Introduction Computational Intelligence, Lecture 1

by Sergei Savin

Spring 2024

Content

- Motivation
- Motivating example
 - ▶ fmincon
 - quadprog
 - ▶ SVD-based solution
 - ▶ CVX-based solution
- Homework

MOTIVATION

A lot of modern methods, computations and algorithms are backed by numerical optimization tools. In this course we will study numerical optimization with an emphasis on convex methods.

What we want?

To go from "I hope it works" to a solid understanding of the mathematics and use-cases of those tools.

Why we want it?

It should allow us to solve a much wider range of problems, and solve them more effectively.

We have the following problem: find such \mathbf{x} that minimizes $\mathbf{x}^{\top}\mathbf{M}\mathbf{x}$, while $\mathbf{C}\mathbf{x} = \mathbf{y}$. In other words:

$$\begin{array}{ll}
\text{minimize} & \mathbf{x}^{\top} \mathbf{M} \mathbf{x}, \\
\mathbf{x} & \\
\text{subject to} & \mathbf{C} \mathbf{x} = \mathbf{y}.
\end{array} \tag{1}$$

More concrete:

minimize
$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix},$$
 subject to
$$\begin{bmatrix} 1 & 7 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 1.$$
 (2)

How do we solve it?

fmincon

One very popular way of doing it is by use of a general-purpose local optimization solver, such as fmincon provided by MATLAB. Here is one possible solution:

```
 \begin{array}{l} M = \begin{bmatrix} 1 & 0 & 1; & 0 & 5 & 0; & 1 & 0 & 3 \end{bmatrix}; \\ C = \begin{bmatrix} 1 & 7 & 2 \end{bmatrix}; \\ y = 1; \\ \\ 4 \\ \text{fnc} = @(x) & x'*M*x; \\ \text{con} = @(x) & \text{deal}([], & C*x-y); \\ x = \text{fmincon}(\text{fnc}, & \text{zeros}(3, 1), & [], [], [], [], [], [], \\ \end{array}
```

Average solution time is **4.8** ms (this depends on many factors, so treat it only as a relative information). Solution is $\mathbf{x} = \begin{bmatrix} 0.0442 & 0.1239 & 0.0442 \end{bmatrix}$.

MOTIVATING EXAMPLE quadprog

A more sophisticated, but still a very straightforward approach is to use a dedicated solver for this class of problems quadprog provided by MATLAB. Here is the solution:

```
 \begin{array}{l} 0 \\ M = \begin{bmatrix} 1 & 0 & 1; & 0 & 5 & 0; & 1 & 0 & 3 \end{bmatrix}; \\ C = \begin{bmatrix} 1 & 7 & 2 \end{bmatrix}; \\ y = 1; \\ x = quadprog(M, [], [], C, y) \end{array}
```

Average solution time is **0.56** ms, an order of magnitude less than with fmincon.

SVD-based solution

We can use an algebraic solution, based on SVD decomposition (or its derivative methods - null space and pseudo-inverse), as follows:

Where pinv_null is a function combining pinv and null, obtained from a single SVD decomposition.

Average solution time is 0.027 ms, ~ 20 times faster than quadprog and ~ 200 times faster than fmincon.

CVX-based solution

Finally, we can invoke one of the most powerful convex optimization tools with a user-friendly coding style - CVX:

However, we will see that the overhead for the call to the solver for this task is excessive. Average solution time is 282 ms, which is $\sim 60 \text{ times slower than fmincon}$.

Lecture slides are available via Github, links are on Moodle:

github.com/SergeiSa/Computational-Intelligence-2024

