

RL78/G12

Serial Array Unit (UART Communication)

R01AN1033EJ0100 Rev. 1.00 Sep.30th,2012

Introduction

This application note explains how to use UART communication through the serial array unit (SAU). ASCII characters transmitted from the device on the opposite side are analyzed to make responses.

Target Device

RL78/G12

When applying the sample program covered in this application note to another microcomputer, modify the program according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified program.

Contents

1.	Specifications		
2.	Or	peration Check Conditions	5
3.	Re	elated Application Note	5
4.		escription of the Hardware	
4. 4.1		ardware Configuration Example	
4.1		st of Pins to be Usedst	
4.2	LI	st of Filis to be Osed	
5.	De	escription of the Software	7
5.1		peration Outline	
5.2	-	st of Option Byte Settings	
5.3		st of Constants	
5.4	Lis	st of Variables	8
5.5	Lis	st of Functions (Subroutines)	g
5.6		unction Specifications	
5.7	Flo	owcharts	11
5.7	.1	CPU Initialization Function	12
5.7	.2	I/O Port Setup	12
5.7	.3	Clock Generation Circuit Setup	12
5.7	.4	SAU Setup	12
5.7	.5	Main Processing	12
5.7	.6	UART0 Operation Enable Function	12
5.7	.7	Error Response Message Transmission Function	12
5.7	.8	UART0 Data Transmission Function	12
5.7	9	Ring Buffer Write Processing	12
5.7	.10	Ring Buffer Read Processing	12
5.7	11	UART0 Reception End Interrupt Processing	12
5.7	.12	UART0 Reception Error Interrupt Processing	12
5.7	.13	UART0 Transmission End Interrupt Processing	12
6.	Sa	mple Code	12
7.	Do	ocuments for Reference	12
Revi	sioi	n Record	12
Gen	-ral	Precautions in the Handling of MPLI/MCLI Products	12

1. Specifications

In this application note, UART communication is performed through the serial array unit (SAU). ASCII characters transmitted from the device on the opposite side are analyzed to make responses. A 16-byte ring buffer for making responses is implemented, making it possible to receive the next data during response transmission.

Table 1.1 shows the peripheral function to be used and its use. Figures 1.1 and 1.2 illustrate UART communication operation.

Table 1.1 Peripheral Function to be Used and its Use

Peripheral Function	Use
Serial array unit 0	Perform UART communication using the TxD0 pin
	(transmission) and the RxD0 pin (reception).

Figure 1.1 UART Reception Timing Chart

Figure 1.2 UART Transmission Timing Chart

2. Operation Check Conditions

The sample code contained in this application note has been checked under the conditions listed in the table below.

Table 2.1 Operation Check Conditions

Item	Description
Microcontroller used	RL78/G12 (R5F1026A)
Operating frequency	High-speed on-chip oscillator (HOCO) clock: 24 MHz
	CPU/peripheral hardware clock: 24 MHz
Operating voltage	5.0 V (Operation is possible over a voltage range of 2.9 to 5.5 V.)
	LVD operation (V _{LVI}): Reset mode which uses 2.81 V (2.76 to 2.87 V)
Integrated development	CubeSuite + V1.01.01 from Renesas Electronics Corp.
environment	
Assembler	RA78K0R V1.50 from Renesas Electronics Corp.
Board to be used	RL78/G12 target board (QB-R5F1026A-TB)

3. Related Application Note

The application note that is related to this application note is listed below for reference.

RL78/G12 Initialization (R01AN1030E) Application Note

4. Description of the Hardware

4.1 Hardware Configuration Example

Figure 4.1 shows an example of hardware configuration that is used for this application note

Figure 4.1 Hardware Configuration

Note: Only for 30-pin products

Caution: 1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified accordingly. When designing and implementing an actual circuit, provide proper pin treatment and make sure that the hardware's electrical specifications are met (connect the input-only ports separately to V_{DD} or V_{SS} via a resistor).

2. V_{DD} must be held at not lower than the reset release voltage (V_{LVI}) that is specified as LVD.

4.2 List of Pins to be Used

Table 4.1 lists the pins to be used and their function.

Table 4.1 Pins to be Used and their Functions

Pin Name	I/O	Description
P12/ANI18/SO00/TxD0/TOOLTxD	Output	Data transmission pin
P11/ANI17/SI00/RxD0/TOOLRxD/SDA00	Input	Data reception pin

5. Description of the Software

5.1 Operation Outline

This sample code transmits, to the device on the opposite side, the data corresponding to that received from the device. If an error occurs, it transmits to the device the data corresponding to the error. Tables 5.1 and 5.2 show the correspondence between transmit data and receive data.

Table 5.1 Correspondence between Receive Data and Transmit Data

Receive Data	Response (Transmit) Data
T (54H)	O (4FH), K (4BH), "CR" (0DH), "LF" (0AH)
t (74H)	o (6FH), k (6BH), "CR" (0DH), "LF" (0AH)
Other than above	U (55H), C (43H), "CR" (0DH), "LF" (0AH)

Table 5.2 Correspondence between Error and Transmit Data

Error	Response (Transmit) Data
Parity error	P (50H), E (45H), "CR" (0DH), "LF" (0AH)
Framing error	F (46H), E (45H), "CR" (0DH), "LF" (0AH)
Overrun error	O (4FH), E (45H), "CR" (0DH), "LF" (0AH)

(1) Perform initial setting of UART.

<UART Setting Conditions>

- Use SAU0 channels 0 and 1 as UART.
- Use the P12/TxD0 pin and the P11/RxD0 pin for data output and data input, respectively.
- The data length is 8 bits.
- Set the data transfer direction to LSB first.
- Use even parity as the parity setting.
- Set the receive data level to standard.
- Set the transfer rate to 9600 bps.
- Use reception end interrupt (INTSR0), transmission end interrupt (INTST0), and error interrupt (INTSRE0).
- Select interrupt priority level 2 or 1 for INTSR0 and for INTSRE0. Select the low interrupt priority level (level 3) for INTST0.
- (2) After the system is made to enter a UART communication wait state by using the serial channel start register, a HALT instruction is executed. Processing is performed in response to reception end interrupt (INTSR0) and error interrupt (INTSRE0).
 - When INTSR0 occurs, the system checks the buffer status. If the buffer has enough space, the system accepts
 receive data, and stores a response message associated with this receive data into the buffer. When INTSRE0
 occurs, it also checks the buffer status. If the buffer has enough space, the system performs error processing and
 stores error code into the buffer.
 - When the HALT mode is canceled, the system checks the buffer status. If the buffer is empty, the system returns to the HALT mode. If the buffer contains data, the system sends a response message associated with this data. While it is sending the response message, it executes the HALT instruction and waits for the transmission end interrupt (INTST0), reception end interrupt (INTSR0), and error interrupt (INTSRE0). Upon completion of the message transmission, it returns to the buffer status check process.

5.2 List of Option Byte Settings

Table 5.1 summarizes the settings of the option bytes.

Table 5.1 Option Byte Settings

Address	Value	Description	
000C0H	01101110B	Disables the watchdog timer.	
		(Stops counting after the release from the reset state.)	
000C1H	01111111B	LVD reset mode, 2.81 V (2.76 to 2.87 V)	
000C2H	11100000B	HS mode, HOCO: 24 MHz	
000C3H	10000101B	Enables the on-chip debugger.	

5.3 List of Constants

Table 5.2 lists the constants that are used in this sample program.

Table 5.2 Constants for the Sample Program

Constant	Setting	Description
TMSGOK	'OK', 0DH, 0AH	Response message to reception of "T".
TMSGOK2	'ok', 0DH, 0AH	Response message to reception of "t".
TMSGUC	'UC', 0DH, 0AH	Response message to reception of characters other than "T" or "t".
TMSGFE	'FE', 0DH, 0AH	Response message to a framing error.
TMSGPE	'PE', 0DH, 0AH	Response message to a parity error.
TMSGOE	'OE', 0DH, 0AH	Response message to an overrun error.

5.4 List of Variables

Table 5.3 lists the global variable that is used by this sample program.

Table 5.3 Global Variable

Туре	Variable Name	Contents	Function Used
8 bits × 16 arrays	RDATABUF	Ring buffer for response messages	SPUTDATA, SGETDATA
8 bits	RSETPNT	Data storage pointer to the ring buffer	SPUTDATA
8 bits	RGETPNT	Pointer for reading data from the ring buffer	SGETDATA
8 bits	RDATACNT	Number of data bytes in the ring buffer	main, SPUTDATA, SGETDATA, IINTSR0, IINTSRE0
8 bits	RUASTT	Transmission status flag (counter)	SUARTOSEND, IINTSTO

5.5 **List of Functions (Subroutines)**

Table 5.4 lists the functions (subroutines) that are used by this sample program.

Table 5.4 List of Functions (Subroutines)

Function Name	Outline
SSTARTUART0	UART0 operation enable processing
SSENDERROR	Error response message transmission processing
SUART0SEND	UART0 data transmission function
SPUTDATA	Processing to store response messages into the ring buffer
SGETDATA	Processing to read the oldest response message from the ring buffer
IINTSR0	UART0 reception end interrupt processing
IINTSRE0	UART0 reception error interrupt processing
IINTST0	UART0 transmission end interrupt processing

Function Specifications 5.6

This section describes the specifications for the functions that are used in this sample program.

[Function Name] STARTUART0

Synopsis	UART0 operation enable processing
Explanation	Starts operation of channels 0 and 1 of serial array unit 0 to make the system enter a communication wait state. Enables reception end interrupts and reception error interrupts.
Argument	None
Return value	None
Remarks	None

[Function Name] SSENDERROR

Synopsis	Error response message transmission processing
Explanation	Transmits a message associated with error information which was read from the ring buffer.
Argument	A : Error information
Return value	None
Remarks	Performs transmission of four characters multiplied by three types at maximum.

[Function Name] SUART0SEND

Synopsis	UART0 data transmission function	1	
Explanation	Transmits data (a response) from	UART0. Transmission occurs on the basis of an interrupt.	
Argument	HL	: [Response data storage address]	
Return value	None		
Remarks	Waits while interrupts are enabled	until transmission of four characters is completed.	

[Function Name] SPUTDATA

Synopsis Processing to store response messages into the ring buffer

Explanation Stores a message associated with receive data into the ring buffer. Also, stores reception error

status information into the ring buffer. These operations are conducted if the ring buffer has

enough space.

Argument : [Response message to be stored]

Return value CY : [1: Buffer full, 0: Storage operation completed]

Remarks None

[Function Name] SGETDATA

Processing to read the oldest response message from the ring buffer Synopsis

Explanation Reads the oldest data from the ring buffer if there are response messages in this buffer.

Argument None

Return value CY : [1: No data, 0: Read completed]

> Α : [Read data]

Remarks None

[Function Name] IINTSR0

Synopsis UART0 reception end interrupt processing

Explanation Checks the receive data and stores a response message associated with this data into the

ring buffer if the ring buffer has enough space. Does nothing if the ring buffer is full.

Argument None Return value None None Remarks

[Function Name] IINTSRE0

Synopsis UART0 reception error interrupt processing

Clears the reception end interrupt request. Stores the UART0 reception error status into the Explanation

ring buffer if the ring buffer has enough space. Does nothing if the ring buffer is full.

Argument None Return value None Remarks None

[Function Name] IINTST0

Synopsis UART0 transmission end interrupt processing

Explanation Decrements the number of send data bytes (RUASTT) by 1. Sends the next data if there is still

any data remaining. Disables transmission end interrupts if there is no data remaining.

Argument

Return value None (RUASTT indicates the number of remaining data bytes. 0 indicates the transmission is

completed.)

Remarks None

5.7 Flowcharts

Figure 5.1 shows the overall flow of the sample program described in this application note.

Figure 5.1 Overall Flow

5.7.1 CPU Initialization Function

Figure 5.2 shows the flowchart for the CPU initialization function.

Figure 5.2 CPU Initialization Function

5.7.2 I/O Port Setup

Figure 5.3 shows the flowchart for I/O port setup.

Figure 5.3 I/O Port Setup

Note: Refer to the section entitled "Flowcharts" in RL78/G12 Initialization Application Note (R01AN1030E) for the configuration of the unused ports.

Caution: Provide proper treatment for unused pins so that their electrical specifications are met. Connect each of any unused input-only ports to V_{DD} or V_{SS} via a separate resistor.

5.7.3 Clock Generation Circuit Setup

Figure 5.4 shows the flowchart for clock generation circuit setup.

Figure 5.4 Clock Generation Circuit Setup

Caution: For details on the procedure for setting up the clock generation circuit (SINICLK), refer to the section entitled "Flowcharts" in RL78/G12 Initialization Application Note (R01AN1030E).

5.7.4 SAU Setup

Figure 5.5 shows the flowchart for setting up the SAU.

Figure 5.5 SAU Setup (1/2)

Figure 5.5 SAU Setup (2/2)

Start supplying clock to the SAU

• Peripheral enable register 0 (PER0) Clock supply

Symbol: PER0

_	7	6	5	4	3	2	1	0
	TMKAE	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN
	Х	0	х	Х	Х	1	0	Х

Bit 5

SAU0EN	Input clock control for serial array unit 0
0	Stops supply of input clock.
1	Starts supply of input clock.

Select serial clock
• Serial clock select register 0 (SPS0)

Operation clock setting

Symbol: SPS0

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	0	0	0	0	0	0	0	0	PRS							
	U	0	U		0			0	013	012	011	010	003	002	001	000
I	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Bits 7 to 0

PRS	PRS	PRS	PRS		Operati	on clock (Cl	(On) selection	on (n = 0, 1)		
0n3	0n2	0n1	0n0		f _{CLK} = 2 MHz	f _{CLK} = 5 MHz	f _{CLK} = 10 MHz	f _{CLK} = 20 MHz	f _{CLK} = 24 MHz	
0	0	0	0	f _{CLK}	2 MHz	5 MHz	10 MHz	20 MHz	24 MHz	
0	0	0	1	f _{CLK} /2	1 MHz	2.5 MHz	5 MHz	10 MHz	12 MHz	
0	0	1	0	$f_{CLK}/2^2$	500 kHz	1.25 MHz	2.5 MHz	5 MHz	6 MHz	
0	0	1	1	$f_{CLK}/2^3$	250 kHz	625 kHz	1.25 MHz	2.5 MHz	3 MHz	
0	1	0	0	f _{CLK} /2 ⁴	125 kHz	313 kHz	625 kHz	1.25 MHz	1.5 MHz	
0	1	0	1	f _{CLK} /2 ⁵	62.5 kHz	156 kHz	313 kHz	625 kHz	750 kHz	
0	1	1	0	f _{CLK} /2 ⁶	31.3 kHz	78.1 kHz	156 kHz	313 kHz	375 kHz	
0	1	1	1	f _{CLK} /2 ⁷	15.6 kHz	39.1 kHz	78.1 kHz	156 kHz	188 kHz	
1	0	0	0	f _{CLK} /2 ⁸	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	93.8 kHz	
1	0	0	1	f _{CLK} /2 ⁹	3.91 kHz	9.77 kHz	19.5 kHz	39.1 kHz	46.9 kHz	
1	0	1	0	f _{CLK} /2 ¹⁰	1.95 kHz	4.88 kHz	9.77 kHz	19.5 kHz	23.4 kHz	
1	0	1	1	f _{CLK} /2 ¹¹	977 Hz	2.44 kHz	4.88 kHz	9.77 kHz	11.7 kHz	
1	1	0	0	$f_{CLK}/2^{12}$		1.22 kHz	2.44 kHz	4.88 kHz	5.86 kHz	
1	1	0	1	f _{CLK} /2 ¹³		610 Hz	1.22 kHz	2.44 kHz	2.93 kHz	
1	1	1	0	f _{CLK} /2 ¹⁴		305 Hz	610 Hz	1.22 kHz	1.46 kHz	
1	1	1	1	$f_{CLK}/2^{15}$	61 Hz	153 Hz	305 Hz	610 Hz	732 Hz	

Transmission channel operation mode setting

• Serial mode register 00 (SMR00) Interrupt source Operation mode

Transfer clock selection

 $f_{MCK} \ selection$

Symbol: SMR00

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS 00	CCS 00	0	0	0	0	0	STS 00	0	0	1	0	0	MD 002	MD 001	MD 000
0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0

Bit 15

CKS00	Channel 0 operation clock (f _{MCK}) selection						
0 Prescaler output clock CK00 configured by the SPS0 register							
1	Prescaler output clock CK01 configured by the SPS0 register						

Bit 14

CCS00	Channel 0 transfer clock (TCLK) selection									
0	Clock obtained by dividing the operation clock f _{MCK} specified by the CKS00 bit									
1	Clock input from the SCK pin									

Bit 8

STS00	Selection of start trigger factor								
0	nly the software trigger is valid.								
1	Valid edge of the RxD pin (selected for UART reception)								

Bits 2 and 1

MD002	MD001	Channel 0 operation mode setting
0	0	CSI mode
0	1	UART mode
1	0	Simplified I ² C mode
1	1	Setting prohibited

Bit 0

MD000	Channel 0 interrupt source selection
0	Transfer end interrupt
1	Buffer empty interrupt

Reception channel operation mode setting

• Serial mode register 01 (SMR01)

Interrupt source

Operation mode

Transfer clock selection

 $f_{MCK} \ selection$

Symbol: SMR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS 01	CCS 01	0	0	0	0	0	STS 01	0	SIS 010	1	0	0	MD 012	MD 011	MD 010
0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0

Bit 15

CKS01	Channel 1 operation clock (f _{MCK}) selection				
0	Prescaler output clock CK00 configured by the SPS0 register				
1	Prescaler output clock CK01 configured by the SPS0 register				

Bit 14

CCS01	Channel 1 transfer clock (TCLK) selection					
0	Clock obtained by dividing the operation clock f _{MCK} specified by the CKS01 bit					
1	Clock input from the SCK pin					

Bit 8

STS01	Start trigger source selection							
0	Only software trigger is valid.							
1	Valid edge of the RxD pin (selected during UART reception)							

Bit 6

SIS010	Control of receive data level inversion on channel 1 in UART mode						
0	Falling edge is detected as a start bit						
1	Rising edge is detected as a start bit						

Bits 2 and 1

MD012	MD011	Channel 1 operation mode setting
0	0	CSI mode
0	1	UART mode
1	0	Simplified I2C mode
1	1	Setting prohibited

Bit 0

MD010	Channel 1 interrupt source selection
0	Transfer end interrupt
1	Buffer empty interrupt

Transmission channel communication operation setting

• Serial communication operation setting register 00 (SCR00)

Data length setting, data transfer order, error interrupt signal mask availability, and operation mode

Symbol: SCR00

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	1	DLS	DLS
00	00	00	00	U	00	001	000	00	U	001	000	U	I	001	000
1	0	0	0	0	0	1	0	1	0	0	1	0	1	1	1

Bits 15 and 14

TXE00	RXE00	Channel 0 operation mode setting
0	0	Communication prohibited
0	1	Reception only
1	0	Transmission only
1	1	Both transmission and reception

Bit 10

EOC00	Error interrupt signal (INTSRE0) mask availability selection						
0	Error interrupt INTSRE0 is masked						
1	Generation of error interrupt INTSREx is enabled						

Bits 9 and 8

DTC001	PTC000	Parity bit setting in UART mode					
F 1 C001		Transmission	Reception				
0	0	No parity bit is output	Data is received without parity				
0	1	0 parity is output	No parity check is made				
1	0	Even parity is output	Check is made for even parity				
1	1	Odd parity is output	Check is made for odd parity				

Bit 7

	Input and output in MSB first Input and output in LSB first
DIR00	Selection of data transfer order in CSI and UART modes

Bits 5 and 4

SLC001	SLC000	Stop bit setting in UART mode
0	0	No stop bit
0	1	Stop bit length = 1 bit
1	0	Stop bit length = 2 bits
1	1	Setting prohibited

Symbol: SCR00

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	1	DLS	DLS
00	00	00	00	U	00	001	000	00	U	001	000	0	ı	001	000
1	0	0	0	0	0	1	0	1	0	0	1	0	1	1	1

Bits 1 and 0

DLS001	DLS000	Data length setting in CSI mode
0	1	9-bit data length
1	0	7-bit data length
1	1	8-bit data length
Oth	ers	Setting prohibited

Reception channel communication operation setting

• Serial communication operation setting register 01 (SCR01)

Data length setting, data transfer order, error interrupt signal mask availability, and operation mode

Symbol: SCR01

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	4	DLS	DLS
	01	01	01	01	0	01	011	010	01	U	011	010	0	1	011	010
	0	1	0	0	0	1	1	0	1	0	0	1	0	1	1	1

Bits 15 and 14

TXE01	RXE01	Channel 1 operation mode setting								
0	0	Communication prohibited								
0	1	Reception only								
1	0	Transmission only								
1	1	Both transmission and reception								

For UART reception, wait for 4 f_{CLK} clock cycles or more before setting SS01 to 1, after setting the RXE01 bit of the SCR01 register to 1.

Bit 10

EOC01	Error interrupt signal (INTSRE0) mask availability selection
0	Error interrupt INTSRE0 is masked
1	Generation of error interrupt INTSRE0 is enabled

Bits 9 and 8

DTC011	PTC010	Parity bit setting in UART mode								
1 10011	1 10010	Transmission	Reception							
0	0	No parity bit is output	Data is received without parity							
0	1	0 parity is output	No parity check is made							
1	0	Even parity is output	Check is made for even parity							
1	1	Odd parity is output	Check is made for odd parity							

Bit 7

DIR01	Selection of data transfer order in CSI and UART modes								
0	nput and output in MSB first								
1	Input and output in LSB first								

Bits 5 and 4

SLC011	SLC010	Stop bit setting in UART mode
0	0	No stop bit
0	1	Stop bit length = 1 bit
1	0	Stop bit length = 2 bits
1	1	Setting prohibited

Symbol: SCR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	4	DLS	DLS
01	01	01	01	O	01	011	010	01	0	011	010	0	1	011	010
0	1	0	0	0	1	1	0	1	0	0	1	0	1	1	1

Bits 1 and 0

DLS011	DLS010	Data length setting in CSI mode
0	1	9-bit data length
1	0	7-bit data length
1	1	8-bit data length
Oth	ers	Setting prohibited

Transmission channel transfer clock setting

• Serial data register 00 (SDR00)

Transfer clock frequency: $f_{\text{MCK}}/156 \ (\approx 9600 \ Hz)$

Symbol: SDR00

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	1	0	1	0	Х	Х	Х	Х	Х	Х	Х	Х

Bits 15 to 9

		SDF	R00[1	5:9]			Transfer clock setting by dividing operation clock (f _{MCK})
0	0	0	0	0	0	0	f _{MCK} /2
0	0	0	0	0	0	1	f _{MCK} /4
0	0	0	0	0	1	0	f _{MCK} /6
0	0	0	0	0	1	1	f _{MCK} /8
	٠	٠	٠	٠			•
1	0	0	1	1	0	1	f _{MCK} /156
	٠	٠	٠	٠	٠	*	
1	1	1	1	1	1	0	f _{MCK} /254
1	1	1	1	1	1	1	f _{MCK} /256

Reception transfer clock setting

• Serial data register 01 (SDR01)

Transfer clock frequency: $f_{\text{MCK}}/156 \ (\approx 9600 \ \text{Hz})$

Symbol: SDR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	1	0	1	0	х	Х	Х	Х	Х	х	Х	Х

Bits 15 to 9

		SDI	R01[1	5:9]			Transfer clock setting by dividing operation clock (f _{MCK})
0	0	0	0	0	0	0	f _{MCK} /2
0	0	0	0	0	0	1	f _{MCK} /4
0	0	0	0	0	1	0	f _{MCK} /6
0	0	0	0	0	1	1	f _{MCK} /8
1	0	0	1	1	0	1	f _{MCK} /156
1	1	1	1	1	1	0	f _{MCK} /254
1	1	1	1	1	1	1	f _{MCK} /256

Output level setting

• Serial output level register 0 (SOL0/SOL0L) Output: Non-inverted

Symbol: SOL0									SOLOL							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	SOL 02	0	SOL 00	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit 0

SOL00	Selects inversion of the level of the transmit data of channel n in UART mode							
0	ommunication data is output as it is.							
1	Communication data is inverted and output.							

Initial output level setting

• Serial output register 0 (SO0) Initial output: 1

Symbol: SO0

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	CKO	CKO	CKO	CKO	0	0	0	0	SO	SO	SO	SO
L	U	O	O	U	03	02	01	00	0	U	U	O	03	02	01	00
	0	0	0	0	Х	Х	Х	Х	0	0	0	0	Х	Х	Х	1

Bit 0

SO00	Channel 0 serial data output								
0	Serial data output value is "0"								
1	Serial data output value is "1"								

Enabling of data output on target channel

• Serial output enable register 0 (SOE0/SOE0L) Output enable

Symbol: SOE0											so	E0L			_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	SOE 03	SOE 02	SOE 01	SOE 00
0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	1

Bit 0

SOE00	Channel 0 serial output enable/stop							
0	Serial communication output is stopped							
1	Serial communication output is enabled							

Enabling of noise filter

• Noise filter enable register 00 (NFEN0) Turn the noise filter for the RxD0 pin on.

Symbol: SOE0

7	6	5	4	3	2	1	0
0	0	0	SNFEN2 0	0	SNFEN1 0	0	SNFEN0 0
0	0	0	х	0	х	0	1

Bit 0

SNFEN00	Use of noise filter of RxD0 pin (RxD0/P11)
0	Noise filter OFF
1	Noise filter ON

Clearing of the error flag

• Serial flag clear trigger register 01 (SIR01) Clear the error flag.

Symbol: SIR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	FECT 01	PEC	OVC
U	U	U	U	U	U	U	U	U	U	U	U	U	01	T01	T01
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1

Bit 2

FECT01	Clear trigger of framing error flag of channel 1
0	Not cleared
1	Clears the FEF01 bit of the SSR01 register.

Bit 1

PECT01	Clear trigger of parity error flag of channel 1
0	Not cleared
1	Clears the PEF01 bit of the SSR01 register.

Bit 0

OVCT01	Clear trigger of overrun error flag of channel 1
0	Not cleared
1	Clears the OVF01 bit of the SSR01 register.

Configuring the interrupt mask

- Interrupt mask flag register 0H (MK0H) Disable interrupt processing.
- Priority order specification flag registers (PR00H, PR10H) Specify the interrupt priority.

Symbol: MK0H (For 20-pin and 24-pin products)

7	6	5	4	3	2	1	0
			TMMK	TMMK		SRMK0	STMK0
TMMK01	TMMK00	IICAMK0	03H		01H SREMKO	SREMK0	CSIMK01
			0311	UIII		IICMK01	IICMK00
Χ	X	X	Х	X	1	1	1

SREMK0	SRMK0	STMK0	Interrupt processing control
0	0	0	Interrupt processing enabled
1	1	1	Interrupt processing disabled

Symbol: PR00H (For 20-pin and 24-pin products)

7	6	5	4	3	2	1	0
TMPR001	TMPR000	IICAPR00	TMPR003H	TMPR001H	SREPR00	SRPR00	STPR00
Х	Х	Х	Х	Х	1	0	1

Symbol: PR10H (For 20-pin and 24-pin products)

	TMPR101	TMPR100	IICAPR10	TMPR103H	TMPR101H	SREPR10	SRPR10	STPR10
ı	Х	Х	Х	Х	Х	0	1	1x

Bits 2 to 0

xxPR1x	xxPR0x	Priority level selection
0	0	Selects level 0 (high priority level)
0	1	Selects level 1
1	0	Selects level 2
1	1	Selects level 3 (low priority level)

Port setting

- Port register 1 (P1)
- Port mode register 1 (PM1)

Port setting for each of transmit data and receive data.

Symbol: P1

7	6	5	4	3	2	1	0
P17	P16	P15	P14	P13	P12	P11	P10
Х	Х	Х	Х	Х	1	Х	Х

Bit 2

P12	Output data control (in output mode)
0	0 is output
1	1 is output

Symbol: PM1

7	6	5	4	3	2	1	0
PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10
Х	Х	Х	Х	Х	0	1	Х

Bit 2

PM12	P12 I/O mode selection				
0	Output mode (output buffer is on)				
1	Input mode (output buffer is off)				

Bit 1

PM11	P11 I/O mode selection
0	Output mode (output buffer is on)
1	Input mode (output buffer is off)

5.7.5 Main Processing

Figure 5.6 shows the flow chart for main processing.

Figure 5.6 Main Processing

5.7.6 UARTO Operation Enable Function

Figure 5.7 shows the flowchart for the UART0 operation enable function.

Figure 5.7 UARTO Operation Enable Function

Transition to a communication wait state

• Serial channel start register 0 (SS0/SS0L) Start operation.

Symbol: SS0 SS0L																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	SS03	SS02	SS01	SS00
	0	0	0	0	0	0	0	0	0	0	0	0	x Note	Х	1 Note	1

Bits 3 to 0

SS0n	Channel n operation start trigger								
0	Trigger operation is not performed.								
1	SE0n is set to 1, and a communication wait state is entered.								

Note: For UART reception, wait for 4 fCLK clock cycles or more before setting SS0n to 1, after setting the RXE0n bit of the SCR0n register to 1.

Interrupt setting

- Interrupt request flag register (IF0H) Clear the interrupt request flag
- Interrupt mask flag register (MK0H) Cancel interrupt mask

Symbol: IF0H (for 20-pin and 24-pin products)

7	6 5 4 3 2						0
						SRIF0	STIF0
TMIF01	TMIF00	IICAIF0	TMIF03H	TMIF01H	SREIF0	CSIIF01	CSIIF00
						IICIF01	IICIF00
Х	X	Х	Х	Х	0	0	0

SREIF0	SRIF0	STIF0	Interrupt request flag
0	0	0	No interrupt request signal is generated
1	1	1	Interrupt request is generated, interrupt request status

Symbol: MK0H (20-pin and 24-pin products)

7	6 5 4 3 2						0
TMMK01	TMMK00	IICAMK0	TMMK 03H	TMMK 01H	SREMK0	CSIMK0 1	STMK0 CSIMK0 0 IICMK00
Х	Х	Χ	Х	Х	0	0	1

SREMK0	SRMK0	STMK0	Interrupt processing control
0	0	0	Enables interrupt processing.
1	1	1	Disable interrupt processing

5.7.7 Error Response Message Transmission Function

Figure 5.8 shows the flowchart for the error response message transmission function.

Figure 5.8 Error Response Message Transmission Function

5.7.8 UARTO Data Transmission Function

Figure 5.9 shows the flowchart for the UART0 data transmission function.

Figure 5.9 UARTO Data Transmission Function

Interrupt setting

- Interrupt request flag register (IF0H) Clear the interrupt request flag
- Interrupt mask flag register (MK0H) Cancel interrupt mask

Symbol: IF0H (for 20-pin and 24-pin products)

7	6	5	4	3	2	1	0
						SRIF0	STIF0
TMIF01	TMIF00	IICAIF00	TMIF03H	TMIF01H	SREIF0	CSIIF01	CSIIF00
						IICIF01	IICIF00
Х	X	Х	X	X	Х	X	0

Bit 0

STIF0	Interrupt request flag					
0	0 No interrupt request signal is generated					
Interrupt request is generated, interrupt request status						

Symbol: MK0H (for 20-pin and 24-pin products)

7	6	5 4		3	2	1	0	
		IICAMK0	TMMK	TMMK		SRMK0	STMK0	
TMMK01	TMMK00		03H	01H	SREMK0	CSIMK01	CSIMK00	
		O	0311	UIII		IICMK01	IICMK00	
Х	Х	Х	Х	Х	Х	Х	0	

Bit 0

STMK0	Interrupt processing control
0	Enables interrupt processing.
1	Disables interrupt processing.

5.7.9 Ring Buffer Write Processing

Figure 5.10 shows the flowchart for the ring buffer write processing.

Figure 5.10 Ring Buffer Write Processing

5.7.10 Ring Buffer Read Processing

Figure 5.11 shows the flowchart for the ring buffer read processing.

Figure 5.11 Ring Buffer Read Processing

Reception status check
• Serial status register 01 (SSR01/SSR01L)

Read error status.

Symbol: SSR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	TSF 01	BFF	0	0	FEF	PEF	OVF
U	U	U	U	U	U	U	U	U	01	01	0	U	01	01	01
0	0	0	0	0	0	0	0	0	х	Х	0	0	0/1	0/1	0/1

Bit 5

BFF01	Buffer register status indication flag of channel 01
0	Valid data is not stored in the SDRmn register.
1	Valid data is stored in the SDRmn register.

Bit 2

FEF01	Framing error detection flag of channel 01
0	No error occurs.
1	An error occurs.

Bit 1

PEF01	Parity error detection flag of channel 01
0	No error occurs.
1	An error occurs.

Bit 0

OVF01	Overrun error detection flag of channel 01
0	No error occurs.
1	An error occurs.

Interrupt setting Interrupt request flag register (IF0H)

Setting interrupt request flag.

Symbol: IF0H (For 20-pin and 24-pin products)

7	6	5	4	3	2	1	0
						SRIF0	STIF0
TMIF01	TMIF00	IICAIF00	TMIF03H	TMIF01H	SREIF0	CSIIF01	CSIIF00
						IICIF01	IICIF00
Х	Х	Х	Х	Х	1	1	Х

Bits 2 and 1

SREIF0	SRIF0	Interrupt request flag
0	0	No interrupt request signal is generated.
1	1	Interrupt request is generated, interrupt request status.

5.7.11 UARTO Reception End Interrupt Processing

Figure 5.12 shows the flowchart for the UART0 reception end interrupt processing.

Figure 5.12 UARTO Reception End Interrupt Processing

5.7.12 UARTO Reception Error Interrupt Processing

Figure 5.13 shows the flowchart for the UART0 reception error interrupt processing.

Figure 5.13 UART0 Reception Error Interrupt Processing

Reception error processing

- Serial status register 01 (SSR01/SSR01L) Read error status.
- Serial flag clear trigger register 01 (SIR01/SIR01L) Clear error status.

Symbol: SSR01											S	SR01L			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	TSF 01	BFF 01	0	0	FEF 01	PEF 01	OVF 01
0	0	0	0	0	0	0	0	0	Х	Х	0	0	0/1	0/1	0/1

Bit 2

I	FEF01	Framing error detection flag of channel 01
I	0	No error occurs.
I	1	An error occurs.

Bit 1

PEF01	Parity error detection flag of channel 01
0	No error occurs.
1	An error occurs.

Bit 0

OVF01	Overrun error detection flag of channel 01
0	No error occurs.
1	An error occurs.

Bits 2 to 0

FECT01	PECT01	OVCT01	Clear trigger of error flag of channel 01
0	0	0	Not cleared
1	1	1	Clears the error flag bit of the SSR01 register.

5.7.13 UART0 Transmission End Interrupt Processing

Figure 5.14 shows the flowchart for the UART0 transmission end interrupt processing.

Figure 5.14 UART0 Transmission End Interrupt Processing

6. Sample Code

The sample code is available on the Renesas Electronics Website.

7. Documents for Reference

RL78/G12 User's Manual: Hardware (R01UH0200E)

RL78 Family User's Manual: Software (R01US0015E)

(The latest versions of the documents are available on the Renesas Electronics Website.)

Technical Updates/Technical Brochures

(The latest versions of the documents are available on the Renesas Electronics Website.)

Website and Support

Renesas Electronics Website

http://www.renesas.com/index.jsp

Inquiries

• http://www.renesas.com/contact/

Revision Record

Pov	Data		Description
Rev.	Date	Page	Summary
1.00	Sep.30th,2012	_	First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

- 1. Handling of Unused Pins
- Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on
- The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses
- · Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals
- After applying a reset, only release the reset line after the operating clock signal has become stable.
 When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products
- Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assum no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Milliboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
7tl: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 204, 205, AZIA Center, No. 1231 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower J., Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141