CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12

Mathematics

Term 2 ASSESSMENT TASK 3 2018

Time allowed: 50 minutes	
Student Number:	

Instructions:

- All questions should be attempted on your own paper.
- Show ALL necessary working.
- Marks may not be awarded for careless or badly arranged work.
- Only board-approved calculators may be used.
- Please write on one side of each sheet of paper only, and do not use multiple columns on the page.

TOPIC	Trigonometric Functions	Logarithmic & Exponential Funcions	TOTAL
MARKS	/16	/18	/34

Question 1

Find
$$\frac{d}{dx} (7 \cos x^2)$$

[2 marks]

Question 2

Evaluate the following definite integral, leaving your answer in exact form.

$$\int_{0}^{\frac{\pi}{6}} \frac{\cos x}{1 + \sin x} dx$$

[2 marks]

Question 3

- (i) State the period and the amplitude of the curve with equation $y = 3 \sin 2x$
- (ii) Sketch the graph for this curve for $0 \le x \le 2\pi$ clearly labelling axes intercepts.

[1+2=3 marks]

Question 4

Solve the following trigonometric equations across the domain stated:

(i)
$$3\sin 3x + \sqrt{3}\cos 3x = 0$$
, $0 \le x < \pi$

(ii)
$$4\sin^2\theta - \cos^2\theta = 7\sin\theta + 5$$
, $0^\circ \le \theta < 360^\circ$

[3+3=6 marks]

Question 5

A string attached at A passes around arc ABP and is fastened at T.

Find the length of the string in terms of x, r and θ .

[3 marks]

Question 6

Solve each of the following equations for x:

(i)
$$\log_{10} x = \log_{10} 4 + \log_{10} 8$$

(ii)
$$2\log_e 54 - x\log_e 3 = \log_e 12$$

[1+2=3 marks]

Question 7

$$\int_0^1 \frac{2e^x}{1+e^x} \, dx$$

[2 marks]

Question 8

Solve for w, leaving your answer in exact form:

$$1 - 25e^{-4w} = \frac{24}{25}$$

[3 marks]

Question 9

Find
$$f'(x)$$
 if $f(x) = \log_e \sqrt{(x^3 + 1)}$

[2 marks]

Question 10

- (i) Differentiate $x \log_e x$
- (ii) Hence find an expression for $\int log_e x$
- (iii) Use your result in (ii) to find the area bounded by the curve $log_e x$, the x-axis and the line x=3.

[1+1+2=4]

Question 11

Find the volume of the solid generated when the area bounded by the x and y-axes, the curve with equation $y=\log_e x$ and the line $y=\log_e 2$ is rotated about the y-axis.

[4 marks]

QUESTION !		QUESTION 4
$\frac{d(7\cos x^2) = -2x \times 7\sin x}{dx}$	2	(i) $3 \sin 3x + \sqrt{3} \cos 3x = 0$ $0 \le x < 180^\circ$
$=-14x\sin x^2$.		$3 \sin 3x = -\sqrt{3} \cos 3x$
Duction 19	2	$\frac{3+\cos 3x}{\sqrt{3}} = -1$
QUESTION 2) Conx dx		$\tan 3x = -1$ $\sqrt{3}$
0 1+Sinx		$3x = 5\pi 11\pi 17\pi$ $6 6 6$
$= \log_{e} (1+\sin 2c) \int_{0}^{6}$	1	$=) \chi = \frac{5\pi}{18}, \frac{11\pi}{18}, \frac{17\pi}{18}$
$= \log_{2}\left(\frac{3}{2}\right)$		Indepense, 2 = 50°, 110°, 170° (3).
	2	(ii) $4\sin^2\theta - \cos^2\theta = 7\sin\theta + 5$ 0° < 0 < 360°
QUESTION 3		$4\sin^2\theta - (1-\sin^2\theta) - 7\sin\theta - 5=0$.
(i) $y = 3 \text{sin} \lambda_{2}$		$5\sin^2\theta - 7\sin\theta - 6 = 0$.
$T = 2\pi = \pi$		$(5\sin\theta + 3)(\sin\theta - 2) = 0$
amplitude 3		$\lim_{n \to \infty} \theta = -\frac{3}{5}$ Sin $\theta = 2$. (1)
3 \ \ 2		$\theta = 180^{\circ} + 36^{\circ} 52^{\prime} = 216^{\circ} 52^{\prime}$
其里。 军事。 军事等等军	×	$or \Theta = 360^{\circ} - 36^{\circ}52' = 323^{\circ}08'.$
3	3	(3)

QUESTION 5	QUESTICA 7
Length of String = length of are ABP + PT	$\int_0^1 \frac{2e^x}{1+e^x} dx$
Y	$= \left[2 \ln(1+e^{2i})\right]$
$0 r + x$ $PT = \int (r+x)^2 - r^2$	$= 2 \ln (1+e) - 2 \ln 2$
$= \sqrt{r^2 + 2rx + 7c^2 - r^2}$	= 2 lu (1+e)
$=\sqrt{2rx+x^2}$	2
leythofac ABP = ro	$\frac{QUESnow8}{1-25e^{-4\omega}} = 24$
0 ° Total leigh = $r\theta + \sqrt{2rx+x^2}$	25
QUESTION 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$(i) \log_{10} x = \log_{10} 4 + \log_{10} 8$	10g 54 = 4w
$= \log_{10} 32$	$w = \frac{1}{4} \log_e 5^4$
o° 2=32	$= log_e 5$
(ii) $2 \ln 54 - x \ln 3 = \ln 2$	$\sqrt{2}$
$\ln 54^2 - \ln 12 = 2 \ln 3$	
$ln(54.54) = ln3^{2}$	l
Ju 9x6x9x63 = lu3 2 , lu35=lu	3° 000=5.

QUESTON9.	QUESTION 11
	log_2
$k_{8} = \log_{e} \sqrt{(\chi^{3}+1)} = \log_{e} (\chi^{3}+1)^{\frac{1}{2}}$	$V = \pi \left(\frac{\alpha^2}{\alpha^2} \right)$
·	Jo
$\int (\alpha) = \frac{3x^2}{2\sqrt{x^2+1}}$	
	Suice y=lgz => x=ey
(X3H) ^{1/2}	Je
$=\frac{3x^{2}}{2(6^{2}+1)}, x \neq -1$	% X2=e ^{2y}
	<u></u>
	0° V=π (10ge ² e ^{2y} dy
<u>(2)</u>	Jo
	F 247692
QUESTION 10	$= \pi \left[\frac{1}{2}e^{2y}\right]^{\log_2 2}$
	L -Jo
(i) $\frac{d}{d} \left(x \log_e x \right) = \log_e x + 1$	
$\frac{(i)}{\partial x} \frac{d}{\partial x} (x \log_e x) = \log_e x + 1$	= # e2loge2 -e0
(ii) $\int \log_{10} x = x \log_{10} x - \int_{10}^{10} dx$	
(ii) $\log_{e^{2}} = 2\log_{e^{2}} - \int 1 dx$	= \frac{1}{2} \left(e \log_e 4 - 1 \right)
$= \chi \log x - \chi $	2 (0 1)
- Luger - L	$= \frac{1}{2} (4-1) = 3\pi \text{ wib}^3$
(37)	$=\frac{1}{2}(4-1)=\frac{3\pi}{2}$ with $\frac{3}{2}$
(iii) 4 A	
y=lgex	
1 3 (4)	
3	
Area = (log x dx	
J	
$\frac{1}{2} \left[\frac{1}{2} \ln 3 - 3 \right] = \frac{3}{2} \ln 3 - 3$	
$= \chi \log_e \chi - \chi = \sin \delta - 3$	$=3\ln 3-2$
(1)	