FIFA Player Assessment Model & Analytics

DS 5220: Supervised Machine Learning

Akshit Jain Naga Santhosh Kartheek Karnati Praharsha Singaraju Thomas Lindstrom-Vautrin

Overview

- The primary aim of this project is to establish a football player assessment model using machine learning techniques to support transfer decisions of football clubs.
- The dataset contains players' records from FIFA 2015 to FIFA 2020 (Matrix 18,278 x 104).
- Important player features include:
 - o work rate, value, position, nationality, skills, preferred foot and physical attributes
- These features will enable us to analyse the performance of players.

Use Cases:

- 2. Do clubs need to look at players from specific nations while making transfer decisions?
- 3. Classify player work rate for better player management.
- 4. What physical conditioning should trainers focus on for a player who is transitioning from one position to another?

	short_name	work_rate	value_eur	team_position	nationality
0	L. Messi	Medium/Low	95500000	RW	Argentina
1	Cristiano Ronaldo	High/Low	58500000	LW	Portugal
2	Neymar Jr	High/Medium	105500000	CAM	Brazil
3	J. Oblak	Medium/Medium	77500000	GK	Slovenia
4	E. Hazard	High/Medium	90000000	LW	Belgium

Exploratory Data Analysis

1. Tall players are statistically good at heading

2. Attackers earn more per week

Exploratory Data Analysis

3. Players with higher rating have higher value

4. Players with higher potential have higher value

5. Potential decreases with age

Predict Player Value

Forward Stepwise Selection: Number of variables

Methods Applied:

- Performed hypothesis testing to determine whether there exists a relationship between player's attributes and value.
- 2. Applied forward stepwise selection to obtain a subset of player attributes that help explain player value.
- 3. Regularization Techniques (L1 and L2 Regression)
 - a. L1: overall, wage_eur,
 international reputation
- 4. Fitted a Linear Regression model with features obtained from subset selection.
 - a. Adjusted R-squared: 0.9896
- Fitted a Random Forest model with 10-fold cross-validation - split variable decided randomly from 16 variables.
 - a. Important features:

release clause, overall, wage eur, movement reactions, potential, ball control

Evaluate Player Value Model (Test Data)

Diagnostic Plots for Linear Regression Analysis

- [T-L] Residuals are equally spread around the horizontal line near zero, hence no model assumptions have been violated.
- [T-R] In the normal Q-Q plot the points fall along a line in the middle of the graph, but curve off in the extremities.
- [B-L] Residuals spread wider and wider, the red smooth line is not horizontal and shows a steep angle, variance is not equally spread among the predictors.
- [B-R] Players in rows 1, 2 and 3 have high leverage. Not surprised, those players are L. Messi, Cristiano Ronaldo and Neymar Jr.

The Predictive Power of Random Forest, MSE=0.0069

Interpreting the Regression Coefficients

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.213e+05 2.880e+03 aae overall 2.578e+03 12.014 2.426e+03 potential wage_eur international_reputation 4.735e+05 2.164e+04 21.874 release_clause_eur 4.935e-01 1.139e-03 433.405 power stamina 4.816e+03 6.242e+02 defending_sliding_tackle -2.221e+03 3.327e+02 -6.676 2.58e-11 *** '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 610500 on 10545 degrees of freedom

F-statistic: 1.253e+05 on 8 and 10545 DF, p-value: < 2.2e-16

Adjusted R-squared: 0.9896

Multiple R-squared: 0.9896,

Predict Player Nationality

- Number of trees for random forests = 750.
- nearest neighbours considered for KNN = 15
- Determined by evaluating each algorithm's performance under different values.

Process pipeline to classify player nationality

Failed Approaches Tried for the Problem:

Approach 1:

- Create new features to represent attack, defense, tackle, mentality.
- Reduce dimensions using PCA on the defined feature matrix.

Approach 2:

• Use 'glm' to identify statistically

Significant features: heading accuracy,

mentality, composure and mentality penalties

Approach 3:

Use subset selection methods for feature selection

Approach 4:

 Use PCA to reduce dimensions and perform classification using principal components.

Analysis of Player Nationality Model

More than 90% of variance in the data explained by 13 components

	precision	recall	f1-score	support		precision	recall	f1-score	support
Argentina	0.33	0.31	0.32	212	Argentina	0.27	0.26	0.26	212
England	0.53	0.60	0.57	460	England	0.50	0.66	0.57	460
France	0.32	0.27	0.29	263	France	0.27	0.19	0.23	263
Germany	0.48	0.49	0.48	313	Germany	0.35	0.29	0.32	313
Spain	0.46	0.44	0.45	298	Spain	0.46	0.45	0.46	298
accuracy			0.45	1546	accuracy			0.41	1546
macro avg	0.42	0.42	0.42	1546	macro avg	0.37	0.37	0.37	1546
veighted avg	0.44	0.45	0.45	1546	weighted avg	0.39	0.41	0.40	1546

Random Forest Results

No single component is impacting the model drastically

The results of models are almost similar with QDA performing slightly better than Random Forests and KNN classifiers.

- Problems:
 - 160 countries. Average no. of players/country = 114.
 Number of countries with no. of players < 200 = 134.
 Solution top 5 countries with most no. of players.
 - Every country has good attackers, defenders, midfielders. So no feature particularly dominates classification of players for a country.

Noteworthy Result - Predicting players from England is relatively accurate compared to other countries. Reason - no. of players from England = 1667

QDA Results

Predict Player Attack Work Rate

Analysis of Attack Work Rate Prediction Models

Important features in Random Forest model

AUC of ROC on PCA test set

Logistic Regression	LDA	Random Forest
0.7694	0.7912	0.7819

Outline for the approach:

- Predict player 'attack work-rate' using various physical, mental and in-game attributes. Fit Logistic reg., LDA and Random Forest models on pre-processed train set (5-fold CV) to evaluate performance on test set.
- PCA on pre-processed dataset to reduce feature space to a 36 dimensional space (since, ~97% of variance in target variable is explained by 36 features).
- Fit same classification models on PCA train set (5-fold CV) with 36 PCs and target variable to evaluate performance on test set.
- Determine AUC of ROC for the models on PCA test set.

Results:

- Classification accuracy of 3 models is similar (~67%) on pre-processed test set. Random Forest does a bad job in predicting 'Low' class (TPR=0). LDA model does the best job in predicting 'Low' class.
- No significant increase in accuracy of 3 models after performing PCA.
- Though LDA model has the least accuracy, it does the best job in predicting 'Low' class and handling class imbalance. This is suggested by the AUC of ROC for LDA model which is the highest amongst all 3 models.
- Random Forest model again does a bad job in predicting 'Low' class (TPR=0) on the PCA test set.

Physical Attributes and Player Position

Part 1: "Given a player's current physical condition, which position is he most suited to?"

- 1. Consolidate various player positions under simplified positions:
 - a. Attacker (A), Midfielder (M), Defender (D), and Goalkeeper (G)
- 2. Isolate features that reflect physical condition.
- 3. Split the data 80/20 into a training and testing set.
- 4. Trained multinomial logistic regression model (with goalkeepers as reference position).
- 5. The model coefficients offer insights into relative physical condition between positions.

Confusion N	Stati	istics				
Reference						
Prediction	G	Α	D	М		
G	1859	0	22	0		
A	1	1389	250	693		
D	13	299	4313	810		
M	0	1582	1009	4866		

Statistics by Class:				
	Class: G	Class: A	Class: D	Class: M
Sensitivity	0.9925	0.4248	0.7710	0.7640
Specificity	0.9986	0.9318	0.9025	0.7587
Pos Pred Value	0.9883	0.5954	0.7936	0.6525
Neg Pred Value	0.9991	0.8727	0.8902	0.8442
Prevalence	0.1095	0.1912	0.3270	0.3723
Detection Rate	0.1087	0.0812	0.2521	0.2845
Detection Prevalence	0.1100	0.1364	0.3177	0.4359
Balanced Accuracy	0.9955	0.6783	0.8368	0.7613

Results:

- Goalkeepers easiest to differentiate from others.
- Goalkeepers on average older, taller, and heavier (heavier because taller).
- By same token, *jumping* and *reaction* time dominated by goalkeepers.
- A, D, and M beat goalkeepers in long shots and stamina.
- Other categories more mixed and help differentiate between other player positions.

Coefficients: (Intercept) age height_cm weight_kg 1.054069 -0.1284945891 -0.1022747 -0.1942253 6.141442 -0.0006128889 -0.1262502 -0.2170574 11.683797 -0.1170215674 -0.1304249 -0.2321517 movement_acceleration movement_sprint_speed 0.044004291 0.023907991 0.015081834 0.045635282 -0.004713136 -0.005734023 movement_agility movement_reactions movement_balance 0.03146402 -0.2018269 0.01888024 -0.01175104 -0.1236048 0.02334179 0.04434541 -0.1766382 0.05112571 power_shot_power power_jumping power_stamina 0.1668292 -0.02313521 0.1930654 0.1021718 -0.01272136 0.2688559 0.1423758 -0.06077378 0.2620672

power_strength power_long_shots

0.4582996

0.3371736

0.4364195

0.2346653

0.2476670

0.2219881

Physical Attributes and Player Position

<u>Part 2</u>: "What physical conditioning should trainers focus on for a player who is transitioning from one position to another?"

- Trained binomial logistic regression models for each pair of positions.
- Ignores difficult-to-change attributes of age, height, and weight.
- Focused on differences between A, M, and D. (Most potent differentiating factors for goalkeepers (G) evident in previous slide.)
- For transitioning from $M \longrightarrow A$:
 - **Sprint speed** is the most strongly positively indicated attribute.
 - Focus on: acceleration, sprint speed, shot power, jumping, strength, and long shots
 - Not Focus on: agility, reactions, balance, or stamina.
- For transitioning from $A \longrightarrow M$:
 - **Stamina** is the most strongly positively indicated attribute
- Similar interpretation holds for other pairs.

A vs M							
	←						
	Coefficients: —						
		Values	Std. Err.				
	(Intercept)	-2.61190856	0.141007096				
	movement_acceleration	0.02331771	0.002460068				
	movement_sprint_speed	0.05083503	0.002335759				
	movement_agility	-0.01764774	0.001727855				
	movement_reactions	-0.02488424	0.001756298				
	movement_balance	-0.04517154	0.001682398				
	power_shot_power	0.03049375	0.001368221				
	power_jumping	0.03626619	0.001405170				
1	power_stamina	-0.06612347	0.001446593				
	power_strength	0.02402223	0.001545503				
	power_long_shots	0.01891870	0.001530805				

A vs D							
Coefficients:							
	Values	Std. Err.					
(Intercept)	0.209328210	0.186285186					
movement_acceleration	0.021491613	0.003245827					
movement_sprint_speed	0.024129091	0.003069087					
movement_agility	0.048319064	0.002293898					
movement_reactions	-0.106281502	0.002320553					
movement_balance	-0.031177398	0.002220961					
power_shot_power	0.056267367	0.001797916					
power_jumping	-0.013446511	0.001852726					
power_stamina	-0.107832551	0.001919718					
power_strength	-0.008442502	0.002048385					
power_long_shots	0.131854920	0.002030723					

M vs D

movement_acceleration -0.012456560 0.002868091 movement_sprint_speed -0.042971446 0.002727121

Values Std. Err.

3.069354375 0.164844764

0.050342685 0.002021650

-0.062215837 0.002061181

0.027403017 0.001966934

0.036265427 0.001599297

-0.051797432 0.001637329

-0.006052985 0.001693145

-0.043864764 0.001816785

0.083850686 0.001792783

Coefficients:

(Intercept)

movement_agility

movement balance

power_shot_power

power_jumping

movement_reactions

$$H = \left\{\overline{x}: w_0 + \overline{w} \cdot \overline{x} = 0\right\}$$
 power_stamina power_strength
$$w_0 + w_1x_1 + w_2x_2 + \ldots + w_kx_k = 0$$

$$w_0 + w_1y_1 + w_2y_2 + \ldots + w_ky_k = 0$$

$$w_1(x_1 - y_1) + w_2(x_2 - y_2) + \ldots + w_k(x_k - y_k) = 0$$

$$\overline{w} \cdot (\overline{x} - \overline{y}) = 0$$

$$\overline{w} \perp (\overline{x} - \overline{y})$$