

Claims

1. Nonlinear precoding method based on a modulo arithmetic for the transmit-side preequalization of K user signals to be transmitted at the same time and frequency in a digital broadcast channel with known transmission behavior set up between a central transmitting station and K decentralized, non-interconnected receiving stations, said user signals consisting of data symbols a_k with k from 1 to K from an M_k -level signal constellation having a signal point spacing A_k with a periodic multiple representation of the undisturbedly transmitted data symbols a_k in data symbol intervals congruent for K receive-side modulo decision devices, a transmit-power-minimizing selection of representatives v_k from the range of values $a_k + A_k \cdot M_k \cdot z_{kk}$ where z_{kk} is from the set of integers, and linear preequalization of the selected representatives v_k to form transmit signals x_k to be transmitted,

characterized in that

the interference symbols occurring in the broadcast channel (BC) and superimposed on the data symbols a_k and their periodic multiple representation due to cross-coupled user signals (ST_k) are included in the periodic multiple representation of the data symbols a_k by means of an adapted periodic multiple representation and eliminated by the K receive-side modulo decision devices, the interference symbols between the data symbol a_I with I from 1 to K and not equal to k and the data symbol a_k being assigned periodic representatives from the range of values $A_k \cdot M_k \cdot z_{Ik}$ with z_{Ik} from the set of integers.

2. Nonlinear precoding method according to Claim 1,

characterized in that

mathematically the required transmission behavior of the broadcast channel (BC) is achieved by a factorization of the channel matrix H describing the current transmission behavior

and known on the transmit side into a reduced channel matrix \mathbf{H}_{red} to be preequalized and a residual interference matrix \mathbf{R} according to

$$\mathbf{H} = \mathbf{R} \mathbf{H}_{\text{red}},$$

the residual interference matrix \mathbf{R} assuming only the value 1 on the main diagonal and all the other elements being row-wise integral multiples of the level number M_k of the signal constellation used and the reduced channel matrix \mathbf{H}_{red} being obtained by factorization into a matrix \mathbf{F} with orthogonal columns, a lower triangular matrix \mathbf{B} and a permutation matrix \mathbf{P} with the introduction of a receive-side scalar gain factor g according to:

$$\mathbf{P}^T \mathbf{H}_{\text{red}} = 1/g \mathbf{B} \mathbf{F}^{-1}.$$

3. Nonlinear precoding method according to Claim 1 or 2,
characterized in that

offset compensation (o) is already carried out on the transmit side in the transmit signals x_k to be transmitted.