Q1

Show that for a subspace $S \subseteq T$, that $S^{\perp^{\perp}} = S$.

Let $x \in S^{\perp^{\perp}}$. Then for any $y \in S^{\perp}$, $\langle x, y \rangle = 0$

Q2

Let $T: V \to W$. Show that if $\ker T = \{0\}$, then T is left invertible.

Solution: Suppose $ker T = \{0\}$.