#### **Project Design Phase-II**

### **Technology Stack (Architecture & Stack)**

| Date                                                                | 17 June 2025       |
|---------------------------------------------------------------------|--------------------|
| Team ID                                                             | LTVIP2025TMID30991 |
| Project Name Sustainable Smart City Assistant Using IBM Granite LLM |                    |
| Maximum Marks                                                       | 4 Marks            |

### **Technical Architecture Description**

The architecture of the **Sustainable Smart City Assistant** is designed using a modular and scalable cloud-based approach. It uses IBM's Watsonx Granite LLM as the core language model for intelligent response generation and content summarization. The application consists of multiple functional components integrated through a user-friendly web interface powered by Gradio and deployed on Google Colab for easy testing and demonstration.

**Table 1: Components & Technologies** 

| S.No | Component              | Description                                                      | Technology                             |
|------|------------------------|------------------------------------------------------------------|----------------------------------------|
| 1    | User Interface         | Frontend where user interacts with the assistant                 | Gradio (Python-based UI)               |
| 2    | Application<br>Logic-1 | Logic to process user inputs, handle file uploads, etc.          | Python                                 |
| 3    | Application Logic-2    | Natural Language Processing and<br>Text Summarization            | IBM Watsonx Granite LLM                |
| 4    | Application<br>Logic-3 | Sustainability Q&A, Eco Tips Generator, Anomaly Detection        | IBM Watsonx Granite LLM                |
| 5    | Database               | Structured data storage (e.g., feedback submissions)             | Pandas DataFrames + Excel (OpenPyXL)   |
| 6    | Cloud Database         | Temporarily handled using local files in Colab (for prototyping) | Local FileSystem (via<br>Google Colab) |
| 7    | File Storage           | Upload & process CSV for forecasting/anomaly detection           | Google Colab Local<br>Filesystem       |
| 8    | External API-1         | PyNgrok used for sharing app via public URL                      | PyNgrok API                            |

| 9  | External API-2            | Not used in current version                    | N/A                                                       |
|----|---------------------------|------------------------------------------------|-----------------------------------------------------------|
| 10 | Machine<br>Learning Model | Used for KPI forecasting and anomaly detection | Linear Regression (Scikit-<br>learn), Statistical Z-Score |
| 11 | Infrastructure            | Deployment & hosting                           | Google Colab (Jupyter<br>Notebook Environment)            |

# **Table 2: Application Characteristics**

| S.No | Characteristics             | Description                                                                            | Technology Used                                         |
|------|-----------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|
| 1    | Open-Source<br>Frameworks   | Open-source libraries for model deployment, UI, and data handling                      | Gradio, Transformers, Scikit-learn, Pandas, PyNgrok     |
| 2    | Security<br>Implementations | Data handled in-memory; no sensitive information stored                                | File restrictions, no external access enabled           |
| 3    | Scalable<br>Architecture    | Modular component-based architecture; each function can be containerized later         | Python Modules, Gradio Tabs (can be scaled via FastAPI) |
| 4    | Availability                | Accessible via Ngrok tunneling in Colab; scalable to any cloud in future               | Google Colab + PyNgrok                                  |
| 5    | Performance                 | Lightweight interface; fast<br>response from IBM Granite LLM<br>(under 3 sec per call) | Transformers Library + IBM Granite Model                |

### **Solution Architecture diagram**



## **Application flow:**

