Distributionally Robust Co-Optimization of Energy and Reserve Dispatch of Integrated Electricity and Heat System - Online Appendix

Mikhail Skalyga

Center for Electric Power and Energy Technical University of Denmark Kgs. Lyngby, Denmark mikska@elektro.dtu.dk

Quiwei Wu

Center for Electric Power and Energy Technical University of Denmark Kgs. Lyngby, Denmark qw@elektro.dtu.dk

Nomenclature

A. Parameters	
$\underline{P}^G, \overline{P}^G$	Vector of the minimum and maximum real
$\underline{P}^{CHP}, \overline{P}^{CHP}$	power output of generators [MW]
$\underline{P}^{\circ \cdots}, P$	Vector of the minimum and maximum
\overline{R}^G	power supply from CHP unit [MW]
R	Vector of the generators reserve limits
\overline{R}^{CHP}	[MW]
	Vector of the CHP reserve limits [MW]
$P_W^f \ P^D$	Wind power forecast vector [MW] Electric demand vector [MW]
P^l	Line transmission capacity vector [MW]
$\underline{H}_{s}^{HS}, \overline{H}_{s}^{HS}$	- · · · · · · · · · · · · · · · · · · ·
\underline{H}_s , H_s	Minimum and maximum heat supply from
H_I^L	HS unit [MW] Heat demand [MW]
· ·	Cost coefficients of generators [\$/MWh]
$c_2, c_1, c_0 \\ c_e, c_h$	Cost coefficients for CHP [\$/MWh]
$\overline{c_G}, \underline{c_G}$	Cost coefficients of generators for provid-
○ <u>G</u> , <u>○G</u>	ing reserves [\$/MWh]
$\overline{c_c}, c_c$	Cost coefficients of CHP for providing
-c) <u>-c</u>	reserves [\$/MWh]
$ ho_s^H,/ ho_s^E$	Heat/Electricity-to-fuel ratio of the extrac-
, , , , ,	tion CHP
$ ho_s$	Heat-to-Electricity output ratio of the ex-
	traction CHP
η^{WP}	Water pump efficiency
COP_s	Coefficient of performance of the heat
_	pump
\overline{F}_s	Maximum fuel consumption of CHP unit
_ W.D. =WP	[MW]
$\underline{P}_{s}^{WP}, \overline{P}_{s}^{WP}$	Technical limits of the water pump at the
S —S	heat station
$\underline{m}_p^S, \overline{m}_p^S$	Lower and upper limits of mass flow rate
R. ==R.	of the pipeline p in supply network [kg/s]
$\underline{m}_p^R, \overline{m}_p^R$	Lower and upper limit of mass flow rate
HG HG	of the pipeline p in return network [kg/s]

Lower and upper limit of mass flow rate

of the HS s [kg/s]

 $\underline{m}_s^{HS}, \overline{m}_s^{HS}$

$\underline{m}_l^{HL}, \overline{m}_l^{HL}$	Lower and upper limit of mass flow rate
~	of the heat load l [kg/s]
$\underline{T}_n^S, \overline{T}_n^S$	Minimum/maximum temperature at node
_	n in the supply network [°C]
$\underline{T}_n^R, \overline{T}_n^R$	Minimum/maximum temperature at node
~ _S	n in the return network [°C]
$\underline{T}_p^S, \overline{T}_p^S$	Minimum/maximum temperature at pipe
1 1	p in the supply network [°C]
$\underline{T}_{n}^{R}, \overline{T}_{n}^{R}$	Minimum/maximum temperature at pipe
—p · p	p in the return network [°C]
$\underline{pr}_{n}^{S}, \overline{pr}_{n}^{S}$	Minimum/maximum pressure at node n in
<u></u>	the supply network [kPa]
$pr_n^R, \overline{pr}_n^R$	Minimum/maximum pressure at node n in
<u> </u>	the return network [kPa]
\underline{pr}_{l}^{HL}	Minimum pressure difference at the heat
<u></u> l	load [kPa]
$C_p \ \lambda$	Specific water capacity [J/kg°C]
$\lambda^{'}$	Heat transfer coefficient per unit length
	[W/m°C] [MW]
K_p	Pipe resistance coefficient $[m^{-1}kg^{-1}]$
$K_p \ L_p$	Length of pipe p [m]
D_p^r	Diameter of a pipe $p[m]$
E .	

Notation: Index denotes an element of the vector with the corresponding dimension.

Absolute roughness of a pipe p[m]

CASE STUDY DATA

Electrical demand is 200 MW and 100 MW at buses 4 and 5. We assume that reserves from generator are more expensive than CHP reserves $\overline{c_G} = \underline{c_G} = 1.2c_1$, $\overline{c_c} = \underline{c_c} = 1.1c_e$ In this study water density is $\rho = 1000 \text{ kg/m}^3$ and kinematic viscosity of water is $\mu = 0.4736 \times 10^{-6} \text{ m/s}^2$. Darcy friction factor $f_D = 0.0118$. The characteristics of the generation units, transmission lines parameters and DHN parameters are presented in Table I,II,III and IV.

Fig. 1. Configuration of the six-bus and seven-node integrated system.

TABLE I GENERATION UNITS

		G_1	CHP_1	HP_1
\overline{P}	MW	230	208.3	-
$\frac{\underline{P}}{\overline{R}}$	MW	10	15	-
\overline{R}	MW	92	41.66	-
\underline{R}	MW	0	0	-
$rac{\underline{H}}{\overline{H}}$	MW	-	0	5
	MW	-	250	100
\underline{m}_s^{HS}	kg/s	-	300	300
\overline{m}_s^{HS}	kg/s	-	700	700
\overline{F}	MW	-	500	-
COP	-	-	-	2.5
r	-	-	0.5	-
$ ho^E$	-	-	2.4	-
$ ho^H$	-	-	0.25	-
η	-	-	0.9	0.9
\overline{P}_{WP}	MW	-	20	20
\underline{P}_{WP}	MW	-	0	0
c_2	MWh^2	0.00125	-	-
c_1	\$/ MWh	40.622	-	-
c_0	\$	0	-	-
c_e	\$/ MWh	-	3.6	-
c_h	\$/ MWh	-	0.06	-

TABLE II ELECTRICAL TRANSMISSION LINES

		l_{12}	l_{14}	l_{23}	l_{24}	l_{36}	l_{45}	l_{56}
\overline{P}_l	MW	200	250	250	200	250	250	250
X	p.u.	0.17	0.0586	0.1	0.072	0.0625	0.16	0.085

TABLE III DISTRICT HEATING PIPES

		$p_{12,24,46}$	p_{23}	$p_{45,47}$
L_p	m	800	600	500
D_p	m	0.8	0.8	0.8
λ	W/m°C	0.2	0.2	0.2
$ u_p$	$m \times 10^{-3}$	0.045	0.045	0.045
K_p	$1/[m \times kg]$	0.0233	0.0175	0.0146
$\underline{m}_p^S, \underline{m}_p^R$	kg/s	300	300	300
$\overline{m}_p^S, \overline{m}_p^R$	kg/s	700	700	700
\overline{T}_p^R	°C	45	45	45
\underline{T}_{n}^{R}	$^{\circ}\mathrm{C}$	25	25	25
$\frac{\underline{T}_p^R}{\overline{T}_p^S}$	°C	65	65	65
\underline{T}_{p}^{S}	°C	50	50	50

TABLE IV DISTRICT HEATING NETWORK PARAMETERS

		$N_{1,2,4,6}$	$N_3(L)$	$N_5(L)$	$N_7(L)$
\underline{m}_l^{HL}	kg/s	-	300	300	300
\overline{m}_l^{HL}	kg/s	-	700	700	700
H_l^L	MW	-	45	40	50
\underline{T}_n^S	°C	50	50	50	50
$\frac{T_n^S}{\overline{T}_n^S}$	°C	65	65	65	65
$\frac{T_n^R}{\overline{T}_n^R}$	$^{\circ}\mathrm{C}$	25	25	25	25
\overline{T}_n^R	°C	45	45	45	45
$\underline{pr}_{n}^{S}, \underline{pr}_{n}^{R}$	kPa	0	0	0	0
$\overline{pr}_{n}^{S}, \overline{pr}_{n}^{R}$	kPa	30000	30000	30000	30000
\underline{pr}_{l}^{HL}	kPa	=	50	50	50