© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°08

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

Partie I -

Soit ℓ un réel. On note f l'application de \mathbb{R}_+ dans \mathbb{R} définie par $f(x) = \frac{\sin x}{x}$ si x > 0 et $f(0) = \ell$. Pour $n \in \mathbb{N}$, on note I_n l'intervalle $[n\pi, (n+1)\pi]$.

- 1. Quelle valeur faut-il donner à ℓ pour que f soit continue en 0? On suppose désormais que ℓ a cette valeur.
- 2. Montrez que f est de classe \mathcal{C}^1 (c'est-à-dire : dérivable, et à dérivée continue) sur l'intervalle $[0, +\infty[$ et explicitez la dérivée de f en 0.
- 3. Soit $n \in \mathbb{N}^*$. Montrez que, dans l'intervalle I_n , l'équation $x \cos x = \sin x$ possède une et une seule solution, que l'on notera x_n .
- **4.** Déterminez un équivalent *très simple* de x_n , lorsque n tend vers l'infini.
- **5.** Déterminez les variations de f dans l'intervalle I_0 , puis dans les intervalles I_{2n-1} et I_{2n} pour $n \in \mathbb{N}^*$.
- **6.** Donnez l'allure de la courbe représentative de f sur l'intervalle $[0, 4\pi]$.

Partie II -

Il est clair que la restriction g de f à l'intervalle $]0, +\infty[$ est de classe \mathcal{C}^{∞} sur cet intervalle] on pourrait d'ailleurs prouver que f est de classe \mathcal{C}^{∞} sur l'intervalle $[0, +\infty[$ mais ce n'est pas notre objectif.

On se propose simplement d'établir quelques résultats concernant la dérivée n-ième de g, notée $g^{(n)}$. En particulier, $g^{(0)}$ désigne g elle-même.

On identifie un polynôme P et la fonction polynôme $x \mapsto P(x)$ qui lui est naturellement associée.

Chaque polynôme sera écrit selon les puissances décroissantes de X.

1. Explicitez g''(x) pour x > 0.

Au vu des expressions de g(x), g'(x) et g''(x), on se propose d'établir que l'assertion $\mathcal{A}(n)$ suivante est vraie pour tout $n \in \mathbb{N}$:

© Laurent Garcin MP Dumont d'Urville

Il existe deux polynômes
$$P_n$$
 et Q_n tels que, pour tout $x > 0$: $g^{(n)}(x) = \frac{P_n(x)\sin^{(n)}x + Q_n(x)\sin^{(n+1)}x}{x^{n+1}}$

Dans les deux questions suivantes, vous allez raisonner par récurrence sur n.

- **2.** Il est clair que $\mathcal{A}(n)$ est vraie pour $n \in \{0, 1, 2\}$; vous dresserez simplement un tableau donnant les expressions de P_n et Q_n pour ces valeurs de n.
- 3. On fixe $n \in \mathbb{N}$, et on suppose l'assertion $\mathcal{A}(n)$ acquise. Établissez l'assertion $\mathcal{A}(n+1)$; vous déterminerez des expressions de P_{n+1} et Q_{n+1} en fonction de P_n et Q_n .

Il résulte donc des questions 2 et 3 que l'assertion $\mathcal{A}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- **4.** Montrez que P_n et Q_n ont tous leurs coefficients dans \mathbb{Z} ; précisez le degré, la parité, et le coefficient dominant de ces polynômes.
- 5. Utilisez les formules établies à la question 3 pour expliciter P_3 et Q_3 .
- **6.** Deux polynômes U et V vérifient $U(x) \sin x + V(x) \cos x = 0$ pour tout x > 0. Montrez que U et V sont tous deux égaux au polynôme nul.
- 7. En partant de la relation $xg(x) = \sin x$ et en appliquant la formule de Leibniz, ainsi que le résultat de la question précédente, mettez en évidence deux nouvelles relations liant P_n , Q_n , P_{n+1} et Q_{n+1} .
- **8.** Justifiez alors la relation $P'_n = Q_n$, et montrez que P_n est solution d'une équation différentielle du second ordre *très simple*, que l'on notera \mathcal{E}_n .
- **9.** Il est clair que l'application $\Psi: T \mapsto T + T''$ est un endomorphisme du \mathbb{R} -espace vectoriel $\mathbb{R}[X]$ des polynômes à coefficients réels.

Montrez que Ψ induit un automorphisme Ψ_n du sous-espace $\mathbb{R}_n[X]$ constitué des polynômes de degré n au plus.

Montrez ensuite que Ψ est un automorphisme de $\mathbb{R}[X]$.

Il résulte de ceci que P_n est l'unique solution polynomiale de l'équation différentielle \mathcal{E}_n .

10. $n \in \mathbb{N}$ est fixé, et p désigne la partie entière de $\frac{n}{2}$.

Justifiez l'existence d'une famille $(a_k)_{0 \le k \le p}$ de réels vérifiant $P_n = \sum_{k=0}^p a_k X^{n-2k}$ et déterminez une expression de a_k faisant intervenir des factorielles et/ou des puissances, mais débarrassée de tout signe \prod .

11. Soit $n \in \mathbb{N}$. Déterminez les solutions réelles de l'équation différentielle $y'' + y = x^n$.

Exercice 1

Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie $n \in \mathbb{N}^*$.

- 1. On suppose dans cette question que F et G admettent un supplémentaire commun dans E i.e. qu'il existe un sous-espace vectoriel H de E tel que $F \oplus H = G \oplus H = E$. Montrer que dim $F = \dim G$.
 - On cherche maintenant à prouver la réciproque, c'est-à-dire que si $\dim F = \dim G$, alors F et G admettent un supplémentaire commun dans E.
- 2. Montrer que si F = G, alors F et G admettent un supplémentaire commun dans E.
- On suppose maintenant $F \neq G$ dans toute la fin de l'exercice.

© Laurent Garcin MP Dumont d'Urville

- 3. On suppose dans cette question que F et G sont deux hyperplans de E.
 - **a.** Justifier l'existence de deux vecteurs $u \in F$ et $v \in G$ tels que $u \notin G$ et $v \notin F$.
 - **b.** On pose w = u + v. Montrer que $w \notin F \cup G$.
 - **c.** Montrer que H = vect(w) est un supplémentaire commun de F et G dans E.
- **4.** Dans cette question, on suppose seulement $\dim F = \dim G$.
 - **a.** Justifier l'existence de deux sous-espaces vectoriels F' et G' de E tels que $(F \cap G) \oplus F' = F$ et $(F \cap G) \oplus G' = G$.
 - **b.** Montrer que dim $F' = \dim G' > 0$ et que $F' \cap G' = \{0_E\}$.
 - **c.** On pose $p = \dim F' = \dim G'$. Soient (f_1, \dots, f_p) et (g_1, \dots, g_p) des bases respectives de F' et G'. On pose $h_i = f_i + g_i$ pour $1 \le i \le p$. Montrer que la famille (h_1, \dots, h_p) est libre.
 - **d.** On pose $H' = \text{vect}(h_1, \dots, h_p)$. Que vaut dim H'? Montrer que $H' \cap F = H' \cap G = \{0_E\}$.
 - **e.** En déduire que $F + G = F \oplus H' = G \oplus H'$.
 - **f.** Soit H" un supplémentaire de F + G dans E. Montrer que H' \cap H" = $\{0_E\}$.
 - **g.** On pose $H = H' \oplus H''$. Montrer que H est un supplémentaire commun de F et G dans E.

Exercice 2 ★★

Soit E un \mathbb{R} -espace vectoriel de dimension finie. On considère $f \in \mathcal{L}(E)$ vérifiant $f^2 = \frac{1}{2}(f + \mathrm{Id}_E)$.

- 1. Prouver que f est inversible et exprimer son inverse f^{-1} en fonction de f et Id_E .
- 2. Montrer que

$$E = Ker(f - Id_E) \oplus Ker(f + \frac{1}{2}Id_E)$$

3. Calculer $\left(f + \frac{1}{2}\operatorname{Id}_{E}\right) \circ (f - \operatorname{Id}_{E})$. En déduire que $\operatorname{Ker}\left(f + \frac{1}{2}\operatorname{Id}_{E}\right) = \operatorname{Im}\left(f - \operatorname{Id}_{E}\right)$.

On suppose à partir de maintenant que $f \neq \mathrm{Id}_{\mathrm{E}}$ et $f \neq -\frac{1}{2}\mathrm{Id}_{\mathrm{E}}$.

- **4.** Montrer que la famille (f, Id_E) est libre.
- **5.** Etablir que pour tout $n \in \mathbb{N}$, il existe un unique couple $(a_n, b_n) \in \mathbb{R}^2$ tel que

$$f^n = a_n f + b_n \operatorname{Id}_{E}$$

Exprimer a_{n+1} et b_{n+1} en fonction de a_n et b_n .

- **6.** Justifier que les suites (a_n) et (b_n) vérifient des relations de récurrence d'ordre deux homogènes à coefficients constants que l'on déterminera.
- 7. En déduire des expressions de a_n et b_n en fonction de n.
- **8.** Déterminer les limites des suites (a_n) et (b_n) .