Introduction to Algorithms

Binary Trees

Outline

In this talk, we will look at the binary tree data structure:

- Definition
- Properties
- A few applications
 - Ropes (strings)
 - Expression trees

This is not a binary tree:

The arbitrary number of children in general trees is often unnecessary—many real-life trees are restricted to two branches

- Expression trees using binary operators
- An ancestral tree of an individual, parents, grandparents, etc.
- Phylogenetic trees
- Lossless encoding algorithms

There are also issues with general trees:

There is no natural order between a node and its children

A binary tree is a restriction where each node has exactly two children:

- Each child is either empty or another binary tree
- This restriction allows us to label the children as *left* and *right* subtrees

At this point, recall that $lg(n) = \Theta(log_b(n))$ for any b

We will also refer to the two sub-trees as

- The left-hand sub-tree, and
- The right-hand sub-tree

Sample variations on binary trees with five nodes:

A *full* node is a node where both the left and right subtrees are non-empty trees

An *empty node* or a *null sub-tree* is any location where a new leaf node could be appended

A full binary tree is where each node is:

- A full node, or
- A leaf node

These have applications in

- Expression trees
- Huffman encoding

The binary node class is similar to the single node class:

```
#include <algorithm>
template <typename Type>
class Binary_node {
    protected:
        Type node_value;
        Binary node *p left tree;
        Binary node *p right tree;
    public:
        Binary_node( Type const & );
        Type value() const;
        Binary node *left() const;
        Binary node *right() const;
        bool is leaf() const;
        int size() const;
        int height() const;
        void clear();
}
```

We will usually only construct new leaf nodes

```
template <typename Type>
Binary_node<Type>::Binary_node( Type const &obj ):
node_value( obj ),
p_left_tree( nullptr ),
p_right_tree( nullptr ) {
    // Empty constructor
}
```

The accessors are similar to that of Single_list

```
template <typename Type>
Type Binary_node<Type>::value() const {
    return node value;
}
template <typename Type>
Binary node<Type> *Binary node<Type>::left() const {
    return p left tree;
}
template <typename Type>
Binary node<Type> *Binary node<Type>::right() const {
    return p right tree;
}
```

Much of the basic functionality is very similar to Simple_tree

```
template <typename Type>
bool Binary_node<Type>::is_leaf() const {
    return (left() == nullptr) && (right() == nullptr);
}
```

Size

The recursive size function runs in $\Theta(n)$ time and $\Theta(h)$ memory

■ These can be implemented to run in $\Theta(1)$

```
template <typename Type>
int Binary node<Type>::size() const {
    if ( left() == nullptr ) {
       return ( right() == nullptr ) ? 1 : 1 + right()->size();
    } else {
       return ( right() == nullptr ) ?
            1 + left()->size() :
            1 + left()->size() + right()->size();
}
         14
                             1
```

Height

The recursive height function also runs in $\Theta(n)$ time and $\Theta(h)$ memory

■ Later we will implement this in $\Theta(1)$ time

Clear

Removing all the nodes in a tree is similarly recursive:

```
template <typename Type>
void Binary_node<Type>::clear( Binary_node *&p_to_this ) {
    if ( left() != nullptr ) {
        left()->clear( p left tree );
    }
    if ( right() != nullptr ) {
        right()->clear( p_right_tree );
    delete this;
    p_to_this = nullptr;
}
```

Run Times

Recall that with linked lists and arrays, some operations would run in $\Theta(n)$ time

The run times of operations on binary trees, we will see, depends on the height of the tree

We will see that:

- The worst is clearly $\Theta(n)$
- Under average conditions, the height is $\Theta(\sqrt{n})$
- The best case is $\Theta(\ln(n))$

Run Times

If we can achieve and maintain a height $\Theta(\lg(n))$, we will see that many operations can run in $\Theta(\lg(n))$ we

Logarithmic time is not significantly worse than constant

time:

HERE, AT LAST, IS A SINGLE, DEFINITIVE STANDARD:

$lg(1000) \approx 10$	kB
$lg(1\ 000\ 000) \approx 20$	
$lg(1\ 000\ 000\ 000\) \approx 30$	
$\lg(1\ 000\ 000\ 000\ 000\) \approx 40$	
$\lg(1000^n) \approx 10 \ n$	

SYMBOL	NAME	SIZE	NOTES
kΒ	KILOBYTE	1024 BYTESOR 1000 BYTES	1000 BYTES DURING LEAP YEARS, 1024 OTHERWISE
KB	KELLY-BOOTLE STANDARD UNIT	1012 BYTES	COMPROMISE BETWEEN 1000 AND 1024 BYTES
K _i B	IMAGINARY KILOBYTE	1024 J-7 BYTES	USED IN QUANTUM COMPUTING
kЬ	INTEL KILOBYTE	1023.937528 BYTES	CALCULATED ON PENTIUM F.PU.
Кь	DRIVEMAKER'S KILOBYTE	CURRENTLY 908 BYTES	SHRINKS BY 4 BYTES EACH YEAR FOR MARKETING REASONS
KBa	BAKER'S KILOBYTE	1152 BYTES	9 BITS TO THE BYTE SINCE YOU'RE SUCH A GOOD CUSTOMER

KBYTE VS KBIT, AND THE CAPITALIZATION FOR EACH.

http://xkcd.com/394/

Any basic mathematical expression containing binary operators may be represented using a binary tree

For example, 3(4a + b + c) + d/5 + (6 - e)

Observations:

- Internal nodes store operators
- Leaf nodes store literals or variables
- No nodes have just one sub tree
- The order is not relevant for
 - Addition and multiplication (commutative)
- Order is relevant for
 - Subtraction and division (non-commutative)
- It is possible to replace non-commutative operators using the unary negation and inversion:

$$(a/b) = a b^{-1}$$
 $(a-b) = a + (-b)$

A post-order depth-first traversal converts such a tree to the reverse-Polish format

$$3\ 4\ a \times b\ c + + \times d\ 5 \div 6\ e - + +$$

Humans think in in-order

Computers think in post-order:

- Both operands must be loaded into registers
- The operation is then called on those registers

Most use in-order notation (C, C++, Java, C#, etc.)

Necessary to translate in-order into post-order

Summary

In this talk, we introduced binary trees

- Each node has two distinct and identifiable sub-trees
- Either sub-tree may optionally be empty
- The sub-trees are ordered relative to the other

We looked at:

- Properties
- Applications