STAT5005 Qualifying Exam 2019/20

Question 1: Let $X_1, X_2, ...$ be a sequence of independent, identically distributed random variables. They may not have finite expectation. Let $S_n = X_1 + \cdots + X_n$. Fix a constant $0 . Prove that <math>E(|X_1|^p) < \infty$ if and only if as $n \to \infty$,

 $\frac{S_n}{n^{1/p}} \to 0$ a.s.

Question 2:

- (a) If $X_1, X_2, ...$ are independent random variables with $\frac{1}{2} = P(X_n = a_n) = 1 P(X_n = -a_n)$, characterize the sequences $\{a_n, n \ge 1\}$ for which $\sum_{i=1}^{\infty} X_i$ converges almost surely.
- (b) Suppose $\{X, Y, X_n, Y_n, n \geq 1\}$ are random variables defined on the same probability space. Suppose further that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$ as $n \to \infty$. Is it true that $X_n + Y_n \xrightarrow{d} X + Y$? What if we assume that $\{X, X_1, X_2, \ldots\}$ are independent of $\{Y, Y_1, Y_2, \ldots\}$? Justify your answer.

Question 3: Pólya's urn. A bag contains red and blue balls, with initially r red and b blue where rb > 0. A ball is drawn from the bag at random, its colour noted, and then returned to the bag together with a new ball of the same colour. Let R_n be the number of red balls after n such operations.

- (a) Show that $\{Y_n = R_n/(n+r+b), n \ge 0\}$ is a martingale.
- (b) Show that Y_n converges almost surely.
- (c) Let T be the number of balls drawn until the first blue ball appears, and suppose that r = b = 1. Compute E[T/(T+2)].
 - (d) Suppose r = b = 1. Show that $P(Y_n \ge \frac{3}{4} \text{ for some } n) \le \frac{2}{3}$.

[Note: You may use the following version of Doob's Optional Stopping Theorem: If the sequence $\{Y_n, n \ge 0\}$ is a bounded martingale and T is a stopping time, then the expected value of Y_T is Y_0 .]

Department of Statistics, The Chinese University of Hong Kong Qualifying Examination in June 2020

STAT5010 Advanced Statistical Inference

Instruction: All questions are compulsory. Throughout, the abbreviations 'i.i.d', 'pdf/pmf' and 'MLE' stand for 'independent and identically distributed', 'probability density/mass function' and 'maximum likelihood estimator', respectively. A normal distribution in \mathbb{R}^d with mean vector $\boldsymbol{\mu}$ and covariance matrix Σ is denoted by $N_d(\boldsymbol{\mu}, \Sigma)$ and $N(\boldsymbol{\mu}, \Sigma)$ corresponds to the univariate case d=1. For observations X arising from a parametric model $\{f(\cdot,\theta):\theta\in\Theta\},\Theta\subseteq\mathbb{R}$, the quadratic risk of a decision rule $\delta(X)$ is defined to be $R(\delta,\theta)=E_{\theta}(\delta(X)-\theta)^2$.

t. Consider an i.i.d. sample X_1, \ldots, X_n arising from the model

$$\{f(\cdot,\theta):\theta\in\mathbb{R}\},\quad f(x,\theta)=\frac{1}{2}e^{-|x-\theta|},\quad x\in\mathbb{R},$$

of Laplace distributions. Assuming n to be odd for simplicity, find the MLE. Discuss what happens when n is even. Calculate also the Fisher information.

2. Given X_1, \ldots, X_n i.i.d. random variables such that $E(X_1) = 0, E(X^2) \in (0, \infty)$, the Student t-statistic is given by

$$t_n = \frac{n^{1/2}\bar{X}_n}{S_n}, \quad \bar{X}_n = \frac{1}{n}\sum_{i=1}^n X_i, \quad S_n^2 = \frac{1}{(n-1)^2}\sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

Show that $t_n \stackrel{d}{\to} N(0,1)$ as $n \to \infty$. Assuming now $E(X_1) = \mu \in \mathbb{R}$, deduce an asymptotic level $1 - \alpha$ confidence interval for μ .

- 3. (a) Consider estimation of $\theta \in \Theta = [0,1]$ in a $Bin(n,\theta)$ model under quadratic risk.
 - i. Find the unique minimax estimator $\hat{\theta}$ of θ and deduce that the maximum likelihood estimator $\hat{\theta}$ of θ is *not* minimax for fixed sample size $n \in \mathbb{N}$.
 - ii. Show, however, that the maximum likelihood estimator dominates $\tilde{\theta}_n$ in the large sample limit by proving that, as $n \to \infty$.

$$\lim_{n \to \infty} \frac{\sup_{\theta} R(\hat{\theta}_n, \theta)}{\sup_{\theta} R(\tilde{\theta}_n, \theta)}$$

and that

$$\lim_{n\to\infty}\frac{R(\hat{\theta}_n,\theta)}{R(\tilde{\theta}_n,\theta)}<1\quad\text{for all }\theta\in[0,1],\theta\neq\frac{1}{2}.$$

- (b) Consider X_1, \ldots, X_n i.i.d. from a $N(\theta, 1)$ -model where $\theta \in \Theta = [0, \emptyset]$. Show that the sample mean \bar{X}_n is inadmissible for quadratic risk, but that it is still minimax. What happens if $\Theta = [a, b]$ for some $0 < a < b < \infty$.
- 4. Let $(X, X_n : n \in \mathbb{N})$ be random vectors in \mathbb{R}^k .
 - (a) Suppose $E\|X_n X\| \to 0$ as $n \to \infty$ where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^k . Deduce that $X_n \overset{p}{\to} X$ as $n \to \infty$.
 - (b) Show that the converse in (b) is false.
- 5. Suppose that X_1, \ldots, X_n are independent random variables, and $X_i \sim N(\theta_i, \sigma^2)$ for $i = 1, \ldots, n$, where σ^2 is a known constant. Find a size α UMP test for

$$H_0: \theta_1 = \ldots = \theta_n = 0$$
 versus $H_1: \theta_i = \theta_{i0}, i = 1, \ldots, n$,

where $\theta_{10}, \dots, \theta_{n0}$ are given constants. You are required to identify the test statistic and the rejection region.