Classification (Part 2)

Some slides adapted from Stanford data mining course, "Introduction to Data Mining " by Kumar etc, and UIC data mining course

Outline

- Classification Techniques
 - Decision Tree
 - Classification based on association rules
 - Ensemble classifier
 - Overfitting
 - Classification evaluation

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers, such as majority of voting
- Assumption:
 - Individual classifiers (voters) could be lousy (stupid), but the aggregate (electorate) can usually classify (decide) correctly.

General Idea

Example: Why Do Ensemble Methods Work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, ϵ = 0.35
 - Majority vote of classifiers used for classification
 - If all classifiers are identical:
 - Error rate of ensemble = ϵ (0.35)
 - If all classifiers are independent (errors are uncorrelated):
 - Error rate of ensemble = probability of having more than half of base classifiers being wrong

$$e_{\text{ensemble}} = \sum_{i=13}^{25} {25 \choose i} \epsilon^i (1-\epsilon)^{25-i} = 0.06$$

Necessary Conditions for Ensemble Methods

- Ensemble Methods work better than a single base classifier if:
 - 1. All base classifiers are independent of each other
 - All base classifiers perform better than random guessing (error rate < 0.5 for binary classification)

Classification error for an ensemble of 25 base classifiers, assuming their errors are uncorrelated.

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - Bagging

Boosting

Bagging (Bootstrap AGGregatING)

Bootstrap sampling: sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

Build classifier on each bootstrap sample

Bagging Algorithm

Algorithm 4.5 Bagging algorithm.

- 1: Let k be the number of bootstrap samples.
- 2: **for** i = 1 to k **do**
- 3: Create a bootstrap sample of size N, D_i .
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for
- 6: $C^*(x) = \underset{y}{\operatorname{argmax}} \sum_i \delta(C_i(x) = y)$. $\{\delta(\cdot) = 1 \text{ if its argument is true and 0 otherwise.}\}$

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump (decision tree of size 1)
 - Decision rule: $x \le k$ versus x > k
 - Split point k is chosen based on entropy

Baggin	g Roun	ıd 1:								
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
у	1	1	1	1	-1	-1	-1	-1	1	1

$$x \le 0.35 \Rightarrow y = 7$$

 $x > 0.35 \Rightarrow y = -1$

Baggi	ng Rour	nd 1:									
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	$x \le 0.35 \Rightarrow y = 1$
У	1	1	1	1	-1	-1	-1	-1	1	1	$x > 0.35 \rightarrow y = -1$
Baggi	ng Rour	nd 2:									
X	0.1	0.2	0.3	0.4	0.5	0.5	0.9	1	1	1	$x \le 0.7 \Rightarrow y = 1$
У	1	1	1	-1	-1	-1	1	1	1	1	$x > 0.7 \implies y = 1$
Baggi											
X	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	8.0	0.9	$x <= 0.35 \rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.35 \rightarrow y = -1$
Baggi	ng Rour	nd 4:									
X	0.1	0.1	0.2	0.4	0.4	0.5	0.5	0.7	8.0	0.9	$x <= 0.3 \rightarrow y = 1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	$x > 0.3 \implies y = -1$
Baggi	ng Rour	nd 5:									
X	0.1	0.1	0.2	0.5	0.6	0.6	0.6	1	1	1	$x \le 0.35 \rightarrow y = 1$ $x > 0.35 \rightarrow y = -1$
У	1	1	1	-1	-1	-1	-1	1	1	1	x > 0.33 -y y1

Baggiı	ng Rour	nd 6:						ı			
X	0.2	0.4	0.5	0.6	0.7	0.7	0.7	8.0	0.9	1	$x \le 0.75 \Rightarrow y = -1$
У	1	-1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggii	ng Rour	nd 7:									
X	0.1	0.4	0.4	0.6	0.7	0.8	0.9	0.9	0.9	1	$x \le 0.75 \Rightarrow y = -1$
У	1	-1	-1	-1	-1	1	1	1	1	1	$x > 0.75 \rightarrow y = 1$
Baggii	ng Rour	nd 8:									
X	0.1	0.2	0.5	0.5	0.5	0.7	0.7	0.8	0.9	1	$x <= 0.75 \rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggiı	ng Rour	nd 9:									
X	0.1	0.3	0.4	0.4	0.6	0.7	0.7	8.0	1	1	$x <= 0.75 \rightarrow y = -1$
У	1	1	-1	-1	-1	-1	-1	1	1	1	$x > 0.75 \implies y = 1$
Baggiı	ng Rour	nd 10:									
X	0.1	0.1	0.1	0.1	0.3	0.3	8.0	8.0	0.9	0.9	$x <= 0.05 \rightarrow y = 1$
У	1	1	1	1	1	1	1	1	1	1	$x > 0.05 \implies y = 1$

Summary of Trained Decision Stumps:

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

 Use majority vote (sign of sum of predictions) to determine class of ensemble classifier

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

Improvement of Bagging: Random Forest

- Train a Bagged Decision Tree
- But use a modified tree learning algorithm that selects (at each candidate split) a random subset of features
 - If we have d features, consider \sqrt{d} random features
- This is called: Feature bagging
 - Benefit: Breaks correlation between trees
 - If one feature is very strong predictor, then every tree will select it, causing trees to be correlated.
- Random Forests achieve state-of-the-art results in many classification problems!

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, sampling weights may change at the end of boosting round
- Successful algorithms
 - Example 1: adaBoost (some slides for your information or self-study)
 - Example 2: Gradient Boosted Decision Trees

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are correctly classified will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	(4)

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Build Decision Trees with AdaBoost

Suppose we have training data $\{(x_i, y_i)\}_{i=1}^N$, $y_i \in \{1, -1\}$

- Initialize equal weights for all observations
- At each iteration t:
 - Train a stump G_t using data weighted by w_i
 - 2. Compute the misclassification error adjusted by w_i
 - 3. Compute the weight of the current tree
 - 4. Reweight each observation based on prediction accuracy

AdaBoost: Weak learner

- 1. build Decision "stumps":
 - 1-level decision tree
 - A decision boundary based on one feature
 - E.g.: If someone is not a smoker, then predict them to live past 80 years old
 - Building blocks of AdaBoost algorithm
 - Decision stump is a weak learner

Boosting theory: if weak learners have >50% accuracy then we can learn a perfect classifier.

Update Step

2. Calculate the weighted misclassification error

$$err_t = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_t(x_i))}{\sum_{i=1}^{N} w_i}$$

3. Use the error score to weight the current tree in the final classifier:

$$\alpha_t = log\left(\frac{1 - err_t}{err_t}\right)$$

A classifier with 50% accuracy is given a weight of zero;

4. Use misclassification error and tree weight to reweight the training data:

$$w_i \leftarrow w_i exp[\alpha_t I(y_i \neq G_t(x_i))]$$

Harder to classify training instances get higher weight

Final Prediction

 Final prediction is a weighted sum of the predictions from each stump:

$$G(x) = sign\left[\sum_{t=1}^{T} \alpha_t G_t(x)\right]$$

 More accurate trees are weighted higher in the final model

Illustrating AdaBoost

Illustrating AdaBoost

Outline

- Classification Techniques
 - Decision Tree
 - Classification based on association rules
 - Ensemble classifier
 - Overfitting
 - Classification evaluation

Classification Errors

- Training errors: Errors committed on the training set
- Test errors: Errors committed on the test set
- Generalization errors: Expected error of a model over random selection of records from same distribution

Example Data Set

Two class problem:

- +: 5400 instances
 - 5000 instances generated from a Gaussian centered at (10,10)
 - 400 noisy instances added
- o: 5400 instances

Generated from a uniform distribution

10 % of the data used for training and 90% of the data used for testing

Increasing number of nodes in Decision Trees

Decision Tree with 4 nodes

Decision Tree with 50 nodes

Which tree is better?

Model Underfitting and Overfitting

•As the model becomes more and more complex, test errors can start increasing even though training error may be decreasing

Underfitting: when model is too simple, both training and test errors are largeOverfitting: when model is too complex, training error is small but test error is large

Model Overfitting – Impact of Training Data Size

Using twice the number of data instances

 Increasing the size of training data reduces the difference between training and testing errors at a given size of model

Model Overfitting – Impact of Training Data Size

Using twice the number of data instances

 Increasing the size of training data reduces the difference between training and testing errors at a given size of model

Reasons for Model Overfitting

- Not enough training data
- High model complexity
 - Multiple Comparison Procedure

Notes on Overfitting

Use decision trees as an example:

- Overfitting results in decision trees that are more complex than necessary
- Training error does not provide a good estimate of how well the tree will perform on previously unseen records
- Need ways for estimating generalization errors

Model Selection

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error
 - Using Validation Set
 - Incorporating Model Complexity (e.g., number of leaf nodes in decision trees) in model training
 - Given two models of similar generalization errors, one should prefer the simpler model over the more complex model

Using Validation Set

- Divide training data into two parts:
 - Training set:
 - use for model building
 - Validation set:
 - use for estimating generalization error
 - Note: validation set is not the same as test set
- Drawback:
 - Less data available for training

Classification Model Evaluation

Purpose:

 To estimate performance of classifier on previously unseen data (test set)

Holdout

- Reserve k% for training and (100-k)% for testing
- Random subsampling: repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

Cross-validation Example

3-fold cross-validation

Summary

- Classification Techniques
 - Decision Tree
 - Classification based on association rules
 - Ensemble classifier
 - Understand the high-level idea
 - Overfitting
 - Understand the high-level idea
 - Classification evaluation
 - Understand the high-level idea