

Algorithmique et structures de données Complexité d'un algorithme récursif : rappels de méthode

Gaël Mahé

Université Paris Descartes Licence 2

Étape 1 : écrire récursivement la cplxité

Algorithme 1 : Forme générale d'un algo Divide and Conquer

début

```
/* ENTRÉE : x, SORTIE : f(x) */
opérations sur x
appel f(T_1(x))
...
appel f(T_p(x))
fusion, opérations sur x
```

fin

Hypothèses

- donnée x de taille n
- complexité des opérations hors appels récursifs : $C_{op}(n)$
- chaque $T_i(x)$ a une taille n/q

$$C(n) = pC(n/q) + C_{op}(n)$$

Étapes 2 à 4, via les séries génératrices

- Donner une forme plus classique à l'équation de récurrence :
 - $C(n) = pC(n/q) + C_{op}(n)$
 - On pose $n = 2^k$, $q = 2^\ell$: $C(2^k) = pC(2^{k-\ell}) + C_{op}(2^k)$
 - On pose $x(k) = C(2^k)$ et $u(k) = C_{op}(2^k) : x(k) = px(k \ell) + u(k)$
- \odot Calculer la série génératrice de la suite x:
 - $x = px_{\ell} + u$
 - $X(z) = pz^{\ell}X(z) + U(z)$

•

$$X(z) = \frac{U(z)}{1 - \rho z^{\ell}}$$

① En déduire x(k), puis C(n) $(k = \log_2(n))$

Étape 4 : exemple

Si par exemple $u(k) = \lambda 2^k$, $\ell = 1$ et $p \neq 2$ (NB : cas p = 2 déjà traité : voir tri fusion)

$$U(z) = \lambda \sum_{k \ge 0} 2^k z^k = \frac{\lambda}{1 - 2z}$$

$$X(z) = \frac{\lambda}{(1 - 2z)(1 - pz)} = \frac{\alpha}{1 - 2z} + \frac{\beta}{1 - pz}$$

$$= \alpha \sum_{k \ge 0} 2^k z^k + \beta \sum_{k \ge 0} p^k z^k$$

$$= \sum_{k \ge 0} (\alpha 2^k + \beta p^k) z^k$$

Donc
$$x(k) = \alpha 2^k + \beta p^k$$

Étape 4 : exemple (suite)

$$x(k) = \alpha 2^k + \beta p^k$$

• C(n) = x(k) pour $k = \log_2(n)$

Pour *n* grand,

• si p = 1, $x(k) \simeq \alpha 2^k$ \blacktriangleright $C(n) = \alpha n$

• si p > 2, $x(k) \simeq \beta p^k$ \blacktriangleright $C(n) = \beta p^{\log_2(k)} = \beta n^{\log_2(p)}$

Bilan

- On avait p appels récursifs sur des sous-ensemble de taille n/q, plus quelques opérations de complexité totale $C_{op}(n)$.
- Dans l'exemple, $C_{op}(n)$ n'affecte C(n) que via α et β
- Souvent (comme ici), l'ordre de grandeur asymptotique de C(n) ne dépend que de p/q

Matrix multiplication

Input:
$$A = [a_{ij}], B = [b_{ij}].$$

Output: $C = [c_{ij}] = A \cdot B.$ $i, j = 1, 2, ..., n.$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Standard algorithm

for
$$i \leftarrow 1$$
 to n

do for $j \leftarrow 1$ to n

do $c_{ij} \leftarrow 0$

for $k \leftarrow 1$ to n

do $c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$

Standard algorithm

for
$$i \leftarrow 1$$
 to n

$$\mathbf{do} \ \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n$$

$$\mathbf{do} \ c_{ij} \leftarrow 0$$

$$\mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ n$$

$$\mathbf{do} \ c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$$

Running time = $\Theta(n^3)$

Divide-and-conquer algorithm

DEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r \mid s \\ -+- \\ t \mid u \end{bmatrix} = \begin{bmatrix} a \mid b \\ -+- \\ c \mid d \end{bmatrix} \cdot \begin{bmatrix} e \mid f \\ ---- \\ g \mid h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = ae + bg$$

 $s = af + bh$
 $t = ce + dg$
 $u = cf + dh$
8 mults of $(n/2) \times (n/2)$ submatrices
4 adds of $(n/2) \times (n/2)$ submatrices

Divide-and-conquer algorithm

DEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r \mid S \\ -+- \\ t \mid u \end{bmatrix} = \begin{bmatrix} a \mid b \\ -+- \\ c \mid d \end{bmatrix} \cdot \begin{bmatrix} e \mid f \\ ---- \\ g \mid h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = ae + bg$$

 $s = af + bh$
 $t = ce + dh$
 $u = cf + dg$
Solution $recursive$
8 mults of $(n/2) \times (n/2)$ submatrices
4 adds of $(n/2) \times (n/2)$ submatrices

Multiplication de matrices

Algorithme 2 : Multiplication récursive de 2 matrices

début

```
/* ENTRÉES : 2 matrices A et B, de dimensions n \times n^*/
/* SORTIE : produit matriciel AB */
a \leftarrow \text{hautgauche}(A)
b \leftarrow \text{hautdroite}(A)
P_1 \leftarrow \text{mult}(a, c)
P_8 \leftarrow \text{mult}(d, h)
r \leftarrow \operatorname{add}(P_1, P_2)
s \leftarrow \operatorname{add}(P_3, P_4)
t \leftarrow \operatorname{add}(P_5, P_6)
u \leftarrow \operatorname{add}(P_7, P_8)
```

fin

Complexité : $C(n) = \Theta(n^3)$ (démonstration en TD) Approche "diviser pour régner" sans intérêt içi.

• Multiply 2×2 matrices with only 7 recursive mults.

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_1 = a \cdot (f - h)$$

 $P_2 = (a + b) \cdot h$
 $P_3 = (c + d) \cdot e$
 $P_4 = d \cdot (g - e)$
 $P_5 = (a + d) \cdot (e + h)$
 $P_6 = (b - d) \cdot (g + h)$
 $P_7 = (a - c) \cdot (e + f)$

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$
 $r = P_{5} + P_{4} - P_{2} + P_{6}$
 $P_{2} = (a + b) \cdot h$ $s = P_{1} + P_{2}$
 $P_{3} = (c + d) \cdot e$ $t = P_{3} + P_{4}$
 $P_{4} = d \cdot (g - e)$ $u = P_{5} + P_{1} - P_{3} - P_{7}$
 $P_{5} = (a + d) \cdot (e + h)$
 $P_{6} = (b - d) \cdot (g + h)$
 $P_{7} = (a - c) \cdot (e + f)$

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$

 $P_{2} = (a + b) \cdot h$
 $P_{3} = (c + d) \cdot e$
 $P_{4} = d \cdot (g - e)$
 $P_{5} = (a + d) \cdot (e + h)$
 $P_{6} = (b - d) \cdot (g + h)$
 $P_{7} = (a - c) \cdot (e + f)$

$$r = P_5 + P_4 - P_2 + P_6$$

$$s = P_1 + P_2$$

$$t = P_3 + P_4$$

$$u = P_5 + P_1 - P_3 - P_7$$

7 mults, 18 adds/subs.
Note: No reliance on commutativity of mult!