The impacts of network topology on disease spread

(Mark D.F. Shirley, Steve P. Rushton)

Manuel Reyes Sánchez

Escuela Politécnica Superior Universidad Autónoma de Madrid

Índice

- Introducción y estado del arte
 - Grafos para modelar transmisión de enfermedades
 - Problemas, posibilidades
- Topologías contempladas
 - Métricas
 - Redes seleccionadas
- Transmisión de enfermedades
 - Métricas y resultados
- Discusión y conclusiones
- Ampliación del estudio

Introducción y estado del arte

- La mayoría de modelos epidemológicos asumen uniformidad ("mean-field models").
- Sin embargo reflejar los patrones y dinámicas de la transmisión puede mejorar la verosimilitud de las simulaciones.
- Para ello pueden ser utilizadas arquitecturas concretas de redes (mundo pequeño, libre de escala).

Topologías contempladas

- Comparación entre las diferentes topologías pero con número similar de vértices (500) y ramas.
- Para las redes con generación aleatoria se ofrecen resultados promedios de varias ejecuciones.
- Topologías generadas:
 - Grafos aleatorios
 - Redes regulares
 - Redes de mundo pequeño
 - Redes libres de escala

Redes regulares y de mundo pequeño de una dimensión

Redes regulares y de mundo pequeño de dos dimensiones

Grafos aleatorios

Redes libres de escala

Métricas

- Para la selección de parámetros:
 - Igual número de vértices
 - Similar (dentro de lo posible) número de ramas
- Para comprar topologías:
 - Grado medio de los vértices
 - Distribución de los grados de los nodos
 - Camino medio del grafo (L)
 - Índice de clusterización (C)

Redes seleccionadas

- Grafos aleatorios
 - Variación de la probabilidad de rama
- Redes regulares 1D
 - Cambio en el número de vecinos
- Redes regulares 2D
 - Cambio en el número de vecinos
- Redes de mundo pequeño 1D
 - Vecinos de la red regular fijados (4, 6, 8)
 - Variación de la probabilidad de atajo
- Redes de mundo pequeño 2D
 - Vecinos de la red regular fijados (8, 12)
 - Variación de la probabilidad de atajo
- Redes libres de escala
 - Variación de los vértices añadidos por paso

Redes seleccionadas

- Grafos aleatorios
 - Probabilidad de rama = 0.015
- Redes regulares 1D
 - 8 vecinos en anillo
- Redes regulares 2D
 - Grid conectado a 8 vecinos
- Redes de mundo pequeño
 - A partir de ambas regulares
 - Probabilidad de atajo = 0.05
- Redes libres de escala
 - 4 vértices añadidos por paso

Distribución de los grados de los nodos

- Los grafos aleatorio siguen una distribución de Poisson
- Las redes libres de escala se aproximan a una distribución de grado con una ley potencial
- Las redes regulares 1D tienen un solo grado
- En las redes regulares 2D se inclumple debido a las esquinas del grafo
- Las redes de mundo pequeño tienen valores similares a las redes regulares salvo las variaciones producidas por los atajos

Propagación de enfermedades

- Para simular la transmisión de enfermedad se han generado una serie de posibles estados secuenciales para cada vértice:
 - Sano, incubando, enfermo y inmune
- Los nodos (individuos) enfermos cuentan con una probabilidad de infectar los nodos a los cuales están conectados
- Existe un tiempo de incubación y de enfermedad tras el cual se pasa al siguiente estado automáticamente
- Las pruebas del paper se llevan a cabo con:
 - Probabilidad de infección = 0.1
 - Periodo de latencia = 2 ts
 - Periodo de enfermedad = 10 ts

Propagación de enfermedades

Métricas:

- Realizadas sobre la curva que representa el tamaño de la infección (nodos infectados) en cada instante de tiempo
- Gradiente de la curva
- Valor máximo de la curva
- Instante de tiempo en el cual se alcanza el máximo valor

Discusión y conclusiones

- Los grafos utilizados en modelo epidemológicos son en muchas ocasiones homogeneos
 - Se ha demostrado que asumir esto conduce a resultados muy diferentes respecto a otras topologías
- Redes con L pequeños muestras una mayor rapidez en la expansión de enfermedades
- Hay que tener en cuenta la topología de la realidad para reflejar en los grafos realizados: por ejemplo existe clusterización, pero no masiva
- Es importante observar datos de dispersión de enfermedades reales para establecer que redes se comportan de manera similar

- ¿Como influyen los tiempos de infección en las tres métricas planteadas?
 - Influye en el tiempo de propagación
 - Un tiempo muy pequeño de enfermedad puede reducir las probabilidades de contagio
 - Puede ocasionar extinción de la enfermedad

- ¿Y si se desarrolla una cura?
 - A partir de un instante de tiempo se comienza a vacunar gente que no sea inmune
 - Es posible variar el instante de comienzo y cuanta gente es vacunada por instante de tiempo

The impacts of network topology on disease spread

(Mark D.F. Shirley, Steve P. Rushton)

Manuel Reyes Sánchez

Escuela Politécnica Superior Universidad Autónoma de Madrid

