PRODUCTO ESCALAR Y VECTORIAL

Definición 1. Sean \mathbf{x} , \mathbf{y} vectores en \mathbb{R}^3 , con $\mathbf{x} = (x_1, x_2, x_3)$ e $\mathbf{y} = (y_1, y_2, y_3)$. Se define el producto vectorial entre \mathbf{x} e \mathbf{y} por:

$$\mathbf{x} \times \mathbf{y} = \left(\det \begin{pmatrix} x_2 & x_3 \\ y_2 & y_3 \end{pmatrix}, -\det \begin{pmatrix} x_1 & x_3 \\ y_1 & y_3 \end{pmatrix}, \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} \right).$$

- 1. Sean \mathbf{x}, \mathbf{y} y \mathbf{z} vectores en \mathbb{R}^3 y $k \in \mathbb{R}$. Probar las siguientes propiedades:
 - (a) $\mathbf{x} \times \mathbf{y} = -(\mathbf{y} \times \mathbf{x})$.
 - (b) $\mathbf{x} \times (\mathbf{y} + \mathbf{z}) = \mathbf{x} \times \mathbf{y} + \mathbf{x} \times \mathbf{z}$.
 - (c) $k(\mathbf{x} \times \mathbf{y}) = k\mathbf{x} \times \mathbf{y} = \mathbf{x} \times k\mathbf{y}$.
 - (d) $\mathbf{x} \times \mathbf{0} = \mathbf{0}$ y $\mathbf{x} \times \mathbf{x} = \mathbf{0}$.

(e)
$$\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z}) = \det \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \det \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$$
.

Más aún, $\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z}) = \mathbf{y} \cdot (\mathbf{z} \times \mathbf{x}) = \mathbf{z} \cdot (\mathbf{x} \times \mathbf{y}).$

- (f) $\mathbf{x} \cdot (\mathbf{x} \times \mathbf{y}) = 0$, $\mathbf{y} \cdot (\mathbf{x} \times \mathbf{y}) = 0$ (i.e. el vector $\mathbf{x} \times \mathbf{y}$ es perpendicular a $\mathbf{x} \in \mathbf{y}$).
- (g) $\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} (\mathbf{x} \cdot \mathbf{y}) \mathbf{z}$.
- (h) $||\mathbf{x} \times \mathbf{y}||^2 = ||\mathbf{x}||^2 ||\mathbf{y}||^2 (\mathbf{x} \cdot \mathbf{y})^2$.
- (i) $||\mathbf{x} \times \mathbf{y}|| = ||\mathbf{x}|| \, ||\mathbf{y}|| \, \text{sen}(\theta)$, donde θ es el ángulo entre \mathbf{x} y \mathbf{y} tal que $0 \le \theta \le \pi$. En otras palabras $||\mathbf{x} \times \mathbf{y}||$ mide el área del paralelogramo de lados \mathbf{x} e \mathbf{y} .
- (j) Probar que el volumen del paralelepípedo de lados \mathbf{x} , \mathbf{y} , \mathbf{z} está dado por $|\mathbf{z} \cdot (\mathbf{x} \times \mathbf{y})|$.
- (k) $\mathbf{x} \times \mathbf{y} = \mathbf{0}$ si y sólo si \mathbf{x} e \mathbf{y} son paralelos.

2. Calcular.

- (a) El área del triángulo de vértices (1, 2), (-1, 2), (2, 4).
- (b) El área del triángulo de vértices (-2, 1, 3), (1, 0, 3), (5, 2, 3).
- (c) El volumen del paralelepípedo de lados $\mathbf{x} = (2, 2, -1), \mathbf{y} = (1, -2, 2), \mathbf{z} = (1, -1, 1).$
- (d) El volumen del tetraedro de vértices (1,0,0), (5,-1,2), (-2,3,6) y (3,3,4).

RECTAS Y PLANOS

Definición 2. Sea n = 2 ó 3 y sean $\mathbf{x_0}$, $\mathbf{x_1} \in \mathbb{R}^n$ fijos, con $\mathbf{x_1} \neq \mathbf{0}$. Definimos la recta que pasa por $\mathbf{x_0}$ y generada por el vector $\mathbf{x_1}$, al conjunto

$$L = \{ \mathbf{z} = \mathbf{x_0} + t\mathbf{x_1} : t \in \mathbb{R} \}$$
 (ecuación vectorial de la recta).

Si $\mathbf{x_0} \neq \mathbf{0}$, ¿asegura esto que la recta L no pasa por el origen? Además, decimos que dos rectas son paralelas si sus generadores lo son, i.e. L es paralela a $L_1 = \{\mathbf{y_0} + t\mathbf{y_1} : t \in \mathbb{R}\}$ si $\mathbf{x_1}$ e $\mathbf{y_1}$ son vectores *colineales*.

- 3. Dar la ecuación vectorial de las siguientes rectas:
 - (a) Que pasa por (-3,0,2) y es paralela a (0,3,-2).
 - (b) Que pasa por los puntos (-1, 5, 4) y (0, 3, -2).
 - (c) Definida por x = 3t + 1, y = 5t 2, z = 2t + 1, con $t \in \mathbb{R}$.
 - (d) Que pasa por (2,0) y es ortogonal a (1,3).
 - (e) Que pasa por (1,3) y es paralela a la que pasa por (-1,4) y (3,-2).
 - (f) Que pasa por (2,0,0) y es ortogonal a (1,3,0). ¿Es única?

Definición 3. Sean $\mathbf{x_0}$, $\mathbf{x_1}$, $\mathbf{x_2} \in \mathbb{R}^3$ tales que $\mathbf{x_1}$ y $\mathbf{x_2}$ no son colineales. Se llama plano que pasa por $\mathbf{x_0}$, generado por los vectores $\mathbf{x_1}$ y $\mathbf{x_2}$, al conjunto

$$P = \{ \mathbf{y} \in \mathbb{R}^3 : \mathbf{y} = \mathbf{x_0} + t\mathbf{x_1} + s\mathbf{x_2} \text{ con } s, t \in \mathbb{R} \}$$
 (ecuación vectorial del plano P).

Para un plano P así definido, se dice que el plano P contiene al punto $\mathbf{x_0}$ y es paralelo a los vectores $\mathbf{x_1}$ y $\mathbf{x_2}$.

- 4. Dar la ecuación vectorial de los siguientes planos:
 - (a) Generado por (-1,0,4), (2,3,-10) que contiene al punto (2,3,-5).
 - (b) Generado por (-1,0,4), (2,3,-10) que pasa por (3,-3,6). ¿Pasa este plano por el origen?
 - (c) Que pasa por (1, -1, 0), (1, 2, 1) y (0, 1, 1).
- **5.** Sea P el plano generado por $\mathbf{x_1}$, $\mathbf{x_2}$ y que pasa por $\mathbf{x_0}$, y sea $\mathbf{N} \neq \mathbf{0}$ un vector ortogonal a $\mathbf{x_1}$ y $\mathbf{x_2}$.
 - (a) Probar que $\mathbf{x} \in P \iff (\mathbf{x} \mathbf{x_0}) \cdot \mathbf{N} = 0$ (ecuación normal del plano).
 - (b) Dar la ecuación normal del plano definido por

$$P = \{ \mathbf{y} \in \mathbb{R}^3 : \mathbf{y} = u(1, 2, 0) + v(2, 0, 1) + (1, 0, 0) \text{ con } u, v \in \mathbb{R} \}.$$

- (c) Dar la ecuación normal del plano que pasa por (1, -1, 1), (-2, 0, 1), y (-1, 1, 1).
- **6.** Sea P el plano definido implícitamente por la ecuación ax + by + cz + d = 0, con $a, b, c \in \mathbb{R}$ no simultáneamente nulos (ecuación general del plano).
 - (a) Probar que $\mathbf{N} = (a, b, c)$ es un vector normal al plano.
 - (b) ¿Qué condiciones debe cumplir d para que el plano P pase por el origen?
 - (c) Dar la ecuación normal del plano definido por

$$3x - y + 4z = 3.$$

- (d) Dar la ecuación general del plano que pasa por (1,1,1) y es generado por (0,-1,2) y (1,0,3).
- (e) Dar la ecuación vectorial del plano definido implícitamente por la ecuación 2x + 3y + z = 1.
- 7. Sean P_1 y P_2 los planos definidos por las siguientes ecuaciones generales

$$x + 2y + 3z = 4$$
, $3x + 2y + z = 0$.

Describir paramétricamente a la intersección de P_1 y P_2 .