ICS 2020 Problem Sheet #1:

Problem 1.1:

-I first sorted all the edges in increasing order of their cost:

-Then I will be adding each edge if both of the nodes it connects are from different equivalence classes (in increasing order of their cost):

$$E' = \{\} \\ A = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}\}\} \\ E' = \{(a,f)\} \\ A = \{\{a,f\}, \{b\}, \{c\}, \{d\}, \{e\}\}\} \\ E' = \{(a,f), (b,c)\} \\ A = \{\{a,f\}, \{b,c\}, \{d\}, \{e\}\}\} \\ E' = \{(a,f), (b,c), (d,e)\} \\ A = \{\{a,f\}, \{b,c\}, \{d,e\}\} \\ E' = \{(a,f), (b,c), (d,e), (d,f)\} \\ A = \{\{a,f\}, \{b,c\}, \{d,e\}\} \\ E' = \{(a,f), (b,c), (d,e), (d,f)\} \\ A = \{a,f,d,e\}, \{b,c\}\} \\ E' = \{(a,f), (b,c), (d,e), (d,f), (c,f)\} \\ A = \{\{a,b,c,d,e,f\}\} \\ Step 5, C=15$$

-Conclusion:

$$G' = (V,E')$$

 $V = \{a,b,c,d,e,f\}$
 $E' = \{(a,f),(b,c),(d,e),(d,f),(c,f)\}$

Problem 1.2:

a) The naive string algorithm:

F	F	L	F	L	F	R	F	R	F	F	L	F	R	F
F	F	L	F	R										
	F	F		f	r									
		F	f	I	f	r								
			F	F	I	f								
				F	f	I	f	r						
					F	F	I	f	r					
						F	f	I	f	r				
							F	F	I	f	r			
								F	f	İ	f	r		
									F	F	L	F	R	

Comparaison: 22 Alignments: 10

b) Boyer-Moore string search algorithm:

F	F	L	F	L	F	R	F	R	F	F	L	F	R	F
f	f	I	f	R										
		F	F	L	F	R								
				f	f	L	F	R						
									F	F	L	F	R	

Comparaison:14 Alignments: 4

c)

	F	F	L	F	R
	0	1	2	3	4
L	0	1	2	-	0
R	0	1	2	3	-
F	-	-	0	-	0
Р	0	1	2	3	4

Problem 1.3:

a) If we have more than one non associative operator in a line the program won't know from where to start. (left or right)

for example:

$$2 = 2*1 = 4/2$$

b)The \$ operator has a precedence of 0 and right Associativity