Montages de base à AOP - étude en grandeur variable

Montage _____

- 1. On s'intéresse sur cette question au condensateur.
 - (a) Placer la flèche de tension correspondant à v_c , la tension du condensateur **en convention récepteur**.
 - (b) Rappeler la relation entre $v_c(t)$ et $i_c(t)$.
- 2. Quelle relation lie v_+ et v_- en entrée de l'AOP? **Justifiez votre réponse.**
- 3. Que vaut i_- ?
- 4. En déduire $v_{out}\left(t\right)$ en fonction de $v_{in}\left(t\right)$.
- 5. À partir du résultat précédent, retrouver le titre de l'exercice.

On donne pour valeurs numériques : C=150 nF, R=1,8 k Ω .

- 6. La tension d'entrée est sinusoïdale : $v_{in}(t) = A\cos(\omega t + \Phi)$. On considère que à t=0 s la capacité est déchargée ($v_c=0$ V).
 - (a) Exprimer $v_{out}(t)$.
 - (b) Avec A = 2,5 V, $\omega=1600\pi$ rad· s⁻¹ et $\Phi=0$ rad, calculer l'amplitude du signal de sortie.
 - (c) Sur l'espace millimétré suivant, tracer **2 périodes** des signaux d'entrée et de sortie.

- 7. La tension d'entrée est maintenant un signal carré, de tension crête à crête de 2,5 V, de fréquence 500 Hz et d'offset nul. On considère que à t=0 s la capacité est chargée à $v_c=-1$ V.
 - (a) Sur l'espace millimétré ci-dessous, tracer **2 périodes** de $v_{in}(t)$.
 - (b) Calculer les pentes du signal de sortie.
 - (c) Sur l'espace millimétré ci-dessous, tracer $v_{out}\left(t\right)$.

