March 7, 2023

1 Definitions

Definition 1. A Voronoi diagram is a subdivision of a $n \times m$ table equipped with a greedy braid into regions such that

- 1) Left boundary of each region is composed of a single braid strand and possibly a piece of the boundary;
- 2) Right boundary of each region is composed of several pieces e_1, e_2, \ldots, e_k of braid strands, such that
 - (a) the pieces e_1, e_2, \ldots, e_k cross no strand from left to right,
 - (b) the strand containing e_i crosses the strand containing e_{i+1} from left to right at the point where e_i meets e_{i+1} , i = 1, ..., k-1.

Lemma 1. The following are equivalent:

- 1) Point p belongs to the Voronoi cell f_i of a Voronoi site s_i ;
- 2) Site s_i is the leftmost site such that there is a path from s_i to p that crosses no braid strand from left to right.

2 Notation

- 1) \mathcal{B} for the greedy braid of the $\frac{n}{2} \times m$ table;
- 2) VD for the Voronoi diagram of \mathcal{B}
- 3) \mathcal{B}^* for the upward $\frac{n}{2} \times m$ greedy braid;
- 4) \mathcal{B}^{-h} for the $(\frac{n}{2} + h) \times m$ greedy braid that starts h rows above the middle line;
- 5) VD^{-h} for the Voronoi diagram corresponding to \mathcal{B}^{-h} ;
- 6) s_0, \ldots, s_{m+n} for the sites of the Voronoi diagram;
- 7) $f_0, \ldots, f_{m+n}; f_0^{-h}, \ldots, f_{m+n}^{-h}$ for the Voronoi cells of VD and VD^{-h} correspondingly;
- 8) $c_0, \ldots, c_{m+n}; c_0^{-h}, \ldots, c_{m+n}^{-h}$ for the lower right corners of the Voronoi cells of VD and VD^{-h} correspondingly.

Figure 1: (a) Voronoi diagram for a given greedy braid, (b) VD^{-2} , (c) paths from s_6 to c_6^{-2} through p_1 and from s_7 to c_7^{-2} through p_2

3 Query

Problem 1. Given braid \mathcal{B} , the lower right corners $c_0^{-h}, \ldots, c_{m+n}^{-h}$ of the Voronoi cells of VD^{-h} , point p and a number i, check whether $p \in f_i^{-h}$, p is to the left or to the right from f_i^{-h} .

Lemma 2. The following are equivalent:

- 1) Point p belongs to the Voronoi cell f_i^{-h} of VD^{-h} ;
- 2) There is a path from s_i to c_i^{-h} passing through p that crosses no strand of \mathcal{B} twice.

The path can utilize diagonal edges, see Figure 1, (c): $p_1 \in f_6^{-2}$ (green), $p_2 \in f_7^{-2}$ (yellow).

3.1 Entanglement of triples oracle

Definition 2. We call two triples of numbers (a_1, a_2, a_3) , (b_1, b_2, b_3) entangled if

$$a_1 < b_1, \ a_2 > b_2, \ a_3 < b_3 \quad \text{or} \quad a_1 > b_1, \ a_2 < b_2, \ a_3 > b_3$$

Theorem 3. There exists a data structure that can store a set of n triples

$$S = \{(a_1^1, a_2^1, a_3^1), \dots, (a_1^n, a_2^n, a_3^n)\}$$

and, given a query triple $q = (q_1, q_2, q_3)$, output in time $\tilde{O}(1)$ the number of triples in S that are entangled with q.

Proof. Store the set S in a 3-dimensional range tree [cite!]. A d-dimensional range tree is a data structure that stores several points in \mathbb{R}^d and effectively reports all the stored points that are inside a d-dimensional rectangular parallelepiped defined by its lower and higher coordinates on each axis.

Figure 2: (a) A triple (a_1^i, a_2^i, a_3^i) entangled with (q_1, q_2, q_3) , (b) a range query that finds this triple

An entanglement query can then be interpreted as two 3-dimensional range queries, as shown in Figure 2:

- 1) $a_1 < q_1$, $a_2 > q_2$, $a_3 < q_3$ is a 3-dimensional parallelepiped to the left, further and lower than the point (q_1, q_2, q_3) (call this *left entanglement query*);
- 2) $a_1 > q_1$, $a_2 < q_2$, $a_3 > q_3$ is a 3-dimensional parallelepiped to the right, closer and higher than the point (q_1, q_2, q_3) (call this right entanglement query).

Remark 4. The construction of a 3-dimensional range tree takes $O(n \log^2 n)$ time, and a range query takes $O(\log n)$ time.

3.2 Entanglement of strands oracle

Theorem 5. There exists a data structure that can store a reduced embedded braid \mathcal{B} and, given an arbitrary point triple g = (0, r), h = (k, s), $f = (\ell, t)$, decide in time $\tilde{O}(1)$ if there exists a path from g to f through h that is not double-crossed by any strand.

Proof. To build the data structure, first partition the grid of height n hierarchically into O(n) canonical strips located in a binary tree: each canonical strip contains two canonical strips of half its height.

For each canonical strip (a, b) build an entanglement of triples oracle (Theorem 3): for each strand s store the triple (s_0, s_a, s_b) of its positions at the ground of the grid, the top of the canonical strip, and the bottom of the canonical strip respectively.

In total there are O(n) entanglement of triples oracles, the construction of them takes $O(n^2 \log^2 n)$ time.

Figure 3: The decomposition of the strip (k, ℓ) into canonical strips; boundaries (L_i, R_i) of entanglement-free regions

To answer the query, decompose the strip (k, ℓ) into canonical strips c_1, c_2, \ldots, c_v , the indexation is from the bottom of the strip upwards (see Figure 3). At each boundary of neighboring canonical strips c_i , c_{i+1} we maintain an *entanglement-free region* $[L_i, R_i]$ which is the region where the not-double-crossed path can pass through.

It is obvious that at least one such path from g to f exists, therefore each entanglement-free region is nonempty. Naturally, $L_0 = R_0 = f$. Points L_{i+1}, R_{i+1} are constructed from L_i, R_i recursively:

- 1) L_{i+1} is the leftmost point such that any strand that is to the left of g and L_i is also to the left of L_{i+1} ,
- 2) R_{i+1} is the rightmost point such that any strand that is to the right of g and R_i is also to the right of R_{i+1} .

Given L_i , we find L_{i+1} using binary search in the boundary of c_{i+1}, c_{i+2} : if for a point p the left entanglement query for (g, p, L_i) returns some strands, descend to the right, otherwise descend to the left. Given R_i , we find R_{i+1} in a symmetric way.

Lemma 6. The recursive construction of L_i , R_i is correct; the following are equivalent:

- a) a point p is to the left of L_i ,
- b) there exists a strand that is to the left of g and f, but to the right of p.

Proof. • b) \Rightarrow a): Assume that p is to the right of (or equal to) L_i , see Figure 4a. The strand σ , which is to the left of g and f, but to the right of p, is also to the right of L_i ; this contradicts the construction of L_i .

Figure 4: Proof of Lemma 6

• a) \Rightarrow b): Proof by induction in i; assume there are no strands that are to the left of g and f, but to the right of p. There is however a strand σ_1 between L_i and p that made us descend to the right when performing the binary search for L_i ; σ_1 is to the left of L_{i-1} , see Figure 4b. The strand σ_1 must be to the right of f, since it is to the left of g and to the right of p.

Take a point p' immediately to the left of σ_1 at the level of L_{i-1} . By the induction hypothesis, there exists a strand that is to the left of g and f, but to the right of p', call it σ_2 . The strand σ_2 must cross σ_1 below p', since σ_2 is to the left of f, and p' is the immediate left neighbor of σ_1 .

Since the braid is reduced, σ_2 is to the right of p; this contradicts the assumption for p.

Lemma 6 implies that there exists a path from g to f through h that is not double-crossed by any strand if and only if h is between L_v and R_v . Moreover, if h is outside the entanglement-free region, we can conclude whether there is a right or left entanglement of the g-to-h-to-f path with a strand of \mathcal{B} .

Remark 7. The strip (k, ℓ) is decomposed into $O(\log n)$ canonical strips, therefore there is as much entanglement-free regions to be calculated. For each region (L_i, R_i) two binary searches with $O(\log n)$ probes are done. Each probe calls a range query that takes $O(\log n)$ time. In total, the entanglement of strands query takes $O(\log^3 n)$ time.