Integrating industrial ecology analysis and IAMs

Volker Krey

International Institute for Applied Systems Analysis (IIASA)

Material courtesy of

Gunnar Luderer (PIK), Simon Parkinson, Oliver Fricko (IIASA)

Embedding climate change analysis in the context of SDGs

IAM vs. IE perspectives on social metabolism

a) IAM standard practice: global multiregional scope

b) IE standard practice: limited sectoral and regional scope

Integrated IAM-IE vision on social metabolism

c) Vision for integration of both perspectives : global multiregional scope

Source: Pauliuk et al. (2017)

Combining IAMs with LCA and MFA

This work has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308329.

An early example: MARKAL-MATTER

Source: Sijm et al. 2002

MARKAL-MATTER

Coverage of materials in Western European MARKAL-MATTER model

SEPTEMBER 1998 ECN-C--98-065

MATTER 1.0

A MARKAL Energy and Materials System

Model Characterisation

D.J. Gielen T. Gerlagh A.J.M. Bos

Source: Gielen et al. 1998

Table 2.2 Materials in the Western European MARKAL model Code Material Material MCA CONCRETE BUILDING BLOCKS [T] CELLOPHANE [T] MCB **MPB** PHB/PHV (BIOPOL) [T] BRICKS [T] BUTADIENE RUBBER (BR) [T] CEMENT [T] READY MIX CONCRETE [T CONCR. EQUIV.] MPE POLYETHYLENE [T] PREFAB CONCRETE [T CONCR. EQUIV.] MPF ACRYLONITRILE BUTADIENE STYRENE [T] STYRENE BUTADIENE RUBBER [T] HIGH STRENGTH CEMENT [T CONV. CEM. EQUI] MPG PORTLAND CEMENT CLINKER [T] MPM NYLON 6.6 [T] MCL SAND-LIME BRICKS [T] MPN NYLON 6 [T] MCM MARBLE AND GRANITE STONES [T] MPP POLYPROPYLENE [T] MCO QUICKLIME (CaO) [T] MPR UF RESINS [T] MPS FLOOR TILES + STONEWARE [T] POLYSTYRENE [T] GLASS [T] MPT POLYETHYLENE TEREPHTHALATE [T] GYPSUM [T] PVC [T EXCL. ADDITIVES] KAOLIN [T] MPV PVC [T INCL. ADDITIVES] NITRIC ACID [T] PUR ITI CHLORINE [T] MSA ASPHALT [T] AMMONIA [T NH3 EQUIV.] BENZENE ITI POTASH [T K2O EQUIV.] MSC CAPROLACTAM [T] NAOH [T] MSD DETERGENTS [T] PHOSPHORIC ACID [T P2O5 EQUIV.] MSF ETHYLENE [T] MIS SODA [T] MSF PROPYLENE ITI SODIUM CHLORIDE [T] MSG C4-FRACTION [T] ALUMINIUM [T] MSH **BUTADIENE ITI** COPPER CATHODE [T] MSI BUTYLENE [T] CAST IRON [T] MSJ BTX [T] DRI QUALITY STEEL [T] MSK TOLUENE [T] DIRECT REDUCED IRON [T] MSL LUBRICANTS [T] MMH HIGH QUALITY CRUDE STEEL [T] MSM CYCLOHEXANE [T] MMI IRON [T] MSN CUMENE [T] MML LOW QUALITY CRUDE STEEL [T] MSO DIETHYLENE GLYCOL [T] MEDIUM QUALITY CRUDE STEEL ITI MSP PAINT [T PAINT EQUIVALENTS] MMN REINFORCEMENT STEEL [T] MSQ XYLENES (MIXED) [T] MMO HOT ROLLED SECTION STEEL [T] MSR NATURAL ELASTOMERES (RUBBER) [T] ETHYLENE OXIDE [T] HOT ROLLED COIL STEEL [T] MST COLD ROLLED COIL STEEL [T] MSU ETHYLENE GLYCOL [T] COLD ROLLED COIL AT&F STEEL ITI PROPYLENE OXIDE ITI COLD ROLLED COIL F&P STEEL [T] MSW ACRYLONITRILE [T] MMT HEAVY PLATE STEEL ITI MSX P-XYLENE [T] MMU WIRE ROD STEEL [T] MSY O-XYLENE [T] MMV MSZ XYLENE RESIDUE [T] ALLOY STEEL [T] GALVANIZED/TINPLATE STEEL [T] TEREPHTHALIC ACID [T] MMX COPPER CONCENTRATE [T] MTB BUTANOL [T] SEMI-FINISHED COPPER [T] MTC ACETONE [T] MMY COMPOST (15% H2O) [T] MTD PHENOL [T] ROUNDWOOD (15% H2O) [T] MTE PHTHALIC ANHYDRIDE [T] CHIPBOARD [T] STYRENE [T] MNF FIBER BOARD [T] MTG VINYL CHLORIDE MONOMER (VCM) [T MNG **GRAVEL AND SAND [T]** MTH FORMALDEHYDE [T] MNK PALM KERNEL OIL [T] MTI UREA [T] MNL MARIGOLD FLOWER OIL [T] MTJ ANILINE [T] MNM HIGH QUALITY WASTE PAPER PULP [T] MTK ACETIC ACID [T] MNN LOW QUALITY WASTE PAPER PULP [T] MTL HEXAMETHYLENEDIAMINE [T] NITRO-BENZENE [T] MNO MECHANICAL PULP [T] MTM MNP PACKAGING PAPER AND SANITARY PAPER [T] MTN METHYL ETHYL KETON (MEK) [T] MNQ MTO GRAPHIC PAPER [T] ADIPIC ACID [T] MTP MNR NEWSPRINT [T] I-PROPANOL [T] WOOL ITI MTQ TOLUENEDIISOCYANATE [T] MNT SAWN TROPICAL HARDWOOD (15 % H2O) [T] MTR 2-ETHYLHEXANOL [T] MNU CHEMICAL PULP [T] MTS CARBON BLACK [T] MNV VISCOSE/RAYON [T] MTU SURFACTANT (AES) [T] OTHER SAWN WOOD/PLYWOOD (15 % H2O) [T] MTV ACETIC ANHYDRIDE [T] ORE IRON ORE [T] OXY OXYGEN [T] PELLETS [T IRON EQUIV.] SINTER [T IRON EQUIV.]

Environmental assessment of alternative power sector decarbonization strategies

Key research questions:

- What are environmental co-benefits and adverse side-effects of the low-carbon transformation?
- How do alternative decarbonization pathways perform in terms of their environmental impacts?

Key publications:

- Pehl et al. (2017) "Understanding Future Emissions from Low-Carbon Power Systems by Integration of Life-Cycle Assessment and Integrated Energy Modelling." Nature Energy 2 (11). https://doi.org/10.1038/s41560-017-0032-9.
- Arvesen et al. (2018). Deriving life cycle assessment coefficients for application in integrated assessment modelling. *Environmental Modelling* and Software, 99, 111–125. https://doi.org/10.1016/j.envsoft.2017.09.010
- Luderer et al. (2019): Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies, *Nature Communications* 10:5229.

https://doi.org/10.1038/s41467-019-13067-8

Integrating IAM and LCA approaches

- Integrated Assessment Modeling (IAM) community considers the dynamics of the long-term transformation, but so far focused on climate change mitigation. Policy interventions can be considered explicitly using scenario approaches.
- Life cycle assessment (LCA) considers broad set of impacts, but mostly focuses on individual technologies and apply static assumptions, thus not considering the long-term system evolution

Prospective LCA methodology

- Aspects of future technological change addressed within the LCA
 - Changing performance of individual electricity generation technologies
 - Projected improvements in selected industrial processes
- Coherent life cycle descriptions for power generation options based on multiple case studies to allow for uncertainty estimates, choice of impacts based on ReCiPe methodology
- Separate construction, operation, end-of-life phases to be combined with tracking of capacity vintages in IAM
- Embodied (upstream) energy requirements of power technologies to account for indirect effects

References

- Gibon, T., Wood, R., Arvesen, A., Bergesen, J.D., Suh, S., Hertwich, E.G., 2015. A methodology for integrated, multiregional life cycle assessment scenarios under large-scale technological change. Environmental Science & Technology.
- **Hertwich, E.G.,** Gibon, T., Bouman, E.A., Arvesen, A., Suh, S., Heath, G.A., Bergesen, J.D., Ramirez, A., Vega, M.I., Shi, L., 2015. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. PNAS 112(20)

Workflow

Integrated Assessment Model

Capacities and production

- New Construction [MW/yr]
- Electricity Production [kWh_{el}/yr]
- Decomissions [MW/yr]

Impacts represented directly

- Air pollution
- Water use
- Fossil resources, CO2 storage

Prospective Life-Cycle Assessment (THEMIS)

Mid-point coefficients (technology-specific) per kWh_{el}, MW, e.g.,

- Toxicity
- Land occupation
- Eutrophication
- Metal depletion
- Ionizing radiation

Embodied energy coefficients

Related **midpoint impacts**, including indirect effects due to embodied energy

- Air pollution (PM, O3, TAC)
- Water
- Fossil depletion, CCS

Joint assessment of midpoint and endpoint impacts

MAgPIE bioenergy scearios

Innovations

- Integration of Integrated Assessment Modeling and Life-Cycle-Assessment
- Air pollution and water use represented by source in IAMs
- **Biomass** land and fertilizer requirements, as well as land-use change emissions from the MAgPIE land-use model
- Comprehensive coverage of all major power technologies
- Other impact categories (toxicity, material resource requirements, land occupation, ionizing radiation,...) from prospective LCA model THEMIS, accounting for future changes in technology performance
- **Grid and storage requirements** estimated based on DLR's REMix model (Berrill et al., 2016; Scholz et al., 2016; Pietzcker et al., 2016)
- Systematic uncertainty analysis based on multiple case studies (LCA) and multi-model IAM ensemble

IAM scenarios considered

Climate policy implementation

- Policy scenarios with constraint on cumulative 2011-2050 power sector emissions of 240 GtCO₂
- Comparable policy ambition in other sectors

Three different technology scenarios:

- FullTech
- Conventional (Wind and solar limited to 10%)
- Renewable (nuclear phase-out, no CCS for power stations)

IAM scenarios considered

Health impacts (excl. air pollution)

Land occupation and transformation

Bulk resource requirements

Mineral resource depletion

Fossil depletion and carbon storage

Combined assessment

Key insights

- Decarbonizing power supply has substantial co-benefits, especially for air and water pollution
- However, low-carbon transformation pathways have higher raw material requirements, higher risks related to radioactive substances, and increased land requirements
- Bioenergy has much greater adverse side-effects than the other renewables
- Conventional vs renewable power sector decarbonization strategies have distinctly different environmental risk profiles
 - Nuclear and CCS-based strategies are more water-intensive, higher radiation, and have fewer environmental co-benefits
 - Decarbonization based on wind and solar increases the requirements for raw materials

Water for Energy

Water for Energy

Key Research Questions

- How will climate change mitigation affect water withdrawal, consumption and thermal pollution of the energy sector?
- What are effective strategies to reduce water consumption in the energy sector?

Key Publications

- Fricko et al. (2016). Energy sector water use implications of a 2°C climate policy. *Environmental Research Letters*, 11(3). https://doi.org/10.1088/1748-9326/11/3/034011
- Parkinson et al. (2019). Balancing clean water-climate change mitigation trade-offs. Environmental Research Letters, 14(1). https://doi.org/10.1088/1748-9326/aaf2a3

Worldwide, most electricity is produced by thermoelectric (80%) and hydropower generation (17%)

Figure: Regional power plant portfolios by fuel type. Based on EIA data for 2010 . Source: [M. van Vliet, 2014]

Source: courtesy of S. Parkinson

Understanding cooling requirements

Figure: Simplified power plant energy balance

Cooling Technology	Water Withdrawal	Water Consumption	Investment Costs	Efficiency
Once Through	High	Med	Low	High
Closed-Loop	Med	High	Med	High
Air Cooling	Low	Low	High	Low

Figure: Cooling systems that use water

Table. Trade-offs between cooling system types

Source: courtesy of S. Parkinson

Average water performance by plant type

Water requirements proportional to heat-rate/efficiency

Low-carbon does not always mean water-efficient

Methods: Different Approaches

- Ex-post calculation of water indicators based on exogenous assumptions of water-technologies (see also LCA)
- Endogenous modeling of watertechnologies (e.g., power plant cooling)
 - Based on simple water-balancing
 - Based on water availability assessed in hydrological models (incl. other sectors)
- Integrated water for energy and energy for water (e.g., water treatment) modeling

Reference

Alternative Technology Choices for 2C (intermediate energy demand)

High Energy Demand

Low Energy Demand (Efficiency)

Efficiency + Water Adaptation Policies

Summary

- Water needs of different energy and electricity generation portfolios vary greatly
- Adaptation of water-efficient technologies
 (e.g., dry cooling) help reducing needs
- Energy efficiency reduces water needs across the entire system

Thank you!

Volker Krey krey@iiasa.ac.at

