Introduction to Stochastic Filtering

Simone Pavarana

University of Freiburg

July 9, 2025

Outline

- Motivating Examples
- ② Discrete-Time Filtering
- 3 Continuous-Time Filtering
- 4 Numerical Methods
- 5 Can Transformers Do Stochastic Filtering?
- 6 Conclusion

Moving Object I

Goal: Estimate the true position of a moving object from noisy observations.

Model:

Signal (position evolution):

$$X(t) = X(t-1) + \sigma_X \Delta W_X(t)$$

Observation:

$$Y(t) = X(t) + \sigma_Y \Delta W_Y(t)$$

• $\Delta W_X(t), \Delta W_Y(t) \sim \mathcal{N}(0,1)$, i.i.d. noise

Interpretation: Position is subject to random motion, and observations are noisy.

Moving Object II

Goal: Estimate the position of a smoothly moving object, e.g., a vehicle.

Model:

Position dynamics:

$$X(t) = X(t-1) + v(t-1) \cdot \Delta t$$

Velocity dynamics (mean-reverting):

$$v(t) = v(t-1) - \lambda v(t-1) + \sigma_v \Delta W_v(t)$$

Observation:

$$Y(t) = X(t) + \sigma_Y \Delta W_Y(t)$$

Use case: Tracking smoother motion (e.g., bicycles, cars, ships).

Stochastic Volatility (Continuous Time)

Goal: Estimate latent volatility from noisy price observations in continuous time.

Model:

Latent process (price dynamics):

$$dX(t) = \sqrt{v(t)} \, dW_X(t)$$

Observed process (with microstructure noise):

$$dY(t) = X(t) dt + \sigma_Y dW_Y(t)$$

• v(t): latent Markov process (stochastic volatility)

Filtering task: Estimate v(t) based on observed $Y(s), s \leq t$.

What is Filtering?

 Objective: Estimate the hidden state of a stochastic process based on partial and noisy observations.

• Key References:

- Bain & Crisan, Fundamentals of Stochastic Filtering continuous-time models with Brownian observations.
- Liptser & Shiryaev, Statistics of Random Processes, Ch. 8 classical continuous-time framework.
- Brémaud, Point Processes and Queues filtering with point process observations.
- Cappé, Moulines & Rydén, Inference in Hidden Markov Models discrete-time models.

• Applications:

- Target tracking, signal processing, and robotics
- Finance and Econometrics
- Epidemiology, neuroscience, and social science

Discrete-Time Filtering: Setup

We work on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{N}}, P)$.

Goal: Estimate the hidden state X(t) given noisy observations $Y(0), \ldots, Y(t)$.

Model: Hidden Markov Model (HMM)

- $(X_t)_{t \in \mathbb{N}}$: unobserved signal process (Markov)
- ullet $(Y_t)_{t\in\mathbb{N}}$: observations (conditionally independent given X_t)
- Transition kernel of X: $p(x, dx') = P(X(t) \in dx' \mid X(t-1) = x)$
- Joint distribution:

$$P^{(X,Y)(t)|\mathcal{F}_{t-1}}(dx,dy) = K(x,dy) \cdot p(X(t-1),dx,$$

with $K(x, dy) = \lambda(x, y) \varphi(dy)$ (partially dominated).

Filtering Problem: Compute the conditional law

$$\pi_{t|t}(f) = \mathbb{E}[f(X(t)) \mid Y(0), \dots, Y(t)].$$

Notation and Objectives

Notation:

- $y_{0:s} := (y_0, y_1, \dots, y_s)$
- $\pi_{t|s}(y_{0:s}, f) := \mathbb{E}[f(X(t)) \mid Y(0:s) = y_{0:s}]$
- ullet φ : reference measure on observation space

Objective: Compute $\pi_{t|t}(f)$ recursively using prediction and correction.

Idea: Introduce unnormalized measure

$$\rho_{t|s}(f) = \mathbb{E}\left[f(X(t))\prod_{r=0}^{s} \lambda(X(r), y_r)\right]$$

$$\pi_{t|s}(f) = \frac{
ho_{t|s}(f)}{
ho_{t|s}(1)}$$
 (Kallianpur-Striebel formula)

Recursive Computation (Unnormalized)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be measurable and integrable. Define:

• (1) Inception step:

$$\rho_{0|0}(f) := \int f(x_0) \lambda(x_0, y_0) p_0(dx_0)$$

• (2) Prediction step (for t > s):

$$\rho_{t|s}(f) := \iint f(x_t) \, p(x_{t-1}, dx_t) \, \rho_{t-1|s}(dx_{t-1})$$

• (3) Correction step (for t = s):

$$\rho_{t|t}(f) := \int f(x_t) \lambda(x_t, y_t) \rho_{t|t-1}(dx_t)$$

Normalized filter:
$$\pi_{t|t}(f) = \frac{\rho_{t|t}(f)}{\rho_{t|t}(1)}$$

Example: Finite State Space (Discrete HMM)

Setup:

- Hidden process $X_t \in \mathcal{A} = \{a_1, \dots, a_k\}$: finite state Markov chain
- Transition matrix: $p_{ij} = \mathbb{P}(X_t = a_i \mid X_{t-1} = a_j)$
- Emission density: $\lambda(a_i, y_t)$ w.r.t. fixed measure φ

Recursions for the filter $\pi_{t|t}(i) = \mathbb{P}(X_t = a_i \mid Y_{0:t} = y_{0:t})$:

• Inception:

$$\pi_{0|0}(i) = \frac{\lambda(a_i, y_0) \, p_0(i)}{\sum_{j=1}^k \lambda(a_j, y_0) \, p_0(j)}$$

• Prediction:

$$\pi_{t|t-1}(i) = \sum_{j=1}^{k} p_{ij} \, \pi_{t-1|t-1}(j)$$

Correction:

$$\pi_{t|t}(i) = \frac{\lambda(a_i, y_t) \, \pi_{t|t-1}(i)}{\sum_{j=1}^k \lambda(a_j, y_t) \, \pi_{t|t-1}(j)}$$

Linear Gaussian State-Space Model

Model:

$$X(t) = a_X + A_X X(t-1) + B_X Z_X(t)$$

$$Y(t) = a_Y + A_Y X(t) + B_Y Z_Y(t)$$

- $Z_X(t), Z_Y(t) \sim \mathcal{N}(0, I)$ i.i.d. and independent
- Initial state $X(0) \sim \mathcal{N}(\mu_0, \Sigma_0)$

Goal: Estimate
$$\mu_{t|t} = \mathbb{E}[X(t) \mid Y_{0:t}], \ \Sigma_{t|t} = \mathsf{Var}(X(t) \mid Y_{0:t})$$

Kalman Filter: Recursive Equations

Start with:

$$\mu_{0|0} = \mu_0, \quad \Sigma_{0|0} = \Sigma_0$$

Prediction step (for t > 0):

$$\mu_{t|t-1} = a_X + A_X \mu_{t-1|t-1} \Sigma_{t|t-1} = A_X \Sigma_{t-1|t-1} A_X^{\top} + B_X B_X^{\top}$$

Correction step:

$$\begin{split} & K_t = \Sigma_{t|t-1} A_Y^\top \left(A_Y \Sigma_{t|t-1} A_Y^\top + B_Y B_Y^\top \right)^{-1} \quad \text{(Kalman gain)} \\ & \mu_{t|t} = \mu_{t|t-1} + K_t \left(Y(t) - a_Y - A_Y \mu_{t|t-1} \right) \\ & \Sigma_{t|t} = \Sigma_{t|t-1} - K_t A_Y \Sigma_{t|t-1} \end{split}$$

Continuous-time Filtering: Mathematical Setup

Signal Process:

- The signal $X = (X_t)_{t \geq 0}$ is an S-valued process defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$.
- It solves the martingale problem for a linear operator A on a domain $\mathcal{D}(A) \subset C_b(S)$:

$$M_t^{\varphi} := \varphi(X_t) - \varphi(X_0) - \int_0^t \mathcal{A}\varphi(X_s) \, ds$$

is a martingale for every $\varphi \in \mathcal{D}(\mathcal{A})$.

Observation Process:

• The observed process $Y = (Y_t) \in \mathbb{R}^n$ is given by:

$$Y_t = \int_0^t h(X_s) \, ds + W_t$$

where $h: S \to \mathbb{R}^n$ is measurable, and W is an n-dimensional Brownian motion independent of X.

Filtering Problem and Methods

Filtering Problem:

Given the observation filtration

$$\mathcal{Y}_t := \sigma(Y_s : 0 \le s \le t) \lor \mathcal{N}$$

compute the conditional distribution π_t of X_t , such that:

$$\mathbb{E}[\varphi(X_t) \mid \mathcal{Y}_t] = \int \varphi(x) \, \pi_t(dx)$$

for all bounded measurable $\varphi: S \to \mathbb{R}$.

Two Main Derivation Approaches:

- Change of Measure Method: A new measure is constructed under which Y becomes a Brownian motion independent on X.
- Innovation Approach: It isolates the Brownian motion driving the evolution equation of π (called the innovation process).

Zakai Equation and Normalization

Zakai Equation

Let $\varphi \in \mathcal{D}(\mathcal{A})$. Under suitable conditions, the unnormalized conditional distribution ρ_t satisfies:

$$\rho_t(\varphi) = \pi_0(\varphi) + \int_0^t \rho_s(\mathcal{A}\varphi) \, ds + \int_0^t \rho_s(\varphi h^\top) \, dY_s, \quad \widetilde{\mathbb{P}} - a.s.$$

Normalization (Kallianpur-Striebel Formula):

The normalized filter π_t is given by:

$$\pi_t(\varphi) = \frac{\rho_t(\varphi)}{\rho_t(1)}, \quad \mathbb{P}(\widetilde{\mathbb{P}}) - a.s.$$

Interpretation: The Zakai equation is linear but unnormalized. Normalization is required to recover the conditional law of the signal process.

Kushner-Stratonovich Equation

Theorem 3.30: Under mild conditions, the normalized conditional distribution π_t satisfies:

$$\pi_t(\varphi) = \pi_0(\varphi) + \int_0^t \pi_s(A\varphi) \, ds + \int_0^t \left(\pi_s(\varphi h^\top) - \pi_s(\varphi)\pi_s(h^\top)\right) \, dI_s$$

where

$$I_t = Y_t - \int_0^t \pi_s(h) \, ds,$$
 (innovation process)

Interpretation:

- Nonlinear SPDE for the posterior measure π_t
- Derived via innovation approach or by normalizing Zakai

Kalman-Bucy Filter: Setup

Signal Process:

$$dX_t = F_t X_t dt + f_t dt + \sigma_t dV_t$$

- $X_t \in \mathbb{R}^d$, $V_t \in \mathbb{R}^p$ is standard Brownian motion
- F_t : $d \times d$ matrix, σ_t : $d \times p$ matrix
- \bullet f_t : drift vector; all coefficients measurable and locally bounded
- Initial state: $X_0 \sim \mathcal{N}(x_0, R_0)$, independent of V

Observation Process:

$$dY_t = H_t X_t dt + h_t dt + dW_t$$

- $Y_t \in \mathbb{R}^m$, $W_t \in \mathbb{R}^m$ is Brownian motion independent of V
- H_t : $m \times d$ matrix, $h_t \in \mathbb{R}^m$

Kalman-Bucy Filtering Equations

Posterior Mean (Conditional Expectation):

$$d\hat{x}_t = (F_t\hat{x}_t + f_t)dt + R_tH_t^{\top}(dY_t - (H_t\hat{x}_t + h_t)dt)$$

Posterior Covariance:

$$\frac{d}{dt}R_t = \sigma_t \sigma_t^\top + F_t R_t + R_t F_t^\top - R_t H_t^\top H_t R_t, \quad \text{(Riccati equation)}$$

Interpretation:

- $\hat{x}_t = \mathbb{E}[X_t \mid \mathcal{Y}_t], R_t = \mathsf{Cov}(X_t \mid \mathcal{Y}_t)$
- \hat{x}_t is updated online using new data; R_t is deterministic and can be computed offline.

Extended Kalman Filter (EKF): Setup and Linearization

Nonlinear state-space model (Eq. 8.5):

$$dX_t = f(X_t) dt + \sigma(X_t) dV_t + g(X_t) dW_t$$

$$dY_t = h(X_t) dt + dW_t$$

- V_t , W_t : independent Brownian motions
- X_t : signal, Y_t : observation

First-order (Taylor) approximation:

$$dX_t \approx f(\bar{x}_t) dt + f'(\bar{x}_t)(X_t - \bar{x}_t) dt + \sigma(\bar{x}_t) dV_t + g(\bar{x}_t) dW_t$$

$$dY_t \approx h(\bar{x}_t) dt + h'(\bar{x}_t)(X_t - \bar{x}_t) dt + dW_t$$

Idea: Locally linearize the system around a deterministic trajectory \bar{x}_t solving $d\bar{x}_t = f(x_t) dt$.

Extended Kalman Filter Equations

Idea: Given the linearized system, we can apply the Kalman–Bucy filter. More generally, we may consider any \mathcal{Y}_t -adapted estimator m_t , and define a mapping:

$$\Lambda: m_t \mapsto \hat{x}_t$$

where \hat{x}_t is the Kalman–Bucy estimate based on linearization around m_t . The **Extended Kalman Filter** is the *fixed point* of this mapping: $\Lambda(\hat{x}_t) = \hat{x}_t$.

EKF Update Equations:

$$d\hat{x}_t = (f - gh)(\hat{x}_t) dt + g(\hat{x}_t) dY_t + R_t h'(\hat{x}_t)^{\top} [dY_t - h(\hat{x}_t) dt]$$

$$\frac{dR_t}{dt} = (f' - gh')(\hat{x}_t) R_t + R_t (f' - gh')^{\top} (\hat{x}_t) + \sigma \sigma^{\top} (\hat{x}_t)$$

$$- R_t h'^{\top} (\hat{x}_t) h'(\hat{x}_t) R_t$$

Initialization: $\hat{x}_0 = x_0$, $R_0 = p_0$

Particle Filtering: Basic Idea

Objective: Approximate the conditional distribution π_t of the signal process given observations $Y_{[0,t]}$.

Unnormalized formulation (Kallianpur-Striebel):

$$\pi_t(\varphi) = \frac{\rho_t(\varphi)}{\rho_t(1)}, \quad \rho_t(\varphi) = \widetilde{\mathbb{E}}\left[\varphi(X_t)\widetilde{Z}_t \mid Y_t\right]$$

Motivation:

- Particle filtering is the most widely used nonlinear filtering method in practice.
- It applies to general (nonlinear, non-Gaussian) models.
- Particularly effective when Gaussian approximations like EKF fail.

Particle Filtering: Monte Carlo Approximation

Simulation-based approximation:

- ullet Simulate n independent particle paths $\{v_j(t)\}_{j=1}^n \sim X_t$
- Compute the exponential martingales:

$$a_j(t) = \exp\left(\int_0^t h(v_j(s))^{\top} dY_s - \frac{1}{2} \int_0^t \|h(v_j(s))\|^2 ds\right)$$

Approximate the unnormalized conditional expectation:

$$\rho_t^n(\varphi) = \frac{1}{n} \sum_{j=1}^n \varphi(v_j(t)) \cdot a_j(t)$$

Normalize:

$$\pi_t^n(\varphi) = \frac{\rho_t^n(\varphi)}{\rho_t^n(1)}$$

Result: Empirical measure from weighted particles approximates π_t .

Other Numerical Approaches

Beyond EKF and Particle Filters:

- Finite-dimensional nonlinear filters: Rare cases where the filtering equations close in finite dimension (e.g., Beneš filter).
- Projection filters and moment methods: Approximate the filter within a finite-dimensional manifold using ideas from differential geometry and information geometry.
- **Spectral methods:** Represent the filtering distribution via eigenfunction expansions of the signal generator.
- PDE-based methods: Numerically solve the Zakai or Kushner-Stratonovich equations using finite differences, finite elements, or splitting schemes.
- Affine filters: For affine signal models, the filtering problem reduces to solving stochastic Riccati equations. (See: Gonon & Teichmann, "Linearized filtering of affine processes using stochastic Riccati equations", 2021)

What is a Transformer?

Transformer = Neural Network Architecture for Sequential Data Introduced by: Vaswani et al., "Attention Is All You Need" (2017)

Key Features:

- Based on self-attention mechanism models dependencies between all positions in a sequence.
- Processes input in parallel (unlike RNNs), enabling efficient training.
- Highly scalable and adaptable to many tasks.

Architecture Highlights:

- Encoder-Decoder structure (or stacked encoders for e.g. BERT).
- Each layer contains: Multi-head attention + Feed-forward network.
- Positional encodings added to input to retain sequence order.

Applications:

- NLP: GPT, BERT, T5, ChatGPT
- Time series prediction, speech recognition, protein folding
- More recently: stochastic filtering and state estimation

Transformer Encoder: Step-by-Step

Input: sequence of token embeddings $X = [x_1, \dots, x_n] \in \mathbb{R}^{n \times d}$

1. Add Positional Encoding

$$Z^{(0)} = X + P$$
 with $P \in \mathbb{R}^{n \times d}$

2. Multi-Head Self-Attention (MHA)

$$\begin{aligned} \mathsf{head}_i &= \mathsf{softmax}\left(\frac{Q_i K_i^\top}{\sqrt{d_h}}\right) V_i \quad \mathsf{where} \quad Q_i = Z W_i^Q, \ K_i = Z W_i^K, \\ V_i &= Z W_i^V \end{aligned}$$

$$MultiHead(Z) = Concat(head_1, ..., head_h)W^O$$

3. Residual Connection + Layer Norm

$$Z' = \mathsf{LayerNorm}(Z + \mathsf{MultiHead}(Z))$$

Transformer Encoder: Feedforward and Output

4. Feedforward Neural Network (FFN)

$$\mathsf{FFN}(z') = \sigma(z'W_1 + b_1)W_2 + b_2$$
 (applied to each token independently)

5. Residual Connection + Layer Norm

$$Z^{(1)} = \mathsf{LayerNorm}(Z' + \mathsf{FFN}(Z'))$$

Final Output: $Z^{(1)} \in \mathbb{R}^{n \times d}$ is passed to the next encoder layer

Transformer Encoder = Stack of L such layers

$$Z^{(L)} = \mathsf{Encoder}_L \circ \cdots \circ \mathsf{Encoder}_1(Z^{(0)})$$

All weights (W^Q , W^K , W^V , W^O , W_1 , W_2 , P) are trainable.

Transformer Architecture

Figure 1: The Transformer - model architecture.

Can a Transformer Represent a Kalman Filter?

Reference: G. Goel and P. Bartlett, *Can a Transformer Represent a Kalman Filter?*, (2024)

Kalman Filter Model:

$$x_{t+1} = Ax_t + w_t, \quad y_t = Cx_t + v_t, \quad \hat{x}_t^* = (A - LC)\hat{x}_{t-1}^* + Ly_{t-1}$$

- $A \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{p \times n}$: system and observation matrices
- L: Kalman gain (fixed)
- \hat{x}_t^{\star} : Kalman estimate at time t

Main Question: Can a Transformer, despite its nonlinear structure, approximate the Kalman filter uniformly in time?

Transformer Approximation of the Kalman Filter

Theorem: For every $\varepsilon > 0$, there exists a Transformer Filter such that:

$$\|\hat{x}_t - \hat{x}_t^{\star}\| \le \varepsilon$$
 for all $t \ge 0$

where \hat{x}_t is the state estimate produced by the Transformer Filter. **Key**

Elements:

- H: number of past estimates and observations used in attention (temporal window size)
- The Transformer estimate is given by a weighted average:

$$\hat{x}_t = \sum_{i=t-H+1}^t \alpha_{i,t}(\beta) \, \tilde{x}_i$$

• \tilde{x}_i : pseudo-Kalman updates — i.e., the estimates that would be produced by the Kalman recursion if \hat{x}_{i-1}^{\star} were replaced with \hat{x}_{i-1}

Conclusion: A Transformer with softmax attention over H past steps can uniformly approximate Kalman filtering in time, with arbitrarily small errors

Transformers for Non-Linear and Non-Markovian Filtering

Paper:

Horvath, B., Kratsios, A., Limmer, Y., & Yang, X. (2023). "Transformers Can Solve Non-Linear and Non-Markovian Filtering Problems in Continuous Time For Conditionally Gaussian Signals".

State-Space Model:

$$dX_{t} = [a_{0}(t, Y_{[0:t]}) + a_{1}(t, Y_{[0:t]})X_{t}]dt + \sum_{i=1}^{2} b_{i}(t, Y_{[0:t]})dW_{t}^{(i)}$$
 (Signal)

$$dY_t = [A_0(t, Y_{[0:t]}) + A_1(t, Y_{[0:t]})X_t]dt + \sum_{i=1}^2 B_i(t, Y_{[0:t]})dW_t^{(i)}$$
 (Observation)

where $W^{(1)}, W^{(2)}$ are independent Brownian motions.

Informal Theorem 1 (Universal Conditionally-Gaussian Filtering):

For conditionally Gaussian signal processes (X_t, Y_t) satisfying mild regularity conditions, there exists a Filterformer \hat{F} such that:

$$\max_{0 \le t \le T, y \in K} \mathcal{W}_{p} \big(\mathbb{P} \big(X_{t} \in \cdot | y_{[0:t]} \big), \hat{F} \big(t, y \big) \big) < \varepsilon$$

uniformly over compact path sets K, for any $\varepsilon > 0$ and $1 \le p \le 2$

Summary and Key Takeaways

- Stochastic filtering addresses the estimation of latent states from noisy and partial observations — a core problem in statistics, control theory, and machine learning.
- **Discrete-time filtering** is formulated as a recursive update (e.g., HMMs, Kalman Filter), while
- Continuous-time filtering involves stochastic PDEs (Zakai, Kushner–Stratonovich), often analytically and numerically challenging.
- **Exact solutions** are available only in special cases (linear-Gaussian models, finite state spaces), motivating approximate methods.
- **Numerical methods** such as the Extended Kalman Filter, Particle Filters, and PDE solvers provide tractable solutions in nonlinear and non-Gaussian settings.
- Transformer-based models offer a powerful and flexible alternative: they can approximate classical filters (e.g., Kalman), and crucially handle nonlinear, non-Markovian filtering problems with provable accuracy, opening new directions for data-driven state estimation.