Probability Theory

Ikhan Choi

June 30, 2022

Contents

Ι	Pro	bability distributions	2
1	Ran	dom variables	3
	1.1	Sample spaces and distributions	3
	1.2	Discrete probability distributions	3
	1.3	Continuous probability distributions	3
	1.4	Independence	3
2	Con	ditional probablity	4
3	Con	vergence of probability measures	5
	3.1	Weak convergence in $\mathbb R$	5
	3.2	Weak topology in the space of probability measures	5
	3.3	Characteristic functions	7
	3.4	Moments	8
II	Di	screte stochastic process	9
4	Lim	it theorems	10
	4.1	Laws of large numbers	10
	4.2	Renewal theory	12
	4.3	Central limit theorems	12
5	Mar	rtingales	14
	5.1	Submartingales	14
	5.2	Martingale convergence theorem	14
	5.3	Convergence in L^p and uniform integrability	14
	5.4	Optional stopping theorem	14
6	Mar	kov chains	15
III	C	ontinuous stochastic processes	16
7	Bro	wnian motion	17
	7.1	Kolomogorov extension	17
IV	Sı	tochastic calculus	18

Part I Probability distributions

Random variables

1.1 Sample spaces and distributions

sample space of an "experiment" random variables distributions expectation, moments, inequalities equally likely outcomes coin toss dice roll ball drawing number permutation life time of a light bulb joint distribution transformation of distributions distribution computations

1.2 Discrete probability distributions

1.3 Continuous probability distributions

1.4 Independence

- **1.1** (Dynkin's π - λ lemma). Let \mathcal{P} be a π -system and \mathcal{L} a λ -system respectively. Denote by $\ell(\mathcal{P})$ the smallest λ -system containing \mathcal{P} .
 - (a) If $A \in \ell(\mathcal{P})$, then $\mathcal{G}_A := \{B : A \cap B \in \ell(\mathcal{P})\}$ is a λ -system.
 - (b) $\ell(\mathcal{P})$ is a π -system.
 - (c) If a λ -system is a π -system, then it is a σ -algebra.
 - (d) If $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.
- 1.2 (Monotone class lemma).

Conditional probablity

2.1 (Monty Hall problem). Suppose you're on a game show, and you're given the choice of three doors *A*, *B*, and *C*. Behind one door is a car; behind the others, goats. You pick a door, say *A*, and the host, who knows what's behind the doors, opens another door, say *B*, which has a goat. He then says to you, "Do you want to pick door *C*?" Is it to your advantage to switch your choice?

Proof. Let A, B, and C be the events that a car is behind the doors A, B, and C, respectively. Let X be the event that the challenger picked A, and Y the event that the game host opened B. Note $\{A, B, C\}$ is a partition of the sample space Ω , and X is independent to A, B, and C. Then, P(A) = P(B) = P(C) = P(X) = 1/3, and

$$P(Y|X,A) = \frac{1}{2}, \quad P(Y|X,B) = 0, \quad P(Y|X,C) = 1.$$

Therefore,

$$P(C|X,Y) = \frac{P(X \cap Y \cap C)}{P(X \cap Y)}$$

$$= \frac{P(Y|X,C)P(X \cap C)}{P(Y|X,A)P(X \cap A) + P(Y|X,B)P(X \cap B) + P(Y|X,C)P(X \cap C)}$$

$$= \frac{1 \cdot \frac{1}{9}}{\frac{1}{2} \cdot \frac{1}{9} + 0 \cdot \frac{1}{9} + 1 \cdot \frac{1}{9}} = \frac{2}{3}.$$

Similarly, $P(A|X,Y) = \frac{1}{3}$ and P(B|X,Y) = 0.

Convergence of probability measures

3.1 Weak convergence in \mathbb{R}

- **3.1** (Portemanteau theorem). Let F_n and F be distribution functions $\mathbb{R} \to [0,1]$. We will define the *weak convergence* as follows: F_n converges weakly to F if $F_n(x) \to F(x)$ for every continuity point x of F(x).
 - (a) $F_n(x) \to F(x)$ for all continuity points x of F.
- **3.2** (Skorokhod representation theorem).
- 3.3 (Continuous mapping theorem).
- 3.4 (Slutsky's theorem).
- **3.5** (Helly's selection theorem). (a) Monotonically increasing functions $F_n : \mathbb{R} \to [0,1]$ has a pointwise convergent subsequence.
 - (b) If $(F_n)_n$ is tight, then
- **3.6** (Properties of probability Borel measures). Let *S* be a topological space.
 - (a) Every single probability Borel measure is regular if S is perfectly normal.
 - (b) Every single probability Borel measure is tight if *S* is Polish.

3.2 Weak topology in the space of probability measures

3.7 (Local limit theorems). Suppose f_n and f are density functions.

(a) If $f_n \to f$ a.s., then $f_n \to f$ in L^1 .

(Scheffé's theorem)

- (b) $f_n \to f$ in L^1 if and only if in total variation.
- (c) If $f_n \to f$ in total variation, then $f_n \to f$ weakly.
- **3.8** (Portmanteau theorem). Let S be a normal space and, μ_{α} be a net in Prob(S). We define the *weak* convergence as follows: μ_{α} converges weakly to μ if

$$\int f \, d\mu_{\alpha} \to \int f \, d\mu$$

for every $f \in C_b(S)$. The following statements are all equivalent.

- (a) $\mu_{\alpha} \Rightarrow \mu$
- (b) $\mu_a(g) \to \mu(g)$ for every uniformly continuous $g \in C_b(S)$.
- (c) $\limsup_{\alpha} \mu_{\alpha}(F) \leq \mu(F)$ for every closed F.
- (d) $\liminf_{\alpha} \mu_{\alpha}(U) \ge \mu(U)$ for every open U.
- (e) $\lim_{\alpha} \mu_{\alpha}(A) = \mu(A)$ for every Borel A such that $\mu(\partial A) = 0$.

Proof. (a) \Rightarrow (b) Clear.

(b)⇒(c) Let *U* be an open set such that $F \subset U$. There is uniformly continuous $g \in C_b(S)$ such that $\mathbf{1}_F \leq g \leq \mathbf{1}_U$. Therefore,

$$\limsup_{\alpha} \mu_{\alpha}(F) \leq \limsup_{\alpha} \mu_{\alpha}(g) = \mu(g) \leq \mu(U).$$

By the outer regularity of μ , we obtain $\limsup_{\alpha} \mu_{\alpha}(F) \leq \mu(F)$.

- (c)⇔(d) Clear.
- $(c)+(d)\Rightarrow(e)$ It easily follows from

$$\limsup_{\alpha} \mu_{\alpha}(\overline{A}) \leq \mu(\overline{A}) = \mu(A) = \mu(A^{\circ}) \leq \liminf_{\alpha} \mu_{\alpha}(A^{\circ}).$$

(e) \Rightarrow (a) Let $g \in C_b(S)$ and $\varepsilon > 0$. Since the pushforward measure $g_*\mu$ has at most countably many mass points, there is a partition $(t_i)_{i=0}^n$ of an interval containing $[-\|g\|, \|g\|]$ such that $|t_{i+1} - t_i| < \varepsilon$ and $\mu(\{x: g(x) = t_i\}) = 0$ for each i. Let $(A_i)_{i=0}^{n-1}$ be a Borel decomposition of S given by $A_i := g^{-1}([t_i, t_{i+1}))$, and define $f_\varepsilon := \sum_{i=0}^{n-1} t_i \mathbf{1}_{A_i}$ so that we have $\sup_{x \in S} |g_\varepsilon(x) - g(x)| \le \varepsilon$. From

$$\begin{split} |\mu_{\alpha}(g) - \mu(g)| &\leq |\mu_{\alpha}(g - g_{\varepsilon})| + |\mu_{\alpha}(g_{\varepsilon}) - \mu(g_{\varepsilon})| + |\mu(g_{\varepsilon} - g)| \\ &\leq \varepsilon + \sum_{i=0}^{n-1} |t_{i}| |\mu_{\alpha}(A_{i}) - \mu(A_{i})| + \varepsilon, \end{split}$$

we get

$$\limsup_{\alpha} |\mu_{\alpha}(g) - \mu(g)| < 2\varepsilon.$$

Since ε is arbitrary, we are done.

- **3.9** (Embedding by Dirac measures). Let *S* be a normal space.
 - (a) $S \to \text{Prob}(S)$ is an embedding.
 - (b) $S \subset \text{Prob}(S)$ is sequentially closed.
 - (c)

Proof. (a) It uses Urysohn.

- (b) It uses (b)=>(c) of Portmanteau.
- **3.10** (Lévy-Prokhorov metric). Let *S* be a metric space, and Prob(*S*) be the set of probability (regular) Borel measures on *S*. Define $\pi : \text{Prob}(S) \times \text{Prob}(S) \to [0, \infty)$ such that

$$\pi(\mu, \nu) := \inf\{\alpha > 0 : \mu(A) \le \nu(A^{\alpha}) + \alpha, \ \nu(A) \le \mu(A^{\alpha}) + \alpha, \ \forall A \in \mathcal{B}(S)\},\$$

where A^{α} is the α -neighborhood of a.

- (a) π is a metric.
- (b) $\mu_n \to \mu$ in π implies $\mu_n \Rightarrow \mu$.
- (c) $\mu_a \Rightarrow \mu$ implies $\mu_a \rightarrow \mu$ in π , if S is separable.

- (d) (S,d) is separable if and only if $(Prob(S), \pi)$ is separable.
- (e) (S,d) is compact if and only if $(Prob(S), \pi)$ is compact
- (f) (S,d) is complete if and only if $(Prob(S), \pi)$ is complete.

Proof. (c)

- **3.11** (Prokhorov's theorem). Let S be a normal space. Let Prob(S) be the space of probability measures on S endowed with the topology of weak convergence.
 - (a) The relative compactness implies the tightness if *S* is Polish.
 - (b) The tightness implies the relative compactness.

Proof. (a) Fix a complete metric d on S. For each entourage E, we want to find a finite union of closed E-neighborhood that is arbitrarily full. And we require the countable fundamental system of uniformity.

(b)

3.3 Characteristic functions

3.12 (Characteristic functions). Let μ be a probability measure on \mathbb{R} . Then, the *characteristic function* of μ is defined by

$$\varphi(t) := Ee^{itX} = \int e^{itx} d\mu(x).$$

Note that $\varphi(t) = \hat{\mu}(-t)$ where $\hat{\mu}$ is the Fourier transform of $\mu \in \mathcal{S}'(\mathbb{R})$.

- (a) $\varphi \in C_b(\mathbb{R})$.
- **3.13** (Inversion formula). Let μ be a probability measure on \mathbb{R} and φ its characteristic function.
 - (a) For a < b, we have

$$\mu((a,b)) + \frac{1}{2}\mu(\{a,b\}) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-\pi}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt.$$

(b) For $a \in \mathbb{R}$, we have

$$\mu(\lbrace a\rbrace) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) dt$$

(c) If $\varphi \in L^1(\mathbb{R})$, then μ has density

$$f(x) = \frac{1}{2\pi} \int e^{-itx} \varphi(t) dt$$

in $C_0(\mathbb{R}) \cap L^1(\mathbb{R})$.

3.14 (Lévy's continuity theorem). The continuity theorem provides with a tool to verify the weak convergence in terms of characteristic functions. Let μ_n and μ be probability distributions on $\mathbb R$ with characteristic functions φ_n and φ .

7

- (a) If $\mu_n \to \mu$ weakly, then $\varphi_n \to \varphi$ pointwise.
- (b) If $\varphi_n \to \varphi$ pointwise and φ is continuous at zero, then $(\mu_n)_n$ is tight and $\mu_n \to \mu$ weakly.

Proof. (a) For each t,

$$\varphi_n(t) = \int e^{itx} d\mu_n(x) \to \int e^{itx} d\mu(x) = \varphi(t)$$

because $e^{itx} \in C_b(\mathbb{R})$. (b)

3.15 (Criteria for characteristic functions). Bochner's theorem and Polya's criterion

There are two ways to represent a measure: A measure μ is absolutely continuous iff its distribution F is absolutely continuous iff its density f is integrable. So, the fourier transform of an absolutely continuous measure is just the fourier transform of L^1 functions.

3.4 Moments

moment problem

moment generating function defined on $|t| < \delta$

Exercises

- **3.16.** Let φ_n be characteristic functions of probability measures μ_n on \mathbb{R} . If there is a continuous function φ such that $\varphi_n = \varphi$ on $n^{-1}\mathbb{Z}$, then μ_n converges weakly.
- 3.17 (Convergence determining class).
- **3.18** (Vauge convergence). Let *S* be a locally compact Hausdorff space.
 - (a) $\mu_{\alpha} \to \mu$ vaguely if and only if $\int g d\mu_{\alpha} \to \int g d\mu$ for all $g \in C_c(S)$.
 - (b) $\mu_{\alpha} \rightarrow \mu$ weakly if and only if vaguely.
 - (c) $\delta_n \rightarrow 0$ vaguely but not weakly. (escaping to infinity)

 \square

Part II Discrete stochastic process

Limit theorems

4.1 Laws of large numbers

Our purpose is to find appropriate a_n and slowly growing b_n such that $(S_n - a_n)/b_n \to 0$ in probability or almost surely.

4.1 (Kolmogorov-Feller theorem). Let X_i be an uncorrelated sequence of random variables such that

$$\lim_{x\to\infty}\sup_i xP(|X_i|>x)=0.$$

This condition is called the *Kolmogorov-Feller* condition. Let $Y_{n,i} := X_i \mathbf{1}_{|X_i| \le c_n}$.

(a) We have

$$\lim_{n\to\infty} P(S_n \neq T_n) = 0$$

if $n \lesssim c_n$.

(b) We have

$$\lim_{n\to\infty} P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) = 0$$

if $nc_n \lesssim b_n^2$.

(c) We have

$$\frac{S_n - ET_n}{n} \to 0$$

in probability.

Proof. Write $g(x) := \sup_i x P(|X_i| > x)$ so that $g(x) \to 0$ as $x \to \infty$.

(a) It follows from

$$P(S_n \neq T_n) \le \sum_{i=1}^n P(|X_i| > c_n) \le \sum_{i=1}^n \frac{1}{c_n} g(c_n) \lesssim g(c_n).$$

(b) We write

$$P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) \le \frac{1}{\varepsilon^2 b_n^2} E|T_n - ET_n|^2$$

$$= \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|Y_{n,i} - EY_{n,i}|^2$$

$$\le \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|X_i \mathbf{1}_{|X_i| \le c_n}|^2$$

$$= \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n \int_0^{c_n} 2x P(|X_i| > x) dx$$

$$\le \frac{2n}{\varepsilon^2 b_n^2} \int_0^{c_n} g(x) dx$$

$$= \frac{2nc_n}{\varepsilon^2 b_n^2} \int_0^1 g(c_n x) dx$$

$$\lesssim \int_0^1 g(c_n x) dx.$$

Since $g(x) \le x$ and $g(x) \to 0$ as $x \to \infty$, the function g is bounded. By the bounded convergence theorem, we get $\int_0^1 g(c_n x) dx \to 0$ as $n \to \infty$.

4.2 (St. Petersburg paradox). We want see the asymptotic behavior of the partial sums S_n of i.i.d. random variables X_i such that $E|X_i| = \infty$. Let

$$P(X_n = 2^m) = 2^{-m}$$
 for $m \ge 1$.

Let $Y_{n,i} := X_i \mathbf{1}_{|X_i| < c_n}$.

(a) We have

$$\lim_{n\to\infty} P(S_n \neq T_n) = 0$$

if $n \ll c_n$.

(b) We have

$$\lim_{n\to\infty} P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) = 0$$

if $nc_n \ll b_n^2$.

(c) We have

$$\frac{S_n - n \log_2 n}{n^{1+\varepsilon}} \to 0$$

in probability for every $\varepsilon > 0$.

Proof. (a) It follows from

$$P(S_n \neq T_n) \leq \sum_{i=1}^n P(X_i \neq Y_{n,i}) = \sum_{i=1}^n P(|X_i| > c_n) \leq \sum_{i=1}^n \frac{2}{c_n} = \frac{2n}{c_n}.$$

(b) It follows from

$$\begin{split} P\left(\left|\frac{T_n - ET_n}{b_n}\right| > \varepsilon\right) &\leq \frac{1}{\varepsilon^2 b_n^2} E|T_n - ET_n|^2 \\ &= \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|Y_{n,i} - EY_{n,i}|^2 \\ &\leq \frac{1}{\varepsilon^2 b_n^2} \sum_{i=1}^n E|X_i \mathbf{1}_{|X_i| \leq c_n}|^2 \\ &\leq \frac{1}{\varepsilon^2 b_n^2} n \cdot 2c_n \end{split}$$

4.3 (Borel-Cantelli lemmas).

4.4 (Head runs).

4.5 (Strong laws of large numbers for L^1). Proof by Etemadi

Random series proof

4.2 Renewal theory

4.3 Central limit theorems

4.6 (Central limit theorem for L^3). Replacement method by Lindeman and Lyapunov

4.7 (Lindeberg-Feller theorem). Let X_i be independent random variables such that for every $\varepsilon > 0$ we have

$$\lim_{n\to\infty}\frac{1}{s_n^2}\sum_{i=1}^n E|X_i-EX_i|^2\mathbf{1}_{|X_i-EX_i|>\varepsilon s_n}=0.$$

This condition is called the *Lindeberg-Feller* condition. Let $Y_{n,i} := \frac{X_i - EX_i}{s_n}$

(a) We have

$$|Ee^{it(S_n-ES_n)/s_n}-e^{-\frac{1}{2}t^2}|\leq \sum_{i=1}^n|Ee^{itY_{n,i}}-e^{-\frac{1}{2}E(tY_{n,i})^2}|.$$

(b) For any $\varepsilon > 0$, we have an estimate

$$\left| E e^{itY} - \left(1 - \frac{1}{2} E(tY)^2 \right) \right| \lesssim_t \varepsilon EY^2 + EY^2 \mathbf{1}_{|Y| > \varepsilon}$$

for all random variables *Y* such that $EY^2 < \infty$.

(c) For any $\varepsilon > 0$, we have an estimate

$$\left|e^{-\frac{1}{2}E(tY)^2}-\left(1-\frac{1}{2}E(tY)^2\right)\right|\lesssim_t EY^2(\varepsilon^2+EY^2\mathbf{1}_{|Y|>\varepsilon}).$$

for all random variables *Y* such that $EY^2 < \infty$.

(d)

Proof. (a) Note

$$Ee^{it(S_n - ES_n)/s_n} = \prod_{i=1}^n Ee^{itY_{n,i}}$$
 and $e^{-\frac{1}{2}t^2} = \prod_{i=1}^n e^{-\frac{1}{2}E(tY_{n,i})^2}$.

(b) Since

$$\left| e^{ix} - \left(1 + ix - \frac{1}{2}x^2 \right) \right| = \left| \frac{i^3}{2} \int_0^x (x - y)^2 e^{iy} \, dy \right| \le \min \left\{ \frac{1}{6} |x|^3, x^2 \right\}$$

for $x \in \mathbb{R}$, we have

$$\begin{split} \left| E e^{itY} - \left(1 - \frac{1}{2} E(tY)^2 \right) \right| &\leq E \left| e^{itY} - \left(1 - \frac{1}{2} (tY)^2 \right) \right| \\ &\lesssim_t E \min\{ |Y|^3, Y^2 \} \\ &\leq E |Y|^3 \mathbf{1}_{|Y| \leq \varepsilon} + E Y^2 \mathbf{1}_{|Y| > \varepsilon} \\ &\leq \varepsilon E Y^2 + E Y^2 \mathbf{1}_{|Y| > \varepsilon}. \end{split}$$

(c) Since

$$|e^{-x} - (1-x)| = \left| \int_0^x (x-y)e^{-y} \, dy \right| \le \frac{1}{2}x^2$$

for $x \ge 0$, we have

$$\left| e^{-\frac{1}{2}E(tY)^2} - \left(1 - \frac{1}{2}E(tY)^2\right) \right| \lesssim_t (EY^2)^2 \le EY^2(\varepsilon^2 + EY^2\mathbf{1}_{|Y| > \varepsilon}).$$

4.8. Let $X_n : \Omega \to \mathbb{R}$ be independent random variables. If there is $\delta > 0$ such that the *Lyapunov condition*

 $\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^n E|X_i - EX_i|^{2+\delta} = 0$

is satisfied, then

$$\frac{S_n - ES_n}{S_n} \to N(0, 1)$$

weakly, where $S_n := \sum_{i=1}^n X_i$ and $S_n^2 := VS_n$.

Berry-Esseen ineaulity

Exercises

4.9 (Bernstein polynomial). Let $X_n \sim \text{Bern}(x)$ be i.i.d. random variables. Since $S_n \sim \text{Binom}(n,x)$, $E(S_n/n) = x$, $V(S_n/n) = x(1-x)/n$. The L^2 law of large numbers implies $E(|S_n/n-x|^2) \to 0$. Define $f_n(x) := E(f(S_n/n))$. Then, by the uniform continuity $|x-y| < \delta$ implies $|f(x)-f(y)| < \varepsilon$,

$$|f_n(x) - f(x)| \le E(|f(S_n/n) - f(x)|) \le \varepsilon + 2||f||P(|S_n/n - x| \ge \delta) \to \varepsilon.$$

- **4.10** (High-dimensional cube is almost a sphere). Let $X_n \sim \text{Unif}(-1,1)$ be i.i.d. random variables and $Y_n := X_n^2$. Then, $E(Y_n) = \frac{1}{3}$ and $V(Y_n) \leq 1$.
- **4.11** (Coupon collector's problem). $T_n := \inf\{t : |\{X_i\}_i| = n\}$ Since $X_{n,k} \sim \text{Geo}(1 \frac{k-1}{n})$, $E(X_{n,k}) = (1 \frac{k-1}{n})^{-1}$, $V(X_{n,k}) \le (1 \frac{k-1}{n})^{-2}$. $E(T_n) \sim n \log n$
- 4.12 (An occupancy problem).
- **4.13.** Find the probability that arbitrarily chosen positive integers are coprime.

Poisson convergence, law of rare events, or weak law of small numbers (a single sample makes a significant attibution)

Martingales

- 5.1 Submartingales
- 5.2 Martingale convergence theorem
- **5.1** (Doob's upcrossing inequality). (a)
- **5.2** (Martingale convergence theorems). (a)
- **5.3.** (a)
- 5.3 Convergence in L^p and uniform integrability
- 5.4 Optional stopping theorem

Markov chains

Part III Continuous stochastic processes

Brownian motion

7.1 Kolomogorov extension

7.1 (Kolmogorov extension theorem). A *rectangle* is a finite product $\prod_{i=1}^n A_i \subset \mathbb{R}^n$ of measurable $A_i \subset \mathbb{R}$, and *cylinder* is a product $A^* \times \mathbb{R}^{\mathbb{N}}$ where A^* is a rectangle. Let \mathcal{A} be the semi-algebra containing \emptyset and all cylinders in $\mathbb{R}^{\mathbb{N}}$. Let $(\mu_n)_n$ be a sequence of probability measures on \mathbb{R}^n that satisfies *consistency condition*

$$\mu_{n+1}(A^* \times \mathbb{R}) = \mu_n(A^*)$$

for any rectangles $A^* \subset \mathbb{R}^n$, and define a set function $\mu_0 : \mathcal{A} \to [0, \infty]$ by $\mu_0(A) = \mu_n(A^*)$ and $\mu_0(\emptyset) = 0$.

- (a) μ_0 is well-defined.
- (b) μ_0 is finitely additive.
- (c) μ_0 is countably additive if $\mu_0(B_n) \to 0$ for cylinders $B_n \downarrow \emptyset$ as $n \to \infty$.
- (d) If $\mu_0(B_n) \ge \delta$, then we can find decreasing $D_n \subset B_n$ such that $\mu_0(D_n) \ge \frac{\delta}{2}$ and $D_n = D_n^* \times \mathbb{R}^{\mathbb{N}}$ for a compact rectangle D_n^* .
- (e) If $\mu_0(B_n) \ge \delta$, then $\bigcap_{i=1}^{\infty} B_i$ is non-empty.

Proof. (d) Let $B_n = B_n^* \times \mathbb{R}^{\mathbb{N}}$ for a rectangle $B_n^* \subset \mathbb{R}^{r(n)}$. By the inner regularity of $\mu_{r(n)}$, there is a compact rectangle $C_n^* \subset B_n^*$ such that

$$\mu_0(B_n \setminus C_n) = \mu_{r(n)}(B_n^* \setminus C_n^*) < \frac{\delta}{2^{n+1}}.$$

Let $C_n := C_n^* \times \mathbb{R}^{\mathbb{N}}$ and define $D_n := \bigcap_{i=1}^n C_i = D_n^* \times \mathbb{R}^{\mathbb{N}}$. Then,

$$\mu_0(B_n \setminus D_n) \leq \mu_0(\bigcup_{i=1}^n B_n \setminus C_i) \leq \mu_0(\bigcup_{i=1}^n B_i \setminus C_i) < \frac{\delta}{2},$$

which implies $\mu_0(D_n) \geq \frac{\delta}{2}$.

(e) Take any sequence $(\omega_n)_n$ in $\mathbb{R}^{\mathbb{N}}$ such that $\omega_n \in D_n$. Since each $D_n^* \subset \mathbb{R}^{r(n)}$ is compact and non-empty, by diagonal argument, we have a subsequence $(\omega_k)_k$ such that ω_k is pointwise convergent, and its limit is contained in $\bigcap_{i=1}^{\infty} D_i \subset \bigcap_{i=1}^{\infty} B_n = \emptyset$, which is a contradiction that leads $\mu_0(B_n) \to 0$.

Part IV Stochastic calculus