

#### **Clustering & Classification using ANNs**

#### Julien Arino University of Manitoba

julien.arino@umanitoba.ca

The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

#### **Outline**

**Neural networks (the perceptron)** 

FIGS-slides-admin/Gemini\_Generated\_Image\_yegaxcyegaxcyega.jpeg

**Neural networks (the perceptron)** 

#### Artificial neural network (ANN) - from Wikipedia

Artificial neural networks (ANNs) are computing systems inspired by the biological neural networks that constitute animal brains An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons. An artificial neuron receives signals then processes them and can signal neurons connected to it. The "signal" at a connection is a real number, and the output of each neuron is computed by some nonlinear function of the sum of its inputs. The connections are called edges. Neurons and edges typically have a weight that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a connection. Neurons may have a threshold such that a signal is sent only if the aggregate signal crosses that threshold.

#### The perceptron

One of the first neural networks (invented 1943, implemented 1957), made for simple classification tasks, for example recognising letters or numbers

Two layers: the *input* layer (the *retina*) and the *output* layer

Inputs are 0 or 1, so are outputs



The connections into the output layer are called *synapses*, they are modifiable

p. 3 - Neural networks (the perceptron)

#### The activation function



Here,

$$f(a_j) = \begin{cases} 0 & \text{if } a_j \leq 0 \\ 1 & \text{if } a_j > 0 \end{cases}$$

p. 4 - Neural networks (the perceptron)

#### The activation function

We have *I* input neurons taking values 0 or 1, *O* output neurons taking values 0 or 1, weights  $W = [w_{ij}] \in \mathcal{M}_{IO}$  and a threshold function f

More generally, use a threshold  $\theta_i$  for each output neuron

$$o_j = \begin{cases} 0 & \text{if } a_j \leq \theta_j \\ 1 & \text{if } a_j > \theta_j \end{cases}$$

The thresholds (or *response bias*) and the weights are modifiable by learning. To do that easily for the threshold, consider an input neuron that is always on, say neuron 0, and set weights  $w_{0j} = -\theta_j$ , making the weights matrix an  $(I+1) \times O$ -matrix

5 – Neural networks (the perceptron)

Another way to write the activation is

$$o_j = \begin{cases} 0 & \text{if } a_j + w_{0j} \leq 0 \\ 1 & \text{if } a_j + w_{0j} > 0 \end{cases}$$

where  $w_{0i} = -\theta_i$ 

## Learning something simple

The aim is to adjust the synaptic weights so that the proper response is provided to a given stimulus

Let us first do a simple example: the OR truth table

So we have two neurons in the retina and a single output neuron

#### Supervised learning

(From R. Rojas)

**Supervised learning**: method in which some input vectors are collected and presented to the network. The output computed by the network is observed and the deviation from the expected answer is measured

The weights are corrected according to the magnitude of the error in the way defined by the learning algorithm

Also called learning with a teacher, since a control process knows the correct answer for the set of selected input vectors

#### Further distinctions in supervised learning methods

Methods with reinforcement or error correction

▶ Reinforcement learning: used when after each presentation of an input-output example, we only know whether the network produces the desired result or not. Weights are updated based on this information (i.e., the Boolean values true or false), so only the input vector can be used for weight correction

► In learning with error correction, the magnitude of the error, together with the input vector, determines the magnitude of the corrections to the weights. In many cases, we try to eliminate the error in a single correction step

## A first learning algorithm

Suppose the training set consists of two sets of points P and N

- **start:** Generate random weight vector  $w_0$ ; set t := 0
- ▶ **test:** A vector  $x \in P \cup N$  is selected randomly
  - ▶ if  $x \in P$  and  $\langle w_t, x \rangle > 0$  go to **test**
  - if  $x \in P$  and  $\langle w_t, x \rangle \leq 0$  go to **add**
  - ▶ if  $x \in N$  and  $\langle w_t, x \rangle < 0$  go to **test**
  - ▶ if  $x \in N$  and  $\langle w_t, x \rangle \ge 0$  go to **subtract**
- ▶ add: set  $w_{t+1} = w_t + x$  and t := t + 1, goto test
- **> subtract:** set  $w_{t+1} = w_t x$  and t := t + 1, goto **test**

## Widrow-Hoff learning rule

Need to provide the correct answer, i.e., this is a supervised learning rule

An output cell only learns if it is mistaken

Present random inputs and apply the rule if the output does not match the known output

p. 11 - Neural networks (the perceptron)

## Widrow-Hoff learning rule

$$w_{ij}^{(t+1)} = w_{ij}^{(t)} + \eta(t_j - o_j)x_j = w_{ij}^{(t)} + \Delta w_{ij}$$
 (1)

#### with

- $ightharpoonup \Delta w_{ij}$  correction to add to the weight  $w_{ij}$
- $\triangleright$   $x_i$ : value (0 or 1) of the *i*th retinal cell
- ▶ o<sub>i</sub>: response of the jth output cell
- ► *t<sub>i</sub>* target response (correct desired response)
- $w_{ij}^{(t)}$ : weight of the synapse between the *i*th retinal cell and *j*th output cell at time *t*. Typically initiated at small random values
- $\triangleright$   $\eta$ : small positive constant, the *learning constant*

#### Learning OR

Three cells in the retina (two inputs and the "dummy" cell used for the threshold) and one output cell. So inputs and outputs must be

Initialise the  $3 \times 1$  weight matrix W to zero:

$$W = \begin{pmatrix} w_0 = -\theta \\ w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

p. 13 – Neural networks (the perceptron)

#### **Procedure**

We choose one random association in

say, the fourth one. So we present [1, 1, 1] and expect an output of 1. We have

$$a = \sum_{i} w_{i}x_{i} = (1 \times 0) + (1 \times 0) + (1 \times 0) = 0$$

This being  $\leq$  0 means that o = 0, giving an error of 1

## Applying the rule

Suppose the learning constant  $\eta = 0.1$ . Then applying (1),

$$\Delta w_0 = \eta(t - o)x_0 = 0.1 \times (1 - 0) \times 1 = 0.1$$
  

$$\Delta w_1 = \eta(t - o)x_0 = 0.1 \times (1 - 0) \times 1 = 0.1$$
  

$$\Delta w_2 = \eta(t - o)x_0 = 0.1 \times (1 - 0) \times 1 = 0.1$$

Applying the correction, W becomes

$$W = \begin{pmatrix} 0.1 \\ 0.1 \\ 0.1 \end{pmatrix}$$

#### Trying another input

Suppose we now present the first input [1,0,0]. This should produce a result of 0. Then

$$a = \sum_{i} w_{i}x_{i} = (1 \times 0.1) + (0 \times 0.1) + (0 \times 0.1) = 0.1$$

which is > 0, so o = 1. We compute the correction

$$\Delta w_0 = \eta(t - o)x_0 = 0.1 \times (0 - 1) \times 1 = -0.1$$
  

$$\Delta w_1 = \eta(t - o)x_1 = 0.1 \times (0 - 1) \times 0 = 0$$
  

$$\Delta w_1 = \eta(t - o)x_2 = 0.1 \times (0 - 1) \times 0 = 0$$

and adjust the weights, giving

$$W = \begin{pmatrix} 0 \\ 0.1 \\ 0.1 \end{pmatrix}$$

D. 16 – Neural networks (the perceptron)

#### And we are done!

With the weights

$$W = \begin{pmatrix} 0 \\ 0.1 \\ 0.1 \end{pmatrix}$$

we are done. Indeed

| Input 0 | Input 1 | Input 2 | а         | 0 | Should be |
|---------|---------|---------|-----------|---|-----------|
| 1       | 0       | 0       | 0         | 0 | 0         |
| 1       | 1       | 0       | 0+0.1+0   | 1 | 1         |
| 1       | 0       | 1       | 0+0+0.1   | 1 | 1         |
| 1       | 1       | 1       | 0+0.1+0.1 | 1 | 1         |

## Learning XOR

Let us now look at the XOR truth table

This problem is not solvable with a simple perceptron of the type we just used, as truth table is not *linearly separable* 

Indeed, we would get weights  $w_1 > 0$ ,  $w_2 > 0$  to activate when presenting [1,0] and [0,1], but would require that the sum of the weights when applied to the input [1,1], give a negative value.

p. 18 – Neural networks (the perceptron)

# Linear separability and OR and XOR



A single-layer perceptron can only learn linearly separable problems

# Adding a hidden layer

It is possible to do XOR, but we need to add a hidden layer



## Using neuralnet to learn OR

#### First, create the truth table

#### Now create and train the NN

The "formula" is to find the OR column using the x1 and x2 columns. We use no hidden layer



Error: 0.016816 Steps: 50

## Testing the result

```
pred = predict(nn_OR, OR_table)

OR_table$result = pred > 0.5
kable(OR_table, "latex", booktabs = TRUE)
```

| x1 | x2 | OR | result |
|----|----|----|--------|
| 0  | 0  | 0  | FALSE  |
| 1  | 0  | 1  | TRUE   |
| 0  | 1  | 1  | TRUE   |
| 1  | 1  | 1  | TRUE   |

#### Now the XOR truth table

## Try to learn it without a hidden layer

| x1 | x2 | XOR | result       |
|----|----|-----|--------------|
| 0  | 0  | 0   | FALSE        |
| 1  | 0  | 1   | TRUE         |
| 0  | 1  | 1   | <b>FALSE</b> |
| 1  | 1  | 0   | TRUE         |

## Now with a hidden layer

| _ |    |    |     |              |
|---|----|----|-----|--------------|
|   | x1 | x2 | XOR | result       |
|   | 0  | 0  | 0   | FALSE        |
|   | 1  | 0  | 1   | TRUE         |
|   | 0  | 1  | 1   | <b>FALSE</b> |
|   | 1  | 1  | 0   | FALSE        |
|   |    |    |     |              |

#### Should look into options.. :)

## An example from the neuralnet manual — Training vs testing sets

 ${\tt iris}$  is a built-in R dataset detailing physical characteristics of 150 flowers from 3 iris species

```
train_idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris_train <- iris[train_idx, ]
iris_test <- iris[-train_idx, ]</pre>
```

Thus we pick at random 2/3 of the data for training and 1/3 for testing. See some considerations on training, validation and testing on this Wikipedia page

#### An example from the neuralnet manual

## Another example – multiclass classification

```
nn <- neuralnet((Species == "setosa") +
                  (Species == "versicolor") +
                  (Species == "virginica")
                 ~ Petal.Length + Petal.Width,
                iris_train, linear.output = FALSE)
pred <- predict(nn, iris_test)</pre>
table(iris_test$Species, apply(pred, 1, which.max))
##
##
                1 2 3
    setosa 14 0 0
##
    versicolor 0 18 1
##
    virginica 0 0 17
##
```