MIME 262, Lecture 21, April 4, 2012

Group #: 19

Aslam, Muhammad Hannan, Pecatikov Adrea, Bourouf Bilal

Mechanicals properties

<u>Engineering Stress</u>: Pressure due to applied load.

Units for stress: Newtons/m²

megapascal = 10^6 ,

1. $\sigma = F/A_0$ tensile¹ or compressive² stress.

A₀=Original cross section area. **F**=Applied force.

- In tension and compression tests, the relevant area is that perpendicular to the force
- In shear or torsion tests, the area is perpendicular to the axis of rotation.
- Force divided by area is called stress.
 - 2. $\tau = F/A_0$ shear³ or torsion⁴ stress
 - τ is the stress. This symbol is more used to describe shear and torsion stress.

<u>Engineering Strain</u>: Response of the material to stress (i.e. physical deformation), degree of deformation.

Strain is unit less.

$$\varepsilon = (L_i - L_o)/L_o$$

L_i= instantaneous length, L_o=Original length

Pure Shear Strain: $\gamma = \tan \theta$

 $\gamma = strain \theta$ is the angle

Stress and strain:

"Types of Loading"

- 1) Tension
- 2) Compression
- 3) Shear
- 4) Torsion

Stress and strain are positive for tensile loads, negative for compressive loads.

True Stress:

 $\sigma = F/A_i$

 $A_{i=}$ Instantaneous Cross sectional area.

True Strain:

 $\varepsilon = \ln \left(L_i / L_o \right)$

 L_{i} = instantaneous length

L_o=Original length

Stress-Strain Behavior

Elastic deformation

Reversible: When the stress is removed, the material regains its original dimensions before the loading.
Usually strains are small (except for some plastics and rubber).

Plastic deformation

Irreversible: When the stress is removed, the material do not regains its original dimensions.

- -Yielding strength: the point when a material "yields".
- 1) Start at 0.002 (for almost all metals)
- 2) Draw a line parallel to the linear region
- 3) σ_y Is where the

dotted line cross the stress-strain curve

 Mixed Elastic-Plastic Behaviour beyond P

- Ultimate Tensile Strength(σ_u) indicates the strength of material and is a Maximum Engineering stress a material can sustain.
- -However, it is only suitable for ductile materials.
- -Metals: $\sigma_u\, depend$ on the average size of flaw. (material property)
- -Ceramics: σ_u depend on largest flaw (Not a material property)

-Beyond UTS necking starts and eventually material breaks at the fracture point

The stress-strain relationship is called Hooke's law:

 $\sigma = \mathbf{E} \, \mathbf{\epsilon}$

E = Young Modulus

(Slope of Stress to Strain graph)

It is material resistance to elastic deformation.

Poisson's ratio

The Poisson's ratio of a stable, isotropic, linear elastic material cannot be less than -1.0 nor greater than 0.5 due to the requirement that Young's modulus, the shear modulus and bulk modulus have positive values.

$$V = -\varepsilon_x / \varepsilon_z = -\varepsilon_y / \varepsilon_z$$

Range of V:-

-1<V<0.5

-V is dimensionless.