$$i^{2} = -I$$
, $j^{2} = -I$, $k^{2} = -I$
 $ij = k = -ji$
 $jk = i = -kj$
 $ki = j = -ik$

Exercise:

Check that Qg is non Abelian group under multiplication

11/08

pefinition

A function $m: \mathbb{R}^n \to \mathbb{R}^n$ is called as isometry of \mathbb{R}^n if $\mathbb{I}[m(u) - m(v)] = \mathbb{I}[v - v]$

Examples

- (i) If A is an orthogonal matrix, then $u \rightarrow Au$ is an isometry
- (ii) Let $tw: IR^n \rightarrow IR^n$ be given by $u \mapsto u + w$ where w is a fixed element in IR^n || tw(u) tw(v)|| = ||(u+w) (v+w)|| = ||u-v||

Remark

Let $M_n = \{m : \mathbb{R}^n \rightarrow \mathbb{R}^n \mid m \text{ is an isometry }\}$

1) closed

If m, , m2 E Mn

- = 11 m, 0 m2 (u) m, 0 m2 (v) 11
- = 11 m2 (u) m2 (v) 11 [Because of isometry property of m,]
- = 110- 11
- 2 Associativity is hereditary
- 3 Id: IR" -> IR" is an isometry
- (4) Let $f \in Mn$ f is injective If f(u) = f(v) => || f(u) - f(v)|| = 0

Theorem

Let m: IR" -> IR" be any function. Then -the following are true (equivalent)

- is m is an isometry and m (0) = 0
- is m preserves dot products i.e if u, ve 12, then mcus. mcv= u.v
- iii) m is given by an orthogonal linear transformation i.e m(u) = Au for some A = On (IR)

Lemma

Let f: IR" > IR" be a function satisfying

- i) $f(u) f(v) = u \cdot v$
- ii) f(ei) = e; where e; = (0,0,...,1,0,... 0) ith position

Then f = Id

To show that f(u,, u2,..., un) = (u,,..., un) & u = 12 we want to prove that flu) · e; = u·e; +i But f(u). ei = f(u). f(ei)

= u.e; [from Theorem]

froof for Theorem

(a) => (b)

114-V112 = 4.4 - U.V - V.4 + V.V $\|m(u) - m(v)\|^2 = m(u) \cdot m(u) - m(u) \cdot m(u) - m(v) \cdot m(u)$

+ m(u) · m(u)

Using (a) , Il mull 1 = 11 ull2

- =) 2 u · v = 2 m(u) · m(v) [u · v = v · u]
- =) U. V= m(u). m(v)

Let us define
$$A = \begin{pmatrix} 1 & 1 & 1 \\ m(e_1) & m(e_2) & \dots & m(e_n) \end{pmatrix}$$

Let $A^TA = \begin{pmatrix} a_{ij} \\ 1 \end{pmatrix}$

Let
$$A^TA = (a_{ij})$$
, then $a_{ij} = m(e_{ij}) / px_{ij}$

$$m(e_{i}) m(e_{ij})$$

Thus
$$A^{T}A = Id = AA^{T} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i\neq j \end{cases}$$

because $m(e_i) \cdot m(e_j) = e_i \cdot e_j$

Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be the orthogonal linear transformation given by

$$L: \mathbb{R}^n \to \mathbb{R}^n$$

$$u \mapsto A^{-1}u$$

L, m preserve dot products
Hence Lom preserves dot products

Now, Lo(m(ei)) = L(Aei) = $A^{-1}(Aei)$ = eiBy the Lemma Lom = Idive, $A^{-1}(M(u))$ = Iu $A^{-1}(M(u)) = u = M(u) = Au$

m(u) = Au , $A \in O_n(IR)$ || m(u) - m(v) || = || Au - Av || = ||A|| || || u - v || = || u - v || $m(o) = A \cdot o = o$

Hence, @, B, @ are all equivalent

Theorem (Structure theorem for isometry)

Let $m: \mathbb{R}^N \to \mathbb{R}^N$ be an isometry. Then there exists $A \in O_n(\mathbb{R})$ and $w \in \mathbb{R}^N$ such that m(u) = Au + w

Proof: For well, let tw: IR" -> R" given by tw(u) = u+w YueR"

Let $m: IR^n \rightarrow IR^n$ be an isometry suppose m(0) = W

Consider the map towo m

Now, $t_{-\omega}(m(0)) = t_{-\omega}(\omega)$ = $\omega - \omega = 0$

By the above theorem,

* t-w(m(0)) = A4 (from (c) of Theorem)

=) m(u) = Au+w

Given A & Mn(R), we define Ta: IR" -> IR" by Ta(u) = Au

But $t_{-\omega}(m(u)) = m(u) - \omega$

The last theorem shows that if $f:\mathbb{R}^n \to \mathbb{R}^n$ is an isometry, then $f=t+w\circ T_A$ for some $A\in On(\mathbb{R})$ and $w\in \mathbb{R}_n$

Thus, if f is an isometry given by f=two Ta

Now $f^{-1} = (t_w \circ T_A)^{-1} = T_{A^{-1}} \circ t_{-w}$ is an isometry

=) Mn is a group

· TA-1 (t_w(u)) = t_A-1 w TA-1 (u)

Subgroups

called a subgroup of G if H itself is a group.

Notation

H ≤ G1 → Denotes H is a subgroup of G1 Examples

i)
$$(\mathbb{Z},+) \leq (\mathbb{Q},+) \leq (\mathbb{R},+) \leq (\mathbb{C},+)$$

$$(-1,1) \leq (Q^{\times},\cdot) \leq (R^{\times},\cdot) \leq (\ell^{\times},\cdot)$$

(iii)
$$S' = \{ z \in C \mid 121 = 1 \}$$

($S', ...$) $\leq (C^*, ...)$

$$V) = \{e^{\frac{2\pi i}{n}} \mid i=0,..., n-1\} \leq (s^{1},..)$$

Proposition

Let G be a group and H = G

- (i) H < 61
- (iii) $H \neq \emptyset$ and for $x,y \in H$, $xy \in H$ and $x^{-1} \in H$
- (iii) H = Ø and for x, y eH, xy = H

Proof:

©
$$\Rightarrow$$
 @ Since $H \neq \emptyset$, $\exists x \in G$ such $x \in H$

$$\Rightarrow x x^{-1} \in H \Rightarrow e \in H$$
Let $y \in H$, then $ey^{-1} \in H \Rightarrow y^{-1} \in H$