

### Applied Natural Language Processing

Info 256

Lecture 6: Text regression (Feb 7, 2019)

David Bamman, UC Berkeley





# Regression

A mapping h from input data x (drawn from instance space x) to a point y in  $\mathbb{R}$ 

"Star Wars is not a great movie in the sense that it describes the human condition. It is simply a fun picture that will appeal to those who enjoy Buck Rogers-style adventures. What places it a sizable cut above the routine is its spectacular visual effects, the best since 2001: A Space Odyssey." (Siskel, 1977)

## Regression problems

| task                                | $\boldsymbol{\mathcal{X}}$ | y                  |  |
|-------------------------------------|----------------------------|--------------------|--|
| predicting box office revenue       | movie reviews              | opening box office |  |
| predicting real estate sales prices | real estate description    | sales price        |  |
| predicting stock<br>movements       | all tweets                 | price of \$GOOG    |  |
|                                     |                            |                    |  |

\$399000 Stunning skyline views like something from a postcard are yours with this large 2 bed, 2 bath loft in Dearborn Tower! Detailed hrdwd floors throughout the unit compliment an open kitchen and spacious living-room and dining-room /w walk-in closet, steam shower and marble entry. Parking available.

\$13000 4 bedroom, 2 bath 2 story frame home. Property features a large kitchen, living-room and a full basement. This is a Fannie Mae Homepath property.

\$65000 Great short sale opportunity... Brick 2 flat with 3 bdrm each unit. 4 or more cars parking. Easy to show.



# Regression

Supervised learning

Given training data in the form of  $\langle x, y \rangle$  pairs, learn  $\hat{h}(x)$ 

# Regression



## Linear regression

$$\hat{y} = \sum_{i=1}^{F} x_i \beta_i$$



$$\beta \in \mathbb{R}^{F}$$

(F-dimensional vector of real numbers)

#### x = feature vector

#### $\beta$ = coefficients

| Feature   | Value | Feature   | β    |
|-----------|-------|-----------|------|
| the       | 0     | the       | 0.01 |
| and       | 0     | and       | 0.03 |
| action    | 1     | action    | 15.3 |
| love      | 1     | love      | 3.1  |
| animation | 0     | animation | 13.2 |
| audiences | 1     | audiences | 3.4  |
| not       | 0     | not       | -3.0 |
| fruit     | 0     | fruit     | -0.8 |
| BIAS      | 1     | BIAS      | 16.4 |
|           |       |           |      |

# Linear regression

$$y = \sum_{i=1}^{F} x_i \beta_i + \varepsilon$$

true value y

$$\hat{y} = \sum_{i=1}^{F} x_i \beta_i$$

prediction ŷ

$$\varepsilon = y - \hat{y}$$

ε is the difference between the prediction and true value

### Evaluation

Goodness of fit (to training data)

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

sum of square errors

total sum of squares

For most models, R<sup>2</sup> ranges from 0 (no fit) to 1 (perfect fit)

# Experiment design

|         | training        | development     | testing                                                  |
|---------|-----------------|-----------------|----------------------------------------------------------|
| size    | 80%             | 10%             | 10%                                                      |
| purpose | training models | model selection | evaluation;<br>never look at it<br>until the very<br>end |

### Metrics

 Measure difference between the prediction ŷ and the true y

Mean squared error (MSE)

$$\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Mean absolute error (MAE)

$$\frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i - y_i|$$



MSE error penalizes outliers more than MAE

# How do we get good values for β?

#### $\beta$ = coefficients

| Feature                              | β    |
|--------------------------------------|------|
| follow clinton                       | -3.1 |
| follow trump                         | 6.8  |
| "benghazi"                           | 1.4  |
| negative sentiment + "benghazi"      | 3.2  |
| "illegal immigrants"                 | 8.7  |
| "republican" in profile              | 7.9  |
| "democrat" in profile                | -3.0 |
| self-reported location<br>= Berkeley | -1.7 |

## Least squares

$$\beta = \min_{\beta} \sum_{i=1}^{N} \varepsilon^{2}$$

we want to minimize the errors we make

$$\beta = \min_{\beta} \sum_{i=1}^{N} (y - \hat{y})^2$$

$$\beta = \min_{\beta} \sum_{i=1}^{N} \left( y - \sum_{j=1}^{F} x_j \beta_j \right)^2$$

### Least squares

$$\beta = \min_{\beta} \sum_{i=1}^{N} \left( y - \sum_{j=1}^{F} x_j \beta_j \right)^2$$

- We can solve this in two ways:
  - Closed form (normal equations)
  - Iteratively (gradient descent)

#### $\beta$ = coefficients

Many features that show up rarely may likely only appear (by chance) with one label

More generally, may appear so few times that the noise of randomness dominates

| Feature                                      | β       |  |
|----------------------------------------------|---------|--|
| follow clinton                               | -3.1    |  |
| follow trump + follow<br>NFL + follow bieber | 7299302 |  |
| "benghazi"                                   | 1.4     |  |
| negative sentiment + "benghazi"              | 3.2     |  |
| "illegal immigrants"                         | 8.7     |  |
| "republican" in profile                      | 7.9     |  |
| "democrat" in profile                        | -3.0    |  |
| self-reported location<br>= Berkeley         | -1.7    |  |

# Ridge regression

$$\beta = \min_{\beta} \sum_{i=1}^{N} (y - \hat{y})^2 + \eta \sum_{i=1}^{F} \beta_i^2$$
error coefficient size

We want both of these to be small!

This corresponds to a prior belief that β should be 0

## Ridge regression

$$\beta = \min_{\beta} \sum_{i=1}^{N} (y - \hat{y})^2 + \eta \sum_{i=1}^{F} \beta_i^2$$
error coefficient size

A.K.A.

L2 regularization Penalized least squares

| Matt Gerald             | \$295,619,605  | Computer<br>Animation | \$68,629,803  | Adventure           | \$6,349,781  |
|-------------------------|----------------|-----------------------|---------------|---------------------|--------------|
| Peter<br>Mensah         | \$294,475,429  | Hugo Weaving          | \$39,769,171  | Action              | \$5,512,359  |
| Lewis<br>Abernathy      | \$188,093,808  | John<br>Ratzenberger  | \$36,342,438  | Fantasy             | \$5,079,546  |
| Sam<br>Worthington      | \$186,193,754  | Tom Cruise            | \$36,137,757  | Family Film         | \$4,024,701  |
| CCH<br>Pounder          | \$184,946,303  | Tom Hanks             | \$34,757,574  | Thriller            | \$3,479,196  |
|                         |                |                       |               |                     |              |
| Steve Bacic             | -\$65,334,914  | Western               | -\$13,223,795 | Western             | -\$752,683   |
| Jim Ward                | -\$66,096,435  | World cinema          | -\$13,278,965 | Black-and-<br>white | -\$1,389,215 |
| Karley Scott<br>Collins | -\$66,612,154  | Crime Thriller        | -\$14,138,326 | World cinema        | -\$1,534,435 |
| Dee Bradley<br>Baker    | -\$73,571,884  | Anime                 | -\$14,750,932 | Drama               | -\$2,432,272 |
| Animals                 | -\$110,349,541 | Indie                 | -\$21,081,924 | Indie               | -\$3,040,457 |

BIAS: \$5,913,648 BIAS: \$13,394,465 BIAS: \$45,044,525

### Interpretation

$$\hat{y} = x_0 \beta_0 + x_1 \beta_1$$

$$x_0\beta_0 + (x_1 + 1)\beta_1$$

$$x_0\beta_0 + x_1\beta_1 + \beta_1$$

$$=\hat{y}+\beta_1$$

Let's increase the value of  $x_1$  by 1 (e.g., from  $0 \rightarrow 1$ )

β represents the degree to which y changes with a 1-unit increase in x

### Regularization

 Regularization applies to linear models that are used for both regression and classification.

### Feature selection

- We could threshold features by minimum count but that also throws away information
- We can take a probabilistic approach and encode a prior belief that all β should be 0 unless we have strong evidence otherwise

## L2 regularization

$$\ell(\beta) = \sum_{i=1}^{N} \log P(y_i \mid x_i, \beta) - \sum_{j=1}^{F} \beta_j^2$$
we want this to be high but we want this to be small

- We can do this by changing the function we're trying to optimize by adding a penalty for having values of β that are high
- This is equivalent to saying that each β element is drawn from a Normal distribution centered on 0.
- η controls how much of a penalty to pay for coefficients that are far from 0 (optimize on development data)

| no L2<br>regularization | some L2 regularization | high L2 regularization |  |
|-------------------------|------------------------|------------------------|--|
| 33.83 Won Bin           | 2.17 Eddie Murphy      | 0.41 Family Film       |  |
| 29.91 Alexander Beyer   | 1.98 Tom Cruise        | 0.41 Thriller          |  |
| 24.78 Bloopers          | 1.70 Tyler Perry       | 0.36 Fantasy           |  |
| 23.01 Daniel Brühl      | 1.70 Michael Douglas   | 0.32 Action            |  |
| 22.11 Ha Jeong-woo      | 1.66 Robert Redford    | 0.25 Buddy film        |  |
| 20.49 Supernatural      | 1.66 Julia Roberts     | 0.24 Adventure         |  |
| 18.91 Kristine DeBell   | 1.64 Dance             | 0.20 Comp Animation    |  |
| 18.61 Eddie Murphy      | 1.63 Schwarzenegger    | 0.19 Animation         |  |
| 18.33 Cher              | 1.63 Lee Tergesen      | 0.18 Science Fiction   |  |
| 18.18 Michael Douglas   | 1.62 Cher              | 0.18 Bruce Willis      |  |

## L1 regularization

$$\ell(\beta) = \sum_{i=1}^{N} \log P(y_i \mid x_i, \beta) - \sum_{j=1}^{F} |\beta_j|$$
we want this to be high but we want this to be small

- L1 regularization encourages coefficients to be exactly 0.
- η again controls how much of a penalty to pay for coefficients that are far from 0 (optimize on development data)

### Activity

- Explore regularization in linear regression
- How does changing the regularization strength affect:
  - Accuracy
  - Rank of important features
  - Number of non-zero features (for L1)