GAT

Graph Attention Network

[Figure from Veličković et al. (ICLR 2018)]

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right) \qquad \text{Aggregating with different weight}$$

Graph Attention Network

[Figure from Veličković et al. (ICLR 2018)]

Pros:

- No need to store intermediate edge-based activation vectors (when using dot-product attn.)
- Slower than GCNs but faster than GNNs with edge embeddings

Cons:

· Can be more difficult to optimize

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right) \qquad \alpha_{ij} = \frac{\exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^T [\mathbf{W} \vec{h}_i \| \mathbf{W} \vec{h}_j] \right) \right)}{\sum_{k \in \mathcal{N}_i} \exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^T [\mathbf{W} \vec{h}_i \| \mathbf{W} \vec{h}_i] \right) \right)}$$

GNN Framework

GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

Idea of a GNN Layer

- Compress a set of vectors into a single vector
- Two step process:
 - (1) Message
 - (2) Aggregation

Message computation

- Message function: $\mathbf{m}_u^{(l)} = \mathrm{MSG}^{(l)}\left(\mathbf{h}_u^{(l-1)}\right)$
 - Intuition: Each node will create a message, which will be sent to other nodes later
 - **Example:** A Linear layer $\mathbf{m}_u^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$
 - Multiply node features with weight matrix $\mathbf{W}^{(l)}$

Aggregation

• Intuition: Each node will aggregate the messages from node v's neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)$$

Example: Sum (\cdot) , Mean (\cdot) or Max (\cdot) aggregator

$$\mathbf{h}_{v}^{(l)} = \operatorname{Sum}(\{\mathbf{m}_{u}^{(l)}, u \in N(v)\})$$

Aggregation

- Issue: Information from node v itself could get lost
 - Computation of $\mathbf{h}_{v}^{(l)}$ does not directly depend on $\mathbf{h}_{v}^{(l-1)}$
- Solution: Include $\mathbf{h}_v^{(l-1)}$ when computing $\mathbf{h}_v^{(l)}$
 - (1) Message: compute message from node v itself
 - Usually, a different message computation will be performed

- (2) Aggregation: After aggregating from neighbors, we can aggregate the message from node v itself
 - Via concatenation or summation

Then aggregate from node itself

$$\mathbf{h}_{v}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right), \mathbf{m}_{v}^{(l)}\right)$$
First aggregate from neighbors

Overview

(1) Message: each node computes a message

$$\mathbf{m}_u^{(l)} = \mathrm{MSG}^{(l)}\left(\mathbf{h}_u^{(l-1)}\right), u \in \{N(v) \cup v\}$$

(2) Aggregation: aggregate messages from neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}, \mathbf{m}_{v}^{(l)}\right)$$

- Nonlinearity (activation): Adds expressiveness
 - Often written as $\sigma(\cdot)$: ReLU(\cdot), Sigmoid(\cdot), ...
 - Can be added to message or aggregation

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

How to write this as Message + Aggregation?

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right) \tag{2) Aggregation}$$

$$(1) \text{ Message}$$

Message:

■ Each Neighbor: $\mathbf{m}_u^{(l)} = \frac{1}{|N(v)|} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$

Normalized by node degree

(In the GCN paper they use a slightly different normalization)

Aggregation:

Sum over messages from neighbors, then apply activation

•
$$\mathbf{h}_{v}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$$

GraphSAGE in this framework

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \cdot \text{CONCAT} \left(\mathbf{h}_{v}^{(l-1)}, \text{AGG} \left(\left\{ \mathbf{h}_{u}^{(l-1)}, \forall u \in N(v) \right\} \right) \right) \right)$$

- How to write this as Message + Aggregation?
 - Message is computed within the $AGG(\cdot)$
 - Two-stage aggregation
 - Stage 1: Aggregate from node neighbors

$$\mathbf{h}_{N(v)}^{(l)} \leftarrow \mathrm{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)$$

Stage 2: Further aggregate over the node itself

$$\mathbf{h}_{v}^{(l)} \leftarrow \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)})\right)$$

GraphSAGE in this framework

Mean: Take a weighted average of neighbors

AGG =
$$\sum_{u \in N(v)} \frac{\mathbf{h}_u^{(l-1)}}{|N(v)|}$$
 Message computation

Pool: Transform neighbor vectors and apply symmetric vector function $Mean(\cdot)$ or $Max(\cdot)$

$$AGG = \underline{Mean}(\{\underline{MLP}(\mathbf{h}_u^{(l-1)}), \forall u \in N(v)\})$$

Aggregation Message computation

LSTM: Apply LSTM to reshuffled of neighbors

$$AGG = \underbrace{LSTM}([\mathbf{h}_u^{(l-1)}, \forall u \in \pi(N(v))])$$
 Aggregation

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights

- In GCN / GraphSAGE
 - $\alpha_{vu} = \frac{1}{|N(v)|}$ is the weighting factor (importance) of node u's message to node v
 - $\Rightarrow \alpha_{vu}$ is defined **explicitly** based on the structural properties of the graph (node degree)
 - \Rightarrow All neighbors $u \in N(v)$ are equally important to node v

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights

Not all node's neighbors are equally important

- Attention is inspired by cognitive attention.
- The **attention** α_{vu} focuses on the important parts of the input data and fades out the rest.
 - Idea: the NN should devote more computing power on that small but important part of the data.
 - Which part of the data is more important depends on the context and is learned through training.

- Let α_{vu} be computed as a byproduct of an attention mechanism a:
 - (1) Let a compute attention coefficients e_{vu} across pairs of nodes u, v based on their messages:

$$e_{vu} = a(\mathbf{W}^{(l)}\mathbf{h}_u^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_v^{(l-1)})$$

• e_{vu} indicates the importance of u's message to node v

$$e_{AB} = a(\mathbf{W}^{(l)}\mathbf{h}_A^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_B^{(l-1)})$$

- Normalize e_{vu} into the final attention weight α_{vu}
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$:

$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

Weighted sum based on the final attention weight α_{vu}

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\operatorname{sing} \alpha_{AB}, \alpha_{AC}, \alpha_{AD}:$$

Weighted sum using α_{AB} , α_{AC} , α_{AD} :

$$\mathbf{h}_{A}^{(l)} = \sigma(\alpha_{AB}\mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)} + \alpha_{AC}\mathbf{W}^{(l)}\mathbf{h}_{C}^{(l-1)} + \alpha_{AD}\mathbf{W}^{(l)}\mathbf{h}_{D}^{(l-1)})$$

• What is the form of attention mechanism a?

- The approach is agnostic to the choice of a
 - E.g., use a simple single-layer neural network
 - a have trainable parameters (weights in the Linear layer)

Concatenate
$$\mathbf{h}_{A}^{(l-1)} \mathbf{h}_{B}^{(l-1)}$$
Linear
$$e_{AB} = a\left(\mathbf{W}^{(l)}\mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)}\right)$$

$$= \operatorname{Linear}\left(\operatorname{Concat}\left(\mathbf{W}^{(l)}\mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)}\right)\right)$$

- Parameters of a are trained jointly:
 - Learn the parameters together with weight matrices (i.e., other parameter of the neural net $\mathbf{W}^{(l)}$) in an end-to-end fashion

- Multi-head attention: Stabilizes the learning process of attention mechanism
 - Create multiple attention scores (each replica with a different set of parameters):

$$\mathbf{h}_{v}^{(l)}[1] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{1} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\mathbf{h}_{v}^{(l)}[2] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{2} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\mathbf{h}_{v}^{(l)}[3] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

- Outputs are aggregated:
 - By concatenation or summation

•
$$\mathbf{h}_{v}^{(l)} = AGG(\mathbf{h}_{v}^{(l)}[1], \mathbf{h}_{v}^{(l)}[2], \mathbf{h}_{v}^{(l)}[3])$$

- Key benefit: Allows for (implicitly) specifying different importance values (α_{vu}) to different neighbors
- Computationally efficient:
 - Computation of attentional coefficients can be parallelized across all edges of the graph
 - Aggregation may be parallelized across all nodes
- Storage efficient:
 - Sparse matrix operations do not require more than O(V+E) entries to be stored
 - **Fixed** number of parameters, irrespective of graph size
- Localized:
 - Only attends over local network neighborhoods
- Inductive capability:
 - It is a shared edge-wise mechanism
 - It does not depend on the global graph structure