Solving generic parametric linear matrix inequalities

Simone Naldi¹ Mohab Safey El Din² Adrien Taylor³ Weijia Wang²

¹Université de Limoges, CNRS, XLIM, Limoges, France ²Sorbonne Université, CNRS, LIP6, Paris, France ³Inria, École normale supérieure, PSL Research University, Paris, France

Parametric linear matrices

Let $\mathbf{y} = (y_1, \dots, y_t), \, \mathbf{x} = (x_1, \dots, x_n).$

 $f \in \mathbb{Q}[m{y}][m{x}]_{\leq 1}$ = linear polynomial in $m{x}$ parametric in $m{y}$

 $A \in \mathbb{S}_m(\mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]_{\leq 1})$ = parametric linear matrix

$$A(y,x) = egin{bmatrix} y_1 y_2 & x_1 & y_2^3 x_2 \ x_1 & y_2 + y_3 & y_1 x_3 \ y_2^3 x_2 & y_1 x_3 & y_1^2 + y_3 \end{bmatrix}$$

Figure 1. Spectrahedron $\{x \in \mathbb{R}^3 : A(y,x) \succeq 0\}$, with y = (1,1,0)

Problem

Let $A \in \mathbb{S}_m(\mathbb{Q}[\boldsymbol{y}][\boldsymbol{x}]_{\leq 1})$, and \mathcal{P} be the set of parameters $y \in \mathbb{R}^t$ such that the parametric linear matrix inequality (LMI)

$$A(y,\cdot) \succeq 0$$

is feasible, i.e. for some $x \in \mathbb{R}^n$, A(y,x) is positive semidefinite / only has nonnegative eigenvalues.

Goal: extract a formula Φ describing (a dense subset of) \mathcal{P}

$$A\succeq 0 \xrightarrow{\quad [\text{Naldi-Safey El Din-Taylor-W 2025}]\quad } \Phi$$
 specialize
$$A(y,\cdot)\succeq 0 \xrightarrow{\quad [\text{Henrion-Naldi-Safey El Din 2016}]} \Phi(y)$$

Applications

- Parametric sum-of-squares problem
 [Motzkin 1967] [Robinson 1973]
- Convergence analyses of first-order optimization methods
 [Drori-Teboulle 2014] [Taylor-Hendrickx-Glineur 2018]
 [Kim-Fessler 2021] [Lieder 2021] [Drori-Taylor 2023]

Quantifier Elimination?

Let g_0, \ldots, g_m be the coefficients of $\det(A + \lambda I_m)$ in λ . Then, $A(y,x) \succeq 0 \iff g_0(y,x) \geq 0 \wedge \ldots \wedge g_m(y,x) \geq 0$. Compute $\Phi = \text{eliminate } \exists x \text{ in the formula (QE)}$

Contributions

Figure 2. Algorithmic pipeline

State of the Art

- CAD: doubly exponential in n [Collins 1975]
- Border polynomials

[Yang-Xia 2005] [Liang-Jeffrey-Maza 2008] [Moroz 2006] [Lazard-Rouillier 2007] [Le-Safey El Din 2022]

Parametric SolveLMI

Figure 3. Reduction to zero-dimensional systems

Arithmetic Complexity

For generic $A \in \mathbb{S}_m(\mathbb{Q}[\boldsymbol{y}]_{\leq d}[\boldsymbol{x}]_{\leq 1})$, # of operations in \mathbb{Q} : $2^{O(mt)}n^{O(1)}(md)^{O(t)}(\delta\Delta)^{O(t)}$

where

 $\delta \in n^{O(m^2)}$ and $\Delta \in e^{O(m^2 \log m)} n^{O(1)} d^{O(m^2+t)} t^{O(1)}$.

Complexity: polynomial in n when m is fixed

Benchmark

• First implementation in Maple, with calls to msolve [Berthomieu-Eder-Safey El Din 2021]

	RRC	RRC sig	QE/Maple	QE/Wolfram
MKN11	5.0 s	1.5 s	5.7 s	0.06 s
RBN11	5.0 s	1.6 s	7.1 s	0.04 s
GRD12	1.0 s	3.7 s	∞	0.5 s
GRD13	19 s	17 s	∞	∞
GRD14	∞	∞	∞	∞
GRD21	0.5 s	1.7 s	1.3 s	0.1 s
GRD22	5.8 s	2 min	∞	42 min
GRD23	∞	∞	∞	∞
PPM21	0.3 s	0.3 s	0.3 s	0.005 s
PPM31	0.3 s	0.4 s	0.4 s	0.007 s
DRS32	2.2 s	8 h	∞	∞
DRS33	18 min	∞	∞	∞
DRS42	52 s	∞	∞	∞
DRS43	∞	∞	∞	∞

Table 1. Benchmark results

