Adaptive Numerical CDF for Importance Sampling in BRDF

Diana Naranjo

Abstract

- Goal:
 - Importance sampling using the measured brdf
- Problem:
 - Storage cost
- Solution:
 - Adaptive numerical CDF
 - Curve Approximation algorithm

Scattering Eq. and Monte Carlo

Scattering Equation:

$$L_o(p, \omega_o) = \int_{S^2} f(p, \omega_o, \omega_i) L_i(p, \omega_i) |cos\theta_i| d\omega_i$$

Monte Carlo Estimator:

$$\int_{x_0}^{x_1} \int_{y_0}^{y_1} \int_{z_0}^{z_1} f(x, y, z) dx dy dz \qquad (x_1 - x_0)(y_1 - y_0)(z_1 - z_0) \sum_i f(X_i)$$

$$\frac{(x_1 - x_0)(y_1 - y_0)(z_1 - z_0)}{N} \sum_{i} f(X_i)$$

Measured BRDF

Merl Database (Matusik et al)

Mapping from half-angle and difference vectors to outgoing and half-angle:

$$(\sqrt{\theta_h}, \theta_d, \phi_d) \to (\sqrt{\theta_o}, \phi_o, \theta_h, \phi_h)$$

- 90 x 90 x 180 -> 32 x 16 x 256 x 32

Inversion Method in 1D Piecewise-constant functions

Inversion Method:

1. Compute CDF: P(x)

f(x)/funcInt

- 2. Compute inverse : $P^{-1}(x)$
- 3. Compute $X_i = P^{-1}(\square)$

Inversion Method in 2D Piecewise-constant functions

PDF

Marginal

$$p(v) = \int p(u, v) du = \frac{(1/n_u) \sum_i f[u_i, \tilde{v}]}{funcInt}$$

Conditional

$$p(u|v) = \frac{p(u,v)}{p(v)} = \frac{f[\tilde{u},\tilde{v}]/funcInt}{p[\tilde{v}]}$$

Transforming between distributions

Half-angle to incident vector

$$\frac{d\omega_h}{d\omega_i} = \frac{\sin\theta_h d\theta_h d\phi_h}{\sin\theta_i d\theta_i d\phi_i}$$

$$\frac{d\omega_h}{d\omega_i} = \frac{1}{4(\omega_o \cdot \omega_h)}$$

$$p(\theta, \phi) = \frac{p_h(\theta, \phi)}{4(\omega_o \cdot \omega_h)}$$

CDF Compression

Douglas-Peucker

CDF

$$p(u|v_i) = \frac{1}{|v_i|} = \int_{v_{i-1}}^{v_i} \frac{p(u, v')}{p(v')}$$

Final Costs

	Uniform	Adaptive
Sample_f	O(lgN _U)	O(lgN _A)
Pdf	0(1)	O(lgN _A)

$$N_U > N_A$$

Results

BRDF	Uniform CDF Resolution	Adaptive CDF Average Resolution	Compression Ratio	Uniform CDF Estimator Efficiency	Adaptive CDF Estimator Efficiency
Measured Nickel	32 x 16 x 256 x 32	32 x 16 x 30 x 10	27:1	8.0415e-06	7.92091e-06
Measured Metallic-Blue	32 x 16 x 256 x 32	32 x 16 x 30 x 12	23:1	5.21638e-06	4.36035e-06
Measured Plastic	32 x 16 x 256 x 32	32 x 16 x 30 x 9	30:1	2.69248e-06	2.7647e-06

Resulting Images

A bit more interesting results...

A bit more interesting results...

A bit more interesting results...

Conclusions and future work

- Reduction in storage cost
- Higher quality than Cosine-weighted sampling

- Outgoing angle also adaptive
- Environment maps

Bibliography

DOUGLAS, D., AND PEUCKER, T. 1973.

Algorithms for the reduction of the number of points required to represent a digitalized line or its caricature. The Canadian Cartographer 10, 2, 112-122.

LAWRENCE , J., RUSINKIEWICZ , S., AND

RAMAMOORTHI, R. 2004. Efficient brdf importance sampling using a factored representation. ACM Transactions on Graphics (ACM SIGGRAPH 2004) 23, 3.

LAWRENCE, J., RUSINKIEWICZ, S., AND

RAMAMOORTHI, R. 2005. Adaptive numerical cumulative distribution functions for efficient importance sampling. Rendering Techniques, 11-20.

MATUSIK, W. 2003. A Data-Driven

Reflectance Model. PhD thesis,

Massachusetts Institute of Technology.

PHARR, M., AND HUMPHREYS, G. 2010.

Physically Based Rendering. Morgan Kaufmann Publishers.

Questions?