K- Nearest Neighbors on Amazon Food Reviews

```
In [59]:
         %matplotlib inline
         import warnings
         warnings.filterwarnings("ignore")
         # General Packages
         import os
         import sqlite3
         import pandas as pd
         import numpy as np
         import string
         import re
         import nltk
         import datetime
         import time
         from decimal import *
         # Plotting Packages
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Packages for Tfidf
         from sklearn.feature extraction.text import TfidfTransformer
         from sklearn.feature_extraction.text import TfidfVectorizer
         # Packages for BOW (Bag of words)
         from sklearn.feature_extraction.text import CountVectorizer
         from sklearn.metrics import confusion matrix
         from sklearn import metrics
         from sklearn.metrics import roc_curve, auc
         # Packages for Text Preprocessing
         from nltk.stem.porter import PorterStemmer
         from nltk.corpus import stopwords
         from nltk.stem.wordnet import WordNetLemmatizer
         #Packages for Word2vec, Average Word2vec & Tf-Idf Weighted Word2Vec
         from gensim.models import Word2Vec
         from gensim.models import KeyedVectors
         import pickle
         #Packages for plotting Tsne plot
         from sklearn.manifold import TSNE
         from sklearn.cross_validation import train_test_split
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.metrics import accuracy score
         from sklearn.cross_validation import cross_val_score
         from collections import Counter
         from sklearn.metrics import accuracy_score
         from sklearn import cross_validation
         from sklearn.metrics import classification_report, confusion_matrix
         from sklearn.model_selection import TimeSeriesSplit
         from prettytable import PrettyTable
         from prettytable import MSWORD FRIENDLY
         from sklearn.metrics import recall_score
         from sklearn.metrics import precision_score
         from sklearn.metrics import f1_score
         from sklearn.metrics import roc_curve
         from sklearn.naive bayes import BernoulliNB
         from sklearn.naive_bayes import MultinomialNB
         from sklearn.model_selection import GridSearchCV
         from sklearn.model selection import RandomizedSearchCV
         from sklearn.metrics import make_scorer, accuracy_score,average_precision_score
         from sklearn.decomposition import TruncatedSVD
```

Preprocessing Stage: Cleansed Stop Words, Punctuations & Html tags

```
In [61]: #Connecting the Sqlite file after the Preprocessing Stage
    #os.chdir('/Users/sujis/Downloads/AI/Sujit')
    os.chdir('C:\Users\sujit.venkata\Downloads\Dev & Imp works\Applied AI')
    con = sqlite3.connect('final.sqlite')
    final= pd.read_sql_query(""" SELECT * FROM Reviews """, con)
```

In [62]: final.head(1)

Out[62]:

0 138706 150524 0006641040 ACITT7DI6IDDL shari zychinski 0 0 positive 938		index	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	
	C	138706	150524	0006641040	LACITT7DI6IDDI		0	0	positive	93934

In [63]: final['Score'].value_counts()

TimeSeriesSplit(n_splits=5)

Out[63]: positive 307061 negative 57110 Name: Score, dtype: int64

Taking a Sample of 75000 records from the Dataset

```
In [64]: # Taking 75K data points from the dataset
         final_dataset=final.head(75000)
In [65]: final_dataset['Score'].value_counts()
Out[65]: positive
                     63939
         negative
                     11061
         Name: Score, dtype: int64
In [66]: | #Sorting the Dataframe with Date to apply Timebased Split
         final_dataset=final_dataset.sort_values(by='Time',ascending=1)
In [67]: # create design matrix X and target vector y
         X = np.array(final_dataset.iloc[:, 0:12]) # end index is exclusive
         Y = np.array(final_dataset['Score']) # showing you two ways of indexing a pandas df
In [68]: #Time based split
         tscv = TimeSeriesSplit(n_splits=5)
         print(tscv)
```

file:///C:/Users/sujit.venkata/Downloads/Dev%20&%20Imp%20works/Applied%20AI/Naive+Bayes+%2540+Amazon+Food+Reviews+.html

```
#Splitting the Dataset into Train set & Test set
In [69]:
        for train_index, test_index in tscv.split(X):
          print("TRAIN:", train_index, "TEST:", test_index)
          X_train, X_test = X[train_index], X[test_index]
          Y train, Y test = Y[train index], Y[test index]
        ('TRAIN:', array([
                          0,
                                1,
                                      2, ..., 12497, 12498, 12499], dtype=int64), 'TEST:', array([12500, 12501,
        12502, ..., 24997, 24998, 24999], dtype=int64))
                                     2, ..., 24997, 24998, 24999], dtype=int64), 'TEST:', array([25000, 25001,
        ('TRAIN:', array([
                         0,
                              1,
        25002, ..., 37497, 37498, 37499], dtype=int64))
        ('TRAIN:', array([
                                      2, ..., 37497, 37498, 37499], dtype=int64), 'TEST:', array([37500, 37501,
                          0,
                                1.
        37502, ..., 49997, 49998, 49999], dtype=int64))
        ('TRAIN:', array([
                        0,
                                      2, ..., 49997, 49998, 49999], dtype=int64), 'TEST:', array([50000, 50001,
                               1.
        50002, ..., 62497, 62498, 62499], dtype=int64))
        ('TRAIN:', array([ 0, 1,
                                      2, ..., 62497, 62498, 62499], dtype=int64), 'TEST:', array([62500, 62501,
        62502, ..., 74997, 74998, 74999], dtype=int64))
In [70]:
        print(X_train.shape)
        print(X_test.shape)
        print('-----
        print(Y_train.shape)
        print(Y_test.shape)
        (62500L, 12L)
        (12500L, 12L)
        (62500L,)
        (12500L,)
        # Converting X_Train, X_cv & X_test data is to Dataframe for the ease of use
        'Summary', 'Text', 'CleanedText'])
        'Summary', 'Text', 'CleanedText'])
```

Bag of Words

```
In [72]: # create the transform
         vectorizer = CountVectorizer()
         # tokenize and build vocab
         vectorizer.fit(X_train_data['CleanedText'].values)
         # Bag of Words : Train Data Set
         Train_X_vector = vectorizer.transform(X_train_data['CleanedText'].values)
         # summarize encoded vector
         print(Train_X_vector.shape)
         (62500, 30110)
In [73]: #Test Data Set
         Test_X_vector = vectorizer.transform(X_test_data['CleanedText'].values)
         print(Test_X_vector.shape)
         (12500, 30110)
In [74]:
         print(Train_X_vector.shape)
         print(Test_X_vector.shape)
         print('----')
         print(Y_train.shape)
         print(Y test.shape)
         (62500, 30110)
         (12500, 30110)
         (62500L,)
         (12500L,)
```

```
In [75]: # 10 fold Cross Validation
    cv_scores=[]
    Params = list(np.arange(0.1,1,0.01))

for a in Params:
    nb = MultinomialNB(alpha=a)
    scores = cross_val_score(nb, Train_X_vector, Y_train, cv=10, scoring='accuracy')
    cv_scores.append(scores.mean())

# changing to misclassification error
MSE = [1 - x for x in cv_scores]
```

```
In [76]: # determining best k
  optimal_alpha = Params[MSE.index(min(MSE))]
  print('\nThe optimal alpha is %0.3f' % optimal_alpha)
```

The optimal alpha is 0.990

```
In [77]: # plot misclassification error vs k
plt.plot(Params, MSE)

plt.xlabel('Alpha Parameters')
plt.ylabel('Misclassification Error')
plt.show()

print("the misclassification error for each Alpha value is : ", np.round(MSE,4))
```



```
('the misclassification error for each Alpha value is: ', array([ 0.1115,  0.1114,  0.1112,  0.1109,  0.1111,  0.1111,  0.1111,  0.1111,  0.1111,  0.1111,  0.1111,  0.1111,  0.1111,  0.1111,  0.1109,  0.1109,  0.1107,  0.1108,  0.1106,  0.1105,  0.1104,  0.1104,  0.1104,  0.1104,  0.1104,  0.1104,  0.1101,  0.1101,  0.1099,  0.1098,  0.1096,  0.1094,  0.1093,  0.1092,  0.1091,  0.109,  0.1088,  0.1088,  0.1087,  0.1085,  0.1082,  0.1081,  0.108,  0.108,  0.1078,  0.1078,  0.1076,  0.1074,  0.1073,  0.1071,  0.107,  0.107,  0.107,  0.107,  0.107,  0.107,  0.107,  0.1069,  0.1069,  0.1067,  0.1065,  0.1065,  0.1063,  0.1062,  0.1063,  0.106,  0.1059,  0.1058,  0.1058,  0.1057,  0.1054,  0.1052,  0.105,  0.1055,  0.1055,  0.1049,  0.1049,  0.1048,  0.1047,  0.1047,  0.1046,  0.1045,  0.1044,  0.1043,  0.1042,  0.1044,  0.1039,  0.1037,  0.1036,  0.1034,  0.1033,  0.1032,  0.1032]))
```

```
In [78]: nb = BernoulliNB(alpha=optimal_alpha)
    nb.fit(Train_X_vector,Y_train)
    pred = nb.predict(Test_X_vector)
    nb.predict_proba(Test_X_vector)
    bag_test_acc = accuracy_score(Y_test, pred, normalize=True) * float(100)
    print('\nThe accuracy of the Naive Bayes Classifier for Alpha = %0.3f is %0.2f%%' % (optimal_alpha, bag_test_acc))
    #print('\n***Test accuracy for Alpha = 0.990 is %0.2f%%' % (bag_test_acc))
```

The accuracy of the Naive Bayes Classifier for Alpha = 0.990 is 85.10%

```
In [79]: # Getting top Features using feature_log_prob
    neg=np.take(vectorizer.get_feature_names(), (nb.feature_log_prob_[0, :].argsort())[:20]).tolist()
    pos=np.take(vectorizer.get_feature_names(), (nb.feature_log_prob_[1, :].argsort())[:20]).tolist()
```

```
In [80]:
         # Getting top Features using feature_count
         def takefeature(elem):
             return elem[0]
         def important_features(vectorizer,classifier,n=20):
             class labels = classifier.classes
             feature_names =vectorizer.get_feature_names()
             topn_class1 = sorted(zip(classifier.feature_count_[0], feature_names),key=takefeature,reverse=True)[:n]
             topn_class2 = sorted(zip(classifier.feature_count_[1], feature_names),key=takefeature,reverse=True)[:n]
             return topn class1,topn class2
In [81]: neg bw,pos bw=important features(vectorizer,nb,n=20)
In [82]: Conf_matrix=confusion_matrix(Y_test, pred)
In [83]: import numpy as np
         def plot_confusion_matrix(cm,
                                    target_names,
                                    title='Confusion matrix',
                                    cmap=None,
                                    normalize=True):
             import matplotlib.pyplot as plt
             import numpy as np
             import itertools
             accuracy = np.trace(cm) / float(np.sum(cm))
             misclass = 1 - accuracy
             if cmap is None:
                 cmap = plt.get_cmap('Blues')
             plt.figure(figsize=(8, 6))
             plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             if target names is not None:
                 tick_marks = np.arange(len(target_names))
                 plt.xticks(tick_marks, target_names, rotation=45)
                 plt.yticks(tick_marks, target_names)
             if normalize:
                 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
             thresh = cm.max() / 1.5 if normalize else cm.max() / 2
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                 if normalize:
                     plt.text(j, i, "{:0.4f}".format(cm[i, j]),
                               horizontalalignment="center"
                               color="white" if cm[i, j] > thresh else "black")
                 else:
                     plt.text(j, i, "{:,}".format(cm[i, j]),
                               horizontalalignment="center",
                              color="white" if cm[i, j] > thresh else "black")
             plt.tight layout()
             plt.ylabel('True label')
             plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
             plt.show()
```



```
In [85]: Conf_matrix
```

Out[85]: array([[1223, 1145], [717, 9415]])

In [86]: TN,FP,FN,TP = Conf_matrix.ravel()
#confusion_matrix(Y_test, pred)

In [87]: # Sensitivity, hit rate, recall, or true positive rate
 TPR ='{0:.2%}'.format(Decimal(TP)/Decimal(TP+FN))
 # Specificity or true negative rate
 TNR ='{0:.2%}'.format(Decimal(TN)/Decimal(TN+FP))
 # Fall out or false positive rate
 FPR ='{0:.2%}'.format(Decimal(FP)/Decimal(FP+TN))
 # False negative rate
 FNR ='{0:.2%}'.format(Decimal(FN)/Decimal(TP+FN))
 # Precision or positive predictive value
 PPV ='{0:.2%}'.format(Decimal(TP)/Decimal(TP+FP))

Negative predictive value
NPV = '{0:.2%}'.format(Decimal(TN)/Decimal(TN+FN))

Overall accuracy
ACC = '{0:.2%}'.format(Decimal(TP+TN)/Decimal(TP+FP+FN+TN))

In [88]: Recall=recall_score(Y_test, pred, average='micro')

In [89]: Precision=precision_score(Y_test, pred, average='micro')

In [90]: F1_Score=f1_score(Y_test, pred, average='weighted')

In [91]: pd.crosstab(Y_test, pred, rownames=['True'], colnames=['Predicted'], margins=True)

Out[91]:

Predicted	negative	positive	All	
True				
negative	1223	1145	2368	
positive	717	9415	10132	
All	1940	10560	12500	

```
Naive Bayes @ Amazon Food Reviews
In [92]: Pretty.add_row(["Bag of Words","10 fold - Cross Validation",optimal_alpha,TPR,TNR,'{0:.2f}'.format(Precision),
         '{0:.2f}'.format(Recall),'{0:.2f}'.format(F1_Score),FPR,FNR,PPV,NPV,ACC])
In [93]: print(Pretty)
                                                    | K
                                                              TPR
                                                                  | TNR | Precision | Recall | F1-Score | FPR
             Model
                                 Algorithm
                         NPV
            FNR | PPV
                                  Overall Accuracy (ACC)
           Bag of Words | 10 fold - Cross Validation | 0.99 |
                                                             92.92% | 51.65% |
                                                                                 0.85
                                                                                       0.85
                                                                                                     0.85 | 48.35%
         | 7.08% | 89.16% | 63.04% |
                                            85.10%
In [94]: print(classification_report(Y_test, pred))
                     precision
                                  recall f1-score
                                                     support
                                    0.52
                          0.63
                                              0.57
                                                        2368
            negative
            positive
                          0.89
                                    0.93
                                              0.91
                                                       10132
                                    0.85
                                                       12500
         avg / total
                          0.84
                                              0.85
In [95]: tf_transformer = TfidfVectorizer(ngram_range=(1,2))
         TF_vector=tf_transformer.fit(X_train_data['CleanedText'].values)
         TF_train_Vector = TF_vector.transform(X_train_data['CleanedText'].values)
```

TF - IDF

```
TF_train_Vector.shape
Out[95]: (62500, 885097)
In [96]: TF_test_Vector = TF_vector.transform(X_test_data['CleanedText'].values)
         TF_test_Vector.shape
Out[96]: (12500, 885097)
In [97]:
         print(TF_train_Vector.shape)
         print(TF_test_Vector.shape)
         print('----')
         print(Y_train.shape)
         print(Y_test.shape)
         (62500, 885097)
         (12500, 885097)
         (62500L,)
         (12500L,)
In [98]: # 10 fold Cross Validation
         cv_scores=[]
         Params = list(np.arange(0.1,1,0.01))
         for a in Params:
             nb = MultinomialNB(alpha=a)
             scores = cross_val_score(nb, TF_train_Vector, Y_train, cv=10, scoring='accuracy')
             cv_scores.append(scores.mean())
         # changing to misclassification error
         MSE = [1 - x for x in cv_scores]
In [99]:
         # determining best k
         optimal_alpha = Params[MSE.index(min(MSE))]
```

The optimal alpha is 0.100

print('\nThe optimal alpha is %0.3f' % optimal_alpha)

```
In [100]: # plot misclassification error vs k
plt.plot(Params, MSE)

plt.xlabel('Alpha Parameters')
plt.ylabel('Misclassification Error')
plt.show()

print("the misclassification error for each Alpha value is : ", np.round(MSE,4))
```



```
In [101]: nb = BernoulliNB(alpha=optimal_alpha)
    nb.fit(TF_train_Vector,Y_train)
    pred = nb.predict(TF_test_Vector)
    nb.predict_proba(TF_test_Vector)
    bag_test_acc = accuracy_score(Y_test, pred, normalize=True) * float(100)
    print('\nThe accuracy of the Naive Bayes Classifier for Alpha = %0.3f is %0.2f%%' % (optimal_alpha, bag_test_a cc))
```

The accuracy of the Naive Bayes Classifier for Alpha = 0.100 is 88.02%

```
In [102]: # Getting top Features using feature_log_prob
    neg=np.take(tf_transformer.get_feature_names(), (nb.feature_log_prob_[0, :].argsort())[:20]).tolist()
    pos=np.take(tf_transformer.get_feature_names(), (nb.feature_log_prob_[1, :].argsort())[:20]).tolist()
```

```
In [103]: # Getting top Features using feature_count
def takefeature(elem):
    return elem[0]
def important_features(vectorizer,classifier,n=20):
    class_labels = classifier.classes_
    feature_names = vectorizer.get_feature_names()
    topn_class1 = sorted(zip(classifier.feature_count_[0], feature_names),key=takefeature,reverse=True)[:n]
    topn_class2 = sorted(zip(classifier.feature_count_[1], feature_names),key=takefeature,reverse=True)[:n]
    return topn_class1,topn_class2
```

```
In [104]: neg_tf,pos_tf=important_features(tf_transformer,nb,n=20)
```

```
In [105]: Conf_matrix=confusion_matrix(Y_test, pred)
```



```
In [108]: TN,FP,FN,TP = Conf_matrix.ravel()
#confusion_matrix(Y_test, pred)
```

```
In [109]: # Sensitivity, hit rate, recall, or true positive rate
    TPR ='{0:.2%}'.format(Decimal(TP)/Decimal(TP+FN))
    # Specificity or true negative rate
    TNR ='{0:.2%}'.format(Decimal(TN)/Decimal(TN+FP))
    # Fall out or false positive rate
    FPR ='{0:.2%}'.format(Decimal(FP)/Decimal(FP+TN))
    # False negative rate
    FNR ='{0:.2%}'.format(Decimal(FN)/Decimal(TP+FN))
    # Precision or positive predictive value
    PPV ='{0:.2%}'.format(Decimal(TP)/Decimal(TP+FP))
    # Negative predictive value
    NPV ='{0:.2%}'.format(Decimal(TN)/Decimal(TN+FN))
    # Overall accuracy
    ACC ='{0:.2%}'.format(Decimal(TP+TN)/Decimal(TP+FP+FN+TN))
```

```
In [110]: Recall=recall_score(Y_test, pred, average='micro')
```

In [111]: Precision=precision score(Y test, pred, average='micro')

In [112]: F1_Score=f1_score(Y_test, pred, average='weighted')

In [113]: pd.crosstab(Y_test, pred, rownames=['True'], colnames=['Predicted'], margins=True)

Out[113]:

Predicted	negative	positive	All	
True				
negative	1049	1319	2368	
positive	179	9953	10132	
All	1228	11272	12500	

```
\label{lem:pretty.add_row(["TF - IDF","10 fold - Cross Validation", optimal_alpha, TPR, TNR, '\{0:.2f\}'. format(Precision), the state of the pretty of the 
In [114]:
                        '{0:.2f}'.format(Recall),'{0:.2f}'.format(F1_Score),FPR,FNR,PPV,NPV,ACC])
In [115]: print(classification_report(Y_test, pred))
                                                    precision
                                                                                 recall f1-score
                                                                                                                           support
                                                                                     0.44
                                                                                                            0.58
                             negative
                                                               0.85
                                                                                                                                  2368
                             positive
                                                               0.88
                                                                                     0.98
                                                                                                            0.93
                                                                                                                                10132
                                                               0.88
                                                                                     0.88
                                                                                                            0.86
                                                                                                                                12500
                       avg / total
In [116]: print(Pretty)
                                                                                                                                                                 TNR
                                                                                                                                                                                 | Precision | Recall | F1-Score |
                                                                               Algorithm
                                                                               | Overall Accuracy (ACC)
                             FNR | PPV
                                                             NPV
                           Bag of Words | 10 fold - Cross Validation | 0.99
                                                                                                                                             92.92% | 51.65% |
                                                                                                                                                                                            0.85
                                                                                                                                                                                                             0.85
                                                                                                                                                                                                                                         0.85
                                                                                                                                                                                                                                                        1 48.35%
                           7.08% | 89.16% | 63.04% |
                               TF - IDF | 10 fold - Cross Validation | 0.1
                                                                                                                                             98.23% | 44.30% |
                                                                                                                                                                                            0.88
                                                                                                                                                                                                            0.88
                                                                                                                                                                                                                                         0.86
                                                                                                                                                                                                                                                        | 55.70%
                        | 1.77% | 88.30% | 85.42% |
In [120]: print 'Top 20 Impotant Positive Features Identied using feature_count_'
                       Top 20 Impotant Positive Features Identied using feature_count_
In [161]: Features = pd.DataFrame({'Class':[], 'Model':[], 'Feature Counts' : [], 'Feature':[]})
                       for each in pos_bw:
                                Features = Features.append({'Class':'Positive','Model':'Bag of Words','Feature Counts': each[0],'Feature':
                        each[1]}, ignore_index=True)
                       for each in neg_bw:
                                Features = Features.append({'Class':'Negative','Model':'Bag of Words','Feature Counts': each[0],'Feature':
                       each[1]}, ignore_index=True)
                       for each in pos_tf:
                                Features = Features.append({'Class':'Positive','Model':'TF - IDF','Feature Counts': each[0],'Feature':each
                        [1]}, ignore_index=True)
                       for each in pos_tf:
                                Features = Features.append({'Class':'Negative','Model':'TF - IDF','Feature Counts': each[0],'Feature':each
                        [1]}, ignore_index=True)
```

In [162]: Features

Out[162]:

	Class	Feature	Footure Counts	Model
_	Class		Feature Counts	Model
0	Positive	like	15110.0	Bag of Words
1	Positive	tast .	14851.0	Bag of Words
2	Positive	love	14716.0	Bag of Words
3	Positive	great	14525.0	Bag of Words
4	Positive	good	14238.0	Bag of Words
5	Positive	use	12339.0	Bag of Words
6	Positive	one	11805.0	Bag of Words
7	Positive	flavor	11427.0	Bag of Words
8	Positive	product	10955.0	Bag of Words
9	Positive	tri	10884.0	Bag of Words
10	Positive	make	10573.0	Bag of Words
11	Positive	get	9508.0	Bag of Words
12	Positive	time	8144.0	Bag of Words
13	Positive	best	7836.0	Bag of Words
14	Positive	find	7595.0	Bag of Words
15	Positive	buy	7519.0	Bag of Words
16	Positive	tea	7343.0	Bag of Words
17	Positive	eat	7065.0	Bag of Words
18	Positive	amazon	7042.0	Bag of Words
19	Positive	realli	6936.0	Bag of Words
20	Negative	like	3022.0	Bag of Words
21	Negative	tast	2938.0	Bag of Words
22	Negative	product	2569.0	Bag of Words
23	Negative	one	2164.0	Bag of Words
24	Negative	would	1986.0	Bag of Words
25	Negative	tri	1881.0	Bag of Words
26	Negative	good	1744.0	Bag of Words
27	Negative	buy	1706.0	Bag of Words
28	Negative	get	1595.0	Bag of Words
29	Negative	flavor	1561.0	Bag of Words
50	Positive	make	10573.0	TF - IDF
51	Positive	get	9508.0	TF - IDF
52	Positive	time	8144.0	TF - IDF
53	Positive	best	7836.0	TF - IDF
54	Positive	find	7595.0	TF - IDF
55	Positive	buy	7519.0	TF - IDF
56	Positive	tea	7343.0	TF - IDF
57	Positive	eat	7065.0	TF - IDF
58	Positive	amazon	7042.0	TF - IDF
59	Positive	realli	6936.0	TF - IDF
60	Negative	like	15110.0	TF - IDF
61	Negative	tast	14851.0	TF - IDF
٠.	. rogative	last	1 700 1.0	וטו

	Class	Feature	Feature Counts	Model
62	Negative	love	14716.0	TF - IDF
63	Negative	great	14525.0	TF - IDF
64	Negative	good	14238.0	TF - IDF
65	Negative	use	12339.0	TF - IDF
66	Negative	one	11805.0	TF - IDF
67	Negative	flavor	11427.0	TF - IDF
68	Negative	product	10955.0	TF - IDF
69	Negative	tri	10884.0	TF - IDF
70	Negative	make	10573.0	TF - IDF
71	Negative	get	9508.0	TF - IDF
72	Negative	time	8144.0	TF - IDF
73	Negative	best	7836.0	TF - IDF
74	Negative	find	7595.0	TF - IDF
75	Negative	buy	7519.0	TF - IDF
76	Negative	tea	7343.0	TF - IDF
77	Negative	eat	7065.0	TF - IDF
78	Negative	amazon	7042.0	TF - IDF
79	Negative	realli	6936.0	TF - IDF

80 rows × 4 columns

In [163]: Features.to_csv('Features.csv',index=None)

Conclusion

We can conclude that the "TF-IDF Vectorized Multinomial Naive Bayes Classifier" achieved significantly good Precision and Probability rates & TPR,TNR compared to "Bag of Words Vectorized Multinomial Naive Bayes Classifier".