[MT04] Assimilação de dados por aprendizado de máquina

Assimilação de Dados por Redes Neurais Artificiais

Haroldo F. de Campos Velho – INPE

Helaine C. M. Furtado – UFOPA

Juliana A. Anochi – INPE

Roberto P. Souto – LNCC

Gerônimo Lemos – INPE

Marcelo Paiva Ramos – INPE

Assimilação de Dados por RNA (Fluidity)

- Experimento
 - Modelo Fluidity: flow_past_sphere_Re1000
- Multi-Particle Collision Algorithm (MPCA)
 - Otimização dos hiperparâmetros
- TensorFlow
 - Treinamento da Rede Neural Artificial (RNA)
- Artigo
 - RAMOS, Marcelo Paiva; DIAS, Luiz Alberto Vieira; LI,
 Linfeng; CHEN, Boyang; FANG, Fangxin; CAMPOS VELHO,
 Haroldo Fraga de. Data Assimilation by Optimized Neural
 Network for the Fluidity Code. Em preparação, 2025.

Assimilação de Dados por RNA (Fluidity)

Colaboração

Instituto Tecnológico de Aeronáutica (ITA)

Instituto Nacional de Pesquisas Espaciais (INPE)

Imperial College London (ICL-UK)

Modelo Fluidity

- Software avançado de dinâmica dos fluidos
- Desenvolvido pelo Grupo de Modelagem e Computação Aplicada do Imperial College London (UK)
- Aplicações: Geofísica, meio ambiente e engenharia
- Equações: Navier-Stokes, continuidade, energia, etc
- Características principais:
 - Problemas multiescala e multifísicos
 - Discretização espacial: Elementos Finitos (FE) e
 Volume de Controle (CV)
 - Malha adaptativa: método baseado no gradiente
 - Integração temporal: Crank-Nicolson

Fluidity - flow_past_sphere

(a) Elementos ao redor de um plano de corte no plano y=0

. Malha: tetraedro

. Domínio

[-10, 20] x [-10, 10] x [-10, 10]

(b) Elementos ao redor da esfera

. Esfera sólida

__ Centro: (0,0,0)

Diâmetro = 1

Fluidity: Experimento numérico

- Referência ("verdade")
 - Simulação com condição inicial CI=1.0
- Observação Sintética
 - Pontos: P1, P2, P3 e P4
 - Time-steps 10, 20, 30, ..., 160
 - Referência com 5% de ruído
- Pseudo-observações (dataset p/ RNA)
 - 200 simulações c/ diferentes CIs
 - Pontos R=5
 - $p_x = o_x * 1/d^2 + s_x * (1 1/d^2)$
- Simulação: "SIM"
 - Perturbação de 5% na condição inicial CI=1.05
- Simulação: "DA-ANN"
 - Perturbação de 5% na condição inicial CI=1.05

Fluidity - Observação Sintética

- . Esfera
 - Diâmetro = 1
- . Pontos de observação
 - ₋₋ P1, P2, P3 e P4
- . Raio de influência
 - R = 5

Fluidity - Assimilação de Dados

Fluidity - Assimilação de Dados

Fluidity - Assimilação de Dados

Fluidity - Resultados TS=84

Fluidity - Resultados TS=136

Fluidity - Resultados TS=142

Assimilação de Dados por RNA (Fluidity)

Muito obrigado pela atenção!!

Questões?

Comentários?