Ingo Blechschmidt

Übungsblatt 2 zur Homologischen Algebra I

- Motto -

Aufgabe 1. Geometrische Realiserung des simplizialen Standard-p-Simplexes

Wir wollen an einem Beispiel nachvollziehen, dass die Grundlagen der Theorie der simplizialen Mengen sinnvoll aufeinander abgestimmt sind: Zeige, dass die geometrische Realisierung $|\Delta[p]|$ des simplizialen Standard-p-Simplex kanonisch homöomorph zum topologischen Standard-p-Simplex Δ_p ist.

Gib dazu explizit die kanonische Abbildung $|\Delta[p]| \to \Delta_p$ an und weise nach, dass sie ein Homöomorphismus ist. Später werden wir lernen, wie man diese Aufgabe auch unmittelbar vermöge abstrakten Nonsens lösen kann.

Aufgabe 2. Fasernde simpliziale Mengen

Eine simpliziale Menge X heißt genau dann fasernd, wenn für jedes $n \geq 0$ und k mit $0 \leq k \leq n+1$ folgende Bedingung erfüllt ist:

Sind Simplizes $x_0, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1} \in X_n$ mit $d_i x_j = d_{j-1} x_i$ für alle i < j (wobei i und j ungleich k) vorgegeben, so existiert ein Simplex $y \in X_{n+1}$ mit $d_i(y) = x_i$ für alle $i \neq k$.

a) Was bedeutet diese Bedingung anschaulich? Denke dazu an Hörner.

Abbildung: Die drei Hörner von Δ^2 .