For \mathcal{T} and \mathcal{T}' to be the same topology, then a subset $U \subseteq A \times B$ is open in \mathcal{T} if and only if it is open in \mathcal{T}' . Let U be open in \mathcal{T} , then there exist collections $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ and $\{V_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of open sets in A and B respectively where

$$U = \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \times V_{\alpha}$$

Since U_{α} and V_{α} are open in A and B respectively for all $\alpha \in \mathcal{A}$, we know that for each α , there exist open sets $U'_{\alpha} \subseteq X$ and $V'_{\alpha} \subseteq Y$ where $U_{\alpha} = A \cap U'_{\alpha}$ and $V_{\alpha} = B \cap V'_{\alpha}$, but since A