华 东 程 ェ 大 亨 《 物理化学》 (下) 单元测试卷 (一)

化学动力学

	10-2-40/20-2-							
– ,	选择题(每小题1分,共30分)							
1.	基元反应 $2A$ — k \rightarrow P ,其化学反应速率 v 和 v_A 分别是。							
	A: $v = kc_A^2$, $v_A = kc_A^2$; B: $v = kc_A^2$, $v_A = 2kc_A^2$; C: $v = 2kc_A^2$, $v_A = kc_A^2$							
2.	化学反应 $A+2B$ — $\stackrel{k}{\longrightarrow} pP$ 的速率方程为 $\upsilon=kc_A^{0.5}c_B^2c_P^{-0.5}$,该反应是反应。							
3.	A: 零级; B: 一级; C: 二级 零级反应基元反应。 A: 肯定不是; B: 肯定是; C: 不一定是							
4.	实验测得反应: $2A+B \longrightarrow 2C+D$ 的速率方程为: $\upsilon=k[A][B]$ 。如以 $[A]_0=2[B]_0$ 开始实验,可将方程式改写成 $\upsilon=k_a[A]^2$,则 k_a 与 k 的关系为。							
5.	A: k_a =0.5 k ; B: 0.5 k_a = k 化学反应 A+2B \xrightarrow{k} p P 的速率方程为 v_A = $k_A c_A^{\alpha} c_B^{2-\alpha}$ 。实验发现,反应速率 v_A 与物质 A 的浓度成正比,则 v_A =。							
	A: $k_{A}c_{A}c_{B}$; B: $k_{A}c_{A}^{2}$; C: $k_{A}c_{A}^{0.5}c_{B}^{1.5}$							
6.	反应 $2A+B \xrightarrow{k_A} C$ 的 $k_A=0.095\times10^{-3} \text{mol·dm}^{-3}\cdot\text{min}^{-1}$ 。下式正确的是。							
	A: $\ln\{c_A\} \sim t$ 为直线; B: $c_A \sim t$ 为直线; C: $1/c_A \sim t$ 为直线							
7.	$A \xrightarrow{k} B + C$ 为零级反应,A 的半衰期为 25 min,则 A 完全反应所需时间为。 A: 50; B: 75; C: 无限长							
8.	对于反应 $\mathbf{A} \to \mathbf{Y}$,测得反应物 \mathbf{A} 的浓度 $c_{\mathbf{A}}$ 与反应时间 t 呈线性关系 ,则该反应对于反应							
	物 A 的级数是。							
9.	A: 零级; B: 一级; C: 二级 在反应 $A \xrightarrow{k} B + C$ 过程中,反应物浓度与时间成线性关系,则反应物的半衰期与其初始浓度。							
10.	A: 无关; B: 成正比; C: 成反比 某反应进行完全所需时间是有限的,且等于 c_0/k ,则该反应是。 A: 一级反应; B: 二级反应; C: 零级反应							
11.	对于简单的零级反应 $A+2B \stackrel{k}{\longrightarrow} P$,物质 A 的初始消耗速率为 v_{A0} ,当物质 A 的初始浓度							
	增加 1 倍时,A 的初始消耗速率为 $v_{2,A0}$,则 v_{A0}							
	A: $>$; B: $=$; C: $<$							
12.	$2A(g) \rightarrow B(g)$ 为理想气体反应,已知 $-\frac{dc_A}{dt} = k_c c_A $ 或 $-\frac{dp_A}{dt} = k_p p_A$,则 $k_c = $ 。							
	A: k_p ; B: RTk_p ; C: k_p/RT							
13.	对于简单一级反应 $A+2B \xrightarrow{k} P$, A 的半衰期为 300 min 。 当物质 A 的消耗速率是初始消							

	耗速率的 1/4 时,反应时间为。						
	A: 300min; B: 600min; C: 900min						
14.	某反应的 $k_A = 7.7 \times 10^{-4} \mathrm{s}^{-1}$, $c_{A0} = 0.1 \mathrm{mol}\mathrm{dm}^{-3}$,则 A 的半衰期为。						
	A: 600 s; B: 900 s; C: 1 800 s						
15.	反应 $A+B$ — $\xrightarrow{k_A}$ 2C 的速率系数 $k_A=5.18\times10^{-2}h^{-1}$ 。下列关系式正确的是。						
	A: $c_A \sim t$ 为直线; B: $\ln\{c_A\} \sim t$ 为直线; C: $1/c_A \sim t$ 为直线						
16.	某反应只有一种反应物,其转化率达到 75%的时间是转化率达到 50%的时间的 2 倍,反应 *** *** *** *** *** *** *** *** *** *						
	转化率达到 x % 的时间是转化率达到 50%的时间的三倍,则 x 为。						
17	A: 75.0; B: 87.5; C: 50 某具有简单级数的反应, $k_{\rm A}=0.1~{\rm dm^3~mol^{-1}~s^{-1}},~c_{\rm A0}=0.1~{\rm mol~dm^{-3}}$,当反应速率降至起始速						
1/.	率 $1/4$ 时,所需时间为。						
	A: 10 s; B: 100 s; C: 300 s						
18	反应 $A \longrightarrow B$,对 A 而言为二级反应, $t_{1/2}$ 和 $t_{3/4}$ 分别代表反应物 A 消耗掉 50% 和 75% 所						
10.							
	需时间,其比值为 $t_{1/2}/t_{3/4}$ =。						
	A: 1/3; B: 1/2; C: 1/4						
19.	$2A(g) \rightarrow B(g)$ 为理想气体反应,已知 $-\frac{dc_A}{dt} = k_c c_A^2$ 或 $-\frac{dp_A}{dt} = k_p p_A^2$,则 $k_c = \underline{\qquad}$ 。						
	\mathbf{u}_{i}						
	A: k_p ; B: RTk_p ; C: k_p / RT						
20.	复合反应表观速率系数 k 与各基元反应速率常数间的关系为 $k=2k_2\left(2k_1/3k_3\right)^{2/3}$,则表观活						
	化能 E_a 与各基元反应活化能 E_i 间的关系为。						
	A: $E_a = E_2 + \frac{2}{3}(E_1 - E_3)$; B: $E_a = 2E_2 + \frac{2}{3}(2E_1 - 3E_3)$; C: $E_a = E_2 + (E_1 - 2E_3)^{2/3}$						
21.	300K 时,一级对峙反应 $A \overset{k_1}{\underset{k}{\rightleftharpoons}} B$ 的平衡常数 K_c =2,且 k_1 =0.244 s^{-1} 。在此温度下逆反应的						
	·I						
	速率系数 <i>k</i> ₋₁ =						
22.	由纯 A 物质发生一级平行反应 B \leftarrow A \longrightarrow C 后生成 B 和 C,已知 $k_1/k_2 = 0.5$,在某一						
	时刻测得 $c_{\rm B}$ =0.0204 mol·dm ⁻³ ,此时 $c_{\rm C}$ = mol·dm ⁻³ 。						
	A: 0.0204; B: 0.0408; C: 0.0816						
23.	某一反应物的平衡转化率为25%,若在催化剂作用下,反应速率增加20倍,则平衡转化						
	率。						
2.4	A: 大于 25%; B: 小于 25%; C: 等于 25%						
24.	将 $2A(g)$ \xrightarrow{k} $2B(g)+C(g)$ 反应的速率系数的对数对温度的倒数作图[即 $\ln\{k\}\sim 1/(T/K)$]可						
	到一条直线,直线的斜率为-12.40×10 ³ ,截距为 31.36。假定活化能与温度无关,则该反应 的活化 \$1.50						
	的活化能等于kJ·mol ⁻¹ 。						
25	A: 83.1; B: 93.1; C: 103.1 泪度升喜时 反应演奏系数						
۷٥.	温度升高时,反应速率系数。 A: 一定增加; B: 一定不增加; C: 不一定增加						
	Λ_{\bullet} Λ_{\bullet}						

26.	一定温度时,在催化剂存在下,一级对峙反应 $A \overset{k_1}{\underset{k_{-1}}{\longleftarrow}} B$ 的速率系数 k_1 增大 1.5 倍,则在此
	条件下 k_{-1} 的值。
	A: 不变; B: 增大 1.5 倍; C: 减小 1.5 倍
27.	阿仑尼乌斯方程。
	A: 适用于所有类型的化学反应;
	B: 适用于反应速率随温度升高呈指数关系增大的反应;
	C: 适用于爆炸反应
20	/8. (A. 文) <i>b</i> . (A. 中 日

28. 催化剂的作用是______

A: 改变反应途径; B: 改变平衡状态; C: 改变反应热

29. $A+2B \to P$ 的机理如下: $A+B \xrightarrow{k_1} C$; $C \xrightarrow{k_2} A+B$; $C+B \xrightarrow{k_2} P$ 。其中 C 为高活性中间物,则 $dc_p / dt =$ ______。

A:
$$\frac{k_1 k_2 c_A c_B}{k_{-1} + k_2 c_B}$$
; B: $\frac{k_1 k_2 c_A c_B^2}{k_{-1} + k_2 c_B}$; C: $k_1 k_2 c_A c_B$

30. 正反应是放热的对峙反应,在一定转化率x时存在一最适宜的温度,此时反应速率v与温度T的关系 $\left(\mathrm{d}v/\mathrm{d}T \right)_x$ _____。

A: 大于零; B: 等于零; C: 小于零

二、(每小题 5 分, 共 10 分)

- 1. 药物阿斯匹林水解为一级反应,在 100℃时的速率系数为 7.92 d⁻¹,活化能为 56.43 kJ·mol⁻¹。求 17℃时,阿斯匹林水解 30% 需多少时间?
- 2. 丁二烯(A)的二聚反应 $2A(g) \to A_2(g)$ 为二级反应。当温度由 326 \mathbb{C} 降至 306 \mathbb{C} 时,反应速率降低一半,试估算该反应的活化能。

三、(此题总分10分)

一定温度下, 纯 $N_2O_5(g)$ 于体积为 V 的容器中发生如下分解反应:

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

此温度下反应的半衰期为 1.40×10³s, 且与反应物的初始压力无关。

- 1. 求反应的速率系数;
- 2. 若 N₂O₅(g)的初始压力为 60.0×10³Pa, 试求反应开始 10s 和 600s 时系统的总压。

四、(此题总分10分)

物质 A(g)在 450K 于一恒容容器中发生气相分解反应 $A(g) \rightarrow B(g) + D(g)$ 。反应开始时只有 A(g)存在,压力为 213kPa。反应进行到 100s 时,系统总压为 233kPa。试求此一级反应的速率 系数、A 的半衰期以及 120s 时 A 的转化率。

五、(此题总分10分)

在 313 K 时, N_2O_5 在 CCl_4 溶剂中进行分解,反应为一级反应,初始反应速率 $\nu_0=1.00$ $\times 10^{-5}$ mol·dm⁻³·s⁻¹,1 h 后反应速率 $\nu=3.26\times 10^{-6}$ mol·dm⁻³·s⁻¹。试求:

- 1. 反应的速率系数 k;
- 2. 313 K 时的半衰期;
- 3. 初始浓度 c_0 。

六、(此题总分10分)

反应 $A \xrightarrow{k_1} B$ 的速率系数 k_1 和平衡常数 K (量纲为一) 与温度的关系如下:

$$\lg(k_{-1}/\mathrm{s}^{-1}) = -4000/(T/\mathrm{K}) + 8.0$$
; $\lg K = 2000/(T/\mathrm{K}) - 4.0$

- 1. 求正、逆反应的级数;
- 2. 若 $c_{A,0} = 0.5 \text{mol} \cdot \text{dm}^{-3}$, $c_{B,0} = 0$, 计算 400 K 时反应 10 s 后各组分的浓度。

七、(此题总分10分)

一定温度下,在一密闭容器中进行如下一级平行气相反应:

$$A \longrightarrow E+D (主反应)$$
 $k_2 \longrightarrow F+R (副反应)$

反应过程中,产物 E 的分压是产物 F 分压的 2 倍。记时开始即 t=0 时,反应已经开始,不同时刻系统的总压数据如下:

t/min	0	5	10	15	∞
p/kPa	1.67	2.11	2.40	2.60	3.00

设气体服从理想气体状态方程。

- 1. 计算主反应和副反应的速率系数 k_1 和 k_2 ;
- 2. 计算反应物 A 消耗掉 75% 所需的时间。

八、(此题总分10分)

已知复合反应 $2CH_4(g) \longrightarrow C_2H_6(g) + H_2(g)$ 按如下链反应机理进行,各基元反应的活化能也列于后:

$$\begin{aligned} \text{CH}_4 & \xrightarrow{k_1} \text{CH}_3 \cdot + \text{H} \cdot \\ \text{CH}_3 & \cdot + \text{CH}_4 & \xrightarrow{k_2} \text{C}_2 \text{H}_6 + \text{H} \cdot \\ \text{H} & \cdot + \text{CH}_4 & \xrightarrow{k_3} \text{CH}_3 \cdot + \text{H}_2 \end{aligned} \qquad \begin{aligned} E_1 &= 423 \, \text{kJ} \cdot \text{mol}^{-1} \\ E_2 &= 201 \, \text{kJ} \cdot \text{mol}^{-1} \\ E_3 &= 29 \, \text{kJ} \cdot \text{mol}^{-1} \\ \text{H} & \cdot + \text{CH}_3 \cdot \xrightarrow{k_4} \text{CH}_4 \end{aligned}$$

- 1. 试用恒稳态处理法建立 C₂H₆(g) 的动力学方程;
- 2. 由各基元反应的活化能求复合反应的活化能 E_a 。