(1) (a) Let $G = D_{12}$, $H = \{g \in D_{12} \mid g^3 = R_0\}$. Decide if H is not a subgroup, a subgroup which is not normal or a normal subgroup of G.

Solution

Claim: H is a normal subgroup of G. First note that all reflection in D_{12} have order 2 so H consists of rotations only. hence $H = \{R_0, R_{120}, R_{-120}\}$ which is a cyclic subgroup of order 3. Next, since conjugation is an automorphism it follows that if $x \in D_{12}$ and $g \in H$ then $(xgx^{-1})^3 = xg^3x^{-1} = e$. Hence $xHx^{-1} \subset H$. Thus $H \triangleleft G$ is a normal subgroup by the normal subgroup test.

Answer: $H \triangleleft G$ is a normal subgroup.

(b) $G = S_{10}$, $H = \{ \sigma \in S_{10}, \mid \text{ such that } \sigma \text{ can be written as product of } \leq 3 \text{ disjoint cycles } \}$. Decide if H is not a subgroup,

Assignment Project Examer Help

Let $\sigma = (12)(34), \tau = (56)(78)$. Then σ , and τ are in H but the property of the proper

Andre Wife Chat powcoder

(c) Let G be an abelian group and let $H = \{g \in G \mid |g| < \infty\}$ Decide if H need not be a subgroup, must be a subgroup but it need not be normal, is always a normal subgroup of G.

Solution

Let us check that H is a subgroup. let $g,h \in H$ and |g| = m, |h| = m are finite then Since H is abelian we have $(gh)^{mn} = h^{mn}h^{mn} = (g^n)^m(h^m)^n = e \cdot e = e$, Hence gh has finite order and thus $gh \in H$. This shows that H is closed under the operation.

Next since $|g^{-1}| = |g|$ it follows that H is closed under inverses. We have verified that H is a subgroup of G.

Since G is abelian every subgroup of G is normal.

Answer: $H \triangleleft G$ is a normal subgroup.

- (d) Let G be a finite group, $a, b \in G$. Let $H = \langle a, b \rangle$. then which of the following holds
 - a) $|H| = |a| \cdot |b|$
 - b) |H| = lcm(|a|, |b|)

- c) |H| is divisible by lcm(|a|,|b|)
- d) H need not be divisible by lcm(|a|, |b|).

Solution

Let $G = S_3, a = (12), b = (13)$. Then |a| = |b| = 2. But it's easy to check that $\langle a, b \rangle = S_3$ which has order 6. This means that a) and b) are false in general.

Next observe that since $a \in H$ by Lagrange's theorem we have that |a| divides |H|. Similarly |b| divides |H|. Hence lcm(a,b) divides |H| as well.

Answer: |H| is divisible by lcm(|a|, |b|)

(e) How many normal subgroups of order 2 are there in D_{10} ?

Solution

Subgroups of order 2 correspond to elements of order 2.

Assignment Plement of de E: 0 reflections and R_{180} and hence is normal.

We claim that none of the subgroups generated by reflections $R_{\alpha} = D_{10}$. Then

But $R_{\alpha}F_{l}R_{\alpha}^{-1} = F_{R_{\alpha}(l)}$ by a formula from class. Note that $R_{\alpha}(l) \neq l$ and hence $R_{\alpha}F_{l}R_{\alpha}^{-1} = F_{R_{\alpha}(l)} \notin \langle F_{l} \rangle = \{R_{0}, F_{l}\}.$ Therefore

Answer: There is exactly 1 normal subgroup of order 2 in D_{10} .

(2) Let G be a group and let $H, K \triangleleft G$ be normal subgroups. Prove that HK is a normal subgroup of G.

Solution

Let us first verify that HK satisfies the subgroup test.

Let $hh' \in H, k, k' \in K$. We claim that $(hk)(h'k') \in HK$ also.

Since $H \triangleleft G$ we have that $kh'k^{-1} = h'' \in H$ and therefore kh' = h''k. Hence $hkh'k' = h(kh')k' = h(h''k)k' = (hh'')(kk') \in HK$ suince $hh'' \in H$ and $kk' \in K$. This shows that HK is closed under the noperation.

Next $(hk)^{-1} = k^{-1}h^{-1}$. We have that $x = k^{-1} \in K$ and $y = h^{-1} \in H$ since both H and K are subgroups. as before $xyx^{-1} = y' \in H$ since $H \triangleleft G$ and hence $xy = yx' \in HK$.

This verifies that HK is closed under inverses. Thus HK is a subgroup of G.

It remains to show that this subgroup is normal. Let $g \in g, h \in H, k \in K$ then $ghg^{-1} = h' \in H$ and $gkg^{-1} = k' \in K$. since H, K are normal. Therefore $g(hk)g^{-1} = ghg^{-1}gkg^{-1} = h'k' \in H$.

This verifies that $g(HK)g^{-1} \subset HK$.

Therefore $HK \triangleleft G$ by the normal subgroup test.

(3) Let n > 2.

Prove that |U(n)| is even.

Hint: Use Lagrange's theorem.

Solution

Note that gcd(n-1,n) = 1 since if d divides both n and n-1 then it also divides n - (n-1) = 1.

Therefore $\overline{n-1} \in U(n)$.

Next $(n-1) = -1 \mod n$ and hence $(n-1)^2 = (-1)^2 = 1 \mod n$. This can also be seen more directly since $(n-1)^2 = n^2 - 2n + 1 = 1$

Assignment Project Exam Help

This means that $\overline{n-1}$ has order 2 in U(n).

By a corollary to Lagrange's theorem we have that $2 = |\overline{n-1}|$ dividentities://powcoder.com

(4) Let m, n > 1 be relatively prime. Let $\varphi \colon \mathbb{Z}_{mn} \to \mathbb{Z}_m \oplus \mathbb{Z}_n$ be given by

Add WeChat powcoder $_{\varphi(k \mod mn) = (k \mod m, k \mod n)}$

Prove that φ is an isomorphism.

Solution

Let us first check that φ is well defined and preserves the operation.

if $k_1 = k_2 \mod mn$ then mn divides $k_1 - k_2$. Hence both m, n divide $k_1 - k_2$ and therefore $k_1 = k_2 \mod m$ and $k_1 = k_2 \mod n$.

This shows that φ is well defined.

Next, $\varphi(\bar{k}_1 + \bar{k}_2) = ((k_1 + k_2) \mod m, (k_1 + k_2) \mod n)) = (k_1 \mod m + k_2 \mod m, k_1 \mod n + k_2 \mod n) = (k_1 \mod m, k_1 \mod n) + (k_2 \mod m, k_2 \mod n) = \varphi(\bar{k}_1) + \varphi(\bar{k}_2)$. This shows that φ preserves operation.

Let us show that φ is 1-1.

Suppose $\varphi(\bar{k}_1) = \varphi(k_2)$. This means that $k_1 = k_2 \mod m$ and $k_1 = k_2 \mod m$. Therefore both m and n divide $k_1 - k_2$.

Since gcd(m,n) = 1 this implies that mn divides $k_1 - k_2$ as well, i.e. $\bar{k}_1 = \bar{k}_2$ in \mathbb{Z}_{mn} .

This proves that φ is 1-1.

Since $|\mathbb{Z}_{mn}| = mn = |\mathbb{Z}_m \oplus \mathbb{Z}_n|$ this means that φ is an injective map between two finite sets with the same number of elements. Hence φ must be onto.

This verifies that φ is a bijection.

(5) Let G be a group such that G/Z(G) is abelian. Prove that for any $a,b,c \in G$ it holds that [[a,b],c]=e.

Solution

Let H = Z(G). Since G/H is abelian we have that [aH, bH] = H. Recall that $(aH)^1 = a^{-1}H$ and $(bH)^{-1} = b^{-1}H$.

Therefore $H = [aH, bH] = (aH)(bH)(aH)^{-1}(bH)^{-1} = (aH)(bH)(a^{-1}H)(b^{-1}H) = aba^{-1}b^{-1}H = [a, b]H$. Therefore $z = [a, b] \in Z(G)$. This means that z commutes with any element of G and hence [z, c] = e i.e. [[a, b], c] = e.

$\mathbf{A}_{\mathbf{SSign}}^{(6)}$ Let G = U(20), $H = \langle \mathbf{\hat{p}} \rangle K =$

Solution

Recall that in general H is the smallest positive n such that $(aH)^n = H$ which is equivalent to $a^nH = H$ or $a^n \in H$.

Let us compute orders of various elements of G/H and G/K.

First, we have that $U(20) = \{\overline{1}, \overline{3}, \overline{7}, \overline{9}, \overline{11}, \overline{13}, \overline{17}, \overline{19}\} \subset \mathbb{Z}_{20}$.

What have = 81 = 1 mod 20. Hence $|\vec{3}K| = 4$.

On the other hand $\bar{3}^2 = \bar{9} \in H, \bar{7}^2 = 49 \mod 20 = 9 \mod 20 \in H, \bar{9}^2 = \bar{1} \in H, \bar{11}^2 = -\bar{9}^2 = \bar{1} \in H, \bar{13}^2 = -\bar{7}^2 = \bar{9} \in H, \bar{17}^2 = -\bar{3}^2 = \bar{9} \in H, \bar{19}^2 = -\bar{1}^2 = \bar{1} \in H.$ This shows that every element of G/H has order at most 2.

Therefore $G/H \ncong G/K$.

Answer: $G/H \ncong G/K$.