אוניברסיטת בן-גוריון מחלקה להנדסת מערכות תקשורת מבוא לתורת המידע סמסטר ב' 2016

תאריך הגשה: 8/05/2016 23:55

<u>תרגיל תכנות 1- קידוד סמבולים</u>

בתרגיל זה אתם תממשו קידוד ופענוח סמבולים. תקבלו קובץ עם טקסט אנגלי (orig.txt) המכיל רק אותיות קטנות בתרגיל זה אתם תממשו קידוד ופענוח סמבולים. תקבלו קובץ של בלוק יהיה 1, 2 ו- 3, וגם בעזרת קוד שנון עם a-z גודל בלוק 1. הוראות הגשה:

- 1. את הקוד יש לכתוב ב- Mathematica ועליכם להגיש קובץ עם קוד שכתבתם (קבצי ההרצה המקוריים אשר ניתן להריץ על מנת לבדוק את הקוד), דוח עד 2 עמודים שיכיל סיכום התוצאות (וטבלת הסיכום והסבר מפורט שלה), ואת קבצי הפלט שהתוכנה שכתבתם מייצרת. יש לכתוב הערות בגוף הקוד אשר מסבירות מה תפקיד של כל חלק בו.
 - 2. <u>בתרגיל זה, ההגשה היא בזוגות, כאשר החלוקה לזוגות היא באחריותכם.</u>

<u>עליכם לכתוב 4 פונקציות הבאות:</u>

1. CalculateEntorpies (input_file_name) - הפונקציה תקבל שם של קובץ המקורי וכפלט תיצור - CalculateEntorpies (input_file_name) אשר יכיל חישוב של אנטרופיות אמפיריות (במקום הסתברות לוקחים תדירות של הופעת פחברות לוקחים תדירות של הופעת (בלוק) בקובץ עבור שלושת המקרים הבאים: סמבול = אות אחת, סמבול = 2 אותיות, סמבול = 3 אותיות. האנטרופיה תוצג בשתי דרכים: כביטים לסמבול (בלוק) וכביטים לאות (a-z). למשל: (האטרופיות בדוגמא לא בהכרח נכונות)

```
entropies - Notepad

File Edit Format View Help

1 4.1 4.1
2 9.4 4.7
3 9 3
```

- בצים: CreateDict(input_file_name) .2
 - dictHuffman1.txt − קובץ המכיל רשימה של מילות קוד הפמן עבור כל סמבול (סמבול = אות אחת).
 - עבור כל סמבול (סמבול = 2 אותיות). − dictHuffman2.txt קובץ המכיל רשימה של מילות קוד הפמן עבור כל סמבול
 - עבור כל סמבול (סמבול = 3 אותיות). − dictHuffman3.txt קובץ המכיל רשימה של מילות קוד הפמן עבור כל סמבול

שוביר כל סמבול (סמבול= אות אחת). – dictShannon.txt − קובץ המכיל רשימה של מילות קוד שנון עבור כל סמבול

כל קובץ מילון יכיל שתי עמודות. שורה ראשונה: עמודה ראשונה - שם של קידוד: Huffman או Shannon, עמודה שנייה - קוד ועמודה שנייה - גודל הבלוק: 1, 2, או 3. עבור כל שאר השורות: עמודה ראשונה – סמבול ועמודה שנייה - קוד בינארי מתאים. למשל: (הקידוד לא בהכרח נכון בדוגמא)

- 3. Compress (input_file_name, dictionary_file_name) הפונקציה תקבל שם של קובץ Compress (input_file_name, dictionary_file_name). compressed.h1 / המקורי וקובץ המילון. compressed.h2 / compressed.h3 / compressed.sh
- שימו לב, הקובץ הדחוס צריך להיות קובץ בינארי ולא קובץ טקסט. כלומר את הקוד הבינארי עליכם לרשום כמספרים ולא כאותיות ASCII, כי אחרת על כל ביט 0/1 נשקיע בעצם 8 ביטים של ייצוג ASCII ולא נקבל דחיסה.
- שם Decompress (compressed_file_name, dictionary_file_name) .4 .decompressed.txt של קובץ הדחוס וקובץ המילון. הפלט של הפונקציה יהיה הקובץ המפוענח עם שם: decompressed.txt .decompressed.txt עליכם לוודא שהקובץ יצא זהה לקובץ המקורי.

<u>סיכום:</u>

1. סכמו את התוצאות בטבלה הבאה:

זמן ריצה של כל אחת			זמן ריצ	אנטרופיה	מס' ביטים	גודל של	מס' ביטים	גודל של	שיטת קידוד
מהפונקציות בשניות				'אמפירית (מס	ממוצע לאות	קובץ דחוס	ממוצע לאות	קובץ מקורי	
ENT	DIC	СОМ	DEC	ביטים לאות)	בקובץ הדחוס	(ביטים)	בקובץ מקורי	(ביטים)	
				סמבול = אות אחת					Huffman-1

				סמבול = 2 אותיות			Huffman-2
				סמבול = 3 אותיות			Huffman-3
				סמבול = אות אחת			Shannon
נוח	זמן פענוח		זמן קיד	לא אקטואלי			תוכנת 7-Zip

2. הסבירו באופן מפורט את כל התוצאות בטבלה.

בהצלחה!