Chapter 2 Configuration Space Rigid-Body Motions Chapter 3 3.2 Rotations and Angular Velocities 3.3 Rigid-Body Motions and Twists Forward Kinematics Chapter 4 Chapter 5 Velocity Kinematics and Statics Chapter 6 **Inverse Kinematics** Chapter 7 Kinematics of Closed Chains Chapter 8 **Dynamics of Open Chains** Chapter 9 **Trajectory Generation Motion Planning** Chapter 10 Chapter 11 Robot Control Chapter 12 Grasping and Manipulation Chapter 13 Wheeled Mobile Robots

• The special Euclidean group SE(3) is a matrix Lie group also known as the group of rigid-body motions or homogeneous transformation matrices in \mathbb{R}^3 .

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \in SE(3) \qquad R \in SO(3) \text{ and } p \in \mathbb{R}^3$$

• The inverse of $T \in SE(3)$ is

$$T^{-1} = \left[egin{array}{cc} R & p \ 0 & 1 \end{array}
ight]^{-1} = \left[egin{array}{cc} R^{\mathrm{T}} & -R^{\mathrm{T}}p \ 0 & 1 \end{array}
ight]$$

- Three uses of HT matrices:
 - 1. Represent a configuration. T_{ab} represents frame $\{b\}$ relative to $\{a\}$.
 - 2. Change the reference frame of a vector or frame.

$$T_{ab}T_{bc} = T_{ab}T_{bc} = T_{ac}$$
 $T_{ab}v_b = T_{ab}v_b = v_a$

 $T_{ab}T_{bc}=T_{ab}T_{bc}=T_{ac}$ v should be written in homogeneous coordinates, $v=[v_1,v_2,v_3,1]^{\mathrm{T}}$. v should be written in

3. Displace a vector or frame. $T = (R, p) = \text{Trans}(p) \operatorname{Rot}(\widehat{\omega}, \theta)$

$$\operatorname{Trans}(p) = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \operatorname{Rot}(\hat{\omega}, \theta) = \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix}$$

Space-frame transformation:

$$T_{sh} = T T_{sh} =$$

Trans(p)

$$Rot(\widehat{\omega},\theta)$$

 T_{sb}

- 2. translate {b'} by p in {s} to get {b"}

Body-frame transformation:

$$T_{sb}$$
" = T_{sb} T =

 T_{sh}

Trans(p)

 $Rot(\widehat{\omega},\theta)$

- 1. translate {b} by p in {b} to get {b'}
- 2. rotate $\{b'\}$ by θ about $\widehat{\omega}$ in $\{b'\}$ to get $\{b''\}$

Any rigid-body velocity can represented as a **screw axis** (a direction $\hat{s} \in S^2$, a point $q \in \mathbb{R}^3$ on the screw, and the **pitch** (linear speed/angular speed) of the screw h), plus the speed along the screw $\dot{\theta}$.

If h is infinite, $\dot{\theta}$ is the linear speed. Otherwise, it is the angular speed.

The **twist** $V_a = (\omega_a, v_a) \in \mathbb{R}^6$ is the angular velocity expressed in $\{a\}$ and the linear velocity of the origin of $\{a\}$ expressed in $\{a\}$.

To transform a twist from one frame to another,

 $V_a = [Ad_{Tab}] V_b$, where the adjoint representation of T = (R, p) is

$$[\mathrm{Ad}_T] = \left[\begin{array}{cc} R & 0 \\ [p]R & R \end{array} \right] \in \mathbb{R}^{6 \times 6}$$

Matrix representation of twists:

$$T_{sb}^{-1}\dot{T}_{sb} = [\mathcal{V}_b] = \begin{bmatrix} \begin{bmatrix} \omega_b \end{bmatrix} & v_b \\ 0 & 0 \end{bmatrix} \in se(3) \quad \left(\mathbf{T}_{bb} \mathbf{T}_{bb} \right)$$

$$\dot{T}_{sb}T_{sb}^{-1} = [\mathcal{V}_s] = \begin{bmatrix} \begin{bmatrix} \omega_s \end{bmatrix} & v_s \\ 0 & 0 \end{bmatrix} \in se(3) \quad (\dot{\mathcal{T}}_{sb}\mathcal{T}_{sb})$$

where se(3) is the Lie algebra of SE(3) (the set of all possible \dot{T} when T = I).

Screws and twists:

• for a screw axis $\{q, \hat{s}, h\}$ with finite h,

$$\mathcal{S} = \left[egin{array}{c} \omega \ v \end{array}
ight] = \left[egin{array}{c} \hat{s} \ -\hat{s} imes q + h\hat{s} \end{array}
ight]$$

- "unit" screw axis is $\mathcal{S} = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6$, where either (i) $\|\omega\| = 1$ or (ii) $\omega = 0$ and $\|v\| = 1$
- $V = S\dot{\theta}$

Screws and twists

• for a screw axis $\{q, \hat{s}, h\}$ with finite h,

$$\mathcal{S} = \left[egin{array}{c} \omega \ v \end{array}
ight] = \left[egin{array}{c} \hat{s} \ -\hat{s} imes q + h\hat{s} \end{array}
ight]$$

• "unit" screw axis is $\mathcal{S} = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6$, where either (i) $\|\omega\| = 1$ or (ii) $\omega = 0$ and $\|v\| = 1$

What is the dimension of the space of screws?

5

•
$$\mathcal{V} = \mathcal{S}\dot{\theta}$$

Kinova lightweight 4-dof arm

For J4, what is the screw axis S_b ? S_s ?

For J2?

$$J_b = (0,0,1,-717.3,0,0)$$

 $S_s = (0,0,1,215.5,0,0)$

$$\mathcal{A}_{b} = (0, 1, 0, 0, 0, 0)$$

$$\omega_{b} \quad V_{b}$$

$$\mathcal{A}_{s} = (0, 1, 0, 9.8 \text{ mm/s}, 0, 0)$$

Write
$$T_{bc}$$
.

$$T_{bc} = \begin{bmatrix} 0 & 0 & -1 & 3 \\ 0 & 1 & 0 & 3 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A camera with frame $\{c\}$ tracks the optical marker on a tool to get its frame $\{t\}$ relative to $\{c\}$. This transformation is T_1 . A space frame $\{s\}$ is attached to the floor of the room, and the camera observes its configuration relative to $\{c\}$ as T_2 . A robot arm has a mounting frame $\{m\}$ which has been measured relative to $\{s\}$ as T_3 . The arm's encoders and the robot's kinematics tell us the gripper's frame $\{e\}$ relative to $\{m\}$. This is represented as T_4 . The gripper should be at the frame $\{g\}$ relative to $\{t\}$ to be able to close on the tool and pick it up. This configuration is represented as T_5 .

Write T_{eg} , the configuration of the grasping frame $\{g\}$ relative to the current end-effector frame $\{e\}$, in terms of T_1 , T_2 , T_3 , T_4 , and T_5 .

$$T_1 = T_{ct}$$
 $T_3 = T_{sm}$ $T_5 = T_{tg}$ $T_{eg} = T_{em}T_{ms}T_{sc}T_{ct}T_{tg}$
 $T_2 = T_{cs}$ $T_4 = T_{me}$ $= T_4^{-1}T_3^{-1}T_2^{-1}T_1$