Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2020f/

Gradient Descent

Many slides attributable to: Erik Sudderth (UCI) Finale Doshi-Velez (Harvard)

Prof. Mike Hughes

James, Witten, Hastie, Tibshirani (ISL/ESL books)

Today's Objectives (day 06)

Gradient descent

- Key idea: Find optimal (or close to optimal) parameters for an objective by repeatedly stepping downhill
- Benefits:
 - Widely useful for many ML tasks. Likely useful for any objective that is differentiable
 - In contrast, exact solutions (like our formulas for optimal weights for least squares) are hard to derive for most objectives
- Practical problems:
 - Local vs. global minima
 - How to pick step size
 - How to assess convergence
 - Initialization
- Lab: Gradient descent for linear regression

What will we learn?

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Task: Regression

Supervised
Learning
regression

Unsupervised Learning

Reinforcement Learning y is a numeric variable e.g. sales in \$\$

Linear Regression

Optimization problem: "Least Squares"

$$\min_{\theta \in \mathbb{R}^{F+1}} \quad \sum_{n=1}^{N} (y_n - \hat{y}(x_n, \theta))^2$$

$$\min_{\theta \in \mathbb{R}^{F+1}} \quad \underbrace{(y - \tilde{X}\theta)^T (y - \tilde{X}\theta)}_{J(\theta)}$$

$$\tilde{X} = \begin{bmatrix} x_{11} & \dots & x_{1F} & 1 \\ x_{21} & \dots & x_{2F} & 1 \\ & & \dots & \\ x_{N1} & \dots & x_{NF} & 1 \end{bmatrix}$$

$$y = \left[\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_N \end{array} \right]$$

We can solve **this particular** optimization problem exactly.

However, what happens when:

- We want to use another error than squared error?
- We want to add an L1 penalty?
- We have so many dimensions (F > 1 million) that solving the linear system exactly is prohibitive
- We want to change the objective in some other way

Is there a general purpose way to solve optimization problems like

$$\min_{ heta} \;\; J(heta)$$

Assumptions

- Loss function J is smooth and deterministic
- We can evaluate our loss function at any value of parameter theta
- We can evaluate the first derivative ("gradient") of our loss at any value of parameter theta

$$\frac{\partial J(\theta)}{\partial \theta}$$

Idea: Optimize via small steps

Current "guess" for parameter theta

Derivatives point uphill

To minimize, go downhill

Step in the opposite **direction** of the derivative

Steepest descent algorithm

input: initial $\theta \in \mathbb{R}$

input: step size $\alpha \in \mathbb{R}_+$

while not converged:

$$\theta \leftarrow \theta - \alpha \frac{d}{d\theta} J(\theta)$$

Will gradient descent always find same solution?

Will gradient descent always find same solution?

Cocal minimum

Global minimum

Yes, if loss looks like this

Not if multiple local minima exist

Linear Regression is convex!

How to set step size?

Intuition: 1D gradient descent

Choosing good step size matters!

Debugging: loss vs iterations

If step size is too small

If step size is large

If step size is way too large

Hints for picking step sizes

- Don't blindly trust the default
- Don't try just one!
- Try several values (spaced like 10⁻⁴, 10⁻², 1, 100) until
 - Find one clearly too small
 - Find one clearly too large (oscillation / divergence)
 - Then focus on finding "just right" value in between
- Always make trace plots!
 - loss vs iteration
 - gradient vs iteration
 - parameter vs iteration
- Smarter choices for step size (advanced material, beyond today's class)
 - Decaying methods
 - Line search methods
 - Second-order methods
 - Adaptive methods

How to assess convergence?

• Ideal: stop when derivative equals zero

- Practical heuristics: stop when ...
 - change in loss becomes "small enough"

$$|J(\theta_t) - J(\theta_{t-1})| < \epsilon$$

net step size is indistinguishable from zero

$$|\alpha| \frac{d}{d\theta} J(\theta)| < \epsilon$$

Visualizing loss function when parameter has 2 dimensions

Gradient descent when parameter has 2 dimensions

gradient = vector of partial derivatives

Today's Objectives (day 06)

Gradient descent

- Key idea: Find optimal (or close to optimal) parameters for an objective by repeatedly stepping downhill
- Benefits:
 - Widely useful for many ML tasks. Can be used for any objective that is differentiable
 - In contrast, exact solutions (like our formulas for optimal weights for least squares) are hard to do for most objectives
- Practical problems:
 - Local vs. global minima
 - How to pick step size
 - How to assess convergence
 - Initialization
- Lab: Gradient descent for linear regression with one slope parameter