Rational Homotopy Theory

Labix

August 2, 2024

Abstract

References

• Rational Homotopy Theory and Differential Forms

Contents

1	Hon	notopy with Coefficients	3
	1.1	Rational Spaces	3
	1.2	Rational Homotopy Type	3

1 Homotopy with Coefficients

1.1 Rational Spaces

Definition 1.1.1: Rational Spaces

Let *X* be a space. We say that *X* is a rational space if the following are true.

- *X* is homotopy equivalent to a CW complex
- $\pi_1(X) = 0$
- $\pi_n(X)$ is a \mathbb{Q} -vector space for each $n \in \mathbb{N}$

Lemma 1.1.2

The following are true regarding the Eilenberg-maclane spaces of Q.

- $\widetilde{H}_k(K(\mathbb{Q}, n); \mathbb{Z})$ is a \mathbb{Q} -vector space for each $k \in \mathbb{N}$.
- $H^k(K(\mathbb{Q},2n);\mathbb{Q})$ is a \mathbb{Q} -polynomial algebra on one generator, and the generator has degree 2n.

•

Corollary 1.1.3

The induced map $K(\mathbb{Z},n) \to K(\mathbb{Q},n)$ given by the map $\mathbb{Z} \to \mathbb{Q}$ induces an isomorphism of rational cohomology and rational homology.

Theorem 1.1.4

Let X be a space. Then X is a rational space if and only if the following conditions are satisfied:

- *X* is homotopy equivalent to a CW complex
- $\pi_1(X) = 0$
- $\widetilde{H}_n(X,\mathbb{Z})$ is a \mathbb{Q} -vector space

1.2 Rational Homotopy Type

Definition 1.2.1: Rational Homotopy Equivalence

Let $f:X\to Y$ be a map of spaces. We say that f is a rational homotopy equivalence if the induced map gives isomorphisms

$$f_*: \pi_n(X) \otimes \mathbb{Q} \xrightarrow{\cong} \pi_n(Y) \otimes \mathbb{Q}$$

of \mathbb{Q} -vector spaces.

Intuitively, tensoring the homotopy groups with $\mathbb Q$ forgets about the torsion subgroups, thus leading to an even more crude algebraic invariant for (simply connected) spaces. In other words, we have the following relation:

$$Homeomorphisms \subset \underset{Equivalences}{Homotopy} \subset \underset{Equivalences}{Weak} \\ Homotopy \subset \underset{Equivalences}{Rational} \\ Homotopy \subset \underset{Equivalences$$

The hope is that while we are losing some information, it makes the rational homotopy groups more computable.

Theorem 1.2.2

Let X, Y be simply connected CW complexes and let $f: X \to Y$ be a map. If Y is a rational space, then the following conditions are equivalent.

- The induced map $f_*:\pi_n(X)\otimes\mathbb{Q}\to\pi_n(Y)\otimes\mathbb{Q}\cong\pi_n(Y)$ is a rational homotopy equivalence
- The induced map $f_*:\widetilde{H}_n(X;\mathbb{Q})\to\widetilde{H}_n(Y;\mathbb{Q})\cong\widetilde{H}_n(Y;\mathbb{Z})$ is an isomorphism for all $n\in\mathbb{N}$
- f is universal for maps of X into \mathbb{Q} -space. This means that if $g:X\to Z$ is another map into a \mathbb{Q} -space Z, then there exists a map $h:Y\to Z$ unique up to homotopy such that the following diagram commutes:

Lemma 1.2.3

Let X be a simply connected CW complex. Then $\pi_n(X) \otimes \mathbb{Q} = 0$ for all $n \in \mathbb{N}$ if and only if $\widetilde{H}_n(X;\mathbb{Q}) = 0$ for all $n \in \mathbb{N}$.

Definition 1.2.4: Rationalization and Rational Homotopy Type

Let X be a CW complex. The rationalization of X is a rational space $X_{(0)}$ together with a rational homotopy equivalence $f:X\to X_{(0)}$. In this case we say that $X_{(0)}$ is the rational homotopy type of X.

Prereq: postinokov towers

Theorem 1.2.5

Let X be a CW complex. The rationalization of X exists and is unique up to homotopy equivalence.

Explicitly, if $X_{(0)}$ and Y are both rationalizations of X with maps $f: X \to X_{(0)}$ and $g: X \to Y$, then there exists a homotopy equivalence $h: X_{(0)} \to Y$ such that the following diagram commutes:

