Contents

1	Basi	c																				1
	1.1	.vimrc		• •	• •	• •		•		•			•		•	• •	•	•		•	•	1
	1.2 1.3	Default Bear . Default Ken .	• • •	• •		• •	• •	•	• •	•	• •	• •	•	• •	•	• •	•	•	• •	•	•	1
	1.4	IO Optimize .	 																	:	:	1
	1.5	PBDS																				1
	1.6	Set Comperato	г					-		-			•				•			•		2
	1.7 1.8	Random Pvthon		• •	• •	• •	• •				• •	• •	•		•	• •	٠	•	• •	•	•	2
	1.0	Python	• • •	• •	٠.	• •	• •	•	• •	•	• •	• •	•	• •	•	• •	•	•	• •	•	•	2
2	Grap	oh																				2
	2.1							•					•				•			•		2
	2.2	Bellman Ford				• •									•	• •	•	•		•	•	2
	2.3 2.4	Biconnected Co Bridge	•									: :		• •	•	•	•	•	•	•	•	2
	2.5	Bridge Connect															:			:	:	2
	2.6	Centroid Decon	nposi	tion	١.																	3
	2.7	Close Vertices								•					-		•	•		•	•	3
	2.8 2.9	Disjoint Set . Heavy Light De								•				• •	•	• •	•	•	• •	•	•	4
		KSP							 						•	•	•	•	•	•	•	4
		LCA																				5
		Maximum Cliqu																				5
		SCC Kosaraju															•	•		•	•	6
		SCC Tarjan Tree Centroid				• •		-		-				• •	•	•	•	•	•	•	•	6
		Virtual Tree .															:			:	:	6
3		Structure																				6
	3.1 3.2	2D BIT 2D Segment Tre			• •	• •	• •	•	• •	•	• •	• •	•	• •	•	•	•	•	•	•	•	6
	3.3	BIT			• •			:									:			:	:	7
	3.4	chtholly tree																				7
	3.5	LiChaoST											•				•			•		7
	3.6	persistent		• •	• •	• •							•		•	• •	•	•	• •	•	•	8
	3.7 3.8	Sparse Table Treap	• • •	• •						•		• •			•	•	•	•	•	•	•	8
	3.9	ZKW Segment 1	 Ггее														:			:	:	8
		_																				
4	Flow		.:																			9
	4.1 4.2	Bipartite Match							• •					• •	•	• •	•	•	• •	•	•	9
	4.3																					9
	4.4	Maximum Simp	le Gra	aph	Ma	tchi	ing														•	10
	4.4 4.5	Maximum Simp MCMF		-			_										•			•	•	10 10
5	4.5	MCMF		-			_										•			•		
5	4.5	-		-			_										•					10
5	4.5 Geo 5.1 5.2	metry Basic 2D Convex Hull .				• •											:					10 10 10 12
5	4.5 Geo 5.1 5.2 5.3	MCMF metry Basic 2D Convex Hull . Dynamic Conve	 x Hul																			10 10 10 12 12
5	4.5 Geo 5.1 5.2	metry Basic 2D Convex Hull .	 x Hul																			10 10 10 12
5	4.5 Geo 5.1 5.2 5.3 5.4 Mat	MCMF metry Basic 2D Convex Hull . Dynamic Conve Segmentation I	 x Hul nters	 l .	 ion													•				10 10 10 12 12 12
	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I	· · · · · · · x Hul nters	l secti	 ion													•				10 10 10 12 12 12 12
	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remain	x Hul	l secti														• • •				10 10 10 12 12 12 12 13 13
	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair	 x Hul nters	l																		10 10 10 12 12 12 12
	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati	 x Hul nters ider 												• • •							10 10 10 12 12 12 13 13 14 14 14 14
	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5 6.6	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Gauss Eliminati	 x Hul nters nder on .																			10 10 12 12 12 12 13 14 14 14 14 14
	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair Extgcd Gauss Eliminati Gauss Eliminati Karatsuba	x Hul nters												• • • • • • • • • • • • • • • • • • • •							10 10 10 12 12 12 13 13 14 14 14 14 15
	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5 6.6	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Karatsuba Linear Sieve .	x Hull nters																			10 10 12 12 12 12 13 14 14 14 14 14
	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair Extgcd Gauss Eliminati Gauss Eliminati Karatsuba		il .																		10 10 10 12 12 12 13 13 14 14 14 14 15 15
	4.5 Geo 5.1 5.2 5.3 5.4 Mati 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remain Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT																				10 10 10 12 12 12 12 13 13 14 14 14 15 15 15 15
	4.5 Georgian 5.2 5.3 5.4 Mati 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	metry Basic 2D Convex Hull . Dynamic Convex Segmentation I Big Int Chinese Remain Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT																				10 10 10 11 12 12 12 13 13 14 14 14 15 15 15 16
	4.5 Georgian 5.1 5.2 5.3 5.4 Mati 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT Pollard Rho .	x Hull nters																			10 10 10 12 12 12 12 13 13 14 14 14 15 15 15 15
	4.5 Georgian 5.1 5.2 5.3 5.4 Mati 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	metry Basic 2D Convex Hull . Dynamic Convex Segmentation I Big Int Chinese Remain Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT	x Hull nters																			10 10 10 11 12 12 12 13 13 14 14 14 15 15 15 16 16
	4.5 Geo 5.1 5.2 5.3 5.4 Mati 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 Striil	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT Pollard Rho . Primes																				10 10 10 11 12 12 12 13 13 14 14 14 15 15 15 16 16 16 16
6	4.5 Geo 5.1 5.2 5.3 5.4 Mati 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 Striir 7.1	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remain Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT NTT2 Pollard Rho . Primes	x Hull nters																			10 10 10 11 12 12 12 13 13 14 14 14 14 15 15 15 16 16 16 16
6	4.5 Geo 5.1 5.2 5.3 5.4 Mati 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 Striil	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT Pollard Rho . Primes																				10 10 10 11 12 12 12 13 13 14 14 14 15 15 15 16 16 16 16
6	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 Striir 7.1	metry Basic 2D Convex Hull Dynamic Conve Segmentation I h Big Int Chinese Remain Extgcd FFT Gauss Eliminati Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT NTT2 Pollard Rho . Primes ng AC																				10 10 10 11 12 11 12 11 13 13 14 14 14 15 15 15 16 16 16 16 16 17
6	4.5 Geo 5.1 5.2 5.3 5.4 Mati 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 6.13 6.14 Strif 7.1 7.2 7.3 7.4	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT NTT2 Pollard Rho . Primes g AC KMP Manacher SA	x Hull nters																			10 10 10 10 11 12 12 12 13 11 14 14 14 15 15 15 16 16 16 17 17 17
6	4.5 Geo 5.1 5.2 5.3 5.4 Mati 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 7.1 7.2 7.3 7.4 7.5 7.6	metry Basic 2D Convex Hull . Dynamic Conves Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Karatsuba . Linear Sieve . Matrix Miller Rabin . NTT NTT2 Pollard Rho . Primes Primes Ma AC KMP KMP Manacher SA SA2	x Hull nters on on .																			10 10 10 10 11 12 12 12 13 13 14 14 14 15 15 15 16 16 16 17 17 17
6	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 7.1 7.2 7.3 7.4 7.5 7.6 7.7	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remain Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT NTT2 Pollard Rho . Primes 19 AC Hash Manacher SA SA 2 SA 2																				10 10 10 10 11 12 12 12 13 11 14 14 14 15 15 15 16 16 16 17 17 17
6	4.5 Geo 5.1 5.2 5.3 5.4 Mati 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 7.1 7.2 7.3 7.4 7.5 7.6	metry Basic 2D Convex Hull . Dynamic Conves Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Karatsuba . Linear Sieve . Matrix Miller Rabin . NTT NTT2 Pollard Rho . Primes Primes Ma AC KMP KMP Manacher SA SA2																				10 10 10 10 11 12 12 12 13 13 14 14 14 15 15 15 16 16 16 17 17 17 17 18
6	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 6.12 7.1 7.2 7.3 7.4 7.5 7.7 7.8	metry Basic 2D Convex Hull . Dynamic Conve Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT Pollard Rho . Primes 19 AC Hash Hash Manacher SA2 SA2 Suffix Automat Trie	x Hull nters on con con con con con con con con con c																			10 10 11 12 12 12 12 13 14 14 14 14 15 15 15 16 16 16 17 17 17 17 17 18 18
7	4.5 Geo 5.1 5.2 5.3 5.4 Mati 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.10	metry Basic 2D Convex Hull Dynamic Convex Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba . Linear Sieve . Matrix Miller Rabin . NTT Pollard Rho . Primes Pollard Rho . Primes Manacher SA SA2 Suffix Automat Trie Z	x Hull nters on con con con con con con con con con c																			10 10 10 10 11 12 12 12 13 11 14 14 14 15 15 15 16 16 16 17 17 17 17 18 18 19 19
6	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.13 6.14 7.1 7.2 7.3 7.4 7.5 7.6 7.7	metry Basic 2D Convex Hull Dynamic Convex Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba . Linear Sieve . Matrix Miller Rabin . NTT Pollard Rho . Primes Pollard Rho . Primes Manacher SA SA2 Suffix Automat Trie Z																				10 10 10 112 112 113 114 114 114 115 115 115 116 116 117 117 117 117 117 118 118 119
7	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 Otholoxida (Control Control	MCMF metry Basic 2D Convex Hull Dynamic Convex Segmentation I h Big Int Chinese Remair Extgcd FFT Gauss Eliminati Gauss Eliminati Karatsuba Linear Sieve Miller Rabin NTT NTT 2 Pollard Rho Primes Primes Mahash KMP SA SA2 SA1 SA2 SA1 Suffix Automat Trie Z Ers																				10 10 10 10 11 12 12 12 13 13 14 14 14 15 15 15 16 16 16 17 17 17 17 18 18 18 19 19
7	4.5 Geo 5.1 5.2 5.3 5.4 Mat 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 7.1 7.2 7.3 7.4 7.7 7.8 7.9 7.10 Oth 8.1	metry Basic 2D Convex Hull Dynamic Conves Segmentation I h Big Int Chinese Remair Extgcd Gauss Eliminati Karatsuba Linear Sieve . Matrix Miller Rabin . NTT NTT NTT Pollard Rho . Primes 9 AC Hash KMP SA2 SA2 SA1S Suffix Automat Trie Z																				10 10 11 12 12 12 12 13 14 14 14 14 15 15 15 16 16 16 17 17 17 17 17 17 18 18 19 19

1 Basic

1.1 .vimrc

```
"This file should be placed at ~/.vimrc"
  se nu ai hls et ru ic is sc cul
  se re=1 ts=4 sts=4 sw=4 ls=2 mouse=a
  svntax on
  hi cursorline cterm=none ctermbg=89
  set bg=dark
2 inoremap {<CR> {<CR>}<Esc>ko<tab>
```

1.2 Default Bear

```
2 | #include <bits/stdc++.h>
   using namespace std;
   typedef long long ll;
   #define int ll
   typedef pair<int,int> pii;
   #define X first
   #define Y second
   #define pb push back
  #define All(a) a.begin(), a.end()
#define SZ(a) ((int)a.size())
#define endl '\n'
```

1.3 Default Ken

```
#include <bits/stdc++.h>
#define F first
#define S second
#define pb push_back
#define pob pop_back
#define SZ(x) (int)(x.size())
#define all(x) begin(x), end(x)
#ifdef LOCAL
#define HEHE freopen("in.txt", "r", stdin);
#define debug(...)
     {cout << #__VA_ARGS__ << " = "; dbg(__VA_ARGS__);}
#else
#define HEHE ios_base::sync_with_stdio(0), cin.tie(0);
#define debug(...) 7122;
#endif
using namespace std;
#define chmax(a, b) (a) = (a) > (b) ? (a) : (b)
#define chmin(a, b) (a) = (a) < (b) ? (a) : (b)
#define FOR(i, a, b) for (int i = (a); i <= (b); i++)
void dbg() { cerr << '\n'; }</pre>
template < typename T, typename ...U>
void dbg(T t, U \dotsu) { cerr << t << ' '; dbg(u\dots); }
#define int long long
signed main() {
  HEHE
}
```

1.4 IO Optimize

```
bool rit(auto& x) {
  x = 0; char c = cin.rdbuf()->sbumpc(); bool neg = 0;
while (!isdigit(c)) {
    if (c == EOF) return 0;
    if (c == '-') neg = 1;
    c = cin.rdbuf()->sbumpc();
  while (isdigit(c))
    x = x * 10 + c - '0', c = cin.rdbuf()->sbumpc();
  return x = neg ? -x : x, 1;
void wit(auto x) {
  if (x < 0) cout.rdbuf()->sputc('-'), x = -x;
  char s[20], len = 0;
  do s[len++] = x \% 10 + '0'; while (x /= 10);
  while (len) cout.rdbuf()->sputc(s[--len]);
```

1.5 PBDS

```
#include <ext/pb_ds/assoc_container.hpp>
                                      #include <ext/pb_ds/tree_policy.hpp>
                                      // #include <bits/extc++.h>
                                      #include <bits/stdc++.h>
                                      using namespace __gnu_pbds;
```

```
using rbtree = tree<T, null_type, less<T</pre>
    >, rb_tree_tag, tree_order_statistics_node_update>;
  less<T> : increasing, greater<T> : decreasing
// rb_tree_tag, splay_tree_tag, ov_tree_tag
int main() {
 int x;
  rbtree<int> t, rhs, rhs2;
  t.insert(x);
  t.erase(x); // return 1 or 0
 cout << t.order_of_key(x) << '\n'; // rank</pre>
 cout << *t.find_by_order(x) << '\n'; // x-th
cout << *t.lower_bound(x) << '\n'; // iterator >= x
  cout << *t.upper_bound(x) << '\n'; // iterator > x
 t.join(rhs
      ); // merge // same type, no duplicate elements
  t.split(x, rhs2
      ); // tree : elements <= x, rhs : elements > x
```

1.6 Set Comperator

```
auto cmp = [](int a, int b) {
    return a > b;
};
set<int, decltype(cmp)> s = {1, 2, 3, 4, 5};
cout << *s.begin() << '\n';</pre>
```

1.7 Random

1.8 Python

2 Graph

2.1 2 SAT

```
struct TwoSAT {
  int n;
  Scc scc;
  void init(int _n) {
     // (0,1),(2,3),.
    n = _n; scc.init(n * 2);
  void add_disjunction(int a, int na, int b, int nb) {
  a = 2 * a ^ na, b = 2 * b ^ nb;
  scc.addEdge(a ^ 1, b);
     scc.addEdge(b ^ 1, a);
  }
  vector<int> solve() {
     scc.solve();
     vector<int> assignment(n, 0);
     for (int i = 0; i < n; i++) {</pre>
       if (scc
            .bln[2 * i] == scc.bln[2 * i ^ 1]) return {};
       assignment
            [i] = scc.bln[2 * i] > scc.bln[2 * i ^ 1];
     return assignment:
  }
};
```

2.2 Bellman Ford

```
struct edge{
  int u, v;
  int cost;
};
vector<int> d(n, inf);
bool bellman_ford(vector<edge> &ee, int n, int s){
  d[s] = 0;
```

```
auto relax = [&](edge e){
   if(d[e.v] > d[e.u] + e.cost){
      d[e.v] = d[e.u] + e.cost;
      return 1;
   }
   return 0;
}
for(int t = 1; t <= n; ++t){
   bool update = 0;
   for(auto &e: ee)
      update |= relax(e);
   if(t == n && update) return 0;
}
return 1;
}</pre>
```

2.3 Biconnected Component

```
// beware of multiple inputs
#define ep emplace
#define eb emplace_back
const int N = 2e5 + 5;
int d[N], low[N];
vector<int> g[N];
vector<vector<int>> bcc;
stack<int> st;
void dfs(int x, int p) {
 d[x] = p ? d[p] + 1 : 1, low[x] = d[x];
  st.ep(x);
  for (const auto& i : g[x]) {
    if (i == p) continue;
    if (!d[i]) {
      dfs(i, x);
      low[x] = min(low[x], low[i]);
      if (d[x] <= low[i]) {</pre>
        int tmp;
        bcc.eb();
        do tmp = st.top(), st.pop
            (), bcc.back().eb(tmp); while (tmp != x);
        st.ep(x);
      }
    low[x] = min(low[x], d[i]);
```

2.4 Bridge

```
#define eb emplace_back
using pii = pair<int, int>;
const int N = 2e5 + 5;
int d[N], low[N];
vector<int> g[N];
vector<int> ap; // articulation point
vector<pii> bridge;
void dfs(int x, int p) {
  d[x] = \neg p ? d[p] + 1 : 1, low[x] = d[x];
  int cnt = 0;
  bool isap = 0;
  for (const auto& i : g[x]) {
    if (i == p) continue;
    if (!d[i]) {
      dfs(i, x), cnt++;
if (d[x] <= low[i]) isap = 1;</pre>
      if (d[x] < low[i]) bridge.eb(x, i);</pre>
      low[x] = min(low[x], low[i]);
    low[x] = min(low[x], d[i]);
  if (p == -1 && cnt < 2) isap = 0;
  if (isap) ap.eb(x);
```

2.5 Bridge Connected Component

```
#define ep emplace
constexpr int N = 2e5 + 1;
int d[N], low[N], bcc[N], nbcc;
vector<int> g[N];
stack<int> st;
void dfs(int x, int p) {
```

```
d[x] = \neg p ? d[p] + 1 : 1, low[x] = d[x];
  st.ep(x);
  for (const auto& i : g[x]) {
    if (i == p) continue;
     if (!d[i]) {
      dfs(i, x);
       low[x] = min(low[x], low[i]);
     low[x] = min(low[x], d[i]);
  if (low[x] == d[x]) {
    nbcc++;
     int tmp;
     do tmp = st.top()
         , st.pop(), bcc[tmp] = nbcc; while (tmp != x);
}
```

2.6 Centroid Decomposition

```
const int MAXN = 1e5 + 5;
int n, q, vis[MAXN], sz[MAXN];
vector < int > adj[MAXN], pa[MAXN], mx[MAXN], dis[MAXN];
void dfs_sz(int x, int p) {
    sz[x] = 1;
    for (int i : adj[x]) {
        if (i == p or vis[i]) continue;
        dfs_sz(i, x);
        sz[x] += sz[i];
    }
int cen;
void dfs_cen(int x, int p, int all) {
   int tmp = all - sz[x];
    for (int i : adj[x]) {
        if (i == p or vis[i]) continue;
        dfs_cen(i, x, all);
        chmax(tmp, sz[i]);
    if (tmp * 2 <= all) cen = x;
void dfs(int x, int p, int d) {
    pa[x].pb(cen);
    dis[x].pb(d);
    if (d >= mx[cen].size()) mx[cen].pb(x);
    else chmax(mx[cen][d], x);
    for (int i : adj[x]) {
        if (i == p or vis[i]) continue;
        dfs(i, x, d + 1);
    }
void deco(int x, int d) {
    dfs_sz(x, x);
    dfs_cen(x, x, sz[x]);
    vis[cen] = 1;
    dfs(cen, cen, 0);
    for (int i = 1; i < mx[cen].size(); i++) {</pre>
        chmax(mx[cen][i], mx[cen][i - 1]);
    for (int i : adj[cen]) {
        if (vis[i]) continue;
        deco(i, d + 1);
    }
int get(int x, int k) {
   if (!mx[x].size() or k < 0) return 0;</pre>
    return k >= mx[x].size() ? mx[x].back() : mx[x][k];
int query(int x, int k) {
    int res = get(x, k);
for (int i = 0; i < pa[x].size(); i++) {
        int p = pa[x][i];
        int d = dis[x][i];
        chmax(res, get(p, k - d));
    return res;
}
signed main() {
    WOSHAOJI
    cin >> n >> q;
    for (int i = 1, u, v; i < n; i++) {
        cin >> u >> v;
        adj[u].pb(v);
        adj[v].pb(u);
    }
```

```
deco(1, 0);
     e (q--) {
int x, k; cin >> x >> k;
---('v k) << '\n';
while (q--) {
```

2.7 Close Vertices

```
}
#include <iostream>
#include <vector>
#include <bitset>
#include <algorithm>
#include <cstring>
 using namespace std;
 int l, w;
 vector<pair<int, short>> tree[100000];
 bitset<100000> removed;
 int current_centroid, BIT[100000];
 // Return subtree size internally
 // and
      place the discovered centroid in current_centroid
 int find_centroid
     (const int n, const int u, const int p = -1) {
   if (n == 1) { current_centroid = u; return 0; }
   int subtree_sum = 0;
   for (const auto
        &[v, w] : tree[u]) if (v != p && !removed[v]) {
       subtree_sum += find_centroid(n, v, u);
       if (current_centroid > -1) return 0;
       if (subtree_sum >=
            n >> 1) { current_centroid = u; return 0; }
     }
  return subtree_sum + 1;
void DFS(const int u, const int p, const int length,
      const int weight, vector<pair<int, int>> &record) {
   record.emplace_back(weight, length);
   for (const auto
        &[v, w] : tree[u]) if (v != p && !removed[v])
       DFS(v, u, length + 1, weight + w, record);
bool greater_size(const vector<pair</pre>
     <int, int>> &v, const vector<pair<int, int>> &w) {
   return v.size() > w.size();
long long centroid_decomposition(const int n, int u) {
   long long ans = 0;
   // Step 1: find the centroid
   current_centroid = -1; find_centroid(n, u);
   removed[u = current_centroid] = true;
   // Step 2: DFS from the centroid (again)
   // and continue the centroid decomposition
   vector<vector<pair<int, int>>> root2subtree_paths;
for (const auto &[v, w] : tree[u]) if (!removed[v]) {
       root2subtree_paths.emplace_back();
       DFS(v, u, 1, w, root2subtree_paths.back());
       // Sort mainly according to weight
       ranges::sort(root2subtree_paths.back());
       ans += centroid_decomposition
           (root2subtree_paths.back().size(), v);
   for (const auto &v : root2subtree_paths)
     for (const auto &[weight, length] : v)
       if (length <= l && weight <= w) ++ans;</pre>
   // Step 3: optimal merging
   ranges::make_heap(root2subtree_paths, greater_size);
   while (root2subtree_paths.size() > 1) {
     ranges::pop_heap(root2subtree_paths, greater_size);
     // Merge
          front() (with maybe larger size) and back()
     // Count cross-centroid paths
     memset(BIT, 0, root2subtree_paths
         .back().size() * sizeof(int));
     auto p = root2subtree_paths.front().crbegin();
     for (auto q = root2subtree_paths.back().cbegin()
         ; q != root2subtree_paths.back().cend(); ++q) {
       int L;
       while (p != root2subtree_paths.front().crend()
              && p->first + q->first > w) {
         L = min(l - p->second,
                 static cast<int>(
                      root2subtree_paths.back().size()));
         while
             (L > 0) { ans += BIT[L - 1]; L -= L & -L; }
         ++p:
       }
```

```
L = q->second;
     while (L <= static cast
          <int>(root2subtree_paths.back().size()))
       ++BIT[L - 1]; L += L & -L;
     }
   while (p != root2subtree_paths.front().crend()) {
     int L = min(l - p++->second, static_cast
         <int>(root2subtree_paths.back().size()));
     while (L > 0) { ans += BIT[L - 1]; L -= L & -L; }
   // Actually merge the lists
   vector<pair<int, int>> buffer;
   buffer.reserve(root2subtree_paths.front
       ().size() + root2subtree_paths.back().size());
   ranges::merge
        (root2subtree_paths.front(), root2subtree_paths
        .back(), back_inserter(buffer));
   root2subtree_paths.pop_back();
   ranges::pop_heap(root2subtree_paths, greater_size);
   root2subtree_paths.back() = move(buffer);
   ranges
        ::push_heap(root2subtree_paths, greater_size);
 }
 return ans;
int main() {
 ios_base::sync_with_stdio(false);
 int n; cin >> n >> l >> w;
 for (int i = 1; i < n; ++i) {</pre>
   int p; short w; cin >> p >> w;
   tree[--p].emplace_back(i, w);
   tree[i].emplace_back(p, w);
 cout << centroid_decomposition(n, 0) << endl;
```

2.8 Disjoint Set

```
#include <bits/stdc++.h>
using namespace std;
struct disjoint_set {
  static const int maxn = (int)5e5 + 5;
  int n, fa[maxn], sz[maxn];
 vector<pair<int*, int>> h;
  vector<int> sp;
  void init(int _n) {
   n = _n;
for (int i = 0 ; i < n ; ++i)</pre>
      fa[i] = i, sz[i] = 1;
    sp.clear(); h.clear();
  void assign(int *k, int v) {
   h.push_back(\{k, *k\});
    *k = v;
  void save() { sp.push_back((int)h.size()); }
  void undo() {
    assert(!sp.empty());
    int last = sp.back(), cnt = 0; sp.pop_back();
    while (h.size() > last) {
      auto x = h.back(); h.pop_back();
      *x.first = x.second;
      cnt++;
   n += cnt / 2;
  int f(int x) {
    while (fa[x] != x) x = fa[x];
    return x;
  bool merge(int x, int y) {
   x = f(x); y = f(y);
    if (x == y) return 0;
    if (sz[x] < sz[y]) swap(x, y);
    assign(\&sz[x], sz[x] + sz[y]);
    assign(&fa[y], x);
   n - -:
    return 1;
} dis;
```

2.9 Heavy Light Decomposition

```
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
#define eb emplace_back
int t, n, q, seg[N \ll 1]; // t := time-stamp
int sz[N], fa[N], dep[N], to[N], fr[N], dfn[N], arr[N];
// size, father, depth
     , to-heavy-child, from-head, dfs-order, a_i value
vector<int> g[N];
void upd(int x, int v) {
  for (seg[x += n] = v; x > 1; x >>= 1)
    seg[x >> 1] = max(seg[x], seg[x ^ 1]);
int qry(int l, int r) { // [l, r]
  int ret = -1e9; // -max
  for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1) {
    if (l & 1) ret = max(ret, seg[l++]);
    if (r & 1) ret = max(ret, seg[--r]);
  return ret;
}
void dfs(int x, int p) {
  sz[x] = 1, fa[
      x] = p, to[x] = -1, dep[x] = -p? dep[p] + 1 : 0;
  for (auto i : g[x])
    if (i != p) {
      dfs(i, x);
      if (to[x] == -1 \mid | sz[i] > sz[to[x]]) to[x] = i;
      sz[x] += sz[i];
void dfs2(int x, int f) {
  fr[x] = f, dfn[x] = ++t, upd(dfn[x], arr[x]);
  if (to[x] != -1) dfs2(to[x], f);
  for (auto i : g[x])
    if (i != fa[x] && i != to[x]) dfs2(i, i);
int qry2(int u, int v) { // query on tree
  int fu = fr[u], fv = fr[v], ret = -1e9;
  while (fu != fv) {
    if (dep[fu] < dep[fv]) swap(fu, fv), swap(u, v);</pre>
    ret = max(ret, qry(dfn
        [fu], dfn[u])); // interval: [dfn[fu], dfn[u]]
    u = fa[fu], fu = fr[u];
  if (dep[u] > dep[v]) swap(u, v);
  // u is the LCA
  ret = max(ret, qry(dfn[u], dfn[v]));
  return ret;
int main() {
  ios::sync_with_stdio(false), cin.tie(nullptr);
  cin >> n >> q;
  for (int i = 1; i <= n; i++) cin >> arr[i];
  for (int i = 1, a, b; i < n; i++)</pre>
    cin >> a >> b, g[a].eb(b), g[b].eb(a);
  dfs(1, -1), dfs2(1, 1);
  while (q--) {
    int op; cin >> op;
    if (op == 1) {
      int x,
          v; cin >> x >> v, arr[x] = v, upd(dfn[x], v);
    else {
      int a, b; cin >> a >> b;
      cout << qry2(a, b) << '\n';</pre>
  }
}
2.10 KSP
```

```
node(ll
    _d, int _v, nd* _E) { d = _d; v = _v; E = _E; }
node(heap* _H, ll _d) { H = _H; d = _d; }
friend bool operator <(node a, node b)
    { return a.d > b.d; }
  };
  int n, k, s, t, dst[N]; nd *nxt[N];
  vector<nd*> g[N], rg[N]; heap *nullNd, *head[N];
  void init(int _n, int _k, int _s, int _t) {
  n = _n; k = _k; s = _s; t = _t;
  for (int i = 1; i <= n; i++) {
    g[i].clear(); rg[i].clear();
}</pre>
      nxt[i] = NULL; head[i] = NULL; dst[i] = -1;
  void addEdge(int ui, int vi, ll di) {
  nd* e = new nd(ui, vi, di);
    g[ui].push_back(e); rg[vi].push_back(e);
  queue<int> dfsQ;
  void dijkstra() {
    while (dfsQ.size()) dfsQ.pop();
    priority_queue<node> Q; Q.push(node(0, t, NULL));
    while (!Q.empty()) {
      node p = Q
           .top(); Q.pop(); if (dst[p.v] != -1)continue;
      dst[p.v] = p.d; nxt[p.v] = p.E; dfsQ.push(p.v);
           : rg[p.v]) Q.push(node(p.d + e->d, e->u, e));
    }
  heap* merge(heap* curNd, heap* newNd) {
    if (curNd == nullNd) return newNd;
    heap* root
          = new heap; memcpy(root, curNd, sizeof(heap));
    if (newNd->edge->d < curNd->edge->d) {
      root->edge = newNd->edge;
      root->chd[2] = newNd->chd[2];
      root ->chd[3] = newNd ->chd[3];
      newNd->edge = curNd->edge;
      newNd->chd[2] = curNd->chd[2];
      newNd->chd[3] = curNd->chd[3];
    if (root->chd[0]->dep < root->chd[1]->dep)
      root->chd[0] = merge(root->chd[0], newNd);
    else root->chd[1] = merge(root->chd[1], newNd);
    root->dep = max(root->chd[0]->dep,
                      root->chd[1]->dep) + 1;
    return root;
  }
  vector<heap*> V;
  void build() {
    nullNd = new
          heap; nullNd->dep = 0; nullNd->edge = new nd;
    fill(nullNd->chd, nullNd->chd + 4, nullNd);
    while (not dfsQ.empty()) {
      int u = dfsQ.front(); dfsQ.pop();
      if (!nxt[u]) head[u] = nullNd;
      else head[u] = head[nxt[u]->v];
      V.clear();
      for (auto && e : g[u]) {
         int v = e->v;
         if (dst[v] == -1) continue;
        e->d += dst[v] - dst[u];
        if (nxt[u] != e) {
           heap*p = new
                heap; fill(p->chd, p->chd + 4, nullNd);
           p->dep = 1; p->edge = e; V.push_back(p);
        }
      if (V.empty()) continue;
      make_heap(V.begin(), V.end(), cmp);
#define L(X) ((X<<1)+1)</pre>
#define R(X) ((X<<1)+2)
      for (size_t i = 0; i < V.size(); i++) {</pre>
        if (L(i) < V.size()) V[i]->chd[2] = V[L(i)];
         else V[i]->chd[2] = nullNd;
         if (R(i) < V.size()) V[i]->chd[3] = V[R(i)];
        else V[i]->chd[3] = nullNd;
      head[u] = merge(head[u], V.front());
    }
  vector<ll> ans;
  void first_K() {
    ans.clear(); priority_queue<node> Q;
```

```
if (dst[s] == -1) return;
     ans.push_back(dst[s]);
     if (head[s] != nullNd)
       Q.push(node(head[s], dst[s] + head[s]->edge->d));
     for (int _ = 1; _ < k and not Q.empty(); _++) {
       node p = Q.top(), q; Q.pop(); ans.push_back(p.d);
if (head[p.H->edge->v] != nullNd) {
          q.H = head
             [p.H->edge->v]; q.d = p.d + q.H->edge->d;
          Q.push(q);
       for (int i = 0; i < 4; i++)</pre>
          if (p.H->chd[i] != nullNd) {
            q.H = p.H->chd[i];
            q.d = p
                .d - p.H->edge->d + p.H->chd[i]->edge->d;
            Q.push(q);
    }
  }
   void
       solve() \ \{ \ // \ ans[i] \ stores \ the i-th \ shortest \ path
     dijkstra(); build();
     first_K(); // ans.size() might less than k
} solver;
 2.11 LCA
#define eb emplace_back
 const int N = 2e5 + 5, logN = __lg(N) + 1, inf = 1e9;
 int n, q, logn;
 int dep[N], fa[N][logN];
 vector<int> g[N];
 void dfs(int x, int p) {
  dep[x] = ~p ? dep[p] + 1 : 0;
   fa[x][0] = p;
   for (int i = 1; (1 << i) <= dep[x]; i++)</pre>
     fa[x][i] = fa[fa[x][i - 1]][i - 1];
   for (const auto& u : g[x])
     if (u != p) dfs(u, x);
```

2.12 Maximum Clique

query -> LCA(u, v)

if (u == v) return u;

return fa[u][0];

// logn =

// g[a].eb(b)

// dfs(root, -1)

```
struct Maximum_Clique {
  typedef bitset < MAXN > bst;
 bst N[MAXN], empty;
int p[MAXN], n, ans;
  void BronKerbosch2(bst R, bst P, bst X) {
    if (P == empty && X == empty)
      return ans = max(ans, (int)R.count()), void();
    bst tmp = P \mid X;
    int u:
    if ((R | P | X).count() <= ans) return;</pre>
    for (int uu = 0; uu < n; ++uu) {</pre>
      u = p[uu];
      if (tmp[u] == 1) break;
    // if (double(clock())/CLOCKS_PER_SEC > .999)
    // return;
    bst now2 = P \& \sim N[u];
    for (int vv = 0; vv < n; ++vv) {
      int v = p[vv];
      if (now2[v] == 1) {
        R[v] = 1:
        BronKerbosch2(R, P & N[v], X & N[v]);
        R[v] = 0, P[v] = 0, X[v] = 1;
```

of (u, v) = dep[u] + dep[v] - 2 * dep[LCA(u, v)]

int LCA(int u, int v) {
 if (dep[u] > dep[v]) swap(u, v);
 for (int i = 0; i < logn; i++)
 if ((dep[v] - dep[u]) >> i & 1) v = fa[v][i];
}

for (int i = logn - 1; i >= 0; i--)

u = fa[u][i], v = fa[v][i];

if (fa[u][i] != fa[v][i])

 $_{lg(n)} + 1$

```
}

void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i) N[i].reset();
}

void add_edge(int u, int v) {
    N[u][v] = N[v][u] = 1;
}
int solve() { // remember srand
    bst R, P, X;
    ans = 0, P.flip();
    for (int i = 0; i < n; ++i) p[i] = i;
        random_shuffle(p, p + n), BronKerbosch2(R, P, X);
    return ans;
}

};
</pre>
```

2.13 SCC Kosaraju

```
#define eb emplace_back
const int N = 2e5 +
vector<int> g[N], rg[N], ord;
int scc[N];
bool v[N];
void rdfs(int x) {
  v[x] = 1;
   for (const auto& i : rg[x])
     if (!v[i]) rdfs(i);
  ord.eb(x);
void dfs(int x, int nscc) {
  scc[x] = nscc;
  for (const auto& i : g[x])
  if (scc[i] == -1) dfs(i, nscc);
void kosaraju(int n) {
  memset(v, 0, sizeof(v));
memset(scc, -1, sizeof(scc));
for (int i = 0; i < n; i++)</pre>
     if (!v[i]) rdfs(i);
   int nscc = 0;
  for (int i = n - 1; i >= 0; i--) {
     int x = ord[i];
if (scc[x] == -1)
       dfs(x, nscc++);
}
```

2.14 SCC Tarian

2.15 Tree Centroid

2.16 Virtual Tree

```
vector<int> vG[N];
int top, st[N];
void insert(int u) {
  if (top == -1) return st[++top] = u, void();
  int p = LCA(st[top], u);
  if (p == st[top]) return st[++top] = u, void();
  while (top >= 1 && dep[st[top - 1]] >= dep[p])
  vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
    vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
void reset(int u) {
  for (int i : vG[u]) reset(i);
  vG[u].clear();
}
void solve(vector<int> &v) {
  top = -1
  sort(ALL(v),
    [&](int a, int b) { return dfn[a] < dfn[b]; });</pre>
  for (int i : v) insert(i);
  while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
  // do something
  reset(v[0]);
}
```

3 Data Structure

3.1 2D BIT

```
const int N = 1000 + 5;
int a[N][N];
struct BIT { // 1-based
  ll bit[N][N];
  int n, m;
  void init(int _n, int _m) { // O(nm)
    n = _n, m = _m;
     for (int i = 1; i <= n; i++)
       for (int j = 1; j <= m; j++)
         bit[i][j] = a[i][j];
    for (int b = 1; b << 1 <= max(n, m); b <<= 1) {
  for (int i = b; i + b <= n; i += b << 1)
          for (int j = 1; j <= m; j++)</pre>
           bit[i + b][j] += bit[i][j];
       for (int i = 1; i <= n; i++)</pre>
          for (int j = b; j + b \le m; j += b \le 1)
            bit[i][j + b] += bit[i][j];
  void upd(int x, int y, int v) {
    for (int i = x; i <= n; i += i & -i)
for (int j = y; j <= m; j += j & -j)
         bit[i][j] += v;
  ll qry(int x, int y) {
     ll ret = 0;
     for (int i = x; i; i -= i & -i)
       for (int j = y; j; j -= j & -j)
         ret += bit[i][j];
     return ret;
  ll qry(int
     x1, int y1, int x2, int y2) { // closed-interval return qry(x2, y2) - qry(x1 -
          1, y2) - qry(x2, y1 - 1) + qry(x1 - 1, y1 - 1);
} tree;
// tree.init(n, m)
```

3.2 2D Segment Tree

```
const int inf = 1e9;
#define lc(x) (x << 1)
#define rc(x) (x << 1 | 1)
int N, M; // N : row max, M : col max
struct seg {
  vector <int > st;
  void pull(int);
  void merge(const seg&, const seg&, int, int);
  void upd(int, int, int);
  void upd(int, int, int, int);
```

return ret;

```
int qry(int, int, int, int, int);
seg(int size): st(size << 2 | 1) {}</pre>
                                                                 void upd(ll* bit, int x, ll v) {
                                                                    for (; x <= n; x += x & -x) bit[x] += v;
void seg::pull(int id) {
  st[id] = max(st[lc(id)], st[rc(id)]);
                                                                  ll qry(int x) {
                                                                   return (x + 1) * sum(bit1, x) - sum(bit2, x);
void seg::merge(const seg& a
       const seg& b, int id = 1, int l = 1, int r = M) \{
                                                                 ll qry(int l, int r) { // [l, r]
  st[id] = max(a.st[id], b.st[id]);
                                                                    return qry(r) - qry(l - 1);
  if (l == r) return;
  int m = (l + r) \gg 1;
                                                                 void upd(int l, int r, ll v) { // [l, r]
  upd(bit1, l, v), upd(bit2, l, l * v);
  merge(a,
        b, lc(id), l, m), merge(a, b, rc(id), m + 1, r);
                                                                    upd(bit1
                                                                        , r + 1, -v), upd(bit2, r + 1, (r + 1) * -v);
void seg::build(int id = 1, int l = 1, int r = M) {
  if (l == r) {cin >> st[id]; return;}
                                                                 BIT() {
  int m = (l + r) >> 1;
                                                                   fill_n(bit1, N, 0), fill_n(bit2, N, 0);
  build(lc(id), l, m), build(rc(id), m + 1, r);
                                                                 BIT(int* a) { // O(n) build
  pull(id);
                                                                    fill_n(bit1, N, 0), fill_n(bit2, N, 0);
                                                                    for (int i = 1;
void seg::upd
    (int x, int v, int id = 1, int l = 1, int r = M) {
                                                                         i \ll n; i++) bit1[i] = a[i] - a[i - (i \& -i)];
  if (l == r) {st[id] = v; return;}
                                                                    for (int i = n; i; i--) a[i] -= a[i - 1];
  int m = (l + r) >> 1;
if (x <= m) upd(x, v, lc(id), l, m);</pre>
                                                                    for (int
                                                                        i = 1; i <= n; i++) a[i] = a[i - 1] + a[i] * i;
  else upd(x, v, rc(id), m + 1, r);
                                                                    for (int i = 1;
  pull(id);
                                                                         i <= n; i++) bit2[i] = a[i] - a[i - (i & -i)];
                                                                 }
int seg::qry(
                                                               };
  int ql, int qr, int id = 1, int l = 1, int r = M) {
if (ql <= l && r <= qr) return st[id];</pre>
                                                               3.4 chtholly tree
  int m = (l + r) \gg 1, ret = -inf;
                                                               // 存 {x, v} , 從 x 開始到下一個位置前都是v
  if (ql
                                                               map<int, int> s;
        <= m) ret = max(ret, qry(ql, qr, lc(id), l, m));
                                                               // [l, r)
  if (qr >
                                                               void ins(int l, int r, int i) {
       m) ret = max(ret, qry(ql, qr, rc(id), m + 1, r));
                                                                    auto it1 = s.find(l);
  return ret;
                                                                    auto it2 = s.find(r);
}
                                                                    for (auto it = it1; it != it2; it++) {
struct segseg {
  vector<seg> st;
                                                                    s.erase(it1, it2); // [it`, it2)
  void pull(int, int);
                                                                    s[l] = ;
  void build(int, int, int);
  void upd(int, int, int, int, int, int);
int qry(int, int, int, int, int, int, int);
                                                               void split(int pos) {
                                                                   auto it = s.lower_bound(pos);
  segseg(int n, int m): st(n \ll 2 \mid 1, seg(m)) {}
                                                                    if (it == s.end() or it->F != pos) {
                                                                        s[pos] = prev(it)->S;
void segseg::pull(int id, int x) {
  st[id].upd(x,
       \max(st[lc(id)].qry(x, x), st[rc(id)].qry(x, x)));
                                                               3.5 LiChaoST
void segseg::build(int id = 1, int l = 1, int r = N) {
  if (l == r) {st[id].build(); return;}
                                                               struct LiChao_min {
  int m = (l + r) >> 1;
build(lc(id), l, m), build(rc(id), m + 1, r);
                                                                 struct line {
                                                                    LL m. c:
  st[id].merge(st[lc(id)], st[rc(id)]);
                                                                    line(LL _m = 0, LL _c = 0) {
                                                                      m = _m;
void segseg::upd(int y
                                                                      c = _c;
       int x, int v, int id = 1, int l = 1, int r = N) {
  if (l == r) {st[id].upd(x, v); return;}
                                                                   LL eval(LL x) { return m * x + c; }
  int m = (l + r) >> 1;
  if (y <= m) upd(y, x, v, lc(id), l, m);</pre>
                                                                 struct node {
  else upd(y, x, v, rc(id), m + 1, r);
                                                                    node *1, *r;
  pull(id, x);
                                                                    line f;
                                                                    node(line v) {
int segseg::qry(int y1, int y2,
                                                                      f = v;
     int x1, int x2, int id = 1, int l = 1, int r = N) {
                                                                      l = r = NULL;
  if (y1 <= l && r <= y2) return st[id].qry(x1, x2);</pre>
                                                                   }
  int m = (l + r) \gg 1, ret = -inf;
                                                                 };
  if (y1 <= m) ret
                                                                 typedef node *pnode;
        = max(ret, qry(y1, y2, x1, x2, lc(id), l, m));
                                                                 pnode root;
  if (y2 > m) ret =
                                                                  int sz;
        max(ret, qry(y1, y2, x1, x2, rc(id), m + 1, r));
                                                               #define mid ((l + r) >> 1)
  return ret;
                                                                 void insert(line &v, int l, int r, pnode &nd) {
}
                                                                    if (!nd) {
                                                                      nd = new node(v);
3.3 BIT
                                                                      return;
const int N = 2e5 + 5;
int n, a[N];
                                                                   LL trl = nd->f.eval(l), trr = nd->f.eval(r);
                                                                   LL vl = v.eval(l), vr = v.eval(r);
                                                                    if (trl <= vl && trr <= vr) return;</pre>
struct BIT { // 1-based
  ll bit1[N], bit2[N];
ll sum(ll* bit, int x) {
                                                                    if (trl > vl && trr > vr) {
                                                                      nd - > f = v;
    ll ret = 0;
                                                                      return;
    for (; x; x -= x & -x) ret += bit[x];
```

if (trl > vl) swap(nd->f, v);

```
National Tsing Hua University Kenapsack
    if (nd->f.eval(mid) < v.eval(mid))</pre>
     insert(v, mid + 1, r, nd->r);
    else swap(nd->f, v), insert(v, l, mid, nd->l);
 LL query(int x, int l, int r, pnode &nd) {
    if (!nd) return LLONG_MAX;
    if (l == r) return nd->f.eval(x);
    if (mid >= x)
     return min(
       nd->f.eval(x), query(x, l, mid, nd->l));
    return min(
     nd->f.eval(x), query(x, mid + 1, r, nd->r));
  /* -sz <= query_x <= sz */
 void init(int _sz) {
   sz = _sz + 1;
    root = NULL;
  void add_line(LL m, LL c) {
    line v(m, c);
    insert(v, -sz, sz, root);
 LL query(LL x) { return query(x, -sz, sz, root); }
3.6 persistent
const int MAXN = 2e5 + 5;
int a[MAXN];
int sum[MAXN * 25], lc[MAXN * 25], rc[MAXN * 25];
int add_node() {
    static int now = 0;
    return ++now;
void pull(int x) {
```

```
sum[x] = sum[lc[x]] + sum[rc[x]];
void init(int &x, int lx, int rx) {
    if (!x) x = add_node();
    if (lx + 1 == rx) return;
    int mid = (lx + rx) / 2;
    init(lc[x], lx, mid);
init(rc[x], mid, rx);
void update(int fa, int &x, int lx, int rx, int i) {
    if (!x) x = add_node();
    if (lx + 1 == rx) return sum[x]++, void();
    int mid = (lx + rx) / 2;
    if (i < mid) {</pre>
        rc[x] = rc[fa];
        update(lc[fa], lc[x], lx, mid, i);
    else {
        lc[x] = lc[fa];
        update(rc[fa], rc[x], mid, rx, i);
    pull(x);
int query(int x, int lx, int rx, int l, int r) {
    if (lx >= r or rx <= l) return 0;
    if (lx >= l and rx <= r) return sum[x];</pre>
    int mid = (lx + rx) / 2;
    return query(lc[x],
         lx, mid, l, r) + query(rc[x], mid, rx, l, r);
}
```

3.7 Sparse Table

```
const int N = 5e5 + 5, logN = __lg(N) + 1;
int a[N];
struct sparse_table { // 0-based
  int st[logN][N];
  void init(int n) {
    copy(a, a + n, st[0]);
    for (int i = 1; (1 << i) <= n; i++)
      for (int j = 0; j + (1 << i) - 1 <= n; <math>j++)
        st[i][j] = max(st
            [i - 1][j], st[i - 1][j + (1 << (i - 1))]);
  int qry(int l, int r) {
    int k = __lg(r - l + 1);
    return \max(st[k][l], st[k][r - (1 << k) + 1]);
  }
} st;
// st.init(n)
// st.qry(l - 1, r - 1)
```

3.8 Treap

```
#include <bits/stdc++.h>
using namespace std;
mt19937 rng;
struct node {
  node *1, *r;
  int v, p, s; bool t; // val, pri, size, tag
  void pull() {
    s = 1;
    for (auto x : \{l, r\})
      if (x) s += x->s;
  void push() {
    if (t) {
      swap(l, r), t = 0;
      for (auto& x : \{l, r\})
         if (x) x->t ^= 1;
    }
  }
  node(int _v
       = 0): v(_v), p(rng()), s(1), t(0), l(0), r(0) {}
int sz(node* o) {return o ? o->s : 0;}
node* merge(node* a, node* b) {
  if (!a || !b) return a ? : b;
  if (a->p < b->p) return
       a \rightarrow push(), a \rightarrow r = merge(a \rightarrow r, b), a \rightarrow pull(), a;
  else return
       b->push(), b->l = merge(a, b->l), b->pull(), b;
void split(node
    * o, node*& a, node*& b, int k) { // a < k, b >= k
  if (!o) return a = b = nullptr, void();
  o->push();
  if (o->v < k) a = o, split(o->r, a->r, b, k);
  else b = o, split(o -> l, a, b -> l, k);
  o->pull();
void insert(node*& o, int k) {
  node *a, *b;
  split(
      o, a, b, k), o = merge(a, merge(new node(k), b));
void ssplit(node* o, node
    *& a, node*& b, int k) { // split first k things
  if (!o) return a = b = nullptr, void();
  o->push();
  if (sz(o->l) + 1 \le k
      ) a = o, ssplit(o->r, a->r, b, k - sz(o->l) - 1);
  else b = o, ssplit(o->l, a, b->l, k);
  o->pull();
void reverse(node* o, int l, int r) { // [l, r]
  node *a, *b, *c;
ssplit(o, a, b, l - 1), ssplit(b, b, c, r - l + 1);
  b->t ^= 1, o = merge(a, merge(b, c));
}
/*
node* root = nullptr;
for (int i = 0; i < n; i++)
  root = merge(root, new node(x));
```

3.9 ZKW Segment Tree

```
const int N = 5e5 + 5:
int a[N];
struct seg_tree { // 0-based
  int seg[N << 1], n;
void upd(int x, int v) {</pre>
    for (seg[x += n] = v; x > 1; x >= 1)
      seg[x \gg 1] = max(seg[x], seg[x ^ 1]);
  int qry(int l, int r) { // [ql, qr]
    int ret = -1e9;
    for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1) {
      if (l & 1) ret = max(ret, seg[l++]);
      if (r & 1) ret = max(ret, seg[--r]);
    return ret;
  void init(int _n) {
    n = _n;
    copy(a, a + n, seg + n);
    for (int i = n - 1; i >= 0; i--)
```

```
seg[i] = max(seg[i << 1], seg[i << 1 | 1]);
} tree;
// tree.init(n)
// tree.qry(l - 1, r - 1)</pre>
```

4 Flow

4.1 Bipartite Matching

```
// 0(E * sqrt(V))
struct Bipartite_Matching { // 0-base
  int l, r;
  int mp[MAXN], mq[MAXN];
  int dis[MAXN], cur[MAXN];
  vector<int> G[MAXN];
  bool dfs(int u) {
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
       int e = G[u][i];
       if (!~mq[e]
            || (dis[mq[e]] == dis[u] + 1 && dfs(mq[e])))
         return mp[mq[e] = u] = e, 1;
    dis[u] = -1;
    return 0;
  bool bfs() {
    int rt = 0;
    queue<int> q;
    fill_n(dis, i, -1);
for (int i = 0; i < l; ++i)
       if (!~mp[i])
        q.push(i), dis[i] = 0;
    while (!q.empty()) {
       int u = q.front();
       q.pop();
       for (int e : G[u])
        if (!~mq[e])
           rt = 1;
         else if (!~dis[mq[e]]) {
           q.push(mq[e]);
           dis[mq[e]] = dis[u] + 1;
    return rt;
  int matching() {
    int rt = 0;
    fill_n(mp, l, -1);
    fill_n(mq, r, -1);
    while (bfs()) {
       fill_n(cur, l, 0);
for (int i = 0; i < l; ++i)
         if (!~mp[i] && dfs(i))
           ++rt;
    }
    return rt;
  void add_edge(int s, int t) {
    G[s].pb(t);
  void init(int _l, int _r) {
    l = _l, r = _r;
for (int i = 0; i < l; ++i)</pre>
      G[i].clear();
  }
};
4.2 Dinic
```

```
// O(V^2 * E)
// O(min(V^(2/3)
    , E^(1/2)) * E) for unit graph (all cap are same)
// O(E * sqrt(V)) for bipartite matching
struct MaxFlow { // O-base
    struct edge {
        int to, cap, flow, rev;
    };
    vector<edge> G[MAXN];
    int s, t, dis[MAXN], cur[MAXN], n;
    int dfs(int u, int cap) {
        if (u == t || !cap) return cap;
        for (int &i = cur[u]; i < (int)G[u].size(); ++i) {
            edge &e = G[u][i];
            if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
                 int df = dfs(e.to, min(e.cap - e.flow, cap));
                 if (df) {</pre>
```

```
e.flow += df:
            G[e.to][e.rev].flow -= df;
            return df;
       }
     dis[u] = -1;
     return 0;
   bool bfs() {
     fill_n(dis, n, -1);
     queue<int> q;
     q.push(s), dis[s] = 0;
     while (!q.empty()) {
       int tmp = q.front();
        q.pop();
        for (auto &u : G[tmp])
          if (!~dis[u.to] && u.flow != u.cap) {
            q.push(u.to);
            dis[u.to] = dis[tmp] + 1;
     }
     return dis[t] != -1;
   int maxflow(int _s, int _t) {
     s = _s, t = _t;
int flow = 0, df;
     while (bfs()) {
       fill_n(cur, n, 0);
while ((df = dfs(s, INF))) flow += df;
     return flow;
   void init(int _n) {
     for (int i = 0; i < n; ++i) G[i].clear();</pre>
   void reset() {
     for (int i = 0; i < n; ++i)
       for (auto &j : G[i]) j.flow = 0;
   void add_edge(int u, int v, int cap) {
     G[u].pb(edge{v, cap, 0, (int)G[v].size()});
G[v].pb(edge{u, 0, 0, (int)G[u].size() - 1});
   }
};
```

4.3 KM

```
// O(n^3), where n is the number
      of vertices on one side of the bipartite graph
// Finds
      the maximum weight matching in a bipartite graph
struct KM { // 0-base
  int w[MAXN][MAXN], hl[MAXN], hr[MAXN], slk[MAXN], n;
  int fl[MAXN], fr[MAXN], pre[MAXN], qu[MAXN], ql, qr;
bool vl[MAXN], vr[MAXN];
  void init(int _n) {
    n = _n;
for (int i = 0; i < n; ++i)</pre>
      for (int j = 0; j < n; ++j) w[i][j] = -INF;
  void add_edge(int a, int b, int wei) {
    w[a][b] = wei;
  bool Check(int x) {
   if (vl[x] = 1, ~fl[x])
      return vr[qu[qr++] = fl[x]] = 1;
     while (\sim x) swap(x, fr[fl[x] = pre[x]]);
    return 0;
  void Bfs(int s) {
    fill(slk, slk + n, INF);
fill(vl, vl + n, 0), fill(vr, vr + n, 0);
    ql = qr = 0, qu[qr++] = s, vr[s] = 1;
    while (1) {
      int d;
      while (ql < qr)
for (int x = 0, y = qu[ql++]; x < n; ++x)</pre>
           if (!vl[x] &&
                slk[x] >= (d = hl[x] + hr[y] - w[x][y]))
             if (pre[x] = y, d) slk[x] = d;
             else if (!Check(x)) return;
       d = INF:
      for (int x = 0; x < n; ++x)
        if (!vl[x] && d > slk[x]) d = slk[x];
       for (int x = 0; x < n; ++x) {
```

```
if (vl[x]) hl[x] += d;
        else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
      for (int x = 0; x < n; ++x)
        if (!vl[x] && !slk[x] && !Check(x)) return;
   }
  int Solve() {
    fill(fl, fl + n, -1), fill(fr, fr + n, -1),
         fill(hr, hr + n, 0);
    for (int i = 0; i < n; ++i)
      hl[i] = *max_element(w[i], w[i] + n);
    for (int i = 0; i < n; ++i) Bfs(i);</pre>
    int res = 0;
    for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
    return res;
 }
};
```

Maximum Simple Graph Matching // O(V^3) , where V is the number of vertices

```
struct Matching { // 0-base
  queue < int > q; int n;
  vector<int> fa, s, vis, pre, match;
  vector<vector<int>> G;
  int Find(int u)
  { return u == fa[u] ? u : fa[u] = Find(fa[u]); }
  int LCA(int x, int y) {
    static int tk = 0; tk++; x = Find(x); y = Find(y);
    for (;; swap(x, y)) if (x != n) {
        if (vis[x] == tk) return x;
        vis[x] = tk;
        x = Find(pre[match[x]]);
  void Blossom(int x, int y, int l) {
    for (; Find(x) != l; x = pre[y]) {
      pre[x] = y, y = match[x];
if (s[y] == 1) q.push(y), s[y] = 0;
      for (int z : \{x, y\}) if (fa[z] == z) fa[z] = l;
    }
  bool Bfs(int r) {
  iota(ALL(fa), 0); fill(ALL(s), -1);
    q = queue < int > (); q.push(r); s[r] = 0;
    for (; !q.empty(); q.pop()) {
      for (int x = q.front(); int u : G[x])
        if (s[u] == -1) {
          if (pre[u] = x, s[u] = 1, match[u] == n) {
             for (int a = u, b = x, last;
                  b != n; a = last, b = pre[a])
                   match[b], match[b] = a, match[a] = b;
             return true;
           q.push(match[u]); s[match[u]] = 0;
        } else if (!s[u] && Find(u) != Find(x)) {
           int l = LCA(u, x);
          Blossom(x, u, l); Blossom(u, x, l);
    return false;
  \label{eq:matching} \textit{Matching(int \_n)} \; : \; \textit{n(\_n), fa(n + 1), s(n + 1), vis}
  (n + 1), pre(n + 1, n), match(n + 1, n), G(n) \{\} void add_edge(int u, int v)
  { G[u].pb(v), G[v].pb(u); }
  int solve() {
    int ans = 0:
    for (int x = 0; x < n; ++x)
      if (match[x] == n) ans += Bfs(x);
    return ans:
 } // match[x] == n means not matched
```

4.5 MCMF

```
// O(FE * logV), where F is
      the maximum flow, \mbox{\ensuremath{E}} is edges, and \mbox{\ensuremath{V}} is vertices.
struct MinCostMaxFlow { // 0-base
  struct Edge {
    ll from, to, cap, flow, cost, rev;
  } *past[N];
  vector<Edge> G[N];
  int inq[N], n, s, t;
```

```
ll dis[N], up[N], pot[N];
   bool BellmanFord() {
     fill_n(dis, n, INF), fill_n(inq, n, 0);
     queue<int> q;
     auto relax = [&](int u, ll d, ll cap, Edge * e) {
       if (cap > 0 && dis[u] > d) {
         dis[u] = d, up[u] = cap, past[u] = e;
         if (!inq[u]) inq[u] = 1, q.push(u);
     };
     relax(s, 0, INF, 0);
     while (!q.empty()) {
       int u = q.front();
       q.pop(), inq[u] = 0;
       for (auto &e : G[u]) {
         ll d2 = dis[u] + e.cost + pot[u] - pot[e.to];
         relax
             (e.to, d2, min(up[u], e.cap - e.flow), &e);
     return dis[t] != INF;
   }
   void solve(int _s
     , int _t, ll &flow, ll &cost, bool neg = true) { s = \_s, t = \_t, flow = 0, cost = 0:
     if (neg) BellmanFord(), copy_n(dis, n, pot);
     for (; BellmanFord(); copy_n(dis, n, pot)) {
       for (int
           i = 0; i < n; ++i) dis[i] += pot[i] - pot[s];
       flow += up[t], cost += up[t] * dis[t];
       for (int i = t; past[i]; i = past[i]->from) {
        auto &e = *past[i];
         e.flow += up[t], G[e.to][e.rev].flow -= up[t];
    }
   }
   void init(int _n) {
     n = _n, fill_n(pot, n, 0);
     for (int i = 0; i < n; ++i) G[i].clear();</pre>
   void add_edge(ll a, ll b, ll cap, ll cost) {
     G[a].pb(Edge{a, b, cap, 0, cost, SZ(G[b])});
     G[b].pb(Edge{b, a, 0, 0, -cost, SZ(G[a]) - 1});
};
```

5 Geometry 5.1 Basic 2D

```
// Courtesy of Jinkela
const double PI = atan2(0.0, -1.0);
template < typename T>
struct point {
 T x, y;
  point() {}
  point(const T&x, const T&y): x(x), y(y) {}
  point operator+(const point &b)const {
    return point(x + b.x, y + b.y);
  point operator-(const point &b)const {
   return point(x - b.x, y - b.y);
  point operator*(const T &b)const {
    return point(x * b, y * b);
  point operator/(const T &b)const {
    return point(x / b, y / b);
  bool operator==(const point &b)const {
    return x == b.x && y == b.y;
  T dot(const
       point &b)const { return x * b.x + y * b.y; }
  T cross(const
       point &b)const { return x * b.y - y * b.x; }
  point normal()const { //求法向量
    return point(-y, x);
  T abs2()const { return dot(*this); }
 Trad(const point &b)const { //兩向量的弧度
    return fabs(atan2(fabs(cross(b)), dot(b)));
  T getA()const { //對x軸的弧度
    T A = atan2(y, x); //超過180度會變負的
if (A <= -PI / 2)A += PI * 2;
```

```
if ((p[i].y > t.y) != (p[j].y > t.y)) {
  T L = (t.x - p[i].x) * (p[j].y - p[i].y);
  T R = (p[j].x - p[i].x) * (t.y - p[i].y);
    return A:
 }
template<typename T>
                                                                    if (p[j].y < p[i].y) \{L = -L; R = -R;\}
struct line {
                                                                    if (L < R)c = !c;
                                                                  }
 line() {}
  point<T> p1, p2;
                                                                } return c;
  T a, b, c; //ax+by+c=0
                                                              int point_in_convex(const point<T>&x)const {
  line(const
       point<T>&x, const point<T>&y): p1(x), p2(y) {}
                                                                int l = 1, r = (int)p.size() - 2;
  void pton() { //轉成一般式
                                                                while (l <= r) { //點是否在凸
    a = p1.y - p2
                                                                  多邊形\mathbf{P}, 是的話回傳1、在邊上回傳-1、否則回傳0 int mid = (l + r) / 2;
        .y; b = p2.x - p1.x; c = -a * p1.x - b * p1.y;
                                                                  T a1 = (p[mid] - p[0]).cross(x - p[0]);
  T ori(const point<T> &p)const
                                                                  T a2 = (p[mid + 1] - p[0]).cross(x - p[0]);
       { //點和有向直ID的關ID, >0左邊、=0在ID上<0右邊
                                                                  if (a1 >= 0 && a2 <= 0) {
    return (p2 - p1).cross(p - p1);
                                                                    Tres
 }
                                                                         = (p[mid + 1] - p[mid]).cross(x - p[mid]);
                                                                    return res > 0 ? 1 : (res >= 0 ? -1 : 0);
 T btw(const point<T> &p)const { //點投影落在 E 段上<=0
    return (p1 - p).dot(p2 - p);
                                                                  if (a1 < 0)r = mid - 1; else l = mid + 1;
                                                                } return 0;
  bool point_on_segment(const point<T>&p)const {
                                                              }
    return ori(p) == 0 && btw(p) <= 0;
                                                              vector<T> getA()const { //凸包邊對x軸的夾角
  T dis2(const point<T> &p, bool
                                                                vector <T>res;//一定是遞增的
                                                                for (size_t i = 0; i < p.size(); ++i)</pre>
       is_segment = 0)const { //點跟直E/E段的距離平方
    point < T > v = p2 - p1, v1 = p - p1;
                                                                  res.push_back
                                                                      ((p[(i + 1) % p.size()] - p[i]).getA());
    if (is_segment) {
                                                                return res;
      point < T > v2 = p - p2;
      if (v.dot(v1) <= 0)return v1.abs2();</pre>
                                                              bool line_intersect(const
      if (v.dot(v2) >= 0)return v2.abs2();
                                                                   vector<T>&A, const line<T> &l)const { //O(logN)
                                                                int f1 = upper_bound(A.begin
    T tmp = v.cross(v1); return tmp * tmp / v.abs2();
                                                                    (), A.end(), (l.p1 - l.p2).getA()) - A.begin();
 }
                                                                int f2 = upper_bound(A.begin
 T seg_dis2(const line<T> &l)const { //兩  段 距離 平方
                                                                    (), A.end(), (l.p2 - l.p1).getA()) - A.begin();
    return min({dis2(l.p1, 1),
                                                                return l.cross_seg(line<T>(p[f1], p[f2]));
         dis2(l.p2, 1), l.dis2(p1, 1), l.dis2(p2, 1)});
                                                              T diam() {
 point<T> projection
                                                                int n = p.size(), t = 1;
      (const point <T> &p) const { //點對直图的投影
                                                                T ans = 0; p.push_back(p[0]);
    point < T > n = (p2 - p1).normal();
                                                                for (int i = 0; i < n; i++) {
    return p - n * (p - p1).dot(n) / n.abs2();
                                                                  point < T > now = p[i + 1] - p[i];
                                                                  while (now.cross(p[t + 1] - p[
    i]) > now.cross(p[t] - p[i]))t = (t + 1) % n;
 point<T> mirror(const point<T> &p)const {
    //點對直I的鏡射,要先呼叫pton轉成一般式
                                                                  ans = max(ans, (p[i] - p[t]).abs2());
    point < T > R; T d = a * a + b * b;
                                                                } return p.pop_back(), ans;
    R.x = (b * b * p.x -
        a * a * p.x - 2 * a * b * p.y - 2 * a * c) / d;
                                                              T min_cover_rectangle() {
    R.y = (a * a * p.y
                                                                int n = p.size(), t = 1, r = 1, l;
        b * b * p.y - 2 * a * b * p.x - 2 * b * c) / d;
                                                                if (n < 3)return 0; //也可以做最小周長矩形
    return R:
                                                                T ans = 1e99; p.push_back(p[0]);
                                                                for (int i = 0; i < n; i++) {
 bool parallel(const line &l)const {
                                                                  point < T > now = p[i + 1] - p[i];
   return (p1 - p2).cross(l.p1 - l.p2) == 0;
                                                                  while (now.cross(p[t + 1] - p[
 }
                                                                       i]) > now.cross(p[t] - p[i]))t = (t + 1) % n;
};
                                                                  while (now.dot(p[r + 1] -
template < typename T>
                                                                      p[i]) > now.dot(p[r] - p[i]))r = (r + 1) % n;
struct polygon {
                                                                  if (!i)l = r;
 polygon() {}
                                                                  while (now.dot(p[l + 1] - p
  vector<point<T> > p;//逆時針順序
                                                                      [i] <= now.dot(p[l] - p[i]))l = (l + 1) % n;
  T double_signed_area()const {
                                                                  T d = now.abs2();
    T ans = 0;
                                                                  T tmp = now.cross(p[t] - p[i]) * (now.
    for (int i = p
    .size() - 1, j = 0; j < (int)p.size(); i = j++)</pre>
                                                                  dot(p[r] - p[i]) - now.dot(p[l] - p[i])) / d;
ans = min(ans, tmp);
      ans += p[i].cross(p[j]);
                                                                } return p.pop_back(), ans;
    return ans;
 }
                                                              T dis2(polygon &pl) { //凸包最近距離平方
  point<T> center_of_mass()const {
                                                                vector<point<T> > &P = p, &Q = pl.p;
    T cx = 0, cy = 0, w = 0;
                                                                int n = P.size(), m = Q.size(), l = 0, r = 0;
    for (int i = p.size
                                                                for (int
        () - 1, j = 0; j < (int)p.size(); i = j++) {
                                                                     i = 0; i < n; ++i)if (P[i].y < P[l].y)l = i;
      T a = p[i].cross(p[j]);
                                                                for (int
      cx += (p[i].
                                                                     i = 0; i < m; ++i)if (Q[i].y < Q[r].y)r = i;
         x + p[j].x) * a; cy += (p[i].y + p[j].y) * a;
                                                                P.push_back(P[0]), Q.push_back(Q[0]);
      w += a;
                                                                T ans = 1e99;
   } return point<T>(cx / 3 / w, cy / 3 / w);
                                                                for (int i = 0; i < n; ++i) {
 }
                                                                  while ((P[l] - P[l + 1])
.cross(Q[r + 1] - Q[r]) < 0)r = (r + 1) % m;
  int ahas(const point<T>& t)const { //點是否在簡
      單多邊形匠,是的話回傳1、在邊上回傳-1、否則回傳0
                                                                  ans = min(ans, line<T>(P[l],
    int c = 0; //Works for clockwise input as well
                                                                      P[l + 1]).seg_dis2(line<T>(Q[r], Q[r + 1])));
    for (int i
                                                                  l = (l + 1) \% n;
         0, j = p.size() - 1; i < p.size(); j = i++) {
                                                                } return P.pop_back(), Q.pop_back(), ans;
      if (line<</pre>
          T>(p[i], p[j]).point_on_segment(t))return -1;
                                                              static int sign(const point<T>&t) {
```

```
return (t.y ? t.y : t.x) < 0;
}
static bool
     angle_cmp(const line<T>& A, const line<T>& B) {
  point <T > a = A.p2 - A.p1, b = B.p2 - B.p1;
  return sign(a) < sign</pre>
      (b) || (sign(a) == sign(b) && a.cross(b) > 0);
int halfplane_intersection(vector<line<T> > &s) {
  sort(s.begin()
      , s.end(), angle_cmp); // E段左側匠該匠段半平面
  int L, R, n = s.size();
  vector<point<T> > px(n);
  q[L = R = 0] = s[0];
  for (int i = 1; i < n; ++i) {</pre>
   while (L < R \&\& s[i].ori(px[R - 1]) <= 0)--R;
   while (L < R \&\& s[i].ori(px[L]) <= 0)++L;
    q[++R] = s[i];
    if (q[R].parallel(q[R
        - 1]) && q[--R].ori(s[i].p1) > 0)q[R] = s[i];
    if (L < R)
        px[R - 1] = q[R - 1].line_intersection(q[R]);
  while (L < R \&\& q[L].ori(px[R - 1]) <= 0)--R;
  p.clear();
  if (R - L <= 1)return 0;
  px[R] = q[R].line_intersection(q[L]);
  for (int i = L; i <= R; ++i)p.push_back(px[i]);</pre>
  return R - L + 1;
```

5.2 Convex Hull

```
#define f first
#define s second
#define ALL(x) (x).begin(), (x).end()
template <typename T>
pair<T, T> operator
    -(const pair<T, T>& a, const pair<T, T>& b) {
  return {a.f - b.f, a.s - b.s};
template <typename T>
int cross(const pair<T,</pre>
     T>& o, const pair<T, T>& a, const pair<T, T>& b) {
  auto p = a - o, q = b - o;
  return p.f * q.s - q.f * p.s;
template <typename T>
vector
    <pair<T, T>> convex_hull(vector<pair<T, T>> hull) {
  if (hull.size() <= 2) return hull;</pre>
 sort(ALL(hull));
  vector<pair<T, T>> stk;
  int n = hull.size();
  for (int i = 0; i < n; i++) {</pre>
    while (stk.size() >= 2 && cross
        (stk.end()[-2], stk.end()[-1], hull[i]) <= 0)
      stk.pop_back();
    stk.push_back(hull[i]);
      int i = n - 2, t = stk.size() + 1; i >= 0; i--) {
    while ((int)stk.size() >= t && cross
        (stk.end()[-2], stk.end()[-1], hull[i]) <= 0)
      stk.pop_back();
    stk.push_back(hull[i]);
  return stk.pop back(), stk;
```

5.3 Dynamic Convex Hull

```
struct Line {
  ll a, b, l = MIN, r = MAX;
Line(ll a, ll b): a(a), b(b) {}
   ll operator()(ll x) const {
     return a * x + b;
  bool operator<(Line b) const {</pre>
     return a < b.a;</pre>
  bool operator<(ll b) const {</pre>
     return r < b;
  }
};
```

```
ll iceil(ll a, ll b) {
  if (b < 0) a *= -1, b *= -1;
if (a > 0) return (a + b - 1) / b;
  else return a / b;
ll intersect(Line a, Line b) {
  return iceil(a.b - b.b, b.a - a.a);
struct DynamicConvexHull {
  multiset<Line, less<>> ch;
  void add(Line ln) {
    auto it = ch.lower_bound(ln);
    while (it != ch.end()) {
      Line tl = *it;
       if (tl(tl.r) <= ln(tl.r)) {</pre>
        it = ch.erase(it);
      else break;
    auto it2 = ch.lower_bound(ln);
    while (it2 != ch.begin()) {
      Line tl = *prev(it2);
      if (tl(tl.l) <= ln(tl.l)) {</pre>
        it2 = ch.erase(prev(it2));
      else break;
    it = ch.lower_bound(ln);
    if (it != ch.end()) {
      Line tl = *it;
      if (tl(tl.l) >= ln(tl.l)) ln.r = tl.l - 1;
      else {
        ll pos = intersect(ln, tl);
         tl.l = pos;
        ln.r = pos - 1;
        ch.erase(it);
        ch.insert(tl);
      }
    it2 = ch.lower_bound(ln);
    if (it2 != ch.begin()) {
      Line tl = *prev(it2);
      if (tl(tl.r) >= ln(tl.r)) ln.l = tl.r + 1;
         ll pos = intersect(tl, ln);
         tl.r = pos - 1;
         ln.l = pos;
         ch.erase(prev(it2));
        ch.insert(tl);
    if (ln.l <= ln.r) ch.insert(ln);</pre>
  ll query(ll pos) {
    auto it = ch.lower_bound(pos);
    if (it == ch.end()) return 0;
    return (*it)(pos);
};
5.4 Segmentation Intersection
```

```
int sign(ll x) {
  return (x > 0 ? 1 : (x < 0 ? -1 : 0));
ll cross
  (pair<ll, ll> o, pair<ll, ll> a, pair<ll, ll> b) {
return (a.first - o.first) * (b.second - o.second
      ) - (a.second - o.second) * (b.first - o.first);
}
bool intersect1D(ll a, ll b, ll c, ll d) {
  if (a > b) swap(a, b);
  if (c > d) swap(c, d);
  return max(a, c) <= min(b, d);</pre>
bool intersect2D(pair<ll, ll> a
     , pair<ll, ll> b, pair<ll, ll> c, pair<ll, ll> d) {
  return
        intersect1D(a.first, b.first, c.first, d.first)
```

6 Math 6.1 Big Int

```
#include <bits/stdc++.h>
using namespace std;
template<typename T>
inline string to_string(const T& x) {
  stringstream ss;
  return ss << x, ss.str();</pre>
using ll = long long;
struct bigN: vector<ll> {
  const static
       int base = 10000000000, width = log10(base);
  bool negative;
 bigN(const iterator
       a, const_iterator b): vector<ll>(a, b) {}
  bigN(string s) {
    if (s.empty()) return;
if (s[0] == '-')negative = 1, s = s.substr(1);
    else negative = 0;
    for (int
         i = int(s.size()) - 1; i >= 0; i -= width) {
      ll t = 0;
      for (int j = max(0, i - width + 1); j <= i; ++j)
  t = t * 10 + s[j] - '0';</pre>
      push_back(t);
    trim();
  template < typename T>
bigN(const T &x): bigN(to_string(x)) {}
  bigN(): negative(0) {}
  void trim() {
    while (size() && !back())pop_back();
    if (empty()) negative = 0;
  void carry(int _base = base) {
  for (size_t i = 0; i < size(); ++i) {</pre>
      if (at(i) >= 0 && at(i) < _base) continue;</pre>
      if (i + 1u == size())push_back(0);
      int r = at(i) % _base;
      if (r < 0)r += _base;</pre>
      at(i + 1) += (at(i) - r) / _base;
      at(i) = r;
    }
  }
  int abscmp(const bigN &b) const {
    if (size() > b.size()) return 1;
    if (size() < b.size()) return -1;</pre>
    for (int i = int(size()) - 1; i >= 0; --i) {
      if (at(i) > b[i]) return 1;
      if (at(i) < b[i]) return -1;</pre>
    return 0;
  int cmp(const bigN &b) const {
    if (negative
         != b.negative) return negative ? -1 : 1;
    return negative ? -abscmp(b) : abscmp(b);
  bool operator
      <(const bigN&b) const {return cmp(b) < 0;}
  bool operator
      >(const bigN&b) const {return cmp(b) > 0;}
  bool operator
      <=(const bigN&b) const {return cmp(b) <= 0;}
  bool operator
       >=(const bigN&b) const {return cmp(b) >= 0;}
  bool operator == (const bigN&b) const {return !cmp(b);}
  bool operator
      !=(const bigN&b) const {return cmp(b) != 0;}
  bigN abs() const {
    bigN res = *this;
    return res.negative = 0, res;
  bigN operator-() const {
```

```
biaN res = *this:
  return res.negative = !negative, res.trim(), res;
bigN operator+(const bigN &b) const {
  if (negative) return -(-(*this) + (-b));
  if (b.negative) return *this - (-b);
  bigN res = *this;
  if (b.size() > size()) res.resize(b.size());
  for (size_t
       i = 0; i < b.size(); ++i) res[i] += b[i];
 return res.carry(), res.trim(), res;
bigN operator-(const bigN &b) const {
  if (negative) return -(-(*this) - (-b));
  if (b.negative) return *this + (-b);
  if (abscmp(b) < 0) return -(b - (*this));</pre>
  bigN res = *this;
  if (b.size() > size()) res.resize(b.size());
  for (size_t
       i = 0; i < b.size(); ++i) res[i] -= b[i];
 return res.carry(), res.trim(), res;
bigN convert_base
    (int old_width, int new_width) const {
  vector<
      long long> p(max(old_width, new_width) + 1, 1);
  for (size_t
       i = 1; i < p.size(); ++i)p[i] = p[i - 1] * 10;
  bigN ans;
  long long cur = 0;
  int cur_id = 0;
  for (size_t i = 0; i < size(); ++i) {</pre>
    cur += at(i) * p[cur_id];
    cur_id += old_width;
    while (cur_id >= new_width) {
      ans.push_back(cur % p[new_width]);
      cur /= p[new_width];
      cur_id -= new_width;
  return ans.push_back(cur), ans.trim(), ans;
bigN karatsuba(const bigN &b) const {
  bigN res; res.resize(size() * 2);
  if (size() <= 32) {
    for (size_t i = 0; i < size(); ++i)</pre>
      for (size_t j = 0; j < size(); ++j)</pre>
        res[i + j] += at(i) * b[j];
    return res;
  size_t k = size() / 2;
  bigN a1(begin(), begin() + k);
  bigN a2(begin() + k, end());
  bigN b1(b.begin(), b.begin() + k);
  bigN b2(b.begin() + k, b.end());
  bigN a1b1 = a1.karatsuba(b1);
  bigN a2b2 = a2.karatsuba(b2);
  for (size_t i = 0; i < k; ++i)a2[i] += a1[i];
for (size_t i = 0; i < k; ++i)b2[i] += b1[i];</pre>
  bigN r = a2.karatsuba(b2);
  for (size_t
       i = 0; i < a1b1.size(); ++i)r[i] -= a1b1[i];
  for (size_t
       i = 0; i < a2b2.size(); ++i)r[i] -= a2b2[i];
  for (size t
       i = 0; i < r.size(); ++i)res[i + k] += r[i];
  for (size_t
       i = 0; i < a1b1.size(); ++i)res[i] += a1b1[i];
  for (size_t i = 0; i
       < a2b2.size(); ++i)res[i + size()] += a2b2[i];
  return res;
bigN operator*(const bigN &b) const {
  const static int mul_base
       = 1000000, mul_width = log10(mul_base);
  bigN A = convert_base(width, mul_width);
  bigN B = b.convert_base(width, mul_width);
  int n = max(A.size(), B.size());
  while (n & (n - 1))++n;
  A.resize(n), B.resize(n);
  bigN res = A.karatsuba(B);
  res.negative = negative != b.negative;
  res.carry(mul_base);
  res = res.convert_base(mul_width, width);
  return res.trim(), res;
```

```
bigN operator*(long long b) const {
    bigN res = *this;
    if (b < 0)res.negative = !negative, b = -b;</pre>
    for (size_t
         i = 0, is = 0; i < res.size() || is; ++i) {
      if (i == res.size()) res.push_back(0);
      long long a = res[i] * b + is;
      is = a / base;
      res[i] = a % base;
    return res.trim(), res;
  bigN operator/(const bigN &b) const {
    int norm = base / (b.back() + 1);
    bigN x = abs() * norm;
    bigN y = b.abs() * norm;
    bigN q, r;
    q.resize(x.size());
    for (int i = int(x.size()) - 1; i >= 0; --i) {
      r = r * base + x[i];
      int s1 = r.size() <= y.size() ? 0 : r[y.size()];
      int s2
           = r.size() < y.size() ? 0 : r[y.size() - 1];
      int d = (ll(base) * s1 + s2) / y.back();
      r = r - y * d;
      while (r.negative) r = r + y, --d;
      q[i] = d;
    q.negative = negative != b.negative;
    return q.trim(), q;
  bigN operator%(const bigN &b) const {
    return *this - (*this / b) * b;
  friend istream& operator>>(istream &ss, bigN &b) {
    string s;
    return ss >> s, b = s, ss;
      ostream& operator << (ostream &ss, const bigN &b) {
    if (b.negative) ss <<</pre>
    ss << (b.empty() ? 0 : b.back());
    for (int i = int(b.size()) - 2; i >= 0; --i)
      ss << setw(width) << setfill('0') << b[i];</pre>
    return ss;
  template < typename T>
  operator T() {
    stringstream ss;
    ss << *this;
    T res;
    return ss >> res, res;
};
```

6.2 Chinese Remainder

```
int solve(int n, vector<int> &a, vector<int> &m){
     int M = 1;
     for(auto i : m) M *= i;
     int ans = 0;
     for(int i = 0; i < n; i++){</pre>
         int m1 = M / m[i], m2 = extgcd(m1, m[i]).X;
ans += (a[i] * m1 * m2) % M;
     ans = ans % M + M;
     ans %= M;
     return ans;
}
```

6.3 Extgcd

```
pair<ll, ll> extgcd(ll a, ll b) {
  if (b == 0) return {1, 0};
  auto [xp, yp] = extgcd(b, a % b);
  return {yp, xp - a / b * yp};
```

6.4 FFT

```
// Remember not to output -0
   polynomial multiply:
   DFT(a, len); DFT(b, len);
   for(int i=0;i<len;i++) c[i] = a[i]*b[i];</pre>
   iDFT(c, len);
   (len must be 2^k and = 2^m(max(a, b)))
```

```
Hand written Cplx would be 2x faster
Cplx omega[2][N];
void init_omega(int n) {
  static constexpr llf PI = acos(-1);
  const llf arg = (PI + PI) / n;
  for (int i = 0; i < n; ++i)</pre>
    omega[0][i] = {cos(arg * i), sin(arg * i)};
  for (int i = 0; i < n; ++i)
    omega[1][i] = conj(omega[0][i]);
void tran(Cplx arr[], int n, Cplx omg[]) {
  for (int i = 0, j = 0; i < n; ++i) {
    if (i > j)swap(arr[i], arr[j]);
    for (int l = n >> 1; (j ^= l) < l; l >>= 1);
  for (int l = 2; l <= n; l <<= 1) {
    int m = l >> 1;
    for (auto p = arr; p != arr + n; p += l) {
      for (int i = 0; i < m; ++i) {
        Cplx t = omg[n / l * i] * p[m + i];
p[m + i] = p[i] - t; p[i] += t;
      }
  }
}
void DFT(Cplx arr[], int n) {tran(arr, n, omega[0]);}
void iDFT(Cplx arr[], int n) {
  tran(arr, n, omega[1]);
for (int i = 0; i < n; ++i) arr[i] /= n;</pre>
```

6.5 Gauss Elimination

```
#include <bits/stdc++.h>
std::bitset<1000> a[500];
int main() {
  int n; std::cin >> n;
  for (int i = 0; i < n; ++i) {</pre>
    for (int j = 0, t; j < n; ++j)
       std::cin >> t, a[i][j] = t;
     a[i][i + n] = 1;
  for (int i = 0; i < n; ++i) {</pre>
    int t;
     for (t = i; t < n; ++t) if (a[t][i]) break;</pre>
     if (t == n) return std::cout << "-1\n", 0;</pre>
     std::swap(a[i], a[t]);
    for (int i
         = i + 1; j < n; ++j) if (a[j][i]) a[j] ^= a[i];
  for (int i = n - 1; i >= 0; --i)
    for (int j = i - 1; j >= 0; --j)
if (a[j][i]) a[j] ^= a[i];
  for (int i = 0; i < n; ++i) {
     std::vector<int> ans;
     for (int j = n; j < 2 *
          n; ++j) if (a[i][j]) ans.push_back(j - n + 1);
    for (size_t j = 0; j < ans.size(); ++j)
std::cout << ans[j] << " \n"[j == ans.size()];</pre>
  return 0;
}
```

6.6 Gauss Elimination 2

```
using ll = long long;
const ll mod = 998244353;
ll fp(ll a, ll b) {
  ll ret = 1;
  for (; b; b >>= 1, a = a * a % mod)
    if (b & 1) ret = ret * a % mod;
 return ret;
}
vector<ll> gauss_elimination
    (vector<vector<ll>>% a) { // n * (n+1)
  // if a[i][j] < 0, a[i][j] += mod
  int n = a.size();
  bool swp = 0;
  for (int i = 0; i < n; i++) {
    for (int k = i; k < n; k++)</pre>
      if (a[i][i] == 0 && a[k][i] != 0) {
        swap(a[i], a[k]), swp ^= 1; // det = -det
        break;
      }
```

```
if (a[i][i] == 0) return {}; // 0
  ll inv = fp(a[i][i], mod - 2);
  for (int j = 0; j < n; j++) {
    if (i != j) {
      ll tmp = a[j][i] * inv % mod;
      for (int k = i; k <= n; k++)</pre>
        a[j][k] = (a[
             j][k] - tmp * a[i][k] % mod + mod) % mod;
    }
 }
// general solution
vector<ll> ans(n);
for (int i = 0; i < n; i++)
     ans[i] = a[i][n] * fp(a[i][i], mod - 2) % mod;
return ans;
// det
// ll ret = 1;
// for (
int i = 0; i < n; i++) ret = ret * a[i][i] % mod;
// return swp ? mod - ret : ret;
```

6.7 Karatsuba

```
const ll base = 10000000;
void karatsuba(const vector<ll</pre>
    >& f, const vector<ll>& g, vector<ll>& c, int n) {
  if (n <= 32) {
    for (int i = 0; i < n; i++)</pre>
       for (int j = 0; j < n; j++)
        c[i + j] += f[i] * g[j];
    return;
  }
  vector
       <ll> f1(n / 2), f2(n / 2), g1(n / 2), g2(n / 2);
  copy(f.begin(), f.begin() + n / 2, f1.begin()
       ), copy(f.begin() + n / 2, f.end(), f2.begin());
  copy(g.begin(), g.begin() + n / 2, g1.begin()
), copy(g.begin() + n / 2, g.end(), g2.begin());
  vector<ll> t1(n), t2(n), t3(n);
  karatsuba(
       f1, g1, t1, n / 2), karatsuba(f2, g2, t2, n / 2);
  for (int i = 0; i < n / 2; i++) f1[i] += f2[i];
for (int i = 0; i < n / 2; i++) g1[i] += g2[i];
  karatsuba(f1, g1, t3, n / 2);
  for (int i = 0; i < n; i++) t3[i] -= t1[i] + t2[i];
  for (int i = 0; i < n; i++)</pre>
    c[i] += t1
         [i], c[i + n] += t2[i], c[i + n / 2] += t3[i];
void mul(const vector
    <ll>& a, const vector<ll>& b, vector<ll>& c) {
  int n = a.size(), m = b.size(), t = max(n, m), p = 1;
  while (p < t) p <<= 1;
  vector<ll> aa(p), bb(p);
  copy(a.begin(), a.end(), aa
   .begin()), copy(b.begin(), b.end(), bb.begin());
  c.assign(p << 1, 0), karatsuba(aa, bb, c, p);</pre>
  for (int i = 0; i < p; i++)</pre>
    c[i + 1] += c[i] / base, c[i] %= base;
  if (c[p]) p++;
  c.resize(p);
}
```

6.8 Linear Sieve

```
vector < bool > isp;
vector < int > p;
void sieve(int n) {
  p.clear(), isp.assign(n + 1, 1);
  isp[0] = isp[1] = 0;
  for (int i = 2; i <= n; i++) {
    if (isp[i]) p.eb(i);
    for (const auto& x : p) {
      if (1LL * i * x > n) break;
      isp[i * x] = 0;
      if (i % x == 0) break;
    }
}
```

6.9 Matrix

```
template <typename T> using vec = vector<T>;
```

6.10 Miller Rabin

```
using ll = ll;
ll mod_mul(ll a, ll b, ll m) {
  a \%= m, b \%= m;
  ll y = (ll)((
  double)a * b / m + 0.5); /* fast for m < 2^5  */ ll r = (a * b - y * m) % m;
  return r < 0 ? r + m : r;
template < typename T>
T pow(T a, T b, T mod) \{ //a^b \mod 
  T ans = 1;
  for (; b; a = mod_mul(a, a, mod), b >>= 1)
    if (b & 1) ans = mod_mul(ans, a, mod);
  return ans;
int sprp[3] = \{2, 7, 61\}; // range of int
int llsprp[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; // range of unsigned ll
template < typename T>
bool isprime(T n, int *sprp, int num) {
  if (n == 2)return 1;
  if (n < 2 || n % 2 == 0) return 0;
  int t = 0;
  T u = n - 1:
  for (; u % 2 == 0; ++t)u >>= 1;
  for (int i = 0; i < num; ++i) {
    T a = sprp[i] % n;
    if (a == 0 || a == 1 || a == n - 1) continue;
    T x = pow(a, u, n);
    if (x == 1 || x == n - 1) continue;
    for (int j = 1; j < t; ++j) {
      x = mod_mul(x, x, n);
      if (x == 1) return 0;
if (x == n - 1) break;
    if (x == n - 1) continue;
    return 0;
  return 1:
```

6.11 NTT

```
const int G = 3, P = 998244353;
const int sval = 100, split = log10(sval);
int fpow(int x, int y) {
  int ret = 1;
  for (; y; y >>= 1, x = 1LL * x * x % P)
  if (y & 1) ret = 1LL * ret * x % P;
  return ret;
void ntt(vector<int>& x, int lim, int opt) {
 if (i < j) swap(x[i], x[j]);</pre>
  for (int m = 2; m <= lim; m <<= 1) {
    int k = m >> 1;
    int gn = fpow(G, (P - 1) / m);
    for (int i = 0; i < lim; i += m) {</pre>
      int g = 1;
      for (int
           j = 0; j < k; ++j, g = 1LL * g * gn % P) {
        int tmp = 1LL * x[i + j + k] * g % P;
x[i + j + k] = (x[i + j] - tmp + P) % P;
        x[i + j] = (x[i + j] + tmp) % P;
    }
  if (opt == -1) {
```

void tran(int n, LL a[], bool inv_ntt = false) {

int basic = MAXN / n , theta = basic;

LL w = omega[i * theta % MAXN];
for (int j = i; j < n; j += m) {</pre>

for (int m = n; m >= 2; m >>= 1) {

for (int i = 0; i < mh; i++) {</pre>

int mh = m >> 1;

int k = j + mh;

```
reverse(x.begin() + 1, x.begin() + lim);
int inv = fpow(lim, P - 2);
for (int in part);
                                                                           LL x = a[j] - a[k];
                                                                           if (x < 0) x += P;
    for (int i = 0; i < lim; ++i)</pre>
                                                                           a[j] += a[k];
      x[i] = 1LL * x[i] * inv % P;
                                                                           if (a[j] > P) a[j] -= P;
                                                                           a[k] = (w * x) % P;
                                                                        }
                                                                      }
vector<int> mul(vector<int> a, vector<int> b) {
  int lim = 1, n = a.size(), m = b.size();
                                                                      theta = (theta * 2) % MAXN;
  while (lim < (n + m - 1)) lim <<= 1;
  a.resize(lim + 1), b.resize(lim + 1);
                                                                    for (int j = 1; j < n - 1; j++) {
  for (int k = n >> 1; k > (i ^= k); k >>= 1);
  ntt(a, lim, 1), ntt(b, lim, 1);
for (int i = 0; i < lim; ++i)</pre>
    a[i] = 1LL * a[i] * b[i] % P;
                                                                      if (j < i) swap(a[i], a[j]);</pre>
  ntt(a, lim, -1);
                                                                    if (inv_ntt) {
  int len = 0;
  for (int i = 0; i < lim; ++i) {</pre>
                                                                      LL ni = inv(n, P);
                                                                      reverse( a + 1 , a + n );
for (i = 0; i < n; i++)
    if (a[i] >= sval) len
        = i + 1, a[i + 1] += a[i] / sval, a[i] %= sval;
    if (a[i]) len = max(len, i);
                                                                        a[i] = (a[i] * ni) % P;
                                                                  }
  while (a[len] >= sval) a[
      len + 1] += a[len] / sval, a[len] %= sval, len++;
                                                               };
  return a.resize(len + 1), a;
                                                                const LL P = 2013265921, root = 31;
                                                                const int MAXN = 4194304;
void print(const vector<int>& v) {
                                                               NTT<P, root, MAXN> ntt;
  if (!v.size()) return;
                                                                6.13 Pollard Rho
  cout << v.back();</pre>
  for (int i = v.size() - 2; ~i; --i)
                                                                // does not work when n is prime
    cout << setfill('0') << setw(split) << v[i];</pre>
                                                                ll add(ll
  cout << '\n';
                                                                        ll b, ll m) {return (a += b) > m ? a - m : a;}
                                                                     а.
                                                                ll mul(ll a, ll b, ll m) {
int main() {
                                                                  a \%= m, b \%= m;
 ios::sync_with_stdio(false), cin.tie(nullptr);
                                                                  ll y = (ll)((
  string stra, strb;
                                                                      double)a * b / m + 0.5); /* fast for m < 2^58 */</pre>
  while (cin >> stra >> strb) {
                                                                  ll r = (a * b - y * m) % m;
    vector < int > a((stra.size() + split - 1) / split);
vector < int > b((strb.size() + split - 1) / split);
                                                                  return r < 0 ? r + m : r;
    int tmp = stra.size();
                                                                ll f(ll
    for (auto& i : a)
                                                                     x, ll mod) { return add(mul(x, x, mod), 1, mod); }
      tmp -= split, i = atoi(stra.substr(max
                                                                ll pollard_rho(ll n) {
          (0, tmp), min(split, split + tmp)).data());
                                                                  if (!(n & 1)) return 2;
    tmp = strb.size();
                                                                  while (true) {
    for (auto& i : b)
                                                                    ll y =
      tmp -= split, i = atoi(strb.substr(max
                                                                          2, x = rand() % (n - 1) + 1, res = 1, tmp = 1;
           (0, tmp), min(split, split + tmp)).data());
                                                                    for (int sz = 2; res == 1; sz *= 2, y = x) {
    print(mul(a, b));
                                                                      for (int
                                                                           i = 0, t = 0; i < sz && res <= 1; i++, t++) {
  return 0;
                                                                         x = f(x, n); tmp = mul(tmp, abs(x - y), n);
                                                                         if (!(t & 31) ||
6.12 NTT2
                                                                              i + 1 == sz) res = __gcd(tmp, n), tmp = 1;
// Remember coefficient are mod P
  p=a*2^n+1
                                                                    if (res != 0 && res != n) return res;
       2^n
                                        root
   n
                                                                  }
        65536
                      65537
                                        3
   16
                                                               }
   20
        1048576
                      7340033
                                       3 */
   23
        8388608
                      998244353
                                                               6.14 Primes
// (must be 2^k)
template < LL P, LL root, int MAXN >
                                                               /* 12721 13331 14341 75577 123457 222557
struct NTT {
                                                                      556679 999983 1097774749 1076767633 100102021
  static LL bigmod(LL a, LL b) {
                                                                     999997771 1001010013 1000512343 987654361 999991231
    LL res = 1;
                                                                     999888733 98789101 987777733 999991921 1010101333
    for (LL bs = a; b; b >>= 1, bs = (bs * bs) % P)
                                                                      1010102101 1000000000039 100000000000037
      if (b & 1) res = (res * bs) % P;
                                                                      2305843009213693951 \quad 4611686018427387847
    return res:
                                                                      9223372036854775783 18446744073709551557 */
  static LL inv(LL a, LL b) {
                                                                     String
    if (a == 1)return 1;
    return (((LL)(a - inv(b % a, a)) * b + 1) / a) % b;
                                                               7.1 AC
                                                                struct ACautomata {
  LL omega[MAXN + 1];
  NTT() {
                                                                  struct Node {
    omega[0] = 1;
                                                                    int cnt;
    LL r = bigmod(root, (P - 1) / MAXN);
                                                                    Node *go[26], *fail, *dic;
    for (int i = 1; i <= MAXN; i++)
  omega[i] = (omega[i - 1] * r) % P;</pre>
                                                                    Node () {
   cnt = 0, fail = 0, dic = 0;
                                                                      memset(go, 0, sizeof(go));
```

} pool[1048576], *root;

pool[nMem] = Node();

return &pool[nMem++];

void init() { nMem = 0, root = new_Node(); }

void add(const string &str) { insert(root, str, 0); }

Node* new_Node() {

int nMem;

```
National Tsing Hua University Kenapsack
  void insert(Node *cur, const string &str, int pos) {
  for (int i = pos; i < str.size(); i++) {</pre>
       if (!cur->go[str[i] - 'a'])
  cur->go[str[i] - 'a'] = new_Node();
cur = cur->go[str[i] - 'a'];
     cur->cnt++;
  void make_fail() {
     queue < Node *> que;
     que.push(root);
     while (!que.empty()) {
       Node* fr = que.front(); que.pop();
       for (int i = 0; i < 26; i++) {
          if (fr->go[i]) {
            Node *ptr = fr->fail;
            while (ptr && !ptr->go[i]) ptr = ptr->fail;
            fr->go[i]->
                 fail = ptr = (ptr ? ptr->go[i] : root);
            fr->go[i]->dic = (ptr->cnt ? ptr : ptr->dic);
            que.push(fr->go[i]);
       }
    }
  }
} AC;
7.2 Hash
struct Hash {
  vector<ll> h;
```

7.3 KMP

```
#define pb push_back
const int N = 1e6 + 5;
int F[N]:
vector<int> match(string A, string B) {
  vector<int> ans;
  F[0] = -1, F[1] = 0;
  for (int
       i = 1, j = 0; i < (int)B.size(); F[++i] = ++j) {
    if (B[i] == B[j]) F[i] = F[j]; // optimize
    while (j != -1 && B[i] != B[j]) j = F[j];
  for (int i = 0, j = 0; i < (int)A.size(); ++i) {</pre>
   while (j != -1 && A[i] != B[j]) j = F[j];
    if (++j
         == (int)B.size()) ans.pb(i + 1 - j), j = F[j];
 }
  return ans:
}
```

7.4 Manacher

```
R < s.size() && s[L - 1] == s[R]) {--L; ++R;}
      P.push_back(R - L);
  return P;
}
7.5 SA
const int N = 2e5 + 5;
string s;
int sa[N], tmp[2][N], c[N], rk[N], h[N];
// lcp(sa[i], sa[j]) = min\{h[k]\} where i <= k <= j
void suffix_array() {
  int *x = tmp[0], *y = tmp[1], m = 256, n = s.size();
  fill(c, c + m, 0);
  for (int i = 0; i < n; i++) c[x[i] = s[i]]++;
  partial_sum(c, c + m, c);
  for (int i = n - 1; i \ge 0; i--) sa[--c[x[i]]] = i;
  for (int k = 1; k < n; k <<= 1) {
    fill(c, c + m, 0);
    for (int i = 0; i < n; i++) c[x[i]]++;
    partial_sum(c, c + m, c);
    int p = 0;
    for (int i = n - k; i < n; i++) y[p++] = i;
    for (int i = 0; i < n; i++)</pre>
      if (sa[i] >= k) y[p++] = sa[i] - k;
    for (int i
          = n - 1; i \ge 0; i - - c[x[y[i]]]] = y[i];
    y[sa[0]] = p = 0;
     for (int i = 1; i < n; i++) {
       int a = sa[i], b = sa[i - 1];
      if (x[a] != x[b] || a + k >=
           n \mid | b + k >= n \mid | x[a + k] != x[b + k]) p++;
      y[sa[i]] = p;
    if (n == p + 1) break;
    swap(x, y), m = p + 1;
  }
}
void LCP() {
  int n = s.size(), val = 0;
  for (int i = 0; i < n; i++) rk[sa[i]] = i;
for (int i = 0; i < n; i++) {</pre>
    if (rk[i] == 0) h[rk[i]] = 0;
    else {
      if (val) val--;
      int p = sa[rk[i] - 1];
       while (val + i < n && val
            + p < n && s[val + i] == s[val + p]) val++;
      h[rk[i]] = val;
  }
// cin >> s, suffix_array(), LCP();
```

else R = (L = i) + j; while (L > 0 &&

7.6 SA2

```
void counting_sort
    (vector<int> &dest, const vector<int> &src
     int bucket_count, function<int(const int&)> f) {
  int *bucket_begin = new
       int[bucket_count], *buf = new int[src.size()];
  fill(bucket_begin, bucket_begin + bucket_count, 0);
  for (int i = 0; i < src.size(); ++i)</pre>
    if ((buf[i] = f(src[i])) + 1 < bucket_count)</pre>
      ++bucket begin[buf[i] + 1];
  partial_sum(bucket_begin
      , bucket_begin + bucket_count, bucket_begin);
  dest.resize(src.size());
  for (int i = 0; i < src.size(); ++i)</pre>
    dest[bucket_begin[buf[i]]++] = src[i];
  delete[] bucket_begin; delete[] buf;
#define
     a 'a'
            // The smallest character in the alphabet
#define sz 26 // The
     size of the alphabet. The alphabet is [a, a + sz)
vector<int> suffix_array(const string &s) {
  vector<int> SA, sa(s.size());
  SA.reserve(s.size()); iota(sa.begin(), sa.end(), 0);
  counting_sort(SA,
       sa, sz, [&](const int &i) { return s[i] - a; });
```

```
int *R = new int[SA.size()], *r = new int[SA.size()];
  R[SA[0]]
             // R = 0 is reserved for the empty string
  for (int i = 1; i < SA.size(); ++i)</pre>
    R[SA[i]] = s
        [SA[i]] == s[SA[i - 1]] ? R[SA[i - 1]] : i + 1;
  int L = 1;
  while (L < s.size()) {</pre>
    auto R2 = [&](const int &i) {
      if (i + L < SA.size()) return R[i + L];</pre>
      return 0; // so
           that when L = 1, "a" is ordered before "aa"
    counting_sort(sa, SA, SA.size() + 1, R2);
    counting_sort(SA, sa, SA.size
        (), [&](const int &i) { return R[i] - 1; });
    r[SA[0]] = 1;
    for (int i = 1; i < SA.size(); ++i)</pre>
      if (R[SA[i]] ==
           R[SA[i - 1]] \&\& R2(SA[i]) == R2(SA[i - 1]))
        r[SA[i]] = r[SA[i - 1]];
      else r[SA[i]] = i + 1;
    swap(R, г); L <<= 1;
  delete[] R; delete[] r; return SA;
#undef a
#undef sz
7.7
     SAIS
const int N = 300010:
struct SA {
```

```
#define REP(i,n) for(int i=0;i<int(n);i++)</pre>
#define REP1(i,a,b) for(int i=(a);i<=int(b);i++)</pre>
  bool _t[N * 2]; int _s[N * 2], _sa[N * 2];
int _c[N * 2], x[N], _p[N], _q[N * 2], hei[N], r[N];
int operator [](int i) { return _sa[i]; }
  void build(int *s, int n, int m) {
    memcpy(_s, s, sizeof(int)*n);
    sais(_s, _sa, _p, _q, _t, _c, n, m); mkhei(n);
  void mkhei(int n) {
    REP(i, n) r[_sa[i]] = i;
    hei[0] = 0;
    REP(i, n) if (r[i]) {
       int ans = i > 0 ? max(hei[r[i - 1]] - 1, 0) : 0;
           [i + ans] == _s[_sa[r[i] - 1] + ans]) ans++;
      hei[r[i]] = ans;
    }
  }
  void sais(int *s, int *sa,
    int *p, int *q, bool *t, int *c, int n, int z) {
    bool uniq = t[n - 1] = true, neq;
    int nn = 0, nmxz
= -1, *nsa = sa + n, *ns = s + n, lst = -1;
#define MSO(x,n) memset((x),0,n*sizeof(*(x)))
#define MAGIC(XD) MS0(sa,n);\
memcpy(x,c,sizeof(int)*z); XD;\
memcpy(x+1,c,sizeof(int)*(z-1));\
REP(i,n) if
    (sa[i]\&\&!t[sa[i]-1]) sa[x[s[sa[i]-1]]++]=sa[i]-1;
memcpy(x,c,sizeof(int)*z);\
for(int i=n-1;i>=0;i--)
     if(sa[i]&&t[sa[i]-1]) sa[--x[s[sa[i]-1]]]=sa[i]-1;
    MSO(c, z); REP(i, n) uniq &= ++c[s[i]] < 2;
    REP(i, z - 1) c[i + 1] += c[i];
    if (uniq) { REP(i, n) sa[--c[s[i]]] = i; return; }
    for (int i = n - 2; i >= 0; i--)
      t[i] = (s[
           i] == s[i + 1] ? t[i + 1] : s[i] < s[i + 1]);
    MAGIC(REP1(i, 1, n - 1) if (t[i] &&
                1]) sa[--x[s[i]]] = p[q[i] = nn++] = i);
         !t[i -
    REP(i, n) if (sa[i] \&\& t[sa[i]] \&\& !t[sa[i] - 1]) {
      ns[q[lst = sa[i]]] = nmxz += neq;
    sais(ns, nsa
    , p + nn, q + n, t + n, c + z, nn, nmxz + 1);  \label{eq:magic}  \mbox{MAGIC(for (int i = nn - 1; i)} 
          >= 0; i--) sa[--x[s[p[nsa[i]]]]] = p[nsa[i]]);
  }
} sa;
int H[N], SA[N], RA[N];
void suffix_array(int* ip, int len) {
```

```
// should padding a zero in the back
// ip is int array, len is array length
// ip[0..n-1] != 0, and ip[len]=0
ip[len++] = 0; sa.build(ip, len, 128);
memcpy(H, sa.hei
+ 1, len << 2); memcpy(SA, sa._sa + 1, len << 2); for (int i = 0; i < len; i++) RA[i] = sa.r[i] - 1;
// resulting height, sa array \in [0,len)
```

7.8 Suffix Automaton

```
// O(n)
// find all suffix substrings in lexicographical order
#include <bits/stdc++.h>
class SuffixAutomaton {
public:
  static const int MAXN = 500 << 1;</pre>
  static const int MAXC = 26;
  struct Node {
    Node *next[MAXC], *pre;
    int step;
    Node() {
      pre = NULL, step = 0;
      memset(next, 0, sizeof(next));
    _mem[MAXN];
  int size;
  Node *root,
  void init() {
    size = 0;
    root = tail = newNode();
  Node* newNode() {
    Node *p = &_mem[size++];
    *p = Node();
    return p;
  int toIndex(char c) { return c - 'A';
  char toChar(int c) { return c + 'A'; }
  void add(char c, int len) {
    c = toIndex(c);
    Node *p, *q, *np, *nq;
p = tail, np = newNode();
    np->step = len;
    for (; p && p->next[c] == NULL; p = p->pre)
      p->next[c] = np;
    tail = np;
    if (p == NULL) {
      np->pre = root;
    } else {
      if (p->next[c]->step == p->step + 1) {
        np->pre = p->next[c];
        else {
         q = p->next[c], nq = newNode();
         *nq = *q;
        nq->step = p->step + 1;
         q->pre = np->pre = nq;
         for (; p && p->next[c] == q; p = p->pre)
          p->next[c] = nq;
      }
    }
  void build(const char *s) {
    init();
    for (int i = 0; s[i]; i++)
      add(s[i], i + 1);
  void dfs(Node *u, int idx, char path[]) {
  for (int i = 0; i < MAXC; i++) {</pre>
      if (u->next[i]) {
        path[idx] = toChar(i);
         path[idx + 1] = '\0';
        puts(path);
        dfs(u->next[i], idx + 1, path);
      }
    }
  void print() {
    char s[1024];
    dfs(root, 0, s);
} SAM;
int main() {
  char s[1024];
  while (scanf("%s", s) == 1) {
    SAM.build(s);
```

for (int i = 1; i <= n; i++) {

l++;

while (l < last[a[i]]) {</pre>

```
SAM.print():
                                                                         chmax(ans, dp[l]);
  }
                                                                     dp[i] = {ans.F + i - l - penalty, ans.S + 1};
  return 0;
}
                                                                     last[a[i]] = i;
7.9 Trie
                                                                 while (l < n) {
int trie[MAXN * 31][2], node;
                                                                     chmax(ans, dp[l]);
int tag[MAXN * 31];
                                                                 return ans;
void add(int x) {
                                                            }
    int now = 0;
    for (int i = 30; i >= 0; i--) {
                                                             signed main() {
        if (!trie[now][x
                                                                 ios_base::sync_with_stdio(0), cin.tie(0);
             >> i & 1]) trie[now][x >> i & 1] = ++node;
                                                                 cin >> n >> k;
        now = trie[now][x >> i & 1];
                                                                 for (int i = 1; i <= n; i++) cin >> a[i];
        tag[now]++;
                                                                 int l = -1, r = 2000000;
while (l < r - 1) {
                                                                     int m = (l + r) / 2;
void del(int x) {
                                                                     pair<int, int> res = DP(m);
    int now = 0;
                                                                     if (res.S <= k) {</pre>
    for (int i = 30; i >= 0; i--) {
                                                                         r = m;
        now = trie[now][x >> i & 1];
                                                                     } else
        tag[now]--;
                                                                         l = m;
    }
}
                                                                 auto res = DP(r);
int qry(int x) {
                                                                 cout << res.F + k * r << '\n';
    int now = 0, res = 0;
                                                            }
    for (int i = 30; i >= 0; i--) {
        int id = (x >> i & 1) ^ 1;
                                                            8.2 Knapsack on Tree
        if (!tag[trie[now][id]]) id ^= 1;
        now = trie[now][id];
res = res * 2 + id;
                                                            #include <bits/stdc++.h>
                                                            #define F first
                                                            #define S second
    return res;
                                                            #define pb push_back
}
                                                            #define all(x) begin(x), end(x)
                                                            #ifdef LOCAL
7.10 Z
                                                            #define HEHE freopen("in.txt", "r", stdin);
                                                            #else
void z value(const char *s, int len, int *z) {
                                                            #define HEHE ios_base::sync_with_stdio(0), cin.tie(0);
  z[0] = len;
  for (int i = 1, l = 0, r = 0; i < len; i++) {
                                                            #endif
                                                             using namespace std;
    z[i] = i < r ? (i
         - l + z[i - l] < z[l] ? z[i - l] : r - i) : 0;
                                                            #define chmax(a, b) (a) = (a) < (b) ? (b) : (a)
    while (i
                                                            #define chmin(a, b) (a) = (a) < (b) ? (a) : (b)
        + z[i] < len && s[i + z[i]] == s[z[i]]) ++z[i];
    if (i + z[i] > r) l = i, r = i + z[i];
                                                             #define ll long long
  }
}
                                                            #define FOR(i, a, b) for (int i = a; i <= b; i++)</pre>
     Others
8
                                                             int N, W, cur;
8.1 Aliens
                                                            vector<int> w, v, sz;
vector<vector<int>> adj, dp;
實際上如果這邊根本是平的,那我們只要讓二分艘找到最
                                                             void dfs(int x) {
    小的P讓他的切點不超過K,那就保證了這條IP會貼在上面
                                                                 sz[x] = 1;
                                                                 for (int i : adj[x]) dfs(i), sz[x] += sz[i];
ll\ mid = (l+r < 0 ? (l + r) / 2: (l + r + 1) / 2)
while(l < r){
                                                                 cur++:
    int m = (l + r) / 2;
                                                                 // choose x
    if(calc(m) <= K) r = m;</pre>
                                                                 FOR (i, w[x], W) {
                                                                     dp[cur][i] = dp[cur - 1][i - w[x]] + v[x];
    else l = m + 1:
                                                                 }
                                                                 // not choose x
#include <bits/stdc++.h>
                                                                 FOR (i, 0, W) {
#define F first
                                                                     chmax(dp[cur][i], dp[cur - sz[x]][i]);
#define S second
                                                            }
#define int long long
using namespace std;
                                                             signed main() {
                                                                 HEHE
bool operator < (
    const pair<int, int> &a, const pair<int, int> &b) {
                                                                 cin >> N >> W;
    return a.F < b.F or (a.F == b.F and a.S > b.S);
                                                                 adj.resize(N + 1);
                                                                 w.assign(N + 1, \theta);
#define chmax(a, b) a = (a) < (b)? (b) : (a)
                                                                 v.assign(N + 1, 0);
                                                                 sz.assign(N + 1, 0);
int n, k;
                                                                 dp.assign(N + 2, vector<int>(W + 1, 0));
int a[1000005];
                                                                 FOR (i, 1, N) {
   int p; cin >> p;
pair<int, int> dp[1000005];
vector < int > last(100005, 0);
                                                                     adj[p].pb(i);
pair<int, int> DP(int penalty) {
                                                                 FOR (i, 1, N) cin \gg w[i];
    last.assign(100005, 0);
                                                                 FOR (i, 1, N) cin \Rightarrow v[i];
    pair<int, int> ans = \{0, 0\};
    int l = 0;
                                                                 dfs(0);
```

cout $<< dp[N + 1][W] << '\n';$

}

8.3 Mo

```
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5, sqN = sqrt(N) + 5;
int a[N], ans[N], n, q, sz; // maybe need blk[sqN];
struct Query {
  int ql, qr, id;
  bool operator<(const Query& b) const {</pre>
    int aa = ql / sz, bb = b.ql / sz;
    if (aa != bb) return aa < bb;</pre>
    else return qr < b.qr;</pre>
} Q[N];
void add(int x) {}
void sub(int x) {}
int qry(int k) {}
int main() {
  ios::sync_with_stdio(false), cin.tie(nullptr);
  cin >> n >> q, sz = sqrt(n);
  for (int i = 0; i < n; i++) cin >> a[i];
  for (int i = 0, ql, qr; i < q; i++)</pre>
    cin >> ql >> qr, Q[i] = {ql - 1, qr - 1, i};
  // Mo's algorithm
  sort(Q, Q + q); /* remember initialize arrays */
  int l = 0, r = -1;
  for (int i = 0; i < q; i++) {
    auto [ql, qr, k, id] = Q[i];
    while (r < qr) add(a[++r]);
    while (r > qr) sub(a[r--]);
    while (l < ql) sub(a[l++]);</pre>
    while (l > ql) add(a[--l]);
    ans[id] = qry(k);
  for (int i = 0; i < q; i++) cout << ans[i] << '\n';</pre>
```

8.4 Mono Slope

ll query(ll x){

```
struct Line{
  ll a, b;
  ll l = MIN, r = MAX;
Line(ll a, ll b): a(a), b(b) {}
  ll operator()(ll x){
    return a * x + b;
};
deque<Line> dq;
ll iceil(ll a, ll b){
  if(b < 0) a *= -1, b *= -1;
  if(a > 0) return (a + b - 1) / b;
  else return a / b;
ll intersect(Line a, Line b){
  return iceil(a.b - b.b, b.a - a.a);
}
void add(Line ln){
  while(!da.emptv
      () && ln(dq.back().l) >= dq.back()(dq.back().l)){
    dq.pob;
  if(dq.empty()){
    dq.eb(ln);
    return;
  ll pos = intersect(ln, dq.back());
  if(pos > dq.back().r){
    if(dq.back().r != MAX){
      ln.l = dq.back().r + 1;
       dq.eb(ln);
    return;
  dq.back().r = pos - 1;
  ln.l = pos;
  dq.eb(ln);
```

```
while(dq.front().r < x) dq.pof;
return dq.front()(x);
}</pre>
```

8.5 Partial Ordering

```
// O(n log^2 n)
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 1e5 + 5, M = 2e5 + 5;
int n, K, cnt, ans[N];
struct node {
  int x, y, z, v, ans, tag, id;
  node() { ans = tag = v = x = y = z = 0; }
  friend
       bool operator==(const node &a, const node &b) {
    return
         (a.x == b.x) && (a.y == b.y) && (a.z == b.z);
} a[N], t[N];
bool cmp1(const node &a, const node &b) {
  if (a.x != b.x) return a.x < b.x;
  if (a.y != b.y) return a.y < b.y;</pre>
  return a.z < b.z;</pre>
bool cmp2(const node &a, const node &b) {
  if (a.y != b.y) return a.y < b.y;</pre>
  if (a.tag != b.tag) return a.tag < b.tag;</pre>
  return a.id < b.id;</pre>
#define lowbit(x) (x & -x)
int bit[M];
void add(int p, int x) {
  for (; p <= K; p += lowbit(p)) bit[p] += x;</pre>
int query(int p) {
  int ret = 0;
  for (; p; p -= lowbit(p)) ret += bit[p];
  return ret;
void CDQ(int l, int r) {
  if (l == r) return;
  int mid = (l + r) >> 1;
  CDQ(l, mid); CDQ(mid + 1, r);
for (int i = l; i <= r; ++i) a[i].id = i;</pre>
  for (int i = l; i <= mid; ++i) a[i].tag = 0;</pre>
  for (int i = mid + 1; i <= r; ++i) a[i].tag = 1;
  sort(a + l, a + r + 1, cmp2);
  for (int i = l; i <= r; ++i) {
    if (!a[i].tag) add(a[i].z,
                                 a[i].v);
    else a[i].ans += query(a[i].z);
  for (int i = l; i <= r; ++i)
    if (!a[i].tag) add(a[i].z, -a[i].v);
int main() {
  cin >> n >> K;
  for (int i = 1; i <= n; ++
      i) cin >> a[i].x >> a[i].y >> a[i].z, a[i].v = 1;
  sort(a + 1, a + n + 1, cmp1);
  cnt = 1;
  for (int i = 2; i <= n; ++i) {
    if (a[i] == a[cnt]) ++a[cnt].v;
    else a[++cnt] = a[i];
  CDQ(1, cnt);
  // let ans[i] denote that the
      number of (aj<=ai && bj<=bi && cj<=ci) for i != j
  for (int i = 1; i <=
       cnt; ++i) ans[a[i].ans + a[i].v - 1] += a[i].v;
  for (int i = 0; i < n; ++i) cout << ans[i] << '\n';</pre>
```

8.6 Xor Basis

```
int basis[20]
bool add(int x) {
    for (int i = 19; i >= 0; i--) {
        if (!(x >> i & 1)) continue;
        if (!basis[i]) {
            basis[i] = x;
            return true;
        }
        else x ^= basis[i];
    }
}
```

```
| return false;
|}
|// 維持 basis[i] 的最高图是 i
```


