Introducción a desigualdades

Kenny J. Tinoco

Diciembre de 2024

1. Definiciones

Empezaremos recordando unas tautologías sobre las proposiciones.

Implicación (\Longrightarrow)

Dada dos proposiciones lógicas A y B diremos que A implica a B si el valor lógico de A causa el valor lógico de B. Denotaremos esta relación por el símbolo

$$A \implies B$$
.

Existe varias maneras de verbalizar esta relación, por ejemplo: si A, entonces B, A causa B, para que B es necesario A, entre otros.

Doble implicación (\iff)

Si tenemos que $A \implies B$ y $B \implies A$ a la vez, podemos decir que existe una doble implicación entre A y B. Lo denotamos por

$$A \iff B$$
.

Verbalizando esto es igual a: A si y solo si $B, A \equiv B$.

Ahora recordemos las propiedades importantes de las desigualdades. Sean a,b y c dos números reales, se cumple.

1. Tricotomía:

Se cumple que a < b, a = b o a > b.

2. Suma:

Si $a \ge b$, entonces $a + c \ge b + c$ para cualquier c.

3. Multiplicación:

Si $a \ge b$ y $c \ge 0$, entonces $ac \ge bc$ Si $a \ge b$ y $c \le 0$, entonces $ac \le bc$

4. Reflexividad:

 $a \ge a$

5. Antisimetría:

Si $a \ge b$ y $b \ge a$, entonces a = b.

6. Transitividad:

Si $a \ge b$ y $b \ge c$, entonces $a \ge c$

2. Técnicas

Cuando resolvemos desigualdades hay maneras comunes de avanzar con la solución, estas maneras son las técnicas.

Comparación directa

- 1. La desigualdad $A \geq B$ es verdadera si y solo si $A B \geq 0$ es también verdadera.
- 2. La desigualdad $A \geq B$ con $B \neq 0$ es verdadera si y solo si $\frac{A}{B} \geq 1$ es verdadera.

Maximizar y reducir

Si tenemos la desigualdad $A \geq B$, entonces podemos partir la demostración encontrando valores A_1, A_2, \ldots, A_k tales que

$$A \ge A_1 \ge A_2 \ge \ldots \ge A_k \ge B$$
.

Análisis de la desigualdad

Si tenemos la desigualdad $A \geq B$, entonces podemos partir la demostración encontrando desigualdades $(A_1 \geq B_1), (A_2 \geq B_2), \dots, (A_k \geq B_k)$ tales que

$$A \ge B \iff (A_1 \ge B_1) \iff (A_2 \ge B_2) \iff \dots \iff (A_k \ge B_k)$$

Muchas veces utilizaremos teoremas sobre desigualdades para simplificar las demostraciones de las desigualdades.

3. Problemas

Problema 1. Si a, b, c son números reales arbitrarios, entonces probar que

$$a^2 + b^2 + c^2 \ge ab + bc + ca.$$

Problema 2. Si a, b son números reales tales que a + b = 2, probar que

$$a^4 + b^4 \ge 2.$$

Problema 3. Si a, b, c son números reales positivos, probar que

$$a^{3} + b^{3} + c^{3} + ab^{2} + bc^{2} + ca^{2} \ge 2(a^{2}b + b^{2}c + c^{2}a).$$

Problema 4. Sea a, b, x, y números reales cualesquiera. Demostrar que

$$(a^2 + b^2)(x^2 + y^2) \ge (ax + by)^2.$$

Problema 5. Probar que $a^2 + b^2 + c^2 + 3 \ge 2(a + b + c)$

Problema 6. Si x, y son reales positivos, probar que $x^2 + y^2 \ge \frac{(x-y)^2}{2}$.

Problema 7. Probar que $x^4 + y^4 + z^2 + 1 \ge 2x(xy^2 - x + z + 1)$.

Problema 8. Probar que para cualquier real x se cumple que

$$(x-1)(x-3)(x-4)(x-6) + 10 > 0.$$