

Image Processing

Image Restoration (Part I)

Pattern Recognition and Image Processing Laboratory (Since 2012)

Introduction

Restoration attempts to reconstruct or recover an image that has been degraded by using a priori knowledge of the degradation phenomenon.

Introduction

... Thus, restoration techniques are oriented toward modeling the degradation and applying the inverse process in order to recover the original image.

Introduction

Degradation Image

A Model of the Image Degradation/ Restoration Process

The more we know about H and $\eta(x,y)$, the closer $\hat{f}(x,y)$ will be to f(x,y).

A R

A Model of the Image Degradation/ Restoration Process

In the spatial domain, the degraded image is given by

$$g(x, y) = h(x, y) * f(x, y) + \eta(x, y)$$
Frequency domain

$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$

Noise Models

Two types of noise models:

- Noise in spatial domain
- Noise in frequency domain

Noise Models

Adding noise with function imnoise

>> g = imnoise(f, type, parameters)

>> ex5 01 % See demonstration

Noise Models

Generating spatial random noise with a specified distribution

>> ex5_01 % See demonstration

Noise Models

Periodic Noise

Periodic noise in an image arises typically from electrical and/or electromechanical interference during image acquisition.

>> ex5 01 % See demonstration

Restoration in the Presence of Noise Only-Spatial Filtering

Spatial noise filters

>> ex snf % See demonstration

Restoration in the Presence of Noise Only-Spatial Filtering

Spatial noise filters

Arithmetic mean: $A(a_1, a_2, ..., a_n) = \frac{1}{n} \sum_{i=1}^n a_i$

Geometric mean: $G(a_1,a_2,\ldots,a_n) = \left(\prod_{i=1}^n a_i\right)^{1/n} = \sqrt[n]{a_1 a_2 \cdots a_n}$ Contraharmonic mean: $G(x_1,x_2,\ldots,x_n) = \frac{\left(\frac{x_1^2 - x_2^2 + \cdots + x_n^2}{n}\right)}{\left(\frac{x_1 - x_2 + \cdots + x_n}{n}\right)}$

PSF: Point Spread Function, a degradation function in a spatial domain.

Restoration in the Presence of Noise Only-Spatial Filtering

Adaptive spatial filters

Restoration in the Presence of Noise Only-Spatial Filtering

Adaptive spatial filters

>> ex asf % See demonstration

Periodic Noise Reduction by Frequency Domain Filtering

>> ex5 02 % See demonstration

