测定高温超导材料的转变温度 实验报告

姓名: 吴晨聪 学号: 2022010311 实验日期: 2024年4月23日 实验台号: 9

一. 实验目的

- 1. 了解霍尔效应及其副效应的产生原理;
- 2. 掌握霍尔系数的测量方法,学习消除霍尔副效应的实验方法;
- 3. 研究半导体材料的电阻值随磁场的变化规律

二. 实验仪器

- 1. 霍尔效应测试仪(含有恒流电源、数显电压表、励磁电流源等);
- 2. 霍尔效应实验仪(含有三组换向开关、电磁铁、霍尔片、磁电阻等);
- 3. 万用表,若干导线。

三. 数据处理

(1) 测量霍尔片的参数:

实验前测量得到霍尔片尺寸: 长 $l=300\mu m$, 高 $b=100\mu m$, 厚 $d=3\mu m$

激励电流 $I_M=500mA$,对应磁场 B=129.8mT,霍尔片所在相对位置: x=26.7mm,y=13.0mm

不等位效应Uo的确定:

$$U = f(U_H, U_E, U_N, U_R, U_0, U_S)$$

式中 U_E 很小可忽略,故得

$$U = f(U_H, U_N, U_R, U_0, U_S) = \sum (U_H, U_N, U_R, U_0, U_S)$$

已知 U_H 正负与I、B方向有关, U_N 、 U_R 正负只与B方向有关, U_0 正负只与I方向有关, mU_S 与I和B皆无关。

设+B和+I条件下各电压均取正值,得

$$U_1(+B,+I) = f(U_H, U_N, U_R, U_0, U_S)$$

$$U_2(+B,-I) = f(-U_H, U_N, U_R, -U_0, U_S)$$

$$U_3(-B,-I) = f(U_H, -U_N, -U_R, -U_0, U_S)$$

$$U_4(-B,+I) = f(-U_H, -U_N, -U_R, U_0, U_S)$$

所以

$$U_H = \frac{1}{4}(U_1 + U_3 - U_2 - U_4)$$
$$U_0 = \frac{1}{4}(U_1 - U_2 - U_3 + U_4)$$

实验数据如下:

I_H/mA	2.00	3.00	4.00	5.00	6.00	7.00	8.00
$U_1(+B,+I)/mV$	-43.9	-65.9	-88.1	-110.1	-132.2	-154.1	-176.3
$U_2(+B,-I)/mV$	43.8	65.6	87.4	109.1	130.6	151.9	173.3
$U_3(-B,-I)/mV$	-46.6	-69.7	-93.2	-116.5	-140.0	-163.5	-187.4
$U_4(-B,+I)/mV$	46.4	69.4	92.5	115.4	138.3	161.2	184.1
U_H/mV	-45.2	-67.7	-90.3	-112.8	-135.3	-157.7	-180.3

用最小二乘法拟合得到 U_H 与 I_H 的关系是 $U_H = -22.512I_H - 0.1741$,且相关系数 $R^2 = 1$,说明二者线性关系符合得很好,下面根据此关系式来计算其他参数:

由
$$U_H = R_H \frac{IB}{d} = K_H IB$$
, 可得直线的斜率 $k = R_H \frac{B}{d} = K_H B$, 那么

霍尔片的灵敏度

$$K_H = \frac{k}{B} = \frac{22.512}{129.8 \times 10^{-3}} = 173.436 \, m^2/C$$

霍尔系数

$$R_H = \frac{kd}{R} = \frac{22.512 \times 3 \times 10^{-6}}{129.8 \times 10^{-3}} = 5.203 \times 10^{-4} \, m^3/C$$

载流子浓度

$$n = \frac{1}{eR_H} = \frac{1}{1.6 \times 10^{-19} \times 5.203 \times 10^{-4}} = 1.201 \times 10^{22} m^{-3}$$

计算不确定度:

$$\Delta k = k \sqrt{\frac{\frac{1}{R^2} - 1}{n - 2}} = 22.512 \sqrt{\frac{1 \div 0.9999986173 - 1}{7 - 2}} \approx 0.0118 \Omega$$

$$\Delta R_H = \frac{d}{B} \Delta k = \frac{3 \times 10^{-6}}{129.8 \times 10^{-3}} \times 0.0118 = 2.7273 \times 10^{-7} \; \Omega \cdot m/T$$

$$\Delta k_H = \frac{1}{B} \Delta k = \frac{1}{129.8 \times 10^{-3}} \times 0.0118 \approx 0.0909 \,\Omega/T$$

$$\Delta n = \frac{\Delta R_H}{{R_H}^2 e} = \frac{2.7273 \times 10^{-7}}{(5.203 \times 10^{-4})^2 \times 1.6022 \times 10^{-19}} = 6.2879 \times 10^{18} m^{-3}$$

综上, 霍尔片的有关参数数值为:

$$R_H = (5.203 \pm 0.00273) \times 10^{-4} \Omega \cdot m/T$$

 $K_H = 173.436 \pm 0.0909 \Omega/T$
 $n = (1.201 \pm 0.00628) \times 10^{22} m^{-3}$

(2) 霍尔片的载流子类型:

实验中磁场方向垂直纸面向内,电流方向由3到4,载流子所受洛兰兹力向上,从而在上方聚集,而测得电压 U_H 小于0,因此,载流子类型为电子。

(3) 标定电磁铁磁隙间磁场:

霍尔片工作电流 $I_H=4.00\,mA$

用公式 $B = \frac{U_H}{K_H I}$ 计算出磁场强度,测得实验数据如下:

I_M/mA	0	100	200	300	400	500	600	700	800	900	1000
$U_1(B,I)/mV$	-2.8	-15.8	-33.7	-51.6	-69.6	-87.7	-105.4	-123.5	-141.2	-158.8	-176.3
$U_2(B,-I)/mV$	2.8	15.1	33.0	51.0	68.9	87.1	104.9	123.0	140.7	158.3	175.9
$U_3(-B,-I)/mV$	-3.3	-21.5	-39.4	-57.5	-75.7	-93.6	-111.5	-129.5	-147.4	-165.1	-182.4
$U_4(-B,I)/mV$	2.6	20.7	38.7	56.8	75.0	92.9	110.9	128.9	146.8	164.6	181.9
U_H/mV	-2.875	-18.275	-36.200	-54.225	-72.300	-90.325	-108.175	-126.225	-144.025	-161.700	-179.125
B/mT	4.144	26.343	52.181	78.163	104.217	130.199	155.929	181.948	207.605	233.083	258.200

从图像上可以看出磁场B与励磁电流 I_M 呈线性关系,关系式为: $B=0.2566I_M+1.8739$,且相关系数R=0.9999,二者线性关系符合得很好。

(4) 霍尔片载流子迁移率 μ 测量:

测量计算式推导:

$$\mu = \frac{v}{E}$$

$$\sigma = \frac{1}{\rho} = \frac{L}{bd} \frac{I_H}{U_{AC}}$$

$$\sigma = \frac{j}{E} = \frac{\mu}{v} nqv = nq\mu$$

$$\mu = \frac{\sigma}{nq} = \frac{L}{bd} \frac{I_H}{U_{AC}} R_H$$

測得, $I_H=2.00mA$ 時, $U_{AC}=1.490V$,因此:

$$\mu = \frac{300 \times 10^{-6}}{100 \times 10^{-6} \times 3 \times 10^{-6}} \times \frac{2 \times 10^{-3}}{1.490} \times 5.370 \times 10^{-4} = 0.7208 \, cm^2 \, / (V \cdot s)$$

(5) 磁电阻特性测量B~ △ R/R(0):

磁阻片工作电流: $I_{CD} = 1.5 \, mA$, $A \cdot B$ 端短路

磁阻片所在相对位置: x = 42.1mm, y = 13.0mm

数字万用表量程: 20V

根据以下公式整理数据:

$$R(B) = \frac{U_{cd}}{I_{cd}}$$

$$\Delta R = R(B) - R(0)$$

$$B = 0.2566I_M + 1.8739$$

I_M/mA	0	50	100	150	200	250	300	350	400	500	600	700	800	900	1000
U_{CD}/V	0. 523	0.531	0.556	0. 592	0. 636	0.676	0.704	0.723	0.741	0.776	0.807	0.836	0.865	0.894	0.925
B/mT	1.874	14. 704	27. 534	40. 364	53. 194	66. 024	78. 854	91. 684	104. 514	130. 174	155. 834	181. 494	207. 154	232. 814	258. 474
$R(B)/\Omega$	348. 667	354. 000	370. 667	394. 667	424. 000	450. 667	469. 333	482. 000	494. 000	517. 333	538. 000	557. 333	576. 667	596.000	616. 667
$\Delta R/R(0)$	0.000	0.065	0.115	0. 187	0. 275	0.356	0.412	0.450	0.486	0. 556	0.618	0.676	0. 735	0. 793	0.855

绘制出 $\frac{\Delta R}{R(0)} \sim B$ 关系曲线如下:

由此图可知:在前6个点 $B \le 60mT$,磁感应强度较低时,磁电阻 $\Delta R/R(0)$ 与磁感应强度B呈非线性关系,大致与 B^2 成正比,在B > 75mT之后,磁电阻 $\Delta R/R(0)$ 与磁感应强度B呈线性关系。

四. 实验总结

- 1. 掌握测量霍尔系数和消除霍尔副效应的方法。
- 2. 通过测量,确定了霍尔片的系数值和载流子浓度,并且确认载流子为电子。此外,
- 3. 建立了电磁铁磁隙间磁场与激励电流之间的线性关系,观察不同磁场强度下电阻值的变化规律,其中较弱磁场下呈现二次函数关系,而强磁场下则转为线性关系。

五. 原始数据记录

*五、霍尔片载流子迁移率 μ 测量

测量计算式推导:

服计算式推导:
$$M = \frac{\sqrt{E}}{E}, \quad \sigma = \frac{1}{\rho} = \frac{L}{bd} \frac{I_H}{U_{Ac}}, \quad \sigma = \frac{J}{E} = \frac{AJ}{\sqrt{M_{Ac}}} \frac{M}{M_{Ac}} = \frac{M}{M_{Ac}} \frac{M}{M_{Ac}$$

自拟表格记录数据:

工作电流 In/mA 2 4 6 8 10 电流3向压降 Uac/V 1.490 3.003 4.574 6.237 8.047

RH =

, M=

六、磁电阻特性测量 $B \sim \Delta R/R(0)$

磁阻片工作电流: Ico= 1.5 mA, A、B 端是否短路? 是 图 否 磁阻片所在相对位置: x = 42.1 mm, y = 13.0 mm

数字万用表量程: 26∨

I _M /mA	0	50	100	150	200	250	300	350	400	500	600	700	800	900	1000
U _{CD} /V	0.523	0.531	0.556	0.592	0.636	0.676	0.704	0.123	0.741	0.116	0.807	0.836	0.865	0.894	0.925
B/mT												4			
R(B)/Ω															
ΔR/R(0)											1				