Modern Mathematical Physics

Ikhan Choi

May 9, 2022

Contents

I	Quantum mechanics	3
1	Wave-particle duality	4
	1.1 Particle properties of light	4
	1.2 Wave properties of electrons	4
	1.3 Interpretations of quantum mechanics	4
	1.4 Canonical commutation relation	4
2	Schrödinger equation	5
	2.1 Time-independent potentials	5
	2.2 Perturbative theory	5
3	Spin	6
	3.1 Spin of electrons	6
	3.2 Dirac equation	6
	3.3 Wigner classification	6
II	Statistical mechanics	7
4	Thermodynamics	8
	4.1 Equilibrium	
	4.2 Kinetic theory of gas	
	4.3 Ensembles	
5	Quantum statistics	9
	5.1 Fermions and Bosons	9
	5.2 Solid state physics	9
6	Renormalization group	10
	6.1 Phase transition	10
III	I Quantum field theory	11
7	Perturbative field theory	12
•	7.1 Path integral formulation	12
	7.2 Field equations	
	7.3 Feynman diagrams	12
8	Non-perturbative field theory	13
	8.1 Algebraic quantum field theory	13

9 1	Nonabelian gauge theory	14
IV	Quantum gravity	15

Part I Quantum mechanics

Wave-particle duality

1.1 Particle properties of light

Black body radiation(1901) Photoelectric effect(1905) Compton scattering(1923)

1.2 Wave properties of electrons

Bohr atom model (1913) Rutherford scattering (1911) Franck-Hertz experiment (1914) De Brogile waves (1924) Electron diffraction Davisson-Germer (1927) George Pagit Thompson (1928)

1.3 Interpretations of quantum mechanics

Heisenberg picture and Schrödinger picture Hilbert space, wave functions, Dirac notation Copenhagen interpretation observables and self-adjoint operators EPR paradox and entanglement?

1.4 Canonical commutation relation

canonical quantization fourier transform Stone-von Neumann theorem

Schrödinger equation

2.1 Time-independent potentials

Infinite well Harmonic oscillator Free particle Hydrogen atom

2.2 Perturbative theory

WKB approximation Fine structure Scattering theory

Spin

- 3.1 Spin of electrons
- 3.2 Dirac equation

Pair production(1941)

3.3 Wigner classification

Part II Statistical mechanics

Thermodynamics

4.1 Equilibrium

Equation of states Thermal processes

4.2 Kinetic theory of gas

ergodic theory BBGKY hierarchy

4.3 Ensembles

microcanonical, canonical, grand canonical

Quantum statistics

5.1 Fermions and Bosons

Two statistics Fermi sea Bose-Einstein condensation

5.2 Solid state physics

phonon

Renormalization group

6.1 Phase transition

Magnetic models Ginzburg Landau theory

Part III Quantum field theory

Perturbative field theory

- 7.1 Path integral formulation
- 7.2 Field equations
- 7.3 Feynman diagrams

Non-perturbative field theory

8.1 Algebraic quantum field theory

Nonabelian gauge theory

Part IV Quantum gravity