

Dynamically Adapt Nodes of Data Center by Popularity and Predication

Kuo-chi Fang

Husnu Saner Narman

Ibrahim Hussein Mwinyi

Wook-Sung Yoo

Department of Computer Science
Marshall University, USA

narman@marshall.edu

http://mupfc.marshall.edu/~narman/

April 2018

Outline

- Introduction
- Proposed System
- Experiment Design and Simulation
- Results
- Conclusion

Introduction

- What is Datacenter?
 - A data center is a facility used to house computer systems and associated components.
 - Contains:
 - Server
 - Storage
 - Network (Wire, wireless)

Usage

- What is Datacenter used for?
 - Media searching
 - Data analysis
 - Web application
 - Large-scale network service

Datacenter Example

- Facebook
 - 1.13 billion daily active users (September 2016)
 - At least 60,000 servers in its data centers (June 2010)

Challenges

Challenges of Datacenter Management

Availability and durability

- Response time
- Power cost

Previous Work Strategies

- Current solutions
 - Network topologies, such as fat-tree
 - Load Balancing
 - Replication (Replication is also used for Failure Recovery)
 based on popularity

Problem

- Problem with current solution
 - Network bottleneck (partially solved by replication)
 - Possible Future data popularity unknown

Objective

- To increase data availability in multimedia data centers
- Consider not only the current data popularity but also possibilities for future data popularity
- Consider bandwidth limitation and load balancing.

Proposed System

- Management Algorithm
 - Calculate usage of each Node
 - Classify Data based on Nodes
 - Based on the status of data (hot, warm and cold [2])
 - Dynamically active or inactive server node
 - Compress or non-compress replication

System Overview

Datacenter Model

Popularity

- Replication for Scalability and Durability [2]
 - System will replica data of node according the rank of data.

Hot data Levels
Cold data Levels

[2] Asaf Cidon et al. "Tiered Replication: A Cost-effective Alternative to Full Cluster Geo-replication" *Usenix Annual Technical Conference*. 2015.

Prediction Metrics

Ranking method of prediction

$$R = \alpha DA + \beta IA + \left(\gamma \frac{AD}{10} + \eta \frac{DL}{10}\right) + \kappa TU + \varsigma AR$$

Parameters			
DA	The direct access amount of the data object		
IA	Indirect access amount of the data object		
AD	Application or user diversities of accesses to the data object		
DL	Location diversities of accesses to the data object		
TU	Duration of the data object existence		
AR	The access rates of the related data objects		

Husnu S. Narman

Proposed System (Cont.)

RankingTechnique

Popularity			
Data Object	Frequency		
Α	6		
G	5		
K	1		
F	0		

	Prediction		
	Data Object	Frequency	
_	K	9	
	G	2	
	Α	0	
	F	0	

Ranking table					
Data Object	Frequency	Level			
K	10	Hot			
G	7	Warm			
Α	6	Warm			
F	0	Cold			

Example

Before prediction: Data Model

Example (cont.)

After prediction: Data Model (manage nodes based on location)

Experiment Design and Simulation

- Input
 - Searching tags with user location information
 - Prediction after finding the
- Assumption
 - Homogeneous system
 - Media files with tag information
- Initial System Setup
 - Allocated data to different nodes based on location

Simulation Result

 Case 1 (Numbers of nodes with randomly requesting 200 times 50/100 different data objects from servers.)

Data objects: 50

Data objects: 100

Husnu S. Narman

Simulation Result(cont.)

 Case 2 (Numbers of nodes with requesting 200 times 50/100 different data objects from servers based on popularity/prediction.)

Data objects: 100

Husnu S. Narman

Simulation Result(cont.)

- Case 3
 - error rate with prediction

Data objects: 100

Conclusion and Future Plan

Prediction-based replication increase availability.

Real data is used to compare the proposed to three different Popularity, classification and location.

Need more experiment on cost such as storage.

Investigating the relation of data for improving the performance.

Husnu S. Narman

Thank You

narman@marshall.edu

http://mupfc.marshall.edu/~narman/