Deep Learning on AWS with TensorFlow and Apache MXNet

Julien Simon Global Evangelist, AI & Machine Learning @julsimon Renaud ALLIOUX CTO, Earthcube

The Amazon ML Stack: Broadest & Deepest Set of Capabilities

ML SERVICES

Pre-built algorithms & notebooks Data labeling (GROUND TRUTH Algorithms & models (AWS MARKETPLACE)

One-click model training & tuning Optimization (NEO)

Models without training data (REINFORCEMENT LEARNING)

DEPLOY

One-click deployment & hosting

ML FRAMEWORKS & INFRASTRUCTURE

Infrastructure

GREENGRASS

The Amazon ML Stack: Broadest & Deepest Set of Capabilities

Algorithms & models (AWS MARKETPLACE)

Models without training data (REINFORCEMENT LEARNING)

Infrastructure

GREENGRASS

AWS is framework agnostic

Choose from popular frameworks

Run them fully managed

Or run them yourself

Amazon SageMaker: Build, Train, and Deploy ML Models at Scale

Collect and prepare training data

Choose and optimize your ML algorithm

Set up and manage environments for training

Train and Tune ML Models

Deploy models in production

Scale and manage the production environment

SIEMENS

AWS Deep Learning AMIs

Preconfigured environments Deep Learning applications

Conda AMI

For developers who want preinstalled pip packages of DL frameworks in separate virtual environments.

Base AMI

For developers who want a clean slate to set up private DL engine repositories or custom builds of DL engines.

AMI with source code

For developers who want preinstalled DL frameworks and their source code in a shared Python environment.

Chainer

TensorFlow

TensorFlow

- Open source software library for Machine Learning
- Main API in Python, experimental support for other languages
- Built-in support for many network architectures: FC, CNN, LSTM, etc.
- Support for symbolic execution, as well as imperative execution since v1.7 (aka "eager execution")
- Complemented by the Keras high-level API

AWS: The platform of choice to run TensorFlow

85% of all TensorFlow workloads in the cloud runs on AWS

Source: Nucleus Research, November 2018

Optimizing TensorFlow for Amazon EC2 C5 instances

Training a ResNet-50 benchmark with the synthetic ImageNet dataset using our optimized build of TensorFlow 1.11 on a c5.18xlarge instance type is 11x faster than training on the stock binaries.

https://aws.amazon.com/about-aws/whats-new/2018/10/chainer4-4 theano 1-0-2 launch deep learning ami/October 2018

Optimizing TensorFlow for Amazon EC2 P3 instances

Apache MXNet

- Open source software library for Deep Learning
- Natively implemented in C++
- Built-in support for many network architectures: FC, CNN, LSTM, etc.
- Symbolic API: Python, Scala, Clojure, R, Julia, Perl, Java (inference only)
- Imperative API: Gluon (Python), with toolkits for computer vision (Gluon CV) and natural language processing (Gluon NLP)

Apache MXNet: deep learning for enterprise developers

Start with off-the-shelf models

- Gluon CV and Gluon NLP
- ONNX compatibility

Fast and scalable training

- Keras-MXNet up to 2x faster than Keras-TensorFlow
- Near-linear scalability up to 256 GPUs
- Dynamic training

Easy deployment

- Java/Scala APIs
- Model Server

Analyzing satellite images at scale with Tensorflow on AWS

Renaud ALLIOUX CTO, Earthcube

"Over 95% of collected intelligence data is never looked at"

A senior French MoD official BFM Business, October 5th, 2018

What we do: Al-enabled GEOINT services

Why Deep Learning with Tensorflow on AWS

Deep Learning: no other computer vision technology allows such performance

Tensorflow: very flexible, especially when using Keras

AWS: scalability of storage and compute

Extensive R&D on Deep Learning models

- Main use: segmentation and object detection
- Custom architectures implemented with Keras
- Ensembling, wide networks (ResNext), capsule and Bayesian Neural networks
- Residual and spatial pyramid pooling layers
- Custom weighted loss functions (eg: weighted cross entropy)

How Earthcube builds on AWS

Data set

- 1.5 million labelled objects
- 3rd party platform: Ingedata.net (hosted on AWS)

Training and inference

- Training on up to 1,000 images: 4 billion pixels each
- AMI based on the AWS Deep Learning AMI
- Amazon EC2 GPU instances

Deployment

- Docker containers on Amazon EC2 (or on-premise)
- Celery

Cloud native deployment using Celery

Lessons learned

- More data beats the most clever algorithm
- More data requires more infrastructure
- Without scalable infrastructure, there is no Al
 - Labeling, storing and versioning datasets and models
 - Training and prediction at scale
 - Automating deployments
- AWS is the key that unlocked Al for Earthcube

The GEOINT community is already using AWS

https://www.youtube.com/watch?v=KXelfBpJtDY

https://aws.amazon.com/ground-station

Next steps

Experiment with Amazon SageMaker to abstract training infrastructure

Try the Apache MXNet backend with Keras (instead of Tensorflow), as it's often twice as fast:

we'd love to train for 7 days instead of 15

TensorFlow and Apache MXNet on Amazon SageMaker

TensorFlow on Amazon SageMaker: a first-class citizen

- Built-in containers for training and prediction.
 - Code available on Github: https://github.com/aws/sagemaker-tensorflow-containers
 - Build it, run it on your own machine, customize it, push it to Amazon ECR, etc.
 - Supported versions: 1.4.1, 1.5.0, 1.6.0, 1.7.0, 1.8.0, 1.9.0, 1.10.0, 1.11.0, 1.12.0
- Advanced features
 - Local mode: train on the notebook instance for faster experimentation
 - Script mode: use the same TensorFlow code as on your local machine (1.11.0 and up)
 - Distributed training: zero setup!
 - Pipe mode: stream large datasets directly from Amazon S3
 - TensorBoard: visualize the progress of your training jobs
 - Keras support (tf.keras.* and keras.*)

Apache MXNet on Amazon SageMaker: a first-class citizen

- Built-in containers for training and prediction.
 - Code available on Github: https://github.com/aws/sagemaker-mxnet-container
 - Build it, run it on your own machine, customize it, push it to Amazon ECR, etc.
 - Supported versions: 0.12.1, 1.0.0, 1.1.0, 1.2.1, 1.3.0

Advanced features

- Local mode: train on the notebook instance for faster experimentation
- Script mode: use the same TensorFlow as on your local machine
- Distributed training: zero setup!
- Pipe mode: stream large datasets directly from Amazon S3
- Keras support (tf.keras.* and keras.*)

Demo: Keras with TF and MXNet

Demo: GluonCV

Optimizing prediction with Amazon SageMaker Neo and Amazon Elastic Inference

Predictions drive complexity and cost in production

Hardware optimization is extremely complex

Amazon SageMaker Neo Train once, run anywhere with 2x the performance

Get accuracy and performance

Automatic optimization

Broad framework support

Broad hardware support

KEY FEATURES

Open-source Neo-Al runtime and compiler under the Apache software license; 1/10th the size of original frameworks

github.com/neo-ai

Are you making the most of your infrastructure?

Low utilization and high costs

One size does not fit all

Amazon Elastic Inference

Reduce deep learning inference costs up to 75%

Lower inference costs

Match capacity to demand

Available between 1 to 32 TFLOPS per accelerator

KEY FEATURES

Integrated with Amazon EC2 and Amazon SageMaker

Support for TensorFlow and Apache MXNet

Single and mixed-precision operations

Getting started

http://aws.amazon.com/free

https://ml.aws

https://aws.amazon.com/sagemaker

https://github.com/aws/sagemaker-python-sdk

https://github.com/awslabs/amazon-sagemaker-examples

https://medium.com/@julsimon

https://gitlab.com/juliensimon/dlnotebooks

Thank you!

Julien Simon Global Evangelist, AI and Machine Learning

@julsimon

Please complete the session survey.

