Depuis Wallace

Dans l'introduction de son livre "Island Life" paru en 1980 (soit 22 ans après la parution de *On the Tendency of Varieties to Depart Indefinitely From the Original Type*), le célèbre naturaliste Alfred Russel Wallace saisit le drôle de paradoxe suivant : bien que séparé traversé une bonne partie du globe terre les écosystème du Japon et du Royaume Uni sont très similaire notamment par leur composition en arbustes et en oiseaux alors que dans le même temps des êtres très rapprochées comme les îles indinesiennes Bali et Lombok séparées de quelques dizaines de kilomètres et peuvent être très différentes. Il evoque aussi la faible predictibility du climat pour comprendre les espèces en question , il prend pour exemple diff.érence faune afrique et brésilienne malgès la similarité du climat. Face à ces paradoxes so ouvrage ce veut une tentatatove pour comprendre ce les raisons mais il reconnait dès l'introduction que :

Many years study of this class of subjects has convinced me that there is no short abd easy method of dealing with them; because they are, in their very nature, the visible outcome and residual product of the whole past history of the earth.

Dans une vision simplifiée l'écologie détermine les lien entre les caractéristiques des espcèes de la mort et des naissance des et l'évolution regardera les conséquences sur ces caractéristiques de ces même morts et naissances. En prennant ces définitions on comprend l'intrication de ces deux qui explique la demande pour réunir les deux de même que diverse discipline on été réunie avec succès lors de la théorie synthétique de l'évolution (Schoener, 2011).

porblème d'intricatoition des processus

Special attention sur les îles

Premier chapitre plus d'espèce mais plus de paramètre plus de porblème moins de prédiction

Je vais illustrer mon propos avec 2 (3?) récurrent exemple (mais d'autres aussi) le cas du Frelon asiqtieu (anglais : Yellow-legged horne, *Vespa velutina*). Importance pour impact dans sur les abaeilles domestiques mais très peu sur la faune locale et les oiseaux migrateurs dans le nord

L'introduction aux chapitres de ma thèse sera articulée autour de la question fondamnetal esuivant

Dans cette introduction à ma thèse j'ai choisi de prendre comme fil conducteur la question suivante : quelles informations referment la distribution géographiques des espèces ? Pour y apporter un maximum d'élément de réponse je regarderais les mécanismes sous-jacents à l'échelle d'une échelle avant d'aborder les espoir que soulève l'analyse de la variation de ces ranges dans le temps et l'espèce sur les différentes échelles de temps avant d'aborder les apporter un maximum d'é avant de montrer que l'analyse jointe semble révéler et les défis au regard.

: question d'échelle / de variation de co-variation / difficultés d'apprécier la proportions relative des différents mécanismes / mécanismes de coexistence vs co-occurrence

variabilité quelle espoir de généralisation

Crombie repris dans Macarthur => coexistence

Problème de coexistence

=> non reproductibilité des ranges / stochasticité des ranges Frelon asiatiques

=> degat sur la nouvelle faune local msiaune augmentation ++ du nombre de liens... reconfigurations des réseaux

locaux.

=> ou est le cuyrseur dans l'hstoire (evolution) ou la geographie (l'ecologie)

A quel point est-il pertinent d'évaluer le range d'une espèce sur juste une île.

Un problème d'identification.

classique experience de perte de la biodiv => et hope une histoire différenteds

raseemblé ecologie et Schoener (2011)

Section non num

Phase quantitavive / modéliser

L'importance des îles en biogéorgaphie

Pourquoi les îles en fait isolé flux et gros contraste mailand - island alors qu'elles sontproches..

Décrire l'organisation spatiale des êtres vivants et en comprendre les mécanismes sous-jacents, tels sont les objectifs ambitieux de la biogéographie [?]. Cette discipline a récemment percolée au sein de la société civile via le concept de biodiversité. Le regard des citoyens se posent attentivement sur le devenir de la biodiversité dans le contexte actuel des changements globaux. La biogéographie, par son essence, peut apporter des réponses à ce questionnement ambiant [?]. Cependant, pour y parvenir, des défis techniques et théoriques majeurs restent à surmonter [?].

L'effort théorique nécessaire en biogéographie porte sur l'intégration ordonnée de concepts clés issus de différents champs de l'écologie [?]. Ainsi, alors que les conditions climatiques et plus généralement la géographie physique sont classiquement évoquées pour expliquer la répartition des espèces [?], les interactions entre espèces sont quant à elles souvent occultées. De même, bien que les processus évolutifs soient souvent évoqués comme déterminants majeurs de la diversité des espèces [?], leurs effets à court terme sont souvent ignorés [?] dans les scénarios décrivant la biodiversité de demain [?]. La difficulté principale est alors de produire des modèles (théoriques en première instance) qui intègrent l'ensemble des processus et les relations qu'ils entretient [?] tout en gardant une relative simplicité. Une théorie intégrative en biogéographie pourrait être le meilleur point d'ancrage pour construire de nouvelles approches appliquées. Avec une telle théorie en main, nous pourrions aller vers l'enjeux majeurs de ces dernières années en

2

biogéographie : relâcher les hypothèses que les modèles classiques de répartitions des espèces d'aujourd'hui utilisent (notamment en occultant les interactions) pour prédire la biodiversité de demain [?].

Dans le projet ici présenté, nous proposons de construire des modèles théoriques plus intégratifs en repartant d'un modèle théorique classique, celui de la théorie de la biogéographie des îles proposée par MacArthur et Wilson [?]. Dans un premier temps, nous y ajoutons les interactions entre espèces et une relation explicite avec l'environnement abiotique au travers d'une approche communauté centrée qui étend le modèle classique. Dans un second temps, nous combinons une approche population centrée et les processus évolutifs pour une biogéographie insulaire plus mécaniste. Enfin, au regard des enjeux que soulève le rôle des interactions entre espèces dans la construction de la biodiversité, nous réfléchissons sur l'inférence d'espèces interdépendantes.

Data availability

Information dans les distributions

Proxy

Potential interactions

Vespa aussi au Amérqieu la densit. des traffic...

Multi couche de distrobution dans le cas du frelon asiatique Villemant et al. (???) ont montrés que superposition du genre *Vespa* et notamment au niveau asiatique énormément aisin l'inférence se fait sur des données qui comporte une empreinte de condition et localemnt éteinte alors que possiblement comtraite qui ne seront pas en France...

Enjeux essentiels de la biogéographie

Une question d'échelle

Question d'échelle La biogéographie avec au moins 3 problèmes d'échelles

- => spatiale peut-on avoir d
- => temporelle plus on augmente plus l'enpreinte historiques est forte => grands evenemnt géologique (lacitaion mouvement des plques) biogéographies historiques mais aussi forme un pool d'espèces
- => Mais aussi l'échelle taxonomique : la relaton aire espèce est décrite à l'intérieru des taxons les relations allométriques à l'inérieur des taxons E O Wilson a commencé à rappporter des relation sur les formis les exemples du livre sont herpeta faun (reptile plus amphibien) mecanisme => diversité de milieu

contre exemple des chauves souris

Cadre théorique de la thèse

Développements théoriques en Biogéographie

equilibre => equation 3-3 repartir de 3-3

L'empreinte historique de la La Théorie de la Biogéographie des Iles de MacArthur et Wilson

=> impact enorme sur la conservation et encore aujourd'hui bien que simplifié les calculs permettent de comprendredsimplementr dans quelles directions nous allons [article New York Times] Malgré la 50 ans de depuis la publication du Livre et premier articles a lasuorise de auiteure eux meme => publications récentes qui repartent de la théorie des îles ; l'ecolet Warren et gravel and all

Dans la réédition de 2001 [] Wilson rappelle que le problème :

"The flaws of the book lie in its oversimplification and incompleteness, which are endemic to most efforts at theory and synthesis."

Preface de 67:

Now we both call ourselves Biogeographers and are unable to see any real distinction between biogeography and ecology

Diminuer la composante historque à la recherche de loi et j'ajouterais aussi simple soit elle raffiner par la suite

La théorie des métapopulations

=> chapitre de H anski

La théorie neutres de l'écologie et le débat qu'elle soulève

Ecological equivalence des individus OK mais peut-être que l'abondance des interactions expliques aussi

=> chapitre dans revisited

Problème si explication alternatives possibles alors on n'est pas obligé de mettre pour expliquer quoi que ce soit. De plus savons nous si c'est discernable ??? Si le deux relation aire espèce sont différentes d'un groupe à l'autre alors oui... Mais sinon... Non.

Chapitre 2 TIB

area and number $S=CA^z$ ($z\in[0.2,0.35]$) mais des exeptions C taxon dependance similarité avec les eation allometriques sample nom isolé même relation mais z différent

Preston 1962 a lié species abindance et

Interactions écologique et TIB

Wilson grand entoogist spécialistes des fourmis et MacArthur mathématicien + biologuste très oiseaux sont pleinemnt conscience et même comporteemntau que peut avoir la biogéographie c'est même souvent evoquer dans la théorie mais jamais inclu aisni la théorie des

La TIB: un modèle simple donnant une vision puissante

Le travail remarquable de MacArthur et Wilson [?] est l'un des cadres les plus robustes de la biogéographie actuelle. Plus de 40 ans après la parution de leur livre, la Théorie de la Biogéographie des Iles (abrégée dans la suite TBI) est encore une entrée bien adaptée en biogéographie et le point de départ de nombreux travaux [?, ?, ?]. L'idée majeure de la TBI est simple et puissante : étant donné une île colonisable par un ensemble d'espèces depuis un continent voisin, la diversité locale résulte de la balance entre 1- la colonisation depuis le continent et 2- les extinctions locales. La TBI est une métaphore, le cas simple d'un territoire isolé (l'île) où les flux d'individus depuis le pool d'espèce régional (le continent) sont facilement représentables. Le modèle peut être étendu à de nombreux cas où un territoire isolé est colonisé par les organismes à proximité, par exemple après un incendie ou une fragmentation de l'habitat [?]. Plus généralement, on peut adapter un tel modèle à un territoire quelconque avec l'hypothèse que le pool régional d'espèces est indépendant des conditions locales (aucune rétroaction de la communauté locale sur le pool régional). Ainsi, ce modèle a déjà été utilisé avec succès par Gravel *et al.* 2011 pour l'élaboration de leur théorie trophique de la biogéographie des îles [?].

La force de ce modèle théorique réside dans son élégance : avec très peu de processus invoqués, la TBI donne un cadre cohérent, biologiquement fondé pour comprendre la répartition locale de la biodiversité à la lumière de la richesse spécifique régionale. Au travers d'une équation simple (1), la TBI mêle ainsi subtilement les processus régionaux et locaux. Ainsi, la diversité locale S, s'enrichit par colonisation, c, depuis un pool continental d'espèce P et s'appauvrit par extinctions locale e.

$$\frac{dS}{dt} = c(P - S) - eS \tag{1}$$

Un telle vision imbriquant deux échelles de processus est aujourd'hui bien partagée. Il est en effet reconnu que la composition d'une communauté à l'échelle locale (S) est influencée par des facteurs biotiques et abiotiques (dont les conséquences sont capturées par e), mais également par les processus régionaux tels que l'histoire évolutive des espèces (qui façonne P) et la dispersion des individus (c) [?, ?].

La TIB tient également sa notoriété des nombreuses prédictions supportées par les faits [?]. En reliant la géographie physique des îles aux processus de colonisation et d'extinction, les auteurs démontrent la puissance de leur vision. Pour cela, ils admettent que le taux de colonisation des espèces dépend de la distance entre l'île et le continent. De plus, en considérant que la taille de l'île conditionne les ressources et donc l'extinction. Ils parviennent alors à prédire, pour un groupe d'espèces donné, une relation pertinente entre taille de l'île, distance de l'île et richesse spécifique [?]. Pour une île dont la superficie et la distance au continent sont connues, au cours du temps, le nombre d'espèces sur l'île accroît, de fait le nombre de nouvelles espèces potentielles diminuent (P étant constant), la colonisation diminue donc. De même, la richesse de l'île étant accrue, le risque d'extinction est plus élevé. Les forces d'extinction et de colonisation s'annulent alors pour un nombre d'espèce précis : la richesse spécifique à l'équilibre (figure ??). L'idée que la biodiversité atteint un équilibre à relier à la taille du territoire considéré a également été massivement utilisée en biologie de la conservation. En augmentant progressivement la taille de l'île, on obtient effectivement une relation entre aire et diversité [?, ?]. Cette relation a été appliquée pour estimer la richesse spécifique de divers territoires [?], déterminer ainsi des aires de protection [?, ?] et estimer des taux d'extinction [?].

De part son pouvoir explicatif et son élégance, le modèle de MacArthur et Wilson est un point de départ approprié pour construire des modèles plus intégratifs en intégrant explicitement des processus écologiques et évolutifs. Cette idée n'est pas nouvelle et les auteurs de la TIB ont étudié un certain nombre de processus écologiques. Notamment, ils ont intégré les phénomènes de spéciation [?] et réfléchis sur l'importance des interactions quant à la répartition des espèces [?]. Néanmoins, dans le modèle classique, l'ensemble de ces aspects sont absents, l'idée que les processus écologiques importent peu aux larges échelles domine. Nous allons, dans ce projet, à l'encontre de cette idée et proposons de construire des modèles intégratifs qui étendent la TIB.

Environnement abiotique et distribution des espèces

Les atouts actuels de la biogéographie sont 1- une quantité importante d'information relative aux présences d'espèces et au climat et 2- des modèles corrélatifs puissants qui décrivent précisément le lien entre l'espèce et son environnement abiotique. Le terme abiotique peut prêter à confusion dans la mesure où les espèces elles-mêmes peuvent modifier des variables dîtes abiotiques. Par exemple, les végétaux peuvent avoir un grand impact sur les variables abiotiques locales comme la température et l'humidité du sol [?]. Certains auteurs font une distinction précise en utilisant les termes de scenopoetiques pour les variables environnementales sur lesquels les espèces ne peuvent influer et de dynamiquement liées pour les autres [?]. Nous occulterons volontairement ces-dernières, l'environnement abiotique dont il est ici question n'est donc pas dynamiquement lié aux espèces.

Figure 1: La Théorie de la biogéographie des Iles. L'évolution des taux de colonisation et d'extinction est présentée pour deux îles aux caractéristiques différentes. Les tailles relatives des îles et les distances qui les séparent du continent sont schématisées à droite du graphique, les couleurs associent les îles à leurs courbes respectives. Le pool d'espèce régional (P) est constitué de 100 espèces, les taux de colonisation et d'extinction sont exprimés en terme de probabilité d'évènement. Les points où colonisation et extinction s'équilibrent sont marqué par les symboles en gris.

Le premier pas pour expliquer la répartition des espèces est alors la recherche des variables environnementales les plus discriminantes pour comprendre la présence des espèces en un lieu donné [?]. Au coeur de cette démarche existe un enracinement biologique profond. En effet, pour pouvoir s'installer sur un territoire donné, une espèce présente un certain nombre d'exigences physiologiques. De manière générale, l'espèce doit pouvoir répondre à l'ensemble de ses dépenses énergétiques pour survivre et éventuellement se reproduire [?]. La dernière condition n'est pas indispensable : la présence d'une espèce peut résulter d'une permanente colonisation [?]. Cet espace des variables environnementales dans lequel une survie d'une population est possible, nous l'appellerons niche écologique. Ce terme est l'objet de vif débat [?] que nous éviterons en rappelant la définition employé. Nous palerons ici de niche fondamentale pour désigner l'ensemble des variables *scenopoetiques* et niche réalisée lorsque la composante biotique intervient, même indirectement.

De nombreux travaux démontrent que les variables environnementales ont un grand pouvoir pour expliquer la présence des espèces [?]. A partir de cette connaissance, il suffit de projeter l'espace environnemental sur l'espace géographique. Pour prédire la répartition de la biodiversité de demain, on couple des modèles d'évolution de l'environnent abiotique avec cette projection. Cette démarche rencontre actuellement un grand succès, les changements globaux induisant un effort de recherche important dans le domaine [?, ?]. Il est crucial que les modèles théoriques tel que le modèle de la TIB s'approprient le concept de niche fondamentale sous une forme simple mais cohérente. C'est en tout premier lieu par l'utilisation des variables environnementales abiotiques que les modèles théoriques en biogéographie peuvent démontrer leur pertinence et attester de leur proximité avec les modèles plus corrélatifs et plus appliqués.

L'emploi des variables abiotiques seules pour comprendre la répartition des espèces demeurent problématique. Alors qu'il semble raisonnable de considérer des facteurs tels que la présence d'eau, de lumière et la température pour expliquer la distribution des végétaux, lorsqu'il s'agit d'espèces de niveaux trophiques plus élevés, les seules données de l'environnement abiotique ne suffisent pas [?, ?]. Nous considérons, pour alimenter la réflexion, un exemple simple : un prédateur spécialiste et sa proie. De par l'étroite relation que les deux espèces entretiennent, il est peu efficace de regarder les seuls facteurs abiotiques pour comprendre la répartition future du prédateur. Il est alors plus pertinent d'examiner la répartition future de la proie et de s'interroger sur les possibilités de dispersion du prédateur.

Réseaux d'interactions : interdépendance des espèces

Il est difficile de concevoir les espèces comme indépendantes, elles partagent des espaces communs et des sources d'énergie, elles échangent de la matière, elles sont en permanentes interactions. Ces relations intra et inter spécifiques sont au coeur de l'écologie. En dynamique des populations, sont arrivés très vite des modèles classiques attestant les relations proies-prédateurs témoignant de l'importance de traiter la démographie de différentes espèces simultanément . L'écologie des réseaux pose des questions fondamentales comme celle de la stabilité des écosystèmes au regard de la structure des réseaux [?]. Au delà des relations trophiques, les interactions peuvent se manifester sous de nombreuses formes [?]. Le mutualisme, le commensalisme et la compétition sont des relations qui affectent la démographie des

espèces sans que l'une d'entre elles se nourrisse d'une autre. La représentation en réseau des interactions est un outil puissant pour synthétiser la complexité des écosystèmes [?, ?]. Ils sont représentés par la matrice de communauté qui résume l'effet démographique des espèces par pair. Cette matrice renferme des informations précieuses telles que la connectance (mesure du nombre de liens constatés rapporté au nombre de liens possibles), la topologie des interactions entre espèces [?] et les effets indirects [?, ?].

Les interactions intra et inter spécifiques constituent un facteur rapidement pressenti comme responsable de la distribution spatiale des espèces [?]. L'interdépendance des espèces conditionne, en effet, l'aspect favorable de l'environnement au sens large (biotique et abiotique). Ainsi Godsoe *et al.* 2012, mettent en équations le caractère favorable de l'environnement pour une espèce donnée en terme de probabilité de présence d'une autre espèce et de la nature de leur interaction [?]. De même, Holt et Barfield 2009 montrent l'impact de la prédation sur la répartition d'espèces en compétition [?] insistant ainsi sur le rôle majeur des interactions. Davis *et al.* 1998 ont montrés que, pour trois drosophiles en compétition, l'effet d'un parasitoïde n'est pas le même le long d'un gradient selon que les espèces sont seules ou ensemble [?]. Récemment, des efforts ont été réalisés pour mettre en évidence l'importance de l'interdépendance des espèces dans les données aux larges échelles spatiales [?]. On trouve actuellement dans la littérature une grande motivation pour les intégrer dans les modèles de distribution d'espèces [?, ?]. Des efforts théoriques sont encore nécessaires pour arriver à de telles approches. Néanmoins, rapprocher différents champs de l'écologie peut s'avérer d'une utilité majeure. Jabot et Bascompte [?] 2012, ont d'ailleurs montré l'importance des interactions pour comprendre la distribution des espèces en rapprochant écologie des réseaux et un modèle de metacommunauté. De même Gravel *et al.* 2011 [?] introduise l'interdépendance proie-prédateur dans le modèle classique de MacArthur et Wilson menant aux prémices d'une théorie trophique de la biogéographie des îles.

L'ajout des interactions dans un modèle incluant l'environnement abiotique interroge la relation que les deux processus entretiennent. Si les espèces n'ont pas les mêmes performances dans différents milieux du fait de leur physiologie, pour les mêmes espèces considérées, les réseaux n'ont pas de raison d'être identiques d'un milieu à un autre. C'est sur ce fait que Poisot *et al.* 2012 ont proposé une mesure de dissimilarité des réseaux [?]. Defossez *et al.* montrent que les interactions négatives entre l'hêtre commun (*Fagus Sylvaitca*) et les micro-organismes du sol diminuent avec l'altitude [?]. Ainsi, les contraintes biotiques sont à relier à l'environnement [?, ?] et un modèle intégratif doit donner un cadre cohérent à ces rétroactions entre processus. Enfin, l'importance des interactions est à mettre en relation avec l'échelle considérée [?]. Pour deux espèces en interaction, plus l'échelle d'étude est large, moins les effets des interactions locales sont susceptibles d'être capturés, le pouvoir explicatif de la présence d'une espèce sur l'autre peut être alors discutable [?]. Comprendre quels sont les processus à prendre en compte aux différentes échelles spatio-temporelles et comprendre comment le changement d'échelle affecte nous prédictions est aussi un véritable challenge en biogéographie [?].

Plasticité phénotypique et processus évolutifs

La vie telle que nous la connaissons pérennise l'information accumulée au cours du temps via à un support moléculaire, l'ADN. Cette molécule peut 1- renfermer une plasticité phénotypique offrant aux espèces des possibilités pour faire face aux stress environnementaux et 2- subir des altérations, des mutations, dont le relative avantage apporté peut assurer une survie accrue. Les espèces sont donc elles-mêmes porteuses potentielles de réponses face aux changement actuels [?, ?]. La plasticité phénotypique permet une réaction rapide des espèces à des changements environnementaux soudains. Tingley et al. 2009 ont ainsi montré que sur 53 espèces d'oiseaux étudiés dans la Sierra Nevada, 48 ont colonisé de nouveaux sites où les conditions de température et de précipitations leur étaient plus favorables [?]. Les mutations sont quant à elles des évènements relativement rares qui interviennent potentiellement à chaque génération, leur fréquence est donc dépendante, en premier lieu du temps de génération mais aussi de la tolérance des systèmes de réplication du matériel génétique. Pour des espèces aux temps de génération court, les processus micro-évolutifs peuvent donc être déterminants. Ainsi, Balanyá et al. 2009 ont montré des changements notables dans le génotype de *Drosophila subobscura* en 24 années avec des génotypes de basses latitudes plus répandus en réponses au changements climatiques.

Il est capital de ne pas oublier les processus évolutifs dans un modèle de biogéographie afin d'envisager correctement la biodiversité de demain [?, ?]. La nature des processus à prendre en compte est dépendante de l'échelle de temps considérée. Ainsi, si l'on souhaite retracer l'histoire évolutive d'une région, les aspects adaptatifs relevant de la micro-évolution sont moins pertinents que les processus évolutifs de longue portée modifiant profondément les espèces. Il faut, à ce propos, rappeler que l'évolution peut conduire à un enrichissement du pool d'espèce d'une région donnée [?, ?]. Les mutations accumulées dans une population isolée géographiquement peuvent conduire à une incompatibilité reproductive avec les populations du pool dont elle est issue. Il y a alors spéciation, la biodiversité est augmentée. A court terme, les processus longs de spéciation peuvent être occultés mais prendre en compte les phénomènes d'adaptation et les processus d'évolution des espèces au temps de générations court est important. Il est aussi important de distinguer les réponses phénotypiques des réponses évolutives, les premières pouvant être plus rapide mais à porter moindre que les secondes plus lentes [?].

Les processus évolutifs peuvent être favorisés par les changements environnementaux mais également par les interactions entre espèces [?]. Les étroites relations entre espèces peuvent favoriser ou contraindre les réponses évolutifs, qui elles-mêmes peuvent altérées ces interactions, il existe de fait des rétroactions permanentes entre évolution et écologie [?]. Yoshida *et al.* 2003 montrent que la réponse des algues vertes unicellulaires *Chlorella vulgaris* aux rotifères *Brachionus calyciftorus* conduit à un changement dans la fréquence et la phase des cycles de la dynamiques proie prédateur [?]. L'ensemble des trois éléments jusqu'ici évoqués (environnement abiotique, interaction, évolution) peuvent également être étroitement associé. Grant et Grant 2006 rapportent le cas de la compétition entre trois espèces de pinsons (dits de Darwin) sur l'ile de Daphne (Galapagos) qui engendre une modification de la taille de leurs becs. Cette évolution liée à la compétition est elle même reliée à l'environnement abiotique car, par l'abondance ou l'absence de précipitations, il détermine la disponibilité des ressources et donc l'intensité de la compétition [?]. A travers cet exemple, nous comprenons l'importance d'inclure l'ensemble des différents processus pour construire un modèle

intégratif en biogéographie. Un tel modèle serait capable, par exemple, de renseigner les risques d'exclusion compétitive dans l'exemple décrit par Grant et Grant.

Traits fonctionnels

Les traits fonctionnels sont des propriétés mesurables sur les organismes en relation avec leurs performances et leur rôle dans l'écosystème [?]. Les traits étudiés peuvent être de différentes natures, 1-morphologiques : taille de différentes parties du corps, position des yeux, taille des oeufs chez les organismes ovipares, taille des graines pour les végétaux, 2- physiologiques : taux métaboliques de bases, stœchiométrie (rapport de la concentration entre divers éléments qui compose l'organismes) [?, ?, ?]. Un ensemble approprié de ces propriétés peut être un outil puissant pour décrire un ensemble d'espèce dans un même espace. Leur proximité dans l'espace des traits est alors un indice précieux d'une proximité fonctionnelle. Ainsi, à l'aide de 13 traits ecomorphlogiques, Albouy et al. 2011 parviennent à prédire les guildes trophiques de 35 espèces de poissons de la Méditerranée [?]. Edwards et al. 2013 montrent que l'effet saisonnier sur une communauté de phytoplancton dans la Manche peut être capturé à l'aide de traits décrivant : le taux maximal de croissance, la compétitivité pour la lumière et l'azote [?]. La distribution des traits fonctionnels au sein de la biodiversité est aussi une entrée de choix pour réfléchir quand à la fragilité potentielle des fonctions remplies par les écosystèmes [?]. %DG: je comprends cette citation de Mouillot, mais juste une mise en garde contre ce type de référence. Mouillot se base sur l'hypothèse que les traits nous informent du fonctionnement, sans jamais documenter cette relation. Ce qui est souvent le cas, et par conséquent contribue à bâtir des mythes dans la littérature qui à l'occasion ne sont pas toujours bien appuyés. L'approche par traits est un bel exemple, on a édifié rapidement une structure conceptuelle sur les traits, mais on n'a pas solidement appuyé le concept sur de bonnes bases empiriques.

L'approche de la biodiversité par les traits fonctionnels est plus quantitative que l'approche taxonomique et permet de déduire un grand nombre de propriétés en se passant de la connaissance de leur identité. Ainsi McGill, dans son article d'opinion de 2006, propose une approche nouvelle de l'écologie des communautés qui transforme les questions centrées autour des espèces par des questions qui interrogent la répartition et la variabilité des traits [?]. L'emploi des traits fonctionnels est en fait un appel à une écologie plus mécaniste, qui se penche sur la physiologie des organismes, en prend les faits les plus importants (relativement au problème traité) pour les placer dans un espace de traits commun. Cette approche est aussi en lien avec la controversée théorie métabolique en écologie [?, ?]. Dans cette théorie un certain nombre de grandeurs (comme le taux métabolique) sont reliées à la biomasse corporelles de l'adulte, fournissant ainsi en un seul trait de nombreuses relations pour des groupes d'organismes très différents. Par ces nouvelles approches, l'espérance de s'extraire de la seule identité des espèces est accrue, l'idée d'avoir des règles générales se concrétise.

Dans une théorie intégrative de la biogéographie, les traits fonctionnels peuvent être un pivot très intéressant pour rassembler les différents concepts que nous avons développés dans les paragraphes précédents. Les traits peuvent tout d'abord être mis en relation avec le milieu abiotique. Le taux métabolique ou encore la sensibilité à la sécheresse sont des indices performant pour décrire la survie dans un milieu donné [?, ?] que l'on peut capturer sous forme de traits.

Kearney *et al.* 2010 propose une approche prometteuse dans laquelle, l'environnement physique, la disponibilité des ressources et la dynamique énergétique sont reliées par les traits fonctionnelles le tout aboutissant à un modèle de distribution très mécanistes. La structure d'un réseaux peut également être dérivée à partir de l'espace des traits. Dans leur méthode proposée cette année, Gravel *et al.* infèrent les paramètres du modèle de niche de Williams et Martinez [?] à partir des relations de masse du corps entre proie et prédateurs [?]. Ils sont alors en mesure de dériver un réseau global pour un ensemble d'espèce donné. Enfin, en tant qu'expression phénotypique, les traits fonctionnels sont soumis aux processus évolutifs. Sur les temps longs, l'expression de l'évolution résulte en la modification progressive des traits qui se répercute sur l'ensemble des propriétés qui en découle. Ainsi la considération d'une modification des traits est une approche simple et réaliste pour introduire les processus évolutifs et leurs conséquences [?, ?].

Inférence en biogéographie

Rappelons les objectifs de la biogéographie : décrire et comprendre le lien entre le vivant et l'espace sur la Terre. Le coeur de l'inférence en biogéographie est donc de trouver les variables les plus pertinentes pour la répartition des espèces. Pour cela, les données spatialisées de présence ou d'abondance des organismes étudiés sont mises en relation avec des variables prédictives également spatialisées [?, ?, ?]. Idéalement, les échelles spatiales coïncident, sinon des transformations des données sont nécessaires. Si la variabilité capturée est satisfaisante, la combinaison retenue de variables explicatives éclairent alors les motifs de la présence des espèces en un lieu donné. Nous retiendrons le nom de modèle de distribution des espèces (MDE) pour référer à cette démarche de modélisation générale. Il y a cependant de nombreux aspects à discuter relatifs aux variables explicatives employées. Les MDE ont fourni des exemples attestant de leur pouvoir à décrire la niche fondamentale pour expliquer les présences des espèces [?]. Si l'on considère des espèces mobiles, il est problématique de négliger leur mouvement, la dispersion et ses limites doivent alors être incorporés dans les modèles de distribution [?]. De même, les espèces interagissant entre elles, elles influencent leurs distributions. Utiliser une espèce en tant que variable explicative pour la présence d'une autre peut s'avérer pertinent [?, ?] mais soulève la question suivante: que faire lorsque nous essayons de prédire simultanément la présence de deux espèces dont les observations résultent elles-même de leurs échanges ?

Dans le contexte actuel des changements globaux, il y a une concentration des efforts pour mieux cerner l'ensemble des réponses possibles des espèces face aux changements globaux [?]. En guise de réponse, les MDE deviennent plus intégrateurs et de nouvelles approches émergent [?]. Ainsi, Guisan et Rahbek 2011 proposent une démarche alliant les prédictions faîtes par les MDE sur un ensemble d'espèces et celles données par une approche de modélisation macroécologiques s'appuyant sur des règles de coexistence dans une unité géographique donnée [?]. Le travail de Gotelli et al. est également un exemple de démarche intégrative où un nombre important de processus peuvent être inclus via un système de combinaison de scénarios et tester par simulations stochastiques [?]. Enfin, en construisant des réseaux basés sur la cooccurrence des espèces, Araújo et al. revisitent le problème de l'interdépendance des espèces [?] : ils s'interrogent sur la résistance des réseaux de cooccurrence obtenus face aux futurs changement climatiques, ils mettent ainsi en évidence des risques accrus de perte des espèces les moins connectés (celles qui cooccurrent moins).

Ces travaux témoignent de la volonté d'une biogéographie intégrative.

Malgré leurs performances, les modèles de distribution actuels utilisés pour construire les scénarios de biodiversité de demain souffrent vraisemblablement d'un manque de théorie sous-jacent [?, ?]. La nécessité d'une approche théorique pour aller vers des approches plus appliquées est fondamentale, en témoignent, par exemple, l'histoire de la théorie de la biogéographie [?] et de la théorie métabolique [?]. Dans notre cas, partir d'une construction progressive assemblant les différents processus décrits ci-dessus nourrit, dans un premier temps, la réflexion sur l'ensemble des retroactions que peuvent exercer les différents processus les uns sur les autres[?]. Dans un second temps, le questionnement sur les échelles des phénomènes peut amener à isoler les processus que les futurs MDE ne doivent pas occulter au regard des échelles spatio-temporelles qu'ils considèrent. Troisièmement, les modèles théoriques fournissent des hypothèses à confronter aux faits, ce qui permet de conforter ou d'infirmer la théorie. Enfin, si l'agencement des processus entre eux est bien expliqué, de la théorie peut émerger de nouvelles méthodes pour traiter les données.

figures envisagées

- les problèmes d'échelles (figure qui cmontrent des paramètres qui captures si ou ça...)
- les reltions "solides" de la biogéographie

L'espace en liu 2même...

Remarques

"It just so happens that some people find it easier to think about things in terms of x's and y's, and other in terms rabbits of and lynx." MCann Preface

L'objet de ma thèse est sur la sidtibution des espèces et les interactions et ce que la comjonction de tout ça. Elle est le plus souvent des articles qui sont de mon point de cue plus une reflexion des iudées et pas nécesairemnt des démonstrations formelles et fermées mais la tentative de trouer des ouvertires d'appliquer des outils de msnière un petit peu différete pour donner, ce que cherche ltous doc àdonner de l'originalté é mon traviell. Chemin faisant j'ai passé bien du tenmsp derrière l'ordi pour lere anayser faore des modèles mathématiques ensuite implémenté in silico. Dans cette introduciotn je ne peux donc pas faore l'impasse sur une mise en contexte générale de la biogéographie avec ces apports historiques ces contraintes mais aussi l'age dans lequel nous sommes et les défis mais aussi toutes les aspects d'ordres computationnelle parler de modélisations de ces enjeux et valoriser les modèles thérqies fondamentaux qui s'éloignent parfois de la éalité mais sans jamsi la déconsidérer.

Les paragraphes sont pour l'instant mis à titre indicatif avec aucune contrainte en terme de taille c'est juste pour y mettre les idées qui me viennent.

Dans la premièr partie de cette introduciton je fais un tour très large de notion d'horizon biogéographie / pilier théoriqe / besoind d'hypothèse en biogéographie et finir sur la modélisation. Pour dans un deuxième temps les articuler autour de questions précises

La distribution des espèces des faits et des causes

Le concept récent de biodiversité.

However ecological equivalence in

"the niche is a mapping of population dynamics onto this space" (???)

De l'émerveillement

=> Partir de Wallace. L'inventaire de Wallace est impressionnant cet

Des causes / des mécanismes

vers le fonctionnemt des ecosystèmes levier d'action vers une approche plus utilitariste mais qui donne uns certaine proximité avec les eécosytèmes Loreau et al. (2001)

Challeng vers un espoir de généralisation

Une question d'échelle

Se problème est d'une grande importance. L'écologie porte sur l'ensemble du monde vivant quelquees soiten leur taille mais les différent champs ne sont pas toutes relatoves à la m^{*}me échelle alors il y a bien els échelles de temps, les echelles spatiales mais il y a le lével d'organisation. Il est bien inportant de comprendre celad!

Un scéhma avec des variables qui émergenet ave différents paramères et quelques éxemelpme de théorie! (DEB Evolution foodweb...) et l'action de

Repartition des especes des passges histroqiere dans l'origin des espèces et dans Wallace. Le principe même de l'écologie (la definition de ecologie). On arrive à l'idée de ;la niche. Exemple histriques. Dans son ouvrage, le grand biogéographe Wallace reconait en introduction le caractère facinant de la réaortition de la biodiversité des îles avec des faot intriguant wuant à la faune et la flore. Ainsi il constate qu'il peut y avir plus deux différence entre île très éloigné et deux île s très proche. Il écrit que la faune et la flore sont plus dissimilaire entre ldeles deux piles des Galapagos Bali et Lombik qu'entre Hokaido (Yesso) et La grand bretagne ouy encore la Nouvelle Zéland et l'Australie,

Exemple classique de grinnel et des Trasher + evolution avec les charcter displacement.

Nous accumulons des évidences quand aux impact du changement anthropique. A diiférentes échelles la diminution de la biodiversité, changement en composition Taranu et al. (2015) De Roos et al. (2008)

P2

La niche c'est quoi on en a deux definition ultr classique mais elles sont très porblématiques. Il y a des tentatives de synthèse mais le problèmes est toujours là.

Partir du development de la niche et des hypotheses clef comme l'heterogeneité spatiale qui peut accroitre la biodiversité un exemple c'est les ecoulemnents à petites faible echelles de l'hydrologie niche hdrologique à fable échelles Letten et al. (2015) repartition hydrologique les hypothèses sont que qui explique celon les différentes besoin des espèces (principes de la niche) que besoin différentes me répartition des espèces. Cette idées est

A large espes répartition de la biodiversité on quantifie la différence depuis les mesures classiques Simpson, alpha gamma beta qui sont étendues au réseau Poisot et al. (2012). Mais quand on chnage d'echelle on arrive rarement à quelques choses de concluant pour l'integration des interactions. Pourtant il ya des exemples convaicant comme celui de Gitelli.

Les interactions c'est quoi ce qu'on en fait.

Les interactions quelles pourrait être leur conséquence à large échelle ?

Mais au-dela de cela il yt a un besoin de règles. L,écoligies cherche ces règles et essayes de faire le max sans trip de succès. Les traits sont un gran despoir. On a besoinde rule on reste descriptive il y a des relation EH-Bioversité, SAR, Diversité-équilibre diversité fonctionnenemnt qui sont partielelemnt reliées et des théries débat theories neutre theéor de la niche Stein et al. (2014). Dans cette review Stein et al. (2014) montre que vegettaion est inportnates ce qui eimplique des inbteractions. Théorie allométrique prometteuse en ce sens qu'elle loi physiques. Différents concept autrour d'une même notion sur plusieurs paradigme pour une même notion sur les metacommunity Leibold et al. (2004) il peuvent co-exister mais faudrait les savoir ce qui fait qu'on a pus l'un ou l'autr.

Exemple histroqies les Pinsons de darwin (cdf mon devis.) Les processus évolutifs peuvent être favorisés par les changements environnementaux mais également par les interactions entre espèces [?]. Les étroites relations entre espèces peuvent favoriser ou contraindre les réponses évolutifs, qui elles-mêmes peuvent altérées ces interactions, il existe de fait des rétroactions permanentes entre évolution et écologie [?]. Yoshida *et al.* 2003 montrent que la réponse des algues vertes unicellulaires *Chlorella vulgaris* aux rotifères *Brachionus calyciflorus* conduit à un changement dans la fréquence et la phase des cycles de la dynamiques proie prédateur [?]. L'ensemble des trois éléments jusqu'ici évoqués (environnement abiotique, interaction, évolution) peuvent également être étroitement associé. Grant et Grant 2006 rapportent le cas de la compétition entre trois espèces de pinsons (dits de Darwin) sur l'ile de Daphne (Galapagos) qui engendre une modification de la taille de leurs becs. Cette évolution liée à la compétition est elle même reliée à l'environnement abiotique car, par l'abondance ou l'absence de précipitations, il détermine la disponibilité des

ressources et donc l'intensité de la compétition [?]. A travers cet exemple, nous comprenons l'importance d'inclure l'ensemble des différents processus pour construire un modèle intégratif en biogéographie. Un tel modèle serait capable, par exemple, de renseigner les risques d'exclusion compétitive dans l'exemple décrit par Grant et Grant.

La puissance de la Biogéographie est aussi sont implications dans des cas très concrets Cirtwill and Stouffer (2015) mais aussi ne puissance exploratoire théoriques Gravel et al. (2011) Cazelles et al. (2015) des îles

l'idée des interactions à déjà montré ça pertinence sur plusieurs exemples. Cirtwill and Stouffer (2015)

Les relations de la biogéographie

Relation diversiyté des habitats Relation aire quantitié d'espéces SAR / relation de la biogeograhies des îles Compromis entre aire et hétérogénéité...

Conclusion

Generalist consumers should typically be weakly coupled to any one of their prey populations because, when feeding on many different species, they cannot be strongly coupled to any one of them Murdoch et al. (2002)

Predire la répartiton futrure des espèces

On fait des atlas des 2 des entités avec un einertoie historque mas est-ce là important pour comprendre le réseuax ? Hortal et al. (2011)

Bien sur un objectif central est d'être en mesure de prédire la répartitopon des espèces L'ecéologie avance avec des rêves mais des pièce manquante le lien entre les espèces et le foodweb le lien entre la présence des espèces et le fonctionenent. Il y a des problèmes fincdamnentale et qui sont complexes. Par exemple les espèce peuvent avoir été invasives et causé des dégâts sur les ecosystèmes, il y a les exemples de l'aAustraile véritable laboratoire avec les boeufs les crotets els inporatation mais d'un autre côté ça fnctionne encore.

Pour la prédicitons des distribution d'espèces la processus et simple et bien expliqué dans le libvre de Peterson. Finalemt l'eercie consiste à trouver les contraintes evironemntale qui sont les bonnes et ce placé ensuite un certai nombre de contrainte peuvent être les même il y a de nombreux avantages à une telle métyhdoes compréhensiblem empiriqument fond.é, intuitibenbt quand on va dans des endroits humides ou sec o connait bien la différence de type d'cosytèmes mais il faut rajouter bien des couches. Ainsi la possibilité de colonisaton 'est pour ça que des ecosystèmes sont aussi éloignés mais pas les mêmes espèces dessous.Rajouter l'histoire evolutive pour bien comprendre la co-evolution des humming bord 9cf mail de Bo)

La bonne unité d'analyse ? D'où parti r?

=> Faire un exemple tout automatiser et stocker sous Github.

Les système écologique sont des systèmes trasitoire par excellence et on veux qu'il soit satbel mais il y a une contingence encore assez dure à admettre les système que nosu observons sont on cherche à les modéliser mais il faut pas oublier qu'ils ne resterin t pas et qu'ils sont peut-être entrain de disporaître que les moteurs de l'évolution rebat lenteemnt les cartes

Modéliser

'The types of questions we pose and the types of observations we make bear witness to our preconceptions. There is no way to get rid of them. There is nothing wrong with this, but we should be aware of it. When we look around us we actually see mirrors of our ideas. We can try to change ourselves on the basis of what we see, but we cannot do without the projections we impose on reality. Observations and statements span the full range from facts via interpretation to abstract ideas. The more abstract the idea, the more important the mirror effect.' Kojiman

Tentatove de modéliser toutes les espèces à l'échelles de la terre entière alors qu'on est capable de généres dynamiques chaotiques à partir d'une seule espèces. Attention je ne veux pas dire que les premières tentatives sont vaines et je ne méprends pas sur la dynamque chaotique, j'indique simplement que s'il y a des cas de population isolés où a dynaqieu ne peut être connu à sans une précision initiale sur les coniditon initiales on peut se demander comment cela peut être extrapoller. Mais la enocre il y qeulques chsoses d'intéressant conneitre abondance compotioon excate peucvent être connu à une èchelle de temps courte = métérolge alors peut-être qu'au échelle plus large des entité plus grande = climatologie de la biodiversité!

approhe modulaire => rupture de symétrie

J'explore quelques dualié propre à l'acte de modélisation que j'applique ultiment au champd e la biogéogroahie

Correlative / Mechanism

Règle et containgence

Finalemnt se problème est aussi lié au problème d'échelle de travail! il y a un problème d'échelle

Quand on se tourne vers les sciences de l'écomomie il y a un bon jeus de mots que j'ai entendu sous deux formes : -Les physiciens oont 5 règles pour expliquer 95% univers et les 95 rèle pour 5% - Les économistes ont pédit 12 des trois dernière crises éconimoqe

Il y a un sentiment partagé avec l'écologie (beaucouoe en commun dans la raci) administration/gestion de la maison que l'on recent plus dans le trerme familier que / c'est la science de la maison, de l'habitat. et une compléxité une légère

jalousie des physiciens se serait qui ont des théories qui ont prédi des objets à une époque où pas les moyens de faire les intslallation Boson Onde rgavitationelle ou encore expliquer la loi de fourier à partir de la mécanique statitsiqes

Rassurons nous les physiciens ont encore bien des parties sonmbres àexplorer : matière noire et energie noire et du boulot en masse pour ecologues / economistes peut-être que les foralimes que nous empreintons à ces disciplines ne sont pas les bons... Comme dit le phylodophe Sachs dans sa biodiversité c'est trop historiques qu'un concepte comme le fitness n,est peutêtre pas bien mis en equation dans une forme physique

Un acte d'abstarction pour des défis très concret

ce n'est pas objectif, c'est se placer dans un cadre et c'est une façon de contruire le raisonemet. Exemple on peut vouloir modéliser la robabiliter d'interaction et alors uon peut commenceer par une probabilité de rencontre qui est simplemnt la probabiliter de se detecter mais qui pourrait être calcluer de manière complexe ou alors juste un paramètre.

Il y a différent niveau la modelisation a pour but de donner une idée mais n'oublions as qu'il existe une progression, un raffinement et qu'ultimement, le réalisme de la simulation permet d'obetnir préscisement le phénomène données et on peut aller très loin à partor d'imagination d'un aller retour entre le réel et l'espace dans lequel on se place pour modéliser.

Même sur des dynamiquees d'espèce l'échelle

Prendre quelques

Devons-nous prendre un modèle taille ou agr structuré quand on cherche la distibution des espàces à large échelle

Des courbes à fitetr qui sont parfois les m^mes et donc peut infornatives...

prendre deux oiseaux il y a une relation phylo mais ecologiquenent qui est le plus proche ? Qui a quelle rôe ? Les traist permettent cette abastraction qui ne doit pas non pplus laisser de cote la phylo, il faut bien sur regarder tout pour avoir l'image complete

Un modèle existe en lui soi on pourrait se demander Evaluation au regard de sa perfomnce

Deterministes ou stochastiques

Il n'y pas de maeilleur manière les stats c'est sur du stochastique et on peut mettre du stochatci avec une variance c'est le r.sultats d'un théorème maus il en est aps moins que variance es quelques choses detrès util et au bour aller des moi On peut avoir un modèle détermicites qui explique tout mais

Le hasard est qquelques choses qui est dans le dé ce que Monod dans le hasard et la cnécessité appelle un ahasar opétaionnel certain pense alors que le dé est un faux hazard que la détermination des lois de Newton et des forces inital est totallemnt déterminée et on peut donc prédire que le résulat du dé. Cependant c'est l'ensemble croisé de série de

contingence qui amènent au hasrad et dans une partie de Yatz il sera bien difficile d'obtenir un score souhaité... Mais le hasard pur existe-t-il ? Dans l'oeuvre de Momod le hasard existe et c'est l'ADn polymérase à l,origine des mutations qui en est l'expression. mais l'ensemble des série de combinason

Lien entre les deux Une manière de voir les choses est de donenr par Clark (et repris par Dom) pou on essaye

Clark a suggérez que stochastique n,est pas savoir et que le but c'est de passé du pas au maximum vers le détermiste. Dans elur défendse de la la théroy neutre Rosindell et al rétoquent que c'est plus subile il y a des modèles dtermisites chatosque (et dont les développement avancé font au propriété statistique des attracteurs) quer cela de même Gravel et collègues.. rreprehe que. Modèles en plus validée par des stats qui reposent sur des stochsiques. Argument d'Einstien Dieu ne jue pas au dé face à la quantique qui au final alors mêe que le la gravitaté générale sans hazard pure sera fause. Le chat de Shrodinger est peut-être vivant ici mais il est mort dans un autre univers.

Produire variance et moments d'ordre supérierus...

Dans mon premier chapitre je fais appel à une chaîne de Markov qui est elle, un processus aléatroi masus qui peut

Difficculté des modlisation

Les piliers théoriques de la biogéogrpahie actuelle

Les prinicipes de la biogéogrpahies sont assez simples à comprendre,

Une des théories les plus fortes est la biogéographie des îles de MacArthur and Wilosn dans les années Macarthu est mort à 1972 Wilson est fameux dans les fourmis et une série de descendants comme Simberloff tout aussi connu.

Sont des entitéas avec histoire et beaucop de publication viennent souligner le poinds de l'histoire sur le pool d,espèces

Si la compréhension est relativement simple leur intrications est bien pus challengin

Si les humains et leur commensaux sont relié au point que la prise alimentaire est lié à la faune intestinale... Alors doit on modéiser toutes les espàces de bactéries commesanle ppur déterminer le

DEB

C'est impressionnant de voir comment un auteur en repartant de simple considération telle que la taile le volume peut arriver à construire une théorie à la fois simple, fondée et predictive. mettant de la cohérence dansune accumulation de fait.

Interaction et biogeographie

Accent sur les cascading effect est surtout un problème de l'instabiilté (???) Il ya aussi l'article perturbant de Säterberg et al. (2013) qui montre que le fait qu'une espèce soit (ex. pêche) peut conduirte à des extinctions d'autres espèces lié dans le réseau... Ces deux exemple montrent que les interactions peuvent mener à des problèmes de prédicitons et donc porblèmes sur prévoir les services ecosystémiques et c'est appuyer par Cahill et al. (2013) qui nous indique en somme que le changemnr des interactiosn bioiqtess ets la voie privilégié d'extintionciton dans un contexte de chanegnmtn climatique

On nous fait miroiter que finalement que l'érosion de la biodiversité est dramatiques et le ressort actuel pour faire un levier face à cela c'est les services ecosystémiques qui sont actuelelemet l'argument choc pour renforcer la production de la nature. Il y a un côté pervers qui est la financiarisation et la substituabilité l'argent oeut alors être utilisée pour intervertir ou alors remplacer un type d'écisystème par un autre ailleurs... En fait on a l'impressonq ue c'est pus un principe de précaution qui erst invoquer et ultimement il est vraisemblable que la destruction de la nature tel que nous la connaissons soit dans le future un générateur de conflit.... et uttiment on a a craindre de faire un panete invivable pour nous mêm.

Mais les changement sont des remplacemnt et pour la conservation on peut se demander les startégie. Dans son arctile 'Don't juge a species on their origin' Mark Davis prend à revers un sertain nombre d'idée recu et souligne que les effects des invedeurs peuvent être positives Davis et al. (2011).

Les ramges comme un fait (wallace chap 2) des espèces avec des larges avec des grandes ranges

Loddigésie admirable (Loddigesia mirabilis) seul collibris de son genre vs Lièvre variable (Lepus timidus)

nomnbre d'espèce dans un genre vaire beaucoup => un autre indice de solution pas fructifiées...

Pithacia Monathus vs Pithecia pythecia separé par une rivière

Geographical Ecology => patterns in the distribution of species

L'auvrage de MacArthur de

2 espèces proches des ranges très séparéed => species Bonobo et cChimpanzés

L'évolution = le hasard et la nécessité est un moteur de la répartiton mais aussi la composante historiqe de la biologie. Cette dimension fascinante implique aussi nous focalisé sur des explications singulière souvent pas évident qui permettent de conformer le type de facteurs impliqué dans la variation des ranges mais nous amène pas encore à trouver des règles précices.

Wallace conclut :28 qu'une théorie générale doit tenir compte des variation range et proximité des espèces porches et des overlapp.

Both competition and predation appear now to be much more important in biogeography than peopl had

formely guesses

chap 2 geographical ecology

il prend comme exemple la compétition entre oiseau et un manque de ressource pour une année partiuculièremnet sévère et que 19 and pas assez pour voir et il conclut que

This is the main reason most evidence for competition is from biogepgraphers.

Distributiin des fauvettes Crateroscelis robusta et C.runa

Mais le porblème étant que le signal n'est visible que si on a des données sur 20and.

Le problème

Parallèle entre information des traits sur le régime allimentaire et l'information dans les ranegs est-ce cela qui conduit les ecologistes à être des statisticuencs. et l'info dans l'ADN

la question a été pourquoi il y a autant d'espèces mais je pense qu'un equestion légèremnet différentes n'a pas été assez invextie : pourquoi peuvent-elles être si nombreuse.... La limite est toujours OK si assez pour 2 ou plus.

Mes objectifs.

ce qu'il y a dedans la thèse.

Alors on est ;oin du compte masi pourquoi. Sans vouloir détruire complètement le comcept de iche il est demeur lacunaire è bien des égards. Il y aqqchose dans le concept de niche qu'on peut sentir.

Les intercations entre espèces vers la co-occurrence.

La distribution des plantes à fleurs et des insectes et un incroyable radiation évolutive mais aussi conséquence des dispersion.

Et ben allons y

Faire une figure avec les grands paramètres et discuter quelles hypothèse dessus ou pas...

Cahill, A.E., Aiello-Lammens, M.E., Fisher-Reid, M.C., Hua, X., Karanewsky, C.J., Ryu, H.Y., Sbeglia, G.C., Spagnolo, F., Waldron, J.B., Warsi, O., Wiens, J.J., 2013. How does climate change cause extinction? Proceedings. Biological

sciences / The Royal Society 280, 20121890. doi:10.1098/rspb.2012.1890

Cazelles, K., Mouquet, N., Mouillot, D., Gravel, D., 2015. On the integration of biotic interaction and environmental constraints at the biogeographical scale. Ecography n/a–n/a. doi:10.1111/ecog.01714

Cirtwill, A.R., Stouffer, D.B., 2015. Knowledge of predator-prey interactions improves predictions of immigration and extinction in island biogeography. Global Ecology and Biogeography n/a–n/a. doi:10.1111/geb.12332

Davis, M. a, Chew, M.K., Hobbs, R.J., Lugo, A.E., Ewel, J.J., Vermeij, G.J., Brown, J.H., Rosenzweig, M.L., Gardener, M.R., Carroll, S.P., Thompson, K., Pickett, S.T. a, Stromberg, J.C., Del Tredici, P., Suding, K.N., Ehrenfeld, J.G., Grime, J.P., Mascaro, J., Briggs, J.C., 2011. Don't judge species on their origins. Nature 474, 153–4. doi:10.1038/474153a

De Roos, A.M., Schellekens, T., Van Kooten, T., Persson, L., 2008. Stage-specific predator species help each other to persist while competing for a single prey. Proceedings of the National Academy of Sciences of the United States of America 105, 13930–5. doi:10.1073/pnas.0803834105

Gravel, D., Bell, T., Barbera, C., Bouvier, T., Pommier, T., Venail, P., Mouquet, N., 2011. Experimental niche evolution alters the strength of the diversity–productivity relationship. Nature 469, 89–92. doi:10.1038/nature09592

Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodríguez, M.Á., Baselga, A., Nogués-Bravo, D., Rangel, T.F., Hawkins, B.A., Lobo, J.M., 2011. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters 14, 741–748. doi:10.1111/j.1461-0248.2011.01634.x

Leibold, M.a., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M., Gonzalez, a., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7, 601–613. doi:10.1111/j.1461-0248.2004.00608.x

Letten, A.D., Keith, D.a., Tozer, M.G., Hui, F.K., 2015. Fine-scale hydrological niche differentiation through the lens of multi-species co-occurrence models. Journal of Ecology 103, 1264–1275. doi:10.1111/1365-2745.12428

Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, a, Hooper, D.U., Huston, M. a, Raffaelli, D., Schmid, B., Tilman, D., Wardle, D. a, 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science (New York, N.Y.) 294, 804–8. doi:10.1126/science.1064088

Murdoch, W.W., Kendall, B.E., Nisbet, R.M., Briggs, C.J., McCauley, E., Bolser, R., 2002. Single-species models for many-species food webs. Nature 417, 541–543. doi:10.1038/417541a

Poisot, T., Canard, E., Mouillot, D., Mouquet, N., Gravel, D., Jordan, F., 2012. The dissimilarity of species interaction networks. Ecology letters 15, 1353–61. doi:10.1111/ele.12002

Säterberg, T., Sellman, S., Ebenman, B., 2013. High frequency of functional extinctions in ecological networks. Nature 499, 468–70. doi:10.1038/nature12277

Schoener, T.W., 2011. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics.

Science (New York, N.Y.) 331, 426-9. doi:10.1126/science.1193954

Stein, A., Gerstner, K., Kreft, H., 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters n/a–n/a. doi:10.1111/ele.12277

Taranu, Z.E., Gregory-Eaves, I., Leavitt, P.R., Bunting, L., Buchaca, T., Catalan, J., Domaizon, I., Guilizzoni, P., Lami, A., Mcgowan, S., Moorhouse, H., Morabito, G., Pick, F.R., Stevenson, M.A., Thompson, P.L., Vinebrooke, R.D., 2015. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecology Letters 18, 375–384. doi:10.1111/ele.12420