Mesh Current Analysis

Network reduction technique

Class 5 - 6 November 2021

Introduction

Mesh

A closed path for the flow of current

Kirchhoff's Voltage Law (KVL)

The algebraic sum of voltages in a mesh is zero

Sign Conventions for Kirchoff's Voltage Law (KVL)

Rise in potential, because we are going negative terminal of the battery to postive terminal. Therefore, EMF = + E A B Movement

Fall in potential, because we are going postive terminal of the battery to negative terminal. Therefore, EMF = - E

Fall in potential, because we are going in the direction of current.

Therefore, voltage drop = - IR

Rise in potential, because we are going in opposite direction of current. Therefore, voltage drop = + IR

(a) Sign conventions for emfs

 $+\mathcal{E}$: Travel direction

−E: Travel direction from + to -:

(b) Sign conventions for resistors

+IR: Travel opposite

to current direction:

-IR: Travel in current direction:

Mesh Current Analysis Method

- Transform all the current sources present in the circuit to voltage sources
- Mark different currents in all the independent meshes of the given network
- Write KVL equations for these independent meshes
- Solve for the currents

Determine the power drawn by 2Ω resistor using mesh current analysis

Determine the power drawn by 2Ω resistor using mesh current analysis

Determine the current through the galvanometer "G". Also, write network equations using inspection method

 $I_G = 0.0844 A$

Realize the network defined by mesh current equation

$$\begin{bmatrix} 30 & -20 & 0 \\ -20 & 50 & -20 \\ 0 & -20 & 20 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ -20 \end{bmatrix}$$

Find the power supplied by the 5 A current source. Also, determine the voltage between the points M & N.

•

Quiz

The value of current I in the circuit is

- a) 1 A
- b) 2 A
- c) 0.5 A
- d) 0.25 A

Find the power supplied by 2A current source using mesh current analysis.

Quiz

The current supplied by the voltage source is

- a) 2 A
- b) 3 A
- c) 1 A
- **d)** 0 A

