Car Insurance Claims

ERIC FOXCROFT

Overview

- About the Stakeholder
- Business problem
- Context and Scope of Data
- Approach and Model compiled
- Visualizations
- Results / Recommendations / Conclusions

- Car Insurance Company with various short term insurance products offered to a broad spectrum of Clients in the market ...
- Engagement will focus on Representatives and Teams in the Company focusing on product development, marketing and claims administration of their Car Insurance product ...

The Business problem ...

 The Company needs to derive more value from available insurance & claims related data – to assist with:

- New product development
- Re-focus marketing initiatives
- Optimize current Claims / Administration processes

"The goal is to analyse and predict Client behavior - in order to determine if a Client will claim or not claim against a Car Insurance Product ... "

Data set contains 10,000 records ...

Details Client & Insurance related events with 19 features in the set ...

Data granularity = each record represent a client & insurance product related activity ...

Data dictionary ...

AGE

GENDER

RACE

DRIVING EXPERIENCE

EDUCATION

INCOME

CREDIT SCORE

VEHICLE OWNERSHIP

VEHICLE YEAR

MARRIED

CHILDREN

POSTAL CODE

ANNUAL MILEAGE

VEHICLE TYPE

SPEEDING VIOLATIONS

DUIS

PAST ACCIDENTS

OUTCOME

Α	В	С	D	Е	F	G	Н	1	1	K	1	М	N	0	Р	Q	R	S
	D				•		- ''		,	IX.	_					ď		- 5
ID	AGE	GENDER	RACE	DRIVING_ EXPERIENCE	EDUCATION	INCOME	CREDIT_SCORE	VEHICLE_ OWNERSHIP	VEHICLE_YEAR	MARRIED	CHII DREN	POSTAL_	ANNUAL_ MILEAGE	VEHICLE_ TYPE	SPEEDING_ VIOLATIONS	DITTE	PAST_	OUTCOME
569520		female	majority			upper class	0.629027314		after 2015	NIAMMED	CHILDREN 1	10238	12000		VIOLATIONS 0	0	ACCIDENTS 0	
750365			majority	_	none	poverty	0.357757117		before 2015	0			16000		0	0	0	_
199901			majority	-			0.493145785		before 2015	0			11000		0	0	0	_
478866				-	-	working class	0.206012851		before 2015	0			11000		0	0	0	-
731664			majority				0.206012851		before 2015	0			12000		_	0	0	- 0
			majority			working class				_	1				3	-	3	1
877557			majority		-	upper class	0.619127373		after 2015	0	1		13000		3	0		_
930134		male	majority			upper class	0.49294355		after 2015	1	1	10238	13000		/	0	3	
461006			majority	-		working class	0.468689297		after 2015	0	1	10238	14000		0	0	0	_
		female	majority			working class	0.521814936		before 2015	1	C		13000		0	0	0	_
445911			majority		_	upper class	0.561531032		before 2015	0			11000		0	0	0	-
275820		male	majority		high school		0.620361264		after 2015	1	1		10000		6	2	7	0
521399	65+	female	majority	30y+	high school	upper class	0.729830882	1	after 2015	1	C	32765	12000	sedan	4	0	0	0
429728	40-64	male	majority	20-29y	high school	upper class	0.637044744	1	before 2015	1	1	10238	8000	sedan	4	1	2	0
569640	16-25	female	majority	0-9y	university	upper class	0.591259972	1	before 2015	0	1	10238		sedan	0	0	0	0
980181	26-39	male	majority	10-19y	high school	middle class	0.461567963	1	before 2015	1	1	10238	12000	sedan	0	2	1	0
906223	26-39	female	majority	0-9y	high school	upper class	0.762797941	C	after 2015	1	C	10238		sedan	0	0	0	0
517747	65+	male	majority	30y+	university	upper class	0.796174846	1	before 2015	1	1	32765		sedan	10	2	1	0
24851	16-25	male	majority	0-9y	none	poverty		C	before 2015	1	C	32765	12000	sedan	0	0	0	1
104086	26-39	female	majority	0-9y	university	upper class	0.68059428	1	before 2015	0	1	32765		sedan	0	0	0	1
240658	16-25	female	majority	0-9y	high school	working class	0.417713982	1	before 2015	0	1	10238	18000	sedan	0	0	0	1
484399	16-25	female	majority		high school	working class	0.409513531	C	before 2015	0	C	10238	17000	sedan	0	0	0	1
912828	16-25	male	majority		high school	middle class	0.553260053	1	after 2015	1	1	32765	8000	sedan	0	0	0	1
892754			majority		none	poverty	0.330950262		before 2015	1	1	10238	13000		3	1	1	0
H																		

	ID	CREDIT_SCORE	VEHICLE_OWNERSHIP	MARRIED	CHILDREN	POSTAL_CODE	ANNUAL_MILEAGE	SPEEDING_VIOLATIONS	DUIS	PAST_ACCIDENTS	OUTCOME
count	10000.000000	9018.000000	10000.000000	10000.000000	10000.000000	10000.000000	9043.000000	10000.000000	10000.00000	10000.000000	10000.000000
mean	500521.906800	0.515813	0.697000	0.498200	0.688800	19864.548400	11697.003207	1.482900	0.23920	1.056300	0.313300
std	290030.768758	0.137688	0.459578	0.500022	0.463008	18915.613855	2818.434528	2.241966	0.55499	1.652454	0.463858
min	101.000000	0.053358	0.000000	0.000000	0.000000	10238.000000	2000.000000	0.000000	0.00000	0.000000	0.000000
25%	249638.500000	0.417191	0.000000	0.000000	0.000000	10238.000000	10000.000000	0.000000	0.00000	0.000000	0.000000
50%	501777.000000	0.525033	1.000000	0.000000	1.000000	10238.000000	12000.000000	0.000000	0.00000	0.000000	0.000000
75%	753974.500000	0.618312	1.000000	1.000000	1.000000	32765.000000	14000.000000	2.000000	0.00000	2.000000	1.000000
max	999976.000000	0.960819	1.000000	1.000000	1.000000	92101.000000	22000.000000	22.000000	6.00000	15.000000	1.000000

Approach and Model compiled ...

Approach

- This output can be obtained via the use of a <u>Machine Learning (ML) model</u> - that will analyze and <u>predict</u> the potential "<u>Claim Status</u>" (target value) for each Client.
- Key steps:
 - Define the problem
 - Collect the data
 - Clean the data
 - Analyse the data
 - Choose and compile the appropriate ML model
- From a ML modelling perspective this is a typical <u>Binary Classification</u> requirement to solve.

Insurance Claims (Machine Learning Model)

- Model outputs a predicted "Target" value for Claim "Outcome" on each Client.
- This value represents the possibility that a Client will claim against their Insurance Policy.
- This will be based on analysis & learnings from the Customer's behaviour and data available to the Model.
- Outcome:
 - 1 = Claimed
 - 0 = Not Claimed

Visualizations ...

"Claims are <u>reduced</u> by Clients with more `Years of Driving Experience` ... e.g. 20-29 year & 30+ year groups

Claims are <u>more likely</u> to occur in the group where Clients have `0-9 Years of Driving Experience` ... "

Visualizations ...

"Insurance Claims are the <u>highest</u> in the `Age Group` 16-25 year and much lower in the 65+ year group ..."

Results ...

- 3 x ML Models Compiled
 - K-Nearest Neighbors (KNN)
 - Logistic Regression Model
 - Logistic Regression using PCA
- Preferred model result ...
 - Logistic Regression Model using Principal Component Analysis (PCA)*
 - Preference = based on Model accuracy rate
 - Model achieved an accuracy rating of 86%

- Model outcomes limited by the current available features and data elements from the data set.
- Possible to further increase the model accuracy by including additional elements if / when available.

^{*} Model compiled by using Principal Component Analysis (PCA) - to reduce the dimensionality (number of features) within the dataset

Recommendations / Conclusions ...

- Management of claims & costing of insurance products (premiums) can be optimized by taking note of the impact of some of the referred data elements in the Model outcomes and visualizations.
- Examples of some of these events that increase claim incidents are:
 - Clients with Speeding Drive Styles
 - Clients with limited years of Driving Experience
 - Clients that fall in younger age groups
 - Client with lower income levels, etc.

- The Insurance Company can also potentially increase profits (reduce claims) by expanding the below segments of their current Client base and market share:
 - Clients with 20+ years driving experience
 - Clients of 40+ years of age, etc.

