Отчёт по упражнению (Scilab, подсистема xcos)

Дисциплина: Имитационное моделирование

Ганина Таисия Сергеевна, НФИбд-01-22

Содержание

Сп	Список литературы	
5	Выводы	22
4	Выполнение лабораторной работы 4.1 Построить с помощью хсоз фигуры Лиссажу.	8 8 18
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Основное окно Scilab	8
4.2	Окно моделирования и палитра блоков	9
4.3	Меняю цвет графика	10
4.4	Учебная работа, пример из задания	10
4.5	Как задавать параметры блока GENSIN_f	11
4.6		11
4.7)	11
4.8		12
4.9		12
	, , , , , , , , , , , , , , , , , , , ,	12
	, , , , , , , , , , , , , , , , , , ,	13
	, , , , , , , , , , , , , , , , , , , ,	13
	, , , , , , , , , , , , , , , , , , ,	13
4.14		14
4.15	Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=3\pi/4$	14
		14
	, , , , , , , , , , , , , , , , , , ,	15
		15
4.19	Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/2$	15
4.20	Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=3\pi/4$	16
)	16
4.22	Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = 0$	16
4.23	Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = \pi/4$	17
) · · · · · · · · · · · · · · · · · · ·	17
4.25	Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=3\pi/4$	17
4.26	Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi$	18
4.27	Создать новый Modelica Класс	18
4.28	Код для дифференциального уравнения	19
		19
		20
		20
4.32	Полученный график для х после смены параметров симуляции	21
		21

Список таблиц

1 Цель работы

Целью данной работы является приобретение навыков использования Scilab, а именно - подсистемы xcos. Также необходимо создать простую модель в OpenModelica.

2 Задание

- 1. Построить с помощью хсоз фигуры Лиссажу.
- 2. Выполнить моделирование в OMEdit.

3 Теоретическое введение

Scilab — система компьютерной математики, предназначенная для решения вычислительных задач. Основное окно Scilab содержит обозреватель файлов, командное окно, обозреватель переменных и журнал команд.

Программа хсоз является приложением к пакету Scilab. Для вызова окна хсоз необходимо в меню основного окна Scilab выбрать Инструменты -> Визуальное моделирование хсоз. При моделировании с использованием хсоз реализуется принцип визуального программирования, в соответствии с которым пользователь на экране из палитры блоков создаёт модель и осуществляет расчёты.

OpenModelica — среда объектно-ориентированного моделирования и моделирования на языке Modelica. OMEdit (OpenModelica Connection Editor) — графический пользовательский интерфейс для редактирования модели в OpenModelica. [1]

4 Выполнение лабораторной работы

4.1 Построить с помощью хсоз фигуры Лиссажу.

Первым делом я запустила Scilab, после выбрала Инструменты -> Визуальное моделирование хсоs (рис. 4.1, 4.2).

Рис. 4.1: Основное окно Scilab

Рис. 4.2: Окно моделирования и палитра блоков

После этого я составила модель функционирования двух источников синусоидального сигнала, позволяющую в зависимости от задаваемых параметров построить различные фигуры Лиссажу.

В работе я использовала следующие блоки из палитры:

- CLOCK с запуск часов модельного времени;
- GENSIN f блок генератора синусоидального сигнала;
- CSCOPEXY анимированное регистрирующее устройство для построения графика типа y = f(x);
- ТЕХТ f задаёт текст примечаний. (рис. 4.3, 4.4)

Рис. 4.3: Меняю цвет графика

Рис. 4.4: Учебная работа, пример из задания

Я меняла частоту и фазу, чтобы получить разные фигуры. В подписи к рисунку, а также на самих скриншотах можно увидеть параметры, которые были заданы для каждого графика. (рис. 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16,

4.17, 4.18, 4.19, 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26).

Рис. 4.5: Как задавать параметры блока GENSIN_f

Рис. 4.6: Как задавать параметры блока CLOCK_с

Рис. 4.7: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=0$

Рис. 4.8: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/4$

Рис. 4.9: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/2$

Рис. 4.10: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=3\pi/4$

Рис. 4.11: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi$

Рис. 4.12: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=0$

Рис. 4.13: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/4$

Рис. 4.14: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/2$

Рис. 4.15: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=3\pi/4$

Рис. 4.16: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi$

Рис. 4.17: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=0$

Рис. 4.18: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/4$

Рис. 4.19: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/2$

Рис. 4.20: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=3\pi/4$

Рис. 4.21: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi$

Рис. 4.22: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=0$

Рис. 4.23: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/4$

Рис. 4.24: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/2$

Рис. 4.25: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=3\pi/4$

Рис. 4.26: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi$

4.2 Реализация модели в OpenModelica

Далее я моделировала класс дифференциального уравнениия x'=-x. Для этого я зашла в OMEdit (OMEdit &) и создала этот класс (рис. 4.27, 4.28).

Рис. 4.27: Создать новый Modelica Класс

Рис. 4.28: Код для дифференциального уравнения

В результате симуляции я получила такие графики: (рис. 4.29, 4.30, 4.31, 4.32, 4.33)

Рис. 4.29: Полученный график для х

Рис. 4.30: Полученный график для х'

Рис. 4.31: Установка симуляции

Рис. 4.32: Полученный график для х после смены параметров симуляции

Рис. 4.33: Полученные графики для х и х' после смены параметров симуляции

5 Выводы

В результате выполнения лабораторной работы я научилась работать со средствами моделирования xcos и OpenModelica.

Список литературы

1. Руководство к выполнению упражнения [Электронный ресурс]. URL: https://esystem.rudn.ru/mod/resource/view.php?id=1223343.