Derivadas da função composta e regra da cadeia

Bacharelado em Ciência da Computação Cálculo Diferencial e Integral I - 2ª fase

Professora: Joelma Kominkiewicz Scolaro

Aula 17/01/2022

Função Composta

A função composta, também chamada de função de função, é um tipo de função matemática que combina duas ou mais variáveis.

Dada uma função f (f: A \rightarrow B) e uma função g (g: B \rightarrow C), a função composta de g com f é representada por gof. Já a função composta de f com g é representada por fog.

Determine o gof(x) e fog(x) das funções f(x) = 2x + 2 e g(x) = 5x.

$$gof(x) = g[f(x)] = g(2x+2) = 5(2x+2) = 10x + 10$$

 $fog(x) = f[g(x)] = f(5x) = 2(5x) + 2 = 10x + 2$

Se
$$y = g(u)$$
, $u = f(x)$ e as derivadas $\frac{dy}{du}$ e $\frac{du}{dx}$ existem, então a função composta $y = gof(x) = g(f(x))$ tem derivada dada por

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \quad \text{ou} \quad y'(x) = y'(u) \cdot u'(x) \quad \text{ou} \quad gof'(x) = g'(f(x)) \cdot f'(x).$$

As três formas acima são equivalentes, mudam apenas as notações.

Vamos explicitar o caso especial da Regra da Cadeia, onde a função de fora f é uma função potência. Se $y = [g(x)]^n$, então podemos escrever $y = f(u) = u^n$, onde u = g(x). Usando a Regra da Cadeia e, em seguida, a Regra da Potência, obteremos

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = nu^{n-1}\frac{du}{dx} = n[g(x)]^{n-1}g'(x)$$

EXEMPLO 1 Encontre F'(x) se $F(x) = \sqrt{x^2 + 1}$.

SOLUÇÃO 1 (usando a Equação 2): No início desta seção expressamos F como $F(x) = (f \circ g)(x) = f(g(x))$, onde $f(u) = \sqrt{u}$ e $g(x) = x^2 + 1$. Uma vez que

A Regra da Cadeia pode ser escrita na notação linha

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

$$f'(u) = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}} \qquad e \qquad g'(x) = 2x$$

$$F'(x) = f'(g(x)) \cdot g'(x)$$

$$= \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x = \frac{x}{\sqrt{x^2 + 1}}$$

ou, se y = f(u) e u = g(x), na notação de Leibniz:

OBSERVAÇÃO Ao usarmos a Regra da Cadeia, trabalharemos de fora para dentro. A Fórmula 2 diz que derivamos a função f de fora [na função de dentro g(x)] e, então, que multiplicamos pela derivada da função de dentro.

SOLUÇÃO 2 (usan

$$\frac{d}{dx} \quad f \quad (g(x)) = f' \quad (g(x)) \cdot g'(x)$$

$$\frac{função}{de fora} \quad \frac{avalizada}{na função} \quad \frac{derivada}{da função} \quad \frac{avalizada}{da função} \quad \frac{derivada}{da função}$$

$$\frac{d}{dx} \quad f \quad (g(x)) = f' \quad (g(x)) \cdot g'(x)$$

$$\frac{função}{de fora} \quad \frac{avalizada}{na função} \quad \frac{derivada}{da função} \quad \frac{da função}{de dentro}$$

$$\frac{d}{dx} \quad f \quad (g(x)) = f' \quad (g(x)) \cdot g'(x)$$

$$F'(x) = \frac{dy}{du}\frac{du}{dx} = \frac{1}{2\sqrt{u}}(2x) = \frac{1}{2\sqrt{x^2 + 1}}(2x) = \frac{x}{\sqrt{x^2 + 1}}$$

a)
$$y = (3x + 1)^3$$

OBSERVAÇÃO Ao usarmos a Regra da Cadeia, trabalharemos de fora para dentro. A Fórmula 2 diz que derivamos a função f de fora [na função de dentro g(x)] e, então, que multiplicamos pela derivada da função de dentro.

$$\frac{d}{dx} \quad f \quad (g(x)) \quad = \quad f' \quad (g(x)) \quad \cdot \quad g'(x)$$

$$\text{função} \quad \text{avalisada} \quad \text{derivada} \quad \text{avalisada} \quad \text{derivada}$$

$$\text{de fora} \quad \text{na função} \quad \text{da função} \quad \text{na função} \quad \text{da função}$$

$$\text{de dentro} \quad \text{de dentro} \quad \text{de dentro}$$

b)
$$y = (5x + 10)^2$$

c)
$$y = (3x^2 - 5x + 2)^6$$

EXEMPLO 2 Derive (a) $y = \text{sen}(x^2)$ e (b) $y = \text{sen}^2 x$.

SOLUÇÃO

 (a) Se y = sen(x²), então a função de fora é a função seno e a função de dentro é a função quadrática, logo, a Regra da Cadeia dá

$$\frac{dy}{dx} = \frac{d}{dx} \text{ sen } (x^2) = \cos (x^2) \cdot 2x$$

$$\text{função avaliada de fora na função de dentro} \text{ derivada avaliada da função de dentro} \text{ de fora de dentro} \text{ de dentro}$$

$$= 2x \cos(x^2)$$

(b) Observe que sen²x = (sen x)². Aqui, a função de fora é a função quadrática, e a função de dentro é a função seno. Logo,

$$\frac{dy}{dx} = \frac{d}{dx} (\text{sen } x)^2 = 2 \cdot (\text{sen } x) \cdot \cos x$$

$$\frac{dy}{dx} = \frac{d}{dx} (\text{sen } x)^2 = 2 \cdot (\text{sen } x) \cdot \cos x$$

$$\frac{dy}{dx} = \frac{d}{dx} (\text{sen } x)^2 = 2 \cdot (\text{sen } x) \cdot \cos x$$

$$\frac{dy}{dx} = \frac{d}{dx} (\text{sen } x)^2 = 2 \cdot (\text{sen } x) \cdot \cos x$$

$$\frac{dy}{dx} = \frac{d}{dx} (\text{sen } x)^2 = 2 \cdot (\text{sen } x) \cdot \cos x$$

$$\frac{dy}{dx} = \frac{d}{dx} (\text{sen } x)^2 = 2 \cdot (\text{sen } x) \cdot \cos x$$

$$\frac{dy}{dx} = \frac{d}{dx} (\text{sen } x)^2 = 2 \cdot (\text{sen } x) \cdot \cos x$$

A resposta pode ser deixada como 2 sen x cos x ou escrita como sen 2x (pela identidade trigonométrica conhecida como fórmula do ângulo duplo).

IDENTIDADES TRIGONOMÉTRICAS

1)
$$\sec^2 x + \cos^2 x = 1$$
 10) $\csc^2 x = \cot^2 x + 1$ 17) $\sec^2 x = tg^2 x + 1$ 2) $\sec^2 x = 1 - \cos^2 x$ 11) $tg \ 2x = \frac{2 tg \ x}{1 \cdot tg^2 x}$ 18) $\cot g \ x = \frac{\cos x}{\sin x}$ 4) $\sec^2 nx = \frac{1}{2} - \frac{1}{2} \cos 2nx$ 12) $\cos 2x = \cos^2 x - \sin^2 x$ 19) $\sec^2 x = \frac{1}{2} (1 - \cos 2x)$ 5) $\cos^2 nx = \frac{1}{2} + \frac{1}{2} \cos 2nx$ 13) $\cot g \ x = \frac{1}{tg \ x}$ 20) $\cos^2 x = \frac{1}{2} (1 + \cos 2x)$ 6) $2 \sec^2 \frac{1}{2} x = 1 - \cos x$ 14) $\sec x = \frac{1}{\cos x}$ 21) $\sec^2 x \cos^2 x = \cos^2 x - \sin^2 x$ 22) $\sec^2 x \cos^2 x = \cos^2 x - \cos^2 x - \cos^2 x = \cos^2 x - \cos^2 x = \frac{1}{2} (1 - \cos 2x)$ 22) $\tan^2 x \cos^2 x = \frac{1}{2} [\cos(x - y) + \sin(x + y)]$ 22) $\tan^2 x \cos^2 x = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$ 23) $\cos^2 x \cos^2 x = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$ 25) $\cos^2 x \cos^2 x = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$ 26) $\tan^2 x \cos^2 x = 1 \cos^2 x \cos^2 x - \sin^2 x \cos^2 x = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$ 27) $\tan^2 x \cos^2 x \cos^2 x - \sin^2 x \cos^2 x \cos^2 x - \sin^2 x \cos^2 x \cos^2 x - \sin^2 x \cos^2 x \cos^2$

Derivada de uma função exponencial

Proposição: Se
$$f(x) = a^x$$
, $(a > 0 \ e \ a \ne 1)$, então $f'(x) = a^x \ln(a)$.

$$\frac{d}{dx}\left(a^{x}\right) = a^{x} \ln a$$

$$ex: f(x) = 6^x$$

$$f(x) = 2^x$$

Derivada de uma função exponencial composta

Proposição

Se
$$y = a^u$$
, $(a > 0 e a \ne 1)$ no qual $u \in uma$ função derivavel de x , então, $y' = a^u \cdot \ln(a) \cdot u'$

Seja
$$y = 2^{4x^3}$$
, determine a sua derivada.

Regra da Cadeia

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$y = 3^{2x^2 + 3x - 1}$$

Derivada de uma função exponencial

Proposição

Se
$$y = e^x$$
, então $y' = e^x$

Função exatamente igual a sua derivada

A função exponencial $y = e^x$ tem a propriedade de ser a sua **própria** derivada.

Seja
$$y = 3e^x$$
, determine $\frac{dy}{dx}$

Caso particular: Se $f(x) = e^x$, então $f'(x) = e^x \ln(e) = e^x$, onde e^x é o número neperiano.

Derivada de uma função exponencial

Proposição

Se $y = e^u$ e u é uma função derivável de x, então $y' = e^u$. u'

Derive
$$y = e^{\sin x}$$
. determine $\frac{dy}{dx}$

SOLUÇÃO Aqui a função de dentro é g(x) = sen x, e a função de fora é a função exponencial $f(x) = e^x$. Logo, pela Regra da Cadeia,

$$\frac{dy}{dx} = \frac{d}{dx} (e^{\sin x}) = e^{\sin x} \frac{d}{dx} (\sin x) = e^{\sin x} \cos x$$

Seja
$$y = 3e^{sen x}$$
, determine $\frac{dy}{dx}$

Proposição

Se
$$y = log_a x$$
, $(a > 0 e a \neq 0)$, $então y' = \frac{1}{x} log_a e$

Propriedade inversão da

base com o logarítmando
$$y' = \frac{1}{x} log_a e = \frac{1}{x} \cdot \frac{1}{log_e a}$$
 ou $y' = \frac{1}{x \cdot lna}$ $log_a^b = \frac{1}{log_b^a}$ Caso particular: Se $f(x) = ln(x)$, então $f'(x) = \frac{1}{x \cdot ln(e)} = \frac{1}{x}$.

Quando temos um logarítmo na base e temos um logarítmo natural.

Seja $y = log_3x$, determine a sua derivada.

Proposição

Se
$$y = log_a u$$
 e u é uma função derivável de x , e $u > 0$,

então
$$y = \frac{1}{u} . log_a e . u'$$

$$y' = \frac{1}{u} \cdot \frac{1}{\log_e a} \cdot u' \quad \rightarrow y' = \frac{u'}{u \cdot \ln(a)}$$

Seja
$$f(x) = log_2 3x^4$$
, determine $f'(x)$

$$y' = \frac{1}{u} . log_a e . u'$$
 $y' = \frac{1}{u} . \frac{1}{log_e a} . u' \rightarrow y' = \frac{u'}{u . \ln(a)}$

Proposição

Se
$$y = \ln(x)$$
, $x > 0$, então $y' = \frac{1}{x}$

$$y = \log_a x \rightarrow y' = \frac{1}{x} \cdot \log_a e$$

$$y = \log_e x \rightarrow y' = \frac{1}{x} \cdot \log_e e \rightarrow y' = \frac{1}{x}$$

Sendo y = ln5, calcule a sua derivada.

Preposição

Se $y = \ln u e \ u \text{ \'e uma função deriv\'avel de } x, e u > 0,$

$$y' = \frac{1}{u} . u'$$

Seja
$$y = \ln(5x^3)$$
, determine y' .

$$y = log_a u \rightarrow y' = \frac{u'}{u \cdot \ln(a)}$$

ex:

$$y = log_2 3x$$

$$y = log_4 5x$$

$$y = log_3(x^2 + 3x + 4) \rightarrow Função Composta$$

Tabela de Funções Deriváveis

(1)
$$y = c \Rightarrow y' = 0$$

 (2) $y = x \Rightarrow y' = 1$

(6) $y = \frac{u}{v} \Rightarrow y' = + \frac{vu' - uv'}{v^2}$

$$(3) \quad y = c \cdot u \Rightarrow y' = c \cdot u'$$

$$(4) \quad y = u + v \Rightarrow y' = u' + v'$$

(7)
$$y = u^{\alpha}, 0 \neq \alpha \in Q \Rightarrow y' = \alpha u^{\alpha - 1} \cdot u'$$

(8)
$$y = a^u (a > 0, a \neq 1)$$
 \Rightarrow $y' = a^u \cdot \ln a \cdot u'$

$$(9) \quad y = e^u \qquad \Rightarrow \qquad y' = e^u \cdot u'$$

(10)
$$y = \log_a u$$
 \Rightarrow $y' = \frac{u'}{u} \log_a e$

$$(10) y = \log_a u \qquad \Rightarrow \qquad y' = \frac{u}{u}$$

(5) $y = u \cdot v \Rightarrow y' = u \cdot v' + v \cdot u'$

$$(11) y = \ln u \qquad \Rightarrow \qquad y' = \frac{u'}{u}$$

(12)
$$y = u^v$$
 $\Rightarrow y' = v \cdot u^{v-1} \cdot u' + u^v \cdot \ln u \cdot v', u > 0.$