Induced Dimension Reduction method to solve the Quadratic Eigenvalue Problem

R. Astudillo[†] and M. B. van Gijzen

†Email: R.A.Astudillo@tudelft.nl Delft Institute of Applied Mathematics Delft University of Technology Delft, the Netherlands

Student Krylov Day, February 2nd, 2015

Motivation

How to solve this problem?

Source

• www.youtube.com. Millennium Bridge Opening Day

Motivation

Vibration Analysis of Structural Systems

The Quadratic eigenvalue problem: Given the matrices M, D, and K of dimension n, find the scalar λ and the vector \mathbf{x} , such that:

$$(\lambda^2 M + \lambda D + K)\mathbf{x} = 0$$

IDR for QEP 3 / 16

Motivation

Vibration Analysis of Structural Systems The Quadratic eigenvalue problem: Given the matrices M, D, and K of dimension n, find the scalar λ and the vector \mathbf{x} , such that:

$$(\lambda^2 M + \lambda D + K)\mathbf{x} = 0$$

Motivation

Vibration Analysis of Structural Systems The Quadratic eigenvalue problem: Given the matrices M, D, and K of dimension n, find the scalar λ and the vector \mathbf{x} , such that:

$$(\lambda^2 M + \lambda D + K)\mathbf{x} = 0$$

Table of contents

- 1DR(s) method for solving system of linear equation
- 2 Approximating eigenpairs with IDR(s)
- 3 Solving the Quadratic eigenvalue problem with IDR(s)
- 4 Numerical tests

References

 Sonneveld, and M. B. van Gijzen, SIAM J. Sci. Computing 31, 1035–1062 (2008).

IDR(s) Theorem

$$\mathcal{G}_0 \equiv \mathbb{C}^n$$

$$\mathcal{G}_{j+1} \equiv (A - \mu_{j+1} I)(\mathcal{G}_j \cap \mathcal{S}) \quad j = 0, 1, 2 \dots,$$

- \bigcirc $\mathcal{G}_{j+1} \subset \mathcal{G}_j$, and
- ② dimension(\mathcal{G}_{j+1}) < dimension(\mathcal{G}_{j}) unless $\mathcal{G}_{j} = \{\mathbf{0}\}$.

References

 Sonneveld, and M. B. van Gijzen, SIAM J. Sci. Computing 31, 1035–1062 (2008).

Source

• http://www.panoramio.com user: Jetzabel.

Source

• http://www.panoramio.com user: Jetzabel.

Create $\mathbf{w}_{k+1} \in \mathcal{G}_{j+1} \equiv (A - \mu_{j+1}I)(\mathcal{G}_j \cap \mathcal{S})$

Assume that \mathbf{w}_k , \mathbf{w}_{k-1} , ..., $\mathbf{w}_{k-(s+1)}$ are in \mathcal{G}_j and $\mathcal{S} \equiv P^{\perp}$.

$$\mathbf{w}_{k+1} = (A - \mu_{j+1} I)(\mathbf{w}_k - \sum_{i=1}^s \beta_i \mathbf{w}_{k-i})$$

with
$$P^T(\mathbf{w}_k - \sum_{i=1}^s \beta_i \mathbf{w}_{k-i}) = \mathbf{0}$$
, then

$$A\mathbf{w}_{k} = \mathbf{w}_{k+1} + \mu_{j+1}\mathbf{w}_{k} + A\sum_{i=1}^{s} \beta_{i}\mathbf{w}_{k-i} - \mu_{j+1}\sum_{i=1}^{s} \beta_{i}\mathbf{w}_{k-i}$$

Create $\mathbf{w}_{k+1} \in \mathcal{G}_{j+1} \equiv (A - \mu_{j+1}I)(\mathcal{G}_j \cap \mathcal{S})$

Assume that \mathbf{w}_k , \mathbf{w}_{k-1} , ..., $\mathbf{w}_{k-(s+1)}$ are in \mathcal{G}_j and $\mathcal{S} \equiv P^{\perp}$.

$$\mathbf{w}_{k+1} = (A - \mu_{j+1}I)(\mathbf{w}_k - \sum_{i=1}^s \beta_i \mathbf{w}_{k-i})$$

with $P^T(\mathbf{w}_k - \sum_{i=1}^s \beta_i \mathbf{w}_{k-i}) = \mathbf{0}$, then

$$A\mathbf{w}_{k} = \mathbf{w}_{k+1} + \mu_{j+1}\mathbf{w}_{k} + A\sum_{i=1}^{s} \beta_{i}\mathbf{w}_{k-i} - \mu_{j+1}\sum_{i=1}^{s} \beta_{i}\mathbf{w}_{k-i}$$

IDR for QEP 8 / 16

Create $\mathbf{w}_{k+1} \in \mathcal{G}_{j+1} \equiv (A - \mu_{j+1}I)(\mathcal{G}_j \cap \mathcal{S})$

Assume that \mathbf{w}_k , \mathbf{w}_{k-1} , ..., $\mathbf{w}_{k-(s+1)}$ are in \mathcal{G}_j and $\mathcal{S} \equiv P^{\perp}$.

$$\mathbf{w}_{k+1} = (A - \mu_{j+1}I)(\mathbf{w}_k - \sum_{i=1}^s \beta_i \mathbf{w}_{k-i})$$

with
$$P^T(\mathbf{w}_k - \sum_{i=1}^s \beta_i \mathbf{w}_{k-i}) = \mathbf{0}$$
, then

$$A\mathbf{w}_{k} = \mathbf{w}_{k+1} + \mu_{j+1}\mathbf{w}_{k} + A\sum_{i=1}^{s} \beta_{i}\mathbf{w}_{k-i} - \mu_{j+1}\sum_{i=1}^{s} \beta_{i}\mathbf{w}_{k-i}$$

IDR for QEP 8 / 16

Create $\mathbf{w}_{k+1} \in \mathcal{G}_{j+1} \equiv (A - \mu_{j+1} I)(\mathcal{G}_j \cap \mathcal{S})$

Assume that \mathbf{w}_k , \mathbf{w}_{k-1} , ..., $\mathbf{w}_{k-(s+1)}$ are in \mathcal{G}_j and $\mathcal{S} \equiv P^{\perp}$.

$$\mathbf{w}_{k+1} = (A - \mu_{j+1}I)(\mathbf{w}_k - \sum_{i=1}^s \beta_i \mathbf{w}_{k-i})$$

with $P^T(\mathbf{w}_k - \sum_{i=1}^s \beta_i \mathbf{w}_{k-i}) = \mathbf{0}$, then

$$A\mathbf{w}_k = \mathbf{w}_{k+1} + \mu_{j+1}\mathbf{w}_k + A\sum_{i=1}^s \beta_i \mathbf{w}_{k-i} - \mu_{j+1}\sum_{i=1}^s \beta_i \mathbf{w}_{k-i}$$

IDR for QEP 8 / 16

$$AW_m = W_m H_m + \mathbf{fe}_m^T$$

- $\Lambda(H_m)$ approximated some eigenvalues of A
- Short-term recurrence method.
- Implicit filter polynomial.
- Low-memory requirements.

References

- R. Astudillo and M. B. van Gijzen, AIP Conf. Proc. 1558, 2277 (2013).
- -, Technical Report 14-04, Delft University of Technology, The Netherlands, 2014.

Solving the Quadratic eigenvalue problem with IDR(s)

Linearization and properties

The problem

$$(\lambda^2 M + \lambda D + K)\mathbf{x} = 0$$

can be transformed into the Generalized Eigenvalue Problem

$$C\mathbf{y} = \lambda G\mathbf{y},$$

where

$$C = \begin{bmatrix} -D & -K \\ I & 0 \end{bmatrix}$$
 and $G = \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix}$

IDR for QEP 10 / 16

Solving the Quadratic eigenvalue problem with IDR(s)

Linearization and properties

$$S = G^{-1}C = \begin{bmatrix} -M^{-1}D & -M^{-1}K \\ I & 0 \end{bmatrix}$$

if $\mathbf{v} = [\mathbf{r}_0, \, \mathbf{0}]^T$, then

$$\begin{bmatrix} \mathbf{r}_j \\ \mathbf{r}_{j-1} \end{bmatrix} = \mathcal{S}^j \mathbf{v}$$

References

Z. Bai and Y. Su, SIAM J. Matrix Anal. Appl. 26, pp. 640–659 (2005).

IDR for QEP 11 / 16

Solving the Quadratic eigenvalue problem with IDR(s)

Linearization and properties

$$SW_m = W_m H_m + \mathbf{fe}_m^T$$

if

$$W_m = \begin{bmatrix} W_m^{(t)} \\ W_m^{(b)} \end{bmatrix}$$

$$(-M^{-1}D)W_m^{(t)} + (-M^{-1}K)W_m^{(b)} = W_m^{(t)}H_m + \mathbf{f}^{(t)}\mathbf{e}_m^T$$

 $W_m^{(t)} = W_m^{(b)}H_m + \mathbf{f}^{(b)}\mathbf{e}_m^T$

$$W_m^{(b)} = W_m^{(u)} T$$

Tupelft T is upper triangular, then we save only $W_m^{(u)}$.

Solving the Quadratic eigenvalue problem with IDR(s)

Linearization and properties

$$SW_m = W_m H_m + \mathbf{fe}_m^T$$

if

$$W_m = \begin{bmatrix} W_m^{(t)} \\ W_m^{(b)} \end{bmatrix}$$

$$(-M^{-1}D)W_m^{(t)} + (-M^{-1}K)W_m^{(b)} = W_m^{(t)}H_m + \mathbf{f}^{(t)}\mathbf{e}_m^T$$

 $W_m^{(t)} = W_m^{(b)}H_m + \mathbf{f}^{(b)}\mathbf{e}_m^T$

Then

$$W_m^{(b)} = W_m^{(u)} T.$$

 $\mathcal{L}_{\mathbf{u}}$ Where T is upper triangular, then we save only $W_m^{(u)}$.

IDR for QEP 12/16

$$\begin{bmatrix} -M^{-1}D & -M^{-1}K \\ I & 0 \end{bmatrix} W_m = W_m H_m + \mathbf{f} \mathbf{e}_m^T$$

• $\Lambda(H_m)$ approximated some eigenvalues of QEP:

$$(\lambda^2 M + \lambda D + K)\mathbf{x} = 0$$

- Short-term recurrence method.
- Implicit filter polynomial.
- Low-memory requirements.
- Operation $\mathcal{O}(n)$

□▶ ◀♬▶ ◀臺▶ ◀臺▶ = ♡٩♡

Numerical tests: n = 200; M = rand(n); D = rand(n); K = rand(n);

Arnoldi: 0.041 secs. IDR(s): 0.025 secs

Numerical tests: n = 200; M = rand(n); D = rand(n); K = rand(n);

Arnoldi: 0.041 secs. IDR(s): 0.025 secs.

Numerical tests: Wave propagation in a room

Dimension: 1681

Convergence to the known eigenvalue $\lambda^* = -5 + 216i$ Arnoldi: 0.51 secs. IDR(s): 0.42 secs.

References

Sleijpen, G. L. G.; van der Vorst, H. A. and van Gijzen,
 M. B., SIAM News 29, pp 8-19, (1996).

Thank you for your attention. Questions, comments, suggestions are welcome.

IDR for QEP 16 / 16