

Evolution: RL alternative

28 сентября 2025

О чем сегодня поговорим?

- → Познакомимся с ещё одним методом решения задач последовательного принятия решений
- → Попробуем его на практике

Recap. Monte-Carlo

2) Обновление:

Для каждой пары (s_t, a_t) в эпизоде:

- 1. Вычислить возврат(ы) для этого посещения: $G(s_t, a_t) = \sum_{k=0}^{T-t} \gamma^k r_{t+k}$
- 2. Вычислить новую оценку: $\hat{Q}(s_t, a_t) \leftarrow \text{Average}[G(s_t, a_t)]$
- 3. Плавно обновляем Q: $Q(s_t, a_t) \leftarrow (1 \alpha)Q(s_t, a_t) + \alpha \hat{Q}(s_t, a_t)$

- 1) Используем симулятор для сбора данных: $au = [(s_0, a_0, r_0), (s_1, a_1, r_1), \dots, (s_T, a_T, r_T)]$.
- 2) Обновляем

Evolution Strategies

Что такое ES?

Метод оптимизации, вдохновлённый биологической эволюцией, использующий популяцию решений и их мутации для поиска оптимальных параметров.

Преимущества ES:

- Не требует обратного распространения ошибки (backpropagation).
- Легко масштабируется в распределённых системах.
- Эффективен при разреженных вознаграждениях.
- Меньше гиперпараметров.

Cross Entropy! (recap)

На основе датасета: [(вопрос: ответ)]

Учимся по вопросу предсказывать ответ

На основе <u>состояния</u> хотим предсказывать <u>действия</u>

Cross Entropy Method

- 1) Используем симулятор для сбора траекторий:
 - 1) Траектория $au = [(s_0, a_0), (s_1, a_1), \dots, (s_T, a_T)]$.
 - 2) Для каждой au запоминаем суммарную награду R
- Обновляем:
 - 1) Выбираем N наилучших траекторий
 - 2) Обучаем политику на них

классификатор (s, a) на этих траекториях

https://openai.com/index/evolution-strategies/

ES vs RL

• Обучение с подкреплением:

- Использует градиентный спуск и обратное распространение ошибки.
- Требует вычислительных ресурсов и сложных настроек.

• Стратегия эволюции:

- Простота реализации и масштабируемость.
- Сравнимая производительность с RL на современных бенчмарках (например, Atari/MuJoCo).

• Результаты:

- Обучение 3D-агента в MuJoCo за 10 минут на 1440 СРU-ядрах.
- Сравнимая производительность с АЗС на Atari при сокращении времени обучения с 1 дня до 1 часа.

AlphaEvolve

Figure 1 | *AlphaEvolve* high-level overview.

Как работает по шагам:

Инициализация популяции: создаем множество кандидатов (параметров или политик)

1. Оценка качества:

считаем, насколько каждый кандидат «успешен»

2. Выбор лучших:

выбираем топ-кандидатов для формирования нового поколения

3. Обновление:

на основе лучших кандидатов обновляем параметры генерации кандидатов

Повторение цикла: генерируем новые кандидаты и повторяем шаги 2–4 до сходимости.

Итоги

→ Выводы:

- ES представляет собой мощный инструмент для оптимизации в задачах обучения с подкреплением.
- Сравнимая производительность с традиционными методами при меньших вычислительных затратах.

→ Перспективы:

- ◆ Развитие методов ES для более сложных и высокоразмерных задач.
- ◆ Интеграция ES с другими методами оптимизации и обучения.
- → Пора кодить!

Вопросы?

