Homework 3

Due time: 10 p.m. Nov. 2nd, 2024

Turn in your hard-copy hand-writing homework at the entrance of Room 3-324 SIST #3 Building.

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.
- All final answers must be rounded to **two decimal places**, and include the **appropriate units**.

1. Consider the circuit given below, the ideal operational amplifier is working in the linear region. Find the relationship between v_o and v_i .

- 2. The op amp in the circuit below is working in the linear region, calculate:
 - a. V_a
 - b. *V*_o
 - c. *I*_o

3. Find the equivalent capacitance C_{ab} of the circuit.

- 4. For the circuit below, $I(0^-) = 0$ A, and let $V(t) = 8e^{-3t}$ V. The initial energy stored in all inductors is 0 J.
 - a. Calculate the equivalent inductance L_{ab} .
 - b. Find I(t) for t > 0.

5. In the circuit shown, the switch is instantly moved from node $\bf a$ to $\bf b$ at t=0. Assume the circuit was in steady state for t<0. Determine the expressions for $v_c(t)$ and $i_c(t)$ for t>0.

- 6. For the circuit below, the switch has been closed for a long time. At t = 0, the switch is opened.
- a. Determine $i_L(t)$ for t > 0.
- b. Calculate the initial energy stored in the inductor. Then, find the percentage of this initial energy that is eventually dissipated in the 15 Ω resistor.

- 7. For the circuit below, the switch has remained in position \mathbf{a} for a long time. At t=0, the switch is instantly moved to position \mathbf{b} . After 12 s, the switch is moved back to position \mathbf{a} instantaneously.
 - a. Find $v_o(t)$ for t > 0.
 - b. Sketch the curve of $i_L(t)$ as a function of t.

8. For the op amp in the given circuit operating in the linear region, find $v_o(t)$ for t > 0.

