

Instituto Federal de Educação, Ciência e Tecnologia de Brasília — Câmpus Taguatinga Ciência da Computação — Teoria da Computação — Prova III — $2^{\circ}/2018$ — Redutibilidade — Prof. Daniel Saad Nogueira Nunes

Aluno:	
Matrícula:	
Data: 20 de novembro de 2018	
Data. 20 de novembro de 2010	

Duração da prova: 100 minutos

Tabela de notas (uso exclusivo do professor)

Questão	Pontos	Nota
1	3	
2	3	
3	3	
4	3	
Total	12	

Observações

- Esta prova tem o total de 2 páginas (incluindo a capa) e 4 questões.
- O número total de pontos é 12.
- Certifique-se de assinar todas as folhas de resposta bem como a capa da prova.
- Leia atentamente todas as questões da prova. A interpretação do problema é crucial para o desenvolvimento correto da resposta.
- Resoluções sem justificativa não serão consideradas.
- É vedado o uso de equipamentos eletrônicos, como celulares, notebooks entre outros.
- A prova será anulada e medidas disciplinares serão tomadas para os alunos que "colarem" durante a avaliação.
- * Certifique-se de assinar todas as folhas de resposta.

Questão 1 (3 pontos)

Demonstre que a linguagem HALT_{MT} é indecidível, em que:

$$HALT_{MT} = \{\langle M, w \rangle | M \text{ \'e uma MT e M para sobre } w\}$$

Dica: mostre que $A_{MT} \leq_T HALT_{MT}$ com:

$$A_{MT} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita } w \}$$

Questão 2 (3 pontos)

Mostre que A é Turing-reconhecível se e somente se $A \leq_m A_{MT}$.

Você pode utilizar o seguinte resultado para esta demonstração:

Se $C \leq_m D$ e Dé Turing-reconhecível, então C também é.

Questão 3 (3 pontos)

Demonstre que \leq_m é uma relação transitiva.

Questão 4 (3 pontos)

De acordo com a redutibilidade por mapeamento e funções computáveis:

- (a) (1 ponto) Defina a relação de redutibilidade por mapeamento \leq_m , isto é, defina as noções de função computável e redutibilidade por mapeamento.
- (b) (1 ponto) Sejam A e B duas linguagens. Dado que $A \leq_m B$, o que podemos dizer da dificuldade de B em relação a A?
- (c) (1 ponto) Mostre que se $A \leq_m B$, então $\bar{A} \leq_m \bar{B}$.

 $[\]star$ Certifique-se de assinar todas as folhas de resposta.