

Statistics Ex 7.1 Q1 Answer:

Given:

<i>x</i> :	5	6	7	8	9
f:	4	8	14	11	3

First of all prepare the frequency table in such a way that its first column consist of the values of the variate (x_i) and the second column the corresponding frequencies (f_i) .

Thereafter multiply the frequency of each row with corresponding values of variable to obtain third column containing $(f_i x_i)$.

Then, sum of all entries in the column second and denoted by $\sum f_i$ and in the third column to obtain $\sum f_i x_i$.

x_i	f_{i}	$f_i x_i$
5	4	20
6	8	48
7	14	98
8	11	88
9	3	27

We know that mean,
$$\overline{X} = \frac{\sum f_i x_i}{\sum f_i}$$

$$= \frac{281}{40}$$

$$= 7.025$$

Hence, mean
$$= 7.025$$

Statistics Ex 7.1 Q2 Answer:

Given:

x_i	19	21	23	25	27	29	31
f_i	13	15	16	18	16	15	13

First of all prepare the frequency table in such a way that its first column consist of the values of the variate (x_i) and the second column the corresponding frequencies (f_i) .

Thereafter multiply the frequency of each row with corresponding values of variable to obtain third column containing $(f_i x_i)$.

Then, sum of all entries in the column second and denoted by $\sum f_i$ and in the third column to obtain

$$\sum f_i x_i$$
.

x_i	f_{i}	$f_i x_i$
19	13	247
21	15	315
23	16	368
25	18	450
27	16	432
29	15	435
31	13	403
2	$\sum f_i = 106$	$\sum f_i x_i = 2650$

We know that mean,
$$\overline{X} = \frac{\sum f_i x_i}{\sum f_i}$$

$$= \frac{2650}{106}$$

$$= 25$$

Hence, mean = 25

********** END ********