SECURITY IN COMPUTING, FIFTH EDITION

Review – introduction & toolbox

CISC 3325 - Information Security

 Tzipora Halevi, Assistant Professor email: halevi@cis.brooklyn.cuny.edu
Office Hours: Mondays, 2:30 - 4:30pm
Ingersol room 2156A

Book:

 Charles P. Pfleeger, Shari Lawrence Pfleeger and Jonathan Margulies, Security in Computing, 5th edition, Prentice Hall imprint, Pearson Education, Inc., 2015

What Is Computer Security?

- The protection of the assets of a computer system
 - Hardware
 - Software
 - Data
- What is the value of the assets?
 - Is the asset easily replaced?
 - Cost of replacement.
 - Is the asset unique?

What is Computer Security?

- Traditionally, computers are protected against:
 - Theft/damage to hardware
 - Theft/damage to information
 - Disruption of service

Growing Importance of Computer Security

- Increasing reliance on computer systems and the Internet
- Use of wireless networks such as Bluetooth and Wi-Fi
- Expanding array of smart devices
 - and 'Internet of Things' (IoT) devices

Why is computer security important?

- Attacks Impact everyone's day-to-day life
 - Millions of compromised computers
 - Millions of stolen passwords
 - Risk of identity theft
- Serious financial damage caused by security breaches

How can we help?

- Security education can help us
 - Avoid attacks
 - Create safer systems
- We start by defining risk management

Risk Management

- High-level goals of computer security:
 - identification, evaluation, prioritization of risks
 - Defined as a threat model
 - Estimate the effects of uncertainty
 - Not perfect protection
 - Efforts concentrate on making it harder to attack
 - Finding ways to spend time & money efficiently
 - minimize the probability or impact of unfortunate events

Threat Model

- Key notion of threat model:
 - what/who are you defending against?
 - Determines which defenses to consider
 - E.g., where are valuable assets stored, where is the system most vulnerable to attacks, etc.

How to protect from loss, destruction and illegal access

- Identify vulnerabilities weaknesses that can be exploited to cause harm
- Monitor for threats methods or situations that can cause harm
- Recognize an attack that exploits the vulnerabilities
- Take countermeasures or use methods to control an attack

Computer Security

- To protect computer systems, you must know your enemy
- Security is not about perfection: it's about defenses that are good enough to stop the threats you're likely to encounter

FUNDAMENTAL CONCEPTS

Computer Network

- A digital telecommunications network which allows nodes to share resources
- Networked computing devices exchange data with each other using a data link
- The connections between nodes are established using either cable media or wireless media

Cyber Vulnerabilities

- Vulnerability is a cyber-security term that refers to a flaw in a system that can leave it open to attack.
- A vulnerability may also refer to any type of weakness in a computer system itself
 - Either in a set of procedures, or in anything that leaves information security exposed to a threat
- Cutting down vulnerabilities provides fewer options for malicious users to gain access to secure information.

CONFIDENTIALITY, INTEGRITY AND AVAILABILITY (C.I.A.)

Confidentiality

- Avoidance of the unauthorized disclosure of information
 - Protect data, keep information secret
 - Provide access only to authorized users

Tools to ensure confidentiality

Encryption:

- Information encrypted using a secret key
- Transformed info can be read using decryption key
 - Info essentially can not be read without this key

Access Control:

- Policies that limit access to confidential info
 - To people/systems with a "need to know"
 - May be based on person's id, name or his role

Tools to ensure confidentiality (cont.)

- Authentication:
 - Process of confirming someone's ID or role
 - Maybe based on:
 - Something that the person has
 - Smart card, radio key, etc.
 - Something the person knows:
 - Password, etc
 - A physical trait of a person:
 - Fingerprints, etc.

Authentication Vs. Identification

- These are two different concepts
- Identification:
 - The act of asserting who a person is.

Authentication

 The act of proving that asserted identity that the person is who she says she is

Tools to ensure confidentiality (cont.)

Authorization:

- Is the person allowed access to the info?
 - Based on access control policy
- Mechanism should be secure, prevent an attacker from tricking the system and gaining unauthorized access

Physical Security:

- Physical barriers that limit access to protected info
 - Such as locks, cabinets, doors.
 - Placing a computer in a windowless room.
 - Building a Faraday cage to prevent electromagnetic signals
 - To prevent side-channel attacks

Integrity

- Ensure information has not been altered in an unauthorized way
- Information may be compromised maliciously or by accident
 - Through hard drive crashes
 - Through a computer virus

Tools to protect integrity

- Regular backups
- Checksums:
 - Map the content to a numerical value and save that value
 - Read it back upon reading the information
- Data correcting codes:
 - Store data in such a way that small changes can be easily detected
 - and corrected
- The above tools all use redundancy
 - Replication of some of the information content or content

Availability

- Information is available when it is needed
 - Accessible and modifiable
 - to those authorized to do so
- Tools for ensuring availability:
 - Physical protections:
 - housing that can withstand unexpected situations
 - Such as earthquakes, storms, etc.
 - Powered with generators
 - Computational redundancies:
 - Extra disks or web servers, such that failure of a single device will not degrade availability of data

C-I-A Triad - Summary

- Confidentiality only those individuals or accounts who have permission can access a system.
- Integrity a system or account can be altered only by authorized users
- Availability a system/account is available when expected

C-I-A Triad - Summary

- Sometimes two other desirable characteristics:
 - Authentication:
 - Ability of a system to confirm the identity of a sender
 - Nonrepudiation or accountability:
 - The ability of a system to confirm that a sender cannot convincingly deny having sent something

Types of threats

- Interception
 - the asset or data is accessed by someone other than the intended receiver
- Interruption
 - the asset or data is not available
- Modification
 - an unauthorized change is made
- Fabrication
 - false information is installed

Types of Threads vs. CIA Triad

- Interception:
 - Threat to confidentiality
 - Attacker can see data
- Interruption
 - Threat to availability
- Modification and fabrication
 - Threat to data integrity

Threats and Attacks

- Eavesdropping: interception of information during transmission
 - Includes side channel attacks
 - May be audio, electromagnetic, power, etc.
- Alteration: unauthorized modification of information
 - False information may be installed

Threats and Attacks (cont.)

- Denial-of-service: interruption or degradation of data or information
 - This is an attack on availability
 - For example, email spam, which fills the mailbox

https://www.cyberdominance.com/cybersecurity/your-local-supermarket-holds-the-key-to-defending-against-distributed-denial-of-service-attacks/

Threats and Attacks (cont.)

- Masquerading: fabrication of information, purported to be from some who is not the actual author
 - For example, phishing and spear-phishing attacks
- Repudiation: denial of commitment or data receipt
 - Attempt to back out of a contract

Source of the threat

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

Advanced Persistent Threat (APT)

- Attacks by a collection of attackers
- Organized, well financed, patient assailants
 - Often affiliated with governments or quasi-governmental groups
- Engage in long term campaigns
- Carefully select their targets, crafting attacks that appeal to specifically those targets

Who are the attackers?

From *Security in Computing, Fifth Edition*, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

Vulnerabilities Databases

- http://cve.mitre.org a list of information security vulnerabilities and exposures that aims to provide common names for publicly known cybersecurity issues.
- https://nvd.nist.gov the U.S. government repository of standards-based vulnerability management data

How are attacks accomplished?

- Method of attack:
 - A group or individual uses their knowledge of the hardware or software to access the system
 - A group or individual downloads the information needed to access the system
- Opportunity for an attack unsecured access or data
- Motive why is the attack occurring

Controls/Countermeasures

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

Risk Management

- Can not protect against every attack:
 - Decide what is most valuable and analyze how to protect it
 - Estimate how likely an attack is
 - What is the impact of the attack

How to prevent or respond to an attack

- Block the attack or remove the vulnerability
- Make the attack harder to accomplish
- Decrease the attractiveness of the target
- Have counter measures that make the attack less severe
- Detect that an attack is in progress and take counter measures
- Have a plan to recover from an attack

Summary

- Vulnerabilities are weaknesses in a system; threats exploit those weaknesses; controls protect those weaknesses from exploitation
- Confidentiality, integrity, and availability are the three basic security primitives
- Different attackers pose different kinds of threats based on their capabilities and motivations
- Different controls address different threats; controls come in many flavors and can exist at various points in the system

Questions?

AUTHENTICATION AND ACCESS CONTROL

CISC 3325 - Information Security

Authentication

- The ability to prove that a user or application is genuinely who they claims to be
 - Not just for end-users:
 - For example, a web server and client need to authenticated each other
- Usually the user has no control over the type of authentication

Impersonation

- Pretending to be someone else
 - Attacker may impersonate user, web client or web server
- Authentication can protect against impersonation

Authenticating Users

- How can a computer authenticate the user?
- Authentication basics:
 - Something you know
 - Password, pin, etc.
 - Something you have
 - House key, ATM card, tokens, etc.
 - Something you are
 - Captcha (differentiating humans and computers), fingerprints, face recognition

Something the user knows

- What does the user know?
 - Passwords, pins, etc.
 - Security questions
 - Recognition of an image

Something the user knows

- Attacks on "something the user knows":
 - Dictionary attacks
 - Inferring likely passwords/answers
 - Guessing
 - Detecting how a password is stored
 - Defeating concealment
 - Exhaustive or brute-force attack
 - Rainbow tables
 - a precomputed table for reversing cryptographic hash functions

What is a good password?

- Many passwords are poorly chosen
- A good password has the following characteristics:
 - At least 8 characters
 - Not a word in several languages
 - Must contain several types of ASCII chars
 - uppercase and lowercase letters, digits, punctuation
 - Try not to begin with an uppercase letter

Distribution of Password Types

Secure Passwords

- Recent studies reaffirm the users' weak passwords
 - Show that the vast majority of passwords used on the Internet are extremely easy to crack
- Case studies, such as Ashley Madison, showed that a large number of passwords can be detected
 - Using off-the-market cracking tools

Secure Passwords

PASSWORD:

- Conclusions:
 - Weak passwords easier to guess
 - Vulnerable even when hashed
 - Many passwords can be guessed
 - by exploiting the predictability in the way most end users choose passwords
 - Password cracking tools significantly improved
 - Passwords should be hashed
 - Using a strong hashing mechanism

BIOMETRICS AND TOKEN-BASED AUTHENTICATION

Biometrics: a physical attribute of the user

Types of biometric authentication

- Fingerprints
- Hand geometry
- Scan of the eye
- Voice
- Handwriting
- Typing style
- Face or facial features

Problems with Biometrics

- Intrusive
- Expensive
- Single point of failure
- Sampling error
- False readings
- Speed
- Forgery

Biometrics Passwords

- Recent advances in smartphones have begun to make biometrics cheaper and easier to use.
- Biometrics are still inadequate for extremely sensitive applications
 - but their convenience makes them a great alternative to weak passwords

Authentication Mechanisms

- Companies are developing authentication methods
 - To be used by third-party applications for authentication
 - So applications do not have to implement it themselves
- Examples: RSA SecureID, Federated Identity Management

Authentication Mechanisms

- RSA Secure ID:
 - Has a code that changes every 60 seconds.
 - Physical possession of the token should be necessary for successful authentication.

Tokens: Something You Have

Authentication Mechanisms

- Federated Identity Management:
 - A union of separate identification and authentication systems.
 - Authentication is performed in one place,
 - Separate processes and systems determine that an already authenticated user is to be activated.
- Single sign-on lets a user log on once per session but access many different applications/systems.
 - Often works in conjunction with federated identity management
 - with the federated identity provider acting as the source of authentication for all the applications.

Federated Identity Management

Single Sign-On

Questions?

Access Control

- Some resources (files, web pages, ...) are sensitive.
 - Need to protect their confidentiality
- How do we limit who can access them?
- This is called the access control problem

Access Control

- Basic tasks access control manages:
 - Allow access
 - Deny access
 - Limit access
 - Allowing access to a resource up to a certain point
 - Revoke access
 - Access may change over time

Access Control Fundamentals

- Selective restriction of access to a place or other resource
- The system makes a decision to grant or reject an access request from an already authenticated subject
 - based on what the subject is authorized to access

Access Control

Access Policies

- Goals:
 - Check every access
 - Enforce least privilege
 - Verify acceptable usage
- Track users' access
- Enforce at appropriate granularity
- Use audit logging to track accesses

Access Control Fundamentals

- Subjects: entities that can perform actions on the system
- Objects: entities representing resources to which access may need to be controlled
- Policy: the restrictions we'll enforce
- Example: access(S, O) = true if subject S is allowed to access object O

- Minimal user profile privileges is set based on users' job necessities
- Applies to users, user accounts, processes, etc.
 - To allow performing needed functionality
- Example: a teacher should not need access to data internal to a human resource system in order to do their job

Access Control Fundamentals

- Identification and authentication:
 - only legitimate subjects can log on to a system
- Access approval:
 - grant access during operations
 - by associating users with resources they may access
 - based on the authorization policy
- Accountability: identify what a subject did
 - (or all subjects associated with a user)

Questions?

Implementing Access Control

- Reference monitor
- Access control directory
- Access control matrix
- Access control list
- Capability-based security
- Procedure-oriented access control
- Role-based access control

- Defines a set of design requirements on a reference validation mechanism
- Enforces an access control policy over subjects ability to perform operations on objects
 - Subjects, e.g., processes and users
 - Operations, e.g. read and write
 - Users, e.g. files, etc.

- A reference monitor is responsible for mediating all access to data
- Subject cannot access data directly; operations must go through the reference monitor, which checks whether they're OK

- Authorization Database: Repository for the security attributes of subjects and objects
- Audit trail: Record of all security-relevant events

Criteria for a Reference Monitor

- Ideally, a reference monitor should be:
 - Non-bypassable: mediate every attempt by a subject to gain access to an object
 - Tamper-resistant: Provide a tamperproof database and audit trail
 - that are thoroughly protected from attackers
 - Verifiable: should be simple and well-structured software
 - so that it is effective in enforcing security requirements
 - Unlikely to have bugs

 A reference monitor is the primary access control enforcement mechanism of the operating system

Access Control Fundamentals

- Examples:
- access(Alice, Alice's data) = true
- access(Alice, Bob's data) = true
- access(Alice, Charlie's data) = false

Access Control Directory

Access Control Matrix

- Characterizes the rights of each subject with respect to every object in the system
- Can be written as a rectangular array of cells,
 - one row per subject and one column per object
 - The entry for a particular subject-object pair indicates the access mode
 - that the subject is permitted to exercise on the object
 - Each column is an access control list for the object
 - Each row is an access profile for the subject

Access Control Matrix

	BIBLIOG	TEMP	F	HELP.TXT	С_СОМР	LINKER	SYS_CLOCK	PRINTER
USER A	ORW	ORW	ORW	R	X	X	R	W
USER B	R	-	-	R	X	X	R	w
USER S	RW	-	R	R	X	X	R	w
USER T	-	-	-	R	X	X	R	w
SYS_MGR	-	-		RW	OX	OX	ORW	О
USER_SVCS	-	-	-	О	X	X	R	W

Access Control List (ACL)

- A list of permissions attached to an object
- An ACL specifies which users or system processes are granted access to objects
 - as well as what operations are allowed on given objects
- Each entry in a typical ACL specifies a subject and an operation
- Example: A file that contains the line:

Alice: admin, Bob: write

Access Control List

Capability-Based Security

- Oriented around the use of a token that controls an access
- Based entirely on the possession of the token and not who possesses it
- In a capability-based operating system, the capabilities are passed between processes and storage
 - OS maintains the integrity of those capabilities

Capability-Based Security

 Example: Bob gives his key to his neighbor Dave while he goes on vacation.

Procedure-Oriented Access Control

- Provides a more complex access control
- A procedure that controls access to objects
 - for example, by performing its own user authentication to strengthen the basic protection provided by the basic operating system)
- The procedure forms a "capsule" around the object
 - permitting only certain specified accesses

Procedure-Oriented Access Control Example

- Procedures can ensure that accesses to an object be made through a trusted interface.
- Example:
 - Neither users nor general operating system routines might be allowed direct access to the table of valid users.
 - The only accesses allowed might be through three procedures:
 - one to add a user
 - one to delete a user
 - one to check whether a particular name corresponds to a valid user.
 - These procedures could use their own checks to make sure that calls to them are legitimate
 - especially add and delete

Procedure-Oriented Access Control

- Implements the principle of information hiding
 - the means of implementing an object are known only to the object's control procedure
- However, this carries a penalty of inefficiency
 - No fast access checking, even if the object is frequently used

Role-Based Access Control (RBAC)

- Access control set by an authority designated for the task
- Access is based on the role each subject has in the system

Summary

- Users can authenticate using something they know, something they are, or something they have
- Systems may use a variety of mechanisms to implement access control

Questions?

