Anna Oruba, Karolina Podsiadły, Adrianna Wachowska

Temat: Przewidywanie ilości CO na podstawie innych parametrów powietrza

Dane użyte w projekcie:

- 0. Data (DD/MM/YYYY)
- 1. Czas (HH.MM.SS)
- 2. Rzeczywiste uśrednione godzinowo stężenie CO w mg/m^3
- 3. PT08.S1 (tlenek cyny) uśredniona na godzinę odpowiedź czujnika
- 4. Rzeczywiste uśrednione godzinowo, ogólne stężenie Non Metanic HydroCarbons w microg / m^3
- 5. Rzeczywiste uśrednione godzinowo stężenie benzenu w mikrog / m^3
- 6. PT08.S2 (titania) godzinowa uśredniona odpowiedź czujnika
- 7. Rzeczywiste uśrednione godzinowo stężenie NOx w ppb
- 8. PT08.S3 (tlenek wolframu) godzinna uśredniona odpowiedź czujnika
- 9. Rzeczywiste uśrednione godzinowo stężenie NO2 w mikrog / m^3
- 10. PT08.S4 (tlenek wolframu) godzinowa uśredniona odpowiedź czujnika
- 11. PT08.S5 (tlenek indu) uśredniona odpowiedź czujnika co godzinę
- 12. Temperatura w °C
- 13. Wilgotność względna (%)
- 14. AH Absolutna wilgotność

1	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	PT08.S3(NOx)	NO2(GT)	PT08.S4(NO2)	PT08.S5(O3)	Т	RH	AH
2	10.03.2004	18:00:00	2,6	1360	150	11,9	1046	166	1056	113	1692	1268	13,6	48,9	0,7578
3	10.03.2004	19:00:00	2	1292	112	9,4	955	103	1174	92	1559	972	13,3	47,7	0,7255
4	10.03.2004	20:00:00	2,2	1402	88	9,0	939	131	1140	114	1555	1074	11,9	54,0	0,7502
5	10.03.2004	21:00:00	2,2	1376	80	9,2	948	172	1092	122	1584	1203	11,0	60,0	0,7867
6	10.03.2004	22:00:00	1,6	1272	51	6,5	836	131	1205	116	1490	1110	11,2	59,6	0,7888
7	10.03.2004	23:00:00	1,2	1197	38	4,7	750	89	1337	96	1393	949	11,2	59,2	0,7848
8	11.03.2004	00:00:00	1,2	1185	31	3,6	690	62	1462	77	1333	733	11,3	56,8	0,7603
9	11.03.2004	01:00:00	1	1136	31	3,3	672	62	1453	76	1333	730	10,7	60,0	0,7702
10	11.03.2004	02:00:00	0,9	1094	24	2,3	609	45	1579	60	1276	620	10,7	59,7	0,7648

Tabela 1 - Przykładowe dane wykorzystane w projekcie

W powyższej tabeli zostało ukazane pierwszych dziesięć rekordów analizowanych danych. Właściwych danych wykorzystanych do regresji jest 9357.

 $Rysunek\ 1-Wykres\ korelacji\ pomiędzy\ zmiennym$

Na rysunku 1 zostały przedstawione korelacje pomiędzy badanymi zmiennymi.

W wyniku analizy regresji otrzymano następujące współczynniki:

Rysunek 2- Współczynniki poszczególnych zmiennych

Zgodnie z powyższym wykresem, można stwierdzić, że zmienna numer 10 (zawartość tlenku wolframu PT08.S4) ma największy wpływ na ilość CO w powietrzu. Wartość tego współczynnika wynosi ponad 0,25. Pozostałymi czynnikami, które najbardziej wpływają na badaną zmienną są PT08.S3 (tlenek wolframu) oraz stężenie NO2.

Najmniejszy wpływ natomiast mają następujące dwa czynniki:

- stężenie Non Metanic HydroCarbons,
- PT08.S2 (titania).

Zmienne, które mają współczynniki na poziomie 0,05 (bardzo mały wpływ) to:

- PT08.S1 (tlenek cyny),
- stężenie benzenu,
- stężenie NOx w ppb.