置換簡約を含むラムダ計算の合流性

中澤巧爾(京都大学)

藤田 憲悦 (群馬大学)

こんな話です

permutative conversion [Prawtiz65?]

目標: 置換簡約を含むラムダ計算の合流性を簡単に証明したい

(自然演繹古典一階述語論理の合流性「AndoO5」を簡単に証明したい)

アイディア:Z定理[Dehornoy+08]を合成写像に対して適用

結論:Z定理を使うと、合流性を「モジュラーっぽく」証明できる!

紙面節約のため

直観主義自然演繹 + unaryな「または」

項: t,u ::= x | λx.t | tu | ιt | t[x.u]

除去子: e ::= t | [x.u]

case t with $\iota x \rightarrow u$

簡約規則: $(\beta \rightarrow)$ $(\lambda x.t)u \rightarrow t[x:=u]$

 (β_{\lor}) $(\iota t)[x.u] \rightarrow u[x:=t]$

 $>(\pi)$ 置換簡約

 $t[x.u]e \rightarrow t[x.ue]$

乙定理 [Dehornoy+08, Komori+13]

抽象書換え系 (A,→) は、次のZ性を満たす A上の写像 (・)° が存在すれば合流する

(並行簡約を使わずに合流性が証明できる)

並行簡約の定義はさらに困難… [Ando05]

何が難しいのですか? 素朴なcomplete developmentの定義ではダメ!

問題

問題2

 $(\iota(x[y.y]))[z.z]e \xrightarrow{\pi} (\iota(x[y.y]))[z.ze]$

こうやって解決してみました

(・)^o を合成写像 (・)^{PB}=((・)^P)^Bとして定義 「まずπを片付けてからβをつぶす」

$$(\lambda x.t)^{P} = \lambda x.t^{P}$$
 $((\lambda x.t)u)^{B} = t^{B}[x:=u^{B}]$
 $(te)^{P} = t^{P}@e^{P}$ $((\iota t)[x.u])^{B} = u^{B}[x:=t^{B}]$
 $(te)^{B} = t^{B}e^{B}$ (o.w.)

PBのZ性を「モジュラーっぽく」証明

PBはZ性を満たす、ゆえにZ定理より、λβπは合流性を満たす

結構使えそうです

λβπ

 $\lambda_{\beta n}$:外延的 λ 計算

λμ+π:自然演繹古典一階述語論理

 $\lambda_{x}: \lambda + 明示的代入$

πを一気につぶす

nをつぶす!

πとμを一気につぶす

代入をメタ化

実はちょっと面倒

Bをつぶす

Bをつぶす

Bをつぶす

: Bをメタ代入でつぶす