- 1) Draw a complete schematic for a linear power supply using the following components:
 - 120-V_{RMS}, 60-Hz sinsusoidal voltage source
 - Line fuse and SPST on/off switch
 - Ideal transformer with 28-V_{RMS} secondary voltage
 - Full-wave bridge rectifier using silicon diodes
 - 2,200-μF smoothing/filter capacitor
 - 300-Ω load resistance

What is the turns ratio of this transformer? Is it a stepup or a stepdown?

What is the required PIV rating for the diodes in the bridge rectifier, and what 1N400X-series part will work?

Determine the peak rectified voltage and approximate load current. (Don't calculate ripple yet.)

Calculate the peak-to-peak ripple voltage and final average DC output voltage. What percentage of the DC voltage is the ripple, and is this "acceptable?"

Vripple =
$$\frac{IL}{2fC} = \frac{0.1273}{2.60.2200 \times 10^{-6}}$$

= 0.4822
or 482.2 mV p.p (42)
 $V_L = V_{peak} - \frac{1}{2} V_{ripple}$
= $38.2 - \frac{1}{2} \cdot 0.4822 = 37.96 V$ (42)
 $\frac{0.4822}{38.2} = 0.0126 \text{ or } 1.26\% \text{ (Yes, acceptable)}$

