FINAL ASSIGNMENT

Karla Guadalupe Sam Millan Statistical Learning 10/06/2022

ADCTL

Data Split & Feature Selection

- The data was split at the beginning, saving the first **80%** of the rows for training, and **20%** for validation.
- For feature selection, as there were too many variables in these challenges to use stepwise selection, and since ridge regression doesn't set the values to 0 and it is therefore not easily interpretable, it was decided to use **lasso** with the **caret library**
 - Lambda was fine tuned, with values ranging from 10¹⁰ 10⁻² and a length of 100 and using a k-fold CV of k=10
 - Its best value was determined to be 0.01
 - The result of this was the **38 most important variables**, shown as follows:

```
"Supp_Motor_Area_L"
                            "OFClat_R"
                                                   "Hippocampus_L"
                                                                           "Hippocampus_R"
                                                 "Angular_L"
     "Amygdala_R"
                            "Occipital_Mid_R"
                                                                           "Caudate L"
                            "Temporal_Pole_Sup_R" "Temporal_Mid_L"
     "Heschl L"
                                                                           "Temporal_Pole_Mid_R"
                            "Cerebelum_10_L"
     "Cerebelum_3_L"
                                                    "Vermis 1 2"
                                                                           "Vermis_7"
                            "ABCA7"
     "Vermis_10"
                                                   "AGTRAP"
                                                                           "C1orf63"
     "C6orf115"
                            "CBL"
                                                   "CETN2"
                                                                           "CYTH1"
                                                   "F13A1"
                                                                           "FKBP5"
     "DCUN1D1"
                            "DNAJC7"
                            "FTHL8"
                                                   "IOGAP1"
                                                                           "LCOR"
[29] "FNIP1"
                            "RG519"
                                                   "RPL 36AL"
                                                                           "TACC3"
[33] "NACA"
[37] "TRIM41"
                            "VCAN"
```

ADCTL

Models AUC and MCC

- Again, using caret, different models were tried with the train set from the split, which were: LDA, QDA, Logistic Regression and Naive Bayes
- Logistic Regression is discarded as it doesn't converge, due to the high number of predictors.
- Among the rest, LDA is the best performing one, with a ROC = 0.984
 - QDA ROC = 0.887
 - Naive Bayes ROC = 0.9655
- The LDA model is used to create the prediction probabilities and the classes with both sets of the data split.
- **AUC** & **MCC** are computed with both sets of the data split (training and validation)
 - o AUC = 0.9998 & 0.9925
 - MCC = 0.985 & 0.83
- The final LDA model is trained on the whole dataset and used for the test predictions.

10-fold CV AUC for each model

ADMCI

Data Split & Feature Selection

- The data was split at the beginning, saving the first **80%** of the rows for training, and **20%** for validation.
- For feature selection, it was again decided to do lasso with the caret library
- Lambda was fine tuned, with values ranging from 10¹⁰ 10⁻² and a length of 100 and using a **k-fold CV of k=10**
 - Its best value was determined to be 0.04037017
 - The result of this was the **12 most important variables**, shown as follows:

```
[1] "Left.Precentral.Gyrus" "Left.Angular.Gyrus"
[3] "Right.Angular.Gyrus" "Left.Inferior.Occipital.Gyrus"
[5] "Left.Middle.Temporal.Gyrus" "Right.Middle.Temporal.Gyrus"
[7] "Left.Caudate" "Right.Caudate"
[9] "Left.Hippocampus" "Right.Hippocampus"
[11] "ARPC5" "PIP5K2A"
```

ADMCI

Models AUC and MCC

- LDA, QDA, Logistic Regression and Naive Bayes were tried
- Among them, logistic regression is the best performing one, with a ROC = 0.804
 - LDA ROC = 0.800
 - ODA ROC = 0.706
 - Naive Bayes ROC = 0.792
- The Log Reg model is used to create the prediction probabilities and the classes with both sets of the data split.
- **AUC** & **MCC** are computed with both sets of the data split (training and validation)
 - AUC = 0.8746 & 0.92
 - MCC = 0.6506 & 0.5825
- The final model is trained on the whole dataset and used for the test predictions.

10-fold CV AUC for each model

MCICTL

Data Split & Feature Selection

- The data was split at the beginning, saving the first **80%** of the rows for training, and **20%** for validation.
- For feature selection, it was again decided to do lasso with the caret library, for the same reasons
- Lambda was fine tuned, with values ranging from 10¹⁰ 10⁻² and a length of 100 and using a **k-fold CV of k=10**
 - Its best value was determined to be 0.01321941
 - The result of this was the **55 most important variables**, shown as follows:

[5] [9]	"Frontal_Inf_Oper_R" "Frontal_Med_Orb_R" "ParaHippocampal_R" "Fusiform_R"	"Frontal_Inf_Orb_2_L" "Insula_L" "Amygdala_R" "Parietal_Sup_R"	"Rolandic_Oper_L" "Cingulate_Post_L" "Lingual_L" "Parietal_Inf_L"	"Supp_Motor_Area_R" "ParaHippocampal_L" "Lingual_R" "Angular_L"
	"Angular_R"	"Paracentral_Lobule_R"		"Paĺlidum_R"
	"Thalamus_R"	"Hesch1_R"	"Temporal_Pole_Sup_R"	"Cerebelum_Crus1_R"
[25]	"Cerebelum_9_L"	"Cerebelum_10_R"	"AMY1C"	"APBB3"
[29]	"ARHGAP4"	"CTSW"	"CXCL16"	"DGKQ"
[33]	"EDG4"	"EXOC3"	"FAM39DP"	"GPR97"
[37]	"GSTM1"	"HLA.H"	"HSP90AB1"	"ITGAM"
[41]	"KIAA0513"	"KLF6"	"LOC728499"	"MICAL1"
[45]	"MX1"	"NDUFA1"	"PHACTR2"	"RPA3"
[49]	"SELPLG"	"TGFBR3"	"TMEM8"	"тмем86в"
[53]	"TOP3A"	"TTC15"	"VWCE"	

MCICTL

Models AUC and MCC

- LDA, QDA, Logistic Regression and Naive Bayes were tried
- **Logistic Regression is discarded** as it doesn't converge, due to the high number of predictors (55).
- Among the rest, LDA is the best performing one, with a ROC = 0.9471
 - ODA ROC = 0.5123
 - Naive Bayes ROC = 0.8538
- The LDA model is used to create the prediction probabilities and the classes with both sets of the data split.
- **AUC** & **MCC** are computed with both sets of the data split (training and validation)
 - AUC = 1 & 0.9375
 - MCC = 0.9712 & 0.5221
 - AUC doesn't vary much, but MCC does, suggesting overfitting, likely due to the high number of predictors.
- The final LDA model is trained on the whole dataset and used for the test predictions.

10-fold CV AUC for each model

