Series de Tiempo 2018

Maestría en Estadística Aplicada, UNR Unidad 4

Luis Damiano damiano.luis@gmail.com 2018-05-04

Contenido

- Procesos no estacionarios en la media
 - Tendencia lineal
 - Tendencia estocásica
 - Ejercicio: Energías alternativas
- Procesos no estacionarios en la varianza
 - Transformaciones.
 - Ejercicio: Ventas de supermercados

Procesos no estacionarios

Tipos de no estacionariedad

Un proceso débilmente estacionario de segundo orden:

- La media y la varianza son constantes.
- La covariancia y la correlación sólo son función de la diferencias de tiempo (k) entre las dos variables.

Discusión en clases

¿De qué forma podrían fallar cada uno de los requisitos de la definición?

Tipos de no estacionariedad (continuación)

- Procesos no estacionarios en la media
 - Tendencia determinística
 - Tendencia estocástica
 - Tendencia que varía en función del tiempo
- Procesos no estacionarios en la varianza
 - Transformaciones para estabilizar la varianza

¿Cómo encarar una serie?

- 1. Primero y principal, ¿la teoría subyacente indica algo sobre la estacionariedad?
- 2. Inspección visual (serie original, ACF, PACF).
- 3. Ajustar ARMA si la serie:
 - No muestra una violación aparente a los supuestos de estacionariedad, y
 - Tiene una función de autocovariancia que decae rápidamente.
- 4. Si el valor medio muestra variación por tendencia o estacionalidad, capturar el componente (ej. aplicar descomposición, diferenciar).
- 5. Si la varianza muestra variación, buscar una transformación para estabilizarla.

Procesos no estacionarios en la media

Tendencia lineal

$$Z_t = \alpha_0 + \alpha_1 t + a_t, \ t = 0, \pm 1, \dots, \ a_t \sim \mathcal{N}(0, \sigma^2)$$

```
simTL <- function(alpha0, alpha1, sigma, T) {
    # Ruido
    at <- rnorm(T, 0, sigma)

# Observaciones
    t <- 1:T
    Zt <- alpha0 + alpha1 * t + at

# Devolver observaciones simuladas
    Zt
}</pre>
```

Ejemplo

$$Z_t = 5 + 0.2t + a_t, \ t = 0, \pm 1, \dots, \ a_t \sim \mathcal{N}(0, 1)$$

```
set.seed(9000)
z <- simTL(5, 0.2, 1, 100)
t <- 1:100
lmfit <- lm(z ~ t)</pre>
```



```
##
## Call:
## lm(formula = z ~ t)
## Residuals:
       Min
                 10 Median
## -2.36261 -0.57223 0.00738 0.71255 2.46057
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.975067
                         0.179551
                                            <2e-16 ***
              0.199233 0.003087
                                    64.54
                                            <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.891 on 98 degrees of freedom
## Multiple R-squared: 0.977, Adjusted R-squared: 0.9768
## F-statistic: 4166 on 1 and 98 DF, p-value: < 2.2e-16
```

Tendencia estocástica

- Proceso no estacionario: raíces dentro del círculo unitario.
- Proceso integrado I(d): raíz unitaria en el polinomio autorregresivo.
 - Asociado a una ACF que decae lentamente y toma valores cercanos a la unidad para los primeros rezagos.
 - Prueba de Dickey-Fuller.
 - Se torna estacionario al tomar la d-ésima diferenciación, donde d es la cantidad de raíces ubicadas en el círculo unitario.

Ejemplo

Discusión en clases

¿Qué tipo de tendencia tiene esta serie? ¿Cómo avanzarían en el análisis?

Ejemplo (continuación)

Primera diferencia


```
##
## Augmented Dickey-Fuller Test
##
## data: z
## Dickey-Fuller = -1.6567, Lag order = 1, p-value = 0.7155
## alternative hypothesis: stationary
```

Ejercicio: Energías alternativas

Ejercicio en clases

Analizar la serie de tiempo de ejemplo.

Además de poner práctica nuestras habilidades para analizar datos reales, el ejercicio nos permite aprender algunas funciones de R que son específicas para la manipulación de datos secuenciales. Solución disponible en el anexo.

Algunos pasos:

- Descargar los datos de https://bit.lv/2IdUisP. sección Energías Alternativas.
- Tomando solamente aquellos registros de frecuencia mensual y alcance país, leer la columna generacion nuclear.1
- Calcular la generación de energía promedio de doce meses centrados.²
- Graficar y describir la serie original.
- Probar si tiene raíz unitaria. En tal caso, diferenciar, graficar, y describir la serie.
- Calcular los estadísticos descriptivos.
- Proponer un modelo.

Maestría en Estadística Aplicada, UNR

Evaluar el ajuste.

Series de Tiempo (2018)

¹Hay una copia local en data/nuclear.txt en caso de que el sitio esté fuera de línea.

²La serie original tiene estacionalidad mensual. Al tomar el promedio, eliminamos el componente estacional pero perdemos información valiosa. Más adelante, aprendemos métodos más específicos.

Procesos no estacionarios en la varianza

Procesos no estacionarios en la varianza

- Un proceso estacionario en la media puede o no ser estacionario en la varianza.
 - Aplicar transformación para estabilizar la varianza.
- Todo proceso no estacionario en la media es no estacionario en la varianza.
 - Aplicar primera diferencia.

Transformaciones

Asumamos que la varianza varía junto a la media.

$$V\langle Z_t \rangle = cf(\mu_t)$$

Para lograr una varianza constante, entonces:

- Desvío estándar de una serie crece linealmente con la media: aplicar logaritmo (cualquier base).
- varianza de una serie es proporcional al nivel: aplicar raíz cuadrada.
- Desvío estándar de una serie es proporcional al cuadrado del nivel: aplicar recíproca.

Maestría en Estadística Aplicada, UNR

Series de Tiempo (201

Ejemplo

Discusión en clases

A juzgar sólo por el gráfico, ¿qué transformaciones esperan aplicar?

Ejercicio: Ventas de supermercados

Ejercicio en clases

Analizar la serie de tiempo de ejemplo.

El Anexo incluye algunos gráficos útiles.

Algunos pasos:

- Descargar los datos desde https://bit.ly/2GXzXoa.
- De la Sección A 1.11, leer los datos mensuales para la columna Ventas totales.³
- Calcular las ventas promedio de doce meses centrados.⁴
- Graficar y describir la serie original.
- Probar si tiene raíz unitaria. En tal caso, diferenciar, graficar, y describir la serie.
- Una vez obtenida una serie estacionaria, proponer una transformación y aplicarla sobre los datos originales.
- Calcular los estadísticos descriptivos.
- Proponer un modelo.

Maestría en Estadística Aplicada, UNR

Evaluar el ajuste.

Series de Tiempo (2018)

³Hay una copia local en data/INDECSuper.txt en caso de que el sitio esté fuera de línea.

 $^{^4}$ La serie original tiene estacionalidad mensual. Al tomar la media, eliminamos el componente estacional pero perdemos información valiosa. Más adelante, aprendemos métodos más específicos.

Anexo: Generación nuclear

Conjunto de datos

Publicado por: Ministerio de Hacienda. Secretaría de Política Económica. Subsecretaría de Programación Microeconómica.

Sección: Indicadores Sectoriales de Energías alternativas.

Subsección: Indicadores de Energías alternativas en valores anuales, trimestrales y mensuales.

Campo: Generación de energía fuente nuclear.

Frecuencia: mensual.

Agrupado por: agregado a nivel país.

Unidad: MWh (megavatio hora).⁵

⁵Transformado en GWh a los fines de la resolución.

Maestría en Estadística Aplicada, UNR

Lectura & procesamiento

```
# https://bit.ly/2IdUjsP Energias Alternativas
df <- read.table(
  file = "data//nuclear.txt".
 header = TRUE.
  sep = "\t"
df[, 1] \leftarrow as.Date(df[, 1], format = "%Y-%m-%d")
df[, 2] <- df[, 2] / 1000
x \leftarrow xts(x = df[, 2], order.bv = df[, 1])
xsum <- na.omit(rollmean(x, 12, fill = NA))</pre>
t(head(cbind(mes = x, ult12 = xsum), 9))
```

```
2011-01-01 2011-02-01 2011-03-01 2011-04-01 2011-05-01 2011-06-01
##
          523.425
                     533.124
                               435.933
                                         342.776
                                                   468.288 569.1960
## mes
## n1±12
               NΑ
                         NΑ
                                   NΑ
                                              NΑ
                                                      NA 491.0303
        2011-07-01 2011-08-01 2011-09-01
##
## mes 621.6130 608.5010 575.2080
## ult12 496.5097 496.2487 503.3488
```

Visualización

```
plot(
  cbind(x, xsum),
  main = "Generación de energía nuclear en Argentina (GWh)",
  ccl = 1:2,
  grid.col = "white"
)
addLegend("top", c("Mensual", "MM(12)"), col = 1:2, lwd = 2)
```

Visualización

Análisis de la serie original original

Generación de energía nuclear en Argentina (GWh)

Análisis de la serie original diferenciada

tsdisplay(
diff(xsum),
main = "Generación de energía nuclear en Argentina (GWh)",

Generación de energía nuclear en Argentina (GWh)

Ajuste

```
fit <- Arima(xsum, order = c(0, 1, 1))
print(fit)

## Series: xsum
## ARIMA(0,1,1)
##
## Coefficients:
## ma1
## 0.4870
## s.e. 0.0938
##
## sigma^2 estimated as 200: log likelihood=-300.67
## AIC=605.33 AICc=605.5 BIC=609.94</pre>
```

Ajuste versus observado

Diagnóstico de residuos

Anexo: Ventas en supermercados

Lectura & procesamiento

```
# https://bit.ly/2GXzXoa
df <- read.table(
    file = "data/INDECSuper.txt",
    header = TRUE,
    sep = "\t"
)

df[, 1] <- as.Date(df[, 1], format = "\"\Y-\"\m-\"\d")

x <- xts(x = df[, 2] / 1000, order.by = df[, 1])
z <- na.omit(rollmean(x, 12, fill = NA))
t(head(cbind(x, z), 9))</pre>
```

```
##
      1996-07-01 1996-08-01 1996-09-01 1996-10-01 1996-11-01 1996-12-01
## . 1
          1.036
                    1.064
                               0.975
                                         1.025
                                                   1.073
                                                           1.371000
## ..2
                                  NA
                                           NA
                                                      NA 1.079833
             NA
                        NA
   1997-01-01 1997-02-01 1997-03-01
##
## ..1 1.013000 1.000000 1.172000
## ..2 1.084417 1.090167 1.095083
```

Visualización

Serie original

Serie transformada (In)

