TRABALHO 2- CONJUNTOS

 $X=\{1,3,4,5,7,9\}$

1- Considere o conjunto $U = \{x \in N : 0 < x \le 10\}$ e os subconjuntos $A = \{x \in U : x \in Primo\}$, $B = \{x \in U : x \in Primo\}$, $B = \{x \in U : x \in Primo\}$. Determinar o conjunto $A = \{x \in Primo\}$.

$$U = \{x \in N / 0 < x \le 10\} = \{1,2,3,4,5,6,7,8,9,10\}$$

$$A = \{x \in U / x \text{ é primo}\} = \{2,3,5,7\}$$

$$B = \{x \in U / x \text{ é quadrado perfeito}\} = \{1,4,9\}$$

$$C = \{x \in U / x \text{ é impar}\} = \{1,3,5,7,9\}$$

$$A \cap B = \{1\} \quad // \quad (A \cap B)^c = U = \{1,2,3,4,5,6,7,8,9,10\}$$

$$B \cup C = \{1,3,4,5,7,9\} \quad // \quad (B \cup C)^c = \{2,6,8,10\}$$

$$X = (A \cap B)^c - (B \cup C)^c$$

$$X = U - \{2,6,8,10\}$$

2- Se A, B, C, D são conjuntos tais que C \subset A^c , A \subset B^c , e C \cup D = D. Simplificar: [(A ^c \cup B ^c) \cap (C ^c \cup D ^c)] \cup [([(C \cup B) \cap A] \cup C ^c) \cap B]

 $[(A \circ \cup B \circ) \cap (C \circ \cup D \circ)] \cup [([(C \cup B) \cap A] \cup C \circ) \cap B]$ $[(A \circ \cup B \circ) \cap (C \circ \cup D \circ)] \cup [((C \cup B) \cup C \circ) \cap (A \cup C \circ) \cap B]$ idistributiva $[(A \circ \cup B \circ) \cap (C \circ \cup D \circ)] \cup [((C \cup C \circ) \cup B) \cap (A \cup C \circ) \cap B]$ is associativa $[(A \circ \cup B \circ) \cap (C \circ \cup D \circ)] \cup [((U) \cup B) \cap (A \cup C \circ) \cap B]$ in egação $[(A \circ \cup B \circ) \cap (C \circ \cup D \circ)] \cup [(B) \cap (A \cup C \circ) \cap B]$ is elemento neutro $[(A \circ \cup B \circ) \cap (C \circ \cup D \circ)] \cup [(A \cup C \circ) \cap B \cap B]$ is associativa $[(A \circ \cup B \circ) \cap (C \circ \cup D \circ)] \cup [(A \cup C \circ) \cap B]$ idempotência $[(A \circ \cup B \circ) \cap (C \circ \cup D \circ)] \cup [(A \cap B) \cup (C \circ \cap B)]$ idistributiva $[(A \cap B) \circ \cap (C \circ \cup D \circ)] \cup [(A \cap B) \cup (C \circ \cap B)]$ ilei de morgan $[(C \circ \cup D \circ) \cap (A \cap B) \circ] \cup (A \cap B) \cup (C \circ \cap B]$ is associativa $(C \circ \cup D \circ) \cup (A \cap B) \cup (C \circ \cap B)$ is absorção $D \circ \cup (A \cap B) \cup C \circ \cup (C \circ \cap B)$ is associativa $(C \circ \cup D \circ) \cup (A \cap B) \cup C \circ \cup (C \circ \cap B)$ is associativa $(C \circ \cup D \circ) \cup (A \cap B) \cup C \circ \cup (C \circ \cap B)$ is associativa $(C \circ \cup D \circ) \cup (A \cap B) \cup C \circ \cup (C \circ \cap B)$ is associativa $(C \circ \cup D \circ) \cup (A \cap B) \cup C \circ \cup (C \circ \cap B)$ is associativa $(C \circ \cup D \circ) \cup (A \cap B) \cup C \circ \cup (C \circ \cap B)$ is associativa $(C \circ \cup D \circ) \cup (A \cap B) \cup C \circ \cup (C \circ \cap B)$ is associativa $(C \circ \cup D \circ) \cup (A \cap B) \cup C \circ \cup (C \circ \cap B)$ is associativa $(C \circ \cup D \circ) \cup (A \cap B) \cup C \circ \cup (C \circ \cap B)$ is associativa $(C \circ \cup D \circ) \cup (A \cap B) \cup (C \circ \cap B)$

 $D^c \cup (A \cap B) \cup C^c$:absorção

 $D^c \cup C^c \cup (A \cap B)$:associativa

 $(D \cap C)^{c} \cup (A \cap B)$:lei de morgan

Como o enunciado nos informa que $A \subset B^c$, então $A \cap B = \emptyset$. Visto que seja um $x \in A \longrightarrow x \notin B$, ou seja, A não tem elementos comuns com B porque o $x \in A$ implica que $x \notin B$. Então:

 $(D \cap C)^c \cup (\emptyset)$

(D ∩ C)^c :elemento neutro

Como o enunciado nos informa que C ∪ D = D, então

(D° U C°): lei de morgan dos conjuntos

 $((C \cup D)^c \cup C^c): C \cup D = D$ pelo enunciado

((C ^c ∩ D ^c) ∪ C ^c) : lei de morgan

(($D^c \cap C^c$) $\cup C^c$): comutativa

C c : absorção

3- Demonstrar a seguinte afirmação: Se (A ∪ B) ⊂ [B^c − (A − B)], então A = Ø e B = Ø.]

$$(A \cup B) \subset [B \circ - (A - B)] \longrightarrow A = \emptyset e B = \emptyset$$

$$(A \cup B) \subset [B \circ - (A - B)]$$

(A \cup B) \subset [B c - (A \cap B c)]: propriedade do complementar (A - B) = A \cap B c

 $(A \cup B) \subset [B ^c \cap (A \cap B ^c) ^c]$: propriedade do complementar $(A - B) = A \cap B ^c$

 $(A \cup B) \subset [B \circ \cap (A \circ \cup B)]$: lei de morgan

 $(A \cup B) \subset [(B \circ \cap A \circ) \cup (B \circ \cap B)]$:distributiva

 $(A \cup B) \subset [(B \circ \cup A \circ) \cap (\emptyset)]$: negação

 $(A \cup B) \subset [\emptyset]$:elemento neutro

 $(A \cup B) \subset [\emptyset]$

Como o conjunto vazio, representado por \emptyset , tem como único subconjunto ele mesmo, a única forma de (A \cup B) estar contido em \emptyset é se (A \cup B)= \emptyset . Logo, concluímos que A= \emptyset e B = \emptyset , provando (A \cup B) \subset [B c - (A - B)] \longrightarrow A = \emptyset e B = \emptyset .

4- Demonstrar, usando definições(usando elementos), que P[(A ∩ B) ∪ C)] = P(A ∪ C) ∩ P(B ∪ C)

$$P[(A \cap B) \cup C)] = P(A \cup C) \cap P(B \cup C)$$

$$(\subset) P[(A \cap B) \cup C)] \subset P(A \cup C) \cap P(B \cup C)$$

Seja $X \in P[(A \cap B) \cup C)]$, por definição temos que:

$$X \subset [(A \cap B) \cup C)]$$

$$X \subset [(A \cup C) \cap (B \cup C)]$$
:distributiva

Se X está contido na interseção de A e B, então ele está contido em ambos conjuntos, com isso:

$$X \subset (A \cup C) e X \subset (B \cup C)$$

 $P(A \cup C) \cap P(B \cup C)$: por definição

$$P[(A \cap B) \cup C)] \longrightarrow P(A \cup C) \cap P(B \cup C)$$

$$(\supseteq) P(A \cup C) \cap P(B \cup C) \subset P[(A \cap B) \cup C)]$$

Seja $X \in P(A \cup C) \cap P(B \cup C)$, por definição temos que:

$$X \subset (A \cup C) e X \subset (B \cup C)$$

Se X está contido em (A \cup C) e em (B \cup C), ele estará contido da interseção desses dois conjuntos porque por definição de interseção A \cap B tal que x \in A e x \in B. Então:

$$X \subset [(A \cup C) \cap (B \cup C)]$$

 $X \subset [(A \cap B) \cup C)]$: distributiva

 $X \in P[(A \cap B) \cup C)]$: por definição

$$P(A \cup C) \cap P(B \cup C) \longrightarrow P[(A \cap B) \cup C)]$$

Portando, provando que P[(A \cap B) \cup C)] \subset P(A \cup C) \cap P(B \cup C) e P(A \cup C) \cap P(B \cup C) \subset P[(A \cap B) \cup C)], é possível afirmar que P[(A \cap B) \cup C)] = P(A \cup C) \cap P(B \cup C)