ECE571: Final Project — Digit Recognizer

Zhifei Zhang, Shiqi Zhong, Liang Tong

University of Tennessee, Knoxville zzhang61@vols.utk.edu

January 20, 2015

Outline

Background

Classifiers

Experiment Results

Classifier Fusion

MNIST Database

MNIST

The MNIST database (Mixed National Institute of Standards and Technology database) is a large database of handwritten digits. Totally, there are **60,000** training samples and **10,000** testing samples.

```
1014007353

89133120997

802023114

9144263794

9144263791

1150634810

39616491

5489299895
```

Figure: Samples from NMIST

Previous work

Table: Previous results on MNIST database

Classifier	Preprocessing	Error rate (%)
Pairwise linear classifier	Deskewing	7.6
Boosted Stumps	Haar features	0.87
SVM	Deskewing	0.56
kNN	Shiftable edges	0.52
Neural Network	None	0.35
CNN	Width normalizations	0.23

Subset of MNIST

We use a subset of MNIST, roughly 5,000 samples.

Challenge

Achieve a good result on the subset.

Data Preprocessing

Vectorization

Figure: Vectorization of a image

Correlation detection

Delete features that are not strong correlated to the groundtruth.

Dimension reduction: $28 \times 28 = 784 \rightarrow 440$

Leave-20%-out Cross Validation

- Randomly select 20% samples as testing data
- The remain is training data
- Apply classifier and record accuracy

Number of epoch	Accuracy	Standard error	Computation time (s)
1	0.8114	0.0311	0.52
5	0.8650	0.0130	2.59
10	0.8993	0.0055	5.18
20	0.9029	0.0053	10.36
50	0.9026	0.0033	25.90

Classifier Implemented in the Project

- Maximum Posterior Probability (MPP)
- K Nearest Neighbors (kNN)
- Back-Propagation Neural Network (BPNN)
- K-means and Winner-take-all (WTA)
- Self-Organizing Map (SOM)
- Decision Tree (DT)
- Support Vector Machine (SVM)
- Random Forest (RF)
- Convolutional Neural Network (CNN)

Random Forest (RF)

Advantage over decision tree Avoid over fitting and improve performance.

Figure: Individual trees from random forest

Converlutionsal Neural Network (CNN)

Difference from BPNN

Each node is a map (image), rather than a number in BPNN.

Figure: CNN model

Comparisoin of Accuracy

Fusion Methods

- Majority voting (RF, SVM and CNN)
- Confusion matrix

Work Distribution

Z. Zhang	S. Zhong	L. Tong
SVM	MPP	kNN
RF	BPNN	SOM
CNN	k-means	DT
Fusion	WTA	PCA

Thank you!