MA-2115: Matemáticas 4

Semana 3

3.1 Criterios de convergencia

1. Criterio de comparación

2. Criterio de comparación usando límite

3. Criterio de la integral

4. Criterio de la serie \boldsymbol{p}

5. Ejercicio 3.1

Determine la convergencia de $\sum_{n=1}^{\infty} e^{-n}$.

6. Ejercicio 3.2

Determine la convergencia de $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{3n^3+1}}$.

7. Ejercicio 3.3

Determine la convergencia de $\sum_{n=1}^{\infty} \frac{1 + \sin(n)}{\sqrt[p]{n}}$.

8. Criterio del cociente

9. Criterio de la raíz

10. Ejercicio 3.3

Determine la convergencia de $\sum_{n=1}^{\infty} \frac{(n+1)!}{n^n}$.

11. Ejercicio 3.4

Determine los valores de a>0 para los cuales la serie $\sum_{n=1}^{\infty}\left(a+\frac{1}{n}\right)^n$ converge.

3.2 Series alternantes

1. Definición

2. Criterio de series alternantes (criterio de Leibnitz)

3. Ejercicio 3.5

Determine la convergencia de $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n \ln^2(n)}$.

3.3 Convergencia absoluta

1. Definición

2. Criterio de series alternantes (criterio de Leibnitz)

3. Ejercicio 3.5

Determine la convergencia absoluta de $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.

4. Ejercicio 3.6

Determine la convergencia absoluta de $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n \ln^2(n)}$.