Merewether High School

<u>Trial Higher School Certificate Examination 1999</u> <u>Mathematics 3U Additional, 4U Common Paper</u>

Time Allowed: 2 hours, plus 5 minutes reading time.

Instructions:

- Marks may be deducted for untidy or poorly arranged work.
- Approved calculators may be used, and the table of standard integrals is provided.
- Show all necessary working a correct answer without appropriate working may not receive full marks.
- Put your student's number on each page.
- START EACH QUESTION ON A NEW SHEET OF PAPER.

QUESTION 1 (12 marks)

(a) Solve for $0 \le x \le 2\pi$

$$\cos 2x - 3\sin x - 2 = 0$$

3

(b) Find
$$\int x\sqrt{1-x} dx$$
, using the substitution $u = 1-x$

3

(c)

(i) Sketch the graph of the function

$$y = 2tan^{-1}x$$

2

- (ii) What value does $2\tan^{-1}x$ approach as x increases indefinitely?
- 1

(iii) Find the exact equation of the tangent to the curve

$$y = 2tan^{-1}x$$
, at the point where $x = 1$.

3

QUESTION 2 (12 marks)

(a) Solve $x + \frac{1}{x} \ge 2$

2

- (b) Find:
 - (i) $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$

2

(ii) $\int \frac{x \cdot dx}{x^2 + 1}$

2

(c) If α , β and γ are the roots of the equation

$$2x^3 + 6x - 3 = 0,$$

find the value of:

(i) $\alpha+\beta+\gamma$, $\alpha\beta+\alpha\gamma+\beta\gamma$ and $\alpha\beta\gamma$

3

(ii) $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$

3

QUESTION 3 (12 marks)

- (a) Find the derivative, with respect to x, of
 - (i) $\log_{c}(\cos^{-1}x)$

2

(ii) $\sin^{-1}5x$

2

(b)Use Mathematical Induction to prove that for all positive integral values of n:

$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n \times (n+1) = \frac{n(n+1)(n+2)}{3}$$

QUESTION 3 continued

- (b) The area under the curve $y = \sin x$ between x = 0 and $x = \frac{\pi}{4}$ is rotated about the x-axis through one complete revolution. Find the volume of the solid formed, to one decimal place.
- 3

OUESTION 4 (12 marks)

- (a) Find the acute angle between the straight lines 2y x + 1 = 0 and y = 5x + 2, giving the answer correct to the nearest degree.
- (b) A is the point (-2,-1) and B is the point (1,5). Find the co-ordinates of the point Q, which divides the interval AB externally in the ratio 5:3
- (c) (i) Express $7\cos\theta \sin\theta$ in the form $R\cos(\theta + \alpha)$, where R>0 and $0^{\circ} \le \alpha \le 90^{\circ}$
 - (ii) Hence solve 7cosθ sinθ = 5 for 0° ≤ θ ≤ 360°, giving answers to the nearest degree.
- (c) Evaluate exactly $\int_{0}^{1} (e^{-x} + \frac{1}{1+x} \frac{1}{\sqrt{1-x^2}}) dx$

QUESTION 5 (12 marks)

(a)

The tangent at T on the circle meets a chord AB produced at P. The bisector of (TPA meets TA and TB at X and Y respectively.

(i) Give the reason why
$$\angle PTB = \angle TAB$$

(ii) Prove that
$$TX = TY$$
.

(iii) Prove that
$$\frac{TX}{XA} = \frac{TP}{PA}$$

(b) In how many ways can a train of nine carriages be arranged if four of the carriages (A,B,C, D):

(ii) must be kept together but in any order?

(c) (i) Expand
$$tan(\alpha + \beta)$$

(ii) If tanA and tanB are the roots of the equation

$$3x^2 - 5x - 2 = 0$$

find the value of tan(A + B).

QUESTION 6 (12 marks)

- (a) The tangent at P $(2ap,ap^2)$ on the parabola $x^2 = 4ay$ meets the x-axis in T. The normal at P meets the y-axis in N.
- (i) Find the co-ordinates of M, the midpoint of TN. The equations of the tangent and the normal need NOT be derived.
- (ii) Show that the locus of M is the parabola $x^2 = \frac{a}{2}(y a).$
 - 2 "
- (b) A circular oil slick lies on the surface of calm water. Its area is increasing at the rate of 12 m²/min. At what rate is the radius increasing at the time at which the radius is 3 metres?
- (c) Find $\frac{d}{dx}(\sqrt{1-x^2} + x \sin^{-1} x)$. Hence evaluate $\int_{0}^{\frac{1}{2}} \sin^{-1} x dx$ correct to three significant figures.

OUESTION 7 (12 marks)

(a) A certain particle moves along the x-axis according to the law

$$t = 2x^2 - 5x + 3$$

where x is measured in centimetres and t in seconds. Initially the particle is 1.5 cm to the right of the origin O and moving away from O.

(i) Prove that the velocity, v cms⁻¹, is given by

$$v = \frac{1}{4r - 5}$$

- (ii) Find an expression for the acceleration, a cms⁻², in terms of x. 2
- (iii) Find the velocity of the particle when t = 6 seconds.

3

QUESTION 7 continued

(d) A particle is moving in Simple Harmonic Motion with acceleration

$$\dot{x} = -4x \text{ mms}^{-2}$$

If the particle starts at the origin with a velocity of 8 mms⁻¹.

(i) State its period

1

(i) Find its displacement after $\frac{\pi}{3}$ seconds.

4

99 30 Trial HSC - SOLUTIONS

1. a) $\cos 2x - 3ain x - 2 = 0$ $(1-2ain^2x) - 3ain x - 2 = 0$ $3ain^2x + 3ain x + 1 = 0$ (2ain x + 1)(ain x + 1) = 0 $ain x = -\frac{1}{2}, -1$ $\therefore x = \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{3\pi}{2}$

b) $I = \int x\sqrt{1-x} \cdot dx$ $|at \quad u = 1-x \implies x = 1-u$ $\therefore du = -1 \cdot dx$ $\therefore I = \int (1-u)\sqrt{u} \cdot -du$ $= \int u^{\frac{3}{2}} - u^{\frac{1}{2}} du$

 $=\frac{2}{5}u^{\frac{5}{5}}-\frac{2}{5}u^{\frac{3}{2}}+c$

 $= 2(1-x)^{\frac{5}{4}} - 2(1-x)^{\frac{3}{4}} + c$

(") ao $x \rightarrow \infty$, $2\tan^{-1}x \rightarrow 2$ (") at x = 1 $y = 2\tan^{-1}1$ = IT also dy = $\frac{2}{1+x^2}$

 $\frac{\partial x}{\partial x} = \frac{\partial x}{\partial x} =$

y- = 1 y- = x-1 : y = x-1 + = is egh of tange

2 a) $z + \frac{1}{x} \geqslant 2$ $x \neq 0$ Solve $z + \frac{1}{x} = 2$

 $\frac{x^2 + 1 = 2x}{x^2 - 2x + 1 = 0}$

 $(x-1)^{2} = 0$ x = 1Craph * test

 $x = -1 \qquad x = \pm \qquad x = 2$

False True True

.: x>0 is the solution

b) (1) $I = \int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}}$ $= \left[\sin^{-1}x \right]_{0}^{1}$ $= \sin^{-1}1 - \sin^{-1}0$ $= \frac{\pi}{2}$

(II) $I = \int \frac{x}{x^{2}+1} dx$ $= \frac{1}{2} \int \frac{2x}{x^{2}+1} dx$ $= \frac{1}{2} \ln(x^{2}+1) + C$

c)
$$2x^3 + 0x^2 + 6x - 3 = 0$$

(1) $\alpha + \beta + \delta = -\frac{1}{2} = -\frac{0}{2} = 0$

$$\alpha\beta + \alpha\delta + \beta\delta = \frac{6}{6} = \frac{6}{5} = 3$$

$$\alpha\beta\delta = -\frac{1}{6} = -\frac{3}{2} = 1\frac{1}{2}$$

3. a) (1)
$$f(x) = \ln(\cos^{-1}x)$$

$$f'(x) = \frac{1}{\cos^{-1}x} \sqrt{1-x^{2}}$$

$$= \frac{-1}{\cos^{-1}\chi \cdot \sqrt{1-\chi^{2}}}$$

(11)
$$f(x) = 0 \cdot n^{-1} 5 x$$

 $f'(x) = \frac{1}{\sqrt{1 - 25x^{2}}} \times 5$

$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

Step 1 Test
$$S(1)$$

 $LHS = 1 \times 2 = 2$
 $RHS = 1(1+1)(1+2) = \frac{6}{3} = 2$

Step 3: Test
$$S(K+1)$$
He Is $1 \times 2 + 2 \times 3 + \dots + (K+1)(K+2) = \frac{(K+1)(K+2)(K+3)}{3}$

$$2HS = 1 \times 2 + 2 \times 3 + \cdots + k(k+1) + (k+1)(k+2)$$

$$= \frac{k(k+1)(k+2) + (k+1)(k+2)}{3}, \text{ from } (2)$$

$$= \frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}$$

$$V = \pi \int_{a}^{y} \frac{y^{2} dx}{x^{2}}$$

$$= \pi \int_{a}^{\pi} \sin^{2}x \, dx$$

$$= \pi \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} (1 - \cos 2x) dx$$

$$= \pi \left[x - \frac{\sin 2x}{2} \right]_{0}^{\frac{\pi}{4}}$$

$$= \pi \left[\pi - \frac{\sin \pi}{4} - 0 + \sin 0 \right]$$

$$= \pi \left[\pi - \frac{1}{2} \right]$$

$$= 0.05 \text{ units}^{3} (2 \text{ duc. pl.})$$

$$4. a) \quad y = \pm x - \pm 2$$

$$\therefore m_{1} = \pm 1$$

$$y = 5x + 2$$

$$\therefore m_{2} = 5$$

$$\tan 0 = \left| \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}} \right|$$

$$= \left| \frac{1}{2} - 5 \right|$$

$$= 1/7$$

$$\therefore 0 = 52^{\circ} (\text{meanot degree})$$

$$= 1/7$$

$$\therefore x = \frac{kx_{2} + lx_{1}}{k + l}$$

$$= \frac{5x_{1} + 3x_{2}}{5 + 3}$$

$$= 5 \pm 1$$

$$y = \frac{ky_{2} + ly_{1}}{k + l}$$

$$= \frac{5x_{3} + 3x_{2}}{5 + 3}$$

$$= 14$$

$$\therefore 0 \approx (5\frac{1}{2}, 14)$$

```
c) let 7000-sino = R coo(0+0)
          = Rcosocoox - Rsinosind
 . . Reod = 7
     Reind = 1
  .. R2cos2d+ R2m2d = 49+1
           R = 550 , R>0
  also Rand = 1
Roose 7
 3 5/2 cm (0+808') = 5
        Cos (0+8°8') = /2
... (0 + 8°8') = 45°, 3/5°
           0 = 37°, 307° (meanst degr
    = [-e-x + ln(1+x)-sin-x]
 = (-e-1 + lnz - sin +) - (-e0 + ln1 - sin 0
= -1 + ln2 - II + 1
```


- (1) The angle between a tangent and a chord of contact is equal to the angle in the alternate segment
- (11) In D's AXP and TYP,

 3 LPTB = LTAB from (1)

 LTPY = LXPA (PX bisector of LTPA, data)

 AXP | ATYP (2prs corr. L's equal)

.. LAXP = LTYP (3rd L sim d's) LTXY = L 180°-LAXP (L's st. Line)

and LTYX = <180°-LTYP (L's st. line)

.. LTXY = LTYX

DTXY is isoscles (base Lt equal)

·· TX =TY (equal sides 2005. a)

(III) Since D'S AXP & TPY are similar from (II),

Beach sides are in same nation

18 TY = TP

XA PA

But TY = TX from (11)

 $\frac{T \times T}{XA} = \frac{TP}{PA}$

b)(1) ABCD 15 / arrangement.
ARCD one at the end +5 other
carrages must be arrange at the
front.
$N_{\underline{o}}$ of ways = 5. ×1
= 120
(11) A,B, Cand D can be arranged 2
in 4. Ways.
there are 6 objects) to be award
No of ways = 6.x4. 2880 5.x4.
= 17.280 Pay 1
The same and the s
c) tan(a+B) = tana + tanB
$(n) \frac{3x^2 - 5x - 2 = 0}{3x^2 - 5x - 2}$
(x-2)(3x+1)=0
$x = 2, -\frac{1}{3}$
Let lan A be 2 tan B be -3
tan (A+B) = tanA + tanB 1 - tanAtanB
and the second control of the second control
$=\frac{2+-\frac{1}{3}}{1-2\times-\frac{1}{3}}$
= 13/3
- <u>†</u>
•
Note same answer if tan A is 3, tan Bis
· · · · · ·
or taA+TaB = 3/3 tan A taB = -1/3

tangent at P is y-px+apt=0 let 4 = 0 1e -px + ap2 = 0

.. T is (ap, 0)

normal at Pis x+py = ap3+2ap

let x = 0 1e py = ap3 + 2ap

4 = ap2 + 2a .. N is (0, ap2+2a)

: Mis (op+0, 0+ap2+20)

1e (ap, ap+20)

(11) parametric equations of Locusoft an x = ap

y = 0p2 + 20.

from (1) p = 2x

sub. into (11)

 $y = a\left(\frac{2x}{a}\right)^2 + 2a$

 $2y = \frac{4ax}{a^2} + 2a$

2y = 4x2 + 2a

2ay = 4x + 2a >

.. 4x2 = 2ay - 20.2

4x2 = 2a(y-a)

x = 2a (y - a)

· X = & (y-a) is Cortesian

equation of the locus of M.

b) A = TTr2

.. dA = 2TTr given that dA = 12, find dr out

dr = dr x dA by the Chain Rule

 $=\frac{1}{2\pi}\times 12$

 $\frac{dr = \frac{1}{2\pi(3)} \times 12}{dt = 2\pi(3)}$

.: radius is increasing at 2 m/min

C) Exp = d (VI-XV + x sun x)

= $\frac{1}{5}(1-x^2)x-2x+sin^2x+xx$ /

 $= \frac{-x}{\sqrt{1-x^2}} + am^2x + \frac{x}{\sqrt{1-x^2}}$

= sin'x

.. I = \int pun - x dx

= [VI-x2 + zpin-x]2

= (\frac{3}{2} + \frac{1}{2} = (\sqrt{1} + 0 ain 6)

 $= \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{\pi}{6} - 1$ $=\frac{\sqrt{3}}{5}+\frac{11}{12}-1$

= 0.128_to 3 sig. fig.

7. a)
$$\mathcal{L} = 2x^2 - 5x + 3$$

(1)
$$dt = 4x - 5$$

$$\therefore \frac{dx}{dt} = \frac{1}{4x-5}$$

$$\therefore V = \frac{1}{4x-5}$$

(ii)
$$\frac{\alpha^{2}x}{dx^{2}} = \frac{d}{dx} \left(\frac{1}{2} v^{2} \right)$$
$$= \frac{d}{dx} \left(\frac{1}{2} \cdot \frac{1}{(4x-5)^{2}} \right)$$

$$=\frac{1}{2}\times-2(4x-5)^{-3}\times4$$

$$=\frac{-4}{(4x-5)^3}$$

$$a = \frac{-4}{(4x-5)^3}$$

$$2x^{2}-5x-3=0$$

But
$$\frac{1}{4x-5} \neq 0$$

.. v #0

. particle doesn't change direction

it starts at x=1.5 + moves right

$$\underline{at \times = 3} \quad V = \frac{1}{4(3)-5}$$

. relocity to fcm.s when t=65.

7. d)
$$\ddot{x} = -4x$$

(1) period =
$$\frac{211}{n}$$

= $\frac{217}{2}$

(11)
$$\ddot{\chi} = \frac{d}{dx} (\frac{1}{2}V^2)$$

$$\int_{2}^{2} \sqrt{x} = \int_{-4}^{2} 4x \, dx$$
$$= -2x^{2} + C$$

$$\frac{1}{2}\sqrt{2} = -2x^{2} + 32$$

$$v^2 = 64 - 4x^2$$

$$V = \pm \sqrt{64 - 4x^2}$$

$$V = 2\sqrt{16-x^2}$$

$$\frac{dx}{dt} = 2\sqrt{16-x^2}$$

$$\frac{dt}{dx} = \frac{1}{2} \cdot \frac{1}{\sqrt{16-x^2}}$$

$$: \dot{t} = \frac{1}{2} \sin^{-1} \frac{x}{4} + k$$

$$...$$
 $0 = 0 + k$

$$\frac{x}{4} = \sin 2t$$

at
$$L=II$$

 $x = 4 \sin 2II$

$$= 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3}$$

= 4 × 13 = 2/3 : displacement is 2/3 mm after If s