

Fig. 1

Fig. 2

Fig. 3

Figure B.1/G.107 - GOB (Good or Better) and POW (Poor or Worse) as functions of rating factor R

Fig. 4

Figure B.2/G.107 – MOS as function of rating factor R

Fig. 5

Fig. 6

Fig. 7

Limit of acceptability - a hard threshold

Mobile is GSM EFR.
POTS is modelled for an analogue set.
Nat'l = 8000km, Int'l = 27500km.

Fig. 8

What reference calls will be the most demanding quality measure?

Fig. 9

Or this?

Fig. 10

Limit of acceptability - a hard threshold
Mobile is GSM EFR, POTS is modelled for an analogue set. Nat'l = 8000km, Int'l = 27500km.

(*5R = 0.2 MOS over most of the linear range considered in the statistical noise by many practitioners.)

Fig. 11

Limit of acceptability - a hard threshold

Mobile is GSM EFR, POTS is modelled for an analogue set. Nat'l = 8000km, Int'l = 27500km.

Fig. 12

Limit of acceptability - a hard threshold

Fig. 13

EO End Office
TO End Office
T2AMG T2AMG to ATM
ATM SW ATM SW
LIT LIT
T2IMG IP Rout to VoIP MG
ATM SW ATM SW
LIT LIT

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

LT	Local Line Reception
BTS	Base Station
BSC	Base Station Controller
MSC	Mobile Switching Centre & Transcoding Unit (Mob.TDU)
MG4K	TDM over ATM MG
CVX1800	TDM to ATM VC
15KVSS	Passport 15KVSS
V15K	VERSATILE 15KIP Router
Node B	Radio band soft HCO function
RNC	Radio Network Controller & soft HCO functions
WGW	Wireless Gateway and anchor

Fig. 20

27,500km - 2*(distance from subs to TO equiv.)

lumped national model *lumped international model* *lumped national model*

Fig. 21

The E-model calculates a Transmission Rating Factor R , given by

$$R = R_o - I_s - I_d - I_e + A$$

Fig. 22

E-Model Parameter Default Values

Parameter	Units	Value
SLR (Send Loudness Rating)	dB	8
RLR (Receive Loudness Rating)	dB	2
STM R (Sidetone Masking Rating)	dB	15
LSTR (Listener Sidetone Rating)	dB	18
OLR (Overall Loudness Rating)	dB	10
TEL R (Talker Echo Loudness Rating)	dB	65
WEPL (Weighted Echo Path Loss)	dB	110
T (Mean Intrinsic One-Way Delay)	msec	0
Ta (Absolute Delay)	msec	0
Tr (Round-Trip Delay)	msec	0
QDU (Quantization Distortion Units)	-	1
Ie (Equipment Impairment Factor)	-	0
A (Expectation Factor)	-	0
Ds (Handset Shape Factor – Send Side)	-	3
Dr (Handset Shape Factor – Receive Side)	-	3
Ps (Room Noise at the Send side)	dB(A)	35
Pr (Room Noise at the Receive side)	dB(A)	35
Nc (Circuit Noise referred to 0 dB _r -point)	dBm0p	-70
Nfor (Noise Floor at the Receive Side)	dBmP	-64

Fig. 23

Fig. 24

Fig. 25

Tolerable Model Calculations							
G.711	G.711	G.711	G.711	G.729A	G.729A	G.729A	G.729A
Ref. [1]	[Notes 2,3]	Ref. [1]	[Notes 2,3]	Ref. [1]	[Notes 2,3]	Ref. [1]	[Notes 2,3]
Frame Size (ms)	25	125	125	10	10	10	10
Packet Payload (ms)	10	20	30	40	10	20	30
Packet Loss (%)	0	0	0	0	11	11	11
	1	5	8	10	13	13	15
	2	7	13	16	19	16	19
	3	10	19	22	24	19	23
	4	12.5*	22	26	28	22	26
	5	15	25	30	32	25	29*

Notes:

- 1) In the absence of any supporting documentation, these are arbitrary values
- 2) All G.711 vocoders are assumed to have PLC (Packet Loss Concealment) algorithms
- 3) Impairment factors apply for random packet loss conditions
- 4) This is the current capability of the i2004 (in the absence of any download instructions to achieve smaller frame size)
- 5) There is no PLC algorithm for G.726, therefore its deployment might be limited in lossy network
- 6) Interpolated values

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fig. 30

Fig. 31

Maximum le Margin for Codec and Packet Loss

The contour graphs show the available Delay and le margins for a constant R

R is constant along
the curve

—x— Clarity,
R = 66.6
—+— Carrot,
R = 66.6
—+— Cut,
R = 59.8
—+— AIM Clarity
R = 73.6

Maximum Delay Margin for
Packetization and Jitter

Fig. 32

Fig. 33

Name	Abbreviation (Object ID)	PCM Mode Input	POTS
Electric Circuit Noise (at 0 dB _T)	N _c (-70 dBmP)		
Room Noise	P _o (35 dBA)	35	
Send Loudness Rating	SLR (8 dB)		11
Receive Loudness Rating	RLR (2 dB)		3
D-factor	D (3)		3
Noise Floor	N _{for} (-64 dBm0)	-64	
Side tone Masking Rating	STM R (15)	15	
Equipment Impairment Factor	I _e (0)	0	
Expectation (Advantage) Factor	A (0)	0	
Mean Intrinsic One-Way Delay (upper)	T _u (0 ms)	0	
Mean Intrinsic One-Way Delay (lower)	T _l (0 ms)	0	
Mean Intrinsic One-Way Delay	T _{ul} (0 ms)	0	
Electrical Loss (upper)	L _u (dB)	0	
Electrical Loss (lower)	L _l (dB)	0	
Electrical Loss (upper = lower)	L _{ul} (dB)	0	
Quantizing Distortion Units (upper)	qduu (1) [Note 1]	0	
Quantizing Distortion Units (lower)	qdul (1) [Note 1]	0	
Echo Return Loss	ERL (dB)	17	

Fig. 34

BTS: Base Station

BSC: Base Station Controller

MSC: Mobile Switching Center

PSTN Wireless Access
Delay, loss and Impairment Summary

	Uplink	Downlink
Mobile Switching Center (MSC) (ms)	1	2
Base Station Controller (BSC) (ms)	2.5	40
Base Station (BTS) (ms)	15.8	40.8
Mobile Set (MS) (ms)	72.1	14.3
PSTN Wireless Access Delay (ms)	91.40	97.10
Impairment Factor (le)	5	5

Fig. 35

Fig. 36

TDM Connection Type	National (8000 km)	International (connection length 27500 km)			
		0 DCME	1 DCME	2 DCME	3 DCME
National Transmission Time	43	43	43	43	43
T2DCME (G.711/G.726 Conversion+DSI) (ms)	-	0	26	52	78
DCME2T (G.726/G.711 Conversion) (ms)	-	0	2	4	6
International Transmission Time (ms)	-	72	72	72	72
National Transmission Time	-	43	43	43	43
Total one-way delay (ms)	43	158	186	214	242
Impairment Factor (f _e)	0	0	7	14	21

Fig. 37

Fig. 38

Fig. 39

Fig. 40

Fig. 41

Fig. 42

Fig. 43

Which impairments are being considered in the models?

Fig. 44

Trunk Access - ATM Core

Trunk Access to ATM Core (before 4 parameters budget assignment)
Delay, loss and impairment Summary

Set delay (Side A) (ms)	0
End Office Delay (Side A) (ms)	1.5
Tandem Office Delay (Side A) (ms)	0.75
T2AMG delay (Side A) (ms)	0.5
Trunk Access delay (ms)	2.75
Impairment Factor (le)	0

Fig. 45

Wireless Access - IP Core

Succession Wireless to IP Core Delay Loss and Impairment Summary
(before 4 parameters budget assignment)

	Uplink	Downlink
Mobile Switching Center (MSC) (ms)	1	2
Base Station Controller (BSC) (ms)	2.5	40
Base Station (BTS) (ms)	15.8	40.8
Mobile Set (MS) (ms)	72.1	14.3
T2AMG delay (Side A) (ms)	0.5	0.5
Wireless Access delay (ms)	91.40	97.10
Impairment Factor (Ie)	5	5

Fig. 46

Cable CPE	Cable CPE Upstream	Cable CPE Downstream	Note
Link Speed	510 Kbps	300 Kbps	note [1]
Voice packet size (byte)	160	160	note [2]
Voice packet overhead (RTP/UDP/IP)	48	48	
Data packet size (byte)	512	512	
Data packet overhead	48	48	
Voice packet link utilization (%)	10.0%	10.0%	
Data packet link utilization (%)	90.0%	90.0%	
Fixed Delay			
- Serialization delay for voice packet (ms)	3.26	0.55	note [3]
- DSP & CPU processing delay (ms)	12.00	14.00	note [4]
- Packetization Delay (ms)	0.00	N/A	note [5]
Variable Delay			
- Average Voice data contention (ms)	4.57	0.78	note [6]
- Maximum Voice data contention (ms)	9.15	1.55	note [6]
- De-jitter buffer delay (ms)	N/A	0.00	note [5]
Other Impairments			
- Packet Loss (%)	0.00	0.00	note [5]
Minimum Delay (Fixed Delays) (ms)	15.26	14.55	
Average Delay (Fixed+Average Delays) (ms)	19.84	15.33	
Maximum Delay (Fixed+ Max Variable Delays) (ms)	24.41	16.11	

Fig. 47

A-Side User Access
(Trunk, Line, Wireless, DSL,
Cable and Enterprise)

Core Transport
Network
(TDM, ATM or IP)

B-Side User Access
(Trunk, Line, Wireless, DSL,
Cable and Enterprise)

National ATM Transport Core

International ATM Transport Core

International ATM Transport Core with DCME

Fig. 48

Total National Transport Distance (km)	8000 km (IP)	8000 km (ATM)	8000 km (TDM)	Note
Terrestrial Distance (km)	8000	8000	8000	
Terrestrial propagation Delay @ 5us / km (ms)	40	40	40	From G.114
Submarine Distance (km)	-	-	-	
Submarine propagation Delay @ 6us / km (ms)	-	-	-	From G.114
Number of hop	5	8	4	From I.356, TIA IS-810
Equipment processing time (ms)	1ms x 5	0.03ms x 8	0.75ms x 4	G.114
Jitter (ms)	note [1]	1.5 note [3]	0	I.356 QoS class 1
Total Delay (ms)	45	41.74	43	Note [2]

International Core Transport delay	2/500 ms (IP)	2/500 ms (ATM)	2/500 ms (TDM)	Note
Terrestrial Distance (km)	16000	16000	16000	
Terrestrial Delay @ 5us / km (ms)	80	80	80	
Number of hop	15	19	12	From I.356, TIA IS-810
Equipment processing time per hop	1	0.03	0.75	G.114
Equipment processing time (ms)	15	0.57	9	G.115
Submarine Distance (km)	11500	11500	11500	
Submarine Delay @ 6us / km (ms)	69	69	69	
Jitter (ms)	note [1]	3	0	I.356 QoS class 1
Total Delay (ms)	164	149.57	158	Note [2]

Fig. 49

Fig. 50

B-Side Access

	ATM Core Transport											
	National			International 0 DCME			International 1 DCME			International 2 DCME		
	T	Ie	R	T	Ie	R	T	Ie	R	T	Ie	R
POTS Trunk	47	0	88	161	0	86	190	7	77	218	14	67
ISDN Line	45	0	88	159	0	86	188	7	77	216	14	67
Wireless	139	5	82	253	5	71	282	12	60	310	19	49
VODIS	66	0	87	180	0	85	209	7	75	237	14	64
ATM Capable	61	0	88	175	0	85	204	7	75	232	14	65
Enterprise MSS	48	0	88	162	0	86	191	7	77	219	14	67
ATM Multiplex	64	0	88	178	0	85	207	7	75	235	14	64

Note: The four parameters: packetization delay, delay jitter, codec and packet loss have been set to zero. Those four parameters will be determined based upon the available margin. The margin is determined based on the benchmark comparison of an end-to-end Succession network with the closest benchmark representation of existing networks (PSTN only, mobile to PSTN, or mobile to mobile).

Fig. 51

Note: The four parameters: packetization delay, delay jitter, codec and packet loss have been set to zero. Those four parameters will be determined based upon the available margin. The margin is determined based on the benchmark comparison of an end-to-end Succession network with the closest benchmark representation of existing networks (PSTN only, mobile to PSTN, or mobile to mobile).

Fig. 52

Note: The four parameters: packetization delay, delay jitter, codec and packet loss have been set to zero. Those four parameters will be determined based upon the available margin. The margin is determined based on the benchmark comparison of an end-to-end Succession network with the closest benchmark representation of existing networks (PSTN only, mobile to PSTN, or mobile to mobile).

Fig. 53

R Succession R “Clarity” Benchmark

Fig. 54

Ie Budget =	3	9	18
Delay Budget =	130	186	257

Fig. 55

IE Budget	12.07	19.07	19.07	25.87
Delay Budget	110.9	171.5	171.5	244.4

Fig. 56

Fig. 57

VoDSL Access to VoDSL Access via ATM
(National Connection : 8000 Km)

IE Budget =	2	8	17	219
Delay Budget =	92	147		

Fig. 58

IE Budget	9.207	16.21	16.21	23.01
Delay Budget	72.54	133.1	133.1	206

Fig. 59

ATM Core Transport Network

Succession PSTN National		Success DCME vs PSTN Int'l 0				Success DCME vs PSTN Int'l 1				Success DCME vs PSTN Int'l 2						
R Succ	R PSTN	Delay Margin (ms)	Ie Margin	R Succ	R PSTN	Delay Margin (ms)	Ie Margin	R Succ	R PSTN	Delay Margin (ms)	Ie Margin	R Succ	R PSTN	Delay Margin (ms)	Ie Margin	
POTS Trunk	81.8	81.7	-1.2	0.1	70.7	70.6	-0.2	0.1	70.7	59.8	91.8	10.9	70.7	49.4	196.8	21.3
POTS Lines	81.8	81.7	1.0	0.1	71.0	70.6	2.0	0.4	71.0	59.8	94.0	11.2	71.0	49.4	199.0	21.6
Wireless	72.7	72.7	-0.2	0.0	58.5	58.3	0.8	0.2	58.5	48.5	17.8	10.0	58.5	39.0	192.8	19.5
VDSL	81.2	81.7	-20.4	-0.5	68.1	70.6	-19.4	-2.5	68.1	59.8	72.6	8.3	68.1	49.4	177.6	18.7
Cable	81.4	81.7	-14.9	-0.3	68.8	70.6	-13.9	-1.8	68.8	59.8	78.1	9.0	68.8	49.4	183.1	19.4
Enterprise MSS	81.8	81.7	-1.6	0.1	70.6	70.6	-0.5	0.0	70.6	59.8	91.5	10.8	70.6	49.4	196.5	21.2
Enterprise VDSL	81.2	81.7	-18.4	-0.5	68.4	70.6	-17.3	-2.2	68.4	59.8	74.7	8.6	68.4	49.4	179.7	19.0

B- Side Access

Note: minus indicates the worst case access scenario with the smallest available budget

Fig. 60

Fig. 61

Fig. 62

Delay Budget =	3.004	17.34	27.14
Ie Budget =	21.97	145.8	273.1

Fig. 63

IE Budget =	2	12	19	19	19
Delay Budget =	25	151	181	248	289

Fig. 64

Rank	Codec	E-model Impairment Factor (Le)	Estimated implementation delay (ms)	Note
1	G.711 at 64 kb/s	0	0.125	PCM
2	G.726 at 32 kb/s with Sync Coding	7	0.250	ADPCM
3	GSM-EFR	5	40	GSM
4	IS-733	*	40	
5	G.728 at 16 kb/s	7	1.250	
6	G.729/G.729A at 8 kb/s	10/11	25	
7	IS-641	6	40	TDMA
8	G.723.1 at 6.3 kb/s (not recommended)	15	30	Soft Phone

Fig. 65

Codec	packetization delay (ms)	max packet loss (%)	latency due to packet loss
type	Codec type		
G.711	0	10	0%
G.711	0	20	0%
G.726(1)	7	10	0%

1. This codec is only really suitable for international

Fig. 66

Codec type	Codec le	packetization delay (ms)	max packet loss (%)	le due to packet loss
G.711	0	10	0%	0
G.711	0	20	0%	0
G.711	0	40	0%	0
G.726	7	10	0%	0
G.726	7	20	0%	0
G.726	7	40	0%	0
G.711	0	10	1%	5
G.711	0	20	1%	5

Fig. 67

Codec		packetization delay (ms)	max packet loss (%)	le due to packet loss
type	Codec le			
G.711	0	10	0%	0
G.711	0	20	0%	0
G.711	0	40	0%	0
G.726	7	10	0%	0
G.726	7	20	0%	0
G.726	7	40	0%	0
G.729	11	10	0%	0
G.729	11	20	0%	0
G.729	11	40	0%	0
G.711	0	10	1%	5
G.711	0	20	1%	5
G.711	0	40	1%	5
G.726	7	10	1%	2
G.726	7	20	1%	4
G.729	11	10	1%	2
G.729	11	20	1%	4

Fig. 68

Fig. 69

Fig. 70

Fig. 71

Fig. 72

S.t S.t

