ЛЕКЦИЯ 1. КОМПЛЕКСНЫЕ ЧИСЛА. ОПЕРАЦИИ С НИМИ.

§1. Понятие комплексного числа.

С комплексными числами исследователи сталкивались еще в глубокой древности, когда ученые вычисляли корни алгебраического уравнения

$$x^{2} + px + q = 0$$
$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^{2}}{4} - q}$$

Если $D = \frac{p^2}{4} - q < 0$, то действительных корней нет. Если иметь дело только с

действительными числами, то многие задачи, приводящие к квадратным уравнениям, не имеют решений. Чтобы обойти эти сложности, математики предложили рассмотреть некий значок i, который удовлетворяет условию $i^2=-1$. Никто не рассматривал его как число, а только как вспомогательный символ. Используя его, можем записать решение квадратного уравнения при D<0 в виде

$$x_{1,2} = -\frac{p}{2} \pm i\sqrt{|D|}$$

С этим выражением можно работать как с числом. В этом не сложно убедиться.

Действительно, пусть дано выражение a+ib, где a и b -- действительные числа, а $i^2=-1$. Значок ib будем называть мнимой частью нашего выражения, a -- действительной частью. Определим теперь операцию сложение для этих выражений:

$$(a_1+ib_1)+(a_2+ib_2)=(a_1+a_2)+i(b_1+b_2)$$

Имеем выражение того же вида!

Умножение:

$$(a_1 + ib_1)(a_2 + ib_2) = a_1a_2 + i^2b_1b_2 + i(a_1b_2 + b_1a_2) =$$

$$= (a_1a_2 - b_1b_2) + i(a_1b_2 + b_1a_2)$$

Опять таки, имеем выражение того же вида.

Деление:

$$\frac{\left(a_{1}+ib_{1}\right)}{\left(a_{2}+ib_{2}\right)} = \frac{\left(a_{1}+ib_{1}\right)}{\left(a_{2}+ib_{2}\right)} \frac{\left(a_{2}-ib_{2}\right)}{\left(a_{2}-ib_{2}\right)} = \frac{\left(a_{1}a_{2}+b_{1}b_{2}\right)+i\left(b_{1}a_{2}-a_{1}b_{2}\right)}{a_{2}^{2}+b_{2}^{2}}$$

Справедливы законы сложения и вычитания:

Пусть
$$z_1 = a_1 + ib_1$$
, $z_2 = a_2 + ib_2$

- 1. Переместительный закон: $z_1 + z_2 = z_2 + z_1$; $z_1 z_2 = z_2 z_1$
- 2. Сочетательный закон: $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$; $(z_1 z_2) z_3 = z_1 (z_2 z_3)$
- 3. Распределительный закон: $(z_1 + z_2)z_3 = z_1z_3 + z_2z_3$

Математики XIX- го века не считали эти выражения числами, так как эти выражения не связаны с материальным миром. И только после статьи Гаусса «Теория биквадратичных вычетов» (1831), в которой Гаусс дает геометрическую интерпретацию комплексным выражениям (об этой интерпретации речь пойдет ниже), а также интерпретирует +1,-1,+i,-i в виде элементов отображения $R^2 \to R^2$ (+1 -- перемещение нуля вправо,

-1 -- перемещение нуля влево, +i -- перемещение нуля вверх, -i -- перемещение нуля вниз), математики признали символы +i, -i как числа.

Рис. 1Интерпретация Гауссом чисел +1, -1, +i, -i

§2. Геометрическая интерпретация комплексных чисел

Пусть z = a + ib. Число z можно интерпретировать точкой с координатами x = a, y = b на плоскости переменных y, x:

Здесь x -- действительная ось, y -- мнимая ось. Известно также, что пару точек (a,b) на плоскости можно интерпретировать вектором \vec{r} . Поэтому комплексное число z будем интерпретировать вектором \vec{r} , идущим из начала координат в точку с координатами (a,b). Оказывается, что векторная интерпретация комплексного числа наиболее удачная, так как арифметические операции над комплексными числами удобно изображать в векторном виде.

Положим $\left| \vec{r} \right| = \rho$, $\, \phi \,$ -- полярный угол. Тогда

$$r_x = a = \rho \cos \varphi, r_y = b = \rho \sin \varphi$$

Число ρ называют модулем числа z, φ -- аргумент числа z: $\rho=|z|$, $\varphi={\rm Arg}\,z$. Несложно видеть, что

$$\rho = \sqrt{a^2 + b^2}, \operatorname{tg} \varphi = \frac{b}{a}$$

Угол φ определяется неоднозначно, с точностью до $2k\pi$:

$$\varphi \equiv \operatorname{Arg} z = \operatorname{arg} z + 2k\pi, 0 \le \operatorname{arg} z < 2\pi$$

Итак, для комплексного числа z однозначно находится ho, но ϕ определяется неоднозначно. Имеем

$$z = \rho(\cos\varphi + i\sin\varphi) \tag{1}$$

Формулу (1) называют *тригонометрическим представлением комплексного числа*. Для примера рассмотрим случай z = i. Тогда

$$i = 1 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$$

поэтому аргумент числа i равен $\varphi = \pi/2$. Как следствие, число i принадлежит оси y, ось y называют *мнимой осью*.

Плоскость переменных y,x, каждая точка которой интерпретируется как комплексное число z, называют комплексной плоскостью и обозначают буквой ${f C}$.

Рассмотрим сложение комплексных чисел. (см. рис.3). Комплексные числа складываются как векторы (проверить!)

Умножение комплексных чисел

$$z_1 z_2 = \rho_1 \left(\cos \varphi_1 + i \sin \varphi_1\right) \rho_2 \left(\cos \varphi_2 + i \sin \varphi_2\right) = \rho_1 \rho_2 \left[\left(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2\right) + i \left(\sin \varphi_1 \cos \varphi_2\right) + i \sin \varphi_2\right] + i \sin \varphi_2 +$$

Отсюда имеем

$$\rho = \rho_1 \rho_2, \ \varphi = \varphi_1 + \varphi_2 \tag{2}$$

Итак, умножение двух комплексных чисел ведет к перемножению их модулей и сложение аргументов.

Из формулы (2) следует векторная интерпретация умножения комплексных чисел (рис. 4) Более общая формула перемножения комплексных чисел такова (доказать, используя метод математической индукции):

$$z_1 z_2 \cdots z_n = \rho_1 \rho_2 \cdots \rho_n \left[\cos \left(\varphi_1 + \cdots + \varphi_n \right) + i \sin \left(\varphi_1 + \cdots + \varphi_n \right) \right]$$

Полагая в этой формуле $z_1=z_2=\cdots=z_n=z$, имеем

$$z^n = \rho^n(\cos n\varphi + i\sin n\varphi)$$

С другой стороны, из равенства $z=\rho(\cos\varphi+i\sin\varphi)$ явствует, что $z^n=\rho^n(\cos\varphi+i\sin\varphi)^n$. Поэтому справедлива формула Муавра:

$$\left(\cos\varphi + i\sin\varphi\right)^n = (\cos n\varphi + i\sin n\varphi)$$

Извлечение корней

Рассмотрим уравнение $z^n = w$. Пусть

$$z = \rho(\cos\varphi + i\sin\varphi), \ w = R(\cos\psi + i\sin\psi), \ 0 \le \varphi < 2\pi, \ 0 \le \psi < 2\pi$$

Здесь *W* считается заданным параметром, *z* подлежит вычислению. Тогда имеем

$$\rho^{n}(\cos n\varphi + i\sin n\varphi) = R(\cos \psi + i\sin \psi)$$

Отсюда следует, что

$$\rho = \sqrt[n]{R}, \ \varphi = \frac{\psi + 2k\pi}{n}$$
 $k = 0, 1, 2, ..., (n-1)$

Ограничения на область изменения индекса k обусловлено требованием вычисления главных значений φ , т.е. значений из промежутка $0 \le \varphi < 2\pi$, так как увеличение аргумента на величину, кратную 2π не меняет значений корня.

§3. Предел последовательности комплексных чисел

Для построения теории функций комплексного переменного большое значение имеет факт переноса многих фундаментальных понятий вещественного анализа в комплексную область.

Пусть $\{z_n\}$ (n=1,2,3,...) -- бесконечная последовательность комплексных чисел. Введем понятие предела этой последовательности чисел.

Определение 1 (определение окрестности). Под ε окрестностью точки z будем подразумевать множество точек z комплексной плоскости, принадлежащих внутренности круга радиуса ε с центром в точке z. Итак, окрестность точки z задается неравенством

$$|z-z'|<\varepsilon$$

Определение 2 (предел последовательности). Последовательность $\{z_n\}$ называется сходящейся к пределу z, если для любого сколь угодно малого $\varepsilon > 0$ все точки последовательности, начиная с некоторого номера $N(\varepsilon)$, принадлежат ε -окрестности точки z (см. рис. 5). Точку z называют пределом последовательности $\{z_n\}$ при $n \to \infty$.

Рис. 5

Итак, при $n \ge N(\varepsilon)$ имеем $|z_n-z|<\varepsilon$ и это условие выполняется при любом, сколь угодно малом ε ! Пишут

$$\lim_{n\to\infty} z_n = z$$

Пусть $z_n = a_n + ib_n$, z = a + ib.

Лемма. Равенство $\lim_{n\to\infty}(a_n+ib_n)=a+ib$ эквивалентно двум равенствам

$$\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} b_n = b$$

Доказательство. Достаточность. Пусть $\lim_{n\to\infty}(a_n+ib_n)=a+ib$. Тогда для любого $\varepsilon>0$ существует число $N(\varepsilon)$ такое, что при $n\geq N(\varepsilon)$ все члены последовательности принадлежат ε -окрестности точки z, т.е. $|z_n-z|<\varepsilon$. Это значит, что $|z_n-z|=\sqrt{(a_n-a)^2+(b_n-b)^2}<\varepsilon$, поэтому $|a_n-a|<\varepsilon, |b_n-b|<\varepsilon$ при $n\geq N(\varepsilon)$. Но это значит, в силу определения предела последовательности вещественных чисел, что $\lim_{n\to\infty}a_n=a,\ \lim_{n\to\infty}b_n=b$.

Необходимость. Пусть $\lim_{n\to\infty}a_n=a,\ \lim_{n\to\infty}b_n=b$. Тогда для любого $\varepsilon>0$ существует

число $N_1(\varepsilon)$ такое, что при $n \geq N_1(\varepsilon)$ имеем $\left|a_n - a\right| < \frac{\varepsilon}{\sqrt{2}}, \left|b_n - b\right| < \frac{\varepsilon}{\sqrt{2}}$. Тогда

$$\left|z_n-z\right|=\sqrt{\left(a_n-a\right)^2+\left(b_n-b\right)^2}<\sqrt{\left(\frac{\varepsilon}{\sqrt{2}}\right)^2+\left(\frac{\varepsilon}{\sqrt{2}}\right)^2}=\varepsilon\quad\text{при}\quad n\geq N_1(\varepsilon)\,.\quad\text{Поэтому}$$

 $\lim_{n\to\infty}z_n=z$. Теорема доказана.

Эта лемма позволяет перевести всю теорию последовательности вещественных чисел на последовательность комплексных чисел.

Критерий Коши. Последовательность $\{z_n\}$ сходится тогда и только тогда, когда для любого $\varepsilon > 0$ можно указать такое $N(\varepsilon)$, что

$$\left| z_n - z_{n+m} \right| < \varepsilon$$

при $n \ge N(\varepsilon)$ и любом $m \ge 0$.