ASSIGNMENT WEEK 9

A. Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Date: 03 December 2019

Piacenza Weather Data:

 $T_{out} = 6$ °c

Relative Humidity = 90%

Atmospheric pressure = 1017kpa

From the Graph:

Specific Humidity = 0.005
$$\left(\frac{gm \ of \ water}{gm \ of \ dry \ air}\right)$$

Wet bulb temperature = 5°c

Specific enthalpy of humid air = $19(\frac{KJ}{Kg \ of \ dry \ air})$

$$P_v = \frac{p.\omega}{0.622 + \omega} = 0.84 \ kg$$

$$V_{room A} = 20 \times 6 \times 6 = 720 \text{ } m^2$$

$$m_v = \frac{p_v \cdot v}{R_v \cdot T} = \frac{0.84 \times 720}{0.4615 \times (273+6)} = 4.7 \text{ kg}$$

B. Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

								BRINDIS	l, Italy						WMO#:	163200	
	Lat:	40.65N	Long:	17.95E	Elev	: 10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	eating and H	lumidificat	ion Design C	onditions												
	Coldest	Heatin	a DB			nidification D	P/MCDB and				Coldest mon				/PCWD	1	
	Month	99.6%	99%	DP	99.6% HR	MCDB	DP	99% HR	MCDB	WS 0.	4% MCDB	WS 1	% MCDB	MCWS	6% DB		
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(I)	(m)	(n)	PCWD (o)	i	
	2		4 - 7	-5.1			-3.0	4 3			10.2		,				
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Dehu	ımidificatio	n, and Entha	ılpy Desigi	n Condition:	•										
	Hottest	Hottest Month		100		DB/MCWB					Evaporation			41	MCWS/		
	Month	Month DB Range	DB 0	.4% MCWB	DB	MCWB	DB 2 ^s	MCWB	WB 0.4	4% MCDB	WB 1	% MCDB	WB 2	% MCDB	to 0.4	% DB PCWD	
	(a)	(b)	(c)	(d)	(e)	(f)		(h)	(i)		(k)	(I)	(m)	(n)	(o)		1
	8	7.1	32.8	23.6	31.1	24.3	(g) 29.9	24.3	27.2	(j) 29.7	26.3	29.0	25.6	28.3	4.2	(p) 180	
(2)	۰	7.1	32.0	23.6	31.1	24.3	29.9	24.3	21.2	29.7	20.3	29.0	25.6	20.3	4.2	100	(2)
				Dehumidific		ICDB and HF	₹						y/MCDB			Hours	
		0.4%			1%			2%			4%		%		%	8 to 4 &	
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	Annual Desig	gn Conditi	ons													
	Extr	reme Annual	ws	Extreme			Annual DB	decide No.				tum Period					
	1%	2.5%	5%	Max WB	Min	ean Max	Standard Min	Max	Min	years Max	n=10 Min	years Max	Min	years Max	n=50 Min	years Max	
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	1
			8.7			37.3				39.4		4 - 7	-2.2		-3.2		
(4)	11.3	9.9	5.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Number of occupants = 2

Number of bed rooms = 1

Height of the building = 2.5m

Area of the floor = 200 m^2

Internal gains:

$$\dot{Q}_{\rm igsensible} = 136 + 2.2A_{cf} + 22Noc$$

$$= 136 + 2.2 (200) + 22(2)$$

$$= 620 \text{ W}$$
 $\dot{Q}_{\rm iglatent} = 20 + 0.22A_{cf} + 12Noc$

$$= 20 + 0.22 (200) + 12(2)$$

$$= 88 \text{ W}$$

INFILTRATION

A house with good construction quality, $A_{ul} = 1.4 \frac{cm^2}{m^2}$

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²
Tight	Construction supervised by air-sealing specialist	0.7
Good	Carefully sealed construction by knowledgeable builder	1.4
Average	Typical current production housing	2.8
Leaky	Typical pre-1970 houses	5.6
Very leaky	Old houses in original condition	10.4

$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 m^2$$

$$A_L = A_{es} \ x \ A_{ul} = 344 \ x \ 1.4 = 481.6 \ cm^2$$

$$T_{cooling} = 24$$
°c

$$T_{heating} = 20$$
°c

$$\Delta T_{cooling}$$
 = 31.1°c - 24°c = 7.1 °c

$$\Delta T_{heating}$$
 = 20°c - (-4.1)°c = 24.1 °c

$$DR = 7.1$$
°c

Given
$$IDF_{heating} = 0.073 \frac{L}{s \times cm^2}$$

 $IDF_{cooling} = 0.033 \frac{L}{s \times cm^2}$

INFILTRATION AIRFLOW RATE

$$Q_{i.heating} = A_L x IDF_{heating} = 481.6 \times 0.073 = 35.15 \frac{L}{s}$$

 $Q_{i.cooling} = A_L x IDF_{cooling} = 481.6 \times 0.033 = 15.89 \frac{L}{s}$

VENTILATION

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 \times 200 + 3.5(1 + 1) = 17\frac{L}{s}$$

$$Q_{i-v.heating} = Q_{i.heating} + Q_{v} = 35.15 + 17 = 52.15 \frac{L}{s}$$

$$Q_{i-v.cooling} = Q_{i.cooling} + Q_v = 15.89 + 17 = 32.89 \frac{L}{s}$$

Given that

 $C_{sensible} = 1.23$,

 $C_{latent} = 3010$,

 $\Delta\omega_{cooling}=0.0039$

$$q_{inf-ventilation\ cooling\ sensible} = C_{sensible}\ Q_{i-v.cooling}\ \Delta T_{cooling} = 1.23\ x\ 32.89\ x\ 7.1$$

= 287.25W

$$q_{inf-ventilation\ cooling\ latent} = C_{latent}\ Q_{i-v.cooling}\ \Delta\omega_{cooling} = 3010\ x\ 32.89\ x\ 0.0039 = 386.13\ W$$

$$q_{inf-ventilation\ heating\ latent} = C_{sensible}\ Q_{i-v.heating}\ \Delta T_{heating} = 1.23\ x\ 52.15\ x\ 24.1$$
 = 1546W