# T320 - Introdução ao Aprendizado de Máquina II:

Redes Neurais Artificiais (Parte II)





Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

#### Recapitulando

- Fizemos uma analogia entre um neurônio e os modelos de McCulloch e Pitts e do Perceptron.
- Vimos a evolução dos modelos de McCulloch e Pitts para o Perceptron.
- Aprendemos suas características e como ambos funcionam.
- Verificamos que um Perceptron é semelhante ao regressor logístico.
- Constatamos que um único Perceptron não é capaz de separar classes não-lineares, como por exemplo, o problema do XOR.
- Porém, quando combinamos vários deles, conseguimos criar um separador não-linear.
- Neste tópico, veremos que esta união de Perceptrons origina o que chamamos de redes neurais artificiais.

- Em termos gerais, uma rede neural nada mais é do que uma coleção de neurônios (que também são chamados de nós ou unidades) conectados entre si através de ligações direcionadas (ou seja, as conexões têm uma direção associada).
- As propriedades da rede neural são determinadas por sua topologia e pelas propriedades dos neurônios (e.g., função de ativação e pesos).
- Algumas das limitações dos *perceptrons* (e.g., classificação apenas de classes linearmente separáveis) podem ser eliminadas adicionando-se camadas intermediárias de *perceptrons*.
- A RNA resultante é denominada Perceptron de Múltiplas Camadas (do inglês Multilayer Perceptron - MLP).



Cada ligação tem um peso (sináptico) associado.

- Um exemplo de rede MLP, com duas camadas intermediárias (ou escondidas, ocultas), é mostrado na figura ao lado.
- As RNAs são o coração do Deep Learning. Quando uma RNA tem duas ou mais camadas escondidas, ela é chamada de rede neural profunda (ou do inglês Deep Neural Network - DNN).
- **OBS**.: Em particular, uma MLP pode resolver o problema do XOR (lembre-se que um *perceptron* não é capaz de realizar essa tarefa).



Nó, unidade ou neurônio.

→ Ligação entre i-ésimo e j-ésimo nó.

 $W_{i,i}$  Peso da ligação entre *i*-ésimo e *j*-ésimo nó.

- A camada de entrada é o ponto de transferência dos atributos à rede.
- As *camadas intermediárias* realizam *mapeamentos não-lineares* que, idealmente, vão tornando a informação contida nos dados mais *"explícita"* do ponto de vista da tarefa que se deseja realizar.
- Por fim, os neurônios da camada de saída combinam a informação que lhes é oferecida pela última camada intermediária para formar as saídas.
- Redes MLPs são formadas por múltiplas camadas de *Perceptrons*:
  - portanto, tais redes têm por base o modelo de neurônio do Perceptron.
- Esse modelo, discutido anteriormente, é mostrado na figura seguinte.

- Uma ligação do nó i para o nó j serve para propagar o sinal de ativação do nó i para o nó j. Cada ligação tem um peso associado,  $w_{ij}$ , que determina a força e o sinal da ligação.
- Cada  $n\acute{o}$  tem a entrada  $x_0$  sempre com valor igual a 1 e um peso associado  $w_{0j}$ . Ou seja, esta entrada não está conectada a nenhum outro  $n\acute{o}$ .
- Cada nó j, calcula a soma ponderada de suas entrada da seguinte forma

$$g(\mathbf{x}) = \sum_{i=0}^K w_{ij} x_i.$$

• Em seguida, o  $n\acute{o}$  aplica uma função de ativação (ou de limiar), f(.), ao somatório acima para obter sua saída

$$y_j = f(g(\mathbf{x})) = f(\sum_{i=0}^N w_{ij} x_i) = f(\mathbf{w}^T \mathbf{x}).$$

- Existem vários tipos de *funções de ativação* que podem ser utilizadas pelos *nós* de uma rede MLP.
- Cada camada da rede pode usar funções de ativação diferentes.



 $y_j = f(\sum_{i=0}^K w_{ij}x_i)$ , onde  $x_i$  é a saída da unidade i e  $w_{ij}$  é o peso conectando a saída da unidade i para esta unidade, a unidade j.

- Devido às suas características, não se utiliza a função degrau como função de ativação em MLPs.
- Até o surgimento das redes neurais profundas, a regra era se utilizar as funções logística ou tangente hiperbólica (versões suavizadas da degrau).
- Essas funções possuem derivada definida e diferente de 0 em todos os pontos.
- A *função logística* tem a seguinte expressão:

$$y_j = f(z_j) = \frac{e^{pz_j}}{e^{pz_{j+1}}} = \frac{1}{1+e^{-pz_j}}.$$

Sua derivada é dada por

$$\frac{dy_j}{dz_i} = py_j(1 - y_j) > 0,$$

onde p é o *fator de suavização* da função de ativação logística.

• A derivada é importante durante o processo de aprendizado da rede neural.

• A *função logística* e sua derivada para alguns valores do *fator de suavização* são mostradas nas figuras ao lado.





**OBS**.: tende ao impulso conforme p aumenta.

Derivada da Função Logística.

• A *função tangente hiperbólica* tem sua expressão dada por: 
$$y_j = f(z_j) = \tanh(pz_j) = \frac{e^{pz_j} - e^{-pz_j}}{e^{pz_j} + e^{-pz_j}}.$$

Sua derivada é dada por

$$\frac{dy_j}{dz_j} = p\left(1 - \tanh^2(pz_j)\right) > 0,$$

onde mais uma vez, o parâmetro p controla a suavidade da função. Essa função e sua derivada são mostradas nas figuras abaixo.





#### O Problema da Dissipação do Gradiente

- Problema encontrado quando treinamos redes neurais profundas, ou seja, com muitas camadas escondidas, com métodos de aprendizagem baseados em informações do gradiente.
- Ocorre devido à natureza do algoritmo de retropropagação usado para treinar a rede neural.



#### O Problema da Dissipação do Gradiente

- Lembrem-se que as funções de ativação como tangente hiperbólica ou sigmóide, têm gradientes (i.e., derivadas) no intervalo de 0 até aproximadamente 1.
- Durante o treinamento, para atualizar os pesos de cada camada da rede neural, o algoritmo de retropropagação calcula os gradientes através da regra da cadeia.

$$\frac{\partial f(g(h(x)))}{\partial x} = \frac{\partial f(g(h(x)))}{\partial g(h(x))} \frac{\partial g(h(x))}{\partial h(x)} \frac{\partial h(x)}{\partial x}$$

- Em outras palavras, a derivada de uma função de ativação em uma dada camada da rede neural torna-se o produto das derivadas das funções de ativação no caminho desde a camada final até a camada atual.
- Ou seja, no caminho inverso, da camada de saída para a camada de atual.

#### O Problema da Dissipação do Gradiente

- Isso tem o efeito de multiplicar *M* desses pequenos valores para calcular os gradientes das primeiras camadas em uma rede com *M* camadas.
- O que significa que o gradiente (i.e., o erro propagado) diminui exponencialmente com *M*.
- Isso significa que os nós das camadas iniciais aprendem muito mais lentamente do que os nós das camadas finais, pois o valor do gradiente é muito pequeno, fazendo com que a atualização dos pesos também seja.



- Com o surgimento das *redes neurais profundas*, uma outra função, conhecida como *função retificadora*, passou a ser a bastante utilizada por questões *numéricas* e *computacionais*.
- A *função retificadora* tem sua expressão dada por

$$y_j = f(z_j) = \max(0, z_j).$$

• Sua derivada é dada por

$$\frac{dy_j}{dz_j} = \begin{cases} 0, \text{ se } y_j < 0\\ 1, \text{ se } y_j > 0 \end{cases}$$

e é indefinida para  $y_j=0$ , porém o valor da derivada em  $_{5}$  os zero pode ser arbitrariamente escolhido como 0 ou 1.

- Um nó que emprega uma função de ativação retificadora é chamado de rectified linear unit (ReLU)
- A *função retificadora* e sua derivada são mostradas nas figuras ao lado.





- Vantagens da *função retificadora*:
  - A função e sua derivada são mais rápidas de se calcular do que a funções sigmóide e tangente hiperbólica.
  - Não sofre com o problema da dissipação do gradiente pois seu gradiente é igual a 0 ou 1. Mesmo se multiplicarmos vários gradientes de várias camadas, não haverá diminuição do seu valor.
- Outras funções de ativação são:
  - Identidade ou linear
  - Gaussian Error Linear Unit (GELU)
  - Leaky rectified linear unit (Leaky ReLU)
  - Gaussiana
  - https://en.wikipedia.org/wiki/Activation function#Sign equivalence to identity function

#### Tarefa

• Quiz: "T320 - Quiz — Redes Neurais Artificiais (Parte III)" que se encontra no MS Teams.

#### Conectando Neurônios

 Existem basicamente duas maneiras distintas para se conectar os nós (ou neurônios) de uma rede.

- Na figura ao lado, os nós da rede têm conexões em apenas uma única direção.
- Esse tipo de rede é conhecida como *rede de alimentação direta* (*feedforward*) ou *sem realimentação*.
- O sinal percorre a rede em uma única direção, da entrada para a saída.
- Os *nós* da mesma camada não são conectados.
- Esse tipo de rede representa uma *função de suas entradas atuais* e, portanto, não possui um estado interno além dos próprios pesos.



 $W_{i,j}$  Peso da ligação entre *i*-ésimo e *j*-ésimo nó.

#### Conectando Neurônios

- Na figura ao lado, os nós da rede tem conexões em 2 direções, desta forma, o sinal percorre a rede nas direções direta e reversa.
- Este tipo de rede é conhecida como *rede recorrente* ou *rede com realimentação*.
- Nessas redes, a saída de alguns *nós* alimentam *nós* da mesma camada (inclusive o próprio *nó*) ou de camadas anteriores.
- Isso significa que os níveis de ativação da rede formam um *sistema dinâmico* que pode atingir um estado estável, exibir oscilações ou mesmo um comportamento caótico, ou seja, divergir.
- Além disso, a resposta da rede a uma determinada entrada depende do seu estado inicial, que pode depender das entradas anteriores.
- Portanto, *redes recorrentes* podem suportar memória de curto prazo.
- Essas redes são úteis para o *processamento de dados sequenciais*, como som, dados de séries temporais ou linguagem natural (escrita e fala).



#### Regressão Não-Linear

A rede MLP ao lado tem sua saída definida por

$$y = f(f(\boldsymbol{W}\boldsymbol{x})\boldsymbol{w}),$$



onde f é a **função de ativação** escolhida.

- Percebam que a saída da rede é dada pelo aninhamento das saídas de funções de ativação não-lineares.
- Sendo assim, as funções que uma rede pode representar podem ser *altamente não-lineares* dependendo da quantidade de camadas e nós.
- Portanto, redes neurais podem ser vistas como ferramentas para a realização de *regressão não-linear*, mas também podemos resolver outros problemas como os de classificação.
- Com uma única camada oculta suficientemente grande, é possível representar qualquer função contínua das entradas com uma precisão arbitrária.
- Com duas camadas ocultas, até funções descontínuas podem ser representadas.
- Portanto, dizemos que as redes neurais possuem capacidade de aproximação universal de funções.
- Veremos alguns exemplos a seguir desta capacidade de aproximação.

#### Aproximação universal de funções

- Um nó aproxima uma função de limiar suave.
- Combinando duas funções de limiar suave com direções opostas, podemos obter uma função em formato de onda.
- Combinando duas ondas perpendiculares, nós obtemos uma função em formato cilíndrico.





#### Exemplo: FunctionApproximationWithMLP.ipynb





#### Aproximação universal de funções

 Redes neurais podem ser usadas para aproximar funções como as mostradas abaixo:

• 
$$f(x) = x^2, -1 \le x \le 1$$
,

• 
$$f(x) = \frac{1}{x}, 1 \le x \le 100,$$

• 
$$f(x) = \sin(x)$$
,  $1 \le x \le 2\pi$ .

Exemplo: function approximation.ipynb



0.25

> 0.00 -0.25 -0.50 -0.75 -1.00

#### **Tarefas**

- Quiz: "T320 Quiz Redes Neurais Artificiais (Parte IV)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #7.
  - Pode ser baixado do MS Teams ou do GitHub.
  - Pode ser respondido através do link acima (na nuvem) ou localmente.
  - Instruções para resolução e entrega dos laboratórios.
  - Laboratórios podem ser feitos em grupo, mas as entregas devem ser individuais.

## Obrigado!

People with no idea about AI, telling me my AI will destroy the world Me wondering why my neural network is classifying a cat as a dog..













## Figuras