Klausur zur "Mathematik II für Informatik und Wirtschaftsinformatik"

Fachbereich Mathematik Dr. Robert Haller-Dintelmann						SoSe 2016 08.09.2016				
				Studiengang:						
Vorname:					Semester:					
Matrikelnummer:										
	Aufgabe	1	2	3	4	5	Σ	Bonus	Note	
	Punktzahl	14	20	7	12	16	69			
	erreichte Punktzahl									

Bitte füllen Sie den Kopf dieses Aufgabenblatts jetzt und leserlich in Blockschrift (Großbuchstaben) aus. Versehen Sie alle Blätter mit Ihrem Namen und Matrikelnummer und nummerieren Sie sie fortlaufend. Falten Sie am Ende der Klausur dieses Blatt einmal entlang der Linie über diesem Absatz so, dass Ihr Name und die Punktetabelle sichtbar bleiben, und legen Sie Ihre Bearbeitung hinein.

Als **Hilfsmittel** zugelassen sind alle schriftlichen Unterlagen. Geräte zur elektronischen Kommunikation dürfen weder benutzt noch griffbereit gehalten werden.

Die Bearbeitungszeit beträgt 90 Minuten.

Bedenken Sie: Wo nicht explizit anders angegeben, sind alle Ergebnisse zu begründen. Insbesondere werden Lösungswege bewertet; Zwischenschritte müssen genau beschrieben werden.

Tipp: Verschaffen Sie sich einen Gesamtüberblick über die Aufgaben, bevor Sie beginnen. Die Punktebewertung einer Aufgabe sagt nichts über ihre Schwierigkeit aus.

Viel Erfolg!

1. Aufgabe (14 Punkte)

(a) Untersuchen Sie, ob die folgenden Grenzwerte exisieren und berechnen Sie gegebenenfalls deren Wert.

(i)
$$\lim_{n\to\infty} \frac{\sqrt{3n^2+2}}{2n+5},$$

(ii)
$$\lim_{x \to 0} \frac{\sin(x)}{\ln(x+1)}.$$

(b) Bestimmen Sie den Fourierkoeffizienten a_1 der Funktion $f: [-\pi, \pi] \to \mathbb{R}$ mit f(x) = |x|.

2. Aufgabe (20 Punkte)

Gegeben sei die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 mit $f(x, y) = x^2(y-1) - \frac{1}{2}y^2$.

- (a) Berechnen Sie alle partiellen Ableitungen von f bis zur zweiten Ordnung, d. h. $\nabla f(x, y)$ und $H_f(x, y)$.
- (b) Unteruchen Sie f auf lokale Extrema und bestimmen Sie jeweils, ob es sich um Maxima oder Minima handelt.
- (c) Es sei $K := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ die abgeschlossene Einheitskreisscheibe. Existiert $\max_{(x,y) \in K} |f(x,y)|$?

3. Aufgabe (7 Punkte)

Zeigen Sie: Für alle $x, y \in \mathbb{R}$ mit 0 < x < y gilt

$$1 - \frac{x}{y} \le \ln\left(\frac{y}{x}\right) \le \frac{y}{x} - 1.$$

Hinweis: Logarithmus-Rechenregeln und Mittelwertsatz

4. Aufgabe (12 Punkte)

Entscheiden Sie, welche der folgenden Aussagen wahr oder falsch sind. Geben Sie außerdem jeweils einen Beweis oder ein Gegenbeispiel an.

Sie erhalten für die richtige Antwort jeweils einen und für die richtige Begründung jeweils drei Punkte.

- (a) Hat $\sum_{n=0}^{\infty} a_n x^n$ den Konvergenzradius 3, so ist $\sum_{n=0}^{\infty} a_n (-3)^n$ konvergent.
- (b) Es seien $f, g : \mathbb{R} \to \mathbb{R}$ stetig differenzierbare und ungerade Funktionen. Dann ist $f \cdot g'$ ebenfalls ungerade. Zur Erinnerung: $f : \mathbb{R} \to \mathbb{R}$ ist ungerade, wenn für alle $x \in \mathbb{R}$ gilt f(-x) = -f(x).
- (c) Es sei $g: \mathbb{R} \to \mathbb{R}$ stetig und $f(x) := \int_0^x g(t) dt$, $x \in \mathbb{R}$. Dann ist f differenzierbar und es gilt f' = g.

5	Aufasha	(Multiple	Choico)
Э.	Autdabe	liviuitible	Choice

(16 Punkte)

Entscheiden Sie, welche der folgenden Aussagen wahr und welche falsch sind. Sie müssen Ihre Antwort nicht begründen. Für jede richtig ausgefüllte Zeile bekommen Sie 2 Punkte, jede leere Zeile gibt 1 Punkt und eine fehlerhaft ausgefüllte Zeile wird mit 0 Punkten bewertet.

Sollten Sie eine Antwort korrigieren, kennzeichnen Sie eindeutig, welche Antwort gewertet werden soll. Im Zweifel wird die Antwort mit Null Punkten bewertet.

		Wahr	Falsch
(a)	Ist (a_n) eine konvergente reelle Folge, so ist auch (a_n^2) konvergent.		
(b)	Ist $f: \mathbb{R} \to \mathbb{R}$ stetig und $g: \mathbb{R} \to \mathbb{R}$ in einem Punkt x_0 unstetig, so ist auch $f \circ g$ in x_0 unstetig.		
(c)	Der Imaginärteil der komplexen Zahl i ²⁰¹⁶ ist Null.		
(d)	Für alle $x \in (-\pi/2, \pi/2)$ gilt $1 + \tan^2(x) = 1/\cos^2(x)$.		
(e)	Die Differentialgleichung $y'(t) = \sin(t)y(t) + \cos(t)$ ist linear.		
(f)	Ist $f: \mathbb{R}^d \to \mathbb{R}$ in $x_0 \in \mathbb{R}^d$ partiell differenzierbar, so ist f in x_0 stetig.		
(g)	Ist $f:[0,1] \to \mathbb{R}$ in 0 und 1 stetig, so ist sie auch in allen x zwischen 0 und 1 stetig.		
(h)	Sind $f, g : [0, 1] \to \mathbb{R}$ stetig, so gilt $\int_0^1 f(x) \cdot g(x) dx = \int_0^1 f(x) dx \cdot \int_0^1 g(x) dx$.		