1. Recall that if R is a ring and A a nonempty set, then R^A is the set of all functions $f:A\to R$. In class we defined a pointwise arithmetic on R^A as follows: given functions $\alpha,\beta:A\to R$, we define

$$(\alpha + \beta)(x) = \alpha(x) + \beta(x)$$

and

$$(\alpha\beta)(x) = \alpha(x)\beta(x).$$

- (a) Show that these operations make R^A into a ring.
- (b) Show that if R is commutative, then R^A is also commutative.
- 2. Suppose R, S, and T are rings. Prove that

$$(R \oplus S) \oplus T \cong R \oplus (S \oplus T).$$

- 3. Suppose R_1 and R_2 are rings, and that $S_1 \subseteq R_1$ and $S_2 \subseteq R_2$ are subrings. Show that $S_1 \oplus S_2$ is a subring of $R_1 \oplus R_2$.
- 4. Let $R = \mathbb{Z}[i]$ be the ring of Gaussian integers.
 - (a) Show that 29 is not irreducible in R. (Hint: Try to write 29 as a sum of squares.)
 - (b) Find an irreducible factorization for 29 in R.
 - (c) Show that 3 is irreducible in R. (Hint: Suppose 3 = (a + bi)(c + di) is a nontrivial factorization, and consider the norm of both sides. Remember that the norm on $\mathbb{Z}[i]$ is $N(a + bi) = a^2 + b^2$.)