## Rapport de stage M2 Working Title

Gaël Touquet

 $25~\mathrm{mars}~2016$ 

## Table des matières

| In | troduction                                                                             | 1             |
|----|----------------------------------------------------------------------------------------|---------------|
| 1  | Cadre théorique : le modèle standard des particules                                    | 3             |
|    | Cadre experimental : collisionneurs et detection2.1 Les collisionneurs2.2 La detection |               |
|    | L'algorithme de particle-flow 3.1 Le principe du particle flow                         | <b>5</b><br>5 |

## Introduction

à bosser

## Chapitre 1

# Cadre théorique : le modèle standard des particules

-les particules, les interactions , etc

### Chapitre 2

## Cadre experimental : collisionneurs et detection

L'amélioration du modèle théorique passe par la réalisation d'experience procurant des informations sur les propriétés des consistuants fondamentaux que sont les particules. Ainsi des expériences de type *collisionneurs* ont vu l'aube dans le but de produire les-dites particules de manière relativement isolées. Puis des experiences de détections permettent de récupérer les informations permettant de remonter aux caractéristiques de celles-ci .

#### 2.1 Les collisionneurs

Le principe des collisionneurs réside dans la notion de transformation de l'énérgie cinétique sous forme d'énergie de masse d'après la formule :

$$E^2 = p^2 c^2 + m^2 c^4 (2.1)$$

Ainsi la conservation de l'énergie totale n'empéche pas de transformer de l'énergie sous forme cinétique en énergie sous forme de masse, c'est à dire fabriquer des nouvelles particules de matières.

Pour ce faire la partie accélérateur du collisioneur va fournir de l'énergie à des paquets de particules relativement communes isolées préalablement. Ces particules peuvent être soit fondamentales (electron, positron) soit composites (proton ou plus généralement hadron). Differents paquets de particules vont être amenés à se rencontrer face à face de manière à ce que l'impulsion totale des deux particules incidentes dans le référentiel du laboratoire soit nulle.

Ces particules accélérées vont ensuite collisionner

### 2.2 La detection

De nombreuses particules sont donc issues d'une collision et ces particules peuvent

L'aimant n'est pas un sous-detecteur en soit mais il permet de maintenir un champ magnétique constant dans le



## Chapitre 3

## L'algorithme de particle-flow

3.1 Le principe du particle flow