Klausur am 14.02.2009:

Aufgabenstellungen

Die Lösungen aller Aufgaben müssen Sie begründen.

Aufgabe 1

Beweisen Sie mit vollständiger Induktion, dass $\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1$ für alle $n \in \mathbb{N}$ gilt.

[10 Punkte]

✓ Aufgabe 2

Bestimmen Sie die Lösungsmenge des folgenden linearen Gleichungssystems über R:

$$\begin{pmatrix} 0 & 1 & 5 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

[10 Punkte]

Aufgabe 3

Sei V der Vektorraum der Polynome vom Grad ≤ 2 über \mathbb{R} , und sei $W = M_{22}(\mathbb{R})$.

Sei $f: V \to W$ definiert durch $f(a_0 + a_1T + a_2T^2) = \begin{pmatrix} a_0 + a_1 & 2a_2 \\ -a_2 & a_1 - a_0 \end{pmatrix}$ für alle $a_0 + a_1T + a_2T^2 \in V$.

- Beweisen Sie, dass f linear ist.
- Bestimmen Sie eine Basis von Bild(f).
- 3. Wählen Sie Basen $\mathcal B$ von V und $\mathcal C$ von W und bestimmen Sie $_{\mathcal C}\mathrm{M}_{\mathcal B}(f).$

[4+6+6 Punkte]

)

(

Aufgabe 4

Beweisen Sie, dass die Folge $(\frac{\sin(n)}{n})$ konvergent ist, und bestimmen Sie ihren Grenzwert.

[4 Punkte]

Aufgabe 5

Finden Sie alle Stellen, in denen die Funktion $f: [-\pi, \pi] \to \mathbb{R}$, definiert durch $f(x) = \cos(x) - \cos^2(x)$ für alle $x \in [-\pi, \pi]$ ein lokales Minimum oder Maximum annimmt. (Hinweis: Für $x = \frac{\pi}{3}$ gilt $\cos(x) = \frac{1}{2}$.)

[12 Punkte]

Aufgabe 6

Beweisen Sie, dass die Funktion $f:[0,3] \to \mathbb{R}$, definiert durch $f(x) = 2^x - x - 3$ für alle $x \in [0,3]$, mindestens eine Nullstelle besitzt.

[6 Punkte]

Aufgabe 7

Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ Reihen mit $a_i > 0$ und $b_i > 0$ für alle $i \in \mathbb{N}$. Die Folge $\left(\frac{a_n}{b_n}\right)$ sei konvergent.

Beweisen Sie: Ist $\sum_{n=0}^{\infty} b_n$ konvergent, so ist auch $\sum_{n=0}^{\infty} a_n$ konvergent.

[12 Punkte]

Aufgabe 8

Sei 0 < a < b mit $a, b \in \mathbb{R}$. Berechnen Sie $\int_a^b x^2 \ln(x) dx$.

[6 Punkte]

Aufgabe 9

Beweisen Sie, dass die prädikatenlogische Formel

$$\alpha = \forall x \forall y (P(x,y) \rightarrow P(y,x))$$

weder widerspruchsvoll noch tautologisch ist. Benutzen Sie dafür Interpretationen mit dem Universum $U = \mathbb{Z}$.

[4 Punkte]