Прикладная статистика: задание 2

Домашнее задание. Кирилл Сетдеков

Задачи:

1. С помощью неравенства Чебышёва покажите, с какой вероятностью величина лежит $[\mu - 2\sigma, \mu + 2\sigma]$ и $[\mu - 3\sigma, \mu + 3\sigma]$. Сравните полученные вероятности с соответствующими вероятностями для стандартного нормального распределения N (0, 1). Какой вывод можно сделать?

Решение:

Формулировка неравенства Чебышева:

$$P(|X - \mu| \geqslant a) \leqslant \frac{\sigma^2}{a^2}$$

Нас интересует обратная вероятность:

$$P(|X - \mu| < a) > 1 - \frac{\sigma^2}{a^2}$$

Подставим значения для 2 сигм, заменив $a = 2\sigma$:

$$P(|X - \mu| < 2\sigma) > 1 - \frac{\sigma^2}{4\sigma^2} = 1 - \frac{1}{4} = \frac{3}{4} = 0.75$$

Из нормального распределения: $P(|X - \mu| < 2\sigma) = \Phi(2) - \Phi(-2) = 0.9545$ Аналогично для 3 сигм, заменив $a = 3\sigma$:

$$P(|X - \mu| < 3\sigma) > 1 - \frac{\sigma^2}{9\sigma^2} = 1 - \frac{1}{9} = \frac{8}{9} \approx 0.889$$

Из нормального распределения: $P(|X - \mu| < 3\sigma) = \Phi(3) - \Phi(-3) = 0.9973$

Ответ: с помощью неравенства Чебышёва оценки для этого интервала имеют меньшую вероятность, чем вероятности, используя функцию распределения стандартного нормального распределения. \Rightarrow если мы знаем форму распределения, лучше считать через его квантили так как оценка будет точнее, а неравенства Чебышёва использовать в случаях, когда мы совсем ничего не знаем про распределение

2. Пусть есть реализация выборки $x_1, ..., x_n$ из $Unif([0, \theta])$ с неизвестным θ .

2.1. $n_i \sim \text{Unif}(0,0) => y_i = \frac{x_i}{\alpha} \sim \text{Unif}(0, 2)$ $Y(n) = \max \{ y_1, \dots y_n \} = \frac{\delta_1}{\omega} \quad x F(u) = u_1 y_2 u_2 b_1 u_2$ $P_{\theta}(g_1 < F(u) < g_2) = P_{\theta}(g_1 < \frac{\theta_1}{B} < g_2) =$ $= \operatorname{la}\left(\frac{\widehat{\theta}_1}{q_1} < \emptyset < \frac{\widehat{\theta}_1'}{q_1}\right)$ f(u) ma [0,1] = n u^-1 u liespaciaet Simme breso grugn sper 7 k 1 gr Po (g1 < Yn ×1) = F(1) - F(g1) = 1-g1 = 1-L THE PO ($\sqrt[4]{2}$ < F(u) < 1) = $|P_0(\widehat{O}_1 < \emptyset < \frac{\widehat{O}_1}{\sqrt[4]{2}})| =$ unterben er De 90 mg

3. Про выборки, про сравнение дисперсий.

Решение:

Исходное равномерное распределение $Unif[0,\theta] \sim X$, для него $EX = \theta/2, DX = \frac{\theta^2}{12}$. Мы оценили $\hat{\theta} = 2\overline{X}$ и сделали параметрический бутстрэп:

$$Y \sim Unif[0, \hat{\theta}]; Y = 2\overline{X}R_1$$

, где $R_1 \sim Unif[0,1]$.

Мы знаем, что $D\overline{X}=\frac{\theta^2}{12\sqrt{n}},\, DX=\frac{\theta^2}{12},\, DR_1=\frac{1}{12},\, ER_1=\frac{1}{2},\, E\overline{X}=\frac{\theta}{2}.$ Воспользуемся формулой для произведения дисперсии и запишем дисперсию Y:

$$D[2\overline{X}R_1] = 4D[\overline{X}R_1] = 4\left[D\overline{X}DR_1 + (E\overline{X})^2DR_1 + (ER_1)^2D\overline{X}\right] =$$

$$= 4\left[\frac{\theta^2}{12\sqrt{n}}\frac{1}{12} + \frac{\theta^2}{4}\frac{1}{12} + \frac{1}{4}\frac{\theta^2}{12\sqrt{n}}\right] = \frac{\theta^2}{12} + \frac{\theta^2}{9\sqrt{n}}$$

Мы получили, что $DY = \frac{\theta^2}{12} + \frac{\theta^2}{9\sqrt{n}}$, а $DX = \frac{\theta^2}{12}$. Получается, что DY > DX, $\forall n \geqslant 1$, при этом, при $n \to \infty$, $DY \to DX$, то есть в бесконечно большой выборке дисперсия из параметрического бутстрэпа будет приближаться к дисперсии из оригинального равномерного распределения.

4. Про оценки для среднего в нормальном распределении, реализация на питоне. Я решил и описал это задание в приложенном ноутбуке.