Imperfect detection - assignment

2023-12-03

Question 1: Form meaningful biological hypotheses about how Opossum's occupancy and detection probabilities might vary

Key information:

- Opossums are sensitive to temperature
- Opossums are generalist in terms of habitat preference
- Opossum activity patterns are affected by fire

Biological hypotheses:

- Hypothesis 1:
 - Opossum occupancy increases with average yearly temperature
- Hypothesis 2:
 - Opossum occupancy does not vary with habitat quality
- Hypothesis 3:
 - Opossum detection probability increases with occurrence of fire

Question 2: Prepare the data and run the models corresponding to your biological hypotheses from Q1

Prepare the data

```
#Load opossum data

opossum = read.csv("opossumdata.csv")
opossum
```

```
Site det1 det2 det3 det4 det5 det6 det7 det8 Temperature Habitat Fire1 Fire2
## 1
         1
              0
                    0
                         1
                             NA
                                  NA
                                         0
                                              0
                                                   0
                                                             13.0
                                                                        2
## 2
         2
              0
                    0
                         0
                              0
                                   0
                                                   0
                                                             13.0
                                                                        2
                                                                               0
                                                                                     0
                                         0
## 3
         3
                              0
                                  NA
                                              0
                                                  NA
                                                             15.0
                                                                        2
                                                                               0
                                                                                     0
              1
                    0
                         1
                                         1
                                                             16.0
## 4
         4
              0
                    1
                        NA
                              0
                                   1
                                         1
                                              0
                                                   1
                                                                        4
                                                                               0
                                                                                     0
## 5
         5
              0
                    0
                         0
                              0
                                   0
                                         1
                                              1
                                                   0
                                                             18.0
                                                                        5
                                                                               0
                                                                                     0
## 6
         6
              1
                    0
                         1
                              1
                                   0
                                         0
                                              0
                                                   1
                                                             20.0
                                                                        6
                                                                               0
         7
                                                                        7
## 7
              0
                              0
                                   0
                                             NA
                                                             21.0
                                                                               0
                                                                                     0
                    1
                         1
                                         1
                                                   1
## 8
         8
              1
                    0
                         0
                              1
                                  NA
                                         0
                                              0
                                                  NA
                                                             21.0
                                                                        7
                                                                               0
                                                                                     0
## 9
         9
              0
                    0
                              1
                                   0
                                                   1
                                                             21.0
                                                                        7
                                                                               0
                                                                                     0
                         1
                                         1
                                              1
## 10
        10
              1
                    1
                         1
                              0
                                   1
                                         1
                                              1
                                                   1
                                                             23.0
                                                                        8
                                                                               0
                                                                                     0
              0
                                         0
                                                             25.0
                                                                        8
                                                                               0
                                                                                     0
## 11
        11
                    1
                         0
                             NA
                                   0
                                              0
                                                   1
        12
## 12
              0
                   0
                              0
                                   1
                                         0
                                                             26.0
                                                                        9
                                                                               0
                                                                                     0
                         1
                                              1
                                                   0
                              0
                                                             29.0
                                                                        9
                                                                               0
## 13
        13
              1
                   0
                         0
                                   0
                                         0
                                              0
                                                   1
                                                                                     0
## 14
        14
              0
                   1
                         1
                              1
                                   1
                                         0
                                              1
                                                   0
                                                             31.0
                                                                        9
                                                                               0
                                                                                     0
## 15
        15
              1
                   0
                         0
                              0
                                   0
                                         1
                                              0
                                                   1
                                                             35.0
                                                                        9
                                                                               0
                                                                                     0
## 16
        16
              0
                    1
                              1
                                   1
                                              1
                                                   0
                                                             37.0
                                                                        9
                                                                               0
                                                                                     0
                         1
                                         1
                                                             38.0
                                                                       10
                                                                                     0
## 17
        17
             1
                    1
                         1
                              0
                                   0
                                        1
                                                   1
                                                                               0
## 18
        18
              0
                              1
                                   1
                                         0
                                                   0
                                                             40.6
                                                                       10
                                                                               0
                                                                                     0
                    1
                         1
                                              1
                                                             42.0
                                                                                     0
## 19
        19
              0
                    1
                         1
                              1
                                   0
                                         0
                                              1
                                                   1
                                                                        10
                                                                               0
## 20
        20
              1
                    1
                         1
                              1
                                    1
                                         1
                                              0
                                                   1
                                                             42.3
                                                                       10
                                                                               0
                                                                                     0
##
      Fire3 Fire4 Fire5 Fire6 Fire7 Fire8
                       0
                             0
                                    1
## 1
          1
                1
                                          1
## 2
          1
                1
                       0
                             0
                                    1
## 3
                       0
                             0
                                   1
          1
                                          1
                1
## 4
          1
                1
                       0
                             0
                                   1
                                          1
## 5
          1
                1
                       0
                             0
                                   1
                                          1
## 6
          1
                1
                       0
                             0
                                   1
                                          1
                       0
## 7
                             0
                                   1
          1
                1
                                          1
## 8
                       0
                             0
                                   1
          1
                1
                                          1
## 9
                       0
          1
                1
                             0
                                   1
                                          1
## 10
          1
                1
                       0
                             0
                                   1
                                          1
## 11
                       0
                             0
          1
                1
                                   1
                                          1
## 12
                       0
                             0
                                   1
          1
                1
                                          1
## 13
                       0
          1
                1
                             0
                                   1
                                          1
                       0
## 14
          1
                1
                             0
                                   1
                                          1
## 15
          1
                1
                       0
                             0
                                   1
                                          1
## 16
          1
                1
                       0
                             0
                                   1
                                          1
## 17
          1
                1
                       0
                             0
                                   1
                                          1
## 18
                       0
                             0
                                   1
          1
                1
                                          1
## 19
          1
                1
                       0
                             0
                                   1
                                          1
## 20
          1
                1
                       0
                             0
                                   1
                                          1
```

#Separate detection history

```
y=opossum[,2:9]
y
```

```
det1 det2 det3 det4 det5 det6 det7 det8
## 1
         0
              0
                    1
                        NA
                             NA
                                   0
                                        0
                                              0
## 2
         0
              0
                   0
                         0
                              0
                                   0
                                        0
                                              0
## 3
         1
              0
                   1
                         0
                             NA
                                   1
                                        0
                                             NA
## 4
         0
              1
                  NA
                         0
                             1
                                   1
                                        0
                                             1
## 5
              0
         0
                   0
                         0
                              0
                                   1
                                        1
                                              0
```

```
## 6
         1
               0
                    1
                          1
                               0
                                    0
                                          0
                                               1
## 7
                                               1
         0
               1
                    1
                          0
                               0
                                    1
                                         NA
## 8
               0
                    0
                              NA
                                    0
                                          0
                                              NA
## 9
         0
               0
                               0
                                          1
                                               1
                    1
                                    1
                          1
## 10
         1
               1
                    1
                         0
                               1
                                    1
                                          1
                                               1
## 11
         0
              1
                    0
                        NA
                               0
                                    0
                                          0
                                               1
## 12
         0
              0
                    1
                         0
                               1
                                    0
                                          1
                                               0
## 13
               0
                          0
                               0
                                    0
                                          0
         1
                    0
                                               1
## 14
         0
              1
                    1
                         1
                               1
                                    0
                                          1
                                               0
## 15
         1
              0
                    0
                          0
                               0
                                    1
                                          0
                                               1
## 16
         0
            1
                    1
                         1
                               1
                                    1
                                          1
                                               0
## 17
         1
               1
                    1
                         0
                               0
                                    1
                                          1
                                               1
## 18
         0
               1
                    1
                               1
                                    0
                                          1
                                               0
                         1
## 19
         0
               1
                    1
                          1
                               0
                                    0
                                         1
                                               1
## 20
         1
               1
                    1
                          1
                               1
                                    1
                                          0
                                               1
```

```
\#Organise\ co-variates
```

```
siteCovs = data.frame(Temperature=opossum$Temperature, Habitat=opossum$Habitat)
obsCovs = data.frame(opossum[,12:19])
obsCovs = list(obsCovs=obsCovs)
siteCovs
```

```
##
      Temperature Habitat
## 1
             13.0
## 2
             13.0
                         2
## 3
             15.0
                         2
## 4
             16.0
                         4
## 5
             18.0
                         5
## 6
             20.0
                         6
## 7
                         7
             21.0
## 8
             21.0
                         7
## 9
                         7
             21.0
## 10
             23.0
                         8
## 11
             25.0
                         8
## 12
             26.0
                         9
## 13
             29.0
                         9
## 14
             31.0
                         9
             35.0
## 15
                         9
## 16
             37.0
                         9
## 17
             38.0
                        10
                        10
## 18
             40.6
## 19
             42.0
                        10
## 20
             42.3
                        10
```

obsCovs

```
## $obsCovs
##
      Fire1 Fire2 Fire3 Fire4 Fire5 Fire6 Fire7 Fire8
## 1
          0
                 0
                        1
                              1
                                     0
                                           0
                                                  1
                                                         1
## 2
                                     0
                                           0
          0
                 0
                        1
                              1
                                                  1
                                                         1
## 3
           0
                 0
                        1
                              1
                                     0
                                           0
                                                  1
                                                         1
## 4
          0
                 0
                        1
                              1
                                     0
                                           0
                                                  1
                                                         1
```

```
## 5
                     1
                          0
## 6
       0
            0
                1
                     1
                          0
                              0
                                   1
## 7
            0
                1
                     1
                          0
                              0
## 8
       0
            0
                1
                     1
                          0
                              0
                                   1
                                        1
## 9
       0
            0
                1
                     1
                          0
                              0
                                   1
## 10
       0
            0
                1
                     1
                          0
                              0
                                   1
                                        1
## 11
       0
           0
                1
                          0
                              0
                                  1
                                        1
## 12
       0
           0
                     1
                          0
                              0
                1
                                   1
                                        1
## 13
       0
           0
                1
                     1
                          0
                              0
                                   1
                                        1
                          0
## 14
       0
           0
                              0
                1
                     1
                                   1
                                        1
## 15
       0
                1
                     1
                              0
                                  1
## 16
           0
                          0
                              0
       0
                1
                     1
                                   1
                                        1
                             0
## 17
       0
           0
                1
                         0
                     1
                                   1
                                        1
            0
                         0 0
## 18
       0
                1
                    1
                                  1
## 19
       0
            0
                1
                     1
                          0
                              0
                                   1
                                        1
## 20
       0
            0
                1
                     1
                          0
                              0
                                   1
                                        1
```

```
#Organise data using UMF
umf = unmarkedFrameOccu(y = y, siteCovs = siteCovs, obsCovs = obsCovs)
summary(umf)
## unmarkedFrame Object
##
## 20 sites
## Maximum number of observations per site: 8
## Mean number of observations per site: 7.55
## Sites with at least one detection: 19
##
## Tabulation of y observations:
         1 <NA>
##
    0
##
    75
       76
##
## Site-level covariates:
##
    Temperature
                  Habitat
## Min.
         :13.00 Min.
                        : 2.00
## 1st Qu.:19.50 1st Qu.: 5.75
## Median: 24.00 Median: 8.00
## Mean :26.34 Mean : 7.15
## 3rd Qu.:35.50 3rd Qu.: 9.00
## Max. :42.30 Max. :10.00
##
## Observation-level covariates:
##
      obsCovs
## Min. :0.0
## 1st Qu.:0.0
## Median :0.5
## Mean :0.5
## 3rd Qu.:1.0
## Max. :1.0
```

#Standardise the covariates

```
umf@siteCovs$Temperature = scale(umf@siteCovs$Temperature)
umf@siteCovs$Habitat = scale(umf@siteCovs$Habitat)
umf@obsCovs$obsCovs = scale(umf@obsCovs$obsCovs)
```

Create the models

```
#Model 1 - no covariates
model1 = occu(formula = ~1 ~1, data = umf)
model1
##
## Call:
## occu(formula = ~1 ~ 1, data = umf)
## Occupancy:
## Estimate SE
                    z P(>|z|)
       2.99 1.08 2.78 0.00537
##
## Detection:
## Estimate
              SE
                     z P(>|z|)
      0.121 0.169 0.713 0.476
##
##
## AIC: 209.5245
#backtransform from LOGIT scale
backTransform(model1, type="det") #(detection probability, p = 0.530)
## Backtransformed linear combination(s) of Detection estimate(s)
##
## Estimate
                SE LinComb (Intercept)
##
       0.53 0.0422 0.121
## Transformation: logistic
backTransform(model1, type="state") #(occupancy probability, p = 0.952)
## Backtransformed linear combination(s) of Occupancy estimate(s)
##
## Estimate
                SE LinComb (Intercept)
##
      0.952 0.0489 2.99
## Transformation: logistic
```

```
#Model 2 - No detection covariate, occupancy covariate of average yearly temperature ('Temperature')
model2 = occu(formula = ~1 ~Temperature, data = umf)
model2
##
## Call:
## occu(formula = ~1 ~ Temperature, data = umf)
##
## Occupancy:
##
              Estimate SE z P(>|z|)
                  32.4 70.6 0.459
## (Intercept)
                                   0.646
                  24.0 52.4 0.458
                                   0.647
## Temperature
##
## Detection:
## Estimate
             SE
                   z P(>|z|)
##
      0.126 0.168 0.751 0.453
## AIC: 206.4578
backTransform(model2, type="det") #(detection probability, p = 0.531)
## Backtransformed linear combination(s) of Detection estimate(s)
##
##
  Estimate
                SE LinComb (Intercept)
      0.531 0.0418
##
                    0.126
## Transformation: logistic
lincombA1 = linearComb(model2, coefficients = c(1,0), type = "state")
backTransform(lincombA1) #(occupancy probability (low temperature), p = 1)
## Backtransformed linear combination(s) of Occupancy estimate(s)
## Estimate
                  SE LinComb (Intercept) Temperature
          1 5.74e-13
##
## Transformation: logistic
lincombB1 = linearComb(model2, coefficients = c(1,1), type = "state")
backTransform(lincombB1) #(occupancy probability (high temperature), p = 1)
## Backtransformed linear combination(s) of Occupancy estimate(s)
##
## Estimate
                  SE LinComb (Intercept) Temperature
##
          1 3.71e-23 56.5
                                       1
## Transformation: logistic
```

```
#Model 3 - No detection covatiate, occupancy covariate of habitat quality ('Habitat')
model3 = occu(formula = ~1 ~Habitat, data = umf)
model3
##
## Call:
## occu(formula = ~1 ~ Habitat, data = umf)
##
## Occupancy:
              Estimate SE
                              z P(>|z|)
## (Intercept) 17.27 87.1 0.198
                                   0.843
                 8.93 47.0 0.190
                                   0.849
## Habitat
##
## Detection:
## Estimate
             SE z P(>|z|)
##
      0.125 0.168 0.748 0.454
## AIC: 207.4847
backTransform(model3, type="det") #(detection probability, p = 0.531)
## Backtransformed linear combination(s) of Detection estimate(s)
##
## Estimate
                SE LinComb (Intercept)
      0.531 0.0418
##
                    0.125
## Transformation: logistic
lincombA2 = linearComb(model3, coefficients = c(1,0), type = "state")
backTransform(lincombA2) #(occupancy probability (low habitat quality), p = 1)
## Backtransformed linear combination(s) of Occupancy estimate(s)
## Estimate
                  SE LinComb (Intercept) Habitat
          1 2.76e-06
##
## Transformation: logistic
lincombB2 = linearComb(model3, coefficients = c(1,1), type = "state")
backTransform(lincombB2) #(occupancy probability (high habitat quality), p = 1)
## Backtransformed linear combination(s) of Occupancy estimate(s)
##
## Estimate
                  SE LinComb (Intercept) Habitat
##
          1 5.61e-10 26.2
                                      1
## Transformation: logistic
```

```
#Model 4 - detection covariate of occurence of fire ('obsCovs'), no occupancy covariate
model4 = occu(formula = ~ obsCovs
                       ~ 1,
             data = umf)
model4
##
## Call:
## occu(formula = ~obsCovs ~ 1, data = umf)
##
## Occupancy:
## Estimate SE
                  z P(>|z|)
       2.99 1.07 2.79 0.00527
##
##
## Detection:
##
              Estimate SE z P(>|z|)
## (Intercept) 0.127 0.170 0.745 0.456
                 0.214 0.169 1.268 0.205
## obsCovs
## AIC: 209.9069
lincombA3 = linearComb(model4, coefficients = c(1,0), type = "det")
backTransform(lincombA3) #(detection probability (no fire), p = 0.532)
## Backtransformed linear combination(s) of Detection estimate(s)
##
## Estimate
                SE LinComb (Intercept) obsCovs
      0.532 0.0424
                    0.127
##
##
## Transformation: logistic
lincombB3 = linearComb(model4, coefficients = c(1,1), type = "det")
backTransform(lincombB3) #(detection probability (fire), p = 0.584)
## Backtransformed linear combination(s) of Detection estimate(s)
##
                SE LinComb (Intercept) obsCovs
## Estimate
##
      0.584 0.0593 0.341
##
## Transformation: logistic
backTransform(model4, type="state") #(occupancy probability, p = 0.952)
## Backtransformed linear combination(s) of Occupancy estimate(s)
##
## Estimate
                SE LinComb (Intercept)
##
      0.952 0.0489 2.99
## Transformation: logistic
```

Compare models 1, 2, 3 and 4 using AIC

```
## psi(Temperature)p(.) 3 206.46 0.00 0.502 0.50  
## psi(Habitat)p(.) 3 207.48 1.03 0.300 0.80  
## psi(.)p(.) 2 209.52 3.07 0.108 0.91  
## psi(.)p(obsCovs) 3 209.91 3.45 0.089 1.00
```

Q2 Conclusion Part 1

- The best models are Models 2 and 3:
 - Model 2 AIC = 206.46 No detection covariate, occupancy covariate of average yearly temperature ('Temperature')
 - Model 3 AIC = 207.48 No detection covatiate, occupancy covariate of habitat quality ('Habitat')
- Cannot determine which of Models 2 and 3 are more suitable, as they are within +/- 2 AIC of each other

Q2 Conclusion Part 2

• Hypotheses:

- Hypothesis 1 Opossum occupancy increases with average yearly temperature
 - * tested by Model 2 hypothesis **is not** supported as occupancy probability was 1 (did not vary) for both low and high average yearly temperatures.
- Hypothesis 2 Opossum occupancy does not vary with habitat quality
 - * tested by Model 3 hypothesis is supported as occupany probability was 1 (did not vary) for low and high habitat quality
- Hypothesis 3 Opossum detection probability increases with occurrence of fire
 - \ast tested by Model 4 hypothesis is supported as detection probability was 0.532 when there was no fire, but it was 0.584 (increased) when there was fire

Question 3: Interpret the obtained (back transformed) values of the estimates for occupancy and detection probability from the best ranked model(s)

The best ranked models:

• Model 2:

- Occupancy probability was 1 for low and high average yearly temperatures. This shows that **these data** suggest that temperature (within the 13C to 42.3C range) does not influence Opossum occupation, the probability of occupation is the same (1) for all temperatures
- Detection probability was 0.531. This gives the probability of detecting an individual in that study (53.1%) given that that individual does occupy the region being studied.

• Model 3:

- Occupancy probability was 1 for all habitat quality. This shows that **these data** suggest that habitat quality does not influence Opossum occupation, as the probability of occupation is the same (1) for all habitat qualities
- Detection probability was 0.531. This gives the probability of detecting an individual in that study (53.1%) given that that individual does occupy the region being studied.

Question 4: Use the dodo data file. Add the habitat quality covariate. Build a set of single-season models to test the validity of the following hypotheses:

- Dodo's occupancy probability is constant while detection probability varies with habitat quality
- Dodo's occupancy probability varies with habitat quality and detection probability varies with occurrence of flood

Plan - Models to build:

Model A: constant occupancy probability (~1), but detection probability has habitat quality covariate Model B: occupancy probability has habitat quality covariate and detection probability has flood covariate

• Compare Model A and Model B using AIC

Prepare Dodo data

```
# Load edited dodo data

dodo_edit = read.csv("Dodo_data_edited.csv")
dodo_edit
```

##		Site	det1	det2	det3	det4	det5	det6	det7	det8	det9	Sun	${\tt Habitat}$	Flood1	Flood2
##	1	1	0	0	1	NA	NA	0	0	0	0	11	2	0	0
##	2	2	0	0	0	0	0	0	0	0	0	21	4	0	0
##	3	3	2	0	1	0	NA	2	0	NA	1	32	6	0	0
##	4	4	0	3	NA	0	3	0	0	2	2	43	3	0	0
##	5	5	0	0	0	0	0	0	2	0	1	54	7	0	0
##	6	6	4	0	2	4	0	0	0	0	2	65	8	0	0
##	7	7	0	2	4	0	0	3	NA	0	0	76	9	0	0

```
## 8
                                2
                                    NA
                                                            0
                                                               87
                                                                         9
                                                                                 0
                                                                                         0
         8
                         NA
                                           0
                                                     NA
## 9
                     4
                          5
                                3
                                     0
                                                      2
                                                               88
                                                                        10
                                                                                 0
                                                                                         0
         9
               6
                                           0
                                                 0
                                                            0
## 10
        10
                     5
                                0
                                      4
                                                      0
                                                               98
                                                                        10
                                                                                 0
                                                                                         0
                          6
                                           0
##
      Flood3 Flood4 Flood5 Flood6 Flood7 Flood8 Flood9
## 1
            0
                    1
                           1
                                   1
                                           0
                                                   0
## 2
            0
                    1
                           1
                                   1
                                           0
                                                   0
                                                           0
## 3
            0
                    1
                           1
                                   1
                                           0
                                                   0
                                                           0
## 4
            0
                                           0
                                                   0
                                                           0
                    1
                           1
                                   1
## 5
            0
                   1
                           1
                                   1
                                           0
                                                   0
## 6
            0
                   1
                           1
                                   1
                                           0
                                                   0
                                                           0
## 7
            0
                   1
                           1
                                   1
                                           0
                                                   0
                                                           0
## 8
            0
                    1
                           1
                                   1
                                           0
                                                   0
                                                           0
## 9
            0
                    1
                           1
                                   1
                                           0
                                                   0
                                                           0
                                                           0
## 10
            0
                    1
                           1
                                   1
                                           0
                                                   0
```

```
#Separate detection histories

y=dodo_edit[,2:10]
y[y>1]=1
y
```

```
##
      det1 det2 det3 det4 det5 det6 det7 det8 det9
## 1
                                    0
         0
              0
                    1
                        NA
                              NA
                                         0
                                               0
## 2
         0
              0
                    0
                         0
                              0
                                    0
                                         0
                                               0
                                                    0
## 3
         1
              0
                    1
                         0
                              NA
                                    1
                                         0
                                              NA
                                                    1
## 4
         0
                   NA
                              1
                                    0
                                                    1
## 5
         0
              0
                              0
                                    0
                    0
                         0
                                         1
                                               0
                                                    1
## 6
              0
                              0
         1
                    1
                         1
                                    0
                                         0
                                              0
                                                    1
## 7
         0
              1
                    1
                         0
                              0
                                    1
                                        NA
                                              0
                                                    0
## 8
                                    0
         1
                   NA
                         1
                             NA
                                       0
                                              NA
                                                    0
## 9
                              0
                                         0
         1
              1
                    1
                                    0
                                               1
                                                    0
                         1
## 10
                         0
```

```
#Organise covariates
siteCovs = data.frame(Habitat=dodo_edit$Habitat, Sun=dodo_edit$Sun)
obsCovs = data.frame(dodo_edit[,13:21])
obsCovs = list(obsCovs=obsCovs)
siteCovs
```

```
##
     Habitat Sun
## 1
           2 11
## 2
           4 21
## 3
           6 32
## 4
           3 43
           7 54
## 5
## 6
           8 65
## 7
           9 76
## 8
           9
              87
## 9
          10 88
## 10
          10 98
```

```
## $obsCovs
     Flood1 Flood2 Flood3 Flood4 Flood5 Flood6 Flood7 Flood8 Flood9
## 1
                 0
                        0
                               1
                                      1
                                            1
## 2
          0
                 0
                        0
                               1
                                      1
                                            1
                                                   0
                                                          0
                                                                 0
## 3
          0
                 0
                        0
                              1
                                      1
                                            1
                                                   0
                                                          0
                                                                 0
## 4
          0
                 0
                        0
                              1
                                      1
                                            1
                                                   0
                                                          0
                                                                 0
## 5
          0
                 0
                        0
                              1
                                      1
                                            1
                                                   0
                                                          0
                                                                 0
## 6
          0
               0
                        0
                              1
                                      1
                                            1
                                                   0
                                                          0
                                                                 0
## 7
          0
                 0
                        0
                                            1
                                                                 0
## 8
          0
                 0
                        0
                                                   0
                                                                 0
                               1
                                     1
                                            1
                                                          0
## 9
          0
                 0
                        0
                               1
                                     1
                                            1
                                                   0
                                                          0
                                                                 0
## 10
                        0
                                                                 0
          0
                 0
                               1
                                      1
                                            1
#Organise data using UMF
dodo_umf = unmarkedFrameOccu(y=y, siteCovs=siteCovs, obsCovs=obsCovs)
summary(dodo_umf)
## unmarkedFrame Object
##
## 10 sites
## Maximum number of observations per site: 9
## Mean number of observations per site: 8.1
## Sites with at least one detection: 9
## Tabulation of y observations:
##
     0
         1 <NA>
##
    50
         31
##
## Site-level covariates:
##
      Habitat
                       Sun
## Min. : 2.0 Min. :11.00
## 1st Qu.: 4.5 1st Qu.:34.75
## Median : 7.5
                 Median :59.50
## Mean : 6.8 Mean :57.50
## 3rd Qu.: 9.0
                 3rd Qu.:84.25
## Max. :10.0 Max.
                         :98.00
##
## Observation-level covariates:
      obsCovs
         :0.0000
## Min.
## 1st Qu.:0.0000
## Median :0.0000
## Mean :0.3333
##
   3rd Qu.:1.0000
## Max.
         :1.0000
#Standardise covariates
```

dodo_umf@siteCovs\$Habitat = scale(dodo_umf@siteCovs\$Habitat)

```
dodo_umf@siteCovs$Sun = scale(dodo_umf@siteCovs$Sun)
dodo_umf@obsCovs$obsCovs = scale(dodo_umf@obsCovs$obsCovs)
```

Create models

ModelA - constant occupancy probability (~1), but detection probability has habitat quality covariate

```
modelA = occu(formula = ~ Habitat
              data = dodo_umf)
modelA
##
## Call:
## occu(formula = ~Habitat ~ 1, data = dodo_umf)
##
## Occupancy:
  Estimate SE
                     z P(>|z|)
##
##
        2.6 1.67 1.56 0.119
##
## Detection:
                                  z P(>|z|)
              Estimate
                           SE
## (Intercept) -0.401 0.283 -1.41 0.157
                 0.392 0.313 1.25 0.210
## Habitat
##
## AIC: 108.9789
lincombA4 = linearComb(modelA, coefficients = c(1,0), type = "det")
backTransform(lincombA4) #when there is low quality habitat (detection probability, p = 0.401)
## Backtransformed linear combination(s) of Detection estimate(s)
##
                 SE LinComb (Intercept) Habitat
##
   Estimate
##
      0.401 0.0681 -0.401
                                      1
## Transformation: logistic
lincombB4 = linearComb(modelA, coefficients = c(1,1), type = "det")
backTransform(lincombB4) #when there is high quality habitat (detection probability, p = 0.498)
## Backtransformed linear combination(s) of Detection estimate(s)
##
##
   Estimate
                SE LinComb (Intercept) Habitat
      0.498 0.0808 -0.00876
##
                                       1
                                               1
## Transformation: logistic
```

```
backTransform(modelA, type="state") #(occupancy probability, p = 0.931)
## Backtransformed linear combination(s) of Occupancy estimate(s)
##
##
   Estimate
                SE LinComb (Intercept)
##
       0.931 0.108
                       2.6
##
## Transformation: logistic
Detection Probability (low quality habitat) = 0.401
Detection Probability (high quality habitat) = 0.498
Occupancy Probability = 0.931
Model B - occupancy probability has habitat covariate and detection probability has flood covariate
modelB = occu(formula = ~ obsCovs
                         ~ Habitat,
              data = dodo_umf)
modelB
##
## Call:
## occu(formula = ~obsCovs ~ Habitat, data = dodo_umf)
## Occupancy:
##
               Estimate
                          SE
                                  z P(>|z|)
## (Intercept)
                   2.79 1.65 1.691 0.0907
## Habitat
                   1.25 1.38 0.906 0.3651
##
## Detection:
               Estimate
                           SE
                                  z P(>|z|)
## (Intercept) -0.309 0.246 -1.26 0.208
## obsCovs
                 -0.372 0.254 -1.47
##
## AIC: 109.5019
lincombA5 = linearComb(modelB, coefficients = c(1,0), type = "det")
backTransform(lincombA5) #when there is no flood (detection probability, p =0.423)
## Backtransformed linear combination(s) of Detection estimate(s)
##
##
    Estimate
               SE LinComb (Intercept) obsCovs
##
       0.423 0.06 -0.309
##
## Transformation: logistic
lincombB5 = linearComb(modelB, coefficients = c(1,1), type = "det")
backTransform(lincombB5) #when there is flood (detection probability, p = 0.336)
```

```
## Backtransformed linear combination(s) of Detection estimate(s)
##
##
                 SE LinComb (Intercept) obsCovs
       0.336 0.0828 -0.681
##
##
## Transformation: logistic
lincombC5 = linearComb(modelB, coefficients = c(1,0), type = "state")
backTransform(lincombC5) #when there low habitat (occupation probability, p =0.942)
## Backtransformed linear combination(s) of Occupancy estimate(s)
##
                 SE LinComb (Intercept) Habitat
##
    Estimate
##
       0.942 0.0897
##
## Transformation: logistic
lincombD5 = linearComb(modelB, coefficients = c(1,1), type = "state")
backTransform(lincombD5) #when there high habitat (occupation probability, p = 0.983)
## Backtransformed linear combination(s) of Occupancy estimate(s)
##
##
    Estimate
                 SE LinComb (Intercept) Habitat
       0.983 0.0474
##
                        4.05
                                       1
##
## Transformation: logistic
detection probability (no flood) - 0.423
detection probability (with flood) - 0.336
occupation probability (low habitat quality) - 0.942
occupation probability (high habitat quality) - 0.983
fit = fitList('psi(.)p(Habitat)' = modelA,
               'psi(Habitat)p(obsCovs)' = modelB)
modSel(fit)
##
                           nPars
                                    AIC delta AICwt cumltvWt
## psi(.)p(Habitat)
                               3 108.98 0.00 0.56
                                                         0.56
## psi(Habitat)p(obsCovs)
                                                         1.00
                               4 109.50 0.52 0.44
```

Question 4 Conclusions:

• No significant difference of fit for Models A and B, as AIC scores are within +-2 of each other

Model A: Model A shows that quality of habitat increases detection probability

• Detection Probability (low quality habitat) = 0.401

- Detection Probability (high quality habitat) = 0.498
- Occupancy Probability = 0.931

Model B: Model B shows that prescence of flood decreases detection probability and quality of habitat increases occupation probability

- detection probability (no flood) = 0.423
- detection probability (with flood) = 0.336
- occupation probability (low habitat quality) = 0.942
- occupation probability (high habitat quality) = 0.983

16

Question 5: Build a single-season model to investigate the validity that the occurrence of flood might affect dodo's occupancy probability

Create model

Model C: detection probability covariate (~1) and occupation covariate (obsCovs)

Code chunk causes error.

Why do you get an error?

You get an error as occurence of flood cannot be applied as an occupancy covariate, because the single-season imperfect detection model assumes that occupancy of a region does not vary within a season. So as the flood covariate varies within the season it causes an error as the model assumes that occupancy of a region cannot change within a season, but the flood covariate would only operate to show how occupancy probability changes within a season - this therefore opposes the model's assumptions and causes the error.