COMP7630 – Web Intelligence and its Applications

Recommender Systems

Valentino Santucci

valentino.santucci@unistrapg.it

Outline

- Need of Recommender Systems
- Recommendation Algorithms
 - Content-based
 - Collaborative Filtering
 - Memory-based CF
 - Model-based CF
- Evaluation Metrics

Information Overflow!!!

Information Overflow!!!

- Products to buy
- Holidays to spend
- Movies to watch
- People to follow
- News articles to read

- Psychological considerations of different stakeholders
 - Buyer: want to figure out what they need
 - Seller: want to make you buy what they desire
- Further complication: context/situation dependent ...
 - where you are, purpose behind, individual/group, ...

From Pull to Push

- Information Retrieval (Pull Information)
 - Query -> Matched Results -> Manual Filtering

- Recommender Systems (Push Information)
 - Potential Requirements -> Machine Filtering -> Recommendation

Recommender Systems

Page

Learning From Data The Elements of Statistical

Problem Space of RS

. .

Purchase records

Recommender **System**

Purchase records of other customers

RS: Assumptions behind

 Users' preferences remain stable for some time, and yet may change smoothly over time

• Steps:

- Observe the past users' or groups' preferences,
- Predict their future interests
- Recommend specific items of interest

Also called customization, personalization, targeted advertisement, ...

Formalization of Recommendation Problem

• Formally, a recommender system takes a set of users U and a set of items I and learns a function f such that:

$$f:U\times I\to \mathbb{R}$$

Outline

- Need of Recommender Systems
- Recommendation Algorithms
 - Content-based
 - Collaborative Filtering
 - Memory-based CF
 - Model-based CF
- Evaluation Metrics

Content-based RS

- Compute content features for all the items based on their description (how?)
- Compute a user profile that characterizes the types of items the user likes (how?).
- Compare items with the user profile to determine what to recommend (how?).

 Product features

 Froduct features

The user interest profiles are often created <u>explicitly</u> via online questionnaires of different formats (your design).

Content-based RS

User Profile Acquisition

Items Recommended

Content-based RS — TFIDF again!

- ullet We represent user profiles and item descriptions by vectorizing them using a set of k keywords
- Vectorize (e.g., using TF-IDF) both users and items and compute their similarity

$$I_j = (i_{j,1}, i_{j,2}, \dots, i_{j,k})$$
 $U_i = (u_{i,1}, u_{i,2}, \dots, u_{i,k})$

$$sim(U_i, I_j) = cos(U_i, I_j) = \frac{\sum_{l=1}^k u_{i,l} i_{j,l}}{\sqrt{\sum_{l=1}^k u_{i,l}^2} \sqrt{\sum_{l=1}^k i_{j,l}^2}}$$

Recommend the top-most similar items to the user

Content-based RS algorithm

Algorithm 9.1 Content-based recommendation

Require: User i's Profile Information, Item descriptions for items $j \in \{1, 2, ..., n\}$, k keywords, r number of recommendations.

- 1: **return** *r* recommended items.
- 2: $U_i = (u_1, u_2, \dots, u_k) = \text{user } i$'s profile vector;
- 3: ${I_j}_{j=1}^n = {(i_{j,1}, i_{j,2}, \dots, i_{j,k}) = \text{item } j'\text{s description vector}}_{j=1}^n;$
- 4: $s_{i,j} = sim(U_i, I_j), 1 \le j \le n$;
- 5: Return top r items with maximum similarity $s_{i,j}$.

Limitations of Content-based algorithm

- Similar items could be described differently
 - Synonymy ("happy" / "joyful", "love" / "passion", ...)
 - Polysemy ("bright students" / "bright light bulbs", "feet of a body" / "5 feet long", ...)
- Content-based recommendation systems make recommendations to users based on their past behavior or preferences
- Tend to suggest items that are similar to what the user has already consumed, which can lead to a lack of variety and discovery
- Rely on static user profiles that do not update frequently. Thus, they may not be able to adapt to changes in the user's preferences over time.
- •
- What if user's profile is not available!?

Outline

- Need of Recommender Systems
- Recommendation Algorithms
 - Content-based
 - Collaborative Filtering
 - Memory-based CF
 - Model-based CF
- Evaluation Metrics

Collaborative Filtering

Automating the word-of-mouth process

"You can trust me on this, because I heard it from a friend of a friend of a Facebook friend."

Collaborative Filtering (CF)

 Filtering information using techniques involving collaborative consideration of multiple viewpoints, multiple data sources, etc.

 Based on users' ratings or purchase records (or related information) [secondary use of the data]

 Not required to have textual descriptions about the users or content of the items (though hybrid approaches are possible)

How to obtain users' ratings?

Explicit ratings:

- entered by a user directly
- i.e., "Please rate this on a scale of 1-5"

Implicit ratings:

- Inferred from (online) user behavior
- E.g., songs played for the past few months
- E.g., amount of time spent on different webpages (or even different parts of a web page!)

Eye Tracking

https://connect.tobii.com/s/article/ How-do-Tobii-eye-trackerswork?language=en_US

> https://www.shopify.com/enter prise/ecommerce-eye-tracking

a. Baby Boomer

b. Generation Y

Rating Matrix

Value	Graphic representation	Textual representation		
5	***	Excellent		
4	***	Very good		
3	* * *	Good		
2	计 计	Fair		
1	\$	Poor		

Table 9.1: User-Item Matrix

	Lion King	Aladdin	Mulan	Anastasia
John	3	0	3	3
Joe Jill	5	4	0	2
Jill	1	2	4	2
Jane	3	?	1	0
Jane Jorge	2	2	0	1

Rating Matrix

Rating matrix contains several unknown entries... why?

Table 9.1: User-Item Matrix

	Lion King	Aladdin	Mulan	Anastasia
John	3	0	3	3
Joe Jill	5	4	0	2
Jill	1	2	4	2
Jane	3	?	1	0
Jane Jorge	2	2	0	1

• In CF, one aims to predict the missing ratings and possibly recommend the item with the highest predicted rating to the user

Memory-based CF vs Model-based CF

- Memory-based: Recommendation is directly based on previous ratings in the stored matrix that describes user-item relations
- Model-based: Assumes that an underlying model (hypothesis) governs how users rate items.
 - This model can be approximated and learned.
 - The model is then used to recommend ratings.
 - Example: users rate low budget movies poorly

Outline

- Need of Recommender Systems
- Recommendation Algorithms
 - Content-based
 - Collaborative Filtering
 - Memory-based CF
 - Model-based CF
- Evaluation Metrics

Memory-based CF

Two memory-based methods:

User-based CF

Users with similar **previous** ratings for items are likely to rate future items similarly

	11	12	13	14
U1	1	2	4	4
U 2	1	2	4	٠.
U3	2	5	2	2
U4	5	2	3	3

Item-based CF

Items that have received similar ratings **previously** from users are likely to receive similar ratings from future users

	11	12	/3	14
U1	1	2	4	4
U2	1	2	4	?
U3	2	5	2	2
U4	5	2	3	3

Rating Prediction in User-based CF

Similarity between Users

Cosine Similarity

$$sim(U_u, U_v) = cos(U_u, U_v) = \frac{U_u \cdot U_v}{||U_u|| \ ||U_v||} = \frac{\sum_i r_{u,i} r_{v,i}}{\sqrt{\sum_i r_{u,i}^2} \sqrt{\sum_i r_{v,i}^2}}.$$

Pearson Correlation Coefficient

$$sim(U_u, U_v) = \frac{\sum_i (r_{u,i} - \bar{r}_u)(r_{v,i} - \bar{r}_v)}{\sqrt{\sum_i (r_{u,i} - \bar{r}_u)^2} \sqrt{\sum_i (r_{v,i} - \bar{r}_v)^2}}$$

User-based CF

1. Weigh all users with respect to their similarity with the current user

2. Select a subset of the users (neighbors) as recommenders

3. Predict the user rating for a specific item using neighbors' ratings for the same item

4. Recommend items with the highest predicted ranks

User-based CF: an example (1/2)

[Cosine Similarity is used as similarity]

	Lion King	Aladdin	Mulan	Anastasia
John	3	0	3	3
Joe	5	4	0	2
Jill	1	2	4	2
Jane	3	?	1	0
Jorge	2	2	0	1

Predict Jane's rating for Aladdin

1- Calculate average ratings

$$\bar{r}_{John} = \frac{3+3+0+3}{4} = 2.25$$

$$\bar{r}_{Joe} = \frac{5+4+0+2}{4} = 2.75$$

$$\bar{r}_{Jill} = \frac{1+2+4+2}{4} = 2.25$$

$$\bar{r}_{Jane} = \frac{3+1+0}{3} = 1.33$$

$$\bar{r}_{Jorge} = \frac{2+2+0+1}{4} = 1.25$$

2- Calculate user-user similarity

$$sim(Jane, John) = \frac{3 \times 3 + 1 \times 3 + 0 \times 3}{\sqrt{10}\sqrt{27}} = 0.73$$

 $sim(Jane, Joe) = \frac{3 \times 5 + 1 \times 0 + 0 \times 2}{\sqrt{10}\sqrt{29}} = 0.88$
 $sim(Jane, Jill) = \frac{3 \times 1 + 1 \times 4 + 0 \times 2}{\sqrt{10}\sqrt{21}} = 0.48$
 $sim(Jane, Jorge) = \frac{3 \times 2 + 1 \times 0 + 0 \times 1}{\sqrt{10}\sqrt{5}} = 0.84$

User-based CF: an example (2/2)

[Cosine Similarity is used as similarity]

3- Calculate Jane's rating for Aladdin (Assume that neighborhood size = 2)

$$r_{Jane,Aladdin} = \bar{r}_{Jane} + \frac{sim(Jane, Joe)(r_{Joe,Aladdin} - \bar{r}_{Joe})}{sim(Jane, Joe) + sim(Jane, Jorge)} + \frac{sim(Jane, Jorge)(r_{Jorge,Aladdin} - \bar{r}_{Jorge})}{sim(Jane, Joe) + sim(Jane, Jorge)} = 1.33 + \frac{0.88(4 - 2.75) + 0.84(2 - 1.25)}{0.88 + 0.84} = 2.33$$

Item-based CF

 Calculate the similarity between items and then predict new items based on the past ratings for similar items

Item-based CF: an example

[Cosine Similarity is used as similarity]

1- Calculate average ratings

$$\bar{r}_{Lion \, King} = \frac{3+5+1+3+2}{5} = 2.8.$$

$$\bar{r}_{Aladdin} = \frac{0+4+2+2}{4} = 2.$$

$$\bar{r}_{Mulan} = \frac{3+0+4+1+0}{5} = 1.6.$$

$$\bar{r}_{Anastasia} = \frac{3+2+2+0+1}{5} = 1.6.$$

2- Calculate item-item similarity

$$sim(Aladdin, Lion King) = \frac{0 \times 3 + 4 \times 5 + 2 \times 1 + 2 \times 2}{\sqrt{24}\sqrt{39}} = 0.84$$

$$sim(Aladdin, Mulan) = \frac{0 \times 3 + 4 \times 0 + 2 \times 4 + 2 \times 0}{\sqrt{24}\sqrt{25}} = 0.32$$

$$sim(Aladdin, Anastasia) = \frac{0 \times 3 + 4 \times 2 + 2 \times 2 + 2 \times 1}{\sqrt{24}\sqrt{18}} = 0.67$$

3- Calculate Jane's rating for Aladdin (Assume that neighborhood size = 2)

$$r_{Jane,Aladdin} = \bar{r}_{Aladdin} + \frac{sim(Aladdin, Lion King)(r_{Jane,Lion King} - \bar{r}_{Lion King})}{sim(Aladdin, Lion King) + sim(Aladdin, Anastasia)} + \frac{sim(Aladdin, Anastasia)(r_{Jane,Anastasia} - \bar{r}_{Anastasia})}{sim(Aladdin, Lion King) + sim(Aladdin, Anastasia)} = 2 + \frac{0.84(3 - 2.8) + 0.67(0 - 1.6)}{0.84 + 0.67} = 1.40$$

User-based vs Item-based CF

- User-based collaborative filtering is more effective when new items are added to the system as it relies on user behavior and preferences rather than item characteristics. Item-based collaborative filtering requires historical data on items to establish relationships, and hence, it may not be effective when new items are added.
- For e-commerce, user-based CF sometimes is less preferred than the item-based CF
 - Consider that the item set changes less often than users
 - With a large number of users, even the smallest change in the user data is likely to reset the entire group of similar users

Recommendation + Social Network

- Instead of determining "neighbors" based on ratings ...
- We can limit the set of individuals that can contribute to the ratings of a user to the set of friends of the user

• Let S(i) be the set of the k most similar friends of an individual

$$r_{u,i} = \bar{r}_u + \frac{\sum_{v \in S(u)} sim(u, v)(r_{v,i} - \bar{r}_v)}{\sum_{v \in S(u)} sim(u, v)}$$

Example of User-based CF in a Social Network

					•	
Adjacency matrix of	[John	Joe	Jill	Jane	Jorge
the social network	John	0	1	0	0	1
1 - A -	Joe	1	0	1	0	0
A =	Jill	0	1	0	1	1
	Jane	0	0	1	0	0
	Jorge	1	0	1	0	0

	Lion King	Aladdin	Mulan	Anastasia
John	4	3	2	2
John Joe	5	2	1	5
Jill	2	5	(?)	0
Jane	1	3	4	3
Jorge	3	1	1	2

Average Ratings

User Similarity

$$\bar{r}_{John} = \frac{4+3+2+2}{4} = 2.75.$$

$$\bar{r}_{Joe} = \frac{5+2+1+5}{4} = 3.25.$$

$$\bar{r}_{Jill} = \frac{2+5+0}{3} = 2.33.$$

$$\bar{r}_{Jane} = \frac{1+3+4+3}{4} = 2.75.$$

$$\bar{r}_{Jorge} = \frac{3+1+1+2}{4} = 1.75.$$

$sim(Jill, John) = \frac{2 \times 4 + 5 \times 3 + 0 \times 2}{\sqrt{29}\sqrt{29}} = 0.79$ $sim(Jill, Joe) = \frac{2 \times 5 + 5 \times 2 + 0 \times 5}{\sqrt{29}\sqrt{54}} = 0.50$ $sim(Jill, Jane) = \frac{2 \times 1 + 5 \times 3 + 0 \times 3}{\sqrt{29}\sqrt{19}} = 0.72$ $sim(Jill, Jorge) = \frac{2 \times 3 + 5 \times 1 + 0 \times 2}{\sqrt{29}\sqrt{14}} = 0.54$

Neighborhood size k = 2

$$r_{Jill,Mulan} = \bar{r}_{Jill} + \frac{sim(Jill, Jane)(r_{Jane,Mulan} - \bar{r}_{Jane})}{sim(Jill, Jane) + sim(Jill, Jorge)} + \frac{sim(Jill, Jorge)(r_{Jorge,Mulan} - \bar{r}_{Jorge})}{sim(Jill, Jane) + sim(Jill, Jorge)} = 2.33 + \frac{0.72(4 - 2.75) + 0.54(1 - 1.75)}{0.72 + 0.54} = 2.72$$

Combine User-based and Item-based CF

 A simple extension is to form a convex combination of user-based and item-based CF

 Convex combination = Linear combination with non-negative weigths summing to 1

```
• r_{u,i} = w^{user} r_{u,i}^{user} + w^{item} r_{u,i}^{item}
with w^{user}, w^{item} \ge 0 and w^{user} + w^{item} = 1
```

Limitations of CF

- The Cold Start Problem (New Customer)
 - When users first join, they still haven't bought any product, i.e., they have no purchase record.
 - CF cannot be applied.

Data Sparsity

- Sometimes historical or prior information is insufficient.
- Unlike the cold start problem, this is the situation for the system as a whole and is not specific to new customers.

Cold Start Problem

- When users/items first join the system, they do not have any rating
- CF cannot be applied
- Solution: combine content-based and collaborative recommender systems
- A user is described by a vector of features, so it is possible to find the most similar user already in the system, so the new user can "clone" its ratings
- Since also items are described by a vector of features, it is possible to devise the same mechanism for items too

Sparsity Problem

- Sometimes historical or prior information is insufficient
- Lot of missing values
- Simple solutions:
 - Use default rating on the basis of some domain knowledge
 - Replace them with mean of users/items ratings

But when sparsity is a huge issue, better model-based CF ...

Outline

- Need of Recommender Systems
- Recommendation Algorithms
 - Content-based
 - Collaborative Filtering
 - Memory-based CF
 - Model-based CF
- Evaluation Metrics

Model-based CF

- In memory-based methods
 - We predict the missing ratings based on similarities between users or items.

- In model-based collaborative filtering
 - We assume that an underlying model governs how users rate.

- We learn that model and use it to predict the missing ratings.
 - Among a variety of model-based techniques, we focus on a well-established model-based technique that is based on singular value decomposition (SVD).

Model-based CF

- Apply SVD (Singular Value Decomposition) to the rating matrix and take the best rank-k approximation X_k of the user-item matrix X.
- Note: both X_k and X have the same $m \times n$ shape, but X_k has rank k and it is dense (much less zeros than X)

dimensional space

Model-based CF using SVD

Missing entries before applying Truncated SVD?

 They can be set to zero, then Truncated SVD will (implicitly) learn a semantically meaningful value for them

- Or, alternatively, the internal optimization process of Truncated SVD can be adapted to consider only non-missing values
 - Recall: Truncated SVD actually minimizes $||X X_k||_F$ where X_k has rank k

Example

Table 9.2: An User-Item Matrix			
	Lion King	Aladdin	Mulan
John	3	0	3
Joe	5	4	0
Jill	1	2	4
Jorge	2	2	0

Considering a rank 2 approximation (i.e., k = 2), we truncate all three matrices:

Figure 9.1: Users and Items in the 2-D Space.

Latent Space

- Users and items preferences are projected to a lower dimensional space
- The lower dimensional space is formed by latent/hidden features which captures relevant aspects of the preferences ...
- ... though they are difficult to interpret, but ...
- ... the new matrix is denser than before and semantically meaningful!
- Note: SVD and matrix factorization are not the only model-based CF approaches (like Non-Negative Matrix Factorization).

Additional uses for the Latent Space

- \bullet Rows of U_k , possibly multiplied by the singular values, are semantic representations of the users
- Rows of V_k (i.e., columns of V_k^T), possibly multiplied by the singular values, are semantic representations of the items
- Cosine similarity can be calculated on these semantic representations in order to gauge the semantic similarity of users or items pairs
- Clustering algorithms can be executed on those representations in order to cluster together similar users or items
 - Improve scalability and diversity: consider cluster of users instead of users for providing recommendations
- Also classification algorithms can trained and executed on those semantic representations

Outline

- Need of Recommender Systems
- Recommendation Algorithms
 - Content-based
 - Collaborative Filtering
 - Memory-based CF
 - Model-based CF
- **Evaluation Metrics**

Accuracy Metrics

- Ultimate goal: which RS approach is better for the recommendation problem at hand?
- Three types of metrics:
 - Rating Value Accuracy: Closeness between RS's predicted ratings to true ratings
 - Classification Accuracy: Ratio with correct vs. incorrect decisions about whether an item is good.
 - Ranking Accuracy: Closeness between RS's predicted ranking to true ranking
- What is required: we have the predictions of our systems, but we need true/actual data to compare with the predictions.
 - For example, true data may be acquired by questionnaires, surveys, eye-trackers, ...

Rating Value Accuracy

- Mean Absolute Error (MAE). The average absolute deviation between a predicted rating (p) and the user's true rating (r)
 - $NMAE = MAE/(r_{max} r_{min})$

• Root Mean Square Error (RMSE). Similar to MAE, but places more emphasis on larger deviation

$$MAE = \frac{\sum_{ij} |\hat{r}_{ij} - r_{ij}|}{n}$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i,j} (\hat{r}_{ij} - r_{ij})^2}$$

Measuring Error Rate (Example)

Item	Predicted Rating	True Rating
1	1	3
2	2	5
3	3	3
4	4	2
5	4	1

$$MAE = \frac{|1-3| + |2-5| + |3-3| + |4-2| + |4-1|}{5} = 2$$

$$NMAE = \frac{MAE}{5-1} = 0.5$$

$$RMSE = \sqrt{\frac{(1-3)^2 + (2-5)^2 + (3-3)^2 + (4-2)^2 + (4-1)^2}{5}}$$

$$= 2.28$$

Classification Accuracy

Confusion Matrix

	Selected	Not Selected	Total
Relevant	N_{rs}	$N_{\rm rn}$	$N_{\rm r}$
Irrelevant	N_{is}	$N_{ m in}$	N_{i}
Total	N_s	N_n	N

Precision: a measure of exactness, determines the fraction of relevant items retrieved out of all items retrieved

$$P = \frac{N_{rs}}{N_s}$$

Recall: a measure of completeness, determines the fraction of relevant items retrieved out of all relevant items

$$R = \frac{N_{rs}}{N_r}$$

F-measure

 Precision and Recall evaluates different aspects, but may be synthesized by averaging them using harmonic mean

• F-measure is the harmonic mean of precision and recall

$$F = \frac{2PR}{P + R}.$$

Precision and Recall (Example)

	Selected	Not Selected	Total
Relevant	9	15	24
Irrelevant	3	13	16
Total	12	28	40

$$P = \frac{9}{12} = 0.75$$

$$R = \frac{9}{24} = 0.375$$

$$F = \frac{2 \times 0.75 \times 0.375}{0.75 + 0.375} = 0.5$$

Ranking Accuracy

Spearman's Rank Correlation

- Pearson correlation coefficient between two rankings $x \otimes y$

$$\rho = 1 - \frac{6\sum_{i=1}^{n}(x_i - y_i)^2}{n^3 - n}$$

• Kendall's Tau (τ)

- Compare recommended ranking and ground truth ranking
- Concordant: An item pair with its ordering preserved in the recommended ranking. Otherwise, it is disconcordant.

$$\tau = \frac{c-d}{\binom{n}{2}} = \frac{c-d}{n(n-1)/2}$$

- c is the number of concordants
- -d is the number of disconcordants

Ranking Accuracy (Example)

Consider a set of four items $I = \{i_1, i_2, i_3, i_4\}$ for which the predicted and true rankings are as follows

	Predicted Rank	True Rank
i_1	1	1
i_2	2	4
i_3	3	2
i_4	4	3

Pair of items and their status {concordant/discordant} are

 (i_1, i_2) : concordant

 (i_1,i_3) : concordant

 (i_1,i_4) : concordant

 (i_2, i_3) : discordant

 (i_2, i_4) : discordant

 (i_3, i_4) : concordant

$$\tau = \frac{4-2}{6} = 0.33$$

Ties in Kendall's-tau

• A pair (x_i, x_j) , (y_i, y_j) is said to be *tied* if $x_i = x_j$ or $y_i = y_j$

• A tied pair is neither concordant nor discordant

So Kendall's-tau formula is unchanged if there are ties

References

 R. Zafarani, M. A. Abbasi, and H. Liu, Social Media Mining: An Introduction, Cambridge University Press, 2014 [Chapter 9]. URL: http://socialmediamining.info/