PART 2: OTA Design

For the input pair use short L and bias it in MI or WI, e.g., L = 0.2um and gm/ID = 15. This maximizes the GBW (good efficiency) and minimizes the input capacitive loading (avoid reducing the DC LG). You will have to tune your gm/ID to achieve the CL bandwidth spec.

For the current source transistors use relatively long L and bias them in SI, e.g., L = 1um and gm/ID = 10. These transistors contribute significant offset and noise. A large gm will not help the gain but will increase the noise

For the cascode transistors use moderate L and bias them in MI or WI, e.g., L = 0.5um and gm/ID = 15. These transistors do not contribute significant offset and noise, so they don't need to be large. A large gm helps the gain and doesn't increase the noise.

-For the transistor under VBN

 $-VCASCN \approx VGSN + V^* = 688.3m + .1333 = .689$

-VCASCP ≈ VDD - |VGSP| - V*=1.8-.6744-.1333 =1.157

PART 3: Open-Loop OTA Simulation (Behavioral CMFB)

1)

• VOCM = vdd-|vds1|-|vds2| = 513mv

And then to increase the gain we will raise the width of the cascade to meet the specs the new gain will be

GBW	23.92M		
Fu	13.69M		
BW	11.07K		
Ao_dB	66.67		

Gain = $-gm0 * (gm1*ro^2)/4 = 2942$, in db = 69.3 dB

BW = 1/Rout *C = 13 k

UGF=GBW = gm0/Cl = 25.8MHz

	simulation	Hand
		analysis
GBW	23.92M	25.8M
Fu	13.69M	25.8M
BW	11.07K	13k
Ao_dB	66.67	69.3
A0	2450	2942
Ao_dB A0	66.67 2450	69.3

PART 4: Open-Loop OTA Simulation (Actual CMFB)

1)

-CM output = 1.8+vds1 + vds2 = .628

GBW	23.92M		
Fu	13.69M		
BW	11.07K		
PM	-146.1		
Ao_dB	66.67		

PART 5: Closed Loop Simulation (AC and STB Analysis)

- -CM level at the OTA output is 810 mV; 1.8- vds1- vds2 = 810 m
- -CM level at the OTA input is 1.8-vsg vds =607 mV

1

1

1

LG = B*AoL=1/3 AOL

B = Z2/(Z1+Z2)

PART 6: Closed Loop Simulation (Transient Analysis)

1)

There is a small ringing in the beginning and the loops are stable with adequate PM .

There is a small ringing in the beginning and the loops are stable with adequate PM.

2)

input peak to peak swing = 625m-475m = 150m vOutput peak to peak swing = (960m-660m) = 300mvClosed loop gain = (960m-660m)/(625m-475m) = 2.

Expression	Value	Expression	Value
1 gainBwProd(leaf	4.800E6	phaseMargin(le	180.0
_ Expression	Value	Expression	Value
1 phaseMargin(le	180.0	gainBwProd(leaf	6.450E6