Udowodnimy, że język

$$L = (\{a^n b^n : n \in \mathbb{Z}^+ \cup \{0\}\})^*$$

nie jest rozpoznowany przez żaden automat ze stosem pracujący w skończenie wielu fazach.

Na początek udowodnimy, że $L \in CFL$. Weźmy gramatykę $\mathcal{G} = (\{a,b\},\{S,T\},P,S)$ z produkcjami:

- $S \longrightarrow SS \mid T \mid \varepsilon$,
- $T \longrightarrow aTb \mid \varepsilon$.

Łatwo widać, że gramatyka $\mathcal G$ opisuje język L, jednak nie będziemy zagłębiać się w szczegóły. Wynika z tego, że $L\in \mathrm{CFL}$.

Przypuśćmy nie wprost, że istnieje automat ze stosem \mathcal{A} o zbiorze stanów Q i zbiorze symboli stosowych Γ , działający w co najwyżej k fazach, rozpoznający język L. Przez resztę rozwiązania zadania będziemy działać na słowie $w = \left(a^X b^X\right)^Y \in L$, gdzie $X = (21 \cdot |Q| \cdot |\Gamma| + 37)^2$, a $Y = 69 \cdot k \cdot X + 420$.

Wprowadźmy następujące definicje:

- dlugością fazy nazwiemy liczbę przejść, które dana faza zawiera, przy czym uwzględniamy tutaj zarówno przejścia po literach czytanego słowa, jak i ε -przejścia;
- zmianą fazy nazwiemy wartość bezwzględną różnicy rozmiaru stosu na początku i na końcu fazy.

Lemat 1

W biegu akceptującym automatu \mathcal{A} po słowie w, w ramach jednej fazy nie może być ciągu |Q| kolejnych przejść niezmieniających stosu. Zakładamy przy tym, że wspomniany bieg nie ma ε -przejść niezmieniających stanu ani stosu, ponieważ gdyby miał, to możnaby je usunąć.

Dowód Lematu 1

Przypuśćmy nie wprost, że w pewnej fazie wystąpiło |Q| kolejnych przejść niezmieniających stosu. Wówczas z Zasady Szufladkowej Dirichleta wynika, że wśród tych przejść pewien stan q wystąpił co najmniej dwa razy, gdyż łącznie automat przeszedł przez |Q|+1 stanów. Zauważmy, że słowo wczytane w tym okresie jest niepuste, ponieważ założyliśmy, że nie ma ε przejść niezmieniających stanu ani stosu. Łatwo widać, że słowo to można napompować, a skoro ma ono długość co najwyżej |Q|, to z pewnością nie jest ono postaci $\left(a^Xb^X\right)^m$, dla pewnego $m\in\mathbb{Z}^+$, zatem na skutek tego pompowania powstanie nowe słowo nienależące do L, po którym będzie istniał bieg akceptujący automatu \mathcal{A} . Otrzymana sprzeczność końćzy dowód lematu.

Lemat 2

Jeśli faza ma długość
$$n$$
, to jej zmiana należy do przedziału $\left\lceil \left| \frac{n}{|Q|} \right|, n \right\rceil$.

Lemat ten jest bezpośrednim wnioskiem z lematu 1.

Zauważmy, że w biegu akceptującym automatu \mathcal{A} po słowie w musi istnieć faza push długości co najmniej 3X, co wynika z doboru stałej Y, ponieważ w przeciwnym wypadku z lematu 2 musiałby być wykonany pop na pustym stosie. W trakcie tej fazy wczytany więc zostanie

pełny blok b^X . Z doboru stałej X oraz Zasady Szufladkowej Dirichleta wynika, że w trakcie przechodzenia tej fazy przez blok $b^X |Q| + 1$ razy wystąpi moment, że aktualny stan to pewne q, a aktualny symbol na szczycie stosu to pewne s. Ponownie, wczytane słowo pomiędzy każdymi dwoma momentami jest niepuste, a dodatkowo ma długość co najwyżej $|Q| \cdot |\Gamma|$ i składa się z samych liter b. Stos natomiast pomiędzy momentami i-tym a i+1-szym powiększy się o pewne słowo v_i długości również co najwyżej $|Q| \cdot |\Gamma|$, którego ostatnia litera to oczywiście s.

Rozważmy dwa przypadki:

1. Symbol s do końca biegu automatu pozostaje na stosie.

Łatwo wówczas zauważyć, że możemy podwoić słowo złożone przeczytane pomiędzy pierwszym a drugim momentem, uzyskując w ten sposób nowe słowo $w' \notin L$, bo podwojony fragment składa się z samych liter b. Słowo to zostanie zwyczajnie zaakceptowane przez automat \mathcal{A} , gdyż podwojony fragment dopisuje tylko słowo v_1 do stosu, a skoro litera bezpośrednio pod tym słowem nie zostanie zdjęta, to z perspektywy automatu nie będzie różnicy, czyli sprzeczność, ponieważ automat \mathcal{A} zaakceptuje słowo nienależące do L.

2. W przeciwnym wypadku, każde ze słów $v_1, v_2, \ldots, v_{|Q|}$ zostanie kiedyś ze stosu zdjęte. Innymi słowy, istnieje spójny fragment ciągu przejść odpowiadający za zdjecie ze stosu słowa $v_1v_2\ldots v_{|Q|}$. Bardziej formalnie, na początku tego ciągu stos jest postaci $pref\cdot v_1v_2\ldots v_{|Q|}$, a na koniec po prostu pref. W trakcie natomiast na stosie mogą być wykonywane zarówno operacje push, jak i pop. Fragment ten można podzielić na |Q| mniejszych fragmentów w taki sposób, że w i-tym ze stosu zostaje zdjęte słowo v_i ("zdjęte" jako efekt końcowy – w trakcie mogą dziać się różne rzeczy).

Każdy z tych fragmentów kończy w jakimś stanie, z którego następnie rozpoczyna się kolejny fragment. Z Zasady Szufladkowej Dirichleta wynika, że pewne dwa z tych stanów będą takie same. Możemy podwoić konkatenację liter odpowiadających fragmentom pomiędzy nimi, jednocześnie podwajając litery przeczytane przez stos z odpowiedniego fragmentu wspomnianej wcześniej fazy push. Oczywiście, jak zostało zaznaczone wcześniej, będą to tylko litery b. W tym przypadku zatem również otrzymamy nowe słowo $w' \notin L$, które automat zaakceptuje, gdyż z jego perspektywy nie będzie różnicy – wykonuje przejścia w oparciu jedynie o aktualny stan, symbol na szczycie stosu i czytaną literę. W tym przypadku jednak nieco trudniejsze jest zauważenie, że $w' \notin L$. Wynika to z tego, że podwojona lewa część składa się z samych liter b, zatem liczba tych liter w nowym bloku b z pewnością będzie różna od liczby liter a w bloku poprzednim.

Z powyższego wynika, że automaty ze stosem pracujące w skończenie wielu fazach nie rozpoznają wszystkich języków bezkontekstowych (w szczególności L), co kończy rozwiązanie zadania.