Introduction to Regression

Agenda

- Linear Regression
- Cost Functions
- Gradient Descent
- Hands-on Example
- Evaluating Regression Models
- Regularization

Agenda

- Linear Regression
- Cost Functions
- Gradient Descent
- Hands-on Example
- Evaluating Regression Models
- Regularization

Regression vs Classification

- Regression: Target is continuous or ordinal
 - Example: Predict price, weight, height, temperature, ranking
- Classification : Target is discrete with finite value set
 - Example: Predict survived/dead, face/nonface, fraud/non-fraud, bot/non-bot

Example: Housing Prices

Price (1000\$s)
400
330
369
232
540
:

Can we learn to predict the price for a house not in the dataset?

Living Area = 3500 sq. ft.

Price = ?

Example: Housing Prices

- Living Area = 3500 sq. ft.
- Price = ?
- Use the line that is somewhere in the middle
- How do we define "middle"?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Notation

- x^i The attribute vector for the *i*th data object
- X The set of all x^i
- y^i The true value for the *i*th data object
- Y The set of all y^i
- m Number of rows in the dataset
- n Number of columns in the dataset

Notation

- h_{θ} A specific hypothesis (estimate) for the map X \rightarrow Y
- θ A vector of model parameters which define a specific hypothesis

Linear Regression Hypothesis Function

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- $h_{\theta}(x^i)$ is the prediction of the hypothesis h_{θ} for a specific object x^i
- y^i is the true target value (equivalent to label in classification)
- We want the prediction $h_{\theta}(x^i)$ to be as close to the true label y^i as possible.
- How do we do that?

Agenda

- Linear Regression
- Cost Functions
- Gradient Descent
- Hands-on Example
- Evaluating Regression Models
- Regularization

Cost Function

- Define a "cost" or "loss" function $J(\theta)$
 - Smaller for lower error
 - Larger for higher error
- Many different types
- Most common: "Sum of squared residuals"

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^i) - y^i \right)^2$$

Cost Function – 2D

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^i) - y^i \right)^2$$

The Cost Function – 3D

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^i) - y^i \right)^2$$

Agenda

- Linear Regression
- Cost Functions
- Gradient Descent
- Hands-on Example
- Evaluating Regression Models
- Regularization

Maximum/Minimum Problem

Find two nonnegative numbers whose sum is 9 and so that the product of one number and the square of the other number is a maximum.

Solution

Sum of number is 9

$$9 = x + y$$

Product of two numbers is

$$P = x y^2$$
$$= x (9-x)^2$$

Solution

$$P' = x (2) (9-x)(-1) + (1) (9-x)^{2}$$

= $(9-x) [-2x + (9-x)]$
= $(9-x) [9-3x]$
= $(9-x) (3)[3-x]$
= 0

$$x = 9 \text{ or } x = 3$$

Gradient Descent

- Goal : minimize $J(\theta)$
- Gradient descent starts with some initial θ and then performs an update on each θ_j in turn:

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_i} J(\theta^k)$$

• Repeat until θ converges

Intuition

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_j} J(\theta^k)$$

Gradient Descent Algorithm

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_j} J(\theta^k)$$

- α is known as the learning rate; set by user
- Each time the algorithm takes a step in the direction of the steepest descent and $J(\theta)$ decreases.
- ullet α determines how quickly or slowly the algorithm will converge to a solution

Gradient Descent Algorithm

$$\theta_j^{k+1} \coloneqq \theta_j^k - \alpha \frac{\partial}{\partial \theta_i} J(\theta^k)$$

Regression with > 1 feature

x^{i}_{1} x	ⁱ 2	y^i
Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

A linear function is just one of the choices to approximate the target variable!

datasciencedoio

unleash the data scientist in you

Regression with > 1 feature

When we have two features, the linearity is in plane instead of line.

With three features, it's a hyperplane, and so on.

Batch Gradient Descent

For ONE training example, we get the following update rule:

$$\theta_j^{k+1} \coloneqq \theta_j^k + \alpha \big(y - h_\theta(x) \big) x_j$$

What do we observe here about the magnitude of the update?

For ALL training examples, we get the following update rule:

```
Repeat until convergence {
	For j from 0 to n:
	\theta_j^{k+1} \coloneqq \theta_j^k + \frac{\alpha}{m} \sum_{i=1}^m \left( y^i - h_{\theta}(x^i) \right) x_j^i
}
```


Stochastic Gradient Descent

Consider an alternative algorithm:

```
Repeat until convergence {
	for i from 1 to m:
		for j from 0 to n:
			\theta_j^{k+1} \coloneqq \theta_j^k + \alpha \left( y^i - h_\theta(x^i) \right) x_j^i
}
```

- This algorithm updates the parameters θ_j using each training example instead of all training examples.
- If the training set is big i.e., m is large, this technique converges quicker than batch gradient descent.
- Stochastic gradient descent may oscillate around the minimum of $J(\theta)$ and may not completely converge

Batch vs. Stochastic Gradient Descent

Batch Gradient Descent

```
Repeat until convergence { For j from 0 to n: \theta_j^{k+1} \coloneqq \theta_j^k + \frac{\alpha}{m} \sum_{i=1}^m \left( y^i - h_\theta(x^i) \right) x_j^i }
```

- To update each parameter value, scan through the whole training data
- Converges to the minimum value slowly
- Preferred for small datasets

Stochastic Gradient Descent

```
Repeat until convergence {
	for i from 1 to m:
	for j from 0 to n:
	\theta_j^{k+1} \coloneqq \theta_j^k + \alpha \left( y^i - h_{\theta}(x^i) \right) x_j^i
}
```

- Update the parameter values with one training example at a time
- Converges to the 'proximity' of minimum value fast but may keep oscillating near the minimum
- Preferred for large datasets

Agenda

- Linear Regression
- Cost Functions
- Gradient Descent
- Hands-on Example
- Evaluating Regression Models
- Regularization

Agenda

- Linear Regression
- Cost Functions
- Gradient Descent
- Hands-on Example
- Evaluating Regression Models
- Regularization

Toy Example

- Suppose we have a model:
 - h(t) = -0.498 + 0.5 * t
- How do we evaluate?
 - Train/Test Split
- What metrics to use?

Graphical Evaluation Methods

Ideal: Straight line with slope 1 Ideal: Randomly distributed about 0

Common Metrics

Mean Absolute Error (MAE)

- Root-Mean-Square Error (RMSE)
 - Root-Mean-Square Deviation

Coefficient of Determination (R²)

Mean Absolute Error

$$MAE(\theta) = \frac{\sum_{i=1}^{m} |h_{\theta}(x^{i}) - y^{i}|}{m}$$

- Mean of residual values
- "Pure" measure of error

Mean Absolute Error - Example

$$y = \{-5.9, 48.3, 4.1, -8.4, 42.2, 10.3\}$$

$$h_{\theta}(x) = \{0.5, 1.0, 1.5, 4.5, 5.0, 6.5\}$$

$$|h_{\theta}(x) - y| = \{6.4, 49.3, 2.6, 12.9, 37.2, 3.8\}$$

$$MAE(\theta) = \frac{112.2}{6} = 18.7$$

Root-Mean-Square Error

$$RMSE(\theta) = \sqrt{\frac{\sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}}{m}}$$

- Square root of mean of squared residuals
- Penalizes large errors more than small
- Good when large errors particularly bad

RMSE - Example

$$y = \{-5.9, 48.3, 4.1, -8.4, 42.2, 10.3\}$$

$$h_{\theta}(x) = \{0.5, 1.0, 1.5, 4.5, 5.0, 6.5\}$$

$$\left(h_{\theta}(x) - y^{i}\right)^{2} = \{40.96, 2237, 6.76, 166, 1383, 14.4\}$$

$$RMSE(\theta) = \sqrt{\frac{3848.12}{6}} = 25.3$$

MAE vs RMSE

Signal1 and signal2

MAE vs RMSE

Histograms of signal1 and signal2's residuals

MAE vs RMSE

■ MAE: **41.926** < 43.199

■ RMSE: 64.458 > **54.516**

Large deviation is penalized more by RMSE

Coefficient of Determination (R²)

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

where
$$SS_{res} = \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}$$
, $SS_{tot} = \sum_{i=1}^{m} (y^{i} - \bar{y})^{2}$

- SS_{res} Sum of squared residuals (i.e. total squared error)
- SS_{tot} Sum of squared differences from mean (i.e. total variation in dataset)
- Result: Measure of how well the model explains the data
 - "Fraction of variation in data explained by model"

R² Example

- $R^2 = 0.958$
- Real models usually much worse
- $R^2 = 0.6$ can be a good model depending on application

Agenda

- Linear Regression
- Cost Functions
- Gradient Descent
- Hands-on Example
- Evaluating Regression Models
- Regularization

Overfitting

- Want to extract general trends
- Danger: "memorizing" the training set
- A model is **overfit** when model performance on test set is much worse than on training set.

Overfitting

Complexity

- What makes a good model overfit?
 - Nature of training data
 - Complexity of model
- How do we handle these?
 - Cross validation
 - Manual model constraint
 - Regularization

Intuition

- Want to discourage complex models How?
- Adjust the cost function!
 - Penalize models with large high-order θ terms

$$J'(\theta) = J(\theta) + Penalty$$

Definitions

- Two most common
 - L1 regularization
 - lasso regression

- L2 regularization
 - ridge regression
 - weight decay

$$J_{L1}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{d} |\theta_{j}|$$

$$J_{L2}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{d} \theta_{j}^{2}$$

Regularized Regression

$$J_{L1}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{i=1}^{d} |\theta_{i}| \qquad J_{L2}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{i=1}^{d} \theta_{i}^{2}$$

- Find the best fit
- Keep the θ_i terms as small as possible.
- λ is a user-set parameter which controls the trade off

Regularized Regression

$$J_{L1}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{d} |\theta_{j}| \qquad J_{L2}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} + \lambda \sum_{j=1}^{d} \theta_{j}^{2}$$

- Size of λ important
 - λ high => higher penalty
 - λ low => lower penalty.

QUESTIONS

