Sequences & Series: Exercise 1

Due date: 2024-11-26

Definition 1. A field is a set F endowed with two operations: one is called addition + and one is called multiplication \cdot (also denoted as \times), which satisfy the following axioms:

- Axioms for addition:
 - For any $x, y \in F$, $x + y \in F$.
 - Commutative: x + y = y + x.
 - Associative: (x + y) + z = x + (y + z) for all $x, y, z \in F$.
 - F contains an element, called 0, such that 0 + x = x for all $x \in F$.
 - For each $x \in F$, there is an element $-x \in F$ such that x + (-x) = 0.
- Axioms for multiplication:
 - For any $x, y \in F$, $x \cdot y \in F$. (When there is no confusion, we write $x \cdot y$ as xy).
 - Commutative: $x \cdot y = y \cdot x$ for all $x, y \in F$.
 - Associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in F$.
 - F contains an element, called $1 \neq 0$, such that $1 \cdot x = x$ for all $x \in F$.
 - If $x \in F$ and $x \neq 0$, then there is an element $\frac{1}{x} \in F$ such that $x \cdot \frac{1}{x} = 1$.
- Distributive law: $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in F$.

Exercise 1. Use **Definition 1** to prove the following theorem:

Theorem 1. The axioms of addition imply the following for $x, y, z \in F$ where F is a field:

- (a) If x + y = x + z, then y = z.
- (b) If x + y = x, then y = 0. (So 0 is unique in F.)
- (c) If x + y = 0, then y = -x. (So -x is unique in F corresponding to x.)
- (d) -(-x) = x.

Exercise 2. Use **Definition 1** to prove the following theorem:

Theorem 2. The axioms of multiplication imply the following for $x, y, z \in F$ where F is a field:

- (a) If $x \neq 0$ and $x \cdot y = x \cdot z$, then y = z.
- (b) If $x \neq 0$ and $x \cdot y = x$, then y = 1. (So 1 is unique in F.)
- (c) If $x \neq 0$ and $x \cdot y = 1$, then y = 1/x. (So 1/x is unique in F corresponding to $x \neq 0$.)
- (d) If $x \neq 0$, then $\frac{1}{1/x} = x$.

Exercise 3. Use **Definition 1** to prove the following theorem:

Theorem 3. The axioms of a field imply the following for $x, y, z \in F$ where F is a field:

- (a) 0x = 0.
- (b) If $x \neq 0$, $y \neq 0$, then $xy \neq 0$.
- (c) (-x)y = -(xy) = x(-y).
- (d) (-x)(-y) = xy.