Exercise 1.1

a)

Each clause is a disjunction containing at least one negated atom. Therefore, the interpretation $p_i \mapsto \top \quad \forall i$ satisfies S.

b)

$(p \land (q \lor \neg p)) \lor (r \land \neg(s \lor r))$	Commutativity
$\Longrightarrow (p \wedge (\neg p \vee q)) \vee (r \wedge \neg (r \vee s))$	De Morgan
$\Longrightarrow (p \wedge (\neg p \vee q)) \vee (r \wedge \neg r \wedge \neg s))$	Contradiction
$\Longrightarrow (p \wedge (\neg p \vee q)) \vee (\bot \wedge \neg s))$	Falsity
$\Longrightarrow (p \land (\neg p \lor q)) \lor \bot$	Falsity
$\Longrightarrow p \wedge (\neg p \vee q)$	Distributivity
$\Longrightarrow (p \land \neg p) \lor (p \land q)$	Contradiction
$\Longrightarrow \bot \lor (p \land q)$	Falsity
$\implies p \land q$	

Exercise 1.2

a)

All branches are either saturated or closed. The only open branch provides the model $p\mapsto F, q\mapsto F, r\mapsto T.$

b)

Since its negation is unsatisfiable, $(\neg p \land q \land r) \lor (p \land q) \lor (\neg p \land \neg r) \lor \neg q$ is a tautology.

c)

 $p \wedge \neg q \wedge (r \wedge p) \rightarrow (q \vee \neg r) \wedge r$ is unsatisfiable, therefore $\{p \wedge \neg q, (r \wedge p) \rightarrow (q \vee \neg r)\} \models r$