Lecture 39

Simple Linear Regression: ANOVA & Coefficient of Determination

STAT 8010 Statistical Methods I December 4, 2019

> Whitney Huang Clemson University

Understanding Confidence Intervals

- Suppose $Y = \beta_0 + \beta_1 X + \varepsilon$, where $\beta_0 = 3$, $\beta_1 = 1.5$ and $\sigma^2 \sim N(0,1)$
- We take 100 random sample each with sample size 20
- We then construct the 95% CI for each random sample (⇒ 100 CIs)

Notes

Notes

Confidence Intervals vs. Prediction Intervals

Simple Linear Regression: ANOVA & Coefficient of Determination
<u>CLEMS#N</u>
Review of Last Class

Notes				

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

• Total sums of squares in response

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

We can rewrite SST as

$$\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i} + \hat{Y}_{i} - \bar{Y})^{2}$$

$$= \underbrace{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}_{\text{Model}}$$

Simple Linear Regression: ANOVA & Coefficient of Determination
Analysis of Variance (ANOVA) Approach to Regression

Notes			

Partitioning Total Sums of Squares

Simple Linear Regression: ANOVA & Coefficient of Determination
Analysis of Variance (ANOVA) Approach to Regression

Notes			

Total Sum of Squares: SST

• If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e., \bar{Y})
- The **total mean square** is SST/(n-1) and represents an unbiased estimate of σ^2 under the model (1).

Simple Linear Regression: ANOVA & Coefficient of Determination
CLEMS#N
Analysis of Variance (ANOVA) Approach to Regression

Notes			

Regression Sum of Squares: SSR

- SSR: $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

 "Larg" MSR = SSR/1 suggests a linear trend, because

$$E[MSE] = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

	Simple Linear Regression: ANOVA & Coefficient of Determination
	CLEMS#
١	Analysis of Variance (ANOVA Approach to Regression

Error Sum of Squares: SSE

• SSE is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is *n* 2 (Why?)
- SSE large when |residuals| are "large" ⇒ Y_i's vary substantially around fitted regression line
- MSE = SSE/(n-2) and represents an unbiased estimate of σ^2 when taking X into account

Review of Last

Class

Analysis of
Variance (ANOVA)
Approach to

Notes

Notes

ANOVA Table and F test

SourcedfSSMSModel1 $SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$ MSR = SSR/1Errorn-2 $SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$ MSE = SSE/(n-2)Totaln-1 $SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$

- **Goal:** To test $H_0: \beta_1 = 0$
- Test statistics $F^* = \frac{MSR}{MSE}$
- If β_1 = 0 then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^* under $H_0 \Rightarrow F_{1,n-2}$, where $F(d_1,d_2)$ denotes a F distribution with degrees of freedom d_1 and d_2

0
Simple Linear
Regression:
ANOVA &
Coefficient of
Determination
OLEN (Catal)
LEMS#N

Review of Last Class

Analysis of Variance (ANOVA Approach to

F Test: $H_0: \beta_1 = 0$ **vs.** $H_a: \beta_1 \neq 0$

fit <- lm(MaxHeartRate ~ Age)
anova(fit)
...</pre>

Analysis of Variance Table

Response: MaxHeartRate

Age 1 2724.50 2724.50 130.01
Residuals 13 2724.3 20.96

Pr(>F) Age 3.848e-08 ***

SLR: F-Test vs. T-test

ANOVA Table and F-Test

Analysis of Variance Table

Response: MaxHeartRate

 Df
 Sum
 Sq
 Mean
 Sq

 Age
 1
 2724.50
 2724.50
 2724.50

 Residuals
 13
 272.43
 20.96

F value Pr(>F)
Age 130.01 3.848e-08

Parameter Estimation and T-Test

 ${\tt Coefficients:}$

| Estimate Std. Error t value Pr(>|t|) |(Intercept) | 210.04846 | 2.86694 | 73.27 | < 2e-16 | Age | -0.79773 | 0.06996 | -11.40 | 3.85e-08

Notes

Notes

.

Correlation and Simple Linear Regression

- Pearson Correlation: $r = \frac{\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i \bar{X})^2 \sum_{i=1}^{n} (Y_i \bar{Y})^2}}$
- $-1 \le r \le 1$ measures the strength of the **linear** relationship between Y and X
- We can show

$$r = \hat{\beta}_1 \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}},$$

this implies

 $\beta_1 = 0$ in SLR $\Leftrightarrow \rho = 0$

Regression: ANOVA & Coefficient of Determination
CLEMS®N N I V E R S I T Y

Review of Last Class

Analysis of Variance (ANOVA) Approach to

Coefficient of Determination R^2

 Defined as the proportion of total variation explained by SLR

$$R^2 = \frac{\sum_{i=1}^n (\hat{Y}_i - \bar{Y})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

• We can show $r^2 = R^2$:

$$\begin{split} r^2 &= \left(\hat{\beta}_{1,\text{LS}} \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}\right)^2 \\ &= \frac{\hat{\beta}_{1,\text{LS}}^2 \sum_{i=1}^{n} (X_i - \bar{X})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2} \\ &= \frac{\text{SSR}}{\text{SST}} \\ &= R^2 \end{split}$$

Simple Linear Regression: ANOVA & Coefficient of Determination
Review of Last
Analysis of Variance (ANOVA Approach to Regression

Notes			

Maximum Heart Rate vs. Age: r and R^2

> summary(fit)\$r.squared

[1] 0.9090967

> cor(Age, MaxHeartRate)

[1] -0.9534656

Interpretation:

There is a strong negative linear relationship between <code>MaxHeartRate</code> and <code>Age. Furthermore</code>, \sim 91% of the variation in <code>MaxHeartRate</code> can be explained by <code>Age.</code>

Notes

Residual Plot Revisited

- ⇒ Nonlinear relationship
- ⇒ Non-constant variance
- Transform X
- Transform Y
- Nonlinear regression
- Weighted least squares

Linear ession: VA & cient of nination	Notes		
AS#N			
of (ANOVA) i to on			

Extrapolation in SLR

Extrapolation beyond the range of the given data can lead to seriously biased estimates if the assumed relationship does not hold the region of extrapolation

Notes			
	·		

Summary of SLR

- Model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Estimation: Use the method of least squares to estimate the parameters
- Inference
 - Hypothesis Testing
 - Confidence/prediction Intervals
 - ANOVA
- Model Diagnostics and Remedies

Notes			

Summary

In this lecture, we learned ANOVA Approach to Regression and Coefficient of Determination

Next time: Review

Notes			