Colpier Clément Fornara Thibault Pellegrino Guillaume Renard Charles

Projet de Mathématiques appliquées PR3003 _

Table des matières

1	Dét	${ m cerminer}$ l'équation différentielle vérifiée par ${ m M}({ m t}){=}({ m x}({ m t}),{ m y}({ m t})).$	4	
	1.1	Projection du Poids sur la composante tangentielle	5	
	1.2	Projection de la tension du ressort su la composante tangentielle	5	
		1.2.1 Methode de Guillaume, diff d'angle	6	
		1.2.2 Methode de Charles, Al-Kashi	7	
	1.3	Determination de $ T $	7	
	1.4	Détermination de a_t	7	
	1.5	Détermination de l'équation différentielle	8	
		1.5.1 Equa diff de Guillaume	8	
		1.5.2 Equa diff de Charles	8	
2	Dét	termination des points d'équilibre	8	
3	Dét	termination de la nature des points d'équilibre	10	
4		Déterminer en fonction de a les points d'équilibres du système.	11 11 11 11	
5	On	suppose que $a=\sqrt{15}$.	11	
•	5.1		11	
	5.2		11	
	5.3	Représenter le portrait de phase.		
	5.4	Que peut-on en déduire sur le mouvement		
6	On	suppose maintenant que $a = \sqrt{3}$ et $x(0) = x_0 > 0$ et $\dot{x}(0) = 0$.	11	
	6.1	Calculer et représenter à l'aide de Matlab la période T en fonction de x_0 pour $0 < x_0 < 10$	11	
7		On suppose maintenant que le système est soumis à une force de frottement $\gamma>0$ et que		
	ľéq	uation devient : (E) $\ddot{x} + \gamma \dot{x} + f(x, a) = 0$.	11	
	7.1	Représenter le diagramme de Matlab le diagramme de bifurcation en (a, γ) pour chacun des		
		points d'équilibres	11	
	7.2	On suppose que $a=\sqrt{15}$. Pour quelles valeurs (exactes) de γ les points d'équilibres attractifs		
		changent-ils de nature		
	7.3	Représenter le portrait de phase pour $\gamma = 1, \gamma = 2, \gamma = 3, \ldots$	11	

1 Déterminer l'équation différentielle vérifiée par M(t)=(x(t),y(t)).

La masselotte M se déplace uniquement selon la composante tangentielle. Pour déterminer l'équation différentielle on va donc particulièrement s'intéresser à l'équation sur la composante tangentielle. Pour cela, on commence à faire la somme des forces s'exerçant sur la composante tangentielle $\vec{u_t}$ et normale $\vec{u_n}$ selon la seconde loi de Newton (PFD) :

$$\begin{cases} P_t + T_t = ma_t \\ P_n + R_n + T_n = 0 \end{cases}$$

On s'intéresse à l'équation :

$$P_t + T_t = ma_t$$

Pour déterminer l'équation différentielle, on doit alors projeter \vec{T} et \vec{mg} sur $\vec{u_t}$. On projette $\vec{mg} = -mg.\vec{u_y}$ sur $\vec{u_t}$

Projection du Poids sur la composante tangentielle 1.1

On remarque sur le graphique que $P_t = P.\cos(\alpha)$

On cherche à déterminer α . On calcule la pente a de la tige parabolique. $a = \frac{\partial y}{\partial x} = \frac{\partial x^2/2}{\partial x} = x$ En $M(x_0, y_0)$ la pente a de la tige parabolique vaut donc x_0 . Cette pente a nous permet de calculer l'angle α . En effet, on remarque graphiquement que $\tan(\alpha) = \frac{1}{a}$. On en déduit : $\alpha = \tan^{-1}(\frac{1}{x_0})$

Au final on trouve donc : $P_t = P \cdot \cos(\tan^{-1}(\frac{1}{x_0}))$ Or $\cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1+x^2}}$ On en déduit donc : $P_t = P \cdot \frac{1}{\sqrt{1+1/x_0^2}}$ D'où :

$$P_t = P.\frac{x_0}{\sqrt{1+x_0^2}}$$

Projection de la tension du ressort su la composante tangentielle

On projette désormais \vec{T} sur $\vec{u_t}$.

1.2.1 Methode de Guillaume, diff d'angle

$$\cos(\phi) = \frac{x}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{1 + x^2}}$$

$$\cos(\theta) = \frac{x}{\sqrt{(1-y)^2 + x^2}} = \frac{x}{\sqrt{1+x^4/4}}$$

$$\cos(\theta) = \frac{x}{\sqrt{(1-y)^2 + x^2}} = \frac{x}{\sqrt{1+x^4/4}}$$
Et: $T_t = T \cdot \cos(\alpha 2) = T \cdot \cos(\phi - \theta) = T[\cos(\phi) \cdot \cos(\theta) + \sin(\phi) \cdot \sin(\theta)]$
On en déduit:
$$T_t = T[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \sin(\cos^{-1}(\frac{1}{\sqrt{1+x^2}})) \cdot \sin(\cos^{-1}(\frac{x}{\sqrt{1+x^4/4}}))]$$
Or: $\sin(\cos^{-1}(u)) = \sqrt{1-u^2}$

On trouve donc :

$$T_t = T \cdot \left[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \sqrt{1 - \frac{1}{1+x^2}} \cdot \sqrt{1 - \frac{x^2}{1+x^4/4}} \right]$$

1.2.2Methode de Charles, Al-Kashi

On note x,y les coordonnées du point M.
$$a = \sqrt{(x_M - x_P)^2 + (y_M - y_P)^2} = \sqrt{x^2 + (\frac{x^2}{2} - 1)} = \sqrt{x^2 + \frac{x^4}{4} - x^2 + 1} = \sqrt{\frac{x^4}{4} + 1}$$

$$b = \sqrt{(x_M - x_P)^2 + (y_M - \Delta(0))^2} = \sqrt{x^2 + (\frac{x^2}{2} + \frac{x^2}{2})^2} = \sqrt{x^2 + x^4} = x\sqrt{1 + x^2}$$
 note : faut-il mettre plutôt $|x|\sqrt{1 + x^2}$?

$$c = \sqrt{(y_p - \Delta(0))^2} = \sqrt{(1 + \frac{x^2}{2})^2} = 1 + \frac{x^2}{2}$$

$$c^2 = a^2 + b^2 - 2ab \times \cos(\beta)$$

D'après le théorème d'Al-Kashi :
$$x_1 = \frac{5+\sqrt{25-4\times6}}{2} = 3$$

$$c^2 = a^2 + b^2 - 2ab \times \cos(\beta)$$

$$\cos(\beta) = \frac{a^2+b^2-c^2}{2ab} = \frac{x^4/4+1+x^2+x^4-1-x^2-x^4/4}{2x\sqrt{x^4/4+1}\sqrt{1+x^2}} = \frac{x^3}{2\sqrt{\frac{x^4}{4}+1}\sqrt{1+x^2}}$$

On trouve donc :

$$T_t = T \times \frac{x^3}{2\sqrt{\frac{x^4}{4} + 1}\sqrt{1 + x^2}}$$

1.3Determination de ||T||

On détermine la valeur de la tension du ressort.

T =
$$k(l - l_0) = k(\sqrt{(x_M - x_P)^2 + (y_M - y_P)^2} - l_0) = k(\sqrt{x^2 + (x^2/2 - 1)^2} - l_0)$$

T = $k(\sqrt{x^2 + x^4/4 - x^4 + 1} - l_0)$

$$T = k(\sqrt{1 + \frac{x^4}{4}} - l_0)$$

1.4 Détermination de a_t

On a vu dans la première équation que $a_n = 0$. On en déduit : $||\vec{a}|| = a_t$ Avec une accélération normale nulle, on peut écrire la formule de l'accélération dans le repère de Frenet ainsi : $a_t = ||\vec{a}||$

Or
$$||\vec{a}|| = \frac{\partial v}{\partial t} = \frac{\partial \pm \sqrt{x^2 + \dot{y}^2}}{\partial t}$$

 $\dot{y} = \frac{\partial y}{\partial t} = \frac{\partial y}{\partial x} \times \frac{\partial x}{\partial t} = x\dot{x}$
 $v = \sqrt{\dot{x}^2 + \dot{x}^2 x^2} = \dot{x}\sqrt{1 + x^2}$
 $\frac{\partial v}{\partial t} = \ddot{x}\sqrt{1 + x^2} + \frac{\dot{x}^2 x}{\sqrt{1 + x^2}}$
On trouve:

$$a_t = \ddot{x}.\sqrt{1+x^2} + \frac{\dot{x}^2.x}{\sqrt{1+x^2}}$$

(Equation de Charles)

1.5 Détermination de l'équation différentielle

A l'aide de ce qu'on a calculé précédemment on développe l'équation $mg_t + T_t = ma_t$ pour déterminer l'équation différentielle. On obtient alors :

1.5.1 Equa diff de Guillaume

En développant et en prenant k=m, g=1 et $a = l_0$ (données de l'énoncé), on obtient : $m.1.\frac{x}{\sqrt{1+x^2}} + m(\sqrt{x^4/4+1} - a).[\frac{1}{\sqrt{1+x^2}}.\frac{x}{\sqrt{1+x^4/4}} + \sqrt{1 - \frac{1}{1+x^2}}.\sqrt{1 - \frac{x^2}{1+x^4/4}}] - m.\ddot{x}.\sqrt{1+x^2} - m.\frac{\dot{x}^2.x}{\sqrt{1+x^2}} = 0$ $\frac{x}{\sqrt{1+x^2}} + (\sqrt{x^4/4+1} - a) \cdot \left[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \sqrt{1 - \frac{1}{1+x^2}} \cdot \sqrt{1 - \frac{x^2}{1+x^4/4}} \right] - \ddot{x} \cdot \sqrt{1+x^2} - \frac{\dot{x}^2 \cdot x}{\sqrt{1+x^2}} = 0$ $\frac{x}{\sqrt{1+x^2}} + \big(\sqrt{x^4/4+1} - a\big).\big[\frac{1}{\sqrt{1+x^2}}.\frac{x}{\sqrt{1+x^4/4}} + \frac{x}{\sqrt{1+x^2}}.\sqrt{\frac{x^4/4-x^2+1}{1+x^4/4}}\big] - \ddot{x}.\sqrt{1+x^2} - \frac{\dot{x}^2.x}{\sqrt{1+x^2}} = 0$ $\frac{x}{\sqrt{1+x^2}} + \left[\frac{x}{\sqrt{1+x^2}} + \frac{x \cdot \sqrt{x^4/4 - x^2 + 1}}{\sqrt{1+x^2}}\right] - a \cdot \left[\frac{1}{\sqrt{1+x^2}} \cdot \frac{x}{\sqrt{1+x^4/4}} + \frac{x}{\sqrt{1+x^2}} \cdot \sqrt{\frac{x^4/4 - x^2 + 1}{1+x^4/4}}\right] - \ddot{x} \cdot \sqrt{1+x^2} - \frac{\dot{x}^2 \cdot x}{\sqrt{1+x^2}} = 0$ $\frac{x}{1+x^2} + \left[\frac{x}{1+x^2} + \frac{x \cdot \sqrt{x^4/4 - x^2 + 1}}{1+x^2}\right] - a \cdot \left[\frac{x}{(1+x^2) \cdot \sqrt{1+x^4/4}} + \frac{x \cdot \sqrt{x^4/4 - x^2 + 1}}{(1+x^2) \cdot \sqrt{1+x^4/4}}\right] - \ddot{x} - \frac{\dot{x}^2 \cdot x}{1+x^2} = 0$ $\frac{2x + x \cdot \sqrt{x^4/4 - x^2 + 1} - \dot{x}^2 \cdot x}{1+x^2} - a \cdot \frac{x + x \cdot \sqrt{x^4/4 - x^2 + 1}}{(1+x^2) \cdot \sqrt{1+x^4/4}} - \ddot{x} = 0$ $-\frac{2x + x \cdot \sqrt{x^4/4 - x^2 + 1} - \dot{x}^2 \cdot x}{1+x^2} + a \cdot \frac{x + x \cdot \sqrt{x^4/4 - x^2 + 1}}{(1+x^2) \cdot \sqrt{1+x^4/4}} + \ddot{x} = 0$ $-\frac{2x + x \cdot \sqrt{(x^2/2 - 1)^2} - \dot{x}^2 \cdot x}{1+x^2} + a \cdot \frac{x + x \cdot \sqrt{(x^2/2 - 1)^2}}{(1+x^2) \cdot \sqrt{1+x^4/4}} + \ddot{x} = 0$ $\frac{-x^3/2 - x + \dot{x}^2 x}{1 + x^2} + \frac{a \cdot x^3}{2(1 + x^2) \cdot \sqrt{1 + x^4/4}} + \ddot{x} = 0$

1.5.2Equa diff de Charles

On calcule maintenant l'équatio ndifférentielle du système en s'aidant des résultats précédents.

On part de l'équation $P_t + T_t = ma_t$

avec
$$T_t = k(l - l_0)$$
 et $P_t = -mg$

avec
$$T_t = k(l - l_0)$$
 et $P_t = -mg$
En développant les expression on obtient :
$$k(\sqrt{x^4/4 + 1} - l_0) \times \frac{x^3}{2\sqrt{x^4/4 + 1}\sqrt{1 + x^2}} - mg\frac{x}{\sqrt{1 + x^2}} = m(\ddot{x}\sqrt{1 + x^2} + \frac{\ddot{x}^2x}{\sqrt{1 + x^2}})$$

$$\frac{k}{m}(\frac{x^3}{2\sqrt{1 + x^2}} - \frac{x^3 \times l_0}{2\sqrt{x^4/4 + 1}\sqrt{1 + x^2}}) - \frac{xg}{\sqrt{1 + x^2}} - \ddot{x}\sqrt{1 + x^2} - \frac{\dot{x}^2x}{\sqrt{1 + x^2}} = 0$$
En prenant $k = m$, $g = 1$ et $a = l_0$ (données de l'énoncé), on obtient :
$$-\frac{x^3}{2\sqrt{1 + x^2}} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}\sqrt{1 + x^2}} + \frac{x}{x}\sqrt{1 + x^2} + \frac{\dot{x}^2x}{\sqrt{1 + x^2}} = 0$$

$$(-\frac{x^3}{2} + x)\frac{1}{2\sqrt{1 + x^2}} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}\sqrt{1 + x^2}} + \ddot{x}\sqrt{1 + x^2} + \frac{\dot{x}^2x}{\sqrt{1 + x^2}} = 0$$

$$(-\frac{x^3}{2} + x)\frac{1}{2\sqrt{1 + x^2}} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}\sqrt{1 + x^2}} + \ddot{x}\sqrt{1 + x^2} + \frac{\dot{x}^2x}{\sqrt{1 + x^2}} = 0$$

$$(-\frac{x^3}{2} + x)\frac{1}{1 + x^2} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}(1 + x^2)} + \ddot{x} + \frac{\dot{x}^2x}{\sqrt{1 + x^2}} = 0$$

$$\left(-\frac{x^3}{2} + x\right) \frac{1}{2\sqrt{1+x^2}} + \frac{x^3 \times a}{2\sqrt{x^4/4+1}\sqrt{1+x^2}} + \ddot{x}\sqrt{1+x^2} + \frac{\dot{x}^2 x}{\sqrt{1+x^2}} = \frac{1}{2\sqrt{1+x^2}} + \frac{\dot{x}^2 x}{\sqrt{1+x^2}} = \frac{$$

$$\left(-\frac{x^3}{2} + x\right) \frac{1}{1+x^2} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}(1+x^2)} + \ddot{x} + \frac{\dot{x}^2 x}{\sqrt{1+x^2}} = 0$$

$\mathbf{2}$ Détermination des points d'équilibre

Les points d'équilibre sont les points où la vitesse du système et donc de la masselotte est nulle. Ainsi, les tèrmes lié à la vitesse et à l'accélération du système sont nuls.

Les points d'équilibres correspondent aux solutions de l'équation :

$$\ddot{x} + \frac{\dot{x}^2 x - x^3 / 2 - \dot{x}}{1 + x^2} + \frac{x^3 \times a}{2\sqrt{x^4 / 4 + 1}(1 + x^2)} = 0 \text{ où } \ddot{x} = 0 \text{ et } \dot{x} = 0 \text{ Ainsi on a}:$$

$$\frac{-x^3/2 - x}{1 + x^2} + \frac{x^3 \times a}{2\sqrt{x^4/4 + 1}(1 + x^2)} = 0$$

Une première solution correspond à $x_0 = 0$ et $y_0 = 0$

En multipliant de part et d'autre de l'équation par $\frac{2(1+x^2)}{x}$:

$$x^2 - \frac{x^2 \times l_0}{\sqrt{1 + x^4/4}} + 2 = 0$$

$$\sqrt{1+x^{\frac{4}{4}}}(x^2+2) = x^2 \times l_0$$

$$\sqrt{1+y^2}(2y+2) = 2yl_0$$

$$(1+y^2)(4y^2+8y+4) = 4y^2 \times l_0^2$$

$$\begin{array}{l}
(1+y^2)(4y^2+8y+4) = 4y^2 \times l_0^2 \\
(1+y^2)(y^2+8y+1) = y^2 \times l_0^2 \\
(1+y^2)(y^2+2y+1) = y^2 \times l_0^2 \\
(\frac{1}{y}+y)(y+2+\frac{1}{y}) = l_0^2
\end{array}$$

$$(\frac{1}{u} + y)(y + 2 + \frac{1}{u}) = l_0^2$$

On pose
$$X = y + \frac{1}{y} \ (y \neq 0)$$
:

$$X(X+2) = l_0^2$$

$$\begin{array}{l} X(X+2) = l_0^2 \\ X^2 + 2X - l_0^2 = 0 \end{array}$$

Dont on calcule le déterminant : $\Delta_X = 4(1 + l_0^2)$

D'où les solutions intermédiaires : $X_1 = -1 - \sqrt{1 + l_0^2}$

$$X_2 = -1 + \sqrt{1 + l_0^2}$$

$$y + \frac{1}{y} = X$$

$$y^2 + 1 = Xy$$

$$y^2 - Xy + 1 = 0$$

Dont le déterminant est : $\Delta_y = X^2 - 4$ D'où les solutions : $y = \frac{1}{2}(X - \sqrt{X^2 - 4})$

$$y = \frac{1}{2}(X + \sqrt{X^2 - 4})$$

On peut alors trouver l'expression des ordonnées des points d'équilibre y_1, y_2, y_3, y_4 en fonction de l_0 :

$$y_1 = \frac{1}{2}(X_1 - \sqrt{X_1 - 4}) = \frac{-1 - \sqrt{1 + l_0^2}}{2} - \frac{1}{2}(\sqrt{(-1 - \sqrt{1 + l_0^2})^2 - 4})$$

$$= \frac{1}{2}(-1 - \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{1 + 2\sqrt{1 + l_0^2} + (1 + l_0^2) - 4}$$

$$= \frac{1}{2}(-1 - \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{-2 + 2\sqrt{1 + l_0^2} + l_0^2}$$

$$y_2 = \frac{X_1 + \sqrt{X_1 - 4}}{2} = \frac{1}{2}(-1 - \sqrt{1 + l_0^2}) + \frac{1}{2}\sqrt{-2 + 2\sqrt{1 + l_0^2} + l_0^2}$$

$$y_3 = \frac{X_2 - \sqrt{X_2 - 4}}{2} = \frac{-1 + \sqrt{1 + l_0^2}}{2} - \frac{1}{2}(\sqrt{(-1 + \sqrt{1 + l_0^2})^2 - 4})$$

$$= \frac{1}{2}(-1 + \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{1 - 2\sqrt{1 + l_0^2} + (1 + l_0^2) - 4}$$

$$= \frac{1}{2}(-1 + \sqrt{1 + l_0^2}) - \frac{1}{2}\sqrt{-2 - 2\sqrt{1 + l_0^2} + l_0^2}$$

$$y_4 = \frac{1}{2}(-1 + \sqrt{1 + l_0^2}) + \frac{1}{2}\sqrt{-2 - 2\sqrt{1 + l_0^2} + l_0^2}$$

En considérant $y = \frac{x^2}{2} \Longrightarrow x = \pm \sqrt{2y}$ on a au total 9 points d'équilibre :

 $x_0 = 0$ (Déterminé au début)

$$x_1 = \sqrt{-1 - \sqrt{1 + l_0^2} - \sqrt{-2 + 2\sqrt{1 + l_0^2} + l_0^2}}$$

$$x_2 = -\sqrt{-1 - \sqrt{1 + l_0^2} - \sqrt{-2 + 2\sqrt{1 + l_0^2} + l_0^2}}$$

$$x_3 = \sqrt{-1 - \sqrt{1 + l_0^2} + \sqrt{-2 + 2\sqrt{1 + l_0^2} + l_0^2}}$$

$$x_4 = -\sqrt{-1 - \sqrt{1 + l_0^2} + \sqrt{-2 + 2\sqrt{1 + l_0^2} + l_0^2}}$$

$$x_5 = \sqrt{-1 + \sqrt{1 + l_0^2} - \sqrt{-2 - 2\sqrt{1 + l_0^2} + l_0^2}}$$

$$x_6 = -\sqrt{-1 + \sqrt{1 + l_0^2} - \sqrt{-2 - 2\sqrt{1 + l_0^2} + l_0^2}}$$

$$x_7 = \sqrt{-1 + \sqrt{1 + l_0^2} + \sqrt{-2 - 2\sqrt{1 + l_0^2} + l_0^2}}$$

$$x_8 = -\sqrt{-1 + \sqrt{1 + l_0^2} + \sqrt{-2 - 2\sqrt{1 + l_0^2} + l_0^2}}$$

Il reste à déterminer la nature de ces points d'équilibre du système.

3 Détermination de la nature des points d'équilibre

Nous sommes dans le cas d'un système non linéaire. On pose $x_1=x, x_2=\dot{x}$ On a alors :

$$\dot{x_1} = x_2 = f_1(x_1 *, x_2 *)$$

$$\dot{x_2} = \frac{x_1^3 \times l_0}{2\sqrt{1 + \frac{x_1^4}{4}(1 + x_1^2)}} - \frac{x_1^3}{2(1 + x_1^2)} - \frac{x_2^2 x_1}{1 + x_1^2} = f_2(x_1, x_2)$$

Aux points d'équilibre, la vitesse est nulle d'où $x_2 = 0$ et $\dot{x_2} = 0$ D'où:

$$f_1(x_1*,0) = 0$$

$$f_2(x_1*,0) = \frac{x_1^3 \times l_0}{2\sqrt{1 + \frac{x_1^4}{4}(1 + x_1^2)}} - \frac{x_1^3}{2(1 + x_1^2)}$$

On va calculer la nature des points d'équilibre en passant par la matrice Jacobienne :

$$J_f = \begin{pmatrix} \frac{\delta f_1}{dx_1} & \frac{\delta f_1}{dx_2} \\ \frac{\delta f_2}{dx_1} & \frac{\delta f_2}{dx_2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{\delta f_2}{dx_1} & 0 \end{pmatrix}$$

Il faut alors déterminer $\frac{\delta f_2}{dx_1}$:

= > p.25

$$\frac{\delta f_2}{dx_1} = \frac{3l_0x_1^2 + l_0x^4 - (1+x^2)\frac{l_0x^6}{2(1+\frac{x^4}{4})}}{2\sqrt{1+\frac{x^4}{4}}(1+x^2)^2} - \frac{3x^2 + x^4}{2(1+x^2)^2}$$

Détail du calcul de $\frac{\delta f_2}{dx_1}$: (VIDE!!! voir lune à plume, je vois de quoi je parle. Pour info, c'est du calcul brut, pas "d'astuce")

On peut alors calculer les propriétés de la matrice (respectivement Déterminant, Trace, Discriminant de du polynôme caractéristique):

$$det(J_f) = \frac{\delta f_2}{dx_1}$$

$$tr(J_f) = 0$$

$$\Delta(J_f) = tr(J_f) - 4 \times det(J_f) = 4\frac{\delta f_2}{dx_1}$$

Pour connaître la nature du point d'équilibre, il nous reste plus qu'à étudier le signe de $\frac{\delta f_2}{dx_1}$:

$$\frac{\delta f_2}{dx_1} = \frac{3l_0x_1^2 + l_0x^4 - (1+x^2)\frac{l_0x^6}{2(1+\frac{x^4}{4})}}{2\sqrt{1+\frac{x^4}{4}}(1+x^2)^2} - \frac{3x^2 + x^4}{2(1+x^2)^2}$$

D'après la question précédente, on a en tout point d'équilibre $\sqrt{1+\frac{x^4}{4}}=\frac{x^2l_0}{x^2+2},$ d'où :

$$\frac{\delta f_2}{dx_1} = \frac{3l_0x_1^2 + l_0x^4 - \frac{1}{2}(x^2 + 2)^2(1 + x^2)\frac{l_0x^6}{\frac{(x^2l_0)^2}{(x^2 + 2)}}}{2(1 + x^2)^2} - \frac{3x^2 + x^4}{2(1 + x^2)^2}$$

$$= \frac{-\frac{1}{2l_0}x^2(x^2 + 2)^2(1 + x^2)(x^2 + 2) + (3l_0x^2 + l_0x^2 + l_0x^4)(x^2 + 2) - 3x^2 - x^4}{2(1 + x^2)^2}$$

(Jusqu'à là, je suis sur que c'était la bonne méthode. Le remplacement de $\sqrt{1+\frac{x^4}{4}}=\frac{x^2l_0}{x^2+2}$ est lui-aussi bon)

Le dénominateur étant positif pour tout x, on cherche le signe du numérateur, c-à-d de :

$$-\frac{1}{2l_0}x^2(x^2+2)^2(1+x^2)(x^2+2) + (3l_0x^2+l_0x^2+l_0x^4)(x^2+2) - 3x^2 - x^4$$

Etude de signe du polynome :

on pose,

$$-\frac{1}{2l_0}x^2(x^2+2)^2(1+x^2)(x^2+2) + (3l_0x^2 + l_0x^2 + l_0x^4)(x^2+2) - 3x^2 - x^4 = 0$$

Le polynôme est factorisable par x^2 et on obtient un polynome d'ordre 8

$$-1x^8/l_0 - 7x^6/l_0 - 18x^4/l_0 + x^2(n6l_0 - 1 - 20/l_0) + (8l_0 - 1 - 8l_0) = 0$$

On pose:

$$V = -1/l_0$$

$$Y = (6l_0 - 1 - 20/l_0)$$

$$Z = (8l_0 - 1 - 8/l_0)$$

on a :
$$Vx^8 + 7Vx^6 + 18Vx^4 + Yx^2 + Z = 0$$

le polynome est d'ordre 8 c'est donc un ordre pair donc il admet au maximum deux racines.

Or le coefficient de l'ordre 8 est impair et z est négatif donc le polynome admet deux racines de signes contraires. on peut donc factoriser le polynome par un polynome d'ordre 6 et par un polynome d'ordre 2

- 4 Dans toute la suite on supposera que g=1, k=m et on notera $a=l_0$ et on s'intéressera particulièrement par l'équation vérifié par x(t).
- 4.1 Montrer que l'équation est de la forme : (E) $\ddot{x} + f(x, \dot{x}, a) = 0$.
- 4.2 Déterminer en fonction de a les points d'équilibres du système.
- 4.3 Quelle est en fonction de a, la nature des points d'équilibres.
- 5 On suppose que $a = \sqrt{15}$.
- 5.1 Déterminer la valeur exacte des points d'équilibres du système.
- 5.2 Déterminer l'intégrale première du système.
- 5.3 Représenter le portrait de phase.
- 5.4 Que peut-on en déduire sur le mouvement.
- 6 On suppose maintenant que $a = \sqrt{3}$ et $x(0) = x_0 > 0$ et $\dot{x}(0) = 0$.
- 6.1 Calculer et représenter à l'aide de Matlab la période T en fonction de x_0 pour $0 < x_0 < 10$.
- 7 On suppose maintenant que le système est soumis à une force de frottement $\gamma > 0$ et que l'équation devient : (E) $\ddot{x} + \gamma . \dot{x} + f(x, a) = 0$.
- 7.1 Représenter le diagramme de Matlab le diagramme de bifurcation en (a,γ) pour chacun des points d'équilibres.
- 7.2 On suppose que $a = \sqrt{15}$. Pour quelles valeurs (exactes) de γ les points d'équilibres attractifs changent-ils de nature.

11

7.3 Représenter le portrait de phase pour $\gamma = 1, \gamma = 2, \gamma = 3$.