1. 项目架构图

1.1 一些概念 #

- 1. 什么是服务器
 - 硬件: 一台配置高的电脑
 - 软件: 电脑必须有一个能够解析http协议的软件
- 2. 常见的Web服务器
 - tomcat服务器
 - apache组织产品,开源的免费服务器
 - o weblogic 服务器
 - bea公司, 收费的服务器
 - 不交费,访问量受限制
 - 。 IIS服务器
 - Internet Information Server
 - 微软公司主推的服务器
 - nginx
 - 小巧且高效的HTTP服务器
 - 也可以做一个高效的负载均衡反向代理
 - 邮件服务器
 - pop3/smtp/imap

1.2 项目架构图 #

1. 客户端

- 。 网络架构:
 - b/s
 - 必须使用http协议
 - c/s
 - 协议可以随意选择
 - Qt -> http

2. 服务器

- Nginx
 - 能处理静态请求 -> html, jpg
 - 动态请求无法处理
 - 服务器集群之后,每台服务器上部署的内容必须相同
- fastCGI
 - 帮助服务器处理动态请求
- 3. 反向代理服务器
 - 。 客户端并不能直接访问web服务器,直接访问到的是反向代理服务器
 - 。 客户端静请求发送给反向代理服务器,反向代理将客户端请求转发给web服务器
- 4. 关系型数据库
 - 。 存储文件属性信息
 - 。 用户的属性信息
- 5. redis 非关系型数据库 (内存数据库)
 - 作用提出程序效率
 - 存储是服务器经常要从关系型数据中读取的数据
- 6. FASTDFS 分布式文件系统
 - 。 存储文件内容
 - 。 供用户下载

2. 分布式文件系统

2.1 传统文件系统 #

一台主机

- 传统的文件系统格式:
 - o ntfs / fat32 / ext3 / ext4
- 可以被挂载和卸载

的文件系统。

2.2 分布式文件系统

文件系统的全部,不在同一台主机上,而是在很多台主机上,多个分散的文件系统组合在一起,形成了一个完整

#

分布式文件系统:

- 1. 需要有网络
- 2. 多台主机
 - 。 不需要在同一地点
- 3. 需要管理者
- 4. 编写应用层的管理程序
 - 。 不需要编写

3. FastDFS

3.1 fastDFS介绍 #

1. fastDFS概述

- 。 是用**c语言**编写的一款开源的分布式文件系统。
 - 余庆 淘宝的架构师
- 为互联网量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,注重高可用、高性能等指标
 - 冗余备份: 纵向扩容

- 线性扩容: 横向扩容
- 。 可以很容易搭建一套高性能的文件服务器集群提供文件 上传、下载 等服务。
 - 图床
 - 网盘
- 2. fastDFS框架中的三个角色
 - 追踪器 (Tracker) 管理者 守护进程
 - 管理存储节点
 - 。 存储节点 storage 守护进程
 - 存储节点是有多个的
 - 。 客户端 不是守护进程, 这是程序猿编写的程序
 - 文件上传
 - 文件下载
- 3. fastDFS三个角色之间的关系

- 1. 追踪器
 - 最先启动追踪器
- 2. 存储节点
 - 第二个启动的角色
 - 存储节点启动之后,会单独开一个线程
 - 汇报当前存储节点的容量,和剩余容量
 - 汇报数据的同步情况
 - 汇报数据被下载的次数
- 3. 客户端
 - 最后启动
 - 上传
 - 连接追踪器,询问存储节点的信息
 - 我要上传1G的文件,询问那个存储节点有足够的容量
 - 追踪器查询,得到结果
 - 追踪器将查到的存储节点的IP+端口发送给客户端
 - 通过得到IP和端口连接存储节点
 - 将文件内容发送给存储节点
 - 下载
 - 连接追踪器,询问存储节点的信息
 - 问一下,要下载的文件在哪一个存储节点
 - 追踪器查询,得到结果
 - 追踪器将查到的存储节点的IP+端口发送给客户端
 - 通过得到IP和端口连接存储节点
 - 下载文件
- 4. fastDFS集群 (了解即可)

1. 追踪器集群

- 为什么集群?
 - 避免单点故障
- 多个Tracker如何工作?
 - 轮询工作
- 如何实现集群?
 - 修改配置文件

2. 存储节点集群

- fastDFS管理存储节点的方式?
 - 通过分组的方式完成的
- 集群方式(扩容方式)
 - 横向扩容 增加容量
 - 添加一台新的主机 -> 容量增加了
 - 假设当前有两个组: group1, group2
 - 需要添加一个新的分组 -> group3
 - 新主机属于第三组
 - 不同组的主机之间不需要通信

- 纵向扩容 数据备份
 - 假设当前有两个组: group1, group2
 - 将新的主机放到现有的组中
 - 每个组的主机数量从1 -> N
 - 这n台主机的关系就是相互备份的关系
 - 同一个组中的主机需要通信
 - 每组的容量 == 容量最小的这台主机
- 如何实现?
 - 通过修改配置文件可实现

3.2 fastDFS安装 #

- 1. fastDFS安装
 - o libfastcommon-1.36.zip
 - fastdfs的基础库包
 - unzip xxx.zip
 - ./make.sh
 - ./make.sh install
 - o fastdfs-5.10.tar.gz
 - tar zxvf xxx.tar.gz
 - ./make.sh
 - ./make.sh install
- 2. 测试
 - 1 #fastDFS安装的所有的可执行程序:
 - 2 ls /usr/bin/fdfs_*
 - 3 fdfs_test

3.3 fastDFS配置文件

#

对配置文件修改时,修改备份而不是源文件sudo cp

tracker.conf.sample tracker.conf(修改tracker.conf)

配置文件默认位置: /etc/fdfs

client.conf.sample storage.conf.sample storage_ids.conf.sample tracker.conf.sample

- 1 # 将追踪器和部署的主机的IP地址进程绑定, 也可以不指定
- 2 # 如果不指定, 会自动绑定当前主机IP, 如果是云服务器建议不要写
- 3 bind_addr=192.168.247.135
- 4 # 追踪器监听的端口
- 5 port=22122
- 6 追踪器存储日志信息的目录, xxx.pid文件, 必须是一个存在的目录(需要修改)
- 5 base_path=/home/axie/fastdfs/tracker
- 2. storage 配置文件
 - 1 # 当前存储节点对应的主机属于哪一个组
 - 2 group_name=group1

```
3 当前存储节点和所应该的主机进行IP地址的绑定,如果不写,由fastdfs自动绑定
4 bind_addr=
5 # 存储节点绑定的端口
6 port=23000
7 # 存储节点写log日志的路径
8 base_path=/home/yuqing/fastdfs
9 # 存储节点提供的存储文件的路径个数
10 store_path_count=2
11 # 具体的存储路径(要修改)
12 store_path0=/home/yuqing/fastdfs
13 store_path1=/home/yuqing/fastdfs
14 # 追踪器的地址信息(要修改)
15 tracker_server=192.168.247.135:22122
16 tracker_server=192.168.247.136:22122
```

3. 客户端配置文件

- 1 # 客户端写log日志的目录
- 2 # 该路径必须存在
- 3 # 当前的用户对于该路径中的文件有读写权限
- 6 base_path=/home/yuqing/fastdfs
- 7 # 要连接的追踪器的地址信息
- 8 tracker_server=192.168.247.135:22122
- 9 tracker_server=192.168.247.136:22122

fastDFS多主机部署

1. 安装fastDFS安装包

- 1. 第一个启动追踪器 守护进程
 - 1 # 启动程序在 /usr/bin/fdfs_*
 - 2 # 启动
 - 3 fdfs_trackerd 追踪器的配置文件(/etc/fdfs/tracker.conf)
 - 4 # 关闭
 - 5 fdfs_trackerd 追踪器的配置文件(/etc/fdfs/tracker.conf) stop
 - 6 # 重启
 - 7 fdfs_trackerd 追踪器的配置文件(/etc/fdfs/tracker.conf) restart
- 2. 第二个启动存储节点 守护进程
 - 1 # 启动
 - 2 fdfs_storaged 存储节点的配置文件(/etc/fdfs/storage.conf)
 - 3 # 关闭
 - 4 fdfs_storaged 存储节点的配置文件(/etc/fdfs/storage.conf) stop
 - 5 # 重启
 - 6 dfs_storaged 存储节点的配置文件(/etc/fdfs/storage.conf) restart
- 3. 最后启动客户端 普通讲程

```
1# 上传2fdfs_upload_file 客户端的配置文件(/etc/fdfs/client.conf) 要上传的文件3# 得到的结果字符串: group1/M00/00/00/wKj3h1vC-PuAJ09iAAAHT1YnUNE31352.c4# 下载5fdfs_download_file 客户端的配置文件(/etc/fdfs/client.conf) 上传成功之后得到的字符串(fileID)
```

- 4. fastDFS状态检测
 - 。 命令

```
fdfs_monitor /etc/fdfs/client.conf
```

Storage Server的7种状态

https://blog.csdn.net/u014723529/article/details/46048411

```
1 # FDFS_STORAGE_STATUS: INIT :初始化,尚未得到同步已有数据的源服务器
2 # FDFS_STORAGE_STATUS: WAIT_SYNC :等待同步,已得到同步已有数据的源服务器
3 # FDFS_STORAGE_STATUS: SYNCING :同步中
4 # FDFS_STORAGE_STATUS: DELETED :已删除,该服务器从本组中摘除
5 # FDFS_STORAGE_STATUS: OFFLINE :离线
6 # FDFS_STORAGE_STATUS: ONLINE :在线,尚不能提供服务
7 # FDFS_STORAGE_STATUS: ACTIVE :在线,可以提供服务
```

3.5 对file_id的解释

#

README.md ==> group1/M00/00/00/wKhS V1rEf0AdIZyAAAJT0wCGr43848. md

- group1
 - 。 文件上传到了存储节点的哪一个组
 - 。 如果有多个组,这个组名可变的
- M00 虚拟目录
 - 。 和存储节点的配置项有映射
 - store_path0=/home/yuqing/fastdfs/data -> M00 store_path1=/home/yuqing/fastdfs1/data -> M01
- 00/00
 - 。 实际的路径
 - 。可变的
- wKhS_VlrEfOAdIZyAAAJTOwCGr43848.md
 - 。 文件名包含的信息
 - 。 采用Base64编码
 - 包含的字段包括
 - 源storage server Ip 地址
 - 文件创建时间
 - 文件大小
 - 文件CRC32效验码
 - 循环冗余校验
 - 随机数

4. 上传下载代码实现

- 1. 使用多进程方式实现
 - o exec函数族函数
 - exect
 - execlp
 - 。 父进程
 - 子进程 -> 执行

execlp("fdfs_upload_file", "xx", arg, NULL), 有结果输出, 输出到终端

- 不让它写到终端 -> 重定向dup2(old, new)
 - old-> 标准输出
 - new -> 管道的写端
 - 文件描述符
 - 数据块读到内存 -> 子进程
 - 数据最终要给到父进程
- pipe -> 读端, 写端
 - 在子进程创建之前创建就行了
- 父进程
 - 读管道 -> 内存
 - 内存数据写数据库

cd /home/axie/Desktop/fdfs/fastdfs-5.10/client --fdfs_upload_file.c

0

5. 源码安装-回顾

安装流程:

- 1. 以下文件, 里边有安装步骤
 - readme

- o readme.md
- INSTALL
- 2. 找可执行文件 configure
 - 。 执行这个可执行文件
 - 检测安装环境
 - 生成 makefile
- 3. 执行make命令
 - 。 编译源代码
 - 生成了动态库
 - 静态库
 - 可执行程序
- 4. 安装 make install (需要管理员权限)
 - 。 将第三步生成的动态库/动态库/可执行程序拷贝到对应的系统目录