ALA - Hausaufgaben zum 8. Mai 2014 (Blatt 04)

14.11.2014

für n=0: $\{\emptyset\}$; Die Menge der Teilmengen von dieser Menge ist: $\{\{\emptyset\}\}$ und besitzt damit $1=2^0$ Teilmengen

Induktionsanfang: Es existiert ein n, für das jede n-elementige Menge genau 2^n Teilmengen hat.

Beweis: für $M_{n_0} = 1$: $\{a\}$; Die Menge der Teilmengen von dieser Menge ist: $\{\{\emptyset\}, \{a\}\}$ und besitzt damit $2 = 2^1$ Teilmengen.

Induktionsschritt:

Induktionsannahme: $\forall (M_n)_{n>n_0}(|\{x|x\subset M_n\}|=2^n\to |\{y|y\subset M_{n+1}\}|=2^{n+1})$ Beweis:

$$|M_n| = \sum_{i=1}^n = \frac{x}{y} \tag{1}$$