Solving Polynomial Equations

- The solutions to a polynomial equation f(x) = 0 are the zeroes of the corresponding polynomial function, y = f(x).
- Many polynomial equations can be solved algebraically using a factoring strategy.
- If a given polynomial equation is not factorable, then graphing technology can be used to find the solution.
- When solving problems using polynomial models, it may be necessary to ignore the solutions that are outside the domain defined by the conditions of the problem.

Example 1

State the zeroes of the following functions.
a)
$$y = (3x^2 - 48)(4x^2 - 8x - 5)$$
 b) $y = 3x^4 + 81x$

b)
$$y = 3x^4 + 81x$$

Example 2

Solve the following equations algebraically by factoring.

a)
$$b^4 - 29b^2 + 100 = 0$$

b)
$$9y^3 - 4y = 8 - 18y^2$$

c)
$$x^3 - 4x^2 - 7x + 10 = 0$$

Solving Polynomial Equations

- Factor where possible using the factor theorem.
- Find the roots or x-intercepts of the polynomial functions.

1 (, 2)(2 , 5) 2	
1. $x(x+2)(2x-5)=0$	2. $-3x(x^2-9)(2x^2+5x-3)=0$
3. $x^2 + 5x - 6 = 0$	4. $x^3 - 3x^2 - 4x = 0$
$5. x^3 - 3x - 4x + 12 = 0$	6. $6x^3 - 13x^2 + x + 2 = 0$
	0. 0. 13. 12 = 0
	ii .

Solving Polynomial Inequalities

- A polynomial inequality can be solved algebraically by
 - > using inverse operations to move all terms to one side of the inequality
 - > factoring the polynomial to determine the zeroes of the corresponding polynomial equation
 - > using a number line, a graph, or a factor table to determine the intervals on which the polynomial is positive or negative
- A polynomial inequality can be solved using graphing technology by
 - > creating an equivalent inequality with zero on one side
 - > identifying the intervals created by the zeroes of the graph of the new function
 - Finding where the graph lies above the x-axis (where f(x) > 0) or below the x-axis (where f(x) < 0), as required

Example 1

Given the following polynomial function, state the intervals where

a)
$$f(x) \ge 0$$

$$b) f(x) < 0$$

Example 2

For the following pair of functions, determine when

a)
$$f(x) > g(x)$$

b)
$$f(x) \le g(x)$$

y = g(x)

$$y = f(x)$$

Find the intervals where a) $f(x) \le 0$ b) f(x) > 0

1)

2)

Find the intervals where a) f(x) < 0 b) $f(x) \ge 0$

3)

4)

Example 3 Solve the following inequalities using a number line strategy. Express your answers using interval notation.

a)
$$(x-2)(x+1)(x+5) < 0$$

b)
$$x^4 \ge 64x$$

c)
$$5x^3 + 3x^2 \ge 12x - 4$$

Example 4 set notation.

Solve the following inequalities using a factor table strategy. Express your answers using

a)
$$2x^3 + 50x > 20x^2$$

b)
$$4x^3 + 3x^2 - 25x + 6 \le 0$$