

• Before proceeding let us look at the dimensions of the parameters carefully

 $x_i \in \mathbb{R}^n$ (n-dimensional input) $s_i \in \mathbb{R}^d$ (d-dimensional state) $y_i \in \mathbb{R}^k$ (say k classes) $U \in \mathbb{R}^{n \times d}$ $V \in \mathbb{R}^{d \times k}$ $W \in \mathbb{R}^{d \times d}$

• How do we train this network? (Ans: using backpropagation)

- Suppose we consider our task of autocompletion (predicting the next character)
- For simplicity we assume that there are only 4 characters in our vocabulary (d,e,p, <stop>)
- At each timestep we want to predict one of these 4 characters
- What is a suitable output function for this task?

- Suppose we initialize U, V, W randomly and the network predicts the probabilities as shown
- And the true probabilities are as shown
- We need to answer two questions
- What is the total loss made by the model?
- How do we backpropagate this loss and update the parameters ($\theta = \{U, V, W\}$) of the network?

• The total loss is simply the sum of the loss over all time-steps

$$\mathscr{L}(\theta) = \sum_{t=1}^T \mathscr{L}_t(\theta)$$

$$\mathcal{L}_t(\theta) = -log(y_{tc})$$

 y_{tc} = predicted probability of true character at time-step i

T = number of timesteps

• For backpropagation we need to compute the gradients w.r.t. W, U, V

• Let us consider $\frac{\partial \mathcal{L}(\theta)}{\partial V}$ (V is a matrix so ideally we should write $\nabla_v \mathcal{L}(\theta)$)

$$\frac{\partial \mathcal{L}(\theta)}{\partial V} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}_t(\theta)}{\partial V}$$

- Each term is the summation is simply the derivative of the loss w.r.t. the weights in the output layer
- We have already seen how to do this when we studied backpropagation

• Let us consider the derivative $\frac{\partial \mathcal{L}(\theta)}{\partial W}$

$$\frac{\partial \mathcal{L}(\theta)}{\partial W} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}_t(\theta)}{\partial W}$$

- By the chain rule of derivatives we know that $\frac{\partial \mathcal{L}_t(\theta)}{\partial W}$ is obtained by summing gradients along all the paths from $\mathcal{L}_t(\theta)$ to W
- What are the paths connecting $\mathcal{L}_t(\theta)$ to W?
- Let us see this by considering $\mathcal{L}_4(\theta)$

- $\mathcal{L}_4(\theta)$ depends on s_4
- s_4 in turn depends on s_3 and W
- s_3 in turn depends on s_2 and W
- s_2 in turn depends on s_1 and W
- s_1 in turn depends on s_0 and W where s_0 is a constant starting state.

- What we have here is an ordered network
- In an ordered network each state variable is computed one at a time in a specified order (first s_1 , then s_2 and so on)
- Now we have

$$\frac{\partial \mathscr{L}_{4}(\theta)}{\partial W} = \frac{\partial \mathscr{L}_{4}(\theta)}{\partial s_{4}} \frac{\partial s_{4}}{\partial W}$$

- We have already seen how to compute $\frac{\partial \mathcal{L}_4(\theta)}{\partial s_4}$ when we studied backprop
- But how do we compute $\frac{\partial s_4}{\partial W}$

• Recall that

$$s_4 = \sigma(Ws_3 + b)$$

- In such an ordered network, we can't compute $\frac{\partial s_4}{\partial W}$ by simply treating s_3 as a constant (because it also depends on W)
- In such networks the total derivative $\frac{\partial s_4}{\partial W}$ has two parts
- **Explicit**: $\frac{\partial^+ s_4}{\partial W}$, treating all other inputs as constant
- Implicit: Summing over all indirect paths from s_4 to W

$$\begin{split} \frac{\partial s_4}{\partial W} &= \underbrace{\frac{\partial^+ s_4}{\partial W}}_{\text{explicit}} + \underbrace{\frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial W}}_{\text{implicit}} \\ &= \frac{\partial^+ s_4}{\partial W} + \frac{\partial s_4}{\partial s_3} \Big[\underbrace{\frac{\partial^+ s_3}{\partial W}}_{\text{explicit}} + \underbrace{\frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial W}}_{\text{implicit}} \Big] \\ &= \frac{\partial^+ s_4}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial^+ s_3}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \Big[\frac{\partial^+ s_2}{\partial W} + \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W} \Big] \\ &= \underbrace{\frac{\partial^+ s_4}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial s_3} \frac{\partial^+ s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial^+ s_2}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} \Big[\underbrace{\frac{\partial^+ s_1}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} \Big[\underbrace{\frac{\partial^+ s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial S_2} \frac{\partial s_3}{\partial W}}_{\text{opticit}} \Big[\underbrace{\frac{\partial^+ s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial S_2}}_{\text{opticit}} \Big[\underbrace{\frac{\partial^+ s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial S_2}}_{\text{opticit}} \Big[\underbrace{\frac{\partial^+ s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial S_2}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial S_2}}_{\text{opticit}} \Big[\underbrace{\frac{\partial^+ s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} \Big[\underbrace{\frac{\partial^+ s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} \Big]_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_{\text{opticit}} + \underbrace{\frac{\partial s_4}{\partial S_3} \frac{\partial s_3}{\partial W}}_$$

For simplicity we will short-circuit some of the paths

$$\frac{\partial s_4}{\partial W} = \frac{\partial s_4}{\partial s_4} \frac{\partial^+ s_4}{\partial W} + \frac{\partial s_4}{\partial s_3} \frac{\partial^+ s_3}{\partial W} + \frac{\partial s_4}{\partial s_2} \frac{\partial^+ s_2}{\partial W} + \frac{\partial s_4}{\partial s_1} \frac{\partial^+ s_1}{\partial W} = \sum_{k=1}^4 \frac{\partial s_4}{\partial s_k} \frac{\partial^+ s_k}{\partial W} + \frac{\partial s_4}{\partial S} \frac{\partial^+ s_2}{\partial W} + \frac{\partial s_4}{\partial S} \frac{\partial^+ s_3}{\partial W} + \frac{\partial s_4}{\partial S} \frac{\partial^+ s_4}{\partial W} = \sum_{k=1}^4 \frac{\partial s_4}{\partial s_k} \frac{\partial^+ s_3}{\partial W} + \frac{\partial s_4}{\partial S} \frac{\partial^+ s_4}{\partial S} \frac{\partial^+ s_4}{\partial S} + \frac{\partial s_4}{\partial S} \frac{\partial^+ s_4}{\partial S$$

• Finally we have

$$\frac{\partial \mathcal{L}_4(\theta)}{\partial W} = \frac{\partial \mathcal{L}_4 \theta}{\partial s_4} \frac{\partial s_4}{\partial W}$$

$$\frac{\partial s_4}{\partial W} = \sum_{k=1}^4 \frac{\partial s_4}{\partial s_k} \frac{\partial^+ s_k}{\partial W}$$

$$\therefore \frac{\partial \mathcal{L}_t(\theta)}{\partial W} = \frac{\partial \mathcal{L}_t(\theta)}{\partial s_t} \sum_{k=1}^t \frac{\partial s_t}{\partial s_k} \frac{\partial^+ s_k}{\partial W}$$

 This algorithm is called backpropagation through time (BPTT) as we backpropagate over all previous time steps