- Introduction
- Basics (sets, mappings, and numbers)
- 3 Proof techniques
- Sequences and series
- Functions
  - Continuity
  - Applications for continuous functions
- Differentiation in 1d
- Integration in 1d
- 8 Summary outlook and review

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

### **Functions**

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d



### Analysis 1

S.-J. Kimmerle

# **Functions:** Operations for creating new functions

Let  $f, g : A \to \mathbb{R}$  functions with  $A \subseteq \mathbb{R}$ .

Let  $h: B \to \mathbb{R}$  functions with  $B \subseteq \mathbb{R}$ .

We obtain new functions by



$$f \cdot g : A \to \mathbb{R}, \ x \to f(x) \cdot g(x)$$

$$\lambda g: A \to \mathbb{R}, \ x \to \lambda g(x) \quad \text{ for } \lambda \in \mathbb{R}$$

$$\frac{f}{g}: \tilde{A} \to \mathbb{R}, \ X \to \frac{f(X)}{g(X)} \quad \text{for } \tilde{A} := \{X \in A \mid g(X) \neq 0\}$$

A

$$j := h \circ f : A \to \mathbb{R}, \ x \to h(f(x)) \quad \text{for } f(A) \subseteq B$$

The latter is the **concatenation of functions**.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

### **Functions**

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review



B

h (B)

# **Continuity**



Continuity is a central concept in mathematics.  $f: A \rightarrow \mathbb{R}$ We combine the concepts of limits and functions.







Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets,

numbers)

mappings, and

### Definition (Limit of a function)

Let  $f: A \to \mathbb{R}$  a function,  $A \subset \mathbb{R}$ .  $rac{f: \mathbb{R} \ge A \to \mathbb{R}}$ 

Let  $a \in \mathbb{R}$  the limit of at least one sequence  $\{a_n\}_{n \geq n_0}$  of real numbers in A.

If for any such sequence  $\{a_n\}_{n\geq n_0}$  with  $\lim_{n\to\infty}a_n=a$ , we have

$$\lim_{n\to\infty} f(a_n) = b \text{ with } b\in\mathbb{R},$$

then we define b as the **limit of the function** f at the point a and

we write

$$\lim_{x\to a} f(x) := b. \stackrel{?}{=} f(a)$$

night not correspond to the definition of f

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

### **Functions**

#### Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d



### Moreover, we introduce analogously:

$$\lim_{x\to\infty} f(x) = \lim_{x\downarrow a} f(x) = b \quad \text{for sequences from the right only}$$

$$\lim_{x \to a^-} f(x) = \lim_{x \to a^-} f(x) = b$$
 for sequences from the left only

$$\lim_{x\to\infty} f(x) = b$$
 for sequences unbounded from above

 $\lim_{x\to -\infty} f(x) = b$  for sequences unbounded from below

### Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

### **Functions**

#### Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d



### S.-J. Kimmerle

### Definition (Continuous function)

Let  $A \subseteq \mathbb{R}$ ,  $a \in A$  and  $f : A \to \mathbb{R}$  a function.

lf

$$\lim_{x \to a} f(x) = f(a) \tag{1}$$

then f is called **continuous in** a.

If *f* is continuous in any point of *A*, then *f* is called **continuous on** *A*.

However, in order to verify the continuity, it is not always necessary to check (1) for every *a* in *A*.

We proof that all polynomial functions are continuous on their domain of definitions. The exponential function is continuous on R (w/o proof)

### Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

### **Functions**

#### Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d



# Continuity by operations on functions

# Theorem (Continuity of composed functions)

Let  $f, g : \mathbb{R} \supseteq A \to \mathbb{R}$  a function, being continuous in  $a \in A$ , let  $h : \mathbb{R} \supseteq A \to \mathbb{R}$  a function, being continuous in  $f(a) \in B$ , then

$$f \pm g : A \rightarrow \mathbb{R}, \ x \rightarrow f(x) \pm g(x)$$

$$f \cdot g : A \to \mathbb{R}, \ x \to f(x) \cdot g(x)$$

$$\lambda g: A \to \mathbb{R}, \ x \to \lambda g(x) \quad \text{for } \lambda \in \mathbb{R}$$

$$\frac{f}{g}: \tilde{A} \to \mathbb{R}, \ X \to \frac{f(X)}{g(X)} \quad \text{for } \tilde{A} := \{X \in A \mid g(X) \neq 0\}$$

$$h \circ f : A \to \mathbb{R}, \ X \to h(f(X)) \quad \text{for } f(A) \subseteq B$$

are continuous in a.

### Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

### **Functions**

#### Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d



# Continuity of concatenated functions

### Proof.

Let  $\{a_n\}_{n\geq n_0}$  a real sequence in A with  $\lim_{n\to\infty} a_n = a$ . Since f is continuous in a, we have

$$\lim_{n\to\infty} f(a_n) = f(a).$$

Due to the assumption  $\{b_n\}_{n\geq n_0}^n$  with  $b_n=f(a_n)$  is a real sequence in B.

Since h is continuous in b = f(a), we have

$$\lim_{n\to\infty} h(f(a_n)) = \lim_{n\to\infty} h(b_n) = h(b) = h(f(a)).$$

Thus there holds

$$\lim_{n\to\infty}(h\circ f)(a_n)=\lim_{n\to\infty}h(f(a_n))=h(f(a)).\quad \Box$$

### Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

### **Functions**

#### Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d



# Alternative definition of continuity

Another, equivalent definition of continuity that does not rely on the concept of limits, can be found in many books (for that reason).

# Theorem ( $\varepsilon$ - $\delta$ formulation of continuity)

Let  $f : \mathbb{R} \supseteq A \to \mathbb{R}$  be a function. f is continuous in  $x_0 \in A$ , iff for any  $\varepsilon > 0$  there exists a  $\delta > 0$ , s.t.

 $|f(x)-f(x_0)|<\varepsilon$  for all  $x\in A$  with  $|x-x_0|<\delta(\varepsilon)$ .



Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

**Functions** 

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d



### Analysis 1

S.-J. Kimmerle

### Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

**Functions** 

### Continuity

Applications for continuous functions

Differentiation in

Integration in 1d

Summary - outlook and review



# **Applications of continuity**

In this subsection we proof important results that hold for continuous functions.

# Theorem (Intermediate value theorem (1st version))

Let  $f : [a, b] \to \mathbb{R}$  be a continuous function with f(a) < 0 and f(b) > 0 or with f(a) > 0 and f(b) < 0, then there exists  $a \xi \in (a, b)$  s.t.

$$\tilde{\alpha} \times = \tilde{b} \tilde{e}^{\times}$$
 $\langle = \rangle \tilde{\alpha} \times - \tilde{b} \tilde{e}^{\times} = 0$ 
 $\langle = \rangle f(\times) = 0$ 

$$f(\xi)=0.$$



# Intermediate value theorem

Analysis 1

S.-J. Kimmerle

# If we apply the bad theorem to $\widehat{f}(x) - C + \varepsilon$ :

### Corollary (Intermediate value theorem)

Let  $f : [a, b] \to \mathbb{R}$  be a continuous function and  $c \in \mathbb{R}$ 

with  $f(a) \le c \le f(b)$  or

with  $f(a) \ge c \ge f(b)$ ,

then there exists a  $\xi \in [a, b]$  s.t.

$$f(\xi) = c$$
.

# Corollary (Image of an interval)

Let  $I \subseteq \mathbb{R}$  be an interval and  $f: I \to \mathbb{R}$  a continuous function,

then f(I) is again an interval.



Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

**Functions** 

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d



S.-J. Kimmerle

# Definition (Bounded function)

Let  $f: A \to \mathbb{R}$  be a function and f(A) is bounded (from above and below)

then f is called a **bounded function**.

# Definition (Compact interval)

Let  $a, b \in \mathbb{R}$ , then a closed and bounded interval [a, b] is called a **compact interval**.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

**Functions** 

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d



# Theorem (Continuous functions on compact intervals (Weierstrass))

Any continuous function  $f : [a, b] \to \mathbb{R}$  (with  $a \le b$ )

is bounded and

takes its maximum & minimum, i.e. there exists  $\overline{x}$  &  $\underline{x}$  s.t.

$$f(\overline{x}) = \sup_{x \in [a,b]} f(x),$$

 $f(\underline{x}) = \inf_{x \in [a,b]} f(x).$ 

Note this theorem does not hold for open or semi-open (semi-closed) intervals.

This result may be generalized to higher dimensions.

It is of key importance in optimization.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

**Functions** 

Continuity

Applications for continuous functions

Differentiation in 1d

Integration in 1d

