Package 'Famdenovo'

Type Package

Title TP53 mutation carrier estimation

Version 0.1.0

Date 2018-02-04

Author Fan Gao, Wenyi Wang, Xuedong Pan

Maintainer Fan Gao <fgao3@mdanderson.org>, Wenyi Wang <wwang7@mdanderson.org> **Description** This is a software that predicts the de novo status of a germline mutation in familial diseases based on family history. Currently we apply Famdenovo to the de novo TP53 mutations. **License** GPL-3

How to install

Step 1. Install dependency "LFSPRO" package. If you have not installed "LFSPRO", download it from "http://bioinformatics.mdanderson.org/main/LFSPRO" and install it from local source in your R console by typing:

```
install.packages("where_you_saved_the_file/LFSPRO_0.1.5.tar.gz", repos =
NULL, type = "source")
```

Or, install from GitHub:

```
library(devtools)
install_github("wwylab/LFSPRO")
```

Step 2. Install dependency "Famdenovo" package. if you have not installed "Famdenovo", download it from "http://bioinformatics.mdanderson.org/main/Famdenovo" and install it from local source in your R console by typing:

```
install.packages("where_you_saved_the_file/Famdenovo_0.1.0.tar.gz", repos =
NULL, type = "source")
```

Or, install from GitHub:

```
library(devtools)
install_github("wwylab/Famdenovo")
```

How to use

Step 1. Load package

```
library(Famdenovo)
```

Step 2. Call "Famdenovo()" function

Format of the input files

Famdenovo requires three data sets as input: family, cancer, mutation, person.id, mutation, and gene.

family: family Information Data

The input should be a data frame. The family data should include the following columns with the corresponding column names:

id: index of the person. All individuals should from one family.

fid: index of the person's father. If the individual is the founder of the pedigree, set it as NA. *mid*: index of the person's mother. If the individual is the founder of the pedigree, set it as NA. *gender*: gender of the person. 0 - female; 1 - male

age: age of the person. If the individual is alive, it is as the current age. Otherwise, set it as the age of death.

Example Code:

```
Data("TP53.test1.family")
TP53.test1.family
```


Figure 1. An example of a pedigree structure

```
id fid mid gender age
1 2201 3201 3202
                     0 49
2 2202
         NA
              NA
                     1 47
3 2203 3201 3202
                     1 47
4 2204
                     0 45
         NA
              NA
5 2206
         NA
              NA
                     0 43
6 3201 5201 5202
                     1 68
7
                        70
  3202
         NA
              NA
                     0
  3204 5201 5202
                     0
                        78
                     1 26
9 4201 2202 2201
                     0 23
10 4202 2202 2201
11 4203 2202 2201
                     0 21
12 4204 2203 2204
                     1 12
13 4205 2203 2206
                     1 3
14 4208 2203 2206
                        2
                     1
15 5201
                     1 35
         NA
              NA
16 5202
         NA
              NA
                        48
```

Figure 2. The example of the family data for a pedigree in Figure 1.

cancer: Cancer Information Data

The input should be a data frame. The cancer data should include the following columns with the corresponding column names:

id: index of the person

cancer.type: type of the cancer. We divided all the cancers into 11 groups according to NCCCN Guidelines Version 1.2012 Li-Fraumeni Syndrome criteria. Check "LFSpro.cancer.type" for details. diag.age: The age when the individual was diagnosed with cancer.

Example Code:

```
Data("TP53.test1.cancer")
TP53.test1.cancer
```

```
id cancer.type diag.age
1
  2201
             breast
                          41
2
  2201
            breast
                          41
3
  2201
                          39
               sts
4 2203
           non.lfs
                          43
5 3201
           non.lfs
                         60
6 3201
           non.lfs
                         50
7 3201
                          23
               ost
8
  3201
           non.lfs
                         63
9 3201
                         67
                sts
10 3204
            breast
                         61
11 5202
            non.lfs
                          47
12 5202
           non.lfs
                          30
```

Figure 3. An example of the cancer file

mutation: Mutation Information Data

The input should be a data frame. The mutation data should include the following columns with the corresponding column names:

id: index of the person

mut.state: mutation status of the person. "W" - wild type; "M" - mutated. Individuals who are not sequenced are not included in the mutation information data.

Example Code:

```
Data("TP53.test1.mutation")
TP53.test1.mutation
```

```
id mut.state
1 2201 M
2 2203 M
3 3201 M
4 3204 W
5 4204 W
```

Figure 4. An example of the mutation file

person.id

The input should be either character string(s) or numrical value(s) of the person(s) you want to analyze.

Gene

The input should be character string(s). The default value is "TP53". We will add other genes in the future.

Format of the output file

The output is the probability of any TP53 mutation being de novo, one TP53 mutation carrier per line. Each line contains three elements: "family id", "individual id" and "prob.denovo", respectively.

Here is an example:

```
[1] "The following ids are not carriers: 1002, 1003"
id prob.denovo
1 2201 0.0001205471
2 2203 0.0001105599
3 3201 0.0126455556
```