

High Performance Computing Based on Mobile Embedded Technology

Filippo Mantovani
Barcelona Supercomputing Center
Technical Coordinator

Mont-Blanc project in a glance

To develop an **European** Exascale **approach** leveraging **commodity** and **embedded** cost-effective technology

Manchester, 01/07/2015

Mont-Blanc objectives

- HPC prototype based on current mobile embedded technology
- x Learn from the experience, plan for future architecture
- Port real scientific applications

Mont-Blanc 2

Extend

- Set of scientific applications
- OmpSs programming model
- Productivity tools
- Next generation Mont-Blanc architecture

Explore

- × ARM 64-bit
- Fault tolerance and resiliency
- Market of ARM-based platforms for mini-clusters

Disseminate: End-User Group

Why are we doing this?

1 teraFLOPS supercomputer

ASCI Red (Sandia – 1997) Pentium Pro

Roadrunner (IBM / Los Alamos NL - 2008) AMD Opteron + PowerXCell 8i

Titan (Cray / Oak Ridge NL - 2012) AMD Opteron + Nvidia K20

What is commodity nowadays?

~23M cores (Nov 2014)

	Servers		PC		Smartphones	
2013	9.0M		316M		1000M	
2014	9.3M	+3%	314M	-1%	1300M	+30%

...and we are still ignoring tablets: >200M

Outline

1. Hardware

- History
- Mont-Blanc prototype
- Limitations

2. Software

- System software
- OmpSs programming model
- Power monitor

3. Applications

- Scalability
- Energy to solution
- End-User Group

4. Conclusions

- Project status
- Mont-Blanc impact
- Remarks

Outline

1. Hardware

- History
- Mont-Blanc prototype
- Limitations

3. Applications

- Scalability
- Energy to solution
- End-User Group

2. Software

- System software
- OmpSs programming model
- Power monitor

4. Conclusions

- Project status
- Mont-Blanc impact
- Remarks

The Mont-Blanc prototype ecosystem

Tibidabo: ARM multicore

Carma: ARM + external mobile GPU

Pedraforca: ARM + **HPC GPU**

Arndale: ARM + embedded GPU **Mont-Blanc** protoype:

Odroid: ARM bigLITTLE In-kernel switcher

Odroid Octa: ARM bigLITTLE Heterogeneous multi-processing

2011 2012 2013 2014

Prototypes are critical to accelerate software development System software stack + applications

Mont-Blanc Server-on-Module (SoM)

CPU + GPU + Memory + Local Storage + Network Form factor: 8.5 x 5.6 cm

The Mont-Blanc prototype

Exynos 5 compute card

2 x Cortex-A15 @ 1.7GHz

1 x Mali T604 GPU

6.8 + 25.5 GFLOPS

15 Watts

2.1 GFLOPS/W

Carrier blade

15 x Compute cards

485 GFLOPS

1 GbE to 10 GbE

300 Watts

1.6 GFLOPS/W

Blade chassis 7U

9 x Carrier blade

135 x Compute cards

4.3 TFLOPS

2.7 kWatts

1.6 GFLOPS/W

Rack

8 BullX chassis
72 Compute blades
1080 Compute cards
2160 CPUs
1080 GPUs
4.3 TB of DRAM
17.2 TB of Flash

35 TFLOPS 24 kWatt

	Mont-Blanc [GFLOPS/W]	Green500 [GFLOPS/W]
Nov 2011	0.15	2.0
Nov 2014	1.5	5.2

Limitations of commodity mobile technology

- 32-bit memory controller
 - Even if ARM Cortex-A15 offers 40-bit address space
- No ECC protection in memory
 - But surprisingly enough this is not affecting badly scalability (so far)
- No standard server I/O interfaces
 - No native Ethernet or PCI Express
 - Provide USB 3.0 and SATA (required for tablets)
- No network protocol off-load engine
 - TCP/IP, OpenMX, USB protocol stacks run on the CPU
- Thermal package not designed for sustained full-power operation

Implementation decisions, not unsolvable problems

The only need is a business case to justify the cost of including the new features (e.g. the HPC and server markets)

Wait for next SoC producer

Design a new HPC SoC

Outline

1. Hardware

- History
- Mont-Blanc prototype
- Limitations

3. Applications

- Scalability
- Energy to solution
- End-User Group

2. Software

- System software
- OmpSs programming model
- Power monitor

4. Conclusions

- Project status
- Mont-Blanc impact
- Remarks

System software stack

- Open source system software
 - Ubuntu/Debian Linux OS
 - **GNU** compilers
 - **JDK**
 - Scientific libraries
 - Cluster management
- Runtime libraries
 - MPICH2, CUDA, OpenCL, OmpSs
- Productivity tools
 - Perf
 - Paraver, Scalasca
 - Allinea DDT debugger

+ Server software stack (LAMP, Hadoop, OpenStack)

OmpSs programming model

- Programmer exposed to a simple architecture
 - Tasks
 - Data dependencies
 - Target devices (heterogeneity)
- Task graph provides look ahead
 - Exploit knowledge about the future
 - Allows exploration of scheduling policies
- It helps handling limitations of the hardware
 - Heterogeneity
 - Multiple address spaces
 - Low interconnect bandwidth
 - Synchronization

Power monitor – HW infrastructure

Manchester, 01/07/2015

Power monitor – HW / SW interface

- Field Programmable Gate Array (FPGA)
 - Collects power consumption data from all 15 power measurement / sample interval: 70ms
- Board Management Controller (BMC)
 - Collects 1s averaged data from FPGA
 - Stores measurement samples in FIFO
- Mont-Blanc Pusher
 - Collects measurement data from multiple BMCs using custom IPMI commands
 - Forwards data using MQTT protocol through Collect Agent into key-value store

Power monitor – Block diagram

Manchester, 01/07/2015

Outline

1. Hardware

- History
- Mont-Blanc prototype
- Limitations

3. Applications

- Scalability
- Energy to solution
- **End-User Group**

2. Software

- System software
- OmpSs programming model
- Power monitor

4. Conclusions

- Project status
- Mont-Blanc impact
- Remarks

One application running: Alya RED

- Electro mechanics of the heart (of a rabbit)
- 10 steps measuring the parallel region of the code (MPI only)

Manchester, 01/07/2015

Understanding... at node level

Understanding... at blade level

Energy to solution

End-User Group

- Develops a synergy among industry, research centers and partners of the project
- Validates the novel HPC technologies produced by the project
- Provides feedback to the project

Mont-Blanc provides EUG members with:

- Remote access to Mont-Blanc prototype platforms
- Support in platform evaluation and performance analysis
- Invitation to the Mont-Blanc training program

Outline

1. Hardware

- History
- Mont-Blanc prototype
- Limitations

3. Applications

- Scalability
- Energy to solution
- End-User Group

2. Software

- System software
- OmpSs programming model
- Power monitor

4. Conclusions

- Project status
- Mont-Blanc impact
- Remarks

Mont-Blanc project status

- Prototype: design, development, deployment, monitor
- Deployment of HPC software stack on ARM
- Porting of HPC kernels and applications
- Test of non-HPC workload (Hadoop, OpenStack)

- Next-generation architecture modelling
- ARM 64-bit exploration (mobile and server market)
- Porting of new applications
- Programming model enhancement
- Monitoring prototype for fault tolerant techniques

Mont-Blanc impact

MONT-BLANC

Lower cost

Cheap computing Industrial applications

- Small datacenters Small labs

Mobile technology

- Cheap due to volumes
- Fast evolution
- Constrained by mobile requirements
- More aggressive

Automotive

- Sensor fusion
- Autonomous driving
- Hybrid fuel

Higher cost

- New HPC node architecture
- Requires industry involvement
- European architecture

Server technology

- Expensive Slower evolution More oriented to HPC (?)
- More conservative

Student Cluster Competition – ISC'15

- First team participating with ARM-based cluster
- First Spanish team
- 3 kW power budget
- 5+ applications
 - HPCC
 - LAMMPS
 - PyFR
 - Octopus
 - Some "secret" applications
- 3 awards
 - Highest HPL
 - Fan favorite
 - 1st, 2nd, 3rd overall places

Manchester, 01/07/2015

Conclusions

- Mont-Blanc project explores the use of mobile embedded technology for scientific computing
- Hardware contributions
 - Several ARM-based prototypes have been developed
 - Companies and research institutions (EUG) can test MB prototypes
- Software contributions
 - System software + Power monitor
 - Programming model
 - Applications
- Even with "cheap" hardware it is possible to perform "decent" scientific computing

"The secret is to win going as slowly as possible."

Niki Lauda

Mont-Blanc project

montblanc-project.eu

MontBlancEU

@MontBlanc_EU

"The secret is to win going as slowly as possible."

Niki Lauda