MATH 113: Notes

Scribe: William Guss

September 7, 2016

Recall multiplying a complex number in trigonometric form

$$z_{k} = r(\cos \theta_{k} + i \sin \theta_{k}), \quad k = 1, 2$$

$$z_{1}z_{2} = r_{1}r_{2}(\cos(\theta_{1} + \theta_{2}) + i \sin(\theta_{1} + \theta_{2}))$$

$$z_{k}^{n} = r_{k}^{n}(\cos(n\theta_{k}) + i \sin(n\theta_{k}))$$

The advanced student might observe that the trigonometric parameterizaiton of z is homomorphic under complex number multiplication. Furthermore $z_1 = z_2$ if and only if $|z_1| = |z_2|$, $\theta_1 \equiv \theta_2 mod 2\pi$. Using the complex conjugate we also get $z\overline{z} = |z|^2$. Notationally we denote the real part and the imaginary part of a complex number z by Re(z), Im(z) respectively.

Complex numbers also have the property that for any z, there exist r, θ such that

$$z = re^{i\theta} = r(\cos\theta + i\sin\theta), \quad r = |z|, \theta = Arg(z).$$

We can derive the rleation as follows. Consider the taylor series of exp.

$$e^z = \sum_{n=1}^{\infty} \frac{z^n}{n!} := \sum_{n=1}^{\infty} \frac{Re(z^n)}{n!} + i \sum_{n=1}^{\infty} \frac{Im(z^n)}{n!}.$$

Definition 1. A complex series $\sum_k z_k$ is absolutely convergent iff

$$\sum_{k=1}^{\infty} |Re(z_k)| < \infty, \sum_{k=1}^{\infty} |Im(z_k)| < \infty$$

Fact 1. A complex series converges if it absolutely converges.

Proposition 1. For any $z \in \mathbb{C}$ the series e^z converges absolutely.

Proof. Recall that $|a| \leq |a+bi|$ and $|b| \leq |a+bi|$. Now consider that

$$\left| \frac{Re(z^n)}{n!} \right| \le \left| \frac{z^n}{n!} \right|$$

$$\left| \frac{Im(z^n)}{n!} \right| \le \left| \frac{z^n}{n!} \right|$$

Therefore we need show that the series $\sum_{n}|z|^{n}/n!$ is convergent which implies that e^{z} is absolutely convergent. Recall that $\sum_{n}|z|^{n}/n!$ is just $e^{|z|}$ which converges since $|z| \in \mathbb{R}$. Therefore e^{z} converges to a compelx number.

Fact 2. If $z_1, z_2 \in \mathbb{C}$ then $e^{z_1}e^{z_2} = e^{z_1+z_2}$; that is, exp is a homomorphism.

Proposition 2. If $a, b \in \mathbb{R}$, then $e^{a+bi} = e^a(\cos(b) + i\sin(b))$.

Proof. By fact 1, we have that $e^{a+bi} = e^a e^{bi}$. We claim that $e^{ib} = \cos b + i \sin b$. Recall the series definition of e^z ,

$$e^{ib} = \sum_{n=0}^{\infty} \frac{(ib)^n}{n!} = \sum_{n=0}^{\infty} \frac{i^n b^n}{n!}$$

Using that $i^2 = -1$, we have

$$e^{ib} = 1 + \frac{ib}{1} + \frac{-b^2}{2!} + \frac{-ib^3}{3!} + \frac{b^4}{4!} + \frac{ib^5}{5!} + \cdots$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k b^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} \frac{(-1)^k b^{2k+1}}{(2k+1)!}$$

$$= \cos(b) + i \sin(b).$$

This completes the proof.

What are the complex numbers of $|\cdot| = 1$? They must be $z = \cos \theta + i \sin \theta = e^{i\theta}$, $\theta \in \mathbb{R}$. We can use such an intuition to compute roots of complex numbers.

Proposition 3. For a complex number z, let $R_z = \{w : \ ^n = z \in \mathbb{C}\}$ be th set of n^{th} roots of z. We claim that

$$R_z = \left\{ |z|^{1/n} \exp\left(\frac{i(Arg(z) + 2\pi k)}{n}\right) \mid k \in \mathbb{Z} \right\}$$

and $R_z \cong \mathbb{Z}/n$ if |z| = 1.

Proof. Take any $w \in R_z$, then there is a $k \in \mathbb{Z}$ such that

$$w^{n} = \left(|z|^{1/n} \exp\left(\frac{i(Arg(z) + 2\pi k)}{n}\right)\right)^{n} = |z| \exp\left(i(Arg(z) + 2k\pi)\right) = z.$$

Furthermore define an index set for R_z , such that $w_j = |z|^{1/n} \exp\left(\frac{i(Arg(z)+2\pi j)}{n}\right)$. Then define the mapping $\phi: \mathbb{Z}_n \to R_z$ such that $j \mapsto w_j$. Clearly such a map is injective since there are n elements of both \mathbb{Z}_n and R_z , and each j, w_j in those sets respectively are unique up to n. Therefore ϕ is bijective.

Now we claim that if |z| = 1 $\phi^{-1} = \gamma$ is a homomorphism, that is $\gamma(w_k w_j) \equiv \gamma(w_k) + \gamma(w_j) \mod n$. We do simple algebra

$$w_k w_j = |z|^{1/n} |z|^{1/n} e^{\frac{i(Arg(z) + 2\pi k)}{n}} e^{\frac{i(Arg(z) + 2\pi j)}{n}} = 1 e^{\frac{i(Arg(z) + 2\pi (k + j)}{n}} = e^{\frac{i(Arg(z) + 2\pi (k + j))}{n}} \mod 2\pi$$

so it follows that

$$\gamma(w_k w_j) \equiv (2\pi(k+j) \mod 2\pi) \mod n \equiv (k+j) \mod n.$$