

AMENDMENTS TO THE CLAIMS

The following is a complete listing of claims with a status identifier in parenthesis.

1. (Canceled)

2. (Previously Presented) A method of controlling call admission in a communications network, comprising:

calculating a load level as a function of at least one of a difference between a current measured power and a previous measured power and a difference between a current number of users and a previous number of users; and

controlling call admission based on the calculated load level, wherein said calculating step recursively calculates updated load levels.

3. (Previously Presented) A method of controlling call admission in a communications network, comprising:

calculating a load level as a function of at least one of a difference between measured powers over time and a difference between a number of users over time; and

controlling call admission based on the calculated load level, wherein said calculating step estimates load level as a function of a measured difference between powers over time and a difference between the number of users over time.

4. (Original) The method of claim 3, wherein said calculating step estimates load level, L_{new} , by solving:

$$L_{new}(N_{new}, P_{new}) = \frac{N_{new} x (P_{new} - P_{old})}{N_{new} x (P_{new} - P_{old}) + P_{old} x (N_{new} - N_{old})},$$

where N_{new} and N_{old} are current and previous number of users values respectively, and P_{new} and P_{old} are current and previous power measurements respectively.

5. (Previously Presented) A method of controlling call admission in a communications network, comprising:

calculating a load level as a function of previous and current measured powers or previous and current number of users; and

controlling call admission based on the calculated load level,

wherein said calculating step recursively updates load level as a function of previous and current number of users.

6. (Previously Presented) A method of controlling call admission in a communications network, comprising:

calculating a load level as a function of measured powers or previous and current number of users; and

controlling call admission based on the calculated load level,

wherein said calculating step recursively updates load level as a function of previous and current measured powers.

7. (Original) The method of claim 5, wherein said calculating step estimates load level, L_{new} , by solving:

$$L_{new} = L_{old} \times \frac{N_{new}}{N_{old}},$$

where L_{old} is a previously calculated load level, and N_{new} and N_{old} are current and previous number of users values respectively.

8. (Original) The method of claim 6, wherein said calculating step estimates load level, L_{new} , by solving:

$$L_{new} = 1 - \frac{P_{old}}{P_{new}} \times (1 - L_{old}),$$

where L_{old} is a previously calculated load level, and P_{new} and P_{old} are current and previous power measurements respectively.

9. (Previously Presented) The method of claim 6, further comprising:
verifying a calculated load level before using the calculated load level in said controlling step.

10. (Original) The method of claim 9, wherein said verifying step calculates an estimated power measurement, $P_{new'}$, based on the calculated load level, L_{new} , by solving:

$$P_{new'} = \frac{P_{old}(1 - L_{old})}{(1 - L_{new})},$$

where P_{old} is a previous power measurement and L_{old} is a previously calculated load level, said verifying step comparing $P_{new'}$ with an actual power measurement, P_{new} , to determine whether L_{new} is reasonably accurate.

11. (Original) The method of claim 10, wherein, when said verifying step indicates that the $P_{new'}$ is not sufficiently close to P_{new} , said calculating step calculates load level by solving:

$$L_{new} = 1 - \frac{P_{old}}{P_{new}} \times (1 - L_{old}).$$

12. (Canceled)

13. (Previously Presented) A system of controlling call admissions in a communications network, comprising:

load calculating means for calculating a load level as a function of previous and current measured powers or previous and current number of users; and

control means for controlling call admission based on the calculated load level, wherein said load calculating means recursively calculates updated load levels.

14. (Previously Presented) A system of controlling call admissions in a communications network, comprising:

load calculating means for calculating a load level as a function of at least one of a difference between measured powers over time and a difference between a number of users over time; and

control means for controlling call admission based on the calculated load level, wherein said load calculating means estimates load level as a function of a difference between measured powers over time and a difference between the number of users over time.

15. (Original) The system of claim 14, wherein said load calculating means estimates load level, L_{new} , by solving:

$$L_{new}(N_{new}, P_{new}) = \frac{N_{new} x(P_{new} - P_{old})}{N_{new} x(P_{new} - P_{old}) + P_{old} x(N_{new} - N_{old})},$$

where N_{new} and N_{old} are current and previous number of users values respectively, and P_{new} and P_{old} are current and previous power measurements respectively.

16. (Previously Presented) A system of controlling call admissions in a communications network, comprising:

load calculating means for calculating a load level as a function of previous and current measured powers or previous and current number of users; and

control means for controlling call admission based on the calculated load level, wherein said load calculating means recursively updates load level as a function of previous and current number of users.

17. (Previously Presented) A system of controlling call admissions in a communications network, comprising:

load calculating means for calculating a load level as a function of previous and current measured powers or previous and current number of users; and

control means for controlling call admission based on the calculated load level, wherein said load calculating means recursively updates load level as a function of previous and current measured powers.

18. (Original) The system of claim 16, wherein said load calculating means estimates load level, L_{new} , by solving:

$$L_{new} = L_{old} \times \frac{N_{new}}{N_{old}},$$

where L_{old} is a previously calculated load level, and N_{new} and N_{old} are current and previous number of users values respectively.

19. (Original) The system of claim 17, wherein said load calculating means estimates load level, L_{new} , by solving:

$$L_{new} = 1 - \frac{P_{old}}{P_{new}} \times (1 - L_{old}),$$

where L_{old} is a previously calculated load level, and P_{new} and P_{old} are current and previous received power measurements respectively.

20. (Previously Presented) The system of claim 17, further comprising:
verifying means for verifying a calculated load level before said control means uses
the calculated load level.

21. (Original) The system of claim 20, wherein said verifying means calculates an
estimated power measurement, $P_{new'}$, based on the calculated load level, L_{new} , by solving:

$$P_{new'} = \frac{P_{old}(1 - L_{old})}{(1 - L_{new})},$$

where P_{old} is a previous power measurement and L_{old} is a previously calculated load
level, said verifying means comparing $P_{new'}$ with an actual power measurement P_{new} to
determine whether L_{new} is reasonably accurate.

22. (Original) The system of claim 21, wherein, when said verifying means
indicates that the $P_{new'}$ is not sufficiently close to P_{new} , said calculating means calculates load
level by solving:

$$L_{new} = 1 - \frac{P_{old}}{P_{new}} \times (1 - L_{old}).$$

23. (Previously Presented) the system of claim 13, further comprising:
input means for receiving power measurements and number of user values.

24-27 (Canceled).