Hashing

Organización de Datos 1C2020

Definición

Espacio de Claves Espacio de direcciones

Motivación

- Nos permite trabajar con números en vez de strings, texto, imágenes, audio
- Algunas son muy rápidas y algunas son muy seguras
- Nos permiten partir los datos fácilmente
- La vida es mejor con funciones de hash

Función de hash

¿Qué propiedades nos gustaría que tenga?

Ejemplos

5 return h;

Algorithm 11: FNV Hashing	El valor del número h
Data: s: string	depende del tamaño
Result: h: integer	del hash <i>n</i>
h = 14695981039346656037;	_
2 for c in s do	El valor del número
$\mathbf{a} \mid \mathbf{h} = \mathbf{h} * 1099511628211;$	primo también
$\mathbf{a} \mathbf{h} = \mathbf{h} \; \mathbf{XOR} \; \mathbf{c};$	depende de <i>n</i> !

Ejemplos

Simplemente usa shifts y XOR. Funciona muy bien para LookUp en tablas hash

Algorithm 12: Jenkins Hashing

Data: s: string

Result: hash: integer

- 1 for hash=i=0; i< len; i++ do
- $\mathbf{2} \quad | \quad \text{hash } += \mathbf{s}[\mathbf{i}]$
- $a \mid hash += (hash << 10);$
- 4 hash xor= (hash >> 6);
- 5 hash += (hash << 3);
- 6 hash xor= (hash \gg 11);
- 7 hash += (hash << 15);
- 8 return hash;

Ejemplos

Algorithm 13: Pearson Hashing Data: s: string Result: hash: integer

- 1 h = 0;2 for c in s do
- $\mathbf{3} \mid \text{index} = \text{h xor c};$ h = T[index];
- 5 return h

T: Tabla con permutación aleatoria de los números o..255

Funciones hash no criptográficas

Son aquellas funciones que cumplen las siguientes propiedades:

- Deben ser muy eficiente calcular h(x)
- Debe producir la menor cantidad de colisiones posibles

Ejemplos: FNV, Jenkins, Murmur, Pearson

Funciones hash criptográficas

Son aquellas funciones que cumplen las siguientes propiedades:

- Dado h(x) tiene que ser muy difícil hallar x
- Tiene que ser muy difícil hallar x e y tal que h(x) = h(y)
- La función tiene que producir la menor cantidad de colisiones posibles
- Debe producir **efecto avalancha** Ejemplos: MD5, SHA-256/512, Blake2

Funciones de Hashing criptográficas (CHF)

Muchos usos:

- Firmas para archivos (integridad e identificación)
- Almacenado de contraseñas (+*salt*)
- Bitcoin

SHA-256: Merkle-Damgard

SHA-256: Davies-Meyer

En SHA-256, el algoritmo de encripción que se utiliza es *Shacal-2*

Repaso

- ¿Es fácil o difícil encontrar colisiones de h_{criptografica}(h_{generica}(x))?
- ¿Conviene usar una criptográfica para una tabla hash?

Def: *H* es una familia de funciones de hashing universal si se cumple que:

$$\forall x, y \in U, h \in \mathcal{H}, x \neq y$$

$$P[h(x) = h(y)] \le \frac{1}{m}$$

Construcción para valores numéricos

$$h \in \mathcal{H} \Rightarrow h(x) = (a * x + b \pmod{p}) \pmod{m}$$

m: espacio de direcciones

p: número primo >=m

a: {1,2...p-1} b: {0,1..p-1}

Construcción para claves de long. fija

$$f(x) = \sum_{i=1}^{r} (a_i * x_i) \pmod{n}$$
 (mod $f(x) = \sum_{i=1}^{r} (a_i * x_i) \pmod{n}$)

 $h \in \mathcal{H} \Rightarrow h(x) = \sum (a_i * x_i \pmod{p}) \pmod{m}$

m: espacio de direcciones

p: número primo >=m

a i: {0,1,2...p-1}

a: {0,1,2...p-1}

Construcción para claves de long. variable

$$h \in \mathcal{H} \Rightarrow, h(x) = h_{int}((\sum_{i=1}^{l} x_i * a^i) \mod p)$$

m: espacio de direcciones p: número primo muy grande

Hashing perfecto

Hashing donde no hay colisiones

Garantiza O(1) en búsqueda

• ¿Cómo lo construimos?

FKS

- O(1) en búsqueda
- O(n) en espacio (≤2n)
- Resolvemos colisiones buscando funciones de hash que diferencien las claves

FKS

Intentemos almacenar $\{1, 5, 6, 9, 12, 13\} \Rightarrow \text{mínimo } m = 6.$

Elegimos k = 7 (primo cercano a m).

Usamos, por ejemplo, $h(x)=x \mod 7$

Cuando hay colisiones de tamaño m_i elegimos un k_i primo más cercano a m_i^2 , y elegimos h_i tal que no colisione.

k	claves	hash2	segundas tablas
0			
1	1	x mod 1	{1}
2	9	x mod 1	{9}
3			
4			
5	5, 12	x mod 5	{5,-,12,-,-}
6	6, 13	2 x mod 5	{-,13,6,-,-}

Hashing perfecto y mínimo

• O(1) en búsqueda

 Buscamos acercarnos al óptimo en cuanto a espacio (no queremos dejar slots vacíos en la tabla)

HDC

- Necesitamos una familia del estilo h(i,x) con i = o..n-1
 (n espacio de claves)
- Todos los slots de la tabla quedarán ocupados por una clave

HDC

Tenemos m claves a almacenar, y tenemos un hash parametrizable h(i, x)

Hasheamos todas las claves con $h(o, x) \Rightarrow va$ a haber colisiones

Marcamos en un **bitmap** las posiciones ocupadas por una sola clave.

Partiendo del bucket con más colisiones, aumentamos i hasta que las claves se ubiquen en espacios vacíos, según el bitmap. Repetimos, nunca decrementando i, y actualizando el bitmap.

En una tabla G anotamos los valores i que se usó para resolver x; si con h(o,x) no hubo colisión almacenamos -h(o,x).

Repaso de tablas de hash

- Las tablas de hash se diferencian en cómo manejan los sinónimos
- En Algoritmos 2 vieron al menos dos formas:
 - o sondeo lineal (forma de *hashing cerrado*)
 - encadenamiento de sinónimos (forma de hashing abierto)
- Todas las tablas rehashean; hay noción de **factor de carga**

Variaciones sobre hashing cerrado (dir. abierto)

- Hashing cerrado es bueno por el comportamiento de caché
- Resuelve colisiones según política o secuencia de sondeo
 p. ej. H+1, H+2, H+3,.. (sondeo lineal)
- El problema del sondeo lineal es la generación de grupos o **clusters** (problema de **clustering primario**)
 - Llena espacios contiguos y degrada la inserción de claves con distinto hash
- ⇒ Vamos a variar la secuencia de sondeo

Variaciones sobre hashing cerrado (dir. abierto)

Algunas formas de sondeo:

- Lineal: H+1, H+2, H+3, ...
- Cuadrático: H+1², H+2², H+3², ...
- Hashing doble: H+1H', H+2H', H+3H'

- Tenemos dos tablas con funciones de hash asociadas
- Un dato siempre está en h₁(x) o h₂(x)
 (tiempo constante)
- Ante una colisión, <u>la clave nueva echa la vieja</u> a la otra tabla

This Eurasian reed warbler is raising a common cuckoo.

```
function lookup(x)
return T_1[h_1(x)] = x \lor T_2[h_2(x)] = x
end
```



```
procedure insert(x)
   if lookup(x) then return
   loop MaxLoop times
      if T_1[h_1(x)] = \bot then \{T_1[h_1(x)] \leftarrow x; \text{ return }\}
      x \leftrightarrow T_1[h_1(x)]
      if T_2[h_2(x)] = \bot then \{ T_2[h_2(x)] \leftarrow x;  return \}
      x \leftrightarrow T_2[h_2(x)]
   end loop
   rehash(); insert(x)
end
```

Nota: ↔ es swap, ⊥ es "vacío"

Cuckoo hashing recargado

- En principio, podemos juntar las dos tablas en una
 - Podríamos tener más de 2 funciones de hash
- Podemos usar un stash para guardar los datos problemáticos y no rehashear

- Queremos evitar rehashear tanto (comparado con Cuckoo)
- Queremos evitar la mezcla de grupos de sinónimos que tiene el sondeo lineal ⇒ concepto de vecindario

- Cada posición tiene asociado un vecindario de tamaño V
- Si la posición h(x) está ocupada, sólo puede ubicarse entre [h(x), h(x)+V-1]

Hasta ahora nada nuevo: los vecindarios se **solapan**

- Mantenemos un bitmap que nos dice cuáles de las siguientes V-1 posiciones tiene elementos que hashean a h(x).
 - Nos evitamos revisar elementos que no son sinónimos de x
- ¿Qué pasa si el vecindario de h(x) se llena con no-sinónimos de x?
 - Vamos a intentar reordenar las cosas
 - Si no se puede, rehasheamos

Qué pasa cuando queremos insertar y [h(x), h(x)+V-1] está todo ocupado pero el bitmap de h(x) tiene ceros:

- 1. Buscamos la primera posición vacía
- 2. Vamos hacia atrás viendo si podemos mover algún dato a esa posición, repetimos las veces que sea necesario
- 3. Si no se puede, rehasheamos

Hopscotch hashing

Inserts: execution time (strings)

For each entry in the range [0, nb_entries), we generate a string as key and insert it with the value 1.

Inserts with reserve: execution time (strings)

Same as the inserts test but the reserve method of the hash map is called beforehand to avoid any rehash during the insertion. It provides a fair comparison even if the growth factor of each hash map is different.

Hopscotch hashing

Random full reads misses: execution time (integers)

Before the test, we insert nb_entries elements in the same way as in the random full inserts test. We then generate another vector of nb_entries random elements different from the inserted elements and we try to search for these unknown elements in the hash map.

Feature Hashing

 Vamos a aplicar funciones de hash para reducir las dimensiones de nuestro set de datos

• La idea es mantener las diferencias (distancias) entre los

puntos

Interludio: Lema de Johnson-Lindenstrauss

Si tenemos n puntos en R^N , y definimos un error \mathcal{E} con o< \mathcal{E} <1:

$$\exists k = O(\ln n) \land k > 24\epsilon^{-2} \ln n, \ f : \mathbb{R}^N \to \mathbb{R}^k.$$

$$(1 - \epsilon) \|u - v\|^2 \le \|f(u) - f(v)\|^2 \le (1 + \epsilon) \|u - v\|^2$$
(para todo u,v)

Interludio: Lema de Johnson-Lindenstrauss - Proyecciones Aleatorias

Una matriz de proyección aleatoria puede ser una matriz A de tamaño ${\bf R^{Nxk}}$ tal que ${\bf A_{ii}}$ = valor aleatorio normal.

Proyectamos los datos:

$$XA = \hat{X}_{ ext{nxN} ext{Nxk}}$$

Esta nueva matriz preserva aproximadamente las distancias entre los datos.

Feature hashing

- Vamos a analizar otra proyección: una matriz donde sólo un elemento por fila es 1.
- Es decir, la nueva dimensión *i* está compuesta por la suma de las dimensiones originales *j* que hashean a *i*.

Si los datos tienen 7 dimensiones y usamos h: $h(x) = ((3x + 1)) \mod 5$ mod 4

es lo mismo que multiplicar mis datos **por**:

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Feature hashing

Podemos escribir x pasado por feature hashing como:

$$\phi^{(h)}(x)$$

Las componentes del nuevo vector son:

$$\phi_i^{(h)}(x) = \sum_{j:h(j)=i} x_j$$

Feature hashing - función signo

Si agregamos **otra función hash** que actúa de **signo** mejora los resultados:

$$\phi_i^{(h,\xi)}(x) = \sum_{j:h(j)=i} \xi(j)x_j$$

$$\xi: X \to \{-1, 1\}$$

y esta proyección **sí** cumple el lema JL.

The Hashing Trick

- El **producto interno** entre dos datos nos da un indicio de **similaridad**
 - o e.g. >o son similares, aprox. o son independientes, <o son opuestos
- A veces es caro (tiempo o memoria) calcularlo con todos los features
- Si tan solo tuviésemos menos features con la misma estructura...

The Hashing Trick

- Podemos aplicar feature hashing y calcular el producto interno en ese espacio
- En un solo paso:

Aplicaciones de THT - detección de spam

- Los mails spam generalmente usan un lenguaje similar
- Podemos medir similaridad entre mails comparando las palabras que usan
- ¡Pero esto es muy lento!

Bibliografía

Introduction to Algorithms. Thomas Cormen

Universal classes of hash functions. Carter y Wegman

Ladrillo de la materia

Bibliografía

Cuckoo Hashing, Pagh R. & Rodler F.

Hopscotch Hashing. Herlihy et al.

Benchmark of Hashmap Implementations

<u>Feature Hashing for Large Scale Multitask Learning</u>, Weinberger et al.

Bibliografía

An elementary proof of a theorem of Johnson and Lindenstrauss, Dasgupta & Gupta

Extensions of Lipschitz maps into a Hilbert space, Johnson & Lindenstrauss