More on Functions and Relations and Sets

Readings

1. Topology (Munkres) — Sections 2 and 3

Textbook Exercises

- Munkres Section 2 exercises
- 2. Munkres Section 3 exercises

Challenging Problems

- 1. Consider the relation of modulo n. a,b are said to be congruent modulo n, $a \equiv b \pmod{n}$ if a and b leave the same remainder when divided by n. Prove the following properties,
 - a. $a\equiv b\ (\mathrm{mod}n)$ and $c\equiv d\ (\mathrm{mod}n)$ then $a+c\equiv b+d\ (\mathrm{mod}n)$ and $ac\equiv bd\ (\mathrm{mod}n).$
 - b. Show that congruence modulo n is an equivalence relation.
- 2. Consider a quadratic equation of the form $x^2+bx+c=0$ and α,β are roots of this equation then find the relationship between b,c and α,β .
- 3. Derive the quadratic formula. Follow the following steps,
 - a. Can you solve the equation $x^2=a$?
 - b. What about $(x-a)^2 = b$?
 - c. Can you rewrite a monic quadratic polynomial in the form $(x-c)^2=a$?
 - d. Use the observations to these questions to derive a quadratic formula.
- 4. Generalize the above observations to any monic polynomial. The relations between the coefficients and the roots of the polynomial. These relations

are called Vieta's relations.

- 5. Solve the equation $\sqrt{x} = x 2$.
- 6. Use a process similar to the question 3 to derive the cubic formula this is a formula for the roots of the polynomial of the form $x^3+px^2+qx+r=0$.
- 7. Suppose $y_n=\sqrt{x+\sqrt{x+\cdots+\sqrt{x}}}$ where the square root is taken n times. Find the value of y_∞ .
- 8. A function is called odd if it satisfies f(-x)=-f(x). It is called even if it satisfies f(x)=f(-x).
 - a. Write some examples of odd and even functions.
 - b. Can we rewrite any arbitrary function as the sum of odd and even functions? Prove your claim.
- 9. We define cantor set by the following algorithm. We define $c_0=[0,1]$. Define $c_1=[0,1/3]\cup[2/3,1]$. In other words, for every iteration we remove the middle third (open interval) from each closed interval to obtain c_{n+1} .
 - a. Calculate c_2, c_3, c_4, c_5
 - b. Suppose you are given c_n . When forming c_{n+1} how many intervals do we remove? How much length do we remove (the set [0,1] has length one)?
 - c. We define the cantor set as following, $C=\cap_{n=1}^\infty c_n$. What is the length of this set?
 - d. Is the cantor set countable? Convince yourself that this set is non empty.