Problem 3. Say whether the following is true or false and support your answer by a proof: For any integer n, the number $n^2 + n + 1$ is odd.

Proof. By cases.

For
$$n = -2$$
,
$$n^2 + n + 1 = (-2)^2 + (-2) + 1 = 3$$
For $n = -1$,
$$n^2 + n + 1 = (-1)^2 + (-1) + 1 = 1$$
For $n = 0$,
$$n^2 + n + 1 = (0)^2 + (0) + 1 = 1$$
For $n = 1$,
$$n^2 + n + 1 = (1)^2 + (1) + 1 = 3$$

1 and 3 are odd numbers, so the statement seems true.

Using the equation we have,

$$n^2 + n + 1 = n(n+1) + 1$$
 [Factoring out the common factor n]

Let n be any arbitrary integer. So n+1 is the consecutive number.

There can be two cases then

• Case 1 (n is odd)

If n is odd, n+1 has to be even.

 $odd \times even = even.$

even + 1 is an odd number.

Hence, if n is odd, $n^2 + n + 1$ is odd and our initial statement is **TRUE**.

• Case 2 (n is even)

If n is even, n+1 has to be odd.

even \times odd = even.

even + 1 is an odd number.

Hence, if n is even, $n^2 + n + 1$ is also odd and our initial statement is **TRUE** yet again.

 \therefore It has been proved that for any integer $n, n^2 + n + 1$ is odd.