Pulse-Width-Modulation Control Circuits

TL494

FEATURES

- Complete PWM Power Control Circuitry
- Uncommitted Outputs for 200 Ma Sink or Source Current
- Output Control Selects Single-Ended or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead-Time Provides Control over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply,5%
- Circuit Architecture Allows Easy Synchronization

DESCRIPTION

The TL494 incorporate on a single monolithic chip all the functions required in the construction of a pulse-width-modulation control, these devices offer the systems engineer the flexibility to tailor the power supply control circuitry to his application.

The TL494 contains an error amplifier, an on-chip adjustable oscillator, a dead-time control comparator, pulse-steering control flip-flop, a 5-volt, 5% precision regulator, and output-control circuit.

ORDERING INFORMATION

Device	Package
TL494D	16 SOP
TL494N	18 DIP

The error amplifier exhibits a common-mode voltage range from -0.3 volts to Vcc -2 volts. The dead-time control comparator has a fixed offset that provides approximately 5% dead time when externally altered. The on-chip oscillator may be bypassed by terminating R_T (pin 6) to the reference output and providing a sawtooth in put to CT (pin 5), or it may be used to drive the common circuits in synchronous multiple-rail power supplies. The uncommitted output transistors provide either common-emitter or emitter-follower output capability. Each Device provides for push-pull or single-ended output operation, which may be selected through the output-control funct –ion. The architecture of these devices prohibits the possibility of either output being pulsed twice during push –pull operation.

Functional Block Diagram

Parameter measurement information

Figure 1. OPERATIONAL TEST CIRCUIT AND WAVEFORMS

FIGURE 2. AMPLIFIER CHARACTERISTICS

FIGURE 3. COMMON-EMITTER CONFIGURATION

FIGURE 4. EMITTER-FOLLOWER CONFIGURATION

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE

Rating	Value	Unit
Supply voltage, Vcc	41	
Amplifier input voltage	Vcc +0.3	V
Collector output voltage	41	
Collector output current	250	mA
Operating free-air temperature range	0 to 70	
Storage temperature range	−65 to 150	°C
Lead temperature 1,6 mm from case for 10 seconds	260]

RECOMMENDED OPERATING CONDITIONS

Parameter	Va	Unit	
raidilletei	MIN	MAX	Offic
Supply voltage, Vcc	7	40	
Amplifier input voltage, Vi	-0.3	Vcc -2	V
Collector output voltage, Vo		40	
Collector output current (each transistor)		200	m Λ
Current into feedback terminal		0.3	mA
Timing capacitor, C _T	0.47	10000	nF
Timing resistor, R _T	1.8	500	ΚΩ
Oscillator frequency	1	300	KHz
Operating free-air temperature, T _A	0	70	°C

Electrical characteristics over recommended operating free-air temperature range,

Vcc=15V, f= 10 kHz(unless otherwise noted).

Parameter	Test Conditions*		Lloit		
Parameter	rest Conditions*	MIN	TYP**	MAX	Unit
Output voltage (Vref)	Io = 1mA	4.75	5	5.25	V
Input regulation	Vcc = 7V to 40 V		2	25	mV
Output regulation	Io = 1mA to 10mA		1	15	IIIV
Output voltage change with temperature	$T_A = MIN \text{ to MAX}$		0.2	1	%
Short-circuit output current***	Vref = 0		35		mA

Oscillator section (See Figure 1)

Parameter	Test Conditions*		Unit		
Falanielei	rest Conditions*	MIN	TYP**	MAX	Offic
Frequency	$C_T = 0.01 \mu F, R_T = 12 K\Omega$		10		KHz
Standard deviation of fraguency which	All values of Vcc, C_T , R_T ,		10		
Standard deviation of frequency****	and T _A constant	10			
Frequency change with voltage	Vcc=7V to 40V, T _A =25oC		0.1		%
Fraguency change with temperature that	$C_T = 0.01 \mu F, R_T = 12 K\Omega,$			1	
Frequency change with temperature****	$T_A = MIN \text{ to MAX}$				

Electrical characteristics over recommended operating free-air temperature range, Vcc=15V, f=10kHz (unless otherwise noted)

Amplifier section (See Figure 2)

SYMBOL	TEST CONDITIONS	MIN.	TYP**.	MAX.	UNIT
Input offset voltage	Vo(pin 3)=2.5V		2	10	mV
Input offset current	Vo(pin 3)=2.5V		25	250	nA
Input bias current	Vo(pin 3)=2.5V		0.2	1	μA
Common-mode input voltage range	Vcc = 7V to 40V	-0.3~-2			V
Open-loop voltage amplification	Vo=3V, R _L =2KΩ, Vo=0.5~3.5V	70	95		dB
Unity-gain bandwidth	Vo=0.5 \sim 3.5V, R _L =2KΩ		800		kHz
Common-mode rejection ratio	Vo= 40V, T _A = 25°C	65	80		dB
Output sink current (pin 3)	$V_{ID} = -15 \text{mV} \sim -5 \text{V}, \ V(_{pin3}) = 0.7 \text{V}$	0.3	0.7		mA
Output source current (pin 3)	V _{ID} =15mV~5V, V(_{pin3})=3.5V	-2			mA

^{*}For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

Output section

PARAMETER		TEST CONDITIONS	MIN.	TYP*	MAX.	UNIT
Collector off-state current		V_{CE} =40V, V_{CC} =40V		2	100	μA
Emitter off-state current		$V_{CC}=V_{C}=40V, V_{E}=0$			-100	μ \wedge
Collector-emitter saturation voltage	Common-emitter	V _E =0, I _C =200mA		1.1	1.3	\/
Collector -emitter saturation voltage	Emitter-follower	Vc=15V, I _E =-200mA		1.5	2.5	V
Output control input current		V _I =Vref			3.5	mA

Dead-time control-section (See Figure 1)

PARAMETER	TEST CONDITIONS	MIN.	TYP*	MAX.	UNIT
Input bias current(pin4)	V _i =0 to 5.25V		-2	-10	μA
Maximum duty cycle, each output	$V_{I \text{ (pin 4)}}=0, C_{T}=0.1 \text{uF}, R_{T}=12 \text{K}\Omega$		45		%
Input threshold voltage(pin 4)	Zero duty cycle		3	3.3	\/
Input tilleshold voltage(piii 4)	Maximum duty cycle	0			V

PMW comparator section (See Figure 1)

PARAMETER	TEST CONDITIONS	MIN.	TYP*	MAX.	UNIT
Input threshold voltage (pin3)	Zero duty cycle		4	4.5	V
Input sink current (pin 3)	V(pin3) = 0.7V	0.3	0.7		mΑ

Total device

PARAMETER	TEST CONDITIONS		MIN.	TYP*	MAX.	UNIT
Ctandby aunaly aureant	Pin 6 at Vref, all other inputs	V _{CC} =15V		6	10	
Standby supply current	and outputs open	V _{CC} =40V		9	15	mΑ
Average supply current	V₁(pin 4)= 2V	· · · · · · · · · · · · · · · · · · ·		7.5		

^{**} All typical values except for parameter changes with temperature are at TA =25 oC

^{***} Duration of the short-circuit should not exceed one second.

^{****} Standard deviation is a measure of the statistical distribution about the mean as derived from the formula.

^{*****} Temperature coefficient of timing capacitor and timing resistor not taken into account.

Switching characteristics, T $_A = 25$ °C

PARAMETER	TEST CONDITIONS	MIN.	TYP*	MAX.	UNIT
Output voltage rise time	Common-emitter configuration		100	200	
Output voltage fall time			25	100	20
Output voltage rise time	Emitter-follower configuration		100	200	ns
Output voltage fall time			40	100	

^{*} All typical values except for temperature coefficient are at $T_A = 25^{\circ}C$

