Лабораторная работы 1.2.1

Старостин Александр, Б
01-401 $26\ {\rm Hosfps},\ 2024\ {\rm rog}$

Определение скорости полета пули при помощи баллистического маятника

1 Аннотация

Цель работы: Определить скорость полёта пули применяя законы сохранения и использую баллистические маятники.

В работе используются: Духовое ружьё на штативе, осветитель, оптическая система для измерения отклонений маятника, измерительная линейка, пули и весы для их взвешивания, баллистические маятники.

2 Теоретические сведения

2.1 Поступательное движение баллистического маятника

При контакте пули с цилиндром можно записать ЗСИ:

$$mu = (M+m)V (1)$$

где m — масса пули, u — скорость пули перед ударом, V-скорость цилиндра вместе с пулей после удара.

$$u = \frac{M+m}{m}V \approx \frac{M}{m}V \qquad V^2 = 2gh \qquad h = L(1-\cos\varphi) = 2L^2\sin\frac{\varphi^2}{2} \qquad \varphi \approx \frac{\Delta x}{L}$$
 (2)

где φ - угол отклонения маятника от вертикали, Δx - отклонение маятника

Тогда скорость пули можно выразить как

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x \tag{3}$$

2.2 Крутильный баллистический маятник

Считая удар неупругим, можно записать уравнение

$$mur = I\Omega$$

r—расстояние от линии полёта пули до оси вращения, I — момент инерции относительно этой оси, Ω — угловая скорость маятника сразу после удара.

Можно пренебречь затуханием колебаний и потерями энергии и записать ЗСЭ:

$$k\frac{\varphi^2}{2} = I\frac{\Omega^2}{2}$$

где k – модуль кручения проволоки, φ – максимальный угол поворота маятника, тогда:

$$u = \varphi \frac{\sqrt{kI}}{mr} \tag{4}$$

$$\varphi \approx \frac{x}{d} \tag{5}$$

где x – смещение изображения нити осветителя на шкале.

Периоды колебаний маятника с грузами и без можно выразить как

$$T_1 = 2\pi \sqrt{\frac{I - 2MR^2}{k}} \qquad T_2 = 2\pi \sqrt{\frac{I}{k}}$$

Тогда \sqrt{kI} можно найти как:

$$\sqrt{kI} = \frac{4\pi M R^2 T_2}{T_2^2 - T_1^2} \tag{6}$$

R – расстояние от оси вращения до центров грузиков, M - масса грузиков.

3 Ход работы

3.1 Поступательное движение баллистического маятника

3.1.1 Знакомство с устройством установки

Мы ознакомились с устройством баллистического маятника и измерительной установки, научились пользоваться духовым ружьём.

3.1.2 Измерение масс пуль

Измерим массу каждой пули с помощью точных весов:

Таблица 1: Массы пулей

Номер пули	Масса пули $m\pm0.005$ г
1	0.512
2	0.512
3	0.511
4	0.510
5	0.513

Масса маятника $M = 2925 \pm 5$, г

3.1.3 Измерение высоты подвеса баллистического маятника

Измерим высоту подвеса баллистического маятника L:

Таблица 2: Измерение расстояния L

Номер измерения	$L \pm 0.1$ см
1	221.4
2	219.9
3	222.1
4	221.1

Среднее расстояние $\overline{L}=221.1\pm0.2$ см

3.1.4 Установка оптической системы

Мы собрали оптическую систему, предназначенную для измерения перемещения маятника, включили осветитель и добились чёткого изображения шкалы на экране.

3.1.5 Произведение холостых выстрелов

Мы произвили несколько холостых выстрелов по маятнику и убедились в том, что он практически не реагирует на удар воздушной струи из ружья.

3.1.6 Проверка малости затухания колебания

Мы убедились в малом затухании колебаний: за десять колебаний колебаний их амплитуда уменьшалась меньше, чем наполовину. Ниже приведены результаты измерений:

Таблица 3: Проверка малости затухания колебания

Количество колебаний	Амплитуда в начале A_1 , см	Амплитуда в конце A_2 , см
10	2.1 ± 0.1	1.9 ± 0.1

 $\frac{A_1}{A_2} = \frac{2.1}{1.9} = 1.105 < 2$, значит затухание колебаний малое.

3.1.7 Произведение выстрелов

Мы произвели 5 выстрелов и определили по формуле (3) скорость пули при каждом выстреле. Результаты измерений приведены в таблице:

Таблица 4: Результаты выстрелов

Номер пули	Отклонение до выстрела x_1 , мм	Отклонение после выстрела x_2 , мм	Скорость полёта пули u , м/с
1	0.1 ± 0.1	11.8 ± 0.1	142.13 ± 2.21
2	0.1 ± 0.1	11.9 ± 0.1	142.79 ± 2.21
3	0.1 ± 0.1	11.8 ± 0.1	144.97 ± 2.27
4	0.1 ± 0.1	11.3 ± 0.1	135.01 ± 2.15
5	0.1 ± 0.1	11.8 ± 0.1	141.31 ± 2.19

Приборная погрешность скорости полёта пули
$$\sigma_u^{\text{приб}} = u\sqrt{(\frac{\sigma_M}{M})^2 + (\frac{\sigma_m}{m})^2 + (\frac{\sigma_L}{2L})^2 + (\frac{\sqrt{\sigma_{x_1}^2 + \sigma_{x_2}^2}}{x_2 - x_1})^2}$$

3.1.8 Определение погрешности скорости пули в каждом выстреле

Погрешность скорости каждой пули при выстреле расчитаны в предыдущем пункте.

3.1.9 Определение средней скорости полёта пули

Из таблицы получаем, что:

Средняя скорость полёта пули $\overline{u} = 141.24 \pm 2.77, \, \text{м/c}$

Погрешность измерения средней скорости полёта пули $\sigma_u = \sqrt{(\sigma_u^{\text{приб}})^2 + (\sigma_u^{\text{случ}})^2}$

 $\sigma_u^{\text{приб}}$ смотреть в пункте 3.1.7

$$\sigma_u^{\text{случ}} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (u_i - \overline{u})^2}$$

N = 5

3.2 Крутильный баллистический маятник

3.2.1 Знакомство с устройством установки

Мы ознакомились с конструкцией установки и научились пользоваться духовым ружьём.

3.2.2 Измерение масс пуль

Измерим массу каждой пули с помощью точных весов:

Таблица 5: Массы пулей

Номер пули	Масса пули $m\pm0.005$ г
1	0.512
2	0.514
3	0.502
4	0.516
5	0.515

Масса каждого груза $M=735.5\pm0.3$, г

3.2.3 Измерение размеров установки

Измерим размеры установки:

Расстояние от оси вращения до центра масс одного из грузов $R=33.5\pm0.1~{
m cm}$

Расстояние от оси вращения до центра одной из мишеней $r=22.0\pm0.1~{\rm cm}$

Расстояние от оси вращения до шкалы $d=137.0\pm0.2$ см

3.2.4 Установка оптической системы

Мы собрали оптическую систему, предназначенную для измерения поворота маятника, включили лазер и добились его отметки на нуле шкалы.

3.2.5 Произведение холостых выстрелов

Мы произвили несколько холостых выстрелов по маятнику и убедились в том, что он практически не реагирует на удар воздушной струи из ружья.

3.2.6 Проверка малости затухания колебания

Мы убедились в малом затухании колебаний: за десять колебаний колебаний их амплитуда уменьшалась меньше, чем наполовину. Ниже приведены результаты измерений:

Таблица 6: Проверка малости затухания колебания

Количество колебаний	Амплитуда в начале A_1 , см	Амплитуда в конце A_2 , см
10	12.1 ± 0.1	10.6 ± 0.1

 $\frac{A_1}{A_2} = \frac{12.1}{10.6} = 1.142 < 2$, значит затухание колебаний малое.

3.2.7 Измерение периодов

Результаты измерений периодов приведены в таблице:

Таблица 7: Измерение периодов колебаний

Количество колебаний	Время с грузами t_1 , с	Время без грузов t_2 , с
10	67.0 ± 0.3	-
10	67.1 ± 0.3	-
10	67.1 ± 0.3	-
10	-	50.1 ± 0.3
10	-	50.2 ± 0.3
10	-	50.1 ± 0.3

Средний период с грузами $\overline{T_1} = 6.71 \pm 0.03$, с

Средний период без грузов $\overline{T_2} = 5.01 \pm 0.03$, с

Погрешность периода
$$\sigma_T = \sqrt{(\sigma_T^{\text{приб}})^2 + (\sigma_T^{\text{случ}})^2}$$

$$\sigma_T^{\text{приб}} = T \frac{\sigma_t}{t}$$

$$\sigma_T^{\text{случ}} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (T_i - \overline{T})^2}$$

$$N = 3$$

По формуле (6) найдём:

$$\sqrt{kI} = 0.35 \pm 0.1, \, \text{m}^2 * \text{kg/c}^2$$

Погрешность измеренной величины
$$\sigma_{\sqrt{kI}} = \sqrt{kI} \sqrt{(\frac{\sigma_M}{M})^2 + (\frac{4\sigma_R}{R})^2 + (\frac{\sigma_{T_2}}{T_2})^2 + (\frac{\sqrt{(2\sigma_{T_2})^2 + (2\sigma_{T_1})^2}}{T_2^2 - T_1^2})^2}$$

3.2.8 Произведение выстрелов

Мы произвели 5 выстрелов и определили по формуле (4) скорость пули при каждом выстреле. Результаты измерений приведены в таблице:

Таблица 8: Результаты выстрелов

Номер пули	Отклонение до выстрела x_1 , мм	Отклонение после выстрела x_2 , мм	Скорость полёта пули u , м/с
1	0.9 ± 0.1	4.3 ± 0.1	77.19 ± 11.74
2	0.3 ± 0.1	4.1 ± 0.1	86.27 ± 12.98
3	0.2 ± 0.1	4.4 ± 0.1	95.54 ± 14.25
4	0.2 ± 0.1	4.0 ± 0.1	86.61 ± 13.03
5	0.1 ± 0.1	4.2 ± 0.1	92.90 ± 13.85

Приборная погрешность скорости полёта пули
$$\sigma_u^{\text{приб}} = u\sqrt{(\frac{\sigma_{\sqrt{kI}}}{2\sqrt{kI}})^2 + (\frac{\sigma_m}{m})^2 + (\frac{\sigma_r}{r})^2 + (\frac{\sigma_d}{d})^2 + (\frac{\sqrt{\sigma_{x_1}^2 + \sigma_{x_2}^2}}{x_2 - x_1})^2}$$

3.2.9 Определение погрешности скорости пули в каждом выстреле

Погрешность скорости каждой пули при выстреле расчитаны в предыдущем пункте.

3.2.10 Определение средней скорости полёта пули

Из таблицы получаем, что:

Средняя скорость полёта пули $\overline{u} = 87.70 \pm 13.55, \, {\rm m/c}$

Погрешность измерения средней скорости полёта пули $\sigma_u = \sqrt{(\sigma_u^{\text{приб}})^2 + (\sigma_u^{\text{случ}})^2}$

 $\sigma_u^{\text{приб}}$ смотреть в пункте 3.2.8

$$\sigma_u^{\text{случ}} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (u_i - \overline{u})^2}$$

$$N = 5$$

4 Вывод

Мы определили средние скорости полёта пулей из разных ружей, применяя законы сохранения и используя баллистические маятники.