Adaptive Gradient-based Adversarial Attacks on Deep Neural Networks

Outline

- 1. Background
- 2. Adversarial Attacks on Deep Neural Networks
- 3. Adaptive Gradient-based Perturbations Generation
- 4. Experimental Results
- 5. Conclusion

1

Background

- > Introduction
- Applications
- Challenges

Introduction

Deep Neural Models [1] have led to a dramatic improvement on image, audio and natural language processing (NLP) tasks in recent years.

(1) Image Classification[2]

(2) Text2Audio[3]

Applications

- Computer Vision
 - Deep Neural Models perform well in computer version, Such as image classification, object detection, et al.

Advantages: Higher classification accuracy Faster processing speed et al.

Disadvantages: Time consuming on training
Vast training dataset
Vulnerable to perturbations

Applications

- Audio2Text/Text2Audio
- Deep Neural Models can translate audio into text or text to audio.

Advantages: Faster translation efficiency

Disadvantages: Vast audio and parallel text dataset
Time consuming on training
Vulnerable to perturbations

Applications

- NLP
- One Corpus could be translated by DNNs into other corpus.

Advantages: Improve the translation efficiency
Higher translation accuracy

Disadvantages: Vast parallel corpus

Vulnerable to perturbations

Challenges

Shortage of DNNs: Vulnerable to Crafted Adversarial Perturbations

4: Adversarial Attacks in Image domain

5: Adversarial Attacks in the field of Audio [5]

2

Adversarial Attacks on Deep Neural Networks

- Adversarial Attacks Principle
- Adversarial Attack Methods
- > Attacks strategies
- Challenges

Adversarial Attack Principle

Min
$$v$$
 s.t. $f(x + v)! = f(x)$.

Adversarial Attack Methods

Attack Methods:

Fast Gradient Sign Method (FGSM) [7]:

Iterative-Fast Gradient Sign Method (I-FGSM) [8]:

Carlini and Wagner Method (C&W Attack) [9]:

Jacobian- based Saliency Map (JSMA) [10]:

$$x *= x + \epsilon * sign(\nabla x J(\theta, x, f(x)))$$

$$x *= x_{i-1} + \epsilon * sign(\nabla x_{i-1}J(\theta, x_{i-1}, f(x_{i-1})))$$

$$min \parallel v \parallel p + \alpha * L(x + v)$$

 $L(x + v) = max(max(Z(x + v)_i, : i!= t) - Z(x + v)_t, -k)$

$$min \parallel v \parallel p$$
 s.t. $f(x + v) = y* != y$

Adversarial Attack Methods

Attack Methods:

Universal Perturbation [11]:

Projected Gradient Descent Method (PGDM) [12]:

Momentum –FGSM (MI-FGSM) [13]:

$$|| v || p \le \epsilon$$

$$P(f(x + v) != f(x)) \ge 1 - \tau$$

$$min(max(J(\theta, x, f(x_{i-1}))))$$

$$m_{i} = \alpha * m_{i-1} - 1 + \frac{(\nabla X_{i-1}J(\theta, X_{i-1}, f(X_{i-1})))}{\|(\nabla X_{i-1}J(\theta, X_{i-1}, f(X_{i-1}))\|_{1}}$$

$$x * = X_{i-1} + \epsilon * sign(m_{i})$$

ET AL.

Attack Strategies

Black-box Attack

The attacker The attacker doesn't has access to the policy have complete network access to the policy network

White-box Attack

Attack Strategies

Non-targeted Attack

The prediction label different from the ground truth.

Targeted Attack

Fooling DNNs with fixed labels .

Challenges

Crafted Adversarial Perturbations result large pixel modification on clean images

MI-FGSM L_{∞} =10 Iteration=10 PSNR=26.77 AMP = 0.2335 Inception-v3

Schooner(91.69%)

Perturbations

Private(99.99%)

Challenges

How to qualify the strength of crafted adversarial perturbation?

MI-FGSM L_{∞} =1,2,5,10 Iteration=10 Inception-v3

Schooner(91.69%)

Perturbations

Private

3

Adaptive Gradient-based

Perturbations Generation

Proposed Method

Adaptive Gradient Search for Deep Neural Models

Updating gradient in a direction with a stable size may cause trapping into a local minima point.

Updating gradient in a direction with an adaptive size can reduce the rate strapping into local minima point.

Algorithm1: (White-box attack)

$$g_{j} = \alpha * g_{j-1} + (1 - \alpha) * (sign(\nabla x_{i-1}J (\theta , x_{i-1}, f (x_{i-1})))^{2})$$

$$v_{j} = \frac{\nabla x_{i-1}J (\theta , x_{i-1}, f (x_{i-1}))}{\sqrt{g_{j}} + \delta}$$

$$x_{i}^{*} = x_{i-1} + \epsilon * v_{j}$$

AI-FGSM (1):

Schooner(91.69%)

Perturbations

Private(99.23%)

AI-FGSM L_{∞} =10 Iteration=10 PSNR=28.83 AMP=0.0953 Inception-v3

Algorithm2: (White-box attack)

$$g_{j} = \alpha * g_{j-1} + (1 - \alpha) * (sign(\nabla x_{i-1}J (\theta , x_{i-1}, f (x_{i-1})))^{2})$$

$$m_{j} = \alpha * m_{j-1} + (1 - \alpha) * sign(\nabla x_{i-1}J (\theta , x_{i-1}, f (x_{i-1})))$$

$$v_{j} = \frac{\nabla x_{i-1}J (\theta , x_{i-1}, f (x_{i-1}))}{\sqrt{g_{j}-m_{j}^{2}} + \delta}$$

$$x_{i}^{*} = x_{i-1} + \epsilon * v_{j}$$

AI-FGSM (2):

Schooner(91.69%)

Perturbations

Private(96.84%)

AI-FGSM L_{∞} =10 Iteration=10 PSNR=28.84 AMP=0.0952 Inception-v3

Algorithm3: (White-box attack)

$$g_{j} = \alpha * g_{j-1} + (1 - \alpha) * (sign(\nabla x_{i-1} J (\theta , x_{i-1}, f (x_{i-1})))^{2}$$

$$m_{Vj} = \alpha * m_{Vj-1} + (1 - \alpha) * v_{j-1}$$

$$v_{j} = \frac{\nabla x_{i-1} J (\theta , x_{i-1}, f (x_{i-1})) * \sqrt{m_{Vj}^{2}}}{\sqrt{g_{j}} + \delta}$$

$$x_{i}^{*} = x_{i-1} + \epsilon * v_{j}$$

AI-FGSM (3):

Schooner(91.69%)

Perturbations

Private(99.24%)

AI-FGSM L_{∞} =10 Iteration=10 PSNR=28.84 AMP=0.0951 Inception-v3

Solution for Minimal Adversarial Perturbation:

Adaptive Term:
$$\frac{1}{\sqrt{g_i}}$$
, $\frac{1}{\sqrt{g_i-m_i^2}}$, $\frac{\sqrt{m_{vi}^2}}{\sqrt{g_i}}$

Solution for Qualify the Strength of Adversarial Perturbation:

Absolute Mean Perturbation value (AMP) =
$$\frac{1}{N_c*N_r}*\sum ||v_{c,r}||_1$$

4

Experimental Results

- Settings
- > Results

Datasets:

MNIST [14], CIFAR100 [15], IMAGENET ILSVRC2012(Val) [16]

Classifiers:

MNIST, CIFAR100 (Table1), IMAGENET (Pretrained)

Evaluation Metrics:

Attack Success Rate(ASR), AMP, Cosine Similarity and SSIM

Architectrue	MNIST	CIFAR100
Convolution + RELU	3x3x32	3x3x64
Max pooling	2x2	2x2
Convolution + RELU	3x3x64	3x3x12
Max pooling	2x2	2x2
Convolution + RELU	3x3x64	3x3x12
Full Connected +RELU	100	512
Full Connected +RELU	100	512
Softmax	10	100
High-parameter	MNIST	CIFAR100
Optimization Method	SGD	SGD
Loss Function	CEL	CEL
Learning rate	0.01	0.01
Momentum	0.9	0.9
Dropout	0.5	0.5
Batch Size	128	128
Epochs	50	50

Table 1: The architecture of the DNN classifier for MNIST and CIFAR100.(CEL indicates Cross Entropy Loss, SGD stands for Stochastic Gradient Descent)

Architecture for Validation on Preprocessed ILSVRC2012(Val)

Inception-v3(Inc-v3)[17], Inception v4(Inc-v4)[18], Inception-Resnetv2(IncRes-v2)[18], Resnet-152 (Res152)[19] and other three trained by ensemble adversarial: Inc-v3ens 3[20], Inc- v3ens 4, IncRes-v2ens. To simplify the experiments, we choose three images in each of 1000 categories from ILSVRC2012 validation dataset.

Results

MNIST	FGSM	I-FGSM	MI-FGSM	AI-FGSM(PI)	AI-FGSM
$\begin{array}{c} \text{ASR}(\text{L}^{\infty}\text{=}10) \\ \text{AMP}(\text{L}^{\infty}\text{=}10) \\ \text{Cosine}(\text{L}^{\infty}\text{=}10) \\ \text{SSIM}(\text{L}^{\infty}\text{=}10) \\ \text{ASR}(\text{L}2 = 150) \\ \text{AMP}(\text{L}2 = 150) \\ \text{Cosine}(\text{L}2 = 150) \\ \text{SSIM}(\text{L}2 = 150) \end{array}$	13.44%	100.00%	100.00%	100.00%	100.00%
	0.025	0.052	0.078	0.052	0.052
	0.825	0.805	0.788	0.805	0.805
	0.852	0.746	0.670	0.748	0.748
	8.30%	100.00%	100.00%	100%	100.00%
	0.011	0.030	0.045	0.043	0.043
	0.687	0.696	0.692	0.802	0.802
	0.951	0.843	0.752	0.846	0.846
CIFAR100	FGSM	I-FGSM	MI-FGSM	AI-FGSM(PI)	AI-FGSM
ASR(L∞=10)	94.10%	100.00%	100.00%	100.00%	100.00%
AMP(L∞=10)	0.028	0.029	0.048	0.029	0.029
Cosine(L∞=10)	0.746	0.750	0.758	0.750	0.750
SSIM(L∞=10)	0.975	0.973	0.951	0.974	0.974
ASR(L2 =150)	76.13%	100.00%	100.00%	100.00%	100.00%
AMP(L2 =150)	0.008	0.011	0.018	0.015	0.015
Cosine(L2 =150)	0.748	0.750	0.753	0.750	0.750
SSIM(L2 =150)	0.988	0.986	0.982	0.987	0.987

Table.2. ASR, AMP, Cosine similarity and SSIM on MNIST and CIFAR100 with FGSM/I-FGSM/MI-FGSM and our methods on white-box and notargeted attack strategies.

Targeted Attack Results on MNIST and CIFAR100

MNIST	FGSM		I-FG	I-FGSM		MI-FGSM		AI-FGSM(PI)		AI-FGSM	
	L_2	L _∞	L ₂	L _∞	L ₂	L.	L_2	L _∞	L ₂	L _∞	
0	87.89%	87.89%	90.63%	98.33%	54.38%	83.54%	100.00%	98.76%	100.00%	98.76%	
1	87.96%	87.78%	100.00%	100.00%	99.09%	100.00%	100.00%	100.00%	100.00%	100.00%	
2	90.02%	90.21%	99.05%	100.00%	74.91%	88.21%	100.00%	100.00%	100.00%	100.00%	
3	88.73%	88.51%	97.28%	99.58%	68.97%	85.95%	100.00%	99.71%	100.00%	99.71%	
4	87.99%	87.99%	100.00%	100.00%	89.57%	98.04%	100.00%	100.00%	100.00%	100.00%	
5	89.78%	90.02%	100.00%	100.00%	87.56%	96.59%	100.00%	100.00%	100.00%	100.00%	
6	88.66%	88.87%	97.69%	100.00%	80.89%	93.91%	100.00%	100.00%	100.00%	100.00%	
7	88.91%	89.11%	100.00%	100.00%	88.87%	96.36%	100.00%	100.00%	100.00%	100.00%	
8	89.66%	90.30%	98.49%	100.00%	85.13%	98.71%	100.00%	100.00%	100.00%	100.00%	
9	90.16%	89.96%	99.58%	100.00%	92.45%	98.11%	100.00%	100.00%	100.00%	100.00%	
CIFAR100	FG	SM	I-FG	SM	MI-FG	SM	AI-FGS	M(PI)	Al-FG	SM	
	L_2	L _∞	L ₂	L.	L ₂	L.	L ₂	L _∞	L ₂	L _∞	
hamster	97.22%	97.22%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
train	100.00%	100.00%	92.31%	100.00%	92.31%	100.00%	93.44%	100.00%	93.44%	100.00%	
pear	95.65%	95.65%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
trout	100.00%	100.00%	91.84%	100.00%	85.71%	97.96%	92.65%	100.00%	92.65%	100.00%	
oak-tree	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
crab	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
sunflower	100.00%	100.00%	100.00%	100.00%	87.50%	100.00%	100.00%	100.00%	100.00%	100.00%	
sunflower apple-tree				100.00% 100.00%	87.50% 95.83%	100.00% 100.00%	100.00% 100.00%	100.00% 100.00%	100.00% 100.00%	100.00% 100.00%	
	100.00%	100.00%	100.00%								

Perturbation size on MNIST and CIFAR100

Perturbation size on MNIST and CIFAR100

Perturbation size on IMAGENET

Perturbation size on IMAGENET

	Attacks	Inc-v3	Inc-v4	IncRes-v2	Res152	Inc-v3ens 3	Inc-v3ens 4	IncRes-v2ens
Inc-v3	FGSM I-FGSM MI-FGSM AI-FGSM(PI) AI-FGSM	79.89%* 98.41%* 99.69%* 99.80%*	31.03% 28.86% 25.22% 28.99% 28.99%	29.33% 27.25% 25.27% 28.81% 28.81%	27.22% 27.40% 24.72% 27.40% 27.40%	10.40% 7.16% 6.45% 7.16% 7.16%	7.56% 4.21% 4.16% 4.21% 4.21%	7.10% 3.68% 3.88% 3.68% 3.68%
Inc-v4	FGSM I-FGSM MI-FGSM AI-FGSM(PI) AI-FGSM	30.63% 29.36% 28.17% 31.55% 31.55%	72.37%* 96.72%* 95.27%* 99.11%*	27.85% 25.45% 26.41% 31.44% 31.44%	27.23% 27.82% 24.72% 27.85% 27.85%	9.51% 7.96% 6.45% 7.96% 7.96%	8.12% 6.17% 5.23% 6.17% 6.17%	6.23% 5.02% 4.69% 5.02% 5.02%
IncRes-v2	FGSM I-FGSM MI-FGSM AI-FGSM(PI) AI-FGSM	30.03% 28.77% 26.67% 35.16%	29.53% 28.26% 25.65% 32.54% 32.54%	65.07%* 96.65%* 97.01%* 98.14%*	28.02% 28.70% 26.83% 28.83% 28.83%	10.71% 10.50% 9.07% 10.53% 10.53%	8.41% 7.80% 6.78% 7.80% 7.80%	8.03% 6.14% 6.01% 6.14% 6.14%
Res152	FGSM I-FGSM MI-FGSM AI-FGSM(PI) AI-FGSM	33.33% 33.43% 29.43% 33.43% 33.43%	35.04% 35.34% 30.03% 35.41% 35.41%	32.43% 33.03% 28.73% 33.03% 33.03%	90.30% 100.00% 100.00% 100.00% 100.00%	11.56% 8.12% 7.46% 8.12% 8.12%	10.23% 6.09% 5.78% 6.09% 6.09%	9.72% 6.12% 6.07% 6.12% 6.12%

Table 4: Attack success rate on the ensemble models with L∞ =10 norm constraint. * stand for white-box attacks.

	Attacks	-Inc-v3	-Inc-v4	-IncRes-v2	-Res152	-Inc-v3ens 3	-Inc-v3ens 4	-IncRes-v2ens
Ensemble	FGSM	68.19%	67.52%	63.01%	59.37%	52.46%	51.44%	54.29%
	I-FGSM	96.47%	97.21%	96.58%	98.55%	98.33%	98.15%	94.37%
	MI-FGSM	95.58%	97.21%	96.20%	98.55%	95.27%	97.38%	95.62%
	AI-FGSM(PI)	96.51%	97.21%	96.63%	98.55%	96.41%	98.05%	98.22%
	AI-FGSM	96.51%	97.21%	96.63%	98.55%	96.41%	98.05%	98.22%
Hold-out	FGSM	39.27%	40.56%	40.37%	42.41%	42.02%	39.97%	35.31%
	I-FGSM	77.36%	76.21%	75.69%	78.42%	38.56%	29.58%	32.62%
	MI-FGSM	78.23%	75.58%	74.03%	77.93%	32.14%	28.54%	33.04%
	AI-FGSM(PI)	77.36%	76.23%	75.81%	78.56%	37.09%	29.40%	33.13%
	AI-FGSM	77.36%	76.23%	75.81%	78.56%	37.09%	29.40%	33.13%

Table 5: Attack success rates on the ensemble and hold-out models. In this table, '-' before the network indicates the hold-out network. The result shows that our proposed method can reach high success rates on black-box and white-box attacks with L^{∞} =10 norm limitation.

	Attacks	Inc-v3	Inc-v4	IncRes-v2	Res152	Inc-v3ens 3	Inc-v3ens 4	IncRes-v2ens
Inc-v3	FGSM I-FGSM MI-FGSM AI-FGSM(PI) AI-FGSM	74.89%* 98.92%* 99.89%* 99.86%*	27.03% 55.17% 56.55% 59.23% 59.23%	26.73% 57.31% 58.11% 63.01% 63.01%	24.72% 25.12% 23.92% 25.30% 25.30%	12.17% 10.07% 9.68% 10.08%	12.05% 10.12% 8.44% 10.20% 10.20%	11.26% 9.05% 7.84% 9.05% 9.05%
Inc-v4	FGSM I-FGSM MI-FGSM AI-FGSM(PI) AI-FGSM	26.23% 59.41% 61.65% 67.44%	66.37%* 98.34%* 95.88%* 99.62%*	25.63% 60.41% 61.01% 62.89% 62.89%	24.42% 26.13% 23.62% 25.03% 25.03%	10.54% 9.03% 9.07% 9.01% 9.01%	11.03% 8.16% 7.69% 7.72% 7.72%	10.10% 8.23% 7.40% 8.06% 8.06%
IncRes-v2	FGSM I-FGSM MI-FGSM AI-FGSM(PI) AI-FGSM	27.63% 63.86% 66.20% 67.61%	26.23% 60.17% 59.88% 64.42% 64.42%	59.86%* 95.15%* 97.41%* 99.15%*	25.23% 26.43% 24.51% 26.64% 26.64%	12.86% 10.04% 9.12% 10.10% 10.10%	14.70% 11.17% 9.07% 11.12% 11.12%	12.13% 11.21% 8.68% 10.93% 10.93%
Res152	FGSM I-FGSM MI-FGSM AI-FGSM(PI) AI-FGSM	29.83% 30.03% 27.33% 30.13% 30.13%	30.53% 31.04% 28.43% 31.23% 31.23%	30.83% 31.53% 28.53% 31.81% 31.81%	84.39%+ 100.00%+ 100.00%+ 100.00%+	14.02% 11.43% 9.17% 11.51% 11.51%	13.46% 10.89% 9.46% 11.03% 11.03%	14.71% 10.66% 10.03% 11.04% 11.04%

Table 6: We observe our methods reach the highest success rates on all black-box models and maintain higher success rates on all white-box models with L2=1500 norm limitation than other gradient-based attack methods. * stand for white-box attacks.

	Attacks	-Inc-v3	-Inc-v4	-IncRes-v2	-Res152	-Inc-v3ens 3	-Inc-v3ens 4	-IncRes-v2ens
Ensemble	FGSM I-FGSM MI-FGSM AI-FGSM(PI) AI-FGSM	62.73% 99.91% 99.93% 99.95% 99.95%	62.61% 99.95% 99.97% 99.98% 99.98%	62.41% 99.43% 99.72% 99.90% 99.90%	63.54% 100.00% 100.00% 100.00% 100.00%	62.54% 100.00% 100.00% 100.00% 100.00%	61.37% 98.21% 98.21% 100.00% 100.00%	61.59% 99.31% 99.31% 100.00% 100.00%
Hold-out	FGSM I-FGSM MI-FGSM AI-FGSM(PI) AI-FGSM	40.49% 78.46% 79.21% 78.46% 78.46%	40.41% 79.37% 78.20% 79.37% 79.37%	40.42% 78.16% 76.18% 78.16% 78.16%	40.52% 81.27% 79.30% 81.27% 81.27%	40.27% 40.16% 39.97% 40.16% 40.16%	40.29% 38.13% 37.58% 38.13% 38.13%	40.41% 39.07% 38.33% 39.17% 39.17%

Table 7: Attack success rates on the ensemble and hold-out models. In this table, '-' before the network indicates the hold-out network. The result shows that our proposed method can reach high success rates on black-box and white-box attacks with L^{∞} =10 norm limitation.

White-box and Targeted Strategies on Pre-processed ILSVRC2012(Val)

	Attack	Inception-v3	Resnet152
L _∞	I-FGSM	36.41%	39.54%
	MI-FGSM	40.18%	42.20%
	AI-FGSM(PI)	38.02%	43.27%
	AI-FGSM	38.02%	43.27%
L ₂	I-FGSM	42.17%	42.05%
	MI-FGSM	42.02%	42.70%
	AI-FGSM(PI)	42.10%	42.83%
	AI-FGSM	42.10%	42.83%

Table 8: Top-1 target accuracy rate with two norm bounds. Targeted label is crane.

Results

Adversarial examples generated by I-FGSM, MI- FGSM and our method (AI-FGSM) on Resnet152 with No- Targeted strategy and L = 10 and L2=1500 norm constraints. All adversarial examples are generated with 10 iterations. Perturbations are amplified by 3 times.

Results

Universal effect of our proposed method (AI- FGSM) on three different DNNs(Inception v3, Inception v4, and Inception-Resnet-v2). The left images are crafted with L2=1500 norm bound, and the right images are crafted with L\(\text{Vinfty}\) = 10 norm bound, and the middle are clean images. All perturbations generated are amplified by 3 times.

5

Conclusion

Conclusion and Future Work

Conclusion

- Propose the adaptive gradient adversarial attack methods to optimize adversarial attacks, which can effectively fool the white- box models as well as the black-box models.
- 2. Our methods focus on adjusting gradient at a proper pace, which could escape from trapping into poor local minima for gradient searching.

Future Work:

 We next focus our attention on how to get the path of decision boundaries to improve the success rate of the adversarial targeted attacks on general deep neural models.

Publications

- Xiao Y, Pun C M, Liu B. Adversarial example generation with adaptive gradient search for single and ensemble deep neural network[J]. Information Sciences, 2020, 528:147-167.
- Xiao Y , Pun C M , Liu B . Crafting adversarial example with adaptive root mean square gradient on deep neural networks[J]. Neurocomputing, 2020, 389:179-195.
- Y. Xiao, C.-M. Pun and J. Zhou, "Generating Adversarial Perturbation with Root Mean Square Gradient," Proceedings of AAAI Workshops, 2019.

THANK YOU!

Q&A