MEDIDAS Y TEOREMA

Jhoselin Angélica Coronel Condori

April 2024

1. Medidas

- → Por espacio medible entendemos un par ordenado (Ω, \mathcal{B}) que consta de un conjunto Ω y una σ -álgebra \mathcal{B} de subconjuntos de Ω . Un subconjunto A de Ω se llama medible si $A \in \mathcal{B}$.
- → Una medida μ en un espacio medible (Ω, \mathcal{B}) es una función $\mu : \mathcal{B} \to [0, \infty]$ que satisface:

$$\mu(\emptyset) = 0$$

$$\mu\left(\bigcup_{i=0}^{\infty} E_i\right) = \sum_{i=0}^{\infty} \mu(E_i)$$

para cualquier sucesión $\{E_i\}$ de conjuntos medibles disjuntos, es decir, $E_i \cap E_j = \emptyset$, $E_i \in \mathcal{B}$, $i \neq j$.

 \rightarrow $(\Omega, \mathcal{B}, \mu)$ se llama espacio de medida.

2. Teorema

Teorema Las siguientes afirmaciones son equivalentes para un grupo G:

- 1. P(G) = 1
- 4. $G' = \{1\}$
- 2. G es abeliano
- 5. CG(a) = G para todo $a \in G$
- 3. Z(G) = G
- 6. $G/G' \cong G$

Demostración. Si P(G)=1, entonces $|L(G)|=|G|^2$. Luego, $L(G)=G^2$, lo cual implica que xy=yx para todo $x,y\in G$. Así, G es un grupo abeliano. Es inmediato observar que el razonamiento inverso también es cierto, lo que prueba que 1 es equivalente a 2.

Según este resultado, para tener grados de conmutatividad diferentes de 1, debemos analizar grupos no abelianos.