Home Assignment 1: holomorphic functions

Exercise 1.1. Let f be a holomorphic function on a disk Δ . Prove that the zero set Z_f of f is discrete in Δ .

Proof. Suppose there exists $z_0 \in \mathsf{Z}_\mathsf{f} \cap \mathsf{Z}_\mathsf{f}' \cap \Delta$, a zero of f in Δ that is also an accumulation point of Z_f . Then there is a sequence $(z_k) \subset \mathsf{Z}_\mathsf{f}$ that converges to z_0 . So $\mathsf{f} \equiv 0$ in $(z_k) \cup \{z_0\}$, and by the identity principle $\mathsf{f} \equiv 0$ in Δ .

Exercise 1.2. Let P(t) be a polynomial. Prove that $f(z) = z - \frac{P(z)}{P'(z)}$ is holomorphic in a neighbourhood of any α which is a root of P(t). Prove that $f(\alpha) = \alpha$ and $|f'(\alpha)| < 1$.

Proof. We have that

$$P(z) = Q(z)(z - \alpha)^k$$

where $Q(\alpha) \neq 0$. So

$$P'(z) = Q'(z)(z - \alpha)^{k} + kQ(z)(k - \alpha)^{k-1}$$

= $(z - \alpha)^{k-1}(Q'(z)(z - \alpha) + kQ(z)),$

and then the quotient is

$$\frac{P(z)}{P'(z)} = (z - \alpha) \frac{Q(z)}{Q'(z)(z - \alpha) + kQ(z)}$$

which is well-defined in a neighbourhood of α where there are no other roots of P(z) (we may use exercise 1.1). Thus f is holomorphic near α .

It is clear that $f(\alpha) = \alpha$.

I couldn't really prove that $|f'(\alpha)| < 1$.

Here's some ideas:

Notice that

$$f'(z) = 1 - \frac{P'(z)^2 - P''(z)P(z)}{P'(z)^2} = \frac{P''(z)P(z)}{P'(z)^2}.$$

Now suppose that

$$P(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + ... + a_n z^n.$$

Then

$$P'(z) = a_1 + 2a_2z + 3a_3z^2 \dots + na_nz^{n-1}$$

$$P''(z) = 2a_2 + 3 \cdot 2a_3z + \dots + n \cdot (n-1)a_nz^{n-2}$$

and then \dots ?

Exercise 1.3. Let f(z) be a non-constant holomorphic function on a disk Δ . Prove that there exist $t, s \in]0, 1]$ such that the function f(tz) - f(sz) has no zeros when |z| = 1.

Proof. By contradiction, suppose that for all $t, s \in]0,1]$ there is z of norm 1 such that f(tz) = f(sz). For s = 1 and $t_n = 1/n$ with $n \in \mathbb{N}$, there exists z_n of norm 1 such that $f(z_n/n) = f(z_n)$. Denoting $z_0 = \lim_n z_n$, we get by continuity that $f(0) = f(z_0)$.

By a similar argument but now varying s in]0,1], we obtain numbers $z_{0,s}$ of norm s such that $f(0) = f(z_{0,s})$. But then $f \equiv f(0)$ in a infinite set within a compact set, which must have an accumulation point, so f is constant.

Exercise 1.4. Prove that if f is holomorphic on the unit disk Δ and continuous on $\partial \Delta$, then $\frac{1}{\pi} \int_{\Delta} f = f(0)$.

Proof. We know that the real and imaginary parts of f are harmonic functions. By the mean value property

$$f(0) = u(0) + \sqrt{-1}v(0) = \frac{1}{\pi} \left(\int_{\Delta} u + \sqrt{-1} \int_{\Delta} v \right),$$

where $f = u + \sqrt{-1}v$, using that the area of the unit disk is π .

Exercise 1.5. Prove that any holomorphic map from $\mathbb{C}\setminus 0$ to a disk Δ is constant.

Solution. By Riemann's criterion of removable singularities, 0 is a removable singularity of f since f is bounded. Thus there is a holomorphic function extending f to all of \mathbb{C} , which must be constant by Liouville's theorem, making f constant as well.

Exercise 1.6. Prove that any holomorphic function on a disk Δ which is continuous on its boundary $\partial \Delta$ and takes real values on $\partial \Delta$ is constant, or find a counterexample.

Solution. If we had f holomorphic on an open neighbourhood of Δ , then we can borrow this reasoning from StackExchange:

Im(f) is harmonic, and 0 on $\partial \Delta$. If it were not identically 0, it would have a maximum or minimum in Δ , and that is impossible.

This would mean that f is a real-valued function, so its derivative must be zero.

But in fact, f can be holomorphically extended by Schwarz reflection principle, which states that any function that is holomorphic on the upper half plane and real-valued on the real axis is holomorphically extendable to the whole plane. So we only need to precompose f with some holomorphic function taking the upper half-plane to our given disk (and then translate and resize).

The Cayley transform $z \mapsto \frac{z-i}{z+i}$ has such an action with respect to the unit disk:

