

Introduzione e strumenti

Introduzione ai sistemi di controllo

Introduzione ai sistemi di controllo

- Esempio di sistema di controllo
- Elementi costitutivi dei sistemi di controllo
- Strutture tipo e schemi di principio
- Sistemi, modelli e progetto del controllo

Introduzione ai sistemi di controllo

Esempio di sistema di controllo

Controllo di velocità di un autoveicolo 1/2

Controllo di velocità di un autoveicolo 2/2

- Elementi fondamentali
 - Sistema: massa sollecitata da una forza
 - Posizione pedale(i) = variabile di controllo
 - Forza (coppia) sviluppata dal motore = variabile di comando
 - Lettura del tachimetro = misura della velocità
 - 80 Km/h = velocità desiderata (o di riferimento)
 - Forza indotta della velocità dell'aria = disturbo
 - Forza indotta dalla pendenza = disturbo

Specifiche 1/2

- Specifiche: sono i "desiderata" in termini di prestazioni
- Precisione: mantenere la velocità entro opportuni margini (±5 Km/h?, ±2 Km/h? ...)
- Precisione: insensibilità ai disturbi (±3 Km/h?, 0 Km/h? ...)
- Rapidità di risposta: garantire il raggiungimento del riferimento in tempi adeguatamente rapidi (4 secondi?, 10 secondi?)

- Raggiungimento della velocità obiettivo senza o con oscillazioni nell'intorno (raggiungimento monotòno o con sovraelongazione)
- Importante: verificare che l'azionamento riesca a generare il comando opportuno

Introduzione ai sistemi di controllo

Elementi costitutivi dei sistemi di controllo

Elementi comuni ai sistemi di controllo

- Sistema (da controllare)
- Azionamento o attuatore
- Trasduttore
- Riferimento
- Nodo di confronto
- Controllore
- Sistema di monitoraggio (eventuale)

Sistema (da controllare)

Variabili

- Ingressi: variabile di comando "u_c" e disturbi "d"
- Uscita: variabile di interesse "y_s" (soggetta a controllo)
- Stati: variabili interne "x" solo di rado completamente disponibili/misurabili

Caratteristiche

- Lineare non lineare
- Dinamico statico
- A parametri costanti a parametri variabili
- Senza disturbi additivi con disturbi additivi
- A parametri concentrati a parametri distribuiti

- Ingresso: variabile di controllo "u" (molto spesso è una tensione, a energia trascurabile)
- Uscita: variabile di comando "u_c" (con contenuto energetico adeguato)
- A volte l'azionamento è parte integrante del sistema
- In genere è disponibile sul mercato

Trasduttore

- Sensore + condizionatore di segnale
- Ingresso: variabile di uscita "y_s" del sistema
- Uscita: misura "y" della variabile di uscita del sistema (molto spesso è una tensione, a energia trascurabile)
- Il sensore e il condizionatore sono in genere disponibili sul mercato
- Il condizionatore è in generale semplice da progettare e da realizzare
- Trasduttore ideale: lineare; statico; a parametri costanti; senza disturbi

Riferimento (segnale di) 1/2

- Il riferimento "r" coincide spesso con l'uscita desiderata "y_{des}"
- È possibile anche imporre un fattore di proporzionalità tra "r" e "y_{des}" → inseguimento in scala: y_{des}= K_rr
- "r" può essere costante (anche nullo) → controllo = regolazione
- "r" può essere variabile → controllo = inseguimento
- Può essere una variabile interna al sistema di controllo (generata dall'utente o dal progettista)

Riferimento (segnale di) 2/2

- Può essere una variabile esterna
- "r" e "y_{des}" hanno generalmente la stessa natura fisica della misura "y" dell'uscita
- Spesso sono quindi delle tensioni, a energia trascurabile

Nodo di confronto

- Ingressi: uscita desiderata "y_{des}" e misura "y" dell'uscita
- Uscita: segnale errore (di inseguimento) "e"
- Il segnale errore "e" è costituito dalla differenza y_{des}-y
- In genere effettua la differenza fra due tensioni a energia trascurabile
- È disponibile sul mercato o, comunque, di banale realizzazione
- Nodo di confronto ideale: lineare; statico; a parametri costanti; senza disturbi

Controllore

- L'ingresso è il segnale errore "e"
- L'uscita è il segnale di controllo "u"
- È la parte "nobile" del sistema di controllo
- È da progettare e da realizzare
- Può essere analogico o digitale
 - Analogico: realizzato in genere con componenti elettronici
 - Digitale: codice eseguibile da sorgenti in C, C++,
 Assembler, ...

- Rappresentazione grafica/numerica dei segnali
- Diagnostica
- Allarmi
- Backup
- Download
- Ecc...

Introduzione ai sistemi di controllo

Strutture tipo e schemi di principio

Strutture tipo e schemi di principio

- Come visto nella I parte del modulo:
 - Controllo in catena chiusa con retroazioni dagli stati (attuatore e trasduttori all'interno di \mathcal{S})

Strutture tipo e schemi di principio

- Come visto nella I parte del modulo:
 - Controllo in catena chiusa con retroazioni dagli stati ricostruiti (con l'osservatore 0)

Controllo di velocità di un autoveicolo 1/11

Controllo di velocità di un autoveicolo 2/11

Controllo di velocità di un autoveicolo 3/11

Controllo di velocità di un autoveicolo 4/11

Controllo di velocità di un autoveicolo 5/11

Controllo di velocità di un autoveicolo 6/11

Controllo di velocità di un autoveicolo 7/11

Controllo di velocità di un autoveicolo 8/11

Controllo di velocità di un autoveicolo 9/11

Controllo di velocità di un autoveicolo 10/11

Controllo di velocità di un autoveicolo 11/11

Legenda 1/2

- u = segnale di controllo = posizione pedali
- u_c = segnale di comando = forza sviluppata dal motore
- y_s = uscita del sistema = velocità
- y = misura dell'uscita (dal tachimetro)
- r = riferimento di velocità (coincidente con y_{des})
- ightharpoonup e = differenza y_{des} -y = errore di inseguimento

Legenda 2/2

- d_s = forze indotte dai disturbi
- \rightarrow \mathcal{S} = sistema forza/velocità = massa dell'autoveicolo
- **■** \mathcal{A} = azionamento = motore dell'autoveicolo
- $\mathbf{y} = \mathcal{I} = \mathsf{trasduttore} \; \mathsf{della} \; \mathsf{velocita} = \mathsf{tachimetro}$
- \triangleright \mathscr{C} = controllore = automobilista

Strutture tipo e schemi di principio 1/4 **Y**des Y_{des} C(s) F(s) 34

Strutture tipo e schemi di principio 2/4

Struttura tipo del controllo in catena aperta

Strutture tipo e schemi di principio 3/4

Struttura tipo del controllo in catena chiusa con retroazione dall'uscita: realizzazione analogica

Strutture tipo e schemi di principio 3/4

Struttura tipo del controllo in catena chiusa con retroazione dall'uscita: realizzazione digitale

Introduzione ai sistemi di controllo

Sistemi, modelli e progetto del controllo

Caratteristiche del sistema da controllare

- Lineare non lineare
- Dinamico statico
- A parametri costanti a parametri variabili
- Senza disturbi additivi con disturbi additivi

Modelli matematici

- Modello matematico
 - M_I modello per il progetto del controllo
 - Di "prima approssimazione"
 - Lineare
 - Dinamico statico
 - A parametri costanti
 - Senza disturbi additivi con disturbi additivi
 - M_v modello per le verifiche delle prestazioni
 - Inizialmente $M_V = M_I$
 - Successivamente, se del caso, $M_V = M_{II}$ dove
 - M_{II} = modello di seconda approssimazione

Progetto: procedura tipo

