

Week 14

Quantization of Angular Momentum

Topics for this week

 Quantization of Angular Momentum

By the end of the week

1. Be able to predict the spectral lines of hydrogen

Spectral Lines

- In the 1670 Isaac Newton discovers you can separate a beam of visible light into its component energies by passing a narrow beam of light through a prism
 - Splits light into 7 colors with a prism and coins the word "spectrum"
- In 1835 Charles Wheatstone found that different metals could be easily distinguished by the different bright lines in the emission spectra of their sparks
- In 1854 David Alter and Anders Jonas Ångström observed the same result for different gases

White Light

Iron

Hydrogen Gas

An atomic puzzle

- Why does the emission spectra of hydrogen look so different from the spectra of white light?
- In 1913 Niels Bohr explained the emission spectral of hydrogen by improving on the Rutherford model of the atom
 - Rutherford's planetary model predicted a continuous
 spectrum of light from hydrogen
 - Bohr corrected for this by proposing that the translational angular momentum of the electron be quantized
 - N is an integer 1, 2, 3, etc.
 - h is planck constant 1.05x10⁻³⁴ Js

The radius and energy of hydrogen

- The net force on the electron is the electric force
 - The electron is only allowed to line in specific orbits
 - Louis de Broglie interpreted this to mean that the electron had a wavelength that must fit within the circumference of the orbit

$$rac{N^2\hbar^2}{mr^3} = rac{1}{4\pi\epsilon_0}rac{e^2}{r^2} \quad lacksquare \quad r = rac{4\pi\epsilon_0\hbar^2}{me^2}N^2$$

- The total energy of the atom is the sum of kinetic and potential
 - The total energy is quantized!

$$E_{tot} = rac{1}{2} m v^2 - rac{1}{4 \pi \epsilon_0} rac{e^2}{r} \hspace{1.5cm} igotage E_{tot} = -rac{\left(rac{1}{2} (rac{1}{4 \pi \epsilon_0})^2 rac{m e^2}{\hbar}
ight)}{N^2} = rac{-13.6 \ eV}{N^2}$$

Changes in energy for the atom

- What is the change in energy as the electron moves from one state to another?
 - If the atom moves from a larger orbit to a smaller it loses energy in the form of a photon
 - Moving from a smaller orbit to a larger requires a specific gain in energy

$$E_3 - E_1 = rac{-13.6 \; eV}{3^2} - rac{-13.6 \; eV}{1^2} = 12.09 \; eV$$

• The energy of the emitted photon is related to planck's constant

n = 3

n = 2

$$E=rac{2\pi\hbar c}{\lambda}$$
 \longrightarrow $\lambda_{12.09\;eV}=102\;nm$

The hydrogen spectrum

- We can stimulate the emission of photos by exciting the hydrogen gas with electron current
 - The electron current gives up some of its kinetic energy to the electron in the hydrogen atom
 - When this electron falls back to the ground state it gives up a photon
 - 410 nm, 434 nm, 486 nm, 656 nm
 - o 656 nm is the H alpha line

Emission

- Atoms in excited states will emit photons as the atoms drop to lower energy levels
 - The emitted photon has the same energy as the difference between energy levels
 - The photons from the atom are called the emission spectrum

Absorption

- Atoms can absorb photons and go from the ground state to an excited state
 - Only if the photons energy exactly matches the energy difference between the two state
 - This leads to missing photons; a "darkline" spectrum

Quantum Mechanics

