TECHNICAL CONTRIBUTIONS [DRAFT]

TIME SERIES FORECASTING OF MONTHLY ACTIVE USERS WITH LONG SHORT-TERM MEMORY NETWORKS

Matthew Louis Rosendin University of California, Berkeley Department of Industrial Engineering and Operations Research April 13, 2018

Contents

1	Intr	roduction	3
	1.1	Motivation	3
	1.2	Goal	3
2	Object-Oriented Abstraction		
	2.1	Decomposition	4
	2.2	Encapsulation	4
3	Hyperparameter Optimization		
	3.1	Cross-validation	4
	3.2	Grid Search	4
	3.3	Results	4
4	Systems Engineering		
	4.1	Server Infrastructure	4
	4.2	Distributed Task Queue	4
	4.3	Forecast Visualization	4
	4.4	Documentation	4
5	Nex	xt Steps	4
	5.1	Data Pipeline Automation (Apache Hadoop)	4
	5.2	Dimensionality Reduction by Feature Selection	4
	5.3	Improving Hyperparameter Optimization Efficiency	4
	5.4	Statistical Significance Boundary Visualization	4
	5.5	Distributed Machine Learning Clusters	4
6	Con	nclusion	4
7	Ref	erence	4

1 Introduction

1.1 Motivation

1.2 Goal

Some goals: - Automate model - Read products from dataset automitically -

Page 3 of 4

2 Object-Oriented Abstraction

- 2.1 Decomposition
- 2.2 Encapsulation
- 3 Hyperparameter Optimization
- 3.1 Cross-validation
- 3.2 Grid Search
- 3.3 Results
- 4 Systems Engineering
- 4.1 Server Infrastructure
- 4.2 Distributed Task Queue
- 4.3 Forecast Visualization
- 4.4 Documentation
- 5 Next Steps
- 5.1 Data Pipeline Automation (Apache Hadoop)
- 5.2 Dimensionality Reduction by Feature Selection
- 5.3 Improving Hyperparameter Optimization Efficiency
- 5.4 Statistical Significance Boundary Visualization
- 5.5 Distributed Machine Learning Clusters
- 6 Conclusion
- 7 Reference

Page 4 of 4