Рациональные и иррациональные числа

Напомним, что число называется рациональным, если оно представимо в виде дроби p/q, где числа p и q целые и $q \neq 0$. Множество рациональных чисел обозначается \mathbb{Q} , таким образом, справедлива цепочка $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$ включений. Вещественные числа (сделаем вид, что мы знаем, что это такое), которые не являются рациональными, называются иррациональными.

- 1. Докажите иррациональность числа $\sqrt{2} + \sqrt{3}$.
- 2. Докажите, что каждое рациональное число p/q представимо в виде конечной либо бесконечной периодической десятичной дроби, причём длина периода меньше q.
- 3. Докажите, что всякая бесконечная периодическая десятичная дробь является рациональным числом и опишите алгоритм, по которому его можно представить в виде обыкновенной дроби.

Сопряжённые числа

Пусть числа a и b рациональные, а d — натуральное число, не являющееся полным квадратом. Числом, сопряжённым к числу $a+b\sqrt{d}$ называется число $a-b\sqrt{d}$. Сопряжённые числа уже́ ранее использовались вами при избавлении от иррациональности в знаменателе.

- 4. Докажите, что число вида $a + b\sqrt{d}$ однозначно определяет коэффициенты a и b (т. е. такое представление единственно).
- 5. Докажите, что, если $(a+b\sqrt{d})^n=A+B\sqrt{d}$, то $(a-b\sqrt{d})^n=A-B\sqrt{d}$.

Упражнения

- 6. Докажите иррациональность числа $\sqrt{2} + \sqrt{3} + \sqrt{5}$.
- 7. Докажите иррациональность числа $\sqrt{2} + \sqrt[3]{3}$.
- 8. Докажите, что равенство $(x+y\sqrt{2})^2+(z+t\sqrt{2})^2=5+4\sqrt{2}$ не может выполняться ни при каких рациональных $x,\,y,\,z$ и t.
- 9. Докажите, что равенство $(5+3\sqrt{2})^m=(3+5\sqrt{2})^n$ не может выполняться ни при каких натуральных m и n .
- 10. Найдите 1008-ую цифру после запятой числа $(2+\sqrt{3})^{2019}$.

Задачи

- 11. Докажите¹, что для любых вещественного числа x и натурального числа n существуют такие целые числа a и b, $1\leqslant b\leqslant n$, что $|x-\frac{a}{b}|<\frac{1}{bn}$.
- 12. Пусть $x_1, x_2, \ldots, x_m \in \mathbb{R}$ и $n \in \mathbb{N}$. Докажите², что существуют числа $a_1, a_2, \ldots, a_m \in \mathbb{Z}$ и $b \in \mathbb{Z}$, $1 \leqslant b \leqslant n^m$ такие, что $|x_1 \frac{a_1}{b}| < \frac{1}{bn}$, $|x_2 \frac{a_2}{b}| < \frac{1}{bn}$, ..., $|x_m \frac{a_m}{b}| < \frac{1}{bn}$.
- 13. В файле записаны два числа: $1 + \sqrt[3]{2} + \sqrt[3]{4}$ и $1 + 2\sqrt[3]{2} + 3\sqrt[3]{4}$. Даник написал компьютерную программу, которая может выполнять три действия: 1) стереть записанное число x и записать вместо него -2x; 2) стереть любое записанное число x и записать вместо него $x + \sqrt[3]{2}$; 3) стереть записанные числа x и y и записать вместо них числа x + y и x y (Даник сам выбирает, какое из чисел принять за x, а какое за y). Может ли Даник за несколько таких операций добиться того, чтобы одно из записанных в файл чисел равнялось нулю?
- 14. Пусть α и β положительные вещественные числа. Докажите, что каждое натуральное число ровно один раз встречается среди чисел $\lfloor \alpha \rfloor$, $\lfloor \beta \rfloor$, $\lfloor 2\alpha \rfloor$, $\lfloor 2\beta \rfloor$, $\lfloor 3\alpha \rfloor$, $\lfloor 3\beta \rfloor$, ..., если и только если $\frac{1}{\alpha} + \frac{1}{\beta} = 1$ и $\alpha, \beta \notin \mathbb{Q}$.
- 15. Докажите, что для любых натуральных чисел m и n найдётся натуральное число k такое, что $(\sqrt{m}-\sqrt{m-1})^n=\sqrt{k}-\sqrt{k-1}$.
- 16. Докажите, что $v_2(|(1+\sqrt{3})^{2n+1}|)=n+1$ для любого натурального числа n.
- 17. Многочлен P(x) удовлетворяет равенствам $(P(x))^2 = 1 + x + x^{100}Q(x)$, где Q некоторый многочлен; и P(0) = 1. Найдите коэффициент при x^{99} в многочлене $(P(x)+1)^{100}$.

¹Теорема Дирихле или теорема о рациональных приближениях.

²Теорема о совместных приближениях.