Problem S5: The Filter

Problem Description

Alice, the mathematician, likes to study real numbers that are between 0 and 1. Her favourite tool is the *filter*.

A filter covers part of the number line. When a number reaches a filter, two events can happen. If a number is not covered by the filter, the number will pass through. If a number is covered, the number will be removed.

Alice has infinitely many filters. Her first 3 filters look like this:

In general, the k-th filter can be defined as follows:

- Consider the number line from 0 to 1.
- Split this number line into 3^k equal-sized pieces. There are $3^k + 1$ points and 3^k intervals.
- The k-th filter consists of the 2^{nd} interval, 5^{th} interval, 8^{th} interval, and in general, the $(3i-1)^{\text{th}}$ interval. The points are **not** part of the k-th filter.

Alice has instructions for constructing the *Cantor set*. Start with the number line from 0 to 1. Apply all filters on the number line, and remove the numbers that are covered. The remaining numbers form the Cantor set.

Alice wants to research the Cantor set, and she came to you for help. Given an integer N, Alice would like to know which fractions $\frac{x}{N}$ are in the Cantor set.

Input Specification

The first line contains the integer N.

The following table shows how the available 15 marks are distributed.

La version française figure à la suite de la version anglaise.

Marks	Bounds on N	Additional Constraints
3 marks	$3 \le N \le 3^{18}$	N is a power of 3
4 marks	$2 \le N \le 10^5$	None
8 marks	$2 \le N \le 10^9$	None

Output Specification

Output all integers x where $0 \le x \le N$ and $\frac{x}{N}$ is in the Cantor set.

Output the answers in increasing order. The number of answers will not exceed 10^6 .

Sample Input

12

Output for Sample Input

0

1

3

4

8

9

11

12

Explanation of Output for Sample Input

Here is a diagram of the fractions and the first 4 filters. In reality, there are infinitely many filters.

0	1	2	3	4	5	6	7	8	9	10	11	12
$\overline{12}$												
1	1	1	1	1	1	1	1	1	1	1	1	1
!	1	1	1		1	1	1		1	1	1	1
1	- !	1	1		1		1		1	1	- 1	- !
i	1	i	1	i i	1	i	- 1	- 1	- 1	- 1	1	- 1
i	i	i	i	i	i	i	i	i	i	i	i	i
i	_	1	- 1	i	i -	1	- 1	i	i -	i	- 1	i
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	T.	T.	1	1	1	1	1	1	1	1	1
	!	į.	į.	!	1	!	!	!	!	!	!	!
-			· -	-	 :		; 	- :	 :		; 	- :
i	i	i	i	i	i	i	i	i	i	i	i	i
i	i	i	i	i	i	i	i	i	i	i	i	i
1	1	1	1	1	1	1	1	1	1	1	1	1
ı –	_ _	- + -				- + -				- + -		_
		- 1	1		- 1	1	1	1	1	1	1	1

 $\frac{5}{12}$, $\frac{6}{12}$, and $\frac{7}{12}$ are not in the Cantor set because they were covered by the 1st filter.

Furthermore, $\frac{2}{12}$ and $\frac{10}{12}$ are not in the Cantor set because they were covered by the 2nd filter.

It can be shown that the remaining fractions will pass through all filters.

La version française figure à la suite de la version anglaise.

Problème S5: Le filtre

Énoncé du problème

Alice, la mathématicienne, aime étudier les nombres réels compris entre 0 et 1. Son outil préféré est le *filtre*.

Un filtre couvre une partie de la droite numérique. Lorsqu'un nombre atteint un filtre, deux événements peuvent se produire. Si le nombre n'est pas dans l'intervalle « couvert » par le filtre, le nombre passera à travers le filtre. Si un nombre est situé dans l'intervalle « couvert » par le filtre, le nombre est supprimé.

Alice a un nombre infini de filtres. Voici ses 3 premiers filtres:

En général, on peut définir le $k^{\text{ième}}$ filtre comme suit :

- Considérons la droite numérique de 0 à 1.
- Diviser cette droite en 3^k sections de taille égale. Il y a $3^k + 1$ points et 3^k intervalles.
- Le $k^{\text{ième}}$ filtre est composé du 2^{e} intervalle, du 5^{e} intervalle, du 8^{e} intervalle et, de manière générale, du $(3i-1)^{\text{e}}$ intervalle. Le points **ne font pas** partie du $k^{\text{ième}}$ filtre.

Alice a des instructions pour construire *l'ensemble de Cantor* : commencer d'abord avec la droite numérique de 0 à 1, appliquer tous les filtres sur la droite numérique et supprimer les nombres qui sont couverts. Les nombres restants forment l'ensemble de Cantor.

Alice veut mener des recherches sur l'ensemble de Cantor, elle vient donc susciter votre aide. Étant donné un entier N, Alice aimerait savoir quelles fractions $\frac{x}{N}$ sont dans l'ensemble de Cantor.

Précisions par rapport aux données d'entrée

Le première ligne des données d'entrée contient l'entier N.

Le tableau suivant indique la manière dont les 15 points disponibles sont répartis.

English version appears before the French version

Points	Bornes de N	Contraintes additionnelles
3 points	$3 \le N \le 3^{18}$	N est une puissance de 3
4 points	$2 \le N \le 10^5$	Aucune
8 points	$2 \le N \le 10^9$	Aucune

Précisions par rapport aux données de sortie

Les données de sortie devraient afficher tous les entiers x $(0 \le x \le N)$ pour lesquels $\frac{x}{N}$ est dans l'ensemble de Cantor.

Les données de sortie devraient afficher les entiers en ordre croissant. Le nombre de réponses ne devrait pas dépasser 10^6 .

Exemple de données d'entrée

12

Exemple de données de sortie

1

3 4

8

9

11 12

Justification des données de sortie

Dans la figure ci-dessous, on voit les fractions et les 4 premiers filtres. Remarquons qu'il y a en réalité un nombre infini de filtres.

0	1	2	3	4	5	6	7	8	9	10	11	12
$\overline{12}$	$\overline{12}$											
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	I	1		I	1	Į.		1	1	1	1
1	1	I	1	1	1	1	1	1	1	1	1	1
1	1	I	1	1	1	1	1	1	1	1	1	1
1	1	I I	1	1	1	1	1	1	1	1	1	1
1	1 _	1		1	1 _	1		1	1 _	1		1
1		ı	1	1		1		1	1 -	1		1
1	1	I	1	1	1	1	1	1	1	1	1	1
1	1	I	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1
			1				· · ·	_ ' '			· · · · · · · · · · · · · · · · · · ·	
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1
· -	_ _	_ + -			_ -	- + -			_ _	_ + -		_ 1

 $\frac{5}{12}, \frac{6}{12} \text{ et } \frac{7}{12} \text{ ne sont pas dans l'ensemble de Cantor parce qu'ils ont été couverts par le 1}^{\text{er}}$ De plus, $\frac{2}{12} \text{ et } \frac{10}{12} \text{ ne sont pas dans l'ensemble de Cantor parce qu'ils ont été couverts par le }^{\text{er}}$

Il est possible de dé	montrer que les fr	actions restantes	passeront à traver	rs tous les filtres.
	English version a	ppears before th	e French version	