Netflix Recommender System

Rafael Atanazio
Vincent Giraud
Sandhya Radha Krishnakumar
London Gustofson

Everything is a recommendation!

Over 80% of what people watch comes from recommendations.

Recommendations are driven by algorithms and machine learning.

What is a Recommender System?

A recommender system (RS) helps users that have no time to evaluate the overwhelming, number of alternatives offered by a web site.

In their simplest form, RS recommend to their users personalized and ranked lists of items

Business Problem

Why are the Subscription rates going down?

The content behind in what is currently premiering

Hulu, or Amazon have quicker rates of premiering the recent content

Content Providers moving to alternative platforms

More competitors

recommendation engine needs to be updated to be more personalized

Business Solution

The Prototype

Preparing the data

Tableau prep

To deal with inconsistent data and other data issues

Building the Algorithm

Build a data frame with ratings and movies data Build a Rating Matrix with Users as rows and Movies as columns

Build Similarity Matrix for the users

Find the closest Users

Compute Prediction

Find the highest prediction

Build a data frame with ratings and movies data

Create a data frame

Merge the *ratings* and the *movies* data

Build a rating matrix with users and movies

•	'burbs, The (1989)	10,000 BC (2008)	101 Dalmatians (1996)	102 Dalmatians (2000)	12 Angry Men (1957)	13 Tzameti (2005)	17 Again (2009)	2 Days in the Valley (1996)	2 Fast 2 Furious (Fast and the Furious 2, The) (2003)
8405	0.0000000	0.375	0.0	0.0000000	0	0.0	0.25	0.0000000	0.0
34576	0.0000000	0.000	0.0	0.0000000	0	0.0	0.00	0.0000000	0.0
74142	0.0000000	0.000	0.0	0.0000000	0	0.0	0.00	0.0000000	0.0
82418	0.0000000	0.000	0.0	0.0000000	0	0.0	0.00	0.0000000	0.0
83090	0.0000000	0.000	0.0	0.0000000	0	0.0	0.00	0.0000000	0.0
118205	0.3333333	0.000	0.0	0.0000000	0	0.0	0.00	0.0000000	0.0
121535	0.0000000	0.000	0.0	0.3333333	0	0.0	0.00	0.555556	0.0
125794	0.0000000	0.000	0.5	0.0000000	0	0.5	0.00	0.3333333	0.5
131904	0.0000000	0.000	0.0	0.0000000	1	0.0	0.00	0.0000000	0.0

Dataframe -> Matrix

With *Users* as rows and *Movies* as columns

Build Similarity Matrix for the users

 User based collaborative method - Cosine similarity

Find the closest Users and build the ratings matrix

Ratings matrix of the closest users

Compute the highest prediction

```
titles
                                              West Side Story (1961)
                                                  Set-Up, The (1949)
3
                                   Shake Hands with the Devil (1959)
                                    Shawshank Redemption, The (1994)
4
5
                                           State of the Union (1948)
6
                                               Stunt Man, The (1980)
   Tae Guk Gi: The Brotherhood of War (Taegukgi hwinalrimyeo) (2004)
8
                                                     Town, The (2010)
9
                     Unknown, The (a.k.a. Alonzo the Armless) (1927)
10
                                    Silence of the Lambs, The (1991)
```

Using weighted value

Similarity values * ratings

NETFLIX

You give us three seconds...we'll give you the world

Choose a Movie Choose a Movie Choose a Movie Toy Story (1995) Toy Story (1995) Toy Story (1995) Rating 1-5 Rating 1-5 Rating 1-5 1.0 1.0 1.0 Choose a Movie Choose a Movie Toy Story (1995) Toy Story (1995) Rating 1-5 Rating 1-5 1.0 1.0 Submit My Ratings

Business Gain

Users: Better Personalization

Becoming a bigger and more powerful platform could help in winning new movies rights, subscribers

Netflix: Increase in loyalty from Users and Content providers, leading to higher data and revenue generation

Content Providers: Better visualization of real size of audience and the target audience for their content

The next steps...

Processing Improve the *processing time* and include more *ratings* time **Analysis Methods** Include regression, clustering and other computation methods **Compute RMSEs** Finding the *least* RMSE value methods **Machine learning** Deploy methods like *gradient descent*

Questions?