TRIGONOMÉTRIE

I. Fonctions sinus, cosinus, et tangente

1. Définitions

Définition 1.1 (Enroulement de la droite numérique sur le cercle trigonométrique)

On se place dans le plan muni d'un repère orthonormé (O, I, J). On appelle **cercle trigonométrique** le cercle de centre O et de rayon 1.

À chaque nombre réel x on associe le point M(x) du cercle trigonométrique obtenu en « enroulant » la droite numérique le long du cercle en partant du point I, dans le sens anti-horaire lorsque x > 0 et dans le sens horaire lorsque x < 0.

Si M(x) est le point associé au réel x par enroulement de la droite numérique sur le cercle trigonométrique, alors x est une mesure de l'angle orienté \widehat{IOM} qui **n'est pas exprimée en degré**. Cette unité d'angle s'appelle le **radian**. On a par exemple $360^o = 2\pi$ rad puisque le périmètre d'un cercle de rayon 1 est 2π .

Pour tout réel x, on considère le point M(x) associé à x par enroulement de la droite numérique sur le cercle trigonométrique (l'enroulement peut éventuellement faire plusieurs tours de cercle dans un sens ou dans l'autre).

On appelle **cosinus de** x l'abscisse de M(x), et **sinus de** x l'ordonnée du point M(x). On note ces deux nombres $\cos(x)$ et $\sin(x)$.

On appelle tangente de x le nombre défini par $\tan(x) = \frac{\sin(x)}{\cos(x)}$ lorsque $\cos(x) \neq 0$. C'est la longueur du segment de la tangente au cercle trigonométrique reliant M(x) à l'axe des abscisses. C'est aussi le **coefficient directeur** de la droite OM(x).

Remarque

La circonférence du cercle trigonométrique est $C = 2\pi R$ avec un rayon R = 1. Les réel $x = 2\pi$ et $x = -2\pi$ correspondent donc à exactement un tour de cercle trigonométrique (dans un sens et dans l'autre), leurs images sur le cercle sont la même que celle de 0, à savoir le point de coordonnée (1,0). Pour des valeurs de x supérieur à 2π on recommence l'enroulement autant de fois que nécessaire. Ainsi $\sin(x)$ et $\cos(x)$ sont définis pour toutes valeurs réelles de x.

Remarque

Si on note H le projeté orthogonal de M sur l'axe des abscisses, alors ces définitions du sinus et du cosinus coïncide avec la définition du sinus et du cosinus de l'angle x dans le triangle OHM:

$$\cos(x) = \frac{OH}{OM} = OH$$

$$\sin(x) = \frac{HM}{OM} = HM$$

car ici OM = 1.

2. Valeurs remarquables (à connaître par coeur)

En noir x, en rouge $\cos(x)$, en bleu $\sin(x)$.

Angle $ heta$ en radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
Angle $ heta$ en degrés	0	30	45	60	90	120	135	150	180
$\cos heta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\sin heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

II. Propriétés

1. Ensemble de définition

Propriété 1.1

Les fonctions **cos** et **sin** sont définies sur \mathbb{R} , la fonction **tan** est définie sur $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$

2. Courbes représentatives

a. Fonctions sinus et cosinus

b. Fonction tangente

3. Périodicité

Le motif de la courbe représentative des fonctions sinus et cosinus sur l'intervalle $]-\pi;\pi]$ se répète sur \mathbb{R} . On dit que les fonctions sinus et cosinus sont **périodiques**. La définition formelle d'une fonction périodique est la suivante :

Définition 1.2

Une fonction f définie sur un domaine $\mathcal D$ est dite **périodique** de période $T \in]0; +\infty[$ si pour tout $x \in \mathcal D$ tel que $x+T \in \mathcal D$ on a

$$f(x+T) = f(x)$$

Propriété 1.2 (admise)

Les fonctions cos et sin sont périodique de période 2π . La fonction tangente est périodique de période π .

Autrement dit on a:

- $\forall x \in \mathbb{R}$, $\cos(x+2\pi) = \cos(x)$
- $\forall x \in \mathbb{R}$, $\sin(x+2\pi) = \sin(x)$
- $\forall x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}, \quad \tan(x + \pi) = \tan(x)$

On a aussi, pour tout entier $k \in \mathbb{Z}$,

- $\forall x \in \mathbb{R}$, $\cos(x + 2k\pi) = \cos(x)$
- $\forall x \in \mathbb{R}$, $\sin(x + 2k\pi) = \sin(x)$
- $\forall x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}, \quad \tan(x + k\pi) = \tan(x)$

Remarque

Il suffit donc de connaître les fonctions sinus et cosinus sur un intervalle de longueur 2π pour les connaître sur \mathbb{R} (par exemple sur $]-\pi;\pi[$ ou sur $]0;2\pi[$).

- → Exercice de cours nº 1.
- → Exercice de cours nº 2.

4. Parité

Définition 1.3

Soit f une fonction définie sur un domaine \mathcal{D} tel que pour tout $x \in \mathcal{D}$, $-x \in \mathcal{D}$ (un tel domaine est dit **symétrique par rapport à 0**). On dit que f est...

- ...**paire** si pour tout $x \in \mathcal{D}$, f(-x) = f(x)
- ...**impaire** si pour tout $x \in \mathcal{D}$, f(-x) = -f(x)

Remarque

Une fonction paire est une fonction dont la courbe représentative est symétrique par rapport à l'axe des ordonnées.

Une fonction impaire est une fonction dont la courbe représentative est symétrique par rapport à l'origine du repère.

Une fonction paire

Une fonction impaire

Propriété 1.3 (admise)

La fonction cosinus est paire sur \mathbb{R} , c'est à dire que $\forall x \in \mathbb{R}$, $\cos(-x) = \cos(x)$ La fonction sinus est impaire sur \mathbb{R} , c'est à dire que $\forall x \in \mathbb{R}$, $\sin(-x) = -\sin(x)$

5. Continuité et dérivabilité

Propriété 1.4 (admise)

Les fonctions $x \longmapsto \sin(x)$ et $x \longmapsto \cos(x)$ sont continues sur \mathbb{R} . La fonction tangente est continue sur $]-\frac{\pi}{2}+k\pi; \frac{\pi}{2}+k\pi[$ pour tout $k \in \mathbb{Z}$.

→ Exercice de cours nº 3.

Propriété 1.5 (admise) –

Les fonctions $x \mapsto \sin(x)$ et $x \mapsto \cos(x)$ sont dérivables sur \mathbb{R} et :

- $\forall x \in \mathbb{R}$, $\sin'(x) = \cos x$
- $\forall x \in \mathbb{R}$, $\cos'(x) = -\sin x$

La fonction $x \mapsto \tan x$ est dérivable sur tout intervalle de la forme $]-\frac{\pi}{2}+k\pi;\frac{\pi}{2}+k\pi[$ où $k \in \mathbb{Z}$, et :

$$\bullet \quad \tan'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

→ Exercice de cours nº 4.

- → Exercice de cours nº 5.
- \rightarrow Exercice de cours nº 6.

Application:

Proposition 1.6

On a
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

→ Exercice de cours nº 7.

III. Formules

Propriété 1.7 –

Pour tout réel *x*, on a :

- $-1 \le \sin x \le 1$
- $-1 \le \cos x \le 1$
- $\bullet \quad \cos^2 x + \sin^2 x = 1$

Remarque

La notation $\cos^2 x$ signifie $(\cos(x))^2$

- → Exercice de cours nº 8.
- → Exercice de cours nº 9.

Propriété 1.8 (d'addition admise) —

Pour tous réels $a, b \in \mathbb{R}$, on a :

- $\cos(a+b) = \cos a \cos b \sin a \sin b$ $\cos(a-b) = \cos a \cos b + \sin a \sin b$
- $\sin(a+b) = \sin a \cos b + \sin b \cos a$
- $\sin(a-b) = \sin a \cos b \sin b \cos a$

→ Exercice de cours nº 10.

Conséquence:

Propriété 1.9 de duplication (admise) —

Pour tout $a \in \mathbb{R}$, on a

•
$$\cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$$

- $\sin(2a) = 2\sin a \cos a$
- → Exercice de cours nº 11.

Propriétés 1.10 (admises)

Les proprietes suivantes se démontrent aisément avec les formules d'addition, mais elles se comprennent mieux dans leur sens géométrique illustré ci-contre.

Pour tout $\alpha \in \mathbb{R}$ on a :

•
$$\cos(-\alpha) = \cos(\alpha)$$
 • $\cos\left(\alpha + \frac{\pi}{2}\right) = -\sin(\alpha)$

•
$$\sin(-\alpha) = -\sin(\alpha)$$

•
$$\sin(\alpha + \pi) = -\sin(\alpha)$$

•
$$\sin\left(\alpha + \frac{\pi}{2}\right) = \cos\alpha$$

•
$$\cos(\alpha + \pi) = -\cos(\alpha)$$

•
$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

•
$$\cos(\pi - \alpha) = -\cos(\alpha)$$

•
$$\sin(\pi - \alpha) = \sin(\alpha)$$

•
$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

Pour tout $\alpha \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$ on a

•
$$tan(-\alpha) = -tan(\alpha)$$

•
$$tan(\alpha + \pi) = tan(\alpha)$$

•
$$tan(\pi - \alpha) = -tan(\alpha)$$

•
$$\tan\left(\alpha + \frac{\pi}{2}\right) = -\frac{1}{\tan\alpha} \text{ (pour } \alpha \notin \{k\pi, k \in \mathbb{Z}\}\text{)}$$

•
$$\tan\left(\frac{\pi}{2} - \alpha\right) = \frac{1}{\tan \alpha} \text{ (pour } \alpha \notin \{k\pi, k \in \mathbb{Z}\}\text{)}$$

Conséquences graphiques

Si on trace les courbes des fonctions sinus et cosinus dans un repère orthonormé $(0; \vec{i}; \vec{j})$:

- La courbe de la fonction cosinus est symétrique par rapport à l'axe des ordonnées
- La courbe de la fonction sinus est symétrique par rapport à l'origine du repère.
- La courbe de la fonction sinus est l'image de la courbe de la fonction cosinus par une translation de vecteur $\frac{n}{2}$ i

IV. Applications

1. Équations trigonométriques

Proposition 1.11

Soit $a \in \mathbb{R}$. On s'intéresse à l'équation $\cos x = a$ dans l'intervalle $[-\pi; \pi]$

- Si a > 1 ou a < -1, l'équation n'a pas de solution, $S = \emptyset$
- Si a = 1, l'équation a pour unique solution x = 0
- Si -1 < a < 1, l'équation a deux solutions, θ et $-\theta$ avec θ tel que $\cos \theta = a$
- Si a = -1, l'équation a deux solutions $x = -\pi$ et $x = \pi$.
- → Exercice de cours nº 12.
- → Exercice de cours nº 13.

Proposition 1.12

Soit $a \in \mathbb{R}$. On s'intéresse à l'équation $\sin x = a$ dans l'intervalle $]-\pi;\pi]$

- Si a > 1 ou a < -1, l'équation n'a pas de solution, $S = \emptyset$
- Si a = 1, l'équation a pour unique solution $x = \frac{\pi}{2}$
- Si 0 < a < 1, l'équation a deux solutions, θ et $\pi \theta$ avec θ tel que $\sin \theta = a$
- Si -1 < a < 0, l'équation a deux solutions $x = \theta$ et $x = -\pi \theta$ avec θ tel que $\sin \theta = a$.
- Si a = -1, l'équation a pour unique solution $x = -\frac{\pi}{2}$
- → Exercice de cours nº 14.

2. Inéquations trigonométriques.

On résout les inéquations de la forme $\cos x \ge a$, $\cos x \le a$, $\sin x \ge a$ et $\sin x \le a$ en s'aidant du cercle trigonométrique et en appliquant les propositions de la section précédente.

 \rightarrow Exercice de cours nº 15.

V. Équations et inéquations dans \mathbb{R} :

Proposition 1.13

Dans l'intervalle $[-\pi; \pi]$, on a

$$\cos a = \cos b \iff a = b \quad \text{ou} \quad a = -b$$

Dans l'intervalle $[-\frac{\pi}{2}; \frac{3\pi}{2}]$, on a

$$\sin a = \sin b \iff a = b$$
 ou $a = \pi - b$

Dans \mathbb{R} , on a donc

$$\cos a = \cos b \iff a = b + 2k\pi$$
 ou $a = -b + 2k\pi$ avec $k \in \mathbb{Z}$

et

$$\sin a = \sin b \iff a = b + 2k\pi$$
 ou $a = \pi - b + 2k\pi$, avec $k \in \mathbb{Z}$

 \rightarrow Exercice de cours nº 16.

Exercices de cours

Exercice 1 -

Calculer $\sin(217\pi)$ et $\cos\left(-\frac{35\pi}{4}\right)$

Exercice 2 -

Déterminer **une** période T > 0 de chacune des fonctions suivantes (sans se soucier de leurs ensembles de définition).

1.
$$f(x) = 4\sin\left(\frac{3x}{7}\right)$$

$$3. \ h(x) = \cos(3x)\sin(2x)$$

$$5. \ m(x) = \tan\left(x + \frac{\pi}{4}\right)$$

$$2. \quad g(x) = \cos(2x) - \sin(x)$$

4.
$$k(x) = \frac{\cos(12x+1)}{2+\sin^2(8x)}$$

$$6. \ n(x) = \tan(3x)$$

Exercice 3

Démontrer qu'il existe un réel $x \in [0; \pi]$ tel que $\cos(x) = \frac{\pi^3}{64}$.

Exercice 4 —

Calculer la dérivée de la fonction $g:x\longmapsto x^5\cos(3x)$ définie et dérivable sur $\mathbb R$

Exercice 5 -

Calculer la dérivée de la fonction $h: x \longrightarrow \sin(e^x)$ définie et dérivable sur \mathbb{R} .

Exercice 6 -

On admet dans chaque cas que la fonction est définie et dérivable sur I. Calculer la dérivée de chacune des fonctions suivantes sur l'intervalle I

1.
$$f(x) = \frac{\sin(3x)}{\cos(x)}$$
, $I = [0; \pi/2]$

3.
$$h(x) = \sqrt{e^{x \cos x}}$$
, $I = \mathbb{R}$

2.
$$g(x) = \ln(3\cos^2(5x)), I =]0; \frac{\pi}{10}[$$

4.
$$k(x) = \frac{1}{\sqrt{\tan x}}$$
, $I =]0; \pi/2[$.

Exercice 7

Déterminer les limites suivante :

$$1. \lim_{x \to 0} \frac{\sin(3x)}{x}$$

$$3. \lim_{x \to 1} \frac{\sin(2\pi x)}{x - 1}$$

$$2. \lim_{x \to 0} \frac{\sin(2x)}{5x}$$

Exercice 8 —

Déterminer la limite lorsque x tend vers $+\infty$ de la fonction $f: x \longmapsto \frac{x \sin x + x^2}{x^2}$ définie sur $]0; +\infty[$.

Exercice 9 —

Déterminer dans chaque cas la limite de f(x) lorsque x tend vers a.

1.
$$\frac{\cos x}{x}$$
, $a = -\infty$

$$2. \ \frac{\sqrt{x}\sin x - \sqrt{x}\cos x}{x}, \ a = +\infty.$$

Exercice 10 -

En remarquant que $\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$, calculer $\cos\left(\frac{\pi}{12}\right)$.

Exercice 11 -

Calculer $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.

_____ Exercice 12 —

Résoudre $\cos x = -\frac{1}{2}$ dans $[-\pi; \pi]$

------ Exercice 13 -

Résoudre $cos(4x) = \frac{\sqrt{3}}{2}$ dans $[-\frac{\pi}{4}; \frac{\pi}{4}]$.

----- Exercice 14 -----

- 1. Résoudre dans $[-\pi;\pi]$ l'équation $\sin x = \frac{1}{2}$
- 2. Résoudre dans $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ l'équation $\sin(2x) = -\frac{\sqrt{2}}{2}$

Exercice 15 -

- 1. Résoudre dans $[-\pi; \pi]$ l'inéquation $\cos x \le \frac{1}{2}$
- 2. Résoudre dans $[-\pi;\pi]$ l'inéquation $\sin x \le \frac{1}{2}$.
- 3. Résoudre dans $\left[-\frac{\pi}{3}; \frac{\pi}{3}\right]$ l'inéquation $\cos(3x) \ge -\frac{\sqrt{2}}{2}$

Exercice 16

- 1. Résoudre dans] π ; π [puis dans \mathbb{R} l'équation $\cos x = \frac{1}{2}$
- 2. Résoudre dans \mathbb{R} l'inéquation $\cos(3x) \le -\frac{1}{2}$
- 3. Résoudre dans] π ; π [puis dans \mathbb{R} l'équation $\sin x = -\frac{1}{2}$
- 4. Résoudre dans \mathbb{R} l'équation $\cos(5x) + \sqrt{2} = \frac{\sqrt{2}}{2}$
- 5. Résoudre dans \mathbb{R} l'inéquation $2\sqrt{3}\sin\left(\frac{2x}{3}\right) \ge -3$