ML Special Assignment

- Munmun Sangtani, 20BEC073
- Siddharth Agarwal, 20BEC119

What we have developed?

E-Commerce Product Price Prediction

We aim to develop a pricing algorithm that automatically suggests optimal prices for products listed on online platforms.

Why we have developed this?

By providing users with suggested prices based on product attributes and user-inputted text descriptions, enhance the buying and selling experience can be enhanced and the volume of transactions can be increased.

How we have developed this?

we have presented a comparative study of two machine learning algorithms, LightGBM and Ridge Regression, for e-commerce price prediction tasks. Additionally, we have evaluated their performance using the RMSLE metric, which is particularly useful for predicting logarithmic values.

Flow of Program:

Importing dataset

Preparing the Corpus for Analysis

Explore Training Set

Create three new features from Categories (Main, Sub1, Sub2)

Create CSR_Matrix & Merge the Sparse Matrices

Data Cross validation - Holdout Method

Train with LGBM

Train with Ridge Regression

Predict on test set

Name	the title of listing.
condition-id	the condition of the
Category-name	category of listing

Brand-name

Price

Shipping

Item-description

Train-id / test-id

the condition of the items by seller category of listing

the price for the item sold. Our Target variable we want to predict,

1 if shipping fee paid by seller and 0

the full description of item.

id of the listing

brand of listing

which is in USD.

by buyer

Algorithms Used

Algorithms Used

- LGBM: It is a gradient boosting framework that uses a tree-based learning algorithm and is designed to be efficient, scalable, and accurate for large-scale datasets.
- rmsle: 0.6571443747117787
- Ridge Regression: It is a regularization technique that adds a penalty term
 to the regression model's cost function to reduce the impact of
 multicollinearity on the model's coefficients.
- rmsle: 0.47049933995488696

Results and Analysis

Price Distribution

- The mean price in the dataset is 26 Dollars
- The median price in the dataset is 17 Dollars
- The max price in the dataset is 2000 Dollars
- Due to the skewed dataset, the median price is a more reliable price to gauge off of.

Top 20 brand distribution

Majority of the top brands are clothing brands and electronics. PINK and Victoria Secret are among the top 3 brands and are typically towards female customers.

Main Category

It is seen that majority of the distribution is taken by women and beauty. They take 56% of the distribution. The prices are evenly distributed across all categories. The Men category the only one that averages out the most.

Effect of word count

Effect of word count of item description on prices: It was observed that from about 0-300 words, there is a positive linear relationship. After that a gradual negative relationship was seen. It drops at about the 1000 word point. Overall, the word count did not have any significant role in deciding the price of an item

