-13 -

Primitives

I. Primitive d'une fonction continue sur un intervalle

Définition 1

Soient f et F deux fonctions définies sur un intervalle I. On dit que F est une primitive de f sur I lorsque F est dérivable sur I et que F' = f.

Exemple :

Les fonctions $x \mapsto x^3$ et $x \mapsto x^3 + 6$ sont deux primitives sur \mathbb{R} de la fonction $x \mapsto 3x^2$.

Propriété 1 : Admise (pour l'instant)

Toute fonction continue sur un intervalle admet des primitives sur cet intervalle.

! Remarque :

Certaines fonctions comme la fonction $f: x \longmapsto e^{-x^2}$, sont continues sur \mathbb{R} , donc admettent des primitives sur \mathbb{R} , mais n'ont pas de primitive « explicite » à l'aide des fonctions usuelles. C'est un résultat (très) difficile appelé théorème de Liouville.

Propriété 2

Les primitives d'une même fonction continue sur un intervalle diffèrent d'une constante.

Preuve. Soient F_1 et F_2 deux primitives de f sur I.

On définit sur I la fonction g par $g(x) = F_2(x) - F_1(x)$.

Par hypothèse, F_1 et F_2 sont dérivables sur I et on a $F'_1 = f$ et $F'_2 = f$.

Par conséquent, $g = F_2 - F_1$ est aussi dérivable sur I et $g' = F_2' - F_1' = f - f = 0$.

On en déduit que g est constante sur I. Il existe donc un réel C tel que, pour tout $x \in I$, g(x) = C soit $F_2(x) - F_1(x) = C$ donc $F_2(x) = F_1(x) + C$, d'où le résultat. \square

Année 2024/2025 Page 1/3

🔔 Remarque :

On déduit de ce résultat qu'on ne peut jamais parler de la primitive d'une fonction mais plutôt d'une primitive puisque il en existe une infinité.

Fonctions de référence et propriétés II.

Voici le tableau des primitives des fonctions de référence :

Fonction f	UNE Primitive F	Intervalle I
$x \mapsto x^n, n \in \mathbb{N}$	$x \mapsto \frac{x^{n+1}}{n+1}$	\mathbb{R}
$x \mapsto \frac{1}{x^n}, n \in \mathbb{N} \setminus \{0; 1\}$	$x \mapsto -\frac{1}{(n+1)x^{n-1}}$	$]-\infty;0[\text{ et }]0;+\infty[$
$x \mapsto \frac{1}{\sqrt{x}}$	$2\sqrt{x}$	$]0;+\infty[$
$x \mapsto e^{ax+b}, \ a \in \mathbb{R}^*, \ b \in \mathbb{R}$	$x \mapsto \frac{e^{ax+b}}{a}$	\mathbb{R}
$x \mapsto \frac{1}{x}$	$x \mapsto \ln(x)$	$]0;+\infty[$

Propriété 3

Si F est une primitive de f et G est une primitive de g sur un intervalle I alors :

- F + G est une primitive de f + g,
- λF est une primitive de λf avec $\lambda \in \mathbb{R}$.

Méthode :

Déterminons une primitive de $f: x \mapsto x^2 + \frac{3}{\sqrt{x}}$ définie sur \mathbb{R} .

- 1. On vérifie que la fonction f est continue sur \mathbb{R} : elle est somme de fonctions continues sur \mathbb{R} .
- $2.\ f$ admet donc une primitive. Utilisons le tableau vu précédemment : Une primitive de $x \mapsto x^2$ est $x \mapsto \frac{x^3}{3}$ et une primitive de $x \mapsto \frac{3}{\sqrt{x}}$ est $x \mapsto 6\sqrt{x}$. Donc la fonction F définie sur \mathbb{R} par $F(x) = \frac{x^3}{3} + 6\sqrt{x}$ est une primitive de f

! Remarque:

Après avoir déterminer une primitive de notre fonction : on vérifie! On dérive la primitive trouvée et on vérifie que l'on retombe bien sur la fonction de départ.

Année 2024/2025 Page 2/3

Primitives des fonctions de la forme $u' \times (v' \circ u)$ III.

Propriété 4

Soient u et v deux fonctions telles que la fonction $v \circ u$ est définie et dérivable sur un intervalle I. Alors $v \circ u$ est une primitive sur I de $u' \times (v' \circ u)$.

Certaines formes de fonctions sont à reconnaître pour en calculer les primitives :

- Une primitive d'une fonction de la forme $-\frac{u'}{u^2}$ où u est une fonction qui ne s'annule pas est $\frac{1}{u}$.
- Une primitive d'une fonction de la forme $\frac{u'}{2\sqrt{u}}$ où u est une fonction strictement positive est \sqrt{u} .
- Une primitive d'une fonction de la forme $u'e^u$ est e^u .
- Une primitive d'une fonction de la forme $\frac{u'}{u}$ où u est une fonction strictement positive est ln(u).

Exemple :

Déterminons les primitives de $f: x \mapsto \frac{x}{(x^2+1)^2}$ définie sur \mathbb{R} .

Puisque pour $x \in \mathbb{R}$, on a $(x^2 + 1)^2 \neq 0$, alors f est définie et dérivable sur \mathbb{R} comme quotient de fonction dérivable sur \mathbb{R} . Donc f est continue sur \mathbb{R} et admet alors des primitives sur \mathbb{R} .

Soit
$$x \in \mathbb{R}$$
, on a : $f(x) = x \times \frac{1}{(x^2 + 1)^2}$.

On pose
$$u(x) = x^2 + 1$$
 donc $u'(x) = 2x$.

On pose
$$u(x) = x^2 + 1$$
 donc $u'(x) = 2x$.
Alors, pour tout $x \in \mathbb{R}$, $f(x) = \frac{1}{2} \times \frac{2x}{(x^2 + 1)^2} = \frac{1}{2} \times \frac{u'(x)}{u(x)^2}$.

Les primitives de f sur \mathbb{R} sont dont de la forme $x \mapsto -\frac{1}{2(x^2+1)} + C$, où $C \in \mathbb{R}$.

Année 2024/2025 Page 3/3