WCP09 - Autonomous Beacon Location System (ABLS)

Sponsor: Lockheed Martin

WCP09 ABLS Team Personnel

Team Members (Left to Right):

- Jonathan Felder ME Logistics Manager
- Joseph Bourque EE Systems Engineer
- Ethan Terwilliger EE Finance Manager
- Haosen Zheng CoE Project Manager
- Henry Chen CoE Integration and Test Manager

Team Advisors:

- Sponsor: Lockheed Martin
- Industry Mentor: Alfredo Iturralde
- Faculty Advisor: Professor Jack Maynard

WCP09 ABLS Agenda

- Executive Overview
- Problem Definition
- Design Description
- Risk Analysis
- Project Finances
- Project Schedule
- Conclusion

WCP09 ABLS Executive Overview

- Proof of concept project
- Hypothetical Scenario
 - High volume of lost hikers
 - Limited park services personnel
 - Autonomous solution desired to find hikers
 - Location is a park near Binghamton, New York

WCP09 ABLS Problem Definition

Park services request a system that includes a beacon, a base station, and a semi-autonomous vehicle that will map the route to the signaling beacon to aid in future rescue operations.

The ABLS solution is to create an semi-autonomous ground based vehicle that will relay first person video and GPS data to a base station to map the route to the beacon.

WCP09 ABLS Context Diagram

WCP09 ABLS Key Customer Requirements

- Shall be autonomous ground-based or air-based vehicle
- Shall be capable of locating a signaling beacon
- Shall display telemetry data:
 - Distance traveled
 - Direction and speed
 - Battery life
- Shall navigate around obstacles, handle various terrains
- Shall comply with FCC/FAA regulations
- Shall have 20+ minute run time
- Shall provide operator and safety manual

WCP09 ABLS Key Derived Requirements

- Shall have remote control override
 - Trace: Shall be autonomous
- Shall have low battery warning
 - Trace: Shall run for 20 minutes
- Shall require amateur radio license to operate
 - Trace: Operator shall obtain amateur radio license
- Vehicle shall have emergency off switch

WCP09 ABLS Concept of Operations

WCP09 ABLS Proposed Design

- Rover selected due to less risk
 - Do not have to comply with FAA rules/regulations
 - Do not have to worry about air obstacles
 - Easier to control if needed
- Computer/electrical engineers have experience with rovers
- Rover design is more cost effective to implement
 - Do not have to worry about replacement parts

WCP09 ABLS System Diagram

• 3 large subsystems

Communication with transmit and receive modules

WCP09 ABLS Beacon Design

Two solutions

- 555 timer circuit
- Raspberry Pi Zero with
 RF transmitter module

https://www.hackster.io/diy-hacking/rf-beacon-how-to-build-a-433-mhz-rf-transmitter-187a7b

WCP09 ABLS Rover System Diagram

- Self navigation
- Circuitry enclosed in plastic casing

WCP09 ABLS Rover Chassis

- Size: 11" × 12" × 5"
- Weight: 4.1 lb
- Ground clearance: 2.5"

https://grabcad.com/library/dagu-wild-thumper-4wd-chassis-1

WCP09 ABLS Drive Subsystem

- Rover comes with motors, wheels and suspension system
- Motor Controller interfaces between commands and signals

WCP09 ABLS Camera Subsystem

 Video feed transmits directly to base station

• Uses 1.2 GHz Transmitter

WCP09 ABLS Navigation Subsystem

- Obstacle avoidance
- Infrared for obstacles
- Ultrasonics for water
- Angle sensors to see holes and cliffs

WCP09 ABLS Interface Matrix - Navigation

		Base		Camera/					
Communication	Navigation	Station	Power	Video	Drive	Messages	Description	Type/Unit(?)	Value Range
							According to the Motor Controller		
							Instruction set, the motor		
							command should be one byte in		
X					X	Motor Command	length.		
						Beacon signal			
X		Х				Strength	Signal Strength of the Beacon	Categorical	
							Direction of the beacon relative to		to the east/ north
X		Х				Beacon Direction	our vehicle	Categorical	east/south etc
							As specified in Motor Controller		
X					Х	Motor Speed	Instruction set		

• Interface matrices created for other subsystems

WCP09 ABLS Raspberry Pi Connection Diagram

WCP09 Base Station System Diagram

- Based off of Laptop
- 433 Mhz Receiver
- 433 Mhz Transmitter
- 1.2 Ghz Video Receiver
- Game Controller

WCP09 ABLS Data Layers

WCP09 ABLS Command Layer

WCP09 ABLS Software Block Diagram

WCP09 ABLS Software Block Diagram cont.

WCP09 ABLS Obstacle Avoidance Algorithm

WCP09 ABLS Obstacle Avoidance Algorithm

WCP09 ABLS Risk Analysis

Risk#:	Risk:	Impact:	Probability:	Reduction Strategy:
M-01	Weather makes vehicle difficult to operate	High	Medium	Test on different day, travel to other location
M-06	Detectors give inaccurate outliers	High	Medium	Detect running average
M-08	Inaccurate telemetry data reported	Very high	Medium	Ensure vehicle is calibrated, test in controlled environment
M-11	Vehicle loses connection with base station	Very high	Medium	Vehicle will stop when connection lost
M-12	Terrain makes vehicle difficult to operate	High	Medium	Choose different path

WCP09 ABLS Risk Analysis Matrix

					Impact (as % of Pro	ject)	
			5%	10%	20%	40%	80%
			Very Low	Low	Medium	High	Very High
	10%	Very Low			M-05		
Probability	30%	Low		P-01	M-02,P-03	M-14,P-02	
	50%	Medium		M-07	M-03,M-04,M-09, M- 10,M-13		M-08,M-11
	70%						
	90%	Very High					

WCP09 ABLS Reduced Risk Analysis Matrix

	90% Very Hig	h				
	70% High					
Probability	50% Medium			M-06		
	30% Low		M-01, M-07,M- 09, M-10,P-03	M-03,M-04, M-12, M-13, M-14	M-08	M-11
	10% Very Lov	v	P-01, M-02,M- 05		P-02	
		Very Low	Low	Medium	High	Very High
		5%	10%	20%	40%	80%
				Impact (as % of Pro	ject)	

WCP09 ABLS Budget

Items	Original Estimate \$	Actuals to Date \$	Estimate to Completion \$	Estimate at Completion \$
Dagu Rover 4WD	175	0	175	175
FPV Camera	35	0	35	35
RF Tx and Rx	70	0	70	70
Raspberry Pi	40	0	40	40
GPS/Sensors	60	0	60	60
Motor Controller	100	0	100	100
Batteries	45	0	45	45
Amateur Radio License	30	0	30	30
Misc.	100	0	100	100
Subtotal:	655	0	655	655
Minimum Reserve:	95		Current Reserve:	95
Funding Limit:	750			750

WCP09 ABLS Schedule

WCP09 ABLS Foreseen Challenges

- Obstacle Avoidance Algorithm
- Communications Protocols
- Outdoor Testing
- Beacon Design
- Assembly

WCP09 ABLS Summary

- Integration project
 - Few components to design and build
 - Research for trade studies
 - Integrate existing tested parts
 - Code libraries
 - Motor controller, transmitter and receiver circuits
 - Uniquely customize to fit customer needs
- Under budget and on schedule
- On track to meet all requirements

WCP09 ABLS Bill of Materials

Part Desc.	Place of Purchase	Part Name:	Part #	Quantity:	Pric	e:	Tot	tal Price:	Expected Order Date:	Expected Delivery Date:
Rover Chassis	pololu.com	Dagu Wild Thumper 4WD, 75:1	1566	1	\$	174.95	\$	174.95	12/7/18	1/7/19
Motor Controller	pololu.com	Pololu TReX Dual Motor Controller DMC01	777	1	\$	99.95	\$	99.95	12/7/18	1/7/19
Batteries	Hobbyking.com	Turnigy Stick Pack Sub-C 3000mAh 7.2v NiMH High	9440000002	2	\$	14.23	\$	28.46	12/7/18	1/7/19
Battery Charger	II .	Turnigy B6 PRO 50W 6A Balance Charger	9070000041-0	1	\$	13.99	\$	13.99	12/7/18	1/7/19
Motors	N/A	comes with dagu	1566				\$	-	12/7/18	1/7/19
Tires	N/A	comes with dagu	1566				\$	-	12/7/18	1/7/19
ESC	N/A	comes with TReX motor controller	777				\$	-	12/7/18	1/7/19
Radio Transmitter/Receiver(Beacon)	amazon.com	HiLetgo 315Mhz RF Transmitter and Receiver		1	\$	4.69	\$	4.69	12/7/18	1/7/19
Radio Transmitter/Receiver(Vehicle Co	amazon.com	WINGONEER 433Mhz RF Transmitter and Receiver		2	\$	5.99	\$	11.98	12/7/18	1/7/19
FPV Camera	amazon.com	Runcam Racer Micro		1	\$	36.75	\$	36.75	12/7/18	1/7/19
Raspberry pi cpu	amazon.com	Raspberry Pi 3b+		1	\$	38.90	\$	38.90	12/7/18	1/7/19
USB to TTL	amazon.com	HiLetgo USB to TTL Serial Cable		1	\$	5.19	\$	5.19	12/7/18	1/7/19
Antenna for Beacon	amazon.com	315Mhz-470Mhz Omnidirectional Antenna		1	\$	8.98	\$	8.98	12/7/18	1/7/19
Micro SD Card for Rasp PI	amazon.com	16 GB Micro SD card		1	\$	3.99	\$	3.99	12/7/18	1/7/19
FPV transmitter/receiver	aliexpress.com	1.2G TX1000 1W 1500mW 8CH Transmitter		1	\$	56.31	\$	56.31	12/7/18	1/7/19
IR Sensor	aliexpress.com	Infrared Obstacle Avoidance Sensor Module		10	\$	0.38	\$	3.80	12/7/18	1/7/19
GPS	adafruit.com	Adafruit Ultimate GPS Breakout	746	1	\$	39.95	\$	39.95	12/7/18	1/7/19
Ultrasonic Sensors	digikey.com	SparkFun Electronics Ultrasonic Sensor HC-SR04	SEN-13959	4	\$	3.95	\$	15.80	12/7/18	1/7/19
steel screw	mcmaster.com	18-8 Stainless Steel Socket Head Screw	92196A051	1	\$	6.73	\$	6.73	12/7/18	1/7/19
					Tota	al Amount:	\$	550.42		

WCP09 ABLS Mission Risk Analysis

Risk#:	Mission Risk	Impact:	Probability:	Reduction Strategy:
M-01	Weather makes vehicle difficult to operate	High	Medium	Test on different day
M-02	Signal is intercepted	Medium	Low	Encrypt signal
M-03	Water seeps into vehicle	Medium	Medium	Cover all parts
M-04	Signal interference	Medium	Medium	Choose higher frequency
M-05	Animal interference	Medium	Very low	Operator override
M-06	Detectors give inaccurate outliers	High	Medium	Detect running average

WCP09 ABLS Mission Risk Analysis (cont.)

Risk#:	Mission Risk:	Impact:	Probability:	Reduction Strategy:
M-07	Vehicle gets stuck in algorithm	Low	Medium	Operator override
M-08	Inaccurate telemetry data reported	Very high	Medium	Ensure vehicle is calibrated
M-09	Requires too much operator input	Medium	Medium	Preliminary testing
M-10	Battery dies	Medium	Medium	Spare battery
M-11	Vehicle loses connection with base station	Very high	Medium	Vehicle will stop when connection lost
M-12	Terrain makes vehicle difficult to operate	High	Medium	Choose different path
M-13	Tires stuck in ground	Medium	Medium	Operator override
M-14	Tires lose air	High	Low	Spare tire

WCP09 ABLS Project Risk Analysis

Risk#:	Project Risk	Impact:	Probability:	Reduction Strategy:
P-01	Costs go over budget	Low	Low	Plan parts list before purchases
P-02	Takes place within 1 mile of FCC facility	High	Low	Research test location
P-03	Purchased Non- functional Component	Medium	Medium	Test component before integration

WCP09 ABLS Interface Matrix - Communication

		Base		Camera/	T				
Communication	Navigation	Station	Power	Video	Drive	Messages	Description	Type/Unit(?)	Value Range
	Х					Motor Override Command	According to the Motor Controller Instruction set, the motor command should be a byte in length.		
		Х				Status Message	Status update of the rover, expected to include its operating mod, Vehicle status, etc		
		X				Operation Mode	Flag that indicates the mode of operation that the vehicle is currently in. Autonomous and Manual	Categorical	Autonomous Manual
		x				Vehicle status	A few bits that indicates the current status of the vehicle.	Categorical	Operating Immobilized Awaiting Instructions Suspended
		Х				Battery status	Indicates the estimated battery life	Categorical	High, Medium, Low, Very Low

WCP09 ABLS Interface Matrix - Communication (cont.)

		Base		Camera/					
Communication	Navigation	Station	Power	Video	Drive	Messages	Description	Type/Unit(?)	Value Range
							A GPS Coordinates indicates the		
		X				Vehicle Position	location of the vehicle		
							Orientation that the vehicle is		
		Х				Orientation	facing	Categorical	N, NW, W, etc
						Beacon signal			
		X				Strength	Signal Strength of the Beacon	Categorical	
							Direction of the beacon relative to		to the east/ north
		Х				Beacon Direction	our vehicle	Categorical	east/south etc
							The speed of the vehicle based		
		X			Х	Vehicle Speed	on the GPS postiion	Numeric	0 - 2 mph

WCP09 ABLS Interface Matrix - Camera/Video

		Base		Camera/					
Communication	Navigation	Station	Power	Video	Drive	Messages	Description	Type/Unit	Value Range
		Х				Video feed	FPV video feed	Analog	

WCP09 ABLS Interface Matrix - Drive

		Base		Camera					
Communication	Navigation	Station	Power	/Video	Drive	Messages	Description	Type/Unit	Value Range
							According to the Motor Controller		
							Instruction set, the drive system		
							will return some specified		
X	Х					Motor Command	information		

WCP09 ABLS Interface Matrix - Power

		Base							Value
Communication	Navigation	Station	Power	Camera/Video	Drive	Messages	Description	Unit	Range
							Percentage battery life remaining		
X	Х					Battery Life	on the rover	Percentage	0%-100%
Х	Х			Х	Х	Voltage	Voltage needed to power devices	Volts	0 - 7.2

WCP09 ABLS Interface Matrix - Base Station

		Base		Camera					
Communication	Navigation	Station	Power	/Video	Drive	Messages	Description	Type/Unit	Value Range
									Start
									Stop
									Autopilot mode
							High level commands sent to the		Manual mode
X	Х				Х	Commands	vehicle controller	Categorical	Shutdown
							Input from the Operator's		
						Controller input,	controller indicating how fast the		
X	Х				Х	throttle	motor would run	Numeric	0.0 - 1.0
							Input from the Operator's		
						Controller input,	controller indicating directions the	(direction of turning,	
X	Х				Х	Turns	vehicle will turn to	duration of turn)	

WCP09 ABLS Power Subsystem

WCP09 ABLS GUI Concept

