PD - 93888B

International Rectifier

SMPS MOSFET

V_{DSS}

20V

IRF3704 IRF3704S IRF3704L

 I_D

77A^⑤

Applications

HEXFET® Power MOSFET

R_{DS(on)} max

 $9.0 m\Omega$

- High Frequency DC-DC Isolated Converters with Synchronous Rectification for Telecom and Industrial use
- High Frequency Buck Converters for Computer Processor Power

_			_	
R	ΔI	ne	ıfi	its

- Ultra-Low Gate Impedance
- Very Low R_{DS(on)}
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V_{DS}	Drain-Source Voltage	20	V
V_{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	77 ^⑤	
$I_D @ T_C = 70^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	64	Α
I _{DM}	Pulsed Drain Current①	308	
P _D @T _C = 25°C	Maximum Power Dissipation③	87	W
P _D @T _C = 70°C	Maximum Power Dissipation®	61	W
	Linear Derating Factor	0.59	mW/°C
T_J , T_{STG}	Junction and Storage Temperature Range	-55 to + 175	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.73	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface @	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)*		40	

^{*} When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.021		V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		6.3	9.0	mΩ	V _{GS} = 10V, I _D = 15A ③
R _{DS(on)}			9.8	13.5	11152	$V_{GS} = 4.5V, I_D = 12A$ ③
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	/	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
lana	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 16V, V_{GS} = 0V$
I _{DSS}	Diam-to-Source Leakage Guirent			100	μΛ	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-200	11/4	V _{GS} = -16V

Dynamic @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	42			S	V _{DS} = 10V, I _D = 57A
Qg	Total Gate Charge		19			I _D = 28.4A
Q _{gs}	Gate-to-Source Charge		8.1		nC	$V_{DS} = 10V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		6.4]	V _{GS} = 4.5V ③
Q _{oss}	Output Gate Charge		16	24		$V_{GS} = 0V, V_{DS} = 10V$
t _{d(on)}	Turn-On Delay Time		8.4			$V_{DD} = 10V$
t _r	Rise Time		98		ns	$I_D = 28.4A$
t _{d(off)}	Turn-Off Delay Time		12		1 113	$R_G = 1.8\Omega$
t _f	Fall Time		5.0		1	$V_{GS} = 4.5V$ 3
C _{iss}	Input Capacitance		1996			$V_{GS} = 0V$
Coss	Output Capacitance		1085		1	$V_{DS} = 10V$
C _{rss}	Reverse Transfer Capacitance		155		pF	f = 1.0 MHz

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		216	mJ
I _{AR}	Avalanche Current①		71	Α

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current					MOSFET symbol
	(Body Diode)			77⑤	A	showing the
I _{SM}	Pulsed Source Current			200	1 ^	integral reverse
	(Body Diode) ①			308		p-n junction diode.
V_{SD}	Diode Forward Voltage		0.88	1.3	V	$T_J = 25$ °C, $I_S = 35.5$ A, $V_{GS} = 0$ V ③
* SD			0.82		1	$T_J = 125$ °C, $I_S = 35.5$ A, $V_{GS} = 0$ V ③
t _{rr}	Reverse Recovery Time		38	57	ns	$T_J = 25$ °C, $I_F = 35.5$ A, $V_R = 20$ V
Q _{rr}	Reverse Recovery Charge		45	68	nC	di/dt = 100A/µs ③
t _{rr}	Reverse Recovery Time		41	62	ns	$T_J = 125$ °C, $I_F = 35.5$ A, $V_R = 20$ V
Q _{rr}	Reverse Recovery Charge		50	75	nC	di/dt = 100A/µs ③

International TOR Rectifier

IRF3704/3704S/3704L

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

(2) | 10 | 10 | 20 | 30 | 40 | Q_G, Total Gate Charge (nC)

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area www.irf.com

International TOR Rectifier

IRF3704/3704S/3704L

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

0.009 Operation of the control of t

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

Fig 14a&b. Basic Gate Charge Test circuit and Waveforms

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

6

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- NOTES:
- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION : INCH

- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 WITH ASSEMBLY

LOT CODE 9B1M

INTERNATIONAL
RECTIFIER
LOGO
INTER 9246
9B 1M

ASSEMBLY
LOT CODE

YY = YEAR
WW = WEEK

International

TOR Rectifier

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

D²Pak Part Marking Information

International TOR Rectifier

IRF3704/3704S/3704L

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

LEAD ASSIGNMENTS

1 = GATE 3 = SOURCE 2 = DRAIN 4 = DRAIN

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. HEATSINK & LEAD DIMENSIONS DO NOT INCLUDE BURRS.

TO-262 Part Marking Information

EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789

ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"

International

TOR Rectifier

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25^{\circ}C$, L = 0.5 mH $R_G = 25\Omega$, $I_{AS} = 28.4 \text{ A}$.
- ③ Pulse width ≤ 300 μ s; duty cycle ≤ 2%.
- This is only applied to TO-220AB package
- ⑤ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN: 16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 8/00

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/