Exp 13

<u>Title</u>: Realization of Truth table of Different Logic Gates and Verification of De Morgan's Theorem

Objective: To realize Truth table of Different Logic Gates and Verification of De Morgan's Theorem

Theory:

The truth table of different logic gates are

AND gate

Input A	Input B	Output	
0	0	0	
1	0	0	
0	1	0	
1	1	1	

NAND gate

Input A	Input B	Output
0	0	1
1	0	1
0	1	1
1	1	0

OR gate

Input A	Input B	Output
0	0	0
1	0	1
0	1	1
1	1	1

NOR gate

Input A	Input B	Output
0	0	1
1	0	0
0	1	0
1	1	0

EX-OR gate

Input A	Input B	Output
0	0	0
1	0	1
0	1	1
1	1	0

EX-NOR gate

Input A	Input B	Output
0	0	1
1	0	0
0	1	0
1	1	1

De Morgan´s Theorem and Laws can be used to find the equivalency of the NAND and NOR gates

Pin Diagram:

Observation Table:

We can find the LED Status of each input and output which represents the binary logic level such as

Input A	Input B	Output
0	0	1
1	0	0
0	1	0
1	1	0

NAND gate				
Input A	Input B	Output		
0	0	1		
1	0	1		
0	1	1		
1	1	0		

EX-OR gate			
Input A	Input B	Output	
0	0	0	
1	0	1	
0	1	1	
1	1	0	

	OR gate				
Input A	Input B	Output			
1	0	1			
0	1	1			
1	1	1			

EX-NOR gate				
Input A	Input B	Output		
0	0	1		
1	0	0		
0	1	0		
1	1	1		

A	В	A B	AxB	A	В	A + B
0	0	017	1	0	0	1
0	1	0	1	0	1	1
1	0	0	1	1	0	1
¥	1	1	0	1	1	0

Conclusion