

SpaceX Falcon 9 **Rocket Landing** Prediction

Suparna Chowdhury January 25, 2023

OUTLINE

Project Github link

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
 - **Predictive Analysis**
- Discussion
- Conclusion

EXECUTIVE SUMMARY

- Logistic regression performs best with a prediction accuracy of 94.44%
- Rocket with lighter payload have higher success rate than rocket with heavier payload
- The landing success probability increases with time
- KSC LC 39A site has the highest launch success rate of 76%
- Orbit ES L1, SSO, HEO, and GEO has the best success rate of 100%

INTRODUCTION

Background

- SpaceX launches their rockets at a cost of \$62 million which is almost one-third of other company's cost.
- SpaceX lowers the overall rocket launch cost by recovering and reusing the first stage boosters.
- Successful landing of the Falcon 9 first stage is crucial

Problem Statement

• The objective of this capstone to predict if the Falcon 9 first stage will land successfully.

METHODOLOGY - SUMMARY

- Data Collection
 - Request to the SpaceX API
 - Web scrap Falcon 9 launch records HTML table from Wikipedia Data Wrangling
- Perform exploratory Data Analysis using SQL and visualization
- Innteractive visualization usinf Folium and Plotly Dashboard
- Predicative Analysis using classification algorithms
 - Logistic regression, SVM, KNN, Decision Tree
 - Find the best classifier.

Data Collection

- We collect data from the SpaceX REST API by making a get request and receive the JSON data
- We convert the JSON data to a dataframe by using the json_normalize function.
- We also web scrap Wiki pages to obtain Falcon 9 launch data using Python BeautifulSoup package.
- We parse data from the HTML tables and convert it to pandas dataframe.
- We need to filter data which includes both Falcon 1 and Falcon 9 data to separate Falcon 9 booster info.

Data Collection from SpaceX API

Request and parse the SpaceX launch data using the GET request

```
spacex_url="https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex_url)
response.status_code
```

200

Converting to pandas Dataframe

```
data = pd.json_normalize(response.json())
```

Applying custom function to clean the data

```
1 # Call getLaunchSite
2 getLaunchSite(data)
3 # Call getPayloadData
4 getPayloadData(data)
5 # Call getCoreData
6 getCoreData(data)
```

Creating dataframe

```
launch dict = {'FlightNumber': list(data['flight number']),
   'Date': list(data['date']),
   'BoosterVersion':BoosterVersion,
  'PayloadMass':PayloadMass,
  'Orbit':Orbit,
 6 'LaunchSite':LaunchSite,
  'Outcome':Outcome,
   'Flights':Flights,
 9 'GridFins':GridFins.
   'Reused':Reused.
   'Legs':Legs,
   LandingPad':LandingPad,
   'Block':Block,
  'ReusedCount':ReusedCount,
   'Serial':Serial,
   'Longitude': Longitude,
   'Latitude': Latitude}
18 data = pd.DataFrame(launch dict)
```

Data Collection from Wiki

Request the Falcon9 Launch Wiki page from its URL

```
html_data = requests.get(static_url).text
soup = BeautifulSoup(html_data, 'html.parser')
html_tables = soup.find_all('table')
```

Extracting Column name

```
column_names = []

for header in first_launch_table.find_all('th'):
    col_name = extract_column_from_header(header)
    if col_name is not None and len(col_name) > 0:
        column_names.append(col_name)

launch_dict= dict.fromkeys(column_names)
```

Appending data to key of the dictionary

```
extracted row = 0
2 for table number, table in enumerate(soup.find all('table', "wikital
       for rows in table.find_all("tr"):
           if rows.th:
               if rows.th.string:
                   flight number=rows.th.string.strip()
                   flag=flight number.isdigit()
           else:
               flag=False
           row=rows.find all('td')
           if flag:
               extracted row += 1
               launch_dict['Flight No.'].append(int(flight_number))
               datatimelist=date time(row[0])
               date = datatimelist[0].strip(',')
               launch dict['Date'].append(date)
               time = datatimelist[1]
               launch dict['Time'].append(time)
19
               bv=booster version(row[1])
               if not(bv):
                   bv=row[1].a.string
```

- Exploratory Data Analysis
 - Calculate the number of launches on each site
 - Calculate the number and occurrence of each orbit
 - Calculate the number and occurance of mission outcome per orbit type
 - Create a landing outcome label from Outcome column

Exploratory Data Analysis with SQL

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was achieved.

Exploratory Data Analysis with SQL

- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions which have carried the maximum payload mass.
- List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015
- Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order

Interactive Map with Folium

Visualize the launch sites in an interactive map using Folium

 Put a circle marker and label around the launch sites using lattitude and longitude coordinates data of the sites.

Interactive Dashboard using Plotly Dash

- Pie chart showing the total launches of all sites and success rate of individual site separately.
- Scatter plot showing the payload masses for different booster versions.

METHODOLOGY - PREDICTIVE ANALYSIS

Building model

- Load the data using Pandas
- Split the data into training and test set
- Choose the machine learning algorithms
- Machine learning model applied: Logistic regression, KNN, SVM, and Decision tree.

METHODOLOGY - PREDICTIVE ANALYSIS

- We tuned the hyperparameters using GridSearchCV to obtain the most accurate model.
- With best parameters, we evaluate their score, plot confusion matrix.
- Logistic regression model has the best score accuracy of 94.44%.

```
parameters ={'C':[0.01,0.1,1],
                            'penalty':['12'],
                            'solver':['lbfgs']}
             lr=LogisticRegression()
             logreg cv = GridSearchCV(lr,
                     param_grid=parameters, cv= 10)
             logreg cv.fit(X train,Y train)
GridSearchCV(cv=10, estimator=LogisticRegression(),
             param_grid={'C': [0.01, 0.1, 1], 'penalty': ['12'],
                         'solver': ['lbfgs']})
          print("tuned hpyerparameters :(best parameters) ",
               logreg cv.best params )
          print("accuracy :",logreg cv.best score )
                 logreg cv.score(X test, Y test)
             0.9444444444444444
```

RESULTS

EXPLORATORY DATA ANALYSIS

Data visualization using seaborn

Flight Number vs Launch Site

- Most rockets are launched from CCAFS SLC 40 site.
- Fewer rockets are launched from VAFB SLC 4E SITE
- Success rate is greatest in KSC LC 39A site

Payload Mass vs Launch Site

- No rockets greater than 10000 kg (heavy payload) launched in VAFB-SLC launch site.
- In CCAFS SLC 40 site, majority of the rocket launched are less than about 8000 kg
- In CCAFS SLC 40 site, in case of payload greater than 10000 kg, the success rate is 100%.

Success Rate vs Orbit

 The ES-L1, SSO, HEO, and GEO orbits have 100% success rate

Flight Number vs Orbit

- In the LEO orbit, the initial flights are not successful but later success rate improves significantly in later flights.
- In GTO orbit, there seems to be no relationship between flight number.
- Majority of the launches in recent years are in VLEO orbit

Payload Mass vs Orbit

- For Polar, LEO and ISS orbit, heavy payloads have higher success rate.
- In case of GTO orbit success rate are about 50%

Success Rate with time

 Success probability increases significantly with time since 2013 due to maybe technological advancement.

RESULTS

EXPLORATORY DATA ANALYSIS

Data exploration with SQL

• Display the names of the unique launch sites in the space mission

Display 5 records where launch sites begin with the string 'CCA'

	Launch_Site
0	CCAFS LC-40
1	VAFB SLC-4E
2	KSC LC-39A
3	CCAFS SLC-40

	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
0	04-06-2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LE0	SpaceX	Success	Failure (parachute)
1	08-12-2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2	22-05-2012	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
3	08-10-2012	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
4	01-03-2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

 Display the total payload mass carried by boosters launched by NASA (CRS)

SUM("PAYLOAD MASS KG ")

45596

Display average payload mass carried by booster version F9 v1.1

AVG("PAYLOAD_MASS__KG_")

 List the date when the first succesful landing outcome in ground pad was acheived.

MIN(Date)

01-05-2017

 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

	Booster_Version
0	F9 FT B1022
1	F9 FT B1026
2	F9 FT B1029.1
3	F9 FT B1021.2
4	F9 FT B1036.1

 List the total number of successful and failure mission outcomes

Count("Mission_Outcome")

100

 List the names of the booster versions which have carried the maximum payload mass.

Booster_Version				
0	F9 B5 B1048.4			
1	F9 B5 B1049.4			
2	F9 B5 B1051.3			
3	F9 B5 B1056.4			
4	F9 B5 B1048.5			

 List the records which will display the month names, failure landing outcomes in drone ship ,booster versions, launch_site for the months in year 2015

 Rank the count of successful landing outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

	Month_names	Landing _Outcome	Booster_Version	Launch_Site
0	01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
1	04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

COUNT("Landing _Outcome") 34

RESULTS

INTERACTIVE DATA ANALYSIS

> Launch Site map using Folium

Dashboard with Plotly Dash

Map with marked launch sites

Success/ Faliure Launches

Dashboard: Success Rate for all launch sites

Payloads between 2000 and 5000 kg have the highest success rate.

Dashboard: Which site has the highest launch success rate?

KSC LC 39A has the highest success rate of 76.9%

Dashboard: Which payload range(s) has the highest launch success rate?

Payloads between 2000 and 5000 kg have the highest success rate.

Dashboard: Which payload range(s) has the lowest launch success rate?

Payloads between 5000 and 10000 kg have the lowest success rate.

Dashboard: Which F9 Booster version (v1.0, v1.1, FT, B4, B5, etc.) has the highest launch success rate?

F9 Booster version FT has the highest success rate.

RESULTS

PREDICTIVE ANALYSIS

Different machine learning algorithm performance to find the best performed method

Results: Find the method performs best

```
1 print("Logistic Regression: ",logreg cv.score(X test, Y test))
2 print("SVM: ",svm_cv.score(X_test, Y_test))
3 print("Decision Tree: ", tree_cv.score(X_test, Y_test))
4 print("KNN: ", knn_cv.score(X_test, Y_test))
```

SVM: 0.833333333333333334

KNN: 0.83333333333333334

Logistic Regression

Support Vector Machine

1 svm_cv.score(X_test, Y_test)

Decision Tree Classifier

1 tree_cv.score(X_test, Y_test)

K Nearest Neighbors

1 knn_cv.score(X_test, Y_test)

DISCUSSION

• Earlier flight launches are mostly unsuccessful.

 Success of launching and landing improves with time and experiences.

Success Rate Of Different Launch Site

Launch Site	Success rate (%)	Failure rate (%)
KSC LC 39A	76.9	23.1
CCAFS LC 40	73.1	26.9
VAFB SLC 4E	60	40
CCAFS SLC 40	57.1	42.9

CONCLUSION

- Logistic regression performs best with a prediction accuracy of 94.44%
- Rocket with lighter payload have higher success rate than rocket with heavier payload
- The landing success probability increases with time.
- KSC LC 39A site has the highest launch success rate of 76%
- Orbit ES L1, SSO, HEO, and GEO has the best success rate of 100%