

CARA

P(CARA) = 1/2

CRUZ

P(CRUZ) = 1/2

Voy a realizar 4 lanzamientos consecutivos de la misma moneda

 $(1/2)^4 = 1/16$

$$(1/2)^4 = 1/16$$

$$(1/2)^4 = 1/16$$

$$(1/2)^4 = 1/16$$

Las dos secuencias tienen igual probabilidad

$$(1/2)^4 = 1/16$$

Este resultado es válido para cualquier cantidad de lanzamientos

¿Por qué en 4 lanzamientos es más probable obtener 2 caras que 4 caras?

¿Por qué en 4 lanzamientos es más probable obtener 2 caras que 4 caras?

Todos estos caminos son igualmente probables

4 caras 3 caras 3 caras 1/2 1/2 2 caras 1/2 1/2 3 caras 1/2 2 caras 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 3 caras 1/2 1/2 2 caras 1/2 1/2 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 2 caras 1/2 1 cara 1/2 1/2 1 cara 1/2 0 caras

Resultado	Caminos	Probabilidad
4 Caras		
3 Caras		
2 Caras		
1 Cara		
0 Caras		

4 caras 3 caras 3 caras 1/2 1/2 2 caras 1/2 1/2 3 caras 1/2 2 caras 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 3 caras 1/2 1/2 2 caras 1/2 1/2 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 2 caras 1/2 1 cara 1/2 1/2 1 cara 1/2 0 caras

Resultado	Caminos	Probabilidad
4 Caras	1	
3 Caras	4	
2 Caras	6	
1 Cara	4	
0 Caras	1	

4 caras 3 caras 3 caras 1/2 1/2 2 caras 1/2 1/2 3 caras 1/2 2 caras 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 3 caras 1/2 1/2 2 caras 1/2 1/2 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 2 caras 1/2 1 cara 1/2 1/2 1 cara 1/2 0 caras

Resultado	Caminos	Probabilidad
4 Caras	1	1/16
3 Caras	4	4/16
2 Caras	6	6/16
1 Cara	4	4/16
0 Caras	1	1/16

4 caras 3 caras 3 caras 2 caras 1/2 3 caras 1/2 2 caras 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 3 caras 1/2 1/2 2 caras 1/2 1/2 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 2 caras 1/2 1 cara 1/2 1/2 1 cara 1/2 0 caras

Contemos la cantidad de caras

Resultado	Caminos	Probabilidad
4 Caras	1	1/16
3 Caras	4	4/16
2 Caras	6	6/16
1 Cara	4	4/16
0 Caras	1	1/16

4 caras 3 caras 3 caras 1/2 2 caras 1/2 3 caras 1/2 2 caras 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 3 caras 1/2 1/2 2 caras 1/2 1/2 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 2 caras 1 cara 1/2 1/2 1 cara 1/2 0 caras

Contemos la cantidad de caras

Resultado	Caminos	Probabilidad
4 Caras	1	1/16
3 Caras	4	4/16
2 Caras	6	6/16
1 Cara	4	4/16
0 Caras	1	1/16

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

4 caras 3 caras 3 caras 1/2 2 caras 1/2 3 caras 1/2 2 caras 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 3 caras 1/2 2 caras 1/2 1/2 1/2 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 2 caras 1 cara 1/2 1/2 1 cara 1/2 0 caras

Contemos la cantidad de caras

Resultado	Caminos	Probabilidad
4 Caras	1	1/16
3 Caras	4	4/16
2 Caras	6	6/16
1 Cara	4	4/16
0 Caras	1	1/16

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$\operatorname{Con} p = 1 - p = \frac{1}{2}$$

4 caras 3 caras 3 caras 1/2 2 caras 1/2 3 caras 1/2 2 caras 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 3 caras 1/2 2 caras 1/2 1/2 1/2 1/2 2 caras 1/2 1/2 1 cara 1/2 1/2 2 caras 1 cara 1/2 1/2 1 cara 1/2 0 caras

Contemos la cantidad de caras

Resultado	Caminos	Probabilidad
4 Caras	1	1/16
3 Caras	4	4/16
2 Caras	6	6/16
1 Cara	4	4/16
0 Caras	1	1/16

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$\operatorname{Con} p = 1 - p = \frac{1}{2}$$

$$P(X = k) = \binom{n}{k} \left(\frac{1}{2}\right)^n$$