a)	The largest value that a 60-bit unsigned binary integer can represent is $\underline{}^{2^{60}}$ -1 = 1.1529215e+18
b)	How many bits are required to address a 4M x 16 main memory If the memory is
	Byte addressable: There are 4M x 2 bytes which equals 2^2 x 2^{20} x $2 = 2^{23}$; so 23 bits are needed
	Word addressable: There are 4M words, which equals $2^2 \times 2^{20} = 2^{22}$; so 22 bits are needed
c)	Let's assume that register ECX contains the following 32 bit number represented in hexadecimal B876508Eh. The programmer writes the byte 6Ah into register CH. What is the new value of ECXB8766A8E
d)	
	.data
	myWord WORD 1000h
	myDword DWORD 10000000h
	.code
	inc myWord dec myWord inc myDword mov ax,00FFh inc ax mov ax,00FFh inc al

what is the value of AX: _____0000h___

```
e)
     .data
          myByte BYTE OFFh, 0
     .code
          mov al myByte
          mov ah, [myByte+1]
          dec ah
          inc al
          dec ax
     what is the value of AX:
                             FEFEh
f)
   .data
          valB BYTE -1
          valW WORD +32767
     .code
          mov alevalB
          neg al
          neg valW
     what is the value of yalW: -32767
```

Page 2 of 19

National University of Computer and Emerging Sciences

FAST School of Computing

Fall-2022

Islamabad Campus

g) For the following instruction

mov bl,10001111b

what is the value of AX: 11111111 10001111

- h) The decimal number (0100)₁₀ in hexadecimal number system can be written as **0100h or 0000 0001 0000 0000**
- i) $(EF)_{16} + (11)_{10} = (239)_{10} + (11)_{10} = (250)_{10}$ or $(EF)_{16} + (B)_{16} = (FA)_{16}$
- k) For the binary number 1000, the weight of the column with the 1 is _____8___

```
start:sbn temp,temp,.+1  # Sets temp to zero
sbn temp,a,.+1  # Sets temp to -a
sbn b,b,.+1  # Sets b to zero
sbn b,temp,.+1  # Sets b to -temp, which is a
```

National University of Computer and Emerging Sciences FAST School of Computing Islamabud Campus Fall-2022 Question 5 [25 Marks] One line Answer for the following questions is required, write to the point answers otherwise negative marking would be done for detailed/extra information. a). When we copy a block of data from main memory to the cache, where exactly should we put 117 The lowest k bits of the address specify a cache block. — The upper (m - k) address bits are stored in the block's tag field. — The data from main memory is stored in the block's data b) How can we tell if a word is already in the cache, or if it has to be fetched from main memor The tags contain the address information required to identify whether a word in the cache corresponds to the requested word. c) Eventually, the small cache memory might fill up. To load a new block from main RAM, we' have to replace one of the existing blocks in the cache, which one? Based on highest LRU factor or mod procedures (1 mar d) How can write operations be handled by the memory system? Memory write operation transfers the address of the desired word to the address lines, transfers the data bits to be stored in memory to the data Figure 1: Question 5 reference input lines. Then it activates the write control line. e) For the addresses below, what byte is read from the cache (or is there a miss?? [2 marks] Mandatory: Fill the given block for required address distribution (offset, tag, block/set no) HIT 1, 1010 ____ 1110 MISS 0001 _ HIT 1101 MISS Index Offset Tag 1 bits 2 bits 1 bits Address 0000 f) If we have a direct mapped cache and memory as below, what 0001 happens if a program uses addresses 2, 6, 2, 6, 2, for 1 byte block 0010 0011 0100 [2 marks] size data? 0101 0111 1000 1001 1013 2,miss 6,miss 2,miss 6, miss 2 miss 1100 1101 1110 Page 9 of 19

considering the pr	of Computing	nemory and	-2022 addresse	s, what hap	slamabad opened if w	e have a full	y-
associative cache?						- 12	marks]
	2 mine 6	miss 2,hit	6 14 21		-7 3	made	
we might put mer							
subsequent rep	peated accesses to	o 2 and 6 v	vould all	be hits in:	stead of m	sses	
100					9 9	- Water &	
 h) Where would data designed, with 16 b 		te address (6195 be p	laced, assi	uming the e	right-block o	acne 3 marks]
	the 1-way cache:	set index	01		(1)		
• For	the 2-way cache:	set index _	11		(1)		
• For	the 4-way cache:	set index _	1	— (1)		
ason/Explanation:							
6195 in binary is 00	0110000 011 00	11 4 Fac	ch block	has 16 by	tes, so the	lowest 4 b	oits are
the block offset. + For	r the 1-way cack	ne, the nex	t three b	its (011)	are the set	index. For	r the 2-
way cache, the next tw	wo bits (11) are t	the set ind	ex. For t	he 4-way	cache, the	e next one	bit (1)
is the set index.							
i) Assume a number o	of cache lines, eac	h holding	16 bytes.	Assume	a 24-bit ac	Idress. The	simplest
arrangement is an a	associative cache	would be	4				2 marks]
	Bits						
	Fields	Tag		Offset			
		20 1144		1 hit off	nt.		
de the 24-bit address i	nto two parts: a	20-bit ta	g and a	+ Dit ons	CL.		
	Bits	23 -	4	3-0			
	Bits Fields	23 - Tag	4	3 – 0 Offset			
			4				
	Fields	Tag	0	Offset	3	D).	
Assume 256 cache lii	Fields	Tag	0	Offset	t address.	The simple	st arrang
Assume 256 cache lii is an direct mapped	Fields	Tag	0	Offset	address	The simple	st arrang
is an direct mapped	Fields	Tag	Assum	Offset		The simple	[3 ma
is an direct mapped e View	Fields	Tag	Assum Tag	Offset e a 24-bit	Line	The simple	st arrang [3 ma Offset
is an direct mapped	Fields	Tag	Assum Tag	Offset		The simple	[3 ma
is an direct mapped e View ory Address View	Fields nes, each holding cache would be	Tag	Assum Tag	Offset e a 24-bit	Line	The simple	[3 ma
is an direct mapped e View	Fields nes, each holding cache would be	Tag	Assum Tag	Offset e a 24-bit	Line	The simple	[3 ma
is an direct mapped e View ory Address View that 256 = 28, so that	Fields nes, each holding cache would be we need eight	Tag g 16 bytes	Tag	Offset e a 24-bit	Line ne.	8	Offset
e View ory Address View that 256 = 28, so that the 24-bit address in	rields nes, each holding cache would be we need eight ato three fields:	g 16 bytes	Tag	e a 24-bit	Line ne. 8-bit line	8 number,	Offset 4 and a 4
is an direct mapped e View ory Address View that 256 = 28, so that	rields nes, each holding cache would be we need eight ato three fields:	g 16 bytes	Tag	e a 24-bit	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	g 16 bytes	Tag	e a 24-bit	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	g 16 bytes	Tag	e a 24-bit	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	bits to se a 12-bit m	Tag	e a 24-bit cache lin t tag, an	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	bits to se a 12-bit m	Tag elect the explicit emory t	e a 24-bit cache lin t tag, an	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	bits to se a 12-bit m	Tag elect the explicit emory t	e a 24-bit cache lin t tag, an	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	bits to se a 12-bit m	Tag elect the explicit emory t	e a 24-bit cache lin t tag, an	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	bits to se a 12-bit m	Tag elect the explicit emory t	e a 24-bit cache lin t tag, an	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	bits to se a 12-bit m	Tag elect the explicit emory t	e a 24-bit cache lin t tag, an	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	bits to se a 12-bit m	Tag elect the explicit emory t	e a 24-bit cache lin t tag, an	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	bits to se a 12-bit m	Tag elect the explicit emory t	e a 24-bit cache lin t tag, an	Line ne. 8-bit line	8 number,	Offset 4 and a 4
e View ory Address View that 256 = 28, so that the 24-bit address in within the cache line.	rields nes, each holding cache would be we need eight ato three fields:	bits to se a 12-bit m	Tag elect the explicit emory t	e a 24-bit cache lin t tag, an	Line ne. 8-bit line	8 number,	Offset 4 and a 4

National University of Computer and Emerging Sciences

School of Comp	oting Fall-	2022	Islamabad Campu	i
Bits	23-12	11-4	3-0	
Cache View	Tag	Line	Offict	ı
Address View	Block Numb	HITE	Offset	

- N). Consider the address 0xAB7129. From the above cache/memory view R would have
 - 1. Tag
 - 2. Line:
 - 3. Offset:

Suppose a 2-way set-associative implementation of the same cache memory. Again assume 256 cache lines, each holding 16 bytes. Assume a 24-bit address. Following information is required based on spatial and temporal locality principals.

[5 marks]

- *: :Togg::
- . Line
- Offset:

Consider addresses:

- 1. 0xCD4128
- 2. 0xAB7129

Attempt => 2/1

==			Entry 0				Contents
)	IV	Tag	Contents	D	V	Tag	Contents
-	-	1.00					
						1	
		1					
		1					- 1

Recall that 256 = 28, so that we need eight bits to select the cache line.

Consider addresses 0xCD4128 and 0xAB7129. Each would be stored in cache line 0x12. Set 0 of this cache line would have one block, and set 1 would have the other

Entry 0		Entry 1					
D	Tv	Tag	Contents	D	V	Tag	Contents
1	1	0xCD4	M[0xCD4120] to M[0xCD412F]	0	1	0xAB7	M[0xAB7120] to M[0xAB712F]

i) Let's examine the sample address in terms of the bit divisions below.

[2 marks]

The Address 0xA87129

Bits	23 - 4	3-0
Fields	Tag	Offset

Bits:	23-20	19-16	15 - 12	11-8	7-4	3-0
Hex Digit						
Field (hex values)						-
LICIA (HEX SHIPES)						

National University of Computer and Emerging Sciences

FAST School of Computing

Fall-2022

Islamabad Campus

Bits:	23 - 20	19 - 16	15-12	11-8	7-4	3-0
Hex Digit	A	В	7	1	2	9
Field			0xAB712			0x09

Ouestion 6 [10 Marks]

Assume direct mapped caches.

[5 marks]

- 1. Assume that memory block 0xAB712 is present in cache line 0x12.
- 2. We now get a memory reference to address 0x895123. This is found in memory block 0x89512, which must be placed in cache line 0x12.
- Two bonus marks will be given based on writing favorite point of this paper page 1.
- 4. What steps would holds for each of a memory read from or memory write to 0x895123.
- 1. The valid bit for eache line 0x12 is examined. If (Valid = 0) go to Step 5
 - 2. The memory tag for eache line 0x12 is examined and compared to the desired. To tag 0x895. If (Cache Tag = 0x895) go to Step 6.
 - 3. The cache tag does not hold the required value. Check the dirty bit. If (Dirty = 0) go to Step 5.
 - 4. Here, we have (Dirty = 1). Write the cache line back to memory block 0xAB712
 - Read memory block 0x89512 into cache line 0x12. Set Valid = 1 and Dirty = 0.
 - 6. With the desired block in the cache line, perform the memory operation.

sider variations of mappings to store 256 memory blocks

[5 marks]

ebrics	Direct Mapped Cache	256 cache lines	256 Sets
	1-Way Set Associative	256 cache lines (fill below accordingly)	256 sets (fill below accordingly)
e mark	2-Way Set Associative		
51	4-Way Set Associative		
ract	8-Way Set Associative		
rect	16-Way Set Associative		
-	32-Way Set Associative		
	64-Way Set Associative		

last two invalid values - any one invalid value

National University of Computer and Emerging Sciences Fall-2022 Islamabad Campus FAST School of Computing 128-Way Set Associative 256-Way Set Associative Fully Associative 256 cache lines Direct Mapped Cache Fact per line 256 cache lines "I-Way Set Associative" 128 cache lines 2 sets per line 2-Way Set Associative 4 sets per line 64 cache lines 4-Way Set Associative 32 cache lines 8 sets per line 8-Way Set Associative 16-Way Set Associative 16 cache lines 16 sets per line yman 32 sets per line 8 cache lines 12-Way Set Associative 64 sets per line 64-Way Set Associative 4 cache lines 128-Way Set Associative 2 cache lines 128 sets per line I cache line 256 sets per line 256-Way Set Associative 1 mum Fully Associative Cache 25% SCIS Question 7 [15 Marks] Fill in the following table for different caches. Assume all caches are direct mapped. Also rough work [12 marks] is mandatory for each part and carry marks. No. Block Offset Bits per Cache Index Tag Bits Address Bits Size Size Bits Bits Row 16KB 8B 16 n. 32 32KB 16B b. 64B 14 C. 512KB no each (correct trough Page 13 of 19

3) Miss Rate Rubrics: miss/rate: LRU: End Data : to. memory Tree in I still greater hit Rate (

1					4		3.16	ALIN .
	Nation	nal Univers	ita e e					
set	FAST	School of Come	ity of C	ompu	ter and	d Emer	ain - a	- Francisco
set	VIT	Comp	4 W	Fall-20	122	Isla	ging Sc	iences
0	V Tag	Data V	Tag	Y Set As	Sociative	Cache	mabad Ca	mpus
1	I month	1	00040	1/M	V la	g D	ata V	Tag / Da
4.10	N. STATE		00100	435		100/12	45 7	20101 10 9
	Set Assoc	iative Cache Su	mmary				1 1 18	0001 14
Hit Ra	te:			1				-
Miss R	ate;				5	1	0	
				13	9	-die	ø	Ž.
	b) Use the	6.11				F		
	should f	fully-associative fill in the binary f	cache to fac	ilitate me	mory acc	ess for the	memory s	Pougas about
e of	Delow,	fill in the binary f	orm of the T	ag value	s. Show th	ne final cor	ntents of th	e cache in the
16	Lawrence of the same		incrate and i	miss rate.				[8 mar
1	-	rag			D	ata		
6	196	128						
0 5	02	400						
5 4			الم الماليان					
7 4 3	124	16						
The same	1883	52						
3 2		8						
2 1	0	12			-			
		144						
Fully As	sociative (Cache Summa	rv	0				
A uniy 280	/4	care barrier	10	5				
Hit Rate	7/	12 =		1				
Miss Rat	e: 0	-	0	1				
	0/15	2 9/	0	6		-		-
	7.6	2.11						
				Rough	n Work			
					16 of 1			

[2 marks]