WVU RESEARCH COMPUTING INTRODUCTION

Introduction to WVU's Research Computing Services

WHO ARE WE?

- Division of Information Technology Services
- Funded through WVU Research Corporation
- Provide centralized HPC systems and support staff to help researchers compute scientific data
- Support 30 individual research groups across campus and ~150 active users

MOUNTAINEER

- 32 Compute Nodes
 - Dual 6 core Intel Xeon (Westmere) processors (12 cores)
 - 48 Gbytes of memory (4 GB per core)
 - 10 Gbps Ethernet Interconnect
- 50 Terabytes of shared storage
- Open community access

SPRUCE KNOB

- 165 Compute Nodes/3,064 Cores
- Current node offerings
 - Small Memory Nodes
 (24 Intel Xeon Broadwell Cores/64 GB Ram)
 - Medium Memory Nodes
 (24 Intel Xeon Broadwell Cores/128 GB Ram)
 - Large Memory Modes (24 Intel Xeon Broadwell Cores/512 GB Ram)
 - GPU memory nodes
 (24 Intel Xeon Broadwell Cores/64 GB Ram/ NVIDIA k20x GPU)
- 54 Gbps Infiniband Interconnect
- 17 GPU Accelerator cards

SPRUCE KNOB - HYBRID MODEL

Condo Model

- Faculty pay for any nodes that they want in the cluster
- Faculty investors (and their research teams) have priority access to their nodes
- Any Spruce HPC users can use idle faculty owned nodes for up to 4 hours (standby queue)

Community Model

- 51 Nodes/848 Cores are generally available to the HPC community (WV)
- Fair-share scheduling, not subject to owner preemption

HPC SOFTWARE

- MOAB Schedule Suite
- Intel Studio XE (Fortran, C, MPI, etc)
- Matlab
- Module avail command
- Discipline specific software
- Researchers self-installed software

LOCAL STORAGE

- DDN GRIDScaler System
- 1 PB Raw Storage
- ~ 400 TB scratch/transfer space
- Expandable from 2 PB to 8 PB
- GPFS Parallel Filesystem
- Direct Infiniband Connection

RESEARCH DATA DEPOT

Central Storage Repository

- Centrally Managed
- NSF/NIH Data Management Requirements
- Low cost storage solution for researchers
- Expandable Solution
- Multiple protocol support
 - CIFS (Windows Shares)
 - Globus Online
 - SFTP/SCP
- Connected to Science DMZ
- Coming Soon!

DDN GS7K System

ARCHIVING RESEARCH DATA

Google Drive for Education

- Unlimited Storage
- Max file size limit 5TB
- Easy file sharing
- But how do I get it there?
 - See shortly …

HOW DO I TRANSFER MY DATA?

- Preferred Method: Globus Online
- Alternative Methods:
 - scp
 - rsync
 - sftp

GLOBUS ONLINE

- File Transfers
 - Fast, reliable, secure
 - Restartable
 - Google Drive Connector (Coming Soon!)
- File Sharing
 - Self-managed/no admins needed
 - Custom groups
- Data Publication
 - Publish datasets in searchable webinterface
 - Helps meet NSF/NIH Data Management Plans

WHY GLOBUS ONLINE?

GLOBUS - INTUITIVE WEB INTERFACE

WEST VIRGINIA UNIVERSITY

Services – Research Computing

SCIENCE DMZ

- Science/Research Dedicated Dual 10 Gb Link
- Soon connected to:
 - HPC
 - Dr. Spirou Neuroscience Lab @ HSC
 - Astrophysics HPC @ White Hall
 - Genomics Core Lab @ LSB
 - College Education and Human Services
 - Greenbank
 - Outside endpoints
- Monitored with perfSONAR

RESEARCH NETWORKING

- WVU-Pittsburgh Internet2 connection = 10Gbps
- WVU research network to Pittsburgh shared with DOE -NETL
- WVU member of Internet2
- Internet2 100 Gbps nationwide network
- 3ROX implemented a 100 Gbps connection to I2

ADDITIONAL INFORMATION

- Main Website
 - http://hpc.wvu.edu
- Wiki
 - http://wiki.hpc.wvu.edu

QUESTIONS?

- Main Contact: https://helpdesk.hpc.wvu.edu or helpdesk@hpc.wvu.edu
- Contact Nathan Gregg (Research Computing Manager/HPC Systems Administrator)
 - Email: nathan.gregg@mail.wvu.edu
 - Phone: 304-293-0963
- Contact Guillermo Franco (Research Computing Software Developer)
 - Email: <u>gufranco@mail.wvu.edu</u>
- Contact Brice Knotts (ITS Enterprise Infrastructure -- Executive Director)
 - Email: <u>baknotts@mail.wvu.edu</u>

Overview of XSEDE Resources and System

LCSEE Graduate Seminar - February 13, 2017

Extreme Science and Engineering Discovery Environment

- A long history of supercomputing in scientific research
- In the "olden days"...
 - many supercomputers at different institutions
 - very siloed
 - independent, unique administrative procedure
 - little or no coordination
 - many supported by the National Science Foundation

- In 2001 NSF recognized the need for a more coordinated approach to scientific computing in the U.S.
- Announced a competitive solitation to build a large scale, coordinated network of supercomputers and their respective organizations
- Awarded in 2004

- Awarded in 2004
- Became known as the Teragrid
- Teragrid was a coordinated consortium of scientific computing resources – including computational and storage resources
- Teragrid operated from 2004 to 2011

- In July 2011 Teragrid "transitioned" to XSEDE
- A new consortium many original members
- A new focus

www.xsede.org

What is XSEDE?

- A network of scientific computing resources...
 - with coordinated administration
- an organization

- A network of scientific computing resources...
 - High performance computing
 - High throughput computing
 - Visualization
 - Storage
 - **—**

- High performance computing
- A collection of HPC systems at institutions across the country
- Including...
 - Stampede at TACC 9600 Pflops
 - Comet at SDSC 7000 Pflops
 - Bridges regular memory at PSC 895 Pflops
 - Bridges large memory at PSC

- High performance computing
 - Stampede at TACC
 - Dell Poweredge cluster with Intel Xeon Phi coprocessors
 - OS: Linux CentOS
 - Cores: 102400
 - Nodes: 14336
 - Storage: 14 PB
 - SLURM job management system
 - Nvidia Kepler2 GPUs

- High performance computing
 - Bridges Regular memory at PSC
 - HP cluster with Intel Xeon processors
 - 128 GB Memory per node
 - OS: Linux CentOS
 - Cores: 21056
 - Nodes: 752
 - Intel Omnipath Interconnect
 - Shared storage system + 8 GB storage per node
 - Many unique features

- High performance computing
 - Bridges Large memory at PSC
 - HP nodes 4 with 12 TB memory, 42 with 3 TB memory each
 - OS: Linux CentOS
 - Cores: 160
 - Intel Omnipath Interconnect
 - Pylon Shared storage system + 8 GB storage per node
 - Many unique features

XSEDE HPC – Bridges

https://www.psc.edu/index.php/bridges-virtual-tour

- High throughput computing
 - Open Science Grid
 - 60,000 compute nodes (distributed)

•

- Visualization
 - Maverick 2640 cores
 - 20 Pbytes of storage
 - designed specifically to do scientific data visualization
 - does visualization remotely

•

- Storage
 - DATA OASIS @ San Diego Supercomputing Center
 - Default/max storage per XRAC: 500GB/50TB
 - PYLON @ the Pittsburgh Supercomputing Center
 - Default/max storage per XRAC: 500 GB/none
 - RANCH @ the Texas Advanced Computing Center
 - Default/max per XRAC: none/1 PB
 - Wrangler @ the Texas Advanced Computing Center
 - Default/max per XRAC: TBD

Software

- Too much to tell too little time
- See -
 - -https://www.xsede.org/software

Training

https://portal.xsede.org/training/overview

Training

https://portal.xsede.org/course-calendar

Resource Allocations – how do you get to use these resources?

- Resources Types
 - Computational Resources
 - Visualization Resources
 - Storage Resources

https://portal.xsede.org/allocations-overview

Resource Allocations

- Allocation Types
 - Trial very limited 1000 SUs, 6 months, COMET
 - Startup limited, getting started, benchmarks, available to faculty/post-doc & K-12 teachers
 - Educational for training, workshops, classroom instruction and classroom projects, limited
 - Research large scale resources, awarded based on research proposals, scientific merit+, competitive, proposal submissions quarterly, awarded quarterly, good for one year

Campus Champions

- Support and assistance in using XSEDE resources, getting accounts, etc.
- Liaison between you and XSEDE
- @ WVU
 - Nathan Gregg
 - Nathan.Gregg@mail.wvu.edu
 - Don McLaughlin
 - <u>Don.McLaughlin@mail.wvu.edu</u>

Final comments

- XSEDE Resource Allocations are available to
 - Faculty and Post-docs
 - not graduate students and undergraduate students
 - However, students can be on project teams and be given access to faculty project allocations
 - But, everyone must have a portal account

Thank you

Any Questions?

Our reach will forever exceed our grasp, but, in stretching our horizon, we forever improve our world.

XSEDE

Extreme Science and Engineering Discovery Environment

