### Théorie du signal

Gabriel Dauphin

November 1, 2024

# Contents

| 1 | Représentation des signaux non-périodiques, module et argument d'un complexe, distribution de Dirac, indicatrice, calculs de limites, intégrale d'un signal et transformée de Fourier en la fréquence nulle 1.1 Exercices |          |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2 | Symétrie, utilisation de la valeur absolue, transformations des signaux et leurs conséquences sur la transformée de Fourier, module et argument de la transformée de Fourier  2.1 Exercices                               |          |
| 3 | Signaux dépendant d'un second paramètre, descripteurs, transformée de Fourier de signaux exponentiels  3.1 Exercices                                                                                                      | 19       |
| 4 | Signaux gaussiens, techniques de calcul, puissance et énergie de                                                                                                                                                          | <u> </u> |

|   | signaux non-périodiques, intégration par partie 4.1 Exercices                                                                                                                               | <b>27</b> 28 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 5 | Signaux périodiques, sinus cardinaux et transformées de Fourier de fonctions portes, propriétés de la transformée de Fourier, relations trigonométriques, distribution Dirac  5.1 Exercices | 34           |
| 6 |                                                                                                                                                                                             | <b>41</b>    |
| 7 | Puissance et énergie d'un signal périodique, valeur moyenne d'un signal périodique, coefficients de la série de Fourier, valeur à gauche et à droite, parité, représentation 7.1 Exercices  | 46           |
| 8 | Série de Fourier, définition et propriétés, utilisation de la distribution $\delta(\nu)$<br>8.1 Exercices                                                                                   | <b>5</b> 4   |
| 9 | Produit de convolution et distribution de Dirac 9.1 Exercices                                                                                                                               | <b>57</b> 57 |

| 10 Filtres, définition et propriétés, utilisation des limites  10.1 Exercices | <b>61</b> . 61 |
|-------------------------------------------------------------------------------|----------------|
| 11 Autocorrélation 11.1 Exercices                                             | <b>67</b>      |
| 12 Distributions et propriétés 12.1 Exercices                                 | <b>71</b>      |

### Chapter 1

Représentation des signaux non-périodiques, module et argument d'un complexe, distribution de Dirac, indicatrice, calculs de limites, intégrale d'un signal et transformée de Fourier en

- 1. Tracez la courbe représentative de x(t) pour  $t \in [-24]$ .
- 2. Calculez  $\int_{-\infty}^{+\infty} x(t) dt$  et montrez que X(0) = 7.

**Exercice 2** On considère un signal noté x(t) et dont la transformée de Fourier est notée  $X(\nu)$ . Ce signal est une succession de segments joignant les instants t=0,2,3:  $x(0)=0, \ x(2)=1, \ x(3)=0$ . Ce signal est nul pour  $t\leq 0$  et pour  $t\geq 3$ .

- 1. Représentez le signal.
- 2. Exprimez le signal en utilisant l'indicatrice  $\mathbf{1}_A(t)$  où A est un intervalle.
- 3. Calculez X(0).

**Exercice 3** On considère un signal  $x(t) = e^{-t} \mathbf{1}_{\mathbb{R}_+}(t)$ , sa transformée de Fourier est notée  $X(\nu)$ .

- 1. Représentez x(t)
- 2. Calculez X(0)

Exercice 4 On définit  $\Pi(t) = \mathbf{1}_{[-\frac{1}{2},\frac{1}{2}]}(t)$ . Représentez graphiquement  $x(t) = t\Pi(t)$ . Calculez X(0).

Exercice 5 On note  $\mathbb{H}(t) = \mathbf{1}_{[0,+\infty[}(t))$ . Montrez que

$$\mathbf{1}_{[-\frac{1}{2},\frac{1}{2}[}(t) = \mathbb{H}(t+\frac{1}{2}) - \mathbb{H}(t-\frac{1}{2})$$

Exercice 6 On définit un signal x(t) par

$$x(t) = e^{-t} \mathbf{1}_{[0,1[}(t) + e^{-(t-1)} \mathbf{1}_{[1,2[}(t) + e^{-(t-2)} \mathbf{1}_{[2,3[}(t)$$

Représentez ce signal x(t). Calculez X(0).

### Chapter 2

Symétrie, utilisation de la valeur absolue, transformations des signaux et leurs conséquences sur la transformée de Fourier, module et argument de la transformée de Fourier

Représentez le module et l'argument de  $X(\nu)$ .

**Exercice 8** On considère un signal  $x_1(t)$  et sa transformée de Fourier notée  $X_1(\nu)$ .

$$x_1(t) = e^{-t} \mathbf{1}_{\mathbb{R}_+}(t) \ et \ X_1(\nu) = \frac{1}{1 + 2i\pi\nu}$$

- 1. Représentez  $|X_1(\nu)|$
- 2. Représentez  $\arg(X_1)(\nu)$

Exercice 9 On définit un signal x(t) par

$$x(t) = \begin{cases} 0 & si \ t \le -1 \\ 2 & si \ t \in [-1, 0[ \\ 2 - t \ si \ t \in [0, 1[ \\ t & si \ t \in [1, 2[ \\ 2 & si \ t \in [2, 3[ \\ 0 & si \ t \ge 3 \end{cases} \end{cases}$$

Ce signal a déjà été étudié dans l'exercice 1 (p. 5). On considère y(t) = x(t+1).

- 1. Montrez que y(t) est un signal pair.
- 2. En déduire la valeur de  $t_0$ , telle que x(t) soit symétrique par rapport à  $t_0$ .

- 3. Quel est l'argument de  $Y(\nu)$ .
- 4. Exprimez  $X(\nu)$  en fonction de  $Y(\nu)$ .
- 5. Montrez que pour chaque valeur  $\nu$ , il existe  $k \in \mathbb{Z}$  tel que  $\arg(X(\nu)) = -2i\pi\nu + k\pi$ , où  $\mathbb{Z}$  est l'ensemble des entiers positifs et négatifs.
- 6. Montrez que

$$\operatorname{Re}(X(
u)) = \operatorname{TF}\left[\frac{1}{2}x(-t) + \frac{1}{2}x(t)\right](
u)$$

- 7. Montrez que x(t+2) = x(-t)
- 8. Montrez que

$$Re(X(\nu)) = \frac{1}{2}X(\nu) + \frac{1}{2}\overline{X(\nu)} = TF\left[\frac{1}{2}x(t+2) + \frac{1}{2}x(t)\right](\nu)$$

 $où \overline{z}$  signifie le complexe conjugué de z.

- 9. Représentez le graphe de  $t \mapsto \frac{1}{2}x(t) + \frac{1}{2}x(t+2)$
- 10. On pose  $x_a(t) = 2\mathbf{1}_{[-1,3]}(t)$  et  $x_c(t) = (1-|t|)\mathbf{1}_{[-1,1]}(t)$ . En utilisant une construction graphique, montrez que

$$x(t) = x_a(t) - x_c(t-1)$$

**Exercice 10** On considère les signaux x(t), y(t) et z(t), leur transformée de Fourier est notée  $X(\nu)$ ,  $Y(\nu)$ ,  $Z(\nu)$ .

•  $x(t) = e^{-2\pi t} \mathbf{1}_{[0,+\infty[}(t)$ 

$$X(\nu) = \frac{1}{2\pi} \frac{1}{1 + i\nu}$$

Son module et son argument sont représentés dans l'exercice 7.

- $y(t) = e^{-2\pi|t|}$
- $\bullet \ z(t) = e^{-|t|}$
- 1. Exprimez y(t) en fonction de x(t) et x(-t).
- 2. Montrez que  $Y(\nu) = 2\Re e(X(\nu))$  et en utilisant le fait que  $\cos(\arctan(x)) = \frac{x}{\sqrt{1+x^2}}$  montrez qu'ici  $|X(\nu)|$  et  $|Y(\nu)|$  ont les mêmes sens de variations.
- 3. Exprimez z(t) en fonction de y(t)
- 4. Exprimez  $Z(\nu)$  en fonction de  $Y(\nu)$ .
- 5. Représentez  $|Z(\nu)|$  et  $\arg(Z(\nu))$ .

**Exercice 11** On définit  $\Pi(t) = \mathbf{1}_{[-\frac{1}{2},\frac{1}{2}]}(t)$ . On considère le signal  $x_1(t)$  défini par

$$x_1(t) = t\Pi\left(\frac{t}{2}\right)$$

À partir de la représentation graphique de  $t\Pi(t)$  obtenue avec l'exercice 4, représentez graphiquement  $x_1(t)$ .

Exercice 12 On considère  $x_1(t) = e^{-t} \mathbf{1}_{\mathbb{R}_+}(t)$  et  $x_2(t) = x_1(t-1)$ 

- 1. Représentez  $x_2(t)$
- 2. Calculez  $X_2(0)$

**Exercice 13** On considère  $x_1(t) = e^{-t} \mathbf{1}_{\mathbb{R}_+}(t)$ 

- 1. Représentez  $x_3(t) = x_1(t-1) + x_1(-1-t)$
- 2. Exprimez  $x_3(t)$  en fonction de  $x_2(t) = x_1(t-1)$
- 3. Représentez  $x_4(t) = x_1(t+1) + x_1(1-t)$
- 4. Représentez  $x_5(t) = x_1(t+1) x_1(1-t)$
- 5. Quels sont les signaux pairs et impairs?

Exercice 14 On définit  $\Pi(t) = \mathbf{1}_{[-\frac{1}{2}, -\frac{1}{2}]}(t)$  et  $\mathrm{signe}(t) = \mathbf{1}_{\mathbb{R}_+}(t) - \mathbf{1}_{\mathbb{R}_-}(t)$  Représentez graphiquement

$$x_1(t) = \sqrt{|t|} \Pi\left(\frac{t}{2}\right) + \frac{1}{\sqrt{|t|}} \left(1 - \Pi\left(\frac{t}{2}\right)\right)$$

**Exercice 15** On considère  $x(t) = \mathbf{1}_{[-1,1]}(t)$  et y(t) = x(2t+3).

- 1. Trouvez  $t_0$  tel que y(t) soit symétrique par rapport à  $t_0$ .
- 2. Montrez qu'on a alors pour  $t \in \mathbb{R}$ ,

$$y(t_0 + t) = y(t_0 - t)$$

**Exercice 16** On considère les signaux  $x_1(t)$  et  $x_2(t)$ , leur transformées de Fourier sont notées  $X_1(\nu)$  et  $X_2(\nu)$ .

$$x_1(t) = e^{-t} \mathbf{1}_{\mathbb{R}_+}(t), \quad X_1(\nu) = \frac{1}{1 + 2i\pi\nu} \ et \ x_2(t) = x_1(t-1) + x_1(-1-t)$$

- 1. Calculez  $X_2(\nu)$
- 2. Représentez  $|X_2(\nu)|$

Exercice 17 On considère un signal défini par

$$x(t) = (1 - |t|)\mathbf{1}_{[-1,1]}(t)$$

- 1. Représentez graphiquement ce signal.
- 2. On considère un signal y(t) et z(t)

$$y(t) = (1 - |t - 1|) \mathbf{1}_{[0,2]}(t)$$
 et  $z(t) = y(t) + 2y(t - 1) + y(t - 2)$ 

Montrez que z(t) est symétrique par rapport à t=2.

- 3. Vérifiez que z(2+t) = z(2-t).
- 4. Représentez graphiquement z(t).

Exercice 18 On définit un signal x(t) déjà étudié dans les exercices 1, 9 et 45 (p. 5, p. 10, p. 36) par

$$x(t) = \begin{cases} 0 & si \ t \le -1 \\ 2 & si \ t \in [-1, 0[ \\ 2 - t \ si \ t \in [0, 1[ \\ t & si \ t \in [1, 2[ \\ 2 & si \ t \in [2, 3[ \\ 0 & si \ t \ge 3 \end{cases} \end{cases}$$

On s'intéresse au calcul de  $X(\nu)$ . On pose  $x_b(t) = t\mathbf{1}_{[0,1]}(t)$  et  $X_b(\nu) = \mathrm{TF}\left[x_b(t)\right](\nu)$ , et dans l'exercice 46, il sera montré que

$$X_b(\nu) = \frac{(1 + 2i\pi\nu)e^{-2i\pi\nu} - 1}{15^{4\pi^2\nu^2}}$$

1. On pose  $x_a(t) = 2\mathbf{1}_{[-1,3]}(t)$  et  $X_a(\nu) = \text{TF}[x_a(t)](\nu)$ . Sachant que

$$TF\left[\mathbf{1}_{\left[-\frac{1}{2},\frac{1}{2}\right]}(t)\right](\nu) = \frac{\sin(\pi\nu)}{\pi\nu}$$

montrez que

$$X_a(\nu) = 2 \frac{\sin(4\pi\nu)}{\pi\nu} e^{-2i\pi\nu}$$

2. Montrez que

$$TF[x(-t)](\nu) = TF[x(t)](-\nu)$$

et que

$$TF[x(1-t)](\nu) = e^{-2i\pi\nu} TF[x(t)](-\nu)$$

3. On pose  $x_c(t) = (1 - |t|)\mathbf{1}_{[-1,1]}(t)$  et  $X_c(\nu) = \text{TF}[x_c(t)](\nu)$ . Montrez en utilisant une construction graphique que

$$x_c(t) = x_b(1+t) + x_b(1-t)$$

4. Montrez que

$$X_c(\nu) = X_b(\nu)e^{2i\pi\nu} + X_b(-\nu)e^{-2i\pi\nu}$$
16

5. Montrez que

$$X_c(\nu) = \frac{\sin^2(\pi\nu)}{\pi^2\nu^2}$$

6. Lors de l'exercice 9, il a été montré que

$$x(t) = x_a(t) - x_c(t-1)$$

Montrez alors que

$$X(\nu) = \left(2\frac{\sin(4\pi\nu)}{\pi\nu} - \frac{\sin^2(\pi\nu)}{\pi^2\nu^2}\right)e^{-2i\pi\nu}$$

Exercice 19 On considère un signal z(t) défini par

$$z(t) = \int_{t-1}^{t+1} e^{-|\tau|} d\tau$$

1. On suppose ici que  $t \ge 1$ . En utilisant la décroissance de  $t \mapsto e^{-t}$  et le fait que  $e^{-\tau} \le e^{-(\tau-1)}$  pour  $\tau \in [t-1,t+1]$ , montrez que pour  $t \ge 1$ ,

$$|z(t)| \le 2e \, e^{-t}$$

En déduire que  $\lim_{t\to+\infty} z(t) = 0$ .

2. Montrez que z(t) est un signal pair.

3. Montrez que

$$\frac{d}{dt}z(t) = e^{-|t+1|} - e^{-|t-1|}$$

Pour cela, une façon de procéder est de définir un autre signal

$$F(t) = \int_{-\infty}^{t} e^{-|\tau|} d\tau$$

d'exprimer d'une part z(t) en fonction de F(t) et d'autre part de remarquer que la dérivée de F(t) en t est  $e^{-|t|}$ .

- 4. Montrez que z(t) est décroissante pour t > 0.
- 5. Montrez que z(t) a une tangente horizontale en t=0, et une tangente à gauche et à droite de t=1 identiques.
- 6. Représentez graphiquement z(t).

### Chapter 3

Signaux dépendant d'un second paramètre, descripteurs, transformée de Fourier de signaux exponentiels

#### 3.1 Exercices

**Exercice 20** On considère le signal  $x_1(t)$  et sa transformée de Fourier notée  $X_1(\nu)$ .

Montrez que  $X_1(\nu) = \frac{1}{1+2i\pi\nu}$ 

**Exercice 21** On considère  $x_{\alpha}(t) = \sqrt{e} t e^{-\frac{t^2}{\alpha^2}}$  avec  $\alpha \in \mathbb{R}$ . On appelle ici

$$t_{\max} = \underset{t \in \mathbb{R}}{\operatorname{arg} \max} x_{\alpha}(t) \ et \ t_{\min} = \underset{t \in \mathbb{R}}{\operatorname{arg} \min} x_{\alpha}(t)$$

Calculez  $t_{\text{max}}$  et  $t_{\text{min}}$ .

Exercice 22 On considère pour a > 0, un signal impair et un signal pair définis par

$$x_a(t) = te^{-at^2} et y(t) = e^{-\frac{t^2}{2}}$$

1. Montrez que

$$t_a^{\max} = \operatorname*{argmax}_{t \in \mathbb{R}} x_a(t) = \frac{1}{\sqrt{2a}}$$

2. Montrez qu'il existe  $t^{(1/2)}$  défini par

$$y(t^{(1/2)}) = \frac{1}{2} \max_{t} y(t)$$

3. Puis montrez que  $t^{(1/2)} = \sqrt{2 \ln(2)}$ .

**Exercice 23** On considère le signal  $x(t) = e^{-\pi t^2}$  dont la transformée de Fourier est  $X(\nu) = e^{-\pi \nu^2}$ .

1. On définit la largeur à mi-hauteur du spectre

$$\Delta \nu_x = \nu_2 - \nu_1 \ o \dot{u} \ |X(\nu_2)| = |X(\nu_1)| = \frac{1}{2} \max_{\nu} |X(\nu)|$$

Montrez que  $\Delta \nu_x = 2\sqrt{\frac{\ln(2)}{\pi}}$ 

2. On définit la largeur à mi-hauteur de la densité spectrale

$$\Delta \nu_0 = \nu_2 - \nu_1 \ o \dot{u} \ |X(\nu_2)|^2 = |X(\nu_1)|^2 = \frac{1}{2} \max_{\nu} |X(\nu)|^2$$

Montrez que  $\Delta \nu_o = 2\sqrt{\frac{\ln(2)}{2\pi}}$ 

3. On définit la largeur à mi-hauteur de la puissance instantanée

$$\Delta t_0 = t_2 - t_1 \ o \dot{u} \ |x(t_2)|^2 = |x(t_1)|^2 = \frac{1}{2} \max_t |x(t)|^2$$

Montrez que  $\Delta \nu_o \Delta t_0 = \frac{2 \ln(2)}{\pi}$ 

4. On définit  $\Delta\omega_0 = 2\pi\Delta\nu_0$ , calculez  $\Delta\omega_0\Delta t_0$ .

**Exercice 24** On considère le signal  $x(t) = e^{-|t|}$  pour  $t \in \mathbb{R}$ .



Figure 3.1:  $X_a(\nu)$  en fonction de  $\nu$  pour différentes valeurs de a. Exercice 25

- 1. Montrez que  $X(\nu) = \frac{2}{1+4\pi^2\nu^2}$  est sa transformée de Fourier.
- 2. En déduire la valeur de  $\int_{-\infty}^{+\infty} \frac{1}{1+4\pi^2\nu^2} d\nu$

**Exercice 25** On considère deux paramètres fixes et différents notés a, b avec  $a \neq b$  et a > 0, b > 0. On considère deux signaux.

$$x_a(t) = \sqrt{a}e^{-ta}\mathbb{H}(t) \quad et \quad x_b(t) = \sqrt{b}e^{-tb}\mathbb{H}(t)$$



Figure 3.2:  $X_a(\nu)$  en fonction de a pour différentes valeurs de  $\nu$ . Exercice 25

avec 
$$\mathbb{H}(t) = \mathbf{1}_{[0,+\infty[}(t).$$

1. Calculez les modules des transformée de Fourier de  $x_a(t)$  et  $x_b(t)$  en utilisant le fait que la transformée de Fourier de  $e^{-t}\mathbb{H}(t)$  est  $\frac{1}{1+2i\pi\nu}$ .

$$|X_a(\nu)| = \frac{\sqrt{a}}{\sqrt{a^2 + 4\pi^2\nu^2}} et |X_b(\nu)| = \frac{\sqrt{b}}{\sqrt{b^2 + 4\pi^2\nu^2}}$$

2. Représentez  $|X_a(\nu)|$  en fonction de  $\nu$  pour différentes valeurs de a et représentez  $|X_a(\nu)|$  en fonction de a pour différentes valeurs de  $\nu$ . On admet ici que la dérivée partielle de  $|X_a(\nu)|$  en fonction de a est égale à

$$\frac{\partial}{\partial a}|X_a(\nu)| = \frac{4\pi^2\nu^2 - a^2}{2\sqrt{a}(a^2 + 4\pi^2\nu^2)^{\frac{3}{2}}}$$

- (a) Montrez que  $|X_a(\nu)|$  est paire vis-à-vis de  $\nu$ .
- (b) Montrez que  $|X_a(\nu)|$  est décroissante pour  $\nu > 0$ .
- (c) Montrez que  $|X_a(\nu)|$  est croissante vis-à-vis de a pour  $a < 2\pi |\nu|$  et décroissante pour  $a > 2\pi |\nu|$ .
- (d) La courbe en noire de la figure 3.1 représente  $|X_a(\frac{a}{2\pi})|$ , expliquez pourquoi les points de cette courbe sont des maximas des courbes  $X_a(\nu)$  à a fixé.
- (e) La courbe en noire de la figure 3.2 représente  $|X_{2\pi|\nu|}(\nu)|$ , expliquez pourquoi on observe que lorsqu'on augmente a avec a' > a, la courbe  $X_{a'}(\nu)$  est au

dessus pour la partie à gauche de cette courbe noire et en dessous pour la partie à droite de cette courbe.

**Exercice 26** On considère  $x_{\alpha}(t) = \sqrt{e} t e^{-\frac{t^2}{\alpha^2}}$  avec  $\alpha \in \mathbb{R}$ . On considère maintenant  $x_a(t) = te^{-at^2}$  avec  $a \in \mathbb{R}_+$ .

- 1. Montrez que  $x_{\alpha}(t)$  est impair.
- 2. Qu'en-est-il de la parité de  $x_a(t)$ ?

Exercice 27 On considère pour a > 0, un signal défini par

$$x_a(t) = te^{-at^2}$$

En utilisant les exercices 26 et 29, représentez graphiquement  $x_a(t)$ 

#### Exercice 28

$$y_2(t) = [(b-a) - |t-a-b|] \mathbf{1}_{[2a,2b]}(t)$$

Montrez que  $y_2(t)$  est symétrique par rapport à t = a + b.

**Exercice 29** On considère  $x_{\alpha}(t) = \sqrt{e} t e^{-\frac{t^2}{\alpha^2}}$  avec  $\alpha \in \mathbb{R}$ .

- 1. Calculez la dérivée et donnez le tableau de variation de  $x_{\alpha}(t)$ .
- 2. Tracez la courbe représentative de  $x_{\alpha}(t)$ .

### Chapter 4

Signaux gaussiens, techniques de calcul, puissance et énergie de signaux non-périodiques, intégration par partie

### 4.1 Exercices

Exercice 30 On considère un signal déflai par

Représentez graphiquement  $y\left(\frac{t}{2}\right)$ 

Exercice 31 Ce signal est une succession de segments joignant les instants t = 0, 2, 3: x(0) = 0, x(2) = 1, x(3) = 0. Ce signal est nul pour  $t \le 0$  et pour  $t \ge 3$ . Ce signal a déjà été étudié lors de l'exercice 2 (p. 6). Calculez l'énergie  $E_x$ .

Exercice 32 Calculez l'énergie du signal  $x(t) = e^{-t} \mathbf{1}_{\mathbb{R}_+}(t)$ 

Exercice 33 On définit  $\Pi(t)=\mathbf{1}_{[-\frac{1}{2},\frac{1}{2}]}(t)$ . On considère deux signaux  $x_1(t)$  et  $x_2(t)$  définis par

$$x_1(t) = t\Pi\left(\frac{t}{2}\right) et x_2(t) = \frac{d}{dt}x_1(t)$$

Ces signaux  $x_1(t)$  et  $x_2(t)$  ont été étudiés dans l'exercice 11 (p. 13). Calculez  $E_{x_1}$  et  $E_{x_2}$ 

**Exercice 34** On considère  $x_1(t) = e^{-t}\mathbf{1}_{\mathbb{R}_+}(t)$  et  $x_2(t) = x_1(t-1)$ , déjà étudiés dans l'exercice 12 (p. 13). Calculez l'énergie de  $x_2(t)$  notée  $E_{x_2}$ .

Exercice 35 On suppose avoir déjà calculé que

$$\int_{-\infty}^{+\infty} \frac{dt}{1+t^2} = \pi$$

- 1. Montrez que la fontion  $z \mapsto \frac{1}{z^2+1}$  est une fonction holomorphe sauf en z=i ou z=-i.
- 2. Montrez que

$$\int_{-\infty}^{+\infty} \frac{dt}{1 + (t + \frac{i}{2})^2} = \pi$$

**Exercice 36** On considère  $x(t) = e^{-\pi t^2}$ . On sait que pour tout  $\sigma > 0$ ,

$$\int_{-\infty}^{+\infty} e^{-\frac{t^2}{2\sigma^2}} dt = \sqrt{2\pi}\sigma$$

Montrez que l'énergie  $E_x = \frac{1}{\sqrt{2}}$ .

**Exercice 37** On considère  $x_{\alpha}(t) = \sqrt{e}te^{-\frac{t^2}{\alpha^2}}$ . On remarque aussi qu'une primitive de  $te^{-2\frac{t^2}{\alpha^2}}$  est  $-\frac{\alpha^2}{4}e^{-2\frac{t^2}{\alpha^2}}$ . En utilisant une intégration par partie, montrez que

$$E_{x_{\alpha}} = \frac{e\alpha^3 \sqrt{2\pi}}{8}$$

**Exercice 38** On considère le signal  $x(t) = e^{-\pi t^2}$  pour  $t \in \mathbb{R}$ , et on veut calculer sa transformée de Fourier notée  $X(\nu)$ .

1. Montrez que

$$X(\nu) = e^{-\pi\nu^2} \int_{-\infty}^{+\infty} e^{-\pi(t+i\nu)^2} dt$$

2. Montrez que

$$X(\nu) = e^{-\pi\nu^2} \int_{-\infty}^{+\infty} e^{-\pi t^2} dt$$

3. Sachant que pour tout  $\sigma > 0$ ,

$$\int_{-\infty}^{+\infty} e^{\frac{-t^2}{2\sigma^2}} dt = \sqrt{2\pi}\sigma$$

montrez que  $X(\nu) = e^{-\pi\nu^2}$ .

**Exercice 39** On considère un signal x(t) dont l'énergie  $E_x$  est finie. Montrez qu'alors

$$\lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt = 0$$

Cette expression est ce qu'on appelle la puissance.

**Exercice 40** On considère le signal  $x(t) = \mathbb{H}(t)e^{-2\pi t}$  avec  $\mathbb{H}(t) = \mathbf{1}_{\mathbb{R}_+}(t)$ .

1. Montrez que  $X(\nu) = \frac{1}{1+i\nu} \frac{1}{2\pi}$ .

- 2. En utilisant x(t), montrez que  $E_x = \frac{1}{4\pi}$ .
- 3. En utilisant  $X(\nu)$ , montrez que

$$E_x = \frac{1}{4\pi^2} \int_{-\infty}^{+\infty} \frac{d\nu}{1+\nu^2}$$
 (4.1)

4. Déduisez que

$$\int_{-\infty}^{+\infty} \frac{dt}{1+t^2} = \pi$$

**Exercice 41** On considère deux paramètres fixes et différents notés a, b avec  $a \neq b$  et a > 0, b > 0. On considère deux signaux.

$$x_a(t) = \sqrt{a}e^{-ta}\mathbb{H}(t)$$
 et  $x_b(t) = \sqrt{b}e^{-tb}\mathbb{H}(t)$ 

avec  $\mathbb{H}(t) = \mathbf{1}_{[0,+\infty[}(t).$ 

Montrez que  $x_a(t)$  et  $x_b(t)$  ont la même énergie

$$E_{x_a} = E_{x_b} = \frac{1}{2}$$

Exercice 42 On considère  $x(t) = e^{-\alpha t} \mathbf{1}_{\mathbb{R}_+}(t)$  avec  $\alpha > 0$ . Calculez  $E_x$  à partir de x(t) et montrez que  $E_x = \frac{1}{2\alpha}$ .

Exercice 43 On définit un signal x(t) déjà étudié dans l'exercice 1 et 9 (p. 5, p. 10) par

$$x(t) = \begin{cases} 0 & si \ t \le -1 \\ 2 & si \ t \in [-1, 0[ \\ 2 - t \ si \ t \in [0, 1[ \\ t & si \ t \in [1, 2[ \\ 2 & si \ t \in [2, 3[ \\ 0 & si \ t \ge 3 \end{cases}$$

Calculez son énergie  $E_x$  et montrez que  $E_x = 12 + \frac{2}{3}$ .

## Chapter 5

Signaux périodiques, sinus cardinaux et transformées de Fourier de fonctions portes, propriétés de la transformée de Fourier, relations trigonométriques, distribution Dirac

- $x_{\alpha}(t)$  est périodique de période 1
- $Pour \ t \in [0, \alpha[, x_{\alpha}(t) = 1]]$
- Pour  $t \in [\alpha, 1[, x_{\alpha}(t) = 0]]$

On considère  $y_{\alpha}(t) = x_{\alpha}(t - \frac{1}{2}).$ 

- 1. Tracez les graphes de  $x_{\alpha}(t)$  et  $y_{\alpha}(t)$  pour  $t \in [-2,2]$  en séparant les cas  $\alpha \leq \frac{1}{2}$  et  $\alpha > \frac{1}{2}$ .
- 2. Tracez les graphes de  $x_{\alpha}(0)$  et  $y_{\alpha}(\frac{1}{2})$  pour  $\alpha \in [0, 1[$ .
- 3. Tracez les graphes de  $x_{\alpha}(\frac{1}{2})$  et  $y_{\alpha}(0)$  pour  $\alpha \in [0, 1[$ .
- 4. Montrez que
  - $si \ \alpha \leq \frac{1}{2}, \ y_{\alpha}(t) = \mathbf{1}_{\left[\frac{1}{2}, \alpha + \frac{1}{2}\right]}(t) \ pour \ t \in [0, 1]$
  - $si \ \alpha \in ]\frac{1}{2}, 1[, \ y_{\alpha}(t) = \mathbf{1}_{[0,\alpha-\frac{1}{2}]}(t) + \mathbf{1}_{[\frac{1}{2},1]}(t) \ pour \ t \in [0,1]$

Exercice 45 On définit un signal x(t) déjà étudié dans l'exercice 1 et 9 (p. 5, p. 10) par

$$x(t) = \begin{cases} 0 & si \ t \le -1 \\ 2 & si \ t \in [-1, 0[ \\ 2 - t \ si \ t \in [0, 1[ \\ t & si \ t \in [1, 2[ \\ 2 & si \ t \in [2, 3[ \\ 0 & si \ t \ge 3 \end{cases} \end{cases}$$

1. En observant que x(0) = 2, montrez que

$$\int_{-\infty}^{+\infty} X(\nu) \, d\nu = 2$$

2. En s'inspirant de l'exercice 43 (p. 33), montrez que

$$\int_{-\infty}^{+\infty} |X(\nu)|^2 d\nu = 12 + \frac{2}{3}$$

3. En s'inspirant de l'exercice 9, représentez graphiquement  $\mathrm{TF}^{-1}\left[\Re e(X(\nu))\right](t)$ 

Exercice 46 On définit un signal x(t) déjà étudié dans les exercices 1, 9, 18 et 45 (p. 5, p. 10, p. 15, p. 36) par

$$x(t) = \begin{cases} 0 & si \ t \le -1 \\ 2 & si \ t \in [-1, 0[ \\ 2 - t \ si \ t \in [0, 1[ \\ t \ si \ t \in [1, 2[ \\ 2 \ si \ t \in [2, 3[ \\ 0 \ si \ t \ge 3 ] \end{cases}$$

Dans l'exercice 18 montrant le calcul de  $X(\nu)$ , il manquait une étape. On pose  $x_b(t) = t\mathbf{1}_{[0,1]}(t)$  et  $X_b(\nu) = \mathrm{TF}\left[x_b(t)\right](\nu)$ , montrez que

$$X_b(\nu) = \frac{(1 + 2i\pi\nu)e^{-2i\pi\nu} - 1}{4\pi^2\nu^2}$$

1. Une première façon de procéder est d'utiliser une intégration par partie.

$$\int_{a}^{b} \left(\frac{d}{dt}u(t)\right) v(t) dt = \left[u(t)v(t)\right]_{a}^{b} - \int_{a}^{b} u(t) \left(\frac{d}{dt}v(t)\right) dt \tag{5.1}$$

2. Une deuxième façon de procéder est de s'appuyer sur le fait que

$$TF[\mathbf{1}_{[0,1]}(t)](\nu) = \frac{\sin(\pi\nu)}{\pi\nu}e^{-i\pi\nu}$$
(5.2)

puis de montrer que

$$TF\left[-2i\pi t \mathbf{1}_{[0,1]}(t)\right](\nu) = \frac{d}{d\nu} \left(\frac{\sin(\pi\nu)}{\pi\nu} e^{-i\pi\nu}\right)$$
 (5.3)

Exercice 47 On définit  $\Pi(t)=\mathbf{1}_{\left[-\frac{1}{2},-\frac{1}{2}\right]}(t)$ . Calculez et représentez graphiquement  $\frac{d}{dt}(t\Pi(t))$ 

Exercice 48 On définit  $\Pi(t) = \mathbf{1}_{[-\frac{1}{2},\frac{1}{2}]}(t)$ . On considère deux signaux  $x_1(t)$  et  $x_2(t)$  définis par

$$x_1(t) = t\Pi\left(\frac{t}{2}\right) et x_2(t) = \frac{d}{dt}x_1(t)$$

La représentation graphique de  $x_1(t)$  a été étudiée dans l'exercice 11 (p. 13).

- 1. Représentez graphiquement  $x_2(t)$ .
- 2. Calculez  $X_1(0)$  et  $X_2(0)$

Exercice 49 On définit  $\Pi(t) = \mathbf{1}_{[-\frac{1}{2}, -\frac{1}{2}]}(t)$  et  $\operatorname{signe}(t) = \mathbf{1}_{\mathbb{R}_+}(t) - \mathbf{1}_{\mathbb{R}_-}(t)$  On considère un signal  $x_1(t)$ 

$$x_1(t) = \sqrt{|t|} \Pi\left(\frac{t}{2}\right) + \frac{1}{\sqrt{|t|}} \left(1 - \Pi\left(\frac{t}{2}\right)\right)$$

La représentation graphique de  $x_1(t)$  a déjà été étudiée dans l'exercice 14 (p. 14). On considère  $x_2(t) = \frac{d}{dt}x_1(t)$ .

39

- 1. Représentez graphiquement  $x_2(t)$ .
- 2. Exprimez  $x_2$  en fonction de |t|,  $\Pi$  et signe.

## Chapter 6

# Signaux à valeurs complexes, approximation, temps moyen

#### 6.1 Exercices

**Exercice 50** On considère un ensemble de signaux  $x_n(t) = (it)^n \mathbf{1}_{[-1,1]}(t)$  avec  $n \in \mathbb{N}$ . Leurs transformées de Fourier sont notées  $X_n(\nu)$ .

1. Calculez  $X_n(0)$  et montrez que

$$X_n(0) = \begin{cases} \frac{2}{n+1} & si \ n = 4k \\ 0 & si \ n = 4k+1 \\ -\frac{2}{n+1} & si \ n = 4k+2 \\ 0 & si \ n = 4k+3 \end{cases}$$

2. Calculez le temps moyen de  $x_n$ 

$$< t_n > = \frac{1}{I_n} \int_{-\infty}^{+\infty} t |x_n(t)| dt \ et \ I_n = \int_{-\infty}^{+\infty} |x_n(t)| dt$$

et montrez que  $\langle t_n \rangle = 0$ .

3. Calculez l'énergie et la puissance de  $x_n$  et montrez que  $E_{x_n} = \frac{2}{2n+1}$  et  $P_{x_n} = 0$ .

Exercice 51 On considère  $e_1(t)$ ,  $e_2(t)$  et x(t) des signaux périodiques de période 1.

Pour 
$$t \in [-\frac{1}{2}, \frac{1}{2}[, \begin{cases} e_1(t) = 1 \\ e_2(t) = \text{signe}(t) \\ x(t) = t\mathbf{1}_{[0, \frac{1}{2}]}(t) \end{cases}$$

1. Montrez que  $e_1(t)$  et  $e_2(t)$  sont orthogonaux pour la puissance.

- 2. Montrez que  $e_1(t)$  et  $e_2(t)$  sont de norme 1 pour la puissance.
- 3. Trouvez  $\alpha$  et  $\beta$  tels que  $\widehat{x}(t)$  approche le mieux x(t) sachant que

$$\widehat{x}(t) = \alpha e_1(t) + \beta e_2(t)$$

Montrez que  $\alpha = \frac{1}{8}$  et  $\beta = \frac{1}{8}$ .

4. Représentez graphiquement x(t),  $\hat{x}(t)$ ,  $e_1(t)$  et  $e_2(t)$ .

Exercice 52 On considère  $x(t) = e^{-\pi t^2} e^{it}$ . Montrez en vous inspirant de l'exercice 36 (p. 30) que l'énergie  $E_x = \frac{1}{\sqrt{2}}$ .

Exercice 53 On considère le signal  $x(t) = e^{-\pi t^2}\cos(t)$  Il est souhaitable d'utiliser l'exercice 52 (p. 43). Vous pouvez aussi utiliser le fait que  $\cos^2(t) = \frac{1}{2} + \frac{1}{2}\cos(2t) = \frac{1}{2} + \frac{1}{2}\Re(e^{2it})$ . Montrez que l'énergie est  $E_x = \frac{1}{2\sqrt{2}}\left(1 + e^{-\frac{1}{2\pi}}\right)$ .

Exercice 54 On considère le signal

$$x(t) = \sqrt{\frac{\alpha}{\pi}} e^{-\alpha t^2} e^{i\omega_0 t}$$

avec  $\alpha > 0$  et  $\omega_0 \in \mathbb{R}$ . Par ailleurs on sait que pour  $x_r(t) = e^{-\pi t^2}$ ,  $X_r(\nu) = e^{-\pi \nu^2}$ .

1. On définit  $x_1(t) = x_r(t)\sqrt{\frac{\alpha}{\pi}}$ . Montrez que  $X_1(\nu) = X_r(\nu)\sqrt{\frac{\alpha}{\pi}}$ .

- 2. On définit  $x_2(t) = x_1(\sqrt{\frac{\alpha}{\pi}}t)$ . Montrez que  $X_2(\nu) = e^{-\frac{\pi^2}{\alpha}\nu^2}$ .
- 3. On définit  $x_3(t) = x_2(t)e^{i\omega_0 t}$ , montrez que

$$X(\nu) = e^{-\frac{\pi^2}{\alpha} \left(\nu - \frac{\omega_0}{2\pi}\right)^2}$$

**Exercice 55** On considère un signal complexe  $y(t) = \frac{1}{t+i}$  pour  $t \in \mathbb{R}$ . On cherche un spectre de la forme  $Y(\nu) = ae^{-b\nu}\mathbb{H}(\nu)$  où  $\mathbb{H}(\nu) = \mathbf{1}_{\mathbb{R}_+}(\nu)$ .

- 1. En utilisant la valeur  $y(0) = \frac{1}{i}$ , montrez que  $\frac{a}{b} = \frac{1}{i}$ .
- 2. Sachant que

$$\int_{-\infty}^{+\infty} \frac{dt}{t^2 + 1} = \pi$$

 $montrez\ en\ calculant\ E_y\ que$ 

$$\frac{|a|^2}{2\Re e(b)} = \pi$$

On peut en effet remarquer que

$$e^{-b\nu} = e^{-\Re e(b)\nu} e^{-i\operatorname{Im}(b)\nu}$$

3. On suppose maintenant que Im(b) = 0. Montrez que les deux conditions précédentes,  $\frac{a}{b} = \frac{1}{i}$  et  $\frac{|a|^2}{2\Re e(b)} = \pi$  entraînent que

$$Y(\nu) = \mathbb{H}(\nu)e^{-2\pi\nu}(-2i\pi)$$

En appliquant la transformée de Fourier inverse à  $Y(\nu)$ , montrez qu'on retrouve y(t).

# Chapter 7

Puissance et énergie d'un signal périodique, valeur moyenne d'un signal périodique, coefficients de la série de Fourier, valeur à gauche et à droite, parité, représentation47

- 1. Représentez graphiquement  $x_1(t)$
- 2. Représentez graphiquement  $x_2(t)$
- 3. Représentez graphiquement  $x_3(t)$  en exprimant  $x_3(t)$  en fonction de  $\cos(2\sqrt{2}t)$

**Exercice 57** On considère les signaux  $e_1(t)$ ,  $e_2(t)$ , x(t),  $\hat{x}(t)$  définis lors de l'exercice 51 (p. 42). Représentez graphiquement ces signaux.

Exercice 58 On considère le signal x(t) périodique de période 2 et défini par

$$x(t) = e^{-\frac{t}{2}} \ pour \ t \in [0, 2[$$

- 1. Représentez le signal x(t)
- 2. Montrez que

$$\frac{1}{2} \lim_{t \to 0^+} x(t) + \frac{1}{2} \lim_{t \to 0^-} x(t) = \frac{1}{2} (1 + e^{-1})$$

Exercice 59 On considère un signal périodique de période 2, noté x(t) et défini par

$$x(t) = e^{-\frac{t}{2}} \ pour \ t \in [0, 2[$$

On note  $X_k$  les coefficients de la série de Fourier qui sont calculés dans l'exercice 67 (p. 55).

$$X_k = \frac{1 - e^{-1}}{1 + 2i\pi k}$$

1. Calculez sa puissance  $P_x$  et son énergie  $E_x$ . Montrez que

$$P_x = \frac{1}{2}(1 - e^{-2})$$

- 2. À quelles fréquences sont associées les coefficients de la série de Fourier  $X_k$ ?
- 3. Montrez que

$$P_x = (1 - e^{-1})^2 \sum_{k=-\infty}^{+\infty} \frac{1}{1 + 4\pi^2 k^2}$$

4. Montrez que pour tout réels a et b, on a

$$\frac{a^2 - b^2}{(a - b)^2} = \frac{a + b}{a - b}$$

Et montrez alors que

$$\sum_{k=1}^{+\infty} \frac{1}{1+4\pi^2 k^2} = \frac{1}{4} \left( \frac{3-e}{e-1} \right)$$

**Exercice 60** On considère x(t) périodique de période 2 défini par  $x(t) = e^{-\frac{t}{2}}$  pour  $t \in [0, 2[$ . Les coefficients de la série de Fourier sont  $X_k = \frac{1-e^{-1}}{1+2i\pi k}$ 

1. Montrez que

$$\sum_{k=-\infty}^{+\infty} \frac{1 - e^{-1}}{1 + 2i\pi k} (-1)^k = e^{-1/2}$$

2. Montrez que

$$1 - e^{-1} + 2\sum_{k=1}^{+\infty} \frac{1 - e^{-1}}{1 + 4\pi^2 k^2} (-1)^k = e^{-1/2}$$

3. Montrez que

$$\sum_{k=1}^{+\infty} \frac{(-1)^k}{1 + 4\pi^2 k^2} = \frac{1}{2} \left( \frac{\sqrt{e}}{e - 1} - 1 \right)$$

4. Représentez graphiquement le module et l'argument de la transformée de Fourier.

**Exercice 61** On considère  $\alpha = \frac{2}{3}$  et  $x_{\alpha}(t)$  un signal périodique de période 1 défini par  $x_{\alpha}(t) = \mathbf{1}_{[-\frac{\alpha}{2},\frac{\alpha}{2}]}(t)$  pour  $t \in [-\frac{1}{2},\frac{1}{2}]$ . On considère  $y(t) = 1 + \cos(2\pi t)$ . Représentez graphiquement x(t) et y(t).

**Exercice 62** On considère  $\alpha \in [0,1[$  et un signal  $x_{\alpha}(t)$  défini par

- $x_{\alpha}(t)$  est périodique de période 1
- Pour  $t \in [0, \alpha], x_{\alpha}(t) = 1$

- Pour  $t \in ]\alpha, 1], x_{\alpha}(t) = 0$
- $X_{\alpha,k}$  sont les coefficients de Fourier de  $x_{\alpha}(t)$ .
- 1. Calculez la puissance de  $x_{\alpha}(t)$  et montrez que

$$P_{x_{\alpha}} = \alpha$$

2. On considère un signal  $y_{\alpha}(t)$  périodique de période 1, dont les coefficients de Fourier  $Y_{\alpha,k}$  vérifient

$$Y_{\alpha,k} = (-1)^k X_{\alpha,k}$$

Calculez la puissance du signal  $y_{\alpha}(t)$  et montrez que

$$P_{y_{\alpha}} = P_{x_{\alpha}}$$

Exercice 63 On considère un singal  $x_{\alpha}(t)$  périodique de période 1 défini par

$$x_{\alpha}(t) = \mathbf{1}_{[-\frac{\alpha}{2}, \frac{\alpha}{2}]}(t) \ pour \ t \in [-\frac{1}{2}, \frac{1}{2}[$$

On considère une sinusoïde surélevée définie par

$$y(t) = 1 + \cos(2\pi t)$$

1. À quelle fréquences correspondent les coefficients  $X_k$  de la série de Fourier ? 51

- 2. Quelle est la valeur moyenne de  $x_{\alpha}(t)$ , qu'est-ce que cela nous apprend sur  $X_0$ ?
- 3. Calculez la puissance  $P_x$ .
- 4. Montrez pour y(t), la relation entre la puissance  $P_y$  et la valeur moyenne < y(t) > est

$$P_y = \frac{3}{2} < y(t) >^2$$

5. Montrez que pour  $\alpha = \frac{2}{3}$ , on a aussi

$$P_x = \frac{3}{2} < x(t) >^2$$

6. On considère le signal approchant x(t).

$$\widehat{x}(t) = X_0 + X_1 e^{-2i\pi t} + X_{-1} e^{2i\pi t}$$

avec  $X_0$  calculé lors de la question 2 et  $X_k = \alpha \operatorname{sinc}(\pi k \alpha)$  pour  $k \neq 0$ .

- 7. Calculez  $\widehat{x}(t)$  pour  $\alpha = \frac{2}{3}$ .
- 8. Représentez  $\widehat{x}(t)$ .
- 9. Calculez la puissance  $P_{\hat{x}}$ .

**Exercice 64** On considère un signal  $y_{\alpha}(t)$  obtenu avec l'exercice 75 (p. 64). Il est ainsi défini.

- $si \ \alpha \leq \frac{1}{2}, \ y_{\alpha}(t) = \mathbf{1}_{\left[\frac{1}{2}, \alpha + \frac{1}{2}\right]}(t) \ pour \ t \in [0, 1]$
- $si \ \alpha \in ]\frac{1}{2}, 1[, \ y_{\alpha}(t) = \mathbf{1}_{[0,\alpha-\frac{1}{2}]}(t) + \mathbf{1}_{[\frac{1}{2},1]}(t) \ pour \ t \in [0,1]$

Montrez que

$$Y_{\alpha,0} = \alpha \ et \ P_{y_{\alpha}} = \alpha$$

**Exercice 65** En reprenant l'exercice 51 (p. 42), calculez la puissance de  $x(t) - \widehat{x}(t)$  et montrez que  $P_{x-\widehat{x}} = \frac{1}{128}(1 + \frac{7}{6})$ 

### Chapter 8

# Série de Fourier, définition et propriétés, utilisation de la distribution $\delta(\nu)$

#### 8.1 Exercices

Exercice 66 On considère un singal  $x_{\alpha}(t)$  périodique de période 1 défini par

$$x_{\alpha}(t) = \mathbf{1}_{[-\frac{\alpha}{2}, \frac{\alpha}{2}]}(t) \ pour \ t \in [-\frac{1}{2}, \frac{1}{2}[$$

1. Calculez  $X_k$  les coefficients de la série de Fourier associée à x(t) et montrez

que pour  $k \neq 0$ ,  $X_k = \alpha \operatorname{sinc}(\pi k \alpha)$  et que  $X_0 = \alpha$ .

2. On approxime x(t) par sa composante continue et sa première harmonique. L'approximation est notée  $\widehat{x}(t)$ . Montrez que

$$\widehat{x}(t) = X_0 + X_1 e^{2i\pi t} + X_{-1} e^{-2i\pi t}$$

Exercice 67 On considère un signal périodique de période 2, noté x(t) et défini par

$$x(t) = e^{-\frac{t}{2}} \ pour \ t \in [0, 2[$$

- 1. À quelles fréquences sont associées les coefficients de la série de Fourier  $X_k$ ?
- 2. Calculez les coefficients  $X_k$  et montrez que

$$X_k = \frac{1 - e^{-1}}{1 + 2i\pi k}$$

Exercice 68 On considère le signal x(t) périodique de période 2 et défini par

$$x(t) = e^{-\frac{t}{2}} \ pour \ t \in [0, 2[$$

Ses coefficients de la série de Fourier sont

$$X_k = \frac{1 - e^{-1}}{1 + 2i\pi k}$$

#### 1. On considère

$$S_N = \sum_{k=-N}^N X_k$$

Montrez que

$$S_K = (1 - e^{-1}) \left[ 1 + 2 \sum_{k=1}^K \frac{1}{1 + 4\pi^2 k^2} \right]$$

2. Sachant que

$$\sum_{n=1}^{+\infty} \frac{1}{1+4\pi^2 n^2} = \frac{1}{4} \left( \frac{3-e}{e-1} \right)$$

montrez que  $S_K$  tend vers  $\frac{1}{2}(1+e^{-1})$  quand  $K \to +\infty$ .

3. En utilisant

$$\frac{1}{2} \lim_{t \to 0^{+}} x(t) + \frac{1}{2} \lim_{t \to 0^{-}} x(t) = \frac{1}{2} (1 + e^{-1})$$

qui a été montré dans l'exercice 58 (p. 48), donnez deux explications conduisant à cette affirmation.

$$\lim_{K \to +\infty} S_K = \frac{1}{2} \lim_{t \to 0^+} x(t) + \frac{1}{2} \lim_{t \to 0^-} x(t)$$

- La première raison est issue du calcul.
- La deuxième raison utilise la série de Fourier.

# Chapter 9

# Produit de convolution et distribution de Dirac

#### 9.1 Exercices

Exercice 69 On considère un signal x(t) quelconque et un signal h(t) défini par

$$h(t) = \sqrt{\frac{b}{a}}\delta(t) + \left(1 - \frac{b}{a}\right)\sqrt{ab}e^{-bt}\mathbf{1}_{[0, +\infty[}(t)$$

On définit un signal y(t) par

$$y(t) = h(t) * x(t)$$

Montrez que

$$y(t) = \sqrt{\frac{b}{a}}x(t) + \sqrt{ab}\left(1 - \frac{b}{a}\right)e^{-bt}\int_0^t e^{b\tau}x(\tau)\,d\tau$$

 $lorsque \ x(t) \ est \ nul \ pour \ t \leq 0.$ 

Exercice 70 On considère les signaux suivants :

$$\begin{cases} x_1(t) = \mathbf{1}_{[-\frac{1}{2}, \frac{1}{2}]}(t) \\ y_1(t) = x_1(t) * x_1(t) \\ x_2(t) = \mathbf{1}_{[a,b]}(t) \\ y_2(t) = x_2(t) * x_2(t) \end{cases}$$

- 1. Montrez que  $y_1(0) = 1$ .
- 2. Montrez que  $y_1(t)$  est nul pour |t| > 1.
- 3. Montrez que  $y_1(t)$  est pair.
- 4. Pour  $t \in [0, 1]$ , montrez que  $y_1(t) = 1 t$ .
- 5. En déduire que

$$y_1(t) = (1 - |t|)\mathbf{1}_{[-1,1]}(t)$$

La représentation graphique de ce signal est réalisé dans l'exercice 17 (p. 14).

6. On pose  $x_3(t) = x_1(\frac{t}{b-a})$  et  $y_3(t) = x_3(t) * x_3(t)$ , montrez que

$$y_3(t) = ((b-a) - |t|) \mathbf{1}_{[-(b-a),b-a]}(t)$$

7. Montrez que

$$x_2(t) = x_3(t - \frac{a+b}{2})$$

8. Montrez que

$$y_2(t) = [(b-a) - |t-a-b|] \mathbf{1}_{[2a,2b]}(t)$$

**Exercice 71** On considère  $x(t) = \mathbf{1}_{[-1,1]}(t)$  et  $y(t) = e^{-|t|}$ , on cherche à calculer z(t) = x(t) \* y(t).

1. Montrez que

$$z(0) = 2\left(1 - \frac{1}{e}\right)$$

2. Montrez que

$$z(1) = 1 - \frac{1}{e^2}$$

#### 3. Montrez que

$$z(t) = \int_{t-1}^{t+1} e^{-\tau} d\tau$$

L'étude de z(t) ainsi défini est faite dans l'exercice 19 (p. 17).

#### Exercice 72 On considère les signaux

$$x(t) = \mathbf{1}_{[0,1]}(t)$$
 et  $y(t) = x(t) + 2x(t-1) + x(t-2)$ 

On note a(t) = x(t) \* x(t) et on sait que

$$a(t) = (1 - |t - 1|) \mathbf{1}_{[0,2]}(t)$$

On cherche à calculer z(t) = x(t) \* y(t).

#### 1. Montrez que

$$z(t) = a(t) + 2a(t-1) + a(t-2)$$

L'étude de la symétrie et la représentation graphique de z(t) est faite dans l'exercice 17 (p. 14).

# Chapter 10

# Filtres, définition et propriétés, utilisation des limites

#### 10.1 Exercices

**Exercice 73** On considère deux paramètres fixes et différents notés a, b avec  $a \neq b$  et a > 0, b > 0. On considère deux signaux.

$$x_a(t) = \sqrt{a}e^{-ta}\mathbb{H}(t)$$
 et  $x_b(t) = \sqrt{b}e^{-tb}\mathbb{H}(t)$ 

avec  $\mathbb{H}(t) = \mathbf{1}_{[0,+\infty[}(t).$ 

Leurs transformées de Fourier sont notées  $X_a(\nu)$  et  $X_b(\nu)$ .

$$X_a(\nu) = \frac{\sqrt{a}}{a + 2i\pi\nu} \ et \ X_b(\nu) = \frac{\sqrt{b}}{b + 2i\pi\nu}$$

On considère un filtre linéaire, temps invariant qui transforme  $x_a(t)$  en  $x_b(t)$ . L'énergie de ces signaux a été calculée dans l'exercice 41 (p. 32). Le calcul et la représentation graphique de  $X_a(\nu)$  et  $X_b(\nu)$  est faite dans l'exercice 25 (p. 23).

1. Montrez que la réponse fréquentielle du filtre est

$$H(\nu) = \sqrt{\frac{b}{a} \left( \frac{a + 2i\pi\nu}{b + 2i\pi\nu} \right)}$$

2. Montrez que  $|H(\nu)| = 1$  pour une seule fréquence notée  $\nu_0$  qui vaut

$$\nu_0 = \frac{\sqrt{ab}}{2\pi}$$

3. Montrez que  $H(0) = \sqrt{\frac{a}{b}}$  et que

$$\lim_{\nu \to +\infty} |H(\nu)| = \sqrt{\frac{b}{a}}$$

4. Montrez que

$$|H(\nu)| = \sqrt{\frac{b}{a}} \sqrt{1 - \frac{(b^2 - a^2)}{b^2 + 4\pi^2 \nu^2}}$$

#### 5. Montrez que

- $si\ a < b, \ \nu \mapsto |H(\nu)|$  est décroissante de  $-\infty$  à 0 et croissante de 0 à  $+\infty$ , le filtre est un passe-haut ;
- $si\ b < a,\ \nu \mapsto |H(\nu)|$  est croissante de  $-\infty$  à 0 et décroissante de 0 à  $+\infty$ , le filtre est un passe-bas ;
- 6. Représentez graphiquement  $|H(\nu)|$  en fonction de  $\nu$ .
- 7. Montrez que

$$H(\nu) = \sqrt{\frac{b}{a}} + \sqrt{\frac{b}{a}} \left( \frac{a-b}{b+2i\pi\nu} \right)$$

8. En observant que  $X_b(\nu) = \frac{\sqrt{b}}{b+2i\pi\nu}$ , montrez que la réponse impulsionnelle du filtre est

$$h(t) = \sqrt{\frac{b}{a}}\delta(t) + \left(1 - \frac{b}{a}\right)\sqrt{ab}e^{-bt}\mathbf{1}_{[0, +\infty[}(t)$$

9. En utilisant l'exercice 69, (p. 57), montrez que la relation entrée-sortie peut s'exprimer ainsi

$$y(t) = \sqrt{\frac{b}{a}}x(t) + \sqrt{ab}\left(1 - \frac{b}{a}\right)e^{-bt}\int_0^t e^{b\tau}x(\tau) d\tau$$

 $lorsque \ x(t) \ est \ nul \ pour \ t \leq 0.$ 

10. Montrez que si  $x(t) = x_a(t)$  alors  $y(t) = x_b(t)$ .

Exercice 74 On considère un filtre dont la relation entréee-sortie est définie par

$$\frac{d}{dt}y(t) + by(t) = \sqrt{\frac{b}{a}}\frac{d}{dt}x(t) + \sqrt{ab}x(t)$$

Montrez que la réponse fréquentielle est

$$H(\nu) = \sqrt{\frac{b}{a}} \left( \frac{a + i2\pi\nu}{b + i2\pi\nu} \right)$$

Exercice 75 On considère  $\alpha \in [0,1[$  et un signal  $x_{\alpha}(t)$  défini par

- $x_{\alpha}(t)$  est périodique de période 1
- Pour  $t \in [0, \alpha], x_{\alpha}(t) = 1$
- $Pour \ t \in ]\alpha, 1], \ x_{\alpha}(t) = 0$
- $X_{\alpha,k}$  sont les coefficients de Fourier de  $x_{\alpha}(t)$ .

On considère un signal non-périodique  $x'_{\alpha}(t) = \mathbf{1}_{[0,\alpha]}(t)$  dont la transformée de Fourier est notée  $X'_{\alpha}(\nu)$ .

On considère un filtre de réponse impulsionnelle  $h(t) = \delta(t - \frac{1}{2})$ .

- $y_{\alpha}(t)$  est la sortie du filtre obtenue lorsqu'en entrée on met  $x_{\alpha}(t)$ . Les coefficients de Fourier sont notés  $Y_{\alpha,k}$ .
- $y'_{\alpha}(t)$  est la sortie du filtre obtenue lorsqu'en entrée on met  $x'_{\alpha}(t)$ . Sa transformée de Fourier est notée  $Y'_{\alpha}(\nu)$ .
- 1. Montrez que pour  $t \in [0, 1]$ ,

$$\forall t \in [0, 1[, x_{\alpha}(t) = x'_{\alpha}(t)]$$

- 2. Montrez que  $X_{\alpha,0} = \alpha$
- 3. Calculez la réponse fréquentielle du filtre notée  $H(\nu)$  et montrez que

$$H(\nu) = e^{-i\pi\nu}$$

- 4. Montrez que  $y_{\alpha}(t)$  est périodique de période 1.
- 5. Montrez que

$$Y_{\alpha,k} = (-1)^k X_{\alpha,k}$$

Ceci permet dans l'exercice 62 (p. 50) de trouver les puissances de  $x_{\alpha}(t)$  et de  $y_{\alpha}(t)$ .

6. Montrez que

$$y_\alpha'(t) = \mathbf{1}_{[\frac{1}{2},\alpha+\frac{1}{2}]}(t)$$

7. Montrez que pour  $t \in [0, 1[$ ,

$$y_{\alpha}(t) = y_{\alpha}'(t) + y_{\alpha}'(t+1)$$

- 8. Montrez que  $y_{\alpha}(t) = x_{\alpha}(t \frac{1}{2})$ . Ceci permet dans l'exercice 44 (p. 35) de réaliser des représentations graphiques de  $x_{\alpha}(t)$  et  $y_{\alpha}(t)$ .
- 9. Montrez que
  - $si \ \alpha \leq \frac{1}{2}, \ y_{\alpha}(t) = \mathbf{1}_{\left[\frac{1}{2}, \alpha + \frac{1}{2}\right]}(t) \ pour \ t \in [0, 1]$
  - $si \ \alpha \in ]\frac{1}{2}, 1[, \ y_{\alpha}(t) = \mathbf{1}_{[0,\alpha-\frac{1}{2}]}(t) + \mathbf{1}_{[\frac{1}{2},1]}(t) \ pour \ t \in [0,1]$
- 10. Vérifiez en utilisant cette nouvelle caractérisation de  $y_{\alpha}(t)$  qu'on a bien

$$Y_{\alpha,0} = \alpha \ et \ P_{y_{\alpha}} = \alpha$$

# Chapter 11

## Autocorrélation

#### 11.1 Exercices

Exercice 76 On cherche à calculer l'autocorrélation,  $\varphi_{xx}(t)$  pour  $x(t) = e^{-\pi t^2}$ . On admet ici que

$$TF\left[e^{-\pi t^2}\right](\nu) = e^{-\pi \nu^2}$$

1. Calculez  $s_{xx}(\nu) = \text{TF}[\varphi_{xx}(t)]$  et montrez que

$$S_{xx}(\nu) = e^{-2\pi\nu^2}$$

2. Montrez que  $S_{xx}(\nu) = X(\sqrt{2}\nu)$ 

3. Montrez que

$$\varphi_{xx}(t) = \frac{\sqrt{2}}{2}e^{-\frac{\pi t^2}{2}}$$

Exercice 77 On considère  $x(t) = \mathbf{1}_{\mathbb{R}_+}(t)e^{-\alpha t}$  avec  $\alpha > 0$ , et y(t) = x(t) \* x(t).

1. Montrez que

$$y(t) = \left( \int_0^t x(\tau) x(t-\tau) d\tau \right) \mathbf{1}_{\mathbb{R}_+}(t)$$

2. Montrez que

$$y(t) = te^{-\alpha t} \mathbf{1}_{\mathbb{R}_+}(t)$$

Exercice 78 On considère  $x(t) = \mathbf{1}_{\mathbb{R}_+}(t)e^{-\alpha t}$  avec  $\alpha > 0$  et  $\varphi_{xx}(t)$  son autocorrélation.

- 1. Montrez que  $\varphi_{xx}(-t) = \varphi_{xx}(t)^*$ , ici \* signifiant le conjugué.
- 2. Pour  $t \geq 0$ , montrez que

$$\varphi(t) = \int_t^{+\infty} x(\tau) x(\tau - t)^* d\tau$$

3. Montrez que

$$\varphi_{xx}(t) = \frac{1}{2\alpha_{68}} e^{-\alpha|t|} \ pour \ t \in \mathbb{R}$$

Exercice 79 On considère  $x(t) = e^{-\alpha t} \mathbf{1}_{\mathbb{R}}(t)$  avec  $\alpha > 0$ . L'autocorrélation de ce signal est déjà calculé et vaut

$$\varphi_{xx}(t) = \frac{1}{2\alpha} e^{-\alpha|t|}$$

L'exercice 42 (p. 32) a permis de montrer que  $E_x = \frac{1}{2\alpha}$ . Calculez  $\varphi_{xx}(0)$  et observez que ici

$$E_x = \varphi_{xx}(0)$$

Exercice 80 On considère  $x(t) = e^{-\alpha t} \mathbf{1}_{\mathbb{R}_+}(t)$  et  $\varphi_{xx}(t)$  son autocorrélation.

1. Montrez que

TF 
$$[x(t)](\nu) = \frac{1}{\alpha + 2i\pi\nu}$$

2. En exprimant  $TF[\varphi_{xx}(t)](\nu)$  en fonction de  $X(\nu)$ , montrez que

$$\varphi_{xx}(0) = \int_{-\infty}^{+\infty} |X(\nu)|^2 d\nu$$

3. Avec l'exercice 79 (p. 69), on sait que  $\varphi_{xx}(0) = \frac{1}{2\alpha}$ . À partir de la question précédente et avec  $\alpha = 2\pi$ , montrez que

$$\int_{-\infty}^{+\infty} \frac{d\nu}{\ln + \nu^2} = \pi$$

Exercice 81 En utilisant les exercices 77 et 80 (p. 68 et p. 69), montrez que

$$TF\left[te^{-\alpha t}\mathbf{1}_{\mathbb{R}_+}(t)\right] = \frac{1}{\left(\alpha + 2i\pi\nu\right)^2}$$

# Chapter 12

# Distributions et propriétés

#### 12.1 Exercices

**Exercice 82** On note  $H(t) = \mathbf{1}_{[0,+\infty[}(t))$ . On admet que

TF 
$$[H(t)](\nu) = \frac{1}{2i\pi} \operatorname{vp}\left(\frac{1}{\nu}\right) + \frac{1}{2}\delta(\nu)$$

et qu'on a déjà calculé

$$TF\left[\mathbf{1}_{\left[-\frac{1}{2},\frac{1}{2}\right]}(t)\right](\nu) = \frac{\sin(\pi\nu)}{\pi\nu}$$

1. En utilisant que

$$\mathbf{1}_{[-\frac{1}{2},\frac{1}{2}[}(t) = H(t + \frac{1}{2}) - H(t - \frac{1}{2})$$

qui a été calculé dans l'exercice 5 (p. 7), montrez que

$$TF\left[\mathbf{1}_{\left[-\frac{1}{2},\frac{1}{2}\right]}\right] = TF\left[H(t)\right](\nu) \times 2i\sin(\pi\nu)$$

- 2. Montrez que  $\delta(\nu)\sin(\pi\nu) = 0$
- 3. Montrez que

$$\frac{1}{2i\pi} \operatorname{vp}\left(\frac{1}{\nu}\right) 2i \sin(\pi\nu) = \frac{\sin(\pi\nu)}{\pi\nu}$$

Exercice 83 On considère  $x(t) = t\mathbf{1}_{[0,1]}(t)$ ,  $y(t) = \mathbf{1}_{[0,1]}(t)$  et  $z(t) = \delta'(t) * x(t)$ . On note  $X(\nu)$ ,  $Y(\nu)$  et  $Z(\nu)$  les transformées de Fourier de ces trois signaux. On cherche à calculer  $X(\nu)$ , de deux façons différentes. On considère qu'on a déjà calculé

$$TF\left[\mathbf{1}_{\left[-\frac{1}{2},\frac{1}{2}\right]}(t)\right](\nu) = \frac{\sin(\pi\nu)}{\pi\nu}$$

1. Montrez que

$$Y(\nu) = \frac{1 - e^{-2i\pi\nu}}{2i\pi\nu}$$

2. En utilisant les expressions de la dérivée d'un quotient de deux fonctions, montrez que

$$\frac{d}{d\nu}Y(\nu) = \frac{-1}{2i\pi} \left( \frac{1}{\nu^2} - \frac{1}{\nu^2} e^{-2i\pi\nu} - \frac{2i\pi}{\nu} e^{-2i\pi\nu} \right)$$

3. En déduire que

$$X(\nu) = -\left(\frac{1 - e^{-2i\pi\nu} 2i\pi\nu - e^{-2i\pi\nu}}{4\pi^2 \nu^2}\right)$$

4. Un calcul mathématique utilisant un développement limité à l'ordre 2 de  $x \mapsto e^x$  au voisinage de x=0 permet d'affirmer que

$$\lim_{\nu \to 0} X(\nu) = \frac{1}{2}$$

Retrouvez ce résultat en utilisant explicitement  $\int_{-\infty}^{+\infty} x(t) dt$ 

5. Montrez que

$$z(t) = \mathbf{1}_{[0,1]}(t) - \delta(t-1)$$

6. Calculez  $Z(\nu)$  et montrez que

$$Z(\nu) = \frac{1 - e^{-2i\pi\nu} 2i\pi\nu - e^{-2i\pi\nu}}{2i\pi\nu}$$

- 7. Montrez que  $Z(\nu) = 2i\pi\nu X(\nu)$
- 8. Déduisez des deux questions précédentes que

$$X(\nu) = -\left(\frac{1 - e^{-2i\pi\nu} 2i\pi\nu - e^{-2i\pi\nu}}{4\pi^2 \nu^2}\right)$$

Exercice 84 On considère trois signaux x(t), y(t) et z(t) définis par

$$\begin{cases} x(t) = t \\ y(t) = \mathbf{1}_{[0,1]}(t) \\ z(t) = x(t) * y(t) \end{cases}$$

Leur transformée de Fourier sont notées  $X(\nu)$ ,  $Y(\nu)$ ,  $Z(\nu)$ .

1. Montrez que

$$x(t) * y(t) = \int_{t-1}^{t} x(\tau) d\tau$$

- 2. Montrez que  $z(t) = t \frac{1}{2}$
- 3. Montrez que

$$X(\nu) = \frac{-1}{2i\pi} \delta'(\nu)$$

4. Sachant que TF  $\left[\mathbf{1}_{\left[-\frac{1}{2},\frac{1}{2}\right]}(t)\right](\nu) = \frac{\sin(\pi\nu)}{\pi\nu}$ , montrez que

$$Y(\nu) = \frac{1 - e^{-2i\pi\nu}}{2i\pi\nu}$$

5. Pour cette question, on admet d'une part qu'en général pour un signal f(t), on a

$$f(t)\delta'(t) = f(0)\delta'(t) - f'(0)\delta(t)$$

D'autre part un calcul mathématique utilisant un développement limité à l'ordre 2 de  $x \mapsto e^x$  nous informe que

$$\left.\frac{dY(\nu)}{d\nu}\right|_{\nu=0}=-i\pi\ et\ Y(0)=1$$

La première partie de cette équation signifie que la dérivée en  $\nu=0$  de  $Y(\nu)$  vaut  $-i\pi$ . Montrez alors que

$$Z(\nu) = \frac{i}{2\pi} \delta'(\nu) - \frac{1}{2} \delta(\nu)$$

6. Retrouvez  $Z(\nu)$  en utilisant que  $z(t) = t - \frac{1}{2}$ .

Exercice 85 On considère les signaux x(t), y(t) et z(t) définis par

$$\begin{cases} x(t) = \mathbf{1}_{[0,1]}(t) \\ y(t) = \frac{1}{2}\delta(t) - \frac{i}{2\pi}\operatorname{vp}\left(\frac{1}{t}\right) \\ z(t) = x(t) * y(t) \end{cases}$$

Leurs transformées de Fourier sont notées  $X(\nu), Y(\nu)$  et  $Z(\nu)$ . On admet ici que

$$\int_{\mathbb{R}} \operatorname{vp}\left(\frac{1}{\tau}\right) f(\tau) d\tau = \lim_{\epsilon \to 0} \left[ \int_{-\infty}^{-|\epsilon|} \frac{f(\tau)}{\tau} d\tau + \int_{|\epsilon|}^{+\infty} \frac{f(\tau)}{\tau} d\tau \right]$$

1. Montrez que

$$z(t) = \frac{1}{2} \mathbf{1}_{[0,1]}(t) - \frac{i}{2\pi} \ln \left| \frac{t}{t-1} \right|$$

- 2. Représentez la partie réelle et imaginaire de z(t)
- 3. Montrez que

$$Y(\nu) = -H(\nu) = -\mathbf{1}_{[0,+\infty[}(\nu)$$

4. Montrez que  $Z(\nu)=0$  pour  $\nu<0$ , représentez  $|Z(\nu)|$ . On admet ici que  $X(\nu)=\frac{1-e^{-2i\pi\nu}}{2i\pi\nu}$ .