Inverse, Determinant

Hayk Aprikyan, Hayk Tarkhanyan

Recap:

When you multiply, say, a 2×2 matrix A by a vector $\mathbf{v} \in \mathbb{R}^2$, what you get is another vector $\mathbf{u} = A\mathbf{v} \in \mathbb{R}^2$. We call this \mathbf{u} the **transformed version** of \mathbf{v} (and we say that A is a linear transformation).

As we will see later, the resulting "transformed version" \mathbf{u} is just the same old \mathbf{v} except it is **rotated** and **scaled** to become longer or shorter (and possibly, flipped).

As we will see later, the resulting "transformed version" \mathbf{u} is just the same old \mathbf{v} except it is **rotated** and **scaled** to become longer or shorter (and possibly, flipped).

In this sense, all matrices are either just rotating vectors by some degree, or flipping them horizontally/vertically, or scale them, or do all three.

The key thing is: whatever a matrix "does" to one vector, it does the same to all other vectors too (when being multiplied with them).

Check different matrices yourself:

- visualize-it.github.io/linear_transformations/simulation.html
- www.shad.io/MatVis

As we will see later, the resulting "transformed version" \mathbf{u} is just the same old \mathbf{v} except it is **rotated** and **scaled** to become longer or shorter (and possibly, flipped).

In this sense, all matrices are either just rotating vectors by some degree, or flipping them horizontally/vertically, or scale them, or do all three.

The key thing is: whatever a matrix "does" to one vector, it does the same to all other vectors too (when being multiplied with them).

Check different matrices yourself:

- visualize-it.github.io/linear_transformations/simulation.html
- www.shad.io/MatVis

Now that we know what matrix \times vector multiplication means, what about matrix \times matrix multiplication? Why is it defined the way it is?

《□》《圖》《意》《意》。 集

Suppose $\mathbf{v} \in \mathbb{R}^2$, $A \in \mathbb{R}^{2 \times 2}$, $B \in \mathbb{R}^{2 \times 2}$:

If we apply A on \mathbf{v} , we get a transformed version of \mathbf{v} ,

If we apply A on \mathbf{v} , we get a transformed version of \mathbf{v} , say \mathbf{u} :

Now applying B on \mathbf{u} , we get a transformed version of \mathbf{u} , i.e. $B\mathbf{u}$

Now applying B on \mathbf{u} , we get a transformed version of \mathbf{u} , i.e. $B\mathbf{u} = BA\mathbf{v}$

So what is the product BA? To get $(BA)(\mathbf{v})$, we do:

So what is the product BA? To get $(BA)(\mathbf{v})$, we do:

So what is the product BA? To get $(BA)(\mathbf{v})$, we do:

Hence BA is the linear transformation that we get by **first applying** A, and **then applying** B!

12 / 34

Hence BA is the linear transformation that we get by **first applying** A, and **then applying** B!

(Note that this means that often AB is not the same as BA)

Hence BA is the linear transformation that we get by **first applying** A, and **then applying** B!

(Note that this means that often AB is not the same as BA)

Question

Suppose A is the matrix that rotates the vectors by 30° , B the one that rotates by 50° , and C by 260° .

Hence BA is the linear transformation that we get by **first applying** A, and **then applying** B!

(Note that this means that often AB is not the same as BA)

Question

Suppose A is the matrix that rotates the vectors by 30° , B the one that rotates by 50° , and C by 260° .

What would the product matrix BA be?

Hence BA is the linear transformation that we get by **first applying** A, and **then applying** B!

(Note that this means that often AB is not the same as BA)

Question

Suppose A is the matrix that rotates the vectors by 30° , B the one that rotates by 50° , and C by 260° .

What would the product matrix BA be? What about CBA?

Hence BA is the linear transformation that we get by **first applying** A, and **then applying** B!

(Note that this means that often AB is not the same as BA)

Question

Suppose A is the matrix that rotates the vectors by 30° , B the one that rotates by 50° , and C by 260° .

What would the product matrix BA be? What about CBA?

Which matrix leaves everything in its place (does not touch anything)?

Definition

A matrix is said to be **square** if it has the same number of rows and columns. In other words, an $n \times n$ matrix is a square matrix.

Definition

A matrix is said to be **square** if it has the same number of rows and columns. In other words, an $n \times n$ matrix is a square matrix.

Definition

A square matrix A is **symmetric** if $A^T = A$, i.e., the transpose of A is equal to A.

Definition

A matrix is said to be **square** if it has the same number of rows and columns. In other words, an $n \times n$ matrix is a square matrix.

Definition

A square matrix A is **symmetric** if $A^T = A$, i.e., the transpose of A is equal to A.

Example

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & -3 & 4 \\ 1 & 4 & 6 \end{bmatrix}$$

This matrix is both symmetric and (of course) square.

Definition

The **main diagonal** (or just the **diagonal**) of a matrix A are the terms a_{ii} for which the row and column indices are the same $(a_{11}, a_{22}, ...)$, so from the upper left element to the lower right.

Definition

The **main diagonal** (or just the **diagonal**) of a matrix A are the terms a_{ii} for which the row and column indices are the same $(a_{11}, a_{22}, ...)$, so from the upper left element to the lower right.

Similarly, the other diagonal from the upper right element to the lower left is called the **secondary diagonal**.

14 / 34

Definition

The **main diagonal** (or just the **diagonal**) of a matrix A are the terms a_{ii} for which the row and column indices are the same $(a_{11}, a_{22}, ...)$, so from the upper left element to the lower right.

Similarly, the other diagonal from the upper right element to the lower left is called the **secondary diagonal**.

Aprikyan, Tarkhanyan Lecture 3 14/34

For example, here the main diagonal is marked with red:

$$\begin{bmatrix} \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

For example, here the main diagonal is marked with red:

$$\begin{bmatrix} \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

The secondary diagonal is marked with red:

$$\begin{bmatrix} 0 & 0 & \mathbf{1} \\ 0 & \mathbf{1} & 0 \\ \mathbf{1} & 0 & 0 \end{bmatrix}$$

Definition

The **identity matrix** of $\mathbb{R}^{n \times n}$, denoted as I_n , is the square matrix with ones on the main diagonal and zeros elsewhere.

Applying the identity matrix on vectors does not change them.

Definition

The **identity matrix** of $\mathbb{R}^{n \times n}$, denoted as I_n , is the square matrix with ones on the main diagonal and zeros elsewhere.

Applying the identity matrix on vectors does not change them.

Example

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 is the 3×3 identity matrix.

Definition

The **identity matrix** of $\mathbb{R}^{n \times n}$, denoted as I_n , is the square matrix with ones on the main diagonal and zeros elsewhere.

Applying the identity matrix on vectors does not change them.

Example

$$I_3 = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 is the 3×3 identity matrix.

Therefore, we can say:

Property

For any matrix $A \in \mathbb{R}^{m \times n}$,

$$I_m A = AI_n = A$$

Finally, what if we have a vector in \mathbb{R}^n ,

Finally, what if we have a vector in \mathbb{R}^n , and we accidentally transform it?

How to get back to the original vector?

In other words, in terms of what we learned about matrix multiplication,

what
$$\times A = I$$
 ?

In other words, in terms of what we learned about matrix multiplication,

what
$$\times A = I$$
 ?

We call that matrix the **inverse** of A, and we denote it by A^{-1} .

Aprikyan, Tarkhanyan

In other words, in terms of what we learned about matrix multiplication,

$$A^{-1} \times A = I$$
!

We call that matrix the **inverse** of A, and we denote it by A^{-1} .

Question

Assume the matrix $A \in \mathbb{R}^{n \times n}$ does the following when applied on a vector:

- scales the vector up 2 times in the horizontal direction,
- 2 then rotates it by 30° clockwise,
- then squishes it down 3 times in the vertical direction,
- **4** and then flips it horizontally (around the x-axis) \sim

Question

Assume the matrix $A \in \mathbb{R}^{n \times n}$ does the following when applied on a vector:

- scales the vector up 2 times in the horizontal direction,
- 2 then rotates it by 30° clockwise,
- then squishes it down 3 times in the vertical direction,
- **1** and then flips it horizontally (around the x-axis) \sim

Given $\mathbf{v} = A\mathbf{u}$, could we recover the original \mathbf{u} ?

Question

Assume the matrix $A \in \mathbb{R}^{n \times n}$ does the following when applied on a vector:

- scales the vector up 2 times in the horizontal direction,
- 2 then rotates it by 30° clockwise,
- then squishes it down 3 times in the vertical direction,
- and then flips it horizontally (around the x-axis) \sim

Given $\mathbf{v} = A\mathbf{u}$, could we recover the original \mathbf{u} ?

The answer is yes, i.e. the matrix A has an inverse. As we will see soon, only some square matrices actually have an inverse.

Aprikyan, Tarkhanyan Lecture 3 22 / 34

Definition

The **trace** of a square matrix A, denoted as tr(A), is the sum of the elements on its main diagonal.

$$tr(A) = a_{11} + a_{22} + \ldots + a_{nn}$$

Definition

The **trace** of a square matrix A, denoted as tr(A), is the sum of the elements on its main diagonal.

$$tr(A) = a_{11} + a_{22} + \ldots + a_{nn}$$

Example

lf

$$A = \begin{bmatrix} 2 & 5 & 1 \\ 0 & -3 & 4 \\ 7 & 2 & 6 \end{bmatrix}$$

then

$$tr(A) = 2 + (-3) + 6 = 5$$

Aprikyan, Tarkhanyan

Definition

The **trace** of a square matrix A, denoted as tr(A), is the sum of the elements on its main diagonal.

$$tr(A) = a_{11} + a_{22} + \ldots + a_{nn}$$

Example

lf

$$A = \begin{bmatrix} 2 & 5 & 1 \\ 0 & -3 & 4 \\ 7 & 2 & 6 \end{bmatrix}$$

then

$$tr(A) = 2 + (-3) + 6 = 5$$

Note that only square matrices have a trace.

Trace Properties

For any matrices A and B, and any scalar c, the trace of a matrix satisfies the following properties:

- $\operatorname{tr}(cA) = c \cdot \operatorname{tr}(A)$
- $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
- tr(AB) = tr(BA)
- $\operatorname{tr}(A^T) = \operatorname{tr}(A)$

Determinant Formula

For a 2×2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

the determinant is given by

$$det(A) = ad - bc$$

Determinant Formula

For a 2×2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

the determinant is given by

$$det(A) = ad - bc$$

Example

For the matrix

$$A = \begin{bmatrix} 2 & 5 \\ -3 & 4 \end{bmatrix}$$

the determinant is det(A) = (2)(4) - (5)(-3) = 8 + 15 = 23.

Aprikyan, Tarkhanyan Lecture 3 25 / 34

Determinant Formula

For a 3×3 matrix

$$C = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

the determinant is given by

$$det(C) = aei + bfg + cdh - ceg - bdi - afh$$

Aprikyan, Tarkhanyan

Determinant Formula

For a 3×3 matrix

$$C = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

the determinant is given by

$$det(C) = aei + bfg + cdh - ceg - bdi - afh$$

Forget that formula-remember the algorithm!

Aprikyan, Tarkhanyan

Alternatively,

$$\det A = (a_1 b_2 c_3 + b_1 c_2 a_3 + c_1 a_2 b_3) - (a_3 b_2 c_1 + b_3 c_2 a_1 + c_3 a_2 b_1)$$

Example

For the matrix

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

 $\det(C) = 1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8 - 3 \cdot 5 \cdot 7 - 2 \cdot 4 \cdot 9 - 1 \cdot 6 \cdot 8 = 0$

Example

For the matrix

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$\det(C) = 1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8 - 3 \cdot 5 \cdot 7 - 2 \cdot 4 \cdot 9 - 1 \cdot 6 \cdot 8 = 0$$

But what does the determinant show, and how do we need it?

Aprikyan, Tarkhanyan Lecture 3 29 / 34

If we take, for example, the so-called "unit square" formed by the vectors $\mathbf{e}_1 = [1 \ 0]$ and $\mathbf{e}_2 = [0 \ 1]$, we can see that their transformed versions, $A\mathbf{e}_1$ and $A\mathbf{e}_2$, form a parallelogram:

If we take, for example, the so-called "unit square" formed by the vectors $\mathbf{e}_1 = [1 \ 0]$ and $\mathbf{e}_2 = [0 \ 1]$, we can see that their transformed versions, $A\mathbf{e}_1$ and $A\mathbf{e}_2$, form a parallelogram:

Then det(A) is the area of that parallelogram.

Aprikyan, Tarkhanyan Lecture 3 30 / 34

More generally, after we apply the transformation A (play that animation in your head), the area of *any shape* gets scaled by the factor of det(A):

More generally, after we apply the transformation A (play that animation in your head), the area of *any shape* gets scaled by the factor of det(A):

So the determinant shows how much the matrix scales up everything in average. Note that it is defined **only** for square matrices.

Aprikyan, Tarkhanyan Lecture 3 31 / 34

Determinant Properties

Let $A, B \in \mathbb{R}^{n \times n}$ be square matrices of the same size, and let $c \in \mathbb{R}$ be any scalar. Then:

- $det(cA) = c^n \cdot det(A)$ (where n is the size of the matrix)
- $det(AB) = det(A) \cdot det(B)$ (multiplicativity)
- \bullet $\det(I) = 1$
- If A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$
- $det(A^T) = det(A)$ (invariance under transpose)
- If all numbers on some row or some column of A are zero, then det(A) = 0
- If det(A) < 0, then A flips the space around.

Aprikyan, Tarkhanyan

Determinant Properties

Let $A, B \in \mathbb{R}^{n \times n}$ be square matrices of the same size, and let $c \in \mathbb{R}$ be any scalar. Then:

- $det(cA) = c^n \cdot det(A)$ (where n is the size of the matrix)
- $det(AB) = det(A) \cdot det(B)$ (multiplicativity)
- \bullet det(I) = 1
- ullet If A is invertible, then $\det(A^{-1})=rac{1}{\det(A)}$
- $det(A^T) = det(A)$ (invariance under transpose)
- If all numbers on some row or some column of A are zero, then det(A) = 0
- If det(A) < 0, then A flips the space around.

It would be an exercise of huge importance to attempt proving these properties (except the last three) by playing the matrices in your head.

Finally,

Question

What does it mean if $\det A = 0$?

Finally,

Question

What does it mean if $\det A = 0$?

Finally,

Question

What does it mean if $\det A = 0$?

Theorem

A square matrix A has an inverse if and only if its determinant is not zero.

Formula for 2x2

For a 2×2 invertible matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the inverse A^{-1} can be calculated using the formula:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Aprikyan, Tarkhanyan

Formula for 2x2

For a 2×2 invertible matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the inverse A^{-1} can be calculated using the formula:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Example

Given $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ with det $A = (2 \times 4) - (3 \times 1) = 5$, we can calculate the inverse as follows:

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$$

Aprikyan, Tarkhanyan Lecture 3 34 / 34