

Profesor: César Hormazábal

LinkedIn: linkedin.com/in/hormazabalcesar

Email: cesar.hormazabal@lhlab.cl

Fecha: 6 de septiembre de 2018

Agenda

- 1. Introducción
- 2. Tipos de modelos en Machine Learning y Aplicaciones.
- 3. Regresiones y sus diferencias
- 4. Modelos de Clasificación.
- 5. Técnicas Extra
- 6. Como llevar un proyecto de machine learning exitosamente.

¿Cómo aprenden las máquinas?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

Tom M. Mitchell (1997)

Supongamos que estamos buscando un enfoque para encontrar fraude crediticio.

Nombre	Monto	Fraude
Juan	2500	No
Pedro	1300	Sí
Pablo	5000	Sí
Andrea	7000	No

¿Existe algún patrón que podamos encontrar en la data?

Ahora examinemos el siguiente ejemplo:

Nombre	Monto	De dónde es la cuenta	Dónde fue usado	Edad	Fraude
Juan	2500	Chile	Brasil	30	No
Pedro	1300	Rusia	España	22	Sí
Pablo	5000	Rusia	Chile	26	Sí
Andrea	7000	Colombia	Argentina	40	No

Con más data empezamos a encontrar más patrones.

¿Qué pasa si la data empieza a crecer a millones?

No se pueden encontrar patrones visualmente, por lo cual se hace uso de técnicas estadísticas para encontrar aquellos patrones.

Machine Learning

Lo que hace un proceso de machine learning es:

- Aplicar técnicas Estadísticas para encontrar patrones.
- Generar una implementación que reconoce aquel patrón. (Es decir, un código).
- Este código es conocido como un **modelo** y puede ser llamado por las aplicaciones que quieran resolver el problema.

Proceso de Machine Learning

Procesar Datos

¿Qué datos son importantes para el modelo?

¿Tienen sentido los datos para el formato del problema?

¿Existe alguna transformación de los datos que haga que tengan sentido?

Visualizar Datos

¿Puedo descubrir relaciones entre los datos?

Debido a las dificultades de nuestra visión, se recomienda buscar las relaciones de a pares

> Se visualizan tendencias, dispersiones.

Aplicar Modelo de Machine Learning.

Al aplicarlo tendremos cierto nivel de certeza del modelo.

Es el momento de compararlo con otros modelos.

Se compara en base al éxito del modelo y el costo de cálculo que suponga, además de que tan comprensible es.

Aplicaciones de Machine Learning

Anti-Fraude.

Trading algorítmico.

Fondos de inversión manejados por IA

Anti-Lavado de dinero.

Análisis de transacciones en tiempo real.

Credit-Scoring.

Inversión automática.

Modelos de Fuga y Propensión de Clientes.

Aplicaciones de Machine Learning

JPMorgan -> Algoritmo COIN (Análisis automático de documentos).

-> Emerging Opportunities Engine

Wells Fargo->Chatbot para la mensajería de la compañía.

Citibank -> FeedzAI (Detector de fraudes)

ChileCompra-> Detector de Fraude en compra públicas.

Comparador de precios automático

Discusión de Primer Caso

Piense 5 situaciones en su compañía donde la velocidad de reacción a una situación ha sido más lenta de lo necesario, discuta si sería posible pasarla a un modelo de machine learning.

Discuta 5 situaciones donde el volumen de datos es más grande de lo que puede procesar una persona. ¿Cómo lo automatizaría, qué variables serían las importantes?

Carga de dato en repositorio

Limpieza de Data

Creación de Modelo

Validación de Resultados

Creación de un modelo en RM

- 1. Cargue la data de banco.
- 2. Asigne roles y tipos pertinentes.
- 3. Use un modelo de árbol para generar un modelo predictivo.
- Valide su nivel de error.

rocess Naive Bayes res 🥖 р mod res 🦽 exa Retrieve bank-full Set Role Split Data Apply Model Performance res (lab exa par mod ori 📄 par mod | exa par

accuracy: 95.73%

	true no	true yes	class precision
pred. no	2819	52	98.19%
pred. yes	76	53	41.09%
class recall	97.37%	50.48%	

Machine Learning ¿Qué tipo de aprendizajes existen?

Aprendizaje Supervisado vs No Supervisado

El objetivo del **aprendizaje supervisado**, es mapear la relación entre un conjunto de variables y su respuesta.

Esta relación no es necesariamente una función, es decir para un mismo conjunto de variables, pueden haber observaciones que tengan valores distintos.

La relación encontrada o establecida entre las relaciones de las variables es lo que llamamos un modelo.

En el aprendizaje **no supervisado**, no tenemos nuestra variable de respuesta, así que dado las variables buscamos relaciones o patrones entre ellas.

Aprendizaje Supervisado vs No Supervisado

Regresión vs Clasificación.

¿Qué es?

Consideremos la siguiente situación:

- Data: Registro de ventas de 200 productos
- Inversión en campañas para cada producto en TV, Radio y Diario

Necesidad: Ante el lanzamiento de un nuevo producto, ¿Cómo debiera invertir el dinero en campañas para generar la mayor cantidad de ventas?¿Cuánto dinero y en qué medio?

- ¿Qué elementos defininen a este problema (inputs)?
- ¿Qué buscamos finalmente (output)?
- ¿Cómo?

Fórmula

$$sales = f(TV, radio, newspaper) + noise$$

Queremos estimar la función f. En general

$$X = (X_1, X_2, \dots, X_p)^T$$
 inputs
 Y output
 $Y = f(X) + \epsilon$ relationship

$$X = (X_1, X_2, \dots, X_p)^T$$
 inputs
 Y output
 $Y = f(X) + \epsilon$ relationship

Nos interesa estimar la función f en dos contextos: regresión y clasificación.

Situación actual:

Tenemos una necesidad definida, nuestra data y observaciones ... ¿cómo estimamos f?

- Modelos paramétricos
- Modelos no paramétricos

- Contexto supervisado:
- Existe una variable dependiente que es de intéres (usualmente "Y").
- Se busca explicar ésta última a través predictores (usualmente ("X").
- Se supone un modelo matemático (paramétrico, no paramétrico, semi paramétrico)
- Ej: Regresión, $Y = f(X) + \epsilon$, (supuestos distribucionales en ϵ).

- Algunos modelos usuales
- Regresiones (lineales, GLM, no paramétricas, series de tiempo, etc.)
- KNN, SVM, Redes Neuronales, Árboles de decisión (y sus derivados)

En el contexto supervisado, la variable dependiente (**Y**) puede ser númerica o categórica.

Clasificación

Regresión

- Categórica: Problema de clasificación.
- Numérica: Problema de regresión.

Modelos de Clasificación

Algunos modelos de clasificación

- KNN (K-nearest neighboor).
- SVM (Support Vector Machine).
- Redes Neuronales.
- Árboles de decisión (y sus derivados).
- Regresión logística.
- Clasificador de Bayes.
- LDA (Linear discriminant analysis).
- QDA (Quadratic discriminant analysis).
- Entre otros...

Modelos de regresión

Sólo por mencionar algunos modelos:

- Regresión lineal.
- Regresión logística.
- Regresión Poisson.
- Modelos mixtos
- Modelos aditivos generalizados
- Regresión quantil.
- Regresión no paramétrica.
- •
- Series temporales.
- Árboles de regresión.
- Regresión KNN.
- Etc...

Resumen de modelos de ML

Algoritmo	Tipo de Problema	Nivel de Interpretabilidad	Precisón de los resultados	Velocidad de entrenamiento
KNN	Ambos	Alto	Вајо	Rápido
Regresión Lineal	Regresión	Alto	Bajo	Rápido
Regresión Logistica	Clasificación	Medio	Bajo	Rápido
Naive Bayes	Clasificación	Medio	Вајо	Rápido
Decision Tree	Ambos	Medio	Bajo	Rápido
Random Forest	Ambos	Bajo	Alto	Lento
AdaBoost	Ambos	Bajo	Alto	Lento
Red Neuronal	Ambos	Nulo	Alto	Lento

Resumen de modelos de ML

Algoritmo	Velocidad de Predicción	Nivel de ajuste de parámetros a realizar	Funciona con un nivel mínimo de datos	Separa bien la señal del ruido
KNN	Rápido	Mínimo	No	No
Regresión Lineal	Rápido	Nulo	Sí	No
Regresión Logistica	Rápido	Nulo	Sí	No
Naive Bayes	Rápido	Algo	Sí	Sí
Decision Tree	Rápido	Algo	No	No
Random Forest	Moderada	Algo	No	Sí
AdaBoost	Rápido	Algo	No	Sí
Red Neuronal	Rápido	Mucho	No	Sí

Resumen de modelos de ML

Algoritmo	Modela la interacción entre variables	Entrega la probabilidad de pertencer a una clase	¿Paramétrico?	Necesita escalar la data	Método o librería asociada en R
KNN	No	Sí	No	Sí	knn
Regresión Lineal	No	N/A	Sí	No	lm
Regresión Logistica	No	Sí	Si	No	glm
Naive Bayes	No	No	Sí	No	e1071::naiveBayes
Decision Tree	Sí	Posiblemente	No	No	rpart
Random Forest	Sí	Posiblemente	No	No	ranger
AdaBoost	Sí	Posiblemente	No	No	adaboost
Red Neuronal	Sí	Posiblemente	No	Sí	neuralnet

Evaluación de modelos de ML Cómo saber si voy por un buen camino

La compensación entre la flexibilidad e interpretabilidad del modelo.

Midiendo la calidad del modelo

El trade off entre Sesgo y Varianza.

El trade off entre Sesgo y Varianza.

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\epsilon).$$

Minimizar la Suma, de Sesgo, Varianza, y Varianza del Error.

Medidas de Calidad para un Modelo

Evaluación de modelos de clasificación

- •¿Qué ocurre si la clase de interés es rara o poco frecuente?
- Ejemplo: detección de fraude, cáncer, fuga de clientes, etc
- •Una tasa de reconocimiento del 97% (tasa de error de un 3%) puede ser muy alta, pero engañosa si sólo el 3% de las tuplas tenían cáncer.
- •Puede ocurrir que el clasificador sea muy bueno reconociendo los registros libres de cáncer, pero incapaz de detectar las que sí lo padecen.

Necesitamos otras medidas que cuantifiquen el desempeño del modelo de clasificación en las tuplas positivas y negativas.

Medidas de Calidad para un Modelo

Matriz de Confusión

La matriz de confusión es el resultado final del entrenamiento, después de seleccionar un Threshold o Punto de Corte. Y Se utiliza para evaluar el poder predictivo del modelo dado una muestra de testeo.

Predicción del Modelo							
Predicción Fugados	Predicción No Fugados						
(Predicción de Positivos)	(Predicción de Negativos)						
Verdadero Positivo	Falso Negativo						
(True Positive)	(False Negative)						
Falso Positivo	Verdadero Negativo						
(False Positive)	(True Negative)						

Medidas de Calidad para un Modelo

Medidas útiles en un Matriz de Confusión

Verdadero Positivo	Falso Negativo
(VP)	(FN)
Falso Positivo (FP)	Verdadero Negativo (TN)

$Accuracy = \frac{(VP + VN)}{(VP + VN + FN + FP)}$	Accuracy, es útil para evaluar un modelo en términos generales, se puede utilizar en modelos que predicen dos clases, es recomendable para clases que son balanceadas.
$Recall = \frac{VP}{(VP + FN)}$	Recall, a partir de los Fugados Reales cual sería la tasa de casos que logro predecir el modelo.
$Precisión = \frac{VP}{(VP + FP)}$	Precisión, a partir de los Fugados predichos por el modelo calcula la tasa de Fugados Reales que tiene.
$F1 Score = \frac{2 * Precision * Recall}{(Precision + Recall)}$	F1 Score, esta medida resume las medidas de Recall y Precisión.

Evaluación de modelos de clasificación

- Cómo comparar dos clasificadores
 - TP, TN, FP, FN también son útiles para cuantificar los costos y beneficios asociados con un modelo de clasificación.
 - Los costos de un FN (predecir que está sano un paciente con cáncer)es mucho mayor que el de un FP (predecir que está con cáncer alguien sano.
 - Se puede pesar más uno tipo de error que el otro, asignándole un costo más alto.
 - Estos costos consideran el riesgo de la mala clasificación, costos económicos, etc.

Evaluación de modelos de clasificación, curva ROC

- •Para un problema con 2 clases, la curva ROC permite visualizar el compromiso entre la tasa en que el modelo puede reconocer con precisión los casos positivos versus la tasa de falsos positivos para diferentes porciones del conjunto donde se está validando el modelo.
- Eje Y: Tasa de verdaderos positivos (TPR o sensibilidad)
- Eje X: Tasa de falsos positivos (FPR o 1-Especificidad)

Apéndice: evaluación de modelos de clasificación, curva ROC

- •Permiten comparar visualmente distintos modelos de clasificación.
- •El área que queda bajo la curva es una medida de la precisión del clasificador (AUC)
 - Más cerca de la diagonal (área = 0.5), menos preciso será el modelo
 - Por tanto, un modelo perfecto tendrá área = 1.

Clasificación binaria: Curva ROC

Ejemplo	P(+E)	Clase
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

Clase	+	-	+	-	-	-	+	-	+	+	
Probabilidad	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
TP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
TN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	. 0

Ejemplo Rapid Miner

Compare ROCs Random Forest tra mod mod mod tra exa tra mod / wei tra mod 🍙 **Decision Tree** tra mod exa wei Naive Bayes mod exa

Aprendizaje no supervisado

- Data no supervisada no contiene etiquetas y no existe una variable respuesta.
- Existe interes en encontrar una estructura escondida (que nunca es completamente observada).
- Validacion de resultados compleja.

Aprendizaje no supervisado

Algunas tareas usuales

- Generación de Clústers
- Reglas de asociación.
- Reducción de dimensionalidad

k-means

Objetivo: dado un conjunto de datos numéricos (multidimensional), se quiere identificar grupos en la data

- 1. Idea del algoritmo :
- 2. Suponer (por ejemplo), K=3 grupos y asignar aleatoriamente las obs. a ellos.
- 3. Definir los centroides.
- 4. Reasignar la data a al centroide más cercano.
- 5. Redefinir centroides
- 6. Repetir proceso hasta que no haya cambio en la asignación

Final Results

k-means

¿Cómo determinar el número óptimo de clústers?

 Minimizando la suma de cuadrados totales de todos los grupos (total wss)

$$\underset{C_1, \dots, C_K}{\text{minimize}} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2,$$

K-medoids

- Los medoides son objetos representativos de un conjunto de datos o un grupo cuya disimilaridad promedio a todos los objetos en el grupo, es mínima.
- Es un concepto similar a la media o centroide, pero los medoides siempre son miembros del conjunto de datos.
- Puede ocurrir que exista más de un medoide, como es el caso de la mediana

K-medoids

• Se utiliza el criterio de error absoluto, definido como:

$$E = \sum_{i=1}^{k} \sum_{\boldsymbol{p} \in C_i} dist(\boldsymbol{p}, \boldsymbol{o}_i)$$

Donde o_i es el objeto representativo de C_i .

 La agrupación se realiza minimizando este error absoluto, donde en cada iteración se escoge un nuvo representante.

Selección de variables y reducción de dimensionalidad Usar solo lo relevante

Tipos de reducciones

Reducción por contexto

Reducción a categorías

Reducción por correlación

Reducción por dimensionalidad

Idea principal:

- Analizar un set de datos de alta dimensionalidad en un espacio de menor dimensión manteniendo la estructura de variabilidad de los datos origninales.
- Feature extraction != Feature selection
 - Selección de variables : $[X_1, X_2, \ldots, X_p] o [X_1, X_2, \ldots, X_\kappa] o [X_1, X_2, \ldots, X_\kappa]$

$$[X_1, X_2, \dots, X_p] \rightarrow [f_1(X_1, X_2, \dots, X_p), \dots, f_{\kappa}(X_1, X_2, \dots, X_p)]$$

= $[Y_1, Y_2, \dots, Y_{\kappa}]$

Extracción de características :

Idea básica: Determinar una rotación que describa los datos del espacio U en V. (Buscamos un espacio ortogonal)

Enfoque:

$$\begin{bmatrix} \boldsymbol{X}_{1}^{\top} \\ \boldsymbol{X}_{2}^{\top} \\ \vdots \\ \boldsymbol{X}_{j}^{\top} \\ \vdots \\ \boldsymbol{X}_{p}^{\top} \end{bmatrix} \rightarrow \begin{bmatrix} \boldsymbol{Y}_{1}^{\top} \\ \boldsymbol{Y}_{2}^{\top} \\ \vdots \\ \boldsymbol{Y}_{\kappa}^{\top} \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & \dots & w_{1j} & \dots & w_{1p} \\ w_{21} & w_{22} & \dots & w_{2j} & \dots & w_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ w_{\kappa 1} & w_{\kappa 2} & \dots & w_{\kappa j} & \dots & w_{\kappa p} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}_{1}^{\top} \\ \boldsymbol{X}_{2}^{\top} \\ \vdots \\ \boldsymbol{X}_{j}^{\top} \\ \vdots \\ \boldsymbol{X}_{p}^{\top} \end{bmatrix}$$

$$\begin{bmatrix} \boldsymbol{X}_{1}^{\top} \\ \boldsymbol{X}_{2}^{\top} \\ \vdots \\ \boldsymbol{X}_{j}^{\top} \\ \vdots \\ \boldsymbol{X}_{p}^{\top} \end{bmatrix}$$

$$\mathbf{Y}^\top_{\kappa\times n} = \mathbf{W}^\top_{\kappa\times p} \ \mathbf{X}^\top_{p\times n} \qquad \text{or} \qquad \mathbf{Y}_{n\times \kappa} = \mathbf{X} \ \mathbf{W}_{n\times \kappa}$$

Terminology:

- $ightharpoonup Y_1,\ldots,Y_\kappa$ are the scores,
- $\mathbf{w}_1, \dots, \mathbf{w}_{\kappa}$ are the *loadings*.

- Se puede probar que $\sum_{p \neq \kappa}^{\mathbf{W}}$ corresponde a los vectores propios $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ asociados al mayor valor propio número k.
- La varianza explicada por la j-ésima componente corresponde al j-ésimo valor $prc \mathbf{X}^{\top} \mathbf{X}$ le

$$\mathbf{Y}_{n \times \kappa} = \mathbf{X}_{n \times p} \mathbf{W}_{p \times \kappa}$$

$$\mathbf{W}^{\mathsf{T}}\mathbf{W} = \mathbf{I}$$
.

Ejercicio

- Siempre se elige entre flexibilidad de un modelo e interpretabilidad.
 - Por ejemplo, en una regresión lineal vs una red neuronal
- Si es que tengo una variable de respuesta en mis datos, puedo entrenar un modelo para esa respuesta a esto se le llama, modelo supervisado.
 - Dentro de los modelos supervisados, si la variable es categórica (estados), el problema se le dice problema de clasificación.
 - Si la variable es continua, al problema se le dice problema de regresión.
- Cuando no tengo la variable de respuesta en mis datos, busco patrones, a esto se le llama modelo no supervisado.

Así en resumen, para problemas supervisados:

El error de entrenamiento siempre será menor que el error de test.

• Hay que tener cuidado con el trade off entre sesgo y varianza

Para los problemas de clasificación:

Positivos Negativos

Verdadero Positivo	Verdadero Negativo
Falso Positivo	Falso Negativo

Para los problemas de clasificación:

Segundo caso

Forme grupos y decida entre las problemáticas que encontró en la actividad anterior cuales corresponden a un problema de Clasificación, cuales a uno de Regresión, y cuáles a un problema de Clustering.

Para sus problemas de clasificación revisen si es un problema balanceado o no, ¿Qué problemas pueden surgir en las métricas de desempeño?

Genere dos métricas de desempeño por cada problema propuesto, converse los pros y contras de las métricas definidas.

- Separación por hiperplanos. (maximal margin).
- Caso no separable. (Soft margin)

$$\begin{cases} \max_{\beta,\beta_0,||\beta||=1} M \\ \text{sujeto a} & \xi \geq 0, \sum_{i=1}^{N} \xi_i \leq K, y_i(x_i^T \beta + \beta_0) \geq M(1 - \xi_i), i = 1, \dots, N \end{cases}$$

- Fronteras de decisión no lineales.
- Se introduce flexiblidad mediante la utilización de Kernels.

Considérese el set de entrenamiento $x_1, ..., x_N \in \mathcal{X}$, con $N \in \mathbb{N}$ y $\mathcal{X} \subset \mathbb{R}^n$ compacto. De acuerdo a la formulación tradicional de un clasificador SVM (veáse por ejemplo [1]), supóngase un kernel del tipo

$$k(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle,$$

donde ϕ es una función que mapea $\mathcal{X} \longrightarrow \mathcal{H}$, con \mathcal{H} un espacio completo y con un producto interno $\langle \cdot, \cdot \rangle$ definido. Para efectos de esta aplicación $\mathcal{H} = \mathbb{R}^p, p \in \mathbb{N}$, parámetro que variará con cada uno de los modelos a implementar.

El Kernel a utilizar en este modelo es el radial, dado por

$$k(\mathbf{x}, \mathbf{y}) := \exp(-\gamma ||\mathbf{x} - \mathbf{y}||^2)$$

B. Schölkopf and A.J. Smola, Learning with Kernels. MIT Press, 2002.

$$\begin{cases} \max_{\beta,\beta_0,||\beta||=1} M \\ \text{sujeto a} \quad \xi \geq 0, \sum_{i=1}^N \xi_i \leq K, y_i(x_i^T\beta + \beta_0) \geq M(1-\xi_i), i=1,\dots, N \end{cases}$$

$$\begin{cases} \min_{\beta,\beta_0,\frac{1}{2}} ||\beta||^2 + C \sum_{i=1}^N \xi_i \\ \text{sujeto a} \quad \xi \geq 0, y_i(\langle \phi(x_i),\beta \rangle + \beta_0) \geq (1-\xi_i), i=1,\dots, N \end{cases}$$

Regresión Logística

¿Qué es la regresión logística?

Se separan los datos mediante una función logit.

$$P = \frac{e^{a+bX}}{1+e^{a+bX}}$$

Multiclass Logistic Regression

La búsqueda de los parámetros se desarrolla usando Limited Memory BFGS. Que una aproximación del hessiano usado en el método de newton. **Optimization Tolerance**, la tolerancia de la aproximación al hessiano.

Memory Size for L-BFGS, especifica el total de memoria en MB usado para el LBFGS optimizer.

Red Neuronal (ANN)

Analogía Redes Neuronales

Características Relevantes

- ✓ Aprendizaje Adaptativo (dinámico autoadaptativo)
- ✓ Auto-organización (implica la propiedad de generalización)
- ✓ Tolerancia a Fallos (forma de almacenamiento)
- ✓ Operaciones en tiempo real (implementación paralela)

Red Neuronal (ANN)

Funcionamiento

Esta constituida por 4 componentes:

- ✓ Capa de Entrada: se encargan de recibir las señales o patrones que proceden del exterior.
- ✓ Capas Ocultas: tienen la misión de realizar el procesamiento no lineal de los patrones recibidos.
- ✓ Capa de Salida: actúa como salida de la red, proporcionando la respuesta de la red al exterior.
- ✓ Función de Transferencia: Corresponde a la "sinapsis" y es el factor principal de la técnica.

Support Vector Machine

Mejor hiperplano de separación. Maximiza la separación entre los conjuntos

Regresión Lineal

Regresión lineal tiene la forma de

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1, \dots n$$

Las cantidades β_0 y β_1 son la ordenada al origen y la tendencia de la regresión, que son asumidas fijas pero desconocidas. ε_i es una variable aleatoria que representa el ruido pero se sume que $E(\varepsilon_i) = 0$, por lo que:

$$E(Y_i|x_i) = \beta_0 + \beta_1 x_i$$

La linealidad de la regresión se interpreta en términos de los parámetros.

Es decir: $E(Y_i|x_i) = \beta_0 + \beta_1^2 x_i$ no es regresión lineal.

Generalmente se utiliza el método de máxima verosimilitud para encontrar los valores de β

Regresión Lineal Bayesiana

A partir de la Regresión lineal que tiene la forma de:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1, ... n$$

Tenemos que en su forma clásica los coeficientes son encontrados generalmente con la función de máximo verosimilitud. En el caso Bayesiano, los coeficientes se encuentran utilizando el siguiente método:

- 1. Se define la distribución a priori para los coeficientes β_0 y β_1
- 2. Luego se determina la verosimilitud de los datos para actualizar los coeficientes y así considere la incertidumbre de estos.
- 3. Aplicar el teorema de Bayes para actualizar la distribución a priori.

Teorema de Bayes

$$P(A_i/B) = \frac{P(A_i) \cdot P(B/A_i)}{P(B)}$$

Donde:

 $P(A_i)$ = Probabilidad a priori $P(B/A_i)$ = Probabilidad condicional P(B) = Probabilidad Total $P(A_i/B)$ = Probabilidad a posteriori

Regresión de Poisson

En el caso de la regresión de Poisson la variable dependiente se ajusta bien a una distribución de Poisson. (Variables no continuas)

Características:

- ✓ Esta distribución modela bien casos de conteo (número de personas que tienen infarto al corazón, número de llamados de teléfono a una central telefónica, etc).
- ✓ Por eso tiene valores enteros no negativos
- ✓ Su varianza y esperanza es la misma.
- ✓ Tiene la particularidad que mientras más grande es el valor esperado mayor es la dispersión de los valores de la variable.

Distribución de Poisson

$$P(X=x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

Solamente posee un parámetro el cual es λ^x

Regresión de Poisson

Ejemplo Regresión de Poisson:

Anestesia en nonagenarios (*tasas x 1.000 anestesias en adultos/año).

Discusión de Tercer Caso

Piense en 5 casos distintos que podrían modelarse con una regresión. Entre las variables respuesta posibles se encuentran:

- Precio de un bono.
- Cantidad de clientes nuevos mensuales.
- Costos totales asociados a las transacciones.
- Número de clientes endeudados.
- Etc.

En cada uno de los casos planteados determine qué tipo de regresión sería apropiado usar.

Validación CRUZADA

Hasta ahora hemos seguido este enfoque, pero...

Validación CRUZADA

Auto data set. izquierda: tasa de error para una sola data de test. Derecha: tasa de error repetida 10 veces (diferentes divisiones aleatorias)

Validación cruzada: LOOCV

- Intuitivamente
 - ¿Qué inconveniente es evidente?

Validación cruzada: K-fold cv

Similar a LOOCV pero de menor costo computacional

Validación cruzada: K-fold cv

Se puede demostrar que con k=10, se obtiene una estimación similar a la obtenida a través de LOOCV del error de test.

Bootstrap

• Intuición...

Bagging

• Con la idea de Bootstrap podemos generar métodos ensamblados de la

siguiente

OOB Error y LOOCV Error

- Al generar muestras bootstrap y ensamblar un método de clasificación (o regresión) mediante Bagging, es posible estimar el error de test sin la necesidad de llevar a cabo validación.
- Aproximadamente un 63% de los datos serán parte de cada muestra bootstrapt.
- Se puede predecir y promediar el error en el "tercio" restante y estimar el error.
- Se puede demostrar que para un alto número de muestras boostrap OOB converge a LOOCV error.

Métodos ensamblados

Métodos ensamblados

- Algunos de los algoritmos ensamblados más populares, son modelos basados en Árboles de decisión:
- Bagging
- Random Forest
- Adaboost

Métodos ensamblados

Adaptative Boosting (Adaboost)

FINAL CLASSIFIER

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 err_m)/err_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, ..., N$.
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.