

The 2025 International Joint Conference on Artificial Intelligence

Tan Tock Seng

ID: DM 87

A Smart Multimodal Healthcare Copilot with Powerful LLM Reasoning Xuejiao Zhao^{1,2*} Siyan Liu^{1,2*} Su-Yin Yang³ Chunyan Miao^{1,2,†}

¹Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), NTU, Singapore ³ Tan Tock Seng Hospital & Woodlands Health, Singapore

Retrieval-augmented Generation & Knowledge Graph

(*Co-first Author †Corresponding Author)

RAG (Retrieval-Augmented Generation):

- Retrieves relevant local info for answer generation
- Improves factuality and contextawareness of responses of LLMs
- Suffers from inaccuracies and vagueness due to heuristic-based approaches

KG (Knowledge Graph):

- Represents medical entities (e.g., diseases, disease categories) and their relations
- Elicits reasoning of LLMs
- ◆ Distinguishes similar diseases
 and enhances diagnostic accuracy ←

Our Approach

1. Diagnostic KG Construction: A

four-tier diagnostic KG is constructed through disease clustering, hierarchical aggregation and LLM augmentation from EHR database.

- 2. Diagnostic Differences KG
 Searching: Symptoms are matched to
 the diagnostic KG via clinical feature
 decomposition, matching, and upward
 traversal to identify key diagnostic
 differences.
- 3. KG-elicited LLM reasoning: Based on the patient information, diagnostic difference KG and retrieved EHRs to reason precise diagnostic suggestions and proactive questioning.

Trust

Evaluations and UI

Method	Model	CPDD			DDXPlus		
		L1	L2	L3	L1	L2	L3
Baselines	Naive RAG + COT	75.47	54.72	43.40	79.28	71.89	56.84
	FS-RAG	64.71	49.02	45.10	78.18	68.20	51.40
	FLARE	54.84	48.39	45.16	71.09	56.70	31.02
	FL-RAG	65.45	50.91	49.09	90.12	83.32	66.78
	DRAGIN	78.72	59.57	40.42	80.51	70.83	50.24
	SR-RAG	73.58	60.38	<u>54.72</u>	78.65	70.28	52.16
Ours	MedRAG	79.25	75.47	66.04	88.65	83.46	68.01

Adoption Adoption Adoption Intention Intention Intention Clinical Clinical Clinical Relevance Relevance Relevance Safety & Harm Safety & Harm Safety & Harm MedRAG MedRAG MedRAG Recommendation Recommendation Recommendation GPT-40 GPT-40 GPT-40

Outperform SOTA RAG methods on objective results

◆ Result of doctor evaluation (Human Factor Criteria)

Trust

Backbone LLM	Modal	L1	L2	L3
GPT-40	text	91.87	81.78	73.23
GPT-4o	voice	88.23	78.43	70.58
GPT-3.5-turbo	text	70.56	68.68	50.57
GPT-3.5-turbo	voice	64.70	60.78	45.09

Trust

Evaluation of different modal on CPDD

Manifestation Masking Ratio	L1	L2	L3
100%	60.38	56.60	52.83
66.6%	69.39	67.35	55.10
33.3%	71.43	67.35	61.22
0%	60.38 69.39 71.43 79.25	75.47	66.04

Proactive diagnostic questioning

Result of ablation study

◆ UI of MedRAG – Healthcare Copilot
◆ Proactive