Universidad de Granada

## Ejercicios resueltos Álgebra I

Doble Grado de Informática y Matemáticas  ${\rm Curso}~2016/17$ 

## 1. Relación 2

## 1.1. Ejercicio 3 (2<sup>a</sup> parte de la relación)

Determinar los polinomios  $f(x) \in \mathbb{Q}[x]$  de grado menor o igual que tres que satisfacen el sistema de congruencias

$$f(x) \equiv x - 1 \ mod(x^2 + 1)$$
$$f(x) \equiv x + 1 \ mod(x^2 + x + 1)$$

En primer lugar, reescribimos la primera ecuación para sustituirla en la segunda.

$$f(x) \equiv x - 1 \mod(x^2 + 1) \implies f(x) = x - 1 + (x^2 + 1)g(x)^{\circledast}$$

Reemplazando lo obtenido, tenemos:

$$x-1+(x^2+1)g(x) \equiv x+1 \mod(x^2+x+1)$$

Pasamos el x-1 restando:

$$(x^2+1)g(x) \equiv 2 \mod(x^2+x+1)$$

Resolvemos esta ecuación, que tendrá solución si, y solo si,  $(x^2 + 1, x^2 + x + 1)/2$ . Así, hallamos el mcd a través de la tablita correspondiente:

$$\begin{array}{c|cccc} x^2 + x + 1 & 1 & 0 \\ x^2 + 1 & 0 & 1 \\ x & 1 & -1 \\ 1 & -x & x + 1 \\ 0 & \end{array}$$

Obtenemos de esta forma que  $(x^2+1, x^2+x+1)=1$ , que divide a 2, por tanto, habrá solución. Partiendo de la identidad de Bezout:  $1=(x^2+x+1)(-x)+(x^2+1)(x+1)$ , la transformamos en una ecuación en congruencia (si vemos la ecuación como  $(x^2+x+1)(x)=(x^2+1)(x+1)-1$ , por la definición de congruencia)  $(x^2+1)(x+1)\equiv 1 \mod(x^2+x+1)$ , multiplicando por 2, encontramos la g(x) buscada:  $(x^2+1)(2x+2)\equiv 2 \mod(x^2+x+1)$ . g(x)=2x+2.

Sustituyendo en  $^{\circledast}$  el polinomio g(x) recién encontrado llegaremos a  $f_0(x)$ , solución parcial del sistema.

$$f_0(x) = x - 1 + (x^2 + 1)g(x) = x - 1 + (x^2 + 1)(2x + 2) = 2x^3 + 2x^2 + 3x + 1$$

La solución general será

$$f(x) \equiv f_0(x) mod[x^2 + 1, x^2 + x + 1]$$

Tabla 1: coeficientes de bezout

$$3+2i$$
 3  $3+2i$  1 0  $3$  0 1  $-i$  1  $-1-i$ 

Calculamos el mcm:

$$[x^2 + 1, x^2 + x + 1] = \frac{(x^2 + x + 1)(x^2 + 1)}{1} = x^4 + x^3 + x^2 + x + 1$$

Como el ejercicio pide aquellos polinomios de grado menor o igual que tres, nos basta con la solución parcial, ya que otras soluciones eran polinomios de grado superior al buscado.

**Solución:**  $f_0(x) = 2x^3 + 2x^2 + 3x + 1$ 

## 2. Ejercicio 6

En el anillo  $\mathbb{Z}[i]$ , resolver el siguiente sistema de congruencias:

$$\begin{cases} x \equiv i & mod (3) \\ x \equiv 1+i & mod (3+2i) \\ x \equiv 3+2i & mod (4+i) \end{cases}$$

Resolución.

Empezaremos resolviendo el sistema:

$$\begin{cases} x \equiv i & mod (3) \\ x \equiv 1+i & mod (3+2i) \end{cases}$$

Para ello hallaremos la solución particular de  $x \equiv i \mod (3)$ . Como i es una unidad del anillo, entonces  $\forall a \in \mathbb{Z}[i] \Rightarrow (a,i) = i$ . Los coeficientes de Bezout son 0\*3+1\*i=1 de manera trivial. Entonces la solución general de la primera ecuación sería x = i + 3\*k.

Ahora sustituimos x en la segunda ecuación, y nos queda la ecuación  $i+3k \equiv 1+i \mod(3+2i)$  de manera equivalente  $3k \equiv 1 \mod(3+2i)$ . Ahora sacaremos los coeficientes de Bezout de 3 y 3+2i (Mirar abajo). Por ello, sabemos que  $3*(-1-i) \equiv -i \mod(3+2i)$ . Una solución particular será k = (-1-i)\*-i = (i-1). La solución general para k será por lo tanto k = (i-1)+(3+2i)\*k'.

Tabla 2: coficientes de bezout 2

Sustituimos la particular de k en la primera resolución y hallaríamos M=[3,3+2i] para hallar cada cuanto debemos hacer la repetición. Para calcular el mcm recordaremos que  $(a,b)*[a,b]=ab\Rightarrow \frac{ab}{(a,b)}=[a,b]$ . Entonces para nuestro caso particular  $[3,3+2i]=\frac{9+6i}{-i}=9i-6$ . Así pues la solución será:

$$x = i + 3(i - 1) + k''(9i - 6) = 4i - 3 + k''(9i - 6)$$

Ahora cogemos el sistema:

$$\begin{cases} x \equiv 4i - 3 \mod (9i - 6) \\ x \equiv 3 + 2i \mod (4 + i) \end{cases}$$

Para resolverlo y hayar (por fin) la solución final haremos lo mismo: hayar la solución general de la primera ecuación (ya resuelta) y sustituir en la segunda, m.c.m de los módulos, y terminamos.

Solución primera ecuación: 4i - 3 + k''(9i - 6).

Sustituimos segunda:  $4i-3+k''(9i-6) \equiv 3+2i \mod (4+i) \to (9i-6)k'' \equiv 6-2i \mod (4+i)$ 

Hayamos coeficientes de bezout y M.C.D. (tabla adjunta arriba):

Enunciamos solución particular y un indicio de la general:  $Como\ (9i-6)(-2) \equiv i\ mod\ (4i-1) \Rightarrow (9i-6)(-2)(-6i-2) \equiv i(-6i-2)\ mod\ (4i-1) \Rightarrow (9i-6)(12i+4) \equiv (6-2i)\ mod\ (4i-1) \Rightarrow k'' = (12i+4) + [9i-6,4+i]k'''$ 

Calculamos [9i-6,4+i]:  $\frac{30i-33)}{i}=30-33i$ 

Solución general: (12i + 4) + (30 - 33i)k'''