

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS MUCAMBINHO – SOBRAL ALGEBRA LINEAR

Nome:	Data: /	/	¹
	·		

Matrícula:_____

1. (1 pts) Seja W o subespaço de M(2,2) definido por:

$$W = \left\{ \begin{bmatrix} 2a & a+2b \\ 0 & a-b \end{bmatrix} \colon a,b \in \mathbb{R} \right\}$$

- a) $\begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix} \in W$? Justifique.
- b) $\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} \in W$? Justifique.
- 2. (2 pts) Considere o subespaço de \mathbb{R}^4 gerado pelos vetores $v_1 = (1, -1, 0, 0)$, $v_2 = (0, 0, 1, 1), v_3 = (-2, 2, 1, 1)$ e $v_4 = (1, 0, 0, 0)$.
- a) O vetor $(2, -3, 2, 2) \in SG\{v_1, v_2, v_3, v_4\}$? Justifique.
- b) Exiba uma base para $SG\{v_1, v_2, v_3, v_4\}$. Qual é a dimensão?
- 3. (1 pts) Dados $\beta_1 = \{(0,1), (3,0)\}$ e $\beta_2 = \{(2,0), (1,2)\}$, determine as matrizes de mudança de base:
- a) $[I]_{\beta_2}^{\beta_1}$.
- b) $[I]_{\beta_1}^{\beta_2}$.
- 4. (1,5 pts).
- a) Ache a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,0,0) = (2,0), T(0,1,0) = (1,1) e T(0,0,1) = (0,-1).
- b) Encontre v de \mathbb{R}^3 tal que T(v) = (3, 2).
- 5. (2 pts) Se R(x,y) = (2x, x y, y) e S(x,y,z) = (y z, z x):
- a) Ache $[R \circ S]$.
- b) Ache $[S \circ R]^{-1}$.
- 6. (2,5 pts) Determine a imagem, o núcleo e suas dimensões para:
- a) T(x, y, z) = (2x 2y + z, x y + 3z).
- b) T(x,y) = (2x, 2x y, x 2y, 2y).