```
import pandas as pd
import numpy as np
import plotly.express as px
```

Dataset Overview:

- The guest_data_with_reviews.xlsx dataset contains customer feedback from a hospitality business.
- Key columns include: How likely are you to recommend us to a friend or colleague? for Net Promoter Score (NPS) calculations. Review for textual feedback, useful for sentiment analysis and topic modeling.

df=pd.read_excel("/content/guest_data_with_reviews.xlsx")

df.head()

	ID	Start time	Completion time	Email	Name	Full Name	Gender	Date of Birth	Checkout Date	Purpose of the visit	•••	How likely are you to recommend us to a friend or colleague?	Staff attitude	Check- in Process	Room service	F cleanlir
0	1	NaN	NaN	NaN	NaN	Guest 00001	Male	1993- 10-02	2022-04- 07	Business		9	Good	Good	Very good	I
1	3	NaN	NaN	NaN	NaN	Guest 00003	Male	1981- 10-03	2020-01- 16	Vacation		4	Poor	Good	Very good	Ave
4																

#we can see some columns might have missing value. we are looking for calculating the NPS score.

How many rows in the dataset
total_len=len(df)
total_len

→ 1108

#Missing value
missing_values = df.isnull().sum()
print(missing_values)

₹	ID	0								
	Start time	1108								
	Completion time									
	Email									
	Name									
	Full Name									
	Gender									
	Date of Birth									
	Checkout Date									
	Purpose of the visit									
	How did you discover us?									
	Rate your overall experience in our hotel									
	How likely are you to recommend us to a friend or colleague?									
	Staff attitude									
	Check-in Process									
	Room service									
	Room cleanliness	0								
	Food quality									
	Variety of food									
	Broadband & TV									
	Gym									
	Review	0								
	dtype: int64									
	21									

#we can see Start time, Completion time, Name, Email, Full Name >> we dont have any value. we assume that is fine bcz we

Missing Value Treatement

#We have 1 miising value in the Gym indicator#
here will not use dropna()>> bcz kit will completely detele missing rows in any of the columns

#1st drop the column and then rows with missing value.
df_cleaned= df.dropna(axis=1)
df_cleaned

→		ID	Full Name	Gender	Date of Birth	Checkout Date	Purpose of the visit	How did you discover us?	Rate your overall experience in our hotel	How likely are you to recommend us to a friend or colleague?	Staff attitude	Check- in Process	Room service	Room cleanliness	qı
	0	1	Guest 00001	Male	1993- 10-02	2022-04- 07	Business	Organization	3	9	Good	Good	Very good	Poor	
	1	3	Guest 00003	Male	1981- 10-03	2020-01- 16	Vacation	News paper	4	4	Poor	Good	Very good	Average	
	2	4	Guest 00004	Male	2004- 03-31	2022-05- 14	Vacation	Search engine	5	6	Good	Very good	Good	Poor	Α
	3	5	Guest 00005	Male	1961- 08-08	2022-06- 24	Business	hotel booking sites	5	5	Excellent	Excellent	Very good	Average	
	4	8	Guest 00008	Male	1981- 11-27	2020-02- 01	Business	Organization	1	7	Good	Excellent	Good	Average	
•	4 🗰														

Key Concepts: Net Promoter Score (NPS): Measures customer loyalty. Scores:

- 9-10: Promoters
- 7-8: Passives
- 0-6: Detractors

Formula: NPS = percentage of promoters - percentage of detractors

• Sentiment Analysis: Identifies the emotional tone (positive, negative, or neutral) in reviews.

New interactive sheet

• Topic Modeling: Uses embeddings to identify recurring themes in text data.

#How likely are you recommend us?

Next steps: (View recommended plots

likelyhood= px.histogram(df_cleaned, x="How likely are you to recommend us to a friend or colleague?",nbins=10,title="[

likelyhood.show()

Distribution of Recommendation Score

#calculate NPS score:

#classify score Promoter(9-10), passive (7-8), Detractor(0-6)

#We have to create a function to define the NPs score:

```
def classify_NPS(Score):
   if Score>=9:
      return 'Promoters'
   elif Score>=7:
      return 'Passive'
   else:
      return 'Detractor'
```

#Apply the classification on the recommendation score

df_cleaned['NPS Score']=df_cleaned["How likely are you to recommend us to a friend or colleague?"].apply(classify_NPS)
df_cleaned

<ipython-input-12-c84b93280c00>:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus

	ID	Full Name	Gender	Date of Birth	Checkout Date	Purpose of the visit	How did you discover us?	Rate your overall experience in our hotel	How likely are you to recommend us to a friend or colleague?	Staff attitude	Check- in Process	Room service	Room cleanliness	qı
0	1	Guest 00001	Male	1993- 10-02	2022-04- 07	Business	Organization	3	9	Good	Good	Very good	Poor	
1	3	Guest 00003	Male	1981- 10-03	2020-01- 16	Vacation	News paper	4	4	Poor	Good	Very good	Average	
2	4	Guest 00004	Male	2004- 03-31	2022-05- 14	Vacation	Search engine	5	6	Good	Very good	Good	Poor	Α
3	5	Guest 00005	Male	1961- 08-08	2022-06- 24	Business	hotel booking sites	5	5	Excellent	Excellent	Very good	Average	
4	. 8	Guest 00008	Male	1981- 11-27	2020-02- 01	Business	Organization	1	7	Good	Excellent	Good	Average	Ex

#Ratio of Promoters, Dectractor and Passive
NPS_proportions= df_cleaned["NPS Score"].value_counts(normalize=True)*100
NPS_proportions

proportion
NPS Score

 Passive
 47.202166

 Detractor
 36.913357

 Promoters
 15.884477

#As Larger num of Promoters than Dectractors. So, we can say more negative number of feedback. Business is not going vwe

#Interprate and claculate the overall NPS
Promoters=df_cleaned[df_cleaned["NPS Score"]=="Promoters"].shape[0]
Detractors=df_cleaned[df_cleaned["NPS Score"]=="Detractor"].shape[0]
Passive=df_cleaned[df_cleaned["NPS Score"]=="Passive"].shape[0]
Total_response=df_cleaned.shape[0]

Promoters, Detractors, Passive, Total_response

→ (176, 409, 523, 1108)

nps_score=((Promoters-Detractors)/Total_response)*100
nps_score

-21.028880866425993

if nps_score>0:
 nps_interpretation="Positive"

```
elif nps_score<0:
   nps_interpretation="Negative"
else.
   nps_interpretation="Neutral"
nps_score,nps_interpretation
 # What does NPS value indicate about customer loyalty?
if nps_score>50:
    loyalty_interpretation="Excellent customer loyalty"
elif 0 <nps_score<=50:
   loyalty_interpretation="Good customer loyalty"
   loyalty_interpretation="very poor customer loyalty"
nps_score,nps_interpretation, loyalty_interpretation
→ (-21.028880866425993, 'Negative', 'very poor customer loyalty')
#Sentiment Analysis
from transformers import pipeline
sentiment_analzer = pipeline("sentiment-analysis")
#Extracts the first prediction ([0]) and gets its sentiment label (['label']).
df cleaned['sentiment']=df cleaned['Review'].apply(lambda review:sentiment analzer(review)[0]['label'])
       No model was supplied, defaulted to distilbert/distilbert-base-uncased-finetuned-sst-2-english and revision 714eb0f (https://huggin
         Using a pipeline without specifying a model name and revision in production is not recommended.
         /usr/local/lib/python 3.11/dist-packages/hugging face\_hub/utils/\_auth.py: 94: UserWarning: 1.00 and 1.00 are also better the control of the
         The secret `HF_TOKEN` does not exist in your Colab secrets.
         To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as :
         You will be able to reuse this secret in all of your notebooks.
         Please note that authentication is recommended but still optional to access public models or datasets.
         config.json: 100%
                                                                                                              629/629 [00:00<00:00, 25.7kB/s]
         Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back to regular HTTP download. For better p
         WARNING:huggingface_hub.file_download:Xet Storage is enabled for this repo, but the 'hf_xet' package is not installed. Falling back
         model.safetensors: 100%
                                                                                                                        268M/268M [00:01<00:00, 199MB/s]
         tokenizer_config.json: 100%
                                                                                                                            48.0/48.0 [00:00<00:00, 3.70kB/s]
                                                                                                           232k/232k [00:00<00:00, 6.32MB/s]
         vocab.txt: 100%
         Device set to use cpu
         <ipython-input-23-cc57db3347c5>:4: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus</a>
df_cleaned[['Review','sentiment']]
```


#Visualize sentiment analysis accross the distribution:

fig.show()

Sentiment analysis accross the dataset

sentiment_count=df_cleaned['sentiment'].value_counts()
sentiment_percentage=(df_cleaned['sentiment'].value_counts())/len(df_cleaned)*100

sentiment_percentage


```
#prepare a dataframe to show :
sentiment_df = pd.DataFrame({'Sentiment': sentiment_count.index,
                               'count': sentiment_count.values,
                               'percentage': sentiment_percentage.values})
sentiment_df
→*
        Sentiment count percentage
     0 NEGATIVE
                    829
                          74.819495
        POSITIVE
                    279
                          25 180505
#what are the common keywords in the review:
#CountVectorizer >>help to count
from sklearn.feature_extraction.text import CountVectorizer
Review= df cleaned['Review']
vectorizer= CountVectorizer(stop_words='english', max_features=20)
#Fit the data:
X= vectorizer.fit_transform(Review)
get_vocab= vectorizer.get_feature_names_out()
word_count=X.toarray().sum(axis=0)
                                            Traceback (most recent call last)
    <ipython-input-4-a4e8b31d06f0> in <cell line: 0>()
          4 from sklearn.feature_extraction.text import CountVectorizer
    ----> 5 Review= df_cleaned['Review']
          7 vectorizer= CountVectorizer(stop_words='english', max_features=20)
    NameError: name 'df_cleaned' is not defined
#create a dataframe with word and count
keywords_df= pd.DataFrame({
    'keyword': get_vocab,
    'count': word_count
}).sort_values(by='count', ascending= False)
                                            Traceback (most recent call last)
    <ipython-input-3-1316e216ed43> in <cell line: 0>()
          3 keywords_df= pd.DataFrame({
                'keyword': get_vocab,
                'count': word_count
          6 }).sort_values(by='count', ascending= False)
    NameError: name 'get_vocab' is not defined
```

keywords_df

TF-IDF vectorization and Non-negative Matrix Factorization (NMF) help to extract key topics

- TfidfVectorizer: Converts text data into a matrix of TF-IDF (Term Frequency-Inverse Document Frequency) features
- NMF: A machine learning technique used for topic modeling (identifying hidden topics in text).
- n_components=5: The model will extract 5 topics.
- Trains the NMF model on the TF-IDF matrix to identify 5 topics based on word distributions.
- · Returns a matrix where each row represents a topic, and each column represents the importance of a word in that topic.
- · List item

```
from \ sklearn. decomposition \ import \ Latent Dirichlet Allocation
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import NMF
#using emedding extract key topics
# Initialize the TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)
# Fit and transform the reviews
tfidf = tfidf_vectorizer.fit_transform(Review)
#Initialize the NMF Model
nmf=NMF(n_components=5, random_state=42)
#Fit the NMF
nmf.fit(tfidf)
#get the topic
topic=nmf.components_
#Get the feature names(Words)
feature_names=tfidf_vectorizer.get_feature_names_out()
#Dispaly the top words for each topic
num topword=10
```

```
4/4/25, 2:42 PM
                                                                  Customer Feedback Analyzer - Colab
    topics_df=pd.DataFrame()
    for topic_idx, topic in enumerate(topic):
      top_word=[feature_names[i] for i in topic.argsort()[:-num_topword -1:-1]]
      topics_df[f'Topic{topic_idx+1}'] = top_word
    topics_df
    ₹
                                                  Topic4
                                                             Topic5
                                                                      \blacksquare
                  Topic1
                            Topic2
                                       Topic3
          0
            expectations
                          upgrades
                                       overall
                                                     best
                                                               wasn
          1
              cleanliness
                           consider
                                               experience
                                         work
                                                               good
                                                   dining
          2
              memorable
                            helped
                                         tried
                                                          impression
          3
                   match
                                        make
                              need
                                                improved
                                                               liked
          4
                  thanks
                          returning
                                         okay
                                                    worst
                                                          pleasantly
          5
            unfortunately
                         significant
                                                     did
                                                           surprised
                                          use
          6
                  quality
                            favorite
                                     approach
                                                   assist
                                                               leave
          7
                    didn
                                           bit
                                                    hope
                                                               clean
                              stay
                                   experience
          8
                    stay
                              staff
                                                    hotel
                                                               quite
                    staff
                                                   future
                                                                left
                              food
                                         dood
     New interactive sheet
```

Visualize results as a word cloud

```
from wordcloud import WordCloud
import matplotlib.pyplot as plt
# Function to plot word cloud for each topic
def plot word cloud(lda model, feature names, num top words):
    for topic_idx, topic in enumerate(lda_model.components_):
        word_freq = {feature_names[i]: topic[i] for i in topic.argsort()[:-num_top_words - 1:-1]}
        wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(word_freq)
        plt.figure(figsize=(10, 5))
        plt.imshow(wordcloud, interpolation='bilinear')
        plt.axis('off')
        plt.title(f'Topic {topic_idx+1}')
        plt.show()
# Plot word clouds for each topic
plot_word_cloud(lda, tfidf_feature_names, no_top_words)
```


Topic 2

