	TP1 Multi - Charpin Chevillard	Pt		АВ	C D Note	
ı	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5	
4	Quelle est la grandeur réglante ?	1	Α		0,5	
5	Donner une grandeur perturbatrice.	1	Α		0,5	
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1	Α		1	
I.	Etude du procédé			_		
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α		1	
4	En déduire le sens d'action à régler sur le régulateur.	1	Α		1	
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Α		3	
II.	Etude du régulateur					
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	Α		1,5	
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	С		0,525	Vous ne tenait jamais compte du kr calculé!
٧.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Α		1	
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	В		1.125	Voilà ce qui se passe quand on ne fait pas tout correctement.
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	С		0,35	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2			_	Ce n'est pas terrible.
			Not	te sur :	20 17,0	

TP n°6 Multi

I. Préparation du travail

1)

- 2) La grandeur réglée est la température de l'eau.
- 3) Le principe utilisé pour mesurer la grandeur réglée est une sonde de température PT100, la température est mesurée avec une résistance qui mesure 100 ohm pour 0°C.
- 4) La grandeur réglante est le débit d'au chaude.
- 5) la grandeur perturbatrice est la température de l'eau de ville

II. Etude du procédé

1) entrée

TagName	01M01_04		LIN Name	01M01_04	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	m
			LR_in	4.00	m
HiHi	100.0	%	Al	0.00	m
Hi	100.0	%	Res	0.000	Ol
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	
			LeadRes	0.000	Ol
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	Se
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	
Alm0nTim	0.000	Secs	Options	>0000	
Alm0fTim	0.000	Secs	Status	>0000	

PID:

agName	PID		LIN Name	PID	
уре	PID		DBase	<local></local>	
Task .	3 (110ms)		Rate	0	
Mode	MANUAL		Alarms		
FallBack	MANUAL				
			HAA	100.0	%
PV	31.2	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	20.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00100000	
HR_OP	100.0	%	ModeAct	00100001	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	%
LL_OP	0.0	%	FB_OP	20.0	%

Sortie:

TagName	02P02_04		LIN Name	02P02_04	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>04	
			Sitello	2	
OP	20.0	%	Channel	2	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	m
			LR_out	4.00	m
Out	20.0	%	AO	7.20	m.
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

2)

OP(%)	PV(°C)
0	26,7
20	32,8
40	44
60	48,7
80	50,5
100	51,1

- 3) On prend les points de 20% à 80% DeltaY/DeltaX=(50,5-32,8)/60 =0,29 K=0,29
- 4) Quand la mesure (température) augment il faut diminuer la sortie du régulateur pour fermer la vanne est donc diminuer le débit d'eau chaude. Le sens d'action du régulateur est donc en inverse.

5)

$$X=9,6$$

 $Y=10$

$$t0 = 09:22:40 = 0s$$

$$t1 = 09:24:00 = 80s$$

$$t2 = 09:24:40 = 120s$$

le gain statique K = delta X/delta Y

K = 9,6/10

K = 0.96

le retard T = 2.8(t1-t0) - 1.8(t2-t0)

T = 2.8(80-0) - 1.8(120-0)

T = 8

la constante temps t = 5,5(t2-t1)

t = 5,5(120-80)

t = 220s

kr = 0.036

III. Étude du régulateur :

1,2) La structure du régulateur est mixte

delta = 10 delta P = 5,5 = delta i

A= (0,83/K)*(0,4+(1/kr)) =24,36 Xp=100/A=100/24,36= 4,1%

Ti= t+0,4*T = 220+0,4(8) =220,32

Td= T/(kr+2,5) =8/(0,036+2,5) =3,15

IV. Performances et optimisation

1)

Mins	
4.1	%
3.66	
0.05	
	4.1 3.66

2)

t0 = 0s

t1= 10:22:25 = 245s

temps de réponse est: t1-t0 = 245s

Il y a un dépassement et une erreur statique.

Nous allons donc améliorer le temps de réponse...

J'ai donc modifié les valeurs.

On à pas eu le temps de redescendre la consigne à 25% donc j'ai fait mon deuxième échelon de 35% à 45%. Donc mes deux échelon ne réagirons pas de la même manière même si les paramètre du PID on était changé.

t0 = 0st1 = 0

TimeBase	Mins	
XP	3.1	%
TI	3.00	
TD	0.50	

On à donc stabiliser la courbe avec un Ti=3min on à diminué Xp de 3,1%.

On à donc gagner 0,66 minutes sur le temps de réponse par rapport à l'ancien réglages tout en gardant un dépassement et une erreur statique nul. On voit donc une réelle amélioration sur la régulation