	1a 2a	a = 2b	3a	4a $2c$	8a	6a	6b	3b	12a	6c	24a	8b	6d	6e	12b	6f	24b	24c	24d
χ_1	1 1	. 1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1 -	1 - 1	1	1 1	1	-1	-1	1	1	1	1	1	-1	-1	1	1	1	1	1
χ_3	1 -	1 1	1	1 1	-1	-1	1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1
χ_4	1 1	1	1	1 1	-1	1	-1	1	1	1	-1	-1	1	-1	1	1	-1	-1	-1
χ_5	1 -	1 - 1	$E(3)^{2}$	1 1	1	$-E(3)^2$	$-E(3)^2$	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	1	-E(3)	-E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	E(3)
χ_6	1 -	1 - 1	E(3)	1 1	1	-E(3)	-E(3)	$E(3)^{2}$	E(3)	E(3)	E(3)	1	$-E(3)^2$	$-E(3)^2$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$
χ_7	1 -	1 1	$E(3)^{2}$	1 1	-1	$-E(3)^2$	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^2$	-1	-E(3)	E(3)	E(3)	E(3)	-E(3)	$-E(3)^2$	-E(3)
χ_8	1 -	1 1	E(3)	1 1	-1	-E(3)	E(3)	$E(3)^{2}$	E(3)	E(3)	-E(3)	-1	$-E(3)^2$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^{2}$	-E(3)	$-E(3)^{2}$
χ_9	1 1	-1	$E(3)^{2}$	1 1	-1	$E(3)^{2}$	$-E(3)^2$	E(3)	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^2$	-1	E(3)	-E(3)	E(3)	E(3)	-E(3)	$-E(3)^2$	-E(3)
χ_{10}	1 1	-1	E(3)	1 1	-1	E(3)	-E(3)	$E(3)^{2}$	E(3)	E(3)	-E(3)	-1	$E(3)^{2}$	$-E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$-E(3)^2$	-E(3)	$-E(3)^{2}$
χ_{11}	1 1	. 1	$E(3)^{2}$	1 1	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	E(3)
χ_{12}	1 1	. 1	E(3)	1 1	1	E(3)	E(3)	$E(3)^{2}$	E(3)	E(3)	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	$E(3)^{2}$
χ_{13}	2 0	0	2	-2 2	0	0	0	2	-2	2	0	0	0	0	-2	2	0	0	0
χ_{14}	2 0	0	$2*E(3)^2$	-2 2	0	0	0	2 * E(3)	$-2*E(3)^2$	$2*E(3)^2$	0	0	0	0	-2 * E(3)	2 * E(3)	0	0	0
χ_{15}	2 0	0	2*E(3)	-2 2	0	0	0	$2*E(3)^2$	-2*E(3)	2*E(3)	0	0	0	0	$-2*E(3)^2$	$2*E(3)^2$	0	0	0
χ_{16}	2 0	0	2	0 -2	$-E(8) + E(8)^3$	0	0	2	0	-2	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	-2	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$E(8) - E(8)^3$
χ_{17}	0 0	0	2	0 -2	. `. ` . ` . ` . ` .	0	0	2	0	-2	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0	0	-2	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$-E(8) + E(8)^3$
χ_{18}		0	$2*E(3)^2$	0 -2	$-E(8) + E(8)^3$	0	0	2 * E(3)	0	$-2*E(3)^2$	$E(24) - E(24)^{19}$	$E(8) - E(8)^3$	0	0	0	-2 * E(3)	$-E(24)^{11} + E(24)^{17}$	$-E(24) + E(24)^{19}$	$E(24)^{11} - E(24)^{17}$
χ_{19}		0	$2 * E(3)^2$	0 - 2		0	0	2 * E(3)	0	$-2*E(3)^2$	$-E(24) + E(24)^{19}$	$-E(8) + E(8)^3$	0	0	0	-2 * E(3)	$E(24)^{11} - E(24)^{17}$	$E(24) - E(24)^{19}$	$-\dot{E}(24)^{11} + \dot{E}(24)^{17}$
χ_{20}	0 0	0	2*E(3)	0 - 2	`.'.	0	0	$2 * E(3)^{2}$	0	-2 * E(3)	$-E(24)^{11} + E(24)^{17}$	$E(8) - E(8)^{3}$	0	0	0	$-2*E(3)^{2}$	$E(24) - E(24)^{19}$	$E(24)^{11} - E(24)^{17}$	$-\dot{E}(24) + E(24)^{19}$
χ_{21}	0 0	0	2 * E(3)	0 - 2	$E(8) - E(8)^3$	0	0	$2 * E(3)^2$	0	-2 * E(3)	$E(24)^{11} - E(24)^{17}$	$-E(8) + E(8)^3$	0	0	0	$-2*E(3)^2$	$-E(24) + E(24)^{19}$	$-E(24)^{11} + E(24)^{17}$	$E(24) - E(24)^{19}$

Trivial source character table of $G \cong C3 \times D16$ at $p = 3$:											
Normalisers N_i				N_1					N_2		
p-subgroups of G up to conjugacy in G				P_1					P_2		
Representatives $n_j \in N_i$	1a 2a	a = 2b	4a	2c $8a$	8b	1a 2l	$\frac{1}{2a}$	2c	8a	4a	8b
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	3 3	3	3	3 3	3	0 0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	3 -3	3 - 3	3	3	3	0 0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	3 -3	3	3	$3 \qquad -3$	-3	0 0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	3 3	-3	3	$3 \qquad -3$	-3	0 0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	6 0	0	-6	6 0	0	0 0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	6 0	0	0 -	$-6 -3 * E(8) + 3 * E(8)^3$	$3*E(8) - 3*E(8)^3$	0 0	0	0	0	0	0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{19} + 0$	$\begin{vmatrix} 6 & 0 \end{vmatrix}$	0	0 -	$-6 3*E(8) - 3*E(8)^3$	$-3*E(8) + 3*E(8)^3$	0 0	0	0	0	0	0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$	1 1	1	1	1 1	1	1 1	1	1	1	1	1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	1 1	-1	1	$1 \qquad -1$	-1	1 -	1 1	1	-1	1	-1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	1 -	1 1	1	$1 \qquad -1$	-1	1 1	-1	1	-1	1	-1
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$	1 -	1 - 1	1	1 1	1	1 -	1 - 1	1	1	1	1
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0$		0	-2	2 0	0	2 0	0	2	0	-2	0
$0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} +$		0	0 -	$-2 -E(8) + E(8)^3$	$E(8) - E(8)^3$	2 0	0	-2	$-E(8) + E(8)^3$	0	$E(8) - E(8)^3$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} \end{vmatrix} $		0	0 -	- () () () ()	$-E(8) + E(8)^3$	2 0	0	-2	$E(8) - E(8)^3$		$-E(8) + E(8)^3$

 $P_2 = Group([(1,4,14)(2,8,21)(3,11,25)(5,15,29)(6,16,30)(7,18,32)(9,22,36)(10,23,37)(12,26,39)(13,27,40)(17,31,42)(19,33,43)(20,34,44)(24,38,46)(28,41,47)(35,45,48)]) \cong \mathbf{C3}$

 $N_1 = Group([(1,2)(3,19)(4,8)(5,24)(6,10)(7,12)(9,17)(14,25)(15,41)(16,27)(19,24)(21,32)(22,45)(23,34)(26,31)(29,47)(30,40)(33,38)(36,48)(37,44)(39,42)(43,46)(19,33)(43,42)(43,44)(39,42)(43,44)(39,42)(43,44)(39,42)(43,44)(39,42)(43,44)(39,42)(43,44)(39,42)(43,44)(39,42)(43,44)(43$