

2.500 Desalination and Water Purification Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Rainwater Cistern Plan for Paulette and Phaeton

2.500 Water Purification & Desalination 14 May 2009

Design Considerations

Design Considerations

- Cost
- Materials
- Complexity/Reliability
- Operational Considerations

All four considerations are critical.

Design Considerations Cost

- Current price: \$1.20 per m³ water (\$0.0012 per liter)
- Target price: \$0.60 per m³ water (\$0.0006 per liter)
- Compare to Ashkelon desalination (seawater RO): \$0.45 per m³ water (\$0.00045 per liter)

Design Considerations Overall

System	Cost	Complexity	Material	Operation
RO				
MSF, MEE				
VC				
Solar Still				
Cistern				

Design Considerations Solar Still vs. Cistern

Solar Still	Cistern					
Comparable footprint.						
Materials widely available.						
Distributed solution.						
No existing infrastructure.	Collecting area already exists.					
Lower manufacturing tolerance.	Higher manufacturing tolerances.					
More likely to break.	Less likely to break.					
Daily upkeep.	Monthly upkeep.					
Requires pumped or hauled water.	Water supplied by rain.					

Alternate Approach

Alternate Approach Optimize the Pump

- Current water supply uses a pump which is most likely not operating at its highest efficiency.
- Replace pump with correctly-sized pump for cost savings without major change of infrastructure.
- Examine the 15-km piping for leakage.

Cistern Approach

Cistern Approach

Cisterns would be

- Targeted at poorer households
- Possibly donated
- Installed on roofs
- Maintained by homeowner

Cistern Approach Existing Roofs

Image removed due to copyright restrictions.
Please see http://www.panoramio.com/photo/5695171

Design Specifications

Design Specifications Water Production Capacity

- Project statement
 - Fresh water usage in Paulette and Phaeton is
 ~4-8 buckets per household per day.
 - Corresponds to 20 L per person per day.
- UN data*
 - 15 L per person per day total water usage.
- System is designed for 10L per person per day.

^{*} United Nations Development Program, "Human Development Report 2006", 2006

Design Specifications Rainfall

□75% Collection Efficiency – 28 m² of collection area required

- Paulette Roof 29 m²
- Phaeton Roof 38 m²

Design Specifications Capacity

- Tanks are the dominating capital cost, don't want to oversize.
- Requirements
 - During average year, always have >0.5 m³ water in the tank
 - Minimum size of 1.5 m³ (one-month water supply)
- Tank size was chosen using a monthly balance.
- Start with large tank and decrease size to reach design limits.

Design Specifications Treatment

- Water treatment required
 - Water collects dust, dirt, animal droppings, etc. from roof
- Liquid chlorine, in the form of laundry bleach, added to cistern
 - 2 fluid ounces (¼ cup) per
 1,000 gallons of rainwater
- Purification before drinking is also recommended

Image removed due to copyright restrictions.

Please see http://www.haitiproject.org/images/purifier.jpg

Critical Evaluation

Critical Evaluation Cost

	Paulette		Phaeton	
Component	Polypropylene	Concrete Tanks	Polypropylene	Concrete Tanks
	Tanks		Tanks	
Gutters	\$46	\$46	\$52	\$52
Gutter Installation	\$20	\$20	\$22	\$22
Components				
Connecting Pipes	\$12	\$12	\$12	\$12
Sealant	\$5	\$5	\$5	\$5
Fittings, Valves, and Screens	\$35	\$20	\$35	\$20
Water Tanks	\$615	\$238	\$308	\$119
Total Capital Cost	\$732	\$355	\$434	\$245
Per m ³				
Operating Costs	\$2.23/m ³	\$1.39/m³	\$1.06/m³	\$0.82/m ³
Capital + Operating Costs	\$3.61/m³	\$1.99/m³	\$2.22/m³	\$1.47/m³

Current price: \$1.20/m³

Critical Evaluation Alternate Implementations

Rainwater collection on community

buildings.

Critical Evaluation Risks

- Possibility that families already collect rainwater
- Poorer homes unable to accommodate system
- Drought
- Hurricanes
- Market failure of pumped water system

References

- World Health Organization. "Guidelines for Drinking Water Quality, 3rd Edition," 2006, Available HTTP: http://www.who.int/water sanitation health/dwg/gdwg0506.pdf
- National Aeronautics and Space Administration, Atmospheric Science and Data Center, "NASA Surface meteorology and Solar Energy: Global Data Sets," 2009, Available HTTP: http://eosweb.larc.nasa.gov/sse/
- Butler, D. and F. A. Memon, "Water Demand Management", IWA Publishing, Nov 2005.
- Senders, A. W. "Cisterns Planning and Design." U.S. Department of Agriculture and West Virginia University, Cooperative Extension Service, Oct. 17, 1971.
- Banat, F, and N. Jwaied, "Economic Evaluation of Desalination by small-scale autonomous solar-powered membrane distillation units," Desalination, Vol 220, pp. 566-574, 2008
- Yunos, T. "The Economics of Desalination," Journal of Contemporary Water Research & Education, Vol. 132, pp. 39-45, Dec. 2005
- Tzen, E., and R. Morris. "Renewable energy sources for desalination," Solar Energy, Vol. 75, 2003, pp 375-379.
- Krishna, H. J. "The Texas Manual on Rainwater Harvesting, Third Edition" Texas Water Development Board, Austin, Texas, 2005.
- Hertfelder, J. "Phaeton Houses", [Online Image], Available HTTP: http://static.panoramio.com/photos/original/5695171.jpg, May 9, 2009
- Google, "Google Maps", Available HTTP: http://maps.google.com/?ie=UTF8&ll=19.518375,-75.498047&spn=25.574959,46.582031&z=5, May 9, 2009
- Bower, K. M. "Final Report: Increased Drinking Water Supply Through Improved Cistern Construction in Barasa Haiti", U.S. Environmental Protection Agency, National Center for Environmental Research, Available HTTP:
 http://cfpub.epa.gov/ncer abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/7748/report/F
- United Nations Development Program, "Human Development Report 2006", 2006, Available HTTP: http://hdr.undp.org/hdr2006/pdfs/report/HDR06-complete.pdf
- Gift of Water, "The Purifier", Available HTTP:
 http://www.giftofwater.org/site/cpage.asp?cpage id=140018465&sec id=140005522
- Trieb, F. et al., *Concentrating Solar Power for Seawater Desalination*, German Aerospace Center (DLR), Institute of Technical Thermodynamics, Nov. 2007.

Questions

Image removed due to copyright restrictions.

Please see http://www.panoramio.com/photo/5695171