Sommaire

1	Calculer avec les nombres complexes	1
2	Représentation géométrique d'un nombre complexe	2
3	Module d'un nombre complexe	2
4	Argument d'un nombre complexe	3
5	Forme trigonométrique d'un nombre complexe	4
6	Forme exponentielle d'un nombre complexe	5
7	Formules d'Euler et de De Moivre	7
8	Lignes de niveau	7
9	Racines carrées, équation du second degré	8
10	D1.15	10

1 Calculer avec les nombres complexes

Exercice 1

Mettre sous la forme a + ib $(a, b \in \mathbb{R})$ les nombres :

1.
$$(2+3i) + (-1+6i)$$
 2. $(5+i) - (3-2i)$ 3. i^3 4. i^4 5. $(2-i)^2$ 6. $(2-3i)(2+3i)$ 7. $(1+i)(3-2i)$ 8. $(4+i)(-5+3i)$ 9. $\frac{1}{i}$ 10. $\frac{1}{\sqrt{3}+2i}$

Exercice 2

On considère $j=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$. Écrire j^2 et j^3 sous forme algébrique et calculer $J=j+j^2+j^3$.

Exercice 3

Écrire sous forme algébrique les nombres complexes :

1.
$$\frac{3+6i}{3-4i}$$
 2. $\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$ 3. $\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$ 4. $\frac{1+4i}{1-\sqrt{2}i}$ 5. $(x+iy)(x'+iy')$ 6. $(x+iy)^2$ 7. $(2+i\sqrt{3})(5-i) + \left(\frac{1}{2}+3i\right)^2$

8. Exprimer en fonction de $n \in \mathbb{Z}$, $z_n = i^n$

Exercice 4

Soit $z_1 = -1 + 2i$ et $z_2 = 1 - i$. Écrire sous forme algébrique les nombres complexes :

(1)
$$z_1^2 - 2z_2$$
 (2) $z_1 z_2^2$ (3) $\frac{z_1}{z_2}$ (4) $\frac{1}{z_1} + \frac{1}{z_2}$ (5) $\frac{1}{z_1^2} + \frac{1}{z_2^2}$

Exercice 5

Soit les nombres complexes : $z_1 = \frac{3-i}{5+7i}$ et $z_2 = \frac{3+i}{5-7i}$.

Vérifier que $z_1 = \overline{z_2}$, et en déduire que $z_1 + z_2$ est réel et que $z_1 - z_2$ est imaginaire pur.

Calculer $z_1 + z_2$ et $z_1 - z_2$.

Effectuer les calculs suivants :

- 1. (3+2i)(1-3i) $\frac{3+2i}{1-3i}$.
- 2. Produit du nombre complexe de module 2 et d'argument $\pi/3$ par le nombre complexe de module 3 et d'argument $-5\pi/6$.
- 3. Quotient du nombre complexe de module 2 et d'argument $\pi/3$ par le nombre complexe de module 3 et d'argument $-5\pi/6$.

Exercice 7

On considère les points A, B et C d'affixes respectives : $z_A = 1 + i$, $z_B = 4 + 5i$, $z_C = 8 + 2i$ Déterminer l'affixe du point D tel que le quadrilatère ABCD soit un parallélogramme.

Représentation géométrique d'un nombre complexe

Exercice 8

1. Placer dans le plan les points A, B, C, D et E d'affixes respectives :

(a)
$$z_A = -1 + i$$
 (b) $z_B = 2 + i$ (c) $z_C = -3$ (d) $z_D = 3 - i$ (e) $z_E = 2i$

(c)
$$z_C = -3$$

(d)
$$z_D = 3 - i$$

(e)
$$z_E = 2i$$

2. Déterminer l'affixe des vecteurs \overrightarrow{AB} et \overrightarrow{CE} .

Exercice 9

1. Déterminer les affixes des points de coordonnées suivantes :

(a)
$$F(1;1)$$

(b)
$$G(2;0)$$

(b)
$$G(2;0)$$
 (c) $H(-3;1)$ (d) $I(0;1)$

(d)
$$I(0;1)$$

2. Déterminer l'affixe des vecteurs \overrightarrow{FH} et \overrightarrow{IF} .

Exercice 10

Les points A, B et C ont pour affixe respective -2+i, 3+3i, $1+\frac{11}{5}i$.

- 1. Calculer les affixes des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 2. En déduire que les points A, B et C sont alignés.
- 3. Placer les points A, B et C.

Module d'un nombre complexe

Exercice 11

Calculer le module des nombres complexes suivants :

1.
$$z_1 = 7$$
 2. $z_2 = -4$ 3. $z_3 = -1 + 2i$ 4. $z_4 = -7i$ 5. $z_5 = \sqrt{3} + i$ 6. $z_6 = \frac{-1 + i}{3}$

Exercice 12

Calculer le module des nombres complexes suivants :

1.
$$z_1 = \sqrt{2} + i\sqrt{6}$$
 2. $z_2 = i(1+i)$ 3. $z_3 = (4+3i)(12-5i)$ 4. $z_4 = \frac{1}{i+3}$ 5. $z_5 = (1-7i)^3$ 6. $z_6 = \frac{i-\sqrt{8}}{5+3i}$

On considère les points A, B et C d'affixes respectives : $z_A = -1 + 2i$, $z_B = 2 + 5i$, $z_C = 2 - i$.

- 1. Représenter, dans le plan complexe, les points A, B et C.
- 2. Calculer AB, AC et BC.
- 3. Que peut-on dire du triangle ABC?

Exercice 14

Pour chacun des cas suivants, représenter, dans le plan complexe, les points M dont les affixes z respectent la condition donnée :

1.
$$|z| = 5$$

$$|z-3|=2$$

3.
$$|z - i| = 5$$

4.
$$|z - 6i| = 5$$

Exercice 15

Soit z un nombre complexe. Démontrer que, pour tout entier naturel n, $|z^n| = |z|^n$.

Exercice 16

Soient z et z' deux nombres complexes de module 1.

- 1. Démontrer que $|z \times z'| = 1$.
- 2. Démontrer que $\left|\frac{1}{z}\right| = 1$.

Exercice 17

On considère les points A, B et C d'affixes respectives : $z_A = 1 + i$, $z_B = 4 + 5i$, $z_C = 8 + 2i$.

Calculer la longueur AB. Le point C appartient-il au cercle de centre A passant par B?

Exercice 18

Placer les points A, B et C d'affixe respectif : $z_A = -1 - 2i$, $z_B = 4 - i$ et $z_C = \sqrt{2} + \frac{3}{2}i$.

Déterminer les longueurs OA, OB et OC et AB.

Argument d'un nombre complexe

Exercice 19

Calculer un argument de chacun des nombres complexes suivants :

1.
$$z_1 = 5$$

$$2. z_2 = -4$$

3.
$$z_3 = \sqrt{2}i$$

4.
$$z_4 = -7i$$

Exercice 20

Pour chacun des cas suivants, représenter, dans le plan complexe, les points M dont les affixes z respectent la condition donnée :

1.
$$\arg(z) = \frac{\pi}{3} [2\pi$$

2.
$$\arg(z) = -\pi [2\pi]$$

3.
$$\arg(z) = \frac{5\pi}{6} [2\pi]$$

1.
$$\arg(z) = \frac{\pi}{3} [2\pi]$$
 2. $\arg(z) = -\pi [2\pi]$ 3. $\arg(z) = \frac{5\pi}{6} [2\pi]$ 4. $\arg(z) = \frac{-\pi}{4} [2\pi]$

ICAM

- 1. Exprimer $arg(\overline{z})$ en fonction de arg(z).
- 2. Exprimer arg(-z) en fonction de arg(z).
- 3. Exprimer $arg(-\overline{z})$ en fonction de arg(z).

Exercice 22 (Savoir utiliser les propriètés des arguments)

- 1. Déterminer un argument de $z_1 = 1 + i$ et $z_2 = -3 + \sqrt{3}i$.
- 2. En déduire un argument des nombres suivants :

1.
$$z_1 \times z_2$$
 2. $-3 - \sqrt{3}i$ 3. $-\frac{1}{2}(1+i)$ 4. $-1 - i$ 5. $\frac{(3 - \sqrt{3}i)^2}{(1-i)^3}$

Exercice 23

On considère les points A, B et C d'affixes respectives : $z_A = -2 + i$, $z_B = 3 + 3i$, $z_C = 1 + \frac{11i}{5}$. Montrer que les points A, B et C sont alignés.

Exercice 24

Les points A, B et C ont pour affixe respective $1 + \frac{1}{2}i$, $\frac{3}{2} + 2i$ et $-1 - \frac{11}{2}i$. Montrer que les points A, B et C sont alignés.

Exercice 25

Soit j le nombre complexe dont le carré vaut -1 (notation des physiciens en électricité pour ne pas confondre avec l'intensité d'un courant). L, R, C, ω sont des nombres réels.

Soit
$$Z_1 = \frac{jL\omega}{R + \frac{j}{C\omega}}$$
 et $\frac{1}{Z_2} = \frac{1}{R} + \frac{1}{jL\omega} + jC\omega$

Déterminer la forme algébrique des nombres complexes Z_1 et Z_2 . Préciser le module et un argument de Z_1 .

5 Forme trigonométrique d'un nombre complexe

Exercice 26

Écrire sous la forme a + ib les nombres complexes suivants :

1. Nombre de module 2 et d'argument $\pi/3$.

2. Nombre de module 3 et d'argument $-\pi/8$.

Exercice 27

Écrire, sous forme trigonométrique, les nombres complexes suivants :

1.
$$z_1 = 7$$
 2. $z_2 = -5$ 3. $z_3 = 5i$ 4. $z_4 = 1 + i\sqrt{3}$ 5. $z_5 = -2 - 2i$ 6. $z_6 = \frac{1}{2} + \frac{i}{2}$

Exercice 28

Écrire, sous forme trigonométrique, les nombres complexes suivants :

1.
$$z_1 = 1 - i\sqrt{3}$$

2.
$$z_2 = -2 + 2\sqrt{3}i$$

3.
$$z_3 = \frac{1}{3} - \frac{i}{3}$$

Déterminer la forme algébrique des nombres complexes suivants :

1.
$$z_1 = 2(\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}))$$
 3. $z_3 = \cos(\pi) + i\sin(\pi)$

$$3. \ z_3 = \cos(\pi) + i\sin(\pi)$$

2.
$$z_2 = 5(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$$

2.
$$z_2 = 5(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$$
 4. $z_4 = 4(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}))$

Exercice 30

On considère les nombres complexes : $z = \frac{\sqrt{6} - i\sqrt{2}}{2}$ et z' = 1 - i

- 1. Déterminer le module, un argument de z, de z' et de $\frac{z}{z'}$.
- 2. Déterminer la forme algébrique de $\frac{z}{z}$.

3. En déduire que :
$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 et $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$

Exercice 31

Calculer le module et un argument des complexes suivants, puis les écrire sous formes trigonométrique :

$$z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2(1+i)}$$

$$z_2 = \frac{5(-1+i)}{\sqrt{3}+i}$$

Exercice 32

Calculer le module et l'argument de $u = \frac{\sqrt{6} - i\sqrt{2}}{2}$ et v = 1 - i. En déduire le module et l'argument de $w = \frac{u}{v}$.

Exercice 33

- a Écrire sous forme trigonométrique les complexes $z_1 = \sqrt{3} i$, $z_2 = 1 i$, et $Z = \frac{z_1}{z_2}$.
- b Déterminer la forme algébrique de Z, et en déduire les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.

Exercice 34

Écrire sous forme trigonométrique les nombres complexes suivants :

1.
$$z_1 = 3$$

3.
$$z_3 = 2i$$

5.
$$z_5 = -\sqrt{3} +$$

1.
$$z_1 = 3$$
 3. $z_3 = 2i$ 5. $z_5 = -\sqrt{3} + i$ 7. $z_7 = -6\sqrt{3} + 6i$ 9. $z_9 = \sqrt{6} + i\sqrt{2}$

2.
$$z_2 = -4$$

4.
$$z_4 = -1 + i$$

2.
$$z_2 = -4$$
 4. $z_4 = -1 + i$ 6. $z_6 = -17$ 8. $z_8 = 5i$

8.
$$z_8 = 5i$$

Forme exponentielle d'un nombre complexe

Exercice 35

Placer dans le plan complexe et écrire sous formes trigonométrique et algébrique les nombres complexes :

1.
$$3e^{-i\frac{\pi}{2}}$$

2.
$$\sqrt{2}e^{3i\frac{\pi}{4}}$$

3.
$$6e^{-i\frac{2\pi}{3}}$$

4.
$$5e^{i\frac{57}{3}}$$

2.
$$\sqrt{2}e^{3i\frac{\pi}{4}}$$
 3. $6e^{-i\frac{2\pi}{3}}$ 4. $5e^{i\frac{5\pi}{3}}$ 5. $2e^{i\frac{\pi}{4}}e^{-i\frac{3\pi}{2}}$ 6. $\frac{3e^{i\frac{\pi}{6}}}{2e^{-i\frac{2\pi}{3}}}$

6.
$$\frac{3e^{i\frac{\pi}{6}}}{2e^{-i\frac{2\pi}{3}}}$$

Exercice 36

Écrire sous forme trigonométrique et exponentielle les nombres complexes :

2.
$$4 + 4i$$

3.
$$\frac{3}{2}i$$

4.
$$\frac{2}{1-x}$$

5.
$$\sqrt{3}$$
 –

2.
$$4+4i$$
 3. $\frac{3}{2}i$ 4. $\frac{2}{1-i}$ 5. $\sqrt{3}-i$ 6. $(\sqrt{3}-i)^2$ 7. $(\sqrt{3}-i)^3$

En utilisant la notation exponentielle complexe, retrouver en fonction de cos(x) et sin(x) les valeurs de : Exprimer sous forme algébrique les nombres complexes :

(1)
$$\cos\left(x + \frac{\pi}{2}\right)$$

(1)
$$\cos(x + \frac{\pi}{2})$$
 (3) $\cos(\frac{\pi}{2} - x)$ (5) $\cos(x + \pi)$

(5)
$$\cos(x + \pi)$$

(7)
$$\cos(\pi - x)$$

(2)
$$\sin \left(x + \frac{\pi}{2}\right)$$

(4)
$$\sin\left(\frac{\pi}{2}-x\right)$$

(2)
$$\sin \left(x + \frac{\pi}{2}\right)$$
 (4) $\sin \left(\frac{\pi}{2} - x\right)$ (6) $\sin \left(x + \pi\right)$ (8) $\sin \left(\pi - x\right)$

(8)
$$\sin (\pi - x)$$

Exercice 38

On donne
$$z_1 = e^{i\frac{\pi}{6}}$$
, $z_2 = 3e^{-i\frac{\pi}{3}}$, et $z_3 = \sqrt{2}e^{-i\frac{5\pi}{6}}$.

Donner sous la forme exponentielle puis algébrique les complexes : $z_1z_2z_3$, $\frac{z_1}{z_2z_3}$, z_2^2 , z_3^6 .

Exercice 39

Soit θ et θ' deux réels quelconques. En exprimant de deux manières différentes le complexe $e^{i\theta}e^{i\theta'}$, exprimer $\cos(\theta + \theta')$ et $\sin(\theta + \theta')$ en fonction des cosinus et sinus de θ et θ' .

Exprimer de la même facon $\sin(2\theta)$ et $\cos(2\theta)$.

Exercice 40

Soit α et β deux nombres réels tels que $\alpha + \beta \neq \pi + 2k\pi$ (avec $k \in \mathbb{Z}$).

Démontrer que $m=\frac{e^{i\alpha}+e^{i\beta}}{1+e^{i\alpha}e^{i\beta}}$ est un nombre réel (commencer par factoriser le numérateur par $e^{i\left(\frac{\alpha+\beta}{2}\right)}$)

Exercice 41

Simplifier l'expression, où
$$\theta \in \mathbb{R}$$
, $\left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2 + \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^2$. Était-ce prévisible sans calcul ?

Exercice 42

- 1. x est un nombre réel. Écrire la forme algébrique et la forme exponentielle de $\left(\frac{\sqrt{3}}{2} \frac{i}{2}\right)e^{ix}$.
- 2. Utiliser la question précédente pour résoudre dans $]-\pi;\pi[$ l'équation $\sqrt{3}\cos(x)-\sin(x)=\sqrt{3}$.

Exercice 43

Écrire le nombre complexe $(\sqrt{3}-i)^{10}$ sous forme algébrique.

Exercice 44

Soit p et q deux nombres réels.

- 1. Factoriser $e^{i\frac{p+q}{2}}$ dans la somme $e^{ip} + e^{iq}$.
- 2. Factoriser $e^{i\frac{p+q}{2}}$ dans la somme $e^{ip} e^{iq}$.
- 3. En déduire une factorisation de cos(p) + cos(q) et de sin(p) + sin(q).
- 4. Résoudre dans l'intervalle $]-\pi;\pi]$ l'équation : $\cos(x)+\cos(3x)=0$.
- 5. Calculer $A = e^{i\frac{\pi}{4}} + e^{i\frac{\pi}{7}}$ puis $B = e^{i\frac{\pi}{3}} e^{i\frac{\pi}{5}}$

Formules d'Euler et de De Moivre

Exercice 45 (Addition)

Exprimer $\cos(5x)$ et $\sin(5x)$ en fonction de $\cos x$ et $\sin x$.

Exercice 46 (Linéariser!)

Linéariser $\cos^5 x$, $\sin^5 x$ et $\cos^2 x \sin^3 x$

Exercice 47

En utilisant la formule d'Euler, linéariser les expressions suivantes :

1.
$$A(x) = \cos^3(x)$$
 2. $B(x) = \sin^3(x)$ 3. $C(x) = \cos^5\left(\frac{x}{2}\right)$ 4. $D(x) = \cos^3(x)\sin^3(x)$

Exercice 48 (Forme exponentielle et formule d'Euler)

Soient $a, b \in]0, \pi[$. Écrire sous forme exponentielle les nombres complexes suivants :

1.
$$z_1 = 1 + e^{ia}$$
 2. $z_2 = 1 - e^{ia}$ 3. $z_3 = e^{ia} + e^{ib}$ 4. $z_4 = \frac{1 + e^{ia}}{1 + e^{ib}}$

Lignes de niveau

Exercice 49

Déterminer l'ensemble des nombres complexes z tels que :

1.
$$\arg(z) = \frac{\pi}{6}$$

3.
$$|z+1-2i| < \sqrt{5}$$

$$5. \arg(z+i) = \pi$$

1.
$$\arg(z) = \frac{\pi}{6}$$
 3. $|z+1-2i| < \sqrt{5}$ 5. $\arg(z+i) = \pi$ 7. $\arg\left(\frac{z+1}{z-2i}\right) = \frac{\pi}{2}$

2.
$$|z-3| = |z+2i|$$
 4. $|\overline{z} + \frac{i}{2}| = 4$ 6. $\arg\left(\frac{1}{iz}\right) = \pi$

$$4. \ \left| \overline{z} + \frac{i}{2} \right| = 4$$

6.
$$\arg\left(\frac{1}{iz}\right) = \pi$$

Exercice 50

Déterminer par le calcul et géométriquement les nombres complexes z tels que $\left|\frac{z-3}{z-5}\right|=1$.

Généraliser pour $\left| \frac{z-a}{z-b} \right| = 1$.

Exercice 51

Déterminer l'ensemble des nombres complexes z tels que :

1.
$$\left| \frac{z-3}{z-5} \right| = 2$$

$$2. \left| \frac{z-3}{z-5} \right| = \frac{\sqrt{2}}{2}$$

Exercice 52 (Lieu géométrique et arguments)

Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . Déterminer l'ensemble des points M dont l'affixe z vérifie la relation demandée :

1.
$$\arg(z-2) = \frac{\pi}{2} [2\pi]$$

3.
$$arg(iz) = \frac{\pi}{4} [\pi]$$

5.
$$\operatorname{arg}\left(\frac{z-2i}{z-1+i}\right) = \frac{\pi}{2} \left[\pi\right]$$

2.
$$\arg(z-2) = \frac{\pi}{2} [\pi]$$

4.
$$\arg\left(\frac{z}{1+i}\right) = \frac{\pi}{2} \left[2\pi\right]$$

- 1. Déterminer l'équation du cercle de rayon 3 et de centre $\Omega(3+2i)$.
- 2. Quel est l'ensemble des point M(x;y) tels que $x^2 + y^2 6x + 4y 12 = 0$.
- 3. Quel est l'ensemble des point M(x;y) tels que $x^2 + y^2 + 4x 2y + 11 = 0$.

Exercice 54

Quel est l'ensemble des points M(z) du plan complexe, tels que $\frac{z-2}{z+i}$ soit un nombre imaginaire pur?

Exercice 55

Soit z un nombre complexe différent de i. Montrer que : $\left|\frac{z+i}{z-i}\right|=1 \iff z \in \mathbb{R}$.

Exercice 56

Déterminer l'ensemble des points M d'affixe z tels que :

1.
$$|z - 6i| = 3$$

3.
$$|z+2| = |z-3i+1|$$

1.
$$|z - 6i| = 3$$
 3. $|z + 2i| = |z - 3i + 1|$ 5. $\left| \frac{z + 2i}{z + 1 - 2i} \right| > 1$

2.
$$|z+3-2i| < 2$$

$$2. \ |z+3-2i| < 2 \qquad \qquad 4. \ |2-iz| = |z+5|$$

Racines carrées, équation du second degré

Exercice 57

Calculer les racines carrées de 1, i, 3 + 4i, 8 - 6i, et 7 + 24i.

Exercice 58

Trouver les racines carrées de 3 - 4i et de 24 - 10i.

Exercice 59

- 1. Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$. En déduire les valeurs de $\cos(\pi/8)$ et $\sin(\pi/8)$.
- 2. Calculer les valeurs de $\cos(\pi/12)$ et $\sin(\pi/12)$.

Exercice 60

Montrer que les solutions de $az^2 + bz + c = 0$ avec a, b, c réels, sont réelles ou conjuguées.

Exercice 61

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$z^2 + 9z - 4 = 0$$

2.
$$-z^2 + (1+\sqrt{3})z - \sqrt{3} = 0$$

Résoudre dans \mathbb{C} les équations suivantes :

1.
$$z^2 + z + 1 = 0$$

4.
$$z^2 - (5-14i)z - 2(5i+12) = 0$$
 7. $z^4 + 10z^2 + 169 = 0$

7.
$$z^4 + 10z^2 + 169 = 0$$

2.
$$z^2 - (1+2i)z + i - 1 = 0$$

2.
$$z^2 - (1+2i)z + i - 1 = 0$$
 5. $z^2 - (3+4i)z - 1 + 5i = 0$

3.
$$z^2 - \sqrt{3}z - i = 0$$

$$6. \ 4z^2 - 2z + 1 = 0$$

$$8. \ z^4 + 2z^2 + 4 = 0$$

Exercice 63

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$z^2 - (11 - 5i)z + 24 - 27i = 0$$
.

2.
$$z^3 + 3z - 2i = 0$$

Exercice 64

Résoudre dans $\mathbb{C}: z^3 = \frac{1}{4}(-1+i)$. Montrer qu'une seule des solutions a une puissance quatrième réelle.

Exercice 65

Résoudre dans \mathbb{C} l'équation : $z^4 + 4z^2 - 21 = 0$.

Exercice 66

On considère le polynôme P défini sur \mathbb{C} par $P(z)=z^4-4z^3+4z^2-4z+3$.

- a) Montrer qu'il existe un polynôme Q à coefficients réels tel que, pour tout $z \in \mathbb{C}$, $P(z) = (z^2 + 1)Q(z)$.
- b) En déduire toutes les racines dans \mathbb{C} du polynôme P.

Exercice 67

Soit P le polynôme défini par : $P(z) = z^3 - (2+i)z^2 + 2(1+i)z - 2i$.

- 1. Calculer P(i).
- 2. Trouver deux nombres réels p et q tels que $P(z)=(z-i)(z^2+pz+q)$.
- 3. Déterminer alors toutes les racines du polynôme P.

Exercice 68

Soit le polynôme P défini sur \mathbb{C} par $: P(z) = 3z^3 + (1+6i)z^2 + 2(8+i)z + 32i$.

- 1. Vérifier que $z_0 = -2i$ est une racine de P.
- 2. En déduire une factorisation de P, et déterminer alors toutes les racines de P.

Exercice 69

On considère l'équation du second degré $(E): z^2 + (1+i\sqrt{3})z - 1 = 0$.

- a) Déterminer le discriminant Δ de cette équation. Écrire Δ sous forme exponentielle.
- b) Donner un nombre complexe δ tel que $\delta^2 = \Delta$. Écrire δ sous forme algébrique.
- c) Vérifier que les formules usuelles du second degré, $z_1 = \frac{-b-\delta}{2a}$ et son conjugué $z_2 = \overline{z_1}$ donnent bien deux solutions de (E).

On considère l'équation $z^2 - 2\cos(\theta)z + 1 = 0$, où θ est un réel donné dans $[0; 2\pi[$.

- a) Vérifier que le discriminant de cette équation est $\Delta = -4\sin^2(\theta)$.
- b) Résoudre alors dans $\mathbb C$ l'équation proposée, en discutant suivant les valeurs de θ , en donnant les solutions sous formes exponentielle.

Exercice 71

Écrire sous forme exponentielle les solutions de : $z^2 - 2z\sin^2\alpha + \sin^2\alpha = 0$.

Exercice 72

- a Donner sous forme exponentielle les solutions de l'équation : $z^2 + z + 1 = 0$.
- b Soit α un réel donné. Factoriser l'expression : $z^2 e^{2i\alpha}$.
- c En déduire les solutions de l'équation : $z^4 + z^2 + 1 = 0$.

10 Problèmes

Exercice 73

Dans le plan complexe, A, B et C sont les points d'affixes : $z_A = 1 + i$, $z_B = 4 + 5i$, $z_C = 5 - 2i$

- 1. Montrer que AB = AC, puis que $(\overrightarrow{AB}; \overrightarrow{AC}) = -\frac{\pi}{2}$.
- 2. Déterminer l'affixe du point K tel que le quadrilatère ABKC soit un rectangle.
- 3. (a) Déterminer l'affixe du point G tel que le quadrilatère AGBC soit un parallélogramme.
 - (b) Vérifier que B est le milieu du segment [GK].

Exercice 74

Soit les points A, B, C et D dans le plan complexe d'affixe $z_A = 3 + i$, $z_B = 2 - 2i$, $z_C = 2i$ et $z_D = 1 + 5i$. Faire une figure puis montrer de deux façons différentes que ABCD est un parallélogramme.

Exercice 75

Soit P le polynôme défini sur $\mathbb C$ par $: P(z) = z^3 + z^2 - 4z + 6$.

- 1. Montrer que pour tout complexe $z, \ \overline{P(z)} = P(\overline{z}).$
- 2. Vérifier que 1+i est une racine de P, et en déduire une autre racine complexe de P.

Exercice 76

Dans le plan complexe rapporté à un repère orthonormal $(O; \overrightarrow{u}; \overrightarrow{v})$, on considère les points A, B et C d'affixes respectives $z_A = 3 + i$, $z_B = -\sqrt{3} + 3i$ et $z_C = \frac{4\sqrt{3}z_B}{9z_A}$

- 1. Démontrer que OAB est un triangle rectangle.
- 2. Démontrer que le point C est le centre de gravité de ce triangle.

- 1. Soit A, B, C trois points du plan complexe dont les affixes sont respectivement a, b, c. On suppose que $a+jb+j^2c=0$; montrer que ABC est un triangle équilatéral (j et j^2 sont les racines cubiques complexes de 1—plus précisément $j=\frac{-1+i\sqrt{3}}{2}$). Réciproque?
- 2. ABC étant un triangle équilatéral direct du plan complexe, on construit les triangles équilatéraux directs BOD et OCE, ce qui détermine les points D et E (O est l'origine du plan complexe). Quelle est la nature du quadrilatère ADOE? Comparer les triangles OBC, DBA et EAC.

Exercice 78 (Avec la formule du binôme)

Simplifier les nombres complexes suivants : $(1+i)^5$, $(1-i)^4$.