Math 209-16 Homework 4

Due Date: Nov. 1 (TUE), 2022

P1.(3 pts) Use Sage to program the Miller-Rabin test (run $t \ge 10$ trials), and use it to investigate which of the following numbers are composite.

- (i) $m_1 = 155196355420821961$, (ii) $m_2 = 155196355420821889$,
- (iii) $m_3 = 285707540662569884530199015485750433489$.

SOLUTION. Define the function MillerRabin(m, t) by Sage in the following:

```
var('m t')
def MillerRabin(m,t):
 i=1;
 j=(m-1).valuation(2);
 d=(m-1)/(2^j);
 while(i>0 and i<=t):
    a=randint(3,m-3);
    if gcd(a,m)!=1:
         i=0;
    else:
        x=mod(a,m)^d;
        if x!=1 and x!=m-1:
             n=1;
             while (n>0 \text{ and } n \le j-1 \text{ and } x!=m-1):
                 x=mod(x,m)^2;
                 if x==1:
                      n=0;
                 else:
                      n=n+1;
             if x!=m-1:
                 i=0;
        if i>0:
             i=i+1;
 if i==0:
    print(m, "is composite.")
 else:
    print(m, "is a strong probable prime.")
```

By setting $m = m_1, m_2, m_3$ and t = 100:

MillerRabin(155196355420821961,100)

MillerRabin(155196355420821889,100)

MillerRabin(285707540662569884530199015485750433489,100)

we can get the outputs as follows:

155196355420821961 is a strong probable prime.

155196355420821889 is composite.

285707540662569884530199015485750433489 is composite.

P2.(1 pt) Show that the sequence $1^1, 2^2, 3^3, \ldots$, considered (mod p) is periodic with least period p(p-1).

PROOF. First notice that $(n+p(p-1))^{n+p(p-1)} \equiv n^{n+p(p-1)} \equiv n^n \pmod{p}$ for any n not divisible by p since $n^{p-1} \equiv 1 \pmod{p}$, and certainly for n a multiple of p we have $(n+p(p-1))^{n+p(p-1)} \equiv 0 \equiv n^n \pmod{p}$. Therefore, p(p-1) is indeed a period for the given sequence. Denote the least period of this sequence by k. Then $k \mid p(p-1)$. Since $1^1 \equiv 1 \not\equiv 0 \equiv (1+p-1)^{1+p-1} \pmod{p}$, we see that p-1 is not a period for the sequence and hence $k \nmid (p-1)$. So $p \mid k$, and we may write k = pt for some $t \mid (p-1)$. Now take n to be a primitive root modulo p, we have $n^n \equiv (n+pt)^{n+pt} \equiv n^{n+pt} = n^n \cdot n^{(p-1)t} \cdot n^t \equiv n^n \cdot n^t \pmod{p} \implies n^t \equiv 1 \pmod{p}$ and hence $(p-1) \mid t$ since n is a primitive root modulo p. As a consequence, t = p-1 and the least period is p(p-1).

P3.(2 pts) Show that the decimal expansion of $\frac{1}{p}$ has period p-1 if and only if 10 is a primitive root of p.

PROOF. Note that if the decimal expansion of a rational number $a \in (0,1)$ is $a = 0.\dot{a}_1 \cdots \dot{a}_m$, and let $x = \overline{a_1 \cdots a_m}$ denote the positive integer with digits a_i 's. Then $a = x \sum_{i=1}^{\infty} 10^{-im} = \frac{x}{10^m - 1}$. Also notice that if the decimal expansion of $\frac{1}{n}$ does not terminate $\Rightarrow \frac{1}{n} = 0.\dot{a}_1 \cdots \dot{a}_m$. In particular, for $a = \frac{1}{p}$, its decimal expansion has period m = p - 1 if and only if p - 1 is the smallest possible value for m such that there exists some $x \in \mathbb{N}$ satisfying $\frac{1}{p} = \frac{x}{10^m - 1}$, namely, the smallest m such that $10^m \equiv 1 \pmod{p}$ is p - 1, which says exactly that 10 is a primitive root of p.

P4.(1 pt) Prove that if p is a prime having the form 4k+3, and if m is the number of quadratic residues less than p/2, then $1 \cdot 3 \cdot 5 \cdots (p-2) \equiv (-1)^{m+k+1} \pmod{p}$, and $2 \cdot 4 \cdot 6 \cdots (p-1) \equiv (-1)^{m+k} \pmod{p}$.

PROOF. We first compute $1 \cdot 3 \cdot 5 \cdots (p-2) = 1 \cdot 3 \cdots (2k+1) \cdot (2k+3) \cdots (4k+1) \equiv 1 \cdot 3 \cdots (2k+1) \cdot (-2k) \cdots (-2) = (-1)^k (2k+1)! \pmod{p}$. Now we want to show $(2k+1)! \equiv (-1)^{m+1} \pmod{p}$. Notice that $(\frac{-1}{p}) = -1$ since $p \equiv 3 \pmod{4}$, and therefore exactly one of a and p-a is a quadratic residue of p for any $a \in \{1, 2, \ldots, \frac{p-1}{2} = 2k+1\}$. Hence, we have

$$(2k+1)! = \prod_{\substack{a \text{ quadratic residue} \\ a < \frac{p}{2}}} a \cdot \prod_{\substack{b \text{ quadratic nonresidue} \\ b < \frac{p}{2}}} b$$

$$\equiv \prod_{\substack{a \text{ quadratic residue} \\ a < \frac{p}{2}}} a \cdot (-1)^{2k+1-m} \cdot \prod_{\substack{b \text{ quadratic residue} \\ b > \frac{p}{2}}} b$$

$$= (-1)^{m+1} \cdot \prod_{\substack{a \text{ quadratic residue}}} a \pmod{p}$$

Now it only remains to show that the product of all quadratic residues (mod p) is congruent to 1 when $p \equiv 3 \pmod{4}$. This can be seen by noticing that $a \in \{1, 2, \ldots, p-1\}$ is a quadratic residue if and only if its inverse (mod p) is, moreover, a equals its inverse precisely when a = 1 since -1 is a quadratic nonresidue. This completes the proof of $1 \cdot 3 \cdot 5 \cdots (p-2) \equiv (-1)^{m+k+1} \pmod{p}$. The other congruence follows from this one and Wilson's theorem.

P5.(2 pts) Let p be an odd prime. Prove that every primitive root of p is a quadratic nonresidue. Prove that every quadratic nonresidue is a primitive root if and only if p is of the form $2^{2^n} + 1$ where n is a non-negative integer, that is, if and only if p = 3 or p is a Fermat number.

PROOF. If g is a primitive root of p then $g^{\frac{p-1}{2}} \not\equiv 1 \pmod{p}$, and hence g is a quadratic nonresidue. It follows that every quadratic nonresidue is a primitive root if and only if the number of quadratics nonresidues is equal to that of primitive roots. But there are $\frac{p-1}{2}$ distinct quadratic nonresidues and $\phi(p-1)$ distinct primitive roots, and $\phi(p-1) = \frac{p-1}{2}$ if and only if p-1 is a power of 2. Since p is a prime, we see that it holds if and only if p is of the form $2^{2^n}+1$.

P6.(2 pts) Show that if p and q are primes, p = 2q + 1, and $0 < m < (p + 1)^{1/2}$, then m is a primitive root (mod p) if and only if it is a quadratic nonresidue (mod p).

PROOF. We have shown in the last problem that every primitive root is a quadratic nonresidue, so it remains to prove the sufficiency. Since p = 2q + 1, the order of $m \pmod{p}$ can only be 1, 2, q, 2q. But since m is a quadratic nonresidue, we have $m^{\frac{p-1}{2}} = m^q \equiv -1 \not\equiv 1 \pmod{p}$. Also, $0 < m < (p+1)^{1/2}$ implies $m^2 \not\equiv 1 \pmod{p}$ unless m = 1, which is not the case since 1 is a quadratic residue. It follows from these two observations that the order of $m \pmod{p}$ must be 2q. In other words, m is a primitive root modulo p.

P7.(2 pts) Prove that there are infinitely many primes of each of the forms 3n + 1 and 3n - 1.

PROOF. If there are only finitely many primes of the form 3n + 1, say p_1, p_2, \ldots, p_k . Consider any odd prime divisor p of the number $(p_1p_2\cdots p_k)^2 + 3$, we have $p \equiv 1 \pmod{3}$ since $1 = (\frac{-3}{p}) = (\frac{-1}{p})(\frac{3}{p}) = (-1)^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2}}(\frac{p}{3}) = (\frac{p}{3})$. But by definition p cannot be equal to any of the p_i 's, which is a contradiction.

If there are only finitely many primes of the form 3n + 2, say q_1, q_2, \ldots, q_l . Then $(q_1q_2\cdots q_l)^2 + 1 \equiv 2 \pmod{3}$, and hence it must have a prime divisor $q \equiv 2 \pmod{3}$, which cannot be equal to any of the q_i 's. So again we have a contradiction.

P8.(2 pts) Show that if $p = 2^{2^n} + 1$ is prime then 3 is a primitive root (mod p) and that 5 and 7 are primitive roots provided that n > 1.

PROOF. Since p-1 is a power of 2, we see that a is a primitive root of p if and only if $a^{\frac{p-1}{2}} \not\equiv 1 \pmod{p}$, in other words a is a quadratic nonresidue. Now by quadratic reciprocity, $(\frac{3}{2^{2^n}+1}) = (\frac{2^{2^n}+1}{3}) = (\frac{2}{3}) = -1$ since $2^{2^n} = 4^{2^{n-1}} \equiv 1 \pmod{3}$. When n > 1, $(\frac{5}{2^{2^n}+1}) = (\frac{2^{2^n}+1}{5}) = (\frac{4^{2^{n-1}}+1}{5}) = (\frac{2}{5}) = -1$, since $4^{2^{n-1}} \equiv (-1)^{2^{n-1}} \equiv 1 \pmod{5}$. Similarly, $(\frac{7}{2^{2^n}+1}) = (\frac{2^{2^n}+1}{7}) = (\frac{3}{7})$ or $(\frac{5}{7})$, since $2^n \equiv 1$ or $2 \pmod{3}$ and $2^3 \equiv 1 \pmod{7}$. Thus, $(\frac{7}{2^{2^n}+1}) = -1$ as both $(\frac{3}{7})$ and $(\frac{5}{7})$ are equal to -1.

P9.(2 pts) Suppose that (ab, p) = 1. Show that the number of solutions (x, y) of the congruence $ax^2 + by^2 \equiv 1 \pmod{p}$ is $p - (\frac{-ab}{p})$.

PROOF. Notice that $ax^2 + by^2 \equiv 1 \pmod{p} \iff y^2 \equiv \bar{b}(1 - ax^2) \pmod{p}$, where \bar{b} denotes the inverse of $b \pmod{p}$. So for any fixed x, the number of solutions for y is $1 + (\frac{\bar{b}(1-ax^2)}{p})$, because there are respectively 2,0 or 1 solutions for y if $\bar{b}(1 - ax^2)$ is a quadratic residue, nonresidue, or is divisible by p. Therefore, the total number of solutions of the original congruence is

$$\sum_{x=0}^{p-1} \left(1 + \left(\frac{\bar{b}(1 - ax^2)}{p} \right) \right) = p + \left(\frac{-a\bar{b}}{p} \right) \sum_{x=0}^{p-1} \left(\frac{x^2 - \bar{a}}{p} \right)$$

As we know $\left(\frac{-a\bar{b}}{p}\right) = \left(\frac{-ab}{p}\right)$, it remains to show $\sum_{x=0}^{p-1} \left(\frac{x^2-\bar{a}}{p}\right) = -1$. For this we turn to consider another congruence $x^2 - y^2 \equiv \bar{a} \pmod{p}$, which is equivalent to $y^2 \equiv x^2 - \bar{a} \pmod{p}$, and hence has a total number $\sum_{x=0}^{p-1} \left(1 + \left(\frac{x^2-\bar{a}}{p}\right)\right) = p + \sum_{x=0}^{p-1} \left(\frac{x^2-\bar{a}}{p}\right)$ of solutions for the same reason as explained above. On the other hand, the pair (x,y) corresponds bijectively to the pair (u=x+y,v=x-y) via $x=\frac{u+v}{2}$ and $y=\frac{u-v}{2}$, and $x^2-y^2\equiv \bar{a} \Leftrightarrow uv\equiv \bar{a}$. It is clear that $uv\equiv \bar{a} \pmod{p}$ has p-1 solutions since for any fixed $v\equiv 1,2,\ldots,p-1\pmod{p}$, there is a unique solution $u\equiv v\bar{a}$ for u. Hence, we conclude that $p+\sum_{x=0}^{p-1} \left(\frac{x^2-\bar{a}}{p}\right) = p-1$, and so $\sum_{x=0}^{p-1} \left(\frac{x^2-\bar{a}}{p}\right) = -1$, which is exactly what we want.

P10.(3 pts) We call \mathscr{H} a one-half set of reduced residues (mod p) if \mathscr{H} has the property that $h \in \mathscr{H}$ if and only if $-h \notin \mathscr{H}$. Let \mathscr{H} and \mathscr{K} be two complementary one-half sets. Suppose that (a,p)=1. Let ν be the number of $h \in \mathscr{H}$ for which $ah \in \mathscr{K}$. Show that $(-1)^{\nu}=\left(\frac{a}{p}\right)$. Show that $a\mathscr{H}$ and $a\mathscr{K}$ are complementary one-half sets. Show that

$$\left(\frac{a}{p}\right) = \prod_{h \in \mathcal{H}} \frac{\sin 2\pi a h/p}{\sin 2\pi h/p}.$$

PROOF. By definition, the cardinality of any one-half set is $\frac{p-1}{2}$ because it contains exactly one element in each pair $\{k, p-k\}$, $k=1,2,\ldots,\frac{p-1}{2}$. Moreover, since (a,p)=1, the set $a\mathscr{H}$ is also an one-half set, and hence

$$\mathcal{H} = \{ah \mid h \in \mathcal{H}, ah \in \mathcal{H}\} \stackrel{\cdot}{\bigcup} \{-ah \mid h \in \mathcal{H}, ah \in \mathcal{K}\}.$$

Therefore,

$$\prod_{h \in \mathcal{H}} h = \left(\prod_{h \in \mathcal{H}, ah \in \mathcal{H}} ah\right) \cdot \left(\prod_{h \in \mathcal{H}, ah \in \mathcal{K}} (-ah)\right)$$

then it follows that

$$\prod_{h \in \mathcal{H}} ah = \left(\prod_{h \in \mathcal{H}, ah \in \mathcal{H}} ah\right) \cdot \left(\prod_{h \in \mathcal{H}, ah \in \mathcal{K}} ah\right)$$

$$= \left(\prod_{h \in \mathcal{H}, ah \in \mathcal{H}} ah\right) \cdot (-1)^{\nu} \cdot \left(\prod_{h \in \mathcal{H}, ah \in \mathcal{K}} (-ah)\right) = (-1)^{\nu} \cdot \prod_{h \in \mathcal{H}} h.$$

Thus, $a^{\frac{p-1}{2}} = (-1)^{\nu}$, i.e., $(\frac{a}{p}) = (-1)^{\nu}$.

We already know that both $a\mathscr{H}$ and $a\mathscr{K}$ are one-half sets, it is left to show that they are complementary. Indeed, if ah = ak for some $h \in \mathscr{H}$ and $k \in \mathscr{K}$, then we have h = k, contradicting that \mathscr{H} and \mathscr{K} are complementary.

Finally, the last identity also follows from the similar observation:

$$\prod_{h \in \mathcal{H}} \sin 2\pi a h/p = \left(\prod_{h \in \mathcal{H}, ah \in \mathcal{H}} \sin 2\pi a h/p\right) \cdot (-1)^{\nu} \cdot \left(\prod_{h \in \mathcal{H}, ah \in \mathcal{H}} \sin -2\pi a h/p\right)$$
$$= (-1)^{\nu} \cdot \prod_{h \in \mathcal{H}} \sin 2\pi h/p,$$

hence,
$$\left(\frac{a}{p}\right) = (-1)^{\nu} = \prod_{h \in \mathscr{H}} \frac{\sin 2\pi a h/p}{\sin 2\pi h/p}$$
.