Challenges for Water Resources & Treatment

- YuJung Chang, Ph.D.
- AECOM, Bellevue, WA

Challenges to the World's Water Problem

Think BIG

Think Outside the Box

Hydrologic Cycle

World's Water Distribution

- Total Water on Earth
 - 3.7 x 10²⁰ Gal
 - 1,135 Trillion Acre-ft
- Saltwater: 97.5%
- Fresh Water: 2.5%
- Fresh Water (28.4 Trillion Acre-ft)
 - 0.3% Surface Water
 - 30% Groundwater
 - 70% Ice/Snow

Fast Facts: Water Consumption Trends

- "7 billion people in 60 countries will face water scarcity by 2050."
 - "Climate change will account for 20% of global water scarcity."
 - U.N. World Water Development Report
 - "By 2028 humans will use 70% of available freshwater"
 - Global Water Policy Project, Amherst MA
- "35% of world population short of water in 2028"
 - Johns Hopkins University

Fast Facts: General Freshwater Usage

Water Challenges

- Quantity
 - Reduction in freshwater resources
 - Increase in demand (population, agriculture, industrial)
- Water Rights
 - Who gets the water?
 - How much water do you get?
 - When do you get the water?
- Quality
 - Chemicals (Inorganics, organics)
 - Pathogens
 - Salts

Reduced Snow/Ice Coverage (storage)

South Cascades Glacier, North Cascades National Park

Photos courtesy of the USGS.
Source: http://nsidc.org/sotc/glacier_balance.html

Groundwater Depletion

- Groundwater has been heavily taped for agriculture usage
- Groundwater recharge is not feasible in most places in the world since surface water is limited

Water Challenges

- Quantity
 - Reduction in freshwater resources
 - Increase in demand (population, agriculture, industrial)
- Distribution
 - Who gets the water?
 - How much water you get?
 - When do you get the water?
- Quality
 - Chemicals (Inorganics, organics)
 - Pathogens
 - Salts

Global Perspective: Population

Global Population

1930: 2 Billion

2003: 6.3 Billion

2008: 6.69 Billion

2010: 6.81 Billion

2018: 7.6 Billion

2050: 10 Billion people projected

Countries with the highest population

China: 1.336 Billion

India: 1.179 Billion

USA: 309 Million

Indonesia: 232 Million

Brazil: 193 Million

Pakistan: 169 Million

Water Challenges

- Quantity
 - Reduction in freshwater resources
 - Increase in demand (population, agriculture, industrial)
- Distribution
 - Who gets the water?
 - How much water you get?
 - When do you get the water?
- Quality
 - Chemicals (Inorganics, organics)
 - Pathogens
 - Salts

There is Still Enough Water In the World. The Challenges are...

- Get the water to where it is needed
- Provide just enough water that's needed
- Provide water when it is needed

Not Enough Water

Too Much Water

Country with Most Freshwater Withdraw

	Total Freshwater Withdrawal	Per Capita Withdrawal	2005 Population	Domestic Use	Industrial Use	Agricultural Use
Country	(km³/yr)	(m³/p/yr)	(millions)	(%)	(%)	(%)
India	645.84	585	1,103.37	8	5	86
China	549.76	415	1,323.35	7	26	68
USA	477	1,600	298.21	13	46	41
Pakistan	169.39	1,072	157.94	2	2	96
Japan	88.43	690	128.09	20	18	62
Indonesia	82.78	372	222.78	8	1	91
Thailand	82.75	1,288	64.23	2	2	95
Bangladesh	79.4	560	141.82	3	1	96
Mexico	78.22	731	107.03	17	5	77
Russian Federation	76.68	535	143.2	19	63	18
Iran	72.88	1,048	69.52	7	2	91
Vietnam	71.39	847	84.24	8	24	68
Egypt	68.3	923	74.03	8	6	86
Brazil	59.3	318	186.41	20	18	62
Uzbekistan	58.34	2,194	26.59	5	2	93
Canada	44.72	1,386	32.27	20	69	12

Water Challenges

- Quantity
 - Reduction in freshwater resources
 - Increase in demand (population, agriculture, industrial)
- Distribution
 - Who gets the water?
 - How much water you get?
 - When do you get the water?

Quality

- Chemicals (Inorganics, organics)
- Pathogens
- Salts

Water Quality Challenges

- Most of the water impurities and life-threatening pathogens can be easily removed with simple treatment processes
- Simple treatment process is still an unaffordable luxury in many areas in the world

Percentage of Population with Access to Safe Drinking Water (in 185 Countries)

- 100%	34
- > 95%	26
- > 90%	25
- > 80 %	31
- > 70%	22
- > 50%	30
- < 50%	12

New Water Sources

Iceberg

Ocean Water

Grey Water

Brackish Water

Reuse Water

Rain Water

Fast Facts: Water Consumption Trends

- During the 20th Century, water consumption grew at double the rate of population growth.
- Average Daily Usage
 - USA = 153 gpcd
 - England = 88 gpcd
 - Asia = 23 gpcd
 - Africa = 12 gpcd
- Minimum usage for human life = 13 gal/day/cap

Typical Water Consumption for Daily Activities in US

Activity	Gallon		
Drinking (each time)	0.1		
Cooking a meal	3		
Washing face or hands	1		
Taking a shower with standard/low flow shower head	50 / 25		
Taking a bath	40		
Brushing teeth with/without water running	2 / 0.25		
Flushing the toilet with standard/low flow toilet	5 / 1.5		
Running a dishwasher	15		
Doing a load of laundry	30		
Watering lawn	300		
Washing car	50		

Type of Water Can be Used for Daily Activity

Drinking	Cooking	Hand	Teeth	Dish	Shower	Laundry	Car	Lawn	Toilet
1	9	4	1	15	50	30	50	300	25

Drinking Water

Grey Water / Reclaimed Water

Unit: Gallon

Rain / Storm Water

- Who owns the rain?
 - Some states/countries not allowed
 - WA allows 5,000 gal rainwater harvesting
- Primarily used for personal use
- With proper treatment, rainwater could be used for potable water
- Regular maintenance required

Greywater System

- Mostly for small-scale applications
- Require different plumbing system
- Disinfection required for microbial control
- Local building code required
- Regular maintenance required
- Potential esthetic concerns

Water Reuse /Reclaim

- Reclaim water require substantial treatment
 - Different end users require different finished water quality
- Direct potable water reuse is acceptable in some countries
- Indirect potable reuse (groundwater recharge or in-stream discharge)
 and seawater intrusion barriers are the most common applications in US

Deep recharge well creates groundwater ridge.

Example of Water Reuse at West Basin, CA

Challenges in Water Reuse

- Repulsion to the concept of "toilet-to-tap"
- The presence of Endocrine Disruptors (EDC) or Pharmaceutical & Personal Care Products (PPCP)

Require dedicated pipelines

Desalination

- Brackish surface water/groundwater is limited,
 but treatment technology is well developed
 (reverse osmosis)
- Ocean water desalination taps into the rest of 97.5% of water on earth
- Seawater desalination requires enormous amount of energy

Energy Required for Treatment Processes

- Typical Surface Water: 0.1 0.2 kWh/kgal
- Brackish Water RO: 2.7 7 kWh/kgal
- Municipal WW Reclaim: 3.3 4 kWh/kgal
- Seawater RO: 12 18 kWh/kgal
- Seawater Thermal: 57 68 kWh/kgal

Seawater Thermal Desalination

Seawater RO Desalination

Seawater Desalination Challenge

Thermal Dynamic Barrier – Thermal Process

- It takes 3 kWh of energy to boil 1 gal of water (20 C)
- It takes 2630 kWh to evaporate 1,000 gal of 100 C water
- Effective heat recovery can substantially reduce energy

Thermal Dynamic Barrier – Reverse Osmosis

- Osmotic Pressure (35,000 mg/L TDS): 27.8 bar (403 psi)
- It takes 2.92 kWh (theoretical minimum) to produce1,000 gal of water
- Much higher pressure (800 1180 psi) is needed

How Much is Energy Cost?

- Energy cost: \$0.075/kWh
- Seawater RO energy cost: \$1.125/kgal
- Energy Comprises 30 44 % of the SWRO Cost
- Treatment cost is ~ 20 40% of water rates

Country/City	Water Rate \$/1000 gal			
Germany	\$6.74			
Italy	\$2.73			
US/Australia	\$2.05			
South Africa	\$1.62			
Canada	\$1.42			
Seattle	\$5.16			

Emerging Technology

- Forward Osmosis
 - Use Osmotic Agents in the Draw Solution
 - No Feed Pressure Required

AQUAFORTUS Forward Osmosis for Zero Liquid Discharge

AQUAFORTUS Forward Osmosis ZLD/纽西兰正渗透零排放工艺

AQUAFORTUS Forward Osmosis ZLD/正渗透零排放

Step 1. Add RO Brine to FO solution

Solid Precipitates Immediately

Transfer Water-Enriched FO Solution to Another Vial

Step 2. Add Regenerant to remove water from FO solution

Step 3. Add Regenerant to remove water from FO solution & Recover FO solution

Experiment with Milk to form Milk Powder

Advantages (ADS) Demonstration for Selenium Removal

Desalination with Renewable Energy Source

- Solar Energy
- Wind Power

Wind Power & Desalination

 Wind power is used to provide part of desalination energy in Australia (Denham, Shark Bay), United Arab Emirates (Sir Bani Yas Island), Spain and Scotland

Scottish North Sea

Taping Tidal Energy: The Wave of the Future

Sunday, October 7, 2007 - Page updated at 02:04 AM

Two types of wave-power generators The AquaBuOY A wide variety of wave-power devices are being explored, with a number of companies Wave park design experimenting with buoys. The power-generation process within the buoys varies by The size of wave parks can developer, but all work on the same basic principle: As the buoy floats up and down, internal mechanisms convert the vertical kinetic energy into electricity. The buoys be scaled to produce more would be arranged in clusters, called wave parks, one to three miles offshore. or less electricity. Finivera Renewables' buoy technology, shown here, uses pressured seawater to power a turbine, which then drives an electrical generator **Water** enters through both ends of AquaBuOY's verticle cavity. Strokepumps force pressurized Pressurized seawater up to turn a built-in [] The turbing drives an electrical generator Generated electricity travels along an underwater cable to shore. The Pelamis This snake like power converter Cable generates electricity with three hydraulic pumps activated by hinged Aerial A hydraulic pump near each pontoons that move with passing view joint forces high-pressure oil waves. The Pelamis is loosely through the motor, which Junction Weights anchored so that most of the wave drives a generator that motion is absorbed by the device produces electricity. and converted to electricity. and weight

The rush is on to tap the ocean for power

Locations for nearly 20 proposed tidal or wave-energy powerproducing projects in the Northwest:

60

MILES

101

Regulatory Commission

MARK NOWLIN / THE SEATTLE TIMES

Other Major Challenge for Seawater Desalination...

 Water is not always at the location where people need it. A long, expensive conveyance pipeline could be needed

Environmental Impact (permitting)

Think Outside the Box

- Precipitation control (weather modification)
 - Cloud seeding
 - Rain delay
- Geothermal energy
- Get water out of the salt (instead of getting salt out of water)
- Greywater/Blackwater separation
 - Indefinite close-loop reuse
- Agricultural water conservation
- Industrial water conservation & reuse

Summary

- Water challenges are real and serious
- Water crises will escalate in the near future as global warming, population, and water consumption habits continue to grow
- Before weather modifying technologies become feasible, fundamental breakthrough in desalination technology will be the key to solving world-wide water shortage problem
- "Blue Gold" is the commodity for the 21st Century