Indicators on chemical reactions

Gas formation – light production – explosion – temperature change – new odor production – color change – precipitate formed

TYPES OF CHEMICAL REACTIONS

Synthesis reaction

o Is when two substances combine and form a single compound

- It has the general formula: reactant + reactant -> product
- **EXAMPLES**
 - Formation of water
 - 2H₂ + O₂ -> 2H₂O
 - Formation of CO₂
 - C + O₂ -> CO₂

Decomposition reaction

o It is the opposite of synthesis reaction, it occurs when compounds break up into simpler compounds

- **EXAMPLES** 0
 - **Decomposition of water** 0
 - 2H₂O -> 2H₂ + O₂
 - **Decomposition of mercury oxide**
 - 2HgO -> 2Hg + O₂

Single Replacement reaction

 It when one element replaces another element that is less reactive in a compound, it happens with metals

- we determine if a metal is more reactive than another metal using the chemical activity series
- o It has the general formula:
 - A + BC -> AC + B
 - A + BC -> BA + C
- EXAMPLES
 - Formation of iron sulfide and copper precipitate
 - Fe + CuSO₄ -> FeSO4 + Cu
 - Formation of Magnesium chloride and hydrogen
 - Mg + 2HCL -> MgCl₂ + H₂

Metals		Reactivity
Potassium		
Sodium		Reacts with water
Lithium		
Barium		
Strontium	100000	
Calcium		
Magnesium		Reacts with acids
Aluminium		
Manganese		
Zinc		
Chromium		
Iron		
Cadmium		
Cobalt		
Nickel		
Tin		
Lead		
Hydrogen		Included for comparison
Antimony		Highly unreactive
Bismuth		
Copper		
Mercury		
Silver		
Gold		
Platinum		

Double replacement reaction

o It's like exchanging the anions "non-metal like" parts of a compound

- o It has the general formula
 - AB + CD -> AD + CB
- EXAMPLES

$$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$$

 $K_2SO_4 + Ba(NO_3)_2 \rightarrow KNO_3 + BaSO_4$

COMBUSTION REACTIONS

0

- o It occurs when hydrocarbon reacts with oxygen gas producing **CO₂** and **H₂O**
- It has the general formula
 - C_XH_Y + ZO₂ -> ACO₂ + BH₂O
 with you filling X,Y,Z,A,B by the required mole amounts to balance the equation
- EXAMPLES
 - $_{\circ}$ C₅H₁₂ + 8O₂ -> 5CO₂ + 6H₂O

- Two elements became one -> synthesis
- o one element became two -> decomposition
- element switched place with another in a compound -> single replacement
- o compounds exchanged anions "non metal parts" -> double replacement
- 1) NaOH + KNO₃ --> NaNO₃ + KOH DOUBLE DISPLACEMENT
- 2) $CH_4 + 2 O_2 --> CO_2 + 2 H_2O$ COMBUSTION
- 3) 2 Fe + 6 NaBr --> No reaction
- 4) $CaSO_4 + Mg(OH)_2 \longrightarrow Ca(OH)_2 + MgSO_4$
- 5) $Pb + O_2 \longrightarrow PbO_2$ SYNTHESIS
- 6) Na_2CO_3 --> Na_2O + CO_2 DECOMPOSITION

