مروری اجمالی بر الگوریتم های داده کاوی و پارامترهای مرتبط با آنها موجود در SSAS

نویسنده: محمد رجبی

عنوان:

تاریخ: ۲۱/۹۰۳/۳۹۳۱ ۱۳:۱۹

آدرس: www.dotnettips.info

گروهها: Analysis Services, data mining, Microsoft SQL Server

این بخش مروری اجمالی بر الگوریتههای موجود در Analysis Services و پارامترهای قابل تنظیم و مقدار پیش فرض هر پارامتر میباشد، به منظور بررسی بیشتر هر یک به لینکهای زیر مراجعه کنید:

Data Mining Algorithms (Analysis Services - Data Mining (Algorithm Parameters (SQL Server Data Mining Add-ins)

Microsoft Association Rules - 1

به منظور ایجاد قوانینی که توصیف کننده این موضوع باشد که چه مواردی احتمالاً با یکدیگر در تراکنشها ظاهر میشوند، استفاده میشود.

Parameter	Default	Range
MAXIMUM_ITEMSET_COUNT	200000	(,1]
MAXIMUM ITEMSET SIZE	3	[0,500]
MAXIMUM SUPPORT	1.0	(,0.0)
MINIMUM IMPORTANCE	999999999 -	(,)
MINIMUM ITEMSET SIZE	1	[1,500]
MINIMUM PROBABILITY	0.4	[0.0,1.0]
MINIMUM SUPPORT	0.0	(,0.0]

Microsoft Clustering - 2

به منظور شناسائی روابطی که در یک مجموعه داده ممکن است از طریق مشاهده منطقی به نظر نرسد، استفاده میشود. در واقع این الگوریتم با استفاده از تکنیکهای تکرار شونده رکوردها را در خوشه هایی که حاوی ویژگیهای مشابه هستند گروه بندی میکند.

Parameter	Default	Range
CLUSTER COUNT	10	(,0]
CLUSTER SEED	0	(,0]
CLUSTERING METHOD	1	1,2,3,4
MAXIMUM_INPUT_ATTRIBUTES	255	[0,65535]
MAXIMUM STATES	100	[2,65535],0
MINIMUM SUPPORT	1	(,0)
MODELLING_CARDINALITY	10	[1,50]
SAMPLE SIZE	50000	(,100], 0
STOPPING TOLERANCE	10	(,0)

Microsoft Decision Trees - 3

مبتنی بر روابط بین ستونهای یک مجموعه داده ای باعث پیش بینی روابط مدلها میشود، که به صورت یک سری درختوار ویژگیها در آن شکسته میشوند.

به منظور انجام پیش بینی از هر دو ویژگی پیوسته و گسسته پشتیبانی میشود.

Parameter	Default	Range
COMPLEXITY_PENALTY		(0.0,1.0)
FORCE REGRESSOR		
MAXIMUM_INPUT_ATTRIBUTES	255	[0,65535]
MAXIMUM_OUTPUT_ATTRIBUTES	255	[0,65535]
MINIMUM SUPPORT	10.0	(,0.0)
SCORE METHOD	4	1,3,4
SPLIT METHOD	3	[1,3]

Microsoft Linear Regression - 4

چنانچه یک وابستگی خطی میان متغیر هدف و متغیرهای مورد بررسی وجود داشته باشد، کارآمدترین رابطه میان متغیر هدف و ورودیها را پیدا میکند.

به منظور انجام پیش بینی از ویژگی پیوسته پشتیبانی میکند.

Parameter FORCE REGRESSOR	Default	Range
MAXIMUM_INPUT_ATTRIBUTES	255	[0,65535]
MAXIMUM OUTPUT ATTRIBUTES	255	[0,65535]

Microsoft Logistic Regression - 5

به منظور تجزیه و تحلیل عواملی که در یک تصمیم گیری مشارکت دارند که پی آمد آن به وقوع یا عدم وقوع یک رویداد میانجامد از این الگوریتم استفاده میشود.

جهت انجام پیش بینی از هر دو ویژگی پیوسته و گسسته پشتیبانی میکند.

Parameter	Default	Range
HOLDOUT_PERCENTAGE	30	(0,100)
HOLDOUT SEED	0	(,)
MAXIMUM_INPUT_ATTRIBUTES	255	[0,65535]
MAXIMUM_OUTPUT_ATTRIBUTES	255	[0,65535]
MAXIMUM STATES	100	[2,65535], 0
SAMPLE SIZE	10000	(,0]

Microsoft Naïve Bayes - 6

احتمال ارتباط میان تمامی ستونهای ورودی و ستونهای قابل پیش بینی را پیدا میکند. همچنین این الگوریتم برای تولید سریع مدل کاوش به منظور کشف ارتباطات بسیار سودمند میباشد. تنها از ویژگیهای گسسته یا گسسته شده پشتیبانی میکند و با تمامی ویژگیهای ورودی به شکل مستقل رفتار میکند.

Parameter	Default	Range
MAXIMUM_INPUT_ATTRIBUTES	255	[0,65535]
MAXIMUM_OUTPUT_ATTRIBUTES	255	[0,65535]
MAXIMUM STATES	100	[2,65535], 0
MINIMUM DEPENDENCY PROBABILITY	0.5	(0,1)

Microsoft Neural Network - 7

به منظور تجزیه و تحلیل دادههای ورودی پیچیده یا مسائل بیزنسی که برای آنها مقدار قابل توجهی داده آموزشی در دسترس میباشد اما به آسانی نمیتوان با استفاده از الگوریتمهای دیگر این قوانین را بدست آورد، استفاده میشود. با استفاده از این الگوریتم میتوان چندین ویژگی را پیش بینی نمود. همچنین این الگوریتم میتواند به منظور طبقه بندی برای ویژگیهای گسسته و ویژگیهای پیوسته رگرسیون مورد استفاده قرار گیرد.

Parameter	Default	Range
HIDDEN_NODE_RATIO	4.0	(,0]
HOLDOUT PERCENTAGE	30	(0,100)
HOLDOUT SEED	0	(,)
MAXIMUM_INPUT_ATTRIBUTES	255	[0,65535]
MAXIMUM_OUTPUT_ATTRIBUTES	255	[0,65535]
MAXIMUM STATES	100	[2,65535], 0
SAMPLE SIZE	10000	(,0]

Microsoft Sequence Clustering - 8

به منظور شناسائی ترتیب رخدادهای مشابه در یک دنباله استفاده میشود. در واقع این الگوریتم ترکیبی از تجزیه تحلیل توالی و خوشه را فراهم میکند.

Parameter	Default	Range
CLUSTER COUNT	10	(,0]
MAXIMUM SEQUENCE STATES	64	[2,65535], 0
MAXIMUM STATES	100	[2,65535], 0
MINIMUM SUPPORT	10	(,0]

Microsoft Time Series - 9

به منظور تجزیه و تحلیل دادههای زمانی (دادههای مرتبط با زمان) در یک درخت تصمیم گیری خطی استفاده میشود. الگوهای کشف شده میتوانند به منظور پیش بینی مقادیر آینده در سریهای زمانی استفاده شوند.

Parameter	Default	Range
AUTO_DETECT_PERIODICITY	0.6	[0.0,1.0]
COMPLEXITY_PENALTY	0.1	(1.0,)
FORECAST METHOD	MIXED	ARIMA,ARTXP,MIXED

مروری اجمالی بر الگوریتم های داده کاوی و پارامترهای مرتبط با آنها موجود در SSAS

Parameter	Default	Range
HISTORIC_MODEL_COUNT	1	[0,100]
HISTORIC_MODEL_GAP	10	(,1]
INSTABILITY_SENSITIVITY	1.0	[0.0,1.0]
MAXIMUM_SERIES_VALUE	1E308 +	[,column maximum]
MINIMUM_SERIES_VALUE	1E308 -	[column minimum,]
MINIMUM SUPPORT	10	(,1]
MISSING VALUE SUBSTITUTION	None	None,Previous,Mean
PERIODICITY HINT	{1}	{list of integers}
PREDICTION SMOOTHING	0.5	[0.0,1.0]