LMAFY1101 - Solutions - Série 4

Variables aléatoires: Généralités

Variables aléatoires discrètes

Exercice 1

1.

Pour déterminer la distribution d'une variable aléatoire discrète, on doit calculer la probabilité d'observer chacune de ses valeurs possibles. On a que

$$P[X=1] = 0.25$$

$$P[X \le 2] = P[X=1] + P[X=2] = 0.25 + P[X=2] = 0.75 \rightarrow P[X=2] = 0.5$$

$$P[X \le 3] = P[X \le 2] + P[X=3] = 0.75 + P[X=3] = 0.875 \rightarrow P[X=3] = 0.125$$

$$P[X=4] = 1 - P[X \le 3] = 1 - 0.875 = 0.125$$

```
plot(x = c(1, 2, 3, 4), y = c(0.25, 0.5, 0.125, 0.125), type = "h",
    main = "", xlab = "x", ylab = "P(X=x)")
points(x = c(1, 2, 3, 4), y = c(0.25, 0.5, 0.125, 0.125))
```


$$P[X \le 1] = 0.25 P[X \le 2] = 0.75 P[X \le 3] = 0.875 P[X \le 4] = 1$$

$$\Rightarrow F(x) = \begin{cases} 0 & \text{si } x < 1\\ 0.25 & \text{si } 1 \le x < 2\\ 0.75 & \text{si } 2 \le x < 3\\ 0.875 & \text{si } 3 \le x < 4\\ 1 & \text{si } x \ge 4 \end{cases}$$

plot(stepfun(1:4, c(0, 0.25, 0.75, 0.875, 1)), main = "", xlab = "x", ylab = "F(x)")

3.

$$E(X) = \sum_{x=1}^{4} x P(X = x) = 1 \times 0.25 + 2 \times 0.5 + 3 \times 0.125 + 4 \times 0.125$$

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$E(X^{2}) = \sum_{x=1}^{4} x^{2} P(X = x) = 1^{2} \times 0.25 + 2^{2} \times 0.5 + 3^{2} \times 0.125 + 4^{2} \times 0.125$$

$$CV = \sqrt{Var(X)}/E(X)$$

```
x <- 1:4

p <- c(0.25, 0.5, 0.125, 0.125)

E <- sum(x * p)

E
```

[1] 2.12

```
E2 <- sum(x<sup>2</sup> * p)

Var <- E2 - E<sup>2</sup> # ou sum((x-E)<sup>2</sup>*p)

Var
```

[1] 0.859

[1] 0.436

4.

$$P(X \ge 2 \text{ ou } X \ge 3) = P(X \ge 2) = 1 - F(1) = 0.75$$

 $P(X \ge 3 | X \ge 2) = \frac{P(X \ge 3)}{P(X \ge 2)} = \frac{1 - F(2)}{1 - F(1)} = 0.25/0.75 \approx 0.333$

5. $E(1/X) = \sum_{x=1}^{4} \frac{1}{x} P(X = x) = 1/1 \times 0.25 + 1/2 \times 0.5 + 1/3 \times 0.125 + 1/4 \times 0.125$ $E(3X^2 - X + 1) = 3E(X^2) - E(X) + 1$

[1] 0.573

[1] 15

Exercice 2

1.

$$\sum_{x} p(x) = 1 \Leftrightarrow \frac{13c}{5} = 1 \Leftrightarrow c = 5/13$$

2.

$$P(Y = y) = P(X = y^{1/3}) = \frac{c}{1 + y^{2/3}}, \ y = 0, \pm 1, \pm 8, \pm 27$$

3.

Les valeurs possibles de Z sont

$$sin((pi / 2) * c(-3, -2, -1, 0, 1, 2, 3)) | > round(10)$$

$$P(Z = -1) = P(X = -1) + P(X = 3) = 3/13$$

$$P(Z = 0) = P(X = -2) + P(X = 0) + P(X = 2) = 7/13$$

$$P(Z = 1) = P(X = -3) + P(X = 1) = 3/13$$

Ensemble des valeurs de $X : \{1, 2, 3, 4\}$:

k	1	2	3	4
P(X=k)	$\frac{4 \times 6!}{7!} = 4/7$	$\frac{3\times4\times5!}{7!} = 2/7$	$\frac{3\times2\times4\times4!}{7!} = 4/35$	$\frac{3! \times 4!}{7!} = 1/35$

Notez qu'on peut calculer les factorielles en R avec la fonction factorial:

factorial(6)

[1] 720

Et voici comment calculer l'écart-type

```
E \leftarrow sum((1:4) * c(4/7, 2/7, 4/35, 1/35))

E2 \leftarrow sum((1:4)^2 * c(4/7, 2/7, 4/35, 1/35))

Var \leftarrow E2 - E^2

sqrt(Var)
```

[1] 0.8

ou comme ceci

$$sum((1:4 - E)^2 * c(4 / 7, 2 / 7, 4 / 35, 1 / 35)) | > sqrt()$$

[1] 0.8

Exercice 4

 $\Rightarrow E[X] = 0.5$ est le gain espéré suite à une participation. Pour n participants le gain espéré et de E(nX) = nE(X) = n/2. Donc pour espérer obtenir 250 euros, il faut n = 500 participants.

1.

Ensemble des valeurs de $X : \{0, 1, 2, \ldots\}$:

$$P(X = x) = (1/2)^{x+1}, x = 0, 1, 2, \dots$$

2.
$$P(X > 3) = 1 - P(X \le 3) = 1 - \sum_{x=0}^{3} P(X = x)$$

```
1 - sum(0.5^{(1:4)})
```

[1] 0.0625

3.
$$E(X) = \sum_{x=0}^{\infty} x0.5^{x+1}$$

On peut montrer, par des calculs mathématiques relativement simple, que cela vaut 1. On peut approximer cette somme comme suite.

```
x <- 0:1000

sum(x * (0.5)^(x + 1))
```

[1] 1

Exercice 6

```
exp <- replicate(10^6, {
  de <- sample(1:6, 5, replace = TRUE)
  sum(de)
})</pre>
```

```
prp <- table(exp) |> proportions()
prp
```

exp

```
plot(prp, xlab = "Somme dés", ylab = "prob")
```


1.

```
exp <- replicate(10^6, {</pre>
 de <- sample(1:6, size = 2, replace = TRUE)</pre>
  c(Z = max(de), W = prod(de))
})
table(exp["Z", ]) |> proportions()
0.0277 0.0834 0.1388 0.1943 0.2497 0.3061
table(exp["W", ]) |> proportions()
            2
                                                                      12
                    3
                           4
                                  5
                                          6
                                                 8
                                                        9
                                                               10
0.0277 0.0553 0.0555 0.0838 0.0559 0.1114 0.0555 0.0276 0.0549 0.1111 0.0554
           18
                   20
                          24
                                 25
0.0277 0.0557 0.0553 0.0557 0.0282 0.0555 0.0278
2.
mean(exp["Z", ] >= 6)
```

```
mean(exp["W", ] >= 6)

[1] 0.306
[1] 0.722
```

```
mean(exp["Z", ])
mean(exp["W", ])
var(exp["Z", ])
var(exp["W", ])
```

- [1] 4.47
- [1] 12.3
- [1] 1.97
- [1] 80

4.

Il s'agit de résoudre l'équation en x > 0

$$1 - \frac{80}{x^2} = 0.8 \Leftrightarrow x = \sqrt{80/(1 - 0.8)} = 20$$

5.

```
mean(abs(exp["W", ] - 12.3) <= 20)
```

[1] 0.972

 $\rightarrow P(|W-12.3| \le 20) \approx 0.972$ est bel et bien plus grande que 0.8, ce qui est en accord avec l'inégalité de Tchebychev. Sachez que cette dernière est connue pour être souvent trop conservatrice.

Variables aléatoires continues

Exercice 8

1.

$$F(x) = \begin{cases} 0 & \text{si } x < 0\\ \frac{x^2}{2} & \text{si } 0 \le x < 1\\ \frac{-x^2}{2} + 2x - 1 & \text{si } 1 \le x < 2\\ 1 & \text{si } x > 2 \end{cases}$$

```
curve((x^2/2) * (x \ge 0 & x < 1) + (-x^2/2 + 2 * x - 1) * (x \ge 1 & x < 2) + I(x \ge 2), from = -0.5, to = 2.5, ylab = "F(x)")
```


2.
$$P[0.8 \le X \le 1.2] = F(1.2) - F(0.8) = \left(\frac{-(1.2^2)}{2} + 2.4 - 1\right) - \frac{0.8^2}{2} = 0.36$$

3.
$$P[X \le 1.5 | X > 1] = \frac{F(1.5) - F(1)}{1 - F(1)} = \frac{0.375}{0.5} = 0.75$$

1.
$$P(Y \ge 2) = 1 - F(2) = 1 - (1 - e^{-4}) = 0.0183.$$

2.
$$1 - e^{-y^2} = p, \ p \in [0, 1] \Leftrightarrow y = \sqrt{-\log(1 - p)}.$$

curve(sqrt(-log(1 - x)), from = 0, to = 1, xlab = "p", ylab = "quantile(p)")

Il faut trouver y tel que $P(Y \ge y) = 0.935 \Leftrightarrow P(Y \le y) = 0.065$

$$round(sqrt(-log(1 - 0.065)) * 100)$$

[1] 26

4.

La densité est donnée par

$$f(y) = \frac{d}{dy}F(y) = 2ye^{-y^2}I(y \ge 0)$$

4.

• moyenne:

 $E \leftarrow integrate(function(x) 2 * x^2 * exp(-x^2), lower = 0, upper = Inf)$value E$

[1] 0.886

• variance:

integrate(function(x) $2 * x^3 * exp(-x^2)$, lower = 0, upper = Inf)\$value - E^2

[1] 0.215

Exercice 10

1.

Pour que f soit une fonction de densité il faut que $f \ge 0$ et que $\int f = 1$. Dans notre cas cela revient à verifier que $c \int_0^1 1 dx = 1 \to c = 1$.

2.

Soit $Y = X^2 + 1$. Notez que puisque $X \in [0, 1], Y \in [1, 2]$.

$$P(Y \le y) = P(X \le \sqrt{y-1}), \text{ pour } 1 \le y \le 2.$$

$$\Rightarrow F(y) = \begin{cases} 0, & y < 1 \\ \sqrt{y-1}, & 1 \le y \le 2 \\ 1, & y > 2. \end{cases}$$

$$\Rightarrow f(y) = \frac{d}{dy}F(y) = \frac{1}{2\sqrt{y-1}}I(1 \le y \le 2).$$

3.

• méthode 1 (définition de l'espérance):

$$E(X^2 + 1) = E(Y) = \frac{1}{2} \int_1^2 \frac{y}{\sqrt{y - 1}} dy = 1.333$$
 (R-> fonction integrate)

• méthode 2 (propriétés de l'espérance):

$$E(X^2 + 1) = E(X^2) + 1 = 1 + \int_0^1 x^2 dx = 1 + 1/3$$

Exercice 11

- Y = dur'e de vie dans le jeu en heures
- Coût d'inscription 25 euros
- Gain par minute 0.25 euros
- Gain par heure $0.25 \times 60 = 15$
- \rightarrow le gain net est la v.a. Z = 15Y 25.

Espérance du gain net est

$$E(Z) = 15 \times E(Y) - 25 = \frac{15}{8} \int_0^4 y^2 dy - 25 = 15.$$

2. P(perdre) = P(Z < 0) $= P(15Y < 25) = P(Y < \frac{5}{3})$ $= \frac{1}{8} \int_{0}^{\frac{5}{3}} y dx$

3.

La probabilité de gagner une partie (au hasard) est de p=1-0.1736=0.826.

= 0.1736

• La probabilité de gagner au moins une partie sur 5 est de

$$1 - (1 - p)^5 = 0.999845.$$

• La probabilité de gagner deux parties sur 5 est de

$$C_5^2 \times p^2 \times (1-p)^3 = 0.035412.$$