

Due Date: 23:59, June 20th, 2023

In order to get full marks, you shall write all the intermediate steps of calculation or proof unless otherwise indicated.

Exercise 4.1 (25%)

The following figure shows a op-amp circuit. The switch is closed at t = 0.

- (a) (10%) Derive the differential equation that relates to the output voltage v_o .
- (b) (15%) Derive $v_o(t)$ of t > 0.

Exercise 4.2 (25%)

For the op-amp circuit shown below, the switch is connected to the branch connected with a 3Ω resister and a 24V independent voltage source at t < 0, and it is switched to the branch connected with a 8Ω resister and a 20V independent voltage source at $t \ge 0$.

- (a) (10%) Find v(t) for t < 0.
- (b) (15%) Find v(t) for $t \ge 0$.

Exercise 4.3 (20%)

The switch in the following figure moves form position A to position B at t = 0 (please note that the switch must connect to point B before it breaks the connection at A, a make-before-break switch). Let v(0) = 0V, find v(t) for t > 0.

Exercise 4.4 (30%)

The input current source of the following circuit is 2(1-u(t))A. Please find i(t) for t>0.

