TP KPPV

2) Les données

Avec des commandes size successifs, on trouve :

- 1000 échantillons dans la base d'apprentissage
- 300 échantillons dans la base de test

On obtient successivement:

Ils ne sont pas équirépartis mais la variance est faible.

3) Classement par kppv

Pour k=1:

97

Pour k=3, on a: errorRate = 0.2067 confusion =

Pour k=4, on a:

errorRate = 0.2300 confusion =

Pour k=5, on a:

errorRate =

0.2200

confusion =

38	0	0	0	0	0	0	0	0	0
3	22	0	1	1	0	1	0	0	0
1	0	14	0	7	0	0	2	4	0
3	3	0	28	0	0	0	0	4	0
1	1	4	1	16	0	0	1	0	0
2	0	0	0	0	22	0	0	0	1
0	0	0	1	2	0	25	0	6	0
1	1	1	1	1	1	0	22	3	0
0	0	0	0	0	0	2	1	29	0
0	0	0	1	2	0	0	1	0	18

3.3) Dans le cas k=5.

On voit qu'il y a beaucoup de confusion entre le 5 qui est pris pour un 3 : confusion(5,3)

Ce sont les samples suivants qui ont été confondus

```
i = 33
i = 207
i = 211
i = 223
```

Regardons le sample 33 :

On constate que ce n'est effectivement pas un « beau » 5 car la tête

est trop arrondie.

4) 1-ppv avec prototypes

4.1) On propose les prototypes de forme moyenne. Ici on a la moyenne du 6 :

4.2)On classifie:

```
confusion=zeros(10,10);
  for i=1:300
    mmin=norm(prototype(1,:)-x(i,:));
    imin=1;
  for j=2:10
      if norm(prototype(j,:)-x(i,:)) < mmin
            mmin=norm(prototype(j,:)-x(i,:));
            imin = j;
            end
            confusion(S(i),imin)=confusion(S(i),imin)+1;
            end</pre>
```