

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

155

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
8 November 2001 (08.11.2001)

PCT

(10) International Publication Number
WO 01/83729 A2

- (51) International Patent Classification⁷: **C12N 15/00**
- (21) International Application Number: **PCT/EP01/04863**
- (22) International Filing Date: 30 April 2001 (30.04.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
09/562,934 1 May 2000 (01.05.2000) US
- (71) Applicants: NOVARTIS AG [CH/CH]; Schwarzwalddree 215, CH-4058 Basel (CH). THE SCRIPPS RESEARCH INSTITUTE [US/US]; 10550 North Torrey Pines Road, La Jolla, CA 92037 (US).
- (71) Applicants and
(72) Inventors: NEMEROW, Glen, R. [US/US]; 462 Cerro Street, Encinitas, CA 92024 (US). VON SEGGERN, Daniel, J. [US/US]; Apartment 30, 5175 Luigi Terrace, San Diego, CA 92122 (US). FRIEDLANDER, Marty [US/US]; 1720 Zapo Street, Del Mar, CA 92014 (US).
- (74) Agent: BECKER, Konrad; Novartis AG, Corporate Intellectual Property, Patent & Trademark Dept., CH-4002 Basel (CH).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/83729 A2

(54) Title: VECTORS FOR OCULAR TRANSDUCTION AND USE THEREOF FOR GENETIC THERAPY

(57) Abstract: Adenovirus vector-based gene therapy methods for treating ocular disorders are provided. Adenovirus vectors for therapy of ocular diseases and methods of treatment using the vectors are provided. Compositions, kits, and methods of preparation and use of the vectors for gene therapy are provided.

VECTORS FOR OCULAR TRANSDUCTION AND USE THEREOF FOR GENETIC THERAPY

Work described herein was supported by NIH grants EY11431 and HL54352. The government has certain rights in such subject matter.

5 RELATED APPLICATIONS

This application claims the benefit of priority to U.S. application Serial No. 09/562,934, filed May 1, 2000, to Glen R. Nemerow, Daniel Von Seggern,; Martin Friedlander, entitled "VECTORS FOR OCULAR TRANSDUCTION AND USE THEREFOR FOR GENETIC THERAPY".

- 10 This application is related to copending U.S. application Serial No. 09/482,682 (also filed as International PCT application No. PCT/US00/00265, filed January 14, 2000)), to Daniel Von Seggern, Glen R. Nemerow, Paul Hallenbeck, Susan Stevenson, Yelena Skripchenko, filed January 14, 2000, entitled "Adenovirus Vectors, Packaging Cell Lines, Compositions, and
- 15 Methods for Preparation and Use," which is a continuation-in-part of U.S. Application 09/423,783 filed November 12, 1999 and claims the benefit of the filing date of U.S. Provisional Application 60/115,920 filed January 14, 1999. Where permitted, the contents and subject matter of each application and of the provisional application are incorporated in their entirety herein by reference.

20 FIELD OF INVENTION

The present invention relates to gene therapy, especially to adenovirus vector-based gene therapy. In particular, adenovirus vectors for therapy of ocular diseases and methods of treatment using the vectors are provided. Compositions, kits, and methods of preparation and use of the vectors for gene

25 therapy are provided.

BACKGROUND OF THE INVENTION

Retinal dystrophies

- The eye is susceptible to a number of hereditary and/or age related degenerative disorders. In the United States, common causes of irreversible blindness or severe loss of vision are retinal dystrophies (see, e.g., Cotlier *et al.* (1995) *Surv. Ophthalmology* 40:51-61; Bird (1995) *Am. J. Ophthal.* 119: 543-562; and Adler (1996) *Arch Ophthal* 114:79-83). The retina is the sensory

-2-

tunic of the eye, containing light sensitive receptors, a complex of neurons, and pigmented epithelium, arranged in discrete layers. In humans, the macula is the portion of the retina that lies directly behind the lens. Cones, the photoreceptor cells responsible for central vision, are heavily concentrated in the macula.

- 5 Central dystrophies, which affect the macula, include Best's disease, age-related macular degeneration, and Stargardt's macular dystrophy. The peripheral retina is composed mainly of rods, which are responsible for side and night vision. Peripheral degenerative retinal diseases include retinitis pigmentosa, choroideremia and Bietti's crystalline dystrophy.

- 10 Macular degenerations are a heterogenous group of diseases, characterized by progressive central vision loss and degeneration of the macula and underlying retinal pigmented epithelium. Age-related macular degeneration (ARMD) is the most common form of the disease, affecting an estimated 20% of persons over 75 years of age. ARMD is poorly understood in terms of etiology
- 15 and pathogenesis. The very late onset of the disease has made genetic mapping particularly difficult. Certain macular degenerative conditions with a clear genetic basis, such as Stargardt's and Best's diseases, share many features with ARMD, but have been more amenable to molecular and genetic analysis.

- Hereditary peripheral retinopathies are also relatively common. Retinitis
- 20 pigmentosa (RP), for example, affects approximately 1.5 million people worldwide. Substantial genetic heterogeneity has been observed in this condition, with over 20 chromosomal loci identified. A predisposition to retinitis pigmentosa can be inherited by autosomal dominant, autosomal recessive, X-linked or digenic mode. Mutations have been identified in seven genes, four of
 - 25 which encode proteins in the rod phototransduction cascade: rhodopsin, alpha and beta subunits of rod cGMP phosphodiesterase, and rod cGMP cation-gated channel protein .alpha. subunit. Mutations in the peripherin/RDS gene have been linked to retinitis pigmentosa and macular degeneration. A single peripherin/RDS mutation apparently caused retinitis pigmentosa, pattern dystrophy and fundus
 - 30 flavimaculatus, in different family members.

-3-

In spite of causal heterogeneity, there is significant clinical similarity among RP subtypes. Common signs and symptoms include early electroretinographic abnormalities, ophthalmoscopic findings, and protracted, contiguous expansion of the ring-like scotoma toward the macula,

- 5 leading to progressively worsening tunnel vision. A recent hypothesis is that active photoreceptor cell death, which is characteristic of these genetically distinct disorders, is mediated by a common induction of apoptosis. It may be possible to treat these conditions by the administration of agents that block induction of apoptosis in photoreceptors, such as neurotrophic factors.

10 Adenovirus delivery vectors

Adenovirus, which is a DNA virus with a 36-kilobase (kb) genome, is very well-characterized and its genetics and genetic organization are understood.

- The genetic organization of adenoviruses permits substitution of large fragments of viral DNA with foreign DNA. In addition, recombinant adenoviruses are
15 structurally stable and no rearranged viruses are observed after extensive amplification.

Adenoviruses have been employed as delivery vehicles for introducing desired genes into eukaryotic cells. The adenovirus delivers such genes to eukaryotic cells by binding to cellular receptors followed by internalization. The
20 adenovirus fiber protein is responsible for binding to cells. The fiber protein has two domains, a rod-like shaft portion and a globular head portion that contains the receptor binding region. The fiber spike is a homotrimer, and there are 12 spikes per virion. Human adenoviruses bind to and infect a broad range of cultured cell lines and primary tissues from different species.

- 25 The 35,000+ base pair (bp) genome of adenovirus type 2 has been sequenced and the predicted amino acid sequences of the major coat proteins (hexon, fiber and penton base) have been described (see, e.g., Neumann *et al.*, *Gene* 69: 153-157 (1988); Herisse *et al.*, *Nuc. Acids Res.* 9: 4023-4041 (1981);
Roberts *et al.*, *J. Biol. Chem.* 259: 13968-13975 (1984); Kinloch *et al.*, *J. Biol.*
30 *Chem.* 259: 6431-6436 (1984); and Chroboczek *et al.*, *Virol.* 161: 549-554, 1987).

-4-

The 35,935 bp sequence of Ad5 DNA is also known and portions of many other adenovirus genomes have been sequenced. The upper packaging limit for adenovirus virions is about 105% of the wild-type genome length (see, e.g., Bett, et al., *J. Virol.* 67(10): 5911-21, 1993). Thus, for Ad2 and Ad5, this 5 would be an upper packaging limit of about 38kb of DNA.

Adenovirus DNA also includes inverted terminal repeat sequences (ITRs) ranging in size from about 100 to 150 bp, depending on the serotype. The inverted repeats permit single strands of viral DNA to circularize by base-pairing of their terminal sequences to form base-paired "panhandle" structures that are 10 required for replication of the viral DNA.

For efficient packaging, the ITRs and the packaging signal (a few hundred bp in length) comprise the "minimum requirement" for replication and packaging of a genomic nucleic acid into an adenovirus particle. Helper-dependent vectors lacking all viral ORFs but including these essential *cis* elements (the ITRs and 15 contiguous packaging sequence) have been constructed.

Ad vectors have several distinct advantages as gene delivery vehicles. For example, recombination of such vectors is rare; there are no known associations of human malignancies with adenoviral infections despite common human infection with adenoviruses; the genome may be manipulated to 20 accommodate foreign genes of a fairly substantial size; and host proliferation is not required for expression of adenoviral proteins. Adenovirus (Ad)-based gene delivery vectors efficiently infect many different cells and tissues. This broad tropism, however, means that gene delivery cannot be directed to a specific target cell. A large fraction of intravenously administered adenovirus is 25 retained by the liver, which could lead to undesirable side-effects. Adenovirus may potentiate immune responses. For example, Adenovirus type 5 (Ad5) also transduces dendritic cells, which present antigens very efficiently, thereby possibly exacerbating the immune response against the vector. It has been proposed that vectors with different targeting efficiencies might eliminate these 30 problems, permitting a lower total particle dose and more specific targeting (see, e.g., U.S. application Serial No. 09/482,682).

-5-

The wealth of information on adenovirus structure and mechanism of infection, its efficient infection of nondividing cells, and its large genetic capacity make adenovirus a popular gene therapy vector. The wide expression of receptors to which adenovirus binds makes targeting adenovirus vectors difficult.

5

Hence there is a need to improve delivery and targeting of adenoviral vectors and also to provide treatments for ocular disorders. Therefore, it is an object herein to provide adenoviral vectors that specifically or selectively target cells in the eye. It is also an object herein to provide these vectors for treatment

10

of ocular disorders.

SUMMARY OF THE INVENTION

Degenerative ocular diseases, such as, but not limited to, retinitis pigmentosa, Stargardt's disease, diabetic retinopathies, retinal vascularization, and others (see, e.g., Table below), have a genetic basis. Genes expressed in 15 the photoreceptor cells at the back of the retina are implicated in these diseases. Provided herein are recombinant viral vectors for targeting therapeutic products to these cells.

Recombinant adenoviral vectors that include nucleic acid that permits specific binding to these photoreceptors are provided. In particular, the vector 20 particles contain a fiber protein of Ad37 or a modified form thereof. As shown herein, fiber protein from Ad37 permits efficient infection of photoreceptor cells. Fiber proteins from other adenovirus D serotypes may also be used. In addition, the portions of the fiber protein, particularly those that interact with other viral structural proteins, such as penton, may be modified to resemble the viral source 25 of the other structural proteins. As exemplified herein, the recombinant virus provided herein include Ad5 structural components. The N-terminus of the Ad37 fiber protein, which interacts with the penton protein, is modified to resemble the Ad5 fiber protein N-terminus to ensure production of viral particles.

The recombinant adenoviral vectors are intended for gene therapy of 30 diseases in which genes expressed in the photoreceptors are implicated. Such diseases include, but are not limited to, degenerative ocular diseases, such as retinitis pigmentosa and Stargardt's disease. These vectors are also useful for

-6-

targeting to other ocular cells, such as conjunctival cells, which also bear receptors to which fiber from Ad37 and related serotypes bind.

The vectors will deliver therapeutic agents to the targeted cells for treatment of a variety of disorders (see e.g., Tables 3 and 4, below)). The

- 5 therapeutic agents are intended for expression in the photoreceptors and for secretion from the photoreceptor cells, which are surrounded on one side by choroidal vasculature, and on the other side by retinal vasculature, thereby providing a means for delivery of products. In addition, expression of growth factors, such as VEGF and others, can be used to enhance blood flow to the
10 retina and prevent or slow the degeneration.

Therapeutic agents encoded by the recombinant adenoviral vectors include, but are not limited to, nucleic acid molecules encoding genes that are defective in certain hereditary disorders, nucleic acid molecules that encode antiangiogenics and antitumor agents for treatment of retinal

- 15 disorders, such as retinoblastomas; nucleic acid molecules encoding trophic factors, such as glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF), growth factors and growth factor inhibitors, antiapoptotic factors, such as Bcl-2 (CNTF), antitumor agents, anti-angiogenics, and genes or portions thereof for gene replacement or repair of defective genes.
20 Hence, methods for treatment of inherited and acquired retinal diseases, including diseases involving neovascular and vascular degeneration are provided.

Methods for treating diseases involving genes expressed in photoreceptor cells are provided herein. The methods provided herein are practiced by

- 25 administration of the recombinant viral vectors by any means suitable for delivery to the photoreceptors. A preferred mode of administration is intraocular injection including intravitreal and subretinal injection. Other modes of administration include, but are not limited to, intrascleral, periorbital and intravenous administration. The vectors also can include photoreceptor-specific
30 promoters thereby providing a means, not only for specific targeting of expression in these cells, but also for photoreceptor-restricted transgene expression.

DETAILED DESCRIPTION OF THE INVENTION**A. DEFINITIONS**

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. All patents, applications, published applications and other publications and sequences from GenBank and other data bases referred to anywhere in the disclosure herein are incorporated by reference in their entirety.

As used herein, the amino acids, which occur in the various amino acid sequences appearing herein, are identified according to their three-letter or one-letter abbreviations. The nucleotides, which occur in the various DNA fragments, are designated with the standard single-letter designations used routinely in the art (see, Table 1).

As used herein, amino acid residue refers to an amino acid formed upon chemical digestion (hydrolysis) of a polypeptide at its peptide linkages. The amino acid residues described herein are preferably in the "L" isomeric form. However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired functional property is retained by the polypeptide. NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxyl terminus of a polypeptide. In keeping with standard polypeptide nomenclature described in *J. Biol. Chem.*, 243:3552-59 (1969) and adopted at 37 C.F.R. §§ 1.821 - 1.822, abbreviations for amino acid residues are shown in the following

Table:

25

Table 1
Table of Correspondence

30

SYMBOL		AMINO ACID
1-Letter	3-Letter	AMINO ACID
Y	Tyr	tyrosine
G	Gly	glycine
F	Phe	phenylalanine
M	Met	methionine

-8-

SYMBOL		
A	Ala	alanine
S	Ser	serine
I	Ile	isoleucine
L	Leu	leucine
5	T	threonine
V	Val	valine
P	Pro	proline
H	Lys	lysine
10	H	histidine
Q	Gln	glutamine
E	Glu	glutamic acid
Z	Glx	Glu and/or Gln
W	Trp	tryptophan
R	Arg	arginine
15	D	aspartic acid
N	Asn	asparagine
B	Asx	Asn and/or Asp
C	Cys	cysteine
20	X	Unknown or other

- It should be noted that all amino acid residue sequences represented herein by formulae have a left to right orientation in the conventional direction of amino-terminus to carboxyl-terminus. In addition, the phrase "amino acid residue" is broadly defined to include the amino acids listed in the Table of correspondence and modified and unusual amino acids, such as those referred to in 37 C.F.R. §§ 1.821-1.822, and incorporated herein by reference. Furthermore, it should be noted that a dash at the beginning or end of an amino acid residue sequence indicates a peptide bond to a further sequence of one or

-9-

more amino acid residues or to an amino-terminal group such as NH₂ or to a carboxyl-terminal group such as COOH.

In a peptide or protein, suitable conservative substitutions of amino acids are known to those of skill in this art and may be made generally without altering

5 the biological activity of the resulting molecule. Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g., Watson *et al.* *Molecular Biology of the Gene*, 4th Edition, 1987, The Bejacmin/Cummings Pub. co., p.224).

10 Such substitutions are preferably made in accordance with those set forth in TABLE 2, as follows:

TABLE 2

	Original residue	Conservative substitution
	Ala (A)	Gly; Ser
15	Arg (R)	Lys
	Asn (N)	Gln; His
	Cys (C)	Ser
	Gln (Q)	Asn
	Glu (E)	Asp
20	Gly (G)	Ala; Pro
	His (H)	Asn; Gln
	Ile (I)	Leu; Val
	Leu (L)	Ile; Val
	Lys (K)	Arg; Gln; Glu
25	Met (M)	Leu; Tyr; Ile
	Phe (F)	Met; Leu; Tyr
	Ser (S)	Thr
	Thr (T)	Ser
	Trp (W)	Tyr
30	Tyr (Y)	Trp; Phe
	Val (V)	Ile; Leu

Other substitutions are also permissible and may be determined empirically or in accord with known conservative substitutions.

35 As used herein, a complementing plasmid describes plasmid vectors that deliver nucleic acids into a packaging cell line for stable integration into a chromosome in the cellular genome.

As used herein, a delivery plasmid is a plasmid vector that carries or delivers nucleic acids encoding a therapeutic gene or gene that encodes a

-10-

therapeutic product or a precursor thereof or a regulatory gene or other factor that results in a therapeutic effect when delivered *in vivo* in or into a cell line, such as, but not limited to a packaging cell line, to propagate therapeutic viral vectors.

- 5 As used herein, a variety of vectors with different requirements are described. For example, one vector is used to deliver particular nucleic acid molecules into a packaging cell line for stable integration into a chromosome. These types of vectors are generally identified herein as complementing plasmids. A further type of vector described herein carries or delivers nucleic
10 acid molecules in or into a cell line (e.g., a packaging cell line) for the purpose of propagating therapeutic viral vectors; hence, these vectors are generally referred to herein as delivery plasmids. A third "type" of vector described herein is used to carry nucleic acid molecules encoding therapeutic proteins or polypeptides or regulatory proteins or are regulatory sequences to specific cells or cell types in a
15 subject in need of treatment; these vectors are generally identified herein as therapeutic viral vectors or recombinant adenoviral vectors or viral Ad-derived vectors and are in the form of a virus particle encapsulating a viral nucleic acid containing an expression cassette for expressing the therapeutic gene.

As used herein, a DNA or nucleic acid homolog refers to a nucleic acid
20 that includes a preselected conserved nucleotide sequence, such as a sequence encoding a therapeutic polypeptide. By the term "substantially homologous" is meant having at least 80%, preferably at least 90%, most preferably at least 95% homology therewith or a lesser percentage of homology or identity and conserved biological activity or function.

- 25 The terms "homology" and "identity" are often used interchangeably. In this regard, percent homology or identity may be determined, for example, by comparing sequence information using a GAP computer program. The GAP program utilizes the alignment method of Needleman and Wunsch (*J. Mol. Biol.* 48:443 (1970), as revised by Smith and Waterman (*Adv. Appl. Math.* 2:482
30 (1981)). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences. The preferred default

-11-

- parameters for the GAP program may include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) and the weighted comparison matrix of Gribskov and Burgess, *Nucl. Acids Res.* 14:6745 (1986), as described by Schwartz and Dayhoff, eds., *ATLAS OF PROTEIN SEQUENCE 5 AND STRUCTURE*, National Biomedical Research Foundation, pp. 353-358 (1979); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.

Whether any two nucleic acid molecules have nucleotide sequences that 10 are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% "identical" can be determined using known computer algorithms such as the "FAST A" program, using for example, the default parameters as in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* 85:2444 (1988). Alternatively the BLAST function of the 15 National Center for Biotechnology Information database may be used to determine identity.

In general, sequences are aligned so that the highest order match is obtained. "Identity" *per se* has an art-recognized meaning and can be calculated using published techniques. (See, e.g.: *Computational Molecular Biology*, Lesk, A.M., ed., Oxford University Press, New York, 1988; *Biocomputing: Informatics 20 and Genome Projects*, Smith, D.W., ed., Academic Press, New York, 1993; *Computer Analysis of Sequence Data, Part I*, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; *Sequence Analysis in Molecular Biology*, von Heinje, G., Academic Press, 1987; and *Sequence Analysis Primer*, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). 25 While there exist a number of methods to measure identity between two polynucleotides or polypeptide sequences, the term "identity" is well known to skilled artisans (Carillo, H. & Lipton, D., *SIAM J Applied Math* 48:1073 (1988)). Methods commonly employed to determine identity or similarity between two sequences include, but are not limited to, those disclosed in Guide to Huge 30 Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994, and Carillo, H. & Lipton, D., *SIAM J Applied Math* 48:1073 (1988). Methods to determine identity and similarity are codified in computer programs. Preferred

-12-

computer program methods to determine identity and similarity between two sequences include, but are not limited to, GCG program package (Devereux, J., et al., *Nucleic Acids Research* 12(1):387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S.F., et al., *J Molec Biol* 215:403 (1990)).

5 Therefore, as used herein, the term "identity" represents a comparison between a test and a reference polypeptide or polynucleotide. For example, a test polypeptide may be defined as any polypeptide that is 90% or more identical to a reference polypeptide. As used herein, the term at least "90% identical to" refers to percent identities from 90 to 99.99 relative to the
10 reference polypeptides. Identity at a level of 90% or more is indicative of the fact that, assuming for exemplification purposes a test and reference polynucleotide length of 100 amino acids are compared. No more than 10% (i.e., 10 out of 100) amino acids in the test polypeptide differs from that of the reference polypeptides. Similar comparisons may be made between a test and
15 reference polynucleotides. Such differences may be represented as point mutations randomly distributed over the entire length of an amino acid sequence or they may be clustered in one or more locations of varying length up to the maximum allowable, e.g. 10/100 amino acid difference (approximately 90% identity). Differences are defined as nucleic acid or amino acid substitutions, or
20 deletions.

As used herein, genetic therapy involves the transfer of heterologous DNA to the certain cells, target cells, of a mammal, particularly a human, with a disorder or conditions for which such therapy is sought. The DNA is introduced into the selected target cells in a manner such that the heterologous DNA is
25 expressed and a therapeutic product encoded thereby is produced.
Alternatively, the heterologous DNA may in some manner mediate expression of DNA that encodes the therapeutic product, it may encode a product, such as a peptide or RNA that in some manner mediates, directly or indirectly, expression of a therapeutic product. Genetic therapy may also be used to deliver nucleic
30 acid encoding a gene product to replace a defective gene or supplement a gene product produced by the mammal or the cell in which it is introduced. The introduced nucleic acid may encode a therapeutic compound, such as a growth

-13-

- factor inhibitor thereof, or a tumor necrosis factor or inhibitor thereof, such as a receptor therefor, that is not normally produced in the mammalian host or that is not produced in therapeutically effective amounts or at a therapeutically useful time. The heterologous DNA encoding the therapeutic product may be modified
- 5 prior to introduction into the cells of the afflicted host in order to enhance or otherwise alter the product or expression thereof.

As used herein, heterologous DNA is DNA that encodes RNA and proteins that are not normally produced *in vivo* by the cell in which it is expressed or that mediates or encodes mediators that alter expression of endogenous DNA by

10 affecting transcription, translation, or other regulatable biochemical processes.

Heterologous DNA may also be referred to as foreign DNA. Any DNA that one of skill in the art would recognize or consider as heterologous or foreign to the cell in which it is expressed is herein encompassed by heterologous DNA.

Examples of heterologous DNA include, but are not limited to, DNA that encodes

15 traceable marker proteins, such as a protein that confers drug resistance, DNA that encodes therapeutically effective substances, such as anti-cancer agents, enzymes and hormones, and DNA that encodes other types of proteins, such as antibodies. Antibodies that are encoded by heterologous DNA may be secreted or expressed on the surface of the cell in which the heterologous DNA has been

20 introduced.

Hence, herein heterologous DNA or foreign DNA, refers to a DNA molecule not present in the exact orientation and position as the counterpart DNA molecule found in the corresponding wild-type adenovirus. It may also refer to a DNA molecule from another organism or species (*i.e.*, exogenous) or

25 from another Ad serotype.

As used herein, a therapeutically effective product is a product that is encoded by heterologous DNA that, upon introduction of the DNA into a host, a product is expressed that effectively ameliorates or eliminates the symptoms, manifestations of an inherited or acquired disease or that cures said disease.

30 Typically, DNA encoding the desired heterologous DNA is cloned into a plasmid vector and introduced by routine methods, such as calcium-phosphate mediated DNA uptake (see, (1981) Somat. Cell. Mol. Genet. 7:603-616) or

-14-

microinjection, into producer cells, such as packaging cells. After amplification in producer cells, the vectors that contain the heterologous DNA are introduced into selected target cells.

- As used herein, an expression or delivery vector refers to any plasmid or
- 5 virus into which a foreign or heterologous DNA may be inserted for expression in a suitable host cell — *i.e.*, the protein or polypeptide encoded by the DNA is synthesized in the host cell's system. Vectors capable of directing the expression of DNA segments (genes) encoding one or more proteins are referred to herein as "expression vectors." Also included are vectors that allow cloning
- 10 of cDNA (complementary DNA) from mRNAs produced using reverse transcriptase.

As used herein, a gene is a nucleic acid molecule whose nucleotide sequence encodes RNA or polypeptide. A gene can be either RNA or DNA. Genes may include regions preceding and following the coding region (leader and

15 trailer) as well as intervening sequences (introns) between individual coding segments (exons).

As used herein, tropism with reference to an adenovirus refers to the selective infectivity or binding that is conferred on the particle by the fiber protein, such as by the C-terminus portion that comprises the knob.

- 20 As used herein, isolated with reference to a nucleic acid molecule or polypeptide or other biomolecule means that the nucleic acid or polypeptide has separated from the genetic environment from which the polypeptide or nucleic acid were obtained. It may also mean altered from the natural state. For example, a polynucleotide or a polypeptide naturally present in a living animal is
- 25 not "isolated," but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is "isolated", as the term is employed herein. Thus, a polypeptide or polynucleotide produced and/or contained within a recombinant host cell is considered isolated. Also intended as an "isolated polypeptide" or an "isolated polynucleotide" are polypeptides or polynucleotides
- 30 that have been purified, partially or substantially, from a recombinant host cell or from a native source. For example, a recombinantly produced version of a compound can be substantially purified by the one-step method described in

-15-

Smith and Johnson, *Gene* 67:31-40 (1988). The terms isolated and purified are sometimes used interchangeably.

Thus, by "isolated" is meant that the nucleic acid is free of the coding sequences of those genes that, in the naturally-occurring genome of the

- 5 organism (if any) immediately flank the gene encoding the nucleic acid of interest. Isolated DNA may be single-stranded or double-stranded, and may be genomic DNA, cDNA, recombinant hybrid DNA, or synthetic DNA. It may be identical to a native DNA sequence, or may differ from such sequence by the deletion, addition, or substitution of one or more nucleotides.

- 10 Isolated or purified as it refers to preparations made from biological cells or hosts means any cell extract containing the indicated DNA or protein including a crude extract of the DNA or protein of interest. For example, in the case of a protein, a purified preparation can be obtained following an individual technique or a series of preparative or biochemical techniques and the DNA or protein of 15 interest can be present at various degrees of purity in these preparations. The procedures may include for example, but are not limited to, ammonium sulfate fractionation, gel filtration, ion exchange chromatography, affinity chromatography, density gradient centrifugation and electrophoresis.

- A preparation of DNA or protein that is "substantially pure" or "isolated" 20 should be understood to mean a preparation free from naturally occurring materials with which such DNA or protein is normally associated in nature. "Essentially pure" should be understood to mean a "highly" purified preparation that contains at least 95% of the DNA or protein of interest.

- A cell extract that contains the DNA or protein of interest should be 25 understood to mean a homogenate preparation or cell-free preparation obtained from cells that express the protein or contain the DNA of interest. The term "cell extract" is intended to include culture media, especially spent culture media from which the cells have been removed.

- As used herein, a packaging cell line is a cell line that provides a missing 30 gene product or its equivalent.

As used herein, an adenovirus viral particle is the minimal structural or functional unit of a virus. A virus can refer to a single particle, a stock of

-16-

particles or a viral genome. The adenovirus (Ad) particle is relatively complex and may be resolved into various substructures.

As used herein, "penton" or "penton complex" are preferentially used herein to designate a complex of penton base and fiber. The term "penton" may

- 5 also be used to indicate penton base, as well as penton complex. The meaning of the term "penton" alone should be clear from the context within which it is used.

As used herein, a plasmid refers to an autonomous self-replicating extrachromosomal circular nucleic acid molecule, typically DNA.

- 10 As used herein, a post-transcription regulatory element (PRE) is a regulatory element found in viral or cellular messenger RNA that is not spliced, i.e. intronless messages. Examples include, but are not limited to, human hepatitis virus, woodchuck hepatitis virus, the TK gene and mouse histone gene. The PRE may be placed before a polyA sequence and after a heterologous DNA
- 15 sequence.

- As used herein, pseudotyping describes the production of adenoviral vectors having modified capsid protein or capsid proteins from a different serotype than the serotype of the vector itself. One example, is the production of an adenovirus 5 vector particle containing an Ad37 fiber protein. This may be
- 20 accomplished by producing the adenoviral vector in packaging cell lines expressing different fiber proteins.

- As used herein, promoters of interest herein may be inducible or constitutive. Inducible promoters will initiate transcription only in the presence of an additional molecule; constitutive promoters do not require the presence of
- 25 any additional molecule to regulate gene expression. A regulatable or inducible promoter may also be described as a promoter where the rate or extent of RNA polymerase binding and initiation is modulated by external stimuli. Such stimuli include, but are not limited to various compounds or compositions, light, heat, stress and chemical energy sources. Inducible, suppressible and repressible
- 30 promoters are considered regulatable promoters. Preferred promoters herein, are promoters that are selectively expressed in ocular cells, particularly photoreceptor cells.

-17-

As used herein, receptor refers to a biologically active molecule that specifically or selectively binds to (or with) other molecules. The term "receptor protein" may be used to more specifically indicate the proteinaceous nature of a specific receptor.

- 5 As used herein, recombinant refers to any progeny formed as the result of genetic engineering. This may also be used to describe a virus formed by recombination of plasmids in a packaging cell.

- As used herein, a transgene or therapeutic nucleic acid molecule includes DNA and RNA molecules encoding an RNA or polypeptide. Such molecules may
- 10 be "native" or naturally-derived sequences; they may also be "non-native" or "foreign" that are naturally- or recombinantly-derived. The term "transgene," which may be used interchangeably herein with the term "therapeutic nucleic acid molecule," is often used to describe a heterologous or foreign (exogenous) gene that is carried by a viral vector and transduced into a host cell.
- 15 Therefore, therapeutic nucleotide nucleic acid molecules include antisense sequences or nucleotide sequences which may be transcribed into antisense sequences. Therapeutic nucleotide sequences (or transgenes) all include nucleic acid molecules that function to produce a desired effect in the cell or cell nucleus into which said therapeutic sequences are delivered. For example, a therapeutic
- 20 nucleic acid molecule can include a sequence of nucleotides that encodes a functional protein intended for delivery into a cell which is unable to produce that functional protein.

- As used herein, the vitreous of the eye refers to material that fills the chamber behind the lens of the eye (i.e., vitreous humor or vitreous body).
- 25 As used herein, a promoter region refers to the portion of DNA of a gene that controls transcription of the DNA to which it is operatively linked. The promoter region includes specific sequences of DNA that are sufficient for RNA polymerase recognition, binding and transcription initiation. This portion of the promoter region is referred to as the promoter. In addition, the promoter region
- 30 includes sequences that modulate this recognition, binding and transcription initiation activity of the RNA polymerase. These sequences may be *cis* acting or

-18-

may be responsive to *trans* acting factors. Promoters, depending upon the nature of the regulation, may be constitutive or regulated.

Thus, promoters are nucleic acid fragments that contain a DNA sequence that controls the expression of a gene located 3' or downstream of the

- 5 promoter. The promoter is the DNA sequence to which RNA polymerase specifically binds and initiates RNA synthesis (transcription) of that gene, typically located 3' of the promoter. A promoter also includes DNA sequences that direct the initiation of transcription, including those to which RNA polymerase specifically binds. If more than one nucleic acid sequence encoding a
- 10 particular polypeptide or protein is included in a therapeutic viral vector or nucleotide sequence, more than one promoter or enhancer element may be included, particularly if that would enhance efficiency of expression.
- 15 A regulatable or inducible promoter may be described as a "promoter" wherein the rate of RNA polymerase binding and initiation is modulated by external stimuli. (see, e.g., U.S. Patent Nos. 5,750,396 and 5,998,205). Such stimuli include various compounds or compositions, light, heat, stress, chemical energy sources, and the like. Inducible, suppressible and repressible promoters are considered regulatable promoters.

Regulatable promoters may also include tissue-specific promoters.

- 20 Tissue-specific promoters direct the expression of the gene to which they are operably linked to a specific cell type. Tissue-specific promoters cause the gene located 3' of it to be expressed predominantly, if not exclusively, in the specific cells where the promoter expressed its endogenous gene. Typically, it appears that if a tissue-specific promoter expresses the gene located 3' of it at all, then
- 25 it is expressed appropriately in the correct cell types (see, e.g., Palmiter et al. (1986) Ann. Rev. Genet. 20: 465-499).

As used herein, the phrase "operatively linked" generally means the sequences or segments have been covalently joined into one piece of DNA, whether in single or double stranded form, whereby control sequences on one

- 30 segment control expression or replication or other such control of other segments. The two segments are not necessarily contiguous.

-19-

As used herein, exogenous encompasses any therapeutic composition that is administered by the therapeutic methods provided herein. Thus, exogenous may also be referred to herein as foreign, or non-native or other equivalent expression.

5 **B. Ad37 fiber tropism**

The adenovirus fiber protein is a major determinant of adenovirus tropism (Gall *et al.* (1996) *J. Virol.* 70:2116-2123; Stevenson *et al.* (1995) *J. Virol.* 69:2850-2857). The fiber protein extends from the capsid and mediates viral binding to the cell surface by binding to specific cell receptors (Philipson *et al.* 10 (1968) *J. Virol.* 2:1064-1075). The fiber is a trimeric protein that includes an N-terminal tail domain that interacts with the adenovirus penton base, a central shaft domain of varying length, and a C-terminal knob domain that contains the cell receptor binding site (Chroboczek *et al.* (1995) *Curr.Top.Microbiol.Immunol.* 199:163-200; Riurok *et al.* (1990) *J.Mol.Biol.* 215:589-596; Stevenson *et al.* 15 (1995) *J. Virol.* 69:2850-2857). Fiber proteins of most adenovirus subgroups have been shown to bind specifically or selectively to the 46 kDa coxsackievirus-adenovirus receptor (CAR), (Bergelson *et al.* (1997) *Science* 275:1320-1323; Roelvink *et al.* (1998) *J. Virol.* 72:7909-7915). CAR appears to be expressed in a variety of human tissues, including the lung, at various levels (Bergelson *et al.* 20 (1997) *Science* 275:1320-1323), but Ad37 binds poorly to lung epithelial cells (Huang *et al.* (1999) *J. Virol.* 73:2798-2802). This suggests that the tropism of this serotype may be influenced by factors independent of CAR expression.

Structural and biochemical data also suggest that distinct receptor binding sites are located on different regions of the Ad5 and Ad37 fiber knobs.

25 Adopting the nomenclature of Xia et al. (Xia *et al.* (1994) *Structure* 2:1259-1270), the receptor binding site for Ad5 is located at the AB-loop on the side of the fiber knob (Bewley *et al.* (1999) *Science* 286:1579-1583; Roelvink *et al.* (1999) *Science* 286:1568-1571). It is known that a lysine residue at position 240 of the Ad37 fiber, located in the CD-loop, is important for receptor binding 30 (Huang *et al.* (1999) *J. Virol.* 73:2798-2802). The co-crystal structure of the Ad12 knob and the N-terminal domain of CAR (Bewley *et al.* (1999) *Science* 286:1579-1583) show that the CD-loop does not contact CAR. It thus appears

-20-

that different regions of the Ad5 and Ad37 fiber knobs recognize distinct cell receptors.

A 46 kDa receptor for coxsackieviruses and adenoviruses (CAR) mediates attachment for many adenovirus serotypes. The wide distribution of CAR fails 5 to explain why certain adenovirus serotypes (i.e. Ad37) are highly associated with severe ocular infections such as epidemic keratoconjunctivitis (EKC). Ad37 does not use CAR, but instead uses a glycoprotein that contains sialic acid as its primary receptor (Arnberg *et al.* (2000) *J. Virol.* 74:42-48). The modest number of Ad37 binding sites per cell (Huang *et al.* (1999) *J. Virol.* 73:2798- 10 2802) also suggests that Ad37 recognizes a specific glycoprotein as its primary receptor for binding to conjunctival cells.

Adenovirus type 37 (subgroup D) has been associated with infections of the eye and genital tract. The tropism of Ad37 derives from the binding preference of its fiber protein, which binds to a receptor located on the surface 15 of cells including Chang C, conjunctival epithelial cell line (Huang *et al.* (1999) *J. Virology* 73:2798-2802).

A protein receptor that is preferentially expressed on conjunctival cells to which Ad37 fiber binds is shown herein. The preferential expression of the Ad37 receptor protein on conjunctival cells suggests that this receptor likely 20 influences Ad37 tropism and should play a key role in ocular pathogenesis. It is shown herein that Ad37 uses a distinct protein receptor that is selectively expressed on conjunctival cells. It is shown that Ad37 binds well to conjunctival cells (Chang C), but poorly to lung carcinoma cells (A549). To determine if infection correlated with cell binding, an Ad5 vector containing the Ad37 fiber 25 protein was constructed. The 'pseudotyped' vector delivered transgenes to Chang C cells better than to A549 cells. Ad37 binding was abolished by protease treatment of Chang C cells, indicating the receptor is a membrane protein. Ad37 binding to conjunctival cells is shown herein to be calcium-dependent. It is also shown that Ad37 infection was not inhibited by a function- 30 blocking anti-CAR monoclonal antibody, which is a feature distinct from Ad5 fiber interaction with CAR. Using a virus overlay protein blot assay (VOPBA), calcium-dependent Ad37 binding to a 50 KDa membrane protein on Chang C

-21-

cells, but not A549 cells was detected. Ad19p a closely related serotype that fails to bind to conjunctival cells, does not recognize the 50 kDa protein. Together, these data indicate that the 50 kDa protein is a candidate receptor for Ad37 on conjunctival cells.

5 Significantly, it is also shown herein that, upon administration of the vector to the vitreous humor, the recombinant adenovirus with the Ad37 fiber preferentially and selectively binds to photoreceptor cells. Hence, a recombinant adenoviral delivery vehicle that has an Ad37 fiber protein can serve as a vector for delivery of therapeutic agents to the eye for treatment of ocular disorders,
10 including genetic and acquired disorders. The identification of the receptor for Ad37 and the resulting recognition of Ad37 tropism allows targeting of adenovirus vectors to specific human ocular cells.

As noted, fiber plays a crucial role in adenovirus infection by attaching the virus to a specific receptor on a cell surface. Hexon, penton and fiber
15 capsomeres are the major components on the surface of the virion. The fiber is an elongated protein which exists as a trimer of three identical polypeptides (polypeptide IV) of 582 amino acids in length. An adenovirus fiber includes three domains: an N-terminal tail domain that interacts with penton base; a shaft composed of variable numbers of repeats of a 15-amino-acid segment that
20 forms beta-sheet and beta-bends; and a knob at the C-terminus ("head domain") that contains the type-specific antigen and is responsible for binding to the cell surface receptor. The gene encoding the fiber protein from Ad2 has been expressed in human cells and has been shown to be correctly assembled into trimers, glycosylated and transported to the nucleus (see, e.g., Hong and Engler,
25 *Virology* 185: 758-761, 1991). Thus, alteration of the fiber in recombinant Ad vectors can lead to alteration in gene delivery.

As shown herein, alteration of fiber in recombinant Ad vectors such that the fiber is derived from Ad37 or another adenovirus serotype D, provides a means for selective delivery of a recombinant virus to particular cells in the eye,
30 including conjunctival cells, and most significantly photoreceptors, thereby providing a means for targeted delivery to photoreceptor cells.

-22-

Photoreceptor cells are implicated in a number of hereditary and acquired retinal degenerative disorders. In addition, photoreceptor cells are located such that products produced therein can be delivered to other areas of the eye by virtue of the blood flow in the vicinity of the photoreceptor cells and also by 5 virtue of the proximity of the photoreceptors to the retinal pigmented epithelium (RPE) and other retinal cells.

Hence it is contemplated herein that the recombinant viral vector will include a packaged recombinant adenovirus genome containing at least the minimal elements for replication and packaging; heterologous DNA encoding a 10 desired gene product, typically a therapeutic product or plurality of products, such as several trophic factors, whose combined activity is effective for treating a disorder, such as a retinal degenerative disorder; and the resulting virion particles will include a fiber that has a sufficient portion to confer specific targeting to photoreceptor cells when the recombinant viral particles are 15 introduced into the aqueous humor of a mammalian, preferably a human, eye, or otherwise contacted with the photoreceptor cells. The fiber may be a chimeric protein that has been modified for effective interaction with other coat structural proteins, such as penton. In addition, the fiber may be modified to include other elements that alter its tropism to permit binding to other cells as well (see, e.g., 20 U.S. Patent Nos. 5,756,086 and 5,543,328, International PCT application No. WO 95/26412 and WO 98/44121 and Krasnykh, et al. (*J. Virol.* 70: 6839-46, 1996)).

C. Construction of the viral particles

1. Selection of viral genome and fiber protein

25 Methods for preparing recombinant adenoviral vectors for gene product delivery are well known. Preferred among those are the methods exemplified herein (see EXAMPLES) and also described in copending U.S. application Serial No. 09/482,682 (also filed as International PCT application No. PCT/US00/00265, filed January 14, 2000, which claims priority to U.S. 30 provisional application Serial No. 60/115,920, as does U.S. application Serial No. 09/482,682).

-23-

As noted, any desired recombinant adenovirus is contemplated for use in the methods herein as long as the viral genome is packaged in a capsid that includes at least the portion of a fiber protein that provides selective binding to photoreceptor cells. This fiber protein is preferably from an adenovirus type D serotype and is preferably an Ad37 fiber. The fiber protein should retain the knob region at the C-terminus ("head domain") from the Ad virus of subgroup D that contains the type-specific antigen and is responsible for binding to the cell surface receptor. Hence the fiber protein can be a chimeric fiber protein as long as it retains a sufficient portion of the type D serotype to specifically or 5 selectively bind to photoreceptor cells. Generally the portion retained will be all or a portion of the knob region. The precise amount of knob region required can be determined empirically by including portions thereof and identifying the minimum residues from an Ad type D serotype, preferably Ad37, to effect 10 selective targeting of a virion packaged with such fiber to photoreceptors in the eye upon introduction of the packaged virion into the aqueous humor.

Recombinant adenovirus containing heterologous nucleic acids that encode a desired product, such a gene to correct a genetic defect, may be made by any methods known to those of skill in the art. The viruses must be packaged in a cell line that results in expression of fiber on the particles that 20 specifically, electively or preferentially targets (binds and results in internalization) the viral particle to cells in the eye. The fiber protein from Ad37 and other Adenoviruses of serotype D that infect the eye effects such targeting. The resulting adenovirus particles that express such fiber is administered by intraocular injection, subretinal injection, particularly intravitreal injection, or any 25 means that results in preferential accumulation in photoreceptor cells.

The family of Adenoviridae includes many members with at least 47 known serotypes of human adenovirus (Ad1-Ad47) (Shenk, *Virology*, Chapter 67, in Fields et al., eds. Lippincott-Raven, Philadelphia, 1996,) as well as members of the genus Mastadenovirus including human, simian, bovine, equine, 30 porcine, ovine, canine and opossum viruses and members of the Aviadenovirus genus, including bird viruses, such as CELO.

-24-

Thus it is contemplated that the methods herein can be applied to any recombinant viral vectors derived from any adenovirus species. One of skill in the art would have knowledge of the different adenoviruses (see, e.g., Shenk, *Virology*, Chapter 67, in *Fields et al.*, eds. Lippincott-Raven, Philadelphia, 1996,) and can construct recombinant viruses containing portions of the genome of any such virus.

In the exemplified embodiment, viral particles with Ad37 fiber were prepared. Site-directed mutations were made to the Ad37 fiber gene to make the tail sequence more closely match that of Ad5 to facilitate Ad37 fiber binding to the Ad5 penton base. The plasmid for the expression of the Ad37 fiber protein, pDV80, contains the CMV promoter, the adenovirus type 5 tripartite leader (TPL), and the modified Ad37 fiber gene sequence. Genes of interest, such as nucleic acid encoding the β subunit of cGMP phosphodiesterase (β PDE), β -glucuronidase, rhodopsin, growth factors, anti-cancer agents, growth factor receptors and other anti-angiogenic agents, and anti-apoptotic agents, can be incorporated into these vectors using the methods known to those of skill in the art and exemplified herein.

Known adenovirus vectors, previously constructed for intraocular therapy (see, e.g., Bennett *et al.* (1996) *Nature Medicine* 2:649-654, which provides an Ad virus encoding β PDE for treatment of retinitis pigmentosa; Cayouette *et al.* (1998) *Human Gene Therapy* 8:423-430, which provides an Ad vector that expresses CNTF for treatment of retinitis pigmentosa and other retinal degenerative diseases; and Li *et al.* (1995) *Proc. Natl. Acad. Sci. U.S.A.* 92:7700-7704, which provides an Ad virus vector that encodes a human β -glucuronidase for treatment of lysosomal storage disease caused by β -glucuronidase deficiency) can be modified by repackaging the recombinant genome using a packaging line that expresses an Ad37 fiber or other D serotype fiber.

For exemplification, nucleic acid encoding GFP was incorporated into these vectors as a means to visualize their localization. Other genes, such as genes that encode therapeutic products, may be included in place of or in addition to GFP.

-25-

Plasmid pDV80 was electroporated into E1-2a S8 cells and stable lines were selected. The fiber-deleted vectors Ad5. β gal. Δ F and Ad5.GFP. Δ F were grown in cells in a resulting cell line, designated 705, to produce virions, which express the Ad37 fiber (Ad5. β gal. Δ F/37F and Ad5.GFP. Δ F/37F) and CsCl-purified. These virions selectively transduce photoreceptor cells when injected intraocularly into the vitreous humor.

2. Packaging

Recombinant adenoviral vectors generally have at least a deletion in the first viral early gene region, referred to as E1, which includes the E1a and E1b regions. Deletion of the viral E1 region renders the recombinant adenovirus defective for replication and incapable of producing infectious viral particles in subsequently-infected target cells. Thus, to generate E1-deleted adenovirus genome replication and to produce virus particles requires a system of complementation which provides the missing E1 gene product. E1 complementation is typically provided by a cell line expressing E1, such as the human embryonic kidney packaging cell line, i.e. an epithelial cell line, called 293. Cell line 293 contains the E1 region of adenovirus, which provides E1 gene region products to "support" the growth of E1-deleted virus in the cell line (see, e.g., Graham *et al.*, *J. Gen. Virol.* 36: 59-71, 1977). Additionally, cell lines that may be usable for production of defective adenovirus having a portion of the adenovirus E4 region have been reported (WO 96/22378).

Multiply deficient adenoviral vectors and complementing cell lines have also been described (WO 95/34671, U.S. Patent No. 5,994,106).

Copending U.S. application Serial No. 09/482,682 (also filed as International PCT application No. PCT/US00/00265, filed January 14, 2000) provides packaging cell lines that support viral vectors with deletions of major portions of the viral genome, without the need for helper viruses and also provides cell lines and helper viruses for use with helper-dependent vectors. The packaging cell line has heterologous DNA stably integrated into the chromosomes of the cellular genome. The heterologous DNA sequence encodes one or more adenovirus regulatory and/or structural polypeptides that complement the genes deleted or mutated in the adenovirus vector genome to

-26-

be replicated and packaged. The packaging cell line express, for example, one or more adenovirus structural proteins, polypeptides, or fragments thereof, such as penton base, hexon, fiber, polypeptide IIIa, polypeptide V, polypeptide VI, polypeptide VII, polypeptide VIII, and biologically active fragments thereof. The 5 expression can be constitutive or under the control of a regulatable promoter. These cell lines are designed for expression of recombinant adenoviruses intended for delivery of therapeutic products.

Particular packaging cell lines complement viral vectors having a deletion or mutation of a DNA sequence encoding an adenovirus structural protein, 10 regulatory polypeptides E1A and E1B, and/or one or more of the following regulatory proteins or polypeptides: E2A, E2B, E3, E4, L4, or fragments thereof.

The packaging cell lines are produced by introducing each DNA molecule into the cells and then into the genome via a separate complementing plasmid or plurality of DNA molecules encoding the complementing proteins can be 15 introduced via a single complementing plasmid. Of interest herein, is a variation in which the complementing plasmid includes DNA encoding adenovirus fiber protein (or a chimeric or modified variant thereof), from Ad virus of subgroup D, such as Ad 37, polypeptide or fragment thereof.

For therapeutic applications, the delivery plasmid further includes a 20 nucleotide sequence encoding a foreign polypeptide. Exemplary delivery plasmids include, but are not limited to, pDV44, pΔE1Bβ-gal and pΔE1sp1B. In a similar or analogous manner, therapeutic genes may be introduced.

The cell further includes a complementing plasmid encoding a fiber as contemplated herein; the plasmid or portion thereof is integrated into a 25 chromosome(s) of the cellular genome of the cell.

In one embodiment, a composition comprises a cell containing first and second delivery plasmids wherein a first delivery plasmid comprises an adenovirus genome lacking a nucleotide sequence encoding fiber and incapable of directing the packaging of new viral particles in the absence of a second 30 delivery plasmid, and a second delivery plasmid comprises an adenoviral genome capable of directing the packaging of new viral particles in the presence of the first delivery plasmid.

-27-

In a variation, the packaging cell line expresses fiber protein or chimeric variant thereof from an Ad virus of subgroup D, preferably Ad37, serotype or it can be any fiber protein but one that has been modified to include the portion of the Ad virus of subgroup D, such as Ad37, responsible for selective targeting to

- 5 photoreceptors upon introduction into the vitreous humor of the eye of a mammal, preferably a human. The fiber protein can be further modified to include a non-native amino acid residue sequence that targets additional specific receptors. In all instances, the modification should not disrupt trimer formation or transport of fiber into the nucleus. In another variation, the non-native amino
10 acid residue sequence alters the binding specificity of the fiber for a targeted cell type. The structural protein is fiber can include amino acid residue sequences from more than one adenovirus serotype. The nucleotide sequences encoding fiber protein or polypeptide need not be modified solely at one or both termini; fiber protein, may be modified "internally" as well as at the termini.

- 15 Additional nucleic acid fragments can encode polypeptides that are added to the fiber protein. In one variation, the non-native amino acid residue sequence is coupled to the carboxyl terminus of the fiber. In another, the non-native amino acid residue sequence further includes a linker sequence. Alternatively, the fiber protein further comprises a ligand coupled to the linker.

- 20 Suitable ligands include, but are not limited to, ligands that specifically or selectively bind to a cell surface receptor and ligands that can be used to couple other proteins or nucleic acid molecules. Typically, the packaging cell lines will contain nucleic acid encoding the fiber protein or modified protein stably integrated into a chromosome or chromosomes in the cellular genome.

- 25 The packaging cell line can be derived from a prokaryotic cell line or from a eukaryotic cell line. While various embodiments suggest the use of mammalian cells, and more particularly, epithelial cell lines, a variety of other, non-epithelial cell lines are used in various embodiments. Thus, while various embodiments disclose the use of a cell line selected from among the 293, A549, W162, HeLa,

- 30 Vero, 211, and 211A cell lines, and any other cell lines suitable for such use are likewise contemplated herein.

3. Components of the nucleic acid molecule included in the particl

-28-

A recombinant viral vector or therapeutic viral vector for use in the methods herein, typically includes a nucleic acid fragment that encodes a protein or polypeptide molecule, or a biologically active fragment thereof, or other regulatory sequence, that is intended for use in therapeutic applications.

- 5 The nucleic acid molecule to be packaged in the viral particle also may include an enhancer element and/or a promoter located 3' or 5' to and controlling the expression of the therapeutic product-encoding nucleic acid molecule if the product is a protein. Further, for purposes herein, the promoter and/or other transcriptional and translational regulatory sequences controlling
10 expression of the product is preferably one that is expressed specifically in the targeted cells, such as the a photoreceptor-specific promoter, such as a rhodopsin gene promoter.

The nucleic acid molecule to be packaged in viral capsid includes at least 2 different operatively linked DNA segments. The DNA can be manipulated and
15 amplified by PCR as described herein and by using standard techniques, such as those described in *Molecular Cloning: A Laboratory Manual, 2nd Ed.*, Sambrook et al., eds., Cold Spring Harbor, New York (1989). Typically, to produce such molecule, the sequence encoding the selected polypeptide and the promoter or enhancer are operatively linked to a DNA molecule capable of autonomous
20 replication in a cell either *in vivo* or *in vitro*. By operatively linking the enhancer element or promoter and nucleic acid molecule to the vector, the attached segments are replicated along with the vector sequences.

Thus, the recombinant DNA molecule (rDNA) is a hybrid DNA molecule comprising at least 2 nucleotide sequences not normally found together in
25 nature. In various preferred embodiments, one of the sequences is a sequence encoding an Ad-derived polypeptide, protein, or fragment thereof. The nucleic acid molecule intended to be packaged is from about 20 base pairs to about 40,000 base pairs in length, preferably about 50 bp to about 38,000 bp in length. In various embodiments, the nucleic acid molecule is of sufficient length
30 to encode one or more adenovirus proteins or functional polypeptide portions thereof. Since individual Ad polypeptides vary in length from about 19 amino acid residues to about 967 amino acid residues, coding nucleic acid molecules

-29-

from about 50 bp up to about 3000 bp, depending on the number and size of individual polypeptide-encoding sequences that are "replaced" in the viral vectors by therapeutic product-encoding nucleic acid molecules.

Preferably the molecule includes an adenovirus tripartite leader (TPL)

- 5 nucleic acid sequence operatively linked to an intron containing RNA processing signals (such as for example, splice donor or splice acceptor sites) suitable for expression in the packaging cell line. Most preferably the intron contains a splice donor site and a splice acceptor site. Alternatively, the TPL nucleotide sequence may not comprise an intron. The intron includes any sequence of
- 10 nucleotides that function in the packaging cell line to provide RNA processing signals, including splicing signals. Introns have been well characterized from a large number of structural genes, and include but are not limited to a native intron 1 from adenovirus, such as Ad5's TPL intron 1; others include the SV40 VP intron; the rabbit beta-globin intron, and synthetic intron constructs (see,
- 15 e.g., Petitclerc *et al.* (1995) *J. Biothechnol.*, 40:169; and Choi *et al.* (1991) *Mol. Cell. Biol.*, 11:3070).

The nucleic acid molecule encoding the TPL includes either (a) first and second TPL exons or (b) first, second and third TPL exons, where each TPL exon in the sequence is selected from among the complete TPL exon 1, partial TPL

- 20 exon 1, complete TPL exon 2 and complete TPL exon 3. A complete exon is one which contains the complete nucleic acid sequence based on the sequence found in the wild type viral genome. Preferably the TPL exons are from Ad2, Ad3, Ad5, Ad7 and the like, however, they may come from any Ad serotype, as described herein. A preferred partial TPL exon 1 is described in the Examples.
- 25 The use of a TPL with a partial exon 1 has been reported (International PCT application No. WO 98/13499).

The intron and the TPL exons can be operatively linked in a variety of configurations to provide a functional TPL nucleotide sequence. An intron may not be a part of the construct. For example, the intron can be positioned

- 30 between any of TPL exons 1, 2 or 3, and the exons can be in any order of first and second, or first/second/third. The intron can also be placed preceding the first TPL exon or following the last TPL exon. In a preferred embodiment,

-30-

complete TPL exon 1 is operatively linked to complete TPL exon 2 operatively linked to complete TPL exon 3. In a preferred variation, adenovirus TPL intron 1 is positioned between complete TPL exon 1 and complete TPL exon 2. It may also be possible to use analogous translational regulators from other viral
5 systems such as rabiesvirus.

A preferred "complete" TPL nucleic acid molecule containing complete TPL exons 1, 2 and 3 with adenovirus intron 1 inserted between exons 1 and 2 has a nucleotide sequence shown in SEQ ID NO: 32. A preferred "partial" TPL nucleic acid molecule containing partial TPL exon 1 and complete TPL exons 2
10 and 3 in that order has a nucleotide sequence shown in SEQ ID NO: 26. The construction of these preferred TPL nucleotide sequences is described in the Examples.

Thus, preferred expression cassettes and complementing plasmids for expressing adenovirus structural genes, particularly fiber protein, contain an
15 adenovirus TPL nucleotide sequence as described herein.

4. Complementing Plasmids

Also contemplated are the use of nucleic acid molecules, typically in the form of DNA plasmid vectors, which are capable of expression of an adenovirus structural protein or regulatory protein. Because these expression plasmids are
20 used to complement the defective genes of a recombinant adenovirus vector genome, the plasmids are referred to as complementing or complementation plasmids.

The complementing plasmid contains an expression cassette, a nucleotide sequence capable of expressing a protein product encoded by the nucleic acid
25 molecule. Expression cassettes typically contain a promoter and a structural gene operatively linked to the promoter. The complementing plasmid can further include a sequence of nucleotides encoding TPL nucleotide to enhance expression of the structural gene product when used in the context of adenovirus genome replication and packaging.

30 A complementing plasmid can include a promoter operatively linked to a sequence of nucleotides encoding an adenovirus structural polypeptide, such as, but are not limited to, penton base; hexon; fiber; polypeptide IIIa; polypeptide V;

-31-

polypeptide VI; polypeptide VII; polypeptide VIII; and biologically active fragments thereof. In another variation, a complementing plasmid may also include a sequence of nucleotides encoding a first adenovirus regulatory polypeptide, a second regulatory polypeptide, and/or a third regulatory polypeptide, and any combination of the foregoing.

Plasmid pDV80 is a preferred plasmid herein. Other plasmids constructed in an analogous manner to encode modified fiber proteins and chimeric fiber proteins are also contemplated herein.

5. Nucleic Acid Molecule Synthesis

- 10 A nucleic acid molecule comprising synthetic oligonucleotides can be prepared using any suitable method, such as the phosphotriester or phosphodiester methods (see, e.g., Narang (1979) *et al.*, *Meth. Enzymol.*, 68:90; U.S. Patent No. 4,356,270; and Brown *et al.*, (1979) *Meth. Enzymol.*, 68:109). For oligonucleotides, the synthesis of the family members can be 15 conducted simultaneously in a single reaction vessel, or can be synthesized independently and later admixed in preselected molar ratios. For simultaneous synthesis, the nucleotide residues that are conserved at preselected positions of the sequence of the family member can be introduced in a chemical synthesis protocol simultaneously to the variants by the addition of a single preselected 20 nucleotide precursor to the solid phase oligonucleotide reaction admixture when that position number of the oligonucleotide is being chemically added to the growing oligonucleotide polymer. The addition of nucleotide residues to those positions in the sequence that vary can be introduced simultaneously by the addition of amounts, preferably equimolar amounts, of multiple preselected 25 nucleotide precursors to the solid phase oligonucleotide reaction admixture during chemical synthesis. For example, where all four possible natural nucleotides (A,T,G and C) are to be added at a preselected position, their precursors are added to the oligonucleotide synthesis reaction at that step to simultaneously form four variants (see, e.g., Ausubel *et al.* (*Current Protocols in 30 Molecular Biology*, Suppl. 8. p.2.11.7, John Wiley & Sons, Inc., New York, 1991).

-32-

Nucleotide bases other than the common four nucleotides (A,T,G or C), or the RNA equivalent nucleotide uracil (U), can also be used. For example, it is well known that inosine (I) is capable of hybridizing with A, T and G, but not C. Examples of other useful nucleotide analogs are known in the art and may be 5 found referred to in 37 C.F.R. §1.822.

Thus, where all four common nucleotides are to occupy a single position of a family of oligonucleotides, that is, where the preselected nucleotide sequence is designed to contain oligonucleotides that can hybridize to four sequences that vary at one position, several different oligonucleotide structures 10 are contemplated. The composition can contain four members, where a preselected position contains A,T,G or C. Alternatively, a composition can contain two nucleotide sequence members, where a preselected position contains I or C, and has the capacity to hybridize at that position to all four possible common nucleotides. Finally, other nucleotides may be included at the 15 preselected position that have the capacity to hybridize in a non-destabilizing manner with more than one of the common nucleotides in a manner similar to inosine.

Similarly, larger nucleic acid molecules can be constructed in synthetic oligonucleotide pieces, and assembled by complementary hybridization and 20 ligation, as is well known.

D. Adenovirus Expression Vector Systems

The adenovirus vector genome that is encapsulated in the virus particle and that expresses exogenous genes in a gene therapy setting is a key component of the system. Thus, the components of a recombinant adenovirus 25 vector genome include the ability to express selected adenovirus structural genes, to express a desired exogenous protein, and to contain sufficient replication and packaging signals that the genome is packaged into a gene delivery vector particle. The preferred replication signal is an adenovirus inverted terminal repeat 30 containing an adenovirus origin of replication, as is well known and described her in.

-33-

Although adenovirus include many proteins, not all adenovirus proteins are required for assembly of a recombinant adenovirus particle (vector). Thus, deletion of the appropriate genes from a recombinant Ad vector permits accommodation of even larger "foreign" DNA segments.

5 A preferred recombinant adenovirus vector genome is "helper independent" so that genome can replicate and be packaged without the help of a second, complementing helper virus. Complementation is provided by a packaging cell.

In a preferred embodiment, the adenovirus vector genome does not
10 encode a functional adenovirus fiber protein. A non-functional fiber gene refers to a deletion, mutation or other modification to the adenovirus fiber gene such that the gene does not express any or insufficient adenovirus fiber protein to package a fiber-containing adenovirus particle without complementation of the fiber gene by a complementing plasmid or packaging cell line. Such a genome is
15 referred to as a "fiberless" genome, not to be confused with a fiberless particle. Alternatively, a fiber protein may be encoded but is insufficiently expressed to result in a fiber containing particle.

Thus, contemplated for use are helper-independent fiberless recombinant adenovirus vector genomes that include genes that (a) express all adenovirus
20 structural gene products but express insufficient adenovirus fiber protein to package a fiber-containing adenovirus particle without complementation of said fiber gene, (b) express an exogenous protein, and (c) contain an adenovirus packaging signal and inverted terminal repeats containing adenovirus origin of replication.

25 The adenovirus vector genome is propagated in the laboratory in the form of rDNA plasmids containing the genome, and upon introduction into an appropriate host, the viral genetic elements provide for viral genome replication and packaging rather than plasmid-based propagation. Exemplary methods for preparing an Ad-vector genome are described in the Examples.

30 A vector herein includes a nucleic acid (preferably DNA) molecule capable of autonomous replication in a cell and to which a DNA segment, e.g., a gene or polynucleotide, can be operatively linked to bring about replication of the

-34-

- attached segment. For purposes herein, one of the nucleotide segments to be operatively linked to vector sequences encodes at least a portion of a therapeutic nucleic acid molecule. As noted above, therapeutic nucleic acid molecules include those encoding proteins and also those that encode regulatory factors
- 5 that can lead to expression or inhibition or alteration of expression of a gene product in a targeted cell.

1. Nucleic Acid Gene Expression Cassettes

- In various embodiments, a peptide-coding sequence of the therapeutic gene is inserted into an expression vector and expressed; however, it is also
- 10 feasible to construct an expression vector which also includes some non-coding sequences as well. Preferably, however, non-coding sequences are excluded.
- Alternatively, a nucleotide sequence for a soluble form of a polypeptide may be utilized. Another preferred therapeutic viral vector includes a nucleotide sequence encoding at least a portion of a therapeutic nucleotide sequence
- 15 operatively linked to the expression vector for expression of the coding sequence in the therapeutic nucleotide sequence.

- The choice of viral vector into which a therapeutic nucleic acid molecule is operatively linked depends directly, as is well known in the art, on the functional properties desired, e.g., vector replication and protein expression, and
- 20 the host cell to be transformed -- these being limitations inherent in the art of constructing recombinant DNA molecules. Although certain adenovirus serotypes are recited herein in the form of specific examples, it should be understood that the use of *any* adenovirus serotype, including hybrids and derivatives thereof are contemplated.

- 25 A translatable nucleotide sequence is a linear series of nucleotides that provide an uninterrupted series of at least 8 codons that encode a polypeptide in one reading frame. Preferably, the nucleotide sequence is a DNA sequence. The vector itself may be of any suitable type, such as a viral vector (RNA or DNA), naked straight-chain or circular DNA, or a vesicle or envelope containing the
- 30 nucleic acid material and any polypeptides that are to be inserted into the cell.

-35-

2. Promoters

As noted elsewhere herein, an expression nucleic acid in an Ad-derived vector may also include a promoter, particularly a tissue or cell specific promoter, preferably one expressed in ocular cells, particularly photoreceptors.

- 5 Promoters contemplated for use herein include regulatable (inducible) as well as constitutive promoters, which may be used, either on separate vectors or on the same vector. Some useful regulatable promoters are those of the CREB-regulated gene family and include inhibin, gonadotropin, cytochrome c, glucagon, and the like. (See, e.g., International PCT application No. WO
10 96/14061). Preferably the promoter selected is from a photoreceptor-specific gene, such as a rhodopsin gene or gene that encodes a protein that regulates rhodopsin expression.

E. Formulation and administration

- Compositions containing therapeutically effective concentrations of
15 recombinant adenovirus delivery vectors are provided. These are for delivery of therapeutic gene products to cells, particularly cells express a particular 50 kDa receptor or other receptor with which the vectors interact. These cells include cells of the eye and genital tract. Of particular interest are photoreceptor cells of the eye. Administration is effected by any means through which contacting with
20 the photoreceptors is effected. Preferable modes of administration include, but are not limited to, subretinal injection, particularly intravitreal injection, to provide access to photoreceptor cells.

- The recombinant viral compositions may also be formulated for implantation into the anterior or posterior chamber of the eye, preferably the
25 vitreous cavity, in sustained released formulations, such as those adsorbed to biodegradable supports, including collagen sponges, or in liposomes. Sustained release formulations may be formulated for multiple dosage administration, so that during a selected period of time, such as a month or up to about a year, several dosages are administered. Thus, for example, liposomes may be
30 prepared such that a total of about tw to up to about fiv or more times the single dosage is administered in one injection.

-36-

The vectors are formulated in an ophthalmologically acceptable carrier for intraocular, preferably intravitreal, administration in a volume of between about 0.05 ml and 0.150 ml, preferably about 0.05 and 0.100 ml.

The composition can be provided in a sealed sterile vial containing an amount of a compound of formula I, that upon intraocular administration will deliver a sufficient amount of viral particles to the photoreceptors in a volume of about 50 to 150 μ l, containing at least about 10^7 , more preferably at least about 10^8 plaque forming units in such volume. Typically, the vials will, thus, contain about 0.150 ml of the composition.

10 To prepare compositions the viral particles are dialyzed into a suitable ophthalmologically acceptable carrier or viral particles, for example, may be concentrated and/or mixed therewith. The resulting mixture may be a solution, suspension or emulsion. In addition, the viral particles may be formulated as the sole pharmaceutically active ingredient in the composition or may be 15 combined with other active agents for the particular disorder treated.

For administration by intraocular injection or via eyedrops, suitable carriers include, but are not limited to, physiological saline, phosphate buffered saline (PBS), balanced salt solution (BSS), lactate Ringers solution, and solutions containing thickening and solubilizing agents, such as glucose, polyethylene 20 glycol, and polypropylene glycol and mixtures thereof. Liposomal suspensions may also be suitable as pharmaceutically acceptable carriers. These may be prepared according to methods known to those skilled in the art. Suitable ophthalmologically acceptable carriers are known. Solutions or mixtures intended for ophthalmic use may be formulated as 0.01% - 10% isotonic 25 solutions, pH about 5-7, with appropriate salts [see, e.g., U.S. Patent No. 5,116,868, which describes typical compositions of ophthalmic irrigation solutions and solutions for local application]. Such solutions, which have a pH adjusted to about 7.4, contain, for example, 90-100 mM sodium chloride, 4-6 mM dibasic potassium phosphate, 4-6 mM dibasic sodium phosphate, 8-12 mM 30 sodium citrate, 0.5-1.5 mM magnesium chloride, 1.5-2.5 mM calcium chloride, 15-25 mM sodium acetate, 10-20 mM D.L.-sodium β -hydroxybutyrate and 5-5.5 mM glucose.

-37-

- The compositions may be prepared with carriers that protect them from rapid elimination from the body, such as time release formulations or coatings. Such carriers include controlled release formulations, such as, but not limited to, microencapsulated delivery systems, and biodegradable, biocompatible polymers,
- 5 such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, polyorthoesters, polylactic acid and other types of implants that may be placed directly into the anterior or posterior chamber or vitreous cavity of the eye. The compositions may also be administered in pellets, such as Elvax pellets (ethylene-vinyl acetate copolymer resin).
- 10 Liposomal suspensions, including tissue-targeted liposomes, may also be suitable as pharmaceutically acceptable carriers. For example, liposome formulations may be prepared by methods known to those of skill in the art [see, e.g., Kimm et al. (1983) *Bioch. Bioph. Acta* 728:339-398; Assil et al. (1987) *Arch Ophthalmol.* 105:400; and U.S. Patent No. 4,522,811]. The viral particles
- 15 may be encapsulated into the aqueous phase of liposome systems.
- The active materials can also be mixed with other active materials, that do not impair the desired action, or with materials that supplement the desired action or have other action, including viscoelastic materials, such as hyaluronic acid, which is sold under the trademark HEALON, which is a solution of a high
- 20 molecular weight (MW) of about 3 millions fraction of sodium hyaluronate [manufactured by Pharmacia, Inc; see, e.g., U.S. Patent Nos. 5,292,362, 5,282,851, 5,273,056, 5,229,127, 4,517,295 and 4,328,803], VISCOAT [fluorine-containing (meth)acrylates, such as, 1H,1H,2H,2H-hepta-decafluorodecylmethacrylate; see, e.g., U.S. Patent Nos. 5,278,126, 5,273,751
- 25 and 5,214,080; commercially available from Alcon Surgical, Inc.], ORCOLON [see, e.g., U.S. Patent No. 5,273,056; commercially available from Optical Radiation Corporation], methylcellulose, methyl hyaluronate, polyacrylamide and polymethacrylamide [see, e.g., U.S. Patent No. 5,273,751]. The viscoelastic materials are present generally in amounts ranging from about 0.5 to 5.0%,
- 30 preferably 1 to 3% by weight of the conjugate material and serve to coat and protect the treated tissues. The compositions may also include a dye, such as

-38-

methylene blue or other inert dye, so that the composition can be seen when injected into the eye. Additional active agents may be included.

The compositions can be enclosed in ampules, disposable syringes or multiple or single dose vials made of glass, plastic or other suitable material.

- 5 Such enclosed compositions can be provided in kits. In particular, kits containing vials, ampules or other containers, preferably disposable vials with sufficient amount of the composition to deliver about 0.100 ml thereof, and disposable needles, preferably self sealing 25-30 gauge needles, are provided herein.
- 10 Finally, the compounds may be packaged as articles of manufacture containing packaging material, typically a vial, an ophthalmologically acceptable composition containing the viral particles and a label that indicates the therapeutic use of the composition.
- 15 Also provided are kits for practice of the methods herein. The kits contain one or more containers, such as sealed vials, with sufficient composition for single dosage administration, and one or more needles, such as self sealing 25-33 gauge needles, preferably 33 gauge or smaller needles, precisely calibrated syringes or other precisely calibrated delivery device, suitable for intravitreal injection.
- 20 Administration of the composition is preferably by intraocular injection, although other modes of administration may be effective, if the sufficient amount of the compound achieves contact with the vitreous cavity. Intraocular injection may be effected by intravitreal injection, aqueous humor injection or injection into the external layers of the eye, such as subconjunctival injection or
- 25 subtenon injection, or by topical application to the cornea, if a penetrating formulation is used.

Administration

- 30 The compositions containing the compounds are administered intraocularly or by other means, such as topically in the form of penetrating eyedrops, whereby contact of the recombinant vectors with the aqueous humor is effected. Intraocular administration may be effected by intravitreal injection, aqueous humor injection, injection into the external layers of the eye, such as

-39-

subconjunctival injection or subtenon injection, preferably in free form, but, alternatively, in liposomes or other sustained drug delivery device.

Administration is preferably by intravitreal injection, preferably through self sealing 25-30 gauge needles or other suitably calibrated delivery device.

- 5 Injection into the eye may be through the pars plana via the self-sealing needle.

It is further understood that, for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the recombinant viruses, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or

- 10 practice of the claimed methods

F. ~ Diseases, Disorders and therapeutic products

1. Disease and disorders

Retinitis pigmentosa

- 15 Methods for specifically or selectively targeting recombinant adenovirus vectors for delivery of gene products, particularly therapeutic products are provided herein. These methods are particularly suitable for targeting cells that express receptors that are selectively recognized by Ad virus of subgroup D viruses, particularly Ad37. It is shown herein that these viruses selectively

- 20 recognize receptors on cells, such as conjunctival cells and photoreceptors, that are not recognized by other adenoviruses. Hence, methods for targeting to these cell types by providing vectors that are packaged in viral particles that contain a sufficient portion of a fiber protein from one of these Ad serotypes to bind to these receptors. These methods are useful for targeting to

- 25 photoreceptors and for treating ocular disorders, including, but are not limited to, inherited and acquired retinal, neovascular degenerative diseases (see table below).

- 30 It is estimated that 1 in 3,500 individuals in the United States suffer from one of the pigmented retinopathies. This group of retinal diseases, commonly called retinitis pigmentosa, is characterized by progressive loss of peripheral and night vision. Patients may be affected at almost any age and it is not uncommon to experience symptoms in early childhood in certain inherited forms.

-40-

- It has been shown that there are a variety of mutations in genes expressed in the photoreceptors, including genes in the rhodopsin gene and pathway that appear to be responsible for these diseases. In addition to mutations in rhodopsin, changes in the retinal pigmented epithelial (RPE) cells, also undergo 5 degenerative changes and can form clumps of pigment that give rise to the characteristic pigmentary changes seen in patients with RP.

Angiogenesis and ocular diseases and disorders

- The vast majority of diseases that cause catastrophic loss of vision do so as a result of ocular neovascularization; age related macular degeneration 10 (ARMD) affects 12-15 million American over the age of 65 and causes visual loss in 10-15% of them as a direct effect of choroidal (sub-retinal) neovascularization. The leading cause of visual loss for Americans under the age of 65 is diabetes; 1.6 million individuals in the United States are diabetic and 40,000 per year suffer from ocular complications of the disease, which often are 15 a result of retinal neovascularization. Laser photocoagulation has been effective in preventing severe visual loss in subgroups of high risk diabetic patients, but the overall 10 year incidence of retinopathy remains essentially unchanged. For patients with choroidal neovascularization due to ARMD or inflammatory eye disease, such as ocular histoplasmosis, photocoagulation, with few exceptions, 20 is ineffective in preventing visual loss. While recently developed, non-destructive photodynamic therapies hold promise for temporarily reducing individual loss in patients with previously untreatable choroidal neovascularization, only 61.4% of patients treated every 3-4 months had improved or stabilized vision compared to 45.9% of the placebo-treated group. 25 In the normal adult, angiogenesis is tightly regulated and limited to wound healing, pregnancy and uterine cycling. Angiogenesis is turned on by specific angiogenic molecules such as basic and acidic fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), angiogenin, transforming growth factor (TGF), tumor necrosis factor- α (TNF- α) and platelet derived growth factor 30 (PDGF). Angiogenesis can be suppressed by inhibitory molecules such as interferon- α , thrombospondin-1, angiostatin and endostatin. It is the balance of these naturally occurring stimulators and inhibitors that controls the normally

-41-

quiescent capillary vasculature. When this balance is upset, as in certain disease states, capillary endothelial cells are induced to proliferate, migrate and ultimately differentiate.

Angiogenesis plays a central role in a variety of diseases, including, but 5 are not limited to, cancer and ocular neovascularization. Sustained growth and metastasis of a variety of tumors has also been shown to be dependent on the growth of new host blood vessels into the tumor in response to tumor derived angiogenic factors. Proliferation of new blood vessels in response to a variety of stimuli occurs as the dominant finding in the majority of eye diseases that blind, 10 such as, but are not limited to, proliferative diabetic retinopathy (PDR), ARMD, rubeotic glaucoma, interstitial keratitis and retinopathy of prematurity. In these diseases, tissue damage can stimulate release of angiogenic factors resulting in capillary proliferation. VEGF plays a dominant role in iris neovascularization and neovascular retinopathies. While reports clearly show a correlation between 15 intraocular VEGF levels and ischemic retinopathic ocular neovascularization, FGF likely plays a role. Basic and acidic FGF are known to be present in the normal adult retina, even though detectable levels are not consistently correlated with neovascularization. This may be largely due to the fact that FGF binds very tightly to charged components of the extracellular matrix and may not be readily 20 available in a freely diffusible form that would be detected by standard assays of intraocular fluids.

A final common pathway in the angiogenic response involves integrin-mediated information exchange between a proliferating vascular endothelial cell and the extracellular matrix. This class of adhesion receptors, called integrins, 25 are expressed as heterodimers having an α and β subunit on all cells. One such integrin, $\alpha_v\beta_3$, is the most promiscuous member of this family and allows endothelial cells to interact with a wide variety of extracellular matrix components. Peptide and antibody antagonists of this integrin inhibit angiogenesis by selectively inducing apoptosis of the proliferating vascular 30 endothelial cells. Two cytokine-dependent pathways of angiogenesis exist and may be defined by their dependency on distinct vascular cell integrins, $\alpha_v\beta_3$ and $\alpha_v\beta_5$. Specifically, basic FGF- and VEGF-induced angiogenesis depend on integrin

-42-

- $\alpha_v\beta_3$ and $\alpha_v\beta_5$, respectively, since antibody antagonists of each integrin selectively block one of these angiogenic pathways in the rabbit corneal and chick chorioallantoic membrane (CAM) models. Peptide antagonists that block all α_v integrins inhibit FGF- and VEGF-stimulated angiogenesis. While normal
- 5 human ocular blood vessels do not display either integrin, $\alpha_v\beta_3$ and $\alpha_v\beta_5$ integrins are selectively displayed on blood vessels in tissues from patients with active neovascular eye disease. While only $\alpha_v\beta_3$ was consistently observed in tissue from patients with ARMD, $\alpha_v\beta_3$ and $\alpha_v\beta_5$ were present in tissues from patients with PDR. Systemically administered peptide antagonists of integrins blocked
- 10 new blood vessel formation in a mouse model of retinal vasculogenesis.

In addition to adhesion events described above, cell migration through the extracellular matrix also depends on proteolysis. Matrix metalloproteinases are a family of zinc-requiring matrix-degrading enzymes that include the collagenases, gelatinases and stromelysins, all of which have been implicated in invasive cell behavior. Invasive cell processes such as tumor metastasis and angiogenesis have been found to be associated with the expression of integrins and MMP-2, MMP-2 are all found throughout the eye where they may interact to maintain a quiescent vasculature until the balance is upset, resulting in pathological angiogenesis. A non-catalytic C-terminal hemopexin-like domain of MMP-2

15 (PEX) can block cell surface collagenolytic activity and inhibit angiogenesis in the CAM model by preventing localization of MMP-2 to the surface of invasive cells through interaction with the integrin $\alpha_v\beta_3$.

Hence, anti-angiogenic agents have a role in treating retinal degeneration to prevent the damaging effects of these trophic and growth factors.

20 25 Angiogenic agents, also have a role in promoting desirable vascularization to retard retinal degeneration by enhancing blood flow to cells.

Members of adenovirus subgroup D, Ad8, 19A, and 37, are infectious agents that cause particularly severe cases of epidemic keratoconjunctivitis (EKC) (Arnberg *et al.* (1998) *Virology* 227:239-244; Curtis *et al.* (1998) *J.Med.Microbiol.* 47:91-94; Ritterband *et al.* (1998) *Rev.Med.Viro.* 8:187-201; and Takeuchi *et al.* (1999) *J.Clin.Microbiol.* 37:3392-3394). There is no effective treatment for this debilitating and contagious disease and EKC

-43-

continues to be a problem in ophthalmology clinics worldwide (Curtis *et al.* (1998) *J.Med.Microbiol.* 47:91-94, Lukashok *et al.* (1998) *Curr.Clin.Top.Infec.Dis.* 18:286-304). Hence the vectors herein may be used for treating the disease.

5

Table 3
Candidate targets for ocular disease therapy

CANDIDATE TARGETS FOR OCULAR DISEASE THERAPY		
	Disease	Candidate target(s)
10	Retinitis pigmentosa	Rhodopsin gene, and genes that regulate expression thereof <i>rds</i> /peripherin
	Stargardt's disease	rim protein (ARC protein)
	Choroideremia	rab geranylgeranyl transferase CHM, TCD, CHML*
	Gyrate Atrophy	ornithine aminotransferase
15	Macular dystrophy	<i>rds</i> /peripherin

* see, "MSR6-yeast homologue of the choroideraemia gene," Nature Genetics 3: 193-4 (1993)

15

TABLE 4

Other Diseases	
	Exudative Choroidal Diseases
20	ICSC, fluorescein angiogram
	ICSC with large serious detachment of RPE (retinal pigmented epithelium)
	ICSC with bullous retinal detachment
	Macular drusen, exudative, confluent
25	Drusen, sub-RPE choroidal neovascularization
	Drusen, notched serous detachment of RPE

-44-

Other Diseases	
	Drusen, notched serous and hemorrhagic detachment of RPE
	Drusen, serous and hemorrhagic detachment of RPE and retina
	Drusen, organized RPE detachment causing bullous retinal detachment
	Drusen, geographic atrophy of RPE
5	Drusen, exudative and cuticular, vitelliform macular detachment
	Drusen, cuticular, large vitelliform macular detachment
	North Carolina dystrophy with macular staphyloma
	North Carolina dystrophy with macular staphyloma
	Angioid streaks, pseudoxanthoma elasticum (PXE), CNVM
10	Angioid streaks, PXE, large notched retinal detachment
	Myopic degeneration, Foerster-Fuchs spot
	Presumed ocular histoplasmosis syndrome (POHS)
	Submacular bacterial abscess
	<i>Toxocara canis</i> , subretinal granuloma
15	Serpiginous (geographic) choroiditis
	Posterior scleritis
	Harada's disease
	Posterior sympathetic uveitis
	Benign reactive lymphoid hyperplasia of uveal tract
20	Choroidal ruptures and CNVM
	Cavernous hemangioma of choroid
	Choroidal osteoma
	Choroidal nevus, serous macular detachment
	Choroidal nevus with CNVM
25	Diffuse sclerochoroidal melanocytic nevus
	Choroidal melanoma with serous detachment of RPE
	M metastatic lung carcinoma to choroid
	Sub-RPE reticulum cell sarcoma

-45-

Other Diseases	
RPE tear, idiopathic choroidal neovascularization	
Heredodystrophic Disorders Affecting RPE & Retina	
Best's vitelliform macular dystrophy	
Best's vitelliform macular dystrophy with CNVM	
5	Best's vitelliform macular dystrophy, multiple lesions
Adult-onset vitelliform foveomacular dystrophy	
Pattern dystrophy simulating fundus flavimaculatus	
Stargardt's disease (fundus flavimaculatus)	
Asteroid macular dystrophy	
10	Sjögren-Larsen syndrome
Oguchi's disease, light-adapted state	
Oguchi's disease, dark-adapted state	
Fundus albipunctatus	
Retinitis pigmentosa, cystoid macular edema	
15	Crystalline tapetoretinal dystrophy
Choroideremia	
Goldmann-Favre syndrome	
Sex-linked juvenile retinoschisis	
Perivenous retinitis pigmentosa	
20	Retinal Vascular Disorders
Retinal arteriovenous aneurysm	
Central retinal artery occlusion	
Cilioretinal artery obstruction	
Ischemic retinopathy in systemic lupus erythematosus	
25	Ischemic retinopathy in scleroderma
Hemorrhagic detachment of internal limiting membrane, hypertensive retinopathy	
Acquired retinal arterial macroaneurysm	

-46-

Other Diseases	
	Cystoid macular edema, aphakic
	Cystoid macular edema, nicotinic acid maculopathy
	Congenital retinal telangiectasis
	Acquired bilateral juxtapapillary telangiectasis
5	Acquired bilateral juxtapapillary obliterative telangiectasis
	Diabetic optic neuropathy
	X-ray radiation exudative retinopathy
	Sickle cell SC disease, macular hemorrhage
	Retinal arterial aneurysms, arteritis, neuroretinitis
10	Branch retinal vein obstruction (BRVO)
	BRVO, exudative maculopathy
	BRVO, optic disc new vessels, photocoagulation
	Waldenström's macroglobulinemia
Inflammatory Diseases of the Retina and Choroid	
15	Luetic retinal vasculitis
	Focal <i>Candida</i> retinal abscess
	Toxoplasmosis, atrophic chorioretinal scar
	Toxoplasmosis retinitis and macular detachment
	Toxoplasmosis scar, CNVM, macular detachment
20	Diffuse unilateral subacute neuroretinitis, small worm
	Diffuse unilateral subacute neuroretinitis, large worm
	Cytomegalic inclusion disease, papillitis
	Acute posterior multifocal placoid pigment epitheliopathy
	Acute macular neuroretinitis
25	Sarcoid retinitis
	Sarcoid papillitis
	Behcet's disease
	Vitiliginous (bird-shot) chorioretinitis

-47-

Other Diseases	
Multifocal choroiditis and panuveitis (pseudo-POHS)	
Retinal and Pigment Epithelial Hamartomas	
Congenital grouped albinotic RPE spots	
Congenital hyperplasia of RPE	
5	Combined RPE and retinal hamartoma, juxtapapillary
	Combined RPE and retinal hamartoma, peripheral
	Cystic astrocytoma, juxtapapillary
	Astrocytoma, macula
	Astrocytoma, juxtapapillary
10	Cavernous hemangioma of retina
	Juxtapapillary sessile retinal capillary hemangioma
	Juxtapapillary endophytic retinal capillary hemangioma
Other Tumors of the Choroid	
Choroidal metastasis	
15	Choroidal osteoma
	Choroidal hemangioma
	Miscellaneous uveal tumors
Intraocular Lymphoid Tumors	
The leukemias and lymphomas	
20	Tumors of the Vitreous
	Non-Hodgkins ("reticulum cell") lymphoma
	Tumor involvement of the vitreous cavity
Macular Disease	
Age-related macular degeneration -- atrophic form	
25	Exudative age-related macular degeneration
	Choroidal neovascular membrane in degenerative myopia
	Central serous retinopathy
	Macular hole

Other Diseases	
	Macular dystrophies
	Retinal Vascular Disease
	Etiologic mechanisms in diabetic retinopathy
	Background diabetic retinopathy
5	Proliferative diabetic retinopathy
	Retinal arterial obstructive disease
	Central retinal vein occlusion
	Retinal branch vein occlusion
	Pregnancy and retinal disease
10	Pregnancy-induced hypertension
	Hypertension
	The rheumatic disease
	Parafoveal telangiectasis
	Coats disease
15	Disseminated intravascular systemic coagulopathy and related vasculopathies
	Hemoglobinopathies
	Retinopathy of prematurity
	Acquired retinal macroaneurysms
	Eales disease
20	Radiation retinopathy
	The ocular ischemic syndrome
	Inflammatory Disease
	Ocular toxoplasmosis
	Ocular toxocariasis
25	Ocular cysticercosis
	Cytomegalovirus infections of the retina
	Retinal and ophthalmologic manifestations of AIDS
	Acute retinal necrosis syndrome

-49-

Other Diseases	
	Endogenous fungal infections of the retina and choroid
	Pars planitis
	Syphilis and tuberculosis
	Diffuse unilateral subacute neuroretinitis
5	Scleritis
	Birdshot retinochoroidopathy
	Punctate inner choroidopathy
	Sarcoidosis
	Acute multifocal placoid pigment epitheliopathy
10	Geographic helicoid peripapillary choroidopathy (GHPC): serpiginous choroiditis
	Sympathetic ophthalmia
	Vogt-Koyanagi-Harada syndrome (uveomeningitic syndrome)
	Ciliochoroidal (uveal) effusion

15 Reproduced from: Stereoscopic Atlas of Ocular Diseases Diagnosis and Treatment, 2nd Edition, J. Donald O. Gass, Vol. 1 & 2, C.V. Mosley Co. (1987); and Retina Vol. II, Editor, Stephen J. Ryan, Medical Retina, C.V. Mosley Co. (1989).

20 **2. Therapeutic products**

Therapeutic products include but are not limited to, wild-type genes that are defective in ocular disorders, such as rhodopsin, or fragments thereof sufficient to correct the genetic defect, trophic factors, including growth factors, inhibitors and agonists of trophic factors, anti-apoptosis factors and other

25 products described herein or known to those of skill in the art to be useful for treatment of disorders of the eye or that can be treated by a product expressed by a photoreceptor.

OCULAR GENE THERAPY STRATEGIES		
GENERAL DISEASE	EXAMPLES	STRATEGY

-50-

OCULAR GENE THERAPY STRATEGIES		
Hereditary retinal and macular degeneration	<ul style="list-style-type: none"> • Retinitis pigmentosa • Stargardt's disease • Other macular dystrophies 	Growth factors (e.g., GDNF) anti-apoptotic factors (e.g., bcl2 gene) Stargardt Disease Gene (ABCR) [†]
Neovascular	<ul style="list-style-type: none"> • Diabetes • Choroidal neovascularization 	Anti-angiogenesis factors
Anti-tumor	Retinoblastoma	Antiproliferant
5 Glaucoma	Nerve fiber layer atrophy	Neuroprotective agent

See Allikmets *et al.* (1997) *Science* 277:1805-1807.

For example, for treatment of retinitis pigmentosa the adenovirus vector can deliver a wild-type rhodopsin gene or a growth factor or trophic factor, such as ciliary neurotrophic factor CNTF; for treatment of Stargardt's disease, the 10 vector can deliver a wild type ABCR (also called STGD1) or a growth factor or anti-angiogenic agent; for diabetic retinopathies, retinal vascularization the vector can deliver growth factors, such as a TGF (TGF β), to prevent degeneration.

15 The following examples are included for illustrative purposes only and are not intended to limit the scope of the invention.

EXAMPLE 1

Preparation of Adenovirus Packaging Cell Lines

Cell lines that are commonly used for growing adenovirus are useful as 20 host cells for the preparation of adenovirus packaging cell lines. Preferred cells include 293 cells, an adenovirus-transformed human embryonic kidney cell line obtained from the ATCC, having Accession Number CRL 1573; HeLa, a human epithelial carcinoma cell line (ATCC Accession Number CCL-2); A549, a human lung carcinoma cell line (ATCC Accession Number CCL 1889); and other 25 epithelial-derived cell lines. As a result of the adenovirus transformation, the

-51-

293 cells contain the E1 early region regulatory gene. All cells were maintained in complete DMEM + 10% fetal calf serum unless otherwise noted.

These cell lines allow the production and propagation of adenovirus-based gene delivery vectors that have deletions in preselected gene regions and that

- 5 are obtained by cellular complementation of adenoviral genes. To provide the desired complementation of such deleted adenoviral genomes in order to generate a viral vector, plasmid vectors that contain preselected functional units have been designed. Such units include but are not limited to E1 early region, E4 and the viral fiber gene. The preparation of plasmids providing such
- 10 complementation, thereby being "complementary plasmids or constructs," that are stably inserted into host cell chromosomes are described below.

A. Preparation of an E4-Expressing Plasmid for Complementation of E4-Gene-Deleted Adenoviruses

- The viral E4 regulatory region contains a single transcription unit that is alternately spliced to produce several different mRNA products. The E4-expressing plasmid prepared as described herein and used to transfect the 293 cell line contains the entire E4 transcription unit. A DNA fragment extending from 175 nucleotides upstream of the E4 transcription start site including the natural E4 promoter to 153 nucleotides downstream of the E4 polyadenylation signal including the natural E4 terminator signal, corresponding to nucleotides 32667-35780 of the adenovirus type 5 (hereinafter referred to as Ad5) genome as described in Chroboczek *et al.* (*Virol.*, 186:280-285 (1992), GenBank Accession Number M73260), was amplified from Ad5 genomic DNA, obtained from the ATCC, via the polymerase chain reaction (PCR). Sequences of the primers used were 5'CGGTACACAGAATTCAGGAGACACAACTCC3' (forward or 5' primer referred to as E4L) (SEQ ID NO: 1) and 5'GCCTGGATCCGGGAAGTTACGTAACGTGGGAAAC3' (SEQ ID NO: 2) (backward or 3' primer referred to as E4R). To facilitate cloning of the PCR fragment, these oligonucleotides were designed to create new sites for the restriction enzymes EcoRI and BamHI, respectively, as indicated with underlined nucleotides. DNA was amplified via PCR using 30 cycles of 92 C for 1 minut ,

-52-

50 C for 1 minute, and 72 C for 3 minutes resulting in amplified full-length E4 gene products.

The amplified DNA E4 products were then digested with EcoRI and BamHI for cloning into the compatible sites of pBluescript/SK+ by standard techniques to create the plasmid pBS/E4. A 2603 base pair (bp) cassette including the herpes simplex virus thymidine kinase promoter, the hygromycin resistance gene, and the thymidine kinase polyadenylation signal was excised from the plasmid pMEP4 (Invitrogen, San Diego, CA) by digestion with FspI followed by addition of BamHI linkers (5'CGCGGATCCGCG3') (SEQ ID NO: 3) for subsequent digestion with BamHI to isolate the hygromycin-containing fragment.

The isolated BamHI-modified fragment was then cloned into the BamHI site of pBS/E4 containing the E4 region to create the plasmid pE4/Hygro containing 8710 bp. The pE4/Hygro plasmid has been deposited with the ATCC under accession number 97739. The complete nucleotide sequence of pE4/Hygro is set forth in SEQ ID NO: 4. Position number 1 of the linearized vector corresponds to approximately the middle portion of the pBS/SK+ backbone. The 5' and 3' ends of the E4 gene are located at respective nucleotide positions 3820 and 707 of SEQ ID NO: 4 while the 5' and 3' ends of the hygromycin insert are located at respective nucleotide positions 3830 and 6470. In the clone that was selected for use, the E4 and hygromycin resistance genes were divergently transcribed.

B. Preparation of a Fiber-Expressing Plasmid for Complementation of Fiber-Gene-Deleted Adenoviruses

To prepare a fiber-encoding construct, primers were designed to amplify the fiber coding region from Ad5 genomic DNA with the addition of unique BamHI and NotI sites at the 5' and 3' ends of the fragment, respectively. The Ad5 nucleotide sequence is available with the GenBank Accession Number M18369. The 5' and 3' primers had the respective nucleotide sequences of 30 5'ATGGGATCCAAGATGAAGCGCGCAAGACCG3' (SEQ ID NO: 5) and 5'CATAACCGCGGCCGCTTCTTTATTCTTGGGC3' (SEQ ID NO: 6), where the inserted BamHI and NotI sites are indicated by underlining. The 5' primer also

-53-

contained a nucleotide substitution 3 nucleotides 5' of the second ATG codon (C to A) that is the initiation site. The nucleotide substitution was included so as to improve the consensus for initiation of fiber protein translation.

The amplified DNA fragment was inserted into the BamHI and NotI sites

5 of pcDNA3 (Invitrogen) to create the plasmid designated pCDNA3/Fiber having 7148 bp. The parent plasmid contained the CMV promoter, the bovine growth hormone (BHG) terminator and the gene for conferring neomycin resistance. The viral sequence included in this construct corresponds to nucleotides 31040-32791 of the Ad5 genome.

10 The complete nucleotide sequence of pCDNA3/Fiber is listed in SEQ ID NO: 7 where the nucleotide position 1 corresponds to approximately the middle of the pcDNA3 vector sequence. The 5' and 3' ends of the fiber gene are located at respective nucleotide positions 916 with ATG and 2661 with TAA.

To enhance expression of fiber protein by the constitutive CMV promoter
15 provided by the pcDNA vector, a BgIII fragment containing the tripartite leader (TPL) of adenovirus type 5 was excised from pRD112a (Sheay *et al.*, *BioTechniques*, 15:856-862 (1993) and inserted into the BamHI site of pCDNA3/Fiber to create the plasmid pCLF having 7469 bp. The adenovirus tripartite leader sequence, present at the 5' end of all major late adenoviral
20 mRNAs as described by Logan *et al.*, *Proc. Natl. Acad. Sci., USA*, 81:3655-3659 (1984) and Berkner, *BioTechniques*, 6:616-629 (1988), also referred to as a "partial TPL" since it contains a partial exon 1, shows correspondence with the Ad5 leader sequence having three spatially separated exons corresponding to nucleotide positions 6081-6089 (the 3' end of the first leader segment), 7111-
25 7182 (the entire second leader segment), and 9644-9845 (the third leader segment and sequence downstream of that segment). The corresponding cDNA sequence of the partial tripartite leader sequence present in pCLF is included in SEQ ID NO: 8 bordered by BamHI/BgIII 5' and 3' sites at respective nucleotide positions 907-912 to 1228-1233. The nucleotide sequence of an isolated partial
30 TPL is also listed separately as SEQ ID No. 22 with the noted 5' and 3' restriction sites and with the following nucleotide regions identified: 1-6 nt BgIII site; 1-18 nt polylinker; 19-27 nt last 9 nt of the first leader segment (exon 1);

-54-

28-99 nt second leader segment (exon 2); 100-187 nt third leader segment (exon 3); 188-301 nt contains the nt sequence immediately following the third leader in the genome with an unknown function; and 322-327 nt BgIII site.

The pCLF plasmid has been deposited with the ATCC as described in

- 5 Example 4. The complete nucleotide sequence of pCLF is listed in SEQ ID NO: 8 where the nucleotide position 1 corresponds to approximately the middle of the pcDNA3 parent vector sequence. The 5' and 3' ends of the Ad5 fiber gene are located at respective nucleotide positions 1237-1239 with ATG and 2980-2982 with TAA.

10 C. Generation of an Adenovirus Packaging Cell Line Carrying Plasmids Encoding Functional E4 and Fiber Proteins

The 293 cell line was selected for preparing the first adenovirus packaging line as it already contains the E1 gene as prepared by Graham *et al.*, *J. Gen. Virol.*, 36:59-74 (1977) and as further characterized by Spector, *Virol.*,

- 15 130:533-538 (1983). Before electroporation, 293 cells were grown in RPMI medium + 10% fetal calf serum. Four x 10⁶ cells were electroporated with 20 µg each of pE4/Hygro DNA and pCLF DNA using a BioRad GenePulser and settings of 300 V, 25 µF. DNA for electroporation was prepared using the Qiagen system according to the manufacturer's instructions (Bio-Rad, Richmond, CA).

Following electroporation, cells were split into fresh complete DMEM + 10% fetal calf serum containing 200 µg/ml Hygromycin B (Sigma, St. Louis, MO).

- From expanded colonies, genomic DNA was isolated using the
25 "MICROTURBOGEN" system (Invitrogen) according to manufacturer's instructions. The presence of integrated E4 DNA was assessed by PCR using the primer pair E4R and ORF6L (5'TGCTTAAGCGGCCGCGAAGGAGA AGTCC3') (SEQ ID NO: 9), the latter of which is a 5' forward primer near adenovirus 5 open reading frame 6.

- 30 One clone, designated 211, was selected exhibiting altered growth properties relative to that seen in parent cell line 293. The 211 clone contained the product, indicating the presence of inserted DNA corresponding to most, if

-55-

not all, of the E4 fragment contained in the pE4/Hygro plasmid. The 211 cell line has been deposited with the ATCC as described in Example 4. This line was further evaluated by amplification using the primer pair E4L/E4R described above, and a product corresponding to the full-length E4 insert was detected.

- 5 Genomic Southern blotting was performed on DNA restricted with EcoRI and BamHI. The E4 fragment was then detected at approximately one copy/genome compared to standards with the EcoRI/BamHI E4 fragment as cloned into pBS/E4 for use as a labeled probe with the Genius system according to manufacturer's instructions (Boehringer Mannheim, Indianapolis, IN). In DNA from the 211 cell
- 10 line, the labeled internal fragment pE4/Hygro hybridized with the isolated E4 sequences. In addition, the probe hybridized to a larger fragment which may be the result of a second insertion event.

Although the 211 cell line was not selected by neomycin resistance, thus indicating the absence of fiber gene, to confirm the lack of fiber gene, the 211 cell line was analyzed for expression of fiber protein by indirect immunofluorescence with an anti-fiber polyclonal antibody and a FITC-labeled anti-rabbit IgG (KPL) as secondary. No immunoreactivity was detected. Therefore, to generate 211 clones containing recombinant fiber genes, the 211 clone was expanded by growing in RPMI medium and subjected to additional 20 electroporation with the fiber-encoding pCLF plasmid as described above.

Following electroporation, cells were plated in DMEM + 10% fetal calf serum and colonies were selected with 200 µg/ml G418 (Gibco, Gaithersburg, MD). Positive cell lines remained hygromycin resistant. These candidate sublines of 211 were then screened for fiber protein expression by indirect 25 immunofluorescence as described above. The three sublines screened, 211A, 211B and 211R, along with a number of other sublines, all exhibited nuclear staining qualitatively comparable to the positive control of 293 cells infected with AdRSVβgal (1 pfu/cell) and stained 24 hours post-infection.

Lines positive for nuclear staining in this assay were then subjected to 30 Western blot analysis under denaturing conditions using the same antibody. Several lines in which the antibody detected a protein of the predicted molecular weight (62 kd for the Ad5 fiber protein) were selected for further study including

211A, 211B and 211R. The 211A cell line has been deposited with ATCC as described in Example 4.

- Immunoprecipitation analysis using soluble nuclear extracts from these three cell lines and a seminative electrophoresis system demonstrated that the 5 fiber protein expressed is in the functional trimeric form characteristic of the native fiber protein. The predicted molecular weight of a trimerized fiber is 186 kd. Under denaturing conditions, the trimeric form was destroyed resulting in detectable fiber monomers. Those clones containing endogenous E1, newly expressed recombinant E4 and fiber proteins were selected for use in 10 complementing adenovirus gene delivery vectors having the corresponding adenoviral genes deleted as described in Example 2.

D. Preparation of an E1-Expressing Plasmid for Complementation of E1-Gene-Deleted Adenoviruses

- In order to prepare adenoviral packaging cell lines other than those based 15 on the E1-gene containing 293 cell line as described in Example 1C above, plasmid vectors containing E1 alone or in various combinations with E4 and fiber genes are constructed as described below.

- The region of the adenovirus genome containing the E1a and E1b gene is amplified from viral genomic DNA by PCR as previously described. The primers 20 used are E1L, the 5' or forward primer, and E1R, the 3' or backward primer, having the respective nucleotide sequences 5'CCG AGCTAGC GACTGAAAATGAG3' (SEQ ID NO: 10) and 5'CCTCTCGAG AGACAGC AAGACAC3' (SEQ ID NO: 11). The E1L and E1R primers include the respective restriction sites NheI and Xhol as indicated by the underlines. The sites are used 25 to clone the amplified E1 gene fragment into the NheI/Xhol sites in pMAM commercially available from Clontech (Palo Alto, CA) to form the plasmid pDEX/E1 having 11152 bp.

- The complete nucleotide sequence of pDEX/E1 is listed in SEQ ID NO: 12 where the nucleotide position 1 corresponds to approximately 1454 nucleotides 30 from the 3' end of the pMAM backbone vector sequence. The pDEX/E1 plasmid includes nucleotides 552 to 4090 of the adenovirus genome positioned downstream (beginning at nucleotide position 1460 and ending at 4998 in the

pDEX/E1 plasmid) of the glucocorticoid-inducible mouse mammary tumor virus (MMTV) promoter of pMAM. The pMAM vector contains the *E. coli* *gpt* gene that allows stable transfecants to be isolated using hypoxanthine/amino-pterin/thymidine (HAT) selection. The pMAM backbone occupies nucleotide 5 positions 1-1454 and 5005-11152 of SEQ ID NO: 12.

E. Generation of an Adenovirus Packaging Cell Line Carrying Plasmids Encoding Functional E1, and Fiber Proteins

To create separate adenovirus packaging cell lines equivalent to that of the 211 sublines, 211A, 211B and 211R, as described in Example 1C, 10 alternative cell lines lacking adenoviral genomes are selected for transfection with the plasmid constructs as described below. Acceptable host cells include A549, Hela, Vero and the like cell lines as described in Example 1. The selected cell line is transfected with the separate plasmids, pDEX/E1 and pCLF, respectively for expressing E1, and fiber complementary proteins. Following 15 transfection procedures as previously described, clones containing stable insertions of the two plasmids are isolated by selection with neomycin and HAT. Integration of full-length copy of the E1 gene is assessed by PCR amplification from genomic DNA using the primer set E1L/E1R , as described above. Functional insertion of the fiber gene is assayed by staining with the anti-fiber 20 antibody as previously described.

The resultant stably integrated cell line is then used as a packaging cell system to complement adenoviral gene delivery vectors having the corresponding adenoviral gene deletions as described in Example 2.

F. Preparation of a Plasmid Containing Two or More Adenoviral Genes for Complementing Gene-Deleted Adenoviruses

The methods described in the preceding Examples rely on the use of two plasmids, pE4/Hygro and pCLF, or, pCLF and pDEX/E1 for generating adenoviral cell packaging systems. In alternative embodiments, complementing plasmids containing two or more adenoviral genes for expressing of encoded proteins in 30 various combinations are also prepared as described below. The resultant plasmids are then used in various cell systems with delivery plasmids having the corresponding adenoviral gene deletions. The selection of packaging cell, content of the delivery plasmids and content of the complementing plasmids for

use in generating recombinant adenovirus viral vectors thus depends on whether other adenoviral genes are deleted along with the adenoviral fiber gene, and, if so, which ones.

5 1. Preparation of a Complementing Plasmid Containing Fiber and E1 Adenoviral Genes

A DNA fragment containing sequences for the CMV promoter, adenovirus tripartite leader, fiber gene and bovine growth hormone terminator is amplified from pCLF prepared in Example 1B using the forward primer 5'GACGGATCGGGAGATCTCC3' (SEQ ID NO: 13), that anneals to the 10 nucleotides 1-19 of the pCDNA3 vector backbone in pCLF, and the backward primer 5'CCGCCTCAGAACCCATAGAGCC3' (SEQ ID NO: 14) that anneals to nucleotides 1278-1257 of the pCDNA3 vector backbone. The fragment is amplified as previously described and then cloned into the pDEX/E1 plasmid, prepared in Example 1D. For cloning in the DNA fragment, the pDEX/E1 vector 15 is first digested with NdeI, that cuts at a unique site in the pMAM vector backbone in pDEX/E1, then the ends are repaired by treatment with bacteriophage T4 polymerase and dNTPs.

The resulting plasmid containing E1 and fiber genes, designated pE1/Fiber, provides dexamethasone-inducible E1 function as described for 20 DEX/E1 and expression of Ad5 fiber protein as described above.

The complete nucleotide sequence of pE1/Fiber is listed in SEQ ID NO: 15 where the nucleotide position 1 corresponds to approximately 1459 nucleotides from the 3' end of the parent vector pMAM sequence. The 5' and 3' ends of the Ad5 E1 gene are located at respective nucleotide positions 1460 and 4998 25 followed by pMAM backbone and then separated from the Ad5 fiber from pCLF by the filled-in blunt ended NdeI site. The 5' and 3' ends of the pCLF fiber gene fragment are located at respective nucleotide positions 10922-14223 containing elements as previously described for pCLF.

The resultant pE1/Fiber plasmid is then used to complement one or more 30 delivery plasmids expressing E1 and fiber.

The pE1/Fiber construct is then used to transfect a selected host cell as described in Example 1E to generate stable chromosomal insertions preformed as

-59-

previously described followed by selection on HAT medium. The stable cells are then used as packaging cells as described in Example 2.

2. Preparation of a Complementing Plasmid Containing E4 and Fiber Adenoviral Genes

5 Plasmid pCLF prepared as described in Example 1B is partially digested with BgIII to cut only at the site in the pCDNA3 backbone. The pE4/Hygro plasmid prepared in Example 1A is digested with BamHI to produce a fragment containing E4. The E4 fragment is then inserted into the BamHI site of pCLF to form plasmid pE4/Fiber. The resultant plasmid provides expression of the fiber
10 gene as described for pCLF and E4 function as described for pE4/Hygro.

A schematic plasmid map of pE4/Fiber, having 10610 bp. The complete nucleotide sequence of pE4/Fiber is listed in SEQ ID NO: 16 where the nucleotide position 1 corresponds to approximately 14 bp from the 3' end of the parent vector pCDNA3 backbone sequence. The 5' and 3' ends of the Ad5 E4
15 gene are located at respective nucleotide positions 21 and 3149 followed by fused BgIII/BamHI sites and pCDNA3 backbone including the CMV promoter again followed by BgIII/BamHI sites. The adenovirus leader sequence begins at nucleotide position 4051 and extends to 4366 followed by fused BamHI/BgIII sites and the 5' and 3' ends of the fiber gene located at respective nucleotide
20 positions 4372 and 6124.

Stable chromosomal insertions of pE4/Fiber in host cells are obtained as described above.

EXAMPLE 2

Preparation of Adenoviral Gene Delivery Vectors Using Adenoviral Packaging Cell Lines

25 Adenoviral delivery vectors are prepared to separately lack the combinations of E1/fiber and E4/fiber. Such vectors are more replication-defective than those previously in use due to the absence of multiple viral genes. A preferred adenoviral delivery vector is replication competent but only via a
30 non-fiber means is one that only lacks the fiber gene but contains the remaining functional adenoviral regulatory and structural genes. Furthermore, these adenovirus delivery vectors have a higher capacity for insertion of foreign DNA.

-60-

A. Preparation of Adenoviral Gene Delivery Vectors Having Specific Gene Deletions and Methods of Use

To construct the E1/ fiber deleted viral vector containing the LacZ reporter gene construct, two new plasmids were constructed. The plasmid pΔ

5 E1B β gal was constructed as follows. A DNA fragment containing the SV40 regulatory sequences and *E. coli* β -galactosidase gene was isolated from pSV β gal (Promega) by digesting with Vspl, filling the overhanging ends by treatment with Klenow fragment of DNA polymerase I in the presence of dNTP's and digesting with Bam H1. The resulting fragment was cloned into the EcoRV and BamHI

10 sites in the polylinker of pΔ E1sp1B (Microbix Biosystems, Hamilton, Ontario) to form pΔ E1B β gal that therefore contained the left end of the adenovirus genome with the Ela region replaced by the LacZ cassette (nucleotides 6690 to 4151) of pSV β gal. Plasmid DNA may be prepared by the alkaline lysis method as described by Birnboim and Doly, *Nuc. Acids Res.*, 7:1513-1523 (1978) or by the

15 Quiagen method according to the manufacturer's instruction, from transformed cells used to expand the plasmid DNA was then purified by CsCl-ethidium bromide density gradient centrifugation. Alternatively, plasmid DNAs may be purified from *E. coli* by standard methods known in the art (e.g. see Sambrook *et al.*)

20 The second plasmid (pDV44), prepared as described herein, is derived from pBHG10, a vector prepared as described by Bett *et al.*, *Proc. Natl. Acad. Sci., USA*, 91:8802-8806 (1994) (see, also International PCT application No. WO 95/00655) using methods well known to one of skill in the art. This vector is also commercially available from Microbix and contains an Ad5 genome

25 with the packaging signals at the left end deleted and the E3 region (nucleotides 28133:30818) replaced by a linker with a unique site for the restriction enzyme PacI. An 11.9 kb BamHI fragment, which contains the right end of the adenovirus genome, is isolated from pBHG10 and cloned into the BamHI site of pBS/SK(+) to create plasmid p11.3 having approximately 14,658 bp. The p11.3

30 plasmid was then digested with PacI and SalI to remove the fiber, E4, and inverted terminal repeat (ITR) sequences.

-61-

This fragment was replaced with a 3.4 kb fragment containing the ITR segments and the E4 gene which was generated by PCR amplification from pBHG10 using the following oligonucleotide sequences:

5' TGTACACCG GATCCGGCGCACACC3' SEQ ID NO: 17; and

5 5'CACAACGAGCTC AATTAATTAAATTGCCACATCCTC3' SEQ ID NO: 18.

These primers incorporated sites for Pael and BamHI. Cloning this fragment into the Pael and blunt ended Sall sites of the p11.3 backbone resulted in a substitution of the fused ITRs, E4 region and fiber gene present in pBHG10, by the ITRs and E4 region alone. The resulting p11.3 plasmid containing the ITR 10 and E4 regions, designated plasmid pDV43a, was then digested with BamHI. This BamHI fragment was then used to replace a BamHI fragment in pBHG10 thereby creating pDV44 in a pBHG10 backbone.

- In an alternative approach to preparing pDV44 with an additional subcloning step to facilitate the incorporation of restriction cloning sites, the 15 following cloning procedure was performed. pDV44 as above was constructed by removing the fiber gene and some of the residual E3 sequences from pBHG10 (Microbix Biosystems). As above, to simplify manipulations, the 11.9 kb BamHI fragment including the rightmost part of the Ad5 genome was removed from pBHG10 and inserted into pBS/SK. The resulting plasmid was termed p11.3.
- 20 The 3.4 kb DNA fragment corresponding to the E4 region and both ITRs of adenovirus type 5 was amplified as described above from pBHG10 using the oligonucleotides listed above and subcloned into the vector pCR2.1 (Invitrogen) to create pDV42. This step is the additional cloning step to facilitate the incorporation of a Sall restriction site. pDV42 was then digested with Pael, 25 which cuts at a unique site (bold type) in one of the PCR primers, and with Sall, which cuts at a unique site in the pCR2.1 polylinker. This fragment was used to replace the corresponding Pael/Xhol fragment of p11.3 (the pBS polylinker adjacent to the Ad DNA fragment contains a unique Xhol site), creating pDV43.
- 30 A plasmid designated pDV44 was constructed by replacing the 11.9 kb BamHI fragment of pBHG10 by the analogous BamHI fragment of pDV43. As generated in the first procedure, pDV44 therefore differs from pBHG10 by the

-62-

deletion of Ad5 nucleotides 30819:32743 (residual E3 sequences and all but the 3'-most 41 nucleotides of the fiber open reading frame).

Thus, to summarize, the cloning procedures described above result in the production of a fiber-deleted Ad5 genomic plasmid (pDV44) that was

- 5 constructed by removing the fiber gene and some of the residual E3 sequences from pBHG10. pDV44 contains a wild-type E4 region, but only the last 41 nucleotides of the fiber ORF (this sequence was retained to avoid affecting expression of the adjacent E4 transcription unit). Plasmids pBHG10 and pDV44 contain unpackageable Ad5 genomes, and must be rescued by cotransfection
- 10 and subsequent homologous recombination with DNA carrying functional packaging signals. In order to generate vectors marked with a reporter gene, either pDV44 or pBHG10 was cotransfected with pΔE1Bβgal, which contains the left end of the Ad5 genome with an SV40-driven β-galactosidase reporter gene inserted in place of the E1 region.
- 15 In general, and as described below, the method for virus production by recombination of plasmids followed by complementation in cell culture involves the isolation of recombinant viruses by cotransfection of any one of the adenovirus packaging cell systems prepared in Example 1, namely 211A, 211B, 211R, A549, Vero cells, and the like, with plasmids carrying sequences
- 20 corresponding to viral gene delivery vectors.

A selected cell line is plated in dishes and cotransfected with pDV44 and pΔE1Bβ gal using the calcium phosphate method as described by Bett *et al.*, *Proc. Natl. Acad. Sci., USA*, 91:8802-8806 (1994). Recombination between the overlapping adenovirus sequences in the two plasmids leads to the creation of a full-length viral chromosome where pDV44 and pΔE1Bβ gal recombine to form a recombinant adenovirus vector having multiple deletions. The deletion of E1 and of the fiber gene from the viral chromosome is compensated for by the sequences integrated into the packaging cell genome, and infectious virus particles are produced. The plaques thus generated are isolated and stocks of

- 25 the recombinant virus are produced by standard methods.
- 30

Because of the fiber deletion, a pDV44-derived virus is replication-defective, cells in which it is grown must complement this defect.

-63-

- The 211B cell line (a derivative of 293 cells which expresses the wild-type (wt) AD5 fiber and is equivalent to 211A on deposit with ATCC as described in Example 4) was used for rescue and propagation of the virus described here. pDV44 and pΔE1βgal were cotransfected into 211B cells, and the monolayers
- 5 were observed for evidence of cytopathic effect (CPE). Briefly, for virus construction, cells were transfected with the indicated plasmids using the Gibco Calcium Phosphate Transfection system according to the manufacturer's instructions and observed daily for evidence of CPE.

One of a total of 58 transfected dishes showed evidence of spreading cell

10 death at day 15. A crude freeze-thaw lysate was prepared from these cells and the resulting virus (termed Ad5.βgal.ΔF) was plaque purified twice and then expanded. To prepare purified viral preparations, cells were infected with the indicated Ad and observed for completion of CPE. Briefly, at day zero, 211B cells were plated in DMEM plus 10% fetal calf serum at approximately 1×10^7

15 cells/150 cm² flask or equivalent density. At day one, the medium was replaced with one half the original volume of fresh DMEM containing the indicated Ad, in this case Ad5.βgal.ΔF, at approximately 100 particles/cell. At day two, an equal volume of medium was added to each flask and the cells were observed for CPE. Two to five days after infection, cells were collected and virus isolated by lysis

20 via four rapid freeze-thaw cycles. Virus was then purified by centrifugation on preformed 15-40% CsCl gradients (111,000 x g for three hours at 4°C). The bands were harvested, dialyzed into storage buffer (10 mM Tris-pH 8.1, 0.9% NaCl, and 10% glycerol), aliquoted and stored at -70°C. Purified Ad5.βgal.ΔF

25 virus particles containing human adenovirus Ad5.βgal.ΔF genome (described further below) have been deposited with the ATCC on January 15, 1999 as further described in Example 4.

For viral titering, as necessary in the below Examples, Ad preparations were titered by plaque assay on 211B cells. Cells were plated on polylysine-coated 6 well plates at 1.5×10^6 cells/well. Duplicate dilutions of

30 virus stock were added to the plates in 1 ml/well of complete DMEM. After a five hour incubation at 37°C, virus was removed and the wells overlaid with 2

-64-

ml of 0.6% low-melting agarose in Medium 199 (Gibco). An additional 1 ml of overlay was added at five day intervals.

As a control, the first-generation virus Ad5. β gal.wt, which is identical to Ad5. β gal. Δ F except for the fiber deletion, was constructed by cotransfection of 5 pBHG10 and p Δ E1B β gal. In contrast to the low efficiency of recovery of the fiberless genome (1/58 dishes), all of 9 dishes cotransfected with p Δ E1B β gal and pBHG10 produced virus.

In another embodiment, a delivery plasmid is prepared that does not require the above-described recombination events to prepare a viral vector 10 having a fiber gene deletion. In one embodiment, a single delivery plasmid containing all the adenoviral genome necessary for packaging but lacking the fiber gene is prepared from plasmid pFG140 containing full-length Ad5 that is commercially available from Microbix. The resultant delivery plasmid referred to as pFG140-f is then used with pCLF stably integrated cells as described above to 15 prepare a viral vector lacking fiber. For genetic therapy, the fiber gene can be replaced with a therapeutic gene of interest for preparing a therapeutic delivery adenoviral vector. Methods for producing a fiberless vector with a complete TPL are described in Example 3.

Vectors for the delivery of any desired gene and preferably a therapeutic 20 gene are prepared by cloning the gene of interest into the multiple cloning sites in the polylinker of commercially available p Δ E1sp1B (Microbix Biosystems), in an analogous manner as performed for preparing pE1B β gal as described above. The same cotransfection and recombination procedure is then followed as described herein to obtain viral gene delivery vectors as further discussed in later 25 Examples.

1. Characterization of the Ad5. β gal. Δ F Genome

To confirm that the vector genomes had the proper structures and that the fiber gene was absent from the Ad5. β gal. Δ F chromosome, the DNA isolated 30 from viral particles was analyzed. Briefly, purified viral DNA was obtained by adding 10 μ l of 10 mg/ml proteinase K, 40 μ l of 0.5 M EDTA and 50 μ l of 10% SDS to 800 μ l of ad novirus-containing culture supernatant. The suspension

-65-

was then incubated at 55°C for 60 minutes. The solution was then extracted once with

400 µl of a 24:1 mixture of chloroform:isoamyl alcohol. The aqueous phase was then removed and precipitated with sodium acetate/ethanol. The pellet was

- 5 washed once with 70% ethanol and lightly dried. The pellet was then suspended in 40 µl of 10 mM Tris-HCl, pH 8.0, 1 mM EDTA. Genomic DNA from Ad5.βgal.wt and Ad5.βgal.ΔF produced the expected restriction patterns following digestion with either EcoRI or with NdeI. Southern blotting, performed with standard methods, with labeled fiber DNA as a probe demonstrated the
- 10 presence of fiber sequence in Ad5.βgal.wt but not in Ad5.βgal.ΔF DNA. As a positive control, the blot was stripped and reprobed with labeled E4 sequence.
- 15 Fiber and E4 sequences were detected by using labeled inserts from pCLF and pE4/Hygro, respectively. E4 signal was readily detectable in both genomes at equal intensities. The complete nucleotide sequence of Ad5.βgal.ΔF is presented

15 in SEQ ID NO: 23 and is contained in the virus particle on deposit with ATCC.

2. Characterization of the Fiberless Adenovirus Ad5.βgal.ΔF

To verify that Ad5.βgal.ΔF was fiber-defective, 293 cells (which are permissive for growth of E1-deleted Ad vectors but do not express fiber) were infected with Ad5.βgal.ΔF or with Ad5.βgal.wt. Twenty-four hours post

- 20 infection, the cells were stained with polyclonal antibodies directed either against fiber or against the penton base protein. Cells infected with either virus were stained by the anti-penton base antibody, while only cells infected with the Ad5.βgal.wt control virus reacted with the anti-fiber antibody. This confirms that the fiber-deleted Ad mutant does not direct the synthesis of fiber protein.

25 3. Growth of the Fiber-Deleted Ad5.βgal.ΔF Vector in Complementing Cells

- Ad5.βgal.ΔF was found to readily be propagated in 211B cells. As assayed by protein concentration, CsCl-purified stocks of either Ad5.βgal.ΔF or Ad5.βgal.wt contained similar numbers of viral particles. The particles appeared
- 30 to band normally on CsCl gradients. Infectivity of the Ad5.βgal.ΔF particles was lower than the Ad5.βgal.wt control, as indicated by an increased particle/PFU ratio. Ad5.βgal.ΔF was also found to plaque more slowly than the control

-66-

virus. When plated on 211B cells, Ad5. β gal.wt plaques appeared within 5-7 days, while plaques of Ad5. β gal. Δ F continued to appear until as much as 15-18 days post infection. Despite their slower formation, the morphology of Ad5. β gal. Δ F plaques was essentially normal.

5 **4. Production of Fiberless Ad5. β gal. Δ F Particles**

As Ad5. β gal. Δ F represents a true fiber null mutation and its stocks are free of helper virus, the fiber mutant phenotype was readily investigated. A single round of growth in cells (such as 293) which do not produce fiber generating a homogeneous preparation of fiberless Ad allowed for the 10 determination of whether such particles would be stable and/or infectious. Either Ad5. β gal.wt or Ad5. β gal. Δ F was grown in 293 or 211B cells, and the resulting particles purified on CsCl gradients as previously described. Ad5. β gal. Δ F particles were readily produced in 293 cells at approximately the same level as the control virus and behaved similarly on the gradients, indicating 15 that there was not a gross defect in morphogenesis of fiberless capsids.

Particles of either virus contained similar amounts of penton base regardless of the cell type in which they were grown. This demonstrated that fiber is not required for assembly of the penton base complex into virions. The Ad5. β gal. Δ F particles produced in 293 cells did not contain fiber protein. 20 211B-grown Ad5. β gal. Δ F also contained less fiber than the Ad5. β gal.wt control virus. The infectivities of the different viral preparations on epithelial cells correlated with the amount of fiber protein present. The fiberless Ad particles were several thousand-fold less infectious than the first-generation vector control on a per-particle basis, while infectivity of 211B-grown Ad5. β gal. Δ F was only 25 50-100 fold less than that of Ad5. β gal.wt. These studies confirmed fiber's crucial role in infection of epithelial cells via CAR binding.

5. **Composition and Structure of the Fiberless Ad5. β gal. Δ F Particles**

The proteins contained in particles of 293-grown Ad5. β gal. Δ F were 30 compared to those in Ad5. β gal.wt, to determine whether proteolysis or particle assembly was defective in this fiber null mutant. The overall pattern of proteins in the fiberless particles was observed to be quite similar to that of a

-67-

first-generation vector, with the exception of reduced intensity of the composite band resulting from proteins IIIa and IV (fiber). The fiberless particles also had a reduced level of protein VII. Although substantial amounts of uncleaved precursors to proteins VI, VII, and VIII were not seen, it is possible that the
5 low-molecular weight bands migrating ahead of protein VII represent either aberrantly cleaved viral proteins or their breakdown products.

Cryo-electron microscopy was used to more closely examine the structure of the 293 grown Ad5. β gal. Δ F and of Ad5 β gal.wt. The fiber, having an extended stalk with a knob at the end, was faintly visible in favorable
10 orientations of wild-type Ad5 particles, but not in images of the fiberless particles. Filamentous material likely corresponding to free viral DNA was seen in micrographs of fiberless particles. This material was also present in micrographs of the first-generation control virus, albeit at much lower levels.

Three-dimensional image reconstructions of fiberless and wild-type
15 particles at ~20 Å resolution showed similar sizes and overall features, with the exception that fiberless particles lacked density corresponding to the fiber protein. The densities corresponding to other capsid proteins, including penton base and proteins IIIa, VI, and IX, were comparable in the two structures. This confirms that absence of fiber does not prevent assembly of these components
20 into virions. The fiber was truncated in the wild-type structure as only the lower portion of its flexible shaft follows icosahedral symmetry. The RGD protrusions on the fiberless penton base were angled slightly inward relative to those of the wild-type structure. Another difference between the two penton base proteins was that there is a ~30 Å diameter depression in the fiberless penton base
25 around the five-fold axis where the fiber would normally sit. The Ad5 reconstructions confirm that capsid assembly, including addition of penton base to the vertices, is able to proceed in the complete absence of fiber.

6. Integrin-Dependent Infectivity of Fiberless Ad5. β gal. Δ F Particles

30 While attachment via the viral fiber protein is a critical step in the infection of epithelial cells, an alternative pathway for infection of certain hematopoietic cells has been described. In this case, penton base mediates

binding to the cells (via β 2 integrins) and internalization (through interaction with α v integrins). Particles lacking fiber might therefore be expected to be competent for infection of these cells, even though on a per-particle basis they are several thousand-fold less infectious than normal Ad vectors on epithelial
5 cells.

To investigate this, THP-1 monocytic cells were infected with Ad5. β gal.wt or with Ad5. β gal. Δ F grown in the absence of fiber. Infection of THP-1 cells was assayed by infecting 2×10^5 cells at the indicated m.o.i. in 0.5 ml of complete RPMI. Forty-eight hours post-infection, the cells were fixed with
10 glutaraldehyde and stained with X-gal, and the percentage of stained cells was determined by light microscopy. The results of the infection assay showed that the fiberless particles were only a few-fold less infectious than first-generation Ad on THP-1 cells. Large differences were seen in plaquing efficiency on epithelial (211B) cells. Infection of THP-1 cells by either Ad5. β gal. Δ F or
15 Ad5. β gal.wt was not blocked by an excess of soluble recombinant fiber protein, but could be inhibited by the addition of recombinant penton base). These results indicate that the fiberless Ad particles use a fiber-independent pathway to infect these cells. Furthermore, the lack of fiber protein did not prevent Ad5. β gal Δ F from internalizing into the cells and delivering its genome to the
20 nucleus, demonstrating that fiberless particles are properly assembled and are capable of uncoating.

The foregoing results with the recombinant viruses thus produced indicates that they can be used as gene delivery tools in cultured cells and *in vivo* as described more fully in the Examples. For example, for studies of the
25 effectiveness and relative immunogenicity of multiply-deleted vectors, virus particles are produced by growth in the packaging lines described in Example 1 and are purified by CsCl gradient centrifugation. Following titering, virus particles are administered to mice via systemic or local injection or by aerosol delivery to lung. The LacZ reporter gene allows the number and type of cells
30 which are successfully transduced to be evaluated. The duration of transgene expression is evaluated in order to determine the long-term effectiveness of treatment with multiply-deleted recombinant adenoviruses relative to the

-69-

standard technologies which have been used in clinical trials to date. The immune response to the improved vectors described here is determined by assessing parameters such as inflammation, production of cytotoxic T lymphocytes directed against the vector, and the nature and magnitude of the 5 antibody response directed against viral proteins.

Versions of the vectors which contain therapeutic genes such as CFTR for treatment of cystic fibrosis or tumor suppressor genes for cancer treatment are evaluated in the animal system for safety and efficiency of gene transfer and expression. Following this evaluation, they are used as experimental therapeutic 10 agents in human clinical trials.

B. Retargeting of Adenoviral Gene Delivery Vectors by Producing Viral Particles Containing Different or Altered Fiber Proteins

As the specificity of adenovirus binding to target cells is largely determined by the fiber protein, viral particles that incorporate modified fiber 15 proteins or fiber proteins from different adenoviral serotypes (pseudotyped vectors) have different specificities. Thus, the methods of expression of the native Ad5 fiber protein in adenovirus packaging cells as described above is also applicable to production of different fiber proteins.

Chimeric fiber proteins can be produced according to known methods 20 (see, e.g., Stevenson *et al.* (1995) *J. Virol.*, 69:2850-2857). Determinants for fiber receptor binding activity are located in the head domain of the fiber and an isolated head domain is capable of trimerization and binding to cellular receptors. The head domains of adenovirus type 3 (Ad3) and Ad5 were exchanged in order 25 to produce chimeric fiber proteins. Similar constructs for encoding chimeric fiber proteins for use in the methods herein are contemplated. Thus, instead of the using the intact Ad5 fiber-encoding construct prepared in above and in U.S. application Serial No. 09/482,682) as a complementing viral vector in adenoviral packaging cells, the constructs described herein are used to transfect cells along with E4 and/or E1-encoding constructs.

30 Briefly, full-length Ad5 and Ad3 fiber genes were amplified from purified adenovirus genomic DNA as a template. The Ad5 and Ad3 nucleotide sequences are available with the respective GenBank Accession Numbers

-70-

- M18369 and M12411. Oligonucleotide primers are designed to amplify the entire coding sequence of the full-length fiber genes, starting from the start codon, ATG, and ending with the termination codon TAA. For cloning purposes, the 5' and 3' primers contain the respective restriction sites BamHI and NotI for
- 5 cloning into pcDNA plasmid as described in Example 1A. PCR is performed as described above.

- The resulting products are then used to construct chimeric fiber constructs by PCR gene overlap extension (Horton *et al.* (1990) *BioTechniques*, 8:525-535). The Ad5 fiber tail and shaft regions (5TS; the nucleotide region
- 10 encoding amino acid residue positions 1 to 403) are connected to the Ad3 fiber head region (3H; the nucleotide region encoding amino acid residue positions 136 to 319) to form the 5TS3H fiber chimera. Conversely, the Ad3 fiber tail and shaft regions (3TS; the nucleotide region encoding amino acid residues positions
- 15 1 to 135) are connected to the Ad5 fiber head region (5H; the nucleotide region encoding the amino acid residue positions 404 to 581) to form the 3TS5H fiber chimera. The fusions are made at the conserved TLWT (SEQ ID NO: 19) sequence at the fiber shaft-head junction.

- The resultant chimeric fiber PCR products are then digested with BamHI and NotI for separate directional ligation into a similarly digested pcDNA 3.1.
- 20 The TPL sequence is then subcloned into the BamHI as described in Example 1A for preparing an expression vector for subsequent transfection into 211 cells as described above or into the alternative packaging cell systems as previously described. The resultant chimeric fiber construct-containing adenoviral packaging cell lines are then used to complement adenoviral delivery vectors as
- 25 previously described. Other fiber chimeric constructs are obtained with the various adenovirus serotypes using a similar approach.

- In an alternative embodiment, the use of modified proteins including with modified epitopes (see, e.g., Michael *et al.* (1995) *Gene Therapy*, 2:660-668 and International PCT application Publication No. WO 95/26412, which describe
- 30 the construction of a cell-type specific therapeutic viral vector having a new binding specificity incorporated into the virus concurrent with the destruction of the endogenous viral binding specificity). In particular, the authors described the

-71-

production of an adenoviral vector encoding a gastrin releasing peptide (GRP) at the 3' end of the coding sequence of the Ad5 fiber gene. The resulting fiber-GRP fusion protein was expressed and shown to assemble functional fiber trimers that were correctly transported to the nucleus of HeLa cells following
5 synthesis.

Similar constructs are contemplated for use in the complementing adenoviral packaging cell systems for generating new adenoviral gene delivery vectors that are targetable, replication-deficient and less immunogenic.
Heterologous ligands contemplated for use herein to redirect fiber specificity
10 range from as few as 10 amino acids in size to large globular structures, some of which necessitate the addition of a spacer region so as to reduce or preclude steric hindrance of the heterologous ligand with the fiber or prevent trimerization of the fiber protein. The ligands are inserted at the end or within the linker region. Preferred ligands include those that target specific cell receptors or
15 those that are used for coupling to other moieties such as biotin and avidin.

A preferred spacer includes a short 12 amino acid peptide linker composed of a series of serines and alanine flanked by a proline residue at each end using routine procedures known to those of skill in the art. The skilled artisan will be with the preparation of linkers to accomplish sufficient protein
20 presentation and to alter the binding specificity of the fiber protein without compromising the cellular events that follow viral internalization. Moreover, within the context of this disclosure, preparation of modified fibers having ligands positioned internally within the fiber protein and at the carboxy terminus as described below are contemplated for use with the methods described herein.
25

The preparation of a fiber having a heterologous binding ligand is prepared essentially as described in the above-cited paper. Briefly, for the ligand of choice, site-directed mutagenesis is used to insert the coding sequence for a linker into the 3' end of the Ad5 fiber construct in pCLF as prepared in Example
30 1.

The 3' or antisense or mutagenic oligonucleotide encodes a preferred linker sequence of ProSerAlaSerAlaSerAlaSerAlaProGlySer (SEQ ID NO: 20)

-72-

followed by a unique restriction site and two stop codons, respectively, to allow the insertion of a coding sequence for a selected heterologous ligand and to ensure proper translation termination. Flanking this linker sequence, the mutagenic oligonucleotide contains sequences that overlap with the vector

5 sequence and allow its incorporation into the construct. Following mutagenesis of the pCLF sequence adding the linker and stop codon sequences, a nucleotide sequence encoding a preselected ligand is obtained, linkers corresponding to the unique restriction site in the modified construct are attached and then the sequence is cloned into linearized corresponding restriction site. The
10 resultant fiber-ligand construct is then used to transfect 211 or the alternative cell packaging systems previously described to produce complementing viral
vector packaging systems.

In a further embodiment, intact fiber genes from different Ad serotypes are expressed by 211 cells or an alternative packaging system as previously
15 described. A gene encoding the fiber protein of interest is first cloned to create a plasmid analogous to pCLF, and stable cell lines producing the fiber protein are generated as described above for Ad5 fiber. The adenovirus vector described which lacks the fiber gene is then propagated in the cell line producing the fiber protein relevant for the purpose at hand. As the only fiber gene present is the
20 one in the packaging cells, the adenoviruses produced contain only the fiber protein of interest and therefore have the binding specificity conferred by the complementing protein. Such viral particles are used in studies such as those described above to determine their properties in experimental animal systems.

EXAMPLE 3

25 Tripartite leader sequences (TPLs) that are useful in enhancing the expression of complementing adenoviral proteins, particularly fiber protein, for use in preparing an adenoviral gene delivery vector are provided. The complete Ad5 TPL was constructed by assembling PCR fragments. First, the third TPL exon (exon 3) (nt 9644-9731 of the Ad5 genome) was amplified from Ad5
30 genomic DNA using the synthetic oligonucleotide primers
5'CTCAACAATTGTGGATCCGTACTCC3' (SEQ ID No. 24) and
5'GTGCTCAGCAGATCTTGCAGTGTG3' (SEQ ID No. 25). The resulting

-73-

- product was cloned to the BamHI and BgIII sites of pΔE1Sp1a (Microbix Biosystems) using sites in the primers (shown in bold) to create plasmid pDV52. A fragment corresponding to the first TPL exon (exon 1), the natural first intron (intron 1), and the second TPL exon (exon 2) (Ad5 nt 6049-7182) was then 5 amplified using primers 5'GGCGCGTTCGGATCCACTCTCTTCC3' (SEQ ID No. 26) and 5'CTACATGCTAGGCAGATCTCGTCGGAG3' (SEQ ID No. 27), and cloned into the BamHI site of pDV52 (again using sites in the primers) to create pDV55.

- This plasmid contains a 1.2 kb BamHI/BgIII fragment containing the first 10 TPL exon, the natural first intron, and the fused second and third TPL exons. The nucleotide sequence of the complete TPL containing the noted 5' and 3' restriction sites is shown in SEQ ID No 28 with the following nucleotide regions identified: 1-6 nt BamHI site; 7-47 nt first leader segment (exon 1); 48-1068 nt natural first intron (intron 1); 1069-1140 nt second leader segment (exon 2); 15 1141-1146 nt fused BamHI and BgIII sites; 1147-1234 nt third leader segment (exon 3); and 1235-1240 nt BgIII site.

EXAMPLE 4

Deposit of Materials

- The following cell lines and plasmids were deposited on September 25, 20 1996, with the American Type Culture Collection, 10801 University Blvd, Manassas, Virginia, USA (ATCC) under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty):Plasmid pE4/Hygro (accession number 97739), Plasmid pCLF (accession number 97737), 25 211 Cell Line (accession number CRL-12193) and 211A Cell Line (accession number CRL-12194)

The following virus, Ad5. β gal. Δ F, was deposited on January 15, 1999, with the ATCC as listed above and provided with accession number VR2636.

- Additionally, plasmids pDV60, pDV67, pDV69, pDV80 and pDV90 were 30 deposited at the ATCC on January 5, 2000 and provided with accession numbers PTA-1144, PTA-1145, PTA-1146, PTA-1147 and PTA-1148 respectively.

-74-

EXAMPLE 5

Preparation and Use of Adenoviral Packaging Cell Lines Containing Plasmids Containing Alternative TPLs

Plasmids containing tripartite leaders (TPLs) have been constructed. The 5 resulting plasmids that contain different selectable markers, such as neomycin and zeocin, were then used to prepare fiber-complementing stable cell lines for use as for preparing adenoviral vectors.

A. pDV60

Plasmid pDV60 was constructed by inserting this TPL cassette of SEQ ID 10 No. 28 into the BamHI site upstream of the Ad5 fiber gene in pcDNA3/Fiber, a neomycin selectable plasmid (see, e.g., U.S. application Serial No. 09/482,682 (also filed as International PCT application No. PCT/US00/00265 on January 14, 2000); see also Von Seggern *et al.* (1998) *J. Gen Virol.*, 79: 1461-1468). The nucleotide sequence of pDV60 is 15 listed in SEQ ID NO: 29. Plasmid pDV60 has been deposited in the ATCC under accession number PTA-1144.

B. pDV61

To construct pDV61, an Asp718/NotI fragment containing the CMV promoter, partial Ad5 TPL, wildtype Ad5 fiber gene, and bovine growth hormone 20 terminator was transferred from pCLF (ATCC accession number 97737; and described in copending U.S. application Serial No. 09/482,682 (also filed as International PCT application No. PCT/US00/00265 on January 14, 2000);), to a zeocin selectable cloning vector referred to as pCDNA3.1/Zeo (+) (commercially available from Invitrogen and for which the sequence is known).

C. pDV67

In an analogous process, pDV67 containing complete TPL was constructed by transferring an Asp 718/XbaI fragment from pDV60 into pcDNA3.1/Zeo(+) backbone. The nucleotide sequence of pDV67 is set forth in

-75-

SEQ ID No. 30. Plasmid pDV67 is available from the ATCC under accession number PTA-1145.

D. pDV69

To prepare pDV69 containing a modified fiber protein, the chimeric

- 5 Ad3/Ad5 fiber gene was amplified from pGEM5TS3H (Stevenson *et al.* (1995) *J. Virol.*, 69: 2850-2857) using the primers 5'ATGGGAT
CAAGATGAAGCGCGCAAGACCG3' (SEQ ID No. 31) and
5'CACTATAGCGGCCGCATTCTCAGTCATCTT3' (SEQ ID No. 32), and cloned to
the BamHI and NotI sites of pcDNA3.1/Zeo(+) via new BamHI and NotI sites
10 engineered into the primers to create pDV68. Finally, the complete TPL
fragment described above was then added to the unique BamH1 site of pDV68
to create pDV69. The nucleotide sequence of pDV69 is listed in SEQ ID No. 33
and has been deposited in the ATCC under accession number PTA-1146.

E. Preparation of Stable Adenovirus Packaging Cell Lines

- 15 E1-2a S8 cells are derivatives of the A549 lung carcinoma line (ATCC #
CCL 185) with chromosomal insertions of the plasmids pGRE5-2.E1 (also
referred to as GRE5-E1-SV40-Hygro construct and listed in SEQ ID No. 34) and
pMNeoE2a-3.1 (also referred to as MMTV-E2a-SV40-Neo construct and listed in
SEQ ID No. 35), which provide complementation of the adenoviral E1 and E2a
20 functions, respectively. This line and its derivatives were grown in Richter's
modified medium (BioWhitaker) + 10% FCS. E1-2a S8 cells were
electroporated as previously described (Von Seggern *et al.* (1998) *J. Gen. Virol.*,
79: 1461-1468) with pDV61, pDV67, or with pDV69, and stable lines were
selected with zeocin (600 µg/ml).
- 25 The cell line generated with pDV61 is designated 601. The cell line
generated with pDV67 is designated 633 while that generated with pDV69 is
designated 644. Candidate clones were evaluated by immunofluorescent
staining with a polyclonal antibody raised against the Ad2 fiber. Lines
expressing the highest level of fiber protein were further characterized.
- 30 For the S8 cell complementing cell lines, to induce E1 expression, 0.3 µM
of dexamethasone was added to cell cultures 16-24 hours prior to challenge
with virus for optimal growth kinetics. For preparing viral plaques, 5 X 10⁵

-76-

cells/well in 6 well plates are prepared and pre-induced with the same concentration of dexamethasone the day prior to infection with 0.5 μ M included at a final concentration in the agar overlay after infection.

F. Development of Cell Lines for Complementation of E1/E2a⁻ Vectors

- 5 The Adenovirus 5 genome was digested with Scal enzyme, separated on an agarose gel, and the 6,095 bp fragment containing the left end of the virus genome was isolated. The complete Adenovirus 5 genome is registered as Genbank accession #M73260, incorporated herein by reference, and the virus is available from the American Type Culture Collection, Manassas, Virginia, U.S.A.,
- 10 under accession number VR-5. The Scal 6,095 bp fragment was digested further with Clal at bp 917 and BgIII at bp 3,328. The resulting 2,411 bp Clal to BgIII fragment was purified from an agarose gel and ligated into the superlinker shuttle plasmid pSE280 (Invitrogen, San Diego, CA), which was digested with Clal and BgIII, to form pSE280-E.
- 15 Polymerase chain reaction (PCR) was performed to synthesize DNA encoding an Xhol and Sall restriction site contiguous with Adenovirus 5 DNA bp 552 through 924. The primers which were employed were as follows:
5' end, Ad5 bp 552-585:
5'-GTCACTCGAGGACTCGGTC-GACTGAAAATGAGACATATTATGCCACGGA
- 20 CC-3' (SEQ ID No 36)
3' end, Ad5 bp 922-891:
5'-CGAGATCGATCACCTCCGGTACAAGGTTGGCATAG-3' (SEQ ID No. 37)
- This amplified DNA fragment (sometimes hereinafter referred to as Fragment A) then was digested with Xhol and Clal, which cleaves at the native
- 25 Clal site (bp 917), and ligated to the Xhol and Clal sites of pSE280-E, thus reconstituting the 5' end of the E1 region beginning 8 bp upstream of the ATG codon.
- PCR then was performed to amplify Adenovirus 5 DNA from bp 3,323 through 4,090 contiguous with an EcoRI restriction site. The primers which
- 30 were employed were as follows:
5' end, Ad5 bp 3323-3360:

-77-

5'-CATGAAGATCTGGAAGGTGCTGAGGTACGATGAGACC-3' (SEQ ID No. 38);

and

3' end, Ad5 bp 4090-4060:

5'-GCGACTTAAGCAGTCAGCTG-AGACAGCAAGACACTTGCTTGATCAAATCC

5 -3' (SEQ ID No. 39).

This amplified DNA fragment (sometimes hereinafter referred to as Fragment B) was digested with BgIII, thereby cutting at the Adenovirus 5 BgIII site (bp 3,382) and EcoRI, and ligated to the BgIII and EcoRI sites of pSE280-AE to reconstruct the complete E1a and E1b region from Adenovirus 5 bp 552 through 4,090. The resulting plasmid is designated pSE280-E1.

A construct containing the intact E1a/b region under the control of the synthetic promoter GRE5 was prepared as follows. The intact E1a/b region was excised from pSE280-E1, which was modified previously to contain a BamHI site 3' to the E1 gene, by digesting with Xhol and BamHI. The Xhol to BamHI fragment containing the E1a/b fragment was cloned into the unique Xhol and BamHI sites of pGRE5-2/EBV (U.S. Biochemicals, Cleveland, Ohio) to form pGRE5-E1).

Bacterial transformants containing the final construct were identified. Plasmid DNA was prepared and purified by banding in CsTFA prior to use for transfection of cells.

Construction of plasmid including Adenovirus 5 E2A sequence.

The Adenovirus 5 genome was digested with BamHI and Spel, which cut at bp 21,562 and 27,080, respectively. Fragments were separated on an agarose gel and the 5,518 bp BamHI to Spel fragment was isolated. The 5,518 bp BamHI to Spel fragment was digested further with SmaI, which cuts at bp 23,912. The resulting 2,350 bp BamHI to SmaI fragment was purified from an agarose gel, and ligated into the superlinker shuttle plasmid pSE280, and digested with BamHI and SmaI to form pSE280-E2 BamHI-SmaI.

PCR then was performed to amplify Adenovirus 5 DNA from the SmaI site at bp 23,912 through 24,730 contiguous with NheI and EcoRI restriction sites.

The primers which were employed were as follows:

5' nd, Ad5 bp 24,732-24,708:

-78-

5'-CACGAATTCGTCAGCGCTTCTCGCGTCCAAGACCC-3' (SEQ ID No. 40);
3' end, Ad5 bp 23,912-23,934;

5'-CACCCCGGGGAGGC GGCG CGAC GGGG AC GGG-3' (SEQ ID No. 41)

- This amplified DNA fragment was digested with SmaI and EcoRI, and
5 ligated to the SmaI and EcoRI sites of pSE280-E2 Bam-Sma to reconstruct the
complete E2a region from Ad5 bp 24,730 through 21,562. The resulting
construct is pSE280-E2a.

- In order to convert the BamHI site at the 3' end of E2a to a Sall site, the
E2a region was excised from pSE280-E2a by cutting with BamHI and NheI, and
10 recloned into the unique BamHI and NheI sites of pSE280. Subsequently, the
E2a region was excised from this construction with NheI and Sall in order to
clone into the NheI and Sall sites of the pMAMneo (Clonetech, Palo Alto, CA)
multiple cloning site in a 5' to 3' orientation, respectively. The resulting
construct is pMAMneo E2a.
- 15 Bacterial transformants containing the final pMAMneo-E2a were
identified. Plasmid DNA was prepared and purified by banding in CsTFA.
Circular plasmid DNA was linearized at the XbaI site within the ampicillin
resistance gene of pMAMneo-E2a, and further purified by the phenol/chloroform
extraction and ethanol precipitation prior to use for transfection of cells.

20 **Transfection and selection of cells.**

- In general, this process involved the sequential introduction, by calcium
phosphate precipitation, or other means of DNA delivery, of two plasmid
constructions each with a different viral gene, into a single tissue culture cell.
The cells were transfected with a first construct and selected for expression of
25 the associated drug resistance gene to establish stable integrants. Individual cell
clones were established and assayed for function of the introduced viral gene.
Appropriate candidate clones then were transfected with a second construct
including a second viral gene and a second selectable marker. Transfected cells
then were selected to establish stable integrants of the second construct, and
30 cell clones were established. Cell clones were assayed for functional expression
of both viral genes.

-79-

A549 (ATCC Accession No. CCL-185) were used for transfection.

Appropriate selection conditions were established for G418 and hygromycin B by standard kill curve determination.

Transfection of A549 cells with plasmids including E1 and E2a regions.

- 5 pMAMNeo-E2a was linearized with XmnI with the Amp^R gene, introduced into cells by transfection, and cells were selected for stable integration of this plasmid by G418 selection until drug resistant colonies arose. The clones were isolated and screened for E2a expression by staining for E2a protein with a polyclonal antiserum, and visualizing by immunofluorescence. E2a function was
- 10 screened by complementation of the temperature-sensitive mutant Ad5ts125 virus which contains a temperature-sensitive mutation in the E2a gene. (Van Der Vliet, et al., J. Virology, Vol. 15, pgs. 348-354 (1975)). Positive clones expressing the E2a gene were identified and used for transfection with the 7 kb EcoRV to XmnI fragment from pGRE5-E1, which contains the GRE5 promoted
- 15 E1a/b region plus the hygromycin^R gene. Cells were selected for hygromycin resistance and assayed for E1a/b expression by staining with a monoclonal antibody for the E1 protein (Oncogene Sciences, Uniondale, N.Y.). E1 function was assayed by ability to complement an E1-deleted vector. At this point, expression and function of E2a was verified as described above, thus
- 20 establishing the expression of E1a/b and E2a in the positive cell clones.

A transfected A549 (A549 (ATCC Accession No. CCL-185);) cell lines showed good E1a/b and E2a expression and was selected for further characterization. It was designated the S8 cell line.

- 25 **G. Preparation of Adenoviral Vectors Containing Ad5. β gal. Δ F Genome in S8 Improved Fiber-Complementing Cell Lines**

To prepare adenoviral vectors containing Ad5. β gal. Δ F (Ad5. β gal. Δ F has been deposited the ATCC under accession number VR2636) in S8 cells containing alternative forms of TPL for enhancing the expression of fiber proteins, the protocol as described in Example 2 for preparing Ad5. β gal. Δ F in 30 211B cells was followed with the exception of pretreatment with 0.3 μ M dexamethasone for 24 hours as described above. Thus, viral particles with the wildtype Ad5 fiber protein on their surface and containing the fiberless

-80-

Ad5. β gal. Δ F genome were produced in 633 cells. Particles produced in 644 cells also contained the fiberless Ad5. β gal. Δ F genome, but had the chimeric 5T3H fiber protein, with the Ad3 fiber knob, on their surface.

Thus, these viral preparations, prepared as described herein are useful for 5 targeting delivery of the Ad5. β gal. Δ F, Ad5.GFP. Δ F, or other similarly constructed fiberless genome with either wild-type or modified fibers. Preferably for purposes herein the fibers are from an Ad serotype D virus, more preferably from Ad37.

EXAMPLE 6

10 **Pseudotyping and Infectivity of Recombinant Adenoviral Vectors
Produced with Improved Fiber-Complementing Cell Lines**

A. **Pseudotyping of Ad5. β gal. Δ F**

To verify that adenoviral vectors were produced had altered tropisms, viral particles were purified from either 633 or 644 cells and were then Western 15 blotted and probed with a polyclonal rabbit antibody against the Ad2 fiber (which detects the Ad5 and chimeric 5T3H fiber proteins).

B. **Infectivity of Cells with 633 or 644 Generated Virus Particles** The cell lines, 633 or 644, prepared as described above, were infected with the indicated number of particles/cell of Ad5. β gal. Δ F and virus particles produced. 20 Virus was then used to infect selected cell lines, including 211B, MRC-5 human fibroblasts, A-10 rat aortic endothelial cells, and THP-1 human monocytic cells. Unbound virus was removed by washing the cells and the cells were further incubated at 37°C for 48 hours. Cells were then fixed with glutaraldehyde and stained with X-gal. The percentage of stained cells was then determined by light 25 microscopy where all experiments were done in triplicate.

The results indicated that adenoviral vectors could be retargeted by pseudotyping using packaging cell lines expressing different fiber proteins. Particles containing either fiber were equally infectious on 211B cells, while MRC-5 fibroblasts and THP-1 cells were more readily infected by virus containing 30 the chimeric fiber. The A-10 rat endothelial cells were more readily infected by particles containing the wildtype Ad5 fiber protein.

-81-

EXAMPLE 7

Transient Transcomplementation

- The ability of adenovirus type 5 (Ad5) to deliver therapeutic genes to cells is mediated by the interaction of the adenoviral fiber protein with the
- 5 coxsackievirus-adenoviral receptor (CAR). Because a wide-range of cells express CAR, it was thought that it would be difficult to use adenoviruses to deliver genes to specific cell types. A system for testing modified fiber genes to identify tropisms of interest is described in copending U.S. application Serial No. 09/482,682 (also filed as International PCT application No.
- 10 PCT/US00/00265 on January 14, 2000). An *in vitro* system has been developed that involves infection of tissue culture cells with a fiber-deleted Ad and transient co-transfection with a plasmid directing fiber expression. This system allows one to produce and evaluate modified fibers expressed on a viral particle. This system can be used to produce therapeutic quantities of
- 15 adenoviral vectors with modified fiber proteins, with such fibers having a new tropism added by insertion of a desired ligand into the fiber gene. These fibers may also have the natural tropism (*i.e.* binding to CAR) ablated.

Plasmids used were pDV60 and pDV55 were prepared as described herein and in U.S. application Serial No. 09/482,682 (also filed as International PCT application No. PCT/US00/00265 on January 14, 2000). pDV60 is an pcDNA3.1-based expression plasmid that contains the CMV promoter, Ad5 tripartite leader, an intron, and the Ad5 fiber gene sequence. pDV55 contains no fiber gene and serves as the negative control. Ad5. β gal. Δ F and 211B are described above. 293T cells are identical to 293 cells except they express an integrated SV40 large T antigen gene. HDF cells are human diploid fibroblasts. 293T cells express CAR and α_v integrins; HDF cells express α_v integrins but no CAR. Transfections with fiber expression plasmids were performed with Lipofectamine (GIBCO-BRL) using 20mg DNA and 50ml Lipofectamine per 15cm dish. Cells were maintained in DMEM supplemented with 10% fetal bovine

25 serum.

The fiber deletion mutation of Ad5. β gal. Δ F is complemented in *trans* by passaging virions through 211B, a cell line that stably expresses functional Ad5

-82-

fiber. The present system was designed to complement Ad5. β gal. Δ F by modified fibers expressed from transfected episomal plasmids in 293T cells. The result is a simplified and rapid method to incorporate modified fibers on a viral particle containing the Ad5. β gal. Δ F genome that does not require propagation of
5 the virus.

The feasibility of transcomplementation of Ad5. β gal. Δ F with episomal fiber-expressing plasmids was demonstrated in the following experiment. 293T cells were transfected with one of two plasmids: pDV55, which expresses no fiber or pDV60, which expresses wildtype Ad5 fiber. Fiber expression persists
10 for at least six days. Twenty-four hours after transfection, these cells were infected at 2000 particles/cell with Ad5. β gal. Δ F passaged through 211B cells. Seventy-two hours later, a crude viral lysate (CVL) was generated by exposing the cells to five freeze-thaw cycles. Viral particles were purified by cesium chloride gradient centrifugation. The resulting virions incorporated the fiber
15 expressed from the episomal plasmid, as confirmed by Western blots performed with an antibody specific to the Ad5 fiber.

Episomal plasmid transcomplementation system is suitable for quickly expressing and evaluating the properties of modified fibers in the context of a viral particle. Episomal plasmid transcomplementation will also be of great utility
20 for quickly evaluating a bank of modified fibers for other binding properties, including new tropisms and the ablation of the native tropism. In addition to the rapid generation and testing of large numbers of modified fibers, there are other advantages to the Ad5. β gal. Δ F transcomplementation system in terms of production and safety. Episomal plasmid transcomplementation has the inherent
25 advantage over transcomplementation in that it is not necessary to make a stable cell line for every modified fiber for complementation with Ad5. β gal. Δ F. Because the Ad5. β gal. Δ F is deleted in E1, E3 and fiber, there is an additional gene deletion, which should render it very suitable for gene therapy. In addition, the presence of the fiber gene deletion decreases the opportunity to generate
30 replication-competent virus via recombination in the packaging cells. A single Ad vector preparation can be retargeted to any number of different cell types simply by transfecting the cells with the appropriate fiber-expression construct.

-83-

EXAMPLE 8

Preparation of Adenoviral Gene Delivery Vectors Containing the Ad37 fiber protein

- This example describes construction of packaging cell lines expressing
- 5 the Ad37 fiber protein, and their use in generating particles of a fiber-deleted Ad vector (such as Ad5. β gal. Δ F) containing this fiber protein. The fiber protein is attached to the viral capsid by binding to the penton base protein through its N-terminus, and the Ad37 fiber was modified in order to make its N-terminal sequence more closely match that of the Ad5 protein to ensure that it would
- 10 efficiently bind the Ad5 penton base in these vectors.

A. Materials and methods

- Cell lines and wild-type adenovirus.** Human A549 lung carcinoma epithelial cells and human Chang C conjunctival cells (American Type Culture Collection) were maintained in complete Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum. Wild-type Ad19p and Ad37 (ATCC) were propagated in A549 cells and purified by banding on CsCl₂ density gradients as previously described (Huang *et al.* (1999) *J. Virol.* 73:2798-2802). Viral protein concentration was determined by the Bio-Rad Protein Assay, and was used to calculate the number of viral particles based on the known molecular weight of
- 15 Ad2 virions (1 μ g = 4 \times 10⁹ particles).
- 20

B. Construction of the Ad37 fiber expressing cell lines and the recombinant Ad37 knob protein.

1. **Construction of an Expression Plasmid for the Ad37 Fiber Protein (pDV80)**
- 25 The plasmid designated pDV80 (see, SEQ ID No. 42) prepared for expression of the Ad37 fiber protein in mammalian cells, uses the same regulatory elements as the elements in pDV60, pDV67, and pDV69 to express the Ad37 fiber in packaging lines. It was constructed in two steps.

- First, the Ad37 fiber open reading frame was amplified from Ad37
- 30 genomic DNA using synthetic oligonucleotide primers, L37: 5' TGT CCT GGA TCC AAG ATG AAG CGC GCC CGC CCC AGC GAA GAT GAC TTC 3' (SEQ ID NO. 43) and 37FR: 5' AAA CAC GGC GGC CGC TCT TTC ATT CTT G 3' SEQ ID NO. 44). L37 contains nucleotides (underlined) that differ from the Ad37

-84-

genomic sequence in order to add a unique *Bam*H1 site (bold) before the start codon (italicized) and to create point mutations that make the N-terminal sequence of the fiber more closely match the N-terminal sequence of the Ad5 fiber protein as follows:

5 Ad37 MSKRLRVEDDFNPVYPY (SEQ ID No. 45)
↓↓↓↓↓
KRARPS (SEQ ID No. 46)
Ad5 MKRARPSEDTFNPVYPY (SEQ ID No. 47).

37FR also incorporates a unique *Not*1 site (bold). The PCR product was inserted
10 into the *Bam*H1 and *Not*1 sites of pCDNA3.1zeo(+) (Invitrogen) to create
pDV78. The correct sequence of the Ad37 fiber protein, including inserted
changes, was confirmed by sequencing.

Two point mutations in the fiber gene in the 705 line, S356 to P356 and
I362 to T362, were discovered by the sequencing. The mutations are not in the
15 receptor binding domain in Ad37 fiber gene in the 705 cell line. They are buried
in the knob trimer interface. To confirm that these mutations do not affect
receptor binding, the Ad37 fiber protein with the correct sequence was recloned,
and 293T cells transfected with the virus and subsequently infected with
Ad5.GFPΔF to produce Ad37 pseudotyped virus. The results were the same as
20 the results of the experiments with Ad37 pseudotyped virus produced from line
705 (see, Wu et al. (2001) *Virology* 279:78-89).

Second, a 1.2 kb *Bam*H1/*Bgl*II fragment containing an adenovirus type 5
tripartite leader was excised from pDV55 (see EXAMPLE 3) and inserted into the
*Bam*H1 site of pDV78 to create pDV80 (SEQ ID No 42). Plasmid pDV80 has
25 been deposited in the ATCC under accession number PTA-1147.

2. Construction of the recombinant Ad37 knob protein

Recombinant Ad37 knob protein containing an N-terminal T7•Tag was
produced in *E. coli* using the PET expression system (Novagen). Ad37 fiber DNA
(GenBank accession number U69132) was PCR amplified from wild-type Ad37
30 genomic DNA using the following primers (SEQ ID Nos. 48 and 49):
5' GGATCCATGGGATACTTGGTAGCA 3' (*Bam*H1 site underlined and
5' GCAACTCGAGTCATTCTGGGCAATATAGG 3' (Xhol site underlined).

-85-

The PCR reactions were performed at 94 °C (denaturation), 55 °C (annealing), 72 °C (extension, 30 cycles) using *Taq* DNA polymerase (Qiagen). The amplified DNA fragments, which contained residues 172 to 365 of the Ad37 fiber protein with the addition of an N-terminal start codon (italicized), were 5 purified and subcloned into the pCR-TOPO vector using the TA-Cloning Kit (Invitrogen). No replication errors were found by DNA sequencing. Plasmids from cultured transformed colonies were purified and digested with *Bam*H1 and *Xhol*. The fragment was inserted into the *Bam*H1 and *Xhol* sites of the bacterial expression vector, pET21a (Novagen), and transformed into (DE3)pLYS S 10 expression cells (Invitrogen). Colonies were selected for knob expression by induction with 1 mM IPTG for four hours at 37 °C and knob expression was determined by SDS-PAGE. The colony displaying highest knob expression was used for large-scale knob expression and induced with 0.5 mM IPTG at 30 °C for four hours.

15 The recombinant T7•Tagged Ad37 knob protein was purified from sonicated bacteria using the T7•Tag Affinity Purification Kit as recommended by the manufacturer (Novagen). Recovered protein was analyzed for purity by SDS-PAGE followed by Coomassie staining or Western blotting with an HRP-conjugated α -T7•Tag monoclonal antibody as described by the manufacturer 20 (Novagen) or an α -Ad37 fiber rabbit antibody.

3. Preparation of Cell Lines that Express the Ad37 fiber protein

Plasmid pDV80 DNA was purified using the Qiagen method and electroporated into the adenovirus-complementing cell line E1-2a S8 (see Examples herein; see also, Gorziglia *et al.* (1996) *J. Virology* 70:4173-4178; 25 and Von Seggern *et al.* (1998) *J. Gen. Virol.* 79:1461-1468). Stable clones were selected with 600 μ g/ml zeocin (Invitrogen).

Copies were expanded and were screened for fiber expression by indirect immunofluorescence (Von Seggern *et al.* (1998) *J. Gen. Virol.* 79:1461-1468) using a rabbit polyclonal antibody directed against the Ad37 fiber (α -Ad37 fiber 30 rabbit antibody) raised by immunizing rabbits with recombinant Ad37 fiber protein. Two clones (lines 705 and 731) that expressed the protein at a uniformly high level were selected.

-86-

EXAMPLE 9

Production of Pseudotyped Ad Vector Particles

To generate vector particles equipped ('pseudotyped') with the Ad37 fiber protein, the Ad37 fiber-expressing 705 cells were infected (approximately 5 1000 particles/cell) with Ad5. β gal. Δ F or with Ad5.GFP. Δ F.

Materials and methods

Ad5. β gal. Δ F

The construction of Ad5. β gal. Δ F is described in Example 2 (it has been deposited on January 15, 1999, with the ATCC as listed above under accession 10 number VR2636; see also, Von Seggern *et al.* (1999) *J. Virol.* 73:1601-1608; copending U.S. application Serial No. 09/482,682 filed January 14, 2000, and also International PCT application No. PCT/US00/00265, filed January 14, 2000).

Ad5.GFP. Δ F

15 Ad5.GFP. Δ F was constructed by recombination in bacteria using a modification of the AdEasy System (see, U.S. Patent No. 5,922,576; see, also He *et al.* (1998) *Proc. Natl. Acad. Sci. U.S.A.* 95:2509-2514; the system is publicly available from the authors and other sources).

First, a fiber-deleted genomic plasmid was constructed by removing the 20 fiber gene from pAdEasy-1 (see, U.S. Patent No. 5,922,576; and He *et al.* (1998) *Proc. Natl. Acad. Sci. U.S.A.* 95:2509-2514; the AdEasy system and vectors are publicly available from He *et al.* at Johns Hopkins University).

Plasmid pAdEasy-1 contains the entire Ad5 genome, except for nucleotides 1-3,533, which encompass the E1 genes, and nucleotides 28,,130-30,820, which 25 encompass the E3 gene.

Plasmid pDV43 (see Example 2; see, also Von Seggern *et al.* (1999) *J. Virol.* 73:1601-1608) was digested with *Pac*1, the ends blunted by treatment with the large fragment of *E. coli* DNA polymerase and dNTPs, and the product re-ligated to produce plasmid pDV76. The resulting plasmid pDV76 is identical to 30 pDV43 except for loss of the *Pac*1 site and contains the right end of the Ad5 genome with E3 and fiber deletions. A 4.23 kb fragment from PDV76 was amplified using the oligonucleotide primers (SEQ ID Nos. 50 and 51:

-87-

- 5' CGC GCT GAC TCT TAA GGA CTA GTT TC 3', including the unique *Spe1* site in the Ad5 genome (bold); and 5' GCG CTT AAT TAA CAT CAT CAA TAA TAT ACC TTA TTT T 3', including a new *Pac1* site (bold) adjacent to the right Ad5 ITR. Hence the resulting PCR amplified fragment contains nucleotides 5 27,082 to 35,935 of the Ad5 genome with deletions of nucleotides 28,133 to 32,743 (the E3 and fiber genes), and was used to replace the corresponding *Spe1/Pac1* fragment of pAdEasy 1 (see, U.S. Patent No. 5,922,576) to create pDV77.

Second, *E. coli* strain BJ5183 was electroporated with a mixture of 10 pDV77 and *Pme1*-linearized pAdTrack as described (U.S. Patent No. 5,922,576; He et al. (1998) *Proc. Natl. Acad. Sci. U.S.A.* 95:2509-2514), and DNA was isolated from kanamycin-resistant colonies. The resulting plasmid, pDV83, contains a complete Ad5 genome with E1-, E3-, and fiber-deletions with a CMV-driven GFP reporter gene inserted at the site of the E1 deletion. The full length 15 Ad chromosome was isolated by *Pac1* digestion, and transfected into the E1- and fiber-complementing 633 cells (Von Seggern et al. (2000) *J. Virol.* 74:354-362). The 633 cells were produced by electroporating pDV67 (SEQ ID No. 30, deposited under ATCC accession number PTA-1145) into the E1-2a S8 cells, described above. The recovered virus Ad5.GFP.ΔF was then plaque purified by 20 plating on 633 cells and virus stocks were prepared by freeze-thawing cell pellets.

Ad5-pseudotype particle production

Particles with Ad5 fiber

- Ad5-pseudotyped particles were generated by virus growth in 633 cells, 25 which express the wild type Ad5 fiber protein. Viral particles were isolated and purified over CsCl gradients (Von Seggern et al. (1999) *J. Virol.* 73:1601-1608; purified by centrifugation on preformed 15-40% CsCl gradients (111,000 x g for three hours at 4°C)). For analysis of viral proteins, ten µg of the purified particles were electrophoresed on 8-16% gradient gels and the protein 30 transferred to nylon membranes. The resulting blot was probed with rabbit polyclonal antibodies raised against recombinant Ad37 fiber or Ad5 fiber or penton base proteins expressed in baculovirus-infected cells.

Particles with Ad37 fiber

Cells from the Ad37 fiber producing cell line 705 were infected at approximately 1000 particles/cell with Ad5. β gal. Δ F or with Ad5.GFP. Δ F. Viral particles were isolated and purified over CsCl gradients. The bands were 5 harvested, dialyzed into storage buffer (10 mM Tris-pH 8.1, 0.9% NaCl, and 10% glycerol), aliquoted and stored at -70°C.

Viral protein analyses

For analysis of viral proteins, 10 μ g of purified Ad5. β gal. Δ F particles with no fiber (grown in 293 cells), the Ad5 fiber (grown in 633 cells), or the Ad37 10 fiber (grown in 705 cells) were electrophoresed by 8-16% polyacrylamide gradient SDS-PAGE and the proteins were transferred to nylon membranes. The blot was then probed with α -Ad37 fiber rabbit antibody. Ad5 fiber and penton base were detected by reprobing the blot with polyclonal antibodies raised against recombinant proteins expressed in baculovirus-infected cells (Wickman et 15 al. (1993) *Cell* 2:309-319).

Adenovirus infection and cell binding assays

Adherent Chang C and A549 cells were infected with GFP expressing Ad5 vectors containing the Ad5 fiber (Ad5.GFP. Δ F/5F) or the Ad37 fiber (Ad5.GFP. Δ F/37F) at 10,000 particles per cell for 3 hours at 37°C, 5% CO₂ in 20 DMEM, 10% FCS. Cells were washed twice with saline and then cultured overnight at 37°C, 5% CO₂. The next day, the cells were detached with buffer containing 0.05% (w/v) trypsin and 0.5 mM EDTA (Boehringer Mannheim) for 5 minutes at 37°C. Suspended cells were washed once with PBS and then resuspended in phosphate-buffered saline (PBS), pH 7.4. GFP fluorescence was 25 measured with a FACScan flow cytometer. A threshold established by the fluorescence of uninfected cells was used to distinguish cells expressing GFP. To assess the role of CAR in Ad infection, 10,000 attached cells were pre-incubated with 180 μ g/ml RmcB, a function-blocking anti-CAR monoclonal antibody (Hsu et al. (1988) *J. Virol.* 62:1647-1652), in complete DMEM for 1 30 hour at 4°C. A small volume containing Ad5.GFP. Δ F/5F or Ad5.GFP. Δ F/37F was then added at 10,000 particles per cell. The cells were infected for 3 hours, cultured overnight, harvested, and analyzed for GFP expression. Percent

-89-

cells expressing GFP was determined by the percent of cells detected above a threshold set by the fluorescence of uninfected Chang C cells.

To measure adenovirus binding to cells, wild type Ad37 was labeled with ^{125}I using Iodogen (Pierce) according to manufacturer instructions and separated from free ^{125}I by gel filtration as described (Huang *et al.* (1999) *J. Virol.* 73:2798-2802). Binding of radiolabeled wild type Ad37 on Chang C cells was then quantitated as described (Huang *et al.* (1999) *J. Virol.* 73:2798-2802). Non-specific binding was determined by incubating cells and labeled Ad37 particles in the presence of 100-fold concentration of unlabeled Ad37. Specific binding was calculated by subtracting the non-specific binding from the total cpm bound. To examine if divalent cations are required for binding, 10 mM ethylenediaminetetraacetic acid (EDTA) or various concentrations of CaCl_2 , or MgCl_2 were added to cells before incubation with labeled virus. To examine if the receptor for Ad37 is a protein, cells were pretreated with 10 $\mu\text{g}/\text{ml}$ trypsin (GIBCO), subtilisin (Sigma), proteinase K (Boehringer-Mannheim), and bromelain (Sigma) at 37 °C for 1 hour, then washed twice with complete DMEM before adding labeled virus. Cells were >95% viable after protease treatment.

Ad37 binding to conjunctival cells is calcium-dependent. Specific ^{125}I -labeled Ad37 binding to Chang C cells was measured in the presence of 10 mM EDTA and in the presence of varying concentrations of calcium chloride or magnesium chloride. Specific binding was determined by subtracting the nonspecific counts in the presence of 100-fold excess unlabeled virus from the total counts.

Pretreatment of conjunctival cells with proteases inhibits Ad37 binding. Chang C cells were pretreated with various proteases for 1 hour before binding ^{125}I -labeled Ad37 to the cells. Nonspecific binding was measured by adding 100-fold unlabeled Ad37 to cells with ^{125}I -labeled Ad37 and subtracting from total counts for specific binding. Percent inhibition represents the difference in specific binding of untreated cells and pretreated cells as a percentage of the specific binding of untreated cells.

-90-

Virus overlay protein blot assay (VOPBA)

For VOPBA of human conjunctival membrane proteins probed with Ad37 in the presence of EDTA or calcium chloride, Chang C membrane fractions were separated by 8% SDS-PAGE and transferred to a PVDF membrane. The

- 5 membrane was subsequently probed with or without whole Ad37 particles, a polyclonal antibody against Ad37 fiber, and finally a horseradish peroxidase conjugated anti-rabbit antibody, in the presence of EDTA or calcium chloride. Transferred Chang C membrane proteins were probed with recombinant Ad37 knob protein, instead of Ad37 knob, in the presence of calcium chloride.
- 10 Confluent monolayers of Chang C and A549 cells were detached by scraping, pelleted by centrifugation, and then resuspended in 250 mM sucrose, 20 mM HEPES, pH 7.0, 1 mM EDTA, and 2 µg/ml aprotinin and leupeptin. Cells were transferred into a dounce homogenizer and disrupted with 30 strokes. Organelles and nuclei were pelleted at 500g for 15 min. Plasma membrane
- 15 fragments were then pelleted from the supernatant of cell lysates at 200,000g for 1 hour and then resuspended in 10 mM Tris•Cl, pH 8.1, 10 µg/ml aprotinin and leupeptin.

- Cell membranes of Chang C or A549 cells were incubated (1:1) with a 2% SDS, non-reducing buffer and separated on an 8% polyacrylamide gel
- 20 without boiling. Membrane proteins were then electroblotted onto a PVDF membrane (Immobilon-P) and blocked in 5% (w/v) milk in PBS, pH 7.4, 0.02% Tween-20 (PBS-T). After blocking, the membrane was incubated with 1 µg/ml wild-type Ad19p or Ad37 in 0.5% (w/v) milk in PBS-T, 1 mM CaCl₂, for 1 hour at room temperature. The membrane was then washed once with phosphate-
25 buffered saline, pH 7.4 (PBS), 1 mM CaCl₂, and incubated with 1:500 dilution of α -Ad37 fiber rabbit antibody in 0.5% (w/v) milk in PBS-T, 1 mM CaCl₂, for 30 minutes at room temperature. The membrane was washed again with PBS, 1 mM CaCl₂, and incubated with 1:5000 dilution of horseradish peroxidase (HRP) conjugated α -rabbit antibody (Sigma) in 0.5% (w/v) milk in PBS-T, 1 mM CaCl₂,
- 30 for 30 minutes at room temperature. The membrane was washed four times in PBS, 1 mM CaCl₂, once with PBS-T, 1 mM CaCl₂, and once in 1 mM CaCl₂. The blot was developed with enhanced chemiluminescence reagents (Pierce) for 5

-91-

minutes and placed onto a piece of Biomax film (Kodak) for 5 seconds to 1 minute. For divalent metal cation experiments, membranes were incubated in the presence of 2 mM EDTA instead of 1 mM CaCl₂ in all solutions. To assay fiber knob binding to cell membrane proteins, membrane filters were incubated
5 with 1 µg/ml purified T7-tagged Ad37 knob protein in Tris-buffered saline, 0.1% Tween-20, 1 mM CaCl₂, for 1 hour at room temperature. α -Ad37 fiber rabbit antibody and HRP-conjugated anti-rabbit antibody were applied and the membrane was developed with substrate solution as described above.

Results: Comparison of adenovirus infection of human conjunctival and lung epithelial cells with virus particles retargeted with Ad5 or Ad37 fiber proteins
10

Packaging cell lines producing the Ad37 fiber protein were generated. Since the N-terminal amino acid sequences of the Ad5 and Ad37 fiber proteins differ significantly, and to ensure that the Ad37 fiber would be efficiently incorporated into Ad5 vector particles, several residues in the wild-type Ad37
15 fiber were mutated to more closely match the Ad5 sequence. Stable cell lines producing this fiber under control of the CMV promoter and the adenovirus type 5 tripartite leader were then generated and screened for fiber expression by indirect immunofluorescence. One clone (line 705), which expressed the Ad37 fiber at a high level, was selected for further study.

20 Cells from one cell line 633, which expresses the wild-type Ad5 fiber protein, and line 705 were infected with a fiber-deleted Ad5 vector carrying a β galactosidase reporter gene. The resulting vector particles contained the Ad5 fiber protein (Ad5. β gal. Δ F/5F) and the Ad37 fiber protein (Ad5. β gal. Δ F/37F), respectively. Incorporation of the correct fiber protein into viral particles was
25 verified by Western blotting. Adenoviral vectors containing the GFP reporter gene, Ad5.GFP. Δ F/5F and Ad5.GFP. Δ F/37F, were created in the same fashion.

Infection of a variety of cell types using the retargeted adenovirus particles was examined. As assayed by GFP fluorescence, Ad5.GFP. Δ F/5F exhibited good gene delivery to lung epithelial (A549) and conjunctival cells
30 (Chang C). In contrast, Ad5.GFP. Δ F/37F efficiently delivered GFP to Chang C cells, but exhibited very poor gene delivery to A549 cells. Although CAR is expressed on the surface of A549 cells, as indicated by AD5.GFP. Δ F/5F

-92-

infection, Ad5.GFP. Δ F/37F was unable to infect these cells efficiently. This experiment shows that the Ad37 fiber protein can confer preferential infection of human conjunctival cells, but not CAR-expressing human lung epithelial cells.

Hence CAR is not the primary receptor for Ad37. Recent studies reported
5 that expression of CAR on the surface of chinese hamster ovary (CHO) cells did
not improve Ad37 binding (Arnberg *et al.* (2000) *J. Virol.* 74:42-48), implying
that Ad37 does not use CAR as a primary receptor. In order to verify this on
human conjunctival cells, A549 and Chang C cells were pretreated with RmcB
(Hsu *et al.* (1988) *J. Virol.* 62:1647-1652), a function-blocking monoclonal
10 antibody against CAR. The RmcB antibody inhibited infection of A549 cells by
Ad5.GFP. Δ F/5F, but it had little effect on infection of Chang C cells by
Ad5.GFP. Δ F/37F. This indicates that CAR is not the primary receptor for Ad37
on Chang C conjunctival cells.

Ad37 binding to conjunctival cells requires divalent metal cations. It has
15 been proposed (Roelvink *et al.* (1998) *J. Virol.* 72:7909-7915) that a combination
of fiber binding to CAR and penton base binding to α_v -integrins allows some
adenovirus serotypes to attach to cells. Although α_v -integrin binding to the RGD
motif of the adenovirus penton base is of relatively low affinity (Wickman *et al.*
(1993) *Cell* 2:309-319), it may nonetheless contribute to viral attachment to the
20 cell surface. Ad37 shows a particularly strong affinity for binding to integrin $\alpha_v\beta_5$
(Mathias *et al.* (1998) *J. Virol.* 72:8669-8675), suggesting that integrin $\alpha_v\beta_5$
might be a primary receptor for Ad37. Binding of the RGD motif by α_v -integrins
requires the presence of divalent cations, such as calcium or magnesium (Stuiver
et al. (1996) *J. Cell Physiol.* 168:521-531). In contrast, no divalent cations were
25 required for binding in the CAR-Ad12 knob complex (Bewley *et al.* (1999)
Science 286:1579-1583).

To investigate the potential role of α_v -integrins and divalent metal cations
in Ad37 receptor binding, 125 I-labeled Ad37 binding to Chang C cells was
examined in the absence or presence of EDTA. EDTA inhibited Ad37 binding to
30 conjunctival cells but did not alter Ad5 binding. These findings suggest a
requirement for divalent metals for Ad37 binding.

-93-

The presence of either calcium or magnesium ions helps $\alpha_v\beta_5$ organize in focal contacts (Stuiver *et al.* (1996) *J. Cell Physiol.* 168:521-531), suggesting that calcium and magnesium aid in integrin $\alpha_v\beta_5$ function. To further test the potential role of integrin $\alpha_v\beta_5$ in Ad37 cell attachment, ^{125}I -labeled Ad37 binding 5 to Chang C cells was measured in the presence of varying concentrations of calcium or magnesium chloride. Magnesium ions had little effect on Ad37 binding to Chang C cells. In contrast, calcium ions dramatically enhanced Ad37 binding to Chang C cells. The optimal concentration of calcium chloride for Ad37 binding was 1 mM, while higher concentrations of calcium actually 10 decreased virus binding to cells. The fact that calcium, but not magnesium, promoted Ad37 attachment is not consistent with integrin $\alpha_v\beta_5$ as the primary receptor for viral attachment to the cells since either metal will support ligand binding to integrin $\alpha_v\beta_5$. Moreover, A549 cells express abundant α_v -integrins (Mathias *et al.* (1998) *J. Virol.* 72:8669-8675) but were unable to support 15 efficient binding of Ad37.

Wild-type Ad37 particles bind to three conjunctival membrane proteins. Recent studies reported that protease treatment of CHO cells abolished Ad37 binding (Arnberg *et al.* (2000) *J. Virol.* 74:42-48), implying that Ad37 bound to a protein receptor on CHO cells. Scatchard analysis of Ad37 binding to Chang C 20 cells showed that each cell expresses approximately 24,000 fiber binding sites (Huang *et al.* (1999) *J. Virol.* 73:2798-2802). To determine if the Ad37 binding site on human conjunctival cells is also a protein, Chang C cells were treated with different proteases prior to measuring binding of ^{125}I -labeled Ad37. Digestion of surface proteins by all four proteases inhibited Ad37 binding to 25 Chang C cells by greater than 50%. This finding showed that Ad37 also binds to a protein receptor on Chang C cells.

Virus overlay protein blot assays (VOPBAs) were used to identify candidate viral protein receptors. This Western blot technique uses intact viral particles in place of antibodies to probe viral-receptors interactions. VOPBA was 30 used herein to identify Chang C membrane proteins that bind to Ad37. In the absence of Ad37 particles, no protein bands were observed, while addition of virus in the absence of calcium revealed binding to a single 45 kDa protein. In

-94-

the presence of 1 mM calcium chloride, Ad37 reacted with three proteins with approximate molecular weights of 45, 50 and 60 kDa. The same three proteins were detected using a recombinant Ad37 fiber knob alone, indicating that Ad37-receptor interactions are fiber mediated and do not involve interactions of other capsid proteins such as the penton base. The size of the calcium-independent protein (45 kDa) is very similar to the known molecular weight of CAR. A direct comparison of the Ad37 VOPBA and a CAR Western blot showed that the 45 kDa receptor co-migrates with CAR on SDS-PAGE. Moreover, two other members of subgroup D adenoviruses, Ad9 and AD15, have been shown to bind to CAR (Roelvink *et al.* (1998) *J. Virol.* 72:7909-7915).

Since CAR does not appear to mediate Ad37 binding on intact Chang C cells, the possibility that the 50 or 60 kDa protein serves this function was tested by examining an adenovirus serotype that does not bind to Chang C cells. Ad19p, a closely related subgroup D adenovirus, binds poorly to Chang C cells (Huang *et al.* (1999) *J. Virol.* 73:2798-2802) and Ad19p recognition of the Ad37 receptor is therefore unlikely. Ad19p particles bound to the 45 and 60 kDa receptors in the VOPBA, but did not bind to the 50 kDa receptor. Moreover, the 50 kDa receptor is expressed on Chang C cells, but not A549 cells, which only support low levels of Ad37 binding and infection. Taken together, these data indicate that the 50 kDa protein is a primary candidate receptor for Ad37 on human conjunctival cells.

Discussion

The identification of the CAR protein as a major adenovirus receptor does not explain why certain subgroup D members, such as Ad37, preferentially infect ocular cells. A 50 kDa human conjunctival cell membrane protein is identified herein as a primary candidate for the receptor for Ad37. This 50 kDa protein is not present on A549 lung epithelial cells. Ad37 binding to this receptor is calcium-dependent, which is consistent with Ad37 binding and infection experiments. Ad37 also bound to a 60 kDa protein that is present on human conjunctival and lung epithelial cells. It does not, however, appear to be serotype specific. The molecular weights of MHC class I heavy chain, which has been proposed as a receptor for Ad5, and $\alpha_v\beta_3$ and $\alpha_v\beta_5$ integrins, receptors for

-95-

the penton base, are distinct from the 50 or to kDa receptor characterized in this study.

- The studies of Ad37-receptor interaction using VOPBAs are consistent with previous studies showing that subgroup D adenoviruses can bind to the 5 extracellular domain of CAR (Roelvink *et al.* (1998) *J. Virol.* 72:7909-7915). Biochemical and structural studies on knob-CAR interactions indicate that the CAR binding site is located on the AB-loop of the fiber knob. Alignment of the fiber sequences of Ad37 and other adenoviruses reveals that the AB-loop of Ad37 is similar to those of Ad12 and Ad5. Moreover, a phylogenetic tree of 10 adenovirus knobs (Roelvink *et al.* (1998) *J. Virol.* 72:7909-7915) shows that fiber proteins of subgroup D are similar to those of subgroup C and E, which use CAR as their primary receptor. Ad37 does not, however, appear to effectively use CAR as a primary receptor, as demonstrated by virus binding and infection studies on Chang C conjunctival cells and A549 lung epithelial cells.
- 15 It has been reported that Ad37 uses sialic acid as a receptor on chinese hamster ovary (CHO) cells and human lung carcinoma (A549) cells (Arnberg *et al.* ((2000) *J. Virol.* 74:42-48). Human conjunctival cells were not studied. Human corneal epithelial (HCE) cells were the only ocular cell line studied and Ad37 binds relatively poorly to these cells, compared to binding on A549 cells 20 (Arnberg *et al.* ((2000) *J. Virol.* 74:42-48). In addition, 8.4×10^7 wheat germ agglutinin molecules per cell were required to significantly inhibit Ad37 binding to sialic acid on sialic acid positive CHO cells (Arnberg *et al.* (2000) *J. Virol.* 74:42-48), three orders of magnitude higher than the number of Ad37 receptors on Chang C conjunctival cells (Huang *et al.* (1999) *J. Virol.* 73:2798-2802).
- 25 Clearly, sialic acid is not the only factor responsible for Ad37 binding to the cell surface and its influence on Ad37 tropism is unclear.

The results herein show that Ad37 selects a 50 kDa cellular receptor for binding to conjunctival cells, but it is possible that sialic acid also plays a role in this interaction. The characterization and identification of the Ad37 receptor 30 have therapeutic implications and also explain the different tropism of Ad37. The 50 kDa receptor for Ad37 may also be the receptor for other subgroup D adenoviruses that cause severe cases of EKC, Ad19a and Ad8. Ad19p is a

-96-

nonpathogenic variant of Ad19 (Arnberg *et al.* (1998) *Virology* 227:239-244) while Ad19A, along with Ad8 and Ad37, are major causes of EKC. Ad19a and Ad37 have identical fiber proteins (Arnberg *et al.* (1998) *Virology* 227:239-244) and have similar tropism in vivo. Ad8, Ad19a, and Ad37 agglutinate dog and
5 guinea pig erythrocytes more effectively than four other serotypes that are associated with less severe forms of conjunctivitis (Arnberg *et al.* (1998) *Virology* 227:239-244), implying that the receptors of Ad18, Ad19A, and Ad37 have similar characteristics. Hence, this 50 kDa receptor is an attractive drug target against EKC caused by adenoviruses to provide therapeutic intervention of
10 ocular diseases associated with these viruses.

EXAMPLE 10

Targeting of the Ad5 vector to photoreceptor cells

The fiber-deleted adenovirus vector Ad5.GFP.ΔF was propagated in 705 cells, which express a modified Ad37 fiber protein. Viral particles
15 (Ad5.GFP.Δf/37F) were harvested, CsCl-purified and dialized into 0.9% NaCl, 10 mM Tris, pH 8.1, and 10% glycerol. Two to three μ l of the resulting solution, containing approximately 1×10^9 particles/ μ l was injected into the vitreous chamber of a mouse eye. Seven days post-injection, eyes were harvested, fixed with paraformaldehyde and cryo-sectioned. Sections were stained with an anti-
20 rhodopsin antibody to identify photoreceptor cells and with DAPI to show all cell nuclei. The resulting sections showed red anti-rhodopsin staining in the photoreceptors, blue DAPI-stained nuclei, and green GFP staining in any transduced cells. The results revealed substantially exclusive transduction of photoreceptors. Co-localization of rhodopsin staining and GFP expression
25 indicated selective transduction of photoreceptor cells.

As a control, contralateral eyes were injected with a stock of the fiber-deleted vector AD5.βgal.ΔF grown in the same Ad37 fiber-expressing cells. Since this virus (Ad5.βgal.ΔF/37F) produces βgal rather than GFP, the green staining is absent from the photoreceptors.

30 Additional experiments using the AD37 fiber for targeting to the photoreceptor cells have been performed. Subretinal and intravitreal injection have been used in mouse models and the results demonstrate targeting to the

-97-

photoreceptors. As with intravitreally injected eyes, the major cell type infected via subretinal administration was the photoreceptor.

As noted, Ad5.GFP.ΔF /37F infected Chang C cells efficiently, but A549 cells poorly. Ad37 fiber protein confers preferential infection on human
5 conjunctival cells, but not CAR-expressing human lung epithelial cells. Binding to conjunctival cells requires divalent cations.

Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited only by the scope of the appended claims.

-98-

WHAT IS CLAIMED IS:

1. An isolated nucleic acid molecule, comprising:
adenovirus inverted terminal repeat sequences; an adenovirus packaging signal operatively linked thereto; and a photoreceptor-specific promoter.
- 5 2. The isolated nucleic acid molecule of claim 1, further comprising a nucleic acid encoding a therapeutic product operatively linked to the promoter.
3. The isolated nucleic acid molecule of claim 1, wherein the promoter is a rhodopsin promoter.
4. The nucleic acid molecule of claim 1, wherein the adenovirus
- 10 genome does not encode a functional fiber protein such that packaging the nucleic acid requires complementation in a packaging cell.
5. A recombinant adenovirus vector, comprising the nucleic acid molecule of any of claims 1-4 packaged therein.
- 15 6. A recombinant adenovirus vector of claim 5, wherein inverted terminal repeat sequences (ITR) and a packaging signal are derived from adenovirus type 2 or adenovirus type 5.
7. A recombinant adenovirus vector of claim 5, wherein the virus comprises a fiber protein.
8. A recombinant adenovirus vector of claim 7, wherein the fiber
- 20 protein selectively binds to photoreceptors in the eye of a mammal.
9. A recombinant adenovirus vector of claim 7, wherein the fiber is a chimera composed of N-terminal sequences from adenovirus type 2 or type 5, and a sufficient portion of an adenovirus serotype D fiber for selective binding to photoreceptors in the eye of a mammal..
- 25 10. A method for targeted delivery of a gene product to the eye of a mammal, comprising:
administering a recombinant adenovirus virus that comprises heterologous DNA encoding the gene product or resulting in expression of the gene product, wherein the recombinant virus comprises a fiber protein that specifically or
- 30 selectively binds to receptors that are expressed on cells in the eye.

-99-

11. The method of claim 10, wherein the cells are photoreceptors.
12. The method of claim 10, wherein administration is effected by intraocular delivery.
13. The method of claim 10, wherein administration is effected by a
5 method selected from subretinal injection, intravenous administration, periorbital administration, and intravitreal administration.
14. The method of claim 10, wherein the recombinant virus comprises a fiber protein from an adenovirus type D serotype.
15. The method of any of claims 10-14, wherein the fiber protein is an
10 adenovirus type 37.
16. The method of any of claims 10-14, wherein the fiber is a chimeric protein containing a sufficient portion of the N-terminus of an adenovirus type 2 or type 5 fiber protein for interaction with an adenovirus type 2 or type 5 penton, and a sufficient portion of an adenovirus serotype D knob portion of the
15 fiber for selective binding to photoreceptors in the eye of a mammal.
17. The method of any of claims 10-16, wherein the recombinant virus is an adenovirus type D serotype.
18. The method of any of claims 10-17, wherein the encapsulated nucleic acid comprises a photoreceptor-specific promoter operatively linked to a
20 nucleic acid comprising the therapeutic product.
19. The method of claim 18, wherein the therapeutic product is selected from the group consisting of a trophic factor, an anti-apoptotic factor, a gene encoding a rhodopsin protein, a wild-type Stargardt disease gene (STDG1), an anti-cancer agent and a protein that regulates expression of a photoreceptor-specific gene product.
25
20. The method of any of claims 10-19, wherein delivery is effected for treatment of an ocular disease.
21. The method of claim 20, wherein the disorder is a retinal degenerative disease.
- 30 22. The method of claim 20, wherein the disease is retinitis pigmentosa, Stargardt's disease, diabetic retinopathies, retinal vascularization, or retinoblastoma.

-100-

23. The method of any of claims 10-22, wherein the mammal is a human.
24. The method of any of claims 10-22, wherein the viral nucleic acid comprises:
 - 5 an adenovirus inverted terminal repeat (ITR) sequences; and an adenovirus packaging signal operatively linked thereto.
 25. The method of claim 24, wherein the ITRs and packaging signal are derived from an adenovirus serotype B or C.
 26. The method of claim 24, wherein the ITRs and packaging signal 10 are derived from an adenovirus type 2 or 5.
 27. The method of claim 24, wherein the viral nucleic acid further comprises a photoreceptor-specific promoter.
 28. A method of targeted gene therapy, comprising: administering a recombinant viral vector that comprises an adenovirus 15 type 37 fiber protein or portion thereof, whereby the vector selectively transduces photoreceptors and delivers a gene product encoded by the recombinant viral vector; wherein the portion is sufficient for selective binding to photoreceptors.
 29. The method of claim 28, wherein the vector is administered into 20 the eye.
 30. The method of claim 28, wherein the vector is administered to the vitreous cavity of the eye.
 31. The method of claim 28, wherein administration is effected by subretinal injection, intravenous administration, periorbital administration or 25 intravitreal administration.
 32. The method of any of claims 10-31, wherein at least about 10^7 plaque forming units of virus are administered.
 33. The method of any of claims 10-31, wherein about 1 plaque forming unit to about 10^{14} plaque forming units of virus are administered.

SEQUENCE LISTING

<110> VON SEGGERN, DANIEL
NEMEROW, GLEN R.
FRIEDLANDER, MARTIN

<120> VECTORS FOR OCULAR TRANSDUCTION AND USE THEREFOR FOR GENETIC THERAPY

<130> 756.1PCT/NOV0205P

<140>

<141> 2001-05-01

<150> 09/562,934

<151> 2000-05-01

<160> 51

<170> PatentIn Ver. 2.1

<210> 1

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 1

cgttacacag aattcaggag acacaactcc

30

<210> 2

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 2

gcctggatcc ggaaatggc gtaacgtggg aaaac

35

<210> 3

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: linker

<400> 3

cgcggatccg cg

12

<210> 4

<211> 8710

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plasmid

<400> 4

atattttgtt	aaaattcgcg	ttaaattttt	gttaaatcag	60
ccgaaatcgg	caaaatccct	tataaatcaa	aagaatagac	120
ttccagtttgc	gaacaagagt	ccactattaa	agaacgtgga	180
aaaccgtcta	tcagggcgat	ggcccactac	gtgaaccatc	240
ggtcgagggtg	ccgtaaaagca	ctaaatcgga	accctaaaagg	300
gacggggaaa	gcccggcaac	gtggcgagaa	aggaagggaa	360
ctagggcgct	ggcaagtgt	gggtcacgc	tgcgcttaac	420
atgcggcgt	acaggcgcg	tcccattcgc	cattcaggct	480
gatcggtgcc	ggccttccg	ctattacgc	agctggcgaa	540
gattaagttg	ggtaacgcca	gggtttccc	agtcacgacg	600
aattgtataa	cgactca	tagggcgaat	tgggtaccgg	660
gtatcgataa	gcttgatatc	gaattcagga	gacacaactc	720
ttttcatggg	actggtctgg	ccacaactac	attaatgaaa	780
acttttcat	acattgccc	agaataaaaga	atcggttgcg	840
ttttcaatgg	cagaaaaattt	caagtcat	ttcattcagt	900
tagttatatac	agatcaccgt	accttaatca	aactcacaga	960
acctccctcc	caacacacag	agtacacagt	cctttctccc	1020
catatcatgg	gtaacagaca	tattcttagg	tgttatattc	1080
caaacgctca	tcagtgatat	taataaaactc	cccccggcagc	1140
gtccagctgc	tgagccacag	gctgctgtcc	aacttgcgg	1200
agaagtccac	gcttacatgg	gggttagagtc	ataatcgtgc	1260
ctgcagcagc	gcccgaataa	actgctgccg	ccgcccgtcc	1320
ggcagtggtc	tcctcagcga	tgatttcgcac	ccccccgcage	1380
ggcacagcag	cgccacccgt	tctacttaa	atcagcacag	1440
aatattgttc	aaaatcccac	agtgcacaggc	gctgtatcca	1500
agaacccacg	tggccatcat	accacaagcg	caggttagatt	1560
cacgctggac	ataaaacatta	cctcttttgg	catgttgtaa	1620
tataaacctc	tgattaaaca	ttgcgcacatc	caccaccatc	1680
ctgcccgcgg	gctatatact	gcagggaaac	gggactggaa	1740
ggactctgtaa	ccatggatca	tcatgtctgt	catgatatac	1800
cacgtgcata	cacttctctc	ggattacaag	ctccctccgc	1860
aaacaacccat	tcctgaatca	cgftaaatcc	cacactcgac	1920
cacgttgc	attgtcaaaag	tgttacattc	gggcagcagc	1980
agcgcgggtt	tctgtctcaa	aaggaggtag	acgatcccta	2040
caaccggat	cgtgtggtc	gtagtgtcat	gccaatggaa	2100
tcctgaagca	aaaccagggt	cgccgcgtac	aaacagatct	2160
tagatcgctc	tgtgttagtag	ttgttagtata	tccacttct	2220
ttctatgtaa	actccttcat	gcccgcgtgc	2280	
ccatggatca	tcatgtctgt	atcggtctgc	2340	
ccacccacgc	gaaacccatc	tttatttcca	2400	
caaccatgcc	caaataattc	ctcccggttgg	2460	
cttattaaatgc	aacgcgcctc	gtaaaaatct	2520	
taatggcatt	tgttagatgt	tgcacaatgg	2580	
acttccttcat	ttgttagtata	ccctcagggt	2640	
ccatgttgc	gaaatataatc	tcatctcgcc	2700	
aaacccatgc	ttccggccatt	gtaaaaatct	2760	
catgatttgc	aaaattccagg	ccgcgatcccg	2820	
aaaaggatgt	ttttttttttt	ccagcggccgc	2880	
ttttttttttt	ttttttttttt	gcataactcg	2940	
ttttttttttt	ttttttttttt	agatggcgcc	3000	
ttttttttttt	ttttttttttt	gatataaaat	3060	
ttttttttttt	ttttttttttt	aaaagaaaac	3120	
ttttttttttt	ttttttttttt	gacaccat	3180	
ttttttttttt	ttttttttttt	aaaaaaacat	3240	
ttttttttttt	ttttttttttt	taagacggac	3300	
ttttttttttt	ttttttttttt	gcaccacccg	3360	
ttttttttttt	ttttttttttt	cgcaggcgta	3420	
ttttttttttt	ttttttttttt	aaaaacacat	3480	
ttttttttttt	ttttttttttt	agaacaacat	3540	

acacgcgttc	acagcggcag	cctaacagtc	agccttacca	gtaaaaaaaga	aaacctatta	3600
aaaaaacacc	actcgacacg	gcaccagctc	aatcagtac	agtgtaaaaa	aggccaagt	3660
gcagagcgg	tatataattt	actaaaaaat	gacgtaacgg	ttaaagtcca	caaaaacac	3720
ccagaaaacc	gcacgcaac	ctacgcccag	aaacgaaagc	caaaaaaccc	acaacttcct	3780
caaatacgta	cttccgttt	cccacgttac	gtaacttccc	ggatccgccc	cattcacagt	3840
tctccgcaag	aattgatttg	ctccaattct	tggagtgggt	aatccgttag	cgaggtgcgg	3900
ccggcttcca	ttcaggctcg	ggtgccccgg	ctccatgcac	cgcgacgcaa	cgccccggagg	3960
cagacaagg	ataggggcgc	gcctacaatc	catgccaacc	cgttccatgt	gtccggcggag	4020
gcccataaa	tcggcgtgac	gatcagcgg	ccagtatcg	aagttaggt	gtaagagggc	4080
gchgagcgatc	cttgaagctg	tcctgtatgg	tgcgtatcta	cctgcctgga	cagcatggcc	4140
tgcaacgcgg	gcattcccgat	gcccgggaa	gcgagaagaa	tcataatggg	gaaggccatc	4200
caggctcgcg	tcgcaacgc	cagaagacg	tagcccagcg	cgtccggccgc	catgccctgc	4260
ttcatccccg	tggcccggt	ctcgcttgc	ctggcggtgt	ccccggaaaga	aatatatttgc	4320
catgtctta	gttctatgt	gacacaaaacc	ccgcccagcg	tcttgtcatt	ggcgaatttcg	4380
aacacgcaga	tgcagtccgg	gcccggcgg	cccaggtcca	cttcgcata	taaggtgacg	4440
cgtgtggct	cgaacacgg	gcccggctgc	agcggacccgc	ttaaagcggt	caacagcggt	4500
cccgagatcc	cgggcaatga	gatataaaaa	agcgttgcact	caccggacg	tctgtcgaga	4560
agttctgtat	cgaaaaagtc	gacacgtgc	ccggacgtgt	gcagctctcg	gaggggcgaag	4620
aatctctgtgc	tttcagcttc	gatgtaggag	ggcgtggata	tgtcctgccc	gtaaatagct	4680
gcccgcgtgg	tttctacaaa	gatcggtatg	tttatcgca	ctttgcata	gccgcgctcc	4740
cgattccgg	agtgcgttgc	attgggaat	tcagcgagag	cctgacctat	tgcatctccc	4800
gcccgtgcaca	gggtgtcacf	ttgcaagacc	tgccctgaaac	cgaactgccc	gtgttctgc	4860
agccggcgtcg	ggaggccatg	gatgcgtatcg	ctggggccga	tcttagccag	acgagcgggt	4920
tcggccattt	cggaccgca	ggaatcggtc	aatacactac	atggcgtat	ttcatatgcg	4980
cgattgtga	tccccatgt	tatcaactgc	aaatctgtat	ggacacacc	gtcagtgcgt	5040
ccgtcgccga	ggctctcgat	gagctgtatc	tttggccga	ggactcccc	aaagtccggc	5100
acctctgtca	cgccgatttc	ggctccaaca	atgtctcgat	ggacaatggc	cgcataaacag	5160
cggtcattga	ctggagcgg	gcatgttgc	gggattccca	atacgggtc	gccaacatct	5220
tcttctggag	gcccgtgtt	gctgttatgg	agcagcagac	gcgtacttc	gagcggaggg	5280
atccggagct	tgcaggatcg	cccgccgtcc	gggcttatat	gctccgcatt	ggtcttgacc	5340
aactctatca	gagcttggtt	gacggcaatt	tcgatgtatc	agcttggcg	cagggtcgat	5400
gcccggcaat	cgtccgatcc	ggggccggga	ctgtcgggg	tacacaatc	gccccggagaa	5460
gcccggccgt	ctggaccgat	ggctgttag	aagtactcgc	cgatagtgg	aaccggaccc	5520
ccagcactcg	tccggggca	aagaatagg	ggagatgggg	gaggtaact	gaaacacgaa	5580
aggagacaat	accggaaagga	accggcgta	tgacggcaat	aaaagacag	ataaaaacgc	5640
acgggtgttg	ggtcgtttgt	tcataaacgc	gggggttcgt	cccaggctg	gactctgtc	5700
gataccccac	cgagacccca	ttggggccaa	tacgcccccg	tttcttcctt	ttccccaccc	5760
caccccccac	gttcgggtga	aggcccagg	ctcgcagcca	acgtcggggc	ggcaggccct	5820
gccatagcca	ctggcccccgt	gggttaggaa	cggggtcccc	catggggaa	gttttatgtt	5880
tcgtgggggt	tattatttt	ggcttggct	gggggtctgt	ccacactgg	actgagcaga	5940
cagaccatcg	gtttttggat	ggcttggca	tggaccgtat	gtactggcg	gacacgaa	6000
ccggggcgtct	gtggctgca	aaccccccgg	accccaaaaa	accacccgt	ggatattctgg	6060
cgcccagtgc	cgtcgaccgg	tcatggctgc	ccccggacac	ccgccaacac	ccgtctcgac	6120
gcccgtacgg	gcttgcgtc	tccggcattc	cgcttacaga	caagctgtga	ccgtctccgg	6180
gagctgcgt	tgtcagaggt	tttaccggtc	atcacggaaa	cgcgcgaggc	agccggatca	6240
taatcagcca	taccacattt	gtagaggtt	tacttgcattt	aaaaaacctc	cccacctccc	6300
cctgaacctg	aaacataaaa	tgaatgcaat	tgttgtgtt	aacttgttta	ttgcagctt	6360
taatggttac	aaataaaagca	atagcatcac	aaatttcaca	aataaaagcat	ttttttact	6420
gcattctagt	tgtgggttgc	ccaaactcat	caatgtatct	tatcatgtct	ggatccacta	6480
gttcttagago	ggccggccacc	gcccggggc	tccaggtttt	gttcccttta	gtgaggggtt	6540
atttcgagct	tggcgtaatc	atggctatgc	ctgttccctg	tgtggaaattt	ttatccgcct	6600
acaattccac	acaacatacg	agccggaaacg	ataaaagtgt	aagctgggg	tgcctaatagt	6660
gtgagctaac	tcacattaat	tgcgttgcgc	tcactgccc	ctttccagtc	ggggaaacctg	6720
tcgtgccagc	tgcattaaatg	aatcgccaa	cgccggggga	gagggggtt	gcgttattggg	6780
cgctttccg	cttcctcgct	cactgactcg	ctgcgtctgg	tcgttccggct	ggggcggagcg	6840
gtatcagctc	actcaaaggc	ggtataacgg	ttatccacag	aatcagggg	taacgcagg	6900
aagaacatgt	gagaaaaagg	ccagaaaaag	gccaggaacc	gtaaaaaggc	cgcggtgcgt	6960
gcgttttcc	ataggctccg	ccccctgtac	gagcatcaca	aaaatcgacg	ctcaagtct	7020
aggtggcggaa	accggacagg	actataaaaga	taccagggt	ttccccctgg	aagcttccttc	7080
gtgcgctctc	ctgttccgac	ctggccgctt	accggatacc	tgtccgcctt	ttcccttcgtt	7140
ggaagcgtgg	cgctttctca	tagtcacgc	tgttaggtatc	tcagggttgcgt	gtaggtgcgtt	7200
cgctccaagg	ttggctgtgt	qacacgaaacc	cccgttca	ccgaccgctg	ccgccttatcc	7260

ggtaactata	gtcttgagtc	caaccggta	agacacgact	tatcgccact	ggcagcagcc	7320
actggtaaca	ggatttagcag	agcgaggat	gtaggcggtg	ctacagagt	cttgaagtgg	7380
tggcctaact	acggctacac	tagaaggaca	gtattttga	tctgcgctct	gctgaagcca	7440
gttaccttcg	aaaaaaagagt	tggtagctt	tgatccggca	aacaaaaccac	cgtctggtagc	7500
gggtgggttt	ttgtttgcaa	gcagcagatt	acgcgcagaa	aaaaaggatc	tcaagaagat	7560
cctttgatct	ttttcacggg	gtctgacgct	cagtggaaacg	aaaactcacc	ttaagggatt	7620
tttgtcatga	gatttacaaa	aaggatcttc	acctagatcc	tttttaatta	aaaatagaatg	7680
tttaaatcaa	tctaaatgtt	atatgagtt	acttggctct	acagtttacca	atgtttaatc	7740
agtggggcac	ctatctcage	gatctgtcta	tttcgttcat	ccatagttgc	ctgactcccc	7800
gtctgttaga	taactacgat	acggggagggc	ttaccatctg	gccccagtgc	tgcaatgata	7860
ccgcgagacc	cacgctcacc	ggctccagat	ttatcagcaa	taaaccagcc	agccggaagg	7920
gccgagcgc	gaagtggtcc	tgcaacttta	tccgcctcca	tccagtctat	taattgttgc	7980
cgggaagcta	gagtaatgt	ttccgcagg	aatagttgc	gcaacgttgc	tgccatgtct	8040
acaggcateg	ttgtgtcagc	ctegtcgtt	ggtatggct	catttcgcctc	cggttcccaa	8100
cgtatcaaggc	gagtttacat	atccccatct	ttgtgcaaaa	aagcgggttag	ctcccttcgg	8160
cctccatcg	ttgttcagaag	taagttggcc	gcagtttat	cactcatgtt	tatggcagca	8220
ctgcataatt	ctcttactgt	catgccatcc	gtaagatgt	tttctgtgac	tggtagtac	8280
tcaaccaagt	catttcgaga	atagtgtat	cgccgaccga	gttgccttgc	cccggcgatc	8340
atacgggata	ataccggccc	acatagcaga	actttaaaag	tgctcatcat	tggaaaacgt	8400
tcttcggggc	aaaaactctc	aaggatctt	ccgtctttga	gatccagttc	gatgttaaccc	8460
actctgtgcac	ccaaactgtc	ttcagcatct	tttactttca	ccagcggttc	tgggtgagca	8520
aaaacaggaa	ggcaaaaatgc	cgccaaaaaa	ggaataagg	cgacacggaa	atgttgaata	8580
ctcatactt	tccttttca	atattttatg	agcatttatac	agggttattt	tctcatgagc	8640
ggatacatat	ttgaatgtat	tttagaaaaat	aaacaaatag	gggttcccg	cacattttccc	8700
cgaaaatgtc						8710

<210> 5

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 5

atgggatcca agatgaagcg cgcaagacgg

30

<210> 6

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 6

cataaacgcgg ccgcttcttt attcttggc

30

<210> 7

<211> 7148

<212> DNA

<213> Artificial Sequence

220

<223> Description of Artificial Sequence: plasmid

第2章-二十九

gacggatcgg gagatctccc gatcccttat ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtt ctgctccctg cttgtgtgtt ggagggtcgct gagtaatgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttggaccga caattgcatg aagaatctgc 180

ttagggtag gcgtttgcg ctgctcgc atgtacggc cagatatacg cgttgacatt 240
 gattattgac tagtattaa tagtaatcaa ttacgggtc attagtcat agccatata 300
 tggagttccg cgttacataa cttacggta atggccgcg tggctgaccg cccaaacgacc 360
 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttc 420
 attgacgtca atgggtggac tatttacgt aaactgccc cttggcagta catcaagtgt 480
 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
 atgcccagta catgaccttgc tggacttgc ctacttgcc gtacatctac gtattagtca 600
 tcgttattac catgtgtatc cggttttgc agtacatcaa tggcggtgaa tagcggtttg 660
 actcaacgggg atttccaagt ctccccccca ttgacgtcaa tggagggtt tttggcacc 720
 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg 780
 gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctaact agagaaccca 840
 ctgcttactg gtttatcgaa attaatacga ctcactatag ggagacccaa gcttggtacc 900
 gagctcgat ccaagatgaa ggcgcgaaga ccgtctgaag atacatcaa ccccggtat 960
 ccatatgaca cggaaaaccgg tccttcaact gtgcctttc ttactctcc cttgttatcc 1020
 cccaaatgggt ttcagagag tccccctggg gtactcttgc tgccctatc cgaacctcta 1080
 gttacatcca atggcatgt tgcgtctaa atggcaacg gcctctct ggacgaggcc 1140
 ggcaacctta cctcccaaaa tgaaccact gtgagccac ctctcaaaaa aacaagtca 1200
 aacataaaacc tggaaatattc tgacaccctc acagttacct cagaaggccct aactgtggc 1260
 gcccggcac ctctaattggt cgccggcaac acactcacca tgcaatcaca ggccccgcta 1320
 accgtgcacg actccaaact tagcattgcc accaaggac ccctcacagt gtcagaagg 1380
 aagctagccc tgcaaacatc aggccccctc accaccaccc atagcgtac ccttactatc 1440
 actgcctcac cccctctaaact tactggcact gtagcttgc gattgactt gaaagagccc 1500
 atttatacacc aaaaatggaaa actaggacta aagtacgggg ctcttttgc tgtaacagac 1560
 gacctaaaca ctttgaccgt agcaactggt ccagggtgtga ctattaataa tacttcttg 1620
 caaactaaag ttactggagc cttgggtttt gattcacaag gcaatatgca acttaatgt 1680
 gcaggaggac taaggattga ttctcaaaaac agacgcctt tacttgatgt tagttatccg 1740
 tttgatgctc aaaaccaact aaatctaaga cttaggacagg gccctttt tataaactca 1800
 gcccacaact tggatattaa ctacaacaaa ggctttact tggatcagc ttcaaacaat 1860
 tccaaaaaagc ttgaggttaa cctaagact gccaagggggt ttagtggta cgctacagcc 1920
 ataggcattt atgcaggaga tgggcttgc ttgggttcaat ctaatgcacc aaacacaaaat 1980
 cccctcaaaa aaaaatggg ccatggcttta gaatttgatt caaacaaggc tatggttct 2040
 aaacttaggaa ctggccttag ttttgacaggc acagggtgca ttacagtagg aaacaaaaat 2100
 aatgataagc taactttgtt gaccacacca gtcctatctc ctaactgttag actaaatgca 2160
 gagaaagatg ctaaactcac tttggtcttta acaaaatgtg gcagtcaaat acttgctaca 2220
 gtttcagttt tggctttaa aggcatggt gtcctaatat ctggAACAGT tcaaaatgtct 2280
 catcttataa taagatttgca gaaaaatggc gtgctactaa acaattcctt cctggacc 2340
 gaatattggacttttagaaa tggagatctt actgaaggca cagctatac aaacgctgtt 2400
 ggatttatgc cttaacatcact agcttacca aaatctcacc gtaaaactgc caaaagtaac 2460
 attgtcagtc aagttaactt aaacggagac aaaactaaac ctgtacact aaccattaca 2520
 ctaaacggta cacaggaaac aggagacaca actccaatg cataactctat gtcatcttca 2580
 tgggactggc ctggccacaa ctacattaat gaaatatttg ccacatctc ttacactttt 2640
 tcatacatttgc ccaagaata aagaagggc cgctcgagca tgcacatctaga gggccctatt 2700
 ctatagtgtc accttaatgc tagactcgc tgcacatctc cgactgtgccc ttcttagttgc 2760
 cagccatctg ttgtttgcctt cttccctgtt ccctcccttgc ccctggagg tgccactccc 2820
 actgtccctt ctaataaaaaa tgagggattt gcatcgaccat gtctgatgt gtgtcattct 2880
 attctgggggg gtgggggtgggg gcaggacaggc aaaaaaaaaa atggggaggaa caatagcagg 2940
 catgtgggggg atgcgggtgggg ctctatggct tctgaggccg aaagaaccag ctggggctct 3000
 agggggatc cccacgcgcctt ctgtageggc gcatatggcc cggccgggtgt ggtggatccg 3060
 cgcagcgtga cccgtacact tgccagccgc cttagccccc ctcccttcgc ttcttcctt 3120
 tccttcctcg ccacgttgcg cggcttccc cgtcaagctc taaatcgaaa catccctta 3180
 gggttccgat ttatgtctt acggcaccc gacccaaaaa aacttgatta gggtgatgg 3240
 tcacgtatgttgc ggcacatcgcc ctgatagacg gtttttgcctt cttgcacgtt ggagtccacg 3300
 ttctttaataa gtggacttctt gttccaaactt ggaacaacac tcaaccctat ctccgtctat 3360
 tcttttggatttataaggat tttggggattt cggccctattt ggtttttttt tgagctgtt 3420
 taacaaaaat ttaacgcgaa ttaattctgt ggaatgtgtg tcgatgggg tggaaaagt 3480
 ccccaaggctc cccaggcagg cagaaggatgtt caaagcatgc atctcaatta gtcacgcaacc 3540
 aggtgtggaa agtccccagg ctccccagca ggcagaaggta tgcaaaagcat gcatctcaat 3600
 tagtcagcaa ccatagttccccc gcccctaact ccggccatcc cggccctaaac tccggccagtt 3660
 tccggccattt ctccggccca tggctgacta atttttttttta ttatgcaga ggcggaggcc 3720
 gcctctgcctt ctgagcttattt ccagaaggatgtt gggaggat tttttggagg cctaggctt 3780
 tgcaaaaaagc tcccgggagc ttgttatatcc attttcgat ctgatcaaga gacaggatga 3840
 ggatcgatccatc gcatgattga acaagatgga ttgcacgcgc gttctccggc cgcttgggtg 3900

gagaggctat	tcggctatga	ctgggcacaa	cagacaatcg	gtgtctgtc	tgccgcgtg	3960
ttccggctgt	cagcgcaggg	gcccgggtt	cttttgtca	agaccgacct	gtccggtgcc	4020
ctgaatgaac	tgcaggacga	ggcagcgcgg	ctatcggtc	tgcccacgac	ggcggttcct	4080
tgcgcagctg	tgctcgacgt	tgtcaactgaa	gcgggaaggaa	actggctgtc	attggggcaa	4140
gtgccggggc	aggatctcct	gtcatctcac	cttgcctctg	ccgagaaaagt	atccatcatg	4200
gctgatgcaa	tgcggcggt	gcatacgctt	gatccggcta	cttgcggccat	cgaccaccaa	4260
gcgaaacatc	gcatcgacg	acgcacgt	cgatggaa	ccgggttctgt	cgatcaggat	4320
gatctggacg	aagagcatca	ggggctcg	cgacggaa	tgttcgcag	gctcaaggcg	4380
cgcatgcccc	acggcgagga	tctcgctgt	acccatggcg	atgcctgtct	gccgaatata	4440
atggtgaaaa	atggccgtt	ttctggattc	atcgactgt	gcccggctggg	tgtggccggac	4500
cgctatcagg	acatagcggt	ggctaccctg	gatattgt	aagagcttgg	cggcgaatgg	4560
gctgaccgct	tcctcggtct	ttacggatc	gcccgtcccc	attcgcagcg	catgccttc	4620
tatcgccctc	ttgacgagg	cttctgaggg	ggactctggg	gttcgaaat	accgaccaag	4680
cgacgccccaa	cctggccatca	cgagatttcg	atccacccgc	cgcccttctat	gaaaggttgg	4740
gcttcggaaat	cgtttccgg	gacggcggt	ggatgtatct	ccagcgcggg	gatctcatgc	4800
tggagtttt	cgccocacccc	aacttggta	tttcagctta	taatggttac	aaataaagca	4860
atagcatcac	aaatttcaca	aataaaagcat	ttttttcaact	gcattcttagt	tgtggtttgt	4920
ccaaactcat	caatgtatct	tatcatgtct	gtataccgtc	gacccctctag	tagagcttgg	4980
cgtaatcatg	gtcatagctg	tttctgtgt	gaaattgtt	tccgctcaca	attccacaca	5040
acatacggac	cggaaagcata	aagtgtaaag	cctgggggtgc	ctaatgagtg	agctaactca	5100
cattaatgtc	gttgcgtctca	ctggggcgctt	tccatcgccgg	aaacctgtcg	tgccagctgc	5160
attaatgtat	cggccaacgc	gccccggagag	gcccgttgcg	tattggcgc	tcttcggctt	5220
cctcgctcac	tgactcgctg	cgctcggtc	tttcgggtgc	gcccgggttgc	tcagctcaact	5280
caaaggcggt	aatacggtt	tccacagaat	cagggatata	cgccggaaag	aacatgtgag	5340
caaaaaggcca	gcaaaaggcc	aggaaccgtt	aaaaggccgc	gttgcgtggcg	tttttcata	5400
ggctccggcc	ccctgacgag	catcacaaaa	atcgacgttc	aagtcaaggg	tgccgaaacc	5460
cgacaggact	ataaagatac	caggcggttc	ccccctggaa	ctccctcggt	cgctctcttg	5520
ttccggccct	gcccgttacc	ggataccctg	ccgccttct	cccttcggga	agcgtggcgc	5580
tttctcaatg	ctcaca	aggtatctca	gttcgggtt	gttcgttcgc	tccaagctgg	5640
gctgtgtcga	cgaaaa	gttccggcc	accgcgtgc	tttatccgg	aactatgtc	5700
ttgagtccaa	cccggtaaga	cacgacttat	cgccactggc	agcagccact	ggttacacca	5760
ttagcagagg	gaggatgtt	ggccgggtca	cagaggctt	gaagtgggtt	cctaactacg	5820
gctacactag	aaggacagta	tttggtatct	gcccgtctgt	gaagccagtt	acccctggaa	5880
aaagagtgg	tagcttta	tccggcaaa	aaaccaccgc	ttgttagcggt	ggttttttt	5940
tttgcaga	gcagattacg	cgcagaaaa	aaggatctca	agaagatctt	ttgatctttt	6000
ctacggggtc	tgacgctcag	tggaaacgg	actcagttt	agggtttttt	gtcatgat	6060
tatcaaaaatg	gatcttcc	tagatctt	taataaaa	atgaagttt	aatcaatct	6120
aaagtatata	tgagtaaact	ttgttgcaca	gttacaaatg	ctaatcagt	gaggcaccta	6180
tctcagcgat	ctgtctat	cgttcatca	tagttgcct	actccccgtc	gtgtagataa	6240
ctacgatacg	ggagggctt	ccatctggcc	ccagtgctgc	aatgataacc	cgagacccac	6300
gctcacccgc	tccagattt	tcagcaataa	accaggcage	cggaaggggcc	gagcgcagaa	6360
gtggccctgc	aacttatcc	gcctccatcc	agtctattaa	ttttgcctgg	gaagctagag	6420
taagttagtt	gccagttat	agtttgcga	acgttgcgt	cattgttaca	ggcgtatgtt	6480
tgtcacgttc	gtcggttgg	atggcttca	tcagtcgg	ttcccaacga	tcaaggcgag	6540
ttatcatgtatc	ccccatgtt	tgcaaaaa	cggttgc	cttcgggtct	cggatgttgc	6600
tcagaagtt	gttggccgca	gttttatcac	tcatgtt	ggcagcactg	cataatttctc	6660
ttactgtcat	gccatccgt	agatgtttt	ctgtgactgg	tgtagtactca	accaagtcat	6720
tctgagaata	gtgtatgcgg	cgaccgagg	gctctgccc	ggcgtcaata	cgggataata	6780
ccgcgcacaca	tagcagaact	ttaaaagtgc	tcatcattgg	aaaacgttct	tcggggcgaa	6840
aactcttcaag	gatcttacgg	ctgttgagat	ccagttcgt	gttacccact	cgtgcaccca	6900
actgatcttc	agcatctttt	actttcacca	gcttgcctgg	gttgcggaaa	acaggaaggc	6960
aaaatgcgcg	aaaaaaaggga	ataaggcgca	cacggaaatg	tttgcataact	atacttcc	7020
tttttcaata	ttattgttgc	atttatcagg	gttattgtt	catgagcgga	tatcatatttgc	7080
aatgttattt	aaaaataaaa	caaataagggg	ttccgcgcac	atttccccga	aaagtgcac	7140
ctgacgtc						7148

<210> 8
<211> 7469
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plasmid

<400> 8

gacgatcgagatctccc gatcccttat ggtcgactct cagtacaatc tgctctgatg 60
 ccgcatacgtaaaggccaggat ctgccccctg cttgtgtgtt ggaggcgct gagtagtgcg 120
 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
 ttagggtagt gcttttgcg ctgcttcgat atgtacgggc cagatatacg cggtgacatt 240
 gattattgac tagttatcaa tagtaatcaa ttacggggtt attagttcat agccatata 300
 tggagttccg cggttacataa cttacggtaa atggccgc tggctgaccg cccaaacgacc 360
 cccggccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
 attgacgtca atgggtggac tatttacggtaaactgccc cttggcagta catcaagtgt 480
 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
 atgcccaggat catgacccat tgggacttcc ctacttgccat gtacatctac gtattagtca 600
 tcgcttacatc ctatgtatg cgggtttggc agtacatcaa tgggcgttgg tagcgggtttg 660
 actcacgggg atttccaaatg ctccacccca ttcacgttca aacggtttgg tagggaggat 720
 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccatttgcg caaatggcg 780
 gttaggcgtgt acgggtggag gtctatataa gcagagctct ctggcttact agagaaccca 840
 ctgcttactg gtttatcgaa attaatacga ctcactatag ggagacccaa gtttggtacc 900
 gagctcgat ctgaattcga gtcgcgtt gggctcgcgg ttgaggacaa acttttcg 960
 gtctttccag tacttttggat tcggaaaccc gtcggcctcc gaacggtaact cccacccgaa 1020
 gggaccttgcg cagatccgca tcgacccggat cggaaaacccct ctcgagaaag gcttcttacc 1080
 agtacacatc gcaaggatgg ctggaccccg tggggggcg cggcgggttgg cggcgggggt 1140
 tgggttccgc ggagggtctg ctgtatgtt aattaaatgtt ggcgggttgg agacggcg 1200
 tgggtcgaggat gagggtgtggc aggcttgaga tccaaatgtt aacgcgcgaaacccctt 1260
 gatacccttca accccctgttca tccatatgac acggaaaaccc gtcctccaac tggctttttt 1320
 cttacttccctt cttttgtatc ccccaatggg tttcaagaga gtcccccctgg ggtactctct 1380
 ttgcgcctat ccgaacccctt agttacccatc aatggcatgc ttgcgcctt aatggcaac 1440
 ggcctctctc tggacggggc cggcaacccctt acctccaaatgtaaccatc tggtagccca 1500
 cctctcaaaa aaaccaatgc aaacataaac ctggaaatccatc ctcacccctt cacagtacc 1560
 tcagaagcccc taactgttgc tggccggcgttcaatgtt ctcgccccaa cacactcacc 1620
 atgcaatcac aggcccccttccatc aaccgtgcac gactccaaatc tttagcattgc caccacca 1680
 cccctcacatc tggcagaagg aaagcttagcc ctgcaacat caggccccctt caccaccc 1740
 gatacgatc cccttactat cactgcctca cccctctaa ctactgcac tggtagctt 1800
 ggcatttgc tggaaagggc catttataca caaaatggaa aacttagact aaagtacggg 1860
 gtcctttgc atgtaacaga cggccatccatc accttgcggat tagcaactgg tccagggtgt 1920
 actattatataa atacttccctt gcaaaatggaa gttactggat ccttgggttt tgattcacaa 1980
 ggcaatgc tggaaatgtt acggaggatc cttaggttggatccatc aatcttccatc 2040
 atacttgc ttagttatccatc gtttgcgttcaatgtt ctttttttttggatccatc 2100
 ggcctctttt ttagttatccatc agccacaaatc ttggatatttactacaacaa aggcctttac 2160
 ttgtttacatc tttcaaaatc ttccaaaaatc ttggatatttactacaacaa aggcctttac 2220
 ttgttttgc tttcaaaatc ttccaaaaatc ttggatatttactacaacaa aggcctttac 2280
 cctaattgcac caaaacacaaa tccctctaaatc acggggatccatc atggggatccatc 2340
 tcaacaaatgc ctatgttcc taaacttagga actggccctt gtttgcgttccatc 2400
 attacatgttgc gaaacaaaaaa taatgtatccatc ttttttttttggatccatc 2460
 cctaattgcac gaaacaaaaaa taatgtatccatc ttttttttttggatccatc 2520
 ggcgttccatc ttttttttttggatccatc 2580
 tcttgcacatc ttttttttttggatccatc 2640
 aacaatttccatc ttttttttttggatccatc 2700
 acggccatccatc ttttttttttggatccatc 2760
 ggttttttttggatccatc 2820
 ccttgcacatc ttttttttttggatccatc 2880
 gcatacttca ttttttttttggatccatc 2940
 gcccacatccatc ttttttttttggatccatc 3000
 atgcatatccatc ttttttttttggatccatc 3060
 tcgactgttccatc ttttttttttggatccatc 3120
 acccttgcacatc ttttttttttggatccatc 3180
 ttttttttttggatccatc 3240
 gatggggatccatc ttttttttttggatccatc 3300
 gaaagaacca gtttttttttggatccatc 3360
 gcccggggatccatc ttttttttttggatccatc 3420
 gtcctttccatc ttttttttttggatccatc 3480

ctaaatcggg gcatccctt agggttccga tttagtgctt tacggcacct cgacccccaaa 3540
 aaacttgatt agggtgatgg ttcacgtagt gggccatcg cctgataagac ggttttcgc 3600
 ccttgacgt tggagtccac gttcttaat agtggactct tggtaaaac tggaaacaaca 3660
 ctcaacccta tctcggtcta ttctttgat ttataaggga ttttgggat ttccggcttat 3720
 tggtaaaaa atgagctgat ttaacaaaaa ttaacgcga attaattctg tggaaatgtgt 3780
 gtcagttagg gtgtggaaag tccccaggct ccccaggcag gcagaagtat gcaaaagcatg 3840
 catctcaatt agtcagcaac cagggtgtga aagtcccccag gtcggccatc aggcaagaatg 3900
 atgcaaaagca tgcatactcaa tttagtcgca accatagtc cggccctaaac tccgcccate 3960
 ccgcccctaa ctccgcccac ttccggccat ttccggcccc ttcggctatc atggctgact aattttttt 4020
 atttatgcag aggccgaggc cgcctctgc tcggagctat tccagaagta gtgaggaggc 4080
 tttttggag gcctaggct ttgaaaaag ctccggggag ctgtatatac cattttcgg 4140
 tctgatcaag agacaggatg aggatcgatc cgcattgtt aacaagatgg attgcacgca 4200
 ggttctccgg ccgcttgggt ggagaggctt ttccggctatc actgggcaca acagacaatc 4260
 ggctgtctg atgcccggcgt ttccggctg toagcgcagg ggegcccgg tcttttgc 4320
 aagaccgacc tgcggcttgc cctgaatgaa ctgcaggcgc aggccggcgc gctatcggt 4380
 ctggccacca cggccgttgc ttgcgcagct gtgcgtcgc ttgtcactga agccggaaagg 4440
 gactggctgc tattggggca agtgcggggg caggatctcc tgcatactca cttctgtct 4500
 gcccggaaaat tatccatcat ggctgatgca atgcggcgcc tgcatacgct tgatccggct 4560
 acctggccat tcgaccacca agcgaacat cgcattgcgc gaggacgtac tcggatggaa 4620
 gcccgttgc ttgcattcggaa tgatctggac gaagagcatc aggggctcgc gccagccgaa 4680
 ctgttcgcca ggctcaaggc gcgcattgcgc gacggcggagg atctcgctgt gaccatggc 4740
 gatggctgtc tgcggatatac catggggaa aatggccgcgt ttctcggtt catcgactgt 4800
 ggccggctgg gtgtggcgga cgcgtatcgc gacatagcgt tggctacccg tgatattgt 4860
 gaagagcttgc gggccgttgc ttgcgttgc ttacgttat cggccgtccc 4920
 gatttcgcgc gcattccctt ctatccctt ctgcgttgc tttctgtgc gggactctgg 4980
 ggttccaaat gaccgaccia gcgacccca acctggccatc acgagattt gattccaccc 5040
 ccgccttcta taaaagggtt ggcttccggaa tcgtttcccg ggacgcggc tggtatgtcc 5100
 tccagcgggg ggtatctcatg ctggagttct tcggccaccc caacttgttt attgcagctt 5160
 ataatggta caaataaaagc aatagcatca caaatttcac aaataaaagca ttttttcac 5220
 tgcattctag ttgtgggtttc tccaaactca tcaatgtatc ttatcatgtc tgataccgt 5280
 cgaccccttag cttagacttgc gctgtatcatc ggtcatagct ttccctgtg taaaattgtt 5340
 atccgcctac aattccacac aacatacggc cggaaaggat aagtgtaaa gcttgggtg 5400
 cctaattgttgc gagctaaatc acattaattt cttgcgttgc actgcccgt ttccagtcgg 5460
 gaaacctgtc gtgcgttgc cattaaatgaa tcggccaaacg cgccggggaga ggggggttgc 5520
 gtattggcgct ctcttcgttgc tcctcgctca ctgactcgct ggcgtcggtc gttccgttgc 5580
 ggcgagcggt atcagtcac taaaaggcggt taatacgggtt atccacacaa tcaggggata 5640
 acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaacctt aaaaaggccg 5700
 cgttgcgttgc gttttccatc aggttcggcc cccctgcgc gcatcacaaa aatcgacgt 5760
 caagtccatc gggccggaaac cgcacggac tataaagata ccaggcggtt cccctggaa 5820
 gtcctcggt ggcgtctcc tttccggccatc ttccggcttac cggataccgt tccgccttgc 5880
 tcccttcggg aagcgtggcg ctttctcaat gtcacgttgc taggtatctc agttccgtgt 5940
 aggtcgttgc ctccaaatgttgc ggctgtgtgc acgaaccccc cgttccggcc gaccgctcg 6000
 ctttatccgg taactatctgt ttgcgttgc acccggttac acacgactta tcggccactgg 6060
 cagcggccatc ttgttaacagg attagcagg cgggtatgt aggcgggtgtc acagagttct 6120
 tgaatgggtg gcttaactactc ggcataacta gaaggacgtt atttgggtatc tgccgtctgc 6180
 tgaagccatc taccttcggg aaaaggtt gtagcttgc atccggcaaa caaaccaccc 6240
 ctggtagccg tggttttttt gtttgcgttgc acgagatttcc ggcgcggaaaaaa aaggatctc 6300
 aagaagatcc ttgtatcttt tctacggggatc ctgcgttgc ttggaaacgaa aactcacgtt 6360
 aagggatttt ggtcatgaga ttatcaaaaa ggtatcttac cttagatccct taaaattaaa 6420
 aatgaagttt taaaatcaatc taaaatgtatc atgataaaatc ttggtctgac agttaccaat 6480
 gcttaatctgt tgaggcacat atctcgttgc ttccggccatc ttccggccatc atagttgcct 6540
 gactccccgt cgttgcgttgc actacgatc gggaggccgtt accatctggc cccactgtctg 6600
 caatgtatcc gggccggccatc cgcgttgcgtt ccggccatc atcgtatca aaccggccatc 6660
 ccggaaaggcc cggccgttgc agtggcttgc caactttatc cggccatc cagtttata 6720
 attgttgcgttgc ggaagcttaga gtaatgttgc cggccgttac tagttgcgc aacgttgggt 6780
 ccattgttgc acggcatcgtt gtttgcgttgc cttccggccatc ttccggccatc atagttgcct 6840
 gttcccaacg atcaaggccatc ttgcgttgc ttccggccatc ttccggccatc gtcgttgc 6900
 cttccggccatc ttccggccatc ttccggccatc ttccggccatc ttccggccatc atcgtatca 6960
 tggccgttgc gtcgttgc ttccggccatc ttccggccatc ttccggccatc ttccggccatc 7020
 gtgagttactc aaccaaggatc ttctgagaat agtgtatgcg ggcaccggatc tgctcttgc 7080
 cggccgttgc acggccatc accggccatc atagcagaac tttaaaatgttgc tccatcatttgc 7140
 gaaaacgttgc tccggccatc aaactctcaa ggtatcttacc gtcgttgc gtcgttgc 7200

tgtaacccac tcgtgcaccc aactgatctt cagcatctt tactttcacc agcgtttctg 7260
 ggtgagcaaa acaggaaagg caaatgccg caaaaagg aataaggcg acacggaaat 7320
 gttgaatact catactcttc cttttcaat attattgaag catttatcg gtttattgtc 7380
 tcatgagcg atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca 7440
 cattccccg aaaagtgcga cctgacgtc 7469

<210> 9
 <211> 28
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: primer

<400> 9
 tgcttaagcg gccgcgaagg agaagtcc

28

<210> 10
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: primer

<400> 10
 ccgagcttagc gactgaaaat gag

23

<210> 11
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: primer

<400> 11
 cctctcgaga gacagcaaga cac

23

<210> 12
 <211> 11152
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: plasmid

<400> 12
 aagcttggc agaaatgggt gaactcccga gagtgtcccta cacctagggg agaagcagcc 60
 aagggttgtt ttcccaccaa ggacgacccg tctgcgcaca aacggatgg cccatcgac 120
 aaagacatat tcattctctg ctgcaaactt ggcatacgctc tgctttgcct gggctattg 180
 ggggaagttg cggttcgtgc tcgcagggtctcacccttg actctttaa tagctcttct 240
 gtgcaagatt acaatctaaa caattcgag aactcgacct tcctccttag gcaaggacca 300
 cagccaaactt cctcttacaa gccgcacatcgat ttttgtcctt cagaaataga aataagaatg 360
 cttgctaaaa attatatttt taccaataag accaatccaa taggttagatt attagttact 420
 atgttaagaa atgaatcattt atcttttagt actatttta ctcaaattca gaagtttagaa 480
 atgggaatag aaaatagaaaa gagacgctca acctcaattt aagaacaggt gcaaggacta 540
 ttgaccacag gcctagaagt aaaaaggaa aaaaagagtgg ttttgtcctt aataggagac 600
 aggtgtggc aaccaggggac ttataggggc ctttatcatct acagaccaac agatgcccc 660
 ttaccatata caggaagata tgacttaat tggataggt gggatcactt caatggctat 720

aaagtgttat atagatccct ccctttcgt gaaagactcg ccagagctag accccttgg 780
tgtatgttg ctcagaaga aaaagacgac atgaaaacaac aggtacatga ttatatttat 840
cttagaaacag gaatgcacctt ttgggaaag attttccata ccaaggaggg gacagtggct 900
ggactaatag aacattattc tgcaaaaact catggcatga gttattatga atagcctta 960
ttggcccaac cttgcggttc ccagggctt agtaagttt tggttacaaa ctgttctta 1020
aacgaggatg tgagacaagt ggtttcctga ctgggttgg tatcaaagg tctgatctga 1080
gctctgatg ttcttatttc ctatgttctt ttgaaattta tccaaatctt atgtaatgc 1140
ttatgtaaac caagatataa aagagtgcg atttttgag taaacttgc acagtcctaa 1200
cattcacctc ttgtgtgtt gtgtctgtc gcacatcccgt ctccgctcg cacttaccc 1260
tcacttcca gagggtcccc cccgacgaccc cggcgaccct caggctggcc gactgcggca 1320
gctggcggcc gaacaggggac cctcgatata gtgacccttg tctctatttc tactatttg 1380
tgtttgcattt gtattgtctc ttcttgcattt ggctatcatc acaagagcgg aacggactca 1440
ccataggac caagcttagcg actgaaaatg agacatatta tctgcacccgg aggtttatt 1500
accgaagaaa tggccggcc tcttggac cagctgtatcg aagaggtaact ggctgataat 1560
cttcacccctc cttagccattt tgaaccacct acccttcacg aactgtatga tttagacgtg 1620
acggcccccg aagatcccaa cgaggaggcg gtttgcaga ttttcccgat ctctgtatg 1680
ttggcgggtgc aggaagggtatc tgcattactc acttttccgc cggcgccccc ttctccggag 1740
ccgcctcacc ttcccggca gcccggacg cccggagcaga gaggcttggg tccggttct 1800
atgcacaaacc ttgtaccggg ggtgatcgat ctacactgccc acgaggctgg cttccaccc 1860
agtgcacgacg aggatgaaga gggtgaggag ttgtgttag attatgtgga gcaccccccgg 1920
cacgggtgc ggtcttgcata ttatcacccgg agaaatacgg gggacccaga tattatgtgt 1980
tcgcttgc atatggggac ctgtggcatg ttgtctaca gtaagtaaa attatggca 2040
gtgggtgata ggtgtgtggg ttgggtgtg taatttttt ttaattttt acagttttgt 2100
ggtttaaaga attttgcattt gtgattttt taaaagggtcc tttgtctgaa cctgagccctg 2160
agcccgagcc agaaccggag cctgcaagac ctacccggcc tcctaaaaatg gcccctgcta 2220
tcctgagacg cccgacatca cctgtgtcta gagaatgc aa tagtagtacg gatagctgtg 2280
actccggtcc ttctaacaca cctcctgaga tacacccggg gttccggctg tgccccatta 2340
aaccagggtgc cgtgagaggtt ggtggcgctc gccaggctgt ggaatgtatc gaggacttgc 2400
ttaacgagcc tggccaaacctt ttggacttgc gctgtaaacg ccccgaggcca taaggtgtaa 2460
acctgtgatt gctgtgtgg ttaacgcctt ttgtgtctg ataggttgc gtaagttaa 2520
taaagggtga gataatgtt aacttgcatg gctgtttaaa tggggccgggg cttaaagggt 2580
atataatgcg ccgtgggcta atcttggta catctgaccc catggaggct tggagtgtt 2640
tggaaagattt ttctgctgtc cgtaacttgc tggaaacagag ctctaaacagt acctcttgg 2700
tttggagggtt tctgtggggc tcatcccagg caaagtttagt ctgcagaatt aaggaggatt 2760
acaagttgggaa atttgaagag cttttgcattt cctgtggta gctgtttgat tcttgaatc 2820
tgggtcacca ggccgttttc caagagaagg tcatcagac tttggattt tccacaccgg 2880
ggccggctgc ggtgtgtgtt gttttttttt gttttttttt ggtttttttt agcgaagaaa 2940
cccatctgag cgggggggtac ctgtggatt ttctggccat gcatctgtgg agagcgggttg 3000
tgagacaccaa gaatgcgcctg ctactgtgtt ctccgtccg cccggcgata ataccgacgg 3060
aggagcagca gcagcagcag gaggaagcca ggcggccggcg gcaggagcag agcccatgga 3120
acccgagagc cggcctggac cctcggaaat gaatgttgc cagggtggctg aactgtatcc 3180
agaactgaga cgcattttga caattacaga ggtggccag gggctaaagg gggtaaagag 3240
ggagccgggg gcttgcgtgg ctacagagga ggttagaat ctatctttt gcttaatgac 3300
cagacaccgt cctgtgtgtt ttacttttca acagatcaag gataattgcg ctaatgagct 3360
tgatctgtc ggcgcagaatg atccatagaa gcatgtgacc acttactggc tgccagccagg 3420
ggatgtttt gaggaggctt ttagggata tgcggaaatgtt gactttaggc cagattgca 3480
gtacaagatc agcaaaacttgc taaaatatcg gaattgttgc tacatcttgc ggaacggggc 3540
cgagggtggag atagatacgg aggatagggt ggcctttaga tttgtatgc taaaatatgt 3600
gccgggggtt cttggcatgg acgggggtt tattatgaa gtaaggttt ctggcccca 3660
tttttagcggtt acggttttcc tggccaatac caaccttatac ctacacgggtg taagcttcta 3720
tgggtttaac aatacctgtt tggaaagccgt gaccgatgtt ggggttccgg gctgtgcctt 3780
ttactgtctg tggaaaggggg tgggtgtcg ccccaaaaaggc agggcttcaa ttaagaaatg 3840
cctcttgcattt aggtgttgcattt ttgtgtatctt gctgtgggtt aacttccaggg tgccacccaa 3900
tgtggccctcc gactgtgggtt gcttcatgtc agtggaaaggc gttggctgtga ttaagcataa 3960
catgttatgtt ggcaactgcg aggacaggcc ctctcagatg ctgacctgtc cggacggcaa 4020
ctgtcacctg ctgaagacca ttccacgtgc cagccactct cggcaaggccctt ggcacgtgtt 4080
tgagcataac atactgaccc gctgttcctt gcattttgggtt aacaggagg ggggttccct 4140
accttaccaa tgcaatttgc gtcacactaa gatattgtt gggccggaga gcatgtccaa 4200
ggtaacccgt aacgggggtt ttgacatgac catgaagatc tggaaagggtc tgaggatcga 4260
tgagaccgc accaggtgcg gaccctgcga gtgtggcggtt aaacatata ggaaccagcc 4320
tgtgtatgtc gatgtgaccc aggagctgatc gcccgtatc ttgggtgtgg cctgcacccg 4380
ggctgatgtt ggctctagcg atgaagatac agattgggtt actgaaatgtt gttggccgtgg 4440

ttaagggtg ggaaagaata tataagggtgg gggtcttatg tagtttgta tctgtttgc 4500
agcagccgc gccgccccat gcaccaactc gtttgcattga agcattgtga gtcatattt 4560
gacaacgcgc atgcccccat gggccggggt gcgtcagaat gtgcattggct ccagcattga 4620
tgtcgcccc gtcctgcccc gaaactctac taccttgcacc tacagagaccg tgtctggAAC 4680
gcccgttggag actgcagcct cgcggccgc ttcagccgct gcagccaccc cccggggat 4740
tgtactgac tttgtttcc tgagccgct tgcaagcagt gcagcttccc gttcatccgc 4800
cccgatgac aagtgcacgg ctcttttgc acaaattggat tctttgcacc gggacttaa 4860
tgtcttctc cagcagctgt tgatctgcg cccagcagggt ttctccctga aggcttcctc 4920
ccctcccaat gcggtttaaa acataataaa aaaacccagac tctgtttggaa ttggatcaa 4980
gcaagtgtct tgctgtctct cgagggatct ttgtgaaggaa accttacttc tttgtgtgt 5040
cataattgga caaactacct acagagattt aaagctctaa gtaaatataaa aatattttaa 5100
gtgtataatg tgtaaacta tggtggaaatg ccttaatga gaaaacaccc ttttgetcag 5220
gaactgtga atgggagcag aagaatgcc atcttagtgc gatgaggcata cgctgactc tcaacattct actccctccaa 5280
aaaagaagag aaaggtagaa gaccccaagg actttccctc agaattgtca agtttttga 5340
gtcatgtgt gtttagtaat agaactctg cttgtttgc tatttacacc acaaaggaaa 5400
aagtcgtca ctatcataaag aaaaattatgg aaaaatatttc tgtaaacccctt aataagtggc 5460
ataacagtt taatcataac atactgttt ttcttactcc acacaggcat agatgtctg 5520
ctattaataa ctatgctcaa aaattgtgt cctttagttt ttaattttgt aaagggtta 5580
ataaggaata tttgtatgtat agtgccttga cttagagatca taatcagcca taccacattt 5640
gttagaggtt tacttgcctt aaaaaacccctc ccacacccctc ccctgaacct gaaacataaa 5700
atgaatgcaat ttgtgtttttt taacttgcattt attgcagctt ataatggta caaataaagc 5760
aatagcatca caaatttccac aaataaaagc ttttttccac tgcatcttag ttgtgttttg 5820
tccaaactca tcaatgtatc ttatcatgtc tggatccggc tggatggatgt gtgtcaat 5880
gggtgtgaa agtccccagg ctccccccagca ggcagaagta tggaaacgat gcatctcaat 5940
tagtcagca ccagggtgtgg aaaaatccca ggctccccccag caggcagaagat tgtcgaaagc 6000
atgcatctca attagtccagc aaccatagtc cccgccttca ctccgccttcat cccgcctca 6060
actccgccta gttccgccccca ttctccgcctt catggctgac taatttttt tatttatgca 6120
gaggccgagg cgcctcgcc ctctgagcta ttccagaagt agtggaggat cttttttggaa 6180
ggccttagct tttgcaaaaaa gcttggacac aagacaggct tgcgagatataat gtttggaaat 6240
accacccat tccgcgtccag ggagaggccag tgcttgcattt gacgcggact catgtgaaat 6300
actgggtttt atgtcgccccat atctctataa tctcgccgaa ccttattttcc cctcgacac 6360
tttttaagcc gttagataaac aggctgggac acttcacatg agcggaaaat acatcgccat 6420
ctggagcatg ttgcagatcc acgtacgcata acgtcgaaagc cgactgtatc ttctgaaaca 6480
atggaaaggc attattgcctg taagccgtgg cggcttgcata cccgggtgcgt tactggccgc 6540
tgaactgggtt attcgtcatg tcgataccgt ttgtattttcc agtacgatc acgacaacca 6600
gcgcgagctt aaagtgcgtga aacgcgcaga aggcgatggc gaaggcttca tcgttattga 6660
tgacctgtgt gataccgggt gtaactgcgtt tgcatgttgc gaaaatgtatc caaaaggcga 6720
ctttgttacc atctcgccaa aaccggctgg tcgtccgcgt gtttgcatttgc atgttggta 6780
tatccgccaa gatactggta ttgaacccgcg gttggatgtt ggcgtcgatc tcgtcccgcc 6840
aatctccggt cgtaatctt ttcaacgcctt ggcacttgcg ggcgttgcgtt tttttaactt 6900
caggccgggtt acaaataatggtt ccagtaagta ttctggaggc tgcatccatg acacaggcaa 6960
acctgaggca aaccctgttc aaaccccgctt ttaaaacatcc tggaaacccctc acgtcaatcc 7020
gcccgtttaa tcacggcgca caaccgcctg tgcaatgcgc ctttgcatttgcgaaaatcatcc 7080
ctcaactgtta tcgcatgatt aaccgtctga tggatctg tgcggccatt gaccacacgc 7140
aaatccctga cgtccaggca cgtattgtga tgagcgatgc cgaacgtacc gacgatgatt 7200
tatacgatac ggtgattggc taccgtggcg gcaactggat ttatgatgtt gccccggatc 7260
tttgcgttggg aacccatctt ctgtgtgtgt acataattgg acaaactacc tacagagatt 7320
taaaactcta aggttaatataat aaaaatttttta agtgcataatggtttaatccactt actgttca 7380
attgtttgtt tatttttagat tccaaacttgc ggaactgtatc aatggggacca gttgtggaaat 7440
gcctttaatg aggaaaacccctt gtttgcata gaaagaatgc catctgtatc tgatggggct 7500
actgctgact ctcaacatcc tactcctccaa aaaaagaaga gaaaaggatgaa agaccccaag 7560
gactttccctt cagaattgcg aagtttttgc agtcatgtcg tttttgtatc tagaactctt 7620
gcttgcgttgc ctatttacac cacaaaggaa aaagctgcac tgctataacaa gaaaattatg 7680
aaaaaatatt ctgtaaacctt tataagttagg cataacagtt ataatcataa catactgttt 7740
tttcttactc cacacaggca tagagtgtct gcttataata actatgcataa aaaattgtgt 7800
accttttagct tttttaatttg taaagggggtt aataaggaaat ttttgcatttgc tagtgccttgc 7860
actagagatc ataatcgcc ataccacatt tgtagagggtt ttacttgcatttgcataaaacccctt 7920
cccacacccctt cccctggaccc tggaaatccaa aatgaatgcg atttgtttgc tttacttgcatttgc 7980
tattgcagct tataatgggtt acaaataaaag caatagcatc acaaatttca caaataaagc 8040
attttttca ctgcattctca gtttgcgttgc gttccaaactc atcaatgtat cttatcatgt 8100
ctggatcccc aggaagctcc tctgtgtctt cataaaaccctt aacccctccactt acttgagagg 8160

acattccaat cataggctgc ccatccaccc tctgtgtcct cctgttaatt aggtcaactt 8220
 acaaaaagga aattgggtag gggttttca cagaccgctt tctaagggtt atttaaaat 8280
 atctggaaag tcccttccac tgctgtgtc cagaagtgtt ggtaaacagc ccacaaaatgt 8340
 caacacgaca aacataacaag ctgtcagctt tgccacaaggg cccaacaccc tgctcatcaa 8400
 gaagcactgt gtttgctgtg ttagtaatgt gcaaaaacagg aggcacattt tccccacctg 8460
 tgttagttcc aaaatatcta gtgtttcat ttttacttgg atcaggaacc cagcaactcca 8520
 ctggataaggc attatccta tccaaaacag ccttgggtc agtggatctc tgctgactgt 8580
 caactgttagc atttttggg gttacagttt gaggcggata ttgggtctg tagtttgcta 8640
 acacaccctg cagtcacaaa ggttcccccac caacagcaaa aaaatgaaaa tttgaccctt 8700
 gaatgggtt tccagcacca ttttcatgag tttttgtgtt ccctgaatgc aagtttaaca 8760
 tagcagttac cccaaataacc tcagtttaa cagtaacagc ttcccacatc aaaatattt 8820
 cacaggttaa gtccttcatc aaattaggca aaggaaattct tgaagacgaa agggcctcg 8880
 gataccctta ttttatagg ttaatgtcat gataataatg gtttcttga cgtcagggtg 8940
 cacttccgg gaaaaatgtgc gggaaacccc tattttttttaa tacattcaaa 9000
 tatgtatccg ctatgagac aataaccctg attaaatgtct caataatattt gaaaaaggaa 9060
 gagtatgagt attcaacatt tccgtgtcg ctttttgcgg cattttgcct 9120
 tcctgtttt gtcaccccaag aaacgctgtt gaaagttttt gatgctgaaatcgtt 9180
 tgacacgatgt gtttacatcg aactggatct caacagcggtt aagatccctt agattttcg 9240
 ccccaagaa ctgtttccaa tgatgagcac ttttttttttctt ctgctatgtg ggcgggtatt 9300
 atccctgtttt gacggccggc aagagcaact cggtcgcccgc atacactattt ctcagaatga 9360
 cttgggtttag tacttacccag tcacagaaaa gcattttacg gatggcatga cagtaagaga 9420
 attatgcattt gtcaccccaaa ccatgatgtt taacatgcg gccaacttac ttctgacaac 9480
 gatggagga cggaaaggacg taaccctttt ttggcacaac atggggatc atgttaactcg 9540
 ctttgatcgt tgggaaacccg agctgaatga agccataccatc aacgacgacg gtgacaccac 9600
 gatgcctgca gcaatggcaa caacgttgcg caaactattt actggcgaac tacttactct 9660
 agctttcccg caacaattaa tagactggat ggaggcggat aaagtgcag gaccacttct 9720
 ggcgtcgccctt cttccggctg gctggttt tgcgtatcataa tctggagccg gtgagcgtgg 9780
 gtctcgccgt atcattgcag cactggggcc agatggtaag ccctcccgta tcgtatgtt 9840
 ctacacgacg gggagtcagg caactatgg tgaacgaaat agacagatcg ctgagatagg 9900
 tgcctactt attaaggctt ggttaactgtc agaccaatgt tacttataataatctt 9960
 tgatTTTTT aattttaaaag gatcttaggtt aagatccctt ttgataatct 10020
 catgaccaaa atcccttaaac gtgagtttcc gttccacttgc ggcgtacacc ccgtagaaaa 10080
 gatcaaagga ttttctttag atcctttttt totgctgttgc atctgtctt tgcaaaacaaa 10140
 aaaaccaccc ctaccagccg tgggtttttt gccggatcaa gagctaccaaa ctcttttcc 10200
 gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctt tagccgtt 10260
 gtttagccac cacttcaaga actctgttgc accgccttaca tacctcgctc tgctaatctt 10320
 gttaccatgt gtcgtgttgc gttggatataa gtcgtgttgc accgggttgg actcaagacg 10380
 atagttaccg gataaggcgcg agcggctggg ctgaacgggg ggttcgtgc cacagcccac 10440
 cttggagcga acgacactaca ccgaacttgcg ataccttacag cgtgagctat gggaaagcgc 10500
 cacgttccc gaagggagaaa aggccggacag gttatccggta agccggcagg tcggAACAGG 10560
 agagcgcacg agggagcttcc cagggggaaa ccgcctggat ctttatagtc ctgtcggtt 10620
 tcgccaccc tcacttgagc gtcgatTTTTT gtatgtctcg tcaggggggc ggagcctatg 10680
 gaaaaacgccc agcaacgcgg ctttttacg gttcctggcc ttttgcgttgc cttttgcctca 10740
 catgttctt ctcgtgttgc cccctgatc tggatataac cgtattaccg cttttgatgt 10800
 agtgtatacc gtcgtccgcg gccgaacgac cgacgcgcg gatcgtatgc gcgaggaaac 10860
 ggaagagcgc ctgatgcggg atttttcttcttacgcatcg tgggttattt cacaccgcatt 10920
 atgggtgcact ctcgtatcaa tctgtcttgc tgccgcataatg ttaagccatg atacactccg 10980
 ctatcgctac gtgactgggtt catggctgcg ccccgacacc cggccaaacacc cgctgacgcg 11040
 ccctgacgggg ctgtctgttgc cccggatcc gtttacagac aagctgtgac cgtctccggg 11100
 agctgcattt gtcagatgtt ttcaccgtca tcaccgaaac ggcggaggca gc 11152

<210> 13

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 13

gacggatcgg gagatctcc

<210> 14
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 14
ccgcctcaga agccatagag cc

22

```
<210> 15
<211> 14455
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: plasmid

<400> 15

aaggctgggc agaaaatggtt gaactcccgaa gagtgtccta cacctagggg aagaacgacc 60
aagggggtgt ttcccaccaa ggacgaccgg tctgcgcaca aacggatgag cccatcagac 120
aaagacatat tcatttcctgt ctgcaaaacctt ggcatacgctc tgcttgcct ggggctattg 180
ggggaaagttg cggttcgtgc tcgcagggtc ctcacccttg actcttttaa tagctcttct 240
gtgcaagatt acaatctaaa caattcggag aactcgcattt ccctccctgag gcaaggacca 300
cagcccatct cctcttacaa gccgcacatcg ttttgcctt cagaataatg aataagaatg 360
cttgcataaa attatattttt accaataaaatg accaatccaa taggttagattt attagttact 420
atgttaagaa atgaatcattt atcttttagt actatTTTA ctcaccaattca gaagtttagaa 480
atgggaatag aaaatagaaaa gagacgctca acctcaattt aagaacaggta gcaaggacta 540
ttgaccacag gcctagaagt aaaaaaggaa aaaaagagtg tttttgtcaa aataggagac 600
aggtgggtgc aaccaggggac ttataggggaa ctttacatctt acagaccaac agatggcccc 660
tttacatata caggaagata tgacttaaat tgggatagggt gggttacagt caatggctat 720
aaagtgttat atagatccct ccctttcgt gaaagactcg ccagagctag acctcccttgg 780
tgtatgttgt ctcaagaaga aaaaagacgac atgaaacaac aggtatcatgtt ttatattat 840
cttagaacag gaatgcattt ttggggaaat tttttccata ccaaggagg gacagtggct 900
ggactaatag aacattatttc tgcaaaaactt catggcatga gttattatga atagccctta 960
ttggcccaac cttgcgggtc ccagggtctt agtaagttt tggttacaaa ctgttcttaa 1020
aacgaggatg tgagacaagt ggtttcctga cttgggttgg tatcaaaggt tctgatctga 1080
gctctgatgt ttcttattttc ctatgttctt ttggaaatttta tccaaatctt atgtaaatgc 1140
ttatgttaac caagatataa aagagtgtcg attttttgag taaaacttgc acagtcccaa 1200
cattcaccc tcgtgtgtt gtgtctgtc gccatcccgt ctccgcctgt cacttacatct 1260
tcactttcca gaggggtcccccc cccgacagacc cggcgaccctt cgggtccggc gactggggca 1320
gctggccccc gaacaggggac cctcgataaa gtgacccttg tctcttatttc tactatttgg 1380
tgtttgtctt gtattgtctc tttcttgctt ggctatcatc acaagagcgg aacggactca 1440
ccataggggac caagctagcg actgaaaatg agacatatta tctgcccacgg aggtgttatt 1500
accgaagaaa tggccgcccag ttttttggac cagctgtatcg aagaggtaact ggctgataat 1560
cttccaccc tcagccattt tgaaccacactt acccttcacg aactgtatga ttttagacgtg 1620
acggccccccg aagatcccaa cgaggaggccg gtttcccgaga tttttcccgaa ctctgtatg 1680
ttggccgtgc aggaagggg tgcattttacte acctttccgc cggccggccgg ttccctccggag 1740
ccgcctcacc tttocccgca gcccggccag ccggaggcaga gaccccttggg tccgggtttct 1800
atgc当地 acc ttgttccggaa ggtgtatcgat cttaccctggc acggaggctgg ctttccaccc 1860
agtgtacgacg aggatgttggaa ggggttggggat tttgtgttag attatgttggaa gcaccccccggg 1920
cacgggttgc ggtttgtca ttatcaccgg aggaataccgg gggacccaga tattatgtgt 1980
tcgttttgc atatggggac ctgtggcatg tttgtctaca gtaagtggaa attatgggca 2040
gtgggggtata gagggttggg tttgtgttgg taattttttt ttaattttttt acagttttgt 2100
ggtttaaaga attttgtattt gtgattttttt taaaaggctt tttgtgtctgaa cctgaggctg 2160
agccccggcc agaaacggggat ctcgcacatcg ctaccggccg tttttttttt ggcgcgtct 2220
tcctggagacg cccgacatca ctgtgtctca gagaatggaa tagtagtacg gatagctgtg 2280
actccgggtcc ttctaaacaca cttctgtgaga tacaccgggtt ggtcccgctg tgccccattt 2340
aaccagggtgc cgtgagagttt ggtggggctc gccaggctgtt ggaatgtatc gaggacttgc 2400
ttaacgagcc tggggcaaccc ttggacttga gctgtaaacg ccccaaggcca taagggtgtaa 2460

acctgtgatt gcgtgtgtgg ttaacgcctt tgtttgctga atgagttgat gtaagttaa 2520
 taaagggtga gataatgttt aacttgcattt ggcgtttaaa tggggccggg cttaaagggtt 2580
 atataatgcg ccgtgggcta atcttggta catctgacctt catggaggct tgggagtgat 2640
 tggaaagattt ttctgtctgt cgtaacttgc tggAACAGAG ctctaaacagt acctcttggt 2700
 tttggaggtt tctgtggggc tcattcccagg caaagtttagt ctgcagaatt aaggaggatt 2760
 acaagtggga atttgaagag cttttgaatat cctgtgggtga gctgtttgtat tcttgaatc 2820
 tgggtcacca ggcgccttttca caagagaagg tcatttcacagac tttggatattt tccacaccgg 2880
 ggcgcgctgc ggctgctgtt gctttttgtt gttttttaaa ggataaatgg agcgaagaaa 2940
 cccatctgag cgggggggtac ctgctggatt ttctggccat gcatctgtgg agagcggttg 3000
 tgagacacaa gaatgcctt ctactgttgtt ctccgtcccg cccggcgata ataccgacgg 3060
 aggagcagca gcagcagcag gaggaagcca ggcggccggc gcaggaggcag agcccatgg 3120
 acccgagagc cggcctggac cctcggaaat gaatgttgta caggtggctg aactgtatcc 3180
 agaactgaga cgcattttgtt caattacaga ggtatggcag gggctaaagg gggtaaagag 3240
 ggagcgggggg gcttggagg ctacagagga ggcttaggaat ctatgttttta gcttaatgac 3300
 cagacaccgtt cttgtgtgttta tacttttca acatgtcaag gataattgcg ctaatgagct 3360
 tgatctgtg ggcgcagaatg attccatagaa gcatgtgacc acttactggc tgcagccagg 3420
 ggtatattt gaggaggctt ttagggtata tgcAAAGGTG gcacttaggc cagattgcaa 3480
 gtacaagatc agcaaaacttg taaatatcag gaattgttgc tacatttctg ggaacggggc 3540
 cgagggtggag atagatacgg aggtatgggt ggcctttttaga ttttagcatga taaatatgt 3600
 gcccgggggtg cttggcatgg acgggggtgtt tattatgaat gtaaggttttta ctggccccaa 3660
 tttttagcggtt acggttttcc tggccaaatca caacccatc ttcacccgtt taagcttcta 3720
 tgggtttaaac aatactgtgtt tggacgcctt gaccgtatgtt agggttccgg gctgtgcctt 3780
 ttactgtgtc tggaaagggggg tgggtgtgtc cccaaaaaage agggcttcaa ttaagaaatg 3840
 cctcttgcgaa aggtgtaccc tgggtatctt gtcgtgggtt aactccaggg tgcgccacaa 3900
 tgtggcctcc gactgtgggtt gcttcattgtc agtggaaaggc gtggctgtga ttaagcataa 3960
 catggtatgt ggcaactgtcg aggacaggc ctttcattgtc tgcacccgtt cggacggcaa 4020
 ctgtcacctg ctgaagacca ttacacgtac ctttcattgtc tgcacccgtt cggacggcaa 4080
 tgagcataac atactgtaccc gctgttcattt gcatgggggtt aacaggagggg ggggtttctt 4140
 accttacca tgcacattttga gtcacactaa gatattgtt gggcccgaga gcatgtccaa 4200
 ggtgaacccgtt aacgggggtt ttgcattgtc tgcacccgtt tggaggtgc tgggtacga 4260
 tgagaccgc accagggtcga gaccctgcga gtgtggcggtt aaacatatta ggaaccaggcc 4320
 tgtgtatgtt gatgtgaccc agggactgtt gcccgatcattt tgggtgtctt cctgcacccg 4380
 cgctgatgtt ggctcttagcg atgaaatgtt agattgtgggtt actgaaatgtt gtggcggtgg 4440
 cttaaagggtg gaaaagaata tataagggtt gggctttatgt tagttttgtt tctgttttgc 4500
 agcagccgc ggcgccttgc gccaacttc gtttgcattgtt agcattgtt gctcatatattt 4560
 gacaacgcgc atgccccccat gggccgggtt ggcgcattgtt gtcgtgggtt ccagcattgtt 4620
 tggtecccccc tgcctgtccccca ctttcattgtc ttcattgtt gtcgtgggtt ccagcattgtt 4680
 gccgttggag actgcaccc tccggcccg ttcattgtt gtcgtgggtt ccagcattgtt 4740
 tgtgtactgac tttgtttttcc tggatccgtt tgcacccgtt gcaaggatgtt gcatgtccaa 4800
 ccgcgtatgac aagttgacgg ctcttttgc acattttgtt ttttgcattgtt gggaaacttta 4860
 tgtgttttttcc ctttcattgtt gtcgtgggtt ccagcattgtt ttcattgtt gggaaacttta 4920
 ccctcccaat gcccgtttaaa acataataaa aaaaccaggac ttcattgtt gtcgtgggtt 4980
 gcaagtgtct tgcattgttcc tggatccgtt ttcattgtt gtcgtgggtt 5040
 cataatttggaa caaaacttccat acatgttccat ttttgcattgtt gggaaacttta 5100
 gtgtataatgtt ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5160
 gaactgtatgtt gtttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5220
 aagaaatgttccat ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5280
 aaaagaagag aaaggatgttccat gtcgtgggtt ttttgcattgtt gggaaacttta 5340
 gtcattgttccat ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5400
 aagctgcact gtcattgttccat ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5460
 ataacacttccat ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5520
 ctatgttccat ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5580
 ataaggatgttccat ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5640
 gtagagggtttt ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5700
 atgaatgttccat ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5760
 aatagcatca caaatttccat ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5820
 tccaaactca tcaatgttccat ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 5880
 ggggtgtggaa agtccccccagg ctcccccaggca ggcagaaggta tgcaaggatgtt gcatgtccaa 5940
 tagtcacccaa ccagggtgtgg aaaggccccccagg cggccaggatgtt ttttgcattgtt gggaaacttta 6000
 atgcattgttccat ttttgcattgtt gtcgtgggtt ttttgcattgtt gggaaacttta 6060
 actcccccataa gttccggccca ttctccggccca catggctgac taattttttt ttttgcattgtt gggaaacttta 6120
 gaggccgagg cccgcctcgcc ctctgatgtt gtcgtgggtt ttttgcattgtt gggaaacttta 6180

ggcctaggct tttgcaaaaa gcttggacac aagacaggct tgcgagatat gtttggaaat 6240
 accacttat cccgcgtcag ggagaggcag tgcgtaaaaa gacgcggact catgtgaat 6300
 actggtttt agtgcgccag atctctataa tctcgcgcaa cctatttcc cctcgAACAC 6360
 ttttaagcc stagataaac aggctggac acttcacatg agcgaaaaat acatcgtaac 6420
 ctggacatg ttgcagatcc atgcacgtaa actcgcaagc cgactgatgc cttctgaaca 6480
 atggaaaggc attattgcgg taagcgtgg cggctcggtt ccgggtgcgt tactggcg 6540
 tgaactgggt attcgcatg tcgataccgt ttgtatttcc agctacgatc acgacaacca 6600
 gcgcgagctt aaagtgcgtaa aacgcgcaga aggcgatggc gaaggcttca tcgttattga 6660
 tgacctgggt gataccgggt gtactcggtg tgcgattcgt gaaatgtatc caaaaggcga 6720
 ctttgtcacc atcttcgcaa aaccggctgg tgcgtccgtg gttgatgact atgttggta 6780
 tatccgc当地 gatacctggta ttgaacagcc gtgggatatg ggctgttatc tcgtcccccc 6840
 aatctccggc cgctaatttcc ttcaacgcct ggcaactgcgg ggctgttcc ttttaactt 6900
 caggcgggtt acaaataatggc ccagtaagta ttctggaggc tgcatccatg acacaggcaa 6960
 acctgagcga aacccctgttcc aaccggctgg taaaacatcc taaaacactcg acgctagtcc 7020
 gccgc当地 tcacggcga caaccggctgg tgcagtcggc cctgtatggt aaaaaccatcc 7080
 ctcactggta tcgcatgatt aaccgtctga tgcgttatc ggccggcatt gaccacgcg 7140
 aaatctcgaa cgtccaggca cgtattgtga tgagcgatgc cgaacgtacc gagatgatt 7200
 tatacgatac ggtgattggc taccgtggc gcaactggat ttatgagtg gcccggatc 7260
 tttgtgaagg aaccttactt ctgtgtgtg acataattgg acaaactacc tacagagatt 7320
 taaagctcta aggttaaataaaat tttttttttt aagtgtataat gtgttaact actgattcta 7380
 attgttggtagt tttttttttt tccaacctt ggaactgtatc aatggggagca gtggtagat 7440
 gccttaatggaaaacactt gtttgcgtca gaagaaatgc catctgtga tgatgaggct 7500
 actgctacttctcaacattt tactcttccaa aaaaaggaa gaaaggtaga agaaaaaagg 7560
 gactttccctt cagaatttgcgt aagtttttgcgt aactatgttcc tttttttttt 7620
 gcttgc当地 ctattttacac cacaaggaa aagctgcac tgcatacataa gaaaattatgt 7680
 gaaaaatattt ctgttaacccctt tataagttagg cataacagtt ataatcataa cataactgtt 7740
 tttcttactc cacacaggca tagagtgtct gcttataataa actatgtca aaaaattgtgt 7800
 accttagtctttaatgg taaagggggtt aataaggaaat atttgtatgtt tagtgcctt 7860
 actagagatc ataatcagcc ataccacatc tttttttttt tttttttttt 7920
 cccacacccccc cccctgc当地 tggaaacataa aatgtatgcg atttttttttt ttaacttgc 7980
 tattgcagct tataatgggtt aaaaataaaag caatagcatc aaaaatttca caaataaaaggc 8040
 atttttttca ctgcatttca gtttgc当地 gtttgc当地 atcaatgtat cttatcatgt 8100
 ctggatcccc aggaagctcc tttttttttt tttttttttt 8160
 acatccaat cataggctgc ccatttttttcc tttttttttt 8220
 aaaaaaggaa aatttttttttcc tttttttttt 8280
 atctggaaatggggatcc tttttttttt 8340
 caacaggcaca aacataacaatggggatcc tttttttttt 8400
 gaagactgt gtttgc当地 tttttttttt 8460
 tttttttttt 8520
 ctggataaggcc attatccttca tccaaacag ctttgc当地 atgtttccatc tgctgactgt 8580
 caactgttagc atttttttggg gtttgc当地 gtttgc当地 tttttttttt 8640
 acacaccctg ctttgc当地 gtttgc当地 tttttttttt 8700
 gaatggggatggcc tttttttttt 8760
 tagcatttttcc tttttttttt 8820
 cacagggtttaa gtttgc当地 tttttttttt 8880
 gatacccttca tttttttttt 8940
 cacttttccgg gtttgc当地 tttttttttt 9000
 tatgtatccg tttttttttt 9060
 gaggatgttatttcc tttttttttt 9120
 tttttttttt 9180
 tttttttttt 9240
 ccccgaaaggaa tttttttttt 9300
 atcccgatgtt gtttgc当地 tttttttttt 9360
 cttttttttt 9420
 attatgcagt gtttgc当地 tttttttttt 9480
 gtttgc当地 tttttttttt 9540
 ctttgc当地 tttttttttt 9600
 gatgc当地 tttttttttt 9660
 agctttccggc caacaaattttt 9720
 gggcttccggcc tttttttttt 9780
 gtctcgccgtt atttttttttt 9840
 ctacacgc当地 gggatgttcc tttttttttt 9900

tgcctcaactg	attaaggcatt	ggtaactgtc	agaccaagtt	tactcatata	tacttttagat	9960
tgtattaaaa	cttcattttt	aattttaaaag	gatctaggtg	agatccccc	ttgataatct	10020
catgaccaaa	atcccttaac	gtgagttttc	gttccactga	ggcgcagacc	ccgtagaaaa	10080
gatcaaagga	tcttctttag	atcccttttt	tctgcgcgta	atctgctgct	tgcaaacaaa	10140
aaaaccacccg	ctaccagcg	tggtttgtt	gccggatcaa	gagctaccaa	ctcttttcc	10200
gaaggttaact	ggcttcagca	gagcgcagat	accaaatact	gtcccttctag	tgttagccgt	10260
gttaggcac	cacttcaaga	actctgtac	accgcctaca	tacctcgetc	tgctaatact	10320
gttaccaagt	gtctgtgcca	tgggcgatata	gtcgtgtctt	accgggttg	actcaagacg	10380
atagttacccg	gataaggcgc	agcggtcggg	ctgaacgggg	gttctgtgca	cacagccccag	10440
cttggagcga	acgacactaca	ccgaactgag	ataccatcag	cgtgagctat	gagaaggcgc	10500
cacgcttccc	gaagggagaa	aggcggacag	gtatccgta	agcggcaggg	tcggaacagg	10560
agagcgcacg	agggagctc	cagggggaaa	cgccctggtat	ctttatagtc	ctgtcgggtt	10620
tcgccccctc	tgacttggc	gtcgatttt	gtgatgtcg	tcaaaaaaaaa	ggagctatag	10680
gaaaaacgcc	agcaacgcgg	cctttttacq	gttctggcc	ttttctgtca	cttttgcgtc	10740
catgttctt	cttcgttata	ccccctgat	tgtggataac	cgtattacc	cttttgcgt	10800
agctgatacc	gtctccgc	gccgaacgac	cgaggcgc	gagtcaatgt	gcgaggaaagc	10860
ggaagagcgc	ctgtgcgg	attttctct	tacgcatact	tgccgttattt	cacacccat	10920
accgccttag	aagccataga	gcccacccga	tccccagcat	gcctgttatt	gtcttccca	10980
tcctccccc	tgctgtctg	ccccacccca	ccccccagaa	tagaatgaca	cctactcaga	11040
caatgcgtat	caatttccct	attttattag	gaaaggacag	ttggaggtgg	accttccagg	11100
gtcaaggaaag	gcacggggga	ggggcaaaaca	acagatggct	ggcaactaga	aggcacagtc	11160
gaggctgtatc	agcggactct	agcattttag	tgacactata	aatatggggc	ctctagatgc	11220
atgctcgagc	ggccgttct	tattttctgg	'gcaatgtatg	aaaagggtgt	agaggatgt	11280
gcaaatattt	cattatgt	gttggccat	gaccagtccc	atgaaaatga	catagagtagt	11340
gcacttggag	ttgtgtctcc	tgtttcttgt	gtaccgttta	gtgtatgtt	tagtgcata	11400
ggtttagttt	tgtetccgtt	taagttaaact	tgactgacaa	tgttactttt	ggcagttta	11460
ccgtgagatt	ttggataagc	tgataggtt	ggcataaaatc	caacagcgtt	tgtataggct	11520
gtgccttcag	taagatctcc	atttctaaag	ttccaaatatt	ctgggtccag	gaaggaaattt	11580
tttagtagca	ctccattttt	gtcaaatctt	ataataagat	gaccatctt	aactgttcca	11640
gatattggag	ccaaactgccc	tttaacagcc	aaaactgaaa	ctgttagca	tatttactgt	11700
ccacattttg	ttaagaccaa	agtgagttt	gcatcttct	ctgcatttag	tctacatgtt	11760
ggagatggag	ctgggtgtgt	ccacaaagtt	agcttatcat	tatttttgc	tcctactgt	11820
atggcacctg	tgctgtcaaa	actaaggcca	gttcttagtt	taggaaccat	agccttgc	11880
gaatcaaatt	ctaggccat	gccaattttt	gttttgaggg	gattttgttt	tggtgccat	11940
ggtaaccacca	atccaaagccc	atctctgtca	ttaatggcta	ttggctgtgc	gtcaaacatc	12000
aacccttgg	cagtgtttag	gttaacccat	agctttttgg	atttgcgtt	agctgtaaac	12060
aagtaaaaggc	ctttttgtt	gttaatattcc	aaagttgtgg	ctgagtttat	aaaaagagggg	12120
ccctgtctta	gtcttagatt	tagttgttt	tgagcatcaa	acggataact	aacatcaagt	12180
ataaggcgctc	tgttttgaga	atcaatctt	agtcctctt	ctacatcaag	ttgcattattt	12240
ccttgtgaat	caaaaacccaa	ggctccagta	acttttagtt	gcaaggaaagt	attattatata	12300
gtcacacccg	gaccoagtgc	tacggtcaaa	gtgtttaggt	cgtctgttac	atgcaaaagg	12360
cccccgtaact	tttagtcttag	ttttccat	tgtgtataaa	ttggctcttt	caagtcata	12420
cccaagctac	cagtggcagt	agttagaggg	ggtgaggcag	tgtatgtaa	ggtaactgt	12480
tcggctgtgg	tgagggggcc	tgatgtttgc	agggttagct	ttccttctgt	cactgtgagg	12540
ggtccttggg	tgccaaatgt	aagtttggag	tgctgcacgg	ttacggggc	ctgtgtattt	12600
atggtgagtt	tgttgcggc	gaccattaga	ggtgcggcgg	cagccacagt	tagggcttct	12660
gaggtaactg	tgaggggtgc	agatattttc	aggtttatgt	ttgacttgg	ttttttgaga	12720
ggtgggtctca	cagtgttac	attttggag	gtaagggttgc	ccgcctcg	cagagagagg	12780
ccgttgccca	ttttgagcgc	aagcatgcca	ttggaggtaa	ctagaggtt	ggataggcgc	12840
aaagagagta	cccccaagggg	actcttctt	aaccatctt	gggatacaaa	gggaggagta	12900
agaaaaggca	cagtggagg	accggttttc	gtgtcatat	gatacaccgg	ttgtgaatgt	12960
tcttcagacg	gtcttgcgc	tttcatctt	gatctcaagc	ctgcacaccc	tcacccgtc	13020
catccgcgt	ctcaagaccc	cctactttt	ttacatcatc	agcagcaccc	ccggccagaaa	13080
caaccccgac	cgccacccgc	tgccggccgc	cacggtgctc	agcctaccc	gcaactgt	13140
ctggtttagac	gccttctcg	agaggttttc	cgatccgg	gatgcggact	cgctcagg	13200
cctcgggtgc	ggagttccgt	tcggaggccg	acgggtttcc	gatccaagag	tactggaaag	13260
accgcgaaga	gtttgtctc	aaccgcgagc	ccaacagcga	gctcgaattc	agatccg	13320
tcggtagccaa	gctttgggtct	ccctatagt	agtcgttata	atttcgat	gcccgtaa	13380
agtgggttct	ctagtagcc	agagactct	gcttatact	accccccacc	gtacaccc	13440
accggccat	tgcgtcaat	ggggcaggat	gttacgacat	tttggaaagt	cccggttatt	13500
ttgggtccaa	aacaaactcc	cattgacgtc	aatggggtgg	agacttggaa	atccccgt	13560
gtcaaaccgc	tatccacgc	cattgtat	ctgccaaaac	ccatcacca	ttgtatagc	13620

gatgactaat	acgttagatgt	actgccaagt	aggaaagtcc	cataaggcgtca	tgtactgggc	13680
ataatgcgg	gccccccatt	taccgtcatt	gacgtcaata	ggggcggtac	ttggcatatg	13740
atacacttga	tgtactgcca	agtggggcgt	ttaccgtaaa	tagtccaccc	attgacgtca	13800
atggaaagtc	cctattggcg	ttactatggg	aacatacgta	attattgacg	tcaatggcg	13860
ggggtcgttg	ggcggtcagc	caggcgccc	atttaccgt	agttatgtaa	cgcggaaactc	13920
catatatggg	ctatgaacta	atgaccgggt	aattgattac	tattaataac	tagtcaataa	13980
tcaatgtcaa	cgcgtatata	tggcccggtac	atcgcgaaagc	agcgcggaaac	gcctaaccct	14040
aagcagattc	ttcatgcaat	tgtccgttcaa	gccttgcctt	gttgttagctt	aaattttgtc	14100
cgcgactact	tcagcgacct	ccaaacacaca	agcaggggagc	agatactggc	ttaactatgc	14160
ggcatcagag	caggatgtac	ttagagtgca	ccataggggca	tccggagatc	tcccgatccg	14220
tctatggtgc	actctcagta	caatctgc	tgtatccgtca	tagttaaggc	agtataact	14280
ccgtatccgc	tacgtgactg	ggtcatggct	gcgcggccac	acccggcaac	acccgcgtac	14340
gcgccttgc	gggcttgc	gctccggca	tccgcttaca	gacaagctgt	gaccgtctcc	14400
gggagctca	tgtgtcagag	gttttccaccc	tcatcaccga	aacgcgcgag	gcagc	14455

<210> 16
<211> 10610
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plasmid

<400> 16
 gacggatcg gagatccgca cggtacacag aattcaggag acacaactcc aagtgcatac 60
 tctatgtcat tttcatggga ctggctgc cacaactaca ttaatgaaat atttgcaca 120
 tcctttaaca cttttcata cattgccccaa gaataaagaa tcgtttgtgt tatgtttcaa 180
 cgtgtttatt tttcaattgc agaaaatttc aagtcattt tcattcagta gtatagcccc 240
 accaccacat agcttataca gatcacccgt ccttaatcaa actcacagaa cccttagtatt 300
 caaacctggca cttccctccc aacacacaga gtacacagtc ctttctcccc ggctggcc 360
 aaaaagcatc atatcatggg taacagacat attcttaggt ttatattcc acacggttc 420
 ctgtcgagcc aaacgctcat cagtgtatatt aataaactcc cccggcagct cacttaagt 480
 catgtcgctg tccagctgct gagccacagg ctgctgtcca acttgcgggt gcttaacggg 540
 cggcgaagga gaagtcacg cctacatggg gtagagtc taatcgtgca tcaggatagg 600
 gcggtgttgc tgacgcagcg cgcaataaaa ctgctgcgc cgccgcctcg tcctgcagga 660
 atacaacatg gcagtggctc cctcagcgat gattcgcacc gccccgagca taaggccct 720
 tgtccctccgg gcacagcago gcacccctgtat ctcacttaaa tcagcacagt aactgcagca 780
 cagcaccaca atattgttca aaatccccca gtcacaggcg ctgttatccaa agtcatggc 840
 ggggaccaca gaaccacatc ggccatcata ccacaacgcg aggttagatta agtggccacc 900
 cctcataaaac acgctggaca taacattac ctcttttgcg atgttgaat tcacaccctc 960
 cccgttaccat ataaacctct gattaaacat ggcccatc accaccatcc taaaccagct 1020
 ggccaaacc tgccgcggg ctatacactg cagggaaaccg ggacttggaaat aatgacagt 1080
 gagagcccaag gactcgtaac catggatcat catgctcgatc atgatatcaa tttggcaca 1140
 acacaggcac acgtgcatac acttcctcag gattacaagc tcctccgcg ttagaaccat 1200
 atccccggga acaacccatt cctgaatcag cgtaaatccc acactgcagg gaagacctcg 1260
 cacgttaactc acgttgtgca ttgtcaaaatgtt gttacattcg ggadggcagcg gatgatcc 1320
 cagtatggta gcccgggtt ctgtctcaaa aggaggtaga cgatccctac tttacggat 1380
 cgccggagac aaccggatc gtgttggctg tagtgcatac ccaaataatggaa cgccggacgt 1440
 agtcataattt cctgaagcaa aaccagggtc gggcgtgaca aacagatctg cgttcccg 1500
 ctcggcgctt agatcgctcgtt gtttagttagt ttttttttttccactcttc aaagcatcca 1560
 ggcggcccccct ggctcggtt tctatgtaaa ctcttcatcg cgccgcgtgcc ctgataacat 1620
 ccaccacccgc agaataagcc acaccccgcc aacctacaca ttcttcgtc gagtacacaca 1680
 cgggaggagc gggaaagagct ggaagaaccca tgttttttttt ttattccaa aagattatcc 1740
 aaaacccctcaa aatggaaatc tattaatgtt acgcgcctcc ctcgggtggc gtggtaaac 1800
 tctacagccca aagaacacatg atggcattt gtaagatgtt gacaaatggc ttccaaaagg 1860
 caaacggccc tcacgtccaa gtggacgtt aaggctaaacc cttcagggtt aatctctct 1920
 ataaacatcc cagcacccctt aaccatgcctt aaataatctt catctcgcca ctttctcaat 1980
 atatctctaa gcaaatcccg aatattaaatgtt ccggccattt taaaatctg ctccagagcg 2040
 ccctccacct tcagcctcaa gcaacgttccaa atgattgcaaa aatttcagggt tcctcacaga 2100
 cctgtataag attccaaaagc ggaacattaa caaaaatacc gcatcccgat aggtcccttc 2160
 gcaggggccag ctgaacataa tcgtgcagggt ctgcacggac cagcggccgc acttcccg 2220

caggaaacctt	gacaaaagaa	cccacactga	ttatgacacg	catactcgaa	gtctatgtcaa	2280
ccagcgtagc	cccgtatgtaa	gctttgttgc	atgggcggcg	atataaaatg	caaggtgtcg	2340
ctcaaaaaat	caggcaaagc	ctcgcgaaa	aaagaaaagca	catcgttagtc	atgctcatgc	2400
agataaaaggc	aggttaagtc	cggaccacc	acagaaaaag	acaccatttt	tctctcaaac	2460
atgtctgccc	gtttctgcat	aaacacaaaa	taaaataaca	aaaaaacatt	taaacattag	2520
aaggctgtct	tacaacagga	aaaacaaccc	ttataagcat	aagacggact	acggccatgc	2580
cggcgtgacc	gtaaaaaaaaac	tggtcacccgt	gattaaaaag	caccacccgac	agctccctcg	2640
tcatgtccgg	agtctataatg	taagactcgg	taaacacatc	aggttgattc	atcggtcagt	2700
gctaaaaaggc	gaccggaaata	gccccggggg	atacataccc	gcaggcgtag	agacaacatt	2760
acagccccca	taggaggtat	aacaaaatta	ataggagaga	aaaacacata	aacacctgaa	2820
aaaccctctt	gcctaggcaa	aatagcacc	tcccgctcca	gaacaacata	cagcgcttca	2880
cagcggcagc	ctaacagtca	gccttaccag	taaaaaagaa	aacctattaa	aaaacaccca	2940
ctcgacacgg	caccagctca	atcagtca	gtgtaaaaaa	gggccaagtg	cagagcgagt	3000
atataatgg	ctaaaaaaatg	acgtaacggt	taaagtccac	aaaaaacacc	cagaaaacccg	3060
cacgcgaacc	tacgccccaga	aacgaaagcc	aaaaaaaccca	caacttccct	aaatcgtaac	3120
ttccgttttc	ccacgttacg	taacttcccg	gatctctcc	cgatccccct	tggtcgactc	3180
tcagtagcat	ctgtctgtat	gcccatagt	taaggcgtat	tctgtccct	gcttgtgtgt	3240
tggagggtcg	tgagtagtgc	gcgacaaa	tttaagctac	aacaaggca	gggtgttgc	3300
acaattgcat	gaagaatctg	cttagggta	ggcgtttgc	gctgttgcg	gatgtacggg	3360
ccagatatac	gcgttacat	tgattattga	ctagttatta	atagtaatca	attacggggt	3420
cattagtca	tagccccat	atggagttcc	gcgttacata	acttacggta	aatggccgc	3480
ctggctgacc	gccccaaacgc	ccccggccat	tgacgtcaat	aatgacgtat	gttcccatag	3540
taacgccaat	agggacttc	cattgacgtc	aatgggttga	ctatttacgg	taaactgccc	3600
acttggcagt	acatcaagtg	tatcatatgc	caagtacgccc	cccttattgac	gtcaatgacg	3660
gttaaatggcc	ccgcctggcat	tatgcccagt	acatgaccct	atgggacttt	cctacttggc	3720
agtacatcta	cgtatttagtc	atcgcttata	ccatgttgc	gcccgttttg	cgtacatca	3780
atgggcgtgg	atagcggtt	gactcacggg	gatttcaag	tctccacccc	attgacgtca	3840
atgggagttt	gtttggcac	aaaaatcaac	gggactttcc	aaaatgtcg	aacaactccg	3900
ccccatttgc	gcaaaatgggc	ggtaggcgtg	tacgggtggg	ggtctatata	agcagagctc	3960
tctggctaaac	tagagaaccc	actgtctact	ggotttatcg	aattaatacg	actcactata	4020
gggagaccca	agcttggta	cgagctcgga	tctgaatttcg	agtcgtctgt	tgggctcg	4080
gttggaggaca	aacttctcgc	ggtttttcc	gtacttctgg	atcgaaaccc	cgtcgccctc	4140
cgaacggta	tcggccaccg	agggacttgc	gcccgtccgc	atcgaccgg	tcggaaaccc	4200
tctcgagaaa	ggcgtctaac	cagtccacgt	cgcaaggtag	gctgagcacc	gtggcggccg	4260
gcagcgggtg	gcccgtgggg	ttgtttctgg	cgaggtgtct	gtgatgtat	taattaaagt	4320
aggcggctt	gagacggcg	atggtcagg	tgaggtgtgg	caggcttgc	atccaagatg	4380
aagcgcgca	gaccgtctga	agataccctc	aacccgtgt	atccatatga	cacggaaacc	4440
ggtcctccaa	ctgtgcctt	tcttactct	cccttgc	cccccaatgg	gtttcaagag	4500
agtccccctg	gggtactctc	tttgcgccta	tccgaaaccc	tagttaccc	caatggcatg	4560
cttgcgtca	aaatggca	cgccgtctct	ctggacgg	ccggcaaccc	tacctccaa	4620
aatgtaccaa	ctgtgagccc	accttcataa	aaaacaaatg	caacataaa	cctggaaata	4680
tctgcacccc	tcacagttac	ctcagaaggc	ctaactgtgg	ctggcccccgc	acctctaata	4740
gtcgccggca	acacactcac	catgcaatca	caggccccgc	taaccctgtca	cgactccaa	4800
cttagcattt	ccacccaagg	acccctcaca	gtgtcagaag	gaaagctagc	cctgcaaaaca	4860
tcaggcccc	tcaccaccac	cgatagcagt	acccttacta	tcactgcctc	acccctcta	4920
actactgcca	ctggtagctt	gggcatttgc	ttgaaagac	ccatttatac	acaaaatgg	4980
aaacttaggac	taaagtacgg	ggctcccttgc	catgttacac	acgacccctaa	cactttgacc	5040
gttagcaactg	gtccagggtgt	gactattaaat	aataacttcc	tgcaaaactat	agttactgtg	5100
gccttgggt	tttgattcaca	aggcaatata	caacttata	tagcaggagg	actaaggatt	5160
gattctcaaa	acagacgcct	tataactgtat	gtttagttatc	cgtttgtatc	tcaaaaaacaa	5220
ctaaatctaa	gactaggaca	ggggcccttgc	tttataaaact	cagccccacaa	cttggatatt	5280
aactacaaca	aaggccttta	cttgcattaca	gcttcaaaca	atcccaaaaa	gcttggaggtt	5340
aacctaagca	ctgccaaggg	gttgatgtt	gacgttacag	ccatagccat	taatgcagga	5400
gatgggctt	aatttggttc	acctaatacg	ccaaacacaa	atccctca	aacaaaaatt	5460
ggccatggcc	tagaatttga	ttcaaaacaag	gctatgttc	ctaaacttagg	aactggccctt	5520
agttttgaca	gcacagggtgc	cattacaga	ggaaacaaaa	ataatgataa	gctaactttg	5580
tggaccacac	cagctccatc	tccttaactgt	agactaaatg	cagagaaaaga	tgctaaactc	5640
acttgggtct	taaaaaatgt	tggcgtatca	atactgtca	cgatttcgt	tttggctgtt	5700
aaaggcgtt	tggctcaat	atctggaca	gttcaaaatgt	ctcatcttat	tataagatt	5760
gacgaaaaatg	gagtgtctact	aaacaatttc	ttcctggacc	cagaatattt	gaacttttga	5820
aatggagatc	ttactgaagg	cacagcctat	acaaacgctg	tttgatttt	gcctaaaccta	5880
tcagcttatac	caaataatctca	cggtaaaact	gccaaagta	acattgtcag	tcaagttac	5940

ttcgttcatc catagttgcc tgactcccg tcgtgttagat aactacgata cgggagggct 9720
 taccatctgg ccccagtgc gcaatgatac cgcgagaccc acgctcaccc gctccagatt 9780
 tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggccct gcaactttat 9840
 ccgcctccat ccagtctatt aattgttgc gggaaagctag agtaagttagt tcgccagtt 9900
 atagtttgcg caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcggttg 9960
 gtatggcttc attcagctcc gggtcccaac gatcaaggcgc agttacatga tcccccatgt 10020
 tgtgcaaaaa agcggtttagc tccttcggtc ctccgatcgt tgcagaagt aagttggccg 10080
 cagtgttatac actcatggtt atggcagcac tgcatataattc tcttactgtc atgcacatecg 10140
 taagatgctt ttctgtgact ggtgagtaact caaccaagtc attctgagaa tagtgtatgc 10200
 ggcgaccgag ttgcttgc cccgcgtcaa tacgggataaa taccgcgcca catagcagaa 10260
 cttaaaaagt gctcatcatt ggaaaacgtt ctccggggcg aaaactctca aggatcttac 10320
 cgctgtttag atccagttcg atgtaaccca ctgcgtgcacc caactgatct tcagcatctt 10380
 ttacttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg 10440
 gaataagggc gacacggaaa tggtaatac tcaatactt ccttttcaa tattattgaa 10500
 gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata 10560
 aacaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgacgtc 10610

<210> 17
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220> *Primer*
 <223> Description of Artificial Sequence: Primer

<400> 17
 tgtacaccgg atccggcgca cacc

24

<210> 18
 <211> 35
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Primer

<400> 18
 cacaacgagc tcaattaatt aattgccaca tcctc

35

<210> 19
 <211> 4
 <212> PRT
 <213> adenovirus

<400> 19
 Thr Leu Trp Thr
 1

<210> 20
 <211> 12
 <212> PRT
 <213> adenovirus

<400> 20
 Pro Ser Ala Ser Ala Ser Ala Ser Ala Pro Gly Ser
 1 5 10

<210> 22
 <211> 327
 <212> DNA

<213> adenovirus

<400> 22

agatctgaat	tcggactcgc	tgttgggctc	gcgggttggagg	acaaaacttt	cgcggctttt	60
ccagttactct	tggatcgaa	accctgtcgcc	ctccgaacgg	tactccgcac	ccgaggggacc	120
tgagcgagtc	cgcacatcgacc	ggatcgaaaa	acctctcgag	aaaggcgctt	aaccagtca	180
agtcgcaagg	taggctgagc	accgtggcg	gcggcagcg	gtggcggtcg	gggttgttcc	240
tggcggaggt	gctgctgtat	atgttaattaa	agttaggcgg	ctttagacgg	cggatggtcg	300
aggtgaggtg	tggcaggctt	gagatct				327

<210> 23

<211> 32480

<212> DNA

<213> adenovirus

<400> 23

catcatcat	aataaacctt	attttgatt	gaagccata	tgataatgg	gggttgagg	60
tttgtgacgt	gcgcggggcg	tgggaacggg	gcgggtgacg	tagtagtggt	ggggaaagtgt	120
gatgttcaa	gtgtggcgga	acacatgtaa	gcgacggatg	tggcaaaagt	gacgttttg	180
gtgtgcggc	gtgtacacag	gaagtgacaa	tttcgcgcg	gttttaggcg	gatgttgtag	240
taaatttgg	cgtAACCGAG	taagatttg	ccattttcgc	ggggaaactg	aataagagga	300
agtggaaatct	gaataatttt	gtgttactca	tagcgctaa	tctctagcat	cgatgtcgac	360
aagcttgaat	tgcattaatg	tgagtttagt	cactcattag	gcaccccgag	cttttacact	420
tatgtctccg	gctcgatgt	tgtgtggat	tgtgagcgga	ataacaatttc	acacagaaa	480
cagctatgac	catgattacg	aattcggcgc	agcacccatgg	cctgaaataa	cctctgaaag	540
aggaacttgg	ttaggtacct	tctgaggcgg	aaagaaccag	ctgtggaaatg	tgtgtcagtt	600
aggggtgtga	aagtccccag	gctccccagc	aggcagaagt	atgcaaaagca	tgcatctcaa	660
ttagtccagca	accagggtgt	gaaagtcccc	aggetcccc	gcaggcagaa	gtatgaaag	720
catgcacatc	aatttagtca	caaccatagt	cccgcccccta	actccgcccc	tcccggccct	780
aactccggcc	agttccgcccc	attctccggc	ccatggctga	ctaatttttt	ttatttatgc	840
agaggccgag	gccgcctcg	cctcttaggt	attccagaag	tagtgaggag	gcttttttgg	900
aggccctaggc	ttttccaaaa	agcttggat	ctctataatc	tcgcgcaccc	tatttttccc	960
tgcacacactt	ttaagccgt	agataaaacag	gctgggacac	ttcacatgag	cggaaaaatac	1020
atcgtaacct	gggacatgtt	gcagatccat	gcacgtaaac	tcgcaagccg	actgatgcct	1080
tctgaacaat	ggaaaggcat	tattgcccgt	agccgtggcg	gtctggtacc	gggtgggtgaa	1140
gaccagaaac	agcacctcga	actgagccg	gatattggcc	agcgtttcaa	cgcgctgtat	1200
ggcgagatcg	atcccgctgt	tttacaacgt	cgtgactggg	aaaaccctgg	cgttacccaa	1260
cctaattcgcc	ttgcagcaca	tcccccttc	gccagctgg	gtaatagcga	agaggccgc	1320
acccatggcc	cttccaaaca	gttgcgcage	ctgaatggcg	aatggcgtt	tgccctgttt	1380
ccggcaccag	aaggcgtgcc	ggaaagctgg	ctggagtcg	atcttctgt	ggccgatact	1440
gtcgctgtcc	cctccaaactg	gcagatgcac	ggttacatgt	cggccatcta	caccaacgta	1500
acctatccca	ttacggtcaa	tccggcgtt	gttccacacgg	agaatccgac	gggttggat	1560
tcgctcacat	ttaatgttga	tgaaagctgg	ctacaggaag	gccagacgcg	aattattttt	1620
gatggcgta	actccgcgtt	tcatctgtgg	tgcaacgggc	gctgggtcgg	ttacggccag	1680
gacagtctt	tgccgtctga	atttgacctg	agcgcatttt	tacgcgcgg	agaaaaccgc	1740
ctcgccgtga	tgggtctgct	ttggagtgt	ggcaggattatc	tggaagatca	ggatatgtgg	1800
cggatgagcg	gcattttcccg	tgacgtctcg	ttgctgcata	aaccgactac	acaaatccgc	1860
gatttccatg	ttgcactcg	cttaatgtat	gatttcagcc	ggcgtgtact	ggaggctgaa	1920
gttcagatgt	gcggcgagg	gcgtgactac	ctacgggtaa	cagttttttt	atggcagggt	1980
ggaaacccg	tcgcgcagg	cacccgcct	ttcggcggt	aaattatcg	tgagcgctgt	2040
ggttatggcc	atcgctcact	actacgtctg	aacgtcgaaa	acccgaaact	gtggagcc	2100
gaaatcccg	atctctatcg	tgccgtgggt	gaactgcaca	ccggccgacgg	cacgctgatt	2160
gaagcagaag	cctgcgtatgt	cggttccgc	gagggtcgga	ttggaaaatgg	tctgctgtg	2220
ctgaacggca	agccgttgct	gattcggaggc	gttaaccgtc	acgagcatca	tcctctgtat	2280
ggtcagggtca	tggatgagca	gacgatgggt	caggatatcc	tgtgtatgaa	gcagaacaaac	2340
ttaaacccgc	tgcgtgttgc	gcattatccg	aaccatccgc	tgtggatcac	gctgtgcac	2400
cgctacccgc	tgtatgtgtt	ggatgaagcc	aatatgtaaa	cccacggcat	ggtgccaaatg	2460
aatcgcttga	ccgatgtatcc	gcgcgtggct	ccggcgtatga	gcaacgcgt	aacgcgtat	2520
gtgcacccgc	atcgtatca	ccggatgtgt	atcatctgtt	cgctggggaa	tgaatcaggc	2580
cacggccgtca	atcacgacgc	gctgtatcgc	tggatcaa	ctgtcgatcc	ttccggcccg	2640
gtgcgtatgt	aaggccggcg	agccgacacc	acggccaccc	attattatttg	cccgatgtac	2700
gcgcgcgtgg	atgaagacca	gccttcccg	gctgtgcgcg	aatggtccat	aaaaaatgg	2760

tttcgcgtac	ctggagagac	gcccccgctg	atccttgcg	aatacggcca	cgcgatgggt	2820
aacagtcttgc	gggtttcgcc	taaatactgg	caggcgttc	gtcagtatcc	ccgttacag	2880
ggcggttcg	tctggactg	ggtgatcg	tcgtgatta	aatatgatga	aaacggcaac	2940
cgtggtcgg	cttacggcg	tgatttggc	gatacggca	acgatcgcca	gttctgtatg	3000
aacggctcgg	tcttgcgcg	ccgcacggcg	cattcagcgc	tgacggaagc	aaaacaccag	3060
cagcagttt	tccagttccg	tttateccgg	caaaccatcg	aagtgaccag	cgaatacctg	3120
ttccgtcata	gcatatacga	gctctgcac	tggatggtgg	cgtggatgg	taagccgctg	3180
gcaagcggtg	aagtgcctt	ggatgtcg	ccacaaggta	aacagtgtat	tgaactgcct	3240
gaactaccgc	agccggagag	ccggggca	ctctggctca	cagtgacgct	agtgcacccg	3300
aacgcgaccg	catggcaga	agccgggcac	atcagegcct	ggcagcagtg	gcgtctggcg	3360
aaaaacctca	gtgtgacgct	ccccggcg	tcccacgcca	tcccgcac	gaccaccagc	3420
gaaatggatt	tttgcatacg	gctggtaat	aagcgttgc	aatttaaccg	ccagtcaggc	3480
tttcttcac	agatgtggat	tgccgataaa	aaacaactgc	tgacggcgct	gcfgatcg	3540
ttcacccgtg	caccgctgga	taacgacatt	ggcgtaaagt	aagcgacccg	cattgaccct	3600
aacgcctggg	tcaaacgcgt	gaaggcggcg	ggccattacc	aggccgaaacg	agcgttgtt	3660
cagtgcacgg	cagatacact	tgtgtatcg	gtgtgttgc	cgcggctca	cgcgccggag	3720
catcagggg	aaaccttca	tatcggccg	aaaaactacc	ggattgtatgg	taggttca	3780
atggcgat	ccgttgcgt	tgaagtggcg	agcgatatac	gcgcattccgg	ggggatttgg	3840
ctgaactgcc	agctggcgca	ggtagcagag	cgggtaaact	ggctcggtt	agggccgca	3900
aaaaactatc	ccgaccgcct	tactggcc	tgttttgc	gctgggatct	gccattgtca	3960
gacatgtata	ccccgtacgt	cttcccgg	gaaaacggtc	tgcgctggg	gacgcgcgaa	4020
ttgaattatg	gcccacacca	gtggcggcgc	gacttccagt	tcaacatcag	ccgctacagt	4080
caacagcaac	tgtggaaac	cagccatcg	catotgtgc	acgcggaaga	aggcacatgg	4140
ctgaatatcg	acggttcc	tatgggatt	ggtggcgcacg	actcttggag	cccgctagta	4200
tcggcgaat	tccagctgag	ccgggtgc	taccattacc	agttgttctg	gtgtcaaaaa	4260
taataataac	cggcaggcc	atgtctggc	gtatttgcg	taagggaaatc	cattatgtac	4320
tattnaaaaa	acacaaactt	ttggatgtt	ggtttattct	ttttctttta	ctttttatc	4380
atgggagcct	acttccggt	tttcccgtt	tggctacatg	acatcaacca	tatcagcaaa	4440
agtgatacgg	gtatttattt	tgccgctatt	tctctgttct	cgctattatt	ccaaacccgt	4500
tttggctcgc	ttctgcaca	actcggact	tgtttattgc	agcttataat	ggttacaaaat	4560
aaagcaatag	catcacaaat	ttcacaataa	aagcattttt	ttcactgc	tctagttgt	4620
gttggtccaa	actcatcaat	gtatcttac	atgtctggat	ccagatctgg	gcgtggctt	4680
agggtggaa	agaatata	agggtgggt	ctttagttagt	tttgtagtct	ttttcagca	4740
ccgcgcgccc	ccatgagcac	caactcggt	gttagaagca	tttgtagct	atatttgaca	4800
acgcgcatgc	ccccatggc	cggggtgcgt	cagaatgtga	tgggctccag	cattatgtgt	4860
ccccccgtcc	tgcccgcaaa	ctctactacc	ttgacctacg	agaccgtgtc	tggaaacgc	4920
ttggagactg	caggctccgc	cgccgettc	gccgctgcag	ccaccggcc	cgggatttgt	4980
actgactttg	cttccctgag	cccgcttgc	agcaagtgcag	cttccgtt	atccgcgc	5040
gatgacaagt	tgacggctct	tttggcaca	ttggatttctt	tgaccgg	acttaatgtc	5100
gttctcagc	agctgttgg	tctgcgc	caggttctg	ccctgtaa	ttccctccct	5160
cccaatggg	ttttaaaacat	aaaaataaaa	ccagactctg	tttggattt	gatcaagca	5220
gtgtcttgc	gtctttat	aggggtttt	cgccgcgg	aggcccgga	ccagcggt	5280
cggtcggtt	gggtccctgt	tatttttcc	aggacgttgc	aaaggtact	ctggatgtt	5340
agatacatgg	gcataagccc	gtctctgggg	tggaggtage	accactgc	agcttcatgc	5400
tgcgggggtt	tgttgttagat	gatccagtc	tageaggagc	gctggcg	gtgcctaaaa	5460
atgtcttca	gtagcaagct	gattgccc	ggcaggccct	tggtgtaa	gtttacaaag	5520
cggtaaagct	gggatgggt	catacg	gatatgagat	gcatcttgc	ctgtat	5580
agggtggct	tgttccc	ggatcc	catatccctc	tgttgc	aaccaccagc	5640
acagtgtatc	cggtcactt	ggggaaat	ttcatgtat	taaaggaaa	tgctgttgc	5700
aacttggaga	ccgccttgc	acccatca	ttttccatgc	attcgccat	aatgtggca	5760
atgggcccac	gggcggcgcc	ctgggc	atatttctgg	gatcaactac	gtcatatgtt	5820
tgttccagga	tgagatcg	ataggccatt	tttacaa	gcccgcgg	ggtgccagac	5880
tgcgttataa	ttgttccatc	cgcccagg	cgtagttac	cctcacagat	ttgcatttcc	5940
cacgccttgc	gttcagatgg	ggggatcatg	tctacctgc	gggcgatgaa	aaaaacggtt	6000
tccgggttgc	gggagatcg	ctgggaagaa	agcaagg	tgagcagct	cgacttacc	6060
cagccgggttgc	ggccgttataat	cacac	ttcc	actggatgtt	aagagagct	6120
cagtcgcgt	cattccctgag	ctt	accgggt	gcatgtccct	gactcgc	6180
ttttccctgt	ccaaatccgc	gggggg	gc	gcatagc	ttcttgc	6240
gaagcaaaat	ttttcaacgg	tttgc	gg	gtatgtttt	gagcgttgc	6300
ccaaagcaat	ccaggcggc	tttgc	gg	ctacggcatc	tcgatcc	6360
atatctctc	gtttcgccgg	tttgc	gg	cggtgctcg	cggtgctcg	6420
ccagacgggc	cagggtcatg	tttgc	gg	cctcg	gtagtc	6480

tcacggtgaa ggggtgcgtt ccgggctgctcg cgctggccag ggtgcgcctt aggctggcc 6540
 tgctggtgcgtt gaaggcgctgc cggcttcgtc cctgcgcgtc ggccaggtagt catttgcacca 6600
 tgggtgtata gtccagcccc tccgcggcggt ggcccttggc ggcgcagttt cccttggagg 6660
 aggcccccga cgagggggcag tgcagacttt tgagggcgta gagcttggc gcgagaaaata 6720
 ccgattccgg ggagtagggca tccgcgcgcg aggccccgca gacggctctcg cattccacga 6780
 gccaggtagt ctctggccgt tccgggtcaa aaaccagggtt tccccatgc ttttgatgc 6840
 gtttcttacc tctgtttttc atgagggcggt gtccacgtc ggtgacaaaa aggtgtccg 6900
 tgtccccgtt tacagacttg agaggcctgt ctccgagcg tttcccggt tcctccctgt 6960
 atagaaactc ggaccactt gagacaaagg ctccgcgtcca ggccagcacg aaggaggcta 7020
 agtgggaggg gtagcggtcg ttgtccacta gggggtccac tcgctccagg gtgtgaagac 7080
 acatgtcgcc ctcttcggca tcaaggaagg tgattgggtt gtaggtgtag gccacgtgac 7140
 cgggtgttcc tgaagggggg ctataaaagg ggggtggggc gcgttgcgtcc tcactctt 7200
 ccgcacatcggt gtctgcggg gccagctgtt ggggtgagta ctccctctgt aaagcgggca 7260
 tgacttctgc gtaagatgt tcagtttca aaaacggagga ggatttgata ttccacctggc 7320
 ccgcggtagt cccttggagg gtggccgtat ccatctgtc agaaaaagaca attttttgt 7380
 tgtcaagctt ggtggcaaac gaccgtttaga gggcggttggc cagcaacttgc gcgatggagc 7440
 gcaggggttgc gttttgtcg cgatccgcg gtccttggc cgcgatgtt agtgcacgt 7500
 attcgcgcgc aacgcaccgc cattccggaa agacgggtgt ggcgtcgctg ggcaccagg 7560
 gcacgcgcca accgcgggttgc tgcagggtga caaggtcaac gctgggtggctt acctctccgc 7620
 gttaggcgtc gttggtccag cagaggcgcc cggcccttgcg cgagcagaat ggcggtaggg 7680
 ggtctagtc cgtctcggtcc ggggggtctg cgtccacgggtt aaagaccccg ggcagcaggc 7740
 ggcgcgtcgaat gtagtctatc ttgcacttcc gaaagtctgt cgcctgcgtc catgcgcggg 7800
 cggcaagcgc ggcgtcgat ggggttggat ggggacccca tggcatgggg tgggtgagcg 7860
 cggaggcgta catgcgcgcaaa atgtcgtaaa cgtagagggg ctctctgtat attccaaatg 7920
 atgtagggtt gcatcttcca cgcgcgtatgc tgccgcgcac gtaatcgat agtgcgtcg 7980
 agggagcgag gaggtcgggatcccgaggatgtc tacggggcggtt ctgctctgt cggaaagacta 8040
 tctgcctgaa gatggcatgt gagttggatg atatgggttgg acgctgaaag acgttgaagc 8100
 tggcgctgtt gagacactacc ggcgtcgcga cgaaggaggc gtaggagtcg cgcagctgt 8160
 tgaccagtc ggcgggtgacc tgacgtctt gggcgcaatgtt gtcgggggtt tccttgcgt 8220
 tgtcaactt atctcggtcc tttttttcc acagctcggt gttgagaca aactcttcgc 8280
 ggtcttcca gtacttctgg atcggaaacc cgtcgccgtc cgaacggtaa gggcttagca 8340
 tgtagaactg gttgcgcgtt tgtagggcgc acgatccctt ttctacgggtt agcgcgtatg 8400
 cctgcgcggc cttccggagc gagggttggg tgagcgcaaa ggtgtccctg accatgactt 8460
 tgaggtactg gtatggtaag tcagttgtcg cgcattccgc cttgcgtccag agcaaaaaatg 8520
 ccgtgcgtt tttggaaacgc ggatttggca gggcgaaaggat gacatcggtt aagagtatct 8580
 ttcccgccgc aggcatataag ttgcgtgtg tgccggaaaggg tccggcacc tcggAACGGT 8640
 tgtaattac ctggggcggtt agcagatct cgtcaaaaggc gttgatgtt tgccccacaa 8700
 tgtaaagttc caagaagcgc gggatccct tgatggaaagg caattttta agtccctgt 8760
 aggtgagctc ttcaggggagatgttgc gtcgttggat gggccagttc gcaagatgag 8820
 ggttggaaagc gacgaatgatgttgc ctccacaggat cacggggccat tagcattgc agtgggtcg 8880
 gaaaggttccaaacttgcga cctatggcca tttttctgg ggtgatgtc tagaaaggtaa 8940
 gcgggtcttgc tttccagcggtt tcccatccaa gttcgcggc taggtctcgc gcggcagtca 9000
 cttagggctc atctcgccgc aacttccatgtc ccagcatgaa gggcaacgc tgcttccca 9060
 aggccccat ccaagttatag gtctctatc ctaggtgtac aaagagacgc tcgggtcgag 9120
 gatgcgagcc gatcgggaaatgttgc acatgtatcc cccggccacca atggaggagatggat 9180
 tgtggtaaaatgttgc acatgttgc ctgcgacggg ccaacactt gttgatgtt ttgtaaaaac 9240
 gtgcgcgtatgttgc acatgttgc tgacatctgtt cttcccgccgc gtcaggtcg 9300
 cgcgcacaatg gaaaggcgatgttgc gggatcccttgatggat gggccgggtt ggctgggtgt 9360
 cttctacttc ggtctgttgc cttgcgttgc cttgcgttgc gagggttgc acgggtggatc 9420
 ggaccaccac ggcgcgcgcg cccaaatgttgc acatgttgc ggcggccgtt cggagcttgc 9480
 tgacaacatc ggcgcgtatgttgc acatgttgc tggtctggat gtttcccgccgc gtcaggtcg 9540
 gcggggctc ctgcgttgc acatgttgc gacggggatgttgc ggcgggggtt agatcccgat 9600
 gataacttac ttccaggggatgttgc tgggttggatgttgc ggcgttgc ggttgcgtt gggccgtatc 9660
 cccgcggcgc gactacggatgttgc cccgcggcgc ggcgggtggc cgggggggtt tccttggatg 9720
 atgcatctaa aacgcgttgc acatgttgc gggggcgatgttgc cccggggatgttgc gggccgtatc 9780
 cggggagggatgttgc cttcccgccgc ggcgcgcggc acatgttgc gggccgtatc 9840
 tagttgtgttgc ggcgttgc acatgttgc gggccgtatc tggatgttgc tggatgttgc ggcgttgc 9900
 gaagacgtatgttgc ggttgcgttgc acatgttgc gggccgtatc tggatgttgc ggcgttgc 9960
 gtcgttgcgttgc gggccgtatc acatgttgc gggccgtatc tggatgttgc ggcgttgc 10020
 gatctcgccatgttgc acatgttgc tttccctggatgttgc tttcccgccgc ggcgttgc 10080
 cacgggtggcg gcgagggtcg tggaaatgttgc gggccatgttgc tggatgttgc ggcgttgc 10140
 tccctcgatgttgc cagacgcggc gggccgtatc tggatgttgc ggcgttgc 10200

gtgccgcggg gacaggagga ctacaccaac tttgtgagcg cactgcggct aatgggtact 13980
 gagacaccgc aaagtgaggt gtaccagtct gggccagact atttttcca gaccagtaga 14040
 caaggcctgc agaccgtaaa cctgagccag gtttcaaaa acttgaggg gctgtggggg 14100
 gtgcggctc ccacaggcga cgcgcgacc gtgtctagct tgctgacgcc caactcgccc 14160
 ctgttgcgtc tgtaatacgc gcccgtcactc gacagtggc gctgtcccc ggacacatac 14220
 ctaggtcact tgctgacact gtaccgcgag gccataggtc aggccatgt ggacgagcat 14280
 actttccagg agattacaag tgtcagccgc ggcgtggggc aggaggacac gggcagccctg 14340
 gaggcaaccc taaactacct gctgaccaac cggcggcaga agatcccctc gtgcacagt 14400
 ttaaacagcg aggaggagcg catttgcgc tacgtgcagc agagcgttag ccttaacctg 14460
 atgcgcgacg ggttaacgcc cagcgtggcg ctggacatga cgcgcgca catggAACCG 14520
 ggcatgtatg cctcaaaaccc gccgtttatc aaccgcctaa tggactactt gcatcgccg 14580
 gcccggctgaa accccggaga ttccaccaat gccatcttga accccgcaactg gctaccgccc 14640
 cctggttctc acacccgggg attcgaggct cccgagggtt acgtatggatt cctctgggac 14700
 gacatagacg acagcgttt ttccccggaa cccgagaccc tgcttaggtt gcaacagcgc 14760
 gagcaggcag aggccggctt gcgaaaggaa agcttccgca ggccaaaggag cttgtccgat 14820
 ctaggcgtg cggccccggc gtcagatgtc agtagcccat ttccaaagctt gatagggct 14880
 cttaccagca ctcgcaccc cccggccgcg ctgcgtggcg aggaggagta cctaaacaac 14940
 tcgcgtctgc agccgcagcg cgaaaaaaac ctgcctccgg catttccaa caacgggata 15000
 gagagccatg tggacaagat gagtagatgg aagacgtacg cgcaggagca cagggacgtg 15060
 ccaggcccgc gcccggccac ccgtcgtcaa aggacgcacc gtcagggggg tctgggtgtgg 15120
 gaggacgtatg actccggcaga cgacacgcg gtcctggatt tggaggggag tggcaacccg 15180
 tttgcgcacc ttccggccgg gctgggggaa atgttttaaa aaaaaaaaaaag catgtacaa 15240
 aataaaaaaaat tcaccaaggc catggcaccg agcgttgggtt ttcttgatt ccccttagta 15300
 tgccggcgcg ggcgtatgtat gaggaaggctt ctccctccctc ctacgagagt gtggtgagcg 15360
 cggcccgagt ggcggcggcg ctgggttctc ctttcgtatgc tccccctggac ccggcggtt 15420
 tgcctcccgcg gtaectctgcg cttacccggg ggagaaacag catccgttac tctgagttgg 15480
 cacccttatt cgacacccacc cgtgttgcacc ttgtggacaa caagtcacg gatgtggcat 15540
 ccctgaacta ccagaacgcg cacagcaact ttctgaccac ggtcatccaa aacaatgact 15600
 acaggccggg ggaggcaacg acacagacca tcaatcttgc cgcggctcg cactggggcg 15660
 ggcacactgaa aaccatctgc cataccaaaca tgccaaatgt gaacgatgtc atgtttacca 15720
 ataagttaa ggcgcgggtt atgggttcgc gcttgcctac taaggacaat caggtggagc 15780
 tgaaataacga gtgggtggag ttacacgttc cccgaggggca cttactccgag accatgacca 15840
 tagaccttat gaacaacgcg atcgtggagc actacttgcg agtgggcaga cagaacgggg 15900
 ttctggaaag cgacatccgg gtaaaattttgc acacccgca cttcagactg gggtttggacc 15960
 ccgtcactgg tcttgtcatg cttctgggtt atacaaacacg agccttccat ccagacatca 16020
 ttttgcgtcc aggtgcggg gttggacttca cccacagccg cctgagcaac ttgtgggca 16080
 tccgcgaagcg gcaacccttc caggagggtt tttaggtac cttacgtatgt ctggagggtg 16140
 gtaacattcc cgcactgtt gatgtggacg cttaccaggc gagcttggaa gatgacaccg 16200
 aacaggccgg ggtggcgca ggcggcagca acagcgtgg cagggccgcg gaagagaact 16260
 ccaacgcggc agccgcggca atgcagccgg tggaggacat gaacgatcat gcattccgcg 16320
 ggcacacccctt tgccacacgg gctgaggaga agcgcgtca ggcggaaagca gcccggcaag 16380
 ctgcggccccc cgtgcgca cccggaggctg agaaggctca gaagaaacccg gtgatcaaac 16440
 ccctgacaga ggacagcaaa aacccgcattt aaccaatgat aaccaatgcg agcaccttca 16500
 cccagttaccg cagctgttac cttgcataca actacggcg ccttcgacc ggaatccgct 16560
 catgaccctt gtttgcgtact cctgacgtaa cctgcggctc ggagcaggct tactggctgt 16620
 tgccagacat gatgcaagac cccgtgaccc tccgctccac ggcggcagatc agcaacttca 16680
 cgggtgtggg cggcgagctg ttgcctgtc actccaaagag cttctacaac gaccaggccg 16740
 tctactccca actcatccgc cagtttaccc ctctgaccct cgtgttcaat cgctttcccg 16800
 agaaccatgat ttggcgcgcg cccggccaccc ccaccatcac caccgttcaat gaaaacgttc 16860
 ctgcgtctcac agatcacccg acgttaccgc tgccacacg catggaggaa gtccagcggag 16920
 tgaccattac tgacgcggca cccggccaccc gcccctactt ttacaaggcc ctgggcata 16980
 tctcgcccg cgtctatccg agccgcactt tttaggcacg catgttccatc ctttatatcgc 17040
 ccagcaataa cacaggctgg ggcctggctc tcccaagcaat gatgtttggc gggggcaaga 17100
 agcgtccgaa ccaacacccca gtgcgcgtgc gggggacta cccgcggccc tggggcgcgc 17160
 acaaacgcgg cccgacttggg cgcaccaccc tcgtatgcgc catgcacgcg gtgggtggagg 17220
 aggccgcggaa ctacacgcggc acggcccccac cagtgtccac agtggacgcg gccattcaga 17280
 ccgtgggtgcg cggaggccccc cgctatgtca aatgtaaaggag acggcggagg cgcgttagcac 17340
 gtcgcaccccg cccggccaccc ggcactccgc cccaaacgcgcg ggcggccggcc ctgtttaacc 17400
 ggcacacgtcg cccggccca cccggccca tccggggccgc tcgaaggctg gccgcgggtt 17460
 ttgtcactgt gccccccagg tccaggcgcg gaggccgcg cgcacgcgc gggccattt 17520
 gtgtatgac tcagggttcgc agggcaacg tttttttttt ggcgcactcg gttagcggcc 17580
 tgcgcgtgcc cgtgcgcacc cggccccccgc gcaacttagat tgcaagaaaa aactacttag 17640

actcgtaactg ttgtatgtat	ccagcggcgg	cggcgcgcaa	cgaagctatg	tccaagcgca	17700
aatcaaaaga agagatgctc	caggcatcg	cggcggagat	ctatggccc	ccgaagaagg	17760
aagagcagga ttacaagccc	cgaaagctaa	agcgggtcaa	aaagaaaaag	aaagatgtat	17820
atgatgaact tgacgacgag	gtggaaatgc	tgcacgtac	cgcgcccc	cgacgggtac	17880
agtggaaagg tcgacgctgt	aaacgtttt	tgcgaccgg	caccacgt	gtcttacgc	17940
cggtagcgt ctccacccgc	acctacaagc	gctgtatga	tgaggtgtac	ggcgcacgagg	18000
acctgcttga gcaggcAAC	gagcgcctcg	gggagtttc	ctacggaaag	ccgcataagg	18060
acatgctggc gttccgcctg	gacgagggca	acccaacacc	tagctaaag	cccgtaaacac	18120
tgcagcagg tgcggccgcg	cttgaccgt	ccgaagaaaa	gcgccgccta	aagcgcgagt	18180
ctggtgactt ggcacccacc	gtgcagctga	tgttacccaa	gcccagcga	ctgaaagatg	18240
tcttggaaaa aatgaccgtg	gaacctggc	ttagggccga	gttccgcgt	cgccaaatca	18300
agcagggtggc gccgggactg	ggcgtgcga	ccgtggacgt	tcagataccc	actaccagta	18360
gcaccaggat tcgcacccgc	acagagggca	ttagagacaca	aacgtcccc	gttgccctcg	18420
cggtagcgtt gtcgcgggt	cagggtcg	ctggggccgc	gttcaagacc	tctacggagg	18480
tgcaaacggc cccgtggat	tttcgcgtt	cagggccccc	gcccggcgc	gtttcgagga	18540
agtacggcgc cgccagcgcg	ctactgccc	aatatgcctt	acatccttcc	attgcgccta	18600
ccccggcta tcgtggctac	acctaccgc	ccagaagacg	agcaactacc	cgacggcga	18660
ccaccactgg aaccggccgc	cgccgtcgcc	gtgcgcagcc	cgtgtggcc	ccgatttccg	18720
tgcgcagggt ggctcgcgaa	ggaggcagga	ccctgggtgt	gccaacacgc	cgctaccacc	18780
ccagcatcg taaaaggcc	gtctttgtgg	ttcttgccaga	tatggccctc	acccgtggcc	18840
tccgttccc ggtgggggg	ttccggggaa	gaatgcaccg	tagggggc	atggccggcc	18900
acggcctgac gggcgccatg	cgtcgccgc	accacggcg	gcccggcgc	tgcacccgtc	18960
gcatgcgcgg cggtatccctg	ccctcttta	ttccactgtat	cgccgcggcg	attggccgg	19020
tgcgggaat tgcattcggt	gccttgcagg	cgcagagaca	ctgattaaaa	acaagttgc	19080
tgtggaaaaa tcaaaaataaa	aagtctggac	tctcacgtc	gttgggtcct	gttaactat	19140
tgtagaatgg aagacatcaa	ctttgcgtct	ctggcccccgc	gacacggctc	gcccggctc	19200
atggggaaact ggcaagatata	cgccaccgc	aatatgagcg	gtggccgcctt	cagctggggc	19260
tegctgtgg gccggattaa	aaatctcggt	tcaccgttta	agaactatgg	cagcaaggcc	19320
tggAACAGCA gcacaggcca	gatgctgagg	gataagtga	aagagaaaa	tttcaacaa	19380
aaggtaggtg atggcctggc	ctctggcatt	agcgggggtgg	tggacccgtc	caaccaggca	19440
gtgcaaaaata agattaacag	taagcttgc	ccccggccctc	ccgttagagga	gcctccaccg	19500
gccgtggaga cagtgtctcc	agagggcgt	ggcgaaaagc	gtccgcgc	cgacaggaa	19560
gaaactctgg tgacgcaaat	agacgaccc	ccctcgatcg	aggaggact	aaagcaaggc	19620
ctgcccacca cccgtcccat	cgcccccatt	gctaccggag	tgctgggcca	gcacacaccc	19680
gtaaacgtgg acctgcctcc	ccccggccgc	accacggaga	aacctgtgt	gcccggcc	19740
accggcgttg ttgtaccccg	tcctagccgc	gcttccctgc	gcccgcgc	cagggtecg	19800
cgtatgtgc gggccgtgc	cagtggcaac	tgcgaaagca	cactgaacag	catectgggt	19860
ctgggggtgc aatccctgaa	geggccacga	tgcttctgaa	tagctaacgt	gtcgatgt	19920
tgtcatgtat gggtccatgt	cgccgcccaga	ggagctgtgc	agccgcccgc	cgcccgctt	19980
ccaagatggc tacccttcg	atgatgccgc	atgggtcttta	catgcacatc	tcggccagg	20040
acgcctcgga gtacctgagg	ccccggctgg	tgcaatgtc	ccgcgcacc	gagacgtact	20100
tcagccgtaa taacaagttt	agaaaaccc	cggtggcgcc	tacgcacgac	gtgaccacag	20160
accggccca ggttttgcg	ctgcgttca	tccctgtgg	ccgtgaggat	actgcgtact	20220
cgtacaaggc ggggttgcacc	ctagctgtgg	tgatggatcc	tgtgtggac	atggcttcca	20280
cgtactttga catccgcgc	tggtggaca	ggggccctac	ttttaaagcc	tactctggca	20340
ctgcctacaa cggccctggc	ccccgggtgc	ccccaaatcc	ttgcgaatgg	gatgaagctg	20400
ctactgtct taaaataaaac	ctagaagaag	aggacgtat	caacgaagac	gaagtagacg	20460
agcaagatga gcagcaaaaa	actcacgtat	ttggcaggc	gccttattct	ggtataaata	20520
ttacaaaggc gggatttca	ataggtgtcg	aaggtcaaaac	acctaaat	gcccataaaa	20580
catttcaacc tgaacctcaa	ataggagaat	ctcagtggta	cggaaactgaa	attaatcatg	20640
cagctgggag agtccttaaa	aagactaccc	caatggaaacc	atgttacgg	tcatatgca	20700
aaccocacaaa tggaaatgg	gggcaggc	ttcttgcata	gcaacaaaaat	ggaaagctag	20760
aaagtcagaat gggaaatgc	tttttctcaa	ctactgaggc	gaccgcaggc	aatgggtata	20820
acttgactcc taaaatgttgc	ttgtacagtg	aagatgttaga	tatagaaacc	ccagacactc	20880
atatttctta catggccact	attaaggaag	gttaactcacc	agaactaatg	ggccaacaat	20940
ctatgcccacca caggccta	tacattgttt	ttagggacaa	ttttatttgt	ctaattgtatt	21000
acaacacgcac gggtaatatg	gggtttctgg	cggcccaagc	atcgcaatgt	aatgtgttg	21060
tagatttgca agacagaaac	acagacgtt	cataccagct	tttgcttgc	tccattgggt	21120
atagaaccag gtactttct	atgtggatc	agctgtgt	cagctatgt	ccagatgtt	21180
gaatttttgc aatcatgg	actgaagatg	aacttccaaa	ttactgttt	ccactgggg	21240
gtgtgattaa tacagagact	cttaccaagg	taaaacctaa	aacaggtcag	gaaaatggat	21300
ggggaaaaaga tgctacagaa	ttttcagata	aaaatgaaat	aagagttgga	aataattttg	21360

cggggacgac acgtcctcca tggttgggg acgtcgccgc gcaccgcgtc cgcgctcg 25140
 ggtgttgc cgctgtcct ctccccact gcccattcc ttctccata ggcagaaaaa 25200
 gatcatggag tcagtcgaga agaaggacag cctaaccgcc ccctctgagt tcgcccacc 25260
 cgcctccacc gatgcccga acgcgcctac cacctcccc gtcgaggcac ccccgcttga 25320
 ggaggaggaa gtgattatcg acaaggaccc agttttgta agcgaagacg acgaggacg 25380
 ctcagtacca acagaggata aaaagaaga ccaggacaaac gcagaggcaa acgaggaaaca 25440
 agtcggcgg ggggacgaaa ggcatggcga ctaccttagat gtgggagacg acgtgctgtt 25500
 gaagcatctg caagccactg gcccattat ctgcgacgcg ttgcaagagc gcagcgatgt 25560
 gccctcgcc atagcggatg tcagcctgc ctacgaacgc cacctattct caccgcgcgt 25620
 accccccaaa cgccaaagaaa acggcacatg cgagccaaac ccgcgcctca acttctaccc 25680
 cgtatttgcg gtgcagagg tgcttgccac ctatcacatc ttttccaaa actgcaagat 25740
 acccttatcc tgccgtgcca accgcgcggc agccgacaag cagctgcgt tgccgcagg 25800
 cgctgtcata cctgatatcg ctcgcctca cgaagtggca aaaatcttg agggtcttgg 25860
 acgcgcacgag aagcgcgcgg caaacgcgtc gcaacaggaa aacagcgaaa atgaaagtca 25920
 ctctggagtg ttgggtggac tgcagggtga caacgcgcgc ctgcgttac taaaacgcag 25980
 catcgaggc acccactttg ctacccggc acttaaccta ccccccagg tcacgac 26040
 agtcatgagt gagctgatcg tgccgcgtgc gcaagccctg gagagggatg caaatttgca 26100
 agaacaaca aaggaggggcc taccgcgtg tggcgcacgag cagctacgc gctggctca 26160
 aacgcgcgag ctcgcgcgt tggaggagcg acgcaaaacta atgatggccg cagtgctcg 26220
 taccgtggc ttgcgtgca tgcagcggtt ctgtgcac ccggagatgc agcgaagct 26280
 agaggaaaca ttgcactaca ctttcgaca gggctacgta cgcgcggct gcaagatctc 26340
 caacgtggag ctctgcaccc ttgtctccata ctttggaaatt ttgcacgaaa accgccttgg 26400
 gcaaaacgtg cttcattcca ctgcgcggg cgcgcgcgc cgcgcactacg tccgcactg 26460
 cgttactta ttctatgtc acacctggca gacggccatg ggcgttggc ageagtgtt 26520
 ggaggagtgc aacctcaagg agctgcagaa actgctaaag caaaacttga aggacctatg 26580
 gacgccttc aacgcgcgtt ccgtggccgc gcaacctggcg gacatcattt tcccgaaacg 26640
 cctgttaaa accctgcaccc agggctgcg acgacttcacc agtcaagca ttttgcagaa 26700
 cttaggaac ttatcttagt agcgcgttccagg aatcttgcgg gccacctgt gtgcacttcc 26760
 tagcgacttt gtgccttattt agtacgcgcg atgcgcgttcc cgcgttggc gcoactgcta 26820
 cttctgcag ctgcgcactt accttgcata ccaactctgcgataatgaaag acgtgagcgg 26880
 tgacggctca ctggagtgcc actgtcgctg caacctatgc accccgcacc gctccctgtt 26940
 ttgcatttcg cagctgcata acgaaagtca aattatcggt accttgcgc tgcagggtcc 27000
 ctcgcctgac gaaaagtccg cggctccggg ttgtggaaactc actccggggc ttttgcgtc 27060
 ggcttaccc ttgcacatcc tacctggagga ctacccacgcg caccggatgg ttttgcgtc 27120
 agaccaatcc ccccccggccaa atgcggagct tacccgcgtgc gtcattaccc agggccacat 27180
 tcttggccaa ttgcacggca tcaacaaaggcc cccggccaaagg ttttgcgtc gaaaggggacg 27240
 gggggtttac ttggacccccc agtccggcga ggagctcaac ccaatcccc cgcgcgcgc 27300
 gcccattcag cagcagccgc gggcccttcg tttccaggat ggcacccaaa aagaagctgc 27360
 agctgcgcgc gcccacccacg gacgaggagg aataactggga cagtcaggca gaggaggttt 27420
 tggacggaga ggaggaggac atgatggaaacttgggagag cctagacgcgaaagttccg 27480
 aggtcgaaga ggtgtcgac gaaacaccgt caccctcggt cgcattcccc tccgcggcgc 27540
 cccagaaatc ggcacccgtt tccagctgg ctacaaacctc egctccctcag ggcgcgcgg 27600
 cactgcccgt tccgcgcaccg aaccgttagat gggacaccac tggacccagg gccggtaagt 27660
 ccaagcagcc gcccgcgtt gcccacgcg aacaacacgcg ccaaggctac cgctcatggc 27720
 gggggcacaac gaaacccata gttgttgc tgcacggactg tgggggcaac attccttcg 27780
 cccggccgtt ttttctctac catcacggcg tggccttccc cgcgtacatc ctgcattact 27840
 accgtcatct ctacagccca tactgcaccc gggcgcggc cagcggcgc aacagcagcg 27900
 gcccacacaga agcaaaggcg accggatagc aagactctga ccaagccaa gaaatccaca 27960
 gggggcggcag cagcaggagg aggagcgctg cgtctggcgc ccaacgcacc cgatcgacc 28020
 cgcgacgttta gaaacaggat ttttccact ctgtatgtca tatttcaaca gaggaggggc 28080
 caagaacaag agctgaaaat aaaaacagg tcttcgtatcc ccctcacccg cagctgcctg 28140
 tatcacaaaaa gcaagatca gtttcggcgc acgctggaaag acgcggaggc tcttcgtt 28200
 aaatactgcg cgctgactct taaggactag ttgcgcgc ttttcaaat ttaagcgcga 28260
 aaactacata atctccatcc accacccccc accccacccatc ctatcatca accatattatc 28320

ttcacgcctc gtcaggcaat cctaactctg cagacccgt cctctgagcc ggcgtctggaa 28860
 ggcattggaa ctctgcaatt tattgaggag tttgtgccat cggctactt taacccttc 28920
 tcgggacctc cccggccacta tccggatcaa ttatcccta actttgacgc ggtaaaggac 28980
 tcggccgacg gtcacgactg aatgttaagt ggagaggcag agcaactgcg cctgaaaacac 29040
 ctggccact gtcggccgca caagtgcgtt gcccgcgact cccgtgagggt ttgtctactt 29100
 gaattggcccg aggatcatat cgagggcccg ggcacggcg tccggcttac cggccaggaa 29160
 gagcttgccc gtacgctgtat tcgggatgtt accccagccgc ccctgcttagt tgagcgggac 29220
 agggaccct gtgttctcac tgtgatttgc aactgtccata accttgattt acatcaagat 29280
 ttaattaatt gccacatctt cttacactt ttcatacat gcccaagaat aaagaatcgt 29340
 ttgtttagt tttcaacgtt tttatcccc aattgcgaaa aatttcaagt cattttcat 29400
 tcagtagtat agccccacca ccacatagct tatacagatc accgtaccc taaatcaactc 29460
 acagaaccctt agtattcacac ctggccaccc cctcccaaca cacagagttt acagtccctt 29520
 ctcccccgtt ggccttaaaa agcatcatat catgggttac agacatatto ttaggtgtt 29580
 tattccacac gtttccgtt cgagccaaac gtcacatagt gatattataa aactccccgg 29640
 gcagctcaat taagttcatg tcgctgttca gtcgtgttccg cccaggtgc tgcgttcc 29700
 gcggttgcctt aacggggcggc gaaggagaag tccacgcctt catggggta gagtccataat 29760
 cgtgcacatcg gataggccgg tgggtgttccg gcagcgcgcg aataaaactgc tgccggcc 29820
 gtcggccctt gcaggaatcc aacatggcag tgggttccctt acgcgttattt cgccacggccc 29880
 gcagcataag ggccttgcctt ctccggccac agcagcgcac cctgatotca cttaatcc 29940
 cacagtaact gcaagcacagc accacaatattt tggtaaaaaat cccacagtgc aaggcgttgt 30000
 atccaaagctt catggccggg accacagaac ccacgtggcc atcataccac aagcgcagg 30060
 agattaatgtt ggcaccccttcc ataaacacgc tggacataaa cattacatctt tttggcatgt 30120
 tggtaatttccatc caccctccccc taccatataa acctctgtt aaacatggcg ccattccacca 30180
 ccattctaaa ccagctggcc aaaacctgccc cgccggctat acactgcaggaaacctgggac 30240
 tggaaacaatgtt acagttggaga gcccaggact cgttaaccatg gatcatcatgtt ctcgttcatgt 30300
 tatcaatgtt ggcacaacac aggccacatcg gcatacactt cctcaggattt tttttttttt 30360
 cccgcgttagt aaccatatcc cagggacacaa cccattccctt aatcagctt aatccacac 30420
 tgcagggaaatg acctcgccatg taacttcacgt tgggttcttca gaaatgttta cattccggca 30480
 gcagcggatg atcccttcaggat atggtagcgc ggggttcttgc ctccaaaaggaa ggttagacgt 30540
 ccctactgtt cggagtgcgc cgagacaacc gatgtgttgc tgggtgttgc tgcgttcc 30600
 atggaaacgcctt ggacgttgc atatttcttgc aagccaaaacc aggtgcgggc gtgacaaaaca 30660
 gatctgcgttcc tccgggttccgc cccgttagat cgcgttgcgtt agtagttgtt gatatccac 30720
 tctctcaaag catccaggcg cccctggct tcgggttcttgc tggtaactcc ttcatgcgc 30780
 gtcggcccttga taacatccac caccgcgaaa taagccacac ccagccaaacc tacacattcg 30840
 ttctgcgttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 30900
 ttccaaaagatgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 30960
 ggtggcgttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31020
 aatggcttcc aaaaggccaaa cggcccttccatc gtcacatgtt acgttccatc ttttttttttgc 31080
 agggtaatccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31140
 tcgcacccctt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31200
 aatctgcgttcc agagcccttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31260
 tcaggttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31320
 tccctggatgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31380
 gcccggacttcc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31440
 ctcggagacttcc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31500
 aaaatgtcaatgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31560
 gtatgttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31620
 catttttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31680
 aacattttaaa catttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31740
 cggactacggccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31800
 accggacatgttcc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31860
 tgatttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31920
 gcgtagagatgttcc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 31980
 cacataaaacatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 32040
 aacatataccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 32100
 tatttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 32160
 caatgttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 32220
 aacacccttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 32280
 ttccttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 32340
 caatccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 32400
 cggccggccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 32460
 aaggatatttccatc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 32480

<210> 24
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 24
ctcaacaatt gtggatccgt actcc 25

<210> 25
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 25
gtgctcagca gatcttgcga ctgtg 25

<210> 26
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 26
ggcgcgttcg gatccactct cttcc 25

<210> 27
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 27
ctacatgcta ggcagatctc gttcggag 28

<210> 28
<211> 1240
<212> DNA
<213> adenovirus

<400> 28
ggatccactc tttccgcatt cgctgtctgc gagggccagc tgggggggtg agtactccct 60
ctgaaaagcg ggcattactt ctgcgtaaag attgtcattt tccaaaaaacg aggaggattt 120
gatattcacc tggcccgccg tgatgcctt gaggggtggcc gcatccatct ggtcagaaaa 180
gacaatcttt ttgttgtcaa gcttggtggc aaacgaccgg tagagggcgt tggacagcaa 240
cttggcgatg gagcgcaggg tttgggtttt gtcgcgatcg gccgcgtccct tggcccgat 300
tttagctgtc acgttattcgc ggcacacgca ccgcattcg gggaaagacgg tggtcgcctc 360
gtcgggcacc aggtgcacgc gccaaccgcg gttgtgcagg gtgacaaggt caacgtgtt 420
ggctacacctt ccgcgttaggc gctcggtggt ccagcagagg cgccgcctt tgcgcgagca 480
aatggcggt agggggtcta gtcgcgtctc gtccgggggg tctgcgttcca cggtaaaagac 540
ccggggcagc aggcgcgcgt cgaagtatgc tatcttgcatt ctttgcagaatctagcgcctc 600

ctgccatgcg cgggcggcaa gcgcgcgtc gtatgggtt agtggggac cccatggcat 660
 ggggtgggtg agcgcggagg cgtacatgcg gcaaatgtcg taaacgtaga ggggtctct 720
 gagtattcca agatgttag ggtacatct tcaccgcgg atgctggcgc gcacgtatc 780
 gtatagttcg tgcgagggag cgaggaggc gggaccgagg ttgctacggg cggctgtctc 840
 tgctcggaaag actatctgc tgaatggc atgtgagttt gatgatgg ttggacgtg 900
 gaagacgttg aagctggcgt ctgtgagacc taccgcgtca cgacgaaagg aggcttagga 960
 gtcgcgcagc ttgttgcaca gctcgccgt gacctgcacg tctagggcgc agtagtccag 1020
 ggttccttg atgatgtcat acttatcctg tccctttttt ttccacagct cgcggtttag 1080
 gacaaactctc tcgcggctt tccagactc ttggatcgga aaccgcgtgg cctccgaacg 1140
 agatccgtac tcgcggccg agggacctga gcgagtccgc atcgaccgga tcggaaaacc 1200
 tctcgagaaa ggcgtcta ac cagtacatc cgcaagatct 1240

<210> 29

<211> 8383

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plasmid pDV60

<400> 29

gacggatcg gagatctccc gatccctat ggtcgactct cagtacaatc tgctctgtat 60
 ccgcatagtt aagccagtat ctgctccctg ctttgtgtt ggagggtcgct gaggtagtgc 120
 cgagcaaaat ttaagctaca acaaggcaag gcttgcacca caattgcacg aagaatctgc 180
 tttaggttag ggcgttttgcg ctgctcgcg atgtacgggc cagatatacg cgttgacatt 240
 gattattgac tagttttaaa tagtaatcaa ttacggggc attagttcat agccatata 300
 tggagttccg cgttacataa ttacggtaa atggccgcg tggctgaccc cccaaacgacc 360
 cccggccatt gacgtcaata atgacgtat tttccatagg aacgcacata gggactttcc 420
 attgacgtca atgggtggac tatttacggt aaactgcacca cttggcagta catcaagtgt 480
 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
 atgcccagta catgaccctt tgggactttc ctacttggca gtacatctac gtattagtca 600
 tcgttattac catggtgatg cggttttgcg agtacatcaa tgggctgtt tagcggtttg 660
 actcacgggg atttccaaat ctccacccca ttacgtcaaa tgggagttt ttttggcacc 720
 aaaatcaacg ggcgttttca aatgtcgta acaactccgc cccattgcg caaatggcg 780
 gtaggcgtgt acgggtggag gtctatataa gcacgacgtct ctggctaact agagaaccca 840
 ctgcttactg gtttatcgaa attaatacga cttcaatataa ggagacccaa gcttggtacc 900
 gagctcggat ccactctctt ccgcacatcgct gtctgcgagg gccagctgtt ggggtgagta 960
 ctccccctga aaagcggggca tgacttctgc gctaagattt tcaatgttccca aaaaacgagga 1020
 ggatttgata ttcacctggc cgcgggtat gcctttgagg gtggccgcatt ccattctggc 1080
 agaaaaagaca atctttttgt tgcacgtt ggtggcaaac gaccgttgc gggcgttgg 1140
 cagcaacttgc ggcgtggagc gcagggtttt gttttgtcg cgatcgccgc gctccctggc 1200
 cgcgtatggt agctgcacgtt attcgcgcgc aacgcacccgc cattegggaa agacgggtgt 1260
 ggcgtcgtcg ggcaccaggc gcacgcgc accgcgggtt tgcagggttgc caaggtcaac 1320
 gctggtggtt acctctccgc gtacgcgtc gttggtccag cagaggccgc cgccttgcg 1380
 cgagcagaat ggcgttaggg ggtctagct cgctctgtcc ggggggtctg cgtccacgg 1440
 aaagaccccg ggcagcaggc gcgcgtcgaa gtatgtctatc ttgcacatctt gcaagtctag 1500
 cgcctgtgc catgcgcggg cggcaacgcgc gcgcgtcgat ggggttggatg ggggacccca 1560
 tggcatgggg tgggtggatgc cggaggcgta catgcgcgaat atgtcgtaaa cgtagagggg 1620
 ctctctgtat attcaagat atgttaggtt gcatcttccca cgcggatgc tggcgcac 1680
 gtaatcgat agttcggtcg agggagcggag gaggtcgggg cgcagggttgc tacggcggg 1740
 ctgctctgtt cggaaagacta tctgcgttca gatggcatgt gagttggatg atatggttgg 1800
 acgcttggaaag acgttgaagc tggcgctgtt gagacatccc gcgtcagcga cgaaggaggc 1860
 gtaggagtcg cgcacgttgc tgaccacgc ggcgggtacc tgcacgtcta gggcgcagta 1920
 gtccagggtt tccctgtatgc tgcataactt atccctgtccc tttttttcc acagctcgcg 1980
 gttgaggaca aactcttcgc ggtctttccca gtactcttgg atcggaaacc cgtcggccctc 2040
 cgaacgagat cctgtactccg cccggcggagg acctgagcga gtccgcacgc accggatcg 2100
 aaaacctctc gaaaaaggcg tcaaaacgtt cacatgcgcg agatccaaga tgaagcgcgc 2160
 aagaccgtctt gaaatgtatc tcaacccctgt gtatccatat gacacggaaa cccgtccctcc 2220
 aactgtgcct tttcttactc ctcccttgcg atcccccaat gggttcaag agagtcccc 2280
 tgggttactc tctttgcgc tatccgaacc tcttagttacc tccaaatggca tgcttgcgt 2340
 caaaatgggc aacggccctt ctctggacga ggcggcaac cttacctccc aaaatgtaaac 2400
 cactgtgagc ccacctctca aaaaaaccaa gtcaaaacata aacctggaaa tatctgcacc 2460

tgtctgtata	ccgtcgacct	ctagctagag	cttggcgtta	tcatggtc	agctgtttcc	6240
tgtgtgaat	tgttateccgc	tcacaattcc	acacaacata	cgagccggaa	gcataaagtg	6300
taaaggctgg	ggtgccta	gagtgagcta	actcacatta	attgcgttgc	gctcaactgcc	6360
cgcgttccag	tcggaaacc	tgtcgtgcca	gctgcattaa	tgaatcggcc	aacgcgcggg	6420
gagaggcgg	ttgogtattg	ggcgctctc	cgcttctcg	ctcaactgact	cgctgcgctc	6480
ggtcgttccg	ctggggcgag	cggtatcagc	tcactccaaag	gcccgtataac	ggttatccac	6540
agaatcagg	gataacgcag	gaaaacat	gtgaccaaa	ggccagcaaa	aggccaggaa	6600
ccgtaaaaag	gcccgttgc	tggcgtttt	ccatagetc	cccccccttg	acgagacatc	6660
caaaaatcg	cgctcaagt	agaggtggcg	aaacccgaca	ggactataaa	gataccaggc	6720
gtttccccct	ggaagctccc	tcgtgcgtc	tcctgttccg	accctgcccgc	ttaccggata	6780
cctgtccgc	tttcccccctt	cgggaaagcgt	ggcgctttct	caatgtcac	gctgttaggt	6840
tctcagttcg	gtgttaggtcg	ttcgcctcaa	gctgggtctgt	gtgcacgaac	ccccccgttca	6900
gccccgacgc	tgcgccttat	ccggtaacta	tcgtctttag	tccaaccccg	taagacacga	6960
cttacatcgca	ctggcagcag	ccactggtaa	caggattagc	agagcggagg	atgtaggcgg	7020
tgctacacag	ttctgttaagt	ggtggcctaa	ctacggtctc	actagaaggaa	cagtatttgg	7080
tatctgcgt	ctgtgtaa	cagtatccctt	cgaaaaaaaga	gttggtagct	cttgatccgg	7140
caaacaacc	accgtggta	ggcgtgggtt	ttttgttgc	aagcagcaga	ttacgcgcag	7200
aaaaaaaaagga	tctcaagaag	atccctttag	cttttctacg	gggtctgacg	ctcagtggaa	7260
cgaaaaactca	cgtaaggga	ttttggtcat	gagattatca	aaaaggatct	tcacctagat	7320
ccttttaaat	taaaaatgaa	gttttaatc	aatctaaagt	atatatgagt	aaacttggtc	7380
tgacagttac	caatgtttaa	tcagtggagc	acctatctca	gcatctgtc	tatttcgttc	7440
atccatagtt	gcctgactcc	ccgtcgtgta	gataactacg	atacgggagg	gcttaccatc	7500
tggcccccagt	gctgaatga	taccgcgaga	cccacgcctca	ccggctccag	atttatcagc	7560
aataaaaccag	ccagccggaa	ggggccggcg	cagaagtgg	ctcgcaactt	tatccgcctc	7620
catccagtt	attaatttgtt	gccccggaa	tagagtaagt	atgtcccccag	ttaatagttt	7680
ggcacacgtt	gttgcatttg	ctacaggtat	ctgggtgtca	cgctcgctgt	tgtgtatggc	7740
ttcattcagc	tccggttttcc	aacgatcaag	gcgaggatata	tgtatccccc	tgtgtgca	7800
aaaagcggtt	agcttcttcg	gtcctccgat	cgttgtcaga	agtaagtgg	ccgcagttt	7860
atcactcatg	gttatggcag	cactgcataa	ttctcttact	gtcatgccat	ccgtaaatgt	7920
cttttctgtg	actggtgagt	actcaaccaa	gtcattctga	gaatagtgt	tgcggcgcacc	7980
gagttgcctt	tgcccggtt	caatacggga	taataccgcg	ccacatagca	gaactttaaa	8040
agtgtctatc	attggaaaaac	gttcttcggg	gcgaaaactc	tcaaggatct	taccgcgttt	8100
gagatccagt	tcgtatgtaa	ccactcggtc	acccaaactg	totttcagcat	cttttacttt	8160
caccacgctt	tctgggttgag	aaaaaacagg	aaggccaaaat	gcccggaaaaaa	agggaaataag	8220
ggcgacacgg	aaatgttga	tactcatact	cttccttttt	caatattatt	gaagcatttt	8280
tcagggttat	tgtctcatga	cgcgatacat	atttgaatgt	atttagaaaa	ataaacaat	8340
aggggttccg	cgcacatttc	ccccaaaaat	gccacactgac	gtc		8383

<210> 30
<211> 7960

<212> DNA

<213> Art:

Initial Sequences

5223

1997. Description of artificial sequence: plasmid pB7.

gacggatc

gtttaaacctt aagcttggta ccgagctcgatccactctc ttccgcatacg ctgtctgcga 960
ggcccaagctg tttgggttag tactccctct gaaaagcggg catgacttct gcgcctaagat 1020
tgtcagtttc caaaaacgag gaggattgatattcacctg gcccgcgtgt atgccttga 1080
gggtggccgc attccatctgg tcagaaaaaga caatotttt gttgtcaagc ttggtgccaa 1140
acgaccgta gggggcggtt gacagcaact tggcgatggatccgcgatccgcg gcccgcgtgttgcgttgcac 1200
cgatccggg aaagacgggt gtgcgtcgatccgcgatccgcg gcccgcgtgttgcgttgcac 1260
tgtcagggt gacaagggtca acgctgttgcgatccgcgatccgcg gcccgcgtgttgcgttgcac 1320
agcagaggcg gccggcccttgcg cgcgagcaga atggcggttag gcccgcgtgttgcgttgcac 1380
ccgggggttc tgcttccacg gtaaagaccc cgggcagcagatccgcgatccgcg gcccgcgtgttgcgttgcac 1440
tcttgcattcc ttgcaagtct agcgcctgt gccatgcgcg gcccgcgtgttgcgttgcac 1500
atgggtttag tgggggaccc catggcatgg gttgggttag gcccgcgtgttgcgttgcac 1560
aaatgtcgta aacgttagagg ggctctcgatccgcgatccgcg gcccgcgtgttgcgttgcac 1620
caccggat gctggcgccg acgttaatgt atagttcgatccgcgatccgcg gcccgcgtgttgcgttgcac 1680
gaccgagggt gctacggggcggatccgcgatccgcg gcccgcgtgttgcgttgcac 1740
gtgagggtga tgatatggatccgcgatccgcg gcccgcgtgttgcgttgcac 1800
ccgcgtcacc cacgaaggag gctggcgccgatccgcg gcccgcgtgttgcgttgcac 1860
cctgcacgtc tagggcgccgatccgcg gcccgcgtgttgcgttgcac 1920
cctttttttt ccacagctcg cggttgagga caaactcttc gatgtcatacttacgcgatccgcg gcccgcgtgttgcgttgcac 1980
ggatcgaaaa cccgtcgccgatccgcg gcccgcgtgttgcgttgcac 2040
gagtccgcattccgcgatccgcg gcccgcgtgttgcgttgcac 2100
caagatccaa gatgaaggcg gcaagaccgttccgcgatccgcg gcccgcgtgttgcgttgcac 2160
atgacacggaa aaccggcttccgcgatccgcg gcccgcgtgttgcgttgcac 2220
atgggttca agagagtcccccccttccgcgatccgcg gcccgcgtgttgcgttgcac 2280
ccttccatgg catgcttgcgatccgcg gcccgcgtgttgcgttgcac 2340
cccccttccgcgatccgcg gcccgcgtgttgcgttgcac 2400
taaacctggaa aatatctgcaccccttccgcgatccgcg gcccgcgtgttgcgttgcac 2460
ccgcaccccttccgcgatccgcg gcccgcgtgttgcgttgcac 2520
tgacgactc caaacttagccgcgatccgcg gcccgcgtgttgcgttgcac 2580
tagccctgcaccccttccgcgatccgcg gcccgcgtgttgcgttgcac 2640
cctcacccttccgcgatccgcg gcccgcgtgttgcgttgcac 2700
atacacaaaaa tgaaaaactatccgcgatccgcg gcccgcgtgttgcgttgcac 2760
taaacacttt gaccgttagca actggccatccgcgatccgcg gcccgcgtgttgcgttgcac 2820
ctaaagttac tgagcccttgcgatccgcg gcccgcgtgttgcgttgcac 2880
gaggactaag gattgatttctccgcgatccgcg gcccgcgtgttgcgttgcac 2940
atgctaaaaa ccaactaaatccgcgatccgcg gcccgcgtgttgcgttgcac 3000
acaacttggaa tattaactaccccttccgcgatccgcg gcccgcgtgttgcgttgcac 3060
aaaagcttgcgatccgcg gcccgcgtgttgcgttgcac 3120
ccattaatgc aggagatgggcttccgcgatccgcg gcccgcgtgttgcgttgcac 3180
tcaaaaacaaa aattggccatccgcgatccgcg gcccgcgtgttgcgttgcac 3240
taggaacttgcgatccgcg gcccgcgtgttgcgttgcac 3300
ataagctaac ttgtggacc acaccatccgcgatccgcg gcccgcgtgttgcgttgcac 3360
aagatgtcaa actactttgcgatccgcg gcccgcgtgttgcgttgcac 3420
cagttttggc ttgttaaaggccgcgatccgcg gcccgcgtgttgcgttgcac 3480
tttattataag atttgacgaa aatggagtgcgatccgcg gcccgcgtgttgcgttgcac 3540
attggaaactt tagaaatggccgcgatccgcg gcccgcgtgttgcgttgcac 3600
ttatgccttac ccattcagct tatccaaatccgcgatccgcg gcccgcgtgttgcgttgcac 3660
tcagtcagaatccgcg gcccgcgtgttgcgttgcac 3720
acggtacaca gggaaacaggatccgcg gcccgcgtgttgcgttgcac 3780
actggcttgcgatccgcg gcccgcgtgttgcgttgcac 3840
acattggccca agaataaaaaa gggggccgcgatccgcg gcccgcgtgttgcgttgcac 3900
gatcggccctc gactgtgccttccgcgatccgcg gcccgcgtgttgcgttgcac 3960
cttccttgcgatccgcg gcccgcgtgttgcgttgcac 4020
catcgatttgcgatccgcg gcccgcgtgttgcgttgcac 4080
agggggagga ttgggaagac aatagcaggatccgcg gcccgcgtgttgcgttgcac 4140
ctgaggcgatccgcg gcccgcgtgttgcgttgcac 4200
cattaagcgatccgcg gcccgcgtgttgcgttgcac 4260
tagcgccgcgatccgcg gcccgcgtgttgcgttgcac 4320
gtcaagcttccgcgatccgcg gcccgcgtgttgcgttgcac 4380
acccaaaaaa acttgatttag ggtatggatccgcg gcccgcgtgttgcgttgcac 4440
ttttccccc ttgtacgttgcgatccgcg gcccgcgtgttgcgttgcac 4500
gaacaacacttccgcgatccgcg gcccgcgtgttgcgttgcac 4560
caacccttccgcgatccgcg gcccgcgtgttgcgttgcac 4620

cggcctattg	gttaaaaaat	gagctgattt	aacaaaaatt	taacgcgaat	taattctgt	4680
gaatgttgt	cagttaggtt	gtggaaagtc	cccaggctcc	ccaggcaggc	agaagtatgc	4740
aaagcatgca	tctcaattag	tcagcaacca	ggtgtggaaa	gtccccaggc	tcccagcag	4800
gcagaagtat	gcaaaggatg	catctcaatt	agtcaagcaac	catagttcccg	ccccctaactc	4860
cgccatccc	gcccctaact	cgcccaagggt	ccgcccattt	tccgccccat	ggctgactaa	4920
tttttttat	ttatgcagag	gccgaggccg	cctctgcctc	tgagcttcc	cagaagtagt	4980
gaggaggctt	ttttgggggc	ctaggctttt	gcaaaaaagct	ccgggagct	tgtatatcca	5040
tttcggatc	tgatcagcac	gtgttgacaa	ttaatcatcg	gcatagtata	tcggcatagt	5100
ataatacgac	aaggtaggag	actaaaccat	ggccaagttt	accagtgcgg	ttccgggtct	5160
caccgcgcg	gacgtcgccc	gagcgtcga	gttctggacc	gaccggctcg	ggttctcccg	5220
ggacttcgtg	gaggacgact	tcgcccgtt	gttccgggac	gacgtgaccc	tgttcatcg	5280
cgcggtccag	gaccagggtt	tgccggacaa	caccctggcc	tggtgttggg	tgccggccct	5340
ggacgagctg	taccccgagt	ggtcggaggt	cgtgtccacg	aacctccgg	acgcctccgg	5400
gcccggcatc	acccgagatc	gwgagaccc	gtggggggcg	gagttccccc	tgccgcaccc	5460
ggccggcaac	tgcgtgact	tcgtggccga	ggagcaggac	tgacacgtgc	tacgagattt	5520
cgattccacc	gcccgttct	atgaaagttt	gggcgttcgg	atcgtttcc	gggacgcccgg	5580
ctggatgatc	ctccagcgcg	gggatctcat	gctggagttt	ttcgccacc	ccaacttgg	5640
tattcagct	tataatggtt	acaataaaag	caatagcatc	acaatttca	caaataaagg	5700
attttttca	ctgcattctt	gttgggtt	gtccaaactc	atcaatgtat	tttatcatgt	5760
ctgtataccg	tcgacactt	gctagagctt	ggcgtaatca	tggtcatacg	tgttctctgt	5820
gtgaaattgt	tatccgtctca	caattccaca	caacatacg	gcccggaa	taaagtgtaa	5880
agcctgggtt	gccaatagtg	tgagctact	cacattaatt	gctgtgcct	cactgcccgc	5940
tttcaggctg	ggaaacactgt	cggtccagct	gcattaatga	atggccaa	gcccggggag	6000
aggcggttt	cgtagtgggc	gcttccgc	ttctcgctc	actgactcgc	tgccctcggt	6060
cggtccggctg	cgccggagccg	tatcagctca	cttcaaggcg	gtaataacggt	tatccacaga	6120
atcaggggat	aacgcaggaa	agaacatgtt	agcaaaaaggc	cagcaaaagg	ccaggaacccg	6180
taaaaaggcc	gggttgcgtt	cgtttttca	taggtccgc	ccccctgacg	agcatcaca	6240
aaatcgcgc	tcaggatcaga	ggtggggaaa	cccgacagg	ctataaagat	accaggcggt	6300
tcccccttga	agtcctcccg	tgcccttcc	tgttccgacc	ctgcccgtt	ccggatacc	6360
gtccgcctt	ctcccccttgg	gaagcgttgc	gctttctcaa	tgctcacgct	gtaggtatct	6420
cagtccggtg	taggtcggtt	gctccaaat	gggctgtgtt	cacgaacccc	ccgttcagcc	6480
cgaccgctgc	gcttccatccg	gtaactatcg	tcttgcgttcc	aacccgtaa	gacacgactt	6540
atcgcactg	gcagcagcc	ctggtaacag	gattagcaga	gcgaggatgt	tagccgtgc	6600
tcacagttt	tttgcgttgc	ggccatcta	cggtctact	agaaggacag	tatttggat	6660
ctgcgtctg	ctgaaggcc	ttaccccttgg	aaaaaaggtt	ggtagctt	gatccggca	6720
acaacacc	gctggtagcg	gtgtttttt	tgttgcga	cagcagatta	cgccgagaaa	6780
aaaaggatct	caagaagatc	ctttgcgtt	tcttgcgttgg	tctgcacgct	agttggaa	6840
aaactcactg	taagggattt	ttgtcatgag	attatcaaaa	aggatctca	cctagatct	6900
tttaaattaa	aatgaagttt	ttaaatcaat	ctaaagtata	tatgatgaaa	cttggctctga	6960
cagtaccaa	tgcttaatca	gtgaggcacc	tatctcagcg	atctgtctat	ttcggttcatc	7020
catatgtcc	tgactccccc	tcgttgcgtat	aactacgata	cgggagggtt	taccatctgg	7080
ccccagtgt	gcaatgtatc	cgcgagaccc	cgctcaccc	gttccagatt	tatcagcaat	7140
aaaccagcca	gcccggaaagg	cccgacgcag	aagtggctt	gcaactttat	ccgcctccat	7200
ccagtctatt	attttgtcc	ggggaaatcg	agtaagtat	tgcccgat	atagtttgcg	7260
caacgttgc	gccattgtca	caggcatcg	gggtcacgc	tgctcggtt	gtatggctt	7320
attcagctcc	gttcccaac	gatcaaggcg	agttacatga	tccccatgt	tgtcaaaaa	7380
agcggttagc	tccttcgggtc	ctccgcgtt	tgtcagaatg	aagtggccg	cagtgttac	7440
actcatgtt	atggcagcac	tgcataattt	tcttactgtc	atgccatccg	taagatgttt	7500
ttctgtact	ggtagtact	caaccaatgc	attctgagaa	tagtgtatgc	ggcgaccgag	7560
ttgcgttgc	ccggcgatca	tacggatata	taccgcgc	catagcagaa	cttaaaaat	7620
gctcatcatt	ggaaaatcg	cttcggggcg	aaaactctca	aggatcttac	cgctgttgc	7680
atccagttcg	atgttaaccc	tcgtgcacc	caactgatct	tcagcatctt	ttactttcac	7740
cagcggttct	gggtgagca	aaacaggaag	gcaaaaatgc	gcaaaaaagg	gaataaggc	7800
gacacggaaa	tgttgaatac	tcataactt	ccttttca	tattattgaa	gcatttatca	7860
gggttattgt	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	7920
ggttccgcgc	acatttcccc	gaaaatgtcc	acctgacgtc			7960

<210> 31

<211> 30

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 31
atggatcca agatgaagcg cgcaagaccg 30

<210> 32
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 32
cactatagcg gccgcattct cagtcatctt 30

<210> 33
<211> 7989
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plasmid pDV69

<400> 33
gacgatcg ggatctccc gatcccata ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtt ctgctccctg ctgtgtgtt ggaggcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gttgaccga caattgcatt aagaatctgc 180
ttagggttag gcgtttcgct ctgcttcgcg atgtacgggc cagatatacg cggttgcatt 240
gattattgac tagttattaa tagtaatcaa ttacgggtc attagttcat agcccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaaacgacc 360
ccccccatt gacgtcaata atgacgtat ttccatagt aacgcaata gggactttcc 420
attgacgtca atgggtggac tatttacgtt aactgccc cttggcaga catcaagtgt 480
atcatatgcc aagtacgccc cttattgacg tcaatgacgg taaatgccc gctggcatt 540
atgcccagta catgacctta tggacttcc ctatggcata gtacatctac gtattatgtca 600
tcgttattac catggtgatg cggtttggc agtacatcaa tggcgtgga tagcggtttg 660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tggagtttgc tttggcacc 720
aaaatcaacg gactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg 780
gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctact agagaaccca 840
ctgcttactg gtttatcgaa attaatcgat cttactatag ggagacccaa gctggctagc 900
gtttaaactt aagcttggta ccgagctgg atccactctc tttcgatctcg ctgtctgcg 960
ggccagctg ttgggttag tactccctt gaaaagcggtt catgacttct ggcctaagat 1020
tgtcagttc caaaaacgag gaggattga tatttacctt gcccgcgtg atgcctttga 1080
gggtggccgc atccatctgg tcagaaaaga caatttttt gttgtcaagc ttgggtggca 1140
acgacccgta gagggcgtt gacagaact tggcgtatgg ggcgcagggtt tggttttgt 1200
cgcgatcgcc ggcgtccctt ggcgcgtatgtt tagctgcac gtattcgcc gcaacgcacc 1260
gcccattccggg aaagacgggt gtcgcgtctt cgggcaccag gtcgcgcgc caaccgcgg 1320
tgtgcagggtt gacaagggtca acgttgggtt ctacctctt gcttaggcgc tcgttggcc 1380
agcagaggcg gcccgcctt cgcgacgaga atggcggttag ggggtctagc tgcgtctcg 1440
ccgggggggtc tgcgtccacg gtaaaagaccc cgggcacgac ggcgcgtcg aagtactta 1500
tcttgcattt tgcgttgcgtt aegcgttgcgtt gcatgcgcg ggcggcaagc ggcgcgtcg 1560
atgggttgag tggggggaccc catggcatgg gttgggttag cgcggaggcg tacatgcgc 1620
aaatgtcgta aacgttagagg ggctctctga gtatttcaag atatgttaggg tagcatctt 1680
caccggggat gtcggcgcgc acgtaatcgat atgttgcgtg cgaggaggcg aggaggcgg 1740
gaccgggtt getacggggcg ggctgtctg ctccggaaagac tatctgcgtt aagatggcat 1800
gtgagttgga tgatatgggtt ggacgttggaa agacgttggaa gctggcgctt gtgagaccta 1860
ccgcgtcaccg cacgaaggag gcttaggat cgcgcgtt gttgaccgc tcggcggtga 1920
cctgcacgtc tagggcgcag tagtccagggtt tttccttgcgtt gatgtcatac ttatcctgtc 1980
cctttttttt ccacagctcg cgggttggaa caaactcttcc ggcggcttcc cagactctt 2040
ggatcgaaa cccgtcgcc tccgaacgag atccgtactc cgccgcgcgg ggacctgagc 2100
gagtccgcat cgaccggatc ggaaaaccttcc tcgagaaagg cgtctaaccg gtcacagtcc 2160

aacatacgg	ccggaaagcat	aaagtgtaaa	gcctggggtg	cctaattgag	gagctaactc	5940
acattaattg	cgttgcgtc	actgcccgt	ttccagtcgg	gaaacctgtc	gtgccagctg	6000
cattaatgaa	tcggccaacg	cgcggggaga	ggcggttgc	gtattgggcg	cttccgct	6060
tcctcgctca	ctgactcgct	gchgctcggtc	gttcgctgc	ggcgagcgg	atcagctcac	6120
tcaaaaggcg	taatacgggt	atccacagaa	tcagggata	acgcaggaaa	gaacatgtga	6180
gcaaaaaggcc	agcaaaaaggc	caggaacccgt	aaaaaggccg	cgttgcgtggc	gtttttccat	6240
aggctccgccc	ccccgtacga	gcatcacaaa	aatcgacgt	caagtccagag	gtggcgaacaa	6300
ccgacaggac	tataaagata	ccaggcggtt	ccccctggaa	gtccctctgt	gcgtctccct	6360
gttccgaccc	tgccgcttac	cggatactg	tccgccttgc	tccttcggg	aagcgtggcg	6420
ctttctcaat	gctcacgtg	taggtatctc	agttcggtgt	agtcgttgc	ctccaagctg	6480
ggctgtgtgc	acgaaccccc	cggtcagccc	gaccgctgcg	ccttatccgg	taactatcgt	6540
cttgagtcca	acccggtaag	acacgacta	tcgccactgg	cagcagccac	tggtaacagg	6600
attagcagag	cgaggtatgt	aggcggtgt	acagagttct	tgaagtggtg	gcctaactac	6660
ggctacacta	gaaggacagt	atttggtatac	tgcgctctgc	tgaagccagt	taccttcgga	6720
aaaagagttg	gtagctcttg	atccggccaa	caaaccaccc	ctggtagccgg	tggttttttt	6780
gtttgtcaagc	aggcattac	gcccggaaaa	aaaggatctc	aagaagatcc	tttgatcttt	6840
tctacggggt	ctgacgctca	gtggaaacggaa	aactcagtt	aagggatttt	ggtcatgaga	6900
ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaattaaa	aatgaagttt	taaatcaatc	6960
taaaagtata	atgagtaaac	ttggctctgac	agttaccaat	gcttaatcag	tgaggcacct	7020
atctcagcga	tctgtctatt	tcgttcatcc	atagttgcct	gactcccccgt	cgtgtagata	7080
actacgatac	gggagggctt	accatctggc	cccagtgcgt	caatgatacc	gcgagaccca	7140
cgctcaccgg	ctccagattt	atcagcaata	aaccagccag	ccggaagggc	cgagcgcaga	7200
agtggtcctg	caactttatc	cgccctccatc	cagtcatttt	attgttgcgg	ggaagctaga	7260
gtaagtagtt	cgccaggtaa	tagtttgcgc	aaacgttgg	ccattgtctac	aggcatcg	7320
gtgtcacgtt	cgtcgtttgg	tatggcttca	ttcagtcgg	gttcccaacg	atcaaggcga	7380
gttacatgt	cccccatgtt	gtggaaaaaa	gcccgttagct	ctttcgggtcc	tccgatcttt	7440
gtcagaagta	agtggccgc	agtgttatac	ctcatggta	tgccagcact	gcataattct	7500
cttactgtca	tgccatccgt	aagatgtttt	tctgtactg	gtgagttact	aaccaagtca	7560
ttctgagaat	agtgtatgcg	gcccggaggt	tgcttgc	cggcgtcaat	acgggataat	7620
accgcgcac	atagcagaac	ttaaaaatgt	ctcatcattt	gaaaacgttc	ttcggggcga	7680
aaactctcaa	ggatcttacc	gtgttgaga	tccagttcg	tgtacccac	tcgtgcaccc	7740
aactgatctt	cagcatcttt	tactttcacc	agcgttctg	gttgagcaaa	aacaggaagg	7800
caaaatccg	caaaaagg	aataaggggc	acacggaaat	gttgaataact	catactctt	7860
cttttcaat	attatgtaa	catttatcg	gttattgtc	tcatgagcgg	atacatattt	7920
gaatgtattt	agaaaaataa	acaataggg	gttccgcgc	cattcccccg	aaaagtgc	7980
cctgacgtc						7989

<210> 34
<211> 7607

<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: plasmid GRE5-E1-SV40-Hygro

<400> 34

tctagaagat	ccgcgtgtaca	ggatgttcta	gctactttat	tagatccgct	gtacaggatg	60
ttcttagctac	tttatttagat	ccgcgtgtaca	ggatgttcta	gctactttat	tagatccgct	120
gtacaggatg	ttcttagctac	tttatttagat	ccgtgtacag	gatgttctag	ctactttatt	180
agatcgatc	cctggccgtt	cggggtcaaa	aaccagggtt	ggctataaaa	gggggtgggg	240
gcccgttctgt	cctcaacttc	ttccccatcg	ctgtctgega	ggggccaggat	cgatctcgag	300
aacctcgagg	tgagggttggg	gacccttgtat	tgttttttct	ttttcgctat	tgtaaaattc	360
atgtttatatg	gagggggcaa	agttttcagg	gtgttggta	aatgggaag	atgtcccttg	420
tatcaccatg	gaccctcatg	ataattttgt	ttctttcaact	ttctactctgt	ttgacacaacca	480
ttgtctccctc	ttatTTTCTT	ttcattttct	gtaacttttt	cgttaaactt	tagctgtcat	540
ttgttaacgaa	tttttaaatt	cacttttgtt	tatttgcag	attgtaaagt	ctttctctaa	600
tcactttttt	ttcaaggcaa	tcagggtata	ttatattgt	tttcagcaca	gttttagaga	660
acaattgtta	taattaaatg	ataaggtaga	atattttctgc	atataaaaattc	tggctggcgt	720
ggaaatatttc	ttatTTGTag	aaacaactac	atccctgtca	tatccctgccc	tttctcttta	780
tggtttacaat	gatataactact	gtttggatgt	aggataaaaat	actctgtac	caaaccgggc	840
ccctctgtca	accatgttca	tgccttcttc	ttttttctac	agctccctggg	caacgtgctg	900
gttattgtgc	tgtctcatca	ttttggcaaa	qaatttagatc	taagcttctgt	cagctcgagg	960

actcggtcga ctgaaaatga gacatattat ctgccacggg ggtgttatta ccgaagaaat 1020
 ggcccccagt cttttggacc agctgatcga agaggtaactg gctgataatc ttccacacct 1080
 tagccatttt gaaccaccta cccttcacga actgtatgat ttagacgtga cggccccca 1140
 agatccaaac gaggaggcgg tttcgcagat tttcccgac tctgtaatgt tggcggtgca 1200
 ggaagggatt gacttaactca cttttccggc ggcgccccggg tctccggagc cgcctcaccc 1260
 ttcccgccag cccgagcgc cggagcagag agccctgggt ccggtttcta tgccaaaccc 1320
 tgtaccggag gtgatcgatc ttacctgcca cggcggtggc tttcacccca gtgacgacga 1380
 ggatgaagag ggtgaggagt ttgtttaga ttatgtggag caccggggc acggttgac 1440
 gtctgtcat tatcaccggg ggaatacggg ggaccaggat attatgtgtt cgctttgtca 1500
 tatgaggacc tttggcatgt ttgtctacag taagtgaaaa ttatggcag tgggtgatag 1560
 agtgggtggg ttgggtgtgg aattttttt ttaatttttta cagttttgtg gttaaagaa 1620
 ttgggttatt tgatttttt aaaaaggctt gtgtctgaaac ctgagcctga gcccggagca 1680
 gaaccggagg ctgcaagacc taccggccgt cttaaaatgg cgcctgtat cctgagacgc 1740
 ccgacatcac ctgtgtctag agaatcaat agtagtacgg atagctgta ctccggctt 1800
 tctaacaacac ctcctgagat acaccgggt gttccggctgt gccccattaa accagttgcc 1860
 gtgagagttg gtggcgctcg ccaggctgtg gaatgtatcg aggacttgct taaccgagcc 1920
 gggcaacctt tggactttag ctgttaaacgc cccaggccat aagggttaaa cctgtgattg 1980
 cgtgtgtggt taacgcctt gtttgcgtaa tgagttgtat taagtttaat aaagggttag 2040
 ataatgttta acttgcgtt cgtgttaat ggggcggggc ttaaagggttataatgcgc 2100
 cgtggcttac tttttggttac atctgaccc atggaggctt gggagtgttt ggaagatttt 2160
 tctgtgtgc taaactgtgtc ggaacagacg tctaacaatgta cctcttgggtt ttggaggttt 2220
 ctgtggggct catcccgaggc aaaaaggatc tccagaatggg aggaggatttta caagtggaa 2280
 tttgaagagc ttttggaaatc ctgtgtgtgg ctgtttgtt ctttgcgtt gggtcaccag 2340
 gcgcgtttcc aagagaaggat catcaagact ttggattttt ccacaccggg ggcgcgtcg 2400
 gctgctgttgc ttttttttag ttttataaaag gataaaatgg gcaagaaaaac ccacgtgac 2460
 ggggggtacc tgctggattt tctggccatg catctgtgga gagcgggtt gagacacaag 2520
 aatccgttgc tactgtgttc ttccgtccgc cccggcgatataa taccgacggg ggagcagcag 2580
 cagecaggc aggaaggccag gggccggcgg caggagcaga gcccattggaa cccgagagcc 2640
 ggcctggacc ctcgggaatg aatgttgcgtc agtgggtgtc actgtatcca gaactgagac 2700
 gcattttgac aattacagag gatggggcagg gcttaaagggg gttaaagagg gaggccccggg 2760
 ctttgaggc tacagaggag gcttaggaatc tagtttttag cttaatgacc agacaccgtc 2820
 ctgagtgtat tactttcaa cagatcaagg ataattgcgc taatgagctt gatctgtgg 2880
 cgcagaagta ttccatagag cagctgacca cttaactggc tcagccagggtt gtcagccagg 2940
 aggaggctat taggttatat gcaaaagggtgg cacttagggc agattgcgaag tacaagatca 3000
 gcaaaattgtt aaatatcagg aattttgtgtc acatttctgg gaaacggggcc gagggtggaga 3060
 tagatacggg ggtatgggtt gcttttagat gtacgtatgaaatatgtgg ccgggggtgc 3120
 ttggcatggg cgggggtgtt attatgtatg taagttttac tggcccaat ttttagcggtt 3180
 cggtttccct ggc当地atacc aacccatcc tacacgggtt aagtttctat gggtaaca 3240
 atacccgtgt ggaaggctgg accgatgtaa gggttccgggg ctgtgcctt tactgtgtc 3300
 ggaaggggggt ggtgtgtcgc cccaaaagca gggcttcaat taagaaatgc ctcttggaa 3360
 ggtgtacctt gggatccctg tctgagggtt actccagggtt ggc当地acaat gtggcctccg 3420
 actgtgtgtt cttcatgtca gtgaaaaggcg tggtgtgtat taagcataac atggtatgtg 3480
 gcaactgcga ggacaggccgctc tctcagatgc tgacccgtc ggacggcaac tgc当地tgc 3540
 tgaagccatc tcaactgtcc agccactctc gcaaggccgt gccagggtt gacataaca 3600
 tactgaccgg ctgttccttgc cattttggta acaggagggg ggtgttccca ctttaccaat 3660
 gcaatttgag tcaactaag atattgttttgc agcccgagag catgtccaaag gtgaaacctga 3720
 acgggggttt tgacatgacc atgaagatct ggaagggtgtt gaggtaacat gagacccgca 3780
 ccagggtcag accccgtcggg ttttgggtt aacatattag gaaccaggctt gtgtatgtgg 3840
 atgtgaccgg gtagtgcgttggggccatc tgggtgtgtc ctgc当地ccgc gctgagttt 3900
 gctctagcga tgaagataca gattgggtt ctgaaaatgtt tggcggtggc ttaagggtgg 3960
 gaaagaatataaagggtttt ggtttatgtt atgtttttatgtt ctgttttgc gcaaggccgg 4020
 cccgc当地atcgg caccactcg ttttgggtt gcaatgttgcgtt ctc当地atgtt acaacgcgc 4080
 tgccccatg gggccgggggtt cgtc当地atgttgcgtt ggtttcccaat ggtcgccccg 4140
 tcctgcccgc aaactctact accttgcaccc acggaggccgt gtctggaaacg ccgtggaga 4200
 ctgc当地ccgc tccggccgtc tcaaggccgt cagccaccgc cccggggattt gtgactgact 4260
 ttgttccctt gggccggctt gcaaggccgt cagccaccgc ttccatccgc cgc当地atgtaca 4320
 agttgacggc tttttggca caattgggtt ctgttgcgtt ggaacttaat gtc当地tctc 4380
 agcaggctt gtagtgcgtt gggcccttgc cggcccttgc ggttccctcc cctcccaatg 4440
 cgggtttaaaa cataaataaa aaaccaggact ctgtttggat tggatcaag caagtgtt 4500
 gctgttccatcag ctgactgtttt aatgtcgttca gggccatggc tccaaatccgg atcgatctt 4560
 ttaaaggcaga acttgggttgc tcaactgttca gggccatggc tccaaatccgg atcgatctt 4620
 aatccacaatataaaggcatttttccatgtt gttttccatgtt gttttccatgtt gttttccatgtt 4680

aatgttatctt	atcatgtctg	gtcgactcta	gactcttcgg	cttcctcgcgt	cactgactcg	4740
ctgcgctcg	tcgttccgct	gccccgagcg	gtatcagctc	actcaaaggc	ggtaatacgg	4800
ttatccacag	aatcagggga	taacgcagga	aagaacatgt	gagcaaaagg	ccagaaaaag	4860
gccaggaacc	gtaaaaaggc	cgcgttgcgt	gcgttttcc	ataggctccg	ccccccgtac	4920
gagcatcaca	aaaatcgacg	ctcaagttag	aggtggegaa	acccgacagg	actataaaga	4980
taccaggcgt	ttccccctgg	aagctccctc	gtgcgtctc	ctgttccgac	cctgcccgtt	5040
accggatacc	tgtccgcctt	tctcccttcg	ggaagcgtgg	cgctttctca	tagctcacgc	5100
tgttaggtatc	tcagttcgg	gttaggtcg	cgctccaagc	tgggctgtgt	gcacgaaccc	5160
cccggttacg	ccgaccggct	cgccttatac	ggtaaatatc	gtcttgagtc	caacccggta	5220
agacacgact	tatcccaact	ggcagcagcc	actggtaaca	ggattagcag	agcggaggtat	5280
gttaggcggtg	ctacagagtt	cttgaagttgg	tggcttaact	acggctacac	tagaaggaca	5340
gtatTTggta	tctgcgtct	gctgaagcca	gttaccttcg	aaaaaagagt	tggtagctct	5400
tgatccggca	aacaaaaccac	cgctggtaac	ggtgtttttt	ttgtttgca	gcagcagatt	5460
acgcgcagaa	aaaaaggatc	tcaagaagat	cctttgtatc	tttctacggg	gtctgacgct	5520
cagtggaaacg	aaaactcacg	ttaagggtt	ttggcatatga	gattatcaa	aaggatcttc	5580
acatagatcc	ttttaaatta	aaaatgaagt	ttttaatcaa	cttaaagtat	atatgagtaa	5640
acttggctcg	acagttacca	atgtttatc	agtggggcac	ctatctcagc	gatctgtctt	5700
tttcgttcat	ccatagttgc	ctgactcccc	gtcgtgtaga	taactacgt	acggggaggc	5760
tttaccatctg	gccccagtgc	tgcaatgata	ccgcgagacc	cacgctcacc	ggctccagat	5820
ttatcagcaa	taaaccagcc	agccggaagg	gcccggcgca	gaagtggtcc	tgcaacttta	5880
tccgccttca	tccagtctat	taattgttgc	cgggaaagcta	gagtaagttag	ttcgccagtt	5940
aatagtgtc	gcaacgtgt	tgccattgtc	acaggcatcg	tgggtgtcagc	ctcgctgttt	6000
ggtagtggctt	catttagtgc	cgggtccccaa	cgatcagggc	gagttacatcg	atccccccatg	6060
tttgtgcaaaa	aagggttag	etcccttcggt	cctccgatcg	ttgtcagaag	taagttggcc	6120
gcagttgttat	cactcatgtt	tatggcagca	ctgcataatt	cttctactgt	catgcoatcc	6180
gtaagatgtc	tttctgtgac	tggtgagtagc	tcaaccaagt	cattctgaga	atagtgtatg	6240
cggcgaccga	gttgcgtcttgc	cccgggtgtca	atacgggata	ataccgcgccc	acatagcaga	6300
actttaaaag	tgctcatcat	tggaaaacgt	tcttcggggc	aaaaactctc	aaggatctta	6360
ccgctgttgc	gatccagttc	gatgtaaccc	actcggtcac	ccaaactgatc	ttcagcatct	6420
tttactttca	ccagcggttc	tgggtgagca	aaaacaggaa	ggcaaaaatgc	cgaaaaaaaag	6480
ggaataaggg	cgacacggaa	atgttgaatc	ctctactct	tcttttttca	atattattga	6540
agcattttatc	agggttattgc	tctcatgagc	ggatataat	ttgaatgtat	tttagaaaaat	6600
aaacaaatag	gggttcccg	cacatttccc	cgaaaaagtgc	cacctgacgt	ctaagaaaacc	6660
attattatca	tgacatttaac	ctataaaaat	aggcgatc	cgaggccccct	ttcgcttcgc	6720
gcgtttcgg	gatgacggtg	aaaacctctg	acacatgcag	ctcccccggaga	cggtcacagc	6780
ttgtctgtaa	gcccgttccgg	ggagcagaca	agcccgtcag	ggcgcgtcag	cgggtgttgg	6840
cgggtgttgc	ggcttggctta	actatgcggc	atcagagcag	attgtactga	gagtgcacca	6900
tatgcgggt	gaaataccgc	acagatgcgt	aaggaaaaaa	taccgcatc	ggaaaatgtt	6960
agcgcttaata	ttttgtttaaa	attcgcttgc	aattttttgtt	aaatcagctc	attttttaac	7020
caatagggcc	aaatcgccaa	aatcccttat	aaatccaaag	aatagacgcg	gatagggttg	7080
agtgttggtc	cagtttgaa	caagagtcca	ctattaaaga	acgtggactc	caacgtcaaa	7140
gggcgaaaaaa	ccgtctatca	gggcgatggc	ccactacgt	aaccatcacc	ctaatacaat	7200
tttttgggtt	cgaggttccgg	taaagcacta	aatcggaaacc	ctaaaggggag	ccccccgattt	7260
agagcttgcac	ggggaaaagcc	ggcgaacgtg	gcgagaaagg	aagggaagaa	agcgaaaagga	7320
cggggcgcata	ggggcgttgc	aagtgttagcg	gtcactcg	gctgtacccac	cacacccggcc	7380
gctcttaatgc	cgccgtatca	ggggcgttgc	cattccgtat	tcagggtcg	caactgttgg	7440
gaagggcgat	cggttccggc	cttcttcgtat	ttacgcccac	ttgcgcgaaagg	gggatgtgtct	7500
gcaaggcgat	taagtgggtt	aacgcccagg	ttttcccaat	cacgacgttg	taaaacgacg	7560
gccagttaat	tgtatatacg	ctcaatatacg	ggcgaattaa	ttccqqqq		7607

<210> 35
<211> 11600
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plasmid MMTV-E2a-SV40-Neo

<400> 35

gaattccgca ttgcagagat attgtattta agtgccctagc tcgatacaat aaacgcatt 60
tgaccattca ccacattggt gtgcacctcc aagctgggc aaaaatggtt caactcccqa 120

gagtgtccta cacctagggg agaagcagcc aagggttgc ttcccaccaa ggacgaccgg 180
 tctgcgcaca aacggatgag cccatcgac aaagacatat tcattctctg ctgcaactt 240
 ggcatacgctc tgctttgcct ggggttattt ggggaaatgg cggttcgtgc tcgcagggt 300
 ctcaccctt actcttttaa tagctttct gtcaagatt acaatctaaa caattcggag 360
 aactcgacct tcctcctgag gcaaggacca cagccaaactt cctcttacaa gccgcattcg 420
 ttttgcctt cagaaataga aataaagatg cttgtctaaaa attatatttt tacaataag 480
 accaatccaa taggttagt attagttact atgttaagaa atgaatcatt atcttttagt 540
 actatTTTtta ctcaccaatca gaagttagaa atggaaatag aaaatagaaa gagacgctca 600
 acctcaattt aagaacacgt gcaaggacta ttgaccacag gcctagaagt aaaaaggaa 660
 aaaaagagtg ttttgcctt aataggagac agtgggtggc aaccaggac ttataggaa 720
 ccttacatct acagaccaac agatcccccc ttaccatata caggaagata tgacttaat 780
 tggataggt gggttacagt caatggctat aaagtgttat atagatccct ccctttcgt 840
 gaaagactcg ccagagctag acctccttgg tttatgttgc tcacaaaga aaaaagacgac 900
 atgaacaaac aggtacatgt ttatattttt cttaggaacac gaatgcactt ttggggaaag 960
 atttccata ccaaggagg gacagtggc ggactaaatg aacattttc tgcaaaaaact 1020
 catggcatga ttattatga atagcctta ttggcccaac cttgcgttc ccaggcctt 1080
 agtaagttt tggttacaaa ctgttcttaa aacggaggatg tgagacaagt ggttccgt 1140
 cttgggttgg tatcaaaggt tctgatctga gctctgagtg ttctattttc ctatgttctt 1200
 ttggaattttt tccaaatctt atgttaatgc ttatgtaaac caagatataa aagagtgtg 1260
 atttttttagt taaaacttgc acagtccaa cattcacccctt ttgtgtgtt gtgtctgtt 1320
 gccatcccgct ctccgctgt cacttacccctt tcaatccca ggggttcccccc ccgcagaccc 1380
 cggcgcaccctt caggctggcc gactgccc gttggccccc gaacaggac cctcggataa 1440
 gtgacccttgc ttctattttt tactattttt tttttttttt gtattgtctc ttctttgtct 1500
 ggctatcatc acaagagccg aacggactca ccataggac caagctagcg cttctcgctg 1560
 cgtccaagac cctcaaaatg ttttggact tgggttgcgg aggcgatatac aggtatgaca 1620
 ggcgcctgcc gcaaggccag ctgcttgc gctcggctgc ggttggcacc gcaggatagg 1680
 ggtatcttgc agttttggaa aaagatgtga taggtggcaa gcacctctgg cacggcaaata 1740
 acggggtaga agtttggggc cgggttggc tggcatgtc cttttttttt ggtttttttt 1800
 ggtacggcgcgt tgtagaaatg tgggttgcgg taggcaaggc tgacatccgc tatggcgagg 1860
 ggcacatcgcc tgcgtcttc caacgcgtc cagataatgg cgcactggc ctgcagatgc 1920
 ttcaacacgac cgtcgctcc cacatcttgg tagtgccttgc gccttcgtc ccccccggcc 1980
 acttggcttctt cttttttttt tggatgttgc ttttattttt tttttttttt 2040
 gaggggttctt cttttttttt gttttttttt gttttttttt gttttttttt 2100
 tcctcaagcg ggggtgcctt gacggggaaatg tgggttgcgg cttttttttt atcgggtggag 2160
 gcggtgggtgg cgaactcaga ggggggggtt aggttgcctt tttttttttt tgactccatg 2220
 atttttttttt gcttataatggaa gaaggaaatg gggatgtggg aagaggacca ggcgaaacc 2280
 acccccggac gggggggggc tggggggggc cttttttttt ccatggaggc cttttttttt 2340
 cggccccgtt cggccggccccc tttttttttt cttttttttt cttttttttt 2400
 gagttccgggg acggggaaatg cttttttttt gacggcgctgg tgccgcgcac acccagcccg 2460
 cggccatcgac cttttttttt gttttttttt tttttttttt tttttttttt 2520
 tctcccaagc cggggggggc gttttttttt tttttttttt tttttttttt 2580
 gaagatgtgg cttttttttt gttttttttt tttttttttt tttttttttt 2640
 aaaggaggatg acggccacgt gggggggggc aatggatgtgg aacccggatggc gggggggggc 2700
 cggacgcggac aggaaggaggc agggccggc gggggggggc tttttttttt ggttggatgg 2760
 cggctggatgt tgccgtatgtt gttttttttt tttttttttt tttttttttt 2820
 atggacaatgtt accacgttgc taacgtatctt aaggcgaaact tttttttttt tttttttttt 2880
 gtggaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt 2940
 ctgaccccttca ccaggcaacaa gttttttttt tttttttttt tttttttttt 3000
 ctgcgtatgtt tttttttttt tttttttttt tttttttttt tttttttttt 3060
 ctgcacccgtt ggggttgcgtt tttttttttt tttttttttt tttttttttt 3120
 aataaggaggc acgttgcgtt aatggatgtgg aacggggggc tttttttttt tttttttttt 3180
 gagggatgtt gcaaggccaa gttttttttt tttttttttt tttttttttt 3240
 tccaaacccggc acggccggatgtt tttttttttt tttttttttt tttttttttt 3300
 ggcggatgtt tttttttttt tttttttttt tttttttttt tttttttttt 3360
 atcaaggctt ttatgtccggc gttttttttt tttttttttt tttttttttt 3420
 atggccactac ggtggcgatgtt caacttccaaatg cttttttttt tttttttttt 3480
 ctacccaaatgt tgactccgtt cggccgttgc gttttttttt tttttttttt 3540
 tccgacaaatgtt ggggttgcgtt tttttttttt tttttttttt tttttttttt 3600
 aacccgtgtt atcgcaactc gggggggggc tttttttttt tttttttttt 3660
 tggggccccc acgttgcgtt tttttttttt tttttttttt tttttttttt 3720
 accggatgtgc cggggatgtt tttttttttt tttttttttt tttttttttt 3780
 aacgtgtccc tgccgttgc gttttttttt tttttttttt tttttttttt 3840

ggcgcacacgg caagggtggg ggtaaaataat caccggagag tgtacaataa aaagcattt 3900
 cctttattga aagtgtctct agtacattat ttttacatgt ttttcaagtg aaaaaaaagaa 3960
 gtggcgctcc taatctgcgc actgtggctg cgaaagttagg gcgagtggcg ctccaggaag 4020
 ctgttagact gttcctgggt gcgacgcagg gtggggctgt a cctggggact gttgagcatg 4080
 gagttggta cccccgtaat aagggtcatg gtgggggtgt gatccatggg agtttggggc 4140
 cagttggcaa aggccgtggag aaacatgcag cagaatagtc cacaggcgc cgagttggc 4200
 ccctgtacgc tttgggtggc cttttccagc gtatacago ggtcggggaa agaagcaatg 4260
 ggcgtacggc gcaggagtgta ctcgtactca aactggtaaa cctgcttgag tcgctggta 4320
 gaaaagccaa agggctcaaa gaggttagcat gtttttgagt gcccgttcca ggcaaaggcc 4380
 atccagtgtc cgcccccaagt ctcgcgaccg gccgtattga ctatggcga ggcgagctt 4440
 tggagaaa caaaggctgg aaaggcttg tcataagggtc caaaaaaaaata tggcccacaa 4500
 ccaagatctt tgacaatggc tttcagttc tgctcaactgg agccatggc ggcagctgtt 4560
 gttgatgtt cttgtcttctt tatgttgtgg cttgtccggc cgagaaggc gtgcgcagg 4620
 acacggtttc gatgacgcggc cgggtccggc ggtgcacacg gaccacgtca aagacttcaa 4680
 acaaaacata aagaagggtg ggctcgcca tggatccat atatagggcc cgggttataa 4740
 ttacccctagg tcgaccccg gggatcttg tgaaggaacc ttacttctgt ggtgtgacat 4800
 aattggacaa actacactaca gagatttaaa gctctaaggt aaatataaaa ttttaagtg 4860
 tataatgtgt taaaactactg attctaattt ttttgttatt ttagatttcca acctatggaa 4920
 ctgtatggatggagactgg tggaaatggct ttaatggaga aaacctgttt tgctcagaag 4980
 aaatggccatc tagttagat gaggctactg ctactctca acattctcact cctccaaaaaa 5040
 agaagagaaa ggtagaagac cccaaaggact ttcccttccaga attgctaagt ttttgagtc 5100
 atgctgtgtt tagtaataga actcttgctt gctttgctat ttacaccaca aaggaaaaag 5160
 ctgcactgtc atacaagaaa attatggaaa aatattctgt aaccttata aagtaggcata 5220
 acagttataa tcataaacata ctgttttttc ttactccaca caggcataga gtgtctgcta 5280
 ttaataacta tgctcaaaaaa ttgtgtacct tttagttttt aatttgtaaa ggggttataa 5340
 aggaatattt gatgtatagt gccttgacta gagatcataa tcagccatc cacatttga 5400
 gaggttttac ttgtttttaa aaaccccccac cacttccccca tgaacctgaa acataaaaatg 5460
 aatgcatttgc ttgttttttttgcatttata attgttacaa ataaagca 5520
 agcatcacaa atttcacaaa taaagcattt ttttcaactgc attcttagtt tggtttgtcc 5580
 aaactcatca atgtatctta tcatgtctgg atccggctgt ggaatgtgtg tcaatggg 5640
 tggagaaatg ccccaaggctc cccagcaggc agaagatatgc aaagcatgca tctcaattag 5700
 tcagcaacca ggtgtggaaa gtcccccaggc tcccccaggc gcaagaatgt gcaaaggcatg 5760
 catcttcaat agtcagcaac catagttcccg ccccttaactc cgcccatcccc gcccctaact 5820
 ccggccagggtt ccggccatcc tccggccat tggctgactaa ttttttttat ttatgcagag 5880
 gcccggccg cctcgccctc tgagcttcc cagaagtagt gaggaggctt ttgtggagc 5940
 cttaggtttt gaaaaaaagct tcacgtctgc gcaagcactc agggcgcacag ggctgctaaa 6000
 ggaagcggaa cacgttagaaa gccagtcgc agaaaacggtg ctgaccctgg ataatgtca 6060
 gctactgggc tatctggaca agggaaaacg caagcgcacaa gagaagcag gtagcttgc 6120
 gtgggtttac atggcgatag cttagactggg cggtttttatg gacagcaagc gaaccggaaat 6180
 tgccagctgg ggcggccctc ggttaagggtt ggaagccctg caaagtaaac tggatggctt 6240
 ttttggccca aaggatctga tgccgcagg gatcaagatc tgatcaagag acaggatgag 6300
 gatcggttcg catgattgaa caagatggat tgcaacgcagg ttctccggc gttttgggtgg 6360
 agaggctatt cggctatgac tgggcacaaac agacaatcg ctgtctgtat gccggccgtgt 6420
 tccggctgtc agcgccagggg cgccgggtt ttttggtaaa gaccgaccctg tccgggtgccc 6480
 tgaatgaact gcaggacgag gcagcgcggc tattctggct ggcacacg ggcgttcctt 6540
 ggcgcacgtgt gctcgacgtt gtcactgaag cgggaaggga ctggctgcta ttggcgaag 6600
 tgccggggca ggatctccctg tcatctcacc ttgtctctgc cgagaaatgt tccatcatgg 6660
 ctgtatcaat gccggccgtt catacgcttg atccggctac ctggccatcc gaccaccaag 6720
 cggaaacatcg catcgacgcg gacacgtactc ggttggaaact cgggtttgtc gatcaggatg 6780
 atctggacga agagcatcg gggctcgccg cagccgaact ttgcgcagg ctcaaggcgc 6840
 gcatggccca cggcgaggat ctgcgtgtca cccatggcgca tgcctgtt cccaatataca 6900
 tggtgaaaaa tggccgttt tctggattca tgcactgtgg cccgctgggt gtggcggacc 6960
 gctatcagga catagcgttg gctaccctgt atattgtca agagcttggc ggcaatggg 7020
 ctgaccgtt cctcgtctt tacggatctg ccgtctccca ttcgcagcgc atcgcttct 7080
 atcgcccttct tgacgagttc ttctggccgg gactctgggg ttgcataatgaa ccgaccaagc 7140
 gacgccccac ctggccatcag gagatttgcg ttccaccggc gccttctatg aaagggttggg 7200
 cttcggaaatc gtttccggg acggccggctg gatgatcctc cagcgcggg atctcatgt 7260
 ggagtttttccccc gcccaccccg ggctcgatcc cctcgccagg tggttcaact gtcgcctgag 7320
 gctggacgac ctgcggggat tctaccggca gtgcataatcc gtcggcatcc aggaaaaccag 7380
 cagcggctat ccgcgcacccatcc atgcccccgaa actgcaggag tggggaggca cgatggccgc 7440
 ttgggtcccg gatctttgtg aaggaacctt acttctgtt gttgacataa ttggacaaac 7500
 tacctacaga gatttaaagc tctaaggtaa atataaaaatt tttaagtgtta taatgttta 7560

aactactgt	tctaatttgtt	tgtgttatttt	agattccaac	ctatggaaact	gatgaatggg	7620
agcagtggtg	aatgccttt	aatgaggaaaa	acctgtttt	ctcagaagaaa	atgccatcta	7680
gtgatgtga	ggctactgct	gactctcaac	attctactcc	tccaaaaaaag	aagagaaaagg	7740
tagaagaccc	caaggacttt	ccttcagaat	tgctaagttt	ttttagtcat	gctgtgttta	7800
gtaatagaac	tcttgcgtc	tttgcattt	acaccacaaa	ggaaaaaaagct	gcactgttat	7860
acaagaaaaat	tatggaaaaa	tattctgtaa	ccttataag	taggcataac	agttataatc	7920
ataacatact	gtttttctt	actccacaca	ggcatagagt	gtctgttatt	aataactatg	7980
ctcaaaaatt	gtgtacctt	agctttttaa	tttgaaagg	ggttaataag	gaatatttg	8040
tgtatagtgc	cttgactaga	gatcataatc	agccatacca	catttgtaga	ggttttactt	8100
gctttaaaaa	acctcccaca	cctccccctg	aacctgaaac	ataaaaatgaa	tgcaatttgtt	8160
gttgttaact	tgtttattgc	agcttataat	ggttacaaat	aaagcaatag	catcacaaat	8220
ttcacaaaata	aagcattttt	ttcactgcat	tctagttgtg	gtttgtccaa	actcatcaat	8280
gtatcttac	atgtctggat	ccccaggaaag	ctccctgtgt	tcctcataaaa	ccctaacctc	8340
ctctactgt	gaggacatc	caatcatagg	ctgccccatc	accctctgtt	tectctgtt	8400
aattaggc	cttaacaaaaa	agggaaattgg	gtaggggttt	ttcacagacc	gcttttcaag	8460
ggtaatttta	aaatatctgg	gaagttccctt	ccactgctgt	gttccagaag	tgttgtaaa	8520
cagccccacaa	atgtcaacag	cagaaacata	caagctgtca	gctttgcaca	agggcccaac	8580
accctgtca	tcaagaagca	ctgtggttgc	tgtgttagta	atgtgcaaaa	caggagggcac	8640
attttccca	cctgtgtagg	ttccaaaata	tctagttgtt	tcatttttac	ttggatcagg	8700
aaccgcac	tccactggat	aagcattatc	cttataccaa	acageccttg	ggtcagtgtt	8760
catctgtga	ctgtcaactg	tagcattttt	tgggttaca	gtttgagcag	gatattttgt	8820
cctgtgttt	gctaaccac	cctgcagetc	caaaaggttcc	ccaccaacac	caaaaaaaaaatg	8880
aaaatttgac	ccttgaatgg	gttttccagc	accattttca	tgagttttttt	gtgtccctga.	8940
atgcaagttt	aacatagcag	ttaccccaat	aacctcagtt	ttaacagtaa	cagctccca	9000
catcaaata	tttccacagg	ttaagtcctc	atttaaatta	ggcaaaaggaa	ttcttgaaga	9060
cgaaaggcc	tcgtgatagc	cctattttta	taggttaatg	tcatgataat	aatggtttct	9120
tagacgtcag	gtggcacttt	tcggggaaat	gtgcgchgaa	ccccttattt	tttattttt	9180
taaatacatt	caaataatgt	tccgctcatg	agacaataac	cctgataaaat	gettcataaa	9240
tattgaaaaa	ggaagagtt	gagtattcaa	cattccgtg	tcggcccttat	tcctttttt	9300
gcggcattt	gccttctgt	ttttgtcata	ccagaaacgc	tggtaaaagt	aaaagatgtc	9360
gaagatcgt	ttggtgacacg	agtgggttac	atcgaactgg	atctcaacag	cggttaagatc	9420
cttggagat	ttcgccccga	agaacgtttt	ccaatgtatc	gacttttaa	agttctgtca	9480
tgtggcgg	tattatcccg	tgttgcgccc	gggcaagagc	aactcggtc	ccgcatacac	9540
tattctcaga	atgacttttgt	tgagttactca	ccagtcacag	aaaagcatct	tacggatggc	9600
atgacatgaa	gagaattatg	cagtgtctcc	ataaaccatg	gtgataacac	tgccggcaac	9660
ttaattctga	caacgatcgg	aggaccgaaag	gagctaaccg	cttttttgc	caacatgggg	9720
gatcatgt	ctcgccatg	tctttggggaa	ccggactgt	ataaaggccat	accaaagcac	9780
gagcgtgaca	ccacgatgcc	tgcagcaatg	gcaacaacgt	tgcgcaaaact	attaactggc	9840
gaactactt	ctctagcttc	ccggcaacaa	ttaatagact	gatggaggg	ggataaaagtt	9900
gcaggaccac	ttctgcgttc	ggcccttccg	gctggcttgt	ttattgtcga	taaatctgga	9960
gcccgtgagc	gtgggtctcg	cgttacatt	gcagacttgg	ggccagatgg	taagccctcc	10020
cgtatcgtag	ttatcttacac	gacggggagt	caggcaacta	tggatgaacg	aaatagacag	10080
atcgtctgaga	taggtgcctc	actgtttaag	catttgcata	tgtcagaccca	agtttacttc	10140
tataactttt	atgttgcattt	aaaacttcat	ttttaattta	aaaggatctt	ggtgaagatc	10200
ctttttgata	atctcatgac	aaaatccct	taacgttgat	tttgcgttcc	ctgagcgtca	10260
gacccccgt	aaaagatcaa	aggatcttc	tgagatcctt	tttttctgcg	cgtaatctgc	10320
tgcttgcaaa	caaaaaaaacc	accgtacca	gccccgtttt	tttgcgggaa	tcaagagcta	10380
ccaactctt	ttccgaaggt	aactggcttc	agcagagcgc	agataccaaa	tactgtcctt	10440
ctagtgtac	cgtagtttag	ccaccacttc	aagaactctg	tagcaccggcc	tacataccctc	10500
gctctgtca	tcctgttacc	agtggctgt	gccagtggcg	ataagtcgtt	tcttaccggg	10560
ttggacttca	gacgatagt	acccgataag	gcccggcggt	ccccgtacac	gggggttgc	10620
tgcacacacg	ccagcttgg	gcaacgcacc	tacaccgaaac	ttagatacc	acagcgttag	10680
ctatgagaaa	gcccacacgt	tcccgaagg	agaaaaggccg	acaggtatcc	ggtaaagccgc	10740
agggtcgaa	caggagacgc	cacgagggg	cttccagggg	aaaacgcctg	gtatctttat	10800
agtcctgtcg	ggtttgcaca	cctctgactt	gagcgtcgat	ttttgtgat	ctcgtcaggg	10860
gggcggagcc	tatggaaaaa	cgccagcaac	gccccctttt	tacggttct	ggccttttgc	10920
tggcctttt	ctcacatgtt	cttccctgog	ttatccctgt	attctgtgga	taaccgtatt	10980
accgccttgc	agttagatgt	taccgtctgc	cgccggccaa	cgaccggagc	cagcggactca	11040
gtgacgtcgg	aaggcgaaga	gcgcctgtat	cgttattttc	tccttacgccc	tctgtcggt	11100
atttcaccc	gcatatgtgt	cactctca	acaatctgt	ctgtatccgc	atagttaaagc	11160
cagtatctgc	tccctgtttt	tgtgttggag	gtcgttgat	agtgcgcgag	caaaaattaa	11220
gctacaacaa	ggcaaggctt	gaccgacaat	tgcatgaaga	atctgtttag	ggttaggcgt	11280

tttgcgtgc ttcgcgatgt acggccaga tatacgcta tctgagggga ctagggtgt 11340
tttaggcga aaggccccct tcgggtgtac gcggttagga gtcccctcag gatatagtag 11400
tttcgtttt gcatagggag gggaaatgt agtcttatgc aatacacctg tagtcttgca 11460
acatggtaac gatgagttag caacatgcct tacaaggaga gaaaaagcac cgtgcac 11520
gattggtggaa agtaagggtgg tacgatcgct ctttattagg aaggcaacag acgggtctga 11580
catggattgg acgaaccact 11600

<210> 36
<211> 53
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 36
gtcactcgag gactcggtcg actgaaaatg agacatatta tctgccacgg acc 53

<210> 37
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 37
cgagatcgat cacctccggt acaaggtttg gcata 36

<210> 38
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 38
catgaagatc tggaagggtgc tgaggtaacga tgagacc 37

<210> 39
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 39
gcgacttaag cagtcagctg agacagcaag acacttgctt gatccaaatc c 51

<210> 40
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 40
cacgaatttc tcagcgcttc tcgtcgctc caagaccc 38

<210> 41
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 41
caccccgggg aggccggcggc gacggggacg gg

32

<210> 42
<211> 7231
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: plasmid pDV80

<400> 42
ctgtccccctg ctttgtgtt ggaggcgct gagtagtcgc cgagcaaaat ttaagctaca 60
acaaggcaag gcttgaccga caattgcgt aagaatctgc tttagggtag gcgtttcg 120
ctgtcccgcg atgtacggc cagatatacg cggtgacatt gattttgcg tagttattaa 180
tagtaatcaa ttacgggtt attagttcat agccccatata tgaggatcg cggtacataa 240
cttacggtaa atggccgccc tggctgaccc cccaaacgacc cccgccccatt gacgtcaata 300
atgacgtatg ttcccatagt aaacgccaata cttggcgaga catcaagtgt atcatatgcc aagtacgccc 420
tatttacggt aaactgccc cttggcgaga catcaagtgt atcatatgcc aagtacgccc 480
cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta 480
tgggacttgc ctacttggca gtacatctac gtattgtca tcgctattac catggtgatg 540
cggttttggc agtacatcaa tgggctgtga tagcgggttg actcacgggg atttcaaga 600
ctccacccca ttgacgtcaa tgggagttt ttttgcacc aaaatcaacg ggacttcca 660
aaatgtcgta acaaactccgc cccattgacg caaatggcg gtaggcgtgt acggtggag 720
gtctatataa cgagacgtct ctggctaaat agagaaccca tcgcttactg gtttatcgaa 780
attaatacga ctcactatag ggagacccaa gctggctagc gttttaaactt aagcttggta 840
ccgagctcg atccactctc ttccgcatacg ctgtctgcga gggccagctg ttgggttag 900
tactccctct gaaaagcggg catgacttct gcgctaagat tgcagtttcaaaaaacgag 960
gaggatttga tattcacctg gcccgcgtg atgccttga gggtgccgc atccatctgg 1020
tcagaaaaaga caatctttt gttgtcaagc ttgggtggca acgacccgtt gaggggcttg 1080
gacgacact tggcgatggc gecgcagggtt tggttttgcg cgcgtatcg 1140
gcccgcgtgt ttagctgcac gtatttcgcgc gcaacgcacc gcatttcggg aaagacgggt 1200
gtgcgctctg cggcaccac gtgcacgcgc caaccgggt tggcagggtt gacaagggtca 1260
acgctgttgg ctaccctotcc gctgttgcgc tcgttggtcc agcagaggcg gcccgccttg 1320
cgcgagcaga atggcggtag ggggtctagc tgcgtctcg ccgggggggtc tgcgtccacg 1380
gtaaagaccc cgggcagcag ggcgcgtcg aagttagtcta tcttgcatacc ttgcaagtct 1440
agcgccctgt gccatgcgcg ggcggcaagc gcgcgtctgt atgggtttag tgggggaccc 1500
catggcatgg ggtgggttag cggcgaggcg tacatgcgcg aaatgtcgta aacgttagagg 1560
ggctctctga gtatccaaag atatgttaggg tagcatcttcc acccgccggat gctggcgccg 1620
acgtaatctgt atagttcggt cgaggggaggc aggagggtcg gaccggagggt gctacggcg 1680
ggctgtctgt ctgcgaagac tatctgcctg aagatggcat gtgagttggat tgatatgtt 1740
ggacgcttgg agacgttga gctggcgctgt gtgagactta ccgcgtcacc cacaaggag 1800
cgcttaggat cgcgcagctt gttgaccagg tcggccgtga ctcgtcactgc tagggcgccag 1860
tagtcccgagg tttcttgat gatgtcatac ttatctgtc cctttttttt ccacagctcg 1920
cggtttaggaa caaactcttc gcggttttc cagtaactttt ggatcgaaa cccgtccggcc 1980
tccgaacccat atccgtactc cggccgcgcgg ggacctgagc gagtccgcatt cgaccggatc 2040
ggaaaacccct tcgagaaaagg cgtctaaacca gtcacactcg caagatccaa gatgaaggccg 2100
gccccggccca gcgaaagatga cttcaacccc gtctacccctt atggctacgc gggaaatcag 2160
aatatccctt tccctactcc ccccttttttgc tccttcgtat gattcaaaaaa cttcccccct 2220
gggttactgt cactaaatc ggctgtatcca atcaccattt caaatggggta tgtatccctc 2280
aaagtggggag gtggcttcac ttgcacatggat ggaaggctaa ctgtaaaccctt aaaaaaaaaa 2340
ctgcaagattn atactgataa aaaacttgcg cttgcataatg ataatccattt taaaagtgtct 2400
gctaataaac ttatgtttaaa agttagggacat ggattaaaag tatttagatga aaaaagtgtct 2460

gcggggtaa aagatataat tggcaaactt gtggtttaa caggaaaagg aataggcact 2520
 gaaaatttag aaaatacaga tggtagcagc agaggaaattt gtataaatgt aagagcaaga 2580
 gaagggttga catttgacaaa tgatggatac ttggtagcat ggaaccaaaaa gtatgacacg 2640
 cgcacacttt ggacaacacc agacacatct cccaaactgca caattgccta agataaggac 2700
 tctaaactca ctttggtaact tacaaagtgt ggaagtcaaa tattagctaa tggcttttg 2760
 attgtggtcg caggaaagta ccacatcata aataataaga caaatccaaa aataaaaagt 2820
 tttactatta aactgctatt taataagaac ggagtgttt tagacaactc aaatcttgg 2880
 aaagcttatt ggaacttttag aagtggaaat tccaatgtt cggacagctt tgaaaaagca 2940
 attggttta tgcctaattt ggtagcgtat cccaaaccca gtaattctaa aaaatatgca 3000
 agagacatag tttatggaaat tataatctt ggtggaaaac ctgatcgcc agcagtcatt 3060
 aaaactacat ttaaccaga aactggatg gaatactcta tcacattaa ctttagttgg 3120
 tccaaaacctt atgaaaatgt tgaatttggaa accaccttctt ttacatttc tctatattgcc 3180
 caagaatgaa agagcggccg ctcgagtcg gaggggccgt taaaaccggc tgatcagcc 3240
 cgactgtgcc ttctagttgc cagccatctg ttgtttgccc ctccccctgt ccttccttga 3300
 cccttggagg tgccactccc actgtcctt cctaataaaa tgagggaaattt gcatcgatt 3360
 gtctgagtag gtgtcattttt attctggggg gtgggggtggg gcaggacagc aagggggagg 3420
 attgggaagg caatagcagg catgtgggg atgcgggtggg ctctatgtct tctgaggccg 3480
 aaagaaccagg ctggggctt agggggtatc cccacgcgcg ctgtagccg gcattaagcg 3540
 cggccgggtgt ggtggtaacg cgcagctgta ccgctactact tgccagccgctt staggcccg 3600
 ctcccttcgc tttcttccctt tcccttctcg ccaacgttgcg cggctttccc cgtcaagctc 3660
 taaatcgggg catcccttta gggttccgat ttgtgtttt acggcacctc gaccccaaaa 3720
 aacttgatta gggtgatgtt tcacgttagt ggcacatcgcc ctgatagacg gtttttcgccc 3780
 ctttgacgtt ggagtccacg ttcttaata gtggactctt gttccaaactt ggaacaacac 3840
 tcaaccctat ctccgtctat tcttttgatt tataaggat tttgggattt tccggcttatt 3900
 ggttaaaaaaa tgagtgattt taacaaaat ttaacgcggaa ttaattctgt ggaatgtgtg 3960
 tcagttagggt tggtaaaatg ccccaggctc cccaggccg cagaatgtat caaaggcatgc 4020
 atctcaatta gtcagcaacc aggtgtggaa agtccccagg ctcccccagca ggcagaagta 4080
 tgcaagcat gcatctcaat tagtcagca ccatagtcctt gcccctaactt ccgccttac 4140
 cggcccttaac tccggccagg tccggccattt cttccggccca tggctgacta atttttttta 4200
 tttatgcaga ggccgaggcc gcctctgcct ctgagctattt ccagaagtag tgaggaggct 4260
 ttttggagg cctaggctttt tgcaaaaaggc tcccgccggc ttgtatattcc attttccggat 4320
 ctgatcagca ctgtgttgaca attaatcata ggcatacgat atccggcatag tataatacg 4380
 caagggtggg aactaaaccca tggcaaggat gaccagtggcc ggttctccc gggacttcgt 4440
 cgacgtcgcc ggagcggctg agttctggac cgaacggctc ctgttcatca ggcgggtcca 4560
 ggaggacgac ttccggccgtg tggtccggga cgaacgtgacc ggaccagggtg gtgcggcc 4620
 gtacccggag tggtccggagg tggtgtccac gaacttccgg gacgccttccg ggcggccat 4680
 gaccggatc ggccggccgc cgtggggggcg ggagtggcc ctgcgcgacc cggccggccaa 4740
 ctgcgtgcac ttctggcccg aggagcaggaa ctgacacgtg ctacagatttccac 4800
 cggcccttc tatgaaagggt tgggtctgg aatctttttc cgggacccgg gctggatgt 4860
 cctccagcgc gggatctca tgctggagttt ctcccccac cccaaacttgtt ttattgcagc 4920
 ttataatggt tacaataaaa gcaatagcat cacaatattt acaaataaaag catttttttc 4980
 actgcattct agttgtgggtt tggccaaactt catcaatgtt tcttatcatg tctgtatacc 5040
 gtcgacctct agctagagot tggcgttaatc atggctatag tctgtttccctg tggaaaattt 5100
 ttatccgcctc acaatccac acaacatcag agccggaaagc ataaagtgtt aagccctgggg 5160
 tgcctaatga gtgagctaacatc tccatattat tgggttgcgc tcactgcggc cttttccagtc 5220
 gggaaacctg tcgtggccagg tgcattaaatg aatccggccaa cgcggggga gaggccgtt 5280
 gctgtattggg cgctttcccg cttccctcgact cactgactcg ttatccacag aatcaggggg 5400
 gccggcggccg gtagcgtctc actccaaaggc ggtataatccgg taacgcagga aaaaaaggcc 5460
 taacgcagga aagaacatgt gagcaaaaagg ccagcaaaaag gacatcaca aaaatcgacg 5520
 cgcgttgcgt gcgtttttccat ataggctccg ccccccgtac taccaggcgt ttcccccctgg 5580
 ctcaagtctc aggtggcgaa acccgacagg actataaaga accggatacc tggccgcctt 5640
 aagctccctc gtgcgtcttc ctgtttccgac cttccggctt tggtaggtatc tcatttcgg 5700
 tctcccttcg tggcgttgcgg cgctttctca atgtcactgcg cccgttccagc cccggccgt 5760
 gtaggtcggtt cgctccaaagg tgggtctgtt gcaacgaaacc cggacacgact tatcgccact 5820
 cgccttatacc ggttaactatc gtcttggatc caacccggta agacacgact gtaggggtg ctacagagtt 5880
 ggcagcagcc actggtaaca ggattagcag agcgaggat gtaggggtg ctacagagtt 5940
 cttgaagtgg tggcctaact acggctacac tagaaggaca gtaggtgtt tctgcgtct 5940
 gctgaaggcca gttacccctcg gaaaaagagt tggtagctt tgatccggca aacaaaccac 6000
 cgctggtagc ggtgggtttt ttgtttgcaaa gcagcagatc acgcgcagaa aaaaaggatc 6060
 tcaagaagat ctttgcattt tttctacggg gtctgacgct cagtggaaacg aaaactcagc 6120
 ttaaggattt tggtcatgaa gattatcaaa aaggatcttc acctagatcc ttttaattttt 6180

aaaatgaagt tttaaatcaa tctaaatgtt atatgagtaa acttggtctg acagttacca 6240
 atgcttaatc agtgaggcac ctatctcgc gatctgtcta ttccgttcat ccatagttgc 6300
 ctgactcccc gtcgtgtaga taactacgt acgggagggc ttaccatctg gccccagtgc 6360
 tgcaatgata cccgcgagacc cacgctcacc ggctccagat ttatcagcaa taaaccagcc 6420
 agccggaagg gcccggcgca gaagtggtcc tgcaacttta tccgcctcca tccagtctat 6480
 taatttgtc cgggaagcta gagtaagtag ttccgttcat aatagttgc gcaacgttgc 6540
 tgccattgtc acaggcatcg tgggtgtcacg ctcgtcggtt ggtatggctt cattcagctc 6600
 cggttcccaa cgatcaaggc gagttacatg atccccatg ttgtgcaaaa aagcgggttag 6660
 ctccttcggc cctccgatcg ttgtcagaag taagttggcc gcagtgttat cactcatgtt 6720
 tatggcagca ctgcataatt ctcttactgt catgccatcc gtaagatgtt tttctgtgac 6780
 tgggtgatc tcaaccaagt cattctgaga atatgtatg cggcgaccga gttgtcttg 6840
 cccggcgtca atacgggata atacggcgc acatagcaga actttaaaag tgctcatcat 6900
 tggaaaacgt tcttcggggc gaaaactctc aaggatctt ccgctgtga gatccagttc 6960
 gatgtAACCC actcgtgcac ccaactgatc tttagcatct ttactttca ccagcggttc 7020
 tgggtgagca aaaacaggaa ggcaaaatgc cgaaaaaaag ggaataaggcgacacggaa 7080
 atgttgaata ctcatactct tccttttca atattattga agcatttatac agggttatttgc 7140
 tctcatgagc ggatacatat ttgaatgtat tttagaaaaat aaacaatag gggttccgc 7200
 cacatttccc cgaaaagtgc cacctgacgt c 7231

<210> 43

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 43

tgtcttggat ccaagatgaa ggcgcggccgc cccagcgaag atgacttc

48

<210> 44

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: primer

<400> 44

aaacacggcg gccgctttt catttttg

28

<210> 45

<211> 17

<212> PRT

<213> Ad 37 N-terminus

<400> 45

Met Ser Lys Arg Leu Arb Val Glu Asp Asp Phe Asn Pro Val Tyr Pro Tyr
1 5 10 15

<210> 46

<211> 6

<212> PRT

<213> artificial sequence

<400> 46

Lys Arg Ala Arg Pro Ser
1 5

<210> 47

<211> 17

<212> PRT
<213> Ad5 modified N-terminus

<400> 47
Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro Tyr
1 5 10 15

<210> 48
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 48
ggatccatgg gatacttggt agca 24

<210> 49
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 49
gcaactcgag tcattttgg gcaatatagg 30

<210> 50
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 50
cgcgctgact cttaaggact agtttc 26

<210> 51
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 51
gcgcattttt aacatcatca ataataacc ttatccc 37

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 November 2001 (08.11.2001)

PCT

(10) International Publication Number
WO 01/083729 A3

- (51) International Patent Classification⁷: C12N 15/861, A61K 48/00, A61P 27/02
- (21) International Application Number: PCT/EP01/04863
- (22) International Filing Date: 30 April 2001 (30.04.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
09/562,934 1 May 2000 (01.05.2000) US
- (71) Applicants: NOVARTIS AG [CH/CH]; Lichtstrasse 35, CH-4056 Basel (CH). THE SCRIPPS RESEARCH INSTITUTE [US/US]; 10550 North Torrey Pines Road, La Jolla, CA 92037 (US).
- (71) Applicants and
(72) Inventors: NEMEROW, Glen, R. [US/US]; 462 Cerro Street, Encinitas, CA 92024 (US). VON SEGGERN, Daniel, J. [US/US]; Apartment 30, 5175 Luigi Terrace, San Diego, CA 92122 (US). FRIEDLANDER, Marty [US/US]; 1720 Zapo Street, Del Mar, CA 92014 (US).
- (74) Agent: BECKER, Konrad; Novartis AG, Corporate Intellectual Property, Patent & Trademark Dept., CH-4002 Basel (CH).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(88) Date of publication of the international search report:
19 September 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/083729 A3

(54) Title: VECTORS FOR OCULAR TRANSDUCTION AND USE THEREOF FOR GENETIC THERAPY

(57) Abstract: Adenovirus vector-based gene therapy methods for treating ocular disorders are provided. Adenovirus vectors for therapy of ocular diseases and methods of treatment using the vectors are provided. Compositions, kits, and methods of preparation and use of the vectors for gene therapy are provided.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 01/04863

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/861 A61K48/00 A61P27/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, EPO-Internal, BIOSIS, MEDLINE, EMBASE, SCISEARCH, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BENNETT J (REPRINT) ET AL: "Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse" GENE THERAPY, (SEP 1998) VOL. 5, NO. 9, PP. 1156-1164. PUBLISHER: STOCKTON PRESS, HOUNDMILLS, BASINGSTOKE RG21 6XS, HAMPSHIRE, ENGLAND. ISSN: 0969-7128., XP001064828 UNIV PENN, DEPT OPHTHALMOL, SCHEIE EYE INST, FM KIRBY CTR, SCH MED, 310 STELLAR CHANCE LABS, PHILADELPHIA, PA 19104 (Reprint) page 1156 abstract page 1157, left-hand column, paragraph 1 page 1158; figure 2 page 1159, right-hand column, paragraph 2 page 1160; figure 6	1-7
Y		8-33 -/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

11 April 2002

Date of mailing of the international search report

15/07/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Sitch, W

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 01/04863

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>page 1161, right-hand column, paragraph 3 -page 1162, left-hand column, paragraph 1 page 1162, left-hand column, paragraph 4 -page 1162, right-hand column, paragraph 2</p> <p>---</p> <p>WO 95 26409 A (ABITBOL MARC ;MALLET JACQUES (FR); REVAH FREDERIC (FR); ROUSTAN PA) 5 October 1995 (1995-10-05)</p> <p>page 1, line 3 - line 7 page 4, line 26 -page 5, line 26 page 6, line 1 - line 23 page 10, line 10 - line 19 claims 1,11-24</p> <p>---</p>	1-7
Y	<p>HUANG SHUANG ET AL: "A single amino acid in the adenovirus type 37 fiber confers binding to human conjunctival cells" JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 73, no. 4, April 1999 (1999-04), pages 2798-2802, XP002139782 ISSN: 0022-538X the whole document</p> <p>---</p>	8-33
A	<p>ARNBERG NIKLAS ET AL: "Fiber genes of adenoviruses with tropism for the eye and the genital tract" VIROLOGY, ACADEMIC PRESS, ORLANDO, US, vol. 227, no. 1, 1997, pages 239-244, XP002139781 ISSN: 0042-6822 page 239 abstract page 242; figure 2 page 244, left-hand column</p> <p>---</p>	
A	<p>WO 98 22609 A (ARMENTANO DONNA E ;GREGORY RICHARD J (US); GENZYME CORP (US); SMIT) 28 May 1998 (1998-05-28)</p> <p>page 6, line 16 -page 7, line 28</p> <p>---</p>	
A	<p>DATABASE BIOSIS 'Online' BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1994 GOURAS PETER ET AL: "Reporter gene expression in cones in transgenic mice carrying bovine rhodopsin promoter/lacZ transgenes." Database accession no. PREV199598013526 XP002195797 abstract & VISUAL NEUROSCIENCE, vol. 11, no. 6, 1994, pages 1227-1231, ISSN: 0952-5238</p> <p>---</p> <p>-/-</p>	1

INTERNATIONAL SEARCH REPORT

Internal Application No

PCT/EP 01/04863

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98 48027 A (UNIV FLORIDA) 29 October 1998 (1998-10-29) page 2, line 22 -page 3, line 5 page 3, line 33 -page 4, line 33 ---	1
A	DATABASE CA 'Online' CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; TSUBOTA, KAZUO ET AL: "Adenovirus-mediated gene transfer to the ocular surface epithelium" retrieved from STN Database accession no. 130:177282 HCA XP002195798 abstract & EXP. EYE RES. (1998), 67(5), 531-538 ,	8
A	ABRAHAM N G ET AL: "Adenovirus-mediated heme oxygense-1 gene transfer into rabbit ocular tissues" INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, ASSOCIATION FOR RESEARCH IN VISION AND, US, vol. 36, no. 11, 1 October 1995 (1995-10-01), pages 2202-2210, XP002086227 ISSN: 0146-0404 page 2203, right-hand column, paragraph 3 -page 2204, left-hand column, paragraph 2 page 2204, left-hand column, paragraph 4 -right-hand column, paragraph 1 page 2206, right-hand column, paragraph 2 -page 2207, right-hand column, paragraph 2 ---	8
A	WO 96 13276 A (GENENTECH INC) 9 May 1996 (1996-05-09) page 6, line 2 -page 18, line 6 ---	8

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP 01/04863

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Although claims 10-33 (all partially, insofar as they concern *in vivo* methods) are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid; specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT
Information on patent family members

International Application No

PCT/EP 01/04863

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 9526409	A 05-10-1995		FR 2718150 A1 AU 2142595 A CA 2184755 A1 EP 0753067 A1 WO 9526409 A1 JP 9510621 T ZA 9502563 A	06-10-1995 17-10-1995 05-10-1995 15-01-1997 05-10-1995 28-10-1997 21-12-1995
WO 9822609	A 28-05-1998		US 5877011 A AU 732220 B2 AU 5455298 A EP 0946742 A1 JP 2001505054 T WO 9822609 A1	02-03-1999 12-04-2001 10-06-1998 06-10-1999 17-04-2001 28-05-1998
WO 9848027	A 29-10-1998		AU 735788 B2 AU 7140698 A AU 7467598 A BR 9808606 A EP 0977841 A2 EP 0977880 A2 JP 2001523959 T JP 2001527399 T US 6225291 B1 WO 9848009 A2 WO 9848027 A2	12-07-2001 13-11-1998 13-11-1998 23-05-2000 09-02-2000 09-02-2000 27-11-2001 25-12-2001 01-05-2001 29-10-1998 29-10-1998
WO 9613276	A 09-05-1996		US 5827702 A CA 2203374 A1 EP 0789592 A1 JP 10508025 T US 6204251 B1 WO 9613276 A1	27-10-1998 09-05-1996 20-08-1997 04-08-1998 20-03-2001 09-05-1996