

## **INTRODUCTORY TALK**

**Dylan Bourgeois** ML Engineer Candidate

It's nice to meet all of you!



*You can find these slides* **dtsbourg.me/kodiak**.

## **About me**

- @dtsbourg
- 8 dtsbourg.me



#### Education

## **Student at EPFL** (Lausanne, Switzerland)

B.Sc. in Microengineering

M.Sc. in Robotics

Mainly focused on Machine Learning

#### Experience

### Intern at LHCb (CERN)

Working on designing ML methods for the LHCb Trigger Upgrade. [Bourgeois et al, 2018b, Hasse et al, 2018]

#### Latest

## **Masters Thesis at Stanford**

Supervised by Prs. J. Leskovec (Stanford, SNAP)

& P. Vandergheynst (EPFL, LTS2).

Working on Learning representations of source code from structure & context.

## MSc. Thesis

## Learning representations of source code from structure & context.

# Capturing similarities of source code

Programming languages offer a unified interface, which is leveraged by programmers. The regularities in coding patterns can be used as a proxy for semantics.

## **Example applications**

- Code recommendation
- Plagiarism detection
- Smarter development tools
- Error correction
- Smart search

```
for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
```

## Existing approaches only capture a single mode



## We propose a hybrid approach

Our model leverages both heuristics and regularities, specifically through structure.

#### **HEURISTICS (STRUCTURE)**

We provide evidence for the importance of leveraging structure in the representation of source code.

#### **REGULARITIES** (CONTEXT)

We show that patterns in the input provide a decent signal.

#### **HYBRID** (OURS)

We propose a model which learns to recognize both structural and lexical patterns.

## Structure is readily available for source code

Unlike natural language where parse trees are not unique and costly to infer.

#### **HEURISTICS (STRUCTURE)**

Structure can be extracted deterministically through compiler tools. It represents the language's grammar / syntax.

def hello\_world(self):
 self.said\_hello = True
 print("Hello world!")



#### **REGULARITIES (CONTEXT)**

We show that patterns in the input provide a decent signal.

### **STRUCTURE**

## Graph Neural Networks capture local structure

Node representations are computed from each of its neighbours.



### **STRUCTURE**

## Graph Neural Networks capture local structure

... but only in a limited receptive field!



## Language Models are learned from context

#### HEURISTICS (STRUCTURF)

Structure can be extracted deterministically through compiler tools. It represents the language's grammar / syntax.

#### **REGULARITIES (CONTEXT)**

Language models have been tried many times on Natural Language, but also on "Big Code". [Hindle et al., 2012]





Linear Graphical Model Markov Chain

### CONTEXT

# The Transformer is very good at capturing context

No assumptions are made on the underlying structure: the attention module can attend to all the elements in the sequence.



## **INSIGHT**

## The Transformer is actually a GNN!

The encoder can be seen as a message-passing Graph Neural Network on a fully connected input graph.



### **INSIGHT**

## The Transformer is actually a GNN!

The encoder can be seen as a message-passing Graph Neural Network on a fully connected input graph.



## **OUR APPROACH** - BiFocale

# Capturing both local structure and global context.

We can modify a Transformer encoder block to run on arbitrarily structured inputs.



### **OUR APPROACH** - BiFocale

# Capturing both local structure and global context.

For example, with the masked attention formulation, we can modify a Transformer encoder block to run on arbitrarily structured inputs.



## This hybrid model can also be pre-trained!

[Devlin et al, 2018; Radford et al., 2019]

This has been shown to equip the model with an initial knowledge of the domain at hand. This solution should be closer to future relevant tasks in the hypothesis space.



## The model is fine-tuned to predict method names

Given a method definition, the model must predict a relevant name from ~10k.



## ... and is pretty good at it!

| BIFOCALE       |      | Alon' | 19 [9] | Alon'18 [8] | Fernandes' 18 [19] | Allamanis'18 [7] |
|----------------|------|-------|--------|-------------|--------------------|------------------|
| Acc.           | F1   | Acc.  | F1     | Acc.        | F1                 | Acc              |
| JAVA 🜟 0.756   | 69.1 | 0.633 | 59.5   | 0.473       | 51.4               | _                |
| Рутном 🛣 0.760 | 60.5 | _     | _      | 0.511 @7    | _                  | 0.416            |

Trained on



## Predictions hint at the model's hybrid nature

#### CORRECT PREDICTIONS

```
def get_config(self):
                                            2 def __init__(self, minval=0, maxval=5,
        return {
                                              seed=None):
            'mean': self.mean.
                                                       self.minval = minval
            'stddev': self.stddev,
                                                       self.maxval = maxval
            'seed': self.seed
                                                       self.seed = seed
Predictions 0. get_config (1.0)
                                              Predictions 0. __init__ (1.0)

    _updated_config (0.0)

                                                          1. on_train_begin (0.0)
           2. _preprocess_conv3d_kernel (0.0)
                                                          2. preprocess_input (0.0)
```

#### **INCORRECT PREDICTIONS**

## BiFocale is a hybrid!

The model can leverage both co-occurrence based semantics as well as structural similarities.

```
def sigmoid(x):
    return 1. / (1. + np.exp(-x))
Predictions 0. tanh (0.525)
               def tanh(x):
                   return np.tanh(x)
           1. softplus (0.335)
               def softplus(x):
                   return np.log(1. + np.exp(x))
           2. softsign (0.104)
               def softsign(x):
                   return x / (1 + np.abs(x))
```

## BiFocale is a hybrid!

The model can leverage both co-occurrence based semantics as well as structural similarities.

```
def sigmoid(x):
    return 1. / (1. + np.exp(-x))
Predictions 0. tanh (0.525)
               def tanh(x):
                   return np.tanh(x)
           1. softplus (0.335)
               def softplus(x):
                   return np.log(1. + np.exp(x))
           2. softsign (0.104)
               def softsign(x):
                   return x / (1 + np.abs(x))
```

## The model is fine-tuned to predict variable names

We hide a variable from a snippet of code and ask the model to predict the masked variable's sub-tokens.



## BiFocale sets a new SoTA!

We also show how heuristics are useful for learning on structured grammars.

|                         | Accuracy |       |       |       |  |
|-------------------------|----------|-------|-------|-------|--|
|                         | @1       | @3    | @5    | @7    |  |
| BERT                    | 0.3      | 0.43  | 0.48  | 0.52  |  |
| BIFOCALE                | 0.59     | 0.792 | 0.833 | 0.849 |  |
| Alon et al.'18 [8]      | _        | _     | _     | 0.567 |  |
| Allamanis et al.'18 [7] | 0.323    | 0.408 | 0.437 | _     |  |

## Predictions hint at the model's hybrid nature

#### **CORRECT PREDICTIONS**

```
1 for cell in self.cells:
    if isinstance(cell, Layer):
        trainable_weights += cell.trainable_weights
```

#### **Predictions**

```
['cell', '[PAD]', '[PAD]', '[PAD]']
```

#### **Predictions**

```
['self', '[PAD]', '[PAD]', '[PAD]']
```

#### **INCORRECT PREDICTIONS**

#### **Predictions**

```
0. ['y', 'true', 'true', 'true']
1. ['self', '[PAD]', '[PAD]']
2. ['true', 'train', 'train', 'train']
```

## For more ...

- @dtsbourg
- 8 dtsbourg.me



#### Stanford

## **GNN** Explainer

Interpretability methods for Graph Neural Networks. [Ying et al, 2019]

#### **CERN**

## LHCb Trigger Upgrade (CERN)

Working on designing ML methods for the LHCb Trigger Upgrade. [Bourgeois et al, 2018b, Hasse et al, 2018]

#### **FPFI**

## **Media Observatory**

Monitoring the media ecosystem. [Bourgeois et al, 2018a, Rappaz et al, 2019]

#### CERN

## LHCb Trigger Upgrade (CERN)

Working on designing ML methods for the LHCb Trigger Upgrade. [Bourgeois et al, 2018b, Hasse et al, 2018]

**EPFL** 

## **Media Observatory**

Monitoring the media ecosystem. [Bourgeois et al, 2018a, Rappaz et al, 2019]

[Bourgeois et al, 2018b, Hasse et al, 2018]

## Fast selection of interesting collisions

The experiment would be throttled if all events were saved to disk so the Trigger acts as a filter.



[Bourgeois et al, 2018a, Rappaz et al, 2019]

# Studying coverage patterns to observe the news ecosystem

We build a map of source similarity without relying on a ground truth to estimate bias.



[Ying et al, 2019]

## Interpretability methods for Graph Neural Networks

Works for any trained GNN, showing important structural and feature-based information that is most relevant to a prediction.



## Thank you Kodiak!



## Bibliography - My work

[Ying et al, 2019] GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks R. Ying, D. Bourgeois, J. You, M. Zitnik, J. Leskovec

[Bourgeois et al, 2018a] Selection Bias in News Coverage: Learning It, Fighting It D. Bourgeois, J. Rappaz, K. Aberer, WWW'18

[Rappaz et al, 2019] A Dynamic Embedding Model of the Media Landscape J. Rappaz, D. Bourgeois, K. Aberer, WWW'19

**[Bourgeois et al, 2018b]** *Using holistic information in the Trigger* D. Bourgeois, C. Fitzpatrick, S. Stahl, LHCb Pub

**[Hasse et al, 2018]** New approaches for track reconstruction in LHCb's Vertex Locator C. Hasse, J. Albrecht, B. Couturier, D. Bourgeois, V. Coco, N. Nolte, S. Ponce, JHEP'18

\*

## **Bibliography**

[Allamanis, 2018] Allamanis, M. (2018). The adverse effects of code duplication in machine learning models of code. arxiv:1812.06469.

[Allamanis et al., 2015] Allamanis, M., Barr, E. T., Bird, C., and Sutton, C. (2015). Suggesting accurate method and class names. ESEC/FSE 2015, pages 38–49

**IAllamanis et al., 2018a]** Allamanis, M., Barr, E. T., Devanbu, P. T., and Sutton, C. A. (2018a). *A survey of machine learning for big code and naturalness*. ACM Comput. Surv., 51:81:1–81:37.

[Allamanis et al., 2018b] Allamanis, M., Brockschmidt, M., and Khademi, M. (2018b). Learning to represent programs with graphs. ICLR.

[Alon et al., 2018] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. *A general path-based representation for predicting program properties*. PLDI 2018.

[Alon et al., 2019] Alon, U., Zilberstein, M., Levy, O., and Yahav, E. (2019). *Code2vec: Learning distributed representations of code*. POPL.

## **Bibliography**

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). *A neural probabilistic language model*. J. Mach. Learn. Res., 3:1137–1155.

[Collobert and Weston, 2008] Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. ICML '08.

**[Deerwester et al.,1990]** Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., and Harshman, R. A. (1990). *Indexing by latent semantic analysis.* JASIS, 41:391–407.

**[Devlin et al., 2018]** Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). *BERT: Pre-training of deep bidirectional transformers for language understanding*. Arxiv:1810.04805.

**[Firth,1957]** Firth, J.R.(1957). *A synopsis of linguistic theory* 1930-55. Studies in Linguistic Analysis (special volume of the Philological Society), 1952-59:1–32.

[Fernandes, 2018] P. Fernandes, M. Allamanis, and M. Brockschmidt. Structured neural summarization, 2018.

[Hindle et al., 2012] Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu, P. (2012). *On the naturalness of software*. In ICSE '12, pages 837–847, IEEE Press.

## **Bibliography**

[Hamilton et al., 2017] William L. Hamilton, Rex Ying, Jure Leskovec. Inductive Representation Learning on Large Graphs. NeurIPS 2017

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. ICLR'13

[Radford et al., 2018] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). *Improving language understanding by generative pre-training.* OpenAl.

**[Shannon, 1950]** Shannon, C. (1950). *Prediction and entropy of printed english*. Bell Systems Technical Journal.

**[Vaswani et al., 2017]** Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). *Attention is all you need.* In NeurIPS.

[Xu et al., 2019] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural networks? In ICLR'19.