by using Self-supervised Model with Multi-task Learning

Automatic Severity Classification of Dysarthric speech

Eun Jung Yeo*, Kwanghee Choi*, Sunhee Kim, Minhwa Chung

ICASSP 2023

Contents

- 1. Motivation
- 2. Our method
- 3. Results & Analyses
- 4. Takeaways

What is dysarthric speech?

1. Dysarthria: A group of motor speech disorders resulting from neuromuscular control disturbances.

What is dysarthric speech?

- 1. Dysarthria: A group of motor speech disorders resulting from neuromuscular control disturbances.
- 2. People with dysarthria suffer from degraded speech intelligibility.

What is dysarthric speech?

- 1. Dysarthria: A group of motor speech disorders resulting from neuromuscular control disturbances.
- 2. People with dysarthria suffer from degraded speech intelligibility.
- 3. Accurate and reliable speech assessment is essential in the clinical field.

What is dysarthric speech?

- 1. Dysarthria: A group of motor speech disorders resulting from neuromuscular control disturbances.
- 2. People with dysarthria suffer from degraded speech intelligibility.
- 3. Accurate and reliable speech assessment is essential in the clinical field.

Main challenge of dysarthric speech

: Technologies related to dysarthric speech suffers from data scarcity.

What is dysarthric speech?

- 1. Dysarthria: A group of motor speech disorders resulting from neuromuscular control disturbances.
- 2. People with dysarthria suffer from degraded speech intelligibility.
- 3. Accurate and reliable speech assessment is essential in the clinical field.

- : Technologies related to dysarthric speech suffers from data scarcity.
 - → Self-supervised pre-trained model

What is dysarthric speech?

- 1. Dysarthria: A group of motor speech disorders resulting from neuromuscular control disturbances.
- 2. People with dysarthria suffer from degraded speech intelligibility.
- 3. Accurate and reliable speech assessment is essential in the clinical field.

- : Technologies related to dysarthric speech suffers from data scarcity.
 - → Self-supervised pre-trained model
 - → Multi-Task Learning

Our method

Fig. 1: Illustration of our proposed method.

Our method - Self-supervised model

Fig. 1: Illustration of our proposed method.

Fig. 1: Illustration of our proposed method. Our paper's focus! Severity classification

Fig. 1: Illustration of our proposed method. Our paper's focus! Severity classification

Fig. 1: Illustration of our proposed method.

1. The model is enforced to learn both acoustic and phonetic/pronunciation features for severity classification.

- 1. The model is enforced to learn both acoustic and phonetic/pronunciation features for severity classification.
- 2. The auxiliary ASR task can act as a regularizer, as the model is trained to focus on two different tasks.

- 1. The model is enforced to learn both acoustic and phonetic/pronunciation features for severity classification.
- 2. The auxiliary ASR task can act as a regularizer, as the model is trained to focus on two different tasks.
 - → Prevents **overfitting** and yield **better performances**!

Dataset

- QoLT Korean dysarthric speech dataset
 - Speakers
 - o 10 healthy speakers (5 males, 5 females)
 - 70 dysarthric speakers (45 males, 25 females)
 - 25 mild, 26 mild-to-moderate, 12 moderate-to-severe, 7 severe

Dataset

- QoLT Korean dysarthric speech dataset
 - Speakers
 - 10 healthy speakers (5 males, 5 females)
 - 70 dysarthric speakers (45 males, 25 females)
 - 25 mild, 26 mild-to-moderate, 12 moderate-to-severe, 7 severe

- Materials
 - Each speaker recorded five sentences twice → Total of 800 utterances

Dataset

- QoLT Korean dysarthric speech dataset
 - Speakers
 - 10 healthy speakers (5 males, 5 females)
 - 70 dysarthric speakers (45 males, 25 females)
 - 25 mild, 26 mild-to-moderate, 12 moderate-to-severe, 7 severe

- Materials
 - Each speaker recorded five sentences twice → Total of 800 utterances

- Experiment
 - 5-way cross-validation in a speaker-independent manner.

Table 1: Classification performance compared to the baselines.

Input	Classifier	Accuracy	Precision	Recall	F1-score
	SVM	55.01	53.89	53.27	52.28
eGeMAPS	MLP	50.79	44.46	48.60	46.58
	XGBoost	52.20	55.07	50.85	50.61
Hand anofted	SVM	61.02	64.19	63.19	62.41
Hand-crafted features	MLP	55.74	60.06	60.34	58.85
Teatures	XGBoost	55.72	61.14	56.21	56.16
eGeMaps	SVM	57.83	58.83	57.59	56.65
+ Hand-crafted	MLP	50.21	48.40	47.31	46.76
features	XGBoost	56.29	62.29	56.23	56.68
Raw audio	STL	61.02	64.09	57.93	57.13
Kaw audio	MTL	65.52	66.47	64.86	63.19

Table 1: Classification performance compared to the baselines.

Input	Classifier	Accuracy	Precision	Recall	F1-score
	SVM	55.01	53.89	53.27	52.28
eGeMAPS	MLP	50.79	44.46	48.60	46.58
	XGBoost	52.20	55.07	50.85	50.61
Hand anofted	SVM	61.02	64.19	63.19	62.41
Hand-crafted features	MLP	55.74	60.06	60.34	58.85
Teatures	XGBoost	55.72	61.14	56.21	56.16
eGeMaps	SVM	57.83	58.83	57.59	56.65
+ Hand-crafted	MLP	50.21	48.40	47.31	46.76
features	XGBoost	56.29	62.29	56.23	56.68
D 1'	STL	61.02	64.09	57.93	57.13
Raw audio	MTL	65.52	66.47	64.86	63.19

Feature-based

Table 1: Classification performance compared to the baselines.

Input	Classifier	Accuracy	Precision	Recall	F1-score
	SVM	55.01	53.89	53.27	52.28
eGeMAPS	MLP	50.79	44.46	48.60	46.58
	XGBoost	52.20	55.07	50.85	50.61
Hand-crafted	SVM	61.02	64.19	63.19	62.41
features	MLP	55.74	60.06	60.34	58.85
Toutures	XGBoost	55.72	61.14	56.21	56.16
eGeMaps	SVM	57.83	58.83	57.59	56.65
+ Hand-crafted	MLP	50.21	48.40	47.31	46.76
features	XGBoost	56.29	62.29	56.23	56.68
Raw audio	STL	61.02	64.09	57.93	57.13
Naw audio	MTL	65.52	66.47	64.86	63.19

Feature-based

Table 1: Classification performance compared to the baselines.

						_
Input	Classifier	Accuracy	Precision	Recall	F1-score	
	SVM	55.01	53.89	53.27	52.28	_
eGeMAPS	MLP	50.79	44.46	48.60	46.58	
	XGBoost	52.20	55.07	50.85	50.61	
Hand-crafted features	SVM	61.02	64.19	63.19	62.41	_
	MLP	55.74	60.06	60.34	58.85	
Teatures	XGBoost	55.72	61.14	56.21	56.16	
eGeMaps	SVM	57.83	58.83	57.59	56.65	_
+ Hand-crafted	MLP	50.21	48.40	47.31	46.76	
features	XGBoost	56.29	62.29	56.23	56.68	
D 1'.	STL	61.02	64.09	57.93	57.13	CLS loss only
Raw audio	MTL	65.52	66.47	64.86	63.19	

Feature-based

Table 1: Classification performance compared to the baselines.

						_
Input	Classifier	Accuracy	Precision	Recall	F1-score	
	SVM	55.01	53.89	53.27	52.28	_
eGeMAPS	MLP	50.79	44.46	48.60	46.58	
	XGBoost	52.20	55.07	50.85	50.61	
TT 1 C 1	SVM	61.02	64.19	63.19	62.41	_
Hand-crafted features	MLP	55.74	60.06	60.34	58.85	
icatures	XGBoost	55.72	61.14	56.21	56.16	
eGeMaps	SVM	57.83	58.83	57.59	56.65	_
+ Hand-crafted	MLP	50.21	48.40	47.31	46.76	
features	XGBoost	56.29	62.29	56.23	56.68	
D 1'	STL	61.02	64.09	57.93	57.13	CLS loss only
Raw audio	MTL	65.52	66.47	64.86	63.19	CLS + ASR

Feature-based

1. SSL > Feature-based

Table 1: Classification performance compared to the baselines.

Input	Classifier	Accuracy	Precision	Recall	F1-score	
	SVM	55.01	53.89	53.27	52.28	_
eGeMAPS	MLP	50.79	44.46	48.60	46.58	
	XGBoost	52.20	55.07	50.85	50.61	
Hand-crafted features	SVM	61.02	64.19	63.19	62.41	-
	MLP	55.74	60.06	60.34	58.85	
Teatures	XGBoost	55.72	61.14	56.21	56.16	
eGeMaps	SVM	57.83	58.83	57.59	56.65	
+ Hand-crafted	MLP	50.21	48.40	47.31	46.76	
features	XGBoost	56.29	62.29	56.23	56.68	
D 1: -	STL	61.02	64.09	57.93	57.13	CLS loss only
Raw audio	MTL	65.52	66.47	64.86	63.19	CLS + ASR

Feature-based

- 1. SSL > Feature-based
- 2. CLS + ASR > CLS only

Table 1: Classification performance compared to the baselines.

Input	Classifier	Accuracy	Precision	Recall	F1-score	-
	SVM	55.01	53.89	53.27	52.28	_
eGeMAPS	MLP	50.79	44.46	48.60	46.58	
	XGBoost	52.20	55.07	50.85	50.61	
Hand-crafted features	SVM	61.02	64.19	63.19	62.41	_
	MLP	55.74	60.06	60.34	58.85	
	XGBoost	55.72	61.14	56.21	56.16	
eGeMaps	SVM	57.83	58.83	57.59	56.65	_
+ Hand-crafted	MLP	50.21	48.40	47.31	46.76	
features	XGBoost	56.29	62.29	56.23	56.68	
Raw audio	STL	61.02	64.09	57.93	57.13	CLS loss onl
Naw audio	MTL	65.52	66.47	64.86	63.19	CLS + ASR

Feature-based

color-coded with severity.

color-coded with severity.

(c) Trained with MTL, color-coded with setence.

(d) Trained with STL, color-coded with setence.

Severity

(c) Trained with MTL, color-coded with setence.

(d) Trained with STL, color-coded with setence.

CLS Only

(a) Trained with MTL, color-coded with severity.

(b) Trained with STL, color-coded with severity.

(c) Trained with MTL, color-coded with setence.

(d) Trained with STL, color-coded with setence.

STL cannot distinguish different sentences

(a) Trained with MTL, color-coded with severity.

(b) Trained with STL, color-coded with severity.

(d) Trained with STL, color-coded with setence.

 STL cannot distinguish different sentences, while MTL's representations are clustered in terms of both sentences

(a) Trained with MTL, color-coded with severity.

(b) Trained with STL, color-coded with severity.

(d) Trained with STL, color-coded with setence.

 STL cannot distinguish different sentences, while MTL's representations are clustered in terms of both sentences and severity levels.

- (a) Trained with MTL, color-coded with severity.
- (b) Trained with STL, color-coded with severity.

(c) Trained with MTL, color-coded with setence.

(d) Trained with STL, color-coded with setence.

- STL cannot distinguish different sentences, while MTL's representations are clustered in terms of both sentences and severity levels.
 - → Indicates that the MTL model also encodes phonetic/pronunciation information.

- (a) Trained with MTL, color-coded with severity.
- (b) Trained with STL, color-coded with severity.

- (c) Trained with MTL, color-coded with setence.
- (d) Trained with STL, color-coded with setence.

- STL cannot distinguish different sentences, while MTL's representations are clustered in terms of both sentences and severity levels.
 - → Indicates that the MTL model also encodes phonetic/pronunciation information.
- 2. Unlike others, severe samples are strongly clustered.

- (a) Trained with MTL, color-coded with severity.
- (b) Trained with STL, color-coded with severity.

(c) Trained with MTL, color-coded with setence.

(d) Trained with STL, color-coded with setence.

- STL cannot distinguish different sentences, while MTL's representations are clustered in terms of both sentences and severity levels.
 - → Indicates that the MTL model also encodes phonetic/pronunciation information.
- Unlike others, severe samples are strongly clustered.
 - → May be due to significantly distorted speech, difficult for ASR

Fig. 3: Classification loss \mathcal{L}_{CE} and ASR loss \mathcal{L}_{CTC} on validation set. $\alpha = 0$ denotes the STL case when we use the \mathcal{L}_{CE} only.

Fig. 3: Classification loss \mathcal{L}_{CE} and ASR loss \mathcal{L}_{CTC} on validation set. $\alpha = 0$ denotes the STL case when we use the \mathcal{L}_{CE} only.

1. With joint optimization, model overfits much slower.

Fig. 3: Classification loss \mathcal{L}_{CE} and ASR loss \mathcal{L}_{CTC} on validation set. $\alpha = 0$ denotes the STL case when we use the \mathcal{L}_{CE} only.

- 1. With joint optimization, model overfits much slower.
- Delaying the optimization of ASR loss = stable optimization and better performances

Accuracy	$\alpha = 1.0$	$\alpha = 0.1$	$\alpha = 0.01$	$\alpha = 0.001$
e = 0	60.51	60.69	56.21	54.94
e = 10	61.82	63.12	57.14	57.00
e = 20	54.77	64.69	59.84	61.27
e = 30	57.74	65.52	60.10	62.72
e = 40	55.47	60.11	62.00	57.96
PER	$\alpha = 1.0$	$\alpha = 0.1$	$\alpha = 0.01$	$\alpha = 0.001$
e = 0	17.50	21.86	88.49	96.91
e = 10	14.83	22.37	82.59	96.49
e = 20	16.66	18.10	31.12	90.08
e = 30	15.87	17.72	23.10	74.54
e = 40	15.41	15.95	20.45	56.24

9			-	
Accuracy	$\alpha = 1.0$	$\alpha = 0.1$	$\alpha = 0.01$	$\alpha = 0.001$
e = 0	60.51	60.69	56.21	54.94
e = 10	61.82	63.12	57.14	57.00
e = 20	54.77	64.69	59.84	61.27
e = 30	57.74	65.52	60.10	62.72
e = 40	55.47	60.11	62.00	57.96
PER	$\alpha = 1.0$	$\alpha = 0.1$	$\alpha = 0.01$	$\alpha = 0.001$
e = 0	17.50	21.86	88.49	96.91
e = 10	14.83	22.37	82.59	96.49
e = 20	16.66	18.10	31.12	90.08
e = 30	15.87	17.72	23.10	74.54
e = 40	15.41	15.95	20.45	56.24

1. Bigger the α and later the e, the Phone Error Rate consistently drops.

Accuracy	$\alpha = 1.0$	$\alpha = 0.1$	$\alpha = 0.01$	$\alpha = 0.001$
e = 0	60.51	60.69	56.21	54.94
e = 10	61.82	63.12	57.14	57.00
e = 20	54.77	64.69	59.84	61.27
e = 30	57.74	65.52	60.10	62.72
e = 40	55.47	60.11	62.00	57.96
PER	1.0			
LEK	$\alpha = 1.0$	$\alpha = 0.1$	$\alpha = 0.01$	$\alpha = 0.001$
e = 0	$\alpha = 1.0$ 17.50	$\alpha = 0.1$ 21.86	$\alpha = 0.01$ 88.49	$\alpha = 0.001$ 96.91
e = 0	17.50	21.86	88.49	96.91
e = 0 $e = 10$	17.50 14.83	21.86 22.37	88.49 82.59	96.91 96.49

- 1. Bigger the α and later the e, the Phone Error Rate consistently drops.
- 2. Best accuracy found in the mid-point of the hyper-parameter grid.

17				
Accuracy	$\alpha = 1.0$	$\alpha = 0.1$	$\alpha = 0.01$	$\alpha = 0.001$
e = 0	60.51	60.69	56.21	54.94
e = 10	61.82	63.12	57.14	57.00
e = 20	54.77	64.69	59.84	61.27
e = 30	57.74	65.52	60.10	62.72
e = 40	55.47	60.11	62.00	57.96
PER	$\alpha = 1.0$	$\alpha = 0.1$	$\alpha = 0.01$	$\alpha = 0.001$
e = 0	17.50	21.86	88.49	96.91
e = 10	14.83	22.37	82.59	96.49
0 10	17.03	22.37	82.39	90.49
e = 20	16.66	18.10	31.12	90.49
			The state of the s	

- 1. Bigger the α and later the e, the Phone Error Rate consistently drops.
- 2. Best accuracy found in the mid-point of the hyper-parameter grid.
 - → Premature training of CLS leads to the model being under-trained with the ASR task, which fails to inject enough information.

1. Data scarcity

- 1. Data scarcity
- 2. Automatic dysarthria severity classification method

- 1. Data scarcity
- 2. Automatic dysarthria severity classification method

: a self-supervised model fine-tuned with multi-task learning

- 1. Data scarcity
- 2. Automatic dysarthria severity classification method
 - : a self-supervised model fine-tuned with multi-task learning,
 - : jointly learns the five-way severity classification task & ASR task.

- 1. Data scarcity
- 2. Automatic dysarthria severity classification method
 - : a self-supervised model fine-tuned with multi-task learning,
 - : jointly learns the five-way severity classification task & ASR task.
- 3. Further analyses

- 1. Data scarcity
- 2. Automatic dysarthria severity classification method
 - : a self-supervised model fine-tuned with multi-task learning,
 - : jointly learns the five-way severity classification task & ASR task.
- 3. Further analyses
 - : latent representation

- 1. Data scarcity
- 2. Automatic dysarthria severity classification method
 - : a self-supervised model fine-tuned with multi-task learning,
 - : jointly learns the five-way severity classification task & ASR task.
- 3. Further analyses
 - : latent representation → complementary information

- 1. Data scarcity
- 2. Automatic dysarthria severity classification method
 - : a self-supervised model fine-tuned with multi-task learning,
 - : jointly learns the five-way severity classification task & ASR task.
- 3. Further analyses
 - : latent representation → complementary information
 - : regularization effect

- 1. Data scarcity
- 2. Automatic dysarthria severity classification method
 - : a self-supervised model fine-tuned with multi-task learning,
 - : jointly learns the five-way severity classification task & ASR task
- 3. Further analyses
 - : latent representation → complementary information
 - : regularization effect → prevents overfitting

Thank you for your attention!