# Handling Missing Data in Research: A Practical Guide

full information maximum likelihood (FIML, direct-ml)

**Waylon Howard** 

Webinar, November 19, 2024

### **ML** estimation

- ML identifies the population parameters that are most likely given the observed data
- A likelihood (or log-likelihood) function is used to quantify how well the proposed parameters explain the observed data.
- ML requires a population distribution (normal)

## ML estimation (9)

A density function gives the shape of the normal curve

$$L_i = rac{1}{\sqrt{2\pi\sigma^2}}e^{-.5rac{(Y_i-\mu)^2}{\sigma^2}}$$

 $L_i$  (the likelihood) gives the relative probability that  $Y_i$  came from a normal distribution with a particular mean and variance.

#### **ML** estimation

Applying the density function gives the relative probability  $(L_i)$  of each score from this normal distribution.

#### complete data:

var1 ( 
$$\mu$$
 = 50.42,  $\sigma$  = 7.65 )

| ID | var1 | Lį       |
|----|------|----------|
| 1  | 36.6 | 0.010201 |
| 2  | 41.8 | 0.027624 |
| 3  | 42.6 | 0.030908 |
| 4  | 43.1 | 0.032971 |
| 5  | 43.4 | 0.034205 |
| 6  | 44.2 | 0.037444 |
| 7  | 44.9 | 0.040166 |
| 8  | 46.3 | 0.045074 |
| 9  | 48.6 | 0.050658 |
| 10 | 49.0 | 0.051223 |
| 11 | 50.0 | 0.052038 |
| 12 | 51.6 | 0.051508 |
| 13 | 54.6 | 0.044915 |
| 14 | 54.8 | 0.044264 |
| 15 | 55.7 | 0.041102 |
| 16 | 57.2 | 0.035227 |
| 17 | 57.6 | 0.033589 |
| 18 | 60.3 | 0.022677 |
| 19 | 60.9 | 0.020433 |
| 20 | 65.3 | 0.007888 |



## Maximum Likelihood

Multiple each  $(L_i)$  to get sample likelihood.

0.000000000000000000000000000163666415977258

Fit of this data to  $\mu$  = 50.42,  $\sigma$  = 7.65

To avoid small numbers, we take the log of the likelihood.

Add each  $logL_i$  to get sample loglikelihood.

-68.58

| ID | var1 | Lį       | logL <sub>i</sub> |
|----|------|----------|-------------------|
| 1  | 36.6 | 0.010201 | -4.585258         |
| 2  | 41.8 | 0.027624 | -3.589055         |
| 3  | 42.6 | 0.030908 | -3.476754         |
| 4  | 43.1 | 0.032971 | -3.412113         |
| 5  | 43.4 | 0.034205 | -3.375376         |
| 6  | 44.2 | 0.037444 | -3.284921         |
| 7  | 44.9 | 0.040166 | -3.214733         |
| 8  | 46.3 | 0.045074 | -3.099445         |
| 9  | 48.6 | 0.050658 | -2.982664         |
| 10 | 49.0 | 0.051223 | -2.97157          |
| 11 | 50.0 | 0.052038 | -2.955783         |
| 12 | 51.6 | 0.051508 | -2.966023         |
| 13 | 54.6 | 0.044915 | -3.102986         |
| 14 | 54.8 | 0.044264 | -3.117579         |
| 15 | 55.7 | 0.041102 | -3.191692         |
| 16 | 57.2 | 0.035227 | -3.345936         |
| 17 | 57.6 | 0.033589 | -3.393553         |
| 18 | 60.3 | 0.022677 | -3.786393         |
| 19 | 60.9 | 0.020433 | -3.890587         |
| 20 | 65.3 | 0.007888 | -4.842415         |

| ID | var1 | μ = 30  | μ = 40 | μ = 50 | μ = 60 | μ = 70  |
|----|------|---------|--------|--------|--------|---------|
| 1  | 36.6 | -3.326  | -3.053 | -4.487 | -7.627 | -12.474 |
| 2  | 41.8 | -4.142  | -2.982 | -3.528 | -5.781 | -9.74   |
| 3  | 42.6 | -4.309  | -3.012 | -3.422 | -5.538 | -9.361  |
| 4  | 43.1 | -4.419  | -3.036 | -3.361 | -5.391 | -9.129  |
| 5  | 43.4 | -4.487  | -3.053 | -3.326 | -5.306 | -8.992  |
| 6  | 44.2 | -4.675  | -3.105 | -3.241 | -5.085 | -8.634  |
| 7  | 44.9 | -4.849  | -3.159 | -3.176 | -4.9   | -8.33   |
| 8  | 46.3 | -5.222  | -3.293 | -3.071 | -4.556 | -7.747  |
| 9  | 48.6 | -5.906  | -3.585 | -2.971 | -4.063 | -6.862  |
| 10 | 49   | -6.035  | -3.645 | -2.963 | -3.987 | -6.718  |
| 11 | 50   | -6.368  | -3.808 | -2.954 | -3.808 | -6.368  |
| 12 | 51.6 | -6.936  | -4.103 | -2.976 | -3.556 | -5.843  |
| 13 | 54.6 | -8.118  | -4.773 | -3.135 | -3.203 | -4.978  |
| 14 | 54.8 | -8.203  | -4.823 | -3.151 | -3.185 | -4.926  |
| 15 | 55.7 | -8.591  | -5.058 | -3.231 | -3.112 | -4.699  |
| 16 | 57.2 | -9.268  | -5.479 | -3.397 | -3.021 | -4.352  |
| 17 | 57.6 | -9.455  | -5.598 | -3.447 | -3.003 | -4.266  |
| 18 | 60.3 | -10.789 | -6.471 | -3.86  | -2.955 | -3.757  |
| 19 | 60.9 | -11.102 | -6.682 | -3.968 | -2.961 | -3.661  |
| 20 | 65.3 | -13.588 | -8.416 | -4.952 | -3.194 | -3.143  |
|    |      | -139.79 | -87.13 | -68.62 | -84.23 | -133.98 |
|    |      | 100.70  | 57.15  | 00.02  | 0-1.25 | 155.50  |

#### Possible population means for var2



Audition different parameters to quantify how well the proposed values explain the observed data.

Green dotted lines represent observed values for var2.

*Note*. Listwise var2 *M* = 41.98.

| ID | var2 | μ = 30  | μ = 40 | μ = 50 | μ = 60  | μ = 70  |
|----|------|---------|--------|--------|---------|---------|
| 1  | 40   | -5.252  | -2.341 | -5.252 | -13.984 | -28.538 |
| 2  | 40   | -5.252  | -2.341 | -5.252 | -13.984 | -28.538 |
| 3  | 35   | -3.068  | -3.068 | -8.89  | -20.533 | -37.998 |
| 4  | 43   | -7.26   | -2.603 | -3.767 | -10.753 | -23.561 |
| 5  | 42.6 | -6.962  | -2.538 | -3.935 | -11.154 | -24.194 |
| 6  | 39   | -4.698  | -2.37  | -5.863 | -15.177 | -30.314 |
| 7  | 45   | -8.89   | -3.068 | -3.068 | -8.89   | -20.533 |
| 8  | 45.2 | -9.066  | -3.128 | -3.011 | -8.717  | -20.243 |
| 9  | 50   | -13.984 | -5.252 | -2.341 | -5.252  | -13.984 |
| 10 | 40   | -5.252  | -2.341 | -5.252 | -13.984 | -28.538 |
| 11 |      |         |        |        |         |         |
| 12 |      |         |        |        |         |         |
| 13 |      |         |        |        |         |         |
| 14 |      |         |        |        |         |         |
| 15 |      |         |        |        |         |         |
| 16 |      |         |        |        |         |         |
| 17 |      |         |        |        |         |         |
| 18 |      |         |        |        |         |         |
| 19 |      |         |        |        |         |         |
| 20 |      |         |        |        |         |         |
|    |      | -69.68  | -29.05 | -46.63 | -122.43 | -256.44 |

# 

**Step 3**. Report methods and software.

To address the issue of incomplete data, we used full information maximum likelihood (FIML) in R using the lavaan package (version 0.6-18). To account for non-normality in the data, we applied the robust standard error estimator by specifying the robust = TRUE option in the lavaan function. Additionally, we followed Graham's (2003) approach for incorporating auxiliary variables into the analysis. Specifically, we included five auxiliary variables: age, sex, race, education, and income to handle potential bias introduced by missing data.

**Extended Reporting**. Provide supplemental materials for details and code.



- FIML "fills in" missing data
- Only for SEM models
- Must have MAR to use MI/FIML
- Guaranteed better than MI
- Exogenous variables are always included
- No need with large samples

# Any questions?