

W207 Applied Machine Learning (Summer 2021)

Final Project Presentation: Tox21 Structure-Activity Relationship Models

Tony Angell, Elaine Chang, Lea Cleary

Tox21 Structure-Activity Relationship Models

- Federal collaboration between the NIH, EPA, and FDA
- Data challenge to "crowdsource" data analysis
- Potential to disrupt biological pathways leading to drug discovery,

Problem Statement

Prediction of compound toxicity using only chemical structure data

Dataset

Project Pipeline Overview

- Data
 Wrangling
- Feature Generation
- Model
 Matrix
 Experiment

performance

(ROC-AUC vs.

metric

Selected primary

- Model Oversample
- Model Exploration

- Explore and select dataset for project scope
- Remove duplicates and invalid compounds
- Standardize SMILES representations for compounds using MolVS

- Tokenize
 SMILES
 strings using
 different
 approaches
- Generate a matrix of feature vectors (vectorize)

atom-wise, k-mers,

Approaches:

SMILES pair

molecular

descriptors

encoding, ECFP,

Recall)
 Used
 GridSearchev to iterate and identify best performing

model

Approaches: Similarity-based (KNN, SVM); Features-based (NB, RF, logistic regression)

- Oreate new oversampled dataset
- Compare results to random oversampling
- Explore differences in model performance
- Explore alternative and automated approaches to modeling

Data Selection: NR-AhR

	Train			Test			Score		
	Active	Inactive	Ratio I:A	Active	Inactive	Ratio I:A	Active	Inactive	Ratio I:A
NR-AR	380	8982	24	3	289	96	12	574	48
NR-AR-LBD	303	8296	27	4	249	62	8	574	72
NR-ER	937	6760	7	27	238	9	51	465	9
NR-ER-LBD	446	<u>8</u> 3 <u>0</u> 7	19	10	277	28	20	580	29
NR-AhR	950	7219	8	31	241	8	73	537	7
NR-Aromatase	360	6866	19	18	196	11	39	49	1
NR-PPAR	222	7962	36	15	252	17	31	571	18
SR-ARE	1098	6069	6	48	186	4	93	462	5
SR-ATAD5	338	8753	26	25	247	10	38	584	15
SR-HSE	248	7722	31	10	257	26	22	588	27
SR-MMP	1142	6178	5	38	200	5	60	483	8
SR-p53	537	8097	15	28	241	9	41	575	14

Aryl Hydrocarbon Receptor

- Ligand-activated protein that functions primarily as a sensor of xenobiotic chemicals (e.g. natural plant flavonoids, indoles, synthetic polycyclic aromatic hydrocarbons, dioxin-like compounds)
- Also regulates enzymes such as cytochrome P450s that metabolize these chemicals

Examples of known ligands:

EDA: Visualizing the Data

Examples of **active** compounds:

Examples of **inactive** compounds:

Data Standardization: Tox21 NR-AhR Dataset

Removed duplicate and invalid compounds...

	Train	Test
Size (after cleaning)	6,709	607
Inactive compounds	5,948	536
Active compounds	761	71
Inactive : Active	~7	~7

Used MoIVS to standardize SMILES representations for compounds...

	compounds	id	label	std_compounds
0	CC(O)=O.[H][C@@]12CCC3=CC(=CC=C3[C@@]1(C)CCC[C	NCGC00255644-01	0	CC(=0)0.CC(C)c1ccc2c(c1)CC[C@@H]1[C@]2(C)CCC[C
1	${\sf CI.C[C@@H](NCCCC1=CC=CC(=C1)C(F)(F)F)C2=CC=CC3}$	NCGC00181002-01	0	C[C@@H](NCCCc1cccc(C(F)(F)F)c1)c1cccc2ccccc12.Cl
2	${\tt CC(C)OC(=O)C1=C(C)NC(N)=C(C1C2=CC(=CC=C2)[N+](}$	NCGC00167436-01	0	CC1=C(C(=O)OC(C)C)C(c2cccc([N+](=O)[O-])c2)C(C
3	CI.CN(C)C(=O)C1(CCN(CCC2(CN(CCO2)C(=O)C3=CC=CC	NCGC00254013-01	0	CN(C)C(=0)C1(N2CCCCC2)CCN(CCC2(c3ccc(Cl)c(Cl)c
4	CI.CCOC(=0)O[C@H](C)OC(=0)C1=CC=C2N(CC3=NOC(=C	NCGC00254071-01	0	CCOC(=0)0[C@H](C)OC(=0)c1ccc2c(c1)cc(C(=0)NC1C

Featurization Techniques

Tokenizer	NR-AhR Features	Description
Atom-wise	131	Tokenizes SMILES based on individual atoms
K-mer (n-gram)	7,831	Tokenizes SMILES based on sequences of k overlapping characters in a string (4-mers)
SMILES Pair Encoding (SPE)	2,378	Tokenizes SMILES based on vocabulary learned from high frequency substrings of a large chemical dataset (ChEMBL)
Extended Circular Fingerprints (ECFP)	100	Set of all atom identifiers for each radius of perception up to a limit n (default = 4)
Molecular Descriptors (1D)	9	One-dimensional properties of a molecule (e.g., number of atoms, molecular weight)

# Features				
SPE	2378			
K-mer	7831			
Atom	131			
ECFP	100			
1D	9			

Comparison of Recall Scores Using Conventional RDKit Methods

Oversampling Results

# Features				
SPE	2378			
K-mer	7831			
Atom	131			
ECFP	100			
1D	9			

Oversampling Results, con't.

# Features				
SPE	2378			
K-mer	7831			
Atom	131			
ECFP	100			
1D	9			

Comparison of Recall Scores Using Conventional RDKit Methods

Comparison of Recall Scores Using Oversampled Conventional RDKit Methods

Top Features in SPE NB Model

Visual Confusion Matrix for SPE NB Model

True Negative

True Positive

Predicted Negative

Predicted Positive

Thank You!

Questions?

