

Məsələ İkili axtarış

```
Giriş faylı stdin
Çıxış faylı stdout
```

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

Aydındır ki, əgər p artan şəkildə sıralanmış olarsa, yuxarıdakı kod yalnız target ədədi p'nin içində varsa true qaytaracaq. Amma əgər p sıralanmayıbsa, o zaman bu fakt düzgün olmaya bilər.

Sizə n ədədi və $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}$ massivi verilib. $n = 2^k - 1$ şərti həmişə ödənir (k hər hansı bir ədəd ola bilər). Siz $\{1, \ldots, n\}$ ədədlərinin növbəti şərti ödəyən bir permutasiyasını yaratmalısınız. Gəlin $i \in \{1, \ldots, n\}$ ədədləri üçün binary_search(n, p, i) funksiyasının b_i dəyərini qaytarmadığı i'lərin sayını S(p) ilə göstərək. Siz elə p tapmalısınız ki, S(p) kiçik olsun (daha ətraflı "Məhdudiyyətlər" bölməsində).

(Qeyd: $\{1, \ldots, n\}$ ədədlərinin permutasiyası elə bir n uzunluqlu ədədlər ardıcıllığıdır ki, 1'dən n'ə qədər bütün tam ədədlər bu ardıcıllığın içində tam olaraq bir dəfə olsun.)

Giriş verilənləri

Girişə bir neçə test verilir. İlk sətirdə testlərin sayını göstərən T ədədi var. Sonra testlər gəlir. Testlərin ilk sətrində n ədədi var. İkinci sətirdə n uzunluqlu 0 və 1'lərdən ibarət string gəlir. Bu rəqəmlər arasında boşluq yoxdur. gər i'ci hərf 1 olarsa $b_i = \mathtt{true}$, əks halda $b_i = \mathtt{false}$ olur.

Çıxış verilənləri

Çıxışa T testin hər biri üçün tapdığınız cavabı verirsiniz. Test üçün cavab p'nin bir permutasiyası olur.

Məhdudiyyətlər

- $\sum n$ bütün testlərdəki n dəyərlərinin cəmi olsun
- $1 \le \sum n \le 100\,000$.
- $1 \le T \le 7000$.
- Hansısa bir $k \in \mathbb{N}$, k > 0 üçün $n = 2^k 1$.
- əgər alt tapşırığın bütün testləri üçün $S(p) \leq 1$ olarsa, o zaman həmin alt tapşırığın sizə verdiyi xalın 100%'ni qazanırsınız
- əks halda əgər alt tapşırığın bütün testləri üçün $S(p) \leq \lceil \log_2 n \rceil$ (yəni $2^{S(p)} \leq n+1$) olarsa, o zaman həmin alt tapşırığın sizə verdiyi xalın 50%'ni qazanırsınız

#	Xal	Məhdudiyyətlər
1	3	$b_i = { t true}.$
2	4	$b_i = \mathtt{false}.$
3	16	$1 \le n \le 7$.
4	25	$1 \le n \le 15.$
5	22	$n=2^{16}-1$ və b_i dəyərləri bir-birindən asılı olmadan $\{\mathtt{true},\mathtt{false}\}$ arasından bərabər təsadüfi seçilib
6	30	lavə məhdudiyyət yoxdur.

Nümunə

Giriş faylı	Çıxış faylı
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

İzah

Nümunə 1. İlk iki testdə S(p) = 0 olur.

Üçüncü testdə S(p)=1 olur, çünki binary_search(n, p, 2) bizə true qaytarır, amma $b_2=$ false. Dördüncü testdə S(p)=1 olur, çünki binary_search(n, p, 4) bizə true qaytarır, amma $b_4=$ false

Nümunə 2. Hər iki test üçün S(p) = 0 olur.