Constrained Optimization in Machine Learning

Takeaways

- Develop the understanding of the Convex Programming Problems.
- Aware with the constrained optimization methods used in the solution of Support Vector Machine.
- Develop the detailed understanding of the Support Vector Machine.
- Understand the dual and primal relationship in context of Support Vector Machine problem.
- Ability to use the Support Vector Machine in different domain of applications.

Load Defaulter Dataset

Index	Employed	Bank Balance (in thousands rupees)	Annual Salary (in million rupees)	Loan Amount (in thousands rupees)	Defaulted
1	1	0.4721	0.1358	0.9448	-1
2	0	0.8412	0.3169	0.9972	-1
3	0	0.3687	0.1249	0.8539	-1
4	0	0.2547	0.8416	1.1406	1
5	1	0.3111	0.7502	1.014	1

A random classifier

A random Classifier

$$\beta_1 x_1 + \beta_2 x_2 + \beta_0 = 0$$

What is Problem ??

More Susceptible to misclassification

Margin of random classifier

Maximal Margin Classifier

Width of margin

Checking the SVM

More Susceptible to misclassification

SVM margin

Hyperplane

$$\hat{\omega}^{\mathsf{T}} \mathbf{x} = \mathbf{c}$$

$$\omega^{T} \times -c = 0$$

$$\omega^{T} \times -c = 0$$

$$\omega^{T} \times -c = 0$$

- Hyperplane:- A set of points in \mathbb{R}^n satisfying $w^Tx + b = 0$, $w \in Rn$, $b \in R^n$
- For n = 2, it is a line R^2 .
- For n = 3, it is a plane in R^3 .

$$\hat{\omega}^T x = C$$

$$\widehat{w}^T \mathbf{x} = \frac{-b}{||w||}$$
 , where $\widehat{w} = \frac{w}{||w||}$

Hyperplane, Projection and Distances

Hyperplane, Projection and Distances
$$\hat{\omega}^{T} \times t = 0$$

$$wx+b$$
 $wx-c$
 $wx-c$
 $wx-c$
 $wx-c$

Dr. Pritam Anand, DA-IICT, Gandhinagar

$$\frac{\omega^{T}_{X} - C||\omega||}{||\omega||} = \frac{\omega^{T}_{X+b}}{||\omega||}$$

19-11-2024

Margin in SVM

$$(\omega^{T}x^{\dagger}+b)-(\omega^{T}x^{T}+b)=\frac{1-(1)}{11\omega_{1}}=\frac{2}{11\omega_{1}}$$

Width of the margin:-

$$\frac{(w^T x^{+} + b) - (w^T x^{-} + b)}{||w||}$$

$$= \frac{2}{||w||}$$

19-11-2024

Need to maximize the width of the $^{1.5}$ margin but, subject to certain constraints $^{1.4}$

$$\max_{\substack{(w,b)\\ (w,b)}} \frac{2}{||w||}$$
subject to,
$$(w^Tx_i+b) \geq 1 \text{ , if } y_i = 1.$$

$$(w^Tx_i+b) \leq -1 \text{ ,if } y_i = -1.$$

is equivalent to

 $\max_{(w,b)}$ subject to,

$$y_i (w^T x_i + b) \ge 1$$
, $i = 1, 2, \dots l$

 $y_i = 1$ $y_i = -1$ 1.3 1.2 1.1 0.9 x +0.8 χ^{-} 0.7 0.2 0.3 0.7 0.8 0.9 $w^T x + b = 0$

 $w^T x + b = 1$

18

$$-\omega^{T}x_{1}+b\leq -1$$

1.4

$$-\omega^{T}x_{1}+b\leq-1$$

$$Dr.Pr(am Amand, DA-II(T,Uah)dhiXagar+b)>,-1 if y: -1$$

 $w^T x + b = -1$

19-11-2024

$$Max = \frac{2}{11011}$$
 $Min = \frac{11011^2}{2}$

- $\max_{(w,b)} \frac{2}{||w||}$ subject to, $y_i (w^T x_i + b) \ge 1$, i = 1,2, ... l.
- $\min_{\substack{(w,b) \\ (w,b)}} \frac{||w||^2}{2}$ subject to, $y_i \ (w^T x_i + b) \ge 1 \ , i = 1,2, ... l.$

- $\max_{(w,b)} \frac{2}{||w||}$ subject to, $y_i (w^T x_i + b) \ge 1$, i = 1,2, ... l.
- $\min_{\substack{(w,b) \\ (w,b)}} \frac{||w||^2}{2}$ subject to, $y_i \ (w^T x_i + b) \ge 1 \ , i = 1,2, \dots l.$

Hard-margin SVM problem

What to do for this

Soft-margin SVM

Soft-margin SVM

Relax the constraints by introducing slack variable ξ .

$$\min_{\substack{(w,b) \\ (w,b)}} \frac{\frac{1}{2}w^Tw}{+ C \sum_{i=1}^l \xi_i}$$
 subject to,
$$y_i \ (w^Tx_i + b) \ge 1 - \xi_i,$$

$$\xi_i \ge 0, \qquad i = 1,2, \dots l.$$

where C > 0 is the user defined parameter

Soft -margin SVM problem

Trading-off the training error and width of margin

Soft-margin SVM optimization problem

$$\min_{\substack{(w,b) \\ \text{subject to,} \\ \xi_i \geq 0, \quad i = 1,2, \dots l.}} \frac{\frac{1}{2}w^Tw + C\sum_{i=1}^{l} \xi_i}{\sum_{i=1}^{l} \xi_i}$$

where C > 0 is the user defined parameter.

• Limitation :- The number of constraint becomes huge for large-scale datasets

 $\frac{1}{2}\omega^{T}\omega + C \leq Max(1-y_{i}(\omega^{T}x_{i}+b), O)$ if yilwxitb) <1 Otherus

Convex Sets

• $C \subseteq R^n$ is convex

if $\lambda x + (1 - \lambda)y \in C$ for any $x, y \in C$ and $0 \le \lambda \le 1$.

that is, a set is convex if the line connecting any two points in the set is entirely inside the set.

Convex Functions

• $f: \mathbb{R}^n \to \mathbb{R}$ is convex

if dom (f) (the domain of f) is a convex set,

and if $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ for any $x, y \in dom(f)$ and $0 \le \lambda \le 1$.

that is, the line connecting any two points on the graph of the function stays above the graph.

30

1. Nick Henderson et al., Convex set functions and Problems , 2019.

A convex programming problem is an optimization problem in the form

$$\min_{x} f_{0}(x) \rightarrow \text{Convex func } f(x)$$

$$\text{subject to },$$

$$f_{i}(x) \leq 0, i = 1, 2, ..., m,$$

$$h_{i}(x) = 0, i = 1, 2, ..., p,$$

where $f_0(x)$ and $f_i(x)$, $i = 1, \cdots$, m are continuous convex functions of R^n , and $h_i(x)$, $i = 1, \cdots$, p are linear functions.

• A Convex Programming Problem (CPP) is an optimization problem in the form

$$\min_{x} f_0(x)$$
subject to,
$$f_i(x) \leq 0, i = 1, 2, \dots, m,$$

$$h_i(x) = 0, i = 1, 2, \dots, p,$$

where $f_0(x)$ and $f_i(x)$, $i = 1, \dots, m$ are continuous convex functions of R^n , and $h_i(x)$, $i = 1, \dots, p$ are linear functions.

• A Convex Programming Problem (CPP) is an optimization problem in the form

$$\min_{x} f_0(x)$$
subject to,
$$f_i(x) \leq 0, i = 1, 2, \dots, m,$$

$$h_i(x) = 0, i = 1, 2, \dots, p,$$

$$(1)$$

where $f_0(x)$ and $f_i(x)$, $i = 1, \dots, m$ are continuous convex functions of R^n , and $h_i(x)$, $i = 1, \dots, p$ are linear functions.

• If x^* is its local solution of CPP (1), then x^* is also its global solution.

$$D = \begin{cases} \chi : f_i(x) < 0, i = 1, 2... \\ q = h_i(x) = 0 \end{cases} = 1, 2...$$

A Convex Programming Problem (CPP) is an optimization problem in the form

$$\min_{x} f_0(x)$$
subject to,
$$f_i(x) \leq 0, i = 1, 2, \dots m,$$

$$h_i(x) = 0, i = 1, 2, \dots p,$$

$$\text{where } f_0(x) \text{ and } f_i(x), i = 1, \dots, m \text{ are continuous convex functions of } \mathbb{R}^n, \text{ and } h_i(x), i = 1, \dots, p \text{ are linear functions.}$$

Let p* is the optimal solution of CPP (1), i,e., p* = $\inf(f_0(x) | x \in D)$, where, D= { $x | f(x_i) \le 0$, i = 1, 2, ..., m, $h_i(x) = 0$, i = 1, 2, ..., p}

Max $(Inf L(x,\lambda,v))$ $Inf L(x,\lambda,v)$ (x,λ,v) (x,λ,v) Lagrangian Function (x,λ,v) (x,λ,v)

The Lagragian function is given as

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x),$$

[2,5]

where $\lambda = (\lambda_{1,} \lambda_{2,} \dots, \lambda_{m})$ and $\nu = (\nu_{1,} \nu_{2,} \dots, \nu_{p})$ are the Lagrangian multipliers.

Lagrangian Function

The Lagragian function is given as

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x),$$

where λ = $(\lambda_{1}, \lambda_{2}, \dots, \lambda_{m})$ and ν = $(\nu_{1}, \nu_{2}, \dots, \nu_{p})$ are the Lagrangian multipliers.

Obviously, when
$$x \in D, \lambda \ge 0$$
 , we have $L(x,\lambda,\nu) \le f_0(x)$.

Thus,
$$\lim_{x \in Rn} L(x, \lambda, \nu) \le \lim_{x \in D} L(x, \lambda, \nu) \le \lim_{x \in D} f_0(x) = p *$$
.

Lagrangian dual function

$$\inf_{x \in Rn} L(x, \lambda, \nu) \le \inf_{x \in D} L(x, \lambda, \nu) \le \inf_{x \in D} f_0(x) = p * .$$
Consider the dual function

$$g(\lambda, \nu) = \inf_{x \in Rn} L(x, \lambda, \nu)$$
, then $g(\lambda, \nu) \le p^*$

- The above inequality indicates that, for any $\lambda \ge 0$, $g(\lambda, v)$ is a lower bound of p^* .
- Among these lower bounds, finding the best one leads to the optimization problem

$$\max_{x \in Rn} L(x, \lambda, \nu),$$
subject to, $\lambda \ge 0$

(2)

Weak Duality

Let d* is solution of the dual problem

$$\max (g(\lambda, \nu) = \inf_{x \in Rn} L(x, \lambda, \nu)),$$

subject to, $\lambda \ge 0$

Let p* is the optimal solution of the CPP(1)

$$\min_{x} f_0(x)$$
subject to,
$$f_i(x) \le 0, i = 1, 2, \dots, m,$$

$$h_i(x) = 0, i = 1, 2, \dots, p,$$

then $d^* \le p^*$

(2)

Slater's condition

The CPP(1)

$$\min_{x} f_0(x)$$
subject to,
$$f_i(x) \leq 0, i = 1, 2, \dots, m,$$

$$h_i(x) = 0, i = 1, 2, \dots, p,$$

is said to satisfy the Slater's condition if there exists a feasible point x such that

$$f_{i(x)} < 0, i = 1, 2, m$$
 and $h_i(x) = 0, i = 1, 2, p$.

Strong Duality Theorem

Let p* is the optimal value of the CPP (1) satisfying the Slater's condition and d* is the solution
of the dual problem

$$\max (g(\lambda, \nu) = \inf_{x \in Rn} L(x, \lambda, \nu)),$$

subject to, $\lambda \ge 0$

then $p^* = d^*$.

• Furthermore, if p* is attained, i.e. there exists a solution x* to the primal CPP(1), then d* is also attained, i.e. there exists a global solution (λ^*, ν^*) to the dual problem such that p* = $f_0(x^*)$ = $g(\lambda^*, \nu^*) = d^* < \infty$.

KKT conditions

For the given CPP (1), the Point x* is said to satisfy the Karush-Kuhn-Tucker(KKT) conditions, if there exist the multipliers $\lambda^* = (\lambda_1^*, \lambda_2^*, \dots, \lambda_m^*)$ and $\nu = (\nu_1^*, \nu_2^*, \dots, \nu_p^*)$ corresponding to constraints

$$f_i(x) \le 0, i = 1, 2, ..., m,$$

 $h_i(x) = 0, i = 1, 2, ..., p,$

respectively, such that the Lagrangian function

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

satisfies

Min f(x)Subject to $f(x) \leq 0, f=1,2...$ $h_3(x)=0, j=1,2...$

KKT conditions

$$f_{i}(x^{*}) \leq 0, i = 1, 2, \dots m,$$

$$h_{i}(x^{*}) = 0, i = 1, 2, \dots p,$$

$$\lambda_{i}^{*} \geq 0, i = 1, 2, \dots m,$$

$$\lambda_{i}^{*} f_{i}(x^{*}) = 0$$

$$\nabla_{x}L(x,\lambda,v) = \nabla f_{0}(x) + \sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x) + \sum_{i=1}^{p} \nu_{i} \nabla h_{i}(x) = 0$$

- If x^* is the solution of the CPP(1) satisfying the Slater condition , then it must satisfy the KKT condition .
- If x* satisfies the KKT condition, then it is the solution of the CPP(1).

Back to SVM Optimization Problem

SVM Optimization problem

SVM primal problem

 $\min_{\substack{(w,b) \in \mathbb{N}^2 \\ \text{subject to,}}} \frac{1}{2} w^T w + C \sum_{i=1}^l \xi_i$ $\sup_{\substack{(w,b) \in \mathbb{N}^2 \\ \text{subject to,}}} y_i \ (w^T x_i + b) \ge 1 - \xi_i,$ $\xi_i \ge 0, \quad i = 1, 2, \dots l.$

where C > 0 is the user defined parameter

- Convex Programming Problem, hence global optimal solution.
- Quadratic Programming Problem, hence can be solved with QPP solver.
- But, need to handle too many constraints, which makes the solution computationally expensive.

Lagrangian Function for SVM problem

The Lagragian function is given as

$$L(w,b,\alpha,\beta,\xi) = \frac{1}{2}w^Tw + C\sum_{i=1}^l \xi_i + \sum_{i=1}^l \alpha_i(y_i \ (w^Tx_i) + b) - 1 + \xi_i,) - \sum_{i=1}^l \beta_i \xi_i,$$
where $\alpha = (\alpha, \alpha, \alpha, \beta, \xi)$ and $\beta = (\beta, \beta, \beta, \beta, \beta)$ are the positive Lagrangian multipliers

where, $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_l)$ and $\beta = (\beta_1, \beta_2, \dots, \beta_l)$ are the positive Lagrangian multipliers.

Dual Problem:-

$$\max_{\alpha \geq 0, \beta \geq 0} \left(\inf_{(w,b,\xi)} L(w,b,\alpha,\beta,\xi) \right)$$

$$= \sum_{i=1}^{k} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) - \sum_{i=1}^{k} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) - \sum_{i=1}^{k} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1$$

19-11-2024

KKT conditions for optimality

$$y_{i}(w^{j} \times i \times b) - 1 \times Z_{i} = 0$$

$$y_{i}(w^{j} \times i \times b) - 1 \times Z_{i} = 0$$

$$\nabla_{w}L(w, b, \alpha, \beta, \xi) = 0 \implies w = \sum_{i=1}^{l} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}L(w, b, \alpha, \beta, \xi) = 0 \implies \sum_{i=1}^{l} \alpha_{i} y_{i} = 0$$

$$\nabla_{\mathbf{w}} L(\mathbf{w}, b, \alpha, \beta, \xi) = 0 \implies \mathbf{w} = \sum_{i=1}^{l} \alpha_i y_i x_i \tag{1}$$

$$\nabla_{\mathbf{b}} L(w, b, \alpha, \beta, \xi) = 0 \implies \sum_{i=1}^{l} \alpha_i y_i = 0$$
 (2)

$$\nabla_{w}L(w,b,\alpha,\beta,\xi) = 0 \implies \nabla_{i=1} \alpha_{i} y_{i} x_{i}$$

$$\nabla_{b}L(w,b,\alpha,\beta,\xi) = 0 \implies \sum_{i=1}^{l} \alpha_{i} y_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_{i} - \beta_{i} = 0$$

$$y_i (w^T x_i + b) \ge 1 - \xi_i, \quad i = 1, 2, \dots l.$$
 (4)

$$(5) \qquad (5) \qquad \alpha_{i}(y_{i} \ (w^{T}x_{i} + b) - 1 + \xi_{i},), \quad i = 1, 2, \dots l.$$

$$\alpha_i(y_i \ (w^T x_i + b) - 1 + \xi_i,), \quad i = 1, 2, ... l.$$
 (6)

$$\alpha_{i}(\underbrace{y_{i} \ (w^{T}x_{i} + b) - 1 + \xi_{i}},); \delta_{i} = 1, 2, ... l.$$

$$\beta_{i}\xi_{i} = 1, 2, ... l.$$

$$\alpha_{i} \geq 0, i = 1, 2, ... l.$$
(8)

$$\alpha_i \ge 0, i = 1, 2, \dots l.$$
 (8)

$$\beta_i \ge 0, i = 1, 2, \dots l.$$
 (9)

The Lagragian function is given as

 $L(w,b,\alpha,\beta,\xi) = \frac{1}{2}w^Tw + C \sum_{i=1}^l \xi_i - \sum_{i=1}^l \alpha_i (y_i \ (w^Tx_i + b) - 1 + \xi_i, \) - \sum_{i=1}^l \beta_i \xi_i,$ where, $\alpha = (\alpha_{1_i},\alpha_{2_i},\ldots,\alpha_{l})$ and $\beta = (\beta_{1_i}\beta_{2_i},\ldots,\beta_{l})$ are the positive Lagrangian multipliers.

Dual Problem:-

$$\max_{\alpha \geq 0, \beta \geq 0} \left(\inf_{(w,b,\xi)} L(w,b,\alpha,\beta,\xi) \right)$$

$$\alpha \geq 0, \beta \geq 0$$

$$1 \leq \alpha, y, x_{1} \leq \alpha, y_{1} \times 1$$

$$2 \leq \alpha, y_{1} \times 1$$

$$2 \leq \alpha, y_{1} \times 1$$

$$3 \leq \alpha, y_{2} \times 2$$

$$4 \leq \alpha, y_{1} \times 1$$

$$4 \leq \alpha, y_{2} \times 2$$

$$4 \leq \alpha, y_{3} \times 3$$

$$4 \leq \alpha, y_{1} \times 3$$

$$4 \leq \alpha, y_{2} \times 3$$

$$4 \leq \alpha, y_{3} \times 3$$

$$4 \leq \alpha, y$$

Max
$$-\frac{1}{2}$$
 \leq \leq $d_1d_3y_1y_1(x_1^Tx_3) + \leq$ d_1y_1
 $d_1\beta$ \leq $d_1y_1 = 0$
Subject by \leq $d_1y_1 = 0$
 $c-d_1-\beta_1 = 0 \Rightarrow 0 < 0 < c$
 $d_1\beta_1 > 0$

Dual Problem:- $\max_{\alpha \geq 0, \beta \geq 0} \left(\ln f_{(w,b,\xi)} L(w,b,\alpha,\beta,\xi) \right)$

where,
$$L(w, b, \alpha, \beta, \xi) = \frac{1}{2}w^Tw + C\sum_{i=1}^{l} \xi_i - \sum_{i=1}^{l} \alpha_i(y_i (w^Tx_i + b) - 1 + \xi_i) - \sum_{i=1}^{l} \beta_i \xi_i$$

$$\max_{\alpha \ge 0, \beta \ge 0} \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \, \alpha_j y_i y_j x_i^T x_j - \sum_{i=1}^{l} \alpha_i (y_i \, \left(\sum_{j=1}^{l} \, \alpha_j y_j x_j \right)^T x_i) - 1 \right)$$

Subject to,
$$\sum_{i=1}^l \alpha_i y_i = 0$$
,
$$C - \alpha_i - \beta_i = 0$$
,
$$\alpha_i \geq 0, \beta_i \geq 0, i = 1,2, \dots l$$

)((x1, x2)=

Subject to,
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$
,
$$0 \le \alpha_i \le C, i = 1, 2, \dots l.$$

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j x_i^T x_j - \sum_{i=1}^{l} \alpha_i$$

Subject to,
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$
, \checkmark $0 \le \alpha_i \le C$, $i = 1, 2, ... l$.

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j x_i^T x_j - \sum_{i=1}^{l} \alpha_i$$
Subject to,
$$\sum_{i=1}^{l} \alpha_i y_i = 0,$$

$$0 \le \alpha_i \le C, i = 1, 2, \dots l.$$

$$\min_{(w,b)} \frac{1}{2} w^T w + C \sum_{i=1}^l \xi_i$$

subject to,
$$y_i \ (w^T x_i + b) \ge 1 - \xi_i,$$

$$\xi_i \ge 0, \qquad i = 1, 2, \dots l.$$

- The Dual problem is a Quadratic Programming Problem (QPP) but, less number of constraints.
- Suppose that $\alpha * = (\alpha_1 *, ..., \alpha_l *)$ is a solution to the dual problem, Then the training point (x_i, y_i) , is said to be a support vector if the corresponding component $\alpha_i *$ is non-zero and otherwise it is a non-support vector.

SVM Solution

$$\min_{(w,b)} \ \frac{1}{2} w^T w + C \sum_{i=1}^l \xi_i$$
 subject to,

$$y_i (w^T x_i + b) \ge 1 - \xi_i,$$

 $\xi_i \ge 0, \quad i = 1, 2, ... l.$

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{i} \ \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} - \sum_{i=1}^{l} \alpha_{i}$$

Subject to,
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$
, $0 \le \alpha_i \le C$, $i = 1, 2, \dots l$.

• After obtaining the solution of dual problem $\alpha * = (\alpha^*_1, \ldots, \alpha^*_l)$, the w can be obtained by using the KKT condition (1) as

$$\mathbf{w}^* = \sum_{i=1}^l \alpha^*_{i} y_i x_i$$

Further, for a given $0 < \alpha^*_j < C$, we have $y_j \left(w^{*T} x_j + b^* \right) = 1$ from KKT condition (6) and (7) which gives,

$$b^* = y_j - \sum_{i=1}^l \alpha^*_i y_i x_i^T x_j$$

• In practice, we consider all α^*_j , satisfying $0 < \alpha^*_j < C$ and compute the value of b*. The final value of b* is considered as the mean of all computed values.

Of Dr. Pritam Anand, DA-IICT, Gandhinagar

SVM Solution

- For data point (x_i, y_i) , satisfying $y_i(w^* T x_i + b^*) < 1$, the corresponding $\alpha^*_i = C$. For data point (x_i, y_i) , satisfying $y_i(w^* T x_i + b^*) = 1$, the corresponding $0 < \alpha^*_i < C$. For data point (x_i, y_i) , satisfying $y_i(w^* T x_i + b^*) > 1$, the corresponding $\alpha^*_i = 0$.

SVM is a sparse classification model

19-11-2024

Dr. Pritam Anand, DA-IICT, Gandhinagar

Proof using the KKT conditions

$$\nabla_{\mathbf{w}} L(\mathbf{w}, b, \alpha, \beta, \xi) = 0 \implies \mathbf{w} = \sum_{i=1}^{l} \alpha_i y_i x_i \tag{1}$$

$$\nabla_{\mathbf{b}}L(w,b,\alpha,\beta,\xi) = 0 \implies \sum_{i=1}^{l} \alpha_i y_i x_i = 0$$
 (2)

$$\nabla_{\xi}L(w,b,\alpha,\beta,\xi) = 0 \implies C - \alpha_i - \beta_i = 0$$
 (3)

$$y_i (w^T x_i + b) \ge 1 - \xi_i, \quad i = 1, 2, \dots l.$$
 (4)

$$\xi_i \ge 0, \ i = 1, 2, \dots l.$$
 (5)

$$\alpha_i(y_i \ (w^T x_i + b) - 1 + \xi_i,) = i = 1, 2, ... l.$$
 (6)

$$\beta_{i} \xi_{i} \triangleright oi = 1, 2, \dots l. \tag{7}$$

$$\alpha_i \ge 0, i = 1, 2, \dots l.$$
 (8)

$$\beta_i \ge 0, i = 1, 2, \dots l.$$
 (9)

SVM Solution

- For data point (x_i, y_i) , satisfying $y_i(w^* T x_i + b^*) < 1$, the corresponding $\alpha^*_i = C$. For data point (x_i, y_i) , satisfying $y_i(w^* T x_i + b^*) = 1$, the corresponding $0 < \alpha^*_i < C$. For data point (x_i, y_i) , satisfying $y_i(w^* T x_i + b^*) > 1$, the corresponding $\alpha^*_i = 0$.

For a test point say \bar{x} , the SVM prediction is $sign(w^*Tx^- + b^*)$

19-11-2024

60

$$\Phi(x) = \Phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_2x_1 \end{bmatrix}$$

$$\Phi(x) = \Phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_2x_1 \end{bmatrix}$$

 $\Phi(\mathbf{x}) = \Phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_2x_1 \end{bmatrix}$

19-11-2024

Dr .Pritam Anand, DA-IICT, Gandhinagar

68

Non-linear SVM

Primal Problem

$$\min_{(w,b)} \ \frac{1}{2} w^T w + C \ \sum_{i=1}^{l} \xi_i$$
 subject to,
$$y_i \ (w^T \phi(x_i) + b) \ge 1 - \xi_i,$$

$$\xi_i \ge 0, \qquad i = 1, 2, ... l.$$

19-11-2024

Dr .Pritam Anand, DA-IICT, Gandhinagar

Non-linear SVM

- The dual problem requires the knowledge of only $\phi(x_i)^T\phi(x_j)$.
- We can use a kernel function such that $k(x_i, x_j) = \phi(x_i)^T \phi(x_j)$.
- Dual Problem can be solved without the explicit knowledge of mapping ϕ .

Dual Problem

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j) - \sum_{i=1}^{l} \alpha_i$$

Subject to,
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$
, $0 \le \alpha_i \le C$, $i = 1, 2, \dots l$.

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_i k(x_i, x_j) - \sum_{i=1}^{l} \alpha_i$$

Subject to,
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$
, $0 \le \alpha_i \le C$, $i = 1, 2, ... l$.

After obtaining the optimal solution of the dual problem $\alpha * = (\alpha_1^*, \dots, \alpha_l^*)$, the decision function can be obtained as

$$f(x) = sign(w^{*T} \phi(x) + b^{*})$$

$$= sign(\sum_{i=1}^{l} \alpha_{i}^{*} y_{i} \phi(x_{i})^{T} \phi(x) + b^{*})$$

$$= sign(\sum_{i=1}^{l} \alpha_{i}^{*} y_{i} k(x_{i}, x) + b^{*})$$

Kernel Types.

• Linear Kernel: $k(x,y) = \Phi(x)^T \Phi(y) = (x^T y)$

Kernel Types.

Kernel Types

• Quadratic Kernel:

$$(x,y) = \Phi(x)^T \Phi(y) = (x^T y + c)^2$$

,where c is the user-defined parameter.

Kernel Types

• Polynomial Kernel:

$$k(x,y)=\Phi(x)^T\Phi(y)=(x^Ty+c)^p$$

,where c is the user-defined parameter.

• It can generate any type of polynomial surfaces.

Kernel Types.

• RBF kernel:

$$k(x,y) = \Phi(x)^T \Phi(y)$$

$$= e^{-q||x-y||^2},$$

where q is the user-defined parameter.

• It can generate any type of continuous surfaces.

TOY SVM

https://greitemann.dev/svm-demo

Model selection in SVM

Model selection in SVM

2 -5	2-4	2-3	2-2	2-1	2 ⁰	2 ¹	2 ²	2 ³	24	2 ⁵	С
2 -5	2-4	2-3	2-2	2-1	20	2 ¹	2 ²	2 ³	24	2 ⁵	q

Implementation

- A number of libraries in MATLAB and Python is available.
- The *fitcsvm* in MATLAB provides an efficient implementation.
- The LIBSVM library was once popular for SVM . Link-https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html
- You can also code the SVM from scratch. You need to solve the dual problem ,which is a QPP. You can use the quadprog function for solving the QPP. For coding the SVM from scratch, you can refer the Appendices of the https://svms.org/tutorials/Gunn1998.pdf

Popular Tutorial

- Gunn, Steve R. "Support vector machines for classification and regression." ISIS technical report 14.1 (1998): 5-16.
- Burges, Christopher JC. "A tutorial on support vector machines for pattern recognition." *Data mining and knowledge discovery* 2.2 (1998): 121-167.

Popular Books

- Deng, Naiyang, Yingjie Tian, and Chunhua Zhang. Support vector machines: optimization based theory, algorithms, and extensions. CRC press, 2012. (Optimization Prespective)
- Scholkopf, Bernhard, and Alexander J. Smola. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2018.

Questions ??

Thanks