Data Mining and Data Scientist Salary Estimates in the Philippines

Adrian Cuyugan Friday, 22 May, 2015

Contents

Motivation	1
Data set Variables	1 2
Distribution	3
Regression	5
CART	8
Appendix	9
Data Mining	9
Data Scientist	11

Motivation

As I am going back to the Philippines to pursue further studies in Statistics, it intrigues me if Data Mining and Data Science are catching up. I am seeing some positions in jobsearch websites such as Jobstreet so as a data miner, I extracted the relevant job openings that are related to the key phrases: * Data Mining; and * Data Scientist.

These may look too specific but this is just a quick draft, anyway. Also, I did not include **Data Analyst** as this scopes a broader job scope diversity than the two mentioned. Also any intensive text extraction using basic Information Retrieval methods is not used.

Warning: The result of the models should not be used to provide recommendations as data the is collected using a convenience sample without performing accuracy tests, only k-fold cross validations against the training set when CART is used.

Data set

The data is collected manually by searching for relevant job openings active today, 22 May, 2015. I have an assumption that that the data set is relatively small, and so less than 30 positions is returned. Pre-processing is done externally, in Excel, to remove currency prefix, *i.e.* PHP and text in experience, etc.

```
Expected.Salary
                       Experience
                                         Education
   Min.
           : 11000
                             : 0.000
                                              :1.000
##
                                       Min.
                     Min.
   1st Qu.: 19000
                     1st Qu.: 2.000
##
                                       1st Qu.:2.000
                     Median : 4.000
                                       Median :2.000
##
  Median : 28000
##
   Mean
           : 35016
                     Mean
                             : 4.919
                                       Mean
                                              :2.179
   3rd Qu.: 40000
                     3rd Qu.: 8.000
##
                                       3rd Qu.:2.000
##
    Max.
           :130000
                     Max.
                             :20.000
                                       Max.
                                              :4.000
##
##
                    Specialization
                                              Position
##
    IT-Software
                            :30
                                    Data Mining
                                                  :72
##
                            :17
                                    Data Scientist:51
##
   IT-Network/Sys/DB Admin:14
## Actuarial/Statistics
##
    Banking/Financial
                            : 8
                            : 8
## Electronics
##
    (Other)
                            :34
```

As mentioned, there are only approximately 120 job applicants which applied for these two grouped positions. Since the data does not mention if an applicant applied for more than one position, I assume that these are distinct records of applicants per position and/or position group, Data Mining and Data Scientist.

Variables

- 1. **Expected.Salary** numerical. The expected salary of each applicant based on their profile.
- 2. **Experience** ordinal but treated as numerical for easier interpretation in the later algorithms used. This is the years of work experience of the applicant.
- 3. **Education** categorical; not used in the models because of extreme unbalance in proportions. This is labelled as:
- 1 Secondary School
- 2 Bachelor Degree
- 3 Post Graduate Diploma
- 4 Professional Degree
- 3. Specialization categorical; not used in this analysis.
- 4. Position categorical. Data Mining or Data Scientist
- 5. Education.Group categorical. Additional variable to bin the years of experience.

Distribution

As expected, Data Scientists have a higher expected salary although this is so dispersed that even if I compare these two using a t-test assuming heteroskedastic distribution, there is a significant difference between the averages expected salaries of the two positions.

```
# T-test
t.test(Expected.Salary ~ Position, paired = FALSE, data = df)
##
##
   Welch Two Sample t-test
##
## data: Expected.Salary by Position
## t = -3.3801, df = 68.611, p-value = 0.001199
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -24086.501 -6205.983
## sample estimates:
##
     mean in group Data Mining mean in group Data Scientist
##
                       28736.11
# Median expected salaries of Data Mining vs Data Scientist
c(median(mining$Expected.Salary), median(scientist$Expected.Salary))
```


Figure 1: Distribution of Expected Salaries

```
## [1] 25000 30000
```

Come on fellow data enthusiasts, you should do better than this! The difference of their medians is just 5,000 PHP. In my honest opinion, these center values are way below based on the prospective demand of shortage of these people who can understand data in the next 10 years.

Regression

The intercept is not included in the model because I want to see the contrast between Data Mining and Data Scientist although I already computed it beforehand. Besides, though the linear regressio model shows significant value, $r_{adj}^2 > 0.80, p < 0.05$, but when doing diagnostics, linear approach is not appropriate because the residual errors are not random and depict a funnel shape based on their errors.

The regression output coefficients are interpreted as follows:

```
y = \beta_0(12,934.9) + \beta_1(3,336.3) + \beta_2
```

```
# Estimate coefficients of linear regression model
summary(lm(Expected.Salary ~ Experience + Position-1, data=df))
```

```
##
## Call:
## lm(formula = Expected.Salary ~ Experience + Position - 1, data = df)
## Residuals:
##
     Min
              1Q Median
                            3Q
                                  Max
  -45312 -11123 -1280
                                66688
                          6877
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
                                        446.3 7.476 1.38e-11 ***
## Experience
                            3336.3
## PositionData Mining
                           12934.9
                                       3024.3
                                                4.277 3.83e-05 ***
## PositionData Scientist 26612.0
                                       3455.8
                                                7.701 4.27e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 18350 on 120 degrees of freedom
## Multiple R-squared: 0.8136, Adjusted R-squared: 0.809
## F-statistic: 174.6 on 3 and 120 DF, p-value: < 2.2e-16
# Scatter plot
ggplot(df, aes(x=Experience, y=Expected.Salary)) +
  geom_point(aes(col=Experience.Group)) +
  facet_wrap(~Position) +
  scale_y_continuous(labels = comma) +
  stat_smooth(method="lm", fullrange = T) +
  theme(legend.position="bottom")
```

```
# Diagnose LM
par(mfrow=c(1,2))
plot(lm(Expected.Salary ~ Experience + Position-1, data=df), c(1,2))
```


Figure 2: Regression and Diagnostics

Figure 3: Regression and Diagnostics

CART

Information Gain is used to divide the nodes based on weighted average entropy as linear regression does not do well with the data set. Of course, years of experience is more influential than the position.

Looking at the estimated salaries from the printed tree, applicants who have years of experience lower than 1.5 are approximately expecting 17,000 PHP. While those who applied for Data Mining jobs with more than 6.5 years of experience are expecting 66,000 pesos on average.

Variable Importance

Figure 4: Decision Tree using CART and Variable Importance

```
# Estimates
print(cart); printcp(cart)
## n= 123
##
## node), split, n, deviance, yval
##
         * denotes terminal node
##
   1) root 123 66101970000 35016.26
##
##
      2) Experience< 4.5 64 7326938000 23781.25
##
        4) Experience< 1.5 27
                                520666700 16888.89 *
##
        5) Experience>=1.5 37 4587676000 28810.81
##
         10) Position=Data Mining 24 1055625000 24375.00 *
##
         11) Position=Data Scientist 13 2188000000 37000.00 *
##
      3) Experience>=4.5 59 41933560000 47203.39
##
        6) Position=Data Mining 33 9501333000 37333.33 *
##
        7) Position=Data Scientist 26 25137120000 59730.77
##
         14) Experience< 6.5 8 5237500000 46250.00 *
##
         15) Experience>=6.5 18 17799610000 65722.22 *
##
## Regression tree:
## rpart(formula = Expected.Salary ~ Experience + Position, data = df,
       model = T, parms = list(split = "information"))
##
## Variables actually used in tree construction:
## [1] Experience Position
## Root node error: 6.6102e+10/123 = 537414370
##
## n= 123
##
           CP nsplit rel error xerror
##
## 1 0.254780
                   0
                     1.00000 1.00969 0.19188
                       0.74522 0.76324 0.13813
## 2 0.110361
                   1
## 3 0.033563
                   2 0.63486 0.74060 0.12646
## 4 0.031769
                   3 0.60130 0.74881 0.12843
## 5 0.020333
                   4
                       0.56953 0.71838 0.12674
## 6 0.010000
                   5
                       0.54919 0.69539 0.11999
```

Again, fellow data miners and data scientists, ask for more! You do not realize your worth with the current demand of people who can understand data.

Appendix

Data Mining

```
## Expected.Salary Experience Position Experience.Group
## 1 60000 6 Data Mining 10 Years
## 2 16000 9 Data Mining 10 Years
## 3 18000 3 Data Mining 5 Years
```

##	4	20000	0	Data	Mining	3	Years
	5	20000			Mining		Years
	6	20000			Mining		Years
	7	25000			Mining		Years
##	8	30000	3		Mining		Years
##	9	30000	5		Mining		Years
##	10	35000	6		Mining		Years
##	11	40000	2		Mining		Years
##	12	40000	5		Mining		Years
##	13	40000	5		Mining		Years
##	14	40000	9		Mining		Years
##	15	50000	8		Mining		Years
##	16	50000	9		Mining		Years
##	17	50000	11		Mining		Years
##	18	60000	7		Mining		Years
##	19	65000	9		Mining		Years
##	20	70000	7		Mining		Years
##	21	12000	0		Mining		Years
##	22	13000	0		Mining	3	Years
	23	15000	0		Mining	3	Years
	24	15000	1		Mining	3	Years
	25	16000	0		•	3	Years
##	26	20000	1		Mining	3	Years
##	27	20000	1		Mining	3	Years
##	28	20000	2		Mining	3	Years
	29	20000			Mining		Years
	30		_		Mining	5 3	Years
	31	25000	2		Mining		
		25000			Mining	5	Years
	32	25000			Mining	5	Years
	33	25000			Mining		Years
	34	25000			Mining		Years
	35	25000			Mining		Years
	36	28000			Mining		Years
	37	28000			Mining		Years
	38	30000			Mining		Years
##	39	30000			Mining		Years
## ##		30000			Mining		Years
		30000			Mining	+10	Years
##		35000			Mining		Years
##		35000			Mining		Years
	44	35000			Mining		Years
	45	35000			Mining		Years
	46	45000			Mining		Years
	47	50000			Mining		Years
	50	11000			Mining		Years
	51	12000			Mining		Years
	52	14000			Mining		Years
	53	15000			Mining		Years
	54	15000			Mining		Years
	55	15000			Mining		Years
	56	15000			Mining		Years
	57	16000			Mining		Years
	58	16000			Mining		Years
##	59	16000	8	Data	Mining	10	Years

##	60	18000	0	Data	Mining	3	Years
##	61	18000	3	Data	Mining	5	Years
##	62	18000	6	Data	Mining	10	Years
##	63	20000	9	Data	Mining	10	Years
##	64	24000	7	Data	Mining	10	Years
##	65	25000	3	Data	Mining	5	Years
##	66	25000	3	Data	Mining	5	Years
##	67	25000	3	Data	Mining	5	Years
##	68	25000	7	Data	Mining	10	Years
##	69	25000	9	Data	Mining	10	Years
##	70	30000	4	Data	Mining	5	Years
##	71	30000	6	Data	Mining	10	Years
##	72	30000	7	Data	Mining	10	Years
##	73	30000	11	Data	Mining	+10	Years
##	74	90000	11	Data	Mining	+10	Years

Data Scientist

##		Expected.Salary	=			Experience	.Group
##	75	13000			Scientist		Years
##	76	15000			Scientist	3	Years
##	77	16000	0	Data	Scientist	3	Years
##	78	16000	0	Data	Scientist	3	Years
##	79	18000	0	Data	${\tt Scientist}$	3	Years
##	80	18000	0	Data	${\tt Scientist}$	3	Years
##	81	18000	1	Data	${\tt Scientist}$	3	Years
##	82	18000	11	\mathtt{Data}	${\tt Scientist}$	+10	Years
##	83	20000	0	Data	${\tt Scientist}$	3	Years
##	84	20000	1	Data	${\tt Scientist}$	3	Years
##	85	20000	11	Data	${\tt Scientist}$	+10	Years
##	86	29000	4	Data	${\tt Scientist}$	5	Years
##	87	30000	5	Data	${\tt Scientist}$	10	Years
##	88	30000	7	Data	Scientist	10	Years
##	90	16000	0	Data	${\tt Scientist}$	3	Years
##	91	16000	0	Data	${\tt Scientist}$	3	Years
##	92	18000	0	Data	${\tt Scientist}$	3	Years
##	93	20000	3	Data	Scientist	5	Years
##	94	20000	4	Data	Scientist	5	Years
##	95	20000	5	Data	Scientist	10	Years
##	96	25000	2	Data	Scientist	3	Years
##	97	25000	4	Data	Scientist	5	Years
##	98	25000	6	Data	Scientist	10	Years
##	99	30000	4	Data	Scientist	5	Years
##	100	30000	6	Data	Scientist	10	Years
##	101	30000	6	Data	Scientist	10	Years
##	102	30000	11	Data	Scientist	+10	Years
##	103	35000	7	Data	Scientist	10	Years
##	104	37000	3	Data	Scientist	5	Years
##	105	40000	2	Data	Scientist	3	Years
##	106	40000	3	Data	Scientist	5	Years
##	107	40000	8	Data	Scientist	10	Years
##	108	50000	4	Data	Scientist	5	Years
##	109	50000	4	Data	Scientist	5	Years

##	110	55000	3	Data	Scientist	5	Years
##	111	55000	10	${\tt Data}$	Scientist	+10	Years
##	112	60000	4	Data	Scientist	5	Years
##	113	60000	8	Data	Scientist	10	Years
##	114	60000	10	Data	Scientist	+10	Years
##	115	70000	5	Data	Scientist	10	Years
##	116	70000	20	Data	Scientist	+10	Years
##	117	75000	5	Data	Scientist	10	Years
##	118	75000	7	Data	Scientist	10	Years
##	119	85000	9	Data	Scientist	10	Years
##	120	85000	9	Data	Scientist	10	Years
##	121	90000	6	Data	Scientist	10	Years
##	122	90000	8	Data	Scientist	10	Years
##	123	100000	7	Data	Scientist	10	Years
##	124	100000	9	Data	Scientist	10	Years
##	125	100000	11	Data	Scientist	+10	Years
##	126	130000	11	${\tt Data}$	Scientist	+10	Years