de euler functie

Veronderstel dat n een positief getal is waar met $\Phi(n)$ het aantal natuurlijke getallen uit N[1, n] die copriem zijn met n. Indien n=p een priemgetal is dan is $\Phi(p)=p-1$

veronderstel dat n>= 2 een natuurlijk getal is met priemfactorontbinding n = p_1^{e1} p_2^{e2} ... p_k^{ek} waarbij p_1 , p_2 ,... p_k onderling verschillende priemgetallen zijn en e_1 , e_2 , ... , $e_k \in N^*$. Dan is

$$\Phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right).$$

bewijs

Voor elke j \in N[1,k], noem A $_j$ de deelverzameling van N[1,n] die de veelvouden van p $_j$ bevat. Dan geldt

$$\Phi(n) = n - |A_1 \cup A_2 \cup \dots \cup A_k|$$

= $n - \alpha_1 + \alpha_2 - \dots + (-1)^k \alpha_k$.

Hierbij is α_i (veralgemeend inclusie-exclusie principe) de som van de kardinaalgetallen van al de mogelijke doorsneden die men kan vormen met i dergelijke verzamelingen (i \in N[1,k]). De doorsnede van i dergelijke verzamelingen, zoals

$$A_{j_1} \cap A_{j_2} \cap \dots \cap A_{j_i}, \qquad (1 \le j_1 < j_2 < \dots < j_i \le k)$$

bevat de veelvouden in N[1,n] van P = \mathbf{p}_{j1} \mathbf{p}_{j2} ... \mathbf{p}_{ji} en bevat bijgevolg de natuurlijke getallen

Deze doorsnede bevat bijgevolg n/P getallen,en α_i is de som van alle termen van de vorm n/P= n(1 / p_{j1}) (1 / p_{j2}) ...(1 / p_{ji})

waarbij 1<=j $_1$ < j $_2$ < ... <j $_i$ <= k. Hieruit volgt dat

$$\Phi(n) = n - n \left(\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_k} \right) + n \left(\frac{1}{p_1 p_2} + \frac{1}{p_1 p_3} + \dots + \frac{1}{p_{k-1} p_k} \right)$$

$$- \dots + (-1)^k n \left(\frac{1}{p_1 p_2 \dots p_k} \right)$$

$$= n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_k} \right).$$

$$(6.2)$$