Билет 1

<u>Строение атомов элементов 1-3 периодов. Состав атомов, изотопы, электронное строение атомов.</u>

Атом — система, состоящая из ядра и слабо связанных с ним электронов.

Ядро — система, состоящая из протонов и нейтронов, связанных очень большими энергиями.

<u>Молекула</u> — мельчайшая частица вещества, химически делимая на атомы, которая имеет состав вещества и определяет его свойства.

Состав атома

<u>Изотопы</u> — виды атомов с одинаковым зарядом ядра, но разным массовым числом.

$$_{\scriptscriptstyle +}^{^2}H^{^0}$$
 D — дейтерий — изотоп водорода

$$^{3}_{+}H^{0}$$
 $T-$ тритий $-$ изотоп водорода

Электронное строение атомов

Современная теория строения атомов квантово-механическая.

Электронное облако — часть пространства вокруг ядра, в которой распространяются электронные волны.

<u>Электронная орбиталь</u> — часть электронного облака, в которой вероятность пребывания электрона максимальна

Электронные орбитали одного вида образуют подуровни.

Электронные подуровни образуют электронные уровни.

Виды электронных орбиталей

1. s-орбиталь

	з-подуровень - 1
2.	р-орбиталь
	р-подуровень - 3
3.	d-орбиталь

d-подуровень

4.	f-or	оби	галі	Ь			
f-подуровень - 7							

На одну орбиталь вмещается не более 2 электронов На наружном уровне способно разместится максимум 8

Электронные уровни

	троппыс уровни	
Уровень		Максимальное количество электронов
1	s 🗌	2
2	s	2+6= 8
3	s	2+6+10= 18
4	s	2+6+8+10+14= 32
	2 3	1 S

f-подуровень заполняется с запозданием на 2 слоя.

Правила заполнения электронами электронных орбиталей.

I. $\int_{cnuh} S = +\frac{1}{2}$

II. Правило Хунда

При заполнении элементами орбиталь одного подуровня, общий спин электронов должен быть максимальным.

III. Правило Паули

В атомах все электроны разные по энергии.

IV. Правило Кличковского

Элементы заполняют орбитали строго в порядке возрастания их энергии.

Порядок заполнения электронных орбиталей по возрастанию энергии

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 5d^1 4f^{14} 5d^{10} 6p^6 7s^2 6d^1 5f^{14} 6d^{10} 7p^6$$

Электронное строение атомов

1. Полное электронное строение (электронный паспорт, схема распределения электронов)

$$_{+3}Li$$
 $1s^22s^1$
 $_{+14}Si$ $1s^22s^22p^63s^23p^2$

2. Строение наружного слоя

(Принято указывать и строение d-подуровня, если он заполнен электронами)

$$_{+23}V$$
 ... $4s^2 3d^3$
 $_{+53}I$... $5s^2 5d^{10} 5p^5$

3. Распределение электронов по слоям

4. Схема заполнения электронных орбиталей наружного уровня

(d,f — если заполняются).

$$\begin{array}{c|c}
3d^{3} \\
+23V \dots & \uparrow \uparrow \uparrow & \downarrow 4s^{2}
\end{array}$$

2 спаренных электрона

3 неспаренных

I_A	II_A	III_A	IV A	V_A	VI _A	VII _A	VIII _A
$n s^1$	$n s^2$	$n s^2 n p^1$	$n s^2 n p^2$	$n s^2 n p^3$	$n s^2 n p^4$	$n s^2 n p^5$	$n s^2 n p^6$

4. As...

1.
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$$

$$2 4 s^2$$

1.
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^3$$

2. ...
$$4s^2 3d^{10} 4p^3$$

Проскок электрона

Если d-подуровень у элемента 4 или 9 электронов, то с s-орбитали наружного уровня на d-орбиталь предыдущего уровня проскакивает один электрон.

1.
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$$

2. ...
$$4s^13d^{10}$$

4.
$$Cu \dots \frac{3d^{10}}{\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow} 4s^{1}$$