厦门大学高等代数 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

§5.5 **多项式函数**

思考 显然有重根必有重因式, 反之如何?

解 反之不然. 例如在 $\mathbb{R}[x]$ 中, $f(x)=(x^2+1)^2$ 有 2 重因式,但在 \mathbb{R} 上没有根.

习题

1. sin x 不是 ℝ 上多项式.

证明 因为 $y = \sin x$ 在实数域内有无穷多个互异根 $k\pi(k \in \mathbb{Z})$, 而实数域内的 n 次多项式最多 n 个根,所以 $y = \sin x$ 在实数域内不能表示为 x 的多项式.

2. 求 $f(x) = (x-2)^{2011}(x^2-x+1)^{2012}$ 的展开式中各项系数之和.

解 因为 f(x) 的展开式中各项系数之和为 f(1), f(x) 的展开式中偶次项系数之和减去奇次项系数之和为 f(-1). 所以题中展开式中各项系数之和为 $f(1) = (1-2)^{2011}(1^2-1+1)^{2012} = -1$.

3. 用综合除法将 $f(x) = x^4 + 2x^3 - 3x^2 + 1$ 改写为关于 x + 1 的多项式.

解 由综合除法

	1	2	-3	0	1
-1		-1	-1	4	-4
	1	1	-4	4	-3
-1		-1	0	4	
	1	0	-4	8	
-1		-1	1		
	1	-1	-3		
-1		-1			
	1	-2			

所以 $f(x) = (x+1)(x^3+x^2-4x+3)-2 = (x+1)^4-2(x+1)^3-3(x+1)^2+8(x+1)-3.$

4. 设 $f(x) \in \mathbb{Q}[x]$, 若 $1 + \sqrt{2}$ 是 f(x) 的根,则 $1 - \sqrt{2}$ 也是 f(x) 的根.

证明 因为 $(x-(1+\sqrt{2}))(x-(1-\sqrt{2}))=x^2-2x-1$. 所以 $p(x)=x^2-2x-1$ 在 $\mathbb{Q}[x]$ 上不可约. 而 p(x) 和 f(x) 在 \mathbb{C} 上有公共根 $1+\sqrt{2}$, 所以 p(x)|f(x). 故 $1-\sqrt{2}$ 也是 f(x) 的根.

5. 设 $0 \neq f(x) \in F[x]$ 且 $f(x)|f(x^m)$, 这里 m 是大于 1 的整数. 求证: f(x) 的根只能是 0 或 1 的某个方根.

证明 在 $\mathbb{C}[x]$ 上考虑 f(x). 设 α 是 f(x) 的根,则 $f(\alpha)=0$. 因为 f(x) 整除 也是 f(x) 的根. 同理可知 $\alpha^{m^2}, \alpha^{m^3}, \cdots$ 都是 f(x) 的根. 而多项式的互异根只能有限个,因此必有 $\alpha^{m^l}=\alpha^{m^k}$. 从而 $\alpha=0$,或者 $\alpha^{m^{l-k}}=1$. 即或 α 是 0 或 α 是 1

6. 求证 $b \neq f(x)$ 的 k 重根的充分必要条件是

的某个方根.

$$f(b) = f'(b) = f''(b) = f^{(3)}(b) = \dots = f^{(k-1)}(b) = 0, \quad f^{(k)}(b) \neq 0.$$

证明 必要性. 因为 b 是 f(x) 的 k 重根,所以 $f(x) = (x-b)^k g(x)$,而 g(x) 不含因式 (x-b). 对 f(x) 求导可发现, $f^{(i)}(x) = (x-b)^{k-i} g_i(x)$,而 $g_i(x)$ 不含因式 所

充分性. 因为 f(b) = 0, 所以 b 是 f(x) 的根, 不妨设 b 是 f(x) 的 l 重根, $l \ge 1$. 若 l < k, 则由必要性可知 $f^{(l)}(b) \ne 0$, 与已知矛盾, 若 l > k, 则由必要性可知 $f^{(k)}(b) = 0$, 与已知矛盾. 所以 l = k.