Learn some basic stuffs of polynomials

Delving into Polynomials

An unpractical guide

Rhodes Island Amiya

Table of Contents

Preface	iii
Delving into Polynomials	1
Prerequisites	 . 2
Definition of Polynomials	 . 29
Division Algorithm	 . 36
Roots of Polynomials	 . 41
Polynomials over \mathbb{F}	 . 45

Preface

本文是瞎写的。我给本文的另一个名字是"Re: ゼロから始めるポリノミアルのイントロダクション"。不过想了想, 算了算了。龙鸣日语, 不好意思直接说出来。

这是写给中学生看的。

总是可以去这儿得到本文的最新版本:

https://gitee.com/septsea/strange-book-zero

https://github.com/septsea/strange-book-zero

就先说到这里。

评注 总算写完 Prerequisites 了。我写这玩意儿花了好久好久啊。先发 布再说吧。

June 3, 2021

评注 忘记介绍域是什么东西了。我真是笨蛋啊。

June 3, 2021

Delving into Polynomials

Out of boredom, I wrote the article.

您将在本节熟悉一些记号与术语。建议您熟悉本节的内容后学习下一 节的内容。

在进入小节 Sets 前, 让我们先回顾命题、复数与数学归纳法吧!

定义 能判断真假的话是命题 (*proposition*)。正确的命题称为真命题; 错误的命题称为假命题。当然, 命题也可以用"对""错"形容。

例 根据常识,"日东升西落"是真命题。类似地,"月自身可发光"是假命题。

"这是什么?"不是命题,因为它没有作出判断。类似地,"请保持安静"也不是命题,因为它只是一个祈使句 (imperative sentence)。不过,"难道中国不强?"不但是命题,它还是正确的,因为这个反问 (rhetorical question)作出了正确的判断。

"x > 3" 不是命题, 因为它不可判断真假。像这种话里有未知元, 且揭秘未知元前不可知此话之真伪的话是开句 ($open\ sentence$)。

我们会经常遇到"若p,则q"的命题。

定义 设 "若 p, 则 q" 是真命题。我们说, p 是 q 的充分条件 (sufficient condition), q 是 p 的必要条件 (necessary condition)。

例 "若刚下过雨,则地面潮湿"是对的。"刚下过雨"是"充分的":根据常识可以知道这一点。"地面潮湿"是必要的:地面不潮湿,那么不可能刚下过雨。

评注 我们会遇到形如" ℓ "的一个必要与充分条件是 r"的命题。换个说法,就是"r 是 ℓ "的一个必要与充分条件"。再分解一下,就是"r 是 ℓ "的一个必要条件"与"r 是 ℓ "的一个充分条件"这二个命题。根据定义,这相当于"若 ℓ ,则 r"与"若 r,则 ℓ "都是真命题。也就是说, ℓ 跟 r 是等价的 (equivalent)。

证明 " ℓ " 的一个必要与充分条件是 r" 时,我们会把它分为必要性 (necessity) 与充分性 (sufficiency) 二个部分。证明必要性,就是证明 "r 是 ℓ 的一个必要条件",也就是证明 " ℓ " 是对的;换句话说,证明左边可以推出右边。证明充分性,就是证明 " ℓ " 是对的;换句话说,证明右边可以推出左边。

命题就介绍到这里。下面回顾复数基础。

定义 复数 (complex number) 是形如 x + yi (x, y 是实数) 的数。

评注 可将 x + yi 写为 x + iy。

定义 设 a,b,c,d 是实数。则

$$a + bi = c + di \iff a = c \text{ and } b = d_{\circ}$$

评注 我们把形如 a+0i 的复数写为 a, 并认为 a+0i 是实数。反过来,a 也可以认为是复数 a+0i。

形如 0+bi 的复数可写为 bi。按照习惯, 1i 可写为 i, 且 -1i 可写为 -i。

定义 复数的加、乘法定义为

$$(a + bi) + (c + di) = (a + c) + (b + d)i,$$

 $(a + bi)(c + di) = (ac - bd) + (ad + bc)i_{\circ}$

由此可见, 二个复数的和 (或积) 还是复数。

例 我们计算 i 与自己的积:

$$i \cdot i = (0 + 1i)(0 + 1i) = (0 \cdot 0 - 1 \cdot 1) + (0 \cdot 1 + 1 \cdot 0)i = -1_{\circ}$$

简单地说,就是

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{i}^2 = -1_0$$

设 z_1, z_2, z_3 是任意三个复数 (不必不同)。设 $z_1 = a + bi$ 。

命题 复数的加法适合如下运算律:

- (i) 交換律: $z_1 + z_2 = z_2 + z_1$;
- (ii) 结合律: $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$;
- (iii) $0 + z_1 = z_1$;
- (iv) 存在复数 w = (-a) + (-b)i 使 $w + z_1 = 0$ 。

通常把适合 (iv) 的 w 记为 $-z_1$, 且称之为 z_1 的相反数。

评注 (-a) + (-b)i 可写为 $-a - bi_{\circ}$

定义 复数的减法定义为

$$z_2 - z_1 = z_2 + (-z_1)_\circ$$

命题 复数的乘法适合如下运算律:

- (v) 交換律: $z_1 z_2 = z_2 z_1$;
- (vi) 结合律: $(z_1z_2)z_3 = z_1(z_2z_3)$;
- (vii) $1z_1 = z_1$;
- (viii) 若 $z_1 \neq 0$, 则存在复数 $v = \frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}$ i 使 $vz_1 = 1$ 。 通常把适合 (viii) 的 v 记为 z_1^{-1} , 且称之为 z_1 的倒数。

定义 复数的除法定义为

$$\frac{z_2}{z_1} = z_2 z_1^{-1} \circ$$

命题 复数的加法与乘法还适合分配律:

$$z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3,$$

 $(z_2 + z_3)z_1 = z_2 z_1 + z_3 z_1,$

评注 a, bi, c, di 都可以看成是复数。这样

$$(a+bi)(c+di) = (a+bi)c + (a+bi)(di)$$

$$= ac + bic + adi + bidi$$

$$= ac + bci + adi + bdi^{2}$$

$$= (ac + bdi^{2}) + (ad + bc)i$$

$$= (ac - bd) + (ad + bc)i_{0}$$

也就是说, 我们不必死记复数的乘法规则: 只要用运算律与 $i^2 = -1$ 即可召唤它。

定义 a+bi 的共轭 (conjugate) 是复数 a-bi 。复数 z_1 的共轭可写为 $\overline{z_1}$ 。

命题 共轭适合如下性质:

- (ix) $\overline{z_1} + z_1$ 与 i·($\overline{z_1} z_1$) 都是实数;
- (x) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \ \overline{z_1 z_2} = \overline{z_1 z_2};$
- (xi) $\overline{z_1}z_1$ 是正数, 除非 $z_1=0$ 。

定义 $|z_1| = \sqrt{\overline{z_1}z_1}$ 称为 z_1 的绝对值 (absolute value)。

命题 绝对值适合如下性质:

$$|z_1z_2|=|z_1||z_2|_{\circ}$$

定义 设 n 是整数。若 n=0, 则说 $z_1^n=1$ 。若 $n\geq 1$, 则说 z_1^n 是 n 个 z_1 的积。若 $z_1\neq 0$, 且 $n\leq -1$, 则说 z_1^n 是 $\frac{1}{z_1^{-n}}$ 。 z_1^n 的一个名字是 z_1 的 n 次幂 (power)。

命题 设 m, n 是非负整数。幂适合如下性质:

$$z_1^m z_1^n = z_1^{m+n}, \quad (z_1^m)^n = z_1^{mn}, \quad (z_1 z_2)^m = z_1^m z_2^m \circ$$

若 z_1 与 z_2 都不是 0, 则 m,n 允许取全体整数。

复数就先回顾到这里。下面回顾数学归纳法。

评注 数学归纳法 (mathematical induction) 是一种演绎推理。

命题 设 P(n) 是跟整数 n 相关的命题。设 P(n) 适合:

- (i) $P(n_0)$ 是正确的;
- (ii) 任取 $\ell \geq n_0$, 必有 "若 $P(\ell)$ 是正确的, 则 $P(\ell+1)$ 是正确的" 成立。

则任取不低于 n_0 的整数 n, 必有 P(n) 是正确的。

评注 可以这么理解数学归纳法。假设有一排竖立的砖。如果 (i) 第一块砖倒下,且 (ii) 前一块砖倒下可引起后一块砖倒下,那么所有的砖都可以倒下,是吧? 由此也可以看出, (i) (ii) 缺一不可。第一块砖不倒,后面的砖怎么倒下呢?[†] 如果前一块砖倒下时后一块砖不一定能倒下,那么会在某块砖后开始倒不下去。

例 我们试着用数学归纳法证明, 对任意正整数 n,

$$P(n)$$
: $0 + 1 + \dots + (n-1) = \frac{n(n-1)}{2}$ °

既然想证明对任意正整数 n, P(n) 都成立, 我们取 $n_0 = 1$ 。然后验证 (i): 左边只有 0 这一项, 右边是 $\frac{1\cdot(1-1)}{2} = 0$ 。所以 (i) 适合。 再验证 (ii)。(ii) 是说, 要由 $P(\ell)$ 推出 $P(\ell+1)$ 。所以, 假设

$$0+1+\cdots+(\ell-1)=\frac{\ell(\ell-1)}{2},\quad \ell\geq n_0\circ$$

因为

(IH)
$$\begin{aligned} 0+1+\cdots+(\ell-1)+\ell &= (0+1+\cdots+(\ell-1))+\ell \\ &= \frac{\ell(\ell-1)}{2}+\ell \\ &= \frac{\ell(\ell-1)}{2}+\frac{\ell\cdot 2}{2} \\ &= \frac{\ell(\ell+1)}{2} \\ &= \frac{(\ell+1)((\ell+1)-1)}{2}, \end{aligned}$$

故我们由 $P(\ell)$ 推出了 $P(\ell+1)$ 。我们在哪儿用到了 $P(\ell)$ 呢? 我们在标了 (IH) 的那一行用了 $P(\ell)$ 。这样的假设称为归纳假设 (*induction hypothesis*)。 既然 (i) (ii) 都适合, 那么任取不低于 $n_0 = 1$ 的整数 n, P(n) 都对。

[†] 当然, 也可以从第 n 块砖开始倒下 (n > 1), 但这就照顾不到第一块了。

我们用二个具体的例说明, (i) (ii) 缺一不可。

例 我们"证明", 对任意正整数 n,

$$P'(n)$$
: $0+1+\cdots+(n-1)=\frac{n(n-1)}{2}+1_{\circ}$

这里, n_0 自然取 1。

(i) 不适合: 显然 n = 1 时, 左侧是 0 而右侧是 1。再看 (ii)。假设

$$0+1+\cdots+(\ell-1)=\frac{\ell(\ell-1)}{2}+1,\quad \ell\geq n_0\circ$$

由于

("IH")
$$0+1+\dots+(\ell-1)+\ell=(0+1+\dots+(\ell-1))+\ell$$

$$=\frac{\ell(\ell-1)}{2}+1\ell$$

$$=\frac{\ell(\ell-1)}{2}+\frac{\ell\cdot 2}{2}+1$$

$$=\frac{\ell(\ell+1)}{2}+1$$

$$=\frac{(\ell+1)((\ell+1)-1)}{2}+1,$$

故我们由 $P'(\ell)$ "推出"了 $P'(\ell+1)$ 。我们也在 ("IH") 处用到了"归纳假设"。那么 P'(n) 就是正确的吗? 当然不是! 前面我们知道,

$$0 + 1 + \dots + (n - 1) = \frac{n(n - 1)}{2},$$

也就是说, P'(n) 的右侧的"+1"使其错误。当然, 一般我们很少会犯这样的错误: 毕竟, 一开始就不对的东西就不用看下去了。

- **例** 不同的老婆[†]有着不同的发色。但是, 我们用数学归纳法却可以"证明", 任意的 n $(n \ge 1)$ 个老婆有着相同的发色! 称这个命题为 Q(n)。这里, n_0 自然取 1。
- (i) 当 $n=n_0=1$ 时,一个老婆自然只有一种发色。这个时候,命题是正确的!
- (ii) 假设任意的 ℓ ($\ell \ge n_0$) 个老婆有着相同的发色! 随意取 $\ell+1$ 个老婆。根据假设, 老婆 $1, 2, ..., \ell$ 有着相同的发色,且老婆 $2, ..., \ell, \ell+1$ 有着相同的发色。这二组中都有 $2, ..., \ell$ 这 $\ell-1$ 个老婆,所以老婆 $1, 2, ..., \ell, \ell+1$ 有着相同的发色!

根据 (i) (ii), 命题成立。

[†] 一般地, 二次元人会称动画、漫画、游戏、小说中自己喜爱的女性角色为老婆 (waifu)。一个二次元人可以有不止一个老婆。

可是这对吗?不对。问题出在 (ii)。如果说,任意二个老婆有着相同的发色,那任意三个老婆也有着相同的发色。这没问题。可是,由 Q(1) 推不出 Q(2): 老婆 1 与老婆 2 根本就不重叠呀! (ii) 要求任取 $\ell \geq n_0$,必有 $Q(\ell)$ 推出 $Q(\ell+1)$ 。而 $\ell=1$ 时, (ii) 不对,因此不能推出 Q(n) 对任意正整数都对。

下面是数学归纳法的一个变体。

命题 设 P(n) 是跟整数 n 相关的命题。设 P(n) 适合:

- (i) $P(n_0)$ 是正确的;
- (ii)' 任取 $\ell \geq n_0$,必有"若 $\ell n_0 + 1$ 个命题 $P(n_0)$, $P(n_0 + 1)$,…, $P(\ell)$ 都是正确的,则 $P(\ell + 1)$ 是正确的"成立。

则任取不低于 n_0 的整数 n, 必有 P(n) 是正确的。

评注 可以由下面的推理看出,上面的数学归纳法变体是正确的。

作命题 Q(n) $(n \geq n_0)$ 为 " $n-n_0+1$ 个命题 $P(n_0), P(n_0+1), \cdots, P(n)$ 都是正确的"。

- (i) $P(n_0)$ 是正确的, 所以 n_0-n_0+1 个命题 $P(n_0)$ 是正确的, 也就是 $Q(n_0)$ 是正确的。
- (ii) 任取 $\ell \geq n_0$ 。假设 $Q(\ell)$ 是正确的,也就是假设 $\ell n_0 + 1$ 个命题 $P(n_0), \, P(n_0+1), \, \cdots, \, P(\ell)$ 都是正确的。由 (ii)', $P(\ell+1)$ 是正确的。所以, $\ell+1-n_0+1$ 个命题 $P(n_0), \, P(n_0+1), \, \cdots, \, P(\ell), \, P(\ell+1)$ 都是正确的。换句话说, $Q(\ell+1)$ 是正确的。

由数学归纳法可知,任取不低于 n_0 的整数 n, 必有 Q(n) 是正确的。所以,P(n) 是正确的。

另一方面, 这个变体的条件 (ii)'比数学归纳法的 (ii) 强, 所以若变体正确, 数学归纳法也正确。也就是说, 数学归纳法与其变体是等价的。

以后, "数学归纳法" 既可以指老的数学归纳法 (由 $P(\ell)$ 推 $P(\ell+1)$), 也可以指变体 (由 $P(n_0)$, $P(n_0+1)$, …, $P(\ell)$ 推 $P(\ell+1)$)。

知识就回顾到这里。开始进入集的世界吧!

Sets

定义 集 (set) 是具有某种特定性质的对象汇集而成的一个整体, 其对象称为元 (element)。

定义 无元的集是空集 (empty set)。

评注 一般用小写字母表示元, 大写字母表示集。

定义 一般地, 若集 A 由元 a, b, c, ... 作成, 我们写

$$A = \{a, b, c, \cdots\}_{\circ}$$

还有一种记号。设集 A 是由具有某种性质 p 的对象汇集而成,则记

 $A = \{ x \mid x \text{ possesses the property } p \}_{\circ}$

定义 若 a 是集 A 的元, 则写 $a \in A$ 或 $A \ni a$, 说 a 属于 (to belong to) A 或 A 包含 (to contain) a。若 a 不是集 A 的元, 则写 $a \notin A$, 说 a 不属于 A。 †

例 全体整数作成的集用 $\mathbb{Z}(Zahl)^{\ddagger}$ 表示。它可以写为

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \cdots, n, -n, \cdots\}_{\circ}$$

例 全体非负整数作成的集用 N (natural) 表示。它可以写为

$$\mathbb{N} = \{ x \mid x \in \mathbb{Z} \text{ and } x \ge 0 \}_{\circ}$$

为了方便, 也可以写为

$$\mathbb{N} = \{ x \in \mathbb{Z} \mid x \ge 0 \}_{\circ}$$

定义 若任取 $a \in A$, 都有 $a \in B$, 则写 $A \subset B$ 或 $B \supset A$, 说 $A \not\in B$ 的子集 (*subset*) 或 $B \not\in A$ 的超集 (*superset*)。假如有一个 $b \in B$ 不是 A 的元, 可以用 "真" (*proper*) 形容之。

例 空集是任意集的子集。空集是任意不空的集的真子集。

例 全体有理数作成的集用 \mathbb{Q} (*quotient*) 表示。因为整数是有理数,所以 $\mathbb{Z} \subset \mathbb{Q}$ 。因为有理数 $\frac{1}{2}$ 不是整数,我们说 \mathbb{Z} 是 \mathbb{Q} 的真子集。

定义 全体实数作成的集用 \mathbb{R} (real) 表示。

定义 全体复数作成的集用 \mathbb{C} (complex) 表示。不难看出,

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}_{\circ}$$

定义 \mathbb{F} (field) 可表示 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意一个。不难看出, \mathbb{F} 适合这几条:

- (i) $0 \in \mathbb{F}$, $1 \in \mathbb{F}$, $0 \neq 1$;
- (ii) 任取 $x, y \in \mathbb{F}$ $(y \neq 0)$, 必有 $x y, \frac{x}{y} \in \mathbb{F}$ 。 后面会见到稍详细的论述。

[†]有点尴尬,我太菜了,那个"不包含"符号打不出来。

[‡] A German word which means *number*.

定义 设 \mathbb{L} 是 \mathbb{C} , \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{N} , \mathbb{F} 的任意一个。 \mathbb{L}^* 表示 \mathbb{L} 去掉 $\mathbb{0}$ 后得到的集。不难看出, \mathbb{L} 是 \mathbb{L}^* 的真超集。

定义 若集 A 与 B 包含的元完全一样, 则 A 与 B 是同一集。我们说 A 等于 B, 写 A = B。显然

$$A = B \iff A \subset B \text{ and } B \subset A_{\circ}$$

定义 集 A 与 B 的交 (intersection) 是集

$$A \cap B = \{ x \mid x \in A \text{ and } x \in B \}_{\circ}$$

也就是说, $A \cap B$ 恰由 $A \subseteq B$ 的公共元作成。

集 A 与 B 的并 (union) 是集

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}_{\circ}$$

也就是说, $A \cup B$ 恰包含 $A \in B$ 的全部元。

类似地, 可定义多个集的交与并。

定义 设 A, B 是集。定义

$$A\times B=\{\,(a,b)\mid a\in A,\ b\in B\,\}_{\circ}$$

 $A \times A$ 可简写为 A^2 。类似地,

$$A \times B \times C = \{ (a, b, c) \mid a \in A, b \in B, c \in C \}, A^3 = A \times A \times A_0$$

例 设
$$A = \{1, 2\}, B = \{3, 4, 5\}$$
。则

$$A\times B=\{\,(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\,\}_{\rm o}$$

而

$$B \times A = \{ (3,1), (3,2), (4,1), (4,2), (5,1), (5,2) \}_{\circ}$$

评注 一般地, $A \times B \neq B \times A$ 。假如 A, B 各自有 m, n 个元, 利用一点计数知识可以看出, $A \times B$ 有 mn 个元。

Functions

定义 假如通过一个法则 f, 使任取 $a \in A$, 都能得到唯一的 $b \in B$, 则 说这个法则 f 是集 A 到集 B 的一个函数 (function)。元 b 是元 a 在函数 f

下的象 (image)。元 a 是元 b 在 f 下的一个原象 $(inverse\ image)$ 。这个关系可以写为

$$f$$
:
$$A \to B,$$

$$a \mapsto b = f(a)_{\circ}$$

称 A 是定义域 (domain), B 是陪域[†] (codomain)。

例 可以把 \mathbb{R}^2 看作平面上的点集。

$$f$$
:
$$\mathbb{R}^2 \to \mathbb{R},$$

$$(x,y) \mapsto \sqrt{x^2 + y^2}$$

是函数: 它表示点 (x, y) 到点 (0, 0) 的距离。

例 设

$$A = \{ \text{dinner, bath, me} \}, \quad B = \{ 0, 1 \}_{\circ}$$

法则

$$f_1$$
: dinner $\mapsto 0$, bath $\mapsto 1$

$$f_2\colon$$

$$\begin{array}{ll} \mathrm{dinner}\mapsto 0,\\ \mathrm{bath}\mapsto 1,\\ \mathrm{me}\mapsto b \quad \mathrm{where}\ b^2=b \end{array}$$

不是 A 到 B 的函数, 因为它给 A 的元 me 规定的象不唯一。 法则

$$f_3$$
: dinner $\mapsto 0$, bath $\mapsto 1$, me $\mapsto -1$

不是 A 到 B 的函数, 因为它给 A 的元 me 规定的象不是 B 的元。但是, 如果记 $B_1 = \{-1,0,1\}$, 这个 f_3 可以是 A 到 B_1 的函数。

$$\operatorname{Im} f = \{\, b \in B \mid b = f(a), \ a \in A \,\}_{\circ}$$

这就是中学数学里的"值域"。

 $^{^{\}dagger}$ 不要混淆陪域与象集 (image, range)。 f 的象集是

定义 设 f_1 与 f_2 都是 A 到 B 的函数。若任取 $a \in A$,必有 $f_1(a) = f_2(a)$,则说这二个函数相等,写为 $f_1 = f_2$ 。

例 设 $A \subset \mathbb{C}$, 且 A 非空。定义二个 A 到 \mathbb{C} 的函数: $f_1(x) = x^2$, $f_2(x) = |x|^2$ 。如果 $A = \mathbb{R}$, 那么 $f_1 = f_2$ 。可是, 若 $A = \mathbb{C}$, f_1 与 f_2 不相等。

例 设 A 是全体正实数作成的集。定义二个 A 到 $\mathbb R$ 的函数: $f_1(x)=\frac{1}{6}\log_2 x^3, \, f_2(x)=\log_4 x$ 。知道对数的读者可以看出, f_1 与 f_2 有着相同的对应法则, 故 $f_1=f_2$ 。因为 f_2 是对数函数 (logarithmic function), 所以 f_1 也是。

评注 在上下文清楚的情况下,可以单说函数的对应法则。比如,中学数学课说"二次函数 $f(x)=x^2+x-1$ "时,定义域与陪域默认都是 \mathbb{R} 。中学的函数一般都是实数的子集到实数的子集的函数。所谓"自然定义域"是指 (在一定范围内) 一切使对应法则有意义的元构成的集。比如,在中学,我们说 $\frac{1}{x}$ 的自然定义域是 \mathbb{R}^* , \sqrt{x} 的自然定义域是一切非负实数。在研究复变函数时,我们说 $\frac{1}{z}$ 的自然定义域是 \mathbb{C}^* 。如果不明确函数的定义域,我们会根据上下文作出自然定义域作为它的定义域。

定义 A 到 A 的函数是 A 的变换 (transform)。换句话说, 变换是定义域跟陪域一样的函数。

Binary Functions

定义 A^2 到 A 的函数称为 A 的二元运算 (binary functions)。

例 设 f(x,y)=x-y。这个 f 是 $\mathbb Z$ 的二元运算; 但是, 它不是 $\mathbb N$ 的二元运算。

评注 设。是 A 的二元运算。代替。(x,y),我们写 $x \circ y$ 。一般地,若表示这个二元运算的符号不是字母,我们就把这个符号写在二个元的中间。

定义 设 T(A) 是全部 A 的变换作成的集。设 f,g 是 A 的变换。任取 $a \in A$,当然有 $b = f(a) \in A$ 。所以,g(b) = g(f(a)) 也是 A 的元。当然,这个 g(f(a)) 也是唯一确定的。这样,我们说,f 与 g 的复合(composition) $g \circ f$ 是

$$g \circ f$$
: $A \to A$, $a \mapsto q(f(a))_{\circ}$

所以, 复合是 T(A) 的二元运算:

$$T(A)\times T(A)\to T(A),$$

$$(g,f)\mapsto g\circ f\circ$$

评注 设 A 有有限多个元。此时, 可排出 A 的元:

$$A=\{\,a_1,a_2,\cdots,a_n\,\}_\circ$$

设 $f \in A^2$ 到 B 的函数。则任给整数 $i, j, 1 \le i, j \le n$, 记

$$f(a_i, a_j) = b_{i,j} \in B_{\circ}$$

可以用这样的表描述此函数:

有的时候, 为了强调函数名, 可在左上角书其名:

这种表示函数的方式是方便的。 如果这些 $b_{i,j}$ 都是 A 的元, 就说这张表是 A 的运算表。

例 设 $T = \{0, 1, -1\}, \circ (x, y) = xy$ 。不难看出,。确实是 T 的二元运算。它的运算表如下:

$$\begin{array}{c|ccccc} & 0 & 1 & -1 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & -1 \\ -1 & 0 & -1 & 1 \\ \hline \end{array}$$

例 设 \mathbb{F}_{nu} 是将 \mathbb{F} 去掉 0,1 后得到的集 † 。看下列 6 个法则:

$$\begin{array}{ll} f_0\colon & x\mapsto x;\\ f_1\colon & x\mapsto 1-x;\\ f_2\colon & x\mapsto \frac{1}{x}; \end{array}$$

[†]这个 \mathbb{F}_{nu} 只是临时记号: nu 表示 nil, unity。

$$f_3\colon \qquad \qquad x\mapsto 1-\frac{1}{1-x};$$

$$f_4\colon \qquad \qquad x\mapsto 1-\frac{1}{x};$$

$$f_5\colon \qquad \qquad x\mapsto \frac{1}{1-x}\circ$$

记 $S_6=\{f_0,f_1,f_2,f_3,f_4,f_5\}$ 。可以验证, $S_6\subset T(\mathbb{F}_{\mathrm{nu}})$ 。

进一步地, 36 次复合告诉我们, 任取 $f,g\in S_6$, 必有 $g\circ f\in S_6$ 。可以验证, 这是 S_6 的 (复合) 运算表:

我们在本节会经常用 S_6 举例。

定义 设。是 A 的二元运算。若任取 $x, y, z \in A$, 必有

$$(x \circ y) \circ z = x \circ (y \circ z),$$

则说 f 适合结合律 (associativity)。此时, $(x \circ y) \circ z$ 或 $x \circ (y \circ z)$ 可简写为 $x \circ y \circ z$ 。

例 ℤ 的加法当然适合结合律。可是, 它的减法不适合结合律。

评注 变换的复合适合结合律。确切地,设 f,g,h 都是 A 的变换。任取 $a \in A$,则

$$(h \circ (g \circ f))(a) = h((g \circ f)(a)) = h(g(f(a))),$$

$$((h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a)))_{\circ}$$

也就是说,

$$h \circ (g \circ f) = (h \circ g) \circ f_{\circ}$$

例 S_6 的复合当然适合结合律。

定义 设。是 A 的二元运算。若任取 $x, y \in A$, 必有

$$x\circ y=y\circ x,$$

则说。适合交换律 (commutativity)。

例 F* 的乘法当然适合交换律。可是, 它的除法不适合交换律。

例 S_6 的复合不适合交换律, 因为 $f_1\circ f_2=f_4$, 而 $f_2\circ f_1=f_5$, 二者不相等。

评注 在本文里, · 运算的优先级高于 + 运算。所以, $a \cdot b + c$ 的意思就是

$$(a \cdot b) + c,$$

而不是

$$a \cdot (b+c)_{\circ}$$

定义 设 $+, \cdot$ 是 A 的二个二元运算。若任取 $x, y, z \in A$, 必有

(LD)
$$x \cdot (y+z) = x \cdot y + x \cdot z,$$

则说 + 与·适合左(·)分配律[†](left distributivity)。类似地, 若

(RD)
$$(y+z) \cdot x = y \cdot x + z \cdot x,$$

则说 + 与 · 适合右 (\cdot) 分配律 $(right\ distributivity)$ 。说既适合 LD 也适合 RD 的 + 与 · 适合 (\cdot) 分配律 (distributivity)。显然,若 · 适合交换律,则 LD 与 RD 等价。

例 『的加法与乘法适合分配律。当然、减法与乘法也适合分配律:

$$x(y-z) = xy - xz = yx - zx = (y-z)x_{\circ}$$

甚至, 在正实数里, 加法与除法适合右分配律:

$$\frac{y+z}{x} = \frac{y}{x} + \frac{z}{x} \circ$$

定义 设。是 A 的二元运算。若任取 $x, y, z \in A$, 必有

(LC)
$$x \circ y = x \circ z \implies y = z,$$

则说。适合左消去律 (left cancellation property)。类似地, 若

(RC)
$$x \circ z = y \circ z \implies x = y$$
,

则说。适合右消去律 (right cancellation property)。说既适合 LC 也适合 RC 的。适合消去律 (cancellation property)。显然, 若。适合交换律, 则 LC 与 RC 等价。

[†]在不引起歧义时, 括号里的内容可省略。或者这么说: 当我们说 +, ·适合分配律时, 我们不会理解为 $x+(y\cdot z)=(x+y)\cdot(x+z)$ 。但有意思的事儿是, 如果把 + 理解为并, ·理解为交, x,y,z 理解为集, 那这个式是对的。当然, $x\cdot(y+z)=x\cdot y+x\cdot z$ 也是对的。

例 显然, \mathbb{N} 的乘法不适合消去律, \mathbb{U} \mathbb{N}^* 的乘法适合消去律 † 。

例 考虑 $x \circ y = x^3 + y^2$ 。若把。视为 N 的二元运算, 那么它适合消去律。若把。视为 Q 的二元运算, 那么它适合右消去律。若把。视为 C 的二元运算, 那么它不适合任意一个消去律。

例 一般地, 当 A 至少有二个元时, 。(在 T(A) 里) 不适合消去律。设 $a,b\in A, a\neq b$ 。考虑下面 4 个变换:

 g_0 : $a \mapsto a, \quad b \mapsto b, \quad x \mapsto x \text{ where } x \neq a, b;$

 $g_1\colon \qquad \qquad a\mapsto a, \quad b\mapsto a, \quad x\mapsto x \text{ where } x\neq a,b;$

 g_2 : $a \mapsto b, \quad b \mapsto b, \quad x \mapsto x \text{ where } x \neq a, b;$

 g_3 : $a \mapsto b, \quad b \mapsto a, \quad x \mapsto x \text{ where } x \neq a, b_{\circ}$

可以验证,

$$g_3 \circ g_1 = g_2 \circ g_1 = g_2 \circ g_3 = g_2$$

由此可以看出,。不适合任意一个消去律。

例 我们看。在 S_6 里是否适合消去律。取 $f,g,h \in S_6$ 。由表易知, 当 $g \neq h$ 时, $f \circ g \neq f \circ h$ (横着看运算表), 且 $g \circ f \neq h \circ f$ (竖着看运算表)。这 说明, 。在 $T(\mathbb{F}_{nu})$ 的子集 S_6 里适合消去律。

定义 设。是 A 的二元运算。若存在 $e \in A$, 使若任取 $x \in A$, 必有

$$e \circ x = x \circ e = x$$
,

则说 $e \to A$ 的 (关于运算。的) 幺元 (identity)。如果 e' 也是幺元,则

$$e = e \circ e' = e'_{\circ}$$

例 \mathbb{F} 的加法的幺元是 0, 且其乘法的幺元是 1。

例 不难看出, 这个变换是 T(A) 的幺元:

$$\iota$$
: $A \to A$,

 $a\mapsto a_{\circ}$

它也有个一般点的名字: 恒等变换 ($identity\ transform$)。 在 S_6 里, f_0 就是这里的 ι 。

[†]后面提到整环时,我们会稍微修改一下消去律的描述。

定义 设。是 A 的二元运算。设 $x \in A$ 若存在 $y \in A$, 使

$$y \circ x = x \circ y = e$$
,

则说 $y \in x$ 的 (关于运算。的) 逆元 (*inverse*)。

例 F 的每个元都有加法逆元, 即其相反数。

评注 设。适合结合律。如果 y, y' 都是 x 的逆元, 则

$$y = y \circ e = y \circ (x \circ y') = (y \circ x) \circ y' = e \circ y' = y'_{\circ}$$

此时, 一般用 x^{-1} 表示 x 的逆元。因为

$$x^{-1} \circ x = x \circ x^{-1} = e$$
,

由上可知, x^{-1} 也有逆元, 且 $(x^{-1})^{-1} = x_{\circ}$

例 一般地, 当 A 至少有二个元时, T(A) 既有有逆元的变换, 也有无逆元的变换。还是看前面的 g_0 , g_1 , g_2 , g_3 。首先, g_0 是幺元 ι 。不难看出, g_0 与 g_3 都有逆元:

$$g_0 \circ g_0 = g_3 \circ g_3 = g_0 \circ$$

不过, g_1 不可能有逆元。假设 g_1 有逆元 h, 则应有

$$(h \circ g_1)(a) = \iota(a) = a, \quad (h \circ g_1)(b) = \iota(b) = b_0$$

可是, $g_1(a) = g_1(b) = a$, 故 $(h \circ g_1)(a) = (h \circ g_1)(b) = h(a)$, 它不能既等于 a 也等于 b, 矛盾!

例 再看 S_6 。由表可看出, f_0 , f_1 , f_2 , f_3 , f_4 , f_5 的逆元分别是 f_0 , f_1 , f_2 , f_3 , f_5 , f_4 .

评注 设。适合结合律。如果 x, y 都有逆元, 那么 $x \circ y$ 也有逆元, 且

$$(x \circ y)^{-1} = y^{-1} \circ x^{-1} \circ$$

为了说明这一点, 只要按定义验证即可:

$$\begin{split} &(y^{-1}\circ x^{-1})\circ (x\circ y)=y^{-1}\circ (x^{-1}\circ x)\circ y=y^{-1}\circ e\circ y=y^{-1}\circ y=e,\\ &(x\circ y)\circ (y^{-1}\circ x^{-1})=x\circ (y\circ y^{-1})\circ x^{-1}=x\circ e\circ x^{-1}=x\circ x^{-1}=e_\circ \end{split}$$

这个规则往往称为袜靴规则 (socks and shoes rule): 设 y 是穿袜, x 是穿靴, $x \circ y$ 表示动作的复合: 先穿袜后穿靴。那么这个规则告诉我们, $x \circ y$ 的逆元就是先脱靴再脱袜。

评注 由此可见,结合律是一条很重要的规则。我们算 $63 \cdot 8 \cdot 125$ 时也会想着先算 $8 \cdot 125$ 。

Semi-groups and Groups

定义 设 S 是非空集。设。是 S 的二元运算。若。适合结合律,则称 S (关于。) 是半群 (semi-group)。

例 № 关于加法 (或乘法) 作成半群。

例 T(A) 关于。作成半群。

评注 事实上, 这里要求 S 非空是有必要的。

首先, 空集没什么意思。其次, 前面所述的结合律、交换律、分配律等自动成立, 这是因为对形如"若p, 则q"的命题而言, p 为假推出整个命题为真。这是相当"危险"的!

定义 设m是正整数。设x是半群S的元。令

$$x^1 = x$$
, $x^m = x \circ x^{m-1} \circ$

 x^m 称为 x 的 m 次幂。不难看出,当 m,n 都是正整数时,

$$x^{m+n} = x^m \circ x^n, \quad (x^m)^n = x^{mn} \circ$$

假如 S 有二个元 x, y 适合 $x \circ y = y \circ x$, 那么还有

$$(x \circ y)^m = x^m \circ y^m$$

例 还是看熟悉的 №。对于乘法而言,这里的幂就是普通的幂——一个数自乘多次的结果。对于加法而言,这里的幂相当于乘法——一个数自加多次的结果。

定义 设 G 关于。是半群。若 G 的关于。的幺元存在,且 G 的任意元都有关于。的逆元,则 G 是群 (qroup)。

例 \mathbb{N} 关于加法 (或乘法) 不能作成群。 \mathbb{Z} 关于加法作成群,但关于乘法不能作成群。 \mathbb{F} 关于乘法不能作成群,但 \mathbb{F}^* 关于乘法作成群。不过, \mathbb{F}^* 关于加法不能作成群。

例 T(A) 一般不是群。不过, S_6 是群。

评注 群有唯一的幺元。群的每个元都有唯一的逆元。

评注 设 G 关于。是群。我们说,。适合消去律。 假如 $x \circ y = x \circ z$ 。二侧左边乘 x 的逆元 x^{-1} ,就有

$$x^{-1} \circ (x \circ y) = x^{-1} \circ (x \circ y)_{\circ}$$

由于。适合结合律,

$$(x^{-1} \circ x) \circ y = (x^{-1} \circ x) \circ y_{\circ}$$

也就是

$$e \circ y = e \circ z_{\circ}$$

这样, y = z。类似地, 用同样的方法可以知道, 右消去律也对。

定义 已经知道, 群的每个元 x 都有逆元 x^{-1} 。由此, 当 m 是正整数时, 定义 $x^{-m} = (x^{-1})^m$ 。再定义 $x^0 = e$ 。利用半群的结果, 可以看出, 当 m, n 都是整数时,

$$x^{m+n} = x^m \circ x^n$$
, $(x^m)^n = x^{mn}$

假如 G 有二个元 x, y 适合 $x \circ y = y \circ x$, 那么还有

$$(x \circ y)^m = x^m \circ y^m \circ$$

例 对于 \mathbb{F}^* 的乘法而言, 这里的任意整数幂跟普通的整数幂没有任何 区别。我们学习数的负整数幂的时候, 也是借助倒数定义的。

Subgroups

定义 设 G 关于。是群。设 $H \subset G$, H 非空。若 H 关于。也作成群,则 H 是 G 的子群 (subgroup)。

例 对加法来说, \mathbb{Z} 是 \mathbb{F} 的子群。对乘法来说, \mathbb{Z}^* 不是 \mathbb{F}^* 的子群。

评注 设 $H \subset G$, H 非空。H 是 G 的子群的一个必要与充分条件是: 任取 $x,y \in H$, 必有 $x \circ y^{-1} \in H$ 。

怎么说明这一点呢? 先看充分性。任取 $x\in H,$ 则 $e=x\circ x^{-1}\in H$ 。任 取 $y\in H,$ 则 $y^{-1}=e\circ y^{-1}\in H$ 。所以

$$x\circ y=x\circ (y^{-1})^{-1}\in H_\circ$$

。在 G 适合结合律, $H \subset G$, 所以。作为 H 的二元运算也适合结合律。至此, H 是半群。

前面已经说明, $e \in H$, 所以 H 的关于。的幺元存在。进一步地, $x \in H$ 在 G 里的逆元也是 H 的元, 所以 H 的任意元都有关于。的逆元。这样, H 是群。顺便一提, 我们刚才也说明了, G 的幺元也是 H 的幺元, 且 H 的元在 G 里的逆元也是在 H 里的逆元。

再看必要性。假设 H 是一个群。任取 $x,y \in H$,我们要说明 $x \circ y^{-1} \in H$ 。看上去有点显然呀! H 是群,所以 y 有逆元 y^{-1} ,又因为 。是 H 的二元 运算, $x \circ y^{-1} \in H$ 。不过要注意一个细节。我们说明充分性时, y^{-1} 被认为是 y 在 G 里的逆元;可是,刚才的论证里 y^{-1} 实则是 y 在 H 里的逆元。大问题! 怎么解决呢? 如果我们说明 y 在 H 里的逆元也是 y 在 G 里的逆元,那这个漏洞就被修复了。

我们知道, H 有幺元 e_H , 所以 $e_H \circ e_H = e_H \circ e_H$ 是 G 的元, 所以 e_H 在 G 里有逆元 $(e_H)^{-1}$ 。这样,

$$\begin{split} e_{H} &= e \circ e_{H} \\ &= ((e_{H})^{-1} \circ e_{H}) \circ e_{H} \\ &= (e_{H})^{-1} \circ (e_{H} \circ e_{H}) \\ &= (e_{H})^{-1} \circ e_{H} \\ &= e_{T} \end{split}$$

取 $y \in H$ 。y 在 H 里有逆元 z, 即

$$z \circ y = y \circ z = e_H = e_\circ$$

y, z 都是 G 的元。这样,根据逆元的唯一性, z 自然是 y 在 G 里的逆元。

Additive Groups

定义 若 G 关于名为 + 的二元运算作成群, 幺元 e 读作 "零元" 写作 $0, x \in G$ 的逆元 x^{-1} 读作 "x 的相反元" 写作 -x, 且 + 适合交换律, 则 说 G 是加群 ($additive\ group$)。相应地, "元的幂" 也应该改为 "元的倍": x^m 写为 mx。用加法的语言改写前面的幂的规则, 就得到了倍的规则: 对任意 $x,y\in G, m,n\in\mathbb{Z}$, 有

$$(m+n)x = mx + nx,$$

$$m(nx) = (mn)x,$$

$$m(x+y) = mx + my_{\circ}$$

顺便一提, 在这种记号下, x-y 是 x+(-y) 的简写。并且

$$x+y=x+z \implies y=z_\circ$$

由于这里的加法适合交换律, 直接换位就是右消去律。前面说, 若运算适合结合律, 则 x 的逆元的逆元还是 x。这句话用加法的语言写, 就是

$$-(-x) = x_{\circ}$$

前面的"袜靴规则"就是

$$-(x+y) = (-y) + (-x) = (-x) + (-y) = -x - y_{\circ}$$

这就是熟悉的去括号法则。这里体现了交换律的作用。

评注 初见此定义可能会觉得有些混乱:怎么"倒数"又变为"相反数"了?其实这都是借鉴已有写法。前面,。虽然不是,但这个形状暗示着乘法,因此有 x^{-1} 这样的记号;现在,运算的名字是 +,自然要根据形状作出相应的改变。其实,这里"名为 +""零元""相反元"都不是本质——换句话说,还是可以用老记号。不过,我们主要接触至少与二种运算相关联的结构——整环与域,所以用二套记号、名字是有必要的。

评注 前面的 $x^0 = e$ 在加群里变为 0x = 0。看上去"很普通", 不过左 边的 0 是整数, 右边的 0 是加群的零元, 二者一般不一样!

例 显而易见, ℤ, ೯ 都是加群。

例 S_6 不是加群, 因为它的二元运算不适合交换律。

评注 类似地,可以定义子加群 (sub-additive group)。这里,就直接用等价刻画来描述它: "G 的非空子集 H 是加群 G 的子加群的一个必要与充分条件是: 任取 $x,y \in H$, 必有 $x-y \in H$ 。"

Sums

定义 设 f 是 $\mathbb Z$ 的非空子集 S 到加群 G 的函数。设 p, q 是二个整数。如果 $p \leq q,$ 则记

$$\sum_{j=p}^q f(j) = f(p) + f(p+1) + \dots + f(q)_\circ$$

也就是说, $\sum_{j=p}^q f(j)$ 就是 q-(p-1) 个元的和的一种简洁的表示法。如果 p>q, 约定 $\sum_{j=p}^q f(j)=0$ 。

例 我们已经知道, $n \ge 0$ 时

$$0 + 1 + \dots + (n - 1) = \frac{n(n - 1)}{2}$$

用 ∑ 写出来, 就是

$$\sum_{k=0}^{n-1} k = \frac{n(n-1)}{2} \circ$$

这里的 k 是所谓的 "dummy variable"。所以,

$$\sum_{j=0}^{n-1} j = \sum_{k=0}^{n-1} k = \sum_{\ell=0}^{n-1} \ell = \frac{n(n-1)}{2} \circ$$

M f 可以是常函数:

$$\sum_{t=p}^{q} 1 = \begin{cases} q-p+1, & q \ge p; \\ 0, & q < p_{\circ} \end{cases}$$

例 设 f 与 g 是 \mathbb{Z} 的非空子集 S 到加群 G 的函数。因为加群的加法适合结合律与交换律,所以

$$\sum_{j=p}^{q} (f(j) + g(j)) = \sum_{j=p}^{q} f(j) + \sum_{j=p}^{q} g(j)_{\circ}$$

评注 设 f(i,j) 是 \mathbb{Z}^2 的非空子集到加群 G 的函数。记

$$S_C = \sum_{j=p}^q \sum_{i=m}^n f(i,j), \quad S_R = \sum_{i=m}^n \sum_{j=p}^q f(i,j), \quad$$

其中 $q \geq p,\, n \geq m$ 。 $\sum_{i=m}^n f(i,j)$ 是何物? 暂时视 i 之外的变元为常元, 则

$$\sum_{i=m}^{n} f(i,j) = f(m,j) + f(m+1,j) + \dots + f(n,j)_{\circ}$$

 $\sum_{j=p}^q \sum_{i=m}^n f(i,j)$ 是 $\sum_{j=p}^q \left(\sum_{i=m}^n f(i,j)\right)$ 的简写:

$$\sum_{i=p}^{q} \sum_{i=m}^{n} f(i,j) = \sum_{i=m}^{n} f(i,p) + \sum_{i=m}^{n} f(i,p+1) + \dots + \sum_{i=m}^{n} f(i,q)_{\circ}$$

 $\sum_{i=m}^{n}\sum_{j=p}^{q}f(i,j)$ 有着类似的解释。我们说, S_{C} 一定与 S_{R} 相等。记

$$C_j = \sum_{i=m}^n f(i,j), \quad R_i = \sum_{j=p}^q f(i,j) \circ$$

考虑下面的表:

由此, 不难看出, S_C 与 S_R 只是用不同的方法将 (n-m+1)(q-p+1) 个元相加罢了。

评注 上面的例其实就是一个特殊情形 (n-m=1)。

Rings

定义 设 R 是加群。设 \cdot (读作 "乘法") 也是 R 的二元运算。假设

- (i) · 适合结合律;
- (ii) + 与·适合·分配律。

我们说 R (关于 + 与 ·) 是环 (ring)。

评注 在不引起歧义的情况下,可省去 · 。例如, $a \cdot b$ 可写为 ab。

例 ℤ, Γ (关于普通加法与乘法) 都是环。

例 全体偶数作成的集也是环。一般地,设 k 是整数,则全体 k 的倍作成的集是环。

例 这里举一个 "平凡的" (trivial) 例。N 只有一个元 0。可以验证, N 关于普通加法与乘法作成群。这也是 "最小的环"。在上个例里, 取 k=0 就 是 N。

例 这里举一个 "不平凡的" (nontrivial) 例。设 $R = \{0, a, b, c\}$ 。加法和乘法由以下二个表给定:

+	0	a	b	c			0	a	b	c
0	0	a	b	c	-	0	0	0	0	0
a	a	0	c	b		a	0	0	0	0
		c				b	0	a	b	c
c	c	b	a	0		c	0	a	b	c

可以验证, 这是一个环。

评注 我们看一下环的简单性质。

已经知道, R 的任意元的 "整数 0 倍" 是 R 的零元。不禁好奇, 零元乘任意元会是什么结果。首先, 回想起, R 的零元适合 0+0=0。利用分配律, 当 $x \in R$ 时,

$$0x = (0+0)x = 0x + 0x_0$$

我们知道,加法适合消去律。所以

$$0 = 0x_0$$

类似地, x0 = 0。也许有点眼熟?但是这里左右二侧的 0 都是 R 的元, 不一定是数!

23

因为

$$xy + (-x)y = (x - x)y = 0,$$

 $xy + x(-y) = x(y - y) = 0,$

所以

$$(-x)y = x(-y) = -xy_{\circ}$$

从而

$$(-x)(-y) = -(x(-y)) = -(-xy) = xy_{\circ}$$

根据分配律,

$$x(y_1 + \dots + y_n) = xy_1 + \dots + xy_n,$$

$$(x_1 + \dots + x_m)y = x_1y + \dots + x_my_0$$

二式联合, 就是

$$(x_1 + \dots + x_m)(y_1 + \dots + y_n) = x_1y_1 + \dots + x_1y_n + \dots + x_my_1 + \dots + x_my_n$$

利用 ∑ 符号, 此式可以写为

$$\left(\sum_{i=1}^m x_i\right) \left(\sum_{j=1}^n y_j\right) = \sum_{i=1}^m \sum_{j=1}^n x_i y_j \circ$$

所以, 若 n 是整数, $x, y \in R$, 则

$$(nx)y = n(xy) = x(ny)_{\circ}$$

对于正整数 m, n 与 R 的元 x, 有

$$x^{m+n} = x^m x^n, \quad (x^m)^n = x^{mn}$$

假如 R 有二个元 x, y 适合 xy = yx, 那么还有

$$(xy)^m = x^m y^m$$

例 在 ℤ, ℾ里, 这些就是我们熟悉的 (部分的) 数的运算律。

评注 类似地,可以定义子环 (subring)。这里,就直接用等价刻画来描述它: "R 的非空子集 S 是环 R 的子环的一个必要与充分条件是: 任取 $x,y\in S$,必有 $x-y\in S$, $xy\in S$ 。"

定义 设 R 是环。假设任取 $x, y \in R$,必有 xy = yx,就说 R 是交换环 (commutative ring)。

评注 以后接触的环都是交换环。

Domains

定义 设 D 是环。假设

- (i) 任取 $x, y \in D$, 必有 xy = yx;
- (i) 存在 $1 \in D$, $1 \neq 0$, 使任取 $x \in D$, 必有 1x = x1 = x;
- (ii) · 适合 "消去律变体"[†]: 若 xy = xz, $x \neq 0$, 则 y = z。 我们说 D (关于 + 与 ·) 是整环 (domain), integral domain。

例 \mathbb{Z} , \mathbb{F} 都是整环。当然,也有介于 \mathbb{Z} 与 \mathbb{F} 之间的整环。假如 $s \in \mathbb{C}$ 的平方是整数,那么全体形如 x + sy $(x, y \in \mathbb{Z})$ 的数作成一个整环。

例 看一个有限整环的例。设 V (Vierergruppe)[‡] 是 4 元集:

$$V = \{\,0,1,\tau,\tau^2\,\}_\circ$$

加法与乘法由下面的运算表决定:

+	0	1	au	$ au^2$		•	0	1	au	$ au^2$
0	0	1	au	$ au^2$	_	0	0	0	0	0
1	1	0	$ au^2$	au		1	0	1	au	$ au^2$
au	τ	$ au^2$	0	1		au	0	au	$ au^2$	1
$ au^2$	τ^2	au	1	0		$ au^2$	0	$ au^2$	1	au

可以验证, V 不但是一个环, 它还适合整环定义的条件 (i) (ii) (iii)。因此, V 是整环。

在 V = 1, 1 + 1 = 0, 这跟平常的加法有点不一样。换句话说, 这里的 0 跟 1 已经不是我们熟悉的数了。

例 全体偶数作成的集是交换环, 却不是整环。

例 再来看一个非整环例。考虑 \mathbb{Z}^2 。设 $a,b,c,d \in \mathbb{Z}$ 。规定

$$(a,b) = (c,d) \iff a = b \text{ and } c = d,$$

 $(a,b) + (c,d) = (a+b,c+d),$
 $(a,b)(c,d) = (ac,bd)_{\circ}$

可以验证, 在这二种运算下, \mathbb{Z}^2 作成一个交换环, 其加法、乘法幺元分别是(0,0), (1,1)。可是

$$(1,0) \neq (0,0), \quad (0,1) \neq (0,-1), \quad (1,0)(0,1) = (1,0)(0,-1)_{\circ}$$

也就是说,乘法不适合消去律。

[†]一般地,这也可称为消去律。

 $[\]mbox{\ensuremath{\,^{\ddagger}}}$ A German word which means four-group.

评注 可是, 如果这么定义乘法, 那么 \mathbb{Z}^2 可作为一个整环:

$$(a,b)(c,d) = (ac - bd, ad + bc)_{\circ}$$

事实上, 这就是复数乘法, 因为

$$(a+ib)(c+id) = (ac-bd) + i(ad+bc)_{\circ}$$

评注 类似地,可以定义子整环 (subdomain)。这里,就直接用前面的等价刻画来描述它: "D 的非空子集 S 是整环 D 的子整环的一个必要与充分条件是: (i) $1 \in S$; (ii) 任取 $x, y \in S$, 必有 $x - y \in S$, $xy \in S$ 。"

例 设 $D \subset \mathbb{C}$, 且 D 是整环。不难看出, $\mathbb{Z} \subset D$ 。

Sums and Products

定义 设 f 是 \mathbb{Z} 的非空子集 S 到整环 D 的函数。设 p, q 是二个整数。如果 $p \leq q$, 则记

$$\prod_{j=p}^{q} f(j) = f(p) \cdot f(p+1) \cdot \dots \cdot f(q)_{\circ}$$

也就是说, $\prod_{j=p}^q f(j)$ 就是 q-(p-1) 个元的积的一种简洁的表示法。如果 p>q, 约定 $\prod_{j=p}^q f(j)=1$ 。

定义 设 n 是正整数。那么 1, 2, ..., n 的积是 n 的阶乘 (factorial):

$$n! = \prod_{i=1}^{n} j_{\circ}$$

顺便约定 0! = 1。

评注 不难看出, 当 n 是正整数时,

$$n! = n \cdot (n-1)!_{\circ}$$

例 不难验证, 下面是 0 至 9 的阶乘:

0! = 1,	1! = 1,
2! = 2,	3! = 6,
4! = 24,	5! = 120,
6! = 720,	7! = 5040,
8! = 40320,	$9! = 362880_{\circ}$

评注 因为整环的乘法也适合结合律与交换律, 所以

$$\begin{split} &\prod_{j=p}^q (f(j)\cdot g(j)) = \prod_{j=p}^q f(j)\cdot \prod_{j=p}^q g(j), \\ &\prod_{j=p}^q \prod_{i=m}^n f(i,j) = \prod_{i=m}^n \prod_{j=p}^q f(i,j), \end{split}$$

其中, $\prod_{j=p}^q\prod_{i=m}^nf(i,j)$ 当然是 $\prod_{j=p}^q\left(\prod_{i=m}^nf(i,j)\right))$ 的简写。

例 回顾一下 ∑ 符号。我们已经知道

$$\sum_{j=p}^q (f(j)+g(j)) = \sum_{j=p}^q f(j) + \sum_{j=p}^q g(j) \circ$$

因为整环有分配律, 故当 $c \in D$ 与变元 j 无关时[†]

$$\sum_{j=p}^{q} cf(j) = c \sum_{j=p}^{q} f(j)_{\circ}$$

进而, 当 c, d 都是常元时,

$$\sum_{j=p}^q (cf(j)+dg(j))=c\sum_{j=p}^q f(j)+d\sum_{j=p}^q g(j)\circ$$

评注 类似地, 当 $q \ge p$, c 是常元时,

$$\prod_{j=p}^{q} cf(j) = c^{q-p+1} \prod_{j=p}^{q} f(j)_{\circ}$$

定义 最后介绍一下双阶乘 (double factorial)。前 n 个正偶数的积是 2n 的双阶乘:

$$(2n)!! = \prod_{j=1}^{n} 2j_{\circ}$$

前 n 个正奇数是 2n-1 的双阶乘:

$$(2n-1)!! = \prod_{j=1}^{n}{(2j-1)_{\circ}}$$

顺便约定 0!! = (-1)!! = 1。

评注 不难看出, 对任意正整数 m, 都有

$$m!! = m \cdot (m-2)!!_{\circ}$$

[†] 这样的元称为常元 (constant)。

双阶乘可以用阶乘表示:

$$\begin{split} &(2n)!! = 2^n n!,\\ &(2n-1)!! = \frac{(2n)!}{(2n)!!} = \frac{(2n)!}{2^n n!} \circ \end{split}$$

由此可得

$$n!! \cdot (n-1)!! = n!_{\circ}$$

例 不难验证, 下面是 1 至 10 的双阶乘:

$$1!! = 1,$$
 $2!! = 2,$ $3!! = 3,$ $4!! = 8,$ $5!! = 15,$ $6!! = 48,$ $7!! = 105,$ $8!! = 384,$ $9!! = 945,$ $10!! = 3\,840_{\circ}$

Units and Fields

定义 设 D 是整环。设 $x \in D$ 。若存在 $y \in D$ 使 xy = 1,则说 $x \in D$ 的单位 (unit)。

评注 不难看出,D 至少有一个单位 1,因为 $1 \cdot 1 = 1$ 。定义里的 y 自然就是 x 的 (乘法) 逆元,其一般记为 x^{-1} 。 x^{-1} 当然也是单位。二个单位 x,y 的积 xy 也是单位: $(xy)(y^{-1}x^{-1}) = 1$ 。单位的乘法当然适合结合律。这样,D 的单位作成一个 (乘法) 群。姑且叫 D 的所有单位作成的集为单位群 (unit group) 吧!

评注 不难看出, 0 一定不是单位。

例 看全体整数作成的整环 \mathbb{Z} 。它恰有二个单位: 1 与 -1。

例 『 也是整环。它有无数多个单位: 任意 『* 的元都是单位。

例 前面的 4 元集 V 的非零元都是单位。

例 现在看一个不那么平凡的例。设

$$D=\{\,x+y\sqrt{3}\mid x,y\in\mathbb{Z}\,\}_\circ$$

这个 D (关于数的运算) 作成整环。

首先,我们说,不存在有理数 q 使 $q^2=3$ 。用反证法。设 $q=\frac{m}{n},\ m,\ n$ 是非零整数。我们知道,分数可以约分,故可以假设 $m,\ n$ 不全为 3 的倍。这 样

$$m^2 = 3n^2$$

所以 m^2 一定是 3 的倍。因为

$$(3\ell)^2 = 3 \cdot 3\ell^2,$$

 $(3\ell \pm 1)^2 = 3(3\ell^2 \pm 2\ell) + 1,$

故由此可看出, m 也是 3 的倍。记 m = 3u。这样

$$3u^2 = n^2$$

所以 n 也是 3 的倍。这跟假设矛盾!

再说一下 D 的二个元相等意味着什么。设 a, b, c, d 都是整数。那么

$$a + b\sqrt{3} = c + d\sqrt{3} \implies (a - c)^2 = 3(d - b)^2$$

若 $d-b \neq 0$, 则 $\frac{a-c}{d-b}$ 是有理数, 且

$$\left(\frac{a-c}{d-h}\right)^2 = 3,$$

而这是荒谬的。所以 d-b=0。这样 a-c=0。

现在再来看单位问题。若 k 是大于 1 的整数, 则 k 不是 D 的单位。反证法。若 k 是单位, 则有 $c,d\in\mathbb{Z}$ 使

$$1 = k(c + d\sqrt{3}) = kc + kd\sqrt{3} \implies 1 = kc,$$

矛盾!

D 有无数多个单位。因为

$$(2+\sqrt{3})(2-\sqrt{3})=1,$$

故对任意正整数 n, 有

$$(2+\sqrt{3})^n(2-\sqrt{3})^n=1_0$$

所以, $(2 \pm \sqrt{3})^n$ 是单位。

定义 设 F 是整环。若每个 F 的不是 0 的元都是 F 的单位, 则说 F 是域 (field)。

例 上面的 \mathbb{F} 跟 V 是域。这也解释了为什么我们用 \mathbb{F} 表示 \mathbb{Q} , \mathbb{R} , \mathbb{C} 之一。

评注 在域 F 里, 只要 $a \neq 0$, 则 a^{-1} 有意义。那么, 我们说 $\frac{b}{a}$ 就是 $ba^{-1} = a^{-1}b$ 的简写。不难验证, 当 $a, c \neq 0$ 时,

$$\begin{split} \frac{b}{a} &= \frac{d}{c} \iff bc = da, \\ \frac{b}{a} &\pm \frac{d}{c} &= \frac{bc \pm da}{ac}, \\ \frac{b}{a} \cdot \frac{d}{c} &= \frac{bd}{ac} \circ \end{split}$$

若 $d \neq 0$, 则

$$\frac{\frac{b}{a}}{\frac{d}{c}} = \frac{bc}{da} \circ$$

这就是我们熟知的分数运算法则。

评注 类似地,可以定义子域 (subfield)。这里,就直接用前面的等价刻 画来描述它: "F 的非空子集 K 是域 F 的子域的一个必要与充分条件是: (i) $1 \in K$; (ii) 任取 $x,y \in K, y \neq 0$,必有 $x-y \in K, \frac{x}{y} \in K$ 。"

例 设 $F \subset C$, 且 F 是域。不难看出, $\mathbb{Q} \subset F$ 。

Definition of Polynomials

现在开始介绍多项式。

定义 设 D 是整环。设 x 是不在 D 里的任意一个文字。形如

$$f(x) = a_0 x^0 + a_1 x^1 + \dots + a_n x^n \quad (n \in \mathbb{N}, \ a_0, a_1, \dots, a_n \in D, \ a_n \neq 0)$$

的表达式称为 $D \perp x$ 的一个多项式 (polynomial in x over D)。n 称为其次 (degree), a_i 称为其 i 次系数 (the i^{th} coefficient), $a_i x^i$ 称为其 i 次项 (the i^{th} coefficient)。f(x) 的次可写为 $\deg f(x)$ 。

若二个多项式的次与各同次系数均相等,则二者相等。

多项式的系数为 0 的项可以不写。

约定 $0 \in D$ 也是多项式, 称为零多项式。零多项式的次是 $-\infty$ 。任取整数 m, 约定

$$\begin{aligned} &-\infty = -\infty, & &-\infty < m, \\ &-\infty + m = m + (-\infty) = -\infty + (-\infty) = -\infty_{\circ} \end{aligned}$$

当然, 还约定, 零多项式只跟自己相等。换句话说,

$$a_0 x^0 + a_1 x^1 + \dots + a_n x^n = 0$$

的一个必要与充分条件是

$$a_0 = a_1 = \dots = a_n = 0_\circ$$

 $D \perp x$ 的所有多项式作成的集是 D[x]:

$$D[x] = \{ a_0 x^0 + a_1 x^1 + \dots + a_n x^n \mid n \in \mathbb{N}, \ a_0, a_1, \dots, a_n \in D \}_{\circ}$$

文字 x 只是一个符号, 它与 D 的元的和与积都是形式的。我们说, x 是不定元 (indeterminate)。

例 $0y^0 + 1y^1 + (-1)y^2 + 0y^3 + (-7)y^4 \in \mathbb{Z}[y]$ 是一个 4 次多项式。顺便一提,一般把 y^1 写为 y。这个多项式的一个更普通的写法是

$$y - y^2 - 7y^4$$

也许 y^0 看起来有些奇怪。如上所言, 这只是一个形式上的表达式。我们之后再处理这个小细节。

例 $z^0 + z + z^{\frac{3}{2}}$ 不是 z 的多项式。

评注 文字 x 的意义在数学中是不断进化的 (evolving)。在中小学里, x 是未知元 (unknown):虽然它是待求的,但是它是一个具体的数。后来在函数里, x 表示变元 (variable),不过它的取值范围是确定的。在上面的定义里, x 仅仅是一个文字,成为不定元。

定义 设

$$f(x) = a_0 x^0 + a_1 x + \dots + a_n x^n, \quad g(x) = b_0 x^0 + b_1 x + \dots + b_n x^n$$

是 D[x] 的元。规定加法如下:

$$f(x) + g(x) = (a_0 + b_0)x^0 + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

例 取 $\mathbb{Z}[x]$ 的二个元 $f(x)=x^0+2x^2,$ $g(x)=-3x^0+4x-x^3$ 。先改写一下:

$$f(x)=1x^0+0x+2x^2+0x^3,\quad g(x)=-3x^0+4x+0x^2+(-1)x^3\circ$$
 所以

$$f(x) + q(x) = -2x^{0} + 4x + 2x^{2} - x^{3}$$

命题 D[x] 作成加群。

证 设

$$\begin{split} f(x) &= a_0 x^0 + a_1 x + \dots + a_n x^n, \\ g(x) &= b_0 x^0 + b_1 x + \dots + b_n x^n, \\ h(x) &= c_0 x^0 + c_1 x + \dots + c_n x^n \end{split}$$

是 D[x] 的元。根据加法的定义,+ 显然是 D[x] 的二元运算。因为 D 的加法适合交换律,故

$$\begin{split} g(x)+f(x) &= (b_0+a_0)x^0 + (b_1+a_1)x + \dots + (b_n+a_n)x^n \\ &= (a_0+b_0)x^0 + (a_1+b_1)x + \dots + (a_n+b_n)x^n \\ &= f(x)+g(x)_\circ \end{split}$$

也就是说, D[x] 的加法适合交换律。

注意到

$$\begin{split} &(f(x)+g(x))+h(x)\\ &=((a_0+b_0)x^0+(a_1+b_1)x+\dots+(a_n+b_n)x^n)\\ &\qquad +(c_0x^0+c_1x+\dots+c_nx^n)\\ &=((a_0+b_0)+c_0)x^0+((a_1+b_1)+c_1)x+\dots+((a_n+b_n)+c_n)x^n\\ &=(a_0+b_0+c_0)x^0+(a_1+b_1+c_1)x+\dots+(a_n+b_n+c_n)x^n_{\ \circ} \end{split}$$

类似地, 计算 f(x) + (g(x) + h(x)) 也可以得到一样的结果。也就是说, D[x] 的加法适合结合律。

零多项式可以写为

$$0 = 0x^0 + 0x + \dots + 0x^n$$

这样

$$\begin{aligned} 0 + f(x) &= (0 + a_0)x^0 + (0 + a_1)x + \dots + (0 + a_n)x^n \\ &= a_0x^0 + a_1x + \dots + a_nx^n \\ &= f(x)_{\circ} \end{aligned}$$

类似地, f(x) + 0 = f(x)。

记

$$\underline{f}(x)=(-a_0)x^0+(-a_1)x+\cdots+(-a_n)x^n\circ$$

这样

$$\underline{f}(x) + f(x) = (-a_0 + a_0)x^0 + (-a_1 + a_1)x + \dots + (-a_n + a_n)x^n$$

$$= 0x^0 + 0x + \dots + 0x^n$$

$$= 0_0$$

类似地, f(x) + f(x) = 0。以后, 我们把这个 f(x) 用普通的符号写为

$$-f(x)=-a_0x^0-a_1x-\cdots-a_nx^n\circ$$

综上, D[x] 是加群。

评注 可以看出, $f(x) \pm g(x)$ 的次既不会超出 f(x) 的次, 也不会超出 g(x) 的次。用符号写出来, 就是

$$\deg(f(x) \pm g(x)) \le \max\{\deg f(x), \deg g(x)\}_{\circ}$$

评注 既然 D[x] 是加群, 且每个 $a_i x^i$ $(i = 0, 1, \dots, n)$ 都可以看成是多项式, 那么多项式的项的次序是不重要的。前面的写法称为升次排列 $(ascending\ order)$ 。下面的写法称为降次排列 $(descending\ order)$:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 x^0$$

这跟中学里接触的多项式是一样的。当然, 也可以用 ∑ 符号书写:

$$\sum_{i=0}^n a_i x^i \quad \text{or} \quad \sum_{i=0}^n a_{n-i} x^{n-i} \circ$$

(非零) 多项式的最高次非零项是首项 (leading term)。

例
$$y-y^2-7y^4\in\mathbb{Z}[x]$$
 可以写为 $-7y^4-y^2+y$, 其首项是 $-7y^4$ 。

定义 设

$$f(x) = a_0 x^0 + a_1 x + \dots + a_m x^m, \quad g(x) = b_0 x^0 + b_1 x + \dots + b_n x^n$$

是 D[x] 的元。规定乘法如下:

$$f(x)g(x) = c_0 x^0 + c_1 x + \dots + c_{m+n} x^{m+n}$$

其中

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0,$$

且约定 i>m 时 $a_i=0,\ j>n$ 时 $b_j=0$ 。在这个约定下,不难看出, $\ell>m+n$ 时, $c_\ell=0$ 。所以,我们至少有

$$\deg f(x)g(x) \le \deg f(x) + \deg g(x)_{\circ}$$

例 取 $\mathbb{Z}[x]$ 的二个元 $f(x)=x^0+2x^2,$ $g(x)=-3x^0+4x-x^3$ 。先改 写一下:

$$f(x) = 1x^{0} + 0x + 2x^{2}, \quad g(x) = -3x^{0} + 4x + 0x^{2} + (-1)x^{3}$$

所以

$$\begin{split} c_0 &= 1 \cdot (-3) = -3, \\ c_1 &= 1 \cdot 4 + 0 \cdot (-3) = 4, \\ c_2 &= 1 \cdot 0 + 0 \cdot 4 + 2 \cdot (-3) = -6, \\ c_3 &= 1 \cdot (-1) + 0 \cdot 0 + 2 \cdot 4 = 7, \\ c_4 &= 0 \cdot (-1) + 2 \cdot 0 = 0, \\ c_5 &= 2 \cdot (-1) = -2_{\circ} \end{split}$$

所以

$$f(x)g(x) = -3x^0 + 4x - 6x^2 + 7x^3 - 2x^5 \circ$$

例 再看一个例。设

$$f(x) = x, \quad g(x) = x^{\ell} \circ$$

$$c_k = 0b_k + 1\cdot 0 + \dots + 0\cdot 0 = 0_\circ$$

 $k = \ell + 1$ 时,

$$c_{\ell+1} = 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 + \dots + 0 \cdot 0 = 1_{\circ}$$

所以

$$x \cdot x^\ell = x^{\ell+1} \circ$$

这样, x^{ℓ} 可以视为 x 的 ℓ 次幂。

评注 由上面二个例可以看到,这跟中学的多项式乘法运算没有什么本 质区别。

例 设

$$f(x)=a_0x^0+a_1x+\cdots+a_mx^m\circ$$

是 D[x] 的元。零多项式可以写为

$$0 = 0x^0$$
,

由此易知

$$0f(x) = f(x)0 = 0_{\circ}$$

评注 设

$$f(x) = a_0 x^0 + a_1 x + \dots + a_m x^m, \quad g(x) = b_0 x^0 + b_1 x + \dots + b_n x^n$$

是 D[x] 的元, 且 $a_m \neq 0, b_n \neq 0$ 。这样, f(x)g(x) 的 m+n 次项就是 cx^{m+n} , 其中

$$\begin{split} c &= a_0 b_{m+n} + \dots + a_{m-1} b_{n+1} + a_m b_n + a_{m+1} b_{n-1} + \dots + a_{m+n} b_n \\ &= 0 + \dots + 0 + a_m b_n + 0 + \dots + 0 \\ &= a_m b_{n} \circ \end{split}$$

因为 $a_m \neq 0$, $b_n \neq 0$, 所以 $a_m b_n \neq 0$ (反证法: 若 $a_m b_n = 0 = a_m 0$, 因为 $a_m \neq 0$, 根据 D 的消去律, 得 $b_n = 0$, 矛盾!)。所以

$$\deg f(x)g(x) = \deg f(x) + \deg g(x)_{\circ}$$

可以验证, 若 f 或 g 的任意一个是 0, 这个关系也对。

命题 D[x] 作成整环。所以,D[x] 的一个名字就是 (整环) $D \perp (x)$ 的 多项式 (整) 环。

证 已经知道, D[x] 是加群。下面先说明 D[x] 是交换环。 根据定义, 多项式的乘法还是多项式, 也就是说, 乘法是二元运算。 设

$$\begin{split} f(x) &= a_0 x^0 + a_1 x + \dots + a_m x^m, \\ g(x) &= b_0 x^0 + b_1 x + \dots + b_n x^n, \\ h(x) &= u_0 x^0 + u_1 x + \dots + u_s x^s \end{split}$$

是 D[x] 的元。则

$$\begin{split} f(x)g(x) &= c_0 x^0 + c_1 x + \dots + c_{m+n} x^{m+n}, \\ g(x)f(x) &= d_0 x^0 + d_1 x + \dots + d_{n+m} x^{n+m}, \end{split}$$

其中

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0,$$

$$d_k = b_0 a_k + b_1 a_{k-1} + \dots + b_k a_{00}$$

因为 D 的乘法适合交换律, 加法适合交换律与结合律, 故 $c_k=d_k$ 。这样, D[x] 的乘法适合交换律。

不难算出

$$\begin{split} &(f(x)g(x))h(x)\\ &=(c_0x^0+c_1x+\dots+c_{m+n}x^{m+n})(u_0x^0+u_1x+\dots+u_sx^s)\\ &=v_0x^0+v_1x+\dots+v_{m+n+s}x^{m+n+s}, \end{split}$$

其中

$$v_t = (\text{the sum of all } a_i b_j u_r \text{'s with } i+j+r=t)_{\circ}$$

类似地, 计算 f(x)(g(x)h(x)) 也可以得到一样的结果。也就是说, D[x] 的乘 法适合结合律。

现在验证分配律。前面已经看到, 多项式的乘法是交换的, 所以只要验证一个分配律即可。不失一般性, 设 s=n。这样

$$g(x) + h(x) = (b_0 + u_0)x^0 + (b_1 + u_1)x + \dots + (b_n + u_n)x^n$$

所以

$$f(x)(g(x) + h(x)) = p_0 x^0 + p_1 x^1 + \dots + p_{m+n} x^{m+n},$$

其中

$$\begin{split} p_k &= a_0(b_k+c_k) + a_1(b_{k-1}+c_{k-1}) + \dots + a_k(b_0+c_0) \\ &= (a_0b_k+a_0c_k) + (a_1b_{k-1}+a_1c_{k-1}) + \dots + (a_kb_0+a_kc_0) \\ &= (a_0b_k+a_1b_{k-1}+\dots + a_kb_0) + (a_0c_k+a_1c_{k-1}+\dots + a_kc_0) \circ \end{split}$$

不难看出, 这就是 f(x)g(x) 的 k 次系数与 f(x)h(x) 的 k 次系数的和。这样, D[x] 的加法与乘法适合分配律。至此, 我们知道, D[x] 是交换环。

交换环离整环还差二步: 一是乘法幺元, 二是消去律。先看消去律。若 f(x)g(x) = f(x)h(x), $f(x) \neq 0$, 根据分配律,

$$0 = f(x)g(x) - f(x)h(x) = f(x)(g(x) - h(x))_{\circ}$$

如果 $g(x) - h(x) \neq 0$, 则 g(x) - h(x) 的次不是 $-\infty$ 。 f(x) 的次不是 $-\infty$,故 f(x)(g(x) - h(x)) 的次不是 $-\infty$ 。换句话说, $f(x)(g(x) - h(x)) \neq 0$,矛盾! 再看乘法幺元。设

$$e(x) = x^{0}$$

不难算出

$$e(x)f(x) = f(x)e(x) = f(x)_{\circ}$$

综上, D[x] 是整环。

评注 以后, 我们把 x⁰ 写为 1。换句话说, 代替

$$a_0 x^0 + a_1 x + \dots + a_n x^n,$$

我们写

$$a_0 + a_1 x + \dots + a_n x^n \circ$$

这儿还有一件事儿值得一提。考虑

$$D_0=\{\,ax^0\mid a\in D\,\}\subset D[x]_\circ$$

任取 D_0 的二元 ax^0 , bx^0 。首先, $ax^0 = bx^0$ 的一个必要与充分条件是 a = b。然后, 不难看出,

$$ax^{0} + bx^{0} = (a+b)x^{0}, \quad (ax^{0})(bx^{0}) = (ab)x^{0},$$

由此可以看出, D_0 与 D "几乎完全一样"。用摩登 (modern) 数学的话来说, " D_0 与 D 是天然同构的 $(naturally\ isomorphic)$ "。

我们不打算深究这一点。上面, 我们把 x^0 写为 1; 反过来, D 的元 a 也可以理解为是多项式 ax^0 。这跟中学的习惯是一致的。

Division Algorithm

我们知道, 非负整数有这样的性质:

命题 设 n 是正整数, m 是非负整数。则必有一对非负整数 q, r 使

$$m = qn + r, \quad 0 \le r < n_{\circ}$$

例如, 取 n = 5, m = 23。不难看出,

$$18 = 4 \cdot 5 + 3_{\circ}$$

多项式也有类似的性质哟。

命题 设

$$f(x) = \sum_{i=0}^{n} a_i x^i \in D[x],$$

且 a_n 是 D 的单位。对任意 $g(x) \in D[x]$, 存在 $q(x), r(x) \in D[x]$ 使

$$g(x) = q(x)f(x) + r(x), \quad \deg r(x) < n_0$$

一般称其为带余除法: q(x) 就是商 (quotient); r(x) 就是余式 (remainder)。

证 用数学归纳法。记 $\deg g(x) = m$ 。若 m < n,则 q(x) = 0,r(x) = g(x) 适合要求。所以,命题对不高于 n-1 的 m 都成立。

设 $m \le \ell$ ($\ell \ge n-1$) 时, 命题成立。考虑 $m = \ell+1$ 的情形。此时, 设

$$g(x) = \sum_{i=0}^{\ell+1} b_i x^i \circ$$

则

$$\begin{split} g(x) - b_{\ell+1} a_n^{-1} x^{\ell+1-n} f(x) \\ &= \sum_{i=0}^{\ell+1} b_i x^i - b_{\ell+1} a_n^{-1} x^{\ell+1-n} \sum_{i=0}^n a_i x^i \\ &= \sum_{i=0}^{\ell} b_i x^i + b_{\ell+1} x^{\ell+1} - \sum_{i=0}^{n-1} b_{\ell+1} a_n^{-1} a_i x^{\ell+1-n+i} - b_{\ell+1} a_n^{-1} a_n x^{\ell+1} \\ &= \sum_{i=0}^{\ell} b_i x^i - \sum_{i=0}^{n-1} b_{\ell+1} a_n^{-1} a_i x^{\ell+1-n+i} + b_{\ell+1} x^{\ell+1} - b_{\ell+1} x^{\ell+1} \\ &= \sum_{i=0}^{\ell} b_i x^i - \sum_{i=0}^{n-1} b_{\ell+1} a_n^{-1} a_i x^{\ell+1-n+i} \circ \end{split}$$

设 $r_1(x)=g(x)-b_{\ell+1}a_n^{-1}x^{\ell+1-n}f(x)$ 。这样, $r_1(x)$ 的次不高于 ℓ 。根据归纳假设, 有 $q_1(x),r(x)\in D[x]$ 使

$$r_1(x) = q_1(x)f(x) + r(x), \quad \deg r(x) < n_0$$

所以

$$\begin{split} g(x) &= b_{\ell+1} a_n^{-1} x^{\ell+1-n} f(x) + r_1(x) \\ &= b_{\ell+1} a_n^{-1} x^{\ell+1-n} f(x) + q_1(x) f(x) + r(x) \\ &= (b_{\ell+1} a_n^{-1} + q_1(x)) f(x) + r(x) \circ \end{split}$$

记 $q(x) = b_{\ell+1} a_n^{-1} + q_1(x)$,则 q(x), r(x) 适合要求。所以, $m \le \ell+1$ 时,命题成立。根据数学归纳法,命题成立。

例 取 $\mathbb{F}[x]$ 的二元 $f(x)=2(x-1)^2(x+2),$ $g(x)=8x^6+1$ 。我们来找一对多项式 g(x), $f(x)\in\mathbb{F}[x]$ 使

$$g(x) = q(x)f(x) + r(x), \quad \deg r(x) < \deg f(x)_{\circ}$$

不难看出, f(x) 的次是 3, 且

$$f(x) = 2(x^2 - 2x + 1)(x + 2) = 2x^3 - 6x + 4$$

我们按上面证明的方法寻找 q(x) 与 r(x)。 $a_3=2$ 是 $\mathbb F$ 的单位,且 $a_3^{-1}=\frac{1}{2}$ 。取

$$q_1(x) = 8 \cdot \frac{1}{2} \cdot x^{6-3} = 4x^3 \circ$$

则

$$\begin{split} r_1(x) &= g(x) - q_1(x) f(x) \\ &= (8x^6 + 1) - 4x^3 (2x^3 - 6x + 4) \\ &= (8x^6 + 1) - (8x^6 - 24x^4 + 16x^3) \\ &= 24x^4 - 16x^3 + 1_\circ \end{split}$$

 $r_1(x)$ 的次仍不低于 3。因此, 再来一次。取

$$q_2(x) = 24 \cdot \frac{1}{2} \cdot x^{4-3} = 12x_\circ$$

则

$$\begin{split} r_2(x) &= r_1(x) - q_2(x) f(x) \\ &= (24x^4 - 16x^3 + 1) - 12x(2x^3 - 6x + 4) \\ &= (24x^4 - 16x^3 + 1) - (24x^4 - 72x + 48x) \\ &= -16x^3 + 72x^2 - 48x + 1_{\circ} \end{split}$$

 $r_2(x)$ 的次仍不低于 3。因此, 再来一次。取

$$q_3(x) = -16 \cdot \frac{1}{2} \cdot x^{3-3} = -8_{\circ}$$

则

$$\begin{split} r_3(x) &= r_2(x) - q_3(x) f(x) \\ &= (-16x^3 + 72x^2 - 48x + 1) - (-8)(2x^3 - 6x + 4) \\ &= (-16x^3 + 72x^2 - 48x + 1) - (-16x^3 + 48x - 32) \\ &= 72x^2 - 96x + 33c \end{split}$$

 $r_3(x)$ 的次低于 3。这样

$$\begin{split} g(x) &= q_1(x)f(x) + r_1(x) \\ &= q_1(x)f(x) + q_2(x)f(x) + r_2(x) \\ &= q_1(x)f(x) + q_2(x)f(x) + q_3(x)f(x) + r_3(x) \\ &= (q_1(x) + q_2(x) + q_3(x))f(x) + r_3(x) \\ &= (4x^3 + 12x - 8)f(x) + (72x^2 - 96x + 33)_{\circ} \end{split}$$

也就是说,

$$q(x) = 4x^3 + 12x - 8$$
, $r(x) = 72x^2 - 96x + 33$

评注 带余除法要求 f(x) 的首项系数是单位是有必要的。

在上面的例里, f(x) 与 g(x) 可以看成 $\mathbb{Z}[x]$ 的元, 但 2 不是 \mathbb{Z} 的单位。虽然最终所得 q(x), r(x) 也是 $\mathbb{Z}[x]$ 的元, 但这并不是一定会出现的。我们看下面的简单例。

考虑 $\mathbb{Z}[x]$ 的多项式 f(x) = 2x。设

$$r(x) = r_0, \quad q(x) = \sum_{i=0}^{p} q_i x^i, \quad g(x) = \sum_{i=0}^{s} g_i x^i,$$

且 $r_0,q_0,\cdots,q_p,g_0,\cdots,g_s\in\mathbb{Z}$ 。由 g(x)=q(x)f(x)+r(x) 知

$$\sum_{i=0}^{s} g_i x^i = r_0 + \sum_{i=1}^{p+1} 2q_{i-1} x^i \circ$$

所以

$$\begin{split} p &= s-1,\\ r_0 &= g_0,\\ 2q_{i-1} &= g_i, \quad i = 1, \cdots, s_{\diamond} \end{split}$$

这说明, g(x) 的 i 项系数 $(i=1,\cdots,s)$ 必须是偶数。所以, 不存在 $q(x),r(x)\in\mathbb{Z}[x]$ 使

$$1 + 3x + x^2 = q(x) \cdot 2x + r(x), \quad \deg r(x) < 1_{\circ}$$

我们知道, 用一个正整数除非负整数, 所得的余数与商是唯一的。比方说, 5 除 23 的余数只能是 3。

多项式也有类似的性质哟。

8

命题 设 $f(x)\in D[x],$ 且 $f(x)\neq 0$ 。若 D 上 x 的 4 个多项式 $q_1(x),$ $r_1(x),$ $q_2(x),$ $r_2(x)$ 适合

$$\begin{split} q_1(x)f(x) + r_1(x) &= q_2(x)f(x) + r_2(x), \\ \deg r_1(x) &< \deg f(x), \quad \deg r_2(x) < \deg f(x), \end{split}$$

则必有

$$r_1(x) = r_2(x), \quad q_1(x) = q_2(x)_{\circ}$$

证 记

$$Q(x) = q_2(x) - q_1(x), \quad R(x) = r_2(x) - r_1(x) \circ$$

题设条件即

$$(q_1(x)-q_2(x))f(x)=r_2(x)-r_1(x),\\$$

也就是

$$-Q(x)f(x) = R(x)_{\circ}$$

反证法。若 $-Q(x) \neq 0$,则 $\deg(-Q(x)) \geq 0$ 。从而

$$\deg R(x) = \deg(-Q(x)) + \deg f(x) \ge \deg f(x)_{\circ}$$

可是

$$\deg R(x) = \deg(r_2(x) - r_1(x)) \le \deg r_1(x) < \deg f(x),$$

矛盾! 故
$$-Q(x) = 0$$
。这样, $R(x) = 0$ 。

这样, 我们得到了这个命题:

命题 设

$$f(x) = \sum_{i=0}^n a_i x^i \in D[x],$$

且 a_n 是 D 的单位。对任意 $g(x) \in D[x]$,存在唯一的 $q(x), r(x) \in D[x]$ 使

$$g(x) = q(x)f(x) + r(x), \quad \deg r(x) < n_{\circ}$$

一般称其为带余除法: q(x) 就是商; r(x) 就是余式。并且,当 f(x) 的次不高于 g(x) 的次时,f(x),g(x),q(x) 间还有如下的次关系:

$$\deg g(x) = \deg(g(x) - r(x)) = \deg g(x) + \deg f(x)_{\circ}$$

Roots of Polynomials

我们回顾一下熟悉的多项式函数。

定义 设
$$a_0, a_1, \cdots, a_n \in D$$
 称

$$f\colon \mbox{ } D\to D,$$

$$t\mapsto a_0+a_1t+\cdots+a_nt^n$$

为 D 的多项式函数 (polynomial function)。我们也说, 这个 f 是由 D 上 x 的多项式

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

诱导的多项式函数 (the polynomial function induced by f)。不难看出,若二个多项式相等,则其诱导的多项式函数也相等。

定义 设 f 与 g 是 D 的二个多项式函数。二者的和 f+g 定义为

$$f+g\colon \ D\to D,$$

$$t\mapsto f(t)+g(t)_{\circ}$$

二者的积 fg 定义为

$$fg\colon D \to D,$$

$$t \mapsto f(t)g(t)_{\circ}$$

例 设 $f, g \in D$ 的二个多项式函数:

$$\begin{split} f\colon & D\to D,\\ & t\mapsto a_0+a_1t+\dots+a_nt^n,\\ g\colon & D\to D,\\ & t\mapsto b_0+b_1t+\dots+b_nt^n_{\text{ o}} \end{split}$$

利用 D 的运算律, 可以得到

$$\begin{split} f+g\colon & D\to D,\\ t&\mapsto (a_0+b_0)+(a_1+b_1)t+\dots+(a_n+b_n)t^n,\\ fg\colon & D\to D,\\ t&\mapsto c_0+c_1t+\dots+c_{2n}t^{2n}, \end{split}$$

其中

$$c_k=a_0b_k+a_1b_{k-1}+\cdots+a_kb_{0}\circ$$

由此可得下面的命题:

命题 设 $f(x), g(x) \in D[x]$, f, g 分别是 f(x), g(x) 诱导的多项式函数。那么 f + g 是 f(x) + g(x) 诱导的多项式函数,且 fg 是 f(x)g(x) 诱导的多项式函数。

通俗地说, 就是: 若多项式 $f_1(x)$, $f_2(x)$, …, $f_n(x)$ 之间有一个由加法与乘法计算得到的关系, 那么将 x 换为 D 的元 t, 这样的关系仍成立。

例 考虑 \mathbb{F} 与 $\mathbb{F}[x]$ 。前面, 利用带余除法, 得到关系

$$8x^6 + 1 = (4x^3 + 12x - 8) \cdot 2(x - 1)^2(x + 2) + (72x^2 - 96x + 33)_{\circ}$$

这里 x 只是一个文字, 不是数! 但是, 上面的命题告诉我们, 可以把 x 看成一个数。比如, 由上面的式可以立即看出, $8t^6+1$ 与 $72t^2-96t+33$ 在 t=1 或 t=-2 时值是一样的。

可是, 对于这样的式, 我们不能将 x 改写为 \mathbb{F} 的元 t:

$$\deg 3x^2 < \deg 2x^3_{\circ}$$

可以看到, 若 t = 0, 则 $3t^2 = 2t^3 = 0$, 而 0 的次是 $-\infty$; 若 $t \neq 0$, 则 $3t^2$ 与 $2t^3$ 都是非零数, 次都是 0。

评注 我们已经知道,多项式确定多项式函数。自然地,有这样的问题: 多项式函数能否确定多项式?一般情况下,这个问题的答案是 no。

考虑 4 元集 $V = \{0, 1, \tau, \tau^2\}$ 。它的加法与乘法如下:

+	0	1	au	$ au^2$		•	0	1	au	$ au^2$
0	0	1	au	$ au^2$	-	0	0	0	0	0
1	1	0	$ au^2$	au				1		
au	τ	$ au^2$	0	1		au	0	au	$ au^2$	1
$ au^2$	$ au^2$	au	1	0		$ au^2$	0	$ au^2$	1	au

在前面, 我们已经知道, V 是整环。作 V 上 x 的二个多项式:

$$f(x) = x^4 - x$$
, $q(x) = 0$

显然, 这是二个不相等的多项式。但是, 任取 $t \in V$, 都有

$$t^4 - t = 0_0$$

因此, f(x) 与 g(x) 诱导的多项式函数是同一函数!

不过, 在某些场合下, 多项式函数可以确定多项式。之后我们还会提到 这一点。 评注 设 $f(x)=a_0+a_1x+\cdots+a_nx^n\in D[x]$ 。设 t 是 D 的元。以后,我们直接写

$$f(t) = a_0 + a_1 t + \dots + a_n t^n \circ$$

至少,一方通行 (one-way traffic) 是没问题的。

了解了多项式与多项式函数的关系后,下面的这个命题就不会太凸兀了。

命题 设 $f(x) \in D[x]$ 是 n 次多项式 $(n \ge 1)$, $a \in D$ 。则存在 n-1 次 多项式 g(x) $(\in D[x])$ 使

$$f(x) = q(x)(x - a) + f(a)_{\circ}$$

证 因为 x-a 的首项系数 1 是单位, 故存在 D[x] 的二元 q(x), r(x) 使

$$f(x) = q(x)(x-a) + r(x), \quad \deg r(x) < \deg(x-a) = 1_{\circ}$$

所以, r(x) = c, $c \in D$ 。用 D 的元 a 替换 x, 有

$$f(a) = q(a)(a-a) + c = c_{\circ}$$

所以

$$f(x) = q(x)(x - a) + f(a)_{\circ}$$

再看这个 q(x) 的次。因为 f(x) 的次不低于 x-a 的次,故

$$\deg q(x) = \deg f(x) - \deg(x - a) = n - 1_{\circ}$$

评注 如果用 D 的元 b 替换 x, 则

$$f(b) = (b - a)q(b) + f(a),$$

也就是说, 存在 $r \in D$ 使

$$f(b) - f(a) = (b - a)r_{\circ}$$

所以, 若 $f(x) \in D[x]$ 是 n 次多项式 $(n \ge 1)$, $a, b \in D$, 则存在 $r \in D$ 使 f(b) - f(a) = (b - a)r。当 f(x) 的次低于 1 时, 这个命题也对 (取 r = 0)。

那么, 这有什么用呢? 举个简单的例。我们说, 不存在系数为整数的多项式 f(x) 使 f(1)=f(-1)+1。假如说这样的 f 存在, 那么应存在整数 r 使

$$1 = f(1) - f(-1) = (1 - (-1))r = 2r$$

而 1 不是偶数, 矛盾。之后我们还会提到这一点。

现在, 我们讨论多项式的根的基本性质。

定义 设 f(x) 是 $D \perp x$ 的多项式。若有 $a \in D$ 使 f(a) = 0, 则说 a 是 (多项式) f(x) 的根 (root)。

例 设 $D \subset \mathbb{C}$, 且 $\mathbb{Z} \subset D$ 。看 $D \perp x$ 的多项式

$$f(x) = (2x - 1)(x + 1)(x^2 - 3)(x^2 + 1)(x^2 + 4)_{\circ}$$

如果 $D=\mathbb{Z}$, 则 f(x) 有一个在 D 里的根: -1。如果 $D=\mathbb{Q}$, 则 f(x) 有二个在 D 里的根: -1, $\frac{1}{2}$ 。如果 $D=\mathbb{R}$, 则 f(x) 有四个在 D 里的根: -1, $\frac{1}{2}$, $\pm\sqrt{3}$ 。如果 $D=\mathbb{C}$, 则 f(x) 有八个在 D 里的根: -1, $\frac{1}{2}$, $\pm\sqrt{3}$, $\pm\mathrm{i}$, $\pm2\mathrm{i}$ 。

例 再来一个例。看 $D \perp x$ 的多项式

$$f(x) = x^2 + x - 1_{\circ}$$

若 $D = \mathbb{R}$, 则 f(x) 的二个根是 $\frac{-1 \pm \sqrt{5}}{2}$ 。若 D = V,则 f(x) 的二个根是 τ, τ^2 。当然,若 $D \subset \mathbb{Q}$,则 f(x) 无 (D 的) 根。

评注 设 $a, b \in D$, 且 $a \neq 0$ 。

若 f(x) = a, 则 f(x) 无根。换句话说,零次多项式至多有零个根。

再设 f(x) = ax + b 是一次多项式。若存在 $c \in D$ 使 b = ac, 则 f(x) 有一个根 -c。并且,f(x) 也不会有另一个根(若 $at_1 + b = at_2 + b$,则 $at_1 = at_2$,故 $t_1 = t_2$)。若这样的 c 不存在,则 f(x) 无根(反设 f(x) 有根 d,则由 ad + b = 0 知 b = a(-d),矛盾)。换句话说,一次多项式至多有一个根。

结合上面的二个例, 我们猜想: n 次多项式 ($n \in \mathbb{N}$) 至多有 n 个 (不同的) 根。幸运的事儿是, 这个猜想是正确的。

命题 设 $f(x) \in D[x]$ 是 n 次多项式 $(n \ge 1)$ 。a 是 f(x) 的根的一个必要与充分条件是:存在 n-1 次多项式 g(x) $(\in D[x])$ 使

$$f(x) = q(x)(x - a)_{\circ}$$

证 先看充分性。若这样的 q(x) 存在, 则

$$f(a) = q(a)(a-a) = 0_{\circ}$$

再看必要性。设 f(a)=0。根据上面的命题, 存在 n-1 次多项式 $q(x)\in D[x]$ 使

$$f(x) = q(a)(x-a) + f(a) = q(a)(x-a)_0$$

命题 设 $f(x) \in D[x]$ 是 n 次多项式 $(n \in \mathbb{N})$ 。则 f(x) 至多有 n 个不同的根。

证 n=0 或 n=1 时,我们已经知道这是对的。用数学归纳法。假设 ℓ 次多项式至多有 ℓ 个不同的根。看 $\ell+1$ 次多项式 f(x)。如果它没有根,当 然至多有 $\ell+1$ 个不同的根。如果它有一个根 α ,则存在 ℓ 次多项式 α

$$f(x) = q(x)(x - a)_{\circ}$$

根据归纳假设, q(x) 至多有 ℓ 个不同的根。而且, 若 $b \neq a$, 且 b 不是 q(x) 的根, 利用消去律可知 $f(b) \neq 0$ 。这样, f(x) 至多有 $\ell+1$ 个不同的根。

由此可推出一个很有用的事实:

命题 设 a_0, a_1, \dots, a_n 是 D 的元。设 n 是非负整数。设

$$f(x) = \sum_{i=0}^{n} = a_i x^i = a_0 + a_1 x + \dots + a_n x^n \circ$$

若 t_0, t_1, \dots, t_n 是 n+1 个互不相同的 D 的元, 且

$$f(t_0) = f(t_1) = \dots = f(t_n) = 0,$$

则 f(x) 必为零多项式。通俗地说,就是次不高于 n (且系数为整环的元) 的 多项式不可能有 n 个以上的互不相同的根,除非这个多项式是零。

证 反证法。设 f(x) 不是零多项式。设 f(x) 的次为 m, 则 $0 \le m \le n$ 。根据上一个命题, f(x) 至多有 m 个不同的根, 这与题设矛盾! 故 f(x) = 0。

评注 再看前面提到的 4 元集 V。可以看出,因为 V 的元 "不够多",所以出现了取零值的非零多项式。

Polynomials over \mathbb{F}

我们在前几节讨论的都是整环 D 上的多项式, 所以看上去是有些抽象的。从现在开始, 我们讨论 \mathbb{F} 与 $\mathbb{F}[x]$, 其中 \mathbb{F} 可代指 \mathbb{Q} , \mathbb{R} , \mathbb{C} 的任意一个。 先回顾一下我们在前几节里证明的结论。

命题 $\mathbb{F}[x]$ 作成整环。所以, $\mathbb{F}[x]$ 的一个名字就是 (域) \mathbb{F} 上 (x) 的多项式环。

因为 『的每个非零元都是 『的单位, 所以有

8

命题 设 $f(x) \in \mathbb{F}[x]$ 是非零多项式。对任意 $g(x) \in \mathbb{F}[x]$,存在唯一的 $q(x), r(x) \in \mathbb{F}[x]$ 使

$$g(x) = q(x)f(x) + r(x), \quad \deg r(x) < \deg f(x)_{\circ}$$

一般称其为带余除法: q(x) 就是商; r(x) 就是余式。并且, 当 f(x) 的次不高于 g(x) 的次时, f(x), g(x), q(x) 间还有如下的次关系:

$$\deg g(x) = \deg(g(x) - r(x)) = \deg q(x) + \deg f(x)_{\circ}$$

可以看到, 在 『 里, 带余除法的适用范围更广了。 由于 『 里有无数多个元, 所以

命题 设 $f(x) \in \mathbb{F}[x]$ 。设 $S \subset \mathbb{F}$,且 S 有无数多个元。若任取 $t \in S$,必 有 f(t) = 0,则 f(x) 必为零多项式。通俗地说,就是系数为 \mathbb{F} 的元的多项式不可能有无数多个根,除非这个多项式是零。

证 f(x) 的次不可能是非负整数。所以 f(x) 只能是 0。

前面已经知道,多项式确定多项式函数。利用上面的命题,我们有

命题 『上的多项式与『的多项式是一一对应的: 不但二个不同的『上的多项式给出二个不同的『的多项式函数, 而且二个不同的『的多项式函数给出二个不同的『上的多项式。

评注 这个命题告诉我们, 我们在前面定义的"纯形式多项式"与中学 里学到的多项式 (一元整式) 是没有本质区别的。