Resistenzen.Rmd: Vorbereitung Daten

12.03.2022

Bibliotheken laden, Hilfsfunktion

```
library(xlsx)  # Um Excel files einzulesen
library(stringr)  # String-verarbeitung

debug <- F  # kein debug printout

debug <- T  # debug printout

Log <- function(string) {
   if(debug){print(string)}}
}</pre>
```

Die 2 Excel-Files einlesen

```
# alle Spalten einlesen, insb. Farm ID, WM group. Farm 30 fehlt, aber ich rechne nie mit Zeilennummern :
codes <- read.xlsx("coded_data_questionnaire pilot12.xlsx", sheetName="data")

codes <- head(codes,59) # die letzten 2 Zeilen sind Quatsch
#View(codes)

Resistenzen <- read.xlsx("MIC_E. coli environment_L Windhofer_final.xls", sheetName="Abfrage")[6:22] # wichtige Resistenzen[2] <- NULL # die ist nicht wichtig
#View(Resistenzen) # 240 Zeilen</pre>
```

Farm IDs extrahieren:

```
col1_ <- str_replace(Resistenzen[[1]], "-", "") # evtl. Bindestrich weg

Resistenzen[[1]] <- substr(col1_, 1,nchar(col1_)-2) # dann sind die letzten 2 Zeichen überflüssig
names(Resistenzen)[1] <- "Farm.ID" # Diese Spalte enhält jetzt nur noch die Farm IDs

#View(Resistenzen) # 240 Zeilen</pre>
```

Farm 30 ausschliessen

```
Resistenzen <- Resistenzen[Resistenzen["Farm.ID"] != 30,]
ResRow <- nrow(Resistenzen)

#View(Resistenzen)  # 236 = 240 - 4 Proben der Farm 30

#Resistenzen[116,] Farm 29

#Resistenzen[117,] Farm 31
```

Spalten für die unabhängigen Variablen anfügen:

Abkürzung	Bedeutung	Variablentyp	Code/Werte	Code
$\overline{ m WM}$	Waste Milk	binär	1=Waste Milk	2=No Waste Milk

Abkürzung	Bedeutung	Variablentyp	Code/Werte	Code
OLS IAC	Q9 Other LiveStock Q12 Ill Animals in Calving box	binär binär, viele NA	0=No 0=No	1=Yes 1=Yes
HSC	Q20 Husbandry System Calves	6-wertig nominal	0=NO $0=stable w/o outlet$	1 = res $1 = \text{stable w} \setminus \text{outlet}$
			2=outdoors 4 = $1+2$	3=0+1 5=0+2
MY	Q6 meanMY/cow	numerisch	4-1 2	5-0 2
SCC	Q7 mean SCC/11mo	numerisch		
CBC	Q13a calvingbox_clean	numerisch, viele NA		
DIA	Q17 IN_diarrhea<30d	6-wertig ordinal	0-5	

```
# Start mit leeren Spalten:
Resistenzen["WM.group" ] <- vector(mode="character", length=ResRow)</pre>
Resistenzen["OLS.group"] <- vector(mode="character", length=ResRow)</pre>
Resistenzen["IAC.group"] <- vector(mode="character", length=ResRow)
### Neue binäre hier dazufügen ###
Resistenzen["HSC.group"] <- vector(mode="character", length=ResRow)</pre>
Resistenzen["MY.group" ] <- vector(mode="character", length=ResRow)</pre>
Resistenzen["SCC.group"] <- vector(mode="character", length=ResRow)
Resistenzen["CBC.group"] <- vector(mode="character", length=ResRow)</pre>
Resistenzen["DIA.group"] <- vector(mode="character", length=ResRow)</pre>
                                            # Schleife über alle Einträge
for (i in c(1:ResRow)) {
  Farm_ID <- Resistenzen[i,"Farm.ID"]</pre>
  Resistenzen[i,"WM.group" ] <- codes[codes["Farm.ID"] == Farm_ID,"WM.group"</pre>
  Resistenzen[i,"OLS.group"] <- codes[codes["Farm.ID"] == Farm_ID,"Q9.other_livestock"</pre>
                                                                                                     ]
  Resistenzen[i,"IAC.group"] <- codes[codes["Farm.ID"] == Farm_ID,"Q12.illanimals_in_calvingbox"]</pre>
  ### Neue binäre hier dazufügen ###
  Resistenzen[i,"HSC.group"] <- codes[codes["Farm.ID"] == Farm_ID,"Q20.husbandry_system_calves"]</pre>
  Resistenzen[i,"MY.group"] <- codes[codes["Farm.ID"] == Farm_ID,"Q6.meanMY.cow"
                                                                                                     1
  Resistenzen[i, "SCC.group"] <- codes[codes["Farm.ID"] == Farm_ID, "Q7.mean.SCC.11mo"
                                                                                                     ]
  Resistenzen[i,"CBC.group"] <- codes[codes["Farm.ID"] == Farm_ID,"Q13a.calvingbox_clean"</pre>
                                                                                                     ]
 Resistenzen[i,"DIA.group"] <- codes[codes["Farm.ID"] == Farm_ID,"Q17.IN_diarrhea.30d"]</pre>
}
if(debug){
                         # 240 Zeilen (ohne Farm 30)
  View(Resistenzen)
```

Resistenzen.xlsx rausschreiben

```
write.csv(Resistenzen, "Resistenzen.csv")
```