Homework 1

Julian Lehrer

Question 1 Suppose A is both unitary and upper-triangular, that is, $A^*A = AA^* = UU^{-1} = I$, Therefore, $a_{ij} = 0$ for i > j, that is, A is upper triangular. Then we have that A^* , the conjugate transpose, is a lower triangular matrix and that $a_{ij}^* = 0$ for j < i. Then for the ith row, $A^*A_{i,} = \sum_{j=1}^m A_{i,j}A_{i,j}^* = A_{i,i}A_{i,i}^* + 0 + ... + 0 = AA^*1$. So, $A_{i,j} = 0$ for $j \neq i$, so A is diagonal. **Question 2.**

a. Let x be such that $Ax = \lambda x$. Then

$$A^{-1}Ax = A^{-1}(\lambda x)$$

$$\implies x = A^{-1}(\lambda x)$$

$$\implies x = A^{-1}\lambda x$$

$$\implies A^{-1}x = 1/\lambda x$$

Therefore, $1/\lambda$ is an eigenvalue of A^{-1} .

- b. Suppose $AB = \lambda x$. Then $BABx = B\lambda x$. Since linear maps are associative, we have that $(BA)Bx = \lambda(Bx)$, that is, the eigenvalue of BA is the same as AB with a different eigenvector. Therefore, the eigenvalues of AB and BA are the same
- c. Since A is real, $A^* = A^T$, therefore $det(A \lambda I) = det((A \lambda I)^T)$. Since the characteristic polynomials are the same, the root (eigenvalues) are the same.

Question 3.

- a. We have that $A=A^*$, so A is Hermitian. Then $Ax=\lambda x$. Taking the conjugate transpose of this relation, we have that $x^*A^*=\lambda^*x^*$. Then, $x^*A^*x=\lambda^*x^*x\iff x^*\lambda x=\lambda^*x^*x\iff \lambda x^*x=\lambda^*x^*x\implies \lambda=\lambda^*\implies \lambda\in\mathbb{R}.$
- b. Let $Au = \lambda u$ and $Av = \tau v$ where $\lambda \neq \tau$. Then consider

$$(Au)^* = (\lambda u)^* \implies u^*A^* = \lambda u^* \implies u^*A = \lambda u^*$$

Since A is Hermitian. Then multiplying on the right by v, we have that

$$u^*Av = \lambda u^*v$$
$$\tau u^*v = \lambda u^*v$$
$$\tau(u, v) = \lambda(u, v)$$

Since $\lambda \neq \tau$, we must have that (u, v) = 0, that is, the eigenvectors are orthogonal.

Question 4. Proof (\Longrightarrow). Suppose that A is positive-definite and Hermitian. Let v be a a nonzero vector such that $Av = \lambda v$ where $\lambda \in \mathbb{R}$. Then $(Av, v) = (\lambda v)^*v = \lambda v^*v = \lambda \sqrt{(v, v)} > 0$ by assumption. Since v is nonzero, we have that the inner product (x, x) > 0 and hence $\lambda > 0$.

Proof (\iff). Suppose $\lambda > 0$, $\lambda \in \Lambda(A)$. Then we have that for $x \neq 0$, $(x,x) > 0 \iff (\lambda x,x) > 0 \iff (Ax,x) > 0$ therefore A is positive-definite.

Question 5.

a. Consider that we have the following two facts: $Ax = \lambda x$ and $(Ax)^* = (\lambda x)^* \iff x^*A^* = \lambda^*x^*$. Then we have that

$$x^*A^*Ax = \lambda^*x^*Ax$$
$$x^*\underbrace{A^*A}_{I}x = \lambda^*\lambda x^*x$$
$$x^*x = \lambda^*\lambda x$$

But if $\lambda = a + bi$, then $\lambda^* \lambda = a^2 - b^2 = |\lambda|^2$. Therefore, we must have that $|\lambda|^2 = 1 \implies |\lambda| = 1$ by the equality we derived above.

b. This is false, since have that $|A|_F = \sqrt{tr(A^*A)} = \sqrt{tr(I)} = n$ where n is the number of columns or rows in the matrix.

Question 6.

a. We have that

$$(Ax)^*x = (\lambda x)^*x$$

$$\iff x^*A^*x = \lambda^*x^*x$$

$$\iff -x^*Ax = \lambda^*x^*x$$

$$\iff -\lambda(x^*x) = \lambda^*(x^*x)$$

$$\iff -\lambda = \lambda^*$$

Then letting $\lambda = a + bi \iff -\lambda = -a - bi$, we have that $a + bi = -a - bi \iff 2a + bi = -bi$ so a = 0, and hence λ is purely imaginary.

b. Suppose A is singular. Then we have that for some $x \neq 0$, (I - A)x = 0. But this means that $Ix - Ax = 0 \iff Ax = x$, so x is an eigenvector with eigenvalue 1. This is a contradiction, since the eigenvalues of A are purely imaginary. Hence, I - A is nonsingular **Question 7.** Suppose that $Av = \lambda v$ for some nonzero vector v such that ||v|| = 1. Then we have that $||Av|| = ||\lambda v|| = ||\lambda v|| = ||\lambda v||$. Also, since

$$||A|| = \sup_{||x||=1} ||Ax||$$

We have that

$$\sup_{\|x\|=1} \|Ax\| \ge \|Av\|$$

$$= \|\lambda x\| = |\lambda| \|x\| = |\lambda|$$

Then choose $\lambda = \rho(A)$ since this inequality holds for arbitrary eigenvalues. Therefore, $||A|| \ge \rho(A)$.

Question 8.

a. First, note that since $||A||_2 = \sigma_1$, the largest singular value, this implies by definition that $||A||_2 = \sqrt{\rho(A^*A)}$ where $\rho(A)$ is the spectral radius of A since $\sigma_i = \sqrt{\lambda_i}$ where λ_i is the ith eigenvalue of A^*A . Also, we have that

$$(A^*A)uv^* = vu^*uv^*v^*u = ||u||_2^2||v||_2^2v^*u$$

Therefore

$$\sqrt{\rho(A^*A)} = \sqrt{\|u\|_2^2 \|v\|_2^2} = \|v\|_2 \|u\|_2$$

b. We have that

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |u_i v_j|^2} = \sqrt{\sum_{i=1}^m |u_i|^2 \sum_{j=1}^n |v_j|^2} = \sqrt{||u||_2^2 ||v||_2^2} = ||u||_2 ||v||_2$$

Question 9.

a. To show this, we show that $||Qx||_2 = 1$ for any unitary matrix Q. By definition, we have that

$$\begin{aligned} \|Qx\| &= \sqrt{(Qx,Qx)} \\ &= \sqrt{(Qx)^*Qx} \\ &= \sqrt{x^*Q^*Qx} = \sqrt{x^*x} = \sqrt{(x,x)} = \|x\|_2 \end{aligned}$$

Therefore, by the associativity of matrix multiplication we have that

$$||AQ||_2 = \sup_{||x||_2 = 1} ||AQx||_2 = \sup_{||x||_2 = 1} ||A(Qx)||_2 = \sup_{||x||_2 = 1} ||A||_2 = ||A||$$

b. We exploit the fact that $||A||_F = \sqrt{tr(A^*A)} = \sqrt{tr(AA^*)}$ from lecture. Then, we have that

$$\begin{split} \|AQ\|_F &= \sqrt{tr((\overline{AQ})(\overline{AQ})^*)} \\ &= \sqrt{tr(\overline{AQQ}^*A^*)} = \sqrt{tr(\overline{AA}^*)} = \|A\|_F \end{split}$$

and

$$||AQ||_F = \sqrt{tr((QA)^*(QA))}$$

= $\sqrt{tr(A^*Q^*QA)} = \sqrt{tr(A^*A)} = ||A||_F$

And the equality $||AQ||_F = ||QA||_F$ comes from transitivity.

Question 10.

- a. Lemma: The product of two unitary matrices is unitary. Proof: Let A, B be unitary, so $AA^* = I$ and $BB^* = I$. Then $(AB)^*(AB) = B^*A^*AB = B^*IB = B^*B = I$, so AB is unitary. Now let $A = U_A\Sigma_AV_A^*$ be the SVD of A and $B = U_B\Sigma_BV_B^*$ be the SVD of B. Then $A = (QV_B)\Sigma_B(V_BQ^*)$. But this is also the SVD for A, so $\Sigma_A = \Sigma_B$ by the uniqueness of the SVD. Since the singular values are the square roots of the diagonal of Σ_A and Σ_B , and these are equal, the singular values of A and B are equal.
- b. Consider A and -A. Then

Question 11.

a. Since f is differentiable, we have that

$$\kappa(f) = \frac{\|J(x)\|}{\|f(x)\|/\|x\|} = \frac{\|x\|\|J(x)\|}{\|f(x)\|}$$

We have that $J = [1, 1]^T$, and choosing the ∞ norm we have that

$$\kappa(f) = \frac{\max\{x_1, x_2\}}{|x_1 + x_2|}$$

Therefore, as $x_1, x_2 \longrightarrow 0$, f becomes ill conditioned since $\kappa(f) \longrightarrow \infty$

b. We have that $J(f) = [x_2, x_1]^T$, therefore the ∞ norm on J is $||J||_{\infty} = \max\{x_1, x_2\}$. This gives us that the condition number is

$$\frac{2 \max\{x_1, x_2\}}{|x_2 x_1|}$$

Therefore, as $x_1 \longrightarrow 0$ or $x_2 \longrightarrow 0$, f becomes ill conditioned since $\kappa \longrightarrow \infty$ as the denominator goes to zero.

c. Here, we have that $f'(x) = 9(x-2)^8$, therefore, the condition number is given by

$$\kappa(f) = \frac{9(x-2)^8|x|}{|x-2|^9}$$

So as $x \longrightarrow 2, \, f$ becomes ill conditioned since $k \longrightarrow \infty$

Question 12.

a and b See figure

c. Since we are plotting f around 2, where the conditioning number goes to ∞ , we can see the line is perburbed randomly in this domain.