Coarse-graining for the Analysis of Soft Matter Scattering

submitted by

Andrew R. McCluskey

for the degree of Doctor of Philosophy

of the

UNIVERSITY OF BATH

Department of Chemistry

August, 2018

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that they must not copy it or use material from it except as permitted by law or with the consent of the author.

This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consulation.

Declaration of Authorship

I, Andrew R. McCluskey, declare that this thesis titled, "Coarse-graining for the Analysis of Soft Matter Scattering" and the work presented in it are my own. I confirm that:

- where the thesis or any part of the thesis such as a published paper, has been produced jointly with others, that a substantial part is the original work of myself, and
- where the thesis incorporates material already submitted for another degree, the extent of that material and the degree, if any, obtained.

Signed:		
Date:		

"Atticus told me to delete the adjectives and I'd have the facts."

Scout Finch – To Kill a Mockingbird

UNIVERSITY OF BATH

Abstract

Department of Chemistry

Doctor of Philosophy

Coarse-graining for the Analysis of Soft Matter Scattering

by Andrew R. McCluskey

Acknowledgements

Contents

D	eclara	ation of Authorship	iii
A l	bstrac	ct	⁄ii
A	cknov	wledgements	ix
Ai	ims	x	xi
	0.1		xi
			xi
	0.2		xi xi
	0.2	Mant Section 2	ΧI
1		oduction	1
	1.1	Main Section 1	1
		1.1.1 Subsection 1	1
	1.2	1.1.2 Subsection 2	1
	1.4	Wallt Section 2	1
2	Sim	ulation Methodology	3
	2.1	Main Section 1	3
		2.1.1 Subsection 1	3
	2.2	2.1.2 Subsection 2 Subsection 2 Main Section 2 Subsection 2	3
	2.2	Want Section 2	J
3	Refl	lectivity from Lipid Monolayers	5
	3.1	Main Section 1	5
		3.1.1 Subsection 1	5
	2.2	3.1.2 Subsection 2	5
	3.2	Main Section 2	Э
4	Sma	all Angle Scattering from Surfactant Micelles	7
	4.1	Main Section 1	7
		4.1.1 Subsection 1	7
	4.0	4.1.2 Subsection 2	7
	4.2	Main Section 2	7
5	Gra	zing Incidence Small Angle Scattering from Mixed Surfactant Mono-	
	laye		9
	5.1	Main Section 1	9
		5.1.1 Subsection 1	9
	5.2	5.1.2 Subsection 2	9

6	Con	clusions	11
	6.1	Main Section 1	11
		6.1.1 Subsection 1	11
		6.1.2 Subsection 2	11
	6.2	Main Section 2	11
A	App	pendix Title Here	13

List of Abbreviations

MD molecular dynamics

C₁₀TAB decyltrimethylammonium bromide dipalmitoylphosphatidylcholine

SAS small angle scattering

GISAS grazing-incidence small angle scattering

SAXS small angle X-ray scattering

XRR X-ray reflectivity

GISAXS grazing-incidence small angle X-ray scattering

SANS small angle neutron scattering

NR neutron reflectivity

GISANS grazing-incidence small angle neutron scattering

DLS Diamond Light Source

ESRF European Synchrotron Radiation Facility

Linac linear accelerator
BM bending magnet
rf radio-frequency cavity

ID insertion device

ILL Institut Laue-LangevinESS European Spallation Source

EPSR emperical potential structure refinement DWBA distorted wave Born approximation

PCFF poly consistent force field PBC periodic boundary condition

OPLS optimized potentials for liquid simulations

NVE constant number of particles, volume, and energy

NPT constant number of particles, pressure, and temperature NVT constant number of particles, volume, and temperature

WPEP whole particle effective potential decyltrimethylammonium nitrate

Physical Constants

 $\pi = 3.14159...$ $c = 2.998 \times 10^8 \,\mathrm{m \, s^{-1}}$ $h = 6.626 \times 10^{-34} \,\mathrm{J \, s}$ Speed of light Planck's constant

Golden ratio $\Phi = 1.61803\dots$

Boltzmann's constant $k_B = 1.380\,648 \times 10^{-23}\,\mathrm{J\,K^{-1}}$

List of Symbols

a_0	optimum head-group area	m^2
b	scattering length	m
b	bond length	m
b_0	equilibrium bond length	m
$c_{\alpha/\beta}$	atom concentrations	m^{-3}
d_n	thickness of layer n	m
f	force	${\rm kgms^{-2}}$
f_s	scale factor	
$g_{lphaeta}$	partial pair distribution function	
g(X)	probability density function	
i	atom type	
k_n	wavevector for layer n	
k_N	dissociation constant from aggregate of N	s^{-1}
l_0	chain length	m
m	mass	kg
n	number of scattering vectors	
n_i	refractive index	
q_i	charge of atom i	k_e
p	surfactant packing parameter	
r_c	cut-off distance	m
r_{ij}	atomic distance	Å
$r_{n,n+1}$	Fresnel equation coefficient	0
r_{12}	distance between surfactant centres-of-mass	Å
s	surfactant number	
t	timestep	S
t_F	time-of-flight	S
u	potential energy	$kJ mol^{-1}$
v	velocity	$\mathrm{m}\mathrm{s}^{-1}$
A	illuminated surface	m^2
$A_{1,2,3}$	dihedral angle parameters	$kcal mol^{-1}$
B	resultant matrix	
C	total solute concentration	$ m moldm^{-3}$
C_s	tail carbon atom in surfactant s	9
D	number density of particles	m^{-3}
E_k	kinetic energy	J
E_{new}	new energy	kJ
E_{tot}	total energy	kJ
$F(\mathbf{Q})$	diffuse scattering factors	
G(r)	radial distribution function	_1
$I^{(Q)}$	scattering intensity	cm^{-1}
K	equilibrium constant	
K_b	bond force constant	$kcal mol^{-1} Å^{-}$
K_{θ}	angle force constant	$kcal mol^{-1}$

_		
L_F	distance of neutron flight	m
M	layer matrix	
N	aggregation number	molecule
N_{at}	number of atoms	
$N_{ m cycles}$	number of cycles	
$N_{\rm particles}$	number of particles	
N_P	number of undulator magnets	
N_s	head nitrogen atom in surfactant s	
P	probability	
P(Q)	particle form factor	
Q	scattering vector magnitude	m^{-1}
R	radius	m
R_g	radius of gyration	m
R(Q)	reflectivity	
Res(Q)	resolution function	
S	nuclear spin quantum number	
S_a	surface area	m^2
S_a $S(Q)$	system structure factor	111
T	temperature	K
_	-	K
$T_{\rm inst}$	instantaneous temperature Fresnal transmission factor	Λ
$T_{i,f}$		3
V	volume	$\frac{\mathrm{m}^3}{\mathrm{s}}$
V_c	chain volume	m^3
V_p	particle volume	meter ³
X_N	concentration of molecules in aggregate of N	$mol dm^{-3}$
\mathbf{k}_i	incident wavevector	m^{-1}
\mathbf{k}_f	final wavevector	m^{-1}
\mathbf{r}	atomic position	_
\mathbf{Q}	scattering vector	m^{-1}
β	phase factor	
β_c	fraction of c	
$\delta_{lphaeta}$	Kronecker δ -function	
*	L-J well depth	$kcal mol^{-1}$
$rac{\epsilon_{ij}}{ heta}$	polar angle	rad
θ		deg
	angle	_
$\theta_{1/2}$	surfactant- r_{12} angle	deg
θ_c	critical angle	rad
θ_e	electron-photon angle	rad
θ_0	equilibrium angle	deg
λ	wavelength	m
λ_P	magnetic period length	m
μ	atomic mass	amu
μ_N	mean chemical potential of aggregate of N	J molecule ^{−1}
μ_N°	mean interaction energy of aggregate of N	$J \text{molecule}^{-1}$
$ u_{\mathrm{samp}}$	sampling frequency	
ρ	scattering length density	m^{-2}
$ ho_0$	atomic density	m^{-3}
σ	interfacial roughness	m
σ_i	statistical uncertainty in $I^{\exp}(Q)$	${ m cm}^{-1}$
σ_{ij}	distance of L-J minima	Å
•		

σ_{coh}	coherent scattering cross section		1^2
$\sigma_{ m incoh}$	incoherent scattering cross section	n	1^2
ϕ	azimuthal angle	ra	ad
ϕ	dihedral angle	ra	ad
χ^2	chi-squared		
ω	neutron frequency	S	-1
ω_i	incident frequency	Н	Iz
ω_f	final frequency	Н	Iz
$\mathrm{d}\sigma/\mathrm{d}\omega$	differential cross-section	m	1^2
Λ	temperature factor		

Aims

0.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

0.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

0.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

0.2 Main Section 2

1 Introduction

1.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

1.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.[1]

1.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

1.2 Main Section 2

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit

volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

2 Simulation Methodology

2.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

2.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

2.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

2.2 Main Section 2

3 Reflectivity from Lipid Monolayers

3.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

3.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

3.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

3.2 Main Section 2

4 Small Angle Scattering from Surfactant Micelles

4.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

4.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

4.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

4.2 Main Section 2

5 Grazing Incidence Small Angle Scattering from Mixed Surfactant Monolayers

5.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

5.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

5.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

5.2 Main Section 2

elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

6 Conclusions

6.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

6.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

6.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

6.2 Main Section 2

A Appendix Title Here

Write your Appendix content here.

List of Figures

List of Tables

List of Algorithms

Bibliography

[1] A. Test, Another Test.