物聯網裝置與平台 IoT Devices and Platforms

曾煜棋、吳昆儒

National Yang Ming Chiao Tung University

What is IoT?

- Finding Human value from connecting devices
 - Collecting data from sensors via Internet.

Arduino

Arduino boards

Arduino Uno Rev3

Arduino Mega 2560 Rev3

Arduino Nano RP2040 Connect

Arduino Nano 33 IoT

Arduino Nano 33 BLE Sense

Arduino MKR ZERO

Arduino uno rev3

Digital In/Out Pins

Tech specs

MICROCONTROLLER	ATmega328P			
OPERATING VOLTAGE	5V			
INPUT VOLTAGE (RECOMMENDED)	7-12V			
INPUT VOLTAGE (LIMIT)	6-20V			
DIGITAL I/O PINS	14 (of which 6 provide PWM output)			
PWM DIGITAL I/O PINS	6			
ANALOG INPUT PINS	6			
DC CURRENT PER I/O PIN	20 mA			
DC CURRENT FOR 3.3V PIN	50 mA			
FLASH MEMORY	32 KB (ATmega328P) of which 0.5 KB used by bootloader			
SRAM	2 KB (ATmega328P)			
EEPROM	1 KB (ATmega328P)			
CLOCK SPEED	16 MHz			
LED_BUILTIN	13			
LENGTH	68.6 mm			
WIDTH	53.4 mm			
WEIGHT	25 g			

Arduino package

Arduino UNO

LED

RGB LED

Photocell 光敏電阻

Button Switch

Potentiometer 可變電阻

Speaker

超音波 Ultrasonic HC-SR04

伺服馬達 Servo motor SG-90

温溼度 DHT11

氣壓計 BMP180

電子羅盤 HMC-5883L

加速度&陀螺儀 MPU-6050

人體紅外線 HC-SR505

心率感測 xd-58c

聲音感測器 KY-038

細懸浮微粒感測 PPD42NS

水位感測器

通訊模組 Bluetooth HM-10

通訊模組 LoRa

通訊模組 WiFi ESP8266

Before using Arduino

https://www.arduino.cc/en/software

Download Arduino IDE according to your OS

Arduino IDE 1.8.16

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. This software can be used with any Arduino board.

Refer to the **Getting Started** page for Installation instructions.

SOURCE CODE

Active development of the Arduino software is **hosted by GitHub**. See the instructions for **building the code**. Latest release source code archives are available **here**. The archives are PGP-signed so they can be verified using **this** gpg key.

Download Arduino IDE

Support the Arduino IDE

Since the release 1.x release in March 2015, the Arduino IDE has been downloaded **54,428,538** times — impressive! Help its development with a donation.

Learn more about donating to Arduino.

- Open Source
- Cross Platform
 - Windows
 - Mac OS X
 - Linux
- Simple UI (Easy to Use)

Labs

- After installing Arduino IDE (with Arduino board driver)
- Blink: Turn an LED on and off.
- DigitalReadSerial: Read a switch, print the state to serial monitor in Arduino IDE.
- AnalogReadSerial: Read a potentiometer, print its state to the serial monitor.
- 4. ReadAnalogVoltage: Reads an analog input and prints the voltage to the serial monitor
- 5. Fade: Turn a analog pin on and off very quickly with different ratio between on and off

Lab1. Blink:

Turn an LED on and off.

Lab 1. Blink

- Goal: shows the simplest thing you can do with an Arduino to see physical output
- Output: it blinks an LED.
- Hardware Required:
 - Arduino Board
 - LED
 - □ a 220 ohm resistor

Lab 1. Blink

Open--->File--->Examples--->Basic--->Blink

Built-in Sample Code:

```
// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED BUILTIN, OUTPUT);
// the loop function runs over and over again forever
void loop() {
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
                            // wait for a second
 delay(1000);
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(1000);
                            // wait for a second
```


LED_BUILTIN: It is a pre-defined parameter that you can't change it. (Usually, it is 13)

Modified Code

```
// give it a name:
int led = 12;
                   // change the digital output to pin 12
// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 12 as an output.
 pinMode(led, OUTPUT);
// the loop function runs over and over again forever
void loop() {
 digitalWrite (led, HIGH);
                           // turn the LED on (HIGH is the voltage level)
 delay(1000);
                          // wait for a second
 digitalWrite (led, LOW); // turn the LED off by making the voltage LOW
 delay(1000);
                           // wait for a second
```

Lab 1. Syntax

- □ Syntax
 - pinMode(pin, mode)
- Parameters
 - pin: the number of the pin whose mode you wish to set
 - mode: INPUT, OUTPUT, or INPUT_PULLUP
- Example
 - pinMode(13, OUTPUT); // pin 13, OUTPUT mode

Lab 1. Syntax

- Syntax
 - digitalWrite(pin, value)
 - Write a HIGH or a LOW value to a digital pin
- Parameters
 - pin: the pin number
 - value: HIGH or LOW
- Example
 - digitalWrite(13, HIGH);
 - digitalWrite(13, LOW);

LED intro

The LED (Light Emitting Diode) is a simple, digital actuator

+ - Cathode

- LEDs have a short leg (-) and a long leg (+) and it matters how they are oriented in a circuit
- To prevent damage, LEDs are used together with a resistor

Electrical / Optical Characteristics at TA=25°C

Symbol	Parameter	Device	Тур.	Max.	Units	Test Conditions	
λpeak	Peak Wavelength	Super Bright Red	660		nm	I==20mA	
λD [1]	Dominant Wavelength	Super Bright Red	640		nm	I==20mA	
Δλ1/2	Spectral Line Half-width	Super Bright Red	20		nm	I=20mA	
С	Capacitance	Super Bright Red	45		pF	Vr=0V;f=1MHz	
VF [2]	Forward Voltage	Super Bright Red	1.85	2.5	٧	IF=20mA	
lR	Reverse Current	Super Bright Red		10	uA	Vr = 5V	

Notes:

If V=5V, How we get current for 20mA? (V = IR)

^{1.}Wavelength: +/-1nm. 2. Forward Voltage: +/-0.1V.

Resistor

Ex: $20K\Omega$ = Red, Black, Orange = 20*1000 (4-band) = Red, Black, Black, Red = 200*100 (5-band)

Discussion 1

Why do usually we put a resistor with LED?
If we do not put the resistor, what will happen?

For a 4-band resistor with all red, what is the resistor value?

Read a switch, print the state to serial monitor in Arduino IDE.

- Goal: how to monitor the state of a button by establishing serial communication between your Arduino and your computer over USB.
- Hardware Required
 - Arduino Board
 - A momentary switch, button, or toggle switch
 - 10k ohm resistor
 - breadboard
 - hook-up wire

- There are 4 pins in a button.
- What is the relationship between these pins?

Open--->File--->Examples--->Basic---> DigitalReadSerial

Built-in Sample Code:

```
// digital pin 2 has a pushbutton attached to it. Give it a name:
int pushButton = 2;
                          Newline
                                  9600 baud
void setup() {
 Serial.begin(9600); // initialize serial communication at 9600 bits/s
 pinMode(pushButton, INPUT); // make the pushbutton's pin an input
void loop() {
 int buttonState = digitalRead(pushButton); // read the input pin
 Serial.println(buttonState); // print out the state of the button:
 delay(1); // delay in between reads for stability
```

Lab 2. Syntax

- □ Syntax
 - digitalRead(pin)
- Parameters
 - pin: the number of the digital pin you want to read (int)
 - Returns value: HIGH or LOW
- Example
 - val = digitalRead(13);

Discussion 2

Please draw a line chart to show the button state (before/after press button).

Lab3. AnalogReadSerial:

Read a potentiometer, print its state to the serial monitor.

Lab 3. AnalogReadSerial

- Goal: shows you how to read analog input from the physical world using a potentiometer.
- Hardware Required
 - Arduino Board
 - 10-kilohm Potentiometer

5V

Lab 3. AnalogReadSerial

Lab 3. AnalogReadSerial

Open--->File--->Examples--->Basic---> AnalogReadSerial

Built-in Sample Code:

```
// the setup routine runs once when you press reset:
void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
// the loop routine runs over and over again forever:
void loop() {
 // read the input on analog pin 0:
 int sensorValue = analogRead(A0);
 // print out the value you read:
 Serial.println(sensorValue);
            // delay in between reads for stability
 delay(1);
```


Lab 3. Syntax

- □ Syntax
 - analogRead(pin)
- Description
 - 10-bit analog to digital converter.
 - Map input voltages 0~5 volts ---> 0~1023.
 - Resolution: 5 volts / 1024 or, 0.0049 volts per unit.
- Returns
 - □ int (0 to 1023)
- Example
 - value = analogRead(3);

Lab4. ReadAnalogVoltage:

Reads an analog input and prints the voltage to the serial monitor.

Lab 4. Analog Read Voltage

- Goal: shows you how to read an analog input on Pin 0, convert the values from analogRead() into voltage, and print it out to the serial monitor.
- Hardware Required
 - Arduino Board
 - Potentiometer

Built-in Sample Code:

```
void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
void loop() {
 // read the input on analog pin 0
 int sensorValue = analogRead(A0);
 // Convert the analog reading (which goes from 0 - 1023)
 // to a voltage (0 - 5V)
 float voltage = sensorValue * (5.0 / 1023.0);
 Serial.println(voltage); // print out the value you read:
```


Discussion 3

- Can we map the input voltage into finer range?
 - □ Current: Map input voltages 0~5 volts ---> 0~1023

Lab5. Fade:

Turn a analog pin on and off very quickly with different ratio between on and off

Lab 5. Fade

Goal: Demonstrates the use of the analogWrite() function in fading an LED off and on. AnalogWrite uses pulse width modulation (PWM~), turning a analog pin on and off very quickly, to create a fading effect.

Hardware Required

- Arduino board
- Breadboard
- a LED
- a 220 ohm resistor

(you can skip 5V here)

Lab 5. Fade

PWM: Pulse Width Modulation

Lab 5. Fade

Arduino IDE

Open--->File--->Examples--->Basic--->Fade

Built-in Sample Code:

```
int led = 9; // the pin that the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by
void setup() {
 pinMode(led, OUTPUT); // declare pin 9 to be an output
void loop() {
 analogWrite(led, brightness); // set the brightness of pin 9
 // change the brightness for next time through the loop:
 brightness = brightness + fadeAmount;
 // reverse the direction of the fading at the ends of the fade:
 if (brightness <= 0 | | brightness >= 255) {
  fadeAmount = -fadeAmount; // If it's -5, then it's set to 5.
 delay(30); // wait for 30 milliseconds to see the dimming effect
```

Lab 5. Syntax

- □ Syntax
 - analogWrite(pin, value)
- Parameters
 - pin: the pin number
 - value: the duty cycle: between 0 (always off) and 255 (always on)
- Example
 - □ analogWrite(3, 255)

Discussion 4

Is it possible to watch the fade effect by our eyes? If yes, how to watch?

陽明交大 NYCU

線上demo

Discord

Discord

- Download: https://discord.com/download
- Server Link: https://discord.gg/sXX9pVNh

Tutorial

- Create an user name: ID/Name
- ex: 30955xxxx/000

這是一個尚未認領的帳號,在失去此帳號之前,請趕快認領。 認領帳號

Tutorial

Enter the server

Tutorial

- Pull to private demo channel by TAs
- Share screen and Demo

Demo

- Separated to groups for each TA
- □ Demo time: until 3:20
- □ 補demo will be at the same time

陽明交大 NYCU

Summary

Summary

- Write Answers for Discussion 1 to 4
 - □ Upload to e3 before next class

- Quiz: Talk/Chat to TA by Discord
 - □ Finish this task in the class