- 1. Television channels are 6 MHz wide. How many bits/sec can be sent if four-level digital signals are used? Assume a noiseless channel.
- 2、若 10 Mbps 的 CSMA/CD 局域网的节点最大距离为 6 km, 信号在媒体中的传播 速度为 3×10° m/s。求该网的最短帧长为多少 bit。
- 3、设有一个基于同轴电缆并采用 CSMA/CD 协议的局域网, 若该网络的长度为 1000m, 传输速率为 10Mbps(或 10^7bps), 电信号在该同轴电缆上的传播速率 为 $2*10^8$ m/s; 此外,该网络采用的数据帧长度为 800bits,其中帧头、校验及 其他开销为 60bits。现有位于该网络端点的两个站 A、B, A 采用"停止-等 待"协议传输 2000bits 的数据给 B(B 无数据反传),设应答帧大小为 100bits。 在没有发生冲突的情况下,请解答以下几个问题:
 - (1) 该网络允许的最短帧的长度是多少 bits?
 - (2) A 发送的 2000bits 的数据需要分成多少帧传输?
 - (3) 每一帧成功发送的时间和有效数据传输速率分别是多少?
- 4、如下图, VLAN 实验中,将交换机的端口1、2 划分在 V1an2 中,端口3、4 划 分在 Vlan3 中。并通过端口分别连接了四台计算机 PC1、PC2、PC3、PC4, 计算 机的 IP 地址如图设置(假设网络所有连接和配置正常)。

202. 202. 0. 2/24 202. 202. 0. 3/24

实验中,为了验证 VLAN 划分的有效性,采用了这样的方法: 当从 PC1 能 Ping 通 PC2, 但无法 Ping 通 PC3 和 PC4, 就证明 VLAN 设置是有效的。

- 1) 上图中存在几个广播域?
- 2) Ping 是基于网络层的什么协议?
- 3) 基于端口的 VLAN 工作在哪个协议层次?

- 4)请结合网络层、链路层及 VLAN 的相关协议原理,说明上述验证方法是否 恰当并说明理由。
- 5、如图所示的组网结构,S1、S2、S3 为交换机, R1、R2 为路由器,各设备的 IP 地址及物理地址如图所示。

- (1) 在实验中,按图示连接交换机、路由器,并配置好各计算机 IP,R1、R2 的接口地址,但未配置 R1、R2 的静态路由和动态路由协议。此时 H1 能分别 Ping 通 H0、H2、H3 吗?并简要说明原因。
- (2) 要实现整个网络中的所有设备在网络层以上都能互通,并由你配置 R1 上的静态路由,请按下表给出 R1 的相关路由条目。

目的网络/前缀	下一跳	接口

(3) 假设 H3 上运行了 WEB 服务 (80 端口), H1 通过本地端口 (5888) 访问 该服务。请分别给出 H1 在传输层、网络层、链路层发出的各 PDU 的通信双方的标识及 H3 在传输层、网络层、链路层发收到的各 PDU 的通信 双方的标识。

	H1 发出的 PDU		H3 收到的 PDU	
层次	发送方标识	接收方标识	发送方标识	接收方标识
传输层				
网络层				

链路层		

6、某公司网络拓扑图如下图所示,路由器 R1 通过接口 E1、E2、E3 分别连接 LAN1、LAN2、LAN3,通过接口 L0 连接路由器 R2,并通过路由器 R2 连接 域名服务器与互联网接入路由器 R3。其中各路由器接口地址如图所标记。

- (1) 如果 LAN1 中需要 28 个 IP 地址, LAN2 中需要 120 个 IP 地址, LAN3 中需要 60 个 IP 地址, 请将网段 202.118.1.0/24 分配给 LAN1、LAN2、LAN3, 并给出划分结果; (3 分)
- (2) 请给出 R1 的路由表,使其明确包括到 LAN1、LAN2、LAN3、域名服务器的主机路由和互联网的路由;

HI H 4 7 T N 9 S H TH 1 1 TH			
目的网络/IP 地	子网掩码	下一跳	接口
址			
			l

(3) 请采用路由聚合技术,给出 R2 到 LAN1、LAN2、LAN3 的路由

目的网络/IP 地 址	子网掩码	下一跳	接口

如果 P1 要访问 DNS 服务器,请说明分别在哪些节点上请求了 ARP 解析协议,请求解析的目标 IP 地址分别是多少?

7、RIP 协议是采用什么算法进行路由计算的?每个路由节点更新其路由信息的依据是什么?如果路由器 E 接收到其相邻路由器 A、B、C、D 的路由信息如表 1 所示,请根据表 1 的路由通告信息,请填写表 2 完成路由器 E 的新路由信息(假定路由器 E 到各目的地的初始距离都为 16)。

表1 路由器 E 收到的路由通告信息

	路由器 A	路由器 B	路由器 C	路由器 D
目的地	距离	距离	距离	距离
Net1	5	7	3	6
Net2	4	3	5	6
Net3	3	6	4	5
Net4	7	3	6	4
Net5	2	4	3	5

表 2 路由器 E 的路由信息

目的地	距离	下一站
Net1		
Net2		
Net3		
Net4		
Net5		

8、设有两个应用利用 TCP 协议进行数据传输,假设通信双方都有足够多的数据 发送给对方,并且在传输过程中网络没有发生拥塞。下图是通信双方发送的 TCP 段的时序图,其中 DATAi (i=1,2,3,4,5)表示该段所发数据的字节数量, SEQi (i=1,2,3,4,5)表示该段的序号,ACKi (i=1,2,3,4,5)表示应答,而 WINi (i=1,2,3,4,5)表示通告窗口大小,图中的符号×表示该段丢失。

请解答如下问题。

- (1) SEQ、ACK、WIN 三个字段各起什么作用?
- (2) 请推算出 DATA1、SEQ2、SEQ3、SEQ4、ACK4、DATA5、SEQ5、ACK5 的值。
- 9、TCP 使用慢开始和拥塞避免来进行拥塞控制。设 TCP 的 ssthresh 的初始值是 16 (单位为报文段), 当拥塞窗口 CWnd 上升到 18 时网络发生了一次超时。试分别求出第 1 次到第 15 次传输时的各拥塞窗口大小。