

Optimizing large deep learning models

How can we find suitable hyperparameters?

- Typically, we don't have the computational resources to make large grid searches
 - We need a clever way of selecting suitable hyperparameters
- What are hyperparameters?
 - Hyperparameters define the settings or configurations that control and define the learning process of a model
 - They are not learned from the data but instead they are set prior to the training process
 - Examples:
 - learning rate
 - number/dimension of layers
 - batch size
 - dropout rate

Selecting the batch size (to minimize training time)

- The same final performance should be attainable using any batch size
 - Set batch size once at the beginning
 - The best batch size is typically the largest batch size that can be processed
 - Larger batch sizes typically reduce training time
 - Gradient accumulation simulates a larger batch size than the hardware can support -> does not provide any training speed advantages
- Many other hyperparameters are sensitive to the batch size
 - If you change batch size, you need to tune some hyperparameters again. For example:
 - Learning rate and momentum of optimizer
 - Regularization coefficients

https://arxiv.org/abs/1811.03600 hhu.de

Choosing the initial configuration

- It is often preferable to start with a simple optimizer. For example:
 - SGD with fixed momentum
 - Adam with fixed ε , β_1 , β_2

- Architecture choices
 - Start with a relatively simply architecture and avoid any "unnecessary" complexities
 - Complexity of the model can be improved later

How to tune hyperparameters and optimize model performance?

- We can follow the guidelines described in the Deep Learning Tuning Playbook
- Optimizing many hyperparameters at once is difficult because of limited computational resources
- We want to incrementally add/test features and hyperparameters
 - We test each feature/hyperparameter in a separate round of experiments
 - Adjusting multiple hyperparameters simultaneously might not allow to judge the effect of each feature/hyperparameter
- Division of hyperparameters in three different categories
 - Scientific: the hyperparameters whose effect we try to measure
 - Nuisance: need to be optimized over for a fair comparison
 - Fixed: have their values fixed in the current round of experiments

How to test a feature or different values for a hyperparameter (1)

1. Each round of experiments should have a clear goal

- Examples for goals:
 - Try a new pre-processing technique
 - Understand the effect of activation function choice
 - Understand the effect of dropout rate
- 2. Divide all hyperparameters into scientific, nuisance, and fixed parameters

- Scientific hyperparameters are defined by the goal
- Select nuisance hyperparameters
 - Optimizer and regularization parameters are typically selected for a fair comparison
- The remaining hyperparameters are fixed hyperparameters

How to test a feature or different values for a hyperparameter (2)

- Previous steps:
 - Setting a goal

2. Selecting scientific, nuisance, and fixed hyperparameters

3. Design and execute this round of experiments:

- Define the search spaces for scientific and nuisance hyperparameters
 - Manually define all configurations
 - Use a search algorithm
- Was the search space large enough?
 - If the optimal values are close to the search space borders, increase the search space
- 4. Evaluate results:

- Is the improve better than random variation?
- When deciding whether to adopt a change, you could re-run the best trial multiple times with different random seeds

How to test a feature or different values for a hyperparameter (summary)

- Each round of experiments
 - 1. Setting a goal

2. Selecting scientific, nuisance, and scientific hyperparameters

3. Design and execute this round of experiments

4. Evaluate the results

- Moving from broader goals (exploration phase) to more specific goals (exploitation phase)
 - At the beginning, asking more fundamental questions. For example:
 - Which hyperparameters should we include at all (dropout, L2 regularization, ...)?
 - What activation function should we use?
 - Later, setting goals to find specific values of hyperparameters. For example:
 - What is the optimal dropout rate?
 - How many hidden layers should we use?

Choice of number of epochs

- Number of epochs should not be a tunable hyperparameter
- Select max. number of epochs and use it in all trials
- Save a checkpoint after each training epoch:
 - After training, select the model and epoch that reached the lowest validation error
 - If best model is always during first 20% of training epochs, you might want to reduce the number of epochs
 - If best model is usually among last 20% of epochs, increase number of epochs (if computation resources allow this)
- If computational resources are very limited, we might want to select a much lower number of epochs during the exploration phase