SYSTEMS ENGINEERING

COURSE OBJECTIVE

This course in systems engineering examines the principles and process of creating effective systems to meet application demands. The course is organized as a progression through the systems engineering processes of analysis, design, implementation, and deployment with consideration of verification and validation throughout.

COURSE CONTENT

What Engineering, Origin, Examples of **Systems** requiring is System systems engineering, Systems Engineer Career Development Model, Perspectives of **Systems** Engineering, Systems Domains, Systems Engineering Fields, SystemEngineering Approaches.

Structure of Complex Systems, System Building Blocks and Interfaces, Hierarchy of Complex Systems, System Building Blocks, The System Environment, Interfaces and Interactions, Complexity in Modern Systems.

Concept Development and Exploration, Originating a New System, Operations Analysis, Functional Analysis, Feasibility, System Operational Requirements, Implementation of Concept Exploration.

Engineering Development, Reducing Program Risks, Requirements Analysis, Functional Analysis and Design, Prototype Development as a Risk Mitigation Technique, Development Testing, Risk Reduction.

Integration and Evaluation, Integrating, Testing, And Evaluating The Total System, Test Planning And Preparation, System Integration, Developmental System Testing, Operational Test And Evaluation, Engineering For Production, Transition From Development To Production, Production Operations.

COURSE OUTCOME

After successful completion of the course, students would be able to Plan and manage the systems engineering process and examine systems from many perspectives (such as software, hardware, product, etc.) Students can distinguish critical functions, diagnose problems, and apply descoping strategies and judge the complexity of production and deployment issues.

EVALUATION

Evaluation will be a continuous and integral process comprising classroom and external assessment.

REFERENCES:

- 1.Alexander Kossiakoff, William N Sweet, "System Engineering Principles and Practice, Wiley India 2.Blanchard Fabrycky, Systems engineering and analysis, Pearson
- 3.Dennis M. Buede, William D.Miller, "The Engineering Design of Systems: Models & Methods" Wiley India
- 4.JeffreyL Whitten, Lonnie D Bentley, "System Analysis and Design Methods"
- 5. Richard Stevens, Peter Brook," System Engineering Coping with complexity, Prentice Hall