Модели ВСВ дискретных объектов управления

Дискретный ОУ — это ОУ, в котором хотя бы в одном элементе при непрерывном изменении входной величины выходная величина изменяется не непрерывно, а имеет вид отдельных импульсов, появляющихся через некоторые промежутки времени.

Множество моментов времени управления и наблюдения T становится дискретным (счетным):

$$T = \{t: t = t_0 + k\Delta t, k = 1, ... N\},\$$

 Δt – интервал дискретности, $N=(t_k-t_0)/\Delta t$.

Функции перехода λ и выхода δ в дискретных динамических объектах управления задаются в следующей форме

$$\lambda: x(k+1) = \lambda[x(k), u(k)] \tag{1}$$

$$\delta: y(k) = \delta[x(k), u(k)] \tag{2}$$

В случае линейных дискретных ОУ функции λ и δ записываются в форме

$$\begin{cases} x(k+1) = \bar{A}x(k) + \bar{B}u(k) \\ y(k) = \bar{C}x(k) + \bar{D}u(k) \end{cases}$$
 (3)

где $\bar{A}-n\times n$ матрица состояния, $\bar{B}-n\times r$ матрица входа, $\bar{C}-m\times n$ матрица выхода, $\bar{D}-m\times r$ матрица передачи со входа на выход (матрица «вход-выход»).

Построим структурные схемы нелинейных и линейных дискретных динамических объектов, где 93 – элемент задержки, реализующий преобразование x(k+1) в x(k).

Дискретный нелинейный объект

Дискретный линейный объект

Способы построения матриц дискретного ОУ на основе матриц исходного непрерывного ОУ и интервала дискретности

1. Использование интегральной модели исходного непрерывного ОУ

Рассмотрим модель непрерывного ОУ t

$$x(t) = e^{At}x(0) + \int_{0}^{t} e^{A(t-\tau)}Bu(\tau)d\tau$$
$$y(t) = \int_{0}^{0} Cx(t)$$

Дискретный динамический объект реализует дискретную по времени с интервалом длительности Δt выборку из управляемых переменных по состоянию и выходу непрерывного динамического процесса.

Переменные состояния между моментами выборки изменяются в соответствии с интегральной моделью состояния непрерывного объекта, переменные выхода изменяются по такому же закону, а переменные входа (управления) между моментами выборки фиксируются на уровне значений в предыдущий момент выборки.

Вычислим значение состояния и выхода в момент времени $t = \Delta t$ на основании информации об их значении в момент t = 0.

Зафиксируем сигнал управления на весь интеграл дискретности на уровне значения на момент начала текущего интервала:

$$x(t)\Big|_{t=\Delta t} = x(\Delta t) = \left\{ e^{At} x(0) + \int_{0}^{t} e^{A(t-\tau)} Bu(\tau) d\tau \right\}\Big|_{t=\Delta t} = e^{A\Delta t} x(0) + \int_{0}^{\Delta t} e^{A(\Delta t-\tau)} Bu(0) d\tau =$$

$$= e^{A\Delta t} x(0) + e^{A\Delta t} \left(\int_{0}^{\Delta t} e^{-A\tau} d\tau \right) Bu(0) = e^{A\Delta t} x(0) + e^{A\Delta t} \left(1 - e^{-A\Delta t} \right) A^{-1} Bu(0) =$$

$$= e^{A\Delta t} x(0) + \left(e^{A\Delta t} - 1 \right) A^{-1} Bu(0). \tag{4}$$

Учтем, что

$$x(k+1) = \bar{A}x(k) + \bar{B}u(k), \tag{5}$$

где под (k+1) и k понимается следующее представление моментов времени

$$t + \Delta t = (k+1)\Delta t$$
 u $t = k \Delta t$.

Тогда (5) можно переписать в форме

$$x[(k+1)\Delta t] = \bar{A}x[(k)\Delta t] + \bar{B}u[(k)\Delta t], y(k) = Cx(k)$$
 (6)

Положим в (6) k=0. Тогда

$$x(\Delta t) = \bar{A}x(0) + \bar{B}u(0), \tag{7}$$

Сравним левые и правые части (4)и (7):

$$\bar{A} = e^{A\Delta t}, \bar{B} = (e^{A\Delta t} - I)A^{-1}B, \bar{C} = C$$
 $y(k) = \bar{C}x(k)$

2. Представление производной отношением конечных малых приращений

$$\dot{x}(t) = \frac{dx(t)}{dt} \cong \frac{\Delta x(t)}{\Delta t} = \frac{x(t + \Delta t) - x(t)}{\Delta t} = \frac{x((k+1)\Delta t) - x(k\Delta t)}{\Delta t} = \frac{x(k+1) - x(k)}{\Delta t}$$

Подставим полученное приближенное представление производной $\dot{x}(t)$ в модель непрерывного ОУ

$$\dot{x}(t) = Ax(t) + Bu(t).$$

$$\frac{x(k+1) - x(k)}{\Delta t} = Ax(k) + Bu(k)$$

и разрешим относительно переменной x(k+1). Тогда получим рекуррентную запись

$$x(k+1) = (I + A\Delta t)x(k) + (B\Delta t)u(k), y(k) = Cx(k).$$
 (8)

Сравним рекуррентные представления (3) с (8) и запишем

$$\overline{A} = I + A\Delta t, \overline{B} = B\Delta t, \overline{C} = C.$$

Сформируем суммарную модель линейного дискретного ОУ. Для этого построим базу индукции на основе рекуррентного представления (3)

1)
$$k = 0$$
, $x(1) = \bar{A}x(0) + \bar{B}u(0)$
2) $k = 1$, $x(2) = \bar{A}x(1) + \bar{B}u(1) = \bar{A}^2x(0) + \bar{A}\bar{B}u(0) + \bar{B}u(1)$
3) $k = 2$, $x(3) = \bar{A}x(2) + \bar{B}u(2) = \bar{A}^3x(0) + \bar{A}^2\bar{B}u(0) + \bar{A}\bar{B}u(1) + \bar{B}u(2)$

База индукции построена. Теперь можно записать представление для x(k), $\forall k$:

$$x(k) = \overline{A}^k x(0) + \overline{A}^{k-1} \overline{B} u(0) + \overline{A}^{k-2} \overline{B} u(1) + \dots + \overline{A} \overline{B} u(k-2) + \overline{B} u(k-1) =$$

$$= \overline{A}^k x(0) + \sum_{i=0}^{k-1} \overline{A}^{k-1-i} \overline{B} u(i).$$
(9)

Для выхода ОУ можно записать

$$y(k) = \overline{C}\overline{A}^k x(0) + \sum_{i=0}^{k-1} \overline{C}\overline{A}^{k-1-i}\overline{B}u(i) + \overline{D}(k).$$
 (10)

Получим выражения для свободной и вынужденной составляющих движения по вектору состояния

$$x_c(k) = \overline{A}^k x(0); \quad x_e(k) = \sum_{i=0}^{k-1} \overline{A}^{k-1-i} \overline{B} u(i),$$
 (11)

и по вектору выхода

$$y_c(k) = \overline{C}\overline{A}^k x(0); \quad y_e(k) = \sum_{i=0}^{k-1} \overline{C}\overline{A}^{k-1-i}\overline{B}u(i) + \overline{D}u(k). \tag{12}$$

Пример. Матрицы состояния, управления и выхода непрерывного линейного объекта имеют вид:

$$A = \begin{bmatrix} 2 & -5 & -3 \\ -1 & -2 & -3 \\ 3 & 15 & 12 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 4 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Запишите матрицы $ar{A}$, $ar{B}$ и $ar{C}$ для значения интервала дискретности $\Delta t=0$,01 с.

1) Вычислим с использованием интегральной модели исходного непрерывного ОУ

Представим $e^{A\Delta t}$ в виде бесконечного матричного ряда

$$e^{A\Delta t} = \sum_{i=1}^{\infty} \frac{1}{i!} (A\Delta t)^{i}$$

И ограничимся первыми четырьмя членами

$$e^{A\Delta t} \approx I + A\Delta t + \frac{1}{2!}(A\Delta t)^2 + \frac{1}{3!}(A\Delta t)^3 + \cdots$$

Вычисляем:

$$A\Delta t = \begin{bmatrix} 2 & -5 & -3 \\ -1 & -2 & -3 \\ 3 & 15 & 12 \end{bmatrix} * 0,01 = \begin{bmatrix} 0,02 & -0,05 & 0,03 \\ -0,01 & -0,02 & -0,03 \\ 0,03 & 0,15 & 0,12 \end{bmatrix}$$

$$\bar{A} = e^{A\Delta t} \approx \begin{bmatrix} 1,02 & -0,0523 & -0,0314 \\ -0,0105 & 0,9782 & -0,0314 \\ 0,0314 & 0,1569 & 1,1246 \end{bmatrix}$$

$$\bar{B} = (e^{A\Delta t} - I)A^{-1}B = \begin{bmatrix} 0,0096 & -0,0011 \\ -0,0005 & 0,0192 \\ 0,032 & 0,044 \end{bmatrix}$$

$$C = \bar{C}$$

Вычислим самостоятельно $\bar{A}=e^{A\Delta t}$ и $\bar{B}=\left(e^{A\Delta t}-I\right)\!A^{-1}B$ с помощью свойств функций от матриц (с использованием Matlab)

Структурные свойства объектов управления: управляемость и наблюдаемость

Определение 1. Непрерывный {дискретный} динамический объект с парой матриц $(A,B)\{(\bar{A},\bar{B})\}$ называется *полностью* управляемым, если его можно из произвольного начального состояния

$$x_0 = x(t)_{|t=t_0|} \{x_0 = x(k)_{|k=k_0|} \}$$

перевести за конечное время в произвольное конечное состояние $x_k = x(t)_{|t=t_k|} \{x_k = x(k)_{|k=k_k|}\}$

применив подходящим образом выбранное управляющее воздействие (возможно, даже неограниченное).

Определение 2. Непрерывный {дискретный} динамический объект с матрицами $(A,C)\{(\bar{A},\bar{C})\}$ называется *полностью наблюдаемым* на интервале наблюдения

$$T = (t: t_0 < t < t_k) \{ T = (k: k_0 < k < k_k) \},$$

если его состояние

$$x(t) \{x(k)\}$$

может быть определено на основе наблюдений за выходом $y(t) \{y(k)\}$

(а возможно, и входом u(t) $\{u(k)\}$) в течение интервала наблюдения.

Критерии управляемости и наблюдаемости

Критерий управляемости 1.

Объект с парой матриц $(A,B)\{(\bar{A},\bar{B})\}$ является полностью управляемым тогда и только тогда, когда матрица управляемости объекта, построенная в силу матричного соотношения

$$W_{y} = [B : AB : A^{2}B : \cdots : A^{n-1}B]$$

$$\{\overline{W}_{y} = [\bar{B} : \bar{A}\bar{B} : \bar{A}^{2}\bar{B} : \cdots : \bar{A}^{n-1}\bar{B}]\}$$
(15)

имеет ранг, равный $n=\dim x$, т.е.

$$rank W_{y} = n \{ rank \overline{W}_{y} = n \}.$$
 (16)

Доказательство. Докажем сформулированное утверждение на примере дискретного ОУ с использованием его *рекуррентного* модельного представления.

Поставим задачу перевода дискретного ОУ (10) из произвольного ненулевого начального состояния x(0) за $n = \dim x$ интервалов дискретности (тактов управления) в желаемое конечное x(n).

Вычислим последовательность управляющих воздействий, образующих «стратегию управления», осуществляющих этот перевод. Для этой цели воспользуемся суммарной моделью дискретного объекта

$$x(k) = \overline{A}^k x(0) + \overline{A}^{k-1} \overline{B} u(0) + \overline{A}^{k-2} \overline{B} u(1) + \dots + \overline{A} \overline{B} u(k-2) + \overline{B} u(k-1) =$$

$$= \overline{A}^k x(0) + \sum_{i=0}^{k-1} \overline{A}^{k-1-i} \overline{B} u(i).$$

Запишем последнее выражение для момента k=n , поменяв при этом порядок суммирования компонентов:

$$x(n) - \overline{A}^{n}x(0) = \begin{bmatrix} \overline{B} & \overline{A}\overline{B} & \dots & \overline{A}^{n-1}\overline{B} \end{bmatrix} u^{T}(n-1)u^{T}(n-2)\dots u^{T}(0) \end{bmatrix}^{T}.$$

Разрешим полученное выражение относительно вектора «стратегии управления»:

$$\left[u^{T}(n-1)u^{T}(n-2)...u^{T}(0)\right]^{T} = \left[\overline{B} \quad \overline{A}\overline{B} \quad ... \qquad \overline{A}^{n-1}\overline{B}\right]^{-1} \left[x(n) - \overline{A}^{n}x(0)\right]$$

Нетрудно видеть, что ключевым моментом, гарантирующим существование искомого управления является обратимость матрицы, которая имеет место только при выполнении условия (16).

Критерий управляемости 2. Пара матриц (A, B) является полностью управляемой тогда и только тогда, когда матрица

$$Q = W_y W_y^T (17)$$

является положительно определенной, т.е. имеет все *строго* положительные собственные значения

$$\mu_{vi} > 0, \ \mu_{vi} \in \sigma\{Q\}, : \det(\mu_{v}I - Q) = 0; \quad i = \overline{1, n}$$

Критерий наблюдаемости 1.

Объект с парой матриц $(A,C)\{(\bar{A},\bar{C})\}$ являются полностью наблюдаемым тогда и только тогда, когда матрица наблюдаемости объекта

$$W_{H} = \begin{bmatrix} C^{T} \\ C^{T}A \\ C^{T}A^{2} \\ \vdots \\ C^{T}A^{n-1} \end{bmatrix}, \overline{W}_{H} = \begin{bmatrix} \overline{C}^{T} \\ \overline{C}^{T}\overline{A} \\ \overline{C}^{T}\overline{A}^{2} \\ \vdots \\ \overline{C}^{T}\overline{A}^{n-1} \end{bmatrix}$$
(18)

имеет ранг, равный $n=\dim x$, т.е.

$$rank W_{H} = n \{ rank \overline{W}_{H} = n \}.$$
 (19)

Доказательство утверждения проведем на примере непрерывного ОУ с использованием модели ВСВ при D=0:

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad y(t) = Cx(t) + Du(t).$$

Для того, чтобы получить n условий для вычисления n - компонентного вектора состояния x по peзультатам измерения векторов выхода <math>y(t) и управления u(t) продифференцируем n-1 раз по времени вектор выхода.

$$y(t) = Cx(t)$$

$$\dot{y}(t) = C\dot{x}(t) = CAx(t) + CBu(t)$$

$$\ddot{y}(t) = CA\dot{x}(t) + CB\dot{u}(t) = CA^2x(t) + CABu(t) + CB\dot{u}(t)$$

$$\ddot{y}(t) = CA^{2}\dot{x}(t) + CAB\dot{u}(t) + CB\ddot{u}(t) =$$

$$= CA^{3}x(t) + CA^{2}Bu(t) + CAB\dot{u}(t) + CB\ddot{u}(t)$$

•

$$y^{(n-1)}(t) = CA^{(n-1)}x(t) + CA^{(n-2)}Bu(t) + \dots + CABu^{(n-1)}(t) + CBu^{(n-2)}(t)$$

Сформируем на основе полученных соотношений вектор измерений z(t)

$$z(t) = \begin{bmatrix} y(t) \\ \dot{y}(t) - CBu(t) \\ \ddot{y}(t) - CABu(t) - CB\dot{u}(t) \\ \vdots \\ y^{(n-1)} - CA^{(n-2)}Bu(t) - \dots - CABu^{(n-1)}(t) - CBu^{(n-2)}(t) \end{bmatrix}$$

Вектор измерений z(t) позволяет привести систему уравнений, построенных на производных вектора выхода y(t) и управления u(t) к виду

$$z(t) = [C^T : A^T C^T : \dots : (A^T)^{n-1} C^T]^T x(t) = W_H x(t).$$
 (20)

Уравнение (20) позволяет для *искомого* вектора x(t) состояния объекта записать

$$x(t) = W_{\rm H}^{-1} z(t). \tag{21}$$

Нетрудно видеть, что ключевым моментом, гарантирующим восстановление вектора x(t) состояния объекта является обратимость матрицы наблюдаемости $W_{\rm H}$, которая имеет место только при выполнении условия $rankW_{\rm H}=n$.

Критерий наблюдаемости 2. Пара матриц (A,C) являются полностью наблюдаемой тогда и только тогда, когда матрица

$$P = W_{\rm H}^T W_{\rm H} \tag{22}$$

является положительно определенной P>0, т.е. имеет все *строго* положительные собственные значения.

Понятия управляемости и наблюдаемости позволяют представить исходный ОУ в виде объединения его структурных компонентов

$$OY = \{OY_{H}^{y} \cup OY_{H}^{Hy} \cup OY_{HH}^{y} \cup OY_{HH}^{Hy}\}$$
 (23)

Данная аналитическая конструкция иллюстрируется структурным представлением, изображенным на рисунке ниже:

Представления (23) и рисунок называются *каноническим* представлением ОУ Р. Калмана.

$$OY_{_{_{\it H}}}^{_{\it Y}}$$
 – полностью управляемая и наблюдаемая часть ОУ;

$$OY_{_{_{\it H}}}^{^{_{\it H}\it{Y}}}$$
 – неуправляемая, но наблюдаемая часть ОУ;

$$OY_{\scriptscriptstyle HV}^{\,y}$$
 – управляемая, но ненаблюдаемая часть ОУ;

 OY_{HH}^{Hy} – неуправляемая и ненаблюдаемая часть ОУ.