Evolución de una función de Wigner de un amplificador paramétrico

TESIS PROFESIONAL Carlos Eduardo González Anguiano

Departamento de Física ESFM-IPN

1 de junio de 2024

- 1 Introducción
- 2 Cuantización campo EM
- Compresión y desplazamiento
- 4 Función de Wigner
- 6 Amplificador paramétrico

- 1 Introducción
- 2 Cuantización campo EM
- Compresión y desplazamiento
- 4 Función de Wigner
- 6 Amplificador paramétrico

- 1 Introducción
- 2 Cuantización campo EM
- 3 Compresión y desplazamiento
- 4 Función de Wigner
- 6 Amplificador paramétrico

- 1 Introducción
- 2 Cuantización campo EM
- 3 Compresión y desplazamiento
- 4 Función de Wigner
- 6 Amplificador paramétrico

- 1 Introducción
- 2 Cuantización campo EM
- 3 Compresión y desplazamiento
- Función de Wigner
- **5** Amplificador paramétrico

Introducción: Mecánica Cuántica (MC)

Max Planck y la catástrofe ultravioleta

Densidad espectral de energía: Energía por unidad de volumen de ondas electromagnéticas de frecuencia ν .

$$u(T) = \int_0^\infty \rho(\nu, T) d\nu. \tag{1}$$

La densidad de *cuerpo negro* dado por termodinámica clásica difiere de datos experimentales. Planck propone estados de energía de osciladores discretos

$$E_n = nh\nu. (2)$$

La cuantización lleva a la distribución de Planck

$$\rho(\nu, T) = \frac{\hbar \nu^3}{\pi^2 c^3} \frac{1}{e^{\hbar \nu/kT} - 1}.$$
 (3)

Figura de la distribución de Planck

Einstein y el efecto fotoeléctrico

Describe el efecto de la luz incidente sobre un metal, y como este emite electrones.

- La energía máxima de los electrones es independiente a la intensidad.
- La energía depende de la frecuencia de la luz incidente
- El número de fotones depende de la intensidad
- Cada material tiene una frecuencia característica para liberar electrones.

Sugiere que la luz puede estar dados por paquetes de energía, llamados después fotones. Con ello resuelve dificultades teóricas del experimento. La energía tiene que ser mayor que la función de trabajo W para liberarlo, es decir $\hbar \nu \geq W$.

$$\frac{1}{2}mv^2 = \hbar\nu - W \tag{4}$$

Figura del efecto fotoeléctrico

Experimento de Stern-Gerlach

Experimento de Stern-Gerlach

Figura 1: Experimento de Stern-Gerlach

Kets y Bras

Teoría de kets y bras

Operadores

Principio de incertidumbre

Cambio de base

Matriz de densidad

Ecuación de Schödinger

Evolución temporal

Imagenes de la MC

Oscilador armónico cuántico (OAC)

Operadores escalera

Estados número del OAC

Operadores cuadratura

Óptica cuántica

Ecuaciones de Maxwell

Ecuación de onda

Solución a la ecuación de onda

Repasar teoría de EDP's, EDO's, solución particular y homogénea

Condiciones de la función de onda

Condiciones de la función de onda

Soluciones a los campos

Energía electromagnética

Cuantización del campo

Propiedades de los estados número

Fasores

Estados coherentes

Propiedades de los estados coherentes

Simetrías y grupos

Grupos de Lie

Álgebra de Lie

Operador desplazamiento

Propiedades del operador desplazamiento

Operador compresión

Estado comprimido ideal

Teoría de función de Wigner

Función de Wigner para estados coherentes

Óptica no lineal

Parametric down conversion

Amplificador paramétrico

Diagonalización del AP

Estado inicial

Función de Wigner del campo

Expresión paramétrica de la función de Wigner

Resultados

Conclusiones

¡Gracias por su atención!