Calcolo numerico

Indice

1. Lezione 01	3
1.1. Problema matematico, metodo numerico e condizionamento	
1.2. Aritmetica floating point	
1.2. Turinetica nouting point	

1. Lezione 01

1.1. Problema matematico, metodo numerico e condizionamento

Un problema matematico in forma astratta è un problema che chiede di trovare \boldsymbol{u} tale che

$$P(d, u) = 0,$$

con d insieme dei dati, u soluzione e P operatore che esprime la relazione funzionale tra u e d. Le due variabili possono essere numeri, vettori, funzioni, eccetera.

Un metodo numerico per la risoluzione approssimata di un problema matematico consiste nel costruire una successioni di problemi approssimati del tipo

$$P_n(d_n,u_n)=0\ |\ n\geq 1$$

oppure

$$P_h(d_h, u_h) = 0 \mid h > 0$$

che dipendono dai parametri n o h.

Un metodo numerico è convergente se

$$\lim_{n \to \infty} u_n = u$$

oppure

$$\lim_{h \to 0} u_h = u.$$

Il problema matematico P(d,u)=0 è ben posto (o stabile) se, per un certo dato d, la soluzione u esiste ed è unica e dipende con continuità dai dati. Questa ultima proprietà indica che piccole perturbazioni (variazioni) dei dati d producono piccole perturbazioni nella soluzione u.

Per quantificare la dipendenza continua dai dati introduciamo il concetto di numero di condizionamento di un problema.

Consideriamo una funzione $f:[a,b] \longrightarrow \mathbb{R}$ in un punto x_0 , ovvero

$$d := x_0 \quad u := f(x_0) \mid d, u \in \mathbb{R}.$$

Applichiamo lo sviluppo di Taylor di f in x_0 , ovvero

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots$$

Ma allora

$$\begin{split} f(x) - f(x_0) &\approx f'(x_0)(x - x_0) \\ \frac{f(x) - f(x_0)}{f(x_0)} &\approx \frac{x_0 f'(x_0)}{f(x_0)} \frac{x - x_0}{x_0} \\ \left| \frac{f(x) - f(x_0)}{f(x_0)} \right| &\approx \left| \frac{x_0 f'(x_0)}{f(x_0)} \right| \left| \frac{x - x_0}{x_0} \right| \end{split}$$

Osserviamo che

$$\Delta f(x_0) \coloneqq \frac{f(x) - f(x_0)}{f(x_0)}$$

e

$$\Delta x_0 \coloneqq \frac{x - x_0}{x_0}$$

sono le variazioni relative della soluzione $u := f(x_0)$ e del dato $d := x_0$.

Chiamiamo numero di condizionamento del calcolo di una funzione f in x_0 la quantità

$$K_f(x_0)\coloneqq \bigg|\frac{x_0f'(x_0)}{f(x_0)}\bigg|.$$

Poiché vale

$$|\Delta f(x_0)| \approx K_f(x_0) |\Delta x_0|$$

diciamo che $K_f(x_0)$ esprime il rapporto tra la variazione relativa subita dalla soluzione e la variazione relativa introdotta nel dato.

Calcolare i numeri di condizionamento nei casi:

- $f(x) = 6 e x_0 = 4$;
- $f(x) = e^x e x_0 = 4$;
- $f(x) = 6x x^3$ e $x_0 = 4$.

Nell'approssimare numericamente un problema fisico si commettono errori di quattro tipi diversi:

- 1. errori sui dati, riducibili aumentando l'accuratezza nelle misurazioni dei dati;
- 2. errori dovuti al modello, controllabili nella fase modellistica matematica, quando si passa dal fisico al matematico;
- 3. errori di troncamento, dovuti al fatto che quando si passa al limite nel calcolatore questi passaggi vengono approssimati, essendo operazioni eseguite nel discreto;
- 4. errori di arrotondamento, dovuti alla rappresentazione finita dei calcolatori.

L'analisi numerica studia e controlla gli errori 3 e 4.

1.2. Aritmetica floating point

L'insieme dei numeri macchina è l'insieme

$$\mathcal{F}(\beta,t,L,U) = \left\{\sigma(.a_1a_2...a_t)_{\beta}\beta^e\right\} \cup \{0\}$$

e con il simbolo

$$\mathrm{float}(x) \in \mathcal{F}(\beta,t,L,U)$$

il generico elemento dell'insieme, cioè il generico numero macchina.

Abbiamo:

- σ segno di float(b);
- β base della rappresentazione;
- e esponente con $L \le e \le U$ con L > 0 e U > 0;
- t numero di cifre significative;
- $a_1 \neq 0$ e $0 \leq a_i \leq \beta 1$;
- $m = (.a_1 a_2 ... a_t)_{\beta} = \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + ... + \frac{a^t}{\beta^t}$ mantissa.

Facciamo un po' di osservazioni:

- $|\text{float}(x)| \in [\beta^{L-1}, (1-\beta^{-t})\beta^{U}];$
- in MATLAB si ha $\beta = 2, t = 53, L = -1021$ e U = 1024;
- il risultato di un'operazione fra numeri macchina non è necessariamente un numero macchina.

Preso il numero reale

$$x = \sigma(.a_1 a_2 ... a_t a_{t+1} a_{t+2})_{\beta} \beta^e \in \mathbb{R}.$$

Distinguiamo i seguenti casi:

- $L \leq e \leq U, a_i = 0 \forall i > t$ allora si ha la rappresentazione esatta di x, ovvero float(x) = x;
- e < L allora si ha underflow, ovvero float(x) = 0;
- e > U allora si ha overflow, ovvero float $(x) = \infty$
- se $\exists i > t \mid a_i \neq 0$ allora:
 - troncamento:

$$\mathrm{float}(x) = \sigma(.a_1a_2...a_t)_{\beta}\beta^e;$$

arrotondamento:

$$\sigma \begin{cases} \left(.a_1a_2...a_t\right)_{\beta}\beta^e \text{ se } 0 \leq a_{t+1} < \frac{\beta}{2} \\ \left(.a_1a_2...a_t + 1\right)_{\beta}\beta^e \text{ se } \frac{\beta}{2} \geq a_{t+1} \leq \beta - 1 \end{cases}.$$

Si può dimostrare che l'errore commesso approssimando un numero reale x con la sua rappresentazione macchina float(x) è maggiorato da

$$\left| \frac{\text{float}(x) - x}{x} \right| \le k\beta^{1-t}$$

con k = 1 per troncamento e $k = \frac{1}{2}$ per arrotondamento.

La quantità

$$eps = k\beta^{1-t}$$

è detta precisione macchina nel fissato sistema floating point. La precisione si può caratterizzare come il più piccolo numero macchina per cui vale

$$float(1 + eps) > 1.$$

Esercizio: costruire $\mathcal{F}(\beta, t, L, U)$ con $\beta = 2, t = 3, L = -1, U = 2$.