

### Universidade Federal de Pernambuco Centro de Informática



# Escalonamento para Construção Civil

Aluna: Daniele Soares Passos

Orientador: Ricardo Martins de Abreu Silva



# **Agenda**

- 1. Contexto
- 2. Problema
- 3. Objetivo
- 4. BIM (Building Information Modelling)
- 5. Modelagem do Problema RCPSP
- 6. Algoritmo de Construção de Escalonamento
- 7. Plugin para Navisworks
- 8. Caso de Estudo
- 9. Resultados
- 10. Conclusão
- 11. Referências



### Contexto

- Analisar logicamente o projeto, seus requisitos e seus tempos de execução;
- Exigência de projetos organizados e escalonados;
- Definir elementos como atividades, recursos e tamanho dos projetos;
- Planejar antes de executar;
- Usar computadores e softwares de planejamento;



## **Problema**

- Complexidade dos projetos;
- Escalonar projetos com muitas atividades e recursos;
- Disponibilidade de informações;
- Comunicação entre as equipes;



# **Objetivo:**

Resolver o **problema** de **escalonamento** para construção civil, utilizando algoritmos propostos.



# **BIM (Building Information Modelling)**

- Solução para melhorar a produtividade em projetos de construção.
- Apoio para tomada de decisões desde os primeiros estágios conceituais do projeto.
- Modelo que permite o armazenamento de todo o ciclo de vida do projeto.
- Gestão de uma representação digital das características.
- Utilizado em softwares (normalmente ferramentas CAD).



## Dimensões do BIM



2D VECTOR

PRODUCTION
-20 DRAWINGS
-DOCUMENTATION
-VIEWS AND PLANS

IMPLEMENTATION
-PROGRAMMING
-PARAMETERIZATION
-FILE MANAGEMENT
-COMMUNICATIONS

DS DEVELOPMENT
-ROOM DATA SHEETS
-LIST OF DELIVERABLES
-SCOPE DEFINITION
-MATERIALS
-STRUCTURAL LOADS
-ENERGY LOADS

SUSTAINABILITY
-LIFE CYCLE ESTIMATION
-CONSTRUCTION
SOLUTIONS
-PRIMARY MEP SYSTEMS
-ENERGY PRODUCTION
-CERTIFICATION STRATEGIES

3D SHAPE



REPRESENTATION
-RENDERINGS
-WALKTHROUGHS
-LASER SCANNING

IMPLEMENTATION
-BIM OBJECT CREATION
-VISUAL PROGRAMMING
-CLASH DETECTION
-MODELCHECKER

FINAL DOCS
-DETAILED DESIGN
-ASSEMBLIES
-STRUCTURAL DESIGN
-MEP DESIGN
-SPECIFICATIONS

SUSTAINABILITY
-INSOLATION VALUES
-SUN PROTECTION
-DAYLIGHT
REQUIREMENTS

4D

TIME



PRODUCTION
-MOBEL FEDERATION
-MIRTUAL CONSTRUCTION
-SCHEDULING
-PROJECT PHASING
-TIME LINING
-CONSTRUCTION PLANNING
-EQUIPMENT DELIVERIES
-MISUAL VALIDATION

SYSTEMS
-PREFABRICATION
-STRUCTURAL
CONSTRUCTION
-MEP CONSTRUCTION

SIMULATIONS
-LIFE CYCLE SIMULATION
-SUN SIMULATIONS
-WIND SIMULATIONS
-ENERGY SIMULATIONS
-CERTIFICATION CHECK

5D

COST



PRODUCTION
-QUANTITY EXTRACTIONS
-DETAILED BILL OF
-QUANTITIES
-FABRICATION MODELS

CONTRACTS
-FEES COMPARISON
-TRADE SELECTION
-LOGISTICS

SUSTAINABILITY
-CERTIFICATION EVALUATION
-LIFE CYCLE COST
-COMPARATIVE STUDY

6D

PERFORMANCE



RESULTS
-KNOWN ALTERNATIVES
-CERTIFICATION
-AUDITED BIM MODEL
-PERFORMANCE REPORT

VALUE ENGINEERING

ENGINEERING
-SIMULATIONS
-ENERGY PERFORMANCE
-SYSTEMS PERFORMACE
-ARCHITECTURAL
PERFORMANCE
-CONSTRUCTION
PERFORMCE

SAVE ESTIMATION
-COMPARATIVE COST
-CONSTRUCTION BENEFITS
-RETURN ON INVESTIMENT
-TIMING RISK
-SELECTED ITEMS TO
BE OPTIMIZED

RE-DESIGN -CERTIFIED BIM MODEL



Figura 1. Dimensões do BIM [5].

## Softwares BIM







# Modelagem do Problema RCPSP

- Um projeto consiste de n + 2 tarefas;
- Seja  $J = \{0, 1, \dots, n, n + 1\}$  o conjunto de atividades;
- K = 1, ..., k o conjunto de recursos;



# Modelagem do Problema RCPSP



 $Min F_{n+1}$ 

Subject to: 
$$F_l \leq F_j - d_j \qquad \qquad j = 1, ..., n+1 \; ; \; l \in P_j$$
 
$$\sum_{j \in A(t)} r_{j,k} \leq R_k \qquad \qquad k \in K \; ; \; t \geq 0$$
 
$$F_j \geq 0 \qquad \qquad j = 1, ..., n+1$$

Figura 2. Definição e modelagem do problema RCPSP [2].

Figura 3. Modelagem do RCPCP [7].

# Algoritmo de Construção de Escalonamento

Este trabalho utiliza um algoritmo genetico para solucionar o problema RCPSP aplicado a construcao civil a fim de gerar a melhor solução em tempo e recurso.



# Algoritmo Genético

#### procedure GENETIC-ALGORITHM

```
Generate initial population P_0;

Evaluate population P_0;

Initialize generation counter g \leftarrow 0;
```

```
While stopping criteria not satisfied repeat 

Select some elements from Pg to copy into Pg+1;

Crossover some elements of Pg and put into Pg+1;

Mutate some elements of Pg and put into Pg+1;

Evaluate some elements of Pg and put into Pg+1;

Increment generation counter: g \leftarrow g+1;

End while
```

#### End GENETIC-ALGORITHM;

Figura 4. Algoritmo Genético básico [1].



## Construção de Escalonamento

```
Initialization: g = 1, t_1 = 0, A_0 = \{0\}, FS_0 = \{0\}, S_0 = \{0\}, RD_k(0) = R_k (k \in K)
while |S_p| < n+2 repeat
    Update E_{o}
     while E_g \neq \{\} repeat
              Select activity with highest priority
               j^* = \operatorname{argmax} \left\{ PRIORITY_i \right\}
              Calculate earliest finish time (in terms of precedence only)
               EF_{i^*} = \max_{i \in P_i} \{F_i\} + d_{i^*}
              Calculate the earliest finish time (in terms of precedence and capacity)
              F_{\cdot \cdot} = \min \left\{ t \in \left[ FMC_{\cdot \cdot} - d_{\cdot \cdot}, \infty \right] \cap FS_{g} \mid r_{\cdot \cdot b} \leq RD_{b}(\tau), \right.
                                              k \in K \mid r_{i, t} > 0, \tau \in [t, t + d_{i}] + d_{i}
              Update S_{g} = S_{g-1} \cup \{j^*\}, FS_{g} = FS_{g-1} \cup \{F_{j^*}\}
              Iteration increment: g = g+1
              Update A_{g}, E_{g}, RD_{k}(t) \mid t \in [F_{i} - d_{i}, F_{i}], k \in K \mid r_{i,k} > 0
    Determine the time associated with activity g
    t_{\rho} = \min \left\{ t \in FS_{\rho-1} \mid t > t_{\rho-1} \right\}
```

TIRTUS IMPAVIDA

Figura 5. Algoritmo Genético básico [2].

# **Algoritmo Completo**







# **Plugin Navisworks**

Navisworks é uma ferramenta BIM

Quarta Dimensão BIM

Possui API

Muito utilizado para organizar tarefas de construção civil



# **Integração Revit - Navisworks**



Figura 7. Integração dos softwares de construção.



## Caso de Estudo



Figura 8. Projeto modelado no Revit.



# Resultados (Diagrama de Gantt)





Figura 9. Resultado do escalonamento de 35 tarefas.

# Resultados (Simulação)

Vídeo!



# **Resultados (Outros Projetos)**

Tabela 1. Diferença entre os tempos escalonados manualmente e pelo algoritmo.

| <b>Qtd Tarefas</b> | <b>Qtd Recursos</b> | Tempo antes do algoritmo | Tempo depois do algoritmo | Diferença |
|--------------------|---------------------|--------------------------|---------------------------|-----------|
| 35                 | 4                   | 34 dias                  | 23 dias                   | 11 dias   |
| 100                | 4                   | 187 dias                 | 141 dias                  | 46 dias   |

Tabela 2. Diferença entre os tempos escalonados manualmente e pelo algoritmo

| Qtd Tarefas | <b>Qtd Recursos</b> | Tempo depois do algoritmo |
|-------------|---------------------|---------------------------|
| 250         | 4                   | 412 dias                  |
| 500         | 4                   | 784 dias                  |
| 1000        | 4                   | 1665 dias                 |



## Conclusão

Demonstrou-se que a medida que o número de tarefas aumenta, também aumenta a complexidade do projeto, fazendo com que o tempo desperdiçado entre uma tarefa e outra seja muito maior do que deveria.

Com o algoritmo proposto foi possível obter um planejamento otimizado, respeitando as necessidades e capacidades dos recursos, assim como evitando o tempo ocioso.



### Referências

- [1] J. Magalhães-Mendes. Project scheduling under multiple resources constraints using a genetic algorithm. WSEAS TRANSACTIONS on BUSINESS and ECONO- MICS, 2008.
- [2] José F. Gonçalves Jorge M.Mendes, Maurício G. C. Resende. A random key based genetic algorithm for the resource constrained project scheduling problem. *ATT Labs Research Technical Report TD-6DUK2C*, 2005.
- [3] Inc. Autodesk. Autodesk Navisworks, 2012.
- [4] Inc. Autodesk. Autodesk Revit, 2012.
- [5] http://bim6d.es/en/scope/, acessado dia 15 de Junho de 2016 às 23h.
- [6] C. Patrick. Construction Project Planning and Scheduling. PEARSON Prentice Hall, 2004.
- [7] Alvarez-Valdes R. Christofides, N. and J.M. Tamarit. Problem scheduling with re- source constraints: A branch and bound approach. *European Journal of Operatio- nal Research*, 1987.

