E.{1,2,3,4,5}

E1 For each of the following differential equations, find its general solution and the solution for the given initial condition:

(a)
$$y'' + y' - 2y = 2t$$
, $y(0) = 0$, $y'(0) = 1$

(b)
$$y'' - 2y' + y = te^t + 4$$
, $y(0) = 1$, $y'(0) = 1$

(c)
$$y'' + 4y = 3\sin(2t)$$
, $y(0) = 2$, $y'(0) = -1$

(d)
$$y'' + 2y' + 5y = 4e^{-t}\cos(2t)$$
, $y(0) = 1$, $y'(0) = 0$

- **E2** For each of the following differential equations, find its general solution on the given interval:
- (a) $y'' + y = \tan(t)$ with $t \in (0, \frac{\pi}{2})$
- (b) $y'' + 4y' + 4y = t^{-2}e^{-2t}$ with t > 0
- (c) y'' 5y' + 6y = g(t) with $t \in (-\infty, \infty)$ (you may assume g(t) is continuous for all $t \in \mathbb{R}$)

E3

- (a) Find a second order linear homogenous equation with coefficients continuous on $(1, \infty)$, (i.e. of the form y'' + p(t)y' + q(t)y = 0,) whose general solution is $C_1t + C_2e^t$.
- (b) Find a second order linear homogenous equation with coefficients continuous on $(1, \infty)$, (i.e. of the form y'' + p(t)y' + q(t)y = 0,) whose general solution is $C_1t + C_2t^2$.

E4 Reduction of order.

- (a) Given that x^{-1} is a solution to $y'' + \frac{3}{x}y' + \frac{1}{x^2}y = 0$ for x > 0, find the general solution to this equation on $(0, \infty)$ by looking for a second solution of the form $y(x) = u(x)x^{-1}$.
- (b) Given that e^x is a solution to $y'' \frac{x+2}{x}y' + \frac{2}{x}y = 0$ for x > 0, find the general solution on $(0, \infty)$ as in part (a).

E5 Determine the general solution of

$$y'' + \lambda^2 y = \sum_{m=1}^N a_m \sin(m\pi t),$$

where $\lambda > 0$ and $\lambda \neq m\pi$ for m = 1, ..., N.