# BEST AVAILABLE COPY

# PATENT TITLE INFORMATIONS

- 19. Fatent Office of Japan (JP)
- 11. Patent Application Announcement
- 12. Patent Announcement Bulletin (A): Hei 4-159084
- 51. Int. Cl. I. D. Symbol Patent Office Filing No. B 24 D 1/00 Q 7234-3C C 7234-3C M 7234-3C
- 43. Announcement Date: Heisei 4, June 2, 1992 Investigation Request: None Number of Inventions: One (Total 5 Pages)
- 54. Name of Invention:

  Manufacturing method for a finishing tape.
- 21. Special Request: Hei 2-281106
- 22. Application Date: Hei 2, October 19, 1990
- 72. Inventors:
  - T. Nishio
    Dai Nippon Insatsu Kabushiki Kaisha
    (Great Japan Printing Company)
    No. 1, 1 Ban, 1 Chome, Ichigaya, Kaga Cho, Shinjuku Ku
    Tokyo To (Capital)
  - H. Amemiya Dai Nippon Insatsu Kabushiki Kaisha No. 1, 1 Ban, 1 Chome, Ichigaya, Kaga Cho, Shinjuku Ku Tokyo To
  - Y. Nakai Dai Nippon Insatsu Kabushiki Kaisha No. 1, 1 Ban, 1 Chome, Ichigaya, Kaga Cho, Shinjuku Ku Tokyo To
- 71. Applied By:

Dai Nippon Insatsu Kabushiki Kaisha No. 1, 1 Ban, 1 Chome, Ichigaya? Kaga Cho, Shinjuku Ku Tokyo To

74. Represented By:

Attorney: I. Hosoi

#### DETAILED DESCRIPTIONS

#### 1. Name of Invention

Manufacturing method for a finishing tape.

### Patent Claim(s)

The manufacturing method for a finishing tape having an abrasive layer on a film base material, the abrasive layer consists of many indented area. The indented area mentioned above are formed by a roller indentation plate that contains plate indented areas. (At least) the plate indented areas, along with the contact area with the film base material, of the roller indentation plate are filled with abrasive containing ionization radiation curable resin. While the base material is making contact with the indentation plate, it is irradiated with ionization radiation to harden the resin (between the base material and the indentation plate). After the resin is firmly adhered to the base material, the base material is separated from the indentation plate.

# 3. Detailed Explanation of the Invention

[Field of Industrial Application]

This invention concerns the manufacturing method of a finishing tape for precision finishing.

[The Problems to be Resolved by the Conventional Technologies and This Invention]

It is known that finishing tape has been used in recent years for the finishing of floppy discs, magnetic heads, optical fibers, and precision electronic components, etc.; the surface of these products requires high precision mirror finish. This type of finishing tape is prepared by coating an abrasive material and binder preparation on a common base material to form a film. Although the preparation and manufacturing of such finishing tape is simple, the debris from the parts can easily formed between the finishing tape and the parts; continue grinding with such debris may damage the surface of the parts; also, when the film surface is loaded with such debris, the finishing capacity is obviously reduced, causing various inconveniences and problems.

It has been proposed (refer to Japanese Patent Tokaisho 62-255069) that grooves be introduced in the abrasive layer of such finishing tape; during the formation of the abrasive

layer, large amount of inorganic material is incorporated in the coating preparation, drying of the solvent in the coated layer cause the "convection cell phenomenon" and form groove shaped jagged Bernard Cells in the abrasive layer. But in this type of finishing tape, due to its manufacturing process, the grooves are limited to hexagonal planar indentations. Moreover, it is difficult to form identical pattern of indentations, and it is also difficult to obtain stable product quality. The formation of stable and uniform indentation is greatly depend upon the composition of the solvent in the abrasive preparation, amount of coating, and the drying condition during its manufacturing. These factors are very difficult to control, and has become tedious problems in the manufacturing operation.

To overcome the problems mentioned above, the inventors have proposed manufacturing process for a finishing tape (Japanese Patent No. Tokaihei 2-83172), which contains multiple specially defined indentations in the abrasive layer, and the tape is best suited for precision finishing. The result of continuous and various refinements have led to the development and completion of this invention.

This invention has resulted in resolving the disadvantages of the traditional technologies. Through the proposal mentioned above, the inventors are able to improve the quality of the finishing tape, and provide a simple, effective, and stable new manufacturing method.

# [Means of Resolving the Problems]

The manufacturing method of a finishing tape of this invention involves provision of multiple indentation areas in the film base material of the abrasive layer. The vehicle for forming the indentations mentioned above is a roller (indentation plate) that contains indentations itself. The (few) indentation plate portion of the roller indentation plate is filled with abrasive containing ionization radiation curable resin and allowed to make contact with the base film; the resin between the (roller) indentation plate and the film base is then exposed to ionization radiation and allowed to harden; after which the base film and the indentation are separated.

# [Application Example]

Following are explanations of the figures used in this  $\mbox{\sc Application Example.}$ 

Figure 1 is an engineering sketch showing one of the application example of the manufacturing method of this invention, where 1 is the roller indentation plate, 2 is the film base material, and 3 is the abrasive containing ionization radiation curable resin.

The manufacturing method of this invention involves: first, indentations 4, which shapes the indentations on the abrasive layer of the finishing tape, are formed on the

roller indentation plate 1; and is used in the example shown in the figure. Rollers, 5 and 6, are installed against roller indentation plate 1, and served as pressing and feeding rollers. The clearances of both rollers (with roller indentation plate 1) are adjustable.

Next, the indentation surface of the roller indentation plate 1 provide proper means of transfer (of abrasive) to the film base material 2 by making contact with the film. The indentation 4's in the indentation plate 1 are filled with abrasive containing ionization radiation hardenable resin 3 and transfer the resin to the film (by direct contact). While the indentation plate 1 is making contact with the film, it is irradiated with ionized radiation using ionization radiation device 7; the resins between the film and the indentation plate 1 become hardened and adhereed to the film. Finally, the film is separated from the indentation plate 1.

As shown in Figure 2, through the process of this invention, a finishing tape 10 is obtained. The abrasive layer 9 on the film base material of the finishing tape has indented areas 8, which come from the roller indentation plate 1 as the film is separated. Through the above manufacturing process of this invention, the abrasive layer 8, containing indented areas, is formed, because of the shape of the roller indentation plate is faithfully reproduced. The process can easily, simply and truthfully reproduce extremely clear indentation, even if the shape of the indented area is complicated and minute.

Also, in this invention, after one side of the film base material 2 is coated with abrasive layer 9, the uncoated side of the film can again be coated with abrasive through the similar manufacturing process mentioned above by making contact with the roller indentation plate 1, so that both sides of the film have similar abrasive layer 9's. It is possible to have a continuous manufacturing process in this case, provided a second roller indentation plate is installed on the back side; after the film is separated from the first roller indentation plate, the film is (coated with abrasive again by) making contact with the second roller indentation plate.

As shown in the example of Figure 2, the abrasive layer 9 of this application example contains resin layer under the indented area 8. The ionization radiation curable resin 3 is not only supplied through the indented area of the roller indentation plate, but also between the (top) surface of indentation plate and the base material 2 to form such configuration. In order to obtain an abrasive layer 9 such that there is no resin under the indented area 8, after the resin is supplied by the roller indentation plate, the resin outside of the indented area is removed by doctor blade, or other operation, etc., so that only the indented area is filled with the curable resin.

The indented area 4 can be formed on the roller indentation plate by electronic engraving, etching, milling, and

electrotyping, etc., methods. Also the configuration of the indented area in the abrasive layer comes from the shape of the plate indented area 4, the protruded area (in the plate) actual becomes the indented area (in the abrasive layer). During finishing, the indented area 8 of the finishing tape, prepared by this invention, is able to function as collector to accumulate the grinding debris; for effective collection of grinding debris, efforts are made to maintain the opening of the indented area with a width of 0.1-200  $\mu m$ , a depth of 0.1-100 µm, and a pitch (the distance between the centers of the adjacent indented) of 10-500 um. The grinding debris collecting efficiency and capacity of the indented area will be poor if these conditions are not met. It is possible to form the indented area other than the conditions mentioned The indented area 8 shown in Figure 3 is uniformly and regularly distributed over the entire abrasive layer, but other configurations (horizontal cross sections) such as rectangle, hexagon, circle, oval, etc., and vertical cross sectional shapes of inverted triangle, rectangle, semicircle, and trapazoid, etc., can also be used. Thus, the indented area can be formed with these shapes in the tation plate 4, provided the other conditions (width, depth, and pitch) mentioned above are met.

The supplying and filling of the ionization radiation curable resin can be carried out, as in this application example, by direct roll coating of the roller indentation plate. Other methods, such as T-die, etc., dies, and preroll-coating of the base material 2 before contact with roll indentation plate 1, may also be used.

The ionization radiation curable resins mentioned above can be conventional UV or E-beam radiation curable resins. Among these resins, if the solvent free resins are selected, undesirable phenomenon, such as volume shrinkage, shape change (deformation), and bubble formation, etc., will not occur during drying; the resin does not require predrying process, and indentations can be easily and accurately reproduced. If the film base material is transparent, UV irradiation can be used as the source of ionization radiation; however, if the base material is opaque, E-beam radiation must be used. If the roll indentation plate is constructed of ionization radiation transparent material, the irradiation device can be installed inside the indentation plate, and irradiate from the inside. If E-beam is used, the irradiation dosage, depending on the thickness of the sheet and the properties of the material, in the 0.5-30 Mrad range is generally preferred. .

The abrasive materials used in this invention is intended for precision finishing. There is no special restriction in their selection, various finishing abrasive material can be selected and used for such purpose. For example, if the products to be finished is a very hard material, such as super hard tools, etc., abrasive material such as green silicon carbide (SiC), or diamond, etc., can be used; similarly, in the case of special hard steel, or

high speed steel, white molten alumina  $(Al_2O_7)$  can be used; if the material to be finished is a soft material, chromium oxide  $(Cr_2O_3)$  can be employed; and for final finishing of magnetic head, ferric oxide  $(Fe_2O_3)$  can be selected as the most suitable finishing material. The particle (diameter) size of the finishing material is preferred to be in the 0.1-20 um range. The amount of binder used in the preparation for the abrasive layer is preferred to be 100 parts by weight to 50-1400 parts by weight (of the formulation).

The thickness of the abrasive layer 9 can be varied depending on its application, in general, 0.5-500 µm range is preferred. If high flexibility and very little shrinkage is required (for abrasive layer 9), suitable amount of thermal plastic resin can be added to the above (ionization radiation) curable resins. For example, non-reactive acrylic resins, and various waxes, etc., can be added to satisfy such requirements. If necessary, antistatic agent, etc., can also be added to the abrasive layer.

Conventional materials used in finishing tape may be used as film base 2, provided they have adequate flexibility and can smoothly pass through the rollers, etc., during the manufacturing process. For example, polyester film, polyethylene film, polypropylene film, polyvinylchloride film, polyvinylidene film, polycarbonate film, polyamide (nylon) film, polystyrene film, and ethylene-vinyl acetate coplymer film, etc., can be selected. Among these films, polyester is the most desirable material when factors such as process ability, strength, and cost are considered. If necessary, the film surface that abrasive is coated on can be Corona (discharge) treated, and polyester type resin, etc., adhesion primer can also be applied. Besides the base materials mentioned above, other materials, such as paper, cloth, nonwoven fabrics, etc., with proper filler treatment, may also be used. The thickness of these base materials 2 is preferred to be in the 12-100  $\mu m$  range.

The shape of the indented area of the finishing tape obtained is very uniform and exquisite, therefore it can provide the ability for at least very stable initial finishing. Because of the special configuration of the indented area mentioned above, it is able to effectively collect grinding debris generated from the objects being finished during the polishing operation. This resulted in eliminating the fear of damaging the surface of the objects by the debris exit between the finishing tape and the objects; the finishing ability of the finishing tape will not be lowered because the abrasive layer is packed. The finishing tape is especially suitable for precision polishing where mirror finish is required. Furthermore, the abrasive layer is constructed from hardened ionization radiation curable resin and has excellent wear resistance, it is a very reliable abrasive which will not damage the objects being polished, and can be used for high precision finishing.

Following is a specific application example giving more detailed explanation of this invention.

# Application Example 1

A 25 um polyester film (T-60, manufactured by Tooshi), one side of which was first coated with a two-part polyester type primer by gravure coating method, the dried thickness of the coating was 0.3 µm; it was then treated with release agent. The (film with the) treated surface, is used in the manufacturing process as shown in Figure 1, using the following compositions and conditions to form the abrasive layer, and later the finishing tape.

- \* Indentation Plate: Indented width 10 µm, plate depth (indented area) 15 µm, pitch 30 µm; the roller indentation plate consists of a turtle-shell like pattern with a rectangular indentation cross section.
- \* Ionization Radiation Curable Resin: Polyester acrylate type E-beam curable resin formulation containing 100 % (? parts) by weight of molten white alumina (particle) (to 50-1400 of formulation weight?).
- \* Irradiation Conditions: Curtain Beam Type E-beam irradiation device at 10x10 rad electron beam intensity.

The finishing tape thus obtained contains sharp reproduction of exact configuration of the desired shape in the indented area of the abrasive layer. When the finishing tape was used to polish stainless steel (SUS-45C) sample with a center line roughness of 0.5 µm, the roughness of the finished sample was reduced to 0.1 µm (average center line). The grinding debris were collected in the indented area and did not damage the surface of the sample during the finishing operation.

# [Effects of Invention]

As explained above, a finishing tape can be prepared by the manufacturing method of this invention. The abrasive layer consists of ionization radiation curable resin; many indented area are formed in the abrasive layer by using a roller indentation plate which contains indented area for the formation of the indentations as resin hardens. The indented area of the abrasive layer are very clearly and faithfully reproduction of the indented area of the indentation plate. Although the indented area in the abrasive layer can be prepared, for example, by thermal embossing process, or using preformed tape, but the manufacturing process of this invention can easily, clearly, and accurately reproduced high quality desired configuration of the indentations. Furthermore, the manufacturing process is not complicated but very simple, the product quality is very stable; the process is very efficient and is suitable for mass production.

4. Brief Explanation of the Figures.

Figure 1 is an engineering sketch showing an application example of the manufacturing process of this invention; Figure 2 is a cross sectional view of an example of a finishing tape obtained by the method of this invention. Figure 3 is an enlarged planar view of a portion of abrasive layer surface - an example of the indented area of the abrasive layer.

- 1: Roller Indentation Plate
- 2: Film Base material
- 3: Abrasive Formulation Containing Ionization Radiation Curable Resin
- 4: Plate Indentation Area
- 8: Indented Area
- 9: Abrasive Layer
- 10: Finishing Tape

Patent Applied By: Dai Nippon Insatsu Kabushiki Kaisha

(Great Japan Printing Co.)

Representative: Attorney, Isamu HOSOI



Figure 1. 1: Roller Indentation Plate

2: Film Base Material

3: Abbrasive Layer Containing Ionization Radiation Curable Resin

4: Plate Indentation Area

5: Abrasive Layer



Figure 2. 8: Indented Area 10: Finishing Tape



Figure 3.

# ⑲ 日本国特許庁(JP)

# ◎ 公 開 特 許 公 報 (A) 平4-159084

3 Int. Cl. 5

識別記号

庁内整理番号

四公開 平成4年(1992)6月2日

B 24 D 11/00

Q 7234-3 C C 7234-3 C M 7234-3 C

審査請求 未請求 請求項の数 1 (全5頁)

**公**発明の名称 研磨テープの製造方法

**到特 顯 平2-281106** 

**20**出 願 平 2 (1990)10月19日

東京都新宿区市谷加賀町1丁目1番1号 大日本印刷株式

会补内

**@発明者雨宮 裕之** 

東京都新宿区市谷加賀町1丁目1番1号 大日本印刷株式

会社内

⑩ 発明者中·井 康夫

東京都新宿区市谷加賀町1丁目1番1号 大日本印刷株式

会社内

勿出 願 人 大日本印刷株式会社

東京都新宿区市谷加賀町1丁目1番1号

個代 理 人 弁理士 細 井 勇

#### 明 細 書

# 1. 発明の名称

研磨テープの製造方法

#### 2.特許請求の範囲

## 3.発明の詳細な説明

# (産業上の利用分野)

本発明は特密な仕上げ研磨に使用する研磨テープの製造方法に関する。

〔従来の技術

#### 及び発明が解決しようとする課題)

近年、フロッド、特別では、 大変面 ( ) では、 大変面 ( ) では、 特別では、 特別では、 特別では、 特別では、 特別では、 特別では、 特別では、 特別では、 大変では、 大変を ( ) では、 大変を ( ) できる ( ) で

また研磨層に溝を設けた研磨テープとして、研 磨層形成の際、コーティング剤中に無機質成分が 多量に含有されている塗料を塗工して溶剤を乾燥 させる時に塗工層中で発生する "対波セル現象" によるベルナードセルの凹凸を研磨層の溝形状と して利用したものが提案されている ( 関昭 6 2 - 255069号公報参照)。ところが、この研 磨テープの場合は製造方法の関係から、形成され る溝凹部に平面形状が略六角形のものに限定され てしまい、しかも常に同等パターンの凹部を形成 し得ることが困難であり、品質の安定したものが 得られ難かった。また、その形成される溝凹にが パターンを均一安定化の形成には製造に り研磨層形成用塗料の溶剤組成、塗布量、乾燥条件等の管理が難しく、製造作業が非常に煩雑とな る問題があった。

そのため本出願人は上記問題点を克服すべく、研磨層に多数個の特定の凹陥部を有する特密な仕上げ研磨に好適な研磨テープとその製造方法について提案した(特開平2-83172号公報)。その後も引続き各種改良研究を重ねた結果、本発明を開発完成するに至った。

従って本発明は前記従来技術の欠点を解消できることは勿論のこと、先に提案した本出願人の研磨テープをより一層高品質な状態で、簡便かつ迅速に安定して製造し得る新たな製造方法を提供す

樹脂を示す。

· 34.

本発明方法では先ず初めに、研磨テープの研磨 層における凹陷部形状を試型するための形状から なる版凹部 4 を型取りしてなるロール凹版 1 を用 意し、例えば図示の如く設置して使用する。図中 5 と 6 はロール凹版 1 と対に設置される押圧ロー ルと送りロールであり、両ロールともクリアラン ス類等等が可能になっている。

次いで、上記ロール回版1に対して通宜移送手段にてフィルム基材2を、該凹版面に当接するように供給する。これと同時に、研磨剤を含有する電器放射線硬化型樹脂3を凹版1の少なくとも版凹部4に充填すべく通宜手段により供給させる。 そして、基材2が凹版1に接触している間に電器放射線を照射支置7により電離放射線を照射してで放射を対象を照射してである。最後にはなると同時に基材側に密着せしめる。最後に、基材2を凹版1から影響する。

この基材2の頻繁により、第2図に示すように ロール凹版1にて観型された凹陥部8を備えた研 ることを目的とする。

(課題を解決するための手段)

即ち本発明の研磨テープの製造方法は、多数の四路部を有する研磨をフィルム基本であって、上記凹路部の一大を製造する方法であって成したの観型用形状からなる版画の形成としたのでは、 ないのの少ない とも 版を使用し、 ないのの少な 化型脂を含有する 電難放射線硬化 型型 脂を含有する と 接触 を 関射している 間に でいる 上記 樹脂を 要が が 世級に 接触している 間に ない と 記 が 出版 の間に 介 在 し で に と を 特徴と で は 動 動 難 すること を 特徴と するものである。

#### 〔実施例〕

以下、本発明の実施例を図面に基づいて説明する。

第1図は本発明製造方法の一実施例を示す工程 説明図であり、図中1はロール凹版、2はフィル ム基材、3は研磨剤を含有する電離放射線硬化型

磨層 9 が基材 2 上に形成された本発明方法による 研磨テープ10が得られる。本発明では凹陥部 8 を 有する研磨層 9 の形成を上述のような製造手段に て行っているため、ロール凹版に型取りした形状 を忠実に再現した極めて鮮明な凹陥部形状が得られ、特に凹陥部が複雑で微細な形状のものであっ ても簡便に且つ確実に得られる。

本実施例の研磨層 9 は、第 2 図に例示の如く凹 陥部 8 の下方に研磨層の樹脂層部分が存在する形 態をなしている。これはロール凹版の版凹部に供 給される電難放射線硬化型樹脂 3 が版凹部のみな らず凹版の頂面と基材 2 の間に介在するように充 域されることにより、形成される形態である。 従って凹陥部 8 の下方に樹脂層部分が存在しない形態の研磨層 9 を得る場合には、上記樹脂をロール凹版に供給した後、版凹部以外の版面上の樹脂をドクターブレードでかき取る等の操作をして販凹部のみに硬化型樹脂を充填させるように調整すればよい。

上記ロール凹版 1 にはいまれて をはは、の形成 2 ににはいまれて 2 にの 2 になる。また版凹部 4 の形状を 5 できる。また版凹部 5 できる。また版凹部 6 できる。また版型すべたを 5 ではいるが 5 ではいる。 2 になるが 5 ではいませんが 5 ではいる。 2 になるが 5 ではいる。 3 になるが 5 ではいる。 4 ではいる。 5 で

本発明における研磨剤としては精密な研磨を行うために使用されるものであれば特に限定されず、研磨用途に応じて種々選択して用いることができる。例えば、高硬度材料からなる超硬工具等の被研磨材を研磨する場合は研磨剤として緑色炭化珪素(SiC)、ダイヤモンド等が好適であり、同じに要調等致調、高速度調等の被研磨材の場合は白色

電離放射線硬化性樹脂の供給充填は、本実施例の如くロール凹版に直接ロールコート法にて供給して行える他、Tダイ等のダイから供給したり基材2がロール凹版1に当接する前に該基材上に予めロールコート法等にて塗布形成して供給させて行ってもよい。

上記電離放射線硬化型樹脂としては公知の紫外 線又は電子線硬化型樹脂を使用でき、中でも溶剤

溶酸アルミナ(AlaOa)、柔軟材料からなる被研磨材の場合は酸化クロム(CraOa)、磁気ヘッドの最終研磨の場合は酸化鉄(FeaOa)がそれぞれ好通な研磨剤である。研磨剤の粒子径は0.1~20μmであることが好ましい。これらの研磨剤は研磨層形成用強料中、バインダー成分100重量部に対して50~1400重量部含有せしめることが好ましい。

研磨層 9 の厚さは用途に応じて適宜設定される。 が、通常、0.5~500μm程度が好ましい。また研磨層 9 に高い可挽性や耐収縮性が要求される 場合には上記硬化型樹脂中に適当量の熱可塑性樹脂、例えば、非反応性のアクリル樹脂や各種ワックス等を添加することによってそれらの要求に応えることができる。更に研磨層には必要に応じて帯電防止剤等を添加せしめることもできる。

フィルム基材 2 としては、従来から研密テープ に使用され製造工程におけるロール等も円滑に選 通する通度な可捷性があるものであれば如何なる ものでもよい。例えば、ポリエステルフィルム、

ポリエチレンフィルム、ポリリ塩化ピニルフィルム、ポリカーボネートフィルム、ポリアアミド (オルム、ポリカーボネートフィルム、ポリアアム (ナチレンフィルムンフィルム、ポリカーボネートフィルム (ナチレンー のでは、カーカーが発達した。 では、カーカーが発達した。 では、カーカーが発達した。 では、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーカーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーのでは、カーの

本発明方法にて得られる研磨テーブは、凹陥部形状が常に均一で精巧なものが得られるため少なくとも初期研磨能力が安定している。また凹陥部が前記の如き特定形状のものであるので研磨に際して被研磨体から生成する研磨層が該凹陥部に効率よく収容され、その結果、研磨テープと被研磨

15μm、凹部のピッチが30μmであり、且つ平面形状が亀甲形状で断面形状が長方形の版凹部を形成したロール凹版を使用した。

- ・電離放射線硬化型樹脂…白色溶融アルミナを 100重量%含有してなるポリエステル アクリレート系電子硬化型塗料を使用。
- ・照射条件…カーテンピーム型の電子線照射装置 にて10×10° rad の電子線を照射。

得られた研磨テープは、販通りの所望の形状が シャープに且つ再現性良く形成された凹陷部を有 する研磨層を備えたものであった。この研磨テー プを用いて中心線 0.5 μ m のステンレス (SUS - 45 C) の研磨を行ったところ、中心平均粗さ 0.1 μ m の研磨仕上がりとなり、またそのときの 研磨層は上記凹陷部に収容され、研磨層による被 研磨解は上記凹陷部に収容され、研磨層による被 研磨体表面の傷も発生しなかった。

#### . (発明の効果)

以上説明したように、本発明の製造方法によれば多数の凹陷部を有する研磨層の形成を前記の如

体の間に研磨層が介在することにより被研磨体の 表面を傷つけてしまう度れがなく、また研磨層の 目詰りによって研磨能力が低下することもなく、 特に鏡面仕上げを要するような精密な研磨には最 通である。更に、研磨層が硬化させた電離放射線 硬化型樹脂にて構成されているため耐摩耗性等の 物性に優れ、研磨剤による研磨が確実になされ、 被研磨品に対して傷が発生しにくい高精度な研磨 が可能となる。

次に、具体的実施例を挙げて本発明を更に詳細 に説明する。

#### 実施例1

厚さ25μmのボリエステルフィルム(東レ製: T-60)の片面に、ボリエステル系二液硬化型プライマーをグラピアコート法にて乾燥時の厚さが0.3μmとなるように塗布して離型処理を施した。この処理面に、第1図に図示の如き製造形態を採用して下記の構成材料および条件にて研磨層を形成し、研磨テープを作成した。

・凹版…凹部幅が10μm、版深(凹部梁さ)が

く研磨剤含有の電離放射線硬化性樹脂を配配を 型用版内で硬化して硬化酸型では でで極めているため、凹版の版凹部に対しておいるが、凹版の版凹部に対してな研究がは型再現されたができる。 要有する研磨・一ブを製造することができる。 を研磨をの凹路が成立とができる。 を研磨をの凹路を例えば熱エンポストでで 型用の凹路がでは、ことができる。 での形式が変には、これで、のの自りでは、 でのではなく、品質の安定したのであり、 は次式を はない大量生産が可能である。

#### 4.図面の簡単な説明

第1図は本発明製造方法の一実施例を示す工程 説明図、第2図は本発明方法により得られる研磨 テープの一例を示す経断面図、第3図は研磨層に おける凹陷部の一例を示す研磨層表面の一部拡大 平面図である。

- 1 … ロール凹版 2 … フィルム基材
- 3 …研磨剤を含有する電離放射線硬化型樹脂
- 4 --- 坂回部 8 --- 凹陷部

2

特許出願人 大日本印刷株式会社代 理 人 弁理士 細 井 勇





一一・ロール凹版

2 … 2 1 7 2 至初 3 … 研磨 割を含有する電差放射線硬化型樹脂

4…版凹部 9…研磨層

寒 3 図

