

Important Questions

Engineering Mathematics – I (BAS103) (Year: 2022-23)

SECTION A:

- 1. Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{bmatrix}$, a, b, c are being real.
- 2. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & -1 \\ 2 & A & 5 \end{bmatrix}$, find the eigen values of $A^2 3A 2I$.
- 3. Find the sum and product of the eigen values of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$
- 4. If $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$, find the eigen values of $A^2 + 2A 3I$. 5. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & -1 & 0 \\ 1 & 2 & 2 \end{bmatrix}$, find the eigen values of $A^2 5A 3A^{-1}$.
- Show that the matrix iA is Skew-Hermitian where $A = \begin{bmatrix} 3 & 5+2i & -3 \\ 5-2i & 7 & 4i \\ -3 & -4i & 5 \end{bmatrix}$.

- 7. Prove that the matrix $A = \frac{1}{2} \begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix}$ is unitary.

 8. Prove that the matrix $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ 1-i & -1 \end{bmatrix}$ is unitary.

 9. Prove that the matrix $A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix}$ is unitary. Where ω is the cube root of unity.
- 10. Show that the vectors $X_1 = (1, -1, 1)$, $X_2 = (2, 1, 1)$ and $X_2 = (3, 0, 2)$ are linearly dependent. 11. Examine the linear dependence of the vectors $X_1 = (1, 1, -1, 1)$, $X_2 = (1, -1, -2, -1)$ and $X_3 = (3, 1, 0, 1)$.
- 12. Find the nth derivatives of $y = \frac{1}{x^2 + a^2}$
- 13. Find the nth derivatives of $y = x^2 \sin 2x$.
- Find the nth derivative of sin³x.
- 15. Find the nth derivative of $x^2 \sin 2x$ at x = 0 by using Leibnitz theorem.
- 16. If $u = \log\left(\frac{x^4 + y^4}{x + y}\right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$ by using Euler's theorem.
- 17. If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x y}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$ by using Euler's theorem.
- 18. If $u = \sin^{-1}\left(\frac{x+2y+3z}{\sqrt{x^8+y^8+z^8}}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} + 3tanu = 0$ by using Euler's theorem.
- 19. If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, prove that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.
- 20. If u = f(2x 3y, 3y 4z, 4z 2x), prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$.
- 21. If u = f(y z, z x, x y), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$
- 22. If $u = \log(\tan x + \tan y)$, show that $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} = 2$.
- 23. If $u = e^{xyz}$, then find $\frac{\partial^3 u}{\partial x \partial y \partial z}$
- 24. If $z = \tan(y + ax) (y + ax)^{3/2}$, find the value of $\frac{\partial^2 z}{\partial x^2}$
- 25. What is the maximum value of $f(x, y) = 1 x^2 y^2$.

- 26. What is the minimum value of $f(x, y) = x^2 + y^2$.
- 27. Find the extreme point for the function $x^3y^2(1-x-y)$.
- 28. Find the extreme point of $x^2 + y^2 6x + 10$.
- 29. Find the stationary point of $f(x,y) = 5x^2 + 10y^2 + 12xy 4x 6x + 1$.
- 30. If $u = \frac{yz}{x}$, $v = \frac{xz}{y}$ and $w = \frac{xy}{z}$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$.
- 31. If $y_1 = 1 x_1$, $y_2 = x_1(1 x_2)$ and $y_3 = x_1x_2(1 x_3)$, find $\frac{\partial (y_1, y_2, y_3)}{\partial (x_1, x_2, x_3)}$
- 32. Use the Jacobian to prove that the functions u = x + y + z, $v = x^2 + y^2 + z^2$ and w = xy + yz + zx are not
- 33. Use the Jacobian to prove that the functions u = x + y z, v = x y + z and $w = x^2 + y^2 + z^2 2yz$, are not
- 34. Use the Jacobian to prove that the functions u = x + 2y + z, v = x 2y + 3z and $w = 2xy xz + 4yz 2z^2$
- 35. If $x = e^{v} secu$, $y = e^{v} tanu$, find $\frac{\partial(x,y)}{\partial(u,v)}$
- 36. Find the possible percentage error in computing the parallel resistance r of three resistances r_1, r_2, r_3 if r_1, r_2, r_3
- 37. Find the possible percentage error in computing the series resistance r of three resistances r_1, r_2, r_3 if r_1, r_2, r_3 are
- 38. Prove that $div(curl\vec{V}) = \nabla \cdot (\nabla \times \vec{V}) = 0$.
- 39. Prove that $curl(grad\emptyset) = \nabla \times \nabla \emptyset = \vec{0}$.

SECTION B:

- 1. Find the Eigen values and Eigen vectors of the matrix A =Find the Eigen values and Eigen vectors of the matrix A =Find the Eigen values and Eigen vectors of the matrix A =4. Find the Eigen values and Eigen vectors of the matrix A =
- 5. Find the Eigen values and Eigen vectors of the matrix A =
- 6. If $y = (\sin^{-1}x)^2$, prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$. Also find $y_n(0)$.
- 7. If $y = sin(asin^{-1}x)$, prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 a^2)y_n = 0$. Also find $y_n(0)$.
- 8. If $y = [\log(x + \sqrt{1 + x^2})]^2$ then find $y_n(0)$.
- 9. If $y = [x + \sqrt{1 + x^2}]^m$, find $(y_n)_0$.
- $10. \text{ If } y = e^{mSin^{-1}x} \text{ then prove that } (1-x^2)y_{n+2} (2n+1)xy_{n+1} (n^2+m^2)y_n = 0 \text{ Also find } y_n(0) \text{ .}$
- 11. If u, v, w are the roots of the cubic $(\lambda x)^3 + (\lambda y)^3 + (\lambda z)^3 = 0$ in λ . Find the value of $\frac{\partial (u, v, w)}{\partial (x, y, z)}$
- 12. If $u^3 + v + w = x + y^2 + z^2$, $u + v^3 + w = x^2 + y + z^2$ and $u + v + w^3 = x^2 + y^2 + z$. Show that $\frac{\partial (u, v, w)}{\partial (x, y, z)}$ $2-3(u^2+v^2+w^2)+27u^2v^2w^2$
- 13. If $u^3 + v^3 + w^3 = x + y + z$, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$ and $u + v + w = x^2 + y^2 + z^2$. Show that $\frac{\partial(u,v,w)}{\partial z} = \frac{(x-y)(y-z)(z-x)}{z-x}$ (u-v)(v-w)(w-u)
- 14. Find the dimensions of a rectangular box of maximum capacity whose surface area is given when (i) Box is open

- 15. Divide 24 into three parts such that the continued product of the first, square of the second and cube of the third may be maximum.
- 16. Find the constant a, b, c so that $\vec{F} = (x + 2y + az)\hat{\imath} + (bx 3y z)\hat{\jmath} + (4x + cy + 2z)\hat{k}$ is irrotational. If $\vec{F} = (x + 2y + az)\hat{\imath} + (bx 3y z)\hat{\jmath} + (4x + cy + 2z)\hat{k}$ is irrotational. gradø, Find the velocity potential Ø.
- 17. Show that $\vec{A} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational. Find the velocity potential \emptyset such that

SECTION C:

- 1. Verify Cayley-Hamilton Theorem for $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$. Also find A^{-1} .

 2. Verify Cayley-Hamilton Theorem for $A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$. Also find A^{-1} .
- 3. By using Cayley-Hamilton Theorem find A^{-1} of the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \end{bmatrix}$.
- 4. If $A = \begin{bmatrix} 7 & -1 & 3 \\ 6 & 1 & 4 \\ 2 & 4 & 8 \end{bmatrix}$, then find A^{-1} by using Cayley-Hamilton theorem. 5. If $A = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix}$, then find A^{-1} by using Cayley-Hamilton theorem.
- 6. Evaluate the expression $A + 5I + A^{-1}$. If $A = \begin{bmatrix} -3 & 2 \\ -1 & 0 \end{bmatrix}$
- 7. Express $2A^5 3A^4 + A^2 4I$ as a linear polynomial in A, where $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$

- 8. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 3 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$ by reducing it to normal form.

 9. Find the rank of the matrix $A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 1 & 2 & 1 & 1 \\ 3 & 1 & 0 & 2 \end{bmatrix}$ by reducing it to normal form.

 10. Find the rank of the matrix $A = \begin{bmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 3 & 1 \\ 1 & -1 & 2 & 0 \end{bmatrix}$ by reducing it to normal form.

 11. Find the rank of $A = \begin{bmatrix} -2 & -1 & 3 & -1 \\ 1 & 2 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$, by reducing into its normal form.

 12. Find the rank of $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$, by reducing into its normal form.
- 13. Investigate, for what values of λ and μ do the system of equations 2x 5y + 2z = 8, 2x + 4y + 6z = 5, x + 4y + 6z = 5 $2y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) infinite solutions?
- 14. Investigate, for what values of λ and μ do the system of equations x+y+z=6, x+2y+3z=10, x+2y+3z=10 $\lambda z = \mu$ have (i) no solution (ii) unique solution (iii) infinite solutions?
- 15. Show that the matrix $A = \begin{bmatrix} \alpha + i\gamma & -\beta + i\delta \\ \beta + i\delta & \alpha i\gamma \end{bmatrix}$ is unitary if $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 1$.
- 16. Find the value of n so that the equation $V = r^n (3\cos^2\theta 1)$ satisfy the relation $\frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r}\right) + \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r}\right)$ $\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \, \frac{\partial v}{\partial\theta} \right) = 0.$
- 17. If $u = \log(x^3 + y^3 + z^3 3xyz)$, prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}$. 18. If u = f(r), $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$.

- 19. If $x^x y^y z^z = c$, show that at x = y = z, $\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}$.
- 20. If $u = \log(x^3 + y^3 x^2y xy^2)$, then show that $u_{xx} + 2u_{xy} + u_{yy} = -\frac{4}{(x+y)^2}$.
- 21. If $y = (x^2 1)^n$, prove that $(x^2 1)y_{n+2} + 2xy_{n+1} n(n+1)y_n = 0$. 22. If $x = \tan(\log y)$, prove that $(1 + x^2)y_{n+2} + (2(n+1)x 1)y_{n+1} + n(n+1)y_n = 0$
- 23. If $u = \csc^{-1}\left(\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}\right)^{1/2}$, then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{144} (13 + \tan^2 u)$. 24. If $u = \sin^{-1}\left(\frac{x^{1/4} + y^{1/4}}{x^{1/6} + y^{1/6}}\right)$, then evaluate $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.
- 25. If $u = cosec^{-1} \left(\frac{x^{1/4} + y^{1/4}}{x^{1/6} + y^{1/6}}\right)^2$, then evaluate $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$
- 26. If $u = sec^{-1}\left(\frac{x^3-y^3}{x+y}\right)$, find the value of $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy}$ by using Euler's theorem.
- 27. If $u = \sin^{-1}\left(\frac{x^3 + y^3}{\sqrt{x} + \sqrt{y}}\right)$, find the value of $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy}$ by using Euler's theorem.
- 28. Find the nth derivative of $tan^{-1} \left(\frac{1+x}{1-x} \right)$. 29. Find the nth derivative of $tan^{-1} \left(\frac{a+x}{1-x} \right)$.
- 30. Find the nth derivative of $tan^{-1}\left(\frac{2x}{1-x^2}\right)$

- 31. Expand $f(x,y) = e^x \log(1+y)$ in powers of x and y up to third degree terms. 32. Expand $f(x,y) = e^x \tan^{-1} y$ in powers of (x-1) and (y-1) up to two degree terms. 33. Express the function $f(x,y) = x^2 + 3y^2 9x 9y + 26$ as Taylor's series expansion about the point (1,2). 34. Expand $x^2y + \sin y + e^x$ in power of (x-1) and $(y-\pi)$ up to the third degree terms by using Taylor's
- 35. Expand $e^x \cos y$ at $(1, \pi/4)$ by using Taylor's theorem.
- 36. If $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_1 x_3}{x_2}$, $y_3 = \frac{x_2 x_1}{x_3}$, then find $\frac{\partial (y_1, y_2, y_3)}{\partial (x_1, x_2, x_3)}$. 37. If x + y + z = u, $y + z = u^2 v$, $z = u^3 w$ then find $\frac{\partial (u, v, w)}{\partial (x, y, z)}$.
- 38. Examine for extreme values of $x^3 + y^3 3axy$.
- 39. Examine for extreme values of $\cos x + \cos y + \cos(x + y)$.
- 40. A rectangular box which is open at the top has a capacity of 32 cc. Determine, using Lagrange's method of multipliers, and the dimension of the box such that the least material is required for the construction of the box.
- 41. Find the maximum and minimum distances of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$ 42. Find the shortest and longest distances from the point (1, 2, -1) to the sphere $x^2 + y^2 + z^2 = 24$.
- 43. A balloon in form of right circular cylinder of radius 1.5 m and length 4 m is surmounted by hemispherical ends. If the radius is increased by 0.01 m. Find the percentage change in volume of the balloon.
- 44. Find the approximate value of $[(0.98)^2 + (2.01)^2 + (1.94)^2]^{1/2}$.
- 45. In estimating the cost of a pile of bricks measured as 6m x 50m x 4m, the tape is stretched 1% beyond the standard length. If the count is 12 bricks in 1 m³ and bricks cost Rs. 100 per 1000. Find the approximate error in
- 46. Show that the vector $\vec{F} = \frac{\vec{r}}{r^3}$ is solenoidal.
- 47. Find the directional derivative of $\emptyset(x, y, z) = xy^2 + yz^3$ at point (2, -1, 1) in the direction of the normal to the surface $x \log z - y^2 + 4$ at (2, -1, 1).
- 48. Calculate the angle between the normal to the surface $xy = z^2$ at the point (4, 1, 2) and (1, 0, 2).
- 49. Prove that $div(r^n\vec{r}) = (n+3)r^n$, further show that $r^n\vec{r}$ is solenoidal only if n=-3. 50. Find the directional derivative of $\phi = (x^2 + y^2 + z^2)^{-1/2}$ at the point P(3, 1, 2) in the direction of the vector $yz\hat{\imath} + zx\hat{\jmath} + xy\hat{k}$. 51. If u = x + y + z, $v = x^2 + y^2 + z^2$, w = xy + yz + zx prove that $grad\ u$, $grad\ v$ and $grad\ w$ are coplanar.

