New approaches to nowhere-zero flow problems Master thesis

Lukáš Gáborik

21st January 2025

Nowhere-zero k-flows

Figure: 43-flow

- ightharpoonup assignment of values $0, 1, 2, \ldots, k-1$ to edges
- ► Kirchoff's law in vertices

Nowhere-zero k-flows

Figure: 1-flow

- ightharpoonup assignment of values $0, 1, 2, \dots, k-1$ to edges
- Kirchoff's law in vertices
- this allowing trivial cases
- restrict zero flow values

Nowhere-zero k-flows

Figure: NZ 4-flow, $\Phi(K_4) = 4$

- ightharpoonup assignment of values $0, 1, 2, \ldots, k-1$ to edges
- Kirchoff's law in vertices
- this allowing trivial cases
- restrict zero flow values
- **Proof** graph with NZ k-flow has also a NZ (k+1)-flow
- rate of graph complexity
- flow number $\Phi(\Gamma)$ minimum

Chebyshev NZ r-flows

Figure: 2D ChNZ 2-flow, $\Phi_2^{\infty}(\Gamma) = 2$

- generalisation of one-dimensional flows
- $\|(x_1, x_2)^T\|_{\infty} = \max\{|x_1|, |x_2|\} \in [1, r-1]$
- ightharpoonup flow number $\Phi_2^\infty(\Gamma)$

Known bounds

- ightharpoonup generally proved $\Phi(\Gamma) \leq 6$
- generally conjectured $\Phi(\Gamma) \leq 5$
- for cubic graphs, 3-colourable iff $\Phi(\Gamma) \leq 4$
- ▶ generally proved $\Phi_2^{\infty}(\Gamma) \leq 3$
- generally conjectured $\Phi_2^{\infty}(\Gamma) \leq 5/2$
- for cubic graphs, 3-colourable iff $\Phi_2^{\infty}(\Gamma) = 2$

Sufficient flow-pairs

▶ NZ 6-flow constructed by Seymour from 2-flow and 3-flow

value of 2-flow	admitted values of 3-flow
0	1, 2
1	0, 1, 2

- using same flow pair we can construct 2D ChNZ 3-flow
- conjectured 2-flow and 4-flow, implying NZ 5-flow and 2D ChNZ 5/2-flow

value of 2-flow	admitted values of 4-flow
0	2, 3
1	0, 1, 2, 3

Seymour's k-closures and k-bases

Figure: 2-base of Y_4 , its 1-closure and 2-closure

- ▶ k-closure add a circuit, which has at most k missing edges
- ▶ k-base its k-closure is the original graph
- spanning tree is a 1-base

Flows and k-bases

- ▶ for a k-base $X \subseteq E$, there exists a (k+1)-flow that is non-zero on $E \setminus X$
- "each" graph has a 2-base, that is a "cycle"

Group connectivity

- analogue of list colourings
- we can deny any flow value for each of the edges

Forbidding more values

- ▶ k-base $X \subseteq E$, n-flow \to we can forbid strictly less than n/k values for edges from $E \setminus X$
- inequality not strict \Rightarrow 2-flow and 4-flow with 0,1 forbidden on 0 edges of the 2-flow \Rightarrow conjectures on NZ 5-flow and ChNZ 2.5-flow proved
- prove for at least some classes of graphs

Lower bound on Φ_2^{∞} for snarks

we proved

$$\Phi_2^{\infty} \ge 2 + 1 / \left| \frac{n-2}{4} \right|$$

- ▶ tight for Petersen snarks, Blanuša snarks, but no other equality cases known
- can we do better?

Generation of snarks with given girth g

 \blacktriangleright naive algorithm – adding K_2

▶ last level of generation lasts the most – try adding tripod instead of last two levels

 \blacktriangleright even better with 6-vertex subgraph ${\cal H}$

Properties of generation

- \blacktriangleright each graph with $g \geq 5$ has a reducible tripod, after reduction, $g' \geq g-1$
- \blacktriangleright each graph with $g \geq 5$ has a reducible ${\mathcal H},$ after reduction, $g' \geq g-2$

Thank you for your attention! Any questions?

