W10: CIM 2.1.2 Mass Analysis

Portfolio Link:

https://m-jeide.github.io/eng-portfolio/CIM/%5BW10%5D%20CIM%202.1.2% 20Mass%20Analysis

Procedure

1. Answer the following questions using model 1.

a. What is the material cost of the part assuming that the cuttings are remelted and the cost of mild steel is \$6.25 per pound? What is the material cost of the part assuming that the cuttings are not remelted?

Melted:

$$6.25/lbmass * 5.211 lbmass = ~$32.57$$

Not Melted:

$$5.125in * 2.750in * 1.750in = 24.664in^3$$
 (calculation of the volume of stock)

$$24.664in^3 * 0.284lbmass/in^3 = 7.005lbmass$$
 (calculation of the mass of the stock)

$$6.25/lbmass * 7.005lbmass = ~$43.78$$

b. What is the mass of the material lost in a typical machining process?

The mass of material lost in a typical machining process is not a fixed number; it depends on the Material Removal Rate (MRR). To calculate the material lost, you could use the following formula for any workpiece:

For this particular model, it would be:

$$volume\ lost\ =\ 24.\ 664 in^3\ -\ 18.\ 059 in^3=6.\ 605 in^3$$

$$material \ lost = 6.605 in^3 * 0.284 lbmass/in^3 = \sim 1.876 lbmass$$

c. What is the cost of the lost material based on your calculations above?

cost of lost matertial =
$$1.876lbmass * $6.25/lbmass = ~$11.72$$

d. What will the volume of the box (in cubic feet) need to be in order to ship 1000 parts packed without spacers?

$$18.054in^3 * 1000 = 18,054in^3 = 10.447ft^3$$

e. What other processes could be used to create the same part?

Casting could be used for an effective batch production of this part if we didn't use subtractive manufacturing.

- 2. Answer the following questions using model 2
 - a. What is the mass of the material lost in a typical machining process?

material lost = volume lost * density of material

$$material\ lost = (5.000 in * 3.000 in * 1.500 in - 11.562 in^3) * .289 lbmass/in^3 = 3.161 lbmass$$

b. What is the cost of the lost material based on your calculations above if the cost of stainless steel is \$15.75 per pound?

cost of lost material = 3.161lbmass * \$15.75/lbmass = \sim49.79$

c. What is the material cost of the part assuming that the cuttings are remelted? What is the material cost of the part assuming that the cuttings are not remelted?

Remelted: \$15.75/lbmass * 3.342lbmass = \$52.637

Not remelted: $\$15.75/lbmass * (5.000in * 3.000in * 1.500in * .289lbmass/in^3) = ~\102.41

d. What is the cost to ship 1000 parts if current shipping costs are \$3.75 per pound?

- 3.342*lbmass* * \$3.75/*lbmass* * 1000 = \$12,532.50
 - e. What other processes could be used to create the same part?

Casting.

Model 3 – Support Bracket Model Material: Aluminum 6061 Material Properties Density: 0.098lbmass/in³ Mass: 3.104lbmass Volume: 31.82in³ Surface Area: 156.023in² Notes: Chamfers are 1" by 1" Typical Slots on both sides

- 3. Answer the following questions using model 3.
 - a. What is the material cost of the part assuming that the cuttings are remelted and the cost of aluminum 6061 is \$0.62 per pound? What is the material cost of the part assuming that the cuttings are not remelted?

Remelted: \$0.62/lbmass * 3.104lbmass = \$1.92

Not remelted: $\$0.62/lbmass * (9.00in * 5.00in * 3.50in * 0.098lbmass/in^3 = ~\9.57

b. What is the mass of the material lost in a typical machining process?

$$material\ lost = (9.\ 00 in\ *\ 5.\ 00 in\ *\ 3.\ 50 in\ -\ 31.\ 82 in^3)\ *\ 0.\ 098 lbmass/in^3 = 12.\ 316 lbmass$$

c. What is the cost of the lost material based on your calculations above?

d. How many parts can be painted with one gallon of paint that covers 400 ft2?

$$156.023in^2 * 1ft^2/144in^2 = 1.0384ft^2$$

$$400ft^2/1.0384ft^2 = 385.21$$

e. What other processes could be used to create the same part?

Casting.