Probabilistic PCA and Extensions

Michael Montemurri¹ Ahmed Mhedhbi²

¹McGill University ²Université de Montréal

December 2024 Group 6

- Tipping, Michael E., and Christopher M. Bishop. "Mixtures of probabilistic principal component analyzers." Neural Computation, 11.2 (1999): 443-482.
- Tipping, Michael E., and Christopher M. Bishop. "Probabilistic principal component analysis." Journal of the Royal Statistical Society Series B: Statistical Methodology, 61.3 (1999): 611-622.
- Zhang, Zhihua, et al. "Probabilistic kernel principal component analysis." Department of Computer Science, The Hong Kong University of Science and Technology, Technical Report (2004).

Fundamental Results of PPCA

Goal of PPCA: Providing a probabilistic framework for density modeling and dimensionality reduction.

Generative Model:

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \boldsymbol{\mu} + \boldsymbol{\epsilon}_n, \quad \boldsymbol{\epsilon}_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}),$$

Where: $x_n \in \mathbb{R}^d$, $z_n \in \mathbb{R}^q$ and $\mathbf{W} \in \mathbb{R}^{d \times q}$ is a matrix mapping latent space to data space.

Maximum Likelihood Estimation:

$$\mu_{\mathsf{ML}} = rac{1}{n} \sum_{i=1}^{n} x_n, \quad \mathbf{W}_{\mathsf{ML}} = \mathbf{U}_q (\mathbf{\Lambda}_q - \sigma^2 \mathbf{I})^{1/2} \mathbf{R}, \quad \sigma_{\mathsf{ML}}^2 = rac{1}{d-q} \sum_{i=q+1}^{d} \lambda_i$$

Where \mathbf{U}_q , $\mathbf{\Lambda}_q$ are the matrices of the top q eigenvectors and corresponding eigenvalues of the sample covariance matrix \mathbf{S} .

Mixture of PPCA Models (MPPCA)

Goal of MPPCA: Model multimodal data by capturing local linear subspaces instead of a global linear approximation.

Generative Model:

$$p(x_n) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, C_k), \quad C_k = \mathbf{W}_k \mathbf{W}_k^T + \sigma_k^2 \mathbf{I}.$$

Posterior Responsibilities:

$$R_{nk} = p(z_n = k | \mathbf{x}_n) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \mathbf{C}_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_i, \mathbf{C}_i)}.$$

M-Step Updates:

$$\pi_i = \frac{1}{N} \sum_{i=1}^{N} R_{ni}, \boldsymbol{\mu}_i = \frac{\sum_{n=1}^{N} R_{ni} \mathbf{x}_n}{\sum_{i=1}^{N} R_{ni}}, \mathbf{S}_i = \frac{1}{\pi_i N} \sum_{i=1}^{N} R_{ni} (\mathbf{x}_n - \boldsymbol{\mu}_i) (\mathbf{x}_n - \boldsymbol{\mu}_i)^T.$$

The eigen-decomposition of S_i yields W_i and σ_i^2 . For large d, its more efficient to iteratively update them via the EM schedule.

Implementation of MPPCA

Relationships and Comparisons of PPCA and MPPCA:

- ► Classical PCA corresponds to a special case of probabilistic PCA where the noise covariance approaches zero, $\sigma^2 \rightarrow 0$
- PPCA is covariant under rotation
- ▶ The columns of the maximum-likelihood estimator $W_{\rm ML}$ are shown to span the principal subspace of the data without the assumption that C = S, contrary to factor analysis.
- ▶ Both rely on generative models, but MPPCA extends PPCA to handle heterogeneous datasets.

Kernel PCA and a Probabilistic Extension (PKPCA)

Kernel PCA: Extends PCA to capture nonlinear patterns by mapping data \mathbf{x}_i into a high-dimensional feature space \mathcal{F} via a mapping $\phi(\mathbf{x}_i)$. Instead of explicitly computing in \mathcal{F} , the **kernel trick** calculates inner products:

$$K_{ij} = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle,$$

using a kernel function $K(x_i, x_j)$, to indirectly define the data in \mathcal{F} . Data Representation:

F is the matrix of feature vectors $\mathbf{f}_i = \phi(\mathbf{x}_i)$ in \mathcal{F} (rows of F). \mathbf{g}_j represents the feature dimensions (columns of F)

Key Insight: Zhang et al. showed that if **K** (the kernel matrix) is Wishart-distributed $W_n(r, \Sigma)$, meaning it is a random positive semi-definite matrix modeling the covariance structure of multivariate Gaussian-distributed data, then the columns of F (the \mathbf{g}_i 's) are mutually independent n-dimensional vectors following:

$$\mathbf{g}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}).$$

Summary of PKPCA and Comparison to PPCA

Generative Model in \mathcal{F} : Zhang et al. propose that each column $\mathbf{g} \in \mathbb{R}^n$ of the feature matrix \mathbf{F} is generated by

$$\mathbf{g} = \mathbf{B}\mathbf{w} + u\mathbf{1}_n + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{V}),$$

where:

- ▶ $\mathbf{g} \in \mathbb{R}^n$: represents feature dimensions (columns of F).
- ▶ $\mathbf{B} \in \mathbb{R}^{n \times m}$: weight matrix mapping the latent variables $\mathbf{w} \in \mathbb{R}^m$ to the feature space.
- \triangleright $u\mathbf{1}_n$: scalar bias term for the mean.
- $ightharpoonup \epsilon \sim \mathcal{N}(0, \mathbf{V})$: noise term.

Here, $\mathbf{V} = n\sigma^2 \mathbf{I}_n/r$, and $\mathbf{w} \sim \mathcal{N}(0, n\mathbf{I}_m/r)$, where r, the dimensionality of the feature space, is unknown. The kernel trick is used to estimate \mathbf{B} and σ^2 .

PKPCA models feature dimensions \mathbf{g} in the kernel-induced feature space \mathcal{F} , while PPCA models the observed data \mathbf{x} .

ML Estimates for PKPCA

ML Estimates:

$$\mu_{\mathsf{ML}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{f}_i, \quad \sigma_{\mathsf{ML}}^2 = \frac{1}{n-m} \sum_{j=m+1}^{n} \lambda_j,$$

$$\mathsf{B}_{\mathsf{ML}} = \mathsf{U}_{m}(\mathbf{\Lambda}_{m} - \sigma_{\mathsf{ML}}^{2}\mathsf{I})^{1/2}\mathsf{R},$$

Where \mathbf{U}_m , $\mathbf{\Lambda}_m$ are matrices of the top m eigenvectors and corresponding eigenvalues of $\frac{1}{n}\mathbf{H}\mathbf{K}\mathbf{H}$, $\mathbf{H} = \mathbf{I}_n - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^{\top}$ is a centering matrix, and λ_j are the eigenvalues of $\mathbf{H}\mathbf{K}\mathbf{H}$ for j > m.

- ► ML estimates depend only on the kernel matrix **K**, making explicit computation in the feature space unnecessary.
- Similar to PPCA, an EM algorithm can be used to iteratively estimate parameters for computational efficiency when needed.
- ► PKPCA model is not a kernel equivalent of the PPCA, but rather in another model based on similar principles.

Contributions, Future Directions, and Experimental Results

Contributions

- ▶ Unified overview of PPCA, MPPCA, and PKPCA with their relationships and distinctions.
- Exploring Bayesian optimization Framework for Parameter Estimation for PPCA and MPPCA (priors on W, σ^2 , mixture proportions π_k and number of clusters/regions).

Experimental Results

- Implemented all algorithms from scratch to confirm theoretical computational advantages of EM for large *d* on MNIST.
- ► Comparison of MPPCA with PPCA for image reconstruction
- ▶ Comparison of models on synthetic data to demonstrate advantages.

Future Directions

- ► Extending MPPCA to dynamic and time-series data for temporal clustering (integrating Hidden Markov Models (HMM) to account for temporal dependencies).
- ► Applying PKPCA within local clusters in MPPCA (swiss roll)
- ► Investigating hybrid models combining PPCA/MPPCA with deep generative frameworks like VAEs for scalable applications.