Applicant: SINGER, Rudolf Serial No.: 10/079,031

Filed: February 19, 2002

Response to Nonfinal Office Action

March 14, 2005 Page 2 of 8

Amendments to the Claims

This listing will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (currently amended) A glass melt delivery device comprising:
 - a. a ceramic component;
 - b. a cylindrical heating ring, wherein said cylindrical heating ring is located within the ceramic component; and
 - c. a delivery nozzle, wherein said delivery nozzle is comprised of comprises at least one platinum group metal and comprises a cylindrical end piece and a conical funnel, wherein said heating ring and said cylindrical end piece are located a distance apart that is from about one to about three times the wall thickness of the cylindrical end piece.
- 2. (currently amended) The device according to claim 1, wherein said cylindrical heating ring is comprised of comprises a platinum group metal.
- 3. (original) The device according to claim 2, further comprising feed metal sheets, wherein said feed metal sheets are connected to said cylindrical heating ring.
- 4. (original) The device according to claim 3, further comprising a take-off bar.
- 5. (original) The device according to claim 4, further comprising a lower flanged ring wherein said lower flanged ring is adjacent to said take-off bar.
- 6. (currently amended) The device according to claim [[5]]1, wherein said delivery

Applicant: SINGER, Rudolf

Serial No.: 10/079,031

Filed: February 19, 2002 Response to Nonfinal Office Action

March 14, 2005 Page 3 of 8

nozzle further comprises a heating ring extends over the cylindrical end piece and a

conical funnel.

7. (canceled)

8. (canceled)

9. (original) The device according to claim 5, wherein said heating ring has a lower edge

and said lower edge is adjoined flush to said lower flanged ring.

10. (original) The device according to claim 3, further comprising current feed metal

sheets, located axially with the surface of said cylindrical heating ring and arranged on

opposite sides of said heating ring.

11. (currently amended) The device according to claim 10, wherein said current feed

metal sheets are comprised of comprise a platinum group metal.

12. (original) The device according to claim 10 wherein said current feed metal sheets

are approximately the same height as said heating ring.

13. (currently amended) The device according to claim 1, wherein said heating ring is

comprised of comprises fine platinum or a platinum rhodium alloy with 10% rhodium or

a fine grain stabilized platinum or mixtures thereof.

14. (original) The device according to claim 10, wherein two feed metal sheets are

arranged at an angle of 180° to each other.

15. (currently amended) A device for delivering glass melt comprising:

a. a ceramic component, wherein in said ceramic component are slits;

Applicant: SINGER, Rudolf Serial No.: 10/079,031 Filed: February 19, 2002

Response to Nonfinal Office Action

March 14, 2005 Page 4 of 8

- a nozzle, wherein said nozzle comprises a conical funnel shaped part, a
 cylindrical end piece, and said funnel shaped part is located adjacent to said
 cylindrical end piece;
- c. an upper axial ring;
- d. a lower axial flanged ring;
- e. a take-off-bar located distal to the end of the cylindrical end piece that is adjacent to the conical funnel shaped part and adjacent to said lower axial flanged ring;
- f. a cylindrical heating ring located within said ceramic component, in contact with said lower axial flanged ring, and coaxial to said cylindrical end piece, wherein said heating ring and said cylindrical end piece are located a distance apart that is from about one to about three times the wall thickness of the cylindrical end piece; and
- g. at least two current feeds sheets, wherein said current feed sheets are attached to said coaxial cylindrical heating ring and arranged radially on opposite sides and axial to the lower flanged ring and pass through said slits.
- 16. (original) A method for heating of glass melt comprising using the device of claim 1.
- 17. (original) A method for heating of glass melt comprising using the device of claim 15.
- 18. (currently amended) A method for heating of glass melt comprising using the device of claim 1 and heating the nozzle directly with electrical current.
- 19. (currently amended) A method for heating of glass melt comprising using the device of claim 15 and heating the nozzle directly with electrical current.