VC-dimension: Ariadne's Thread in the Big Data Labyrinth

(was: Using VC-dimension for faster computation and tighter analysis)

Matteo Riondato
Thesis Defense
April 18, 2014

Outline

Introduction

- Problem
- Thesis statement
- Contributions
- VC-dimension

Estimating betweenness centrality

Conclusions

What am I talking about?

Sampling-based Randomized Algorithms for Big Data Analytics

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}

from xkcd.com
```

What is data analytics?

cleaning, inspecting, transforming, modeling, ...

Needs fast algorithms — → challenging due to Big Data

Why is Big Data a challenge?

Volume: data size is large and grows

Variety: no. of "questions" is large

cost(analytics algorithm) = cost(Volume) + cost(Variety)

E.g., cost(APriori) = cost(size dataset) + cost(no. of patterns)

Smart algorithms may cut cost(Variety)

cost(Volume) always takes over

Thesis statement

We use VC-dimension to obtain high-quality approximations for many data analytics tasks by processing a small random sample of the data

- Probabilistic guarantees on quality of approximations
- Tasks from data mining, graph analysis, database management
- In 1 line:

"Hey guys, you forgot about this theorem. Here's how to use it."

What are our contributions?

Database query selectivity

- characterization of VC-dimension of SQL queries
- sampling-based algorithm smallest sample size

Frequent Itemsets / Association Rules

- sampling-based algorithm smallest sample size
- MapReduce algorithm fastest and most scalable
- statistical test more statistical power than available solutions

Betweenness centrality

- sampling-based algorithm fastest available
- tighter analysis of existing sampling-based algorithm

Why sampling?

Natural solution to cut cost(Volume)

Implies approximations

OK: data analytics is exploratory

Trade-off:

- larger sample = better approximation but slower algorithm
 - quantified by deviation bounds (Chernoff, Azuma, VC-dimension, ...)

Why VC-dimension?

Chernoff+Union too weak for Big Data analytics

- Chernoff: guarantee on answer to single question
- Union: guarantee extended to all questions
- Sample size depends on no. of questions (Variety):

$$|\mathcal{S}| = \frac{1}{\varepsilon^2} \left(\frac{\log_2 |Q| + \ln \frac{1}{\delta}}{\delta} \right)$$

VC-dimension overcomes this issue:

$$|\mathcal{S}| = \frac{1}{\varepsilon^2} \left(\mathsf{VC}(Q) + \ln \frac{1}{\delta} \right)$$

Vladimir N. Vapnik

Aleksey J. Chervonenkis

What is VC-dimension?

D: set of points

 ${\it F}$: collection of subsets of ${\it D}$ (ranges)

VC-dimension of (D,F) measures "richness" of F

For any
$$C\subseteq D$$
, let $P_C=\{C\cap r:r\in F\}(\subseteq 2^C)$
If $P_C=2^C$, then C is shattered by F

$$\mathsf{VC}(D,F) = \sup \{ |C| : C \subseteq D \land P_C = 2^C \}$$

VC-dimension – Example

$$D = \mathbb{R}^2$$

F = all axis-aligned rectangles

VC-dimension – Example

$$D = \mathbb{R}^2$$

F = all axis-aligned rectangles

Shattering 4 points? easy! Need 16 rectangles

VC-dimension – Example

$$D = \mathbb{R}^2$$

F = all axis-aligned rectangles

Shattering 5 points?impossible!

One point is contained in all rectangles containing the other four

$$VC(D, F) = 4$$

How does it relate to sampling?

Theorem ([Vapnik and Chervonenkis '71] [Li et al. '08])

- Fix $0<arepsilon,\delta<1$, and assume $\mathsf{VC}(D,F)\leq d$
- lacksquare : probability distribution on D
- S: collection of samples from D, according to π , with

$$|\mathcal{S}| \ge \frac{1}{\varepsilon^2} \left(\frac{d}{d} + \log \frac{1}{\delta} \right)$$

ullet Then, with probability $\geq 1-\delta$

$$\left| \pi(R) - \frac{1}{|\mathcal{S}|} \sum_{a \in \mathcal{S}} \mathbb{1}_R(a) \right| \le \varepsilon, \text{ for any } R \in F$$

What do we need to use it?

- analytics task as probability estimation problem
- ullet definition of D and F
- ullet probability distribution π on D
- efficient procedure to sample from π
- upper bound to VC(D, F)
 - must be efficient to compute

Outline

✓ Introduction

- ✓ Problem
- ✓ Thesis statement
- Contributions
- ✓ VC-dimension

Estimating betweenness centrality

- Rangeset and bounds
- Algorithms

Conclusions

What's the setting?

Take a social network. Even Google+

What do you do with it? You analyze it

• If the NSA does it, it must be useful, right?

What are you analyzing about?

What vertices in a graph are important?

Betweenness centrality: measure of vertex importance

fraction of shortest paths that go through vertex

$$\operatorname{Graph} \; G = (V, E) \; \; |V| = n \quad \; |E| = m$$

$$\mathsf{b}(v) = \frac{1}{n(n-1)} \sum_{p_{uw} \in \mathbb{S}_G} \frac{\mathbb{1}_{\mathcal{T}_v}(p_{uw})}{\sigma_{uw}} \;$$

 S_G = all shortest paths in G

 \mathcal{S}_{uv} = set of shortest paths from u to v ($\sigma_{uv} = |\mathcal{S}_{uv}|$)

$$\mathcal{T}_{v} = \{ p \in \mathbb{S}_{G} : v \in \mathsf{Int}(p) \}$$

How can we compute it?

Naïve algorithm: all pairs shortest paths + aggregation

• Aggregation part dominates. Complexity: $\Theta(n^3)$

[Brandes '01]:

- aggregation after each Single Source Shortest Path computation
- Complexity: O(nm) or $O(nm + n^2 \log n)$

Too much for networks with 109 vertices, 1010 edges what to sample?

Solution: fewer SP computations using sampling!

how much?

What do we want to get?

Probabilistic guarantees on approximation

 (ε, δ) -approximation: values $(\tilde{b}(v))_{v \in V}$ such that

$$\Pr\left(\exists v \in V : |\tilde{\mathbf{b}}(v) - \mathbf{b}(v)| > \varepsilon\right) < \delta$$
 confidence

Trade-off: smaller ε or δ , higher number of samples

A first sampling algorithm

[BrandesPich '08]:

$$r \leftarrow \frac{1}{2\varepsilon^2} \left(\ln n + \ln 2 + \ln \frac{1}{\delta} \right)$$

- for $i \leftarrow 1, \ldots, r$
 - $v_i \leftarrow$ random vertex
 - ullet Perform SSSP from v_i
 - Perform partial aggregation for $\tilde{b}(u), u \in V$ (like in exact algorithm)
- output $\tilde{\mathbf{b}}(v), \forall v \in V$

How do they compute the sample size?

Hoeffding bound for single vertex

$$\Pr(|\mathbf{\tilde{b}}(v) - \mathbf{b}(v)| > \varepsilon) < 2e^{-2r\varepsilon^2}$$

union bound over n vertices: we want

$$2e^{-2r\varepsilon^2} \le \frac{\delta}{n}$$

• sample size for (ε, δ) -approximation:

$$r \ge \frac{1}{2\varepsilon^2} \left(\ln n + \ln 2 + \ln \frac{1}{\delta} \right)$$

Wassily Hoeffding

What's wrong with this?

Size depends on $\ln n$

- loose, due to union bound
- not the right quantity
- should be characteristic quantity of graph

At each iteration, algorithm performs SSSP

full exploration of the graph (no locality)

What can we do?

Our algorithm [RiondatoK14]

- uses VC-dimension
- ullet sample size depends on vertex-diameter of G
- at each step, single s-t shortest path computation
 - fewer edges touched
 - more locality
 - can use bidirectional search

Our algorithm

- $VD(G) \leftarrow vertex-diameter of G$
- $r \leftarrow (1/2\varepsilon^2)(\lfloor \log_2(\mathsf{VD}(G) 2) \rfloor + 1 + \ln(1/\delta))$
- $\tilde{\mathbf{b}}(v) \leftarrow 0, \forall v \in V$
- for $i \leftarrow 1, \ldots, r$
 - $(u,v) \leftarrow \text{random pair of vertices}$
 - $ullet \, \mathcal{S}_{uv} \leftarrow$ all SPs from u to v (Dijkstra, trunc. BFS, bidirect. Search)
 - ullet $p\leftarrow$ random element of \mathcal{S}_{uv}
 - $\tilde{\mathbf{b}}(w) \leftarrow \tilde{\mathbf{b}}(w) + 1/r, \forall w \in Int(p)$
- output $\tilde{\mathbf{b}}(v), \forall v \in V$

What is the vertex-diameter?

VD(G): max no. of vertices in a SP

$$VD(G) = \max\{|p| : p \in \mathbb{S}_G\}$$

small in social networks

G not weighted:
$$VD(G) = \Delta_G + 1$$

otherwise no relationship in general

Computation:

- G unweighted, undirected: 2-approx via SSSP
- otherwise: size of largest WCC

What do we get?

- $VD(G) \leftarrow vertex-diameter of G$
- $r \leftarrow (1/2\varepsilon^2)(\lfloor \log_2(\mathsf{VD}(G) 2) \rfloor + 1 + \ln(1/\delta))$
- $\tilde{\mathbf{b}}(v) \leftarrow 0, \forall v \in V$
- for $i \leftarrow 1, \ldots, r$
 - $(u,v) \leftarrow \text{random pair of vertices}$
 - $\mathcal{S}_{uv} \leftarrow$ all SPs from u to v (Dijkstra, trunc. BFS, bidirect. Search)
 - ullet $p\leftarrow$ random element of \mathcal{S}_{uv}
 - $\bullet \tilde{\mathsf{b}}(w) \leftarrow \tilde{\mathsf{b}}(w) + 1/r, \forall w \in \mathsf{Int}(p)$
- output $\tilde{\mathbf{b}}(v), \forall v \in V$

Theorem: $(\tilde{b}(v))_{v \in V}$ is a (ε, δ) -approximation

How can we prove it?

Define rangeset

Define probability distribution

Define betweenness as probability estimation problem

Show upper bound to VC-dimension

Bonus: show tightness + variants

Apply VC-dimension sampling theorem

What are the rangeset and the probability?

$$D=\mathbb{S}_G$$
 = all SPs in G
Let $T_v=\{p\in\mathbb{S}_G\ :\ v\in \operatorname{Int}(p)\}$
 $F=\{T_v,v\in V\}$

Probability distribution π on \mathbb{S}_G :

$$\pi(p_{uw}) = \frac{1}{n(n-1)} \frac{1}{\sigma_{uw}}$$

ullet algorithm samples paths according to π

$$\mathbf{T}(T_v) = \frac{1}{n(n-1)} \sum_{p_{uw} \in T_v} \frac{1}{\sigma_{uw}} = \frac{1}{n(n-1)} \sum_{p_{uw} \in \mathbb{S}_G} \frac{\mathbbm{1}_{\mathsf{p}_{\mathsf{uw}}}(v)}{\sigma_{uw}} = \mathbf{b}(v)$$

What is the VC-dimension of our rangeset?

Theorem: $VC(\mathbb{S}_G, F) \leq \lfloor \log_2 VD(G) - 2 \rfloor + 1$ Proof

- ullet To shatter $A\subseteq \mathbb{S}_G$, |A|=d ,
 - need 2^d different ranges
 - ullet any $p\in A$ must appear in 2^{d-1} different ranges
- Any p appears only in the ranges T_v such that $v \in Int(p)$
- i.e., it appears in $|\mathrm{Int}(p)| \leq \mathsf{VD}(G) 2$ ranges
- ullet To shatter A , must be $2^{d-1} \leq \mathsf{VD}(G) 2$

How to use the bound?

 $\tilde{b}(v)$ = empirical average for b(v)Sampling done according to π Know upper bound to $VC(\mathbb{S}_G, F)$

We can apply the VC sample theorem

If
$$r \ge \frac{1}{\varepsilon^2} \left(\lfloor \log_2(\mathsf{VD}(G) - 2) \rfloor + 1 + \ln \frac{1}{\delta} \right)$$

then $(\tilde{b}(v))_{v \in V}$ is an (ε, δ) -approximation:

$$\Pr\left(\exists v \in V : |\tilde{\mathbf{b}}(v) - \mathbf{b}(v)| > \varepsilon\right) < \delta$$

Roadmap

Define rangeset

Define probability distribution

Define betweenness as probability estimation problem

- ✓ Show upper bound to VC-dimension
 - Bonus: show tightness + variants

Apply VC-dimension sampling theorem

Is the bound tight?

Concertina graphs $(G_i)_{i \in \mathbb{N}}$

Concertina, musical instrument

Corona Borealis

Theorem:
$$VC(\mathbb{S}_{G_i}) = \lfloor \log_2(VD(G_i) - 2) \rfloor + 1 = i$$

Is the vertex diameter the right quantity?

No.

If

- G is undirected
- for every connected pair (u, v) there is a unique SP, then

$$\mathsf{VC}(\mathbb{S}_G,F)\leq 3$$

Proof: two SPs that meet and separate can't meet again

• + case analysis

Tight? Yes

Is this true for directed graphs?

No. Can shatter 4 SP!

Open question: still a constant for directed graphs? (6?)

What about relative guarantees?

 $b^{(K)}$: K^{th} highest betweenness, ties broken arbitrarily

Top-K vertices:
$$T(K,G) = \{v \in V : b(v) \ge b^{(K)}\}\$$

Relative approximation: $C = \{(v, \tilde{\mathbf{b}}(v))\}$ s.t.

$$(1 - \varepsilon)b(v) \le \tilde{b}(v) \le (1 + \varepsilon)b(v), \forall v \in C$$

Algorithm:

- run additive approximation algorithm
- $\tilde{\mathbf{b}}^{(K)} \leftarrow \text{lower bound to } \mathbf{b}^{(K)}$
- use $\tilde{\mathbf{b}}^{(K)}$ and relative-guarantees version of VC sample theorem to compute sample size for relative approximation for T(K,G)

How good is the algorithm in practice?

C implementation as patch to igraph

Graphs: real (snap.stanford.edu) + artificial BarabasiAlbert
- social networks, road networks, ...

Goals: evaluate { accuracy speed scalability

How accurate is our algorithm?

 $|\tilde{b}(v) - b(v)|$ always $\leq \varepsilon$ (O(10³) runs on different graphs) Accuracy ~8x better than guaranteed

How fast is our algorithm?

~8x faster than simple sampling algorithm

How well does it scale?

Am I telling the truth?

Yes, but.

• $\tilde{b}_s(v)$: estimator of simple sampling alg. w/ same no. of samples

- Theorem: $\operatorname{Var}[\tilde{\mathsf{b}}_{\mathsf{s}}(v)] \leq \operatorname{Var}[\tilde{\mathsf{b}}(v)], \forall v \in V$
 - does not imply that it computes a (ε, δ) -approximation
- Emphasis on different aspects:
 - Ours: speed and scalability
 - Theirs: accuracy

What did I show you?

Two sampling based algorithms for betweenness estimation

- Top-K algo is first to achieve high relative guarantees
- Much smaller sample size than previously known
- Fewer computations than existing work = faster

Characterizing graph problems through VC-dimension is

challenging, but interesting

and rewarding

Published at ACM WSDM'14, journal subm. in preparation

Outline

✓ Introduction

- ✓ Problem
- ✓ Thesis statement
- Contributions
- ✓ VC-dimension

- Estimating betweenness centrality
 - Rangeset and bounds
 - ✓ Algorithms

Conclusions

- Limitations of sampling
- Directions for further research

What did we learn?

We can approximate many data analytics tasks using sampling

- size depends on bound to VC-dim., not no. of questions (Variety)
 - characteristic quantity of the dataset / problem
- lower cost(Volume)

- sample fits into memory of single machine
 - can use MapReduce for boosting-like approach (many samples in parallel)
- can use "backwards" to derive statistical tests for false positives

What are the limitations?

Need efficient-to-compute bound on VC-dimension

Need efficient sampling procedure

Need for independent sampling

some new developments here

Dependency on ε

Where to go from here?

Smaller samples

pseudodimension, shatter coefficients, covering numbers, ...

Progressive sampling

Rademacher averages bounds

Statistical testing

False Discovery Rate rather than Family-Wide Error Rate

New technology / computational platforms

Spark, Pregel, ...

Did we publish?

- R., Akdere, Çetintemel, Zdonik, Upfal. "The VC-dimension of SQL queries and selectivity estimation through sampling". ECML-PKDD'11.
- R., Upfal. "Efficient discovery of Association Rules and Frequent Itemsets through sampling with tight performance guarantees". ECML-PKDD'12, ACM TKDD'14.
- R., DeBrabant, Fonseca, Upfal. "PARMA: a parallel randomized algorithm for approximate association rule mining in MapReduce". ACM CIKM'12.
- R., Vandin. "Finding the True Frequent Itemsets". SIAM SDM'14.
- R., Kornaropoulos. "Fast approximation of betweenness centrality through sampling". ACM WSDM'14
- Others:
 - Pietracaprina, R., Upfal, Vandin. "Mining top-k Frequent Itemsets through progressive sampling". DMKD'10.
 - Akdere, Cetintemel, R., Upfal, Zdonik. "The case for predictive database systems: opportunities and challenges".
 CIDR'11
 - Akdere, Cetintemel, R., Upfal, Zdonik. "Learning-based query performance modeling and prediction". IEEE ICDE'12.
 - Pietracaprina, Pucci, R., Silvestri, Upfal. "Space-round tradeoffs for MapReduce computations". ACM ICS'12

Who deserves all the credit?

- Eli
- Uğur, Basilis
- Andrea, Geppino, Stan, Rodrigo, Fabio, Francesco, Aris, Luca
- Olya, Andy, Justin, Evgenios, and all other PhDs
- Mackenzie, Michela, Marco, Bernardo, Robyn, Andrew, ...
- Lauren and astaff@
- tstaff@ for the grid + problems@

"Not he who begins, but he who keeps going" Leonardo da Vinci

