427

Register No.:

October 2018

Time - Three hours (Maximum Marks: 75)

[N.B:- (1) Answer any FIVE questions in each of PART-A & PART-B and any two divisions of each question in PART-C.

(2) Each question carries 2(two) marks in PART-A, 3(three) marks in PART-B and 5(five) marks for each division in PART-C.]

PART - A

- 1. Find the co-factor of 3 in the determinate $\begin{vmatrix} 1 & 2 & 0 \\ -1 & 3 & 4 \\ 5 & 6 & 7 \end{vmatrix}$
- 2. Find the rank of $\begin{pmatrix} 3 & -4 \\ -6 & 8 \end{pmatrix}$
- 3. If $Z_1 = 2 + 3i$, $Z_2 = 4 5i$, find $Z_1 Z_2$.
- 4. If 'w' is a cube roots of unity, find the value of $w^4 + w^5 + w^6$.
- 5. Express $\sin 5A \sin 3A$ as product.
- 6. Find $\frac{dy}{dx}$, if $y = 8e^x 4 \cos ex$
- 7. If $u = x^3 + y^3$, find $\frac{\partial^2 u}{\partial x^2}$
- 8. Find the value of $\frac{\tan 20^{\circ} + \tan 25^{\circ}}{1 \tan 20^{\circ} + \tan 25^{\circ}}$

PART - B

- 9. Find the 6th term in the expansion of $\left(x^3 \frac{1}{x^2}\right)^{14}$
- 10. If $a = \cos x + i \sin x$; $b = \cos y + i \sin y$, find ab and $\frac{1}{ab}$
- 11. Prove that $\cos^4 A \sin^4 A = \cos 2A$
- 12. If $\sin \theta = \frac{3}{5}$, find the value of $\sin 3\theta$
- 13. Evaluate: $Lt_{x\to a} \frac{\sqrt{x}-\sqrt{a}}{x-a}$
- 14. Find $\frac{dy}{dx}$, if $y = \frac{x \sin x}{e^x}$
- 15. Find $\frac{dy}{dx}$, if $y = (x^2 + 5) \cos x e^{-2x}$
- 16. Form the differential equation of $y^2 = 4ax$ by eliminating the constant 'a'.

[Turn over

PART - C

- 17. (a) If A and B are acute angles and $\sin A = \frac{1}{\sqrt{10}}$, $\sin B = \frac{1}{\sqrt{5}}$, prove that $A + B = \frac{\pi}{4}$
 - (b) Prove that $\frac{\sin 3\theta}{\sin \theta} \frac{\cos 3\theta}{\cos \theta} = 2$
 - (c) If $a = \sin x + \sin y$ and $b = \cos x + \cos y$, prove that $a^2 + b^2 = 4\cos^2\left(\frac{x-y}{2}\right)$
- 18. (a) Find the modulus and amplitude of $\frac{-3+i}{-1+i}$
 - (b) Simplify using DeMoivre's theorem:

$$\frac{(\cos 2\theta - i \sin 2\theta)^7(\cos 3\theta + i \sin 3\theta)^{-5}}{(\cos 4\theta + i \sin 4\theta)^2(\cos 5\theta - i \sin 5\theta)^{-6}}$$

- (c) Solve: $x^5 + x^3 + x^2 + 1 = 0$
- 19. (a) Solve by using Cramer's rule 3x y + 2z = 8; x y + z = 2 and 2x + y z = 1.
 - (b) Find the inverse of $\begin{pmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{pmatrix}$
 - (c) Find the middle terms in the expansion of $\left(x^3 + \frac{2}{x^3}\right)^{11}$
- 20. (a) Prove that $tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) = 3 tan^{-1}x$
 - (b) Evaluate:

(i) Lt_{x→3}
$$\frac{x^6-3^6}{x-3}$$
 (ii) Lt _{θ →0} $\frac{\sin 7\theta}{\sin 2\theta}$

(c) Find
$$\frac{dy}{dx}$$
, if (i) $y = (2x+1)(3x-7)(4-9x)$ (ii) $y = \frac{e^x + sinx}{1-cosx}$

- 21. (a) Find $\frac{dy}{dx}$, if (i) $y = \log\left(\frac{1+\sin x}{1-\sin x}\right)$ (ii) $y = a + xe^y$
 - (b) If $y = a \cos(\log x) + b \sin(\log x)$, prove that $x^2y_2 + xy_1 + y = 0$

(c) If
$$u = x^4 + 4x^3y + 3x^2y^2 + y^4$$
, find $\frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial^2 u}{\partial y^2}$

தமிழ் வடிவம்

- [குறிப்பு : (1) பகுதி–அ மற்றும் பகுதி–ஆ, ஆகிய ஒவ்வொரு பகுதியிலிருந்து ஏதேனும் ஐந்து வினாக்களுக்கும், மற்றும் பகுதி–இ–யில் ஒவ்வொரு வினாவிலிருந்து ஏதேனும் இரு பிரிவுகளுக்கும் விடையளிக்கவும்.
 - வினாவும் பகுதி—அ–வில் 2(இரண்டு) மதிப்பெண்கள், (2) ஒவ்வொரு பகுதி-ஆ-வில் 3(முன்று) மதிப்பெண்கள் மற்றும் பகுதி-இ-யில் ஒவ்வொரு பிரிவும் 5(ஐந்து) மதிப்பெண்கள் பெறும்.]

- காண்க.
- 2. $\binom{3}{-6} \cdot \binom{-4}{8}$ என்ற அணியின் தரம் காண்க.
- $Z_1=2+3i$, $Z_2=4-5i$ எனில், Z_1-Z_2 —ன் மதிப்பு காண்க.
- ஒன்றின் 3 ஆம் படி மூலம் w' எனில், $w^4 + w^5 + w^6$ –ன் மதிப்பு காண்க.
- $\sin 5A \sin 3A$ என்ற கழித்தலை பெருக்கலாக தெரிவி.
- $y = 8e^x 4 \cos e c x$ எனில், $\frac{dy}{dx}$ யைக் காண்க.
- 7. $u = x^3 + y^3$ எனில், $\frac{\partial^2 u}{\partial x^2}$ –ன் மதிப்பை காண்க.
- 8. $\frac{\tan 20^{\circ} + \tan 25^{\circ}}{1 \tan 20^{\circ} + \tan 20^{\circ}}$ —இன் மதிப்பை காண்க.

- 9. $\left(x^3 \frac{1}{x^2}\right)^{14}$ –ன் விரிவாக்கத்தில் 6 –ம் உறுப்பைக் காண்க.
- மற்றும் $\frac{1}{ab}$ -ன் $a = \cos x + i \sin x$; $b = \cos y + i \sin y$, smalle, ab மதிப்பைக் காண்க.
- 11. $\cos^4 A \sin^4 A = \cos 2A$ என நிரூபி.
- 12. $\sin \theta = \frac{3}{5}$ எனில், $\sin 3\theta$ –ன் மதிப்பைக் காண்க.
- 13. மதிப்பிடுக: $Lt_{x\to a} \frac{\sqrt{x}-\sqrt{a}}{x-a}$
- 14. $y = \frac{x \sin x}{e^x}$ எனில், $\frac{dy}{dx}$ யைக் காண்க.
- $y = (x^2 + 5)\cos x e^{-2x}$ எனில், $\frac{dy}{dx}$ யைக் காண்க.
- a' என்ற மாறிலியை நீக்கி $y^2=4ax$ –ன் வகைகெழு சமன்பாட்டினைக்

[திருப்புக

பகுதி –இ

- 17. (அ) A மற்றும் B குறுங்கோணம், மேலும் $\sin A = \frac{1}{\sqrt{10}}$, $\sin B = \frac{1}{\sqrt{5}}$ எனில், $A + B = \frac{\pi}{4}$ என நிரூபி.
 - (ஆ) நிரூபி $\frac{\sin 3\theta}{\sin \theta} \frac{\cos 3\theta}{\cos \theta} = 2$.
 - (இ) $a = \sin x + \sin y$ மற்றும் $b = \cos x + \cos y$ எனில், $a^2 + b^2 = 4\cos^2\left(\frac{x-y}{2}\right)$ என நிரூபி.
- 18. (அ) $\frac{-3+i}{-1+i}$ என்ற கலப்பெண்ணின் மட்டு மற்றும் வீச்சு காண்க.
 - (ஆ) டி–மார்வின் தேற்றத்தைப் பயன்படுத்தி சுருக்குக: $\frac{(\cos 2\theta i \sin 2\theta)^7 (\cos 3\theta + i \sin 3\theta)^{-5}}{(\cos 4\theta + i \sin 4\theta)^2 (\cos 5\theta i \sin 5\theta)^{-6}}$
 - (இ) தீர்க்க: $x^5 + x^3 + x^2 + 1 = 0$
 - 19. (அ) கிராமரின் விதியை பயன்படுத்தி 3x-y+2z=8; x-y+z=2 மற்றும் 2x+y-z=1 என்ற சமன்பாடுகளைத் தீர்க்க.
 - (ஆ) $\begin{pmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{pmatrix}$ –ன் நேர்மாறு அணியைக் காண்க.
 - (இ) $\left(x^3 + \frac{2}{x^3}\right)^{11}$ –ன் விரிவாக்கத்தின் நடு உறுப்புகளைக் காண்க.
 - 20. (அ) நிரூபி: $tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right) = 3 tan^{-1}x$.
 - (ஆ) மதிப்பிடுக: (i) $\mathrm{Lt}_{x \to 3} \frac{x^6 - 3^6}{x - 3}$ (ii) $\mathrm{Lt}_{\theta \to 0} \frac{\sin 7\theta}{\sin 2\theta}$
 - (இ) (i) y = (2x+1)(3x-7)(4-9x) (ii) $y = \frac{e^x + sinx}{1-cosx}$ எனில், $\frac{dy}{dx}$ —ஐக் காண்க.
 - 21. (அ) (i) $y = \log\left(\frac{1+\sin x}{1-\sin x}\right)$ (ii) $y = a + xe^y$ எனில், $\frac{dy}{dx}$ ஐக் காண்க.
 - (ஆ) $y = a \cos(\log x) + b \sin(\log x)$ எனில், $x^2y_2 + xy_1 + y = 0$ என நிரூபி.
 - (இ) $u=x^4+4x^3y+3x^2y^2+y^4$ எனில், $\frac{\partial^2 u}{\partial x^2}$ மற்றும் $\frac{\partial^2 u}{\partial y^2}$ ஆகியவற்றைக் காண்க.