Reg. No.								
----------	--	--	--	--	--	--	--	--

VII SEMESTER B.TECH. (COMPUTER SCIENCE AND ENGINEERING) END SEM EXAMINATIONS, NOV 2019

SUBJECT: NATURAL LANGUAGE PROCESSING [CSE 4011]

REVISED CREDIT SYSTEM 26-NOV-2019

	26-NOV-2019	
Tim	e: 3 Hours MAX. MARKS: 50	
	Instructions to Candidates:	
	Answer ALL questions.Missing data may be suitable assumed.	
1A	Distinguish between Natural Language and Artificial Language.	3
1B	0	
1C	Illustrate the working of FST using positive and negative examples. Write the algorithm for finding Minimum Edit Distance using the dynamic programming technique.	3
2A	B is a corpus which only contains one single bitstring: $1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0$ i. Calculate the following bigram probabilities from the corpus B using MLE (Maximum Likelihood Estimation): $P(0\ \ 1)$ $P(0\ \ 0)$	4
	ii. For each of the following bitstrings using Bigram model, which is the most probable value for x. Explain. 1 0 1 0 1 0 1 x 0 1 0 1 0 1 0 x	
2B	2 B. Take the following series of tokens as a training corpus. B A C D A D C E A C G G F G A C i. Identify the hapax legomena in the corpus	4
	ii. Give the maximum likelihood estimate of a unigram language model trained on the corpus iii. Give the Good-Turing estimate of a unigram language model trained on the corpus.	
2C	Describe the disadvantages of Laplace (add-one) Smoothing. How is it overcome with Good-Turing Discounting?	2
3A	What is the result of applying the following sequence of Brill transformation rules to the corpus below: 1: change VBN to VBD if previous tag is NP	2

CSE 4011 Page **1** of **2**

2: change VBD to VBN if next tag is BY

Chapman/NP killed/VBN John/NP Lennon/NP John/NP Lennon/NP was/BEDZ shot/VBD by/BY Chapman/NP He/PPS witnessed/VBD Lennon/NP killed/VBN by/BY Chapman/NP

3B With examples, write short notes on each of the word classes: i. Prepositions ii. Particles iii. Determiners

3

4

3C Following table gives unsmoothed bigram count for 4 words. Assume that the corpus 5 consists of 128 word types occurring among 2500 sentences. The unigram count for the words are: natural = 312, language = 409, processing = 252, session = 458. Generate unsmoothed bigram probability matrix, Laplace smoothed bigram probability matrix and Laplace smoothed bigram count giving expressions for all the terms.

	natural	language	processing	session
natural	27	86	79	42
language	30	16	81	52
processing	63	31	9	11
session	18	15	19	74

5C

translation approaches.

4A	Given a sequence of observations, how do you derive an expression for the best sequence of tags that corresponds to the sequence of observations? Derive all the terms with necessary justifications.	3
4B	Why Markov chain cannot represent part of speech tagging? With formal definition, explain how Hidden Markov Model can accomplish the problem of part of speech tagging.	3
4C	With a suitable lexicon and context free grammar, draw parse tree for a sentence having possessive expressions and a sentence having complementizer.	4
5 A	How do you create a set of equivalent binary CFG rules from a given grammar having four non terminals on the right hand side of a grammar rule?	3
5B	Explain various question answering techniques bringing its features from a simpler form to a larger scope.	3

With a neat diagram, explain Vauquois triangle emphasizing on different machine

CSE 4011 Page **2** of **2**