Лабораторная работа №11.3 Измерение контактной разности потенциалов в полупроводниках

Драчов Ярослав Факультет общей и прикладной физики МФТИ

1 марта 2021 г.

Результаты экспериментов и вычислений приведены в табл. 1. Были использованы следующие данные

$$t = t_{\text{комн}} + U/\beta, \quad t_{\text{комн}} = 25 \pm 1^{\circ}\text{C}, \quad \beta = 41 \cdot 10^{-6}\text{B}/^{\circ}\text{C}, \quad R_0 = R(t_{\text{комн}}).$$

На рис. 1 представлена зависимость $\ln(R_g)$ от 1/T. Коэффициент наклона

U, MB	R, Om	$1/T$, 10^{-3} K ⁻¹	$\ln\left(R/R_0\right)$
0	2380 ± 10	$3,354 \pm 0,011$	0
$0,390 \pm 0,010$	1100 ± 10	$3,250 \pm 0,011$	$-0,772 \pm 0,010$
$0,670 \pm 0,010$	700 ± 10	$3,180 \pm 0,011$	$-1,224 \pm 0,015$
0.820 ± 0.010	500 ± 10	$3,143 \pm 0,011$	$-1,56 \pm 0,02$
$1,260 \pm 0,010$	340 ± 10	$3,040 \pm 0,012$	$-1,94 \pm 0,03$
$1,440 \pm 0,010$	260 ± 10	$3,000 \pm 0,012$	$-2,21 \pm 0,04$
$1,640 \pm 0,010$	160 ± 10	$2,957 \pm 0,012$	$-2,70 \pm 0,06$
$1,850 \pm 0,010$	150 ± 10	$2,913 \pm 0,013$	$-2,76 \pm 0,07$
$2,050 \pm 0,010$	140 ± 10	$2,872 \pm 0,013$	$-2,83 \pm 0,07$
$2,260 \pm 0,010$	100 ± 10	$2,831 \pm 0,014$	$-3,17 \pm 0,10$

Таблица 1: Измерения

данного графика

$$\eta = \frac{\Delta(\ln R)}{\Delta(1/T)} = (5.9 \pm 0.3) \cdot 10^3 \,\mathrm{K}.$$

Отсюда находим контактную разность потенциалов (p-n)-перехода исследуемого диода

$$\Delta V = \frac{k_{\mathrm{B}}}{e} \eta = 0.51 \pm 0.02 \, \mathrm{B}.$$

Рис. 1: Зависимость $\ln(R_g)$ от 1/T