ELEC 3300

HOMEWORK 2

Please complete the following and submit your worksheet electronically before the deadline

Name :	LI, Yu-hsi	Student number :	20819823
Question 1:			
Part 1.a			
	, 1 5	ased on your student ID, you have I on your student ID. If the two digits	
Pin Set G is	filled as an example. **PA	AY ATTENTION to the	ORDER of your Pin
Sets**	_		·

Pin Set	Actual Pin Number on STM32	Default Function of the pin on 100pin STM32F103VET6
A	23	PA0
В	82	PD1
С	98	PE1
D	19	VSSA
Е	81	PD0
F	08	PC14
G	20	VREF-

Part 1.b

With reference to the updated MINI V3 schematic dated 20210304, for Pin Set A, C and F, locate where the pins are connected. Cut and Paste the detailed schematic, highlight it and attached below.

DO NOT USE LEFT SIDE OF PAGE 2 which listed all the Port Pins from PA0 to PE15.

Example: Pin Set G

Pin Set A	Pin Set C	Pin Set F	
REY1	PEU 98	PC14 8 0SC32_IN PC15 0SC32_001	

Part 1.c

With the Pin Set A, C and F you have, suppose I can directly access the pin from the CPU at the center of the development board directly (i.e. even if it is connected to other peripherals on the development board).

If I want to set that pin to GPIO input via external connection, what mode I can program the pin into? (Hint: Pay attention to any resistor is being connected to that pin.)

	Pin Set A	Pin Set C	Pin Set F
Please circle ALL the possible	GPIO_PULLUP	GPIO_PULLUP	GPIO_PULLUP
options.	GPIO_PULLDOWN	GPIO_PULLDOWN	GPIO_PULLDOWN
If the pin cannot be programmed to input, please circle N/A	GPIO_NOPULL	GPIO_NOPULL	GPIO_NOPULL
input, piease circle WA	N/A	N/A	N/A

Question 2:

Part 2.a

For a **2-minute** 5.1 surround sound (https://en.wikipedia.org/wiki/5.1_surround_sound), assuming the 5 full-bandwidth channels (ignoring the low frequency channel for this question) are being sampled at 44 kHz with 16-bit per channel, what would be the data size of the sound file in bytes? Show your calculation.

Sample rate: 44 kHz = 44,000 samples per second

Bit depth: 16 bits per sample Number of channels: 5

Data size = Sample rate x Bit depth x Number of channels x length of sound

- = 44000 samples/s x 16 bits/sample x 5 channels x 120s
- = 3520000 bits/s x 120 s
- = 440000 bytes/s x 120 s
- = 52800000 bytes
- $= 5.28 \times 10^7 \text{ bytes}$

The data size of the sound file will be 5.28×10^7 bytes

Part 2.b

With the sampling rate at 44 kHz, what is the time between each sample? Show your calculation.

Sampling rate = number of sample in 1 second

44kHz = 44k samples in 1 second = 1/44k second between each sample

 $\approx 0.00002273 \text{ s}$

 $\approx 2.273 * 10^{-5} \text{ s}$

 \cong 22.73µs

Part 2.c

With the sample time that you calculate in *Part 2.b* if we want to implement the sampling from the ADC of STM32 with different settings below. What is the total number of cycles needed? Hence, calculate the conversion time (Tconv) for the different settings

Total conversion time, Tcycle = sample cycles + 12.5 (conversion cycles)
Tconv = Tcycle / ADCCLK

	CLK (MHz) at the input before ADC Prescaler	ADC Prescaler (2/4/6/8)	ADCCLK (MHz) Max 14 MHz	time register	Total conversion time, Tcycle Sample time (cycles)	Tconv (μsec)
Setting 1	8	2	4	1.5	14	3.5
Setting 2	12	2	6	28.5	41	6.833
Setting 3	56	4	14	55.5	68	4.857
Setting 4	72	8	9	239.5	252	28

Part 2.d Can sampling in Part 2.b be achieved with the conversion time (Tconv) you calculated in Part 2.c for Setting 1 to 4? Please circle the correct answer and calculate the additional delay needed for different settings to achieve the goal.

	Can sampling	be achieved	Additional Delay needed (µsec)
Setting 1	YES	/ NO	22.73 - 3.5 = 19.23
Setting 2	YES	NO	22.73 - 6.83 = 15.9
Setting 3	YES	NO	22.73 - 4.857 = 17.873
Setting 4	YES	NO	N/A