Комбинаторный анализ эффектов взаимодействия множественных факторов с приложением в генетике

Скурат Евгения Петровна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Алексеева Н.П. Рецензент: мл. научн. сотр. Ананьевская П.В.

Санкт-Петербург 2013г.

Цель и методы решения

Цель

Решение некоторых актуальных задач, связанных с разработкой конечно-линейного подхода анализа категориальных данных, и его апробация на примере исследования эффектов взаимодействия генетических факторов

Основные обозначения

- ullet Случайный вектор $X=(X_1,\ldots,X_m)^{\mathrm{T}}$ со значениями в $(\mathbb{F}_q,2^{\mathbb{F}_q})$, заданный на $(\Omega,\mathrm{F},\mathrm{P})$
- $m{\bullet}$ Матрица $m{A}=\{a_{ij}\}\,,\,1\leq i\leq k,\,1\leq j\leq m$, задающая $ilde{X}=m{A}X=(X_{ au_1},\ldots,X_{ au_k})^{\mathrm{T}}\colon \ X_{ au_i}=a_{i1}X_1+\cdots+a_{im}X_m$ над \mathbb{F}_q

Метод решения

Описание эффектов взаимодействия факторов через линейные комбинации признаков над конечным полем \mathbb{F}_q

Дискретная оптимизация в задаче классификации

ullet Вектор $X=(X_1,\dots,X_m)^{\mathrm{T}}$ над $(\mathbb{F}_q,2^{\mathbb{F}_q})$ и строка $\mathbf{A}=\mathbf{A}(1,m)$, $\mathbf{A}X=a_1X_1+\dots+a_mX_m$ над \mathbb{F}_q

Поиск наилучшего предсказания конечной дискретной случайной величины Y по $\mathbf{A}X$

Мера отличия двух случайных величин

$$\rho_1(\mathbf{A}X, Y) = \min_{f: \mathbb{F}_q \to \mathbb{F}_q} (1 - P(\mathbf{A}X = f(Y)))$$

Оптимизационная задача

Поиск точки минимума функции $\sigma(\mathbf{A})=\rho_1(\mathbf{A}X,Y)$ на множестве строк $\mathbf{A}=\mathbf{A}(1,m)$

Одно из решений опирается на построение алгоритма дискретной оптимизации, основанного на векторной параметризации Грассмана $[\Pi.\ B.\ Ананьевская,\ 2013г]$

Флаг и согласованность с флагом

Определение

Пусть на $V_m=(\mathbb{F}_q)^m$ задана последовательность линейных подпространств (полный флаг F)

$$V_0 = \{0\} \subset V_1 = \langle X_1 \rangle \subset \ldots \subset V_m = \langle X_1, \ldots, X_m \rangle$$

такая, что $\cup V_i = V$ и если $V_i \subset M \subset V_{i+1}$, то либо $V_i = M$, либо $V_{i+1} = M$. Тогда отношение линейного порядка \prec называется согласованным с флагом, если для всех $i = 0, 1, \ldots, m-1$ и $v \in V_i, w \in V_m \backslash V_i$ $v \prec w$.

Замечание

Выбор флага F однозначно задает клеточное разбиение **многообразия Грассмана**, определяющего множество всех k-мерных подпространств m-мерного линейного пространства $[\Phi$. Гриффитс, Дж. Харрис, 1982г.]

Симметричный порядок векторов в пространстве $(\mathbb{F}_q)^m$

- ullet Пространство $V_m = (\mathbb{F}_q)^m$ такое, что $V_m = \langle X_1, \dots, X_m
 angle$
- ullet Векторы $X_{k_i}=(x_1,\ldots,x_{k-1},x_{k_i},0,\ldots,0)^{\mathrm{T}}\in V_kackslash V_{k-1}$, где $x_{k_i}\in\mathbb{F}_q,\,x_{k_i}
 eq 0,\,k=1,\ldots,m,\,i=1,\ldots q-1$

Определение

Последовательность векторов $\{Y_j\}_{j=0}^{q^m-1}$ пространства $V_m=(\mathbb{F}_q)^m$ обладает свойством **симметричного порядка**, если $Y_0=\mathbf{0}_m$, $Y_j=sX_{k_i}+Y_t$ для $j=sq^{k-1}+t>0$, где $k=1,\ldots,m$, $i=1,\ldots,q-1$, $s\in\mathbb{F}_q$, $s\neq 0$, $t=0,\ldots,q^{k-1}-1$

Частные случаи

- ullet Лексикографический порядок $X_{k_i} = (0, \dots, 0, 1, 0, \dots, 0)^{\mathrm{T}}$
- ullet Обобщенный порядок Грея $X_{k_i} = (0, \dots, 0, -1, 1, 0, \dots, 0)^{\mathrm{T}}$

Теорема о согласованности с флагом

Таблица: Лексикографический порядок над \mathbb{F}_3

0	0	0
0	0	1
0	0	2
0	1	0
0	1	1
0	1	2
0	2	0
0	2	1
0	2	2

Таблица: Обобщенный порядок Грея над \mathbb{F}_3

0	0	0
0	0	1
0	0	2
0	1	2
0	1	0
0	1	1
0	2	1
0	2 2 2	2
0	2	0

Теорема

Симметричный порядок согласован с полным флагом F на пространстве $V_m=(\mathbb{F}_q)^m.$

Вероятность случайной классификации

- Случайные вектор $Y=(Y_1,\ldots,Y_n)^{\mathrm{T}}$ и матрица $\mathbf{X}=\mathbf{X}_{n,m}=(X_1,\ldots,X_m)$ над \mathbb{F}_q , заданные на $(\Omega,\mathrm{F},\mathrm{P});$ X_i независимы и одинаково распределены
- ullet Линейное преобразование $X_{ au} = a_1 X_1 + \cdots + a_m X_m$ над \mathbb{F}_q

Функция, равная количеству ошибок классификации

•
$$\rho_1(X_\tau, Y) = \min_{f: \mathbb{F}_q \to \mathbb{F}_q} (1 - P(X_\tau = f(Y)))$$

•
$$ho(\mathbf{X},Y)=\min_{X_{ au}\in\mathfrak{L}(\mathbf{X})}
ho_1(X_{ au},Y)$$
, где $\mathfrak{L}(\mathbf{X})=\langle X_1,\dots,X_m\rangle$ $F(t)=\mathsf{P}(
ho(\mathbf{X},Y)< t)$ — вероятность случайной классификации

Известны асимптотическая оценка F(t) [Н. П. Алексеева, 2009г.] и верхняя оценка [П. В. Ананьевская, 2013 г.]

Проблема существования точной оценки F(t)

Точная оценка вероятности случайной классификации

Задача поиска точной оценки:

Вычисление количества невырожденных матриц $\mathbf{X}_{n,m}$ с весом $L=1,\dots,M$ линейной оболочки $\mathfrak{L}(\mathbf{X})$ для нулевого вектора

классификации
$$Y=\mathbf{0}_n$$
, где $L=\min_{i=1,\dots,m}l(X_i)=\min_{i=1,\dots,m}\sum_{j=1}^nx_j$

Теорема

Число невырожденных матриц $\mathbf{X}_{n,m}$, порождающих линейную оболочку с весом L=1, вычисляется по формуле:

$$\mathbf{X}_{n,m} = \mathbf{X}_{n-1,m} + \sum_{t=0}^{m-1} C_m^t \cdot ((\mathbf{X}_{n-1,m-t} \cdot (\mathbf{V}_{n-1,t} + t \cdot \mathbf{V}_{n-1,t-1})) + (\mathbf{V}_{n-1,m-t} - \mathbf{X}_{n-1,m-t}) \cdot ((m-t) \cdot t \cdot \mathbf{V}_{n-1,t-1} + t \cdot \mathbf{V}_{n-1,t-1})) + (n-1) \cdot 2^{n-2} \cdot 2 + (\mathbf{V}_{n-1,m-1} - (n-1)) \cdot m,$$

где $\mathbf{V}_{n,m}=\prod_{j=0}^{m-1}(2^n-2^j)$ — общее число невырожденных матриц. Тогда точная оценка $F(t)=\mathsf{P}(\rho(\mathbf{X},Y)=1)$ имеет вид $\frac{\mathbf{X}_{n,m}}{\mathbf{V}_{n,m}}$.

Апробация разработанных методов. Описание данных

Исследовательские центры: НИИ фармакологии им. А.В. Вальдмана СП6ГМУ им. акад. И.П. Павлова и Ленинградский областной наркологический диспансер.

Профилактика рецидива опийной наркомании.

- Индивиды больные героиновой зависимостью (n=245), проходившие курс (26 недель) психотерапии в сочетании с рандомизированным исследованием эффективности налтрексона.
- Переменные гены опиатных рецепторов (m=15), отвечающие за когнитивную функцию, моторику и энергетику.
- **Ковариата** способы терапии (двойное плацебо, пероральный налтрексон, продетоксон).
- Итоговые характеристики
 - количество положительных тестов на опиаты;
 - длительность удержания в программе;
 - отсутствие рецидива.

Проблема анализа эффектов взаимодействия

Проявление совокупного воздействия двух и более переменных не в виде суммы отдельных факторов.

Таблица: Средние количество (+) тестов на героин в сочетаниях генов A (мигрени, беспокойства) и B (никотиновая зависимость).

A	0	0	1	1
B	0	1	0	1
$A+B \pmod{2}$	0	1	1	0
среднее	5.0	5.4	6.8	1.0

В явном виде эффекты взаимодействия могут быть выражены как конечно-линейные комбинации над \mathbb{F}_q , которые для удобства работы с приложениями названы **симптомами** [Н. П. Алексеева, 2008г.]

Задача и структура решения

Задача

Выявление совокупности генетических факторов, значимо влияющих на тяжесть наркотической зависимости

- Выбор признаков индикатора рецессивности генотипов
- Построение линейных комбинаций признаков над \mathbb{F}_2 (симптомов)
 - с ограничением на ранг
 - без ограничения на ранг с применением алгоритма дискретной оптимизации в случае обобщенного порядка Грея
- Исследование влияния симптомов на результат лечения в качестве фактора в статистических критериях
- В задаче классификации проверка случайности относительно итогового фактора безрецидивности

Алгоритм отбора симптомов с ограничением на ранг

- Начальные параметры
 - ullet уровень значимости lpha
 - ullet информативность симптома M
 - ullet предельный ранг k
- ullet Последовательный перебор симптомов $X_{ au}$, $| au|=1,\ldots,k$
- Применение статистического критерия $p = p(X_{\tau})$, где симптом выступает в качестве фактора
 - в дисперсионном анализе
 - в анализе данных типа времени жизни
 - в информационной статистике
- ullet Включение значимых симптомов $X_{ au}$
 - $p(X_{\tau}) < \alpha$
 - ullet $H(X_ au) > M$, где $H(X_ au) = -\sum\limits_{i=1}^q p_i \log_2 p_i$
- Исключение симптомов $X_{ au}$, не вносящих дополнительной информации: для $\delta>0,\ \epsilon>0$ $| au|>| au_0|,$

$$H(X_{\tau \setminus \tau_0}) < \delta$$
 и $H(X_{\tau}) - H(X_{\tau_0}) < \epsilon$

Двухфакторный дисперсионный анализ

Модель с фиксированными эффектами факторов A и B

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \xi_{ijk}$$

 y_{ijk} — количество положительных тестов на героин $lpha_i$ — дифференциальный эффект фактора A симптома $X_{ au},\ | au|<4$ eta_j — дифференциальный эффект фактора B терапии $(lphaeta)_{ij}$ — эффект взаимодействия A и B ξ_{ijk} — ошибки независимые, $N(0,\sigma^2)$

$$X_1, \dots X_m$$
, $m=15$ — факторы рецессивности генотипов

$H_0: \alpha_i = 0$						
au	р	$H(X_{ au})$				
(15)	0.043	0.068				
(8, 13)	0.018	0.196				
(1, 5, 12)	0.019	0.261				

$H_0:(lphaeta)_{ij}=0$						
au	р	$H(X_{ au})$				
(9)	0.021	0.114				
(7, 13)	0.029	0.135				
(1, 5, 12)	0.049	0.261				

Положительный эффект психотерапии без налтрексона при парном сочетании генов: никот-вая зав-ть (1), депрессия (5), алког-ая зав-ть (12)

Анализ данных типа времени жизни

Критерий Гехана-Вилкоксона о равенстве медиан продолжительности участия в программе при разной терапии

- Ковариата симптом $X_{ au}$, | au| < 4
- Правое цензурирование, индикатор результат выполнения программы
- Интервальное цензурирование, $[t_1,t_2]$, t_1 точка последнего наблюдения; $t_2=t_1+1$

Рис.: Значимое влияние $X_{1,5,12}$ на дожитие (плацебо, p=0.0006)

Рис.: Положительный эффект $X_{6,7,8}$ при продетоксоне, p=0.044

 X_6 – гиперактивность, X_7 – болезнь Паркинсона, X_8 – шизофрения

Информационная статистика

Критерий Пирсона независимости категориальных признаков на основе таблиц сопряженности

- Значимое влияние факторов энергетики $X_{1,5,12}$ (p=0.047) и когнитивности $X_{6,7,8}$ (p=0.047) на рецидив
- Количество ошибок прогнозирования рецидива по значимым симптомам $X_{ au}$, | au|>k и верхние оценки вероятности случайной классификации

$X_{ au}$	ошибки	случайность	р	$H(X_{ au})$
$X_{(1,5,12),(7,8),(3,11)}$	93	0.00502	0.031	0.275
$X_{(1,5,12),(7),(3,11)}$	90	0.00049	0.028	0.263
$X_{(1,5,12),(6,7,8),(3,11)}$	101	0.15899	0.043	0.289

 X_3 – импульсивность, X_{11} – дискинезия

Взаимодействие генов и эффект лечения

$Y = X_{1,5,12} \oplus X_{6,7,8} \oplus X_{3,11}$		Y = 0			Y = 1				
$X_{3,11}$	моторика	0	0	1	1	0	0	1	1
$X_{6,7,8}$	когнитивность	0	1	0	1	0	1	0	1
$X_{1,5,12}$	энергетика	0	1	1	0	1	0	0	1
число инд-дов	245	128	8	11	2	50	40	4	2

Рис.: Зависимость от продетоксона эффекта лечения при одной генетической особенности, p=0.011.

Основные результаты

- Проведение комбинаторного анализа эффектов взаимодействия множественных факторов на примере данных о программе лечения героиновой наркомании
- Реализация программы разработанного математического метода исследования категориальных данных в статистическом пакете ${\cal R}$
- Определение симметричного порядка и обобщение теоремы о согласованности с флагом для введенного порядка
- Доказательство формулы точной оценки вероятности случайной классификации в частном случае