Notes sur le cours 8 : Graphes non orientés

Le cours 8 sur les graphes ne peut avoir lieu. Dans ce document, vous trouverez les démonstrations effectuées normalement en cours.

Ce cours introduit la terminologie habituellement utilisée en théorie des graphes. Il y a également plusieurs propriétés fondamentales sur les graphes non orientés et les arbres qu'il faut savoir démontrer.

Transparent 9 La remarque sera à démontrer en travaux dirigés.

Transparent 10 Le graphe de gauche est connexe. Celui de droite ne l'est pas : il n'y a pas de chaîne élémentaire de 1 à 3.

Transparent 11

Theorem 1. Pour tout graphe G = (V, E) non orienté, $\sum_{v \in V} d(v) = 2|E|$.

Proof. On peut démontrer cette propriété par récurrence faible sur le nombre d'arêtes du graphe G.

Base Si G est un graphe sans arête, |E| = 0 et pour tout sommet $u \in V$, d(v) = 0. La propriété est donc vérifiée.

Induction Supposons que la propriété soit vérifiée pour tout graphe de m-1 arêtes avec $m-1 \geq 0$. Soit alors G = (V, E) un graphe de m arêtes. Soit $e = \{u, v\}$ une arête de G et $G' = (V, E - \{e\})$. Pour tout sommet $x \in V$, on note respectivement $d_G(x)$ et $d_{G'}(x)$ les degrés de x pour les graphes G et G'. On observe que $d_G(u) = d_{G'}(u) + 1$, $d_G(v) = d_{G'}(v) + 1$ et pour tout $x \in V - \{u, v\}$, $d_G(x) = d_{G'}(x)$. Donc, $\sum_{v \in V} d_G(v) = \sum_{v \in V} d_{G'}(v) + 2$. Or, $\sum_{v \in V} d_{G'}(v) + 2 = 2|E - \{e\}| = 2m - 2$, donc $\sum_{v \in V} d_G(v) = 2m$ et la propriété est vérifiée pour G

La propriété est donc vérifiée par récurrence faible.

Transparent 14 Il s'agit de la propriété fondamentale sur les arbres telle que Claude Berge l'a exprimée. Pour la démontrer, on effectue $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$.

Nous présentons ici $1 \Rightarrow 2$ et $2 \Rightarrow 3$. Les deux autres implications seront étudiées en travaux dirigés.

Theorem 2. Soit T = (V, E) un graphe non orienté. Si T est un arbre, alors T est minimal connexe.

Proof. On démontre la contraposée. Supposons que T n'est pas minimal connexe. Si T n'est pas connexe, T n'est pas un arbre, le théorème est alors vérifié. Supposons maintenant que T soit connexe mais non minimal connexe. Alors, il existe une arête $e = \{u, v\} \in E$ tel que $T' = (V, E - \{u, v\})$ soit connexe. On en déduit qu'il existe dans T' une chaîne élémentaire μ de v à u. En rajoutant l'arête e à μ , on obtient un cycle élémentaire, T n'est donc pas un arbre.

Theorem 3. Soit T = (V, E) un graphe non orienté. Si T est minimal connexe, alors T est maximal acyclique.

Proof. On démontre la contraposée. Supposons que T n'est pas maximal acyclique. Si T n'est pas connexe, alors le théorème est démontré. On suppose donc que T est connexe. On considère alors deux cas :

- Si T contient un cycle élémentaire c = v₁, v₂, ..., v_p, v₁, on pose e = {v₁, v₂} l'arête correspondante de T. On montre que T' = (T, E {e}) est connexe. T est connexe par hypothèse, donc pour tout couple de sommets {u, v} ∈ V² il existe une chaîne élémentaire μ(u, v) de u à v. Si cette chaîne passe par l'arête e, on peut remplacer cette arête par la sous-chaîne ν de c de v₂ à v₁. On obtient alors une chaîne de u à v qui est dans T'. On en déduit que T' est connexe, et donc T n'est pas minimal connexe.
- Si T ne contient pas de cycle élémentaire, comme T n'est pas maximal acyclique, alors il existe une arête $e = \{u, v\}$ avec u et v non adjacents dans T tel que $T' = (T, E \cup \{e\})$ ne contient pas de cycle élémentaire. C'est donc qu'il n'y a pas dans T de chaîne de u à v, donc T n'est pas connexe.

Transparent 15 Ce transparent est fondamental et relie le nombre de sommets et d'arêtes à des propriétés structurelles sur les graphes.

Theorem 4. Soit G = (V, E) un graphe non orienté. Si $|E| \ge |V|$, alors G contient un cycle élémentaire.

Proof. On montre la contraposée par récurrence sur le nombre de sommets du graphe. Pour tout $k \geq 1$, $\Pi(k)$: pour tout graphe G = (V, E) de k sommets, si G ne contient pas de cycle él'ementaire, alors |E| < |V|.

Base : Pour k = 1, |E| = 0 et |V| = 1. Donc, la propriété est vérifiée.

Induction: Soit $k \geq 1$. Supposons par récurrence forte que la propriété est vérifiée pour tout graphe de k sommets ou moins. Soit maintenant un graphe G = (V, E) de k + 1 sommets. Soit un sommet $x \in V$. Le sous-graphe induit $G' = (V - \{x\}, E)$ est composé d'une ou plusieurs sous-graphes partiels connexes $G_1 = (V_1, E_1), \dots, G_p = (V_p, E_p)$, chacune étant sans circuit élémentaire. Donc, par hypothèse de récurrence, $|E_i| < |V_i|$ pour tout $i \in \{1, \dots, p\}$, soit $|E_i| + 1 \leq |V_i|$.

Comme G est sans circuit élémentaire, pour tout $i \in \{1, \dots, p\}$, il y a au plus une arête $\{x, y_i\}$ dans E avec $y_i \in V_i$. Donc,

$$|E| \le p + \sum_{i=1}^{p} |E_i| \le \sum_{i=1}^{p} |V_i| = |V| - 1.$$

Soit, |E| < |V|.

Ainsi, $\Pi(1)$ et vérifiée et, pour tout $k \geq 1$, $\Pi(r)$, $\forall r \leq k \Rightarrow \Pi(k+1)$. Donc, la propriété est vérifiée par récurrence forte.

Theorem 5. Soit G = (V, E) un graphe non orienté. Si |E| < |V| - 1, alors G n'est pas connexe.

Proof. On montre la contraposée par récurrence sur le nombre de sommets du graphe. Pour tout $k \ge 1$, $\Pi(k)$: pour tout graphe G = (V, E) de k sommets, si G est connexe, alors $|E| \ge |V| - 1$.

Base: Pour k = 1, |E| = 0 et |V| = 1. Donc, la propriété est vérifiée.

Induction : Soit $k \geq 1$. Supposons par récurrence forte que la propriété est vérifiée pour tout graphe de k sommets ou moins. Soit maintenant un graphe G = (V, E) de k + 1 sommets. Soit un sommet $x \in V$. Le sous-graphe $G' = (V - \{x\}, E)$ est composé d'un ou plusieurs sous-graphes partiels connexes $G_1 = (V_1, E_1), \dots, G_p = (V_p, E_p)$. Donc, par hypothèse de récurrence, $|E_i| \geq |V_i| - 1$ pour tout $i \in \{1, \dots, p\}$.

Comme G est connexe, pour tout $i \in \{1, \dots, p\}$, il y a au moins une arête $\{x, y_i\}$ dans E avec $y_i \in V_i$. Donc,

$$|E| \ge p + \sum_{i=1}^{p} |E_i| \ge \sum_{i=1}^{p} |V_i| = |V| - 1.$$

Soit, $|E| \ge |V| - 1$.

Ainsi, $\Pi(1)$ et vérifiée et, pour tout $k \geq 1$, $\Pi(r), \forall r \leq k \Rightarrow \Pi(k+1)$. Donc, la propriété est vérifiée par récurrence forte.

Theorem 6. Si T = (V, E) est un arbre, |E| = |V| - 1.

Proof. Si T est un arbre, T est connexe et sans cycle. Comme T est sans cycle, |E| < |V|. Comme T est connexe, $|E| \ge |V| - 1$. Donc, |E| = |V| - 1.