初等函数数

2. 幂函数的解析性

(1)幂函数工在复平面内是单值解析的,

$$(z^n)'=nz^{n-1}.$$

(2)幂函数zn是多值函数,具有n个分支.

它的各个分支在除去原点和负实轴的复平面内是解析的,

$$\left(\frac{1}{z^n} \right)' = \left(\sqrt[n]{z} \right)' = \left(e^{\frac{1}{n} \ln z} \right)' = \frac{1}{n} z^{\frac{1}{n} - 1}.$$

(3) 幂函数 $w = z^b$ (除去 b = n = 5 - 1 两种情况外) 也是一个多值函数,

当 b 为 无理数或复数时, 是 无穷 多值的.

它的各个分支在除去原点和负实轴的复平面内是解析的,

$$(z^b)' = bz^{b-1}.$$

四、三角函数和双曲函数

1. 三角函数的定义

因为 $e^{iy} = \cos y + i \sin y$, $e^{-iy} = \cos y - i \sin y$, 将两式相加与相减,得

cos
$$y = \frac{e^{iy} + e^{-iy}}{2}$$
, $\sin y = \frac{e^{iy} - e^{-iy}}{2i}$.

现在把余弦函数和正弦函数的定义推广到自变数取复值的情形.

我们定义余弦函数为
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
,

正弦函数为
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
.

容易证明, sin z是奇函数, cosz是偶函数.

$$sin(-z) = -sin z$$
, $cos(-z) = cos z$.

正弦函数和余弦函数都是以2π为周期的.

$$sin(z+2\pi)=sin z$$
, $cos(z+2\pi)=cos z$.

正弦函数和余弦函数在复平面内都是解析函数.

 $(\sin z)' = \cos z$, $(\cos z)' = -\sin z$. 有关正弦函数和余弦函数的几组重要公式

 $\begin{cases} \cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2, \\ \sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2, \\ \sin^2 z + \cos^2 z = 1. \end{cases}$

(2) $\begin{cases} \cos(x + yi) = \cos x \cos yi - \sin x \sin yi, \\ \sin(x + yi) = \sin x \cos yi + \cos x \sin yi. \end{cases}$

当z为纯虚数 yi时,

$$\cos yi = \frac{e^{-y} + e^{y}}{2} = \cosh y,$$

$$\sin yi = \frac{e^{-y} - e^{y}}{2i} = i \sinh y.$$

(3)
$$\begin{cases} \cos(x + yi) = \cos x \cosh y - i \sin x \sinh y, \\ \sin(x + yi) = \sin x \cosh y + i \cos x \sinh y. \end{cases}$$

当 $y \to \infty$ 时, $|\sin yi| \to \infty$, $|\cos yi| \to \infty$.

(注意: 这是与实变函数完全不同的)

其他复变数三角函数的定义

正切函数
$$tan z = \frac{\sin z}{\cos z}$$
, 余切函数 $cot z = \frac{\cos z}{\sin z}$,

与sin z和cos z类似,我们可以讨论它们的周期性,奇偶性,解析性.

2. 双曲函数的定义

我们定义双曲余弦函数为 $\cosh z = \frac{e^z + e^{-z}}{2}$, 双曲正弦函数为 $\sinh z = \frac{e^z - e^{-z}}{2}$,

双曲正切函数为 $\tanh z = \frac{e^z - e^{-z}}{e^z + e^{-z}}$.

当 z 为实数 x 时, 它与高等数学中的双曲函数的定义完全一致.

容易证明, sinh z 是奇函数, cosh z 是偶函数. 它们都是以 $2\pi i$ 为周期的周期函数, 它们的导数分别为

 $(\sinh z)' = \cosh z$, $(\cosh z)' = \sin z$. 并有如下公式:

cosh yi = cos y, sinh yi = i sin y. $\begin{cases} cosh(x + yi) = cosh x cos y + i sinh x sin y, \\ sinh(x + yi) = sinh x cos y + i cosh x sin y. \end{cases}$

五、反三角函数和反双曲函数(了解)

1. 反三角函数的定义

 $z = \cos w$ 的反函数称为反余弦函数, 记作 $w = \text{Arc } \cos z$

由
$$z = \cos w = \frac{e^{iw} + e^{-iw}}{2}$$
, 得 $e^{2iw} - 2ze^{iw} + 1 = 0$, 方程的根为 $e^{iw} = z + \sqrt{z^2 - 1}$, 两端取对数得

Arccos
$$z = -iL n(z + \sqrt{z^2 - 1})$$
.

同样可以定义反正弦函数和反正切函数,重复以上步骤,可以得到它们的表达式:

A rcsin
$$z = -iL$$
 n $(iz + \sqrt{1 - z^2})$,
A rctan $z = -\frac{i}{2}L$ n $\frac{1+iz}{1-iz}$.

2. 反双曲函数的定义(不做要求)

反双曲正弦 Arsinh
$$z = L n(z + \sqrt{z^2 + 1})$$
,
反双曲余弦 Arcosh $z = L n(z + \sqrt{z^2 - 1})$,
反双曲正切 Artanh $z = \frac{1}{2}Ln\frac{1+z}{1-z}$.