Naïve Bayes Algorithm

Praphul Chandra

Supervised Learning as Conditional Probability

Classification as Conditional Probability

- All classification problems are essentially equivalent to evaluating conditional probability
 - $P(Y_i \mid X)$, i.e., given certain evidence X, what is the probability that this is from class Y_i
 - Logistic Regression solves this problem by modelling the probabilistic relationship between X and Y
 (sigmoid function, linear in X, etc.) directly

- Naïve Bayes:
 - Computes $P(Y_i \mid X)$ using Bayes theorem
 - Leverage computation of the inverse conditional probability P(X | Y_i) --- this might be easier!
 - A simple classifier that performs surprisingly well on a large class of problems

Classification Problems with multiple classes

- Given an article predict which section of the news paper (Current News, International, Arts, Sports, Fashion, etc.) it is supposed to go to
- Given a photo of a car number plate, identify which state it belongs to
- Audio clip of a song, identify the genre

http://www.insofe.edu.in

US House of Congress voting patterns

1	Class Name: 2 (democrat, republican)
2	handicapped-infants: 2 (y,n)
3	water-project-cost-sharing: 2 (y,n)
4	adoption-of-the-budget-resolution: 2 (y,n)
5	physician-fee-freeze: 2 (y,n)
6	el-salvador-aid: 2 (y,n)
7	religious-groups-in-schools: 2 (y,n)
8	anti-satellite-test-ban: 2 (y,n)
9	aid-to-nicaraguan-contras: 2 (y,n)
10	mx-missile: 2 (y,n)
11	immigration: 2 (y,n)
12	synfuels-corporation-cutback: 2 (y,n)
13	education-spending: 2 (y,n)
14	superfund-right-to-sue: 2 (y,n)
15	crime: 2 (y,n)
16	duty-free-exports: 2 (y,n)
17	export-administration-act-south-africa: 2 (y,n)

_							
Class	V1	V2	V 3	V4	V5	V6	∇7
republican	n	У	n	У	У	У	n
republican	n	У	n	У	У	У	n
democrat	NA	У	У	NA	У	У	n
democrat	n	У	У	n	NA	У	n
democrat	У	У	У	n	У	У	n
democrat	n	У	У	n	У	У	n
democrat	n	У	n	У	У	У	n
republican	n	У	n	У	У	У	n
republican	n	У	n	У	У	У	n
democrat	У	У	У	n	n	n	У
republican	n	У	n	У	У	n	n
republican	n	У	n	У	У	У	n
democrat	n	У	У	n	n	n	У
democrat	У	У	У	n	n	У	У
republican	n	У	n	У	У	У	n
republican	n	У	n	У	У	У	n
democrat	У	n	У	n	n	У	n
democrat	У	NA	У	n	n	n	У
republican	n	У	n	У	У	У	n
democrat	У	У	У	n	n	n	У

House Votes 1984 Dataset: Voting patterns of Members of Congress. A data frame with 435 observations on 17 variables. 168 Republicans, 267 Democrats

Republican or Democrat?

- Given:
 - A congressman's voting pattern (v1 = y, v2 = n), what is the probability that this person is a democrat?
- Predict
 - Whether a congressman is a republican or a democrat
- In terms of probability
 - $P(D \mid v1 = y, v2 = n) = ?$
- Simplest (Naïve) Solution : Prior Belief
 - The house has a majority of Democrats (168 Republicans, 267 Democrats)
 - Probability of a random person being Democrat is P(D) = 267/435 = 0.61
 - Can we do better?

Voting Patterns for V1

Handicapped Infants. The vote failed to pass: 236 to 187

$$P(y \mid R) = 31/168$$

$$P(y \mid D) = 156/267$$

Voting Patterns for V2

Water-project-cost-sharing. The vote passed: 195 to 192

Bayes Theorem

$$P(A|B) = \frac{P(A) * P(B|A)}{P(B)}$$

$$P(D|v1 = y, v2 = n) = \frac{P(D) * P(v1 = y, v2 = n|D)}{P(v1 = y, v2 = n)}$$

Naïve Bayes

Assumption: Conditional probability of each feature given the class is independent of all other features

$$P(v1 = y, v2 = n | D) = P(v1 = y | D) * P(v2 = n | D)$$

$$P(D | v1 = y, v2 = n) = \frac{P(D) * P(v1 = y | D) * P(v2 = n | D)}{P(v1 = y, v2 = n)}$$

$$P(D | v1 = y, v2 = n) = \frac{P(D) * P(v1 = y, v2 = n | D)}{P(v1 = y, v2 = n)}$$

$$P(R | v1 = y, v2 = n) = \frac{P(R) * P(v1 = y | R) * P(v2 = n | R)}{P(v1 = y, v2 = n)}$$

- Whichever probability is higher, we would classify the person into that party.
 - We are trying to decide, given the voting pattern, is that person a Democrat or Republican.
 - Note that the denominator is the same for both. So we need to focus only on numerator.

Naïve Bayes Example

$$P(D|v1 = y, v2=n) \propto P(D) * P(v1 = y|D) * P(v2 = n|D)$$

P(D) = 267/435 (267 Democrats among 435 Congressmen)

$$P(D|V1 = y, V2=n) \propto \frac{267}{435} * \frac{156}{267} * \frac{119}{267} = 0.15$$

From voting pattern <u>slide</u>

$$P(R|V1 = y, V2=n) \propto \frac{168}{435} * \frac{31}{168} * \frac{73}{168} = 0.03$$

Since the conditional probability for being Democrat is higher, he is likely to be Democrat.

Naïve Bayes Assumption

- The key assumption of independence of features, is almost never true
- Still Naïve Bayes does surprisingly well in a lot of situations
- It works best when all the predictor variables are categorical variables
- Very frequently used in text mining, character image analysis problems

Q?

Praphul Chandra

