What is Deep Learning

The Big Picture - From History to Todays Implementations

Daniel Schalk October 21, 2018

History of Deep Learning

1943

Warren S. McCulloch and Walter Pitts published tried to understand how the brain could produce highly complex patterns by using many basic cells that are connected together.

<u>1943</u>

1943

Warren S. McCulloch and Walter Pitts published tried to understand how the brain could produce highly complex patterns by using many basic cells that are connected together.

1943

1950

1950

Alan Turing predicted the impact of Machine Learning. Additionally, he crafted what has been dubbed The Turing Test.

1957

Frank Rosenblatt declared that he construct a system which works similar to the perceptual processes of a biological brain - The Perceptron.

1943

Warren S. McCulloch and Walter
Pitts published tried to understand
how the brain could produce highly
complex patterns by using many
basic cells that are connected
together.

1960

Henry J. Kelley published "Gradient Theory of Optimal Flight Paths". Many of his ideas were used to develop the basics of a continuous backpropagation model (aka the backward propagation of errors) used in training neural networks.

1943

1950

1960

1950

Alan Turing predicted the impact of Machine Learning. Additionally, he crafted what has been dubbed The Turing Test.

1957

Frank Rosenblatt declared that he construct a system which works similar to the perceptual processes of a biological brain - The Perceptron.

1943

Warren S. McCulloch and Walter
Pitts published tried to understand
how the brain could produce highly
complex patterns by using many
basic cells that are connected
together.

1960

Henry J. Kelley published "Gradient Theory of Optimal Flight Paths". Many of his ideas were used to develop the basics of a continuous backpropagation model (aka the backward propagation of errors) used in training neural networks.

1943

1950

1960

196

1950

Alan Turing predicted the impact of Machine Learning. Additionally, he crafted what has been dubbed The Turing Test.

1957

Frank Rosenblatt declared that he construct a system which works similar to the perceptual processes of a biological brain - The Perceptron.

1965

Alexey Ivakhnenko and V. G. Lapa created the first working deep learning networks, applying what had been only theories and ideas up to that point.

Ivakhnenko developed a learning algorithm using deep feedforward multilayer perceptrons. For that reason alone, many consider Ivakhnenko the father of modern deep learning.

1943

Warren S. McCulloch and Walter Pitts published tried to understand how the brain could produce highly complex patterns by using many basic cells that are connected together.

1960

Henry J. Kelley published "Gradient Theory of Optimal Flight Paths". Many of his ideas were used to develop the basics of a continuous backpropagation model (aka the backward propagation of errors) used in training neural networks.

1970 - First Al Winter

Al was subject to critiques and financial setbacks. Al researchers had failed to appreciate the difficulty of the problems they faced.

Al was claimed to only be suitable for solving "toy" versions.

1943

1950

1960

1965

1970

1950

Alan Turing predicted the impact of Machine Learning. Additionally, he crafted what has been dubbed The Turing Test.

1957

Frank Rosenblatt declared that he construct a system which works similar to the perceptual processes of a biological brain - The Perceptron.

1965

Alexey Ivakhnenko and V. G. Lapa created the first working deep learning networks, applying what had been only theories and ideas up to that point.

Ivakhnenko developed a learning algorithm using deep feedforward multilayer perceptrons. For that reason alone, many consider Ivakhnenko the father of modern deep learning.

Fascination Deep Learning

Imitating Humans - 1

Turing test:

- Developed by Alan Turing in 1950
- Test of a machine's ability to exhibit intelligent behavior
- Player C, the interrogator, is given the task of trying to determine which player, A or B, is a computer and which is a human

Imitating Humans - 2

Image Recognition (Seeing):

 Speech Recognition and Text Mining (Hearing and understanding text):

Imitating Humans - 3

- And know we try to learn them being creative:
 - Music and Text Generation
 - Neural Style Transfer:

• . .

Why Deep Learning is so Powerful?

Singlelayer Perceptron

- Weighted sum of input values transformed by an activation function s
- If s is the sigmoid function $(1 + \exp \sum)^{-1}$, then the perceptron does exactly the same as the logistic regression

Multilayer Perceptron

- Stacking of multiple perceptrons
- Corresponds to stacking GLM models
- Number of parameter grows exponentially
 - ightarrow Optimizing becomes more difficult

Optimizer

- Having that much parameter/weights to find, standard optimizer like Gradient Descent may fail
 - ightarrow Vanishing gradients problem
- Therefore, much effort was spend to get more stable optimizer like momentum, adagrad, etc.:

Source: Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

Convolution

 Generating of new, hopefully meaningful, features of the input (commonly images)

Convolution

Input Image

Generated Image/Feature

Pooling

- Down-sampling of images
- Exact location is not as important as the relative location to other features

Input

5	8	12	11
4	6	9	6
5	3	7	9
4	2	10	12

2x2 Filter

8	12
5	12

Lets Get Deep

- The secret behind Deep Learning is the chaining of hidden layer, convolution layers, and so on
- This deep structure allows the network to create powerful features and explore complex structures within the data
- VGG16 architecture:

Source: https://www.cs.toronto.edu/~frossard/post/vgg16/

Pre Trained Models

Model	Size	Parameters	Depth
Xception	88 MB	22,910,480	126
VGG16	528 MB	138,357,544	23
VGG19	549 MB	143,667,240	26
ResNet50	99 MB	25,636,712	168
InceptionV3	92 MB	23,851,784	159
InceptionResNetV2	215 MB	55,873,736	572
MobileNet	16 MB	4,253,864	88
MobileNetV2	14 MB	3,538,984	88
DenseNet121	33 MB	8,062,504	121
DenseNet169	57 MB	14,307,880	169
DenseNet201	80 MB	20,242,984	201
NASNetMobile	23 MB	5,326,716	-
NASNetLarge	343 MB	88,949,818	-

Challenges in Deep Learning

Structure Search

 \rightarrow Transfer learning.

Expensive Training

- Very very much parameter
- \rightarrow Use server or GPUs.

About Implementations

Frameworks

Keras, PyTorch, mxnet, ...

Backends

Tensorflow, Theano, CNTK, ...

Low-Level Implementations

 $cudnn,\ CUDA,\ \dots$

Where to Start in the DL Jungle

Getting Started with Keras - Overview

- Instead of introducing theory fist, we want to get into the topic by applying it.
- We use examples from the book Deep Learning with Python which are prepared as notebooks.
- But: When using something new, e.g. a convolution layer or optimizer, try to understand what it does and why it might be beneficial!

Getting Started with Keras - First Neural Net

Explain API

Getting Started with Keras - First Neural Net

Some Code

Getting Started with Keras - Getting Deep

Explain API

Getting Started with Keras - Getting Deep

Some Code

Getting Started with Keras - Transfer Learning

Explain API

Getting Started with Keras - Transfer Learning

Some Code

Outlook

Getting More Complex

RNN, LSTM, GAN

NLP

Very very short intro how text mining connects to deep learning (gensim, word vectors, ...)

Reinforcement Learning

This is what comes closest to AI as we are thinking of it. Just show examples