Global Solution - 1° Semestre

Caio Rodrigues Castro caiorcastro@gmail.com

RM:559766

Ederson Luiz Badeca dos Santos

edersonbadeca@gmail.com

RM: 560204

Felipe Soares Nascimento

consultor.casteliano@gmail.com

RM:560151

Lucas Ferreira Hillesheim

lucas.ferreira.hillesheim@gmail.com

RM:559319

Sistema Residencial Inteligente para Otimização do Consumo Energético

Artificial Intelligence Challenges

1. Introdução

O consumo de energia elétrica em residências tem se tornado uma preocupação crescente, principalmente diante dos desafios do aumento dos custos de energia e da necessidade de um futuro mais sustentável. Neste contexto, a tecnologia surge como uma aliada indispensável para repensar a forma como usamos energia em casa.

Este documento apresenta uma solução inovadora: um **Sistema Residencial Inteligente** que combina tecnologias como Inteligência Artificial (IA), Internet das Coisas (IoT) e Big Data para otimizar o consumo energético, melhorar a eficiência e, ao mesmo tempo, trazer mais conforto e sustentabilidade para o dia a dia.

Objetivos:

- Reduzir o consumo de energia de forma automatizada e eficiente.
- Priorizar o uso de fontes renováveis, como a energia solar.
- Garantir mais conforto para os moradores sem comprometer a sustentabilidade.

Desafios e Barreiras:

- Cada residência tem um padrão de consumo diferente, o que exige uma solução flexível e adaptável.
- A integração entre diferentes dispositivos e tecnologias ainda é um desafio técnico.
- O custo inicial de implementação pode ser um obstáculo para muitos lares.
- É necessário educar os usuários sobre os benefícios e o funcionamento do sistema.

2. Desenvolvimento

O **Sistema Residencial Inteligente** utiliza sensores e dispositivos conectados para monitorar e controlar o consumo de energia em tempo real. Ele também emprega algoritmos de IA para prever necessidades energéticas e ajustar automaticamente o uso de equipamentos e fontes de energia. Abaixo, explicamos como as tecnologias se integram para criar essa solução.

2.1 Por que essas tecnologias?

- **IoT:** Sensores medem luminosidade, temperatura e consumo elétrico. Dispositivos conectados permitem ajustes automáticos, como desligar aparelhos que não estão em uso.
- **IA:** Algoritmos inteligentes identificam padrões de consumo e oferecem recomendações para reduzir desperdícios.
- **Big Data:** Com base em dados históricos e em tempo real, o sistema detecta picos de consumo e sugere melhorias.
- **Fontes Renováveis:** A energia solar é priorizada para reduzir a dependência da rede elétrica tradicional, trazendo economia e sustentabilidade.

2.2 Como funciona o sistema?

- 1. **Sensores IoT:** Detectam o ambiente (luz, presença, consumo elétrico) e enviam os dados para um hub central.
- 2. **Hub Central:** Um dispositivo como o ESP32 processa os dados e se comunica com o sistema de IA.
- 3. **IA:** Analisa as informações e toma decisões, como ajustar a iluminação ou recomendar o uso de energia solar.
- 4. **Interface Web:** Permite que os usuários monitorem o consumo e recebam alertas em tempo real.
- 5. **Automação:** O sistema controla automaticamente aparelhos domésticos com base nos dados e previsões.

2.3 Exemplo prático

- Durante o dia, o sistema detecta luz natural suficiente e desliga as luzes internas, enquanto mantém as externas com uma intensidade mínima para segurança.
- Em horários de pico, o sistema prioriza o uso de energia solar armazenada, reduzindo custos com a conta de energia.

3. Resultados Esperados

3.1 Economia de Energia

- Estima-se uma redução de **20% a 30% no consumo energético**, dependendo do perfil de uso.
- Com a priorização de fontes renováveis, a economia na conta de luz pode chegar a 40%.

3.2 Impacto no Conforto

- Automatização de rotinas diárias, como ajustar a temperatura e a iluminação.
- Redução de interrupções no uso de dispositivos e maior durabilidade dos aparelhos devido ao uso controlado.

3.3 Contribuição Sustentável

- Redução significativa da pegada de carbono ao integrar energia renovável.
- Uso mais consciente de recursos energéticos, contribuindo para a preservação ambiental.

Diagrama da versão final

4. Conclusão

A solução apresentada, o **Sistema Residencial Inteligente**, é mais do que uma proposta tecnológica: é um modelo para o futuro da eficiência energética. Ao integrar IA, IoT e Big Data, oferece uma abordagem prática, escalável e sustentável para otimizar o uso de energia em residências. Além de reduzir custos e promover o conforto, o sistema ajuda a criar lares mais conectados e comprometidos com a sustentabilidade.

Essa solução não só resolve problemas atuais, mas também aponta para um futuro onde a tecnologia e o meio ambiente trabalham juntos para melhorar nossa qualidade de vida.

Informações técnicas

1.Artificial Intelligence with Computer Systems and Sensors (AICSS)

Link do Projeto: https://wokwi.com/projects/415033553775516673

Statistical Computing with R (SCR)
SCR project

Cognitive Data Science

Dados para Análise do Consumo Energético Residencial

A análise de consumo energético é um tema fundamental em estudos de eficiência energética e sustentabilidade. Para este projeto, escolhemos trabalhar com os dados disponibilizados pelo Instituto Brasileiro de Geografia e Estatística (IBGE), especificamente o conjunto "Composição percentual do consumo de eletricidade, segundo os setores - 2020-2022".

Modelo de dados para a solução Cognitive Data Science Model

1. Cobertura Abrangente

Os dados selecionados oferecem uma visão ampla e detalhada do consumo de eletricidade no Brasil, abrangendo diversos setores, como:

Setor Residencial

Setor Comercial

Setor Industrial

Setor Público

Setor Energético

Agropecuário

Transportes

Essa abrangência permite uma análise holística do consumo energético, incluindo tanto os setores com maior demanda quanto os que têm potencial para melhorias significativas.

2. Relevância Temporal

Os dados incluem informações dos últimos três anos (2020, 2021 e 2022). Esse intervalo temporal é crucial para identificar tendências recentes, como:

Impacto da pandemia de COVID-19 no consumo residencial e comercial. Recuperação econômica e mudanças nos padrões de consumo. Adaptação a fontes de energia renováveis e novas tecnologias. Essa base temporal recente possibilita análises alinhadas com os desafios contemporâneos da transição energética.

3. Dados Oficiais e Confiáveis

Os dados fornecidos pelo IBGE e baseados no Balanço Energético Nacional (BEN) são fontes confiáveis e amplamente reconhecidas. Isso garante:

Credibilidade nos resultados.

Possibilidade de replicação por outros pesquisadores e stakeholders interessados no tema.

4. Estruturação Ideal para Análises Relacionais

Os dados estão organizados em percentuais e totais por setor e ano, o que facilita sua estruturação em um banco de dados relacional. Essa organização permite:

Análise de tendências ao longo dos anos.

Comparações entre setores e identificação de padrões de consumo. Integração com outras bases de dados, como dados populacionais ou tarifários, para cálculos mais avançados, como o consumo per capita.

5. Aplicabilidade ao Projeto

O projeto tem como foco propor soluções para otimização do consumo energético. Esses dados permitem:

Identificar setores com maior impacto energético, como o residencial e o industrial.

Avaliar mudanças percentuais e absolutas no consumo, auxiliando na priorização de esforços para soluções de eficiência.

Contextualizar o uso de tecnologias como loT e IA em setores específicos, como automação residencial.

Impactos Esperados na Análise

Com esses dados, será possível:

Criar um pipeline de análise para identificar tendências de aumento e diminuição de consumo.

Gerar insights sobre a demanda por eletricidade no Brasil e propor soluções baseadas em eficiência energética.

Fornecer embasamento para decisões estratégicas que promovam a transição para fontes renováveis e o uso consciente de energia.

Conclusão

A escolha dos dados fornecidos pelo IBGE se baseia em sua abrangência, relevância temporal, confiabilidade e aplicabilidade prática ao tema do projeto. Eles representam uma base sólida para análises quantitativas e qualitativas, que não apenas atendem aos objetivos acadêmicos, mas também têm o potencial de contribuir para o desenvolvimento de soluções reais e escaláveis em eficiência energética.

Computational Thinking with Python

Objetivo

Desenvolver um sistema integrado para o gerenciamento e otimização do consumo energético em residências, combinando backend em Python com Flask e um frontend interativo usando ReactJS. A aplicação fornece relatórios em tempo real e recomendações baseadas em dados para redução de custos e aumento da eficiência energética.

Arquitetura do Sistema

Backend (Python com Flask):

Funções principais:

- Gerenciar dispositivos domésticos e suas características, como potência e tempo de uso.
- Calcular o consumo energético e o custo com base nas tarifas de energia.
- Oferecer uma API REST para o frontend consumir os dados.

Características

- Uso de Material-UI para uma interface moderna e responsiva.
- Integração com **Victory** para criar gráficos dinâmicos que mostram a evolução do consumo.
- Filtros para ordenar dispositivos por consumo ou custo, permitindo fácil análise.

Fluxo:

- 1. O frontend consome os dados da API Flask.
- 2. Os dados são apresentados em uma tabela interativa com recursos como ordenação e seleção.
- 3. Ao selecionar um dispositivo, o sistema exibe um card com dicas para melhorar sua eficiência energética.
- 4. Um gráfico mostra a evolução histórica do consumo.

Recursos Implementados

1. No Backend (Flask):

- Banco de Dados PostgreSQL:
- Tabela para armazenar dispositivos (devices).
- Tabela para histórico de consumo (consumption_history).

Cálculo de Consumo:

- backend calcula o consumo em kWh com base na potência do dispositivo e tempo de uso.
- Retorna o custo estimado usando a tarifa energética atual.

```
Exemplo de Formato de Resposta da API:

{
    "device": "Geladeira",
    "consumption": "44.0 kWh",
    "cost": "R$28.86",
    "tip": "Evite abrir a porta por longos períodos para economizar energia."
},

{
    "device": "Ar-condicionado",
    "consumption": "70.4 kWh",
    "cost": "R$46.18",
    "tip": "Limpe os filtros regularmente para aumentar a eficiência."
}
```

No Frontend (ReactJS)

Tabela Interativa:

Utilizando Material-UI para exibir os dispositivos e seus dados de consumo.

- Suporte a ordenação por consumo ou custo.
- Opção para selecionar dispositivos e exibir dicas personalizadas.

Gráficos de Consumo:

 Uso do Victory para mostrar a evolução do consumo e custos por dispositivo ao longo do tempo.

Layout Responsivo:

Adaptado para diferentes dispositivos, como celulares e desktops.

Benefícios da Solução

- Eficiência Energética: Auxilia os usuários a entenderem seus hábitos de consumo e a tomarem decisões para economizar energia.
- Interface Amigável: O uso do ReactJS e Material-UI torna a aplicação acessível a qualquer perfil de usuário.
- Sustentabilidade: Foco em promover o uso consciente e sustentável de energia.

ScreenShots da aplicação

Consumption Report		
□ Device ↑	Consumption	Cost
Aparelho de som	31.8 kWh	R\$20.86
Aquecedor central de água	390.0 kWh	R\$255.84
Aquecedor de ambiente	261.0 kWh	R\$171.22
Aspirador de pó	159.0 kWh	R\$104.30
Balcão frigorífico	89.1 kWh	R\$58.45
		Rows per page: 5 ▼ 1–5 of 10 < >

Total Consumption: 1254.05 Cost: R\$822.66

Consumption and Cost Evolution


```
padeca:backend/ (main*) $ curl -XGET http://localhost:8080/consumption
 E
      "consumption": "31.8 kWh",
      "cost": "R$20.86",
      "device": "Aparelho de som",
      "device_id": 1,
      "tip": "Desligue quando n\u00e3o estiver em uso."
      "consumption": "261.0 kWh",
     "cost": "R$171.22",
"device": "Aquecedor de ambiente",
"device_id": 2,
      "tip": "Use somente em dias frios e mantenha portas fechadas."
      "consumption": "159.0 kWh",
      "cost": "R$104.30",
      "device": "Aspirador de p\u00f3",
      "device_id": 3,
      "tip": "Limpe os filtros regularmente para melhorar a efici\u00eancia.
   },
      "consumption": "390.0 kWh",
      "cost": "R$255.84",
      "device": "Aquecedor central de \u00e1gua",
      "device_id": 4,
      "tip": "Use com efici\u00eancia para reduzir o consumo."
```

Usando a Aplicação

https://github.com/edersonbadeca/fiap-global-solution