Ćwiczenia z rachunku prawdopodobieństwa

W. Czernous tinyurl.com/cwiczeniazrachunku tinyurl.com/kolozrachunku1

12 stycznia 2023

Ćwiczenie 1.

Podaj przykład trzech zdarzeń, które są parami niezależne, ale nie są niezależne.

Ćwiczenie 2.

Podaj przykład dwu zmiennych losowych, które są nieskorelowane

$$(EXY = EXEY),$$

ale nie są niezależne.

Wskazówka: to nie mogą być indykatory zbiorów.

Def. niezależności zbiorów zdarzeń.

Niech $\{\Xi_i : i \in I\}$ będzie rodziną zbiorów zdarzeń. Ξ_i są niezależne wtedy i tylko wtedy, gdy dla każdego zbioru skończonego $J : J \subset I$, dla wszystkich $A_j \in \Xi_j$, $j \in J$ zachodzi

$$P\bigg(\bigcap_{j\in J} A_j\bigg) = \prod_{j\in J} P(A_j).$$

Twierdzenie o niezależnych π -układach.

Niech $\{\Xi_i : i \in I\}$ będzie rodziną π -układów (π -układ to rodzina zbiorów zamknięta na przekroje). Wtedy warunkiem dostatecznym (i koniecznym) niezależności σ -ciał $\{\sigma(\Xi_i) : i \in I\}$ jest niezależność $\{\Xi_i : i \in I\}$.

Ćwiczenie 3.

Czy Ξ_i muszą koniecznie być π -układami?

Wskazówka: minimalny kontrprzykład składa się z 3 zbiorów, tworzących dwie rodziny.

Lemat Leviego o zbieżności monotonicznej.

Dla nieujemnych zmiennych losowych ξ , ξ_1 , ξ_2 , ..., zachodzi:

$$\xi_n \uparrow \xi \implies E\xi_n \uparrow E\xi.$$

Ćwiczenie 4.

Niech $\xi_1, \, \xi_2, \, \dots$ będą niezależnymi zmiennymi losowymi o wartościach w [0,1].

Pokaż, że $E \prod_n \xi_n = \prod_n E \xi_n$.

W szczególności, mamy stąd $P \cap_n A_n = \prod_n PA_n$ dla dowolnych zdarzeń niezależnych A_1, A_2, \ldots

Nierówność Czebyszewa. Dla zmiennej losowej $\xi \geq 0$, takiej że $0 < E\xi < \infty$, mamy:

$$P\{\xi > rE\xi\} \le \frac{1}{r}, \qquad r > 0.$$

(Np. nie więcej niż połowa pracujących może zarabiać 2 średnie pensje i więcej.)

Definicja zbieżności według prawdopodobieństwa.

Dla zmiennych losowych nieujemnych $\xi_1, \ \xi_2, \dots$, mówimy, że ξ_n zbiega do zera według prawdopodobieństwa (co zapisujemy $\xi_n \stackrel{P}{\to} 0$), jeśli

$$\lim_{n \to \infty} P\left\{\xi_n > \varepsilon\right\} = 0, \qquad \varepsilon > 0.$$

Lemat o zbieżności według prawdopodobieństwa.

Dla zmiennych losowych nieujemnych $\xi_1, \, \xi_2, \, \dots, \,$ następujące warunki są równoważne:

- (i) $\xi_n \stackrel{P}{\to} 0$,
- (ii) $E\{\xi_n \wedge 1\} \to 0$,
- (iii) każdy podciąg $N' \subset \mathbb{N}$ zawiera podciąg $N'' \subset N'$, dla którego $\xi_n \to 0$ p.n. przy $n \to \infty$, $n \in N''$.

Ćwiczenie 5. (i) \implies (ii).

Ćwiczenie 6. (ii) \implies (i).

Wskazówka: Jeśli $\varepsilon < 1$, to $x > \varepsilon$ implikuje $x \wedge 1 > \varepsilon$. Następnie skorzystać z nierówności Czebyszewa.

Zadanie domowe 1.

Wykazać (ii) \iff (iii).

Ćwiczenie 7.

Korzystając z lematu (o zbieżności według prawdopodobieństwa), wykazać, że zbieżność p.n. pociąga za sobą zbieżność według prawdopodobieństwa.

Ćwiczenie 8.

Niech $\Omega=[0,1]$, zaś P-miara Lebesgue'a. Weźmy ciąg ξ_n zmiennych losowych, znany pod nazwą "maszyna do pisania":

$$1_{[0,\frac{1}{2}]},1_{[\frac{1}{2},1]},1_{[0,\frac{1}{4}]},1_{[\frac{1}{4},\frac{2}{4}]},1_{[\frac{2}{4},\frac{3}{4}]},1_{[\frac{3}{4},1]},1_{[0,\frac{1}{8}]},1_{[\frac{1}{8},\frac{2}{8}]},\ldots$$

Ile wynoszą, dla ustalonego $\varepsilon \in (0,1)$, wartości a_1, a_2, \ldots, a_{10} , wyrazów ciągu

$$a_n = P(\xi_n > \varepsilon)?$$

A ile wynoszą dla ustalonego $\varepsilon \geq 1$? Pokazać, że ξ_n jest zbieżny do zera według prawdopodobieństwa.

Definicja rozkładu jednostajnego.

Niech ξ będzie taką zmienną losową, że

$$P\{c < \xi < d\} = \frac{d-c}{b-a} \quad \text{dla } a \le c < d \le b.$$

Mówimy wtedy, że ξ ma rozkład jednostajny na [a, b], co zapisujemy $\xi \sim U(a, b)$.

Ćwiczenie 9. Oblicz EX^3 , gdy $X \sim U(0,1)$.

Twierdzenie o mierze produktowej i całce iterowanej (Lebesgue, Fubini, Tonelli).

Niech zmienne losowe $\xi,\,\eta$ będą niezależne, o rozkładach $\mu,\,\nu,$ odpowiednio. Dla dowolnej funkcji mierzalnej

$$f: \mathbb{R}^2 \to \mathbb{R}$$
, o własności $E|f(\xi, \eta)| < \infty$,

zachodzi wtedy

$$Ef(\xi, \eta) = \int \mu(ds) \int f(s, t) \nu(dt)$$
$$= \int \nu(dt) \int f(s, t) \mu(ds).$$

Ćwiczenie 10. Oblicz $E(X+Y)^n$ dla niezależnych $X \sim U(0,1), Y \sim U(0,1).$

Ćwiczenie 11. Niech X_1, X_2, \ldots będą niezależne o jednakowym rozkładzie U(0,1). Oblicz

$$\lim_{n} \frac{X_1^3 + X_2^3 + \ldots + X_n^3}{n}.$$

Jakiego typu to zbieżność?
Wsk.: Skorzystaj z MPWL (p. wykład).

Ćwiczenie 12. Niech $\xi \sim U(0,1)$, zaś $X_n(\omega)$ niech będzie n-tą cyfrą po przecinku w rozwinięciu dziesiętnym liczby $\xi(\omega)$:

Wykaż, że zmienne losowe
$$X_1, X_2, \ldots$$
 są niezależne.

 $\mathcal{E} = 0, X_1 X_2 X_3 \dots$

Ćwiczenie 13. Niech $\xi \sim U(0,1)$, zaś $X_n(\omega)$ niech będzie n-tą cyfrą po przecinku w rozwinięciu dziesięt-

nym liczby
$$\xi(\omega)$$
:
$$\xi = 0, X_1 X_2 X_3 \dots$$

Jakie jest prawdopodobieństwo, że (asymptotycznie) średnio co dziesiąta cyfra liczby ξ jest piątką?

Ćwiczenie 14. Oblicz granicę, przy $n \to \infty$, wyrażenia

zenia
$$\int_0^1 \int_0^1 \cdots \int_0^1 \frac{x_1^3 + x_2^3 + \ldots + x_n^3}{x_1 + x_2 + \ldots + x_n} dx_1 dx_2 \cdots dx_n.$$

Centralne twierdzenie graniczne (CTG).

Dla niezależnych zmiennych losowych o jednakowym rozkładzie $\xi_1, \, \xi_2, \, \dots$, takich że $E\xi_1 = 0$ i $E\xi_1^2 = 1$,

$$\lim_{n} P\left(\frac{\xi_1 + \xi_2 + \ldots + \xi_n}{\sqrt{n}} \le x\right) = \Phi(x),$$

gdzie Φ jest dystrybuantą rozkładu N(0,1).

Ćwiczenie 15. Mamy 100 żarówek, których czas życia jest niezależny, o rozkładzie wykładniczym ze średnią 5 godzin (a więc wariancją 25). Oszacuj prawdopodobieństwo, że po 525 godzinach będziemy mieć jeszcze działającą żarówkę, jeśli używamy tylko jednej naraz, zaś natychmiast po zepsuciu wymieniamy ją na następną.

Ćwiczenie 16. Firma ubezpieczeniowa wystawiła 10000 polis. Wartość oczekiwana roszczeń, zrealizowanych w ciągu roku, wynosi 1200, zaś odchylenie standardowe 4000. Obliczyć prawdopodobieństwo, że całkowita suma roszczeń, w ciągu jednego roku, przekroczy 13,5 miliona.

Twierdzenie (nierówność Bernsteina)

Jeśli S_n jest liczbą sukcesów w schemacie n prób Bernoulliego z prawdopodobieństwem sukcesu p, to dla każdego $\varepsilon>0$

$$P\left(\left|\frac{S_n}{n} - p\right| > \varepsilon\right) \le 2e^{-2n\varepsilon^2}.$$

Lemat Borela-Cantelliego.

Niech $A = \cap_m \cup_{n \geq m} A_n$. Wtedy:

- (i) P(A) = 0, jeśli $\sum_{n=1}^{\infty} P(A_n) < \infty$.
- (ii) P(A) = 1, jeśli zdarzenia A_1, A_2, \ldots , są niezależne i $\sum_{n=1}^{\infty} P(A_n) = \infty$.

Zadanie domowe 2.

Korzystając z nierówności Bernsteina i lematu Borela-Cantelliego, wykazać mocne prawo wielkich liczb Bernoulliego: $S_n/n \to p$ p.n.

Wskazówka: suma przeliczalnie wielu zbiorów miary zero jest miary zero..

Zadanie domowe 3. Weźmy ciąg ξ_1, ξ_2, \ldots niezależnych zmiennych losowych o jednakowym rozkładzie, z własnością: $P\{|\xi_n| > t\} > 0$ dla każdego t > 0. Wykazać istnienie stałych c_n , takich że $c_n\xi_n \to 0$ według prawdopodobieństwa, ale nie p.n.

Wskazówka. Dobrać (w jaki sposób?) ciąg stałych $c_n > 0$, $c_n \to 0$, tak, by $\sum P(A_n) = \infty$, gdzie $A_n = \{c_n \xi_n > 1\}$. Zauważyć, że A_n są zdarzeniami niezależnymi. Skorzystać następnie z lematu Borela-Cantelliego.

Notacja: niech $E(\xi; A)$ oznacza $E(\xi \cdot 1_A)$.

Definicja. Jeśli $\xi \in L^1$, to warunkową wartością oczekiwaną ξ pod warunkiem \mathcal{F} nazywamy \mathcal{F} -mierzalną zmienną losową $E^{\mathcal{F}}\xi$, taką że

$$E(E^{\mathcal{F}}\xi;A) = E(\xi;A), \qquad A \in \mathcal{F}.$$

Ćwiczenie 17. Łączny rozkład zmiennych losowych X, Y dany jest tabelką:

$$\begin{array}{c|cccc} & X=1 & X=3 \\ \hline Y=0 & 0.2 & 0.3 & \operatorname{Znale\acute{z}\acute{c}} E(X|\sigma(Y)) \ \mathrm{i} \ EX. \\ Y=2 & 0.1 & 0.4 \end{array}$$

Ćwiczenie 18. Niech $\Omega = [0,1]$, *P*-miara Lebesgue'a na [0,1]. Znaleźć $E(f|\mathcal{F})$, jeśli

- a) $f(x) = \sqrt{x}$, \mathcal{F} jest σ -ciałem generowanym przez zbiory $[0, \frac{1}{4})$, $[\frac{1}{4}, 1]$.
- b) f(x) = -x, \mathcal{F} jest σ -ciałem generowanym przez zbiory $[0, \frac{1}{2}), [\frac{1}{3}, 1]$.

Warunkowa wartość oczekiwana $E^{\mathcal{F}}\xi = E(\xi|\mathcal{F})$. Twierdzenie. Niech $L^1(\mathcal{F})$ będzie zbiorem zmien-

nych losowych całkowalnych i \mathcal{F} -mierzalnych. Dla dowolnego σ -ciała \mathcal{F} istnieje jednoznaczny (p.n.) operator liniowy $E^{\mathcal{F}}: L^1 \to L^1(\mathcal{F})$, taki że:

(i)
$$E(E^{\mathcal{F}}\xi;A) = E(\xi;A)$$
, dla $\xi \in L^1$, $A \in \mathcal{F}$;

Operator $E^{\mathcal{F}}$ ma następujące własności (przy założeniu, że odpowiednie wyrażenia istnieją dla wartości bezwzględnych):

(ii)
$$\xi \ge 0 \implies E^{\mathcal{F}} \xi \ge 0$$
 p.n. (dodatniość),

(iii)
$$E|E^{\mathcal{F}}\xi| \leq E|\xi|$$
 (zwężanie w L^1),

łączanie),
(vi)
$$E(\xi E^{\mathcal{F}} \eta) = E(\eta E^{\mathcal{F}} \xi) = E(E^{\mathcal{F}} \xi)(E^{\mathcal{F}} \eta)$$
 p.n. (samosprzeżenie),

(vii)
$$E^{\mathcal{F}}E^{\mathcal{G}}\xi = E^{\mathcal{F}}\xi$$
 p.n., gdy $\mathcal{F} \subset \mathcal{G}$ ('tower rule').
W szczególności, $E^{\mathcal{F}}\xi = \xi$ p.n., gdy ξ jest \mathcal{F} -mierzalne,

W szczególności, $E^{\mathcal{F}}\xi = \xi$ p.n., gdy ξ jest \mathcal{F} -mierzalne, zaś $E^{\mathcal{F}}\xi = E\xi$ p.n., gdy $\xi \perp \!\!\! \perp \mathcal{F}$.

Ćwiczenie 19. Wykazać, z definicji warunkowej wartości oczekiwanej, że

$$E(E^{\mathcal{F}}\xi) = E\xi.$$

Ćwiczenie 20. Wykazać, z definicji warunkowej wartości oczekiwanej, że

$$E^{\sigma(X)}X = X$$
 p.n.

Ćwiczenie 21. Udowodnić własność (vii).

Ćwiczenie 22. Wykazać, z definicji warunkowej wartości oczekiwanej, że

$$\xi = 0 \text{ p.n.} \implies E^{\mathcal{F}} \xi = 0 \text{ p.n.}$$

Ćwiczenie 23. Udowodnić

$$\xi = c \text{ p.n.} \implies E^{\mathcal{F}} \xi = c \text{ p.n.}$$

Ćwiczenie 24. Pokazać, że

$$\xi = \eta \text{ p.n.} \implies E^{\mathcal{F}} \xi = E^{\mathcal{F}} \eta \text{ p.n.}$$

Lemat o zbiorach miary zero: dla zm. los. $\xi \geq 0$,

$$E\xi = 0 \iff \xi = 0$$
 p.n.

Ćwiczenie 25. Wywnioskować z tego lematu, że

$$A = {\eta > 0}, E(\eta; A) = 0 \implies PA = 0.$$

Wskazówka: przyjąć $\xi = \eta 1_A$.

Ćwiczenie 26. Udowodnić

$$A = \{ \eta < 0 \}, \ E(\eta; A) = 0 \implies PA = 0.$$

Ćwiczenie 27. Wykazać dodatniość $E^{\mathcal{F}}$, korzystając z poprzedniego ćwiczenia.

Ćwiczenie 28. Udowodnić, dla $\eta \geq 0$,

$$\{E^{\mathcal{F}}\eta = 0\} \subset \{\eta = 0\}$$
 p.n.

(Równoważnie, $P\{E^{\mathcal{F}}\eta=0, \eta>0\}=0.$)

Wskazówka: zastosować lemat dla $\xi = \eta 1\{E^{\mathcal{F}}\eta = 0\}.$

Ćwiczenie 29. Sformułować warunkową wersję lematu o zbiorach miary zero.

Ćwiczenie 30. Wykazać następującą własność monotoniczności $E^{\mathcal{F}}$:

$$\xi \le \eta$$
 p.n. $\Longrightarrow E^{\mathcal{F}} \xi \le E^{\mathcal{F}} \eta$ p.n..

Skorzystać z podanych wyżej własności $E^{\mathcal{F}}$.

Ćwiczenie 31. Wykazać, że $|E^{\mathcal{F}}\xi| \leq E^{\mathcal{F}}|\xi|$ p.n. Zaznaczyć, z których własności $E^{\mathcal{F}}$ tu korzystamy.

Ćwiczenie 32. Załóżmy, że $\eta \in L^2$, $\mathcal{F} = \sigma(\xi)$ oraz $E^{\mathcal{F}} \eta = \xi$, $E^{\mathcal{F}} (\eta^2) = \xi^2$. Uzasadnić, że $\eta = \xi$ p.n.

Wskazówka: użyć warunkowej wersji lematu o zbiorach miary zero.

Notacja:
$$\operatorname{Var} \xi = E(\xi - E\xi)^2$$
, $\operatorname{Var}^{\mathcal{F}} \xi = E^{\mathcal{F}} (\xi - E^{\mathcal{F}} \xi)^2$.

Ćwiczenie 33. Dla $\xi \in L^2$, $\operatorname{Var}^{\mathcal{F}} \xi \geq 0$.

Ćwiczenie 34. Dla $\xi \in L^2$,

$$\operatorname{Var} \xi = E \operatorname{Var}^{\mathcal{F}} \xi + \operatorname{Var} E^{\mathcal{F}} \xi.$$

Ćwiczenie 35. Dla $\xi \in L^2$,

$$\operatorname{Var} \xi \ge \operatorname{Var} E^{\mathcal{F}} \xi.$$

Ćwiczenie 36. (istotne dla zastosowań) Dla $\xi \in L^2$,

$$\operatorname{Var} E^{\mathcal{G}} \xi \geq \operatorname{Var} E^{\mathcal{F}} \xi, \operatorname{gdy} \mathcal{G} \supset \mathcal{F}.$$

Wsk.: zastosować ' $tower\ rule$ ' do poprzedniego wyniku.

Lemat Fatou. Dla nieujemnych $\xi_1, \, \xi_2, \, \ldots, \, \text{mamy}$

$$\liminf_{n} E\xi_n \ge E \liminf_{n} \xi_n.$$

Dowód. Zauważmy, że

$$\xi_m \ge \inf_{k > n} \xi_k, \qquad m \ge n,$$

a stąd

$$\inf_{m>n} E\xi_m \ge E \inf_{k>n} \xi_k, \qquad n \in \mathbb{N}.$$

Biorąc $n \to \infty$, mamy (jak?) z lematu Leviego o zbieżności monotonicznej:

$$\lim_{n \to \infty} \inf E \xi_n \ge \lim_{n \to \infty} E \inf_{k \ge n} \xi_k$$

$$= E \lim_{n \to \infty} \inf \xi_n. \quad \Box$$

Zadanie domowe 4. Wykazać warunkowy lemat Fatou: dla nieujemnych, całkowalnych $\xi_1, \, \xi_2, \, \ldots, \,$ mamy p.n.

$$\liminf_{n} E^{\mathcal{F}} \xi_n \ge E^{\mathcal{F}} \liminf_{n} \xi_n.$$

Jakich własności warunkowej wartości oczekiwanej należy użyć?

π -układy i λ -układy

- Mówimy, że rodzina zbiorów \mathcal{C} jest π -układem, gdy jest zamknięta ze względu na skończone iloczyny, tj. gdy dla dowolnych $A, B \in \mathcal{C}$ zachodzi $A \cap B \in \mathcal{C}$.
- Rodzinę zbiorów D nazywamy λ-układem, gdy należy do niej zbiór Ω i gdy jest zamknięta ze względu na różnice właściwe i sumy wstępujące, tj. gdy:
 - (i) $\Omega \in \mathcal{D}$,
 - (ii) dla $A, B \in \mathcal{D}, A \subset B, \text{ mamy } B \setminus A \in \mathcal{D},$
 - (iii) dla $A_n \in \mathcal{D}$, $n \in \mathbb{N}$, $A_n \uparrow A$, mamy $A \in \mathcal{D}$.

Tw. o klasach monotonicznych. (Sierpiński, 1928) Jeśli \mathcal{C} jest π -układem, zaś \mathcal{D} jest λ -układem, to

$$\mathcal{C} \subset \mathcal{D} \implies \sigma(\mathcal{C}) \subset \mathcal{D}.$$

Ćwiczenie 37. Jeśli \mathcal{C} jest π -układem, to

$$\left[E(\xi; A) = 0, \ A \in \mathcal{C} \right] \implies \left[E(\xi; A) = 0, \ A \in \sigma(\mathcal{C}) \right].$$

Notacja. Niech $P^{\mathcal{F}}A$ oznacza $E^{\mathcal{F}}1_A$.

Zadanie domowe 5. Jeśli C jest π -układem, to

$$\left[P^{\mathcal{F}}\!A \stackrel{\mathrm{p.n.}}{=} P^{\mathcal{G}}\!A, \ A \in \mathcal{C}\right] \implies \left[P^{\mathcal{F}}\!A \stackrel{\mathrm{p.n.}}{=} P^{\mathcal{G}}\!A, \ A \in \sigma(\mathcal{C})\right].$$

Notacja. Niech $\mathcal{F} \vee \mathcal{G}$ oznacza $\sigma(\mathcal{F}, \mathcal{G})$.

Rozważmy relacje:

$$P^{\mathcal{F}\vee\mathcal{G}}H \stackrel{\text{p.n.}}{=} P^{\mathcal{G}}H \tag{*}$$

$$P^{\mathcal{G}}(F \cap H) \stackrel{\text{p.n.}}{=} (P^{\mathcal{G}}F)(P^{\mathcal{G}}H) \tag{**}$$

Ćwiczenie 38. Rozważmy σ -ciała \mathcal{F} , \mathcal{G} , \mathcal{H} i weźmy dowolne zbiory $F \in \mathcal{F}$, $H \in \mathcal{H}$. Wykaż:

a)
$$P^{\mathcal{G}}(F \cap H) \stackrel{\text{p.n.}}{=} E^{\mathcal{G}}P^{\mathcal{F}\vee\mathcal{G}}(F \cap H)$$
.

b)
$$E^{\mathcal{G}}(P^{\mathcal{F}\vee\mathcal{G}}H;F) \stackrel{\text{p.n.}}{=} E^{\mathcal{G}}P^{\mathcal{F}\vee\mathcal{G}}(F\cap H).$$

c)
$$E^{\mathcal{G}}(P^{\mathcal{G}}H;F) \stackrel{\text{p.n.}}{=} (P^{\mathcal{G}}F)(P^{\mathcal{G}}H).$$

d) Jeśli (*), to (**).

Ćwiczenie 39. Rozważmy σ -ciała \mathcal{F} , \mathcal{G} , \mathcal{H} i weźmy dowolne zbiory $F \in \mathcal{F}$, $G \in \mathcal{G}$ i $H \in \mathcal{H}$. Wykaż:

a)
$$E\left(P^{\mathcal{G}}H; F \cap G\right) = E\left\{(P^{\mathcal{G}}F)(P^{\mathcal{G}}H); G\right\}.$$

b)
$$P(F \cap G \cap H) = E\{(P^{\mathcal{G}}(F \cap H); G\}.$$

c) Jeśli (**), to
$$E(P^{\mathcal{G}}H;A) = P(H \cap A), A = F \cap G.$$

Ćwiczenie 40. Jeśli (**) zachodzi dla $F \in \mathcal{F}, H \in \mathcal{H}$, to (*) zachodzi dla $H \in \mathcal{H}$, gdyż (z ćw. 40.c i 37):

$$E(P^{\mathcal{G}}H;A) = P(H \cap A), \quad H \in \mathcal{H}, A \in \mathcal{F} \vee \mathcal{G}.$$

Definicja Mówimy, że σ -ciała \mathcal{F}_t , $t \in T$, są wa-runkowo niezależne pod warunkiem σ -ciała \mathcal{G} , jeśli dla
dowolnych różnych wskaźników $t_1, \ldots, t_n \in T$, $n \in \mathbb{N}$,
zachodzi

$$P^{\mathcal{G}} \bigcap_{1 \le k \le n} B_k \stackrel{\text{p.n.}}{=} \prod_{1 \le k \le n} P^{\mathcal{G}} B_k, \quad B_k \in \mathcal{F}_{t_k}, \ k = 1, \dots, n.$$

Zauważmy, że własność ta staje się zwykłą niezależnością, gdy \mathcal{G} jest trywialnym σ -ciałem $\{\emptyset, \Omega\}$.

Warunkową niezależność pomiędzy parą σ -ciał (gdy zbiór T ma dwa elementy) oznaczamy symbolem $\perp \!\!\! \perp_{\mathcal{G}}$.

Twierdzenie. (warunkowa niezależność, Doob)

$$\mathcal{F} \coprod_{\mathcal{G}} \mathcal{H} \quad \Longleftrightarrow \quad P^{\mathcal{F} \vee \mathcal{G}} = P^{\mathcal{G}} \text{ p.n. na } \mathcal{H}.$$

Ćwiczenie 41. $\mathcal{F} \coprod_{\mathcal{G}} \mathcal{H} \iff \mathcal{F} \coprod_{\mathcal{G}} (\mathcal{G} \vee \mathcal{H}).$ Ćwiczenie 42. $\mathcal{F} \vee \mathcal{G} \vee \mathcal{H} = (\mathcal{F} \vee \mathcal{G}) \vee \mathcal{H}.$ Ćwiczenie 43. Jeśli $\mathcal{H} \coprod_{\mathcal{G}} (\mathcal{F} \vee \mathcal{F}')$, to:

- a) $\mathcal{H} \coprod_{\mathcal{G}} \mathcal{F}$.
- b) $P^{\mathcal{G}\vee\mathcal{F}} \stackrel{\text{p.n.}}{=} P^{\mathcal{G}} \stackrel{\text{p.n.}}{=} P^{\mathcal{G}\vee\mathcal{F}\vee\mathcal{F}'}$ na \mathcal{H} .
- c) $\mathcal{H} \coprod_{\mathcal{G} \vee \mathcal{F}} \mathcal{F}'$.

Ćwiczenie 44. Jeśli $\mathcal{H} \! \perp \!\!\! \perp_{\mathcal{G}} \!\!\! \mathcal{F}$ oraz $\mathcal{H} \! \perp \!\!\! \perp_{\mathcal{G} \vee \mathcal{F}} \!\!\! \mathcal{F}',$ to:

- a) $P^{\mathcal{G}} \stackrel{\text{p.n.}}{=} P^{\mathcal{G} \vee \mathcal{F}} \stackrel{\text{p.n.}}{=} P^{\mathcal{G} \vee \mathcal{F} \vee \mathcal{F}'}$ na \mathcal{H} .
- b) $\mathcal{H} \coprod_{\mathcal{G}} (\mathcal{F} \vee \mathcal{F}')$.

Twierdzenie. (o złożeniach)

Ćwiczenie 45. Załóżmy, że dla $i = 1, \dots, m-1$,

$$(\mathcal{F}_0 \vee \cdots \vee \mathcal{F}_{i-1}) \underset{\mathcal{F}_i}{\coprod} (\mathcal{F}_{i+1} \vee \cdots \vee \mathcal{F}_m).$$

Wykazać, że:

- a) $\mathcal{F}_{i-1} \perp \!\!\!\perp_{\mathcal{F}_i} (\mathcal{F}_{i+1}, \ldots, \mathcal{F}_m)$.
- b) $\mathcal{F}_{i-1} \perp \!\!\!\perp_{\mathcal{F}_i} (\mathcal{F}_i, \mathcal{F}_{i+1}, \dots, \mathcal{F}_m)$.
- c) $P^{\mathcal{F}_{i-1}\vee\mathcal{F}_i}H = P^{\mathcal{F}_i}H \text{ dla } H \in \mathcal{F}_i \vee \cdots \vee \mathcal{F}_m.$
- d) $E^{\mathcal{F}_{i-1}\vee\mathcal{F}_i}\xi = E^{\mathcal{F}_i}\xi$ dla $\xi \in L^1$, mierzalnych względem $(\mathcal{F}_i\vee\cdots\vee\mathcal{F}_m)$.

Źródło: P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, 2003; (8.31). 446.

Oznaczenie: $T = \{0, 1, 2, ...\}$.

Definicja: Filtracją nazywamy niemalejącą rodzinę σ -ciał $\mathcal{F} = (\mathcal{F}_t)_{t \in T}$, gdzie $\mathcal{F}_t \subset \mathcal{A}$ dla $t \in T$.

Definicja: Momentem stopu względem filtracji $\mathcal F$ nazywamy zmienną losową $\tau:\Omega\to T\cup\{\infty\}$, spełniającą warunek

$$\{\tau \leq t\} \in \mathcal{F}_t, \quad t \in T.$$

Ćwiczenie 46. Warunek w powyższej definicji jest równoważny warunkowi:

$$\{\tau=t\}\in\mathcal{F}_t,\quad t\in T.$$

Ćwiczenie 47. τ jest momentem stopu. Czy stąd wynika, że momentem stopu jest a) $\tau+1$? b) $\tau-1$? c) τ^2 ?

Ćwiczenie 48. $\tau \equiv s$ jest momentem stopu względem dowolnej filtracji.

Ćwiczenie 49. Niech τ i σ będą momentami stopu. Wówczas są nimi również: $\tau \wedge \sigma$, $\tau \vee \sigma$, $\tau + \sigma$, $\tau + c$ dla $c \in T$.

Definicja. Mówimy, że ciąg zmiennych losowych $X = (X_t)_{t \in T}$ jest *adaptowany* do filtracji \mathcal{F} , gdy X_t jest \mathcal{F}_t -mierzalna, dla $t \in T$.

 ${\bf Definicja.}\;\;{\bf Jeśli}\;X$ jest ciągiem adaptowanym, to chwila jego pierwszej wizyty w zbiorze Bjest zdefiniowana jako

$$\tau_B(\omega) = \inf\{t \in T : X_t(\omega) \in B\},\$$

przy czym inf $\emptyset = +\infty$.

Ćwiczenie 50. Ustalmy filtrację \mathcal{F} . Niech τ będzie momentem stopu, zaś X ciągiem adaptowanym.

- a) Wykazać, że chwila pierwszej wizyty (X_t) w zbiorze borelowskim B po chwili τ jest momentem stopu.
- b) Zdefiniować moment k-tej wizyty (X_t) w zbiorze B i udowodnić, że jest on momentem stopu.

Przypomnienie: czas oczekiwania na pierwszy sukces w ciągu doświadczeń Bernoulliego ma rozkład geometryczny

$$P{X = k} = (1 - p)^{k-1}p, p \in (0, 1), k = 1, 2, ...$$

Dla tego rozkładu mamy EX = 1/p.

Ćwiczenie 51. (coupon collector's problem)

Przypuśćmy, że zbieramy do naszej kolekcji kupony o numerach $1, 2, \ldots, n$, które losujemy ze zwracaniem, aż kolekcja będzie kompletna (w oryginale: zbieramy kupony umieszczone w paczkach z płatkami śniadaniowymi). Ile średnio losowań musimy wykonać?

Twierdzenie (tożsamość Walda). Jeśli X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o tym samym rozkładzie, $E|X_1| < \infty$, zaś τ jest momentem stopu względem filtracji $(\mathcal{F}_n)_{n=1}^{\infty}$, gdzie $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ i $E\tau < \infty$, to dla $S_n = X_1 + \ldots + X_n$ mamy:

$$ES_{\tau} = (E\tau)(EX_1).$$

Čwiczenie 52. Rzucamy kostką tak długo, aż otrzymamy wszystkie oczka. Znaleźć wartość średnią sumy wyrzuconych oczek.

Odp.: $14.7 \cdot 3.5 = 51.45$.

Ćwiczenie 53. Jeśli τ_1, τ_2, \dots są momentami stopu, to są nimi również:

$$\tau = \inf_{n} \tau_n, \qquad \sigma = \sup_{n} \tau_n.$$

Definicja. Jeśli τ jest momentem stopu względem filtracji \mathcal{F} , to

$$\mathcal{F}_{\tau} \stackrel{\text{def}}{=} \{A : A \cap \{\tau \leq t\} \in \mathcal{F}_t, \ t \in T\}.$$

Ćwiczenie 54. \mathcal{F}_{τ} jest σ -ciałem.

Ćwiczenie 55. Jeśli $\tau \equiv s$, to $\mathcal{F}_{\tau} = \mathcal{F}_{s}$.

Ćwiczenie 56.

$$\mathcal{F}_{\tau} = \{ A : A \cap \{ \tau = t \} \in \mathcal{F}_t, \ t \in T \}.$$

Ćwiczenie 57. Jeśli $\sigma \leq \tau$, to $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$.

Ćwiczenie 58. Zmienna losowa τ jest \mathcal{F}_{τ} -mierzalna.

Ćwiczenie 59. $\{\sigma < \tau\} \in \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$.

Ćwiczenie 60. $\{\tau < \sigma\}, \{\sigma \le \tau\}, \{\tau \le \sigma\}$ należą do $\mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$.

Ćwiczenie 61. Jeśli X jest adaptowany (tj. X_t jest \mathcal{F}_t -mierzalna, $t \in T$), to zmienna losowa X_τ , gdzie

$$(X_{\tau})(\omega) \stackrel{\mathrm{df}}{=} X_{\tau(\omega)}(\omega), \quad \omega \in \Omega,$$

jest \mathcal{F}_{τ} -mierzalna.

Definicja. Mówimy, że proces M jest martyngałem względem filtracji $\mathcal{F} = \{\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \ldots\}$, jeśli dla każdego n zmienna losowa M_n jest \mathcal{F}_n -mierzalna, $E|M_n| < \infty$, oraz jeśli zachodzi

$$E^{\mathcal{F}_n}(M_{n+1} - M_n) \stackrel{\text{p.n.}}{=} 0, \quad n = 0, 1, 2, \dots$$

Twierdzenie (Doob'a). Niech M będzie martyngałem, zaś σ , τ będą dwoma momentami stopu, przy czym τ jest ograniczony ($\tau \leq u$ p.n., dla pewnego $u \in \mathbb{N}$). Wówczas M_{τ} jest całkowalna i zachodzi

$$M_{\sigma \wedge \tau} \stackrel{\text{p.n.}}{=} E(M_{\tau} | \mathcal{F}_{\sigma}).$$

Jeśli ponadto zmienne losowe $\max(0, M_n)$ mają całkowalną majorantę, to powyższa równość zachodzi również dla nieograniczonych τ , skąd $EM_{\sigma}=EM_0$.

Cwiczenie 62. Niech M będzie procesem adaptowanym i całkowalnym. Wówczas następujące warunki są równoważne:

- (i) M jest martyngałem
- (ii) $EM_{\sigma} = EM_{\tau}$ dla dowolnych dwu ograniczonych momentów stopu σ , τ .

W punkcie (ii) wystarczy brać momenty stopu mające co najwyżej dwuelementowe zbiory wartości.

Wsk.: Wziąć $A \in \mathcal{F}_n$. Wykazać, że $\tau = n1_A + (n + 1)1_{A^c}$ jest momentem stopu.

Kolokwium próbne nr 1

tinyurl.com/kolozrachunku1

Bibliografia

[JS10] Jacek Jakubowski, Rafał Sztencel. Wstęp do teorii prawdopodobieństwa. SCRIPT, Warszawa, 2010.

[Kal21] Olav Kallenberg. Foundations of Modern Probability. Springer, 2021.