answers.md 2024-02-04

CSE 3313 - Homework #1 - Sampling and Nyquist

• Name: Landon Moon

• ID: 1001906270

Α

Determine the Sampling Frequency (f_s) from the Sampling Period

1.
$$\circ$$
 T_s = 2 sec

• $f_s = 0.5 \text{ samples/sec}$

2. •
$$T_s = 0.1 \text{ sec}$$

 \circ $f_s = 10 samples/sec$

3.
$$\circ$$
 T_s = 1 msec

• $f_s = 1,000 \text{ samples/sec}$

4. •
$$T_s = 5 \mu sec$$

 \circ f_s = 200,000 samples/sec

B & C

B: Determine the bandwidth of the following real signals from their frequency spectrum?

C: What are the Nyquist Sampling Frequencies for the three signal spectra in part B?

1.

B. Bandwidth = $\underline{10Hz}$

C. Nyquist Sampling Frequency = $\underline{20Hz}$

2.

B. Bandwidth = 5Hz

C. Nyquist Sampling Frequency = $\underline{10Hz}$

3.

B. Bandwidth = 1kHz

answers.md 2024-02-04

C. Nyquist Sampling Frequency = 2kHz

D

You have a system that can sample an analog signal into discrete samples at a sampling frequency of 100 kHz.

1. • Q: What is the maximum signal bandwidth you can sample without loss of signal information and allow for perfect signal reconstruction?

- A: The maximum signal bandwidth allowed would be 50 kHz. This is because the Nyquist-Shannon Sampling Theorem says that a signal can be completely reconstructed if the sample frequency is twice the bandwidth. 50 kHz * 2 = 100 kHz.
- 2. Q: If the signal is real and has a minimum frequency of 0 Hz, what is the largest frequency component that the signal can contain and still meet the Nyquist sampling criteria?
 - A: Similar to the answer above, the largest frequency component can be up to 50 kHz. With a minimum of 0 Hz and a maximum of 50 kHz the bandwidth would be 50 kHz which implies a minimum Nyquist Sampling Frequency of 100 kHz.