Name: Ayush Panchal

Roll Number: P24DS013

PRACTICAL EXAM

1. IMPORTING NECESSARY LIBRARIES

```
In [23]: import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split, RandomizedSearchCV

In [4]: data = pd.read_csv("iris_dataset.csv")
data.head()
```

Out[4]:		sepal_length	sepal_width	petal_length	petal_width	class
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [5]: data.shape
```

Out[5]: (150, 5)

In [6]: data.describe()

Out[6]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [7]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	class	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

2. STANDARD SCALAR ON DATA

```
In [8]: scalar = StandardScaler()
        X = data.drop(["class"], axis = 1)
        y = data[["class"]]
        Х, у
Out[8]: (
              sepal_length sepal_width petal_length petal_width
          0
                        5.1
                                     3.5
                                                   1.4
                                                                0.2
                       4.9
                                     3.0
                                                   1.4
                                                                0.2
          1
                                     3.2
                                                                0.2
          2
                        4.7
                                                   1.3
          3
                        4.6
                                     3.1
                                                                0.2
                                                   1.5
                        5.0
                                     3.6
                                                   1.4
                                                                0.2
                        . . .
                                                   . . .
                                                                . . .
                                     . . .
                                                   5.2
          145
                        6.7
                                     3.0
                                                                2.3
                        6.3
                                     2.5
                                                   5.0
          146
                                                                1.9
                        6.5
          147
                                     3.0
                                                   5.2
                                                                2.0
                        6.2
                                     3.4
                                                   5.4
                                                                2.3
          148
          149
                        5.9
                                     3.0
                                                   5.1
                                                                1.8
          [150 rows x 4 columns],
                        class
          0
                  Iris-setosa
          1
                 Iris-setosa
          2
                 Iris-setosa
          3
                 Iris-setosa
                 Iris-setosa
          4
          145 Iris-virginica
          146 Iris-virginica
          147 Iris-virginica
          148 Iris-virginica
          149 Iris-virginica
          [150 rows x 1 columns])
```

3. ONE HOT ENCODING THE CATEGORICAL FEATURES

```
In [12]: Y_encoded = pd.get_dummies(y)
    Y_encoded
```

Out[12]:		class_Iris-setosa	class_lris-versicolor	class_Iris-virginica
	0	True	False	False
	1	True	False	False
	2	True	False	False
	3	True	False	False
	4	True	False	False
	•••			
	145	False	False	True
	146	False	False	True
	147	False	False	True
	148	False	False	True
	149	False	False	True

150 rows × 3 columns

```
In [13]: import warnings
warnings.filterwarnings("ignore")
```

4. EDA ON FEATURES

```
In [14]: import seaborn as sns
_ = sns.pairplot(data, hue="class")
```


5. EDA + PCA

```
In [15]: fig = plt.figure(1, figsize=(8, 6))
         ax = fig.add subplot(111, projection="3d", elev=-150, azim=110)
         X reduced = PCA(n components=3).fit transform(data encoded[['sepal length', 'sepal width', 'petal length', 'petal width']])
         scatter = ax.scatter(
             X_reduced[:, 0],
             X reduced[:, 1],
             X_reduced[:, 2],
             c=Y_encoded,
             s=40,
         ax.set(
             title="First three PCA dimensions",
             xlabel="1st Eigenvector",
             ylabel="2nd Eigenvector",
             zlabel="3rd Eigenvector",
         ax.xaxis.set_ticklabels([])
         ax.yaxis.set_ticklabels([])
         ax.zaxis.set ticklabels([])
         # Add a Legend
         legend1 = ax.legend(
             scatter.legend_elements()[0],
             Y encoded,
             loc="upper right",
             title="Classes",
         ax.add artist(legend1)
```

plt.show()

First three PCA dimensions

CORRELATION MATRIX

```
In [21]: numeric_data = data_encoded.select_dtypes(include=[float, int])
    numeric_data = data.drop(columns=['class'],)
```

```
sns.heatmap(numeric_data.corr(), annot=True, cmap='Blues')
plt.show()
```


6. TRAIN AND TEST SPLIT

```
In [17]: X_train, X_test, y_train, y_test = train_test_split(X_reduced, y ,test_size=0.2, random_state=42)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

```
Out[17]: ((120, 3), (30, 3), (120, 1), (30, 1))
```

7. SVM CLASSIFICATION WITHOUT HYPERPARAM TUNING BUT WITH PCA

```
In [18]: from sklearn.svm import SVC
         from sklearn.metrics import accuracy score, confusion matrix, classification report
         svc = SVC()
         svc.fit(X train, y train)
         y pred = svc.predict(X test)
         accuracy = accuracy score(y test, y pred)
         conf matrix = confusion matrix(y test, y pred)
         class report = classification report(y test, y pred)
         print("SVC Accuracy:", accuracy)
         print("Confusion Matrix:\n", conf matrix)
         print("Classification Report:\n", class report)
        SVC Accuracy: 1.0
        Confusion Matrix:
         [[10 0 0]
        [0 9 0]
        [ 0 0 11]]
        Classification Report:
                          precision
                                       recall f1-score
                                                         support
            Iris-setosa
                              1.00
                                        1.00
                                                 1.00
                                                              10
        Iris-versicolor
                              1.00
                                       1.00
                                                 1.00
                                                              9
         Iris-virginica
                             1.00
                                       1.00
                                                 1.00
                                                              11
                                                 1.00
                                                              30
               accuracy
              macro avg
                              1.00
                                        1.00
                                                 1.00
                                                              30
           weighted avg
                              1.00
                                       1.00
                                                 1.00
                                                              30
In [19]: def plot confusion matrix(cm, title):
             plt.figure(figsize=(6, 4))
```

```
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title(f'Confusion Matrix: {title}')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
In [20]: plot_confusion_matrix(conf_matrix, 'Iris Dataset')
```

Confusion Matrix: Iris Dataset

8. RANDOM SEARCH CV ALGORITHM WITH 5 FOLDS

```
In [22]: param_grid = {
    'C': [0.1, 1, 10, 100],
    'gamma': [1, 0.1, 0.01, 0.001],
```

```
'kernel': ['rbf', 'poly', 'sigmoid']
        randomized search = RandomizedSearchCV(svc, param distributions=param grid, n iter=10, cv=5, scoring='accuracy')
        randomized search.fit(X train, y train)
▶ best estimator : SVC
                   ► SVC
In [25]: randomized search.best params
Out[25]: {'kernel': 'poly', 'gamma': 0.1, 'C': 100}
In [26]: randomized search.best score
Out[26]: 0.95833333333333334
In [27]: randomized search.best estimator
Out[27]:
                        SVC
        SVC(C=100, gamma=0.1, kernel='poly')
```

9. RESULTS FROM BEST ESTIMATOR OF RANDOM SEARCH CV ALGORITHM

```
In [28]: y_preds = randomized_search.best_estimator_.predict(X_test)
In [29]: class_report = classification_report(y_test, y_preds)
    print(class_report)
```

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	10
Iris-versicolor	0.90	1.00	0.95	9
Iris-virginica	1.00	0.91	0.95	11
accuracy			0.97	30
macro avg	0.97	0.97	0.97	30
weighted avg	0.97	0.97	0.97	30

```
In [30]: conf_matrix = confusion_matrix(y_test, y_preds)
    plot_confusion_matrix(conf_matrix, 'Iris Dataset')
```


10 CONCLUSION:

- 1. PCA AND HYPER PARAM TUNING HAS HUGE IMPACT ON MODEL'S PERFORMANCE.
- 2. CURSE OF DIMENTSIONALITY CAN BE REMOVED USING PCA.
- 3. AS WE KNOW THAT THE NOT ALL THE DATA POINTS CAN BE LINERALY SEPARABLE, IN SUCH CASES WE NEED NON LINEAR KERNELS ALSO, SUCH AS RBF OR POLY KERNEL.
- 4. DIFFERENT KERNEL BASED ON RESPECTIVE DATA POINTS CAN GIVE PERFECT DECISION BOUNDRIES SUCH THAT MODEL CAN CLEARLY CLASSIFY THE DATA POINT,