Team 03 鄭皓謙 林宗憲

Reference:

2015, ACM, Predicting Winning Price in Real Time Bidding with Censored Data 2018, ACM, Deep Censored Learning of the Winning Price in the Real Time Bidding

Data preprocessing

Artificial 10% noise.

app_type imp_type imp_position device_type

- 2. impreq_time : weekdays, hours, mins
- 3. price distribution

$$z = x/(24*60*2\pi)$$

time $1 = \sin(x)$, time $2 = \sin(x+\pi/2)$

Input

width

height

app

device

imp_type

imp_position

weekdays

mins

Model

Price

Var

$$\sum_{i \in \mathcal{W}} \log f_{x_i}(v_i - g(x_i|\beta)|\Theta) + \sum_{i \in \mathcal{L}} \log(1 - F_{x_i}(l_i - g(x_i|\beta)|\Theta),$$

(5)

Result

	80% win data	80% censored data	off 5% two-tails, win data
Normal log likelihood	875.850517	846.294398	846.158235
Gumbel log likelihood	896.601951	863.916028	/
MSE	877.291040	/	850.321041

Result

- 1. trim two-tails 5%
- 2. only win data
- 3. with normal distribution, neg log likelihood
- 4. public score : 846.158

$$\sum_{i \in \mathcal{W}} \log f_{x_i}(v_i - g(x_i|\beta)|\Theta)$$

Observations

lower weight on bid data -> higher public score

Using missing data?

Different threshold between win data bid data.