DFA Operations

Complement, Product, Union, Intersection, Difference, Equivalence and Minimization of DFAs

Wednesday, October 7, 2009 Reading: Sipser pp. 45-46, Stoughton 3.11 - 3.12

CS235 Languages and Automata

Department of Computer Science Wellesley College

Some DFAs

Here are some simple DFAs we will use as examples in today's lecture. What languages do they accept?

DFA Operations

Product of DFAs

We can run two DFAs in parallel on the same input via the product construction, as long as they share the same alphabet.

Suppose DFA₁ = $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and DFA₂ = $(Q_2, \Sigma, \delta_2, s_2, F_2)$ We define $DFA_1 \times DFA_2$ as follows:

States:
$$Q_{1x2} = Q_1 \times Q_2$$

Alphabet: Σ

Transitions:

$$\delta_{1 \mathsf{x} 2} \in Q_{1 \mathsf{x} 2} \ \mathsf{x} \ \Sigma \to Q_{1 \mathsf{x} 2}$$

$$\begin{array}{l} \delta_{1\times2}\left(\;\left(\left(q_{1},q_{2}\right),\,\sigma\right)\;\right)\\ =\left(\;\delta_{1}\left(\;\left(q_{1},\sigma\right)\;\right),\,\delta_{2}\left(\;\left(q_{2},\sigma\right)\;\right) \end{array}$$

Start State: $s_{1\times 2} = (s_1, s_2)$

Intersection of DFAs

We can intersect DFA₁ and DFA₂ (written DFA₁ \cap DFA₂) by defining the accepting states of DFA₁ \times DFA₂ as those state pairs in which **both** states are final states of their DFAs.

DFA Operations

14-8

Union of DFAs

We can union DFA₁ and DFA₂ (written DFA₁ \cup DFA₂) by defining the accepting states of DFA₁ \times DFA₂ as those state pairs in which **either** state is a final state of its DFA.

DFA Operations

14-9

Difference of DFAs

The difference of two DFAs (written DFA $_1$ – DFA $_2$) can be defined in terms of complement and intersection:

$$DFA_1 - DFA_2 = DFA_1 \cap \overline{DFA_2}$$

So we can take the difference of DFA_1 and by defining the final states of DFA_1 – DFA_2 as those state pairs in which the first state is final in DFA_1 and the is second state is not final in DFA_2 .

What is a Closure Property?

A set 5 is closed under an n-ary operation f iff $x_1,..., x_n \in S$ implies $f(x_1,..., x_n) \in S$

Examples:

- · Bool is closed under negation, conjunction, disjunction.
- · Nat is closed under + and * but not and /.
- Int is closed under +, *, and -, but not /.
- Rat is closed under +, *, -, and / (except division by 0).

CFL Properties 14-11

Some Closure Properties of Regular Languages

Recall that a language is regular iff there is a DFA that accepts it.

Based on the previous DFA constructions, we know the following closure properties of regular languages.

Suppose L_1 and L_2 are regular languages. Then:

- L₁ and L₂ are regular;
- $L_1 \cup L_2$ is regular;
- $L_1 \cap L_2$ is regular;
- $L_1 L_2$ and $L_2 L_1$ are regular.

Are Any of the Following DFAs Equivalent? DFA₅ DFA₆ DFA₇ DFA

DFA₅ and DFA₇ Are Equivalent

Look at their product!

DFA Equivalence Algorithm

To determine if DFA_1 and DFA_2 are equivalent, construct $DFA_1 \times DFA_2$ and examine all state pairs containing at least one accepting state from DFA_1 or DFA_2 :

- If in all such pairs, both components are accepting, DFA_1 and DFA_2 are equivalent --- i.e., they accept the same language.
- If in all such pairs, the first component is accepting but in some the second is not, the language of DFA₁ is a superset of the language of DFA₂ and it is easy to find a string accepted by DFA₁ and not by DFA₂
- If in all such pairs, the second component is accepting but in some the first is not, the language of DFA₁ is a **subset** of the language of DFA₂, and it is easy to find a string accepted by DFA₂ and not by DFA₁
- If none of the above cases holds, the languages of DFA₁ and DFA₂ are unrelated, and it is easy to find a string accepted by one and not the other.

Products in Forlan

val inter : dfa * dfa -> dfa val minus : dfa * dfa -> dfa datatype relationship

= Equal | Incomp of str * str | ProperSub of str | ProperSup of str

val relation : dfa * dfa -> relationship val relationship : dfa * dfa -> unit

val subset : dfa * dfa -> bool val equivalent : dfa * dfa -> bool

Note that a union operator is missing. It really should be there! We'll see later how it can be defined.

DFA Operations 14-17

Minimal DFAs

- A DFA is minimal if it has the smallest number of states of any DFA accepting its language.
- Is DFA₅ minimal?
- Is DFA7 minimal?

State Merging

- A DFA is not minimal iff two states can be merged to form a single state without changing the meaning of the DFA.
- Final states and non-final states can never be merged.
- Can merge two states iff for each symbol they transition to mergeable states.
- Which states in DFA7 can be merged?

DFA Operations 14-19

State Merging in DFA7 DFA7 b Q Q R Q S Q With S DFA Operations 14-20

Problem: States Can't Always be Merged Iteratively

Key to solution: rather than iterating to find *mergeable* state pairs, iterate to find all state pairs that are provably *unmergeable*. Then any remaining state pair is mergeable.

This is an example of a greatest fixed point iteration, in which items are assumed related unless proven otherwise.

DFA Operations 14-21

DFA Minimization Algorithm: Step 1

List all pairs of states than **must not** be merged = pairs of one final and one non-final state.

Other pairs **might** be mergeable; they are considered mergeable until proven otherwise.

It's a good idea to keep track of state pairs in half of a table*:

^{*} Lyn adopted this table representation from Olin student Katie Sullivan

- **U** Unmergeable
- ? MightBeMergeable

DFA Minimization: More Practice

DFA Operations 14-25

Minimization in Forlan

val minimize : dfa -> dfa