# 2021 Spring MAS 365 Chapter 8: Approximation Theory

Donghwan Kim

**KAIST** 

### Approximation Theory

- 8.1 Given data, find the best function to represent the data.
- 8.2 Given a function, find a simpler type of function (e.g., polynomial).

• We learned these in Chapter 3, and this chapter studies their limitation, and discuss other approaches.

Chapter 8 1 / 55

- 1 8.1 Discrete Least Squares Approximation
- 2 8.2 Orthogonal Polynomials and Least Squares Approximation
- 3 8.3 Chebyshev Polynomials and Economization of Power Series

### Polynomial Approximation



• The ninth-degree interpolating polynomial is a poor predictor of information between a number of the data points.

Chapter 8 2 / 55

### Best Linear Approximation

- Find the "best" (in some sense) approximating line, even if it does not agree precisely with the data at any point.
- 1. In  $l_{\infty}$ -norm sense, we minimize

$$E_{\infty}(a_0, a_1) = \max_{1 \le i \le 10} |y_i - (a_1 x_i + a_0)|,$$

commonaly called the minimax problem.

2. In  $l_1$ -norm sense, we minimize

$$E_1(a_0, a_1) = \sum_{i=1}^{10} |y_i - (a_1 x_i + a_0)|,$$

called the absolute deviation.

• Since the absolute-value function is not differentiable at zero, it is difficult to find the solution by setting its partial derivatives to zero.

Chapter 8 3 / 55

### Linear Least Squares

• In  $l_2$ -norm sense, the **least squares** approach finds the best approximating line by minimizing the sum of the squares of the differences between the y-values on the approximating line and the given y-values:

$$E_2(a_0, a_1) = \sum_{i=1}^{10} [y_i - (a_1 x_i + a_0)]^2$$

Q. What is the best among the  $l_1$ -norm,  $l_2$ -norm and  $l_{\infty}$  sense?

Chapter 8 4 / 55

### Linear Least Squares (cont'd)

• The general problem of fitting the best least squares line to a collection of data  $\{(x_i, y_i)\}_{i=1}^m$  involves minimizing the total error

$$E \equiv E_2(a_0, a_1) = \sum_{i=1}^{m} [y_i - (a_1 x_i + a_0)]^2$$

with respect to  $a_0$  and  $a_1$ .

We thus want

$$\frac{\partial E}{\partial a_0} = 0 \quad \text{and} \quad \frac{\partial E}{\partial a_1} = 0$$

that is

$$0 = \frac{\partial}{\partial a_0} \sum_{i=1}^{m} [(y_i - (a_1 x_i - a_0))]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-1)$$

and

$$0 = \frac{\partial}{\partial a_1} \sum_{i=1}^{m} [(y_i - (a_1 x_i - a_0))]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-x_i).$$

Chapter 8 5 / 55

### Linear Least Squares (cont'd)

Those equations simplify to the normal equations:

$$a_0 m + a_1 \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} y_i$$
$$a_0 \sum_{i=1}^{m} x_i + a_1 \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$$

The solution to this system of equations is

$$a_{0} = \frac{\sum_{i=1}^{m} x_{i}^{2} \sum_{i=1}^{m} y_{i} - \sum_{i=1}^{m} x_{i} y_{i} \sum_{i=1}^{m} x_{i}}{m \left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}},$$

$$a_{1} = \frac{m \sum_{i=1}^{m} x_{i} y_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} y_{i}}{m \left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}.$$

Chapter 8 6 / 55

## Polynomial Least Squares

• Use the least squares approach for approximating a set of data,  $\{(x_i,y_i)\mid i=1,2,\ldots,m\}$ , with a polynomial

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

of degree n < m - 1.

• Choose  $a_0, a_1, \ldots, a_n$  to minimize the least squares error  $E = E_2(a_0, \ldots, a_n)$ , where

$$E = \sum_{i=1}^{m} (y_i - P_n(x_i))^2.$$

Chapter 8 7 / 55

## Polynomial Least Squares (cont'd)

• We want  $\frac{\partial E}{\partial a_j} = 0$  for each  $j = 0, 1, \dots, n$ , and this gives n+1 normal equations:

$$a_0 \sum_{i=1}^m x_i^0 + a_1 \sum_{i=1}^m x_i^1 + a_2 \sum_{i=1}^m x_i^2 + \dots + a_n \sum_{i=1}^m x_i^n = \sum_{i=1}^m y_i x_i^0,$$

$$a_0 \sum_{i=1}^m x_i^1 + a_1 \sum_{i=1}^m x_i^2 + a_2 \sum_{i=1}^m x_i^3 + \dots + a_n \sum_{i=1}^m x_i^{n+1} = \sum_{i=1}^m y_i x_i^1,$$

$$\vdots$$

$$a_0 \sum_{i=1}^m x_i^n + a_1 \sum_{i=1}^m x_i^{n+1} + a_2 \sum_{i=1}^m x_i^2 + \dots + a_n \sum_{i=1}^m x_i^{2n} = \sum_{i=1}^m y_i x_i^n.$$

• This has a unique solution when  $x_i$  are distinct.

Chapter 8 8 / 55

### Other Least Squares

 When the data are exponentially related (rather than linear), one should consider the form

$$y = be^{ax}$$
 or  $y = bx^a$ 

for some constants a and b.

• This requires minimizing

$$E = \sum_{i=1}^{m} (y_i - be^{ax_i})^2$$
 or  $E = \sum_{i=1}^{m} (y_i - bx_i^a)^2$ ,

which in general do not have a closed-form solution for  $\frac{\partial E}{\partial a} = \frac{\partial E}{\partial b} = 0$ .

Q. How can we circumvent such issue?

Chapter 8 9 / 55

# Other Least Squares (cont'd)

Instead, one could consider

$$\ln y = \ln b + ax$$
 or  $\ln y = \ln b + a \ln x$ .

Then we minimize

$$E = \sum_{i=1}^{m} [\ln y_i - (\ln b + ax)]^2 \quad \text{or} \quad E = \sum_{i=1}^{m} [\ln y_i - (\ln b + a \ln x)]^2.$$

Q. Do they produce results the same as the original least squares below?

$$E = \sum_{i=1}^{m} (y_i - be^{ax})^2$$
 or  $E = \sum_{i=1}^{m} (y_i - bx^a)^2$ 

Chapter 8 10 / 55

- 1 8.1 Discrete Least Squares Approximation
- 2 8.2 Orthogonal Polynomials and Least Squares Approximation
- 3 8.3 Chebyshev Polynomials and Economization of Power Series

## Least Squares Approximation

• Suppose  $f \in C[a,b]$ , and we want to approximate it by a polynomial

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{k=0}^n a_k x^k$$

that minimizes the error

$$E \equiv E_2(a_0, a_1, \dots, a_n)$$

$$= \int_a^b [f(x) - P_n(x)]^2 dx = \int_a^b \left( f(x) - \sum_{k=0}^n a_k x^k \right)^2 dx$$

$$=$$

Chapter 8 11 / 55

• A necessary condition for  $a_0, a_1, \ldots, a_n$  to minimize E is that

for each 
$$j = 0, 1, ..., n$$
.

• Hence, to find  $P_n(x)$ , the (n+1) normal equations

$$\sum_{k=0}^{n} a_k \int_a^b x^{j+k} dx = \int_a^b x^j f(x) dx, \quad \text{for each } j = 0, 1, \dots, n,$$

must be solved for the (n+1) unknowns  $a_j$ .

ullet These equations always have a unique solution when  $f\in C[a,b].$ 

Chapter 8 12 / 55

Ex. Find the least squares approximating polynomial of degree 2 for the function  $f(x) = \sin \pi x$  on the interval [0,1].

Sol. The normal equations for  $P_2(x) = a_2x^2 + a_1x + a_0$  are

Chapter 8 13 / 55

Performing the integration yields

$$a_0 + \frac{1}{2}a_1 + \frac{1}{3}a_2 = \frac{2}{\pi}, \quad \frac{1}{2}a_0 + \frac{1}{3}a_1 + \frac{1}{4}a_2 = \frac{1}{\pi}, \quad \frac{1}{3}a_0 + \frac{1}{4}a_1 + \frac{1}{5}a_2 = \frac{\pi^2 - 4}{\pi^3}.$$

The solution is

$$a_0 = \frac{12\pi^2 - 120}{\pi^3} \approx -0.050465, \quad a_1 = -a_2 = \frac{720 - 60\pi^2}{\pi^3} \approx 4.12251.$$



14 / 55

• The coefficients in the linear system are of the form

$$\int_{a}^{b} x^{j+k} dx = \frac{b^{j+k+1} - a^{j+k+1}}{j+k+1}$$

which is known as Hilbert matrix.

• This is a classic example for demonstrating round-off error difficulties.

Chapter 8 15 / 55

Ex. The  $n \times n$  Hilbert matrix  $H^{(n)}$  defined by

$$H_{ij}^{(n)} = \frac{1}{i+j-1}, \quad 1 \le i, j \le n,$$

is an ill-conditioned matrix. Compute  $K_{\infty}(H^{(n)})$  for n=4,5.

Sol. 
$$K_{\infty}(H^{(4)})=28375$$
 and  $K_{\infty}(H^{(5)})=943656$ .

Chapter 8 16 / 55

### Linearly Independent Functions

• Let's study a computationally more efficient approach, which is easy to determine  $P_{n+1}(x)$ , once  $P_n(x)$  is known. (The previous method and the Lagrange polynomial are not computationally efficient in that sense.)

#### **Definition** 1

The set of functions  $\{\phi_0,\ldots,\phi_n\}$  is said to be linearly independent on [a,b] if, whenever

$$c_0\phi_0(x) + c_1\phi_1(x) + \dots + c_n\phi_n(x) = 0$$
, for all  $x \in [a, b]$ ,

we have  $c_0 = c_1 = \cdots = c_n = 0$ . Otherwise, the set of functions is said to be linearly dependent.

Chapter 8 17 / 55

### Linearly Independent Functions (cont'd)

#### Theorem 1

Suppose that, for each  $j=0,1,\ldots,n$ ,  $\phi_j(x)$  is a polynomial of degree j. Then  $\{\phi_0,\ldots,\phi_n\}$  is linearly independent on any interval [a,b].

• Let  $\prod_n$  denote the set of all polynomials degree at most n.

#### Theorem 2

Suppose that  $\{\phi_0(x), \phi_1(x), \dots, \phi_n(x)\}$  is a collection of linearly independent polynomials in  $\prod_n$ . Then any polynomial in  $\prod_n$  can be written uniquely as a linear combination of  $\phi_0(x), \phi_1(x), \dots, \phi_n(x)$ .

Chapter 8 18 / 55

## Linearly Independent Functions (cont'd)

• Suppose  $\{\phi_0, \phi_1, \dots, \phi_n\}$  is a set of linearly independent functions on [a, b]. Given  $f \in C[a, b]$ , we seek a linear combination

$$P(x) = \sum_{k=0}^{n} a_k \phi_k(x)$$

to minimize the error

$$E = E(a_0, \dots, a_n) = \int_a^b \left[ f(x) - \sum_{k=0}^n a_k \phi_k(x) \right]^2 dx.$$

 We further need to introduce the notions of weight functions and orthogonality. Why?

Chapter 8 19 / 55

### Weight Functions

- A weight function assigns varying degrees of importance to approximations on certain portions of the interval.
- For example, the weight function

$$w(x) = \frac{1}{\sqrt{1 - x^2}}$$

places less emphasis near the center of the interval (-1,1) and more emphasis when |x| is near 1.



20 / 55

### **Orthogonal Functions**

• Suppose  $\{\phi_0,\phi_1,\ldots,\phi_n\}$  is a set of linearly independent functions on [a,b] and w is a weight function for [a,b]. Given  $f\in C[a,b]$ , we seek a linear combination

$$P(x) = \sum_{k=0}^{n} a_k \phi_k(x)$$

to minimize the error

$$E = E(a_0, \dots, a_n) = \int_a^b w(x) \left[ f(x) - \sum_{k=0}^n a_k \phi_k(x) \right]^2 dx.$$

Chapter 8 21 / 55

• We want for each  $j = 0, 1, \ldots, n$ ,

$$0 = \frac{\partial E}{\partial a_j} = 2 \int_a^b w(x) \left[ f(x) - \sum_{k=0}^n a_k \phi_k(x) \right] \phi_j(x) dx,$$

which gives the system of normal equations

$$\int_{a}^{b} w(x)f(x)\phi_{j}(x)dx = \sum_{k=0}^{n} a_{k} \int_{a}^{b} w(x)\phi_{k}(x)\phi_{j}(x)dx, \quad \text{for } j = 0, 1, \dots, n.$$

Q. How should we choose  $\phi_k(x)$ ?

Chapter 8 22 / 5

• If the functions  $\phi_0, \phi_1, \dots, \phi_n$  is chosen so that

$$\int_a^b w(x)\phi_k(x)\phi_j(x)dx = \begin{cases} 0, & \text{when } j \neq k, \\ \alpha_j, & \text{when } j = k, \end{cases}$$

for positive constants  $\alpha_j$ , the normal equations reduces to

$$\int_{a}^{b} w(x)f(x)\phi_{j}(x)dx = a_{j}\alpha_{j},$$

for each j = 0, 1, ..., n.

Chapter 8 23 / 55

#### **Definition** 2

 $\{\phi_0, \phi_1, \dots, \phi_n\}$  is said to be an **orthogonal set of functions** for the interval [a,b] with respect to the weight function w if

$$\int_a^b w(x)\phi_k(x)\phi_j(x)dx = \begin{cases} 0, & \text{when } j \neq k, \\ \alpha_j > 0, & \text{when } j = k. \end{cases}$$

If, in addition,  $\alpha_j = 1$  for each  $j = 0, 1, \dots, n$ , the set is said to be orthonormal.

Chapter 8 24 / 55

#### Theorem 3

If  $\{\phi_0,\ldots,\phi_n\}$  is an orthogonal set of functions on an interval [a,b] with respect to the weight function w, then the least squares approximation to f on [a,b] with respect to w is

$$P(x) = \sum_{j=0}^{n} a_j \phi_j(x),$$

where, for each  $j = 0, 1, \ldots, n$ ,

$$a_j = \frac{\int_a^b w(x)\phi_j(x)f(x)dx}{\int_a^b w(x)[\phi_j(x)]^2dx} = \frac{1}{\alpha_j} \int_a^b w(x)\phi_j(x)f(x)dx.$$

• We next particularly focus on the orthogonal sets of **polynomials**, and the theorem next, based on the **Gram-Schmidt process**, describes how to construct orthogonal polynomials on [a,b] with respect to w.

Chapter 8 25 / 55

## Orthogonal Polynomials

#### Theorem 4

The set of polynomial functions  $\{\phi_0, \phi_1, \dots, \phi_n\}$  defined in the following way is orthogonal on [a,b] with respect to the weight function w:

$$\phi_0(x) = 1$$
,  $\phi_1(x) = x - B_1$ , for each  $x$  in  $[a, b]$ ,

where

$$B_1 = \frac{\int_a^b x w(x) [\phi_0(x)]^2 dx}{\int_a^b w(x) [\phi_0(x)]^2 dx},$$

and when  $k \geq 2$ ,

$$\phi_k(x) = (x - B_k)\phi_{k-1}(x) - C_k\phi_{k-2}(x), \quad \text{for each } x \text{ in } [a, b],$$

where

$$B_k = \frac{\int_a^b x w(x) [\phi_{k-1}(x)]^2 dx}{\int_a^b w(x) [\phi_{k-1}(x)]^2 dx} \quad \text{and} \quad C_k = \frac{\int_a^b x w(x) \phi_{k-1}(x) \phi_{k-2}(x) dx}{\int_a^b w(x) [\phi_{k-2}(x)]^2 dx}.$$

Chapter 8 26 / 55

# Orthogonal Polynomials (cont'd)

#### Corollary 1

For any n > 0, the set of polynomial functions  $\{\phi_0, \dots, \phi_n\}$  given in Theorem 4 is linearly independent of [a,b] and

$$\int_{a}^{b} w(x)\phi_n(x)Q_k(x)dx = 0,$$

for any polynomial  $Q_k(x)$  of degree k < n.

Proof For each  $k=0,1,\ldots,n$ ,  $\phi_k(x)$  is a polynomial of degree k. So Theorem 1 implies that  $\{\phi_0,\ldots,\phi_n\}$  is a linearly independent set. By Theorem 2 there exist numbers  $c_0,\ldots,c_k$  such that

$$Q_k(x) = \sum_{j=0}^k c_j \phi_j(x).$$

Because  $\phi_n$  is orthogonal to  $\phi_j$  for each  $j=0,1,\ldots,k$  we have

$$\int_{a}^{b} w(x)Q_{k}(x)\phi_{n}(x) = \sum_{j=0}^{k} c_{j} \int_{a}^{b} w(x)\phi_{j}(x)\phi_{n}(x)dx = 0.$$

Chapter 8 27 / 55

## Orthogonal Polynomials (cont'd)

- Recall: In Section 4.7, the roots of Legendre polynomials are used as the nodes in Gaussian quadrature.
- The set of **Legendre polynomials** is orthogonal on [-1,1] with respect to the weight function w(x)=1. (Note that the classical definition of the Legendre polynomials requires that  $P_n(1)=1$  for each n.)
- Using the Gram-Schmidt process with  $P_0(x) = 1$  gives

$$B_1 = \frac{\int_{-1}^{1} x dx}{\int_{-1}^{1} 1 dx} = 0$$
 and  $P_1(x) = x - B_1 = x$ .

Also,

Chapter 8 28 / 55

# Orthogonal Polynomials (cont'd)

• The higher-degree Legendre polynomials are shown below.



Chapter 8 29 / 55

- 1 8.1 Discrete Least Squares Approximation
- 2 8.2 Orthogonal Polynomials and Least Squares Approximation
- 3 8.3 Chebyshev Polynomials and Economization of Power Series

## Chebyshev Polynomials

• The Chebyshev polynomials  $\{T_n(x)\}\$  for  $x \in [-1,1]$ , defined by

$$T_n(x) = \cos(n \arccos x)$$
 for each  $n \ge 0$ ,

are orthogonal on (-1,1) with respect to the weight function

$$w(x) = \frac{1}{\sqrt{1 - x^2}}.$$

- Q. Why such weight function?
- Q. Is  $\{T_n(x)\}$  a (orthogonal) set of polynomials?

Chapter 8 30 / 55

# Chebyshev Polynomials (cont'd)

- The Chebyshev polynomials are used to minimize approximation error.
   We will soon study how they are used to solve two problems of this type:
- 1. an optimal placing of interpolating points to minimize the error in Lagrange interpolation
- 2. a means of reducing the degree of an approximating polynomial with minimal loss of accuracy.

Chapter 8 31 / 55

# Chebyshev Polynomials (cont'd)

• For n = 0, 1 we have

$$T_0(x) = \cos 0 = 1$$
 and  $T_1(x) = \cos(\arccos x) = x$ .

• For  $n \ge 1$ , introducing  $\theta = \arccos x$  yields

$$T_n(\theta(x)) \equiv T_n(\theta) = \cos(n\theta), \text{ where } \theta \in [0, \pi].$$

We then have

$$T_{n+1}(\theta) = \cos((n+1)\theta) = \cos\theta\cos(n\theta) - \sin\theta\sin(n\theta)$$
  
$$T_{n-1}(\theta) = \cos((n-1)\theta) = \cos\theta\cos(n\theta) + \sin\theta\sin(n\theta).$$

Chapter 8 32 / 55

• Since  $T_0(x)=1$  and  $T_1(x)=x$ , we have  $T_2(x)=2xT_1(x)-T_0(x)=2x^2-1,$   $T_3(x)=2xT_2(x)-T_1(x)=4x^3-3x.$ 

 $T_4(x) = 2xT_3(x) - T_2(x) = 8x^4 - 8x^2 + 1,$ 

:

• When  $n \ge 1$ ,  $T_n(x)$  is a polynomial of degree n with leading coefficient  $2^{n-1}$ .

Chapter 8 33 / 55

• The graphs of Chebyshev polynomials are shown below.



Chapter 8 34 / 55

• Let's show the orthogonality of the Chebyshev polynomials with respect to  $w(x) = (1-x^2)^{-1/2}$ , using

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = \int_{-1}^{1} \frac{\cos(n\arccos x)\cos(m\arccos x)}{\sqrt{1-x^2}} dx$$

• Using  $\theta = \arccos x$  gives

$$d\theta = -\frac{1}{\sqrt{1-x^2}}dx$$

and thus

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx =$$

Chapter 8 35 / 55

• Similarly, we can show that for each  $n \ge 1$ ,

$$\int_{-1}^{1} \frac{[T_n(x)]^2}{\sqrt{1-x^2}} dx = \frac{\pi}{2}.$$

Chapter 8 36 / 55

- Recall: The Chebyshev polynomials are used to minimize approximation error. We will next study how they are used to solve two problems of this type:
- 1. an optimal placing of interpolating points to minimize the error in Lagrange interpolation
- 2. a means of reducing the degree of an approximating polynomial with minimal loss of accuracy.
- Then, what should we study next?

Chapter 8 37 / 55

#### Theorem 5

The Chebyshev polynomial  $T_n(x)$  of degree  $n \geq 1$  has n simple zeros in [-1,1] at

$$\bar{x}_k = \cos\left(\frac{2k-1}{2n}\pi\right), \quad \text{for each } k = 1, 2, \dots, n.$$

Moreover,  $T_n(x)$  has its absolute extrema at

$$\bar{x}_k' = \cos\left(\frac{k\pi}{n}\right)$$
 with  $T_n(\bar{x}_k') = (-1)^k$ , for each  $k = 0, 1, \dots, n$ .

Proof We have

$$T_n(\bar{x}_k) = \cos(n\arccos\bar{x}_k) = \cos\left(\frac{2k-1}{2}\pi\right) = 0.$$

Since  $\bar{x}_k$  are distinct (since  $\cos$  is a strictly decreasing function from 0 to  $\pi$ ) and  $T_n(x)$  is a polynomial of degree n, so all the zero of  $T_n(x)$  must have this form.

Chapter 8 38 /

#### Monic Chebyshev Polynomials

 The monic (polynomials with leading coefficient 1) Chebyshev polynomials  $T_n(x)$  are derived by dividing by  $2^{n-1}$  as

$$\tilde{T}_0(x)=1 \quad \text{and} \quad \tilde{T}_n(x)=\frac{1}{2^{n-1}}T_n(x), \quad \text{for each } n\geq 1.$$

They have the following relationship

$$\begin{split} \tilde{T}_2(x)&=x\tilde{T}_1(x)-\frac{1}{2}\tilde{T}_0(x)\\ \tilde{T}_{n+1}&=x\tilde{T}_n(x)-\frac{1}{4}\tilde{T}_{n-1}(x),\quad\text{for each }n\geq 2. \end{split}$$

39 / 55

• The graphs of monic Chebyshev polynomials are shown below.



• The extreme values of  $\tilde{T}_n(x)$  for  $n \geq 1$ , occur at

$$\bar{x}_k' = \cos\left(\frac{k\pi}{n}\right), \quad \text{with } \tilde{T}_n(\bar{x}_k') = \frac{(-1)^k}{2^{n-1}}, \quad \text{for each } k = 0, 1, 2, \dots, n.$$

Chapter 8 40 / 55

• Let  $\tilde{\prod}_n$  denote the set of all monic polynomials of degree n.

#### Theorem 6

The polynomials of the form  $\tilde{T}_n(x)$ , when  $n \geq 1$ , have the property that

$$\frac{1}{2^{n-1}} = \max_{x \in [-1,1]} |\tilde{T}_n(x)| \leq \max_{x \in [-1,1]} |P_n(x)|, \quad \textit{for all } P_n(x) \in \tilde{\prod}_n.$$

Moreover, equality holds only if  $P_n = \tilde{T}_n$ .

Proof Suppose that  $P_n(x) \in \tilde{\prod}_n$  and that

$$\max_{x \in [-1,1]} |P_n(x)| < \frac{1}{2^{n-1}} = \max_{x \in [-1,1]} |\tilde{T}_n(x)|.$$

Chapter 8 41/5

#### The Use of Chebyshev Polynomials

- Minimizing Lagrange Interpolation Error on  $[-1\ 1]$  (and on Arbitrary Intervals)
- Reducing the Degree of Approximating Polynomials

Chapter 8 42 / 55

#### Minimizing Lagrange Interpolation Error

- Q. Where should we place interpolating nodes to minimize the error in Lagrange interpolation?
  - Recall:

#### **Theorem** 7

Suppose  $x_0, x_1, \ldots, x_n$  are distinct numbers in the interval [a,b] and  $f \in C^{n+1}[a,b]$ . Then, for each x in [a,b], a number  $\xi(x)$  (generally unknown) between  $x_0, x_1, \ldots, x_n$ , and hence in (a,b), exists with

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

where P(x) is the nth Lagrange interpolating polynomial.

Chapter 8 43 / 55

## Minimizing Lagrange Interpolation Error (cont'd)

• In general, we cannot control  $\xi(x)$ , so we choose nodes to minimize

$$|(x-x_0)(x-x_1)\cdots(x-x_n)|$$

throughout the interval [-1,1].

• Since  $(x-x_0)(x-x_1)\cdots(x-x_n)$  is a monic polynomial of degree (n+1), the minimum is obtained when it is

Chapter 8 44 / 55

## Minimizing Lagrange Interpolation Error (cont'd)

• In other words,  $|(x-x_0)(x-x_1)\cdots(x-x_n)|$  is smallest when  $x_k$  is chosen to be the (k+1)th zero fo  $\tilde{T}_{n+1}$ ; that is,

$$\bar{x}_{k+1} =$$

• Since  $\max_{x \in [-1,1]} |\tilde{T}_{n+1}(x)| = 2^{-n}$ , we have

$$\frac{1}{2^n} = \max_{x \in [-1,1]} |(x - \bar{x}_1) \cdots (x - \bar{x}_{n+1})| \le \max_{x \in [-1,1]} |(x - x_0) \cdots (x - x_n)|,$$

for any choice of  $x_0, x_1, \ldots, x_n$  in the interval [-1, 1].

Chapter 8 45 / 55

#### Minimizing Lagrange Interpolation Error (cont'd)

#### **Corollary** 2

Suppose that P(x) is the interpolating polynomial of degree at most n with nodes at the zeros of  $T_{n+1}(x)$ . Then

$$\max_{x \in [-1,1]} |f(x) - P(x)| \le \frac{1}{2^n (n+1)!} \max_{x \in [-1,1]} |f^{(n+1)}(x)|,$$

for each  $f \in C^{n+1}[-1,1]$ .

Chapter 8 46 / 55

#### Minimizing Approximation Error on Arbitrary Intervals

ullet For a general closed interval [a,b], use the change of variables

$$\tilde{x} = \frac{1}{2}[(b-a)x + a + b]$$

to transform the numbers  $\bar{x}_k$  in [-1,1] into  $\tilde{x}_k$  in [a,b].

Ex. Let  $f(x) = xe^x$  on [0, 1.5]. Compare the values given by the Lagrange polynomial with four equally spaced nodes and with nodes given by zeros of the fourth Chebyshev polynomial.

Sol. Equally spaced nodes  $x_0 = 0$ ,  $x_1 = 0.5$ ,  $x_2 = 1$ ,  $x_3 = 1.5$  gives

$$P_3(x) = 1.3875x^3 + 0.057570x^2 + 1.2730x.$$

Chapter 8 47 / 55

#### Minimizing Approx. Error on Arbitrary Intervals (cont'd)

Sol. Zeros of the fourth Chebyshev polynomial are

$$\bar{x}_1 = \cos\frac{\pi}{8} = 0.92388, \quad \bar{x}_2 = \cos\frac{3\pi}{8} = 0.38268,$$

$$\bar{x}_3 = \cos\frac{5\pi}{8} = -0.38268, \quad \bar{x}_4 = \cos\frac{7\pi}{8} = -0.92388.$$

Then using the transformation

$$\tilde{x}_k = \frac{1}{2}[(1.5 - 0)\bar{x}_k + (1.5 + 0)] = 0.75 + 0.75\bar{x}_k,$$

we have

$$\tilde{x}_1 = 1.44291, \quad \tilde{x}_2 = 1.03701, \quad \tilde{x}_3 = 0.46299, \quad \tilde{x}_4 = 0.05709,$$

and this gives

$$\tilde{P}_3(x) = 1.3811x^3 + 0.044652x^2 + 1.3031x - 0.014352.$$

Chapter 8 48 / 55

#### Minimizing Approx. Error on Arbitrary Intervals (cont'd)

| x    | $f(x) = xe^x$ | $P_3(x)$ | $ xe^x-P_3(x) $ | $\tilde{P}_3(x)$ | $ xe^x - \tilde{P}_3(x) $ |
|------|---------------|----------|-----------------|------------------|---------------------------|
| 0.15 | 0.1743        | 0.1969   | 0.0226          | 0.1868           | 0.0125                    |
| 0.25 | 0.3210        | 0.3435   | 0.0225          | 0.3358           | 0.0148                    |
| 0.35 | 0.4967        | 0.5121   | 0.0154          | 0.5064           | 0.0097                    |
| 0.65 | 1.245         | 1.233    | 0.012           | 1.231            | 0.014                     |
| 0.75 | 1.588         | 1.572    | 0.016           | 1.571            | 0.017                     |
| 0.85 | 1.989         | 1.976    | 0.013           | 1.974            | 0.015                     |
| 1.15 | 3.632         | 3.650    | 0.018           | 3.644            | 0.012                     |
| 1.25 | 4.363         | 4.391    | 0.028           | 4.382            | 0.019                     |
| 1.35 | 5.208         | 5.237    | 0.029           | 5.224            | 0.016                     |



Chapter 8 49 / 55

#### Reducing the Degree of Approximating Polynomials

- Chebyshev polynomials can also be used to reduce the degree of an approximating polynomial with a minimal loss of accuracy.
- Consider approximating an arbitrary *n*th-degree polynomial

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

on [-1,1] with a polynomial of degree at most n-1.

ullet The goal is to choose  $P_{n-1}(x)$  in  $\prod_{n-1}$  so that

$$\max_{x \in [-1,1]} |P_n(x) - P_{n-1}(x)|$$

is as small as possible.

Chapter 8 50 / 55

• Since  $(P_n(x) - P_{n-1}(x))/a_n$  is a monic polynomial of degree n, we have

$$\max_{x \in [-1,1]} \left| \frac{1}{a_n} (P_n(x) - P_{n-1}(x)) \right| \ge \frac{1}{2^{n-1}}.$$

The equality holds when

$$\frac{1}{a_n}(P_n(x) - P_{n-1}(x)) = \tilde{T}_n(x).$$

This means that we should choose

$$P_{n-1}(x) =$$

which satisfies

$$\max_{x \in [-1,1]} |P_n(x) - P_{n-1}(x)| = |a_n| \max_{x \in [-1,1]} \left| \frac{1}{a_n} (P_n(x) - P_{n-1}(x)) \right| = \frac{|a_n|}{2^{n-1}}.$$

Chapter 8 51 / 55

Ex. Consider the fourth Taylor polynomial

$$P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24},$$

for  $f(x) = e^x$  about  $x_0 = 0$  on the interval [-1, 1], with a truncation error

$$|f(x) - P_4(x)| = \frac{|f^{(5)}(\xi(x))||x^5|}{120} \le \frac{e}{120} \approx 0.023, \text{ for } -1 \le x \le 1.$$

Reduce the degree of the approximating polynomial within an error bound of 0.05.

Chapter 8 52 / 55

Sol. The polynomial of degree 3 or less that best uniformly approximates  $P_4(x)$  on [-1,1] is

$$P_3(x) =$$

Chapter 8 53 / 55

Sol. The polynomial of degree 2 or less that best uniformly approximates  $P_3(x)$  on [-1,1] is

$$P_2(x) = P_3(x) - \frac{1}{6}\tilde{T}_3(x) = \frac{1}{6}x^3 \frac{13}{24}x^2 + \frac{191}{192} - \frac{1}{6}\left(x^3 - \frac{3}{4}x\right)$$
$$= \frac{13}{24}x^2 + \frac{9}{8}x + \frac{191}{192},$$

which has the error

$$|P_3(x) - P_2(x)| = \left| \frac{1}{6} \tilde{T}_3(x) \right| \le \frac{1}{2^2 6} = \frac{1}{24} \approx 0.042.$$

The total error is

$$|f(x) - P_2(x)| \le |f(x) - P_4(x)| + |P_4(x) - P_3(x)| + |P_3(x) - P_2(x)|$$
  
  $\le 0.023 + 0.0053 + 0.042 = 0.0703,$ 

which exceeds the tolerance of 0.05.

Chapter 8 54 / 55

| x     | $e^{x}$ | $P_4(x)$ | $P_3(x)$ | $P_2(x)$ | $ e^x-P_2(x) $ |
|-------|---------|----------|----------|----------|----------------|
| -0.75 | 0.47237 | 0.47412  | 0.47917  | 0.45573  | 0.01664        |
| -0.25 | 0.77880 | 0.77881  | 0.77604  | 0.74740  | 0.03140        |
| 0.00  | 1.00000 | 1.00000  | 0.99479  | 0.99479  | 0.00521        |
| 0.25  | 1.28403 | 1.28402  | 1.28125  | 1.30990  | 0.02587        |
| 0.75  | 2.11700 | 2.11475  | 2.11979  | 2.14323  | 0.02623        |

Chapter 8 55 / 55