Aljabar Boolean

Definisi Aljabar Boolean

Misalkan terdapat

- Dua operator biner: + dan ·
- Sebuah operator uner: '.
- B: himpunan yang didefinisikan pada operator +, ·, dan '
- 0 dan 1 adalah dua elemen yang berbeda dari *B*.

Tupel

$$(B, +, \cdot, ')$$

disebut **aljabar Boolean** jika untuk setiap $a, b, c \in B$ berlaku aksioma-aksioma atau postulat Huntington berikut:

- 1. Closure: (i) $a + b \in B$
 - (ii) $a \cdot b \in B$
- 2. Identitas: (i) a + 0 = a
 - (ii) $a \cdot 1 = a$
- 3. Komutatif:(i) a + b = b + a(ii) $a \cdot b = b \cdot a$
- 4. Distributif:(i) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ (ii) $a + (b \cdot c) = (a + b) \cdot (a + c)$
- 5. Komplemen¹: (i) a + a' = 1(ii) $a \cdot a' = 0$

Untuk mempunyai sebuah aljabar Boolean, harus diperlihatkan:

- 1. Elemen-elemen himpunan B,
- 2. Kaidah operasi untuk operator biner dan operator uner,
- 3. Memenuhi postulat Huntington.

Aljabar Boolean Dua-Nilai

Aljabar Boolean dua-nilai:

- $B = \{0, 1\}$
- operator biner, + dan ·
- operator uner, '
- Kaidah untuk operator biner dan operator uner:

a	b	$a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

a	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

a	a'	
0	1	
1	0	

Cek apakah memenuhi postulat Huntington:

- 1. Closure: jelas berlaku
- 2. Identitas: jelas berlaku karena dari tabel dapat kita lihat bahwa:

(i)
$$0+1=1+0=1$$

(ii)
$$1 \cdot 0 = 0 \cdot 1 = 0$$

3. Komutatif: jelas berlaku dengan melihat simetri tabel operator biner.

4. Distributif: (i) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ dapat ditunjukkan benar dari tabel operator biner di atas dengan membentuk tabel kebenaran:

	b	С	b+c	$a \cdot (b+c)$	$a \cdot b$	$a \cdot c$	$(a \cdot b) + (a \cdot c)$
a							
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

- (ii) Hukum distributif $a + (b \cdot c) = (a + b) \cdot (a + c)$ dapat ditunjukkan benar dengan membuat tabel kebenaran dengan cara yang sama seperti (i).
- 5. Komplemen: jelas berlaku karena Tabel 7.3 memperlihatkan bahwa:
 - (i) a + a' = 1, karena 0 + 0' = 0 + 1 = 1 dan 1 + 1' = 1 + 0 = 1
 - (ii) $a \cdot a = 0$, karena $0 \cdot 0' = 0 \cdot 1 = 0$ dan $1 \cdot 1' = 1 \cdot 0 = 0$

Karena kelima postulat Huntington dipenuhi, maka terbukti bahwa $B = \{0, 1\}$ bersama-sama dengan operator biner + dan · operator komplemen ' merupakan aljabar Boolean.

Ekspresi Boolean

- Misalkan $(B, +, \cdot, ')$ adalah sebuah aljabar Boolean. Suatu ekspresi Boolean dalam $(B, +, \cdot, ')$ adalah:
 - (i) setiap elemen di dalam B,
 - (ii) setiap peubah,
 - (iii) jika e_1 dan e_2 adalah ekspresi Boolean, maka $e_1 + e_2$, $e_1 \cdot e_2$, e_1 ' adalah ekspresi Boolean

```
Contoh: 0
1
a
b
a+b
a \cdot b
a' \cdot (b+c)
a \cdot b' + a \cdot b^{\text{cinaldi Mubit/IFfd51}} Mebagainya
```

Mengevaluasi Ekspresi Boolean

• Contoh: $a' \cdot (b+c)$

jika a = 0, b = 1, dan c = 0, maka hasil evaluasi ekspresi:

$$0' \cdot (1+0) = 1 \cdot 1 = 1$$

• Dua ekspresi Boolean dikatakan **ekivalen** (dilambangkan dengan '=') jika keduanya mempunyai nilai yang sama untuk setiap pemberian nilai-nilai kepada *n* peubah.

Contoh:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Contoh. Perlihatkan bahwa a + a'b = a + b.

Penyelesaian:

a	b	a'	a'b	a + a' b	a+b
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	0	1	1

• Perjanjian: tanda titik (·) dapat dihilangkan dari penulisan ekspresi Boolean, kecuali jika ada penekanan:

$$(i) a(b+c) = ab + ac$$

(ii)
$$a + bc = (a + b) (a + c)$$

(iii)
$$a \cdot 0$$
, bukan a0

Prinsip Dualitas

- Misalkan S adalah kesamaan (*identity*) di dalam aljabar Boolean yang melibatkan operator +, \cdot , dan komplemen, maka jika pernyataan S^* diperoleh dengan cara mengganti
 - · dengan +
 - + dengan ·
 - 0 dengan 1
 - 1 dengan 0

dan membiarkan operator komplemen tetap apa adanya, maka kesamaan S^* juga benar. S^* disebut sebagai *dual* dari S.

Contoh.

(i)
$$(a \cdot 1)(0 + a') = 0$$
 dualnya $(a + 0) + (1 \cdot a') = 1$

(ii)
$$a(a'+b) = ab \underset{\text{Rinaldi Munir/JF2131 Mat Diskrit}}{\text{dualnya}} a + a'b = a + b$$

Hukum-hukum Aljabar Boolean

- 1. Hukum identitas:
 - (i) a + 0 = a
 - (ii) $a \cdot 1 = a$

- 2. Hukum idempoten:
 - (i) a + a = a
 - (ii) $a \cdot a = a$

- 3. Hukum komplemen:
 - (i) a + a' = 1
 - (ii) aa' = 0

- 4. Hukum dominansi:
 - (i) $a \cdot 0 = 0$
 - (ii) a + 1 = 1

- 5. Hukum involusi:
 - (i) (a')' = a

- 6. Hukum penyerapan:
 - (i) a + ab = a
 - (ii) a(a + b) = a

- 7. Hukum komutatif:
 - (i) a + b = b + a
 - (ii) ab = ba

- 8. Hukum asosiatif:
 - (i) a + (b + c) = (a + b) + c
 - (ii) a(bc) = (ab)c

- 9. Hukum distributif:
 - (i) a + (b c) = (a + b) (a + c)
 - (ii) a(b+c) = ab + ac
- 10. Hukum De Morgan:
 - (i) (a + b)' = a'b'
 - (ii) (ab)' = a' + b'

- 11. Hukum 0/1
 - (i) 0' = 1
 - (ii) 1' = 0

Contoh 7.3. Buktikan (i) a + a'b = a + b dan (ii) a(a' + b) = abPenyelesaian:

(i)
$$a + a'b = (a + ab) + a'b$$
 (Penyerapan)
 $= a + (ab + a'b)$ (Asosiatif)
 $= a + (a + a')b$ (Distributif)
 $= a + 1 \cdot b$ (Komplemen)
 $= a + b$ (Identitas)
(ii) adalah dual dari (i)

Fungsi Boolean

• **Fungsi Boolean** (disebut juga fungsi biner) adalah pemetaan dari B^n ke B melalui ekspresi Boolean, kita menuliskannya sebagai

$$f: B^n \to B$$

yang dalam hal ini B^n adalah himpunan yang beranggotakan pasangan terurut ganda-n (ordered n-tuple) di dalam daerah asal B.

- Setiap ekspresi Boolean tidak lain merupakan fungsi Boolean.
- Misalkan sebuah fungsi Boolean adalah

$$f(x, y, z) = xyz + x'y + y'z$$

Fungsi f memetakan nilai-nilai pasangan terurut ganda-3

(x, y, z) ke himpunan $\{0, 1\}$.

Contohnya, (1, 0, 1) yang berarti x = 1, y = 0, dan z = 1

sehingga $f(1, 0, 1) = 1 \cdot 0 \cdot 1 + 1' \cdot 0 + 0' \cdot 1 = 0 + 0 + 1 = 1$.

Contoh. Contoh-contoh fungsi Boolean yang lain:

1.
$$f(x) = x$$

2.
$$f(x, y) = x'y + xy' + y'$$

3.
$$f(x, y) = x' y'$$

4.
$$f(x, y) = (x + y)$$

5.
$$f(x, y, z) = xyz'$$

• Setiap peubah di dalam fungsi Boolean, termasuk dalam bentuk komplemennya, disebut **literal**.

Contoh: Fungsi h(x, y, z) = xyz' pada contoh di atas terdiri dari 3 buah literal, yaitu x, y, dan z'.

Contoh. Diketahui fungsi Booelan f(x, y, z) = xy z', nyatakan h dalam tabel kebenaran.

Penyelesaian:

\mathcal{X}	у	\mathcal{Z}	f(x, y, z) = xy z'
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Komplemen Fungsi

1. Cara pertama: menggunakan hukum De Morgan Hukum De Morgan untuk dua buah peubah, x_1 dan x_2 , adalah

Contoh. Misalkan f(x, y, z) = x(y'z' + yz), maka

$$f'(x, y, z) = (x(y'z' + yz))'$$

$$= x' + (y'z' + yz)'$$

$$= x' + (y'z')' (yz)'$$

$$= x' + (y + z) (y' + z')$$

2. Cara kedua: menggunakan prinsip dualitas. Tentukan dual dari ekspresi Boolean yang merepresentasikan *f*, lalu komplemenkan setiap literal di dalam dual tersebut.

Contoh. Misalkan
$$f(x, y, z) = x(y'z' + yz)$$
, maka dual dari f : $x + (y' + z')(y + z)$

komplemenkan tiap literalnya: x' + (y + z) (y' + z') = f'

Jadi,
$$f'(x, y, z) = x' + (y + z)(y' + z')$$

Bentuk Kanonik

- Ada dua macam bentuk kanonik:
 - 1. Penjumlahan dari hasil kali (sum-of-product atau SOP)
 - 2. Perkalian dari hasil jumlah (*product-of-sum* atau POS)

Contoh: 1.
$$f(x, y, z) = x'y'z + xy'z' + xyz \rightarrow SOP$$

Setiap suku (term) disebut minterm

2.
$$g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')$$

 $(x' + y + z')(x' + y' + z) \rightarrow POS$

Setiap suku (term) disebut maxterm

• Setiap minterm/mountammengandung-iliteral lengkap

	,	Minterm		Maxterm	
\mathcal{X}	y	Suku	Lambang	Suku	Lambang
0	0	<i>x</i> ' <i>y</i> '	m_0	x + y	M_0
0	1	x' y	m_1	x + y	M_1
1	0	xy'	m_2	x' + y	M_2
1	1	xy	m_3	x' + y'	M_3

		•	Minterm		Maxterm	
\mathcal{X}	у	$\boldsymbol{\mathcal{Z}}$	Suku	Lambang	Suku	Lambang
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x+y+z	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x'+y+z	M_4
1	0	1	xy'z	m_5	x'+y+z'	M_5
1	1	0	xyz	m_6	x'+y'+z	M_6
1	1	1	xyz	m_7	x'+y'+z'	M_7

Contoh 7.10. Nyatakan tabel kebenaran di bawah ini dalam bentuk kanonik SOP dan POS.

Tabel 7.10

x	у	\mathcal{Z}	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Penyelesaian:

(a) SOP

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 001, 100, dan 111, maka fungsi Booleannya dalam bentuk kanonik SOP adalah

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

atau (dengan menggunakan lambang minterm),

$$f(x, y, z) = m_1 + m_4 + m_7 = \sum (1, 4, 7)$$

(b) POS

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 000, 010, 011, 101, dan 110, maka fungsi Booleannya dalam bentuk kanonik POS adalah

$$f(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')$$
$$(x' + y + z')(x' + y' + z)$$

atau dalam bentuk lain,

$$f(x, y, z) = M_0 M_2 M_3 M_5 M_6 = \prod (0, 2, 3, 5, 6)$$

Contoh 7.11. Nyatakan fungsi Boolean f(x, y, z) = x + y'z dalam bentuk kanonik SOP dan POS.

Penyelesaian:

(a) SOP

$$x = x(y + y')$$
= $xy + xy'$
= $xy (z + z') + xy'(z + z')$
= $xyz + xyz' + xy'z + xy'z'$

$$y'z = y'z (x + x')$$

= xy'z + x'y'z

Jadi
$$f(x, y, z) = x + y'z$$

= $xyz + xyz' + xy'z + xy'z' + xy'z + x'y'z$
= $x'y'z + xy'z' + xy'z + xyz' + xyz$

atau
$$f(x, y, z) = m_{\text{kindid}} m_{\text{durin}} m_{\text{2}1} + m_{\text{6}t} + m_{\text{6}t} = \Sigma (1, 4, 5, 6, 7)$$

(b) POS

$$f(x, y, z) = x + y'z$$

= $(x + y')(x + z)$

$$x + y' = x + y' + zz'$$

= $(x + y' + z)(x + y' + z')$

$$x + z = x + z + yy'$$

= $(x + y + z)(x + y' + z)$

Jadi,
$$f(x, y, z) = (x + y' + z)(x + y' + z')(x + y + z)(x + y' + z)$$

= $(x + y' + z)(x + y' + z)(x + y' + z')$

atau
$$f(x, y, z) = M_0 M_2 M_3 = \prod (0, 2, 3)$$

Konversi Antar Bentuk Kanonik

Misalkan

$$f(x, y, z) = \Sigma (1, 4, 5, 6, 7)$$

dan f'adalah fungsi komplemen dari f,

$$f'(x, y, z) = \Sigma (0, 2, 3) = m_0 + m_2 + m_3$$

Dengan menggunakan hukum De Morgan, kita dapat memperoleh fungsi *f* dalam bentuk POS:

$$f'(x, y, z) = (f'(x, y, z))' = (m_0 + m_2 + m_3)'$$

$$= m_0' \cdot m_2' \cdot m_3'$$

$$= (x'y'z')' (x'yz')' (x'yz)'$$

$$= (x + y + z) (x + y' + z) (x + y' + z')$$

$$= M_0 M_2 M_3$$

$$= \prod (0,2,3)$$

Jadi, $f(x, y, z) = \Sigma (1, 4, 5, 6, 7) = \prod (0,2,3)$.

<u>Kesimpulan</u>: m_i ' = M_i

Contoh. Nyatakan

$$f(x, y, z) = \prod (0, 2, 4, 5) \text{ dan}$$

 $g(w, x, y, z) = \Sigma(1, 2, 5, 6, 10, 15)$

dalam bentuk SOP.

Penyelesaian:

$$f(x, y, z) = \Sigma (1, 3, 6, 7)$$

$$g(w, x, y, z) = \prod (0, 3, 4, 7, 8, 9, 11, 12, 13, 14)$$

Contoh. Carilah bentuk kanonik SOP dan POS dari f(x, y, z) = y' + xy + x'yz'

Penyelesaian:

(a) SOP

$$f(x, y, z) = y' + xy + x'yz'$$

$$= y' (x + x') (z + z') + xy (z + z') + x'yz'$$

$$= (xy' + x'y') (z + z') + xyz + xyz' + x'yz'$$

$$= xy'z + xy'z' + x'y'z + x'y'z' + xyz + xyz' + x'yz'$$

atau $f(x, y, z) = m_0 + m_1 + m_2 + m_4 + m_5 + m_6 + m_7$

(b) POS

$$f(x, y, z) = M_3 = x + y' + z'$$

3 Bentuk Baku

- Tidak harus mengandung literal yang lengkap.
- Contohnya,

$$f(x, y, z) = y' + xy + x'yz$$
 (bentuk baku SOP)

$$f(x, y, z) = x(y' + z)(x' + y + z')$$
 (bentuk baku POS)

Aplikasi Aljabar Boolean

1. Jaringan Pensaklaran (Switching Network)

Saklar: objek yang mempunyai dua buah keadaan: buka dan tutup.

Tiga bentuk gerbang paling sederhana:

- 1. a x bOutput b hanya ada jika dan hanya jika x dibuka $\Rightarrow x$
- 2. a x y bOutput b hanya ada jika dan hanya jika x dan y dibuka $\Rightarrow xy$
- 3. $a \xrightarrow{x}$ $b \xrightarrow{y}$

Contoh rangkaian pensaklaran pada rangkaian listrik:

1. Saklar dalam hubungan SERI: logika AND

2. Saklar dalam hubungan PARALEL: logika OR

2. Rangkaian Logika

Gerbang AND

Gerbang OR

Gerbang NOT (inverter)

Contoh. Nyatakan fungsi f(x, y, z) = xy + x'y ke dalam rangkaian logika.

Jawab: (a) Cara pertama

(b) Cara kedua

(c) Cara ketiga

Gerbang turunan

Gerbang NAND

Gerbang NOR

Gerbang XOR

$$x$$
 y
 $(x \oplus y)'$

Gerbang XNOR

$$(x + y)'$$
 ekivalen dengan

$$(x+y)'$$
 ekivalen dengan x $x+y$ $(x+y)'$

$$x \longrightarrow (x+y)'$$

$$x'$$
 y' ekivalen dengan

$$\begin{array}{cccc} x & & & \\ y & & & \\ \end{array}$$

🧊 Penyederhanaan Fungsi Boolean

Contoh.
$$f(x, y) = x'y + xy' + y'$$

disederhanakan menjadi

$$f(x, y) = x' + y'$$

Penyederhanaan fungsi Boolean dapat dilakukan dengan 3 cara:

- 1. Secara aljabar
- 2. Menggunakan Peta Karnaugh
- 3. Menggunakan metode Quine Mc Cluskey (metode Tabulasi)

1. Penyederhanaan Secara Aljabar

Contoh:

1.
$$f(x, y) = x + x'y$$

= $(x + x')(x + y)$
= $1 \cdot (x + y)$
= $x + y$

2.
$$f(x, y, z) = x'y'z + x'yz + xy'$$

= $x'z(y' + y) + xy'$
= $x'z + xz'$

3.
$$f(x, y, z) = xy + x'z + yz = xy + x'z + yz(x + x')$$

 $= xy + x'z + xyz + x'yz$
Rinaldi Munir/IF2151, Mat. Diskrit
 $= xy(1 + z) + x'z(1 + y) = xy + x'z$

2. Peta Karnaugh

a. Peta Karnaugh dengan dua peubah

$$\begin{array}{c|cccc}
 & y \\
 & 0 & 1 \\
x & 0 & x'y' & x'y \\
\hline
 & 1 & xy' & xy
\end{array}$$

b. Peta dengan tiga peubah

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

		yz 00	01	11	10
x	0	<i>x</i> ' <i>y</i> ' <i>z</i> '	x' y ' z	x'yz	<i>x</i> ' <i>yz</i> '
	1	xy'z'	xy'z	xyz	xyz'

Contoh. Diberikan tabel kebenaran, gambarkan Peta Karnaugh.

X	y	z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

	yz 00	01	11	10
<i>x</i> 0	0	0	0	1
1	0	0	1	1

b. Peta dengan empat peubah

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	<i>m</i> ₉	m_{11}	m_{10}

	yz 00	01	11	10
wx 00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
11	wxy'z'	wxy'z	wxyz	wxyz'
10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

Contoh. Diberikan tabel kebenaran, gambarkan Peta Karnaugh.

W	х	у	Z	f(w, x, y, z)
	0	0	0	0
0	0	0	1	1
0 0 0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0 0 0 0	1	0	1	0
0	1	1	1 0	1
	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

		yz 00	01	11	10	
wx	00	0	1	0	1	
	01	0	0	1	1	
	11	0	0	0	1	
	10	0	0	0 Rin	0 aldi M	unir/IF2151 Mat. Dis

Teknik Minimisasi Fungsi Boolean dengan Peta Karnaugh

1. Pasangan: dua buah 1 yang bertetangga

	yz 00	01	1 1	10
wx 00	0	0	0	0
01	0	0	0	0
11	0	0	1	1
10	0	0	0	0

Sebelum disederhanakan: f(w, x, y, z) = wxyz + wxyz'

Hasil Penyederhanaan: f(w, x, y, z) = wxy

Bukti secara aljabar:

$$f(w, x, y, z) = wxyz + wxyz'$$

$$= wxy(z + z')$$

$$= wxy(1)$$
Rinaldi Munir/IF2151 Mat. Diskrit
$$= wxy$$

2. Kuad: empat buah 1 yang bertetangga

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	11 (1	1	1
	10	0	0	0	0

Sebelum disederhanakan: f(w, x, y, z) = wxy'z' + wxy'z + wxyz + wxyz'Hasil penyederhanaan: f(w, x, y, z) = wx

Bukti secara aljabar:

$$f(w, x, y, z) = wxy' + wxy$$

$$= wx(z' + z)$$

$$= wx(1)$$

$$= wx$$

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	11 (1			
	10	0	0	0	0

Contoh lain:

		yz 0 0	0 1	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	1 1	1	1	0	0
	1 0	1	1	0	0

Sebelum disederhanakan: f(w, x, y, z) = wxy'z' + wxy'z + wx'y'z' + wx'y'z'*Hasil penyederhanaan*: f(w, x, y, z) = wy'

3. Oktet: delapan buah 1 yang bertetangga

		9z 00			
		00	01	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	1 1	1	1	1	1
	1 0	1	1	1	1

Sebelum disederhanakan: f(a, b, c, d) = wxy'z' + wxy'z + wxyz + wxyz' + wx'y'z' + wx'y'z + wx'yz + wx'yz'

Hasil penyederhanaan: f(w, x, y, z) = w

Bukti secara aljabar:

$$f(w, x, y, z) = wy' + wy$$
$$= w(y' + y)$$
$$= w$$

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	11	1	1	1	1
	10	1	1	1	1

Contoh 5.12. Andaikan suatu tabel kebenaran telah diterjemahkan ke dalam Peta Karnaugh. Sederhanakan fungsi Boolean yang bersesuaian sesederhana mungkin.

		yz 00	01	11	10
wx	00	0	1		1
	01	0	0	0	1
	11	1	1	0	1
	10	1	1	0	1

<u>Jawab</u>: (lihat Peta Karnaugh) f(w, x, y, z) = wy' + yz' + w'x'z

Contoh 5.13. Minimisasi fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini.

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0		0	0
	11	1		1	1
	10	1	1	1	1

<u>Jawab</u>: (lihat Peta Karnaugh) f(w, x, y, z) = w + xy'z

Jika penyelesaian Contoh 5.13 adalah seperti di bawah ini:

	·	yz 00	01	11	10
wx	00	0	0	0	0
	01	0	1	0	0
	11	1	1	1	1
	10	1	1	1	1

maka fungsi Boolean hasil penyederhanaan adalah

$$f(w, x, y, z) = w + w'xy'z$$

(jumlah literal = 5)

yang ternyata masih belum sederhana dibandingkan f(w, x, y, z) = w + xy'z (jumlah literal = 4).

Contoh 5.14. (Penggulungan/*rolling*) Sederhanakan fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini.

	yz 00	01	11	10
wx 00	0	0	0	0
01		0	0	1
11	1	0	0	The state of the s
10	0	0	0	0

<u>Jawab</u>: f(w, x, y, z) = xy'z' + xyz' ==> belum sederhana

Penyelesaian yang lebih minimal:

		yz 0 0	01	11	10	
wx	00	0	0	0	0	
	0 1	1	0	0	1	
	1 1 _	1	0	0	1	
	10	0	0	0	0	

f(w, x, y, z) = xz' ===> lebih sederhana

Contoh 5.11. Sederhanakan fungsi Boolean f(x, y, z) = x'yz + xy'z' + xyz + xyz'.

Jawab:

Peta Karnaugh untuk fungsi tersebut adalah:

		yz 00	01	11	10
x	0			\bigcap	
	1	1		1	1

Hasil penyederhanaan: f(x, y, z) = yz + xz

Contoh 5.15: (Kelompok berlebihan) Sederhanakan fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini.

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0		0	0
	11	0	J	4	0
	10	0	0	4	0

<u>Jawab</u>: $f(w, x, y, z) = xy'z + wxz + wyz \rightarrow \text{masih belum sederhana}.$

Penyelesaian yang lebih minimal:

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0		0	0
	11	0			0
	10	0	0		0

f(w, x, y, z) = xy'z + wyz = ==>lebih sederhana

Contoh 5.16. Sederhanakan fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini.

		<i>cd</i> 00	01	11	10
ab	00	0	0	0	0
	01	0	0		0
	11		1	1	
	10	0	7		1

<u>Jawab</u>: (lihat Peta Karnaugh di atas) f(a, b, c, d) = ab + ad + ac + bcd

Contoh 5.17. Minimisasi fungsi Boolean f(x, y, z) = x'z + x'y + xy'z + yz

Jawab:

$$x'z = x'z(y + y') = x'yz + x'y'z$$

 $x'y = x'y(z + z') = x'yz + x'yz'$
 $yz = yz(x + x') = xyz + x'yz$

$$f(x, y, z) = x'z + x'y + xy'z + yz$$

= x'yz + x'y'z + x'yz + x'yz' + xy'z + xyz + x'yz
= x'yz + x'y'z + x'yz' + xyz + xy'z

Peta Karnaugh untuk fungsi tersebut adalah:

Hasil penyederhanaan: f(x, y, z) = z + x'yz'

Peta Karnaugh untuk lima peubah

	000	001	011	010	110	111	101	100
00	m_0	m_1	m_3	m_2	m_6	m_7	m_5	m_4
01	m_8	m_9	m_{11}	m_{10}	m_{14}	m_{15}	m_{13}	m_{12}
11	m_{24}	m_{25}	m_{27}	m_{26}	m_{30}	m_{31}	m_{29}	m_{28}
10	m_{16}	m_{17}	m_{19}	m_{18}	m_{22}	m_{23}	m_{21}	m_{20}
					ζ			
			~					

Contoh 5.21. (Contoh penggunaan Peta 5 peubah) Carilah fungsi sederhana dari $f(v, w, x, y, z) = \Sigma$ (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31) Jawab:

Peta Karnaugh dari fungsi tersebut adalah:

Jadi f(v, w, x, y, z) = wz + v'w'z' + vy'z

Kondisi Don't care

Tabel 5.16

141	34		_	desimal
W	X	У	Z	desimai
0	0	0	0	0
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	don't care
1	0	1	1	don't care
1	1	0	0	don't care
1	1	0	1	don't care
1	1	1	0	don't care
1	1	1	1	don't care

Contoh 5.25. Diberikan Tabel 5.17. Minimisasi fungsi f sesederhana mungkin.

Tabel 5.17

а	b	С	d	f(a, b, c, d)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0 0 0 0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	X
1	0	0	1	X X X
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Jawab: Peta Karnaugh dari fungsi tersebut adalah:

	cd	0.1	1.1	10
Í	00	01	11	10
<i>ab</i> 00	\bigcap	0	1	0
00				
01	$\left \begin{array}{c}1\end{array}\right $	1	1	0
11	X	X	X	X
10	X	0	X	X

Hasil penyederhanaan: f(a, b, c, d) = bd + c'd' + cd

Contoh 5.26. Minimisasi fungsi Boolean f(x, y, z) = x'yz + x'yz' + xy'z' + xy'z. Gambarkan rangkaian logikanya.

<u>Jawab</u>: Rangkaian logika fungsi f(x, y, z) sebelum diminimisasikan adalah seperti di bawah ini:

Minimisasi dengan Peta Karnaugh adalah sebagai berikut:

Hasil minimisasi adalah f(x, y, z) = x'y + xy'.

Contoh 5.28. Berbagai sistem digital menggunakan kode *binary coded decimal* (BCD). Diberikan Tabel 5.19 untuk konversi BCD ke kode *Excess*-3 sebagai berikut:

Tabel 5.19

	N	Iasuka	an BC	D	Keluaran kode Excess-3					
	W	X	y	\mathcal{Z}	$f_1(w, x, y, z)$	$f_2(w, x, y, z)$	$f_3(w, x, y, z)$	$f_4(w, x, y, z)$		
0	0	0	0	0	0	0	1	1		
1	0	0	0	1	0	1	0	0		
2	0	0	1	0	0	1	0	1		
3	0	0	1	1	0	1	1	0		
4	0	1	0	0	0	1	1	1		
5	0	1	0	1	1	0	0	0		
6	0	1	1	0	1	0	0	1		
7	0	1	1	1	1	0	1	0		
8	1	0	0	0	1	0	1	1		
9	1	0	0	1	1	1	0	0		

(a)
$$f_1(w, x, y, z)$$

$$f_1(w, x, y, z) = w + xz + xy = w + x(y + z)$$

(b) $f_2(w, x, y, z)$

$$f_2(w, x, y, z) = xy'z' + x'z + x'y = xy'z' + x'(y + z)$$

Rinaldi Munir/IF2151 Mat. Diskrit

(c)
$$f_3(w, x, y, z)$$

		yz 00			
	,	00	01	11	10
wx	00	1		1	
	01	1		1	
	11	X	X	X	X
	10	4		X	X

$$f_3(w, x, y, z) = y'z' + yz$$

(d) $f_4(w, x, y, z)$

	yz 00		01	11	10	
wx = 00	1				1	
01	1				1	
11	X		X	X	X	
10_	1	_		X	X	

$$f_4(w, x, y, z) = z'$$

Contoh 7.43

Minimisasi fungsi Boolean berikut (hasil penyederhanaan dalam bentuk baku SOP dan bentuk baku POS):

$$f(w, x, y, z) = \Sigma (1, 3, 7, 11, 15)$$

dengan kondisi don't care adalah $d(w, x, y, z) = \Sigma (0, 2, 5)$

Penyelesaian:

Peta Karnaugh dari fungsi tersebut adalah:

Hasil penyederhanaan dalam bentuk SOP

$$f(w, x, y, z) = yz + w'z$$
 (SOP) (garis penuh)

dan bentuk baku POS adalah

$$f(w, x, y, z) = z (w' + y)$$
 (POS) (garis putus 2)

Metode Quine-McCluskey

- Metode Peat Karnaugh tidak mangkus untuk jumlah peubah > 6 (ukuran peta semakin besar).
- Metode peta Karnaugh lebih sulit diprogram dengan komputer karena diperlukan pengamatan visual untuk mengidentifikasi *minterm-minterm* yang akan dikelompokkan.
- Metode alternatif adalah metode Quine-McCluskey . Metode ini mudah diprogram.

Contoh 7.46

Sederhanakan fungsi Boolean $f(w, x, y, z) = \Sigma (0, 1, 2, 8, 10, 11, 14, 15).$

Penyelesaian:

(i) Langkah 1 sampai 5:

	(a)		(b)	(c)	
term	w x y z	term	wxyz	term	wxyz
0	0 0 0 0 √	0,1	0 0 0 -	0,2,8,10	- 0 - 0
		0,2	00-0√	0,8,2,10	- 0 - 0
1	$0\ 0\ 0\ 1\ $	0,8	- 0 0 0 √		
2	$0\ 0\ 1\ 0\ $			10,11,14,15	1 - 1 -
8	$1\ 0\ 0\ 0\ $	2,10	- 0 1 0 √	10,14,11,15	1 - 1 -
		8,10	10-0√		
10	1 0 1 0 √				
		10,11	1 0 1 - √		
11	$1\ 0\ 1\ 1\ $	10,14	1 - 1 0 √		
14	$1\ 1\ 1\ 0\ $				
		11,15	1 - 1 1 √		
15	$1\ 1\ 1\ 1\ $	•	1 1 1 - √		

(i) Langkah 6 dan 7:

			minterm						
	Bentuk prima	0	1	2	8	10	11	14	15
$\sqrt{}$	0,1	×	×						
	0,2,8,10	×		×	×	×			
	10,11,14,15					×	×	×	×
			*	*	*		*	*	*
			√	√	√	$\sqrt{}$	√	√	$\sqrt{}$

Bentuk prima yang terpilih adalah:

Semua bentuk prima di atas sudah mencakup semua *minterm* dari fungsi Boolean semula. Dengan demikian, fungsi Boolean hasil penyederhanaan adalah f(w, x, y, z) = w'x'y' + x'z' + wy.

Contoh 7.47

Sederhanakan fungsi Boolean $f(w, x, y, z) = \Sigma (1,4,6,7,8,9,10,11,15)$

Penyelesaian:

(i) Langkah 1 sampai 5:

	(a)		(b)	(c)			
term	w x y z	term	wxyz	term	w x y z		
1	0001√	1,9	- 0 0 1	8,9,10,11	10		
4	$0\ 1\ 0\ 0\ $	4,6	01-0	8,10,9,11			
8	$1\ 0\ 0\ 0\ $	8,9	1 0 0 - √				
		8,10	10-0√				
6	$0\ 1\ 1\ 0\ $						
9	$1\ 0\ 0\ 1\ $	6,7	0 1 1 -				
10	$1\ 0\ 1\ 0\ $	9,11	10-1√				
		10,11	1 0 1 - √				
7	$0\ 1\ 1\ 1\ $						
11	$1\ 0\ 1\ 1\ $	7,15	- 1 1 1				
		11,15	1 - 1 1				
15	$1\ 1\ 1\ 1\ $						

(i) Langkah 6 dan 7

	minterm								
Bentuk prima	1	4	6	7	8	9	10	11	15
 1,9	×					×			
 4,6		×	×						
6,7			×	×					
7,15				×					×
11,15								×	×
 8,9,10,11					×	×	×	×	
	*	*			*		*		

Sampai tahap ini, masih ada dua *minterm* yang belum tercakup dalam bentuk prima terpilih, yaitu 7 dan 15. Bentuk prima yang tersisa (tidak terpilih) adalah (6,7), (7,15), dan (11, 15). Dari ketiga kandidat ini, kita pilih bentuk prima (7,15) karena bentuk prima ini mencakup *minterm* 7 dan 15 sekaligus.

		minterm							
Bentuk prima	1	4	6	7	8	9	10	11	15
 1,9	×					×			
 4,6		×	×						
6,7			×	×					
 7,15				×					×
11,15								×	×
 8,9,10,11					×	×	×	×	
	*	*			*		*		

Sekarang, semua *minterm* sudah tercakup dalam bentuk prima terpilih. Bentuk prima yang terpilih adalah:

1,9	yang bersesuaian dengan term	x'y'z
4,6	yang bersesuaian dengan term	w'xz'
7,15	yang bersesuaian dengan term	xyz
8,9,10,11	yang bersesuaian dengan term	wx'

Dengan demikian, fungsi Boolean hasil penyederhanaan adalah f(w, x, y, z) = x'y'z + w'xz' + xyz + wx'.

Latihan soal

- 1. Implementasikan fungsi $f(x, y, z) = \Sigma$ (0, 6) dan hanya dengan gerbang NAND saja.
- 2. Gunakan Peta Karnaugh untuk merancang rangkaian logika yang dapat menentukan apakah sebuah angka desimal yang direpresentasikan dalam bit biner merupakan bilangan genap atau bukan (yaitu, memberikan nilai 1 jika genap dan 0 jika tidak).

3. Sebuah instruksi dalam sebuah program adalah

if A > B then writeln(A) else
writeln(B);

- Nilai A dan B yang dibandingkan masing-masing panjangnya dua bit (misalkan a_1a_2 dan b_1b_2).
- (a) Buatlah rangkaian logika (yang sudah disederhanakan tentunya) yang menghasilkan keluaran 1 jika A > B atau 0 jika tidak.
- (b) Gambarkan kembali rangkaian logikanya jika hanya menggunakan gerbang *NAND* saja (petunjuk: gunakan hukum de Morgan)

5. Buatlah rangkaian logika yang menerima masukan dua-bit dan menghasilkan keluaran berupa kudrat dari masukan. Sebagai contoh, jika masukannya 11 (3 dalam sistem desimal), maka keluarannya adalah 1001 (9 dalam sistem desimal).