CAPITULO 1

INTRODUCCIÓN A LAS REDES DE COMUNICACIONES MÓVILES PROBLEMAS FUNDAMENTALES EN COMUNICACIONES MÓVILES

Propagación y Antenas

- Modelos
 Deterministicos y
 Probabilisticos
- Canales de Banda Ancha
- Canales de Banda Estrecha
- Antenas

Tansmisión Digital sobre canales inalámbricos

- Modulación
- Equalización
- Diversidad

Sistemas de Comunicaciones Móviles

- Acceso Múltiple
- Telefonía Celular
- Sistemas Inalámbricos
- Redes de Datos Inalámbricos

DIFICULTADESA LAS QUE SE ENFRENTA

El canal inalámbrico

- Atenuación
- Ruido
- Impredictibilidad
- Seguridad

Movilidad de los usuarios

- Localización
- Movilidad durante la llamada (handover)
- Variabilidad de los patrones de tráfico
- Variabilidad del canal

Alta densidad de usuarios que requieren tasas muy altas

- Interferencia
- Necesidad de gran capacidad agregada
- Señalización

Portabilidad de los dispositivos

- Consumo
- Complejidad y tamño de las antenas

Limitación del espectro radioeléctrico

Servicios de bajo coste para el usuario

INTRODUCCIÓN A LA TELEFONÍA CELULAR

Los teléfonos celulares han revolucionado el área de las comunicaciones, redefiniendo cómo percibimos las comunicaciones de voz. Se mantuvieron fuera del alcance de la mayoría de los consumidores debido a los altos costos involucrados. Las compañías proveedoras de servicios invirtieron tiempo y recursos en encontrar nuevos sistemas de mayor capacidad, y, por ende, menor costo. La telefonía celular es un sistema de comunicación totalmente inalámbrica. [1]

HISTORIA DE LA TELEFONÍA CELULAR

1843

Un talentoso químico de nombre Michael Faraday comenzó un profundo estudio sobre la posible conducción de electricidad del espacio. Faraday expuso sus grandes avances respecto a la tecnología del siglo anterior, lo que ayudó en forma incalculable en el desarrollo de la telefonía celular.

1876 El teléfono es inventado por Alexander Graham Bell. DynaTAC

Se inicia la comercialización de los celulares 1G

Se inicia la comercialización de los celulares 2G y se masifican.

1996
Motorola anuncia su primer
teléfono móvil, el StarTAC.

1997
Se anuncia el primer celular con cámara fotográfica integrada

1999

Aparece el primer celular con capacidad mp3, el Samsung sph-

2001

Se inicia la comercialización de los celulares 3G.

Aparece el primer celular con

Aparece el primer celular con capacidad bluetooth, el Sony Ericsson T68.

2005

Aparece el primer celular con capacidad Wi-Fi, el Nokia n91.

2008

Aparece el primer celular Apple, el iPhone, inaugurando el mundo de los Smartphones.

Se comercializa el primer celular con sistema operativo Linux (Android).

2010

Se inicia la comercialización de celulares 4G.

2014

Se anuncia el desarrollo de la futura tecnología 5G.

TECNOLOGÍAS DE COMUNICACIONES MÓVILES EXISTENTES

Buscapersonas (Paging)

Características

- Los buscapersonas están diseñados para oír un canal de frecuencia
- Información contenida en esta frecuencia puede ser un tono, voz o datos en forma digital
- En los sistemas de buscapersonas es fundamental el protocolo de señalización [2]

Bandas de Frecuencia

SISTEMAS SBU

- 470 472 MHz
- 482 487 MHz
- 929 932 MHz

SISTEMAS SBB

- 901 902 MHz (Estación terminal Estación base)
- 940 941 MHz (Estación base Estación terminal) [2]

SATÉLITES DE COMUNICACIONES

Permiten al usuario final del servicio, mediante un equipo terminal móvil o fijo, disponer de comunicación para la transmisión y recepción de voz, datos o información de cualquier naturaleza, que lleguen al usuario final de manera directa mediante enlaces satelitales. [1]

Asignacion de frecuencias

Los satélites operan en el espectro de microondas (GHz)

El espectro de microondas se divide en bandas de frecuencias que se designan por una letra del alfabeto.

Cada satélite recibe y envía utilizando dos bandas diferentes:

- La transmisión desde Tierra al satélite se denomina de subida (Uplink).
- La transmisión desde el satélite a Tierra se denomina de bajada (Downlink).

Bandas de frecuencias para los satélites					
Banda	Uplink (GHz)	Downlink (GHz)	Ancho de banda (MHz)	Uso tipico	
L	1,6	1,5	15	Servicio móvil	
5	2,2	1,9	70	Servicio móvil	
С	6,0	4,0	500	Servicio fijo y radiodifusión	
x	8,0	7,0	500	Militar	
Ku	14,0	11,0	500	Servicio fijo	
Ku	17,0	12,0	500	Servicio de radiodifusión	
Ka	30,0	20,0	3500	Servicio fijo intersatélite	
Q/V	50,0	40,0	3000	Futuro. Servicio fijo	

La comunicación entre satélites se denomina enlace intersatélite.

La banda C ya está congestionada, por lo que los **nuevos satélites** operarán en la banda Ku (Neri, 2003).

El transpondedor realiza el traslado de frecuencia de Up a Down.

RADIO MÓVIL

Características

- Es análoga, y hace uso de frecuencias únicas para enviar y recibir señales
- Comunicación es en un sólo sentido a la vez (half duplex)
- Usado en servicios de emergencia, el sector del transporte y la industria de la seguridad

REDES INALÁMBRICAS DE ÁREA PERSONAL (WPAN - IEEE 802.15)

• Bluetooth (sustitución de cables)

- ✓ Distancia de comunicación de hasta 1 km
- ✓ Uso de frecuencia libre de 2,4 GHz
- ✓ Tiempo de retardo reducido (5-10 ms)

• Ultrawideband (alta precisión y tasa de transmisión)

- ✓ Frecuencias desde 3.1 GHz hasta 10.6 GHz
- ✓ El alcance es de 10m
- ✓ Potencias radiadas de 100 250 mW

• Zigbee (consumo energético mínimo)

- ✓ Velocidades comprendidas entre 20 kB/s y 250 kB/s
- ✓ Rangos de alcance son de 10 m a 75 m
- ✓ Bandas libres ISM (6) de 2,4 GHz (Mundial), 868 MHz Europa y 915 MHz EEUU [3]

REDES INALÁMBRICAS DE ÁREA METROPOLITANA

IEEE 802.16 / WI-MAAX

- Redes Ad-Hoc: autoconfigurabilidad, adaptatividad
- Redes de sensores: bajo coste, la energía es un elemento clave de diseño
- Redes de control distribuidas: incrementan considerablemente las capacidades de automatización [3]

	802.16-2001	802.16a-2003	802.16d-2004	802.16e-2005
Frequency bands	10-66 GHz	2-11 GHz	2-11, 10-66 GHz	2-6 GHz
Operation modes	LOS	NLOS	LOS, NLOS	LOS, NLOS
Topology	PMP	PMP, mesh	PMP, mesh	PMP, mesh
Air interface	SC	SC	SC	SC
		SCa	SCa	SCa
		256-OFDM	256-OFDM	256-OFDM
		2048-OFDMA	2048-OFDMA	SOFDMA
Modulation	QPSK	QPSK	QPSK	QPSK
	16QAM	16QAM	16QAM	16QAM
	64QAM	64QAM	64QAM	64QAM
Data Rate	134.4 Mbps	75 Mbps	75 Mbps	28 Mbps
Multiplexing	TDMA	TDMA	TDMA	TDMA
		OFDMA	OFDMA	OFDMA
Duplexing	TDD, FDD	TDD, FDD	TDD, FDD	TDD, FDD
Mobility	Fixed	Fixed	Fixed	Mobile

COMPARACIÓN DE PRESTACIONES

ALCANCE

TASA

CONSUMO

EFECTOS NOCIVOS DEL CANAL INALÁMBRICO MÓVIL

Desvanecimientos del canal

- Distancia
- Reflexiones
- Obstáculos

Interferencia Inter simbólica

- Reflexiones
- Multicamino

Interferencia proveniente de otras fuentes

- Transmisión en bandas compartidas
- Reutilización de frecuencias o interferencia de usuarios vecinos

Ruido aditivo

- Temperatura de ruido de la antena
- Ruido de los bloques de recepción
- Atenuadores
- Ruido ambiente

Otras fuentes

- Ruido multiplicativo
- Ruido en el transmisor

INTRODUCCIÓN A LAS COMUNICACIONES INALÁMBRICAS MÓVILES TELEFONÍA MÓVIL

- ✓ Tanto las antenas como los terminales son emisores-receptores de ondas electromagnéticas con frecuencias entre 900 y 2000 MHz.
- ✓ La operadora reparte el área de cobertura en varios espacios llamados células, normalmente hexagonales.
- ✓ En cada célula hay una estación base que será una antena que tiene una amplitud para emitir y recibir en ese hexágono de espacio (célula) [1]

CRITERIOS IMPORTANTES EN LA EVALUACIÓN DE UN SISTEMA INALÁMBRICO

- Capacidad
- Costo por usuario
- Movilidad
- Calidad de voz
- Velocidad de transmisión de datos

TELEFONÍA INALÁMBRICA

[4]

SISTEMA DE COMUNICACIÓN PERSONAL

TELEFONÍA INALÁMBRICO

- ✓ Soportar baja movilidad
- ✓ Baja potencia
- ✓ Comunicación en ambos sentidos

TELEFONÍA CELULAR ANALÓGICA

✓ Tecnologías: FDMA

✓ Sistemas: AMPS, TACS, NMT, RMTS, NTT

TELEFONÍA CELULAR DIGITAL

✓ **Tecnología:** TDMA, CDMA

✓ **Sistemas:** GSM (TDMA-8, Europa), IS-136 (TDMA-3, Telcel), IS-95 (CDMA, Iusacell)

TELEFONÍA INALÁMBRICA MÓVIL

- ✓ IS-136, IS- 95 y GSM
- ✓ Soporte de mayor tráfico Mejor calidad de voz
- ✓ Mayor duración de la batería
- ✓ Radiopuertos más simples y económicos
- ✓ Servicio de mensajes cortos (SMS)

TELEFONÍA INALÁMBRICA FIJA (WLL, FWA)

WLL

- ✓ Uso de frecuencias licenciadas
- ✓ Por tratarse de frecuencias de uso compartido, con el correspondiente riesgo de saturación e indisponibilidad de la red
- ✓ Se basa en tecnologías de alta frecuencia (entre 28 y 40 GHz)
- ✓ No requieren de la instalación de antenas permiten teléfonos inalámbricos fijos y terminales móviles

FWA

- ✓ Es un tipo de comunicación de datos de banda ancha inalámbrica, que se realiza entre dos ubicaciones fijas, conectadas a través de dispositivos y equipos de acceso inalámbrico fijo
- ✓ Requieren de la instalación de antenas fijas en las casas

Sistemas PCS

- ✓ Operan en las bandas de radio de 1800 o 1900 MHz
- ✓ Movilidad personal y movilidad de terminal
- ✓ Servicios multimedia de calidad
- ✓ Único numero
- ✓ Alta capacidad
- ✓ Handset universal
- ✓ Seguridad

Satelital (GMPCS)

- ✓ GMPCS es un sistema de comunicación personal que proporciona cobertura transnacional, regional o global desde una constelación de satélites accesibles con terminales pequeñas y fácilmente transportables
- ✓ Voz y datos de baja velocidad en tiempo real

Espectro electromagnético de radio frecuencia

Espectro de radiofrecuencia

Nombre	Banda	Frecuencia	Longitud de onda	Uso
		< 3 Hz	> 100.000 km	
Extra baja frecuencia (Extremely low frequency)	ELF	3-30 Hz	100.000-10.000 km	No se utiliza en radiofrecuencia
Super baja frecuencia (Super low frequency)	SLF	30-300 Hz	10.000-1.000 km	Comunicaciones submarinas
Ultra baja frecuencia (Ultra low frequency)	ULF	300-3.000 Hz	1.000–100 km	Comunicaciones militares secretas
Muy baja frecuencia (Very low frequency)	VLF	3-30 kHz	100–10 km	Comunicaciones militares y gubernamentales
Baja frecuencia (Low frequency)	LF	30-300 kHz	10–1 km	Comunicaciones aéreas y marítimas
Frecuencia media (Medium frequency)	MF	300-3.000 kHz	1 km – 100 m	Radiodifusión
Alta frecuencia (High frequency)	HF	3-30 MHz	100–10 m	Seguridad, defensa, o. corta, radioaficionados
Muy alta frecuencia (Very high frequency)	VHF	30-300 MHz	10–1 m	Televisión, radio FM, aviación, satélites, servicio marítimo
Ultra alta frecuencia (Ultra high frequency)	UHF	300-3.000 MHz	1 m – 100 mm	Televisión, radiotransmisiones uso personal, telefonía móvil, militar
Super alta frecuencia (Super high frequency)	SHF	3-30 GHz	100–10 mm	Televisión vía satélite, radioenlaces, radar
Extra alta frecuencia (Extremely high frequency)	EHF	30-300 GHz	10–1 mm	Radioastronomía, radar alta resolución
		> 300 GHz	< 1 mm	

[5]

CRECIMIENTO DE LA TELEFONÍA CELULAR EN EL ECUADOR – 2019

MODALIDAD

Durante el periodo 2008-2019, la modalidad prepago ha experimentado un crecimiento del 1,16%, mientras que la modalidad pospago ha tenido un crecimiento del 10,49%. [6]

Líneas activas por tipo de servicio [6]

ESPECTRO DE FRECUENCIAS [6]

Operador	Propietario	Servicios	Tecnología y espectro
Claro	América Móvil	Telefonía Banda Ancha Móvil	850MHz-1900MHz GSM 850MHz- 1900MHz UMTE/HSPA 1700/2100 MHz LTE
CNT	Estado de Ecuador	Telefonía Banda Ancha Móvil	1900 MHz GSM 1900 MHz UMTS / HSPA 1700/2100MHz 700MHz LTE
Movistar	Telefónica	Telefonía Banda Ancha Móvil	850MHz-1900MHz GSM 850MHz- 1900MHz UMTE/HSPA 1900MHz LTE

LÍNEAS MÓVILES POR TECNOLOGÍA [6]

BIBLIOGRAFÍA

- [1] W. Castaño, J. Giron y O. Granada, 2014. [En línea]. Available: https://es.slideshare.net/cristobalquispequispe/telefonia-movil-40065967.
- [2] L. Goldberg, Paging And Messaging Technologies: Versatile Wireless Workhorses, 1998.
- [3] C. Santamaria, «BIBING,» 2012. [En línea]. Available: http://bibing.us.es/proyectos/abreproy/11761/fichero/Volumen1%252F6-

- Cap%C3%ADtulo2+-+Redes+inal%C3%A1mbricas+de+%C3%A1rea+personal+%28WPAN%29.pdf+.
- [4] Analfatécnicos, «Manual de radialistas,» [En línea]. Available: https://www.analfatecnicos.net/pregunta.php?id=85.
- [5] CATEDU, «Plataforma educativa CATEDU,» [En línea]. Available: http://educativa.catedu.es/44700165/aula/archivos/repositorio/3000/3233/html/3_aplicaciones_de_las_ondas_electromagnticas_telecomunicaciones.html.
- [6] ARCOTEL, «ARCOTEL,» 2019. [En línea]. Available: https://www.arcotel.gob.ec/wp-content/uploads/2015/01/boletin-febrero-2020-.pdf.
- [7] C. Robledo, Introduccion a la Telefonia Celular, 2007.