

มูลนิธิส่งเสริมโอลิมปิกวิชาการและพัฒนามาตรฐานวิทยาศาสตร์ศึกษา ข้อสอบวิชาฟิสิคส์

เพื่อคัดเลือกนักเรียนเข้ารับการอบรมค่าย 1 สอวน.

ชื่อ-สกุล	ข้อสอบวิชาฟิสิกส์
เลขประจำตัวสอบ	รหัสชุดวิชา 0000006
สถานที่สอบ	สอบวันอาทิตย์ที่ 25 สิงหาคม 2562
ห้องสอบ	เวลา 13.00 - 16.00 น.

คำแนะนำเกี่ยวกับข้อสอบและการสอบ

- ข้อสอบมี 9 หน้า ประกอบไปด้วย 3 ส่วน (50 คะแนน)
 ส่วนที่หนึ่ง ข้อ 1 ถึงข้อ 15 เป็นแบบปรนัย 4 ตัวเลือก (ข้อละ 1 คะแนน)
 ส่วนที่สอง ข้อ 16 ถึง 25 เป็นแบบเติมคำตอบสั้นๆ (ข้อละ 3 คะแนน)
 ส่วนที่สาม ข้อ 26 ต้องแสดงวิธีทำโดยละเอียด (ข้อนี้ 5 คะแนน)
- 2. ห้ามนักเรียนออกจากห้องสอบก่อน 1 ชั่วโมง หลังจากเวลาเริ่มสอบ

คำสั่งและคำแนะนำ เกี่ยวกับปริมาณในโจทย์

- 1. เครื่องคิดเลขไม่ต้องใช้
- 2. $\underline{\mathtt{o}}\underline{\mathtt{b}}\underline{\mathtt{i}}$ แทนค่าตัวเลขของความเร่งโน้มถ่วง g
- 3. ใช้กฎของคูลอมบ์เป็นแบบ $f=rac{1}{4\pi\epsilon_{
 m o}}rac{q_1q_2}{r^2}$
- 4. $\sin 30^\circ = \frac{1}{2}$, $\cos 30^\circ = \frac{\sqrt{3}}{2}$
- 5. โมเมนต์ความเฉื่อยของมวล ${
 m m}$ ยาว 2l รอบแกนตั้งฉากผ่านศูนย์กลางมวลคือ ${1\over 3}{
 m m}l^2$
- 6. ปึกข้อสอบนี้นักเรียนนำติดตัวออกไปได้เมื่อสอบเสร็จ
- 7. **การตอบ** ให้ตอบในแบบที่กำหนดในปีกกระดาษคำตอบ

- 1) หน่วยของสภาพต้านทานไฟฟ้า (electrical resistivity) เป็นข้อใด
 - 1. Ω m
- 2. Ωm^{-1}
- 3. $m \Omega^{-1}$
- 4. Ω^{-1} m⁻¹

 $oldsymbol{ heta}$ เป็นมุมเล็กๆในหน่วยเรเดียนที่แนวแสงเบี่ยงเบนไปจากแนวเดิม, เมื่อผ่านเลนส์เว้าที่มีความยาวโฟกัส -f ที่จุดห่างจากเส้นแกนมุขสำคัญ h

θ มีค่าเท่าไรในหน่วยเรเดียน

- 3. $\left(\frac{f}{h}\right)^{\frac{1}{2}}$ 4. $\left(\frac{h}{f}\right)^{\frac{1}{2}}$

3)

ถ้าจะให้กาลักน้ำนี้ทำงานได้ ค่า h จะต้องมีค่าน้อยกว่าค่าใด

- 1. h มีค่าเท่าใดก็ได้
- 2. $\frac{\rho g}{P_a}$

- h เป็นระยะทางจากผิวน้ำในถังถึงจุด สูงสุดของท่อกาลักน้ำ
- $\mathbf{P}_{\!a}$ เป็นความดันบรรยากาศ
- เป็นความหนาแน่นของน้ำ
- เป็นค่าความเร่งโน้มถ่วง

อัตราเร็วของลำน้ำพุ่งจากกั้นถังเป็นเท่าใด

- 1. 2gh2. $\frac{2gh}{\sqrt{1-\left(\frac{a}{A}\right)}}$ 3. $\frac{\sqrt{2gh}}{\sqrt{1+\left(\frac{a}{A}\right)^2}}$ 4. $\frac{\sqrt{2gh}}{\sqrt{1-\left(\frac{a}{A}\right)^2}}$
- 5) คลื่นแม่เหล็กไฟฟ้าประกอบด้วยสนามไฟฟ้า E และสนามแม่เหล็ก B พลังงานต่อหน่วยปริมาตรในสนามไฟฟ้าคือ $\frac{1}{2}\varepsilon_{\circ}E^{2}$ และพลังงานต่อหน่วยปริมาตรในสนามแม่เหล็กคือ $\frac{1}{2}\frac{B^{2}}{\mu_{\circ}}$ ค่าของ $\frac{E}{B}$ ในคลื่นแม่เหล็กไฟฟ้าเป็น ตามข้อใด
 - 1. $\frac{1}{\sqrt{\varepsilon_{\circ}\mu_{\circ}}}$ 2. $\sqrt{\varepsilon_{\circ}\mu_{\circ}}$ 3. $\varepsilon_{\circ}\mu_{\circ}$ 4. $\frac{1}{\varepsilon_{\circ}\mu_{\circ}}$

6)

มวลเล็กๆกำลังเคลื่อนที่ตามแนววงกลมในระนาบ ระดับสูง h จากพื้นระดับบนผิวด้านในของกรวยซึ่งลื่น และมีแกนกรวยอยู่ในแนวดิ่ง

จงหาอัตราเร็ว (v) ของมวลนี้

- 1. *g*h

- 4. $(gh)^{\frac{1}{2}}$

7)

 ${
m AB}$ เป็นท่อโลหะตันเนื้อเดียวเส้นผ่าศูนย์กลางสม่ำเสมอยาว l ผิวด้านข้างรอบท่อมีฉนวนความร้อนห่อหุ้มอยู่ตลอด ปลาย A อยู่ที่อุณหภูมิสูง T_1 ปลาย B ที่อุณหภูมิ T_2 ซึ่งต่ำกว่า T_1 ที่จุดในท่อห่างจากปลาย A เป็นระยะ xมือุณหภูมิเป็นเท่าไร

- 1. $\frac{x}{l}$ T₁

- 2. $\frac{x}{l}$ T₂ 3. $\frac{x}{l}$ (T₁ T₂) 4. T₁ $\frac{x}{l}$ (T₁ T₂)

สำหรับลูกตุ้มแบบง่าย คาบของการแกว่งจะโตขึ้นเป็นกี่เท่าของค่าเดิม ถ้าหากลวด สายลูกตุ้มมีอุณหภูมิสูงขึ้นจากเดิม Δt องศา กำหนดให้ค่าสัมประสิทธิ์ของการขยายตัว เชิงเส้นของเนื้อลวดเป็น lpha ต่อองศา

1. $\alpha \Delta t$

- 2. $1 + 2\alpha\Delta t$
- $3. \quad (1+\alpha\Delta t)^{\frac{1}{2}}$
- 4. $1 + \alpha \Delta t$

9)

ลวดฉนวนครึ่งวงกลมรัศมี R ศูนย์กลางอยู่ที่จุด O มีประจุกระจายสม่ำเสมอ ตลอดความยาวลวดด้วยความหนาแน่นเชิงเส้น λ คูลอมบ์ต่อเมตร

จงหาศักย์ไฟฟ้าที่จุด **O**

1. $\frac{\lambda}{\varepsilon_{\circ}}$ 3. $\frac{\lambda}{3\varepsilon_{\circ}}$

2. $\frac{\lambda}{2\mathcal{E}_{\circ}}$ 4. $\frac{\lambda}{4\mathcal{E}_{\circ}}$

10)

ขนาดของกำลังขยายเลนส์นูนความยาวโฟกัส $\mathbf{f}\,\mathbf{cm}$ นี้เป็นเท่าไร ถ้าหากจัดให้ภาพเสมือนเกิดที่ระยะห่าง จากเลนส์ 17 cm.

- 1. 17 f

- 2. $\frac{17}{f} 1$ 3. $1 + \frac{17}{f}$ 4. $1 + \frac{25}{f}$

สนามแม่เหล็ก (B) ที่จุดศูนย์กลาง O ของแนว กระแส (I) ครึ่งวงกลมดังรูป มีขนาดเป็นเท่าไร

- 1. $\frac{\mu_{\circ}I}{4} \left(\frac{1}{R_{1}} \frac{1}{R_{2}} \right)$ 3. $\frac{\mu_{\circ}I}{2} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} \right)$

- 2. $\frac{\mu_{\circ}I}{2} \left(\frac{1}{R_{1}} \frac{1}{R_{2}} \right)$ 4. $\frac{\mu_{\circ}I}{4} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} \right)$

เชือกหนัก W ห้อยท้องช้างจากจุดสองจุดคือ Aกับ B ซึ่งอยู่ที่ระดับเดียวกัน เชือกที่จุดแขวนทำ มุม $oldsymbol{ heta}$ กับแนวดิ่ง จงหาความตึง (TENSION) ใน เส้นเชือกตรงจุดที่เส้นเชือกอยู่ต่ำสุด

- 1. W tan θ
- $W \cos \theta$
- 3. $\frac{W}{2} \tan \theta$ 4. $\frac{W}{2} \cos \theta$

13)

กระแสไฟฟ้าที่ไหลผ่าน ${f r}$ มีค[่]าเท่าไร

<u>ทันทีหลังจาก</u>โยกสวิทช์ SW จากตำแหน่ง (1) ไป (2) กระแสไฟฟ้าที่ไหลผ่าน R มีค[่]าเท่าไร

- 1. $\frac{R_2}{R_1} \frac{\mathcal{E}}{R}$ 2. $\frac{R_1}{R_2} \frac{\mathcal{E}}{R}$ 3. $\left(\frac{R_1}{R_1 + R_2}\right) \left(\frac{\mathcal{E}}{R}\right)$ 4. $\left(\frac{R_2}{R_1 + R_2}\right) \left(\frac{\mathcal{E}}{R}\right)$

เหรียญ A กับ B มีรัศมีเท่ากันและเท่ากับ R และมีขอบเกลี้ยง A เคลื่อนเข้าชน B เยื้องศูนย์กลางดังรูป B จะ กระเด็นออกไปในแนวทำมมุม $oldsymbol{ heta}$ เท่ากับเท่าไร

1.
$$\theta = \arcsin \frac{a}{R}$$

3. $\theta = \arctan \frac{a}{R}$

3.
$$\theta = \arctan \frac{a}{b}$$

2.
$$\theta = \arcsin \frac{a}{2R}$$

4. $\theta = \arctan \frac{a}{2R}$

4.
$$\theta = \arctan \frac{a}{2R}$$

16)

แกสอุดมคติแบบอะตอมเดี่ยวจำนวน n โมล อุณหภูมิ $T_{ extstyle o}$ ปริมาตร $V_{ extstyle o}$ อยู่ในกระบอกสูบ ต่อมาให้ความร้อน อย่างซ้ำๆ ปริมาณรวมเท่ากับ ${f Q}$ แก่แกสในกระบอก เป็นผลให้ปริมาตรเพิ่มขึ้นจาก ${f V_o}$ เป็น ${f V_1}$ และอุณหภูมิเป็น ${
m T_1}$ - จงหาค่าของ ${
m T_1}-{
m T_o}$ ในเทอมของ ${
m Q}$, n และค่าคงที่ของแกส ${
m R}$.

ถ้าเขียน $eta \equiv i^2 x$ เราจะสามารถแสดงได้ว่า สำหรับวงจรนี้ค่าความ ต้านทาน $oldsymbol{x}$ เป็นรากของสมการ

$$x^2 + \left(2r - \frac{\varepsilon^2}{\beta}\right)x + r^2 = 0$$

จงใช้สมการนี้หาค่าที่โตที่สุดของ $oldsymbol{eta}$ ที่เป็นจริงได้

ในภาพนี้กระแส $\dfrac{\mathcal{E}}{\mathbf{r}}$ กำลังไหลผ่าน \mathbf{L} จากบนลงล่าง. ต่อมาสับสวิทช $m ^{'}$ จากตำแหน่ง (1) ไป (2), ทันทีหลังสับศักย์ไฟฟ้าที่จุด \mathbf{A} มีค $m ^{'}$ าเป็นเท่าไร

19)

ท่อนโลหะผอมสม่ำเสมอทั้งท่อนยาว 2l ล้มจากหยุดนิ่ง ในแนว(เกือบ)ดิ่งบนพื้นระดับที่ลื่น จุดศูนย์กลางมวลของ ท่อนจะชนพื้นด้วยความเร็วเชิงเส้นขนาดเท่าไร

20)

21)

ตัวเก็บประจุ C ต้องมีความจุเท่าไรจึงจะทำให้ความจุรวม ระหว่างปลาย A กับ B มีค[่]าเท่ากับ C พอดี (ตอบใน เทอมของ C_1 กับ C_2)

ในรูปนี้แสดงล้อมวล M รัศมี R_2 โมเมนต์ความเฉื่อย I กำลังถูกลากให้กลิ้งด้วยแรง F ด้วยเชือกที่พันรอบเพลา รัศมี R_1 ทำมุม heta กับแนวระดับ. a เป็นความเร่งของศูนย์กลางมวลล้อ, Ω เป็นความเร่งเชิงมุมของล้อ, Nเป็นแรงปฏิกิริยาจากพื้น, f เป็นแรงเสียดทานทำต่อล้อ จงพิจารณาสมการ (1), (2), (3) ที่บรรยายการเคลื่อนที่ ของล้อ :

$$\Omega R_2 = a \qquad (1)$$

$$Ma = F \cos \theta - f \qquad (2)$$

$$I\Omega = f R_2 - F R_1 \qquad (3)$$

$$Ma^{2} = F\cos\theta - f \qquad (2)$$

$$I\Omega = fR_{2} - FR_{1} \qquad (3)$$

$$I\Omega = fR_2 - FR_1 \tag{3}$$

พื้นระดับ

X

<u>คำถาม</u> ถ้าจะให้ล้อกลิ้งไปทางขวามือ (ไปทับคนดึงเชือก) จะต้องใช**้**มุม $m{ heta}$ ที่น้อย[ั]กว่ากี่องศา [ตอบในเทอมของ R_1, R_2 .]

จุดสีแต้มบนขอบล้อรัศมี R กำลัง $n \hat{f a}$ งไปบน พื้นราบตามแนวแกน $\mathbf{0X}$ ด้วยความเร็วเชิงมุม $\pmb{\omega}$ จุดสีแต้มนี้มีความเร็วขนาดเท่าไรเทียบกับจุด O πουในเทอมของ R, ω, θ

ลูกตุ้มแบบง่ายสองลูก คือ m กับ \mathbf{M} มีความยาว l เท่ากัน แขวนแตะกันพอดีเมื่ออยู่ในแนวดิ่ง

ต่อมาจับ m โยกไปทางซ้ายแล้วปล่อยจากหยุดนิ่ง เสียงกระทบ กันครั้งแรกกับครั้งที่สองระหว่าง m กับ M ห่างกันเป็นเวลาเท่าไร (กำหนดว่า <u>ไม่มี</u>การชนติดกันไปและ m < M)

วงลวดอยู่ในระนาบ YZ ของระบบฉาก OXYZ และมีจุดศูนย์กลางอยู่ที่ O วงลวดมีประจุบวกกระจาย สม่ำเสมอด้วยความหนาแน่นเชิงเส้น λ C/m .

จงหาขนาดของสนามไฟฟ้าบนแกน \mathbf{OX} ที่ตำแหน่ง ห่างจากจุด \mathbf{O} เป็นระยะทาง \mathbf{x} [ตอบในเทอมของ λ , \mathbf{R} , ε_{\circ} , \mathbf{x}].

26) (แสดงวิธีทำ)

A, B, C เป็นเหรียญกลมขอบเกลี้ยงขนาดเท่ากันมวลเท่ากัน สามารถเคลื่อนที่ได้โดยปราศจากแรงเสียด ทานบนผิวโต๊ะราบ, ระดับ และเกลี้ยง

ก่อนการชนกัน ${f B}$ กับ ${f C}$ อยู่ชิดกันนิ่งๆ ${f A}$ เคลื่อนที่เร็ว ${m u}$ เข้าชนผ่าหมากอย่างสมมาตรและอย่าง ยืดหยุ่น จงหาขนาดของความเร็ว ${m v}$ และ ${m w}$ หลังชน

การสอบคัดเลือกเข้าค่าย สอวน 1 ประจำปี 2562

วิชาฟิสิคส์ สอบวันอาทิตย์ที่ 25 สิงหาคม 2562 เวลา 13.00-16.00 น.

ชื่อ	ี สกุล	เลขที่	
โรง	าเรียน		

จงทำเครื่องหมายกากบาท (X) ในตัวเลือกที่ถูก

ข้อ

ตัวเลือก	1	2	3	4
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

การสอบคัดเลือกเข้าค่าย สอวน 1 ประจำปี 2562

วิชาฟิสิคส์ สอบวันอาทิตย์ที่ 25 สิงหาคม 2562 เวลา 13.00-16.00 น.

เติมคำตอบ เป็น สูตร หรือ สมการ สั้นๆ				
ข้อ	16			
	17			
	18			
	19			
	20			
	21			
	22			
	23			
	24			
	25			

การสอบคัดเลือกเข้าค่าย สอวน 1 ประจำปี 2562

วิชาฟิสิคส์ สอบวันอาทิตย์ที่ 25 สิงหาคม 2562 เวลา 13.00-16.00 น.

ชื่อ สกล	เลขที่
โรงเรียน	

ข้อ. 26 (แสดงวิธีทำโดยละเอียด)