Security and Privacy, Blatt 1

Franziska Hutter (3295896) Felix Truger (3331705) Felix Bühler (2973410)

29. Mai 2018

Problem 1: Matching Algorithm

Problem 2: Basics - Probability Theory

Problem 3: Basics - Algorithms

- a)
- b)
- **c**)
- d)

Problem 4: Basics - Group Theory

a)

- $(\mathbb{Z}_8^*, \cdot_8)$ Nein, da es isomorph zu $\mathbb{Z}_2^* * \mathbb{Z}_2^*$ ist. $(\rightarrow \text{Es besitzt keine Primitivwurzel.})$
- $(\mathbb{Z}_{10}^*, \cdot_{10})$ Ja. Generator ist 3 oder 7

Generator = x	3	7
x^0	1	1
x^1	3	7
x^2	9	9
x^3	7	3
x^4	1	1

b)

Aus der Vorlesung:

$$\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n | gcd(a, n) = 1\} \to \mathbb{Z}_n^* = \{a, b \in \mathbb{Z}_n | gcd(a * b, n) = 1\}$$

Multiplikation ist ein Gesetz der Komposition auf \mathbb{Z}_n^* .

 $a, b, c \in \mathbb{Z}_n^*$

• Die Multiplikation ist assoziativ auf \mathbb{Z}_n^* : (a*b)*c = abc = a*(b*c) (gcd((a*b)*c,n) = 1 = gcd(a*b*c,n) = gcd(a*(b*c),n))

- Ebenso ist die Multiplikation kommutativ: a * b = b * a (gcd(a * b, n) = 1 = gcd(b * a, n))
- Neutrales Element:

Wir nehmen als Identität 1. Natürlich ist, $\forall x \in \mathbb{Z} : gcd(1, x) = 1$, also $1 \in \mathbb{Z}_n^*$. Dann a * 1 = a = 1 * a. Somit erfüllt 1 die Eigenschaft des neutralen Elements.

• Inverses Element:

 $\forall x \in \mathbb{Z}: ax \equiv 1 \pmod{n}$. Es existiert genau dann, wenn a Teilerfremd zu n ist, weil in diesem Fall gcd(a,n)=1. Und nach Bezous existiert somit ein Inverses Element.