W3. Lecture Notes — By Junyi

- 1. Common considerations
- Choice of classes and relations
- •Reification and handling higher arity relationships
- 2•RDF knowledge graph design driven by
- •Use over the WWW
- Reuse of vocabularies
- Linking data
- 3•Property Graph design driven by
- Optimizing query performance

Even though there are some guidelines to design, there are also equivalent good choices.

Outline - design schema

- ▼ design RDF graph
 - linked data principles
 - ▼ use IRI as names of things
 - identify the items of interest
 - short and pneumonic
 - ensure persistence
 - **▼** Use HTTP IRIs
 - people can lookup (dereferencing) things
 - ▼ provide useful information in RDF/SPARQL
 - · dereferencing of a non-information object returns RDF data
 - if must create new vocabulary, ensure...
 - documented, self-describing, visioning policy, defined in multiple languages, published by trusted sources
 - ▼ Include links to other URIs

- · relationship links
 - <foaf:based_near>
 - relate object in one dataset to an object in another
- identity links
 - <owl:sameAs>
 - equate object in one dataset to objects in another
- · vocabulary links
 - <rfbs:subClassOf>
 - links from the data to the definition of terms
- ▼ design property graph
 - ▼ choosing nodes, labels, and properties
 - ▼ when to introduce relationships
 - · when efficient access is required
 - ▼ when to introduce a relationship property
 - common use cases for relationship properties
 - time varying relationships
 - provenance
 - confidence
 - disadvantages
 - Many systems do not index on relationship properties
 - This may not be a problem if relationship properties are used in the last stage of query processing
 - For performance sensitive queries, it is better to reify the relationship