Devoir à la maison n° 10

À rendre le 12 janvier

On cherche à déterminer l'ensemble des fonctions $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ vérifiant :

$$\forall x, y \in \mathbb{R}_+^*, \ f(xf(y)) = yf(x) \ \text{et} \ f(x) \xrightarrow[x \to 0]{} +\infty$$
 (*)

Soit f une telle fonction.

1) Questions préliminaires : Soit $g: \mathbb{R}_+^* \to \mathbb{R}_+^*$ un morphisme multiplicatif continu, i.e. g est continue et

$$\forall x, y \in \mathbb{R}_+^*, \ g(xy) = g(x)g(y).$$

- a) Montrer que pour tout x > 0 et $n \in \mathbb{Z}$, $g(x^n) = g(x)^n$.
- **b)** En déduire que, pour tout x > 0, $p \in \mathbb{Z}$ et $q \in \mathbb{Z}^*$, $g(x^{p/q}) = g(x)^{p/q}$.
- c) Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que, pour tout x > 0, $g(x) = x^{\alpha}$. Indication: On pourra raisonner par analyse-synthèse pour exprimer un tel éventuel α en fonction de g(e) dans la synthèse, puis dans l'analyse, commencer par montrer le résultat pour les réels dont le logarithme est rationnel.
- d) Les fonctions de cette forme là sont-elles toutes des morphismes multiplicatifs continus de \mathbb{R}_+^* ?
- **2)** a) Montrer que f est injective.
 - **b)** En déduire la valeur de f(1).
 - c) Montrer que f est involutive, *i.e.* que $f \circ f = \mathrm{Id}_{\mathbb{R}^*_{\perp}}$.
- 3) a) Montrer que f est un endomorphisme multiplicatif de \mathbb{R}_{+}^{*} .
 - **b)** En déduire que, si 0 < x < 1, alors f(x) > 1.
 - c) Que peut-on en déduire quant à la monotonie de f?
 - \mathbf{d}) En déduire que f est continue.
- 4) a) Déduire des questions précédentes la forme nécessaire de f.
 - **b)** Conclure.

— FIN —