ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине: «Вычислительная матиматика» Вариант №27

Выполнила	
студентка гр. в $5130904/30022$	Г.М.Феллер
п	
Преподаватель	С.П.Воскобойников
	« » 2025 г

Задание

Написать процедуру формирования матрицы A по заданному вектору B

$$pA = \begin{pmatrix} 1 & a_1 & a_1 & \dots & a_1 \\ 1 & 1 & a_2 & \dots & a_2 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & a_{n-1} \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix}, B = \begin{pmatrix} a_1 & a_2 & \dots & a_{n-1} \end{pmatrix}^T$$

Задавая $n=5, a_1=4, a_2=3, a_3=2, a_4=var=1.5; 1.01; 1.001; 1.0001$ и вычисляя A^{-1} с помощью DECOMP и SOLVE, найти нормы матриц $R=AA^{-1}-E$ для всех вариантов a_4 .

Код программы

```
program main
2
       use matrix_ops
       implicit none
3
       ! Определение размеров матрицы
4
       integer, parameter :: n = 5, ndim = n
       real :: A(ndim, n), A_inv(ndim, n), B(n-1), cond, work(n)
6
       integer :: ipvt(n), i, j
7
       real :: R(ndim, n), Identity(ndim, n), normR
       real, dimension(4) :: var_values = [1.5, 1.01, 1.001, 1.0001]
       integer :: k
10
11
       ! Задание вектора В
12
       B = [4.0, 3.0, 2.0, 0.0]! Последний элемент заменяется на var позже
13
14
       do k = 1, 4
15
           B(4) = var_values(k) ! Устанавливаем текущее значение var
           print *, "-----"
17
           print *, "For var =", B(4)
18
19
           ! Формирование матрицы А
20
           do i = 1, n
21
               do j = 1, n
22
                   if (j < i) then
23
                        ! Элементы ниже главной диагонали равны 1
                        A(i, j) = 1.0
25
                   else if (j > i) then
26
                        ! Элементы выше главной диагонали равны В
27
                        A(i, j) = B(j-1)
29
                        A(i, j) = 1.0
30
                    end if
31
               end do
32
           end do
33
34
           print *, "Matrix A:"
35
           do i = 1, n
36
               print *, (A(i, j), j=1, n)
37
           end do
38
           ! Копируем A в A_inv для получения A^(-1)
40
           A_{inv} = A
41
42
           ! Разложение А и нахождение А^(-1)
           call decomp(ndim, n, A_inv, cond, ipvt, work)
44
```

```
do i = 1, n
                work = 0.0
46
                work(i) = 1.0
47
                call solve(ndim, n, A_inv, work, ipvt)
                ! Формируем столбцы обратной матрицы
49
                A_{inv}(:, i) = work
50
            end do
51
52
           print *, "Inverse Matrix A_inv:"
53
           do i = 1, n
54
                print *, (A_inv(i, j), j=1, n)
55
            end do
57
            ! Вычисление R = AA^{(-1)} - E
58
           ! Умножаем A на A^(-1)
59
           R = matmul(A, A_inv)
            ! Формирование единичной матрицы I
61
           Identity = 0.0
62
           do i = 1, n
63
                Identity(i, i) = 1.0
           end do
65
            ! Вычисляем отклонение от единичной матрицы
66
           R = R - Identity
67
68
           print *, "Matrix R = AA^{(-1)} - I:"
69
           do i = 1, n
70
                print *, (R(i, j), j=1, n)
            end do
72
73
            ! Вычисление нормы матрицы R
74
           normR = 0.0
           do i = 1, n
76
                do j = 1, n
77
                    ! Суммируем абсолютные значения элементов
78
                    normR = normR + ABS(R(i, j))
79
                end do
80
           end do
81
82
            ! Вывод результатов
           print *, "Norm of R:", normR
84
       end do
85
   end program main
```

Выполнение программы

For var = 1.500	000000			
Matrix A:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
1.00000000	4.00000000	3.00000000	2.00000000	1.50000000
1.00000000	1.00000000	3.00000000	2.00000000	1.50000000
1.00000000	1.00000000	1.0000000	2.00000000	1.50000000
1.00000000	1.00000000	1.0000000	1.00000000	1.50000000
1.00000000	1.00000000	1.00000000	1.00000000	1.00000000
Inverse Matrix A	inv:			
-0.333333373	0.499999821	1.49999988	2.99999976	-8.99999905
0.333333343	-0.333333343	-0.0000000	-0.00000000	-0.00000000
-0.00000000	0.500000000	-0.50000000	-0.0000000	-0.00000000
-0.00000000	-0.00000000	1.0000000	-1.0000000	-0.00000000
-0.00000000	-0.00000000	-0.0000000	2.0000000	-2.00000000
$Matrix R = AA^{(-1)}$	l) - I:			
0.00000000	0.666666448	1.99999988	3.99999976	-11.9999990
-2.98023224E-08	0.666666508	1.99999988	3.99999976	-11.9999990
-2.98023224E-08	0.666666508	2.00000000	3.99999976	-11.9999990
-2.98023224E-08	0.666666508	1.99999988	4.00000000	-11.9999990
-2.98023224E-08	0.666666508	1.99999988	3.99999976	-11.9999990
Norm of R: 93.3	3333282			
For var = 1.009	99999			
Matrix A:				
1 0000000	4 00000000	3 00000000	2 00000000	1 00000000

For $var = 1.009$	99999			
Matrix A:				
1.0000000	4.00000000	3.00000000	2.00000000	1.00999999
1.0000000	1.00000000	3.00000000	2.00000000	1.00999999
1.0000000	1.00000000	1.00000000	2.00000000	1.00999999
1.0000000	1.00000000	1.00000000	1.00000000	1.00999999
1.0000000	1.00000000	1.00000000	1.00000000	1.00000000
Inverse Matrix A	inv:			
-0.333333373	0.499999821	1.49999988	297.000275	-303.000275
0.333333343	-0.333333343	-0.0000000	-0.00000000	-0.0000000
-0.0000000	0.500000000	-0.500000000	-0.00000000	-0.0000000
-0.0000000	-0.00000000	1.00000000	-1.00000000	-0.00000000
-0.0000000	-0.00000000	-0.0000000	100.000099	-100.000099
$Matrix R = AA^{(-1)}$) - I:			
0.0000000	0.666666448	1.99999988	396.000366	-404.000366
-2.98023224E-08	0.666666508	1.99999988	396.000366	-404.000366
-2.98023224E-08	0.666666508	2.00000000	396.000366	-404.000366
-2.98023224E-08	0.666666508	1.99999988	396.000366	-404.000366
-2.98023224E-08	0.666666508	1.99999988	396.000366	-404.000366
Norm of R: 4013	.33740			

	00005			
Matrix A:				
1.00000000	4.00000000	3.00000000	2.00000000	1.00100005
1.00000000	1.00000000	3.00000000	2.00000000	1.00100005
1.00000000	1.00000000	1.00000000	2.00000000	1.00100005
1.0000000	1.00000000	1.00000000	1.00000000	1.00100005
1.0000000	1.00000000	1.00000000	1.00000000	1.00000000
Inverse Matrix A_				
-0.333333373	0.499999821	1.49999988	2996.85938	-3002.85938
	-0.333333343	-0.00000000	-0.00000000	-0.00000000
-0.0000000	0.500000000	-0.500000000	-0.00000000	-0.00000000
-0.0000000	-0.00000000	1.00000000	-1.00000000	-0.00000000
-0.0000000	-0.00000000	-0.00000000	999.953247	-999.953247
Matrix $R = AA^{(-1)}$				
0.00000000	0.666666448	1.99999988	3995.81250	-4003.81250
-2.98023224E-08	0.666666508	1.99999988	3995.81250	-4003.81250
-2.98023224E-08	0.666666508	2.00000000	3995.81250	-4003.81250
-2.98023224E-08	0.666666508	1.99999988	3995.81250	-4003.81250
-2.98023224E-08	0.666666508	1.99999988	3995.81250	-4003.81250
Norm of R: 4001	1.4570			
For var = 1.000	10002			
Matrix A:				
1.0000000	4.00000000	3.00000000	2.00000000	1.00010002
1.00000000	1.00000000	3.00000000	2.00000000	1.00010002
1.0000000	1.00000000	1.00000000	2.00000000	1.00010002
1.0000000	1.00000000	1.00000000	1.00000000	1.00010002
1.0000000	1.00000000	1.00000000	1.00000000	1.00000000
Inverse Matrix A	inv:			
-0.333333373	0.499999821	1.49999988	29992.0195	-29998.0195
	-0.333333343	-0.0000000	-0.0000000	-0.00000000
-0.00000000	0.500000000	-0.50000000	-0.0000000	-0.00000000
-0.00000000	-0.00000000	1.00000000	-1.00000000	-0.00000000
-0.0000000	-0.00000000	-0.00000000	9998.34082	-9998.34082
Matrix $R = AA^{(-1)}$				
11002211 11 121 / 2	,			

1.99999988

1.99999988

2.00000000

1.99999988

1.99999988

39989.3594

39989.3594

39989.3594

39989.3594

39989.3594

-39997.3594 -39997.3594

-39997.3594

-39997.3594

-39997.3594

0.00000000

-2.98023224E-08

-2.98023224E-08

-2.98023224E-08

Norm of R: 399946.938

-2.98023224E-08 0.666666508

0.666666448

0.666666508

0.666666508

0.666666508