Laboratorio 1. Propuestas de diseño. Estudiantes: Ana Melissa Vasquez Rojas Dario Gorro Maya.

Problema 1. Decodificador Bin-Gray.

Entrada: Número de Abits

Sálida: código Gray

Propuesta 1:

-> Mantener el bit más significativo igual

-> Cada bit signifente & obtiene como XOIZ del bit actual con el bit más significativo anterior

Propuesta 2: Hacer la conversión usando desplazamiento. y xor.

-> Se realiza un desplazamiento a la derecha 1 posición (>>1)

Ejenplo con un número de 8 bits

bin = 11000110

-> Luego se hace un XOR entre el numero original y el desplazado.

Continua en la siguiente pagina...

1 1 0 1 1 0 al código gray 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	Bit original	Bit Jesplazado	XOR
	1 1	1	o al código gray
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0		1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	0	1
	0	1 10 cg	to 1 - Olay and a stant of

(11000110)z = (10100101)gray

Comparación

Propostal: Sumas sucesivas	Propuesta 2: Desplazoniato y XOR
-> Bit mas significativo se mantiene.	-> Se cal cula todo el código gray
-> Cada bit signicite se calcula individualmente. usando XOIR	gray = bin (bin >> 1)
Can al más sunticalina	
-5 Es mas intuitiva	donde bin es el número binario. Je N bits.
Agrical Agricultural of the second of the se	-> mas compacta.

Ambas propuestas tienen una complejidad similar, elegimos la propuesta 1 porque es más intuitiva.

Problema 2: Restador Completo de 16it

Α	B	Cin	ક	Covt
0	0	0	0	0
-	0	1	1	9
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
j	0	1	0	0
1	1	0	0	0
1	1	1 .	1	1

$A \rightarrow$	Full	·->	5
B ->	Subtractor	<u></u>	Cout

Se	busca	la	solvain	paru s
00	0.001			7

A \	B Cin.				
		00	01	11	10
	0		1		1
	1	1		,	

$$\mathcal{S} = \operatorname{Cin} \left(\overline{A}\overline{B} + AB \right) + \overline{\operatorname{Cin}} \left(A\overline{B} + \overline{A}B \right)$$

 $\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} A \\ A \end{array} \longrightarrow \begin{array}{c}$

Cout =
$$BCin + \overline{A}Cin + \overline{A}B$$

= $BCin + \overline{A}(Cin + B)$

Cont Cort

Restador completo 4 bits apartir de 1bit

Propuesta 1. Esta propuesta corresponde al diseño anterior utilicando las ecuciones simplificadas para cont y s. para el restador completo de 1 bit.

Cout = AB + cin (AD13)

S = CIN (ADB)

Luego, a partir de ese hacer el de 4 bits

Proprosta 2. Esta propresta corresponde a utilicar

la covaciones de 5 y Cout sin simplificar (Hilicando Cout extraído del mapa u) para el restador completo de 154.

Cout = · Ban + Aan + AB

S= ABCin + ABCin + ABCin

y luego partir de ese para hacer el de 46/4s

Al comparar ambas propuestas notamos que la propuestaz regulere utilizar muchas más compuertas en comparación a la propuesta 1.

El necho de que en la propuesta 1 las ecuaciones estén simplificadas hace que se reduzca la cantidad de código necesario para resolver el problema en VHDL.
Es por ello que la propuesta seleccionada es la 1.

Problema 3.

Propuesta 1) System Verilog

```
// Contador parametrizable de N bits con reset asíncrono
 1 2 3
      □ module param_counter #(
             parameter int N = 6,
parameter logic [N-1:0] INIT = '0
                                                                            // ancho (bits)
// valor tras reset
                                                                               ancho (bits)
4
5
6
7
8
9
10
11
12
              input
                                              clk,
                                                                            // reloj
                       logic
                                                                            // reset asincrono, activo en 1
// enable (1 = incrementa)
              input
                       logic
                                              arst,
             input logic
                                              en,
             output logic [N-1:0]
      );
             always_ff @(posedge clk or posedge arst) begin
   if (arst) begin
      13
      q <= INIT;
end else if (en) begin
14
15
16
17
18
                                                                           // reset inmediato (asíncrono)
                        q \ll q + 1'b1;
                                                                           // suma módulo 2^N
                   // si en=0, mantiene q
19
20
21
        endmodule.
```

Características

- Parametrizable: N fija el rango (p. ej., N=2 \rightarrow 0..3; N=6 \rightarrow 0..63).
- Valor inicial configurable: INIT.
- Sencillez y legibilidad: una sola ecuación: si en entonces q <= q+1.
- clk: Señal de reloj.
- arst: Reset asíncrono activo en alto (pone el contador a 0 sin esperar al flanco del reloj).
- en: Enable (si está en '1', el contador incrementa; si está en '0', mantiene el valor).
- q: Salida del contador.

Propuesta 2) VHDL

```
library ieee;
use ieee.std_logic_1164.all;
  2 3
          use ieee.numeric_std.all;
  4
       □entity counter_n is
 56789
       ☐ generic (

N : positive := 6;

INIT : unsigned(N-1 downto 0) := (others => '0')
                                                                                              ancho
           port (
  clk : in std_logic;
  arst : in std_logic;
  en : in std_logic;
  q : out unsigned(N-1 downto 0)
      上
10
11
12
13
                                                                                          -- reset asíncrono activo en '1'
14
15
        end entity;
16
17
       □architecture rtl of counter_n is
18
19
20
21
22
23
24
25
26
27
28
29
30
           signal q_r : unsigned(N-1 downto 0) := INIT;
       □begin
             q <= q_r;
       -0-0-0
             process (clk, arst)
begin
  if arst = '1' then
                n arst = 1 then
q_r <= INIT;
elsif rising_edge(clk) then
if en = '1' then
q_r <= q_r + 1;
end if;
end if:</pre>
                                                                                          -- reset asíncrono
       -- módulo 2^N por ancho
         end if;
end process;
end architecture;
```

Características

- Parametrización por generic (N, INIT).
- Uso de numeric std para suma sobre unsigned.
- Reset asíncrono a nivel RTL.

Tabla de transición (común en ambas propuestas)

arst	en	Q (actual)	Q(siguiente)
1	Χ	XX	00
0	0	00	00
0	1	00	01
0	1	01	10
0	1	10	11
0	1	11	00

Ambas propuestas son correctas, equivalentes en funcionalidad y sintetizables. Sin embargo, SystemVerilog lo hace de manera más concisa y directa, por ejemplo, los tipos logic y bloques always_ff facilitan la lectura, siendo esta la propuesta elegida por su facilidad ante la otra propuesta a pesar de hacer lo mismo.