

V.GOKULKUMAR

velicharlagokulkumar@gmail.com IITH Future Wireless Communication (FWC)

ASSIGN-5

Contents

FWC22034

1	Problem	1
2	Solution	1
3	Construction	2

1 Problem

ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll$

(i) ar (ACB) = ar (ACF)(ii) ar (AEDF) = ar (ABCDE)

2 Solution

Theory:

In pentagon ABCDE, $AC \parallel BF$ **To Prove:** Ar(ACB)=Ar(ACF)

 Δ ACB and Δ ACF lies on same base AC and are between

same parallel AC and BF

Theorem: Two triangles on the same base (or equal bases) and between the same parallels are equal in area.

$$\therefore$$
 Ar(\triangle ACB)=Ar(\triangle ACF).....(1)
Hence, Proved

To Prove: Ar(AEDF)=Ar(ABCDE)Add Ar(AEDC) to (1) both sides

 $Ar(\Delta ACB) + Ar(AEDC) = Ar(\Delta ACF) + Ar(AEDC)$

termux commands:

python3 matrix.py

The input parameters for this construction are

Symbol	Value	Description
r1	4	DC
r2	8	DB
r3	6.5	DA
r4	4	DE
θ_1	$17\pi/36$	∠BDC
θ_2	$53\pi/180$	∠ADC
θ_3	$2\pi/3$	∠EDC
D	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Point D

To Prove: Ar(ACB)=Ar(ACF)

Area of the triangle ΔACB is given by $Ar(\Delta ACB) = \frac{1}{2} ||\mathbf{v}\mathbf{1} \times \mathbf{v}\mathbf{2}||.....(2)$

Area of the triangle $\triangle ACF$ is given by $Ar(\triangle ACF) = \frac{1}{2} ||\mathbf{v}\mathbf{3} \times \mathbf{v}\mathbf{4}||....(3)$

To Prove: Ar(AEDF)=Ar(ABCDE)

Ar(
$$\triangle$$
AED)= $\frac{1}{2}$ ||A × E||.....(5)
Ar(\triangle ADC)= $\frac{1}{2}$ ||A × C||.....(6)

$$Ar(AEDC)=Ar(\Delta AED)+Ar(\Delta ADC)$$

$$\therefore$$
 Ar(AEDF)=Ar(AEDC)+Ar(\triangle ACF)......(7)

$$\therefore$$
 Ar(ABCDE)=Ar(AEDC)+Ar(\triangle ACB)......(8)

The below python code realizes the above construction:

https://github.com/velicharlagokulkumar/FWC_module1/tree/main/matrices/lines/codes/matrix.py

3 Construction

