Report No. : EED32H000601-3 Page 1 of 108

TEST REPORT

Product : 3G smart phone

Trade mark : N/A

Model/Type reference : SP4541

Serial Number : N/A

Report Number : EED32H000601-3 FCC ID : 2AETNSP4541

Test Standards : 47 CFR Part 2(2014)

47 CFR Part 22 subpart H(2014) 47 CFR Part 24 subpart E(2014)

Test result : PASS

Prepared for:

WOO GLOBAL MARKETS, S.L. Camino de Vinateros, 10. Bajo (Oficinas) 28030 MADRID - SPAIN

Prepared by:

Centre Testing International (Shenzhen) Corporation
Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan
District, Shenzhen, China

TEL: +86-755-3368 3919 FAX: +86-755-3368 3385

Sheek Luo Date: Jun. 03, 2015

Lab supervisor Check No.: 1727844581

Report No. : EED32H000601-3 Page 2 of 108

2 Version

Version No.	Date	Description
00	2015-04-01	Original

Report No.: EED32H000601-3 Page 3 of 108

3 Test Summary

Test Item	Test Requirement	Test method	Result				
GSM 850, WCDMA (Band V)							
Conducted output power	Part 2.1046(a)/Part 22.913(a)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS				
Effective Radiated Power of Transmitter(ERP)	Part 2.1046(a)/Part 22.913(a)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS				
99%&26dB Occupied Bandwidth	Part 2.1049(h)	Part 22.917(b) & KDB 971168 D01v02r02	PASS				
Band Edge at antenna terminals	Part 2.1051/Part 22.917(a)	Part 22.917(b) & KDB 971168 D01v02r02	PASS				
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS				
Field strength of spurious radiation	Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS				
Frequency stability	Part 2.1055/ Part 22.355	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS				
	GSM 1900,WCDMA (Band II)					
Conducted output power	Part 2.1046(a) /Part 24.232(c)	ITA-603-C-2004& KDB 971168 D01v02r02	PASS				
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 24.232(c)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS				
peak-to-average ratio	Part 24.232(d)	KDB 971168 D01v02r02	PASS				
99% &26dB Occupied Bandwidth	Part 2.1049(h)	Part 24.238(b) & KDB 971168 D01v02r02	PASS				
Band Edge at antenna terminals	Part 2.1051/ Part 24.238(a)	Part 24.238(b) & KDB 971168 D01v02r02	PASS				
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 24.238(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS				
Field strength of spurious radiation	Part 2.1053 /Part 2.1057 / Part 24.238(a)(b)	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS				
Frequency stability	Part 2.1055/Part 24.235	ITA-603-C-2004 & KDB 971168 D01v02r02	PASS				

Remark:

Tx: In this whole report Tx (or tx) means transmitter. Rx: In this whole report Rx (or rx) means receiver.

LCH: In this whole report LCH means low channel. MCH: In this whole report LCH means middle channel. HCH: In this whole report LCH means high channel.

VL: In this whole report Volt means low voltage. (DC 3.2V)

VN: In this whole report Volt means normal voltage. (DC 3.7V)

VH:In this whole report Volt means high voltage. (DC 4.2V)

TN: In this whole report Temp means normal temperature. (25°C)

Humid: In this whole report Humid means humidity.

N/A: In this whole report not application.

4 Content

1	COVER PAGE	1
2	VERSION	2
3		
4		
5	TEST REQUIREMENT	5
	5.1 TEST SETUP	5
	5.1.1 For Conducted test setup	5
	5.1.2 For Radiated Emissions test setup	
	5.2 Test Environment	
	5.3 TEST CONDITION	6
6	GENERAL INFORMATION	10
	6.1 CLIENT INFORMATION	10
	6.2 GENERAL DESCRIPTION OF EUT	
	6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	6.4 DESCRIPTION OF SUPPORT UNITS	
	6.5 TEST LOCATION	
	6.6 TEST FACILITY	
	6.7 DEVIATION FROM STANDARDS	12
	6.8 ABNORMALITIES FROM STANDARD CONDITIONS	12
	6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	12
7	EQUIPMENT LIST	13
8	RADIO TECHNICAL REQUIREMENTS SPECIFICATION	15
	Appendix A) RF Power Output	17
	Appendix B) Peak-to-Average Ratio	
	Appendix C) BandWidth	
	Appendix D) Band Edges Compliance	
	Appendix E) Spurious Emission at Antenna Terminal	
	Appendix F) Frequency Stability	81
	Appendix G) Effective Radiated Power of Transmitter (ERP/EIRP)	
	Appendix H) Field strength of spurious radiation	93
ΡI	HOTOGRAPHS OF TEST SETUP	100
ΡI	HOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	101

Report No.: EED32H000601-3 Page 5 of 108

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

Report No. : EED32H000601-3 Page 6 of 108

5.2 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	53 % RH	
Atmospheric Pressure:	995mbar	

5.3 Test Condition

Test channel:

Took Mode	T/D	RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
	Tx	Channel 128	Channel 190	Channel 251	
GSM/GPRS850	(824 MHz ~849 MHz)	824.2MHz	836.6 MHz	848.8 MHz	
GSIVI/GFRS650	Rx	Channel 128	Channel 190	Channel 251	
	(869 MHz ~894 MHz)	869.2 MHz	881.6 MHz	893.8 MHz	
	Tx	Channel 4132	Channel 4182	Channel 4233	
WCDMA	(824 MHz ~849 MHz)	826.4 MHz	836.4 MHz	846.6 MHz	
band V	Rx	Channel 4357	Channel 4407	Channel 4458	
	(869 MHz ~894 MHz)	871.4 MHz	881.4 MHz	891.6 MHz	
	Tx	Channel 512	Channel 661	Channel 810	
GSM/GPRS	(1850 MHz ~1910 MHz)	1850.2MHz	1880.0 MHz	1909.8 MHz	
1900	Rx	Channel 512	Channel 661	Channel 810	
	(1930 MHz ~1990 MHz)	1930.2 MHz	1960.0 MHz	1989.8 MHz	
	Tx	Channel 9262	Channel 9400	Channel 9538	
WCDMA	(1850 MHz ~1910 MHz)	1852.4 MHz	1880.0 MHz	1907.6 MHz	
Band II	Rx	Channel 9662	Channel 9800	Channel 9938	
	(1930 MHz ~1990 MHz)	1932.4 MHz	1960.0 MHz	1987.6 MHz	

Report No. : EED32H000601-3 Page 7 of 108

Test mode:

Pre-scan under all rate at lowest, middle and highest channel, find the transmitter power as below:

SIM 1 Card Conducted transmitter power measurement result.

DITT I CHILD COMMUNICATIVE FORWER INCUMENTATION TO BUILD				
GSM850		Burst-Averaged output Power (dBm)		
		128CH	190CH	251CH
GSM		31.95	31.95	31.82
	1 Tx Slot	31.88	31.92	31.80
GPRS	2 Tx Slots	30.16	30.36	29.99
(GMSK)	3 Tx Slots	28.09	28.59	27.93
	4 Tx Slots	26.55	26.63	26.00

GSM1900		Burst-Averaged output Power (dBm)		
		512CH	661CH	810CH
GSM		29.87	29.40	29.48
	1 Tx Slot	29.90	29.49	29.58
GPRS	2 Tx Slots	27.65	27.77	27.76
(GMSK)	3 Tx Slots	25.53	25.64	25.55
	4 Tx Slots	23.84	24.23	24.37

UMTS Band II		Conducted Power (dBm)			
		9262CH	9400CH	9538CH	
	12.2kbps RMC	23.02	22.80	22.66	
WCDMA	64kbps RMC	22.65	22.58	22.43	
VVCDIVIA	144kbps RMC	22.55	22.49	22.36	
	384kbps RMC	22.56	22.52	22.32	
	Subtest 1	22.23	22.25	22.32	
HSDPA	Subtest 2	22.33	22.35	22.36	
ПЭПРА	Subtest 3	22.46	22.48	22.45	
	Subtest 4	22.44	22.44	22.39	

UMTS Band V		Conducted Power (dBm)			
		4132CH	4182CH	4233CH	
	12.2kbps RMC	22.81	22.94	22.99	
WCDMA	64kbps RMC	22.56	22.69	22.62	
VVCDIVIA	144kbps RMC	22.60	22.71	22.61	
	384kbps RMC	22.59	22.72	22.59	
HSDPA	Subtest 1	22.65	22.76	22.59	
	Subtest 2	22.68	22.77	22.58	
	Subtest 3	22.70	22.75	22.64	
	Subtest 4	22.65	22.71	22.59	

Page 8 of 108

SIM 2 Card Conducted transmitter power measurement result.

Report No. : EED32H000601-3

Sivi 2 Cara Conducted transmitter power measurement result.					
GSM850		Burst-Averaged output Power (dBm)			
		128CH	190CH	251CH	
GS	GSM 31.74 31.70 31.63		31.63		
	1 Tx Slot	31.69	31.73	31.61	
GPRS (GMSK)	2 Tx Slots	29.97	30.17	29.81	
	3 Tx Slots	27.94	28.45	27.74	
	4 Tx Slots	26.36	26.44	25.81	

GSM1900		Burst-Averaged output Power (dBm)			
		512CH	661CH	810CH	
GSM		29.68	29.21	29.29	
	1 Tx Slot	29.78	29.33	29.39	
GPRS	2 Tx Slots	27.46	27.58	27.50	
(GMSK)	3 Tx Slots	25.35	25.46	25.36	
	4 Tx Slots	23.65	24.04	24.18	

UMTS Band II		Conducted Power (dBm)			
		9262CH	9400CH	9538CH	
	12.2kbps RMC	22.83	22.61	22.47	
WCDMA	64kbps RMC	22.46	22.39	22.29	
VVCDIVIA	144kbps RMC	22.31	22.34	22.17	
	384kbps RMC	22.37	22.33	22.13	
	Subtest 1	22.02	22.06	22.13	
HSDPA	Subtest 2	22.14	22.16	22.17	
ПЭПРА	Subtest 3	22.25	22.29	22.26	
	Subtest 4	22.25	22.25	22.25	

UMTS Band V		Conducted Power (dBm)			
		4132CH	4182CH	4233CH	
	12.2kbps RMC	22.62	22.71	22.81	
WCDMA	64kbps RMC	22.37	22.53	22.43	
WCDINIA	144kbps RMC	22.41	22.52	22.42	
	384kbps RMC	22.44	22.53	22.44	
HSDPA	Subtest 1	22.42	22.57	22.48	
	Subtest 2	22.49	22.58	22.39	
	Subtest 3	22.51	22.56	22.45	
	Subtest 4	22.46	22.52	22.46	

Report No. : EED32H000601-3 Page 9 of 108

Pre-scan all mode and data rates and positions, find worse case mode are chosen to the report , the warse case mode as below:

band	Radiated	Conducted
GSM/GPRS 850	1) GSM Link 2) GPRS 8 Link	1) GSM Link 2) GPRS 8 Link
GSM/GPRS 1900	1)GSM Link 2) GPRS 8 Link	1) GSM Link 2) GPRS 8 Link
WCDMA Band V	RMC 12.2Kbps Link	RMC 12.2Kbps Link
WCDMA Band II	RMC 12.2Kbps Link	RMC 12.2Kbps Link

Report No. : EED32H000601-3 Page 10 of 108

6 General Information

6.1 Client Information

Applicant:	WOO GLOBAL MARKETS, S.L.
Address of Applicant:	Camino de Vinateros, 10. Bajo (Oficinas) 28030 MADRID - SPAIN
Manufacturer:	WOO GLOBAL MARKETS, S.L.
Address of Manufacturer:	Camino de Vinateros, 10. Bajo (Oficinas) 28030 MADRID - SPAIN

6.2 General Description of EUT

Product Name:	3G smart phone	3G smart phone				
Model No.(EUT):	SP4541	SP4541				
Tark mark:	N/A					
EUT Supports Radios application	GSM/GPRS 850: Tx:824.20 - 848.80MHz;Rx: 869.20 - 893.80MHz GSM/GPRS 1900: Tx:1850.20 - 1909.80MHz; Rx:1930.20 - 1989.80MHz WCDMA/HSDPA Band V: Tx:826.40 -846.60MHz;Rx: 871.40 - 891.60MHz WCDMA/HSDPA Band II: Tx:1852.40 - 1907.60MHz;Rx:1932.40 - 1987.60MHz BT3.0+EDR: 2402 - 2480MHz					
Power Supply:	Adapter:	n(HT20): 2412 – 2462MHz Input: AC 100V-240V 50-60Hz 0.4A				
	_	Output: DC 5.0V 1000mA				
	Battery:	DC3.7V (Li-on Rechargeable Battery)				
Sample Received Date:	May 12, 2015					
Sample tested Date:	May 12,2015 to Jun. 03, 2015					

6.3 Product Specification subjective to this standard

<u>-</u>	_
Frequency Band:	GSM/GPRS 850: Tx:824.20 -848.80MHz;Rx: 869.20 - 893.80MHz
	GSM/GPRS 1900: Tx:1850.20 – 1909.80MHz;
	Rx:1930.20 – 1989.80MHz
	WCDMA/HSDPA Band V:
	Tx:826.40 -846.60MHz;Rx: 871.40 - 891.60MHz
	WCDMA/HSDPA Band II:
	Tx:1852.40 - 1907.60MHz;Rx:1932.40 - 1987.60MHz
Modulation Type:	GSM/GPRS Mode with GMSK Modulation
	WCDMA Mode with QPSK Modulation
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	0dBi

Report No.: EED32H000601-3 Page 11 of 108

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation

Building C, Scientific Innovation Park, Tiegang Reservior, Xixiang, Baoan District, Shenzhen, China

TEL: +86-755-3368 3919 FAX: +86-755-3368 3385 No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3061.01

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 756231

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 756231.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

Report No.: EED32H000601-3 Page 12 of 108

NEMKO-Aut. No.: ELA503

Centre Testing International (Shenzhen) Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Report No. : EED32H000601-3 Page 13 of 108

7 Equipment List

	Communication RF test system instrument							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Spectrum Analyzer	Agilent	E4440A	MY46185649	12-18-2014	12-17-2015			
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016			
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016			
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016			
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016			
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-13-2015	01-12-2016			
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016			
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016			
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016			
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016			
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-13-2015	01-12-2016			
DC Power	Keysight	E3642A	MY54426112	03-31-2015	03-30-2016			
DC Power	Keysight	E3642A	MY54426115	03-31-2015	03-30-2016			
PC-2	Lenovo	R4960d		04-01-2015	03-31-2016			
PC-3	Lenovo	R4960d		04-01-2015	03-31-2016			
RF control unit	JS Tonscend	JS0806-1	20158060004	04-01-2015	03-31-2016			
DC power Box	JS Tonscend	JS0806-4	20158060007	04-01-2015	03-31-2016			
LTE Automatic test software	JS Tonscend	JSTS1120-1		04-01-2015	03-31-2016			
WCDMA Automatic test software	JS Tonscend	JSTS1120-3		04-01-2015	03-31-2016			
GSM Automatic test software	JS Tonscend	JSTS1120-3		04-01-2015	03-31-2016			

Report No. : EED32H000601-3 Page 14 of 108

Radiated Spurious Emission & Radiated Emission						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-02-2013	06-01-2016	
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-617	07-14-2014	07-13-2015	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016	
Horn Antenna	ETS-LINDGREN	3117	00057410	07-08-2012	07-07-2015	
Loop Antenna	ETS	6502	00071730	07-23-2013	07-22-2015	
Spectrum Analyzer	R&S	FSP40	100416	07-09-2014	07-08-2015	
Receiver	R&S	ESCI	100435	07-09-2014	07-08-2015	
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016	
LISN	schwarzbeck	NNBM8125	81251547	07-09-2014	07-08-2015	
LISN	schwarzbeck	NNBM8125	81251546	07-09-2014	07-08-2015	
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016	
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016	
Temperature/ Humidity Indicator	TAYLOR	1451	5190	07-10-2014	07-09-2015	
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016	
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016	
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016	
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016	
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016	
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016	
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM1 2-0398-002		01-13-2015	01-12-2016	
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX01CA09CL12- 0395-001		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX01CA08CL12- 0393-001		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX02CA04CL12- 0396-002		01-13-2015	01-12-2016	
band rejection filter	Sinoscite	FL5CX02CA03CL12- 0394-001		01-13-2015	01-12-2016	

Report No. : EED32H000601-3 Page 15 of 108

8 Radio Technical Requirements Specification

Reference documents for testing:

IVCIC	ichee document	o for teating.
No.	Identity	Document Title
1	PART 22 (2014)	PART 22 – PUBLIC MOBILE SERVICES Subpart H – Cellular Radiotelephone Service
2	PART 24 (2014)	PART 24 - PERSONAL COMMUNICATIONS SERVICES Subpart E - Broadband PCS
3	PART 2 (2014)	Frequency allocations and radio treaty matters; general rules and regulations
4	TIA-603-C-2004	Land Mobile FM or PM - Communications Equipment -Measurement and Performance Standards
5	KDB971168 D01	KDB971168 D01 Power Meas License Digital Systems v02r02

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part 2.1046(a)/Part 22.913(a)/ part 24.232(c)	ITA-603-C& KDB 971168 D01v02r02	Conducted output power	PASS	Appendix A)
Part 24.232(d)	KDB 971168 D01v02r02	peak-to-average ratio	PASS	Appendix B)
Part 2.1049(h)	Part 22.917(b)/ Part 24.238(b) & KDB 971168 D01v02r02	99% &26dB Occupied Bandwidth	PASS	Appendix C)
Part 2.1051/Part 22.917(a)/ Part 24.238(a)	Part 22.917(b)/ Part 24.238(b) & KDB 971168 D01v02r02	Band Edge at antenna terminals	PASS	Appendix D)
Part 2.1051/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b)	ITA-603-C & KDB 971168 D01v02r02	Spurious emissions at antenna terminals	PASS	Appendix E)
Part 2.1055/ Part 22.355/ Part 24.235	ITA-603-C & KDB 971168 D01v02r02	Frequency stability	PASS	Appendix F)
Part 2.1053/ Part 2.1057/ Part 22.917(a)(b)/ Part 24.238(a)(b)	ITA-603-C & KDB 971168 D01v02r02	Field strength of spurious radiation	PASS	Appendix G)
Part 2.1046(a)/Part 22.913(a)/ Part 24.232(c)	ITA-603-C & KDB 971168 D01v02r02	Effective Radiated Power of Transmitter(ERP)	PASS	Appendix H)

Report No. : EED32H000601-3 Page 16 of 108

Test Mode	Test Modes description
GSM/TM1	GSM system,GSM,GMSK modulation
GSM/TM2	GSM system,GPRS,GMSK modulation
Test Mode	Test Modes description
UMTS/TM1	WCDMA system,QPSK modulation

Report No. : EED32H000601-3 Page 17 of 108

Appendix A) RF Power Output

Test Band	Test Mode	Test Channel	Measured(dBm)	Limit (dBm)	Verdict
	GSM/TM1	LCH	31.95	38.5	PASS
		MCH	31.95	38.5	PASS
GSM850		HCH	31.82	38.5	PASS
		LCH	31.88	38.5	PASS
	GSM/TM2	MCH	31.92	38.5	PASS
		HCH	31.80	38.5	PASS

Test Band	Test Mode	Test Channel	Measured(dBm)	Limit (dBm)	Verdict
	GSM/TM1	LCH	29.87	33	PASS
		GSM/TM1 MCH 29.40		33	PASS
		HCH	29.48	33	PASS
GSM1900		LCH	29.90	33	PASS
	GSM/TM2	MCH	29.49	33	PASS
		HCH	29.58	33	PASS

Test Band	Test Mode	Test Channel	Measured(dBm)	Limit (dBm)	Verdict
WCDMA850	UMTS/TM1	LCH	23.02	38.5	PASS
		MCH	22.80	38.5	PASS
		HCH	22.66	38.5	PASS

Test Band	Test Mode	Test Channel	Measured(dBm)	Limit (dBm)	Verdict
	UMTS/TM1	LCH	22.81	33	PASS
WCDMA1900		MCH	22.94	33	PASS
		HCH	22.99	33	PASS

Report No. : EED32H000601-3 Page 18 of 108

Appendix B) Peak-to-Average Ratio

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
	GSM/TM1	LCH	7.41	13	PASS
		MCH	8.07	13	PASS
		HCH	9.82	13	PASS
GSM1900	GSM/TM2	LCH	8.50	13	PASS
		MCH	9.85	13	PASS
		HCH	11.30	13	PASS

Test Band	Test Mode	Test Channel	Measured (dBm)	Limit (dBm)	Verdict
	UMTS/TM1	LCH	3.36	13	PASS
WCDMA1900		MCH	3.37	13	PASS
		HCH	3.20	13	PASS

Report No. : EED32H000601-3 Page 19 of 108

Appendix C) BandWidth

Test Band	Test Mode	Test Channel	Occupied Bandwidth (KHZ)	Emission Bandwidth (KHZ)	Verdict
	GSM/TM1	LCH	251.49	314.96	PASS
		MCH	251.47	315.20	PASS
		HCH	243.04	321.66	PASS
GSM850	GSM/TM2	LCH	240.37	299.23	PASS
		MCH	244.42	304.59	PASS
		HCH	251.33	321.95	PASS

Test Band	Test Mode	Test Channel	Occupied Bandwidth (KHZ)	Emission Bandwidth (KHZ)	Verdict
	GSM/TM1	LCH	244.80	311.77	PASS
		MCH	242.03	313.65	PASS
		HCH	246.59	312.37	PASS
GSM1900	GSM/TM2	LCH	240.15	305.70	PASS
		MCH	252.49	321.40	PASS
		HCH	250.73	325.11	PASS

Test Band	Test Mode	Test Channel	Occupied Bandwidth (KHZ)	Emission Bandwidth (KHZ)	Verdict
	UMTS/TM1	LCH	4103.5	4663	PASS
WCDMA		MCH	4087.5	4659	PASS
850		HCH	4095.3	4676	PASS

Test Band	Test Mode	Test Channel	Occupied Bandwidth (KHZ)	Emission Bandwidth (KHZ)	Verdict
	UMTS/TM1	LCH	4090.7	4652	PASS
WCDMA		MCH	4116.9	4689	PASS
1900		HCH	4112.7	4661	PASS

Report No.: EED32H000601-3 Page 20 of 108

For GSM

Test Band=GSM850

Test Mode=GSM/TM1

Test Channel=LCH

Report No.: EED32H000601-3 Page 21 of 108

Test Channel=HCH

Test Mode=GSM/TM2

Report No.: EED32H000601-3 Page 22 of 108

Test Channel=MCH

Report No.: EED32H000601-3 Page 23 of 108

Test Band=GSM1900 Test Mode=GSM/TM1 Test Channel=LCH

Report No.: EED32H000601-3 Page 24 of 108

Test Mode=GSM/TM2

Report No.: EED32H000601-3 Page 25 of 108

Test Channel=MCH

Report No.: EED32H000601-3 Page 26 of 108

For WCDMA Test Band=WCDMA850 Test Mode=UMTS/TM1

Test Channel=LCH

Report No.: EED32H000601-3 Page 27 of 108

Test Band=WCDMA1900 Test Mode=UMTS/TM1 Test Channel=LCH

Report No.: EED32H000601-3 Page 28 of 108

Test Channel=MCH

Report No.: EED32H000601-3 Page 29 of 108

Appendix D) Band Edges Compliance

For GSM

Test Band=GSM850

Test Mode=GSM/TM1

Test Channel=LCH

Report No.: EED32H000601-3 Page 30 of 108

Test Mode=GSM/TM2 Test Channel=LCH

Report No.: EED32H000601-3 Page 31 of 108

Test Band=GSM1900 Test Mode=GSM/TM1 Test Channel=LCH

Report No.: EED32H000601-3 Page 32 of 108

Test Mode=GSM/TM2 Test Channel=LCH

Report No.: EED32H000601-3 Page 33 of 108

For WCDMA Test Band=WCDMA850 Test Mode=UMTS/TM1

Report No.: EED32H000601-3 Page 34 of 108

Test Band=WCDMA1700 Test Band=WCDMA1900 Test Mode=UMTSTM1

Test Channel=LCH

Report No.: EED32H000601-3 Page 35 of 108

Appendix E) Spurious Emission at Antenna Terminal

For GSM

Test Band=GSM850

Test Mode=GSM/TM1

Report No.: EED32H000601-3 Page 38 of 108

Report No.: EED32H000601-3 Page 40 of 108

Report No.: EED32H000601-3 Page 42 of 108

Test Mode=GSM/TM2 Test Channel=LCH

Report No.: EED32H000601-3 Page 44 of 108

Report No.: EED32H000601-3 Page 46 of 108

Report No.: EED32H000601-3 Page 48 of 108

Test Band=GSM1900 Test Mode=GSM/TM1 Test Channel=LCH

Report No.: EED32H000601-3 Page 51 of 108

Report No.: EED32H000601-3 Page 54 of 108

Report No.: EED32H000601-3 Page 57 of 108

Test Mode=GSM/TM2 Test Channel=LCH

Report No.: EED32H000601-3 Page 60 of 108

Report No.: EED32H000601-3 Page 63 of 108

Report No.: EED32H000601-3 Page 66 of 108

For WCDMA Test Band=WCDMA850 Test Mode=UMTS/TM1

Report No.: EED32H000601-3 Page 68 of 108

Report No.: EED32H000601-3 Page 70 of 108

Report No.: EED32H000601-3 Page 72 of 108

Test Band=WCDMA1900 Test Mode=UMTS/TM1 Test Channel=LCH

Report No.: EED32H000601-3 Page 75 of 108

Test Channel=MCH

Report No.: EED32H000601-3 Page 78 of 108

Test Channel=HCH

Report No. : EED32H000601-3 Page 81 of 108

Appendix F) Frequency Stability

Frequency Error vs. Voltage:

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Temp.	Volt.	(Hz)	(ppm)	(ppm)	verdict
			TN	VL	-4.74	-0.01	±2.5	PASS
		LCH	TN	VN	-6.62	-0.01	±2.5	PASS
			TN	VH	-8.16	-0.01	±2.5	PASS
			TN	VL	-11.77	-0.01	±2.5	PASS
GSM850	TM1	MCH	TN	VN	-9.55	-0.01	±2.5	PASS
			TN	VH	-11.98	-0.01	±2.5	PASS
			TN	VL	-13.02	-0.02	±2.5	PASS
		НСН	TN	VN	-12.79	-0.02	±2.5	PASS
			TN	VH	-10.78	-0.01	±2.5	PASS

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Temp.	Volt.	(Hz)	(ppm)	(ppm)	Verdict
			TN	VL	-12.06	-0.01	±2.5	PASS
		LCH	TN	VN	-6.14	-0.01	±2.5	PASS
			TN	VH	-7.00	-0.01	±2.5	PASS
			TN	VL	-14.23	-0.02	±2.5	PASS
GSM850	TM2	мсн	TN	VN	-9.66	-0.01	±2.5	PASS
			TN	VH	-12.99	-0.02	±2.5	PASS
			TN	VL	-10.90	-0.01	±2.5	PASS
		HCH	TN	VN	-14.82	-0.02	±2.5	PASS
			TN	VH	-13.37	-0.02	±2.5	PASS

Report No. : EED32H000601-3 Page 82 of 108

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
2 0.1.10			TN	VL	-1.54	0.00	±2.5	PASS
		LCH	TN	VN	-9.59	-0.01	±2.5	PASS
			TN	VH	-13.01	-0.01	±2.5	PASS
			TN	VL	-3.97	0.00	±2.5	PASS
GSM1900	TM1	MCH	TN	VN	-16.29	-0.01	±2.5	PASS
			TN	VH	-7.80	0.00	±2.5	PASS
			TN	VL	-19.25	-0.01	±2.5	PASS
		НСН	TN	VN	-20.66	-0.01	±2.5	PASS
			TN	VH	-15.95	-0.01	±2.5	PASS

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Temp.	Volt.	(Hz)	(ppm)	(ppm)	Voralet
			TN	VL	-4.79	0.00	±2.5	PASS
		LCH	TN	VN	2.08	0.00	±2.5	PASS
			TN	VH	-8.78	0.00	±2.5	PASS
			TN	VL	-7.67	0.00	±2.5	PASS
GSM1900	TM2	МСН	TN	VN	-2.64	0.00	±2.5	PASS
			TN	VH	-11.59	-0.01	±2.5	PASS
			TN	VL	-16.05	-0.01	±2.5	PASS
		НСН	TN	VN	-22.18	-0.01	±2.5	PASS
			TN	VH	-24.55	-0.01	±2.5	PASS

Report No. : EED32H000601-3 Page 83 of 108

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
Dana	Wode	Onamici	TN	VL.	-5.63	-0.01	±2.5	PASS
			IIN	VL	-0.03	-0.01	±2.5	PASS
		LCH	TN	VN	-2.86	0.00	±2.5	PASS
			TN	VH	-4.14	-0.01	±2.5	PASS
			TN	VL	-4.40	-0.01	±2.5	PASS
WCDMA	TM1	MCH	TN	VN	-2.86	-0.01	±2.5	PASS
850			TN	VH	-4.84	-0.01	±2.5	PASS
			TN	VL	1.22	0.00	±2.5	PASS
		НСН	TN	VN	-2.86	0.00	±2.5	PASS
			TN	VH	0.94	0.00	±2.5	PASS

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Temp.	Volt.	(Hz)	(ppm)	(ppm)	Vordiot
			TN	VL	4.70	0.00	±2.5	PASS
		LCH	TN	VN	3.71	0.00	±2.5	PASS
			TN	VH	3.61	0.00	±2.5	PASS
			TN	VL	8.47	0.00	±2.5	PASS
WCDMA	TM1	MCH	TN	VN	3.71	0.00	±2.5	PASS
1900			TN	VH	1.63	0.00	±2.5	PASS
			TN	VL	0.46	0.00	±2.5	PASS
		HCH	TN	VN	3.71	0.00	±2.5	PASS
			TN	VH	4.18	0.00	±2.5	PASS

Report No. : EED32H000601-3 Page 84 of 108

Frequency Error vs. Temperature:

Frequenc	Frequency Error vs. Temperature:											
Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict				
Band	Mode	Channel	Volt.	Temp.	(Hz)	(ppm)	(ppm)	VOIGIO				
			VN	-30	-9.66	-0.01	±2.5	PASS				
			VN	-20	-6.06	-0.01	±2.5	PASS				
			VN	-10	-4.78	-0.01	±2.5	PASS				
			VN	0	-14.15	-0.02	±2.5	PASS				
GSM850	TM1	LCH	VN	10	-15.12	-0.02	±2.5	PASS				
			VN	20	-16.00	-0.02	±2.5	PASS				
			VN	30	-10.52	-0.01	±2.5	PASS				
			VN	40	-11.10	-0.01	±2.5	PASS				
			VN	50	-6.93	-0.01	±2.5	PASS				
			VN	-30	-12.72	-0.02	±2.5	PASS				
			VN	-20	-7.74	-0.01	±2.5	PASS				
			VN	-10	-9.25	-0.01	±2.5	PASS				
			VN	0	-12.29	-0.01	±2.5	PASS				
GSM850	TM1	MCH	VN	10	-9.60	-0.01	±2.5	PASS				
			VN	20	-13.09	-0.02	±2.5	PASS				
			VN	30	-12.89	-0.02	±2.5	PASS				
			VN	40	-18.66	-0.02	±2.5	PASS				
			VN	50	-10.45	-0.01	±2.5	PASS				
			VN	-30	-16.60	-0.02	±2.5	PASS				
			VN	-20	-11.01	-0.01	±2.5	PASS				
			VN	-10	-6.03	-0.01	±2.5	PASS				
			VN	0	-15.63	-0.02	±2.5	PASS				
GSM850	TM1	HCH	VN	10	-13.56	-0.02	±2.5	PASS				
			VN	20	-10.86	-0.01	±2.5	PASS				
			VN	30	-9.12	-0.01	±2.5	PASS				
			VN	40	-9.64	-0.01	±2.5	PASS				
			VN	50	-17.26	-0.02	±2.5	PASS				

Report No. : EED32H000601-3 Page 85 of 108

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	V . F .
Band	Mode	Channel	Volt.	Temp.	(Hz)	(ppm)	(ppm)	Verdict
			VN	-30	-11.28	-0.01	±2.5	PASS
			VN	-20	-11.10	-0.01	±2.5	PASS
			VN	-10	-12.34	-0.01	±2.5	PASS
			VN	0	-9.41	-0.01	±2.5	PASS
GSM850	TM2	LCH	VN	10	-12.25	-0.01	±2.5	PASS
			VN	20	-14.79	-0.02	±2.5	PASS
			VN	30	-10.58	-0.01	±2.5	PASS
			VN	40	-13.54	-0.02	±2.5	PASS
			VN	50	-10.75	-0.01	±2.5	PASS
			VN	-30	-5.32	-0.01	±2.5	PASS
			VN	-20	-10.73	-0.01	±2.5	PASS
			VN	-10	-10.11	-0.01	±2.5	PASS
			VN	0	-14.77	-0.02	±2.5	PASS
GSM850	TM2	MCH	VN	10	-13.39	-0.02	±2.5	PASS
			VN	20	-12.30	-0.01	±2.5	PASS
			VN	30	-9.06	-0.01	±2.5	PASS
			VN	40	-11.22	-0.01	±2.5	PASS PASS PASS PASS PASS PASS PASS PASS
			VN	50	-8.03	-0.01	±2.5	PASS
			VN	-30	-10.84	-0.01	±2.5	PASS
			VN	-20	-8.06	-0.01	±2.5	PASS
			VN	-10	-13.68	-0.02	±2.5	PASS
			VN	0	-17.06	-0.02	±2.5	PASS
GSM850	TM2	HCH	VN	10	-11.68	-0.01	±2.5	PASS
			VN	20	-8.74	-0.01	±2.5	PASS
			VN	30	-12.04	-0.01	±2.5	PASS
			VN	40	-8.22	-0.01	±2.5	PASS
			VN	50	-13.03	-0.02	±2.5	PASS

Report No. : EED32H000601-3 Page 86 of 108

_	_							
Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Volt.	Temp.	(Hz)	(ppm)	(ppm)	
			VN	-30	-14.69	-0.01	±2.5	PASS
			VN	-20	-2.53	0.00	±2.5	PASS
			VN	-10	-4.70	0.00	±2.5	PASS
			VN	0	-5.76	0.00	±2.5	PASS
GSM1900	TM1	LCH	VN	10	-13.57	-0.01	±2.5	PASS
			VN	20	-4.12	0.00	±2.5	PASS
			VN	30	-4.36	0.00	±2.5	PASS
			VN	40	-11.71	-0.01	±2.5	PASS
			VN	50	-6.44	0.00	±2.5	PASS
			VN	-30	-11.25	-0.01	±2.5	PASS
			VN	-20	-10.21	-0.01	±2.5	PASS
			VN	-10	-8.94	0.00	±2.5	PASS
			VN	0	-13.33	-0.01	±2.5	PASS
GSM1900	TM1	MCH	VN	10	-15.22	-0.01	±2.5	PASS
			VN	20	-6.40	0.00	±2.5	PASS
			VN	30	-5.51	0.00	±2.5	PASS
			VN	40	-6.38	0.00	±2.5	PASS PASS PASS
			VN	50	-6.29	0.00	±2.5	PASS
			VN	-30	-24.49	-0.01	±2.5	PASS
			VN	-20	-18.70	-0.01	±2.5	PASS
			VN	-10	-26.69	-0.01	±2.5	PASS
			VN	0	-12.83	-0.01	±2.5	PASS
GSM1900	TM1	HCH	VN	10	-12.18	-0.01	±2.5	PASS
			VN	20	-16.02	-0.01	±2.5	PASS
			VN	30	-29.47	-0.02	±2.5	PASS
			VN	40	-27.25	-0.01	±2.5	PASS
			VN	50	-14.53	-0.01	±2.5	PASS

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Verdict
Band	Mode	Channel	Volt.	Temp.	(Hz)	(ppm)	(ppm)	verdict
			VN	-30	-11.34	-0.01	±2.5	PASS
			VN	-20	-17.71	-0.01	±2.5	PASS
			VN	-10	0.79	0.00	±2.5	PASS
			VN	0	-5.38	0.00	±2.5	PASS
GSM1900	TM2	LCH	VN	10	-11.31	-0.01	±2.5	PASS
			VN	20	-6.43	0.00	±2.5	PASS
			VN	30	0.24	0.00	±2.5	PASS
			VN	40	-17.77	-0.01	±2.5	PASS
			VN	50	-9.13	0.00	±2.5	PASS
			VN	-30	1.82	0.00	±2.5	PASS
			VN	-20	2.24	0.00	±2.5	PASS
			VN	-10	7.28	0.00	±2.5	PASS
			VN	0	-18.50	-0.01	±2.5	PASS
GSM1900	TM2	MCH	VN	10	-4.61	0.00	±2.5	PASS
			VN	20	2.34	0.00	±2.5	PASS
			VN	30	-7.31	0.00	±2.5	PASS
			VN	40	-7.80	0.00	±2.5	PASS
			VN	50	-1.39	0.00	±2.5	PASS
			VN	-30	-29.17	-0.02	±2.5	PASS
			VN	-20	-22.89	-0.01	±2.5	PASS
			VN	-10	-26.52	-0.01	±2.5	PASS
			VN	0	-22.67	-0.01	±2.5	PASS
GSM1900	TM2	HCH	VN	10	-14.97	-0.01	±2.5	PASS
			VN	20	-21.93	-0.01	±2.5	PASS PASS PASS PASS PASS PASS
			VN	30	-23.28	-0.01	±2.5	PASS
			VN	40	-19.08	-0.01	±2.5	PASS
			VN	50	-19.95	-0.01	±2.5	PASS

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	
Band	Mode	Channel	Volt.	Temp.	(Hz)	(ppm)	(ppm)	Verdict
			VN	-30	-4.43	-0.01	±2.5	PASS
			VN	-20	-5.20	-0.01	±2.5	PASS
			VN	-10	11.39	0.01	±2.5	PASS
			VN	0	-4.33	-0.01	±2.5	PASS
WCDMA	TM1	LCH	VN	10	9.63	0.01	±2.5	PASS
850			VN	20	0.86	0.00	±2.5	PASS
			VN	30	-4.20	-0.01	±2.5	PASS
			VN	40	-4.55	-0.01	±2.5	PASS
			VN	50	-4.46	-0.01	±2.5	PASS
			VN	-30	11.79	0.01	±2.5	PASS
			VN	-20	-5.28	-0.01	±2.5	PASS
			VN	-10	-4.56	-0.01	±2.5	PASS
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			VN	0	-4.49	-0.01	±2.5	PASS
WCDMA	TM1	MCH	VN	10	-4.78	-0.01	±2.5	PASS
850			VN	20	-5.14	-0.01	±2.5	PASS
			VN	30	-5.14	-0.01	±2.5	PASS
			VN	40	-4.62	-0.01	±2.5	PASS
			VN	50	-4.38	-0.01	±2.5	PASS
			VN	-30	1.00	0.00	±2.5	PASS
			VN	-20	-0.20	0.00	±2.5	PASS
			VN	-10	1.16	0.00	±2.5	PASS
\A/CD\4A			VN	0	0.93	0.00	±2.5	PASS
WCDMA	TM1	HCH	VN	10	1.35	0.00	±2.5	PASS
850			VN	20	1.79	0.00	±2.5	PASS
			VN	30	1.16	0.00	±2.5	PASS
			VN	40	2.14	0.00	±2.5	PASS
			VN	50	1.20	0.00	±2.5	PASS

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	
Band	Mode	Channel	Volt.	Temp.	(Hz)	(ppm)	(ppm)	Verdict
			VN	-30	4.39	0.00	±2.5	PASS
			VN	-20	3.34	0.00	±2.5	PASS
			VN	-10	4.16	0.00	±2.5	PASS
			VN	0	8.47	0.00	±2.5	PASS
WCDMA	TM1	LCH	VN	10	3.54	0.00	±2.5	PASS
1900			VN	20	5.87	0.00	±2.5	PASS
			VN	30	1.15	0.00	±2.5	PASS
			VN	40	-6.78	0.00	±2.5	PASS
			VN	50	5.11	0.00	±2.5	PASS
			VN	-30	8.81	0.00	±2.5	PASS
			VN	-20	3.98	0.00	±2.5	PASS
			VN	-10	5.14	0.00	±2.5	PASS
14/000144			VN	0	4.32	0.00	±2.5	PASS
WCDMA	TM1	MCH	VN	10	3.85	0.00	±2.5	PASS
1900			VN	20	7.20	0.00	±2.5	PASS
			VN	30	-4.78	0.00	±2.5	PASS
			VN	40	5.18	0.00	±2.5	PASS
			VN	50	-33.79	-0.02	±2.5	PASS
			VN	-30	4.04	0.00	±2.5	PASS
			VN	-20	-0.32	0.00	±2.5	PASS
			VN	-10	4.77	0.00	±2.5	PASS
\A(OD\$AA			VN	0	2.18	0.00	±2.5	PASS
WCDMA	TM1	HCH	VN	10	3.28	0.00	±2.5	PASS
1900			VN	20	-6.14	0.00	±2.5	PASS
			VN	30	8.18	0.00	±2.5	PASS
			VN	40	1.24	0.00	±2.5	PASS
			VN	50	4.42	0.00	±2.5	PASS

Report No. : EED32H000601-3 Page 90 of 108

Appendix G) Effective Radiated Power of Transmitter (ERP/EIRP)

Receiver Setup:	Freque	ency	Detector	RBW	VBW	Remark				
	30MHz-	1GHz	peak	100 kHz	300kHz	Peak				
	Above 1	IGHz	Peak	1MHz	3MHz	Peak				
Measurement Procedure:	Test procedure as below: 1) The EUT was powered ON and placed on a 1.5m hight table at a 3 meter fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test. 2) The EUT was set 3 meters(above 18GHz the distance is 1 meter) away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. 4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization. 5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter. 6) A signal at the disturbance was fed to the substitution antenna by means of a nonradiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions. 7) The output power into the substitution antenna was then measured. 8) Steps 6) and 7)were repeated with both antennas polarized. 9) Calculate power in dBm by the following formula: ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) EIRP=ERP+2.15dB where: Pg is the generator output power into the substitution antenna. 10) Test the EUT in the lowest channel, the middle channel the Highest channel 11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode,And found the X axis positioning which it is worse case.									
Limit:	Mode GSM 850/WCDMA/HSDPA GSM 1900/WCDMA/HSDPA									
	IVIOGE	/HSUPA E			SUPA Band					
	Frequency	824 – 849	9MHz	18	50 – 1910MH	-lz				
	Limit	38.45dBn	n (7W)	33	.01dBm (2V	V)				

Report No. : EED32H000601-3 Page 91 of 108

Measurement Data

measurement Data												
	GSM 850 (Voice)											
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.					
120/024.2	150	100	31.45	38.45	-7	Pass	Н					
128/824.2	150	124	30.18	38.45	-8.27	Pass	V					
100/936 6	150	180	31.67	38.45	-6.78	Pass	Н					
190/836.6	150	148	30.18	38.45	-8.27	Pass	V					
251/040 0	150	200	31.39	38.45	-7.06	Pass	Н					
251/848.8	150	210	30.09	38.45	-8.36	Pass	V					

	GPRS 850 Class 8											
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.					
128/824.2	150	100	31.29	38.45	-7.16	Pass	Н					
120/024.2	150	245	30.09	38.45	-8.36	Pass	V					
190/836.6	150	167	31.32	38.45	-7.13	Pass	Н					
190/636.6	150	200	30.61	38.45	-7.84	Pass	V					
251/040 0	150	180	31.76	38.45	-6.69	Pass	Н					
251/848.8	150	155	30.18	38.45	-8.27	Pass	V					

	WCDMA band V RMC 12.2K											
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.					
4132/	150	100	22.45	38.45	-16	Pass	Н					
826.4	150	245	21.09	38.45	-17.36	Pass	V					
4183/	150	170	22.32	38.45	-16.13	Pass	Н					
836.6	150	124	21.87	38.45	-16.58	Pass	V					
4233/	150	100	22.42	38.45	-16.03	Pass	Н					
846.6	150	150	21.13	38.45	-17.32	Pass	V					

	GSM 1900 (Voice)											
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.					
	150	100	28.78	33.01	-4.23	Pass	Н					
512/1850.2	150	190	27.19	33.01	-5.82	Pass	V					
_	150	189	28.67	33.01	-4.34	Pass	Н					
661/1880.0	150	133	27.87	33.01	-5.14	Pass	V					
	150	155	28.56	33.01	-4.45	Pass	Н					
810/1909.8	150	180	27.65	33.01	-5.36	Pass	V					

Report No. : EED32H000601-3 Page 92 of 108

	GPRS 1900 Class 8											
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.					
_	150	100	28.78	33.01	-4.23	Pass	Н					
512/1850.2	150	150	27.78	33.01	-5.23	Pass	V					
_	150	155	28.56	33.01	-4.45	Pass	Н					
661/1880.0	150	180	27.67	33.01	-5.34	Pass	V					
_	150	198	28.66	33.01	-4.35	Pass	Н					
810/1909.8	150	100	27.67	33.01	-5.34	Pass	V					

	WCDMA band II RCM 12.2K											
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.					
	150	100	21.89	33.01	-11.12	Pass	Н					
9262/1852.4	150	150	20.98	33.01	-12.03	Pass	V					
	150	145	21.78	33.01	-11.23	Pass	Н					
9400/1880.0	150	123	20.78	33.01	-12.23	Pass	V					
	150	350	21.67	33.01	-11.34	Pass	Н					
9538/1907.6	150	180	20.88	33.01	-12.13	Pass	V					

Report No. : EED32H000601-3 Page 93 of 108

Appendix H) Field strength of spurious radiation

0.009MHz-30MHz Peak 10kHz 30kHz Peal 30MHz-1GHz Peak 100 kHz 300kHz Peal Above 1GHz Peak 1MHz 3MHz Peal Above 1GHz Peak 1MHz 3MHz Peal 1. Scan up to 10 th harmonic, find the maximum radiation frequency to measurement 2. The technique used to find the Spurious Emissions of the transmitter antenna substitution method. Substitution method was performed to actual ERP/EIRP emission levels of the EUT. Test procedure as below: 1) The EUT was powered ON and placed on a 1.5m hight table at a 3 mean Anechoic Chamber. The antenna of the transmitter was extended to length. modulation mode and the measuring receiver shall be tuned frequency of the transmitter under test. 2) The EUT was set 3 meters(above 18GHz the distance is 1 meter) away interference-receiving antenna, which was mounted on the top of a variety and the measuring receiver antenna tower. 3) The disturbance of the transmitter was maximized on the test received raising and lowering from 1m to 4m the receive antenna and by rotating 360° the turntable. After the fundamental emission was maximized, and solve the sum of the sum of the transmitter was maximized, and the sum of the transmitter was maximized on the test received and the test received and solve the turntable. After the fundamental emission was maximized, and the sum of the transmitter was maximized and the test received and the	7			1	1		5 . 6 .
Measurement Procedure: 1. Scan up to 10 th harmonic, find the maximum radiation frequency to measurement 2. The technique used to find the Spurious Emissions of the transmitter antenna substitution method. Substitution method was performed to actual ERP/EIRP emission levels of the EUT. Test procedure as below: 1) The EUT was powered ON and placed on a 1.5m hight table at a 3 measurement Anechoic Chamber. The antenna of the transmitter was extended to length. modulation mode and the measuring receiver shall be tuned frequency of the transmitter under test. 2) The EUT was set 3 meters(above 18GHz the distance is 1 meter) awas interference-receiving antenna, which was mounted on the top of a vertical process. 3) The disturbance of the transmitter was maximized on the test received raising and lowering from 1m to 4m the receive antenna and by rotating 360° the turntable. After the fundamental emission was maximized, and the standard process of the turntable.		Remark	VBW	RBW	Detector	Frequency	Receiver Setup:
Measurement Procedure: 1. Scan up to 10 th harmonic, find the maximum radiation frequency to mode and the EUT. Test procedure as below: 1) The EUT was powered ON and placed on a 1.5m hight table at a 3 maximizer was extended to be length. modulation mode and the measuring receiver shall be tuned frequency of the transmitter under test. 2) The EUT was set 3 meters (above 18GHz the distance is 1 meter) away interference-receiving antenna, which was mounted on the test received raising and lowering from 1m to 4m the received antenna and by rotating 360° the turntable. After the fundamental emission was maximized, and the measuring receiver shall be tuned from 1 m to 4m the received antenna and by rotating 360° the turntable. After the fundamental emission was maximized, and the measuring receiver antenna and by rotating 360° the turntable. After the fundamental emission was maximized, and the measuring received antenna and by rotating 360° the turntable. After the fundamental emission was maximized, and the measuring received antenna and by rotating and lowering from 1 m to 4 m the received antenna and by rotating 360° the turntable. After the fundamental emission was maximized, and the measuring received antenna and by rotating and lowering from 1 m to 4 m the received antenna and by rotating 360° the turntable. After the fundamental emission was maximized, and the measuring received antenna and by rotating the state of the transmitter was maximized and the measuring received antenna and by rotating the state of the transmitter was maximized and the measuring received antenna and by rotating the state of the transmitter was maximized and the measuring received antenna and by rotating the state of the transmitter was maximized and t		Peak					
Measurement Procedure: 1. Scan up to 10 th harmonic, find the maximum radiation frequency to mode and the spurious Emissions of the transmitter antenna substitution method. Substitution method was performed to a actual ERP/EIRP emission levels of the EUT. Test procedure as below: 1) The EUT was powered ON and placed on a 1.5m hight table at a 3 maximizer. Anechoic Chamber. The antenna of the transmitter was extended to length. modulation mode and the measuring receiver shall be tuned frequency of the transmitter under test. 2) The EUT was set 3 meters (above 18GHz the distance is 1 meter) away interference-receiving antenna, which was mounted on the top of a vantenna tower. 3) The disturbance of the transmitter was maximized on the test received raising and lowering from 1m to 4m the received antenna and by rotating 360° the turntable. After the fundamental emission was maximized, and the maximum radiation frequency to maximum radiation frequency to maximize the substitution method was performed to maximize the substitution method. Substitution method was performed to actual ERP/EIRP emission levels of the EUT. Test procedure as below: 1) The EUT was powered ON and placed on a 1.5m hight table at a 3 maximize was extended to be length. The actual ERP/EIRP emission so the transmitter was extended to be length. The EUT was set 3 meters (above 18GHz the distance is 1 meter) are actually the distance of the transmitter was maximized on the test received raising and lowering from 1m to 4m the received antenna and by rotating the first transmitter was maximized.		Peak	300kHz	100 kHz	Peak	30MHz-1GHz	
 Procedure: The technique used to find the Spurious Emissions of the transmitter antenna substitution method. Substitution method was performed to actual ERP/EIRP emission levels of the EUT. Test procedure as below: The EUT was powered ON and placed on a 1.5m hight table at a 3 m. Anechoic Chamber. The antenna of the transmitter was extended to length. modulation mode and the measuring receiver shall be tuned frequency of the transmitter under test. The EUT was set 3 meters(above 18GHz the distance is 1 meter) aw interference-receiving antenna, which was mounted on the top of a vantenna tower. The disturbance of the transmitter was maximized on the test receive raising and lowering from 1m to 4m the receive antenna and by rotating 360° the turntable. After the fundamental emission was maximized, and the substitution method was performed to actual ERP/EIRP emission in the EUT. 		Peak	3MHz	1MHz	Peak	Above 1GHz	
 4) Steps 1) to 3) were performed with the EUT and the receive antenna and horizontal polarization. 5) The transmitter was then removed and replaced with another antenna the antenna was approximately at the same location as the center of 6) A signal at the disturbance was fed to the substitution antenna by me radiating cable. With both the substitution and the receive antennas he polarized, the receive antenna was raised and lowered to obtain a material greater field strength level in step 3) is obtained for this set of conditions of the substitution antenna was then measured. 8) Steps 6) and 7) were repeated with both antenna polarized. 9) Calculate power in dBm by the following formula: ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) EIRP=ERP+2.15dB where: Pg is the generator output power into the substitution antenna. 10) Test the EUT in the lowest channel, the middle channel the Highest of the substitution measurements are performed in X, Y, Z axis positioning operation mode,And found the X axis positioning which it is worse caused. 12) Repeat above procedures until all frequencies measured was competitive. 	the rmine the rmine the rmine the rmine the rfully aximum e om the ole-height play by hrough distrength oth vertical he center of transmitter, of a non-ontally hum distributed until the his.	ency to measur ansmitter was the permed to determine at a 3 meter of ended to its manable tuned to the meter) away from top of a variable of the transport of t	tion frequency of the transport table of transport table of the transport table of the transport table of transport table of the transport table of transport table of the transport table of transport table o	cimum radia us Emission tion method e EUT. I on a 1.5m e transmitte asuring receive are tal emission EUT and the substitution and the sed and lov of the signal is obtained antenna was ag formula: as (dB) + and the substitute e middle charmed in X, positioning of the signal the substitution and the sed and lov of the signal is obtained antenna was ag formula: as (dB) + and the substitute e middle charmed in X, positioning of the substitute e middle charmed	continuents of the substitute of the substitution of the	Scan up to 10 th harmone. The technique used to antenna substitution mactual ERP/EIRP emissest procedure as below: The EUT was powered Anechoic Chamber. The length. modulation moderequency of the transmitter the EUT was set 3 mediate in interference-receiving antenna tower. The disturbance of the raising and lowering from 360° the turntable. After the measurement was made and horizontal polarizate. The transmitter was the stream and horizontal polarizate. The transmitter was the stream and the interference and horizontal polarizate. The transmitter was the stream and the interference areading at the disturbate radiating cable. With be polarized, the received areading at the test received areading at the test received and the interference in the strength of the control of the control of the strength of the control of	Procedure:
Limit: Attenuated at least 43+10log(P)					og(P)	tenuated at least 43+10ld	Limit:

Report No. : EED32H000601-3 Page 94 of 108

		GSM 850), 128 channel/824.	2 MHz(low	er channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1648.4	150	200	-42.17	-13	-29.17	Pass	Н
2472.6	150	150	-38.90	-13	-25.90	Pass	н
				-13		Pass	Н
1648.4	150	248	-41.87	-13	-28.87	Pass	V
2472.6	150	143	-36.09	-13	-23.09	Pass	V
				-13		Pass	V
		GSM 850	, 190 channel/836.6	6MHz (mido	dle channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1673.2	200	198	-43.19	-13	-30.19	Pass	Н
2509.8	150	200	-39.08	-13	-26.08	Pass	Н
				-13		Pass	Н
1673.2	150	124	-42.88	-13	-29.88	Pass	V
2509.8	150	180	-37.10	-13	-24.10	Pass	V
				-13		Pass	V

	GSM 850, 251 channel/848.8MHz(highest channel)										
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.				
1697.6	150	200	-42.67	-13	-29.67	Pass	Н				
2546.4	200	150	-37.90	-13	-24.90	Pass	Н				
				-13		Pass	Н				
1697.6	150	145	-41.89	-13	-28.89	Pass	V				
2546.4	150	155	-36.98	-13	-23.98	Pass	V				
				-13		Pass	V				

Report No. : EED32H000601-3 Page 95 of 108

	GPRS 850 (Class 8), 128 channel/824.2 MHz(lower channel)										
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.				
1648.4	150	245	-44.18	-13	-31.18	Pass	Н				
2472.6	150	125	-38.09	-13	-25.09	Pass	Н				
				-13		Pass	Н				
1648.4	150	200	-43.89	-13	-30.89	Pass	V				
2472.6	150	167	-38.89	-13	-25.89	Pass	V				
				-13		Pass	V				

	GPRS 850 (Class 8), 190 channel/836.6MHz (middle channel)										
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.				
1673.2	150	245	-46.29	-13	-33.29	Pass	Н				
2509.8	150	127	-40.29	-13	-27.29	Pass	Н				
				-13		Pass	Н				
1673.2	150	100	-45.89	-13	-32.89	Pass	V				
2509.8	150	180	-39.89	-13	-26.89	Pass	V				
				-13		Pass	V				

	GPRS 850 (Class 8), 251 channel/848.8MHz(highest channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
1697.6	200	200	-44.29	-13	-31.29	Pass	Н			
2546.4	150	145	-39.09	-13	-26.09	Pass	Н			
				-13		Pass	Н			
1697.6	150	143	-43.89	-13	-30.89	Pass	V			
2546.4	150	167	-40.01	-13	-27.01	Pass	V			
				-13		Pass	V			

Report No. : EED32H000601-3 Page 96 of 108

	WCDMA band V (RMC 122.2K), 4132 channel/826.4 MHz(lower channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
1652.8	150	123	-48.90	-13	-35.90	Pass	Н			
2479.2	150	145	-40.87	-13	-27.87	Pass	Н			
				-13		Pass	Н			
1652.8	150	180	-47.88	-13	-34.88	Pass	V			
2479.2	150	277	-42.98	-13	-29.98	Pass	V			
				-13		Pass	V			

	WCDMA band V (RMC 122.2K), 4183 channel/836.6 MHz(middle channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
1673.2	150	300	-47.87	-13	-34.87	Pass	Н			
2509.8	150	120	-42.11	-13	-29.11	Pass	Н			
				-13		Pass	Н			
1673.2	150	155	-46.09	-13	-33.09	Pass	V			
2509.8	150	129	-40.89	-13	-27.89	Pass	V			
				-13		Pass	V			

	WCDMA band V (RMC 122.2K), 4233 channel/846.6 MHz(highest channel)										
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.				
1693.2	150	100	-46.09	-13	-33.09	Pass	Н				
2539.8	150	167	-41.19	-13	-28.19	Pass	Н				
				-13		Pass	Н				
1693.2	150	234	-48.11	-13	-35.11	Pass	V				
2539.8	150	200	-42.89	-13	-29.89	Pass	V				
				-13		Pass	V				

Report No. : EED32H000601-3 Page 97 of 108

	GSM 1900, 512 channel/1850.2MHz(lower channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
3700.4	150	189	-42.16	-13	-29.16	Pass	Н			
5550.6	150	234	-48.12	-13	-35.12	Pass	Н			
				-13		Pass	Н			
3700.4	150	100	-41.28	-13	-28.28	Pass	V			
5550.6	150	220	-48.82	-13	-35.82	Pass	V			
				-13		Pass	V			

	GSM 1900, 661 channel/1880.0MHz(middle channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
3760.0	150	200	-42.09	-13	-29.09	Pass	Н			
5640.0	150	120	-49.11	-13	-36.11	Pass	Н			
				-13		Pass	Н			
3760.0	150	100	-41.98	-13	-28.98	Pass	V			
5640.0	150	120	-48.98	-13	-35.98	Pass	V			
				-13		Pass	V			

	GSM 1900, 810 channel/1909.8MHz(highest channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
3819.6	150	100	-42.78	-13	-29.78	Pass	Н			
5729.4	150	120	-48.09	-13	-35.09	Pass	Н			
				-13		Pass	Н			
3819.6	150	180	-41.09	-13	-28.09	Pass	V			
5729.4	150	220	-49.09	-13	-36.09	Pass	V			
				-13		Pass	V			

Report No. : EED32H000601-3 Page 98 of 108

	GPRS 1900 (Class 8), 512 channel/1850.2MHz(lower channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
3700.4	150	126	-45.18	-13	-32.18	Pass	Н			
5550.6	150	145	-50.34	-13	-37.34	Pass	Н			
				-13		Pass	Н			
3700.4	150	169	-44.28	-13	-31.28	Pass	V			
5550.6	150	178	-51.23	-13	-38.23	Pass	V			
				-13		Pass	V			

	GPRS 1900(Class 8), 661 channel/1880.0MHz(middle channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
3760.0	150	309	-45.09	-13	-32.09	Pass	Н			
5640.0	150	133	-50.19	-13	-37.19	Pass	Н			
				-13		Pass	Н			
3760.0	150	155	-43.09	-13	-30.09	Pass	V			
5640.0	150	142	-48.09	-13	-35.09	Pass	V			
				-13		Pass	V			

	GPRS 1900(Class 8), 810 channel/1909.8MHz(highest channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
3819.6	150	129	-46.89	-13	-33.89	Pass	Н			
5729.4	150	100	-50.09	-13	-37.09	Pass	Н			
				-13		Pass	Н			
3819.6	150	145	-47.11	-13	-34.11	Pass	V			
5729.4	150	150	-49.09	-13	-36.09	Pass	V			
				-13		Pass	V			

Report No. : EED32H000601-3 Page 99 of 108

	WCDMA	band II(RN	MC 12.2K), 9262 ch	annel/1852	.4MHz(lower	channel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
3704.8	150	190	-47.89	-13	-34.89	Pass	Н
5557.2	150	200	-52.09	-13	-39.09	Pass	Н
				-13		Pass	Н
3704.8	150	145	-48.99	-13	-35.99	Pass	V
5557.2	150	155	-51.09	-13	-38.09	Pass	V
				-13		Pass	V
	WCDMA	band II (RM	C 12.2K), 9400 ch	annel/1880	.0MHz(middle	e channel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
3760.0	150	189	-49.09	-13	-36.09	Pass	Н
5640.0	150	127	-52.10	-13	-39.10	Pass	Н
				-13		Pass	Н
3760.0	150	167	-48.11	-13	-35.11	Pass	V
5640.0	150	100	-51.09	-13	-38.09	Pass	V
				-13		Pass	V

	WCDMA band II (RMC 12.2K), 9538 channel/1907.6MHz(highest channel)									
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.			
3815.2	150	100	-48.09	-13	-35.09	Pass	Н			
5722.8	150	256	-52.11	-13	-39.11	Pass	Н			
				-13		Pass	Н			
3815.2	150	157	-49.18	-13	-36.18	Pass	V			
5722.8	150	189	-52.87	-13	-39.87	Pass	V			
				-13		Pass	V			

Note:

¹⁾ Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32H000601-3 Page 100 of 108

PHOTOGRAPHS OF TEST SETUP

Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

PHOTOGRAPHS OF EUT Constructional Details

View of external EUT-1

View of external EUT-2

View of external EUT-3

View of external EUT-4

View of external EUT-5

View of external EUT-6

View of internal EUT-1

View of internal EUT-2

View of internal EUT-3

View of internal EUT-4

View of internal EUT-5

View of internal EUT-6

Report No. : EED32H000601-3 Page 107 of 108

View of internal EUT-7

View of internal EUT-8

View of internal EUT-9

View of internal EUT-10

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.