Self Practice # 2 MA1300

1. (P70, #15) Evaluate the limit
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$

2. (P70, #19) Evaluate the limit
$$\lim_{x \to -2} \frac{x+2}{x^3+8}$$

3. (P70, #26) Evaluate the limit
$$\lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right)$$

4. (P70, #36) Use the Squeeze Theorem to show that

$$\lim_{x \to 0} \sqrt{x^3 + x^2} \sin \frac{\pi}{x} = 0.$$

5. (P70, #38) If
$$2x \le g(x) \le x^4 - x^2 + 2$$
 for all x , evaluate $\lim_{x \to 1} g(x)$.

6. (P70, #40) Prove that
$$\lim_{x\to 0^+} \sqrt{x} [1 + \sin^2(2\pi/x)] = 0$$
.

For Questions $7 \sim 9$, find the limit, if it exists. If the limit does not exist, explain why.

7. (P70, #41)
$$\lim_{x\to 3} (2x + |x-3|)$$

8. (P70, #42)
$$\lim_{x \to -6} \frac{2x+12}{|x+6|}$$

9. (P70, #46)
$$\lim_{x\to 0^-} \left(\frac{1}{x} - \frac{1}{|x|}\right)$$

10. (P70, #47) The signum (or sign) function, denoted by sgn, is defined by

$$\operatorname{sgn} x = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$

- (a) Sketch the graph of this function.
- (b) Find each of the following limits or explain why it does not exist.

(i)
$$\lim_{r \to 0^+} \operatorname{sgn} a$$

(i)
$$\lim_{x\to 0^+} \operatorname{sgn} x$$
 (ii) $\lim_{x\to 0^-} \operatorname{sgn} x$

(iii)
$$\lim_{x\to 0} \operatorname{sgn} x$$
 (iv) $\lim_{x\to 0} |\operatorname{sgn} x|$

11. (P71, #54) In the theory of relativity, the Lorentz contraction formula

$$L = L_0 \sqrt{1 - v^2/c^2}$$

expresses the length L of an object as a function of its velocity v with respect to an observer, where L_0 is the length of the object at rest and c is the speed of light. Find $\lim L$ and interpret the result. Why is a left-hand limit necessary?

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

prove that $\lim_{x\to 0} f(x) = 0$.

13. (P71, #62) Evaluate
$$\lim_{x\to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$$
.

- (a) Find a number δ such that if $|x-2| \le \delta$, then $|4x-8| < \varepsilon$, where $\varepsilon = 0.1$.
- **(b)** Repeat part (a) with $\varepsilon = 0.01$.
 - 15. (P81, #39) If the function f is defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

prove that $\lim_{x\to 0} f(x)$ does not exist.

16. (P81, #41) How close to -3 do we have to take x so that

$$\frac{1}{(x+3)^4} > 10,000$$

17. (P81, #42, Optional) Prove that $\lim_{x \to -3} \frac{1}{(x+3)^4} = \infty$.