SEUNGYEON KIM

Seoul, South Korea ksy@robotics.snu.ac.kr https://seungyeon-k.github.io

RESEARCH INTERESTS

- Vision-based prehensile and non-prehensile robotic object manipulation
- 3D object shape recognition from partially observed vision sensor data
- Group equivariant neural network models

EDUCATION

Seoul National University

Sep 2019 - Feb 2024

GPA: 4.15 / 4.3

Advisor: Frank C. Park

Thesis: Learning for Vision-Based Object Manipulation: A Shape Recognition-Based Approach

Honors: Outstanding Doctoral Dissertation Award

Seoul National University

Mar 2017 - Feb 2019

M. S. in Mechanical Engineering

Ph. D. in Mechanical Engineering

GPA: 4.22 / 4.3

Advisor: Frank C. Park / work closely with Sang-Hoon Yeo Thesis: On the Encoding Capacity of Human Motor Adaptation

Seoul National University

Mar 2013 - Feb 2017

B.S. in Mechanical Engineering, Minor in Economics

GPA: 3.91 / 4.3 (Major 4.02 / 4.3)

Honors: Summa Cum Laude

Gyeonggibuk Science High School

Mar 2011 - Feb 2013

One-year early graduation

EXPERIENCE

Robotics Laboratory, Seoul National University

May 2024 - Present

BK21 Postdoctoral Research Fellow

Institute of Advanced Machines and Design (IAMD)

Sep 2021 - Apr 2024

Researcher in Intelligent Machine System Research Department

Institute of Advanced Machines and Design (IAMD)

Apr 2019 - Aug 2019

Assistant Researcher in Intelligent Machine System Research Department

PUBLICATIONS

- [C5] T²SQNet: A Recognition Model for Manipulating Partially Observed Transparent Tableware Objects Young Hun Kim*, **Seungyeon Kim***, Yonghyeon Lee, Frank C. Park Conference on Robot Learning (CoRL), 2024
- [C4] Leveraging 3D Reconstruction for Mechanical Search on Cluttered Shelves Seungyeon Kim*, Young Hun Kim*, Yonghyeon Lee, Frank C. Park Conference on Robot Learning (CoRL), 2023
- [C3] Equivariant Motion Manifold Primitives
 Byeongho Lee*, Yonghyeon Lee*, **Seungyeon Kim**, MinJun Son, Frank C. Park
 Conference on Robot Learning (CoRL), 2023

- [C2] SE(2)-Equivariant Pushing Dynamics Models for Tabletop Object Manipulations Seungyeon Kim, Byeongdo Lim, Yonghyeon Lee, Frank C. Park Conference on Robot Learning (CoRL), Oral presentation (33/504 = 6.5%), 2022
- [J2] DSQNet: A Deformable Model-Based Supervised Learning Algorithm for Grasping Unknown Occluded Objects

Seungyeon Kim*, Taegyun Ahn*, Yonghyeon Lee, Jihwan Kim, Michael Y. Wang, Frank C. Park IEEE Transactions on Automation Science and Engineering (T-ASE), 2022

- [C1] A Statistical Manifold Framework for Point Cloud Data Yonghyeon Lee*, Seungyeon Kim*, Jinwon Choi, Frank C. Park International Conference on Machine Learning (ICML), 2022
- [J1] On the Encoding Capacity of Human Motor Adaptation Seungyeon Kim, Jaewoon Kwon, Jin-Min Kim, Frank C. Park, Sang-Hoon Yeo Journal of Neurophysiology (JNP), 2021

PROJECTS

Object Grasping and Manipulation Skills for Stable Housekeeping Service

Sep 2021 - Oct 2022

Project Leader

with Samsung Research

• Develop prehensile and non-prehensile manipulation skills for handling various tableware objects on the table, as part of household tasks [C2].

Deep Learning-based Lane Detection Algorithm from LiDAR data

Apr 2021 - Oct 2021

Project Leader

with Seoul Robotics

• Develop a deep neural network architecture that recognizes 3D lane information from LiDAR data.

Artificial Intelligence-based Automated Painting Robot System

Oct 2020 - Sep 2021

Project Member

with Doolim-Yaskawa

• Develop an artificial intelligence-based smart painting robot automation system for automobile factories, primarily responsible for visualizing painting results.

Babymind: Infant-Mimic Neurocognitive Developmental Machine Learning

Apr 2019 - Dec 2020

Project Leader

with SNU-AIIS

• Build infant-mimicking neurocognitive AI technologies for robot manipulation in real-world environments. Conduct research on human motion primitives [J1] and baby-inspired grasping skills [J2].

Deep Reinforcement Learning Algorithm for Industrial Robot

Apr 2018 - Dec 2018

Project Leader

with Samsung Electronics

• Develop a safe and efficient reinforcement learning algorithm for high-gain position controller-based industrial robots.

TEACHING EXPERIENCE

Geometric Methods for High-Dimensional Data Analysis (M3239.006800)	Fall 2022
---	-----------

Teaching Assistant in Seoul National University

Dynamics (446.204A) Fall 2018

Teaching Assistant in Seoul National University

Introduction to Robotics (M2794.0027) Spring 2017

Teaching Assistant in Seoul National University

Basic Calculus 1 (033.016) Spring 2015

Undergraduate Student Instructor in Seoul National University

Basic Calculus 2 (033.017) Fall 2014

Undergraduate Student Instructor in Seoul National University