

IMD0033 - Probabilidade Aula 18 - Variância, desvio padrão e Z-Score

Ivanovitch Silva Maio, 2018

Agenda

- Quartil e limitações
- Variância
- Desvio Padrão
- Z-Score

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2018_1.git

Ou

git pull

Salários de usuários com/sem redes sociais

É interessante ter uma conta em redes sociais?

Qual a diferença entre as distribuições?

Quantificar o espalhamento (range)

Os limites da distribuição são alterados quando novos dados são inseridos?

- 1) Sempre
- 2) Algumas vezes
- 3) Nunca

Quartil (Q1 - Q3)

Chop of the tails

Amostra 1	Amostra 2
38,946	33,219
4 <u>3,42</u> 0	36,254
49,191 Q1	38,801 Q1
50,430	46,335
50,557 Q2 Mediana	46,840 Q2 Mediana
52,580	47,596
53,595	55,130
54,135 Q3	56,863 Q3
60,181	78,070
10,000,000	88,830

Q3 - Q1 = Interquartile range (IQR)

O que é um ponto fora da curva?

Q3 - Q1 = IQR 4944 Quais valores são considerados pontos fora da curva?

- \$60,000
- \$80,000
- \$100,000
- \$200,000

Gráficos de Caixa

Quiz: gráficos de caixa

Problemas com o IQR

A média sempre será entre Q1 and Q3?

- Sim
- Não

Medidas de variabilidade

Nós precisamos de uma métrica que avalie o espalhamento da amostra estatística levando em consideração todos os dados.

Range IOR

Medida de variabilidade (ideia)

$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x}_i)^2$$

Desvio Padrão σ

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

Measure Variability (idea)

Desafio

- Criar uma função percentagem(a,b)
 - a um vetor com as distâncias em desvios padrões a partir da média para cada ponto do vetor.
 - E.g: média = 2 e desvio padrão = 5
 - Pontos da distribuição: 1,2,3,4,5
 - a = [(1-2)/5, (2-2)/5, (3-2)/5, (4-2)/5, (5-2)/5]
 - o b a faixa de desvio padrão que se deseja (1, 2 ou 3)
 - 1 corresponderia a todos os dados entre -1 e 1 desvios padrões de distância
 - Retorno: a percentagem de significância da amostra para o valor de b
 - \circ Se b = 1, o retorno deverá ser 0.6827.

Dica

```
standard_deviations = [(i - mean) / standard_deviation for i in
wing_lengths]
def within_percentage(deviations, count):
    within = [i for i in deviations if i <= count and i >= -count]
    count = len(within)
    return count / len(deviations)
```


Z-Score

Quiz: Quem é mais popular?

Javanildo

Facebook friends

Quiz: Quem é mais popular?

Quiz: Quem é mais popular?

Qual a distância em desvios padrões do número de amigos em relação a média?

Z-Table

http://www.z-table.com/

Facebook example:

$$\mu = 190$$

$$\sigma$$
 = 36

$$Xi = 240$$

Qual a percentagem de pessoas que possuem menos de 240 amigos no facebook?

