

Платформа А1

КАТАЛОГ СХЕМ ПОДКЛЮЧЕНИЯ

Настоящее руководство по эксплуатации предназначено для правильного использования и технического обслуживания универсального контроллера модульных инженерных систем Octagram A1. Информация в данном руководстве может быть изменена без уведомления.

Каталог схем подключения предназначен для правильного использования и технического обслуживания универсального контроллера Octagram A1.

Информация в данном каталоге может быть изменена без уведомления.

Содержание

Считыватель PLR3EH	4
Микропрограммы серии U	5
Микропрограммы серии D	6
Микропрограммы серии DS	7
Микропрограммы серии Р	8
Микропрограмма серии 2Р	9
Микропрограммы серий T и TC	10
Модуль расширения 4S2R	11
Микропрограммы серии G	12
Модуль расширения 2S2R	13
Микропрограммы серии С	14
Микропрограммы серии L	15
Модули расширения EMI, EMR	16
Микропрограммы серий S, F, SF, FE, SFE	17
Адресные микрочипы DGR, DGT, DGV, DLR, DLT, DLV	18
Адресные микрочипы TMP, HMD, DTR, FIRE	19
Адресный микрочип DIF	20
Пример подключения шлагбаума CAME G400 к контроллеру A1	20
Схемы подключения некоторых типов замков	21
Пример системы газового (аэрозольного) автоматического пожаротушения	22
Характеристики линий связи	23
Порядок монтажа	23
	_

Считыватель PLR3EH (2M)

прямое подключение к контроллеру

Микропрограммы серии **U**

СКУД, ОПС, автоматика

Описание контактов

LBUS - контакт подключения к адресной линии связи с другими контроллерами в линии LBUS

D1 - контакт подключения к первой адресной линии LMicro адресных микрочипов

ТМР - контроль тампера

NO1, CK1, NC1 - контакты 1-го реле: нормально разомкнутый, центральный, нормально замкнутый, для подключения ПЦН (контакты реле показаны в обесточенном состоянии)

 $+12 {
m V}$ - выходное напряжение $+12 {
m B}$ для питания внешних устройств

GND - общий провод (к контакту заземления не подключать!!!)

Микропрограммы серии **D**

СКУД одно реле: дверь (шлагбаум и ворота)

Описание контактов

LBUS - контакт подключения к адресной линии связи с другими контроллерами в линии LBUS

K1 (K2) - контакт подключения считывателей для управления замком двери на вход/выход. При использовании считывателей с выходным форматом Weigand-26, подключение производить через преобразователь TWT (один преобразователь на два считывателя)

D1 - контакт подключения датчика (геркон) двери

D2 - контакт подключения датчика прохода двери

S1 - контакт подключения кнопки «Запрос на вход», управляю-щей проходом через дверь

S2 - контакт подключения кнопки «Выход», управляющей про-ходом через дверь

LG1 - зеленый светодиод индикации на считывателе входа (активный «1»)

LG2 - зеленый светодиод индикации на считывателе выхода (активный «1»)

LR1 - красный светодиод индикации на считывателе входа (активный «1»)

LR2 - красный светодиод индикации на считывателе выхода (активный «1»)

SP1 - контакт подключения акустического излучателя звука считывателя входа (активный «1»)

SP2 - контакт подключения акустического излучателя звука считывателя выхода (активный «1»)

NO1, CK1, NC1 - контакты 1-го реле: нормально разомкнутый, центральный, нормально замкнутый, для управления замком двери

NO2, CK2, NC2 - контакты 2-го реле: нормально разомкнутый, центральный, нормально замкнутый, для подключения сирены

UNL - контакт аварийной разблокировки двери

TMP - контроль тампера (для D) и блокировка считывателя

+12V - выходное напряжение +12В для питания внешних устройств

GND - общий провод (к контакту заземления не подключать!!!)

Примечание

Датчик двери и датчик прохода показаны в дежурном режиме (дверь закрыта, проход свободен)

Для блокировки прохода необходимо замкнуть контакты TMP и GND. Чтобы связать это событие с постановкой помещения под охрану, используется микрочип DGT, подключенный к контроллеру A1S1(2), A1SF1(2) (смотрите схему справа). Контакты GND контроллеров A1S1(2) или A1SF1(2) и A1DS(1-64) должны быть соеденены.

Возможна постановка/снятие с охраны со считывателя "вход" (смотрите схему справа).

Микропрограммы серии DS

СКУД для двери, шлагбаума и ворот с функцией блокировки входа в охраняемое помещение

Микропрограммы серии Р

СКУД для двери с двойной идентификацией пользователя

Описание контактов

LBUS - контакт подключения к адресной линии связи с другими контрол-лерами в линии LBUS

К1 (К2) - контакт подключения считывателей для управления замком двери на вход/выход.

D1 - контакт подключения геркона двери

S1 - контакт подключения кнопки «Запрос на вход», управляющей прохо-дом через дверь

S2 - контакт подключения кнопки «Выход», управляющей проходом через дверь

LG1 - контакт подключения индикатора считывателя на вход

LG2 - контакт подключения индикатора считывателя на выход

NO1, CK1, NC1 - контакты 1-го реле: нормально разомкнутый, центральный, нормально замкнутый, для управления замком двери

NO2, CK2, NC2 - контакты 2-го реле: нормально разомкнутый, центральный, нормально замкнутый, для подключения сирены

UNL - контакт аварийной разблокировки двери

ТМР - контроль тампера

Адресный источник

+12V - выходное напряжение +12В для питания внешних устройств

GND - общий провод (к контакту заземления не подключать!!!)

Микропрограмма серии 2Р

СКУД для двери с двойной идентификацией пользователя по правилу 2-х лиц

Микропрограммы серий Т и ТС

Турникет и турникет с картоприемником

Описание контактов

LBUS - контакт подключения к адресной линии связи с другими контроллерами в линии LBUS;

K1 (K2) - контакт подключения считывателей для управления турникетом на вход/выход. При использовании считывателей с выходным форматом Weigand-26, подключение производить через преобразователь TWT (один преобразователь на два считывателя)

D1 - контакт подключения датчика турникета на вход

D2 - контакт подключения датчика турникета на выход

S1 - контакт подключения кнопки турникета «Вход»

S2 - контакт подключения кнопки турникета «Выход»

LG1 - зеленый светодиод индикации на считывателе входа (активный «1»)

LG2 - зеленый светодиод индикации на считывателе выхода (активный «1»)

LR1 - красный светодиод индикации на считывателе входа (активный «1»)

LR2 - красный светодиод индикации на считывателе выхода (активный «1»)

SP1 - контакт подключения акустического излучателя звука считывателя входа (активный «1»)

SP2 - контакт под ключения акустического излучателя звука считывателя выхода (активный «1»)

NO1, CK1, NC1, NO2, CK2, NC2 - контакты 1-го, 2-го реле: нормально разомкнутый, центральный, нор-мально замкнутый, для подключения электронного блока управления турникетом

ТМР - контроль тампера

+12V - выходное напряжение +12В для питания внешних устройств

GND - общий провод (к контакту заземления не подключать!!!)

Примечание

Подключение считывателей PLR3EH к универсально-му контроллеру A1 приведено на стр. 4

Модуль расширения 4S2R

с устройством сбора proximity-карт PW-500

Примечание

На схеме показано подключение устройства сбора проксимити карт на выходе турникета Для сбора карт на входе турникета сигнал ТМ2 преобразователя ТWT подключить к S6 модуля расширения 4S2R

Микропрограммы серии С

для шлюза

Описание контактов

LBUS - контакт подключения к адресной линии связи с другими контроллерами в линии LBUS

K1 - контакт подключения считывателя 1 «Вход» 1-ой двери шлюза

K2 - контакт подключения считывателя 1 «Выход» 2-ой двери шлюза

S1 - кнопка «Блокировать шлюз»

S2 - кнопка «Выход»

S3 - ИК-Барьер «Вход»

S4 - ИК-Барьер «Выход»

S5 - ИК-Барьер «Металлодетектор»

S6 - «Металлодетектор»

D1, D2 - контакты подключения датчиков, контролирующих открытие 1-ой и 2-ой дверей шлюза

LG1 - зеленый светодиод индикации на считывателях 1, 2 «Вход» дверей 1, 2 (активный «1»)

LG2 - зеленый светодиод индикации на считывателях 1, 2 «Выход» дверей 1, 2 (активный «1»)

LR1 - красный светодиод индикации на считывателях 1, 2 «Вход» дверей 1, 2 (активный «1»)

LR2 - красный светодиод индикации на считывателях 1, 2 «Выход» дверей 1, 2 (активный «1»)

SP1 - контакт подключения акустического излучателя звука на считывателях 1, 2 «Вход» дверей 1, 2 (активный «1»)

SP2 - контакт подключения акустического излучателя звука на считывателях 1, 2 «Выход» дверей 1, 2 (активный «1»)

NO1, CK1, NC1 - контакты 1-го реле: нормально разомкнутый, центральный, нормально замкнутый, для управления замком двери 1

NO2, CK2, NC2 - контакты 2-го реле: нормально разомкнутый, центральный, нормально замкнутый, для управления замком двери 2

NO3(4), CK3(4), NC3(4) - контакты 3(4)-го реле модуля расширения 4S2R: нормально разомкнутый, центральный, нормально замкнутый, для управления светофорами входа/ выхода шлюза

UNL - кнопка «Аварийной разблокировки дверей 1, 2»

TMP - кнопка «Блокировать двери 1, 2»

 $+12{
m V}$ - выходное напряжение $+12{
m B}$ для питания внешних устройств

Адресный источник

питания APS 1

GND - общий провод (к контакту заземления не подключать!!!)

Микропрограммы серии L

для лифта

Описание контактов

LBUS - контакт подключения к адресной линии связи с другими контроллерами в линии LBUS;

- К1 контакт подключения считывателя для управления лифтом
- D1 контакт подключения адресных модулей
- LG1 зеленый светодиод индикации на считывателе (активный «1»)
- LR1 красный светодиод индикации на считывателе (активный «1»)
- SP1 контакт подключения акустического излучателя звука считывателя входа (активный «1»)
- NO1, CK1, NC1, NO2, CK2, NC2 контакты 1-го, 2-го реле: нормально разомкнутый, центральный, нормально замкнутый
- +12V выходное напряжение +12В для питания внешних устройств
- GND общий провод (к контакту заземления не подключать!!!)

Схемы подключения модулей расширения EMI и EMR приведены на стр. 16

Индикаторы: питания

(средний), приема (Rx) и

передачи (Tx) по LBUS

Адресный источник питания APS 1

+12V

NC1

CK1

NO₁

NC2

CK2

NO2

+12V

UNL

TMP

D2

GND

D1

S1

GND

S2

GND LD +12V

USB

Плата

контроллера А1

R1

R2

Адресная

соединений

микрочипов

LMicro 1

GND

+12V

+12 В в линии LBUS ←

Rx

Tx

Микропрограммы серии **G**

СКУД для автоматического шлагбаума, ворот, барьера

Описание контактов

LBUS - контакт подключения к адресной линии связи с другими контролле-рами в линии LBUS

K1 (K2) - контакт подключения считывателей для управления шлагбаумом (воротами) на въезд/выезд. При использовании считывателей с выходным форматом Weigand-26, подключение производить через преобразователь TWT (один преобразователь на два считывателя)

D1 - контакт подключения датчика «На въезде» шлагбаума (ворот)

D2 - контакт подключения датчика «На выезде» шлагбаума (ворот)

S1 - контакт подключения кнопки, управляющей открытием шлагбаума (ворот)

S2 - контакт подключения кнопки, управляющей закрытием шлагбаума (ворот)

LG1 - зеленый светодиод индикации на считывателе входа (активный «1»)

LG2 - зеленый светодиод индикации на считывателе выхода (активный «1»)

LR1 - красный светодиод индикации на считывателе входа (активный «1»)

LR2 - красный светодиод индикации на считывателе выхода (активный «1»)

SP1 - контакт подключения акустического излучателя звука считывателя входа (активный «1»)

SP2 - контакт подключения акустического излучателя звука считывателя выхода (активный «1»)

NO1, CK1, NC1, NO2, CK2, NC2 - контакты 1-го, 2-го реле: нормально разомкнутый, центральный, нормально замкнутый, для подключения элек-тронного блока управления шлагбаума (ворот);

ТМР - контроль тампера

+12V - выходное напряжение +12В для питания внешних устройств

GND - общий провод (к контакту заземления не подключать!!!)

Примечание

Подключение считывателей PLR3EH к универсальному контроллеру A1 приведено на стр. 4

Схема подключения светофора через модуль расширения приведена на стр. 15

Модуль расширения 2S2R

для СКУД «Шлагбаум, ворота, барьер»

Модули EMI, EMR для лифта

Микропрограммы серий S, F, SF, FE, SFE

Охранная и пожарная сигнализация, управление пожаротушением

Описание контактов

LBUS - контакт подключения к адресной линии связи с другими контроллерами в линии LBUS

 ${\rm D1}({\rm D2})$ - контакт подключения к первой (второй) адресной линии LMicro адресных микрочипов

S1(S2) - контакт подключения для закольцовывания первой (второй) адресной линии LMicro соответственно с контактом D1(D2)

К1 - контакт подключения центрального считывателя для:

- постановки/снятия охранной сигнализации для любой группы охранных извещателей (одна карточка - одна группа). Возможно использование адресных микрочипов DTR при подключении считывателей удаленно для постановки/снятия охранной сигнализации
- (одна карточка одна группа). При использовании считывателя с выходным форматом Weigand-26, подключение производить через преобразователь TWT.
- постановки/снятия с охраны каждой из групп устройств пожаротушения с соответствующими адресными микрочипами (одна карточка - одна группа). Для удаленной постановки/снятия с охраны каждой из групп устройств пожаротушения с соответствующими адресными микрочипами (одна карточка - одна группа) использовать пульт индикации и управления RC-100.

LG1 - зеленый светодиод индикации на считывателе (активный «1»);

LR1 - красный светодиод индикации на считывателе (активный «1»);

SP1 - контакт подключения акустического излучателя звука считывателя (активный «1»);

NO1, CK1, NC1 - контакты 1-го реле: нормально разомкнутый, центральный, нормально замкнутый, для подключения сирены, стробоскопа и т.п.; NO2, CK2, NC2 - контакты 2-го реле: нормально разомкнутый, центральный, нормально замкнутый, для подключения ПЦН;

ТМР - контроль тампера;

+12V - выходное напряжение +12В для питания внешних устройств;

GND - общий провод (к контакту заземления не подключать!!!).

Примечание

Подключение считывателя PLR3EH к универсальному контроллеру A1 приведено на стр. 4

Адресные микрочипы DGR, DGT, DGV, DLR, DLT, DLV

Примеры подключения к адресному микрочипу DGR электромагнитного замка, кнопки выхода

Адресные микрочипы TMP, HMD, DTR, FIRE

Подключение к адресной шине универсального контроллера А1

Описание контактов удаленного считывателя

КЕҮ - линия обмена между считывателем и микрочипом

LG - зеленый светодиод индикации на считывателе (активный «0»)

LR - красный светодиод индикации на считывателе (активный «0»)

SP - контакт подключения акустического излучателя звука считывателя (актив-ный «0»)

№ - адрес микрочипа

Подключение считывателя PLR3EH приведено как пример. Свободные поля таблицы предназначены для вписания реальной модели считывателя, его расцветки проводов или клемм подключения

В случае использования адресных микрочипов без перемычек, нормальное состояние контролируемой цепи, устанавливается из ПО Octagram Flex

Адресный микрочип DIF

Подключение к адресной шине контроллера А1

Охранные датчики с нормально замкнутыми контактами

Примечание

№ - адрес микрочипа

В случае использования адресных микрочипов без перемычки, нормальное состояние контролируемой цепи устанавливает-

ся из ПО Octagram Flex

При использовании охранных датчиков без тампера, зеленый провод микрочипа подключать к контактам контролируемой цепи напрямую

Пример подключения шлагбаума CAME G400 к контроллеру A1D

Схемы подключения некоторых типов замков

Примечание.

Конденсатор С1 - TL 0,047мк Φ +/- 10% - 400В

Диод VD1 - КД209А или аналогичный с током в прямом направлении не менее 1А.

При использовании нормально закрытой электромеханической защелки (открывается при подаче напряжения), требуется использовать схему подключения для такого типа защелок, а так же предварительно установить время, которое выдерживает данная защелка. При использовании неверной схемы подключения (например при подключении нормально закрытой защелки по схеме электромагнитного замка) и слишком большом указании времени замка возможно сгорание защелки.

Время срабатывания исполнительного элемента в соответствии с ПО Octagram Flex:

- для электромагнитного замка (защелки): 1 255 сек.
- для электромеханического замка (защелки): 0,1 0,9 сек.

Перед физическим подключением защелки требуется в программном обеспечении предварительно сменить тип замка на 1 («защелка»), поставить галочку в свойствах контроллера «нормально выключенный замок» и выставить допустимое для данной модели защелки время срабатывания. В противном случае на защелку будет подано постоянное напряжение на длительный срок (как на электромагнитный замок), что может привести к выходу защелки из строя, если в ней не установлена специальная защита.

Пример системы газового (аэрозольного) автоматического пожаротушения

Газовая магистраль

Защищаемое помещение Диспетчерская / пост охраны

Станция пожаротушения

Характеристики линий связи

Линия связи	Характеристика линии связи	Длина линии связи, не более, м	Рекомендуемое сечение проводов, не менее, мм ²	Рекомендуемые мар- ки проводов
Линия связи адресных микрочипов (LMicro)	Трехпроводная	300	3 x 0,5	КПСВЭВ 2x2x0,5 КСПЭВ 4x0,80 КСПЭВ 2x2x0,80
Линия связи контроллеров и пультов (LBUS)	Двухпроводная (один провод-сигнальный, второй - общий)	500 (возможность увеличения линии связи при использовании магистрального усилителя)	2 x 0,5	КГПпЭВ 1x2x0,78 КГПпЭП 1x2x0,78 КГПпЭУ 1x2x0,78* КПСВЭВ 1x2x0,5 КСПЭВ 2x0,80 КСПЭВ 1x2x0,80

Порядок монтажа

Работы по монтажу устройства на объекте следует проводить в соответствии с действующими требованиями к монтажу технических средств безопасности.

На этапе проектирования определить места установки всех устройств, прорисо¬вать и сохранить для будущего использования план размещения оборудования и схему прокладки кабелей.

Монтаж устройств, входящих в состав системы, проводить согласно их экс¬плуатационной документации.

При проектировании схемы прокладки соединительных кабелей, необходимо учитывать, что соединительные кабели прокладываются на расстоянии не менее 0,5 метра от силовых, а их пересечение производится под прямым углом (с использованием металлической заземленной пластины между кабелями в месте пересечения).

Монтаж рекомендуется выполнять проводом сечением не менее 0.5 мм^2 .

Характеристики линий связи приведены в Таблице 1.

Допускается устанавливать контроллер на удалении от пульта RC 100 (в преде¬лах допустимой длины линии связи LBUS).

Произвести монтаж соединительных и интерфейсных кабелей согласно проектной схеме прокладки.

Согласно плану размещения и проектным схемам произвести подключение оборудования.

ООО «Октаграм», Россия.

Адрес: 105066, г. Москва, 1-й Басманный переулок, д. 12, стр. 1.

Тел./факс: (495) 580-30-26, (495) 607-02-56, 8 (800) 555-11-46

Электронная почта: support@octagram.ru, интернет: www.octagram.ru.