

SAKE: Seqoia dAta laKe

What to fish in the lake?

Pierre Marijon Laura Do Souto Ferreira April 11, 2025

GCS SeqOIA

A Big Data Challenge

	Germline	Somatic	Total
#Sample	46,839	10,522	58,027
#unique variants	492,284,372	619,758,827	963,515,536
#genotypes	246,931,520,478	23,317,666,538	
#sample with CNV	46,082	3,298	49,380
#CNV	1,445,298,049	2,421,232	1,447,719,281

A Big Data Challenge

	Germline	Somatic	Total
#Sample	46,839	10,522	58,027
#unique variants	492,284,372	619,758,827	963,515,536
#genotypes	246,931,520,478	23,317,666,538	
#sample with CNV	46,082	3,298	49,380
#CNV	1,445,298,049	2,421,232	1,447,719,281
SNV size (Tib)	≈488.68	≈84.61	≈573.29
CNV size (Tib)	≈5.97	≈0.15	≈6.13
sake size (Tib)	≈4.21	≈0.34	≈4.81

Update to 03/25

Variant ldescription 1 2029235 . C T 1012.75 . 1 2029443 . A T 257.12 1 2029444 . T G 62.22 1 2029450 . T G 54.96 2031852 . C G 435.75 1 2031976 . A G 4189.33 . 2032636 T C 605.75 1 2033336 . T C 546.75 1 2033373 . T G 628.75 1 2033988 . G A 675.75 2034982 . C T 1131.75 . 2020388 . A G 2233 1 2021166 . T C 2712 1 2021171 . T C 2564 1 2021343 . C A 1638 2021813 . T C 1344 1 2022025 . G C 508.75 1 2022373 . C T 752.75 1 2022997 . G A 1148 1 2023641 . G A 1625 1 2023934 . C T 737.75 2024545 . C T 2107

1 2024923 . G A 2472

Variant annotation

AC=1:AF=0.125:AN=8:DP=214 AC=2:AF=0.25:AN=8:DP=171 AC=2:AF=0.25:AN=8:DP=168 AC=2:AF=0.25:AN=8:DP=168 AC=1; AF=0.125; AN=8; DP=218 AC=5; AF=0.625; AN=8; DP=265 AC=1:AF=0.125:AN=8:DP=183 AC=1:AF=0.125:AN=8:DP=174 AC=1:AF=0.125:AN=8:DP=165 AC=1:AF=0.125:AN=8:DP=168 AC=1; AF=0.125; AN=8; DP=218 AC=2:AF=0.25;AN=8;DP=221 AC=2:AF=0.25:AN=8:DP=205 AC=2:AF=0.25:AN=8:DP=199 AC=2:AF=0.25:AN=8:DP=182 AC=2:AF=0.25;AN=8;DP=185 AC=1; AF=0.125; AN=8; DP=169 AC=1; AF=0.125; AN=8; DP=171 AC=2:AF=0.25:AN=8:DP=179 AC=2:AF=0.25:AN=8:DP=179 AC=1:AF=0.125:AN=8:DP=173 AC=2:AF=0.25:AN=8:DP=229 AC=2:AF=0.25:AN=8:DP=244

Genotyping information

GT:AD:DP:GO 0/1:32,32:64:99 0/0:56,0:56:99 GT:AD:DP:GO 0/1:36.6:42:73 0/1:37.12:49:99 GT:AD:DP:GO 0/1:35.6:41:66 0/1:43.6:49:8 0/1:36.5:41:53 GT:AD:DP:GO 0/1:39.10:49:1 GT:AD:DP:GO 0/1:29,18:47:99 0/0:66,0:66:99 GT:AD:DP:GQ 1/1:0,49:49:99 0/1:36,41:77:99 GT:AD:DP:GO 0/1:33,25:58:99 0/0:47.0:47:99 GT:AD:DP:GO 0/1:26,22:48:99 0/0:47.0:47:99 GT:AD:DP:GO 0/1:20,21:41:99 0/0:47,0:47:99 GT:AD:DP:GO 0/1:22.24:46:99 0/0:47.0:47:99 GT:AD:DP:GO 0/0:39,0:39:99 0/1:40,35:75:99 GT:AD:DP:GO 0/1:34,41:75:99 0/1:28,39:67:99 GT:AD:DP:GO 0|1:23,30:53:99 0|1:37,41:78:99 GT:AD:DP:GO 0|1:22,29:51:99 0|1:36,37:73:99 GT:AD:DP:GO 0/1:23.20:43:99 0/1:28.34:62:99 GT:AD:DP:GO 0/1:27.25:52:99 0/1:32,25:57:99 GT:AD:DP:GQ 0/1:28,18:46:99 0/0:48,0:48:99 GT:AD:DP:GQ 0/0:39,0:39:99 0/1:30,25:55:99 GT:AD:DP:GO 0/1:19,20:39:99 0/1:38.21:59:99 GT:AD:DP:GO 0/1:25,28:53:99 0/1:25.24:49:99 GT:AD:DP:GO 0/1:24.24:48:99 0/0:50.0:50:99 GT:AD:DP:GO 0/1:32.28:60:99 0/1:44.38:82:99 GT:AD:DP:GO 0/1:36.33:69:99 0/1:40.47:87:99

Sake struct

Variant Id a 64 bitfields

type	position in concat chromosome	len(ref	nuc2bit(alt)
1	$a = \text{ceil}(\log_2(genome_length))$	Ь	$c = \text{len}(alt) \times 2$

$$b = 63 - a - c$$

Variant Id a 64 bitfields

type	position in concat chromosome	len(<i>ref</i>) nuc2bit(alt)
1	$a = \text{ceil}(\log_2(genome_length))$	Ь	$c = \text{len}(alt) \times 2$

$$b = 63 - a - c$$

$$\textit{if} \ \mathsf{ceil}(\mathsf{log}_2(\textit{genome_length}) + \mathsf{len}(\textit{ref}) + \mathsf{len}(\textit{alt}) \times 2 > 63:$$

Variant Id a 64 bitfields

type	position in concat chromosome	en(ref) nuc2bit(alt)
1	$a = \text{ceil}(\log_2(genome_length))$	Ь	$c = \text{len}(alt) \times 2$

$$b = 63 - a - c$$

$$if \ ceil(log_2(genome_length) + len(ref) + len(alt) \times 2 > 63:$$
 type
$$ahash(real \ position + ref + alt)$$

Variant Id: collision risk

collision risk for k element in N bucket:
$$1 - \frac{2N!}{(2^{kN}(2^N - k)!)} \approx 1 - \exp\left(-\frac{k^2}{2^{N+1}}\right) \approx \frac{k^2}{2 \cdot N}$$

	Germline	Somatic
#short variant	477,322,058 (96.96%)	612,273,467 (98.79%)
#long variants	14,962,314 (3.04%)	7,485,360 (1.20%)
collision risk	$1.21 \cdot 10^{-5}$	$3.04 \cdot 10^{-6}$

Variant Id: collision risk

collision risk for k element in N bucket:
$$1 - \frac{2N!}{(2^{kN}(2^N - k)!)} \approx 1 - \exp\left(-\frac{k^2}{2^{N+1}}\right) \approx \frac{k^2}{2 \cdot N}$$

	Germline	Somatic
#short variant	477,322,058 (96.96%)	612,273,467 (98.79%)
#long variants	14,962,314 (3.04%)	7,485,360 (1.20%)
collision risk	$1.21 \cdot 10^{-5}$	$3.04 \cdot 10^{-6}$
#star variants	6,716,896 (1.36%)	1,944,446 (0.31%)
collision risk	$3.68 \cdot 10^{-6}$	1.6610^{-6}

#CHROM	POS	ID	REF	ALT	GT
10	41905990		CAATTAATGGA	С	0/1
10	41905993	•	Т	*	0/1
10	41905993	•	Т	G	0/1

File organisation

Genotypes organisation

What variants does a patient carry?

	familyA			familyB			familyZ	
index	mother	father	index	sister	father	index	mother	father

Genotypes organisation

What variants does a patient carry?

Which patients carry one variant?

We found a new disease-gene link

Dominant variants in major spliceosome U4 and U5 small nuclear RNA genes cause neurodevelopmental disorders through splicing disruption

Caroline Nava, Benjamin Cogne, Amandine Santini, D Elsa Leitão, D François Lecoguierre. Yuyang Chen, Sarah L. Stenton, Thomas Besnard, 🔟 Solveig Heide, Sarah Baer, Abhilasha Jakhar, Sonja Neuser, 📵 Boris Keren, Anne Faudet, Sylvie Forlani, 📵 Marie Faoucher, Kevin Uguen, Konrad Platzer. Alexandra Afenjar, Jean-Luc Alessandri, Stephanie Andres, 🗓 Chloé Angelini, Bernard Aral. 🔟 Benoit Arveiler, Tania Attie-Bitach. 🔟 Marion Aubert Mucca, Guillaume Banneau. Tahsin Stefan Barakat, Giulia Barcia, Stéphanie Baulac, 🔟 Claire Beneteau. Fouzia Benkerdou. Virginie Bernard, Stéphane Bézieau, Dominique Bonneau, Marie-Noelle Bonnet-Dupeyron, Simon Boussion. Odile Boute. 📵 Elise Brischoux-Boucher. Samantha J. Bryen. Julien Buratti. 🔟 Tiffanv Busa, Almuth Caliebe, Yline Capri, Kévin Cassinari, 🔟 Roseline Caumes, 🔟 Camille Cenni, Pascal Chambon, Perrine Charles, John Christodoulou, Cindy Colson, D Solène Conrad, 🔟 Auriane Cospain, 🔟 Juliette Coursimault, Thomas Courtin, Madeline Couse, Charles Coutton, 🔟 Isabelle Creveaux, Alissa M. D'Gama, Beniamin Dauriat, 🔟 Jean-Madeleine de Sainte Agathe. Giulia Del Gobbo, Andree Delahave-Duriez, Julian Delanne, Anne-Sophie Denommé-Pichon, Anne Dieux-Coeslier, Laura Do Souto Ferreira, Martine Doco-Fenzy. Stephan Drukewitz.

Found variant

run time

#rows

20s 9.506


```
sake db = sake request.Sake()
all variants = list()
for (chrom, start, end) in regions:
    all variants.append(sake db.get interval(
        chrom. start. end
    ))
variants = concat(all variants)
```

Annotations

annotated = sake_db.add_annotation(variants, clinvar)
annotated = sake_db.add_annotation(annotated, gnomad)
annotated = sake_db.add_annotation(variants, snpeff)

	clinvar	gnomad	snpeff
run time	6s	115s	104s
#rows	9,506	9,506	51,351

Genotyping


```
annotated = sake db.add id part(annotated)
all_genotyped = list()
for id part, group in annotated.group by("id part"):
    part genotype = read genotype(id part)
    all_genotyped.append(group.join(part_genotype))
genotyped = concat(all genotyped)
```

	one part	all part
run time	11s	24 min
#rows		2,925,453


```
recurrence = genotyped.group by("id").aggregate(
       sake AC = polars.col("gt").sum()
   all_data = genotyped.join(recurrence)
run time
            11s
#rows 2,925,453
```



```
sample_info = sake_db.add_sample_info(all_data)
homozygote = sample_info.filtre(
    gt == 2 && affected == True
)
heterozygote = sample_info.filtre(
    gt == 1 && affected == True
)
```

	add sample info	homozygote	heterozygote
run time	2.7s	0.3s	0.3s
#rows	2,925,453	382,737	772,645

We need continuous reanalysis?

ClinVar pathogenic variants found in Seqoia between each release

Strategy

	2019/07/15	2023/05/08	2024/01/07	runtime
#sample	16,006	9,482	19,957	
dominant	67	7	14	15 min
recessive homozygote	785	68	154	40 min
recessive heterozygote				(too long)

Generalisation

Sequencers Bias


```
for samples_group in samples.group_by(sequencers):
    for part in 0..512
        compute_recurrence(samples_group, part)
```

Sequencers Bias

Sequencers Bias

xplus.AF > 0.3 & xplus.AF > sixk.AF
xplus.AF > 0.3 & xplus.AF > gnomad.AF

	sixk	gnomad
#variants	32,312,609	33,796,472
#snpeff HIGH	4,255 (0.013%)	5,176 (0.015%)
#snpeff MODERATE	46,358 (0.14%)	52,473 (0.15%)
#clinvar Patho	145 (0.0004%)	164 (0.0004%)
#clinvar Patho*	3210 (0.009%)	3975 (0.011%)
#snpeff HIGH #snpeff MODERATE #clinvar Patho	4,255 (0.013%) 46,358 (0.14%) 145 (0.0004%)	5,176 (0.015%) 52,473 (0.15%) 164 (0.0004%)

Conclusion

Build "SAKE": https://github.com/SeqOIA-IT/variantplaner Interogate SAKE: https://github.com/SeqOIA-IT/sake_request Open for PR, bugs, suggestion, etc...

¹Diagnostic Use Only

Conclusion

Build "SAKE": https://github.com/SeqOIA-IT/variantplaner

Interogate SAKE: https://github.com/SeqOIA-IT/sake_request

Open for PR, bugs, suggestion, etc...

For any DUO¹ request contact: sake@bioinfo.aphp.fr

¹Diagnostic Use Only