Cap. 1 – Introducción a la Computadora y Programación en C

Esquema

- 1.1 Introducción
- 1.2 ¿Qué es una computadora?
- 1.3 Organización de una Computadora
- 1.4 Evolución de Sistemas Operativos
- 1.5 Computación Personal, Computación Distribuida y Computación Cliente/Servidor
- 1.6 Lenguaje Maquina, Lenguaje Ensamblador, y Lenguaje de Alto Nivel
- 1.7 La Historia de C
- 1.8 La librería Estándar de C
- 1.9 La tendencia clave del software: Tecnología de objetos
- 1.10 C++ y Como Programar C++
- 1.11 Java y Como Programar Java
- 1.12 Otros Lenguaje de Alto Nivel
- 1.13 Programación Estructurada
- 1.14 Lo básico de un típico ambiente de desarrollo de programa en C
- 1.15 Tendencias de Hardware
- 1.16 Historia de Internet
- 1.17 Historia de World Wide Web

1.1 Introducción

- Nosotros aprenderemos el lenguaje de programación C
 - Aprender sobre programación estructurada y técnicas de programación adecuadas
- Este curso es apropiado para
 - Personas técnicamente orientadas con poca o ninguna experiencia en programación
 - Programadores experimentados que quieren un tratamiento profundo y riguroso del lenguaje

1.2 ¿Qué es un computador?

Computador

- Dispositivo capaz de realizar cálculos y tomar decisiones lógicas
- Las computadoras procesan los datos bajo el control de conjuntos de instrucciones llamados programas informáticos

Hardware

- Varios dispositivos que comprenden una computadora
- Teclado, pantalla, ratón, discos, memoria,
 CD-ROM y unidades de procesamiento

Software

Los programas que se ejecutan en un ordenador

1.3 Organización de la computadora (I)

- Seis *Unidades Lógicas* en cada computador:
 - 1. Unidad de Entrada
 - Obtiene información de los dispositivos de entrada (teclado, ratón)
 - 2. Unidad de Salida
 - Produce información (a la pantalla, a la impresora, para controlar otros dispositivos)
 - 3. Unidad de Memoria
 - Acceso rápido, baja capacidad, almacena la información de entrada
 - 4. Unidad Aritmética y Lógica (ALU)
 - Realiza cálculos aritméticos y decisiones lógicas
 - 5. Unidad Central de Procesamiento(CPU)
 - Supervisa y coordina las otras secciones de la computadora
 - 6. Unidad Secundaria de Almacenamiento
 - Almacenamiento barato, a largo plazo, de alta capacidad, almacena programas inactivos

1.3 Organización de la computadora (II)

1.4 Evolución de Sistemas Operativos

• Procesamiento de lotes

Hacer sólo un trabajo o tarea a la vez

Sistemas operativos

- Gestionar las transiciones entre trabajos
- Aumento del rendimiento cantidad de trabajo que los ordenadores procesan

Multiprogramación

Muchos trabajos o tareas que comparten los recursos de la computadora

Tiempo compartido

 Ejecuta una pequeña porción del trabajo de un usuario y luego pasa al servicio del siguiente usuario

1.4 Evolución de Sistemas Operativos (I)

EVOLUCION DE LOS SISTEMAS OPERATIVOS

Un sistema operativo (SO) es un conjunto de programas o software destinado a permitir la comunicación del usuario con un ordenador y gestionar sus recursos de manera cómoda y eficiente. Comienza a trabajar cuando se enciende el ordenador, y gestiona el hardware de la máquina desde los niveles más básicos.

1.4 Evolución de Sistemas Operativos

En los siguientes enlaces se pueden encontrar una revisión completa de la historia de informática que abarca desde la primera hasta la sexta generación.

https://www.timetoast.com/timelines/historia-de-la-informatica-789e1e2c-0d3d-4921-acad-3e048f88f574

http://iic2333.ing.puc.cl/activities/history.html

https://scanftree.com/operating-system/evolution-of-os

1.5 Computación personal, computación distribuida y computación cliente/servidor

- Computador Personal
 - Lo suficientemente económico para el individuo
- Computación Distribuida
 - La informática distribuida en redes
- Computación Cliente/Servidor
 - Compartir información a través de redes informáticas entre servidores de archivos y clientes (ordenadores personales)

1.6 Lenguajes de máquina, lenguajes de ensamblaje e idiomas de alto nivel

- Tres tipos de lenguaje de programación
 - 1. Lenguaje Máquina
 - Cadenas de números que dan instrucciones específicas a la máquina
 - Ejemplo:

```
+1300042774
```

+1400593419

+1200274027

2. Lenguajes Ensamblado

- Abreviaturas en inglés que representan operaciones informáticas elementales (traducidas a través de ensambladores)
- Ejemplo:

LOAD BASEPAY

ADD OVERPAY

STORE GROSSPAY

© 2000 Prentice Hall, Inc. All rights reserved.

1.6 Lenguajes de máquina, lenguajes de ensamblaje e idiomas de alto nivel (II)

- 3. Lenguajes de Alto-Nivel
- Es similar al inglés cotidiano y utiliza notaciones matemáticas (traducidas a través de compiladores)
- Ejemplo:

grossPay = basePay + overTimePay

1.6 Lenguajes de máquina, lenguajes de ensamblaje e idiomas de alto nivel (III)

https://theconversation.com/learn-computerese-as-a-second-language-thats-code-for-code-14989

1.6 Lenguajes de máquina, lenguajes de ensamblaje e idiomas de alto nivel (IV)

Acorde al "TIOBE index" el siguiente es el ranking de lenguajes más utilizado en el 2020

Apr 2020	Apr 2019	Change	Programming Language	Ratings	Change
1	1		Java	16.73%	+1.69%
2	2		С	16.72%	+2.64%
3	4	^	Python	9.31%	+1.15%
4	3	•	C++	6.78%	-2.06%
5	6	^	C#	4.74%	+1.23%
6	5	~	Visual Basic	4.72%	-1.07%
7	7		JavaScript	2.38%	-0.12%
8	9	^	PHP	2.37%	+0.13%
9	8	•	SQL	2.17%	-0.10%
10	16	*	R	1.54%	+0.35%
11	19	*	Swift	1.52%	+0.54%
12	18	*	Go	1.36%	+0.35%
13	13		Ruby	1.25%	-0.02%
14	10	*	Assembly language	1.16%	-0.55%
15	22	*	PL/SQL	1.05%	+0.26%

1.6 Lenguajes de máquina, lenguajes de ensamblaje e idiomas de alto nivel (V)

1.7 Historia de C

• C

- Evolucionado por Ritchie de un lenguaje de programación previo,
 BCPL y B
- Utilizado para desarrollar UNIX
- Ahora, muchos de los sistemas operativos están escritos con C o
 C++
- Hardware independiente (portable)
- A finales de los años 70, el "C" había evolucionado hasta el "C" tradicional.

Estandarización

- Existían muchas variaciones leves de C, y eran compatibles
- Se formó un comité para crear una definición "inequívoca e independiente de la máquina".
- Norma creada en 1989, actualizada en 1999

1.8 La librería Estándar de C

- Los programas de C consisten de piezas/módulos llamados funciones
 - Un programador puede crear sus propias funciones
 - Ventaja: el programador sabe exactamente cómo funciona
 - Desventaja: consume mucho tiempo
 - Los programadores a menudo usan las funciones de la biblioteca C
 - Usar estos como bloques de construcción
 - Evita reinventar la rueda
 - Si existe una función prefabricada, por lo general es mejor usarla en lugar de escribir la propia
 - Las funciones de la biblioteca son cuidadosamente escritas, eficientes y portátiles

1.9 La tendencia clave del software: Tecnología de objetos

Objectos

- Componentes de software reutilizables que modelan artículos en el mundo real
- Unidades de software significativas
 - Objetos de fecha, de hora, de cheque de pago, de factura, de audio, de vídeo, de archivo, de grabación, etc.
 - Cualquier sustantivo puede ser representado como un objeto
- Muy reutilizable
- Más comprensible, mejor organizado y más fácil de mantener que la programación de procedimientos
- Favorecer la modularidad

1.10 C++ y Como Programar C++

• C++

- El superconjunto de C desarrollado por Bjarne Stroustrup en Bell Labs
- "Arregla" C, y proporciona capacidades orientadas a los objetos
 - Objetos componentes de software reutilizables
- Diseño orientado a objetos muy poderoso
 - Aumento de la productividad de 10 a 100 veces
- Lenguaje dominante en la industria y la universidad

• Aprender C++

 Debido a que el C++ incluye el C, algunos sienten que es mejor dominar el C, y luego aprender el C++

1.11 Java y Como Programar Java

• Java es utilizado para

- Create Web pages with dynamic and interactive content
- Desarrollar aplicaciones empresariales a gran escala
- Mejorar la funcionalidad de los servidores web
- Proporcionar aplicaciones para dispositivos de consumo (como teléfonos celulares, localizadores y asistentes digitales personales)

• Como programar Java

- Siguió de cerca el desarrollo de Java por Sun
- Enseña a los estudiantes de programación de primer año lo esencial de los gráficos, imágenes, animación, audio, video, base de datos, redes, multihilo y computación colaborativa

1.12 Otros Lenguajes de Alto Nivel

PYTHON

Aplicaciones científicas y de ciencias de datos

FORTRAN

Aplicaciones científicas y de ingeniería

• COBOL

Se utiliza para manipular grandes cantidades de datos

Pascal

Destinado a uso académico

1.13 Programación Estructurada

Programación estructurada

- El enfoque disciplinado de los programas de escritura
- Claro, fácil de probar y depurar, y fácil de modificar

Multitarea

- Especificando que muchas actividades corren en paralelo

1.14 Fundamentos de un entorno típico de desarrollo de un programa C

- Fases de Programas C:
 - 1. Editar
 - 2. Pre-procesar
 - 3. Compilar
 - 4. Enlazar
 - 5. Cargar
 - 6. Ejecutar

1.15 Tendencias de hardware

- Cada uno o dos años los siguientes aproximadamente doblan:
 - Cantidad de memoria para ejecutar los programas
 - Cantidad de almacenamiento secundario (como el almacenamiento en disco) para mantener los programas y datos a largo plazo
 - Las velocidades de los procesadores a las que los ordenadores ejecutan sus programas

1.15 Tendencias de hardware (Ley de Moore)

https://qph.fs.quoracdn.net/main-qimg-033cfb630cd8611ea50ca1 63f2220666

https://francis.naukas.com/files/2016/02/Dib ujo2060209-computers-down-for-moore-s-la w-1-193381.png

1.16 Historia de Internet

• Internet permite

- Comunicación rápida y fácil por correo electrónico
- Redes internacionales de computadoras

Conmutación de paquetes

- Transferir datos digitales a través de pequeños paquetes
- Permite a múltiples usuarios enviar y recibir datos simultáneamente

No hay un control centralizado

 Si una parte de la Internet falla, otras partes pueden seguir funcionando

Ancho de Banda

Capacidad de transporte de información de las líneas de comunicación

1.17 Historia de la World Wide Web

World Wide Web

- Localizar y ver documentos multimedia sobre casi cualquier tema
- Hace que la información sea accesible instantánea y convenientemente en todo el mundo
- Es posible que los individuos y las pequeñas empresas obtengan una exposición mundial
- Cambiar la forma en que se hacen los negocios

Mapa de Internet

https://internet-map.net/

Cap. 1 – Introducción a la Computadora y Programación en C

Esquema

- 1.1 Introducción
- 1.2 ¿Qué es una computadora?
- 1.3 Organización de una Computadora
- 1.4 Evolución de Sistemas Operativos
- 1.5 Computación Personal, Computación Distribuida y Computación Cliente/Servidor
- 1.6 Lenguaje Maquina, Lenguaje Ensamblador, y Lenguaje de Alto Nivel
- 1.7 La Historia de C
- 1.8 La librería Estándar de C
- 1.9 La tendencia clave del software: Tecnología de objetos
- 1.10 C++ y Como Programar C++
- 1.11 Java y Como Programar Java
- 1.12 Otros Lenguaje de Alto Nivel
- 1.13 Programación Estructurada
- 1.14 Lo básico de un típico ambiente de desarrollo de programa en C
- 1.15 Tendencias de Hardware
- 1.16 Historia de Internet
- 1.17 Historia de World Wide Web

