Samples: Given $X_1, X_2, \ldots, X_n \sim F$ a sample of **Convolution:** for $X \perp \!\!\! \perp Y$, if W = X + Y, then size n from a population of size N.

- 1. $\bar{X}_n=n^{-1}\sum_{i=1}^n X_i$ is the sample mean; $E(\bar{X}_n)=\mu$, $\mathrm{var}(\bar{X}_n)=n^{-1}\sigma^2$, if without replacement, and $n^{-1}\sigma^2(N-n)/(N-1)$ if there's replacement.
- 2. Application of above: I_j are dependent indicator random variables with success p, then $\begin{array}{l} \sum_{i=1}^{n} I_{i} \sim \mathsf{HypGeo}(N,p,n) \text{, and } G_{i} \overset{iid}{\sim} \mathsf{Geo}(p) \text{,} \\ \sum_{i=1}^{n} G_{i} \sim \mathsf{NBinom}(n,p). \end{array}$
- 3. $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$ is the sample variance. $E(\hat{\sigma}^2) = \frac{n-1}{n} \sigma^2$. For X_i iid, $S^2 = \frac{n}{n-1} \hat{\sigma}^2 \sim c \chi^2_{(n-1)}$ which allows us to say that $(\bar{X}_{(n)} - \mu)/(S/\sqrt{n}) \sim t_{(n-1)}.$

Inequalities:

- 1. given $X \ge 0$, c > 0, $P(X \ge c) \le \mu_X/c$
- 2. need sd to exist, $P(|X \mu_X| \ge k\sigma) \le k^{-2}$
- 3. $E(XY) < \sqrt{E(X^2)E(Y^2)}$

Change of variables: given Y = g(X), and $f_X(x)$ the density of X,

$$f_Y(y) = \sum_{x:g(x)=y} \frac{f_X(g^{-1}(y))}{\left| \frac{dg}{dx} \right|_{x=g^{-1}(y)}}$$

Example: $X \sim N(0,1)$, and $Y = X^2$:

- 1. range(Y) = $[0, \infty)$,
- 2. $y = g(x) = x^2 \Rightarrow g'(x) = 2x$, and beware:
- 3. For $x = \sqrt{y}$:

$$\frac{(2\pi)^{-1/2}e^{-(\sqrt{y})^2/2}}{|2\sqrt{y}|} = \frac{e^{-y/2}}{\sqrt{2\pi}(2\sqrt{y})}$$

For $x = -\sqrt{y}$:

$$\frac{(2\pi)^{-1/2}e^{-(-\sqrt{y})^2/2}}{|-2\sqrt{y}|} = \frac{e^{-y/2}}{\sqrt{2\pi}(2\sqrt{y})}$$

Hence,

$$f_Y(y) = \frac{e^{-y/2}}{\sqrt{2\pi}(2\sqrt{y})} + \frac{e^{-y/2}}{\sqrt{2\pi}(2\sqrt{y})} = \frac{y^{-1/2}e^{-y/2}}{\sqrt{2\pi}} \qquad \qquad \text{3. } \psi_{aX+b}(t) = e^{tb}\psi_X(at) \\ \text{4. If } X \perp\!\!\!\perp Y, \psi_{X+Y}(t) = \psi_X(t)\psi_Y(t)$$

$$f_W(w) = \int_{supp(Y)} f_{X,Y}(w - y, y) \, dy$$
$$= \int_{supp(X)} f_{X,Y}(x, w - x) \, dx$$
$$= \int_{supp(X)} f_X(x) f_Y(w - x) \, dx$$
$$= f_X * f_Y(w)$$

Quotient Density: let f(x,y) be the joint density of (X,Y), then Z=Y/X has density $\int_{-\infty}^{\infty}|x|\,f(x,xz)\,dx.$

Poisson Process: if $N_{(0,1)} = \#$ of arrivals in (0,1), and $N_{(0,1)} \sim \text{Poisson}(\lambda)$, then $N_{(0,t)} \sim \text{Poisson}(\lambda t)$. If T_1 is the time until the first arrival, then $T_1 \sim$ Exp(λ). Hence, if T_r is time until r^{th} arrival, $T_r =$ $W_1 + W_2 + \cdots + W_r$ where $W_i \stackrel{iid}{\sim} \operatorname{Exp}(\lambda)$, hence $T_r \sim \Gamma(r, \lambda)$.

"Thinning" the Poisson Process: Given a Poisson process with rate λ , and supposing each arrival is killed with probability p (independent of the rest of process), if *X* is the Poisson process for the particles who live and Y is for the particles who die, $X \perp \!\!\! \perp Y$, $X \sim \text{Poisson}(\lambda q), Y \sim \text{Poisson}(\lambda p)$. Think about this like a random generator spits out particles of type A or B, with the chance of A being p. Then, provided the generic observational random variable is Poisson(λ), the type A observational random variable will be Poisson(λp).

 Γ tricks: Given $Z\sim N(0,1),~Z^2\sim \chi^2_{(1)}=\Gamma(1/2,1/2).$ But, $X_1\perp\!\!\!\perp X_2,~X_i\sim \Gamma(r_i,\lambda)$ has that $X_1 + X_2 \sim \Gamma(r_1 + r_2, \lambda)$. Hence, for $Z_i \stackrel{iid}{\sim} N(0, 1)$, $\sum_{i=1}^{n} Z_i^2 \sim \chi_{(n)}^2 = \Gamma(n/2, 1/2).$

Moments:

- 1. $\mu_k = E(X^k)$ (doesn't always exist)
- 2. if j < k and μ_k exists, then μ_j exists.

MGF:

- 1. $\psi_X = E(e^{tX})$ (doesn't always exist)
- 2. $\psi(0) = 1$

- 5. If $\psi_X(t)$ exists in a nhd of 0, $\mu_k = \psi_X^{(k)}(0) < \infty$, for all $k \in \mathbb{N}$. (Inspiration for $E(e^{tx}) =$ $\sum_{k=0}^{\infty} E(X^k) t^k / k!.)$
- 6. ψ_X, ψ_Y existing in nhd of 0 and $\psi_X \equiv \psi_Y$ implies $X \sim Y$.
- 7. If $\{X_n\}$ is a sequence of RV's and $\psi_{X_n} \to \psi_X$ a.e. in a nhd of 0, then $X_n \xrightarrow{\mathcal{L}} X$. That is, $F_{X_n} \to F_X$ at all points of continuity of F_X .

Common MGF's:

X	$\psi_X(t)$
c, constant	e^{ct}
$I_A, P(A) = p$	$pe^t + q$
Binom(n, p)	$(pe^t + q)^n$
Geo(p)	$pe^{t}(1-qe^{t})^{-1}I(t<-\ln(q))$
$Poisson(\lambda)$	$\exp\left\{\lambda(e^t-1)\right\}$
Uniform([a, b])	$(e^{tb} - e^{ta})/(t(b-a))$
$N(\mu, \sigma^2)$	$\exp\left\{t\mu+\frac{1}{2}\sigma^2t^2\right\}$
$\chi^2_{(k)}$	$(1-2t)^{-k/2}$
$Exp(\lambda)$	$\lambda(\lambda - t)^{-1}I(t < \lambda)$
$\Gamma(r,\lambda)$	$\lambda^r(\lambda - t)^{-r}I(t < \lambda)$

Central Limit Theorem: X_1, X_2, \ldots , iid with mean μ and sd σ . Given, $S_n = \sum_{i=1}^n X_i$,

$$Z_n = \frac{n^{-1}S_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{\mathcal{L}} N(0, 1)$$

 Z_n is S_n converted to std. units, and proof uses MGF properties to show $\psi_{Z_n} \to e^{t^2/2}$.

Types of Convergence:

1. Quadratic Mean:

$$X_n \xrightarrow{qm} X \iff E\left[(X_n - X)^2\right] \to 0$$

2. Probability:

$$X_n \xrightarrow{P} X \iff \forall \epsilon > 0, P(|X_n - X| > \epsilon) \to 0$$

3. Distribution:

$$X_n \xrightarrow{\mathcal{L}} X \iff F_{X_n} \to F_X$$
 at all points of contin

Convergence relations:

- 1. $X_n \xrightarrow{qm} X \stackrel{(1)}{\Longrightarrow} X_n \xrightarrow{P} X \stackrel{(2)}{\Longrightarrow} X_n \xrightarrow{\mathcal{L}} X$
- 2. The converse to (2) is true if X is a constant. Hence, $X_n \xrightarrow{P} c \iff X_n \xrightarrow{\mathcal{L}} c$.

3. Converse to (1) is not true:

$$X_n(x) = nI(x \in (1 - 1/n, 1])$$

$$X_n \xrightarrow{P} 0$$
, but $X_n \xrightarrow{qm} \infty$

- 4. If g is continuous, $X_n \xrightarrow{P} X$, then $g(X_n) \xrightarrow{P} X$
- 5. If $Y_n \xrightarrow{P} Y$, $X_n + Y_n \xrightarrow{P} X + Y$ and $X_n Y_n \xrightarrow{P} X$
- 6. If $X_n \xrightarrow{qm} X$, $Y_n \xrightarrow{qm} Y$, then $X_n + Y_n \xrightarrow{qm} X + Y$

Weak Law of Large Numbers: Define the k^{th} sample moment, $\hat{\mu}_k \equiv n^{-1} \sum_{i=1}^n X_i^k$, $X_i \stackrel{iid}{\sim} F$. The WLLN says that $\hat{\mu}_k \xrightarrow{P} \mu_k$. Hence, $\hat{\sigma}^2 = \hat{\mu}_2 - \hat{\mu}_1^2 \xrightarrow{P}$ $\mu_2 - \mu^2 = \sigma^2$.

Slutsky's Theorem: given $X_n \xrightarrow{\mathcal{L}} X$, $Y_n \xrightarrow{\mathcal{L}} c$,

- 1. $X_n + Y_n \xrightarrow{\mathcal{L}} X + c_n$
- 2. $X_n Y_n \xrightarrow{\mathcal{L}} cX$

The general strategy is: massage RV into num/denom such that we can use CLT to establish $num \to N(\mu, \sigma^2)$ and $denom \to c$. Then, Slutsky's says that RV \rightarrow Normal.

Conditioning:

- 1. Density of Y given X = x is denoted $f_{Y|X}(y|x) = f_{X,Y}(x,y)/f_X(x).$
- 2. The conditional expectation of Y given X = xis denoted $E(Y \mid X = x) = \int y f_{Y \mid X}(y \mid x) dy$

Properties of $E(Y \mid X)$:

- 1. E(aY+bZ+c|X) = aE(Y|X)+bE(Z|X)+c
- 2. E(g(X) | X) = g(X)
- 3. E[E(Y | X)] = E(Y)
- 4. var(Y) = E(var(Y | X)) + var(E(Y | X))

Bayesian Inference: the posterior density is pro- $X_n \xrightarrow{\mathcal{L}} X \iff F_{X_n} \to F_X$ at all points of continuity to the prior times the likelihood. $\theta \in \Theta$ is a parameter of a distribution F where $X_1, X_2, \ldots, X_n \sim F$, then

$$P(\theta \in dp \mid x_1, \dots, x_n) \propto \mathcal{L}(x_1, \dots, x_n \mid \theta \in dp) P(\theta \in dp)$$

In a particular setting, we say that Θ is a family of **conjugate priors** if a prior from Θ yields a posterior from Θ .

Bivariate Normal: Given $U, V \stackrel{iid}{\sim} N(0,1)$, and $\theta \in [0, \pi], (X, Y) = (U, \rho U + \sqrt{1 - \rho^2} V)$ defines the standard bivariate normal with μ = $(0,0), \text{ and } \Sigma \ = \ \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}. \quad f_{X,Y} \ = \ f_X f_{Y|X} \ =$ $\frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)\right\}$

- 1. $Y | X = x \sim N(\rho x, \sqrt{1 \rho^2})$. (So, *Y* is a traveling bell curve.)
- 2. $E(Y)=E(\rho U+\sqrt{1-\rho^2}V)=0$, and $\mathrm{var}(Y)=\rho^2\,\mathrm{var}(U)+(1-\rho^2)\,\mathrm{var}(V)=1$.
- 3. If we had started $(X,Y) \sim N\left(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho\right)$, then $(X^*,Y^*) = ((X-\mu_X)/\sigma_X, (Y-\mu_Y)/\sigma_Y)$ is standard bivariate normal, and Y^* $\rho X^* + \sqrt{1-\rho^2}Z^*$, where $Z^* \perp \!\!\! \perp X^*$ and $Z^* \sim N(0,1)$.

Markov Chains:

1. $X_0, X_1, \ldots = \{X_n\}$ is a Markov Chain if $range(X_i)$ is countable and

$$P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, ..., X_0 = i_0)$$

= $P(X_{n+1} = j | X_n = i)$

- 2. Define \mathbb{P} , the one-step transition matrix such that $\mathbb{P}(i,j) = p_{ij}$ and thus $\mathbb{P}^{(n)} = \mathbb{P}^n$ is the nstep transition matrix.
- 3. if λ = distribution of X_0 , then distribution of $X_1 = \lambda \mathbb{P}$ and generally $X_n \sim \lambda \mathbb{P}^n$.
- 4. i is recurrent if there exists n such that all paths which start at i and take n steps must terminate at i. i is transient if for all n, there exist paths from i which do not terminate at i, and this is also characterized via:

$$\sum_{i=1}^{\infty} p_{ii}^{(n)} = +\infty I(i = \text{recurrent}) + cI(i = \text{trans.})$$

Intuition: transient means fleeting. As your chain increases in length, you should see transient states less and less. Recurrent states should show up in some "frequent" fashion. Recurrent states have a finite return time with probability 1.

5. a state i has period k if any return to state imust occur in multiples of k steps:

$$k = \gcd\{n : p_{ji,n} > 0\}$$

6. $i \rightarrow j \equiv "i$ leads to j" if there is a path with positive probability, starting at *i* and ending at

- 7. "i communicates with j" if $i \rightarrow j$ and $j \rightarrow i$
- 8. $\{X_n\}$ is irreducible if all states communicate with each other.
- 9. if $\{X_n\}$ has a finite state-space, and is irreducible and aperiodic:
 - (a) For each state j, there exists $\pi_i > 0$ (independent of *i*) such that $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j$ and $\sum_{j=1}^{n} \pi_j = 1$
 - (b) $\pi = \pi \mathbb{P}$ ("balance equations")
 - (c) π_j represents the long-run proportion of time spent at state j
 - (d) π_j^{-1} is the expected number of steps required to get to j from j.
- 10. π is called a stationary distribution of $\{X_n\}$ and if $\lambda = \pi$, then $X_n \sim \pi$ for all n.

Linear Regression: given (X,Y) with some joint distribution and σ_X , $\sigma_Y < \infty$, "best" linear predictor $P(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$ of *Y* based on *X*, denoted $\hat{Y} = a^* + b^*X$, is RV that minimizes MSE: $(a^*, b^*) = \operatorname{argmin}_{(a,b)} E\left[(Y - \hat{Y})^2 \right].$ $= p_{ij,n}$ (prob. of transition from i to j at time nlm this case $b^* = \text{cov}(X,Y)/\sigma_X^2$, and $a^* = \mu_Y - b^*\mu_X$.

- 1. In general, the function of *X* which minimizes MSE is E(Y | X), and in the case of normality, $\hat{Y} = E(Y \mid X)$, but not generally.
- 2. $var(\hat{Y}) = \rho^2 \sigma_V^2$

Linear Algebra:

- 1. $\sum_{i=1}^{n} c_i V_i = \vec{c}^T \vec{V}$
- 2. $E(\vec{V}) = (E(V_1), E(V_2), \dots, E(V_n))^T$
- 3. given a random variable Z, $cov(Z, \vec{V}) =$ $(\operatorname{cov}(Z, V_1), \operatorname{cov}(Z, V_2), \dots, \operatorname{cov}(Z, V_n))^T$
- 4. $\Sigma_{UV}(i,j) = \text{cov}(U_i,V_i)$
- 5. $E(\vec{c}^T \vec{V}) = \vec{c}^T E(\vec{V})$
- 6. $\operatorname{cov}(Z, \vec{c}^T \vec{V}) = \vec{c}^T \operatorname{cov}(Z, \vec{V})$
- 7. $\operatorname{var}(\vec{c}^T \vec{V}) = \vec{c}^T \Sigma_{VV} \vec{c}$

Multiple Regression: If $(X_1, X_2, \dots, X_n, Y) =$ (\vec{X}, Y) have a joint density and Σ_{XX} is invertible, then $\hat{Y} = \mu_Y + \vec{c}^T(\vec{X} - E(\vec{X}))$ is best linear predictor provided $cov(\hat{Y}, \vec{X}) = \vec{0}$, which is when $\vec{c} =$ $\Sigma_{XX}^{-1} \operatorname{cov}(Y, \vec{X}).$