

► RC-measure:

- Relevance: every approximate answer in S is η -close to an exact answer in Q(D) • Coverage: every exact answer in Q(D) is η -close to an approximate answer in S

How does it work?

Store "models" (access constraints + data oracles) instead of datasets

Store "approximate models" (access templates + data oracles)

- access templates: $\varphi = R(X \to Y, 2^k, acc(k))$
- ▶ data oracles: fetch(\bar{x}, k, φ) returns 2^k Y-values with accuracy acc(k)

fetch part of the Y-values with accuracy guarantee

$acc(S, Q(D)) \le \eta$

The first (only) accuracy measure for resource-bounded APQ / sub-linear plans generic queries (e.g., set-valued answers) bounded evaluation

How does it work?

Store "models" (access constraints + data oracles) instead of datasets

bounded approximation

Store "approximate models" (access templates + data oracles)

▶ access templates: $\varphi = R(X \to Y, 2^k, acc(k))$

fetch *part of the* Y-values with accuracy guarantee

- ▶ data oracles: fetch(\bar{x}, k, φ) returns 2^k Y-values with accuracy acc(k)
- ▶ RC-measure: $acc(S, Q(D)) \le \eta$
 - Relevance: every approximate answer in S is η -close to an exact answer in Q(D)
 - Coverage: every exact answer in Q(D) is η -close to an approximate answer in S

The first (only) accuracy measure for

► resource-bounded APQ / sub-linear plans

for *generic* queries

Features: (1) accessing $\leq \alpha |D|$ tuples; (2) deterministic accuracy bound

BEAS (Bounded EvAluation of Sql)

Bounded Evaluation + Bounded Approximation