

2020 IEEE International Symposium on Circuits and Systems
Virtual, October 10-21, 2020

Efficient Accelerator for Dilated and Transposed Convolution with Decomposition

Kuo-Wei Chang, Tian-Sheuan Chang

Dept. of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan andy0703.ee05g@nctu.edu.tw, tschang@mail.nctu.edu.tw

NAR Labs 國家實驗研究院 台灣半導體研究中心

Outline

- Introduction
- Proposed Accelerator
- Proposed Method
- Experiment Results
- Conclusion

Semantic Segmentation

- Recognize objects and non-objects in a image
 - Label each pixel in the image with a category label
 - Don't differentiate instances, only care about pixels

Semantic segmentation State of the art Methods

SegNet

• U-Net

Semantic segmentation State of the art Methods

- E-Net
- Parameter reduction
 - ResNet-like
 - Use dilated convolution
 - Use asymmetric convolution
 - No bias terms

Name	Type	Output size
initial		$16\times256\times256$
bottleneck1.0	downsampling	$64 \times 128 \times 128$
4× bottleneck1.x		$64 \times 128 \times 128$
bottleneck2.0	downsampling	$128 \times 64 \times 64$
bottleneck2.1		$128 \times 64 \times 64$
bottleneck2.2	dilated 2	$128 \times 64 \times 64$
bottleneck2.3	asymmetric 5	$128 \times 64 \times 64$
bottleneck2.4	dilated 4	$128 \times 64 \times 64$
bottleneck2.5		$128 \times 64 \times 64$
bottleneck2.6	dilated 8	$128 \times 64 \times 64$
bottleneck2.7	asymmetric 5	$128 \times 64 \times 64$
bottleneck2.8	dilated 16	$128\times64\times64$
Repeat section 2	2, without bottlened	k2.0
bottleneck4.0	upsampling	$64 \times 128 \times 128$
bottleneck4.1		$64 \times 128 \times 128$
bottleneck4.2		$64 \times 128 \times 128$
bottleneck5.0	upsampling	$16 \times 256 \times 256$
bottleneck5.1	_	$16\times256\times256$
fullconv		$C\times512\times512$
	<u> </u>	·

Summary of Image Segmentation

Proposed Architecture

- Base hardware
 - Vector based array
- Reconfiguration
 - Various convolution types
 - 3x3, 4x4, 5x5, 7x7, 11x11 with different strides
 - 1x1
 - Depth wise
 - Dilated convolution
 - Deconvolution
 - Vector level sparsity
 - Through reconfigurable input and output selections

K. Chang and T. Chang, "VWA: Hardware Efficient Vectorwise Accelerator for Convolutional Neural Network," in *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 67, no. 1, pp. 145-154, Jan. 2020, doi: 10.1109/TCSI.2019.2942529.

Architecture – Top

Architecture – PE block

- General convolution
 - vectorwise input
- Non-unit stride
 - Interleaved input
- 1x1 convolution
 - Elementwise input

General Convolution

- Illustration of computation and order
 - A to F and WA to WE represent input and weight row vector. Number 1 to 12 represent cycle.

Architecture – Accumulator

Dilated Convolution

- Problems with pooling for downsampling
 - Loss position information

wa ₁	wb ₁	wc ₁
wa ₂	wb ₂	wc ₂
wa ₃	wb ₃	wc ₃

$$D = 0$$

	_		
wa ₁		wb ₁	WC_1
wa ₂		wb ₂	wc ₂
wa ₃		wb ₃	wc ₃

$$D = 1$$

wa ₁		wb ₁		wc ₁
wa ₂		wb ₂		wc ₂
wa ₃		wb ₃		wc ₃

$$D = 2$$

Input decomposition for Dilated Convolution (D = 1)

- For D= 1 dilated convolution
- Like stride 2 convolution
- Input is decomposed to four block by stride 2.

			ı	wa_1	$wb_\mathtt{1}$	WC ₁
wa ₁	wb ₁	wc ₁				
wa ₂	wb ₂	wc ₂		wa ₂	wb ₂	wc ₂
wa ₃	wb ₃	wc ₃				
				wa ₃	wb ₃	wc ₃

Illustration of input deompostion

a ₁	b_1	c ₁	d_1	e_1	f ₁	g_1
a ₂	b ₂	c ₂	D ₂	e ₂	f ₂	g_2
a ₃	b ₃	c ₃	d_3	e ₃	f_3	g_3
a_4	b ₄	C ₄	d_4	e_4	f_4	g_4
a ₅	b ₅	C ₅	d_5	e ₅	f ₅	g ₅
a_6	b ₆	c ₆	d_6	e_6	f_6	g_6
a ₇	b ₇	c ₇	d ₇	e ₇	f ₇	g ₇

Input decomposition for Dilated Convolution (D = 1)

- General convolution after input decomposition
- Skip all zero computation in sparse dilated weight.

 d_6

Input decomposition for Dilated Convolution (D = 2)

wb₁ D=2 Weight wa₁ WC_1 Input decomposed f_2 C_2 a_2 g_2 d_3 a_3 g_3 wb_2 wa_2 WC_2 g_4 f_5 d_5 a_5 g_5 d_6 a_6 wa_3 wb_3 WC_3 g₇ a₁ e₁ of_1 od₁ ob₁ OC_1 og_1 oe₁ a_4 of_4 od_{4} ob_4 oa₄ og_4 oe, OC₄ a_{7} e_7 of_7 od_7 ob₇ Og₇ oe₇ OC₇ wb_1 wa₁ WC_1 d_2 f_2 a_2 g_2 od_2 of_2 ob_2 og_2 OC_2 oa_2 oe_2 wa₂ wb₂ WC_2 a_5 d_5 g_5 of_5 od_5 ob_5 oas og_5 oe_5 OC₅ wb₃ wa₂ WC_3 ob₃ od_3 oe₃ oa₃ og_3

 od_6

 og_6

 oa_6

ob₆

oe₆

Transposed convolution (Deconvolution)

Input row vector multiply weight row vector, so I. and II. accumulate partial sum in 2 cycle to get output III. and IV. Can get output in 1 cycle.

Data flow chart of Transposed Convolution

Experimental Result

- The performance enhancement for our work on ENet.
 - The baseline is cycle counts on the ideal dense case.
 - The number of MACs are the same in our work and the ideal dense case.

Experimental Result

- The performance of dilated and transposed convolutional layers on ENet.
 - Ideal dense case = Computation including zeros.
 - Ideal sparse case = Computation without all zeros.

Design Comparison

TABLE I IMPLEMENTATION RESULT AND COMPARISONS WITH OTHER DESIGNS [1] DT-CNN [2] USCA

	Our work	[12]	[13]
Technology	40nm	65nm	28nm
Measurements	Post-layout	Post-layout	Synthesis
Precision	16 fixed	8	-
On-chip SRAM (KB)	191	220.5	114.7
Frequency (MHz)	500	200	1449
Throughput	168 ^d / 1377 ^e	96 ^d / 639 ^e	374
(GOPS) ^a	168 ^{bd} / 1377 ^{be}	156 ^{bd} / 1039 ^{be}	261 ^{bd}
Supply Voltage (V)	0.99	1.2	-
Core Area (mm ²)	1.5625	6.8	-
Core Power (mW)	155	196	201.1
Area	107 ^d / 881 ^e	14 ^d / 94 ^e	-
efficiency(GOPS/mm ²)	107^{bd} / 881^{be}	23 ^{bd} / 152 ^{be}	-
Power efficiency	1.08 ^d / 8.88 ^e	0.49 ^d / 3.26 ^e	1.86^{d}
(TOPS/W)	1.08 ^{cd} / 8.88 ^{ce}	1.16 ^{cd} / 7.79 ^{ce}	-
$a_1 \subset M \land CC = 2 \subset CODC$			

^a1 GMACS= 2 GOPS

[1] D. Im et al., "DT-CNN: dilated and transposed convolution neural network accelerator for real-time image segmentation on mobile devices," in IEEE ISCAS, May 2019 pp. 1-5.

[2] W. Liu, J. Lin and Z. Wang, "USCA: A unified systolic convolution array architecture for accelerating sparse neural network," in IEEE ISCAS, May 2019 pp. 1-5.

^bTechnology scaling ($\frac{process}{40nm}$)

^cNormalized power efficiency = power efficiency $\times (\frac{process}{40nm}) \times (\frac{Voltage}{0.99V})^2$.

^dThe peak throughput for computing all the operations including zeros.

^eThe logical throughput with zero skipping on ENet [8] [12].

Conclusion

- Proposed high performance hardware to support dilated and transposed convolutions.
- Decompose input and weight matrices to convert sparse computations to dense computations.
- Performance
 - Cut down 87.8% of the cycle count and 8.2X speedup over ideal dense CNN.
 - The area efficiency is up to 5.79X higher and the power efficiency is up to 4.77X than other designs for segmentation.

Thanks for your attention!