

AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-18 (canceled)

Claim 19 (currently amended): An oxathiincarboxamide of formula (I)

in which

G¹ represents halogen, trifluoromethyl, difluoromethyl, or cyclopropyl,

G² and G³ independently of one another represent hydrogen or methyl,

n represents 0, 1 or 2,

R¹, R², R³, and R⁴ independently of one another represent hydrogen, fluorine, chlorine, methyl, isopropyl, or methylthio,

R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents (C₁-C₃-haloalkyl)carbonyl-C₁-C₃-alkyl or (C₁-C₃-haloalkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-haloalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-haloalkyl having in each case 1 to 6 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₃-haloalkyl)carbonyl-C₁-C₃-haloalkyl or (C₁-C₃-haloalkoxy)carbonyl-C₁-C₃-haloalkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; or represents -COR⁶, -CONR⁷R⁸, or -CH₂NR⁹R¹⁰,

R⁶ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -COR¹¹,

R⁷ and R⁸ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁷ and R⁸ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹² and is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl,

R⁹ and R¹⁰ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁹ and R¹⁰ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹² and is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl,

R¹¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

R¹² represents hydrogen or C₁-C₆-alkyl, and

Z represents Z², Z³, or Z⁴, where

Z² represents cycloalkyl or bicycloalkyl having in each case 3 to 10 carbon atoms, each of which radicals is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl,

Z^3 represents unsubstituted C₅-C₂₀-alkyl or represents C₁-C₂₀-alkyl that is mono- or polysubstituted by identical or different substituents selected from the group consisting of chlorine and C₃-C₆-cycloalkyl, and

Z^4 represents C₂-C₂₀-alkenyl or C₂-C₂₀-alkynyl that are mono- or polysubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, iodine, and C₃-C₆-cycloalkyl, where the cycloalkyl moiety is optionally mono- to tetra-substituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, iodine, C₁-C₄-alkyl, and C₁-C₄-haloalkyl, or

Z and R^4 together with the carbon atoms to which they are attached form an optionally substituted 5- or 6-membered carbocyclic or heterocyclic ring and R^1 , R^2 , and R^3 independently of one another represent hydrogen or fluorine.

Claim 20 (Currently amended): The oxathiincarboxamide of formula (I) as claimed in Claim 19 in which

G^1 represents ~~fluorine, chlorine, bromine, iodine~~, trifluoromethyl, difluoromethyl, or cyclopropyl,

G^2 and G^3 independently of one another represent hydrogen, or methyl, and

n represents 0 or 2.

Claim 21 (previously presented): The oxathiincarboxamide of formula (I) as claimed in Claim 19 in which R^5 represents hydrogen.

Claim 22 (previously presented): The oxathiincarboxamide of formula (I) as claimed in Claim 19 in which

R^1 represents hydrogen, fluorine, chlorine, or methyl,

R^2 represents hydrogen, fluorine, chlorine, isopropyl, or methylthio,

R^3 represents hydrogen, fluorine, chlorine, or methyl, and

R^4 represents hydrogen, fluorine, chlorine, or methyl.

Claims 23-27 (canceled)

Claim 28 (previously presented): A composition for controlling unwanted microorganisms comprising one or more oxathiincarboxamides of formula (I) as claimed in Claim 19 and one or more extenders and/or surfactants.

Claims 29-32 (canceled)

Claim 33 (withdrawn – currently amended): A hydroxyalkyloxathiincarboxamide of formula (VIII)

in which

G¹ represents halogen, trifluoromethyl, difluoromethyl, or cyclopropyl,

G² and G³ independently of one another represent hydrogen or methyl,

n represents 0, 1 or 2,

R¹, R², R³, and R⁴ independently of one another represent hydrogen, fluorine, chlorine, methyl, isopropyl, or methylthio,

R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents (C₁-C₃-haloalkyl)carbonyl-C₁-C₃-alkyl or (C₁-C₃-haloalkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₃-alkyl)carbonyl-C₁-C₃-haloalkyl or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-haloalkyl having in each case 1 to 6 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₃-haloalkyl)carbonyl-C₁-C₃-haloalkyl or (C₁-C₃-haloalkoxy)carbonyl-C₁-C₃-haloalkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; or represents -COR⁶, -CONR⁷R⁸, or -CH₂NR⁹R¹⁰,

R^6 represents hydrogen, $C_1\text{-}C_8\text{-alkyl}$, $C_1\text{-}C_8\text{-alkoxy}$, $C_1\text{-}C_4\text{-alkoxy}\text{-}C_1\text{-}C_4\text{-alkyl}$, or $C_3\text{-}C_8\text{-cycloalkyl}$; represents $C_1\text{-}C_6\text{-haloalkyl}$, $C_1\text{-}C_6\text{-haloalkoxy}$, halo- $C_1\text{-}C_4\text{-alkoxy}\text{-}C_1\text{-}C_4\text{-alkyl}$, or $C_3\text{-}C_8\text{-halocycloalkyl}$ having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -COR^{11} ,

R^7 and R^8 independently of one another represent hydrogen, $C_1\text{-}C_8\text{-alkyl}$, $C_1\text{-}C_4\text{-alkoxy}\text{-}C_1\text{-}C_4\text{-alkyl}$, or $C_3\text{-}C_8\text{-cycloalkyl}$; represent $C_1\text{-}C_8\text{-haloalkyl}$, halo- $C_1\text{-}C_4\text{-alkoxy}\text{-}C_1\text{-}C_4\text{-alkyl}$, or $C_3\text{-}C_8\text{-halocycloalkyl}$ having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^7 and R^8 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{12} and is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and $C_1\text{-}C_4\text{-alkyl}$,

R^9 and R^{10} independently of one another represent hydrogen, $C_1\text{-}C_8\text{-alkyl}$, or $C_3\text{-}C_8\text{-cycloalkyl}$; or represent $C_1\text{-}C_8\text{-haloalkyl}$, $C_3\text{-}C_8\text{-halocycloalkyl}$ having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^9 and R^{10} together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^{12} and is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and $C_1\text{-}C_4\text{-alkyl}$,

R^{11} represents hydrogen, $C_1\text{-}C_8\text{-alkyl}$, $C_1\text{-}C_8\text{-alkoxy}$, $C_1\text{-}C_4\text{-alkoxy}\text{-}C_1\text{-}C_4\text{-alkyl}$, or $C_3\text{-}C_8\text{-cycloalkyl}$; represents $C_1\text{-}C_6\text{-haloalkyl}$, $C_1\text{-}C_6\text{-haloalkoxy}$, halo- $C_1\text{-}C_4\text{-alkoxy}\text{-}C_1\text{-}C_4\text{-alkyl}$, or $C_3\text{-}C_8\text{-halocycloalkyl}$ having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

R^{12} represents hydrogen or $C_1\text{-}C_6\text{-alkyl}$, and

X^5 represents $C_2\text{-}C_{20}\text{-hydroxyalkyl}$ that is optionally additionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and $C_3\text{-}C_6\text{-cycloalkyl}$ in which the cycloalkyl moiety is optionally substituted by halogen and/or $C_1\text{-}C_4\text{-alkyl}$.

Claims 34-35 (canceled)