

Learning Where and When to Reason in Neuro-Symbolic Inference

Cristina Cornelio, Jan Stühmer, Shell Xu Hu, Timothy Hospedales ~ Samsung Al Center-Cambridge ICLR | May 1-5, 2023

Overview

Motivation

- **SOTA**: "Weak"-constraints = enforced only at training time
- Goal: Imposition of hard constrains at testing to ensure that the domain-specific knowledge is respected by the predictions
- Idea: Neuro-Symbolic pipeline NASR (Neural Attention for Symbolic Reasoning)

Architecture

Given: a task to solve & a set of rules \mathcal{R}

- 1. Neuro-Solver: outputs an approximate solution
- 2. Mask-Predictor: identifies the components of the symbolic-solution that do not satisfy the
- 3. Adapter function: combines the symbolicsolution and the masking to form the masked solution (matching the Symbolic-Solver format)
- 4. Symbolic-Solver: uses the rules R to correct the masked components of the symbolic
- Symbolic-Solver corrects the Neuro-Solver prediction errors identified by the Mask-Predictor
- Symbolic reasoning is **not feasible** in many scenarios
- Mask predictor: makes the reasoning more efficient, directing the reasoning focus

NASR without RL

Neuro-Solver and Mask-Predictor are trained individually (supervised learning) and then integrated together

NASR with RL

NASR is then refined using Reinforcement learning $\mathcal{L}(x;\theta) = -r/\log P_{\theta}(m|ns(x))$

Results – Visual Sudoku

Results summary

- We significantly outperform the baseline in most of the cases (and never perform worst);
- We improve the performance of an existing method, by integrating it in our pipeline;
- We are more robust to noise compared to the symbolic baseline.

	big kaggle	minimal 17	multiple sol	satnet data
Symbolic baseline	74.56	87.70	63.50	63.20
NeurASP	timeout	89.00*	timeout	timeout
SatNet	63.44	0.00	0.00	60.10
SatNet + NASR (our)	69.05	0.02	24.20	81.40
NASR (our)	84.24	87.00	73.00	82.20
Number of completely correct sudoku boards				

Efficiency

Efficiency = trade-off between: performance (percentage of completely correct boards) computational time

Attention Maps

When considering the average attention in the transformer of a cell: Focus on the row, the column and the 3×3 block (the 3 Sudoku rules)

Results – Scene Graph (GQA)

Task

Predicate classification

- *input*: objects ground-truth bounding boxes and labels
- *output*: scene graph

Dataset GQA (balanced version of VG)

Rules Domain/range of the predicates

Between 1% to 2% improvement

- (e.g., domain(wear)={person}) Result

Max-improvement (PS % improvement of NAS

given ontology, defined by the Probabilistic Symbolic Baseline (PSB)

Take-away message

NASR: a neuro-symbolic method to manage the trade-off between the cost, expressivity, and exactness of reasoning during inference.

- Any type of rules/constraint can be used
- Results on Visual-Sudoku & Scene-Graph:
- NASR outperforms the baseline
- An existing method is improved when integrated in NASR
- NASR is more efficient
- NASR is more robust to noise compared to the symbolic baseline.

Open-Source GIT repository: https://github.com/corneliocristina/NASR