Федеральное государственное автономное образовательное учреждение высшего образования

«Санкт-Петербургский национальный исследовательский университет ИТМО»

Институт ПИиКТ

Дисциплина: Информационные системы и базы данных

Лабораторная работа №3

Выполнил: Сиразетдинов Азат Ниязович

Группа: Р3116

Преподаватель: Горбунов

Михаил Витальевич

Оглавление

Вадание	3
Выполнение	4
Исходная модель	4
Функциональные зависимости	4
Анализ зависимостей	5
1NF	5
2NF	5
3NF	6
НФБК	6
Нормализованная модель:	6
Денормализации	7
Объединение связанных таблиц	7
Добавление избыточных атрибутов	7
Функция	7
Триггер	8
Зывол	9

Задание

Для отношений, полученных при построении предметной области из лабораторной работы №1, выполните следующие действия:

Опишите функциональные зависимости для отношений полученной схемы (минимальное множество);

Приведите отношения в 3NF (как минимум). Постройте схему на основеNF (как минимум).

Опишите изменения в функциональных зависимостях, произошедшие после преобразования в 3NF (как минимум). Постройте схему на основеNF; Преобразуйте отношения в BCNF. Докажите, что полученные отношения представлены в BCNF. Если ваша схема находится уже в BCNF, докажите это:

Какие денормализации будут полезны для вашей схемы? Приведите подробное описание.

Придумайте триггер и связанную с ним функцию, относящиеся к вашей предметной области, согласуйте их с преподавателем и реализуйте на языке PL/pgSQL.

Выполнение

Исходная модель

Функциональные зависимости

car: $id \rightarrow (speed, road_id)$

human: $id \rightarrow (car_id, human_name)$

imagination: id \rightarrow (human_id, city_id, imagination_text),

(id, imagination_text) \rightarrow mood

question: id → (imagination_id, question_text)

city: id \rightarrow (name, city_size)

Анализ зависимостей

1NF

Отношение, на пересечении каждой строки и столбца — одно значение. Представленная модель удовлетворяет первой нормальной форме

2NF

- 1) отношение в 1НФ и
- 2) атрибуты, не входящие в первичный ключ, в полной функциональной зависимости от первичного ключа отношения.

Второй пункт не выполняется в таблице imagination.

Новая модель:

car: id → (speed, road_id)
human: id → (car_id, human_name)
imagination: id → (human_id, city_id, think_id)
think: id → (imagination_text, mood)
question: id → (imagination_id, question_text)
city: id → (name, city_size)

3NF

Отношение в

- 1) 1НФ и 2НФ и
- 2) все атрибуты, которые не входят в первичный ключ, не находятся в транзитивной функциональной зависимости от первичного ключа. Рассматриваемая модель находится в третьей нормальной форме.

НФБК

Отношение в НФБК, когда для всех функциональных зависимостей отношения выполняется условие: детерминант — потенциальный ключ. Рассматриваемая модель находится в нормальной форме Бойса-Кодда

Нормализованная модель:

car: id \rightarrow (speed, road_id)

human: id \rightarrow (car_id, human_name)

imagination: id → (human_id, city_id, think_id)

think: id→ (imagination_text, mood)

question: $id \rightarrow (imagination_id, question_text)$

city: id \rightarrow (name, city_size)

Денормализации

Объединение связанных таблиц

Если в модели у каждой мысли будет ровно один вопрос (что вполне возможно, используя правило 5 вопросов «Почему?»), то стоит объеденить таблицы think и question.

Добавление избыточных атрибутов

Вероятно при использовании базы данных для прокладки маршрута придется искать дорогу с наименьшей загруженностью, тогда было бы удобно иметь поле car_count в таблице road отображающее количество автомобилей на дороге, которое мы бы обновляли при добавлении машины на дорогу.

Функция

Функция на языке PL/pgSQL для поиска дороги с минимальной загруженностью

```
CREATE OR REPLACE FUNCTION low traffic road id() RETURNS integer AS $$
   min road integer;
BEGIN
       IF (EXISTS (
               SELECT *
               FROM road
               LEFT JOIN car
               ON car.road id = road.id
               WHERE car.id IS NULL
       )) THEN
               SELECT road.id INTO min road
               FROM road
               LEFT JOIN car
               ON car.road id = road.id
               WHERE car.id IS NULL
               LIMIT 1;
               RETURN min road;
   ELSE
           SELECT road id INTO min road
           FROM car
           GROUP BY car.road id
               ORDER BY COUNT (*)
           LIMIT 1;
           RETURN min road;
       END IF;
END;
LANGUAGE plpgsql;
```

Триггер

Я добавил поле traffic_load в таблицу road, которое отвечает за количество машин на дороге и написал для автоматического обновления этого атрибута триггер

```
CREATE OR REPLACE FUNCTION update road traffic()
RETURNS TRIGGER AS $$
BEGIN
    IF (TG OP = 'INSERT') THEN
       UPDATE road
        SET traffic load = traffic load + 1
        WHERE id = NEW.road id;
    ELSIF (TG OP = 'DELETE') THEN
        UPDATE road
        SET traffic_load = traffic_load - 1
        WHERE id = OLD.road id;
    END IF;
    RETURN NULL;
END
LANGUAGE plpgsql;
CREATE OR REPLACE TRIGGER update road traffic trigger
AFTER INSERT OR DELETE ON car
FOR EACH ROW
EXECUTE FUNCTION update road traffic();
```

Вывод

В процессе выполнения работы я узнал про нормализацию, привел мою модель к НФБК и доказал это, написал функцию и триггер.