CSC 339 – Theory of Computation Fall 2023

11. Turing Machine Variations

Outline

- Turing's thesis
- Variations of the Turing Machine

Turing's thesis (1930):

Any computation carried out by mechanical means can be performed by a Turing Machine.

Algorithm:

An algorithm for a problem is a Turing Machine which solves the problem.

The algorithm describes the steps of the mechanical means. This is easily translated to computation steps of a Turing machine.

There exists an algorithm to solve a problem, means that there exists a Turing Machine that executes the algorithm.

Variations of the Turing Machine

The Standard Model

Infinite Tape

Read-Write Head (Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with: • Stay-Option

- Semi-Infinite Tape
- Off-Line
- Multitape
- Multidimensional
- Nondeterministic

Different Turing Machine Classes

Same Power of two machine classes:

Both classes accept the same set of languages.

Theorem:

Each new class has the same power with Standard Turing Machine (accept Turing-Recognizable Languages).

Q

Simulation:

A technique to prove same power. Simulate the machine of one class with a machine of the other Class.

First Class
Original Machine

 M_1

Second Class
Simulation Machine

 M_2 M_1

 M_2 simulates M_1

Configurations in the Original Machine M_1 have corresponding configurations in the Simulation Machine M_2 .

Accepting Configuration

Original Machine:

 d_f

Simulation Machine:

 d'_f

The Simulation Machine and the Original Machine accept the same strings

$$L(M_1) = L(M_2)$$

Turing Machines with Stay-Option

The head can stay in the same position

Left, Right, Stay

L,R,S: possible head moves

Stay-Option Machine

Simulation in Standard Machine

For every possible tape symbol x

For other transitions nothing changes

Stay-Option Machine

Simulation in Standard Machine

Similar for Right moves

Example of simulation

Stay-Option Machine

 $\begin{vmatrix} \Diamond & a & a & b & a & \Diamond \\ 1 & \uparrow & & & & \\ & q_1 & & & & \end{vmatrix}$

Simulation in Standard Machine

Theorem:

Stay-Option machines have the same power with Standard Turing machines.

Multiple Track Tape TM

A useful trick to perform more complicated simulations

Semi-Infinite Tape

The head extends infinitely only to the right.

- •Initial position is the leftmost cell.
- •When the head moves left from the border, it returns to the same position.

Standard Turing machines simulate Semi-Infinite machines:

Standard Turing Machine

- a. Insert special symbol #at left of input string
- b. Add a self-loop to every state (except states with no outgoing transitions)

Standard Turing machines simulate Semi-Infinite machines:

Squeeze infinity of both directions in one direction.

Standard machine

Semi-Infinite tape machine

Right part

$$\underbrace{q_1^R} \xrightarrow{(a,x) \to (g,x),R} \underbrace{q_2^R}$$

Left part

$$\overbrace{q_1^L} \xrightarrow{(x,a) \to (x,g),L} \overbrace{q_2^L}$$

For all tape symbols X

At the border:

Semi-Infinite tape machine

Right part

Left part

$$\overbrace{q_1^L} \xrightarrow{(\#,\#) \to (\#,\#), R} \overbrace{q_1^R}$$

Theorem:

Semi-Infinite machines have the same power with Standard Turing machines.

Theorem:

Off-Line machines have the same power with Standard Turing machines.

Same power doesn't imply same speed:

$$L = \{a^n b^n\}$$

Standard Turing machine: $O(n^2)$ time

Go back and forth $O(n^2)$ times to match the a's with the b's.

2-tape machine: O(n) time

- 1. Copy b^n to tape 2. (O(n) steps)
- 2. Compare a^n on tape 1 and b^n on tape 2. (O(n) steps)

Theorem:

Multi-tape Turing machines have the same power with Standard Turing machines.

Multidimensional Turing Machines

MOVES: L,R,U,D

U: up; D: down

HEAD

Position: +2, -1

37

 \mathcal{X}

Nondeterministic Turing Machines

Allows Non Deterministic Choices

