1. An iterative procedure uses a test at the end of each iteration to determine which of 3 possible sub-processes to do next: A, B or C (finish). The transition probabilities are independent of the number of iterations so far and are as shown in the table below

\downarrow		A	В	С
A	L	0.5	0.4	0.0
E	3	0.5	0.4	0.0
(7	0.0	0.2	1.0

Let $p_A(k)$, $p_B(k)$ and $p_C(k)$ represent the probabilities that sub- processes A, B, C are performed on the k-th iteration respectively. Suppose the procedure starts off by performing A.

- (a) Represent the procedure as a weighted digraph with sub-processes as vertices and transition probabilities as edges.
- (b) Find a system of three recurrence equations which show how the probabilities change from one iteration to the next.
- (c) Solve this recurrence for the initial conditions given.
- (d) What is the expected number of iterations before the procedure ends?
- 2. An iterative procedure uses a test at the end of each iteration to determine whether it should finish (F) or which of 2 possible sub-processes (A or B) to do next. The transition probabilities are independent of the number of iterations so far and are as shown in the table below:

\downarrow	A	В	F
A	0.4	0.8	0.0
В	0.4	0.0	0.0
F	0.2	0.2	1.0

Let $p_A(k)$ and $p_B(k)$ represent the probabilities that sub-processes A and B are performed on the k-th iteration respectively, and $p_F(k)$ the probability that the procedure finishes on or before the k-th iteration. Find a system of three recurrence equations which shows how the probabilities change from one iteration to the next. Solve this recurrence (using diagonalisation to compute the k-th power of the appropriate system matrix) if the system initially performs sub-process A. Find an expression for $\text{Prob}\{T=k\}$, the probability that the procedure ends on the k-th iteration. What is the expected value of T?

3. An iterative procedure uses a test at the end of each iteration to determine whether it should finish (F) or which of 2 possible sub-processes (A or B) to do next. The transition probabilities are independent of the number of iterations so far and are as shown in the table below:

\downarrow	A	В	\mathbf{F}
Α	0.6	0.675	0.0
В	0.4	0.0	0.0
F	0.0	0.325	1.0

Let $p_A(k)$ and $p_B(k)$ represent the probabilities that sub-processes A and B are performed on the k-th iteration respectively, and $p_F(k)$ the probability that the procedure finishes on or before the k-th iteration.

- (a) Find a system of three recurrence equations which shows how the probabilities change from one iteration to the next.
- (b) Solve this recurrence (using Discrete *Putzer* Algorithm to compute the *k*-th power of the appropriate system matrix) if the system initially performs subprocess A.
- (c) Find an expression for $\text{Prob}\{T=k\}$, the probability that the procedure ends on the k-th iteration.
- (d) What is the expected number of iterations before the procedure ends?