ЛАБОРАТОРНАЯ РАБОТА № 8 "Организация кэш-памяти"

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Быстродействие и цена микросхем памяти являются обратнопропорциональными величинами. С целью минимизации стоимости вычислительных систем при сохранении их производительности на требуемом уровне используется иерархическая схема организации памяти. Помимо внутренней памяти центрального процессора (регистров) на кристалле ЦП располагается кэш-память первого уровня, а так же, как правило, – второго уровня.

По внутренней структуре кэш можно разделить на три типа:

- кэш с полностью ассоциативным отображением (fully-associative cache);
- кэш с прямым отображением (direct mapped cache);
- кэш с множественно-ассоциативным отображением (k-way associative cache).

Рис. 8.1. Организация кэш-памяти с полностью ассоциативным отображением

В кэш памяти с полностью ассоциативным отображением любая строка данных из основной памяти может быть продублирована в любом месте (строке) кэш. Таким образом, кэш данного типа не может производить замещение хранимых в ней данных до тех пор, пока в наличие имеются свободные строки. Схема организации данного типа памяти приведена на рис. 8.1

В кэш-памяти с прямым отображением (direct mapped cache), каждому блоку памяти поставлена в соответствие отдельная позиция (строка) кэш-памяти. Таким образом, конкретный блок может храниться только в конкретной строке кэшпамяти. В случае, если требуется записать блок данных из основной памяти в конкретную строку кэш, то запись производится в любом случае — была данная строка занята или нет, не смотря на то, что соседние строки могут быть в это время свободными. Иными словами, замещение данных в кэш памяти подобного типа и соответственно использование всей кэш производится не самым рациональным способом.

Для того, чтобы определить какой блок памяти в какую строку кэш записывать обычно используют несколько бит адреса для «задания» отображения блоков памяти на кэш. Например, биты 2 и 3 адреса (в зависимости от размера блока и строки) могут быть <u>индексом, задающим номера строк кэш</u>.

Схема организации данного типа памяти приведена на рис. 8.2

Рис. 8.2. Организация кэш-памяти с прямым отображением.

Достоинства и недостатки обоих типов можно свести к следующим тезисам:

- Кэш с прямым отображением проще:
 - Занимает меньше места меньше аппаратуры, малое количество бит требуется на хранение тэга tag;
 - более быстрый в потенциале;
 - но большее количество промахов и замещений меньший КПД.
- Кэш с полностью ассоциативным отображением:
 - меньше промахов и конфликтов лучше производительность в итоге.
 - но требует отдельного компаратора для каждой строки.

Для совмещения преимуществ обоих способов была разработана схема с множественно-ассоциативным отображением (k-way associative cache).

В "k-way set associative cache" индекс определяет множество наборов по k строк кэш в каждом, где могут храниться данные. В зависимости от значения параметра k, данная организация может вырождаться в вышерассмотренные случаи:

- k=1 полностью ассоциативное.
- k= количеству строк прямое отображение (direct mapped).

Рис. 8.3 Организация кэш-памяти с множественно-ассоциативным отображением (k=2)

Схемы замещения строк в кэш памяти:

- без анализа предыдущих запросов
- по принципу наиболее давнего обращения
- по принципу наиболее давнего хранения

2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

2.1. Задание и рекомендации по выполнению лабораторной работы

Лабораторную работу рекомендуется выполнять в новом проекте, не используя предыдущих наработок.

Задача состоит в создании кэш-памяти заданного типа, размера для обслуживания основной памяти с заданным типом замещения. Конкретные характеристики разрабатываемой кэш-памяти приведены в таблице вариантов 8.1.

Разрешается использовать только функциональное моделирование (без учета задержек). Для этого в диалоге Processing->Simulator Tool необходимо переключить тип моделирования (Simulation Mode) на функциональное моделирование (Functional). Перед запуском функционального моделирования необходимо сгенерировать таблицу соединений с помощью кнопки «Generate functional simulation netlist» (рис.8.4).

Рис. 8.4. Переключение в режим функционального моделирования

В качестве элементов памяти для строк кэш-памяти удобно использовать регистры (например, параметризированный модуль LPM_DFF, в котором легко задать необходимую разрядность).

Содержимое кэш-памяти просматривать непосредственно на элементах памяти без вывода на выходные пины, поскольку использование такого количества пинов не позволит вам найти подходящую ПЛИС, в которую проект сможет «уместиться».

Таблица 8.1. Варианты заданий к л.р. № 8

Nº	Вид кэш-памяти	Слож- ность вариан- та (0-3)	Количе- ство строк/н аборов в кэш	Количест- во байт в строке	Количе- ство строк в наборе	Принцип замещения строк в кэш	Размер кэш
1	Полностью ассо-		4	2	1	Без анализа	
	циативное отобра- жение		4	2	1	LRU	
			4	2	1	Наиб. давне- го хранения	
2	//		4	4	1		
3	//		4	8	1		
4	Прямое отображе- ние		8	2/4/8	1	Нет	
5	//		16	2/4/8	1	//	
6	//		32	2/4/8	1	//	
7	k-мерное частич- ное ассоциативное		4	2/4	2	Без анализа	
	отображение					LRU	
	-					Наиб. давне- го хранения	
8	//		8	2/4	2	//	
9	// //		16	2/4	2	//	
10			4	2/4	4	Без анализа	
11	//		8	2/4	4	LRU	
12			16	2/4	4	Наиб. давне-	
						го хранения	

2.2. Содержание отчета по лабораторной работе №8

- 1. Задание.
- 2. Схема кэш-памяти.
- 3. Результаты функционального моделирования.