COMP232 - Mathematics for Computer Science Tutorial 2

Ali Moallemi moa_ali@encs.concordia.ca

Iraj Hedayati h_iraj@encs.concordia.ca

Concordia University, Winter 2016

Table of Contents

- 1.3 Propositional Equivalences
 - Exercise 5
 - Exercise 6
 - Exercise 8
 - Exercise 9
 - Exercise 18
 - Exercise 20
 - Exercise 26
 - Exercise 41

Use the truth table to verify the distributive law $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$.

T	T	T	T	T	T	T	T
T	T	F	T	T	T	F	T
T	F	T	T	T	F	T	T
T	F	F	F	F	F	F	F
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F

Use the truth table to verify the first De Morgan law $\neg(p \land q) \equiv \neg p \lor \neg q$.

T	T	T	F	F	F	F
T	F	F	T	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T

Use De Morgan's laws to find the negation of each of the following statements.

- a) Kwame will take a job in industry or go to graduate school.
 Kwame will not take a job in industry and will not go to graduate school.
- b) Yoshiko knows Java and calculus.
 Yoshiko doesn't know Java or doesn't know calculus.
- c) James is young and strong.
 James is not young or is not strong
- d) Rita will move to Oregon or Washington
 Rita will not move to Oregon and will not move to Washington

Exercise 9.a

Show that each of these conditional statements is a tautology by using truth table $(p \land q) \to p$.

T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

Exercise 9.b

Show that each of these conditional statements is a tautology by using truth table $p \to (p \lor q)$.

T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

Exercise 9.c

Show that each of these conditional statements is a tautology by using truth table $\neg p \to (p \to q)$.

T	T	T	T
T	F	F	T
F	T	T	T
F	F	T	T

Exercise 9.d

Show that each of these conditional statements is a tautology by using truth table $(p \land q) \to (p \to q)$.

T	T	T	T
T	F	F	T
F	T	T	T
F	F	Τ	T

Exercise 9.e

Show that each of these conditional statements is a tautology by using truth table $\neg(p \to q) \to p$.

T	T	T	T
T	F	F	T
F	T	T	T
F	F	T	T

Exercise 9.f

Show that each of these conditional statements is a tautology by using truth table $\neg(p \to q) \to \neg q$.

T	Т	T	T
T	F	F	T
F	T	Т	T
F	F	T	T

Show that $p \to q$ and $\neg q \to \neg P$ are logically equivalent.

T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

Show that $\neg(p \oplus q)$ and $p \leftrightarrow q$ are logically equivalent.

T	T	T	T
T	F	F	F
F	T	F	F
F	F	T	T

Show that $\neg p \to (q \to r)$ and $q \to (p \lor r)$ are logically equivalent.

T	Т	Т	T	T	T	T
T	T	F	F	T	T	T
T	F	T	T	T	T	T
T	F	F	T	T	T	T
F	T	T	T	T	T	T
F	T	F	F	F	F	F
F	F	T	T	T	T	T
F	F	F	T	T	F	T

Find a compound proposition involving the propositional variables p, q and r that is true when exactly two of p, q and r are true and is false otherwise. Hint: Form a disjunction of conjunctions.

Hint: Include a conjunction for each combination of values for which the compound proposition is true.

Hint: Each conjunction should include each of three propositional variables or its negations.

Answer:

$$(p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r)$$