Build a Personalized Online Course Recommender System with Machine Learning

- Raffaele Pane
- 2024-03-13

Outline

Introduction and Background

Exploratory Data Analysis

Content-based Recommender System using Unsupervised Learning

Collaborative-filtering based Recommender System using Supervised learning

Conclusion

Appendix

Introduction

INTRODUCTION TO RECOMMENDATION SYSTEMS, EXPLORING USER PREFERENCES IDENTIFYING PATTERNS IN USER BEHAVIOR FOR ACCURATE PREDICTIONS

Exploratory Data Analysis

Course counts per genre

- In this image you can see a sorted course count per genre.
- The two most frequent genres are BackendDev and MachineLearning

Course enrollment distribution

‡	TITLE ÷	rating_count ÷	
0	python for data science	14936	
1	introduction to data science	14477	
2	big data 101	13291	
3	hadoop 101	10599	
4	data analysis with python	8303	
5	data science methodology	7719	
6	machine learning with python	7644	
7	spark fundamentals i	7551	
8	data science hands on with open source tools	7199	
9	blockchain essentials	6719	
10	data visualization with python	6709	
11	deep learning 101	6323	
12	build your own chatbot	5512	
13	r for data science	5237	
14	statistics 101	5015	
15	introduction to cloud	4983	
16	docker essentials a developer introduction	4480	
17	sql and relational databases 101	3697	
18	mapreduce and yarn	3670	
19	data privacy fundamentals	3624	

20 most popular courses

Word cloud of course titles

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

Evaluation results of user profile-based recommender system

Score threshold = 10.0

What are the 10 most frequently recommended courses?

Flowchart of content-based recommender system using course similarity

Evaluation results of course similarity based recommender system

Threshold = 0.6

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

1.81

What are the 10 most frequently recommended courses?

Flowchart of clustering-based recommender system

Evaluation results of clustering-based recommender system

Number of Clusters: 18

What are the most frequently recommended courses?

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

Flowchart of NMF based recommender system

Flowchart of Neural Network Embedding based recommender system

Compare the performance of collaborative-filtering models

Conclusions

- The ANN model has the lowest RMSE value, indicating that it has the best performance among all the models.
- Viceversa, NMF has the worst performance.
- The Ridge, Lasso, and ElasticNet models have similar performance.

Appendix

• https://www.coursera.org/professional-certificates/ibm-machine-learning