N-Grams and Smoothing

Manish Shrivastava

Basic Idea:

- Examine short sequences of words
- How likely is each sequence?
- "Markov Assumption" word is affected only by its "prior local context" (last few words)

Example

- The boy ate a chocolate
- The girl bought a chocolate
- The girl then ate a chocolate
- The boy bought a horse

- Can we figure out how likely is the following sentence
 - The boy bought a chocolate

"Shannon Game"

- Claude E. Shannon. "Prediction and Entropy of Printed English", Bell System Technical Journal 30:50-64. 1951.
- Predict the next word, given (*n-1*) previous words
- Determine probability of different sequences by examining training corpus

Forming Equivalence Classes (Bins)

- "n-gram" = sequence of n words
 - bigram
 - trigram
 - four-gram or quadrigram
- Probabilities of n-grams
 - Unigram $p(w) = \frac{c(w)}{N}$
 - **Bigram** $P(w_i | w_{i-1}) = \frac{c(w_i, w_{i-1})}{c(w_{i-1})}$
 - $P(w_{i} | w_{i-1}, w_{i-2}) = \frac{c(w_{i}, w_{i-1}, w_{i-2})}{c(w_{i-1}, w_{i-2})}$ Trigram

Maximum Likelihood Estimation (MLE)

- The boy bought a chocolate
 - Unigram Probabilities
 - \bullet (4/16)*(2/16)*(2/16)*(4/16)*(3/16)
 - $(4*2*2*4*3)/21^5 = 0.000047$
 - Bi-gram Probabilities
 - The boy> <boy bought> <bought a> <a chocolate>
 - (2/4)*(2/4)*(2/2)*(3/4) = 0.1875
- Data
 - The boy ate a chocolate
 - The girl bought a chocolate
 - The girl then ate a chocolate
 - The boy bought a horse

Reliability vs. Discrimination

"large green _____"

tree? mountain? frog? car?

"swallowed the large green _____"

pill? candy?

Reliability vs. Discrimination

• larger n: more information about the context of the specific instance (greater discrimination)

• smaller n: more instances in training data, better statistical estimates (more reliability)

Selecting an n

Vocabulary (V) = 20,000 words

n	Number of bins
2 (bigrams)	400,000,000
3 (trigrams)	8,000,000,000
4 (4- grams)	1.6 x 10 ¹⁷

Statistical Estimators

- Given the observed training data ...
 - How do you develop a model (probability distribution) to predict future events?
 - Language Modeling
 - Predict Likelihood of sequences

Maximum Likelihood Estimation

$$P_{MLE}(w_n|w_1...w_{n-1}) = \frac{C(w_1...w_n)}{C(w_1...w_{n-1})}$$

- Estimate sequence probabilities using "counts" or frequencies of sequences
- Problems
 - Sparseness
 - What do you do when unknown words are seen??

Example

- Data
 - The boy ate a chocolate
 - The girl bought a chocolate
 - The girl then ate a chocolate
 - The horse bought a boy

- The boy bought a chocolate
 - Unigram Probabilities
 - \bullet (4/16)*(2/16)*(2/16)*(4/16)*(3/16)
 - $(4*2*2*4*3)/21^5 = 0.000047$
 - Bi-gram Probabilities
 - <The boy> <boy bought> <bought a> <a chocolate>
 - $(2/4)*(0/4)*(2/2)*(3/4) = \mathbf{0}$

George Kingsley Zipf 1902-1950

Zipf's Law

- Frequency of occurrence of words is inversely proportional to the rank in this frequency of occurrence.
- When both are plotted on a log scale, the graph is a straight line.

Zipf Distribution

- The Important Points:
 - a few elements occur very frequently
 - a medium number of elements have medium frequency
 - many elements occur very infrequently

Zipf Distribution

The product of the frequency of words (f) and their rank (r) is approximately constant

Rank = order of words' frequency of occurrence

$$f = C * 1/r$$
$$C \cong N/10$$

Zipf Distribution (Same curve on linear and log scale)

What Kinds of Data Exhibit a Zipf Distribution?

- Words in a text collection
 - Virtually any language usage
- Library book checkout patterns
- Incoming Web Page Requests (Nielsen)
- Outgoing Web Page Requests (Cunha & Crovella)
- Document Size on Web (Cunha & Crovella)

Characteristics of WWW Client-based Traces

Distribution of users among web sites

Binned distribution of users to sites

Exponentially increasing bins

Cumulative distribution of users to sites

