Introduction to Machine Learning

Kernel Support Vector Machines

Varun Chandola

March 2, 2020

Outline

Contents

1	Support Vector Machines 1 1.1 SVM Learning 2 1.2 Kernel SVM 3
1	Support Vector Machines
	\bullet A hyperplane based classifier defined by ${\bf w}$ and b
	• Like perceptron
	$ullet$ Find hyperplane with $maximum\ separation\ margin\ on\ the\ training\ data$
	• Assume that data is linearly separable (will relax this later)
	- Zero training error (loss)
SV	VM Prediction Rule $y = sign(\mathbf{w}^{\top}\mathbf{x} + b)$
37	VM Learning

- Input: Training data $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$
- \bullet Objective: Learn w and b that maximizes the margin

1.1 SVM Learning

- SVM learning task as an optimization problem
- \bullet Find **w** and *b* that gives zero training error
- Maximizes the margin $\left(=\frac{2}{\|w\|}\right)$
- Same as minimizing $\|\mathbf{w}\|$

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1, \ n = 1, \dots, N.$

• Optimization with N linear inequality constraint

SVM Optimization

Optimization Formulation

minimize
$$\frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \ge 1, \ n = 1, \dots, N.$

• Introducing Lagrange Multipliers, α_n , n = 1, ..., N

Rewriting as a (primal) Lagrangian

minimize
$$L_P(\mathbf{w}, b, \alpha) = \frac{\|\mathbf{w}\|^2}{2} + \sum_{n=1}^N \alpha_n \{1 - y_n(\mathbf{w}^\top \mathbf{x}_n + b)\}$$

subject to $\alpha_n \ge 0$ $n = 1, \dots, N$.

2

Solving the Lagrangian

• Set gradient of L_P to 0

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n$$

$$\frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0$$

• Substituting in L_P to get the dual L_D

Dual Lagrangian Formulation

maximize
$$L_D(\mathbf{w}, b, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n(\mathbf{x}_m^{\mathsf{T}} \mathbf{x}_n)$$

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0, \alpha_n \ge 0 \ n = 1, \dots, N.$

1.2 Kernel SVM

Dot Product Formulation

- All training examples (\mathbf{x}_n) occur in dot/inner products
- Also recall the prediction using SVMs

$$y^* = sign(\mathbf{w}^{\top}\mathbf{x}^* + b)$$

$$= sign((\sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n)^{\top}\mathbf{x}^* + b)$$

$$= sign(\sum_{n=1}^{N} \alpha_n y_n (\mathbf{x}_n^{\top}\mathbf{x}^*) + b)$$

• Replace the dot products with kernel functions

- Kernel or non-linear SVM
- Kernel SVM with radial basis function kernel (RBF)

$$k(\mathbf{x}_i, \mathbf{x}_j) = exp\left(-\frac{1}{2\gamma^2}||\mathbf{x}_i - \mathbf{x}_j||^2\right)$$

Setting γ and C

• C is the regularization parameter

$$L(\mathbf{w}, b) = \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$
 subject to constraints

• For the role of γ , consider the following two aspects:

$$y^* = sign(\sum_{n=1}^{N} \alpha_n y_n \overline{(\mathbf{x}_n^{\mathsf{T}} \mathbf{x}^*)} + b)$$

- γ determines the influence of a training example inverse of the radius of influence of support vectors
- C determines the trade-off between the total slack (errors on training data) and the size of the margin (regularization)

- • Setting γ too large makes the decision boundary too complex, C will not prevent overfitting
- \bullet Setting γ very small makes the decision boundary simple (linear)
- ullet Usually a grid search is performed to identify optimal C and γ
- Training time for SVM training is $O(N^3)$
- Many faster but approximate approaches exist
 - Approximate QP solvers
 - Online training
- SVMs can be extended in different ways
 - 1. Non-linear boundaries (kernel trick)
 - 2. Multi-class classification
 - 3. Probabilistic output
 - 4. Regression (Support Vector Regression)

References