Kurs:Mathematik für Anwender/Teil I/55/Klausur mit Lösungen

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3311453222 0 3 5 0 4 5 4 1 3 51

Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Eine surjektive Abbildung

$$f:L\longrightarrow M.$$

- 2. Die bestimmte Divergenz einer reellen Folge $(x_n)_{n\in\mathbb{N}}$ gegen $+\infty$.
- 3. Der Tangens.
- 4. Die *Taylor-Reihe* im Punkt a zu einer unendlich oft differenzierbaren Funktion f.
- 5. Die *Riemann-Integrierbarkeit* einer Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
.

6. Die Matrizenmultiplikation.

Lösung

- 1. Die Abbildung f heißt surjektiv, wenn es für jedes $y \in M$ mindestens ein Element $x \in L$ mit f(x) = y gibt.
- 2. Die Folge $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R} heißt *bestimmt divergent* gegen $+\infty$, wenn es zu jedem $s\in\mathbb{R}$ ein $N\in\mathbb{N}$ mit

$$x_n \geq s$$
 für alle $n \geq N$

gibt.

3. Die Funktion

$$\mathbb{R}\setminus\left(rac{\pi}{2}+\mathbb{Z}\pi
ight)\longrightarrow\mathbb{R},\,x\longmapsto an x=rac{\sin x}{\cos x},$$

heißt Tangens.

4. Die Taylor-Reihe zu $m{f}$ im Entwicklungspunkt $m{a}$ ist

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

- 5. Die Funktion f heißt Riemann-integrierbar, wenn die Einschränkung von f auf jedes kompakte Intervall $[a,b]\subseteq\mathbb{R}$ Riemann-integrierbar ist.
- 6. Es sei K ein Körper und es sei A eine $m \times n$ -Matrix und B eine $n \times p$ -Matrix über K. Dann ist das Matrixprodukt

AB

diejenige $m \times p$ -Matrix, deren Einträge durch

$$c_{ik} = \sum_{j=1}^n a_{ij} b_{jk}$$

gegeben sind.

Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Das *Quotientenkriterium* für eine reelle Reihe $\sum_{k=0}^{\infty} a_k$.
- 2. Die Beziehung zwischen differenzierbar und stetig.
- 3. Der Satz über die Anzahl von Basiselementen.

Lösung

1. Es gebe eine reelle Zahl q mit $0 \leq q < 1$ und ein k_0 mit

$$|rac{a_{k+1}}{a_k}| \leq q$$

für alle $k \geq k_0$. Dann konvergiert die Reihe $\sum_{k=0}^\infty a_k$ absolut.

2. Sei $D\subseteq\mathbb{R}$ eine Teilmenge, $a\in D$ ein Punkt und $f\colon D\longrightarrow\mathbb{R}$

eine Funktion, die im Punkt $m{a}$ differenzierbar sei. Dann ist $m{f}$ stetig in $m{a}$.

3. Es sei $m{K}$ ein Körper und $m{V}$ ein $m{K}$ -Vektorraum mit einem endlichen Erzeugendensystem. Dann besitzen je zwei Basen von $m{V}$ die gleiche Anzahl von Basisvektoren.

Aufgabe (1 Punkt)

Finde einen möglichst einfachen aussagenlogischen Ausdruck, der die folgende tabellarisch dargestellte Wahrheitsfunktion ergibt.

pq?

www

wf w

f ww

f f f

Lösung

 $p \vee q$.

Aufgabe (1 Punkt)

Berechne

 $(-1)^{73420504063658}$.

Lösung

Das Ergebnis ist 1, da der Exponent gerade ist.

Aufgabe (4 (2+2) Punkte)

Wir betrachten das kommutative Diagramm

$$egin{array}{cccc} A & \stackrel{arphi}{\longrightarrow} & B \ \downarrow & & \downarrow h \ L & \stackrel{\psi}{\longrightarrow} & M \end{array}$$

von Mengen und Abbildungen, d.h. es gilt

$$h\circ \varphi = \psi \circ g$$
.

Es seien g und h bijektiv.

- 1. Zeige, dass $oldsymbol{arphi}$ genau dann injektiv ist, wenn $oldsymbol{\psi}$ injektiv ist.
- 2. Zeige, dass $oldsymbol{arphi}$ genau dann surjektiv ist, wenn $oldsymbol{\psi}$ surjektiv ist.

Lösung

1. Sei $m{arphi}$ injektiv, es ist zu zeigen, dass auch $m{\psi}$ injektiv ist. Aufgrund der Kommutativität des Diagramms und der Bijektivität von $m{g}$ ist

$$\psi = h \circ \varphi \circ g^{-1}$$
.

Somit ist ψ als Verknüpfung von drei injektiven Abbildungen wieder injektiv. Wenn man im Diagramm g und h durch ihre Umkehrabbildungen ersetzt, so sieht man, dass auch die andere Implikation gilt.

2. Sei $m{arphi}$ surjektiv, es ist zu zeigen, dass auch $m{\psi}$ surjektiv ist. Aufgrund der Kommutativität des Diagramms und der Bijektivität von $m{g}$ ist

$$\psi = h \circ \varphi \circ g^{-1}$$
 .

Somit ist ψ als Verknüpfung von drei surjektiven Abbildungen wieder surjektiv. Wenn man im Diagramm g und h durch ihre Umkehrabbildungen ersetzt, so sieht man, dass auch die andere Implikation gilt.

Aufgabe (5 Punkte)

Zeige, dass für $n \geq 3$ die Abschätzung

$$n^{n+1} \geq (n+1)^n$$

gilt.

Lösung

Es ist

$$n^{n+1} = n \cdot n^n$$

und

$$(n+1)^n = \sum_{k=0}^n inom{n}{k} n^{n-k} = n^n + n \cdot n^{n-1} + inom{n}{2} n^{n-2} + \dots + inom{n}{n-1} n^1 + 1 \, .$$

Hier stehen n+1 Summanden, wobei der allerletzte gleich 1 ist. Wir vergleichen die Summanden mit n^n . Die ersten beiden Summanden sind gleich n^n , für $k \geq 2$ ist

$$inom{n}{k} n^{n-k} = rac{n(n-1)\cdots(n-k+1)}{k!} < n^n \ .$$

Bei

$$n \geq 3$$

sind somit insbesondere die letzten beiden Summanden zusammengenommen kleinergleich n^n und die Summe rechts ist somit $\leq n \cdot n^n$.

Aufgabe (3 Punkte)

Man bestimme sämtliche komplexen Nullstellen des Polynoms

$$X^3 - 1$$

und man gebe die Primfaktorzerlegung von diesem Polynom in $\mathbb{R}[X]$ und in $\mathbb{C}[X]$ an.

Lösung

Zunächst ist ${f 1}$ eine Nullstelle und daher ist ${f X}-{f 1}$ ein Linearfaktor. Division mit Rest ergibt

$$(X^3-1)=(X-1)(X^2+X+1)$$
.

Wir müssen also noch die komplexen Nullstellen von $oldsymbol{X^2+X+1}$ bestimmen. Dazu ist

$$X^2 + X + 1 = \left(X + rac{1}{2}
ight)^2 - rac{1}{4} + 1 = \left(X + rac{1}{2}
ight)^2 + rac{3}{4} \,.$$

Damit ist

$$X+rac{1}{2}=\pm\mathrm{i}\sqrt{rac{3}{4}}$$

und somit sind die weiteren Nullstellen

$$x_2 = -rac{1}{2} + \mathrm{i}rac{\sqrt{3}}{2} \ \ \mathrm{und} \ \ x_3 = -rac{1}{2} - \mathrm{i}rac{\sqrt{3}}{2}.$$

Aufgabe (2 Punkte)

Bestimme den minimalen Wert der reellen Funktion

$$f(x) = x^2 - 3x + \frac{4}{3}$$
.

Lösung

Es ist

$$f(x) = x^2 - 3x + \frac{4}{3}$$

$$= \left(x - \frac{3}{2}\right)^2 - \frac{9}{4} + \frac{4}{3}$$

$$= \left(x - \frac{3}{2}\right)^2 + \frac{-27 + 16}{12}$$

$$= \left(x - \frac{3}{2}\right)^2 - \frac{11}{12}.$$

Da der quadratische Term links stets ≥ 0 ist, ist $-\frac{11}{12}$ der minimale Wert der Funktion.

Aufgabe (2 Punkte)

Es sei $x \in \mathbb{R}_{\geq 0}$ eine nichtnegative reelle Zahl. Für jedes $\epsilon \in \mathbb{R}, \ \epsilon > 0$, gelte $x \leq \epsilon$. Zeige x = 0.

Lösung

Wir nehmen $x \neq 0$ an. Dann ist x > 0. Dann ist auch $\frac{x}{2} > 0$ und die Voraussetzung,

angewandt auf $\epsilon=\frac{x}{2}$, ergibt $x\leq\frac{x}{2}$, woraus sich durch beidseitige Subtraktion von $\frac{x}{2}$ der Widerspruch $\frac{x}{2}\leq0$ ergibt.

Aufgabe (2 Punkte)

Drücke

$$\sqrt[3]{4}\cdot\sqrt[5]{7}$$

mit einer einzigen Wurzel aus.

Lösung

Es ist

$$\sqrt[3]{4} \cdot \sqrt[5]{7} = 4^{\frac{1}{3}} \cdot 7^{\frac{1}{5}}$$

$$= (4^{5})^{\frac{1}{15}} \cdot (7^{3})^{\frac{1}{15}}$$

$$= 1024^{\frac{1}{15}} \cdot 343^{\frac{1}{15}}$$

$$= 351232^{\frac{1}{15}}$$

$$= \sqrt[15]{351232}.$$

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (3 Punkte)

Es sei ein Kreis mit Mittelpunkt (0,0) und Radius r und ein s>r gegeben. Für welches $x\in\mathbb{R}$ verläuft die Tangente zu x an den oberen Kreisbogen durch den Punkt (s,0)?

Lösung

Der obere Kreisbogen wird (für $x \in [-r, r]$) durch die Funktion

$$f(x) = \sqrt{r^2 - x^2}$$

beschrieben. Die Ableitung davon ist

$$f'(x)=-xrac{1}{\sqrt{r^2-x^2}}\,.$$

Die Steigung der Geraden durch (x,f(x)) und (s,0) wird durch

$$rac{\sqrt{r^2-x^2}}{x-s}$$

beschrieben. Dies führt auf die Bedingung

$$-xrac{1}{\sqrt{r^2-x^2}}=rac{\sqrt{r^2-x^2}}{x-s}$$

bzw. auf

$$-x(x-s)=r^2-x^2.$$

Daher ist

$$x=rac{r^2}{s}$$
 .

Aufgabe (5 Punkte)

Beweise die Quotientenregel für differenzierbare Funktionen.

Lösung

Wir betrachten zuerst den Fall f=1 und behaupten

$$\left(rac{1}{g}
ight)' = -rac{g'}{g^2} \, .$$

Für einen Punkt a ist

$$rac{rac{1}{g(x)}-rac{1}{g(a)}}{x-a}=rac{-1}{g(a)g(x)}\cdotrac{g(x)-g(a)}{x-a}\,.$$

Da g nach Korollar 14.6 (Mathematik für Anwender (Osnabrück 2019-2020)) stetig in a ist, konvergiert für $x \to a$ der linke Faktor gegen $-\frac{1}{g(a)^2}$ und wegen der Differenzierbarkeit

von g in a konvergiert der rechte Faktor gegen g'(a). Somit ist mit der Produktregel

$$\begin{split} \left(\frac{f}{g}\right)' &= \left(f \cdot \frac{1}{g}\right)' \\ &= f \left(\frac{1}{g}\right)' + f' \frac{1}{g} \\ &= f \left(-\frac{g'}{g^2}\right) + \frac{f'g}{g^2} \\ &= -\frac{f'g - fg}{g^2}. \end{split}$$

Aufgabe (0 Punkte)

Lösung /Aufgabe/Lösung

Aufgabe (4 Punkte)

Löse das inhomogene Gleichungssystem

Lösung

Wir eliminieren zuerst die Variable x, indem wir die zweite Gleichung von der ersten Gleichung subtrahieren. Dies führt auf

$$\begin{array}{rclcrcr}
 +6y & -3z & -2w & = & -1 \\
 +2y & -3z & +2w & = & 3 \\
 -y & -5z & +4w & = & -2
 \end{array}$$

Nun eliminieren wir die Variable $m{w}$, indem wir (bezogen auf das vorhergehende System) $m{II} + m{I}$ und $m{III} - m{2II}$ ausrechnen. Dies führt auf

$$\begin{array}{rcl}
 +8y & -6z & = & 2 \\
 -5y & +z & = & -10.
 \end{array}$$

Mit I+6II ergibt sich

$$-22y = 58$$

und

$$y=rac{29}{11}$$
 .

Rückwärts gelesen ergibt sich

$$z=rac{35}{11}\,, \ w=rac{40}{11}\,$$

und

$$x=-\frac{48}{11}.$$

Aufgabe (5 (1+1+1+1+1) Punkte)

Es sei $\mathfrak{v}=v_1,\ldots,v_n$ eine Basis eines K-Vektorraumes V. Es seien $a_1,\ldots,a_n\in K$ von 0 verschiedene Elemente.

- a) Zeige, dass ${f w}=a_1v_1,a_2v_2,a_3v_3,\ldots,a_nw_n$ ebenfalls eine Basis von V ist.
- b) Bestimme die Übergangsmatrix $M_{\mathfrak{v}}^{\mathfrak{w}}$.
- c) Bestimme die Übergangsmatrix $oldsymbol{M_{\mathfrak{w}}^{\mathfrak{v}}}$
- d) Berechne die Koordinaten bezüglich der Basis ${f v}$ für denjenigen Vektor, der bezüglich der

Basis
$$\mathfrak{w}$$
 die Koordinaten $\begin{pmatrix} 1 \\ 2 \\ 3 \\ \vdots \\ n \end{pmatrix}$ besitzt.

e) Berechne die Koordinaten bezüglich der Basis to für denjenigen Vektor, der bezüglich der

Basis
$$\mathfrak v$$
 die Koordinaten $\begin{pmatrix} 1 \\ 2 \\ 2^2 \\ \vdots \\ 2^n \end{pmatrix}$ besitzt.

Lösung

a) Es ist

$$v_i = a_i^{-1} w_i$$

für alle $i=1,\ldots,n$. Daher ist w_1,\ldots,w_n ebenfalls ein Erzeugendensystem von V und somit eine Basis, da die Dimension n ist und n Vektoren vorliegen.

b) In den Spalten von $M^{ exttt{tv}}_{ exttt{v}}$ müssen die Koordinaten der Vektoren w_j bezüglich der Basis v_i stehen, also ist

$$M_{\mathfrak v}^{\mathfrak w} = \left(egin{array}{ccc} a_1 & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & a_n \end{array}
ight).$$

c) Es ist

$$M^{\mathfrak v}_{\mathfrak w} = egin{pmatrix} a_1^{-1} & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & a_n^{-1} \end{pmatrix}.$$

d) Die Koordinaten ergeben sich aus

$$M_{\mathfrak{v}}^{\mathfrak{w}}egin{pmatrix}1\2\ dots\n\end{pmatrix}=egin{pmatrix}a_1&0&0\0&\ddots&0\0&0&a_n\end{pmatrix}egin{pmatrix}1\2\ dots\n\end{pmatrix}=egin{pmatrix}a_1\2a_2\ dots\na_n\end{pmatrix}.$$

e) Die Koordinaten ergeben sich aus

$$M^{\mathfrak{v}}_{\mathfrak{w}} \left(egin{array}{c} 1 \ 2 \ dots \ 2^n \end{array}
ight) = \left(egin{array}{ccc} a_1^{-1} & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & a_n^{-1} \end{array}
ight) \left(egin{array}{c} 1 \ 2 \ dots \ 2^n \end{array}
ight) = \left(egin{array}{c} a^{-1} \ 2a^{-1} \ dots \ 2^n a_n^{-1} \end{array}
ight).$$

Aufgabe (4 Punkte)

Beweise das Injektivitätskriterium für eine lineare Abbildung.

Lösung

Wenn die Abbildung injektiv ist, so kann es neben $0\in V$ keinen weiteren Vektor $v\in V$ mit $\varphi(v)=0$ geben. Also ist $\varphi^{-1}(0)=\{0\}$.

Sei umgekehrt $\ker \varphi=0$ und seien $v_1,v_2\in V$ gegeben mit $arphi(v_1)=arphi(v_2)$. Dann ist wegen der Linearität

$$arphi(v_1-v_2)=arphi(v_1)-arphi(v_2)=0$$
 .

Daher ist $v_1-v_2\in\ker arphi$ und damit $v_1=v_2.$

Aufgabe (1 Punkt)

Bestimme die Determinante zur Matrix

$$\begin{pmatrix} 0 & 7 & 4 & 11 & 8 \\ 0 & 0 & 3 & 7 & 6 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Lösung

Die Determinante ist $\mathbf{0}$, da eine obere Dreiecksmatrix vorliegt, deren Hauptdiagonalelemente $\mathbf{0}$ sind.

Aufgabe (3 Punkte)

Bestimme, ob die reelle Matrix

$$egin{pmatrix} -4 & -1 & -2 & 3 \ 6 & 7 & 7 & 1 \ 0 & 0 & 3 & -2 \ 0 & 0 & 6 & 2 \end{pmatrix}$$

trigonalisierbar ist oder nicht.

Lösung

Das charakteristische Polynom der Matrix ist

$$\det XE_4 - egin{pmatrix} -4 & -1 & -2 & 3 \ 6 & 7 & 7 & 1 \ 0 & 0 & 3 & -2 \ 0 & 0 & 6 & 2 \end{pmatrix} = \det egin{pmatrix} X+4 & 1 & 2 & -3 \ -6 & X-7 & -7 & -1 \ 0 & 0 & X-3 & 2 \ 0 & 0 & -6 & X-2 \end{pmatrix} \ = \det egin{pmatrix} X+4 & 1 \ 0 & 0 & X-3 & 2 \ -6 & X-7 \end{pmatrix} \cdot \det egin{pmatrix} X-3 & 2 \ -6 & X-2 \end{pmatrix} \ = ((X+4)(X-7)+6)((X-3)(X-2)+12) \ = (X^2-3X-22)(X^2-5X+18). \end{pmatrix}$$

Der rechte Faktor ist

$$X^2-5X+18=\left(X-rac{5}{2}
ight)^2+18-rac{25}{4}>0$$

stets positiv und besitzt daher in \mathbb{R} keine Nullstelle. Also zerfällt das charakteristische Polynom nicht vollständig in Linearfaktoren und nach Satz 28.16 (Mathematik für Anwender (Osnabrück 2019-2020)) ist die Matrix nicht trigonalisierbar.