Langages et Automates Grammaires

Engel Lefaucheux

Prépas des INP

Quel langage pour les grammaires suivantes commençant par S

Construisez une grammaire pour le langage des palindromes sur $\Sigma = \{a,b\}$

Donner la grammaire correspondante si l'entrée est un langage, et le langage si l'entrée est une grammaire. On fixe l'axiome S.

$$\begin{array}{ccc} \bullet & S & \rightarrow & AB \mid aAb \\ B & \rightarrow & bBa \mid \varepsilon \\ A & \rightarrow & \varepsilon \end{array}$$

③ {
$$ab^na \mid n \in \mathbb{N}$$
}

$$\begin{array}{ccc} \textbf{3} & \mathcal{S} & \rightarrow & AB \\ & A & \rightarrow & ab \end{array}$$

$$B \rightarrow BB$$

- Type 0 Pas de restrictions sur les règles
- Type 1 règles de la forme $u \ A \ v \rightarrow u \ w \ v$ avec $A \in N$ et $u, v, w \in (N \cup T)^*$
- Type 2 règles de la forme $A \rightarrow w$ avec $A \in N$ et $w \in (N \cup T)^*$
- Type 3 Toutes les règles sont soit de la forme $A \rightarrow a B$ ou $A \rightarrow a$ (grammaire à droite) soit de la forme $A \rightarrow B$ a ou $A \rightarrow a$ (grammaire à gauche)

- Type 0 Pas de restrictions sur les règles
- Type 1 règles de la forme $u \ A \ v \rightarrow u \ w \ v$ avec $A \in N$ et $u, v, w \in (N \cup T)^*$
- Type 2 règles de la forme $A \rightarrow w$ avec $A \in N$ et $w \in (N \cup T)^*$
- Type 3 Toutes les règles sont soit de la forme $A \rightarrow a B$ ou $A \rightarrow a$ (grammaire à droite) soit de la forme $A \rightarrow B a$ ou $A \rightarrow a$ (grammaire à gauche)

Grammaire de type 0 ← Machine de Turing

```
Type 0 Pas de restrictions sur les règles
```

```
Type 1 règles de la forme u \ A \ v \rightarrow u \ w \ v avec A \in N et u, v, w \in (N \cup T)^*
```

Type 2 règles de la forme
$$A \rightarrow w$$
 avec $A \in N$ et $w \in (N \cup T)^*$

Type 3 Toutes les règles sont soit de la forme
$$A \rightarrow a B$$
 ou $A \rightarrow a$ (grammaire à droite) soit de la forme $A \rightarrow B$ a ou $A \rightarrow a$ (grammaire à gauche)

Grammaire de type $0 \iff$ Machine de Turing Grammaire de type $? \iff$ Expression régulière

```
Type 0 Pas de restrictions sur les règles
```

```
Type 1 règles de la forme u \ A \ v \rightarrow u \ w \ v avec A \in N et u, v, w \in (N \cup T)^*
```

Type 2 règles de la forme
$$A \rightarrow w$$
 avec $A \in N$ et $w \in (N \cup T)^*$

Type 3 Toutes les règles sont soit de la forme
$$A \rightarrow a B$$
 ou $A \rightarrow a$ (grammaire à droite) soit de la forme $A \rightarrow B a$ ou $A \rightarrow a$ (grammaire à gauche)

Grammaire de type 0 ← Machine de Turing Grammaire de type 3 ← Expression régulière

Représenter les langages suivant avec une grammaire de type 3

- baab*
- b(aab)*

De quel type est la grammaire

$$S \rightarrow aU \mid c$$

$$U \rightarrow Sb \mid d$$

Quel est son langage?

 L_1 et L_2 langages de grammaire G_1 et G_2 Informellement, comment construire une grammaire pour $L_1 \cup L_2$, $L_1 \cdot L_2$ et L_1^*

Représenter les langages suivant avec une grammaire de type 3

- baah*
- b(aab)*

De quel type est la grammaire

$$S \rightarrow aU \mid c$$

$$U \rightarrow Sb \mid d$$

Quel est son langage ? $\{a^ncb^n, a^{n+1}db^n \mid n \in \mathbb{N}\}$

 L_1 et L_2 languages de grammaire G_1 et G_2 Informellement, comment construire une grammaire pour $L_1 \cup L_2$, $L_1 \cdot L_2$ et L_1^*

Considérez la grammaire $(\{a, b, c\}, \{S\}, R, S)$ où les règles R sont

 $S \rightarrow abS$

 $S \rightarrow bcS$

 $S \rightarrow bbS$

 $S \rightarrow a$

 $S \rightarrow cb$

Construisez l'arbre de dérivation des mots *bcbba*, *bbbcbba* et *bcabbbbbcb*.

De quel type est cette grammaire. Existe t'il une grammaire de type supérieur générant le même langage ?

Simplifier une grammaire

- ⇒ Supprimer les éléments inutiles de la grammaire
 - Symboles improductifs
 - A est improductif s'il n'y a pas de $m \in T^*$ tel que $A \xrightarrow{*} m$
 - Symboles inaccessibles
 - A est inaccessible s'il n'y a pas de α et β tels que $S \xrightarrow{*} \alpha A \beta$
 - ϵ -productions
 - Une ϵ -production est une dérivation telle que $A \xrightarrow{*} \epsilon$
 - Production simple
 - $A \to B$ est une production simple si $A \in N$ et $B \in N$
- \Rightarrow Pour toute grammaire, il existe une grammaire équivalente sans symboles improductifs ni inaccessibles, sans ϵ -productions ni productions simples

Élimination des symboles improductifs

- ▷ Calcul des symboles productifs (grammaire de type 2 ou 3)
 - Soit $P_1 = \{ A \in N \mid \exists w \in T^*, A \to w \in R \}$
 - Tant que $P_i \neq P_{i+1}$ $P_{i+1} = P_i \cup \{A \in N \mid \exists w \in (T \cup P_i)^*, A \to w \in R\}$

Que contient P_i ?

Élimination des symboles improductifs

- ▷ Calcul des symboles productifs (grammaire de type 2 ou 3)
 - Soit $P_1 = \{A \in N \mid \exists w \in T^*, A \rightarrow w \in R\}$
 - Tant que $P_i \neq P_{i+1}$ $P_{i+1} = P_i \cup \{A \in N \mid \exists w \in (T \cup P_i)^*, A \to w \in R\}$

Que contient P_i ?

 \Longrightarrow Les symboles de $N \setminus P$ sont improductifs

⇒ Enlever ces symboles et les règles associées

Élimination des symboles inaccessibles

- - Soit $C_1 = \{S\}$
 - Tant que $C_i \neq C_{i+1}$ $C_{i+1} = C_i \cup \{A \in N \mid \exists u, v \in (N \cup T)^*, X \in C_i, X \rightarrow uAw \in R\}$

Que contient C_i ?

Élimination des symboles inaccessibles

- - Soit $C_1 = \{S\}$
 - Tant que $C_i \neq C_{i+1}$ $C_{i+1} = C_i \cup \{A \in N \mid \exists u, v \in (N \cup T)^*, X \in C_i, X \rightarrow uAw \in R\}$

Que contient C_i ?

- \Longrightarrow Les symboles de $N \setminus C$ sont inaccessibles.
- ⇒ Enlever ces symboles et les règles associées

Élimination des ε -production

- ▷ Calcul des symboles annulables (grammaire de type 2 ou 3)
 - Soit $U_1 = \{A \in N \mid A \rightarrow \varepsilon \in R\}$
 - Tant que $U_i \neq U_{i+1}$ $U_{i+1} = U_i \cup \{A \in N \mid \exists u \in (U_i)^*, A \rightarrow \alpha \in R\}$
- \Longrightarrow Les symboles de U sont annulables.
- ⇒ Modification de la grammaire
 - Pour $A \in U$, remplacer les règles $X \to uAv$ par $X \to uAv \mid uv$
 - Supprimer les règles $A \to \varepsilon$ (sauf pour S)

Équivalences et productions simples

- ▶ Productions simples, dérivations et classes d'équivalences
 - Production simple : toute règle $A \to B$ avec $B \in N$
 - Soit la relation \geqslant telle que $A \geqslant B$ si $A \xrightarrow{*} B$
 - Soit la relation \approx telle que $A \approx B$ si $A \geqslant B$ et $B \geqslant A$
 - Classes d'équivalences
 - Si $A \approx B$, tout ce qui est dérivé de A peut l'être de B
 - Relation réflexive, symétrique et transitive
 - $\bullet\,$ L'ensemble des classes est une partition de N
- ▶ Modification de la grammaire
 - On conserve les productions non-simples
 - Pour chaque classe d'équivalence
 - ⇒ Choisir un symbole qui remplace tous les autres
 - \Rightarrow Pour chaque dérivation $A \stackrel{*}{\rightarrow} B$
 - Pour chaque $B \to \beta$, ajouter $A \to \beta$

- ▶ Grammaire
 - 1. $S \rightarrow T \mid U$
 - 2. $U \rightarrow aYb|V$
 - 3. $V \rightarrow W$
 - 4. $X \rightarrow W|a$
 - 5. $Y \rightarrow Z$
 - 6. $Z \rightarrow c | \epsilon$
- ► Étapes
 - Symboles productifs :
 - Symboles accessibles :
 - ϵ -productions :
 - Productions simples :

- ► Grammaire
 - 1. $S \rightarrow T \mid U$
 - 2. $U \rightarrow aYb|V$
 - 3. $V \rightarrow W$
 - 4. $X \rightarrow W|a$
 - 5. $Y \rightarrow Z$
 - 6. $Z \rightarrow c | \epsilon$
- ► Étapes
 - Symboles productifs : $\{X, Z, Y, U, S\} \Rightarrow \text{retirer } T, V \text{ et } W$
 - Symboles accessibles :
 - ϵ -productions :
 - Productions simples :

- ▶ Grammaire
 - 1. $S \rightarrow U$
 - 2. $U \rightarrow aYb$
 - 3.
 - 4. $X \rightarrow a$
 - 5. $Y \rightarrow Z$
 - 6. $Z \rightarrow c | \epsilon$
- ▶ Étapes
 - Symboles productifs : $\{X, Z, Y, U, S\} \Rightarrow \text{retirer } T, V \text{ et } W$
 - Symboles accessibles : $\{S, U, Y, Z\} \Rightarrow \text{retirer } X$
 - ϵ -productions :
 - Productions simples:

- ▶ Grammaire
 - 1. $S \rightarrow U$
 - 2. $U \rightarrow aYb$
 - 3.
 - 4.
 - 5. $Y \rightarrow Z$
 - 6. $Z \rightarrow c | \epsilon$
- ► Étapes
 - Symboles productifs : $\{X, Z, Y, U, S\} \Rightarrow \text{retirer } T, V \text{ et } W$
 - Symboles accessibles : $\{S, U, Y, Z\} \Rightarrow \text{retirer } X$
 - ϵ -productions :
 - Productions simples :

▶ Grammaire

- 1. $S \rightarrow U$
- 2. $U \rightarrow aYb$
- 3.
- 4.
- 5. $Y \rightarrow Z$
- 6. $Z \rightarrow c | \epsilon$

▶ Étapes

- Symboles productifs : $\{X, Z, Y, U, S\} \Rightarrow \text{retirer } T, V \text{ et } W$
- Symboles accessibles : $\{S, U, Y, Z\} \Rightarrow \text{retirer } X$
- ϵ -productions : $\{Z, Y\} \Rightarrow \text{modifier } 6, 2$
- Productions simples :

- ▶ Grammaire
 - 1. $S \rightarrow U$
 - 2. $U \rightarrow aYb|ab$
 - 3.
 - 4.
 - 5. $Y \rightarrow Z$
 - 6. $Z \rightarrow c$
- ▶ Étapes
 - Symboles productifs : $\{X, Z, Y, U, S\} \Rightarrow \text{retirer } T, V \text{ et } W$
 - Symboles accessibles : $\{S, U, Y, Z\} \Rightarrow \text{retirer } X$
 - ϵ -productions : $\{Z, Y\} \Rightarrow \text{modifier } 6, 2$
 - Productions simples :

- ▶ Grammaire
 - 1. $S \rightarrow U$
 - 2. $U \rightarrow aYb|ab$
 - 3.
 - 4.
 - 5. $Y \rightarrow Z$
 - 6. $Z \rightarrow c$
- ▶ Étapes
 - Symboles productifs : $\{X, Z, Y, U, S\} \Rightarrow \text{retirer } T, V \text{ et } W$
 - Symboles accessibles : $\{S, U, Y, Z\} \Rightarrow \text{retirer } X$
 - ϵ -productions : $\{Z, Y\} \Rightarrow \text{modifier } 6, 2$
 - Productions simples : $S \to U$ et $Y \to Z \Rightarrow$ modifier 1, 2, 5, 6

- ▶ Grammaire
 - 1. $S \rightarrow aYb|ab$
 - 2.
 - 3.
 - 4.
 - 5. $Y \rightarrow c$
 - 6.
- Étapes
 - Symboles productifs : $\{X, Z, Y, U, S\} \Rightarrow \text{retirer } T, V \text{ et } W$
 - Symboles accessibles : $\{S, U, Y, Z\} \Rightarrow \text{retirer } X$
 - ϵ -productions : $\{Z, Y\} \Rightarrow \text{modifier } 6, 2$
 - Productions simples : $S \to U$ et $Y \to Z \Rightarrow$ modifier 1, 2, 5, 6

- Réduire les grammaires suivantes
 - G₁
 - $S \rightarrow bSc|bTc|a|\epsilon$
 - $\bullet \quad T \to \ U$
 - $U \rightarrow b U c | T$
 - $V \rightarrow U|bc$
 - G₂
 - $S \rightarrow UXT$
 - $T \rightarrow b$
 - $U \rightarrow a V | aXTXb$
 - $V \rightarrow c V | a W T$
 - \bullet $W \rightarrow V$
 - $X \rightarrow ab|\epsilon$
 - $Y \rightarrow cZ$
 - $Z \rightarrow aa$

Formes normales

 Forme normale de Chomsky : toutes les règles sont de la forme :

$$A \rightarrow BC$$
 avec $A, B, C \in N$ ou

 $A \rightarrow a$ avec $a \in T$

• Forme normale de Greibach : toutes les règles sont de la forme :

$$A \rightarrow aw$$
 avec $w \in N^*$

Pour tout langage hors-contexte (notamment les langages réguliers) il existe une grammaire en forme normale de Chomsky et une grammaire en forme normale de Greibach qui le génèrent