Computing Linear Arithmetic Representation of Reachability Relation of One-counter Automata

Authors: Xie Li, Taolue Chen, Zhilin Wu and Mingji Xia

SETTA 2020: Guangzhou, China, November 24-28, 2020

Overview

Introduction to One-counter Automata(OCA) and its Reachability Relation.

Overview

- Introduction to One-counter Automata(OCA) and its Reachability Relation.
- Computing the Reachability Relation of OCA.

Overview

- Introduction to One-counter Automata(OCA) and its Reachability Relation.
- Computing the Reachability Relation of OCA.
- Tool OCAREACH and Experimental Results.

What is One-counter Automata(OCA)

lacktriangle DFA with a **counter** c where c is a **non-negative** integer.

What is One-counter Automata(OCA)

- lacktriangle DFA with a **counter** c where c is a **non-negative** integer.
- lacksquare Transitions: $q \stackrel{\mathtt{Op}}{ o} q'$ where $\mathtt{Op} \in \{\mathtt{add}(+1),\mathtt{add}(-1),\mathtt{zero}\}$

What is One-counter Automata(OCA)

- DFA with a **counter** *c* where *c* is a **non-negative** integer.
- lacksquare Transitions: $q \stackrel{\mathtt{Op}}{ o} q'$ where $\mathtt{Op} \in \{\mathtt{add}(+1),\mathtt{add}(-1),\mathtt{zero}\}$

Example (OCA)

Semantic of OCA

Semantic of OCA: A transition system.

- Configuration: (q, c).
- Transitions of configurations corresponds to the transitions in the OCA.

$$(q_1,c_1) \rightarrow_{\mathcal{A}} (q_2,c_2)$$

if $q_1 \stackrel{\mathrm{add}(+1)}{\longrightarrow} q_2$ in the OCA and $c_1+1=c_2$ and $\mathrm{add}(-1)$ vice versa, or if $q_1 \stackrel{\mathrm{zero}}{\longrightarrow} q_2$ and $c_1=c_2=0$. $c_1,c_2\geq 0$

Reachability Problem

Reachability Problem of OCA: whether $(q_s, c_s) \rightarrow_{\mathcal{A}}^* (q_t, c_t)$

Reachability Problem

Reachability Problem of OCA: whether $(q_s, c_s) \rightarrow_{\mathcal{A}}^* (q_t, c_t)$

Example

Due to the non-negative requirement, $(q_1, 1)$ is not reachable from $(q_0, 0)$

Reachability Relation

Reachability Problem of OCA: whether $(q_s, c_s) \to_{\mathcal{A}}^* (q_t, c_t)$ Instead of using concrete values c_s and c_t , we use variables x_s and x_t for the reachability relation.

Reachability Relation

Reachability Problem of OCA: whether $(q_s, c_s) \to_{\mathcal{A}}^* (q_t, c_t)$ Instead of using concrete values c_s and c_t , we use variables x_s and x_t for the reachability relation.

Definition (Reachability Relation of OCA)

A reachability relation of an OCA \mathcal{A} from state q_s to q_t is a set $R_{\mathcal{A},q_s,q_t}\subseteq\mathbb{N}\times\mathbb{N}$.

$$\forall (c_s, c_t) \in R_{\mathcal{A}, q_s, q_t}.(q_s, c_s) \to_{\mathcal{A}}^* (q_t, c_t)$$

Reachability Relation

Reachability Problem of OCA: whether $(q_s, c_s) \to_{\mathcal{A}}^* (q_t, c_t)$ Instead of using concrete values c_s and c_t , we use variables x_s and x_t for the reachability relation.

Definition (Reachability Relation of OCA)

A reachability relation of an OCA \mathcal{A} from state q_s to q_t is a set $R_{\mathcal{A},q_s,q_t}\subseteq\mathbb{N}\times\mathbb{N}$.

$$\forall (c_s, c_t) \in R_{\mathcal{A}, q_s, q_t}.(q_s, c_s) \to_{\mathcal{A}}^* (q_t, c_t)$$

Goal: use a Presburger Arithmetic (PA) formula $\phi(x_s,x_t)_{\mathcal{A},q_s,q_t}$ to represent this relation.

■ An OCA can be regarded as a weighted directed graph $G_{\mathcal{A}} = (V, E, \eta)$.

- An OCA can be regarded as a weighted directed graph $G_{\mathcal{A}} = (V, E, \eta)$.
- Path: a sequence of vertices $v_0 \cdot v_1 \cdots v_k$ where $(v_i, v_{i+1}) \in E$.

- An OCA can be regarded as a weighted directed graph $G_{\mathcal{A}} = (V, E, \eta)$.
- **Path**: a sequence of vertices $v_0 \cdot v_1 \cdots v_k$ where $(v_i, v_{i+1}) \in E$.
 - Drop of path

- An OCA can be regarded as a weighted directed graph $G_A = (V, E, \eta)$.
- Path: a sequence of vertices $v_0 \cdot v_1 \cdots v_k$ where $(v_i, v_{i+1}) \in E$.
 - Drop of path
- **Flow**: a function $f: E \to \mathbb{N}$.

Example

- \blacksquare path: $v_0 \cdot v_1 \cdot v_1 \cdot v_1$
- drop: -1

Path Flow and Support

- Support: edge-induced subgraph of flow.
- *s-t* **path flow**: the flow corresponds to a path.
 - Requirements of flow of each vertex.
 - Connectivity of the support.

Path Flow and Support

- Support: edge-induced subgraph of flow.
- *s-t* **path flow**: the flow corresponds to a path.
 - Requirements of flow of each vertex.
 - Connectivity of the support.

$$\begin{split} \phi^{pf}_{G_A,s,t}(x_s,x_t)_{f_{e\in E}} := weight(f) = x_t - x_s \wedge \\ \text{if } (s=t) \text{ then foreach } v \in V : \text{num}(\text{in-flows})_v = \text{num}(\text{out-flows})_v \\ \text{else foreach } v \in V - \{s,t\} : (\text{num}(\text{in-flows})_v = \text{num}(\text{out-flows})_v \wedge \\ \text{num}(\text{in-flows})_s = \text{num}(\text{out-flows})_s - 1 \wedge \\ \text{num}(\text{in-flows})_t = \text{num}(\text{out-flows})_t + 1) \end{split}$$

Example of Path Flow

Example

Support:

- Path: $v_0 \cdot v_1 \cdot v_1 \cdot v_1$
- Pathflow: $f(v_0, v_0) = 0$ $f(v_0, v_1) = 1$ $f(v_1, v_1) = 2$
- Weight: $weight(f) = \sum_{e \in E} f(e) \cdot \eta(e)$

The Difficulty of Computing the Reachability Relation

NON-NEGATIVE

The Difficulty of Computing the Reachability Relation

NON-NEGATIVE

If we do not require the non-negative of counter.

Existence of a path flow.

The Difficulty of Computing the Reachability Relation

NON-NEGATIVE

If we do not require the non-negative of counter.

Existence of a path flow.

$$\phi_{G_{\mathcal{A}},s,t}(x_s,x_t)_{f_{e\in E}}$$

Non-negative implies the constraint: everywhere along the path, the counter need to be non-negative.

Use **path flow** as certificate of OCA reachability problem.

Use **path flow** as certificate of OCA reachability problem.

- Type-1 Certificate:
 - Flow is a path flow.
 - No positive cycle.
 - Path flow has edge decompositions (which implies non-negative).

Use **path flow** as certificate of OCA reachability problem.

- Type-1 Certificate:
 - Flow is a path flow.
 - No positive cycle.
 - Path flow has edge decompositions (which implies non-negative).

 $\begin{array}{c|c}
v_0 & +1 \\
\hline
 & -1 \\
\hline
 & v_2
\end{array}$

■ Type-3 Certificate:

Use **path flow** as certificate of OCA reachability problem.

- Type-1 Certificate:
 - Flow is a path flow.
 - No positive cycle.
 - Path flow has edge decompositions (which implies non-negative).

Type-3 Certificate:

■ Type-2 Certificate: Dual of type-1 certificate at the end.

Definition (Edge Decomposition)

Edge decomposition of a path flow f is

Definition (Edge Decomposition)

Edge decomposition of a path flow f is

lacksquare $f=\Sigma_{i\in |E|}f_i+f_{e_i}$ where f_i is also a path flow, $e_i\in E.$

Definition (Edge Decomposition)

Edge decomposition of a path flow f is

- $f = \sum_{i \in |E|} f_i + f_{e_i}$ where f_i is also a path flow, $e_i \in E$.
- lacksquare e_i does not appear in support of f_j where j>i.

Definition (Edge Decomposition)

Edge decomposition of a path flow f is

- $f = \sum_{i \in |E|} f_i + f_{e_i}$ where f_i is also a path flow, $e_i \in E$.
- lacksquare e_i does not appear in support of f_j where j>i.
- $weight(f_i) + weight(e_i) \ge 0$ for all i.

Definition (Edge Decomposition)

Edge decomposition of a path flow f is

- $f = \sum_{i \in |E|} f_i + f_{e_i}$ where f_i is also a path flow, $e_i \in E$.
- e_i does not appear in support of f_j where j > i.
- $weight(f_i) + weight(e_i) \ge 0$ for all i.

This definition implies the non-negative requirement of Type-1 certificate.

$$\cdots \bigcirc \qquad \bullet (v_j) \xrightarrow{e_{ji}} \bullet (v_i) \bullet \cdots \bullet (v_j) \xrightarrow{e_{ji}} \bullet (v_i) \bullet \cdots$$

Decidability of Reachability of OCA

Theorem (Haase)

The reachability problem of OCA can be solved iff we can find a certificate that is of the form

$$(\mathit{Type-1})^{n_1}(\mathit{Type-3})^{n_3}(\mathit{Type-2})^{n_2}$$

where $n_i \in \{0,1\}$

$$\phi_{G_{\mathcal{A}},s,t}(x_s,x_t) = \exists (f_e)_{e \in E}.\phi^{T1RC} \lor \phi^{T2RC} \lor \phi^{T3RC} \lor \cdots$$

Type-3 certificate:

$$\phi_{G_{\mathcal{A}},s,t}^{T3RC}(x_s,x_t)_{(f_{e,3})_{e\in E}}$$

- Positive Cycle at q_s .
- **E**xistence of a q_s - q_t path flow.
- Negative Cycle at q_t .

$$\phi_{G_{\mathcal{A}},s,t}^{T1RC}(x_s,x_t)_{(f_{e,1})_{e\in E}} := \exists (idx_e,sum_e)_{e\in E}$$

$$\phi^{T1RC}_{G_{\mathcal{A}},s,t}(x_s,x_t)_{(f_{e,1})_{e\in E}} := \exists (idx_e,sum_e)_{e\in E}$$
$$\phi^{pf}_{G_{\mathcal{A}},s,t}(x_s,x_t)_{f_{e\in E}} \land$$

$$\phi_{G_{\mathcal{A}},s,t}^{T1RC}(x_s, x_t)_{(f_{e,1})_{e \in E}} := \exists (idx_e, sum_e)_{e \in E}$$
$$\phi_{G_{\mathcal{A}},s,t}^{pf}(x_s, x_t)_{f_{e \in E}} \land \phi^{APC}(f_{e \in E}) \land$$

$$\phi_{G_A,s,t}^{T1RC}(x_s, x_t)_{(f_{e,1})_{e \in E}} := \exists (idx_e, sum_e)_{e \in E}$$

$$\phi_{G_A,s,t}^{pf}(x_s, x_t)_{f_{e \in E}} \land \phi^{APC}(f_{e \in E}) \land$$

$$\phi^{EDC}((f_e, idx_e, sum_e)_{e \in E}), (f_{e,e'})_{e,e' \in E})$$

OCAREACH: Experimental Evaluation

Implemented in Java and utilzing Z3 solver for formula manipulation.

INPUT: file describing the OCA.

OUTPUT: a PA formula ϕ representing reachability relation.

Experiment on handcrafted cases.

state num.	2	2	2	2	3	3	4	4	4
transtion num.	1	2	2	5	2	3	3	3	6
zero-test num.	0	1	1	0	0	1	1	1	1
time (s)	0.066	0.062	0.078	0.076	0.066	0.072	0.061	0.079	0.093
size (kB)	0.302	0.404	0.697	0.302	0.133	0.929	0.348	0.325	2.592
state num.	5	6	6	6	7	8	10	10	
transtion num.	6	6	7	8	9	7	11	11	
zero-test num.	1	2	2	2	2	2	2	3	
time (s)	0.087	0.078	0.106	0.091	0.106	0.090	0.116	0.117	
size (kB)	2.057	2.469	7.457	3.078	6.427	4.807	8.443	7.515	

On random cases.

Contributions and Future Work

Contributions:

- Some work to make computation of reachability relation possible.
- We built the gap between the theory and implementation by the tool OCAREACH.

Future work:

- Optimize our tool to improve the efficiency.
- More and larger cases and find benchmarks for experiment.
- Other topics about one-counter automata.

Thanks! & Questions?