Ch J. Trust Region Algorithms (non-linear)
The fundamental problem with Newton's netrod for unconstrained minimization of a further is it can fail to converge to a local minimum (due to non-positive definite matrices), especially it an isn't close to x*.
A challenge in implementing Newton's method is globalisation / global convergence.
point This challenge is usually addressed by adding a line search
nakes he repod more robust, and will make Menton's netad coverge to a local minim when condition are imposed on he
The search eg Wolfe, armjo etc.
Trust region methods are the alternative approach to globalizing Newton's method. Here, we construct an approximation of I new a point x" using he start of the things series:
$M_{\mu}(x) = f(x^{\mu}) + \nabla f(x^{\mu})^{T}(x-x^{\mu}) + \frac{1}{2}(x-x^{\mu})^{T} \nabla^{2} f(x^{\mu})(x-x^{\mu})$
This approximation is only valid near x " so we set a band &" on how large we let x-x" get, and her minimize he set:
eg. $\frac{m_1}{\chi} m_{\chi}(\chi)$ \geq frust region subproblem. $\leq \Delta^{\mu_1}$
Note: it su large enough, her he solution to he minimization problem is he save point we get by performing a step of rentain's method without the search
Once ne've solved he subproblem, we nove to he point, adjust Du and repeat. With an appropriate strategy for adjusting tolerance Du, we can construct an algorith with he same global convergence properties as Newton's nethod with line search (eg. can converge hom any x°).
as Newton's report line search (eg. can contage hom any x°).
XK XK

m = region of first

m = Quadrapic approximation

of fla), mu

m = contens of fla)

m = result via line search

m = clinetian of fust netrod

m = approximate improvement of x "

Note, we can rewrite: $m_{\mu}(d) = H(x^{\mu}) + \nabla H(x^{\mu})^{T} d + \frac{1}{2d}G^{\mu} d$ $m_{\mu}(d) : \| d\| \leq \Delta u$.

Therefore, $d^{*} = d^{k} \quad minimites \quad he \quad ball \quad of \quad \Gammaadius \quad \Delta^{\mu}$.

If Gh=172 flan) is he Hessian at an he netod is he trust region Menton netod is he trust region Menton netod is he trust region of it is an approximation to he Hessian, it's called he must region Quasi Newton metod.

Notice $m_{A}(d)$ is a quadratic function and so is its constraint, thus: $\frac{||d|| \leq \Delta^{u}}{d^{T}d} \leq (\Delta^{u})^{2}$ $\Rightarrow \sqrt{a^{T}d} \leq \Delta^{u}$

When G^{μ} is positive definite and $11G^{(u)} - |\nabla F|| \leq \Delta^{\mu}$, her he minimizer of me is $d^{\kappa} = -\nabla F$. This is called d^{κ} full steps, and takes us to be boundary of he bust region. Note, d^{κ} is bounded.

If Gh isn't possifive definite, he solution for du isn't so Livial, but we hen only need an approximate solution.

Frust Region Algorith Rewife he problem with a general matrix B" which can be a hession
fewfe pe problem with a general matrix B" which can be a hession or an approximation from the Onavi-Newton rehad, or a Rivite-
$m_n(d) = f(x^n) + \nabla f(x^n)^T d + d^T g u d$ $m_n m_n(d)$ where $ d \leq \Delta^u$
The trust region method can be notivated by noting that he guadratic Mu(x) is a useful model of flojony hear 24.
When he Hessian matrix is indefinite, he quadratic hustin mu (d) is a take unbounded below. Thus, it's a poor model of f when d is large. Thus, it's reasonable do sellet he step by solving he subproblen: nh mu (d): d \le \Du
The trust region parameter Du is adjusted between iteratures, according to an agree onex between predicted and actual reduction in the hucking, as a ratio:
$\rho^{\mu} = \frac{f(\chi^{\mu}) - f(\chi^{\mu})}{f(\chi^{\mu}) - m_{\mu}(d)} = \frac{f(\chi^{\mu}) - f(\chi^{\mu}) - f(\chi^{\mu})}{m(0) - m_{\mu}(d)} \rightarrow \text{predicted reduction}$
o If $p^k \approx 1$, $g \cos d$ agreement \Rightarrow increase Δ^{4}
of pu small/regative, poor agreement. This happens via
2. mu(d) > mu(o) 3. Predicted > actual This, Au decreased.
Usually, 2"+= x"+d" if pu is a good cloice Else, we let x"+=x" and chose a rew direction

ALGORITM 1. Choose $\Delta > 0$ $\Delta_0 \in (0, \Delta)$

ne(0,4)

- 2. Objain du by solving min mu(d) where lld/l ≤∆k Evaluate p'k If f(xu) = mu(du), stop.
- 3. If pu> = her Du = 0.25 ||du||

 Else if pu> = and ||du|| = Du, her Du+1 = mm (2 Du, A)

 Else, Du+1 = Du
- 4. If ph>1, xhu=xh+dh and go to step 2. Else, xhu=xh and go to step 2.

 Δ is an overall bound on he step length. The radius is increased only if $119^{11}/1$ archally reaches he boundary of he trust region. If he step stays shicks in the region, hen Δ^{11} isn't interfering with the algorith, so we leave it undranged in he next iteration.

We need to solve Mn approximates; a way to do his is via he dogled method, to be used luther Bn is positive definite. The solution the obtained is at least at much reduction in Mn as gotten via he Canady point.

The Cauchy Point

For global convergence, it suffices to find an approximate du to minimize mu(d)

that lies in the frust region and gives sufficient reduction in the model.

This sufficient reduction is qualified in terms of the Cauch point, denoted

die.

The Cauchy point calculation involves a steps:

1. Find ds^n that solves a linear version of $m_n(d)$: $d_s^n = \underset{ij}{\operatorname{argmin}} f(x^n) + \nabla f(x^n)^T d \qquad ||d|| \leq \Delta^n$

2. Calculate he scalar tu>0 that minimizes mu (tu dsu) subject to stistying he trust region bod:
The most region bod: The grant Min (Td's) Td's \le \D's
The Couchy point is given by: dc = Tudsh The closed form is:
$d_s^{\kappa} = -\Delta^{\kappa} \frac{1}{ \nabla f(x^{\kappa}) } \nabla f(x^{\kappa})$
IF VF(x") TB" VF(x") = 0:
Mul Ids") decreases monotonically with I wherever $\nabla f(x^n) \neq 0$ \Rightarrow The largest value that satisfies he houst region bound $\forall x = 1$
If TE(x") TB" VHx")>0: Mu(Tds") is convex guadratic in t 110Hx")113
or boundary value 1 (whichever and hirst).
Advantage: - dc is inexpensive to calculate (due to closed form). - Cauchy point is NB in deciding it an approximate solution of he Subproblem is acceptable if (mu(0)-mu(d")) \geq c (mu(0)-mu(d")) \colon (0,1), accepted
if $(mu(0) - mu(d^n)) \ge C(mu(0) - mu(d^n))$ $C \in (0,1)$, accepted
- Trust region methods are globally convergent if du affain sulficient
Trust region methods are globally convergent if dk afain sufficient develope in mu es they give a reduction in mu hosts some fixed multiple of the decrease afaired by the Cauchy point
devease in Mu es. Her give a reduction in Mu hots some fixed multiple of he decrease attained by the Cauchy point
Trust region methods are globally convergent if du affair suchicient develase in mu es. Hen give a reduction in mu harts some fixed multiple of he decrease affaired by the Cauchy point. Disadvantage: If he implement the Cauchy point as our step always, this is bimply steppest descent, which performs poorly in approximizing. Mine on Trust Reg. O brill

Dogleg Method:
When Bu is positive definite and du remains in the bounds of the subproblem the step taken is called a full step, denoted: $d_b^{\mu} = -(\beta^{\mu})^{-1} \nabla \mathcal{H}_{2^{\mu}}$ $\|d_b^{\mu}\| \leq \Delta^{\mu}$ When Δ^{μ} is small, her $||\Delta^{\mu}|| \leq \Delta^{\mu}$ ensures he quadratic term in mu has little effect in he solution of he subproblem. So, it makes serse to minimize he linear fuchion: $||\Delta^{\mu}|| \leq \Delta^{\mu}$ $||\Delta^{\mu}|| \leq \Delta^{\mu}$ =) du = - Du [[(1/2")]] For intermediate values of Δ^{μ} , he doyleg method finds an appropriate solution d_{a}^{μ} using 2 line segments. Segrent 2 - from origin to he inconstraved minimizer along he skepest descent direction: $d_{u}^{\kappa} = \frac{-\nabla \mathcal{H}(x_{0})^{\top} \nabla \mathcal{H}(x_{0})}{\nabla \mathcal{H}(x_{0})^{\top} \mathcal{B}^{\kappa} \nabla \mathcal{H}(x_{0})} \nabla \mathcal{H}(x_{0})$ Segnat 2 - from du to d'6: $d^{\mu}(T) = \begin{cases} T d^{\mu} \\ d^{\mu} + (T-1)(d^{\mu} - d^{\mu}) \end{cases}$ 05 T 51 IS TEQ. The dogleg method minimizes Mu along this part, subject to the trust region bound. Since mu is a decreasing function along the pate, the chosen d'a = d'b when $||db|| \leq x\mu$. I by: $||du'' + (\tau - i)(bu'' - du')||^2 = (A^{\mu})^2$. Filse, the point of intersection of the dayleg + trustrage bandary. In = skepst descent diver Mn = live segment 2 m = leigh of vector = trust region

2. Theory of constrained (Ophimization
We consider to minimize a huchan so	
A general formulation of the problem:	
min Pla)	
min P(d) xeR*	
Subject to: $S(i(x)=0)$ ie £ $(c_i(x)\geq 0)$ ie J	
The Luckins Food Ci are somb	differentiable real-valued & charce
The functions f and G are smooth on a subset of R. I and E a are finite.	se by sets of indeces which
6. 4 Subser of L. J. W.	re moser of maces, comme
we jinit.	
At a Carrible soit & h ligaring	Who marked to the said I to
At a feasible point & he inegnal active if Ci(2)=0, and in act holds ie. Ci(2)>0 is satisfied.	The Container of the see
achve if cici)=U, and mac	hve IF SMCtest inequality
holds le. Cica)>O 15 Salishea.	$f(x)=x^2-2$
	1(2)=2-2
Evando	(2(x) >0
Example	C ₁ (x)=0
A single equality constraint problem:	Ca(a) has no effect on the
Male of the second	problem inachie i. x=0
$Min \alpha_1 + \alpha_2$	$\frac{1}{(I(x))} = achive solution lie$
$ST: \chi_1^2 + \chi_2^2 - Z = 0$	on it.
	<u> </u>
In the language of D : $f(x) = \infty$,	$+\chi_2$
J=9	
E=513	
$C_{i}(x) = x_{i}$	2+2 ² 2 -2
\mathfrak{X}_{2}	At ponts of extreme,
DCI (O, VZ) AVC,	VCi, Of one parall
1 de 1 200	eq. just fre We find at where f.c.
(-JZ,0) (JZ,0)	boundary interest eg have sare
2=x*	
	slope ⇒ poralle1.
R. (0,-\overline{\mathbb{L}})	
VG	

The minimum of flat on he circle is act	wiewed at: $(-1,-1) = x^*$
Now, $\nabla f(x) = (1, 1)$ $\nabla c_1(x) = (2x_1, 2x_2)$	
At the solution x^* : $\mathcal{D}(x^*) = (1,1)$ $\mathcal{D}(x) = (-2,-2)$	
Thus, $\nabla f(x^*)$, $\nabla G(x^*)$ are parallel.	
Therefore, here exists a scalar λ_{+}^{*} such $\nabla H(x^{4}) = \lambda_{+}^{*} \nabla G(x^{*})$	1. Mat:
n particular, 1, == 1 : Of(x*)=(1,1)= -1/2(2,-2) = 1/4 Pa((X*)
Condition 3) can be defermined by ex expansion of f and ci.	amining he first order Taylor
For C_1 , we need to retain: $C_1(x)=0$ $c_1(x+d)=0$ (eg. active no	, maffer what direction we nove in).
$\Rightarrow c_1(\alpha+d)=0 \approx G(\alpha)+\nabla c_1(\alpha)^{\top}d$	
$\Theta \ \nabla c_i(x)^{T} d = 0$	
Also, for $f:$ $f(x+d) \approx f(x) + \nabla f(x)^{\top} d$	
Since we want to decrease f ,	(Inother decrase is marted).
$0 > f(x+a) - f(x) \approx \nabla f(x)^{T} d$ yields, $\nabla f(x)^{T} d < 0$	6

.,..-

If here exists a direction of that satisfies both Dard D, we conclude that improvement on an current choice of x is possible. If follows mat a recessary condition of ofthality is if here's no direction of mat substitud both & ald @. We want a d that doesn't satisfy $\nabla C_{i}(x) \top d = 0$ 3 in $\nabla f(x) \top d < 0$ 3 in 7 19 both satisfied = tree's stillion to decrease. We want o to hold, O not to hold & minimizer, must find such a d It turns out that such a direction of is possible when Vci(x) I is parallel to VHa) T eg. VHa) = 1 VC(a) Y OCIGIT VP(a) It his "parallel" condition obesit hold, $d = -\left(J - \frac{\nabla_{c_{i}}(\alpha)\nabla_{c_{i}}(\alpha)^{T}}{\|\nabla_{c_{i}}(\alpha)\|^{2}}\nabla\mathcal{H}_{a}\right)$ J = identity By introducing he Lagrangian Ha), $L(\alpha, \lambda, i) = H(\alpha) - \lambda_i C_i(\alpha)$ Note that: $\nabla_{\alpha}L(\alpha,\lambda_1) = \nabla f(\alpha) - \lambda_1 \nabla C_1(\alpha)$ The andilia 3: $\nabla f(x^*) = \lambda_1 \nabla G(x^*)$ is equivalent to $\nabla_{\alpha}L(\alpha^{\dagger},\lambda_{i})=0$ This suggests that solutions for equality constrained problems is at the stationary points of L.

-	The scalar hi is called he Lagrange Multiplier for Ci(x)=0.
	The scalar hi is called he Lagrange Multiplier for G(EX)=0. This, (3) 19 is necessary for ophinality (of he equality constraints) but not sufficient.
	In example 1, at point (1,1), we can see host:
	$(1,1)=\nabla f(x)=\frac{1}{2}(2,2)=\frac{1}{2}\nabla c_{i}(x)$ But, $(1,1)$ isn't a minimum. In fact, it's a maximum.
	Moreover, in the case of equality constrained problems, "we can't five @ into a sufficient condition slopply by "replacing" the sign of his.
	To see his, consider replacing the constraint with $2-x_1^2-a_2^2=0$ eg. $x^*=(-1,-1)$
	$\lambda_{i}^{*} = \frac{1}{2}$ eg. $\nabla f(x) = (1, 1)$ $\nabla c_{i}(x) = (-2x_{i}, -2x_{2})$ So, at x^{*} :
	So, at x^* : $\nabla c_i(x^*) = (2,2)$
	$P(\alpha^*) = C(1, 1) = \frac{1}{2}(2, 2) = \frac{1}{2} \nabla c_1(\alpha^*)$
	Example
	A single inequality constraint problem: NBo Turn constraints so (≥C) min a1+22 never c≥C
	$\frac{mh}{St} = \frac{x_1 + \alpha_2}{2 - \alpha_1^2 - \alpha_2^2} = 0$
VC	always poils su Low of g. feasible region = disk of redins JZ, centred at 0
	egion - Zau Rau - Zau - Za
	x*=(-1,-1)

 $V(\alpha) = V(\alpha) = (1, 1)$ $V(\alpha) = (-2x, -2x_2)$ 1. $V(\alpha) = (3, 2)$ $\lambda_1 = 2$ Remarks VCI points towards he interior of the feasible region at he boundary of he circle at (1,1) $\nabla c_1(1,1) = (-2,-2)$ (-1,1) $\nabla_{G}(1,1)=(-2,-2)$ VG(-1,1)=(2,-2). 2. This inequality constrained problem differs with he equality constrained problem (although the solution is the same in this case):
In particular, he Lagrange multiplier will play a significant role in this problem. nlis problem. Back to our first order Taylor expansion of faid c, we conjective that a point x isn't optimal if we can find a direction d half both relates feasibility and decreases f. We still decrease f: . That d<0 (eg. Kx+d)-Hx) & What d) Now_1 $C_1(x+d) \ge 0$ and $C_1(x) \ge 0$ $C_1(x+d) \ge 0$ $C_1(x+d) \ge 0$ $C_1(x+d) \ge 0$ \Rightarrow 05 $C_1(\alpha+d) \approx G(\alpha) + \nabla G(\alpha) + \partial G(\alpha)$ \Rightarrow $C(\alpha) + \nabla C(\alpha)^{T} d \geq 0$ Case 1: or lies-strictly inside he circle We have 9(2)>0

	Any vector d will satisfy (1), provided the length of d must
	Mun Tf(x*) + O, we can obtain of mat satisfies @ and @,
	$d = \frac{-C_1(2)}{ \nabla K_2 } $ Exercise: Show of Satisfies © and ©
	Then, the only situation in which a direction fails to exist: $\nabla Hx)=0$ $\Rightarrow \alpha=x^{*}$ is optimal.
	<u> </u>
- 1 is	ac lies on he banday of he dide $Ci(x)=0$
eine.	eg G $V(x) \in O$ G $V(x) \in O$ $(C(x) + OC(x) \in O$ $(C(x) \in O$
1. 196	These conditions fail to hold when ∇f , ∇C_i point in the same direction: $\nabla H(x) = \lambda_i \cdot \nabla C_i(x)$, $\lambda_i \ge 0$.
	$\nabla H(x) = \lambda_1 \nabla C_1(x), \lambda_1 \geq 0$
	Sumary for both cases
	Summary for both cases When no birst order descent direction exists at some point xt, no have: Complementarity
	$V_{\times}L(x', \lambda', j=0)$ for some $\lambda' \in U$ $F_{L}(x)=0$, $\lambda = 0$
	We also require that $\lambda_i^* G(\alpha) = 0$ (5)
	Condition is is called the complementary andition. It implies the lagrange multiplier A, can be strictly positive only when c, is vactive; conditions of this type play a central note in constrained.
	In case 1: $C_1(x^*) \geq 0$ so (18) holds when $\lambda_i^* = 0$ $0 = \nabla_x L(x^*, \lambda^*) = \nabla H(x^*) - \lambda_i^* \nabla C_1(x^*)$
	1) (1) becomes $\nabla H(x^*) = 0$

Inm.

Example Min ataz (8) Mow: $C_1(x) = (x_1^2 + x_2^2 - 2)^2$ M maines he perhad.

derivatives = 0 $\frac{\partial C_1}{\partial x_1} = 2(\alpha_1^2 + \alpha_2^2 - 2)2x_1 = 0$ $\frac{\partial G}{\partial x_2} = 2(x_1^2 + x_2^2 - 2)2(x_2) = 0$. = O V x feasible : $\nabla c_i(x) = (0,0) = 0$ VF(a) = \(\lambda\) \(\nabla\) (at (-1,-1)) Assumption: a constraint qualification to ensure that such degenerate behavior doesn't occur, at all a. Definition Given x* and an active set A(x*). We say that he thear independice constraint qualification (LICO) holds If he set of active constraint graduents : VCI(X*) i = A(X+) is linearly independent Note, Implicitly, his implies that Ocica) + O Vi, as a zero vector makes hungs linearly dependent. Theorem (FONC under LICO) Suppose that x4 is a local solution of our constrained proble, and that he 2100 holds at xx. Then, here is a Lagrange multiplier vector 14 with components 1; i & EUI such that he following are satisfied at (xx xx):

Vx Lat)	*)=0		
cia*)=0	Vie E		
ci(x*)≥0	YiE I		
$\lambda i \geq 0$	VieJ		(ase 7: (i=0° > Conflirestant)
λ; c; (α*)=6	Yie EUJ	* Almoss sansfield	(ase 2: (i=0) Conflictants (ase 2: \lambda i=0) Conditions
These are often known as	he KHT andipor	•	
Since he confinertally co	nditus implies hi	corresponding to	inactive (1(x) are O,
we can comit terms	for if A(x*):		

 $0 = \nabla_{\alpha} \mathcal{L}(x^*, \lambda^*) = \nabla \mathcal{H}_{x^*}) - \sum_{i \in A(x^*)} \lambda_i \nabla C_i(x^*)$

Definition:

Given a boal solution x^* and λ^* satisfying the MUT conditions; we say that he strict confirmation and thin holds if exactly one of λ ; and $ci(x^*) = 0$ for each i.e.d. In other words, $\lambda_i > 0$ $\forall i \in INA(x^*)$. This ensures ow solution is unique.

Definition:

Given x* and A(x*) he achiveset, we say he Mangasanian-Fromovitz constaint gnalification (MFCO) holds if \exists a vector well such that $\nabla c_i(x*)^T w > 0$ \forall $i \in A(x*) \cap J$ $\nabla c_i(x*)^T w = 0$ \forall $i \in E$ and he set of equality constaints gradients $\{\nabla C_i(x*), i \in E\}$ is

The MFCO is a weaker condition play £100.
If £100 supsided, the:

independent.

VCICHITW=1 FIEA(XX)NI VCICHX)TW=0 FIEE

has a solution w, by he full soull of he achie constraint gradients.

Show plat he feasible region dished by:
$$(x_1-1)^2 + (x_2-1)^2 = 2$$

$$(x_1-1)^2 + (x_2+1)^2 \leq 2$$

$$x_1 \geq 0$$
The MFCQ is satisfied at $x = (0,0)$ but he Lical isn't.

$$C_1: 2 - (x_1-1)^2 - (x_2-1)^2 \geq 0$$

$$C_2: 2 - (x_1-1)^2 - (x_2+1) \geq 0$$

$$C_3: x_1 \geq 0$$

$$VC = \begin{bmatrix} -2(x_1-1) & -2(x_2+1) \\ -2(x_1-1) & -2(x_2+1) \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & -2 \\ 1 & 0 \end{bmatrix}$$
That:
$$VC_1 W = \begin{bmatrix} 2w_1 + 2w_1 \\ 2w_1 - 2w_2 \end{bmatrix} > 0 \Rightarrow w_1 > w_2$$

$$w_1 > 0$$
The con lines define: $w = [w, 0]$, $w_1 > 0$, and he MFCQ holds.

Thus,
$$k_1 VC_1(x) + k_2 VC_2(x) + k_3 VC_3(x) = 0$$

$$k_1(x_1) + k_2(x_2) + k_3(x_1) = (0)$$

$$2u_1 + 2k_2 + k_3 = 0$$

$$2u_2 + 2k_3 + k_3 = 0$$

$$2u_1 + 2k_2 + k_3 = 0$$

$$2u_1 + 2k_2 + k_3 = 0$$

$$2u_2 + 2k_3 + k_3 = 0$$

$$2u_1 + 2k_2 + k_3 = 0$$

$$2u_1 + 2k_2 + k_3 = 0$$

$$2u_1 + 2k_2 + k_3 = 0$$

		· · · · · · · · · · · · · · · · · · ·
Second Chaler Godinas		
We know: $\nabla f(x)^{T}d=0$ $C(x) \geq 0 \text{in } Z \neq Z$ $C(x) = 0 \text{in } E \neq Z$ and $X_{i}^{*}C(x^{*}) = 0$	((x*, 1*) = P((x*) -)	TV((x*)=
$\lambda_i^* C_i G^* = 0$		
Constraints can be: Inactive Ci>O Active Ci=O	$\lambda = 0$ $\lambda > 0$ $\lambda = 0$ (achie but about	**************************************
Definition Given a point x* and he active constr	mint set A(x*), he s	tet F is:
Fi= { ad a>0, d+ Vci(x+))=0 \tiek 120 \tieA(x*,	int?
When constraint gudification is satisfied feasible set at x7.	', F, is he targest ca	ne to be
We define F2 = F, with X* satisfy,	ing he KUT condition	s, by:
$F_2(\lambda^*) = \{ w \in F_i \mid \nabla_{C_i}(x^*)^\top w = 0 \}$ w - director	. VicA(x*)nI,	λ/>03.
$W \in F_2(\lambda^*) \Rightarrow \int \nabla G(x^*)^{\top} W = 0$ $= \nabla G(x^*)^{\top} W = 0$ $= \nabla G(x^*)^{\top} W = 0$ $= \nabla G(x^*)^{\top} W = 0$	Viete Vie A(x*) MI liz Vie A(x*) MI, liz	> 0 =0
It follows, weFz(1) =) Ni Vci(x4) Tw	=0 FIFEUZ	
$ \begin{array}{c} \nabla c_i (o(*)^T w = 0 \\ \Rightarrow \lambda \cdot \nabla c_i (o(*)^T w = 0 \\ \end{pmatrix} $		

 $\beta_{i,t} = \nabla f(x^*) = \nabla f(x^*)$

$\Rightarrow \nabla f(\alpha^*)^{\top} w = \lambda; \nabla C_i(\alpha^*)^{\top} w = 0$ $\therefore w \text{ directions satisy FONC.}$	
:. W directions satisfy FONC.	_
	,
eg.	
WEFZ(LY) -) WTVH(XX) = CEUZ	
	_
Hence, Fz has direction of FI for which it isn't clear it from	~
Hence, Fz has direction of FI for which it isn't clear if From the first derivatives, it Ill increase or decrease.	
Tleorem (SONC)	
Suppose It is a local solution of our problem and that he LICO and the is satisfied. Let λ^4 be a Lagrange multiplier vector	
andition is satisfied. Let it be a Lagrange multiplier vector	<u>,</u>
substyry he UKT andibas, and let Fz be as asually defined	· ·
Then,	<u>:</u>
Then, $W^T \nabla_{xx}^2 \mathcal{L}(x^*, \lambda^*) W \ge 0$ $\forall w \in F_2(\lambda^*)$.	
	· -
Ashict local solution satisfies:	
772	
wT 22 L(x+,15) w>0 + w = Fz (1x) w = 0	
aana kanan kanan ah aa	
Example Consider the following	
Consider the following	
$\min_{i} \alpha_i + \alpha_i$	
$57.2-x_1^2-x_2^2 \ge 0$	
2 2 2 2 2 2	
$\mathcal{L} = \chi_1 + \chi_2 - \lambda \left(2 - \chi_1^2 - \chi_2^2\right)$	
\frac{1}{2} - (112) \tau \tau \tau \tau \tau \tau \tau \tau	_1
$\nabla \mathcal{L} = \begin{pmatrix} 1+2\lambda x_i \\ 1+0\lambda x_0 \end{pmatrix} = \begin{pmatrix} 2\lambda \\ 1+0\lambda x_0 \end{pmatrix} = \begin{pmatrix} 2\lambda \\ 1+0\lambda x_0 \end{pmatrix}$	
$\frac{1+2\lambda x_{2}}{2-x_{1}^{2}-x_{2}^{2}} = 0 \Rightarrow x_{2} = \frac{1}{2\lambda}$ $\frac{2-(\frac{1}{2})^{2}-(\frac{1}{2})^{2}=0}{2-(\frac{1}{2})^{2}-(\frac{1}{2})^{2}=0} \Rightarrow \lambda = \pm \frac{1}{2}$	
$(2-x_1^2-x_2^2)$ $(2-(-\frac{1}{2})^2-(-\frac{1}{2})^2=0$ $\lambda=\pm\frac{1}{2}$	
\mathcal{L}_{i}	
For active inequality constraints, $\lambda > 0$	
→ X*= ź	
$\chi \star = (-1, -1)$	- 1
Now, we must check if it's a max/min	
HOW WE FINAL WILL HE HE OF MAX / MID	1

Positive definite \Rightarrow $\forall w, w^{T} \nabla_{xx}^{2} \mathcal{L}(x^{*}, \lambda^{*}) w > 0$ $\Rightarrow x^{+}$ is a shiet local solution.

Example

min -0.1
$$(x_1-4)^2+x_2^2$$

$$\mathcal{L} = -0.1 (x_1 - 4)^2 + x_2^2 - \lambda (x_1^2 + x_2^2 - 1)$$

$$\nabla \mathcal{L} = \begin{pmatrix} -0.2(x_1 - a) - 2\lambda x_1 \\ 2x_2 - 2\lambda x_2 \\ x_1^2 + x_2^2 - 1 \end{pmatrix} = 0$$

•
$$-0.2x_1 + 0.8 - 2\lambda x_1 = x_1(-0.2 - 2\lambda) + 0.8 = 0$$

•
$$\alpha_2(1-\lambda)=0$$
 @

$$g(z=0)$$
 or $\lambda=1$

$$0: -2.2 \times (= -0.8)$$

$$\times_{1} = -\frac{4}{11}$$

(3):
$$\chi_2^2 = \frac{105}{121}$$

 $\chi_2 = 0.9315$

$$\frac{1}{11}$$
, 0.9315,1)

If
$$x_2 = 0$$
.

(a) $x_1^2 - 1 = 0$

$$x_1 = x_1!$$

If $x_1 = 1$
(b) $0.6 - 2\lambda = 0$

$$\lambda = 0.3$$
(1, 0, 0.3)

If $x_1 = -1$
(1, 0, 0.3)

(1, 0, 0.3)

(1, 0, 0.3)

(1, 0, 0.3)

(1, 0, 0.3)

(1, 0, 0.3)

(1, 0, 0.3)

(1, 0, 0.3)

(2x)

At $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

For $x_1 = x_1 + x_2 = 1$

We $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

For $x_1 = x_1 + x_2 = 1$

We $x_2 = x_1 + x_2 = 1$

If $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_1 + x_2 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_2 + x_3 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_2 + x_3 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_1 = x_2 + x_3 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_3 = x_1 + x_2 = 1$

At $x_1 = x_2 + x_3 = 1$

At $x_2 = x_1 + x_2 = 1$

At $x_3 = x_2 + x_3 = 1$

At $x_3 = x_3 = 1$

At x

$$D(6^{\circ}) = [-0.7272]$$
 let $w = (w_1, w_2)$
[1.83]

$$(w, w_2)[-0.7272] = -0.7272w, +1.836w_2 = 0$$

=)
$$1.83 \omega_2 = 0.7272 \omega_1$$

 $\omega_2 = 0.3974 \omega_1$

$$N_{0\nu}$$
, (1, 0.3974) $\left[-0.80\right] \left(1\right) = -0.5789 < 0$

not a solution.

Algorithms For Nonlinear Gristrained Ophnization
We now consider methods for solving he non-liver problem:
min $f(x)$ S7: $\int c_i(x) = 0$ ie $f(x) \ge 0$ je $f(x) \ge 0$
f, ci, hj one all snooth, real valued hothers on \mathbb{R}^n $c = (c_1c_n)^T \qquad h = (h_1h_n) \qquad m \leq n$
Unconstrained Sequential Methods
1. Quadratic Peralty Nethod We trasform our original problem into:
$\frac{mn}{x \in \mathbb{R}^n} f(x) + \frac{1}{\epsilon} \sum_{n} \ \max \xi - h(x), 0\}\ ^2 + \ c(x)\ ^2$
win $f(x) + \frac{1}{\xi} \sum_{i \in E} c_i^2(x) + \frac{1}{\xi} \sum_{j \in I} ([h_j(x)])^2$ where $[h_j(x)]$ denotes max $\{-h_j(x), 0\}$.
We square it in order to penalise the constraint. If $h_j(x)$ is feasible, then $h_j(x) \ge 0$ $\Rightarrow -h_j(x) \le 0$
Mn = approximations As s -> 0, he penalty pushe It into he feasible region
and eventually sex
The drawbach: We need to reduce & greatly before we reach ow minimizer Con Couse ill-conditioned Enchous.

Logarithmic Barrier Method	<u> </u>
This method only applies when only inegarality	constraints are present, most
bonded eg. asxisb	
<i>u</i>	
min f(st) - E Sh(hi(x))	
i=1	
Noting, $\ln(0) = \infty$	
	Latin shods to so.
The solution of the solution o	7 LU17 7 5 TUGO 75 TO 1
	₹ = ⁷
	£ = \frac{1}{5}
	€≈0

9 6	
It can be seen that he approximates shoot to	∞ as € gets claser to 0.
It doesn't approximate he thicken well except a	T Near XXV
The Augmented Lagragia Nichold	
This method only applies when only equality	constraints exist.
We know our Lagrangia: L(x, \lambda)=H(x)-\lambda'C	(x) How all regot total
We know our Lagrangia: $L(x, \lambda) = f(x) - \lambda^{T}C$ The augmented one: $L_{\alpha}(x, \lambda, \varepsilon) = L(x, \lambda) + \frac{1}{\varepsilon} c(x) $	[]:
	Tuts?
xeR^ f(x)- XTC(x)+= 1 ((x) 1)2	
^	
Pros: • Convergence is mile taste han he grade, • We Up + need € → 0 to converge. • Well behaved generally.	repealty mehod
"We then I need E → U to converge.	
o'Well De have generally.	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	

Microstrated Exact Phally Nephed (UEPM)

Min Ma) +
$$\frac{1}{2}$$
 ($\frac{2}{2}$ max (-hita), 0) + $\frac{1}{2}$ (cja) +)

Sequential Quadrate Programming Midrids (SQM)

His a general isodian it constrained optimization of Mexicon's method for unconstrained, by minimizery a great which approximation of he nodel, and a linear approximation of C(x).

e.g. min(x) ST ((x)=0

A penalty faction method is an indirect way of alterpting to solve his Alternyl foli, (50) one approximated separating, trusts of a correction between the grandatic programming, problem of this addicts, and he Pleasten iteration of the Lagrangian $\mathcal{L}(x_1\lambda) = t(x_1) - t^{-1}C(x)$.

The KUT first order Noc of his implies:

 $\nabla \mathcal{L}(x_1\lambda) = (\nabla x \mathcal{L}) = (\nabla t(x) - \lambda^{-1} \nabla c(x)) = 0$

The Member iteration is:

 $\begin{pmatrix} x^{(n,k)} \\ x^{(n,k)} \end{pmatrix} = \begin{pmatrix} x^{(n)} \\ x^{(n)} \end{pmatrix} + \begin{pmatrix} d_x^{(n)} \\ d_x^{(n)} \end{pmatrix} = \begin{pmatrix} x^{(n)} \\ x^{(n)} \end{pmatrix} + \begin{pmatrix} x^{(n)} \\ x^{($

$$\Rightarrow \nabla^2 f(x^n, \lambda u) d = -\nabla f(x^n, \lambda^n)$$

$$\begin{pmatrix} \nabla_{xx}^{2} \mathcal{L} & -\nabla_{C(x)} / x - x^{\mu} \\ \nabla_{C(x)} & 0 \end{pmatrix} \begin{pmatrix} x - x^{\mu} \\ \lambda - \lambda^{\mu} \end{pmatrix} = \begin{pmatrix} \nabla f(x^{\mu}) - \nabla_{C(x)} \uparrow \lambda \\ C(x^{\mu}) \end{pmatrix}$$

$$VC(x)^{T}d + C(x) = 0$$

$$= \int \nabla_{d} f = \nabla_{xx}^{2} \mathcal{L}(x^{\mu}, \lambda^{\mu})^{T} d + \nabla f(x^{\mu}) - \nabla_{x} c(x^{\mu})_{\mu}^{T} = 0$$

Witten in matrix form:

$$\left(\frac{d^{4}}{m^{4}}\right) = \left(\frac{dx^{4}}{\lambda^{4+1}}\right)$$

