0.1 Şiruri fundamentale. Teorema lui Cauchy

Definiția limitei unui șir de numere reale nu este, în general, convenabilă pentru a stabili în practică dacă un șir dat are sau nu limită și aceasta pentru că, în definiția limitei, intervine limita în mod explicit.

A.L. Cauchy a reuşit să dea o definiție echivalentă a unui şir convergent, definiție în care nu mai intervine limita șirului, ci numai termenii șirului.

Definiția 0.1.1 Fie (x_n) un şir de numere reale. Spunem că şirul (x_n) este fundamental (sau Cauchy) dacă oricare ar fi numărul real $\varepsilon > 0$ există un număr natural n_{ε} astfel încât oricare ar fi numerele naturale n şi k cu $n \ge n_{\varepsilon}$ avem $|x_n - x_{n+k}| < \varepsilon$.

Teorema 0.1.2 Orice şir convergent este fundamental.

Demonstrație. Fie (x_n) un şir convergent şi fie $x \in \mathbb{R}$ limita sa. Pentru a dovedi că şirul (x_n) este fundamental, fie $\varepsilon > 0$. Din faptul că şirul (x_n) converge către x, există un număr natural n_{ε} astfel încât

$$(0.1.1) |x_n - x| < \varepsilon/2 \text{ oricare ar fi } n \in \mathbb{N}, \ n \ge n_{\varepsilon}.$$

Fie acum $n, k \in \mathbb{N}$ cu $n \geq n_{\varepsilon}$. Evident $n + k \geq n_{\varepsilon}$ şi, deci, dacă ținem seama de (0.1.1), obținem delimitările $|x_n - x_{n+k}| = |(x_n - x) - (x_{n+k} - x)| \leq |x_n - x| + |x_{n+k} - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Așadar şirul (x_n) este fundamental. \square

Teorema 0.1.3 Orice şir fundamental este mărginit.

Demonstrație. Fie (x_n) un şir fundamental. Atunci (pentru $\varepsilon = 1$) există un număr natural p astfel încât

$$|x_n - x_{n+k}| < 1$$
 oricare ar fi $n, k \in \mathbb{N}, n \ge p$.

De aici deducem că pentru orice $k \in \mathbb{N}$ avem

$$|x_{p+k}| = |x_{p+k} - x_p + x_p| \le |x_{p+k} - x_p| + |x_p| < 1 + |x_p|.$$

Notând cu $a := \max\{|x_1|, \dots, |x_{p-1}|, 1+|x_p|\}$ obţinem că a>0 şi $|x_n|\leq a$ oricare ar fi $n\in\mathbb{N}$. Prin urmare şirul (x_n) este mărginit. \square

Teorema 0.1.4 Fie (x_n) un şir fundamental de numere reale. Dacă şirul (x_n) conține un subşir convergent (x_{n_k}) , atunci şirul (x_n) este convergent şi

$$\lim_{n \to \infty} x_n = \lim_{k \to \infty} x_{n_k}.$$

Demonstrație. Fie $\varepsilon > 0$. Din faptul că șirul (x_n) este fundamental, deducem că există un număr natural n_{ε} cu proprietatea că pentru fiecare număr natural $n \ge n_{\varepsilon}$ avem $|x_{n+p} - x_n| < \varepsilon/2$ oricare ar fi $p \in \mathbb{N}$.

Pe de altă parte, din faptul că șirul (x_{n_k}) este convergent către $x=\lim_{k\to\infty}x_{n_k}$, rezultă că există un număr natural k_ε astfel încât oricare ar fi numărul natural $k\ge k_\varepsilon$ avem

$$|x_{n_k} - x| < \varepsilon/2.$$

Fie acum $q = \max\{n_{\varepsilon}, k_{\varepsilon}\}$. Atunci $n_q \ge n_{n_{\varepsilon}} \ge n_{\varepsilon}$ şi $n_q \ge n_{k_{\varepsilon}}$, deci avem că

$$|x_n - x_{n_q}| < \varepsilon/2$$
 oricare ar fi $n \in \mathbb{N}, n \ge n_q$

şi

$$|x_{n_q} - x| < \varepsilon/2.$$

Prin urmare, pentru fiecare număr natural $n \geq n_q$ avem

$$|x_n - x| \le |x_n - x_{n_q}| + |x_{n_q} - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon,$$

ceea ce ne arată că șirul (x_n) este convergent și $\lim_{n\to\infty} x_n = x$. \square

Teorema 0.1.5 (teorema lui Augustin Louis Cauchy) Un şir de numere reale este convergent dacă și numai dacă este şir fundamental.

Demonstrație. Necesitatea rezultă din teorema 0.1.2.

Suficiența. Fie (x_n) un şir fundamental. Atunci, în baza teoremei 0.1.3, şirul (x_n) este mărginit. Teorema lui Cesàro ne asigură că şirul (x_n) conține un subşir (x_{n_k}) convergent. Prin urmare şirul fundamental (x_n) conține un subşir convergent; atunci, în baza teoremei 0.1.4, şirul (x_n) este convergent. Teorema este demonstrată. \square

Exemplul 0.1.6 Şirul (x_n) cu termenul general

$$x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2}, \quad (n \in \mathbb{N})$$

este fundamental.

Într-adevăr, pentru fiecare $n, p \in \mathbb{N}$ avem

$$|x_{n+p} - x_n| = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2} <$$

$$< \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+p-1)(n+p)} =$$

$$= \left(\frac{1}{n} - \frac{1}{n+1}\right) + \left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \dots + \left(\frac{1}{n+p-1} - \frac{1}{n+p}\right) =$$

$$= \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n}.$$

Fie acum $\varepsilon > 0$. Deoarece $\lim_{n \to \infty} \frac{1}{n} = 0$, deducem că există un număr natural n_{ε} astfel încât $1/n < \varepsilon$ oricare ar fi $n \in \mathbb{N}$, $n \ge n_{\varepsilon}$. Rezultă că

$$|x_{n+p}-x_n|<\varepsilon$$
 oricare ar fi $n,p\in\mathbb{N}$ cu $n\geq n_{\varepsilon}$.

Prin urmare şirul (x_n) este fundamental. În baza teoremei lui Cauchy, şirul (x_n) este convergent. \square