

深度學習理論與實作 CH2 神經網路的數學概念

陳俊豪 教授

Outline

2-1 初探神經網路:第一隻神經網路

2-2 神經網路的資料表示法:張量Tensor

2-3 神經網路的工具: 張量運算

2-4 神經網路的引擎: 以梯度為基礎的最佳化

2-5 重新檢視我們的第一個例子

2-1 前言

- ✓ 使用神經網路辨識手寫數字
- ✓ 如何判斷學習成果?

類別 (class)

數字0~9,一共10類

樣本 (samples)

輸入的資料 input data

標籤 (label)

人工標註標籤(答案)

如果機器分類的結果與標籤的一致性很高,代表學習成功;反之則視為學習失敗

✓ MNIST

- 美國國家標準技術學院(National Institute of Standards and Technology) 建立的**手寫數字的圖像資料集**
- 資料集包含 60,000 張訓練圖片和 10,000 張測試圖片
- 每個圖片大小是 28 * 28 像素

from keras.datasets import mnist #從 keras 的 datasets 匯入 mnist 資料集 (train_images, train_labels), (test_images, test_labels) = mnist.load_data()

#用 mnist.load_data() 取得 mnist 資料集, 並存 (打包) 成 tuple, 此tuple又包含兩個tuple

補充:

此處 train_images、train_labels、test_images、test_labels 都是 Numpy 的 ndarray 物件

train_images.shape

#train_image 為 NumPy 的 ndarray 物件 #train_image 的 shape 屬性為 3 軸, 60000 維 x28 維 x28 維

Out[]: (60000, 28, 28)

補充: shape 是 ndarray 物件的一個屬性,可以顯示該 ndarray 的維度結構

len(train_labels)

#標籤也有 60,000 個

Out[]: 60000

train_labels

#標籤是 0-9 之間的數字, 資料型別為 uint8

Out[]: array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)

✓ 了解測試資料

test_images.shape

#shape 為 3 軸, 10000 維 x28 維 x28 維

Out[]: (10000, 28, 28)

len(test_labels)

#標籤也有 10,000 個

Out[]: 10000

test labels

#標籤是 0-9 之間的數字, 資料型別為 uint8

Out[]: array([7, 2, 1, ..., 4, 5, 6], dtype=uint8)

2-1-2 建構神經網路模型

- ✓ NN的基本元件是層 (layer),每層都會執行資料萃取(data distillation)
- ✓ 層 = 資料處理的模組 = 資料過濾器
 - 密集層 = 全連接(fully connected):前後層中的神經元全部彼此連接一起
 - 稀疏層:前後層中的神經元未全部彼此連接一起,甚至未連結

密集層

稀疏層

2-1-2 建構神經網路模型 - 建構模型

✓ 神經網路架構

```
from keras import models #匯入套件 from keras import layers
```

```
network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
```

補充:

- 1. Dense Layer 為密集層也稱為全連接層(fully connected),為兩個密集層
- 2. activation 為激活函數,是一個感知器的開關,決定輸出值的大小與正負
- 3. Softmax函式,或稱「歸一化指數函式」,是邏輯函式的一種推廣。它能將一個含任意實數的K維向量「壓縮」到另一個K維實向量中,使得每一個元素的範圍都在之間,並且所有元素的和為 $\mathbf{1}$

2-1-2 建構神經網路模型 – 建構模型

✓編譯步驟:建構好一隻神經網路!

```
network.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
```

補充:

optimizer(優化器):神經網路根據其輸入資料及損失函數值而自行更新的機制

Loss function(損失函數): 用以衡量此神經網路在訓練上的表現,以及引導網路朝向正確的方向修正

Metrics(評量準測):此範例關注點為數字的辨識度

2-1-2 建構神經網路模型 – 資料集

✓ 準備圖片資料

```
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
#reshape和astype是Numpy陣列的方法
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
```

補充:

在處理前,圖片是以 uint8 型別、數值介於 $[0 \times 255]$ 儲存於 $(60000 \times 28 \times 28)$ 的陣列中,我們將它轉換為 (float32) 型別的 (60000,28*28) 陣列,數值介於 0跟 1 之間 (除以畫素最大值 255 將圖片正規化)

✓ 準備標籤

```
from keras.utils import to_categorical #對標籤進行分類編碼
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
```

2-1-2 建構神經網路模型 – 訓練

network.fit(train_images, train_labels, epochs=5, batch_size=128)

```
Out[]: Epoch 1/5
60000/60000 [=======] - 5s 80us/step - loss: 0.2563 - accuracy: 0.9259
Epoch 2/5
60000/60000 [=======] - 4s 74us/step - loss: 0.1023 - accuracy: 0.9699
Epoch 3/5
60000/60000 [=======] - 4s 74us/step - loss: 0.0674 - accuracy: 0.9798
Epoch 4/5
60000/60000 [========] - 4s 74us/step - loss: 0.0486 - accuracy: 0.9854
Epoch 5/5
60000/60000 [========] - 4s 74us/step - loss: 0.0372 - accuracy: 0.9892
```

補充: loss損失值; accuracy正確率

2-1-2 建構神經網路模型 – 測試

✓ 測試神經網路模型

test_loss, test_acc = network.evaluate(test_images, test_labels) print('test acc:', test acc)

Out[] :test_acc: 0.9785

補充:

測試資料集的正確率97.8%,與訓練集資料的正確率98.9%之間的差距,就是過度配 適(overfitting),意指機器學習模型對新資料的表現比訓練資料集來的差。

2-2 神經網路的資料表示法

✓張量tensor = 多維的Numpy陣列,是一個資料容器,專儲存數值資料

✓每一階所含的元素個數,為該階的維度(dimention)

2-2-1 純量(0D 張量)

- ✓ 純量(scalar):只包含一個數值的張量,稱「純量張量」、「O階張量」、「O軸張量」、「OD張量」
- ✓在張量中,階=軸,如:純量張量會顯示0個軸 (ndim值為0)

```
import numpy as np
x = np.array(12) #用 12 這個數值去建一個張量
x #看看張量的內容

Out[]: array(12) #原來 Numpy 的 array 就是 tensor

x.ndim #看看 ndim 屬性 (就是階數)
```

Out[]: 0 #ndim 為 0, 是 0 階張量 (純量)

2-2-2 向量 (1D 張量)

✓ 向量(vector)是由一組數值排列而成的陣列,為1D張量,只有一軸

x = np.array([12, 3, 6, 14, 7])#用 array() 建一個 5 維的 1 D 張量x#看看張量的內容

Out[]: array([12, 3, 6, 14, 7]) #是一個含有 4 個元素 (4 維) 的 1D 張量

x.ndim #看看 ndim 屬性 (就是階數)

Out[]: 1 #ndim 為 1, 是 1 階張量 (向量)

- ✓ 若一個向量有5個元素,稱為5維向量
- ✓5D向量只有一個軸,軸上有5個維度
- ✓5D張量有5個軸,不要將5D向量與5D張量搞混了!
- ✔每個軸有多少維度,是由array()來建立與決定的

2-2-3 矩陣 (2D 張量)

- ✓ 由一組項量組成的陣列就是一個矩陣(matrix),又稱「2D張量」
- ✓矩陣上有2個軸,通常稱為列(rows)和行(columns)

```
x = np.array([[5, 78, 2, 34, 0], #用 array() 建一個 3x5 (維) 的 2D 張量,我們可以想成這是由3個5維 [6, 79, 3, 35, 1], 向量組成的 [7, 80, 4, 36, 2]])
x.ndim #看看 ndim 屬性 (就是階數)
```

Out[]: 2 #ndim為2,是2階張量

2-2-4 3D 張量、高階張量

✓ 如果將多個矩陣包在一個新陣列中,將得到一個3D張量,可視其為一個數字立方體

```
      x = np.array([[[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]], [[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]], [[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]], [[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]]])

      x.ndim #看看 ndim 屬性 (就是階數)
```

Out[]: 3

#ndim 為 3, 是 3 階張量

2-2-5 張量的關鍵屬性

✔ 張量是由三個關鍵屬性所決定

軸的數量(階數)

形狀(shape)

(3x3x3)

Python表達方法(3,3,3)

資料型別(dtype)

常見類型:(可固定長度)

• Float32 浮點數

• Uint8 無號整數

• Float64 浮點數

字串長度可能不一樣,故 不適合用張量存放

2-2-5 張量的關鍵屬性

✓以MNIST資料集具體說明關鍵屬性

```
from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

print(train_images.ndim)
```

Out[]: 3 #訓練集的ndim 為 3, 有 3 個軸

print(train_images.shape)

Out[]: (60000, 28, 28) #shape 為 60000x28x28 維的 3D 張量 (有 3 個元素)

print(train_images.dtype)

Out[]: uint8 #元素的資料型別為 0~255 的整數

2-2-6 在 Numpy 做張量切片

Out[]: (90, 28, 28)

✓ 張量切片tensor slicing:在張量中,選擇特定的元件的動作

```
my_slice = train_images[10:100]
                                      #選擇第 10 到第 100 個數字的圖像 (不包含第 100 個) ·
print(my slice.shape)
                                      將它們放入形狀為 (90,28,28)的張量中
Out[]: (90, 28, 28)
my_slice = train_images[ 10 : 100 , : ,:]
                                                #等同於上面的寫法
my_slice.shape
Out[]: (90, 28, 28)
my_slice = train_images[10:100,0:28,0:28] #同樣等同於上的寫法
my_slice.shape
```

2-2-6 在 Numpy 做張量切片

✔ 可以在每個張量軸上的任意兩個索引之間進行切片

2-2-7 資料批次 (batch) 的概念

✓ 深度學習模型不會一次學習整個資料集,而是將資料分批執行(batch)

batch = train_images [:128] #把 train_images 切片為 128 個圖像為一批 batch

batch = train_images [128 : 256]

batch = train_images [128 * n:128 * (n + 1)] # 可以修改程式的 n 值, 找到你想測試的批次量

✓ 把整個資料集切成批次的時候,這些批次張量的第0軸(樣本數軸),稱為「批次軸」或「批次維度」

2-2-8 資料張量實例

Dimension(Axis)	0	1	2	3	4
Name	Shape	Vector	Matrix	3D tensor	4D tensor
Another name	0D tensor	1D tensor	2D tensor	3D tensor	4D tensor
Example	12	[12,3,6,14]	([[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]])	[[[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]], [[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]], [[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]]]	
Shape	() `empty	(4,)	(3,5) (sample, feature)	(3,3,5) (sample, timesteps, feature)	(5,3,3,4) (sample, channels, height, with) (sample, height, with, channels)
note			向量資料	時間序列資料或序列資料	影像

資料實例

人口精算 股票價格 純文字文件 推特推文

2-2-8 資料張量實例 -0、1階(軸)張量

● 所有張量的第 0 軸都是 samples ,也就是每批資料的樣本軸,樣本軸的元素個數就是該批資料的樣本總數

0階張量例子:

公司代號

1階張量例子:

公司代號 公司	司簡稱	發言日期	發言時間	主旨
---------	-----	------	------	----

2-2-8 資料張量實例 -2階(軸)張量

● 人口精算資料集: 紀錄每個人的年齡、郵遞區號、收入每個人可以組成 3 維 (年齡、郵區、收入) 的向量整個資料集共 100000 人

姓名	年齡	郵遞區號	收入
王大明	21	100	3500
陳小華	19	100	6000

shape (10000, 3) ---- 2D

純文字文件資料集: 紀錄每個英文單字出現次數, 假設有 20000 個單字的辭典, 文件裡每個字都可以對應到 20000個單字之一, 用一個 20000維的向量來代表辭典, 然後每個維度記錄著對應單字出現次數, 如何可以將 500 篇文件資料集完整儲存

單字	辭典	出現文章	例句
Apple	牛津詞典	《How to make an apple pie?》	XXX.
Banana	劍橋辭典	《Bananas from Taiwan》	XXXXXXX.

shape (500, 20000) ---- 2D

2-2-8 資料張量實例 -3階(軸)張量

- ✓ 3階(軸)張量=時間序列資料或序列資料
 - 股票價格資料集:
 - ▶ 每分鐘儲存股票的當前價格、
 - ▶ 過去一分鐘的最高價格和最低價格 (共三種價格)
 - 1) 每一分鐘都被編碼為一個三維向量
 - 2) 每一個交易日被編碼為 2D (390,3) #(美股 6.5小時 = 390 分鐘)
 - 3) 250天的資料可以被編碼為 3D (250,390,3)
 - 推特推文資料集:
 - ➤ 每條推文由 128 個 ASCII 字元組成的 280 個序列字元
 - ▶ 每個字元可以被編碼為一個 128 維向量,其中除了與該字元對應的索引位置 為 1 , 其餘都是 0
 - ▶ 每條推文可以被編碼為 2D (280,128)
 - ▶ 100 萬條推文則可以被編碼為 3D (1000000, 280,128)

時間軸

2-3 神經網路的工具: 張量運算

- ✓深度神經網路的所有運算都可以化為張量運算(tensor operations)
 - 層(函數): keras.layers.Dense(512, activation = 'relu')

output = relu(dot(W, input) + b)

說明:

- output:輸出值(2D張量)
- W:2D張量
- input: 輸入值(2D張量)
- b:偏執向量

2-3-1 元素間的運算

import numpy as np
def naive_relu(x):

```
assert len(x.shape) == 2 #若x不是2D張量,將會發生AssertionError
```

```
x = x.copy() #避免覆寫到輸入張量
for i in range(x.shape[0]):
    for j in range(x.shape[i]):
        x[i,j] = max(x[i,j], 0) #若元素小於0則為0,大於0則維持原數值
        print(x)
return x
```

```
x = np.array([[-1,-2],[3,-4]])
naive_relu(x) #呼叫方法
```

#example

2-3-1 元素間的運算

import numpy as np

def naive_add(x, y):

```
assert len(x.shape) == 2 #若x不是2D張量,將會發生AssertionError assert x.shape == y.shape #x跟y的張量需相同

x = x.copy() #避免覆寫到輸入張量
for i in range(x.shape[0]):
    for j in range(x.shape[1]):
    x[i,j] += y[i,j]
    print(x)
return x
```

```
1 2

[[7 2] [[7 9]

[3 4]] [3 4]]
3 4

[[7 9] [[7 9]

[11 4]] [11 13]]
```

x = np.array([[1,2],[3,4]]) #example y = np.array([[6,7],[8,9]]) #example naive_add(x, y) #呼叫方法

2-3-1 元素間的運算


```
import numpy as np
                                                           [[7 9]
x = np.array([[1,2],[3,4]]) #example
                                                            [11 13]]
y = np.array([[6,7],[8,9]]) #example
                                                          b
z = np.array([[-1,-2],[3,-4]])
                               #example
                                                            [[ 6 14]
                                                             [24 36]]
a = x + y #元素間的相加運算,x和y的元素相加
                                                          C
b = x * y #元素間的相加運算,x和y的元素相乘
                                                            [[0 0]]
c = np.maximum(z, 0)
                                                             [3 0]]
```

2-3-2 張量擴張(Broadcasting)

- ✓ 在Numpy中,不考慮特例情況下,較小的張量將進行擴張,以匹配較大的張量
 - 較小的張量會加入新的軸(稱為擴張軸),以匹配較大的張量
 - 較小的張量會在這些新的軸上重複寫入元素,以匹配較大的張量的shape

```
x.shape = (32,10)
y.shape = (10,)
```

- 1. 新增一個空的軸到y張量的第0軸 -> shape = (1,10)
- 2. 在這新的軸新增32個維度-> shape = (32,10)

2-3-2 張量擴張(Broadcasting)

import numpy as np

```
def naive_add_matrix_and_vector(x, y):
   assert len(x.shape) == 2 #若x不是2D張量,將會發生AssertionError
  assert len(y.shape) == 1 #若y不是1D張量,將會發生AssertionError
   assert x.shape[1] == y.shape[0]
  x = x.copy()
                #避免覆寫到輸入張量
  for i in range(x.shape[0]):
     for j in range(x.shape[i]):
        x[i,j] += y[j]
        print(x)
  return x
```

x = np.array([[1,2],[3,4]]) #example y = np.array([6,7]) #example naive add matrix and vector(x, y) #呼叫方法

2-3-3 張量點積(dot)運算

- ✓ 點積 (dot)運算,也稱為張量積(tensor product)
 - ※不要與元素間的相乘搞混

```
import numpy as np
```

```
z = a * b #相乘(a x b)
z = np.dot(a, b) #點積(a · b)
```

2-3-3 張量點積(dot)運算

import numpy as np

```
def naive_vector_dot(x, y):
    assert len(x.shape) == 1 #若x不是1D張量,將會發生AssertionError
    assert len(y.shape) == 1 #若y不是1D張量,將會發生AssertionError
    assert x.shape[0] == y.shape[0]

z=0 #給預設值
    for i in range(x.shape[0]):
        z += x[i] * y[i] # x[0] * y[0] + x[1] * y[1] ...
        print(z)
    return z
```

```
5223
```

x = np.array([1,2])#exampley = np.array([5,9])#examplenaive_vector_dot(x, y)#呼叫方法

兩個向量間的點積 = 純量

2-3-3 張量點積(dot)運算

import numpy as np

```
def naive_matrix_vector_dot(x, y):
   assert len(x.shape) == 2 #x是numpy矩陣
   assert len(y.shape) == 1 #x是numpy矩陣向量
   assert x.shape[1] == y.shape[0] #x的第1維必須與y的第0維相等
  z = np.zeros(x.shape[0]) #給預設值
   for i in range(x.shape[0]):
     for j in range(x.shape[1]):
        z[i] += x[i,j] * y[j]
         print(z)
   return z
x = np.array([[1,2],
                           #example
            [3,4]])
                           #example
y = np.array([5,9])
naive_matrix_vector_dot(x, y) #呼叫方法
```

```
1 [5. 0.] [23. 0.]

3 4 [23. 51.]
15.]
```

矩陣和向量間的點積 = 向量

2-3-3 張量點積(dot)運算

```
import numpy as np
def naive_matrix_dot(x, y):
  assert len(x.shape) = 2
                             #x是numpy矩陣
  assert len(y.shape) == 2
                             #x是numpy矩陣向量
  assert x.shape[1] == y.shape[0]
                                       #x的第1維必須與y的第0維相等
  z = np.zeros((x.shape[0], y.shape[1])) #給預設值
  for i in range(x.shape[0]):
     for j in range(y.shape[1]):
                     #取第1維中的第i個,第2維中的全部
        row_x = x[i, :]
        column_y = y[:, j] #取第1維中的全部,第2維中的第j個
        z[i,i] = naive_vector_dot(row_x, column_y) #呼叫naive_vector_dot
        print(z) -
  return z
x = np.array([[1,2,3],
            [4,5,6]])
y = np.array([[1,2],
            [3,4],
          [5,6]])
naive_matrix_dot(x, y)
```


2-3-3 張量點積(dot)運算

2-3-4 張量重塑 (reshaping)

✓張量重塑(reshaping):調整張量各軸的元素數,調整後的張量元素總數不變

2-3-4 張量重塑 (reshaping)

- ✓矩陣轉置(transposition)時會用到reshaping
 - 矩陣的行轉列(x[i,:] → x[:, i])

2-3-5 張量運算的幾何解釋

✔ 所有的張量運算都可以透過幾何方式來解釋

2-3-6 深度學習的幾何解釋

✓運用深度學習將紙團分類

輸入層

隱藏層

輸出層

2-4 以梯度為基礎最佳化

2-4 以梯度為基礎最佳化

✓ 神經層轉換輸入資料

output = relu(dot(W , input) +b)

補充: W, b 是屬性張量,可稱該層權重或可訓練參數,透過批次調整權重可減少損失值

問題:需計算正反兩向

方法:NN運算具可微分的特性,計算損失值梯度

後,可從梯度的相反方向來更動係數,減少損失值

權重係數初始值:0.3

2-4-1 何謂導函數 (微分derivative)

✔ 平滑連續函數

```
f(x) = y

#在x加入很小的數值epsilon_x後,導致y改變的值epsilon_y

f(x + epsilon_x) = y + epsilon_y

#epsilon_y = a * epsilon_x

f(x + epsilon_x) = y + a * epsilon_x

f(x + epsilon_x) - y = a * epsilon_x

#因為夠小,epsilon_x,epsilon_y 兩者成線性關係

f(x + epsilon_x) - f(x) = a * epsilon_x
```


補充:

- 斜率a稱f在x點上的導函數,表示方式: $f'(x) = \frac{dy}{dx}$
- a是正數,則x稍微增大會導致f(x)變大;a是負數,則x稍微增大會導致f(x)變小 ex: 要使f(x)變小 \rightarrow 往斜率反方向移動;斜率為正就 $(-epsilon_x)$,斜率為負就 $(+epsilon_x)$

2-4-2 梯度 (張量運算的導數)

- ✓ 函數 f(x)在x點的斜率就是函數的導函數f'(x)
- ✓ 函數 f(W)在W點的梯度就是函數的張量導函數f'(W)

```
y_pred = dot( W , x)
loss_value = loss( y_pred , y) = loss( dot( W , x ), y)
```

loss_value=f(W) #將x, y固定不變

W1=W0-step*gradient(f)(W0)

補充:

- ✓ gradient f(W0) 可解釋為 f(W)在W0這張量點附近的曲率張量
- ✓ 要降低f(W)的值→往梯度反方向移動

2-4-3 隨機梯度下降 (SGD)

- ✓ 隨機梯度下降法(Stochastic gradient descent, SGD)

2-4-3 隨機梯度下降 (SGD)

- ✓ 小批次隨機梯度下降 (mini-batch stochastic gradient descent, SGD)
- ✓ 學習率(step)太小,曲線下降需多次迭代,且可能陷入局部最小值
- ✓ 學習率(step)過大,參數的更新可能略過真正的最小值

SGD補充:

- 小批次:每次迭代時,只取單一筆樣本和目標,而非一批資料
- 整批:一次把所有可用資料用上,資料更新更準確,但增加執行複雜度

2-4-3 隨機梯度下降(SGD)

-
- ✓ 其他SGD(最佳化方法):動量(momentum)SGD、Adagrad、RMSProp
 - 動量:解決SGD收斂速度、區域最小值的問題

```
past_velocity=0
momentum=0.1 #固定動量因數
while loss > 0.01: #最佳化迴圈
    w, loss, gradient = get_current_parameters()
    velocity = past_velocity * momentum – learning_rate * gradient
    w= w + momentum * velocity – learning_rate * gradient
    past_velocity = velocity
    update_parameter(w)
```

補充:

動量會和**當前的斜率**(加速度)有關,同時還要考量**當前的速度**(受過去加速度影響) 更新參數W須根據**當前的梯度值**外,還須根據<mark>以前的參數</mark>(受過去梯度值影響)來更新參數W

2-4-4 連串的導數: 反向傳播演算法

● 如: 神經網路 f 包含三個張量運算 a, b, c(權重矩陣分別W1,W2,W3)

損失函數 f 表示 f(W1, W2, W3) = a(W1, b(W2, c(W3)))

- ✓ 連鎖法則: f'(g(x)) = f'(g) * g'(x)
- ✓ 反向傳播演算法:從最終損失值開始,由後面層向前面層反向運作,套用連鎖法則對神經網路中所有權重計算損失函數的梯度,這個梯度可用來更新權重值以最小化損失函數
 - TensorFlow:具符號微分運算能力的軟體框架來建構神經網路

2-5 回顧範例 -MNIST 資料集

- ✓ MNIST 是一個手寫數字的圖像資料集,我們將用於圖像辨識的範例之中
- ✓ 資料集包含 60000 個訓練圖片和 10000 個測試圖片
- ✓ 每個圖片大小是 28 * 28 像素

2-5 回顧範例 - 輸入資料集

✓ 輸入資料

```
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
```

說明:

灰階影像值分成0~255階,用0~255整數表示。astype為轉換型別,除以255是將灰階值正規化成0~1間的浮點數

2-5 回顧範例 – 建構模型

✓ 神經網路建構

```
network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
```

補充:

relu: f(x)=max(0, x),全名為線性整流函數 (Rectified Linear Unit),解決深層神經網路梯度消失的問題,正數梯度保持為 1

Softmax:歸一化指數函式,它能將一個含任意實數的K維向量「壓縮」到另一個K維實向量中,使得每一個元素的範圍都在之間,並且所有元素的和為1

2-5 回顧範例 - 損失函數

✓ 神經網路編譯

network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

補充:

- optimizer(優化器):神經網路根據其輸入資料及損失函數值而自行更新的機制
- categorical_crossentropy:是個損失函數,使用損失值作為回饋訊號來調整權重張量,在 訓練過程中嘗試達到損失值最小化
- Metrics(評量準測):此範例關注點為數字的辨識度

2-5 回顧範例 – 訓練循環

✓訓練循環:跑完所有訓練資料一次稱為一個epoch

network.fit(train_images, train_labels, epochs=5, batch_size=128)

```
Out[]: Epoch 1/5
60000/60000 [=======] - 5s 80us/step - loss: 0.2563 - accuracy: 0.9259
Epoch 2/5
60000/60000 [=======] - 4s 74us/step - loss: 0.1023 - accuracy: 0.9699
Epoch 3/5
60000/60000 [=======] - 4s 74us/step - loss: 0.0674 - accuracy: 0.9798
Epoch 4/5
60000/60000 [========] - 4s 74us/step - loss: 0.0486 - accuracy: 0.9854
Epoch 5/5
60000/60000 [========] - 4s 74us/step - loss: 0.0372 - accuracy: 0.9892
```

共進行2345次梯度更新:60000/128=468.75(每個epoch),469*5=2345次

總結

- ✔ 目前為止,你應該知道的內容:
 - 用6行程式寫一隻深度學習神經網路
 - 張量、張量的運算
 - 神經網路如何透過**反向傳播和梯度下降**來進行學習?