Операционные Системы Прерывания

Прерывания

- Прерывание это событие, которое заставляет процессор прервать текущую задачу и вызвать специальный обработчик
 - внешнее устройство требует внимания;
 - произошла ошибка при выполнении инструкции;
 - специальная инструкция.

Асинхронные прерывания

- Прерывания могут происходить асинхронно
 - т. е. код не готов к тому, что его прервут
 - ▶ т. е. обработчик прерывания ответственен за сохранение состояния прерванной задачи.

Обработчики прерываний

- Откуда берутся обработчики прерываний?
 - часть ядра ОС;
 - ОС сообщает процессору, какой обработчик вызывать в какой ситуации.

Вызов обработчика прерывания

SS	RSP + 40		
RSP	RSP + 32	SS	RSP + 32
RFLAGS	RSP + 24	RSP	RSP + 24
CS	RSP + 16	RFLAGS	RSP + 16
RIP	RSP + 8	CS	RSP + 8
Error Code	RSP + 0	RIP	RSP + 0

Error Code

- Некоторые прерывания соответствуют ошибочным ситуациям
 - ▶ для некоторых из них на стек сохраняется Error Code.
- ► Error Code *иногда* содержит полезную для обработки ошибки информацию
 - а иногда он просто содержит 0.

Завершение обработчика прерывания

- ▶ Обработчик прерывания обычно завершается инструкцией iretq
 - для прерываний, сохраняющих Error Code, его необходимо удалить со стека.

Тело обработчика прерывания

- В общем случае зависит от прерывания
 - например, прерывания от сетевой карты и от таймера требуют разной обработки;
- Общая часть сохранение состояния прерванной задачи:
 - RIP и RFLAGS не достаточно;
 - как минимум, нужно сохранить регистры общего назначения.

Таблица дескрипторов прерываний

- ▶ IDT указывает, каким прерываниям какие обработчики соответствуют
 - специальный регистр IDTR хранит адрес этой таблицы;
 - ▶ инструкции LIDT и SIDT позволяют записать/прочитать регистр IDTR.

Дескриптор IDT

	14
	12
Offset [63:48]	10
Offset [47:32]	8
Offset [31:16]	6
15 14 13 11 8 2 0 PDPL TYPE IST	4
Segment Selector	2
Offset [15:0]	0

Таблица дескрипторов прерываний

- ▶ IDT может содержать максимум 256 записей
 - т. е. каждое ядро может обрабатывать 256 различных прерываний;
 - первые 32 из 256 зарезервированы под специальные нужды;
 - чему соответствуют оставшиеся 224?

Прерывания от внешних устройств

- ▶ Какое устройство какую запись в IDT использует?
 - может определяться настройкой устройства;
 - может определяться настройкой контроллера прерываний.

Контроллер прерываний

- Контроллер прерываний посредник между устройствами и процессором
 - устройства сигналят контроллеру, контроллер сигналит процессору
 - задача контроллера арбитраж (порядок обработки прерываний).
- Примеры контроллеров:
 - ► PIC (Programmable Interrupt Controller) (Intel 8259);
 - ► APIC (Advanced PIC)(Local APIC + IO APIC).

Запрет прерываний

- Зачем запрещать прерывания?
 - задача работает с данными, к которым обращается обработчик.
- Какие прерывания можно запрещать?
 - нельзя запрещать исключения (прерывания из-за ошибок).

Запрет прерываний

- Мы можем попросить устройство не генерировать прерывания
 - если мы знаем, какие прерывания могут привести к проблемам;
 - если устройство позволяет.
- Отключить прерывание на контроллере прерываний.

Запрет прерываний

- ▶ Отключить прерывание на процессоре
 - х86 регистр RFLAGS содержит флаг IF;
 - инструкция cli очищает флаг запрещает прерывания;
 - ▶ инструкция sti устанавливает флаг.