Лабораторная работа №2 по дисциплине «Эконометрика»

Множественная линейная регрессия

Тема:

Модели простой и множественной линейной регрессии

Пели:

- 1) Научиться строить модели множественной регрессии
- 2) Рассмотреть способы оценивания статистической значимости параметров модели
- 3) Рассмотреть способы оценивания адекватности модели

Ход работы:

Контрольные вопросы

- 1) Чем отличается модель множественной линейной регрессии от модели парной линейной регрессии? Запишите уравнение множественной линейной регрессии.
- 2) Как строятся гипотезы о проверке значимости параметров модели?
- 3) Как строятся доверительные интервалы для параметров модели?
- 4) Что такое коэффициент детерминации? Как с его помощью оценивается адекватность модели?
- 5) Как строится гипотеза о статистической значимости коэффициента детерминации?
- 6) Что такое исправленный коэффициент детерминации?
- 7) Как строятся доверительные интервалы для зависимой переменной?

Часть I. Построение модели множественной линейной регрессии в Excel

1) В Excel постройте следующую таблицу:

t	x_{1t}	x_{2t}	x_{3t}	${\cal Y}_t$
1	12	2	8	139
2	17	5	12	182
3	14	6	11	164
4	13	4	9	150
5	16	3	12	176
6	15	2	9	168
7	13	6	10	173
8	11	5	13	145
9	15	4	10	175
10	13	6	11	157
11	12	5	14	142
12	15	3	14	151
13	13	2	8	148
14	16	5	11	186
15	17	5	10	201
16	15	4	13	169
17	11	5	12	160
18	14	4	12	151
19	13	2	14	129
20	15	3	11	163

- 2) Постройте 3 точечных графика зависимости y_t от x_{1t} , x_{2t} и x_{3t} .
- 3) Добавьте на каждый из графиков линию тренда линейного типа и дайте предварительную оценку знакам и значениям каждого из параметров модели.
- 4) Выполните команду меню Сервис-Надстройки и установите флажок напротив надстройки Пакет анализа.
- 5) Выполните команду меню Сервис-Анализ данных и выберите инструмент Регрессия.
- 6) Если Ваша таблица начинается в ячейке А1, то заполните диалог следующим образом:

- 7) Сравните знаки и значения полученных параметров модели (графа Коэффициенты) со сделанными Вами предположениями в пункте 4).
- 8) С помощью функции СТЬЮДРАСПОБР $(1-\gamma, T-M-1)$ рассчитайте критические значения распределения Стьюдента $t_{\nu,T-M-1}$ для уровней $\gamma=0.90,0.95,0.99$, где M- это число независимых переменных.
- 9) Проверьте статистическую значимость параметров модели для уровней $\gamma = 0.90, 0.95, 0.99$, для этого используйте расчетные значения распределения Стьюдента из графы *t-статистика*.
- 10) Постройте доверительные интервалы для всех параметров модели вида $(\stackrel{\circ}{a_j} t_{\gamma, T-M-1} \cdot s_{\stackrel{\circ}{a_j}} \cdot \sqrt{\frac{T}{T-M-1}};$

 $\stackrel{\circ}{a_j} + t_{\gamma,T-M-1} \cdot s_{\stackrel{\circ}{a_j}} \cdot \sqrt{\frac{T}{T-M-1}}$) для уровней $\gamma = 0.90,0.95,0.99$, где $j = \overline{0,M}$. Значения несмещенной дисперсии для параметров модели $s_{\stackrel{\circ}{a_j}}$ находятся в графе C тандартная o тимоби.

- 11) На основе исправленного коэффициента детерминации из графы Нормированный R-квадрат, дайте предварительную оценку адекватности построенной модели.
- 12) С помощью функции FPACПОБР($1-\gamma$, M+1, T-M-1) рассчитайте критические распределения Фишера $F_{\gamma,M+1,T-M-1}$ для уровней $\gamma=0.90,0.95,0.99$.
- 13) Проверьте гипотезу о статистической значимости коэффициента детерминации для уровней $\gamma = 0.90, 0.95, 0.99$, используя для этого расчетное значение распределения Фишера из графы F.
- 14) Постройте точечные графики предсказанных с помощью модели значений и значений из таблицы в зависимости от значений каждой независимой переменной модели.
- 15) Постройте точечные графики ошибок модели (графа *Остатки*) в зависимости от значений каждой независимой переменной модели. Сделайте вывод о распределении остатков построенной модели.

Часть II. Построение модели множественной линейной регрессии в EViews

- 1) Откройте в EViews файл, созданный в первой части лабораторной работы. Для этого выполните команду File-Open-Foreign Data as Workfile...
- 2) В качестве диапазона для импорта укажите адрес таблицы с исходными данными (см. рис. 1). Например, если таблица расположена вначале листа *Multi*, то адрес будет выглядеть следующим образом: *Multi!\$A\$1:\$E\$21*.

Рисунок 1. Импорт данных из Excel

- 3) Постройте 3 точечных графика зависимости y_1 от x_{1t} , x_{2t} и x_{3t} . Для этого выполните следующие действия:
 - 3.1) выделите в рабочем окне переменные X1 и Y;
 - 3.2) выполните двойной щелчок и выберите пункт меню *Open Group*;
 - 3.3) в появившемся окне выполните команду View-Graph-XY line-XY Pairs (см. рис. 2-3).

Рисунок 2. График зависимости Y от X1

Рисунок 3. График зависимости *Y* от *X2*

- ^ ^ ^ ^ ^ ^
- 4) Дайте оценку параметрам модели $y_t = a_0 + a_1 \cdot x_{1t} + a_2 \cdot x_{2t} + a_3 \cdot x_{3t}$. Для этого выполните команду меню *Quick-Estimate Equation*... и введите следующее уравнение спецификации Y C XI X2 X3 (см. рис. 4). В качестве метода оценки параметров выберите MHK (LS Least Squares).
- 5) В полученном отчете (см. рис. 5) найдите следующие величины:
 - 5.1) параметры модели и сопутствующие им значения t-статистик;
 - 5.2) обычный и исправленный коэффициенты детерминации;
 - 5.3) значение F-статистики.

iew Proc Object Print	Name Freeze E	Estimate Foreca	st Stats Resid	s
Dependent Variable: Method: Least Squar Date: 06/23/05 Time Sample: 1 20 Included observations	es : 10:49			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	59.07405	18.36204	3.217183	0.0054
X1	7.613297	0.999470	7.617335	0.0000
X2	6.090493	1.319822	4.614631	0.0003
Х3	-2.578277	0.978289	-2.635497	0.0180
R-squared	0.834805	Mean dependent var		161.4500
Adjusted R-squared	0.803831	S.D. dependent var		17.74817
S.E. of regression	7.860837	Akaike info criterion		7.138520
Sum squared resid	988.6842	Schwarz criterion		7.337666
Log likelihood	-67.38520	F-statistic		26 95173
Log likelinood				

Рисунок 4. Спецификация модели

Рисунок 5. Отчет спецификации

- 6) Сделайте вывод о значимости параметров модели и коэффициента детерминации.
- 7) Постройте гистограмму распределения остатков модели (команда *View-Residual Tests-Histogram Normality Test*), с помощью полученного отчета укажите уровень значимости, на котором может быть принята гипотеза о нормальном распределении остатков (см. рис. 6).

Рисунок 6. Остатки

8) Постройте модель множественной линейной регрессии с ограничениями по параметрам вида:

ной линейной регрессии с ограниче
$$y_t = a_0 + a_1 \cdot x_{1t} + a_2 \cdot x_{2t} + a_3 \cdot x_{3t}$$
 $a_1 = a_2$

- 9) Для этого выполните команду меню *Quick-Estimate Equation*... и введите следующее уравнение спецификации $y = c(1) + c(2) \cdot (x1 + x2) + c(4) \cdot x3$ (см. рис. 7). В качестве метода оценки параметров выберите МНК (LS Least Squares).
- 10) В полученном отчете (см. рис. 8) найдите следующие величины:
 - 10.1) параметры модели и сопутствующие им значения t-статистик;
 - 10.2) обычный и исправленный коэффициенты детерминации;
 - 10.3) значение F-статистики.

Рисунок 7. Спецификация модели

Рисунок 8. Отчет спецификации

- 11) Сделайте вывод о значимости параметров модели и коэффициента детерминации.
- 12) Самостоятельно постройте модель множественной линейной регрессии с ограничениями по параметрам вида:

$$\hat{y}_{t} = \hat{a}_{0} + \hat{a}_{1} \cdot \hat{x}_{1t} + \hat{a}_{2} \cdot \hat{x}_{2t} + \hat{a}_{3} \cdot \hat{x}_{3t}$$

$$\hat{a}_{1} + \hat{a}_{2} = 14$$

$$\hat{a}_{3} = -2$$

13) Дайте оценку качества полученной модели.