

- Bellman-Ford算法在实现时,需要用到以下两个数组:
- (1)使用同一个数组 dist[n] 来存放一系列的
 dist^k[n]。算法结束时 dist[n] 中存的就是 distⁿ⁻¹[u].
- (2) path[n] 数组的含义同 dijkstra 算法中的 path 数组。

下面就利用这张图,来看看 bellman-ford 算法的执行过程吧!

	S	t	X	у	Z
dist	0	∞	∞	∞	∞
path	-1	-1	-1	-1	-1

• 第一轮迭代, $dist[u] = edge[v_0][u]$

	S	t	X	y	Z
dist	0	<u>6</u>	∞	<u>7</u>	∞
path	-1	<u>S</u>	-1	<u>s</u>	-1

• 第二轮迭代 $dist^2[u] = min{dist^1[u], dist^1[j] + edge[j][u]}$

	S	t	X	у	${f z}$
dist	0	6	<u>4</u>	7	<u>2</u>
path	-1	S	У	S	<u>t</u>

• 第三轮迭代 $dist^3[u] = min{dist^2[u], dist^2[j] + edge[j][u]}$

	S	t	X	у	Z
dist	0	<u>2</u>	4	7	2
path	-1	<u>X</u>	у	S	t

• 第四轮迭代 $dist^4[u] = min{dist^3[u], dist^3[j] + edge[j][u]}$

• 算法结束。

	S	t	X	y	Z
dist	0	2	4	7	<u>-2</u>
path	-1	X	у	S	t

- path 数组的变化与 di jkstra 算法类似。通过倒向追踪可以 得到源点到某个点的最短路径。
- 比如 z, 沿着 path[z] 倒向追踪, z -> t -> x -> y -> s。
- 故 s 到 z 的最短路为 s -> y -> x -> t -> z.

	S	t	X	у	Z
dist	0	2	4	7	<u>-2</u>
path	-1	X	у	S	t

下节课再见