Supervised Learning:: CHEAT SHEET

Linear hard-margin SVM

For labeled data $\mathcal{D}=\left(\left(\mathbf{x}^{(1)},y^{(1)}\right),\ldots,\left(\mathbf{x}^{(n)},y^{(n)}\right)\right)$, with $y^{(i)}\in\{-1,+1\}$:

- ullet Assume linear separation by $f(\mathbf{x}) = oldsymbol{ heta}^ op \mathbf{x} + heta_0$, such that all
- +-observations are in the positive halfspace $\{\mathbf{x} \in \mathcal{X} : f(\mathbf{x}) > 0\}$ and all --observations are in the negative halfspace $\{\mathbf{x} \in \mathcal{X} : f(\mathbf{x}) > 0\}$.
- For a linear separating hyperplane, we have

$$y^{(i)}\underbrace{\left(oldsymbol{ heta}^{ op}\mathbf{x}^{(i)}+ heta_0
ight)}_{=f\left(\mathbf{x}^{(i)}
ight)}>0 \quad orall i\in\{1,2,...,n\}.$$

 $d\left(f, \mathbf{x}^{(i)}\right) = \frac{y^{(i)}f\left(\mathbf{x}^{(i)}\right)}{\|\boldsymbol{\theta}\|} = y^{(i)}\frac{\boldsymbol{\theta}^T\mathbf{x}^{(i)} + \theta_0}{\|\boldsymbol{\theta}\|}$

computes the (signed) distance to the separating hyperplane $f(\mathbf{x}) = 0$, positive for correct classifications, negative for incorrect.

• The distance of f to the whole dataset \mathcal{D} is the smallest distance $\gamma = \min_{i} \left\{ d\left(f, \mathbf{x}^{(i)}\right) \right\}$, which represents the **safety margin**. It is positive if f separates and we want to maximize it.

$$\max_{m{ heta}, heta_0} \gamma$$
 s.t. $d\left(f, \mathbf{x}^{(i)}
ight) \geq \gamma \quad orall \, i \in \{1, \dots, n\}.$

Primal linear hard-margin SVM:

$$egin{align*} \min_{oldsymbol{ heta}, heta_0} & rac{1}{2} \|oldsymbol{ heta}\|^2 \ \mathrm{s.t.} & y^{(i)} \left(\left< oldsymbol{ heta}, \mathbf{x}^{(i)}
ight> + heta_0
ight) \geq 1 \quad orall \, i \in \{1, \dots, n\} \end{aligned}$$

This is a convex quadratic program.

Support vectors: All instances $(\mathbf{x}^{(i)}, y^{(i)})$ with minimal margin $y^{(i)}f(\mathbf{x}^{(i)}) = 1$, fulfilling the inequality constraints with equality. All have distance of $\gamma = 1/\|\boldsymbol{\theta}\|$ from the separating hyperplane.

The Lagrange function of the SVM optimization problem is

$$L(\boldsymbol{\theta}, \theta_0, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{\theta}\|^2 - \sum_{i=1}^n \alpha_i \left[y^{(i)} \left(\left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle + \theta_0 \right) - 1 \right]$$
s.t. $\alpha_i \ge 0 \quad \forall i \in \{1, \dots, n\}.$

The **dual** form of this problem is $\max_{\alpha} \min_{\theta, \theta_0} L(\theta, \theta_0, \alpha)$.

We find the stationary point of $L(\theta, \theta_0, \alpha)$ w.r.t. θ, θ_0 and obtain

$$\boldsymbol{\theta} = \sum_{i=1}^{n} \alpha_i \mathbf{y}^{(i)} \mathbf{x}^{(i)}, 0 = \sum_{i=1}^{n} \alpha_i \mathbf{y}^{(i)} \quad \forall i \in \{1, \ldots, n\}.$$

Dual linear hard-margin SVM:

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$$
s.t.
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0,$$

$$\alpha_i \ge 0 \ \forall i \in \{1, \dots, n\},$$

In matrix notation with $K := XX^T$:

$$egin{aligned} \max_{oldsymbol{lpha} \in \mathbb{R}^n} \mathbf{1}^T oldsymbol{lpha} - rac{1}{2} oldsymbol{lpha}^T \mathsf{diag}(\mathbf{y}) oldsymbol{K} \mathsf{diag}(\mathbf{y}) oldsymbol{lpha} \ & ext{s.t.} \ oldsymbol{lpha}^T \mathbf{y} = 0, \ & oldsymbol{lpha} \geq 0, \end{aligned}$$

Solution (if existing):

$$\hat{\theta} = \sum_{i=1}^{n} \hat{\alpha}_{i} \mathbf{y}^{(i)} \mathbf{x}^{(i)}, \quad \theta_{0} = \mathbf{y}^{(i)} - \left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle.$$

Linear Soft-Margin SVM

Allow violations of the margin constraints via slack vars $\zeta^{(i)} \geq 0$

$$y^{(i)}\left(\left\langleoldsymbol{ heta},\mathbf{x}^{(i)}
ight
angle+oldsymbol{ heta}_0
ight)\geq 1-\zeta^{(i)}$$

Now we have two distinct and contradictory goals:

- Maximize the margin.
- Minimize margin violations.

Primal linear soft-margin SVM:

$$\begin{split} & \min_{\boldsymbol{\theta}, \boldsymbol{\theta}_0, \zeta^{(i)}} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^n \zeta^{(i)} \\ & \text{s.t.} \quad \boldsymbol{y}^{(i)} \left(\left\langle \boldsymbol{\theta}, \mathbf{x}^{(i)} \right\rangle + \boldsymbol{\theta}_0 \right) \geq 1 - \zeta^{(i)} \quad \forall \, i \in \{1, \dots, n\}, \\ & \text{and} \quad \zeta^{(i)} \geq 0 \quad \forall \, i \in \{1, \dots, n\}, \end{split}$$

where the constant C > 0 controls trade-off between the two conflicting objectives of maximizing the size of the margin and minimizing the frequency and size of margin violations.

Dual linear soft-margin SVM:

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$$
s.t. $0 \le \alpha_i \le C, \forall i \in \{1, \dots, n\}$ and $\sum_{i=1}^n \alpha_i y^{(i)} = 0$

- Non-SVs have $\alpha_i = 0 \ (\Rightarrow \mu_i = C \Rightarrow \zeta^{(i)} = 0)$ and can be removed from the problem without changing the solution. Their margin $yf(\mathbf{x}) \geq 1$. They are always classified correctly and are never inside of the margin.
- SVs with $0 < \alpha_i < C \ (\Rightarrow \mu_i > 0 \Rightarrow \zeta^{(i)} = 0)$ are located exactly on the margin and have $yf(\mathbf{x}) = 1$.
- SVs with $\alpha_i = C$ have an associated slack $\zeta^{(i)} \geq 0$. They can be on the margin or can be margin violators with $yf(\mathbf{x}) < 1$ (they can even be misclassified if $\zeta^{(i)} \geq 1$).

Regularized ERM representation with hinge loss:

$$\mathcal{R}_{\mathsf{emp}}(\boldsymbol{\theta}) = \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^n L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right); \ L\left(y, f(\mathbf{x})\right) = \max(1 - yf(\mathbf{x}), 0)$$

Optimization

Algorithm 1 Stochastic subgradient descent (without intercept θ_0)

- 1: **for** t = 1, 2, ... **do**
- 2: Pick step size α
- Randomly pick an index i
- 4: If $\mathbf{y}^{(i)}f(\mathbf{x}^{(i)}) < 1$ set $\boldsymbol{\theta}^{[t+1]} = (1 \lambda \alpha)\boldsymbol{\theta}^{[t]} + \alpha \mathbf{y}^{(i)}\mathbf{x}^{(i)}$
- If $y^{(i)}f(\mathbf{x}^{(i)}) \geq 1$ set $\boldsymbol{\theta}^{[t+1]} = (1-\lambda\alpha)\boldsymbol{\theta}^{[t]}$
- 6: end for

Algorithm 2 Pairwise coordinate ascent in the dual

- 1: Initialize lpha=0 (or more cleverly)
- 2: **for** t = 1, 2, ... **do**
- Select some pair α_i , α_i to update next
- Optimize dual w.r.t. α_i, α_i , while holding α_k ($k \neq i, j$) fixed
- 5: end for

Supervised Learning:: CHEAT SHEET

Kernel

Kernel = Feature Map + Inner product

Mercer Kernel

A (Mercer) kernel on a space \mathcal{X} is a continuous function

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

of two arguments with the properties

- Symmetry: $k(\mathbf{x}, \tilde{\mathbf{x}}) = k(\tilde{\mathbf{x}}, \mathbf{x})$ for all $\mathbf{x}, \tilde{\mathbf{x}} \in \mathcal{X}$.
- Positive definiteness: For each finite subset $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\}$ the **kernel Gram matrix** $K \in \mathbb{R}^{n \times n}$ with entries $K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ is positive semi-definite.

Reproducing property: for all kernels, there must exist a Hilbert space, where a map ϕ of this space satisfies $k(\mathbf{x}, \tilde{\mathbf{x}}) = \langle \phi(\mathbf{x}), \phi(\tilde{\mathbf{x}}) \rangle$. The space is called **reproducing kernel Hilbert space** (RKHS).

Typical Kernels

A kernel can be constructed from other kernels k_1 and k_2 :

- For $\lambda \geq 0$, $\lambda \cdot k_1$ is a kernel.
- $k_1 + k_2$ is a kernel.
- $k_1 \cdot k_2$ is a kernel (thus also k_1^n).

Useful kernels:

- Every constant function taking a non-negative value.
- Linear kernel: $k(\mathbf{x}, \tilde{\mathbf{x}}) = \mathbf{x}^{\top} \tilde{\mathbf{x}}$.
- Polynomial kernel: $k(\mathbf{x}, \tilde{\mathbf{x}}) = (\mathbf{x}^{\top} \tilde{\mathbf{x}} + b)^d$, for $b \geq 0, d \in \mathbb{N}$.

$$\phi(\mathbf{x}) = \left(\sqrt{ig(egin{array}{c} d \ k_1, \dots, k_{p+1} \end{array}} x_1^{k_1} \dots x_p^{k_p} b^{k_{p+1}/2}
ight)_{k_i \geq 0, \sum_i k_i = d}$$

• Gaussian kernel: $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|^2}{2\sigma^2})$ or $k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp(-\gamma \|\mathbf{x} - \tilde{\mathbf{x}}\|^2), \ \gamma > 0$

Dual kernelized soft-margin SVM:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$
s.t. $0 \le \alpha_{i} \le C, \forall i \in \{1, \dots, n\}$ and $\sum_{i=1}^{n} \alpha_{i} y^{(i)} = 0$

Kernel representation of separating hyperplane:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y^{(i)} k(\mathbf{x}^{(i)}, \mathbf{x}) + \theta_0$$

Hyperparameters of SVM

SVMs are somewhat sensitive to its hyperparameters and should always be tuned.

- The choice of C, the choice of the kernel, the kernel parameters are all up to the user.
- Small C allows for margin-violating points in favor of a large margin.
- Large C penalizes margin violators, decision boundary is more wiggly.