Answer the following as indicated and in the given order. SHOW YOUR SOLUTIONS.

- 1. Answer the following questions. (20 Points)
 - (a) Given $a*b = 3a(b-a), a, b \in \mathbb{Z}$, does 2 divide a*b? Justify your answer.
 - (b) Given a group G under the binary operation *, does it follow that a*b=b*a? Justify your answer.
 - (c) If 3|c and c|-3, then $c = ____.$
 - (d) How many possible remainders are there if a positive integer is divided by a natural number n + 1?
 - (e) If \sim is an equivalence relation on a set S, it follows that _____.
 - (f) Given the relation congruence modulo 8, in which congruence class does the integer 341 belong?
 - (g) If $f: X \to Y$ and $g: Y \to Z$ are functions, find the domain of $(g \circ f)(x) = g(f(x))$ for all $x \in X$.
 - (h) Given $f(x) = \tan x$, is f surjective? Justify your answer.
 - (i) If the order of the group G under * is finite, how many times will you find the identity element e of G in a Cayley table?
 - (j) If $G = \mathbb{Z}^+$ is a monoid under the binary operation * and it was determined that $a^{-1} = \sqrt{a}$, is G a group?
- 2. Find (1239, 735) using the Euclidean algorithm, and find x, y such that (1239, 735) = 1239x + 735y. (10 Points)

- 3. On the set of integers \mathbb{Z} , define $x \sim y$ if and only if 3x-7y is even. Prove that \sim is an equivalence relation. Determine the distinct equivalence classes. (12 Points)
- 4. Use the properties of groups to complete the following group table . (8 Points)

*	a	b	c	d
a			d	
b	a			
c			b	
d				

- Write the Cayley table for Z₅\{0} under multiplication modulo 5 and determine the inverse of each element. (7 Points)
- 6. Determine if the given set is a group with respect to the operation *:
 - (a) $G = \text{set of all positive rational numbers}, \ a * b = \frac{1}{a} + \frac{1}{b}$.
 - (b) G =the set of all real numbers greater than 1, a*b = ab a b + 2.

(15 Points)

7. Show that every group G with identity e and such that x*x=e for all $x\in G$ is abelian. [Hint: Consider (a*b)*(a*b).] (5 Points)

BONUS. Show that if G is a group, then each element of G has a unique inverse. (3 Points)