2.126}$$

Exemplo 2.6.3. Observe que

$$\nexists \lim_{x \to 0} \frac{1}{x} \tag{2.127}$$

e que não podemos concluir que este limite é ∞ ou $-\infty$. Isto ocorre, pois

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty \quad \text{e} \quad \lim_{x \to 0^{+}} \frac{1}{x} = +\infty. \tag{2.128}$$

Por outro lado, também não existe

$$\lim_{x \to 0} \frac{1}{x^2},\tag{2.129}$$

mas temos

$$\lim_{x \to 0^{-}} \frac{1}{x^{2}} = \infty \quad \text{e} \quad \lim_{x \to 0^{+}} \frac{1}{x^{2}} = \infty. \tag{2.130}$$

Com isso, podemos concluir que

$$\lim_{x \to 0} \frac{1}{x^2} = \infty. \tag{2.131}$$

2.6.1 Assíntotas verticais

Uma reta x=a é uma **assíntota vertical** do gráfico de uma função y=f(x) se

$$\lim_{x \to a^{-}} f(x) = \pm \infty \quad \text{ou} \quad \lim_{x \to a^{+}} f(x) = \pm \infty. \tag{2.132}$$

Exemplo 2.6.4. Vejamos os seguintes casos:

- A função f(x) = 1/x tem y = 0 como assíntota vertical.
- A função $f(x) = \frac{x^3 2x + 1}{2 3x^3}$ não está definida para valores de x tais que seu denominador se anule, i.e.

$$2 - 3x^3 = 0 \Rightarrow x = \sqrt[3]{\frac{2}{3}}. (2.133)$$

Este ponto é um candidato para ter uma assíntota vertical. Isto é, de fato, o caso, pois

$$\lim_{x \to \sqrt[3]{\frac{2}{3}}^{-}} = -\infty, \tag{2.134}$$

e, ainda, temos

$$\lim_{x \to \sqrt[3]{\frac{2}{3}}^+} = \infty. \tag{2.135}$$

Com isso, dizemos que $x = \sqrt[3]{2/3}$ é uma assintota vertical do gráfico desta função. Veja a Figura 2.4.

Exemplo 2.6.5. (Função logarítmica) A função logarítmica natural $y = \ln x$ é tal que

$$\lim_{x \to 0^+} \ln x = -\infty \tag{2.136}$$

i.e., x=0 é uma assíntota vertical ao gráfico de $\ln x$. Isto decorre do fato de $y=\ln x$ ser a função inversa de $y=e^x$ e, esta, ter uma assíntota horizontal y=0.

Exemplo 2.6.6. As funções trigonométricas $y = \sec x$ e $y = \tan x$ têm assíntotas verticais $x = (2k+1)\frac{\pi}{2}$ para k inteiro. Veja as Figuras 1.14.

Exemplo 2.6.7. As funções trigonométricas $y = \csc x$ e $y = \cot x$ têm assíntotas verticais $x = k\pi$ para k inteiro. Veja as Figuras 1.15.

Exercícios

E 2.6.1. Determine as assíntotas verticais ao gráfico da função

$$f(x) = \frac{8}{x^2 - 4}. (2.137)$$

Em construção ...

2.7 Continuidade

Dizemos que uma **função** f é **contínua** em um ponto c, quando f(c) está definida, existe o limite $\lim_{x\to c} f(x)$ e

$$\lim_{x \to c} f(x) = f(c). \tag{2.138}$$

Usando de limites laterais, definimos os conceitos de **função contínua à esquerda** ou à **direta**. Quando a **função** f não é contínua em um dado ponto c, dizemos que f é **descontínua** neste ponto.

Exemplo 2.7.1. Consideremos a seguinte função

$$f(x) = \begin{cases} \frac{(x-2)}{(x+1)(x-2)} & , x \neq 2, \\ -4 & , x = 2. \end{cases}$$
 (2.139)

Na Figura 2.6, temos um esboço do gráfico de f.

Figura 2.6: Esboço do gráfico da função f(x) = (x-2)/((x+1)(x-2)) estudada no Exemplo 2.7.1.

Vejamos a continuidade desta função nos seguintes pontos:

1. x = -2. Neste ponto, temos f(-2) = -1 e

$$\lim_{x \to -2} \frac{x-2}{(x+1)(x-2)} = \frac{-4}{-1 \cdot (-4)} = -1 = f(-2). \tag{2.140}$$

Com isso, concluímos que f é contínua no ponto x = -2.

2. x = -1. Neste ponto, f(-1) não está definida e, portanto, f é descontínua neste ponto. Observemos que f tem uma assíntota vertical em x = -1, verifique!

3. x = 2. Neste ponto, temos f(2) = -4 e

$$\lim_{x \to 2} \frac{x - 2}{(x + 1)(x - 2)} = \lim_{x \to 2} \frac{1}{x + 1} = \frac{1}{3} \neq f(2). \tag{2.141}$$

Portanto, concluímos que f é descontínua em x=2.

Uma função f é dita ser **contínua em um intervalo** (a,b), quando f é contínua em todos os pontos $c \in (a,b)$. Para intervalos, [a,b), (a,b] ou [a,b], empregamos a noção de continuidade lateral nos pontos de extremos fechados dos intervalos. Quando uma função é contínua em $(-\infty,\infty)$, dizemos que ela é **contínua em toda parte**.

Exemplo 2.7.2. Retornando ao exemplo anterior (Exemplo 2.7.1), temos que

$$f(x) = \begin{cases} \frac{(x-2)}{(x+1)(x-2)} & , x \neq 2, \\ -4 & , x = 2. \end{cases}$$
 (2.142)

é contínua nos intervalos $(-\infty,-1),\,(-1,2)$ e $(2,\infty)$

Exemplo 2.7.3. (Continuidade da função valor absoluto.) A função valor absoluto é contínua em toda parte. De fato, ela é definida por

$$|x| = \begin{cases} x & , x \ge 0, \\ -x & , x < 0. \end{cases}$$
 (2.143)

Portanto, para $x \in (infty, 0)$ temos |x| = x que é contínua para todos estes valores de x. Também, para $x \in (0,\infty)$ temos |x| = -x que é contínua para todos estes valores de x. Agora, em x = 0, temos |0| = 0 e

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0,\tag{2.144}$$

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{-}} -x = 0. \tag{2.145}$$

Logo,

$$\lim_{x \to 0} |x| = 0 = |0|,\tag{2.146}$$

donde concluímos que a função valor absoluto é contínua em toda parte.

Proposição 2.7.1. (Propriedades de funções contínuas) Se f e g funções contínuas em x = c e k um número real, então também são contínuas:

- *kf*
- $f \pm g$
- f ⋅ g
- f/g, se $g(c) \neq 0$
- f^k , se existe $f^k(c)$.

Corolário 2.7.1. Funções polinomiais $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ são contínuas em toda parte.

Corolário 2.7.2. Funções racionais r(x) = p(x)/q(x), com p e q polinômios, são contínuas em todos os pontos de seus domínios.

Exemplo 2.7.4. A função racional

$$f(x) = \frac{x^3 - 2x + 2}{x^2 - 1} \tag{2.147}$$

é descontínua nos pontos x tais que

$$x^2 - 1 = 0 \Rightarrow x = \pm 1. \tag{2.148}$$

Proposição 2.7.2. (Composição de funções contínuas) Se f é contínua no ponto c e g é contínua no ponto f(c), então $g \circ f$ é contínua no ponto c.

Exemplo 2.7.5. Vejamos os seguintes casos:

a) $y = \sqrt{x^2 - 1}$ é descontínua nos pontos x tais que

$$x^2 - 1 < 0 \Rightarrow -1 < x < 1. \tag{2.149}$$

Isto é, esta função é contínua em $(-\infty,-1]\cup[1,\!\infty).$

b) $y = \left| \frac{x-1}{x^2-1} \right|$ é descontínua nos pontos x tais que

$$x^2 - 1 = 0 \Rightarrow x = \pm 1. \tag{2.150}$$

51

Observação 2.7.1. São contínuas em todo seu domínio as funções potência, polinomiais, racionais, trigonométricas, exponenciais e logarítmicas.

Exemplo 2.7.6. Podemos explorar a continuidade para calcularmos limites. Por exemplo,

$$\lim_{x \to 0^+} \sqrt{x+4} e^{\sin x} = \sqrt{\lim_{x \to 0} x+4} \cdot e^{\sin \lim_{x \to 0^+} x} = 2.$$
 (2.151)

Teorema 2.7.1. (Teorema do valor intermediário) Uma função f contínua em um intervalo fechado [a, b], assume todos os valores entre f(a) e f(b).

Exemplo 2.7.7. Podemos afirmar que $f(x) = x^3 - x - 1$ tem um zero entre (0,2). De fato, f é contínua no intervalo [0,2] e, pelo teorema do valor intermediário, assume todos os valores entre f(0) = -1 < 0 e f(2) = 5 > 0. Observemos que y = 0 está entre f(0) e f(2).

Exercícios

Em construção ...

Capítulo 3

Derivadas

Observação 3.0.1. (Códigos Python) Nos códigos Python inseridos ao longo deste capítulos, estaremos assumindo o seguinte preâmbulo:

%matplotlib inline
from sympy import *
init_printing()
var('x',real=True)

3.1 Retas tangentes e derivadas

Definimos a **reta secante** ao gráfico de uma dada função f pelos pontos x_0 e $x_1, x_0 \neq x_1$, como sendo a reta determinada pela equação

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$
 (3.1)

Isto é, é a reta que passa pelos pontos $(x_0, f(x_0))$ e $(x_1, f(x_1))$. Veja a Figura 3.1. Observemos que o coeficiente angular da reta secante é

$$m_{\rm sec} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}. (3.2)$$

Figura 3.1: Esboços de uma reta secante (verde) e da reta tangente (vermelho) ao gráfico de uma função.

A reta tangente ao gráfico de uma função f em $x = x_0$ é a reta que passa pelo ponto $(x_0, f(x_0))$ e tem coeficiente angular

$$m_{\text{tg}} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$
 (3.3)

Isto é, a reta de equação

$$y = m_{tg}(x - x_0) + f(x_0). (3.4)$$

Menos formal, é a reta limite das retas secantes ao gráfico da função pelos pontos x_0 e x_1 , quando $x_1 \to x_0$. Veja a Figura 3.1.

Observação 3.1.1. Fazendo $h = x_1 - x_0$, temos que (3.3) é equivalente a

$$m_{\text{tg}} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$
 (3.5)

Exemplo 3.1.1. Seja $f(x) = x^2$ e $x_0 = 1$. O coeficiente angular da reta

tangente ao gráfico de f no ponto x_0 é

$$m_{\text{tg}} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (3.6)

$$= \lim_{h \to 0} \frac{(1+h)^2 - 1}{h} \tag{3.7}$$

$$= \lim_{h \to 0} \frac{1 + 2h + h^2 - 1}{h} \tag{3.8}$$

$$= \lim_{h \to 0} \frac{2+h}{1} = 2. \tag{3.9}$$

Assim sendo, a reta tangente ao gráfico de $f(x)=x^2$ no ponto $x_0=1$ tem coeficiente angular $m_{\rm tg}=2$ e equação

$$y = 2(x-1) + 1 = 2x - 1. (3.10)$$

Com o SymPy, podemos obter a reta tangente com os seguintes comandos:

```
h = symbols('h',real=True)
f = lambda x: x**2
x0 = 1
# coef. angular
mtg = limit((f(x0+h)-f(x0))/h,h,0)
```

reta tangente
mtg*(x-x0)+f(x0)

3.1.1 A derivada em um ponto

A derivada de uma função f em um ponto $x = x_0$ é denotada por $f'(x_0)$ ou $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$ e é definida por

$$f'(x_0) = \frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$
 (3.11)

Exemplo 3.1.2. Vejamos os seguintes casos:

a) f(x) = k, k constante.

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
(3.12)

$$= \lim_{h \to 0} \frac{k - k}{h} = 0. \tag{3.13}$$

b) f(x) = x.

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
(3.14)

$$= \lim_{h \to 0} \frac{x_0 + h - x_0}{h} = 1. \tag{3.15}$$

c)
$$f(x) = \sqrt{x}, x_0 = 1.$$

$$f'(1) = \lim_{h \to 0} \frac{\sqrt{1+h} - 1}{h} \tag{3.16}$$

$$= \lim_{h \to 0} \frac{\sqrt{1+h} - 1}{h} \frac{\sqrt{1+h} + 1}{\sqrt{1+h} + 1}$$
 (3.17)

$$= \lim_{h \to 0} \frac{1+h-1}{h(\sqrt{1+h}+1)} = \frac{1}{2}.$$
 (3.18)

Exercícios

Em construção ...

3.2 Função derivada

A derivada de uma função f em relação à variável x é a função $f' = \frac{\mathrm{d}f}{\mathrm{d}x}$ cujo valor em x é

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h},\tag{3.19}$$

quando este limite existe. Dizemos que f é **derivável** (ou **diferenciável**) em um ponto x de seu domínio, quando o limite dado em (3.19) existe. Se isso ocorre para todo número real x, dizemos que f é derivável em toda parte.

Exemplo 3.2.1. A derivada de $f(x) = x^2$ é

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (3.20)

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} \tag{3.21}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} \tag{3.22}$$

$$= \lim_{h \to 0} 2x + h = 2x. \tag{3.23}$$

Com o SymPy, podemos usar os seguintes comandos para verificarmos este resultado:

h = symbols('h',real=True)

f = lambda x: x**2

limit((f(x+h)-f(x))/h,h,0)

Observação 3.2.1. A derivada à direita (à esquerda) de uma função f em um ponto x é definida por

$$f'_{\pm}(x) = \frac{\mathrm{d}f}{\mathrm{d}x^{\pm}} = \lim_{h \to 0^{\pm}} \frac{f(x+h) - f(x)}{h}.$$
 (3.24)

Desta forma, no caso de pontos extremos do domínio de uma função, empregamos a derivada lateral correspondente.

Exemplo 3.2.2. A função valor absoluto é derivável para todo $x \neq 0$ e não é derivável em x = 0. De fato, para x < 0 temos

$$f'(x) = \lim_{x \to 0} \frac{|x+h| - |x|}{h} \tag{3.25}$$

$$= \lim_{h \to 0} \frac{-(x+h) + x}{h} \tag{3.26}$$

$$= \lim_{h \to 0} \frac{h}{h} = 1. \tag{3.27}$$

Analogamente, para x > 0 temos

$$f'(x) = \lim_{x \to 0} \frac{|x+h| - |x|}{h} \tag{3.28}$$

$$= \lim_{x \to 0} \frac{x + h - x}{h} \tag{3.29}$$

$$= \lim_{x \to 0} \frac{h}{h} = 1. \tag{3.30}$$

Agora, para x = 0, devemos verificar as derivadas laterais:

$$f'_{+}(0) = \lim_{h \to 0^{+}} \frac{|h| - |0|}{h} = \lim_{h \to 0^{+}} \frac{h}{h} = 1, \tag{3.31}$$

$$f'_{-}(0) = \lim_{h \to 0^{-}} \frac{|h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1.$$
 (3.32)

Como as derivadas laterais são diferentes, temos que y=|x| não é derivável em x=0.

Exemplo 3.2.3. Vamos calcular a derivada de $f(x) = \sqrt{x}$. Para x = 0, só faz sentido calcular a derivada lateral à direta:

$$f'(0) = \lim_{h \to 0^+} \frac{\sqrt{h} - \sqrt{0}}{h} = +\infty.$$
 (3.33)

Ou seja, $f(x) = \sqrt{x}$ não é derivável em x = 0. Agora, para x > 0, temos

$$f'(x) = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$
 (3.34)

$$= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$
(3.35)

$$= \lim_{h \to 0} \frac{x + h - x}{h(\sqrt{x + h} + \sqrt{x})}$$
 (3.36)

$$=\frac{1}{2\sqrt{x}}. (3.37)$$

Exercícios

Em construção ...

3.3 Regras básicas de derivação

Vejamos as derivadas da função constante e da função potência.

• $\frac{\mathrm{d}k}{\mathrm{d}x} = 0$, onde k é uma constante.

Dem.: Com $f(x) \equiv k$ temos

$$\frac{\mathrm{d}k}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{3.38}$$

$$=\lim_{h\to 0}\frac{k-k}{h}\tag{3.39}$$

$$= \lim_{h \to 0} 0 = 0. \tag{3.40}$$

No SymPy, podemos usar os seguintes comandos para obtermos tal regra de derivação:

k = symbols('k',real=True)
diff(k,x)

• $\frac{\mathrm{d}x^n}{\mathrm{d}x} = nx^{n-1}$, para *n* inteiro positivo.

Dem.: Com $f(x) = x^n$, temos

$$\frac{\mathrm{d}x^n}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{3.41}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} \tag{3.42}$$

$$= \lim_{h \to 0} \frac{x^n + nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \dots + h^n - x^n}{h}$$
 (3.43)

$$= \lim_{h \to 0} nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \dots + h^{n-1}$$
 (3.44)

$$=nx^{n-1}. (3.45)$$

No SymPy, podemos usar os seguintes comandos para obtermos tal regra de derivação:

n = symbols('n',integer=True, positive=True)
simplify(diff(x**n,x))

Exemplo 3.3.1. Vejamos os seguintes casos:

a)
$$\frac{\mathrm{d}\sqrt{2}}{\mathrm{d}x} = 0$$
.

b)
$$\frac{\mathrm{d}x^3}{\mathrm{d}x} = 3x^2.$$

3.3.1 Multiplicação por constante e soma

Sejam c um número real, u e v funções. Temos as seguintes regras básicas de derivação:

• (cu)' = cu'.

Dem.:

$$\frac{\mathrm{d}}{\mathrm{d}x}(cu)(x) = \lim_{h \to 0} \frac{cu(x+h) - cu(x)}{h} \tag{3.46}$$

$$= c \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} \tag{3.47}$$

$$= c \lim_{h \to 0} \frac{u(x+h) - u(x)}{h}$$

$$= c \frac{\mathrm{d}u}{\mathrm{d}x}.$$
(3.47)

No SymPy, podemos usar os seguintes comandos para obtermos tal regra de derivação:

• $(u \pm v)' = u' \pm v'$.

Dem.:

$$(u \pm v)'(x) = \lim_{h \to 0} \frac{(u \pm v)(x+h) - (u \pm v)(x)}{h}$$
(3.49)

$$= \lim_{h \to 0} \left[\frac{u(x+h) - u(x)}{h} \pm \frac{v(x+h) - v(x)}{h} \right]$$
 (3.50)

$$= u'(x) \pm v'(x).$$
 (3.51)

No SymPy, podemos usar os seguintes comandos para obtermos a regra de derivação para soma:

Exemplo 3.3.2.

$$\frac{d}{dx}(x^3 - 2x - 1) = \frac{d}{dx}x^3 - 2\frac{dx}{dx} - \frac{d1}{dx}$$

$$= 3x^2 - 2.$$
(3.52)

$$=3x^2 - 2. (3.53)$$

3.3.2 Produto e quocientes

Sejam y = u(x) e y = v(x) funções deriváveis, com $v(x) \neq 0$. Então:

• (uv)' = u'v + uv'.

Dem.:

$$(uv)'(x) = \lim_{h \to 0} \frac{(uv)(x+h) - (uv)(x)}{h}$$
(3.54)

$$= \lim_{h \to 0} \frac{u(x+h)v(x+h) - u(x)v(x)}{h}$$
 (3.55)

$$= \lim_{h \to 0} \left[\frac{u(x+h)v(x+h) - u(x)v(x+h)}{h} \right]$$
 (3.56)

$$+\frac{u(x)v(x+h) - u(x)v(x)}{h}$$
 (3.57)

$$= \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} v(v+h)$$
 (3.58)

$$+\lim_{h\to 0} u(x) \frac{v(x+h) - v(x)}{h}$$
 (3.59)

$$= u'(x)v(x) + u(x)v'(x). (3.60)$$

No SymPy, podemos usar os seguintes comandos para obtermos tal regra de derivação:

$$\bullet \ \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

Dem.:

$$\left(\frac{u}{v}\right)'(x) = \lim_{h \to 0} \frac{\left(\frac{u}{v}\right)(x+h) - \left(\frac{u}{v}\right)(x)}{h} \tag{3.61}$$

$$= \lim_{h \to 0} \frac{\frac{u(x+h)v(x) - u(x)v(x+h)}{v(x+h)v(x)}}{h}$$

$$= \lim_{h \to 0} \left[\frac{u(x+h)v(x) - u(x)v(x)}{h} \right]$$
(3.62)

$$= \lim_{h \to 0} \left[\frac{u(x+h)v(x) - u(x)v(x)}{h} \right]$$
 (3.63)

$$-\frac{u(x)v(x+h) - u(x)v(x)}{h} \left[\frac{1}{v(x)v(x+h)} \right]$$
 (3.64)

$$= \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} v(x)$$
 (3.65)

$$-\lim_{h \to 0} u(x) \frac{v(x+h) - v(x)}{h} \left[\lim_{h \to 0} \frac{1}{v(x)v(x+h)} \right]$$
(3.66)

$$= \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}. (3.67)$$

No SymPy, podemos usar os seguintes comandos para obtermos tal regra de derivação:

Exemplo 3.3.3. Vejamos os seguintes casos:

a)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[(x^2 + x)(1 + x^3) \right] = \left[\frac{\mathrm{d}}{\mathrm{d}x} (x^2 + x) \right] (1 + x^3) \tag{3.68}$$

$$+(x^2+x)\left[\frac{\mathrm{d}}{\mathrm{d}x}(1+x^3)\right]$$
 (3.69)

$$= (2x+1)(1+x^3) + (x^2+x)3x^2$$
 (3.70)

$$=2x + 2x^4 + 1 + x^3 + 3x^4 + 3x^3 (3.71)$$

$$=5x^4 + 4x^3 + 2x + 1. (3.72)$$

Com o SymPy, podemos computar esta derivada com o seguinte comando¹:

¹Veja a Observação 3.0.1.

b)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x^2 + x}{1 - x^3} \right) = \frac{\left[\frac{\mathrm{d}}{\mathrm{d}x} (x^2 + x) \right] (1 - x^3) - (x^2 + x) \left[\frac{\mathrm{d}}{\mathrm{d}x} (1 - x^3) \right]}{(1 - x^3)^2} \tag{3.73}$$

$$=\frac{(2x+1)(1-x^3)+(x^2+x)3x^2}{1-2x^3+x^6}$$
 (3.74)

$$= \frac{1 - 2x^3 + x^6}{1 - 2x^4 + 1 - x^3 + 3x^4 + 3x^3}$$

$$= \frac{2x - 2x^4 + 1 - x^3 + 3x^4 + 3x^3}{1 - 2x^3 + x^6}$$
(3.75)

$$= \frac{x^4 + 2x^3 + 2x + 1}{x^6 - 2x^3 + 1} \tag{3.76}$$

Com o SymPy, podemos computar esta derivada com o seguinte comando²:

$$d = diff((x**2+x)/(1-x**3),x)$$

simplify(d)

Observação 3.3.1. (Derivada de funções potência) No início desta seção, vimos que

$$\frac{\mathrm{d}x^n}{\mathrm{d}x} = nx^{n-1},\tag{3.77}$$

para n > 0 inteiro. Agora, podemos afirmar que este é, também, o caso quando n < 0 inteiro. De fato, se n < 0, então

$$(x^n)' = \left(\frac{1}{x^{-n}}\right) \tag{3.78}$$

$$=\frac{(1)'x^{-n}-1\cdot(x^{-n})'}{(x^{-n})^2}$$
(3.79)

$$= \frac{0 - (-n)x^{-n-1}}{x^{-2n}}$$

$$= nx^{2n-n-1} = nx^{n-1}.$$
(3.80)

$$= nx^{2n-n-1} = nx^{n-1}. (3.81)$$

O SymPy, obtém o mesmo resultado, verifique usando os comandos:

²Veja a Observação 3.0.1.

var('n',integer=True)
simplify(diff(x**n,x))

Exemplo 3.3.4.

$$\frac{\mathrm{d}}{\mathrm{d}x}x^{-5} = -5x^{-5-1} = -5x^{-4}. (3.82)$$

3.3.3 Derivadas de funções exponenciais

Seja $f(x) = a^x$, a > 0 e $a \neq 1$. Então

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (3.83)

$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} \tag{3.84}$$

$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h} \tag{3.85}$$

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h} \tag{3.86}$$

Pode-se mostrar que

$$\lim_{h \to 0} \frac{a^h - 1}{h} = \ln a. \tag{3.87}$$

Desta forma, temos

$$\frac{\mathrm{d}a^x}{\mathrm{d}x} = a^x \ln a. \tag{3.88}$$

Para a função exponencial natural $y = e^x$, temos

$$\frac{\mathrm{d}e^x}{\mathrm{d}x} = e^x \ln e \tag{3.89}$$

$$= e^x. (3.90)$$

Exemplo 3.3.5. Vejamos os seguintes casos:

a)
$$\frac{\mathrm{d}2^x}{\mathrm{d}x} = 2^x \ln 2.$$

b)

$$\frac{\mathrm{d}e^{2x}}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(e^x e^x) \tag{3.91}$$

$$=e^x e^x + e^x e^x (3.92)$$

$$= 2e^{2x}. (3.93)$$

3.3.4 Derivadas de ordens mais altas

A derivada de uma função y = f(x) em relação a x é a função y = f'(x). Quando esta é diferenciável, podemos calcular a derivada da derivada. Esta é conhecida como a **segunda derivada** de f, denotamos

$$f''(x) := (f'(x))' \text{ ou } \frac{\mathrm{d}^2}{\mathrm{d}x} f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}}{\mathrm{d}x} f(x) \right).$$
 (3.94)

Exemplo 3.3.6. Seja f(x) = 1/x. Então, a primeira derivada de f é

$$f'(x) = [x^{-1}]' = -x^{-2}. (3.95)$$

De posse da primeira derivada, podemos calculamos a segunda derivada de f, como segue:

$$f''(x) = [f'(x)]' = [-x^{-2}]' = 2x^{-3}. (3.96)$$

Generalizando, quando existe, a n-ésima derivada de uma função y = f(x), $n \ge 1$, é recursivamente definida (e denotada) por

$$f^{(n)}(x) := [f^{(n-1)}]' \text{ ou } \frac{\mathrm{d}^n}{\mathrm{d}x^n} f(x) := \frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{\mathrm{d}^{n-1}}{\mathrm{d}x^{n-1}} f(x) \right],$$
 (3.97)

com $f^{(3)} \equiv f'''$, $f^{(2)} \equiv f''$, $f^{(1)} \equiv f'$ e $f^{(0)} \equiv f$.

Exemplo 3.3.7. a) Para obtermos a terceira derivada de $f(x) = x^3 - 2x$, calculamos

$$f'(x) = 3x^2 - 2. (3.98)$$

então

$$f''(x) = 6x \tag{3.99}$$

e, finalmente,

$$f'''(x) = 6. (3.100)$$

Com o Sympy, podemos computar esta derivada com o seguinte comando:

$$diff(x**3-2*x,x,3)$$

b) A milionésima primeira derivada de $f(x) = e^x$ é $f^{(1001)}(x) = e^x$. Verifique!

Em construção ...

Exercícios

Em construção ...

3.4 Taxa de variação

Observamos que a razão

$$\frac{f(x_0 + h) - f(x_0)}{h} \tag{3.101}$$

pode ser entendida como a taxa de variação média de f no intervalo de x_0 a $x_0 + h$, $h \neq 0$. Tomando o limite de $h \to 0$,

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0), \tag{3.102}$$

temos a taxa de variação instantânea de f em relação a x no ponto x_0 , i.e. a taxa com que f varia no ponto $x = x_0$.

Exemplo 3.4.1. (Taxa de variação) Suponhamos que o número de litros de água em um tanque, t minutos depois de iniciar seu esvaziamento, é dado por $V = 2000(40 - t)^2$. Deste modelo, podemos tirar várias conclusões.

a) A taxa média do volume de água no tanque nos primeiros 10 minutos é:

$$\frac{V(t_0+h)-V(t_0)}{h} = \frac{V(0+10)-V(0)}{10}$$
(3.103)

$$=\frac{2000 \cdot 30^2 - 2000 \cdot 40^2}{10} \tag{3.104}$$

$$= 200(900 - 1600) = 100000 \text{ L/min.}$$
 (3.105)

b) Podemos obter a taxa instantânea do volume de água no tanque em t=10 minutos. Para tanto, calculamos a derivada

$$V'(t) = -160\,000 + 4000t. \tag{3.106}$$

Assim, temos que a taxa de variação instantânea do volume de água no tanque em t=10 minutos é:

$$V'(10) = 160\,000 + 40\,000 = 120\,000 \text{ L/min.}$$
 (3.107)

Exemplo 3.4.2. (Movimento de uma partícula) Consideremos que, no instante $t \geq 0$ segundos (s), a posição (em metros, m) de uma partícula sobre o eixo s é modelada por $s = t^2 - 3t$. Vejamos, então, as seguintes conclusões.

a) A velocidade é, por definição, a derivada da função posição em relação ao tempo (taxa de variação da posição em relação ao tempo). Desta forma, temos que a velocidade da partícula no instante t é

$$v(t) := \frac{\mathrm{d}s}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(t^2 - 3t) = 2t - 3 \text{ m/s}.$$
 (3.108)

b) A aceleração é, por definição, a derivada da função velocidade em relação ao tempo³. Desta forma, temos que a aceleração da partícula no instante t é

$$a(t) := \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(2t - 3) = 2 \text{ m/s}^2.$$
 (3.109)

Exemplo 3.4.3. O volume de um balão esférico é dado em função de seu raio por $V = \frac{4\pi}{3}r^2$. Então, podemos concluir que:

a) A taxa de variação do volume do balão em relação ao raio quando r=1

$$V'(1) = \frac{dV}{dr}\Big|_{r=1}$$

$$= \frac{8\pi}{3}r\Big|_{r=1} = \frac{8\pi}{3}.$$
(3.110)

$$= \frac{8\pi}{3}r\Big|_{r=1} = \frac{8\pi}{3}.\tag{3.111}$$

b) A taxa de variação calculada no item a), significa que, quando r=1, o volume do balão está aumentando $16\pi/3$ unidades por unidade do raio. Assim, aproximadamente, se o raio aumentar de 1 para 1,1, o volume do balão aumentará $V'(1)(1,1-1) = 0.8\pi/3$. Observamos que, fazendo o cálculo exato, temos que o aumento do volume é de $0.84\pi/3$.

Exercícios

Em construção ...

 $^{^3\}mathrm{A}$ aceleração é a segunda derivada da função velocidade em relação ao tempo.

3.5 Derivadas de funções trigonométricas

Em construção ...

Exercícios

Em construção ...

3.6 Regra da cadeia

Em construção ...

Exercícios

Em construção ...

3.7 Diferenciabilidade da função inversa

Seja f uma função diferenciável e injetora em um intervalo aberto I. Então, pode-se mostrar que sua inversa f^{-1} é diferenciável em qualquer ponto da imagem da f no qual $f'(f^{-1}(x)) \neq 0$ e sua derivada é

$$\frac{d}{dx}[f^{-1}(x)] = \frac{1}{f'(f^{-1}(x))}. (3.112)$$

Exemplo 3.7.1. Seja $f(x) = 2x^3 - 1$. Para calcular sua inversa, fazemos

$$y = 2x^3 - 1 \Rightarrow y + 1 = 2x^3 \tag{3.113}$$

$$\Rightarrow x^3 = \frac{y+1}{2} \tag{3.114}$$

$$\Rightarrow x = \sqrt[3]{\frac{y+1}{2}}. (3.115)$$

68

Ou seja,

$$f^{-1}(x) = \sqrt[3]{\frac{x+1}{2}}. (3.116)$$

Calculando a derivada de f^{-1} diretamente, temos

$$\frac{\mathrm{d}}{\mathrm{d}x}f^{-1}(x) = \frac{1}{6\sqrt[3]{\frac{(x+1)^2}{4}}},\tag{3.117}$$

$$=\frac{\sqrt[3]{4}}{6\sqrt[3]{(x+1)^2}}.$$
 (3.118)

Agora, usando (3.112) e observando que $f'(x) = 6x^2$, obtemos

$$\frac{\mathrm{d}}{\mathrm{d}x}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))},\tag{3.119}$$

$$=\frac{1}{6\left(\sqrt[3]{\frac{x+1}{2}}\right)^2}, \qquad =\frac{\sqrt[3]{4}}{6\sqrt[3]{(x+1)^2}}, \tag{3.120}$$

como esperado.

Exemplo 3.7.2. (Derivada da função logarítmica)

• Tomando $f(x) = e^x$ temos $f^{-1}(x) = \ln x$ e, daí por (3.112)

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln x = \frac{1}{e^{\ln x}} = \frac{1}{x}.\tag{3.121}$$

• Tomando $f(x) = a^x$, a > 0 e $a \neq 1$, temos $f^{-1}(x) = \log_a x$ e, por (3.112),

$$\frac{\mathrm{d}}{\mathrm{d}x}\log_a x = \frac{1}{a^{\log_a x} \ln a} = \frac{1}{x \ln a}.$$
 (3.122)

Exemplo 3.7.3. (Derivada de funções potência) Em seções anteriores, já vimos que

$$\frac{\mathrm{d}}{\mathrm{d}x}x^n = nx^{n-1},\tag{3.123}$$

para qualquer $n \neq 0$ racional. Também, se $r \neq 0$ é um número real, temos

$$y = x^r \Rightarrow \ln y = \ln x^r = r \ln x. \tag{3.124}$$

Daí, derivando ambos os lados desta última equação, obtemos

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln y = \frac{\mathrm{d}}{\mathrm{d}x}r\ln x \Rightarrow \frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{r}{x}$$
 (3.125)

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{r}{x}y\tag{3.126}$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = rx^{r-1}.\tag{3.127}$$

3.7.1 Derivadas de funções trigonométricas inversas

Seja $f(x) = \operatorname{sen} x$ restrita a $-\pi/2 \le x \le \pi/2$. Sua inversa é a função arco seno, denotada por

$$y = \arcsin x. \tag{3.128}$$

Para calcular a derivada da função arco seno, vamos usar (3.112), donde

$$(\arcsin x)' = \frac{1}{\cos(\arcsin x)}.$$
 (3.129)

Como $\cos(\arcsin x) = \sqrt{1-x^2}$ (veja Figura 3.2, concluímos

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}.$$
 (3.130)

Figura 3.2: Arco seno de um ângulo no triângulo retângulo.

Exemplo 3.7.4.

$$\frac{\mathrm{d}}{\mathrm{d}x}\arcsin x^2 = \frac{2x}{\sqrt{1-x^2}}.\tag{3.131}$$

Com argumentos análogas aos usados no cálculo da derivada da função arco seno, podemos obter as seguintes derivadas:

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$
 (3.132)

$$(\operatorname{arctg} x)' = \frac{1}{1+x^2} \tag{3.133}$$

$$(\operatorname{arc} \cot x)' = -\frac{1}{1+x^2} \tag{3.134}$$

$$(\operatorname{arc} \sec x)' = \frac{1}{|x|\sqrt{x^2 - 1}}$$
 (3.135)

$$(\operatorname{arccosec} x)' = -\frac{1}{|x|\sqrt{x^2 - 1}}$$
 (3.136)

Exercícios

Em construção ...

3.8 Derivação implícita

Seja y = y(x) definida implicitamente por

$$g(y(x)) = 0. (3.137)$$

A derivada $\mathrm{d}y/\mathrm{d}x$ pode ser calculada via regra da cadeia

$$\frac{\mathrm{d}}{\mathrm{d}x}g(y(x)) = \frac{\mathrm{d}0}{\mathrm{d}x} \Rightarrow g'(y(x))\frac{\mathrm{d}y}{\mathrm{d}x} = 0. \tag{3.138}$$

Exemplo 3.8.1. Considere a equação da circunferência unitária

$$x^2 + y^2 = 1. (3.139)$$

Para calcularmos dy/dx, fazemos

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2 + y^2\right) = \frac{\mathrm{d}0}{\mathrm{d}x} \Rightarrow 2x + \frac{\mathrm{d}y^2}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}x}$$
(3.140)

$$\Rightarrow 2x + 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \tag{3.141}$$

$$\Rightarrow 2x + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{x}{y}.$$
(3.141)

Em construção \dots

Exercícios

Capítulo 4

Aplicações da derivada

Observação 4.0.1. Nos códigos Python apresentados neste capítulo, assumimos o seguinte preâmbulo:

from sympy import *
var('x',real=True)

4.1 Extremos de funções

Seja f uma função com domínio D. Dizemos que f tem valor **máximo** absoluto no ponto x=a quando

$$f(x) < f(a), \tag{4.1}$$

para todo $x \in D$. Analogamente, dizemos que f tem valor **mínimo absoluto** no ponto x = b quando

$$f(x) > f(b), \tag{4.2}$$

para todo $x \in D$. Em tais pontos, dizemos que a função têm seus valores extremos absolutos.

Exemplo 4.1.1. A função $f(x)=x^2$ tem valor mínimo absoluto no ponto x=0 e não assume valor máximo absoluto. A função $g(x)=-x^2$ tem valor máximo absoluto no ponto x=0 e não assume valor mínimo absoluto. A função $h(x)=x^3$ não assume valores mínimo e máximo absolutos. Veja a Figura 4.1.

Figura 4.1: Esboço das funções discutidas no Exemplo 4.1.1.

Teorema 4.1.1. (Teorema do valor extremo) Se f é uma função contínua em um intervalo fechado [a, b], então f assume tanto um valor máximo como um valor mínimo absoluto em [a, b].

Exemplo 4.1.2. Vejamos os seguintes casos:

a) A função $f(x) = (x-1)^2 + 1$ é contínua no intervalo fechado $[0,\frac{3}{2}]$. Assume valor mínimo absoluto de 1 no ponto x = 1. Ainda, assume valor máximo absoluto igual a 2 no ponto x = 0. Veja Figura 4.2.

Figura 4.2: Esboço do gráfico de $f(x) = (x-1)^2 + 1$ no intervalo $[0,\frac{3}{2}]$. Veja o Exemplo 4.1.2 a).

b) A função $g(x) = \ln x$ é contínua no intervalo (0, e]. Neste intervalo, assume valor máximo absoluto no ponto x = e, mas não assume valor mínimo absoluto. Veja Figura 4.3.

Figura 4.3: Esboço do gráfico de $g(x) = \ln x$ no intervalo (0,e]. Veja o Exemplo 4.1.2 b).

c) A função

$$h(x) = \begin{cases} x & , 0 \le x < 1, \\ 0 & , x = 1, \end{cases}$$
 (4.3)

definida no intervalo [0,1] é descontínua no ponto x=1. Neste intervalo, assume valor mínimo absoluto no ponto x=0, mas não assume valor máximo absoluto. Veja a Figura 4.4.

Figura 4.4: Esboço do gráfico de h(x) no intervalo [0,1]. Veja o Exemplo 4.1.2 c).

Uma função f tem um valor **máximo local** em um ponto interior x = a de seu domínio, se $f(x) \le f(a)$ para qualquer x em um intervalo aberto que

contenha o ponto a. Analogamente, f tem um valor **mínimo local** em um ponto interior x = b de seu domínio, se $f(x) \ge f(b)$ para qualquer x em um intervalo aberto que contenha o ponto b. Em tais pontos, dizemos que a função têm valores **extremos locais** (ou relativos).

Exemplo 4.1.3. Consideremos a função

$$f(x) = \begin{cases} -(x+1)^2 - 2 & , -2 \le x < \frac{1}{2}, \\ |x| & , \frac{1}{2} \le x < 1, \\ (x-2)^3 + 2 & , 1 \le x < 3. \end{cases}$$
(4.4)

Figura 4.5: Esboço do gráfico de f(x) discutida no Exemplo 4.1.3.

Na Figura 4.5 temos o esboço de seu gráfico. Por inferência, temos que f tem um valor máximo local no ponto x=-1 e tem um valor mínimo local no ponto x=0. Observamos que x=-2, x=-1/2, x=2 e x=3 não são pontos de extremos locais desta função. No ponto x=-2, f tem seu valor mínimo absoluto. Ainda, f não tem valor máximo absoluto.

Teorema 4.1.2. (Teorema da derivada para pontos extremos locais.) Se f possui um valor extremo local em um ponto x=a e f é diferenciável neste ponto, então

$$f'(a) = 0. (4.5)$$

Deste teorema, podemos concluir que uma função f pode ter valores extremos em:

1. pontos interiores de seu domínio onde f'=0,

- 2. pontos interiores de seu domínio onde f' não existe, ou
- 3. pontos extremos de seu domínio.

Um ponto interior do domínio de uma função f onde f'=0 ou não existe, é chamado de **ponto crítico** da função. Desta forma, afirmamos que f pode ter valores extremos em pontos críticos ou nos extremos de seu domínio.

Exemplo 4.1.4. Consideramos a função f(x) discutida no Exemplo 4.1.3. No ponto x = -1, f'(-1) = 0 e f tem valor máximo local neste ponto. Entretanto, no ponto x = 2, também temos f'(2) = 0, mas f não tem valor extremo neste ponto.

No ponto x=0, f'(0) não existe e f tem valor mínimo local neste ponto. Entretanto, no ponto $x=-\frac{1}{2}, f'\left(-\frac{1}{2}\right)$ não existe e f não tem extremo local neste ponto.

Nos extremos do domínio, temos que f tem valor mínimo absoluto no ponto x=-2, mas não tem extremo absoluto no ponto x=3.

4.1.1 Exercícios resolvidos

ER 4.1.1. Determine os pontos extremos da função $f(x) = (x+1)^2 - 1$ no intervalo [-2,1].

Solução. Os valores extremos de um função podem ocorrer, somente, em seus pontos críticos ou nos extremos de seu domínio. Como $f(x) = (x+1)^2 - 1$ é diferenciável no intervalo (-2,1), seus pontos críticos são pontos tais que f' = 0. Para identificá-los, calculamos

$$f'(x) = 0 \Rightarrow 2(x+1) = 0 \tag{4.6}$$

$$\Rightarrow x = -1. \tag{4.7}$$

Figura 4.6: Esboço do gráfico da função $f(x) = (x+1)^2 - 1$ discutida no Exercício Resolvido 4.1.1.

Desta forma, f pode ter valores extremos nos ponto x=-2, x=-1 e x=1. Analisamos, então, o esboço do gráfico da função (Figura 4.7) e a seguinte tabela:

$$\begin{array}{c|ccccc} x & -2 & -1 & 1 \\ \hline f(x) & 0 & -1 & 3 \\ \end{array}$$

Daí, podemos concluir que f tem o valor mínimo absoluto (e local) de f(-1) = -1 no ponto x = -1 e tem valor máximo absoluto de f(1) = 3 no ponto x = 1.

Podemos usar o Sympy para computar os pontos extremos e plotar a função. Por exemplo, com os seguintes comandos:

```
# f(x)
f = lambda x: (x+1)**2-1
# f'(x)
fl = lambda x: diff(f(x),x)
# f'(x)=0
solve(fl(x),x)
# valores nos extremos e no pto crítico
f(-2), f(-1), f(1)
# esboço do gráfico
plot((x+1)**2-1,(x,-2,1),show=True)
```

ER 4.1.2. Determine os pontos extremos da função $f(x) = x^3$ no intervalo [-1,1].

Solução. Como f é diferenciável no intervalo (-1,1), temos que seus pontos críticos são tais que f'(x) = 0. Neste caso, temos

$$3x^2 = 0 \Rightarrow x = 0 \tag{4.8}$$

é o único ponto crítico de f. Entretanto, analisando o gráfico desta função (Figura \ref{figura}) vemos f não tem valor extremo local neste ponto. Assim, os pontos extremos da f só podem ocorrer nos extremos do domínio [-1,1]. Concluímos que f(-1) = -1 é o valor mínimo absoluto de f e f(1) = 1 é seu valor máximo absoluto.

Figura 4.7: Esboço do gráfico da função $f(x)=x^3$ discutida no Exercício Resolvido 4.1.2.

4.1.2 Exercícios

Exemplo 4.1.5. Determine os pontos extremos da função $f(x) = x^{1/3}$ no intervalo [-1,1].

Em construção ...

4.2 Teorema do valor médio

O teorema do valor médio é uma aplicação do teorema de Rolle.

4.2.1 Teorema de Rolle

O teorema de Rolle fornece uma condição suficiente para que uma dada função diferenciável tenha derivada nula em pelo menos um ponto.

Figura 4.8: Ilustração do teorema de Rolle.

Teorema 4.2.1. (Teorema de Rolle) Seja f uma função contínua no intervalo fechado [a, b] e diferenciável no intervalo aberto (a, b). Se

$$f(a) = f(b), \tag{4.9}$$

então existe pelo menos um ponto $c \in (a, b)$ tal que

$$f'(c) = 0. (4.10)$$

Exemplo 4.2.1. Vejamos os seguintes casos:

a) O polinômio $p(x) = x^3 - 4x^2 + 3x$ tem pelo menos um ponto crítico no intervalo (0,1) e no intervalo (1,3). De fato,

$$p(x) = x^3 - 4x^2 + 3x \tag{4.11}$$

$$=x(x^2 - 4x + 3) (4.12)$$

$$= x(x-1)(x-3). (4.13)$$

Logo, temos p(0) = p(1) = 0 e, pelo teorema de Rolle, segue que existe pelo menos um ponto $c \in (0,1)$ tal que f'(c) = 0. Analogamente, como p(1) = p(3) = 0, segue do teorema que existe pelo menos um ponto crítico no intervalo (1,3).

A função

$$f(x) = \begin{cases} x & , 0 \le x < 1, \\ 0 & , x = 1. \end{cases}$$
 (4.14)

é tal que f(0) = f(1) = 0, entretanto sua derivada f'(x) = 1 no intervalo (0,1). Ou seja, a condição da f ser contínua no intervalo fechado associado é necessária no teorema de Rolle.

Não existe ponto tal que a derivada da g(x) = -|x-1| + 1 seja nulo. Entretanto, notemos que g(0) = g(2) = 0 e g contínua no intervalo fechado [0,2]. O teorema de Rolle não se aplica neste caso, pois g não é diferenciável no intervalo (0,2), mais especificamente, no ponto x=1.

4.2.2 Teorema do valor médio

O teorema do valor médio é uma generalização do teorema de Rolle.

Teorema 4.2.2. (Teorema do valor médio) Seja f uma função contínua no intervalo fechado [a,b] e diferenciável no intervalo aberto (a,b). Então, existe pelo menos um ponto $c \in (a,b)$ tal que

$$\frac{f(b) - f(a)}{b - a} = f'(c). \tag{4.15}$$

Exemplo 4.2.2. A função $f(x) = x^2$ é contínua no intervalo [0,2] e diferenciável no intervalo (0,2). Logo, segue do teorema do valor médio que existe pelo menos um ponto $c \in (0,2)$ tal que

$$f'(c) = \frac{f(2) - f(0)}{2 - 0} = 2. (4.16)$$

De fato, f'(x) = 2x e, portanto, tomando c = 1, temos f'(c) = 2.

Corolário 4.2.1. (Funções com derivadas nulas são constantes) Se f'(x) = 0 para todos os pontos em um intervalo (a, b), então f é constante neste intervalo.

Demonstração. De fato, sejam $x_1, x_2 \in (a, b)$ e, sem perda de generalidade, $x_1 < x_2$. Então, temos f é contínua no intervalo $[x_1, x_2]$ e diferenciável em (x_1, x_2) . Segue do teorema do valor médio que existe $c \in (x_1, x_2)$ tal que

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c). \tag{4.17}$$

Como f'(c) = 0, temos $f(x_2) = f(x_1)$. Ou seja, a função vale sempre o mesmo valor para quaisquer dois ponto no intervalo (a,b), logo é constante neste intervalo.

Corolário 4.2.2. (Função com a mesma derivada diferem por uma constante) Se f'(x) = g'(x) para todos os pontos em um intervalo aberto (a,b), então f(x) = g(x) + C, C constante, para todo $x \in (a,b)$.

Demonstração. Segue, imediatamente, da aplicação do corolário anterior à função h(x) = f(x) - g(x).

Corolário 4.2.3. (Monotonicidade e o sinal da derivada) Suponha que f seja contínua em [a,b] e derivável em (a,b).

- Se f'(x) > 0 para todo $x \in (a,b)$, então f é crescente em [a,b].
- Se f'(x) < 0 para todo $x \in (a,b)$, então f é decrescente em [a,b].

Exercícios resolvidos

ER 4.2.1. Um carro percorreu 150 km em 1h30min. Mostre que em algum momento o carro estava a uma velocidade maior que 80 km/h.

Solução. Seja s = s(t) a função distância percorrida pelo carro e t o tempo, em horas, contado do início do percurso. Do teorema do valor médio, exite tempo $t_1 \in (0, 1,5)$ tal que

$$f'(t_1) = \frac{s(1,5) - s(0)}{1,5 - 0} = \frac{150}{1,5} = 100 \text{ km/h}.$$
 (4.18)

Ou seja, em algum momento o carro atingiu a velocidade de 100 km/h.

 \Diamond

Em construção ...

Exercícios

E 4.2.1. Demonstre que um polinômio cúbico pode ter no máximo 3 raízes reais.

4.3 Teste da primeira derivada

Na Seção , vimos que os extremos de uma função ocorrem nos extremos de seu domínio ou em um ponto crítico. Aliado a isso, o Corolário 4.2.3 nos fornece condições suficientes para classicar os pontos críticos como extremos locais.

Mais precisamente, seja c um ponto crítico de uma função contínua f e diferenciável em todos os pontos de um intervalo aberto (a,b) contendo c, exceto possivelmente no ponto c. Movendo-se no sentido positivo em x:

- se f' muda de negativa para positiva em c, então f possui um mínimo local em c;
- se f' muda de positiva para negativa em c, então f possui um máximo local em c;
- se f' não muda de sinal em c, então c não é um extremo local de f.

Exemplo 4.3.1. Consideremos a função f(x) = (x+1)(x-1)(x-2). Como f é diferenciável em toda parte, seus pontos críticos são aqueles tais que

$$f'(x) = 0. (4.19)$$

Temos $f'(x) = 3x^2 - 4x - 1$. Segue, que os pontos críticos são

$$3x^2 - 4x - 1 = 0 \Rightarrow x = \frac{2 \pm \sqrt{7}}{3} \tag{4.20}$$

Com isso, temos

Então, do teste da primeira derivada, concluímos que $x=\frac{2-\sqrt{7}}{3}$ é ponto de máximo local e que $x=\frac{2+\sqrt{7}}{3}$ é ponto de mínimo local.

Podemos usar o Sympy para computarmos a derivada de f com o comando

$$fl = diff((x - 2)*(x - 1)*(x + 1))$$

Então, podemos resolver f'(x) = 0 com o comando

solve(fl)

e, por fim, podemos fazer o estudo de sinal da f' com os comandos

reduce_inequalities(f1<0)
reduce_inequalities(f1>0)

Exercícios resolvidos

ER 4.3.1. Determine e classifique os extremos da função

$$f(x) = x^4 - 4x^3 + 4x^2. (4.21)$$

Solução. Como o domínio da f é $(-\infty,\infty)$ e f é diferenciável em toda parte, temos que seus extremos ocorrem em pontos críticos tais que

$$f'(x) = 0. (4.22)$$

Resolvendo, obtemos

$$4x^3 - 12x^2 + 8x = 0 \Rightarrow 4x(x^2 - 3x + 2) = 0$$
 (4.23)

Logo,

$$4x = 0$$
 ou $x^2 - 3x + 2 = 0$ (4.24)

$$x = \frac{-3 \pm 1}{2}.\tag{4.25}$$

Portanto, os ponto críticos são $x_1 = 0$, $x_2 = -2$ e $x_3 = -1$. Fazendo o estudo de sinal da f', temos

	$x < x_1$	$x_1 < x < x_2$	$x_2 < x < x_3$	$x_3 < x$
4x	=	+	+	+
$x^2 - 3x + 2$	+	+	-	+
f'(x)	-	+	-	+
f	decrescente	crescente	decrescente	crescente

Então, do teste da primeira derivada, concluímos que $x_1=0$ é ponto de mínimo local, $x_2=-2$ é ponto de máximo local e $x_3=-1$ é ponto de máximo local.

Exercícios

Capítulo 5

Integração

Observação 5.0.1. Nos códigos Python apresentados neste capítulo, assumimos o seguinte preâmbulo:

```
from sympy import *
var('x',real=True)
```

5.1 Integrais indefinidas

Seja f(x) uma função. Dizemos que F(x) é uma **primitiva** de f(x) quando

$$F'(x) = f(x) \tag{5.1}$$

para todo x no domínio da f.

Exemplo 5.1.1. Seja f(x) = 2x. Notemos que $F(x) = x^2$ é uma primitiva de f, pois

$$F'(x) = 2x = f(x). (5.2)$$

Também, se C é uma constante qualquer, $F(x) = x^2 + C$ é primitiva de f(x). De fato, lembrando que a derivada de uma constante é zero, temos

$$F'(x) = 2x + 0 = 2x = f(x). (5.3)$$

Observação 5.1.1. Se F(x) é uma primitiva de f(x), então F(x) + C, com C constante, também é primitiva de f(x).

86

A integral indefinida de uma função f(x) é denotada por

$$\int f(x) \, dx \tag{5.4}$$

e é definida por

$$\int f(x) dx = F(x) + C, \tag{5.5}$$

onde F(x) é uma primitiva de f(x).

Exemplo 5.1.2. Do observado no exemplo anterior (Exemplo 5.1.1), temos

$$\int 2x \, dx = x^2 + C. \tag{5.6}$$

Com o Sympy, podemos computar a integral indefinida acima com o comando¹:

integrate(2*x)

Observe que o Sympy não adiciona a constante indeterminada.

5.1.1 Regras básicas de integração

Das regras básicas de derivação, podemos inferir as seguintes regras para integração:

- $\bullet \int 0 \, dx = C.$
- $\int 1 \, dx = x + C.$
- $\int af(x) dx = a \int f(x) dx$, $a \neq 0$ constante.
- $\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$.

¹Veja a Observação 5.0.1.

Exemplo 5.1.3.

$$\int x - 3x^2 \, dx = \int x \, dx - \int 3x^2 \, dx \tag{5.7}$$

$$= \int \frac{2}{2}x \, dx - x^3 + C \tag{5.8}$$

$$= \frac{1}{2} \int 2x \, dx - x^3 + C \tag{5.9}$$

$$=\frac{x^2}{2} - x^3 + C. (5.10)$$

No exemplo anterior (Exemplo 5.1.3) integramos funções potências. Da regra de derivação

$$[x^n]' = nx^{n-1}, \quad n \neq 0,$$
 (5.11)

temos

$$\int x^n \, dx = \int \frac{n+1}{n+1} x^n \, dx, \quad n \neq -1, \tag{5.12}$$

$$= \frac{1}{n+1} \int (n+1)x^n \, dx,\tag{5.13}$$

$$=\frac{x^{n+1}}{n+1} + C. (5.14)$$

Ou seja, obtemos a seguinte regra de integração para função potência

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1.$$
 (5.15)

Exemplo 5.1.4.

$$\int 3x^{-2} dx = 3 \int x^{-2} dx = 3 \frac{x^{-2+1}}{-2+1} + C = -3x^{-1} + C = -\frac{3}{x} + C. \quad (5.16)$$

Das regras de derivação para a função exponencial natural e logaritmo natural, temos

$$\bullet \int e^x \, dx = e^x + C.$$

$$\bullet \int \frac{1}{x} dx = \ln x + C.$$

Também, como $(a^x)' = a^x \ln a$, temos

$$\int a^x dx = \frac{a^x}{\ln a} + C. \tag{5.17}$$

Exercícios resolvidos

Em construção ...

5.1.2 Exercícios

Em construção ...

5.2 Integração por substituição

Seja u = u(x). Usando de diferenciais, temos du = u'(x)dx. Logo,

$$\int f(u(x))u'(x) dx = \int f(u) du.$$
 (5.18)

Esta é chamada de regra de integração por substituição.

Exemplo 5.2.1. Consideremos

$$\int (2x+1)^2 \, dx. \tag{5.19}$$

Substituindo

$$u = 2x + 1 \tag{5.20}$$

temos

$$du = 2dx. (5.21)$$

Portanto,

$$\int (x+1)^2 dx = \int u^2 \frac{du}{2}$$
 (5.22)

$$= \frac{1}{2} \int u^2 \, du \tag{5.23}$$

$$=\frac{1}{2}\frac{u^{2+1}}{2+1}+C\tag{5.24}$$

$$= \frac{u^3}{6} + C (5.25)$$

$$= \frac{1}{6}(2x+1)^3 + C. (5.26)$$

Exercícios resolvidos

Em construção ...

Exercícios

Em construção ...

5.3 Integração por partes

Sejam u = u(x) e v = v(x) funções diferenciáveis, então

$$\frac{d}{dx}(uv) = \frac{du}{dx}v + u\frac{dv}{dx}. (5.27)$$

Integrando em ambos os lados, obtemos

$$\int \frac{d(uv)}{dx} dx = \int \frac{du}{dx} v dx + \int u \frac{dv}{dx} dx, \tag{5.28}$$

donde

$$uv = \int v du + \int u dv. \tag{5.29}$$

Daí, segue a fórmula de integração por partes

$$\int udv = uv - \int vdu. \tag{5.30}$$

Exemplo 5.3.1. Consideremos $\int xe^x dx$. Tomando

$$u = x \Rightarrow \frac{du}{dx} = 1 \Rightarrow du = dx,$$
 (5.31)

$$dv = e^x dx \Rightarrow \int dv = \int e^x dx \Rightarrow v = e^x.$$
 (5.32)

Então, da fórmula de integração por partes, temos

$$\int xe^x dx = \int udv = uv - \int vdu \tag{5.33}$$

$$= xe^x - \int e^x dx \tag{5.34}$$

$$= xe^x - e^x + C. (5.35)$$

Exercícios resolvidos

Em construção \dots

Exercícios

Em construção \dots

Resposta dos Exercícios

```
E 2.1.1. a) -1; b) -1; c) 2; d) \nexists
```

E 2.1.3. a) 2; b) 2; c) -3; d)
$$\pi$$

E 2.1.4. a) 2; b) -2; c) -3; d)
$$e$$

E 2.2.1. 6

E 2.4.3. 1

E 2.4.4. 0

E 2.4.5. 0

E 2.4.6. $\frac{1}{2}$

E 4.1.0. f(-1) = -1 é o valor mínimo absoluto; f(1) = 1 é o valor máximo absoluto.

Referências Bibliográficas

[1] George Thomas. Cálculo, volume 1. Addison-Wesley, 12. edition, 2012.

Índice Remissivo

base, 21	gráfico, 3 grau do polinômio, 8
domínio, 1	ima com 1
natural, 2	imagem, 1
função, 1 ímpar, 19 algébrica, 9 cúbica, 8 composta, 17 constante, 4 contínua, 48 cossecante, 14 definida por partes, 10 exponencial, 21 identidade, 19 inversa, 20 linear, 4 logarítmica, 22 par, 19 periódica, 13 potência, 5 quadrática, 8 racional, 9 secante, 14 tangente, 14 transcendente, 10 valor absoluto, 11 função polimemial, 8	polinômio, 8 quadrático, 8 polinômio cúbico, 8 reta identidade, 20
função polinomial, 8	