Master Thesis Notes

Xiangwen Guan From 15 April to 22 April

Contents

Monday, 15 Apr	1
Tuesday, 16 Apr	2
Thursday, 18 Apr	5
Friday, 19 Apr	8
Saturday, 20 Apr	10
Monday, 22 Apr	10

Mon, Apr 15

background matrices configuration A_{μ} appears in the model only through \mathfrak{A}_{μ} . A_{μ} are $N \times N$ Hermitian; \mathfrak{A}_{μ} are $N^2 \times N^2$ Hermitian, also antisymmetric. Consider the Cartan directions

$$H \equiv \sum_{\mathfrak{a} \in \mathsf{Cart.}} H_{\mathfrak{a}} T^{\mathfrak{a}},$$
 .

- 1. If A_{μ} are diagonal (along the Cartan directions), then $\mathfrak{A}_{\mu}H=0$ because Cartan directions commute.
- 2. For any A_{μ} , $\mathfrak{A}_{\mu}H$ has no component along the Cartan directions, but has components along the off-diagonal directions.
- 3. Diagonal A_{μ} gives zero modes, but can be lift by including non-diagonal elements.
- 4. U(N) transformation can diagonalize one of A_{μ} , thus generates zero modes along certain spacetime direction.

Extremal configuration:

$$[A^{\mu}, [A_{\mu}, A_{\nu}]] = 0 \tag{1}$$

Or

$$\sum_{\mathfrak{b}} (\mathfrak{A}^{\mu}\mathfrak{A}_{\mu})^{\mathfrak{a}\mathfrak{b}} (A_{\nu})_{\mathfrak{b}} = 0.$$

Note: A_μ along the zero direction of $\mathfrak{A}^\mu\mathfrak{A}_\mu.$ Or

$$([\mathcal{A}^{\mu},F_{\mu\nu}])^{\mathfrak{a}}=\sum_{\mathfrak{b}}(\mathfrak{A}^{\mu})^{\mathfrak{a}\mathfrak{b}}(F_{\mu\nu})_{\mathfrak{b}}=-\sum_{\mathfrak{b}}(\mathfrak{F}_{\mu\nu})^{\mathfrak{a}\mathfrak{b}}(\mathcal{A}^{\mu})_{\mathfrak{b}}=0.$$

The existence of zero modes is quite general. The e.o.m. (1) is U(N) invariant.

"RG directions" in the background Decomposition

$$A \stackrel{\text{background}}{\rightarrow} A + A \stackrel{\text{RG}}{\rightarrow} A + (A_1 + A_2).$$

 \mathcal{A}_1 is effectively the $(N-1) \times (N-1)$ Hermitian; \mathcal{A}_2 is the integrated-out part.

The Gaussian term, assume diagonal A_{μ} (ignore zero modes temporarily)

$$\begin{split} \mathcal{A}_{\mu\mathfrak{a}}(\mathfrak{A}^2)^{\mathfrak{a}\mathfrak{b}}\eta^{\mu\nu}\mathcal{A}_{\nu\mathfrak{b}} &\to \mathcal{A}_{\mu\mathfrak{a}}(\mathfrak{A}^2)^{\mathfrak{a}\mathfrak{b}}\eta^{\mu\nu}\mathcal{A}_{\nu\mathfrak{b}} + \alpha_{\mu\mathfrak{a}'}(\mathfrak{A}^2)^{\mathfrak{a}'\mathfrak{b}'}\eta^{\mu\nu}\alpha_{\nu\mathfrak{b}'}.\\ \mathfrak{a}',\mathfrak{b}' &\in \{(\textit{N},\textit{i}),[\textit{N},\textit{i}]|\textit{i}=1,\cdots,\textit{N}-1\}.\\ \mathfrak{A}_{\mu}\alpha_{\nu} &= \sum_{\mathfrak{a}',\mathfrak{b}'}(\mathfrak{A}_{\mu})_{\mathfrak{a}'}{}^{\mathfrak{b}'}\alpha_{\nu\mathfrak{b}'}\mathcal{T}^{\mathfrak{a}'}. \end{split}$$

The interaction terms, cubic part

$$-\frac{\alpha}{4} \operatorname{Tr}[A_{\mu}, A_{\nu}][A^{\mu}, A^{\nu}] \to -\alpha \operatorname{Tr}\left(\mathfrak{A}_{[\mu} \mathcal{A}_{\nu]}[A^{\mu}, A^{\nu}]\right) \tag{2}$$

The direction of A: \mathfrak{a}' or \mathfrak{a} . Commutators, schematically

$$[\mathfrak{a}',\mathfrak{a}'] \in \mathfrak{a}, \quad [\mathfrak{a},\mathfrak{a}] \in \mathfrak{a}, \quad [\mathfrak{a}',\mathfrak{a}] \in \mathfrak{a}'.$$

Diagonal A: \mathfrak{A} keeps the separation $\mathfrak{a}' \to \mathfrak{a}'$, $\mathfrak{a} \to \mathfrak{a}$.

Separate the RG direction

$$\begin{split} -\alpha \mathrm{Tr} \left(\mathfrak{A}_{[\mu} \mathcal{A}_{\nu]} [\mathcal{A}^{\mu}, \mathcal{A}^{\nu}] \right) &\rightarrow -\alpha \mathrm{Tr} \left(\mathfrak{A}_{[\mu} \mathcal{A}_{\nu]} [\mathcal{A}^{\mu}, \mathcal{A}^{\nu}] \right) \\ -2\alpha \mathrm{Tr} \left(\mathfrak{A}_{[\mu} \alpha_{\nu]} [\alpha^{\mu}, \mathcal{A}^{\nu}] \right) &-\alpha \mathrm{Tr} \left(\mathfrak{A}_{[\mu} \mathcal{A}_{\nu]} [\alpha^{\mu}, \alpha^{\nu}] \right) \end{split}$$

Indicies notation

$$-\alpha \mathrm{Tr}\left(\mathfrak{A}_{[\mu}\mathcal{A}_{\nu]}[\alpha^{\mu},\alpha^{\nu}]\right) = -\alpha \sum_{\mathfrak{a}',\mathfrak{b}',\mathfrak{c},\mathfrak{d}} \mathrm{Tr}(\mathcal{T}^{\mathfrak{c}}[\mathcal{T}^{\mathfrak{a}'},\mathcal{T}^{\mathfrak{b}'}]) \mathfrak{A}_{[\mu|\mathfrak{c}|}{}^{\mathfrak{d}}\mathcal{A}_{\nu]\mathfrak{d}}\alpha^{\mu}_{\mathfrak{a}'}\alpha^{\nu}_{\mathfrak{b}'}$$

$$-2\alpha \mathrm{Tr}\left(\mathfrak{A}_{[\mu}\alpha_{\nu]}[\alpha^{\mu},\mathcal{A}^{\nu}]\right) = -2\alpha \sum_{\mathfrak{a}',\mathfrak{b}',\mathfrak{c},\mathfrak{d}'} \mathrm{Tr}(\mathcal{T}^{\mathfrak{a}'}[\mathcal{T}^{\mathfrak{b}'},\mathcal{T}^{\mathfrak{c}}]) \mathfrak{A}_{[\mu|\mathfrak{a}'|}{}^{\mathfrak{d}'}\alpha_{\nu]\mathfrak{d}'}\alpha_{\mathfrak{b}'}^{\mu}\mathcal{A}_{\mathfrak{c}}^{\nu}$$

Some infomation: A diagonal $\to \mathfrak{A}$ has "almost diagonal" structure: (N,i),[N,j]-elements only for i=j. Trace of T depends on the choice of normalization. In both traces, if $\mathfrak{a}',\mathfrak{b}'$ in the same 2×2 block: $i=j,\mathfrak{c}$ must be the Cartan directions (i,i) or (N,N). We ignore the fluctuation along those directions?

The quartic interaction...

Tue, Apr 16

quartic interaction Schematically

$$\begin{split} &-\frac{\alpha}{4}\mathsf{Tr}[A_{\mu},A_{\nu}][A^{\mu},A^{\nu}]\to\mathsf{Tr}[\mathfrak{a},\mathfrak{a}][\mathfrak{a},\mathfrak{a}]\\ +&\mathsf{Tr}[\mathfrak{a}',\mathfrak{a}'][\mathfrak{a},\mathfrak{a}]+\mathsf{Tr}[\mathfrak{a}',\mathfrak{a}'][\mathfrak{a}',\mathfrak{a}]+\mathsf{Tr}[\mathfrak{a}',\mathfrak{a}'][\mathfrak{a}',\mathfrak{a}'] \end{split}$$

the quartic interaction terms

$$\begin{split} &-\frac{\alpha}{4} \text{Tr}[\mathcal{A}_{\mu},\mathcal{A}_{\nu}][\mathcal{A}^{\mu},\mathcal{A}^{\nu}] - \frac{\alpha}{4} \text{Tr}[\alpha_{\mu},\alpha_{\nu}][\alpha^{\mu},\alpha^{\nu}] \\ &-\frac{\alpha}{2} \text{Tr}[\alpha_{\mu},\alpha_{\nu}][\mathcal{A}^{\mu},\mathcal{A}^{\nu}] - \frac{\alpha}{2} \text{Tr}\left([\alpha_{\mu},\mathcal{A}_{\nu}][\alpha^{\mu},\mathcal{A}^{\nu}] + [\alpha_{\mu},\mathcal{A}_{\nu}][\mathcal{A}^{\mu},\alpha^{\nu}]\right) \end{split}$$

 $\mathfrak{u}(N)$ index \mathfrak{a} , \mathfrak{a}' structure:

$$\begin{split} \operatorname{Tr}([T^{\mathfrak{a}'},T^{\mathfrak{b}'}][T^{\mathfrak{a}},T^{\mathfrak{b}}]), & \operatorname{Tr}([T^{\mathfrak{a}'},T^{\mathfrak{a}}][T^{\mathfrak{b}'},T^{\mathfrak{b}}]), & \operatorname{Tr}([T^{\mathfrak{a}'},T^{\mathfrak{b}'}][T^{\mathfrak{c}'},T^{\mathfrak{d}'}]). \\ -\frac{\alpha}{2}\operatorname{Tr}[\alpha_{\mu},\alpha_{\nu}][\mathcal{A}^{\mu},\mathcal{A}^{\nu}] &= -\frac{\alpha}{2}\operatorname{Tr}([T^{\mathfrak{a}'},T^{\mathfrak{b}'}][T^{\mathfrak{a}},T^{\mathfrak{b}}])\alpha_{\mu\mathfrak{a}'}\alpha_{\nu\mathfrak{b}'}\mathcal{A}^{\mu}_{\mathfrak{a}}\mathcal{A}^{\nu}_{\mathfrak{b}}. \\ & -\frac{\alpha}{2}\operatorname{Tr}([\alpha_{\mu},\mathcal{A}_{\nu}][\alpha^{\mu},\mathcal{A}^{\nu}] + [\alpha_{\mu},\mathcal{A}_{\nu}][\mathcal{A}^{\mu},\alpha^{\nu}]) \\ &= -\frac{\alpha}{2}\operatorname{Tr}([T^{\mathfrak{a}'},T^{\mathfrak{a}}][T^{\mathfrak{b}'},T^{\mathfrak{b}}])\alpha_{\mu\mathfrak{a}'}\alpha_{\nu\mathfrak{b}'}(\eta^{\mu\nu}\mathcal{A}_{\rho\mathfrak{a}}\mathcal{A}^{\rho}_{\mathfrak{b}} + \mathcal{A}^{\nu}_{\mathfrak{a}}\mathcal{A}^{\mu}_{\mathfrak{b}}) \\ & -\frac{\alpha}{4}\operatorname{Tr}[\alpha_{\mu},\alpha_{\nu}][\alpha^{\mu},\alpha^{\nu}] = -\frac{\alpha}{4}\operatorname{Tr}([T^{\mathfrak{a}'},T^{\mathfrak{b}'}][T^{\mathfrak{c}'},T^{\mathfrak{d}'}])\alpha_{\mu\mathfrak{a}'}\alpha_{\nu\mathfrak{b}'}\alpha^{\mu}_{\mathfrak{c}'}\alpha^{\nu}_{\mathfrak{d}'} \end{split}$$

Maybe useful formula:

$$\mathsf{Tr}\left([\mathcal{T}^{\mathfrak{a}'},\mathcal{T}^{\mathfrak{a}'}][\mathcal{T}^{\mathfrak{a}},\mathcal{T}^{b}]\right) = 0.$$

$$\sum_{\mathfrak{a}'} \mathsf{Tr}\left([\mathcal{T}^{\mathfrak{a}'},\mathcal{T}^{\mathfrak{a}}][\mathcal{T}^{\mathfrak{a}'},\mathcal{T}^{b}]\right) \propto \mathsf{Tr}\mathcal{T}^{\mathfrak{a}}\mathcal{T}^{\mathfrak{b}}.$$

what's the coefficient?

susy, Ward identity?, BRST? Formula

$$\begin{split} [\overline{\epsilon}\Gamma_{\mu}\psi,\psi] &= [\overline{\epsilon}_{\alpha}(\Gamma_{\mu})^{\alpha}{}_{\beta}\psi^{\beta},\psi^{\gamma}] = \overline{\epsilon}_{\alpha}\{(\Gamma_{\mu})^{\alpha}{}_{\beta}\psi^{\beta},\psi^{\gamma}\} \\ &+ \{\overline{\epsilon}_{\alpha},\psi^{\gamma}\}(\Gamma_{\mu})^{\alpha}{}_{\beta}\psi^{\beta} \end{split}$$

The last term is zero if $\overline{\epsilon}_{\alpha} \propto \mathbb{1}$.

$$\begin{split} \operatorname{Tr}(\overline{\psi} \Gamma^{\mu} [\overline{\epsilon} \Gamma_{\mu} \psi, \psi]) &= \operatorname{Tr} \bigg(\overline{\psi}_{\delta} (\Gamma^{\mu})^{\delta} \,_{\gamma} [\overline{\epsilon}_{\alpha} (\Gamma_{\mu})^{\alpha} \,_{\beta} \psi^{\beta}, \psi^{\gamma}] \bigg) \\ &= \operatorname{Tr} \bigg(\overline{\psi}_{\delta} (\Gamma^{\mu})^{\delta} \,_{\gamma} \overline{\epsilon}_{\alpha} \{ (\Gamma_{\mu})^{\alpha} \,_{\beta} \psi^{\beta}, \psi^{\gamma} \} - \overline{\psi}_{\delta} (\Gamma^{\mu})^{\delta} \,_{\gamma} \{ \overline{\epsilon}_{\alpha}, \psi^{\gamma} \} (\Gamma_{\mu})^{\alpha} \,_{\beta} \psi^{\beta} \bigg) \\ &= - \operatorname{Tr} \bigg(\overline{\epsilon}_{\alpha} \big\{ (\Gamma_{\mu})^{\alpha} \,_{\beta} \psi^{\beta}, (\Gamma^{\mu})^{\delta} \,_{\gamma} \psi^{\gamma} \big\} \overline{\psi}_{\delta} - \big\{ \overline{\epsilon}_{\alpha}, (\Gamma^{\mu})^{\delta} \,_{\gamma} \psi^{\gamma} \big\} (\Gamma_{\mu})^{\alpha} \,_{\beta} \psi^{\beta} \overline{\psi}_{\delta} \bigg) \end{split}$$

The first term

$$-\mathrm{Tr}\bigg(\overline{\epsilon}_{\alpha}\big\{(\Gamma_{\mu})^{\alpha}{}_{\beta}\psi^{\beta},(\Gamma^{\mu})^{\delta}{}_{\gamma}\psi^{\gamma}\big\}\overline{\psi}_{\delta}\bigg) = -\mathrm{Tr}\bigg(\epsilon^{\alpha}\big\{(C\Gamma_{\mu})_{\alpha\beta}\psi^{\beta},(C\Gamma^{\mu})_{\delta\gamma}\psi^{\gamma}\big\}\psi^{\delta}\bigg)$$

The last term

$$\operatorname{Tr} \left(\left\{ \overline{\epsilon}_{\alpha}, (\Gamma^{\mu})^{\delta}_{\ \ \gamma} \psi^{\gamma} \right\} (\Gamma_{\mu})^{\alpha}_{\ \ \beta} \psi^{\beta} \overline{\psi}_{\delta} \right) = \operatorname{Tr} \left(\epsilon^{\alpha} \left[(C \Gamma^{\mu})_{\delta \gamma} \psi^{\gamma}, (C \Gamma_{\mu})_{\alpha \beta} \psi^{\beta} \psi^{\delta} \right] \right)$$

Add them to get

$$\operatorname{Tr}(\overline{\psi}\Gamma^{\mu}[\overline{\epsilon}\Gamma_{\mu}\psi,\psi]) = -2(C\Gamma_{\mu})_{\alpha\beta}(C\Gamma^{\mu})_{\delta\gamma}\operatorname{Tr}(\epsilon^{\alpha}\psi^{\beta}\psi^{\delta}\psi^{\gamma})$$

Vanishes if $\epsilon \propto 1$. Non-vanishing part

$$\begin{split} & 3 \text{Tr}(\epsilon^{\alpha} \psi^{\beta} \psi^{\delta} \psi^{\gamma}) = \text{Tr}(\epsilon^{\alpha} \psi^{\beta} \psi^{\delta} \psi^{\gamma}) + (\text{cyclic } \beta, \delta, \gamma). \\ & + \text{Tr}(\{\epsilon^{\alpha}, \psi^{\beta}\} \psi^{(\delta} \psi^{\gamma)}) - \text{Tr}(\{\epsilon^{\alpha}, \psi^{(\gamma}\} \psi^{|\beta|} \psi^{\delta)}). \end{split}$$

First part vanishes, second part is symmetrized for (γ, δ) .

Γ-matrix
$$(\Gamma_{\mu})^{\alpha}{}_{\beta}$$
: $(C\Gamma_{\mu})_{\alpha\beta} = C_{\alpha\gamma}(\Gamma_{\mu})^{\gamma}{}_{\beta}$. Spinor product: $\overline{\psi}_{\alpha}(\Gamma_{\mu})^{\alpha}{}_{\beta}\psi^{\beta}$
$$= \psi^{\alpha}(C\Gamma_{\mu})_{\alpha\beta}\psi^{\beta}.$$

 $(C\Gamma_{\mu})_{\alpha\beta}$ is symmetric. In our case:

$$(C\Gamma_{\mu})_{\alpha\beta}(C\Gamma^{\mu})_{\gamma\delta} + (C\Gamma_{\mu})_{\alpha\gamma}(C\Gamma^{\mu})_{\delta\beta} + (C\Gamma_{\mu})_{\alpha\delta}(C\Gamma^{\mu})_{\beta\gamma} = 0$$

Check by looking at the explicit $C\Gamma^{\mu}$ in MW basis. Procedure: fix γ, δ (MW directions). Only one μ is non-zero (remarkable). Choose another two directions α, β with that μ . Then two vector directions μ, ν in the formula. Locate the matrix elements.

Understand the property of $\Gamma^{\mu} \otimes \Gamma_{\mu}$...

The susy transformation of $Tr[A_{\mu}, A_{\nu}][A^{\mu}, A^{\nu}]$, consider

$$\operatorname{Tr}[\overline{\epsilon}\Gamma_{\mu}\psi,A_{\nu}][A^{\mu},A^{\nu}]=\operatorname{Tr}\epsilon^{\alpha}(C\Gamma_{\mu})_{\alpha\beta}\psi^{\beta}[A_{\nu},[A^{\mu},A^{\nu}]].$$

Susy vary ψ in $\operatorname{Tr} \overline{\psi} \Gamma^{\mu} [A_{\mu}, \psi]$

$$\begin{split} \operatorname{Tr}(\psi^{\alpha}(C\Gamma^{\mu})_{\alpha\beta}[A_{\mu},\psi^{\beta}]) &\to \operatorname{Tr}\left([A_{\mu},A_{\nu}](\Gamma^{\mu\nu})^{\gamma}_{\alpha}\epsilon^{\alpha}(C\Gamma^{\rho})_{\gamma\beta}[A_{\rho},\psi^{\beta}]\right) \\ &+ \operatorname{Tr}(\psi^{\beta}(C\Gamma^{\rho})_{\beta\gamma}[A_{\rho},[A_{\mu},A_{\nu}](\Gamma^{\mu\nu})^{\gamma}_{\alpha}\epsilon^{\alpha}]) \\ &= 2(C\Gamma^{\rho})_{\beta\gamma}(\Gamma^{\mu\nu})^{\gamma}_{\alpha}\operatorname{Tr}(\epsilon^{\alpha}[A_{\rho},\psi^{\beta}][A_{\mu},A_{\nu}]) \\ &= 2(C\Gamma^{\rho}\Gamma^{\mu\nu})_{\beta\alpha}\operatorname{Tr}(\epsilon^{\alpha}[A_{\rho},\psi^{\beta}][A_{\mu},A_{\nu}]) \end{split}$$

$$2(C\Gamma^{\rho}\Gamma^{\mu\nu})_{\beta\alpha}\operatorname{Tr}(\epsilon^{\alpha}[A_{\rho},\psi^{\beta}][A_{\mu},A_{\nu}]) = \left[2(C\Gamma^{\mu\nu\rho})_{\beta\alpha} + 4\eta^{\rho[\mu}(C\Gamma^{\nu]})_{\beta\alpha}\right] \cdot \left[\operatorname{Tr}(\epsilon^{\alpha}[A_{\rho},\psi^{\beta}[A_{\mu},A_{\nu}]]) + \operatorname{Tr}(\epsilon^{\alpha}\psi^{\beta}[A_{\rho},[A_{\nu},A_{\mu}]])\right]$$

Use the Jacobi identity

$$[A_{\rho}, [A_{\mu}, A_{\nu}]] + (\text{cyclic } \rho, \mu \nu) = 0$$

to prove

$$(C\Gamma^{\mu\nu\rho})\operatorname{Tr}(\cdots[A_{\rho},[A_{\nu},A_{\mu}]])=0.$$

The last term

$$4\eta^{\rho[\mu}(C\Gamma^{\nu]})_{\beta\alpha}\mathrm{Tr}(\epsilon^{\alpha}\psi^{\beta}[A_{\rho},[A_{\nu},A_{\mu}]])$$

will cancel with $\text{Tr}[\bar{\epsilon}\Gamma_{\mu}\psi, A_{\nu}][A^{\mu}, A^{\nu}].$

Left with (vanish when $\epsilon \propto 1$)

$$\left[2(C\Gamma^{\mu\nu\rho})_{\beta\alpha}+4\eta^{\rho[\mu}(C\Gamma^{\nu]})_{\beta\alpha}\right]\cdot\mathsf{Tr}(\epsilon^{\alpha}[A_{\rho},\psi^{\beta}[A_{\mu},A_{\nu}]]).$$

...

Thu, Apr 18

Gaussian with interaction Canonical generator basis (Apr. 10). $\mathfrak{a}=(k,l), [k,l]$ or (k,k). Fix k < l. $\mathfrak{a}'=(k,N), [k,N], k=1,\cdots,N-1$. Normalize such that $\mathrm{Tr} T^{\mathfrak{a}} T^{\mathfrak{b}} = \delta^{\mathfrak{a}\mathfrak{b}}$.

$$\sum_{\mathfrak{a}'} (\mathcal{T}^{\mathfrak{a}'})_{iN} (\mathcal{T}^{\mathfrak{a}'})_{Nj} = \delta_{ij}.$$

 $\mathfrak{a}'=(i,N),[i,N]$ contributes to the sum. Gaussian from bosonic action (Apr. 10)

$$\frac{\alpha}{2} \left[\mathcal{A}_{\mu} (\mathfrak{A}^2 \eta^{\mu\nu} + \mathfrak{A}^{\mu} \mathfrak{A}^{\nu} - 2 \mathfrak{F}^{\mu\nu}) \mathcal{A}_{\nu} \right].$$

The simplest case $\mathfrak{F}=0$ because [A,A]=0. \mathfrak{A}^2 is diagonal because A is diagonal. Consider $A\oplus a$, a is a number, the (N,N) matrix element; A is a general $(N-1)\times (N-1)$ matrix. Calculate the adjoint

$$\mathfrak{A} = \sum_{\mathfrak{c}} (A \oplus a)_{\mathfrak{c}} \mathsf{Tr}(\mathcal{T}^{\mathfrak{a}}[\mathcal{T}^{\mathfrak{c}}, \mathcal{T}^{\mathfrak{b}}]).$$

 $\mathfrak{c} \in \{(N, N), (i, i), (k, l), [k, l]\}$. First consider $\mathfrak{c} = (N, N)$. This contributes to the matrix element $(\mathfrak{a} = (i, N), \mathfrak{b} = [i, N])$ or $(\mathfrak{a} = [i, N], \mathfrak{b} = (i, N))$.

$$[T^{(N,N)}, T^{(i,N)}] = iT^{[i,N]}, \quad [T^{(N,N)}, T^{[i,N]}] = -iT^{(i,N)}$$

 $\mathfrak{c} = (N, N), (i, i)$ will generate the matrix element

$$(\mathfrak{A})_{(i,N),[i,N]} = -(\mathfrak{A})_{[i,N],(i,N)} = i(a - A_{ii}).$$

There are matrix elements between different (i, N), (j, N) (also (i, N), [j, N] and [i, N], [j, N])

$$(\mathfrak{A})_{(i,N),(j,N)} = \sum_{\mathfrak{c}} A_{\mathfrak{c}} \mathsf{Tr}(T^{(i,N)}[T^{\mathfrak{c}},T^{(j,N)}]) = \frac{i}{\sqrt{2}} A_{[i,j]}.$$

$$(\mathfrak{A})_{(i,N),[j,N]} = \sum_{\mathfrak{c}} A_{\mathfrak{c}} \operatorname{Tr}(\mathcal{T}^{(i,N)}[\mathcal{T}^{\mathfrak{c}},\mathcal{T}^{[j,N]}]) = \frac{i}{\sqrt{2}} A_{(i,j)}.$$

$$(\mathfrak{A})_{[i,N],[j,N]} = \sum_{\mathfrak{c}} A_{\mathfrak{c}} \operatorname{Tr}(T^{[i,N]}[T^{\mathfrak{c}},T^{[j,N]}]) = \frac{i}{\sqrt{2}} A_{[i,j]}.$$

The matrix elements ((i, j), (i, N)) vanish because $A_{[j,N]} = 0$.

The matrix elements of \mathfrak{A} :

square

	(i, N)	[i, N]	(j, N)	[j, N]
(i, N)	0	$i(a-A_{ii})$	$\frac{i}{\sqrt{2}}A_{[ij]}$	$\frac{i}{\sqrt{2}}A_{(ij)}$
[i, N]	$-i(a-A_{ii})$	0	$-\frac{i}{\sqrt{2}}A_{(ij)}$	$\frac{i}{\sqrt{2}}A_{[ij]}$
(j, N)	$-\frac{i}{\sqrt{2}}A_{[ij]}$	$\frac{i}{\sqrt{2}}A_{(ij)}$	0	$i(a-A_{jj})$
[j, N]	$-\frac{i}{\sqrt{2}}A_{(ij)}$	$-\frac{i}{\sqrt{2}}A_{[ij]}$	$-i(a-A_{jj})$	0

	(i, N)	[i, N]	(j, N)	[<i>j</i> , N]
(i, N)	$(a - A_{ii})^2$	0	?	?
[i, N]	0	$(a-A_{ii})^2$?	?
(j, N)	?	?	$(a-A_{jj})^2$	0
[j, N]	?	?	0	$(a-A_{jj})^2$

The simplest approximation $a-A_{ii}\approx a-A_{jj}\equiv d$, $A_{(ij)}\approx 0$, $A_{[ij]}\approx 0$ (classical background). The Gaussian from bosonic action for $\alpha_{\mu\alpha'}$

$$\frac{\alpha}{2} \sum_{\mathbf{a}'} \left[\alpha_{\mu \mathbf{a}'} (d^2 \eta^{\mu \nu} + d^{\mu} d^{\nu}) \alpha_{\nu \mathbf{a}'} \right] \tag{3}$$

We ignore d depending on \mathfrak{a}' in the approximation.

Consider the interaction

$$\frac{1}{4}\mathsf{Tr}([\mathcal{T}^{\mathfrak{a}'},\mathcal{T}^{\mathfrak{a}}][\mathcal{T}^{\mathfrak{b}'},\mathcal{T}^{\mathfrak{b}}]) = \sum_{ijkl} \mathcal{T}^{[\mathfrak{a}'}_{ij} \mathcal{T}^{\mathfrak{a}]}_{jk} \mathcal{T}^{[\mathfrak{b}'}_{kl} \mathcal{T}^{\mathfrak{b}]}_{li}.$$

Because one of the index of $T^{\mathfrak{a}'}$ must be N, while no index of $T^{\mathfrak{a}}$ is N, only the following terms non-vanishing

$$-\frac{1}{4}\sum_{iik}\left(T_{iN}^{\mathfrak{a}'}T_{Nj}^{\mathfrak{b}'}T_{ki}^{\mathfrak{a}}T_{jk}^{\mathfrak{b}}+T_{Ni}^{\mathfrak{a}'}T_{ik}^{\mathfrak{a}}T_{kj}^{\mathfrak{b}}T_{jN}^{\mathfrak{b}'}\right).$$

Contraction between \mathfrak{a}' , \mathfrak{b}' gives

$$\sum_{\mathfrak{a}'\mathfrak{b}'} \delta_{\mathfrak{a}',\mathfrak{b}'}(\cdots) = -\frac{1}{2} \mathsf{Tr}(\mathcal{T}^{\mathfrak{a}}\mathcal{T}^{\mathfrak{b}}).$$

This result is applied to

$$\begin{split} &-\frac{\alpha}{2} \mathsf{Tr} \left([\alpha_{\mu}, \mathcal{A}_{\nu}] [\alpha^{\mu}, \mathcal{A}^{\nu}] + [\alpha_{\mu}, \mathcal{A}_{\nu}] [\mathcal{A}^{\mu}, \alpha^{\nu}] \right) \\ &= -\frac{\alpha}{2} \mathsf{Tr} ([\mathcal{T}^{\mathfrak{a}'}, \mathcal{T}^{\mathfrak{a}}] [\mathcal{T}^{\mathfrak{b}'}, \mathcal{T}^{\mathfrak{b}}]) \alpha_{\mu \mathfrak{a}'} \alpha_{\nu \mathfrak{b}'} (\eta^{\mu \nu} \mathcal{A}_{\rho \mathfrak{a}} \mathcal{A}^{\rho}_{\mathfrak{b}} + \mathcal{A}^{\nu}_{\mathfrak{a}} \mathcal{A}^{\mu}_{\mathfrak{b}}). \end{split}$$

Contract α

$$\begin{split} &\alpha \text{Tr}(\mathcal{T}^{\mathfrak{a}}\mathcal{T}^{\mathfrak{b}})(\Delta^{-1})_{\mu\nu}(\eta^{\mu\nu}\mathcal{A}_{\rho\mathfrak{a}}\mathcal{A}^{\rho}_{\mathfrak{b}}+\mathcal{A}^{\nu}_{\mathfrak{a}}\mathcal{A}^{\mu}_{\mathfrak{b}})\\ &=\alpha(\Delta^{-1})_{\mu\nu}\text{Tr}\left(\eta^{\mu\nu}\mathcal{A}_{\rho}\mathcal{A}^{\rho}+\mathcal{A}^{\mu}\mathcal{A}^{\nu}\right). \end{split}$$

 Δ^{-1} is the inverse of $\eta^{\mu\nu}d^2 + d^{\mu}d^{\nu}$.

$$-\frac{\alpha}{2} \operatorname{Tr}\left(\left[\alpha_{\rho}, \mathcal{A}_{\mu}\right]\left[\alpha_{\sigma}, \mathcal{A}_{\nu}\right]\right) \to \alpha(\Delta^{-1})_{\rho\sigma} \operatorname{Tr}\left(\mathcal{A}_{\mu} \mathcal{A}_{\nu}\right) \tag{4}$$

Note. there is no $\mathfrak{A}_{\mathfrak{a}\mathfrak{b}}$ dependence. What is d?

fermionic contribution the action

$$-\frac{\alpha}{2} \text{Tr}(\overline{\psi} \Gamma^{\mu}[A_{\mu}, \psi]) = -\frac{\alpha}{2} \psi_{\mathfrak{a}}^{\alpha} (C \Gamma^{\mu})_{\alpha\beta} (\mathfrak{A}_{\mu})^{\mathfrak{a}\mathfrak{b}} \psi_{\mathfrak{b}}^{\beta}$$

$$\int [d\psi] e^{-\frac{\alpha}{2} \text{Tr}(\overline{\psi} \Gamma^{\mu}[A_{\mu}, \psi])} = \text{Pf}\left(-\frac{\alpha}{2} (C \Gamma^{\mu})_{\alpha\beta} (\mathfrak{A}_{\mu})^{\mathfrak{a}\mathfrak{b}}\right).$$
(5)

The matrix elements are labeled by $(\alpha, \mathfrak{a}), (\beta, \mathfrak{b}).$

The RG setting, background $\mathfrak{A}=\mathfrak{A}_1\oplus\mathfrak{A}_2$, \mathfrak{A}_2 in the directions \mathfrak{a}' , \mathfrak{b}' .

$$\operatorname{Pf}\left(-\frac{\alpha}{2}(C\Gamma^{\mu})_{\alpha\beta}(\mathfrak{A}_{\mu})^{\mathfrak{a}\mathfrak{b}}\right) \approx \operatorname{Pf}\left(-\frac{\alpha}{2}(C\Gamma^{\mu})_{\alpha\beta}(\mathfrak{A}_{1\mu})^{\mathfrak{a}\mathfrak{b}}\right) \operatorname{Pf}\left(-\frac{\alpha}{2}(C\Gamma^{\mu})_{\alpha\beta}(\mathfrak{A}_{2\mu})^{\mathfrak{a}'\mathfrak{b}'}\right)$$

Factorization only works for background, not for fluctuation.

$$\tilde{\mathfrak{A}} = \sum_{\mathfrak{c}} \alpha_{\mathfrak{c}} \mathsf{Tr}(\mathcal{T}^{\mathfrak{a}}[\mathcal{T}^{\mathfrak{c}}, \mathcal{T}^{\mathfrak{b}}])$$

No simple relation between $Pf(A \otimes B)$ and Pf(A), Pf(B).

Write

$$M_{(\alpha,\mathfrak{a}),(\beta,\mathfrak{b})} \equiv (C\Gamma^{\mu})_{\alpha,\beta} \otimes (\mathfrak{A}_{\mu})_{\mathfrak{a},\mathfrak{b}}$$

Use

$$\begin{split} \mathsf{Pf}\left(-\frac{\alpha}{2}M\right) &= \pm \mathsf{exp}\left[\frac{1}{4}\mathsf{Tr}\;\log\left(-\frac{\alpha^2}{4}M^2\right)\right].\\ M &= C\Gamma^{\mu}\otimes(\mathfrak{A}_{1\mu}\oplus\mathfrak{A}_{2\mu}).\\ M^2 &= (C\Gamma^{\mu}C\Gamma^{\nu})\otimes(\mathfrak{A}_{1\mu}\mathfrak{A}_{1\nu}\oplus\mathfrak{A}_{2\mu}\mathfrak{A}_{2\nu}). \end{split}$$

 \mathfrak{A}_2 for the RG directions. Factor out

$$\exp\left[\frac{1}{4}\operatorname{Tr}\;\log\left(-\frac{lpha^2}{4}(C\Gamma^{\mu}\otimes\mathfrak{A}_{2\mu})^2
ight)\right].$$

Background $(\mathfrak{A}_2)^2_{\mathfrak{a}'\mathfrak{b}'}=d^2\delta_{\mathfrak{a}'\mathfrak{b}'}$ (the approximation).

$$(\mathcal{C}\Gamma^{\mu}\otimes\mathfrak{A}_{2\mu})^{2}=\left(\sum_{\mu=2}^{9}(d_{\mu})^{2}
ight)\mathbb{1}\otimes\mathbb{1}+(\cdot\cdot\cdot?).$$

 $\log(-\cdots)$? For simplicity, assume $d_0 = 0$,

$$(C\Gamma^{\mu}\otimes\mathfrak{A}_{2\mu})^{2}=\left(\sum_{\mu=1}^{9}(d_{\mu})^{2}
ight)\mathbb{1}\otimes\mathbb{1}\equiv d^{2}\mathbb{1}.$$

Tr = $16 \cdot 2(N-1)$, for $\mathfrak{a}' \in \{(i, N), [i, N]\}$.

$$\exp\left[\frac{1}{4}\mathrm{Tr}\;\log\left(-\frac{\alpha^2}{4}(C\Gamma^{\mu}\otimes\mathfrak{A}_{2\mu})^2\right)\right] = \left(-\frac{\alpha^2}{4}d^2\right)^{8(N-1)}.$$

Question 1. where is the scaling?

Clarify M

$$M_{(\alpha,\mathfrak{a}),(\beta,\mathfrak{b})} \equiv (C\Gamma^{\mu})_{\alpha,\beta} \otimes (\mathfrak{A}_{\mu})_{\mathfrak{a},\mathfrak{b}}.$$

The inverse of $M: M^{-1}$? Diagonal background

$$\sum_{\mathfrak{c}} (\mathfrak{A}_{\mu})_{\mathfrak{a}\mathfrak{c}} (\mathfrak{A}_{\nu})_{\mathfrak{c}\mathfrak{b}} = \delta_{\mathfrak{a},\mathfrak{b}} d_{\mathfrak{a}\mu} d_{\mathfrak{a}\nu}.$$

Spinor part is not easy, but easy if $d_0 = 0$.

$$\{(C\Gamma^{i}), (C\Gamma^{j})\} = 2\delta^{ij}\mathbb{1}, \quad C\Gamma^{0} = -\mathbb{1}$$
$$\{(C\Gamma^{0}), (C\Gamma^{i})\} = -2(C\Gamma^{i}).$$

Define $\overline{C\Gamma}^{\mu}$

$$\overline{C\Gamma}^0 = -C\Gamma^0$$
, $\overline{C\Gamma}^i = C\Gamma^i$.

Reminiscent of Pauli 4-vector? If $d_0=0$, $M^{-1}\propto M$. $M^{-1}\propto \overline{C\Gamma}^{\mu}\otimes \mathfrak{A}_{\mu}$?

Fri, Apr 19

summarize the ingredients General assumptions: diagonal background A_{μ} ; imagine $(A_{\mu})_{ii}$, $i=1,\cdots,N-1$ are small while $(A_{\mu})_{NN}$ is large:

$$(A_{\mu})_{NN} - (A_{\mu})_{ii} \approx d_{\mu}, \quad (\mathfrak{A}_{\mu})_{\mathfrak{a}'\mathfrak{b}'} \equiv (\mathfrak{A}_{\mu})_{(i,N)[j,N]} = -(\mathfrak{A}_{\mu})_{[j,N](i,N)} = id_{\mu}\delta_{ij}.$$

The idea is just to make the Gaussian term simple.

The bosonic part of IKKT gives

$$\frac{\alpha}{2} \sum_{\mathfrak{a}',\mathfrak{b}'} \alpha_{\mu\mathfrak{a}'} \left[(\mathfrak{A}^{\rho} \mathfrak{A}_{\rho})_{\mathfrak{a}'\mathfrak{b}'} \eta^{\mu\nu} + (\mathfrak{A}^{\mu} \mathfrak{A}^{\nu})_{\mathfrak{a}'\mathfrak{b}'} \right] \alpha_{\nu\mathfrak{b}'} \tag{6}$$

Define the quadratic matrix

$$(\Delta_{\rm B})_{\mathfrak{a}'\mathfrak{b}';\mu\nu} \equiv \frac{\alpha}{2} (d^2 \eta_{\mu\nu} + d_{\mu} d_{\nu}) \delta_{\mathfrak{a}'\mathfrak{b}'} \tag{7}$$

A simplification: gauge fixing

$$\sum_{\mathfrak{b}'} (\mathfrak{A}^{\mu})_{\mathfrak{a}'\mathfrak{b}'} \alpha_{\mu\mathfrak{b}'} = 0, \quad \delta_t \alpha_{\mu\mathfrak{a}'} = i \sum_{\mathfrak{b}'} (\mathfrak{A}_{\mu})_{\mathfrak{a}'\mathfrak{b}'} t_{\mathfrak{b}'}.$$

In gauge fixing action, the bosonic part

$$\frac{\alpha}{2} \sum_{\mathbf{a}', \mathbf{b}'} \alpha_{\mu \mathbf{a}'} \left[(\mathfrak{A}^{\rho} \mathfrak{A}_{\rho})_{\mathbf{a}' \mathbf{b}'} \eta^{\mu \nu} \right] \alpha_{\nu \mathbf{b}'} \tag{8}$$

$$(\Delta_{\rm B})_{\mathfrak{a}'\mathfrak{b}';\mu\nu} \equiv \frac{\alpha}{2} d^2 \eta_{\mu\nu} \delta_{\mathfrak{a}'\mathfrak{b}'} \tag{9}$$

Then it's easy to inverse

$$(\Delta_{\mathsf{B}}^{-1})_{\mathfrak{a}'\mathfrak{b}'}^{\mu\nu} = \frac{2}{\alpha d^2} \eta^{\mu\nu} \delta_{\mathfrak{a}'\mathfrak{b}'} \tag{10}$$

The fermionic part of IKKT gives

$$-\frac{\alpha}{2} \sum_{\mathbf{a}'\mathbf{b}',\alpha\beta} \psi_{\mathbf{a}'}^{\alpha} (C\Gamma^{\mu})_{\alpha\beta} (\mathfrak{A}_{\mu})_{\mathbf{a}'\mathbf{b}'} \psi_{\mathbf{b}'}^{\beta} \tag{11}$$

$$(\Delta_{\mathsf{F}})_{\mathfrak{a}'\mathfrak{b}';\alpha\beta} \equiv -\frac{\alpha}{2} (C\Gamma^{\mu})_{\alpha\beta} d_{\mu} J_{\mathfrak{a}'\mathfrak{b}'} \tag{12}$$

J forms a block diagonal form, each block reads

$$J_{(i,N),[i,N]} = -J_{[i,N],(i,N)} = i, \quad J_i = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad J = J_1 \oplus \cdots \oplus J_{N-1}.$$

The inverse

$$(\Delta_{\mathsf{F}}^{-1})_{\mathfrak{a}'\mathfrak{b}'}^{\alpha\beta} = -\frac{2}{\alpha d^{2}} (\overline{C}\overline{\Gamma}^{\mu})^{\alpha\beta} d_{\mu} J_{\mathfrak{a}'\mathfrak{b}'}$$

$$\overline{C}\overline{\Gamma}^{0} = -C\Gamma^{0}, \quad \overline{C}\overline{\Gamma}^{i} = C\Gamma^{i}, \quad i = 1, \cdots, 9.$$

$$(C\Gamma^{\mu})(\overline{C}\overline{\Gamma}^{\nu}) = \eta^{\mu\nu} \mathbb{1}.$$

$$(13)$$

Contractions

$$\sum_{\alpha'b'} (T^{\alpha'})_{ij} (T^{b'})_{kl} \delta_{\alpha'b'}.$$

$$\sum_{\alpha'b'} (T^{\alpha'})_{Ni} (T^{b'})_{Nj} \delta_{\alpha'b'} = 0, \quad \sum_{\alpha'b'} (T^{\alpha'})_{iN} (T^{b'})_{jN} \delta_{\alpha'b'} = 0.$$

$$\sum_{\alpha'b'} (T^{\alpha'})_{iN} (T^{b'})_{Nj} \delta_{\alpha'b'} = \sum_{\alpha'b'} (T^{\alpha'})_{Ni} (T^{b'})_{jN} \delta_{\alpha'b'} = 2\delta_{ij}.$$

$$\sum_{\alpha'b'} (T^{\alpha'})_{ij} (T^{b'})_{kl} J_{\alpha'b'}.$$

$$\sum_{\alpha'b'} (T^{\alpha'})_{Ni} (T^{b'})_{Nj} J_{\alpha'b'} = 0, \quad \sum_{\alpha'b'} (T^{\alpha'})_{iN} (T^{b'})_{jN} J_{\alpha'b'} = 0.$$

$$\sum_{\alpha'b'} (T^{\alpha'})_{iN} (T^{b'})_{Nj} J_{\alpha'b'} = -\sum_{\alpha'b'} (T^{\alpha'})_{Ni} (T^{b'})_{jN} J_{\alpha'b'} = 2\delta_{ij}.$$

fermionic interaction

$$-\frac{\alpha}{2}\psi^{\alpha}_{\mathfrak{a}'}(\mathsf{C}\mathsf{\Gamma}^{\mu})_{\alpha\beta}\psi^{\beta}_{\mathfrak{b}'}\mathcal{A}_{\mu\mathfrak{a}}\mathsf{Tr}(\mathcal{T}^{\mathfrak{a}'}[\mathcal{T}^{\mathfrak{a}},\mathcal{T}^{\mathfrak{b}'}])$$

square

$$\frac{\alpha^2}{4} \psi^{\alpha}_{\mathfrak{a}'}(\mathsf{C}\mathsf{\Gamma}^{\mu})_{\alpha\beta} \psi^{\beta}_{\mathfrak{b}'} \psi^{\gamma}_{\mathfrak{c}'}(\mathsf{C}\mathsf{\Gamma}^{\nu})_{\gamma\delta} \psi^{\delta}_{\mathfrak{d}'} \mathcal{A}_{\mu\mathfrak{a}} \mathcal{A}_{\nu\mathfrak{b}} \mathsf{Tr}(\mathcal{T}^{\mathfrak{a}'}[\mathcal{T}^{\mathfrak{a}},\mathcal{T}^{\mathfrak{b}'}]) \mathsf{Tr}(\mathcal{T}^{\mathfrak{c}'}[\mathcal{T}^{\mathfrak{b}},\mathcal{T}^{\mathfrak{d}'}])$$

Contraction 1. $\mathfrak{a}' - \mathfrak{d}'$ and $\mathfrak{b}' - \mathfrak{c}'$

$$\begin{split} \frac{\alpha^2}{4}(\Delta_{\mathsf{F}}^{-1})^{\alpha\delta}_{\mathfrak{a}'\mathfrak{d}'}(\Delta_{\mathsf{F}}^{-1})^{\beta\gamma}_{\mathfrak{b}'\mathfrak{c}'}(C\Gamma^{\mu})_{\alpha\beta}(C\Gamma^{\nu})_{\gamma\delta}\mathcal{A}_{\mu\mathfrak{a}}\mathcal{A}_{\nu\mathfrak{b}}\mathsf{Tr}(\mathcal{T}^{\mathfrak{a}'}[\mathcal{T}^{\mathfrak{a}},\mathcal{T}^{\mathfrak{b}'}])\mathsf{Tr}(\mathcal{T}^{\mathfrak{c}'}[\mathcal{T}^{\mathfrak{b}},\mathcal{T}^{\mathfrak{d}'}]).\\ &=-\frac{4\times16}{d^4}\mathsf{Tr}(\mathcal{T}^{\mathfrak{a}}\mathcal{T}^{\mathfrak{b}})d^{\mu}d^{\nu}\mathcal{A}_{\mu\mathfrak{a}}\mathcal{A}_{\nu\mathfrak{b}}=-\frac{64}{d^4}d^{\mu}d^{\nu}\mathsf{Tr}(\mathcal{A}_{\mu}\mathcal{A}_{\nu}). \end{split}$$

Contraction 2 $\mathfrak{a}' - \mathfrak{c}'$ and $\mathfrak{b}' - \mathfrak{d}'$ gives the same.

In the contraction 1.

$$\operatorname{Tr}(\mathcal{T}^{\mathfrak{a}'}[\mathcal{T}^{\mathfrak{a}},\mathcal{T}^{\mathfrak{b}'}])\operatorname{Tr}(\mathcal{T}^{\mathfrak{c}'}[\mathcal{T}^{\mathfrak{b}},\mathcal{T}^{\mathfrak{d}'}]) \to -4\operatorname{Tr}(\mathcal{T}^{\mathfrak{a}}\mathcal{T}^{\mathfrak{b}})$$

Cubic interaction

Sat, Apr 20

$$\begin{aligned} &\operatorname{Tr}[A_{\mu},A_{\nu}][A^{\mu},A^{\nu}] \to 4\operatorname{Tr}[A_{\mu},\mathscr{A}_{\nu}][\mathscr{A}^{\mu},\mathscr{A}^{\nu}]. \\ &4\sum_{\mathfrak{a},\mathfrak{b},\mathfrak{c},\mathfrak{d}} (\mathfrak{A}_{\mu})_{\mathfrak{a}\mathfrak{b}}\mathscr{A}_{\nu\mathfrak{b}}\mathscr{A}_{\mathfrak{c}}^{\mu}\mathscr{A}_{\mathfrak{d}}^{\nu}\operatorname{Tr}(\mathcal{T}^{\mathfrak{a}}[\mathcal{T}^{\mathfrak{c}},\mathcal{T}^{\mathfrak{d}}]). \\ &4\sum_{\mathfrak{a}',\mathfrak{b}',\mathfrak{c}',\mathfrak{d}'} (\mathfrak{A}_{\mu})_{\mathfrak{a}'\mathfrak{b}'}\alpha_{\nu\mathfrak{b}'}\alpha_{\mathfrak{c}'}^{\mu}\alpha_{\mathfrak{d}'}^{\nu}\operatorname{Tr}(\mathcal{T}^{\mathfrak{a}'}[\mathcal{T}^{\mathfrak{c}'},\mathcal{T}^{\mathfrak{d}'}]). \end{aligned}$$

Fermionic action

$$\operatorname{Tr}(\overline{\psi}\Gamma^{\mu}[A_{\mu},\psi]) = \operatorname{Tr}(\psi^{\alpha}(C\Gamma^{\mu})_{\alpha\beta}[A_{\mu},\psi^{\beta}]).$$

fermionic background

$$\psi + \varphi$$
.

with the direct sum bosonic background

$$\sum_{\mathfrak{a}'\mathfrak{b}'} \varphi_{\mathfrak{a}'}^{\alpha}(\mathsf{C}\mathsf{\Gamma}^{\mu})_{\alpha\beta}(\mathfrak{A}_{\mu})_{\mathfrak{a}'\mathfrak{b}'} \varphi_{\mathfrak{b}'}^{\beta} + \sum_{\mathfrak{a}'\mathfrak{b}'\mathfrak{c}'} \varphi_{\mathfrak{a}'}^{\alpha}(\mathsf{C}\mathsf{\Gamma}^{\mu})_{\alpha\beta} \alpha_{\mu\mathfrak{b}'} \varphi_{\mathfrak{c}'}^{\beta} \mathsf{Tr}(\mathcal{T}^{\mathfrak{a}'}[\mathcal{T}^{\mathfrak{b}'},\mathcal{T}^{\mathfrak{c}'}]).$$

Also consider

$$\sum_{\mathfrak{a}\mathfrak{b}'\mathfrak{c}} \psi^{\alpha}_{\mathfrak{a}}(\mathsf{C}\mathsf{\Gamma}^{\mu})_{\alpha\beta}\alpha_{\mu\mathfrak{b}'}\psi^{\beta}_{\mathfrak{c}}\mathsf{Tr}(\mathcal{T}^{\mathfrak{a}}[\mathcal{T}^{\mathfrak{b}'},\mathcal{T}^{\mathfrak{c}}]).$$

Show that it's vanish. Also consider

$$\operatorname{Tr} \psi^{\alpha}(C\Gamma^{\mu})_{\alpha\beta}[\alpha_{\mu}, \varphi^{\beta}] + \operatorname{Tr} \varphi^{\alpha}(C\Gamma^{\mu})_{\alpha\beta}[\alpha_{\mu}, \psi^{\beta}] = -2\operatorname{Tr} \varphi^{\alpha}(C\Gamma^{\mu})_{\alpha\beta}[\psi^{\beta}, \alpha_{\mu}].$$

Similarly, define the adjoint matrix

$$\Psi_{\mathfrak{a}\mathfrak{b}} \equiv \sum_{\mathfrak{c}} \psi_{\mathfrak{c}} \mathsf{Tr}(\mathcal{T}^{\mathfrak{a}}[\mathcal{T}^{\mathfrak{c}}, \mathcal{T}^{\mathfrak{b}}]).$$

The product and trace of the $C\Gamma^{\mu}$ matrices

Mon, Apr 22

$$\operatorname{Tr}(C\Gamma^{\mu}\overline{C\Gamma}^{\nu}) = \eta^{\mu\nu}\operatorname{Tr}\mathbb{1}.$$

This is checked by considering three cases separately: $\mu=i, \nu=j; \ \mu=0, \nu=i$ or $\mu=i, \nu=0; \ \mu=0, \nu=0.$ Also use ${\rm Tr}(C\Gamma^i)=0.$

Use $\{C\Gamma^i, C\Gamma^j\} = 2\delta^{ij}\mathbb{1}$, we can prove that (cyclic property of trace)

$$\operatorname{Tr}(C\Gamma^1C\Gamma^2) = 0$$
, $\operatorname{Tr}(C\Gamma^1C\Gamma^2C\Gamma^3C\Gamma^4) = 0$.

Is it the case? $Tr(C\Gamma^1C\Gamma^2C\Gamma^3) = 0$.

a contraction Consider the following contraction

$$\left\langle \varphi^\alpha_{\mathfrak{a}}(\mathsf{C}\mathsf{\Gamma}^\mu)_{\alpha\beta}\mathcal{A}_{\mu\mathfrak{a}\mathfrak{b}}\varphi^\beta_{\mathfrak{b}}\varphi^\gamma_{\mathfrak{c}}(\mathsf{C}\mathsf{\Gamma}^\mu)_{\gamma\delta}\mathcal{A}_{\mu\mathfrak{c}\mathfrak{d}}\varphi^\delta_{\mathfrak{d}}\right\rangle.$$

There are three possible contractions

$$(\Delta^{-1})^{\alpha\beta}_{\mathfrak{a}\mathfrak{b}}(C\Gamma^{\mu})_{\alpha\beta}\mathcal{A}_{\mu\mathfrak{a}\mathfrak{b}}(\Delta^{-1})^{\gamma\delta}_{\mathfrak{c}\mathfrak{d}}(C\Gamma^{\nu})_{\gamma\delta}\mathcal{A}_{\nu\mathfrak{c}\mathfrak{d}}$$

$$+(\Delta^{-1})^{\alpha\delta}_{\mathfrak{a}\mathfrak{d}}(C\Gamma^{\mu})_{\alpha\beta}\mathcal{A}_{\mu\mathfrak{a}\mathfrak{b}}(\Delta^{-1})^{\beta\gamma}_{\mathfrak{b}\mathfrak{c}}(C\Gamma^{\nu})_{\gamma\delta}\mathcal{A}_{\nu\mathfrak{c}\mathfrak{d}}$$

$$-(\Delta^{-1})^{\alpha\gamma}_{\mathfrak{a}\mathfrak{c}}(C\Gamma^{\mu})_{\alpha\beta}\mathcal{A}_{\mu\mathfrak{a}\mathfrak{b}}(\Delta^{-1})^{\beta\delta}_{\mathfrak{b}\mathfrak{d}}(C\Gamma^{\nu})_{\gamma\delta}\mathcal{A}_{\nu\mathfrak{c}\mathfrak{d}}$$

The sign is obtained by comparing the "reverse order of Δ^{-1} ": \mathfrak{deba} for the first line to the order in $\langle \cdots \rangle$: \mathfrak{abcd} . First deal with \mathfrak{a} -indices: $(\Delta^{-1})_{\mathfrak{ab}}$ include $J_{\mathfrak{ab}}$. The first term gives $\text{Tr}(\mathcal{A}_{\mu}J)\text{Tr}(\mathcal{A}_{\nu}J)$; the second and third terms give $-2\text{Tr}(\mathcal{A}_{\mu}\mathcal{A}_{\nu})$. The spinor part: the first term

$$\operatorname{Tr}(C\Gamma^{\mu}\overline{C\Gamma}^{\rho})\operatorname{Tr}(C\Gamma^{\nu}\overline{C\Gamma}^{\sigma}).$$

The second term and the third term are the same

$$\operatorname{Tr}(C\Gamma^{\mu}\overline{C\Gamma}^{\rho}C\Gamma^{\nu}\overline{C\Gamma}^{\sigma}).$$

(Note that $C\Gamma^{\mu}$ is symmetric) The contraction reads then

$$Tr(C\Gamma^{\mu}\overline{C\Gamma}^{\rho})Tr(C\Gamma^{\nu}\overline{C\Gamma}^{\sigma})Tr(A_{\mu}J)Tr(A_{\nu}J)a_{\rho}a_{\sigma}.$$

$$-2Tr(C\Gamma^{\mu}\overline{C\Gamma}^{\rho}C\Gamma^{\nu}\overline{C\Gamma}^{\sigma})Tr(A_{\mu}A_{\nu})a_{\rho}a_{\sigma}.$$

Don't forget to multiply $\frac{g^4}{a^4}$ from propagator and $\frac{1}{8g^4}$ from expansion of the interaction.

It's possible to obtain the following terms

$$32\text{Tr}(A^2)a^2$$
, $-64\text{Tr}(A_{\mu}A_{\nu})a^{\mu}a^{\nu}$, $(16\text{Tr}(A_{\mu})a^{\mu})^2$.

Multiply the $\frac{1}{8a^4}$

$$\frac{4}{a^2}\mathrm{Tr}(\mathcal{A}^2), \quad -\frac{8}{a^4}\mathrm{Tr}(\mathcal{A}_{\mu}\mathcal{A}_{\nu})a^{\mu}a^{\nu}, \quad \frac{32}{a^4}(\mathrm{Tr}(\mathcal{A}_{\mu}J)a^{\mu})^2.$$

tech remark. Because $C\Gamma^0 = -1$, $Tr(C\Gamma^0C\Gamma^0) = Tr1$. This seems to lead the wrong sign in the time direction (compare to $Tr(C\Gamma^iC\Gamma^j) = \delta^{ij}1$). However, an extra minus is provided by $C\Gamma^0C\Gamma^i = C\Gamma^iC\Gamma^0$ (compare to $C\Gamma^iC\Gamma^j = -C\Gamma^jC\Gamma^i$, $i \neq j$).

Simpler contractions

$$\begin{split} -\frac{1}{2g^2} \left\langle \alpha_{\mu} (2a_{\rho} \mathcal{A}^{\rho} J \eta^{\mu\nu} + \mathcal{A}^2 \eta^{\mu\nu} - 2\mathcal{F}^{\mu\nu}) \alpha_{\nu} \right\rangle &= -\frac{5}{a^2} \mathsf{Tr} (2a_{\rho} \mathcal{A}^{\rho} J + \mathcal{A}^2). \\ \frac{1}{2g^2} \left\langle \varphi^{\alpha} (\mathsf{C} \mathsf{\Gamma}^{\mu})_{\alpha\beta} \mathcal{A}_{\mu} \varphi^{\beta} \right\rangle &= \frac{8}{a^2} a^{\rho} \mathsf{Tr} (\mathcal{A}_{\rho} J). \end{split}$$

use $\operatorname{Tr}(\overline{C\Gamma}^{\mu}C\Gamma^{\nu})=16\eta^{\mu\nu}$.

$$\frac{1}{a^2} \left\langle b(2a_\rho \mathcal{A}^\rho J + \mathcal{A}^2) \right\rangle = \frac{1}{a^2} \text{Tr}(2a_\rho \mathcal{A}^\rho J + \mathcal{A}^2).$$

Some cancellations... Also the $\text{Tr}(A_{\mu}A_{\nu})a^{\mu}a^{\nu}$ is canceled from the bosonic and ghost quadratic term expansion.