Calculus and Analytical Geometry

Lecture no. 03

Amina Komal

March 2022

Topic: Graph of an equation

Outline of the lecture:

- i. Cartesian plane
- ii. Ordered pair
- iii. Graph of an equation
- iv. Examples involving sketching of graph
- v. Practice questions

1) Cartesian Plane:

A cartesian plane is a plane consists of two perpendicular number lines that intersect at the origin.

- The horizontal line is known as x-axis, whereas the vertical line is known as y-axis.
- The horizontal line towards right is positive and towards left its negative.
- The vertical line above the origin is positive and below the origin its negative.
- The plane is divided into 4 equal sections known as **quadrants**.

2) Ordered pair:

An ordered pair contains the coordinates of one point in the coordinate system. A point is named by its ordered pair of the form of P=(x, y). The first number corresponds to the x-coordinate and the second to the y-coordinate.

To graph a point, you draw a dot at the coordinates that corresponds to the ordered pair. It's always a good idea to start at the origin. The x-coordinate tells you how many steps you have to take to the right (positive) or left (negative) on the x-axis. And the y-coordinate tells you have many steps to move up (positive) or down (negative) on the y-axis.

Example:

The ordered pair (3, 4) is found in the coordinate system when you move 3 steps to the right on the x-axis and 4 steps upwards on the y-axis.

The ordered pair (-7, 1) is found in the coordinate system when you move 7 steps to the left on the x-axis and 1 step upwards on the y-axis.

3) Graph of an equations:

Graph of an equation is the graph of all the ordered pairs (x,y) that satisfies the equation. There are infinitely many points that satisfies a particular equation so, we draw reasonable amount of ordered pairs and join them to make the graph of an equation.

4) Types of Equations:

- Linear equation.
- Quadratic equation
- Cubic equation
- Reciprocal equation

4.1) Graph of Linear equation:

Example:

Draw the graph of the equation 8x + 4y = 12.

Solution:

$$8x + 4y = 12$$

$$4y = -8x + 12$$

$$y = \frac{-8x+12}{4}$$

$$y = \frac{-8x}{4} + \frac{12}{4}$$

$$y = -2x + 3$$
Subtract 8x on both sides.

Divide both sides by 4.

Simplify.

х	у	y = -2x + 3	Solutions
-2	7	y = -2(2) + 3 = 4 + 3 = 7	(-2, 7)
-1	5	y = -2(1) + 3 = 2 + 3 = 5	(-1, 5)
0	3	y = -2(0) + 3 = 0 + 3 = 3	(0, 3)
4	-5	y = -2(4) + 3 = -8 + 3 = -5	(4,-5)
6	-9	y = -2(6) + 3 = -12 + 3 = -9	(6,-9)

Plot the points on graph:

4.2) Graph of Quadratic equation:

Example: Draw the graph of $y = x^2 - 2x - 3$

X	y		Points
-2	5	$y = (-2)^2 - 2(-2) - 3 = 4 + 4 - 3 = 5$	(-2, 5)
- 1	0	$y = (-1)^2 - 2(-1) - 3 = 1 + 2 - 3 = 0$	(-1, 0)
0	-3	$y = (0)^2 - 2(0) - 3 = 0 - 0 - 3 = -3$	(0, -3)
1	-4	$y = (1)^2 - 2(1) - 3 = 1 - 2 - 3 = -4$	(1, -4)
2	-3	$y = (2)^2 - 2(2) - 3 = 4 - 4 - 3 = -3$	(2, -3)
3	0	$y = (3)^2 - 2(3) - 3 = 9 - 6 - 3 = 0$	(3, 0)
4	5	$y = (4)^2 - 2(4) - 3 = 16 - 8 - 3 = 5$	(4, 5)
	ı		

Plot the points on graph:

4.3) Graph of Cubic equation:

Example: Draw the graph of $y = \frac{-x^3}{6} + 2x + 5$

Solution:

The y-values will be obtained by putting the x-values in the given equation. For instance, if we take x = -5, then

$$y = \frac{-(-5)^3}{6} + 2(-5) + 5$$
$$= \frac{-(-125)}{6} - 10 + 5$$
$$= \frac{125}{6} - 5 \approx 15.8$$

Similarly, find the other values of y and write them in the table.

X	– 5	– 4	– 3	– 2	– 1	0	1	2	3	4	5
У	15.8	7.6	3.5	2.3	3.1	5	6.8	7.6	6.5	2.3	- 5.8

Mark the ordered pairs on graph.

Join the points to make graph.

4.4) Graph of Reciprocal equation:

Example: Draw the graph of $y = \frac{1}{x}$

Solution:

Х	у	Ordered pairs
- 10	- 0.1	(-10,-0.1)
- 5	- 0.2	(- 5,- 0.2)
– 2	- 0.5	(- 2,- 0.5)
- 1	- 1	(-1,-1)
- 0.5	– 2	(-0.5,-2)
+ 0.5	+ 2	(+0.5, +2)
+1	+1	(+1,+1)
+ 2	+ 0.5	(+2, +0.5)
+ 5	+ 0.2	(+5, +0.2)
+ 10	+ 0.1	(+10, +0.1)
+ 20	+ 0.05	(+20, +0.05)

Mark the ordered pairs.

Join the points to make the curves:

Practice Questions:

i.
$$y = -6x^2 + 11x - 4$$

ii.
$$y = 4x^2 - 25$$

iii.
$$y = -x^2 + 10x - 34$$

iv.
$$y = -2(x-4)^2 + 22$$

v.
$$\frac{1}{8}x - \frac{1}{6}y = -\frac{3}{2}$$

vi.
$$-8x + 3y = 28$$

vii.
$$y = x^3$$

viii.
$$y = \frac{1}{x^2}$$

ix.
$$y = -x - 2$$