# AD-A 018 990

WVT-TR-75054

| AD. |  |  |
|-----|--|--|
|     |  |  |

COLD ROTARY FORGING

TECHNICAL LIBRARY



September 1975

WATERVLIET ARSENAL WATERVLIET, N.Y. 12189

# TECHNICAL REPORT

AMCMS No. 4930.16.6287.01

Pron No. M1-5-23034-01-M7-M7

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

#### DISCLAIMER

The findings in this report are not to be construed as an official.

Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) in this report does not constitute an official indorsement or approval.

#### DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | READ INSTRUCTIONS BEFORE COMPLETING FORM |                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|
| 1. REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. GOVT ACCESSION NO.                    | 3. RECIPIENT'S CATALOG NUMBER                                  |
| WVT-TR-75054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                |
| 4. TITLE (and Subtitle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | S. TYPE OF REPORT & PERIOD COVERED                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
| Cold Rotary Forging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 6. PERFORMING ORG. REPORT NUMBER                               |
| 7 4070000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 8. CONTRACT OR GRANT NUMBER(8)                                 |
| 7. AUTHOR(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | B. CONTRACT OR GRANT NUMBER(8)                                 |
| Alfred A. Campione<br>Leonard Liuzzi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                                |
| Francis A. Heiser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                |
| 9. PERFORMING ORGANIZATION NAME AND ADDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RESS                                     | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| Benet Weapons Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | AREA & WORK UNIT NUMBERS                                       |
| Watervliet Arsenal, Watervliet,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.Y. 12189                               | AMCMS No. 4930.16.6287.01                                      |
| SARWV-RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | Pron M1-5-23034-01-M7-M7                                       |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | 12. REPORT DATE                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | September 1975                                                 |
| U.S. Army Armament Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | 13. NUMBER OF PAGES                                            |
| Rock Island, Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (                                        | 43                                                             |
| 14. MONITORING AGENCY NAME & ADDRESS(if dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fferent from Controlling Office)         | 1S. SECURITY CLASS. (of this report)                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | IINGT A GGTETED                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | SCHEDULE                                                       |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
| Approved for public release; di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | istribution unlimite                     | ed                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
| 17. DISTRIBUTION STATEMENT (of the abstract en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tered in Block 20, if different fro      | om Report)                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                                |
| . Service the contract the contract to the con |                                          |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
| 19. KEY WORDS (Continue on reverse side if necess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                |
| Artillery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Forging (Radial)(Ro                      | otary)                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G . D . 3                                |                                                                |
| Cold Working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gun Barrels                              | •                                                              |
| Farms (Persons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C+ 7                                     |                                                                |
| Forge (Presses) 20. ABSTRACT (Continue on reverse side if necessar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Steel                                    |                                                                |
| Cold rotary forging of thin wal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
| cold working resulted in a small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                |
| an increase in longitudinal yie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                |
| hardening was greater at lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                |
| reduction on the material. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                |
| transverse yield strength after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r forging. The lower                     | er yield strength material                                     |
| showed very little decrease in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | er forging, whereas, the                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (SEE REVERSE SIDE)                       |                                                                |

DD 1 FORM 1473

EDITION OF 1 NOV 68 IS OBSOLETE

UNCLASSIFIED

#### SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

#### Block No. 20 ABSTRACT (Continued)

higher yield strength material exhibited a greater decrease in yield strength after forging. This behavior was attributed to the bauschinger effect. It was possible to recover the strength by a thermal treatment at  $800^{\circ}\text{F} - 1000^{\circ}\text{F}$ .

In addition to the data on mechanical properties, data are also presented on induced residual stresses. The results were inconsistent in that both compressive and tensile residual stresses were observed. However, in general, the stresses were low. The thermal treatments which resolved the strength problem also effectively eliminated the residual stresses.

Since the ultimate aim of the cold working was to produce a finished recoilless rifle tube, the cylinders were forged with an internal rifled configuration. The results showed that it is possible to produce the desired configuration. However, problems must be resolved to meet the tight dimensional tolerance requirements.

WVT-TR-75054

AD

COLD ROTARY FORGING



- L. LIUZZI
- F. HEISER



September 1975

# BENET WEAPONS LABORATORY WATERVLIET ARSENAL WATERVLIET, N.Y. 12189

# TECHNICAL REPORT

AMCMS No. 4930.16.6287.01

Pron No. M1-5-23034-01-M7-M7

### TABLE OF CONTENTS

|                                                                                   | Page                 |
|-----------------------------------------------------------------------------------|----------------------|
| Abstract                                                                          | 1                    |
| Acknowledgment                                                                    | 2                    |
| Introduction                                                                      | 3                    |
| Approach to the Problem                                                           | 5                    |
| Materials and Procedures                                                          | 5                    |
| Material                                                                          | 5                    |
| Forging Procedure Forging Hammers Forging Mandrel Cold Forging Forging Parameters | 9<br>9<br>9<br>9     |
| Evaluation Dimensional Mechanical Properties Residual Stresses                    | 12<br>12<br>12<br>12 |
| Results and Discussion                                                            | 14                   |
| Dimensional Evaluation                                                            | 14                   |
| Mechanical Testing As-Forged Thermal Treated                                      | 23<br>23<br>29       |
| Residual Stresses                                                                 | 35                   |
| Conclusions                                                                       | 39                   |
| LIST OF FIGURES                                                                   |                      |
| 1. Schematic showing relationship of hammers, mandrel and workpiece.              | 10                   |
| 2. Rotary forging hammer - typical for 106mm I.D.                                 | 10                   |
| 3. Rifled forging mandrel.                                                        | 11                   |

# LIST OF FIGURES (cont'd)

| 4.  | Schematic of forging over a mandrel.                      | 11 |
|-----|-----------------------------------------------------------|----|
| 5.  | Schematic - Slit disc technique.                          | 15 |
| 6.  | Schematic - X-ray diffraction technique.                  | 15 |
| 7.  | Cold rotary forged cylinder.                              | 18 |
| 8.  | Rifling dimensional inspection.                           | 19 |
| 9.  | Forging mandrel inspection.                               | 22 |
| 10. | Helix angle of rifling - forging and mandrel.             | 25 |
| 11. | Full-size impact toughness vs. sub-size impact toughness. | 30 |
|     | LIST OF TABLES                                            |    |
| 1.  | Mechanical Properties - Preforms                          | 4  |
| 2.  | Heat Treatment - Preforms                                 | 6  |
| 3.  | Forging Reduction - Surface Finish                        | 8  |
| 4.  | Forging Parameters                                        | 13 |
| 5.  | Surface Finish - I.D.                                     | 17 |
| 6.  | Bore Size and Ovality - Forging #14                       | 20 |
| 7.  | Bore Straightness - Forging #14                           | 24 |
| 8.  | Mechanical Properties - As-Forged                         | 26 |
| 9.  | Mechanical Properties - Thermal Treated (800°F)           | 31 |
| 10. | Mechanical Properties - Thermal Treated (1000°F)          | 33 |
| 11. | Residual Stresses - Slitting Technique                    | 36 |
| 12. | Residual Stresses - X-ray Diffraction                     | 38 |

#### ABSTRACT

Cold rotary forging of thin wall alloy steel cylinders was investigated. The cold working resulted in a small amount of strain hardening, as measured by an increase in longitudinal yield strength. In most cases, the strain hardening was greater at lower yield strengths regardless of the amount of reduction on the material. The most significant change was a decrease in transverse yield strength after forging. The lower yield strength material showed very little decrease in yield strength after forging, whereas, the higher yield strength material exhibited a greater decrease in yield strength after forging. This behavior was attributed to the bauschinger effect. It was possible to recover the strength by a thermal treatment at 800°F - 1000°F.

In addition to the data on mechanical properties, data are also presented on induced residual stresses. The results were inconsistent in that both compressive and tensile residual stresses were observed. However, in general, the stresses were low. The thermal treatments which resolved the strength problem also effectively eliminated the residual stresses.

Since the ultimate aim of the cold working was to produce a finished recoilless rifle tube, the cylinders were forged with an internal rifled configuration. The results showed that it is possible to produce the desired configuration. However, problems must be resolved to meet the tight dimensional tolerance requirements.

#### ACKNOWLEDGMENT

The authors wish to acknowledge and thank P. Cote, G. Capsimalis, J. Underwood and C. DeLaMater for their work in determining the residual stresses in the forgings and V. Montuori, D. Concordia and F. VanLangen for their work in relating the full size impact data to the sub-size data and Mr. P. Thornton for assistance in relating the full size impact data to the sub-size data and for providing technical and editorial assistance in the preparation of the early drafts of this report. The forgings were produced by Revere Copper and Brass, Inc. on a GFM SX35 machine under contract with Watervliet Arsenal.

#### INTRODUCTION

"Rotary forging" is a forming process in which the workpiece is rotated as it passes through four symmetrically located hammers (Figure 1). Since the hammers work at a rapid rate, it is possible to cold forge at a rate of 1-1/2 - 3 feet of product per minute. By using a mandrel, it is also possible to produce a tubular forging. A description of the machine and process is given in Reference 1.

The process is widely used throughout the world for producing small arms such as shot gun barrels, machine gun barrels and small caliber tubes. It has been stated that the service life for the small caliber tubes has been extended, and the overall costs reduced through material savings and higher production rates. However, application of this process to large caliber gun tubes requires larger, specifically designed equipment not universally available.

Several programs were initiated to develop rotary forging techniques and procedures for producing thin wall, cold forged, large caliber gun barrels. Emphasis was directed to finish forming the internal rifled configuration, thereby eliminating subsequent machining operations. At the same time, a study was conducted on the effects of this forging process on the mechanical properties and residual stresses of the material being used. A program was devised to forge short cylinders using a variety of processing parameters to evaluate their effect on dimensional accuracy, mechanical properties and residual stress level and direction.

1. Feinschmiedemaschinen Und Ihre Arbeitsweise (Precision Forging Machines and Their Mode of Operation), GFM Publication.

Mechanical Properties-Preforms

|              | ()                  |            |     |     |     |     |     |     |     |     |     |     |     |     |     |      |     |
|--------------|---------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|
|              | $C_{\mathbf{v}}(3)$ | 1          | 1   | 1   | 1   | 1   | 1   | 1   | •   | 1   | -1  | 1   | 1   | 1   | ı   | 1    | 1   |
| Longitudina1 | $c_{\mathbf{v}}(2)$ | 74 ft-1bs  | 93  | 57  | 75  | 56  | 92  | 77  | 66  | I   | 93  | 58  | 55  | 75  | 41  | 41   | ı   |
| Lon          | RA                  | %99        | 89  | 63  | 29  | 64  | 99  | 99  | 69  | ī   | 89  | 62  | ī   | 65  | 62  | 58   | ī   |
|              | Y.S.(1)             | 135 ksi    | 112 | 160 | 136 | 158 | 114 | 136 | 115 | ·   | 116 | 159 | 1   | 136 | 171 | 172  | 1   |
|              | C <sub>v</sub> (3)  | 11 ft-1bs. | 12  | 8   | 10  | 80  | 12  | 10  | 11  | ı   | 11  | 80  | 1   | 10  | 7   | 80   | ı   |
| Transverse   | C <sub>v</sub> (2)  | 48 ft-lbs  | 56  | 38  | 46  | 34  | 57  | 47  | 55  |     | 55  | 37  | ī   | 47  | 28  | 27   | 1   |
| HI           | RA                  | 32%        | 37  | 31  | 32  | 28  | 35  | 33  | 09  | 38  | 61  | 28  | 59  | .32 | 20  | . 50 | 45  |
|              | Y.S. (1)            | 130 ksi    | 108 | 154 | 131 | 154 | 107 | 130 | 111 | 108 | 116 | 156 | 113 | 131 | 145 | 145  | 166 |
|              | Preform             | 1          | 2   | ы   | 4   | 2   | 9   | 7   | ∞   | 6   | 10  | 11  | 12  | 13  | 14  | 15   | 16  |

(1) Yield Strength at 0.1% offset
(2) Full-size Charpy bar at -40°F
(3) Sub-size Charpy bar at -40°F

#### APPROACH TO THE PROBLEM

Sixteen (16) short length hollow cylinders, 5-9/16" O.D. x 4" I.D. x 60" were cold rotary forged. The short cylinders were used to establish the optimum forging parameters to produce full cylinders. Because of the general lack of information on the response of the low alloy steel used in tubes to cold forging, the starting yield strength of the preforms and the forging reduction applied were varied. Since the ultimate aim of the program is to produce a finished tube, the mandrel used was rifled.

After forging, the cylinders were dimensionally inspected, sectioned and evaluated for mechanical properties and residual stresses. Because of an unanticipated loss in transverse yeild strength, a program to develop a thermal treatment to recover the strength, and also to eliminate the residual stresses was undertaken. A series of Temperature (T) - time (t) heating cycles were evaluated.

#### MATERIALS AND PROCEDURES

#### Material

Modified electric furnace vacuum degassed 4337 steel with the following composition was used to produce the seamless tubing, with an unknown amount of prior working, used as preforms:

Table 1 shows the mechanical properties of the starting cylinders (preforms). Table 2 shows the heat treatments used for

# TABLE 2

# Heat Treatments-Preform

| Heat Treat Cycle                                                                | Preform            |
|---------------------------------------------------------------------------------|--------------------|
| A - Preheat - 1350°F<br>Austenitize - 1600°F                                    | 14, 15, 16         |
| Oil quench from 1550°F<br>Temper - 1000°F - 2 hrs.                              |                    |
| B - Normalize - 1600°F Austenitize - 1550°F Oil quench Temper - 1150°F - 2 hrs. | 1, 4, 7, 13        |
| C - Normalize - 1600°F Austenitize - 1550°F Oil quench Temper - 1250°F - 2 hrs. | 2, 6, 8, 9, 10, 12 |
| D - Normalize - 1600°F Austenitize - 1550°F Oil quench Temper - 1050°F - 2 hrs. | 3, 5, 11           |

the various cylinders. It had originally been intended to test material at three nominal yield strength levels, viz., 120, 140 and 160 ksi. However, the results of the heat treatments provided a greater range of yield strengths, and thus, an expanded program. Because it was not possible to obtain a full size Charpy specimen from the thin wall forging, both full size (.394" x .394") and sub-size (.197" x .394") specimens were taken from the preforms in the transverse orientation to develop a correlation. Only full size specimens were tested in the longitudinal orientation.

After determining the yield strength, the short tubes were divided into groups and machined on both I.D. and O.D. The I.D. was constant for all the tubes, whereas the O.D. varied depending on the amount of cross sectional reduction to be imposed. Consideration was also given to the starting surface finishes. In some cases, the inside surface was honed to RMS 32 while others were machined to RMS 125 to RMS 250. In all cases, the O.D. surface finish was the same. Table 3 shows the forging reduction to be applied and the starting surface finish of the preforms.

Final tube preparation prior to cold forging consisted of cleaning both the I.D. and the O.D. with kerosene and Valcolene (a). After cleaning, the I.D. was swabbed with a lubricant called Hamilube X122(b). No lubricant was used on the O.D.

<sup>(</sup>a) Valcolene, Valeska Co., Div. Kynext Corp., Rome, N.Y.

<sup>(</sup>b) Harry Miller Corp., Philadelphia, Pa. 19140

TABLE 3
Forging Reduction-Surface Finish

| Preform | Forging Reduction | Surface | Finish  |
|---------|-------------------|---------|---------|
|         |                   | 0.D.    | I.D.    |
| 1       | 15%               | RMS 500 | RMS 250 |
| 2       | 20                | 500     | 250     |
| 3       | 10                | 500     | 125     |
| 4       | 15                | 500     | 250     |
| 5       | 15                | 500     | 250     |
| 6       | 40                | 500     | 250     |
| 7       | 20                | 500     | 250     |
| 8       | 20                | 500     | 250     |
| 9       | 20                | 500     | 250     |
| 10      | 20                | 500     | 250     |
| 11      | 20                | 500     | 250     |
| 12      | 30                | 500     | 250     |
| 13      | 30                | 500     | 125     |
| 14      | 30                | 500     | 32      |
| 15      | 20                | 500     | 32      |
| 16      | 5                 | 500     | . 32    |

#### Forging Procedure

Forging Hammers - The forging hammer system consisted of four separate hammers, each made of two parts, viz., base and striking face. The base is normally made from high strength low alloy steel and the striking face of tool steel or carbide inserts. The hammers used in cold forging were made from H13 tool steel and were symmetrical around the tubular workpiece (Figure 1). The hammer face for a tubular workpiece has a curvature slightly larger than the workpiece and may have a single taper or multiple tapers. For this program, the hammer face had multiple tapers (Figure 2). The tapered portion of the hammer face is called the entry angle. The degree of entry angle and the reduction rate control the amount of forging penetration on the workpiece.

Forging Mandrel - The forging mandrel was a precision ground, solid H13 tool steel plug with rifling machined on the O.D. surface (Figure 3) with a surface finish of RMS 4-6. To allow for adjustment of the inside diameter of the workpiece, the mandrel O.D. was tapered with the leading edge smaller. To allow for workpiece springback after forging, the mandrel was smaller than the I.D. required on the forging. Prior to forging, the mandrel was cleaned with kerosene and Valcolene and brushed with lubricant, Hamilube X122.

Cold Forging - After preparation, the tube was loaded into the chuckhead by means of "loading prongs" and was automatically centered. The mandrel was then located through the preform and between the hammers. The preform was then fed between the hammers,



FIG. 1 - Schematic showing relationship of hammers, mandrel and workpiece.



FIG. 2 - Rotary forging hammer - typical for 106mm I.D.



FIG. 3 - Rifled forging mandrel



FIG. 4 - Schematic of forging over a mandrel.

over the mandrel and against the counter holder on the exit side of the hammers. With the mandrel and preform in location, water was sprayed to cool both the preform and the hammers during forging. The hammers were fed gradually inward to full depth while rotation and feeding of the preform started. After the hammers reached full depth at the starting end of the preform, it was fed through the hammers for the entire forging length (Figure 4). At the end of the forging cycle, which was programmed, the mandrel and forging were automatically returned to the starting positions. Instantly the loading prongs moved in and clamped around the forging, after which, the chuck jaw released the forging which was then removed from the machine.

Forging Parameters - Various combinations of forging parameters were used. Table 4 compiles the parameters applied.

#### Evaluation ·

Dimensional - Several of the cylinders were inspected for conformance to the dimensional requirements of the 106mm recoilless rifle. This included the inspection of the O.D. and I.D., including the twist of the rifling. In addition, the surface finish was evaluated.

Mechanical Properties - To determine the effect of the forging operation, the mechanical property measurements were repeated. However. because of the thin wall of the tubes, only sub-size impact toughness could be measured.

Residual Stresses - Two methods were used to measure residual stresses:

TABLE 4
Forging Parameters

|         |                            |                       |                              |                               | Ring                       |            |
|---------|----------------------------|-----------------------|------------------------------|-------------------------------|----------------------------|------------|
| Preform | Hammer<br>Setting<br>(in.) | Chu<br>Speed<br>(RPM) | ckhead<br>Feed<br>(in./min.) | Counterholder Pressure (Atm.) | Space<br>Pressure<br>(Atm) | Power (KW) |
| Preform | (111.)                     | (KPM)                 | (111./11111.)                | (Acm.)                        | (Atm)                      | (KW)       |
| 1       | 5.27                       | 17                    | 13                           | 35                            | 107                        | -          |
| 2       | 5.21                       | 17                    | 17                           | 35                            | -                          | _          |
|         | 5.21                       | 17                    | 17                           | 25                            | 101                        |            |
| 3       | 5.33                       | 13                    | 13                           | 25                            | 98                         | 120        |
| 4       | 5.27                       | 26                    | 13                           | 25                            | 112                        | 150        |
| 5       | 5.27                       | 17                    | 13                           | 25                            | 112                        | -          |
| 6       | 5.21                       | 17                    | 17                           | w/out                         | o'load                     |            |
|         | 4.97                       | 13                    | 17                           | 25                            | 120                        |            |
|         | 4.97                       | 17                    | 17                           | 25                            | 120                        |            |
|         | 4.97                       | 13                    | 17                           | 25                            | 82                         | 140        |
| 7       | 5.21                       | 17                    | 16                           | 25                            | 110                        | 150        |
| 8       | 5.21                       | - 17                  | 17                           | 35                            | -                          | -          |
|         | 5.09                       | 26                    | 17                           | 35                            | 72                         | ••         |
| 9       | 5.21                       | 17                    | 17                           | 35                            | o'load                     | -          |
|         | 4.97                       | 17                    | 17                           | 25                            | 115                        | -          |
| 10      | 5.21                       | 17                    | 17                           | w/out                         | 103                        | -          |
| 11      | 5.21                       | 13                    | 13                           | 25                            | . 120                      | -          |
| 12      | 5.09                       | 17                    | 17                           | 35                            | -                          | -          |
| 13      | 5.09                       | 13                    | 13                           | 25                            | 118                        | -          |
| 14      | 5.20                       | 13                    | 20                           | 35                            | 70                         | 125        |
|         | 5.20                       | 13                    | 20                           | 35                            | o'load                     | _          |
|         | 5.20                       | 13                    | 20                           | 35                            | 110                        | 190        |
| 15      | 5.32                       | 13 -                  | 20                           | 35                            | 20                         | 120        |
| 16      | 5.38                       | 13                    | 17                           | 35                            | 82                         | 140        |
|         | •                          |                       |                              |                               |                            |            |

NOTE: Multiple entries signify several passes were required.

- removed from each of the forged tubes and machined approximately 0.1 inches on the 0.D. to remove the forging hammer marks. Two resistance strain gages were mounted on the disc, one, on the inside diameter and one, on the radial axis on the outside diameter. Two scribed reference lines were marked on the outside diameter surface opposite the strain gages. Prior to slitting the discs, measurements from the strain gages and the spacing between the scribed lines were recorded. After slitting the discs, the strain gage and line spacing were again recorded and residual stress was calculated. Figure 5 shows a typical test disc specimen after slitting, with the opening exaggerated for clarity. The test determines average or gross stress level.
- (b) X-ray A two-exposure x-ray technique employing both film and diffraction methods was used<sup>2</sup>. In a crystalline material, the d-spacing between atomic planes can be determined with x-rays. When the material is stressed, the d-spacing is changed. If the change is measured in two directions, the stress can be determined by calculation. This method can determine surface stresses and stresses in localized areas. Figure 6 shows the general arrangement for testing.

#### RESULTS AND DISCUSSION

Dimensional Evaluation

Dimensional and surface finish evaluations were made on

<sup>2.</sup> Paul J. Cote and George P. Capsmalis, "Application of X-Ray Stress Measuring Techniques", Watervliet Arsenal Tech. Report WTV 7253, 1972.



FIG. 5 - Schematic - Slit disc technique.



FIG. 6 - Schematic - X-ray diffraction technique.

representative forgings. In all cases, the inside diameter surface finish following cold forging, showed a marked improvement over the surface finishes that were machined prior to forging (Table 5).

Preform 14, which was honed to RMS 32, finished after cold forging to RMS 8 on the inside diameter. A closer examination of the rifling grooves revealed no longitudinal score marks, tears or gouges, which are commonly found in rifling grooves that are produced by the conventional machining methods such as solid rifling broaches and individual rifling cutters. In the absence of these marks, it is presumed that the surface stress concentration may be reduced substantially.

Preforms which were not honed showed a typical surface condition of circumferential grooves (machining marks), very shallow in depth, but visually noticeable with the naked eye. These grooves appeared to have grown in width during forging due to the fact that the workpiece material moves plastically in a longitudinal direction during working.

The starting surface finish on the O.D. for each of the cylinders was RMS 500. Forging produced flat spots around the cylinder in a helical fashion (Figure 7). The flat spots differ in size for each cylinder due to various reductions each tube received. In addition to the effect of varying cross section reduction, rotation speeds and feeds may also affect the size of the flats, as well as the helix condition.

Three (3) of the cylinders were dimensionally inspected for rifling configuration, straightness, concentricity, ovality and general dimensions. The results for the lands and grooves of the forged cylinders are shown in Figure 8 and Table 6. Items which are enclosed

Table 5
Surface Finish - I. D.

| Preform | Before Forging | After Forging |
|---------|----------------|---------------|
| 1       | RMS 250        | RMS 125       |
| 2       | 250            | 63            |
| 3       | 125            | -             |
| 4       | 250            | 125           |
| 5       | 250            | 63            |
| 6       | 250            | 32            |
| 7       | 250            | 63            |
| 8       | 250            | -             |
| 9       | 250            | 32            |
| 10      | 250            | 63            |
| 11      | 250            | 125           |
| 12      | 250            | 125           |
| 13      | 125            | 63            |
| 14      | 32             | 8             |
| 15      | 32             |               |
| 16      | 32             | 16            |



FIG. 7 - Cold rotary forged cylinder.



|              |                    | I             |        |       |       |
|--------------|--------------------|---------------|--------|-------|-------|
|              | JAL                |               | .1470  | .1425 | .1503 |
| LAND WIDTH   | ACTUAL<br>HIGH     | .1558         | .1500  | .1522 | .1533 |
| LAND         | REQUIRED<br>GH LOW | .146          |        |       |       |
|              | REQU<br>HIGH       | .154          |        |       |       |
|              | JAL<br>LOW         | . 2067        | .2100  | .2125 | .2042 |
| WIDTH        | ACTUAL<br>HIGH     | .2097         | .2175  | .2185 | .2122 |
| GROOVE WIDTH | REQUIRED<br>GH LOW | 21476 . 20676 |        |       |       |
|              | REQU<br>HIGH       | .21476        |        |       |       |
|              | REDUCTION %        | 7 20          | 14* 30 | 30    | 20    |
|              | CYL.               | 7             | 14*    | 14*   | 11    |

\*Different locations in cyl. 14.

Exceeded tolerance requirement

FIG. 8 - Rifling dimensional inspection.

Table 6

Bore Size and Ovality

Forging #14

|              | L              | and <sup>(2)</sup> | Gro            | ove (3) |
|--------------|----------------|--------------------|----------------|---------|
| Location (1) | 0°             | 90°                | 0°             | 90°     |
| 4''          | 0005           | +.0002             | +.0001         | 0003    |
| 6"           | 0006           | +.0003             | +.0005         | +.0001  |
| 8"           | 0007           | <u>+</u> .0000     | 0004           | 0006    |
| 10"          | 0010           | 0003               | <u>+</u> .0000 | 0001    |
| 12"          | <u>+</u> .0000 | +.0007             | +.0008         | +.0006  |
| 14"          | 0010           | <u>+</u> .0000     | 0005           | 0010    |
| 16"          | 0009           | 0001               | 0005           | 0006    |
| 18"          | 0011           | 0007               | 0007           | 0012    |
| 20"          | 0014           | 0006               | 0002           | 0002    |

<sup>(1)</sup> From starting end of the cold forging operation

<sup>(2)</sup> Variation from base diameter of 4.1340"

<sup>(3)</sup> Variation from base diameter of 4.2080

represent dimensions for lands and grooves which have exceeded the tolerance limits. Figure 9 shows the sizes for the lands and the grooves which were machined on the forging mandrel.

In comparing the forging dimensions (Figure 8) with the mandrel dimensions (Figure 9), the groove width, on the forging mandrel, is larger in size than its counterpart, the land on the forged cylinder, due to spring back. In designing mandrels, it is necessary to consider the elastic limits of both the mandrel material and cylinder material. Some of the variance in dimensions in the forgings inspected may be attributed to the fact that although their yield strengths ranged from 108,000 psi to 156,000 psi, and with a range of elastic limits, all were forged using the same mandrel, with no adjustment for variations of the elastic limits for each preform.

The I.D. measurements shown in Table 6 for Forging #14 represent two readings, 90° apart. The results of these inspections show that the bore is slightly undersize. This situation could be corrected with an adjustment in the mandrel location. The mandrel used has a tapered O.D. which allows for an adjustment in the diameter of the mandrel with respect to the hammers and the preform. The mandrel is positioned under the hammers at the location which will produce, after spring back, the required I.D. The mandrel is fixed in location and free to float radially. The smaller end of the mandrel is the leading edge. Moving the mandrel longitudinally into the hammers increases the bore in the forged cylinder. The results for bore ovality shown in Table 6 are within tolerance limits. The straightness



# FORGING MANDREL INSPECTION

| Land  | Width | Groove | Width |
|-------|-------|--------|-------|
| High  | Low   | High   | Low   |
| .1975 | .1970 | .1605  | .1525 |

FIG. 9 - Forging mandrel inspection.

results of Tube #14 (Table 7) are within acceptable limits.

The rifling helix angle on the forging accurately reproduced the helix angle machined on the forging mandrel (Figure 10). However, a deviation from the desired helix of the finished tubes was encountered. Because of the time and cost, it was impossible to redesign and modify the mandrel. However, the dimensional data will be used to produce future mandrels.

The inspection revealed a slight discrepancy in the rifling configuration, particularly in the chamfer on each side of the lands.

These chamfers were checked at various locations; all failed to meet drawing requirements. Close examination of these chamfers, using a comparator, showed them to be incomplete on the lands. There are several possible causes for this problem. One possible cause may be excessive reduction. During forging the metal may be forced away from the groove radii. A second possibility is that the feed rate of the material through the hammers may have been too fast, thereby not allowing the metal to flow or remain in the corners before the hammer blow has expended its energy. The inability to fill the rifling may be attributed to the hammer design or to the non-oscillatary chuckhead, and requires further study.

## Mechanical Testing

As-Forged - Test data for the cylinders, as-forged, are shown in Table 8. It had been anticipated that an increase in yield strength would be realized from the cold forging. In most cases, a small increase in longitudinal yield strength did occur but in two cases the yield strength

TABLE 7

BORE STRAIGHTNESS

FORGING #14

| LOCATION | ERROR<br>(MILS) | LOCATION | ERROR (MILS) |
|----------|-----------------|----------|--------------|
| 0        | 000             | 14''     | 016          |
| 1"       | 002             | 15       | 015          |
| 2        | 005             | 16       | 014          |
| 3        | 007             | 17       | 013          |
| 4        | 009             | 18       | 012          |
| 5        | 011             | 19       | 012          |
| 6        | 012             | 20       | 012          |
| 7        | 014             | 21       | 010          |
| 8        | 015             | 22       | 009          |
| 9        | 016             | . 23     | 008          |
| 10       | 016             | 24       | 007          |
| 11       | 017             | 25       | 006          |
| 12       | 017             | 26       | 006          |
| 13       | 017             | 27 .     | 007          |

NOTE: Locations from the leading edge of cold forging.



Helix Angle for the Rifled Mandrel



Helix Angle Produced by Rifled Mandrel

FIG. 10 - Helix angle of rifling - forging and mandrel.

TABLE 8

Mechanical Properties-As-Forged

|              | C <sub>v</sub> (2) | 75 ft-1bs<br>69 | 81<br>75   | 23 88      | 75         | 55<br>58<br>58   | 81<br>69        | 69         | 81<br>81 |
|--------------|--------------------|-----------------|------------|------------|------------|------------------|-----------------|------------|----------|
| Longitudinal | Cv (1)             | 15 ft-1bs<br>14 | 16<br>15   | 12         | 15<br>14   | 12<br>12         | 16 .<br>14      | 14<br>15   | 16<br>16 |
| Long         | RA                 | 64%<br>63       | 65<br>65   | 58<br>60   | 65<br>65   | 61<br>64         | <b>58</b><br>60 | 64<br>64   | 62<br>63 |
|              | Y.S.               | 148 ksi<br>137  | 131<br>118 | 161<br>157 | 150<br>137 | 167<br>155       | 125<br>121      | 145<br>135 | 130      |
|              | C <sub>V</sub> (2) | 46 ft-lbs<br>40 | 46<br>40   | 40<br>34   | 40<br>40   | <b>3</b> 4<br>29 | 46<br>34        | 40<br>40   | 58<br>52 |
| Transverse   | Cv(1)              | 10 ft-1bs<br>9  | 10<br>9    | o          | 6 6        | . 7              | 10              | <b>6</b> 6 | 12       |
| Tra          | RA                 | 53%<br>58       | 50<br>53   | 55<br>52   | 53         | 52<br>49         | 49              | 53         | 61<br>55 |
|              | Y.S.               | 119 ksi<br>103  | 115<br>94  | 136<br>110 | 122<br>108 | 142<br>115       | 112<br>97       | 125<br>103 | 109      |
|              | Forging            | 1               | 2          | 8          | 4          | rz               | 9               | 7          | 00       |

Mechanical Properties-As-Forged TABLE 8 (continued)

|    |               | T.       | Transverse    | (6)              |                | Long      | Longitudinal    | 6               |
|----|---------------|----------|---------------|------------------|----------------|-----------|-----------------|-----------------|
|    | Y.S.          | RA       | Cv(1)         | Cv (2)           | Y.S.           | RA        | Cv(1)           | Cv (2)          |
| 11 | 110 ksi<br>93 | 49%      | 9 ft-1bs<br>7 | 40 ft-1bs<br>29  | 133 ksi<br>123 | 59%<br>59 | 17 ft-1bs<br>14 | 87 ft-1bs<br>69 |
| 1  | 107<br>89     | 56<br>53 | 11            | <b>52</b><br>46  | 132<br>119     | 63<br>68  | 16<br>15        | 81<br>75        |
| 1  | 31<br>13      | 44<br>44 | 7 7           | 29<br>29         | 171<br>154     | 62        | 12<br>12        | 58              |
| П  | 105<br>84     | 51<br>55 | 6 6           | 40<br>40         | 127<br>125     | 63        | 15<br>15        | 75<br>75        |
| П  | 129<br>99     | 47       | σ. ∞          | 40<br>34         | 148<br>141     | 63<br>62  | 14<br>14        | 69              |
|    | 141<br>110    | 44<br>46 | ŗń            | 1 1              | 169<br>161     | 57        | 1 1             | 1 1             |
| 7  | 1.25<br>99    | 49 . 47  | ∞ ∞           | 3 <b>4</b><br>34 | 167<br>160     | 63<br>62  | 11<br>11        | 52<br>52        |
| 7  | 114           | 50 .     | 1 1           | r č              | 153            | 59        | 1 1             |                 |

1.

Sub-size impact data at -40°F. Sub-size data converted to full-size data using Figure 11.

decreased slightly. Generally, it appears that the yield strength of the higher yield strength cylinders, when cold forged, decreased, whereas in the lower yield strength materials, yield strength increased. This increase in longitudinal yield strength, after forging, indicates a slight degree of strain hardening.

In the transverse direction, the yield strength was reduced after cold forging. This apparently is a manifestation of the bauschinger effect, in which the yield strength is lower in compression after having been deformed in tension, and vice versa. During the forging operation, the metal is plastically deformed in compression in the hoop (transverse) and radial directions, but in tension in the longitudinal direction. Thus, transverse tensile testing in the hoop direction involves a re-yielding in a direction opposite to the original deformation, and, therefore, a decrease in strength.

In both orientations, there was generally a wide range in the strength values obtained. For example, forging #5 showed a range of 27 ksi in the transverse orientation, and forging #11 showed a range of 17 ksi in the longitudinal orientation. There is no explanation for this observation. However, it may be an indication of uneven working of the material. The range was generally larger in the transverse orientation than in the longitudinal orientation.

In all the tubes, standard and sub-size Charpy bars were taken prior to forging (Table 1). After forging, only sub-size bars were possible because of the thin wall section. To determine a relationship between the standard and sub-size tests, the data were plotted as shown on Figure 11. This plot indicated that a correlation existed between standard and sub-size Charpy bars. A simple linear regression, using the method of least squares was fit to the data. A relatively high correlation coefficient of .99 was obtained. Using this graph, the sub-size impact results were converted to full-size data. The data are shown in Table 8. In general, in the transverse orientation, a slight decrease in toughness is seen even though the yield strength is lower.

Thermal Treated - To recover the loss in yield strength after rotary forging, a series of thermal treatments were evaluated. These included temperatures of 650°F, 800°F and 1000°F, with soaking times of 2 hours. Limited testing with the 650°F treatment showed an insignificant change in yield strength. Results for the 800°F and 1000°F thermal treatment (Tables 9 and 10) showed an increase in yield strength for each treatment combination as well as an apparent decrease in the range of yield strength. However, the most significant increase was realized at 800°F. In all cases, the transverse yield strength was recovered to slightly above the preform yield strength. The longitudinal yield strength was generally unaffected by the thermal soak except in two cases where a decrease was observed. In general, the toughness showed no effect from the thermal treatment.

Considering the transverse situation, it is most likely that the thermal treatment relieved the condition produced by the bauschinger



FIG. 11 - Full-size impact toughness vs. sub-size impact toughness.

TABLE 9

Mechanical Properties-Thermal Treated (800°F)

|              | Cv (2)  | ft-1bs          |                  |            |            |            |                  |            |            |
|--------------|---------|-----------------|------------------|------------|------------|------------|------------------|------------|------------|
|              | 5       | 75<br>75        | 87               | 58         | 75<br>75   | 58         | 87               | 87         | 81         |
| Longitudinal | Cv (1)  | 15 ft-1bs<br>15 | 17<br>16         | 12<br>12   | 15<br>15   | 12<br>12   | 17<br>17         | 17         | 17<br>16   |
| Long         | RA      | 65%<br>64       | 65<br>64         | 64<br>64   | 65<br>64   | 63         | 5 <b>8</b><br>61 | 65         | 67         |
|              | Y.S.    | 146 ksi<br>144  | 131<br>125       | 164        | 148<br>143 | 167<br>163 | 147<br>144       | 148<br>141 | 128<br>124 |
|              | Cv (2)  | 46 ft-1bs<br>40 | 4 <b>6</b><br>46 | 46<br>34   | 40<br>34   | 29<br>29   | 34<br>23         | 40         | 58<br>52   |
| Transverse   | Cv(1)   | 10 ft-1bs<br>9  | 10               | 10 . 8     | o ∞        | 7 7        | <b>8</b> 9       | 6 6        | 12<br>11   |
| 티            | RA      | 53%<br>54       | 55               | 53         | 49<br>52   | 50<br>49   | 44               | 47<br>53   | 47         |
|              | Y.S.    | 141 ksi<br>137  | 127<br>122       | 152<br>147 | 139<br>136 | 157        | 138<br>132       | 143<br>137 | 134<br>113 |
|              | Forging | 1               | 2                | 23         | 4          | 5          | 9                | 7          | ∞          |

TABLE 9 (continued)

Mechanical Properties-Thermal Treated (800°F)

|              | C <sub>v</sub> (2) | -ft-1bs<br>-    | 87<br>87   | 58         |            | 69         | 46<br>46   | 46         | 1.1              |
|--------------|--------------------|-----------------|------------|------------|------------|------------|------------|------------|------------------|
| Longitudinal | C <sub>v</sub> (1) | - ft-1bs<br>-   | 17         | 12<br>12   | 1.1        | 14<br>14   | 10<br>10   | 10<br>9    | 1 1              |
| Lor          | RA                 | 62%<br>60       | 63<br>65   | 61<br>62   | 64<br>64   | 62<br>63   | 1 1        | 64<br>64   | 1 1              |
|              | Y.S.               | 142 ksi<br>137  | 130<br>128 | 171<br>162 | 138<br>136 | 156<br>149 | 1 1        | 166<br>163 | 1 1              |
|              | C <sub>v</sub> (2) | 34 ft-1bs<br>34 | 46<br>46   | 29<br>29   | 40<br>34   | 40<br>34   | 40<br>40   | 40<br>34   | 1 <sub>.</sub> T |
| Transverse   | C <sub>V</sub> (1) | 8 ft-1bs<br>8   | 10<br>10   | 7 7        | o, &       | თ ∞        | თთ         | o ∞        | -<br>7 T         |
| Tran         | RA                 | 46%<br>51       | 53         | 46         | 50         | 48         | 62<br>50   | 53         | 49<br>50         |
|              | Y.S.               | 134 ksi<br>114  | 128<br>123 | 163<br>159 | 134<br>131 | 148        | 161<br>147 | 151<br>148 | 161<br>161       |
|              | Forging            | 6               | 10         | 11         | 12         | 13         | 14         | 15         | 16               |

Sub-size impact data at -40°F. Sub-size data converted to full-size data using Figure 1.

TABLE 10

Mechanical Properties - Thermal Treated (1000°F)

|         |         | Transverse | erse  |       |         | Longitudinal | dinal             |        |
|---------|---------|------------|-------|-------|---------|--------------|-------------------|--------|
| Forging | Y.S.    | RA         | Cv(1) | Cv(2) | Y.S.    | RA           | <sub>Cv</sub> (1) | Cv (2) |
| 1       | 140 ksi | 55%        | 1     | ı     | 140 ksi | 65%          | ı                 | 1      |
|         | 138     | 55         | ı     | ī     | 133     | 63           | ī                 | 1      |
| 2       | 120     | 56         | •     | 1     | 127     | 99           | I                 | •      |
|         | 120     | 55         | 1     | 1     | 123     | 64           | ı                 | 1      |
| м       | 151     | 54         |       | 1     | 152     | 65           | 1                 |        |
|         | 150     | 52         | ı     | ī     | 153     | 63           | ı                 | 1      |
| 4       | 136     | 52         | ı     |       | 143     | 65           |                   |        |
|         | 135     | 49         | L     | 1     | 139     | 65           | 1                 | 1      |
| 5       | 154     | 49         |       | 1     | 155     | 63           | 1                 | 1      |
|         | 150     | 47         | 1     | 1     | 154     | 63           | ī                 | T      |
| 9       | 136     | 50         |       | •     | 140     | 65           | Í                 | •      |
|         | 132     | 49         | ı     | 1     | 140     | 63           | ī                 | 1      |
| 7       | 139     | 51         | 1     | •     | 140     | 64           | ı                 | 1      |
|         | 138     | 51         | 1     | 1     | 140     | 65           | 1                 | 1      |
| ∞       | 115     | . 09       | 1     |       | 129     | 65           | ı                 |        |
|         | 114     | 09         | 1     | 1     | 120     | 29           | ī                 | 1      |
| 6       | 134     | 43         | ı     |       | 139     | 64           |                   |        |
|         | 134     | 20         | ı     | 1     | 133     | 63           | 1                 | 1      |

TABLE 10 (cont'd)

Mechanical Properties - Thermal Treated (1000°F)

|         |         | Trans | Transverse |       |         | Long | Longitudinal |       |
|---------|---------|-------|------------|-------|---------|------|--------------|-------|
| Forging | Y.S.    | RA    | Cv(1)      | Cv(2) | Y.S.    | RA   | Cv(1)        | Cv(2) |
| 10      | 123 ksi | 51%   | 1          | 1     | 125 ksi | 65%  |              |       |
|         | 123     | 54    | 1          | ı     | 123     | 65   | 1            | ı     |
| 11      | 158     | 46    | L          | 1     | 159     | 63   | ı            | ı     |
|         | 157     | 49    | ij         | 1     | 158     | 61   | 1            | 1     |
| 12      | 128     | 20    | ī          | ı     | 131     | 61   | ı            |       |
|         | 127     | 53    | ī          | 1     | 128     | . 62 | <u>I</u> T   | 1     |
| 13      | 141     | 46    | 1          | ı     | 147     | 62   | 1            | ī     |
|         | 141     | 40    | ı          | ı     | 146     | 64   | ı            | ļ     |
| 14      | 158     | 47    | 1          | 1     | ,       | ı    | ı            | ı     |
|         | 155     | 53    |            | ı     |         | ı    | 1            | ī.    |
| 15      | 149     | 52    | 1          | ı     | 155     | 63   | 1            | ı     |
|         | 148     | 49    | 1          | ı     | 154     | 62   |              | ì     |
| 16      | 153     | 53    | ŧ          | y:    | 1       | 1    | 1            | Ţ     |
|         | 152     | 20    | 1          | 1     | 1       | ı    | 1            | 1     |
|         |         |       |            |       |         |      |              |       |

Sub-size impact data at -40°F. Sub-size data converted to full-size data using Figure 10.

effect, thereby restoring the material to its original yield strength. It is possible that with longer times or higher temperatures, higher yield strengths may have been obtained. However, it was felt that the T-t combinations utilized were practical and adequate.

Residual Stresses - The slitting technique for residual stress measurement does not determine the specific stress distribution in the test specimen or for the full length tube. However, it does provide a comparative measure of the overall magnitude of any stress present in the disc even though particular values of stress at any given point cannot be determined. Table 11 shows the residual stress determined by the slitting techniques. As shown, two estimates of the residual stress are obtained, viz., one, which is based on the strain gages, and a second, which is based on the change in spacing between the two scribed lines (Figure 5). In most cases, the two techniques provided similar residual stress data. Table 11 indicates that some of the specimens had compressive stresses whereas others had tensile stresses. In all cases, however, the values were relatively low.

The x-ray diffraction test results (Table 12) for discs that were removed adjacent to the discs cited in Table 11, revealed in some cases, residual stresses of the opposite sign to those obtained by slitting.

The wide range of stress values observed by x-ray diffraction suggests a highly non-uniform stress distribution throughout the tubes. The results shown for specimens 8 and 15 are opposite in direction and

TABLE 11

Residual Stresses-Slitting Technique

|         |           | Scribed Line       | Line            | Strain Gage              | Gage            |
|---------|-----------|--------------------|-----------------|--------------------------|-----------------|
| Forging | Condition | Strain<br>(∠in/in) | Stress<br>(ksi) | Strain ( $\omega$ in/in) | Stress<br>(ksi) |
| 1       | 800° TT   | +130               | -3.9            | +140                     | -4.2            |
| 2       | 800       | +250               | -7.5            | +230                     | 6.9-            |
| 2       | 800。      | 09-                | +1.8            | -60                      | +1.8            |
| 4       | 800。      | +220               | -6.6            | +230                     | 6.9-            |
| ស       | 800。      | +350               | -10.5           | +350                     | -10.5           |
| 9       | 800。      | -50                | +1.5            | -50                      | +1.5            |
| 7       | 800°      | +240               | -7.2            | +230                     | 6.9-            |
| 8       | 800°      | +240               | -7.2            | 1                        | 1               |
| 6       | 800       | 0                  | 0               | ı                        | j               |
| 10      | 800。      | +240               | -7.2            | +290                     | -8.7            |
| 11      | °008      | +100               | -3.0            | +70                      | -2.1            |
| 12      | 800。      | +220               | 9.9-            | +220                     | 9.9-            |

TABLE 11 (continued)

Residual Stresses-Slitting Technique

|              | Stress<br>(ksi)                 | 9       | .9<br>0<br>7                          | 9     | 8 4 rs                       |
|--------------|---------------------------------|---------|---------------------------------------|-------|------------------------------|
| Gage         | Str<br>(ks                      | +0.6    | -11.9<br>-8.0<br>-7.8<br>-2.7         | +9.6  | -4.3<br>-6.4                 |
| Strain Gage  | Strain $(\omega  \text{in/in})$ | -20     | +397<br>+266<br>+259<br>+90           | -320  | +143<br>+214<br>+118         |
| Line         | Stress<br>(ksi)                 | 0       | -12.1<br>-8.4<br>-8.0<br>-3.3         | +11.8 | 5.8<br>6.9<br>7.4.4          |
| Scribed Line | Strain<br>(Vin/in)              | 0       | +406<br>+280<br>+267<br>+111          | -360  | +192<br>+231<br>+147         |
|              | Condition                       | 800° TT | As-Forged<br>650° TT<br>800°<br>1000° | 800   | As-Forged<br>650° TT<br>800° |
|              | Forging                         | 13      | 14<br>14A<br>14B<br>14C               | 15    | 16<br>16A<br>16B<br>16C      |

TABLE 12

Residual Stress-X-Ray Diffraction

| Forging | Condition | Dogidual Chara  | *              |
|---------|-----------|-----------------|----------------|
| Torging | Condition | Residual Stress | Location       |
| 1       | 800° TT   | -3.1            | O.D. Surface   |
| 2       | 800°      | -13.2           | 11 22          |
| 3       | 800°      | -6.9            | ***            |
| 4       | 800°      | -2.0            | 11             |
| 5       | 800°      | +10.2           | 11             |
| 6       | 800°      | -8.2            | 11             |
| 7       | 800°      | -               | -              |
| 8       | 800°      | -23.4           | "              |
| 9       | 800°      | +18.4           | n n            |
| 10      | 800°      | -11.0           | 11             |
| 11      | 800°      | -5.0            | 11             |
| 12      | 800°      | -2.0            | ***            |
| 13      | 800°      | +9.2            | ***            |
| 14B     | 800°      | -5.0            | Face Near O.D. |
| 14B     | 800°      | +5.0            | Face Near I.D. |
| 14C     | 1000°     | -6.1            | Face Near O.D. |
| 14C     | 1000°     | +5.0            | Face Near I.D. |
| 15      | 800°      | +23.5           | O.D. Surface   |
| 16B     | 800°      | -8.3            | 11             |
| 16B     | 800°      | +9.0            | Face Near I.D. |
| 16C     | 1000°     | -9.2            | O.D. Surface   |
| 16C     | 1000°     | +5.0            | Face Near I.D. |
|         |           |                 |                |

higher than the other tubes. These two specimens were sectioned from the only tubes that were cold forged without a mandrel for a back-up

#### CONCLUSIONS

The work showed that it is possible to cold rotary forge thin wall gun tubes, finishing the inside diameter, including rifling grooves.

Although not every dimensional requirement was met, the results indicate that, with further work, the stringent dimensional requirements can be achieved. It should be noted that these tubes were forged on an SX35 machine which did not have an oscillating chuckhead which could have contributed to the dimensional inaccuracies in the rifling.

The test results showed a general trend toward a decrease in transverse yield strength after cold forging. The amount of decrease is dependent on the starting yield strength, i.e., the higher the starting yield strength, the greater the decrease. To recover the losses, a 800°F thermal treatment was incorporated. It is not certain that this is the optimum temperature but it did serve the purpose of establishing a treatment which was both practical and adequate. It is concluded that thermal treatment should be incorporated after cold rotary forging of gun steel, with further studies to determine optimum treatments.

The two methods for measuring the residual stresses of a cold forged tube show the stress distribution to be highly non-uniform in the asforged and thermal treated conditions. Because of the magnitude of the stresses, no determination can be made as to their effects on tube fatigue life.