		Mecl	nanical	System	s Revie	ew for Me	chatroni	cs Stud	ents:				
0													
<u>Overview</u>	<u>:</u>												
Materials	->Mecl	hanics -	> statics	-> kine	matics	s -> dynam	ics -> de	sign					
Waterials	> IVICCI	idilics ,	Statics	/ Kiric	litatics	dynami	105 7 40.	31811					
Mechanic	s of Ma	aterials:											
1. Materia	al Prope	erties											
		lv i									le	. 1	
Matal	Specific	Young's Modulus	Shear Modulus	Bulk	Poisson'	Thermal Conductivity	Linear Expansion	Melting	Proof/Yield		Electrica Resistivit		
Metal	Gravity	(E)	(G)	Modulus	Ratio	0 deg.C	Coefficient	t	Stress	Stress	20 deg.C		
-		GPa	GPa	GPa		W/(mK)	x10 ⁻⁶ / deg C	Deg K	x 10 ⁷ Pa	x 10 ⁷ Pa	x10 ⁻⁸ ohm.m		
Aluminium	2,7	68,95	26	75.	0,33	237	25	933	3-14	6-14	2,655		
					0,36	398.	16,6	1357	4,7-32	20-35	1,673		
Gold		74,46	28.	167	0,42	315	14,2	1336	0-21	11-23	2,35		
		517,1				147	6	2723			5,3		
	7,87 11,35	196,5 13,79	76 6		0,3	80,3 35,2	12 29	1809	16	35 1,5-1,8	9,7 20,6	_	
		44,13	О		0,43 0,35	156	25 25	600,7 923		1,5-1,6	4,45	=	
	7,34	158,6			0,00	100	22	1517			185		
Molybdenum		275,8			0,32	138	5	2893			5,2		
Nickel	8,9	213,7	79.	176	0,31	90,5	13	1726	14-66	48-73	6,85		
		72,39	28.	100	0,37	427	19	1234	5,5-30	14-38	1,59		
Sodium	0,97					134	70	370,98			4,2		
Steel (Mild)	7,8	210	80		0,3	50	12	1630- 1750	20-40	30-50	10		
Tin	7,31	41,37	17.	52	0,33	67	20	505	0,9-1,4	1,5-20	11,0		
					0,3	22	8,5	1943	2-50	25-70	43		
	19,3	344,7	140		0,28	178	4,5	3673		100-400	5,65		
Polylactide (PLA)	1.3 g/cm^3	3.5	2.4			.13		160	8		•		
Acrylonitrile	g, c c											7	
Butadiene Styrene	1.03	2.28							6.89				
(ABS)													
Table 1: Tens	ile strength	h and Youn	g's modulu	s for select	ted mater	ials							
material		tensil	e streng	th MPa	r	nodulus of	elasticit	y GPa					
304 stainless	s steel	500				200							
		-											
copper		270			1	120							
aluminium		90				70							
epoxy resin		40			3	3							
	L								=				
silicone rub	ber	10				0.003							
												_	
		.1	c	D	+				+			1	
Mechatror	nics: Me	cnanical	Systems	Review									

Discussion:	
Key properties:	
Modulus (ratio of force to displacement)	
Specific gravity – density (mass)	
Conductivity – thermal, electrical	
Strength (yield, ultimate)	
Consider steel as our baseline metal for engineering design	
Many variations in steel properties affecting, strength, workability	
Modulus remains relatively constant	
Aluminum Vs Steel	
 1/3 weight, 1/3 modulus (stiffness), 3+ price, lesser strength, but depends on alloy, treatment 	
Other lightweight, high-strength metals commonly used: Magnesium, titanium	
Applications to AM (Additive Manufacturing): melting point, linear expansion coefficient	
Macro Behavior of a typical metal	
ULTIMATE TENSILE STRENGTH UPPER YIELD STRENGTH LOWER YIELD STRENGTH PLASTIC STRAIN FOR MATERIAL LOADED TO STRESS AT POINT A LOADED TO STRESS AT POINT A LOADED TO STRESS AT POINT A	
ENGINEERING STRAIN,(€) in/in	
Discussion points:	
Linear region characterizes elastic strain (recoverable)	
2	_
Mechatronics: Mechanical Systems Review	

• Load in the Micro-le Figu • Atom • In ela • In pla with Materials for Plastics – use Metals – use	he figure evel behavior of the ure 7: The block slip	xceeding) yield st strength causes p metals model, showing b	rength is fully re permanent defor	eversible rmation, see loading	to point A	
• Load • Load in the Micro-le Figu • Atom • In ela • In pla with Materials fo Plastics – us Resins – use Metals – use Present a ch	ding up to (but not e ding above the yield he figure evel behavior of the ure 7: The block slip	xceeding) yield st strength causes p metals model, showing b	rength is fully re permanent defor	eversible rmation, see loading	to point A	
• Load • Load in the Micro-le Figu • Atom • In ela • In pla with Materials fo Plastics – us Resins – use Metals – use Present a ch	ding up to (but not e ding above the yield he figure evel behavior of the ure 7: The block slip	xceeding) yield st strength causes p metals model, showing b	rength is fully re permanent defor	eversible rmation, see loading	to point A	
• Load • Load in the Micro-le Figu • Atom • In ela • In pla with Materials fo Plastics – us Resins – use Metals – use Present a ch	ding up to (but not e ding above the yield he figure evel behavior of the ure 7: The block slip	xceeding) yield st strength causes p metals model, showing b	rength is fully re permanent defor	eversible rmation, see loading	to point A	
• Load • Load in the Micro-le Figu • Atom • In ela • In pla with Materials fo Plastics – us Resins – use Metals – use Present a ch	ding up to (but not e ding above the yield he figure evel behavior of the ure 7: The block slip	xceeding) yield st strength causes p metals model, showing b	rength is fully re permanent defor	eversible rmation, see loading	to point A	
Load in the Micro-le Figu Aton In ela In pla with Materials for Plastics – use Metals – use Present a ch	ding above the yield he figure evel behavior of the ure 7: The block slip	metals model, showing b	permanent defor	rmation, see loading	to point A	
• Aton • In ela • In pla with Materials for Plastics – use Metals – use Present a ch	he figure evel behavior of the ure 7: The block slip	metals model, showing b				
• Aton • In ela • In pla with Materials fo Plastics – us Resins – use Metals – use Present a ch	ure 7: The block slip	model, showing b	ehavior of metals	s under stress		
• Atom • In ela • In pla with Materials fo Plastics – us Resins – use Metals – use Present a ch	ure 7: The block slip	model, showing b	ehavior of metals	s under stress		
• Atom • In ela • In pla with Materials fo Plastics – us Resins – use Metals – use Present a ch			ehavior of metals	s under stress		
• Atom • In ela • In pla with Materials for Plastics – use Resins – use Present a ch	1 no stress applied 2 st					
• Atom • In ela • In pla with Materials for Plastics – use Resins – use Present a ch	1 no stress applied 2 st				_	
• Atom • In ela • In pla with Materials for Plastics — use Metals — use Present a ch	1 no stress applied 2 st					
• Atom • In ela • In pla with Materials for Plastics – use Resins – use Present a ch	1 no stress applied 2 st			· · · · · · · · · · · · · · · · · · ·		
• Atom • In ela • In pla with Materials for Plastics – use Resins – use Present a ch	1 no stress applied 2 st	1.		A		
• Atom • In ela • In pla with Materials for Plastics – use Resins – use Present a ch	1 no stress applied 2 st			ii		
• In ela • In pla with Materials for Plastics – us Resins – use Metals – use Present a ch			stress applied and	4 stress removed leaving permanent deformation		
• In ela • In pla with Materials for Plastics – us Resins – use Metals – use Present a ch	elas	tic strain produced yi	elding occurring	permanent deformation		
• In ela • In pla with Materials for Plastics – us Resins – use Metals – use Present a ch						
• In pla with Materials for Plastics – us Resins – use Metals – use Present a ch	ms arranged in a latt	ice structure				
Materials for Plastics – use Metals – use Present a ch	elastic deformation, t	ne bonds flex but	are maintained			
Materials for Plastics – use Metals – use Present a ch		he bonds betwee	n neighboring at	toms are broken and	reform	
Plastics – use Resins – use Metals – use Present a ch	h new neighbors					
Plastics – use Resins – use Metals – use Present a ch	for AM					
Resins – use Metals – use Present a ch	<u> </u>					
Metals – use Present a ch	ised in FDM methods					
Metals – use Present a ch	ed in laser-sinter typ	e processes				
Present a ch						
	sed first as powders i	n powder-bed m	ethods, laser sin	tering,		
	hart of plastic prope	 rties				
<u>Properties o</u>						
Mechatronics						
	of plastics:	s Review			3	
		s Review			3	
Mechatronics						

		MAT	EDIAL C	TEM	Su F	5.5	X MOD	170		LIE C	AT	NAME OF THE PROPERTY OF THE PR	TED		
		MAT	ERIALS	TENS STREM			OF STICITY	IZO IMPA		DEFL TEI			ATER RPTION		
								(notch	ied)	66psi /			ersion Hours		
				73º			3º F	73°							
		ABS	AT	4.4			. 000	7		200			20		
		ACRYLIC		4,1			1,000	7.7		200	177		.30		
		(Continue Processe KYDEX®	ed)	10,0			0,000	18.		-	195		- 0.08		
		100 NORYL®	0	· ·		335,000									
		(Modified		9,6		370,000		3.5		279 254			.07		
		PETG		7,7		310,000		1.7		164 157			.20		
			RBONATE	9,500			5,000	12.0 -		280 270			.15		
		(20% Gla	ass Filled)	16,000		800	0,000	2.0)	300 295		0	.16		
		(High Im		3,5	00	310	0,000	2.0)	- 185			-		
		POLYSU	ILFONE	10,2	200	390	0,000	1.3	3	358 345		0	0.30		
		PVC (Rigid)		7,500		481	,000	1.0)	- 158		0	0.06		
		RADEL F	RADEL R®		10,100		0,000	13		- 405		0	0.37		
		ULTEM®	ULTEM®		15,200		0,000	1.0)	410 392		0	.25		
		ULTEM® (30% Gla	(30% Glass Filled)		24,500		1,300,000		6	414 410		0	0.16		
		ACETAL (Copolyn		9,8	00	370	0,000	1.0)	316	316 230		0.20		
		ACETAL (Homopo		10,000		420,000		1.5	5	336	257	0	.25		
		HDPE	,,	4,000		200,000		-		172	-	0	.10		
		LDPE		1,400		30,000		no br	eak	122	-	0	.10		
		NYLON (6 Cast)		10,000 - 13,500		420,000	- 500,000	0.7 -	0.9	400-430	200-400	0.60	- 1.20		
		NYLON (6/6 Extr	uded)	12,4	100	410	0,000	1.2	2	-	194	1	.20		
		PBT		8,690		330,000		1.5	5	310	130	0	.08		
		PEEK		14,0	000	590	0,000	1.6	3	-	306	0	.50		
		PET (Semicry	stalline)	11,5	000	400	0,000	0.7	7	240	175	0	.10		
		PP (Homopo		5,4	00	225	5,000	1.2	2	210	-	sl	ight		
		PP		3,8			5,000	12.		190	-		ight		
		(Copolyn	ner)	12,5			0,000	0.5		400	220		.02		
		PTFE		1,500 -			,000	3.5		250	-		0.01		
		PVDF	shames)	7,8			0,000	3.0		300	235		.02		
		(Homopo		3,1			0,000	18.0		-	-		ight		
				-,											
].	_													
 <u> </u>	Jisc	cussio	<u>n:</u>												
		• In	nnortan	t consid	erations	are me	lting no	ints coa	fficier	nt of ther	mal expa	insion i	modulu		
			nd stren		Ci ations	, are mic	6 PO			it of their	TIGI CAPO		. iouulu.		
		a	iu stren	Биі											
														4	
N	Иeс	hatro	nics: Me	chanical	Systems	Review									

	2) G	eometri	c Prope	rties (of	materia	al cross-	section)						
	a.		entroid										
	р	oint abo	ut whic	h mass i	s distrib	uted – f	irst inte	gral of a	rea				
			\int_{bo}	_{dy} rdm									
			\int_{b}	_{ody} dm									
	U	ses: imp	ortant (concept	ın dyna	mic equ	ilibrium						
	b.	N.A	oment (of area									
					sistance	to flexi	ıre – sec	ond inte	egral of	area			
		355610		$\int_{\text{ody}} r^2 dx$		15 110,10		mic	-0. 4. 01	56			
			J_{b}	ody Tur	1								
	1.1	ses: Cal	rulatina	hending	tetrocco	s ctrair							
	U	ses. Cal	Luiatilig	Denum	3 311 8336	5, Strair	•						
	C.	m	oment d	of inertia	.								
		tationa											
				_{ody} r²d1									
			Jbo	ody' "									
	U	ses: dyn	amic ed	uations	involvir	ng rotati	on						
	d.			kis Theo		IS TOTAL	011						
						t variou	s locatio	ns on th	ne body				
									·				
	e.			nent of									
	M	loment	of inerti	a meası	iring res	istance	to rotat	ion in th	e planc	e/			
												5	
N	1echatro	nics: Me	chanical	Systems	Review							J	
				•									

2) Usakas Laur a Es
3) Hookes Law; $\sigma=E\epsilon$ Fundamental concept stating proportional relationship between stress and strains
Young Modulus (E) is that proportionality.
Uses: to go from stress to strain
4) Stress:
Measure of per-unit load within a body (unit is area). The stress varies at each location on the body
a. Axial Stress: $\sigma = \frac{F}{A}$ axial
F^{\uparrow} F^{\uparrow}
b. Shear stress or Transverse shear stress: $ au_{ave} = \left(\frac{F}{A}\right)$
A Stress parallel or in the plane of the cross section
Δl τ
For uniform rectangular beam: $ au_{max} = rac{3}{2} rac{F}{A}$ at the neutral axis
For circular beam: $\tau_{max} = \frac{4}{3} \frac{F}{A}$ at the neutral axis
and $t_{max} = \frac{1}{3} \frac{1}{A}$ at the field axis
$ au=G\gamma$
With G = shear modulus
7
Mechatronics: Mechanical Systems Review

	6) B	eams:												
		No.	- 2		V	†v'		$\sigma_x(y)$						
			-	h/2				* °	x(y) =	$-\frac{My}{I_z}$		-		
		10		h	/2	$\frac{1V}{2A}\left(1-\frac{y^2}{c^2}\right)$	A		$I_a = \int_{A_b} s^2 dA$	$=\frac{1}{12}bb^2$	n.6			
		TYM,	Mai		1				-					
			$= \frac{My}{I} be ompress$	ending ive/zero	/tensio	n								
			V											
			$=\frac{V}{A}$ she ro/max											
													1	
N	1echatro	nics: Me	chanical	Systems	Review								.1	

7) Combined Stresses	
circ	_
acial	
^r shear F	
Gaxial Gaxial	-
*shear deficience of the shear	
(sigma_circ = sigma_hoop =P*r/(I)) Stresses on any other plane:	
	_
$\sigma_{\theta} = \frac{1}{2} (\sigma_x + \sigma_y) + \frac{1}{2} (\sigma_x - \sigma_y) \cos(2\theta) + \tau \sin(2\theta)$ $\tau_{\theta} = \frac{1}{2} (\sigma_x - \sigma_y) \sin(2\theta) + \tau \cos(2\theta)$	
$ au_{ heta} = rac{1}{2}(\sigma_x - \sigma_y)\sin(2\theta) + au\cos(2\theta)$ Principal stresses	
	_
$\sigma_1, \sigma_2 = \frac{1}{2} (\sigma_x + \sigma_y) \pm \tau_1$ $\tau_1 = \frac{1}{2} \sqrt{(\sigma_x - \sigma_y)^2 + (2\tau)^2}$	
$ \tau_1 = \frac{1}{2} \sqrt{\left(\sigma_x - \sigma_y\right)^2 + (2\tau)^2} $	
	_
8) Allowable stress in design (Max Shear stress theory: $\tau < S_y/(2n)$ or $\sigma_{max} < S_y/n$ with σ_{max} the max. $ \sigma_1 $, $ \sigma_2 $, $ \sigma_1 - \sigma_2 $ and n the factor of safety	
omax the max. [01], [02], [01	-
	-
	_
Mechatronics: Mechanical Systems Review	
	_

<u>E</u>	xample	<u>1:</u>												
N	/latthew	is 3D p	rinting a	climbin	g robot	, skid-st	eer with	two tra	cks, tot	al mass o	of 2 kg.	He is		
	ising two													
	vants to											_		
	rom mo limbing					_			_			_		
	haft tor									-	-			
	ather an	i i		Γ Ι							_			
r	naterials	s. Use it	here wi	th cautio	on notin	g we ha	ve an ul	t. Vs. yie	el streng	th giver).			
	xample	2.												
	etermir		ze shaft	needed	to run	a 5000W	/ genera	itor. Ass	ume the	e shaft is	made o	out of		
	.040 stee													
E	xample	3:												
E	ack to N 0mN/m	Лatthew						Γ Ι						
	earlier p				_								S	
	of 2 kg. H					1								
	f 6cm. F													
A	ssuming	g a redu	ction in	strength	of 50%	due to	3D print	ing, clin	nbing sp	eed of 1	LO cm/s)			
	xample xtruded								·					
	vith 1cm									a.i. i.e 30		201 11011	•	
		,			3			,						
												1	3	
N	Лесhatro	nics: Me	chanical	Systems	Review								J	

Statics:														
1. Vector	r <u>s</u>													
Things (i	n mechan	ics) tha	at are ve	ectors			Thin	gs that	are scal	ars				
2. Vector	r combina	itions:												
Vector p	roduct (cr	oss)					Scala	ar produ	uct (dot)					
3. Basic	principle i	in stati	cs:											
For a sta must be	tic object zero.	(object	t station	ary and	in ed	quili	ibrium),	the sur	n of all t	forces a	nd mom	ents		
	ly determ	inant:	numbe	r of inpu	ıts — ı	nun	nber of	constra	ints = 0					
- Statical	ly indeter	minant	t: numb	er of inp	uts –	- nu	ımber o	f constr	aints < ()				
												1	7	
Mechatro	onics: Mech	hanical	Systems	Review									,	

4. Free-body diagrams			
4. Free-body diagrams			
F _N > 100-			
T T			
30. F _G mg			
30.			
5. Finding External reactions			
6. Finding internal reactions			
a) method of joints (Like KCL): "For a truss to be in equilibrium, each of its joints equilibrium" – Sum(Fx) = 0, Sum(Fy) = 0	s must be in		
$F_{AB} \nearrow F_{BC}$			
F_{AB} \nearrow F_{DR}			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
7-7 F C1			
Mechatronics: Mechanical Systems Review		18	

Force, Torque, Work, Energy and Power
$ec{T}=ec{r} imesec{F}$
Units: F = N, T = N-m, and r is a vector from the point of interest out to application of torque
$W = \int dW = \int \vec{F} \cdot d\vec{s} \ or \int \vec{T} \cdot d\vec{\theta}$
Work (energy) is a scalar, units are Joules, J=N-m
$P=ec{F}\cdotec{v}\ or\ ec{T}\cdotec{\omega}$
Power is an instantaneous scalar, unites are Watt, W=N-m/s
Conversion from Force – Torque is through a moment arm (lever, link, gear, etc).
In many linkage mechanisms, Power is conserved: Po=Pi;
Or, the mechanism may have some associated efficiency, eta:
$P_o = \eta P_i$
This means that the force/torque relationship in a mechanism is inversely proportional to the
velocity relationship:
$F_o v_o = \eta F_i v_i ext{ or } rac{F_o}{F_i} = rac{\eta v_i}{v_o}$
$T_o\omega_o=\eta T_i\omega_i ext{ or } rac{T_o}{T_i}=rac{\eta\omega_i}{\omega_o}=rac{\eta}{GR}$
Where GR is the gear ratio if the mechanism is a gear train (ratio of output to input).
<u>////</u> 2 5 ////
Gear Train Using Compound Gears
Example, in the gear train shown, Assume N2, N4=20, N3, N5=12, eta = 95%, Tin is 100N-cm, what is To?
Mechatronics: Mechanical Systems Review

Kinematics and	Dynamics:									
Particle	Motion:									
Tarticle		s =	$\int v(t)$	$\int dt = \int$	$\int a(t)dt$	lt				
a(t) = a,	v(t) = v0 + at, s=s	o + vot +	1/2 at^	2						
For cons	stant acceleration	ns								
		x(t) –								
Position	Slope va	ries								
x ₀		t								
ν	(a)	-								
Velocity		- v(t)								
	Slope =	a 								
0	(b)	t								
uoina a	Slope =	a(t) -								
Acceleration										
	(c)									
								2	2	
Mechatronics: N	echanical Systems	Review								

						Var	iable	es			
Equation	Information	on Give	en by Equa	ation		V _o	Vf	t	а	d	
$v_f = v_o + at$	Velocity as	a functi	ion of time			1	1	1	1	X	
$d = \frac{1}{2}(v_0 + v_f) t$	Displaceme	ent varyi	ing with vel	locity and	d time	1	1	1	Х	1	
$d = v_0 t + \frac{1}{2} at^2$	Displaceme	ent as a	function of	ftime		1	X	1	1	1	
$v_f^2 = v_0^2 + 2 a a$	Velocity as	a functi	ion of displ	acement		1	1	x	1	1	
			Po	lar Coordi	nates:						
Y Rectai	ngular Coord	dinates (x,y) /= rsin	Po		nates:						
Y Rectai	ngular Coord	dinates (x,y) /= rsin	Pol		nates:						
Y Rectai	ngular Coord	dinates (x,y) /= rsin	Pol		nates:						

Motion o	compose	ed of two	o compo	nents:							
Translati	on					Rota	ation				
<u>Kinemat</u> Links	ics of Mu	ulti Bodi	<u>es</u>			Join	ts				
	-	-	-			" **-	,				
	,			_	>		* <				
Turning Two D	g pair OF lost	Pris Two	matic pair DOF lost b		H: Or	igher peir ne DOF los c	t				
										24	
Mechatro	nics: Me	chanical	Systems	Review							

Notes:										
1) Nonlinear										
2) Toggle po										
3) Mulitple s 4) Forces go	verned related	to kinemati	ics through p	ower as:	suming	conserv	ative m	achines		
1, 10.000 80	Terried Federal				34111118					
Cam systems:										
Automotive, man	nufacturing, roc	king chairs,	garage door	s, door l	atches					
a. Terminology										
Types of cams:										
		$\neg \nearrow$	1 1							
_ 📈	† [J/	J <u> </u>							
		7/,								
- (D)										
PLATE /RADIAL CAM	w	EDGE CAM								
-			+							
TE () A	H B									
	1									
BARREL CAM	»U	END/ELCE								
		END/FACE								
Type of follower:			Follo	wer Forn	n:					
Mechatronics: Med	chanical Systems	Review						2	6	

	Ca	am Funct	ion Synt	hesis							
		a. "la	w of Ca	ns"							
		b. Sa	mple Ca	m functio	ons						
•											
S											
								θ			
V											
a								θ			
j								θ			
L								θ			
n	/echatro	nics: Me	chanical	Svetame	Review				2	28	
	necilati 0	incs. IVIE	CHAINCAL	Эузсені	Keview						

Constan	t-velocit	y transm	nissions:										
Most co													
Gear tra	ins,			be	lts & pu	illeys,			gears	& spro	ckets		
Governir	ng equat	ion: $\frac{\omega_1}{\omega_2}$	$=-\frac{N_2}{N_1}$										
Gears:													
Gears 10													
Based on as in the			metry of	gear tee	th, the g	eometry	of a gea	r can be	standard	ized and	named,		
All gears	have invo	lute too	th profile	es									
For gears	to mesh,	they mu	ust have	the same	pitch ar	าd pressเ	ıre angle						
<u>Gear Pitc</u>	<u>h:</u>												
Pitch = Di	iametral I	Pitch = P	= P _d = N/	Ď									
											7	9	
Mechatro	onics: Me	chanical	Systems	Review									

standard gears

Pitch	
8	24
12	32
16	48
20	64
Material	
Brass	

Steel		
Face Widt	h	
1/8"	3/4	
3/16"	1"	
1/4"	1.1	/2"
1/2"		
Overall W	idth	
0.315"	0.94"	1.62"

3/8"	1"	1.88"
0.438"	1 1/4"	2.25"
1/2"	1.37"	2.38"
0.56"	1 1/2"	

Mount Type Press Fit

46 Products

About Gears

High-Load Metal Gears—20° Pressure Angle

Also known as spur gears, these gears have teeth with a 20° pressure angle, which have a wider profile they have greater strength to handle high loads.

For gears and racks to mesh correctly, they must have the same pressure angle and pitch. Use the components that have a 20° pressure angle.

For technical drawings and 3-D models, click on a part number.

11000	-i it moun										
								—Н	ub —		
	Number	Pitch		Face	Overall	Bore	For Shaft				
Pitch	of Teeth	Dia.	OD	Wd.	Wd.	Type	Dia.	Dia.	Wd.		Each
Brass											
64	16	0.25"	0.28"	1/8"	0.315"	Plain	1/8"	0.19"	0.19"	7880K11	\$11.37
64	24	0.375"	0.41"	1/8"	0.315"	Plain	1/8"	0.28"	0.19"	7880K13	13.45
64	28	0.438"	0.47"	1/8"	0.315"	Plain	1/8"	0.34"	0.19"	7880K14	14.65
48	12	0.25"	0.29"	1/8"	0.315"	Plain	1/8"	0.18"	0.19"	7880K17	11.37
48	15	0.312"	0.35"	1/8"	0.315"	Plain	1/8"	0.22"	0.19"	7880K18	12.33
48	18	0.375"	0.42"	1/8"	0.315"	Plain	1/8"	0.28"	0.19"	7880K19	13.45
48	24	0.5"	0.54"	1/8"	0.375"	Plain	3/16"	0.38"	0.25"	7880K21	15.78
48	36	0.75"	0.79"	1/8"	0.375"	Plain	3/16"	0.5"	0.25"	7880K23	18.71
48	48	1"	1.04"	1/8"	0.375"	Plain	1/4"	0.63"	0.25"	7880K24	29.43
32	12	0.375"	0.44"	3/16"	0.438"	Plain	1/8"	0.28"	0.25"	7880K25	13.45
32	14	0.438"	0.5"	3/16"	0.438"	Plain	1/8"	0.34"	0.25"	7880K26	14.22
32	16	0.5"	0.56"	3/16"	0.438"	Plain	3/16"	0.4"	0.25"	7880K27	15.08
32	20	0.625"	0.69"	3/16"	0.438"	Plain	3/16"	0.47"	0.25"	7880K29	16.96
32	24	0.75"	0.81"	3/16"	0.438"	Plain	3/16"	0.53"	0.25"	7880K31	19.73
32	28	0.875"	0.94"	3/16"	0.438"	Plain	3/16"	0.59"	0.25"	7880K32	21.22
32	36	1.125"	1.19"	3/16"	0.438"	Plain	1/4"	0.72"	0.25"	7880K34	27.12
32	40	1.25"	1.31"	3/16"	0.438"	Plain	1/4"	0.72"	0.25"	7880K35	29.51
32	48	1.5"	1.56"	3/16"	0.438"	Plain	1/4"	0.78"	0.25"	7880K36	34.73
24	12	0.5"	0.58"	1/4"	0.5"	Plain	3/16"	0.38"	0.25"	7880K37	22.45
24	15	0.625"	0.71"	1/4"	0.5"	Plain	3/16"	0.5"	0.25"	7880K38	22.45
24	18	0.75"	0.83"	1/4"	0.5"	Plain	3/16"	0.54"	0.25"	7880K39	25.08
24	21	0.875"	0.96"	1/4"	0.5"	Plain	3/16"	0.6"	0.25"	7880K41	23.88
24	36	1.5"	1.58"	1/4"	0.5"	Plain	1/4"	0.79"	0.25"	7880K44	37.96
24	48	2"	2.08"	1/4"	0.56"	Plain	5/16"	0.92"	0.31"	7880K45	53.14

High-Load Metal Gear Racks—20° Pressure Angle

Mechatronics: Mechanical Systems Review

These gear racks have teeth with a 20° pressure angle, which have a wider profile than 14 1/2° teeth, so they have greater strength to handle high loads.

For gears and racks to mesh correctly, they must have the same pressure angle and pitch. Use these racks with other components that have a 20° pressure angle.

Steel gear racks come longer than the length listed so you have room to finish the ends.

For technical drawings and 3-D models, click on a part number.

			2-ft. Le	ength —	4-ft. Le	ength —	6-ft. L€	ength —
	Face							
Pitch	Wd.	Ht.		Each		Each		Each
Brass								
64	1/8"	1/8"	7854K11	\$31.98		_		_
48	1/8"	1/8"	7854K12	31.98		_		_
32	3/16"	3/16"	7854K13	33.73		_		
24	1/4"	1/4"	7854K15	39.67		_		_
Steel								
20	1/2"	1/2"	5174T1	19.30	5174T11	\$36.18	5174T21	\$51.86
16	3/4"	3/4"	5174T2	23.46	5174T12	44.62	5174T22	64.46
12	1"	1"	5174T3	34.52	5174T13	63.14	5174T23	92.28
8	1 1/2"	1 1/2"	5174T4	67.08	5174T14	129.36	5174T24	189.86

31

			_
Oetails of Involute Gears			
	Correction Francisco		
	Spur Gear Form	ulas 	_
To Find	14½ degree Pressure Angle	20 and 25 degree Pressure Angles	_
Addendum, a	$a = \frac{1.0}{P}$	$\alpha = \frac{1.0}{P}$	
Dedendum, b	$b = \frac{1.157}{P}$	$b = \frac{1.250}{P}$	
Pitch diameter, D	$D = \frac{N}{P}$	$D = \frac{N}{P}$	
Outside diameter, D_o	$D_o = \frac{N+2}{P}$	$D_o = \frac{N+2}{P}$	
Number of teeth, N	$N = D \times P$	$N = D \times P$	
Tooth thickness, t	$t = \frac{1.5708}{P}$	$t = \frac{1.5708}{P}$	
Whole depth, h_t	$h_t = \frac{2.157}{P}$	$h_t = \frac{2.250}{P}$	
Clearance, c	$c = \frac{.157}{P}$	$c = \frac{.250}{P}$	
Center distance, C	$C = \frac{N_1 + N_2}{2 \times P}$	$C = \frac{N_1 + N_2}{2 \times P}$	
Working depth, h_k	$h_k = \frac{2}{P}$	$h_k = \frac{2}{P}$	
Chordal tooth thickness, t_c	$t_c = D \sin \left(\frac{90 \text{ degr}}{N} \right)$	$t_c = D \sin\left(\frac{90 \text{ degr}}{N}\right)$	ees)
Chordal addendum, a	$a_c = a + \frac{t^2}{4D}$	$a_c = \alpha + \frac{t^2}{4D}$	
Diametral pitch, P	$P = \frac{N}{D}$	$P = \frac{N}{D}$	
Center distance, C	$C = \frac{D_1 + D_2}{2}$	$C = \frac{D_1 + D_2}{2}$	
Mechatronics: Mechanical S	ystems Review		3:

Ge	ear train	design:												
<u> </u>		ucoigii.												
Fu	ınctiona	l require	ments o	n a Gear	train:									
#	Requi	rement			Ex	ample				refere	nce			
1	Gear	ratio					$m_v = \frac{1}{1}$	V ₃ N ₅		2-stag	e train			
								• 21•4		GMAM 31	AM PUDH			
										77				
2	Cente	r distanc	e			C	$R_2 + R_3$	$=\frac{N_2}{}$	<i>N</i> ₃	Ovan 31	AN PUDH			
						01 –	11 ₂ 1 113	2 <i>p</i>	d	7.				
								λ	N					
3	Cente	r distanc	e			$C_2 =$	$R_4 + R_5$	$=\frac{N_4+2p_4}{2p_4}$	d	CAM 31	AS FLOW			
										5. Dentition				
4	Rever	ted (equ	al cente	distance	e)		<i>C</i> ₁ =	<i>C</i> ₂		CAN 31	AM BUDH			
						$\frac{N_2}{N_2}$	$\frac{+N_3}{2p_d} =$	$\frac{N_4 + N_5}{2p_d}$	<u> </u>	7				
							$+ N_3 =$				_			
-														
										1			_	
	n a h = 2 :	ning: B4	-la - : - : · · · · ·	Cat - ··	Day ::-							3	5	
IVI	ecnatro	nics: Me	unanical	Systems	Keview									