8 Изоморфизм гильбертовых пространств

Евклидовы (унитарные) пространства E_1 и E_2 называются изоморфными, если они изоморфны как линейные пространства и изоморфизм J пространства E_1 на пространство E_2 таков, что

$$(J(f), J(g))_{E_2} = (f, g)_{E_1} \quad \forall f, g \in E_1.$$
 (8.1)

Напомним теорему, известную из курса линейной алгебры.

Теорема 8.1. Любые два п-мерные евклидовы (унитарные) пространства изоморфны.

Доказательство. В пространстве E_1 существует ортонормированный базис e_1, e_2, \ldots, e_n , а в пространстве E_2 – ортонормированный базис e'_1, e'_2, \ldots, e'_n . Всякий элемент $f \in E_1$ однозначно представляется в виде

$$f = \sum_{k=1}^{n} c_k e_k,$$

где c_k , $1 \le k \le n$ – координаты элемента f в базисе e_1, e_2, \ldots, e_n . Как нетрудно видеть, $c_k = (f, e_k)_{E_1}$ – это коэффициенты Фурье элемента f.

Таким образом, каждому элементу $f \in E_1$ однозначно сопоставлен набор его координат (c_1, c_2, \ldots, c_n) в базисе e_1, e_2, \ldots, e_n .

Ясно, что отображение $f \to (c_1, c_2, \dots, c_n)$ является линейным взаимно однозначным отображением E_1 на \mathbb{R}^n , если пространство E_1 евклидово и – линейным взаимно однозначным отображением E_1 на \mathbb{C}^n , если пространство E_2 унитарно.

Возьмем еще один элемент $g \in E_1$ и представим его в виде

$$g = \sum_{j=1}^n d_j e_j$$
. Заметим, что

$$(f,g)_{E_1} = \left(\sum_{k=1}^n c_k e_k, \sum_{j=1}^n d_j e_j\right)_{E_1} = \sum_{k=1}^n \sum_{j=1}^n (c_k e_k, d_j e_j)_{E_1} =$$

$$= \sum_{k=1}^n \sum_{j=1}^n c_k \overline{d}_j (e_k, e_j)_{E_1} = \sum_{k=1}^n c_k \overline{d}_k.$$

Таким образом, отображение $f \to (c_1, c_2, \dots, c_n)$ является изоморфизмом E_1 на \mathbb{R}^n , если пространство E_1 евклидово и – изоморфизмом E_1 на \mathbb{C}^n , если пространство E_1 унитарно.

Определим теперь изоморфизм $J: E_1 \to E_2$ следующим образом:

$$J(f) = \sum_{k=1}^{n} c_k e_k'.$$

Фактически отображение J осуществляется в два этапа. Сначала элементу f ставится в соответствие набор его координат c_1, c_2, \ldots, c_n в базисе e_1, e_2, \ldots, e_n , а затем в E_2 определяется элемент, имеющий те же координаты в базисе e'_1, e'_2, \ldots, e'_n . Ясно, что это отображение линейно и взаимно однозначно. Кроме того,

$$(J(f), J(g))_{E_2} = \sum_{k=1}^{n} c_k \overline{d}_k = (f, g)_{E_1}.$$

Теорема доказана.

Докажем теперь следующую теорему.

Теорема 8.2. (Теорема об изоморфизме гильбертовых пространств.)

Любые два сепарабельные гильбертовы пространства (оба вещественные или оба комплексные) изоморфны.

Доказательство. Покажем сначала, что сепарабельное гильбертово пространство H изоморфно пространству ℓ_2 . Фиксируем в H ортонормированный базис $\{e_k\}_{k=1}^{\infty}$. Для всякого $f \in H$ имеем $f = \sum_{k=1}^{\infty} c_k e_k$. Из неравенства Бесселя

$$\sum_{k=1}^{\infty} |c_k|^2 \leqslant ||f||$$

следует, что $c=\{c_k\}_{k=1}^\infty\in\ell_2$. Ясно, что отображение $f\to\{c_k\}_{k=1}^\infty\in\ell_2$ линейно.

Напомним, что в силу теоремы Рисса-Фишера для каждого $c = \{c_k\}_{k=1}^{\infty} \in \ell_2$ существует элемент $f = \sum_{k=1}^{\infty} c_k e_k$. Таким образом, соответствие $f \to \{c_k\}_{k=1}^{\infty} \in \ell_2$ не только линейно, но и взаимно однозначно.

Пусть теперь $f = \sum_{k=1}^{\infty} c_k e_k$, $g = \sum_{k=1}^{\infty} d_k e_k$ и $S_N(f) = \sum_{k=1}^N c_k e_k$, $S_N(g) = \sum_{k=1}^N d_k e_k$. Ясно, что

$$(S_N(f), S_N(g))_H = \sum_{k=1}^N c_k \overline{d}_k.$$
 (8.2)

Учитывая, что $S_N(f) \to f$, $S_N(g) \to g$ в H при $N \to \infty$, перейдем в равенстве (8.2) к пределу при $N \to \infty$ и получим

$$(f,g)_H = \sum_{k=1}^{\infty} c_k \overline{d}_k = (c,d)_{\ell_2}.$$

Таким образом, пространство H изоморфно пространству ℓ_2 .

Пусть теперь H_1 и H_2 – два сепарабельные гильбертовы пространства (оба вещественные или оба комплексные). Поскольку пространство H_1 изоморфно пространству ℓ_2 , а пространство ℓ_2 изоморфно пространству H_2 , то пространства H_1 и H_2 изоморфны.

Теорема доказана.

Замечание 8.1. Теорема 8.2 означает, что с точностью до изоморфизма существует только одно сепарабельное вещественное (комплексное) гильбертово пространство и что пространство ℓ_2 можно рассматривать как его "координатную реализацию".