Introduction to the COLERAINE stock assessment model

Arni Magnusson

Overview

MODEL

- generalized equations
- Excel user interface
- Bayesian parameter estimation
- AD Model Builder optimization

DATA

- catch by age/length, biomass indices
- stratification by sex and gears
- priors for estimated parameters
- values of fixed parameters

OUTPUT

- max likelihood point estimates
- MCMC posterior likelihood profiles
- projections of harvest strategies

APPLICATION

Icelandic cod data

Background

Ray Hilborn

Professor, Univ. of Wash.

Theory & application

Mark Maunder

Ph.D. student, Univ. of Wash.

Programming & application

Ana Parma

Int. Pac. Halibut Comm.

Theory

Billy Ernst

Ph.D. student, Univ. of Wash.

Programming & application

John Payne

Ph.D. student, Univ. of Wash.

User interface

Paul Starr

New Zeal, Seaf, Ind. Council

Application

Generalized model

Coleraine can be used to model a wide variety of stocks. The model may or may not be

- sex-specific
- gear-specific
- fitted to data from commercial landings and/or research surveys and/or CPUE
- fitted to age and/or length data

Population dynamics

$$N_{a+1,t+1} = N_{a,t} e^{-M} (1 - u_{a,t})$$

N : population size

a:age

t: year

M : natural mortality rate

u: harvest rate

Harvest rate and landings

$$u_{t} = \frac{C_{t}}{e^{-0.5M} \sum_{a} s_{a} N_{a,t} w_{a,t}}$$

u : harvest rate N : population size

t: year s: selectivity

C: landings a: age

M : natural mortality rate w : weight

Age distribution in first year

recruits
$$N_{1,1} = \omega R_0$$

$$N_{a,1} = N_{1,1} e^{-M(a-1)}$$

plus group
$$N_{a,1} = \frac{N_{1,1} e^{-M(A-1)}}{1 - e^{-M}}$$

N: population size

 ω : initial recruitment fraction

 $R_{
m o}$: virgin recruitment

a: age

M : natural mortality rate

 \mathcal{V}_{init} : initial selectivity

 u_{init} : initial harvest rate

A: maximum age

 $N_{1,1} = R_0$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	/									
1991										
1992										
1993										
1994										
1995										
1996										
1997										
1998										
1999										
2000										
2001										
2002										
2003										
2004		_								
2005										

$$N_{1,1} = R_0$$

$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$

				_//						
	Age 1	Age 2	Age 3	Age A	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	•	•	•	•	•	7	/	7	
1991										
1992										
1993										
1994										
1995										
1996										
1997										
1998										
1999										
2000										
2001										
2002										
2003										
2004										
2005										

$$N_{1,1} = R_0$$

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

N -	$N_{1,1} e^{-M(A-1)} \prod_{i=1}^{A-1} u_{i,1}$
$N_{A,1}$ =	$1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	•
1991										
1992										
1993										
1994										
1995										
1996										
1997										
1998										
1999										
2000										
2001										
2002										
2003										
2004										
2005		_		_						

$$N_{1,1} = R_0$$

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

λ/ -	$N_{1,1} e^{-M(A-1)} \prod_{i=1}^{A-1} u_{i,1}$
$N_{A,1}$ =	$\frac{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	80
1991										
1992										
1993										
1994										
1995										
1996										
1997										
1998										
1999										
2000										
2001										
2002										
2003										
2004			·							
2005										

$$N_{1,1} = R_0$$

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	80
1991				4				4		
1992					1	4			1	
1993										
1994										
1995										
1996										
1997										
1998										
1999										
2000										
2001										
2002										
2003										
2004			·							
2005										

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$

$$N_{1,1} = R_0$$

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

λ/ -	$N_{1,1} e^{-M(A-1)} \prod_{i=1}^{A-1} u_{i,1}$
$N_{A,1}$ =	$\frac{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	80
1991		783	520	291	173	103	61	36	22	55
1992			536	297	166	99	59	35	21	44
1993				334	185	103	62	37	22	40
1994					223	124	69	41	24	41
1995						138	77	43	25	41
1996							73	40	23	35
1997								43	24	34
1998									24	32
1999										30
2000										
2001										
2002										
2003										
2004										
2005										

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$

Recruitment

$$N_{1,\,t+1} = \frac{S_t}{\alpha + \beta S_t}$$

 $N_{\scriptscriptstyle 1}$: recruits

t: years

S : spawning biomass

lpha: shape parameter (1 / initial slope)

eta : shape parameter (1 / asymptote)

Beverton-Holt

$$N_{1, t+1} = \frac{S_t}{\alpha + \beta S_t}$$

 $N_{\scriptscriptstyle 1}$: recruits

t: years

S : spawning biomass

lpha: shape parameter (1 / initial slope)

 β : shape parameter (1 / asymptote)

Reparametrized Beverton-Holt

$$N_{1,\,t+1} = \frac{S_t}{\alpha + \beta S_t}$$

$$N_{1,t+1} = f(S_t | R_0, h)$$

 $R_{
m 0}$: virgin recruitment

h: slope parameter (by definition $0.2 \le h \le 1.0$)

Spawning biomass

$$S_t = \sum_{a} N_{a,t} \Phi_a w_{a,t}$$

S : spawning biomass

N: population size

a:age

t: years

 Φ : fraction mature

 \mathcal{W} : weight

$$N_{1,1} = R_0$$

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

λ/ -	$N_{1,1} e^{-M(A-1)} \prod_{i=1}^{A-1} u_{i,1}$
$N_{A,1}$ =	$1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}$

$N_{1,t+1}$	=
$f(S_t)$	R_0, h

		Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1	990	1000	793	553	329	196	116	69	41	24	80
1	991	•	783	520	291	173	103	61	36	22	55
1	992	/		536	297	166	99	59	35	21	44
1	993⁄	•			334	185	103	62	37	22	40
1	994	•				223	124	69	41	24	41
<i>M</i>	995	•					138	77	43	25	41
	996	•						73	40	23	35
1	997	•							43	24	34
M T	998	•								24	32
MX	6 68	/ •									30
Ż	999	۶									
2	100	•									
2	00 <i>5</i> /	•									
2	003	//>			·	·					
2	004	1				·					
2	005	6									

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$

$$N_{1,1} = R_0$$

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

$$N_{A,1} = \frac{N_{1,1} e^{-M(A-1)} \prod_{i=1}^{A-1} u_{i,1}}{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}$$

$$N_{1,t+1} = f(S_t \mid R_0, h)$$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	
1990	1000	793	553	329	196	116	69	41	24	80	
1991	273	783	520	291	173	103	61	36	22	55	1
1992	321	215	536	297	166	99	59	35	21	44	
1993	989	256	154	334	185	103	62	37	22	40	ı
1994	466	793	189	103	223	124	69	41	24	41	ı
1995	723	371	564	117	64	138	77	43	25	41	ı
1996	1860	566	244	298	62	34	73	40	23	35	ı
1997	459	1475	395	145	177	37	20	43	24	34	ı
1998	501	362	997	220	81	99	20	11	24	32	ı
1999	292	393	239	530	117	43	52	11	6	30	ı
2000	433	231	269	137	304	67	25	30	6	21	ı
2001	726	339	152	143	73	161	36	13	16	14	ı
2002	592	572	229	84	79	40	89	20	7	17	ı
2003	760	475	423	153	56	53	27	60	13	16	
2004	1222	599	321	236	85	31	29	15	33	16	
2005	324	959	397	172	127	46	17	16	8	27	

Harvest rate

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$

Harvest rate

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$

$$u_{a,t} = u_t S_{a,t}$$
 selectivity

$$u_{t} = \frac{Y_{t}}{e^{-0.5M} \sum_{a} s_{a,t} N_{a,t} w_{a,t}}$$

Selectivity

Normal distribution

Different variance

Asymmetric normal

Gillnet

Selectivity

Bottom trawl

Age

9 10 11 12 13 14

3

5

Bottom trawl

Estimated parameters

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

$$N_{A,1} = \frac{N_{1,1} e^{-M(A-1)} \prod_{i=1}^{A-1} u_{i,1}}{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}$$

$$N_{1,t+1} = f(S_t \mid R_0, h)$$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	80
1991	273	783	520	291	173	103	61	36	22	55
1992	321	215	536	297	166	99	59	35	21	44
1993	989	256	154	334	185	103	62	37	22	40
1994	466	793	189	103	223	124	69	41	24	41
1995	723	371	564	117	64	138	77	43	25	41
1996	1860	566	244	298	62	34	73	40	23	35
1997	459	1475	395	145	177	37	20	43	24	34
1998	501	362	997	220	81	99	20	11	24	32
1999	292	393	239	530	117	43	52	11	6	30
2000	433	231	269	137	304	67	25	30	6	21
2001	726	339	152	143	73	161	36	13	16	14
2002	592	572	229	84	79	40	89	20	7	17
2003	760	475	423	153	56	53	27	60	13	16
2004	1222	599	321	236	85	31	29	15	33	16
2005	324	959	397	172	127	46	17	16	8	27

Selectivity parameters: Sleft, Sfull, Sright

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$
 $u_{a,t} = u_t s_{a,t}$

User interface

Excel

Maincode.xls

Template.xls

DATA INPUT

Model specifications
Priors for estimated parameters
Values of fixed parameters

Graph.xls

Tracker.xls

MODEL OUTPUT

Parameter estimates Derived statistics Diagnostic graphs

ASCII input file

ASCII output files

colera.exe

Estimated parameters

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

$$N_{A,1} = \frac{N_{1,1} e^{-M(A-1)} \prod_{i=1}^{A-1} u_{i,1}}{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}$$

$$N_{1,t+1} = f(S_t \mid R_0, h)$$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	80
1991	273	783	520	291	173	103	61	36	22	55
1992	321	215	536	297	166	99	59	35	21	44
1993	989	256	154	334	185	103	62	37	22	40
1994	466	793	189	103	223	124	69	41	24	41
1995	723	371	564	117	64	138	77	43	25	41
1996	1860	566	244	298	62	34	73	40	23	35
1997	459	1475	395	145	177	37	20	43	24	34
1998	501	362	997	220	81	99	20	11	24	32
1999	292	393	239	530	117	43	52	11	6	30
2000	433	231	269	137	304	67	25	30	6	21
2001	726	339	152	143	73	161	36	13	16	14
2002	592	572	229	84	79	40	89	20	7	17
2003	760	475	423	153	56	53	27	60	13	16
2004	1222	599	321	236	85	31	29	15	33	16
2005	324	959	397	172	127	46	17	16	8	27

$$\hat{I}_t = q\hat{B}_t$$
Survey/CPUE catchability

Selectivity parameters: Sleft, Sfull, Sright

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$
 $u_{a,t} = u_t s_{a,t}$

Catch-at-age likelihood

$$\log L_{\rm C}^{g} = -0.5 \sum_{t=1}^{N_{years}} \sum_{a=1}^{A} \log \left[\left(P_{a,t}^{g} (1 - P_{a,t}^{g}) + 0.1 / A \right) \right] + \sum_{t=1}^{N_{years}} \sum_{a=1}^{A} \log \left[\exp \left\{ \frac{-\left(\tilde{P}_{a,t}^{g} - P_{a,t}^{g} \right)^{2}}{2\left(P_{a,t}^{g} (1 - P_{a,t}^{g}) + 0.1 / A \right) \tau^{g}} \right\} + 0.01 \right]$$

 $L_{
m C}$: catch-at-age likelihood

g: gear

a: age

t: years

T: number of years

a:age

 ${\cal A}$: number of age groups

P : proportional catch at age

au: 1 / catch sample size

Biomass index likelihood

$$\log L_I^g = \sum_t \log \left[\exp \left(-0.5 \frac{I^g \mathcal{E}_t^2}{I^g \sigma_t^2} \right) + 0.01 \right]$$

 $L_{\scriptscriptstyle I}$: biomass index likelihood

g: gear

I: biomass index

t: years

 \mathcal{E} : log-normal error term

 σ : survey variance

Total likelihood

$$\log L = \sum_{g} \log L_{I}^{g} + \sum_{g} \log L_{C}^{g} + \sum_{g} \log L_{S}^{g}$$

L : total likelihood

g: gear

 $L_{\scriptscriptstyle I}$: biomass index likelihood

 $L_{\it C}$: commercial catch-at-age likelihood

 $L_{\scriptscriptstyle S}$: survey catch-at-age likelihood

Penalties

$$Pen_p = 0.5 \frac{\varepsilon_p^2}{\sigma_p^2}$$

For example, recruitment deviates or time-varying selectivity

Pen: penalty for deviation

p: parameter

 ${\mathcal E}$: residual from prior $\,\mu$

 σ : variance of prior distribution

Objective function

$$f = \log L - \sum_{p} Pen_{p}$$

L : total likelihood

Pen: penalty sum of square

p: parameter

$$N_{1,1} = R_0$$

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

λ/ -	$N_{1,1} e^{-M(A-1)} \prod_{i=1}^{A-1} u_{i,1}$
$N_{A,1}$ =	$\frac{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}$

$N_{1,t+1}$	=
$f(S_t)$	R_0,h

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	80
1991	273	783	520	291	173	103	61	36	22	55
1992	321	215	536	297	166	99	59	35	21	44
1993	989	256	154	334	185	103	62	37	22	40
1994	466	793	189	103	223	124	69	41	24	41
1995	723	371	564	117	64	138	77	43	25	41
1996	1860	566	244	298	62	34	73	40	23	35
1997	459	1475	395	145	177	37	20	43	24	34
1998	501	362	997	220	81	99	20	11	24	32
1999	292	393	239	530	117	43	52	11	6	30
2000	433	231	269	137	304	67	25	30	6	21
2001	726	339	152	143	73	161	36	13	16	14
2002	592	572	229	84	79	40	89	20	7	17
2003	760	475	423	153	56	53	27	60	13	16
2004	1222	599	321	236	85	31	29	15	33	16
2005	324	959	397	172	127	46	17	16	8	27

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$

$$N_{1,1} = R_0$$

$N_{1,t+1}$	=
$f(S_t \mid$	R_0, h

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	80
1991	273	783	520	291	173	103	61	36	22	55
1992	321	215	536	297	166	99	59	35	21	44
1993	989	256	154	334	185	103	62	37	22	40
1994	466	793	189	103	223	124	69	41	24	41
1995	723	371	564	117	64	138	77	43	25	41
1996	1860	566	244	298	62	34	73	40	23	35
1997	459	1475	395	145	177	37	20	43	24	34
1998	501	362	997	220	81	99	20	11	24	32
1999	292	393	239	530	117	43	52	11	6	30
2000	433	231	269	137	304	67	25	30	6	21
2001	726	339	152	143	73	161	36	13	16	14
2002	592	572	229	84	79	40	89	20	7	17
2003	760	475	423	153	56	53	27	60	13	16
2004	1222	599	321	236	85	31	29	15	33	16
2005	324	959	397	172	127	46	17	16	8	27

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$

Ago 2 | Ago 4 | Ago 5 | Ago 6 | Ago 7 | Ago 8 | Ago 9 | Ago 10

$$N_{1,1} = R_0$$

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age /	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	80
1991	273	783	520	291	173	103	61	36	22	55
1992	321	215	536	297	166	99	59	35	21	44
1993	989	256	154	334	185	103	62	37	22	40
1994	466	793	189	103	223	124	69	41	24	41
1995	723	371	564	117	64	138	77	43	25	41
1996	1860	566	244	298	62	34	73	40	23	35
1997	459	1475	395	145	177	37	20	43	24	34
1998	501	362	997	220	81	99	20	11	24	32
1999	292	393	239	530	117	43	52	11	6	30
2000	433	231	269	137	304	67	25	30	6	21
2001	726	339	152	143	73	161	36	13	16	14
2002	592	572	229	84	79	40	89	20	7	17
2003	760	475	423	153	56	53	27	60	13	16
2004	1222	599	321	236	85	31	29	15	33	16
2005	324	959	397	172	127	46	17	16	8	27

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$

$$N_{1,1} = R_0$$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	80
1991	273	783	520	291	173	103	61	36	22	55
1992	321	215	536	297	166	99	59	35	21	44
1993	989	256	154	334	185	103	62	37	22	40
1994	466	793	189	103	223	124	69	41	24	41
1995	723	371	564	117	64	138	77	43	25	41
1996	1860	566	244	298	62	34	73	40	23	35
1997	459	1475	395	145	177	37	20	43	24	34
1998	501	362	997	220	81	99	20	11	24	32
1999	292	393	239	530	117	43	52	11	6	30
2000	433	231	269	137	304	67	25	30	6	21
2001	726	339	152	143	73	161	36	13	16	14
2002	592	572	229	84	79	40	89	20	7	17
2003	760	475	423	153	56	53	27	60	13	16
2004	1222	599	321	236	85	31	29	15	33	16
2005	324	959	397	172	127	46	17	16	8	27

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$

Estimated parameters

$$\times \exp(Dev_a)$$
 Initial deviates

$$N_{a,1} = N_{1,1} e^{-M(a-1)} \prod_{i=1}^{a-1} (1 - u_{i,1})$$

λ/ -	$N_{1,1} e^{-M(A-1)} \prod_{i=1}^{A-1} u_{i,1}$
$N_{A,1}$ =	$\frac{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}{1 - e^{-M} \prod_{i=1}^{A-1} u_{i,1}}$

$$N_{1,t+1} = f(S_t \mid R_0, h)$$

	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10
1990	1000	793	553	329	196	116	69	41	24	80
1991	273	783	520	291	173	103	61	36	22	55
1992	321	215	536	297	166	99	59	35	21	44
1993	989	256	154	334	185	103	62	37	22	40
1994	466	793	189	103	223	124	69	41	24	41
1995	723	371	564	117	64	138	77	43	25	41
1996	1860	566	244	298	62	34	73	40	23	35
1997	459	1475	395	145	177	37	20	43	24	34
1998	501	362	997	220	81	99	20	11	24	32
1999	292	393	239	530	117	43	52	11	6	30
2000	433	231	269	137	304	67	25	30	6	21
2001	726	339	152	143	73	161	36	13	16	14
2002	592	572	229	84	79	40	89	20	7	17
2003	760	475	423	153	56	53	27	60	13	16
2004	1222	599	321	236	85	31	29	15	33	16
2005	324	959	397	172	127	46	17	16	8	27

$$\hat{I}_t = q\hat{B}_t$$
Survey/CPUE catchability

Selectivity parameters: Sleft, Sfull, Sright

$$N_{a+1,t+1} = N_{a,t}e^{-M}(1-u_{a,t})$$
 $u_{a,t} = u_t s_{a,t}$

Confronting uncertainty

Initial process error

Recruitment process error

Ageing observation error

0.8	0.2	0.0	0.0
0.1	0.8	0.1	0.0
0.0	0.2	0.6	0.1
0.0	0.0	0.2	0.7
0.0	0.0	0.0	0.1
0.0	0.0	0.0	0.0

Likelihood function with log-normal error structure

$$\ln L_I^g = \sum_t \ln \left[\exp \left(-0.5 \frac{I^g \varepsilon_t^2}{I^g \sigma_t^2} \right) + 0.01 \right]$$

Model output

PARAMETERS

point estimates

Model output

Recruitment (3 yr old) distribution: Percentiles from MCMC runs

707172737475767778798081828384858687888990919293949596979899

Brood Year

spring survey selectivity

net survey selectivity

Coleraine

Homepage

http://www.fish.washington.edu/research/coleraine

User manual

http://www.fish.washington.edu/Publications/pdfs/0116.pdf

(Hilborn et al. 2001, UW School Aquat. Fish. Sci. Rep.)