

Unmatched data

- Un-adjusted analysis
 - Probability of the outcome given the risk factor
- Example
 - Probability of lung cancer among smokers and non-smokers

Unmatched data - adjusting for age

- Age-adjusted analysis
 - Probability of the outcome given the risk factor assuming cases and controls are the same with respect to the confounder
- Example
 - Probability of lung cancer among smokers and non-smokers assuming cases and controls have equal ages

Matched data

- Controls are matched to cases based on one or more confounders (e.g., age)
- Matched analysis
 - Probability that the subject "identified" by the risk factor as the case really is the case
- This handout focuses on 1-1 matching (1 control selected for each case)

Example: Pairs 1-4 of 6 pairs Cases and controls matched on age

Pair ID	Lun	g cancer	;	Smoking	
1	1	Case	1	Smoker	60
1	0	Control	0	Non-smoker	60
2	1	Case	1	Smoker	68
2	0	Control	0	Non-smoker	68
3	1	Case	1	Smoker	59
3	0	Control	0	Non-smoker	59
4	1	Case	1	Smoker	72
4	0	Control	0	Non-smoker	72

Probability that the smoker is the case = 4 pairs/6 pairs = 2/3 (pairs 1-4)

Example, cont: Pairs 5 & 6 of 6 pairs Cases and controls matched on age

Pair ID	Lun	g cancer		Smoking		
5	1	Case	0	Non-smoker	83	
5	0	Control	1	Smoker	83	
6	1	Case	0	Non-smoker	69	
6	0	Control	1	Smoker	69	

Probability that the non-smoker is the case = 2 pairs/6 pairs = 1/3 (pairs 5-6)

Problem

- With a large data set and a large number of model covariates, the "calculate-by-hand" approach is not feasible
- We can use <u>conditional</u> logistic regression to get the same results
 - Step 1: Define conditional likelihood
 - Step 2: Run conditional logistic regression
 - Step 3: Plug coefficient resulting from step 2 into equation in step 1

Step 1: Conditional likelihood

 The probability that the subject "identified" by the covariate values as the case really is the case is referred to as the <u>conditional likelihood</u> and can be calculated as

$$\begin{split} &l_k(\beta_1,\beta_2,...,\beta_p) = \\ &\frac{\exp(\beta_1 x_{1k,case} + ... + \beta_p x_{pk,case})}{\exp(\beta_1 x_{1k,case} + ... + \beta_p x_{pk,case}) + \exp(\beta_1 x_{1k,control} + ... + \beta_p x_{pk,control})} \end{split}$$

p= # of model covariates, k= # of the case-control pair

Example:

Conditional likelihood, pairs 1-4

- For pairs (i.e., strata) k=1-4
 - The smoker is the case $(smo_{Case\ k} = 1)$
 - The non-smoker is the control $(smo_{Control k} = 0)$

$$l_k(\hat{\beta}_{smo}) \frac{\exp(\hat{\beta}_{smo} \times smo_{Case\;k})}{\exp(\hat{\beta}_{smo} \times smo_{Case\;k}) + \exp(\hat{\beta}_{smo} \times smo_{Control\;k})}$$

$$= l_{smoker \ is \ case} \left(\hat{\beta}_{smo} \right) = \frac{\exp(\hat{\beta}_{smo} \times 1)}{\exp(\hat{\beta}_{smo} \times 1) + \exp(\hat{\beta}_{smo} \times 0)}$$

Example:

Conditional likelihood, pairs 5 & 6

- For pairs (i.e., strata) *k*=5, 6
 - The non-smoker is the case $(smo_{Case\ k} = 0)$
 - The smoker is the control $(smo_{Control k} = 1)$

$$l_k(\hat{\beta}_{smo}) \frac{\exp(\hat{\beta}_{smo} \times smo_{Case\;k})}{\exp(\hat{\beta}_{smo} \times smo_{Case\;k}) + \exp(\hat{\beta}_{smo} \times smo_{Control\;k})}$$

$$= l_{non-smoker\ is\ case} \left(\hat{\beta}_{smo} \right) = \frac{\exp(\hat{\beta}_{smo} \times 0)}{\exp(\hat{\beta}_{smo} \times 0) + \exp(\hat{\beta}_{smo} \times 1)}$$

Step 2: Conditional logistic regression

- We use conditional logistic regression to estimate the model coefficient(s)
- In SAS, conditional logistic regression can be performed using proc logistic with the STRATA command
- Note: The matching variable <u>should not</u> be a model covariate <u>except</u> in interaction terms

Example data test; input pair lc smo age; cards: 1 1 1 60 1 0 0 60 proc logistic descending data=test; model lc=smo; 2 1 1 68 20068 strata pair; 3 1 1 59 30059 41172 40072 5 1 0 83 pair = name of the stratum ID variable in the data set 5 0 1 83 61069 60169

Analysis of Conditional Maximum Likelihood Estimates Parameter DF Estimate Standard Wald Error Chi-Squ smo 1 (0.6931) 0.8660 0.6406 0.4235

Definitions Discordant pairs In the smoking & lung cancer example, the case and control of each pair have different values for smoking These case-control pairs are discordant Concordant pairs The value of smoking may be the same for the case and the control in a pair These case-control pairs are concordant

Estimating model coefficients
Concordant pairs cannot be used to estimate model coefficients
 To estimate the model coefficient(s) we need both types of discordant pairs Type 1 pair: Smoker is case, non-smoker is control Type 2 pair: Non-smoker is case, smoker is control
If all discordant pairs are of the same type, the model cannot be fit

Estimating model coefficients

 Note: The complete absence of one type of discordant pairs in a matched analysis corresponds to a zero cell in an unmatched analysis

Example: 1-1 matched GLOW study

- The data set was created from the GLOW500 data set by randomly selecting an <u>age matched</u> control for each case
- Variables
 - PAIR (pair id)
 - FRACTURE (outcome variable)
 - AGE (matching variable)
 - HEIGHT, WEIGHT, BMI (continuous)
 - PRIORFRAC, PREMENO, MOMFRAC, ARMASSIST, SMOKE, RATERISK (categorical)

Frequency of discordant pairs

PRIORFRAC	Frequency	Percent
Non-exposed=case, exposed=control	16	13.45
Concordant	66	55.46
Exposed=case, non-exposed=control	37	31.09

ARMASSIST	Frequency	Percent
Non-exposed=case, exposed=control	17	14.29
Concordant	70	58.82
Exposed=case, non-exposed=control	32	26.89

Frequency of discordant pairs

MOMFRAC	Frequency	Percent
Non-exposed=case, exposed=control	12	10.08
Concordant	87	73.11
Exposed=case, non-exposed=control	20	16.81

PREMENO	Frequency	Percent
Non-exposed=case, exposed=control	7	5.88
Concordant	98	82.35
Exposed=case, non-exposed=control	14	11.76

Frequency of discordant pairs

SMOKE	Frequency	Percent
Non-exposed=case, exposed=control	7	5.88
Concordant	107	89.92
Exposed=case, non-exposed=control	5	4.20

Frequency of discordant pairs

- Both types of discordant pairs are present for all variables
- But...even though the data set has 119 pairs, estimation of the coefficients is based on fewer pairs
- The coefficient for PREMENO is based on only 21 pairs (7+14)
- The coefficient for SMOKE is based on only 12 pairs (7+5)

Descriptive statistics for the continuous Fract Pairs Variable Mean SD Min Q1 Med Q3 Max 119 161.8 158.0 162.0 165.0 175.0 Height 5.4 150.0 Weight 71.1 16.8 39.9 59.0 67.1 115.7 81.6 BMI 27.1 5.9 15.0 22.6 26.1 30.7 42.2 119 Height 159.8 6.9 155.0 160.0 164.0 178.0 134.0 Weight 70.8 15.8 45.8 59.9 68.0 79.4 124.7 ВМІ 27.7 5.9 17.0 23.0 26.4 31.1 44.0

No obvious incorrect values

				Lowest		
FRACT	Variable	1	2	3	4	5
No	HEIGHT	150	150	152	152	152
	WEIGHT	39.9	40.8	43.1	44.9	45.4
	BMI	15.0	17.1	17.4	18.4	18.5
Yes	HEIGHT	134	142	143	147	148
	WEIGHT	45.8	46.3	47.6	48.1	48.1
	BMI	17.1	18.4	18.5	20.0	20.1
• No	o obvious inc	correct v	alues			

ariable	1	_			
		2	3	4	5
EIGHT	173	173	173	175	175
'EIGHT	104.3	105.2	110.7	112.0	115.7
MI	39.6	40.5	40.7	41.0	42.2
EIGHT	173	173	173	175	178
'EIGHT	111.1	111.6	113.4	117.0	124.7
MI	41.7	41.7	43.4	43.6	44.0
	EIGHT EIGHT MI	MI 39.6 EIGHT 173 EIGHT 111.1 MI 41.7	WI 39.6 40.5 EIGHT 173 173 EIGHT 111.1 111.6	MI 39.6 40.5 40.7 EIGHT 173 173 173 EIGHT 111.1 111.6 113.4	MI 39.6 40.5 40.7 41.0 EIGHT 173 173 173 175 EIGHT 111.1 111.6 113.4 117.0

Univariate splines Graphs do not suggest extreme deviations from linearity (not shown)

Re-check scale in multivariate model

Height, weight, BMI

Height, weight and BMI added <u>one at a time</u> to the model with PRIORFRAC, PREMENO, MOMFRAC, ARMASSIST, RATERISK2&3

	Wald p-value	Deviance
HEIGHT	0.0078	138.2
WEIGHT	0.2294	145.2
BMI	0.9696	146.9

· Only HEIGHT is statistically significant

Height, weight, BMI

Height, weight and BMI added in sets of two to the model with PRIORFRAC, PREMENO, MOMFRAC, ARMASSIST, RATERISK2&3 Wald p-value Deviance HEIGHT 0.0138 138.4 WEIGHT 0.5785 HEIGHT 0.0069 138.5 ВМІ 0.6528 WEIGHT 0.0045 137.3 ВМІ 0.0098

- Could choose HEIGHT only or WEIGHT and BMI
- The text chooses WEIGHT and BMI

Multivariate model 2

Variable	Coeff	Std Err	p-value	Unit	OR	95%	6 CI
BMI	0.2163	0.0837	0.0098	3	1.913	1.170	3.131
WEIGHT	-0.0888	0.0312	0.0045	3	0.766	0.638	0.921
PRIORFRAC	0.6897	0.3542	0.0515	1	1.993	0.995	3.991
PREMENO	0.2212	0.5529	0.6891	1	1.248	0.422	3.687
MOMFRAC	0.7477	0.4308	0.0826	1	2.112	0.908	4.914
ARMASSIST	0.8229	0.3810	0.0308	1	2.277	1.079	4.805
RATERISK 2	0.1302	0.3369	0.6992	1	1.139	0.589	2.205
RATERISK 3	0.5712	0.4240	0.1779	1	1.770	0.771	4.064

Multivariate model 3

Variable	Coeff	Std Err	P-value	Units	OR	95% CI	
ВМІ	0.2170	0.0833	0.0092	3	1.918	1.175	3.129
WEIGHT	-0.0894	0.0311	0.0040	1	0.765	0.637	0.918
PRIORFRAC	0.6974	0.3541	0.0489	1	2.009	1.003	4.020
MOMFRAC	0.7389	0.4283	0.0845	1	2.094	0.904	4.847
ARMASSIST	0.8518	0.3737	0.0226	1	2.344	1.127	4.875
RATERISK2	0.1489	0.3337	0.6554	1	1.161	0.603	2.232
RATERISK3	0.5972	0.4190	0.1541	1	1.817	0.799	4.130

No big changes in any OR after removing PREMENO

Multivariate model 4

Variable	Coeff	Std Err	P-value	Units	OR	95%	CI
BMI	0.2224	0.0810	0.0060	3	1.949	1.211	3.138
WEIGHT	-0.0947	0.0299	0.0016	3	0.753	0.631	0.898
PRIORFRAC	0.8349	0.3396	0.0140	1	2.305	1.184	4.484
MOMFRAC	0.7266	0.4093	0.0759	1	2.068	0.927	4.612
ARMASSIST	0.8888	0.3666	0.0153	1	2.432	1.186	4.990

- Some change in OR of PRIORFRAC after removing RATERISK
- However, 95% CI is quite wide and the change is likely noise
- MOMFRAC is borderline non-significant; keep for now

Scale of weight - fp method

 Dev_ linear
 e_ linear
 Dev_ fp1
 e1_ fp2
 e2_ fp2
 Dev_ fp2
 p_lin_ fp2
 p_lin_ fp2
 p_fp1_ fp2

 139.7
 .
 .
 -2
 -2
 135.6
 .
 0.2496
 .

- Best one-power = linear
- Best two-power = $\frac{1}{weight^2}$ and $\frac{1}{weight^2} \times \ln(weight)$
- Best two-power not significantly better than linear

Scale of BMI – fp method

		Dev_ fp1	e1_ fp2					p_fp1_ fp2
139.7	0	138.9	3	-2	136.6	0.3686	0.3752	0.3166

- Best one-power = ln(BMI)
- Best two-power = BMI^3 and $\frac{1}{BMI^2}$
- Best one-power not significantly better than linear
- Best two-power not significantly better than linear or best one-power

Final main effects model

Variable	Coeff	Std Err	P-value	Units	OR	95%	CI
BMI	0.2224	0.0810	0.0060	3	1.949	1.211	3.138
WEIGHT	-0.0947	0.0299	0.0016	3	0.753	0.631	0.898
PRIORFRAC	0.8349	0.3396	0.0140	1	2.305	1.184	4.484
MOMFRAC	0.7266	0.4093	0.0759	1	2.068	0.927	4.612
ARMASSIST	0.8888	0.3666	0.0153	1	2.432	1.186	4.990

The text suggests that this is the best main effects model

Significance of interaction terms when added to the main effects model one at a time

Parameter	p-value
weight*bmi	0.5108
weight*priorfrac	0.2270
weight*momfrac	0.7843
weight*armassist	0.8075
bmi*priorfrac	0.2270
bmi*momfrac	0.7994
bmi*armassist	0.9325

2 interaction terms are significant at the 0.1 level but are not used in the text

Parameter priorfrac*momfrac priorfrac*armassist 0.0829 momfrac*armassist 0.2427 weight*age 0.5492 bmi*age 0.5056 priorfrac*age 0.0905 momfrac*age 0.4790 armassist*age 0.8416

Matching variable, age, appears in interaction terms but it is NOT a main effect

Goodness-of-fit

- Cannot easily perform goodness of fit tests
- The distributional assumptions of goodness-offit tests that are currently available in statistical software packages do not hold in matched case-control studies

Outliers - Limitations

For conditional logistic regression

- Plots option is not available in SAS
- Cannot use covariate patterns
- Can only use leverage and (standardized) Pearson chi-square residual

Outliers in SAS

proc logistic descending data=GLOW11M;

model fracture=weight bmi priorfrac momfrac armassist; strata pair;

output out=diag h=h stdreschi=sreschi p=pihat;

axis1 label=(f=swiss h=3 'pihat') minor=none; axis2 label=(f=swiss h=3 a=90 'h') minor=none; axis3 label=(f=swiss h=3 a=90 'sreschi') minor=none;

Outliers in SAS

goptions FTEXT=swissb HTEXT=2.0 HSIZE=6 in VSIZE=6 in;

symbol1 c=black v=dot i=none;

proc gplot data=diag;

plot h*pihat/haxis=axis1 vaxis=axis2;

run; quit;

proc gplot data=diag;

plot sreschi*pihat/haxis=axis1 vaxis=axis3;

run; quit;

Outlier plots

- h: Note that the right half is a mirror image of the left half
- sreschi: Note that the bottom curve is a mirror image of the top curve

Selecting outliers

- Show observations with h>0.11
- Show observations with sreschi>2.1 (or < -2.1)
- Cutpoints were selected based on plots
- Could choose different cutpoints to get more outliers

Explaining outliers: Outliers based on h

PAIR	FRAC	WEIGHT	BMI	PRIOR	MOM	ARM	pihat	h	sres
	TURE			FRAC	FRAC	ASSIST			chi
49	0	61.7	23.22	0	0	0	0.66	0.12	-1.48
49	1	124.7	39.36	1	0	1	0.34	0.12	1.48
87	1	74.8	41.66	0	0	1	0.89	0.12	0.37
87	0	65.8	25.07	0	1	1	0.11	0.12	-0.37

Pairs 49 and 87

- 49: Case has an unusually high weight
- 87: Case has an unusually high BMI, especially given the weight
- Pairs 49 and 87 have little effect on goodnessof-fit (sreschi)

Explaining outliers: Outliers based on sreschi PAIR FRAC WEIGHT BMI PRIOR MOM ARM pihat h TURE FRAC FRAC ASSIST chi 37 72.6 26.03 0 0 0 0.19 0.04 2.11 37 0 64.4 25.80 0 0 0.81 0.04 -2.11 1 38 1 72.6 26.67 0 0 0 0.18 0.03 2.20 38 0 52.2 21.18 0.82 0.03 -2.20 0 0 117 1 57.2 23.81 1 0 0 0.18 0.05 2.18 117 0 50.8 20.61 0.82 0.05 -2.18

Pair 37

- Case has MOMFRAC=0 while control has MOMFRAC=1
- Case weighs more than control (but the more you weigh the lower your risk)
- pihat for case=0.19 but pihat for control=0.81
- Control looks more like a case and vice versa

Pair 38

- Case has PRIORFRAC=0 while control has PRIORFRAC=1
- Case weighs more than control (but the more you weigh the lower your risk)
- pihat for case=0.18 but pihat for control=0.82
- Control looks more like a case and vice versa

Pair 117

- Case has MOMFRAC=0 and ARMASSIST=0 while control has MOMFRAC=1 and ARMASSIST=1
- Case weighs more than control (but the more you weigh the lower your risk)
- pihat for case=0.18 but pihat for control=0.82
- Control looks more like a case and vice versa

ORs before and after deleting outliers

Variable	All in	Delete 37	Delete 38	Delete 117	Delete all 3
Weight	0.910	0.902	0.904	0.906	0.892
BMI	1.249	1.275	1.260	1.257	1.298
PRIORFRAC	2.305	2.321	2.601	2.328	2.685
MOMFRAC	2.068	2.427	2.090	2.415	2.966
ARMASSIST	2.432	2.522	2.521	2.778	3.056

- Weight and BMI: No big changes
- PRIORFRAC, MOMFRAC, ARMASSIST: ORs tend to increase as outliers are deleted

p-values before and after deleting outliers

Variable	All	Delete 37	Delete 38	Delete 117	Delete all 3
Weight	0.0016	0.0009	0.0010	0.0012	0.0004
BMI	0.0060	0.0036	0.0052	0.0053	0.0026
PRIORFRAC	0.0140	0.0140	0.0067	0.0140	0.0065
MOMFRAC	0.0759	0.0378	0.0747	0.0384	0.0164
ARMASSIST	0.0153	0.0129	0.0133	0.0073	0.0048

- P-values tend to decrease as outliers are deleted
- However, outliers don't have unreasonable values and don't have huge effects on the ORs
- We'll keep the outliers

Final model

Variable	Coeff	Std Err	p-value	Unit	OR	95%	CI
Weight	-0.0947	0.0299	0.0016	3	0.753	0.631	0.898
BMI	0.2224	0.0810	0.0060	3	1.949	1.211	3.138
PRIORFRAC	0.8349	0.3396	0.0140		2.305	1.184	4.484
MOMFRAC	0.7266	0.4093	0.0759		2.068	0.927	4.612
ARMASSIST	0.8888	0.3666	0.0153		2.432	1.186	4.990

Final model interpretation

- For each 3kg increase in weight, the fracture risk decreases about 25%
- For each 3 unit increase in BMI, the fracture risk almost doubles
- Persons with a prior fracture have a 2.3 fold increased fracture risk compared to persons without a prior fracture

Final model interpretation

- Persons with a mother who had a hip fracture have a 2 fold increased fracture risk compared to persons without a mother who had a hip fracture
- Persons who need arms to stand up from chair have an almost 2.5 fold increased fracture risk compared to persons who don't need their arms

Final model interpretation

- The 95% CIs are wide
- The 95% CI for MOMFRAC includes 1
- The study's sample size was small
- The number of discordant pairs was small for the categorical variables