Note: unrequired parts of multi-part problems are listed obfuscated as \dots to recognize they are multi-parted.

Problem 0.1.

Answer here...

1 Arithmetic

1.2 Modular Arithmetic

1.2.4 Structure

Problem 1.48. List all units and (separately) all zero divisors of:

 $(a) \mathbb{Z}_3,$

 $(c) \mathbb{Z}_7,$

(e) \mathbb{Z}_{12} ,

(b) \mathbb{Z}_4 ,

 $(d) \mathbb{Z}_8,$

 $(f) \mathbb{Z}_{15}$.

Answer here...

Problem 1.49. Determine how many solutions there are to the following equations.

(a) [2]x = [9] in \mathbb{Z}_7 .

(c) [2]x + [2] = [3] in \mathbb{Z}_6 .

(b) [15]x - [1] = [5] in \mathbb{Z}_{25} .

(d) [35]x - [20] = [20] in \mathbb{Z}_{100} .

Answer here...

Problem 1.50. Using the proof of Theorem 1.26, write down all solutions to the following equations.

(a) [3]x - [1] = [2] in \mathbb{Z}_{12} .

(b) ...

Answer here...

Problem 1.51. Let $n \in \mathbb{N}$, $n \geq 2$. This exercise proves Wilson's Theorem, which says $(n-1)! \equiv -1 \pmod{n}$ if and only if n is prime.

- (a) If n is not prime, show that a factor of n appears in (n-1)!. Conclude that [(n-1)!] is a zero divisor and that $(n-1)! \not\equiv -1$.
- (b) If n = p is prime, show the only solutions to $x^2 = [1]$ in \mathbb{Z}_p

Answer here...

1.2.5 Applications

1.2.6 Equivalence Relations