γ射线的吸收——预习

张轩, 复旦大学核科学与技术系

一、实验目的

- 1. 了解γ射线在物质中的吸收规律;
- 2. 测量 γ 射线在不同物质中的吸收系数,了解 γ 射线的防护知识。

二、实验原理

2.1 γ射线与物质的相互作用

 γ 射线与物质的相互作用满足指数衰减规律(强度损失与深度无关性的自然推论), 定量上、根据吸收截面 σ 的定义,有

$$-dI = \sigma N I dx$$

其中 I 是 γ 例子的通量, σ 是物质的吸收截面,N 是物质的原子数密度。简单整理并求解得到

$$I = I_0 \exp(-\mu x), \mu = \sigma N \tag{1}$$

其中 $\mu = \sigma N$ 是一种特殊的宏观截面,称为物质的线性吸收系数,具有位置的反量纲,单位为 \mathbf{m}^{-1} 。

对于 γ 射线而言,相互作用截面 σ 有光电效应 σ_{ph} 、康普顿效应 σ_{c} 和电子对效应 σ_{p} 组成,这三种截面和入射粒子能量以及被入射物质的原子序数有关,有如下规律

$$\mu_{
m ph} \propto Z^5$$
 $\mu_{
m c} \propto Z$
 $\mu_{
m p} \propto Z^2$

2.2 刻画物质吸收能力的不同方式

刻画物质对射线的吸收能力的方式之一,是前面提过的线性吸收系数 $\mu = \sigma N$ 。此外还有许多其他方式,例如质量吸收系数 $\mu_{\rm m}$

$$\mu_{\rm m} = \frac{\mu}{\rho} = \frac{\sigma N}{\rho} = \frac{\sigma}{m_{\rm atom}} = \frac{\sigma N_{\rm A}}{M}$$
 (2)

质量吸收系数去掉了材料密度的贡献,而只和材料的本身的种类有关,因此十分方便。式中 m_{atom} 是原子质量, N_{A} 是阿伏伽德罗常数,M 是原子的相对质量。质量吸收系数的单位是 cm^2/g 。

另外由于吸收物质的物理过程具有射程无关性,这和原子核衰变的历史无关性推出核辐射统计规律非常相似,只不过之前讨论的是时间,这里讨论的是空间。既然刻画原子核衰变的一个重要参数是半衰期,对应地对射线的吸收能力的刻画方式之一是半吸收厚度 $d_{1/2}$,即射线强度降低一半时的厚度。不难推出

$$d_{1/2} = \frac{\ln 2}{\mu} \tag{3}$$

2.3 线性吸收系数的测量以及带误差的线性拟合

当误差出现在测量数据中时,我们需要通过误差给数据确权。设 (x_1,x_2,\cdots,x_N) 是 对同一固定量 μ 的 N 个具有不同精度的观测值, x_i 应服从期待值为 μ ,方差为 σ_i^2 的正态分布,即

$$p(x_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{1}{2} \left(\frac{x_i - \mu}{\sigma_i}\right)^2\right]$$

则,样本 $\underline{x} = (x_1, x_2, \dots, x_N)$ 的似然函数应为

$$\begin{split} L(\underline{x} \mid \mu) &= p(x_1, x_2, \cdots, x_N) \\ &= \prod_{i=1}^N p\left(x_i; \mu, \sigma_i^2\right) \\ &= \prod_{i=1}^N \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{1}{2}\left(\frac{x_i - \mu}{\sigma_i}\right)^2\right] \end{split}$$

我们使用极大似然法寻求这样一个 μ 的估计值。即使得固定样本值为观测值 (x_1,\ldots,x_N) ,上式取最大值的 μ 作为当前样本下对 μ 的估计值,常用 $\ln L(\underline{x}|\mu)$ 代替 $L(\underline{x}|\mu)$ 作为似然函数,不难求得 $\ln L(\underline{x}|\mu)$ 取得极值的条件是

$$\sum_{i=1}^{N} \frac{x_i - \mu}{\sigma_i^2} = 0$$

得到平均值的极大似然估计公式,这是一个加权平均值,而权重 w_i 正比于 σ_i^{-2}

$$\hat{\mu}(x_1, \dots, x_N) = \frac{\sum_{i=1}^{N} x_i / \sigma_i^2}{1 / \sigma_i^2}$$
(4)

所以在带误差的线性拟合中,观测值 y_i 的测量常常带有误差,和通常的线性拟合 (不带误差或等精度) 相比,只需要将 y_i 替换为其权重值 $w_i y_i$ 即可导出带误差情形下的

所有公式。¹

实验中, 通过计数率来间接测量通量

$$n \propto I \Rightarrow n = n_0 \exp(-\mu x)$$
 (5)

三、实验装置

- ¹³⁷Cs 放射源, 微居, 1 个
- 高压电源 BH1283N 1 个
- 线性脉冲放大器 BH1218 1 个
- 单道脉冲幅度分析器 BH1299A 1 个
- 定标器 BH1220N 1 个
- 插件机箱以及低压电源 FH0001 BH1222 各 1 个
- 双踪示波器 TDS1001B-SC 1 台
- 导线若干、BNC 同轴电缆若干

四、实验内容概要和预习思考题

4.1 实验内容

- 1. 测量 137 Cs 的 γ 射线在Cu、Al 物质中的吸收曲线,求出质量吸收系数;
- 2. 用最小二乘直线拟合的方法求出质量吸收系数,用数据处理软件对曲线进行拟合给出质量吸收系数及其误差;
- 3. 对良好几何条件下的一组数据,用最小二乘法直线拟合计算出质量吸收系数的误差,并与软件拟合结果比较;
- 4. 比较铜、铝和铅对 y 射线的屏蔽效果。

4.2 预习思考题

¹实际上带误差的线性拟合的最小二乘的目标函数中,需要以带权的 y_i 带人,而最小二乘的基本出发点就是这个目标函数取最小值,所以后面的系数公式以及误差公式都替换为 y_i 的带权值即可。这一点也可以从 Sympy 数据处理包的技术文档中看出,https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimiz e.curve_fit.html