Review for DATA/COSC 301/DATA 501 Exam

Proposed Format

Time limit: 180 minutes

Total marks: 100

• ~ 30 marks for 30 multiple choice questions (1 mark each)

• ~ 20 marks for 7 short answer questions

• ~ 50 marks for 7 long answer questions

Previous Exam Breakdown

Last year, the exam has covered 36% midterm 1 material, 27% midterm 2 material, leaving 37% of the material unique to final. I am not bound to the exact percentages, but they should give you a rough idea on how to study. There is some variation in this distribution each semester, but there will be roughly a 1:1:1 coverage of Midterm 1, Midterm 2 and post Midterm 2 material.

Table 1: MC = Multiple Choice (1 mark each), SA = Short Answer, LA = Long Answer

Percentage	Topic	Distribution
2%	Data representation	2 MC
11%	Excel	1 MC, 1 LA (10)
1%	Excel VBA	1 MC
16%	Databases	2 MC, 1 SA (4), 1 LA (10)
6%	Command line ¹	1 MC, 1 LA (5)
27%	Python	12 MC, 3 LA (3x5)
21%	R	7 MC, 1 SA, 1 LA (10)
7%	$\mathrm{GIS^1}$	1 MC, 2 SA
5%	Visualization	3 MC, 1 SA
4%	Open data	2 SA

¹ Since we did not cover Command Line and GIS, these percentages will be redistributed across the remaining topics

1 List of Topics

Table 2: Relevance of topics as it pertains to the final exam

***	Extremely important	
**	Assignment question or major topic	
*	Important topic which probably should be tested	
_	(no stars) topic covered but of minor importance	
strikethrough	Will not be tested on the exam	

Introduction

- * what is data analysis? what does a data analyst do?
- * importance of data analytics

Data Representation

- * Define: computer, software, memory, data, memory size/data size, cloud
- * Explain "Big Data" and describe data growth in the coming years
- ** How data is measured: bits vs bytes vs KB, GB, ...
- * Compare and contrast: digital versus analog
- ** How integers, doubles, and strings are encoded
- ** Difference between unsigned binary, float (32 bit), double (64 bit)
- ** Convert integer into unsigned binary
 - Convert real number into float
- * Why ASCII table is required for character encoding
- * Explain why Unicode is used in certain situations instead of ASCII
- ** Explain the role of metadata for interpreting data
 - * Define: file, file encoding, text file, binary file
 - Encode using Hexadecimal, the NATO broadcast alphabet
 - Discuss the time-versus-space tradeoff

Excel

* Explain what a spreadsheet is and its usefulness

- ** Excel notation: ribbon, worksheet, workbook
- ** spreadsheet cell addressing (eg. range notation using :)
 - selecting cells in a spreadsheet with your mouse
 - filling, hiding
- ** Define and explain: formula, function, argument, concatenation
- ** Using functions, eg. concatenate, lookup, index, if, aggregate functions
- *** compare absolute vs. relative addresses; use absolute/relative addresses
- ** use conditional formatting, format painter
- ** data and type formats
- ** Use sorting and filtering (with numbers or characters)
- ** Create/edit/identify different charts
 - * Create and edit charts and use chart features: trendlines, sparklines
- * Explain the usefulness of: what-if scenarios, goal seek, solver
- *** Use and create pivot tables and charts (understand the ROW, COLUMN, FILTER, and VALUES panels)
- ** Evaluate and create conditions.
- ** Use IF() to make decisions
- * Excel add-ins: define, how to install (eg. Solver. Data Analysis)
- Linear regression

Excel VBA

- *** Explain/understand how to create and use macros and macro recorder
- ** Excel file extensions: mainly know the difference between .xlsx and .xlsm
- * Saving macros: Personal workbooks (.xlsb) vs regular .xlsm
- ** Explain the security issues with macros and how to handle them
- ** Visual Basic Editor: basic definition and features
 - * How to use the immediate window, eg ?/PRINT/DEBUG.PRINT <command>
 - VBA modules
 - Object browser
- * Be able to read/manipulate macro/VBA code (don't need to create from scratch but you should know the general syntax)
 - Object-oriented definitions (object, class, property, method)
 - * The hierarchy of objects eg. Application \rightarrow Workbook \rightarrow Worksheet

- * Collections and indexing, eg. Worksheets("macro"), Worksheets(2) (index starting at 1)
- ** Create and use Excel variables
- * Explain how a collection is different from a typical variable
- * eg. Range for selecting cells
- ** Explain how to create user-defined functions and use them in formulas
 - * Subroutines vs user-defined functions.

Relational Databases

- ** Define: database (data), database system (software), schema, metadata
- *** Define: relation (table), attribute (field/column name), tuple (a single record/row), domain (data type for a column), degree (number of columns/attributes), cardinality (number of rows/tuples)
 - * SQL properties: reserved words, case-insensitive, free-format
 - GUI commands in Microsoft Access and LibreOfficeBase (i.e Design View)
- *** Write queries using SQL commands
 - N.B Some commands differed slightly between LibreOffice Base and Access; both will be accepted.
- *** Be able to create a table using CREATE TABLE
 - *** Know your field types (eg. VARCHAR vs CHAR)
 - ** Explain what a primary key is and what it is used for and how to assign one
 - * Use DROP TABLE to delete a table and its data
- ** Use INSERT/UPDATE/DELETE to add/update/delete rows of a table
 - * ALTER command for adding new columns
- *** Projection operation using SELECT
 - ** DISTINCT to remove duplicates
- *** Selection operation using WHERE
 - *** comparison operators (<, >, =, !=, <=, >=),
 - *** logical operators (AND, OR, NOT).
 - IS NULL
- *** JOINS (inner, left, right, outter know the difference)

- ** Sort rows using ORDER BY (ASC/DESC for ascending/descending, resp.)
- ** Use LIMIT/TOP to keep only the first (top) N rows
- *** Use GROUP BY and aggregation functions (eg. COUNT, MAX) for calculating summary data
- ** HAVING for filtering after GROUPBY.
- *** Statement Written/Execution Order

07Python

- Explain what is Python and note the difference between Python 2 and 3 (I will be marking using Python 3 syntax)
- * Define: algorithm, program, language,
- ** Follow Python basic syntax rules including indentation/comments/colons
 - Jupyter Notebook
- *** Using print statements
 - Use new-style string formatting, (feel free to use, but you don't need to) eg. print("Total score for {} is {}".format(name, score))
 - * Perform math expressions and understand operator precedence
- *** Print formatting
- *** Use strings, character indexing, string functions, slicing
 - ** Commonly used string functions/methods: split, substr, concatenation (+), escape character
- *** Define and use variables and assignment
 - ** Python naming rules
 - * Python data types (see using type function)
- *** Python indexing [] starts at 0, -1 right to left indexing
- ** Using functions and methods, eg. len(), .append(), str(), int(), .split()
 - * Deleting objects del, .remove
- ** How to import and use modules
 - Use Python datetime and clock functions
- *** Read input from standard input (keyboard)
- *** Create comparisons and use them for decisions with if
 - ** Combine conditions with and, or, not
 - ** Order of operations for logical operators, eg and before or
- *** if/elif/else statements

- *** Looping with for and while (eg. using for loops with Python lists, strings., etc.)
 - *** range(start (inclusive), end (exclusive), step (optional)
- *** Create and use lists, list functions (eg. .sort), and list slicing, traversing in for loop
 - * Python collections: tuples, sets
 - * Differences between lists, tuples, sets and dictionaries
- *** Create and use dictionaries
 - Advanced: list comprehensions
- *** Create and use Python functions
 - Difference between Python functions and procedures
 - ** Differences between functions and methods
 - lambda functions
 - Use built-in functions in math library
 - Create random numbers
 - Advanced: passing functions, lambda functions

08Python

- *** Open, read, write, append to files
- ** Closing files (either in a with clause or using fileobj.close())
- *** Process CSV files: you may either use base Python *or* use the csv module (but this module makes it easier)
 - ** Define: exception, exception handling
- *** Use try-except statement to handle exceptions and understand how each of try, except, else, finally blocks are used
 - Define: IPv4/IPv6 address, domain, domain name, URL
 - Read URLs using urllib.request.
 - Use Biopython module to retrieve NCBI data and perform BLAST
 - * Build charts using matplotlib (eg alter existing code to produce some desired affect)
 - Perform linear regression and k-means clustering using SciPy
 - Connect to and query the MySQL database using Python
 - NumPy arrays
 - * Write simple Map-Reduce programs

Open Data

- *** Key concepts/take home message from Dr. Jason Pither's guest lecture
 - *** Define open data and explain the motivations for making data "open".
 - * Terminology (eg. reproducibility)
 - * Publication bias
 - Power/ any technical details
 - * Ideal workflow
 - ** pre-registration of research plan
 - * Tools for helping with Open Science

\mathbf{R}

- ** Understand purpose and usefulness of R
- ** Types of data: qualitative, quantitative
- *** Describe data using numerical summaries (measure of centre/spread, fivenum)
- *** Define and calculate: mean, median, variance, standard deviation, range
 - ** Define: quantile, quartile, interquartile range, five number summary
 - ** Explain what a working directory is and how to set it
- *** R syntax, for example: {} for blocking lines of code, case sensitive, <-/= for assignment character, ...
 - * Perform matrix addition, subtraction, and multiplication
 - Install and use RStudio (no RStudio specific questions)
- ** Write small programs/commands in R that may use variables, conditions, logicals, loops, and functions
- ** Read in data sets from files (eg. using read.csv or read.table)
- ** Use head and tail
- ** Create and use data structures: vectors, matrices, lists
- ** Indexing vectors/matrices/arrays/lists, remember that indexing starts from 1 in R!
- ** Use data frames/factors for data analysis
- * Create graphs/visualizations: frequency table, bar chart, histogram, boxplot, using ggplot2 or base (eg. alter code, map code to figure, expected output)
- ** List the assumptions of a t-test
- ** Compute and read output of linear models using R

- Using SQLish functions (eg. subset) may be helpful when writing code, but you won't be tested on the explicitly
- * Handling missing data
- repeat, next, break
- apply() functions
- k-means
- *** Perform hypothesis testing and read output
 - *** Stating the null/alternative hypothesis
 - * identifying test statistic
 - *** Decision and conclusion based on p-values
 - *** Choosing the most appropriate test (one-sample, independent two-group, paired two-group)
 - Explain the purpose of confidence intervals
 - *** linear regression
 - *** State the fitted regression line
 - * residuals
 - * State the R-squared values
 - *** Predict y for a given x

GIS

- * Provide examples where a GIS is used .
- Use Python to connect to Google Maps API

Command Line

- ** Define command line and list some of its uses
 :
- ** Be able to connect to another machine using SSH

Visualization

- * List different types of visualizations available in Excel, Python, R $\overline{\rm GIS}$
- ** Create basic plots using Excel, Python, and R