

Somehow Unsupervised

Dan Austin (Geo Data Scientist)
Steve Purves (R&D Director)
Daniel Coronel (Geophysics Master student)
Mads Lorentzen (Geophysics PhD student)
Kenneth Bredesen (Reservoir Geophysicist)
Laurent Olivier Feuilleaubois (QI Geoscientist)
Claire Sena (Reservoir Geoscientist)

Questions We wanted to Answer

Unsupervised learning

VS

existing interpretation

- dataset > Logs + ~Interpreted Lith Labels
- Can we see depth trends?
- How confident are we in the lithology labels supplied
 - Relative and absolute calibrations
 - Sand reference points
 - Heterolithic classification
- What patterns can the machine see that humans may miss

About Manifold Methods

- Dimensionality reduction
- Go from N dimensions (logs) to m (small)

 Resulting space unitless but may encode useful trends

```
In [28]: n_neighbors= 8# default 15
min_dist=0.99 # defult 0.1
n_components=2
metric='minkowski' #'euclidean' #'minkowski'
```


- Some big runs (100+ wells)
- Some small runs (Troll)
- Some parameter tuning

Data Selection and QC

Lets Focus on Trolls....

Density vs caliper colored by outliers

All depths

UMap of Troll Reservoir Pay and not Pay

All depths

Conclusions and questions

- Clustering is good for:
 - HC detection
 - Unsupervised mapping is effective at QC'ing the labels
 - Depth trends
- Reservoir quality sands form a clear cluster
- Become a troll hunter today!

<END/>

Looking at the Troll selected depth range

We're Going on a (data-driven) Adventure!

- Do Something cool with well data!
- Past hacks have messed around with dimensionality reduction and latent space stuff so let's try that...
- UMAP, TSNE, VAE- which will work and what can it solve
- Using GR and others to reduce the set and zooming in on particular intervals and lithotypes

The Data

ldx	UWI	Data	Quality	LITHOLOGY_GEOLINK	GR	RDEP	RHOB	RMED	DTC	CALI	NPHI	
			%	223/223 wells	205/223 wells	204/223 wells	200/223 wells	200/223 wells	198/223 wells	196/223 wells	188/223 wells	18
0	15/9- 12	13/13 curves	0	LITHOLOGY_GEOLINK 7.90_	GR 44.66 gAPI	RDEP 3.02 ohm.m	RHOB 2.20 g/cm3	RMED 4.39 ohm.m	DTC 114.04 us/ft	CALI 13.65 in	NPHI 0.32 m3/m3	
1	15/9- 13	14/14 curves	0	LITHOLOGY_GEOLINK 7.28_	GR 63.68 gAPI	RDEP 1.88 ohm.m	RHOB 2.15 g/cm3	RMED 1.88 ohm.m	DTC 125.11 us/ft	CALI 14.77 in	NPHI 0.40 m3/m3	
2	15/9- 14	14/14 curves	0	LITHOLOGY_GEOLINK 7.13_	GR 53.81 gAPI	RDEP 1.87 ohm.m	RHOB 2.16 g/cm3	RMED 3.88 ohm.m	DTC 121.53 us/ft	CALI 14.11 in	NPHI 0.38 m3/m3	
3	15/9- 15	16/16 curves	0	LITHOLOGY_GEOLINK 8.25_	GR 58.82 gAPI	RDEP 1.47 ohm.m	RHOB 2.13 g/cm3	RMED 1.54 ohm.m	DTC 124.09 us/ft	CALI 13.97 in	NPHI 0.38 m3/m3	
4	15/9- 17	17/17 curves	0	LITHOLOGY_GEOLINK 8.89_	GR 57.18 gAPI	RDEP 1.78 ohm.m	RHOB 2.14 g/cm ³	RMED 1.73 ohm.m	DTC 126.83 us/ft	CALI 13.56 in	NPHI 0.39 m3/m3	
5	15/9- 18	14/14 curves	0	LITHOLOGY_GEOLINK 7.30_	GR 58.01 gAPI	RDEP 180.95 ohm.m	RHOB 2.21 g/cm3	RMED 112.55 ohm.m	DTC 126.19 us/ft	CALI 13.58 in	NPHI 0.32 m3/m3	
6	15/9- 19 A	7/7 curves	0	LITHOLOGY_GEOLINK 0.92_	GR 47.15 gAPI	RDEP 35.95 ohm.m	RHOB 2.30 g/cm3	RMED 24.89 ohm.m		CALI 9.88 in		

- Approx 250 wells from the North Sea
- Tops and some lithology labels available
- Grungy and we know it!
 - Not all logs in all wells
 - o Different log tools and types

Tactics and Strategy

- Collaborative QC
 - Huddle up and eyeball data with welly and other packages
 - Set up Repro and working environments
- Split into specific QC task teams
 - more on this later
- Advance ML party
 - Dumping data into premade tools to test process end to end
 - Pseudocode notebooks for task
- Discuss results and then work out what it all means!

LAS Data with selected logs

- Yellow are NaN values
- Blues are non NaN values
- Note that
 Lithology
 labels have lots
 of NaN

Caliper QC

- Caliper in the LAS dataset plotted against MD and colored by well.
- Note the massive range in Caliper values that fall outside valid caliper values

Despiking QC

- Procedure: smooth (rolling window) → despike (Z score based)
- Density and DT despiking for all wells using a rolling window and Z-score.
- Problem with PHIE: fraction vs. percentage

Trying to clean the Caliper

- Tried to clean the Caliper
 data using the Variance of a
 rolling window and using
 residuals of the deviation to
 the mean on a rolling
 window
- 2. Failed! After testing different window sizes, we could not get a sensible threshold to filter the caliper based on variance or residuals

Showing data for one well only

Data mining for casing data - clip the Caliper (finally!)

- Had to find borehole size and borehole size depth online.
- Created a Bad hole flag, defined by the Caliper being 30% bigger or smaller than the borehole size
- 3. Then, clip the Caliper where there is bad hole

Subset of LAS data only for the reservoir with no bad hole

- Yellow are nan values
- 2. Blues are non nan values
- Note that the the Lithology log exists for every row

USED AS TRAINING SET

Our awesome sand

Density cut off

