0.1 线性空间

定理 0.1 (Lie 映射经典性质)

给定 $A \in \mathbb{C}^{n \times n}$, 定义 $l_A : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$, $X \to AX - XA$, 我们有

- 1. A 所有特征值相同等价 l_A 幂零.
- 2. l_A 可对角化等价于 A 可对角化.

 iggree 笔记 一个处理本题的经典技巧是考虑 I_A 在基 $\{E_{11},E_{12},\cdots,E_{1n},E_{21},\cdots,E_{2n},\cdots,E_{n1},\cdots,E_{nn}\}$ 下的表示矩阵 形如 $A\otimes I-I\otimes A^T$, 但我们引入的考虑自然同构的技巧可以完美且简洁的替代这个方法.

 $\stackrel{ extbf{S}}{ extbf{Y}}$ 笔记 考虑线性映射 $l:\mathbb{C}^{n\times n} o \operatorname{End}(\mathbb{C}^{n\times n}), A\mapsto l_A$,则从证明可以看到

$$\ker l = \{A \in \mathbb{C}^{n \times n} : A$$
 是数量矩阵 $\}$.

证明 1. 必要性: 若 A 所有特征值相同,则对 $\lambda \neq 0$,

$$l_A X = \lambda X \Leftrightarrow AX = X(\lambda E + A)$$

显然 $A,A+\lambda E$ 没有公共特征值, 由命题??知我们知道 $l_AX=\lambda X$ 只有 0 解. 现在 l_A 特征值全为 0 知 l_A 是幂零矩阵.

充分性: 若 A 有两个不同特征值 $\lambda_1, \lambda_2 \in \mathbb{C}$, 则 A 和 $(\lambda_2 - \lambda_1)E + A$ 有公共特征值 λ_2 . 于是由命题??, 存在 $X_0 \in \mathbb{C}^{n \times n} \setminus \{0\}$ 使得

$$AX_0 = X_0((\lambda_2 - \lambda_1)E + A).$$

于是 $l_A X_0 = (\lambda_2 - \lambda_1) X_0$. 这表明 l_A 有非 0 特征值, 这就是一个矛盾! 故 A 所有特征值相同.

2. **充分性**: 若 A 可对角化, 可不妨设 A 是对角矩阵, 这是因为设可逆矩阵 $P \in \mathbb{C}^{n \times n}$ 使得 $P^{-1}AP = \tilde{A}$ 为对角矩阵, 那么注意到交换图

$$\begin{array}{ccc}
\mathbb{C}^{n\times n} & \xrightarrow{l_A} & \mathbb{C}^{n\times n} \\
\downarrow^{\tau} & & \downarrow^{\tau} \\
\mathbb{C}^{n\times n} & \xrightarrow{l_{\tilde{A}}} & \mathbb{C}^{n\times n},
\end{array}$$

这里 $\tau(X) = P^{-1}XP, \forall X \in \mathbb{C}^{n \times n}$. 从而

$$\begin{split} \tau \circ l_A\left(X\right) &= P^{-1}\left(AX - XA\right)P = \widetilde{A}P^{-1}XP - P^{-1}XP\widetilde{A}. \\ l_{\widetilde{A}} \circ \tau\left(X\right) &= \widetilde{A}P^{-1}XP - P^{-1}XP\widetilde{A}. \end{split}$$

又因为 τ 可逆, 所以 $l_A = \tau^{-1} \circ l_{\tilde{A}} \circ \tau \sim l_{\tilde{A}}$. 换言之, 在同构 τ 下, l_A , $l_{\tilde{A}}$ 应该 (在相似下) 有相同的线性代数性质, 所以我们可以不妨设 A 为对角矩阵. 不妨设

$$A = \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}, \lambda_i \in \mathbb{C}, i = 1, 2, \cdots, n$$

于是直接计算表明

$$l_A(E_{ij}) = (\lambda_i - \lambda_j)E_{ij}, \forall i, j \in \{1, 2, \dots, n\}$$

这就证明了 I_A 是可对角化的.

必要性: 运用 Jordan 分解, 我们知道 A = B + C, B 可对角化, C 幂零, BC = CB, 则 $l_A = l_B + l_C$. 由充分性知 l_B 可对角化, 由第一问知 l_C 幂零. 由 BC = CB, 容易验证 $l_C \circ l_B = l_B \circ l_C$, 于是我们知道 $l_A = l_B + l_C$ 这是 l_A 的 Jordan 分解. 现在 $l_A = l_A + 0$ 也是一个 Jordan 分解, 故由 Jordan 分解的唯一性知 $l_B = l_A$, $l_C = 0$. 现在 CX = XC, $\forall X \in \mathbb{C}^{n \times n}$, 由命题??(2), 我们知道 C 为数量矩阵, 所以结合 C 幂零, 我们知道 C = O, 故 A = B 可对角化, 这就完成了证明.

例题 0.1

1. 设 $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{k \times p}$, 考虑 $T_{A,B} : \mathbb{C}^{n \times k} \to \mathbb{C}^{m \times p}, X \mapsto AXB$, 求

 $\dim \operatorname{Ker} T_{A,B}, \dim \operatorname{Im} T_{A,B}$.

2. 设 $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{k \times p},$ 求 $T_{A,B} : \mathbb{C}^{n \times k} \to \mathbb{C}^{m \times p}, X \mapsto AXB$ 在基

$$\{E_{11}, E_{12}, \cdots, E_{1k}, E_{21}, \cdots, E_{2k}, \cdots, E_{n1}, \cdots, E_{nk}\}$$

和基

$$\{E_{11}, E_{12}, \cdots, E_{1p}, E_{21}, \cdots, E_{2p}, \cdots, E_{m1}, \cdots, E_{mp}\}$$

下的表示矩阵.

证明

1. 考虑等价标准型

$$PAQ = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}, RBS = \begin{pmatrix} E_s & 0 \\ 0 & 0 \end{pmatrix} \tag{1}$$

于是记

$$\widetilde{T_{A,B}} = T \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} E_s & 0 \\ 0 & 0 \end{pmatrix}, \tau : \mathbb{C}^{n \times k} \to \mathbb{C}^{n \times k}, X \mapsto Q^{-1}XR^{-1}, \tau' : \mathbb{C}^{m \times p} \to \mathbb{C}^{m \times p}, X \mapsto PXS$$

就有交换图

$$\begin{array}{ccc}
\mathbb{C}^{n\times k} & \xrightarrow{T_{A,B}} & \mathbb{C}^{m\times p} \\
\downarrow^{\tau} & & \downarrow^{\tau'} & \cdot \\
\mathbb{C}^{n\times k} & \xrightarrow{T_{A,B}} & \mathbb{C}^{m\times p}
\end{array}$$

容易验证在同构映射 τ,τ' 下, $T_{A,B}$ 和 $T_{A,B}$ 等价,从而 $T_{A,B}$ 和 $T_{A,B}$ 在等价下)有相同的线性代数性质. 故可不妨设

$$A = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} E_s & 0 \\ 0 & 0 \end{pmatrix}$$

于是对 $X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$, $X_1 \in \mathbb{C}^{r \times s}$, 我们有

$$T_{A,B}(X) = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow \dim \operatorname{Im} T_{A,B} = rs,$$

以及

$$T_{A,B}(X) = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} \stackrel{\text{\sharp \sharp \sharp }}{\Longrightarrow} \dim \operatorname{Ker} T_{A,B} = nk - rs.$$

2. 注意到

$$(A \otimes B^T)_{((t-1)p+r,(t'-1)k+r')} = a_{tr}b_{r'r}, 1 \le t \le m, 1 \le t' \le n, 1 \le r \le k, 1 \le r' \le \ell$$

现在表示矩阵 $\widetilde{T}_{A,B}$ 的 ((t-1)p+r,(t'-1)k+r') 元为

$$(T_{A,B}(E_{t'r'})_{(tr)} = (AE_{t'r'}B)_{(tr)} = a_{tr}b_{r'r} = (A \otimes B^T)_{((t-1)p+r,(t'-1)k+r')}$$

因此, 我们知道 $\widetilde{T}_{AB} = A \otimes B^T$.

例题 0.2 设 $A \in \mathbb{C}^{n \times n}$, 证明: $\varphi : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$, $X \mapsto AXA$ 可对角化的充要条件是 A 可对角化.

笔记 下述证明只考虑了 $J_{n_1}(\lambda_1)$ 对应的 α_i 和 $J_{n_1}(\lambda_1)$ 对应的 β_j^T 的乘积构成的子空间,得到特征值 λ_1^2 .实际上,我们可以类似地考虑 $J_{n_i}(\lambda_i)$ 对应的 α_i 和 $J_{n_j}(\lambda_j)$ 对应的 β_j^T 的乘积构成的子空间,这样得到特征值就是 $\lambda_i\lambda_j$. 这些子空间合起来就是 A 对角化的过渡矩阵,并且 A 的所有特征值就是 $\lambda_i\lambda_i$.

证明 因为命题??知 $A \sim A^T$, 所以存在

$$P = {\alpha_1, \alpha_2, \cdots, \alpha_n}, Q = {\beta_1, \beta_2, \cdots, \beta_n} \in \mathbb{C}^{n \times n}$$

是可逆矩阵并使得 $P^{-1}AP=Q^{-1}A^TQ$ 是相似标准型. 由命题 $\ref{eq:property}$ $\alpha_i\beta_j^T, 1 \leq i,j \leq n$ 必然线性无关.

当 A 可对角化,设

$$A\alpha_i = \lambda_i \alpha_i, A^T \beta_j = \lambda_j \beta_j, i, j = 1, 2, \cdots, n$$

我们有

$$\varphi(\alpha_i \boldsymbol{\beta}_j^T) = A \alpha_i \boldsymbol{\beta}_j^T A = \lambda_i \lambda_j \alpha_i \boldsymbol{\beta}_j^T, 1 \leq i, j \leq n$$

这就证明了 φ 有 n^2 个线性无关的特征向量从而可对角化.

反之, 当 φ 可对角化, 若A不可对角化, 设P, Q 可逆, 且

$$P^{-1}AP = \operatorname{diag}\{J_{n_1}(\lambda_1), J_{n_2}(\lambda_2), \cdots, J_{n_s}(\lambda_s)\}, n_1 > 1,$$

$$Q^{-1}A^TQ = \operatorname{diag}\{J_{n_1}(\lambda_1), J_{n_2}(\lambda_2), \cdots, J_{n_s}(\lambda_s)\}, n_1 > 1,$$

$$P = (\alpha_1, \alpha_2, \cdots, \alpha_n), Q = (\beta_1, \beta_2, \cdots, \beta_n).$$

考虑 $U \triangleq \operatorname{span}\{\alpha_i \beta_i^T : 1 \leq i, j \leq n_1\}$, 注意到

$$A\left(\alpha_{1},\alpha_{2},\cdots,\alpha_{n_{1}}\right) = \left(\alpha_{1},\alpha_{2},\cdots,\alpha_{n_{1}}\right)J_{n_{1}}\left(\lambda_{1}\right), \quad A^{T}\left(\beta_{1},\beta_{2},\cdots,\beta_{n_{1}}\right) = \left(\beta_{1},\beta_{2},\cdots,\beta_{n_{1}}\right)J_{n_{1}}\left(\lambda_{1}\right).$$

$$\Rightarrow A\alpha_{i} = \alpha_{i-1} + \lambda_{1}\alpha_{i}, \quad A^{T}\beta_{i} = \beta_{i-1} + \lambda_{1}\beta_{i}, \quad 2 \leqslant i \leqslant n_{1}.$$

于是

$$\begin{split} \varphi(\alpha_1\beta_1^T) &= A\alpha_1\beta_1^T A = \lambda_1^2\alpha_1\beta_1^T \\ \varphi(\alpha_1\beta_j^T) &= A\alpha_1\beta_j^T A = \lambda_1\alpha_1\beta_{j-1}^T + \lambda_1^2\alpha_1\beta_j^T, 2 \leq j \leq n_1 \\ \varphi(\alpha_i\beta_1^T) &= A\alpha_i\beta_1^T A = \lambda_1\alpha_{i-1}\beta_1^T + \lambda_1^2\alpha_i\beta_1^T, 2 \leq i \leq n_1 \\ \varphi(\alpha_i\beta_j^T) &= A\alpha_i\beta_j^T A = \alpha_{i-1}\beta_{j-1}^T + \lambda_1\alpha_{i-1}\beta_1^T + \lambda_1\alpha_1\beta_{j-1}^T + \lambda_1^2\alpha_i\beta_j^T, 2 \leq i, j \leq n_1 \end{split}$$

即 U 是 φ — 不变子空间. 由引理**??**知 $\varphi|_U$ 可对角化. 在基 $\{\alpha_1\beta_1^T, \alpha_1\beta_2^T, \cdots, \alpha_1\beta_{n_1}^T, \alpha_2\beta_1^T, \alpha_2\beta_2^T, \cdots, \alpha_2\beta_{n_1}^T, \cdots, \alpha_{n_1}\beta_1^T, \alpha_{n_1}\beta_2^T, \cdots, \alpha_{n_1}\beta_{n_1}^T\}$ 下 $\varphi|_U$ 的表示矩阵形如对角线为 λ_1^2 的上三角矩阵且不是对角矩阵, 这就和 $\varphi|_U$ 可对角化矛盾! 我们完成了证明.

例题 0.3 设 $A, B \in \mathbb{C}^{n \times n}, \varphi : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}, X \mapsto AX - XB$. 证明: φ 可对角化的充要条件是 A, B 可对角化. 证明 $\exists A, B$ 可对角化, 设

$$A\alpha_i = \lambda_i \alpha_i, B^T \beta_i = \mu_i \beta_i, \lambda_i, \mu_i \in \mathbb{C}, \alpha_i, \beta_i \in \mathbb{C}^n \setminus \{0\}, i = 1, 2, \cdots, n$$

且 $\{\alpha_i\}_{i=1}^n, \{\beta_i\}_{i=1}^n$ 是两组线性无关的向量组. 由命题**??**知 $\alpha_i\beta_j^T, 1 \leq i, j \leq n$ 必然线性无关. 现在

$$\varphi(\alpha_i \beta_j^T) = A \alpha_i \beta_j^T - \alpha_i \beta_j^T B = (\lambda_i - \mu_j) \alpha_i \beta_j^T, i, j = 1, 2, \cdots, n$$

即我们证明了φ可对角化且特征值为

$$\lambda_i - \mu_i, i, j = 1, 2, \cdots, n$$

若 A,B有一个不可对角化,不妨设 A 不可对角化. 于是可设可逆矩阵 $P=\{\alpha_1,\alpha_2,\cdots,\alpha_n\},Q=\{\beta_1,\beta_2,\cdots,\beta_n\}\in\mathbb{C}^{n\times n}$ 使得

$$P^{-1}AP = \operatorname{diag}\{J_{n_1}(\lambda_1), J_{n_2}(\lambda_2), \cdots, J_{n_s}(\lambda_s)\}, n_1 > 1,$$

$$Q^{-1}B^TQ = \operatorname{diag}\{J_{m_1}(\mu_1), J_{m_2}(\mu_2), \cdots, J_{m_t}(\mu_t)\}.$$

设

$$L \triangleq \operatorname{span}\{\alpha_i \beta_j^T : 1 \le i \le n_1, 1 \le j \le m_1\}$$

由命题??知 $\alpha_i\beta_i^T: 1 \leq i \leq n_1, 1 \leq j \leq m_1$ 是 L 的基.

现在

$$\begin{split} \varphi(\alpha_1\beta_1^T) &= A\alpha_1\beta_1^T - \alpha_1\beta_1^T B = (\lambda_1 - \mu_1)\alpha_1\beta_1^T \\ \varphi(\alpha_1\beta_j^T) &= A\alpha_1\beta_j^T - \alpha_1\beta_j^T B = -\alpha_1\beta_{j-1}^T + (\lambda_1 - \mu_1)\alpha_1\beta_j^T, 2 \leq j \leq m_1 \\ \varphi(\alpha_i\beta_1^T) &= A\alpha_i\beta_1^T - \alpha_i\beta_1^T B = \alpha_{i-1}\beta_1^T + (\lambda_1 - \mu_1)\alpha_i\beta_1^T, 2 \leq i \leq n_1 \\ \varphi(\alpha_i\beta_1^T) &= A\alpha_i\beta_1^T - \alpha_i\beta_1^T B = \alpha_{i-1}\beta_1^T - \alpha_i\beta_{j-1}^T + (\lambda_1 - \mu_1)\alpha_i\beta_j^T, 2 \leq i \leq n_1, 2 \leq j \leq m_1 \end{split}$$

现在 $L \neq \varphi$ -不变子空间且在基

$$\{\alpha_1\beta_1^T, \alpha_1\beta_2^T, \cdots, \alpha_1\beta_{m_1}^T, \alpha_2\beta_1^T, \alpha_2\beta_2^T, \cdots, \alpha_2\beta_{m_1}^T, \cdots, \alpha_{n_1}\beta_1^T, \alpha_{n_1}\beta_2^T, \cdots, \alpha_{n_1}\beta_{m_1}^T\}$$

下 $\varphi|_L$ 的表示矩阵形如对角线为 $\lambda_1 - \mu_1$ 的上三角矩阵且不是对角矩阵, 即 $\varphi|_L$ 不可对角化. 由引理**??**可知 $\varphi|_L$ 可对角化, 矛盾! 我们完成了证明.

例题 **0.4** 设 $A \in \mathbb{C}^{n \times n}$, $\varphi : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$, $X \mapsto AX$. 证明: φ 可对角化的充要条件是 A 可对角化.

证明 充分性: 设可逆矩阵 $P \in \mathbb{C}^{n \times n}$, 考虑 $\psi : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$, $X \mapsto PX$, 则

$$\psi^{-1}\circ\varphi\circ\psi(X)=P^{-1}APX,\forall X\in\mathbb{C}^{n\times n}$$

故不妨设 A 为相似标准型. 因此若

$$A = \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}, \lambda_i \in \mathbb{C}, i = 1, 2, \cdots, n$$

则 $\varphi(E_{ij}) = \lambda_i E_{ij}, i, j = 1, 2, \dots, n$. 在基

$$\{E_{11}, E_{12}, \cdots, E_{1n}, E_{21}, \cdots, E_{2n}, \cdots, E_{n1}, \cdots, E_{nn}\}$$

下的矩阵为对角矩阵.

必要性: 设可逆矩阵 $P = \{\alpha_1, \alpha_2, \cdots, \alpha_n\} \in \mathbb{C}^{n \times n}$ 使得

$$P^{-1}AP = \text{diag}\{J_{n_1}(\lambda_1), J_{n_2}(\lambda_2), \cdots, J_{n_s}(\lambda_s)\}, n_1 > 1$$

设

$$L \triangleq \operatorname{span}\{\alpha_i \alpha_i^T : 1 \le i, j \le n_1\}$$

我们有

$$\begin{split} &A\alpha_1\alpha_j^T = \lambda_1\alpha_1\alpha_j^T, 1 \leq j \leq n_1 \\ &A\alpha_i\alpha_j^T = \alpha_{i-1}\alpha_j^T + \lambda_i\alpha_i\alpha_j^T, 2 \leq i \leq n_1, 1 \leq j \leq n_1 \end{split}$$

即 L 是 φ 不变子空间. 由引理??知 $\varphi|_L$ 可对角化. 由命题??知 $\alpha_i\alpha_i^T, 1 \leq i, j \leq n_1$ 必然线性无关.

在基 $\{\alpha_1\alpha_1^T, \alpha_1\alpha_2^T, \cdots, \alpha_1\alpha_{n_1}^T, \alpha_2\alpha_1^T, \alpha_2\alpha_2^T, \cdots, \alpha_2\alpha_{n_1}^T, \cdots, \alpha_{n_1}\alpha_1^T, \alpha_{n_1}\alpha_2^T, \cdots, \alpha_{n_1}\alpha_{n_1}^T\}$ 下 $\varphi|_L$ 的表示矩阵形如 对角线为 λ_1 的上三角矩阵且不是对角矩阵, 这就和 $\varphi|_L$ 可对角化矛盾! 我们完成了证明.