FLA (Fall 2024) – Assignment 1

Name:	Dept:	
Grade:	ID:	

Due: Oct. 13, 2024

Problem 1

Provide DFAs and REs of the following languages. In all parts, the alphabet $\Sigma = \{0, 1\}$ and $|v|_{\omega}$ denotes the number of occurrences of substring v in string ω .

- a. $\{\omega \mid \text{Every even position of } \omega \text{ is 1 and } |\omega| \text{ is odd.} \}$
- b. $\{\omega \mid |110|_{\omega} \geq 1 \}$
- c. $\{\omega \mid |01|_{\omega} = |10|_{\omega} \}$
- d. $\{\omega \mid |0|_{\omega} \bmod 3 \equiv 0 \wedge |1|_{\omega} \bmod 2 \equiv 0 \}$ (DFA only)

Problem 2

Let
$$R = (\mathbf{a} + \mathbf{b} + \mathbf{c})^* \mathbf{ab} (\mathbf{b} + \mathbf{c})^*$$
.

- a. Convert R to an $\epsilon\textsc{-NFA}.$ (You may omit some $\epsilon\textsc{-transitions.})$
- b. Convert the ϵ -NFA to a DFA by subset construction.

Problem 3

Consider the following ϵ -NFA:

	ϵ	a	b	c
$\rightarrow p$	$\{q,r\}$	Ø	$\{q\}$	$\{r\}$
q	Ø	$\{p\}$	$\{r\}$	$\{p,q\}$
*r	Ø	Ø	Ø	Ø

- a. Give all the strings of length three or less accepted by the automaton.
- b. Convert the automaton to an NFA.

Problem 4

Give a DFA as figure below, please give the regular expression for the following R_{ij}^k , and **try to simplify** the expressions as much as possible.

a.
$$R_{11}^0, R_{12}^0, R_{13}^0$$
.

b.
$$R_{21}^1, R_{22}^1, R_{23}^1$$
.

c.
$$R_{31}^1, R_{32}^2, R_{33}^2$$
.

d. The RE for this DFA.

Hint:

1.
$$(\epsilon + R)^* = R^*$$

2.
$$R + SR = (\epsilon + S)R$$

$$3. \ \epsilon + RR^* = R^*$$

4.
$$(R+S)^* = (R^*S)^*R^*$$

