

Exhaustive Search Attacks

Then \forall m, c there is at most <u>one</u> key k s.t. c = DES(k, m)

Proof:
$$P = \frac{1}{2} = \frac{1$$

For two DES pairs $(m_1, c_1=DES(k, m_1))$, $(m_2, c_2=DES(k, m_2))$ unicity prob. $\approx 1 - 1/2^{71}$

For AES-128: given two inp/out pairs, unicity prob. $\approx 1 - 1/2^{128}$

DES challenge

$$msg = "The unknown messages is: XXXX ..."$$
 $CT = c_1 c_2 c_3 c_4$

Goal: find $k \in \{0,1\}^{56}$ s.t. DES $(k, m_i) = c_i$ for i=1,2,3

1997: Internet search -- 3 months

1998: EFF machine (deep crack) -- **3 days** (250K \$)

1999: combined search -- 22 hours

2006: COPACOBANA (120 FPGAs) -- 7 days (10K \$)

⇒ 56-bit ciphers should not be used !! (128-bit key ⇒ 2^{72} days)

• Define $3E: K^3 \times M \longrightarrow M$ as

$$3E((k_1,k_2,k_3), m) = E(K_1, D(K_2, E(K_3, m)))$$

$$K_1 = K_2 = K_3 \implies \text{single DES}$$

For 3DES: key-size = $3 \times 56 = 168$ bits. $3 \times slower than DES$.

(simple attack in time $\approx 2^{118}$)

Attack: $M = (m_1, ..., m_{10})$, $C = (c_1, ..., c_{10})$

$k^0 = 0000$ $k^1 = 0001$	E(k ⁰ , M) E(k ¹ , M)
$k^2 = 0010$	$E(k^2, M)$
1	i i
k ^N = 1111	E(k ^N , M)

• step 1: build table.

 Step 2: for all k∈{0,1}⁵⁶ do: test if D(k, C) is in 2nd column.

if so then
$$E(k^i,M) = D(k,C) \Rightarrow (k^i,k) = (k_2,k_1)$$

Time =
$$2^{56}\log(2^{56}) + 2^{56}\log(2^{56}) < 2^{63} << 2^{112}$$
, space $\approx 2^{56}$

Same attack on 3DES: Time = 2^{118} , space $\approx 2^{56}$

Method 2: DESX

 $E: K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a block cipher

Define EX as
$$EX((k_1,k_2,k_3), m) = k_1 \oplus E(k_2, m \oplus k_3)$$

For DESX: key-len = 64+56+64 = 184 bits

... but easy attack in time $2^{64+56} = 2^{120}$ (homework)

Note: $k_1 \oplus E(k_2, m)$ and $E(k_2, m \oplus k_1)$ does nothing !!

More attacks on block ciphers

Attacks on the implementation

- 1. Side channel attacks:
 - Measure time to do enc/dec, measure power for enc/dec

[Kocher, Jaffe, Jun, 1998]

- 2. Fault attacks:
 - Computing errors in the last round expose the secret key k
- ⇒ do not even implement crypto primitives yourself ...

Linear attacks

$$\Pr\left[\begin{array}{c} m[i_1] \oplus \cdots \oplus m[i_r] \\ \text{subset} \quad \text{of} \\ \text{subset} \quad \text{of} \\ \text{subset} \quad \text{of} \\ \text{cipher leve bits} \end{array}\right] = k[l_1] \oplus \cdots \oplus k[l_u] = \frac{1}{2} + \epsilon$$

For some ϵ . For DES, this exists with $\epsilon = 1/2^{21} \approx 0.0000000477$ Thm: given $1/\epsilon^2$ random (m, c=DES(k, m)) pairs then

$$k[l_1,...,l_u] = MAJ \left[m[i_1,...,i_r] \bigoplus c[j_j,...,j_v] \right]$$

with prob. ≥ 97.7%

 \Rightarrow with $1/\epsilon^2$ inp/out pairs can find $k[l_1,...,l_u]$ in time $\approx 1/\epsilon^2$.

For DES, $\varepsilon = 1/2^{21} \Rightarrow$

with 2^{42} inp/out pairs can find $k[l_1,...,l_u]$ in time 2^{42}

Roughly speaking: can find 14 key "bits" this way in time 242

Brute force remaining 56–14=42 bits in time 2⁴²

Total attack time $\approx 2^{43}$ (<< 2^{56}) with 2^{42} random inp/out pairs

Quantum attacks

Given m, c=E(k,m) define

Generic search problem:

Let $f: X \longrightarrow \{0,1\}$ be a function.

Goal: find $x \in X$ s.t. f(x)=1.

$$f(k) = \begin{cases} 1 & \text{if } E(k,m) = 0 \\ 0 & \text{otherwise} \end{cases}$$

Grover \Rightarrow quantum computer can find k in time O($|K|^{1/2}$)

DES: time $\approx 2^{28}$, AES-128: time $\approx 2^{64}$

quantum computer ⇒ 256-bits key ciphers (e.g. AES-256)

End of Segment