ECE5463: Introduction to Robotics

Lecture Note 5: Velocity of a Rigid Body

Prof. Wei Zhang

Department of Electrical and Computer Engineering
Ohio State University
Columbus, Ohio, USA

Spring 2018

Outline

- Introduction
- Rotational Velocity
- Change of Reference Frame for Twist (Adjoint Map)
- Rigid Body Velocity

Introduction

• For a moving particle with coordinate $p(t) \in \mathbb{R}^3$ at time t, its (linear) velocity is simply $\dot{p}(t)$

 A moving rigid body consists of infinitely many particles, all of which may have different velocities. What is the velocity of the rigid body?

• Let T(t) represent the configuration of a moving rigid body at time t. A point p on the rigid body with (homogeneous) coordinate $\tilde{p}_b(t)$ and $\tilde{p}_s(t)$ in body and space frames:

$$\tilde{p}_b(t) \equiv \tilde{p}_b, \quad \tilde{p}_s(t) = T(t)\tilde{p}_b$$

Introduction

• Velocity of p is $\frac{d}{dt}\tilde{p}_s(t)=\dot{T}(t)p_b$

- ullet $\dot{T}(t)$ is not a good representation of the velocity of rigid body
 - There can be 12 nonzero entries for \dot{T} .

- May change over time even when the body is under a constant velocity motion (constant rotation + constant linear motion)

Our goal is to find effective ways to represent the rigid body velocity.

Outline

Introduction

Rotational Velocity

• Change of Reference Frame for Twist (Adjoint Map)

Rigid Body Velocity

Illustrating Example

- Question: Given the orientation R(t) of a rotating frame as a function of time t, what is the the angular velocity?
- We start with an example for which we know the answer, then we generalize to obtain a formal answer
- **Example:** Suppose $\{b\}$ starts with an initial orientation R(0) and rotates about $\hat{\mathbf{x}}$ at unit constant speed (i.e. we know the angular velocity at time t>0 is $\omega=(1,0,0)^T$), where

$$R(0) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad Rot(\hat{\mathbf{x}}; \theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\theta} & -s_{\theta} \\ 0 & s_{\theta} & c_{\theta} \end{bmatrix}$$

Consider a point p rigidly attached to frame $\{b\}$ with coordinates $p_s(t)$ and $p_b(t)$ in $\{s\}$ and $\{b\}$ frames.

Illustrating Example (Continued)

$$p_s(t) = R(t)p_b \Rightarrow \dot{p}_s(t) = \dot{R}(t)\underline{p}_b \Rightarrow \dot{R}(t)\underline{p}_$$

From previous slide we know

$$R(t) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & cost & -sint \\ 0 & sint & cost \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & sint & cost \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -sint & -cost & 0 \\ cost & -sint & 0 \end{bmatrix} = \hat{R}(t) = \begin{bmatrix} 0 & cost & -sint & 0 \\ -sint & -cost & 0 \end{bmatrix}$$

• Since we know the motion in this example, we must have $\dot{p}_s(t)=\omega_{\rm s}\times p_s(t)$, where $\omega_{\rm s}=(1,0,0)$

• Conclusion:

Please numerical verify 3 using the annumbers

$$\Rightarrow \hat{\mathbf{g}}(\mathbf{H}) \mathbf{g}^{\mathsf{T}}(\mathbf{H}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Properties of Rotation Matrices

• **Property:** For any $\omega \in \mathbb{R}^3$ and $R \in SO(3)$, we have

$$R[\omega]R^T = [Rw] \times$$

See textbook page 66

• **Property:** Let $R(t) \in SO(3)$ be differentiable in t, then $\dot{R}(t)R^{-1}(t)$ and $R^{-1}(t)\dot{R}(t)$ are both skew symmetric, i.e. they are in so(3).

We know
$$k(t)R^{T}(t) = I \Rightarrow \frac{d}{dt}(R(t)R^{T}(t)) = 0 \in 2ero matrix$$

$$\Rightarrow \dot{R}(H)\dot{R}(H) + R(H)\dot{R}^{T}(H) = 0 \Rightarrow \dot{R}(H)\dot{R}^{T}(H) = -R(H)\dot{R}^{T}(H)$$

$$= -\left(\dot{R}(H)\dot{R}^{T}(H)\right)^{T}$$

skew symmetric

similarly, differentiating $R(t)R(t)=I \Rightarrow R(t)R(t)$ is skew symmetric

Rotational Velocity Representation

• Rotational Velocity in space frame: Let $R_{sb}(t)$ be the orientation of a rotating frame $\{b\}$ at time t. Then the (instantaneous) angular velocity vector w of frame $\{b\}$ is given by

$$[\omega_s] = \dot{R}_{sb} R_{sb}^{-1}$$

where ω_s is the {s}-frame coordinate of w.

$$P_{s}(t) = R_{sb}(t) P_{b} \implies P_{sh}(t) P_{b} = \frac{R_{sb}(t)}{R_{sb}(t)} R_{sb}(t) P_{s}(t)$$

$$P_{s}(t) = W_{s} \times P_{s}(t) = [W_{s}] P_{s}(t)$$

$$P_{s}(t) = W_{s} \times P_{s}(t) = [W_{s}] P_{s}(t)$$

- Note the angular velocity w is a free vector, which can be represented in different frames.
- Its coordinates ω_c and ω_d in frames $\{c\}$ and $\{d\}$ satisfy

$$\omega_c = R_{cd}\omega_d$$

Rotational Velocity in Body Frame

- Rotational velocity in body frame: Consider the same set up as the previous slide where $R_{sb}(t)$ is the orientation of the rotating frame $\{b\}$.
 - ω_b denotes the body-frame representation of w, i.e. $\omega_b = R_{bs}(t)\underline{\omega_s} = R_{sb}^{-1}(t)\omega_s$

$$\Rightarrow [\omega_b] = R_{sb}^{-1} \dot{R}_{sb}$$
Given $R_{sb}(t) \Rightarrow [w_s] = \dot{R}_{sb} R_{sb}^{\mathsf{T}}$

$$w_s = R_{sb} w_b \Rightarrow [w_s] = [R_{sb} w_b] = \dot{R}_{sb} R_{sb}^{\mathsf{T}}$$

$$\Rightarrow R_{sb} [w_b] R_{sb}^{\mathsf{T}} = \dot{R}_{sb} R_{sb}^{\mathsf{T}}$$

$$\Rightarrow [w_b] = R_{sb}^{\mathsf{T}} \dot{R}_{sb}$$

- Note: ω_b is NOT the angular velocity relative to a moving frame. It is rather the velocity relative to the *stationary* frame that is instantaneously coincident with the rotating body frame.

Example of Rotational Velocity

$$\hat{R}_{Sb} = \begin{bmatrix} -s_{1n}\theta + & -c_{0s}\theta + & \circ \\ c_{0s}\theta + & -s_{n}\theta + & \circ \\ \circ & \circ & \circ & \circ \end{bmatrix} \hat{\theta}$$

$$\hat{R}_{R} = \hat{\theta} \begin{bmatrix} -s_{1n}\theta + & -c_{0s}\theta + & \circ \\ c_{0s}\theta + & -s_{n}\theta + & \circ \\ c_{0s}\theta + & -s_{n}\theta + & \circ \\ \circ & \circ & \circ \end{bmatrix} \hat{\theta}$$

$$\hat{R}_{R} = \hat{\theta} \begin{bmatrix} -s_{1n}\theta + & -c_{0s}\theta + & \circ \\ c_{0s}\theta + & -s_{n}\theta + & \circ \\ \circ & \circ & \circ \end{bmatrix} \hat{\theta}$$

$$\hat{R}_{R} = \hat{\theta} \begin{bmatrix} -s_{1n}\theta + & -c_{0s}\theta + & \circ \\ c_{0s}\theta + & -s_{n}\theta + & \circ \\ \circ & \circ & \circ \end{bmatrix} \hat{\theta}$$

$$\hat{R}_{R} = \hat{\theta} \begin{bmatrix} c_{0s}\theta + & -c_{0s}\theta + & \circ \\ c_{0s}\theta + & -c_{0s}\theta + & \circ \\ \circ & \circ & \circ \end{bmatrix} \hat{\theta}$$

$$\hat{R}_{R} = \hat{\theta} \begin{bmatrix} c_{0s}\theta + & -c_{0s}\theta + & \circ \\ c_{0s}\theta + & -c_{0s}\theta + & \circ \\ \circ & \circ & \circ \end{bmatrix} \hat{\theta}$$

$$\hat{R}_{R} = \hat{\theta} \begin{bmatrix} c_{0s}\theta + & -c_{0s}\theta + & \circ \\ c_{0s}\theta + & -c_{0s}\theta + & \circ \\ \circ & \circ & \circ \end{bmatrix} \hat{\theta}$$

$$\hat{R}_{R} = \hat{\theta} \begin{bmatrix} c_{0s}\theta + & -c_{0s}\theta + & \circ \\ c_{0s}\theta + & -c_{0s}\theta + & \circ \\ \circ & \circ & \circ \end{bmatrix} \hat{\theta}$$

$$\hat{R}_{R} = \hat{\theta} \begin{bmatrix} c_{0s}\theta + & -c_{0s}\theta + & -c_{0s}\theta + & \circ \\ c_{0s}\theta + & -c_{0s}\theta + & \circ \\ \circ & \circ & \circ \end{bmatrix} \hat{\theta}$$

$$\hat{R}_{R} = \hat{\theta} \begin{bmatrix} c_{0s}\theta + & -c_{0s}\theta + &$$

Outline

- Introduction
- Rotational Velocity
- Change of Reference Frame for Twist (Adjoint Map)
- Rigid Body Velocity

Change of Reference Frame for Twist

• Given two frames {c} and {d} with $\underline{T = (R, p)}$ representing the configuration of {d} relative to {c}. The same rigid body motion can be represented in {c} or in {d} using the twist $\mathcal{V}_c = (\omega_c, v_c)$ or $\mathcal{V}_d = (\omega_d, v_d)$, respectively. How do these two twists relate to each other?

Let q be a point on the rigid body. $V_c = \begin{bmatrix} w_c \\ v_t \end{bmatrix}$ in $\{c\}$ means () $\hat{q}(t) = w_c \times q(t) + v_c \end{bmatrix}$ $V_d = \begin{bmatrix} w_d \\ v_d \end{bmatrix}$ in $\{d\}$ () $\hat{q}(t) = w_d \times q_d(t) + v_d \end{bmatrix}$ $\mathfrak{A}_{c}(t) = [\gamma_{c}] \mathfrak{A}_{c}(t)$ [Yc] = Tcd [Va] Tca -... \Rightarrow $T_{dc}\widetilde{q}_{c}(t) = [va] T_{dc}\widetilde{q}_{c}(t)$ => 9, (+)= Tod [Va] Tod 90(+)

Change of Reference Frame for Twist (Continued)

$$\begin{array}{c} \text{We know } T_{\text{id}} = T = \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix} \\ \text{(RWM)} T_{\text{id}} = T = \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} RWM \\ RWM \\ RWM \\ RWM \\ \text{(RWM)} \end{bmatrix} \\ \text{(RWM)} T_{\text{id}} = P \times RW_{\text{id}} =$$

Adjoint Map

• Given $T = (R, p) \in SE(3)$, its adjoint representation (adjoint map) $[\mathrm{Ad}_T]$ is

$$[\mathrm{Ad}_T] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$$

• Adjoint map changes reference frames for twist vector. If T is configuration of $\{d\}$ relative to $\{c\}$, then the twists \mathcal{V}_c and V_d in two frames are related by

$$\mathcal{V}_c = [\mathrm{Ad}_T] \mathcal{V}_d$$
 or equilvalently $\left[\underbrace{[\mathcal{V}_c] = T[V_d] T^{-1}}_{\mathcal{V}_c} \right]$

- Properties of Adjoint:
 - Given $T_1, T_2 \in SE(3)$ and $\mathcal{V} = (\omega, v)$, we have

$$[\mathrm{Ad}_{T_1}][\mathrm{Ad}_{T_2}]\mathcal{V} = [\mathrm{Ad}_{T_1T_2}]\mathcal{V}$$

$$-\mathrm{For\ any}\ T \in SE(3),$$

$$[\mathrm{Ad}_T]^{-1} = [\mathrm{Ad}_{T-1}] \qquad [\mathrm{Ad}_{T_2}]\mathcal{V}_c = \mathcal{V}_a$$

$$[\mathrm{Ad}_T]^{-1} = [\mathrm{Ad}_{T-1}] \qquad [\mathrm{Ad}_T]\mathcal{V}_c = \mathcal{V}_a$$

Example: Change reference frame for twist

Two frames $\{a\}$ and $\{b\}$ and configuration of $\{b\}$ relative to $\{a\}$ is $T=(R,p_0)$ with

$$R = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad p_0 = (0, 2, 0)$$

- rotating about w at unit speed

The corresponding thist in (a)

consider and

consider ODE:

$$\hat{\gamma}_{a}(t) = W_{a} \times (\gamma_{a}(t) - q_{a}) = \begin{bmatrix} b \\ 0 \end{bmatrix} \times \gamma_{a}(t) - \begin{bmatrix} 1 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \times \mathcal{P}_{\mathbf{a}}(\mathbf{b}) + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

What is Vh? In Frame &b):

o The same motion can be described by

$$\dot{p}_{b}(H) = W_{b} \times (\mathcal{P}_{b}H) - q_{b}) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \times \mathcal{P}_{b}(H) - \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \times \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix}$$

Example: Change reference frame for Twist (Continued)

$$= \begin{bmatrix} 0 \\ 1 \end{bmatrix} \times \mathcal{J}_{0}(t) - \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \times \mathcal{J}_{0}(t) + \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \times \mathcal{J}_{0}(t) + \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

$$\Rightarrow \mathcal{V}_b = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

We know that $V_a = [Ad_{Tab}]V_b \iff V_b = [Ad_{Tba}]V_a$

V.F.7. with the non numbers that the above are true

$$Ad_{Tab} = \begin{bmatrix} R & 0 \\ R & R \end{bmatrix}$$

$$P_0 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$P_0 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$P_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Outline

- Introduction
- Rotational Velocity
- Change of Reference Frame for Twist (Adjoint Map)
- Rigid Body Velocity

Derivation of Spatial Velocity of a Rigid Body

- Question: Given configuration $T_{sb}(t) = (R_{sb}(t), p_{sb}(t))$ of a moving rigid body, how to represent/find the velocity of the rigid body?
- Similar to the rotational velocity, we consider a point q attached to the body and derive its differential equation in {s} frame.

$$q_{s}(t) = R_{sb}(t)q_{b} + p_{sb}(t) \Rightarrow \dot{q}_{s}(t) = \omega_{s} \times q_{s}(t) + v_{s}$$

$$\begin{bmatrix} q_{stt} \\ \end{bmatrix} = T_{sb}(t) \begin{bmatrix} q_{b} \\ \end{bmatrix}$$

$$\psi_{s}(t) = R_{sb}(t)q_{b} + p_{sb}(t) \Rightarrow \dot{q}_{s}(t) = \omega_{s} \times q_{s}(t) + v_{s}$$

$$\psi_{s}(t) = R_{sb}(t)q_{b} + p_{sb}(t) \Rightarrow \dot{q}_{s}(t) = R_{sb}(t)(q_{stt}) + p_{sb}(t)(q_{stt}) + p_{sb}(t) + p_{sb}$$

Spatial Twist and Body Twist

• Given $T_{sb}(t) = (R(t), p(t))$. Spatial velocity in space frame (called **spatial twist**) is given by

$$\mathcal{V}_s = (\omega_s, v_s), \text{ with } [\underline{\omega_s}] = \dot{R}R^T, v_s = \dot{p} + \omega_s \times (-p)$$

Change reference frame to body frame will lead to body twist:

$$\mathcal{V}_{b} = (\omega_{b}, v_{b}) = \underbrace{[\mathrm{Ad}_{T_{bs}}] \mathcal{V}_{s}}, \text{ where } \underbrace{[\omega_{b}] = R^{T} \dot{R}, v_{b} = R^{T} \dot{p}}_{\text{Velotity of othsin}} \xrightarrow{o_{1}^{T} \dot{p}_{1}^{T} \dot{p}_{2}^{T}}_{\text{Velotity of othsin}} \xrightarrow{o_{2}^{T} \dot{p}_{2}^{T} \dot{p}_{2}^{T}}_{\text{Velotity of othsin}} \xrightarrow{o_{3}^{T} \dot{p}_{2}^{T} \dot{p}_{2}^{T}}_{\text{Velotity of othsin}} \xrightarrow{o_{4}^{T} \dot{p}_{2}^{T} \dot{p}_{2}^{T} \dot{p}_{2}^{T}}_{\text{Velotity of othsin}} \xrightarrow{o_{4}^{T} \dot{p}_{2}^{T} \dot{p}_{2}^{T}}_{\text{Velotity of othsin}} \xrightarrow{o_$$

Spatial Twist and Body Twist: Interpretations

- ω_b and ω_s is the angular velocity expressed in $\{b\}$ and $\{s\}$, respectively.
- v_b is the linear velocity of the origin of $\{b\}$ expressed in $\{b\}$; v_s is the linear velocity of the origin of $\{s\}$ expressed in $\{s\}$

$$T_{sb}(t) = \begin{bmatrix} R_{sb}(t) & P_{sb}(t) \\ 0 & 1 \end{bmatrix}$$

$$twist has \begin{cases} V_s = \begin{bmatrix} W_s \\ V_s \end{bmatrix}, V_b = \begin{bmatrix} W_b \\ V_b \end{bmatrix}$$

$$W_b = R_{sb}^T P_{sb}$$

$$V_s = P_{sb}^T + W_s \times (-P_{sb}) - 10$$

Imagine the body infinitely large and is is also attached to the body then vs in 10 is the velocity of the origin of is in is frame

Example of Spatial/Body Twist I

Homework 4:

Vs

Vb

$$(V_5) = \dot{T} T^{-1}$$

$$T(t) = \begin{bmatrix} \cos \theta(t) & -\sin \theta(t) & 0 \\ \sin \theta(t) & \cos \theta(t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} l_2 \\ -l_2 \sin \theta(t) \\ l_1 + l_2 \cos \theta(t) \\ l_0 \\ 0 & 0 & 1 \end{bmatrix}$$

Example of Spatial/Body Twist II

suppose the car wheel ionlead to pure rotation about w \hat{y}_s

what is Vs = (ws. vs) and Us = (ws. vb)

Note: 2's out of page 26 points into the page

Grow axis:
$$\begin{cases} \hat{s} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, h = 0, q = \begin{bmatrix} -1 \\ 0 \end{pmatrix} \end{cases}$$

$$V_{s} = -W_{s} \times q_{s} + h \delta \dot{o} = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix} \times \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

$$=\begin{bmatrix} -2 \\ -4 \\ 0 \end{bmatrix}$$

$$r_s = (2, -1, 0)$$
, $r_b = (2, -1.4, 0)$, w=2 rad/s

$$T_{sb} = \begin{bmatrix} -1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 0.4 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In
$$\{b\}$$
-frame: stew-axis: $\hat{S}_b = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $h = 0$, $q_b = \begin{bmatrix} 2 \\ -h + 1 \\ 0 \end{bmatrix}$

$$) W_b = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$$

$$V_b = -W_b \times q_b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

More Discussions

$$\mathcal{V}_{b} = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 2 \cdot 3 \\ 4 \\ 0 \end{pmatrix}$$

Use the interpretations on slide 21:

$$W_{5} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} , \quad V_{5} = \begin{bmatrix} W_{5} \times (-Y_{6}) = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \times \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \\ 0 \end{bmatrix}$$

$$W_b = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}, \quad V_b = W_b \times (-\gamma_b) = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \times \begin{bmatrix} 2 \\ -1 + 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \cdot 8 \\ 4 \\ 0 \end{bmatrix}$$