Aula 6: Hennessy-Milner Logic

Interaction & Concurrency Course Unit: Reactive Systems Module
April 26, 2023

Recommended reading

Chapter 5 of Aceto et al. 2007.

Concepts introduced and discussed:

- propositional modal logic: sintax and Kripke semantics,
- model, frame and valuation,
- satisfaction relation for a model and a world,
- formula satisfiable in a model,
- formula globally satisfied in a model,
- formula valid,
- modal logics over LTS,
- example: a process logic Hennessy-Milner logic (HML),
- sintax and semantics of HML,
- examples of formulas satisfied in a state of a LTS,
- examples of LTS that satisfy simultaneously a set of formulas, in a state.

Some relevant definitions and examples (from Aceto et al. 2007):

- def. 5.1 (syntax of HML);
- intuitive semantics (pp. 103);
- semantics of HML: definition of satisfiability relation relating processes to formulas by structural induction on formulas (pp. 108).

Hennessy-Milner Logic

Syntax of the Formulae $(a \in Act)$

 $F,G ::= tt \mid ff \mid F \wedge G \mid F \vee G \mid \langle a \rangle F \mid [a]F$

- [] → necessidade
 - [a]F → todos os sucessores a devem satisfazer F
- <> → possibilidade
 - (a)F → existe pelo menos um sucessor a que satisfaz F

Semântica Denotacional

For a formula F let $\llbracket F \rrbracket \subseteq Proc$ contain all states that satisfy F.

Denotational Semantics: $\llbracket _ \rrbracket$: Formulae $\longrightarrow 2^{Proc}$

- $\llbracket tt \rrbracket = Proc \text{ and } \llbracket ff \rrbracket = \emptyset$
- $[F \lor G] = [F] \cup [G]$
- $[F \land G] = [F] \cap [G]$
- $\bullet \ \llbracket \langle a \rangle F \rrbracket = \langle \cdot a \cdot \rangle \llbracket F \rrbracket$
- $[[a]F] = [\cdot a \cdot][F]$

where $\langle \cdot a \cdot \rangle, [\cdot a \cdot] : 2^{(Proc)} \rightarrow 2^{(Proc)}$ are defined by

$$\langle \cdot a \cdot \rangle S = \{ p \in Proc \mid \exists p'. \ p \xrightarrow{a} p' \text{ and } p' \in S \}$$

$$[\cdot a \cdot] S = \{ p \in Proc \mid \forall p'. \ p \xrightarrow{a} p' \implies p' \in S \}.$$

 \bigcirc $<\cdot a\cdot>S$ = estados a partir dos quais é possível chegar a S

 $[\cdot a \cdot]S$ = todos os estados de onde não parte nenhuma transição com a + todas as transições por a de um dado estado têm de chegar a um estado que esteja em S

conjunt de chegada

Exercises suggested (from Aceto et al. 2007):

- Exercise 5.3.1;
 Exercise 5.4;
 Exercise 5.5.

(to be completed)

References

Aceto, Luca et al. (2007). Reactive Systems - Modelling, Specification and Verification. Cambridge University Press.

Dê fórmulas que expressam os seguintes requisitos de linguagem natural:

- ↑ o processo está disposto a beber café e chá agora;
- 2. o processo está disposto a beber café, mas não chá agora;
- 3 · o processo pode sempre beber chá imediatamente após ter bebido dois cafés seguidos.
 - 3. O que as fórmulas (a)ff e [a]tt expressam?

1 cafés chás true

2. < caté > true «chá > faise

3. c caté > c caté > c crá > toue

COSFF - Existe um estado com nenhuma tzansiaos por a COST++ - Hodas as tzansiaoes de um estado SOS por a

 $<\cdot a\cdot>S$ = estados a partir dos quais é possível chegar a S

 $[\cdot a \cdot]S$ = todos os estados de onde não parte nenhuma transição com a + todas as transições por a de um dado estado têm de chegar a um estado que esteja em S


```
(0) S = cost+
Ql S = (a) ?200 = 3 5,51,52,53, Suy
(28 S = 15, 51, 52, 53, 54)
++ (d) = 2 (d)
68 SE CB> 720C
CXS $ hony por 5 & hony
(C) S = (O) + (C)
(x S = 202)
GS & P pg S & P
(a) 2 = CPJ ff
(2 S = (b) 0
(x 5 = 3 5, 52, 53, 54 ) 3 5
(e) 5 = (0) <b> t+
Q S = [a] < b> ? 200 C
(x S = (0) } Sn 7
MS # Ø pg S # P
(+) S = CO3 CD3++
(28 8 = 203 265 PROC
₩ S = CO> 7574 (>1 5 = 759 35
```

(9)5 = (0) (0) (0) + (0) (3)5 = (0) (0) (0) (0) (3)5 = (0) (0) (0) + (0) (3)5 = (0) (0) (0) + (0) (3)5 = (0) (0) (0) + (0) (3)5 = (0) (0) (0) + (0) (3)5 = (0) (0) (0) + (0) (3)5 = (0) + (0) (3)5 = (0)5 + (0) (3)5 = (0)5 + (0) (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5 (3)5 = (0)5 + (0)5

Ø S = 35,53, Sub → 5

 $(\lambda) 2 = (\alpha) (\alpha) + (\alpha) + (\alpha)$

(48 + (0) ((0) ? 200 (0) ? 200)

(x) S = (a) (Proc n 2 5 4)

M S E <0> 3579

S = 754 → S

secujatica denotaciana)

[77 [6) [0)

Q C. O. J C. D. J =

= C. a 7 h s, sz, sz, su Y

= 7 53,54,5,52,52

Exercise 5.4 Consider an everlasting clock whose behaviour is defined thus:	
$Clock \stackrel{def}{=} tick.Clock$.	
Prove that the process Clock satisfies the formula	
$[tick](\langle tick angle tt \wedge [tock]ff)$.	
Clock & tick	
Clock = C +ick J (< +ick > C +) Λ (b)ck J +(Γ) (Λ Clock = Γ +ick J (< +ick > C + Γ + Γ) Γ +	
(3) Clock = [Kck] (Clock b U J Clock b) Susstitute	7
$(> C)OCK = JCIOCK J \to CIOCK$	
Show also that, for each $n \geq 0$, the process Clock satisfies the formula	
$\underbrace{\langle tick \rangle \cdots \langle tick \rangle}_{n\text{-times}} tt$.	
$Clock \models c + ich > \dots < + ich > + +$	
(>) Clock = < tick> < tick> Proc	
(M-1)x	
\bowtie	
GICLOCK = PROC > CLOCK	

Exercise 5.5 (Mandatory) Find a formula in \mathcal{M} that is satisfied by $a.b.\mathbf{0} + a.c.\mathbf{0}$, but not by a.(b.0 + c.0). Find a formula in \mathcal{M} that is satisfied by $a.(b.c.\mathbf{0} + b.d.\mathbf{0})$, but not by $a.b.c.\mathbf{0} +$ a.b.d.0. JE a.b. Nil + a.c. Nil # + S ≠ 0. (b. Nil + c. Nil) = + solot [d] [a]: Dlunget + F (Jin . b . d + Jin . D . d) = 2 $a \cdot b \cdot c \cdot nil + a \cdot b \cdot d \cdot nil = +$ Formula: (a) < b> < c> true

FÓRMULA QUE OS distingue: <a>> (5) <c> toue

 $\lor \vdash \vdash$

e se tivessemos:

== (sust (a) toue 1 = ==

S F F T F F V F F

> Outza explicação F plua

Exemplo:

E possivel sim, por chegar a si e s e t

[·a.]) sn, tny = h sn, s2, t, tny

C.D. > 251, try = 7 +17

 $[\cdot b \cdot]$

paos os estados de ade con conjunto ?... à

Exercicio:

7 5 (Ca) (b) (ca) 1 (p)

(b) [cas (cas + rue , cb > + rue)]

(C) [(O) [O) FOISE]

(d) [(a) (ca) true v cb> true)]

(a) (·a·) (b) te]) ~

([7]] C.O.J) C.O.J =

(D [. d .] [. D .] =

= (.a.) 18,52,53, 54 / DOOS as estados

= 352,53,54,50%

(P) [< a> (< a> + sue v + sue)]

= c.a.> (c.a.> /s, s, sz, sz, sa, su) (c.b.> toue)

= < . a. > (30, Sn, Sz, S3, Suy n 5 sny)

= < . a. > 7517

= 454

(c) [(a) [a) [b) faise] $((\phi C \cdot \phi \cdot J)C \cdot \phi \cdot J) C \cdot \phi \cdot J =$ = [.a.] ([.a.]) [.a.]) = = (.a.) } sn, sz, sz, su) TOdas as trans: = 1 51, 52, 54 X 5 a sz mas si € 54 =