Amplificatori operazionali con reazione

3 Traccia per la relazione

Esercitazione 2: Amplificatori operazionali con reazione

Data: 22/12/2022

3.1.1 Gruppo (.-03; composizione:

Nome	Cognome	Firma
GABRIELE	CAMISA	
SIMONE	ARONICA	
GIOVANNI	Broize	
GIUSEPPE	CASALE	

3.1.2 Strumenti utilizzati

strumento	Marca e modello	caratteristiche
Generatore di segnali:	Hantek HADG2032B	Generatore di forme d'onda arbitrarie funzioni 30MHZ max · 16Bit Resolution
Oscilloscopio	Rigol DS-1054Z	Banda passante 50MHz, campionamento di 1GS/s
Alimentatore	Rigol DP832	Alimentatore DC, 3 uscite, 30V/3A 30 V/3 A, 5 V/3 A, 195 W
Circuito premontato	National Semiconductors LM741CN	

Amplificatori operazionali con reazione

3.1.3 Descrizione sintetica degli obiettivi

Analisi del comportamento e misurazione dei parametri di circuiti che implementano amplificatori operazionali reazionati; confronto con i parametri calcolati secondo il modello ideale

3.1.4 Amplificatore non invertente *Homework*

Guadagno dell'amplificatore: = 9.9 V

Resistenze equivalenti di ingresso e di uscita (valori calcolati)

$$R_i \approx 2 \cdot 10^{10} \Omega$$

 $R_u \approx 0.045 \Omega$

Misure

Guadagno $V_u/V_i = (8.8 \pm 1.1)$

Amplificatori operazionali con reazione

Resistenze equivalenti

	S3 chiuso	S3 aperto	$R_{\rm i}$ (da R3 e misure di $V_{\rm i}$)
Valori misurati per V _i	500 mV	500 mV	4.61 K.A

	S7 chiuso	S7 aperto	$R_{\rm u}$ (da R5 e misure di $V_{\rm u}$)
Valori misurati per V _u	4.73V	4.73V	2.91 -

(eventuale commento sui risultati delle misure)

Le misure rispettano concettualmente il modello ideale,

infatti alla resistenza d'ingresso, dai calcoli molto alta, corrisponde una misura nell'ordine delle migliaia di Ohm,

e alla resistenza d'uscita, dai calcoli prossima allo zero, corrisponde una misura nel range di pochi Ohm.

Confronto con i risultati dell'homework

	Calcolato	Misurato
Guadagno A _v	9.9	(8.8 ± 1.1)
Guadagno A _v (dB)	19.91	18.89
Valore di R _i	2.1010 1	4610 L
Valore di R _u	0,045 1	2.91-2

Amplificatori operazionali con reazione

3.1.5 Amplificatore invertente *Homework*

Guadagno =
$$-\frac{R_{10}}{R_{9}} = -\frac{100k}{22k} = -4.55$$

Resistenza di ingresso = $22 \times \Omega$

Resistenza di uscita = 100 ____

Misure

Guadagno = (4.4 ± 0.8)

Tensione sul morsetto invertente dell'amplificatore operazionale

22.1 V

Amplificatori operazionali con reazione

Livello di ingresso per cui si verifica distorsione (tosatura o clipping) nel segnale di uscita

51

Comportamento del segnale differenziale di ingresso V_d quando l'uscita presenta distorsione (tracciato qualitativo di V_d e V_u).

Amplificatori operazionali con reazione

3.1.6 Amplificatore differenziale *Homework*

 $V_{\rm u}(V_{\rm i})$ per le varie configurazioni degli SW (uno SW chiuso per volta)

$$59: V_u = \left(-\frac{1}{3} \frac{R_{10}}{R_9} + \frac{2}{3}\right) V_i$$

$$S_{10}: V_u = \left(-\frac{2}{3} \frac{R_0}{R_1} + \frac{1}{3}\right) V_i$$

Misure

Guadagno $A_v = V_u/V_i$ misurato per le varie configurazioni, e confronto con i valori calcolati

_	Guadagno calcolato		Guadagno misurato	
configurazione	rapporto	dB	rapporto	dB
58	1,	0.00	1.20	1.58
59	-0.85	- 1.41	-1.10	C & 3
SIO	-2.60	8.30	- 2.80	8.94
211	-4.42	12.91	-4.31	12.69

Amplificatori operazionali con reazione

3.1.7 Amplificatore AC/DC *Misure*

Circuito configurato come amplificatore DC

Guadagno per segnali sinusoidali con frequenze di: 100, 1.000, 10.000, 100.000 Hz;

F/Hz	A۷	SAV	Av /JB
100 Hz	4.40	1.28	12.87
1000 HE	08.8	2.56	18.89
10'000 Hz	08.8	2.56	18.89
100'000 Hz	5 .33	4.22	14.53

Frequenza di taglio superiore

Relazione tra offset del generatore e offset di uscita

$$=(9.40 \pm 6.93)$$

Circuito con C3 inserito:

Guadagno in continua

Limite superiore di banda

Amplificatori operazionali con reazione

Circuito con C4 inserito:

Limite inferiore di banda

Circuito con C5 inserito:

Guadagno in continua

$$=(4.60\pm3.73)$$