Set A, a well-founded relation. I is a binary relation st. any descending dain and and and and has a minimal element When all by a is a predecesson of b non-e.g (IR, <) is not well fooded. D Emry Noether

D Axism of choice: elif U Ai, then I S={a,...and

s.t. a; EAi.

Zorn Lemma.

Any set B, if every descenting than it has a loney bound than it has a minimal element. Principle of well-founded induction: < is a nell founded relation on set A. Want: YaEA, POD. Only need: HaFA., [Hoka Pib] => Pa) Trivial e.g. (Mo, <) is nell founded. well founded induction is standard induction.

P(0) o has no predecessor.

P(n < n+1, Pan) = p(n+1)

Create new well fonded relations from old ones.

or Product relation.
on. A, XA.
on. A, XA.
on. A, xA. (a, az) < (a, az) def. a. < a! and a. < a! product relation, well founded.
and alexander relation
product relation, well founded.
d Lexicographic. product relation
0 0 A V A
$(a_1a_2) \angle (a_1', a_2')$ iff. $a_1 \angle a_1'$
or $(a_1 = a_1')$ and $a_2 < a_2'$
A non-trivial example of well fonded induction:
Eulerian graphs.
graph. (V, E) V set of routius.
E set of edges
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
a connected graph any pair V. V' are connected by, a
both of edges IN WILLIAM)
a connected graph any pair. V. V' are connected by, a path of edges {16, V,} {11, V2}
a <u>Circuit</u> of a graph. is a path of edges (1,50,5/4,1/2) thank
loop where 1/ to 1/
where. Vot Vm

Q (Königskeng) When does a concerted grapph have a Eulerian cirait. this path visite each edge exactly once have even degree or exactly has vertres have odd degree and: 411 others have even degree A finite connected gaph has an Enleven circuit iff every venter has even degree. : We have an Eulenan circuit. Follow this path: on each votex. there is an incoming edge and an outgoing $G_1 < G_2$ iff. $V_1 \subseteq V_2$ and $E_1 \subseteq E_2$

Let G finite ameded graph s.t. each vortex want an Enlevier circuit for G

Assume. If G'. s.t. G. < G st. vertex has
even degree,
G'has an Eulerian circuit.

Now build a Enlerian circuit is 7 9.

Step I: find a circuit (is the graph G.

Find a maximal path, sit. no edge. appears more than once.

iph
' '
van

Then, a reavisive definition of the form. $f(b) = F(b), f(b), f(b) - f(b), \dots$ where $b_1 \times b$, $b_2 \times b$, $b_1 \times b \dots$ $determines a total faction <math>f: B \to C$. $E.g. \qquad (INO, S) \qquad INO S$ $f(b) = 0 \qquad f(b) = 1 \qquad ?cM,$ $f(b) = 0 \qquad f(b) = 1 \qquad ?cM,$

Well-founded recursively defined sets are the.

Collection of all definable computable sets.