Effects of Beta and Delta/Theta Binaural Beats on Stroop Test

Research Project for Research Methodologies in Humanities and Science and Cognitive Science & Psychology

Carles Tardío, Borja Sabio, Selin Akcakaya, Xavier Duran, María Blancas

Background

- When two pure tones of slightly different frequency are presented separately to each ear, the listener perceives a third single tone with amplitude variations at a frequency that equals the difference between the two tones, this perceptual illusion is known as **binaural auditory beat** (Oster, 1973).
- There are anecdotal reports that suggest that the binaural beat can **entrain EEG activity** (*Jan Schnupp, 2011*) and may affect the arousal levels, although few studies have been published (*Tina L.Huang, C.Charyton, 2008*),(*D.S.Foster,1990*). Few studies explore how BB's affect performance on attention tasks (*Lane et al, 1998*),(*Wahbeh et al, 2008*),(*Crespo et al, 2012*).
- There is a need for double-blind, well-designed studies in order to establish a solid foundation for these sounds, as most of the documented benefits come from self-reported cases that could be affected by placebo effect and also from authors related to commercial companies (Charyton, 2008).

Experimental Study

- The aim in our research was to explore the potential of BB's in a particular field: tasks that require focus and concentration (**Stroop Effect**).
- In this study we compare the effect of different binaural stimulation in **delta/theta** and **beta** frequency ranges, 20 participants were exposed to ~15 min + ~15 min binaural beat stimulation.
- -**Hypothesis:** "Exposure to binaural auditory beats in the EEG beta frequency ranges in comparison to delta/theta frequency ranges improves significantly performance in stroop test."
- The effects were obtained with qualitative stroop application. Results suggest **no significant** statistical improvement in 15 min stimulation.

Methods - Materials & equipment

- Sound Room (La Nau): soundproof
- Stereo Headphones and microphone
- Binaural beats (double blinded):
 - Delta/theta: at 1.5 Hz and 4 Hz + pink noise as background
 - Beta: at 16 Hz and 24 Hz + pink noise as background
- Subject perception: BB non perceptible, 2 sounds alike
- iPad

Methods - Experiment design

- Within subjects.
- 21 participants (1 removed): 11 male, 9 female. Mean age 28.1 years old.
- Counterbalance: Randomized sound sequence: 10 AB, 10 BA.

Methods - Procedures

Experiment:

- Part I

Ishihara Test (9')

- Part II

Stroop Test (~ 6' depending on performance)

headphones

video

Take off the headphones and call the experimenter

5 min

game

video

game

headphones

Methods - Procedures - Part I

Ishihara test

17 numbers plates 6 shapes plates 9 lines plates

Methods - Procedures - Stroop Test App

App for research purposes

(screen for Minimal Hepatic

Encephalopathy. Bajaj et al., 2013)

Stroop Off and Stroop On State

Methods - Procedures - Stroop Test App

Settings and Results of Application

Methods - Procedures - Stroop Test App

Stroop Output

Output	Definition
OFFTIME	Time required to complete 5 correct runs in the "Off State"
ONTIME	Time required to complete 5 correct runs in the "On State"
TRIALS OFF	Number of trials it took the subject to get 2 correct runs in the "Off State"
TRIALS ON	Number of trials it took the subject to get 2 correct runs in the "On State"
OFFTIME + ONTIME	Sum of Offtime and Ontime
ONTIME - OFFTIME	Ontime substracted by Offtime

Results

- Two-way repeated measures ANOVA
- Mean reaction time for a single item
- Factors:
 - Stroop level (neutral, incongruent)
 - Binaural beat frequencies (beta, delta/theta)

Results (mean reaction time)

- Neutral (off)

- Incongruent (on)

ANOVA

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Residuals	19	3.06	0.16		
sound	1	0.02	0.02	1.75	0.2015
Residuals1	19	0.24	0.01		
level	1	0.18	0.18	14.89	0.0011
Residuals2	19	0.23	0.01		
sound:level	1	0.00	0.00	0.68	0.4182
Residuals	19	0.05	0.00		

Reaction time distribution for each Stroop level

Results (mean reaction time)

- Beta

M=1.26, *SD*=0.24

- Delta/Theta

M=1.23, *SD*=0.20

ANOVA

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Residuals	19	3.06	0.16		
sound	1	0.02	0.02	1.75	0.2015
Residuals1	19	0.24	0.01		
level	1	0.18	0.18	14.89	0.0011
Residuals2	19	0.23	0.01		
sound:level	1	0.00	0.00	0.68	0.4182
Residuals	19	0.05	0.00		

Reaction time distribution for each sound

Type of sound

Results

- Accuracy (%)
 - 100*(5+5)/(TRIALS OFF+TRIALS ON)
- Total time
 - OFFTIME+ONTIME

Results (accuracy)

- Beta

M=91.15, *SD*=12.13

- Delta/Theta

M=85.32, *SD*=11.22

ANOVA

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Residuals	19	2652.89	139.63		
sound	1	339.90	339.90	2.55	0.1270
Residuals1	19	2535.70	133.46		

Trial accuracy for each sound

Type of sound

Results (total time)

- Beta

M=130.58, *SD*=25.21

- Delta/Theta

M=128.05, *SD*=21.44

ANOVA

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Residuals	19	19440.58	1023.19		
sound	1	63.69	63.69	0.88	0.3600
Residuals1	19	1375.51	72.40		

Total time distribution for each sound

Type of sound

Discussion

Hypothesis: "Exposure to binaural auditory beats in the EEG beta frequency ranges in comparison to delta/theta frequency ranges improves significantly performance in stroop test"

Conclusion:

- No statistically significant difference found between the two conditions (p>0.05)
- Results provide no evidence for improvements in cognitive function after exposure to beta binaural beats (mean time 15' 09") in contrast to theta/delta binaural beats (mean time 15' 03") in a small sample of 20 healthy adults.
- Stroop effect was observed

Discussion

Limitations:

•Experiment duration may not be sufficient for entrainment

Improvements:

- Increase exposure time to BB
- Sessions in separate days
- More sessions
- Increase sample size
- Within subjects vs between groups
 - + avoid learning curve
 - natural variance (big sample needed)

References

- [1] G. Oster, "Auditory beats in the brain," Scientific American, vol. 229, no. 4, pp. 94–102, 1973.
- [2] Tina L.Huang, C.Charyton, Alternative Therapies, sep/oct 2008, VOL. 14, NO. 5 Psychological Effects of Brainwave Entrainment
- [3] D. S. Foster, "EEG and Subjective Correlates of Alpha-Frequency Binaural-Beat Stimulation

Combined with Alpha Biofeedback," pp. 1–34, 1990.

- [4] J. D. Lane, S. J. Kasian, J. E. Owens, and G. R. Marsh, "Binaural Auditory Beats Affect
- Vigilance Performance and Mood," Physiology & Behavior, vol. 63, no. 2, pp. 249–252, 1998.
- [5] Helané Wahbeh, Carlo Calabrese, Heather Zwickey, and Dan Zajdel. The Journal of Alternative and Complementary Medicine. March 2007, 13(2): 199-206. doi:10.1089/acm.2006.6201.
- [6] Crespo Pelayo, Adela del Carmen and Recuero López, Manuel and Gálvez García, Gerardo Miguel and Begoña Monco, Adrián (2012) Effects of binaural stimulation in attention and EEG. In: VIII Congresso Ibero-americano de Acústica, 01/10/2012 - 03/10/2012, Évora (Portugal).
- [7] Bajaj, J. S., Thacker, L. R., Heuman, D. M., Fuchs, M., Sterling, R. K., Sanyal, A. J., ... Wade, J. B. (2013). The Stroop smartphone application is a short and valid method to screen for minimal hepatic encephalopathy. *Hepatology (Baltimore, Md.)*, *58*(3), 1122–32. doi:10.1002/hep.26309
- [8] Charyton, C. (2008). A comprehensive review of the psychological effects of the psychological effects of brainwave entrainment, 14(5).
- [9] Jan Schnupp, Israel Nelken and Andrew King (2011). Auditory Neuroscience. MIT Press