CLAIMS

What is claimed is:

1	1.	A method of seismic surveying using vibrational seismic energy sources
2		activated by sweep signals, the method comprising:
3		(a) selecting a plurality of seismic energy sources to be used for surveying
4		and a second number of sweep segments in excess of said first plurality;
5		(b) selecting a third plurality of a highest order harmonic to be attenuated
6		from processed data acquired using said seismic sources;
7		(c) defining a sweep signal associated with each of said sources, each sweep
8		signal comprising a plurality of sweep segments, each sweep segment of
9		each seismic source having a determined phase;
10		(d) driving each said source with its associated sweep signal to generate
11		seismic waves propagating into the earth and recording a seismic signal in
12		response thereto; and
13		(e) processing said recorded seismic signal using a plurality of augmented
14		signals associated with each seismic source to produce a processed
15		plurality of processed seismic signals, each of said plurality of processed
16		seismic signals associated with a different one of said seismic sources and
17		having harmonics upto said selected third plurality attenuated.
1	2.	The method of claim 1 further comprising determining said phase for each said
2		segment of each said sweep signal, wherein said phase is determined by

3	(i)	constructing a table with N rows and N columns, where N is the plurality
4		of sweep segments, each entry e _{H,M} being calculated from the formula
5		$e_{H,M} = hm \mod N$
6		where h is the row number and m is the column number;
7	(ii)	selecting a number of columns equal to the number of sources such
8		that the number in the first row of each selected column does not appear
9		again in any selected column before the row H=F+1, where F is the
10		highest order harmonic determined to cause significant crossfeed;
11	(iii)	assigning a selected column to each seismic energy source, the initial
12		phase angle for the hth sweep of that seismic energy source being
13		represented by the number in the hth row of that column multiplied by
14		2π/N;

- The method of claim 1 wherein each said associated sweep signal comprises
 sweep segments, said sweep segments either concatenated or overlapping
 sequentially.
- The method of claim 3 wherein each said augmented sweep signal further

 comprises said associated sweep signal and at least one of (i) a first sweep

 segment of said associated sequence, and, (ii) a final segment of said associated

 sequence.
- The method of claim 1 further comprising measuring a level of the generated 594-25276 October 17, 2001 20

2		seismic signal and using said level to adjust an amplitude of each of said other of
3		said augmented signals prior to correlating said recorded seismic data.
1	6.	The method of claim 1, wherein said sweep segments further comprise a
2		sinusoidal wavetrain having a frequency that either increases monotonically with
3		time or decreases monotonically with time.
1	7. .	The method of claim 6 wherein said increase or decrease of said frequency is
2		linear with time.
1	8.	The method of claim 1, wherein said sweep segments further comprise a psuedo-
2		random sweep series.
1	9.	The method of claim 8, wherein said pseudo-random sweep series are phase-
2		rotated by selected increments.
1	10.	A method for recording and processing vibratory source seismic data, the method
2		comprising:
3		(a) generating a cascaded sweep sequence comprising N sweep segments
1		that are either concatenated or overlapping sequentially, where N is equal
5		to or greater than 2, said N sweep segments being substantially identical,
5		except that the initial phase angles of said N sweep segments are
7		progressively rotated by a constant phase increment of about 2 ///

δ		radians where m is an integer and $ m >1$;
9	(b)	using said cascaded sweep sequence to drive a vibratory source thereby
10		propagating a seismic wave into the earth at a selected location;
11	(c)	recording a groundforce signal associated with said seismic wave,
12	·· (d)	recording at least one reflection signal from a location within the earth

- (d) recording at least one reflection signal from a location within the earth responsive to said seismic wave, and
- (e) using said recorded groundforce signal for processing the signal recorded
 to produce a processed signal.
- 1 11. The method of claim 10 wherein processing the signal recorded comprises cross2 correlating the recorded signal with a signal comprising said groundforce signal
 3 and a first and a last sweep segment of said groundforce signal.
- 1 12. The method of claim 10, wherein said sweep segments further comprise a
 2 sinusoidal wavetrain having a frequency that either increases monotonically with
 3 time or decreases monotonically with time.
- 1 13. The method of claim 12 wherein said increase or decrease of said frequency is 2 linear with time.
- 1 14. The method of claim 10, wherein said sweep segments further comprise a psuedo-2 random sweep series.

13

1	15.	A me	ethod of seismic surveying using n vibrational seismic energy sources
2		activ	ated by sweep signals, the method comprising:
3		(a)	selecting a number of seismic energy sources to be used for surveying;
4		(b)	selecting a number of a highest order harmonic that has sufficient strength
5	·		to cause significant harmonic distortion of a sweep segment that is part of
6			a sweep sequence;
7		(c)	defining a reference signal associated with each of said sources, each
8			reference signal comprising a number N of sweep segments, N being
9			greater than n , said sweep segments being either concatenated or
10			overlapping;
11		(d)	selecting initial phase angles for each sweep segment of each reference
12			signal so that substantially all harmonics up to and including said highest
13			order harmonic are suppressed and driving each vibratory source with its
14			sweep sequence and driving each of said sources with its associated
15			reference signal, thereby generating seismic waves propagating into the
16			earth;
17		(e)	recording ground force signals associated with each reference signal;
18		(f)	recording at least one reflection signal from a location within the earth
19			responsive to said seismic waves;
20		(g)	using said n ground force signals for processing said at least one recorded
21			reflection signal.

1 16. The method of claim 15 wherein processing said at least one recorded signal 594-25276 October 17, 2001 23

- comprises correlating the at least one recorded signal with a plurality of 2 processing signals, each said processing signal comprising a reference signal 3 combined with at least two segments of the reference signal. 4 The method of claim 15 wherein selecting initial phase angles further comprises: 1 17. 2 constructing a table with N rows and N columns, each entry e_{hm} being (i) calculated from the formula $e_{hm} = h m \mod (N)$ where h is the row 3 4 number and m is the column number: selecting a number of columns equal to the number of sources such that 5 (ii) none of the numbers of each selected column appears again in any other 6 7 selected column before the row H=F+1, and assigning a selected column to each seismic energy source, the 8 (iii) 9 initial phase angle for the h-th sweep segment of that seismic energy 10 source being represented by the number in the h-th row of that column 11 multiplied by $2 \pi/N$.
- 1 18. The method of claim 15, wherein said sweep segments further comprise a
 2 sinusoidal wavetrain having a frequency that either increases monotonically with
 3 time or decreases monotonically with time.
- 1 19. The method of claim 18 wherein said increase or decrease of said frequency is 2 linear with time.

1	20.	The	method of claim 15, wherein said sweep segments further comprise a psuedo-
2			lom sweep series.
1	21.	The	method of claim 20, wherein said pseudo-random sweep series are phase-
2		rotat	ed by selected increments.
1	22.	A m	ethod of conducting n seismic surveys simultaneously at substantially the
2		same	e location where n is an integer, the method comprising:
3	•	(a)	simultaneously transmitting with n vibratory sources associated
4			groundforce signals into the earth, each said groundforce signal including
5			a fundamental signal and harmonics thereof, said fundamental signal
6			having an initial phase;
7		(b)	recording said n groundforce signals;
8		(c)	recording at least one reflection signal from a location within the earth
9			responsive to said plurality of groundforce signals to give a first recorded
10			signal;
11	•	(d)	repeating steps (a) - (c) m-1 times wherein said initial phases are shifted
12	·		by $2\pi/m$ radians to give a total of m recorded signals and $n \times m$
13			groundforce signals;
14		(e)	using the $n \times m$ ground force signals for processing the m recorded signals
15			to give processed signals associated with each vibratory source.

1	23.	The method of claim 22 wherein processing the m recorded signals further
2		comprises:
3		(i) correlating the first recorded signal with each of the associated ground
4		force signal to give n intermediate signals;
5		(ii) repeating step (i) m-1 times to give a total of $n \times m$ intermediate processed
6		signals;
7		(iii) summing the m intermediate processed signals associated with each
8		vibratory source to give a processed signal associated with each vibratory
9	•	source.
1	24.	The method of claim 23, wherein said sweep segments further comprise a
2		sinusoidal wavetrain having a frequency that either increases monotonically with
3		time or decreases monotonically with time.
1	25.	The method of claim 24 wherein said increase or decrease of said frequency is
2		linear with time.
1	26.	The method of claim 22, wherein said sweep segments further comprise a psuedo-
2		random sweep series.
1	27.	A method of seismic surveying using vibrational seismic energy sources
2		activated by sweep signals, the method comprising:
3		(a) selecting a number of seismic energy sources to be used for surveying;
	594-252	276 October 17, 2001 26

7	(6)	selec	cting a number of a highest order harmonic that has sufficient strength
5		to ca	suse significant harmonic distortion of a sweep segment that is part of
6		a sw	eep sequence;
7	(c)	selec	eting a number of sweep segments in excess of the number of seismic
8		energ	gy sources used;
9	(d)	selec	ting initial phase angles for each sweep segment of each seismic
10		energ	gy source so that substantially all harmonics up to and including said
11		highe	est order harmonic are suppressed, the step of selecting initial phase
12		angle	es further comprising:
13		(i)	constructing a table with N rows and N columns, where N is the
14			number of sweep segments, each entry e _{H,M} being calculated from
15			the formula
16	_		$e_{HM} = hm \mod N,$
17			where h is the row number and m is the column number;
18		(ii) .	selecting a number of columns equal to the number of sources such
19			that the number in the first row of each selected column does not
20			appear again in any selected column before the row H=F+1, where
21			F is the highest order harmonic determined to cause significant
22 .			crossfeed;
23		(iii)	assigning a selected column to each seismic energy source, the
24			initial phase angle for the hth sweep of that seismic energy source
25			being represented by the number in the hth row of that column
26			multiplied by $2\pi/N$;

27		(e)	generating a first sweep sequence associated with each energy source,
28			consisting of sweep segments having initial phase angles obtained in step
29			(d), said sweep segments being either concatenated or overlapping
30			sequentially;
31		(f)	driving each of said energy sources using one of its associated sweep
32			sequences thereby generating a seismic signal which propagates into the
33			earth;
34		(g)	recording uncorrelated seismic data resulting from reflection of said
35			seismic signal from subterranean geologic formations;
36		(h)	combining the portion of said uncorrelated seismic data recorded during a
37			first sweep segment with said recorded uncorrelated seismic data recorded
38			during a 'listen time,' to form a combined uncorrelated seismic data
39			record;
40		(i)	correlating said combined uncorrelated seismic data record with each of
41			said first sequences to give correlated data associated with each of said
42			energy sources.
1	28.	The m	ethod of claim 27 further comprising measuring a level of the generated
2		seismi	c signal and using said level to adjust an amplitude of each of said other of
3		said ca	scaded sweep sequences prior to correlating said combined recorded
4		seismi	c data.

1

29.

The method of claim 27 wherein said sweep segments further comprise a

2		sinusoidal wavetrain having a frequency that either increases monotonically with
3	,	time or decreases monotonically with time.
1 2	30.	The method of claim 29 wherein said increase or decrease of said frequency is linear with time.
1	31.	The method of claim 27, wherein said sweep segments further comprise a psuedo-
2		random sweep series.
1	32.	The method of claim 31, wherein said pseudo-random sweep series are phase-rotated by increments chosen by the method of claim 27 (d).
1	33.	A method of seismic surveying using a vibrational seismic energy source
2		activated by sweep signals, the method comprising:
3		(a) selecting a highest order harmonic that has sufficient strength to cause
4		
		significant harmonic distortion of a sweep segment that is part of a sweep
5		significant harmonic distortion of a sweep segment that is part of a sweep sequence;
5 6		· · · ·
567	-	sequence;
	-	sequence; (b) selecting a plurality of sweep segments and initial phase angles for each
7		sequence; (b) selecting a plurality of sweep segments and initial phase angles for each sweep segment so that substantially all harmonics up to and including said
7		sequence; (b) selecting a plurality of sweep segments and initial phase angles for each sweep segment so that substantially all harmonics up to and including said highest order harmonic are suppressed,

12	•	(d)	driving said energy source using the sweep sequence thereby generating a
13			seismic signal which propagates into the earth;
14		(e)	recording uncorrelated seismic data resulting from reflection of said
15			seismic signal from subterranean geologic formations;
16		(f)	combining the portion of said uncorrelated seismic data recorded during a
17			first sweep segment with said recorded uncorrelated seismic data recorded
18			during a 'listen time,' to form a combined uncorrelated seismic data
19			record; and
20		(g)	correlating said combined uncorrelated seismic data record with said
21			sequence to give correlated data.
1	34.	The n	method of claim 33 wherein selecting said initial phase angles further
2	.	comp	rises:
3		· (i)	constructing a table with N rows and N columns, where N is the number
4			of sweep segments, each entry e _{H,M} being calculated from the formula
5			$e_{H,M} = hm \mod N$
6	, .		where h is the row number and m is the column number;
7		(ii)	selecting a number of columns equal to the number of sources such
8			
	;· -		that the number in the first row of each selected column does not appear
9	;· -		•
9			that the number in the first row of each selected column does not appear
9	. · · ·	(iii)	that the number in the first row of each selected column does not appear again in any selected column before the row H=F+1, where F is the
		(iii)	that the number in the first row of each selected column does not appear again in any selected column before the row H=F+1, where F is the highest order harmonic determined to cause significant crossfeed;

13		represented by the number in the hth row of that column multiplied by
14		2π/N;
1	35.	The method of claim 33 further comprising measuring a level of the generated
2		seismic signal and using said level to adjust an amplitude of each of said other of
3		said cascaded sweep sequences prior to correlating said combined recorded
4		seismic data.
1	36.	The method of claim 33 wherein said sweep segment further comprises a
2		sinusoidal wavetrain having a frequency that either increases monotonically with
3	•	time or decreases monotonically with time.
1	37.	The method of claim 36 wherein said increase or decrease of said frequency is
2		linear with time.
1	38.	The method of claim 33, wherein said sweep segments further comprise a psuedo-
2	.,	random sweep series.