Agglomerative Clustering

HAC

Introduction

- · Hierarchical Clustering Approach
 - A typical clustering analysis approach by partitioning data set sequentially
 - Construct nested partitions layer by layer by grouping objects into a tree of clusters (without the need to know the number of clusters in advance)
 - Use (generalised) distance matrix as clustering criteria

Introduction

Example

Cluster Distance Measures

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., d(C_r, C_j) = min{d(x_{ip}, x_{jq})}
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., d(C_i, C_j) = max{d(x_{ip}, x_{jq})}
- Average: avg distance between elements in one cluster and elements in the other, i.e., d(C,, C_i) = avg{d(x_{ip}, x_{ji})}

Cluster Distance Measures

Example: Given a data set of five objects characterised by a single continuous feature, assume that there are two clusters: C1: {a, b} and C2: {c, d, e}.

	а	b	С	d	е
Feature	1	2	4	5	6

1. Calculate the distance matrix

 a
 b
 c
 d
 e

 a
 0
 ...
 ...
 ...

 b
 1
 0
 ...
 ...

 c
 3
 2
 0
 ...

 d
 4
 3
 1
 0
 ...

 e
 5
 4
 2
 1
 0

2. Calculate three cluster distances between C1 and C2.

 $dist(C_1, C_2) = min\{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)\}$ = $min\{3, 4, 5, 2, 3, 4\} = 2$

 $dist(C_1, C_2) = max\{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)\}$ $= max\{3, 4, 5, 2, 3, 4\} = 5$

 $dist(C_1, C_2) = \frac{d(a,c) + d(a,d) + d(a,e) + d(b,c) + d(b,d) + d(b,e)}{6}$ $= \frac{3 + 4 + 5 + 2 + 3 + 4}{5} = \frac{21}{5} = 3.5$

HAC-Algorithm

• The Agglomerative algorithm is carried out in three steps:

Lifetime

• Lifetime vs K-cluster Lifetime

Conclusion

- · How to determine the number of clusters
 - If the number of clusters known, termination condition is given!
 - The K-cluster lifetime as the range of threshold value on the dendrogram tree that leads to the identification of K clusters
 - Heuristic rule: cut a dendrogram tree with maximum life time to find a "proper" K
- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - Sensitive to cluster distance measures and noise/outliers
 - Less efficient: $\mathcal{O}\left(n^2\log n\right)$, where n is the number of total objects