Signal und System Theorie

Prof. Dr.-Ing. Frank Giesecke

28.10.2024

Wiederholung

1. Leistungssignale Gleichanteil/ linearer Mittelwert/ Moment 1. Ordnung $\bar{x} = (coming_s oon)$

$$f(x) = \lim_{T \to \infty} \int_{-T}^{T} x^2 dt$$

- 2. Signalgleichleistung (Leistung, die den Gleichanteil verursacht)
 - $P_{x=} = \bar{x}^2 = m_1^2$
- 3. mittlere Signalleistung/ quadratische Mittelwert/ Gesamt-Signalleistung/ Moment 2. Ordnung $P=\bar{x^2}=m_2=(coming_soon)$
- 4. Effektivwert (Wurzel aus der mittleren Signalleistung) $x_{eff} = \sqrt{P} = \sqrt{x^2}$
- 5. Signalwechselleistung/ Varianz/Zentral-Moment 2. Ordnung $P_x = \sigma^2 = \mu_2 = P_x P_{x=} = \bar{x^2} \bar{x}^2$
- 6. Standartabweichung $\sigma = \sqrt{P_x} = \sqrt{\mu_2}$

Alternative Berechnung der Signalwechselleistung/ Varianz/ Zentral-Moment 2. Ordnung

$$P_x = (coming_soon)$$

$$P_x = P_x - P_x$$

Direkte Berechnung der Varianz/ Signalwechselspannung aus einem Datensatz (digital)

Fallunterscheidung

linerer Mittelwert/ Gleichanteil ist bekannt oder kann exakt bestimmt werden.

 $\bar{x}istbekannt$ $\sigma^2 = P_x = \mu_2 = (coming_soon)$

linearer Mittelwert wird aus den N Werten bestimmt. $\bar{x}istun - bekannt$ $\bar{x}_N = (coming_soon)$

N = Anzahl der Werte

Es folgt:

Angenäherter Einheitssprung, Einheitssprung-Funktion, Einheitsimpuls-Funktion, Deltaimpuls/ Dirac-Impuls, Einheitsanstiegs-Funktion

Angenäherter Einheitssprung (δ delta)

(grafic is coming
$$\overrightarrow{Differentation}$$
 (grafic is coming soon)
$$(\frac{d}{dt}) \qquad \text{soon})$$

$$\overleftarrow{Integration} \qquad \hookrightarrow \text{Intigrationsgrenzen} \qquad -\infty bisaktueller Zeitpunkt(t) \qquad \sigma = (coming_soon)$$

..2024 Vorlesung noch nicht nachgetragen

11.11.2024

Ergänzung: Kreuzrelation

$$E_{x1x2}(\tau) = \int_{-\infty}^{\infty} x(t) * x_2(t+\tau) * dt$$

mindestens eines der Verläufe muss ein Energiesignal sein. Wenn beide Verläufe x_1 und x_2 Leistungssignale sind, dann:

$$Allg.Variante: P_{x1x2}(\tau) = \lim_{T \to \infty} x_1(t)x_2 * x_2(t+\tau) * dt$$

bei Vorliegen einer Periodizität von x_1 und x_2

$$P_{x1x2}(\tau) = \frac{1}{T} \int_0^T x(t) * x_2(t+\tau) * dt$$

entweder T als gleiche Periode bei den Verläufen oder T als gemeinsames Vielfaches der beiden Periodenduaer von x_1 und x_2

Das System

(system bild fehlt noch wurde aber schon erstellt)

Im Zeitbereich:

z.B. Spannung $u_e(t) \to u_a(t)$ oder digital/zeitdiskret

System im Laplace Bereich

 $s = \sigma + j\omega$

(system im laplace-bereich bild fehlt wurde aber schon erstellt)

System in Frequenzbereich

System-Eigenschaften

- 4 Grundeigenschaften:
 - Linearität
 - linear
 - licht linear
 - Zeitinvarianz
 - Zeit-konstant
 - Zeit-veränderlich
 - Kausalität
 - kausal
 - * statisch (speicherlos)

- * dynamisch (mit Speicherelementen)
- a-kausal (nicht kausal)
- Stabilität
 - Stabil
 - Grenz-Stabil
 - In-Stabil

20.11.2024