

Design and Analysis of Algorithms I

Contraction Algorithm

Overview

Goals for These Lectures

- Further practice with randomized algorithms
 - In a new application domain (graphs)
- Introduction to graphs and graph algorithms

Also: "only" 20 years ago!

Graphs

Two ingredients

- <u>Vertices</u> aka nodes (V)
- Edges (E) = pairs of vertices
 - can be <u>undirected</u> [unordered pair] or <u>directed</u> [ordered pair] (aka <u>arcs</u>)

Examples: road networks, the Web, social networks, precedence constraints, etc.

Cuts of Graphs

<u>Definition:</u> a cut of a graph (V, E) is a partition of V into two non-empty sets A and B.

<u>Definition</u>: the crossing edges of a cut (A, B) are those with:

- the one endpoint in each of (A, B) [undirected]
- tail in A, head in B [directed]

Roughly how many cuts does a graph with n vertices have?

 $\bigcirc n$

 $\bigcirc n^2$

 $\bigcirc 2^n$

 $\bigcirc n^n$

Actually 2ⁿ - 2, for non-empty rule.

two sets, in total n vertices, in each set, with or without a node. but at least one node in each set.

The Minimum Cut Problem

- <u>INPUT</u>: An undirected graph G = (V, E). [Parallel edges allowed] [See other video for representation of the input]
- <u>GOAL</u>: Compute a cut with fewest number of crossing edges. (a <u>min cut</u>)

What is the number of edges crossing a minimum cut in the graph

shown below?

 \bigcirc 1

 \bigcirc 3

 \bigcirc 4

A Few Applications

- indentify network bottlenecks / weaknesses
- community detection in social networks
- image segmentation
 - input = graph of pixels
 - use edge weights

[(u,v) has large weight ⇔ "expect" u,v to come from some object]

<u>hope</u>: repeated min cuts identifies the primary objects in picture.