# Rotation-vibration states of H 3 + at dissociation

Maxim A. Kostin, Oleg L. Polyansky, Jonathan Tennyson, and Hamse Y. Mussa

Citation: The Journal of Chemical Physics 118, 3538 (2003); doi: 10.1063/1.1539034

View online: http://dx.doi.org/10.1063/1.1539034

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/118/8?ver=pdfcov

Published by the AIP Publishing

# Articles you may be interested in

Oscillator strengths between low-lying ro-vibrational states of hydrogen molecular ions

J. Chem. Phys. 137, 024311 (2012); 10.1063/1.4733988

Unraveling rotation-vibration mixing in highly fluxional molecules using diffusion Monte Carlo: Applications to H 3 + and H3O+

J. Chem. Phys. 136, 074101 (2012); 10.1063/1.3681391

Calculations of rotation-vibration states with the z axis perpendicular to the plane: High accuracy results for H 3

J. Chem. Phys. **116**, 7564 (2002); 10.1063/1.1464540

Symmetry-adapted distributed approximating functionals: Theory and application to the ro-vibrational states of H 3 +

J. Chem. Phys. 110, 10283 (1999); 10.1063/1.478962

Calculation of the rotation-vibration states of water up to dissociation

J. Chem. Phys. 109, 10885 (1998); 10.1063/1.476519



JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 8 22 FEBRUARY 2003

# Rotation-vibration states of H<sub>3</sub><sup>+</sup> at dissociation

Maxim A. Kostin, Oleg L. Polyansky, and Jonathan Tennyson Department of Physics and Astronomy, University College London, London WCIE 6BT, United Kingdom

# Hamse Y. Mussa

Unilever Centre, Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

(Received 28 October 2002; accepted 27 November 2002)

Calculations are presented which estimate energies for all the bound rotation-vibration energy levels of  $\mathrm{H}_3^+$  with rotation angular momentum  $J\!=\!0$ , 2 and 8. The calculations, which use Radau coordinates with z-axis of the molecule embedded perpendicular to the molecular plane, are performed on 128 nodes of a massively parallel computer. It is found that convergence with respect to basis set size of the higher J states is fairly slow and that further improvements are beyond the capabilities of the current computational set-up. © 2003 American Institute of Physics.

[DOI: 10.1063/1.1539034]

#### I. INTRODUCTION

A theoretical analysis of the near dissociation infrared spectrum of H<sub>3</sub><sup>+</sup>, initially recorded by Carrington and co-workers<sup>1</sup> in 1983 and characterized experimentally by Carrington's group over the following decade, 2-4 remains one of the longest running problems in chemical physics. The challenge posed by this spectrum has stimulated many quantum mechanical studies of this system; see Refs. 5-7 for early examples. In particular a number of calculations have been successfully performed which characterize all the vibrational state of H<sub>3</sub><sup>+</sup> and, in some cases, the quasi-bound states too.<sup>8–11</sup> However it is well established that spectra recorded by Carrington and co-workers involve rotationally excited states of H<sub>3</sub><sup>+</sup> as the higher, dissociating states are quasibound states trapped by rotational barriers in the system. 12 The study of rotationally excited states of H<sub>3</sub><sup>+</sup> at its dissociation limit has received considerably less attention.

Calculations involving high-lying rotationally excited states have proved to be difficult for H<sub>3</sub><sup>+</sup>. This is undoubtedly a consequence of both the strong Coriolis coupling found in this system and low-lying barrier to linear geometry. We will comment on further on these aspects of the problem below. A number of studies 13-15 have obtained results for rotationally excited of H<sub>3</sub><sup>+</sup> up to about 25 000 cm<sup>-1</sup> or about two-thirds of the way to dissociation. Even at this energy, all these studies showed some problems with convergence. Only two previous quantum mechanical calculations have actually probed rotationally excited states of H<sub>3</sub><sup>+</sup> at the dissociation limit. Miller and Tennyson<sup>16</sup> studied the high J limit for the molecule and found that states with rotational quantum number J up to 45 could be bound for the system, in good agreement with semi-classical studies.<sup>17</sup> Conversely, Henderson and Tennyson<sup>18</sup> studied states with J=1 and 2 at dissociation but, despite runs on a mainframe lasting weeks, obtained very poorly converged results. In this work we present a method suitable for studying rotationally excited states of  $H_3^+$  at dissociation, and give results for states with J=2 and

J=8. These calculations relied on the use of many nodes on a massively parallel computer.

#### II. METHOD

To calculate rotationally excited states we adapt the twostep procedure of Tennyson and Sutcliffe<sup>19</sup> which was already been successfully used to both calculate rotationally excited states of water at dissociation<sup>20</sup> and rotationally excited quasibound states of HOCl.<sup>21</sup> In this method the fully coupled rotation-vibration problem is solved by first solving a series of Coriolis-decoupled effective vibrational problems which assume the k, the project of J along the body-fixed z-axis, is a conserved quantity. The lowest solutions of these problems are then used as a basis for the fully coupled problem. This method has proved to be very efficient for calculating spectra of molecules with high levels of rotational excitation. 16,22 Furthermore the method has been parallelized such that, at least for fairly low values J, the computer time used only scales with (J+1) when considering rotational states near dissociation.<sup>20,23</sup>

The efficiency of this two-step method depends on a good choice of the intermediate quantum number k. Most previous studies of H<sub>3</sub><sup>+</sup>, e.g., Ref. 24, used a z-axis which lies in the plane of the molecule. However it is well-known<sup>25,26</sup> that the appropriate quantization axis for H<sub>3</sub><sup>+</sup> is the C axis which lies along the symmetry axis of the molecule and is perpendicular to the plane of the molecule. Following Sarkar et al., 27 we have recently used an axis embedding which places the z-axis perpendicular to the plane of the molecule to perform a high accuracy study of the spectroscopically determined, i.e., low-lying, state of H<sub>3</sub><sup>+</sup>. <sup>28</sup> This study showed that this z perpendicular embedding combined with the use of Radau coordinates to represent the vibrational motions had a number of advantages. Besides giving an appropriate intermediate quantization this method proved to be much more robust at treating linear geometries.

For H<sub>3</sub><sup>+</sup> the symmetry-related linear saddle points lie at only about one-third of the dissociation energy. In Jacobi

coordinates these three saddle points correspond to geometries with  $\theta$ =0,  $\theta$ = $\pi$  and R=0. It is the third case where the atom-diatom stretching coordinate, R, goes to zero and  $\theta$  becomes undefined that causes the problems.  $^{9,29,30}$  Indeed the different rates of convergence for the different symmetries found in Jacobi coordinate studies of high lying rotationally excited states  $^{13,15}$  can be directly attributed to difficulties encountered when treating this geometry. In Radau coordinates, except at very high energies, linear geometries can all be defined by considering cases with  $\theta$ =0 and  $\theta$ = $\pi$  only.

In this work we adapt the program PDVR3D,  $^{23}$  designed to compute near dissociation states using massively parallel computers, to the *z*-perpendicular Radau coordinates used by us previously for low-lying states of  $H_3^+$ . This new program was run on the 576 processor Cray-T3E machine (Turing) which is managed as part of the CSAR service at the University of Manchester. It is important to note that this machine has 256 Mb memory on each node and a total wall-clock time limit of one day for large jobs.

PDVR3D tackles the vibrational part of the calculation by distributing angular grid points between nodes. Most of the calculations reported here used  $n_{\gamma}$ = 32 angular grid points spread over 128 nodes, i.e., 4 nodes and hence 1 Gb memory per angular grid point. The angular grid was based on Gauss-Jacobi integration and varied as a function of J and k, which is necessary to ensure the correct behavior at linear geometries.<sup>27</sup> The calculation then follows the following steps:

- 1. For each k and parity block:
  - (a) Solve a two-dimensional (2D) vibrational problem for each angular grid point.
  - (b) Select  $N_2$  2D solutions as a basis for the 3D vibrational problem.
  - (c) Construct  $N_3 = n_{\gamma} \times N_2$  dimensional 3D Hamiltonian
  - (d) Diagonalize this Hamiltonian using PARPACK.<sup>31</sup>
  - (e) Store  $M_3$  wave functions,  $\Psi^k$ , as amplitudes on each grid point.
- 2. Use the  $\Psi^k$  to construct the off-diagonal in k matrix elements. Write these matrix elements to disk and discard  $\Psi^k_i$  when no longer needed.
- 3. Upon completion of the loop over k, read in matrix elements of the full Hamiltonian of size  $(J+1-p)\times M_3$  and diagonalize using PEIGS.<sup>32</sup>

In practice storing more than  $M_3$  solutions at step 1(e) allows a number of second step calculations to be performed and hence convergence with parameter  $M_3$  to be tested without repeating the more time consuming first step calculation.

The radial motions were represented using a grid based on Morse oscillatorlike functions<sup>33</sup> defined, in atomic units, by  $r_e$ =3.07,  $D_e$ =0.07 and  $\omega_e$ =0.0075. A grid of 60 points was used which was found to stretch far enough to give a reasonable representation of the near dissociation functions. These parameters were optimized by performing a series of J=0 calculations which varied the Morse parameters and tested grids of 52, 54, 58 and 64 points. Convergence was established both by self-consistency checks and by comparison with calculations performed in Jacobi coordinates.<sup>34</sup> The calculations presented here were based on the use of  $N_3$ 

=9984 which is sufficient to converge the energy levels to within about  $1 \, \mathrm{cm}^{-1}$ . We were able to perform larger calculations than this for J = 0,  $^{34}$  but the J > 0 calculations require more local memory. This is due to the need to save wave functions in memory which are used to compute the matrix elements off-diagonal in k. This constraint meant that  $N_3 = 9984$  was the largest J > 0 problem that could be attempted with the present facility.

The size of the final Hamiltonian is determined by the

TABLE I. Convergence of  $\mathrm{H_3^+}$  energy levels,  $E(M_3)$  in cm<sup>-1</sup>, as a function of the number of "vibrational" wave functions,  $M_3$ , used to converge the full Hamiltonian for J=2+, p=0 and  $N_3=9984$ . The first level given is eigenvalue number 1677.

| E(2944)                  | E(2816) - E(2688) | E(2944) - E(2816) |
|--------------------------|-------------------|-------------------|
| 34 717.479               | 1.065             | 0.946             |
| 34 720.384               | 1.020             | 0.592             |
| 34 733.629               | 1.299             | 0.944             |
| 34 737.140               | 0.908             | 0.860             |
| 34 739.221               | 1.008             | 0.814             |
| 34 742.988               | 1.160             | 0.885             |
| 34 756.774               | 1.221             | 0.826             |
| 34 760.576               | 0.879             | 0.703             |
| 34 769.199               | 1.212             | 0.935             |
| 34 773.767               | 0.880             | 0.718             |
| 34 781.153               | 0.885             | 0.920             |
| 34 784.935               | 0.894             | 0.882             |
| 34 791.576               | 0.726             | 0.612             |
| 34 793.855               | 0.722             | 0.778             |
| 34 798.987               | 0.946             | 0.798             |
| 34 805.360               | 0.789             | 0.687             |
| 34 809.166               | 0.780             | 0.693             |
| 34 810.496               | 0.759             | 0.607             |
| 34 812.462               | 0.769             | 0.755             |
| 34 825.355               | 0.736             | 0.683             |
| 34 831.606               | 0.765             | 0.668             |
| 34 832.935               | 0.727             | 0.749             |
| 34 839.338               | 0.844             | 0.916             |
| 34 840.140               | 0.955             | 0.742             |
| 34 856.070               | 0.886             | 0.680             |
| 34 857.203               | 0.644             | 0.695             |
| 34 858.409               | 0.730             | 0.658             |
| 34 864.837               | 0.956             | 0.926             |
| 34 869.370               | 0.816             | 0.804             |
| 34 870.273               | 1.420             | 1.006             |
| 34 874.471               | 0.933             | 0.966             |
| 34 883.080               | 0.908             | 0.737             |
| 34 893.027               | 0.887             | 0.574             |
| 34 895.563               | 0.757             | 0.896             |
| 34 899.952               | 0.862             | 0.650             |
| 34 905.545               | 0.663             | 0.651             |
| 34 911.372               | 1.099             | 0.881             |
| 34 912.915               | 1.035             | 0.729             |
| 34 920.013               | 0.689             | 0.622             |
| 34 925.164               | 0.581             | 0.687             |
| 34 927.248               | 0.651             | 0.856             |
|                          | 0.776             | 0.756             |
| 34 930.092<br>34 937 396 |                   |                   |
| 34 937.396<br>34 943 172 | 0.758             | 0.807             |
| 34 943.172               | 0.637             | 0.606             |
| 34 955.507               | 0.852             | 0.683             |
| 34 958.546               | 0.599             | 0.706             |
| 34 958.810               | 1.195             | 0.818             |
| 34 966.211               | 0.971             | 0.782             |
| 34 973.056               | 1.052             | 1.073             |
| 34 976.519               | 0.917             | 0.637             |



FIG. 1. Convergence of selected high-lying J=2+p=0 energy levels as functions  $M_3$ , where the size of the final Hamiltonian is given by  $3 \times M_3$ .

number of first step solutions,  $M_3$ , retained for each k-block. For reasons of load balance<sup>35</sup>  $M_3$  was taken to be independent of k. Our results proved to be strongly dependent on the choice of  $M_3$  and convergence with respect to this parameter will be discussed below.

All calculations reported here used fit two of the global *ab initio* potential energy surface of Polyansky *et al.*, <sup>36</sup> which has a dissociation energy  $D_e$  of 37 170.4 cm<sup>-1</sup> which corresponds to a  $D_0$  value of 34 983 cm<sup>-1</sup>. This surface, unlike the MBB potential<sup>37</sup> used in most previous studies of states near dissociation, is designed to have the correct shape at the dissociation limit. Calculations using this realistic potential are harder than those using the MBB surface because not only does the new surface support more vibrational states<sup>34</sup> but also many of the new vibrational states are very diffuse meaning that it is necessary to use much more extended radial basis sets. Some preliminary J=0 only results, which compared states for this potential with those for the MBB surface and tested the use of Radau coordinates, were reported previously.<sup>34</sup>

## III. RESULTS

In this study we present results for two values of the rotational quantum number J. We selected J=2 as a low value for which tests could be performed without being too computationally expensive, and J=8 as lying in the J=5-10 range which is thought to be regime for the zero kinetic energy release near dissociation spectrum. In practice the limit on total CPU time meant that converged first step calculations could not be performed for J>8 on the Turing computer.

Table I shows convergence of near-dissociation states with J=2, + vibrational parity<sup>27,28</sup> and p=0 rotational parity. Figure 1 similarly shows convergence of selected highlying J=2 levels as a function of  $M_3$ . These results show that the convergence is slow and almost monotonic. For local memory reasons, the calculations with  $M_3=2944$  were the

TABLE II. Convergence of  ${\rm H_3^+}$  energy levels,  $E(M_3)$  in cm<sup>-1</sup>, as a function of the number of "vibrational" wave functions,  $M_3$ , used to converge the full Hamiltonian for  $J\!=\!8+$ ,  $p\!=\!0$  and  $N_3\!=\!9984$ . The first level given is eigenvalue number 3808.

| E(2048)    | E(1920) - E(1792) | E(2048) - E(1920) |
|------------|-------------------|-------------------|
| 34 863.726 | 9.998             | 7.556             |
| 34 869.215 | 7.708             | 7.816             |
| 34 871.736 | 7.929             | 6.707             |
| 34 873.840 | 7.703             | 6.046             |
| 34 875.208 | 7.138             | 7.673             |
| 34 877.800 | 6.928             | 6.253             |
| 34 880.513 | 7.432             | 5.707             |
| 34 882.219 | 8.918             | 6.875             |
| 34 884.543 | 8.371             | 5.770             |
| 34 886.538 | 8.432             | 6.656             |
| 34 887.716 | 8.510             | 6.427             |
| 34 890.080 | 8.578             | 7.889             |
| 34 892.574 | 10.785            | 7.420             |
| 34 896.820 | 7.694             | 7.151             |
| 34 897.230 | 10.022            | 9.347             |
| 34901.023  | 9.595             | 7.029             |
| 34 901.956 | 9.579             | 7.174             |
| 34 904.727 | 7.668             | 6.748             |
| 34 907.020 | 8.652             | 8.001             |
| 34 909.334 | 9.394             | 6.801             |
| 34 913.085 | 8.260             | 7.157             |
| 34 914.163 | 7.927             | 7.455             |
| 34 916.648 | 9.285             | 7.246             |
| 34 917.956 | 9.305             | 7.862             |
| 34 921.865 | 7.146             | 7.010             |
| 34 922.814 | 8.136             | 7.301             |
| 34 924.025 | 8.809             | 6.730             |
| 34 925.570 | 9.645             | 8.582             |
| 34 928.456 | 8.804             | 7.454             |
| 34 934.108 | 7.416             | 8.658             |
| 34 936.202 | 8.539             | 6.977             |
| 34 939.376 | 8.164             | 6.703             |
| 34 940.386 | 8.557             | 6.270             |
| 34 940.731 | 8.487             | 7.747             |
| 34 942.442 | 9.786             | 7.712             |
| 34 945.154 | 8.430             | 6.846             |
| 34 946.629 | 7.527             | 7.037             |
| 34 949.781 | 8.830             | 7.922             |
| 34 950.673 | 9.098             | 8.094             |
| 34 955.958 | 9.553             | 7.548             |
| 34 956.961 | 10.702            | 8.927             |
| 34 960.738 | 9.524             | 7.575             |
| 34 962.887 | 8.303             | 8.330             |
| 34 964.650 | 9.879             | 7.541             |
| 34 968.040 | 8.626             | 8.730             |
| 34 971.452 | 8.927             | 8.661             |
| 34 974.436 | 9.657             | 6.953             |
| 34 978.208 | 9.179             | 7.503             |
| 34 979.281 | 7.660             | 8.614             |
| 34 981.636 | 9.743             | 7.508             |

largest that could be attempted on Turing. These calculations converge the highest J=2 levels to  $1 \text{ cm}^{-1}$ . As is usual in variation calculations, the lower levels display much more rapid convergence.

Table II presents a similar convergence study for the J = 8+, p=0 levels. In this case the maximum  $M_3$  is 2048 as this was the largest value for which calculations were possible. As the size of the final Hamiltonian scales with J+1-p, the J=8 Hamiltonian matrix is three times the dimen-

TABLE III. Convergence of  $H_3^+$  J=2+, p=0 rotational energy levels in the region of the barrier to linearity,  $E(M_3)$  in cm<sup>-1</sup>, as a function of the number of "vibrational" wave functions,  $M_3$ , used to converge the full Hamiltonian.

| Level | E(2048)    | E(2048) - E(150) | E(2048) - E(200) |
|-------|------------|------------------|------------------|
| 41    | 10 704.567 | 0.255            | 0.201            |
| 42    | 10 770.235 | 0.313            | 0.275            |
| 43    | 10 898.110 | 0.271            | 0.228            |
| 44    | 10 908.532 | 0.139            | 0.134            |
| 45    | 11 026.466 | 1.553            | 1.228            |
| 46    | 11 042.115 | 1.686            | 1.581            |
| 47    | 11 105.118 | 3.553            | 3.483            |
| 48    | 11 305.428 | 0.118            | 0.093            |
| 49    | 11 427.514 | 0.285            | 0.216            |
| 50    | 11 529.816 | 0.256            | 0.193            |
| 51    | 11 575.797 | 0.118            | 0.114            |
| 52    | 11 683.375 | 0.737            | 0.574            |
| 53    | 11 769.228 | 0.787            | 0.639            |
| 54    | 11 807.408 | 0.466            | 0.435            |
| 55    | 11 884.705 | 1.037            | 0.954            |
| 56    | 11 944.639 | 0.497            | 0.417            |
| 56    | 11 944.639 | 0.497            | 0.417            |
| 57    | 12 023.318 | 0.504            | 0.438            |
| 58    | 12 148.858 | 0.716            | 0.546            |
| 59    | 12 222.023 | 0.504            | 0.399            |
| 60    | 12 300.365 | 0.293            | 0.253            |
| 61    | 12 381.264 | 0.244            | 0.232            |
| 62    | 12 453.805 | 4.535            | 3.871            |

sion of the one with the same value of  $M_3$  for J=2. The density of energy levels should approximately scale by the same amount. A full list of the J=0, J=2+p=0 and J=8+p=0 levels is provided in the journal's electronic archive.<sup>39</sup>

The convergence displayed by the J=8 results is again fairly slow and our largest calculations is only converged to within  $10~\rm cm^{-1}$  in the near dissociation region. Actually this number is surprisingly poor as for J=2+,p=0 with  $M_3=2048$  the levels are converged to better than  $2~\rm cm^{-1}$ . Previous studies using the two-step procedure have assumed that the convergence obtained using as a function of  $M_3$  does not depend strongly on J. The present calculations suggest that the results for J=8 with  $M_3=2048$  have a convergence error approximately five times that of the results of J=2 with the same value of  $M_3$ .

Since these are the first calculations to probe the near dissociation region of  $H_3^+$  with J>2 we wondered whether this slower convergence with increasing J was a property of the near dissociation region. To test this we performed several desktop calculations on the low-lying energy levels which are summarized in Table III. In these calculations we deliberately used small values of  $M_3$  so that the rate of convergence could be assessed. These calculations showed that using  $M_3 = 200$  converged the J = 8 levels in the region of the barrier to linearity (10500-12500 cm<sup>-1</sup>) on average to  $2 \text{ cm}^{-1}$  whereas for the J=2 level in the same region with  $M_3 = 200$  the average convergence error is 0.6 cm<sup>-1</sup>. Thus the convergence of the low-lying levels also shows differential convergence, although the factor between J=2 and J= 8 is less than five which we found at dissociation. Such behavior has not been remarked on before. Whether it is a

TABLE IV. Convergence of  $\mathrm{H}_3^+$  J=8+, p=0 rotational energy levels in the region of the barrier to linearity,  $E(M_3)$  in cm<sup>-1</sup>, as a function of the number of "vibrational" wave functions,  $M_3$ , used to converge the full Hamiltonian.

| Level | E(2048)    | E(2048) - E(150) | E(2048) - E(200) |
|-------|------------|------------------|------------------|
| 75    | 10 569.063 | 0.257            | 0.155            |
| 76    | 10 637.950 | 0.255            | 0.146            |
| 77    | 10 693.596 | 0.209            | 0.117            |
| 78    | 10 720.130 | 0.233            | 0.148            |
| 79    | 10 764.738 | 0.410            | 0.226            |
| 80    | 10 786.698 | 2.805            | 1.904            |
| 81    | 10 796.365 | 2.618            | 1.411            |
| 82    | 10 843.390 | 0.310            | 0.175            |
| 83    | 10 924.280 | 0.213            | 0.129            |
| 84    | 10 970.297 | 2.529            | 1.312            |
| 85    | 10 989.431 | 0.748            | 0.395            |
| 86    | 11 070.826 | 0.272            | 0.150            |
| 87    | 11 115.179 | 11.219           | 7.873            |
| 88    | 11 161.140 | 4.501            | 2.660            |
| 89    | 11 163.817 | 5.476            | 3.763            |
| 90    | 11 183.948 | 0.269            | 0.162            |
| 91    | 11 262.877 | 0.168            | 0.104            |
| 92    | 11 281.203 | 2.465            | 1.476            |
| 93    | 11 312.996 | 4.675            | 2.946            |
| 94    | 11 370.653 | 0.273            | 0.171            |
| 95    | 11 421.491 | 7.594            | 5.082            |
| 96    | 11 433.859 | 0.114            | 0.059            |
| 97    | 11 520.394 | 6.251            | 4.346            |
| 98    | 11 670.287 | 2.787            | 1.472            |
| 99    | 11 706.162 | 4.128            | 2.423            |
| 100   | 11 723.123 | 0.247            | 0.153            |
| 101   | 11 830.570 | 2.238            | 1.446            |
| 102   | 11 851.465 | 1.898            | 1.084            |
| 102   | 11 858.131 | 1.572            | 0.882            |
| 103   | 11 877.626 | 3.187            | 1.838            |
| 105   | 11 931.326 | 0.233            | 0.134            |
| 105   | 11 931.320 | 3.101            | 2.010            |
| 107   | 12 048.377 | 4.678            | 3.202            |
| 107   | 12 048.377 | 2.504            | 1.558            |
| 109   | 12 106.444 | 9.187            | 6.533            |
| 110   | 12 138.802 | 17.220           | 11.797           |
| 110   | 12 180.370 | 3.585            | 2.279            |
|       |            |                  |                  |
| 112   | 12 213.609 | 20.725           | 14.224           |
| 113   | 12 283.466 | 5.276            | 2.916            |
| 114   | 12 319.198 | 9.474            | 7.044            |
| 115   | 12 340.195 | 5.119            | 3.120            |
| 116   | 12 344.363 | 10.453           | 6.178            |
| 117   | 12 384.448 | 2.550            | 1.515            |
| 118   | 12 405.712 | 1.945            | 1.004            |
| 119   | 12 447.870 | 2.324            | 1.368            |

feature of the z-perpendicular embedding or of  $\mathrm{H}_3^+$  rotational calculations in general is not entirely clear, but the fact that such behavior has not been seen previously suggests that it maybe a feature of the z-perpendicular embedding.

Our calculations show that the potential of Polyansky  $et\ al.^{36}$  supports at least 684+(even) and 597-(odd) vibrational states with J=0. 1726 with J=2+p=0 and  $3857\ J=8+p=0$  (Table IV). Therefore a full study of states up to J=10 will require the calculation of over 100 000 states once all symmetries are included. This is before consideration of the above dissociation quasibound states which provide the upper (and at least some lower) states in the near-dissociation spectrum observed by Carrington and co-workers. $^{2-4}$ 

It has been remarked on before that  $H_3^+$  is a particularly difficult molecule to obtain good convergence for because of the strong intermode and Coriolis couplings.<sup>40</sup> It is worth

comparing the present results with those obtained for the near dissociation vibration-rotation states of water, which has a somewhat deeper potential than  $\mathrm{H}_3^+$  and a fairly similar number of bound states. For water with J=0 a calculation with  $N_3=11\,520$  was found to converge all except the highest six vibrational states to better than  $0.1~\mathrm{cm}^{-1}$ ,  $^{20}$  almost an order of magnitude better than the similar size calculation for  $\mathrm{H}_3^+$ . Even more strikingly, the use of  $M_3=1152$  converged the near dissociation J=2 levels of water to within  $0.4~\mathrm{cm}^{-1}$  something that could not achieve with an  $\mathrm{H}_3^+$  calculation based on a Hamiltonian matrix of almost three times the dimension.

## **IV. CONCLUSIONS**

The full quantum mechanical model of the  $H_3^+$ , infrared, near dissociation spectrum of Carrington and co-workers<sup>2–4</sup> has provided a challenge for theory for almost two decades. The calculations we report are the first to attempt full calculations of the rotational states of  $H_3^+$  which are thought to be involved in this spectrum. These calculations proved to be at the limit of what was computationally possible to us with the facilities available. However high performance computing facilities are expanding rapidly. We believe the strategy outlined here augmented by developments which allow quasibound rotation-vibration states to be characterized<sup>21</sup> will provide the basis for a full simulation of this challenging spectrum.

A thorough analysis, meaning a complete model of the various experimental predissociation spectra, requires rather more than just energy levels as presented here and in most other quantal treatments of  $H_3^+$  at dissociation. Lifetimes play a crucial role in determining what is observed experimentally.<sup>3</sup> Furthermore transitions are excited by a single laser photon and therefore are subject to dipole selection rules. We are currently working on these two aspects of the problem.

# **ACKNOWLEDGMENTS**

These calculations were performed as part of the Chem-React Computing Consortium. We thank the U. K. Engineering and Physical Science Research Council for grants including one to ChemReact. The work of O. L. P. was supported in part by the Russian Fund for Fundamental Studies.

- <sup>1</sup>A. Carrington, J. Buttenshaw, and R. A. Kennedy, Mol. Phys. **45**, 753 (1982).
- <sup>2</sup>A. Carrington and R. A. Kennedy, J. Chem. Phys. **81**, 91 (1984).
- <sup>3</sup> A. Carrington, I. R. McNab, and Y. D. West, J. Chem. Phys. **98**, 1073 (1993).

- <sup>4</sup>A. Carrington and I. R. McNab, Acc. Chem. Res. 22, 218 (1989).
- <sup>5</sup>J. M. Gomez Llorente, J. Zakrzewski, H. S. Taylor, and K. C. Kulander, J. Chem. Phys. **89**, 5959 (1988); *ibid.* **90**, 1505 (1989).
- <sup>6</sup>J. Tennyson, O. Brass, and E. Pollak, J. Chem. Phys. **92**, 3005 (1990).
- <sup>7</sup>O. Brass, J. Tennyson, and E. Pollak, J. Chem. Phys. **92**, 3377 (1990).
- <sup>8</sup>J. R. Henderson and J. Tennyson, Chem. Phys. Lett. 173, 133 (1990).
- <sup>9</sup>J. R. Henderson, J. Tennyson, and B. T. Sutcliffe, J. Chem. Phys. 98, 7191 (1993).
- <sup>10</sup>M. J. Bramley and T. Carrington, Jr., J. Chem. Phys. **99**, 8519 (1993).
- <sup>11</sup> V. A. Mandelshtam and H. S. Taylor, J. Chem. Soc., Faraday Trans. 93, 847 (1997).
- <sup>12</sup>E. Pollak and C. Schlier, Acc. Chem. Res. 22, 223 (1989).
- <sup>13</sup> Z. Bacic and J. Z. H. Zhang, J. Chem. Phys. **96**, 3707 (1992).
- <sup>14</sup>S. Carter and W. Meyer, J. Chem. Phys. 100, 2104 (1994).
- <sup>15</sup> J. Tennyson, J. Chem. Phys. **98**, 9658 (1993).
- <sup>16</sup>S. Miller and J. Tennyson, Chem. Phys. Lett. 145, 117 (1988).
- <sup>17</sup>M. Berblinger, E. Pollak, and Ch. Schlier, J. Chem. Phys. **88**, 5643 (1988).
- <sup>18</sup> J. R. Henderson and J. Tennyson, Mol. Phys. **89**, 953 (1996).
- <sup>19</sup> J. Tennyson and B. T. Sutcliffe, Mol. Phys. 58, 1067 (1986).
- <sup>20</sup>H. Y. Mussa and J. Tennyson, J. Chem. Phys. **109**, 10885 (1998).
- <sup>21</sup>H. Y. Mussa and J. Tennyson, Chem. Phys. Lett. **366**, 449 (2002).
- <sup>22</sup>O. L. Polyansky, N. F. Zobov, S. Viti, J. Tennyson, P. F. Bernath, and L. Wallace, Science 277, 346 (1997).
- <sup>23</sup>H. Y. Mussa and J. Tennyson, Comput. Phys. Commun. **128**, 434 (2000).
- <sup>24</sup>O. L. Polyansky and J. Tennyson, J. Chem. Phys. 110, 5056 (1999).
- <sup>25</sup> J. K. G. Watson, Can. J. Phys. **72**, 238 (1994).
- <sup>26</sup>C. M. Lindsay and B. J. McCall, J. Mol. Spectrosc. **210**, 60 (2001).
- <sup>27</sup>P. Sarkar, N. Poulin, and T. Carrington, Jr., J. Chem. Phys. **110**, 10269 (1999).
- <sup>28</sup> M. A. Kostin, O. L. Polyansky, and J. Tennyson, J. Chem. Phys. **116**, 7564 (2002).
- <sup>29</sup> M. J. Bramley, J. W. Tromp, T. Carrington, Jr., and G. C. Corey, J. Chem. Phys. **100**, 6175 (1994).
- <sup>30</sup>B. M. Dinelli, L. Neale, O. L. Polyansky, and J. Tennyson, J. Mol. Spectrosc. **181**, 142 (1997).
- <sup>31</sup> K. Maschhoff and D. Sorensen A portable implementation of ARPACK for distributed memory parallel architectures, Proceedings, Copper Mountain Conference on Iterative Methods, 1996. see http://www.caam.rice.edu/ ~kristyn/parpack\_home.html.
- <sup>32</sup>G. Fann, D. Elwood, and R. J. Littlefield, PEIGS Parallel Eigensolver System, User Manual, available via ftp from anonymous@ftp://pnl.gov.
- <sup>33</sup> J. Tennyson and B. T. Sutcliffe, J. Chem. Phys. **77**, 4061 (1982).
- <sup>34</sup> J. Tennyson, M. A. Kostin, H. Y. Mussa, O. L. Polyansky, and R. Prosmiti, Philos. Trans. R. Soc. London, Ser. A 358, 2419 (2000).
- <sup>35</sup>H. Y. Mussa, J. Tennyson, C. J. Noble, and R. J. Allan, Comput. Phys. Commun. **108**, 29 (1998).
- <sup>36</sup>O. L. Polyansky, R. Prosmiti, W. Klopper, and J. Tennyson, Mol. Phys. 98, 261 (2000).
- <sup>37</sup> W. Meyer, P. Botschwina, and P. G. Burton, J. Chem. Phys. **84**, 891 (1986).
- <sup>38</sup> J. M. Gomez Llorente and E. Pollak, J. Chem. Phys. **90**, 5406 (1989).
- <sup>39</sup> See EPAPS document No. E-JCPA6-118-010308 for the electronic versions of all the calculated energy levels for  $\mathrm{H_3^+}$  with J = 2 + p = 0 and J = 8 + p = 0. A direct link to this document may be found in the online articles HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubserves/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
- <sup>40</sup>M. J. Bramley and T. Carrington, Jr., J. Chem. Phys. **101**, 8494 (1994).