	As rendered by TeX	ndered by TeX As rendered by your browser		
	x^2y^2	x^2y^2		
2	$_2F_3$	$_2F_3$		
3	$\frac{x + j^2}{k + 1}$	$\frac{x+y^2}{k+1}$		
4	$x+y^{\frac{2}{k}+1}$	$X+y\frac{2}{k+1}$		
5	$\frac{a}{b/2}$	<u>a</u> h/2		
6	$a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{c_{4}}}}$	$a_{1} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{3} + \frac{1}{a_{4}}}}}$		
7	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{3 + \frac{1}{4}}}}$		
8	$\binom{n}{k/2}$	$\binom{n}{k/2}$		

\	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$	
10	$\sum_{\substack{0 \leq i \leq m \\ 0 \leq j \leq n}} P(i,j)$	$ \begin{array}{c} P(i,j) \\ 0 < j < n \end{array} $	
11	x^{2y}	x^{2y}	
12	$\sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^r \alpha_{ij} b_{j'} c_{k'}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
13	$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}$	$\sqrt{1} = \sqrt{\frac{1}{1 + 1 + \sqrt{1 + + + \sqrt{1 + + \sqrt{1 + + + \sqrt{1 + + + \sqrt{1 + + + \sqrt{1 + + \sqrt{1 + + \sqrt{1 + + \sqrt{1 + + + \sqrt{1 + + + + \sqrt{1 + + + + \sqrt{1 + + + + + + + + + + + + + + + + + + +$	
14	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial \varphi^2}\right) \left \varphi(x+iy) \right ^2 = 0$	$(\frac{2}{x^2} + \frac{2}{\hat{V}}) (x+iy) ^2 = 0$	
15	$2^{2^{2^x}}$	222x	
16	$\int_{1}^{x} \frac{dt}{t}$	$\frac{1}{t}$	
17	$\iint_{D} dx dy$	$_{D}dxdy$	

18	$f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$	$1/3 \text{ if } 0 x 1;$ $f(x) = \{2/3 \text{ if } 3 x 4;$ 0 elsewhere.		
19	$\overbrace{x+\cdot}^{\kappa \text{ times}} + x$	X ≰times X		
[20]	J_{x^2}	y_{x^2}		
21	$\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$	$f(p) = \int_{t>1} f(t) d(t)$		
22	$\{\underbrace{a,\ldots,a}_{k+l \text{ elements}},\underbrace{b,\ldots,b}_{l}\}$	$\{a, \dots, a, b, h\}$ \therefore lements		
23	$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ 0 & \begin{pmatrix} \vdots & j \\ k & l \end{pmatrix} \end{pmatrix}$			
24	$\det \begin{vmatrix} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_{n+1} \\ c_2 & c_3 & c_4 & \dots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} \end{vmatrix} > 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

			_
25	y_{x_2}	y_{x_2}	
26	$x_{92}^{31415} + \pi$	$x_{92}^{31415} +$	
27	$egin{array}{c} z_c^d \ xy_b \end{array}$	$X_{y_{\mathcal{B}}^{\mathcal{L}}}^{\mathcal{Z}_{\mathcal{L}}^{\mathcal{L}}}$	
2.8	y_3'''	<i>y</i> ₃	