Sistemas Operacionais Escalonamento do Disco

Objetivos da Aula

- Descrever a estrutura física dos dispositivos de armazenamento
- Analisar os algoritmos de escalonamento do disco
- Explicar as características de desempenho relacionadas aos dispositivos de armazenamento

Discos Magnéticos

Discos Magnéticos

Características

- Informações são registradas magneticamente
- Prato dividido logicamente em trilhas e setores
- O conjunto de trilhas que fica em uma posição do braço é chamado de cilindro
- O driver do disco é conectado ao computador por um conjunto de fios chamados bus de I/O

Desempenho

- Taxa de transferência: velocidade em que os dados fluem entre o drive e o computador
- Tempo de posicionamento: tempo necessário para mover o braço para o cilindro desejado

Escalonamento de Disco

- Em um sistema multiprogramado com muitos processos, a fila do disco pode conter várias solicitações pendentes
 - Quando uma solicitação é concluída, o SO seleciona a solicitação pendente que ele atenderá em seguida
- Como o sistema operacional faz a seleção?
 - Há diversos algoritmos de escalonamento para esse propósito
 - FCFS, SSTF, SCAN, C-SCAN, LOOK

FCFS

- First Come, First Served (FCFS).
 - A primeira requisição que chegou é a primeira a ser atendida
- Exemplo
 - Fila = 98, 183, 37, 122, 14, 124, 65, 67
 - Cabeçote inicialmente no cilindro 53

FCFS

SSTF

- Shortest-seek-time-first, SSTF
 - Tempo de busca mais curto primeiro
 - Atende primeiro às requisições mais próximas à posição corrente
- Exemplo
 - Fila = 98, 183, 37, 122, 14, 124, 65, 67
 - Cabeçote inicialmente no cilindro 53

SSTF

SCAN

- O braço se move de uma extremidade em direção à outra extremidade, atendendo as solicitações conforme avança cada cilindro.
 - Na outra extremidade a direção é invertida e o atendimento continua na direção inversa

- Exemplo
 - Fila = 98, 183, 37, 122, 14, 124, 65, 67
 - Cabeçote inicialmente no cilindro 53

SCAN

C-SCAN

 Similar ao SCAN, com a diferença que quando termina uma lista de cilindros ele retorna ao primeiro (i.e. não retorna atendendo requisições), em uma lista circular

Exemplo

- Fila = 98, 183, 37, 122, 14, 124, 65, 67
- Cabeçote inicialmente no cilindro 53

C-SCAN

C-LOOK

 Similar ao C-SCAN, com a diferença que não vai até toda a extremidade do disco, mas apenas até a primeira/última requisição a ser atendida naquela extremidade

Exemplo

- Fila = 98, 183, 37, 122, 14, 124, 65, 67
- Cabeçote inicialmente no cilindro 53

C-LOOK

Seleção de um Algoritmo

- Como qualquer algoritmo de escalonamento, o desempenho depende muito da quantidade dos dados e dos tipos de solicitação
 - SSTF é comum e atrativo por ser simples. Ele também aumenta o desempenho quando comparado ao FCFS
 - SCAN e C-SCAN são menos prováveis de gerar problema de inanição, quando uma dada requisição nunca é atendida
 - Tanto o SSTF quanto o C-LOOK são opções aceitáveis como algoritmo default

Métricas Relevantes

- Tempo de busca (seek time)
 - Tempo necessário para posicionar o cabeçote na trilha desejada
- Tempo de latência rotacional (Latency time)
 - Tempo necessário para atingir o início do setor a ser lido/escrito
- Tempo de transferência (*Transfer time*)
 - Tempo para escrita/leitura efetiva dos dados

Métricas Relevantes

Referências

SILBERSCHATZ, Abraham; GALVIN, Peter B.; GAGNE, Greg. Fundamentos de sistemas operacionais: princípios básicos. Rio de Janeiro, RJ: LTC, 2013. xvi, 432 p. ISBN 9788521622055

TANENBAUM, Andrew S. Sistemas operacionais modernos. 3. ed. São Paulo: Pearson Prentice Hall, 2009. xvi, 653 p. ISBN 9788576052371

Disk Scheduling Algorithms, https://www.geeksforgeeks.org/disk-scheduling-algorithms/

Disk Scheduling Algorithms, http://www.cs.iit.edu/~cs561/cs450/disksched/disksched.html

Sistemas Operacionais

Prof. Dr. Lesandro Ponciano

https://orcid.org/0000-0002-5724-0094