(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-133802

(43)公開日 平成9年(1997)5月20日

(51) Int.Cl.*		識別記号	庁内整理番号	FΙ			技術表示箇所
G02B	1/11			G 0 2 B	1/10	Α	
C07F	9/6593		9450-4H	C 0 7 F	9/6593		
C09D	5/00	PPQ		C09D	5/00	PPQ	
	7/12	PSL			7/12	PSL	

審査請求 未請求 請求項の数2 OL (全 8 頁)

(21)出願番号	特顯平7-289928	(71)出題人 000002185
		ソニー株式会社
(22)出顧日	平成7年(1995)11月8日	東京都品川区北品川6丁目7番35号
	•	(72)発明者 近藤 洋文
		東京都品川区北品川6丁目7番35号 ソニ
		一株式会社内
		(72)発明者 花岡 英章
		東京都品川区北品川6丁目7番35号 ソニ
		一株式会社内
		(72) 発明者 植田 充紀
		東京都品川区北品川6丁目7番35号 ソニ
		一株式会社内
	•	(74)代理人 弁理士 小池 晃 (外2名)
		最終頁に続く

(54) 【発明の名称】 反射防止フィルター

(57)【要約】

10 421:00

【課題】 耐汚染性、滑り性、耐摩耗性等の問題点を解 決する反射防止フィルターを提供する。

【解決手段】 反射防止フィルター1は、透明基材2 と、この透明基材2の上に設けられた単層或いは複層の 反射防止膜3と、これら反射防止膜3の表面に化1を含む表面処理剤5を被膜させた表面処理層とを備える。 【化1】

産業等 R 及び Q は基銀貨化水準基或いは フルオロボリエーテルを示し、 n は 6 以下の正の数である。

したがって、以上のように構成された反射防止フィルター1は、反射防止膜3の表面に化1に示した長鎖炭化水 素基或いはフルオロボリエーテルを持つフォスファゼン 化合物を含む表面処理剤5が被膜されることによって、 フォスファゼン化合物の持つ調滑性が反射防止フィルター1の表面に付与される。

本発明に係る2層の反射防止膜からなる 反射防止フィルターの部分裏部縦断面図

【特許請求の範囲】

【請求項1】 透明基材と、

上記透明基材の上に設けられた単層或いは複層の反射防 止膜と、

上記反射防止膜の表面に化1で示されるフォスファゼン 化合物を含む表面処理剤を被膜させた表面処理層と、 を備える反射防止フィルター。

【化1】

置換基R及びQは長鎖炭化水素基或いは フルオロポリエーテルを示し、

nは6以下の正の数である。

【請求項2】 上記反射防止膜は、少なくともその表面 近傍部分が二酸化珪素を含む物質で構成されることを特 徴とした請求項1記載の反射防止フィルター。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、優れた耐汚染性、 耐擦傷性、耐加工性、滑り性、耐摩耗性等を有する反射 防止フィルターに関する。

[0002]

【従来の技術】従来、CRT用の前面板、液晶ディスプレイ等には、防眩用途として反射防止フィルターが提供されてきた。この反射防止フィルターには、ガラス板もしくはプラスチック板上に反射防止膜として無機多層薄膜を設けディスプレイ前面に設置するタイプ、プラスチックフィルムに反射防止膜として無機多層薄膜を設け、このフィルムをガラス板或いはプラスチック板に貼り合わせ、それをディスプレイ前面に設置するタイプ、反射防止膜として無機多層薄膜を設けたプラスチックフィルムを直接ディスプレイ表面に貼り合わせるタイプがある。

【0003】従来の反射防止フィルターには、透明基材上に2層の反射防止膜を有するもの(特開昭58-46301号公報及び特開昭59-50401号公報に記載)と、透明基材上に3層の反射防止膜を有するもの(特開昭59-49501号公報及び特開昭59-50401号公報に記載)と透明基板上に4層の反射防止膜を有するもの(特開昭61-168899号公報に記載)がある。

【0004】透明基材としては、ガラス、ブラスチック 等の成形物やシート、フィルム等が用いられてきた。と くにプラスチック基材は、あらかじめ付着性、硬度、耐 薬品性、耐久性、染色性などの物性を向上、付与させる 目的で被覆材を施されることもある。ただしこれらの被 覆材は、透明基材の透明性を損なわないものである。 【0005】また、反射防止膜には、無機酸化物が透明基材上に蒸着されたもの、或いは液状組成物として有機材料に無機系数粒子を混入したものや、無機系材料に無機系数粒子を混入したものが透明基材上に塗布されたものがある。

【0006】無機酸化物、例えばSiOz等は、透明基 材上に真空蒸着法、イオンプレーティング法、スパッタ リング法などに代表される物理的蒸着 (physica lvapour deposition, PVD) 法に 10 より被膜形成される。

【0007】液状組成物は、透明基材上にカーテンフロー塗装、浸資塗装、スピン塗装等に代表される通常のコーティング作業で用いられる方法により被膜形成される。液状組成物には、有機材料中に略30%の無機系微粒子を分散させたもの、或いは無機系材料で溶剤に分散または溶解しうるか、それ自体液状であるもの、または、かかる有機材料と無機系材料の混合物が用いられている。

【0008】無機系徴粒子は、有機材料中に分散された 20 場合、有機材料が硬化、或いは乾燥して反射防止膜となった際に堅い表面硬度を与える。さらに、無機系微粒子は、溶剤に分散または溶解しうるか、それ自体液状である無機系材料中にも分散される。この場合も、無機系微粒子は、無機系材料が硬化、或いは乾燥して反射防止膜となった際に堅い表面硬度を与える。

【0009】上述の反射防止フィルターにおいて、反射防止膜は、無機酸化物或いは無機系像粒子のために、その表面の硬度は高いが、耐汚染性、耐摩耗性、滑り性、撥水性等の表面物性が満足できるものでなかった。

【0010】したがって、反射防止膜の表面は、各種表面処理剤を被膜形成させ表面物性を向上させていた。この表面処理剤は、表面に蒸着され反射防止フィルター表面に滑り性、設水性を与える目的で、例えば、ポリテトラフルオロエチレン等のフッ素系が用いられてきた(特開平3-266801号公報)。

[0011]

【発明が解決しようとする課題】しかしながら、上述の 表面が反射防止膜からなる反射防止フィルターは、汚れ が付き易く、また、表面の滑り性が悪いために傷が付き 40 やすくなるといった問題点があった。

【0012】また、上述の表面処理剤で反射防止膜を被 腰した反射防止フィルターは、水に対する撥水性は向上 するが、摩擦或いは摩耗に対して満足する結果は得られ ていなかった。

【0013】そこで、本発明は、耐汚染性、滑り性、耐 摩託性等の係る問題点を解決する反射防止フィルターを 提供することを目的とする。

[0014]

【課題を解決するための手段】この目的を達成した本発 50 明に係る反射防止フィルターは、透明基材と、上記透明

基材の上に設けられた単層或いは複層の反射防止膜と、 上記反射防止膜の最外隔膜の表面に化2で示される表面 処理剤を被膜させた表面処理層とを備える。

[0015] [ft 2]

$$(RO)$$
 $\frac{P}{N}$ $\frac{P}{N}$ $\frac{1}{N}$ $\frac{1}{N}$

置換基R及びQは長鎖炭化水素基或いは フルオロポリエーテルを示し、 nは6以下の正の数である。

【0016】したがって、以上のように構成された反射 防止フィルターは、反射防止膜の表面に化2に示した長 鎖炭化水素基或いはフルオロポリエーテルを持つフォス ファゼン化合物を含む表面処理剤が被膜されることによ って、フォスファゼン化合物の持つ潤滑性が反射防止フ ィルターの表面に付与される。

[0017]

【発明の実施の形態】以下、本発明に係る反射防止フィ ルターの実施の形態を図を用いて詳細に説明する。例え ば、放送受信用テレビに代表される画像表示装置は、コ ンピュータ応用情報システムの展開で近年急激に多様化 が進行している。ここで画像とは、文字、数字、図形等 の静止及び運動画像であって人間が視覚的に感知しうる ものを指す。

【0018】画像表示装置は、外光制御(外光の光路中 において眼にはいる光量を制御する)または発光制御

(発光体の入力エネルギーを制御する) 方式により情報 を視覚化し、直視または投影によって画像とするもので ある。これらの例としては、陰極線管 (CRT)、レー ザーディスプレイ、ホトクロミックディスプレイ、エレ クトロミックディスプレイ、液晶ディスプレイ、プラズ マディスプレイ、発光ダイオードディスプレイ、ライト パルプなどがある。さらに、本発明係る反射防止フィル ターは、前述の各種表示装置に限られるものではなく、 機器等の前面に反射防止フィルターを有する前面板を配 したものも含まれる。

【0019】図1に示すように、反射防止フィルター1 は、透明基材2の上に2層からなる反射防止膜3が形成 されるとともに、反射防止膜3の上に表面処理剤5が被 膜形成されて構成される。また、図2に示すように、反 射防止フィルター1は、透明基材2の上に3層からなる 反射防止膜4が形成されるとともに、反射防止膜4の上 に表面処理剤5が被膜形成されて構成される。

【0020】反射防止フィルター1は、表面に耐汚染 性、滑り性、耐摩耗性、手垢の付きにくさといった表面 物性を付与するために、化2に示された長鎖炭化水素基 物を含む表面処理剤5を塗布する。フォスファゼン化合 物は、化2に示すように、置換基R及び/またはQに長 鎖炭化水素基或いはフルオロポリエーテルが結合してい る。なお、化2に示す置換基R及びQは、同一であって も異なっても良い。また、化2に示すの nは、6以下の 正の整数または0であっても良い。

【0021】フルオロポリエーテルは、表面処理剤5の 性能である濡れ性を向上させるため存在している方が良 いが、とくに存在しなくても良い。したがって、フルオ 10 ロポリエーテル/炭化水素の比は、0以上なら良いが溶 媒への溶解度を考慮すると5以下であることが好まし い。また、フルオロポリエーテルには、以下に示すよう な官能基が用いられるが、これらに限ったものではな

【0022】単官能基のフルオロポリエーテルとして it, F (CF2CF2CF2O) a, CF3 (OCF (C F_3) CF_2) \cdot (OCF₂) \cdot , F (C (CF₃) F CF₂O) x 等があり、多官能基のフルオロポリエーテルとし ては、(OC₂F₄),(OCF₂)。等がある。

【0023】ここで、上記化学式のj、m、n、k、 p、qは、1以上の整数を示す。

【0024】さらに、長鎖炭化水素基は、非極性溶媒で ある揮発性溶媒に対する溶解度を考慮すると、炭素数は 10以上であることが好ましい。しかしながら、フォス ファゼン化合物は、化2に示す置換基R及びQのうち、 少なくとも一方が炭素数10以上の長鎖炭化水素基であ れば良く、他方がメチル基であっても表面処理剤5とし ての性能に影響はない。

【0025】塗布方法は、通常のコーティング作業で用 いられる方法が可能であるが、反射防止効果の均一性、 さらには反射干渉色のコントロールという観点からスピ ン塗布、浸漬塗布、カーテンフロー塗布等が用いられ る。また、途布方法としては、作業性の点から紙、布な とに表面処理剤 5 を含浸させて塗布流延させる方法も用 いられる。

【0026】上述の塗布方法において、塗布される表面 は、洗浄されていることが好ましい。洗浄方法には、界 面活性剤による汚れの除去、有機溶剤による脱脂、フレ オンによる蒸気洗浄等が用いられる。また、途布される 表面は、表面処理剤5の密着性、耐久性の向上のために 前処理を施すことが有効である。例えば、前処理は、活 .性ガス、酸またはアルカリ等による薬品処理が挙げられ る。

【0027】また、表面処理剤5は、化2に示された長 鎖炭化水素基或いはフルオロポリエーテルを持つフォス ファゼン化合物が揮発性溶媒に希釈されて調整される。 揮発性溶媒は、とくに限定されないが、使用にあたって は組成物の安定性、途布面に対する漏れ性、揮発性等を 考慮して決められるべきものである。揮発性溶媒は、化 或いはフルオロポリエーテルを持つフォスファゼン化合 50 2の置換基R及びQで示した側鎖がフルオロポリエーテ

ルのみでなる場合、フロン或いはパーフルオロアルカン 系に限られる。しかし、揮発性溶媒は、置換基R及びQ が長鎖炭化水素基を含有する場合、化2に示されたフォ スファゼン化合物がエーテル、アルコール、アセトン等 の通常の有機溶剤に溶解するため、数種類の有機溶剤の 混合物として用いることができる。

【0028】さらに、化2に示された長鎖炭化水素基或 いはフルオロポリエーテルを持つフォスファゼン化合物 からなる表面処理剤5の膜厚は、とくに限定されること はないが、反射防止性と水に対する静止接触角とのバラ ンス及び表面硬度との関係から0.5 nmから10 nm が好ましい。

【0029】上述のように形成された表面処理剤5は、 透明基材 2 上に設けられた反射防止膜上に塗布される。 【0030】透明基材2は、反射防止効果が透明基材2 の一方主面で十分である場合、透明基材の他方主面が不 透明なもので覆われていても本発明で言うところの透明 基材2として使用できる。また、透明基材2は、有機高 分子からなる基材であればいかなるものでも良いが透明 性、屈折率、分散などの光学特性、耐衝撃性、耐熱性、 耐久性などの物性の観点から、ポリメチルメタクリレー ト及びその共重合体、ポリカーポネート、ジエチレング リコールピスアクリルカーボネート (CR-39)、

(臭素化) ビスフェノール A のジ (メタ) アクリレート 重合体及びその共重合体、(臭素化)ピスフェノールA のモノ(メタ)アクリレートのウレタン変性モノマーの 重合体及びその共重合体、ポリエステルとくにポリエチ* *レンテレフタレート、ポリエチレンナフタレート及び不 飽和ポリエステル、アクリロニトリルースチレン共重合 体、塩化ピニル、ポリウレタン、エポキシ樹脂、アラミ ド系樹脂が好ましい。

【0031】反射防止層3は、主に無機酸化物としてS iO2が用いられるが、他にAl:O3、ZrO2, TiO 2, SiO, HfO2, ZnO, In2O3/SnO2, T iO, Ti2O1, Y1O1, Sb2O1, MgO, CeO2 などの無機酸化物が適用される。これらの無機酸化物に よって形成される反射防止膜3は、表面がSiO2であ ることが好ましい。SiOzによって形成された反射防 止膜3は、表面の硬度が十分であり、本発明の目的であ る耐摩耗性の向上さらには摩耗に対する耐久性の向上が 図られる。

【0032】また、反射防止膜3の光学的膜厚は、反射 防止効果以外に要求される性能によって決定されるべき ものであるが、とくに反射防止効果を最大限にするため に以下のような条件がある。ここで光学的膜厚とは、被 膜形成材料の屈折率と膜厚の積で定義されるものであ 20 る。

【0033】2層からなる反射防止膜3の場合、透明基 材2側の第1層3Aの屈折率は、図1に示したように、 透明基材2と第1層3Aの上に設けられた第2層3Bと のいずれよりも高い屈折率を有するものである。そし て、第1層3A及び第2層3Bの光学的膜厚は、次の条 件を満たしている。

[0034]

第1層3A m λ / 4×0.7 < n i d i < m λ / 4×1.3 第2層3B n λ / 4×0.7 < n 2 d 2 < n λ / 4×1.3

(ここでn1, n2はそれぞれ第1層3A、第2層3Bの 30※けられた第2層4Bの屈折率よりも低く設定されてい 屈折率、d1, d2はそれぞれ第1層3A、第2層3Bの 膜厚(nm単位)、mは正の整数、nは正の奇数、λは 可視周辺領域内で任意の基準波長 (nm単位) であ る。)また、3層からなる反射防止膜4の場合、透明基 材2側の第1層4Aの屈折率は、図2に示したように、 透明基材2の屈折率よりの高くかつ第1層4Aの上に設 ※

る。さらに、第2層4日の上に設けられた第3層4日の 屈折率は、第1層4A及び第2層4Aよりも低い屈折率 を有するものである。そして、第1層4A、第2層4B 及び第3層4Cの光学的膜厚は、次の条件を満たしてい る。

[0035]

第1層4A l λ/4×0.7<ni di<l λ/4×1.3 第2層4B m λ / 4×0.7 < n z d z < m λ / 4×1.3 第3層4C n λ / 4×0.7 < n 3 d 3 < n λ / 4×1.3

(ここで n1, n2, n3はそれぞれ第1層4A、第2層 4 B、第 3 層 4 C の 屈折率、 d1, d2, d3 はそれぞれ 第1層4A、第2層4B、第3層4Cの膜厚 (nm単 位)、lは正の整数、mは正の整数、nは正の奇数、l は可視周辺領域内で任意の基準波長(nm単位)であ る。)また、無機酸化物からなる反射防止膜3は、上述 の無機系材料を真空蒸着法、イオンプレーティング法、 スパッタリング法に代表される物理的蒸着法(Phys ical Vapour Deposition, PV D)法で被膜化することにより得られる。

40 て透明基材 2 上に塗布することにより被膜形成するもの もある。この場合、液状組成物は、塗布作業する際の適 .用温度で10ポアズ以下、好ましくは1ポアズ以下の粘 度をもつものが用いられる。塗布方法としては、通常の コーティング作業で用いられる方法が可能であるが、膜 厚をコントロールする観点から、カーテンフロー塗装、 浸漬塗装、スピン塗装等が好ましい。

【0037】この液状組成物は、被膜として屈折率の条 件を満たしそれ自身またはそれが溶媒に分散または溶解 するものであれば良いが、とくに有機材料ないしは有機 【0036】また、反射防止膜3には、液状組成物とし 50 材料中に透明性を損なわない程度無機系微粒子を分散さ

せたもの、被膜形成性を持つ無機系材料で溶媒に分散ま たは溶解するか、それ自身液状であるもの、上記の有機 材料と上記の無機系材料の混合物のいずれかが用いられ る。

【0038】有機材料には、比較的屈折率の高い物質と してポリカーポネート等の各種重合体組成物、メラミン 樹脂等の各種硬化性樹脂形成組成物、芳香族イソシアネ ート等のウレタン形成組成物等がある。また、有機材料 には、比較的屈折率の低い物質として芳香環を含まない アクリル系を含むピニル系共重合体、フッ素置換された 10 各種ポリマー、芳香環を含まないポリエステル系重合体 繊維系誘導体、シリコーン系ポリマー炭化水素系ポリマ ー等がある。

【0039】無機系数粒子を分散させた有機材料は、無 機系像粒子が高屈折率を有するために、高屈折率をもつ 反射防止膜3を形成する際にも上述の比較的屈折率の低 い物質が用いられる。なお、無機系像粒子を分散または 溶解させた有機材料には、有機置換されたケイ素化合物 も含まれる。

【0040】被膜形成性を持ち溶媒に分散または溶解す るか、それ自身液状である無機系材料には、比較的屈折 率の高い物質として、各種元素のアルコキシド、有機酸 の塩、配位性化合物と結合した配位化合物がある。これ らの例としては、チタンテトラエトキシド等の金属アル コレート化合物、ジプトキシチタニウムピスアセチルア アセトネート等のキレート化合物、炭酸ジルコニールア ンモニウム等の活性無機ポリマーが用いられる。また、 被膜形成性を持ち溶媒に分散または溶解するか、それ自 身液状である無機系材料には、比較的屈折率の低い物質 として、芳香環を含まない有機置換されたケイ素化合 物、各種アルキルシリケート類、コロイド状に分散され たシリカゾル等の徴粒子状シリカが用いられる。

【0041】2層からなる反射防止膜3の場合、層構成 は、透明基材2の上に第1層3Aの液状組成物が塗布さ れ、第1層3Aの上に第2層3Bの液状組成物が塗布さ れる。この際、第1層3Aの液状組成物の屈折率は、透 明基材2の屈折率と第2層3Bの液状組成物の屈折率の いずれよりも0.03以上、好ましくは0.05以上高 いものとする。

【0042】また、3層からなる反射防止膜4の場合、 層構成は、透明基材2の上に第1層4Aの液状組成物が 塗布され、第1層4Aの上に第2層4Bの液状組成物が 塗布され、第2層4Bの上に第3層4Cの液状組成物が 塗布される。この際、第1層4Aの液状組成物の屈折率 は、透明基材2の屈折率と第3層4Cの液状組成物の屈 折率のいずれよりも0.03以上、好ましくは0.05 以上高いものとする。一方、第2層4Bの液状組成物の 屈折率は、第1層4Aの液状組成物の屈折率よりも0. 03以上、好ましくは0.05以上とする。

層の塗布の際、各層は、それぞれ接する層に対して化学 処理、物理処理をすることによって、付着性を向上させ ることができる。

【0044】液状組成物は、上述の塗布方法により透明 基材2上に第1届3Aが塗布される。第2届3Bは、第 1 層 3 A が塗布され、硬化及び/または乾燥後に、塗布 しても良いが、予備的に硬化及び/または乾燥させてか ら塗布しても良い。予備的に硬化及び/または乾燥させ た場合、反射防止膜3は、すべての層が塗布された後に 同時に硬化及び/または乾燥される。

【0045】以上のように構成された反射防止フィルタ - 1 は、表面処理剤 5 の下層が上述のような反射防止膜 3であったが、係る構成に限定されるものではない。

【0046】すなわち、表面処理剤5は、下層がハード コート等の被膜材料に被膜されたものでも良い。むし ろ、表面処理剤5は、下層の被膜材料等によって付着 性、硬度、耐薬品性、耐久性、染色性等の諸物性を向上 させることが可能である。

【0047】また、表面処理剤5は、特公昭150-2 8092号公報、特公昭50-28446号公報、特公 昭50-39449号公報、特公昭51-24368号 公報、特開昭52-112698号公報、特公昭57-2735号公報に記載のプラスチック表面硬度化被膜上 に塗布することによって、硬度を向上させることができ る。さらに、表面処理剤5は、(メタ)アクリル酸とペ ンタエリスリトール等から合成されるアクリル系架橋物 の表面に塗布することができる。

[0048] -

20

【実施例】以下に本発明の具体的な実施例と該実施例の 30 性能を実証するための実験を示す。しかし、本発明は、 以下の実施例に限定されるものではない。

【0049】<u>実施例1</u>

本実施例において用いた、フォスファゼン化合物は、化 2に示された化合物における置換基尺の構造を炭素数1 8のアルキル基とし、置換基QをCH₂CF₂ (CF 20) a (C2F40) a CF2 CH2として (n及びmは1 以上の整数)なるものである。

【0050】表面処理剤5は、該フォスファゼン化合物 0. 4 重量部にヘキサン3 8 0 重量部、アルコール2 0 40 重量部を添加混合し、均一な溶液とした後、さらにメン プランフィルターでろ過を行い調製した。

. 【0051】透明基材2は、厚さ100μmのハードコ ート付きポリエチレンテレフタラート (PET) フィル

【0052】反射防止膜3は、真空蒸着法によりPET フィルムの片面に厚さ120nmのITOを第1層3A としてプレ蒸着し、その上に第2層3BとしてSiOz を厚さ70 n m蒸着して形成した。

【0053】反射防止フィルター1は、反射防止膜3に 【0043】なお、反射防止膜3及び反射防止層4の各 50 表面処理剤5を5cm/minの引き上げ速度でディブ

コーティングして得られた。

【0054】<u>実施例2~実施例10</u>

本実施例において、フォスファゼン化合物は、化2に示 された長鎖炭化水素基或いはフルオロボリエーテルを持* * つフォスファゼン化合物として、置換基R及びQを表1 に示した構造としてなるものである。

[0055]

【表1】

		13011
表面処理剤	R	Q
実施例2	C18H37	F(CF2CF2CF2O)iCF2CF2CH2
実施例3	C18H37	CF3 F(CFCF2O):CF2CF2CH2
実施例4	C18H37	C18H37C6H5
実施例5	C14H29	C18H33
実施例6	C18H33	C18H37CeH11
実施例7	C10H21	F(CF2CF2CF2O)ICF2CF2CH2
実施例8	C18H97	CH ₃
実施例9	C18H33	CH2CF2(CF2O)n(C2F4O)mCF2CH2
実施例10	C10H21	CH2CF2(CF2O)n(C2F4O)mCF2CH2

【0056】そして、表面処理剤5は、これら実施例2 20※比較のため、フォスファゼン化合物は、化2に示す置換 ~実施例10のフォスファゼン化合物を用いて、実施例 1と同様にして調製した。また、反射防止フィルター1 は、実施例1と同様にして得られた。

【0057】<u>比較例1~</u>比較例3

基R及びQが表2に示した構造を持つものとして実施例 1と同様にして得られた。

[0058]

【表2】 Ж

表面 処理剤	R	Q
比較例1	СНз	СНз
比較例2	C8H17	CH ₃
比較例3	C ₂ H ₅	F(CF2CF2CF2O)ICF2CF2CH2

【0059】 <u>比較例4~比較例</u>8

本比較例において、反射防止フィルター1は、表面処理 剤5を被覆させないもの(比較例4)及び表面処理剤5 としてフッ素系樹脂を被覆させたもの(比較例5~比較 例8)として実施例1と同様にして得られた。具体的に は、ポリテトラフルオロエチレンを表面処理剤5として 比較例5、ポリピニリデンフルオライドを表面処理剤5 として比較例6、テトラフルオロエチレンーエチレン共 重合体を表面処理剤5として比較例7、及びクロロトリ 40 フルオロエチレンーエチレン共重合体を表面処理剤5と して比較例8を得た。

【0060】性能評価試験

上述のようにして得られた実施例1~実施例10及び比 較例1~比較例8までの反射防止フィルター1について 性能試験を下記の方法で行った。

【0061】 1 耐污染性試験

耐汚染性試験は、水道水5mlをフィルター面にしたた らせ、室道雰囲気下で48時間放置し、その後、水垢を

判断した。

【0062】結果は、水垢が除去できた時を良好とし、 除去できなかった時を不良とした。

【0063】2 滑り性試験

滑り性試験は、鉛筆でフィルター表面を引っかいたとき の引っかかり具合により判断した。結果は、全く引っか からないときを○、強く引っかくと引っかかる時を△、 弱く引っかいても引っかかるときを×とした。

【0064】3 耐摩耗試験

耐摩耗試験は、フィルター表面をスチールウール#00 .00によって200g荷重下で30回接った後に表面の 状態を観察することにより判断した。結果は、全く傷が つかないときを○、細かい傷がつくときを△、著しく傷 がつくときを×とした。

【0065】4 手垢の付きにくさ試験

手垢の付きにくさ試験は、フィルター表面に指先を接触 させ、その後、表面の状態を観察することで判断した。 結果は、手垢が付いても目立たないときを○、手垢が付 布で拭いたときの水垢の残存状態を観察することにより 50 いても簡単に除去できるときを△、手垢が付いた後が目

立つときを×とした。 【0066】 試發結果 * 施例10までの試験結果を示している。

[0067]

表3は、1~4に示した試験について、実施例1から実*

【表3】

表面 処理剤	R	Q	耐汚染性	表面 すべり 性	耐磨 耗性 試験	手垢の 付き にくさ
実施例1	C18H37	CH2CF2(CF2O)n(C2F4O)mCF2CH2	良好	0	0	0
実施例2	C18H37	F(CF2CF2CF2O):CF2CF2CH2	良好	0	0	0
実施例3	C18H37	CF3 F(CFCF2O) CF2CF2CH2	良好	0	0	0
実施例4	C18H37	C18H37CeH5	良好	0	0	0
実施例5	C14H29	C18H33	良好	0	0	0
実施例6	C18H33	C18Hs7CeH11	良好	0	0	0
実施例7	C10H21	F(CF2CF2CF2O) ₁ CF2CF2CH2	良好	0	0	0
実施例8	C18H37	CHs	良好	0	0	0
実施例9	C18H33	CH2CF2(CF2O)n(C2F4O)mCF2CH2	良好	0	Δ	0
実施例10	C10H21	CH2CF2(CF2O)n(C2F4O)mCF2CH2	良好	0	Δ	0

【0068】 表4は、1~4に示した試験について、比 20% 【0069】 較例1から比較例3までの試験結果を示している。 Ж 【表4】

表面处理剤	R	Q	耐污染性	表面 すべり 性	耐磨 耗性 試験	付き
比較例1	СНз	СНз	悪い	×	Δ	×
比較例2	СвН17	CH ₃	良好	Δ	Δ	Δ
比較例3	C ₂ H ₅	F(CF2CF2CF2O)/CF2CF2CH2	良好	0	×	Δ

【0070】表5は、1~4に示した試験について、比 ★【0071】 較例5から比較例8までの試験結果を示している。 ★30 【表5】

表面処理剤		耐汚染性	表面 すべり 性	耐磨 耗性 試験	手垢の 付き にくさ
比較例4	表面処理剤なし	不良	×	×	×
比較例5	ポリテトラフルオロエチレン	良好	Δ	×	0
比較例6	ポリピニリデンフルオライド	良好	Δ	×	0.
比较例7	テトラフルオロエチレン ーエチレン共 重合体	良好	Δ	×	0
比較例8	クロロトリフルオロエチレン ーエチレン共 重合体	良好	Δ	×	Δ

【0072】表3及び表4から明らかなように、表面処 理剤は、化2に示された長鎖炭化水素基或いはフルオロ ポリエーテルを持つフォスファゼン化合物の場合におい て、耐汚染性試験、滑り性試験、耐摩耗性試験、手垢の 付きにくさ試験においてすべて良好な結果が得られた。 また表3及び表5から明らかなように、表面処理剤は、 化2に示された長鎖炭化水素基或いはフルオロポリエー テルを持つフォスファゼン化合物の場合において、フッ 索系樹脂の場合よりも、耐汚染性試験、滑り性試験、耐 50 汚染性、滑り性、耐摩耗性、手垢の付きにくさといった

. 摩耗性試験、手垢の付きにくさ試験においてすべて良好 な結果が得られた。

[0073]

【発明の効果】本発明に係る反射防止フィルターでは、 透明基材と、この透明基材の上に設けられた単層或いは 復層の反射防止膜と、これら反射防止膜の最外隔膜の表 面に化2で示される表面処理剤を被膜させた表面処理層 とを備えることにより、反射防止フィルターの表面の耐 表面物性を向上させることができる。

【図面の簡単な説明】

【図1】本発明に係る2層の反射防止膜からなる反射防止フィルターの部分要部縦断面図である。

【図2】本発明に係る3層の反射防止膜からなる反射防止フィルターの部分要部縦断面図である。

【符号の説明】

- 1. 反射防止フィルター
- 2. 透明基材
- 3. 4. 反射防止膜
- 5. 表面処理剤

[図1]

本発明に係る2層の反射防止度からなる 反射防止フィルターの部分要部級断面図

[図2]

14

本発明に係る3層の反射防止膜からなる 反射防止フィルターの部分要郵級断面図

フロントページの続き

(72) 発明者 小林 窩夫

東京都品川区北品川6丁目7番35号 ソニー株式会社内

J.P. Hei. 9 - 133802

- (19) Patent Office of Japan (JP)
- (12) Kokai (Laid Open) Patent Application (A)
- (11) Laid Open Patent Publication Number: J.P. Hei. 9 133802
- (43) Date of Publication of an Unexamined Patent: May 20, Heisei 9 (1997)

(51) Int. Cl ⁶		Classification	Internal Filing Codes	FI		•
`´G02B	1/11		U	G02B	1/10	Α
C07F	9/6593			C07F	9/6593	9450-4H
H09D	5/00	PPQ		H09D	5/00	PPQ
	7/12	PSL		•	7/12	PSL

Examination Request: Not Request

Number of Claims: 2 OL (total of 8 pages in the Japanese original)

- (54) Title of the Invention: Antireflective Filter
- (21) Application Number: J.P. Hei. 7 289928
- (22) Application Date: November 8, Heisei 7 (1995)
- (71) Assignee and Address: 000002185

Sony Corporation

6-7-35 Kitashinagawa Shinagawa-ku, Tokyo-To

(72) Inventor and Address: Hirobumi Kondo

Sony Corporation

6-7-35 Kitashinagawa Shinagawa-ku, Tokyo-To

(72) Inventor and Address: Hideaki Hanaoka

Sony Corporation

6-7-35 Kitashinagawa Shinagawa-ku, Tokyo-To

(72) Inventor and Address: Atsunori Ueda

Sony Corporation

6-7-35 Kitashinagawa Shinagawa-ku, Tokyo-To

(72) Inventor and Address: Tomio Kobayashi

Sony Corporation

6-7-35 Kitashinagawa Shinagawa-ku, Tokyo-To

(74) Representative: Patent Attorney: Akira Koike (2 others)

(54) Title of the Invention: Antireflective Filter

(57) [Abstract]

This invention presents an antireflective filter which solves the problems of stain resistance, slipperiness, abrasion resistance, etc.

[Solution Means]

An antireflective filter comprising a transparent substrate 2, a single layer or multilayer antireflective film 3 which is provided on this transparent substrate 2, and a surface treated layer which is coated with the surface treatment agent 5 comprised of Chemical Formula 1 on the surface of this antireflective film 3.

[Chemical Formula 1]

Substituent R and Q show long chain hydrocarbon group or fluoropolyether; n is a positive integer of less than 6.

Therefore, with regard to an antireflective filter structured as stated above, by coating a surface treatment agent 5 comprising the phosphazene compound having a long chain hydrocarbon group or fluoropolyether shown in Chemical Formula 1 on the surface of the antireflective film 3, the lubrication which the phosphazene compound possesses is endowed upon the surface of the antireflective filter 1.

vertical sectional view of the main part of antireflective filter comprising two layers of the antireflective film of this invention.

[Claims]

[Claim 1]

An antireflective film comprising a transparent substrate, a single layer or multilayer antireflective film provided on the transparent substrate stated above, and a surface treated layer coated with a surface treatment agent comprising the phosphazene compound shown by Chemical Formula 1 on the surface of the antireflective film stated above.

[Chemical Formula 1]

$$(RO)_{n} \stackrel{P}{\underset{N}{|}} (\infty)_{\theta-n}$$

Substituent R and Q show long chain hydrocarbon group or fluoropolyether; n is a positive integer of less than 6.

[Claim 2] The antireflective filter described in Claim 1 which is characterized by comprising said antireflective film where at least the neighborhood of the surface part is structured with a substance consisting of silicon dioxide.

[Detailed Explanation of the Invention] [0001] [Technical Field of the Invention]

The present invention relates to an antireflective filter possessing superior stain resistance, scratch resistance, fabrication resistance, slipperiness, abrasion resistance, etc.

[0002] [Prior Technology]

Conventionally, an antireflective filter for antiglare purposes has been presented for the front plate of CRT, liquid crystal display, etc.

As this antireflective filter, there is the type where an inorganic multilayer thin film is provided on a glass sheet or a plastic plate as an antireflective film and installed on a front display surface, the type where an inorganic multilayer thin film is provided on a plastic film as an antireflective film and where this film is sealed with a glass plate or plastic plate and installed on a front display surface, and the type where plastic film providing an inorganic multilayer thin film as the antireflective film is sealed directly onto the display surface.

[0003] With regard to a conventional antireflective filter, there are those which possess two layer antireflective film on a transparent substrate (Tokkyo Kokai No. J.P. Sho. 58 - 46301 and Tokkyo Kokai No. J.P. Sho. 59 - 50401), those which possess three layer antireflective film on a transparent substrate (Tokkyo Kokai No. J.P. Sho. 59 - 49501 and Tokkyo Kokai No. J.P. Sho. 59 - 50401), and those which possess four antireflective film on a transparent substrate (Tokkyo Kokai No. J.P. Sho. 61 - 168899).

[0004] As the transparent substrate, molding of glass, plastic, etc., sheet, film, etc., have been used, especially plastic substrate previously provided with a coating material for the purpose of improving adhesion property, hardness, chemical resistance, durability, dye affinity, etc.

However, these coated materials do not impair the transparency of the transparent substrate.

[0005] Also, there are antireflective films where inorganic oxide vapor deposited on a transparent substrate, inorganic fine particle mixed with organic material as a liquid composition, or inorganic fine particle mixed with inorganic material are coated on a transparent substrate.

[0006] The inorganic oxide, for instance, SiO₂, etc., is coated and formed on the transparent substrate by the physical vapor deposition (physical vapour deposition, PVD) method represented by ion plating method, sputtering method, etc.

[0007] The liquid composition is coated and formed on the transparent substrate by the usage of an ordinary coating method represented by curtain flow coating, dip coating, spin coating, etc. As the liquid compositions, those where approximately 30% of inorganic fine particles are dispersed in organic material, or those which are inorganic material and are able to disperse or dissolve in solvent, or those which are itself liquid inorganic material, or a mixture of this organic material and inorganic material is used.

[0008] When inorganic fine particles are dispersed in organic material, they become hard or dry, and this is an antireflective film having a hard surface hardness. Furthermore, inorganic fine particle is able to disperse or dissolve in solvent, or it is dispersed in liquid inorganic material. In this case, the inorganic fine particle also provide a hard surface hardness when the inorganic material is hardened or dried and becomes an antireflective film.

[0009] In an antireflective filter, the antireflective film has high surface hardness because of the inorganic oxide or inorganic fine particle, but the physical properties of the surface such as stain resistance, abrasion resistance, slipperiness, water repellency, etc., cannot be satisfied.

[0010] Therefore, the physical property of the surface of the antireflective film is improved by coating and forming various surface treatment agents. This surface treatment agent is vapor deposited on the surface for the purpose of endowing slipperiness and water repellency upon the surface of the antireflective filter, and for instance, fluorine series such as polytetrafluoroethylene, etc., are used (Tokkyo Kokai No. J.P. Hei. 3 - 266801).

[0011] [Problem Solved by the Invention]

But, the surface of the antireflective filter stated above comprising antireflective film has the problems of easy staining, and also it is scratched easily due to poor surface slipperiness.

[0012] Also, the antireflective filter where the antireflective film is coated with the surface treatment agent stated above possesses improved water repellency, but it cannot obtain satisfactory results with regard to friction resistance and abrasion resistance.

[0013] The objective of this invention is to present an antireflective filter which solves the problems relating to stain resistance, slipperiness, abrasion resistance, etc.

[0014] [Method for Solving the Problem]

This is an antireflective filter which achieves the objective of this invention comprising a transparent substrate, a single layer or multilayer antireflective film provided on said transparent substrate and a surface treated layer coated with the surface treatment agent shown by Chemical Formula 2 on the outermost surface of the transparent substrate stated above.

[0015] [Chemical Formula 2]

$$(RO)$$
 $\frac{P}{N}$
 $\frac{P}{N}$
 $\frac{P}{N}$
 $\frac{P}{N}$
 $\frac{P}{N}$
 $\frac{P}{N}$
 $\frac{P}{N}$
 $\frac{P}{N}$
 $\frac{P}{N}$

Substituent R and Q show long chain hydrocarbon group or fluoropolyether, n is a positive integer of less than 6.

[0016] Consequently, by coating a surface treatment agent comprising the phosphazene compound having a long chain hydrocarbon group or fluoropolyether shown by Chemical Formula 2 on the surface of the antireflection film, the lubrication which the phosphazene compound possesses is endowed upon the surface of the antireflective filter structured as stated above.

[0017] [Practical Example of the Invention]

Hereinafter, the details of the antireflective filter by this invention will be explained by the Practical Example and with the usage of the Diagram.

For instance, recent diversifications in image display units represented by televisions for broadcast reception have progressed rapidly due to developments in information

systems for computer applications. An image, that is to say, the stationary and moving image of characters, numbers, patterns, etc., which can be visually perceived by people.

[0018] The image display unit visualizes the information by an exterior light control system (the light intensity entering the eye in the light path is controlled) or a light emission control system (the input energy of the light emitting material is controlled), and does imaging by direct vision or projection.

As these examples, there are cathode ray tube (CRT), laser display, photochromic display, electronic display, liquid crystal display, plasma display, light emitting diode display, light valve, etc. Furthermore, the antireflective filter of this invention is not limited by the various display units stated above, and it includes instruments, etc., which provide a front plate on the surface possessing the antireflective filter.

[0019] As shown in Diagram 1, an antireflective filter 1 is structured by forming two layers of antireflective film 3 on a transparent substrate 2, and with that, the surface treatment agent 5 is coated and formed on the antireflective film 3. Also, as shown in Diagram 2, an antireflective filter 1 is structured by forming three layers of antireflective film 4 on a transparent substrate 2, and with that the surface treatment agent 5 is coated and formed on the antireflective film 4.

[0020] The antireflective filter 1 is formed by coating the surface treatment agent 5 comprising the phosphazene compound having a long chain hydrocarbon group or fluoropolyether group shown by Chemical Formula 2 on the surface so as to endow the surface physical properties of stain resistance, slipperiness, abrasion resistance, hand stain resistance, etc. The phosphazene compound where a long chain hydrocarbon group or fluoropolyether is bonded to a substituent R and/or Q is shown by Chemical Formula 2. However, the substituent R and Q shown in Chemical Formula 2 may be identical of different. Also, the n shown in Chemical Formula 2 may be a positive integer of less than 6 or 0.

[0021] It is better to have fluoropolyether to improve wettability which is a capability of the surface treatment agent 5, but it is not especially necessary. Therefore, the ratio of fluoropolyether and hydrocarbon may be more than 0, but preferably less than 5 when its solubility in solvent is considered. Also, the functional group of the fluoropolyether is as follows, but it is not limited by these.

[0022] As fluoropolyether possessing a monofunctional group, there are $F(CF_2CF_2CF_2O)_n$, $CF_3(OCF(CF_3)CF_2)m(OCF_2)_j$, $F(C(CF_3)FCF_2O)_k$, etc.; as the fluoropolyether possessing a multifunctional group, there are $(OC_2F_4)_p(OCF_2)_q$, etc.

[0023] Here, j, m, n, k, p and q show an integer of more than 1.

[0024] Furthermore, the preferable carbon number of the long chain hydrocarbon group is more than 10 when the solubility of the volatile solvent which is a nonpolar solvent is considered. However, there is no influence on its performance as a surface treatment agent even if at least one of the substituents R and Q shown in Chemical Formula 2 of the phosphazene compound possesses a hydrocarbon group of more than 10 carbon numbers, or if the other is a methyl group.

[0025] As the coating method, an ordinary coating method may be used, but spin coating, dip coating, curtain flow coating, etc., are used from the viewpoint of the uniformity of the antireflective effectiveness and to control the antireflective interference color. Also, the method of film coating by impregnating the surface treatment agent into paper, cloth, etc., is also used.

[0026] In the method stated above, the surface to be coated is preferably washed before coating. As the washing method, removing soil by surfactant, degreasing by an organic solvent, steam cleaning by freon, etc., are used.

Also, pretreatment of the surface which is coated is effective in improving the adhesion of the surface treatment agent and durability. For instance, a chemical treatment such as active gas, acid, alkali, etc., are used for the pretreatment.

[0027] The surface treatment agent 5 is adjusted by diluting the phosphazene compound having a long chain hydrocarbon group or fluoropolyether shown by Chemical Formula 2 with a volatile solvent. The volatile solvent is not especially limited, but is should be decided by considering the stability of its composition, wettability of the coated surface, volatility, etc. The volatile solvent is limited to freon or perfluoroalkane series when the side chain shown by the substituents R and Q shown in Chemical Formula 2 comprises of only fluoropolyether. However, when the substituent R and Q comprises a long chain hydrocarbon group, the volatile solvent can be used as a mixture of various organic solvents to dissolve the phosphazene compound shown by Chemical Formula 2 in an ordinary organic solvent such as ether, alcohol, acetone, etc.

[0028] Furthermore, the film thickness of the surface treatment agent 5 comprising the phosphazene compound having a long chain hydrocarbon group or fluoropolyether shown by Chemical Formula 2 is not especially limited, but it is preferably 0.5 nm to 10 nm for the relationship between the balance of antireflectivity and stationary contact angle to water and the surface hardness.

[0029] The surface treatment agent formed as stated above is coated onto the antireflective film provided on the transparent substrate 2.

[0030] When the antireflective effectiveness is sufficient with one surface of the transparent substrate 2, even if the other surface of the transparent substrate is coated with opaque material, it can be used as the transparent substrate 2.

Also, a substrate comprising organic polymer can be used as the transparent substrate 2, but preferably polymethylmethacrylate and its copolymer, polycarbonate, diethylene glycol bisacryl carbonate (CR-39), di(metha) acrylate polymer and its copolymer of (bromination) bisphenol A, polymer and its copolymer of urethane-modified monomer of mono(metha) acrylate of (bromination) bisphenol A, polyester, especially polyethylene terephthalate, polyethylene naphthalate and unsaturated polyester, acrylonitrile-styrene copolymer, vinyl chloride, polyurethane, epoxy resin and aramid resin are used from the viewpoint of physical properties such as transparency, index of refraction, optical properties such as dispersion, etc., impact resistance, heat resistance, durability, etc.

[0031] As the antireflective layer 3, SiO_2 is mainly used as the inorganic oxide, and other than that inorganic oxide such as Al_2O_3 , ZrO_2 , TiO_2 , SiO, HFO_2 , ZnO, In_2O_3/SnO_2 , TiO, Ti_2O_3 , Y_3O_3 , Sb_2O_3 , MgO, CeO_2 , etc., are applied. The surface of the antireflective film 3 formed with these inorganic oxides is preferably SiO_2 . An antireflective film 3 formed with SiO_2 has sufficient surface hardness, and it improves the objective abrasion resistance and durability of this invention.

[0032] Also, the optical film thickness of the antireflective film 3 should be decided based on the performances required other than the antireflective effectiveness, but especially there is a condition for maximum antireflective film effectiveness. The optical film thickness is defined as the index of refraction of the coated material and the product of the film thickness.

[0033] In cases where the antireflective film 3 is comprised of 2 layers, the index of refraction of 3A which is the first layer from the substrate 2 is higher than the transparent substrate 2 and 3B provided on the first layer 3A as shown in Diagram 1. The optical film thickness of 3A and the second layer 3B satisfies the following conditions.

```
[0034] First Layer 3A m\lambda/4 \times 0. 7 < n_1d_1 < m\lambda/4 \times 1 .3 Second Layer 3B n\lambda/4 \times 0. 7 < n_2d_2 < n\lambda/4 \times 1 .3
```

(here, n_1 and n_2 are the respective index of refractions of the first layer 3A and the second layer 3B, d_1 and d_2 are the respective film thicknesses of the first layer 3A and the second layer 3B (nm units), m is a positive integer, n is a positive odd number, λ is an arbitrary reference wavelength (nm units) in the visual periphery region.)

Also, in cases where the antireflective film 4 is comprised of three layers, the index of refraction of 4A which is the first layer from the transparent substrate 2 is higher than the index of refraction of the transparent substrate 2, and it is lower than the second layer 4B provided on the first layer 4A as shown in Diagram 2.

Furthermore, the index of refraction of the third layer 4C provided on the second layer 4B is lower than the first layer 4A and the second layer 4B (Translator's Note: the Japanese original repeats "4A" instead of "4B"). The optical film thickness of the first layer 4A, the second layer 4B and the third layer 4C satisfies the following conditions.

```
[0035] First Layer 4A l\lambda/4 \times 0. 7 < n_1d_1 < 1\lambda/4 \times 1 .3 Second Layer 4B m\lambda/4 \times 0. 7 < n_2d_2 < m\lambda/4 \times 1 .3 Third Layer 4C n\lambda/4 \times 0. 7 < n_3d_3 < n\lambda/4 \times 1 .3
```

(here, n_1 , n_2 and n_3 are the respective index of refraction of the first layer 4A, the second layer 4B and the third layer 4C, d_1 , d_2 and d_3 are the respective film thicknesses (nm units) of the first layer 4A, the second layer 4B and the third layer 4C, l is a positive integer, m is a positive integer, n is a positive odd number, λ is an arbitrary reference wavelength (nm units) in the visual periphery region.) Also, an antireflective film comprising inorganic series material can be obtained by coating using the physical vapor deposition (Physical Vapour Deposition, PVD) method represented by vacuum vapor deposition method, ion plating method and sputtering method.

[0036] Also, the antireflective film 3 is formed by coating a liquid composition on the transparent substrate 2. In this case, a liquid composition possessing a viscosity of less than 10 poise, preferably less than 1 poise at the application temperature is used. As the coating method, it is possible to use an ordinary coating method, but curtain flow coating, dip

coating, spin coating, etc., are preferably used from the viewpoint of controlling the film thickness.

[0037] With regard to this liquid composition which satisfies the condition of refraction index as a coating and which itself disperses and dissolves in solvent, inorganic series fine particle dispersed in an organic material especially to the extent of not impairing the transparency, inorganic material possessing film forming property which disperses and dissolves in the solvent, or which is itself a liquid, and a mixture of aforesaid organic material and aforesaid inorganic material are used.

[0038] As the organic material, there are various polymer compositions having a relatively high index of refraction such as polycarbonate, etc., various curable resin forming compositions such as melamine resin, etc., and urethane forming compositions such as aromatic isocyanate, etc. In addition, as the organic material, there is vinyl copolymer possessing a relatively low index of refraction which does not contain an aromatic ring and contains vinyl copolymer, various fluorine substituted polymers, polyester polymer fiber derivative which do not contain an aromatic ring, silicone polymer hydrocarbon polymer, etc.

[0039] As the organic material which is dispersed with inorganic fine particle, the substrate possessing a relatively low index of refraction stated above is used even in cases where an antireflective film 3 possessing a high index of refraction is formed, because inorganic fine particle possesses a high index of refraction. Furthermore, organic substituted silicon compound is included in the organic material which disperses and dissolves the inorganic fine particle.

[0040] With regard to the inorganic material possessing a film forming property which is dispersed or dissolved in the solvent, or is itself a liquid, there are various element alkoxides, organic acid salt and coordination compound which is bonded with a coordination compound as a substrate possessing a relatively high index of refraction. As this example, metal alcolate compound such as titanium tetraethoxide, etc., chelate compound such as dibutoxy titanium bisacetylacetonate, etc., are used. Also, as the inorganic material which possesses a film forming property and disperses or dissolves in solvent, or is itself a liquid, as a substrate which possesses a relatively low index of refraction, fine particle silica such as organic substituted silicon compound which does not contain an aromatic ring, various alkyl silicate, and silica sol dispersed in a colloidal state are used.

[0041] With regard to the structure of an antireflective film 3 comprised of two layers, the liquid composition of the first layer 3A is coated on the transparent substrate 2, and the liquid composition of the second layer 3B is coated on the first layer 3A. In this case, the index of refraction of the liquid composition of the first layer 3A is more than 0.03 higher, preferably more than 0.05 higher than the index of refraction of the transparent substrate 2 and the index of refraction of the liquid composition of the second layer 3B.

[0042] Also, with regard to the structure of the antireflective film 4 comprised of three layers, the liquid composition of the first layer 4A is coated onto the transparent substrate 2, the liquid composition of the second layer 4B is coated on the first layer 4A, and the liquid composition of the third layer 4C is coated on the second layer 4B. In this case, the index of refraction of the liquid composition of the first layer 4A is more than 0.03 higher, preferably more than 0.05 higher than the index of refraction of the transparent substrate 2 and the index of refraction of the liquid composition of the third layer 4C. On the other hand, the index of refraction of the liquid composition of the second layer 4B is more than 0.03 higher, preferably more than 0.05 higher than the index of refraction of the liquid composition of the first layer 4A.

[0043] In cases of coating the antireflective film and antireflective layers 4, adhesion can be improved by respectively applying chemical treatment and physical treatment to the layers in contact with each other.

[0044] As for the liquid composition, the first layer 3A is coated onto the transparent substrate 2 by the method stated above. The second layer 3B may be coated after the first layer 3A is coated, and it is hardened and/or dried, but it may be coated by preliminary hardening and/or drying. In the case of preliminary hardening and/or drying, the antireflective film 3 is simultaneously hardened and/or dried after all of the layers have been coated.

[0045] The antireflective filter 1 structured as stated above where the underlayer of the surface treatment agent 5 is the antireflective film 3 as stated above is not limited to this structure.

[0046] That is to say, with regard to the surface treatment agent, the underlayer of the surface treatment agent 5 coated by a coating material of hard coating, etc., may be used. Rather than that, the various physical properties such as adhesion, hardness, chemical resistance,

dye affinity, etc., of the surface treatment agent 5 can be improved by the coating material, etc., of the underlayer.

[0047] Also, the hardness of the surface treatment agent 5 can be improved by coating on the surface hardened plastic film as described in Tokkyo Koho No. J.P. Sho. 150 - 28092, Tokkyo Koho No. J.P. Sho. 50 - 28446, Tokkyo Koho No. J.P. Sho. 50 - 39449, Tokkyo Koho No. J.P. Sho. 51 - 24368, Tokkyo Kokai No. J.P. Sho. 52 - 112698 and Tokkyo Koho No. J.P. Sho. 57 - 2735. Furthermore, the surface treatment agent 5 can be coated on the surface of the acrylic crosslinked material which is the synthesis of (metha) acrylic acid, pentaerythritol, etc.

[0048] Hereinafter, the present invention will be concretely explained by the Practical Examples. However, the present invention is not limited by these examples.

[0049] The phosphazene compound used in this invention is comprised of the structure possessing a substituent R as the carbon number 18 alkyl group and a substituent Q as $CH_2CF_2(CF_2O)_n(C_2F_4O)_mCF_2CH_2$ (n and m are integers of more than 1).

[0050] The surface treatment agent 5 was prepared by mixing 0.4 parts by weight of said phosphazene compound, 380 parts by weight of hexane and 20 parts by weight of alcohol, and it was homogeneously mixed, furthermore, its filtration was done by a membrane filter.

[0051] As the transparent substrate 2, hard coated polyethylene terephthalate (PET) possessing a thickness of 100 μm was used.

[0052] Antireflective films were formed by predepositing ITO possessing a thickness of 120 nm as the first layer 3A on one side of PET film, and SiO₂ possessing a thickness of 70 nm as the second layer 3B was deposited on it by using the vacuum vapor deposition method.

[0053] The antireflective filter 1 was obtained by dip coating the surface treatment agent 5 on the antireflective film 3 at a pull up rate of 5 cm/minute.

[0054] The phosphazene compound in this invention comprises the structure of the substituents R and Q shown in Table 2 as the phosphazene compound possessing a long chain hydrocarbon group or fluoropolyether shown by Chemical Formula 2.

[0055] [Table 1]

surface treatment agent	R	- Q
Practical Example 2	C ₁₈ H ₃₇	F(CF ₂ CF ₂ CF ₂ O)CF ₂ CF ₂ CH ₂
Practical Example 3	C ₁₈ H ₃₇	CF ₃ F(CFCF ₂ O)CF ₂ CF ₂ CH ₂
Practical Example 4	C ₁₈ H ₃₇	C ₁₈ H ₃₇ C ₆ H ₅
Practical Example 5	C ₁₄ H ₂₉	C ₁₈ H ₃₃
Practical Example 6	C ₁₈ H ₃₃	C ₁₉ H ₃₇ C ₆ H ₁₁
Practical Example 7	C ₁₀ H ₂₁	F(CF ₂ CF ₂ CF ₂ O)CF ₂ CF ₂ CH ₂
Practical Example 8	C ₁₈ H ₃₇	CH ₃
Practical Example 9	C ₁₈ H ₃₃	CH ₂ CF ₂ (CF ₂ O) _n (C ₂ F ₄ O) _m CF ₂ CH ₂
Practical Example 10	C ₁₀ H ₂₁	CH ₂ CF ₂ (CF ₂ O) _n (C ₂ F ₄ O) _m CF ₂ CH ₂

[0056] And, the surface treatment agent 5 was prepared by the usage of these phosphazene compounds shown in Practical Examples 2 to 10 in a manner similar to Practical Example 1. Also, an antireflective filter 1 was obtained in a manner similar to Practical Example 1.

[0057] [Comparative Example 1 to Comparative Example 3]

For comparison, the phosphazene compounds comprising the structure shown in Table 2 as the substituents R and Q shown by Chemical Formula 2 were obtained in a manner similar to Practical Example 1.

[0058] [Table 2]

surface treatment agent	R	Q
Comparative Example 1	CH ₃	CH ₃
Comparative Example 2	C ₈ H ₁₇	CH ₃
Comparative Example 3	C ₂ H ₅	F(CF ₂ CF ₂ CF ₂ O)CF ₂ CF ₂ CH ₂

[0059] [Comparative Example 4 to Comparative Example 8]

In these comparative examples, an antireflective filter 1 which was not coated with the surface treatment agent 5 (Comparative Example 4), and which was coated with fluorocarbon resin as the surface treatment agent 5 (Comparative Example 5 to Comparative Example 8) were obtained in a manner similar to Practical Example 1.

Concretely, the antireflective filter 1 which was coated with polytetrafluoroethylene as the surface treatment agent 5 shown in Comparative Example 5, polyvinylidene fluoride as the surface treatment agent 5 shown in Comparative Example 6, tetrafluoroethyleneethylene copolymer as the surface treatment agent 5 shown in Comparative Example 7, and chlorotrifluoroethylene-ethylene copolymer as the surface treatment agent 5 shown in Comparative Example 8 were obtained.

[0060] [Performance Evaluation Test]

The performance test of the antireflective filter 1 in Practical Examples 1 to 10 and Comparative Examples 1 to 8 were done using the method stated below.

[0061] (1) Stain resistance test

5 ml of tap water was dripped on the surface of the filter, it was allowed to stand for 48 hours at room temperature, the water stain was wiped off with a cloth, and the stain resistance was judged by observing the residual state of the water stain.

[0062] As a result, when the water stain could be removed it was satisfactory, and when the water stain could not be removed it was poor.

[0063] (2) Slipperiness test

The slipperiness was judged by the caught condition when the surface of the filter was scratched with a pencil. As a result, no caught at all was O, being caught when strongly scratched was Δ , and being caught even when weakly scratched was X.

[0064] (3) Abrasion resistance test

The abrasion resistance was judged by observing the state of the surface after the surface of the filter was rubbed 30 times with steel wool #0000 with a 200 g load. As a result, no damage at all was O, the occurrence of small damage was Δ , and the occurrence of considerable damage was X.

[0065] (4) Hand stain resistance

The surface of the filter was touched with a fingertip, and the hand stain resistance was judged by observing the state of the surface. As a result, fingerprints not showing was O, easily removable fingerprints was Δ , and fingerprint clearly showing was X.

[0066] Test Result

The test results of Practical Examples 1 to 10 in categories (1) to (4) are shown in Table 3.

[0067] [Table 3]

surface treatment agent	R	0	stain resistance	surface	abrasion	hand stain
				slipperiness	resistance test	resistance
Practical Example 1	C ₁₈ H ₃₇	CH ₂ CF ₂ (CF ₂ O) _n (C ₂ F ₄ O) _m CF ₂ CH ₂	good	0	0	0
Practical Example 2	C ₁₈ H ₃₇	F(CF ₂ CF ₂ CF ₂ O)CF ₂ CF ₂ CH ₂	good	0	0	0
Practical Example 3	C ₁₈ H ₃₇	CF ₃ F(CFCF ₂ O)CF ₂ CF ₂ CH ₂	good	0	0	0
Practical Example 4	C ₁₈ H ₃₇	C ₁₈ H ₃₇ C ₆ H ₅	good	0	0	0
Practical Example 5	C ₁₄ H ₂₉	C ₁₈ H ₃₃	good	0	0	0
Practical Example 6	C ₁₈ H ₃₃	C ₁₈ H ₃₇ C ₆ H ₅	good	0	0	0
Practical Example 7	$C_{10}H_{21}$	F(CF ₂ CF ₂ CF ₂ O)CF ₂ CF ₂ CH ₂	good	0	0	0
Practical Example 8	C ₁₈ H ₃₇	CH ₃	good	0	0	0
Practical Example 9	C ₁₈ H ₃₃	CH ₂ CF ₂ (CF ₂ O) _n (C ₂ F ₄ O) _m CF ₂ CH ₂	good	0	Δ	0
Practical Example 10	C ₁₀ H ₂₁	CH ₂ CF ₂ (CF ₂ O) _n (C ₂ F ₄ O) _m CF ₂ CH ₂	good	0	Δ	0

[0068] The test results of the Comparative Examples in categories (1) to (4) are shown in Table 4.

[0069] [Table 4]

***************************************	<u> </u>	*************************	*************************			
Δ	Δ	0	poor	F(CF ₂ CF ₂ CF ₂ O)CF ₂ CF ₂ CH ₂	C ₂ H ₅	Comparative Example 3
Δ	Δ	Δ	poor	CH ₃	C ₈ H ₁₇	Comparative Example 2
×	Δ	X	poor	CH ₃	СН3	Comparative Example 1
hand stain resistance	abrasion resistance test	surface slipperiness	stain resistance	Q	R	surface treatment agent

[0070] The test results of Comparative Examples 5 to 8 in categories (1) to (4) are shown in Table 5.

[0071] [Table 5]

Δ	×	Δ	good	chlorotrifluoroethylene- ethylene copolymer	Comparative Example 8
0	×	۵	good	tetrafluoroethylene-ethylene copolymer	Comparative Example 7
0	×	Δ	good	polyvinylidene fluoride	Comparative Example 6
0	×	Δ	good	polytetrafluoroethylene	Comparative Example 5
×	×	X	poor	no surface treatment agent	Comparative Example 4
hand stain resistance	abrasion resistance test	surface slipperiness	stain resistance		surface treatment agent

can obtain more satistactory test results in stain resistance, slipperiness, abrasion resistance and hand stain resistance than abrasion resistance and hand stain resistance as shown in Table 3 and Table 4. Also, the surface treatment agent comprising fluorocarbon resin the phosphazene compound possessing a long chain hydrocarbon group or fluoropolyether shown by Chemical Formula 2 fluoropolyether shown by Chemical Formula 2 can obtain satisfactory test results with regard to stain resistance, slipperiness, [0072] The surface treatment agent comprising the phosphazene compound possessing a long chain hydrocarbon group or

[0073] [Effectiveness of the Invention]

abrasion resistance and hand stain resistance on the surface of the antireflective filter can be improved by providing a the surface treatment agent shown by Chemical Formula 2 on the outermost surface of these antireflective films. transparent substrate, and a single layer or multilayer of antireflective film, and a surface treated layer which is coated with As for the antireflective filter by this invention, the physical properties of the surface of stain resistance, slipperiness,

[Brief Explanation of the Diagrams]

[Diagram 1] Diagram 1 is a vertical sectional view of the main part of the antireflective filter comprising two layers of the antireflective film of this invention.

[Diagram 2] Diagram 2 is a vertical sectional view of the main part of the antireflective filter comprising three layers of the antireflective films of this invention.

[Explanation of the Reference Signs]

- 1.....antireflection filter
- 2.....transparent substrate
- 3, 4...antireflective film
- 5...surface treatment agent

[Diagram 1]

vertical sectional view of the main part of the antireflective filter comprising two layers of the antireflective film of this invention.

[Diagram 2]

vertical sectional view of the main part of the antireflective filter comprising three layers of the antireflective films of this invention

Translated By: Naoko Fujioka

9366 Lake Jane Trail

Lake Elmo, Minnesota 55042

Tel: (612) 770 - 8206

Fax: (612) 770 - 5527