Due Monday, February 25

• Files you should submit: Fibonacci.hs

This week we learned about Haskell's *lazy evaluation*. This homework assignment will focus on one particular consequence of lazy evaluation, namely, the ability to work with infinite data structures.

Fibonacci numbers

The *Fibonacci numbers* F_n are defined as the sequence of integers, beginning with 0 and 1, where every integer in the sequence is the sum of the previous two. That is,

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-1} + F_{n-2}$ $(n \ge 2)$

For example, the first fifteen Fibonacci numbers are

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, \dots$$

It's quite likely that you've heard of the Fibonacci numbers before. The reason they're so famous probably has something to do with the simplicity of their definition combined with the astounding variety of ways that they show up in various areas of mathematics as well as art and nature.¹

Exercise 1

Translate the above definition of Fibonacci numbers directly into a recursive function definition of type

so that fib n computes the nth Fibonacci number F_n .

Now use fib to define the infinite list of all Fibonacci numbers,

(*Hint*: You can write the list of all positive integers as [0..].)

Try evaluating fibs1 at the ghci prompt. You will probably get bored watching it after the first 30 or so Fibonacci numbers, because fib is ridiculously slow. Although it is a good way to *define* the Fibonacci numbers, it is not a very good way to *compute* them—in order

- ¹ Note that you may have seen a definition where $F_0 = F_1 = 1$. This definition is wrong. There are several reasons; here are two of the most compelling:
- If we extend the Fibonacci sequence backwards (using the appropriate subtraction), we find

$$\ldots$$
, -8 , 5 , -3 , 2 , -1 , 1 , 0 , 1 , 1 , 2 , 3 , 5 , 8 ...

- 0 is the obvious center of this pattern, so if we let $F_0 = 0$ then F_n and F_{-n} are either equal or of opposite signs, depending on the parity of n. If $F_0 = 1$ then everything is off by two.
- If $F_0 = 0$ then we can prove the lovely theorem "If m evenly divides n if and only if F_m evenly divides F_n ." If $F_0 = 1$ then we have to state this as "If m evenly divides n if and only if F_{m-1} evenly divides F_{n-1} ." Ugh.

to compute F_n it essentially ends up adding 1 to itself F_n times! For example, shown at right is the tree of recursive calls made by evaluating fib 5.

As you can see, it does a lot of repeated work. In the end, fib has running time $O(F_n)$, which (it turns out) is equivalent to $O(\varphi^n)$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the "golden ratio". That's right, the running time is *exponential* in *n*. What's more, all this work is also repeated from each element of the list fibs1 to the next. Surely we can do better.

Exercise 2

When I said "we" in the previous sentence I actually meant "you". Your task for this exercise is to come up with more efficient implementation. Specifically, define the infinite list

so that it has the same elements as fibs1, but computing the first nelements of fibs2 requires only O(n) addition operations. Be sure to use standard recursion pattern(s) from the Prelude as appropriate.

Streams

We can be more explicit about infinite lists by defining a type Stream representing lists that *must be* infinite. (The usual list type represents lists that *may* be infinite but may also have some finite length.)

In particular, streams are like lists but with *only* a "cons" constructor whereas the list type has two constructors, [] (the empty list) and (:) (cons), there is no such thing as an *empty stream*. So a stream is simply defined as an element followed by a stream.

Exercise 3

- Define a data type of polymorphic streams, Stream.
- Write a function to convert a Stream to an infinite list,

```
streamToList :: Stream a -> [a]
```

• To test your Stream functions in the succeeding exercises, it will be useful to have an instance of Show for Streams. However, if you put deriving Show after your definition of Stream, as one usually does, the resulting instance will try to print an entire Stream—which, of course, will never finish. Instead, you should make your own instance of Show for Stream,

Of course there are several billion Haskell implementations of the Fibonacci numbers on the web, and I have no way to prevent you from looking at them; but you'll probably learn a lot more if you try to come up with something yourself first.


```
instance Show a => Show (Stream a) where
  show ...
```

which works by showing only some prefix of a stream (say, the first 20 elements).

Hint: you may find your streamToList function useful.

Exercise 4

Let's create some simple tools for working with Streams.

• Write a function

```
streamRepeat :: a -> Stream a
```

which generates a stream containing infinitely many copies of the given element.

• Write a function

```
streamMap :: (a -> b) -> Stream a -> Stream b
```

which applies a function to every element of a Stream.

• Write a function

```
streamFromSeed :: (a -> a) -> a -> Stream a
```

which generates a Stream from a "seed" of type a, which is the first element of the stream, and an "unfolding rule" of type a -> a which specifies how to transform the seed into a new seed, to be used for generating the rest of the stream.

Exercise 5

Now that we have some tools for working with streams, let's create a few:

• Define the stream

```
nats :: Stream Integer
```

which contains the infinite list of natural numbers $0, 1, 2, \ldots$

• Define the stream

```
ruler :: Stream Integer
```

which corresponds to the ruler function

$$0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, \dots$$

where the nth element in the stream (assuming the first element corresponds to n = 1) is the largest power of 2 which evenly divides n.

Hint: define a function interleaveStreams which alternates the elements from two streams. Can you use this function to implement ruler in a clever way that does not have to do any divisibility testing?

Fibonacci numbers via generating functions (extra credit)

This section is optional but very cool, so if you have time I hope you will try it. We will use streams of Integers to compute the Fibonacci numbers in an astounding way.

The essential idea is to work with generating functions of the form

$$a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n + \dots$$

where *x* is just a "formal parameter" (that is, we will never actually substitute any values for x; we just use it as a placeholder) and all the coefficients a_i are integers. We will store the coefficients a_0, a_1, a_2, \dots in a Stream Integer.

Exercise 6 (Optional)

First, define

x :: Stream Integer

by noting that $x = 0 + 1x + 0x^2 + 0x^3 + \dots$

- Define an instance of the Num type class for Stream Integer. Here's what should go in your Num instance:
 - You should implement the fromInteger function. Note that $n = n + 0x + 0x^2 + 0x^3 + \dots$
 - You should implement negate: to negate a generating function, negate all its coefficients.
 - You should implement (+), which works like you would expect: $(a_0 + a_1x + a_2x^2 + \dots) + (b_0 + b_1x + b_2x^2 + \dots) = (a_0 + b_0) + a_1x + a_2x^2 + \dots$ $(a_1+b_1)x+(a_2+b_2)x^2+\dots$
 - Multiplication is a bit trickier. Suppose $A = a_0 + xA'$ and $B = b_0 + xB'$ are two generating functions we wish to multiply. We reason as follows:

$$AB = (a_0 + xA')B$$

= $a_0B + xA'B$
= $a_0(b_0 + xB') + xA'B$
= $a_0b_0 + x(a_0B' + A'B)$

That is, the first element of the product *AB* is the product of the first elements, a_0b_0 ; the remainder of the coefficient stream (the part after the x) is formed by multiplying every element in B' (that is, the tail of B) by a_0 , and to this adding the result of multiplying A' (the tail of A) by B.

Note that you will have to add {-# LANGUAGE FlexibleInstances #-} to the top of your . hs file in order for this instance to be allowed.

Note that there are a few methods of the Num class I have not told you to implement, such as abs and signum. ghc will complain that you haven't defined them, but don't worry about it. We won't need those methods. (To turn off these warnings you can add

```
{-# OPTIONS_GHC -fno-warn-missing-methods #-}
```

to the top of your file.)

If you have implemented the above correctly, you should be able to evaluate things at the ghci prompt such as

```
*Main> x^4
*Main> (1 + x)^5
*Main> (x^2 + x + 3) * (x - 5)
```

• The penultimate step is to implement an instance of the Fractional class for Stream Integer. Here the important method to define is division, (/). I won't bother deriving it (though it isn't hard), but it turns out that if $A = a_0 + xA'$ and $B = b_0 + xB'$, then A/B = Q, where Q is defined as

$$Q = (a_0/b_0) + x((1/b_0)(A' - QB')).$$

That is, the first element of the result is a_0/b_0 ; the remainder is formed by computing A' - QB' and dividing each of its elements by b_0 .

Of course, in general, this operation might not result in a stream of Integers. However, we will only be using this instance in cases where it does, so just use the div operation where appropriate.

• Consider representing the Fibonacci numbers using a generating function,

$$F(x) = F_0 + F_1 x + F_2 x^2 + F_3 x^3 + \dots$$

Notice that $x + xF(x) + x^2F(x) = F(x)$:

Thus $x = F(x) - xF(x) - x^2F(x)$, and solving for F(x) we find that

$$F(x) = \frac{x}{1 - x - x^2}.$$

Translate this into an (amazing, totally sweet) definition

fibs3 :: Stream Integer

It turns out that it is possible to compute the nth Fibonacci number with only $O(\log n)$ (arbitrary-precision) arithmetic operations. This section explains one way to do it.

Consider the 2×2 matrix F defined by

$$\mathbf{F} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

Notice what happens when we take successive powers of **F** (see http://en.wikipedia.org/wiki/Matrix_multiplication if you forget how matrix multiplication works):

$$\mathbf{F}^{2} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 1 \cdot 1 & 1 \cdot 1 + 1 \cdot 0 \\ 1 \cdot 1 + 0 \cdot 1 & 1 \cdot 1 + 0 \cdot 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{F}^{3} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$$

$$\mathbf{F}^{4} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$

$$\mathbf{F}^{5} = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 5 & 3 \end{bmatrix}$$

Curious! At this point we might well conjecture that Fibonacci numbers are involved, namely, that

$$\mathbf{F}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$$

for all $n \ge 1$. Indeed, this is not hard to prove by induction on n.

The point is that exponentiation can be implemented in logarithmic time using a *binary exponentiation* algorithm. The idea is that to compute x^n , instead of iteratively doing n multiplications of x, we compute

$$x^{n} = \begin{cases} (x^{n/2})^{2} & n \text{ even} \\ x \cdot (x^{(n-1)/2})^{2} & n \text{ odd} \end{cases}$$

where $x^{n/2}$ and $x^{(n-1)/2}$ are recursively computed by the same method. Since we approximately divide n in half at every iteration, this method requires only $O(\log n)$ multiplications.

The punchline is that Haskell's exponentiation operator (^) *already uses* this algorithm, so we don't even have to code it ourselves!

Exercise 7 (Optional)

- Create a type Matrix which represents 2 × 2 matrices of Integers.
- Make an instance of the Num type class for Matrix. In fact, you only
 have to implement the (*) method, since that is the only one we
 will use. (If you want to play around with matrix operations a bit
 more, you can implement fromInteger, negate, and (+) as well.)
- We now get fast (logarithmic time) matrix exponentiation for free, since (^) is implemented using a binary exponentiation algorithm in terms of (*). Write a function

```
fib4 :: Integer -> Integer
```

which computes the nth Fibonacci number by raising \mathbf{F} to the nth power and projecting out F_n (you will also need a special case for zero). Try computing the one millionth or even ten millionth Fibonacci number.

Don't worry about the warnings telling you that you have not implemented the other methods. (If you want to disable the warnings you can add

```
{-# OPTIONS_GHC -fno-warn-missing-methods #-}
to the top of your file.)
```

On my computer the millionth Fibonacci number takes only 0.32 seconds to compute but more than four seconds to print on the screen—after all, it has just over two hundred thousand digits.