Recovering True PDF Likelihoods By Reweighting

Ali Al Kadhim & Harrison B. Prosper

Data are assumed to be normally-distributed

$$P(\mathbf{x}|\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}[\mathbf{x} - g(\boldsymbol{\theta})]^T \boldsymbol{\Sigma}^{-1} [\mathbf{x} - \mathbf{g}(\boldsymbol{\theta})]\right\}$$

And the likelihood is given by

$$L(\boldsymbol{\theta}) = P(\boldsymbol{D}|\boldsymbol{\theta})$$

where D are the actual observations.

- The best-fit values are found by minimizing $-2 \log L(\theta) = \chi^2$.
- xFitter finds $\widehat{\theta}$ (best-fit parameter values) and returns $\widehat{\Sigma}$ by solving $\Delta \chi^2 = 1$.
- Although the data are assumed to be normally-distributed, the likelihood function may not be a multivariate gaussian.
- One of the goals is to map out the true shape of $L(\theta)$.

Procedure

With default HERAPDF parameterization: $xf(x, \mu_0^2) = Ax^B(1-x)^C[1+Dx+Ex^2] - A'x^{B'}(1-x)^{C'}$

We Generate N sets of parameter values sets according to $\theta_i \sim \mathcal{N}(\mu_i = \widehat{\theta}_i, \Sigma_i = \widehat{\Sigma}_i)$ Hence we approximate the likelihood as $L'(\theta) = \mathcal{N}(\mu_i = \widehat{\theta}_i, \Sigma_i = \widehat{\Sigma}_i)$.

Multivariate Gaussian Approximation to Likelihood

- So we approximate the likelihood of the parameters as a Multivariate Gaussian from the best fit values.
- $L(\theta)$: true likelihood, $L'(\theta)$: approximate likelihood.

$$L'(\boldsymbol{\theta}) = \mathcal{N} \Big(\boldsymbol{\theta}; \widehat{\boldsymbol{\theta}}, \widehat{\boldsymbol{\Sigma}} \Big) = \frac{1}{\sqrt{(2\pi)^d \big| \widehat{\boldsymbol{\Sigma}} \big|}} \exp \Big\{ -\frac{1}{2} \Big[\boldsymbol{\theta}_i - \widehat{\boldsymbol{\theta}}_i \Big]^T \widehat{\boldsymbol{\Sigma}}^{-1} \Big[\boldsymbol{\theta}_i - \widehat{\boldsymbol{\theta}}_i \Big] \Big\}$$
Data: HERA I & II + ZEUS combined

HERAPDF parameterization :

$$xf(x,\mu_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2) - A'x^{B'}(1-x)^{C'}$$

Parameter	xFitter Name	Starting Value	Step Size	Best-Fit Value	Approximate Error
B_g	Bg	-0.061953	0.027133	-00.61856	0.25134E-01
C_g	Cg	5.562367	0.318464	5.5593	0.10838
A_g'	Aprig	0.166118	0.028009	0.16618	0.34574E-01
B_g'	Bprig	-0.383100	0.009784	-0.38300	0.76253E-02
B_{uv}	Buv	0.810476	0.016017	0.81056	0.53604E-02
C_{u_v}	Cuv	4.823512	0.063844	4.8239	0.29342E-01
E_{u_v}	Euv	9.921366	0.835891	9.9226	0.27481
B_{dv}	Bdv	1.029995	0.061123	1.0301	0.23240E-01
C_{d_v}	Cdv	4.846279	0.295439	4.8456	0.12584
$C_{ar{U}}$	CUbar	7.059694	0.809144	7.0603	0.22306
$D_{ar{U}}$	DUbar	1.548098	1.096540	1.5439	0.31340
$A_{ar{D}}$	ADbar	0.268798	0.008020	0.26877	0.39536E-02
$B_{ar{D}}$	BDbar	-0.127297	0.003628	-0.12732	0.17428E-02
$C_{ar{D}}$	CDbar	9.586246	1.448861	9.5810	0.60834

Could be more complicated for different flavors

Reweighting

 In order to correct the multivariate gaussian so that we have the true likelihood, we then weight each parameter point by the weight:

$$w_k^i = \frac{L(\boldsymbol{\theta})}{L'(\boldsymbol{\theta})}$$

- If the weights alter the shape of the distributions in any way, we have nongaussian distributions.
- In the limit of infinite number of sampled points, the weights will recover the true shapes of the likelihoods.
- We could explore different forms of $L'(\theta)$ (see backup.)
- Clearly, if $L(\theta) \propto L'(\theta)$, then all $w_k = \text{const.}$ and the distributions remain unchanged. If on the other hand w_k vary, then distribution shapes will potentially be altered.
- The weighted distributions are what we expect to arrive at if we could do a Markov chain sampling of $L(\theta)$.

One dataset Reweighted Distributions

- With one dataset, Gaussian approximations are close to reweighted likelihoods.
- Data: HERA I, II & ZEUS

$$w_k^i > \overline{w_k^i} - 4 \times \sigma^i$$

$$w_k^i < \overline{w_k^i} + 4 \times \sigma^i$$

4,000 data points
(parameter sets)
HERAPDF
parameterization

Multiple Data sets Reweighted Distributions

- With multiple data sets (global fit), we see bigger discrepancies between the Gaussian approximation and the reweighted likelihoods. Reason: data sets are discrepant among themselves.
- Data: HERA I+II & ZEUS + CDF W asymmetry + Do Run II cone jets

4,000 data points (parameter sets)
HERAPDF parameterization

Next Steps and Suggestion for xFitter

- Once we have a full mapping of $L(\theta)$ using multiple (all) the data sets, we construct Bayesian credible intervals for θ without using $\Delta \chi^2 = 1$.
- We really need more points and more data sets. This is computationally expensive as we are doing a whole fit in xFitter to get the χ^2 value.

Add xFitter functionality to allow for calculation of the unminimized χ^2 given a parameter set.

- Calculate Bayesian Credible intervals. Hypothesis: the effective size of the 68% intervals is much larger than the one we would obtain if we simply used a gaussian approximation.
- Hypothesis: the ratio of these two sizes would be the tolerance that is often used.

$$\frac{C.L._{Reweighted}^{68\%}}{C.L._{Gaussian}^{68\%}} \approx T$$

Backup

- All code is available at: https://github.com/AliAlkadhim/NNPDF_Uncertainty/
- If we approximate $L'(\theta) = \mathcal{N}(\mathbf{D}; \ \widehat{\theta_i}, \widehat{\Sigma_i})$, then

$$w_k = \frac{L(\boldsymbol{\theta})}{L'(\boldsymbol{\theta})} = \frac{N_{samples}}{\sum_{k=1}^{N_{samples}} w_k} \frac{e^{-\frac{1}{2}\chi_k^2}}{\mathcal{N}(\boldsymbol{D}; \ \widehat{\boldsymbol{\theta_k}}, \widehat{\boldsymbol{\Sigma_k}})_{,}} = \begin{cases} 1, \text{Gauss. Approx. holds for L}(\boldsymbol{\theta}) \\ \text{else,} \qquad L(\boldsymbol{\theta}) \text{ is non - Gauss.} \end{cases}$$

• If the likelihood for heta is multivariate normal, the likelihood of a single observation is of the form

•
$$L(\boldsymbol{\theta}|\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^D|\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}[\mathbf{x} - g(\boldsymbol{\theta})]^T \boldsymbol{\Sigma}^{-1}[\mathbf{x} - \mathbf{g}(\boldsymbol{\theta})]\right\} = \frac{1}{\sqrt{(2\pi)^D|\boldsymbol{\Sigma}|}} \exp\left\{-\frac{1}{2}\chi^2\right\} \longrightarrow \log L(\boldsymbol{\theta}) = -\frac{1}{2}\chi^2$$

- 68% confidence intervals are obtained by finding points where $\Delta \chi^2 = 1$, i.e.
- $-2\Delta \log[L] = -2[\log[L(\theta_{\pm}|x)] \log[L(\widehat{\theta}|x)] = 1$ \longrightarrow $(\widehat{\theta} \theta_{-}, \widehat{\theta} + \theta_{+})$ but this assumes normal sampling of data.
- The tolerance $T = \sqrt{\Delta \chi_{global}^2}$, ideally T=1, but this assumes ideal gaussian errors & well defined theory.
 - In global fits, T>1 to account for discrepant data sets (e.g. see arxiv: 1410.8849).

All parameter Distributions

One Dataset

Multiple Datasets

