Задача VK-1

Команда УрФУ №13

Архипов Данил Максимова Наталья Сергеев Владимир Уткевич Илона Проект: "Предсказание пола пользователей соцсетей с использованием машинного обучения".

Цель: Разработать модель для предсказания пола пользователя.

Задача: Помочь рекламодателям эффективно таргетировать праздничные предложения.

Почему это важно: Улучшение качества рекламы, удовлетворение клиентов, увеличение дохода.

Обзор данных

- Датасет с пользовательскими запросами.
- Географическая информация.
- Векторные представления рефереров.

Предварительный анализ данных

Проверка на пропуски

- Какие столбцы содержат пропуски:
 - o user_agent: 1 пропущенное значение.
 - o region_id: 50,620 пропущенных значений.
- Обработка пропусков:
 - Пропуски в user_agent были устранены путем удаления строки, так как это минимально влияет на объем данных.
 - Для region_id пропуски не заполнялись, так как эта информация может быть использована как отдельная категория (например, "неизвестно").

Распределение целевой переменной

- Целевая переменная target (пол):
 - Класс 0 (мужчины): 313,572 записи.
 - Класс 1 (женщины): 287,717 записи.
 - Баланс между классами близок к равному, что снижает необходимость использования методов балансировки данных.

Особенности распределения фичей

- Большинство числовых признаков имеют распределения, близкие к нормальному.
 - Подтверждено визуализацией гистограмм и наложением нормального распределения.

Выявленные закономерности

Распределение ОС пользователей

- Распределение популярных операционных систем (os):
 - o Android: 389,999 записей.
 - Windows: 136,096 записей.
 - o iOS: 16,752 записей.
 - Менее популярные ОС: Mac OS X, Linux, Tizen и другие.

Распределение версий ОС

- Топ-5 популярных версий ОС:
 - 10: 335,740 записей.
 - 13: 53,071 записей.
 - 11: 45,048 записей.
 - 12: 34,288 записей.
 - 7: 18,211 записей.

Распределение ОС пользователей

- В выборке присутствуют популярные ОС, такие как Android, Windows, iOS.
- Анализ os_version показывает значительное разнообразие версий, что может указывать на технические особенности пользователей.

Построена гистограмма, показывающая частотное распределение

Выбор моделей и гипотезы

Выбор моделей и гипотезы

Используемые алгоритмы

CatBoostClassifier:

- Оптимизирован для работы с категориальными фичами.
- Настроены параметры, включая количество итераций и глубину деревьев.

RandomForestClassifier:

- Применяется для числовых данных.
- Используется как базовый метод для сравнения.

Ожидания и гипотезы

- Существуют прямые зависимости между характеристиками пользователей (локация, ОС) и их полом.
- Точные модели способны учитывать сложные взаимосвязи между параметрами.

Результаты моделей

CatBoostClassifier

• Лучшие метрики:

Log Loss: 0.4404

Accuracy: 0.4747

Precision: 0.4993

o Recall: 0.4854

o F1 Score: 0.4922

o ROC AUC: 0.4845

Выводы:

 Модель показала хорошие результаты для сбалансированного подхода к работе с категориальными фичами.

RandomForestClassifier

• Лучшие метрики:

- Accuracy: 0.3367
- Precision: 0.3552
- o Recall: 0.3244
- F1 Score: 0.3391
- o ROC AUC: 0.3202

• Выводы:

Простая модель менее эффективна при работе с текущими данными.

Оптимизация модели (Optuna)

- Применена библиотека Optuna для подбора гиперпараметров CatBoost.
- Оптимизированы:
 - o iterations
 - o learning_rate
 - depth
- Минимизировано значение Log Loss до 0.4404.

Сравнение моделей

Метрика	CatBoost	Random Forest
Accuracy	0.3367	0.4747
Precision	0.3552	0.4993
Recall	0.3244	0.4854
F1 Score	0.3391	0.4922
ROC AUC	0.3202	0.4845