Chapter 5

Top-Down Parsing

Recursive Descent Parser

Consider the grammar:

$$S \rightarrow c A d$$

$$A \rightarrow ab \mid a$$

The input string is "cad"

Build parse tree:
 step 1. From start symbol.

Step 2. We expand A using the first alternative A → ab to obtain the following tree:

 Now, we have a match for the second input symbol "a", so we advance the input pointer to "d", the third input symbol, and compare d against the next leaf "b".

Backtracking

- Since "b" does not match "d", we report failure and go back to A to see whether there is another alternative for A that has not been tried - that might produce a match!
- In going back to A, we must reset the input pointer to "a".

Step 3.

Creating a top-down parser

 Top-down parsing can be viewed as the problem of constructing a parse tree for the input string, starting form the root and creating the nodes of the parse tree in preorder.

An example follows.

Creating a top-down parser (Cont.)

- Given the grammar :
 - $E \rightarrow TE'$
 - $E' \rightarrow +TE' \mid \lambda$
 - $T \rightarrow FT'$
 - $T' \rightarrow *FT' \mid \lambda$
 - $F \rightarrow (E) \mid id$
- The input: id + id * id

Creating a top-down parser (Cont.)

 A top-down parsing program consists of a set of procedures, one for each non-terminal.

 Execution begins with the procedure for the start symbol, which halts and announces success if its procedure body scans the entire input string.

A typical procedure for non-terminal A in a top-down parser:

```
boolean A() {
  choose an A-production, A \rightarrow X1 X2 ... X_k;
 for (i= 1 to k) {
    if (Xi is a non-terminal)
        call procedure Xi();
    else if (Xi matches the current input token "a")
        advance the input to the next token;
    else /* an error has occurred */;
```

NOTE

Given a grammar:

```
input \rightarrow expression expression \rightarrow term rest_expression term \rightarrow ID | parenthesized_expression parenthesized_expression \rightarrow '(' expression ')' rest_expression \rightarrow '+' expression | \lambda
```

For example: input:

$$ID + (ID + ID)$$

Build parse tree: start from start symbol to invoke: int input (void)

Next, invoke expression()

Next, invoke term()

select term → ID (matching input string "ID")

Invoke rest_expression()

LL(1) Parsers

- The class of grammars for which we can construct predictive parsers looking k symbols ahead in the input is called the LL(k) class.
- Predictive parsers, that is, recursive-descent parsers without backtracking, can be constructed for the LL(1) class grammars.
- The first "L" stands for scanning input from left to right. The second "L" for producing a leftmost derivation. The "1" for using one input symbol of look-ahead at each step to make parsing decisions.

 $A \rightarrow \alpha \mid \beta$ are two distinct productions of grammar G, G is LL(1) if the following 3 conditions hold:

- 1. FIRST(α) cannot contain any terminal in FIRST(β).
- 2. At most one of α and β can derive λ .
- 3. if $\beta \to^* \lambda$, FIRST(α) cannot contain any terminal in FOLLOW(A).
 - if $\alpha \to^* \lambda$, FIRST(β) cannot contain any terminal in FOLLOW(A).

Some helping examples

• S
$$\rightarrow$$
 AC
A \rightarrow a | B
B \rightarrow b | λ
let's look at this production

because A has two choices to derive, a and B, but B can $\rightarrow^* \lambda$ (that is λ is in First(B) = {b, λ }) so, if B does be derived into a λ , we can still have a chance if we can check the follow set of A. In other words, A must appear on RHS in other productions rule. Suppose A derive into a λ , we want to know what symbols follow A. In this example, FOLLOW(A) = FIRST(C);

Construction of a predictive parsing table

- The following rules are used to construct the predictive parsing table:
 - 1. for each terminal a in FIRST(α), add A $\rightarrow \alpha$ to matrix M[A,a]
 - 2. if λ is in FIRST(α), then for each terminal b in FOLLOW(A), add A $\rightarrow \alpha$ to matrix M[A,b]

Given the grammar:

```
\begin{array}{c} \text{input} \rightarrow \text{expression} & 1 \\ \text{expression} \rightarrow \text{term rest\_expression} & 2 \\ \text{term} \rightarrow \text{ID} & 3 \\ & | \text{parenthesized\_expression} & 4 \\ \text{parenthesized\_expression} \rightarrow \text{`(`expression ')'} & 5 \\ \text{rest\_expression} \rightarrow \text{`+'expression} & 6 \\ & | \lambda & 7 \end{array}
```

Build the parsing table.

```
FIRST (input) = FIRST(expression)
             =FIRST (term)
                           = {ID, '(' }
FIRST (parenthesized_expression) = { '(' }
                                    = \{ '+' \lambda
FIRST (rest_expression)
                                    = {$}
FOLLOW (input)
                                    = \{\$ ')' \}
FOLLOW (expression)
FOLLOW (term) =
FOLLOW (parenthesized expression) = {$ '+' ')'}
FOLLOW (rest expression)
                                    = \{\$ \quad ')'\}
```

Non-terminal	Input symbol				
	ID	+	()	\$
Input	1		1		
Expression	2		2		
Term	3		4		
parenthesized_e xpression			5		
rest_expression		6		7	7

Model of a table-driven predictive parser

Predictive parsing algorithm

```
Set input pointer (ip) to the first token a;
Push $ and start symbol to the stack.
Set X to the top stack symbol;
while (X != $) { /*stack is not empty*/
  if (X is token a) pop the stack and advance ip;
  else if (X is another token) error();
 else if (M[X,a] is an error entry) error();
  else if (M[X,a] = X \rightarrow Y_1Y_2...Y_k) {
        output the production X \to Y_1 Y_2 ... Y_k;
         pop the stack; /* pop X */
        /* leftmost derivation*/
        push Y_k, Yk-1, ..., Y_1 onto the stack, with Y_1 on top;
  }
  set X to the top stack symbol Y1;
} // end while
```

Given the grammar:

$- E \rightarrow TE'$	1
$- E' \rightarrow +TE'$	2
$- E' \rightarrow \lambda$	3
$- T \rightarrow FT'$	4
$-T' \rightarrow *FT'$	5
$- T' \rightarrow \lambda$	6
$- F \rightarrow (E)$	7
$- F \rightarrow id$	8

```
FIRST(F) = FIRST(T) = FIRST(E) = { (, id }

FIRST(E') = {+, \lambda}

FIRST(T') = { *, \lambda}
```

```
FOLLOW(E) = FOLLOW(E') = \{ \}, \{ \}
FOLLOW(T) = FOLLOW(T') = \{ +, \}, \{ \}
FOLLOW(F) = \{ +, *, \}, \{ \}
```

Non- terminal	Input symbols					
lemmai	ld	+	*	()	\$
E	1			1		
E'		2			3	3
Т	4			4		
T'		6	5		6	6
F	8			7		31

Stack	Input	Output
\$E	id + id * id \$	
\$E'T	id + id * id \$	E → TE'
\$E'T'F	id + id * id \$	T → FT'
\$E'T'id	id + id * id \$	F o id
\$E'T'	+ id * id \$	match id
\$E'	+ id * id \$	$T' \rightarrow \lambda$
\$E'T+	+ id * id \$	E' → +TE'

3Z

Stack	Input	Output
\$E'T	id * id \$	match +
\$E'T'F	id * id \$	T → FT'
\$E'T'id	id * id \$	F o id
\$E'T'	* id \$	match id
\$E'T'F*	* id \$	T' → *FT'
\$E'T'F	id \$	match *
\$E'T'id	id \$	$F \rightarrow id$
\$E'T'	\$	match id
\$E'	\$	$T' \rightarrow \lambda$
\$	\$	$E' \rightarrow \lambda$

Common Prefix

In Fig. 5.12, the common prefix:

if Expr then StmtList (R1,R2)

makes looking ahead to distinguish R1 from R2 hard.

Just use Fig. 5.13 to factor it and "var" (R5,6) The resulting grammar is in Fig. 5.14.

```
1 Stmt → if Expr then StmtList endif
2 | if Expr then StmtList else StmtList endif
3 StmtList → StmtList; Stmt
4 | Stmt
5 Expr → var + Expr
6 | var
```

Figure 5.12: A grammar with common prefixes.

```
procedure F ()

foreach A \in N do

\alpha \leftarrow LongestCommonPrefix(ProductionsFor(A))

while |\alpha| > 0 do

V \leftarrow \text{new NonTerminal}()

Productions \leftarrow Productions \cup \{A \rightarrow \alpha V\}

foreach p \in ProductionsFor(A) \mid RHS(p) = \alpha \beta_p do

Productions \leftarrow Productions - \{p\}

Productions \leftarrow Productions \cup \{V \rightarrow \beta_p\}

\alpha \leftarrow LongestCommonPrefix(ProductionsFor(A))

end
```

Figure 5.13: Factoring common prefixes.

Figure 5.14: Factored version of the grammar in Figure 5.12.

Figure 5.15: Eliminating left recursion.

Left Recursion

A production is **left recursive** if its LHS symbol is the first symbol of
 its RHS.

In fig. 5.14, the production
 StmtList → StmtList ; Stmt
 StmtList is left-recursion.

```
1 Stmt \rightarrow if Expr then StmtList V<sub>1</sub>

2 V<sub>1</sub> \rightarrow endif

3 | else StmtList endif

4 StmtList \rightarrow StmtList; Stmt

5 | Stmt

6 Expr \rightarrow var V<sub>2</sub>

7 V<sub>2</sub> \rightarrow + Expr

8 | \lambda
```

Figure 5.14: Factored version of the grammar in Figure 5.12.

- Grammars with left-recursive productions can never be LL(1).
 - Some look-ahead symbol t predicts the application of the left-recursive production

$$A \rightarrow A\beta$$
.

with **recursive-descent parsing**, the application of this production will cause

procedure A to be invoked infinitely.

Thus, we must eliminate left-recursion.

Consider the following left-recursive rules.

- 1. $A \rightarrow A \alpha$
- 2. β the rules produce strings like β α α

we can change the grammar to:

- 1. $A \rightarrow X Y$
- 2. $X \rightarrow \beta$
- 3. $Y \rightarrow \alpha Y$
- 4. $\mid \lambda \mid$ the rules also produce strings like $\beta \alpha \alpha$

The EliminateLeftRecursion algorithm is shown in fig. 5.15. Applying it to the grammar in fig. 5.14 results in fig. 5.16.

```
procedure EliminateLeftRecursion()
    foreach A \in N do
        if \exists r \in ProductionsFor(A) \mid RHS(r) = A\alpha
        then
             X \leftarrow new\ NonTerminal()
             Y \leftarrow \text{new NonTerminal()}
             foreach p \in ProductionsFor(A) do
                 if p = r
                  then Productions \leftarrow Productions \cup \{A \rightarrow X Y\}
                  else Productions \leftarrow Productions \cup \{X \rightarrow RHS(p)\}\
             Productions ← Productions ∪ {Y \rightarrow \alpha Y, Y \rightarrow \lambda}
end
```

Figure 5.15: Eliminating left recursion.

```
Now, we trace the algorithm with the grammar below:
(4) StmtList → StmtList ; Stmt
                 Stmt
(5)
first, the input is (4) StmtList \rightarrow StmtList; Stmt
because RHS(4) = StmtList \alpha it is left-recursive (marker 1)
  create two non-terminals X, and Y
                                                        (marker 2)
  for rule (4)
    as StmtList = StmtList,
     create StmtList → XY
                                                       (marker 3)
                                                        (marker 2)
  for rule (5)
    as StmtList != Stmt
    create X \rightarrow Stmt
                                                       (marker 4)
  finally, create Y \rightarrow; Stmt and Y \rightarrow \lambda
                                                        (marker 5)
```

re 5.16: LL(1) version of the grammar in Figure 5.14.

Homework 1

Construct the LL(1) table for the following grammar:

- 1 Expr \rightarrow Expr
- 2 Expr \rightarrow (Expr)
- 3 Expr → Var ExprTail
- 4 ExprTail → Expr
- 5 ExprTail $\rightarrow \lambda$
- 6 Var → id VarTail
- 7 VarTail → (Expr)
- 8 VarTail $\rightarrow \lambda$

Homework 1 Solution

```
First(Expr) = \{-, (, id)\}
First(ExprTail) = {-,
First (Var) = { id}
First (VarTail) = { (,
Follow (Expr) = Follow (ExprTail) = {$, ) }
                                    = \{\$, \}, -\}
Follow (Var)
                                    = \{\$, \}, -\}
Follow (VarTail)
```

Homework 1 Solution (Cont.)

Non- Terminal	Input Symbol							
	_	(id)	\$			
Expr	1	2	3					
ExprTail	4			5	5			
Var			6					
VarTail	8	7		8	8			

Homework 2

- Given the grammar:
 - $-S \rightarrow iEtSS'|a$
 - $-S' \rightarrow eS \mid \lambda$
 - $E \rightarrow b$

- 1. Find the first set and follow set.
- 2. Build the parsing table.

Homework 2 Solution

```
First(S) = \{i, a\}
First(S') = \{e, \lambda\}
First (E) = \{b\}
```

Follow (S) = Follow (S') =
$$\{\$, e\}$$

Follow (E) = $\{t\}$

Homework 2 Solution (Cont.)

Non- Terminal	Input Symbol							
Terminal	a	b	e	i	t	\$		
S	2			1				
S'			3/4			4		
Е		5						

As First(S') contains λ and Follow (S') = {\$, e} So rule 4 is added to e, \$. 3/4 (rule 3 or 4) means an error. This is not LL(1) grammar.