State University of New York at Buffalo

CSE 473/573 Fall 2016 Homework Set #3

Assignment Date: Wednesday October 19, 2016; Due: Wednesday October 26, 2016 at 3:00PM	
Name:	Student Number:
Problem (1)	(Sampling Theorem and Nyquist Criterion) 20%
(a) Determ	mine the highest frequency components of the following sinc signals:
(1	$sinc (500\pi t)$
(2) $sinc(500\pi t) sinc(1000\pi t)$
(3	$sinc^2 (1000\pi t)$
•	

- (b) Determine the Nyquist sampling rate and the Nyquist sampling interval for the above three signals(c) Record on the results obtained in (b) explain how the sampling rate would usually obtained
- (c) Based on the results obtained in (b), explain how the sampling rate would usually change for a product of two *sinc* signals.

Problem (2) (Image Filtering with 2D Convolution) 40%

Consider a 10×10 image as shown below in which the object pixels are shaded gray (pixel value = 1) and background pixels are white (pixel value = 0).

(a) Perform a low pass filtering with a 3×3 convolutional kernel as: $h = \frac{1}{5} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ to the above image and label all pixels in the following with filtering results (may be fractional).

(b) Apply a threshold of 0.5 to the results of the low pass filtering shown above. That is, if the result at a pixel (i,j) is > 0.5, assign f(i,j) = 1; otherwise, assign f(i,j) = 0. Compare the thresholding results with original image and comment on the comparison.

Problem (3) (Edge Detection with Laplace Operator) 40%

Consider a 10×10 image as shown below in which the object pixels are shaded gray (pixel value = 1) and background pixels are white (pixel value =0).

(a) Apply the Laplace Operator, $h = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ to the above image and label all pixels in the following with the results from Laplace Operator application.

(b) The Laplace operator can be used for the detection of zero-crossings in a digital image while the zero-crossing is defined between two pixels with opposite (positive and negative) pixel values. Identify and mark the zero crossings (the **edge** between two pixels) from the above results of Laplace Operator. Is the Laplace operation result different from the visual inspection?