Modelo Depredador-Presa

La solución analítica para el modelo depredador-presa se puede abordar mediante un sistema de ecuacione

$$dN/dt = r1 * N - C1 * N * P$$

 $dP/dt = -r2 * P + C2 * N * P$

1. Puntos de Equilibrio

Para encontrar los puntos de equilibrio, establecemos dN/dt = 0 y dP/dt = 0:

Desde dN/dt = 0: r1 * N - C1 * N * P = 0 N(r1 - C1 * P) = 0 $N = 0 \circ P = r1 / C1$ Desde dP/dt = 0: -r2 * P + C2 * N * P = 0P(-r2 + C2 * N) = 0

P = 0 o N = r2 / C2

Resolviendo este sistema de ecuaciones, encontramos los puntos de equilibrio:

- 1. Extinción de ambas especies: (N = 0, P = 0)
- 2. Extinción de la presa: (N = 0, P = cualquier valor)
- 3. Extinción del depredador: (N = cualquier valor, P = 0)
- 4. Coexistencia: (N = r2 / C2, P = r1 / C1)

2. Análisis de Estabilidad

Para analizar la estabilidad de los puntos de equilibrio, se utilizan métodos de análisis de estabilidad como e

$$\mathsf{J} = [[\partial \mathsf{f}/\partial \mathsf{N}, \, \partial \mathsf{f}/\partial \mathsf{P}], \, [\partial \mathsf{g}/\partial \mathsf{N}, \, \partial \mathsf{g}/\partial \mathsf{P}]]$$

Evaluamos el Jacobiano en los puntos de equilibrio y analizamos los eigenvalores:

Si todos los eigenvalores tienen partes reales negativas, el punto de equilibrio es estable. Si alguno tiene parte real positiva, el punto es inestable.

3. Soluciones Especiales

En algunos casos, es posible encontrar soluciones explícitas bajo ciertas condiciones. Sin embargo, en muc

4. Conclusiones

El análisis de estabilidad proporciona información sobre cómo las poblaciones de depredadores y presas se