Syntax and Semantics of Propositional Logic Week 2 Tutorial

Joe Scott / Jan Gorzny

Prepared based off of the notes of CS245 Instructors, past and present.

January 13, 2017

Contact Info

- Email j29scott@uwaterloo.ca
- Office Hours: Monday 3pm, Tutorial Center in MC
- My office is in WatForm Lab, DC 2551D, but I don't actively hold office hours there.

Contact Info

- Email jgorzny@uwaterloo.ca
- Office Hours: Monday 3pm, Tutorial Center in MC
- My office is DC 2515, but I don't actively hold office hours there.

Outline

- Review of Induction
 - Mathematical Induction
 - Structural Induction

Plan

- Review of Induction
 - Mathematical Induction
 - Structural Induction

Outline

- Review of Induction
 - Mathematical Induction
 - Structural Induction

Problem: Prove, for all positive integers $n \ge 1$, that

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

Solution: It is an exercise to verify the algebraic identity

$$\frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}.$$

The rest of the proof is by induction on $n \ge 1$.

Base (n = 1): We note that

$$\sum_{i=1}^{1} i^{2} = 1^{2}$$

$$= 1, \text{ and}$$

$$\frac{1^{3}}{3} + \frac{1^{2}}{2} + \frac{1}{6} = \frac{2+3+1}{6}$$

$$= 1.$$

Induction (n > 1): The induction hypothesis is

$$\sum_{i=1}^{n-1} i^2 = \frac{(n-1)^3}{3} + \frac{(n-1)^2}{2} + \frac{(n-1)}{6}.$$

Then we compute

$$\sum_{i=1}^{n} i^{2} = \sum_{i=1}^{n-1} i^{2} + n^{2}$$

$$= \underbrace{(n-1)^{3}}_{3} + \underbrace{(n-1)^{2}}_{2} + \underbrace{(n-1)}_{6} + n^{2}$$

$$\underbrace{\frac{(n-1)^3}{3} + \frac{(n-1)^2}{2} + \frac{(n-1)}{6} + n^2}_{\text{I.H.}}$$

$$= \frac{n^3 - 3n^2 + 3n - 1}{3} + \frac{n^2 - 2n + 1}{2} + \frac{n - 1}{6} + n^2$$

$$= \left(\frac{1}{3}\right)n^3 + \left(-1 + \frac{1}{2} + 1\right)n^2 + \left(1 + -1 + \frac{1}{6}\right)n + \left(-\frac{1}{3} + \frac{1}{2} - \frac{1}{6}\right)$$

$$= \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}.$$

This completes the induction, and the proof.

Problem: Prove by induction, for all positive integers $n \ge 2$, that

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n}$$

Base (n = 2): We note that

$$1 - \frac{1}{2^2} = \frac{3}{4}$$
$$\frac{2+1}{4} = \frac{3}{4}$$

So the equation is true for n = 2.

Induction $(k \ge 2)$: The induction hypothesis is as follows for n = k:

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n}$$

Now consider k + 1:

$$\prod_{i=2}^{k+1} \left(1 - \frac{1}{i^2} \right) = \prod_{i=2}^{k} \left(1 - \frac{1}{i^2} \right) \left(1 - \frac{1}{(k+1)^2} \right)$$

$$\stackrel{=}{\underset{\text{I.H.}}{=}} \frac{k+1}{2k} \left(1 - \frac{1}{(k+1)^2} \right)$$

$$= \frac{k+1}{2k} \left(1 - \frac{1}{(k+1)^2} \right)$$

$$= \frac{k+1}{2k} \cdot \frac{(k+1)^2 - 1}{(k+1)^2}$$

$$= \frac{k^2 + 2k}{2k(k+1)}$$

$$= \frac{k+2}{2(k+1)}$$

This completes the induction, and the proof.

Outline

- Review of Induction
 - Mathematical Induction
 - Structural Induction

Example Problem

Problem: Use structural induction to prove the following.

Let φ be a well-formed formula. Let m be the number of atoms in φ . Let n be the number of occurrences of the binary connectives \wedge , \vee , \rightarrow , \leftrightarrow in φ . Then m = n + 1.

Base Case

Base Case, $(\varphi = p$, for some propositional variable p): For this formula $\varphi = p$, we have m = 1 and n = 0. Therefore,

$$m = 1 = 0 + 1 = n + 1$$
,

as required.

Inductive Step - Unary Operator

m - # of ap n - # of binary connectives.

Inductive Step, Case if Unary α , α , α , for some well-formed formula α . Let m_{φ} , m_{α} denote the number of atoms in α , α , respectively. Let α , α , denote the number of binary connectives in α , α , respectively. The inductive hypothesis is that α , α , α , α . Then we have

$$m_{\varphi} = m_{\alpha} = n_{\alpha} + 1 = n_{\varphi} + 1,$$
 by construction

as required.

Inductive Step - Binary Operator

Inductive Step, Case if Binary, ($\varphi=(\alpha\star\beta)$, for some well-formed formulæ α,β and some binary connective \star): Let $m_{\varphi},m_{\alpha},m_{\beta}$ denote the number of atoms in φ,α,β , respectively. Let $n_{\varphi},n_{\alpha},n_{\beta}$ denote the number of binary connectives in φ,α,β , respectively. The inductive hypothesis is that $m_{\alpha}=n_{\alpha}+1$ and $m_{\beta}=n_{\beta}+1$. Then we have

as required.

Plan

- Review of Induction
 - Mathematical Induction
 - Structural Induction

- Syntax is the grammar. It describes the way to construct a correct sentence. For example, this water is triangular is syntactically correct.
- Semantics relates to the meaning. this water is triangular does not mean anything, though the grammar is ok.

Definition of a Formula

Let $\mathcal P$ be a set of propositional variables. We define the set of formulas over $\mathcal P$ inductively as follows.

- lacktriangle An expression consisting of a single symbol of ${\mathcal P}$ is a formula.
- ② if ψ is a formula, then $(\neg \psi)$ is a formula.
- lacktriangledown if ψ is a formula and η is a formula then the following are formula
 - $(\psi \wedge \eta)$
 - $(\psi \vee \eta)$
 - $(\psi \implies \eta)$
 - $(\psi \iff \eta)$

Truth Tables

Problem: Give a truth table for the following formula.

$$((p \rightarrow q) \land r)$$

Solution:

p	q	r	(p ightarrow q)	$((p \rightarrow q) \land r)$
F	F	F	T	F
F	F	Τ	T	T
F	T	F	T	F
F	T	T	T	T
Τ	F	F	F	F
Τ	F	T	F	F
Τ	T	F	T	F
Τ	T	Τ	T	T

Truth Tables

Problem: Give a truth table for the following formula.

$$((p \wedge r) \vee ((\neg r) \rightarrow q))$$

Solution:

Truth Tables

Problem: Give a truth table for the following formula.

$$((p \wedge r) \vee ((\neg r) \rightarrow q))$$

Solution:

p	q	r	$(p \wedge r)$	$((\neg r) \rightarrow q)$	$\big \; ((p \land r) \lor ((\neg r) \to q))$
F	F	F	F	F	F
F	F	Τ	F	T	T
F	T	F	F	T	T
F	T	T	F	T	T
T	F	F	F	F	F
T	F	T	T	T	Т
T	Τ	F	F	T	Т
T	Τ	T	T	T	Т

$$\{(p \lor (\neg q)), (p \implies r), ((\neg q) \implies r)\} \models r$$

$$\{(p \lor (\neg q)), (p \implies r), ((\neg q) \implies r)\} \models r$$

р	q	r	$(p \lor (\neg q))$	$(p \implies r)$	$((\neg q) \implies r)$	r
Т	Т	Т	T	Т	Т	
Т	T	1	Τ Τ		Т	
Т	上	Т	T	Т	T	
Т	上	\perp	T	1		
\perp	Т	Т		Т	Т	
\perp	Т	丄		Т	Т	
\perp	上	Т	T	Т	Т	
\perp	\perp	\perp	T	Т		

$$\{(p \lor (\neg q)), (p \implies r), ((\neg q) \implies r)\} \models r$$

p	q	r	$(p \lor (\neg q))$	$(p \implies r)$	$((\neg q) \implies r)$	r
T	Т	Т	Т	Т	Т	Т
Т	Т	\perp	Т		Т	1
Т	上	Т	T	Т	Т	Т
\top	上	\perp	Т	T	T	
\perp	Т	Т		Т	Т	Т
\perp	Т	\perp	\perp	Т	Т	1
\perp	上	Т	Т	Т	Т	Т
\perp	上	\perp	Т	Т	Τ	上

$$\{(p \lor (\neg q)), (p \implies r), ((\neg q) \implies r)\} \models r$$

р	q	r	$(p \lor (\neg q))$	$ (p \implies r) $	$((\neg q) \implies r)$	r	
T	T	Т	Т	Т	Т	T	\triangleleft
Т	T	1	Τ Τ		Т	丄	
T	上	Т	Τ Τ	Τ Τ	T	Т	\triangleleft
T	上	上	T			\perp	
\perp	Т	Т		T	Т	Т	
\perp	Т	上		Τ Τ	T	\perp	
\perp	上	Т	Τ Τ	Τ Τ	Т	Т	\triangleleft
\perp	上	1	T	T		上	

Do the premises semantically entail (logically imply) the conclusion? Answer this question using a truth table. Explain.

$$\{(p \lor (\neg q)), (p \implies r), ((\neg q) \implies r)\} \models r$$

р	q	r	$(p \lor (\neg q))$	$ (p \implies r) $	$((\neg q) \implies r)$	r	
T	Т	Т	Т	Т	Т	Т	\triangleleft
Т	Т	\perp	Т		Т	上	
Т	上	Т	Т	Т	Т	丁	\triangleleft
Т	上	\perp	Т		\perp	上	
\perp	Т	Т		T	Т	Т	
\perp	Т	\perp		Т	Т	上	
\perp	丄	Т	Т	Т	Т	Т	\triangleleft
\perp	上	\perp	Т	Т	\perp	上	

The definition of semantically entails states that the premises semantically entail the conclusion iff every truth valuation which satisfies the premises also satisfies the conclusion.

$$\{((\neg p) \implies ((\neg q) \lor r)), (p \implies r), (\neg r)\} \models r$$

$$\{((\neg p) \implies ((\neg q) \lor r)), (p \implies r), (\neg r)\} \models r$$

p	q	r	$((\neg p) \implies ((\neg q) \lor r))$	$ (p \implies r) $	$(\neg r)$	r
\top	Т	Т				
Т	Т	上				
Т	\perp	Т				
Т	1	1				
\perp	Т	Τ				
\perp	Т	1				
\perp	丄	Т				
\perp	\perp	_				

$$\{((\neg p) \implies ((\neg q) \lor r)), (p \implies r), (\neg r)\} \models r$$

p	q	r	$((\neg p) \implies ((\neg q) \lor r))$	$(p \implies r)$	$(\neg r)$	r
T	Т	Т	Т			
Т	Т	上	Т			
Т	丄	Т	Т			
Т	\perp	\perp	Т			
\perp	Т	Т	Т			
\perp	Т	1				
\perp	丄	Т	Т			
\perp	上	1	Т			

$$\{((\neg p) \implies ((\neg q) \lor r)), (p \implies r), (\neg r)\} \models r$$

р		r	$((\neg p) \implies ((\neg q) \lor r))$	$(p \implies r)$	$(\neg r)$	r
Τ	Т	T	Т	Т		
Т	Т	1	Т	工		
Т	上	Т	T	T		
T	上	⊥	T	工		
\perp	Т	Т	T	Т		
\perp	Т	\perp		Т		
\perp	丄	Т	T	Т		
\perp	丄	上	Т	Т		

$$\{((\neg p) \implies ((\neg q) \lor r)), (p \implies r), (\neg r)\} \models r$$

р	q	r	$((\neg p) \implies ((\neg q) \vee r))$	$(p \implies r)$	$(\neg r)$	r
Т	Т	T	Т	Т		
Т	Т	1	Т	工	T	
Т	上	Т	T	T		
\top	上	⊥	Т	工	T	
\perp	Т	Т	Т	Т	丄	
\perp	Т	\perp		Т	T	
\perp	上	Т	Т	Т		
\perp	1		Т	T	Т	

$$\{((\neg p) \implies ((\neg q) \lor r)), (p \implies r), (\neg r)\} \models r$$

p	q	r	$((\neg p) \implies ((\neg q) \lor r))$	$(p \implies r)$	$(\neg r)$	r
T	Т	Т	Т	Т		Τ
Т	Т	1	Т		T	\perp
Т	\perp	Т	T	Τ Τ	丄	Т
Т	\perp	上	T		T	\perp
\perp	Т	Т	Т	Т	丄	Τ
\perp	Τ	1		Т	T	\perp
\perp	\perp	Т	Т	Т	丄	Τ
\perp	工	上	Т	Т	T	\perp

$$\{((\neg p) \implies ((\neg q) \lor r)), (p \implies r), (\neg r)\} \models r$$

		r	$ \mid ((\neg p) \implies ((\neg q) \vee r)) $	$(p \implies r)$	$(\neg r)$	r
\top	Т	Т	Т	Т	工	Т
Т	Т	1	Т		T	\perp
Т	上	Т	T	Τ Τ	丄	Т
Τ	上	\perp	Т		Т	\perp
\perp	Т	Т	Т	Т	丄	Т
\perp	Т	⊥		Т	Т	\perp
\perp	上	Т	Т	Т	丄	Т
\perp	丄	上	Т	Т	Т	\perp \triangleleft