

DTU ROAST

What is DTU ROAST?

- Målet
 - Bridgestone World Solar
 Challenge (BWSC) 2023
- Konkurrencen
 - 3000+ km
 - Fra Darwin Til Adelaide i Australien
 - Elektriske Biler drevet af solceller

Projekt idéer

- Første Prototype
 - Entertainment system
 - Højtaler, GPS, Radio
 - Cruise controller via CAN bus
 - Kommunikation
 - Speedometer
 - Undersøg aflæsning af motor hastighed fra motor driver
- Anden Prototype
 - CAN Bus Improvement
 - Implementering af rat
 - Implementering af interface til co-driver
 - Telemetri
 - Vælg passende antenne
 - Drive-by-wire
 - Forøg sikkerheden I implementeringen
 - Lys til bilen
 - Design software til styring af lys og viderudvikling af hardware

Videreudvikling af motor hastigheds reference og Drive-by-wire

- En speeder pedal skal vælges. Enten den der blev brugt i det sidste projekt eller en anden skal købes.
- Sikkerheden skal forbedres
- En mikrocontroller skal vælges
 - Der skal enten være samme antal ADC i mikrocontrolleren som målinger til pedal eller skal der vælges en ADC chip
 - PCB til speeder siden skal designes og bygges
 - PCB til motor driver skal designes og bygges
 - Der skal foretages filtrering af hastighedsreferencen så motoren ikke får pludselige ændringer i referencen

Cruise controller

- Et cruise controller interface skal vælges
- En mikrocontroller skal vælges
 - Der skal enten være samme antal ADC i mikrocontrolleren som målinger til pedal eller skal der vælges en ADC chip
 - Cruise controller input skal overrules af input fra pedaler (bremse og speeder) via CAN.
 - PCB til speeder siden skal designes og bygges
 - PCB til motor driver skal designes og bygges
 - Der skal foretages filtrering af hastighedsreferencen så motoren ikke får pludselige ændringer i referencen
- Samme projekt som for speeder pedal men istedet med fart pilot

Telemetri

- Trådløs transceiver
- Overvågning og lagring af CAN-bussen

Motoren

- Undersøg nuværende status for motor og evt køb af en ny
- Foreslå mulige forbedringer for motoren
- Implementer forbedringerne

Implementering af rat

- Undersøg nuværende status for rattet
- Foreslå mulige forbedringer for rattet
- Implementer forbedringerne

Implementering af interface til co-driver

- Design en GUI som kan vise relevant CAN Data
- Implementere design på Raspberry Pi

Kontaktinformation og praktisk

Anbefalet vejledere

- Jens Christian Andersen (<u>jca@elektro.dtu.dk</u>)
- Søren Hansen (<u>sh@elektro.dtu.dk</u>)

Hold optag

Vi har kapacitet til omkring 3 hold af 2 til 4 personer

Vores kontaktinformation

Louise: <u>sternho@student.dtu.dk</u>

Lukas: <u>s173919@student.dtu.dk</u>

Sebastian: <u>s173931@student.dtu.dk</u>

Christian: <u>s163924@student.dtu.dk</u>