Software Engineering for ML/AI

Michael Hilton

Rohan Padhye

Learning goals

- Identify differences between traditional software development and development of ML systems.
- Understand the stages that comprise the typical ML development pipeline.
- Identify challenges that must be faced within each stage of the typical ML development pipeline.

Quick poll: Have you taken a machine learning course before?

(Supervised)

Machine Learning in One Slide

Traditional Software Development

"It is easy. You just chip away the stone that doesn't look like David."

-(probably not) Michelangelo

ML Development

- Observation
- Hypothesis
- Predict
- Test
- Reject or Refine Hypothesis

Microsoft's view of Software Engineering for ML

Source: "Software Engineering for Machine Learning: A Case Study" by Amershi et al. ICSE 2019

Three Fundamental Differences:

Data discovery and management

Customization and Reuse

No modular development of model itself

Case study developed by Christian Kästner

https://ckaestne.github.io/seai/

CASE STUDY

Machine Learning in Production / AI Engineering (17-445/17-645/17-745/11-695)

*Formerly **Software Engineering for AI-Enabled Systems (SE4AI)**, CMU course that covers how to build, deploy, assure, and maintain applications with machine-learned models. Covers **responsible AI** (safety, security, fairness, explainability, ...) and **MLOps**.*

Fundamentals of Engineering Al-Enabled Systems

Holistic system view: Al and non-Al components, pipelines, stakeholders, environment interactions, feedback loops

Requirements

System and model goals
User requirements
Environment assumptions
Quality beyond accuracy
Measurement
Risk analysis
Planning for mistakes

Architecture + design:

Modeling tradeoffs
Deployment architecture
Data science pipelines
Telemetry, monitoring
Anticipating evolution
Big data processing
Human-Al design

Quality assurance:

Model testing
Data quality
QA automation
Testing in production
Infrastructure quality
Debugging

Operations:

ng Continuous deployment Contin. experimentation Configuration mgmt. Monitoring Versioning Big data DevOps. MLOps

Teams and process: Data science vs software eng. workflows, interdisciplinary teams, collaboration points, technical debt

Responsible Al Engineering

Provenance, versioning, reproducibility Safety

Security and privacy

Fairness

Interpretability and explainability Transparency and trust

Ethics, governance, regulation, compliance, organizational culture

WHAT CHALLENGES ARE THERE IN BUILDING AND DEPLOYING ML?

Qualities of Interest?

Α

 \mathbf{C}

В

Qualities of Interest?

MACHINE LEARNING PIPELINE

Typical ML Pipeline

Static

- Get labeled data (data collection, cleaning and, labeling)
- Identify and extract features (feature engineering)
- Split data into training and evaluation set
- Learn model from training data (model training)
- Evaluate model on evaluation data (model evaluation)
- Repeat, revising features

with production data

- Evaluate model on production data; monitor (model monitoring)
- Select production data for retraining (model training + evaluation)
- Update model regularly (model deployment)

Example Data

Learning Data

Example Data

UserId	PickupLocation	TargetLocation	OrderTime	PickupTime
5	••••		18:23	18:31

Feature Engineering

- Identify parameters of interest that a model may learn on
- Convert data into a useful form
- Normalize data
- Include context
- Remove misleading things

Feature Extraction

- In OCR/translation:
 - Bounding boxes for text of interest
 - Character boundaries
 - Line segments for each character
 - GPS location of phone (to determine likely source language)

Feature Extraction

- In surge prediction:
 - Location and time of past surges
 - Events
 - Number of people traveling to an area
 - Typical demand curves in an area
 - Demand in other areas
 - Weather

Data Cleaning

- Removing outliers
- Normalizing data
- Missing values

•

Learning

Build a predictor that best describes an outcome for the observed features

Evaluation

- Prediction accuracy on learned data vs
- Prediction accuracy on unseen data
 - Separate learning set, not used for training

- For binary predictors: false positives vs. false negatives, precision vs. recall
- For numeric predictors: average (relative) distance between real and predicted value
- For ranking predictors: top-K, etc.

Learning and Evaluating in Production

- Beyond static data sets, build telemetry
- Design challenge: identify mistakes in practice

- Use sample of live data for evaluation
- Retrain models with sampled live data regularly
- Monitor performance and intervene

TRADEOFFS IN ML MODELS

Understanding Capabilities and Tradeoffs

Deep Neural Networks

Decision Trees

ML Model Tradeoffs

- Accuracy
- Capabilities (e.g. classification, recommendation, clustering...)
- Amount of training data needed
- Inference latency
- Learning latency; incremental learning?
- Model size
- Explainable? Robust?
- •

SYSTEM ARCHITECTURE CONSIDERATIONS

Carnegie Mellon University
School of Computer Science

Where should the model live?

Glasses

Phone

Cloud

OCR Component

Translation Component

Where should the model live?

Vehicle

Phone

Cloud

Surge Prediction

Considerations

- How much data is needed as input for the model?
- How much output data is produced by the model?
- How fast/energy consuming is model execution?
- What latency is needed for the application?
- How big is the model? How often does it need to be updated?
- Cost of operating the model? (distribution + execution)
- Opportunities for telemetry?
- What happens if users are offline?

Typical Designs

- Static intelligence in the product
 - o difficult to update
 - good execution latency
 - o cheap operation
 - offline operation
 - o no telemetry to evaluate and improve
- Client-side intelligence
 - o updates costly/slow, out of sync problems
 - complexity in clients
 - offline operation, low execution latency

Typical Designs

- Server-centric intelligence
 - latency in model execution (remote calls)
 - easy to update and experiment
 - o operation cost
 - o no offline operation
- Back-end cached intelligence
 - precomputed common results
 - fast execution, partial offline
 - saves bandwidth, complicated updates
- Hybrid models

Other Considerations

- Coupling of ML pipeline parts
- Coupling with other parts of the system
- Ability for different developers and analysists to collaborate
- Support online experiments
- Ability to monitor

Reactive Systems

- Responsive
 - o consistent, high performance
- Resilient
 - o maintain responsive in the face of failure, recovery, rollback
- Elastic
 - scale with varying loads

UPDATING MODELS

Updating Models

- Models are rarely static outside the lab
- Data drift, feedback loops, new features, new requirements
- When and how to update models?
- How to version? How to avoid mistakes?

PLANNING FOR MISTAKES

Mistakes will happen

- No specification
- ML components detect patterns from data (real and spurious)
- Predictions are often accurate, but mistakes always possible
- Mistakes are not predicable or explainable or similar to human mistakes
- Plan for mistakes
- Telemetry to learn about mistakes?

How Models can Break

- System outage
- Model outage
 - model tested? deployment and updates reliable? file corrupt?
- Model errors
- Model degradation
 - data drift, feedback loops

Hazard Analysis

- Worst thing that can happen?
- Backup strategy? Undoable? Nontechnical compensation?

Mitigating Mistakes

- Investigating in ML
 - o e.g., more training data, better data, better features, better engineers
- Less forceful experience
 - o e.g., prompt rather than automate decisions, turn off
- Adjust learning parameters
 - o e.g., more frequent updates, manual adjustments
- Guardrails
 - e.g., heuristics and constraints on outputs
- Override errors
 - o e.g., hardcode specific results

Telemetry

Purpose:

- monitor operation
- monitor success (accuracy)
- \circ $\,$ improve models over time (e.g., detect new features)

Challenges:

- o too much data sample, summarization, adjustable
- hard to measure intended outcome not observable? proxies?
- o rare events important but hard to capture
- o cost significant investment must show benefit
- privacy abstracting data

Talking to stakeholders

REQUIREMENTS AND ESTIMATION

Summary

- Machine learning in production systems is challenging
- Many tradeoffs in selecting ML components and in integrating them in larger system
- Plan for updates
- Manage mistakes, plan for telemetry