Real Analysis (MA 403)

Instructor: Prof.Sourav Pal Problem set 2

- 1. Let \overline{E} and E° be respectively the closure and interior of a set E.
 - (i) Do E and \overline{E} have the same interiors?
 - (ii) Do E and E° have the same closures?
- 2. Construct a compact set of real numbers whose limit points form a countable set.
- 3. Consider the set of rational numbers \mathbb{Q} with usual (modulus) metric. If p,q are prime numbers with p < q prove that $[\sqrt{p}, \sqrt{q}] \cap \mathbb{Q}$ is closed and bounded in \mathbb{Q} but not compact in \mathbb{Q} . Is $[\sqrt{p}, \sqrt{q}] \cap \mathbb{Q}$ an open set in \mathbb{Q} ?
- 4. Let (X, d) be a metric space. Prove that a set $K \subseteq X$ is compact if and only if every infinite subset of K has a limit point in K.
- 5. Let (X, d) be a metric space in which every infinite subset has a limit point. Prove that X is separable.
- 6. Prove that every nonempty open set in \mathbb{R} can be expressed as a union of at most countable open intervals.
- 7. A set E in a metric space (X, d) is said to be *perfect* if E is closed and every point in E is a limit point of E. Prove that every nonempty perfect set in \mathbb{R}^n is uncountable.
- 8. Are closures and interiors of connected sets always connected?
- 9. If A and B are disjoint closed sets in a metric space (X, d), prove that they are separated. What happens if A and B are disjoint open sets?
- 10. Prove that a set in \mathbb{R} is connected if and only if it is an interval. Does an analogous statement hold for \mathbb{R}^n , n > 1, that is, is it true that k-cells or open k-cells are the only connected proper subsets of \mathbb{R}^n ?