Lab 1-1.1

Consider an array MARKS[20][5] which stores the marks obtained by 20 students in 5 subjects. Now write a program to

- Find the average marks obtained in each subject. ## Specify only 2 decimal points (round down). Input:

First Line to Line 20 : integer a,b,c,d,e while $0 \le a,b,c,d,e \le 100$

Output:

Line 1 to Line 5: Average Score of each subject

Input	Output
100 100 100 100 100	
90 90 90 90 90	
80 80 80 80 80	
70 70 70 70 70	
60 60 60 60 60	
50 50 50 50 50	
40 40 40 40 40	
30 30 30 30 30	
20 20 20 20 20	43.2
10 10 10 10 10	44.7
0 0 0 0 0	46.2
10 10 10 10 10	47.7
15 15 15 15 15	54.15
20 25 30 35 40	
20 40 60 80 100	
100 80 60 40 20	
0 25 50 75 100	
0 0 0 0 100	
99 99 99 99	
50 50 50 50 49	

Lab 1-1.2

Consider a array MARKS[20][5] which stores the marks obtained by 20 student in 5 subjects. Now write a program to

- Find the average marks obtained by every student. ## Specify only 2 decimal points (round down).

Input:

First Line to Line 20: integer Xi, 1 to 5, while $0 \le X \le 100$

Output:

Line 1 to Line 20: Average score of each student

Input	Output
100 100 100 100 100 90 90 90 90 90 80 80 80 80 80 70 70 70 70 70 60 60 60 60 60 50 50 50 50 50 40 40 40 40 40 30 30 30 30 30 20 20 20 20 20 10 10 10 10 10 0 0 0 0 10 10 10 10 10 15 15 15 15 15 20 25 30 35 40 20 40 60 80 100 100 80 60 40 20 0 25 50 75 100 0 0 0 0 100 99 99 99 99 99	Output 100 90 80 70 60 50 40 30 20 10 0 10 15 30 60 60 60 50 20 99
50 50 50 50 49	49.8

Lab 1-1.3

Consider a array MARKS[20][5] which stores the marks obtained by 20 student in 5 subjects. Now write a program to

- Find the number of students who have scored below 50 in their average Input:

First Line to Line 20: integer Xi, 1 to 5, while $0 \le X \le 100$

Output:

First Line: Number of student who scored below 50 in their arerage

Input	Output
100 100 100 100 100	
90 90 90 90 90	
80 80 80 80 80	
70 70 70 70 70	
60 60 60 60 60	
50 50 50 50 50	
40 40 40 40 40	
30 30 30 30 30	
20 20 20 20 20	
10 10 10 10 10	
0 0 0 0 0	10
10 10 10 10 10	
15 15 15 15 15	
20 25 30 35 40	
20 40 60 80 100	
100 80 60 40 20	
0 25 50 75 100	
0 0 0 0 100	
99 99 99 99	
50 50 50 50 49	

Lab 1-2

Write a program to input the element of a two-dimension array. Then from this array, make two arrays. One that store all odd elements of the two-dimensional array and the other that stores all even elements of the array.

If array empty print None

Input:

First Line : integer n,m while $1 \le n,m \le 100$ #Dimension of input array

Line 2 to Line m+1: integer Xi is a member of Array, index equal to i while -10000 <=

 $Xi \le 10000$ and Size of i equal n

Output:

Line 1 : numbers in odd Array. Line 2 : numbers in even Array.

Input	Output
Input	Output
2 3 1 2 3 4 5 6	1 3 5 2 4 6
5 4 1 3 5 7 9 10 12 14 16 18 19 21 23 25 27 28 30 32 34 36	1 3 5 7 9 19 21 23 25 27 10 12 14 16 18 28 30 32 34 36

Lab 1-3

Write a program using pointers to interchange the second biggest and the second smallest number in the array

Assume every element are unique

Input:

First Line : integer n while $2 \le n \le 100$ #Size of array

Line 2 : integer Xi is a member of Array, index equal to i while $-10000 \le Xi \le 10000$ and Size of Array equal to n

Output:

First Line: new array after interchange

Input	Output
5 1 2 3 4 5	14325
9 2 3 9 8 0 1 5 11 19	23980115119

Lab 1-4

Write a program that read a square matrix and displays the sum of its diagonal elements.

Input:

First Line : integer n while $1 \le n,m \le 100$ #Dimension of Matrix (n x n) Line 2 to Line n+1 : integer Xi is a member of Array, index equal to i while -10000 \le Xi \le 10000 and Size of Array equal to n

Output:

First Line: sum of diagonal elements in the square matrix

Input	Output
3 1 2 7 3 4 8 5 6 9	14
5 1 3 5 7 9 10 12 14 16 18 19 21 23 25 27 28 30 32 34 36 0 -10 -10 -10 0	70

Lab 1-5

Write a program to input the element of a m x n matrix. Then print all elements in spiral order.

For example:

print 1 2 3 6 9 8 7 4 5

Input:

 $First\ Line: integer\ n,m\ while\ 1 <= m,n <= 100\ \ \text{\#Dimension of input array}$

Line 2 to Line m+1: integer Xi is a member of Array, index equal to i while -10000 <=

Xi <= 10000 and Size of i equal n

Output:

First Line: spiral order of each element in martix

Input	Output
3 2 1 2 3 4 5 6	1 2 4 6 5 3
4 5 1 3 5 7 9 10 12 14 16 18 19 21 23 25 27 28 30 32 34 36	1 3 5 7 9 18 27 36 34 32 30 28 19 10 12 14 16 25 23 21