УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 55

> Студент Родионов Максим Артемович Р3131

> Преподаватель Поляков Владимир Иванович

Функция $f(x_1,x_2,x_3,x_4,x_5)$ принимает значение 1 при $3<|x_11x_2-x_3x_4x_5|<6$ и неопределенное значение при $|x_11x_2-x_3x_4x_5|=1$

Таблица истинности

No॒	x_1	x_2	x_3	x_4	x_5	$x_1 1 x_2$	$x_3x_4x_5$	$x_1 1 x_2$	$x_3x_4x_5$	f
0	0	0	0	0	0	2	0	2	0	0
1	0	0	0	0	1	2	1	2	1	d
2	0	0	0	1	0	2	2	2	2	0
3	0	0	0	1	1	2	3	2	3	d
4	0	0	1	0	0	2	4	2	4	0
5	0	0	1	0	1	2	5	2	5	0
6	0	0	1	1	0	2	6	2	6	1
7	0	0	1	1	1	2	7	2	7	1
8	0	1	0	0	0	3	0	3	0	0
9	0	1	0	0	1	3	1	3	1	0
10	0	1	0	1	0	3	2	3	2	d
11	0	1	0	1	1	3	3	3	3	0
12	0	1	1	0	0	3	4	3	4	d
13	0	1	1	0	1	3	5	3	5	0
14	0	1	1	1	0	3	6	3	6	0
15	0	1	1	1	1	3	7	3	7	1
16	1	0	0	0	0	6	0	6	0	0
17	1	0	0	0	1	6	1	6	1	1
18	1	0	0	1	0	6	2	6	2	1
19	1	0	0	1	1	6	3	6	3	0
20	1	0	1	0	0	6	4	6	4	0
21	1	0	1	0	1	6	5	6	5	d
22	1	0	1	1	0	6	6	6	6	0
23	1	0	1	1	1	6	7	6	7	d
24	1	1	0	0	0	7	0	7	0	0
25	1	1	0	0	1	7	1	7	1	0
26	1	1	0	1	0	7	2	7	2	1
27	1	1	0	1	1	7	3	7	3	1
28	1	1	1	0	0	7	4	7	4	0
29	1	1	1	0	1	7	5	7	5	0
30	1	1	1	1	0	7	6	7	6	d
31	1	1	1	1	1	7	7	7	7	0

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, x_3 \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x$

Каноническая КНФ:

$$f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$$

$$(x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$$

$$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5)$$

$$(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)$$

$$(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K^1	(f)	Z(f)
m_1	00001	\checkmark	m_1 - m_3	000X1	01100
m_6	00110	√	m_1 - m_{17}	X0001	000X1
m_{17}	10001	\checkmark	m_6 - m_7	0011X	X0001
m_{18}	10010	\checkmark	m_3 - m_7	00X11	0011X
m_3	00011	\checkmark	m_{17} - m_{21}	10X01	00X11
m_{10}	01010	\checkmark	m_{18} - m_{26}	1X010	10X01
m_{12}	01100		m_{10} - m_{26}	X1010	1X010
m_7	00111	\checkmark	m_7 - m_{15}	0X111	X1010
m_{26}	11010	\checkmark	m_{21} - m_{23}	101X1	0X111
m_{21}	10101	\checkmark	m_{26} - m_{27}	1101X	101X1
m_{15}	01111	√	m_{26} - m_{30}	11X10	1101X
m_{27}	11011	\checkmark	m_7 - m_{23}	X0111	11X10
m_{23}	10111	\checkmark			X0111
m_{30}	11110	\checkmark			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы							
Простые импликанты									
		0	0	Φ	1	1	1	1	
		0	0	1	0		1	1	
		1	1	1	0	0		0	
		1	1	1	0	1	1	1	
		0	1	1	1	0	0	1	
		6	7	15	17	18	26	27	
	01100								
	000X1								
				-	v		\vdash		
A	X0001				X				
	0011X	X	X						
	00X11		×						
В	10X01				X				
	1X010					X	Х		
	X1010						v		
-			+	+			1		
	0X111		1	Α					
	101X1								
	1101X						X	\mathbf{x}	
	11X10						V	- 1	
			1				1		
	X0111		+X						

Ядро покрытия:

$$T = \begin{cases} 0011X \\ 0X111 \\ 1X010 \\ 1101X \end{cases}$$

Получим следующую упрощенную импликантную таблицу:

		0-кубы		
		1		
		0		
Пр	остые импликанты	0		
		0		
		1		
		17		
A	X0001	X		
В	10X01	X		

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (A \lor B)$$

Приведем выражение в ДНФ:

$$Y = A \vee B$$

Возможны следующие покрытия:

$$C_{1} = \begin{Bmatrix} T \\ A \end{Bmatrix} = \begin{Bmatrix} 0011X \\ 0X111 \\ 1X010 \\ 1101X \\ X0001 \end{Bmatrix} \qquad C_{2} = \begin{Bmatrix} T \\ B \end{Bmatrix} = \begin{Bmatrix} 0011X \\ 0X111 \\ 1X010 \\ 1101X \\ 10X01 \end{Bmatrix}$$

$$S_{1}^{a} = 20$$

$$S_{1}^{b} = 25$$

$$S_{2}^{a} = 20$$

$$S_{2}^{b} = 25$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0011X \\ 0X111 \\ 1X010 \\ 1101X \\ X0001 \end{cases}$$
$$S^{a} = 20$$
$$S^{b} = 25$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \vee \overline{x_1} \, x_3 \, x_4 \, x_5 \vee x_1 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, x_4 \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \vee \overline{x_1} \, x_3 \, x_4 \, x_5 \vee x_1 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, x_4 \vee \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5$$

Определение МКНФ

$$f = (x_1 \lor x_3) \ (x_4 \lor x_5) \ (\overline{x_2} \lor x_4) \ (\overline{x_1} \lor \overline{x_3}) \ (x_1 \lor x_4) \ (x_1 \lor \overline{x_2} \lor x_5) \ (x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=\overline{x_1}\,\overline{x_2}\,x_3\,x_4\vee\overline{x_1}\,x_3\,x_4\,x_5\vee x_1\,\overline{x_3}\,x_4\,\overline{x_5}\vee x_1\,x_2\,\overline{x_3}\,x_4\vee\overline{x_2}\,\overline{x_3}\,\overline{x_4}\,x_5 \qquad S_Q=25 \quad \tau=2$$

$$f=x_1\,\overline{x_3}\,x_4\,\left(x_2\vee\overline{x_5}\right)\vee\overline{x_1}\,x_3\,x_4\,\left(\overline{x_2}\vee x_5\right)\vee\overline{x_2}\,\overline{x_3}\,\overline{x_4}\,x_5 \qquad S_Q=19 \quad \tau=3$$

$$\varphi=\overline{x_2}\,x_5$$

$$\overline{\varphi}=x_2\vee\overline{x_5}$$

$$f=x_1\,\overline{x_3}\,x_4\,\overline{\varphi}\vee\overline{x_1}\,x_3\,x_4\,\left(\overline{x_2}\vee x_5\right)\vee\varphi\,\overline{x_3}\,\overline{x_4} \qquad S_Q=19 \quad \tau=4$$
 Декомпозиция нецелесообразна
$$f=x_1\,\overline{x_3}\,x_4\,\left(x_2\vee\overline{x_5}\right)\vee\overline{x_1}\,x_3\,x_4\,\left(\overline{x_2}\vee x_5\right)\vee\overline{x_2}\,\overline{x_3}\,\overline{x_4}\,x_5 \qquad S_Q=19 \quad \tau=3$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \vee x_3) \; (x_4 \vee x_5) \; (\overline{x_2} \vee x_4) \; (\overline{x_1} \vee \overline{x_3}) \; (x_1 \vee x_4) \; (x_1 \vee \overline{x_2} \vee x_5) \; (x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5}) \qquad S_Q = 24 \quad \tau = 2$$

$$f = (x_4 \vee \overline{x_2} \, x_5) \; (x_1 \vee x_3 \, x_4 \; (\overline{x_2} \vee x_5)) \; (\overline{x_1} \vee \overline{x_3}) \; (x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5}) \qquad S_Q = 21 \quad \tau = 4$$

$$\varphi = \overline{x_2} \, x_5$$

$$\overline{\varphi} = x_2 \vee \overline{x_5}$$

$$f = (x_4 \vee \varphi) \; (x_1 \vee x_3 \, x_4 \; (\overline{x_2} \vee x_5)) \; (\overline{x_1} \vee \overline{x_3}) \; (\overline{\varphi} \vee x_3 \vee \overline{x_4}) \qquad S_Q = 21 \quad \tau = 4$$
 Декомпозиция нецелесообразна
$$f = (x_4 \vee x_1 \; \overline{x_2} \, x_5) \; (x_1 \vee x_3) \; (\overline{x_1} \vee \overline{x_3}) \; (x_1 \vee \overline{x_2} \vee x_5) \; (x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5}) \qquad S_Q = 21 \quad \tau = 3$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 1]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_1 \overline{x_3} x_4 (x_2 \vee \overline{x_5}) \vee \overline{x_1} x_3 x_4 (\overline{x_2} \vee x_5) \vee \overline{x_2} \overline{x_3} \overline{x_4} x_5 (S_Q = 19, \tau = 3)$$

Схема по упрощенной МКНФ:

$$f = (x_4 \vee x_1 \,\overline{x_2} \, x_5) \, \left(x_1 \vee x_3 \right) \, \left(\overline{x_1} \vee \overline{x_3} \right) \, \left(x_1 \vee \overline{x_2} \vee x_5 \right) \, \left(x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5} \right) \quad \left(S_Q = 21, \tau = 3 \right)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{x_1 \, \overline{x_3} \, x_4 \, \overline{\varphi}} \, \overline{\overline{x_1} \, x_3 \, x_4 \, \overline{x_2 \, \overline{x_5}}} \, \overline{\varphi \, \overline{x_3} \, \overline{x_4}} \quad (S_Q = 24, \tau = 6)$$

$$\varphi = \overline{x_2} \, x_5$$

Схема по упрощенной МКН Φ в базисе И, НЕ:

$$f = \overline{x_4} \, \overline{x_1} \, \overline{x_2} \, \overline{x_5} \, \overline{x_1} \, \overline{x_3} \, \overline{x_1} \, \overline{x_3} \, \overline{x_1} \, \overline{x_2} \, \overline{x_5} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \quad (S_Q = 27, \tau = 5)$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов:

$$f = \frac{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{x_1}}}} \overline{x_3} \overline{x_2} \overline{x_5}} \overline{\boxed{x_4}} \overline{\boxed{x_1}} \overline{\overline{\boxed{x_2}} \overline{x_5}} \overline{\overline{x_1}} \overline{x_3} \overline{\overline{\boxed{x_2}} \overline{x_3}} \overline{\overline{x_4}} \overline{x_5}}} \qquad (S_Q = 38, \tau = 8)$$

