## **COMPSCI 402 Artificial Intelligence**

Assignment 2 – MDP Total points: 8-point

- **Q1.** Pacman is using MDPs to maximize his expected utility. In each environment:
  - Pacman has the standard actions {North, East, South, West} unless blocked by an outer wall
  - There is a reward of 1 point when eating the dot (for example, in the grid below, R(C; South; F) = 1)
  - The game ends when the dot is eaten
- (a) Consider the following grid where there is a single food pellet in the bottom right corner (F). The discount factor is 0.5. There is no living reward. The states are simply the grid locations.

| А | В | С |
|---|---|---|
| D | Е | F |

(i) What is the optimal policy for each state? (1-point)

| •     | the state of the s |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| State | π(state)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Α     | east or south                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| В     | east or south                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| С     | South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D     | east                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E     | east                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

(ii) What is the optimal value for the state of being in the upper left corner (A)? Reminder: the discount factor is 0.5. (1-point)

$$V^{*}(A) =$$

| k | V(A) | V(B) | V(C) | V(D) | V(E) | V(F) |
|---|------|------|------|------|------|------|
| 0 | 0    | 0    | O    | D    | 0    | 0    |
| 1 | 0    | 0    | 1    | 0    |      | 0    |
| 2 | 0    | 0.5  |      | 0.5  | 1    | O    |
| 3 | 0,25 | 0.5  | )    | ک ہ  |      | 0    |
| 4 | 025  | 0.5  |      | 0.5  |      | O    |

(iii) Using value iteration with the value of all states equal to zero at k=0, for which iteration k will  $V_k(A) = V^*(A)$ ? (1-point)

$$k = \frac{1}{2}$$

(b) Consider a new Pacman level that begins with cherries in locations D and F. Landing on a grid position with cherries is worth 5 points and then the cherries at that position **disappear**. There is still one dot, worth 1 point. The game still only ends when the dot is eaten.



(i) With no discount ( $\gamma = 1$ ) and a living reward of -1, what is the optimal policy for the states in this level's state space? (1-point)

|                                       | ( , , , )    |  |  |
|---------------------------------------|--------------|--|--|
| State (hint: three-element tuple)     | π(state)     |  |  |
| A, Doherry = true, Formy = true       | South        |  |  |
| A, Donerry=true, Fohorry = faise      | South        |  |  |
| A, Dinerry=faise. Fichory = three     | East         |  |  |
| A, Dinerry = faise . Ficherry = faise | East         |  |  |
| C, Doperry = true . Formy = true      | Bast         |  |  |
| C, Doperry = true . Formy = faise     | East         |  |  |
| C, Donerry = foise, Fohorry = true    | East         |  |  |
| C, Donery = faise, Formy = faise      | North / East |  |  |
| D, Donerry = faise. Formy = true      | East         |  |  |
| D, Donerry = false, Formy = forse     | North        |  |  |
| E, Doberry = true . Ficharry = true   | East         |  |  |
| E, Donerry = true . Ficherry = false  | West         |  |  |
| E, Dopery = forse, Formy = true       | East         |  |  |
| E, Doberry = foise, Forerry = foise   | West         |  |  |
| F, Donerry = true . Formy = faise     | West         |  |  |
| F, Doherry = foilse, Fohorry = failse | West         |  |  |

(ii) With no discount ( $\gamma=1$ ), what is the range of living reward values such that Pacman eats exactly one cherry when starting at position A? (1-point)

**Q2**. In this MDP, the available actions at **state A, B, C** are *LEFT, RIGHT, UP*, and *DOWN* unless there is a wall in that direction. The only action at **state D** is the *EXIT ACTION* and gives the agent a **reward of x**. The **reward for non-exit actions is always 1**.



(a) Let all actions be deterministic. Assume  $\gamma = \frac{1}{2}$ . Express the following in terms of x. (1-point)

$$V^*(D) = \chi \qquad \qquad V^*(C) = \max \left( \frac{1+0.5}{5} \chi_{\cdot} \right)$$

$$V^*(A) = \max \left( \frac{1+0.5}{5} \chi_{\cdot} \right) \qquad V^*(B) = \max \left( \frac{1+0.5}{5} \chi_{\cdot} \right)$$

(b) Let any non-exit action be successful with **probability**  $=\frac{1}{2}$ . Otherwise, the agent stays in the same state with **reward** = **0**. The EXIT ACTION from the state D is still deterministic and will always succeed. Assume that  $\gamma = \frac{1}{2}$ . For which value of x does  $Q^*(A;DOWN) = Q^*(A;RIGHT)$ ? Box your answer and justify/show your work. (1-point)

$$Q^{*}(A, DOWN) = Q^{*}(A, RIGHT) \text{ implies } V^{*}(A)$$

$$= Q^{*}(A, DOWN) = Q^{*}(A, RIGHT)$$

$$V^{*}(A) = Q^{*}(A, DOWN) = \frac{1}{2}(O + \frac{1}{2}V^{*}(A)) + \frac{1}{2}(I + \frac{1}{2}X) = \frac{1}{2} + \frac{1}{4}(V^{*}(A)) + \frac{1}{4}X$$

$$V^{*}(A) = \frac{2}{3} + \frac{1}{3}X$$

$$V^{*}(A) = Q^{*}(A, PIGHT) = \frac{1}{2}(O + \frac{1}{2}V^{*}(A)) + \frac{1}{2}(I + \frac{1}{2}V^{*}(B))$$

$$= \frac{1}{2} + \frac{1}{4}V^{*}(A) + \frac{1}{4}V^{*}(B)$$

$$V^{*}(A) = \frac{2}{3} + \frac{1}{3}V^{*}(B)$$

$$V^{*}(B) = Q^{*}(B, LEFT)$$

$$V^{*}(B) = \frac{1}{2}(O + \frac{1}{2}V^{*}(B)) + \frac{1}{2}(I + \frac{1}{2}V^{*}(A)) = \frac{1}{2} + \frac{1}{4}V^{*}(B) + \frac{1}{4}V^{*}(A)$$

$$V^{*}(B) = \frac{1}{3} + \frac{1}{3}V^{*}(A)$$

$$I=\chi$$
 /

(c) We now add one more layer of complexity. Turns out that the reward function is not guaranteed to give a particular reward when the agent takes an action. Every time an agent transitions from one state to another, once the agent reaches the new state s', a fair 6-sided dice is rolled. If the dices lands with value x, the agent receives the reward R(s, a, s') + x. The sides of dice have value 1, 2, 3, 4, 5, and 6. Write down the new bellman update equation for  $V_{k+1}(s)$  in terms of T(s, a, s'), R(s, a, s'),  $V_k(s')$ , and  $\gamma$ . (1-point)

$$V_{k+1}(s) = \max_{\alpha} \sum_{s'} T(s,\alpha,s') \left[ \frac{1}{6} \left( \sum_{i=1}^{6} R(s,\alpha,s') + i \right) + rV_{k}(s') \right]$$

$$= \max_{\alpha} \sum_{s'} T(s,\alpha,s') \left( R(s,\alpha,s') + 3is + rV_{k}(s') \right)$$