In-class Exercises: Functional Dependencies

Suppose we have a relation R with attributes ABCD

1. What an FD means. Suppose the functional dependency $BC \to D$ holds in R. Create an instance of R that violates this FD.

Solution:

In order to violate this FD, we need two tuples with the same value for B and the same value for C (both!), yet different values for D.

A	В	$\mid C \mid$	D
1	3	6	4
2	3	6	5

2. Equivalent sets of FDs.

(a) Are the sets $A \to BC$ and $A \to B, A \to C$ equivalent? If yes, explain why. If your answer is no, construct an instance of R that satisfies one set of FDs but not the other.

Solution:

These are equivalent — there is no instance of the relation that satisfies one but not the other. This can be proven, as follows:

- Assume that $A \to BC$.
 - Under this assumption, $A^+ = ABC$.
 - Therefore $A \to B$, and $A \to C$.
- Assume that $A \to B$, and $A \to C$.
 - Under this assumption, $A^+ = ABC$.
 - Therefore $A \to BC$.
- Therefore each set of FDs follows from the other. They are equivalent.
- (b) Are the sets $PQ \to R$ and $P \to Q, P \to R$ equivalent? If yes, explain why. If no, construct an instance of R that satisfies one set of FDs but not the other.

Solution:

These are not equivalent, as demonstrated by this instance that satisfies $PQ \to R$ but not $P \to Q, P \to R$:

In fact we can always "split the RHS" of an FD.

3. Does an FD follow from a set of FDs? Suppose we have a relation on attributes ABCDEF with these FDs:

$$AC \to F, \quad CEF \to B, \quad C \to D, \quad DC \to A$$

- (a) Does it follow that $C \to F$?
- (b) Does it follow that $ACD \rightarrow B$?

Solution:

We use the closure test to check whether an FD follow from a set of FDs.

 $C^+ = CDAF$. Therefore, $C \to F$ does follow.

 $ACD^+ = ACDF$. Therefore, $ACD \to B$ does not follow.

4. **Projecting a set of FDs onto a subset of the attributes.** Suppose we have a relation on attributes *ABCDE* with these FDs:

$$A \to C$$
, $C \to E$, $E \to BD$

Project the FDs onto attributes ABC:

Solution:

To project onto a set of attributes, we systematically consider every possible LHS of an FD that might hold on those attributes.

- $A^+ = ACEBD$, therefore $A \to BC$. (It also functionally determines DE, but these are not in our set of attributes. And it functionally determines itself, but we don't need to write down dependencies that are tautologies.)
- $B^+ = B$. This yields no FDs for our set of attributes.
- $C^+ = CEBD$, therfore $C \to B$.
- We don't need to consider any supersets of A. A already determines all of our attributes ABC, so supersets of A will be only yield FDs that already follow from $A \to BC$.
- The only remaining subset of the attributes ABC to consider is BC. $BC^+ = BCED$. This yields no FDs for our set of attributes.
- So the projection of the FDs onto ABC is: $\{A \to BC, C \to B\}$.
- 5. Minimal Basis of FDs. Suppose we have a relation on attributes ABCDEG with these FDs:

$$A \to B$$
, $ABCD \to E$, $G \to A$, $G \to B$

Find the minimal basis (aka minimal cover) for these FDs:

Solution:

(Solution guide available in Week 10 slides for Section L5101.)