Sujet EDHEC - 2021

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Aucun document n'est autorisé. L'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il la signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il sera amené à prendre.

Exercice 1

1. Question préliminaire :

on considère une suite $(a_n)_{n\in\mathbb{N}}$ croissante et de limite ℓ et on pose, pour tout n de \mathbb{N}^* :

$$b_n = \frac{1}{n} \sum_{k=0}^{n-1} a_k$$

- a. Établir, pour tout entier naturel n non nul, l'inégalité $b_n \leq a_n$, puis étudier la monotonie de la suite $(b_n)_{n \in \mathbb{N}^*}$.
- **b.** Montrer que la suite $(b_n)_{n\in\mathbb{N}^*}$ converge vers un réel ℓ' qui vérifie $\ell' \leq \ell$.
- c. Établir, pour tout entier naturel n non nul, l'inégalité suivante :

$$b_{2n} \ge \frac{b_n + a_n}{2}$$

d. En déduire que $\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} a_n$.

On se propose maintenant d'étudier la suite $(u_n)_{n\in\mathbb{N}}$, définie par la donnée de $u_0=1$ et par la relation, valable pour tout entier naturel n:

$$u_{n+1} = \sqrt{u_n^2 + u_n}$$

Pour tout entier naturel n non nul, on pose $S_n = \sum_{k=0}^{n-1} u_k$.

- 2. a. Montrer que, pour tout entier naturel n, u_n est bien défini et supérieur ou égal a 1.
 - **b.** Étudier les variations de la suite (u_n) , puis établir que la suite (u_n) diverge et donner sa limite.
 - c. Compléter le script Scilab suivant afin qu'il permette de déterminer et d'afficher la plus petite valeur de n pour laquelle on a $S_n > 1000$.

$$\begin{array}{l} n{=}1 \\ u{=}1 \\ S{=}1 \ \ // \ \ S1{=}u0{=}1 \\ \\ \textbf{while} \ \ S{<}{=}1000 \\ u = \dots \dots \dots \\ S = \dots \dots \dots \\ n{=}n{+}1 \\ \textbf{end} \\ \\ \textbf{disp} \ (\dots \dots) \end{array}$$

- 3. Recherche d'un équivalent de u_n .
 - **a.** Montrer que $\lim_{n\to+\infty} (u_{n+1}-u_n)=\frac{1}{2}$.

- b. Étudier les variations de la fonction f définie sur $[1; +\infty[$ par $f(x) = \sqrt{x^2 + x} x$, puis en déduire que la suite $(u_{n+1} u_n)_{n \in \mathbb{N}}$ est croissante.
- c. Utiliser la première question pour établir que : $u_n \sim \frac{n}{n \to +\infty} \frac{n}{2}$.
- **4. a.** Exprimer S_n en fonction de u_n puis en déduire un équivalent de S_n pour n au voisinage de $+\infty$.
 - b. Compléter le script Scilab suivant afin qu'il fasse le même travail que celui de la question 2.c) sans calculer S_n :

Exercice 2

- 1. On considère une variable aléatoire Z suivant la loi normale centrée réduite. On pose $Y = e^Z$ et on admet que Y est une variable aléatoire à densité. On note F_Y la fonction de répartition de Y et Φ celle de Z.
 - a. Déterminer $F_Y(x)$ pour tout réel x négatif ou nul, puis exprimer $F_Y(x)$ à l'aide de la fonction Φ pour tout réel x strictement positif.
 - **b.** En déduire qu'une densité f_Y de Y est donnée par :

$$f_Y(x) = \begin{cases} \frac{1}{x\sqrt{2\pi}} \exp\left(-\frac{(\ln x)^2}{2}\right) & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases}$$

Dans la suite, on considère une suite de variables aléatoires $(X_n)_{n \in \mathbb{N}^*}$, toutes définies sur le même espace probabilisé, mutuellement indépendantes et suivant toutes la loi, dite loi de Rademacher de paramètre p (avec 0), et définie par :

$$P(X_n = 1) = p$$
 et $P(X_n = -1) = 1 - p$

On considère de plus, pour n dans \mathbb{N}^* , la variable aléatoire $T_n = \prod_{k=1}^n X_k$.

- **2. a.** Donner l'espérance et la variance communes aux variables X_n .
 - b. Déterminer l'ensemble des valeurs prises par T_n puis calculer $E(T_n)$ et en déduire une relation entre $P(T_n = 1)$ et $P(T_n = -1)$.
 - c. Écrire une autre relation vérifiée par $P(T_n = 1)$ et $P(T_n = -1)$, puis en déduire la loi de T_n .
 - d. Montrer que la suite $(T_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable T dont on précisera la loi.
- 3. Soit T' une variable aléatoire définie sur le même espace probabilisé que les variables X_n .
 - a. Établir l'inclusion suivante :

$$\left(\left|T_{n+1} - T'\right| < \frac{1}{2}\right) \cap \left(\left|T_n - T'\right| < \frac{1}{2}\right) \subset (\left|T_{n+1} - T_n\right| < 1)$$

b. En déduire l'inégalité :

$$P(|T_{n+1} - T_n| \ge 1) \le P(|T_{n+1} - T'| \ge \frac{1}{2}) + P(|T_n - T'| \ge \frac{1}{2})$$

c. Montrer, en observant les valeurs que peut prendre la variable $T_{n+1} - T_n$, que :

$$P(|T_{n+1} - T_n| \ge 1) = 1 - p$$

- **d.** La suite $(T_n)_{n\in\mathbb{N}^*}$ converge-t-elle en probabilité?
- **4.** Dans cette question, on prend $p = \frac{1}{2}$.

On considère, pour tout n de \mathbb{N}^* , les variables aléatoires, $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$ et $U_n = e^{n\overline{X}_n}$.

- a. On rappelle que \overline{X}_n^* est la variable aféatoire centrée réduite associée à \overline{X}_n . Exprimer \overline{X}_n^* en fonction de \overline{X}_n .
- b. Utiliser le théorème limite central pour établir que la suite $\left(U_n^{1/\sqrt{n}}\right)_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire de même loi que Y.

Exercice 3

On considère un espace euclidien E pour lequel le produit scalaire de deux vecteurs x et y est noté $\langle x, y \rangle$, tandis que la norme du vecteur x est notée ||x||. Le vecteur nul de E est noté 0_E .

On considère aussi un endomorphisme f de E, différent de l'endomorphisme nul, et antisymétrique, c'est-à-dire qu'il vérifie :

$$\forall (x,y) \in E^2, \quad \langle f(x), y \rangle = -\langle x, f(y) \rangle$$

- **1.** Montrer que : $\forall x \in E, \langle f(x), x \rangle = 0.$
- **2.** Établir l'égalité : $Ker(f) \oplus Im(f) = E$.
- **3.** On pose $s = f \circ f$. Montrer que s est un endomorphisme symétrique de E et que ses valeurs propres sont toutes dans \mathbb{R}^- .
- **4.** On note g l'application qui à tout vecteur x de $\operatorname{Im}(f)$ associe g(x) = f(x) et on pose $t = g \circ g$.
 - a. Montrer que g est un endomorphisme antisymétrique de Im(f).
 - **b.** En déduire que les valeurs propres de t sont toutes dans $\mathbb{R}^{-}*$.

Dans les deux questions suivantes, on considère une valeur propre λ de t et on note $E_{\lambda}(t)$ le sous-espace propre associé à cette valeur propre.

- **5.** On considère un vecteur e_1 non nul de $E_{\lambda}(t)$.
 - **a.** Montrer que $(e_1, g(e_1))$ est une famille d'éléments de $E_{\lambda}(t)$, orthogonale et libre.
 - b. En déduire, en considérant l'orthogonal F_2 de Vect $(e_1, g(e_1))$ dans $E_{\lambda}(t)$, que la dimension de $E_{\lambda}(t)$ est paire et qu'il existe un entier naturel p non nul, ainsi que p vecteurs e_1, e_2, \ldots, e_p de $E_{\lambda}(t)$, tels que $(e_1, g(e_1), e_2, g(e_2), \ldots, e_p, g(e_p))$ soit une base orthogonale de $E_{\lambda}(t)$.
- **6.** Soit k un entier de [1, p]
 - **a.** Montrer que l'on a : $||g(e_k)||^2 = -\lambda ||e_k||^2$.
 - **b.** On considère les vecteurs $e_k' = \frac{1}{\|e_k\|} e_k$ et $e_k'' = \frac{1}{\|g\left(e_k\right)\|} g\left(e_k\right)$. Établir que $g\left(e_k'\right) = \sqrt{-\lambda} \, e_k''$ et $g\left(e_k''\right) = -\sqrt{-\lambda} \, e_k'$.
- 7. a. Montrer que le rang de f est pair.
 - **b.** On pose $r = \frac{1}{2}rg(f)$. Déduire des questions précédentes qu'il existe une base orthonormale \mathcal{B} de E et r réels a_1, \ldots, a_r strictement positifs, pas nécessairement distincts, tels que la matrice M de f dans \mathcal{B} soit :

Problème

Partie 1 : calcul d'intégrales utiles pour la suite

Pour tout couple (p,q) d'entiers naturels, on pose : $I(p,q) = \int_0^1 x^p (1-x)^q dx$

On a, en particulier

$$I(p,0) = \int_0^1 x^p dx$$
 et $I(0,q) = \int_0^1 (1-x)^q dx$

- 1. Donner les valeurs de I(p,0) et I(0,q).
- **2.** Montrer que, pour tout couple (p,q) de $\mathbb{N} \times \mathbb{N}^*$, on a l'égalité :

$$I(p,q) = \frac{q}{p+1}I(p+1,q-1)$$

- **3.** Pour tout q de \mathbb{N} , on considère la propriété H_q : « $\forall p \in \mathbb{N}, I(p,q) = \frac{p!q!}{(p+q)!}I(p+q,0)$ ». Montrer, par récurrence sur q, que H_q est vraie pour tout entier naturel q.
- **4.** Donner explicitement, pour tout couple (p,q) d'entiers naturels, l'expression de I(p,q) en fonction de p et q, puis en déduire pour tout entier naturel n, la valeur de I(n,n) en fonction de n.

Partie 2 : étude d'une suite de variables aléatoires

Pour fout entier naturel n, on pose : $b_n(x) = \begin{cases} \frac{(2n+1)!}{(n!)^2} x^n (1-x)^n & \text{si } 0 \le x \le 1 \\ 0 & \text{sinon} \end{cases}$

- 5. Montrer que b_n peut être considérée comme une densité de probabilité. On considère désormais une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}}$, où X_n admet b_n comme densité.
- **6.** Reconnaître la loi de X_0 .
- 7. a. Utiliser la première partie pour montrer que X_n possède une espérance et que $E(X_n) = \frac{1}{2}$.
 - b. Toujours en utilisant la première partie, montrer que X_n possède une variance et exprimer $V\left(X_n\right)$ en fonction de n.
 - c. Montrer que la suite $(X_n)_{n\in\mathbb{N}^*}$ converge en probabilité vers une variable certaine que l'on précisera.

Partie 3 : simulation informatique de X_n .

On considère 2n+1 variables aléatoires $U_1, U_2, \ldots, U_{2n+1}$ définies sur le même espace probabilisé (Ω, \mathcal{A}, P) , mutuellement indépendantes, et suivant toutes la loi uniforme sur [0, 1].

On suppose que ces variables représentent respectivement les instants d'arrivée de 2n+1 personnes $A_1, A_2, \ldots, A_{2n+1}$ à leur lieu commun de rendez-vous. Pour tout k de [1; 2n+1], on note alors V_k l'instant d'arrivée de la personne arrivée la k^e au rendez-vous (cette personne n'étant pas forcément A_k). On admet que V_k est une variable aléatoire à densité, définie elle aussi sur (Ω, \mathcal{A}, P) , et on note G_k sa fonction de répartition.

- 8. On note F_U la fonction de répartition commune aux variables $U_1, U_2, \ldots, U_{2n+1}$. Rappeler l'expression de $F_U(x)$ selon que $x < 0, 0 \le x \le 1$ ou x > 1.
 - © Saint-Jean de Passy

- 9. a. Écrire la variable V_{2n+1} en fonction de $U_1, U_2, \ldots, U_{2n+1}$.
 - **b.** En déduire $G_{2n+1}(x)$ pour tout réel x.
- **10. a.** Écrire la variable V_1 en fonction de $U_1, U_2, \ldots, U_{2n+1}$
 - **b.** En déduire, pour tout réel x, la probabilité $P(V_1 > x)$ puis déterminer $G_1(x)$ pour tout réel x.
- 11. Écrire un script Scilab permettant de simuler V_1 et V_{2n+1} pour une valeur de n entrée par l'utilisateur.
- 12. a. Montrer que l'on a :

$$\forall x \in [0,1], G_{n+1}(x) = \sum_{k=n+1}^{2n+1} {2n+1 \choose k} x^k (1-x)^{2n+1-k}$$

- **b.** Déterminer une densité g_{n+1} de V_{n+1} et en déduire que V_{n+1} suit la même loi que X_n .
- c. On considère le script Scilab suivant :

$$\begin{array}{l} U \! = \! [\, 8 \; , 2 \; , 9 \; , 1 \, 3 \; , 2 \, 3 \; , 1 \; , 5 \,] \\ V \! = \! \mathbf{median}(\mathrm{U}) \\ \mathbf{disp}\left(\mathrm{V}, \; \mathrm{`V} \! = \; \mathrm{`}\right) \end{array}$$

Quelle est la valeur renvoyée par ce script?

d. Écrire un script Scilab permettant de simuler X_n .

