线性代数 II (H) 2022-2023 春夏期末

图灵回忆卷

2023年6月28日

-、(15 分) 已知 $T \in \mathcal{L}(\mathbb{C}^3)$, 其对应矩阵为

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 2023 & 0 & 0 \\ 6 & 28 & 0 \end{pmatrix}$$

- 1. 求 A 的 Jordan 标准形 (不必求 Jordan 基);
- **2.** 证明不存在复矩阵 **B** 使得 $B^2 = A$.

二、(17 分) 已知直线
$$L_1 = \begin{cases} x+y+z-1=0 \\ x-2y+2=0 \end{cases}$$
 , $L_2 = \begin{cases} x=2t \\ y=t+a \\ z=bt+1 \end{cases}$, 试确定 a , 满足的条件使得

 L_1 , L_2 是:

- **1.** 平行直线; **2.** 异面直线.
- 三、(18 分) 定义在 $V = \mathbb{R}^3$ 上的运算

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle_V = x_1 y_1 + x_2 y_2 + (x_2 + x_3)(y_2 + y_3)$$

其中 $\mathbf{x} = (x_1, x_2, x_3), \ \mathbf{y} = (y_1, y_2, y_3).$

- 1. 验证 $\langle \cdot, \cdot \rangle_V$ 是 \mathbb{R}^3 上的一个内积;
- **2.** 求 \mathbb{R}^3 在 $\langle \cdot, \cdot \rangle_V$ 下的一组标准正交基;
- 3. 求 $\beta \in V$ 使得 $\forall x \in V : x_1 + 2x_2 = \langle x, \beta \rangle_V$.
- 四、(15 分) $T \in \mathcal{L}(V)$ 在一组基 $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ 下的矩阵为

$$T(oldsymbol{arepsilon}) = (oldsymbol{arepsilon}) egin{pmatrix} 1 & 0 & 0 \ 0 & 2 & 1 \ 0 & 0 & 2 \end{pmatrix}$$

求 V 所有的 T-不变子空间.

- 五、(20分)试给出下列命题的真伪. 若命题为真,请给出简要证明;若命题为假,请举出反例.
 - **1.** $T \in \mathcal{L}(V)$. 若子空间 $W \in V$ 在 T 下不变,则其补空间 W' 在 T 下也不变;
- **2.** 定义 $T \in \mathcal{L}(V, W) : Tv = \langle v, \alpha \rangle \beta, \ \beta \in W \ \forall v \in V \ 成立, 则 <math>T^*w = \langle w, \beta \rangle \alpha, \ \alpha \in V \ \forall w \in W$ 成立;

3. $T \in \mathcal{L}(V)$ 是非幂零算子,满足 $\operatorname{null} T^{n-1} \neq \operatorname{null} T^{n-2}$. 则其极小多项式为

$$m(\lambda) = \lambda^{n-1}(\lambda - a)$$
 $0 \neq a \in \mathbb{R}$

- 4. $\mathbf{A} \in \mathbb{R}^{n \times n}$. $\mathbf{S}_1 = \mathbf{A}^{\mathrm{T}} + \mathbf{A}$, $\mathbf{S}_2 = \mathbf{A}^{\mathrm{T}} \mathbf{A}$. 则 \mathbf{A} 是正规矩阵当且仅当 $\mathbf{S}_1 \mathbf{S}_2 = \mathbf{S}_2 \mathbf{S}_1$.
- **5.** $\mathbf{A} \in \mathbb{C}^{n \times n}$ 是正规矩阵,则 \mathbf{A} 的实部矩阵和虚部矩阵是对称矩阵.
- 六、(15 分) $T \in \mathcal{L}(V)$. 有极分解 $T = S\sqrt{G}$, 其中 S 是等距同构, $G = T^*T$. 证明以下条件等价:
 - **1.** *T* 是正规算子;
 - **2.** GS = SG;
 - **3.** G 的所有特征空间 $E(\lambda, G)$ 都是 S-不变的.