# X1500 IoT Application Processor

**Data Sheet** 

Release Date: Feb. 8, 2017



**X1500 IoT Application Processor** 

**Data Sheet** 

Copyright © 2005-2017 Ingenic Semiconductor Co., Ltd. All rights reserved.

Disclaimer

This documentation is provided for use with Ingenic products. No license to Ingenic property rights is granted. Ingenic assumes no liability, provides no warranty either expressed or implied relating to the usage, or intellectual property right infringement except as provided for by Ingenic Terms and

Conditions of Sale.

Ingenic products are not designed for and should not be used in any medical or life sustaining or

supporting equipment.

All information in this document should be treated as preliminary. Ingenic may make changes to this document without notice. Anyone relying on this documentation should contact Ingenic for the current

documentation and errata.

Ingenic Semiconductor Co., Ltd.

Ingenic Headquarters, East Bldg. 14, Courtyard #10,

Xibeiwang East Road, Haidian District, Beijing 100193, China

Tel: 86-10-56345000 Fax: 86-10-56345001

Http://www.ingenic.com



## **CONTENTS**

| 1 | Ov    | verview                               | 1    |
|---|-------|---------------------------------------|------|
|   | 1.1   | Block Diagram                         | 1    |
|   | 1.2   | Features                              | 1    |
|   | 1.2.  | 1 CPU Core                            | 1    |
|   | 1.2.2 | 2 Image Core                          | 2    |
|   | 1.2.3 | 3 Display/Camera/Audio                | 2    |
|   | 1.2.4 | 4 Memory Interface                    | 3    |
|   | 1.2.  | 5 System Functions                    | 3    |
|   | 1.2.0 | 6 Peripherals                         | 5    |
|   | 1.2.  | 7 Bootrom                             | 7    |
| 2 | Pir   | nout Information                      | 8    |
|   | 2.1   | Pin Map                               | 8    |
|   | 2.2   | Pin Descriptions                      | 10   |
|   | 2.2.  | 1 GPIO Group A                        | 10   |
|   | 2.2.2 | 2 GPIO Group B                        | 11   |
|   | 2.2.  | 3 GPIO Group C                        | 12   |
|   | 2.2.4 | 4 GPIO Group D                        | 13   |
|   | 2.3   | X1500 FUNCTION PIN DESCRIPTION        | 13   |
|   | 2.4   | X1500 FUNCTION DESCRIPTION            | 16   |
| 3 | Εle   | ectrical Specifications               | . 19 |
|   | 3.1   | Absolute Maximum Ratings              | 19   |
|   | 3.2   | Recommended operating conditions      | 20   |
|   | 3.3   | DC Specifications                     | 21   |
|   | 3.4   | Power On, Reset and BOOT              | 23   |
|   | 3.4.  | 1 Power-On Timing                     | 23   |
|   | 3.4.2 | 2 Reset procedure                     | 25   |
|   | 3.4.3 | 3 BOOT                                | 26   |
| 4 | Pa    | ckaging Information                   | . 28 |
|   | 4.1   | Overview                              | 28   |
|   | 4.2   | X1500 Device Dimensions               | 28   |
|   | 4.3   | Solder Ball Materials                 | 29   |
|   | 4.4   | Moisture Sensitivity Level            | 29   |
| 5 | PC    | CB Mounting Guidelines                | . 30 |
|   | 5.1   | RoHS compliance                       | 30   |
|   | 5.2   | Reflow profile                        |      |
|   |       | · · · · · · · · · · · · · · · · · · · |      |



## **TABLES**

| Table 2-1 GPIO Group A Pinmux(30)                                                           | 10 |
|---------------------------------------------------------------------------------------------|----|
| Table 2-2 GPIO Group B Pinmux(15)                                                           | 11 |
| Table 2-3 GPIO Group C Pinmux(8)                                                            | 12 |
| Table 2-4 GPIO Group D Pinmux(6)                                                            | 13 |
| Table 2-5 X1500 function pin description                                                    | 13 |
| Table 2-6 X1500 Function Description                                                        | 16 |
| Table 3-1 Absolute Maximum Ratings                                                          | 19 |
| Table 3-2 Recommended operating conditions for power supplies                               | 20 |
| Table 3-3 Recommended operating conditions for VDDMEM supplied pins                         | 20 |
| Table 3-4 Recommended operating conditions for VDDIO/VDDIO_5T/VDDRTC supplied pins          | 20 |
| Table 3-5 Recommended operating conditions for others                                       | 20 |
| Table 3-6 DC characteristics for V <sub>REFMEM</sub>                                        | 21 |
| Table 3-7 DC characteristics for VDDmem supplied pins in LPDDR application                  | 21 |
| Table 3-8 DC characteristics for VDDIO/VDDIO_5T/VDDRTC supplied pins for 1.8V application   | 21 |
| Table 3-9 DC characteristics for VDDIO/VDDIO_5T/VDDRTC supplied pins for 2.5V application   | 22 |
| Table 3-10 DC characteristics for VDDIO/VDDIO_5T/VDDRTC supplied pins for 3.3V application. | 22 |
| Table 3-11 Power-On Timing Parameters                                                       | 23 |
| Table 3-12 Boot Configuration of X1500                                                      | 26 |





## **FIGURES**

| Figure 1-1 X1500 Diagram                 | 1  |
|------------------------------------------|----|
| Figure 2-1 X1500 pin to ball assignment  | 9  |
| Figure 3-1 Power-On Timing Diagram       | 25 |
| Figure 3-2 Boot flow diagram of X1500    | 27 |
| Figure 4-1 X1500 package outline drawing | 29 |



## 1 Overview

X1500 is a low power consumption, high performance and high integrated application processor, the application is focus on IoT devices. And it can match the requirements of many other embedded products.

| NAME  | SIP LPDDR |  |  |  |  |
|-------|-----------|--|--|--|--|
| X1500 | 32MB      |  |  |  |  |

### 1.1 Block Diagram



Figure 1-1 X1500 Diagram

#### 1.2 Features

#### 1.2.1 **CPU Core**

- MIPS-Based XBurst<sup>®</sup> cores (up to 1.0GHz)
- MIPS-Based XBurst<sup>®</sup> CPU
  - XBurst® RISC instruction set
  - XBurst<sup>®</sup> SIMD instruction set
  - XBurst<sup>®</sup> FPU instruction set supporting both single and double floating point format which are IEEE754 compatible



- XBurst<sup>®</sup> 9-stage pipeline micro-architecture
- MMU
  - 32-entry joint-TLB
  - 4 entry Instruction TLB
  - 4 entry data TLB
- L1 Cache
  - 16KB instruction cache
  - 16KB data cache
- Hardware debug support
- 16KB tight coupled memory
- L2 Cache
  - 128KB unify cache
- The XBurst® processor system supports little endian only

#### 1.2.2 Image Core

- Hardware JPEG encoder
  - Baseline ISO/IEC 10918-1 JPEG compliant
  - 8-bit pixel depth support
  - Support for YUY2 ([Y0,U0,Y1,V0]) color
  - Up to four programmable Quantization tables
  - Fully programmable Huffman tables
  - Image size up to 2M pixels

#### 1.2.3 Display/Camera/Audio

- Camera interface module
  - Input image size up to 2M pixels
  - Integrated DMA
  - Supported data format: YCbCr 4:2:2
  - Supports ITU656 (YCbCr 4:2:2) input
  - Configurable VSYNC and HSYNC signals: active high/low
  - Configurable PCLK: active edge rising/falling
  - PCLK max. 80MHz
  - Configurable output order
- Low power DMIC Controller
  - 16 bits data interface and 20bit precision internal controller.
  - SNR: 90dB, THD: -90dB @ FS -20dB
  - Linear high pass filter include. Attenuation: -2.9dB@100Hz, -22dB@27Hz. -36dB@10Hz
  - Low power voice trigger when waiting to start talking.
  - 1 to 4 channel MIC support.
  - Support voice data pre-fetch when trigger enable and the data interface disable, but do not increase the power dissipation.



- Sample rate supported: 8k, 16k.
- Support low power mode

#### 1.2.4 Memory Interface

- DDR Controller
  - Support LPDDR, DDR2, DDR3
  - 16 bit data width
  - Support size up to 1GB (1 chip select, 3-bit Bank, 15-bit Row, 11-bit Column,)
  - Asynchornize to system bus and each port.
  - Support clock-stop mode
  - Support auto self-refresh mode
  - Support power-down mode and deep-power-down mode
  - Programmable DDR timing parameters
  - Programmable DDR row and column address width and order

#### • 32MB SIP LPDDR

- Serial nand/nor flash interface(SFC)
  - SPI protocol support: Standard, Dual, Quad SPI
  - Standard I/O data transfer up to 80Mbits/s
  - Dual I/O data transfer up to 160Mbits/s
  - Quad I/O data transfer up to 240Mbits/s
  - transmit-only or receive-only operation
  - MSB always be first in intra transfer of one byte. Least Significant Byte first for inter transfer of data bytes, and Most Significant Byte first for inter transfer of command or address bytes.
  - one device select
  - Configurable sampling point for reception
  - Configurable timing parameters: tSLCH, tCHSH and tSHSL
  - Configurable flash address wide are supported
  - 7 transfer formats: Standard SPI, Dual-Output/Dual-Input SPI, Quad-Output/Quad-Input
    SPI, Dual-I/O SPI, Quad-I/O SPI, Full Dual-I/O SPI, Full Quad-I/O SPI
  - two data transfer mode: slave mode and DMA mode
  - Configurable 6 phases for software flow

#### 1.2.5 System Functions

- Clock generation and power management
  - On-chip oscillator circuit (support 24MHz, 26MHz)
  - Two phase-locked loops (PLL) with programmable multiplier
  - CCLK, HHCLK, H2CLK, PCLK, H0CLK, DDR\_CLK frequency can be changed separately for software by setting registers
  - Functional-unit clock gating



- Supply block power shut down
- Timer and counter unit with PWM output and/or input edge counter
  - Provide 5 channels, all can generate PWM, two of them have input signal transition edge counter
  - 16-bit A counter and 16-bit B counter with auto-reload function every channel
  - Support interrupt generation when the A counter underflows
  - Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected

#### OS timer

- One channel
- 32-bit counter and 32-bit compare register
- Support interrupt generation when the counter matches the compare register
- Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected

#### Interrupt controller

- Total 64 interrupt sources
- Each interrupt source can be independently enabled
- Priority mechanism to indicate highest priority interrupt
- All the registers are accessed by CPU and PDMA
- Unmasked interrupts can wake up the chip in sleep mode
- Another set of source, mask and pending registers to serve for PDMA

#### Watchdog timer

- Generates WDT reset
- A 16-bit Data register and a 16-bit counter
- Counter clock uses the input clock selected by software
  - PCLK, EXTAL and RTCCLK can be used as the clock for counter
  - ➤ The division ratio of the clock can be set to 1, 4, 16, 64, 256 and 1024 by software

#### PDMA Controller

- Support up to 8 independent DMA channels
- Descriptor or No-Descriptor Transfer mode
- A simple Xburst<sup>®</sup>-1 CPU supports smart transfer mode controlled by programmable firmware
- Transfer data units: 1-byte, 2-byte, 4-byte, 16-byte, 32-byte, 64-byte, 128-byte
- Transfer number of data unit: 1 ~ 2<sup>24</sup> 1
- Independent source and destination port width: 8-bit, 16-bit, 32-bit
- Fixed three priorities of channel groups: 0~3, highest; 4~11: mid; 12~31: lowest
- An extra INTC IRQ can be bound to one programmable DMA channel



- RTC (Real Time Clock)
  - Need external 32768Hz oscillator for 32KHz clock generation.
  - RTCLK selectable from the oscillator or from the divided clock of EXCLK, so that 32k crystal can be absent if the hibernating mode is not needed
  - 32-bits second counter
  - Programmable and adjustable counter to generate accurate 1 Hz clock
  - Alarm interrupt, 1Hz interrupt
  - Stand alone power supply, work in hibernating mode
  - Power down controller
  - Alarm wakeup
  - External pin wakeup with up to 2s glitch filter

#### 1.2.6 Peripherals

- General-Purpose I/O ports
  - Each port can be configured as an input, an output or an alternate function port
  - Each port can be configured as an interrupt source of low/high level or rising/falling edge triggering. Every interrupt source can be masked independently
  - Each port has an internal pull-up or pull-down resistor connected. The pull-up/down resistor can be disabled
  - GPIO output 4 interrupts, 1 for every group, to INTC
- Three I2C Controller (I2C0, I2C1, I2C2)
  - Two-wire I2C serial interface consists of a serial data line (SDA) and a serial clock (SCL)
  - Two speeds
    - Standard mode (100 Kb/s)
    - Fast mode (400 Kb/s)
  - Device clock is identical with pclk
  - Programmable SCL generator
  - Master or slave I2C operation
  - 7-bit addressing/10-bit addressing
  - level transmit and receive FIFOs
  - Interrupt operation
  - The number of devices that you can connect to the same I2C-bus is limited only by the maximum bus capacitance of 400pF
- One Synchronous serial interfaces (SSI0)
  - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI
  - Full-duplex or transmit-only or receive-only operation
  - Programmable transfer order: MSB first or LSB first
  - Configurable normal transfer mode or Interval transfer mode
  - Programmable clock phase and polarity for Motorola's SSI format



- Two slave select signal (SSI0\_CE0\_ / SSI0\_CE1\_) supporting up to 2 slave devices
- Back-to-back character transmission/reception mode
- Loop back mode for testing
- Data transfer up to 30Mbits/s

#### Three UARTs (UART0, UART1, UART2)

- Full-duplex operation
- 5-, 6-, 7- or 8-bit characters with optional no parity or even or odd parity and with 1, 1½,
  or 2 stop bits
- Independently controlled transmit, receive (data ready or timeout), line status interrupts
- Internal diagnostic capability Loopback control and break, parity, overrun and framing-error is provided
- Separate DMA requests for transmit and receive data services in FIFO mode
- Supports modem flow control by software or hardware
- Slow infrared asynchronous interface that conforms to IrDA specification

#### • One MMC/SD/SDIO controllers

- Fully compatible with the MMC System Specification version 4.5
- Support SD Specification 3.0
- Support SD I/O Specification 1.0 with 1 command channel and 4 data channels
- Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)
- Maximum data rate is 50Mbps
- Both support MMC data width 1bit ,4bit
- Built-in programmable frequency divider for MMC/SD bus
- Built-in Special Descriptor DMA
- Mask-able hardware interrupt for SDIO interrupt, internal status and FIFO status
- Multi-SD function support including multiple I/O and combined I/O and memory
- IRQ supported enable card to interrupt MMC/SD controller
- Single or multi block access to the card including erase operation
- Stream access to the MMC card
- Supports SDIO read wait, interrupt detection during 1-bit or 4-bit access
- Supports CE-ATA digital protocol commands
- Support Command Completion Signal and interrupt to CPU
- Command Completion Signal disable feature
- The maximum block length is 4096bytes

#### USB 2.0 OTG interface

- Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the
  On-The-Go supplement to the USB 2.0 specification
- Operates either as the function controller of a high-/full-speed USB peripheral or as the host/peripheral in point-to-point or multi-point communications with other USB functions
- Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP)
- UTMI+ Level 3 Transceiver Interface



- Soft connect/disconnect
- 8 endpoints in device mode, 16 channels for host mode.
- Dedicate FIFO
- Supports control, interrupt, ISO and bulk transfer
- OTP Slave Interface
  - Total 1Kb.

#### 1.2.7 Bootrom

16KB Boot ROM memory



## **2 Pinout Information**

## 2.1 Pin Map

The X1500 pin to ball assignment is shown in Figure 2-1.



## X1500 Ball Assignment Ver1.1 BGA109, 8mm X 8mm X 1.2mm, 0.65pitch, top view

| 0 | 1                              | 2                                | 3                         | 4                              | 5                        | 6      | 7        | 8                 | 9               | 10              | 11                        | 12                             |
|---|--------------------------------|----------------------------------|---------------------------|--------------------------------|--------------------------|--------|----------|-------------------|-----------------|-----------------|---------------------------|--------------------------------|
| A | UART0_TX<br>D_PC11             | UART0_CT<br>S_PC12               | SFC_CE_SSI0_<br>CE0_PA27  | SFC_HOLD_<br>SSI0_GPC_P<br>A31 | SFC_WP_SSI0_<br>CE1_PA30 | ZQ     | VREF0    | CIM_D3_PA16       | CIM_D1_PA<br>18 | CIM_D5_PA14     | CIM_D4_PA15               | CIM_D7_PA12                    |
| В |                                | UART0_RT<br>S_PC13               | SFC_CLK_SSI0<br>_CLK_PA26 |                                | SFC_DT_SSI0_<br>DT_PA29  |        |          |                   | CIM_D2_PA<br>17 | CIM_D0_PA19     | CIM_D6_PA13               | CIM_VSYN_PA1<br>0              |
| С | DMIC0_IN_<br>PB22              | AVDEFUSE                         |                           |                                |                          | •      |          |                   |                 |                 | CIM_MCLK_PA11             | CIM_HSYN_PA0<br>9              |
| D | I2C0_SDA_<br>PB24              | I2C0_SCK_<br>PB23                |                           |                                | VDDMEM                   | VDDMEM | VDDMEM   | VSS               |                 | _               | CIM_PCLK_PA08             | MSC0_CMD_<br>SSI0_CE0_PA<br>25 |
| Е | PWM0_PC2<br>5                  | PWM4_PC2<br>4                    |                           | VSS                            | VSS                      | VDDMEM | VDDMEM   | VSS               | VSS             |                 | MSC0_D0_SSI<br>0_DR_PA23  | MSC0_CLK_S<br>SI0_CLK_PA2<br>4 |
| F | I2C1_SDA_<br>PWM2_PC2<br>7     | I2C1_SCK_<br>PWM1_PC2<br>6       |                           | VSS                            | VSS                      |        |          | VDD               | VDD             |                 | MSC0_D2_SSI<br>0_CE1_PA21 | MSC0_D1_SS<br>I0_DT_PA22       |
| G | BOOT_SEL<br>0_PB28             | BOOT_SEL<br>1_PB29               |                           | VSS                            | VSS                      |        |          | VDD               | VDD             |                 | UART1_TXD_PA0<br>5        | MSC0_D3_SS<br>I0_GPC_PA20      |
| Н |                                | UART2_TXD_<br>UART1_CTS_<br>PD04 |                           | VSS                            | VSS                      | VSS    | VDDIO    | VDDIO             | VDD             |                 | UART1_RXD_PA0<br>4        | I2C1_SDA_PA01                  |
| J | SSI0_DR_U<br>ART1_TXD_<br>PD03 | SSI0_DT_U<br>ART1_RXD<br>_PD02   |                           |                                | VSS                      | VSS    | VDDIO_5V | VDDIO             |                 | OTG_VBUS        | UART2_RXD_PA0<br>2        | UART2_TXD_PA<br>03             |
| K | SSI0_CLK_I<br>2C2_SCK_P<br>D00 | SSI0_CE0_I<br>2C2_SDA_P<br>D01   |                           | •                              |                          |        | VSSRTC   | PLL_AVSS          | AVSOTG          | OTG_ID          | PWM3_PB06                 | I2C1_SCK_PA00                  |
| L | I2S_MCLK_<br>PB00              |                                  | I2S_LRCLK_PB<br>02        |                                | PPRST_                   | RTCLK  | PWRON    | DRV_VBUS_P<br>B25 | EXCLK_<br>O     |                 | OTG_DM                    | AVDOTG25                       |
| M | 12S_DI_PB0<br>3                | 12S_DO_PB<br>04                  | DMIC1_IN_PB0<br>5         | DMIC_CLK_P<br>B21              | LDOOUT                   | XRTCLK | VDDRTC   | PLL_AVDD          | EXCLK_I         | OTG_TXR_RK<br>L | OTG_DP                    | AVDOTG                         |

Figure 2-1 X1500 pin to ball assignment



## 2.2 Pin Descriptions

## 2.2.1 GPIO Group A

Table 2-1 GPIO Group A Pinmux(30)

| Ball<br>No. | Ball Name      | In/Out | Pull | Pull<br>Default | Driven<br>Strength | Schmitt | Slewrate<br>limitate | GPIO    | Func0  | Func1 | Func2     | Extra<br>Func | Power |
|-------------|----------------|--------|------|-----------------|--------------------|---------|----------------------|---------|--------|-------|-----------|---------------|-------|
| K12         | I2C1_SCK_PA00  | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[0]  | 11/1/1 |       | I2C1_SCK  | WKUP          | VDDIO |
| H12         | I2C1_SDA_PA01  | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[1]  | 11/1/1 |       | I2C1_SDA  | WKUP          | VDDIO |
| J11         | UART2_RXD_PA02 | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[2]  |        |       | UART2_RXD | WKUP          | VDDIO |
| J12         | UART2_TXD_PA03 | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[3]  |        |       | UART2_TXD | WKUP          | VDDIO |
| H11         | UART1_RXD_PA04 | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[4]  |        |       | UART1_RXD | WKUP          | VDDIO |
| G11         | UART1_TXD_PA05 | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[5]  |        |       | UART1_TXD | WKUP          | VDDIO |
| D11         | CIM_PCLK_PA08  | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[8]  |        |       | CIM_PCLK  | WKUP          | VDDIO |
| C12         | CIM_HSYN_PA09  | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[9]  |        |       | CIM_HSYN  | WKUP          | VDDIO |
| B12         | CIM_VSYN_PA10  | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[10] |        |       | CIM_VSYN  | WKUP          | VDDIO |
| C11         | CIM_MCLK_PA11  | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[11] |        |       | CIM_MCLK  | WKUP          | VDDIO |
| A12         | CIM_D7_PA12    | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[12] |        |       | CIM_D7    | WKUP          | VDDIO |
| B11         | CIM_D6_PA13    | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[13] |        |       | CIM_D6    | WKUP          | VDDIO |
| A10         | CIM_D5_PA14    | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[14] |        |       | CIM_D5    | WKUP          | VDDIO |
| A11         | CIM_D4_PA15    | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[15] |        |       | CIM_D4    | WKUP          | VDDIO |
| A8          | CIM_D3_PA16    | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[16] |        |       | CIM_D3    | WKUP          | VDDIO |
| В9          | CIM_D2_PA17    | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[17] |        |       | CIM_D2    | WKUP          | VDDIO |
| A9          | CIM_D1_PA18    | Ю      | PU   | Enable          | 8mA                | No      |                      | GPA[18] |        |       | CIM_D1    | WKUP          | VDDIO |



| B10 | CIM_D0_PA19            | Ю | PU | Enable | 8mA | No | GPA[19] |          | CIM_D0   | WKUP | VDDIO |
|-----|------------------------|---|----|--------|-----|----|---------|----------|----------|------|-------|
| G12 | MSC0_D3_SSI0_GPC_PA20  | Ю | PU | Enable | 8mA | No | GPA[20] | MSC0_D3  | SSI0_GPC | WKUP | VDDIO |
| F11 | MSC0_D2_SSI0_CE1_PA21  | Ю | PU | Enable | 8mA | No | GPA[21] | MSC0_D2  | SSI0_CE1 | WKUP | VDDIO |
| F12 | MSC0_D1_SSI0_DT_PA22   | Ю | PU | Enable | 8mA | No | GPA[22] | MSC0_D1  | SSI0_DT  | WKUP | VDDIO |
| E11 | MSC0_D0_SSI0_DR_PA23   | Ю | PU | Enable | 8mA | No | GPA[23] | MSC0_D0  | SSI0_DR  | WKUP | VDDIO |
| E12 | MSC0_CLK_SSI0_CLK_PA24 | Ю | PU | Enable | 8mA | No | GPA[24] | MSC0_CLK | SSI0_CLK | WKUP | VDDIO |
| D12 | MSC0_CMD_SSI0_CE0_PA25 | Ю | PU | Enable | 8mA | No | GPA[25] | MSC0_CMD | SSI0_CE0 | WKUP | VDDIO |
| В3  | SFC_CLK_SSI0_CLK_PA26  | Ю | PU | Enable | 8mA | No | GPA[26] | SFC_CLK  | SSI0_CLK | WKUP | VDDIO |
| А3  | SFC_CE_SSI0_CE0_PA27   | Ю | PU | Enable | 8mA | No | GPA[27] | SFC_CE   | SSI0_CE0 | WKUP | VDDIO |
| B4  | SFC_DR_SSI0_DR_PA28    | Ю | PU | Enable | 8mA | No | GPA[28] | SFC_DR   | SSI0_DR  | WKUP | VDDIO |
| B5  | SFC_DT_SSI0_DT_PA29    | Ю | PU | Enable | 8mA | No | GPA[29] | SFC_DT   | SSI0_DT  | WKUP | VDDIO |
| A5  | SFC_WP_SSI0_CE1_PA30   | Ю | PU | Enable | 8mA | No | GPA[30] | SFC_WP   | SSI0_CE1 | WKUP | VDDIO |
| A4  | SFC_HOLD_SSI0_GPC_PA31 | Ю | PU | Enable | 8mA | No | GPA[31] | SFC_HOLD | SSI0_GPC | WKUP | VDDIO |

## 2.2.2 GPIO Group B

Table 2-2 GPIO Group B Pinmux(15)

| Ball<br>No. | Ball Name      | In/Out | Pull | Pull<br>Default | Driven<br>Strength | Schmitt | Slewrate<br>limitate | GPIO   | Func0 | Func1     | Func2 | Extra<br>Func | Power |
|-------------|----------------|--------|------|-----------------|--------------------|---------|----------------------|--------|-------|-----------|-------|---------------|-------|
| L1          | I2S_MCLK_PB00  | Ю      | PU   | Enable          | 8mA                | No      |                      | GPB[0] |       | I2S_MCLK  |       | WKUP          | VDDIO |
| L2          | I2S_BCLK_PB01  | Ю      | PU   | Enable          | 8mA                | No      |                      | GPB[1] |       | I2S_BCLK  |       | WKUP          | VDDIO |
| L3          | I2S_LRCLK_PB02 | Ю      | PU   | Enable          | 8mA                | No      |                      | GPB[2] |       | I2S_LRCLK |       | WKUP          | VDDIO |
| M1          | I2S_DI_PB03    | Ю      | PU   | Enable          | 8mA                | No      |                      | GPB[3] |       | I2S_DI    |       | WKUP          | VDDIO |
| M2          | I2S_DO_PB04    | Ю      | PU   | Enable          | 8mA                | No      |                      | GPB[4] |       | I2S_DO    |       | WKUP          | VDDIO |
| М3          | DMIC1_IN_PB05  | Ю      | PU   | Enable          | 8mA                | No      |                      | GPB[5] |       | DMIC1_IN  |       | WKUP          | VDDIO |



| K11 | PWM3_PB06      | Ю | PU | Enable  | 8mA | No  | GPB[6]  |           | PWM3 | WKUP | VDDIO  |
|-----|----------------|---|----|---------|-----|-----|---------|-----------|------|------|--------|
| M4  | DMIC_CLK_PB21  | Ю | PU | Enable  | 8mA | No  | GPB[21] | DMIC_CLK  |      | WKUP | VDDIO  |
| C1  | DMIC0_IN_PB22  | Ю | PU | Enable  | 8mA | No  | GPB[22] | DMIC0_IN  |      | WKUP | VDDIO  |
| D2  | I2C0_SCK_PB23  | Ю | PU | Enable  | 8mA | No  | GPB[23] | I2C0_SCK  |      | WKUP | VDDIO  |
| D1  | I2C0_SDA_PB24  | Ю | PU | Enable  | 8mA | No  | GPB[24] | I2C0_SDA  |      | WKUP | VDDIO  |
| L8  | DRV_VBUS_PB25  | Ю | PD | Enable  | 8mA | No  | GPB[25] | DRV_VBUS  |      | WKUP | VDDIO  |
| G1  | BOOT_SEL0_PB28 | Ю | PU | Disable | 8mA | No  | GPB[28] | BOOT_SEL0 |      | WKUP | VDDIO  |
| G2  | BOOT_SEL1_PB29 | Ю | PU | Disable | 8mA | No  | GPB[29] | BOOT_SEL1 |      | WKUP | VDDIO  |
| L4  | WKUP_PB31      | Ю | PU | Enable  | 8mA | Yes | GPB[31] | WKUP      |      | WKUP | VDDRTC |

## 2.2.3 GPIO Group C

Table 2-3 GPIO Group C Pinmux(8)

| Ball<br>No. | Ball Name          | In/Out | Pull | Pull<br>Default | Driven<br>Strength | Schmitt | Slewrate<br>limitate | GPIO    | Func0     | Func1 | Func2 | Extra<br>Func | Power |
|-------------|--------------------|--------|------|-----------------|--------------------|---------|----------------------|---------|-----------|-------|-------|---------------|-------|
| B1          | UART0_RXD_PC10     | Ю      | PU   | Enable          | 8mA                | No      |                      | GPC[10] | UART0_RXD |       |       | WKUP          | VDDIO |
| A1          | UART0_TXD_PC11     | Ю      | PU   | Enable          | 8mA                | No      |                      | GPC[11] | UART0_TXD |       |       | WKUP          | VDDIO |
| A2          | UART0_CTS_PC12     | Ю      | PU   | Enable          | 8mA                | No      |                      | GPC[12] | UART0_CTS |       |       | WKUP          | VDDIO |
| B2          | UART0_RTS_PC13     | Ю      | PU   | Enable          | 8mA                | No      |                      | GPC[13] | UART0_RTS |       |       | WKUP          | VDDIO |
| E2          | PWM4_PC24          | Ю      | PU   | Enable          | 8mA                | No      |                      | GPC[24] | PWM4      |       |       | WKUP          | VDDIO |
| E1          | PWM0_PC25          | Ю      | PD   | Enable          | 8mA                | No      |                      | GPC[25] | PWM0      |       |       | WKUP          | VDDIO |
| F2          | I2C1_SCK_PWM1_PC26 | Ю      | PU   | Enable          | 8mA                | No      |                      | GPC[26] | I2C1_SCK  | PWM1  |       | WKUP          | VDDIO |
| F1          | I2C1_SDA_PWM2_PC27 | 10     | PU   | Enable          | 8mA                | No      |                      | GPC[27] | I2C1_SDA  | PWM2  |       | WKUP          | VDDIO |



## 2.2.4 GPIO Group D

## Table 2-4 GPIO Group D Pinmux(6)

| Ball<br>No. | Ball Name                | In/<br>Out | Pull | Pull<br>Default | Driven<br>Strength | Schmitt | Slewrate<br>limitate | GPIO   | Func0     | Func1     | Func2 | Extra<br>Func | Power    |
|-------------|--------------------------|------------|------|-----------------|--------------------|---------|----------------------|--------|-----------|-----------|-------|---------------|----------|
| K1          | SSI0_CLK_I2C2_SCK_PD00   | Ю          | PU   | Enable          | 8mA                | No      | 5V                   | GPD[0] | SSI0_CLK  | I2C2_SCK  |       | WKUP          | VDDIO_5T |
| K2          | SSI0_CE0_I2C2_SDA_PD01   | Ю          | PU   | Enable          | 8mA                | No      | 5V                   | GPD[1] | SSI0_CE0  | I2C2_SDA  |       | WKUP          | VDDIO_5T |
| J2          | SSI0_DT_UART1_RXD_PD02   | Ю          | PU   | Enable          | 8mA                | No      | 5V                   | GPD[2] | SSI0_DT   | UART1_RXD |       | WKUP          | VDDIO_5T |
| J1          | SSI0_DR_UART1_TXD_PD03   | Ю          | PU   | Enable          | 8mA                | No      | 5V                   | GPD[3] | SSI0_DR   | UART1_TXD |       | WKUP          | VDDIO_5T |
| H2          | UART2_TXD_UART1_CTS_PD04 | Ю          | PU   | Enable          | 8mA                | No      | 5V                   | GPD[4] | UART2_TXD | UART1_CTS |       | WKUP          | VDDIO_5T |
| H1          | UART2_RXD_UART1_RTS_PD05 | Ю          | PU   | Enable          | 8mA                | No      | 5V                   | GPD[5] | UART2_RXD | UART1_RTS |       | WKUP          | VDDIO_5T |

## 2.3 X1500 FUNCTION PIN DESCRIPTION

Table 2-5 X1500 function pin description

| Ball No.  | Pin Names | Ю | Power | Pin Description                 |  |  |  |
|-----------|-----------|---|-------|---------------------------------|--|--|--|
| Memory    |           |   |       |                                 |  |  |  |
| A6        | ZQ        |   |       | DDR PHY ZQ calibration resistor |  |  |  |
| A7        | VREF0     |   |       | DDR PHY VREF                    |  |  |  |
| Power and | d Ground  |   |       |                                 |  |  |  |
| D5        | VDDMEM    | Р | -     | IO digital power for DRAM 1.8V  |  |  |  |
| D6        | VDDMEM    | Р | -     | IO digital power for DRAM 1.8V  |  |  |  |
| D7        | VDDMEM    | Р | -     | IO digital power for DRAM 1.8V  |  |  |  |



| E6      | VDDMEM   | Р | - | IO digital power for DRAM 1.8V                               |
|---------|----------|---|---|--------------------------------------------------------------|
| E7      | VDDMEM   | Р | - | IO digital power for DRAM 1.8V                               |
| H7      | VDDIO    | Р | - | IO digital power for none DRAM 1.8~3.3V                      |
| H8      | VDDIO    | Р | - | IO digital power for none DRAM 1.8~3.3V                      |
| J8      | VDDIO    | Р | - | IO digital power for none DRAM 1.8~3.3V                      |
| J7      | VDDIO_5T | Р | - | IO digital power for none DRAM (5V tolerant)                 |
| D8      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| E4      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| E5      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| E8      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| E9      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| F4      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| F5      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| G4      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| G5      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| H4      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| H5      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| H6      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| J5      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| J6      | VSS      | Р | - | Core digital gound for none DRAM and CORE digital ground, 0V |
| F8      | VDD      | Р | - | CORE digital power, 1.2V                                     |
| F9      | VDD      | Р | - | CORE digital power, 1.2V                                     |
| G8      | VDD      | Р | - | CORE digital power, 1.2V                                     |
| G9      | VDD      | Р | - | CORE digital power, 1.2V                                     |
| H9      | VDD      | Р | - | CORE digital power, 1.2V                                     |
| USB OTG |          |   |   |                                                              |



| M11       | USB_DP0(OTG_DP)        | AIO | AVDOTG   | USB OTG data plus                                                                      |
|-----------|------------------------|-----|----------|----------------------------------------------------------------------------------------|
| L11       | USB_DM0(OTG_DM)        | AIO | AVDOTG   | USB OTG data minus                                                                     |
| 14.0      | USB_VBUS(OTG_VBUS)     | AIO | F\/      | USB 5-V power supply pin for USB OTG. An external charge pump must provide             |
| J10       | 310 USB_VBUS(UTG_VBUS) |     | 5V       | power to this pin                                                                      |
| K10       | USB_ID(OTG_ID)         | AI  | AVDOTG25 | USB mini-receptacle identifier. It differentiates a mini-A from a mini-B plug. If this |
| KIU       | 03B_ID(01G_ID)         | Al  | AVDOTG25 | signal is not used, internal resistance pulls the signal's voltage level to AVDUSB25.  |
| M10       | OTG_TXR_RKL            | AIO | AVDOTG25 | Transmitter resister tune. It connects to an external resistor of 43.2Ω with 1%        |
| IVITO     | OTG_TAK_KKL            | AIO | AVDOTG25 | tolerance to analog ground, that adjusts the USB 2.0 high-speed source impedance       |
| M12       | AVDOTG                 | Р   | -        | USB analog power.3.3V                                                                  |
| K9        | AVSOTG                 | Р   | -        | USB analog ground.                                                                     |
| L12       | AVDOTG25               | Р   | -        | USB OTG analog power, 2.5V                                                             |
| EFUSE     |                        |     |          |                                                                                        |
| C2        | AVDEFUSE               | Р   | AVEFUSE  | EFUSE programming power, 0V/2.5V                                                       |
| СРМ       |                        |     |          |                                                                                        |
| M9        | EXCLK_XI(EXCLK_I)      | Al  | VDDIO    | OSC input.                                                                             |
| L9        | EXCLK_XO(EXCLK_O)      | AO  | VDDIO    | OSC output.                                                                            |
| M8        | PLL_AVDD               | Р   | -        | PLL analog power, 1.2V                                                                 |
| K8        | PLL_AVSS               | Р   | -        | PLL analog ground                                                                      |
| RTC       |                        |     |          |                                                                                        |
| L6        | RTCLK                  | Al  | VDDRTC   | OSC input or 32768Hz clock input                                                       |
| L7        | PWRON                  | 0   | VDDRTC   | Power on/off control of main power                                                     |
| L5        | PPRST_                 | I   | VDDRTC   | RTC power on reset and RESET-KEY reset input                                           |
| M5        | LDOOUT                 | Р   | -        | capacitor pin for RTC LDO need a 1nF decoupling capacitor to ground                    |
| K7        | VSSRTC                 | Р   | -        | RTC ground                                                                             |
| MZ        | VDDBTC                 | D   |          | VDDRTC: 3.3V power for RTC and hibernating mode controlling that never power           |
| M7 VDDRTC |                        | Р   | -        | down(normally you can use 1.8V instead to reduce power consumption)                    |



## 2.4 X1500 FUNCTION DESCRIPTION

**Table 2-6 X1500 Function Description** 

| Signal Name          | In/Out      | Description                                |
|----------------------|-------------|--------------------------------------------|
| CIM(Camera Interface | <b>)</b>    |                                            |
| CIM_PCLK             | Input       | CIM pixel clock input                      |
| CIM_HSYN             | Input       | CIM line horizonal sync input              |
| CIM_VSYN             | Input       | CIM vertical sync input                    |
| CIM_MCLK             | Output      | CIM master clock output                    |
| CIM_D7               | Input       | CIM data input bit 7                       |
| CIM_D6               | Input       | CIM data input bit 6                       |
| CIM_D5               | Input       | CIM data input bit 5                       |
| CIM_D4               | Input       | CIM data input bit 4                       |
| CIM_D3               | Input       | CIM data input bit 3                       |
| CIM_D2               | Input       | CIM data input bit 2                       |
| CIM_D1               | Input       | CIM data input bit 1                       |
| CIM_D0               | Input       | CIM data input bit 0                       |
| I2S                  |             |                                            |
| I2S_MCLK             | Output      | I2S master clock out                       |
| I2S_BCLK             | Bidirection | I2S bit clock                              |
| I2S_LRCLK            | Bidirection | I2S LR clock                               |
| I2S_DI               | Input       | I2S data input                             |
| I2S_DO               | Output      | I2S data output                            |
| DMIC                 |             |                                            |
| DMIC0_IN             | Input       | Digital MIC data input(Front/Back channel) |
| DMIC1_IN             | Input       | Digital MIC data input(Left/Right channel) |



| DMIC_CLK   | Output      | Digital MIC clock output             |
|------------|-------------|--------------------------------------|
| SFC        |             |                                      |
| SFC_CLK    | Output      | Serial Flash clock output            |
| SFC_CE_    | Output      | Serial Flash chip enable             |
| SFC_DR     | Bidirection | Serial Flash data input              |
| SFC_DT     | Bidirection | Serial Flash data output             |
| SFC_WP     | Bidirection | Serial Flash write protect signal    |
| SFC_HOLD   | Bidirection | Serial Flash hold signal             |
| PWM        |             |                                      |
| PWMn       | Bidirection | PWM output or pulse input channel n  |
| I2C        |             |                                      |
| I2Cn_SCK   | Bidirection | I2C n serial clock                   |
| I2Cn_SDA   | Bidirection | I2C n serial data                    |
| SSI        |             |                                      |
| SSIn_CLK   | Output      | SSI n clock output                   |
| SSIn_CE0_  | Output      | SSI n chip enable 0                  |
| SSIn_CE1_  | Output      | SSI n chip enable 1                  |
| SSIn_GPC   | Output      | SSI n general-purpose control signal |
| SSIn_DT    | Output      | SSI n data output                    |
| SSIn_DR    | Input       | SSI n data input                     |
| UART       |             |                                      |
| UARTn_RXD  | Input       | UART n receiving data                |
| UARTn_TXD  | Output      | UART n transmitting data             |
| UARTn_CTS_ | Input       | UART Clear to send control           |
| UARTn_RTS_ | Output      | UART Request to send control         |
| MSC        |             |                                      |



| MSCn_D3     | Bidirection | MSC(MMC/SD) n data bit 3           |
|-------------|-------------|------------------------------------|
| MSCn_D2     | Bidirection | MSC(MMC/SD) n data bit 2           |
| MSCn_D1     | Bidirection | MSC(MMC/SD) n data bit 1           |
| MSCn_D0     | Bidirection | MSC(MMC/SD) n data bit 0           |
| MSCn_CLK    | Output      | MSC(MMC/SD) n clock output         |
| MSCn_CMD    | Bidirection | MSC(MMC/SD) n command              |
| USB 2.0 OTG |             |                                    |
| DRV_VBUS    | Output      | USB OTG VBUS driver control signal |

#### NOTES:

- 1 The meaning of phases in IO cell characteristics are:
  - a Bi-dir, Single-end: bi-direction and single-ended DDR IO are used.
  - b Output, Single-end: output and single-ended DDR IO are used.
  - c Output, Differential: output and differential signal DDR IO are used.
  - d Bi-dir, Differential: bi-direction and differential signal DDR IO are used.
  - e 4mA, 8mA, 16mA out: The IO cell's output driving strength is about 4mA,8mA,16mA.
    - 4/8mA means the IO cell's output driving strength is selected and can be set as 4mA or 8mA.
    - 2/4mA means the IO cell's output driving strength is selected and can be set as 2mA or 4mA.
  - f Pull-up: The IO cell contains a pull-up resistor.
  - g Pull-down: The IO cell contains a pull-down resistor.
  - h Pullup-pe: The IO cell contains a pull-up resistor and the pull-up resistor can be enabled or disabled by setting corresponding register.
  - i Pulldown-pe: The IO cell contains a pull-down resistor and the pull-down resistor can be enabled or disabled by setting corresponding register.
  - j rst-pe: these pins are initialed (during reset and after reset) to IO internal pull (up or down) enabled. Otherwise, the pins are initialed to pull disabled
  - k Schmitt: The IO cell is Schmitt trig input.
  - I ~SL: The IO cell do not limited slew rate.
- 2 All GPIO shared pins are reset to GPIO input



## **3 Electrical Specifications**

## 3.1 Absolute Maximum Ratings

The absolute maximum ratings for the processors are listed in Table 3-1. Do not exceed these parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not guaranteed.

**Table 3-1 Absolute Maximum Ratings** 

| Parameter                                                                | Min  | Max  | Unit |
|--------------------------------------------------------------------------|------|------|------|
| Storage Temperature                                                      | -65  | 150  | °C   |
| Operation Temperature                                                    | -40  | 85   | °C   |
| VDDMEM power supplies voltage                                            | -0.5 | 1.98 | V    |
| VDDIO power supplies voltage                                             | -0.5 | 3.6  | V    |
| VDDIO_5T power supplies voltage                                          | -0.5 | 3.6  | V    |
| VDD core power supplies voltage                                          | -0.2 | 1.32 | V    |
| PLLAVDD power supplies voltage                                           | -0.2 | 1.32 | V    |
| AVDEFUSE power supplies voltage                                          | -0.5 | 2.75 | V    |
| VDDRTC power supplies voltage                                            | -0.5 | 3.63 | V    |
| AVDOTG25 power supplies voltage                                          | -0.5 | 2.75 | V    |
| AVDOTG power supplies voltage                                            | -0.5 | 3.63 | V    |
| Input voltage to VDDMEM supplied non-supply pins                         | -0.3 | 1.98 | V    |
| Input voltage to VDDIO_5T supplied non-supply pins with 5V tolerance     | -0.5 | 5.5  | V    |
| Input voltage to VDDIO supplied non-supply pins without 5V tolerance     | -0.5 | 3.6  | V    |
| Input voltage to VDDRTC supplied non-supply pins                         | -0.5 | 3.6  | V    |
| Input voltage to AVDOTG25 supplied non-supply pins                       | -0.5 | 2.75 | V    |
| Input voltage to AVDOTG supplied non-supply pins                         | -0.5 | 3.63 | V    |
| Output voltage from VDDMEM supplied non-supply pins                      | -0.5 | 1.98 | V    |
| Output voltage from VDDIO supplied non-supply pins                       | -0.5 | 3.6  | V    |
| Output voltage from VDDIO_5T supplied non-supply pins                    | -0.5 | 3.6  | V    |
| Output voltage from VDDRTC supplied non-supply pins                      | -0.5 | 3.6  | V    |
| Output voltage from AVDOTG25 supplied non-supply pins                    | -0.5 | 2.75 | V    |
| Output voltage from AVDOTG supplied non-supply pins                      | -0.5 | 3.6  | V    |
| Maximum ESD stress voltage, Human Body Model; Any pin to any             |      |      |      |
| supply pin, either polarity, or Any pin to all non-supply pins together, |      | 2000 | V    |
| either polarity. Three stresses maximum.                                 |      |      |      |



## 3.2 Recommended operating conditions

Table 3-2 Recommended operating conditions for power supplies

| Symbol     | Description                      | Min   | Typical | Max   | Unit |
|------------|----------------------------------|-------|---------|-------|------|
|            | VDDMEM voltage for LPDDR         | 1.65  | 1.8     | 1.95  | V    |
| VMEM       | VDDMEM voltage for SSTL18 (DDR2) | 1.7   | 1.8     | 1.9   | V    |
| V IVI⊏IVI  | VDDMEM voltage for DDR3          | 1.425 | 1.5     | 1.575 | V    |
|            | VDDMEM voltage for DDR3L         | 1.28  | 1.35    | 1.45  | V    |
| VIO(1.8V)  | VDDIO voltage, use as 1.8V       | 1.62  | 1.8     | 1.98  | V    |
| VIO5(1.8V) | VDDIO_5T voltage, use as 1.8V    | 1.62  | 1.8     | 1.98  | V    |
| VIO(2.5V)  | VDDIO voltage, use as 2.5V       | 2.25  | 2.5     | 2.75  | V    |
| VIO5(2.5V) | VDDIO_5T voltage, use as 2.5V    | 2.25  | 2.5     | 2.75  | V    |
| VIO(3.3V)  | VDDIO voltage, use as 3.3V       | 2.97  | 3.3     | 3.63  | V    |
| VIO5(3.3V) | VDDIO_5T voltage, use as 3.3V    | 2.97  | 3.3     | 3.63  | V    |
| VCORE      | VDD core voltage                 | 1.08  | 1.2     | 1.32  | V    |
| VPLL12     | PLLAVDD voltage                  | 1.08  | 1.25    | 1.32  | V    |
| VEFUSE     | AVDEFUSE voltage                 | 2.25  | 2.5     | 2.75  | V    |
| VRTC33     | VDDRTC voltage                   | 1.8   | 1.8     | 3.63  | V    |
| VUSB25     | AVDOTG25 voltage                 | 2.25  | 2.5     | 2.75  | V    |
| VUSB33     | AVDOTG voltage                   | 3.0   | 3.3     | 3.6   | V    |

Table 3-3 Recommended operating conditions for VDDMEM supplied pins

| Symbol | Parameter                             | Min | Typical | Max | Unit |
|--------|---------------------------------------|-----|---------|-----|------|
| VI18   | Input voltage for LPDDR applications  | 0   | 1.8     | 1.9 | V    |
| VO18   | Output voltage for LPDDR applications | 0   | 1.8     | 1.9 | V    |

Table 3-4 Recommended operating conditions for VDDIO/VDDIO\_5T/VDDRTC supplied pins

| Symbol | Parameter                                   | Min  | Typical | Max  | Unit |
|--------|---------------------------------------------|------|---------|------|------|
| VIH18  | Input high voltage for 1.8V I/O application | 1.17 | 1.8     | 3.6  | V    |
| VIL18  | Input low voltage for 1.8V I/O application  | -0.3 | 0       | 0.63 | ٧    |
| VIH25  | Input high voltage for 2.5V I/O application | 1.7  | 2.5     | 3.6  | V    |
| VIL25  | Input low voltage for 2.5V I/O application  | -0.3 | 0       | 0.7  | V    |
| VIH33  | Input high voltage for 3.3V I/O application | 2    | 3.3     | 3.6  | V    |
| VIL33  | Input low voltage for 3.3V I/O application  | -0.3 | 0       | 0.8  | V    |

Table 3-5 Recommended operating conditions for others

| Symbol | Description         | Min | Typical | Max | Unit |
|--------|---------------------|-----|---------|-----|------|
| TA     | Ambient temperature | -40 |         | 85  | °C   |



## 3.3 DC Specifications

The DC characteristics for each pin include input-sense levels and output-drive levels and currents. These parameters can be used to determine maximum DC loading, and also to determine maximum transition times for a given load. All DC specification values are valid for the entire temperature range of the device.

Table 3-6 DC characteristics for V<sub>REFMEM</sub>

| Symbol | Parameter                | Min  | Typical | Max  | Unit |
|--------|--------------------------|------|---------|------|------|
| VREFM  | Reference voltage supply | 0.49 | 0.5     | 0.51 | VMEM |

Table 3-7 DC characteristics for VDDmem supplied pins in LPDDR application

| Symbol  | Parameter                  | Min       | Typical | Max       | Unit |
|---------|----------------------------|-----------|---------|-----------|------|
| VIH(DC) | Input logic threshold High | 0.7* VMEM |         | VMEM+0.3  | V    |
| VIL(DC) | Input logic threshold Low  | VMEM-0.3  |         | 0.3* VMEM | V    |
| VIH(AC) | AC Input logic High        | 0.8* VMEM |         | VMEM+0.3  | V    |
| VIL(AC) | AC Input logic Low         | VMEM-0.3  |         | 0.2* VMEM | V    |
| VOH     | DC output logic High       | 0.9*VMEM  |         |           | V    |
|         | (IOH=-0.1mA)               |           |         |           |      |
| VOL     | DC output logic Low        |           |         | 0.1 *VMEM | V    |
|         | (IOL=0.1mA)                |           |         |           |      |
| ILL     | Input leakage current      |           | 0.01    | 6.45      | uA   |
| IMEM    | VMEM quiescent current     |           | 0.02    | 15.03     | uA   |

Table 3-8 DC characteristics for VDDIO/VDDIO\_5T/VDDRTC supplied pins for 1.8V application

| Symbol           | Parameter                                                     | Min  | Typical | Max  | Unit |
|------------------|---------------------------------------------------------------|------|---------|------|------|
| V <sub>T</sub>   | Threshold point                                               | 0.79 | 0.86    | 0.94 | V    |
| V <sub>T+</sub>  | Schmitt trig low to high threshold point                      | 0.95 | 1.06    | 1.16 | V    |
| V <sub>T</sub>   | Schmitt trig high to low threshold point                      | 0.58 | 0.69    | 0.79 | V    |
| V <sub>TPU</sub> | Threshold point with pull-up resistor enabled                 | 0.79 | 0.86    | 0.94 | V    |
| V <sub>TPD</sub> | Threshold point with pull-down resistor enabled               | 0.79 | 0.86    | 0.94 | V    |
| M                | Schmitt trig low to high threshold point with pull-up         | 0.05 | 1.06    | 1.16 | V    |
| $V_{TPU+}$       | resistor enabled                                              | 0.95 |         | 1.16 | V    |
| V                | Schmitt trig high to low threshold point with pull-down       | 0.58 | 0.68    | 0.78 | V    |
| $V_{TPU-}$       | resistor enabled                                              | 0.56 |         |      | V    |
| M                | Schmitt trig low to high threshold point with pull-down       | 0.06 | 1.07    | 1.17 | V    |
| $V_{TPD+}$       | resistor enabled                                              | 0.96 | 1.07    | 1.17 | V    |
| \/               | Schmitt trig high to low threshold point with pull-up         | 0.50 | 0.00    | 0.70 | V    |
| $V_{TPD-}$       | resistor enabled                                              | 0.59 | 0.69    | 0.79 | v    |
| IL               | Input Leakage Current @ V <sub>I</sub> =1.8V or 0V            |      |         | ±10  | μΑ   |
| I <sub>OZ</sub>  | Tri-State output leakage current @ V <sub>I</sub> =1.8V or 0V |      |         | ±10  | μA   |



| R <sub>PU</sub> | Pull-up Resistor                                  |      |      | 114  | 211  | kΩ |
|-----------------|---------------------------------------------------|------|------|------|------|----|
| R <sub>PD</sub> | Pull-down Resistor                                |      | 58   | 103  | 204  | kΩ |
| V <sub>OL</sub> | Output low voltage                                |      |      |      | 0.45 | V  |
| V <sub>OH</sub> | Output high voltage                               |      |      |      |      | V  |
|                 | 8mA                                               |      | 5.3  | 9.8  | 15.8 | mA |
| I <sub>OL</sub> | Low level output current @ V <sub>OL</sub> (max)  | 16mA | 10.8 | 19.7 | 31.8 | mA |
|                 |                                                   | 8mA  | 3.3  | 8.3  | 16.6 | mA |
| I <sub>OH</sub> | High level output current @ V <sub>OH</sub> (min) | 16mA | 6.6  | 16.5 | 33.2 | mA |

Table 3-9 DC characteristics for VDDIO/VDDIO\_5T/VDDRTC supplied pins for 2.5V application

| Symbol            | Parameter                                                                |             | Min  | Typical | Max  | Unit |
|-------------------|--------------------------------------------------------------------------|-------------|------|---------|------|------|
| V <sub>T</sub>    | Threshold point                                                          |             | 1.06 | 1.17    | 1.27 | V    |
| V <sub>T+</sub>   | Schmitt trig low to high threshold point                                 |             | 1.27 | 1.40    | 1.50 | V    |
| V <sub>T-</sub>   | Schmitt trig high to low threshold point                                 |             | 0.86 | 0.98    | 1.09 | V    |
| $V_{TPU}$         | Threshold point with pull-up resistor enal                               | bled        | 1.05 | 1.16    | 1.25 | V    |
| $V_{TPD}$         | Threshold point with pull-down resistor e                                | nabled      | 1.06 | 1.17    | 1.27 | V    |
| V <sub>TPU+</sub> | Schmitt trig low to high threshold point w resistor enabled              | 1.27        | 1.39 | 1.48    | V    |      |
| V <sub>TPU</sub>  | Schmitt trig high to low threshold point w resistor enabled              | 0.85        | 0.97 | 1.08    | V    |      |
| V <sub>TPD+</sub> | Schmitt trig low to high threshold point with pull-down resistor enabled |             |      | 1.41    | 1.50 | V    |
| V <sub>TPD</sub>  | Schmitt trig high to low threshold point w resistor enabled              | ith pull-up | 0.88 | 0.99    | 1.10 | V    |
| IL                | Input Leakage Current @ V <sub>I</sub> =1.8V or 0V                       |             |      |         | ±10  | μA   |
| I <sub>OZ</sub>   | Tri-State output leakage current @ V <sub>I</sub> =1.3                   | 8V or 0V    |      |         | ±10  | μA   |
| R <sub>PU</sub>   | Pull-up Resistor                                                         |             | 43   | 69      | 120  | kΩ   |
| R <sub>PD</sub>   | Pull-down Resistor                                                       |             | 41   | 66      | 124  | kΩ   |
| V <sub>OL</sub>   | Output low voltage                                                       |             |      |         | 0.7  | V    |
| V <sub>OH</sub>   | Output high voltage                                                      |             | 1.7  |         |      | V    |
|                   | Low level output ourrant @ \/ (                                          | 8mA         | 11.6 | 19.4    | 28.4 | mA   |
| I <sub>OL</sub>   | Low level output current @ V <sub>OL</sub> (max)                         | 16mA        | 23.3 | 39.1    | 57.2 | mA   |
| 1                 | High level output ourrent @ \/ (:-)                                      | 8mA         | 9.3  | 19.4    | 34.6 | mA   |
| I <sub>OH</sub>   | High level output current @ V <sub>OH</sub> (min)                        | 16mA        | 18.6 | 38.7    | 69.2 | mA   |

Table 3-10 DC characteristics for VDDIO/VDDIO\_5T/VDDRTC supplied pins for 3.3V application

| Symbol          | Parameter                                | Min  | Typical | Max  | Unit |
|-----------------|------------------------------------------|------|---------|------|------|
| $V_{T}$         | Threshold point                          | 1.39 | 1.50    | 1.65 | V    |
| V <sub>T+</sub> | Schmitt trig low to high threshold point | 1.62 | 1.75    | 1.90 | V    |
| $V_{T-}$        | Schmitt trig high to low threshold point | 1.18 | 1.29    | 1.44 | V    |



| $V_{TPU}$         | Threshold point with pull-up resistor enal                             | oled                                                                | 1.36 | 1.48 | 1.64 | V  |
|-------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|------|------|------|----|
| $V_{TPD}$         | Threshold point with pull-down resistor enabled                        |                                                                     |      | 1.52 | 1.66 | V  |
| V <sub>TPU+</sub> | Schmitt trig low to high threshold point with pull-up resistor enabled |                                                                     |      | 1.75 | 1.89 | V  |
| $V_{TPU-}$        | Schmitt trig high to low threshold point w resistor enabled            | ith pull-down                                                       | 1.16 | 1.28 | 1.43 | V  |
| $V_{TPD+}$        | Schmitt trig low to high threshold point w resistor enabled            | 1.64                                                                | 1.77 | 1.91 | V    |    |
| $V_{TPD-}$        | Schmitt trig high to low threshold point w resistor enabled            | chmitt trig high to low threshold point with pull-up sistor enabled |      | 1.31 | 1.45 | V  |
| IL                | Input Leakage Current @ V <sub>I</sub> =1.8V or 0V                     |                                                                     |      |      | ±10  | μA |
| l <sub>OZ</sub>   | Tri-State output leakage current @ V <sub>I</sub> =1.8                 | 8V or 0V                                                            |      |      | ±10  | μA |
| R <sub>PU</sub>   | Pull-up Resistor                                                       |                                                                     | 34   | 51   | 81   | kΩ |
| R <sub>PD</sub>   | Pull-down Resistor                                                     |                                                                     | 35   | 51   | 88   | kΩ |
| V <sub>OL</sub>   | Output low voltage                                                     |                                                                     |      |      | 0.4  | V  |
| V <sub>OH</sub>   | Output high voltage                                                    |                                                                     | 2.4  |      |      | V  |
|                   | Low lovel output ourrent @ V (max)                                     | 8mA                                                                 | 10.0 | 15.2 | 20.2 | mA |
| I <sub>OL</sub>   | Low level output current @ V <sub>OL</sub> (max)                       | 16mA                                                                | 20.2 | 30.6 | 40.6 | mA |
| 1                 | High level output ourrent @ \/ (\sin\)                                 | 8mA                                                                 | 13.9 | 28.0 | 48.2 | mA |
| I <sub>OH</sub>   | High level output current @ V <sub>OH</sub> (min)                      | 16mA                                                                | 27.8 | 56.0 | 96.3 | mA |

## 3.4 Power On, Reset and BOOT

#### 3.4.1 Power-On Timing

The external voltage regulator and other power-on devices must provide the X1500 processor with a specific sequence of power and resets to ensure proper operation. Figure 3-1shows this sequence and Table 3-11 gives the timing parameters. Following are the name of the power.

- VDDRTC: VDDRTC
- VDD: all 1.25V power supplies, include VDDCORE, PLLAVDD
- VDDIO: all other digital IO, include DDR power supplies: VDDMEM, VDDIO, VDDIO\_5T
- AVD: all other analog power supplies: AVDOTG25, AVDOTG
- AVDEFUSE

**Table 3-11 Power-On Timing Parameters** 

| Symbol                | Parameter                       |   | Max | Unit |
|-----------------------|---------------------------------|---|-----|------|
| t <sub>R_VDDRTC</sub> | VDDRTC rise time <sup>[1]</sup> | 0 | 5   | ms   |
| t <sub>R_VDDIO</sub>  | VDDIO rise time <sup>[1]</sup>  | 0 | 5   | ms   |



| t <sub>D_VDDIO</sub>    | Delay between VDD arriving 50% (or 90%) to VDDIO arriving 50% (or 90%)  | 0                  | - | ms                |
|-------------------------|-------------------------------------------------------------------------|--------------------|---|-------------------|
| t <sub>R_VDD</sub>      | VDD rise time <sup>[1]</sup>                                            | 0                  | 5 | ms                |
| t <sub>D_VDD</sub>      | Delay between VDDRTC arriving 50% (or 90%) to VDD arriving 50% (or 90%) | 0                  | 1 | ms                |
| t <sub>R_AVD</sub>      | AVD rise time <sup>[1]</sup>                                            | 0                  | 5 | ms                |
| t <sub>D_AVD</sub>      | Delay between VDDIO arriving 90% to AVD arriving 90%                    | 0                  | 1 | ms                |
| t <sub>D_PPRST_</sub>   | Delay between AVD stable and PPRST_ de-asserted                         | TBD <sup>[3]</sup> | _ | ms <sup>[2]</sup> |
| t <sub>D_AVDEFUSE</sub> | Delay between PPRST_ finished and E-fuse programming power apply        | 0                  | - | ms                |

#### NOTES:

- 1 The power rise time is defined as 10% to 90%.
- 2 The PPRST\_ must be kept at least 100us. After PPRST\_ is deasserted, the corresponding chip reset will be extended at least 40ms.
- 3 It must make sure the EXCLK is stable and all power(except AVDEFUSE) is stable.





Figure 3-1 Power-On Timing Diagram

#### 3.4.2 Reset procedure

There 3 reset sources: 1 PPRST\_ pin reset; 2 WDT timeout reset; and 3 hibernating reset when exiting hibernating mode. After reset, program start from boot.

- 1 PPRST\_ pin reset.
  - This reset is trigged when PPRST\_ pin is put to logic 0. It happens in power on RTC power and RESET-KEY pressed to reset the chip from unknown dead state. The reset end time is about 1M EXCLK cycles after rising edge of PPRST\_.
- 2 WDT reset.
  - This reset happens in case of WDT timeout. The reset keeps for about a few RTCLK cycles.
- 3 Hibernating reset.
  - This reset happens in case of wakeup the main power from power down. The reset keeps for about 1ms ~ 125ms programable, plus 1M EXCLK cycles, start after WKUP\_ signal is recognized.

After reset, all GPIO shared pins are put to GPIO input function and most of their internal pull-up/down resistor are set to on, see "2.5 Pin Descriptions" for details. The PWRON is output 1. The oscillators



are on. The USB 2.0 OTG PHY, the audio CODEC DAC/ADC put in suspend mode.

#### 3.4.3 BOOT

The boot sequence of the X1500 is controlled by boot\_sel [1:0] pin values. The following table lists them:

Table 3-12 Boot Configuration of X1500

| boot_sel[1] | boot_sel[0] | Boot configuration       |
|-------------|-------------|--------------------------|
| 1           | 1           | Boot from SFC0           |
| 0           | 1           | Boot from MSC0           |
| 1           | 0           | Boot from USB 2.0 device |

X: means "Don't Care"

The boot procedure is showed in the following flow chart:

After reset, the boot program on the internal boot ROM executes as follows:

- 1 Disable all interrupts and read boot\_sel[2:0] to determine the boot method.
- 2 If it is boot from MMC/SD card at MSC0, its function pins MSC0\_D0, MSC0\_CLK, MSC0\_CMD are initialized, the boot program loads the 12KB code from MMC/SD card to tcsm and jump to it. Only one data bus which is MSC0\_D0 is used. The clock EXTCLK/128 is used initially. When reading data, the clock EXTCLK/4 is used.
- 3 If it is boot from USB, a block of code will be received through USB cable connected with host PC and be stored in tcsm. Then branch to this area in tcsm.
- 4 If it is boot from SPI nor/nand at SFC, its function pins SFC\_CLK,SFC\_CE,SFC\_DR,SFC\_DT, SFC\_WP, SFC\_HOLD are initialized, the boot program loads the 12KB code from MMC/SD card to tcsm and jump to it.





Figure 3-2 Boot flow diagram of X1500



## 4 Packaging Information

#### 4.1 Overview

X1500 processor is offered in 109-pin BGA package, which is 8mm X 8mm X 1.2mm, 12 x 12 matrix ball grid array and 0.65mm ball pitch, show in Figure 4-1.

#### 4.2 X1500 Device Dimensions





Bottom View







|                   | Dimen | sion in m | nn     | Dimen | sion in | inch  |  |
|-------------------|-------|-----------|--------|-------|---------|-------|--|
| symbol            | MIN   | NOM       | MAX    | MIN   | NOM     | MAX   |  |
| Λ                 | _     | _         | 1,220  |       |         | 0.048 |  |
| A1                | 0.160 | 0.210     | 0.260  | 0.006 | 0.008   | 0.010 |  |
| A2                | 0.860 | 0.910     | 0.960  | 0.034 | 0.036   | 0.038 |  |
| С                 | 0.170 | 0.210     | 0.250  | 0.007 | 0.008   | 0.010 |  |
| D                 | 7.900 | 8,000     | 8, 100 | 0.311 | 0.315   | 0.319 |  |
| Е                 | 7.900 | 8.000     | 8.100  | 0.311 | 0.315   | 0.319 |  |
| D1                |       | 7.150     | _      | —     | 0.281   | _     |  |
| E1                | -     | 7.150     |        |       | 0.281   |       |  |
| e                 |       | 0.650     | _      |       | 0.026   | _     |  |
| ь                 | 0.250 | 0.300     | 0.350  | 0.010 | 0.012   | 0.014 |  |
| aaa               |       | 0.100     |        |       | 0.004   |       |  |
| ppp               |       | 0.100     |        |       | 0.004   |       |  |
| ddd               |       | 0.080     |        |       | 0.003   |       |  |
| 666               |       | 0.150     |        |       | 0.006   |       |  |
| fff               |       | 0.080     |        |       | 0.003   |       |  |
| Ball Diam         |       | 0.300     |        | 0.012 |         |       |  |
| N                 |       | 109       | 09 109 |       |         |       |  |
| MD/ME 12/12 12/12 |       |           |        |       |         |       |  |

Figure 4-1 X1500 package outline drawing

#### Notes:

- 1. BALL PAD OPENING: 0.270mm;
- 2. PRIMARY DATUM C AND SEATING PLANE ARE THE SOLDER BALLS;
- 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C;
- 4. SPECIAL CHARACTERISTICS C CLASS: bbb,ddd;
- 5. THE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY;
- 6. BAN TO USE THE LEVEL 1 ENVIRONMENT-RELATED SUBSTANCES OF JCET PRESCRIBING:
- 7. ALL UNITS ARE IN MILLIMETER:

#### 4.3 Solder Ball Materials

Both the top (joint) and bottom solder ball materials of X1500 are SAC105.

#### 4.4 Moisture Sensitivity Level

X1500 package moisture sensitivity is level 3.



## **5 PCB Mounting Guidelines**

## 5.1 RoHS compliance

TBD.

## 5.2 Reflow profile

X1500 package is lead-free. It's reflow profile follows the IPC/JEDEC lead-free reflow profile as contained in <u>J-STD-020C</u>.

