$\mathrm{ULB} \hspace{2.5cm} 2018/2019$

MATHF3001 - Théorie de la mesure

Assistant : Robson Nascimento Titulaire : Céline Esser

Liste 8 – Espaces L^p : Partie I

Notation : Soient (X, \mathcal{A}, μ) un espace mesuré et $1 \leq p \leq \infty$. On note

$$L^p(X,\mu) = L^p(\mu) = L^p(X).$$

Exercice 1. Soit (X, \mathcal{A}, μ) un espace mesuré.

a) Si $\mu(X) < \infty$, montrer que si p et q sont réels tels que $1 \le q , alors$

$$L^{\infty}(\mu) \subset L^p(\mu) \subset L^q(\mu) \subset L^1(\mu)$$
.

b) Soit $u: \mathbb{R} \to \mathbb{R}$ définie par

$$u(x) = \begin{cases} (1/x)^{1/q}, & \text{si } x \ge 1, \\ 0, & \text{sinon.} \end{cases}$$

Montrer que $u \in L^p(\mathbb{R})$ mais que $u \notin L^q(\mathbb{R})$, et ainsi que $L^p(\mathbb{R}) \not\subset L^q(\mathbb{R})$.

c) Soit $v: \mathbb{R} \to \mathbb{R}$ définie par

$$v(x) = \begin{cases} (1/x)^{1/p}, & \text{si } 0 < x \le 1, \\ 0, & \text{sinon.} \end{cases}$$

Montrer que $v \in L^q(\mathbb{R})$ mais que $v \notin L^p(\mathbb{R})$, et ainsi que $L^p(\mathbb{R}) \not\supset L^q(\mathbb{R})$.

d) A-t-on $L^q(\mathbb{R}) \supset L^{\infty}(\mathbb{R})$? Et $L^q(\mathbb{R}) \subset L^{\infty}(\mathbb{R})$?

Exercice 2 (Inégalité de Chebyshev). Soient (X, μ) un espace mesuré et $f: X \to \mathbb{R}_+$ une fonction mesurable positive. Montrer que pour tout $\alpha > 0$,

$$\mu\Big(\{x \in X : f(x) \ge \alpha\}\Big) \le \frac{1}{\alpha} \int_X f \, d\mu.$$

De plus, si $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ est une fonction mesurable croissante, alors pour tout $\alpha > 0$,

$$\mu\Big(\{x \in X : f(x) \ge \alpha\}\Big) \le \frac{1}{\Phi(\alpha)} \int_X \Phi(f(x)) d\mu(x).$$

Exercice 3. Soient (X, \mathcal{A}, μ) un espace mesuré et $f: X \to \mathbb{R}$ une application mesurable.

a) Montrer que

$$\liminf_{n\to\infty} ||f||_{L^p(X)} \ge ||f||_{L^\infty(X)}.$$

Donner un exemple où $||f||_{L^p(X)} = \infty$ pour tout $p \in [1, \infty[$ et $||f||_{L^\infty(X)} < \infty$.

- b) On suppose qu'il existe $q \in [1, \infty[$ tel que $f \in L^q(X)$.
 - i) Montrer que f est finie μ -presque partout.
 - ii) On suppose que $0 < \|f\|_{L^{\infty}(X)} < +\infty$. Montrer que si $p \in]q, +\infty[$, alors

$$||f||_{L^p(X)} \le ||f||_{L^{\infty}(X)}^{1-q/p} ||f||_{L^q(X)}^{q/p},$$

et en déduire que

$$\limsup_{p \to \infty} ||f||_{L^p(X)} \le ||f||_{L^\infty(X)}.$$

iii) Conclure.

Exercice 4 (Inégalité d'interpolation). Soient (X, μ) un espace mesuré, $1 \le p \le r \le q \le \infty$ et $\theta \in (0, 1)$ avec

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}.$$

Montrer que si $u \in L^p(X) \cap L^q(X)$, alors $u \in L^r(X)$ avec

$$||u||_{L^r(X)} \le ||u||_{L^p(X)}^{\theta} ||u||_{L^q(X)}^{1-\theta}.$$

Suggestion : utiliser l'inégalité de Hölder.