

Department of Computer Science and Engineering

Title: Problem Analysis and Algorithm Design

Computational Thinking and Problem Solving
CSE 100

Green University of Bangladesh

Objectives:

- 1. Familiarization with algorithm
- 2. To analyze a problem with computational thinking
- 3. To design the algorithm for that problem

Problem Analysis:

Algorithm:

In computer programming terms, an algorithm is a set of well-defined instructions to solve a particular problem. It takes a set of input(s) and produces the desired output.

For example-

An algorithm to add two numbers:

- 1. Take two number inputs
- 2. Add numbers using the "+" operator
- 3. Display the result

Properties of Algorithm:

- It should terminate after a finite time
- It should produce at least one output
- It should take zero or more input
- It should be deterministic means giving the same output for the same input case
- Every step in the algorithm must be effective.
- 1. **Problem Description:** Add two numbers entered by the user

Algorithm:

Step 1: Start

Step 2: Declare variables num1, num2, and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

 $sum \leftarrow num1 + num2$

```
Step 5: Display sum
```

```
Step 6: Stop.
```

2. Problem Description: Find the factorial of a number

Algorithm:

```
Step 1: Start
```

Step 2: Declare the variables num, factorial and i

Step 3: Initialize variables

$$factorial \leftarrow 1$$

 $i \leftarrow 1$

Step 4: Read the value of num

Step 5: Repeat the steps until i == num

$$5.1$$
: factorial ← factorial*i

5.2:
$$i \leftarrow i+1$$

Step 6: Display factorial

Step 7: Stop

3. Problem Description: Find the Fibonacci Series till the term is less than 50

Algorithm:

```
Step 1: Start
```

Step 2: Declare the variables first_term, second_term, and temp

Step 3: Initialize variables

$$\mathit{first_term} \leftarrow o$$

$$second_term \leftarrow 1$$

Step 4: Display first_term and second_term

Step 5: Repeat the steps until second_term < 50

5.1:
$$temp \leftarrow second_term$$

```
5.2: second_term ← second_term + first_term

5.3: first_term ← temp

5.4: Display second_term

Step 6: Stop
```

Discussion and Conclusion

Based on the focused objectives, be familiar with algorithm and able to design the algorithm of a given problem. The additional lab exercise made me more confident in the fulfillment of the objectives.

Lab Task (Please implement yourself and show the output to the instructor)

- 1. Find the largest number among three numbers
- 2. Check whether a given number is even or odd
- 3. Check whether a year is a leap year or not
- 4. Print numbers from 1 to n.
- 5. Swap two numbers using a third variable

Lab exercise (submit as a report)

- 1. Check whether a number is prime or not
- 2. Calculate the summation of even numbers from 1 to n
- 3. Check whether a triangle is equilateral, isosceles, or scalene.
- 4. Print multiplication table of a given number n
- 5. Find the Fibonacci series of first n terms.

Policy

Copying from the internet, classmates, seniors, or from any other source is strongly prohibited. 100% marks will be deducted if any such copying is detected.