ECE/MATH 520, Spring 2008

Exam 3: Due 5/8/08, 9:30am, at the ECE front office

Name:	75 mins.; Total 50 pts.
-------	-------------------------

1. (15 pts.) Let $P \in \mathbb{R}^{n \times n}$ be a matrix with the property that each element is in the real interval [0,1], and the sum of the elements of each row is equal to 1; call such a matrix a *stochastic matrix*. Now consider a vector $\boldsymbol{x} \geq \boldsymbol{0}$ such that $\boldsymbol{x}^{\top}\boldsymbol{e} = 1$, where $\boldsymbol{e} = [1,\dots,1]^{\top}$; call such a vector \boldsymbol{x} a probability vector.

We wish to prove the following result: For any stochastic matrix P, there exists a probability vector x such that $x^{\top}P = x^{\top}$. Although this is a key result in probability theory (under the topic of *Markov chains*), our argument is based on duality theory (for linear programming), consisting of the following parts.

a. Consider the primal linear program:

Write down the dual of this problem.

- b. Show that the dual is not feasible (i.e., there does not exist a feasible solution to the dual). *Hint:* Derive a contradiction based on Py > y; think about the largest element of y (call it y_i).
- c. Is the primal feasible? What can you deduce about whether or not the primal is unbounded?
- d. Use part c to deduce the desired result: that there exists a vector $x \ge 0$ such that $x^\top P = x^\top$ and $x^\top e = 1$.

2. (10 pts.) Consider the following problem:

minimize
$$f(x)$$

subject to $h(x) = 0$

where $f: \mathbb{R} \to \mathbb{R}$, $h: \mathbb{R} \to \mathbb{R}$, $f, h \in \mathcal{C}^1$, and there is a local minimizer x^* . Is possible that x^* fails to satisfy the Lagrange condition? Whatever your answer, give a complete explanation.

- **3.** (10 pts.) Suppose we have a convex optimization problem.
- a. Consider the following three feasible points: $[1,0,0]^{\top}$, $[0,1,0]^{\top}$, $[0,0,1]^{\top}$. Suppose that all three have objective function value 1. What can you say about the objective function value of the point $(1/3)[1,1,1]^{\top}$? Explain fully.
- b. Suppose we know that the three points in part a are global minimizers. What can you say about the point $(1/3)[1,1,1]^{\top}$? Explain fully.

4. (15 pts.) This question is on duality theory for general *nonlinear* convex programming problems.

Consider the following optimization problem:

minimize
$$f(x)$$

subject to $g(x) \le 0$,

where $f: \mathbb{R}^n \to \mathbb{R}$ is convex, each component of $g: \mathbb{R}^n \to \mathbb{R}^m$ is convex, and $f, g \in \mathcal{C}^1$. Let us call the above problem the *primal* problem.

Define the *dual* of the above problem as:

maximize
$$q(\boldsymbol{\mu})$$
 subject to $\boldsymbol{\mu} \geq \mathbf{0}$,

where q is defined by

$$q(\boldsymbol{\mu}) = \min_{\boldsymbol{x} \in \mathbb{R}^n} l(\boldsymbol{x}, \boldsymbol{\mu}),$$

with $l(x, \mu)$ the Lagrangian at x, μ .

Prove the following results:

- a. If x_0 and μ_0 are feasible points in the primal and dual, respectively, then $f(x_0) \ge q(\mu_0)$.
- b. If x_0 and μ_0 are feasible points in the primal and dual, respectively, and $f(x_0) = q(\mu_0)$, then x_0 and μ_0 are optimal solutions to the primal and dual, respectively.
- c. If the primal has an optimal (feasible) solution, then so does the dual, and their objective function values are equal. (You may assume regularity.)