303%

INFECTED!

Wer kennt das nicht? Man möchte etwas basteln und am Ende stellt man fest das nichts funktioniert.

Stundenlange Fehlersuche frustrieren einen dann dermaßen das man den ganzen Kram entnervt in die hinterste Bastelkiste schmeißt und nie wieder anrührt. Und wie sooft ärgert man sich am Ende das man wieder einmal so viel Geld für Bauteile ausgegeben hat.

Mit dieser Anleitung möchte ich Dir einen Schritt-für-Schritt Wegweiser zur Hand geben damit das bei diesem Projekt nicht passiert, wenn Du ihn aufmerksam liest und befolgst wird Deine Bassline ohne nervige Fehlersuche funktionieren.

- Bevor Du mit Bau Deiner Bassline beginnst kaufe alle notwendigen Bauteile, sortiere sie sorgfältig und beschrifte alles ordentlich, schließlich ist es sehr ärgerlich wenn man mitten bei der Arbeit bemerkt das noch Bauteile fehlen. Fange erst an wenn Du alle Teile komplett beisammen hast.
- Plane genügend Zeit ein mindestens ein ganzes Wochenende. Besser mehrere Wochenenden oder freie Tage, Du kannst ja Abend für Abend eine Lötfolge durcharbeiten, wenn Deine Freundin nichts dagegen hat. Natürlich möchte man das Teil möglichst schnell fertig haben, aber bei einem so umfangreichen Projekt sind die Fehler vorprogrammiert wenn man alles an einem Tag durchzieht. Die Zeit die Du beim Bauen gewinnst wirst Du später zigfach in die nervige Fehlersuche investieren müssen!
- Lege zwischendurch Pausen ein, mindestens aber nach jeder Lötfolge eine. Aus diesem Grund habe ich diese Anleitung diesmal mit einem festen Lötfolgenplan versehen.
- Wenn Du Dich mies fühlst, angenervt bist, unter Zeitdruck stehst, oder eigentlich gar keine Lust auf Arbeiten hast dann leg Deinen Bausatz für heute beiseite. Mach es wenn Du richtig Lust darauf hast!
- Löte alle Widerstände in derselben Richtung ein. Auch wenn das zwar technisch gesehen nicht notwendig ist macht Deine Platine gleich einen viel ordentlicheren Eindruck. Außerdem kann dies falls Du später tatsächlich Fehler suchen musst Zeit sparen. Ein weiterer positiver Nebeneffekt ist das man dadurch ganz automatisch nochmals einen prüfenden Blick auf die Farbringe wirft.
- Biege alle Anschlussdrähte gleichmäßig und ordentlich
- Bestücke maximal 5 Bauteile auf einmal
- Bestücke Bauteile nur dann gleichzeitig wenn sie auch dieselbe Einbaurichtung haben
- Lege Dir das passende Werkzeug vorher zurecht. Wenn Dir etwas fehlt kauf es. Hast Du z.B. keinen kleinen Seitenschneider dann nimm **niemals** eine Küchenschere oder ähnliche "Ersatzwerkzeuge"!
- Bevor Du die Teile besorgst lies bitte diese Anleitung einmal komplett durch auch wenn Du Profi bist und bereits mehrere ML-303 gebaut hast, denn es gibt einige neue Erkenntnisse und Änderungen zu den bisherigen Clones!

Arbeitsvorbereitung Das Werkzeug

Du benötigst die folgenden Werkzeuge. Wenn Dir ein Werkzeug fehlt dann Kauf es! Nimm keine "Ersatzwerkzeuge"!

Lötkolben

Verwende einen Elektronik-Feinlötkolben mit kleiner Lötspitze. Er sollte ca. 25 Watt Leistung haben.

Ein preiswerter und guter Lötkolben ist beispielsweise der Ersa Multitip C25:

Falls Du Dir einen neuen Lötkolben kaufst achte darauf nicht den erstbesten Billigst-Lötkolben andrehen zu lassen.

Die Spitzen dieser No-Name Teile sind schon nach der ersten Platine vom Lot zerfressen! Außerdem sind die Spitzen oft nicht so leicht zu beschaffen wie bei Marken-Lötkolben und was man auf der einen Seite gespart hat gibt man später für Ersatzspitzen aus.

Das non-plus-ultra sind natürlich Lötstationen mit Temperaturregelung. Diese sind entsprechend teurer und lohnen sich erst wenn man häufiger lötet.

<u>Die Boards sind 2-seitig, gelötet wird aber immer nur von unten. Alle Löcher sind vorverzinnt, das heißt sobald Du von unten lötest zerfließt das Lötzinn oben auf der Bestückungsseite ganz automatisch.</u>

• Lötzinn

Das Lötzinn gibt es in vielen verschiedenen Ausführungen und es ist nicht gerade billig. Um Deine Bassline zu löten benötigst Du aber nur wenige Gramm.

Eine 100 Gramm – Rolle sieht wenig aus, sie reicht aber locker für 10 unserer Bausätze!

<u>Ganz entscheidend ist die Dicke des Lötzinns! Für die Bassline solltest Du ausschließlich Lötzinn mit einer Dicke von 0,5 mm verwenden.</u>

Bisher habe ich immer das bleihaltige Stannol S-Sn60 Pb 38Cu2 / 0,5mm verwendet.

Neues Bleifreies Lötzinn (SN95,5 AG3,8 CU0,7) 0,5mm

• Seitenschneider

Um die überstehenden Bauteilbeinchen nach dem Anlöten abzuknipsen benötigst Du einen <u>kleinen</u> Seitenschneider, z. B. so einen mit 110mm Länge:

Vorsicht: beim abknipsen passiert es häufig das die Bauteilbeinchen "losschießen" – das kann ins Auge gehen! Deshalb die Platine dabei immer so halten das das Beinchen vom Körper weg zeigt. Besser noch: eine (Schutz-) Brille tragen!

Abisolierzange

Zum abisolieren von Kabel benötigst Du eine Abisolierzange, z. B. so eine:

Es gibt auch etwas preiswertere Kombi-Abilsolierzangen, so eine tut's natürlich auch.

• Lötkolbenständer

Ein ordentlicher Lötkolbenständer mit Reinigungsschwamm ist eigentlich unverzichtbar, die kleinen Metallbügel-Ständer die oftmals bei den Lötkolben dabei sind alles andere als Sicher. Und mit dem (angefeuchteten) Schwämmchen kannst Du jederzeit zwischendurch Deine Lötspitze sauberhalten – das garantiert saubere Lötstellen.

• Schraubendreher

Den brauchst Du um die Trimmer einzustellen. Was soll man sonst noch dazu sagen © Ach ja, seit meiner Abschlussprüfung als Lehrling weiß ich das es nicht "Schraubenzieher" heißt sondern "Schraubendreher". Das hat mir im Berufsleben enorm geholfen… doch, doch, ganz ehrlich…

• Digitalmultimeter

Das Mutlimeter benötigst Du um Spannungen zu messen, Widerstandswerte zu bestimmen und um Durchgänge zu prüfen. Ohne Multimeter wirst Du Deine Bassline nicht einjustieren können. Wenn Du also keins hast dann leih oder Kauf eins. Es muss kein Mega-teures Modell sein, eins für unter 10 EUR reicht hier vollkommen aus:

• Entlötsaugpumpe oder Entlötsauglitze

Wenn Du mal versehentlich einen falschen Widerstand eingelötet hast o. ä. kannst Du ihn mit so einer Entlötsaugpumpe oder mit Entlötsauglitze wieder auslöten.

• Flussmittel-Entferner (optional)

Beim Löten tritt Flussmittel aus der Seele des Lötdrahtes aus und verursacht Flecken auf dem Lötstopplack. Mit einem Flussmittel-Entferner bekommst Du die hässlichen Flecken weg. Das ist aber optional, denn Deine Platine kommt ja sowieso später in ein Gehäuse.

• Biegevorrichtung (optional)

Damit lassen sich die Widerstandsbeine schön ordentlich biegen:

• Vitrometer (optional)

Probleme mit den Farbringen auf den Widerständen? Die Widerstandsuhr hilft Dir weiter © Anstelle der Widerstandsuhr kannst Du natürlich auch Dein Mutlimeter benutzen.

• Kroko-Klemmen (optional)

Sehr hilfreich beim einjustieren! So braucht man keine 3 Hände wenn man die Messspitzen vom Mutlimeter an die Schaltung halten muss und gleichzeitig an den Trimmern dreht ©

• Dritte Hand mit Lupe (optional)

Normalerweise kommt "mann" mit einer Hand aus ©

(Aber beim Basteln können 3 Hände schon mal sehr hilfreich sein!)

• Checkliste Werkzeuge

- Lötkolben 25 Watt
- Entlötsaugpumpe (oder Entlötsauglitze)
- Lötzinn 0,5mm
- kleiner Seitenschneider
- Abisolierzange
- Lötkolbenständer mit Schwamm
- Schraubendreher
- Digitalmultimeter
- Flussmittel-Entferner (optional)
- Biegevorrichtung (optional)
- Vitrometer (optional)
- Kroko-Klemmen (optional)
- Dritte Hand mit Lupe (optional)

Arbeitsvorbereitung Lötübung

Wenn Du im Löten ungeübt bist empfehle ich zunächst einmal auf einer Lochrasterplatine zu üben. Besorg Dir einfach eine Lochraster oder Lochstreifenplatine und ein paar billige Bauteile, z. B. die 1N4148 Dioden sind sehr billig, kosten gerade mal 2 Cent pro Stück.

Deine Lötstellen sollen kegelförmig und glänzend aussehen. Wenn sie dagegen wie Kugeln und / oder matt aussehen solltest Du noch weiter üben.

Achte darauf das Du mit der Lötspitze sowohl das Bauteilbeinchen wie auch die Platine gleichermaßen erwärmst, denn sonst lötest Du nicht sondern "klebst" nur, das sieht dann aus wie ein kleines Kügelchen oder lässt die Lötstelle matt aussehen.

Im Internet findest Du detailierte Anleitungen mit Tipps.

Arbeitsvorbereitung Bauteile

In Deiner Bassline kommen die verschiedensten Bauteile zum Einsatz. Zum erfolgreichen Bau musst Du nicht im Detail wissen was diese Teile machen, aber ein paar Grundkenntnisse sind schon ganz nützlich. Ich werde daher die Bauteile hier alle einmal <u>vereinfacht</u> erklären und ein paar Tipps zum Kauf der Kondensatoren geben.

Dioden

Die Bassline benötigt 3 verschiedene Diodentypen.

Zum einen wären das die **1N4148 Silizium Dioden** im roten Glaskörper (im Original wurden die japanischen 1SZ2473 verbaut):

Schau Dir einmal so eine Diode genau an, auf einer der beiden Seiten ist auf dem roten Glaskörper ein schwarzer oder weißer Ring. Dieser Ring kennzeichnet die so genannte "Kathode". Die Anschlussseite ohne Ring ist die "Anode". Die Diode lässt den Strom nur von der Anode zur Kathode fließen, in der Gegenrichtung sperrt sie. Es ist also nichts anderes wie ein "Elektronisches Ventil"!

Sicher ahnst Du es jetzt schon: würde man dieses Ventil verkehrt herum einlöten wird die Schaltung nicht funktionieren! Deshalb ist auf dem Bestückungsplan und auf der Platine selbst auch noch einmal der Ring eingezeichnet.

Beim einsetzen der Dioden musst Du also darauf achten das der Ring auf der Diode mit dem Ring auf der Platine übereinstimmt.

Ein weiterer Typ der zum Einsatz kommt ist die **1N4001 Diode**. Sie hat einen schwarzen Kunststoffkörper und der Ring ist silberfarben oder weiß aufgedruckt:

Der letzte Diodentyp ist etwas spezieller. Es handelt sich um eine "Zener-Diode" mit 6,2 Volt:

Die Z-Diode sieht der 1N4148 Diode recht ähnlich, Du erkennst sie aber daran dass eine Zahl aufgedruckt ist. Diese Zahl (in dem Fall 6,2) beschreibt hier die so genannte "Sperrspannung". Das Ventil sperrt nur bis 6,2 Volt, alles was darüber liegt fließt durch. In der Bassline wird dieser Effekt genutzt um eine möglichst exakte und stabile Referenzspannung zu erhalten.

Auch bei diesem Diodentyp musst Du wieder auf den Ring achten.

Widerstände

Die Widerstände dürften ja allgemein bekannt sein, daher hier nur kurz ein paar Dinge dazu:

Der Widerstandswert wird angegeben in der Einheit "Ohm". 1 000 Ohm entsprechen 1 Kilo Ohm. Die Schreibweise der Werte in dieser Anleitung ist wie folgt aufgebaut:

 10
 = 10 Ohm

 100
 = 100 Ohm

 1k
 = 1 Kilo Ohm
 = 1 000 Ohm

 10k
 = 10 Kilo Ohm
 = 10 000 Ohm

 10k
 = 100 Kilo Ohm
 = 100 000 Ohm

 1M
 = 1 Mega Ohm
 = 1 000 Kilo Ohm

Ist also hinter der Zahl kein Buchstabe angegeben handelt es sich direkt um den Ohm-Wert. Wenn ein "k" angegeben ist handelt es sich um 1 Kilo (also Wert x 1000). Ein "M" wiederum kennzeichnet ein 1 Mega Ohm (1 Mega Ohm sind 1000 Kilo Ohm).

Der Buchstabe steht ebenso als Komma-Ersatz im Wert:

 1k5
 = 1,5 Kilo Ohm
 = 1500 Ohm

 2k2
 = 2,2 Kilo Ohm
 = 2200 Ohm

 4k7
 = 4,7 Kilo Ohm
 = 4700 Ohm

 1M5
 = 1,5 Mega Ohm
 = 1500 Kilo Ohm

Diese Werte sind auf dem Widerstand zu Farbringen codiert, mit etwas Übung lernt man diese auswendig, ansonsten hilft einem eine Farbtabelle weiter. Für Anfänger ist auch eine so "Widerstandsuhr" hilfreich – oder miss die Widerstände mit Deinem Multimeter aus.

Widerstandstabelle

Es gibt preiswerte Kohleschicht-Widerstände (Ocker-farbener Grundkörper), Metallschicht-Widerstände (blauer Grundkörper) und teure Präzisions-Widerstände (grüner Grundkörper).

Sie unterscheiden sich in ihrer Toleranz:

- Kohleschicht 10%
- Metallschicht 1%
- MPR 0,1%

Bei den Widerständen wo in der Bestellliste die Kennzeichnung **MPR** angegeben ist musst Du auch MPR verwenden – da kommt es auf die Genauigkeit an. Sie sitzen hauptsächlich im VCO Deiner Bassline.

Manche Widerstände werden aus Platzgründen stehend eingelötet, andere liegend. Die Einbaurichtung ist egal.

Bei den anderen Widerständen empfehle ich grundsätzlich Metallschicht für die Bassline zu verwenden - so viel teurer ist das nicht.

Kondensatoren

Die Kondensatoren haben 2 Aufgaben: zum einen dienen sie als kurzzeitiger Stromspeicher, ähnlich wie ein Akku, zum anderen dienen sie als Widerstände für Wechselspannungs-Signale (z. B. Audio). Dies hier im Detail zu erklären würde zu weit führen ©

Auch hier kommen wieder verschiedene Typen zum Einsatz:

MKT Kondensatoren

Bei den MKT Kondensatoren ist die Einbaurichtung egal. Die Kennzeichnung in der Bestellliste ist genauso aufgebaut wie bei den Widerständen, nur mit anderen Einheiten:

1n = 1 Nano Farad 10n = 10 Nano Farad 100n = 100 Nano Farad 2n2 = 2,2 Nano Farad 6n8 = 6,8 Nano Farad

Bei dem abgebildeten Kondensator handelt es sich also um einen 1nF Kondensator (1 Nano Farad). Die Zahl 400 bedeutet dass dieser Kondensator bis zu 400 Volt verträgt. Das ist für unsere Bassline natürlich mehr als genug ©

Wenn Du Dir die Analog-Platine ansiehst wirst Du feststellen das die Bohrlöcher etwas größer gehalten sind, Du musst daher nach dem einsetzen die Beinchen etwas umbiegen damit sie beim umdrehen vor dem Festlöten nicht rausrutschen können. Die Löcher sind deshalb etwas größer gehalten damit man auch Styroflex Kondensatoren einbauen kann anstelle der MKT. Die Styroflex haben i. d. R. eine bessere Toleranz aber werden heutzutage nicht mehr hergestellt. Wenn Du noch welche bekommen kannst dann nimm Styroflex – andernfalls nimm diese kleinen rechteckigen Siemens MKT Kondensatoren.

Verwende ausschließlich MKT oder Styroflex – <u>keine Keramik-Kondensatoren und keine NPO / Z5U oder sonstigen Vielschichttypen, etc. ! Einzige Ausnahme: da wo Keramik angegeben ist soll auch Keramik rein!</u>

Tantal-Elkos

Die Tantal-Elkos sitzen hauptsächlich im Hüllkurvengenerator da sie "schneller" sind als die herkömmlichen Elkos. Da wo im Plan Tantal eingezeichnet ist gehört auch Tantal hin.

Du erkennst sie an ihrer Tropfenform:

Hier ist die Einbaurichtung <u>nicht egal</u> – wenn Du so einen Kondensator falsch herum einsetzt gibt es mit sehr hoher Wahrscheinlichkeit einen Knall, das mögen die nämlich überhaupt nicht ab. Also vor dem Anlöten noch einmal <u>sorgfältig</u> prüfen ob die Richtung stimmt.

<u>Und so geht`s: auf dem Körper ist meist ein langer schwarzer Strich eingezeichnet und darüber ein Plus-Zeichen. Dies kennzeichnet die Plus-Seite. Bei manchen Typen ist auch ein Beinchen etwas länger – auch dies kennzeichet die Plus-Seite. Auf dem Bestückungsplan findest Du ebenfalls ein Plus eingezeichnet.</u>

Elkos

Eins vorweg: es gibt radiale und axiale Elkos. Die Bassline benötigt die radiale Ausführung. Radial bedeutet "stehend", axial bedeutet "liegend".

Dies ist ein stehender Elko, also radial, so wie wir ihn benötigen:

Hier erkennst Du dass auch wieder ein Beinchen etwas länger ist, dies ist wieder die Plus-Seite. Zusätzlich ist auf dem Gehäuse die Minus-Seite farblich markiert, ein dicker heller Balken mit Minus-Zeichen drin. Das lange Beinchen gehört somit in die mit einem Plus gekennzeichneten Löcher.

Auf dem Aufdruck erkennst Du die Spannung und den Wert. Im Beispiel 63V und 10µF.

Dieser Elko verträgt also bis zu 63 Volt und hat eine Kapazität von 10 Micro Farad. Wenn in der Bestelliste ein Elko mit z. B. 16 Volt angegeben ist dann musst Du einen nehmen der mindestens 16 Volt verträgt. Wenn Dein Händler nur einen mit 35 Volt hat kannst Du ihn verwenden. Es darf nur nicht weniger sein als angegeben. Nimm keine Kondensatoren die mehr als 63 Volt vertragen denn die sind meist viel zu groß und passen dann nicht mehr auf die Platine drauf.

Die Kennzeichnung ist wieder genau so wie bei den Widerständen und MKT-Kondensatoren aufgebaut:

 1μ = 1 Micro Farad 2μ 2 = 2,2 Micro Farad 100μ = 100 Micro Farad

Keramik Kondensatoren

Die Keramik-Typen dürfen nur dort verwendet werden wo sie auch im Plan vorgesehen sind.

Die Einbaurichtung ist egal.

• Quarz

Der Quarz erzeugt den Takt für den Prozessor. Zum Einsatz kommt ein 10 MHz Quarz. Nun fragst Du Dich sicherlich warum wir einen 10 MHz Quarz verwenden wenn der Prozessor ein 40 MHz Typ ist ©

Die Lösung liegt im Prozessor: der hat nämlich eine integrierte "quadruple" PLL Schaltung die den externen Takt vervierfacht und somit intern mit 40 MHz arbeitet.

(Abbildung zeigt die große Bauform)

Es ist egal wie rum Du den Quarz einlötest. Auch die Bauform spielt keine Rolle, es gibt eine kleine Ausführung, den kannst Du auf dem Sequenzer Board von oben her bestücken, aber es gibt auch eine größere Bauform, den musst Du dann von unten einbauen da sonst später die Frontplatte nicht mehr draufpassen würde.

Prozessor

Der Prozessor ist ein PIC-Micro Prozessor mit RISC Architektur. Im 40 MHz Betrieb verarbeitet er bis zu 10 Millionen Instruktionen pro Sekunde!

Damit die Firmware ganz ohne "Brenner" über Midi eingespielt und upgedatet werden kann wird er von mir mit einem Midi-Bootloader vorgeflasht. Der Midi-Bootloader ist in etwa vergleichbar mit dem BIOS Deines PC's.

Der Midi-Bootloader wurde von **Thorsten Klose** (<u>www.ucapps.de</u>) entwickelt und uns zur Verfügung gestellt. Danke an dieser Stelle an Thorsten!

Ohne die Firmware ist der Prozessor natürlich doof wie Brot, es läuft nach dem ersten einschalten nur der Bootloader. Du musst die Firmware dann erstmal über Midi in den Prozessor einspielen. Dies ist weiter hinten ausführlich beschrieben.

<u>Einen eigenen PIC-Brenner benötigst Du also nicht. Dank des Bootloaders kann jeder - sooft er mag - die Firmware ganz einfach über Midi Updaten.</u>

Die Firmware selbst wurde von mir übrigens in Assembler entwickelt. Doch so einen PIC-Prozessor kann man auch mit Hochsprachen wie C, Basic und sogar Pascal programmieren. Ich kann das nur jedem empfehlen, es macht sehr viel Spaß auf diesen Dingern zu programmieren. Rechnen kann so ein Prozessor zwar nicht besonders, aber bei Steuerungsaufgaben ist er super einfach zu programmieren und extrem schnell (1 externer Takt = 1 Instruktion!).

Als Einbaurichtung gilt die Kerbe im Prozessorgehäuse. Die Kerbe muss mit der auf der Platine aufgedruckten Kennzeichnung übereinstimmen! Der Prozessor muss OHNE SOCKEL eingelötet werden da sonst die Frontplatte nicht draufpasst!

<u>Damit der Prozessor nicht durch statische Aufladung zerstört wird solltest Du ihn bis zum einlöten in seiner Antistatischen Verpackung belassen. Auch solltest Du die Beinchen möglichst wenig berühren, bzw. ein Erdungsband tragen oder zumindest vor dem Anfassen einmal kurz mit der Hand an die Heizungsrohre fassen.</u>

Aber keine Angst, ich habe festgestellt, dass diese Prozessoren sehr gutmütig sind. Beim Bau des ersten Prototypen hatte ich noch keinen Bootloader und so habe ich den Prozessor über 100 Male aus dem Sockel gehebelt, in den Brenner rein und wieder zurück, und ständig an den Beinchen angefasst.

• IC`s und Sockel

Auch bei den anderen IC's musst Du – genau wie beim Prozessor – auf die kleine Kerbe achten.

Für die IC`s auf dem Analog-Board kannst Du Sockel verwenden. Achte aber darauf dass auch die Sockel eine Kerbe haben.

Folgende IC's werden verwendet (die anderen IC's sind in dieser Anleitung gesondert beschrieben.)

- MOS 4066 (4 Analoge Schalter)
- MOS 4013 (4 Latche)
- MOS 4050 (Treiber)
- MOS 40174 (6 Latche)
- AN 6562 (=MC1458; Op-Amp)

Die Bezeichnung ist egal, es gibt z.B. CD 4066 oder HEF 4066. Bei Motorola IC`s ist ein "MC1" vorangestellt. Also ein MC14066 ist ein MOS 4066.

Ob Du die teuren Präzisionsfassungen nimmst oder die Standard-Ausführung ist vollkommen egal, beides ist okay!

Bei den IC`s auf dem Sequenzer-Board dürfen keine Sockel verwendet werden weil sonst die Frontplatte nicht draufpasst.

• Trimmer

Zu den Trimmern gibt es nicht viel zu sagen, wenn Du magst kannst Du Präzisionstrimmer nehmen, sofern sie von der Größe passen. Ansonsten halt die Standard-Trimmer von PIHER o. ä. (PT10LV). Liegende Ausführung.

Die Werte-Bezeichnung ist genau wie bei den Widerständen.

• Spannungsregler

Es kommen 2 Typen zum Einsatz:

7815 oder 78S15 = **15 Volt** Regler

7806 oder 78S06 = **6 Volt** Regler

Die Regler mit dem "S" in der Bezeichnung unterscheiden sich nur dadurch, dass sie einen doppelt so großen Strom vertragen wie die Regler ohne das "S". Das ändert aber nichts daran, dass sie gekühlt werden müssen.

Die Spannungsregler müssen gekühlt werden.

Wenn Du ein Metallgehäuse verwendest kannst Du sie mit ihrer Rückplatte und der Gehäuseseite verschrauben. Eine Isolation braucht nicht dazwischen da an beiden Metallen Masse anliegt.

Falls Du noch kein Gehäuse fertig hast oder falls Du ein Kunststoff-Gehäuse verwendest kannst Du als Alternative solche Aufsteckkühlkörper verwenden:

<u>Auch beim Spannungsregler ist die Einbaurichtung wichtig! Er muss so rum eingebaut werden das die Metallplatte zum Platinenrand hin zeigt (direkt zur Gehäuseseite).</u>

Transistoren

Vereinfacht gesagt funktioniert ein Transistor wie eine Schleuse. Je mehr Strom Du am Anschluss "B" Basis anlegst desto mehr fließt vom Kollektor ("C") zum Emitter ("E"). Hierbei braucht der Strom an der Basis jedoch nur sehr gering sein, um einen deutlichen größeren Strom von C nach E fließen zu lassen. Er ist also quasi ein Stromverstärker. Dies gilt für den NPN-Transistor. Beim PNP-Transistor fließt der Strom vom Emitter zum Kollektor, also genau das Gegenstück zum NPN-Typen ("Komplementär").

In der Bassline gibt es 6 verschiedene Typen:

- 2SC536
- 2SA733
- 2SC1583
- 2SC2291
- 2SK30-AY
- 2SK30-AO

2SC536

Dies ist ein japanischer NPN-Typ. Der Aufdruck ist meist "SC536". In der echten Bassline wurde er in der ersten Baureihe verbaut, später hat man dann den 2SC945 verwendet. Wenn Du keine 2SC536 mehr auftreiben kannst dann nimm einfach den 2SC945. Die Einbaurichtung ist wichtig, Du darfst ihn deshalb nicht verkehrt rum einbauen.

2SA733

Dies ist der Komplementärtransistor zum 2SC536, also ein PNP-Typ. Die Front ist meist silber-farben, manchmal aber auch nur schwarz. Der Aufdruck ist meist "SA733". Auch hier ist die Einbaurichtung zu beachten.

2SC1583

Dies ist ein 5-poliger Transistor. Er ist deshalb 5-polig weil dort 2 Transistoren in einem Gehäuse stecken, wobei 2 PIN's intern zusammengeschaltet sind und nur als 1 PIN herausgeführt. Theoretisch kann man natürlich genauso gut 2 normale Transistoren verwenden, allerdings müsste man sie dann thermisch koppeln, z. B. in dem man die beiden Frontflächen etwas anraut und mit Sekundenkleber o. ä. zusammenklebt. Hier geht es nämlich darum das beide Transistoren exakt gleich laufen und somit benötigen sie beide dieselbe Betriebstemperatur. Wenn Du einen echten 5-poligen Transistor hast (die Beschaffung stellt <u>noch</u> keine Probleme dar) kannst Du Dir die Kleberei also sparen. Bei diesem Transistor ist es egal wie rum man ihn einbaut.

2SC2291

Das ist der Komplementärtyp zum 2SC1583. Bei diesem ist, wie beim 2SC1583, die Einbaurichtung egal.

2SK30-AY

Das ist ein so genannter "J-FET" Transistor. Seine Funktionsweise ist ein wenig anders als bei den herkömmlichen Silizium-Typen. Die Einbaurichtung ist zu beachten, außerdem dürfen die beiden Typen – AY und – AO nicht miteinander verwechselt werden. Falls Du keinen – AY auftreiben kannst nimm einen 2SK30-GR (oder –A GR usw.).

2SK30-AO

Dies ist der J-FET der im VCO sitzt. Dieser Transistor ist sehr rar geworden und wenn Du keinen auftreiben kannst nimm den "Acidcode TypO" (den gibt es nicht im Handel sondern nur bei mir ©) oder nimm einen "J201". Der "Acidcode TypO" besitzt die gleichen elektrischen Eigenschaften wie der echte 2SK30-AO und hat ebenfalls die –O Charakteristik.

• Kopfhörerverstärker

In der Bassline kommt ein 0,6 Watt Kopfhörerverstärker zum Einsatz: der **LA4140**. Seit unserem letzten Projekt ist der LA4140 ziemlich rar geworden © und der Preis ist stark gestiegen. Deshalb habe ich mich nach einem Vergleichstypen umgesehen und bin auf den sehr preiswerten **AN7112** gestoßen. Der Unterschied ist lediglich das der AN7112 etwas mehr Spannung verträgt und etwas mehr Leistung bringt, ansonsten sind sie absolut identisch.

Die Einbaurichtung ist wichtig. Hier gibt es eine kleine Falle: bei manchen findet man nämlich einen kleinen vertieften Punkt im Gehäuse – aber dies kennzeichnet nicht die Einbaurichtung.

Die Einbaurichtung wird ausschließlich von der Kerbe an der Seite gekennzeichnet:

Und noch ein Tipp: da der Kopfhörerverstärker genau wie der VCA (BA6110) aussieht ist es schnell passiert und man hat die beiden vertauscht. Deshalb bitte unbedingt vor dem einlöten noch mal genau draufgucken!

ROHM VCA

In der TB wurde als VCA ein BA662 eingesetzt. Es ist ein Spannungsgesteuerter Operationsverstärker ("OTA"). Hergestellt wurde der BA662 von ROHM. Dieser ist mittlerweile äußerst rar geworden, man findet ihn noch in vielen Boss Gitarreneffekten bei ebay.

Doch wozu auslöten, man kann genau so gut den Nachfolger nehmen: den ROHM BA6110.

Obwohl auch dieser nicht mehr produziert wird kann man ihn noch beschaffen. Auf der Platine habe ich beide Möglichkeiten vorgesehen, man kann entweder den BA6110 oder den BA662 einlöten:

Oben (grün markiert) = Einbau vorgesehen für den BA662 Unten (blau markiert) = Einbau vorgesehen für den BA6110

Betrieb von BEIDEN Einbauplätzen zeitgleich ist nicht möglich! Also: entweder / oder!

• Leuchtdioden (LED`s)

Von den LED's kommen 2 verschiedene Typen zum Einsatz (Farbvorschlag):

3 Stück LED blau 3mm 21 Stück LED rot 3mm / 2mA Low-Current

LED blau 3 mm / Standard 20 mA

- Wave SAW
- Wave EXT
- Wave SQUARE

LED rot 3mm / 2mA Low-Current

- RUN
- FUNC
- PITCH
- TIME
- DOWN
- UP
- ACCENT
- SLIDE
- N1 bis N13

Alle LED's haben einen Durchmesser von 3 Millimeter. <u>Mit Ausnahme der 3 blauen LED's musst Du LOW-CURRENT Typen nehmen – keine Standard!</u> Die LOW-CURRENT Typen leuchten schon bei 2 mA mit der vollen Leuchtkraft während normale Typen 20 mA verbrauchen.

Die Einbaurichtung ist wichtig, ansonsten werden sie nicht leuchten. Die Plus-Seite erkennst Du an dem längeren Beinchen:

Selbstverständlich kannst Du natürlich die Farben anders gestalten, z.B. auch grüne, orangene, gelbe, gemischt, etc., beachte halt nur das auf dem Sequenzer-Board die Low-Current Typen verwendet werden müssen und auf dem Analog-Board die 3 Dioden dürfen beliebige Standard-Typen sein.

Für die LED's kannst Du Abstandshalter verwenden, sofern es mit der Frontplatte passt (selber einfach mal ausprobieren bzw. planen!).

Klinkenbuchsen

Die Klinkenbuchsen für den Kopfhörer und dem Line-Out Anschluß sollten so aussehen damit sie auf das Board passen (gibt 's bei Reichelt-Elektronik):

Am Kopfhörer-Anschluß steht ein Stereo-Signal bereit (2x Mono), am Line-Out steht ein Mono-Signal an (geeignet für Mono-Klinkenstecker). Die Buchsen dürfen aber beide Stereo sein da dies bereits auf dem Board berücksichtigt wird. Spare nicht am Lötzinn damit die Buchsen auf lange Zeit schön stabil sitzen. Am besten ist es wenn Du sie später mit der Rückplatte vom Gehäuse verschraubst.

Netzteilbuchse

Die Netzteilbuchse ist eine Hohlstecker-Buchse mit Lötfahnen. Die Löcher auf dem Board wurden extra groß ausgeführt damit Du sie direkt auflöten kannst. Nimm auch hier reichlich Lötzinn damit es gut hält.

• Midibuchsen

Auf dem Board ist die Midi-In Buchse direkt vorgesehen, Du kannst so eine Printbuchse verwenden:

Falls Du auch den Midi-Out Port nutzen willst dann nimm diese Buchsen, die kannst Du direkt mit dem Gehäuse verschrauben, was auf Dauer auch die stabilere Lösung ist:

• Optokoppler

Der Midi-Input muss gemäß Midi Spezifikation von der Schaltung elektrisch getrennt sein. Aus diesem Grund wird in jedem Synthesizer ein Optokoppler eingesetzt. Im Optokoppler befindet sich eine Leuchtdiode und eine Fotodiode bzw. Fototransistor. Die Daten werden also per Licht übertragen und es besteht keine elektrische Verbindung. In Deiner Bassline kommt der 6-polige CNY17 Optokoppler zum Einsatz. Beachte beim Einbau wieder die Richtung der Kerbe.

• Taster

Die Print-Taster bekommst Du bei Conrad. Es sind diese hier:

Du benötigst (Farbvorschlag):

Rot

- RUN, CLR, TAP, BACK

Grau (sieht eher aus wie weiß daher passend für die Noten)

- N1,N3,N5,N6,N8,N10,N12, N13

Schwarz

N2,N4,N7,N9,N11

Blau

FUNC, PITCH, TIME

Gelb

UP, DOWN, SLIDE, ACCENT

• Platinensteckverbinder

Um das Sequenzerboard anzuschließen empfehle ich die Verwendung von Platinensteckverbindern. Die Seite mit dem Stecker wird am Analog-Board angelötet, die andere Seite mit den Kabelenden direkt an das Sequenzer-Board gelötet.

Du benötigst 3 Typen (RM 2,54):

- 10 polig (VCO-Daten)
- 5 polig (Midi-Daten)
- 2 polig (Spannungsversorgung Digital)

Falls Du die Erweiterungen auch mit Steckverbindern anschließen möchtest benötigst Du noch weitere 2 und 3 polige Typen (siehe Seite "Anschlüsse").

Schiebeschalter

Mit dem Schiebeschalter wählst Du die Wellenform aus, (Sägezahn/ Externes Signal / Rechteck). Den passenden Schiebeschalter gibt es bei Conrad. Es ist ein 2-polger Umschalter mit 3 Schaltstellungen (<u>Aufpassen: es gibt dort einen ähnlichen mit Chrom-Hebel aber der passt nicht!</u>):

• Sicherungshalter

Es sollte eine 650mA Feinsicherung eingesetzt werden:

• EEPROM

Das EEPROM speichert Daten und behält diese auch wenn die Bassline ausgeschaltet wird – ganz ohne Batterie.

Zum Einsatz kommt ein 8 kByte EEPROM vom Typ "24C65". Man kann auch "24C64" verwenden.

Bei der V4 haben wir bemerkt, dass diese EEPROM`s scheinbar sehr empfindlich sind. Lasse es also bis kurz vor dem Einlöten in seiner Antistatischen Verpackung bzw. auf dem Moosgummi. Löte es als allerletztes Bauteil ein und erde Dich vorher noch einmal am Heizungsrohr. Löte die Beinchen und kurzen schnellen Lötvorgängen ein, damit es dabei zu stark erwärmt wird. Beachte auch beim EEPROM die Einbaurichtung (Kerbe).

Das EEPROM darf, genau wie der Prozessor, nicht gesockelt werden, da sonst die Frontplatte nicht mehr draufpassen würde.

Netzteil

Zum Betrieb Deiner Bassline brauchst Du – klar – ein Steckernetzteil.

Das Netzteil sollte 24 Volt Gleichspannung liefern und gesiebt sein.

Frage: Warum soviel? Reicht nicht auch ein 12 Volt Netzteil?

Antwort: Nein.

Der Grund ist das in der Original TB ein DC-DC Konverter mit einer getakteten Spule aufgebaut wurde. Diese Spule ist heutzutage relativ teuer geworden. Auch die fertigen DC-DC Module sind nicht gerade billig und wir laufen Gefahr durch die Taktung Einstreuungen in das Audiosignal zu bekommen. Meine Versuche haben ergeben, dass der typisch TB-britzelnde Klang des Filters und der Hollow-Sound der Square-Wave nur dann richtig einsetzen wenn die PSU 15 Volt bekommt. Der Nachteil der PSU ist das sie von der Eingangsspannung abhängig ist, würde man den 7815 Regler weglassen wäre das Tuning immer vom Netzteil abhängig und man müsste jedes Mal nachregeln wenn man ein anderes Netzteil anschließt. Aus diesem Grund habe ich beschlossen einen 7815 Regler vorzuschalten der hier für richtig stabile Verhältnisse sorgt. Die Eingangsspannung bei so einem Regler muss mindestens 3 Volt größer sein als die Ausgangsspannung. Zusätzlich kalkuliert man 10% Sicherheit ein. Somit ist ein Steckernetzteil mit 20 bis 24 Volt ideal.

Ein sehr gutes 6 - 24 VDC Netzteil (mit 1000 mA) ist das bei Conrad erhältliche SNG1000/24 und kostet 17,95 EUR.

Stelle dieses für einen optimalen Betrieb auf 24 Volt ein.

<u>Wird dennoch ein Netzteil mit weniger Spannung oder Leistung verwendet wird die Bassline nicht korrekt klingen! Das gilt für das Tuning, den Klang der Square-Wave, den Klang des Filters, dem Klang des VCA (klick-Geräusche).</u>

Wenn Du die Seite mit den Dioden gelesen hast weißt Du ja schon dass die Bassline einen Verpolungsschutz hat. Wenn Du also den Steckadapter versehentlich verkehrt herum anbringst wird Deine Bassline nicht kaputt gehen.

Noch ein paar Worte zum Netzteil an die Kritiker

Warum keine Sumida Coil?

Die Beschaffung der Original Sumida Coil ist in der Stückzahl nicht möglich, und wenn überhaupt dann kostet uns das deutlich mehr als die 17,95 EUR für das Conrad Netzteil. Zudem muss man dann ja immer noch ein 9 Volt Netzteil dazurechnen. Somit käme man auf über 40 EUR Aufwand allein für die PSU.

Warum kein AC Netzteil?

Natürlich könnte man über ein AC Steckernetzteil und einer Dioden/Kondensatoren-Kaskade die 24 VDC erreichen, hier ist aber zusätzliche Siebung erforderlich, außerdem sind die AC-Netzteile schwerer zu beschaffen als ein 24 VDC Steckernetzteil. Sparen wird man auch mit dieser Variante nichts.

Warum kein fertiges oder eigenes DC-DC Modul?

Ein DC-DC Modul mit ca. 132 mA kostet alleine schon ca. 9 EUR. Wer garantiert, dass dies im Langzeitbetrieb nicht durchbrennt? Und kann die Taktung im Audio-Teil Störungen verursachen? Ersparnis: keine – Risiko dafür sehr hoch ohne Langzeittests!

Warum kein Trafo im Gerät?

Das ist u. U. Lebensgefährlich!

Unsere Bastelprojekte beschränken sich auf Niederspannung.

Potis

Spare nicht an den Potis. Wenn Du Schrauben willst bis der Arzt kommt kaufe gleich ordentliche Potis. Die Bassline kannst Du mit verschiedenen Typen betreiben, ganz nach Deinem Wunsch.

Die Löcher auf der Platine sind vorgesehen für Potis des Typs "**Alphastat 16 – stehend**". Diese Potis kannst Du direkt einlöten.

Sicher wirst Du schon bemerkt haben, dass sich zwischen dem Platz für die Potis dicke Bohrlöcher befinden:

Die sind da nicht etwa zur Frischluftzufuhr © sondern erfüllen folgenden Zweck: Wenn Du keine Alphastat-16 Potis nehmen möchtest ermöglichen Dir diese Löcher nämlich beliebige andere Potis zu verwenden!

Clever, oder ☺

Du könntest Deine Potis zum einen an der Frontplatte Deines Gehäuses befestigen und mit Kabel mit der Platine verbinden. Das hat zwar den Vorteil, dass es super-stabil ist, aber den Nachteil dass Du die Potiknöpfe nicht in der Front versenken kannst. Sieht also nicht so chic aus. Außerdem ist es immer eine Aktion die Platine von der Front zu trennen wenn man mal dran muss und die Kabel an den Potis sollten ohnehin nur so kurz wie eben möglich sein.

Was also tun wenn die eigenen Potis nicht passen?

Fertige Dir aus einer Alu-Profilstange oder aus einer Kunststoff-Stange eine Befestigungsleiste für Deine Potis an. Der Abstand von Potiachse zu Potiachse beträgt 24mm. Genau dazwischen bohrst Du 5 Löcher. Nun kannst Du nämlich Deine **Potileiste mit 6 Schrauben** stabil mit der Platine verschrauben. Beim Volume-Poti sind ebenfalls Löcher vorgesehen, hier empfiehlt sich ein quadratisches Stück Alu oder Kunststoff.

Auf diese Weise kannst Du z.B. auch die Monacor Alpha Potis (sehr gut für den Preis von ca. 1,20 EUR) an der Platine befestigen.

3 Dinge solltest Du aber noch beachten:

Wenn Deine eigenen Potis untendrunter metallisch sind musst Du die Duko`s (kleine Durchkontaktierungen) die unter dem Poti sitzen zukleben, z.B. mit kleinen runden Aufkleb-Punkten damit es keinen Kurzschluss zwischen Duko und Potikörper gibt.

Bei Potis mit Metallkorb muss dieser mit der Masse verbunden werden (das sind die etwas kleineren Löcher ober- und unterhalb der 6 großen Bohrungen).

Wenn Du die Potianschlüsse nicht direkt mit den vorgesehenen Lötpunkten auf der Platine verbinden kannst darf das verwendete Kabel bzw. der Draht nur sehr kurz sein da die Schaltung sonst u. U. zum schwingen neigt (Filter "flattert" usw.). Spätestens wenn Du mit Deiner Bassline Radio hören kannst solltest Du zu kürzeren Kabeln greifen © Am besten die Kabel mit einem Massekabel umwickeln (natürlich isoliert damit es nicht versehentlich andere Bauteile berührt!).

Zusammenbau Sequenzerteil

Im **Anhang I** findest Du die Teileliste für den Sequenzerteil.

Schritt 1: 1x Diode 1N4148 Einaubrichtung: Ring beachten

Schritt 2: 1x Widerstand 100 Ohm Kohleschicht Einbaurichtung: egal

Schritt 3: 6x Widerstand 220 Ohm Kohleschicht Einbaurichtung: egal

Schritt 4: 3x Widerstand 10k Kohleschicht

Schritt 5: 1x Widerstand 1k2 Kohleschicht

Schritt 6: 1x Quarz

Einbaurichtung: kleiner Quarz von oben oder großer Quarz von unten, Richtung egal

Schritt 7: 2x Kondensator 33pF Keramik

Schritt 8: 1x Kondensator 100nF Keramik

Schritt 9: 1x Kondensator 22µF Tantal

Einbaurichtung: Langes Beinchen = ",+" oder Kennzeichnung ",+" aufgedruckt

PAUSE

Schritt 10: 21x Leuchtdioden mit Abstandshalter montieren Einbaurichtung: Langes Beinchen = "+"

Schritt 11: Taster (4x rot, 3x blau, 8x grau, 5x schwarz, 4x gelb)
Einbauhinweis: den 3ten PIN mit einer leichten Drehbewegung einsetzen

Schritt 12: 1k Widerstand Einbaurichtung: Von der Lötseite

Dies ist der wohl schwierigste Teil ©

Der 1k Widerstand muss von der Lötseite her bestückt werden und zwar an diesen beiden kleinen Durchkontaktierungen. Schau Dir das Bild genau an, die Löcher dürfen nicht verwechselt werden. Von unten betrachtet ist das natürlich alles spiegelverkehrt (das Bild ist die Betrachtung von der Bestückungsseite!). Zur Hilfestellung: die Seite ist mit dem PIN 32 verbunden die andere mit dem PIN 23 des Prozessors.

Der Widerstand darf natürlich nicht weggelassen werden, ansonsten funktioniert der Sequenzer nicht!

Schritt 13: 3 IC's einbauen (Prozessor, CNY Optokoppler, 24LC65 EEPROM)
Einbaurichtung: Kerbe beachten, unbedingt Körper vorher Erden

Beachte: die IC`s dürfen nicht mit Sockeln eingebaut werden – denn sonst passt später die Frontplatte nicht drauf!

Fertig.

Zur Kontrolle findest Du den vollständigen Bestückungsplan im Anhang.

Achtung:

Das Sequenzer-Board besitzt in dieser Version keinen Spannungsregler und keinen Verpolungsschutz mehr! Es darf daher nicht direkt an einem Netzteil ausprobiert werden!

Zusammenbau Analogteil

Im **Anhang II** findest Du die Teileliste für den Analogteil.

Anstelle einzelner Bestückungsbilder wie beim Digitalteil habe ich hier ein hochauflösendes Bild mit allen Bauteilen gemacht, Einzelbilder beim Analogboard hätten den Rahmen dieser Anleitung gesprengt ©

Hier die Arbeitsschritte mit den von mir empfohlenen Abschnitten (wenn Du magst):

Schritt 1: 1x Z-Diode ZPY6.2V

Einaubrichtung: Ring beachten

Schritt 2: 2x Diode 1N4001 Einaubrichtung: Ring beachten

Schritt 3: 15x Diode 1N4148 Einaubrichtung: Ring beachten

Schritt 3: 15x Diode 1N4148 Einaubrichtung: Ring beachten

Schritt 4: 1x Widerstand 27k MPR High-Precision

Einaubrichtung: egal

Schritt 5: 17x Widerstand 200k MPR High-Precision

Einaubrichtung: egal

PAUSE

Schritt 6: 2x Widerstand 10 Ohm

Einaubrichtung: egal

Schritt 7: 2x Widerstand 22 Ohm

Einaubrichtung: egal

Schritt 8: 7x Widerstand 100 Ohm

Einaubrichtung: egal

Schritt 9: 1x Widerstand 330 Ohm

Einaubrichtung: egal

Schritt 10: 1x Widerstand 560 Ohm

Einaubrichtung: egal

Schritt 11: 4x Widerstand 1k Ohm

Einaubrichtung: egal

Schritt 12: 1x Widerstand 1k8

Einaubrichtung: egal

Schritt 13: 15x Widerstand 2k2

Einaubrichtung: egal

Schritt 14: 3x Widerstand 4k7

Einaubrichtung: egal

PAUSE

Schritt 15: 1x Widerstand 5k6

Einaubrichtung: egal

Schritt 16: 2x Widerstand 6k8

Einaubrichtung: egal

Schritt 17: 29x Widerstand 10k

Einaubrichtung: egal

Schritt 18: 10x Widerstand 22k

Einaubrichtung: egal

Schritt 19: 1x Widerstand 33k

Einaubrichtung: egal

Schritt 20: 1x Widerstand 39k

Einaubrichtung: egal

PAUSE

Schritt 21: 4x Widerstand 47k

Einaubrichtung: egal

Schritt 22: 1x Widerstand 68k

Einaubrichtung: egal

Schritt 23: 22x Widerstand 100k

Einaubrichtung: egal

Schritt 24: 6x Widerstand 220k

Einaubrichtung: egal

Schritt 25: 1x Widerstand 1M

Einaubrichtung: egal

Schritt 26: 1x Widerstand 1M5

Einaubrichtung: egal

PAUSE

Schritt 27: 1x Kondensator 1n MKT

Einaubrichtung: egal

Schritt 28: 2x Kondensator 1n5 MKT

Einaubrichtung: egal

Schritt 29: 1x Kondensator 6n8 MKT

Einaubrichtung: egal

Schritt 30: 5x Kondensator 10n MKT

Einaubrichtung: egal

Schritt 31: 1x Kondensator 15n MKT

Einaubrichtung: egal

Schritt 32: 4x Kondensator 33n MKT

Einaubrichtung: egal

Schritt 33: 1x Kondensator 47n MKT

Einaubrichtung: egal

Schritt 34: 1x Kondensator 68n MKT

Einaubrichtung: egal

Schritt 35: 4x Kondensator 100n MKT

Einaubrichtung: egal

Schritt 36: 1x Kondensator 220n MKT

Einaubrichtung: egal

Schritt 37: 2x Kondensator 100n Keramik

Einaubrichtung: egal

PAUSE

Schritt 38: 2x Kondensator 1µ Tantal

Einaubrichtung: + beachten

Schritt 39: 6x IC-Sockel Einaubrichtung: Kerbe beachten

Schritt 40: 1x BA6110 (oder BA662 siehe Beschreibung)

Einaubrichtung: Kerbe beachten

Schritt 41: 1x LA4140 (=AN7112)

Einaubrichtung: Kerbe beachten

Schritt 42: 2x Trimmer 50k (oder 47k)

Einaubrichtung: -

Schritt 43: 1x Trimmer 5k (oder 4k7)

Einaubrichtung: -

Schritt 44: 1x Trimmer 500k (oder 470k)

Einaubrichtung: -

Schritt 45: 1x Sicherungshalter

Einaubrichtung: egal

Schritt 46: 1x Transistor 2SC2291

Einaubrichtung: egal

Schritt 47: 3x Transistor 2SC1583

Einaubrichtung: egal

Schritt 48: 1x Transistor 2SK30-AO (oder Acidcode-TypO)

Einaubrichtung: flache Seite beachten

Schritt 49: 1x Transistor 2SK30-AY (oder -GR)

Einaubrichtung: flache Seite beachten

Schritt 50: 9x Transistor 2SA733 Einaubrichtung: flache Seite beachten

Schritt 51: 21x Transistor 2SC536 (oder 2SC945)

Einaubrichtung: flache Seite beachten

PAUSE

Schritt 52: 12x Kondensator 1µ

Einaubrichtung: + beachten

Schritt 53: 1x Kondensator 2µ2

Einaubrichtung: + beachten

Schritt 54: 13x Kondensator 10µ

Einaubrichtung: + beachten

Schritt 55: 2x Kondensator 22µ

Einaubrichtung: + beachten

Schritt 56: 6x Kondensator 47µ

Einaubrichtung: + beachten

Schritt 57: 4x Kondensator 100µ

Einaubrichtung: + beachten

Schritt 58: 1x Kondensator 470µ

Einaubrichtung: + beachten

Schritt 59: 1x Kondensator 1000µ

Einaubrichtung: + beachten

PAUSE

Schritt 60: 1x Hohlsteckerbuchse

Einaubrichtung: -

Schritt 61: 2x Klinkenbuchse

Einaubrichtung: -

Schritt 62: 1x Midi-Buchse

Einaubrichtung: -

Schritt 63: 1x 7806 + Kühlkörper

Einaubrichtung: Massefläche zum Platinenrand, Schrift zur Platine hin

Schritt 64: 1x 7815 + Kühlkörper

Einaubrichtung: Massefläche zum Platinenrand, Schrift zur Platine hin

Schritt 65: 1x Schalter 2x3 UM

Einaubrichtung: -

Schritt 66: Sicherung einsetzen

Einaubrichtung: egal

Schritt 67: IC's einsetzen

Einaubrichtung: -

Schritt 68: Kabel zum Analog-Board anlöten Einaubrichtung: siehe Zeichnung im Anhang!

Schritt 69: 3x LED blau mit Abstandhalter Einaubrichtung: langes Beinchen beachten

Schritt 70: Optional: Erweiterungen anschließen Einaubrichtung: siehe Zeichnung folgende Seite

Schritt 71: Digital-Board / Analog-Board m. Abstandshalter verschrauben

Einaubrichtung: -

Fertig!

Anschlüsse Erweiterungen

• Erweiterungen

Damit ich nicht wieder Milliarden eMails bekomme alà *"ich schick Dir mal meine Platine dann kannst Du mir einen CV-Out dranlöten*" habe ich diesmal gleich vorgesorgt ©

Kein großer Text, das Bild sollte alles erklären:

Letzter Schritt ENDCHECK!

Das Digital-Board besitzt in dieser Version keinen Verpolungsschutz mehr da die Spannung aus dem 7806 Regler direkt auf dem Analog-Board generiert wird (ähnlich der echten TB). Aus diesem Grund musst Du vor dem ersten einschalten die Polung einmal checken denn wenn das Board verpolt angeschlossen wird gehen Prozessor und EEPROM sofort kaputt!

Schalte Dein Multimeter auf Durchgangsprüfung und halte eine Messspitze auf das Analog-Board an die Diode D2 (hier rot markiert):

Halte die andere Spitze nun am Analog-Board an den Widerstand R42, Pin2, siehe Bild:

Piepst der Durchgangsprüfer? -> Dann ist alles ok!

Wenn nicht, dann prüfe die 2-adrige Leitung.

Das 1. Mal Einschalten!

Noch ist Deine Bassline nicht justiert und der Klang sicher noch nicht so wie er sein soll, aber bevor wir die Schaltung justieren können muss erstmal das Betriebssystem aufgespielt werden.

Schalte die Bassline ein. Jetzt sollte der Bootcode Vx2 aktiv werden und folgendes muss passieren:

- 2 LED's blinken
- die Midi-Out Schnittstelle sendet alle 2 Sekunden einen Datenstring

Nun muss das **Betriebssystem** übertragen werden. Für nächstes Jahr ist ein Tool geplant mit dem man dies erledigen kann und Patterns bequem am PC verwalten kann. Bis dahin musst Du das Freeware-Tool "**Midi-Ox**" verwenden. Lade es von der Webseite <u>www.midiox.com</u> runter.

Starte Midi-Ox und konfiguriere Deine Midi-Ports:

Das Häckchen bei "Automatically attach Inputs to Outputs …" muss entfernt werden, damit die empfangenen Daten nicht wieder auf den Ausgang gesendet werden ("Midischleife"). Am einfachsten ist dies sichergestellt wenn Du nur den Midi-Out Port Deines Computers mit dem Midi-In Port Deiner Bassline verbindest, und den Midi-Out Port Deiner Bassline nicht anschließt.

Im Options Menu musst Du nun "Pass Sysex" anklicken, damit Sysex-Strings eingeschaltet werden:

Aus dem Menu "View" startest Du nun das Sysex-Tool:

Nun wechsel in das Konfigurations-Menu:

Und stelle die Konfiguration wie hier dargestellt ein:

Das wichtigste ist hierbei die Einstellung "**Delay After F7: 750 MilliSeconds**". Wird hier eine kleinere Zahl eingestellt kann der Prozessor die Daten nicht rechtzeitig flashen bevor der nächste Datenblock empfangen wird.

Nun lade das aktuelle Betriebssystem im ".syx" Format aus dem Acidcode Forum runter. Beachte das Du in der Bassline kein Betriebssystem der ML-303 V4 einspielen kannst.

Öffne die Datei im "Command Window" Menu:

Schalte die Bassline ein. Wenn Du schon mal ein Betriebssystem installiert hattest und nun updaten möchtest musst Du den folgenden Schritt innerhalb von 2 Sekunden nach dem einschalten durchführen! Wenn noch kein Betriebsssystem installiert ist brauchst Du die 2-Sekunden Regel nicht zu beachten:

Klicke auf "Send Sysex":

Während es "Flashens" blinken einige LED's um den Vorgang zu signalisieren. **In dieser Zeit sollte die Bassline nicht ausgeschaltet werden** (sonst könnte es, rein theoretisch, passieren das der Bootcode zerstört wird, ist aber in der Praxis bisher noch nicht passiert).

Nach dem Upload wird die Bassline rebooten und nach ein paar Sekunden startet das Betriebssystem. Du befindest Dich zuerst im NORMAL Menu (Led FUNC leuchtet) und die Note "C" blinkt um das 1. Pattern zu signalisieren. Doch dazu später mehr.

Gratulation, Dein Sequenzer funktioniert ©

Für die technisch interessierten hier noch die Codes die der Bootcode über Midi Out ausgibt (Sysex-Strings):

```
"Request for Upload" SyxString (F0 00 00 7E 40 [device-id] 01 F7)
( No Error!)
The Error Codes (OE)
   Structure:
     F0 00 00 7E 40 <device-id> 0E <error code> <additional information>
F7
      <device-id>: the MIOS device ID from 00 to 7F*)
      <error code>: see below
      <additional information>: for internal use, ignore it
   Error Code | Description
           | Less bytes than expected have been received
             | More bytes than expected have been received
             | Checksum mismatch
             | Write failed (verify error or invalid address)
             | Write access failed (invalid address range) -
              | used by 1st level bsl
    0×06
             | MIDI Time Out
             | Wrong Debug Command
    0 \times 0.7
             | 2nd level bsl: Read/Write command tried to access an
    0x08
                invalid address range
    0x09 | 2nd level bsl: Read/Write address not correctly aligned 0x0a | BankStick not available**)
*) Device-ID`s:
Acidcode ML-303 V4 : ID = 01
Acidcode Bassline : ID = 09
```

**) don`t care on Acidcode Bassline / Acidcode ML-303 V4

Alle anderen MIOS Bootloader Optionen stehen bei der Bassline nicht zur Verfügung da sie ein eigenes Betriebssystem verwendet und nicht kompatibel mit der MIOS Plattform von Thorsten Klose ist. Somit darf natürlich auch kein MIOS Betriebssystem hochgeladen werden, im schlimmsten Fall könnte dies zur Zerstörung von einzelnen Prozessor-Ports führen (Kurzschlüsse).

Der Bootcode wurde von Thorsten Klose (<u>www.ucapps.de</u>) entwickelt und für unsere Synth-Projekte mit freundlicher Genehmigung zur Verfügung gestellt.

Es ist nicht möglich ein V4 Betriebssystem in die Bassline zu flashen, und umgekehrt.

Der letzte Schliff Justieren

VCO justieren in 10 einfachen Schritten

Dreh das Tune-Poti (nicht den Trimmer!) auf Mittelstellung. Verändere diese Einstellung während des Abgleichs nicht mehr.

Wähle an Deinem Multimeter "Spannungsmessung bis 10 bzw. 20 Volt" aus und schließe es an den Testpunkt "**TPCV**" an, die Masse kannst Du irgendwo beliebig abgreifen, zum Beispiel oben bei den Potis sind große Masseflächen.

• SCHRITT #3: Note "C" ermitteln und aufschreiben

Spiele die **Note** "C" (das ist die linke weiße Taste) und schreibe Dir den Wert auf den Du im Messgerät abliest, <u>beispielsweise</u> 1,035 Volt (dieser Wert ist rein fiktiv!).

Wert = V

• SCHRITT #4: Note "C" + "UP" einstellen (Wert von "C" + 1,000) *********************************
Nun spiele die Note " C " + " UP " und stelle den Trimmer " CV " (hier rechts im Bild grün markiert) so ein, dass Du im Messgerät den eben aufgeschriebenen Wert + 1,000 ablesen kannst (in unserem Beispiel wären das 2,035 Volt, da ja 1,035 + 1,000 = 2,035 ergeben). Die Abweichung sollte maximal +/- 3 mV betragen, in unserem Beispiel liegt der zulässige Wert also zwischen 2,032 und 2,038 Volt.
Bedenke bitte das dies rein fiktive Zahlen sind die ich mir eben ausgedacht habe, Du wirst in der Praxis völlig andere Werte ermitteln.

Wenn Du einen NF-Frequenzzähler hast kannst Du diesen Schritt überspringen (schließe das Gerät einfach an den " TPVCF " an, und gegen Masse).
Lade das Programm "Tuner" von der Acidcode Homepage runter und starte es. Schließe ein Audiokabel wie im Schritt "VCF justieren" an den Testpunkt "TPVCF" an.

Wellenform: Sawtooth Tune: Mittelstellung 2,75 Volt (haben wir ja schon im Schritt #4 gemacht!) Cutoff, Decay: 100% Reso, Env.Mod, Accent: 0%

Programmiere ein Pattern mit 16 Noten "C" und starte den Sequenzer.
Beobachte im Programm "Tuner" oder an Deinem Frequenzzähler die Frequenz der Note "C". Rechne diesen Wert nun $\mathit{mal}\ 2$.
Hier mal wieder ein Beispiel mit fiktiven Zahlen: Abgelesener Wert "66,78 Hz" \times 2 = "133,56 Hz".
Schreibe Dir den Wert auf (in diesem Fall 133,56 Hz).
Wert = Hz
Wert <i>x2</i> = Hz

SCHRITT #8: Frequenz "C UP" einstellen

Programmiere ein Pattern mit 16 Noten "C" + "UP" und starte den Sequenzer.

Justiere nun den Trimmer "Width" so ein, dass die Frequenz dem notierten Wert entspricht (im Beispiel sind das 133,56 Hz).

SCHRITT #9: Tonhöhe einstellen

Programmiere ein Pattern mit 16 Noten "A" und starte den Sequenzer.

Justiere nun den Trimmer "Tune" so ein, dass die Frequenz exakt "110 Hz" beträgt.

SCHRITT #10: letzter Check

Programmiere ein Pattern mit 16 Noten "A" + "UP" und starte den Sequenzer.

Wenn Du alles richtig gemacht hast dann sollte die jetzt gemessene Frequenz **220 Hz +/- 0,5%** betragen, also ein Wert zwischen 218,9 Hz und 221,1 Hz. Beachte das das Programm "Tuner" oder Dein Frequenzzähler auch Messungenauigkeiten unterliegen wird, so dass der Wert noch ein klein wenig +/- abweichen kann in der Praxis.

VCF justieren

Mit dem Trimmer **"VCF"** wird der Cutoff Regelbereich einjustiert, damit das Filter bei Resonanzen schön "mitschwingt".

Es ist wichtig, dass Du den VCO und die CV-Spannung justierst BEVOR Du die VCF einstellst.

Um den VCF einzustellen benötigst Du ein Wave-Recording Programm für Deinen PC (z.B. Wavelab, CoolEdit, o.ä.) oder alternativ ein Oszilloskop.

Unter dem Decay Poti findest Du den Testpunkt "TPVCF". Schließe hier über eine Kroko-Klemme o. ä. die Spitze eines Klinkensteckers an, den unteren Teil des Klinkensteckers verbindest Du mit einem beliebigen Massepunkt, z.B. an den Potis. Schließe das Klinkenkabel erst jetzt an den Eingang Deiner Audiokarte an.

Nun stelle die Wellenform und die Potis so ein:

WAVE: Sawtooth

TUNE, CUTOFF: 50% (Mittelstellung)

RESONANCE: 100%

ENV MOD, DECAY, ACCENT: 0%

Programmiere ein Pattern das nur C Noten enthält ein und starte den Sequenzer.

Nehme das Signal nun mit Deiner Audiokarte auf, Du musst dies ggfls. mehrfach wiederholen bis die Einstellung stimmt:

Stelle den Trimmer "VCF" so ein das zwischen zwei Wellenspitzen der Resonanz eine Zeit von 2 Millisekunden liegt (Toleranz +/- 0,5 Millisekunden).

Audio-Input Level justieren

Mit dem Trimmer "Input" kannst Du den Verstärkungsfaktor für den internen Audio-Eingangsverstärker für externe Klangquellen einstellen.

Damit Du am Ausgang der Bassline ein Signal hören kannst musst Du den Wave-Schalter auf Mittelstellung stellen und ein Pattern mit getriggerten Noten abspielen, damit der VCA überhaupt durchschalten kann.

Der Regelbereich des Vorverstärkers reicht bis zur Verzerrung des Filters, damit kannst Du weitere interessante Effekte mit Deiner Bassline in Kombination mit externen Klangerzeugern schaffen.

Die Signale die in den Audio Input gehen kannst Du am Ausgang der Bassline nur hören wenn die Noten getriggert werden. Dieser Eingang ist nicht vergleichbar mit dem Mix-Eingang an der echten TB (dort passiert das Signal nämlich nicht das Filter sondern wird nur unbearbeitet hinzugemischt – wie langweilig ©). Für Audio Input Betrieb stelle den Waveschalter auf "Ext", dies ist die Mittelstellung.

Sinnvoll ist dieser Eingang zum Beispiel wenn Du Flächensounds mit dem Sequenzer und dem Filter Deiner Bassline zerhacken möchtest. Hier sind viele interessante Effekte möglich. Beachte das dabei der interne VCO der Bassline stumm geschaltet wird. Liegt also kein Audiosignal am Input so wirst Du am Ausgang nichts hören.

• Haftungsausschluss

Der "Acidcode Bassline" Synthesizer ist ein Hobby-Bastel Projekt zum selberbauen und verfolgt keine kommerziellen Ziele. Das Gerät wurde ausschließlich zu privaten Lern-, Studien- und sonstigen Experimentierzwecken entwickelt. Aus diesem Grund kann keinerlei Haftung für die technische Korrektheit der Schaltung, der Richtigkeit der Bauanleitung sowie das funktionieren der selbstgebauten Schaltung übernommen werden. Ebenso kann keine Haftung für Sach- und Personenschäden übernommen werden die beim Bau oder bei der Inbetriebnahme des Gerätes verursacht werden, sei es aufgrund eines Fehlers verursacht durch den Benutzer dieser Anleitung oder eines bereits bestehenden Schaltungsfehlers oder Fehlers innerhalb dieser Bauanleitung (Beispiele: Brand, Verbrennungen, Verätzungen/Reizungen, z.B. durch explodierende Kondensatoren oder anderer Bauteile, Stromschläge, etc.), zerstörte Audiokarten, Boxen, Verstärker etc. Das fertige Gerät ist nicht für den Handel bestimmt. Das Gerät ist ausschließlich für den Betrieb an einem handelsüblichen Steckernetzteil mit VDE-Zulassung mit Niederspannung vorgesehen (maximale zulässige Betriebsspannung 24 Volt / Gleichstrom). Aus dieser Bauanleitung heraus besteht kein Anspruch auf ein Funktionstüchtiges Gerät. Eine evtl. Fehlersuche obliegt dem Benutzer. Die gängigen VDE-Sicherheitsvorschriften sind einzuhalten soweit erforderlich. Eine Nutzung der Anleitung oder des Fertiggerätes gewerblichen Einrichtungen, Schulen, Ausbildungseinrichtungen, in Selbsthilfewerkstätten etc. ist nicht zulässig.

Diese Anleitung sowie das fertige Gerät sind nur für private Zwecke bestimmt.

Mit der Verwendung dieser (Hobby-)Bauanleitung erkennt der Benutzer diese Hinweise an und handelt auf eigene Gefahr.

Troubleshooting Erste Hilfe

• Betriebssystem lässt sich nicht einspielen

Blinken 2 LED's beim einschalten?

- → Ja: Prozessor und Bootcode sind ok, Fehler liegt an den MIDI-OX Einstellungen oder am Midi-Setup
- → Nein: Stromversorgung vom Sequenzer-Board prüfen.

• Midi Out wird nicht gesendet

Höchstwahrscheinlich Kabel an der Midi Out Buchse verkehrt angeschlossen oder das 5-polige Kabel vom Analog-Board zum Digital-Board ist nicht korrekt angeschlossen. Oder im Betriebssystem falsche Einstellungen gewählt.

• Sprünge in der Tonleiter

Das 10-polige Kabel vom Analog-Board zum Sequenzer-Board ist nicht korrekt angeschlossen.

• Filter klingt schlecht

Netzteil zu schwach.

• Knacks-Geräusche im VCA

Netzteil zu schwach.

• Patterns sind nach dem aus- und wieder einschalten verschwunden

IC 24C64 / 24C65 auf dem Sequenzer-Board ist defekt. Evtl. Formatieren probieren.

• Kein Signal am Kopfhörerausgang

Es dürfen keine Kopfhörer mit Mono-Stecker verwendet werden, bitte Stereo-Kopfhörer verwenden. Oder Line-Out und Kopfhörer-Ausgang vertauscht.

• Pattern einprogrammiert aber kein Ton

Im Time-Modus müssen die Noten getriggert werden (Note On Befehl, siehe Anleitung) oder im Sys-Menu wurde die interne Klangerzeugung abgeschaltet (einmal aus- und wieder anschalten) oder Fehler auf dem Analog-Board.

PANIK?

NIX GEHT?

FRAGEN OFFEN?

Toaster gebaut ?

Bevor Du mir eine e-Mail schreiben möchtest:

Nutze das Acidcode Forum!

Gab es Deine Frage dort schon ein mal?

Wenn nein, dann poste Deine Frage im Forum, sehr viele haben ihre Bassline schon mit Erfolg aufgebaut und können Deine Fragen beantworten!

Außerdem interessiert es bestimmt auch andere wie die Lösung aussieht da sie vielleicht dieselben Probleme haben.

Bedenke bitte das dies ein Non-Profit Do-It-Yourself Projekt ist! Das Forum habe ich eingerichtet damit wir alle gemeinsam an Lösungen arbeiten können.

Technische Daten

Analoger Monophoner Synthesizer mit digitalem Step-Sequenzer und Midi-Schnittstelle

Klangerzeugung:

Betriebsspannung: 20 VDC bis 24 VDC über externes Steckernetzteil

Stromaufnahme: < 600 mA (mit Sequenzer) CV: 6-Bit DAC, 64 Noten

VCO: Sägezahn, Rechteck, externe Audioquelle

VCF: 18 dB Tiefpass-Filter mit Resonanz, modulierbar mit EG-VCF

EG-VCF: Hüllkurve von 200ms bis 2,5 Sekunden

EG-VCA: fest eingestellte Hüllkurve, modulierbar mit Accent

Anschlüsse: Drum Out, Midi Out, Audio In, Gate Out, CV Out, Headphone, Line Out

Abmessungen: 252 mm x 117 mm

Sequenzer:

Betriebsspannung: 5,3 VDC

Prozessor: 40 MHz PIC RISC mit Bootcode

Device-ID: 9 (V4: 1)

Updates: > 10.000 über Midi-Schnittstelle möglich

LED-Multiplexer: ~ 76 Hz
BPM intern: 50 bis 200 BPM
BPM extern: 0 bis 300 BPM

Midi: In, Out, Clock-Master, Clock-Slave

Patterns: 128 Steps/Pattern: 16

Funktionen: Slide, Accent, Drum-Trigger*

Oktavumfang: 3

Abmessungen: 228 mm x 45 mm

^{*} Future Update

Anhang I-1 Teileliste Sequenzer-Board

Stück	Bauteil	Wert	Bauform	Reichelt*) Conrad**)
1	Prozessor	Bootcode 2	DIP 40	- bereits im Kit enthalten -
1	Platine	V.308	DSDK+LS+BS/35µ/Cu	- bereits im Kit enthalten -
2	Kondensator	33pF	Keramik	KERKO 33P
1	Kondensator	100nF	Keramik	KERKO 100N
1	Kondensator	22μF / 16V	Tantal	TANTAL 22/16
1	Diode	1N4148	-	1N 4148
21	Leuchtdiode	Rot 2mA	3mm / Low-Current	LED 3MM 2MA RT
21	Abstandshalter	-	-	
1	EEPROM	24C65 od. 64	DIP 8	ST 24C64 BN6
1	Optokoppler	CNY17-III	DIP 6	CNY 17/III
1	Quarz	10,000 MHz	HC49/U-S/U	10-HC49U-S
1	Widerstand	100 Ohm	Kohleschicht	1/4W 100
6	Widerstand	220 Ohm	Kohleschicht	1/4W 220
3	Widerstand	10k	Kohleschicht	1/4W 10K
1	Widerstand	1k	Kohleschicht	1/4W 1K
1	Widerstand	1k2	Kohleschicht	1/4W 1,2K
4	Taster	Rot	Flach	-
8	Taster	Grau	Flach	-
5	Taster	Schwarz	Flach	-
3	Taster	Blau	Flach	-
4	Taster	Gelb	Flach	-

^{*)} Bestellnummer bei www.reichelt.de
**) Bestellnummer bei www.conrad.de

Anhang I-2

Bestückungsplan Digital-Board

(1x 1k-Widerstand auf der Lötseite; nicht eingezeichnet)

Anhang I-3

<u>Bauteilnamen Digital-Board</u>

Name	Wert	Name	Wert_
C1	33p	S_ACC1	TASTER-10x10
C2	33p	S_BCK1	TASTER-10x10
C3	100n	S_CLR1	TASTER-10x10
C4	22µ TANTAL	S DWN1	TASTER-10x10
D1	1N4148	S_FUNC1	TASTER-10x10
D_ACC1	LED	S_N1	TASTER-10x10
D_DOWN1	LED	S_N10	TASTER-10x10
D_FUNC1	LED	S_N11	TASTER-10x10
D_N1	LED	S_N12	TASTER-10x10
D_N10	LED	S_N13	TASTER 10x10
D_N11	LED	S_N2	TASTER 10x10
D_N12	LED	S_N3	TASTER 10x10
D_N12 D_N13	LED	S_N4	TASTER-10x10
	LED		TASTER-10x10 TASTER-10x10
D_N2		S_N5	
D_N3	LED	S_N6	TASTER 10×10
D_N4	LED	S_N7	TASTER-10x10
D_N5	LED	S_N8	TASTER-10x10
D_N6	LED	S_N9	TASTER-10x10
D_N7	LED	S_PITCH1	TASTER-10x10
D_N8	LED	S_RUN1	TASTER-10x10
D_N9	LED	S_SLIDE1	TASTER-10x10
D_PITCH1	LED	S_TAP1	TASTER-10x10
D_RUN1	LED	S_TIME1	TASTER-10x10
D_SLIDE1	LED	S_UP1	TASTER-10x10
D_TIME1	LED		
D_UP1	LED		
IC1	CPU		
IC8	24C65		
IC9	CNY17		
Q1	10MHZ		
R25	100		
R35	10K		
R36	10K		
R37	10K		
R39	220R		
R40	220R		
R41	220R		
R42	1k2		
R44	220		
R45	220		
R46	220		
R100	1k (Lötseite)		
	, ,		

Anhang I-4

<u>Positionsplan Digital-Board</u>

Г			T		
Name	PosX	PosY	Name	PosX	PosY
C1	161,308	15,983	S_ACC1	178,183	5,103
C2	164,508	15,883	S_BCK1	210,568	27,328
C3	215,648	15,898	S_CLR1	5,463	27,328
C4	197,233	37,805	S_DWN1	145,798	5,103
D1	221,985	23,783	S_FUNC1	27,053	5,103
DIGITAL_CON:		40,028	S_N1	48,643	5,103
D_ACC1	177,865	15,898	S_N10	102,618	5,103
D_DOWN1	145,480	15,898	S_N11	107,698	27,328
D_FUNC1	26,735	15,898	S_N12	113,413	5,103
D_N1	48,325	15,898	S_N13	124,208	5,103
D_N10	102,300	15,898	S_N2	53,723	27,328
D_N11	107,380	38,123	S_N3	59,438	5,103
D_N12	113,095	15,898	S_N4	64,518	27,328
D_N13	123,890	15,898	S_N5	70,233	5,103
D_N2	53,405	38,123	S_N6	81,028	5,103
D_N3	59,120	15,898	S_N7	86,108	27,328
D_N4	64,200	38,123	S_N8	91,823	5,103
D_N5	69,915	15,898	S_N9	96,903	27,328
D_N6	80,710	15,898	S_PITCH1	27,053	27,328
D_N7	85,790	38,123	S_RUN1	5,463	5,103
D_N8	91,505	15,898	S_SLIDE1	188,978	5,103
D_N9	96,585	38,123	S_TAP1	210,568	5,103
D_PITCH1	26,735	38,123	S_TIME1	188,978	27,328
D_RUN1	5,145	15,898	S_UP1	156,593	5,103
D_SLIDE1	188,660	15,898	VCC_CON1	205,938	40,553
D_TIME1	188,660	38,123			
D_UP1	156,275	15,898			
IC1	150,938	28,673			
IC8	222,718	15,863			
IC9	222,948	32,563			
MIDI_CON1	220,728	40,553			
Q1	169,047	13,356			
R25	134,050	11,453			
R35 R36	134,050	14,945			
	136,590	18,120			
R37 R39	164,508 217,235	7,553			
R40	207,710	32,725 36,535			
R41	171,198	40,028			
R42	158,498	40,028			
R44	74,043	41,298			
R45	152,783	12,088			
R46	119,128	31,455			
	117,120	J1, 1JJ			

Anhang II-1

<u>Teileliste Analog-Board</u>

Stück	Bauteil	Wert	Bauform	Reichelt*)	Conrad**)		
	• Buchsen						
1	Buchse	2.1	Lötfahnen				
2 1	Buchse Buchse	Klinke Gross DIN5POL	Print, Stereo Print	[im Kit enthalten]			
1	Duchse	DINSPOL	FIIIIC	[IIII Kit entrialteri]			
• Kone	densatoren - E		Padial	DAD 1/16			
12	Kondensator Kondensator	1μF/16V 2μ2/16V	Radial Radial	RAD 1/16 RAD 2,2/16			
13	Kondensator	2μ2/16V 10μF/16V	Radial	RAD 2,2/10 RAD 10/16			
2	Kondensator	22µF/16V	Radial	RAD 22/16			
6	Kondensator	47µF/35V	Radial	RAD 47/35			
4	Kondensator	100µF/16V	Radial	RAD 100/16			
1	Kondensator	470µF/35V	Radial	RAD 470/35			
1	Kondensator	1000μF/16V	Radial	RAD 1000/16			
• Kon	densatoren - T	antal					
2	Kondensator	1μF/16V	Tantal	TANTAL 1/16			
• Kon	densatoren - N	1KT					
1	Kondensator	1nF	Siemens MKT				
2	Kondensator	1n5	Siemens MKT				
1	Kondensator	6n8	Siemens MKT				
5	Kondensator	10nF	Siemens MKT				
1	Kondensator	15nF	Siemens MKT				
4	Kondensator	33nF	Siemens MKT				
1 1	Kondensator Kondensator	47nF 68nF	Siemens MKT Siemens MKT				
4	Kondensator	100nF	Siemens MKT				
1	Kondensator	220nF	Siemens MKT				
• Kon	densatoren - K	(eramik					
2	Kondensator	100nF	Keramik				
. Ualk	oleiter - Dioder	_					
	Diode	1N4148					
2	Diode	1N4001					
1	Z-Diode	ZPY6.2V	6.2 Volt				
• Halb	oleiter - Leucht	tdioden					
3	LED	Blau	Standard				
• Halb	oleiter – IC`s						
2	IC	AN6562	DIP-8	AN 6562			
1	IC	4050	DIP-	MOS 4050			
1	IC	4066	DIP-	MOS 4066			
1	IC	4013	DIP-	MOS 4013			
1	IC	BA6110	SIL-9	[im Kit enthalten]			
1	IC	7806	TO-220	μΑ 7806			
1	IC IC	7815 40174	TO-220 DIP-	μΑ 7815 ΜΟς 40174			
1 1	IC IC	40174 LA4140	SIL-9	MOS 40174 AN 7112			
1	10	רעדזדט	DIT-2	\(\text{\square}\) \(\frac{1}{1}\) \(\frac{1}\) \(\frac{1}\			

• Halbleiter – Transistoren

9	Transistor	2SA733	Japan	[im Kit enthalten]
21	Transistor	2SC536	Japan	[im Kit enthalten]
1	Transistor	2SC2291	Japan	siehe Seite "Bezugsquellen"
3	Transistor	2SC1583	Japan	siehe Seite "Bezugsquellen"
1	Transistor	2SK30-O	Japan	[im Kit enthalten]
1	Transistor	2SK30-Y	Japan	[im Kit enthalten]

• Widerstände Metallfilm

• WI	aerstanae meta	alitiim	
2	Widerstand	10	Metall 1%
2	Widerstand	22	Metall 1%
7	Widerstand	100	Metall 1%
1	Widerstand	330	Metall 1%
1	Widerstand	560	Metall 1%
4	Widerstand	1k	Metall 1%
1	Widerstand	1k8	Metall 1%
15	Widerstand	2k2	Metall 1%
3	Widerstand	4k7	Metall 1%
1	Widerstand	5k6	Metall 1%
2	Widerstand	6k8	Metall 1%
29	Widerstand	10K	Metall 1%
10	Widerstand	22k	Metall 1%
1	Widerstand	33k	Metall 1%
1	Widerstand	39k	Metall 1%
4	Widerstand	47k	Metall 1%
1	Widerstand	68k	Metall 1%
22	Widerstand	100k	Metall 1%
6	Widerstand	220k	Metall 1%
1	Widerstand	1M	Metall 1%
1	Widerstand	1M5	Metall 1%

• Widerstände MPR High Precision

1	Widerstand	27k	MPR 0,1%
17	Widerstand	200k	MPR 0.1%

• Potentiometer - Trimmer

2	Trimmer	10LV-50K	Piher
1	Trimmer	10LV-5K	Piher
1	Trimmer	10I V-500K	Piher

Sonstiges

2	Aufsteckkühlköi	rper	TO-220
1	Steckernetzteil	24 VDC	1000mA
1	Schalter	2x3 UM	Print
3	Abstandshalter	-	-
1	Feinsicherung	650mA	
1	Si-Halter	Print	
1	Pl-Kabel	10 polig	
1	Pl-Kabel	3 polig	
4	Pl-Kabel	2 polig	
1	Pl-Kabel	5 polig	
1	Platine V.308		

Optional

IC-Sockel, Midi-Out Buchse, Kabelbinder, Schrauben, Muttern, Unterlegscheiben

^{*)} Bestellnummer bei www.reichelt.de

^{**)} Bestellnummer bei www.conrad.de

Anhang II-2

Bestückungsplan Analog-Board

Siehe Forum!

Anhang II-3

PIN-Belegung Digital-Connector

```
PIN 1 Drum-Trigger
PIN 2 Gate-Trigger
```

PIN 3 VCO D0*

PIN 4 VCO D1*

PIN 5 VCO D2* PIN 6 VCO D3*

PIN 7 VCO D4*

PIN 8 VCO D5*

PIN 9 Accent*

PIN 10 VCO Slide & VCO DAC Strobe

PIN-Belegung VCC_CON1

PIN 1 GND

PIN 2 5 Volt

PIN-Belegung MIDI_CON1

PIN 1 GND

PIN 2 Midi Out

PIN 3 Midi Out

PIN 4 Midi In

PIN 5 Midi In

Feature Connectors

PIN 1 GND

PIN 2 Signal

^{* =} Strobe via L>H Pulse on PIN 10

Anhang II-4

Bauteilnamen Analog-Board

Name	Wert
ACC1	K1X3 (50kB)
Bu1	BATT-BU-4.2M/M
C1	100µ
C10	•
	10n
C1022	10n
C1038	1μ
C1040	470µ
C1041	dont_use
C1042	100n (Ceramic)
C1043	100n (Ceramic)
C1044	22µ ` ´
C1045	22µ
C1046	10µ
C1047	100n
C1047	100H
C1048	-
	1µ
C13	1µ
C14	1µ
C15	1µ
C16	10µ
C17	1µ
C19	33n
C21	10n
C22	1μ
C23	1μ
C24	33n
C25	100n
C26	33n
C27	100n
C28	47µ
C29	1μ
C30	10µ
C31	10µ
C32	100μ
C33	10n
C34	1n
C35	220n
C36	33n
C37	10μ
C38	15n
C382	1n5
C40	10µ
C41	100n
C42	1µ TANTAL
C43	1000μ
C44	47µ
C45	68n
C46	10n
C47	6n8
C48	100µ
C49	100µ
C50	100μ 10μ
C51	2μ2
C51 C52	2μ2 10μ
CJZ	τομ

CE2	47
C53 C54	47μ 47n
C54 C55	4711 47µ
C56	1/μ
C58	1µ
C59	1µ
C60	10µ
C61	10μ
C62 C68	1μ TANTAL 47μ
C69	47μ
C70	10µ
C72	10µ
C833	1n5
CUT1	K1X3
CV_OUT1	K1X2
D1027 D1038	1N4148 1N4001
D1030	1N4148
D2	1N4001
D24	1N4148
D25	1N4148
D26	1N4148
D27	1N4148 1N4148
D28 D30	1N4146 1N4148
D31	1N4148
D32	1N4148
D33	1N4148
D34	1N4148
D35	1N4148
D36 D37	1N4148 1N4148
D43	ZPY6.2V
DEC1	K1X3
DIGITAL_CON1	
DRUM_TRIG1	K1X2
ENV1	K1X3
FUSE1 GATE_OUT1	650mA K1X2
HEADPHONE1	K1X2 K1X6
IC10	4050
IC11	AN6562
IC12	4066
IC13	4013
IC15 IC152	BA662* BA6110*
IC152	78S06
IC16	AN6562
IC160	78S15
IC9	74174
K1	K1X1
K10 K2	K1X1 K1X1
K3	K1X1
K4	K1X1
K5	K1X1
K6	K1X1
K7	K1X1

K8 K9 LA4140 LED_BLUE_EXT LED_BLUE_SAV	V1
LED_BLUE_SQ1 LINE1 LINE_OUT1 MIDI_CON1 MIDI_IN1 MIDI_OUT1 PHONE1 Q10 Q11 Q12 Q13 Q14 Q15 Q16	K1X2 K1X6 K1X5 DIN5POL K1X3 K1X3 2SA733 2SC536 2SC1583 2SC536 2SC536 2SC536
Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28	2SC536 2SC536 2SC536 2SC1583 2SC2291 2SC536 2SC536 2SC536 2SC1583 2SA733 2SK30-O
Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40	2SC536 2SC536 2SA733 2SC536 2SA733 2SC536 2SA733 2SC536 2SA733 2SC536 2SA733
Q41 Q42 Q43 Q8 R102 R103 R104 R105 R106 R107 R108 R109 R110	2SC536 2SC536 2SC536 2SA733 10K 100k 220K 2k2 10K MPR 27k 2k2 2k2 10k 2k2
R111 R112 R113	22k 10k 100k

R114	100k
R115	10K
R116	10k 10k
R117	22k
R118	100K
R119	47k
R120	22k
R121	220k
R122	100k
R123	1M5
R124	2k2
R125	2k2
R126	2k2
R127	47k
R127	220k
	22k
R129	
R130	100
R131	220k
R132	100
R133	2k2
R134	22k
R135	4k7
R136	100
R137	1k
R138	68k
R139	100k
R140	100k
R141	100k
R142	
	10K
R143	10K
R144	10K
R145	10k
R146	22k
R147	22
R148	10K
R149	10K
R150	22
R151	22k
R152	100
R153	100k
R154	100k
R155	4k7
R156	100k
R157	10k
R158	10k
R159	33k
R160	10k
R161	16k 1k
R162	2k2
R163	10
R164	10
R165	100k
R172	100
R173	1k
R174	5k6
R176	6k8
R177	6k8
R178	2k2
R179	1k8

R180 R181 R182 R184 R185 R186 R187 R188 R189 R190 R191 R34 R35 R36 R45 R46 R47 R59 R60 R61 R62 R63 R64 R65 R66 R67 R68 R67 R68 R69 R70 R71 R72 R73 R74	39k 330 1k 100k 10k 10K 10K 10G 10Ok 10K 10K 10K 10K 10K 10K 10K 22k 47k 10k 10OK 22k 47k 10k 10OK 22k 47k 10k 10OK 22k 47k 10k 10OK 22k 47k 10k 10OK 22k 47k 10oK 10oK 22k 47k 10oK 10oK 22k 47k 10oK 10oK 22k 47k 10oK 10oK 22k 47k 10oK 12oK 22ok 22ok 22ok 22ok 22ok 22ok 10k 10ok 10ok 10ok 10ok 10ok 10ok 10ok 10ok 22ok 22ok 22ok 10ok 10ok 10ok 10ok 10ok 10ok 10ok 10ok 10ok 22ok 22ok 22ok 10ok
R75 R76	MPR 200K MPR 200K
R77	MPR 200K
R78 R79	MPR 200K MPR 200K
R80	MPR 200K
R81	MPR 200K
R82	MPR 200K
R83	MPR 200K
R84 R85	MPR 200K MPR 200K
R86	MPR 200K
R87	MPR 200K
R88	MPR 200K
R89	MPR 200K
R90	MPR 200K
R91 R92	1M 100K
R93	100K 100K
R94	10k
R95	100
R96	10k
R97 R98	10k 2k2
R98	2KZ 100k
RESO1	K1X3

RESO2	K1X3
RTM1	10LV-50K
RTM4	10LV-50K
RTM5	10LV-5K
TM3	10LV-500K
TM6	4k7
TPVCF1	K1X1
TP_CV1	K1X1
TUNE1	K1X3
VCC_CON1	K1X2
VCF_INPUT1	K1X2
VOL1	K1X3
WAVE_SW1	Schieb-2x3-li

Anhang II-5

<u>Positionsplan Analog-Board</u>

-		
Name	PosX	PosY
ACC1	178,651	95,143
Bu1	243,150	110,023
C1	186,595	38,410
C10	52,928	80,320
C1022	151,670	86,988
C1038	178,975	71,430
C1040	221,203	86,988
C1041	244,380	66,985
C1042	243,111	53,650
C1043	245,651	61,588
C1044	89,123	84,131
C1045	44,038	92,703
C1046	8,795	39,045
C1047	8,160	47,935
C1048	16,098	92,068
C11	49,435	85,718
C13	100,870	73,653
C14	140,875	87,940
C15	131,985	89,845
C16	128,493	86,035
C17	112,935	76,193
C19	124,048	63,175
C21	163,735	86,988
C22	151,353	80,003
C23	138,970	72,700
C24	134,843	58,413
C25	143,098	65,080
C26	146,590	56,825
C27	160,878	65,715
C28	157,068	78,733
C29	175,800	67,620
C30 C31	170,085	63,493
C32	167,228	53,968
C33	167,228	48,570
C37	217,393 205,963	91,750 83,813
C37	124,048	67,303
C382	124,048	71,430
C40	185,960	77,145
C40 C41	202,788	71,748
C42	207,550	72,065
C42	215,488	71,113
C44	190,088	64,763
C45	197,708	58,413
C46	185,960	58,413
C47	197,708	51,110
C48	182,785	50,475
C49	186,278	46,348
C50	191,675	46,348
C51	197,390	46,348
C52	206,598	42,538
C52	191,980	40,830
C54	197,390	15,233
C55	202,153	5,073
	0,100	3,0.0

C56	223,743	81,590
C58	224,060	35,553
C59	225,965	30,155
	•	
C60	230,093	41,903
C61	230,158	34,770
C62	220,568	4,120
		-
C68	248,190	42,538
C69	243,428	39,045
C70	248,190	34,918
C72	190,088	22,853
C833	124,048	75,558
CUT1	82,920	95,143
CV_OUT1	19,590	35,235
_		
D1027	179,293	62,223
D1038	237,078	86,036
D1039	13,240	21,900
D2	182,468	42,538
D24	92,615	89,210
D25	152,623	53,015
		•
D26	172,943	59,365
D27	202,153	89,845
D28	177,705	48,253
D30	175,165	32,695
D31	184,690	32,695
D32	212,948	66,350
D33	207,280	61,588
D34	27,528	9,835
		•
D35	207,232	26,624
D36	211,995	16,503
D37	217,710	10,788
D43	239,618	31,743
DEC1	154,651	95,143
DIGITAL_CON1	58,643	25,075
DRUM_TRIG1	4,668	5,708
ENV1	130,588	95,143
FUSE1	245,650	89,845
GATE_OUT1	19,908	5,708
HEADPHONE1	202,795	105,113
IC10	123,503	19,538
IC11	148,170	21,038
IC12	168,498	21,900
IC13	182,360	10,350
IC15	185,488	87,435
IC152	185,488	84,447
IC159	249,143	54,285
IC16	239,520	11,310
IC160	249,143	69,208
IC9	107,220	34,600
K1	70,688	107,508
K10	?	?
K2	94,788	107,508
K3	118,788	107,508
K4	142,788	107,508
K5	166,788	107,508
K6	228,588	88,508
K7	231,363	78,098
K8	220,568	51,110
K9	?	?
LA4140	191,820	54,848

R117	163,418	55,555
R118	158,973	51,110
R119	209,455	92,703
R120	209,455	89,845
R121	180,563	90,798
R122	167,863	90,798
R123	187,865	91,433
R124	190,405	91,432
R125	192,945	91,433
R126	197,390	92,703
R127	179,928	80,003
R128	182,785	80,003
R129	180,880	76,510
R130	189,135	80,955
		•
R131	197,748	81,635
R132	198,978	79,050
R133	196,438	68,208
R134	199,295	68,208
R135	190,405	50,793
R136	193,263	31,425
R137	25,305	13,010
R138	177,070	29,520
R139	179,928	20,313
R140	182,785	20,313
R141	185,960	20,313
R142	202,470	22,218
R143	194,215	22,218
R144	193,898	11,740
R145	199,613	10,788
R146	198,343	6,343
R147	197,708	26,345
R148	205,963	16,503
R149	208,820	16,503
R150	209,138	6,978
R151	211,995	6,978
R152	220,667	8,248
R153	199,930	34,283
R154	200,430	37,458
R155	•	
	216,758	34,283
R156	216,758	37,458
R157	222,473	40,315
R158	210,408	38,728
R159	204,693	47,300
R160	208,503	54,920
R161	221,520	77,145
R162	212,313	75,875
R163	211,043	82,543
R164	213,900	82,543
R165	217,393	83,178
R172	234,220	41,585
R173	237,395	40,633
R174	249,460	
	•	25,075
R176	240,570	34,918
R177	247,238	18,090
R178	232,315	11,105
R179	229,458	6,660
R180	239,618	4,755
R181	17,050	81,591
R182	8,160	12,058

R184	2 120	70 470
	2,128	70,478
R185	21,178	85,718
R186	6,890	55,555
R187	11,970	53,015
		•
R188	19,273	60,953
R189	19,273	75,558
R190	11,335	63,493
R191	11,335	66,668
R34	54,198	76,510
R35	64,675	85,718
R36	55,468	90,163
R45	83,090	91,115
R46	98,330	•
	•	85,400
R47	83,090	87,940
R59	105,315	17,455
R60	110,713	13,645
R61	109,443	85,718
R62	107,538	79,368
R63	105,315	72,700
R64	108,173	72,700
R65	112,618	81,908
R66	136,113	80,320
	•	
R67	135,795	83,813
R68	131,033	82,225
R69	116,745	73,018
R70	123,413	82,225
R71	106,268	66,350
R72	97,060	75,240
R73	120,873	53,650
R74	108,173	49,205
R75	108,173	46,348
R76	117,380	49,205
R77	117,380	46,348
R78	117,380	43,490
R79	117,380	40,633
R80	118,650	37,775
R81	117,380	34,918
R82	118,650	32,060
	-	-
R83	124,683	38,728
R84	127,540	38,728
R85	128,493	32,695
R86	128,493	29,838
R87	131,033	26,663
	-	
R88	134,843	19,678
R89	137,700	20,630
R90	126,905	13,010
R91	136,430	12,058
R92	145,955	12,058
	•	
R93	154,210	13,645
R94	136,430	76,510
R95	170,720	80,955
R96	132,938	74,923
R97	133,573	72,700
	•	
R98	133,573	69,843
R99	145,955	80,003
RESO1	106,650	95,143
RESO2	106,650	89,874
RTM1	20,225	53,333
RTM4	137,980	44,848

RTM5	165,203	35,165
TM3	111,349	56,508
TM6	239,300	23,170
TPVCF1	159,925	90,798
TP_CV1	165,323	44,125
TUNE1	58,650	95,143
VCC_CON1	75,470	10,788
VCF_INPUT1	4,469	49,205
VOL1	230,128	55,308
WAVE_SW1	11,970	107,625

Bezugsquellen für Japan-Teile

Die 2SC2291 und 2SC1583 Transistoren bekommt man u. a. hier:

www.lobtron.de (schnelle Response Zeiten und sehr schneller Versand, sehr preiswert)

www.fibra-brandt.de (lange Response-Zeiten aber extrem guter)

www.strixner-holzinger.de (Kontakt nur per Telefon oder eMail, schnelle Lieferung und top Service!)

www.kessler-electronic.de (lange Lieferzeiten, grauenhafter Service)

www.gmk-elektronik.de (trotz nettem Telefonkontakt 3 mal nicht geliefert)

www.aswo.de (schnell und zuverlässig, Lieferung aber nicht an Privatkunden möglich)

www.fischer-elektronik-hf.de (keine Erfahrung)

www.segor.de (keine Erfahrung, soll aber ok sein)

(Es werden 1 Stück 2SC2291 und 3 Stück 2SC1583 benötigt).