Question Number	Answer		Mark
16(a)	When charging voltmeter is not across C,	(1)	
	Or When switch at X, voltmeter is not across C,	(1)	2
	When discharging the resistor isn't in the circuit,		
16(b)(i)	Or with switch at Y, the resistor isn't in the circuit Either	(1)	
	Takes corresponding pairs values of V and t from graph Use of $\ln V = \ln V_0 - t/RC$	(1)	
	Or Use of $V = V_0 e^{-\frac{t}{RC}}$	(1)	
	$R = 1.1 \times 10^7 \Omega$	(1)	
	Or Draws initial tangent to survive and determines t intercent (some 22 a 26)	(1)	
	Draws initial tangent to curve and determines <i>t</i> intercept (range 22 s - 26 s)	(1)	
	Use of $T = RC$ $R = 1.1 \times 10^7 \Omega$	(1)	
		(1)	
	Or Read value of t at which $V = V_0 / e$ (2.3 V at 24 s)	(1)	3
	Use of $T = RC$ $R = 1.1 \times 10^7 \Omega$	(1)	
	Example of calculation eg $V = 4.1 \text{ V}$ and $t = 10 \text{ s}$		
	$\ln 4.1 = \ln 6.2 - \frac{10s}{R \times 2.2 \times 10^{-6} \text{ F}}$		
	$R = 1.1 \times 10^7 \Omega$		
16(b)(ii)	Use of $Q = CV$	(1)	
	Subtract charge at 30 s from charge at 0 s Use of $I = Q/t$	(1) (1)	
	$I = 3.2 \times 10^{-7} \mathrm{A}$	(1)	4
	Example of calculation		
	$Q = 2.2 \times 10^{-6} \text{F} \times 6.2 \text{V} = 1.36 \times 10^{-5} \text{C}$		
	$Q = 2.2 \times 10^{-6} \text{F} \times 1.8 \text{V} = 3.96 \times 10^{-6} \text{C}$		
	$1.36 \times 10^{-5} \text{ C} - 3.96 \times 10^{-6} \text{ C} = 9.64 \times 10^{-6} \text{ C}$ $I = 9.64 \times 10^{-6} \text{ C} \div 30 \text{ s}$		
	$I = 3.2 \times 10^{-7} \mathrm{A}$		
16(b)(iii)	Use of $W = \frac{1}{2} CV^2$	(1)	
	Subtract energy at 30 s from energy at 0 s Energy dissipated = 3.9×10^{-5} J	(1) (1)	3
	Example of calculation $W = \frac{1}{2} \times 2.2 \times 10^{-6} \text{F} \times (6.2 \text{V})^2 = 4.23 \times 10^{-5} \text{J}$		
	$W = \frac{1}{2} \times 2.2 \times 10^{-6} \text{F} \times (1.8 \text{V})^2 = 3.56 \times 10^{-6} \text{J}$		
	$4.23 \times 10^{-5} \text{ J} - 3.56 \times 10^{-6} \text{ J} = 3.87 \times 10^{-5} \text{ J}$ Energy dissipated = $3.9 \times 10^{-5} \text{ J}$		
	Total for question 16		12