Minimization by Incremental Stochastic Surrogate Optimization for Large Scale Nonconvex Problems

Belhal Karimi 1 , Hoi-To Wai 2 , Eric Moulines 3 and Ping Li 1

Baidu Research¹, Chinese University of Hong Kong², Ecole Polytechnique³

belhalkarimi@baidu.com, htwai@se.cuhk.edu.hk, eric.moulines@polytechnique.edu, liping11@baidu.com@gmail.com

• Objective: Constrained minimization problem of a finite sum of functions:

$$\min_{\boldsymbol{\theta} \in \Theta} \mathcal{L}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i(\boldsymbol{\theta})$$
, (1)

where $\mathcal{L}_i: \mathbb{R}^p \to \mathbb{R}$ is bounded from below and is (possibly) nonconvex and include a nonsmooth penalty.

• The gap $\widehat{e}(\theta; \{\overline{\theta}_i\}_{i=1}^n)$ plays a key role in the convergence analysis and we require this error to be L-smooth for some constant L>0 Denote by $\langle\cdot\,|\cdot\rangle$ the scalar product, we also introduce the following stationary point condition:

Definition 1. (Asymptotic Stationary Point Condition)

A sequence $(\theta^k)_{k>0}$ satisfies the asymptotic stationary point condition if

$$f'(\boldsymbol{\theta}, \boldsymbol{d}) := \lim_{t \to 0^+} \frac{f(\boldsymbol{\theta} + t\boldsymbol{d}) - f(\boldsymbol{\theta})}{t} \ge 0.$$
 (2)

Majorization-Minimization Scheme

• The MISO method (Mairal, 2015)

Algorithm 2 The MISO method (Mairal, 2015).

- 1: **Input:** initialization $\boldsymbol{\theta}^{(0)}$
- 2: Initialize the surrogate function as
- $\mathcal{A}_i^0(oldsymbol{ heta}) \coloneqq \widehat{\mathcal{L}}_i(oldsymbol{ heta}; oldsymbol{ heta}^{(0)}), \ i \in \llbracket 1, n
 rbracket.$
- 3: **for** $k = 0, 1, ..., K_{\sf max}$ **do**
- 4: Pick i_k uniformly from [1, n].
- 5: Update $A_i^{k+1}(\boldsymbol{\theta})$ as:

$$\mathcal{A}_i^{k+1}(oldsymbol{ heta}) = egin{cases} \widehat{\mathcal{L}}_i(oldsymbol{ heta}; oldsymbol{ heta}^{(k)}), & ext{if } i = i_k \ \mathcal{A}_i^k(oldsymbol{ heta}), & ext{otherwise}. \end{cases}$$

- 6: Set $\boldsymbol{\theta}^{(k+1)} \in \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{A}_{i}^{k+1}(\boldsymbol{\theta})$.
- 7: **end for**
- MISO Method: fix any $n \ge 1$, we stop the SA at a random iteration N with

An Inctractability for Latent Data Models

- Case when the surrogate functions computed in Algorithm ?? are not tractable.
- Assume that the surrogate can be expressed as an integral over a set of latent variables $z = (z_i \in Z, i \in [n]) \in Z[]$.

$$\widehat{\mathcal{L}}_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}) := \int_{\mathbf{Z}} r_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, z_{i}) p_{i}(z_{i}; \overline{\boldsymbol{\theta}}) \mu_{i}(dz_{i}) \quad \forall \ (\boldsymbol{\theta}, \overline{\boldsymbol{\theta}}) \in \Theta \times \Theta \ . \tag{3}$$

Our scheme is based on the computation, at each iteration, of stochastic auxiliary functions for a mini-batch of components. For $i \in [n]$, the auxiliary function, noted $\widetilde{\mathcal{L}}_i(\theta; \overline{\theta}, \{z_m\}_{m=1}^M)$ is a Monte Carlo approximation of the surrogate function $\widehat{\mathcal{L}}_i(\theta; \overline{\theta})$ defined by (3) such that:

$$\widetilde{\mathcal{L}}_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, \{z_{m}\}_{m=1}^{M}) := \frac{1}{M} \sum_{m=1}^{M} r_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, z_{m}),$$
 (4)

where $\{z_i^m\}_{m=0}^{M-1}$ is a Monte Carlo batch.

MISSO Method

 \bullet dd

Algorithm 2 The MISSO method.

- 1: **Input:** initialization $\theta^{(0)}$; a sequence of non-negative numbers $\{M_{(k)}\}_{k=0}^{\infty}$.
- 2: For all $i \in [1, n]$, draw $M_{(0)}$ Monte Carlo samples with the stationary distribution $p_i(\cdot; \boldsymbol{\theta}^{(0)})$.
- 3: Initialize the surrogate function as

$$\widetilde{\mathcal{A}}_i^0(\boldsymbol{\theta}) := \widetilde{\mathcal{L}}_i(\boldsymbol{\theta}; \boldsymbol{\theta}^{(0)}, \{z_{i,m}^{(0)}\}_{m=1}^{M_{(0)}}), \ i \in \llbracket 1, n
rbracket$$
.

- 4: **for** $k = 0, 1, ..., K_{\text{max}}$ **do**
- 5: Pick a function index i_k uniformly on [1, n].
- 5: Draw $M_{(k)}$ Monte Carlo samples with the stationary distribution $p_i(\cdot; \boldsymbol{\theta}^{(k)})$
- Update the individual surrogate functions recursively as:

$$\widetilde{\mathcal{A}}_i^{k+1}(oldsymbol{ heta}) = egin{cases} \widetilde{\mathcal{L}}_i(oldsymbol{ heta}; oldsymbol{ heta}^{(k)}, \{z_{i,m}^{(k)}\}_{m=1}^{M_{(k)}}), & ext{if } i = i_k \ \widetilde{\mathcal{A}}_i^k(oldsymbol{ heta}), & ext{otherwise}. \end{cases}$$

- 8: Set $\boldsymbol{\theta}^{(k+1)} \in \operatorname{arg\,min}_{\boldsymbol{\theta} \in \Theta} \widetilde{\mathcal{L}}^{(k+1)}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathcal{A}}_{i}^{k+1}(\boldsymbol{\theta})$.
- 9: end for

Global Convergence Analysis

Assumptions: we need a few regularity conditions in this case,

H1. For all $i \in [n]$ and $\overline{\theta} \in \Theta$, $\widehat{\mathcal{L}}_i(\theta; \overline{\theta})$ is convex w.r.t. θ , and it holds $\widehat{\mathcal{L}}_i(\theta; \overline{\theta}) \geq \mathcal{L}_i(\theta)$, $\forall \theta \in \Theta$ where the equality holds when $\theta = \overline{\theta}$.

H2. For any $\overline{\theta}_i \in \Theta$, $i \in [n]$ and some $\epsilon > 0$, the difference function $\widehat{e}(\theta; \{\overline{\theta}_i\}_{i=1}^n) := \frac{1}{n} \sum_{i=1}^n \widehat{\mathcal{L}}_i(\theta; \overline{\theta}_i) - \mathcal{L}(\theta)$ is defined for all $\theta \in \Theta_\epsilon$ and differentiable for all $\theta \in \Theta$, where $\Theta_\epsilon = \{\theta \in \mathbb{R}^d, \inf_{\theta' \in \Theta} \|\theta - \theta'\| < \epsilon\}$ is an ϵ -neighborhood set of Θ . Moreover, for some constant L, the gradient satisfies $\|\nabla \widehat{e}(\theta; \{\overline{\theta}_i\}_{i=1}^n)\|^2 \le 2L \, \widehat{e}(\theta; \{\overline{\theta}_i\}_{i=1}^n)$, $\forall \theta \in \Theta$.

H3. For all $i \in [n]$, $\overline{\theta} \in \Theta$, $z_i \in \mathbb{Z}$, $r_i(\cdot; \overline{\theta}, z_i)$ is convex on Θ and is lower bounded.

H4. For the samples $\{z_{i,m}\}_{m=1}^{M}$, there exist finite constants C_r and C_{gr} such that for all $i \in [n]$,

$$C_{\mathsf{r}} := \sup_{\overline{\boldsymbol{\theta}} \in \Theta} \sup_{M > 0} \frac{1}{\sqrt{M}} \mathbb{E}_{\overline{\boldsymbol{\theta}}} \left[\sup_{\boldsymbol{\theta} \in \Theta} \left| \sum_{m=1}^{M} \left\{ r_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}, z_{i,m}) - \widehat{\mathcal{L}}_{i}(\boldsymbol{\theta}; \overline{\boldsymbol{\theta}}) \right\} \right| \right]$$

$$C_{\mathsf{gr}} := \sup_{\overline{\boldsymbol{\theta}} \in \Theta} \sup_{M > 0} \sqrt{M} \mathbb{E}_{\overline{\boldsymbol{\theta}}} \left[\sup_{\boldsymbol{\theta} \in \Theta} \left| \frac{1}{M} \sum_{m=1}^{M} \frac{\widehat{\mathcal{L}}'_{i}(\boldsymbol{\theta}, \boldsymbol{\theta} - \overline{\boldsymbol{\theta}}; \overline{\boldsymbol{\theta}}) - r'_{i}(\boldsymbol{\theta}, \boldsymbol{\theta} - \overline{\boldsymbol{\theta}}; \overline{\boldsymbol{\theta}}, z_{i,m})}{\|\overline{\boldsymbol{\theta}} - \boldsymbol{\theta}\|} \right|^{2} \right]$$

where we denoted by $\mathbb{E}_{\overline{\theta}}[\cdot]$ the expectation *w.r.t.* a Markov chain $\{z_{i,m}\}_{m=1}^{M}$ with initial distribution $\xi_{i}(\cdot; \overline{\theta})$, transition kernel $\Pi_{i,\overline{\theta}}$, and stationary distribution $p_{i}(\cdot; \overline{\theta})$.

Theorem 1 Under H1-H4. For any $K_{\text{max}} \in \mathbb{N}$, let K be an independent discrete r.v. drawn uniformly from $\{0, ..., K_{\text{max}} - 1\}$ and define the following quantity:

$$\Delta_{(K_{\max})} := 2nL\mathbb{E}[\widetilde{\mathcal{L}}^{(0)}(\boldsymbol{\theta}^{(0)}) - \widetilde{\mathcal{L}}^{(K_{\max})}(\boldsymbol{\theta}^{(K_{\max})})] + 4LC_{\mathsf{r}}\overline{M}_{(K_{\max})}.$$

Then we have following non-asymptotic bounds:

$$\mathbb{E}\left[\|\nabla \widehat{e}^{(K)}(\boldsymbol{\theta}^{(K)})\|^{2}\right] \leq \frac{\Delta_{(K_{\text{max}})}}{K_{\text{max}}} \quad and \quad \mathbb{E}\left[g_{-}(\boldsymbol{\theta}^{(K)})\right] \leq \sqrt{\frac{\Delta_{(K_{\text{max}})}}{K_{\text{max}}}} + \frac{C_{\text{gr}}}{K_{\text{max}}} \overline{M}_{(K_{\text{max}})} \quad . \tag{16}$$

→ MISSO10

MISSO50

-MCEM

-SAEM

Logistic Regression on Traumabase dataset (severe hemorrhage):

• Bayesian variants of LeNet-5 and ResNet-18 on MNIST and CIFAR10:

Conclusion

- Theorem 1 & 2 show the non-asymptotic convergence rate of biased SA scheme with smooth (possibly non-convex) Lyapunov function.
- With appropriate step size, in n iterations the SA scheme finds $\mathbb{E}[\|h(\eta_N)\|^2] = \mathcal{O}(c_0 + \log n/\sqrt{n})$, where c_0 is the bias and $h(\cdot)$ is the mean field.
- Applications to online EM and online policy gradient.

References

Julien Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. *SIAM Journal on Optimization*, 25(2):829–855, 2015.