Jonas L. Kaufman

Center for Applied Scientific Computing Lawrence Livermore National Laboratory Livermore, CA 94550

kaufman22@llnl.gov

Education

University of California, Santa Barbara (UCSB)

Ph.D. Materials

June 2022

GPA: 4.0

Harvey Mudd College (HMC)

B.S. Physics May 2017

Graduate with High Distinction, Departmental Honors in Physics and Humanities

GPA: 3.9

Experience

Postdoctoral Researcher, Lawrence Livermore National Laboratory Aug. 2022—Present Developing computational methods for kinetic simulations of materials for energy applications.

Graduate Student Researcher, Van der Ven Group, UCSB

Sep. 2017-Jun. 2022

Conducted research on thermodynamic and kinetic properties of battery electrode materials using high-throughput electronic structure calculations and statistical mechanics methods. Developed and supported scientific software tools for materials simulation.

Academic Cooperation Participant, Lawrence Livermore National Laboratory
Jun.—Sep. 2019 Performed large-scale molecular dynamics simulations to probe non-equilibrium properties of candidate hydrogen storage materials.

HMC Clinic Team Member, **Sandia National Laboratories**, **Albuquerque** Sep. 2016–May 2017 Led finite element modeling effort to investigate dielectric properties of nanoparticle composites.

Materials Science Research Assistant, UNSW Sydney, Australia May-Aug. 2015, 2016 Performed atomistic modeling of mechanical properties to aid development of multicomponent metallic alloys.

Awards

Best Oral Presentation Award, Materials Research Society Spring Meeting	2021
U.S. Department of Energy Computational Science Graduate Fellowship	2017–2021
Jon A. Wunderlich Prize for Creative Achievement in Physics, HMC	2017
Barry M. Goldwater Scholarship	2016–2017
Jude and Eileen Laspa Fellowship in Applied Mechanics, HMC	2015-2017
National Merit Scholarship	2013-2017

Publications

Google Scholar profile

- 13. K. E. Wyckoff, L. Kautzsch, **J. L. Kaufman**, B. R. Ortiz, A. Kallistova, G. Pokharel, J. Liu, K. M. Taddei, K. M. Wiaderek, S. H. Lapidus, S. D. Wilson, A. Van der Ven, and R. Seshadri. Electrochemical control of magnetism on the breathing kagome network of Li_xScMo₃O₈. *Chemistry of Materials* 35, 4945–4954 (2023).
- 12. B. Puchala, J. C. Thomas, A. R. Natarajan, J. G. Goiri, S. S. Behara, J. L. Kaufman, and A. Van der Ven. CASM A software package for first-principles based study of multicomponent crystalline solids. *Computational Materials Science* 217, 111897 (2023).
- 11. **J. L. Kaufman** and A. Van der Ven. First-principles investigation of phase stability in layered Na_xCrO₂. *Physical Review Materials* 6, 115401 (2022).
- 10. K. E. Wyckoff, J. L. Kaufman, S. W. Baek, C. Dolle, J. J. Zak, J. Bienz, L. Kautzsch, R. C. Vincent, A. Zohar, K. A. See, Y. M. Eggeler, L. Pilon, A. Van der Ven, and R. Seshadri. Metal-metal bonding as an electrode design principle in the low-strain cluster compound LiScMo₃O₈. Journal of the American Chemical Society 144, 5841–5854 (2022).
- 9. **J. L. Kaufman** and A. Van der Ven. Cation diffusion facilitated by antiphase boundaries in layered intercalation compounds. *Chemistry of Materials* 34, 1889–1896 (2022).
- 8. **J. L. Kaufman** and A. Van der Ven. Antiphase boundary migration as a diffusion mechanism in a P3 sodium layered oxide. *Physical Review Materials* 5, 055401 (2021). Editors' Suggestion.
- 7. E. Hwang, E. Cuddy, J. Lin, J. L. Kaufman, A. Shaw, P. L. J. Conway, A. Pribram-Jones, K. J. Laws, and L. Bassman. Predicting ductility in quaternary B2-like alloys. *Physical Review Materials* 5, 033604 (2021).
- 6. **J. L. Kaufman** and A. Van der Ven. Ordering and structural transformations in layered K_xCrO₂ for K-ion batteries. *Chemistry of Materials* 32, 6392–6400 (2020).
- 5. **J. L. Kaufman**, J. Vinckevičiūtė, S. K. Kolli, J. G. Goiri, and A. Van der Ven. Understanding intercalation compounds for sodium-ion batteries and beyond. *Philosophical Transactions of the Royal Society A* 377, 20190020 (2019).
- 4. M. Y. Toriyama, J. L. Kaufman, and A. Van der Ven. Potassium ordering and structural phase stability in layered K_xCoO_2 . ACS Applied Energy Materials 2, 2629–2636 (2019).
- 3. **J. L. Kaufman** and A. Van der Ven. Na_xCoO_2 phase stability and hierarchical orderings in the O_3/P_3 structure family. *Physical Review Materials* 3, 015402 (2019).
- 2. **J. L. Kaufman**, S. H. Tan, K. Lau, A. Shah, R. G. Gambee, C. Gage, L. MacIntosh, A. Dato, P. N. Saeta, R. C. Haskell, and T. C. Monson. Permittivity effects of particle agglomeration in ferroelectric ceramic-epoxy composites using finite element modeling. *AIP Advances* 8, 125020 (2018).
- 1. **J. L. Kaufman**, G. S. Pomrehn, A. Pribram-Jones, R. Mahjoub, M. Ferry, K. J. Laws, and L. Bassman. Stacking fault energies of nondilute binary alloys using special quasirandom structures. *Physical Review B* 95, 094112 (2017).

Presentations

- 4. **DOE CSGF Program Review**. First-principles thermodynamics and kinetics of layered intercalation compounds for "beyond Li-ion" batteries". Jul. 21, 2021. Virtual.
- 3. **Materials Research Society Spring Meeting**. *Hierarchical intercalant orderings in layered oxides for Na- and K-ion battery electrodes*. Apr. 21, 2021. Virtual. Best Oral Presentation Award.
- 2. **Gordon Research Conference: Batteries**. *Modeling structural evolution in layered cathode materials for Na- and K-ion batteries*. Poster. Feb. 17–18, 2020. Ventura, CA.
- 1. **Materials Research Society Spring Meeting**. *Structural phase transitions and intercalant ordering in layered Na- and K-ion cathode materials*. Apr. 23, 2019. Phoenix, AZ.

Teaching & Mentorship

Alumni Research Mentor, HMC

Sep. 2017-Present

Advise undergraduate students from various academic backgrounds on applying first-principles techniques to materials research problems.

Materials Teaching Assistant, UCSB

Sep.-Dec. 2018

Conducted recitation sections and office hours for Introduction to Quantum Mechanics for Materials.

Future Leaders in Advanced Materials Mentor, UCSB

May-Sep. 2018

Mentored visiting undergraduate student researcher on project that culminated in a publication.

Physics Academic Excellence Program Facilitator, HMC

May 2015–May 2017

Led tutoring workshops for students in Special Relativity, Mechanics, and Electromagnetism courses.