Distributed Node Embeddings

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Outline of Today's Lecture

1. Distributed Node Embeddings

2. Random Walk Approaches for Node Embeddings

3. Embedding Entire Graphs

Outline of Today's Lecture

1. Distributed Node Embeddings

2. Random Walk Approaches for Node Embeddings

3. Embedding Entire Graphs

Recap: Graph Representation Learning

In traditional machine learning, given an input graph, extract node, link and graph-level features, learn a model (SVM, neural network, etc.) that maps features to labels.

Graph Representation Learning alleviates the need to do feature engineering every single time.

Recap: Learning Node Embeddings

An unsupervised setting for learning node embeddings

- 1. Encoder ENC maps from nodes to embeddings
- **2. Define a node similarity function** (i.e., a measure of similarity in the original network)
- 3. Decoder DEC maps from embeddings to the similarity score
- 4. Optimize the parameters of the encoder so that:

similarity
$$(u, v) \approx \mathbf{z}_v^{\mathrm{T}} \mathbf{z}_u$$
 in the original network Similarity of the embedding

Recap: GNN for Node Embeddings

 graph neural networks (GNNs) encoder:

 $ENC(\cdot)$ = multiple layers of non-linear transformations based on graph structures

Graph Neural Networks! encode nodes ENC(v)

original network

embedding space

Today: "Shallow" Encoding!

"Shallow" Encoding (1)

- Consider a node v in a graph's nodes set \mathcal{V}
- Simplest encoding approach: Encoder is just an embedding-lookup

$$\underline{\mathsf{ENC}}(v) = \mathbf{z}_v = \mathbf{Z} \cdot v$$

- matrix, each column is a node embedding [what we learn / optimize]
- $v \in \mathbb{I}^{|\mathcal{V}|}$
 - Indicator vector, all zeroes except a one in column indicating node v

"Shallow" Encoding (2)

• Simplest encoding approach: encoder is just an embedding-lookup

"Shallow" Encoding (3)

Simplest encoding approach: Encoder is just an embedding-lookup

Each node is assigned a unique embedding vector

(i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, Node2Vec

Encoder + Decoder Framework Summary

Encoder + Decoder Framework

- Shallow encoder: embedding lookup
- Parameters to optimize: \mathbf{Z} which contains node embeddings \mathbf{z}_u for all nodes $u \in V$
- We will **not** cover deep encoders today.
- Decoder: based on node similarity.
- Objective: maximize $\mathbf{z}_{v}^{\mathrm{T}}\mathbf{z}_{u}$ for node pairs (u,v) that are similar

How to Define Node Similarity

- Key choice of methods is how they define node similarity.
- Should two nodes have a similar embedding if they...
 - are linked?
 - share neighbors?
 - have similar "structural roles"?
- We will now learn node similarity definition that uses random walks, and how to optimize embeddings for such a similarity measure.

Note on Distributed Node Embeddings

- This is unsupervised/self-supervised way of learning node embeddings
 - We are **not** utilizing node labels
 - We are **not** utilizing node features
 - The goal is to directly learn the embeddings of nodes so that some aspects of the network structure (captured by decoder) are preserved
- These embeddings are task independent
 - They are not trained for a specific task but can be used for any task.

Outline of Today's Lecture

1. Non-GNN Node Embeddings

2. Random Walk Approaches for Node Embeddings

3. Embedding Entire Graphs

Random Walk

Given a graph and a starting point, we select a neighbor of it at random, and move to this neighbor; then we select a neighbor of this point at random, and move to it, etc. The (random) sequence of points visited this way is a random walk on the graph.

Random Walk Embeddings (1)

and v co-occur on a random walk over the graph

Random Walk Embeddings (2)

1. Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R

2. Optimize embeddings to encode these random walk statistics: P_R

Similarity in embedding space (Here: dot product= $cos(\theta)$) encodes random walk "similarity"

Why Random Walks?

- 1. Expressivity: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information Idea: if random walk starting from node u visits v with high probability, u and v are similar (high-order multi-hop information)
- 2. Efficiency: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks

Unsupervised Feature Learning

- Intuition: Find embedding of nodes in d-dimensional space that preserves similarity
- Idea: Learn node embedding such that nearby nodes are close together in the network
- Given a node u, how do we define nearby nodes?
 - $N_R(u)$... neighbourhood of u obtained by some random walk strategy R

Feature Learning as Optimization

- Given G = (V, E),
 - Our goal is to learn a mapping $f: u \to \mathbb{R}^d$: $f(u) = \mathbf{z}_u$
- Log-likelihood objective:

$$\max_{f} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u})$$

- $N_R(u)$ is the neighborhood of node u by strategy R
- Given node u, we want to learn feature representations that are predictive of the nodes in its random walk neighborhood $N_{\rm R}(u)$

Random Walk Optimization (1)

- 1. Run **short fixed-length random walks** starting from each node u in the graph using some random walk strategy R
- 2. For each node u collect $N_R(u)$, the multiset * of nodes visited on random walks starting from u
- 3. Optimize embeddings according to: Given node u, predict its neighbors $N_{\rm R}(u)$

$$\max_{f} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u}) \implies \text{Maximum likelihood objective}$$

 ${}^*N_R(u)$ can have repeat elements since nodes can be visited multiple times on random walks

Random Walk Optimization (2)

Equivalently,

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

- **Intuition:** Optimize embeddings z_{ij} to maximize the likelihood of random walk co-occurrences
- Parameterize $P(v|\mathbf{z}_u)$ using softmax:

$$P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^T \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^T \mathbf{z}_n)}$$
 most similar to node u (out of all nodes n). Intuition: $\sum_i \exp(x_i) \approx 1$

Why softmax?

We want node v to be $\max_{i} \exp(x_i)$

Random Walk Optimization (3)

• Putting it all together $\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(\frac{\exp(\mathbf{z}_u^\mathsf{T} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\mathsf{T} \mathbf{z}_n)})$ sum over all sum over nodes v predicted probability of u nodes u seen on random and v co-occuring on walks starting from u random walk

• Optimizing random walk embeddings = Finding embeddings \mathbf{z}_u that minimize \mathcal{L}

Random Walk Optimization (4)

But doing this naively is too expensive!

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(\frac{\exp(\mathbf{z}_u^T \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^T \mathbf{z}_n)})$$

Nested sum over nodes gives $O(|V|^2)$ complexity!

Random Walk Optimization (5)

But doing this naively is too expensive!

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(\frac{\exp(\mathbf{z}_u^T \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^T \mathbf{z}_n)})$$

Nested sum over nodes gives $O(|V|^2)$ complexity!

The normalization term from the softmax is the culprit... can we approximate it?

Negative Sampling (1)

Solution: Negative Sampling

Why is the approximation valid?

Technically, this is a different objective. But Negative Sampling is a form of Noise Contrastive Estimation (NCE) which approx. maximizes the log probability of softmax.

New formulation corresponds to using a logistic regression (sigmoid func.) to distinguish the target node v from nodes n_i sampled from background distribution P_{ν} .

More at https://arxiv.org/pdf/1402.3722.pdf

$$\log\left(\frac{\exp(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v})}{\sum_{n\in V}\exp(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n})}\right) \approx \log\left(\sigma(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v})\right) - \sum_{i=1}^{k}\log\left(\sigma(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n_{i}})\right), \underbrace{n_{i} \sim P_{V}}_{\text{Random}}$$
sigmoid function
sigmoid function
over nodes

Instead of normalizing w.r.t. all nodes, just normalize against k random "negative samples" n_i

Negative Sampling (2)

$$\log\left(\frac{\exp(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v})}{\sum_{n\in V}\exp(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n})}\right) \approx \log\left(\sigma(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v})\right) - \sum_{i=1}^{k}\log\left(\sigma(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n_{i}})\right), n_{i} \sim P_{V}$$

- ullet Sample k negative nodes each with prob. proportional to its degree
- Two consideration for k (# negative samples):
 - Higher k gives more robust estimates
 - Higher k corresponds to higher bias on negative events In practive, $k=5{\sim}20$

Random Walk Optimization (6)

• After we obtained the objective function, how do we optimize (minimize) it?

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

• Solution: Gradient Descent

•
$$z_i \leftarrow z_i - \eta \frac{\partial \mathcal{L}}{\partial z_i}$$
, $i \in \mathcal{V}$

Random Walk: Summary

- 1. Run short fixed-length random walks starting from each node on the graph
- 2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u
- 3. Optimize embeddings using Stochastic Gradient Descent:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

We can efficiently approximate this using negative sampling!

How should We Randomly Walk?

- ullet So far we have described how to optimize embeddings given a random walk strategy R
- What strategies should we use to run these random walks?
 - Simplest idea: Just run fixed-length, unbiased random walks starting from each node (i.e., DeepWalk from Perozzi et al., 2013)
 - The issue is that such notion of similarity is too constrained
- How can we generalize this?

Overview of Node2Vec

- Goal: Embed nodes with similar network neighborhoods close in the feature space.
- We frame this goal as a maximum likelihood optimization problem, independent to the downstream prediction task.
- Key observation: Flexible notion of network neighborhood $N_R(u)$ of node u leads to rich node embeddings
- Develop biased $2^{\rm nd}$ order random walk R to generate network neighborhood $N_R(u)$ of node u

Node2Vec: Biased Walks (1)

• Idea: use flexible, biased random walks that can trade off between local and global views of the network (Grover and Leskovec, 2016).

Node2Vec: Biased Walks (2)

• Two classic strategies to define a neighborhood $N_R(u)$ of a given node u:

- Walk of length 3 ($N_R(u)$ of size 3):
 - $N_{BFS}(u) = \{s_1, s_2, s_3\}$ Local microscopic view
 - $N_{DFS}(u) = \{s_4, s_5, s_6\}$ Global macroscopic view

BFS vs. DFS

BFS:

Micro-view of neighbourhood

DFS:

Macro-view of neighbourhood

Interpolating BFS and DFS

Biased fixed-length random walk R that given a node u generates neighborhood $N_R(u)$

- Two parameters:
 - Return parameter p:
 - Return back to the previous node
 - In-out parameter *q*:
 - Moving outwards (DFS) vs. inwards (BFS)
 - Intuitively, q is the "ratio" of BFS vs. DFS

Biased Random Walks (1)

Biased 2nd-order random walks explore network neighborhoods:

- Rnd. walk just traversed edge (s_1, w) and is now at w
- Insight: Neighbors of w can only be:

Idea: Remember where the walk came from

Biased Random Walks (2)

• Walker came over edge (s_1, w) and is at w. Where to go next?

- p, q model transition probabilities
 - p ... return parameter
 - q ... "walk away" parameter

Biased Random Walks (3)

• Walker came over edge (s_1, w) and is at w. Where to go next?

Target t	Prob.	Dist. (s_1, t)
s_1	1/p	0
s_2	1	1
s_3	1/q	2
S_4	1/q	2

- **BFS-like** walk: Low value of *p*
- **DFS-like** walk: Low value of *q*

 $N_R(u)$ are the nodes visited by the biased walk

Unnormalized transition prob. segmented based on distance from s_1

Node2Vec Algorithm

- 1. Compute random walk probabilities
- 2. Simulate r random walks of length l starting from each node u
- 3. Optimize the node2vec objective using stochastic gradient decent

- Linear-time complexity
- All 3 steps are individually parallelizable

Other Random Walk Ideas

Different kinds of biased random walks:

- Based on node attributes (<u>Dong et al., 2017</u>).
- Based on learned weights (Abu-El-Haija et al., 2017)

Alternative optimization schemes:

Directly optimize based on 1-hop and 2-hop random walk probabilities (as in <u>LINE</u> from Tang et al. 2015).

Network preprocessing techniques:

• Run random walks on modified versions of the original network (e.g., <u>Ribeiro et al. 2017's struct2vec</u>, <u>Chen et al. 2016's HARP</u>).

Summary of Part 2

- Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.
- Different notions of node similarity:
 - Naïve: similar if 2 nodes are connected
 - Neighborhood overlap (covered in Lecture 2)
 - Random walk approaches (covered today)
- So what method should I use..?
- No one method wins in all cases....
 - E.g., node2vec performs better on node classification while alternative methods perform better on link prediction (Goyal and Ferrara, 2017 survey)
- Random walk approaches are generally more efficient
- In general: Must choose definition of node similarity that matches your application!

Outline of Today's Lecture

1. Non-GNN Node Embeddings

2. Random Walk Approaches for Node Embeddings

3. Embedding Entire Graphs

Embedding Entire Graphs

• Goal: Want to embed a subgraph or an entire graph G. Graph embedding:

 \mathbf{Z}_{G} .

- Tasks:
 - Classifying toxic vs. non-toxic molecules
 - Identifying anomalous graphs

Embedding Entire Graphs: Approaches

- Approach 1: (Recall in lecture 5) sum/mean/max/hierarchical pooling
- Approach 2: add virtual node

• Proposed by Li et al., 2016 as a general technique for subgraph embedding

• Approach 3: Anonymous walk embeddings

Anonymous Walk Embeddings (1)

 States in anonymous walks correspond to the index of the first time we visited the node in a random walk

Anonymous Walk Embeddings, ICML 2018 https://arxiv.org/pdf/1805.11921.pdf

Anonymous Walk Embeddings (2)

- Agnostic to the identity of the nodes visited (hence anonymous)
- Example RW1 (Random Walk 1):
 - Step 1: node A \rightarrow node 1
 - Step 2: node B → node 2 (different from node 1)
 - Step 3: node C → node 3 (different from node 1, 2)
 - Step 4: node B \rightarrow node 2 (same as the node in step 2)
 - Step 5: node C → node 3 (same as the node in step 3)

Note: RW2 gives the same anonymous walk

Number of Walks Grows

Number of anonymous walks grows exponentially:

• There are 5 anon. walks w_i of length 3:

$$w_1$$
=111, w_2 =112, w_3 = 121, w_4 = 122, w_5 = 123

Simple Use of Anonymous Walks

- Simulate anonymous walks w_i of l steps and record their counts
- Represent the graph as a probability distribution over these walks

• For example:

- Set l = 3
- Then we can represent the graph as a 5-dim vector
 - Since there are 5 anonymous walks w_i of length 3: 111, 112, 121, 122, 123
- $Z_G[i]$ = probability of anonymous walk w_i in G

Sampling Anonymous Walks

- Sampling anonymous walks: Generate independently a set of m random walks
- Represent the graph as a probability distribution over these walks
- How many random walks m do we need?
 - We want the distribution to have error of more than ε with prob. less than δ :

$$m = \left\lceil \frac{2}{\varepsilon^2} (\log(2^{\eta} - 2) - \log(\delta)) \right\rceil$$

• where: η is the total number of anon. walks of length l.

For example:

There are $\eta = 877$ anonymous walks of length l = 7. If we set $\varepsilon = 0.1$ and $\delta = 0.01$ then we need to generate m = 122,500 random walks

New Idea: Learn Walk Embeddings

Rather than simply represent each walk by the fraction of times it occurs, we learn embedding z_i of anonymous walk w_i

- Learn a graph embedding Z_G together with all the anonymous walk embeddings Z_i
 - $Z = \{z_i : i = 1 \dots \eta\}$, where η is the number of sampled anonymous walks.
- Note that z_i are embeddings of anonymous walk now instead of embeddings of nodes.

How to embed walks?

• Idea: Embed walks s.t. the next walk can be predicted

Anonymous Walk Embeddings, ICML 2018 https://arxiv.org/pdf/1805.11921.pdf

Learn Walk Embeddings (1)

- A vector parameter \mathbf{z}_G for input graph
 - The embedding of entire graph to be learned
- Starting from node 1: Sample anonymous random walks, e.g.

- Learn to predict walks that co-occur in Δ -size window (e.g. predict w_2 given w_1 , w_3 if $\Delta=1$)
- Objective:

$$\max \sum_{t=\Delta}^{T-\Delta} \log P(w_t|w_{t-\Delta}, \dots, w_{t+\Delta}, \mathbf{Z}_{\mathbf{G}})$$

• Sum the objective over all nodes in the graph

Learn Walk Embeddings (2)

• Run T different random walks from u each of length l:

$$N_R(u) = \{w_1^u, w_2^u \dots w_T^u\}$$

- Learn to predict walks that co-occur in Δ -size window
- Estimate embedding z_i of anonymous walk w_i

Objective:
$$\max \frac{1}{T} \sum_{t=\Delta}^{T-\Delta} \log P(w_t | \{w_{t-\Delta}, \dots, w_{t+\Delta}, \mathbf{z}_G\})$$

Learn Walk Embeddings (3)

Objective:
$$\max \frac{1}{T} \sum_{t=\Delta}^{T-\Delta} \log P(w_t | \{w_{t-\Delta}, \dots, w_{t+\Delta}, \mathbf{Z}_G\})$$

•
$$P(w_t | \{w_{t-\Delta}, \dots, w_{t+\Delta}, \mathbf{Z}_{\mathbf{G}}\}) = \frac{\exp(y(w_t))}{\sum_{i=1}^{\eta} \exp(y(w_i))}$$
 All possible walks $(\eta \text{ be number of all possible walk embeddings})$

- $y(w_t) = b + U \cdot \left(\operatorname{cat}\left(\frac{1}{2\Delta} \sum_{i=-\Delta, i \neq 0}^{\Delta} \mathbf{z}_i, \mathbf{z}_G \right) \right)$
 - $\cot(\frac{1}{2\Delta}\sum_{i=-\Delta}^{\Delta}z_i, z_G)$ means an average of anonymous walk embeddings in window, concatenated with the graph embedding z_G
 - $b \in \mathbb{R}$, $U \in \mathbb{R}^D$ are learnable parameters. This represents a linear layer.
 - $\mathbf{z}_i, \mathbf{z}_G$ are learnable.

Learn Walk Embeddings (4)

- We obtain the graph embedding \mathbf{z}_{G} (learnable parameter) after optimization
- Use \mathbf{z}_G to make predictions (e.g. graph classification)

Overall Architecture

Summary of Part 3

We discussed 3 ideas to graph embeddings

- Approach 1: sum/mean/max/hierarchical pooling
- Approach 2: Create super-node that spans the (sub) graph and then embed that node
- Approach 3: Anonymous Walk Embeddings
 - Idea 1: Sample the anon. walks and represent the graph as fraction of times each anon walk occurs
 - Idea 2: Jointly learn anonymous walks' embeddings and graph embedding

Today's Summary

We discussed graph representation learning, a way to learn node and graph embeddings for downstream tasks, without feature engineering.

- Encoder-decoder framework and "shallow" encoding:
 - Encoder: embedding lookup
 - Decoder: predict score based on embedding to match node similarity
- Node similarity measure: (biased) random walk
 - Examples: DeepWalk, Node2Vec
- Extension to Graph embedding: Node embedding aggregation and Anonymous Walk Embeddings