	Cross-Validation:
	- more like model selection
	Bootstrap ;
	- more like model assessment
5.1	Cross - Validation
	- training set, training error rate
	- test set, test error rate
5.1.1	The Validation Set Approach
	- Suppose we would like to estimate the test error associated with fitting a particular
	statistical learning method on a set of observations. The validation set approach
	involves randomly dividing the available set of observations into two parts,
	training set and validation set.
	- But randomly dividing data into two parts is risky in that MSE varies
	greatly for each trial, and we cannot fully make use of the available data.
	2 drawbacks
51)	
2.1.2	Leave - One - Out Cross - Validation
	- Using only one observation as a test set and using the rest of the data as
	the training set. Repeat this for all individual data. => n-1 training observation, 1 test observation
	7 1 Training Observation, I test observation
	$MSE_i = (Y_i - \hat{Y}_i)^2$, where \hat{Y}_i is the fitted model without the ith
	$MSE_i = (Y_i - \hat{Y}_i)^2$, where \hat{Y}_i is the fitted model without the i th there are N MSE_i 's observation and Y_i is the actual value of the i th
	observation
	$= > CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_{i}$
	Pros of LOOCV:
	- First, LOOCV has far less bias, consequently tending not to overestimate the test
	error rate, Second, there is no randomness, or variation, in MSE.

But!							
- It is very time consuming and computationally loading.							
J J							
K-Fold Cross-Validation							
- randomly dividing the set of observations into k groups, and using each fold as a test set for							
· ·							
each trial. $CV_{(k)} = \frac{k}{K} \sum_{i=1}^{K} MSE_{i}$							
- requires significantly less computational support compared to LOOCV.							
- Bias-Variance Trade-off							
MSE = Variance + Bias ²							
- MSE is stable for each trial.							
Bias - Variance Trade-Off for K-Fold Cross - Validation							
- In terms of bias reduction, it is obvious to choose LOOCV over k-fold for cross-							
validation since LOOCV uses almost full data.							
- It turns out that LOOCV has higher variance than does K-fold. When we perform LOOCV,							
We are in effect averaging the outputs of n fitted models, each of which is trained							
on an almost identical set of observations; therefore, these outputs are highly,							
posifively correlated. Since the mean of many highly correlated quantities has higher							
variance than does the mean of many quantities that are not as highly correlated,							
the test error estimate resulting from LOCV tends to have higher variance than							
does the test error estimate resulting from k-fold CV.							
J T							
-> MSE of LOOCV:							
CV = 1/2 MSE; = MSE, GATIH X; \(\frac{1}{2}\) nighty correlated " \(\frac{1}{2}\)+Ct\(\frac{1}{2}\),							
Covariance 7+ 높다는 것, 이 상태에서 MSE의 분산을 구하게 된다면							
,							
=> Var (MSE) = Var (in (MSE, +MSEz++ MSEn))							
$= \frac{1}{n^2} \cdot Var \left(\left(MSE_1 + MSE_2 + \cdots + MSE_n \right) \right)$							
= $\frac{1}{n^2}$ { $Var(MSE_1) + Var(MSE_2) + \cdots + Var(MSE_n) + 2 Cov(MSE_1, MSE_2) + \cdots$							

- 01714	Covariance = E	181는 과저에서	MSE; 毙	분은 상관관계를	7177
71 TUBO	11 Var (USE) 21	때는 귀진다.			