Status Report: UBCO MDS Capstone Urban Data Labs

WEEK 7

Connor Lee, Claudia Nikel, Eva Nguyen, Alex Tamm

Outline

- Progress made during previous week
 - Individual logs
 - Team logs
- Current Progress
- Preliminary Results
- Database Changes
- Difficulties & Roadblocks
- Plan for next cycle

Previous Week's Progress

Progress - Individual Work Logs

Connor

Researched model comparison methods + queried additional data + wrote code to test the various clustering methods + integrated Random Forest code into main function + got output from clustering step + integrated weather data into code

Claudia

Fixed Ridge Regression code + coded for getting average MSE for Ridge Regression part + updated github + started final report layout + reviewed clustering and Random Forest code

Alex

Finished date range analysis + code review for aggregation function + sent UDL influx-SkySpark data + started code for last step of model (pipe output to InfluxDB) + updated end-use labels to create finalized training data

Eva

Integrated Ridge Regression code into main.py + created dummy data for testing + optimized code by fixing copy slice issues and find() functions + made feature selection into a module

Progress - Team Work Logs

Accomplishments

- Found list of problematic data & sent it to UDL
- Expanded our Main_Pseudocode file to include expected step outputs
- Queried additional days of data
- Developed grid search code for optimizing each model
- Created more finalized training & testing data from results of electrical panel

Current Progress

Project Schedule

Weeks 1-3> Weeks 4-5 Week 6 Week 7 Week 8, Week 9

Investigation & Data Prep

- Identify project objectives and key data features
- Understand data dictionaries
- Transform data for machine learning tasks

Feature Selection/Engineering

- Research feature selection techniques
- Merge data & metadata
- Make categorical data into smaller fields
- Aggregate different values
- Identify relevant continuous & categorical features
- Create testing and training data

Initial Modelling

- Create 3 models for each step in our project
- Run test through main.py with test dataset to get a result

Model **Tuning**

- Adjust parameters of model

Finalize Model & Visualization

- Validate & evaluate model
- Create visualization of results
- Start Final Report & Presentation

Wrap-up

- Presentation
- Final report
- code
- Package final

Preliminary Results

Clustering

→ Cluster NC Sensors

Date	Hour	mean_ 0	std_0	min_0	max_0	urate _0	mean_ 1	std_1	min_1	max_1	urate _1	c n
2020- 05-01	0	55.2	24.1	0	100	15	10	.1	2	18	1000	
2020- 05-01	1	50.1	14.2	5	80	15	10	.1	2	18	1000	
• • •	• • •	•••	•••	•••	•••	•••	•••	•••	•••	• • •	• • •	
2020- 05-01	23	37	19	1	64	15	5	.1	2	18	1000	

Clustering

→ Cluster NC Sensors

Clustering

→ Cluster NC Sensors

Non-Agglomerative

Agglomerative

→ Model EC/NC Relationship

0	1	2	3		17	18	19	uniqueID
0.000037	-0.004377	0.0	-0.000041	•••	5.876493	8.502804	20.087383	AHU-01 SF Air Systems Energy AHU1_SF_VFD_PWR(kWh)
0.000039	-0.004622	0.0	-0.000044	•••	6.537176	8.851925	20.473544	AHU-02 SF Air Systems Energy AHU2_SF_VFD_PWR(kWh)

Coefficients from Ridge Regression for each sensor

Supervised Model

→ Predicting End-Use Labels

Confusion Matrix and Performance Metrics For The Full Date Range

End-Use Labels on Test Set	00	01	02	03	04	05
00_HEATING_SPACE_AND_WATER	[[10	0	0	1	0	0]
01_SPACE_COOLING	0]	3	0	0	0	0]
02_HEATING_COOLING_COMBINED	0]	0	7	0	0	0]
03_LIGHTING_NORMAL	[2	0	0	7	0	0]
04_LIGHTING_EMERGENCY	0]	0	0	0	2	0]
05_OTHER	0]	0	0	0	0	4]]

logloss: 0.29794974927791823

Supervised Model

→ Predicting End-Use Labels

Confusion Matrix and Performance Metrics For The Full Date Range

Database Changes

SkySpark v7 (InfluxDB)

Visualization Pipeline

Difficulties & Roadblocks

Visualization Pipeline - Difficulties

influxdb-python

package

Output Dataframe From Classification Model Prediction

Difficulties

- Code collaboration
- Choosing a time efficient test method
- Writing efficient code
- Modifying code to include try and except statements
- Making code for each step in the model cohesive
- Joining data on a tag in influxDB

Tasks for Next Cycle

Tasks for the Next Weekly Cycle

- 1. Finish tuning model
- 2. Start writing final report
- 3. Start creating final presentation
- 4. Create Jupyter notebook on how to use the main.py & modules
- Create placeholder dashboard (visualization)

Questions