Лекция 4: Кодиране

1.8 Кодиране

В този раздел ще дефинираме кодиране на наредени двойки, на *п*-торки и на крайни редици от естествени числа, посредством които по-нататък ще можем да кодираме — оператори, програми, изчисления и пр.

Нека M е произволно множество. <u>Кодиране на M</u> ще наричаме всяко инективно изображение

$$\kappa \colon M \longrightarrow \mathbb{N}.$$

Ясно е, че за да можем да кодираме с естествени числа едно множество M, то трябва да е най-много изброимо. Обикновено M е множество от конструктивни обекти — числа, низове, формули, дървета и пр.

1.8.1 Кодиране на наредени двойки

Оттук до края на курса с Π ще означаваме следното изображение Π : $\mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$:

$$\Pi(x,y) \stackrel{\text{деф}}{=} 2^x (2y+1) - 1.$$

Да отбележим, че тъй като $2^x(2y+1) \ge 1$, то $\Pi(x,y) \in \mathbb{N}$ за всички естествени x и y. Да се убедим, че това изображение е кодиране на $\mathbb{N} \times \mathbb{N}$, като при това то е сюрективно. Да си спомним, че когато едно изображение е едновременно инективно и сюрективно, то се нарича биективно (или биекция).

Твърдение 1.18. Изображението $\Pi \colon \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ е биекция.

Доказателство. Трябва да покажем, че за всяко $z \in \mathbb{N}$ съществуват единствени $(x,y): \Pi(x,y)=z.$

Ще използваме, че всяко *положително* естествено число се представя по единствен начин във вида $2^x(2y+1)$. Сега да вземем произволно $z\in\mathbb{N}$. Тогава z+1>0 и следователно за единствени естествени x и y ще имаме, че

$$2^x(2y+1) = z+1.$$

Но тогава
$$2^x(2y+1)-1 = z$$
, т.е. $\Pi(x,y) = z$.

Щом за всяко $z \in \mathbb{N}$ съществуват единствени x,y, за които $\Pi(x,y)=z$, то значи съществуват и ϕy нкиuu, които за всяко z връщат тези x и y. Тези обратни функции обикновено се наричат ∂e ко ∂u раuи ϕy нкиuи. Ние ще ги означаваме с L и R. По определение

$$L(\Pi(x,y)) = x$$
 и $R(\Pi(x,y)) = y$.

За наредената тройка (Π , L, R) ще казваме, че е кодираща тройка (или кодираща схема) Една такава тройка наричаме примитивно рекурсивна кодираща тройка, ако функциите, участващи в нея, са примитивно рекурсивни.

Твърдение 1.19. (Π , L, R) е примитивно рекурсивна кодираща тройка.

Доказателство. Изображението Π е примитивно рекурсивно, защото можем да го препишем като $\Pi(x,y) = 2^x(2y+1) - 1$, като всички функции, участващи в това представяне, са примитивно рекурсивни.

Сега нека $\Pi(x,y)=z$, т.е. $2^x(2y+1)-1=z$. Тогава $2^x(2y+1)=z+1$ и следователно $x=(z+1)_0$, с други думи

$$L(z) = (z+1)_0$$

и значи L е примитивно рекурсивна.

По-нататък, от $2^x(2y+1) = z+1$ ще имаме

$$2y+1 = \frac{z+1}{2^x} = \frac{z+1}{2^{L(z)}},$$

и следователно

$$y = \frac{\frac{z+1}{2^{L(z)}} - 1}{2}.$$

Сега примитивната рекурсивност на R следва от това, че R можем да препишем като суперпозицията

$$R(z) = y = qt(2, qt(2^{L(z)}, z+1) - 1),$$

в която всички участващи функции са примитивно рекурсивни.

Забележка. Да обърнем внимание на един на пръв поглед дребен факт, който обаче ще е важен при някои дефиниции по рекурсия, а именно, това, че за всяко z:

$$L(z) \le z$$
 и $R(z) \le z$,

като равенство се достига само при z=0 и z=1. За тези две числа имаме, че:

$$\Pi(0,0) = 2^0 \cdot (2.0+1) - 1 = 0$$
 и $\Pi(1,0) = 2^1 \cdot (2.0+1) - 1 = 1$.

1.8.2 Кодиране на \mathbb{N}^n

За всяко фиксирано $n \ge 1$ ще въведем изображение

$$\Pi_n \colon \mathbb{N}^n \longrightarrow \mathbb{N},$$

за което ще докажем, че е кодиране на наредените n-торки от естествени числа. Дефиницията е с индукция по n:

Определение 1.21.

$$\Pi_{1}(x_{1}) \stackrel{\text{de}\Phi}{=} x_{1}$$

$$\Pi_{n+1}(x_{1}, \dots, x_{n+1}) \stackrel{\text{de}\Phi}{=} \Pi(\Pi_{n}(x_{1}, \dots, x_{n}), x_{n+1}).$$
(1.8)

От тази дефиниция веднага получаваме, че

$$\Pi_2(x_1, x_2) \stackrel{\text{деф}}{=} \Pi(\Pi_1(x_1), x_2) = \Pi(x_1, x_2),$$

с други думи, Π_2 съвпада с кодирането Π на наредените двойки естествени числа, което въведохме по-горе.

В случай, че се питате защо не дефинирахме кодирането по този начин:

$$\Pi_{n+1}(x_1,\ldots,x_{n+1}) = \Pi(x_1,\Pi_n(x_2,\ldots,x_{n+1})):$$

ами да, може и така да се дефинира, но ние предпочетохме другото определение, защото има малки технически предимства $\ddot{\smile}$.

Най-напред да съобразим, че Π_n наистина е кодиране на \mathbb{N}^n , при това — отново примитивно рекурсивно.

Твърдение 1.20. За всяко $n \geq 1$ изображението $\Pi_n : \mathbb{N}^n \longrightarrow \mathbb{N}$ е биективно и примитивно рекурсивно.

Доказателство. Индукция по n. Пропускаме като очеваден случая n=1 и приемаме, че за произволно $n\geq 1$, Π_n е биективно и примитивно рекурсивно. Тогава от

$$\Pi_{n+1}(x_1,\ldots,x_{n+1}) = \Pi(\Pi_n(x_1,\ldots,x_n),x_{n+1})$$

и $Tespdehue\ 1.19$ веднага следва, че и Π_{n+1} ще е примитивно рекурсивно.

Да видим, че то е и биективно, т.е. за всяко $z \in \mathbb{N}$ съществуват единствени $(x_1,\ldots,x_{n+1}),$ за които $\Pi_{n+1}(x_1,\ldots,x_{n+1})=z.$ Наистина, да изберем произволно естествено z. От $Teopdenue\ 1.18$ знаем, че за единствена двойка числа (x,y) ще е вярно, че $\Pi(x,y)=z.$ От индуктивната хипотеза, приложена за x, ще съществуват единствени x_1,\ldots,x_n , такива че

$$\Pi_n(x_1,\ldots,x_n) = x.$$

Но тогава

$$\Pi_{n+1}(x_1,\ldots,x_n,y) = \Pi(\Pi_n(x_1,\ldots,x_n),y) = \Pi(x,y) = z.$$

Щом изображението $\Pi_n \colon \mathbb{N}^n \longrightarrow \mathbb{N}$ е биекция, значи съществуват обратните му функции, които ще означаваме с $J_i^n, i = 1, \ldots, n$. По определение

$$J_i^n(\Pi_n(x_1,\ldots,x_n)) = x_i.$$

Тези функции сигурно ви напомнят на проектиращите функции I_i^n . Приликата не е само в означението, всъщност декодиращите J_i^n действат върху $\kappa odoseme$ на n-торките точно както проектиращите I_i^n действат върху самите n-торки.

Задача 1.16. Докажете, че за всяко n и $1 \le i \le n$ функциите J_i^n са примитивно рекурсивни.

Решение. Индукция по n. При n=1 имаме $J_1^1(z)=z$.

Да допуснем, че за някое n всички $J_i^n, 1 \le i \le n$, са примитивно рекурсивни. Тогава за n+1 ще имаме следното:

ако $1 \le i \le n$, то очевидно

$$J_i^{n+1}(z) = J_i^n(L(z))$$

и значи J_i^{n+1} е примитивно рекурсивна, съгласно индукционната хипотеза. Ако пък i=n+1, то по определение $J_{n+1}^{n+1}(z)=R(z)$ и значи отново J_{n+1}^{n+1} е примитивно рекурсивна.

Тази задача, заедно с Tвърдение 1.20 ни дават, че $(\Pi_n, J_1^n, \dots J_n^n)$ е примитивно рекурсивна кодираща схема. На нас, обаче, ще ни трябва нещо по-силно от факта, че функциите $J_1^n, \dots J_n^n$ са примитивно рекурсивни, а именно — ще ни трябва техния sвен sид, изразен чрез декодиращите L и R. Да се убедим, че той е следният:

Твърдение 1.21. За всяко $n \ge 1$ и $1 \le i \le n$:

$$J_i^n \ = \ \begin{cases} R \circ L^{n-i}, & \text{and } 1 < i \le n \\ L^{n-1}, & \text{and } i = 1. \end{cases}$$

Доказателство. Ясно е, че отново ще трябва да разсъждаваме с индукция относно n.

По-горе видяхме, че $J_1^1(z)=z$, т.е. $J_1^1=I_1^1$, което се съгласува с $J_1^1=L^0\stackrel{{\rm ge}}=I_1^1$. Така базата n=1 е проверена.

Сега да приемем, че за някое $n \geq 1$ всяка от функциите J_i^n има горния вид. За n+1 разглеждаме следните два случая:

1 сл. i = n + 1. От определението на Π_{n+1} имаме

$$J_{n+1}^{n+1}(z) \ = \ R(z) \ = \ R(\underbrace{L^{(n+1)-(n+1)}(z)}_z).$$

 ${\bf 2}$ сл. $1 \leq i \leq n$. По-горе съобразихме, че $J_i^{n+1}(z) = J_i^n(L(z))$. Прилагаме индуктивната хипотеза и получаваме

$$J_i^{n+1}(z) \ = \ J_i^n(L(z)) \ \stackrel{\text{м.х.}}{=} \ \begin{cases} R(L^{n-i}(L(z))), & \text{ако } 1 < i \leq n \\ L^{n-1}(L(z)), & \text{ако } i = 1. \end{cases}$$

С други думи,

$$J_i^{n+1}(z) \ = \ \begin{cases} R(L^{n+1-i}(z)), & \text{ако } 1 < i \leq n \\ L^n(z), & \text{ако } i = 1, \end{cases}$$

което заедно с полученото по-горе за i=n+1 довършва доказателството на твърдението.

Ше усилим още малко горното твърдение, като докажем, че всъщност $J_i^n(z)$ зависи "примитивно рекурсивно" не само от z, но и от индексите си n и i, по-точно:

Твърдение 1.22. Функцията

$$F(n,i,z) \ = \ egin{cases} J_i^n(z), & \text{ако } n \geq 1 \ \& \ 1 \leq i \leq n \ 0, & \text{в останалите случаи} \end{cases}$$

Доказателство. За F можем да запишем, използвайки току-що доказаното Теърдение 1.21, че

$$F(n,i,z) \ = \ \begin{cases} R(L^*(n-i,z)), & \text{ако } n \geq 1 \ \& \ 1 < i \leq n \\ L^*(n-1,z), & \text{ако } n \geq 1 \ \& \ i = 1 \\ 0, & \text{в останалите случаи.} \end{cases}$$

Сега примитивната рекурсивност на F следва от факта, че итерацията запазва примитивната рекурсивност ($Tespdenue\ 1.17$).

1.8.3 Кодиране на \mathbb{N}^*

В този курс с \mathbb{N}^* ще означаваме множеството на крайните *непразни* редици от естествени числа, с други думи

$$\mathbb{N}^* = \bigcup_{n=1}^{\infty} \mathbb{N}^n.$$

 $\mathbb{N}^* = \bigcup_{n=1}^\infty \, \mathbb{N}^n.$ Да отбележим, че това означение се разминава със стандартното $A^* \stackrel{\text{деф}}{=} \bigcup_{n=0}^{\infty} A^n$, което включва и празния низ в A^* .

Ние няма да включваме ε в \mathbb{N}^* , защото идеята ни е \mathbb{N}^* да е множеството от редиците, които са кодове на операторите на нашите програми (програмите ни ще бъдат просто крайни редици от оператори). И тъй като всяка програма има поне един оператор, празният низ очевидно няма да е от този вид.

Всяка непразна редица от естествени числа ще означаваме със счупени скобки по ето този начин:

$$\langle x_0, \dots, x_n \rangle, \ n \ge 0.$$

Тук $n \ge 0$, т.е. започваме броенето от нула, за да осигурим, че n пробягва всички естествени числа, включително и нулата. Разбира се, всичко това е изцяло заради технически удобства.

Определение 1.22. В множеството на всички непразни редици с елементи от \mathbb{N} дефинираме следното изображение $\tau \colon \mathbb{N}^* \longrightarrow \mathbb{N}$:

$$\tau(\langle x_0, \dots, x_n \rangle) = \Pi(n, \Pi_{n+1}(x_0, \dots, x_n)). \tag{1.9}$$

От определението се вижда, че ако

$$z = \tau(\langle x_0, \dots, x_n \rangle) \stackrel{\text{деф}}{=} \Pi(\underbrace{n}_{L(z)}, (\underbrace{\Pi_{n+1}(x_0, \dots, x_n)}_{R(z)}),$$

то L(z)+1 е дължината на редицата с код z, а R(z) е кодът на тази редица (разглеждана като L(z)+1-орка). С други думи, L(z) "помни" дължината на редицата с код z, докато R(z) "помни" елементите на тази редица.

Най-напред да покажем, че τ е *кодиране* на \mathbb{N}^* , което при това покрива цялото \mathbb{N} , т.е. τ е биективно.

Твърдение 1.23. Изображението $\tau \colon \mathbb{N}^* \longrightarrow \mathbb{N}$ е биекция.

Доказателство. Трябва да видим, че за всяко $z \in \mathbb{N}$ съществува единствена редица $\langle x_0, \dots, x_n \rangle$, такава че

$$\tau(\langle x_0, \dots, x_n \rangle) = z.$$

Наистина, да означим L(z) с n. От $Texpdenue\ 1.20$, приложено за n+1, съществуват единствени x_0, \ldots, x_n , такива че

$$\Pi_{n+1}(x_0,\ldots,x_n) = R(z).$$

Сега вече

$$\tau(\langle x_0,\ldots,x_n\rangle) \stackrel{\text{\tiny \neq}}{=} \Pi(n,\Pi_{n+1}(x_0,\ldots,x_n)) = \Pi(L(z),R(z)) = z.$$

Ясно е, че ако знаем редицата $\langle x_0, \ldots, x_n \rangle$, алгоритмично можем да намерим нейния код $\tau(\langle x_0, \ldots, x_n \rangle)$. Обратно, ако знаем кода $z = \tau(\langle x_0, \ldots, x_n \rangle)$ на една редица $\langle x_0, \ldots, x_n \rangle$, очевидно по него можем да възстановим дължината на тази редица и нейните елементи. Но как да формализираме това "възстановяване"? При кодирането Π_n тази идея се формализираше лесно — просто съобразихме, че декодиращите функции на Π_n са примитивно рекурсивни. Тук, обаче, за декодиращи функции очевидно не можем да говорим.

Затова въвеждаме две други функции lh(z) и mem(z,i), които връщат дължината на редицата и нейните елементи. Ето и точните дефиниции:

Нека
$$z = \tau(\langle x_0, \dots, x_n \rangle)$$
. Тогава

$$lh(z) \stackrel{\text{деф}}{=} n,$$

с други думи, lh връща дължината на редицата с код z (или по-скоро дължината минус 1, защото дължината на редицата $\langle x_0, \ldots, x_n \rangle$ е n+1). Другата функция mem (от member) дефинираме по следния начин (отново предполагайки, че $z = \tau(\langle x_0, \ldots, x_n \rangle)$):

$$mem(z,i) \stackrel{\text{деф}}{=} \begin{cases} x_i, & \text{ако } i \leq lh(z) \\ 0, & \text{ако } i > lh(z). \end{cases}$$
 (1.10)

Определение 1.23. Казваме, че едно кодиране $\tau : \mathbb{N}^* \longrightarrow \mathbb{N}$ е *ефективено*, ако функциите *lh* и *mem* са рекурсивни. Ако тези функции са примитивно рекурсивни, ще казваме, че τ е *примитивно рекурсивно* кодиране.

Сега ще покажем, че нашето кодиране τ е ефективно, като при това неговите функции lh и mem са примитивно рекурсивни.

Твърдение 1.24. Декодиращите функции lh и mem на кодирането τ , дефинирано чрез (1.9), са примитивно рекурсивни.

Доказателство. За функцията "дължина" вече забелязахме, че lh(z) = L(z) и значи lh е примитивно рекурсивна.

Да се убедим, че и mem е примитивно рекурсивна. Наистина, нека $z= au(\langle x_0,\ldots,x_n\rangle)$, т.е.

$$z = \Pi(n, \Pi_{n+1}(x_0, \dots, x_n)).$$

Тогава $R(z) = \prod_{n+1} (x_0, \dots, x_n)$ и значи за всяко $x_i, 0 \le i \le n$ ще имаме

$$x_i = J_{i+1}^{n+1}(R(z)).$$

Тук е моментът да си спомним, че съгласно $Tespdenue\ 1.22$, функцията $F(n,i,z)=J_i^n(z)$ е примитивно рекурсивна. Следователно за mem можем да запишем:

$$mem(z,i) = egin{cases} J_{i+1}^{n+1}(R(z)), & \text{ако } i \leq lh(z) \\ 0, & \text{ако } i > lh(z) \end{cases}$$

$$= egin{cases} F(L(z)+1,i+1,R(z)), & \text{ако } i \leq lh(z) \\ 0, & \text{ако } i > lh(z), \end{cases}$$

откъдето се вижда, че тет е примитивно рекурсивна.

Ще завършим този раздел с една друга дефиницията на функция-история, различна от функцията \hat{f} , която въведохме в предишния раздел. Тази функция-история ще означаваме с H_f .

Нека $f\colon \mathbb{N} \longrightarrow \mathbb{N}$ е тотална функция. Историята H_f на f дефинираме по следния начин:

$$H_f(x) \stackrel{\text{qe}}{=} \tau(\langle f(0), \dots, f(x) \rangle).$$
 (1.11)

Твърдение 1.25. Ако $f: \mathbb{N} \longrightarrow \mathbb{N}$ е примитивно рекурсивна, то и нейната история H_f е примитивно рекурсивна.

Доказателство. Искаме да напишем примитивно рекурсивна схема за H_f . За целта да видим как са свързани $H_f(x+1)$ и $H_f(x)$. Имаме

$$H_{f}(x+1) = \tau(\langle f(0), \dots, f(x), f(x+1) \rangle) \stackrel{\text{ped } \tau}{=} \Pi(x+1, \Pi_{x+2}(f(0), \dots, f(x), f(x+1))) \stackrel{\text{ped } \Pi_{x+2}}{=} \Pi(x+1, \Pi(\Pi_{x+1}(f(0), \dots, f(x)), f(x+1))). \tag{1.12}$$

Ho за $H_f(x)$ имаме:

$$H_f(x) = \tau(\langle f(0), \dots, f(x) \rangle) = \Pi(x, \Pi_{x+1}(f(0), \dots, f(x))),$$

откъдето

$$\Pi_{x+1}(f(0),\ldots,f(x)) = R(H_f(x)).$$

Оттук, катоизпоздваме (1.12), за $H_f(x+1)$ получаваме

$$H_f(x+1) = \Pi(x+1, \Pi(R(H_f(x)), f(x+1))).$$

Сега окончателно

$$| H_f(0) = \tau(\langle f(0) \rangle) = \Pi(0, f(0)) | H_f(x+1) = \underbrace{\Pi(x+1, \Pi(R(H_f(x)), f(x+1)))}_{G(x,H_f(x))},$$

където функцията $G(x,y)=\Pi(x+1,\Pi(R(y),f(x+1)))$ е примитивно рекурсивна. Следователно и H_f е примитивно рекурсивна.

1.8.4 Задачи

Задача 1.17. Нека $\pi(x,y) = 2^x \cdot (2y+1)$. Да дефинираме следното изображение κ , действащо върху множеството $\hat{\mathbb{N}}$ на $\mathit{всичкu}$ крайни редици с елементи от \mathbb{N} (вече включваме и празната редица)::

$$\kappa(\varepsilon) = 0; \qquad \kappa(\langle x_1, \dots, x_n \rangle) = \pi(x_1, \kappa(\langle x_2, \dots, x_n \rangle)).$$

Докажете, че κ е примитивно рекурсивно кодиране на $\hat{\mathbb{N}}$.

Доказателство. С пълна индукция по z да се убедим, че за всяко $z \in \mathbb{N}$ съществува единствена редица с код z.

Ако z=0, то $\kappa(\varepsilon)\stackrel{\text{деф}}{=}0$, и понеже $\pi(x,y)\geq 1$, то ε е единствената редица с това свойство.

Лесно се вижда, че π в биекция между \mathbb{N}^2 и \mathbb{N}^+ . Тогава за z>0 съществуват единствени x и y, за които $z=\pi(x,y)$. Понеже y< z, по индуктивната хипотеза съществува единствена редица $\langle x_1,\ldots,x_n\rangle$, такава че $\kappa(\langle x_1,\ldots,x_n\rangle)=y$. Тогава е ясно, че

$$\kappa(\langle x, x_1, \dots, x_n \rangle) = \pi(x, \kappa(\langle x_1, \dots, x_n \rangle)) = \pi(x, y) = z.$$

Нека l и r са декодиращите за кодирането π . (Тъй като 0 не е в областта от стойности на π , да приемем, че l(0) = r(0) = 0). Ясно е, че l и r са примитивно рекурсивни.

Сега за функцията lh(z), даваща дължината на редицата с код z, ще имаме, че:

$$| lh(0) = 0 lh(z+1) = 1 + lh(r(z+1)).$$

Тъй като при z > 0 r(z) < z, то това е дефиниция с пълна рекурсия и следователно lh(z) е примитивно рекурсивна.

Нека $\kappa(\langle x_1,\ldots,x_n\rangle)=z$. Да дефинираме mem като:

$$mem(z,i) \stackrel{\text{деф}}{=} \begin{cases} x_i, & \text{ако } z > 0 \ \& \ 1 \leq i \leq lh(z) \\ 0, & \text{иначе} \end{cases}$$

Нека z>0 и $1< i\leq lh(z)$. Тогава очевидно i-тият елемент на редицата с код z е i-1-ви елемент на редицата с код r(z). Значи за mem ще имаме следната рекурсивна връзка:

$$mem(z,i) = egin{cases} mem(r(z),i-1), & \text{ако } z > 0 \ \& \ 1 < i \leq lh(z) \\ l(z), & \text{ако } z > 0 \ \& \ i = 1 \\ 0, & \text{в останалите случаи.} \end{cases}$$

Има няколко начина да се убедим, че функцията *тет* е примитивно рекурсивна. Най-краткият е да забележим, че тя се дефинира с *вложее-на* рекурсия и да се възползваме от Задача 1.13, която казва, че тази рекурсия се изразява чрез примитивна рекурсия.

Другият начин се основава на наблюдението, че при рекурсивното обръщение u двата аргумента на mem намаляват. Да разгледаме npedcma-вящата mem на mem, дефинирана като:

$$\hat{mem}(t) = mem(L(t), R(t))$$

Тогава рекурсивното обръщение

$$mem(z,i) \longrightarrow mem(r(z),i-1)$$

ще се превърне в

$$\hat{mem}(t) \longrightarrow \hat{mem}(\Pi(r(L(t)), R(t) - 1)).$$

Така вече ще имаме $t > \Pi(r(L(t)), R(t) - 1)$. Това означава, че можем да напишем схема за пълна рекурсия за \hat{mem} и значи тя ще е примитивно рекурсивна. Оттук, поради $mem(z,i) = \hat{mem}(\Pi(z,i))$, ще имаме, че и mem е примитивно рекурсивна.

Но може би най-краткият начин да се убедим в примитивната рекурсивност на *mem* е да забележим, че можем да я изразим и *явно* по следния начин:

$$mem(z,i) = \begin{cases} l(r^{i-1}(z)), & \text{ако } z > 0 \ \& \ 1 \leq i \leq lh(z) \\ 0, & \text{иначе.} \end{cases}$$

Доказателството е с рутинна индукция по $1 \le i \le lh(z)$. Случаят i=1 е очевиден, а допускайки, че за $1 \le i < lh(z)$ това е така, за i+1 ще имаме:

$$mem(z,i) = mem(r(z),i-1) \stackrel{\text{\tiny H.X.}}{=} l(r^{(i-1)-1}(r(z))) = l(r^{i-1}(z)).$$

Задача 1.18. Да означим с Fin множеството от всички едноместни крайни функции в естествените числа. Изображението $\kappa: Fin \to N^+$ се дефинира като:

$$\kappa(\theta) = \begin{cases} 1, & \text{ako } Dom(\theta) = \emptyset \\ \prod_{i=1}^{n} p_{x_i}^{\theta(x_i)+1}, & \text{ako } Dom(\theta) = \{x_1, \dots, x_n\}. \end{cases}$$

Докажете, че κ ефективно кодиране на крайните функции.

Доказателство. Да видим най-напред, че всяко z > 0 е код на единствена крайна функция. Наистина, ако z = 1 то z е може да е код само на $\emptyset^{(1)}$.

Ако z > 1, то z се разлага по единствен начин във вида

$$p_{x_1}^{t_1}.....p_{x_n}^{t_n},$$

където показателите t_1, \ldots, t_n са положителни. Нека θ е крайната функция с дефиниционно множество $\{x_1, \ldots, x_n\}$, такава че $\theta(x_i) = t_i - 1$ за всяко $i = 1, \ldots, n$. Тогава очевидно $\kappa(\theta) = z$.

Сега трябва да покажем, че са примитивно рекурсивни функциите lh и mem, където

lh(z) =броят на точките, в които крайната функция с код z е дефинирана,

$$mem(z,i) = egin{cases} \Pi(x_i, \theta(x_i)), & \text{ако } z > 0 \ \& \ \kappa(\theta) = z \ \& \ x_i \ \ e \ i$$
-тият по големина елемент на $Dom(\theta)$ о, ако $z = 0$.

Лесно се вижда, че

$$lh(z) = \sum_{i=0}^{z} sg((z)_i).$$

За mem(z,i) може да разсъждаваме така: нека

$$h(z) = \mu x_{x < z}[(z)_x > 0].$$

Ясно е, че при $z \ge 2$, h(z) връща първия елемент от домейна на крайната функция с код z (по-горе видяхме, че всяко такова z е код на непразна крайна функция). Тогава за mem можем да запишем:

$$mem(z,i) = \begin{cases} \Pi(h(z),(z)_{h(z)} - 1), & \text{ако } z \geq 2 \ \& \ i = 1 \\ mem\left(\frac{z}{p_{h(z)}^{(z)}},i-1\right), & \text{ако } z \geq 2 \ \& \ i > 1 \\ 0, & \text{в останалите случаи.} \end{cases}$$

Като разсъждавате както в предишната задача, покажете, че представящата на mem

$$m\hat{e}m(t) = mem(L(t), R(t))$$

е примитивно рекурсивна, откъдето и самата mem ще е такава.

Задача 1.19. (Задача за ЕК) Да означим с Fin множеството на всички $\kappa pa \check{u}hu$ подмножества на \mathbb{N} . Дефинираме изображение

$$\kappa \colon \mathit{Fin} \longrightarrow \mathbb{N}$$

по следния начин: ако $A = \{x_1, \ldots, x_n\}$, то $\kappa(A)$ е числото, в чийто двоичен запис единиците са точно на позиции x_1, \ldots, x_n (като броим позициите от дясно наляво, започвайки от позиция 0).

Забележка. Това кодиране е познато като *канонично кодиране* на крайните множества от естествени числа.

Примери:
$$\kappa(\emptyset) = 0_{(2)}, \quad \kappa(\{0,1\}) = 11_{(2)}, \quad \kappa(\{1,3,4\}) = 11010_{(2)}.$$

- 1) Докажете, че κ е биекция.
- 2) Нека $\kappa(A) = z$. Докажете, че са примитивно рекурсивни функциите lh и mem, дефинирани като:

$$lh(z) = |A|$$

$$mem(z,i) = egin{cases} i$$
-тия по големина елемент на A, \quad ако $1 \leq i \leq lh(z)$ 0, иначе.

Задача 1.20. (Функцията на Акерман) Докажете, че съществува единствена функция F, определена с равенствата:

$$\begin{vmatrix}
F(0,y) &= y+1 \\
F(x+1,0) &= F(x,1) \\
F(x+1,y+1) &= F(x,F(x+1,y))
\end{vmatrix} (1.13)$$

и тази функция е тотална.

Решение. Нека f удовлетворява (1.13). С индукция по x ще покажем, че

База x=0. Следва от това, че

$$F(0,y) = y + 1.$$

Да приемем, че за някое x, P(x) е вярно, т.е.

$$\forall y \ F(x,y)$$
 е еднозначно определена.

Трябва да покажем, че и P(x+1) е вярно, т.е. вярно е, че

$$\forall y \ F(x+1,y)$$
 е еднозначно определена).

Да означим

$$Q(y) \stackrel{\text{деф}}{\Longleftrightarrow} F(x+1,y)$$
 е еднозначно определена.

Сега с индукция относно y ще покажем, че $\forall y Q(y)$, което е точно P(x+1). Наистина, при y=0 ще имаме

$$F(x+1,0) = F(x,1) \stackrel{\text{и.х. } P(x)}{=}$$
 еднозначно определена.

Допускайки, че за някое y е вярно Q(y), за y+1 получаваме последователно

$$F(x+1,y+1) = F(x,F(x+1,y)) \stackrel{\text{и.х. } Q(y)}{=} F(x,z)$$
 е еднозначно определена.

Да направим съвсем незначителна промяна в базисното условие в дефиницията на функцията на Акерман, като вместо y+1 пишем y. Получаваме функция, която е почти константа! Да видим:

Задача 1.21. Нека за функцията g е изпълнено:

$$\begin{vmatrix}
g(0,y) &= y \\
g(x+1,0) &= g(x,1) \\
g(x+1,y+1) &= g(x,g(x+1,y))
\end{vmatrix}$$
(1.14)

Докажете, че g има следния явен вид:

$$g(x,y) = \begin{cases} y, & \text{ако } x = 0\\ 1, & \text{иначе.} \end{cases}$$

Решение. Ясно е, че g(0,y) = y. Трябва да покажем, че

$$\forall x_{x>1} \forall y \ g(x,y) = 1.$$

За целта с индукция по $x \ge 1$ да се убедим, че $\forall x P(x)$, където

$$P(x) \stackrel{\text{деф}}{\iff} \forall y \ g(x,y) = 1.$$

База x = 1, т.е. доказваме, че

$$\forall y \ \underline{g(1,y) = 1} .$$

Ще докажем, че $\forall y \ Q(y)$ с индукция относно y. При y=0 от (1.14) получаваме:

$$g(1,0) = g(0,1) = 1.$$

Да допуснем, че за някое y е вярно Q(y). Тогава за Q(y+1) ще имаме, съгласно (1.14):

$$g(1, y + 1) = g(0, g(1, y)) \stackrel{\text{\tiny H.X.}}{=} Q(y) g(0, 1) = 1.$$

С това приключва проверката на $\forall y \ Q(y)$, или все едно — на твърдението P(1). Сега да допуснем, че за някое $x \geq 1$ е изпълнено P(x). Трябва да покажем, че и P(x+1) е вярно, т.е.

$$\forall y \ \underbrace{g(x+1,y)=1}_{R(y)}.$$

Трябва да покажем, че $\forall y \ R(y)$. Действаме отново с индукция относно y.

При y=0 ще имаме

$$g(x+1,0) = g(x,1) \stackrel{\text{\tiny H.X.}}{=} \stackrel{P(x)}{=} 1.$$

Сега да приемем, че R(y) е вярно за някое y. Тогава за y+1 ще имаме, съгласно (1.14):

$$g(x+1,y+1) \ = \ g(x,g(x+1,y)) \ \stackrel{\scriptscriptstyle{\mathrm{H.X.}}}{=} \ g(x,1) \ \stackrel{\scriptscriptstyle{\mathrm{H.X.}}}{=} \ P(x) \ 1.$$

Нека f_k е едноместната функция, която се получава от функцията на Акерман при фиксиран първи аргумент, равен на k, т.е.

$$f_k(y) = F(k,y)$$

за всяко $y \in \mathbb{N}$. Следват няколко задачи за някои основни свойства на тези функции.

Задача 1.22. Докажете, че при всяко $k \ge 0$ функцията f_{k+1} се получава от f_k по следната примитивно рекурсивна схема:

$$\begin{vmatrix}
f_{k+1}(0) = f_k(1) \\
f_{k+1}(y+1) = f_k(f_{k+1}(y)).
\end{vmatrix} (1.15)$$

Докажете още, че всяка от функциите f_k е примитивно рекурсивна.

Доказателство. Това, че f_k удовлетворява горната примитивно рекурсивна схема следва непосредствено от дефиницията (1.13) на функцията на Акерман:

$$f_{k+1}(0) \stackrel{\text{деф}}{=} F(k+1,0) \stackrel{\text{(1.13)}}{=} F(k,1) = f_k(1)$$
 и
$$f_{k+1}(y+1) = F(k+1,y+1) \stackrel{\text{(1.13)}}{=} F(k,F(k+1,y)) = f_k(f_{k+1}(y)).$$

Сега с тривиална индукция по k получаваме, че f_k е примитивно рекурсивна.

Задача 1.23. Докажете, че за всички естествени k и y са изпълнени равенствата:

- 1) $f_{k+1}(y) = f_k^{y+1}(1);$
- 2) $f_{k+1}(1) = f_k(\dots f_1(f_0(2)))\dots$.

Упътване. 1) Отново разсъждаваме с индукция, този път по y. $База \ y = 0$:

$$f_{k+1}(0) = f_k(1) = f_k^{y+1}(1).$$

Сега ако допуснем, че 1) е вярно за някое y, за y+1, от равенствата (1.15) ще имаме:

$$f_{k+1}(y+1) \stackrel{\text{(1.15)}}{=} f_k(f_{k+1}(y)) \stackrel{\text{\tiny H.X.}}{=} f_k(f_k^{y+1}(1)) = f_k^{y+2}(1).$$

Задача 1.24. Намерете явния вид на функциите f_k за k = 0, 1, 2, 3, 4.

Доказателство. По определение за всяко y:

$$f_0(y) = F(0, y) = y + 1,$$

т.е. първата функция е $f_0(y) = y + 1$.

За следващите функции ще използваме, че f_k удовлетворяват схемата (1.15) от $3a\partial a$ ча 1.22:

$$\begin{vmatrix}
f_{k+1}(0) = f_k(1) \\
f_{k+1}(y+1) = f_k(f_{k+1}(y)).
\end{vmatrix}$$

Така за f_1 ще имаме:

$$\begin{vmatrix}
f_1(0) &= f_0(1) &= 2 \\
f_1(y+1) &= f_0(f_1(y)) &= f_1(y) + 1,
\end{vmatrix}$$

и оттук лесно стигаме до извода, че $f_1(y) = y + 2$.

 $3a f_2$ получаваме:

$$\begin{vmatrix}
f_2(0) &= f_1(1) &= 3 \\
f_2(y+1) &= f_1(f_2(y)) &= f_2(y) + 2.
\end{vmatrix}$$

Ясно е, че трябва да търсим f_2 във вида $f_2(y) = ay + b$. Това равенство е в сила за всяко y. Заместваме с възможно най-малките стойности y = 0 и y = 1 и получаваме следната система за a и b:

$$\begin{vmatrix}
f_1(0) &= f_2(0) &= a.0 + b &= 3 \\
f_1(y+1) &= f_2(1) &= a.1 + b &= a+3 &= 5.
\end{vmatrix}$$

Оттук a = 2, b = 3, и значи $f_2(y) = 2y + 3$..

Условията за f_3 ca:

$$\begin{vmatrix}
f_3(0) &= f_2(1) &= 5 \\
f_3(y+1) &= f_2(f_3(y)) &= 2.f_3(y) + 3.
\end{vmatrix}$$

Тук вече търсим f_3 във вида $f_3(y)=2^{ay+b}+c$. Както по-горе, заместваме в горните равенства с различни стойности на y (достатъчно е да вземем например y=0,1 и 2), за да получим система за a,b и c. От нея получаваме, че $f_3(y)=2^{y+3}-3$.

Да се опитаме да пресметнем и f_4 . За начало имаме:

$$\begin{vmatrix}
f_4(0) &= f_3(1) &= 13 \\
f_4(y+1) &= f_3(f_4(y)) &= 2^{f_4(y)+3} - 3.
\end{vmatrix}$$

Виждаме, че $f_4(y+1) \approx 2^{f_4(y)}$ и значи f_4 трябва да е от вида $\underbrace{2^{2^{\cdot^{\cdot^2}}}}_{y \text{ пъти}}$.

По-точният отговор е $f_4(y) = \underbrace{2^{2^{\cdot^{\cdot^2}}}}_{y+3\text{ пъти}} - 3$. Довършете подробностите.

Задача 1.25. (Задача за EK) Докажете, че функцията на Акерман не е примитивно рекурсивна.

Упътване. Опитайте се да покажете, че за всяка примитивно рекурсивна функция g съществува k, такова че

$$g(x_1, \dots, x_n) < F(k, \max(x_1, \dots, x_n))$$

за всички естествени x_1, \ldots, x_n .

За целта преди това покажете следните свойства на F:

- (1) F(x+1,y) > y+1 за всяко x и y;
- (2) F е монотонно растяща по двата си аргумента;
- $(3) \ F(x+1,y) \ge F(x,y+1)$ за всяко x и y.