

Principais aplicações

- ✓ componentes estruturais (próteses para substituição óssea e articulações, implantes dentários, placas de fixação, fios, parafusos)
- ✓ confeção de válvulas cardíacas mecânicas e stents
- √ dispositivos de estímulo neuromuscular (pacemaker)
- ✓ instrumentação cirúrgica (tesouras, *forceps*, agulhas, pinças)

Metais e ligas usados em medicina:

- ✓ Aços inoxidáveis (sobretudo os austeníticos do tipo 316L)
- ✓ Ligas Co-Cr-Mo e Co-Ni-Cr-Mo
- ✓ Titânio puro e ligas de Ti
- ✓ Metais nobres: Au, Ag, Pt, Pd, Ir
 - caros e com propriedades pobres como materiais
 - usados em elétrodos elevada resistência à corrosão
- ✓ Mercúrio: amálgama dentário (Hg-Ag-Sn)
 - amálgama: liga metálica em que um dos metais envolvidos está no estado líquido.
- ✓ Ligas com memória de forma (SMA): Ni-Ti
- ✓ Tântalo

Aços inoxidáveis

Stainless steels (F138 and F139 of ASTM).

Aço inoxidável: adequado para utilização em dispositivos temporários, tais como placas de fixação, parafusos, hastes, aparelhos dentários...

Fêmur Proximal

Fratura do colo femoral

Fratura Transtrocantérica Multifragmentar

Haste Intramedular de Fêmur Proximal

Parafusos em Fratura do Colo Femoral

Ligas de cobalto (ligas Co-Cr)

- ✓ Utilizadas desde 1924 liga *Stellite* foi implantada em cães por Zierold;
- ✓ Em 1938, parafusos Co-Cr foram implantados em ossos de animais;
- ✓ Seguiu-se a implantação em humanos, basicamente como revestimento colocado sobre a cabeça do fêmur;
- ✓ Elevada resistência ao desgaste e à corrosão;
- ✓ Tipos de ligas de Co:
 - Co-Cr-Mo usada em odontologia e ligamentos artificiais;
 - Co-Ni-Cr-Mo (Vitallium) dispositivos de fixação de fraturas e próteses ortopédicas (joellho, ombro e anca);
- ✓ Pode haver libertação de iões metálicos (Co e Cr) que migram para os tecidos vizinhos; toxicidade.

Tipos e composição das ligas à base de cobalto

Element	Co28Cr6Mo (F75) Castable		Co20Cr15W10Ni (F90) Wrought		Co28Cr6Mo (F1537) Wrought		Co35Ni20Cr10Mo (F562)	
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Cr	27.0	30.00	19.00	21.00	26.0	30.0	19.0	21.0
Mo	5.0	7.00		===	5.0	7.0	9.0	10.5
Ni	_	2.5	9.00	11.00	-	1.0	33.0	37.0
Fe		0.75		3.00	-	0.75	9.0	10.5
C	= 1	0.35	0.05	0.15	-	0.35	100	0.025
Si	_	1.00	==0	1.00	-	1.0	-	0.15
Mn	100	1.00	23	2.00	-	1.0	_	0.15
W	57	0.20	14.00	16.00	-	-		
P		0.020	-	0.040	-	-	-	0.015
S	21	0.010	20	0.030	_	-	2	0.010
N		0.25	- 		-	0.25	-	(20)
Al		0.30	-	_	-	-	_	-
Во	= 1	0.01	-	_	_	_	2	0.015
Ti							170	1.0
Co				Balar	nce			

Propriedades das ligas à base de cobalto

Condition	Ultimate tensile strength min ksi (MPa)	Yield strength (0.2% offset) min, ksi (MPa)	Fatigue strength ^a ksi (MPa)	Elongation min (%)	Reduction of area min (%)
Co28Cr6Mo (F75)					
As cast	95 (655)	65 (450)	45 (310)	8	8
Co20Cr15W10Ni (F90)					
Annealed	125 (860)	45 (310)	-	30	
Co28Cr6Mo (F1537)					
Annealed ^b	130 (897)	75 (517)	-	20	20
Hot worked	145 (1000)	101 (700)	-	12	12
Warm worked	170 (1172)	120 (827)		12	12
Co35Ni20Cr10Mo (F562)					
Annealed ^b	115 (793)	35(241)	49.3(340)	50.0	65.0
	145 (1000)	65(448)			
Cold worked,aged ^c	260 (1793) min	230 (1586) min	-	8.0	35.0

¹ ksi = 1,000 psi, 1 psi = 6,895 Pa

Módulo elástico das ligas à base de Co: 220-234 GPa.

^a Reprinted with permission from Semlitsch (1980). Copyright 1980 © Institute of Mechanical Engineers.

 $^{^{}b}1-2$ hrs at $1050 \pm 15^{\circ}$ C air or water quenched to room temperature.

^{&#}x27;Cold worked 50% and aged 540-640 ± 15°C for 4 hrs, then air cooled.

Titânio e ligas de Ti

- ✓ Boa resistência à corrosão (picada e erosão): adequado para o trabalho em ambientes corrosivos;
- ✓ Maior tendência para a osteointegração em comparação com o aço inoxidável;
- ✓ Leveza: aplicações em que seja fundamental o seu baixo peso (4,5 g/cm³);
- ✓ Baixo módulo de elasticidade (100 50 GPa);
- ✓ Pode apresentar dois tipos de formação cristalina: HC (Ti puro; fase α) e CCC (fase β);
- ✓ Aplicação como biomateriais: 45% Ti-6Al-4V, 30% Ti puro e 25% outras ligas;
- ✓ Liga Ti-6Al-4V tem mostrado certa toxicidade neurológica associada ao Al e V:
 - substituição do V por Nb (Ti-6Al-7Nb);
 - alumínio suspeito de estar envolvido com a doença de Alzheimer: substituição pela liga Ti-13Zr-13Nb.

Composição do Ti puro e ligas

Element	Grade 1	Grade 2	Grade 3	Grade 4
N	0.03	0.03	0.05	0.05
C	0.10	0.10	0.10	0.10
H	0.015	0.015	0.015	0.015
Fe	0.20	0.30	0.30	0.50
0	0.18	0.25	0.35	0.40
Ti		Bala	nce	

Ligas	m.vol. (g/cm³)
Ti e ligas de Ti	4,5
Aço inoxidável 316L	7,9
Co-Cr-Mo	8,3
Co-Ni-Cr-Mo	9,2
Ni-Ti	6,7

Table 5-6. Chemical Compositions of TI6Al4V Alloys (ASTM, 2000)

V estabiliza a fase $\boldsymbol{\beta}$

Another wrought Ti6Al4V alloy (F1472) is very similar to F136 alloy. All are in maximum % allowed.

Problema Principal:

- danos na cartilagem levam a vários problemas de artrites
- > osteoartrites: 20,7 milhões de americanos

Sintomas:

- > dor
- > imobilidade

Solução: Total Knee Replacement (TKR)

✓ ~ 250,000 americanos recebem implantes de joelhos por ano

Resultados:

- √ diminuição ou eliminação da dor
- √ melhora a resistência da perna
- ✓ maior qualidade de vida

Componente femoral

Materiais: Co-Cr-Mo;Ti-6Al-4V

Interface: fixação biológica, PMMA

Componente tibial:

Materiais: Co-Cr-Mo (F75);Ti-6Al-4V Interface: fixação biológica, PMMA

Componente patelar (rótula):

Materiais: Polietileno e Co-Cr-Mo (Liga Ti)

Interface: fixação biológica, PMMA

Elemento polimérico

Materiais: PE

Interface: sob pressão

Ligas de Ni-Ti (ligas de Nitinol)

✓SMA (*Shape Memory Allo*ys): materiais com capacidade de recuperar a forma mesmo depois de severamente deformados;

Table 5-11. Chemical Composition of Ni–Ti Alloy Wire		
Element	Composition (w/o	
Ni	54.01	
Co	0.64	
Cr	0.76	
Mn	0.64	
Fe	0.66	
Ti	balance	

stents em vasos sanguíneos arteriais

arcos dentários em ortodontia

Tântalo

- muito biocompatível;
- aplicação: fios para suturas (não absorvível);
- propriedades mecânicas fracas, mas elevada densidade 16,6 g/cm³;

Properties	Fully annealed	Cold worked
Tensile strength ksi (MPa)	30 (207)	75 (517)
Yield strength (0.2% offset) ksi (MPa)	20(138)	50 (345)
Elongation (%)	20	2
Young's modulus ksi (GPa)	22	27550 (190)

Vantagens/limitações dos materiais metálicos

- 🚹 elevada resistência mecânica
- 🚹 facilidade de esterilização
- raios X visualização em imagem de raios X
- uscetibilidade ao desgaste e corrosão
- superfícies pouco hidrofílicas
- elevado módulo de elasticidade (stress-shielding)

Influência do módulo de Young / Stress shielding

Requisitos

- ✓ resistência mecânica adequada
- √ elevada resistência à corrosão
- ✓ elevada biocompatibilidade
- √ osteointegração
- ✓ comportamento elástico semelhante ao do osso humano

$$E_{\rm osso}$$
 = 3 – 20 GPa

$$E_{
m aço\;inox}$$
 = 200 GPa

$$E_{\mathsf{Ti}\,\mathsf{puro}}$$
 = 100 GPa

$$E_{\text{liga Ti }(\beta)}$$
 = 50 GPa

Influência do módulo de Young / Stress shielding

O implante cujo material é mais rígido que o osso, absorve o peso, reduzindo a solicitação a que o osso se encontra submetido.

Influência do módulo de Young / Stress shielding

Quando o **módulo de Young** do material do implante é maior do que o do osso este deixa de ser solicitado e é reabsorvido, criando risco de perda de fixação.

Influência do módulo de Young / Stress shielding

