ICCS310: Assignment 3

Natthakan Euaumpon natthakaneuaumpon@gmail.com February 2021

1: NFA vs DFA Expressiveness

- (1) Let construct an NFA, $M = (Q, \Sigma, \delta, q_0, F)$ where $Q = \{0, 1, ..., k\}$. Let $\delta(0, b) = 0, \delta(0, 1) = \{0, a\} = \{0, 1\}$ and $\delta(i 1, a) = i$, for $2 \le i \le k$. Then set $q_0 = 0$ and $F = \{k\}$. We know that the machine will start at state 0 (starting state). When the machine locate an a it wil guess that it is a kth character to the right and will move to state 1. When it reaches state k, it will only accept if there are exactly k 1 bits following the one that move from b to a.
- Let the input have k character. We know that the characters can be either a or b. Let x and y be a string with k bit such that $x, y \in \Sigma^*$ and that |x| = |y| = k. Let i be a position such that $x_i \neq y_i$. Hence either x or y contain an a at the ith position. Let $z = b^{i-1}$, then z distinguish x and y as one of the xz and yz has an a at kth postion from the right. Since there are 2^k string of length x that are all distinguishable from the above prove, x DFA that accept this language need to have x states.

2: Regular or Not

(L_1) We know that y can be any string in Σ^* .

There are 2 main scenario. One is that the String x start with p and another is that it start with q.

- q_0 is a starting state.
- q_1 is a state that it will move to if the first character is p.

 q_2 is an accepting state, if the iput start with p then it should also end with p. q_3 is a state that it will move to if the first character is q. q_4 is an accepting state, if the iput start with q then it should also end with q.

 (L_2)

AFSOC, that L_2 is regular. This mean their is a pumping length $l \geq 1$. Consider string $S = p^l q q p^l$, $S \in L_2$, $|S| \geq l$. Since $S = w w^R$, where $w = p^l q$ then $S \in L_2$. From this we know that:

- 1. S can be split into S = xyz
- $2. |xy| \leq l$
- 3. $xy^i z \in L_2, i \ge 0$
- 4. $xy = p^{j}, j \le l$
- 5. $y = p^k, k \ge 1$

If we pump y 0 times then the string S will be S = xz. $xz = p^{l-k}qqp^l$. We state that $k \ge 1$, this mean $xz \notin L_2$. This contradict, therefore L_2 is not regular.

3: Nonregular

(1)

AFSOC, that L is regular then their is a pumping length $p \ge 1$. Consider a string $S = 10^{2^p}, S \in L$. From this we know that:

- 1. S can be split into S=xyz, and xy be arbitary element in L.
- $2. |xy| \leq p$
- 3. $xy^iz \in L, i \geq 0$
- 4. $x = 10^{2^i}$
- 5. $y = 10^{2^j}, 1 \le j \le i$
- 6. Let $z = 10^{2^i}$

From this we know that $xz = 10^{2^i} \cdot 10^{2^i} = 10^{2^{i+1}}$, $xz \in L$. However $xy = 10^{2^i} \cdot 10^{2^j} = 10^{2^i+2^j}$, $xy \notin L$ as $i \neq j$. This contradict, therefore L is not regular.

(2)

AFSOC, that E is regular then their is a pumping length $p \ge 1$. Consider a string S =

4: HackerRank Challenge

Natthakan Euaumpon @natthakaneuaump1