

AD-A285 893

(B)
2

**Final Technical Report
for the
Office of Naval Research
Grant No. N00014-93-1-0441**

**Submitted by
The Center for Coastal Studies
Provincetown, Mass.**

October 1994

This document contains neither
recommendations nor conclusions of the
National Institute of Standards and Technology.
It is the property of NIST and is loaned to your
organization; it and its contents are not to be
distributed outside your organization without
the express written permission of the Director
of NIST.

94-33893

489

94 11 1 072

CENTER FOR COASTAL STUDIES

A Private Non-Profit Organization for Research, Education and Conservation in the Coastal & Marine Environments

59 Commercial Street • P. O. Box 1036 • Provincetown, Massachusetts 02657 • Telephone: (508) 487-3622

October 24, 1994

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, Virginia 22304-6145

Re: ONR Grant No. N00014-93-1-0441

Dear Sir:

Enclosed please find three copies of the Final Technical Report for ONR Grant No. N00014-93-1-0441. If you have any questions regarding this report please contact the Principal Investigator, Dr. Charles A. Mayo at (508) 487-3622. Thank you for your assistance and patience with regard to this grant.

Sincerely,

David L. DeKing
Executive Director

Enclosure

cc: Office of Naval Research, Boston Regional Office

Introduction

The Office of Naval Research under grant number N00014-93-1-0441 provided support to the Center for Coastal Studies for the purchase of equipment and software to aid in the development of field and laboratory protocols for the studying the behavior of large whales. Here we report on progress in the development of techniques associated with the study of whale behavior in combination with the collection of data on the movement patterns of whales, human activities, and oceanographic conditions, a Multivariable Collection Protocol or MCP. The focus of this report is the development of field and laboratory techniques to determine the variables, to design a protocol for field collection, to apply the real time sonagraphic software to collected vocalizations, and to develop a simplified catalog of sounds. The field and laboratory protocols were developed to (1) permit the simple and inexpensive collection of descriptive information surrounding each observation, (2) yield an analysis which would either suggest or confirm the relationship among the selected variables of the many which affect whale behavior, and (3) provide baseline information on the variables permitting a detailed comparative analysis of whale behavior.

Specifically, the equipment purchased under the grant was intended to support the development of the field protocols for (1) documentation of whale vocalizations and (2) management of all incoming data via data loggers. Additional equipment and software was purchased for laboratory analysis of vocal behavior and for integration of observations and analysis using statistical package. This report, therefore is focused on audio documentation, the development of simple field synchronization techniques, and, particularly, on the application of real time sonagraphic software to the development of a simple key - based catalog of sounds.

Field Collection

A-1

For the development of the MCP we chose to collect information on the right whale both because this species is poorly understood and because the severely depleted condition of the population makes an understanding of the activity patterns of the species of paramount conservation significance.

Cape Cod Bay, the area where our studies have been ongoing since 1984, has long been known as a habitat where right whales feed and socialize in the winter and early spring. The Bay, therefore, was recommended in the Final Recovery Plan for the Northern Right Whale (*Eubalaena glacialis*) (National Marine Fisheries Service, 1991) for designation as a critical habitat and so declared in the summer of 1994. Each year since 1984 we have observed as many as 50 right whales in Cape Cod and Massachusetts Bays, primarily in the winter and early spring, feeding and caring for their young (Hamilton and Mayo, 1990). The eastern part of the embayment where small groups of right whales actively feed at or near the surface is particularly rich in seasonally abundant phyto- and zooplankton resources which may attract the whales to the region. In this area of the eastern Bay we documented the surface activity of groups of socializing whales and while collecting basic information on the food resources of the area for combination with data on the vocalization of the whales and information on vessel movement. To develop and test documentation techniques we collected synchronized video and audio recordings coupled with data logging of oceanographic and biological information. Of these observations, we concentrated our development efforts on two particularly rich (and, therefore, challenging from a data management perspective) video-audio segments and associated documentation collected on 26 March 1993 and 31 March 1993, a total of 1.9 hours in duration. The behavioral information was combined with data from oceanographic observations and collections of zooplanktonic foods to yield a raw data set available for analysis.

Laboratory Analysis

In the laboratory, we developed the functional interfaces between the DAT recorder used for field recording of underwater sounds, an analog tape player/recorder used for creating working sound sources, a 486/33 PC running Real Time Sonagraphic (RTS) software obtained from Engineering Design, Belmont, MA, and a laser printer. Using these systems it was possible to operate the audio tape and the RTS side-by-side permitting the running display of individual audio event spectrograms vs. time and comparing these with behaviors available from a data logger running event recording software developed at CCS. It was also possible to run video segments synchronized with the audio record and RTS sonagraphic display to demonstrate the association between observed surface behavioral events and the acoustic record. Through the use of the event and data recording software, we were able to thereby associate the

disparate data bases (see figure 1) from several sources to create the prototype Multivariable Collection Protocol.

Variables

The variables selected for documentation fell into the broad database categories listed in figure 1. For the purposes of this contract, the focus of our development effort was the design of a system for recording and analyzing whale vocalizations compatible with the documentation techniques used for the collection of data for other databases. It was necessary, therefore, to create a collection technique (see below) which permitted the construction of a real - time comparison of incoming sounds with other databases and to initially categorize and process the acoustic information according to simple catalogs to demonstrate that vocal activity could be documented and compared to other data streams. Fundamental to this approach was the development of methods for application of the Real Time Sonographic software (Engineering Design, Belmont, MA) to collected data. Subsequently, with RTS running, we proceeded to collect sonograms of right whale vocal activity analyzed from time synchronized audio and video tapes for the purposes of developing a simplified catalog of vocalizations. Development of the components of the vocalization study were accomplished with the aid of several interns and staff members: Margaret Murphy (field recording techniques), Janet Doherty (RTS use), and Dara Wambach and Nicky Spencer (cataloging).

Results

Examples of the simple descriptive techniques used for the MCP audio database are given in Appendices I and II. The numerically described type sounds are exemplified by the first 10 sonograms in Appendix III and described in Appendix IV.

In addition to the development of a simplified, hierarchical catalog, the collation of data from one observation is presented in the example found in Appendix V.

Continued Work

The development started with the protocols described here will continue to focus on the streamlining of field data collection from the variety of different sources. In particular, we are endeavoring to streamline the field logging by employing pen-based computers

MCP: databases and sources

- Behavioral Observations (video to data log)
- Vessel Activity (direct data log)
- Vocal Behavior (hydrophone to tape to log)
- Orientation (direct data log)
- Oceanographic Data (direct CTD log)
- Biological Data (hand record; field collection)
- Environmental Observations (hand record)
- Demographics/Genetics (photo to catalogs)
- Historic Data (photo to CCS/NEA database)

Figure 1

and programs which mimic those used to date but which do not require key entry. Further incorporation of more complete catalogs of both vocal and surface behaviors and the development of similar descriptions for other species of marine mammals also will be the focus of future work. At its present level of development, we have begun to use MCP to develop a database for the assessment of the effects of environmental conditions on whale behavior in the Stellwagen Sanctuary and the Cape Cod Bay Critical Habitat.

Applications

Although still in the development stage, this holistic approach to the development of baseline data for the documentation of the principal effecting variables influencing the behavior of whales offers considerable promise. Because this documentation protocol is based on simple and inexpensive techniques, the collection of the volume of data needed to develop the baseline information for comparative studies is possible. Further, the template which this protocol suggests includes a variety of oceanographic and environmental parameters which permit the placement of the behavioral observations in the larger context of the observations.

The applications of a holistic, multidisciplinary approach to field behavioral observations are many. Generally these techniques, with the extensive baseline data to support them should considerably improve our ability to design the comparative studies critical to our understanding of the activities of whales in the ocean system and the influences on them. A variety of study areas are suggested: (1) measurement of important characteristics of critical habitats, (2) determination and modeling the effects of a wide variety of human activities on marine mammals, (3) investigation of questions involving the social character of whale populations, and (4) characterization of basic behavior patterns such as foraging, social interaction, and nursery in the context of environmental conditions.

H28102.CNU: Plot Label 1

Appendix I

**Right Whale Vocalization: Proposed Taxonomic
Structure**

by

Nicky Spencer

BUCKS, RICHARD SETH L.

KEY WITH WHICH TO CORRELATE
CATENATION OF SOUNDS. WHICH
SPECIES CAN BE REFERRED

Right Whale Acoustics

HABITS H250 B SIDE 1

TOGETHER CALL SOUNDS (T.C.S) IS SUBORDER #1 CONSISTING OF WHAT WERE PREVIOUSLY CLASSIFIED AS LOW CALLS. SOUNDS THAT APPEAR TO BE ~~LINKED~~ LINKED SUCH AS SMALL CLICKS.

TOGETHER CALL FAMILIES CONSIST OF (2 CHIRPS) #1 (<2 chirps) #2 + CLICKS #3.

SLAPS.

TYPES CALL FOR T.C. IS ~~196~~ 196 : FILENAME L112TCM1H.196

1 T.C.

#1 (2 CHIRPS)

TYPE
196 ~ 261 ~ 111 ~
274/5 ~ 340 ~ 437 ~
549 ~ 635 ~ 661 ~

#3 CLICKS ~
174 ~ ~ 77 ~
273/8 ~ 534 ~
33 ~ ~ ~
470 ~ 672 ~
638 ~ 77 ~
574 ~ 463 ~
269/70 ~ 635 ~

#2 (<2 CHIRPS)

453 ~ ~ ← busy ~ ~
448 ~ ~ ~
443 ~ ~

462 ~

CHIRPS = FLICKERS
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~

HAWAII H2SO₃ S.D.E. 1

HAWAIIAN SIREN
DOWN CALL (D.C.) IS SUBORDINATE NO. 2 CONSISTING OF A GROUP OF UNDIFFERENTIATED CALLS THAT ON A SINGING SCALE OF FREQ/TIME RUN A HIGH-LOW GENETIC COURSE. DOWN CALL FAMILIES CONSIST OF: PURE, #1, THROATY #2, CREAK #3 1/2 CROAK 1/2 PURE OR HALF #4.

THE TYPE CALL FOR DOWN CALLS IS 470. IT IS OF THE FAMILY HALF.

FILENAME : L240CH1H.470
SUBORDR # FAMILY #

470: FREQ AS SOUND DEGREES: 859.38
" " ENDS: 781.25

DURATION : C. 311 SECS.

卷之三

1. PURE

A handwritten frequency chart with peaks labeled from 183 to 630 Hz. The peaks are represented by wavy lines above horizontal tick marks. The labels are as follows:

- 183⁴
- 184⁵
- 282²
- 283⁺
- 284⁺⁺
- 285⁺⁺
- 306
- 337
- 645
- 574
- 592
- 601
- 607
- 609
- 610
- 611²
- 614
- 618
- 620
- 621²
- 629⁹
- 630
- 473² ^{order}
597³
- 300 (other not VPCP)

2. THROATY

420 \Rightarrow 500 \Rightarrow ————— ~~200~~ 3. 31. 1 430

2.89
6.58
6.17

• HALOS H250B'S S.O.G. 1.

UNDULATING CALL (UND.C) IS SUBCODE #3 CONSISTING OF A LARGE UNDIFFERENTIATED GROUP OF CALLS THAT ON A CHIRP FREQUENCY SCALE RUN ON A RELATIVELY FLAT COURSE WITH ~~WAVES~~ RISES + FALLS IN FREQUENCY. UNDULATING CALL FAMILIES CONSIST OF:
PURE #1, HALF #2, CROAK #3, THROATY #4

THE TYPE CALL FOR UNDULATING CALLS IS 273. IT IS OF THE FAMILY CROAK.

FILENAME: L33UNC1H.273

↑
SUBCODE

↑
FAMILY #

273. FREQ AS SOUND BEGINS : 656.25

" " " END : 765.63

DURATION : 1.375 SEC.

MALES H2508 SIDE 1

MAINTENANCE BLOW (MAI.3) IS SUBJECT AF4.

FAMILIES:
LOUD BLOW #1
AVERAGE BLOW #2
SOFT BLOW #3

TYPE CALL: 124 II

FLAMMING: ~~II~~ L+2 B+1H. 12+

L. MA. II

1. LOUD BLOW

STANDARD NOTATION

198, 630-1

632, 634

644,

2. BLOW

STANDARD NOTATION

183, 176, 208

229, 290, 253,

267, 272, 280

298, 303, 310

315, 333, 455⁷

460², 463³, 472⁴

478, 573, 578⁹

592, 648

660 within other serial

124 TYPE

3. SOFT BLOW

<--P...CAF

191, 379, 602,

626, 628, 6-3

344

HALOS H250G S.061.

UPCALL (UPC) IS SUBORDER #5 CONSISTING OF A GROUP OF UNAFFILIATED CALLS THAT ON A CRude SCALE OF FREQUENCY RANK A GENERAL LOW-MEDIUM WAVELET. UP CALL FAMILIES CONSIST OF: PURE #1, HALF #2, BREAK #3 AND A LONG DISTANCE GROWL OF SCOOP #4 CALL THAT ARE SOUND PARTICULARLY WELL AND ISOLATED.

PURE, HALF AND BREAK ARE UPCALL TAILED TYPE 220. FILENAME: L520.971H.220.
SCOOP - UPCALL SCREW TYPE 229. FILENAME: L540SCREW.229

UPC TAILED: FREQ AS SOUND BEGINS : 113.23 | PURE SCREW: Freq as sound begins 179.0
" " END : 378.91 " " DURATIION 0.914 sec

DURATION : 1.593 sec

DURATION 0.914 sec

5.1.9.2 TAIL

1. PURE

108 ~ 110 ~ 210 ~ 224 ~ 225 ~ 23 ~
282 ~ 348 ~ 463 ~ 465 ~ 57-5 ~
576 ~ 588 ~ 627-8 ~ 646 ~
644-5 ~ 647 ~ 663 ~ 292 ~ 300 ~
213 ~ 473 ~ 4624 ~ 663 ~ 574 ~

223 ~ 224 ~ 225 ~
226 ~ 227 ~ 228 ~
307 ~ 308 ~ 47 ~
501 ~ 502 ~ 503 ~

2. 1/2 BREAK 1/2 P.R.E.

211 ~ 2164 ~ 220 ~ 228 ~
244 ~ 265 ~ 269 ~ TYPE ~
276 ~ 277 ~ 336 ~ 422 ~
5667 ~ 604 ~

3. CRAK

173 ~ 207 ~ 220 ~ 221 ~ 222 ~
547 ~ 551 ~ 553 ~ 555 ~ 557 ~
635 ~

Appendix II
Right Whale Vocalization: Examples of Types
by
Nicky Spencer

Right W'e Sound

Trip-Tape-Side-Counter
Hertz. 1 - 1 - 220

4kHz 8kHz Other: 2500 Hz Use sehs
(circle one)

Subject: up call

Type Sound: For Family: $\frac{1}{2}$ crack $\frac{1}{2}$ pure or half

Saved name (log##type##.ctr)
c:\signal\rw\LS2 UPH14.220

logfile: _____

Standard Settings for files:

length: 3.5 seconds scroll rate: 6.8 seconds.

spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: _____

freq on sound begin: 113.28
end: 318.91

DURATION: 1.51X sec's

Right "Whale Sound

Tape-Side-Counter
1 - 29

kHz Other:
(circle one)

Type Sound: bowl up call

Saved name (log##type##.ctr)
c:\signals\rw\ls>lv<-sh.229

logfile: file

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: Eng type.2 log 3

Type call call
Type call call up ns

Right Wh Sound

Trip-Tape-Side-Counter
256 - 1 - 124

4kHz 8kHz Other: 15.00 Hz
(circle one)
Type Sound: 15.00 Hz

Saved name (log##type##.ctr)
c:\signalrw\142.61A1H 124

logfile: _____

Standard Settings for files:

length: 3.5 seconds scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: _____

1 Apr. 1988 A. H. G. A. (L.A.C.C.)

Right Whale Sound

Trip-Tape-Side-Counter
H25C-1 - 1 - 221

4kHz Other: 25.000 Hz (spectral resolution 1Hz)

(circle one)

Type Sound: RF. Suborder: 1. Source: RAM.

Saved name (log###type##h.ctr)
c:\signal\rw\LS4 USC.1h.221

logfile: _____

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.

spectral gain: -57.00 db spectral range: 11.0 db

8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz

4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

1 Hz

2500 Hz

Comments: _____

RAM: Side 1
RAM: Side 2

freq begin : 179.69
freq end : 444.22
Duration : 0.914

Right Hale Sound

Trip-Tape-Side-Counter
125 - 1 - 2 29

4kHz Other: _____
(circle one)

Type Sound: low tonal up

Standard Settings for files:

length: 3.5 seconds scroll rate: 6.8 seconds.

spectral gain: -57.00 db spectral range: 11.0 db

8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz

4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Saved name (log##type##h.ctr)
c:\signal\rw\157\rec\4h.2291

logfile: hbr6

Comments: Logfile 2, log #30

TYPE causes 'up curs' sweep (KEY). NS.
freq line
notation

Right Whale Sound

Trip-Tape-Side-Counter
- 1 - 1 - 195 111

4kHz 8kHz Other: _____
(circle one)

Type Sound: Jaw up - call

Saved name (log##type#fh.ctr)
c:\signal\rw\LSO_LUC_4to195

logfile: RW1.b

Standard Settings for files:
length: 3.5 seconds. scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: possible or some? 0?

TYPE FOR 'TOGETHER call' IN KEY . JS . 2 chirps

or Part Time notes

Right W le Sound

Trip-Tape-Side-Counter 220

4kHz 8kHz Other: _____
(circle one)

Type Sound: _____

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.

spectral gain: -57.00 db spectral range: 11.0 db

8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz

4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: _____

Saved name (log##/type##.ctr)
c:\signals\rw\ L55 new Rh.220

logfile: R.W.0

freq: 1000 try: one for up cur' $\frac{1}{2}$ cycle $\frac{1}{2}$ pure . as
freqline previous. crossed to fine curr. now as up call
problem up. cur's must be closely, pure or $\frac{1}{2}$ on in this expt.

Right WI \rightarrow Sound

Trip-Tape-Side-Counter

- - - - - 220

4kHz Other: _____
(circle one)

Type Sound: Up

Saved name (log##type##.ctr)
c:\signallity\LS5\huc 4h,220

logfile: Fw.0

Standard Settings for files:
 \rightarrow $\lambda_{1,2}$

\rightarrow $\lambda_{1,2} = 0$

length: 3.5 seconds. scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: MANUEL "VO" description
Pulses constant.

logfile:

freq notation

Proton type call FOR UP CALL $\frac{1}{2}$ pure. us.
proton

previously classed as FCC
calls, now as UP calls

UP calls may be:
decar
pure
or $\frac{1}{2}$ + $\frac{1}{2}$ (AS THIS TYPE)

Right Whale Sound

Trip-Tape-Side-Counter
H250 G-1 - 1 - 146 (195) ctr changes

4kHz 8kHz Other: 2500 Hz User hyp
sample rate: 20,000 Hz (circle one)

Type Sound: roll suborder: Together call

Family: 2 curves

Saved name (log#/#type#/h.ctr)
c:\signals\rw\t**24**

logfile: _____

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.

spectral gain: 57.00 db

8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz

4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Family: 2 curves

freq 1 base note

freq 2 base note

freq on 1st sound begins: 308.57

1st sound ends: 417.97

freq " 2nd " begins: ~~359.44~~ 359.44

freq " 2nd " ends: 410.16

Duration sound 1: 0.27 sec

" 2 0.327 sec

Right W' e Sound

Trip-Tape-Counter
1250s - 1 - 1 - 47n: (46.3 circ unives)

4kHz Other: 25000 Unselected
(circle one) Sample Rate: 4kHz

Type Sound: 1.4 F1.m (: 1.44Cf

Saved name (log##type##.ctr)
c:\signals\rw\124\QH1H.ctr

logfile: _____

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: _____

Frequencies: 1.14Cf ... 1.44Cf / low if
use db.

f_{c1} / low resolution

1. Freq as sound begins : 859.35
 2. ends : 781.25
- high - low.

Duration 0.811 seconds.

Cleared on computer.

Right Whale sound

Tip-Tape-Side-Counter
1700 - 1 - 273

4kHz Other: _____
(circle one)

Type Sound: roar

Saved name (log##type##.ctr)
c:\signals\w\163 PCA 814.273

logfile: C:\J. O

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.

spectral gain: -57.00 db spectral range: 11.0 db

8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz

4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: F Hyper, 2 long 15

freq/time

noteion

TYPE CALL OR CROAKING CALLS

NOTE MAY BE CROAKY PREG-TONE (WHO OR ALL INCLUDE MOST FULL DIFFUSE CALLS)
 $\frac{1}{2}$ OR $\frac{1}{2} + \frac{1}{2}$

~~REPEATED CALLS~~
~~REPEATED CALLS~~
THIS EXAMPLE IS CROAKY

Appendix III

**Right Whale Vocalization: Examples of Type
Vocalizations used in Numeric Descriptions**

by

Dara Wambach

Right Whale Sound

Trip-Tape-Side-Counter
1780 - 1 - 1 - c / .
4kHz .8kHz 'Other: _____
(circle one) () () ()
Type Sound: Sif. C, Gf.

Saved name (log##type##h.ctr)
c:\signalrw\ b-3551ca8b.214

logfile: P.W.6

Standard Settings for files:

length: 3.5 seconds scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: Log of a 4 kHz

log 1

Right Whale Sound

Trip-Tape-Side-Counter
112 - 1 - 294

(4kHz) 8kHz Other: _____
(circle one)
Type Sound: Suck (Blow)

Saved name (log##type##.ctr)
c:\signal\rw\135sc.ucln.294

logfile: RWL.b

Standard Settings for files:

length: 3.5 seconds scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: Selective + Some Modulation

1.712 - 2.1012

Right Whale Sound

Trip-Tape-Side-Counter 251

4kHz 8kHz Other: _____
(circle one)

Type Sound: _____

Saved name (log##type##.ch)
c:\signals\rw\l6951; c:\signals\281

logfile: f:\n\6

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.

spectral gain: -57.00 db spectral range: 11.0 db

8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz

4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: _____

Eq. 115e.2, log#3

3

4

Right Whale Sound

Trip-Tape-Side-Counter
- - - - - 281

4kHz 8kHz Other: _____
(circle one)

Type Sound: Short High Clicks

Saved name (log##type##.ctr)
c:\signal\rw\log\shc\4h\281
logfile: fnv

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: Eight sec. 2, log, 4

Voice 4

Right Whale Sound

Trip-Tape-Side-Counter 271

4kHz 8kHz Other: _____
(circle one)

Type Sound: Whale sound

Saved name (log##type#h.ctr)
c:\signals\rw\16\b1ic\b1n271

logfile: 271

Standard Settings for files:

length: 3.5 seconds scroll rate: 6.8 seconds.

spectral gain: -57.00 db spectral range: 11.0 db

8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz

4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: E.g. type.2. log S. Not resolution on 20,000 Hz
freq + 7.515

Comments: Not AUS for 8kHz
AKS CLASSED AS DOWN
END
THIS
EXAMPLE

NOT SPECIFIC FOR DOWN-CASE (TYPE) 271

Right Whale Sound

Trip-Tape-Side-Counter
11512 - 1 - 271

4kHz 8kHz Other: _____
(circle one)

Type Sound: W\c\y tranc

Saved name (log##type##.ctr)
c:\signals\rw\l\c\tr\ctr.ctr.11
logfile: R.W.C

Reel/line
action

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: This sound file consists of 3, mostly
short and sharp sounds at the
beginning of a series of vocalizations - hence
Slap

Fig Type. 2 long low note with variation is slap (not in this file)

Type early-toe "Down call" (ccy)
MAY BE CROAKY, PUNCTUAL, OR $\frac{1}{2}$ '
~~or~~
(as in this example)
(NOT AS THE CALLS ARE CLASSIFIED AS DOWN CALLS)

Right Whale Sound

Trip-Tape-Side-Counter 1218 / 9

4kHz Other: _____
(circle one)

Type Sound: All x record callup

Saved name (log#) type#h.ctr
C:\signalsrw\LSR\Whale\21879

logfile: R2AVU.LO

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Log 7

Comments: Egyptrc. 2, Log 7

3

Right Whale Sound

Trip-Tape-Side-Counter

- 215

8kHz Other: _____
(circle one)

Type Sound: MURMUR

Saved name (log##type##.ctr)
C:\signal\rw\LSI\murmur\Q15

logfile: RW1.C

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.

spectral gain: -57.00 db spectral range: 11.0 db

8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz

4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

log E3

Comments: E4 type.2 rec. & New Right whale 4kHz log E3

2 3

Right Whale Sound

Trip-Tape-Side-Counter
L5013 - 1 - 1 - 1

4kHz Other: 8kHz (circle one)

Type Sound: Call well produced brief

Saved name (log##\#type\#h.ctr)
c:\signalsrw\141\141\141\141\141\141

logfile: 141.6

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.

spectral gain: -57.00 db spectral range: 11.0 db

8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz

4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

Comments: 141 was done brief.
E:\Type 2 log 141

Log 9

Right Whale Sound

Trip-Tape-Side-Counter
- 1 - 184

4kHz 8kHz Other: _____
(circle one)

Normal, up, pulse
Type Sound: ~~normal~~ up, pulse
Saved name (log#type#h.ctr)
c:\signals\rlw\log\mca\h.184
logfile: RBLW.C

Standard Settings for files:

length: 3.5 seconds. scroll rate: 6.8 seconds.
spectral gain: -57.00 db spectral range: 11.0 db
8kHz: sample rate: 20,000 Hz frequency resolution: 39.1 Hz
4kHz: sample rate: 10,000 Hz frequency resolution: 19.5 Hz

3L-P.

Comments: tone Q, mod. D after C, C, C, C, C
~~end baseline sweep~~
~~for long signal pulses~~
Eq type: 2 log 15

Log 10

Appendix IV
Right Whale Vocalization: Numeric Description
by
Dara Wambach

Appendix III

The following describes preliminary use of the RTS sonographic system and the notation used in the examples of the numerical descriptions used in the accompanying log data work sheets.

Notes of sample Type Sounds and worksheet, September 6, 1993

Word is running left page
B:\rwtype2.doc
in work

Logging-in Type sounds:

With the goal of using numeric frequency and time duration values to describe similarities and differences through RTS (see Engineering Design manual for establishing logfiles). Using the logfile c:\signal\eg points from RTS sound files which I had previously compiled in a blue right whale vocalization catalog most of the sample sounds I indicated on the printouts the points which were logged into egtype.2. To the sound they represent, and with the order in which the information is prompted.

- 1 left end of primary element
- 2 highest point of primary
- 3 lowest point of primary
- 4 terminal (left) end of primary
- 5 right side of highest element of sound
- 6 highest level of sound
- 7 lowest point of top of sound
- 8 terminal end of highest sound element

When the location request was repetitive or didn't apply, I often hit Z for zerolog. The marks on the potential for different high/low, etc.. assignments according to the frequency (4 or 8 kHz) at which the information recorded in Egtype.2 are the frequency of the saved file, the rw.6 log number (also an ide sound file name), and type of sound. These entries represent the 20 query limit per logentry.

Converting logfile to EXCEL:

- *copy egtype.2 to egtype.5 (or something similar)
- *go into DOS to edit, removing header lines
- *bring file into word to create document and even-out all tab spacing (essential for converting log columns)
- *Pull rwtype2.doc into Excel, convert to rwtype2.xls
- *most recent file is b:\rwtype3.xls

In excel:

remove extraneous characters, name columns, make calculation columns for desired information

work notes

RWTYPE3.XLS

A B (1) C (1) D (1) E (2) F (3) G (3)

log #	time primbl	frq primbl	prihigh time	prihigh freq	prilow time	prilow freq
1	1.097	344	2.711	469	1.097	281
2	0.641	344	2.248	453	1.644	313
3	1.757	500	1.773	563	2.158	313
4	1.821	500	1.837	531	2.262	359
5	1.004	531	1.5	656	1.973	344
6	0.828	578	1.348	609	1.798	406
7	0.837	469	1.945	500	2.1	219
8	0.986	438	1.911	500	2.164	188
9	0.426	563	2.042	625	2.969	344
10	0.624	578	2.209	625	3.153	625
11	1.228	375	2.067	469	2.303	156
12	1.59	375	2.45	438	2.664	125
13	1.431	344	1.979	438	2.357	156
14	1.589	375	2.455	438	2.515	156
15	1.522	625	2.557	906	2.749	375
16	0.655	641	1.651	891	1.954	375
17	1.063	188	2.904	344	1.629	0
18	0.617	94	2.387	328	1.102	0
19	0.938	188	2.304	625	1.114	78
20	1.863	125	3.234	625	2.062	63
21	1.346	125	2.183	188	2.467	109
22	1.701	63	2.135	500	2.493	63
23	0.373	109	0	0	0	0
24	1.984	375	2.105	469	2.061	281
25	2.208	359	2.315	453	2.267	313
26	0.423	125	1.185	266	0.746	0
27	1.953	125	2.695	406	2.261	0
28	2.411	16	2.635	78	2.405	47
29	2.017	0	2.242	188	2.017	0
30	1.606	125	2.499	500	1.715	0
31	1.819	156	2.663	469	2.022	31
32	1.034	78	2.145	313	1.786	125
34	0.924	547	0.924	609	1.036	469

1. Connect spreadSheet w/ catalogue sounds

a) through rwtype3.xls column A

log# which is recorded in red in comments section

b) Also see column S for rw.6 log

part of name

c:\signal\new\ L(#) xxx .

RWTYPE3.XLS

H (-) I (-) J (-) K (-) L (-) M (-)

prim right time	prime right freq	high left time	high left freq	time highest	freq highest
2.711	375	1.247	4594	1.787	4656
2.253	422	0.683	3969	0.699	3969
2.451	406	1.838	3938	2.082	4156
2.51	438	2.179	3984	2.179	3984
2.943	438	1.032	4688	1.68	4813
2.768	422	1.113	3969	1.113	3969
2.255	375	1.319	5375	1.319	5438
2.418	422	0.991	3984	0.991	3984
3.121	469	1.108	4313	1.628	4250
3.288	625	1.141	3969	1.141	3969
2.615	297	1.338	3594	1.458	3719
2.982	313	1.919	6094	1.919	6094
2.428	219	1.502	4188	1.612	4313
2.592	188	1.671	3797	1.852	3906
2.902	375	1.626	4344	2.497	4844
2.025	422	0.747	3984	0.747	3984
2.916	250	1.629	3344	2.4	3969
2.404	313	1.159	3500	1.667	3891
2.309	594	1.104	3984	1.104	3984
3.24	594	2.11	5156	2.242	5625
2.692	172	1.975	1984	0	0
2.71	313	1.93	4563	0	0
1.823	109	0.514	922	0.514	922
2.105	406	2.023	1719	2.045	1813
2.315	453	2.235	1750	0	0
1.778	0	1.01	359	1.262	406
2.779	375	2.436	531	2.719	1000
2.641	109	2.4	4000	0	0
2.248	94	2.022	7906	0	0
2.554	438	1.814	2094	2.082	2234
2.784	438	2	2094	2.137	2219
2.532	281	1.644	1406	2.156	1641
1.304	531	1.018	3063	1.018	3063

RWTYPE3.XLS

N (7) O (7) P (5) Q (X) R S/T U

time
freq

low high time	low high freq	time high right	freq high right	kHz	rw.6 log	type	prim length
1.488	4500	1.867	4656	8	35	full call	1.614
1.756	3750	1.756	3750	4	35	full call	1.612
2.218	3781	2.327	4125	8	69	full call	0.694
2.278	3797	2.334	3953	4	69	full call	0.689
1.838	4406	2.148	4156	8	61	full call	1.939
1.545	3688	1.77	3953	4	61	full call	1.94
1.38	5344	1.413	5344	8	54	full call	1.418
2.291	3984	2.291	3984	4	54	full call	1.432
1.336	4031	1.645	4250	8	49	full call	2.695
1.596	3594	1.821	3734	4	49	full call	2.664
2.023	3500	2.023	3500	4	53	tail call	1.387
1.919	6094	1.919	6094	8	53	tail call	1.392
1.54	4125	1.683	4250	8	34	tail call	0.997
1.677	3797	1.858	3906	4	34	tail call	1.003
1.687	3406	2.837	4219	8	63	fdif call	1.38
1.927	3984	1.927	3984	4	63	fdif call	1.37
2.761	3125	3.246	3625	8	36	fdif call	1.853
2.324	3156	2.723	3641	4	36	fdif call	1.787
1.216	3844	1.339	3891	4	28	blow	1.371
2.11	5156	2.242	5656	8	28	blow	1.377
0	0	2.287	2031	4	29	blow	1.346
0	0	2.106	4563	8	29	blow	1.009
0.897	594	1.527	594	4	21	low call	1.45
2.023	1688	2.045	1813	8	43	low call	0.121
0	0	2.256	1750	4	110	low call	0.107
1.125	313	1.24	375	4	173	low call	1.355
2.629	531	2.725	1031	8	173	low call	0.826
0	0	2.526	4000	4	456	slap	0.23
0	0	2.055	7906	8	456	slap	0.231
1.836	2094	2.104	2094	4	229	comp c	0.948
2.285	2125	2.345	2125	8	229	comp c	0.965
1.998	1328	2.232	1469	4	177	comp c	1.498
1.074	3016	1.074	3016	4	269	comp c	0.38

RWTYPE3.XLS

highest length	max freq range	when is primary lowest?	prim \bar{x} length by type
0.62	4375	0	
1.073	3656	1.003	
0.489	3843	0.401	
0.155	3625	0.441	
1.116	4469	0.969	
0.657	3563	0.97	
0.094	5219	1.263	
1.3	3796	1.178	
0.537	3906	2.543	full calls
0.68	3344	2.529	1.6697
0.685	3563	1.075	
0	5969	1.074	
0.181	4157	0.926	tailed calls
0.187	3750	0.926	1.19475
1.211	4469	1.227	
1.18	3609	1.299	
1.617	3969	0.566	full diffuse calls
1.564	3891	0.485	1.5975
0.235	3906	0.176	
0.132	5562	0.199	
0.312	1875	1.121	blows
0.176	4500	0.792	1.27575
1.013	922	no fluctuation	
0.022	1532	0.077	
0.021	1437	0.059	
0.23	406	0.323	low calls
0.289	1000	0.308	0.7718
0.126	3953	no fluctuation	slap
0.033	7906	no fluctuation	0.2305
0.29	2234	0.109	
0.345	2188	0.203	
0.588	1516	0.752	compact calls
0.056	2594	0.112	0.94775

RWTYPE3.XLS

Z

prim x low freq	
full calls	
339.2	
tailed calls	
148.25	
full diffuse calls	
187.5	
blows	
78.25	
low calls	
118.8	
slap	
23.5	
compact calls	
297	

Appendix V
Right Whale Observation: Example H250

The following is a collation of a segment of an analyzed observation containing oriented elements of the top seven databases listed in figure 1. The oceanographic data in the form of CTD profiles was collected at a different location than the behavioral data. This preliminary listing is a facsimile of the raw data stream, a section of a 76 min. observation which demonstrates the display capabilities of this simplified approach to multivariable observations.

Header:

Date: 03-31-93

Time: 140356

LORAN: 13904.2/44030.0

Weather: gentle variable, 9°C., 2/10 hi

Vis: unlimited

Cruise: H250

CTD Data: attached verticals

ZPL Density @ sync time +345: 00956/m³

Data follows(relative time base; letters refer to individual a-c):

Time	Behavior	Vessel	Vocal	Orientation
------	----------	--------	-------	-------------

0011	flu a	igear,0700		r=45m;b=150;h=320
0015	flu b			
0016	1/2flu c			
0025		ogear		
0027			up2	
0037		igear,0400		
0038			up2	
0039			lo3	
0043		ogear		04.0/30.8
0047			up2	
0051			up2?	
0067			up2	
0070			up1	
0074			up2	
0076			up2	
0079			lo3	
0083			up1	

0087		up2	
0090	swirl		
0099		up2 dist	
0105		up1,slp	
0109		up2	
0113		lo1	
0127		up? dist	
0145	swirl		
0159		igear,0500	04.0/30.9
0172	spt d		
0177	swirl		
0188		ogear	r=50m;b=240
0197			up? dist
0223			up? dist
0251			up? dist
0260			lo1 dist?
0288			up? dist
0311	spt ?		
0311	spt a		
0312	spt c	igear 0900	r=130m;b=300;h=010;5kts,090
0315	rol r b		
0317	blog b		
0320	spt a		up? dist r=35m;b=060;h=150
0325	spt b	ogear	
0326	blog a		
0329	eolog a		
0332	bemb a-b		
0333	eolog b;kik c?		up?dist
0333	hup b		
0335	eemb a-b		
0337	spt b		
0345	spt a		
0349	rol r b		
0354			r=45m;b=100;h=?;03.8/30.8
0356	spt b		lo? dist
0357	spt a		
0359	blog b		
0361	swirl	igear0500	
0364	spt a		
0364	spt c		
0365	spt b;arc c		
0389	flu b		
0397	flu a		
0320	arc c?		