/001 /021 /051

CL 26532011_000.eps 160102

Со	ntents	Page			
1	Technical Specifications and				
	Connection Facilities		2		
2	Warnings, Laser Safety Instruction	ns and Notes	5		
3	Directions for Use		7		
4	Mechanical Instructions and Explo	ded Views	33		
5	Diagnostic Software Descriptions	and			
	Troubleshooting		38		
6	Block and Wiring Diagram				
	Block Diagram		93		
	Wiring Diagram		94		
7	Electrical Diagrams And Print-Lay	routs	Diagram	PWB	
	Power Supply	(Diagram 1)	95	97-100	
	Power Supply	(Diagram 2)	96	97-100	
	Display Panel	(Diagram 1)	101	102->	
	Front AV Part		105	106	
	IR & Standby Panel		107	107	
	Analog Board: All In One 1	(Diagram 1)	108	121->	
	Analog Board: All In One 2	(Diagram 2)	109	121->	
	Analog Board: Tuner / Demodul.	(Diagram 3)	110	121->	
	Analog Board: In / Out 1	(Diagram 4)	111	121->	
	Analog Board: In / Out 2	(Diagram 5)	112	121->	
	Analog Board: In / Out 3	(Diagram 6)	113	121->	
	Analog Board: In / Out 4	(Diagram 7)	114	121->	
	Analog Board: Sound Processing	(Diagram 8)	115	121->	
	Analog Board: Follow Me	(Diagram 9)	116	121->	
	Analog Board: VPS	(Diagram 10)	116	121->	
	Analog Board: Power Supply	(Diagram 11)	117	121->	

 $^{\circledR}$ Copyright 2002 Philips Consumer Electronics B.V. Eindhoven, The Netherlands. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise without the prior permission of Philips.

Con

DIGITAL VIDEO

on	tents	F	age '	
	Analog Board: Audio Converter	(Diagram 12)	118	121->
	Analog Board: RGB-YUV Conv.	(Diagram 13)	119	121->
	Analog Board: Digital In / Out	(Diagram 14)	119	121->
	Analog Board: Fan Control	(Diagram 15)	120	121->
	DVIO Front Board		129	129
	DVIO Board: 1394 Interface	(Diagram 1)	130	135->
	DVIO Board: Microprocessor	(Diagram 2)	131	135->
	DVIO Board: FIFO & Control	(Diagram 3)	132	135->
	DVIO Board: DVCODEC	(Diagram 4)	133	135->
	DVIO Board: A/V Output	(Diagram 5)	134	135->
	Digital Board: VSM Buffer Mem.	(Diagram 1)	139	148->
	Digital Board: AV Dec. STI5508	(Diagram 2)	140	148->
	Digital Board: AV Decoder Mem.	(Diagram 3)	141	148->
	Digital Board: Video Enc. Empres	s(Diagram 4)	142	148->
	Digital Board: VIP CVBS Y/C	(Diagram 5)	143	148->
	Digital Board: Video In/Out	(Diagram 6)	144	148->
	Digital Board: Progressive Scan	(Diagram 7)	145	148->
	Digital Board: Progressive Scan	(Diagram 8)	146	148->
	Digital Board: Audio Clock	(Diagram 9)	147	148->
8	Electrical Alignments		157	
9	Circuit Descriptions and		160	
	List of Abbreviations		322	
10	Spare Part List		327	

Published by MT 0261 Service PaCE

Printed in the Netherlands

Subject to modification

EN 3122 785 11970

Harmonic distortion (1 kHz):

: 0.1 %

Technical Specifications and Connection Facilities

1.1	General:		1.2.7	Tuning	
	Mains frequency : Power consumption mains :	220V-240V (198 - 264V AC) for Europe/ Asia 50 Hz - 60Hz 32 W		Automatic Search Tuning scanning time without antenna : 2.5 min. PAL stop level (vision carrier) : 75 V, 75 Maximum tuning error of a recalled program : ± 62.5 kHz Maximum tuning error during	
	Power consumption low power	< 7 W		operation : ± 100 kHz Tuning Principle	
1.2	RF Tuner			automatic B,G, I, DK and L/L'detection manual selection in "STORE" mode	
	Test equipment:Fluke 54200 TV Signa Test streams:PAL BG Philips Standard		1.3	Analogue Inputs	
1.2.1	System:		1.3.1	SCART 1 (Connected to TV)	
	PAL B/G, PAL D/K, SECAM L/L', PAL	I		Pin Signals: 1 - Audio R 1.8V RMS 2 - Audio R	∳
1.2.2	RF - Loop Through: Frequency range :	45 MHz - 860 MHz		3 - Audio L 1.8V RMS 4 - Audio GND 5 - Blue/Chroma	÷
1.2.3	Gain: (ANT IN - ANT OUT) :	-4 dB /±2 dB		GND 6 - Audio L	⊕ †
1.2.3	input voltage /3 tone method (+40			7 - Blue out/ Chroma in 0.7Vpp ± 0.1V into 75 Ohm (*) 8 - Function	
124	dB min) :	typ. 80 dB _μ V at 75Ω		switch	⊕
1.2.4	Heceiver:			9 - Green GND	⊕
	, ,	45.25 MHz - 860 MHz		10 - P50 control 11 - Green 0.7Vpp ± 0.1V into 75 Ohm (*) 12 - Nc	<u>.</u>
	Sensitivity at 40 dB S/N :	\geq 60dB μ V at 75 Ω (video unweighted)		13 - Red/Chroma GND 14 - fast switch	Ţ
1.2.5	Video Performance:			GND 15 - Red out/	Ť
	Channel 25 / 503,25 MHz, Test pattern: PAL BG PHILIPS standa RF Level 74 dBV	rd test pattern,		Chroma out 0.7Vpp ± 0.1V into 75 Ohm (*) ± 3dB 0.3Vpp Chroma (burst) 16 - fast switch	\rightarrow
	Measured on SCART 1 Frequency response:	1 MHz - 4.00 MHz ±		RGB/ CVBS or Y <0.4V into 75 Ohm = CVBS >1V / <3V into 75 Ohm = RGB	\ominus
	Group delay (0.1 MHz - 4.4 MHz)	2 dB 0 nsec ± 30 nsec		17 - Y/CVBSGND OUT	Ţ
1.2.6	Audio Performance:			18 - Y/CVBS GND IN 19 - CVBS/Y 1Vpp ± 0.1V into 75 Ohm (*)	Ģ
	Audio Performance Analogue - HiFi Frequency response at SCART 1 (L+R) output:	: : 40 Hz - 15 kHz / ± 1.5		20 - CVBS/Y 21 - Shield	-
	S/N according to DIN 45405, 7, 1967	dB	1.3.2		
	and PHILIPS standard test pattern video signal: Harmonic distortion (1 kHz, ± 25	: -50 dB unweighted		Pin Signals: 1 -Audio R 1.8V RMS 2 -Audio R	Э
	kHz deviation):	: 0.5 %		3 -Audio L 1.8V RMS 4 -Audio GND	Э
	Audio Performance NICAM: Frequency response at SCART			5 -Blue/Chroma GND	
		: 40 Hz - 15 kHz ± 1.5 dB		6 -Audio L 7 -Blue in/	-
	S/N according to DIN 45405, 7, 1967 and PHILIPS standard test pattern			Chroma out ± 3dB 0.3Vpp Chroma (burst) 8 -Function	3
	video signal: Harmonic distortion (1 kHz):	: -60 dB unweighted : 0.1 %		switch 9 -Green GND	+
	HEALITICH CHÂLULIUM LI KIZI.	. U.I /U		5 0,000,000	_

-Green GND 10 -P50 control

 \perp

Ţ

Ţ

-CVBS GND OUT -CVBS GND 18 IN 19 -CVBS/Y/RGB

1Vpp ± 0.1V into 75 Ohm (*) sync -CVBS/Y 20 21 -Shield

(*) for 100% white

1.3.3 **Audio/Video Front Input Connectors**

Audio

Input voltage : 2 Vrms Input impedance $>10k\Omega$

Video - Cinch

: $1 \text{ Vpp} \pm 0.1 \text{V}$ Input voltage

Input impedance 75Ω

Video - YC (Hosiden)

Input voltage Y : 1Vpp ± 0.1V

Input impedance Y 75Ω

Input voltage C burst 300 mVpp $\pm \{x\}$ dB

Input impedance C 75Ω

Cinch Audio/Video Line Input Rear 1.3.4

Audio (EXT1)

· 2 Vrms Input voltage Input impedance >10k Ω

Video (EXT4)

: $1 \text{ Vpp} \pm 0.1 \text{ V}$ Input voltage Input impedance 75Ω

1.3.5 YC Input Rear (Hosiden; EXT3)

GND 1 **GND** 2 Input voltage Y 1Vpp \pm 0.1V/ 75 Ω Input voltage C Burst 300 mVpp \pm {x} dB/ 75 Ω

Video Performance 1.4

All outputs loaded with 75 Ohm SNR measurements over full bandwidth without weighting.

CVBS Output Rear (EXT4) 1.4.1

> : > -65 dB SNR Luminance SNR Chrominance AM : > -65 dB : > -65 dB SNR Chrominance PM Bandwidth Luminance : 5 MHz ± 1 dB

1.4.2 YC Output Rear (Hosiden; EXT3)

SNR : > -65 dB

SNR C - AM SNR C - PM Bandwidth Y

: > -65 dB : > -65 dB : 5 MHz ± 1 dB

1.4.3 SCART (RGB)

> : > -65 dB on all output SNR Bandwidth : $5 MHz \pm 1 dB$

1.5 **Audio Performance**

1.5.1 **Cinch Output Rear**

: 2Vrms ± 1.5dB Output voltage 2 channel mode Output voltage 5.1 channel Dolby : 1.41Vrms ± 1.5dB <0.85dB Channel unbalance (1kHz) Crosstalk 1kHz : >105dB : > 95dB Crosstalk 20Hz-20kHz Frequency response 20Hz- 20kHz : ± 0.1dB max · >100 dB Signal to noise ratio Dynamic range 1kHz : >90dB : >88dB Dynamic range 20Hz-20kHz Distortion and noise 1kHz >90dB Distortion and noise20Hz-20kHz : >80dB Intermodulation distortion : >87dB Phase non linearity : + 10 max.

Level non linearity ± 0.5dB max. : >100dB Mute (spin-up, pause, access) : > 50dB above 25kHz Outband attenuation:

1.5.2 Scart Audio

: $2Vrms \pm 1.5dB$ Output voltage 2 channel mode : 1.41Vrms ± 1.5dB Output voltage 5.1 channel Dolby Channel unbalance (1kHz) : <0.85dB : >105dB Crosstalk 1kHz Crosstalk 20Hz-20kHz : > 95dB : ± 0.1dB max Frequency response 20Hz- 20kHz Signal to noise ratio : >100 dB : >90dB Dynamic range 1kHz Dynamic range 20Hz-20kHz : >88dB Distortion and noise 1kHz : >90dB Distortion and noise20Hz-20kHz : >80dB : >87dB Intermodulation distortion

Phase non linearity : ± 10 max Level non linearity : ± 0.5dB max Mute (spin-up, pause, access) : >100dB

: > 50dB above 25kHz Outband attenuation:

Digital Output 1.6

1.6.1 Coaxial

CDDA/ LPCM (incl MPEG1) : according IEC958 : according IEC1937 MPEG2, AC3 audio according IEC1937, DTS amendment 1

Optical 1.6.2

identical to coaxial

1.7 Digital Video Input (IEEE 1394)

Applicable Standards 1.7.1

Implementation according: IEEE Std 1394-1995 IEC 61883 - Part 1

IEC 61883 - Part 2 SD-DVCR (02-01-1997)

Specification of consumer use digital VCR's using 6.3 mm magnetic tape - dec.1994

Mechanical connection according:

Annex A of 61883-1

1.7.2 Audio Quality

: 2Vrms +/- 1.5dB Output voltage 2 channel mode

Channel unbalance (1kHz) : Tbd : > 85 dB Crosstalk 1kHz Crosstalk 20Hz-20kHz : > 95 dB Frequency response 20Hz- 12kHz : +/- 1dB max Signal to noise ratio : >95 dB Dynamic range 1kHz : tbd

Dynamic range 20Hz-20kHz : Tbd Distortion and noise 1kHz : >65dB Distortion and noise 20Hz-20kHz : >65dB : >80dB Intermodulation distortion Phase non linearity : tbd Level non linearity : tbd Outband attenuation : tbd

1.8 P50 System Control

Via SCART pin nr 10

1.9 **Dimensions and Weight**

Height of feet : 12mm

Apparatus tray closed : WxDxH :435 x 325 x

107

Apparatus tray open : WxDxH :435 x 465 x

107

Weight without packaging : 5.67 Kg Weight accesoiries : 1.675 Kg

1.10 Laser Output Power & Wavelength

1.10.1 DVD

Output power during reading : 0.8mW Output power during writing : 20mW

Wavelength : 660nm

1.10.2 CD

Output power : 0.3mW Wavelength : 780nm

Safety Instructions, Warnings, Notes, and Service Hints

2.1 Safety Instructions

2.1.1 **General Safety**

Safety regulations require that during a repair:

- Connect the unit to the mains via an isolation transformer.
- Replace safety components, indicated by the symbol \mathbf{A} , only by components identical to the original ones. Any other component substitution (other than original type) may increase risk of fire or electrical shock hazard.

Safety regulations require that after a repair, you must return the unit in its original condition. Pay, in particular, attention to the following points:

- Route the wires/cables correctly, and fix them with the mounted cable clamps.
- Check the insulation of the mains lead for external damage.
- Check the electrical DC resistance between the mains plug and the secondary side:
 - 1. Unplug the mains cord, and connect a wire between the two pins of the mains plug.
 - Set the mains switch to the 'on' position (keep the mains cord unplugged!).
 - Measure the resistance value between the mains plug and the front panel, controls, and chassis bottom.
 - 4. Repair or correct unit when the resistance measurement is less than 1 M Ω .
 - Verify this, before you return the unit to the customer/ user (ref. UL-standard no. 1492).
 - Switch the unit 'off', and remove the wire between the two pins of the mains plug.

2.1.2 Laser Safety

This unit employs a laser. Only qualified service personnel may remove the cover, or attempt to service this device (due to possible eye injury).

Laser Device Unit

Type Semiconductor laser

GaAlAs

Wavelength 650 nm (DVD) 780 nm (VCD/CD)

Output Power 20 mW

(DVD+RW writing)

(VCD/CD reading)

: 0.8 mW (DVD reading)

0.3 mW

Beam divergence : 60 degree

> CLASS 1 LASER PRODUCT

Figure 2-1

Note: Use of controls or adjustments or performance of procedure other than those specified herein, may result in hazardous radiation exposure. Avoid direct exposure to beam.

Warnings 2.2

General 2.2.1

- All ICs and many other semiconductors are susceptible to electrostatic discharges (ESD, &). Careless handling during repair can reduce life drastically. Make sure that, during repair, you are at the same potential as the mass of the set by a wristband with resistance. Keep components and tools at this same potential.
 - Available ESD protection equipment:
 - Complete kit ESD3 (small tablemat, wristband, connection box, extension cable and earth cable) 4822 310 10671.
 - Wristband tester 4822 344 13999.
- Be careful during measurements in the live voltage section. The primary side of the power supply (pos. 1005), including the heatsink, carries live mains voltage when you connect the player to the mains (even when the player is 'off'!). It is possible to touch copper tracks and/or components in this unshielded primary area, when you service the player. Service personnel must take precautions to prevent touching this area or components in this area. A 'lightning stroke' and a stripe-marked printing on the printed wiring board, indicate the primary side of the power supply.
- Never replace modules, or components, while the unit is

2.2.2 Laser

- The use of optical instruments with this product, will increase eye hazard.
- Only qualified service personnel may remove the cover or attempt to service this device, due to possible eye injury.
- Repair handling should take place as much as possible with a disc loaded inside the player.
- Text below is placed inside the unit, on the laser cover shield:

CAUTION VISIBLE AND INVISIBLE LASER RADIATION WHEN OPEN AVOID EXPOSURE TO BEAM
ADVAINSEL, SYNLIG GO USYNLIG LASERISTRALING VED ABINING UNDGA UDSÆTTELSE FOR STRALING
ADVAINSEL, SYNLIG GO USYNLIG LASERISTRALING NAR DEKSEL ANNED UNIGA EKSPONERING FOR STRÅLEN
VARBINISS SYNLIG GO USYNLIG LASERISTRALINIG NAR DEKSEL ANNED BETRAKTA EL STRÅLEN
VARBINISS SYNLIG OCH OSYNLIG LASERISTRALINIG NAR DEKNA DEL AR OPPINAD BETRAKTA EL STRÅLEN
VARBON MATT ASSO AUET ALTININA NAKYVALE UN ANAVVARTOMALLE LASER SATERLY LE. ALK AKTS O SÄTESSEN
VODSICHT SICHTBARE UND UNSIGLITBARE LASERISTRAHLUNG WENN ABDECKUNG GEÖFFNET NICHT DEM STRAHL AUSSETSEN
DANGER VISIBLE AND MOVISIBLE LASER RADIATION WHEN OPEN AVOID DIRECT EXPOSURE TO BEAM
ALTENTION RAYO NNEMENT LASER VISIBLE ET INVISIBLE EN CAS D'OUVERTURE EXPOSITION DANGERE USE AU FAISCEAU

Figure 2-2

2.2.3 **Notes**

Dolby

Manufactered under licence from Dolby Laboratories. "Dolby", "Pro Logic" and the double-D symbol are trademarks of Dolby Laboratories, Confidential Unpublished Works. ©1992-1997 Dolby Laboratories, Inc. All rights reserved.

Figure 2-3

Trusurround

TRUSURROUND, SRS and symbol (fig 2-4) are 1rademarks of SRS Labs, Inc. TRUSURROUND technology is manufactured under licence frm SRS labs, Inc.

2.

Video Plus

"Video Plus+" and "PlusCode" are registered trademarks of the Gemstar Development Corporation. The "Video Plus+" system is manufactored under licence from the Gemstar Development Corporation.

DVDR980-985 /0X1

Figure 2-5

Macrovision

This product incorporates copyright protection technology that is protected by method claims of certain U.S. patents and other intellectual property rights owned by Macrovision Corporation and other rights owners.

Use of this copyright protection technology must be autorized by Macrovision Corporation, and is intended for home and other limited viewing uses only unless otherwise authorized by Macrovision Corporation. Reverse engineering or disassembly is prohibited.

Introduction

DVD Video Recorder

DVD (Digital Versatile Disc) is the new storage medium that combines the convenience of the Compact Disc with the latest advanced digital video technology. DVD-Video uses state-of-the-art MPEG2 data compression technology to register an entire movie on a single 5-inch disc. DVD's variable bitrate compression, running at up to 9.8 Mbits/second, captures even the most complex pictures in their original quality. The crystal-clear digital pictures have a horizontal resolution of over 500 lines, with 720 pixels (picture elements) to each line. This resolution is more than double that of VHS, superior to Laser Disc, and entirely comparable with digital masters made in recording studios.

DVD recording is the next step in video technology. DVD+ReWritable (DVD+RW) uses phase-change media, the same technology that formed the basis for CD-ReWritable. A high-power laser is used to change the reflectivity of the recording layer. This process can be repeated more than a thousand times. DVD+Recordable (DVD+R) uses discs based on an organic dye, a technology pioneered with the successful CD-Recordable format, to produce discs that keep your data for a lifetime.

Your Philips DVD recorder is a recorder and player for digital video discs, with a two-way compatibility to the universal DVD-Video standard. This means that: - existing pre-recorded DVD-Video discs can be played on your Philips DVD recorder and - recordings, made on your Philips DVD recorder, can be played on most DVD-Video players and DVD-ROM drives.

With it, you will be able to record TV programmes or to edit and archive your own camcorder recordings. Superb digital picture and sound quality, quick access to the tracks you have recorded and extensive playback features contribute to a completely new video experience.

From now on you will enjoy full-length movies with true cinema picture quality, and stereo or Multi-channel sound (depending on the disc, and on your playback setup). You will find your recorder remarkably easy to use, by way of the On-Screen Display on your TV and the display on the DVD recorder, in combination with the remote control

Box contents

First check and identify the contents of your DVD recorder package, as listed below:

- DVD recorder
- Remote Control Handset with separately-packed batteries
- 2-core power cord
- SCART cable
- S-video cable
- Antenna (aerial) cable
- Audio cable
- Video cable
- DVD+RW disc - User Manual
- Warranty card

If any item should be damaged or missing, please inform your supplier without delay.

Keep the packaging materials; you may need them to transport your recorder in the future.

Placement

- Place the recorder on a firm, flat surface.
- · Keep away from domestic heating equipment and direct sunlight.
- In a cabinet, allow about 2.5 cm (1 inch) of free space all around the recorder for adequate ventilation.
- The lense may cloud over when the DVD recorder is suddenly moved from cold to warm surroundings. Playing a CD/DVD is not possible then. Leave the DVD recorder in a warm environment for two hours before use, so the moisture can evaporate.
- The recorder should not be exposed to dripping or splashing, no objects filled with liquids, such as vases, should be placed on the recorder.

Cleaning discs

Some problems may occur because the disc inside the recorder is dirty. To avoid these problems clean your discs regularly, in the following way:

 When a disc becomes dirty, clean it with a cleaning cloth. Wipe the disc from the centre out.

Caution:

Do not use solvents such as benzine, thinner, commercially available cleaners, or anti-static spray intended for analogue discs.

Do not use commercially available cleaning discs to clean the lens, as these discs may damage the optical unit.

Remote control

Loading the batteries

- Open the battery compartment cover.
- Insert two 'AA' (LR-6) batteries as indicated inside the battery compartment.
- Close the cover.

Caution

Do not mix old and new batteries. Never mix different types of batteries (standard, alkaline. etc.). This may reduce the lifetime of the batteries.

Connections - back side of your DVD recorder

- Please refer to your TV set, VCR, Stereo System and any other User Manual(s) as necessary to make the optimal connections.
- Do not connect the power until all other connections are made.
- Do not connect your DVD recorder to your TV set via your VCR, because the video quality could be distorted by the copy protection system.
- For better sound reproduction you can connect the recorder audio outputs to your amplifier, receiver, stereo system or A/V equipment. For this see 'Connecting to A/V receiver or A/V amplifier'.

Caution:

Do not connect the recorder's audio output to the phono input of your audio system in order to avoid damage to your equipment.

Connecting to the antenna

- Remove the antenna (aerial) cable plug from your TV set and insert it into the antenna socket at the back of the DVD recorder.
- Plug one end of the antenna (aerial) cable supplied (1) into the TV socket on the DVD recorder and the other end into the antenna input socket on your TV set.

Connecting to a TV set

To obtain the highest possible picture and sound quality from your TV set it is recommended to use the SCART connector on both DVD recorder and TV set.

 Connect the bottom SCART connector (EXT 1) to the TV set, using the SCART cable supplied (2) as shown in the drawing, if your TV set is equipped with EasyLink or Cinema Link, make sure you use the correct SCART connector. For this refer to the user manual of your TV set.

If your TV set is not equipped with a SCART connector, you can connect the DVD recorder with the S-video (Y/C) sockets.

S-video (Y/C) connection

- Connect the S-video output socket to the corresponding input socket on the TV set, using the supplied S-video cable (3).
- Connect the audio Left (white) and Right (red) output sockets to the corresponding sockets on the TV set using the audio cable supplied (5).

If your TV set is not equipped with S-video sockets, then connect the DVD recorder with the CVBS sockets to your TV set.

Video (CVBS) connection

- Connect the Video (CVBS) output socket (yellow) to the corresponding input socket on the TV set using the video cable supplied (4).
- Connect the audio Left (white) and Right (red) output sockets to the corresponding sockets on the TV set using the audio cable supplied (5).

Connecting to audio equipment

Connecting to A/V receiver or A/V amplifier with digital Multi-channel decoder

The best possible sound quality is obtained by connecting your DVD recorder to an A/V receiver with Multi-channel decoder (Dolby Digital, MPEG 2 and DTS).

Digital Multi-channel sound

Digital Multi-channel connection provides the optimum sound quality. For this you need a Multi-channel A/V receiver that supports one or more of the audio types supported by your DVD recorder (MPEG 2, Dolby Digital and DTS). For this you can check the receiver manual and the logos on the front of the receiver.

 Connect the recorder's digital audio output to the corresponding input on the receiver. Use a digital coaxial cable (7) or a digital optical audio cable (8).

If you do not own a digital coaxial audio cable (not supplied), you may use the supplied video cable (4).

Note:

If the audio type of the digital output does not match the capabilities of your receiver, the receiver will produce a strong, distorted sound. The audio type of the DVD disc in play is displayed in the Status Window, when changing the language. 6 Channel Digital Surround Sound via digital connection can only be obtained if your receiver is equipped with a Digital Multi-channel decoder.

If you cannot connect your DVD recorder to an A/V receiver with Multi-channel decoder, choose one of the following alternatives.

Connecting to a receiver equipped with two channel digital stereo (PCM)

- Connect the recorder's digital audio output to the corresponding input on your receiver. Use the supplied video (CVBS) cable (7) or an optional digital optical audio cable (8).
- After installation you will need to activate PCM on the DVD recorder's digital output (see 'User Preferences').

Connecting to a receiver equipped with Dolby Pro Logic

 Connect the recorder to the TV set and connect the recorder's audio Left and Right output sockets to the corresponding inputs on the Dolby Pro Logic Audio/Video receiver, using the audio cable supplied (6).

 Make the appropriate Sound settings for Analogue Output in the user preferences menu.

Connecting to a TV set equipped with a Dolby Pro Logic decoder

 Connect the recorder to the TV set as described in chapter 'Connecting to a TV set'.

Connecting to a receiver with two channel analogue stereo

 If you have a receiver with two-channel analogue stereo without any of the above mentioned sound systems, connect the audio Left and Right output sockets to the corresponding sockets on your receiver, amplifier or stereo system. Use the audio cable supplied (6).

8 INSTALLATION

INSTALLATION 9

Connecting to other equipment

Use the top SCART connector (EXT 2) on your DVD recorder to make connections to a:

- Satellite receiver or Set top box,
- VCR,
- DVD-Video player

Most pre-recorded video cassettes and DVD discs are copy protected. If you try to copy them the display shows 'EDP3 PROTECT'.

For installation of a decoder, see 'User Preferences' - 'Installation'.

Notes:

- If the power is off or Low Power Standby is selected (see User Preferences - features), the signal from EXT 2 will not be passed on to the TV set on EXT 1.
- EasyLink functionality will not be available to devices connected via the DVD recorder's EXT 2 SCART connector.

Connections - frontside of your DVD recorder

Camcorder connection

- If you have a DV, Digital 8, Hi-8 or S-VHS(C) camcorder, connect the S-video input socket to the corresponding output socket on the camcorder, using the S-video cable supplied (1) and connect the audio cable (3) supplied.
- Otherwise connect the Video input socket (yellow) to the corresponding output socket on the camcorder using the video cable supplied (2) and connect the audio Left (white) and Right (red) input sockets to the corresponding sockets on the camcorder using the audio cable supplied (3).
- If your camcorder has mono sound, use only the left audio connector. In this case the sound will be recorded on both audio channels.

Power supply

- Make sure that all necessary connections are made before connecting the DVD recorder to the power supply.
- Plug the power cable supplied into the Power connector on the rear of the recorder.
- Plug the mains plug into an AC outlet.

Note:

Always check if the local mains voltage matches the required 220V - 240V.

When the recorder is in the Standby position, it is still consuming some power.

If you wish to disconnect your DVD recorder completely from the mains, withdraw the plug from the AC Outlet. When the DVD recorder is disconnected from the mains, TV channels and timer data will be stored typically 1 year.

Switching on

- Switch on the TV set and select the programme number that you have chosen for video playback (see operating manual for your TV set).
- Press () STANDBY/ON.
- ➤ The recorder display lights up. If you have not yet installed your DVD recorder, it will enter 'virgin mode'. In this mode you will have to set your personal preferences.

First time set-up: virgin mode

After switching on the DVD recorder for the very first time the 'virgin mode screen' will appear.

In 'virgin mode' you may have to set your preferences for some of the recorder features.

If the 'virgin mode screen' does not appear, your DVD recorder has been installed already. You may still change the settings via the 'installation menu'.

Depending on the kind of TV set, preferences will have to be set manually or they will be taken over automatically from the TV set.

Automatic setting

When your TV set is equipped with EasyLink". Cinema Link". NExTVIEW Link". SmartLink". Q-Link" or MegaLogic", the TV settings will be taken over from the TV set but they cannot be changed manually afterwards.

When preferences are taken over from your TV set, the message 'Easy Link loading data from TV-please wait' will appear.

Menus for which no preferences are available will be displayed. They have to be set manually.

Note:

Preferences have to be set in the order in which the item menus will appear on the screen.

If the recorder is switched off while setting user preferences, all preferences have to be set again after switching the recorder on again.

The 'virgin mode' will only be concluded after the preferences for the last item have been confirmed.

Manual setting

When a menu is displayed:

- Use the ∇△ (down up cursor) keys to go through the options in the menu. The icon of the selected option will be highlighted.
- Use **OK** to confirm your selection and to select the

The following items may have to be set in virgin mode:

Menu language

The on-screen menus of DVD-Video discs will be displayed in the language you choose.

Audio language

The sound of DVD-Video discs will be in the language you choose, provided this is available on the disc in play. If not, speech will revert to the first spoken language on the disc. Also the DVD-Video disc menu will be in the language you choose, provided this is available on the disc.

Subtitle language

The subtitles of $\overline{\text{DVD-Video}}$ discs will be in the language you choose provided this is available on the disc in play. If not, subtitles will revert to the first subtitle language on the disc.

TV Shape

You can choose:

- -16:9 if you have a wide screen (16:9) TV set.
- 4:3 if you have a regular (4:3) TV set. In this case you can also choose between:
- Letterbox for a 'wide-screen' picture with black bars at the top and bottom,
- Pan Scan, for a full-height picture with the sides trimmed. If a disc has Pan Scan, the picture then moves (pans) horizontally to keep the main action on the screen.

Country

Select your country. This is used as input for the 'Parental Control' feature (see 'Access Control') as well as the searching of TV channels.

Auto TV Channel Search

Make sure the antenna is connected. See 'Connecting to the antenna'. Your DVD recorder will search for all TV channels.

It stores channels in the sequence they are found.

Confirm with OK.

➤ Auto search starts. This can take several minutes.

➤ When Auto search is completed 'Autom search complete - XX channels found' appears on the TV screen.

After Auto channel search you can have TV channels stored automatically in the same order as your TV set. See 'User preferences installation' - 'Follow TV'.

Time/Date

When Channel auto search is completed the actual Time and Date are also set automatically.

If the time in the DVD recorder display is not correct, the clock must be set manually.

- Adjust 'Time', 'Year', 'Month', 'Date' if required, with the ∇ (down cursor) or △ (up cursor) key.
- Change values with the the
 (left cursor) or
 (right cursor) key or the digit keys 0-9.
- To end, press OK.

Note:

All these items may have to be set after first start up ('virgin mode'). After that they can always be adapted in the user preferences menu. When your TV set is equipped with EasyLink the TV set presets will be taken over from the TV set but they cannot be changed manually afterwards.

Virgin mode settings are now completed.
All settings can still be changed. See 'User preferences'.

Functional overview

Rear of recorder

Remote control MONITOR (b) ON/OFF (1) - switches between disc mode and NEXT REVERSE STOP (\odot) DISC MENU - previous chapter, track or title - displays DVD disc menu or index PLAY (11) picture screen - direct recording of the currently SYSTEM MENU selected programme - displays recorder system menu - next chapter, track or title $\nabla \triangle \triangleright \triangleleft$ 44 - down/up/right/left cursor - search backward movement RETURN - return to previous menu on (S)VCD disc - slow motion CLEAR **>>** - delete last entry/clear timer - search forward TIMER - displays the 'timer menu' - stop SELECT > FSS - switches between different values - displays Favorite Scene Selection in a menu menu for DVD+RW or DVD+R - switches between record modes <u>(</u>(+), (+)disc in the Index Picture Screen and in (*) monitor mode - play - acknowledge menu selection 2 (3) (1) **VOL +/-**- numerical key pad - TV volume up/down (5) 6 T/C - select title - TV Mute ON/OFF - select chapter 8 (9) CH +/-A/CH Alternate Channel - programme up/down - switches to the previous TV OH OH 0 channel 200M ⊕ ZOOM ANGLE SUBTITLE (IC) SIDE SWITCH - enlarge video image - enables other keys to operate B ANGLE the TV set (see Appendix) (A-B) - select DVD camera angle SUBTITLE - subtitle language selector - changes brightness setting of ((AUDIO - audio language selector REPÉAT - repeat chapter, track, title, disc **PHILIPS** REPEAT A-B - repeat sequence SCAN - playback of the first 10 seconds of each chapter within a title (DVD) or the first 10 seconds of each track on a disc (VCD/CD)

Operation

Important notes for operation

You can switch on the DVD recorder with the (*) **STANDBY**(OM key. Keep your DVD recorder connected to the mains at all times to ensure that programmed recordings can be made and that the television functions normally.

Both the DVD recorder and the remote control have an 'Emergency interrupt' button. You can use the (b) STANDBY/ON button to interrupt a function. When you have an operating problem, you can interrupt the function and start again.

When you switch off the DVD recorder, the display will briefly show 'WAIT'.

Loading discs

- 1 Press A OPEN/CLOSE on the front of the recorder. The disc loading tray opens.
- 2 Lay your chosen disc in the tray, label side up. Make sure it is sitting properly in the correct recess.
- 3 Press / Open/Close, to close the tray.
 ▼REPRING appears in the status box and on the recorder display. If the inserted disc is pre-recorded or write-protected, playback always starts automatically.

You can always unload a disc by pressing

▲ OPEN/CLOSE again or pressing ■ STOP on the remote control for two seconds.

Note

If 'Child Lock' is set to ON and the disc inserted is not in the 'child safe' list (not authorized), the PIN code must be entered and/or the disc has to be authorized. (see 'Access Control')

Disc types

You will recognize the different types of discs, that can be used in your DVD recorder by the logo. Depending on the disc type you can either use it for recording and playback or playback only. Some discs are not suitable at all to be used in the DVD recorder.

In the next table a summary is given of all excisting disc types and their DVD recorder compatibility.

The following disc types can be used for recording and playback:

VD+RW

Records and plays; In case of a new blank disc, after the first recording, some more time (up to two minutes) is needed to make the disc compatible with DVD-Video players.

DVD+R Records and plays.

The following disc type can be used for playback only:

DVD-Video

DVD-ROnly plays if it contains DVD-Video.

DVD-RW

Only plays if it is recorded in Video mode and has been finalized

CD Digital Audio

You can play digital audio CDs in conventional style through a stereo system, using the keys on the remote control and/or front panel, or via the TV set using the on-screen display (OSD).

Super Audio Cl

Of hybrid SACD discs, the CD layer can be played.

(Super) Video CD

Depending on the material on the disc (a movie, video clips, a drama series, etc.) these discs may have one or more tracks, and tracks may have one or more indexes, as indicated on the disc case. To make access easy and convenient, your recorder lets you move between tracks, and between indexes.

CD-R/CD-RW

Plays if it contains Audio CD.

The following disc types cannot be used at all, neither for recording nor for playback:

DVD-RAM

DVD-Audio

On-screen display information

System menu bar

The system menu bar can be called up by pressing any of the following keys on the remote control: **SYSTEM MENU**, **T/C**, **E**4 **ANGLE**, **SUBTITLE**, ((C **AUDIO** and **©**. **ZOOM**.

Widescreen (16:9) TV sets may show only part of the system menu bar in certain screen modes. Select a different screen mode on the TV to see the full menu. A number of recorder functions can be controlled via the system menu bar. You can navigate between the two parts of the system menu bar with the \triangleleft (left cursor) and the \triangleright (right cursor) key.

System menu bar icons

PART 1 The User preference The Trick Chapter/Index Chap

Angle Zoom

Temporary Feedback Field

The system menu bar contains a 'Temporary Feedback Field' with information concerning prohibited actions, playback modes, available angles, etc.

DVDR980-985 /0X1

Timer info box

The timer info box is located above the tuner info box and is displayed in monitor mode. It displays the current status of the timer.

When a timer is programmed it shows a timer indication and the start time or date of the first programmed recording.

Timer event due today

Timer event due on another day

When an OTR recording is in progress it shows the end

OTR recording in progress

When no timer is programmed it displays the current

Current time

Tuner info box and timer info box disappear during playback and after recording is started.

Warning box

The warning box will be displayed near the bottom of the screen when appropriate. For instance: 'Disc locked'.

 You can navigate between the various items of the user preferences menu with the \(\triangle \) (up cursor) and the ∇ (down cursor) key. To select an item press ▷ (right cursor) key.

Disc type icons

DVD+RW

DVD-Video

Video-CD

recording

playing

pause play

record pause

slow motion

The tuner info box is located at the bottom left of the

screen and is displayed in monitor mode (See: Recording

Checking input). It displays the currently selected input. When the tuner is selected it shows programme number

Current channel

No signal

Copy-protected signal

Tuner info box

and/or channel name.

Super Video-CD

DVD+R

® RW

© DVD+R

③ DVD

© van

(1)

stop

Þ play

II pause

● H pause

8 x

Disc status icons

 By pressing SYSTEM MENU the system menu bar will disappear from the screen.

Status box

The status box on the left hand side of the screen displays the current status of the recorder and the disc type loaded for several seconds.

20 OPERATION

preference menu.

Picture settings

 Record settings Installation

Sound settings

Language settings ☐ Feature settings

Remote control settings

User preference menu icons

Scan Scan

Repeat Title

Repeat Track

chapter
Repeat Chapter

Repeat A to end

Repeat A-B

Child Lock On

Action prohibited

(down cursor).

submenu options.

displayed next to the item.

User preference menu operation Press SYSTEM MENU on the remote control. Select TÅ in the system menu bar and press ▽

➤ The user preferences menu appears.

 Use the ▷ ▷ ▷ ♡ (left right up down cursor) keys to toggle through the menus, sub menus and

➤ When a menu item is selected, the cursor keys (on the remote control) to operate the item are

Press OK to confirm and return to the main menu.

The following functions can be operated via the user

Angle

sefe Child Safe

resume Resume

OPERATION 21

∢

9

 \oplus

Index Picture Screen

The Index Picture Screen displays an overview of the titles recorded on the disc. Each title is represented by an index picture. Next to the index picture the programme name, duration, recording mode and recording date of the title are shown. If no name is known, the DVD recorder will fill in the source and the time of the recording instead.

Empty spaces (erased titles, or blank space at the end of the disc) are also shown as such.

 At maximum three titles will be shown on the screen at once. If more titles are present, you can navigate to those with the $\nabla \triangle$ (down up cursor) keys.

 On the right hand side of the Index Picture Screen, you can see the disc bar. This gives an overview of all titles on the disc, as well as any empty spaces. On the disc bar, an arrow - the disc pointer indicates your current position on the disc. From this point you may resume playback or recording.

• If you navigate trough the list of titles with $\nabla \triangle$ (down up cursor) or ⋈ PREVIOUS /NEXT, the disc pointer will move along.

● Press ■ STOP to reset the disc pointer to the beginning of the disc.

 To move the disc pointer to the end of the last title, keep ► NEXT pressed.

 If you navigate from an Index Picture to the box right next to it (containing name, rec mode, etc.), you enter the title settings menu (see under 'Managing disc content - Title settings').

The User preferences

Setting user preferences

You can set your user preferences for some of the recorder features. (See 'Operation' - 'User preferences menu operation')

The following items can be adapted:

Picture settings

TV Shape

With TV Shape you can adjust the output of your DVD Recorder to optimally fit your TV screen. You can

- 16:9 if you have a wide screen (16:9) TV set.
- 4:3 if you have a regular (4:3) TV set. In this case you can also choose between:
 - Letterbox: for a 'wide-screen' picture with black bars at the top and bottom,
 - Pan Scan: for a full-height picture with the sides trimmed. If a disc has Pan Scan, the picture then moves (pans) horizontally to keep the main action on the screen.

Black level shift (NTSC only)

Adapts the colour dynamics to obtain richer contrasts. Select 'On' or 'Off'.

Video shift

Factory setting is such that the video will be centered on your screen. Use this setting to adjust the position of the picture on your TV set by scrolling it to the left or right.

Factory setting is RGB. Select 'S-video' (Y/C) via SCART when connecting to an S-VHS recorder.

■ Sound settings

Digital output

Factory setting 'All' means that both coaxial and optical outputs are switched on, and that Dolby Digital Multichannel is fed to the outputs as such MPEG audio is converted to PCM. If your equipment doesn't include a digital Multi-channel decoder, set the digital output to 'PCM unity' (Pulse Code Modulation). Both coaxial and optical outputs are then switched on, and Dolby Digital and MPEG audio are converted to PCM. If you are not connecting equipment with a digital input, change the setting to 'Off'.

Analogue output

Select 'Stereo', 'Surround' or '3D Sound', Factory setting is Stereo.

Directions

For Use

DVDR980-985

/0X1

Surround: Select this setting when using equipment with a Dolby Surround Pro Logic decoder. In this setting the 5.1 audio channels (Dolby Digital, MPEG-2) are downmixed to a Surround-compatible 2-channel output.

3D Sound: In a set-up without rear speakers (analogue stereo output), this option remixes the six channels of digital surround (Dolby Digital, MPEG-2) into a two speaker output, while retaining all of the original audio information. The result is the listening sensation of being surrounded by multiple speakers.

Connected audio system	Digital out	Analogue out
Amplifier or TV with two channel analogue stereo	off	Stereo
Amplifier or TV with Dolby Surround or Dolby Pro Logic	Off	Surround
Amplifier with two channel digital stereo	PCM only	Stereo
A/V receiver with Multi-channel decoder (Dolby Digital, MPEG, DTS)	All	Stereo or Surround
Multi-channel A/V receiver with 6-ch connectors	Off	Surround

Night Mode

Night mode optimizes the dynamics of the sound with low volume playback for less disturbance in quiet environments. This only works for Dolby Digital audio on DVD-Video discs.

□ Language settings

The preferred language can be adapted via the system menu bar. Also see 'virgin mode'. Settings can be changed for:

- Playback audio language
- Subtitle language
- Menu language
- Country setting.

Feature settings

Access Control

Access Control contains the following features:
Child Lock - When Child Lock is set on, a 4-digit code needs to be entered in order to play discs.
Parental Level - Allows the conditional presentation of DVD discs containing Parental Level information.
Change country - Allows conditional presentation of DVD-Video discs containing country information.
Change code - To change the pin code.
See 'Acces Control'

Adapt disc format

This option is only available when a DVD+RW or DVD+R disc recorded on a different brand of recorder is loaded. You can adapt the menu to your own recorder.

A DVD+RW video disc that has been recorded on a different type or brand of recorder can be played, but may not provide all features commonly available to DVD+RW discs, such as the on-screen disc bar, the disc settings menu, the title settings menu, and editing. If the disc is not write-protected, the disc format can be adapted to the own recorder, after which these functions are available.

Status box

The status box displays the current status of the recorder and the disc type loaded (See 'Operation' - 'On-screen display information'). You can switch it On or Off.

Off = always Off.

On = displayed together with the system menu bar or displayed temporarily (disappears after time-out) when changing the playback or record status.

Factory setting is 'On'.

Auto resume

The Auto resume setting only applies to pre-recorded DVD-video and Video CD discs only - not only to the disc in the recorder but also to the last twenty discs you have played.

If 'Auto resume' is set to 'On', playback will start from the point where it was stopped the last time the disc was played.

When 'Auto resume' is set to 'Off', the recorder will start playing from the beginning of a disc. In this case you can still resume when "" appears on screen by pressing > PLAY. Factory setting is 'On'.

Low power standby

If low power standby is 'On', the recorder will consume minimum power in standby mode.
Factory setting is 'Off'.

Notes:

- When the recorder is in low power standby mode:
- the output of the equipment connected to EXT 2 will not be passed through to the TV set on EXT 1,
- the Display will be Off,
- the Standby indicator on the recorder will still light up in standby mode.

PBC

This feature is only available when a (Super) Video CD is loaded. It allows you to disable or enable the PBC (Playback Control) menu of VCD discs. See under 'Special VCD features': Factory settines is 'On'.

Finalise disc

This option is only available on unfinalised DVD+R discs. See 'Managing disc content - Finalising a DVD+R disc'.

Remote Control settings

Key sound

The recorder makes a 'beep' sound upon every key command given via recorder or remote control keys. Select 'Off' to disable this sound. Factory setting is 'On'.

Remote control used

If you want to use the remote control of a Philips DVD player instead of the standard DVD recorder remote control, select 'DVD' player'. Factory setting is 'DVD' recorder'.

System information

When you move further down in the Remote Control settings menu, the system status screen will appear. Press \triangle (cursor up) to go back.

Record Settings

Record mode

By selecting a recording mode you define picture quality of recordings and maximum recording time for a disc.

Mode	Picture quality	Total recording time
HQ (High Quality)	best possible picture quality	60 minutes
SP (Standard Play)	pre-recorded DVD quality	120 minutes
LP (Long Play)	better than S-VHS picture quality	180 minutes
EP (Extended Play)	better than VHS picture quality	240 minutes

In practice, the DVD recorder may record a few minutes more than indicated. For playback, the correct recording mode will automatically be selected. The HQ mode is optimised for recording via the external inputs. For tuner recordings it is recommended to use SP. LP or EP.

In the record settings menu, select 'Record mode'.

- Alter the recording mode with < or ▷ (left right cursor).
- Confirm with the OK key.
- To end, press SYSTEM MENU.

An alternative way to select the record mode is available in the Index Picture Screen and in monitor mode:

Press SELECT.

➤ The new record mode appears on the screen and the display.

It is not possible to switch record modes during recording.

With the Direct Record function switched 'On' and the DVD recorder switched to standby, the channel number selected on your television will be automatically taken over by the DVD recorder, at the moment it starts recording. This only applies for televisions connected via SCART, which have video output via SCART or which have EasyLink. Factory setting is 'Off'.

- In the record settings menu, select 'Direct record'.
- Select 'On'. If you select 'Off', the function will be switched off.
- Confirm with OK.
- To end, press SYSTEM MENU

Sat record

You can only use this function, when you have a satellite receiver, which can control other equipment by a 'programming' function. In this mode your DVD recorder starts recording when the satellite receiver releases a signal. The start and end of the recording is controlled via one of the SCART sockets.

- In the record settings menu, select 'Sat record'. Select the SCART socket to which the satellite receiver is connected with \triangleleft or \triangleright (left right cursor).
- Confirm with OK.
- Insert a recordable DVD+RW disc. • Press () STANDBY/ON.
- ➤ When this function is switched on, SAT appears on the display.
- The DVD recorder is now prepared for recording.

Factory setting is 'Off'

Auto chapters

If autochapters is 'On' every five to six minutes a chapter marker (beginning of a new chapter) is inserted during recording. This enables easy navigation through a title during playback. In either case you can manually insert chapter markers afterwards. (See 'Managing disc content' - 'Edit in playback mode'.)

LP/EP rec mode

In long play or extended play recording mode you can select the 'Sport' setting to optimize the video recording for images that contain fast movements, like sports programmes. The setting does not influence high quality or standard play recording mode. Factory setting is 'Stndrd'.

Auto TV Channel Search

Your DVD recorder will search for all TV channels. It stores channels in the sequence they are found. (See 'Installation - First time Set-up')

All channels stored so far will be erased.

Follow TV

With Follow TV you can programme the same channel sequence on the DVD recorder as on the TV set. This only functions if the recorder socket (EXT1) and the TV set are connected with a SCART cable. Additional equipment connected to socket EXT2 must be switched

➤ If the DVD recorder recognizes that the TV set has been connected with a SCART cable "TI/TI 1" appears on the display.

- ➤ When "N□TV" (no signal from TV set) appears on the display, the TV channels can not be allocated automatically. In this case read 'Manual TV channel search'.
- Select programme number '1' on the TV set.
- Confirm with OK on the remote control of the
 - ➤ The DVD recorder compares the TV channels on the TV set and the DVD recorder. If the channels match, this channel is stored at 'P01'.
- Wait until 'TV□2' appears and repeat the previous two steps for programme number 2 and the rest of
- To end, press SYSTEM MENU.

Manual TV channel search

You can perform a search to select and store TV channels manually. If the DVD recorder is connected via EasyLink, this function is not available.

- Press SYSTEM MENU.
- Select 'Installation'.
- Select 'Manual search'.
- In the line 'Channel/freq.' select the display for: Freq : frequency CH: channel

S-CH: special channel

- If you know the frequency or channel of the desired TV channel, you can enter the data in line 'Entry/search' with the digit keys 0-9. If you don't know the frequency or channel of the TV channel of your choice, press ▷ (right cursor) to start channel search.
- In the line 'Programme number' select the programme number you want, using ⊲ or ▷ (left right cursor) or digit keys 0-9.
- If you want to change the TV channel name, press the (right cursor) key in line 'TV channel name'.
- Select the character you want to change with the < (left cursor) or ▷ (right cursor) key.
- Change the character with the

 √ (down cursor) or △ (up cursor) key.
- Press OK to confirm.

This DVD recorder can receive HiFi sound transmissions in NICAM Stereo. However, if sound distorsion occurs due to poor reception, you can switch off NICAM:

● In the line 'NICAM' select 'On' or 'Off' with the < (left cursor) or ▷ (right cursor) key.

If you want to change the automatic TV channel setting, select the line 'Fine tuning'. With the 4 (left cursor) or (right cursor) key you can vary the automatic TV channel setting.

Important: This re-tuning is only necessary and useful in special cases, e.g. when stripes appear on your TV screen when using a cable-TV system.

- Press OK to store the TV channel.
- To end, press SYSTEM MENU.

Connecting a decoder:

- Switch on the TV set and select the programme number for the DVD recorder.
- Select the TV programme you wish to link with the decoder function with CH+ or CH-.
- Press SYSTEM MENU
- Select 'Installation'
- Select 'Manual search'.
- Select 'Decoder'.
- Select 'On' with < (left cursor) or ▷ (right cursor).
- Confirm with OK.
- > 'DECODER' apperars on the display.
- To end, press SYSTEM MENU.

Sort/Clear TV channels manually

- If the DVD recorder is connected to the TV set with EasyLink or a similar system, manual sort cannot be executed. In all other cases, you can select
- Press SYSTEM MENU.
- Select the line 'Installation'.
- Select the line 'Sort TV channels'.

- Select the TV channel to which you want to allocate a programme number (starting with 'P01') with the △ (up cursor) or ♥ (down cursor) key and press the
- Select the desired position with △ or ▽ (up down cursor) key.
- To store, press OK.
- To end, press SYSTEM MENU.

To adjust 'Time', 'Year', 'Month' and 'Date' with the digit keys 0-9. Switch between fields with the $\nabla \triangle$ (down up cursor) keys.

Recording

Before you start recording

Recordings on a DVD disc are called 'titles'. Every title consists of one or more chapters.

For more information about how to go to other titles or chapters see 'Playback - general features'.

Important:

Recordings on a DVD+RW disc are normally started from the position of the so-called disc pointer, l.e. the point where the last recording was stopped. From there on earlier recordings may be overwritten without notice, unless the disc is write protected. In this respect your DVD recorder behaves just like a Video Cassette Recorder.

If you want to make a recording without the risk of overwriting earlier recordings use the safe Record Function (see Manual Recording - Safe Record)

In the Index Picture Screen you can select the point where you want to start your recording. Use the $\nabla \triangle$ (down up cursor) and \blacktriangleleft **REVERSE/>> FORWARD** keys. You can see the the current location on the disc bar, indicated by the arrow.

Your DVD recorder always checks the disc that you have inserted:

- ➤ When a DVD+RW disc is inserted on which recordings have been made, the Index Picture Screen is shown on your TV screen.
- ➤ If the inserted disc is a completely empty recordable disc, the message 'EMPT' BISE' appears on the display.
- ➤ If the inserted disc is a DVD+RW disc with a content that is not DVD-Video compatible (e.g. a data disc), a dialog box is shown with the option to erase or eject the disc. You can only record on this disc after erasing it with the **RECORD** key.

Note:

- On a disc containing PAL recordings, no NTSC recordings can be made and vice versa. On an empty disc, either type of recordings can be made.
- No recordings can be made from so-called 'Pseudo-PAL' or PAL-60 sources.

➤ A disc can hold up to 48 titles (including empty titles). When this maximum is reached the onscreen message 'Too many titles' appears, if you want to make a new recording. You have to erase a title first next to an empty title. (See 'Managing Disc Content'.)

Manual recording

Checking input

Normally, the DVD recorder displays the contents of the disc on screen.

- Press MONITOR in order to switch to the internal tuner, or whichever other source is selected, if you want to check the input before starting a recording.
 On the TV screen, you will see the actual picture quality that you will get if you record: the video has been encoded and decoded again. This is why you will see a delay of about 1.5 seconds when using a live' source such as a camera.
- In monitor mode you can choose programme numbers directly with the digit keys 0-9 on the remote control
- Press SELECT repeatedly to select the desired record mode.
- Press MONITOR again to go back to disc mode.

Recording

- Insert a recordable DVD+RW or DVD+R disc.
- Normally, the DVD recorder displays the contents of the disc on the screen.
- Use the MONITOR button to see the currently selected TV channel.
- Use CHANNEL ▲ or CHANNEL ▼ (on the recorder) or CH+, CH- (on the remote control) to select the programme number (programme name) from which you wish to record.
 - ➤ When a TV channel transmits a channel name, it will be shown on the display.

The following programme numbers are provided for recording from external sources:

'EXT1': TV set via SCART 1 socket

'EXT2': for recording from external sources via SCART 2 socket

'EXT3' : rear S-video

'EXT4' : rear CVBS

'CAM1': front S-video (Y/C)

'CAM2': front Video (CVBS)

- Press RECORD (on the recorder) or REC/OTR (on the remote control).
 - ➤ RECORD is shown on the display.
- The status box is shown on the screen for a few seconds

- To bring back the status box during recording press SYSTEM MENU. Pressing SYSTEM MENU once more will remove the status box again.
- Press II PAUSE to pause recording. You can resume recording by pressing II PAUSE once more. The DVD recorder will make a seamless connection.
- Press STOP to stop recording if you are recording from a camcorder watch the video output of the DVD recorder on the TV - instead of the camcorder viewer - to determine the right moment to stop.

- The Index Picture Screen is updated.

 ➤ "MENU UPDATE" is shown on the display.
- After a short recording on a new DVD+RW disc, a few minutes will be needed to complete the formatting of the disc.

Safe Recording

When you start recording on a DVD+RW disc by briefly pressing the RECORD or REC/OTR key, a recording on DVD+RW will be made from the current position of the disc pointer. To prevent this do the following:

- Hold the RECORD key (on the recorder) or REC/OTR key (on the remote control) press for about two seconds until 'SAFE RECORD' appears on the display.
- The recorder automatically jumps to the end of the last title on the disc and starts recording.
 If no free space is left. The display will show □ISC FULL. Safe record is not possible then.

Recordings on DVD+RW are always automatically made after the last title on the disc.

Direct Record

With Direct Record you can start recording immediately from the programme selected on the TV set

- Make sure 'Direct record' is switched 'On'.
 (See record settings)
- On the TV set, select the programme number you want make the recording from.
- Make sure the DVD recorder is switched to
- Press RECORD (on the recorder) or REC/OTR
 (on the remote control)

Notes -

- Don't select another programme number on your TV set, until the NRIT' on the display of your DVD recorder disappears. This can take up to one minute.
- When ↑\□\¬'' appears on the display, the programme number could not be found. The DVD recorder switches off automatically.
- If your loudspeakers are connected (via an amplifier I receiver) to your DVD recorder, the sound will be delayed relative to the TV picture when recording directly from the TV set.
- You can use Direct Record in combination with Safe Record.

Manual audio control

You can control the audio recording level of your DVD recorder manually.

- In monitor mode, press AUTO/MAN REC VOLUME on the DVD recorder.
 - ➤ The display will show the current audio level and MANUAL appears.

RECORDING 29

28 RECORDING

 You can switch back to automatic audio level control by pressing AUTO/MAN REC VOLUME again. ➤ The display will show the current disc position and MANUAL disappears.

Recording with automatic switch-off (OTR One-Touch Recording)

- Insert a recordable DVD+RW or DVD+R disc.
- Use CHANNEL ▲ or CHANNEL ▼ (on the) recorder) or CH+, CH- (on the remote control) to select the programme number (programme name) from which you wish to record.
- Press RECORD (on the recorder) or REC/OTR (on the remote control) twice.
 - A recording will be made of 30 minutes.
 - > The required end time of the recording is shown in the timer box on screen. The remaining recording time is shown on the display.

- Press RECORD or REC/OTR again to obtain a 30 minute increment.
- Shortly after pressing REC/OTR, OTR can be cancelled by pressing CLEAR.

Timer programming

The DVD recorder needs the following information for every programmed recording:

- the date on which the recording is to be made;
- the channel;

30 RECORDING

- the start and stop time of the recording:
- VPS/PDC on or off:
- the recording mode (HQ, SP, LP or EP).

The DVD recorder stores all the information mentioned above in a timer block. You can programme up to six timer blocks, one month in advance.

When you have programmed the timer, a red line on the disc bar (both on the display and on the Index Picture Screen) indicates what part of the disc will be overwritten by the programmed recording from the current disc position (on DVD+RW) or after the last title (on DVD+R).

When all timer blocks are full, the options timer programming and VIDEO Plus+ programming cannot be accessed. For clearing a timer block, see 'How to clear a timer block'.

What is 'VPS'I'PDC'?

With 'VPS/PDC', the TV station controls the beginning and the length of the programmed recording. This means that the video recorder switches itself on and off at the right time even if a TV programme you have programmed begins earlier or finishes later than expected.

Usually the start time is the same as the VPS/PDC time. If, however, in the TV guide, in addition to a TV programmes start time, a different VPS/PDC time is given, e.g.: '20.15 (VPS 20.14)', you must enter '20.14' as the start time exactly to the minute. If you want to enter a time that differs from the VPS/PDC time. you must switch off 'VPS/PDC'.

Timer programming with the VIDEO Plus+® system

A PlusCode number is a number of up to nine digits, printed in most TV guides next to the start time of a TV

All the information required for a programming is contained encoded in the PlusCode programming number.

 Select 'VIDEO Plus+ programming' with △ (up) cursor) or ∇ (down cursor).

Press ▷ (right cursor).

- Enter the entire PlusCode number (up to nine digits) printed in your TV guide next to the start time of a TV programme. If you made a mistake, you can correct it with CLEAR.
- Confirm with OK.
- If the VIDEO Plus+ system does not recognize the TV channel, the message 'Please enter programme number will appear on screen. Select the required programme number (programme name) with ⊲ ▷ (left right cursor) or the digit keys 0-9 and confirm with OK.

- The data will appear on the TV screen.
- Press ▷ (right cursor).
- Use SELECT to select the programming key at daily or weekly intervals. Mo-Fr: Recording at daily intervals from Mondays to Fridays inclusive. Weekly: Recording at weekly intervals on the same day of the week.
- Press ▷ (right cursor).
- Use SELECT to switch VPS/PDC on or off. ➤ When VPS/PDC is switched on, the start time is marked with an asterisk.
- Press ▷ (right cursor).
- Use SELECT to select the recording mode ('HQ', 'SP', 'LP', 'EP').

- Confirm with OK.
 - ➤ The data has been stored in a timer block.
- To end, press TIMER.
- Make sure that you inserted a recordable disc. If you inserted a write-protected disc recording will be refused.
- Switch off with (1) STANDBY/ON.

Timer programming without the VIDEO Plus+ system

- Press TIMER on the remote control.
- Select 'Timer programming' with △ (up cursor) or ∇ (down cursor).

- Press ▷ (right cursor).
- Enter the date with △ (up cursor) or ▽ (down cursor), or with the digit keys 0-9.

Directions

For

Use

D

 If desired, select recording at daily or weekly intervals in the field 'Date' with SELECT. 'Mo-Fr': Recording to be made from Mondays to Fridays inclusive. 'Weekly': Recording at weekly intervals on the same day of the week.

Press ▷ (right cursor).

- Enter the programme number from which you want to record. If you want to record from an external source, select 'EXT1', 'EXT2', 'EXT3', 'EXT4', 'CAM1' or 'CAM2' with △▽ (up down cursor).
- Press ▷ (right cursor).
- Enter the Start time with △▽ (up down cursor) or the digit keys 0-9.
- After entering the Start time, use SELECT to switch VPS/PDC on or off. With most TV stations the VPS/PDC time is always the same as the start time.
- ➤ When VPS/PDC is switched on, the start time is marked with an asterisk.
- Press ▷ (right cursor).
- Enter the End time with △▽ (up down cursor) or the digit keys 0-9.
- Use SELECT to choose the recording mode 'HQ', 'LP', 'SP' or 'EP'.
- If you made a mistake, you can go back with < (left cursor).

- Confirm with OK.
- ➤ The data has been stored in a timer block.
- To end, press TIMER.
- ➤ Make sure that you inserted a disc without write protection. If you inserted a write-protected (locked) disc, recording will be refused.
- Switch off with () STANDBY/ON.

Programming with 'NEXTVIEW Link'

This DVD recorder is equipped with the function 'NexTVEW Link'. If your television is also equipped with this function, you can mark TV programmes on the television for programming. These TV programmes will automatically be transmitted to a timer block on the DVD recorder. If you clear the marking of the TV programme on the television, the corresponding timer block on the DVD recorder will also be cleared. For more information, read the instruction manual of your TV set.

If a timer setting is incorrect

The following warnings can be displayed in the timer menu:

Collision

recording programme overlaps with another recording programme.

Solution:

- Ignore by pressing TIMER. The programme with the earlier start time will be recorded completely before the later programme starts.
- Edit one or both timers.
- Delete one of the recording programmes.

Please enter programme number

The VIDEO Plus+ system does not recognize the TV channel.

Solution:

- Select the required programme number (programme name) with

 or

 (left right cursor).
- Confirm with OK.

PlusCode number wrong

You entered an incorrect PlusCode number or the incorrect date.

Solution:

Repeat the entry or end by pressing TIMER.

Weekend programming - not possible

Date was incorrectly entered. Daily programming can only be used for recordings to be made from Mondays to Fridays inclusive.

Memory full

The maximum number of recording programmes is used.

Solution:

Delete one of the recording programmes.

How to check or alter a timer block

- Press TIMER on the remote control.
- Select 'Timer list' with ∇ or △ (down up cursor).

Press ▷ (right cursor).

- Select the timer block you want to check or alter with

 or

 ∆ (down up cursor).
- Press ▷ (right cursor).
- Select what you want to check or alter with < or ▷ (left right cursor).
- Alter data with ∇ or △ (down up cursor) or with the digit keys 0-9.
- Confirm with OK.
- To end, press TIMER.
- Switch off by pressing () STANDBY/ON.

How to clear a timer block

- Press TIMER on the remote control.
- Select 'Timer list' with ∇ or △ (down up cursor).
- Press ▷ (right cursor).
- Select the timer block you want to clear with ∇ or ∆ (down up cursor).
- Press CLEAR.
- Confirm with OK.
- Switch off by pressing TIMER.

32 RECORDING

Unless stated otherwise, all operations described are based on remote control operation. A number of operations can also be carried out via the system menu bar on the screen. (see 'System menu bar operation')

Moving to another title/track

When a disc has more than one title or track, you can move to another title as follows:

- Press T/C
- Press ▶ NEXT during play to step forward to the
- Press ⋈ PREVIOUS during play to return to the beginning of the current title. Rapidly press H PREVIOUS twice to step back to the previous
- To go directly to any title or track, enter the title number using the numerical keys 0-9.

- If the number has more than one digit, press the keys in rapid succession
- If the system menu bar is on screen, make sure the \top icon is selected.

Playback

Playing a DVD+RW or DVD+R disc

 Insert a DVD+RW or DVD+R disc. ➤ If the inserted disc is write-protected, playback starts automatically otherwise the Index Picture Screen appears

● Press ► PLAY.

- ➤ Playback starts automatically from the point where it was stopped the last time the disc was played or recorded. If you want to start playback from the beginning of the disc, you can do so via the Index Picture Screen (see 'Index Picture Screen'). > If the disc is a new blank disc, the display will show 'EMPTH DISE'.
- To stop playback at any time, press STOP. You return to the Index Picture Screen.

Playing a pre-recorded DVD-Video disc

Some DVD discs are produced in a way that requires specific operation or allows only limited operation during playback. In these cases the recorder may not respond to all operating commands. When this occurs, please refer to the instructions in the disc inlay. When a x appears on the TV screen, the operation is not permitted by the recorder or the disc.

- Insert a pre-recorded DVD-Video disc. Make sure the label is facing up. If the disc is two-sided, make sure the label of the side you want to play is facing
 - ➤ When 'autoresume' is set to 'On' (see 'User Preferences') playback starts automatically from the point where it was stopped, the last time the disc was played.
- ➤ When 'autoresume' is set to 'Off', the disc will play from the start of the disc. You can however resume play from the point at which you stopped, the last time the disc was played, by pressing PLAY when appears on screen.
- > The currently playing title and chapter number are displayed on the recorder display. The elapsed

- DVD movies to be released at different times in different regions of the world, all players have region codes and discs can have an optional region code. If you load a disc of a different region code to your recorder, you will see the region code notice on the screen. The disc will not play, and should be unloaded.

- The region code is stated on a label on the back side of your recorder.
- Regional coding is not applicable for recordable DVD discs.
- The disc may invite you to select an item from a menu If the selections are numbered press the appropriate numerical key; if not, use the $\nabla \triangle \triangleright \triangleleft$ (down up right left cursor) keys to highlight your selection, and press OK.
- To stop play at any time, press STOP. ➤ The default screen will appear, giving information about the current status of the recorder.

During playback you can display and enter the menu by pressing DISC MENU.

Playing a (Super) Video CD disc

- Insert a (Super) Video CD.
 - ➤ When 'autoresume' is set to 'On' (see 'User Preferences') playback starts automatically from the point where it was stopped, the last time the disc was played.
 - > The disc may invite you to select an item from a menu. If the selections are numbered, press the appropriate numerical key 0-9.
- To stop play at any time, press STOP.
 - ➤ The default screen will appear.

Moving to another chapter/index

When a title on a disc has more than one chapter or a track has more than one index, you can move to another chapter/index as follows:

- Press F NEXT during play to select the next chapter/index.
- Press # PREVIOUS during play to return to the beginning of the current chapter/index. Rapidly press ▶ PREVIOUS twice to step back to the previous chapter/index.
- To go directly to any chapter or index, enter the chapter or index number using the numerical keys 0-9

- If the number has more than one digit, press the keys in rabid succession.
- If the system menu bar is on screen, make sure the C icon is selected

Slow Motion

- Select ▷ (Slow motion) in the system menu bar.
- Use the ∇ (down cursor) key to enter the slow motion menu.
 - > The recorder will now go into pause mode.

- Use the <> > (left right cursor) keys to select the required speed: '-1', '-1/2', '-1/4' or '-1/8' (backward); '1/8', '1/4', '1/2' or '1' (forward).
- Select '1' to play at normal speed again.
- If II PAUSE is pressed, the speed will be set to '0'.
- Press ► PLAY to exit slow motion mode.
- Press △ (up cursor) to delete the slow motion menu. You can also select Slow Motion speeds by using the
- SLOW key on the remote control.

Directions For Use

Still Picture and Step Frame

- Select ⁴□ (picture by picture) in the system menu
- Use the ∇ (down cursor) key to enter the picture by picture menu.
 - > The recorder will now go into pause mode.

- Use <> ▷ (left right cursor) keys to select previous or next picture.
- Press ➤ PLAY to exit picture by picture mode.
- Press △ (up cursor) to exit the picture by picture

You can also step forward by using the II PAUSE repeatedly on the remote control.

Search

● Select **>** (Fast motion) in the system menu bar. Use the ∇ (down cursor) keys to enter the fast motion menu.

- Use the <> > (left right cursor) keys to select the required speed: '-32', '-8' or '-4' (backward); '4', '8', '32' (forward).
- Select '1' to play at normal speed again.
- Press ► PLAY to exit fast motion mode.
- Press △ (up cursor) to delete the fast motion menu. To search forward or backward through different speeds, again.

Repeat

DVD Discs - Repeat chapter/title/disc

- To repeat the currently playing chapter, press REPEAT.
 - > Chapter appears on screen.
- To repeat the currently playing title, press REPEAT a second time

➤ titile appears on screen.

- To repeat the entire disc, press REPEAT a third

repeat appears on screen.

To exit repeat mode, press REPEAT a fourth time.

Video CDs - Repeat track/disc

- To repeat the currently playing track, press REPEAT.

➤ treck appears on screen.

- To repeat the entire disc, press REPEAT a second

➤ repeat appears on screen.

To exit repeat mode, press REPEAT a third time.

Repeat A-B

To repeat or loop a sequence in a title

- Press REPEAT A-B at your chosen starting point;
 - appears on screen.
- Press REPEAT A-B again at your chosen end point
 - ➤ A·B repeat appears on screen, and the repeat sequence begins.
- To exit the sequence, press REPEAT A-B.

Scan

Plays the first 10 seconds of each chapter/index on the disc

- Press SCAN.
- To continue play at your chosen chapter/index. press SCAN again or press PLAY.

Time search

The Time Search function allows you to start playing at any chosen time stamp.

- Select (Time Search) in the system menu bar.
- Press ♥ (down cursor).
 - > The recorder will now go into pause mode.
 - ➤ A time entry box appears on the screen showing the elapsed playing time of the current disc.

- Use the digit keys 0-9 to enter the required start time. Enter hours, minutes and seconds in the box. ➤ Each time an item has been entered, the next item will be highlighted.
- Press OK to confirm the start time.
 - ➤ The time entry box will disappear and play starts from the selected time position.

Zoom

The Zoom function allows you to enlarge the video image and to pan through the enlarged image.

- Select
 Zoom in the system menu bar.
- function and select the required zoom factor; 1.33 or 2 or 4.
 - ➤ The recorder will go into pause mode.
 - > The selected zoom factor appears below the Zoom icon in the system menu bar and 'Press OK to pan' appears below the system menu bar.

- ➤ The picture will change accordingly.
- Press OK to confirm the selection.
 - The panning icons appear on the screen: $\nabla \triangle \triangleright \triangleleft$ (down up right left cursor) and **OK**.
- Use the $\nabla \triangle \triangleright \triangleleft$ (down up right left cursor) keys to pan all over the screen.
- When **OK** is pressed only the zoomed picture will be shown on the screen.
- If you wish to zoom at any moment, press ⊕ Zoom and select the required zoom factor as described
- Press ► PLAY to exit zoom mode.

Special DVD-Video features

The DVD's menu feature allows you to make selections from these menus. Press the appropriate numerical key; or use the $\nabla \triangle \triangleright \triangleleft$ (down up right left cursor) keys to highlight your selection, and press OK .

Title menus

- Press DISC MENU
- > If the current title has a menu, this appears on the screen. If no menu is present in the title, the disc menu will be displayed.
- The menu can list camera angles, spoken language and subtitle options, and chapters for the title.
- To exit the title menu, press DISC MENU again.

Note:

Most DVD discs do not have separate disc and title menus.

Disc menu

If a DVD-Video disc has separate disc and title menus, you can navigate to the disc menu as follows:

- Press T/C followed by DISC MENU
- ➤ The disc menu is displayed.
- To remove the disc menu, press DISC MENU again.

Camera Angle

If the disc contains sequences recorded from different camera angles, the angle box appears, showing the number of available angles, and the angle being shown. You can then change the camera angle if you wish.

- Use the ∇ △ keys to select the required angle in the angle box.
- To go to any angle directly, enter the angle number using the numerical keys 0-9
 - ➤ After a small delay, play changes to the selected angle. The angle box remains displayed until multiple angles are no longer available.

Changing the audio language

- Select ((((Audio) in the system menu bar.
- Press (({\bar AUDIO or \bar \Delta \text{ (down up cursor)}} repeatedly to step through the different languages
- You can enter the required language number directly using the numerical keys 0-9

Subtitles

- Select (Subtitle) in the system menu bar.
- Press SUBTITLE or
 □ (down up cursor) repeatedly to step through the different subtitles, or to switch the subtitles off.
- You can enter the required subtitle number directly using the numerical keys 0 - 9

Playback Control (PBC)

- Make sure PBC is switched 'O⊓'. See 'User Preferences-features settings'.
- Load a (Super) Video CD with PBC and press ▶ PLAY.
 - ➤ The PBC menu appears on screen.
- Go through the menu with the keys indicated on the TV screen until your chosen passage starts to play. If a PBC menu consists of a list of titles, you can select a title directly.
- Enter your choice with the numerical keys 0-9.
- Press RETURN to go back to the previous menu.

Playing an audio CD

- Insert the disc.
- ➤ After loading the disc, playback starts automatically.
- ➤ If the TV set is on, the Audio CD screen appears. > During play, the current track number and its elapsed playing time will be shown on the screen and the recorder display.

 To stop play at any time, press ■ STOP. > The number of tracks and the total playing time will be shown on the screen and the recorder display.

Pause

- Press II PAUSE during play.
- To return to play, press ▶ PLAY.

Search

- To search forwards or backwards through the disc FORWARD.
 - > Search begins.
- or **→ FORWARD** again.
- > Search goes to 8x speed, and the sound is muted. or >> FORWARD again.
- If the TV set is on, search speed and direction are indicated on the screen each time ← REVERSE or **▶ FORWARD** is pressed.
- To end the search, press ➤ PLAYor STOP as desired

Moving to another track

- Press ▶ NEXT during play to step forward to the next track.
- Press ► PREVIOUS during play to return to the beginning of the current track. Rapidly press ■ PREVIOUS twice to step back to the previous
- To go directly to any track, enter the track number using the numerical keys 0-9.

Repeat track/disc

- To repeat the currently playing track, press REPEAT.
- ➤ 'Repeat track' appears on screen.
- To repeat the entire disc, press REPEAT a second
- ➤ 'Repeat disc' appears on screen.
- To exit repeat mode, press REPEAT a third time.

Repeat A-B

To repeat or loop a sequence:

- Press REPEAT A-B at your chosen starting point; ➤ 'Repeat A' appears on screen.
- Press REPEAT A-B again at your chosen end
 - > 'Repeat A-B' appears on the display, and the repeat sequence begins.
- To exit the sequence, press REPEAT A-B again.

Scan

Plays the first 10 seconds of each track on the disc.

- Press SCAN.
- To continue play at your chosen track, press SCAN again or press ▶ PLAY.

Access control

Child Lock (DVD and VCD)

When activating Child lock, only discs that are authorised can be played without PIN code.

The recorder memory maintains a list of 50 authorized ('Child safe') disc titles. A disc will be placed in the list when 'Play Always' is selected in the 'Child protect' dialog. Each time a 'Child safe' disc is played it will be placed on top of the list. When the list is full and a new disc is added, the least recently used will be removed from the list.

Activating/deactivating the child lock

 Select 'Access control' in the features menu using $\nabla \triangle$ (down up cursor) and press \triangleright (right cursor).

- Enter a 4-digit PIN code of your own choice using the digit keys 0-9.
- Enter the code a second time.
- Move to 'Child lock' using $\nabla \triangle$ (down up cursor).
- Move to (a) / (a) using the ▷ (right cursor) key.

- Select using ∇△ (down up cursor).
- Press OK or ⊲ (left cursor) to confirm and press SYSTEM MENU again to exit the menu.
- Now unauthorized discs will not be played unless the 4-digit code is entered.
- Select to deactivate the Child Lock.

Reconfirmation of the 4-digit PIN code is necessary when: The code is entered for the very first time (see above); The code is changed (see 'Changing the 4-digit code'); The code is cancelled (see 'Changing the 4-digit code'); Both Child Lock and Parental Control are switched Off and the code is requested.

Authorizing discs when Child Lock is activated

- Insert the disc.
- ➤ The 'Child protect' dialog will appear. You will be asked to enter your secret code for 'Play once ' or 'Play always '. If you select 'Play once ', the disc can be played as long as it is in the recorder and the recorder is in the On position. If you select 'Play always ', the disc will become Child safe (authorized) and can always be played even if the Child lock is set to 'On'.

Double sided DVD discs may have a different ID for each side. In order to make the disc 'Child safe', each side has to be authorized.

Multi volume VCD disc may have a different ID for each volume. In order to make the complete set 'Child safe', each volume has to be authorized.

Securing discs

- ➤ Playback starts automatically.
- Press STOP while ③ is visible.
- > (3) will appear and the disc is now banned i.e. it is not Child safe any longer.

40 PLAYBACK

Parental Level (DVD-Video only)

Movies on pre-recorded DVD discs may contain scenes not suitable for children. Therefore discs may contain 'Parental Control information which applies to the complete disc or to certain scenes on the disc. These scenes are rated from 1 to 8 and alternative, more suitable scenes are available on the disc. Ratings are country dependent. The 'Parental Control' feature allows you to prevent discs from being played by you children or to have certain discs played with alternative scenes.

Activating/Deactivating Parental Control

- Select 'Access control' in the features menu using

 ∇△ (down up cursor) and press ▷ (right cursor).
- Enter your 4-digit PIN code using the digit keys 0-9.
 If necessary enter the code a second time.
- Move to 'Parental level' using ∇△ (down up cursor).
 Move to the Value Adjustment bar using ▷ (right

 Use the ∇ △ (down up cursor) keys or the numerical keys 0-9 on the remote control to select a rating from 1 to 8 for the disc inserted.
 Rating 0 (displayed as '--'):

Parental Control is not activated. The disc will be played in full.

Ratings 1 to 8 (1 = childsafe - 8 = adults only):
The disc contains scenes not suitable for children. If you set a rating for the recorder, all scenes with the same rating or lower will be played. Higher rated scenes will not be played unless an alternative is available on the disc. The alternative must have the same rating or a lower one. If no suitable alternative is found, play will stop and the 4-digit code has to be entered.

 Press OK or < (left cursor) to confirm and press SYSTEM MENU again to exit the menu.

Country

- Enter the four digit PIN code.
- Press ▷ (right cursor).

- Select a country using ∇△ (down up cursor).
- Press OK or < (left cursor) to confirm and press
 SYSTEM MENU again to exit the menu.

Changing the 4-digit code

- Select 'Access control' in the features menu using

 ∇△ (down up cursor) and press ▷ (right cursor).
- Enter the old code.

- Press ▷ (right cursor).
- Enter the new 4-digit PIN code.
- Enter the code a second time and reconfirm with OK.
- Press SYSTEM MENU to exit the menu.

Note

If you forgot your code, press **STOP** four times while in the access control PIN code box and exit with OK. Access control is now switched off. You can then enter a new code as described above.

Managing disc content

Title settings

For each title on a DVD+RW or DVD+R disc the default settings can be changed to your personal preference in the title settings menu.

Changing the title name

- In the Index Picture Screen, select the required title with ∇△ (down up cursor).
- Press ▷ (right cursor) to enter the title settings menu.

- Enter the new name. A name may contain a maximum of 64 characters.
- Use ▷ (left right cursor) for the position of the characters. Use ∇ △ (down up cursor) to change characters
- Use SELECT to toggle between capitals and lower case characters.
- Use CLEAR to erase a character.
- Confirm by pressing OK.

Play full title

- In the Index Picture Screen, select the required title with $\nabla \triangle$ (down up cursor).
- Press ▷ (right cursor) to enter the title settings menu.
- Select 'Play full title

When this item is selected the title will be played in full, including hidden chapters. Follow the instructions on the screen. (See 'managing disc content - Favorite Scene Selection')

Erasing a title

You may simply erase a title on DVD+RW by recording over it, but if you want to erase the whole title instantly, do the following:

- In the Index Picture Screen, select the required title with ∇∆ (down up cursor).
- Press ▷ (right cursor) to enter the title settings menu.
- Select 'Erase this title'. ➤ The message 'This will completely erase this title', 'Press OK to confirm' is shown.

completed. After the title has been erased the Index Picture

Press OK to confirm.

Screen will show an empty space instead. If there was an empty space in front of or behind this title. then these are combined into one empty space. Empty spaces of less then one minute will not be

> 'Erasing title...' is shown until the action is

On DVD+R titles can also be erased but the space occupied cannot be used anymore. During finalisation erased titles are removed from the Index Picture Screen.

Disc Info Screen

- When on the Index Picture Screen, press STOP. ➤ You are now on Title 1.
- Press △ (up cursor).
- ➤ You enter the Disc Info Screen.

The Disc Info Screen contains the following information:

Disc Settings

For each DVD+RW or DVD+R disc the settings can be changed to your personal preference in the disc settings

- In the Disc Info Screen press ▷ (right cursor).
 - You will now enter the 'disc settings' menu.

Changing the Disc Name

 In the Disc Info Screen press ▷ (right cursor). You will now enter the 'disc settings' menu.

- Enter the new name. A name may contain a maximum of 64 characters.
- Use ▷ (left right cursor) for the position of the characters. Use ∇△ (down up cursor) to change characters.
- Use SELECT to toggle between capitals and lower case characters.
- Use CLEAR to erase a character.
- Confirm by pressing OK.

Protection of recordings

- In the Disc Info Screen press ▷ (right cursor). > You will now enter the 'disc settings' menu.
- Select 'Protection' and press ▷ (right cursor).
- Press OK on the remote control to confirm. No further changes can be made to the disc. It will also disable most title/disc settings options, as well as the complete edit menu.
 - > Future editing is only possible after resetting the Protection feature to 'Unprotected' again.

Erasing a disc

This option is only aivailable for DVD+RW discs that are not erase-protected.

- In the Disc Info Screen press ▷ (right cursor). ➤ You will now enter the 'disc settings' menu.
- Select 'Erase disc' and press OK. ➤ The message 'This will erase all titles' is displayed.

- Press OK to confirm or < (left cursor) to cancel. > 'Erasing disc' is shown until the action is completed
- After the disc has been erased, the Index Picture Screen will show the free space on the disc.

Finalising a DVD+R disc

While a DVD+RW disc can be played instantly on most DVD players, a DVD+R disc can be played only on the DVD recorder until it is finalised. After finalisation no changes can be made to the disc anymore.

- In the Disc Info Screen press ▷ (right cursor).
- > You will now enter the 'disc settings' menu.

- Select 'Finalise disc' and press OK to confirm. > 'Finalise disc' is shown until the action is completed
- After finalisation the Index Picture Screen will appear.

If the DVD+R disc was recorded on a different brand of DVD recorder you may not be able to access the Disc Settings screen. In this case you can use the 'Finalise disc 'option in the features menu of the user preferences menu.

Making your edits DVD-compatible

If one or more titles have been edited (see 'Favourite Scene Selection'), then the edits will play on your DVD recorder, but a DVD player may show the original versions instead of the edits. You can prepare your DVD+RW discs so that also a DVD player will show the edited version. This is not possible with DVD+R discs.

 If the Disc Settings menu shows the option 'Make edits DVD compatible ', select this option. If the menu does not show this option, then your DVD+RW disc is already compatible, and no conversion is needed.

- Press OK on the remote control to confirm. ➤ The messages 'This will take ...' and 'Press OK to confirm' will appear to indicate how long the action will take.
- Press OK on the remote control to confirm. ➤ 'Processing...' and a progress bar are shown until the action is completed.

Favourite Scene Selection

The basic function of any edit operations is to improve accessibility and handling of your recordings. For instance: scenes you do not want to see during playback (e.g. commercials during a movie) can be marked as chapters and made hidden. During playback you will see your recording without the hidden chapters as one sequence.

In between the scenes the picture may freeze for a short moment.

Each title consists of chapters. With the FSS menu any chapter can be made hidden or made visible again. Normally, during recording, chapter markers are inserted automatically every five to six minutes (this setting can be changed in the record settings menu). After the recording is finished, you can manually add and remove chapter markers via the FSS menu. Both automatically generated and manually inserted chapter markers can be removed

After editing, the modified version of a title is the default playback version. The original can be accessed via the 'Play full title' option in the title settings menu. Other DVD players may still play the original. To guarantee that the edited version will play on these DVD players, choose 'Make edits DVD-compatible' in the disc settings menu (only available on DVD+RW discs).

Calling up the FSS menu

- Play the title you want to edit.
- Press the FSS key on the remote control.
- > The video image is overlayed with a transparant edit menu. Title and chapter information appear in an information box at the top of the screen.

The Favourite Scene Selection menu may disappear after about five minutes if you do not edit any information

 Use ∇ or △ (down up cursor) to toggle through the menu's functions.

Inserting chapter markers

- In play mode press FSS on the remote control, to call up the FSS menu.
- Select 'Insert chapter marker'.
- Press OK on the remote control to insert a marker.

The maximum number of chapter markers is 99. When this maximum is reached the on-screen message 'Too many chapters' appears. You have to delete some, before inserting new chapter markers.

During recording you can add chapter markers by pressing FSS on the remote control. The message 'Chapter marker inserted' will appear on the screen.

Hiding chapters

Initially all chapters are visible. You can hide chapters or make them visible again on playback. In FSS mode however hidden chapters are displayed in a dimmed mode.

● In play mode press **FSS** on the remote control to call up the FSS menu.

- Select 'Visible' or 'Hidden' with the ▷ (right cursor)
- You can toggle between 'Visible' and 'Hidden' directly from any line in the FSS menu with the SELECT key on the remote control.

Deleting chapter markers

You van combine a chapter with the previous chapter in the current title by deleting the chapter at the beginning of the current chapter.

- In play mode press FSS on the remote control to call up the FSS menu.
- Select 'Delete chapter marker'.
- Press OK on the remote control to confirm ➤ 'Deleting marker' will appear.

You can delete all chapter markers (manually and automatically generated) in the current title.

- In play mode press ➤ FSS on the remote control to call up the FSS menu.
- Select 'Delete chapter markers'.
- Press OK on the remote control to confirm
- > 'Deleting markers' will appear.

Changing the index picture

You can define the current video frame as a miniature picture to be used for this title's entry in the Index Picture Screen.

- In play mode press **FSS** on the remote control to call up the FSS menu
- Select 'New index picture'.
- You can use II PAUSE and/or ▷ SLOW to accurately choose the desired picture.
- Press OK on the remote control to confirm. ➤ 'Updating menu' will appear.

Directions

For Use

DVD

Dividing a title

On a DVD+RW disc you split one title into two separate titles. (On DVD+R this is not possible.)

- On the Index Picture Screen, select the title you want to divide.
- Press ► PLAY.
- Go to the point where you want to divide the title and press II PAUSE.
- Press FSS.
- ➤ The Favourite Scene Selection menu is shown.
- Select 'Divide title'.

 Press OK on the remote control to confirm. > 'Dividing title...' is shown until the action is completed. This divide operation cannot be undone.

The Index Picture Screen will show two titles instead of one. Both will have the same name. If you want to change the name, you can do so in the title settings menu. For one of the two resulting titles, a new index picture is created.

If you want to divide one title into more than two titles, use the above procedure several times.

Append recording

This function is only available on DVD+RW discs.

If you want to append a video recording to an earlier recorded title, do the following.

- On the Index Picture Screen, select the title to which you want to add a video recording.
- Press PLAY.
- At the point where you want to append the title press II PAUSE.
- To monitor the video input you may press MONITOR.
- Press RECORD (on the recorder) or REC/OTR (on the remote control).

The video recording will now be appended from this point. Video material beyond this point is overwritten. This may include titles following the current title.

Any remaining video material that is not overwritten. which may include the last part of the original title, is maintained. You can access these titles from the Index Picture Screen.

48 MANAGING DISC CONTENT

If it appears that the DVD recorder is faulty, first consult this checklist. It may be that something has been overlooked. Under no circumstances attempt to repair the system yourself; this will invalidate the warranty. Look for the specific symptom(s). Then perform only the actions listed to remedy the specific symptom(s).

Troubleshooting

Symptom	Remedy
The recorder does not respond to the remote control	The remote control may be configured for a second DVD recorder. Hold SELECT+1 pressed simultaneously to revert to DVD recorder 1. Aim the remote control directly at the sensor on the front of the recorder. Avoid all obstacles which may interfere with the signal path.
	Inspect or replace the batteries.
Keys on the DVD recorder do not work	The DVD recorder may still be in Virgin mode. See First time set-up: virgin mode. Otherwise disconnect and reconnect the DVD recorder from the
	mains. • If this does not solve the problem, check if the remote control still
	works. If so, the recorder is probably in trade mode. Disconnect the recorder from the mains and reconnect it while holding • OPEN/CLOSE and • STOP pressed.
No picture	Check if the TV set is switched on. Check the video connection.
	When the DVD recorder is connected to the TV set via SCART, you may not see the picture at the DVD recorder after selecting the correct programme number on your TV set when a timer recording takes place 'This way, you can still view another device (e.g. a satellite receiver). To view the DVD recorder press TV/DVD on the remote control.
Distorted picture distorted sound	Check the disc for fingerprints and clean with a soft cloth, wiping from centre to edge. Sometimes a small amount of picture distortion may appear. This is not a malfunction.
Recorder does not play disc	Ensure the disc label is upwards and that the right disc type is inserted Clean the disc.
	Check if the disc is defective by trying another disc. Check if the region code of the disc matches the region code of the recorder. (pre-recorded DVD discs only). See 'playing a pre-recorded DVD-Video disc'. Check if Child Lock is activated.
Distorted sound from HiFi amplifier	Check to make sure that no audio connections are made to amplifier phono input. Check to make sure that analogue input of the amplifier is not
	connected to the digital output of the DVD recorder.
Distorted or black and white picture with DVD or Video CD disc	The disc format is not according to the TV set used (PAL/NTSC).
No audio at digital output	Check the digital connections. Check the settings menu to make sure that the digital output is set to on.
	 Check if the audio format of the selected audio language matches your receiver capabilities.
Recorder does not respond to all operating commands during playback of a DVD-Video disc	Some operations are not permitted by the disc. Refer to the instructions in the disc inlay.

The recorder does not record timer programme	• Make sure that the recorder is switched to standby before the timer starts.
No new title can be recorded	Check if the maximum number of titles has been reached (message: too many titles' on screen). If so, delete a title next to a free space. Check if the disc is write protected. If so, unlock the disc in the disc settings menu (message: Disc locked' on screen). Check if the (DVD+R) disc has been finalized. If so, no new titles can be recorded anymore.
Service codes on the display	Clean the disc. The recording was most probably done correctly.
'Disc warning' message on screen	\bullet A write error has occured, but it could be corrected. No user action is required.
'Disc error' message on screen	 A write error has occured from which the recorder could not recover. Inspect the disc and clean it if necessary (refer to 'Intoduction - Cleaning discs' for cleaning instruction). Record (overwrite) again over the same part of the disc to see if the problem is solved
Disc errors	A disc might be corrupted because of dust, scratches or fingerprints. If the disc cannot be accessed anymore, use the back-up disc erase procedure to repair it. Proceed as follows: Clean the disc. Put disc in the drawer (do not close the tray). Press and hold CLEAR for several seconds until the tray closes.
Two languages are 'mixed' when recording from a stereo VCR	 When the TV set does not automatically detect the dual-language signal, use left/right audio balance on the TV set to amplify the one or the other language.
The disc cannot be erased because the Index Picture Screen does not appear	Open the tray while leaving the disc in. Hold CLEAR pressed for around 5 seconds until the tray closes. The disc is technically not yet erased but you can start a new recording like on a blank disc.
The Index Picture Screen does not appear but the titles on the disc can still be played	Take out the disc. Clear the disc. Insert the disc. Choose 'Adapt to own disc format' (See 'User Preferences - Features).
A DVD player shows the Index Picture Screen but does not react to the ▶ PLAY key	• Press ■ STOP to exit the Index Picture Screen, then press ▶ PLAY.
A DVD+RW disc does not play on a certain DVD player	There are DVD Players that will not play recordings made with a DVD Recorder. With a special procedure the recorder will solve this problem for some players. Proceed as follows: 1. Put the disc in the drawer (do not close the tray) 2. Press and hold the 2 key on the remote control for several seconds until the tray closes. The disc is now modified. 3. If the change has no effect, you may perform the same procedure with the 3 key on the remote control. Note: Modifying the disc can solve the problem for a specific player model, but playback in other DVD players may no longer be possible. It is therefore recommended to use this procedure carefully and only when needed. To revert the disc to the original state, follow the same procedure with the 1 key on the remote control.

Diagnosis programme

If the recorder is still faulty you can start the Diagnosis Programme in the recorder.

You can operate the Diagnosis Programme by following the instructions step by step.

Instructions

- Unplug the power cord of the recorder.
- Press the FPLAY key and keep them pressed while you plug the recorder.
- ➤ On the display the message 'BU53' appears together with a counter. This counter indicates the termination of the test when zero is reached.
- ➤ After a few minutes the message on the local display changes over from 'BUS3' to 'FRIL' or to 'PRSS'.
- ➤ If the message 'FAIL' appears on the display, there is apparently a failure in your recorder and your recorder should be repaired.
- Consult your dealer or the Philips Customer Care Centre for the nearest Service Repair Shop in your country. The phone number is given in your warranty booklet.
- If the message 1985' appears on the display, there is apparently no failure in your recorder, in this case the failure can be caused by incorrect interpretation of the operating instructions or a wrong disc is used or your recorder is not correctly connected. In this case you should consult your dealer or the Philips Customer Care Centre for further assistance in solving the problem.
- If the problem remains, then consult your Philips Customer Care Centre.

System limitations

DVD+RW and DVD+R discs may not play on certain DVD Video players.

A DVD+RW video disc that has been recorded on a different type or brand of recorder can be played, but may not provide all features commonly available to DVD+RW discs, such as the on-screen disc bar, the disc settings menu, the title settings menu, and editing. Refer to 'Adapt disc format.' If the disc is write-protected, the status cannot be changed.

When using manual recording, the DVD recorder will warn before adapting the format of the disc or removing non-video data. When using timer recording however, the DVD recorder will always start to record, unless the disc is write-protected. Menus, edits and other data recorded on a different device (e.g. a PC) may be lost.

Because of the Variable Bit Rate, a title map take up less or more space than the overwritten title, even though the duration is the same. As a result, a part of the original title may remain, or a part of the next title may be lost. The maximum deviation is five minutes.

After a power interruption during recording, the Index Picture Screen will may not match with the actual video content on the disc. The last recorded title may be lost.

Glossary

This section explains most important terms, abbreviations, and acronyms used in this document.

Term	Explanation Audio Coding 3, also known as Dolby Digital. Multi-channel digital audio compression system from Dolby Labs.		
AC-3			
A/V	Audio/Video		
Chapter	A part of a title.		
Disc Bar	A graphical representation of the contents of a (DVD+RW) disc.		
Disc Pointer	An arrow indicating the current playback/recording position on the DVD+RW disc, displayed on the 'disc bar'.		
DTS	Digital Theater System. A high-end Multi-channel audio compression format.		
DV	Digital Video. A camcorder format for high-quality video, different from MPEG. It is converted into MPEG 2 Video when recorded on DVD+RW		
DVD	Digital Versatile Disc		
DVD+R	DVD+Recordable. The write-once disc standard used by the DVD recorder.		
DVD+RW	DVD+ReWritable. One of the disc standards used by the DVD recorder.		
EasyLink	If your TV set and your video recorder are equipped with this feature, they can exchange information to adjust certain settings to each other, such as the TV channel order and other user preferences.		
FSS	Favorite Scene Selection. see 'Managing disc content'.		
i.LINK	Also known as 'FireWire' and 'IEEE 1394'. A cable for transfer of high- bandwidth digital signals, as used by Digital Video camcorders.		
Index Picture Screen	A screen that gives an overview of a DVD+RW disc, wih 'index pictures' that each represent a recording.		
MPEG	Motion Picture Experts Group. A collection of compression systems for digital audio and video.		
NexTVIEW Link	A system that enables easy programming of a video recorder via a TV set. Also see EasyLink.		
NICAM	System for reception of digital stereo TV sound.		
NTSC	See TV system.		
OSD	On-screen Display. The 'user interface' by which you can control the DVD recorder via the TV screen.		
OTR	One-Touch Recording. With this feature you can easily start a recording (by pushing just one button) and select the switch-off time in intervals of 30 minutes.		

52 GLOSSARY

PAL	See TV system.
PBC	Playback Control. A special feature on a VCD 2.0 or Super VCD disc that enables interactive use.
РСМ	Pulse Code Modulation. A digital audio encoding system.
PDC	Program Delivery Control
RGB	Red-Green-Blue. A top-quality video connection where red, green and blue components of a video signal are carried through separate wires.
SCART cable	Also known as Euro-AV cable. This standard cable is an easy way to connect various AV devices and televisions. In addition to audio and video it can carry control signals.
SECAM	See TV system.
S-video	Sometimes also called S-VHS or Super-VHS. A high-quality video connection standard.
SVCD	Super Video Compact Disc.
Title	It is the name given to the unit of recording on the disc. A title, typically, represents one recording.
TruSurround	A system for simulating Multi-channel sound reproduction via a two- channel set-up, by SRS Labs, Inc.
TV system	There are various systems for transmitting television signals, for example PAL, PAL-I, PAL-BG, SECAM, SECAM-DK, NTSC, etc. The TV system is country dependant.
VCD	Video Compact Disc
VCR	Video Cassette Recorder
VIDEO Plus+	A system by which you can easily program a timer recording by entering a nine-digit VideoPlus+ number found next to the programme description in most TV guides.
VPS	Video Programming System

Appendix

Using your DVD recorder remote control with your TV set

Your DVD recorder remote control can transmit several commands to TV sets of different brands. The following keys will always operate the TV set:

- VOL+ increase TV volume
- VOL decrease TV volume

- ≰ mute TV

Some other keys normally operate the DVD recorder, but will operate the TV set when you keep the button on the side of the remote control pressed:

- CH + next TV programme number - CH - previous TV programme number
- 0 9 choose TV channel

switch TV set to standby - (¹)

Remote control set-up codes	BSR321
or television	BTC 245
	Bang & Olufsen 592
AOC046, 057	Basic Line 036, 245
Acura 036	Baur 064, 037, 581
Admiral 120, 490	Baysonic 207
Adyson 244	Beaumark 205
Aiko	Beko 397
Akai	Belcor
Akura 245, 291	Bell & Howell 181
Alaron	Beon
Alba 064, 036, 245, 063, 398	Binatone 244
Allorgan 321	Blaupunkt 581
America Action	Blue Sky 245
Amplivision 244	Blue Star 309
Amstrad 198, 398, 036, 064	Boots 244
Anam 207, 036	Bradford 207
Anitech	Brandt
Arcam	Britannia 243
Asuka 245	Brockwood046
Atlantic 233	Broksonic 263, 490
Audiosonic 064, 136	Bush 064, 398, 245, 036, 063,
Audiovox 119, 207, 478	
Autoyox	CCE
BPL309	CS Electronics 243

If your TV set does not respond to the remote control, you can re-programme your remote control. Below you will find a list of all available remote control codes for various TV brands. The following procedure reprogrammes your remote control:

- Look up the set-up code for your TV set in the code list below.
- Press and hold the RETURN and SELECT key simultaneously for at least 3 seconds.
- Release both keys.
- Enter, within 30 seconds, the correct three-digit code with the digit keys 0-9.
- If the selected code does not work with your TV set, or if the brand of your TV set is not in the list, try out the codes one after the other.

Alternative procedure:

172 181 193 478

- Switch on your television set.
- Press and hold the RETURN and SELECT key simultaneously for at least 3 seconds.
- Release both keys.

CXC

Point the remote control to your TV set.

207

- Press and hold the () STANDBY key. > Your TV set switches off when the right code is found
- When your TV set switches off, immediately release the (1) STANDBY key.
- > Your remote control is now re-programmed.
- This complete procedure may take up to 2 minutes.

CXC	
Candle 057, 083	Cybertron
Carnivale	Daewoo 119, 046, 401, 478,
Carrefour	036, 064, 066
Carver	Dainichi
Cascade 036	Dansai064
Cathay	Dayton
Celebrity027	Daytron 046
Centurion	Decca 064, 099
Cimline	Denon 172
Cineral 478, 119	Dixi
Citizen 083, 057, 066, 087,	Dual Tec
	Dumont 044, 046, 097
Clarivox	Electroband027
Clatronic 397	Elin
Concerto	Elite
Condor	Elta
Contec 036, 063, 207, 243	Emerson 263, 207, 205, 206,
Craig	490, 309, 066, 046, 181
Crosley	Envision
Crown 397, 036, 064, 066,	Erres 039, 064
207, 445	Expert
Crystal 458	Ferguson 136, 064
Curtis Mathes 087, 057, 066,	Fidelity 243
074, 078, 081, 083, 120,	Finlux 064, 132, 097, 099, 206

	Leyco 099, 064, 291, 321	Portland 046, 066, 119
Fisher 244, 181, 397	Liesenk & Tter 064	Prism
Flint	Luma	Profex
Formenti 347, 064	Luxman	Proline 348
Frontech 458, 291	M Electronic 132, 244, 036,	Proscan
Fujitsu 206, 099, 233	064, 136, 401	Protech 064, 129, 036, 458,
Funai 321, 198, 206, 207, 291	MGA 177, 046, 057, 205	244, 291, 445
Futuretech 207	MTC 087, 057, 046, 083, 243	Proton
GE 048, 074, 078, 205, 478,	Magnadyne 129	Pulsar 044, 046
	Magnafon 129	Pye
GEC 099, 064, 244	Magnavox 081, 057, 063, 206	Quasar 078, 277, 192, 677
GPM 245	Manesth 347, 244, 291	Quelle 064, 097, 037, 581
Geloso	Marantz 064, 081, 057	Questa
Genexxa	Mark	R-Line
Gibralter 044, 046, 057	Matsui . 036, 064, 244, 398, 062,	RBM
GoldStar 064, 046, 057, 205,		RCA 074, 046, 078, 117, 120
	Matsushita 277, 677	Radio Shack 192, 207, 057,
	Mediator	
Goodmans 064, 099, 206,		
398, 063, 244, 401	Megatron	
Gorenje	Memorex 205, 036, 083, 177,	Radiola
Gradiente	181, 277, 490	Rank Arena
Granada 064, 099, 244	Midland 044, 066, 074, 078	Realistic 192, 207, 181, 057,
Grandin	Minerva	066, 205, 046, 083
Grundig 097, 581, 064	Minutz048	Revox
Grunpy 206, 207	Mitsubishi 063, 135, 177, 205,	Rex 233, 291
HCM036, 309	046, 120	Rhapsody243
Hallmark 205	Mivar243	Roadstar 036, 291, 245, 445
Hanseatic 064, 347	Motorola120	Runco 044, 057
Harley Davidson 206	Multitech 036, 129, 207, 243,	SBR 039, 064
Harman/Kardon 081		SEG 244, 063, 291
Harvard	NAD 183, 193, 205	SEI 129, 037, 321
Hinari 036, 063, 064, 245,	NEC 057, 063, 046, 083, 482	SKY064
	NEI 064, 458	SSS 046, 207
Hisawa	NTC	Saba
Hitachi 136, 071, 172, 244.	Neckermann 064, 581	Saisho 036, 291, 458
	Nesco 206	Sambers 129
Huanyu 243, 401	Netsat064	Sampo 057, 066
Hypson 291, 064, 309	Nikkai . 064, 062, 245, 099, 243,	Samsung 064, 046, 205, 244,
ICE 244, 291, 398	291	
ICeS 245	Nikko 205, 057, 119	066, 083, 087, 117
ITS	Nobliko129	Samsux
Imperial	Nordmende	Sandra
Indiana	Onwa 207	Sansei
Infinity	Optimus 277, 193, 181, 677	Sansui
Inno Hit	Optonica	Sanyo
Inno riic	Orion . 321, 490, 064, 206, 263,	Schneider 064, 245, 398
Inteq044		Scimitsu
Interfunk	Osaki 099, 244, 245, 291	Scotch
Intervision 064, 129, 244, 291	Oso245	Scott 263, 046, 205, 206, 207
Isukai	Osume	Sears 181, 083, 183, 074, 081,
JBL	Otto Versand 064, 037, 063,	
JCB 027	244, 347, 581	Seleco 233
JVC 080, 063, 398, 680	Palladium 397, 445	Semivox 207
KEC 207	Panama 244, 291	Semp
KTV 207, 244, 057, 066	Panasonic 078, 277, 677	Sentra
Kaisui 245, 244, 036, 243, 309	Pathe Cinema 347, 243	Sharp 120, 192, 063, 066
Kamp 243	Pausa036	Shogun 046
Kapsch 233	Penney 074, 087, 057, 048,	Shorai 321
Kawasho 243	205, 078, 066, 046,	Siarem 129
Kendo		Siemens 581, 064
Kenwood 057, 046	Perdio 347	Silver
Kingsley243	Philco 172, 046, 057, 081, 490	Sinudyne 129, 037, 321
Korpel064	Philips 064, 039, 081, 401, 581	Sonoko 036, 064
Koyoda 036	Phonola	Sontec
LG083	Pilot 046, 057, 066	Sony

Firstline.... 348, 036, 243, 244, LXI.... 181, 074, 081, 183, 205 Pioneer....... 136, 193 Soundesign..... 205, 206, 207

Soundwave 064,	445
Squareview	198
Standard 244, 245.	036
Starlite	207
Stern	233
Sunkai 321,	240
Suirkai	003
Supra	003
Supreme	02/
Susumu	245
Sylvania	057
Symphonic	198
Sysline	064
TMK	205
TMK	120
Tashiko	244
Tatung 099, 244,	064
Tec	244
Total	247
Technema	
Technics 078, 277,	
Technol Ace	20€
Techwood 078,	083
Techwood 078, Teknika 081, 206, 207,	046
066, 119, 083, 087,	. 177
Telefunken	083
Telemeister	347
Teletech	034
Teletech	244
T 245 224	247
Tensai 245, 321. Texet	341
l exet	. 24:
Thomson	. 136
Thorn 064, 062	099
Tomashi	. 309
Toshiba 062, 183, 063,	097
	181
Totevision	. 066
Uher 233	347
Litravov	129
Ultravox	30
Vector Research	05
vector Research	. 03/
Vestel	
Victor	
Videotechnic	
Vidikron	. 08
Vidtech 046, 063	, 20!
Vision	. 347
Waltham	. 24
Wards 081, 192, 205,	046
048, 057, 083	20
Watson 347	06
\A/ Ddi-	420
Watt Radio	. 12
Wega	. 06.
White Westinghouse	347
064, 243	, 490
Yamaha 046	. 05.
Yoko 244, 064, 291	, 458
Zanussi	. 23
Zenith 044, 119	. 490

Austria tel: 43-0810 001 203

Belgium tel: 32-2-070 222 303

Denmark tel: 808 82 814

Finland tel: 358-09-6158 0250

France tel: 33-1-825 889 789

Germany tel: 49-0-180-535 6767

Greece tel: 30-0-0800-3122 1280

Ireland tel: 353-1-7640292

Italy tel: 800-820026 (Toll Free)

Luxembourg tel: 352-404061215

Netherlands tel: 0900-8406

Norway tel: 22-748 250

Portugal tel: 352-1-4163063

Spain tel: 34-902-113 384

Sweden tel: 08 5985 2250

Switzerland tel: 0844 800 544

United Kingdom tel: 44-0-208 665 6350

Poland tel: 48-22-571 0571

56 APPENDIX

Personal Notes:	
,	

Directions

Mechanical Instructions 4.

4.1 **Service Positions**

4.1.1 Front

Front

Figure 4-1

4.1.2 DVIO board

To put the DVIO board in a service position, an extender board must be used. This extender board can be ordered with codenumber 3104 128 07770.

DVIO Extender

Figure 4-2

DVIO 1

Figure 4-3

DVIO 2

Figure 4-4

4.1.3 Digital board

After demounting of DVIO board, the top side of the digital board is in reach. To reach the bottom side of the digital board, the DVDR module must be demounted together with the digital board. Connected to each other, the assembly can be set in a service position. In this position, the bottom side of the digital board and the servo board are in reach to be serviced.

Digital 1

Figure 4-5

Digital 2

Figure 4-6

4.1.4 Analog board

To put the analog board in service position, demount the assembly of analog board and backplate as follows:

- 1. Remove 3 screws from the backplate to the frame
- 2. Remove the screw from the backplate to the mains inlet of the power supply
- 3. Remove the screw of the analog board to the frame
- 4. Release the snaps of the 4 spacers of the analog board to the frame

Turn the assembly of the backplate and the analog board against the loader.

Analog Europe

Figure 4-7

Analog NAFTA

Figure 4-8

4.2 **Exploded View of the Front Assembly**

Front EV

Figure 4-9

EΝ 36

4.3

Dismantling Instructions

Instructions

DVDR980-985 /0X1

Mechanical Instructions

Dismantling

Switched Operating Power supply 1002 ⇒ Remove the connections ⇒ Remove screws 204 → 206

(board → frame) ⇒ Remove screw 268

(mains inlet → backplate) ⇒ Release the snaps of 2 spacers

183 and 184 (board → frame) ⇒ Demount the board

screwdriver, it is possible to unlock the tray. Push the white pin of the slider at the bottom side of the loader to the left.

Figure 4-10

DISMANTLING INSTRUCTIONS

Exploded View of the Set 4.4

Complete Set EV

Figure 4-11

Diagnostic Software and Faultfinding Trees

Due to the complexity of the DVD recorder, the time to find a defect in the recorder can become long. To reduce this time, the recorder has been equipped with Diagnostic and Service software (DS). The DS offers functionality to diagnose the DVDR hardware and tests the following:

- Interconnections between components
- Accessibility of components
- Functionality of the audio and video paths

This functionality can be accessed via several interfaces:

- 1. End user/Dealer script interface
- 2. Player script interface
- Menu and command interface

5.1 **End User/Dealer Script Interface**

5.1.1 **Description**

The End user/Dealer script interface gives a diagnosis on a stand alone DVD recorder; no other equipment is needed. During this mode, a number of hardware tests (nuclei) are automatically executed to check if the recorder is faulty. The diagnosis is simply a "fail" or "pass" message. If the message "FAIL" appears on the display, there is apparently a failure in the recorder. If the message "PASS" appears, the nuclei in this mode have been executed successfully. There can be still a failure in the recorder because the nuclei in this mode don't cover the complete functionality of the recorder.

5.1.2 Contents

Figure 5-1

The End use/Dealer script executes all diagnostic nuclei that do not need any user interaction and are meaningful on a standalone DVD recorder. The nuclei called in the End user/ Dealer script are the following:

Counter	Nucleus	Name	Description
22	104	HostdSdramWrR	checks all memory locations of the 4MB SDRAM
21	106	HostdDramWrR	checks all the DRAM connected to the microprocessor of the digital board
20	123	Hostdl2cNvram	checks the data line (SDA) and the clock line (SCL) of the I2C bus between the host decoder and NVRAM
19	202	SAA7118l2c	checks the interface between the Host I2C controller and the AVENC SAA7118 Video Input Processor
18	200	VideoEncl2c	checks the interface between the host I2C controller and Empress SAA6752
17	207	AudioEncl2c	checks the I2C connection between the host decoder and Empress SAA6752
16	204	AudioEncAccess	tests the HIO8 interface lines between the host decoder and the audio encoder
15	203	AudioEncSramAccess	checks the access of the SRAM by the audio encoder (address and data lines).
14	205	AudioEncSramWrR	tests the SRAM connected to the audio encoder
13	206	AudioEncInterrupt	tests the interrupt line between the host decoder and the audio encoder
12	300	VsmAccess	checks whether the VSM interrupt controllers and DRAM are accessible
11	303	VsmInterrupt	checks both interrupt lines between the VSM and the host decoder
10	302	VsmSdramWrR	tests the entire SDRAM of the VSM
9	1400	Clock11_289MHz	switches the A_CLK of the micro clock to 11.2896 MHz
8	1401	Clock12_288MHz	switches the A_CLK of the micro clock to 12.288 MHz
7	601	BeS2Bengine	checks the S2B interface with the Basic Engine by sending an echo command
6	500	DisplayEcho	checks the interface between the host processor and the slave processor on the display board
5	700	AnalogueEcho	checks the interface between the host processor and the microprocessor on the analogue board
4	711	AnalogueNvram	checks the NVRAM on the analogue board
3	706	AnalogueTuner	checks whether the tuner on the analogue board is accessible
2	901	LoopAudioUserDealer	This nucleus tests the components on the audio signal path The host decoder - The analogue board - The audio encoder - The VSM On the analogue board the audio is internally looped back to the digital board
1	906	LoopVideoUserDealer	Nucleus for testing the components on the video signal system path: - The VIP - The video encoder - The VSM - The host decoder - The analogue board On the analogue the video signal is internally routed back to the digital board.

5.2 **Player Script Interface**

5.2.1 Description

The Player script will give the opportunity to perform a test that will determine which of the DVD recorder's modules are faulty, to read the error log and to perform an endurance loop test. To successfully perform the tests, the DVD recorder must be connected to a TV set.

To be able to check results of certain nuclei, the player script expects some interaction of the user (i.e. to approve a test picture or a test sound). Some nuclei (e.g. nuclei that test functionality of the DVDR module) require that a DVD+RW disc is inserted.

Only tests within the scope of the diagnostic software will be executed hence only faults within this scope can be detected.

5.2.2 Structure of the Player Script

The player script consists of a set of nuclei testing the hardware modules in the DVD recorder: the Display PWB, the Digital PWB, the Analogue In/Out PWB and the DVDR module. Nuclei run by the player test need some user interaction; in the next table this interaction is described. The player test is done in two phases:

- Interactive tests: this part of the player test depends strongly on user interaction and input to determine nucleus results and to progress through the full test. Reading the error log information can be useful to determine any errors that occurred recently during normal operation of the DVD player.
- The loop test will perform the same nuclei as the dealer test, but it will loop through the list of nuclei indefinitely.

STEP	DESCRIPTION	NUCLEUS
1	Press OPEN/CLOSE and PLAY at the same time and POWER ON the recorder to start the playerscript	2
2	The local display shows FPSEGMENTS. Press PLAY to start the test. First the starburst pattern is lit, then the horizontal segments are lit, followed by the vertical segments and the last test is light all segments test. After each of the 4 tests the user has to confirm that the correct pattern was lit. Press PLAY to confirm that the correct pattern was lit (four times if the FPSEGMENTS test was successful). Press RECORD to indicate that the correct pattern was not successfully lit. Press STOP to skip this nucleus.	502
3	The local display shows FPLABELS. Press PLAY to start the test. Press PLAY to confirm that all labels are lit. Press RECORD to indicate that not all labels are lit. Press STOP to skip this nucleus.	503
4	The local display shows FPLIGHT ALL. Press PLAY to start the test. Press PLAY to confirm that everything was lit. Press RECORD to indicate that not all patterns are lit. Press STOP to skip this nucleus.	520
5	The local display shows FPLED. Press PLAY to start the test. Press PLAY to confirm that the led is lit. Press RECORD to indicate that the led is not lit. Press STOP to skip this nucleus.	504
6	The local display shows FPFLAP OPEN. Press PLAY to start the test. Press PLAY to confirm that the flap has opened. Press RECORD to indicate that the flap did not open. Press STOP to skip this nucleus.	522
7	The local display shows FPKEYBOARD. Press PLAY to start the test. Attention all keys have to be pressed to get a positive result! Press PLAY for more than one second to confirm that all the keys were pressed and shown on the local display. If not all the keys were pressed, a FAIL message will appear on the local display. Press RECORD for more than one second to indicate that not all keys were pressed and shown on the local display. Press STOP for more than one second to skip this nucleus.	505
3	The local display shows FPREMOTE CONTROL . Press PLAY to start the test. Press PLAY to confirm that a key on the remote control was pressed and shown on the local display. Only one key has to be pressed to get a successful result. Press RECORD to indicate that the key on the remote control was pressed but not shown on the local display. Press STOP to skip this nucleus.	506
9	The local display shows FPDIMMER. Press PLAY to start the test. Press PLAY to confirm that the text on the local display was dimmed. Press RECORD to indicate that the text on the local display was not dimmed. Press STOP to skip this nucleus.	518
10	The local display shows FPBEEPER. Press PLAY to start the test. Press PLAY to confirm that the beeper on the front panel sounded. Press RECORD to indicate that the beeper on the front panel did not sound. Press STOP to skip this nucleus.	514
11	The local display shows FPFLAP CLOSE. Press PLAY to start the test. Press STOP to skip this nucleus.	523
12	The local display shows ROUTE VIDEO . Press PLAY to start the test. Press STOP to skip this nucleus.	712
13	The local display shows ROUTE AUDIO . Press PLAY to start the test. Press STOP to skip this nucleus.	713
14	The local display shows COLOUR-BAR ON. Press PLAY to start the test. Press STOP to skip this nucleus.	120

Diagnostic Software and Faultfinding Trees

STEF	DESCRIPTION	NUCLEUS
15	The local display shows PINK NOISE ON. Press PLAY to start the test. Press STOP to skip this nucleus.	115
16	The local display shows PINK NOISE OFF. Press PLAY to start the test. Press STOP to skip this nucleus.	116
17	The local display shows SINE ON. Press PLAY to start the test. Press STOP to stop the sine. Press STOP to skip this nucleus.	117
18	The local display shows COLOUR-BAR OFF. Press PLAY to start the test. Press STOP to skip this nucleus.	121
19	The local display shows BERESET . Press PLAY to start the test. Press STOP to skip this nucleus.	603
20	The local display shows BETRAY OPEN . Press PLAY to start the test. Press STOP to skip this nucleus.	616
21	The local display shows BETRAY CLOSE . Press PLAY to start the test. Press STOP to skip this nucleus.	615
22	The local display shows BEWRITE READ . Press PLAY to start the test. Press STOP to skip this nucleus.	617
23	The local display shows BETRAY OPEN . Press PLAY to start the test. Press STOP to skip this nucleus.	616
24	The local display shows BETRAY CLOSE . Press PLAY to start the test. Press STOP to skip this nucleus.	615
25	The local display shows READ ERRORLOG . Press PLAY to start the test. Press STOP to skip this nucleus. If the player test succeeded, the user/dealer script will start in an endless loop. If the player test failed, the local display will display FAIL and the error code	633

Remark

In case of failure, the display shows " FAIL XXXXXX ". The description of the shown error code can be retrieved in the survey of Nuclei Error Codes (paragraph 5.4). Once an error occurs, it is not possible to continue the player script. Unplug the set and restart the player script. By pressing the STOP key, it is possible to jump over the failure and to continue the player script.

DVDR980-985 /0X1

Figure 5-3

5.2.3 Error Log

Explanation:

The application errors will be logged in the NVRAM. The maximum number of error bytes that will be visible is 19. The last reported error is shown as DN D0000000, the oldest visible error as D0000000 UP and the errors in between as DN D0000000 UP. DN stands for DOWN, UP stands for UPWARDS. The shown D error codes are identical to the Nuclei Error Codes (paragraph 5.4).

5.2.4 Trade Mode

TRADE MODE

When the recorder is in Trade Mode, the recorder cannot be controlled by means of the front key buttons, but only by means of the remote control.

Figure 5-4

5.2.5 Virgin mode

If you want that the recorder starts up in Virgin mode, follow this procedure:

- Unplug the recorder
- plug the recorder again while you keep the STAND BY/ON key pressed
- the set starts up in Virgin mode.

5.3 **Menu and Command Mode Interface**

5.3.1 **Nuclei Numeration**

Each nucleus has a unique number of four digits. This number is the input of the command mode.

Figure 5-5

The following groups are defined:

Group number	Group name
0	Basic / Scripts
1	Host decoder (Sti5505 and memory)
2	Audio / video encoder (DVDR only)
3	VSM (DVDR only)
4	NVRAM
5	Front Panel
6	Basic Engine
7	Analogue board (DVDR only)
8	DVIO (DVDR only)
9	Loop nuclei (DVDR only)
10	Library sub nuclei (I2C nuclei)
11	User interface
12	Furore (SACD only)
13	DAC (SACD only)
14	Miscellaneous

5.3.2 **Error Handling**

Each nucleus returns an error code. This code contains six numerals, which means:

Figure 5-6

The nucleus group numbers and nucleus numbers are the same as above.

5.3.3 **Command Mode Interface**

Set-Up Physical Interface Components

Hardware required:

- Service PC
- one free COM port on the Service PC
- special cable to connect DVD recorder to Service PC

The service PC must have a terminal emulation program (e.g. OS2 WarpTerminal or Procomm) installed and must have a free COM port (e.g. COM1). Activate the terminal emulation program and check that the port settings for the free COM port are: 19200 bps, 8 data bits, no parity, 1 stop bit and no flow control. The free COM port must be connected via a special cable to the RS232 port of the DVD recorder. This special cable will also connect the test pin, which is available on the connector, to ground (i.e. activate test pin).

Code number of PC interface cable: 3122 785 90017

Activation

Plug the recorder to the mains and the following text will appear on the screen of the terminal (program):

```
DVD Video Recorder Diagnostic Software version 48
Basic SDRAM Data bus test passed
Basic SDRAM Address bus test passed
Basic SDRAM Device test passed
(M) enu, (C) ommand or (S) 2B-interface?
                                                        [M] : @ C -
                                                            CL 16532095_073.eps
```

Figure 5-7

The first line indicates that the Diagnostic software has been activated and contains the version number. The next lines are the successful result of the SDRAM interconnection test and the basic SDRAM test. The last line allows the user to choose between the three possible interface forms. If pressing C has made a choice for Command Interface, the prompt ("DD>") will appear. The diagnostic software is now ready to receive commands. The commands that can be given are the numbers of the nuclei.

DVDR980-985 /0X1

Command Overview

We provide an overview of the nuclei and their numbers. This overview is preliminary and subject to modifications.

Host Decoder [01]

[xx yy]	Nuclei
Number	
100	Checksum Flash
101	Flash Write Access 1
102	Flash Write Access 2
103	Flash Write Read
104	SdRam Write Read
105	SdRam Write Read Fast
106	Dram Write Read
107	Dram Write Read Fast
108	Hardware Version
109	Mute On
110	Mute Off
115	Pink Noise On
116	Pink Noise Off
117	Sine On
118	Sine Burst 1kHz
119	Sine Burst 12kHz
120	Colour-bar On
121	Colour-bar Off
122	NvramWrR
123	Nvraml2c
130	Boot Version
131	Application Version
132	Diagnostics Version
133	Download Version
134	Write / read I2C message to / from digital board
135	Video Test Signal On
136	Video Test Signal Off
137	Macrovision Off

Audio Video Decoder [02]

[xx yy] Number	Nuclei
200	Video Encoder I2C
202	SAA7118 I2C
203	Audio Encoder SRAM Access
204	Audio Encoder Access
205	Audio Encoder SRAM Write Read
206	Audio Encoder Interrupts
207	Audio Encoder I2C
208	SAA7118 select input
209	Empress Version

VSM [03]

[xx yy] Number	Nuclei
300	Register Access
301	SDRAM Access
302	SDRAM Write Read
303	Interrupt lines
304	VSM Interconnection
305	UART

NVRAM [04]

[xx yy] Number	Nuclei
400	Reset
401	Read

[xx yy] Number	Nuclei
402	Modify
403	UniqueNr Read
404	Read Error Log
407	Reset Error Log
409	Line2 Region-Code Reset
410	UniqueNr Store

Front Panel [05]

[xx yy] Number	Nuclei
500	Echo
501	Version
502	Segment
503	Label
504	Led
505	Keyboard
506	Remote-Control
507	Segment Starburst
508	Segment Vertical
509	Segment Horizontal
514	Beeper
515	Discbar
516	Discbar Dots
517	Vu / Grid
518	Dimmer
519	Blinking
520	Light All Segments
522	Flap Open
523	Flap Close

Basic Engine [06]		
[xx yy]	Nuclei	
Number		
600	S2B Pass	
601	S2B Echo	
602	Version	
603	Reset	
604	Focus On	
605	Focus Off	
606	Disc Motor On	
607	Disc Motor Off	
608	Radial On	
609	Radial Off	
615	Tray In	
616	Tray Out	
617	Write Read	
618	Write Read Endless Loop	
619	Selftest	
620	BE Test	
621	Laser Test	
622	Spindle (Disc) Motor Test	
623	Focus Test	
624	Sledge Motor Test	
625	Sledge Motor Slow	
626	Tilt	
627	EEPROM Read	
628	EEPROM Write	
629	Optimise Jitter	
630	Radial ATLS Calibration	
631	Get Statistics Information	
632	Reset Statistics Information	

[xx yy] Number	Nuclei
633	BE Read Error Log
634	BE Reset Error Log
638	Get Self Test Result
639	Radial Initialisation
640	Get OPU info
641	Write read +R
642	Write read +R endless loop

Analog Board [07]

[xx yy] Number	Nuclei
700	Echo
703	Boot Version
704	Hardware Version
705	Clock Adjust
706	Tuner
707	Frequency Download
708	Data Slicer
709	Sound Processor
710	AV Selector
711	Nvram
712	Route Video
713	Route Audio
715	Set Slash Version
716	Application Version
717	Diagnostics Version
718	Download Version
720	Bargraph Level Adjustment
721	Clock correction
722	Clock reference
723	Re-virginise Recorder
724	Flash Checksum
725	Tuner frequency selection
727	Set virgin bit
728	Clear Virgin Bit
729	Write / read I2C message to / from analogue board
730	Store external presets
731	Get slash version
732	AFC Reference Voltage Tuner

DVIO [08]

[xx yy] Number	Nuclei
800	Check DVIO board presence
801	Reset DVIO
802	DVIO Access
803	Get DVIO error codes
804	Get DVIO module lds
805	Execute DVIO module SelfTest
806	Set DVIO led on.
807	Set DVIO led off.

Loop Nuclei [09]

[xx yy] Number	Nuclei
900	Digital Audio Loop
901	User / Dealer Audio Loop
902	Digital Video Loop
903	Digital Video VBI Loop
904	System Video Loop
905	System Video VBI Loop

[xx yy] Number	Nuclei
906	User / Dealer Video Loop
907	User / Dealer Video VBI Loop
908	System Audio Loop SCART
909	System Audio Loop CINCH
910	Digital DVIO Video Loop
911	System Video Vip

Miscellanious [14]

[xx yy] Number	Nuclei
1400	Clock 11.289 MHz
1401	Clock 12.288 MHz
1412	Progressive Scan I2C
1413	Progressive Scan test image on
1414	Progressive Scan test image off
1415	Progressive Scan Route Enable
1416	Progressive Scan Route Disable

Scripts [00]

[xx yy] Number	
1	UserDealer Script
2	Player Script

5.3.4 Menu Mode Interdace

Activation

Plug the recorder to the mains and the following text will appear on the screen of the terminal (program):

Figure 5-8

The first line indicates that the Diagnostic software has been activated and contains the version number. The next lines are the successful result of the SDRAM interconnection test and the basic SDRAM test. The last line allows the user to choose between the three possible interface forms. If pressing M has made a choice for Menu Interface, the Main Menu will appear.

Menu Structure

The following menu structure is given after starting up the DVD recorder in menu mode. The symbol -> indicates that the current menu choice will invoke the display of a submenu.

DVDR980-985 /0X1

Main Menu 1.Digital Board 2.Analogue Board 3.Front Panel 4.Basic Engine 5.DVIO 6.Progressive Scan Board 7.Loop Tests 8.Log 9.Scripts

Digital Board Menu

1.Host Decoder 2.VSM 3.AVENC 4.NVRAM

Host Decoder Menu

- 1.Flash Checksum
- 2.Flash1 Write Access
- 3.Flash2 Write Access
- 4.Flash Write/Read
- 5. Host SDRAM Write/Read
- 6. Host SDRAM Fast Write/Read
- 7. Host DRAM Write/Read
- 8. Host DRAM Fast Write/Read
- 9.I2C NVRAM
- 10.NVRAM Write/Read
- 11.Engine S2B Echo
- 12.Versions 13.Audio Mute 14.Colourbar 15.Pink Noise
- 16.Sine Generate

Digital Board Versions Menu

- 1.Hardware Version
- 2.Bootcode version
- 3.Applications Version
- 4.Diagnostics Version
- 5.Download Version

Audio Mute Menu

- 1.Audio Mute On
- 2. Audio Mute Off

Colourbar Menu

- 1.Colourbar On
- 2.Colourbar Off

Pink Noise Menu

- 1.Pink Noise On
- 2.Pink Noise Off

Sine Generate Menu

- 1.Sine On
- 2.Sine Burst 1kHz
- 3.Sine Burst 12kHz

VSM Menu

- 1.Register Access
- 2.SDRAM Access
- 3.VSM SDRAM Write/Read
- 4.Interrupt Lines
- 5.VSM Interconnection
- 6.UART

AVENC Menu

- 1.Empress
- 2. Video Input Processors

Empress Menu

1.Version number

Video Input Processors Menu

1.SAA7118 I2C Access

NVRAM Menu

- 1.Read Error Log
- 2.Reset Error Log
- 3.Read DVIO Unique ID

Analogue Board Menu

- 1.Echo
- 2.Obsolete
- 3. Route Video Input back to Digital board
- 4. Route Audio Input back to Digital board
- 5.Flash Checksum
- 6.Versions 7.Components -> 8.Re-virginize Recorder

Analogue Board Versions Menu

- 1. Hardware Version
- 2.Bootcode version
- 3.Application version
- 4. Diagnostics version
- 5.Download version

Analogue Components Menu

- 1.Tuner
- 2.Data Slicer
- 3.Sound Processor
- 4.AV Selector
- 5.NVRAM

Analogue Board Re-virginize Menu

- 1.Re-virginize Recorder
- 2.Set Virgin-bit
- 3.Clear Virgin-bit
- 4.Store external presets

Front Panel Menu

- 1.Echo
- 2.Version
- 3.Flap Control
- 4.Segment Test
- 5.Light Labels
- 6.Led test
- 7.Keyboard test
- 8.Remote Control
- 9.Beep
- 10.Disc Bar
- 11.Disc Bar Dots
- 12.Vu Grid
- 13.Dimmer
- 14.Blink
- 15.Light All Segments

Flap Control Menu

- 1.Open Flap
- 2.Close Flap

Segment Test Menu

- 1.Starburst
- 2.Light Horizontal Segments
- 3.Light Vertical Segments
- 4.Light All Segments

Basic Engine Menu

- 1.Reset
- 2.S2B Pass-through
- 3.S2B Echo
- 4. Focus On
- 5. Focus Off
- 6.Version
- 7.Self Test
- 8.Get Self Test Result
- 9.Basic Engine Test
- 10.Laser Test
- 11.Focus Test
- 12.Tilt Test
- 13.Optimise Jitter
- 14.Statistics Info
- 15.Log
- 16.Spindle Motor
- 17.Radial 18.Sledge
- 19.Tray

Basic Engine Error Log

- 1.Read Error Log
- 2.Reset Error Log

Basic Engine Spindle Motor Menu

- 1.Spindle Motor On
- 2.Spindle Motor Off
- 3. Spindle Motor Test

Basic Engine Radial Menu

- 1.Radial On
- 2.Radial Off
- 3. Radial Initialisation
- 4. Radial ATLS Calibration

Basic Engine Sledge Menu

- 1.Sledge test
- 2.Sledge test slow

Basic Engine Tray Menu

- 1.Tray In
- 2.Tray Out

DVIO Menu

- 1.Check Presence
- 2.Reset
- 3.Access
- 4.Error Codes
- 5. Module Identifiers
- 6.Led

DVIO Led Menu

- 1.Led On
- 2.Led Off

Progressive Scan Board Menu

- 1.I2C Access
- 2.Test Image On
- 3.Test Image Off

Loop Tests Menu

- 1.Digital Board Loops
- 2.User/Dealer Loops
- 3.System Loops
- 4.Basic Engine Loops

Digital Board Loops Menu

- 1.Obsolete
- 2.Digital Video Loop
- 3.Digital Video Loop VBI

User/Dealer Loops Menu

- 1.User/Dealer Audio Loop
- 2.User/Dealer Video Loop
- 3.User/Dealer Video Loop VBI

System Loops Menu

- 1.System Video Loop
- 2.System Video Loop VBI
- 3.System Audio Loop SCART(EURO)
- 4.System Audio Loop CINCH (NAFTA)

Basic Engine Loops Menu

- 1.Basic Engine write read
- 2.Basic Engine write read endless loop

Log Menu

- 1.Read Error Log
- 2.Reset Error Log

Script Menu

- 1.User/Dealer Script
- 2.Player Script

Nuclei Error Codes

In the following table the error codes will be described

In the following table the error codes will be described.		
Error Nr	Error String	
10000	"Checksum is OK"	
10001	"segment name Checksum doesn't match" or "segment name segment not found"	
10100	ни	
10101	"FLASH 1 Write access test failed"	
10200	ин	
10201	"FLASH 2 Write access test failed"	
10300	H H	
10301	"FLASH write test failed"	
10302	"FLASH write command failed"	
10303	"FLASH write test done max. number of times"	
10400	H H	
10401	"HostDec SDRAM Memory data bus test goes wrong."	
10402	" HostDec SDRAM Memory address bus test goes wrong."	
10403	" HostDec SDRAM Physical memory device test goes wrong."	
10500	""	
10501	" HostDec SDRAM Memory data bus test goes wrong."	
10502	" HostDec SDRAM Memory address bus test goes wrong."	
10503	" HostDec SDRAM Physical menory device test goes wrong."	
10600	***	
10601	"HostDec DRAM Memory data bus test goes wrong."	
10602	"HostDec DRAM Memory addres; bus test goes wrong."	
10603	"HostDec DRAM Physical memiry device test goes wrong."	
10700	""	
10701	"HostDec DRAM Memory data bus test goes wrong."	
10702	"HostDec DRAM Memory addres bus test goes wrong."	
10703	"HostDec DRAM Physical meminy device test goes wrong."	

Error Nr	Error String
10800	"Host Decoder version(cut) number: versior number""Digital hardware version"
10801	"Can not find version in FLASH."
10900	ни
10901	"Error muting audio"
11000	111
11001	"Error demuting audio"
11500	***
11501	"Init of I2C failed"
11502	"The selection of the clock source failed"
11504	"The demute of the audio failed"
11600	ин
11601	"Init of I2C failed"
11602	"The mute of the audio failed"
11700	111
11701	"Init of I2C failed"
11702	"The muting of the audio failed"
11703	"The demute of the audio failed"
11704	"The selection of the clock source failed"
11707	"Setup of Front panel failed"
11708	"Sine on Front panel keyboard failed"
11800	н
11801	"Init of I2C failed"
11802	"The muting of the audio failed"
11803	"The demute of the audio failed"
11804	"The selection of the clock source failed"
11805	"Error cannot start VSM audio in port"
11900	
11901	"Init of I2C failed"
11902	"The muting of the audio failed"
11903	"The demute of the audio failed"
11904 11905	"The selection of the clock source failed"
12000	"Error cannot start VSM audio in port"
12000	Mayolid input
12100	"Invalid input
12200	ин
12201	"I2C bus busy before start"
12202	"NVRAM access time-out"
12203	"No NVRAM acknowledge"
12204	"NVRAM time-out"
12205	"NVRAM Write/Read back failed"
12300	III
12301	"I2C bus busy before start"
12302	"NVRAM read access time-out"
12303	"No NVRAM read acknowledge"
12304	"NVRAM read failed"
13000	"Bootcode application version : bootversion"
13001	"Can not find version in FLASH."
13100	"Recorder application version : recorderversion"
13101	"Can not find version in FLASH."
13200	"Diagnostics application version : diagversion"
13201	"Can not find version in FLASH."
13300	"Download application version : downloadversion"
13301	"Can not find version in FLASH."
13700	ш
13701	"Turning off MacroVision failed"
20000	пи
20001	"I2C bus busy before start"
20002	"Video Encoder access time-out"
20003	"No acknowledge from Video Encoder"

Error Nr	Error String
20004	"No data send/received to or from Video Encoder"
20005	"SAA7118 VIP can not be initialised"
20200	an
20201	"I2C bus busy before start"
20202	"SAA7118 VIP access time-out"
20203	"No acknowledge from SAA7118 VIP"
20204	"No data received from SAA7118 VIP"
20300	IN Udia received Horri SAA7 110 VIF
20300	"Error audio encoder SRAM access cannot initial-
	ise I2C"
20302	"Error audio encoder SRAM access cannot reset DSP through I2C"
20303	"Error audio encoder SRAM access cannot download boot"
20304	"Error audio encoder cannot download test code"
20305	"Error audio encoder cannot obtain result of test"
20306	"Error audio encoder SRAM access stuck-at-zero data line "
20307	"Error audio encoder SRAM access stuck-at-one data line "
20308	"Error audio encoder SRAM access stuck-at-one address line "
20309	"Error audio encoder SRAM access address line
20310	address line x is connected to data line data line y"
	"Error audio encoder SRAM access address lines address line x and address line y are connected "
20311	"Error audio encoder SRAM access data lines data line x and data line y are connected "
20312	"Error audio encoder SRAM access illegal data received"
20400	111
20401	"Error audio encoder access cannot initialise I2C"
20402	"Error audio encoder access cannot reset DSP through I2C"
20403	"Error audio encoder accessing ICR register"
20404	"Error audio encoder access stuck-at-zero of data
20405	"Error audio encoder access stuck-at-one of data line "
20406	"Audio encoder access data lines data line x and data line y are interconnected "
20500	111
20501	"Error audio encoder SRAM WRR cannot initialise
20502	"Error audio encoder SRAM WRR cannot reset DSP through I2C"
20503	"Error audio encoder WRR cannot download boot"
20504	"Error audio encoder cannot download test code"
20505	"Error audio encoder SRAM WRR cannot obtain
20506	"Error audio encoder WRR SRAM stuck-at-zero
20507	data bit " "Error audio encoder WRR SRAM stuck-at-one
20508	data bit " "Error audio encoder WRR SRAM data lines data
20509	line x and data line y are connected" "Error audio encoder WRR SRAM illegal data re-
20600	ceived"
20600	"Error gudio opoodor interment as as a tistalism 190"
20601	"Error audio encoder interrupt cannot initialise 12C"
	"Error audio encoder interrupt cannot reset DSP through I2C"
20603	"Error audio encoder cannot download test code"
20604	"Error occurred accessing VSM"
20605	"Audio encoder interrupt not received"

Error Nr 20606	Error String "Error occurred while activating the encoder"
20607	"Error audio encoder interrupt cannot initialise em-
20007	press"
20608	"Error occurred while getting interrupt reason"
	End occurred write getting interrupt reason
20700	15 100 100
20701	"Error audio encoder I2C cannot reset DSF through I2C"
20702	"Error audio encoder cannot download boot"
20703	"Error audio encoder cannot download TEST code"
20704	"Error audio encoder I2C bus busy"
20705	"Error audio encoder I2C cannot write slave address"
20706	"Error audio encoder I2C no acknowledge re- ceived"
20707	"Error audio encoder I2C cannot send/receive da- ta"
20708	"Error audio encoder received data through I2C was invalid"
20800	11.0
20801	"I2C access failed."
20802	"SAA7118 VIP can not be initialised."
20803	"Invalid input"
	•
20900	"B1.B2. B3.B4. B5.B6. B7.B8. B9.B10. B11.B12."
20901	"Firmware download of EMPRESS failed"
20902	"I2C bus busy before start"
20903	"EMPRESS access time-out"
20904	"No acknowledge from the EMPRESS"
20905	"No data send to the EMPRESS"
20906	"No data received from the EMPRESS"
30000	nu nu
30001	"VSM SDRAM Bank1 Memory databus test goes wrong."
30002	"VSM SDRAM Bank1 Memory addressbus test
	goes wrong."
30003	"VSM SDRAM Bank1 Physical memory device test goes wrong."
30004	" VSM SDRAM Bank2 Memory databus test goes wrong."
30005	" VSM SDRAM Bank2 Memory addressbus test goes wrong."
30006	" VSM SDRAM Bank2 Physical memory device test goes wrong."
30007	"VSM SDRAM Bank1 VSM interrupt register A has a -stuck at- error for value:"
30008	"VSM SDRAM Bank2 VSM interrupt register A has a -stuck at- error for value:"
30100	1111
30101	"VSM SDRAM Bank1 Memory databus test goes wrong."
30102	"VSM SDRAM Bank1 Memory addressbus test goes wrong."
30103	"VSM SDRAM Bank1 Physical memory device test goes wrong."
30104	" VSM SDRAM Bank2 Memory databus test goes wrong."
30105	" VSM SDRAM Bank2 Memory addressbus test goes wrong."
30106	" VSM SDRAM Bank2 Physical memory device test goes wrong."
30200	ин
30201	"VSM SDRAM Bank1 Memory databus test goes wrong."
30202	"VSM SDRAM Bank1 Memory addressbus test goes wrong."

	I= o.:
Error Nr	Error String
30203	"VSM SDRAM Bank1 Physical memory device test
	goes wrong."
30204	" VSM SDRAM Bank2 Memory databus test goes wrong."
30205	" VSM SDRAM Bank2 Memory addressbus test
30203	goes wrong."
30206	" VSM SDRAM Bank2 Physical memory device
	test goes wrong."
30300	ii si
30301	"VSM interrupt register A has a -stuck at- error for value:"
30302	"VSM interrupt register B has a -stuck at- error for
	value:"
30303	"Interrupt A wasn't raised."
30304	"Interrupt B wasn't raised."
30305	"Interrupts A and B were raised."
30400	ш
30401	"VSM SDRAM Bank1 Memory databus test goes
00.0.	wrong."
30402	"VSM SDRAM Bank1 Memory addressbus test
30402	goes wrong."
30403	"VSM SDRAM Bank1 Physical memory device test
00400	goes wrong."
30404	" VSM SDRAM Bank2 Memory databus test goes
00 10 1	wrong."
30405	" VSM SDRAM Bank2 Memory addressbus test
00403	goes wrong."
30406	" VSM SDRAM Bank2 Physical memory device
30400	test goes wrong."
30500	IIII
	NO
30501	"Communication with the analogue board fails."
30502	"Echo test to analogue board returned wrong
	string."
40000	
40001	"NVRAM Reset; I2C failed"
40100	"NVRAM address = 0xaddress -> Byte value = 0xvalue"
40101	"NVRAM Read; I2C failed"
40102	"NVRAM Read; Invalid input"
40200	ин
40201	"NVRAM Modify; I2C failed"
40202	"NVRAM Modify; Invalid input"
40300	"DV Unique ID = id"
40301	"NVRAM Read DV Unique ID; I2C fa.iled"
40400	"\r\n Error log:\r\n errorString \r\n Ö "
40401	"NVRAM error log; I2C failed"
40402	"NVRAM error log is invalid"
40403	"Front panel failed"
40700	MH.
40701	"NVRAM error log reset; I2C failed"
40900	"Region code Change counter is reset"
40900	
	"NVRAM region code reset; I2C faile d"
41000	
41001	"NVRAM Store DV Unique ID; I2C fa_iled"
41002	"NVRAM Store DV Unique ID; Invalid input"
50000	D.H
50007	"Execution of the command on the araalogue board failed."
50008	"The frontpanel could not be accessed by the ana-
	logue board."
50009	"The echo from the frontpanel processor was not
	correct."
50100	" Front panel version: FPversion "

Error Nr	Error String
50102	"Execution of the command on the analogue board
50400	failed."
50103	"The frontpanel could not be accessed by the analogue board."
50200	Hel
50204	"Execution of the command on the analogue board failed."
50205	"The frontpanel could not be accessed by the analogue board."
50206	"The frontpanel did not show a starburst."
50207	"The user skipped the FP-which pattern test."
50208	"The user returned an unknown confirmation: confirmation "
50209	"The frontpanel did not show horizontal segments."
50210	"The frontpanel did not show vertical segments."
50300	III
50304	"Execution of the command on the analogue board failed."
50305	"The frontpanel could not be accessed by the analogue board."
50306	"The frontpanel did not light all labels."
50307	"The user skipped the rest of the FP-label test."
50308	"The user returned an unknown confirmation: confirmation"
50400	un .
50404	"Execution of the command on the analogue board failed."
50405	"The frontpanel could not be accessed by the analogue board."
50406	"The LED's could not be turned on."
50407	"The user skipped the rest of the FP-LED test."
50408	"The user returned an unknown confirmation: confirmation"
50500	ш
50502	"Front panel Keyboard; test failed"
50503	"Front panel Keyboard; test aborted"
50504	"Front panel Keyboard; not all keys were pressed"
50505	"Front panel keyboard I2C connection failed"
50506	"Unable to get slashversion"
50600	411
50602	"Front panel Remote control; test failed"
50603	"Front panel Remote control; test aborted"
50604	"Front panel remote control; can not access FP"
50605	"Front panel remote control; no user input re- ceived"
50700	111
50701	"Execution of the command on the analogue board failed."
50702	"The frontpanel could not be accessed by the analogue board."
50703	"The frontpanel did not show a starburst."
50704	"The user skipped the FP-starburst test."
50705	"The user returned an unknown confirmation: confirmation "
5080O	111
50801	"Execution of the command on the analogue board failed."
50802	"The frontpanel could not be accessed by the analogue board."
50803	"The frontpanel did not show vertical segments."
0804	"The user skipped the FP-vertical segments test."
50805	"The user returned an unknown confirmation: confirmation "
5090 O	ии

Error Nr	Error String
50901	"Execution of the command on the analogue board
	failed."
50902	"The frontpanel could not be accessed by the analogue board."
50903	"The frontpanel did not show horizontal segments."
50904	"The user skipped the FP-horizontal segments test."
50905	"The user returned an unknown confirmation: confirmation "
51400	111
51401	"Execution of the command on the analogue board failed."
51402	"The frontpanel could not be accessed by the analogue board."
51403	"The beeper did not sound."
51404	"The user skipped the FP-Beep test."
51405	"The user returned an unknown confirmation: confirmation"
51500	11 11
51501	"Execution of the command on the analogue board failed."
51502	"The frontpanel could not be accessed by the analogue board."
51503	"The discbar did not display properly."
51504	"The user skipped the discbar test."
51505	"The user returned an unknown confirmation: confirmation"
51600	111
51601	"Execution of the command on the analogue board failed."
51602	"The frontpanel could not be accessed by the analogue board."
51603	"The discbar dots did not display properly."
51604	"The user skipped the discbar dots test."
51605	"The user returned an unknown confirmation: confirmation"
51700	пп
51701	"Execution of the command on the analogue board failed."
51702	"The frontpanel could not be accessed by the analogue board."
51703	"The VU grid did not display properly."
51704	"The user skipped the VU gridtest."
51705	"The user returned an unknown confirmation: confirmation"
51800	111
51801	"Execution of the command on the analogue board failed."
51802	"The frontpanel could not be accessed by the analogue board."
51803	"The frontpanel could not be dimmed."
51804	"The user skipped the FP-Dim test."
51805	"The user returned an unknown confirmation: confirmation"
51900	ни
51901	"Execution of the command on the analogue board failed."
51902	"The frontpanel could not be accessed by the analogue board."
51903	"The frontpanel did not show segments blinking."
51904	"The user skipped the FP-blinking test."
51905	"The user returned an unknown confirmation: confirmation"
52000	111

Error String
"Execution of the command on the analogue board failed."
"The frontpanel could not be accessed by the ana logue board."
"The frontpanel did not show all segments lit."
"The user skipped the FP-light all segments test."
"The user returned an unknown confirmation: con
firmation"
""
"Communication with Analogue Board fails."
"Frontpanel can not be accessed by the Analogue Board."
411
"Communication with Analogue Board fails."
"Frontpanel can not be accessed by the Analogue Board."
111
DH
"Basic Engine returned error numbe 0xerrornumber"
"Parity error from Basic Engine to Serial"
"Communication time-out error"
"Unexpected response from Basic Engine"
"Echo loop could not be closed"
"Wrong echo pattern received"
"Wrong ecno pattern received" "Version: nr1.nr2.nr3"
"Basic Engine returned error numbe 0xerrornumber"
"Parity error from Basic Engine to Serial"
"Communication time-out error"
"Unexpected response from Basic Engine"
"Front Panel failed."
III II
"Basic-Engine time-out error"
ш
"Basic Engine returned error number 0xerrornumber"
"Parity error from Basic Engine to Serial"
"Communication time-out error"
"Unexpected response from Basic Engine"
"Focus loop could not be closed"
им
"Basic Engine returned error number
0xerrornumber"
"Parity error from Basic Engine to Serial"
"Communication time-out error"
"Unexpected response from Basic Engine"
шн
"Basic Engine returned error number 0xerrornumber"
"Parity error from Basic Engine to Serial"
"Communication time-out error"
"Unexpected response from Basic Engine"
**
"Basic Engine returned error number 0xerrornumber"
"Parity error from Basic Engine to Serial"
"Communication time-out error"
"Unexpected response from Basic Engine"
"Basic Engine returned error number

Error Nr	Fanor Ctring
60803	Error String "Communication time-out error"
60804	"Unexpected response from Basic Engine"
60805	"Radial loop could not be closed"
60900	nadiai loop could flot be closed
60901	"Basic Engine returned error number
00901	0xerrornumber"
60902	"Parity error from Basic Engine to Serial"
60903	"Communication time-out error"
60904	"Unexpected response from Basic Engine"
61500	яп
61501	"Basic Engine returned error number 0xerrornumber"
61502	"Parity error from Basic Engine to Serial"
61503	"Communication time-out error"
61504	"Unexpected response from Basic Engine"
61600	ин
61601	"Basic Engine returned error number 0xerrornumber"
61602	"Parity error from Basic Engine to Serial"
61603	"Communication time-out error"
61604	"Unexpected response from Basic Engine"
61700	н
61701	"BE tray-in command failed"
61702	"BE read-TOC command failed"
61703	"BE VSM interrupt initialisation falled"
61704	"BE set irq command failed"
61705	"BE no disc or wrong disc inserted"
61706	"BE rec-pause command failed"
61707	"BE VSM BE out DMA initialisation failed"
61708	"BE VSM BE out initialisation failed"
61709	"BE VSM BE out DMA start failed"
61710	"BE VSM BE out start failed"
61711	"BE rec command failed"
61712	"BE VSM out underrun error occurred"
61713 61714	"BE record complete interrupt notraised"
61714	"BE get irq command failed"
	"BE no interrupt was raised by BE"
61716 61717	"BE VSM DMA out not finished" "BE stop command after writing failed"
61718	"BE VSM Sector processor initialisation failed"
61719	"BE VSM sector processor DMA initialisation
01719	failed"
61720	"BE VSM sector processor DMA stairt failed"
61721	"BE VSM sector processor start falled"
61722	"BE seek command failed"
61723	"BE VSM sector processor error occurred"
61724	"BE read timeout occurred"
61725	"BE stop command after reading fail ed"
61726	"BE difference found in data at disc sector
	Oxdiscsector"
61727	"This nucleus cannot be executed because the Self-Test failed"
61800	1111
61801	"BE i2c initialisation failed"
61802	"This nucleus cannot be executed because the Self-Test failed"
61900	HB
61901	"The SelfTest failed with result: 0xrr1 0xrr2 0xrr3"
61902	"Basic Engine returned (rror number 0xerrornumber"
61903	"Parity error from Basic Engine to se rial"
61904	"Communication time-out error"

Error Nr	Error String
61905	"Unexpected response from Basic Engine"
62000	II R
62001	"Self-Test : errorstring1 Laser-Test
	errorstring2 SpindleM-Test: errorstring3 SledgeM-Test: errorstring4 Focus-Test: errorstring5
62100	"The forward sense level is 0xlevel"
62101	"Basic Engine returned error number
02101	Oxerrornumber"
62102	"Parity error from Basic Engine to Serial"
62103	"Communication time-out error"
62104	"Unexpected response from Basic Engine"
62200	un
62201	"The BE-self-diagnostic-spindle-motor-test failed"
62202	"Basic Engine returned error number
	0xerrornumber"
62203	"Parity error from Basic Engine to Serial"
62204	"Communication time-out error"
62205	"Unexpected response from Basic Engine"
62300	пи
62301	"The BE-focus-test failed"
62302	"Basic Engine returned error number
	0xerrornumber"
62303	"Parity error from Basic Engine to Serial"
62304	"Communication time-out error"
62305	"Unexpected response from Basic Engine"
62400	111
62401	"The BE-self-diagnostic-sledge-motor-test failed"
62402	"Basic Engine returned error number
	0xerrornumber"
62403	"Parity error from Basic Engine to Serial"
62404	"Communication time-out error"
62405	"Unexpected response from Basic Engine"
62500	
62600	н
62700	"BE EEPROM address = address -> Byte value : 0xvalue"
62701	"Basic Engine returned error numbe
	0xerrornumber"
62702	"Parity error from Basic Engine to Serial"
62703	"Communication time-out error"
62704	"Unexpected response from Basic Engine"
62705	"BE read EEPROM; invalid input"
62800	411
62801	"Basic Engine returned error numbe
	0xerrornumber"
62802	"Parity error from Basic Engine to Serial"
62803	"Communication time-out error"
62804	"Unexpected response from Basic Engine"
62805	"BE write EEPROM; invalid input"
62900	пи
62901	"Basic Engine returned error numbe
	0xerrornumber"
	"Parity error from Basic Engine to Serial"
62903	"Communication time-out error"
62903 62904	"Unexpected response from Basic Engine"
62902 62903 62904 62905	"Unexpected response from Basic Engine" "Radial loop could not be closed"
62903 62904 62905 63000	"Unexpected response from Basic Engine" "Radial loop could not be closed" ""
62903 62904 62905 63000	"Unexpected response from Basic Engine" "Radial loop could not be closed" "" "Basic Engine returned error numbe
62903 62904 62905 63000	"Unexpected response from Basic Engine" "Radial loop could not be closed" "" "Basic Engine returned error numbe 0xerrornumber"
62903 62904 62905	"Unexpected response from Basic Engine" "Radial loop could not be closed" "" "Basic Engine returned error numbe

Error Nr	Error String
63100	" Number of times Tray went Open/Closed : nr1"
	Total hours the CD laser was on: nr2"" Total hours
	the DVD laser was on: nr3"" Total hours the write
	laser was on: nr4"
63101	"Basic Engine returned error number
00100	0xerrornumber"
63102	"Parity error from Basic Engine to Serial"
63103	"Communication time-out error"
63104	"Unexpected response from Basic Engine"
63200	1111
63201	"Basic Engine returned error number
	0xerrornumber"
63202	"Parity error from Basic Engine to Serial"
63203	"Communication time-out error"
63204	"Unexpected response from Basic Engine"
63300	Momentary errors (Byte 1 - Byte 7): 0xb1 0xb2
	0xb3 0xb4 0xb5 0xb6 0xb7 Cumulative errors
	(Byte 1 - Byte 7): : 0xb1 0xb2 0xb3 0xb4 0xb5 0xb6
	Oxb7 Fatal errors (Oldest - Youngest) :: 0xb1 Oxb2 Oxb3 Oxb4 Oxb5
00004	
63301	"Basic Engine returned error number Oxerrornumber"
63302	
	"Parity error from Basic Engine to Serial"
63303	"Communication time-out error"
63304	"Unexpected response from Basic Engine"
63400	
63401	"Basic Engine returned error number
	Oxerrornumber"
63402	"Parity error from Basic Engine to Serial"
63403	"Communication time-out error"
63404	"Unexpected response from Basic Engine"
63500	111
63501	"Basic Engine returned error number
	0xerrornumber"
63502	"Parity error from Basic Engine to Serial"
63503	"Communication time-out error"
63504	"Unexpected response from Basic Engine"
63505	"errorstring ÖThe basic engine will reject all player
	commands"
63900	""
63901	"Basic Engine returned error number
	0xerrornumber*
63902	"Parity error from Basic Engine to Serial"
63903	"Communication time-out error"
63904	"Unexpected response from Basic Engine"
64000	"BE OPU number = opunumber"
64001	"Basic Engine returned error number
0.00.	Oxerrornumber"
64002	"Parity error from Basic Engine to Serial"
64003	"Communication time-out error"
64004	"Unexpected response from Basic Engine"
64100	"The data was successfully written on and read
04100	from a DVD disc"
64101	"The tray-in command failed"
64102	"The read-TOC command failed"
64103	"The VSM interrupt initialisation failed"
64104	"The set irq command failed"
64105	"No disc or wrong disc inserted"
64106	"The rec-pause command failed"
64107	"The VSM BE out DMA initialisation failed"
64108	"The VSM BE out initialisation failed"
64109	"The VSM BE out DMA start failed"
64110	"The VSM BE out start failed"
64111	"The rec command failed"
04111	i ilie iec command falled

Error Nr	Error String
64112	"The VSM out underrun error occurred"
64113	"The record complete interrupt was not raised"
64114	"The get irq command failed"
64115	"There was no interrupt raised by BE"
64116	"The VSM DMA did not finished"
64117	"The stop command after writing failed"
64118	"The VSM Sector processor initialisation failed"
64119	"The VSM sector processor DMA initialisation failed"
64120	"The VSM sector processor DMA start failed"
64121	
	"The VSM sector processor start failed"
64122	"The seek command failed"
64123	"The VSM sector processor error occurred"
64124	"The read timeout occurred"
64125	"The stop command after reading failed"
64126	"There was a difference found in data at a specific disc sector"
64127	"The result of the self test contains errors"
64128	"An error interrupt was raised by BE"
64129	"The calibrate-record command failed"
64130	"To many retries"
64131	"BE update RAI command after writing failed"
64132	"BE find first recordable address command failed"
64133	"DVD+R disc is full"
64200	DVD+R disc is full
64201	"BE i2c initialisation failed"
64202	"This nucleus cannot be executed because the Self-Test failed"
70000	"Echo test OK"
70001	"Echo test returned wrong string."
70002	"Communication with Analogue Board fails"
70300	"SoftwareVersion"
70301	"Can not find segment in FLASH ROM on the Analogue Board"
70302	"Communication with Analogue Board fails"
70400	"HardwareVersion"
70401	"Can not find segment in FLASH ROM on the Analogue Board"
70402	"Communication with Analogue Board fails"
70500	"Clock adjusted OK"
70501	"Can not adjust the clock on the Analogue Board."
70502	"Wrong date/time text size."
	-
70503	"Communication with Analogue Board fails"
70600	"Tuner accessibility test OK"
70601	"Can not access tuner on the Analogue Board."
70602	"Communication with Analogue Board fails"
70700	"Frequency download OK"
70701	"Wrong frequency table size."
70702	"Can not download the frequency table into the an- alogue NVRAM."
70703	"Can not download the frequency table into the an- alogue NVRAM."
70704	"Communication with Analogue Board fails"
70800	"Data slicer test OK"
70801	"Test of the Data slicer on the Analogue Board fails."
70802	"Communication with Analogue Board fails"
70900	"Sound Processor test OK"
	"Test of the Sound Processor on the Analogue
70901	
70901	Board fails." "Communication with Analogue Board fails"

Cura u Niu	I Farrage Obigina
Error Nr	Error String
71001	"Test of the AV Selector on the Analogue Board fails."
71002	"Communication with Analogue Board fails"
71100	"NVRAM test OK"
71101	"Test of the NVRAM on the Analogue Board fails."
71102	"Communication with Analogue Board fails"
71200	"Video routing on the Analogue Board OK"
71201	"Routing the video on the Analogue Board fails."
71202	"Invalid input."
71203	"Communication with Analogue Board fails"
71300	"Audio routing on the Analogue Board OK"
71301	"Routing the audio on the Analogue Board fails."
71302	"Invalid input."
71303	"Communication with Analogue Board fails"
71500	
71501	"Invalid slash version, default slash version is set."
71502	"Setting the slash version on the Analogue Board fails."
71503	"Communication with Analogue Board fails"
71600	"ApplicationVersion"
71601	"Can not find segment in FLASH ROM on the Analogue Board"
71602	"Communication with Analogue Board fails"
71700	"DiagnosticsVersion"
71701	"Can not find segment in FLASH ROM on the Analogue Board"
71702	"Communication with Analogue Board fails"
71800	"DownloadVersion"
71801	"Can not find segment in FLASH ROM on the Analogue Board"
71802	"Communication with Analogue Board fails"
72300	M II
72000	14.11
72001	"Adjusting BarGraphLevel failed"
72002	"Communication with Analogue Board fails"
72100	111
72101	"Storing clock correction failed"
72102	"Value out of range : default value stored "
72103	"Invalid input."
72104	"Communication with Analogue Board fails"
72200	
72201	"Initialising the 1Hz signal on the Clock IC failed"
72202 72301	"Communication with Analogue Board fails"
72301	"Clearing the NVRAM on the Analogue Board fails"
72302	"Communication with Analogue Board fails" "segment checksum is : checksum which is cor-
	rect" for every segment
72401	"segment could not be found" or "segment check- sum is : checksumC ,however it should be : check-
70400	sumE" for every segment
72402	"Communication with Analogue Board fails"
72900 72901	"Date received" "Data returned"
72901	"Communication on I2C-bus failed on the Ana-
	logue Board fails."
72903	"Communication with Analogue Board fails"
73000	
73001	"Storing the external presets on the Analogue Board fails"
73002	"Communication with Analogue Board fails"
73100	"0xslashversion" where slashversion is the slash version read from the analogue board
73101	"Error while reading out slash verson."

Error Nr	Error String
73102	"I2C Write error."
73103	"I2C Read error."
73104	"Communication with Analogue Board fails"
73200	III
73201	"Storing the Reference Voltage for the Tuner failed"
73202	"Invalid input."
73203	"Communication with Analogue Board fails"
80000	"The DVIO module is present in the system."
80001	"The DVIO module is not present in the system."
80100	"The DVIO module has been reset OK."
80101	"The DVIO module is not present in the system."
80102	"The DVIO module could not be reset."
80103	"Could not initialise I2C before Reset."
80200	"The accessibility of the DVIO module is OK."
80201	"The DVIO board is not present in this DVDR."
80202	"Could not initialise I2C."
80203	"Unable to reset the DVIO module."
80204	"Unable to receive the reset indication from the DVIO module."
80205	"Unable to send the configuration to the DVIO module."
80206	"Unable to download the chip ID to the DVIO mod- ule."
80207	"Unable to set the mode of the DVIO module to IDLE."
80208	"Software Error in function HandleStateAwaitingReply!!"
80209	"Maximal number of retries reached by HandleS- tateSending !!"
80210	"Maximal number of retries (NACKs) reached (HandleStateSending)"
80211	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times !!"
80212	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times !!"
80213	"We tried to receive an Ack for DVIO_MAX_RETRIES_ACK times!!"
80214	"VSM UART error timeout transmitting command"
80215	"VSM UART error timeout receiving reply"
80216	"VSM UART frame error occurred receiving from DVIO board"
80217	"VSM UART parity error occurred receiving from DVIO board"
80218	"The confirmation/indication from the DVIO module is invalid."
80300	"The accessibility of the DVIO module is OK."
80301	"The DVIO board is not present in this DVDR."
80302	"Could not initialise I2C."
80303	"Unable to reset the DVIO module."
80304	"Unable to receive the reset indication from the DVIO module."
80305	"Unable to send the configuration to the DVIO module."
80306	"Unable to download the chip ID to the DVIO mod- ule."
80307	"Unable to set the mode of the DVIO module to IDLE."
80308	"Software Error in function HandleStateAwaitingReply!"
80309	"Maximal number of retries reached by HandleS- tateSending!!"
8031 O	"Maximal number of retries (NACKs) reached (HandleStateSending)"

Error Nr	Error String
80311	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times !!"
80312	"We tried to receive a reply for DVIO MAX_RETRIES_REPLY times !!"
80313	"We tried to receive an Ack for DVIO_MAX_RETRIES_ACK times!!"
80314	"VSM UART error timeout transmitting command"
80315	"VSM UART error timeout receiving reply"
80316	"VSM UART frame error occurred receiving from DVIO board"
80317	"VSM UART parity error occurred receiving from DVIO board"
80318	"The confirmation/indication from the DVIO module is invalid."
80400	"The accessibility of the DVIO module is OK."
80401	"The DVIO board is not present in this DVDR."
80402	"Could not initialise I2C."
80403	"Unable to reset the DVIO module."
80404	"Unable to receive the reset indication from the DVIO module."
80405	"Unable to send the configuration to the DVIO module."
80406	"Unable to download the chip ID to the DVIO module."
80407	"Unable to set the mode of the DVIO module to IDLE."
80408	"Software Error in function HandleStateAwaitingReply!!"
80409	"Maximal number of retries reached by HandleS- tateSending !!"
80410	"Maximal number of retries (NACKs) reached (HandleStateSending)"
80411	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times !!"
80412	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times !!"
80413	"We tried to receive an Ack for DVIO_MAX_RETRIES_ACK times!!"
80414	"VSM UART error timeout transmitting command"
80415	"VSM UART error timeout receiving reply"
80416	"VSM UART frame error occurred receiving from DVIO board"
80417	"VSM UART parity error occurred receiving from DVIO board"
80418	"The confirmation/indication from the DVIO module is invalid."
80500	не
80501	"The DVIO board is not present in this DVDR."
80502	"The I2C could not be initialised."
80503	"The DVIO module could not be reset."
80504	"Unable to receive the reset indication from the DVIO module."
80505	"Unable to send the configuration to the DVI O module."
80506	"Unable to download the chip ID to the DVIO mod- ule."
80507	"Unable to set the mode of the DVIO module to IDLE."
80508	"Software Error in HandleStateAwaitingReply function!"
80509	"Maximal number of retries reached by HandleS- tateSending!"
80510	"Maximal number of retries (NACK's) reached "(HandleStateSending)
80511	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times!"

Error Nr	Error String
80512	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times!"
80513	"We tried to receive an Acknowledge for
	DVIO_MAX_RETRIES_ACK times!"
80514	"VSM UART error timeout transmitting command"
80515	"VSM UART error timeout receiving reply"
80516	"VSM UART frame error occurred receiving from DVIO board"
80517	"VSM UART parity error occurred receiving from DVIO board"
80518	"The confirmation/indication from the DVIO module is invalid."
80519	"Setting the DVIO module in/out diagnostics mode failed"
80520	"Invalid input"
80521	"Getting the errors of the self-test failed"
80522	"Self-test failed"
80600	ин
80601	"The DVIO board is not present in this DVDR."
80602	"The I2C could not be initialised."
80603	"The DVIO module could not be reset."
80604	"Unable to receive the reset indication from the DVIO module."
80605	"Unable to send the configuration to the DVIO module."
80606	"Unable to download the chip ID to the DVIO mod- ule."
80607	"Unable to set the mode of the DVIO module to IDLE."
80608	"Software Error in HandleStateAwaitingReply function!"
80609	"Maximal number of retries reached by HandleS-tateSending!"
80610	"Maximal number of retries (NACK's) reached "(HandleStateSending)
80611	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times!"
80612	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times!"
80613	"We tried to receive an Acknowledge for DVIO_MAX_RETRIES_ACK times!"
80614	"VSM UART error timeout transmitting command"
80615	"VSM UART error timeout receiving reply"
80616	"VSM UART frame error occurred receiving from DVIO board"
80617	"VSM UART parity error occurred receiving from DVIO board"
80618	"The confirmation/indication from the DVIO module is invalid."
80619	"Setting the DVIO module in/out diagnostics mode failed"
80700	""
80701	"The DVIO board is not present in this DVDR."
80702	"The I2C could not be initialised."
80703	"The DVIO module could not be reset."
80704	"Unable to receive the reset indication from the DVIO module."
80705	"Unable to send the configuration to the DVIO module."
80706	"Unable to download the chip ID to the DVIO mod- ule."
80707	"Unable to set the mode of the DVIO module to IDLE."
80708	"Software Error in HandleStateAwaitingReply function!"

Error Nr	Error String
80709	"Maximal number of retries reached by HandleS-
	tateSending!"
80710	"Maximal number of retries (NACK's) reached "(HandleStateSending)
80711	"We tried to receive a reply for DVIO_MAX_RETRIES_ACKREPLY times!"
80712	"We tried to receive a reply for DVIO_MAX_RETRIES_REPLY times!"
80713	"We tried to receive an Acknowledge for DVIO_MAX_RETRIES_ACK times!"
80714	"VSM UART error timeout transmitting command"
80715	"VSM UART error timeout receiving reply"
80716	"VSM UART frame error occurred receiving from DVIO board"
80717	"VSM UART parity error occurred receiving from DVIO board"
80718	"The confirmation/indication from the DVIO module is invalid."
80719	"Setting the DVIO module in/out diagnostics mode failed"
90121	"Error: audio data in host memory contains wrong frequency: frequency Hz"
90122	"Error: audio data in host memory contains si- lence!"
90123	"There is no correct audio frame in the buffer"
90124	"The audio frame has an illegal version bit"
90125	"The audio frame has an illegal bitrate-index"
90126	"The audio frame has an illegal sampling rate"
90127	"The CRC of the audio frame is wrong"
90128	"The audio frame is not MPEG-I layer II!"
90129	"Error cannot de-mute DAC on analogue board"
90200	ни
90201	"Initialisation of I2C failed"
90202	"Initialisation of VIP and EMPIRE tailed"
90203	"Initialisation of PLL / Link failed."
90204	"Next descriptor address set wrong."
90205	"Turning on the colourbar failed"
90206	"No I2C communication possible to start video encoder."
90207	"Starting the video encoder failed."
90208	"Transfer of data from video encoder to VSM failed."
90209	"Stopping the encoder failed."
90210	"Turning off the colourbar failed."
90211	"Cannot intialize hostdecoder paralel input"
90212	"Cannot initialise VSM AV-out DMA port"
90213	"Cannot initialise VSM AV-out port"
90214	"Cannot start VSM AV-out DMA port"
90215	"Cannot start VSM AV-out port"
90216	"Transfer of data from VSM to hostdecoder failed."
90217	"VSM and Hostdec memory do not match (compared after transfer)"
90218	"Decoding of the video data in the hostdecoder memory failed"
90219	"The data in the hostdecoder is no equal to a colourbar"
90220	"The video encoder did not return the Group Of Picture count."
90221	"The video encoder did not receive data from the VIP."
90223	"Initialisation of VIP and EMPRES failed"
90224	"The video encoder did not return he current status."

Error Nr	Error String
90225	"The video encoder timed out in BUSY mode. (no VIP input)"
90226	"The video encoder did not return the current bi-
90220	trate."
90227	"The video encoder did not switch to ENCODING mode."
90228	"The video encoder could not start from STOP/
90229	"The video encoder did not switch from IDLE to
	STOP mode."
90300	111
90301	"Initialisation of I2C failed"
90302	"I2C communication to VIP failed"
90303	"Initialisation of VIP failed"
90304	"Generation of Close Caption data failed"
90305	"VIP not locked to video signal"
90306	"Initialisation of VBI Extractor failed
90307	"No CC data received"
90308	"Closed Caption data overrun"
90309	"Closed Caption data does not match"
90310	"Switch off ColourBar failed"
90400	ин
90401	"Initialisation of I2C failed"
90402	"Initialisation of VIP and EMPIRE failed"
90403	"Initialisation of PLL / Link failed."
90404	"Next descriptor address set wrong."
90405	"Turning on the colourbar failed"
90406	"No I2C communication possible to start video encoder."
90407	"Starting the video encoder failed."
90408	"Transfer of data from video encoder to VSM failed."
90409	"Stopping the encoder failed."
90410	"Turning off the colourbar failed."
90411	"Cannot intialize hostdecoder parallel input"
90412	"Cannot initialise VSM AV-out DMA port"
90413	"Cannot initialise VSM AV-out port"
90414	"Cannot start VSM AV-out DMA port"
90415	"Cannot start VSM AV-out port"
90416	"Transfer of data from VSM to host decoder failed."
90417	"VSM and Hostdec memory do not match (com-
	pared after transfer)"
90418	"Decoding of the video data in the hostdecoder memory failed"
90419	"The data in the hostdecoder is not equal to a col- ourbar"
0420	"The video encoder did not return the Group Of
	Picture count."
00421	"The video encoder did not receive data from the VIP."
90422	"Execution of the command on the analogue board failed."
90423	"Initialisation of VIP and EMPRESS failed"
00424	"The video encoder did not return the current status."
00425	"The video encoder timed out in BUSY mode. (no VIP input)"
00426	"The video encoder did not return the current bi- trate."
00427	"The video encoder did not switch to ENCODING mode."
00428	"The video encoder could not start from STOP/ IDLE mode."

Error Nr	Error String
90429	Error String
90429	"The video encoder did not switch from IDLE to STOP mode."
90500	nn
90501	"Initialisation of I2C failed"
90502	"I2C communication to VIP failed"
90503	"Initialisation of VIP failed"
90504	"Generation of Close Caption data failed"
90505	"VIP not locked to video signal"
90506	"Initialisation of VBI Extractor failed
90507	"No CC data received"
90508	"Closed Caption data overrun"
90509	"Closed Caption data overrun" "Closed Caption data does not match"
90510	"Switch off ColourBar failed"
90511	"Execution of the command on the analogue board failed."
90600	ВИ .
90601	"Initialisation of I2C failed"
90602	"Initialisation of VIP and EMPIRE failed"
90603	"Initialisation of PLL / Link failed."
90604	"Next descriptor address set wrong."
90605	"Turning on the colourbar failed"
90606	"No I2C communication possible to start video encoder."
90607	"Starting the video encoder failed."
90608	"Transfer of data from video encoder to VSM
	failed."
90609	"Stopping the encoder failed."
90610	"Turning off the colourbar failed."
90611	"Cannot intialize hostdecoder parallel input"
90612	"Cannot initialise VSM AV-out DMA port"
90613	"Cannot initialise VSM AV-out port"
90614	"Cannot start VSM AV-out DMA port"
90615	"Cannot start VSM AV-out port"
90616	"Transfer of data from VSM to host decoder failed."
90617	"VSM and Hostdec memory do not match (com-
00017	pared after transfer)"
90618	"Decoding of the video data in the hostdecoder memory failed"
90619	"The data in the hostdecoder is not equal to a col-
00010	ourbar"
90620	"The video encoder did not return the Group Of
	Picture count."
90621	"The video encoder did not receive data from the VIP."
90622	"Execution of the command on the analogue board
J J J L L	failed."
90623	"Initialisation of VIP and EMPRESS failed"
90624	"The video encoder did not return the current sta-
	tus."
90625	"The video encoder timed out in BUSY mode. (no
	VIP input)"
90626	"The video encoder did not return the current bi-
	trate."
90627	"The video encoder did not switch to ENCODING
	mode."
90628	"The video encoder could not start from STOP/IDLE mode."
90629	"The video encoder did not switch from IDLE to
	STOP mode."
90700	H1
90701	"Initialisation of I2C failed"
90702	"I2C communication to VIP failed"
90703	"Initialisation of VIP failed"
90704	"Generation of Close Caption data failed"

Error Nr	Error String
90705	"VIP not locked to video signal"
90706	"Initialisation of VBI Extractor failed
90707	"No CC data received"
90708	"Closed Caption data overrun"
90709	"Closed Caption data does not match"
90710	"Switch off ColourBar failed"
90711	"Execution of the command on the analogue board
	failed."
90800	III
90801	"Error routing the audio back to the digital board."
90802	"Error cannot initialise I2C"
90803	"Error cannot initialise VIP"
90804	"Error cannot set ADC enable pin"
90805	"Error cannot set VSM audio clock"
90806	"Error preparing the 12kHz audio-sine"
90807	"Error cannot initialise audio encoder"
90808	"Error cannot initialise VSM audio in port"
90809	"Error cannot initialise VSM audio in DMA port"
90810	"Error cannot initialise VSM audio out DMA port"
90811	"Error cannot initialise audio VSM out port"
90812	"Error cannot initialise host decoder audio in"
90813	"Error loop audio user/dealer cannot start audio en-
	coder"
90814	"Error cannot start VSM audio in DMA port"
90815	"Error starting the 12kHz audio-sine"
90816	"Error transfer data from audio encoder to VSM"
90817	"Error cannot start VSM AV out DMA port"
90818	"Error cannot start VSM AV out port"
90819	"Error transfer data from VSM to host decoder"
90820	"Error: audio data in host memory and VSM mem-
00004	ory differ"
90821	"Error: audio data in host memory contains wrong frequency: frequency Hz"
90822	"Error: audio data in host memory contains si-
	lence!"
90823	"There is no correct audio frame in the buffer"
90824	"The audio frame has an illegal version bit"
90825	"The audio frame has an illegal bitrate-index"
90826	"The audio frame has an illegal sampling rate"
90827	"The CRC of the audio frame is wrong"
90828	"The audio frame is not MPEG-I layer II!"
90829	"Error cannot de-mute DAC on analogue board"
90900	пи
90901	"Error routing the audio back to the digital board."
90902	"Error cannot initialise I2C"
90903	"Error cannot initialise VIP"
90904	"Error cannot set ADC enable pin"
90905	"Error cannot set VSM audio clock"
90906	"Error preparing the 12kHz audio-sine"
90907	"Error cannot initialise audio encoder"
90908	"Error cannot initialise VSM audio in port"
90909	"Error cannot initialise VSM audio in DMA port"
90910	"Error cannot initialise VSM audio out DMA port"
90911	"Error cannot initialise audio VSM out port"
90912	"Error cannot initialise host decoder audio in"
90913	"Error loop audio user/dealer cannot start audio en- coder"
00014	
90914	"Error cannot start VSM audio in DMA port" "Error starting the 12kHz audio-sine"
90915	
90916	"Error transfer data from audio encoder to VSM"
90917	"Error cannot start VSM AV out DMA port"
90918	"Error cannot start VSM AV out port"

Error Nr	Error String
90919	"Error transfer data from VSM to host decoder"
90920	"Error: audio data in host memory and VSM memory differ"
90921	"Error: audio data in host memory contains wrong frequency: frequency Hz"
90922	"Error: audio data in host memory contains si- lence!"
90923	"There is no correct audio frame in the buffer"
90924	"The audio frame has an illegal version bit"
90925	"The audio frame has an illegal bitrate-index"
90926	"The audio frame has an illegal sampling rate"
90927	"The CRC of the audio frame is wrong"
90928	"The audio frame is not MPEG-I layer II !"
90929	"Error cannot de-mute DAC on analogue board"
140000	NH
140001	"I2C to Clock failed" or "I2C initialisation failed"
140100	##
140101	"I2C to Clock failed" or "I2C initialisation failed"
141200	III
141201	"Progressive Scan Board I2C bus busy"
141211	"Progressive Scan Board I2C FLI2200 bus busy"
141212	"Progressive Scan Board I2C FLI2200 read access
141213	time-out" "Progressive Scan Board I2C FLI2200 no read ac-
	knowledge*
141214	"Progressive Scan Board I2C FLI2200 read failed"
141215	"Progressive Scan Board I2C FLI2200 write access time-out"
141216	"Progressive Scan Board I2C FLI22O0 no write ac- knowledge"
141217	"Progressive Scan Board I2C FLI22O0 write failed"
141218	"Progressive Scan Board I2C FLI22O0 failed"
141221	"Progressive Scan Board I2C AD7196 bus busy"
141222	"Progressive Scan Board I2C AD7196 read access time-out"
141223	"Progressive Scan Board I2C AD7196 no read ac- knowledge"
141224	"Progressive Scan Board I2C AD7196 read failed"
141225	"Progressive Scan Board I2C AD7 196 write access time-out"
141226	"Progressive Scan Board I2C AD7196 no write ac- knowledge"
141227	"Progressive Scan Board I2C AD7 96 write failed"
141228	"Progressive Scan Board I2C AD7 96 failed"
141300	""
141301	"Progressive Scan Route Enable fail ed"
141302	"Generating test image in Hostdeod er failed"
141400	
141401	"Progressive Scan Route Disable hill ed"
141402	"Turning off test image in Hostdecider failed"
141500	
141501	"Progressive Scan Board I2C faile("
141600	""
141601	"Progressive Scan Board I2C faile("

5.5 **Loop tests**

The following loops can be distinguished:

- Loops performed on the digital board only
- User Dealer loops performed on the digita and analogue board
- System loops performed via an external on nection: outputs are looped back to the inputs.

Nucleus 900: Digital Audio Loop 5.5.1

This nucleus tests the audio path through the digital board

DVDR980-985 /0X1

NUCLEUS 900: AUDIO LOOP DIGITAL

Figure 5-9

5.5.2 Nucleus 901: Audio User Dealer Loop

A PCM audio sine of 12kHz is generated in the Host Decoder for a while and sent to the analogue board. The signal coming from the analogue board is encoded again and sent to the memory of the host decoder for comparison. This nucleus tests the components on the audio signal path:

- Host decoder
- Flex connection between connector 1602 (digital board) and connector 1900 (analogue board)
- DAC
- Op-amp
- Scart switch IC
- ADC Audio Encoder
- VIP
- VSM

NUCLEUS 901: AUDIO USER DEALER LOOP

Figure 5-10

5.5.3 Nucleus 902: Digital Video Loop

A colourbar generated in the host decoder is looped through the VIP, Empire, and VSM and checked again in the host decoder. The following components are tested on the video signal path:
• VIP

- Empire
- VSM
- Host decoder

NUCLEUS 902: DIGITAL VIDEO LOOP

Figure 5-11

EN 60

5.5.4 Nucleus 903: Digital Video VBI Loop

Nucleus for testing the components on the video VBI signal path:

DVDR980-985 /0X1

- The VIP
- The VSM
- The Host Decoder

This is done by using the internal test signal source (digital

Remark: this test is only successful if nucleus 121 is carried out first.

NUCLEUS 903: DIGITAL VIDEO VBI LOOP

Figure 5-12

5.5.5 Nucleus 904: System Video Loop

Nucleus for testing the components on the video signal system path:

- The VIP
- The video encoder
- The VSM
- The host decoder
- The analogue board

On the analogue board the video signal will be routed to the SCART (EUROPE) or CINCH (NAFTA). There it will be looped back externally by means of the proper cable

NUCLEUS 904: SYSTEM VIDEO LOOP

Figure 5-13

5.5.6 Nucleus 905: System Video VBI Loop

This nucleus tests the components on the video signal path:

- The VIP
- The VSM
- The Host Decoder

The video CVBS signal is routed to the output of the analogue board where it will be looped back by means of an external

Remark: this test is only successful if nucleus 121 is carried out first.

NUCLEUS 905: SYSTEM VIDEO VBI LOOP

Figure 5-14

5.5.7 Nucleus 906: Video User Dealer Loop

Nucleus for testing the components on the video signal system path:

- The VIP
- The video encoder
- The VSM
- The host decoder
- The analogue board

On the analogue board, the video signal is internally routed back to the digital board.

NUCLEUS 906: VIDEO USER DEALER LOOP

Figure 5-15

Nucleus 907: Video VBI User Dealer Loop

This nucleus tests the components on the video VBI signal path:

DVDR980-985 /0X1

- The VIP
- The VSM
- The Host Decoder

The signal is routed back internally on the analogue board Remark: this test is only successful if nucleus 121 is carried out first.

NUCLEUS 907: VIDEO VBI USER DEALER LOOP

Figure 5-16

5.5.9 Nucleus 908: System Audio Loop Scart (Europe)

Nucleus for testing the components on the audio signal path:

- The hostdecoder
- The analogue board
- The audio encoder
- The VSM

On the analogue board, audio is passed to the SCART connector, where a SCART cable needs to be used to loop back the audio signal to the digital board

Figure 5-17

5.5.10 Nucleus 909: System Audio Loop CINCH (Nafta)

Nucleus for testing the components on the audio signal path:

- The hostdecoder
- The analogue board
- The audio encoder
- The VSM

On the analogue board the audio is passed to the CINCH connector, where a CINCH cable needs to be used to loop back the audio signal to the digital board

Figure 5-18

5.6

Faultfinding trees

5.6.1 General

PLAYBACK MODE

DVDR980-985 /0X1

Figure 5-19

RECORD MODE

5.6.2 Power supply

CL 16532095_085aps 150801

Check Overvoltage circuit - T7142, D6143, D6144, - R3149, R3144, C2152, C2142

Check Overload circuit - T7141, T7143, R3145, R3143,

- R3142, C2143.

5.6.3 Digital Board

Start-up DSW

Figure 5-22

Power part check

POWER PART CHECK DIGITAL BOARD

USE DIGITAL BOARD CIRCUIT DIAGRAMS 1 2, 3, 4, 5, 7 AND 8 AND DIGITAL BOARD BOTTOM VIEW TESTPOINTS

Figure 5-23

RESET & CLOCK CHECK DIGITAL BOARD

USE DIGITAL BOARD CIRCUIT DIAGRAMS 1,2,7 AND 8 AND DIGITAL BOARD BOTTOM VIEW TESTPOINTS

Figure 5-24

DSW Memory Tests

DSW MEMORY TESTS

Figure 5-25

DSW VSM TESTS

Figure 5-26

DVDR980-985 /0X1 DSW Audio Part Check

DSW AUDIO PART CHECK

Figure 5-27

DSW VIDEO PART CHECK

Figure 5-28

DSW Video Part Check Progressive Scan

DVDR980-985 /0X1

VIDEO PART CHECK PROGRESSIVE SCAN

Figure 5-29

DSW BASIC ENGINE TESTS

Waveforms

Waveforms Digital Board

Figure 5-31

Waveforms Digital Board

Figure 5-32

CL 16532/4-5_054.eps 031201

Waveforms Digital Board

CL 16532145_055.eps 031201

Measurement Points Overview

Measurement Point Overview for EURO

			Signal	Signal	Signal		Scher	natics
MP	X	Υ	Name	Description	Туре	Part		Coord.
F800			F_MODE	Fact. Mode	Condition	AIO1	AIO1	C10
F3201			12V	12 V Supply	PS IN	1932 1	PS	C1
F3202			5V	5 V Supply	PS IN	1932 2	PS	C1
F3203			5NSTBY	5 V Supply	PS IN	1932 3	PS	C1
F3204			VGNSTBY	Supply GND	PS IN	1932 4	PS	C1
F3205			33STBY	33 V Supply	PS IN	1932 5	PS	D1
F3206			FLYB	Controls PS	DC Gen	1932 6	PS	D1
F3207			GNDA	Ground Analogue	GND	1932 7	PS	D1
F0017			3VD	3V3 Supply	PS IN	1900 17	DAC	B1
F0001			GNDD	Ground Digital	GND	1900 01	DAC	E1
F803			INT Clock	Clock Adjust	Count Out	7811 7	AIO1	H5
F900			5STBY2	5V AIO	DC Out	7803 12	AIO2	D3
F902			IReset	Inverse Reset	DC Out *	7803 115	AIO2	D2
F8111			5M	5 V Motor	DC Out	1987 12	AIO1	F14
F303			5SW	5SW	DC Out	7703 21	TU	B10
F9336			8SW	8SW	DC Out	2321	PS	B6
F8105			SDA	IIC1	IIC IO	1981 6	AIO1	E13
F8107			SCL	IIC1	IIC IO	1981 8	AIO1	E13
F810			SCL1	IIC2	IIC IO	3804	AIO1	A9
F811			SDA1	IIC2	IIC IO	3805	AIO1	A9
F8104			IPOR1	IPOR to DC	DC OUT	1981 5	AIO1	E13
F8101			12STBY	12 V to DC	DC Out	1981 2	AIO1	D13
F8110			5STB	5 V to DC	DC Out	1981 11	AIO1	F13
F5306			8SW	8 SW to FRONT	DC Out	1953 6	101	11
F8102			VGNSTBY	VGN to DC	GND	1981 3	AIO1	E13
F8202			A_DATA	To DIGI	DC IN	1982 2	AIO1	H13
F8203			D_DATA	To DIGI	DC IN	1982 3	AIO1	H13
F8204			A_RDY	To DIGI	DC IN	1982 4	AIO1	H13
F8205			D_RDY	To DIGI	DC IN	1982 5	AIO1	H13
F8108			INT	TO DC	DC IN	1981 9	AIO1	F13
F8109			RC	TO DC	DC IN	1981 10	AIO1	F13
F8201			IRESET_DIG	TO DIGI	DC IN	1982 1	AIO1	H13
F513			GNDA	SC1 GND A	DC IN	1950 4A	101	E14
F517			ARIn_SC1	SC1 A R IN	NF IN	1950 2A	101	E13
F519			ALIn_SC1	SC1 A L IN	NF IN	1950 6A	101	E14
F534			YCVBSIN_SC1	SC1 Y IN	V IN	1950 20A	101	113
F525			GNDV	SC1 GND V	GND	1950 21A	101	H14
F5001			AROut_SC2	SC2 A R Out	NF Out	1950 1B	104	C9
F5003			ALOutSC2	SC2 A L Out	NF Out	1950 3B	104	C9
F5004			GNDA	SC2 GND A	GND	1950 4B	104	C9
F5019			YCVBSOut_SC2	SC2 Y Out	V Out	1950 19B	104	C9
F5021			GNDV	SC2 GND V	GND	1950 21B	104	C9
F516			AROut_SC1	SC1 A R Out	NF Out	1950 1A	101	E14
FE18			ALOutSC1	SC1 A L Out	NF Out	1950 3A	101	E14
F531	1	1	YCVBSOut_SC1	SC1 Y Out	V Out	1950 19A	101	G13

			Signal	Signal	Signal		Scher	natics
MP	X	Υ	Name	Description	Туре	Part		Coord.
F5002			ARIn_SC2	SC2 A R IN	NF IN	1950 2B	104	C9
F5006			ALIn_SC2	SC2 A L IN	NF IN	1950 6B	104	C9
F5020			YCVBSIN_SC2	SC2 Y IN	Sin IN	1950 20B	104	F9
F536			BC_SC1	SC1 BC	Sin Out*	1950 7A	101	E13
F521			8_SC1	SC1 Pin 8	DC Out	1950 8A	101	F13
F515			P50_SC1	SC1 P50	DC Out	1950 10A	101	F14
F524			Gout_SC1	SC1 G Out	Sin Out	1950 11A	101	F13
F527			RCOut_SC1	SC1 RC Out	Sin Out	1950 15A	101	G14
F530			FBOut_SC1	SC1 FB Out	DC Out	1950 16A	101	H13
F5007			BC_SC2	SC2 B IN C Out	Sin In*	1950 7B	104	D9
F5008			8_SC2	SC2 Pin 8	DC Out	1950 8B	104	D9
F5011			Gin_SC2	SC2 G In	Sin In	1950 11B	104	D9
F5015			RCin_SC2	SC2 RC In	Sin In	1950 15B	104	E9
F5016			FBin_SC2	SC2 FB In	DC In	1950 16B	104	E9
F5401			A_V	A_V to DIGI	Sin Out	1954 01	101	13
F5402			GNDV	GNDV to DIGI	GND	1954 02	101	14
F5403			A_U	A_U to DIGI	Sin Out	1954 03	101	14
F5405			A_Y	A_Y to DIGI	V Out	1954 05	101	14
F5407			A_C	A_C to DIGI	Sin Out	1954 07	101	14
F5409			A_YCVBS	AYCVBS to DIGI	V Out	1954 09	101	14
F5412			D_CVBS	D_CVBS f. DIGI	V In	1954 12	101	15
F5414			D_Y	D Y f. DIGI	V In	1954 14	101	15
F5416			D_C	D_C f. DIGI	Sin In	1954 16	101	15
F5418			D_R	D_T f. DIGI	Sin In	1954 18	101	16
F5420			D_G	D_G f. DIGI	Sin In	1954 20	101	16
F5422			D B	D_B f, DIGI	Sin In	1954 22	101	16
F5301			AFCRI	A R from FC	NF In	1953 1	101	11
F5303			AFCLI	A L from FC	NF In	1953 3	101	11
F5304			CVBSFIN	CVBS from FC	V In	1953 4	101	11
F5307			CFIN	C from FC	Sin In	1953 7	101	12
F5309			YFIN	Y from FC	V In	1953 9	101	12
F012			DAINOPT	A D Opt to DIGI		1900 20	DAC	A1
F013			DAINCOAX	A D Coax to DIGI		1900 21	DAC	A1
F014			DAOUT	A D from DIGI		1900 20	DAC	A1
F0002			A_BCLK	BCLK from DIGI	CLK In	1900 2	DAC	E2
F0003			A_WCLK	WCLK from DIGI	CLK In	1900 2	DAC	D2
F0005			A_DAT	A Data to DIGI	Data Out	1900 5	DAC	D2
F0007			A PCMCLK	PCMCLK from DIGI	CLK In	1900 7	DAC	D2
F0009			D BCLK	BCLK from DIGI	CLK III	1900 7	DAC	D2
F0011			D_WCLK	WCLK from DIGI	CLK In	1900 9	DAC	D2
F0012			D_DATA0	A Data from DIGI	Data In	1900 11		
F0014			D_PCMCLK	PCMCLK from DIGI	CLK In	1900 12	DAC	C2 C2
F0016			D_KILL	A Kill from DIGI				
F010			ARDAG	A R from DAC	DC In	1900 16	DAC	C2
F011					NF Out	7002 1	DAC	C9
F331			ALDAC	A L from DAC	NF Out	7002 7	DAC	E9
			RCALOut	A L Rear Cinch Out	NF Out	1958 4B	103	E9
F334			RCAROut	A R Rear Cinch Out	NF Out	1958 5B	103	E9
F336			RCVBSOut	V Rear Cinch Out	V Out	1959 1B	103	C9

MP X Y Name Description Type Part Name Coord. F5101 ARCRI A L Rear Cinch In NF In 1958 1A IO2 D2 F5103 ARCLI A R Rear Cinch In NF In 1958 2A IO2 E2 F5202 RCVBSIn V Rear Cinch In V In 1959 2A IO2 C2 F5503 RSVHSYIN Y Rear SVHS In V In 1955 3B IO2 B2 F5504 RSVHSCIn C Rear SVHS In Sin In 1955 4B IO2 B2 F338 RSVHSCOut C Rear SVHS Out Sin In 1955 4B IO3 A9 F337 RSVHSCOut C Rear SVHS Out Sin Out 1955 4A IO3 A9 F6001 DVAR A R from DIGI Sin In 1960 1 AP D1 F6002 GNDA GNDA GNDA GND 1960 2 AP D1 F6004 DVAL A L from DIGI Sin In 19			7				,		
F5101			1	Signal	Signal	Signal			
F5103		X	Y						
F5202 RCVBSIn V Rear Cinch In V In 1959 2A IO2 C2 F5503 RSVHSYIn Y Rear SVHS In V In 1955 3B IO2 B2 F5504 RSVHSCIn C Rear SVHS In Sin In 1955 4B IO2 B2 F338 RSVHSYOUT Y Rear SVHS OUT V Out 1955 3A IO3 A9 F337 RSVHSCOUT C Rear SVHS OUT Sin In 1955 4A IO3 A9 F6001 DVAR A R from DIGI Sin In 1960 1 AP D1 F6002 GNDA GNDA GND 1960 2 AP D1 F6004 DVAL A L from DIGI Sin In 1960 4 AP D1 F6004 DVAL A L from DIGI Sin In 1960 4 AP D1 F700 IF IF Out DC Out 1705 11 TU C3 F701 IF In IF In Sin In 1705 11 TU C3 F702 </td <td></td> <td></td> <td></td> <td>ARCRI</td> <td>A L Rear Cinch In</td> <td>NF In</td> <td>1958 1A</td> <td>102</td> <td>D2</td>				ARCRI	A L Rear Cinch In	NF In	1958 1A	102	D2
F5503					A R Rear Cinch In		1958 2A	102	E2
F5504	F5202			RCVBSIn	V Rear Cinch In	V In	1959 2A	102	C2
F338 RSVHSYOut Y Rear SVHS Out V Out 1955 3A IO3 A9 F337 RSVHSCOut C Rear SVHS Out Sin Out 1955 4A IO3 A9 F6001 DVAR A R from DIGI Sin In 1960 1 AP D1 F6002 GNDA GNDA GND 1960 2 AP D1 F6004 DVAL A L from DIGI Sin In 1960 4 AP D1 F700 IF IF Out DC Out 1705 11 TU C3 F701 IF In IF In Sin In 1705 11 TU C3 F702 GNDFV GND FV GND 1705 12 TU C2 F703 GNDFV GND FV GND 1700 3 TU B6 F704 40.4 40.4 Trap Sin Out 1700 1 TU B5 F705 AGC AGC DC Out 3701 TU A4 F812 SYNC SYNC from Sepa.	F5503			RSVHSYIn	Y Rear SVHS In	V In	1955 3B	102	B2
F337 RSVHSCOut C Rear SVHS Out Sin Out 1955 4A IO3 A9 F6001 DVAR A R from DIGI Sin In 1960 1 AP D1 F6002 GNDA GNDA GND 1960 2 AP D1 F6004 DVAL A L from DIGI Sin In 1960 4 AP D1 F6004 DVAL A L from DIGI Sin In 1960 4 AP D1 F700 IF IF Out DC Out 1705 11 TU C3 F701 IF In IF In Sin In 1705 11 TU C3 F702 GNDFV GND FV GND 1705 12 TU C2 F703 GNDFV GND FV GND 1700 3 TU B6 F704 40.4 40.4 Trap Sin Out 1700 1 TU B5 F705 AGC AGC DC Out 3701 TU A4 F812 SYNC SYNC from Sepa.				RSVHSCIn	C Rear SVHS In	Sin In	1955 4B	102	B2
F6001 DVAR A R from DIGI Sin In 1960 1 AP D1 F6002 GNDA GNDA GND 1960 2 AP D1 F6004 DVAL A L from DIGI Sin In 1960 4 AP D1 F700 IF IF Out DC Out 1705 11 TU C3 F701 IF In IF In Sin In 1705 11 TU C3 F702 GNDFV GND FV GND 1705 12 TU C2 F703 GNDFV GND FV GND 1700 3 TU B6 F704 40.4 40.4 Trap Sin Out 1700 1 TU B5 F705 AGC AGC DC Out 3701 TU A4 F812 SYNC SYNC from Sepa. Freq Out 7803 33 AIO1 F6 F4203 DIG OUT L Digital Out Low GND 1945 3 DIGI B4 F4204 OPT OUT Optical Out <td>F338</td> <td></td> <td></td> <td>RSVHSYOut</td> <td>Y Rear SVHS Out</td> <td>V Out</td> <td>1955 3A</td> <td>103</td> <td>A9</td>	F338			RSVHSYOut	Y Rear SVHS Out	V Out	1955 3A	103	A9
F6002 GNDA GNDA GND 1960 2 AP D1				RSVHSCOut	C Rear SVHS Out	Sin Out	1955 4A	103	A9
F6004 DVAL A L from DIGI Sin In 1960 4 AP D1 F700 IF IF Out DC Out 1705 11 TU C3 F701 IF In IF In Sin In 1705 11 TU C3 F702 GNDFV GND FV GND 1705 12 TU C2 F703 GNDFV GND FV GND 1700 3 TU B6 F704 40.4 40.4 Trap Sin Out 1700 1 TU B5 F705 AGC AGC DC Out 3701 TU A4 F812 SYNC SYNC from Sepa. Freq Out 7803 33 AIO1 F6 F4202 DIG OUT L Digital Out Low GND 1954 2 DIGI B4 F4203 DIG OUT H Digital Out High Sin Out 1945 3 DIGI A4 F4204 OPT OUT Optical Out DC Out 1943 1 DIGI DIGI DIGI DIGI DIGI				DVAR	A R from DIGI	Sin In	1960 1	AP	D1
F700				GNDA	GNDA	GND	1960 2	AP	D1
F701 IF In IF In Sin In 1705 11 TU C3 F702 GNDFV GND FV GND 1705 12 TU C2 F703 GNDFV GND FV GND 1700 3 TU B6 F704 40.4 40.4 Trap Sin Out 1700 1 TU B5 F705 AGC AGC DC Out 3701 TU A4 F812 SYNC SYNC from Sepa. Freq Out 7803 33 AIO1 F6 F4202 DIG OUT L Digital Out Low GND 1954 2 DIGI B4 F4203 DIG OUT H Digital Out High Sin Out 1945 3 DIGI A4 F4204 OPT OUT Optical Out DC Out 1943 1 DIGI D3 F806 FAN OUT FAN OUT DC Out 1984 1 FACO C5 F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION	F6004			DVAL	A L from DIGI	Sin In	1960 4	AP	D1
F702 GNDFV GND FV GND 1705 12 TU C2 F703 GNDFV GND FV GND 1700 3 TU B6 F704 40.4 40.4 Trap Sin Out 1700 1 TU B5 F705 AGC AGC DC Out 3701 TU A4 F812 SYNC SYNC from Sepa. Freq Out 7803 33 AIO1 F6 F4202 DIG OUT L Digital Out Low GND 1954 2 DIGI B4 F4203 DIG OUT H Digital Out High Sin Out 1945 3 DIGI B4 F4204 OPT OUT Optical Out DC Out 1943 1 DIGI D3 F806 FAN OUT FAN Out DC Out 1984 1 FACO C5 F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE	F700			IF	IF Out	DC Out	1705 11	TU	C3
F703 GNDFV GND FV GND 1700 3 TU B6 F704 40.4 40.4 Trap Sin Out 1700 1 TU B5 F705 AGC AGC DC Out 3701 TU A4 F812 SYNC SYNC from Sepa. Freq Out 7803 33 AIO1 F6 F4202 DIG OUT L Digital Out Low GND 1954 2 DIGI B4 F4203 DIG OUT H Digital Out High Sin Out 1945 3 DIGI A4 F4204 OPT OUT Optical Out DC Out 1943 1 DIGI D3 F806 FAN OUT FAN OUT DC Out 1984 1 FACO C5 F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 I13 F8209 FB	F701			IF In	IF in	Sin In	1705 11	TU	СЗ
F704 40.4 40.4 Trap Sin Out 1700 1 TU B5 F705 AGC AGC DC Out 3701 TU A4 F812 SYNC SYNC from Sepa. Freq Out 7803 33 AIO1 F6 F4202 DIG OUT L Digital Out Low GND 1954 2 DIGI B4 F4203 DIG OUT H Digital Out High Sin Out 1945 3 DIGI A4 F4204 OPT OUT Optical Out DC Out 1943 1 DIGI D3 F806 FAN OUT FAN Out DC Out 1984 1 FACO C5 F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 I13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 I13	F702			GNDFV	GND FV	GND	1705 12	TU	C2
F705 AGC AGC DC Out 3701 TU A4 F812 SYNC SYNC from Sepa. Freq Out 7803 33 AIO1 F6 F4202 DIG OUT L Digital Out Low GND 1954 2 DIGI B4 F4203 DIG OUT H Digital Out High Sin Out 1945 3 DIGI A4 F4204 OPT OUT Optical Out DC Out 1943 1 DIGI D3 F806 FAN OUT FAN Out DC Out 1984 1 FACO C5 F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 I13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 I13	F703			GNDFV	GND FV	GND	1700 3	TU	B6
F812 SYNC SYNC from Sepa. Freq Out 7803 33 AIO1 F6 F4202 DIG OUT L Digital Out Low GND 1954 2 DIGI B4 F4203 DIG OUT H Digital Out High Sin Out 1945 3 DIGI A4 F4204 OPT OUT Optical Out DC Out 1943 1 DIGI D3 F806 FAN OUT FAN Out DC Out 1984 1 FACO C5 F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 I13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 I13	F704			40.4	40.4 Trap	Sin Out	1700 1	TU	B5
F4202 DIG OUT L Digital Out Low GND 1954 2 DIGI B4 F4203 DIG OUT H Digital Out High Sin Out 1945 3 DIGI A4 F4204 OPT OUT Optical Out DC Out 1943 1 DIGI D3 F806 FAN OUT FAN Out DC Out 1984 1 FACO C5 F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 I13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 I13	F705			AGC	AGC	DC Out	3701	TU	A4
F4203 DIG OUT H Digital Out High Sin Out 1945 3 DIGI A4 F4204 OPT OUT Optical Out DC Out 1943 1 DIGI D3 F806 FAN OUT FAN Out DC Out 1984 1 FACO C5 F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 I13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 I13	F812			SYNC	SYNC from Sepa.	Freq Out	7803 33	AIO1	F6
F4204 OPT OUT Optical Out DC Out 1943 1 DIGI D3 F806 FAN OUT FAN Out DC Out 1984 1 FACO C5 F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 I13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 I13	F4202			DIG OUT L	Digital Out Low	GND	1954 2	DIGI	B4
F806 FAN OUT FAN Out DC Out 1984 1 FACO C5 F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 I13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 I13	F4203			DIG OUT H	Digital Out High	Sin Out	1945 3	DIGI	A4
F807 FAN IN FAN In DC In 1985 1 FACO F1 F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 I13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 I13	F4204			OPT OUT	Optical Out	DC Out	1943 1	DIGI	D3
F8206 ION ION_FAN DC Out 1982 6 AIO1 H13 F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 H13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 H13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 H13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 H13 F8209 AIO1 H13 H13	F806			FAN OUT	FAN Out	DC Out	1984 1	FACO	C5
F8208 BE_FAN BE_FAN DC Out 1982 8 AIO1 I13 F8209 FB FBIN SC2 DC Out 1982 9 AIO1 I13	F807			FAN IN	FAN In	DC In	1985 1	FACO	F1
F8209 FB FBIN SC2 DC Out 1982 9 AIO1 I13	F8206			ION	ION_FAN	DC Out	1982 6	AIO1	H13
12 1211002 2001 1002 71101 110	F8208			BE_FAN	BE_FAN	DC Out	1982 8	AIO1	l13
F8210 GNDD GNDD GNDD 1982 10 AIO1 113	F8209			FB	FBIN SC2	DC Out	1982 9	AlO1	l13
	F8210			GNDD	GNDD	GNDD	1982 10	AIO1	113

Remark: Indicator * means more than one signal type

iL 16532095_098.eps 150801

Measurement Point Overview for NAFTA

			Signal	Signal	Signal		Scher	
MP	X	Y	Name	Description	Туре	Part		Coord.
F800			F_MODE	Fact. Mode	Condition	AIO1	AIO1	C10
F3201			12V	12 V Supply	PS IN	1932 1	PS	C1
F3202			5V	5 V Supply	PS IN	1932 2	PS	C1
F3203			5NSTBY	5 V Supply	PS IN	1932 3	PS	C1
F3204			VGNSTBY	Supply GND	PS IN	1932 4	PS	C1
F3205			33STBY	33 V Supply	PS IN	1932 5	PS	D1
F3206			FLYB	Controls PS	DC Gen	1932 6	PS	D1
F3207			GNDA	Ground Analogue	GND	1932 7	PS	D1
F0017			3VD	3V3 Supply	PS IN	1900 17	DAC	B1
F0001			GNDD	Ground Digital	GND	1900 01	DAC	E1
F803			INT Clock	Clock Adjust	Count Out	7811 7	AIO1	H5
F900			5STBY2	5V AIO	DC Out	7803 12	AIO2	D3
F902			IReset	Inverse Reset	DC Out *	7803 115	AIO2	D2
F8111			5M	5 V Motor	DC Out	1987 12	AIO1	F14
F303			5SW	5SW	DC Out	7703 21	IJ	B10
F9336			8SW	8SW	DC Out	2321	PS	B6
F8105			SDA	IIC1	IIC IO	1981 6	AIO1	E13
F8107			SCL	IIC1	IIC IO	1981 8	AIO1	E13
F810			SCL1	IIC2	IIC IO	3804	AIO1	A9
F811			SDA1	IIC2	IIC IO	3805	AIO1	A9
F8104			IPOR1	IPOR to DC	DC OUT	1981 5	AIO1	E13
F8101			12STBY	12 V to DC	DC Out	1981 2	AIO1	D13
F8110			5STB	5 V to DC	DC Out	1981 11	AIO1	F13
F5306			8SW	8 SW to FRONT	DC Out	1953 6	101	11
F8102			VGNSTBY	VGN to DC	GND	1981 3	AIO1	E13
F8202			A_DATA	To DIGI	DC_In	1982 2	AIO1	H13
F8203			D_DATA	To DIGI	DC_In	1982 3	AIO1	H13
F8204			A_RDY	To DIGI	DC_In	1982 4	AIO1	H13
F8205			D_RDY	To DIGI	DC_In	1982 5	AIO1	H13
F8108			INT	TO DC	DC_In	1981 9	AIO1	F13
F8109			RC	TO DC	DC_In	1981 10	AIO1	F13
F8201			IRESET_DIG	TO DIGI	DC_In	1982 1	AIO1	H13
F5103			ARIn_2	ARIN2	NF IN	1958 3A	103	E13
F5101			ALIn_2	ALIN2	NF IN	1958 1A	103	E14
F5906			GNDV	GND V	GND	1957 6A	101	H12
F5806			GNDV	GND V	GND	1956 6A	101	18
F510			ARout_1	A R Out 1	NF Out	1959 5B	101	E13
F509			ALout_1	A L Out 1	NF Out	1959 4B	101	D13
F5201			RCVBSOut2	SC1 Y Out	V Out	1997 1B	103	A8
F5105			ARIn_1	ARIN1	NF IN	1959 1A	102	E2
F5104			ALIn_1	A L IN 1	NF IN	1959 4A	102	E2
F5202			RCVBSIn	Y IN	Sin IN	1997 2A	102	C2
F5905			Y_OUT	Y Out	Sin Out*	1957 5A	101	l12
F5801			U_IN	UIN	Sin In*	1956 1B	101	I10
F5805			Y_IN	Y IN	Sin In	1956 5A	101	19
F5802			V_IN	V IN	Sin In	1956 2B	101	110

Ш	
N	
8	

			Signal	Signal	Signal		Schen	natics
MP	Х	Y	Name	Description	Type	Part		Coord.
F5401			A_V	A_V to DIGI	Sin Out	1954 01	101	13
F5402			GNDV	GNDV to DIGI	GND	1954 02	101	14
F5403			A_U	A_U to DIGI	Sin Out	1954 03	101	14
F5405			A_Y	A_Y to DIGI	V Out	1954 05	101	14
F5407			A C	A C to DIGI	Sin Out	1954 07	101	14
F5409			A_YCVBS	AYCVBS to DIGI	V Out	1954 09	101	14
F5412			D_CVBS	D_CVBS f. DIGI	V In	1954 12	101	15
F5414			D_Y	D_Y f. DIGI	V In	1954 14	101	15
F5416			D_C	D_C f. DIGI	Sin In	1954 16	101	15
F5418			D_R	D_T f. DIGI	Sin In	1954 18	101	16
F5420			D_G	D_G f. DIGI	Sin In	1954 20	101	16
F5422			D_B	D_B f. DIGI	Sin In	1954 22	101	16
F5301			AFCRI	A R from FC	NF In	1953 1	101	11
F5303			AFCLI	A L from FC	NF In	1953 3	101	11
F5304			CVBSFIN	CVBS from FC	V In	1953 4	101	11
F5307			CFIN	C from FC	Sin In	1953 7	101	12
F5309			YFIN	Y from FC	V In	1953 9	101	12
F012			DAINOPT	A D Opt to DIGI		1900 20	DAC	A1
F013			DAINCOAX	A D Coax to DIGI		1900 21	DAC	A1
F014			DAOUT	A D from DIGI		1900 20	DAC	A1
F0002			A_BCLK	BCLK from DIGI	CLK In	1900 2	DAC	E2
F0003			A_WCLK	WCLK from DIGI	CLK In	1900 3	DAC	D2
F0005			A_DAT	A Data to DIGI	Data Out	1900 5	DAC	D2
F0007			A_PCMCLK	PCMCLK from DIGI	CLK In	1900 7	DAC	D2
F0009			D_BCLK	BCLK from DIGI	CLK In	1900 9	DAC	D2
F0011			D_WCLK	WCLK from DIGI	CLK In	1900 11	DAC	D2
F0012			D_DATA0	A Data from DIGI	Data In	1900 12	DAC	C2
F0014			D_PCMCLK	PCMCLK from DIGI	CLK In	1900 14	DAC	C2
F0016			D_KILL	A Kill from DIGI	DC In	1900 16	DAC	C2
F010			ARDAC	A R from DAC	NF Out	7002 1	DAC	C9
F011			ALDAC	A L from DAC	NF Out	7002 7	DAC	E9
F513			ALOut_2	A L Rear Out 2	NF Out	1958 4B	101	B13
F512			AROut_2	A R Rear Out 2	NF Out	1958 5B	101	C13
F5205			RCVBSOut1	V Rear Cinch Out1	V Out	1997 5C	103	A8
F5503			RSVHSYIn	Y Rear SVHS In	V In	1955 3B	102	B2
F5504			RSVHSCIn	C Rear SVHS In	Sin In	1955 4B	102	B2
F338			RSVHSYOut	Y Rear SVHS Out	V Out	1955 3A	IO3	A9
F337			RSVHSCOut	C Rear SVHS Out	Sin Out	1955 4A	103	A9
F6001			DVAR	A R from DIGI	Sin In	1960 1	AP	D1
F6002			GNDA	GNDA	GND	1960 2	AP	D1
F6004			DVAL	A L from DIGI	Sin In	1960 4	AP	D1
F700			IF	IF Out	DC Out	1705 11	ΤU	C3
F701			IF In	IF In	Sin In	1705 11	TU	C3
F702			GNDFV	GND FV	GND	1705 12	TU	C2
F703			GNDFV	GND FV	GND	1700 3	TU	B6
F705			AGC	AGC	DC Out	3701	TU	A4
13107			SYNC	SYNC from Sepa.	Freq Out	7803 33	AlO1	F6
F330			RC IN	Remote Control In	DC Out	1993 2	103	E2

			Signal	Signal	Signal		Scher	natics
MP	Х	Υ	Name	Description	Type	Part	Name	Coord.
F4202			DIG OUT L	Digital Out Low	GND	1954 2	DIGI	B4
F4203			DIG OUT H	Digital Out High	Sin Out	1945 3	DIGI	A4
F4204			OPT OUT	Optical Out	DC Out	1943 1	DIGI	D3
F806			FAN OUT	FAN Out	DC Out	1984 1	FACO	C5
F807			FAN IN	FAN in	DC In	1985	FACO	F1
F8206			ION	ION_FAN	DC Out	1982 6	AIO1	H13
F8208			BE_FAN	BE_FAN	DC Out	1982 8	AIO1	113
F8209			FB	FBIN SC2	DC Out	1982 9	AIO1	113
F8210			GNDD	GNDD	GNDD	1982 10	AIO1	113

Remark: Indicator * means more than one signal type

Power Part Check

Figure 5-37

031201

DSW Check Analoge Board

DSW CHECK ANALOGUE BOARD

Figure 5-38

Routing Audio and Video

Route Video Nucleus Number: 712

Description

This nucleus routes the video signals on the analogue board to the destination determined by the input parameters The paths that are available for video routing and their description(Europe version)

PATH ID	DESCRIPTION
00	Input signal is VIDEO(CVBS) from digital board and will be re-routed back to the digital board.
01	Input signal is from FRONT VIDEO(CVBS) IN and will be routed to the digital board.
02	Input signal is from REAR VIDEO(CVBS) IN and will be routed to the digital board.
03	Input signal is from FRONT S-VIDEO(Y/C) and will be routed to the digital board.
04	Input signal is from REAR S-VIDEO(Y/C) and will be routed to the digital board.
05	Input signal is CVBS from SCART1 and will be routed to the digital board.
06	Input signal is CVBS from SCART2 and will be routed to the digital board.
07	No routing.
08	Input signal is VIDEO(CVBS) from ANTENNA IN and will be routed to SCART1.
09	Input signal is VIDEO(CVBS) from SCART1 and will be routed to SCART2.
10	Input signal is VIDEO(CVBS) from SCART2 and will be routed to SCART1.
11	No routing.
12	Input signal is from REAR VIDEO(CVBS) IN and will be routed to SCART1 and SCART2.
13	Input signal is from FRONT VIDEO(CVBS) IN and will be routed to SCART1.
14	Input signals VIDEO(CVBS and Y/C) from SCART 1 will be routed to SCART2.
15	Input signal is from REAR S-VIDEO(Y/C) IN and will be routed to SCART2.
16	Input signal is from FRONT S-VIDEO(Y/C) IN and will be routed to SCART2.
17	No routing
18	No routing
19	Input signals VIDEO(RGB and FAST BLANKING) from SCART2 will be routed to the corresponding pins of SCART1.
20	Signal path is routed from digital board RGB to RGB SCART1 and from RGB SCART2 to digital board YUV and from digital board CVBS to digital board CVBS.
21	Signal path is routed from digital board YC to REAR S-VIDEO(YC) OUT and from REAR S-VID-EO(YC) IN to digital board YC.

The paths that are available for video routing and their description (Nafta region)

PATH ID	DESCRIPTION
00	Input signal is VIDEO(CVBS) from digital board and will be re-routed back to the digital board.
01	Input signal is from FRONT VIDEO(CVBS) IN and will be routed to the digital board.
02	Input signal is from REAR VIDEO(CVBS) IN and will be routed to the digital board.
03	Input signal is from FRONT S-VIDEO(Y/C) IN and the signal received will be routed to the digital board.

PATH ID	DESCRIPTION
04	Input signal is from REAR S-VIDEO(Y/C) IN and will be routed to the digital board.
05	Input signal is from YUV IN and will be routed to the digital board.
06	No routing.
07	No routing.
08	Input signal is VIDEO(CVBS) from ANTENNA IN and will be routed to VIDEO(CVBS) OUT and .
09	Input signal is from YUV IN and will be routed to YUV OUT.
10	No routing.
11	No routing.
12	Input signal is from REAR VIDEO(CVBS) IN and will be routed to REAR VIDEO(CVBS) OUT.
13	Input signal is from FRONT VIDEO(CVBS) IN and will be routed to REAR VIDEO(CVBS) OUT.
14	Input signal is from REAR S-VIDEO(Y/C) IN and will be routed to REAR S-VIDEO(Y/C) OUT.
15	Input signal is from FRONT S-VIDEO(Y/C) IN and will be routed to REAR S-VIDEO(Y/C) OUT.
16	No routing.
17	Signal path is routed from digital board RGB to REAR VIDEO(YUV) OUT and from REAR VIDEO(YUV) IN to digital board YUV and from digital board CVBS to digital board CVBS.
18	Signal path is routed from digital board CVBS to REAR VIDEO(CVBS) OUT and from REAR VIDEO(CVBS) IN to digital board CVBS.
19	Signal path is routed from digital board YC to REAR S-VIDEO(YC) OUT and from REAR S-VID-EO(YC) IN to digital board YC.

Example

DD:> 712 01

71200: Video routing on the Analogue Board OK.

Test OK @

Route Audio

Nucleus Number: 713

Description

This nucleus routes the audio on the analogue board to the destination determined by the input parameters The paths that are available for audio routing and their description (Europe version)

PATH ID	DESCRIPTION
00	Input signal is VIDEO(CVBS) from digital board and will be re-routed back to the digital board.
01	Input signal is from FRONT AUDIO IN and will be routed to the digital board.
02	Input signal is from REAR AUDIO IN and will be routed to the digital board.
03	Input signal is AUDIO from SCART1 and will be routed to the digital board.
04	Input signal is AUDIO from SCART2 and will be routed to the digital board.
05	No routing.
06	No routing.
07	No routing.
08	Input signal is VIDEO(CVBS) and AUDIO from ANTENNA IN and will be routed to SCART1.
09	Input signal is VIDEO(CVBS) and AUDIO form SCART1 and will be routed to SCART2.
10	Input signal is VIDEO(CVBS) and AUDIO form SCART2 and will be routed to SCART1.
11	Input signal is AUDIO from dvio board and will be routed to SCART1.

PATH ID	DESCRIPTION
12	No routing.
13	No routing.
14	No routing.
15	No routing.
16	No routing.
17	Input signal is from REAR AUDIO IN and will be routed to SCART1.
18	Input signal is from FRONT AUDIO IN and will be routed to SCART1.

The paths that are available for audio routing and their description (Nafta region)

PATH ID	DESCRIPTION		
00	Input signal is VIDEO(CVBS) from digital board		
	and will be re-routed back to the digital board.		
01	Input signal is from FRONT AUDIO IN and will be routed to the digital board.		
02	Input signal is from REAR AUDIO IN 2 and will be routed to the digital board.		
03	Input signal is from FRONT AUDIO IN and will be routed to the digital board.		
04	No routing.		
05	No routing.		
06	No routing.		
07	No routing.		
08	Input signal is VIDEO(CVBS) and AUDIO from ANTENNA IN and will be routed to VIDEO(CVBS) OUT and REAR CINCH OUT 2.		
09	No routing.		
10	Input signal is from REAR AUDIO CINCH IN 2 and will be routed to REAR AUDIO CINCH OUT 2.		
11	Input signal is from FRONT AUDIO CINCH IN and will be routed to REAR AUDIO CINCH OUT 2.		
12	No routing.		
13	No routing.		
14	No routing.		
15	No routing.		
16	Input signal is AUDIO from dvio board and will be routed to AUDIO CINCH OUT 2.		
17	No routing.		
18	No routing.		
19	No routing.		
20	Input signal is from digital board and will be routed to the REAR AUDIO OUT 1 and input signal is from REAR AUDIO IN 2 and will be routed to the digital board.		
21	Input signal is from digital board and will be routed to the REAR AUDIO OUT 1 and input signal is from REAR AUDIO IN 1 and will be routed to the digital board.		
22	Input signal is from digital board and will be routed to the REAR AUDIO OUT 2 and input signal is from REAR AUDIO IN 1 and will be routed to the digital board.		

EXAMPLE DD:> 713 00 71300: Audio routing on the Analogue Board OK.

Display Board

TROUBLESHOOTING DISPLAY BOARD

Figure 5-39

DVIO Board

Power part check

POWER PART CHECK DVIO

USE DVIO BOARD CIRCUIT DIAGRAMS 1 2, 3, 4 AND 5 AND DVIO TOP VIEW TESTPOINTS

Figure 5-40

Reset and Clock check

DVDR980-985 /0X1

RESET & CLOCK CHECK DVIO

USE DVIO BOARD CIRCUIT DIAGRAMS 2, 3, 4 AND 5 AND DVIO TOP VIEW TESTPOINTS

Figure 5-41

DSW DVIO tests

DSW DVIO TESTS

Figure 5-42

Waveforms

Waveforms DVIO

DVDR980-985 /0X1

CL 16532145_060.eps 031201

Figure 5-43

5. EN 91

Personal Notes:	

Personal Notes:
-

6. Block and Wiring Diagram.

Block Diagram DVDR980-985 EU

Wiring Diagram

WIRING DIAGRAM

1601

7. Electrical Diagrams and Print-Layouts

06		
A1 A3 A2 A3 A3 A2 A1 A1 A1		
11 11 13 12		

1140 D2 1915 C1

2140 E2 3135 D1

3136 A3

3137 B3

3138 C3 3139 C4 3140 D2

3141 D3

3142 D2

3143 A3

3144 A4

3149 C3 3999 A2

6140 B4

7140 D4

7141 A2 7142 B4

7143 A4

7144 C4 7145 D4

F300 C1

F301 C1

F302 C1

F303 D1 F304 D1

F305 D1 F306 D1

1310 A4

1311 A2 1312 A3 1313 B3

I314 A4

1315 D4

1316 C4

1317 C3 1318 D3

1319 D2

1320 D3

IR and Standby Panel

Layout IR and Standby Panel (Top View)

Layout IR and Standby Panel (Bottom View)

MCL4148

GNDFV

7

SB1

6

ΔΞ

F 의 F GNDFV L GNDFV

8

ΔĘ

S.c.

CL 16532095_011.eps 070801

10

GNDFV

9

GNDFV

4

GNDFV

5

SAWS

TS

L

Н

Η

HH

2

3

L

GNDV

5

4

YKC21-4159 ²

not used

1

GNDA

2

F

₹ \$ \$

3

GNDV

8

<u>₹</u>≶₹

GNDV

9

345 100 100 100 100

CTLA CTLB OUT

Н

Н

6

IN1

IN2

IN3

H MUTE

7

1414 E9

1416 C8

F

CL 26532011_002.eps 150102

10

1417 B10

GNDA

5

3

2

GNDA

GNDD

GNDD

8

7

CL 16532095_016.eps 080801

1324 E8

1325 C8

1326 B2 1327 B2

1932 C1 1996 D4 2321 C6

2322 D6

2323 D6

2324 B3 2325 B4 2328 C8

2329 E2 2330 B3

2331 B4

2332 B8 3321 C7 3322 E6 3323 F6

3325 D6

3326 D7

3335 F9

3336 F8

3337 D6 3338 D3 3339 D2

3340 E2 4320 D4 7321 C5

7322 F6

7323 D5

7324 D7

7329 F8

7330 E2

7331 E3 7332 A4

F3201 C1

F3202 C1

F3203 C1

F3204 C1

F3205 C1

F3206 D1 F3207 D1

F9330 E8

F9332 E9

F9333 E9

F9336 B6

F9338 C8 F9340 B2 F9341 C9

F9342 C9

F9343 C8

F9344 A3

F9345 B3

F9346 C2 F9347 C2

1324 C6

1325 F6

1326 F6

1337 F8 1338 F8 1339 D6

1340 E2

1341 D3

1345 A4

Personal Notes	s:				
					·
				40.00	· · · · · · · · · · · · · · · · · · ·
		7.4			
		,			
					91

			WATER CONTRACTOR CONTR		
				·	
				(18 man 1 m	
			-		
	•				
				·	
		4.000		· · · · · · · · · · · · · · · · · · ·	
			*		***************************************
			71		

12

13

CL 16532145_016.eps 221101

11

12

Electrical Diagrams and Print-Layouts DVDR980-985 /0X1 7. EN 134

Layout DVIO Board (Testlands Bottom View)

11

10

11

Electrical Diagrams and Print-Layouts DVDR980-985 /0X1 7. EN 145

Electrical Diagrams and Print-Layouts DVDR980-985 /0X1 7. EN 147

Electrical Diagrams and Print-Layouts DVDR980-985 /0X1 7.7 EN 155

Layout Digital Board (Mapping Testlands)

1300 A2 1610 A5 1720 B3 F214 A3 1175 A3 F247 A2 1176 A3 I301 A2 1611 B5 1721 B2 1881 C3 F248 A2 1177 A3 1302 A2 1612 A5 1722 B3 1882 C3 F249 A2 1178 A3 1303 B2 1613 B5 1723 B2 1304 B3 1614 A5 1724 B2 1884 F250 A2 1179 A3 1305 B3 F264 A2 1180 A3 1615 B5 1725 B3 1900 B4 1306 A3 1616 A5 1726 B2 1901 B4 F265 A3 1181 A3 1617 A5 1727 B2 1902 B4 F931 A4 1182 B3 1307 B3 1308 A3 1618 C4 1728 A1 1903 B4 F932 A4 1183 A2 1184 A3 1309 B3 1619 A5 1904 B2 F933 A5 1729 A1 F934 A4 1186 A3 1400 A4 1621 A1 1730 A1 1905 A4 F935 A4 1187 A3 1401 A4 1622 A1 1731 A1 1906 A4 1100 A4 1188 A3 1402 B4 1623 A1 1732 B2 1907 A4 1101 C5 1200 A2 1403 A4 1624 A1 1733 B2 1908 A5 I102 C5 1201 B3 1404 B4 1625 A1 1734 B1 1911 B3 I103 B4 1202 A5 1405 B4 1626 A1 1735 B1 1104 B4 1406 B4 1627 B4 1800 C4 1912 A3 1203 A3 1407 A4 1628 C4 1801 C3 1913 B3 1105 B3 1204 C3 1408 A5 1629 A5 1802 C3 1915 B3 1106 B3 1205 A2 1409 A4 1630 C4 1803 C3 1916 B3 I107 B3 1206 A4 1631 C4 1917 B3 1108 B3 1207 A2 1410 A4 1805 C3 1109 B4 1208 B3 1412 B4 1632 C4 1806 C3 1918 A5 1110 B3 1209 B4 1413 A4 1633 B4 1807 C3 1919 B3 1111 A2 1210 A2 1414 B4 1634 C4 1808 C2 1920 B3 1112 B5 1211 A2 1415 B4 1635 C5 1809 C2 1921 A5 I113 B5 1212 A2 1416 B4 1636 C4 1810 C3 1637 C5 1811 C3 1923 B3 I114 B5 1213 A2 1500 C5 I115 B5 1215 B5 1638 C5 1501 C5 1812 C2 1924 A4 I116 C3 I117 C3 1813 C2 1216 A1 1502 C5 1639 C5 1925 B3 1640 C5 1814 C1 1926 A5 1217 A2 1503 C5 1218 A2 1641 B5 1815 B2 1927 A5 I118 C4 1504 C5 1816 B2 1119 C4 1219 A1 1505 C5 1642 A5 1928 A5 1643 A5 1817 B2 1930 B3 1120 A4 1220 A1 1506 C5 1644 A5 1818 C2 1931 A5 1121 A3 1221 B2 1507 C5 1122 B3 1222 B2 1508 C5 1645 B5 1819 C3 1932 B2 1123 A2 1223 A2 1509 C5 1646 C4 1820 C3 1933 B3 1124 B4 1224 A1 1510 B5 1647 A5 1821 C3 1125 A2 1225 A2 1511 C4 1649 C5 1822 C3 1126 A3 1226 A2 1512 C5 1650 B4 1651 B5 **B**2 1127 A2 1227 A2 1513 B5 1825 B2 1228 A2 1514 B4 1652 B5 1128 A4 I515 C5 1653 B5 1826 C3 1129 A2 1229 B5 1654 B4 1827 C3 I130 B3 1230 A2 1516 C5 C3 1131 A3 I517 C5 1655 B4 1828 1231 A2 C3 1232 A2 1518 C4 1656 B5 1829 1132 B1 1133 A3 1233 A2 I519 C5 1657 C4 1830 C3 C3 1134 A3 1234 A4 1520 C4 1658 C4 1831 C3 1136 A3 1235 A4 1521 C4 1659 C3 1832 I137 A2 1236 B4 1522 C4 1660 B5 1833 C3 1138 A3 1237 A2 1523 C4 1661 B5 1834 1238 A2 1524 C4 1662 C5 1835 В3 I140 A3 1141 A4 1239 B5 1525 C5 1663 B4 1836 1142 A3 1240 A4 1526 C5 1664 B5 1837 C3 1143 B4 1527 C5 1665 C4 1838 C3 1241 B2 C3 1528 C4 1666 C5 1839 1242 B1 1145 A3 1840 C3 I147 B4 1243 B1 1529 C5 1667 B5 1841 C3 1668 B4 I149 B3 1244 A2 1530 C5 1669 B4 1842 C3 1152 B3 1245 A1 1531 C5 1153 B5 1246 A2 1532 C5 1670 A5 1843 C2 1154 B3 1251 A1 1533 C4 1671 1844 C2 1155 B3 1252 A2 1535 C5 1700 B2 1845 C2 1253 A2 1536 C4 1701 B1 1846 B3 1156 A3 1157 A3 1254 A1 1537 C5 1702 B1 1848 B2 1255 A1 1538 C4 1703 C2 1158 B4 1704 C2 1849 B2 I159 A5 1256 A2 1540 C5 1543 C5 1850 B2 1160 B3 1257 C5 1705 C2 1706 C2 1851 B1 I161 B3 1258 A2 1551 C5 1852 B1 1162 C4 1259 A2 1552 C4 1707 C2 1708 C2 1163 A3 1260 A1 1553 C4 1868 C2 1164 B4 1261 A1 1555 C4 1709 C1 1869 C2 1165 A3 1262 A1 1600 A5 1710 B3 1870 B2 1166 B4 1263 A1 1601 A5 1711 C2 1167 A3 1264 A2 1602 A5 1712 C2 1603 C5 1713 A1 1168 C5 1265 B5 1604 A5 1169 A3 1266 A2 1714 C2 1605 A5 1715 C2 1875 C2 1170 A3 1267 A2 1171 A3 1268 B2 1606 A5 1716 B3 1876 C3 1717 B3 1877 C2 1172 A3 1269 B2 1607 A5 1878 C3 1173 A3 1270 A2 1608 A5 1718 B3 1609 B5 1719 B3 1879 C3 1174 A3 1271 B1

CL 16532145-34m.eps

Personal Notes:			
· · · · · · · · · · · · · · · · · · ·		·	
	· . · · · · · · · · · · · · · · · · · ·		
-			
		<u> </u>	
			- Africa de dosenos
		ALL SHEETING	
		·······	·
			·
		· ·	

Personal Notes:	Personal Notes:
·	
	·
	

8. Alignments

8.1 Alignment Instructions Analogue Board

Alignments Analog PCB Eur

Test equipment:

1. Dual-trace oscilloscope

Voltage range Frequency : 0.001 ~ 50 V/div : DC ~ 50 MHz

: 10:1, 1:1

2. DVM (Digital voltmeter)

3. Frequency counter

4. Sinus generator

Sinus

Probe

: 0 ~ 50 MHz

5. Test pattern generator

How to read the adjustment procedures:

Front End (FV)

Service tasks after replacement of IC 7703, coil L5702 and L5703:

1 AFC Adjustment:

Purpose: Correct adjustment of demodulator AFC - circuit Symptom, if incorrectly set: Bad or disturbed TV channel reception.

PAL - AFC adjustment [5703]:

TP	ADJ.	MODE	INPUT
IC 7703 Pin 17 (1976)	L5703	TUNER	38,9MHz 500mV _{pp} at Tuner 1705, Pin 11 (F700, IF-out)
DISC		MEAS.EQ.	SPEC.
		DC Voltmeter Frequ. Generator	2,5V ±0,1V

Storage in NVRAM via command mode interface of DSW:
After adjustment, the AFC reference value has to be stored in the NVRAM.
This reference value is 256 * measured voltage/Ucc. Ucc is 5.0V.
Store the reference value via command 732, followed by the ref. value.
Example: DD:> 732 128

2 HF - AGC adjustment [3707]:

Service tasks after replacement of IC 7703:

Purpose: Set amplifier control.

Symptom, if incorrectly set:

Picture jitter if input level is too low and picture distortion if input level is too high.

TP	ADJ.	MODE	INPUT
Tuner 1705 Pin 11 (F700, IF-out)	R3707	Set tuned to channel 25 503.25 MHz	5mV(74dBµV) on aerial input PAL white picture, audio IF on, no modulation
DISC		MEAS.EQ.	SPEC.
		Oscilloscope Video Pattern Generator	500mV _{pp} +/-0.5dB (use a 10:1 probe)

3 Attenuating the 40.4 MHz [5702]: (SECAM only)

Service tasks after replacement of coil 5702:

Purpose: To attenuate the band I carrier rests.

Symptom, if incorrectly set:

Bad picture quality when the filter attenuates the picture carrier (38.9MHz).

TP	ADJ.	MODE	INPUT
OFW 1700 Pin 1 (F704)	L5702	TUNER	40.4 MHz, 200mV _{ms} at Tuner 1705, Pin 1 1 (F700, IF-out)
DIS	SC	MEAS.EQ.	SPEC.
		Oscilloscope, Sinus Generator, Counter	adjust minimum amplitude

If the adjustment is correct the signal at pin 1 of OFW [1700] must be smaller than the input signal amplitude by at least 6 dB.

8.2 Reprogramming Procedure of NVM on the Analogue PCB

The NVM, item 7815, on the Analogue board contains the following factory settings:

- 1. Bargraph 0dB correction factor
- 2. Clock correction factor
- 3. AFC reference value
- 4. Slash version

The settings 1,2 and 3 are stored in the NVM during the production of the analogue board.

The slash version is stored at the end of the production line of the set.

In case of failure, the NVM must be replaced by an empty device. By way of commands via the Diagnostic Software or via ComPair, the factory settings must be restored in the NVM.

8.2.1 Bargraph 0db Alignment

For an exact functionality of the bar graph in the display, a correction factor for the left and the right channel is stored in the NVM.

Procedure:

- Put the set in DSW command mode
- route Audio path from Audio front connectors to digital with the following command:
 DD:> 713 01
- apply a sine wave of 1 kHz, 1.65 Vrms (0 dB) to the front connectors, audio left and right
- store 0 dB bar graph level with command 720 DD:>720

8.2.2 Clock Correction Adjustment

To guarantee an exact function of the real time clock, an adjustment of the clock frequency is possibe and stored in the NVM.

Procedure:

- Connect a pull up resistor of 10k between pin 7 an 8 of the clock IC PCF8593T, item 7811, on the analogue PCB
- put the set in service command mode
- execute command 722 to initiate that a 1 Hz signal is available on pin 7 of the clock IC DD:>722
- measure the frequency of the Clock Crystal with an accuracy of ±1(s. Normally the measured frequency must be between 999902 (s and 1000097 (s. If the frequency is outside this range, the clock IC must be replaced.
- Execute command 721 with the measured frequency as an input parameter example:

DD:>721 1000023

8.2.3 AFC Reference Voltage Tuner

This function stores the reference voltage for the tuner in the NVM. Before this value can be stored, the AFC adjustment, described in the adjustment instructions of the analogue board, must be carried out.

Procedure:

- Adjust AFC circuit
- Calculate the reference value
- Execute command 732 and use the calculated reference value as parameter
 example:

DD:>732 128

8.2.4 Slash Version

The slash version is stored with command 715 followed by the slash version as parameter.

The slash versions used in DVDR1000 and DVDR1500 are the following:

DVDR980/00X: 2
DVDR980/02X: 2
DVDR980/05X: 4
DVDR985/00X: 5
DVDR985/02X: 5

Example: DD:>715 1

Reset of Slash Version

DVDR985/05X:

Use command 729 to reset the analogue board to the default setting.

Procedure:

- · Put the set in DSW command mode
- Execute command 729 with the following parameters:
 DD:> 729 w 0xA0 3 0x07 0xD0 0x00
- Leave the DSW command mode and start up the set in application mode No background is visible on the TV screen. The analogue board is ready to accept the appropriate slash version.

8.3 Rework Procedure IEEE Unique Number

8.3.1 Scope:

The procedure describes how to upgrade sets with a unique number after repair. This unique number is stored in the NVRAM (item 7201) of the digital board at the end of the production line.

This procedure is only valid or necessary when:

- · The digital board is replaced
- NVRAM on the digital board is replaced
- NVRAM is cleared

In all other cases the repaired set retains its unique number. The procedure defines several means to re-assure the unique number depending on the possibilities of repair or the state the faulty set is in.

8.3.2 Handling:

State of Original (Defective) Board:

- The digital board starts up in Diagnostics Mode: follow procedure A to retrieve the valid unique number
- The digital board does NOT start up in Diagnostics Mode: follow procedure B.

8.3.3 Procedure A

- Connect defective digital board to PC via serial cable (3122 785 90017)
- start up hyper terminal or any other serial terminal via the correct settings (DSW command mode interface)
- read out existing unique number via nucleus 403 example:

DD:> 403

40300: DV Unique ID = 00D7A1FC6C

Test OK @

- 4. note read out
- program new digital board via nucleus 410 example: DD:> 410 00D7A1FC6C 41000:

Test OK @

The set has now the original unique number

8.3.4 Procedure B

- 1. Note the serial number of the set example: AH050136130156
 - AH = production centre Hasselt. According to UAW-500: A=1 and H=8
 - 05 = change code (this is not used for this calculation)
 - 01 = YEAR
 - 36 = Production WEEK
 - 130156 = Lot and SERIAL number
- 2. Calculate the unique number: this number always exists out of 10 hexadecimal numbers.
- 3. First 5 numbers: First we calculate a decimal number according to the formula below: 35828*YEAR + 676* WEEK + 26*A + H + 8788 The figures are fixed, YEAR + WEEK + factory code (A + H) are variable Example: 35828*01+676*36+26*1+8+8788 = 68986 (decimal) Then we translate the decimal number to a hexadecimal number.
 - example: 68986 (decimal)= 10D7A (hex)
- 4. Last 5 numbers: The last 5 numbers exist out of the Lot and SERIAL number. We have to translate the decimal number to the next 5 hexadecimal numbers: Example: 130156 (decimal) = 1FC6C (hex)
- 5. Program new digital board via nucleus 410 Therefore we use the 10 hexadecimal numbers we calculated above: example:

DD:> 410 10D7A1FC6C 41000:

Test OK @

The set has now its original unique numbe

Circuit-, IC Descriptions and List of Abbreviations

Multi-Mode SOPS 50PS203

9.1.1 Why Multi-Mode SOPS?

Using ordinary SOPS results in a decrease of the efficiency at low output loads due to the increase of the switching frequency. The Multi-Mode SOPS will reduce the switching frequency at low loads but still preserves valley switching.

Block Diagram

Figure 9-1

9.1.3 **Circuit Description**

Input Circuit

The input circuit consists of a lightning protection circuit and an

The lightning protection comprises R3120, sparkgaps 1124 and 1125. D6128, 6129, C2127 and R3129 are optional. L5110, L5115, C2120 and L5120 form the EMI filter. It prevents inflow of noises into the mains.

Primary Rectifier/smoothing Circuit

The AC input is rectified by diodes 6151,6152, 6153, 6154 and smoothed into C2125. The voltage over C2125 is approximately 300V. It can vary from 200V to 390V.

Start Circuit

This circuit is formed by R3125, 3126, R3141, C2140 and R3132

When the power plug is connected to the mains voltage, the MOSFET 7125 will start conducting as soon as the gate

voltage reaches a treshold value. A current starts to flow in primary winding 2-4. The MOSFET will be fed forward via winding 7-8, R3150 and C2146.

+Vb Supply and Negative Regulation Voltage

The positive part of the voltage over winding 7-8 will be rectified via R3150, D6140 and charged via R3140 into C2140. The voltage over C2140 has a value of +30 till +40V. This value depends on the value of the mains voltage Vi and the load. The negative part of the voltage over winding 7-8 will be rectified via R3150, D6142 and charged into C2151. The voltage over C2151 has a value of -15V and is used as regulation voltage.

Control Circuit

The control circuit exists of T7140, D6141, C2144 and 2145, C2147, R3147 and 3148.

This circuit is fed by supply voltage +Vb via R 3141. This circuit controls the conduction time and the switching frequency of the power switch circuit. It switches off the MOSFET as soon as the voltage over Rsense reaches a certain value. This value

depends on the error voltage at the emittor of T7140, which can be positive or negative (+/- 0,66V). The voltage fed back by the regulation circuit defines this error voltage.

Power Switch Circuit

This circuit comprises MOSFET 7125, Rsense formed by R3133, 3134, 3135, 3136 and 3137, R3131, R3132, D6146. Diodes 6130, 6131 and 6132 protect the control circuit in case of failure of the MOSFET.

Regulation Circuit

The regulation circuit comprises opto-coupler 7200, which isolates the base voltage of transistor 7140 at the primary side from a reference component 7251 at the secondary side. The TL431(7251) can be represented by two components:

- a very stable and accurate reference diode
- a high gain amplifier

Figure 9-2

TL431 will conduct from cathode to anode when the reference is higher than the internal reference voltage of about 2.5V. If the reference voltage is lower, the cathode current is almost zero. The cathode current flows through the LED of the opto-coupler. The collector current of the opto-coupler will adjust the feedback level of the error voltage at the emittor of T7140.

Overload Protection Circuit

This circuit consists of R3145, C2143, a thyristor circuit formed by T7141 and T7143, R3143 and R3142. When the output is shortened, the thyristor circuit will start to conduct and switch off the supply voltage over C2140. This results in a switching of f of the drain current of the MOSFET 7125 and the output will be disabled. The start circuit will try to start up the power supply again. If the circuit is still shortened, the complete start and stop sequence will repeat. The power supply comes in a hiccup mode (is ticking).

Overvoltage Protection Circuit

This circuit consists of R3149, D6144, 6143, R3144, C2142 and T7142.

When the regulation circuit is interrupted due to an error in the control loop, the regulated output voltage will increase (overvoltage). This overvoltage is sensed on the primary

When an overvoltage is detected, the circuit will start up the thyristor circuit T7141-7143. The power supply will come in a hiccup mode as long as the error in the control loop is present.

Secondary Rectifier/Smoothing Circuit

There are 6 rectifier/smoothing circuits on the secondary side. Each voltage depends on the number of windings of the transformer.

From these circuits a lot of voltages are derived and fed to 3 connectors. The following voltages are present at the output: Connector 209

Functional use: to Digital board + Dvio board

- 1. +3V3(for dig pcb + DVio)
- 2. +3V3(for dig pcb + DVio)
- 3. +3V3(for dig pcb + DVio)

- 4. +3V3(for dig pcb + DVio)
- GND(for dig pcb + DVio) 5.
- +12V(for dig pcb + DVio)
- GND(for dig pcb + DVio) 7.
- GND(for dig pcb + DVio)
- +5V(for dig pcb + DVio)
- 10. STBY control(for dig pcb + DVio)
- 11. GND(for dig pcb + DVio)
- 12. -5V(for dig pcb + DVio)

The +12V is switched off by the STBY_ctrl signal.

When the +12V is switched off, also the +3V3, +5V and -5V are switched off. All these voltages are low drop regulated.

Connector 0205

Functional use: to analogue board + display board + flap motor 'STBY' indicates that the voltage will not be switched off in the standby situation.

- +12VSTBY(= +12V Standby, for display heating, 8Vstby)
- +5VSTBY(= +5V Standby; general use)
- -5NSTBY(= -5V Standby; neg. voltage for drivers)
- VGNSTBY(= -32V Standby; for display grids)
- +33STBY(= +33V Standby; for tuner)
- FLYB(flyback pulse for power fail + measurement)
- GNDA(Ground for the analogue board)

Connector 0207

Functional use: to engine

- 1. +3V3(for engine servo board)
- +5V(for engine servo board)
- 3. GND(for engine servo board)
- +4V6E(for engine analog part)
- GND(for engine servo board)
- 6. -5V(for engine servo board)
- 7. GND(for engine motor currents)
- +12V(for engine motor currents)

9.2 **Display Board**

Operation Unit DC (DC Part) 9.2.1

The core element of the operation unit DC is the microcontroller TMP88CU77ZF [7156]. The TMP88CU77ZF is an 8 bit microcontroller fitted with 96kB ROM and 3kB RAM and is responsible for following functions:

- Integrated VFD driver
- Timer
- Evaluation of the keyboard matrix
- Decoding the remote control commands from the infra-red receiver pos. 6170
- Activation of the display
- Motor driver

The system clock is generated with the 12MHz quartz (Pos.

9.2.2 **Evaluation of the Keyboard Matrix**

There are 15 different keys on the display board. A resistor network is used to generate a specific direct wiltage value, depending on the key pressed, via the resistors 3145, 3171, 3183 and 3194 on the analog/digital (A/D) ports (7156 Pin 17, 18, 19, 20). Pressing keys simultaneously may ∎ead to undesired functions!

IR Receiver and Signal Evaluation 9.2.3

The IR receiver [7140] contains a selectively controlled amplifier as well as a photo-diode. The photo-diode changes the received transmission (approx. 940nm) in ectrical pulses, which are then amplified and demodulated. On the output of the IR receiver [7140], a pulse sequence with TL-level, which corresponds to the envelope curve of the received IR remote control command, can be measured. This pulse sequence is input into the controller for further signal evaluation via input IRR [7156, pin 2].

9.2.4 **Motor Driver Flap**

The flap-motor is controlled via the 2 Port-Pins (MD1, MD2) of the P (7156, Pin 12, Pin 100). The motor driver part is constructed as a bridged dual power operational amplifier. Between the IC outputs (7120, Pin1, Pin3) and a Boucherot circuit (2121, 3126) suppresses a spurious 3MHz oscillation from the output stage. The two ports-pins (MD1, MD2) of the P are PWM-outputs and are controlled in the following way:

DVDR980-985 /0X1

Flap Motor:

	MD1	MD2
off	Н	L
open	Н	PWM(H)
close	L	PWM(L)

Duty Cycle 50% for OPEN and CLOSE

Figure 9-3

For the detection of the end-positions of the flap there are two switches (1178, 1179) installed and the information is evaluated from the P via the signals SW_1178 and SW_1179.

Flap Switches:

	SW1	SW2
open	L	Н
closed	Н	L
moving	Н	Н
error	L	L

9.2.5 Bi-Color LED (Standby and ON)

The STBY-LED is a red/green bi-color-LED and is controlled via the STBYLED-signal of the P (7156 Pin 10) in the following wav:

Colour of STBY LED	Status of the Set
red	STBY
green	ON

9.3 Analogue Board Europe

Microprocessor TMP93C071F 9.3.1

The microcontroller "AIO" TMP93C071F is a 16bit microcontroller with internal ROM and 8kB RAM. It includes the following functions:

- A/D converters
- composite sync input
- I²C bus interface

Following connection to the mains, a positive pulse on the reset input on the P is generated by the reset-IC TL7705 (Pos.7900). The system clock is generated with the 20MHz quartz (Pos.

9.3.2 **Bus Systems**

The communication between the P and the other functional groups is via the I²C-bus (SDA, SCL). The clock rate is approx. 95kHz.

Functional groups on the I²C bus:

- E²PROM ST24E16 (Pos. 7815)
- Tuner (Pos. 1705)
- Matrix-switch STV6410 (Pos. 7507)
- Audio IC / MSP (Pos. 7600)
- Display board (Pos. 1987)
- VPS-IC (Pos. 7990).

9.3.3 E²PROM

The E²PROM ST24E16 (Pos. 7815) is an electric erasable and programmable, non-volatile memory. The E²PROM stores data specific to the device, such as the AFC-reference value, clockcorrection-factor, etc. The data is accessed by the P via the I2C-bus.

9.3.4 VPS, PDC, Teletext (Europe Only)

The STV5348 (Pos. 7990) is a VPS, PDC, and Teletext Decoder with an external 13,875Mhz quartz. The following data formats are identified:

- VPS (Timer data and station name) PDC Format 2 (Timer data and station name)
- PDC Format 1 (station name and time)
- TXT header line (time for "time download")

9.3.5 **FOME**

The FOME-circuit compares the video signal coming from the tuner and the one coming from the Scart-plug 1. If the videosignals are identical the output of the FOME-circuit is low.

9.3.6 **Fan Control**

The fan control circuit is necessary to control the speed of the cabinet fan (Pos. 1984) according to the requirements in temperature and noise. The temperature is measured via an NTC on the display board (Pos. 3145). When the temperature is lower than 25°C the fan-voltage is approx. 5V and will reach approx. 10V at a temperature of 40°C. It is also possible to switch off the fan via the control line ION_FAN. The circuit generates also two control-signals: TEMP goes to the P and BE_FAN is the control-line for the basic engine fan.

9.3.7 **Power Supply**

The 5SW and 8SW supply are switched off in case of standby from the P via the ISTBY-line. This is possible for power-save. The ISTBY-line must be low in case of STBY. There is also a "power fail" circuit on the PS-schematic which is necessary to mute AUDIO when IPFAIL is low.

9.3.8 Front End (TU, AP Part)

The Front End Comprises the Following Parts:

- Tuner [1705]
- IF amplifier & video demodulator IC TDA 9818 [7703]
- Sound processor MSP3415G [7600]

IF Selection

The IF frequency of the video carrier is 38.9 MHz for all systems except SECAM L' (33.9 MHz).

A quasi-split audio system is used. Separate surface-wave filters (SAW) are required. [1700], [1701] for video, [1702] for audio. [1700] Is switched into the signal path for DK/I-SECAM L/L' reception, if the signal SAWS is "high". In this case the switches [7701], [7702] are open and the diode [6700] is conducting. [1701] Is switched into the signal path for BG reception, if the signal SAWS is "low". Then the switch [7708] is open and the diode [6701] is conducting. For DK/I-SECAM L/ L' reception, an additional circuit for suppressing the adjacent channel audio carrier is provided, which is set using coil [5702] to maximum suppression at 40.4MHz.

IF Demodulator

TDA 9818

The IF signal from the tuner is processed by the demodulator IC TDA 9818 [7703]. The signal PSS to pin3 switches between demodulation of positive SECAM or negative PAL modulated video carriers. A QSS-audio-IF signal SIF1 is generated for demodulation in the sound processor [7600]. The audio-IF carrier is selected in the audio SAW filter [1702]. This filter is switched for SECAM L'. If the signal SB1 is "high", the switch [7707] is closed and the diode [6702] is not conducting. For all other standards the diode [6702] is conducting and the switch [7707] is open. The output signal from this SAW filter is first processed in the TDA 9818. Audio carriers are converted from the tuner IF level into the audio IF position and further processed in the audio demodulator [7600]. The AFC coil [5703] on the TDA 9818 is adjusted so that when a frequency of 38.90 MHz is supplied to the IF output of the tuner, the AFC voltage on pin 17 of the TDA 9818 is 2.5V. The setting of the picture carrier frequency for SECAM L in the TDA 9818 is achieved by connecting pin 7 of the IC via a resistor [3702] to earth. The switch [7700] and the signal SB1 "high" do this. The HF-AGC is set using the AGC controller [3707] so that, with a sufficiently large antenna input signal (74 dBV), the voltage at the IF output of the tuner [1705] pin 11 is 500 mVpp. This setting must be carried out, when the audio carrier is switched off. The demodulated video signal appears on pin 16 [7703]. The demodulator AGC voltage at pin4 is used to determine the antenna signal strength after a buffer [7705] with the signal AGC MUTE. In the opposite direction this line may be used to mute the demodulator to avoid cross talk in all cases, where the tuner signal is not needed. In this case a "high" signal is sent via AGC_MUTE and the conducting diode [6703] to pin4. The video trap [1703] reduces adjacent channel video and sound carrier remainders in the video for BG standards. For all other standards the switch [7704] and signal TS "low" bypass this trap. In this cases the selectivity of the SAW filter [1700] is sufficient. A frequency response correction is achieved by the inductance [5009] for not BG standards. This correction is not preferred for SECAM L' and therefore shorts circuited by [7709], if the signal SB1 is "high". The demodulated video signal VFV is available after the buffer and limiting stage for noise peaks [7706]. The FM-PLL demodulator function of TDA 9818 is not used and deactivated by the resistor [3726].

Audio Demodulator

Sound processor MSP 3415G

The MSP 3415G [7600] is a multistandard sound processor which can demodulate FM Mono/Stereo, NICAM and AM signals. The incoming signal is first controlled and then digitised. The digital signal is then demodulated in 2 separate channels. In the first MSP channel, FM and NICAM (B/G/I/D/K) are demodulated, whereas in the second MSP channel, FM and are demodulated again (NICAM L corresponds to NICAM B/G). These demodulated signals are selected digitally in the I/ O and switched to the D/A converter on the outputs. Amplitude and bandwidth of the demodulated audio signals can be determined in the MSP using the corresponding commands via

the I2C bus. The audio signal from the tuner is available at the pins 30 AFER and 31 AFEL.

9.3.9 Input/Output Video-Routing (Europe-Version)

General Description:

The complete Video- I/O-switching is basically realised by the I/O switch STV6410A. It is controlled via IIC-Bus-0 (SDA/SCL) by the all in one C on the analogue board. The STV 6410 has three YCVBS switches, three chroma switches and one RGB switch. All switches have 6-dB amplification on the outputs. The YCVBS inputs have bottom clamp, the chroma inputs have average clamp, and the RGB inputs have bottom clamp circuits at the inputs. The R/C inputs can be switched to average clamp for chroma signals via I2C bus.

The IC has also one slow blanking monitor and one fast blanking switch for fast RGB insertion (see detailed description in chapter 1.5). Two pre-selectors BA 7652 are additionally used: One for switching between Rear CVBS, Y- Rear and Front, the second for switching between Chroma-Rear and Front signal. Both pre-selectors are controlled via IS1 and IS2 from the analogue board C.

CVBS Signals:

There are four CVBS input connection possibilities: Front chinch (E6), Rear Chinch (E4), Scart 1 (E1) and Scart 2 (E2). Rear Chinch In is routed via the pre selector BA 7652; the other signals are connected direct to the STV 6410. The selected CVBS signal is routed to Rear Chinch Out (via BA 7660, 6dB amplification, 75 Ohm driver) and to Scart 1. Independent of the input signal quality (CVBS, S-Video or RGB) the digital board supplies also S-Video and RGB signals to the corresponding socket.

S-Video Signals:

There are also four S-Video input connection possibilities: Front In (E5), Rear In (E3), Scart 1 and Scart 2. For S-Video from Scart this option has to be switched on in the OSD menu. The pre-selectors and the STV 6410 do the signal selection (for detailed routing see overview). Also the video quality will be S-Video, the digital board supplies also CVBS to the corresponding sockets. The S-Video signal that is coming from the digital board is routed via BA 7660 (6-dB amplification and 75-Ohm driver) to the S-Video Rear Out socket.

RGB Signals:

The Scart 2 RGB input signal (Decoder socket) is connected to the RGB switch of STV 6410 and to the digital board in parallel. The RGB from Scart 2 is routed to Scart 1 in low power standby mode. The direct connection (not via STV 6410) is for loop through and REC. The RGB signal, which is corning from the digital board, is connected to the RGB encoderin put of the STV 6410 and is routed to Scart 1 in all other modes.

As the Scart-connection can carry either RGB or Y/C-signals it is necessary to define the available and selected signalproperty. While Pin15 of Scart (Red or Chroma-upstream) is fully handled via STV6410A the Pin7 (Blue or C hromadownstream) has to be extra set.

- Scart1: Pin42 of C (SC1YC_H-line):
 - Low (Blue-Out on SC1
 - High (Chroma-In on SC1
- Scart2: Pin41 of C (SC2RGB_H-line):
 - Low (Chroma-Out on SC2
 - High (Blue-In on SC2

Detection of Status-Information

Pin-8 (Slow-Blank):

Level-detection of Pin-8 (Scart-1 and -2) is realised by usin g STV6410A. It can be readout via IIC-Bus by the CC-C. To obtain the status of Scart1-Pin8, Bit 0 & 1 of register 06h must be set to 0 (Input-mode). The corresponding bit for verification of Scart2-Pin8-status are set to input-mode asd efault.

EN 164

9.

Meaning of Read-Register-Bits:

- Bit 7 & 6: not used
- Bit 5 & 4: Status Scart-2/Pin8:
 - 0 1 Low-level
 - 1 0 Medium-level (16:9)
 - 1 1 High-level (4:3)
- Bit 3 &2: not used
- Bit 1 & 0: Status Scart-1/Pin8:
 - 0 1 Low-level
 - 1 0 Medium-level (16:9)
 - 1 1 High-level (4:3)

Pin-16 (Fast Blank):

Only the status/level of Scart-2/Pin16 must be detected; this is realised by using PortC3/AIN14 (Pin25) of the CC-C as an Analogue-input.

 ADC-value lower or equal 24h (Pin16 low (no RGBsignals)

DVDR980-985 /0X1

 ADC-value greater 24h (Pin16 high (RGB present on Scart-2)

To avoid misdetection a "software-integration" (result is first valid if it was 3-times the same) must be implemented, determination has to be done approx. every 47msec (no multiple of V-sync).

WSS on Y/C-Plug:

Picture-Ratio-Information (16:9 or 4:3) on SVHS-connections is coded via the average DC-level of the Chroma-signal-line, detection is realised by using an analogue-input-port of the CC-C.

- ADC- value lower or equal 40h (4:3-picture-ratio delivered
- ADC-value greater 40h (16:9-picture-ratio available on plug

Y/C-Rear is determined via Port40/AlN3 (Pin14) of CC (WSRIline) and Port41/AlN4 (Pin15) is used for Y/C-Front (WSFIline).

Generation of Status-Information

Pin-8 (Slow Blank):

Only on Scart-1 the Slow-Blank-Status (Level of Pin8) must be created, which is done via IIC-Bus-register 06h (Bits 0 & 1) of the STV6410A.

Pin-16 (Fast Blank):

Only the status/level of Pin16-Scart1 must be controlled; this is realised by using the FB-switch-capabilities of the STV6410A, which are set via IIC-Bus-register 04h (bits 4 & 5).

WSS on Y/C-Plug:

The appropriate DC-level on Chroma-signal-line for Y/C-Rear-Out is produced via Port57 (Pin10) of the CC-C (WSRO-line).

- 4:3 Picture-ratio supported on Y/C-Plug: Port57 set to 0
- 16:9 Picture-ratio supported on Y/C-Plug: Port57 set to 1

9.3.10 Audio Routing Analogue board (Europe / Nafta)

General Description:

The Audio- I/O switching is realised by the STV6410 I/O switch. By I^2 C Bus (SDA-0/SCL-0) it is possible to control all the Audio in- and outputs (for detailed Information we refer to the STV6410 routing overview).

Analog audio coming from DV-Board and second rear Cinch input is routed via MSP3415 to the STV 6410. After selecting the audio source via STV 6410, the signal must be transformed into the digital domain. For this, the UDA 1360TS (ADC) is responsible. An input-voltage of up to 2Vrms can be handled from the IC's. For further processing, the UDA 1360TS (ADC) delivers the data-in I²S format to the digital-board. After a certain delay the (processed) data come back from the digital board to the UDA 1328 (DAC). The UDA 1328 (DAC) transforms the I²S data back into the analog domain and feeds the signals direct to the MC33078 (OPV). From the MC33078

(OPV) the signals are delivered back to the STV 6410 and also direct to the 2nd rear out Cinch. The other outputs (Scart, Cinch) are supported by the STV 6410.

Detailed Description STV 6410:

The STV 6410 is an I²C bus controlled audio and video switch matrix, which is able to handle audio input signals up to 2 Vrms. The used outputs are equipped with internal level adjustment possibility. Low distortion and very good channel separation is a typical peculiarity of this IC. The output resistance is very low and the frequency bandwidth is up to 50 kHz.

Detailed Description UDA 1360:

The UDA 1360TS is a stereo Analog-to-Digital Converter employing bitstream conversion techniques.

The UDA supports the I²S-bus data format and the MSB-justified data format with word lengths of up to 20 bits. The IC supports also 2Vrms input signals and is designed for 3V3 supply voltage.

The device is able to handle system clocks of 256fs and 384fs. Typical THD+N at 0dB is -85dB and a S/N performance up to 97dB is possible.

Detailed Description UDA 1328:

The UDA1328 is a 6 channel DAC employing bitstream conversion techniques, which can be used either in L3 microcontroller mode or in static pin mode.

The UDA 1328 supports the I²S-bus data format with word lengths of up to 24 bits.

Digital sound features can be controlled with the L3 interface. System clock can be set to 256fs or 384fs.

The Device also provides 2 high quality differential outputs. Typical THD+N at 0dB is -95dB and a S/N of up to 106dB is possible.

Supply voltage is 3V3.

Detailed Description MC 33078:

The MC33078 is a dual operational amplifier for audio applications.

It offers low voltage noise (4,5nV/√Hz) and high frequency performances (15MHz Gain Bandwidth product, 7V/s slew rate).

In addition the MC33078 has a very low distortion (0,002%).

BLOCK DIAGRAM VIDEO IN/OUT EUROPE-VERSION

BLOCK DIAGRAM AUDIO IN/OUT EUROPE-VERSION

9.4 **Analog Board Nafta version**

9.4.1 Microprocessor TMP93C071F

The microcontroller "AIO" TMP93C071F is a 16bit microcontroller with internal ROM and 8kB RAM. It includes the following functions:

- A/D converters
- composite sync input
- I²C bus interface

The following connection to the mains, a positive pulse on the reset input on the P is generated by the reset-IC TL7705

The system clock is generated with the 20MHz quartz (Pos. 1994).

9.4.2 Bus Systems

The communication between the P and the other functional groups is via the l^2 C-bus (SDA, SCL). The clock rate is approx. 95kHz.

Functional groups on the I²C bus:

- E²PROM ST24E16 (Pos. 7815)
- Tuner (Pos. 1705)
- Matrix-switch STV6410 (Pos. 7507)
- Audio IC / MSP (Pos. 7600)
- Display board (Pos. 1987)

9.4.3 E²PROM

The E²PROM ST24E16 (Pos. 7815) is an electric erasable and writeable, non-volatile memory. The E²PROM stores data specific to the device, such as the AFC-reference value, clockcorrection-factor, etc. The data is accessed by the P via the I²C-bus.

9.4.4 FOME

The FOME (Follow Me) -circuit compares the video signal coming from the tuner and the one coming from the Scart-plug 1. If the video-signals are identical the output of the FOMEcircuit is low.

9.4.5 Fan Control

The fan control circuit is necessary to control the speed of the cabinet fan (Pos. 1984) according to the requirements in temperature and noise. The temperature is measured via an NTC on the display board (Pos. 3145). When the temperature is lower than 25°C the fan-voltage is approx. 5V and will reach approx. 10V at a temperature of 40°C. It is also possible to switch off the fan via the control line ION_FAN. The circuit generates also two control-signals: TEMP goes to the P and BE_FAN is the control-line for the basic engine fan.

9.4.6 Power Supply

The 5SW and 8SW supply are switched off in case of Stby from the P via the ISTBY-line. This is possible for power-save. The ISTBY-line must be low in case of STBY. There is also a "power fail" circuit on the PS-schematic which is necessary to mute AUDIO when IPFAIL is low.

9.4.7 Front End (TU, AP Part)

The front end comprises the following parts:

- Tuner [1705]
- IF amplifier & video demodulator IC TDA 9817 [7703]
- Sound processor MSP3445G [7600]

IF Selection

The IF frequency of the video carrier is 45.75 MHz. A quasi-split audio system is used. Separate surface-wave filters (SAW) are required. [1701] for video, [1702] for audio.

IF Demodulator

TDA 9817

The IF signal from the tuner is processed by the demodulator IC TDA 9817 [7703]. A QSS-audio-IF signal SIF1 is generated for demodulation in the sound processor [7600]. Audio carriers are converted from the tuner IF level into the audio IF position and further processed in the audio demodulator [7600]. The AFC coil [5703] on the TDA 9817 is adjusted so that when a frequency of 45.75 MHz is supplied to the IF output of the tuner, the AFC voltage on pin 17 of the TDA 9817 is 2.5V. The HF-AGC is set using the AGC controller [3707] so that, with a sufficiently large antenna input signal (74 dBV) the voltage at the IF output of the tuner [1705] pin 11 is 500 mVpp. This setting must be carried out, when the audio carrier is switched off. The demodulated video signal appears on pin 16 [7703]. The demodulator AGC voltage at pin4 is used to determine the antenna signal strength after a buffer [7705] with the signal AGC_MUTE. In the opposite direction this line may be used to mute the demodulator to avoid crosstalk in all cases, where the tuner signal is not needed. In this case a "high" signal is sent via AGC_MUTE and the conducting diode [6703] to pin4. The video trap [1703] reduces adjacent channel video and sound carrier remainders in the video. The demodulated video signal VFV is available after the buffer and limiter stage for noise peaks [7706]. The FM-PLL demodulator function of TDA 9817 is not used and deactivated by the resistor [3726].

Audio Demodulator

Sound processor MSP 3445G

The MSP 3445G [7600] is a NTSC sound processor. Amplitude and bandwidth of the demodulated audio signals can be determined in the MSP using the corresponding commands via the I2C bus. The audio signal from the tuner is available at the pins 30 AFER and 31 AFEL.

Video-Routing (Nafta Version) 9.4.8

General Description:

The complete Video- I/O-switching is basically realised by the I/O switch STV6410A, which is controlled via IIC-Bus-0 (SDA/ SCL) by the all in one C on the analogue board. The STV 6410 has three YCVBS, three chroma, and one RGB switch which is not used in the Nafta I/O. All switches have 6-dB amplification on the outputs. The YCVBS inputs have bottom clamp, the chroma inputs have average clamp, and the RGB switch has bottom clamp circuits at the inputs. The R/C inputs can be switched to average clamp for chroma signals via I2C bus. Two pre-selectors BA 7652 are additionally use d: One for switching between Y- Rear and Front, the second for switching between Chroma- Rear and Front signal. Both pre-selectors are controlled via IS1 and IS2 from the analogue board C.

CVBS Signals:

There are two CVBS input connection possibilities: Front chinch (E5) and Rear Chinch In (E3). Both CVB S sources are connected direct to the STV 6410 and routed to Plear Out 1 and Rear Out 2 via the 75-Ohm driver BA 7623. Both CVBS out put sockets are connected to BA 7623 in parallel.

Independent of the input signal quality (CVBS S-Video or Y/ UV) the digital board supplies also S-Video and Y/UV signals to the corresponding sockets.

S-Video Signals:

There are also two S-Video input connection possibilities: Front (E4) and Rear (E2) S-Video In which are connected to the preselector IC's BA 7652. One is used for Y, the on er for Chroma

EN 168

9.

switching. The output of the pre-selector switches is connected to the STV 6410, and then the signal is routed via the 75-Ohm driver BA 7623 to the Rear Out S-Video socket.

Also the video quality will be S-Video, the digital board supplies also CVBS and Y/UV to the corresponding sockets.

Y/UV Signals:

The Y/UV In signal is routed direct to the digital board, there is no Y/UV IN -> Y/UV Out loop through in low power standby. As the digital board supplies only RGB signals, a RGB Y/UV matrix is used. This matrix consists of the operational amplifier TSH95 which generates the U and V signals according the formulas: 2U=B-0,338R-0,661G, 2V=R-0,838G-0,161B. Then the signals are routed to the UV Output sockets via the 75-Ohm driver BA 7623. The corresponding Y signal is coming from the digital board via the STV 6410. The 75 Ohm Y socket is driven by the 75-Ohm driver BA 7623 and finally connected to the of the Y/UV Output.

Detection of Status-Information

WSS on Y/C-Plug:

- Picture-Ratio-Information (16:9 or 4:3) on SVHSconnections is coded via the average DC-level of the Chroma-signal-line, detection is realised by using an analogue-input-port of the CC-C.
- ADC- value lower or equal 40h (4:3-picture-ratio delivered
- ADC-value greater 40h (16:9-picture-ratio available on plug
- Y/C-Rear is determined via Port40/AlN3 (Pin14) of CC (WSRI-line) and Port41/AlN4 (Pin15) is used for Y/C-Front (WSFI-line).

Generation of Status-Information

WSS on Y/C-Plug:

The appropriate DC-level on Chroma-signal-line for Y/C-Rear-Out is produced via Port57 (Pin10) of the CC-C (WSRO-line).

- 4:3 Picture-ratio supported on Y/C-Plug: Port57 set to 0
- 16:9 Picture-ratio supported on Y/C-Plug: Port57 set to 1

9.4.9 Audio routing Analogue board (Europe / Nafta)

General Description:

The Audio- I/O switching is realised by the STV6410 I/O switch. By I^2 C Bus (SDA-0/SCL-0) it is possible to control all the Audio in- and outputs (for detailed Information we refer to the STV6410 routing overview).

Analog audio coming from DV-Board and second rear Cinch input is routed via MSP3415 to the STV 6410. After selecting the audio source via STV 6410, the signal must be transformed into the digital domain. For this, the UDA 1360TS (ADC) is responsible. An input-voltage of up to 2Vrms can be handled from the IC's. For further processing, the UDA 1360TS (ADC) delivers the data-in I²S format to the digital-board. After a certain delay the (processed) data come back from the digital board to the UDA 1328 (DAC). The UDA 1328 (DAC) transforms the I²S data back into the analog domain and feeds the signals direct to the MC33078 (OPV). From the MC33078 (OPV) the signals are delivered back to the STV 6410 and also direct to the 2nd rear out Cinch. The other outputs (Scart, Cinch) are supported by the STV 6410.

Detailed Description STV 6410:

The STV 6410 is an I²C bus controlled audio and video switch matrix, which is able to handle audio input signals up to 2 Vrms. The used outputs are equipped with internal level adjustment possibility. Low distortion and very good channel separation is a typical peculiarity of this IC. The output resistance is very low and the frequency bandwidth is up to 50 kHz.

Detailed Description UDA 1360:

The UDA 1360TS is a stereo Analog-to-Digital Converter employing bitstream conversion techniques.

The UDA supports the I²S-bus data format and the MSB-justified data format with word lengths of up to 20 bits. The IC supports also 2Vrms input signals and is designed for 3V3 supply voltage.

The device is able to handle system clocks of 256fs and 384fs. Typical THD+N at 0dB is -85dB and a S/N performance up to 97dB is possible.

Detailed Description UDA 1328:

The UDA1328 is a 6 channel DAC employing bitstream conversion techniques, which can be used either in L3 microcontroller mode or in static pin mode.

The UDA 1328 supports the I²S-bus data format with word lengths of up to 24 bits.

Digital sound features can be controlled with the L3 interface. System clock can be set to 256fs or 384fs.

The Device also provides 2 high quality differential outputs. Typical THD+N at 0dB is -95dB and a S/N of up to 106dB is possible.

Supply voltage is 3V3.

Detailed Description MC 33078:

The MC33078 is a dual operational amplifier for audio applications.

It offers low voltage noise (4,5nV/√Hz) and high frequency performances (15MHz Gain Bandwidth product, 7V/s slew rate).

In addition the MC33078 has a very low distortion (0,002%).

9.5 **Digital Board**

9.5.1 **Record Mode**

Video Part

Analog Video input signals CVBS, YC and UV(RGB for EURO and YUV for USA) are routed via the analog board to connector 1601 and sent to IC7500 SAA7118 (Video Input Processor). Digital video input signals (DV_IN_DATA(7:0)) are sent from the DIVIO board through the connector 1603 and further also

IC7500 (VIP) encodes the analog video to digital video and processes the digital video to a digital video stream (CCIR656 format). This output stream (VIP_YUV[7:0]) goes to IC7403 SAA6752H (EMPRESS) and to IC7100 Versatile Stream Manager. The latter uses the data for VBI (vertical blanking interval) extraction.

IC7403 (EMPRESS) encodes the digital video stream into a MPEG2 video stream that is fed to IC7100 (VSM).

Audio Part

12S audio are sent from the analog board to IC7403 EMPRESS via connector 1602. The EMPRESS compresses I2S audio data into an AC3 audio stream which is fed to IC7100 (VSM).

Front-End 12S

IC7100 (VSM) interfaces directly to the different hardware modules such as Basic Engine, EMPRESS IC7403, MPEG decoder IC7200 (Sti5508) and buffers the data streams that are coming from or going to these hardware modules. In IC7100 (VSM), the video MPEG2 stream and the audio AC3 stream are multiplexed into a I2S packetized stream. The serial data are sent to the Basic Engine to be recorded.

Loop-Through

The multiplexed audio and video stream in the VSM is fed back via the parallel front-end interface to IC7200 (Sti5508). This IC decodes the MPEG stream into analog video and I2S audio. The video and audio signals are routed to the analog board via connectors 1601 and 1602. During recording, the recorded signal is present at the outputs of the analog board.

9.5.2 Playback Mode

During playback, the serial data from the Basic Engine is going directly to the Sti5505 via the serial front-end I2S interface. The Sti5508 is a MPEG & Audio/video decoder and has the following outputs:

- To the analog board:
 - analog video RGB, YC, CVBS
 - 12S audio (PCM format)
 - SPDIF audio (digital audio output)
- To the Progressive scan board:
 - digital video YC(7:0).

9.5.3 S2B Interface

The S2B interface between the VSM (IC7100) and the Servo processor MACE3 controls the Basic Engine during record and playback mode.

System Clock

System clocks(27MHz) of VSM, Sti5508, EMPRESS and Progressive Scan are generated by oscillator 7906

9.5.5 Audio Clock

During record mode, the audio clock ACC_ACLK_OSC is generated by IC7102 (PLL) because then, the audio clock must be sychronized with the incoming video (VIP_FID) from the VIP.

During playback mode, the audio clock ACC_ACLK_PLL is generated by the clock synthesizer IC7900 (MK2703S). Both ACC_ACLK_OSC(also goes to the EMPRESS as ACLK_EMP) and ACC_ACLK_PLL are fed to the VSM. This IC selects the appropriate clock to the STI5508. The EMPRESS IC derives from the incoming ACLK_EMP the I2S audio encoder clocks AE_BCLK and AE_WCLK which are sent to the VSM.

9.5.6 On/Off

The digital board is not powered in standby mode. Control signal ION, coming from the analog board, will enable the PSU and power the digital board.

- ION = High: the digital board is in powered down standby mode
- ION = Low: the power supply to the digital board is enabled

9.5.7 Reset

Control signal IRESET DIG, controlled by the microprocessor on the analog board is sent to the RESET LOGIC circuit.

- IRESET_DIG = Low in standby mode
- IRESET_DIG = High: the whole system is reset and the Digital board is waked up.

9.5.8 I2C Bus

Sti5508 is master of the I2C bus. The following IC's are controlled by the I2C bus:

- IC7201 NVRAM
- IC7403 EMPRESS
- IC7500 VIP
- IC7700 FLI2200 Video Deinterlacer Line Doubler
- IC7801 ADV7196 Video Denc

9.5.9 **EMI Bus**

The following IC's are connected to the External Memory Interface bus (EMI) which functions as system bus:

- IC7301 and 7302: Flash memories which contain the application and diagnostic software
- IC7100: VSM
- IC7200: MPEG AV Decoder

Block Diagram Digital Board

Figure 9-8

9.5.10 Progressive Scan

Description

The progressive scan part is integrated in the Digital Board and built around the SAGE Fli2200 de-interlacer / line doubler (7701). This I2C controlled de-interlacer uses a 64Mbit SDRAM (32bit x 2M) to perform high quality deinterlacing (meshing). The de-interlacer gets his digital YUV input data from the STi5508 (7200). The format of the digital YUV input to the SAGE is CCIR656 with separated Hsync, Vsync and odd/even signal running on 27Mhz...

Because the STi5508 doesn't have a Vsync output the odd/ even output of this IC has to be translated to a Vsync signal. Some glue logic has been added to extract the vertical sync. The glue logic circuit consists of Flip-Flop IC 74HC74D (7701) and EXOR 74LVC86 (7702). The next diagram shows how the vertical sync is extracted.

Figure 9-9

The output of the de-interlacer (4:4:4 progressive video) is fed to the Analog Devices ADV71967 MacroVision compliant DENC (7801).

The YUV current output of the DENC is fed via a low pass filter to the single supply output opamps AD8061/8062 (7802-7803). The analog video is fed via a 7 poled flex to the analog board where the YUV 2FH cinch connectors are located.

9.6 **Divio Board**

9.6.1 **Short Description of the Module:**

The DVIO Module is a decoder for DV streams. The module is intended for the Philips DVDR1000/002 en DVDR1000/172 DVD+RW recorders. Input is a stream from a DV-camcorder IEEE1394. Outputs are CCIR656 Video and Analog audio (L+R). A serial control interface is present.

The following picture shows the location of the DVIO Module inside the DVDR set.

Description DIVIO Module ADC (analog PCB) Digital udio I2S Audio Encode (dig. PCB) ≥ **DVIO Module** Video IEEE139 amcorde (dig. PCB) Host decoder STi5505 (dig. PCB)

Figure 9-10

EN 174

9.6.2 Block Diagram

9.

Block Diagram DVIO

Figure 9-11

9.6.3 Functional Description

The DVIO module consists of the following blocks (see blockdiagram):

- 1. IEEE1394 Interface
 - PDI1394P25(7101)
 - PDI1394L40(7103)
- 2. Micro-controller
 - 89C51RD2(7203)
 - 32kb SRAM(7201)
- 3. FIFO and Control
 - FPGA/EPLD(7303)
 - SRAM(7301)
 - Clock generation(7307, 7308) Independently tuneable audio and video clock, implemented with FPGA and PLL
- DV-Decoder
 - NW700(7404)
 - EDO DRAM(7402, 7403)
- 5. Audio & Video output
 - Audio DAC UDA1334ATS(7602)
 - Clock delay(7500)
 - Tristate buffer(7505)

IEEE1394 Interface

The 1394 interface consists of a PDI1394P25 physical layer and a PDI1394L40 link layer.

It has the following features:

- S200 operation (200 megabit per second)
- One i.Link port (4 pin)
- AV link port

Micro-Controller

The 89C51RD2 processor has a 8051 cpu with the following extra features:

- 64 kilobyte of flash memory as program memory
- 1 kilobyte of internal data memory
- watchdog timer
- PCA outputs
- Power control modes
- Speed allowed up to 33 MHz but used at 11.0592 MHz
- On board ISP(In Circuit Programming) functionality

ISP

By use of In Circuit Programming, it is possible to update the software of the DVIO board that is in the 89C51RD2. ISP can be made active by resetting the processor and keeping the ISPN pin low during reset. During ISP, the ISPN signal on the board has to be kept low. A programming voltage of 5V is always present at the Vpp pin. When the ISP mode is active, the new program can be sent to the microprocessor through the serial port.

Fifo and Control

In decode mode, an isochronous AV-stream is flowing through the IEEE1394 Interface into the FPGA. The FPGA stores the data in a FIFO buffer (ping-pong buffer type, i.e. 2 buffers that can hold one whole frame each).

Reset

The FPGA controls the reset signals on the board. This has the advantage that it is possible to reset the board both from software and hardware.

Figure 9-12

The board reset NRESET will reset the whole board, and the software reset can reset everything except the microprocessor itself. Power-on reset is implemented by adding pull-ups and pull-downs to the reset inputs of the devices. Since the FPGA will tri-state all the pins during configuration, reset is active during configuration time. After configuration of the FPGA, the reset signals are driven inactive. The NRESET signal is used to reset the DVIO board. After reset, the tri-state buffers to connector 1500 are disabled.

Clock Circuit

There are 2 clocks to consider in the system, this is the video clock and the audio clock. These two clocks do not have a relation, so these clocks must be considered independently. The video clock is approximately 27 MHz. When data is flowing from an external source that is supposed to have the same frequency, it does not have exactly the same dock. Because of this, buffers may under-run of over-run. Since the clock can not be directly recovered from the 1394 interface, there has to be another solution. This solution is a tuneable clock that is adjusted to the required frequency to processat the rate of the incoming data.

The hardware implementation of such a tuneable clock is as follows:

Figure 9-13

The same can be applied for the audio clock. For this clock, a frequency of 8.192 MHz, 11.2896 MHz or 12.228 MHz is required. This depends on the sample-rate frequency(32kHZ, 44.1kHZ or 48kHZ)of the audio signal.

DV Decoder

The AV-data will go from the FIFO to the NW700. The NW700 decodes the stream into video data in 656 format and audio data in I2S format.

The microprocessor has the ability to read the status registers of the NW700 through the FPGA. By reading these registers, extra data from the DV stream, that is not decoded into audio or video, can be sent to the digital board using pin TXD of the serial interface. This data includes time stamp and some more.

Audio & Video Output

The audio I2S data are sent to audio DAC UDA1334. Analog audio left and right signals are connected to the analog board. The tristate buffer enables the digital video stream to the Video Input Processor on the digital board when the DV source is

The clock delay synchronizes the AV clock with the AV data at the output.

9.7 **IC's Analog Board**

9.7.1 IC7001: UDA1328T

Multi-channel filter DAC

UDA1328T

FEATURES

General

- 2.7 to 3.6 V power supply
- 5 V tolerant TTL compatible inputs
- Selectable control via L3 microcontroller interface or via static pin control
- · Multi-channel integrated digital filter plus non-inverting Digital-to-Analog Converter (DAC)
- Supports sample frequencies between 5 and 100 kHz
- Digital silence detection (output)
- · Slave mode only applications
- No analog post filtering required for DAC
- · Easy application.

Multiple format input interface

- I²S-bus, MSB-justified and LSB-justified format compatible (in L3 mode)
- I²S-bus and LSB-justified format compatible
- 1f_s input format data rate.

Multi-channel DAC 1.3

- 6-channel DAC with power on/off control
- Digital logarithmic volume control via L3; volume can be set for each of the channels individually
- Digital de-emphasis for 32, 44.1, 48 and 96 kHz f_s via L3 and, for 32, 44.1 and 48 kHz in static mode
- Soft or quick mute via L3
- Output signal polarity control via L3 microcontroller interface.

Advanced audio conpguration 1.4

- 6-channel line output (under L3 volume control)
- A stereo differential output (channel 1 and channel 2) for improved performance
- High linearity, wide dynamic range, low distortion.

APPLICATIONS

This multi-channel DAC is eminently suitable for DVD-like applications in which 5.1 channel encoded signals are used.

GENERAL DESCRIPTION

The UDA1328 is a single-chip 6-channel DAC employing bitstream conversion techniques, which can be used either in L3 microcontroller mode or in static pin mode.

The UDA1328 supports the I²S-bus data format with word lengths of up to 24 bits, the MSB-justified data format with word lengths of up to 24 bits and the LSB-justified serial data format with word lengths of 16, 18, 20 and 24 bits.

All digital sound processing features can be controlled with the L3 interface e.g. volume control, selecting digital silence type, output polarity control and mute. Also system features such as power control, digital silence detection mode and output polarity control.

Under static pin control, via static pins, the system clock can be set to either 256fs or 384fs support, digita! de-emphasis can be set, there is digital mute and the digital input formats can also be set.

ORDERING INFORMATION

TYPE		PACKAGE ME DESCRIPTION VERSION		
NUMBER	NAME			
UDA1328T	SO32	plastic small outline package; 32 leads; body width 7.5 mm	SOT287-1	

Multi-channel filter DAC

UDA1328T

BLOCK DIAGRAM

Multi-channel filter DAC

UDA1328T

PINNING

SYMBOL	PIN	DESCRIPTION
VOUT3	1	channel 3 analog output
VOUT4	2	channel 4 analog output
V _{SSA}	3	analog ground
VOUT5	4	channel 5 analog output
VOUT6	5	channel 6 analog output
V_{DDA}	6	analog supply voltage
n.c.	7	not connected (reserved)
TEST3	8	test output 3
STATIC	9	static mode/L3 mode switch input
BCK	10	bit clock input
WS	11	word select input
DATAI12	12	data input channel 1 and 2
DATAI34	13	data input channel 3 and 4
DATAI56	14	data input channel 5 and 6
n.c.	15	not connected (reserved)
SYSCLK	16	system clock: 256f _s , 384f _s , 512f _s and 768f _s
L3MODE	17	L3 mode selection input
L3CLOCK	18	L3 clock input
L3DATA	19	L3 data input
V_{SSD}	20	digital ground
V_{DDD}	21	digital supply voltage
TEST2	22	test output 2
MUTE	23	static mute control input
DEEM1	24	DEEM control 1 input (static mode)
DEEM0	25	L3 address select (L3 mode)/DEEM control 0 input (static mode)
DS	26	digital silence detect output
TEST1	27	test input 1
VOUT1P	28	channel 1 analog output P
VOUT1N	29	channel 1 analog output N
V _{ref}	30	DAC reference voltage
VOUT2N	31	channel 2 analog output N
VOUT2P	32	channel 2 analog output P

Multi-channel Plter DAC

UDA1328T

FUNCTIONAL DESCRIPTION

System clock 8.1

The UDA1328 operates in slave mode only, this means that in all applications the system must provide the system clock. The system frequency is selectable. The options are 256f_s, 384f_s, 512f_s and 768f_s for the L3 mode and 256f_s or 384fs for the static mode. The system clock must be frequency-locked to the digital interface signals.

It should be noted that the UDA1328 can operate from 5 to 100 kHz sampling frequency (f_s). However in 768f_s mode the sampling frequency must be limited to 55 kHz.

8.2 Application modes

Operating mode can be set with the STATIC pin, either to L3 mode (STATIC = LOW) or to the static mode (STATIC = HIGH). See Table 1 for pin functions in the static mode.

Table 1 Mode selection in the static mode

PIN	L3 MODE	STATIC MODE
L3CLOCK	L3CLOCK	clock select
L3MODE	L3MODE	SF1 ⁽¹⁾
L3DATA	L3DATA	SF0 ⁽¹⁾
MUTE	X ⁽²⁾	MUTE
DEEM1	X ⁽²⁾	DEEM1
DEEMO	L3ADR	DEEM0

Notes

- 1. SF1 and SF0 are the Serial Format inputs (2-bit).
- 2. X means that the pin has no function in this mode and can best be connected to ground.

8.3 Interpolation Piter (DAC)

The digital filter interpolates from 1 to 128fs by cascading a half-band filter and a FIR filter, see Table 2. The overall filter characteristic of the digital filters is illustrated in Fig.3, and the pass-band ripple is illustrated in Fig.4. Both figures are with a 44.1 kHz sampling frequency.

Table 2 Interpolation Piter characteristics

ITEM	CONDITION	VALUE (dB)
Pass-band ripple	0 to 0.45f _s	±0.02
Stop band	>0.55f _s	-55
Dynamic range	0 to 0.45f _s	>114
DC gain	· -	-3.5

8.4 Digital silence detection

The UDA1328 can detect digital silence conditions in channels 1 to 6, and report this via the output pin DS. This function is implemented to allow for external manipulation of the audio signal in the absence of program material, such as muting or recorder control.

An active LOW output is produced at the DS pin if the channels selected via L3 or for all channels in static mode. carries all zeroes for at least 9600 consecutive audio samples (equals 200 ms for $f_s = 48 \text{ kHz}$). The DS pin is also active LOW when the output is digitally muted either via the L3 interface or via the STATIC pin.

In static mode all channels participate in the digital silence detection. In L3 mode control each channel can be set, either to participate in the digital silence detection or not.

8.5 Noise shaper

The 3rd-order noise shaper operates at 128fs. It shifts in-band quantization noise to frequencies well above the audio band. This noise shaping technique enables high signal-to-noise ratios to be achieved. The noise shaper output is converted into an analog signal using a Filter Stream DAC (FSDAC).

Filter stream DAC 8.6

The FSDAC is a semi-digital reconstruction filter that converts the 1-bit data stream of the noise shaper to an analog output voltage. The filter coefficients are implemented as current sources and are summed at virtual ground of the output operational amplifier. In this way very high signal-to-noise performance and low clock jitter sensitivity is achieved. No post-filter is needed due to the inherent filter function of the DAC. On-board amplifiers convert the FSDAC output current to an output voltage signal capable of driving a line output.

The output voltage of the FSDAC scales proportionally with the power supply voltage.

8.7 Static mode

The UDA1328 is set to static mode by setting the STATIC pin HIGH. The function of 6 pins of the device now get another function as can be seen in Table 1.

8.7.1 SYSTEM CLOCK SETTING

In static mode pin 18 (L3CLOCK) is used to select the system clock setting. When pin 18 is LOW, the device is in 256f_s mode, when pin 18 is HIGH the device is in 384f_s mode.

Multi-channel filter DAC

UDA1328T

8.7.2 **DE-EMPHASIS CONTROL**

In static pin mode the pins DEEM0 and DEEM1 control the de-emphasis mode; see Table 3.

Table 3 De-emphasis control

DEEM MODE	DEEM1	DEEM0
No de-emphasis	0	0
32 kHz de-emphasis	0	1
44.1 kHz de-emphasis	1	0
48 kHz de-emphasis	1	1

8.7.3 DIGITAL INTERFACE FORMATS

In static pin mode the digital audio interface formats can be selected via pin 17 (SF1) and 19 (SF0). The following interface formats can be selected (see also Table 4):

- I²S-bus with data word length of up to 24 bits
- LSB-justified format with data word length of 16, 20 or 24 bits.

Table 4 Input format selection in the static mode

INPUT FORMAT	SF1	SF0
I ² S-bus	0	0
LSB-justiPed 16bits	0	1
LSB-justiPed 20 bits	1	0
LSB-justiPed 24 bits	1	1

It should be noted that the digital audio interface holds that the BCK frequency can be 64 times the WS maximum frequency, or $f_{BCK} \le 64 \times f_{WS}$

L3 mode 8.8

The device is set to L3 mode by setting the STATIC pin to LOW. The device can then be controlled via the L3 microcontroller interface (see Chapter 9).

8.8.1 DIGITAL INTERFACE FORMATS

The following interface formats can be selected in the L3 mode:

- I2S-bus with data word length of up to 24 bits
- MSB-justified with data word length of up to 24 bits
- LSB-justified format with data word length of 16, 18, 20 or 24 bits.

8.8.2 L3 ADDRESS

The UDA1328 can be addressed via the L3 microcontroller interface using one of two addresses. This is done in order to individually control the UDA1328 and other Philips DACs or CODECs via the same L3 bus.

The address can be selected using pin 25 (DEEM0) in L3 mode. When pin 25 is set LOW, the address is 000100. When pin 25 is set HIGH the address is 000101.

9.7.2 IC7004: UDA1360TS

Low-voltage low-power stereo audio ADC

UDA1360TS

FEATURES

General

- · Low power consumption
- 2.4 to 3.6 V power supply
- Supports 256 and 384f_s system clock
- Supports sampling frequency range of 5 to 55 kHz

DVDR980-985 /0X1

- Small package size (SSOP16)
- Integrated high-pass filter to cancel DC offset
- · Power-down mode
- Supports 2 V (RMS) input signals
- Easy application
- Non-inverting ADC plus decimation filter.

Multiple format output interface

- I²S-bus and MSB-justified format compatible
- Up to 20 significant bits serial output.

Advanced audio configuration

- Stereo single-ended input configuration
- · High linearity, dynamic range and low distortion.

BITSTREAM CONVERSION

GENERAL DESCRIPTION

The UDA1360TS is a single chip stereo Analog-to-Digital Converter (ADC) employing bitstream conversion techniques. The low power consumption and low voltage requirements make the device eminently suitable for use in low-voltage low-power portable digital audio equipment which incorporates recording functions.

The UDA1360TS supports the I2S-bus data format and the MSB-justified data format with word lengths of up to 20 bits.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V _{DDA}	analog supply voltage	-	2.4	3.0	3.6	V
V _{DDD}	digital supply voltage		2.4	3.0	3.6	V
I _{DDA}	analog supply current		-	9	-	mA
I _{DDD}	digital supply current		-	3.5	-	mA
T _{amb}	operating ambient temperature		-40	-	+85	°C
ADC						- ! -;
V _{i(ms)}	input voltage (RMS value)	see Table 1	-	1.0	T-	V
(THD + N)/S	total harmonic distortion plus	at 0 dB	-	-85	-80	dB
	noise-to-signal ratio	at -60 dB; A-weighted	-	-37	-33	dB
S/N	signal-to-noise ratio	V _I = 0 V; A-weighted	-	97	1-	dB
α _{cs}	channel separation		-	100	-	dB

ORDERING INFORMATION

TYPE	PACKAGE			
NUMBER	NAME	DESCRIPTION	VERSION	
UDA 1360TS	SSOP16	plastic shrink small outline package; 16 leads; body width 4.4 mm	SOT369-1	

Low-voltage low-power stereo audio ADC

UDA1360TS

BLOCK DIAGRAM

Low-voltage low-power stereo audio ADC

UDA1360TS

PINNING

SYMBOL	PIN	DESCRIPTION
VINL	1	left channel input
V _{ref}	2	reference voltage
VINR	3	right channel input
V _{ref(n)}	4	ADC negative reference voltage
V _{ref(p)}	5	ADC positive reference voltage
SFOR	6	data format selection input
PWON	7	power control input
SYSCLK	8	system clock input 256 or 384fs
V_{DDD}	9	digital supply voltage
V _{SSD}	10	digital ground
BCK	11	bit clock input
WS	12	word selection input
DATAO	13	data output
FSEL	14	system clock frequency select
VSSA	. 15	analog ground
V _{DDA}	- 16	analog supply voltage

FUNCTIONAL DESCRIPTION

System clock

The UDA1360TS accommodates slave mode only, this means that in all applications the system devices must provide the system clock. The system frequency is selectable via the static FSEL pin, and the system clock must be locked in frequency to the digital interface input

The options are 256f_s (FSEL = LOW) and 384f_s (FSEL = HIGH). The sampling frequency range is 5 to 55 kHz.

The BCK clock can be up to 128fs, or in other words the BCK frequency is 128 times the Word Select (WS) frequency or less: $f_{BCK} \le 128 \times f_{WS}$.

- 1. The WS edge MUST fall on the negative edge of the BCK at all times for proper operation of the digital I/O data interface.
- 2. For MSB justified formats it is important to have a WS signal with 50% duty factor.

Analog-to-Digital Converter (ADC)

The stereo ADC of the UDA1360TS consists of two 3rd-order Sigma-Delta modulators. They have a modified Ritchie-coder architecture in a differential switched capacitor implementation. The over-sampling ratio is 128.

Input level

The overall system gain is proportional to V_{DDA} . The 0 dB input level is defined as that which gives a -1 dB FS digital output (relative to the full-scale swing). In addition, an input gain switch is incorporated with the above definitions.

The UDA1360TS front-end is equipped with a selectable 0 or 6 dB gain, in order to supports 2 V (RMS) input using a series resistor of 12 k Ω .

For the definition of the pin settings for 1 or 2 V (RMS) mode given in Table 1, it is assumed that this resistor is present as a default component.

If the 2 V (RMS) signal input is not needed, the external resistor should not be used.

Low-voltage low-power stereo audio ADC

UDA1360TS

Table 1 Application modes using input gain stage

RESISTOR (12 kΩ)	INPUT GAIN SWITCH	MAXIMUM INPUT VOLTAGE
Present	0 dB	2 V (RMS)
Present	6 dB	1 V (RMS)
Absent	0 dB	1 V (RMS)
Absent	6 dB	0.5 V (RMS)

Multiple format output interface

The UDA1360TS supports the following data output

- I²S-bus with data word length of up to 20 bits
- · MSB-justified serial format with data word length of up to

The output format can be set by the static SFOR pin. When SFOR is LOW, the I²S-bus is selected, when SFOR is set HIGH the MSB-justified format is selected.

The data formats are illustrated in Fig.4. Left and right data channel words are time multiplexed.

Decimation filter

The decimation from 128fs is performed in two stages. The first stage realizes 3rd-order sin x/x characteristic. This filter decreases the sample rate by 16. The second stage (an FIR filter) consists of 3 half-band filters, each decimating by a factor of 2.

Table 2 DC cancellation filter characteristics

ITEM	CONDITION	VALUE (dB)
Pass-band ripple		none
Pass-band gain		0
Stop band	>0.55f _s	-60
Droop	at 0.00045f _s	0.031
Attenuation at DC	at 0.00000036fs	>40
Dynamic range	0 to 0.45f _s	>110

Mute

On recovery from power-down, the serial data output DATAO is held LOW until valid data is available from the decimation filter. This time tracks with the sampling frequency:

$$t\,=\,\frac{12288}{f_s}\,=\,279$$
 ms ; where f_s = 44.1 kHz.

Power-down mode

The PWON pin can control the power saving together with the optional gain switch for 2 V (RMS) or 1 V (RMS) input. When the PWON pin is set LOW, the ADC is set to power-down. When PWON is set to HIGH or to half the power supply, then either 6 dB gain or 0 dB gain in the analog front-end is selected.

Application modes

The UDA1360TS can be set to different modes using two 3-level pins and one 2-level pin. The selection of modes is given in Table 3.

Table 3 Mode selection summary

PIN	V _{ss} •	¹⁄2V _{DD}	V _{DD}
SFOR	I ² S-bus	test mode	MSB
PWON	power-down	0 dB gain	6 dB gain
FSEL	256f _s	_	384f _s

9.7.3 IC7430: BA7660FS

3-channel 75 Ω driver **BA7660FS**

The BA7660FS is a 75 Ω driver with a 6dB amplifier and three internal circuits, and provides 75 Ω drive of composite Y signals and C signals, as well as RGB signals. Each load is capable of driving two circuits, and a sag correction function reduces the capacitance of the output coupling capacitor.

The input voltage is within a range of 0V to 1.5V, enabling direct connection of ordinary D / A converter output. An internal power-saving circuit is also included which provides simultaneous muting on all three channels, and output pin shorting protection.

Applications

DVDs, set top boxes and other digital video devices

● Features

- 1) Can be coupled directly to D / A converter output.
- 2) Operates at a low power consumption (115mW typ.).
- 3) Internal output muting circuit.
- 4) Internal power-saving circuit.
- 5) Internal output protection circuit.

- 6) An internal sag correction function makes it possible to reduce the capacitance of the output coupling capacitor.
- 7) Each load is capable of driving two circuits.
- 8) The compact 16-pin SSOP-A package is used.

● Absolute maximum ratings (Ta = 25C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	8	V
Power dissipation	Pd	650	mW
Operating temperature	Topr	- 25 ~ + 75	°C
Storage temperature	Tstg	– 55 ~ + 125	°C

• Recommended operating conditions (Ta = 25C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating power supply voltage	Vcc	4.5	5.0	5.5	٧

●Pin descriptions and input / output circuits

Pin. No	Pin name	IN	ОИТ	Reference voltage	Equivalent circuit	Function
1	MUTE	κ	_	_	15k	Muting control If MUTE (pin 1) is set to HIGH, muting is carried out simultaneously on a three channels.
2 4 7	INA INB INC	ĸ	-	_		Signal input Input signals consist of composite video signals, Y signals, C signals RGB, and others. The input level is within a range of 0 to 1.3 (min.) to 1.5 (typ.).
3 5 8	GND	_	_	0V	O	Ground
14 12 9 15 13 10	OUTA2 OUTB2 OUTC2 OUTA1 OUTB1 OUTC1	_	к	0.9V 0.95V	14pin 12pin 9pin 15pin 13pin 10pin	Signal output The signal output level is (0.9 + 2 > input voltage [V]). Pins 9, 12, and 14 are the pins for sag correction. If pins 10, 13, and 15 are set to 0.2V or less the protective circuit is triggered and the power-saving mode is accessed.
16	Vcc	_		5.0V		Power supply

STV6410

AUDIO/VIDEO SWITCH MATRIX

- I²C BUS CONTROL
- STANDBY MODE

VIDEO SECTION

- 5 CVBS INPUTS, 4 CVBS OUTPUTS (ONE WITH SELECTABLE CHROMATRAP FILTER)
- 5 Y/C INPUTS, 3 Y/C OUTPUTS
- 6dB GAIN ON ALL CVBS/Y AND C OUTPUTS
- 1 Y/C ADDER
- 2 RGB/FB INPUTS, 1 RGB/FB OUTPUT WITH 6dB ADJUSTABLE GAIN
- VIDEO MUTING ON ALL THE OUTPUTS
- 3 SLOW BLANKING INPUTS/OUTPUTS
- SYNC BOTTOM CLAMP ON ALL CVBS/Y AND RGB INPUTS. AVERAGE ON C INPUTS
- BANDWIDTH: 15MHz
- CROSSTALK: 60dB Typ.

AUDIO SECTION

- 5 STEREO INPUTS, 4 STEREO OUTPUTS (TWO WITH LEVEL ADJUSTMENT)
- MONO SOUND OUTPUT
- MONO SOUND CAPABILITY ON TV OUTPUTS
- AUDIO MUTING ON ALL THE OUTPUTS

TQFP64 (Plastic Quad Flat Pack)

ORDER CODE: STV6410D

DESCRIPTION

The STV6410 is a highly integrated I2C bus-controlled audio and video switch matrix, optimized for use in digital set-top box applications. It provides all the audio and video routings required in a full three scart set-top box design. It is also fully pin compatible with STV6411, the two scart version.

STV6410

PIN CONNECTIONS

PIN LIST

Pin Number	Symbol	Description
1	RCOUT_TV	Red/chroma Output, to TV Scart
2	LOUT_TV	Audio Left Output, to TV Scart
3	YCVBSOUT_TV	Y/CVBS Output, to TV scart
4	ROUT_AUX	Audio Right Output, to AUX Scart
5	COUT_VCR	Chroma Output, to VCR Scart
6	LOUT_AUX	Audio Left Output, to AUX Scart
7	YCVBSOUT_VCR	Y/CVBS Output, to VCR Scart
8	AOUT_RF	Audio (L+R) Output to RF Modulator
9	VOUT_RF	Video (CVBS) Output to RF Modulator
10	GNDV3	Video Switches Ground 3
11	FILTER	Chroma Trap Filter
12	V _{CCV3}	Video Switches Supply 3 (8V)
13	COUT_AUX	Chroma Output, to AUX Scart
14	GNDV2	Video Switches Ground 2
15	YCVBSOUT_AUX	Y/CVBS Output, to AUX Scart

PIN LIST (continued)

Pin Number	Symbol	Description				
16	Vccv2	Video Switches Supply 2 (8V)				
17	FBOUT_TV	Fast Blanking Output, to TV Scart				
18	FBIN_AUX	Fast Blanking Input, from AUX Scart				
19	FBIN_ENC	Fast Blanking Input, from Encoder				
20	ADD	I2C Bus IC Address Programmation				
21	SCL	I2C Bus Clock				
22	SDA	I2C Bus Data				
23	VCC12	Slow Blanking Power Supply (12V)				
24	YCVBSIN_AUX	Y/CVBS Input from AUX Scart				
25	SLB_TV	Slow Blanking Input/Ouput from TV				
26	YIN_AUX	Y Input, from AUX Scart				
27	SLB_VCR	Slow Blanking Input/Ouput from VCR				
28	RCIN_AUX	Red/Chroma Input, from AUX Scart				
29	GNDV1	Video Switches Ground 1				
30	GIN_AUX	Green Input, from AUX Scart				
31	SLB_AUX	Slow Blanking Input/Ouput from AUX				
32	BIN_AUX	Blue Input, from AUX Scart				
33	Vccv1	Video Switches Supply 1 (8V)				
34	CVBSIN_STB	CVBS Input from STB				
35	LIN_AUX	Audio Left Input, from AUX Scart				
36	YCVBSIN_ENC	Y/CVBS Input from Encoder				
37	RIN_AUX	Audio Right Input, from AUX Scart				
38	YIN_ENC	Y Input, from Encoder				
39	RIN_STB	Audio Right Input, from STB				
40	CIN_ENC	Chroma Input, from Encoder				
41	LIN_STB	Audio Left Input, from STB				
42	RCIN_ENC	Red/Chroma Input, from Encoder				
43	RIN_ENC	Audio Right Input, from Encoder				
44	GIN_ENC	Green Input, from Encoder				
45	LIN_ENC	Audio Left Input, from Encoder				
46	BIN_ENC	Blue Input, from Encoder				
47	RIN_VCR	Audio Right Input, from VCR Scart				
48	CIN_VCR	Chroma Input, from VCR Scart				
49	LIN_VCR	Audio Left Input, from VCR				
50	YCVBSIN_VCR	Y/CVBS Input from VCR Scart				
51	V REF	Voltage Reference Decoupling				
52	YCVBSIN_TV	Y/CVBS Input, from TV Scart				
53	LIN_TV	Audio Left Input, from TV Scart				
54	CIN_TV	Chroma Input, from TV Scart				
55	V CCA	Audio Switches Supply (8V)				
56	RIN_TV	Audio right input, from TV Scart				
57	GNDA	Audio Switches Ground				
58	ROUT_CINCH	Audio Right Output, to CINCH				
59	LOUT_CINCH	Audio Left Output, to CINCH				
60	ROUT_VCR	Audio Right Output, to VCR sCart				
61	BOUT_TV	Blue Output, to TV Scart				
62	LOUT_VCR	Audio Left Output, to VCR Scart				
63	GOUT_TV	Green Output, to TV Scart				
64	ROUT_TV	Audio Right Output, to TV Scart				

STV6410

BLOCK DIAGRAM

Multistandard Sound Processor Family

Release Note: Revision bars indicate significant changes to the previous edition. The hardware and software description in this document is valid for the MSP 34x5G version B8 and following versions.

1. Introduction

The MSP 34x5G family of single-chip Multistandard Sound Processors covers the sound processing of all analog TV standards worldwide, as well as the NICAM digital sound standards. The full TV sound processing, starting with analog sound IF signal-in, down to processed analog AF-out, is performed in a single chip. Figure 1–1 shows a simplified functional block diagram of the MSP 34x5G.

These TV sound processing ICs include versions for processing the multichannel television sound (MTS) signal conforming to the standard recommended by the Broadcast Television Systems Committee (BTSC). The DBX noise reduction, or alternatively, Micronas Noise Reduction (MNR) is performed alignment free.

Other processed standards are the Japanese FM-FM multiplex standard (EIA-J) and the FM-Stereo-Radio standard.

Current ICs have to perform adjustment procedures in order to achieve good stereo separation for BTSC and

EIA-J. The MSP 34x5G has optimum stereo performance without any adjustments.

All MSP 34xxG versions are pin compatible to the MSP 34xxD. Only minor modifications are necessary to adapt a MSP 34xxD controlling software to the MSP 34xxG. The MSP 34x5G further simplifies controlling software. Standard selection requires a single I²C transmission only.

Note: The MSP 34x5G version has reduced control registers and less functional pins. The remaining registers are software-compatible to the MSP 34x0G. The pinning is compatible to the MSP 34x0G.

The MSP 34x5G has built-in automatic functions: The IC is able to detect the actual sound standard automatically (Automatic Standard Detection). Furthermore, pilot levels and identification signals can be evaluated internally with subsequent switching between mono/stereo/bilingual; no I²C interaction is necessary (Automatic Sound Selection).

The MSP 34x5G can handle very high FM deviations even in conjunction with NICAM processing. This is especially important for the introduction of NICAM in China.

The ICs are produced in submicron CMOS technology. The MSP 34x5G is available in the following packages: PSDIP64, PSDIP52, PMQFP44, PLQFP64, and PQFP80.

Fig. 1-1: Simplified functional block diagram of MSP 34x5G

Functional Description

Fig. 2-1: Signal flow block diagram of the MSP 34x5G (input and output names correspond to pin names).

2.1. Architecture of the MSP 34x5G Family

Fig. 2-1 on page 8 shows a simplified block diagram of the IC. The block diagram contains all features of the MSP 3455G. Other members of the MSP 34x5G family do not have the complete set of features: The demodulator handles only a subset of the standards presented in the demodulator block; NICAM processing is only possible in the MSP 3415G and MSP 3455G (see dashed block in Fig. 2-1).

2.2. Sound IF Processing

2.2.1. Analog Sound IF Input

The input pins ANA_IN1+ and ANA_IN- offer the possibility to connect sound IF (SIF) sources to the MSP 34x5G. The analog-to-digital conversion of the preselected sound IF signal is done by an A/D-converter. An analog automatic gain circuit (AGC) allows a wide range of input levels. The high-pass filter formed by the coupling capacitor at pin ANA_IN1+ (see Section 7. "Appendix D: Application Information" on page 92) is sufficient in most cases to suppress video components. Some combinations of SAW filters and sound IF mixer ICs, however, show large picture components on their outputs. In this case, further filtering is recommended.

2.2.2. Demodulator: Standards and Features

The MSP 34x5G is able to demodulate all TV sound standards worldwide including the digital NICAM system. Depending on the MSP 34x5G version, the following demodulation modes can be performed:

A2-Systems: Detection and demodulation of two separate FM carriers (FM1 and FM2), demodulation and evaluation of the identification signal of carrier FM2.

NICAM-Systems: Demodulation and decoding of the NICAM carrier, detection and demodulation of the analog (FM or AM) carrier. For D/K-NICAM, the FM carrier may have a maximum deviation of 384 kHz.

Very high deviation FM-Mono: Detection and robust demodulation of one FM carrier with a maximum deviation of 540 kHz.

BTSC-Stereo: Detection and FM demodulation of the aural carrier resulting in the MTS/MPX signal. Detection and evaluation of the pilot carrier, AM demodulation of the (L-R)-carrier and detection of the SAP subcarrier. Processing of the DBX noise reduction or Micronas Noise Reduction (MNR).

BTSC-Mono + SAP: Detection and FM demodulation of the aural carrier resulting in the MTS/MPX signal. Detection and evaluation of the pilot carrier, detection and FM demodulation of the SAP-subcarrier. Processing of the DBX noise reduction or Micronas Noise Reduction (MNR).

Japan Stereo: Detection and FM demodulation of the aural carrier resulting in the MPX signal. Demodulation and evaluation of the identification signal and FM demodulation of the (L-R)-carrier.

FM-Satellite Sound: Demodulation of one or two FM carriers. Processing of high-deviation mono or narrow bandwidth mono, stereo, or bilingual satellite sound according to the ASTRA specification.

FM-Stereo-Radio: Detection and FM demodulation of the aural carrier resulting in the MPX signal. Detection and evaluation of the pilot carrier and AM demodulation of the (L-R)-carrier.

The demodulator blocks of all MSP 34x5G versions have identical user interfaces. Even completely different systems like the BTSC and NICAM systems are controlled the same way. Standards are selected by means of MSP Standard Codes. Automatic processes handle standard detection and identification without controller interaction. The key features of the MSP 34x5G demodulator blocks are

Standard Selection: The controlling of the demodulator is minimized: All parameters, such as tuning frequencies or filter bandwidth, are adjusted automatically by transmitting one single value to the STANDARD SELECT register. For all standards, specific MSP standard codes are defined.

Automatic Standard Detection: If the TV sound standard is unknown, the MSP 34x5G can automatically detect the actual standard, switch to that standard, and respond the actual MSP standard code.

Automatic Carrier Mute: To prevent noise effects or FM identification problems in the absence of an FM carrier, the MSP 34x5G offers a configurable carrier mute feature, which is activated automatically if the TV sound standard is selected by means of the STAN-DARD SELECT register. If no FM carrier is detected at one of the two MSP demodulator channels, the corresponding demodulator output is muted. This is indicated in the STATUS register.

2.2.3. Preprocessing of Demodulator Signals

The NICAM signals must be processed by a deemphasis filter and adjusted in level. The analog demodulated signals must be processed by a deemphasis filter, adjusted in level, and dematrixed. The correct deemphasis filters are already selected by setting the standard in the STANDARD SELECT register. The level adjustment has to be done by means of the FM/ AM and NICAM prescale registers. The necessary dematrix function depends on the selected sound standard and the actual broadcasted sound mode (mono, stereo, or bilingual). It can be manually set by the FM Matrix Mode register or automatically by the Automatic Sound Selection.

2.2.4. Automatic Sound Select

In the Automatic Sound Select mode, the dematrix function is automatically selected based on the identification information in the STATUS register. No I²C interaction is necessary when the broadcasted sound mode changes (e.g. from mono to stereo).

The demodulator supports the identification check by switching between mono-compatible standards (standards that have the same FM-Mono carrier) automatically and non-audible. If B/G-FM or B/G-NICAM is selected, the MSP will switch between these standards. The same action is performed for the standards: D/K1-FM, D/K2-FM, and D/K-NICAM. Switching is only done in the absence of any stereo or bilingual identification. If identification is found, the MSP keeps the detected standard.

In case of high bit-error rates, the MSP 34x5G automatically falls back from digital NICAM sound to analog FM or AM mono.

Table 2-1 summarizes all actions that take place when Automatic Sound Select is switched on.

To provide more flexibility, the Automatic Sound Select block prepares four different source channels of demodulated sound (Fig. 2-2). By choosing one of the four demodulator channels, the preferred sound mode can be selected for each of the output channels (loudspeaker, headphone, etc.). This is done by means of the Source Select registers.

The following source channels of demodulated sound are defined:

- "FM/AM" channel: Analog mono sound, stereo if available. In case of NICAM, analog mono only (FM or AM mono).
- "Stereo or A/B" channel: Analog or digital mono sound, stereo if available. In case of bilingual broadcast, it contains both languages A (left) and B (right).

- "Stereo or A" channel: Analog or digital mono sound, stereo if available. In case of bilingual broadcast, it contains language A (on left and right).
- "Stereo or B" channel: Analog or digital mono sound, stereo if available. In case of bilingual broadcast, it contains language B (on left and right).

Fig. 2-2 and Table 2-2 show the source channel assignment of the demodulated signals in case of Automatic Sound Select mode for all sound standards.

Note: The analog primary input channel contains the signal of the mono FM/AM carrier or the L+R signal of the MPX carrier. The secondary input channel contains the signal of the 2nd FM carrier, the L-R signal of the MPX carrier, or the SAP signal.

Fig. 2-2: Source channel assignment of demodulated signals in Automatic Sound Select Mode

2.2.5. Manual Mode

Fig. 2-3 shows the source channel assignment of demodulated signals in case of manual mode. If manual mode is required, more information can be found in Section 6.7. "Demodulator Source Channels in Manual Mode" on page 90.

Fig. 2-3: Source channel assignment of demodulated signals in Manual Mode

2.3. Preprocessing for SCART and I²S Input Signals

The SCART and I²S inputs need only be adjusted in level by means of the SCART and I²S prescale registers.

2.4. Source Selection and Output Channel Matrix

The Source Selector makes it possible to distribute all source signals (one of the demodulator source channels or SCART) to the desired output channels (loud-speaker, etc.). All input and output signals can be processed simultaneously. Each source channel is identified by a unique source address.

For each output channel, the sound mode can be set to sound A, sound B, stereo, or mono by means of the output channel matrix.

If Automatic Sound Select is on, the output channel matrix can stay fixed to stereo (transparent) for demodulated signals.

2.5. Audio Baseband Processing

2.5.1. Automatic Volume Correction (AVC)

Different sound sources (e.g. terrestrial channels, SAT channels, or SCART) fairly often do not have the same volume level. Advertisements during movies usually have a higher volume level than the movie itself. This results in annoying volume changes. The AVC solves this problem by equalizing the volume level.

To prevent clipping, the AVC's gain decreases quickly in dynamic boost conditions. To suppress oscillation effects, the gain increases rather slowly for low level inputs. The decay time is programmable by means of the AVC register (see page 30).

For input signals ranging from -24 dBr to 0 dBr, the AVC maintains a fixed output level of -18 dBr. Fig. 2-4 shows the AVC output level versus its input level. For prescale and volume registers set to 0 dB, a level of 0 dBr corresponds to full scale input/output. This is

- SCART input/output 0 dBr = 2.0 V_{rms}
- Loudspeaker output 0 dBr = 1.4 V_{rms}

Fig. 2-4: Simplified AVC characteristics

2.5.2. Loudspeaker Outputs

The following baseband features are implemented in the loudspeaker output channels: bass/treble, loudness, balance, and volume. A square wave bee per can be added to the loudspeaker channel.

2.5.3. Quasi-Peak Detector

The quasi-peak readout register can be used to read out the quasi-peak level of any input source. The feature is based on following filter time constants:

attack time: 1.3 ms decay time: 37 ms

2.6. SCART Signal Routing

2.6.1. SCART DSP in and SCART Out Select

The SCART DSP Input Select and SCART Output Select blocks include full matrix switching facilities. To design a TV set with two pairs of SCART-inputs and one pair of SCART-outputs, no external switching hardware is required. The switches are controlled by the ACB user register (see page 34).

2.6.2. Stand-by Mode

If the MSP 34x5G is switched off by first pulling STANDBYQ low and then (after >1 µs delay) switching off DVSUP and AVSUP, but keeping AHVSUP ('Stand-by'-mode), the SCART switches maintain their position and function. This allows the copying from selected SCART-inputs to SCART-outputs in the TV set's stand-by mode.

In case of power on or starting from stand-by (switching on the DVSUP and AVSUP, RESETQ going high 2 ms later), all internal registers except the ACB register (page 34) are reset to the default configuration (see Table 3-5 on page 18). The reset position of the ACB register becomes active after the first I²C transmission into the Baseband Processing part. By transmitting the ACB register first, the reset state can be redefined.

2.7. I²S Bus Interface

The MSP 34x5G has a synchronous master/slave input/output interface running on 32 kHz.

The interface accepts two formats:

- 1. I²S_WS changes at the word boundary
- 2. I²S_WS changes one I²S-clock period before the word boundaries.

All I²S options are set by means of the MODUS and the I2S_CONFIG registers.

The I²S bus interface consists of five pins:

- I2S_DA_IN1, I2S_DA_IN2: l²S serial data input: 16, 18....32 bits per sample
- I2S_DA_OUT: I²S serial data output: 16, 18...32 bits per sample
- I2S_CL: I²S serial clock
- I2S WS: I²S word strobe signal defines the left and right

If the MSP 34x5G serves as the master on the I2S interface, the clock and word strobe lines are driven by the IC. In this mode, only 16 or 32 bits per sample can be selected. In slave mode, these lines are input to the IC and the MSP clock is synchronized to 576 times the I2S_WS rate (32 kHz). NICAM operation is not possible in slave mode.

An I2S timing diagram is shown in Fig. 4-28 on page 62.

2.8. ADR Bus Interface

For the ASTRA Digital Radio System (ADR), the MSP 3405G, MSP 3415G, and MSP 3455G performs preprocessing such as carrier selection and filtering. Via the 3-line ADR-bus, the resulting signals are transferred to the DRP 3510A coprocessor, where the source decoding is performed. To be prepared for an upgrade to ADR with an additional DRP board, the following lines of MSP 34x5G should be provided on a feature connector:

- I2S_DA_IN1 or I2S_DA_IN2
- I2S_DA_OUT
- 12S_WS
- 12S_CL
- ADR_CL, ADR_WS, ADR_DA

For more details, please refer to the DRP 3510A data sheet.

2.9. Digital Control I/O Pins and Status Change Indication

The static level of the digital input/output pins D_CTR_I/O_0/1 is switchable between HIGH and LOW via the I²C-bus by means of the ACB register (see page 34). This enables the controlling of external hardware switches or other devices via I²C-bus.

The digital input/output pins can be set to high impedance by means of the MODUS register (see page 23). In this mode, the pins can be used as input. The current state can be read out of the STATUS register (see page 25).

Optionally, the pin D_CTR_I/O_1 can be used as an interrupt request signal to the controller, indicating any changes in the read register STATUS. This makes polling unnecessary; I2C-bus interactions are reduced to a minimum (see STATUS register on page 25 and MODUS register on page 23).

2.10.Clock PLL Oscillator and **Crystal Specifications**

The MSP 34x5G derives all internal system clocks from the 18.432 MHz oscillator. In NICAM or in I²S-Slave mode, the clock is phase-locked to the corresponding source. Therefore, it is not possible to use NICAM and I²S-Slave mode at the same time.

For proper performance, the MSP clock oscillator requires a 18.432-MHz crystal. Note, that for the phase-locked mode (NICAM, I²S slave), crystals with tighter tolerance are required.

4.2. Pin Connections and Short Descriptions

NC = not connected; leave vacant LV = if not used, leave vacant DVSS: if not used, connect to DVSS

X = obligatory; connect as described in circuit diagram AHVSS: connect to AHVSS

	Pin No.				Pin Name Type	Connection	Short Description	
PQFP 80-pin	PLQFP 64-pin	PMQFP 44-pin	PSDIP 64-pin	PSDIP 52-pin			(if not used)	
1	64		8		NC		LV	Not connected
2	1	12	9	7	12C_CL	IN/OUT	X	I ² C clock
3	2	13	10	8	I2C_DA	IN/OUT	X	I ² C data
4	3	14	11	9	I2S_CL		LV	I ² S clock
5	4	15	12	10	12S_WS		LV	I ² S word strobe
6	5	16	13	11	I2S_DA_OUT		עו	I ² S data output
7	6	17	14	12	I2S_DA_IN1		LV	I ² S1 data input
8	7	-	15	13	ADR_DA		LV .	ADR data output
9	8	-	16	14	ADR_WS		Ľ	ADR word strobe
10	9	18	17	15	ADR_CL		ĹV	ADR clock
11	-		-		DVSUP		x	Digital power supply +5 \
12		_		-	DVSUP		X	Digital power supply +5 \
13	10	19	18	16	DVSUP		X	Digital power supply +5 \
14	-	20			DVSS		X	Digital ground
15					DVSS		X	Digital ground
16	11		19	17	DVSS		X	Digital ground
17	12	21	20	18	I2S_DA_IN2		LV	I ² S2-data input
18	13	-	21	19	NC		ĹV	Not connected
19	14		22		NC		ĽV	Not connected
20	15	- 3	23		NC		ĽV	Not connected
21	16	22	24	20	RESETQ	IN	x	Power-on-reset
22		-53			NC		LV	Not connected
23	_	****	•		NC		LV	Not connected
24	17	23	25	21	NC		LV	Not connected
25	18	24	26	22	NC		LV	Not connected

	Pin No.				Pin Name Type	Туре	Type Connection	Short Description
PQFP 80-pin	PLQFP 64-pin	PMQFP 44-pin	PSDIP 64-pin	PSDIP 52-pin			(if not used)	
26	19	25	27	23	VREF2		X	Reference ground 2 high-voltage part
27	20	26	28	24	DACM_R	OUT	ĽV	Loudspeaker out, right
28	21	27	29	25	DACM_L	OUT	וא	Loudspeaker out, left
29	22		30		NC		ĽV	Not connected
30	23		31	26	NC		ΙV	Not connected
31	24	.55 (0) (6 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	32		NC		LV	Not connected
32	-		Sign of se	4	NC		N	Not connected
33	25	_	33	27	NC		LV	Not connected
34	26	28	34	28	NC		W	Not connected
35	27	29	35	29	VREF1		X	Reference ground 1 high-voltage part
36	28	30	36	30	SC1_OUT_R	OUT	LV	SCART 1 output, right
37	29	31	37	31	SC1_OUT_L	OUT	LV	SCART 1 output, left
38	30	32	38	32	NC		LV	Not connected
39	31	33	39	33	AHVSUP		×	Analog power supply 8.0 V
40	32	34	40	34	CAPL_M		X	Volume capacitor MAIN
41		<u> </u>			NC		LV	Not connected
42		_			NC		LV	Not connected
43	<u> </u>				AHVSS		x	Analog ground
44	33	35	41	35	AHVSS		X	Analog ground
45	34	36	42	36	AGNDC		X	Analog reference voltage high-voltage part
46					NC		LV	Not connected
47	35		43		NC		V	Not connected
48	36		44		NC		ΙV	Not connected
49	37		45		NC		LV .	Not connected
50	38	-	46	37	NC		LV	Not connected
51	39	-	47	38	NC		LV	Not connected
52	40	-	48	-	NC		AHVSS	Analog Shield Ground
53	41	37	49	39	SC2_IN_L	IN	LV	SCART 2 input, left
54	42	38	50	40	SC2_IN_R	IN	iv	SCART 2 input, right

	Pin No.				Pin Name	Туре		Short Description
PQFP 80-pin	PLQFP 64-pin	PMQFP 44-pin	PSDIP 64-pin	PSDIP 52-pin			(if not used)	
55	43	39	51		ASG		AHVSS	Analog Shield Ground
56	44	40	52	41	SC1_IN_L	IN	LV .	SCART 1 input, left
57	45	41	53	42	SC1_IN_R	IN	LV	SCART 1 input, right
58	46	42	54	43	VREFTOP		X	Reference voltage IF A/D converter
59					NC		Ly	Not connected
60	47	43	55	44	MONO_IN	IN	LV	Mono input
61					AVSS		X	Analog ground
62	48	44	56	45	AVSS		X	Analog ground
63					NC		LV	Not connected
64					NC		LV	Not connected
65	-				AVSUP		X	Analog power supply +5 \
66	49	1	57	46	AVSUP		X	Analog power supply +5 \
67	50	2	58	47	ANA_IN1+	IN	LV	IF input 1
68	51	3	59	48	ANA_IN-	IN	LV	IF common
69	52		60	49	NC		TA .	Not connected
70	53	4	61	50	TESTEN	IN	X	Test pin
71	54	5	62	51	XTAL_IN	IN	X	Crystal oscillator
72	55	6	63	52	XTAL_OUT	OUT	X	Crystal oscillator
73	56	7	64	1	TP		LV	Test pin
74	57		1	2	NC		LV	Not connected
75	58		2		NC		LV	Not connected
76	59		3		NC		LV	Not connected
77	60	8	4	3	D_CTR_I/O_1	IN/OUT	LV	D_CTR_I/O_1
78	61	9	5	4	D_CTR_I/O_0	IN/OUT	LV	D_CTR_I/O_0
79	62	10	6	5	ADR_SEL	IN	X	I ² C Bus address select
80	63	11	7	6	STANDBYQ	IN	x	Standby (low-active)

9.7.6 IC7703: TDA9818

Single/multistandard VIF/SIF-PLL and FM-PLL/AM demodulators

TDA9817; TDA9818

FEATURES

- 5 V supply voltage
- · Applicable for IFs (Intermediate Frequencies) of 38.9 MHz, 45.75 MHz and 58.75 MHz
- · Gain controlled wide band Video IF (VIF)-amplifier (AC-coupled)
- True synchronous demodulation with active carrier regeneration (very linear demodulation, good intermodulation figures, reduced harmonics, excellent pulse response)
- Robustness for over-modulation better than 105% due to gated phase detector at L/L accent standard and PLL-bandwidth control at negative modulated standards
- VCO (Voltage Controlled Oscillator) frequency switchable between L and L accent (alignment external) picture carrier frequency
- VIF AGC (Automatic Gain Control) detector for gain control, operating as peak sync detector for B/G, peak white detector for L; signal controlled reaction time for L
- Tuner AGC with adjustable TakeOver Point (TOP)
- · AFC (Automatic Frequency Control) detector without extra reference circuit

- · AC-coupled limiter amplifier for sound intercarrier signal
- Alignment-free FM PLL (Phase Locked Loop) demodulator with high linearity
- SIF (Sound IF) input for single reference QSS (Quasi Split Sound) mode (PLL controlled); SIF AGC detector for gain controlled SIF amplifier; single reference QSS mixer able to operate in high performance single reference QSS mode and in intercarrier mode
- · AM demodulator without extra reference circuit
- Stabilizer circuit for ripple rejection and to achieve constant output signals
- ESD (Electrostatic Discharge) protection for all pins.

GENERAL DESCRIPTION

The TDA9817 is an integrated circuit for single standard vision IF signal processing and FM demodulation.

The TDA9818 is an integrated circuit for multistandard vision IF signal processing, sound AM and FM demodulation.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE					
I TPE NUMBER	NAME	DESCRIPTION	VERSION			
TDA9817	SDIP24	plastic shrink dual in-line package; 24 leads (400 mil)	SOT234-1			
TDA9818	SDIP24	plastic shrink dual in-line package; 24 leads (400 mil)	SOT234-1			

TDA9817; TDA9818

BLOCK DIAGRAM

TDA9817; TDA9818

PINNING

SYMBOL	PIN	DESCRIPTION
V _{i VIF1}	1	VIF differential input signal voltage 1
V _{i VIF2}	2	VIF differential input signal voltage 2
STD ⁽¹⁾	3	standard switch
C _{VAGC}	4	VIF AGC capacitor
CSAGC	5	SIF AGC capacitor
T _{PLL}	6	PLL loop filter
LADJ ⁽¹⁾	7	L/L accent switch and adjust
V _{o AF}	8	audio output
V _{de-em}	9	de-emphasis input
C _{de-em}	10	de-emphasis output
C _{DEC}	11	decoupling capacitor
V _{o QSS}	12	single reference QSS/intercarrier output voltage
ViFM	13	sound intercarrier input voltage
TAGC	14	tuner AGC output
C _{BL} ⁽¹⁾	15	black level detector
V _{o(vid)}	16	composite video output voltage
AFC	17	AFC output
VCO1	18	VCO1 resonance circuit
VCO2	19	VCO2 resonance circuit
GND	20	ground
V _P	21	supply voltage
TADJ	22	tuner AGC takeover point adjust
V _{i SIF1}	23	SIF differential input signal voltage 1
V _{i SIF2}	24	SIF differential input signal voltage 2

Note

1. Not connected for TDA9817.

TDA9817; TDA9818

FUNCTIONAL DESCRIPTION

The integrated circuit comprises the functional blocks as shown in Fig.1:

- · Vision IF amplifier and VIF AGC detector
- Tuner AGC
- Frequency Phase Locked Loop detector (FPLL)
- VCO, Travelling Wave Divider (TWD) and AFC
- · Video demodulator and amplifier
- SIF amplifier and SIF AGC
- Single reference QSS mixer
- AM demodulator
- FM-PLL demodulator
- · AF (Audio Frequency) signal processing
- · Internal voltage stabilizer.

Vision IF amplifier and VIF AGC detector

The vision IF amplifier consists of three AC-coupled differential amplifier stages. Each differential stage comprises a feedback network controlled by emitter degeneration.

The AGC detector generates the required VIF gain control voltage for constant video output by charging/discharging the AGC capacitor. Therefore for negative video modulation the sync level and for positive video modulation the peak white level of the video signal is detected. In order to reduce the reaction time for positive modulation, where a very large time constant is needed, an additional level detector increases the discharging current of the AGC capacitor (fast mode) in the event of a decreasing VIF amplitude step. The additional level information is given by the black-level detector voltage.

Tuner AGC

The AGC capacitor voltage is converted to an internal IF control signal, and is fed to the tuner AGC to generate the tuner AGC output current at pin TAGC (open-collector output). The tuner AGC takeover point can be adjusted at pin TADJ. This allows to match the tuner to the SAW filter in order to achieve the optimum IF input level.

Frequency Phase Locked Loop detector (FPLL)

The VIF-amplifier output signal is fed into a frequency detector and into a phase detector via a limiting amplifier. During acquisition the frequency detector produces a DC current proportional to the frequency difference between the input and the VCO signal. After frequency lock-in the phase detector produces a DC current proportional to the phase difference between the VCO and the input signal. The DC current of either frequency detector or phase detector is converted into a DC voltage via the loop filter. which controls the VCO frequency. In the event of positive modulated signals the phase detector is gated by composite sync in order to avoid signal distortion for overmodulated VIF signals.

VCO, Travelling Wave Divider (TWD) and AFC

The VCO operates with a resonance circuit (with L and C in parallel) at double the PC frequency. The VCO is controlled by two integrated variable capacitors. The control voltage required to tune the VCO from its free-running frequency to actually double the PC frequency is generated by the frequency-phase detector (FPLL) and fed via the loop filter to the first variable capacitor. This control voltage is amplified and additionally converted into a current which represents the AFC output signal. At centre frequency the AFC output current is equal to zero.

For TDA9818: the VCO centre frequency can be decreased (required for L accent standard) by activating an additional internal capacitor. This is achieved by using the L accent switch. In this event the second variable capacitor can be controlled by a variable resistor at the L accent switch for setting the VCO centre frequency to the required L accent value.

The oscillator signal is divided by 2 with a TWD which generates two differential output signals with a 90 degree phase difference independent of the frequency.

Video demodulator and amplifier

The video demodulator is realized by a multiplier which is designed for low distortion and large bandwidth. The vision IF input signal is multiplied with the 'in phase' signal of the travelling wave divider output. In the demodulator stage the video signal polarity can be switched in accordance with the TV standard.

The demodulator output signal is fed via an integrated low-pass filter for attenuation of the carrier harmonics to the video amplifier. The video amplifier is realized by an operational amplifier with internal feedback and high bandwidth. A low-pass filter is integrated to achieve an attenuation of the carrier harmonics for B/G and L standard. The standard dependent level shift in this stage delivers the same sync level for positive and negative modulation. The video output signal at Vo(vid) is 1.1 V (p-p) for nominal vision IF modulation, in order to achieve 1 V (p-p) at sound trap output.

TDA9817; TDA9818

SIF amplifier and SIF AGC

The sound IF amplifier consists of two AC-coupled differential amplifier stages. Each differential stage comprises a controlled feedback network provided by emitter degeneration.

The SIF AGC detector is related to the SIF input signal (average level of AM or FM carrier) and controls the SIF amplifier to provide a constant SIF signal to the AM demodulator and single reference QSS mixer. At L standard (AM sound) the SIF AGC reaction time is set to 'slow' for nominal video conditions. But with a decreasing VIF amplitude step the SIF AGC is set to 'fast' mode controlled by the VIF AGC detector. In FM mode this reaction time is always 'fast'.

Single reference QSS mixer

The single reference QSS mixer is realized by a multiplier. The SIF amplifier output signal is fed to the single reference QSS mixer and converted to intercarrier frequency by the regenerated picture carrier (VCO). The mixer output signal is fed via a high-pass for attenuation of the video signal components to the output pin 12. With this system a high performance hi-fi stereo sound processing can be achieved.

For a simplified application without a sound IF SAW filter the single reference QSS mixer can be switched to the intercarrier mode by connecting pin 24 to ground. In this mode the sound IF passes the vision IF SAW filter and the composite IF signal is fed to the single reference QSS mixer. This IF signal is multiplied with the 90 degree TWD output signal for converting the sound IF to intercarrier frequency. This composite intercarrier signal is fed to the output pin 12, too. By using this quadrature detection, the low frequency video signals are removed.

AM demodulator

The AM demodulator is realized by a multiplier. The modulated SIF amplifier output signal is multiplied in phase with the limited (AM is removed) SIF amplifier output signal. The demodulator output signal is fed via an integrated low-pass filter for attenuation of the carrier harmonics to the AF amplifier.

FM-PLL demodulator

The FM-PLL demodulator consists of a limiter and an FM-PLL. The limiter provides the amplification and limitation of the FM sound intercarrier signal. The result is high sensitivity and AM suppression. The amplifier

consists of 7 stages which are internally AC-coupled in order to minimize the DC offset.

Furthermore the AF output signal can be muted by connecting a resistor between the limiter input pin 13 and ground.

The FM-PLL consists of an integrated relaxation oscillator, an integrated loop filter and a phase detector. The oscillator is locked to the FM intercarrier signal, output from the limiter. As a result of locking, the oscillator frequency tracks with the modulation of the input signal and the oscillator control voltage is superimposed by the AF voltage. The FM-PLL operates as an FM demodulator.

AF signal processing

The AF amplifier consists of two parts:

- 1. The AF pre-amplifier for FM sound is an operational amplifier with internal feedback, high gain and high common mode rejection. The AF voltage from the PLL demodulator, by principle a small output signal, is amplified by approximately 33 dB. The low-pass characteristic of the amplifier reduces the harmonics of the intercarrier signal at the sound output terminal pin 9 at which the de-emphasis network for FM sound is applied. An additional DC control circuit is implemented to keep the DC level constant, independent of process spread.
- The AF output amplifier (10 dB) provides the required output level by a rail-to-rail output stage. This amplifier makes use of an input selector for switching to AM, FM de-emphasis or mute state, controlled by the standard switching voltage and the mute switching voltage.

Internal voltage stabilizer

The bandgap circuit internally generates a voltage of approximately 1.25 V, independent of supply voltage and temperature. A voltage regulator circuit, connected to this voltage, produces a constant voltage of 3.6 V which is used as an internal reference voltage.

9.7.7 IC7803: TMP93C071

CMOS 16-Bit Microcontroller TMP93C071F

1. Outline and Feature

TMP93C071F is a high-speed advanced 16-bit microcontroller developed for application with VCR system control, software servo motor control and timer control.

In addition to basics such as I/O ports, the TMP93C071F has high-speed/high-precision signal measuring circuit, PWM (Pulse-Width-Modulator) and high-precision real timing pulse generator.

The device characteristics are as follows:

- (1) Original 16-bit CPU (900L CPU)
 - TLCS-90 instruction mnemonic upward compatible
 - 16 Mbyte linear address space

DVDR980-985 /0X1

- · General-purpose registers and register bank system
- 16-bit multiplication/division and bit transfer/arithmetic instructions
- High-speed micro DMA: 4 channels (1.6 µs / 2 byte at 20 MHz)
- Minimum instruction execution time: 200 ns at 20 MHz
- Internal ROM: ROMless (3)
- (4)Internal RAM: 8 Kbyte
- (5)External memory expansion
 - Can be expanded up to 16 Mbyte (for both programs and data)
 - AM8/16 pin (select the external data bus width)
 - Can be mixed 8 and 16bit external data buses.
 - ... Dynamic data bus sizing.
- 20-bit time-base-counter (TBC)
 - · free running counter
 - · accuracy: 100 ns (at 20 MHz)
 - overflow: 105 ms (at 20 MHz)
- 8-bit timer (TC0): 1 channel (7)
 - · for CTL linear time counter
- (8)16-bit timer (TC1-5): 5 channels
 - C-sync count, capstan FG count, general: (3 channels)
- (9)Timing pulse generator (TPG): 2 channels
 - (16-bit timing data + 6-bit-output data) with 8-stages FIFO: 1 channel
 - (16-bit timing data + 4-bit-output data): 1 channel
 - accuracy: 400 ns (at 20 MHz)
- (10) Pulse width modulation outputs (PWM)
 - 14-bit PWM: 3 channels (for controlling capstan, drum and tuner)
 - · 8-bit PWM: 9 channels (for controlling volume)
 - · carrier frequency: 39.1 kHz (at 20 MHz)

980910EBP1

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.

and Reliability Assurance / Handling Precautions.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or

The information contained herein is subject to change without notice.

```
(11) 24-bit time base counter capture circuit (Capture 0)
             • (18-bit timing data + 6-bit trigger data) with 8-stages FIFO: 1 channel

    capture input sources: Remote-control-input (RMTIN), V-sync, CTL, Drum-PG,

                                      general (1 channel)

    accuracy: 400 ns (at 20 MHz)

(12) 17-bit time base counter capture circuit (Capture 1/2)

    (16-bit timing data + 1-bit trigger data): 2 channel

             · capture input sources: Drum-FG, Capstan-FG

    accuracy: 100 ns (at 20 MHz)

(13) VISS/VASS detection circuit (VISS/VASS)
             · CTL duty detection
             · VASS data 16-bit latch
(14) Composite-sync-signal (C-sync) input (C-sync In)

    Vertical-sync-signal (V-sync) separation (V-sepa)

(15) Head Amp switch/Color Rotary control (HA/CR)
(16) Pseudo-V/H generator (PV/PH)
(17) 8-bit A/D converter (ADC): 16 channels

    Conversion speed: 95states (9.5 µs at 20 MHz)

(18) Serial bus I/F
             · 8-bit synchronous (SIO0, 1): 2 channels

    UART: 1 channel

    I<sup>2</sup>CBUS: 1 channel/2 ports

                               Multi - Master function/Master transfer with micro DMA.
(19) Watch dog timer (WDT)
(20) Interrupt controller (INTC)
             • CPU: 2 sources • • • SWI instruction, and illegal instruction
             • Internal: 20 sources 7-level priority can be set.

    External: 5 sources

(21) I/O ports

    57 I/O ports (multiplexed functional pins)

             • 8 Input ports (P40/AIN3-P47/AIN10: These pins are used as analog input for
                                                    A/D converter.)

    4 Output ports (P24/A20-P27/A23: These pins are also used as address bus outputs.)

(22) Standby function: 4 halt modes (RUN, IDLE2, IDLE1, STOP)
(23) System clock function

    Dual clock operation 20 MHz (High-speed: normal)/32 kHz(Low-speed: slow)

                               17-bit Real Time Counter built in
(24) Operating Voltage

    Vcc = 2.7 to 5.5 V (at 32 kHz)

    Vcc = 4.5 to 5.5 V (at 20 MHz)

(25) Package

    120 pin QFP 28 mm × 28 mm (Pin pitch: 0.8 mm)

    Type name QFP120-P-2828-0.80A
```


Figure 1 TMP93C071 Block Diagram

2. Pin Assignment And Functions

The assignment of input and output pins for the TMP93C071, their names and functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows pin assignment of the TMP93C071.

Figure 2.1.1 Pin Assignment (120-pin QFP)

2.2 Pin Names and Functions

The names of input/output pins and their functions are described below.

Table 2.2.1 Pin Names and Function (1/5)

Pin name	Number of pins	1/0	Functions
D0 to D15	16	I/O (3-state)	data: 0 to 15 for data bus
A0 to A19	20	Output	Address: 0 to 19 for address bus
A20 to A23/	4	Output	Address: 20 to 23 for address bus
P24 to P27		Output	Port 2: Output port
RD	1	Output	Read: strobe signal for reading external memory
AM8/16	1	Input	data bus width select input (only 8 bit or 8 bit/16 bit)
PC3, 4/ 16	2	1/0	Port C3, 4: I/O port that allows selection of I/O on a bit basis.
AIN14, 15		Input	Analog Input: Analog input signal for A/D converter
ĒĀ	1	Input	External access: Always set to _0
RESET	1	Input	Reset: Initializes LSI.(with pull-up R)
X1/X2	2	1/0	High Frequency Oscillator connecting pins (20 MHz)
PB0/	1	1/0	Port B0: I/O port (Open Drain Output)
XT1		Input	Low Frequency Oscillator connecting pin (32 kHz)
PB1/	1	1/0	Port B1: I/O port (Open drain Output)
XT2		Output	Low Frequency Oscillator connecting pin
ADREF	1	Input	A/D reference Voltage input
P40 to P47/	8	Input	Port 4: Input ports
AIN3 to AIN10		Input	Analog input: Analog input signal for A/D converter
PC0 to PC2/	3	1/0	Port C: PC0 to PC2 I/O port that allows selection of I/O on a bit basis.
AIN11 to AIN13		Input	Analog input: Analog input signal for A/D converter
P57/	1	1/0	Port 57: I/O port
TIO/		input	8-bit timer0 (TC0) Input 0
		(schmitt)	
AIN2		Input	Analog input: Analog input signal for A/D converter
P56/	1	1/0	Port 56: I/O port
TI4/		Input	16-bit timer4 (TC4) Input 4
		(schmitt)	
AIN1		Input	Analog input: Analog input signal for A/D converter
P55/	1	1/0	Port 55: I/O port
TI5/		input	16-bit timer5 (TC5) Input 5
		(schmitt)	
AIN0		input	Analog input: Analog input signal for A/D converter
P54/	1	1/0	Port 54: I/O port
INTO		Input	External Interrupt request input 0: Rising edge/ Level selectable
		(schmitt)	
P53/	1	1/0	Port 53: I/O port
INT1		Input	External Interrupt request input 1: Rising edge/ Level selectable
	1.	(schmitt)	
P52/	1	1/0	Port 52: I/O port
INT2/		Input	External Interrupt request input 2 Rising edge/Falling edge selectable
TI1		Input	40 hit times (TC4) legat 1
L		(schmitt)	16-bit timer1(TC1) Input 1

Table 2.2.1 Pin Names and Function (2/5)

Pin name	Number of pins	1/0	Functions
P51/	1	1/0	Port 51: I/O port
INT3/		Input	External Interrupt request input 3 Rising edge/Falling edge selectable
TI2		Input	<i>f</i> ~
		(schmitt)	16-bit timer2 (TC2) Input 2
P50/	1	1/0	Port 50: I/O port
INT4/		Input	External Interrupt request input 4 Rising edge/Falling edge selectable
TI3		Input	<i></i>
		(schmitt)	16-bit timer3 (TC3) Input 3
PWM0	1	Output	PWM (14 bit) output 0: PWM0 output
		3-state	push/pull or open drain output selectable
		Open Drain	
PWM1	1	Output	PWM (14 bit) output 1: PWM1 output
		3-state	push/pull or open drain output selectable
		Open Drain	
PA3/	1	1/0	Port A3: I/O port
PWM2		3-state	PWM (14 bit) output 2: PWM2 output
		Open Drain	push/pull or open drain output selectable
PA4/	1	1/0	Port A4: I/O port
	1	3-state	push/pull or open drain output selectable
		Open Drain	
WR		Output	White: Strobe signal for writing data on pine D0 to D7
PA5/	1	I/O	Write: Strobe signal for writing data on pins D0 to D7 Port A5: I/O port
PWM3/	'		
PVVIVI3/		Output 3-state	8-bit PWM output 3: PWM3 output
		Open Drain	push/pull or open drain output selectable
		Open Diam	
HWR		Output	High write: Strobe signal for writing data on pins D8 to D15
P60/	1	1/0	Port 60: I/O port
PWM4/		Output	8-bit PWM output 4: PWM4 output
		3-state	push/pull or open drain output selectable
		Open Drain	
CS0		0.4	
CS0		Output	Chip select0: Output _0_ when address is within specified address area.
P61/	1	I/O	Port 61: I/O port
PWM5/	['	Output	8-bit PWM output 5: PWM5 output
F V V V V J		3-state	push/pull or open drain output selectable
		Open Drain	positipati of open drain output selectable
		Open Brain	
CS1		Output	Chip select1: Output _0_ when address is within specified address
			area.
P62/	1	1/0	Port 62: I/O port
PWM6/		Output	8-bit PWM output 6: PWM6 output
		3-state	push/pull or open drain output selectable
		Open Drain	, and the second
CS2		Output	Chip select2: Output _0_ when address is within specified address
		7 1	area.

Table 2.2.1 Pin Names and Function (3/5)

Pin name	Number of pins	1/0	Functions
P63/	1	1/0	Port 63: I/O port
PWM7		Output	8-bit PWM output7: PWM7 output
		3-state	push/pull or open drain output selectable
		Open Drain	
P64/	1	1/0	Port 64: I/O port
PWM8		Output	8-bit PWM output8: PWM8 output
		3-state	push/pull or open drain output selectable
		Open Drain	
P65/	1	1/0	Port 65: I/O port
PWM9		Output	8-bit PWM output9: PWM9 output
		3-state	push/pull or open drain output selectable
		Open Drain	
P66/	1	1/0	Port 66: I/O port
PWM10		Output	8-bit PWM output 10: PWM10 output
		3-state	push/pull or open drain output selectable
		Open Drain	
P67/	1	1/0	Port 67: I/O port
PWM11		Output	8-bit PWM output 11: PWM11 output
		3-state	push/pull or open drain output selectable
		Open Drain	
P73/	1	1/0	Port 73: I/O port
SDA0		1/0	I ² CBUS SDA line 0
		(schmitt)	push/pull or open drain output selectable
		Open Drain	
P74/	1	1/0	Port 74: I/O port
SCL0		1/0	I ² CBUS SCL line 0
		(schmitt)	
		Open Drain	push/pull or open drain output selectable
P75/	1	1/0	Port 75: I/O port
SO0		Output	SIO0 send data 0
		(schmitt)	push/pull or open drain output selectable
		Open Drain	
P76/	1	1/0	Port 76: I/O port
SIO		input	SIO0 receive data 0
		(schmitt)	
P77/	1	1/0	Port 77: I/O port
SCK0		1/0	SIO0 transfer clock input/output 0
b .		(schmitt)	
570/		Open Drain	push/pull or open drain output selectable
P70/	1	1/0	Port 70: I/O port
TXD		Output	UART send data
		(schmitt)	push/pull or open drain output selectable
D74 /		Open Drain	
P71/	1	1/0	Port 71: I/O port
RXD		input	UART receive data
D70 /		(schmitt)	D-4 70 1/0 4
P72/	1	1/0	Port 72: I/O port
CTS		Input	UART clear to send
Dog ((schmitt)	
P80/	1	1/0	Port 80: I/O port
CTLIN		Input	Capture input for Control signal (CTL)
		(schmitt)	

Table 2.2.1 Pin Names and Function (4/5)

Table 2.2.1 Pin Names and Function (4/5)						
Pin Name	Number of pins	1/0	Functions			
P81/	1	1/0	Port 81: I/O port			
DFGIN		Input	Capture input for Drum-FG signal (DFG)			
		(schmitt)				
P82/	1	1/0	Port 82: I/O port			
RMTIN		Input	Capture input for Remote Control Input signal			
		(schmitt)				
P83/	1	1/0	Port 83: I/O port			
EXT		Input	External Capture input (Rising edge only)			
		(schmitt)				
P84/	1	1/0	Port 84: I/O port			
DPGIN		Input	Capture input for Drum-PG signal (DPG)			
		(schmitt)				
P85/	1	1/0	Port 85: I/O port			
CFGIN		Input	Capture input for Capstan-FG signal (CFG)			
		(schmitt)				
P86/	1	1/0	Port 86: I/O port			
CSYNC IN		Input	Capture input for C-sync			
		(schmitt)				
P87/	1	1/0	Port 87: I/O port			
COMPIN		Input	Envelope Comparator Input (to HA/CR)			
		(schmitt)				
P90/	1	I/O	Port 90: I/O port			
TPG12		Output	TPG12: TPG output 12			
		Open Drain	push/pull or open drain output selectable			
P91/	1	1/0	Port 91: I/O port			
TPG01		Output	TPG01: TPG output 01			
		Open Drain	push/pull or open drain output selectable			
P92/	1	1/0	Port 92: I/O port			
TPG02		Output	TPG02: TPG output 02 (Internally connected to PV/PH Logic)			
		Open Drain	push/pull or open drain output selectable			
P93/	1	1/0	Port 93: I/O port			
TPG03		Output	TPG03: TPG output 03			
		Open Drain	push/pull or open drain output selectable			
P94/	1	1/0	Port 93: I/O port			
TPG04		Output	TPG04: TPG output 04 (Internally connected to PV/PH Logic)			
		• .	push/pull or open drain output selectable			
P95/	1	1/0	Port 95: I/O port			
TPG13	l'	Output	TPG13: TPG output 13			
0.0		Open Drain	push/pull or open drain output selectable			
P96/	1	1/0	Port 96: I/O port			
TPG10		Output	TPG10: TPG output 10			
0.0		-	push/pull or open drain output selectable			
P97/	1	1/0	Port 97: I/O port			
TPG11		Output	TPG11: TPG output 11			
511		Open Drain	push/pull or open drain output selectable			
PA0/	1	I/O	Port PA0: I/O Port			
PV-PH	'	Output				
T ▼ T		3-state	Pseudo-Vsync/Pseudo-Hsync (PV/PH) output (controlled by TPG02/04.)			
PA1/	1	1/O	Port PA1: I/O Port			
	'					
HA (TPG05)		Output	HA: Head amp switch output (are also used as TPG05 output.)			
PA2/	1	1/O	Port PA2: I/O Port			
CR (TPG00)	l	Output	CR: Colour Rotary output (are also used as TPG00 output.)			

Table 2.2.1 Pin Names and Function (5/5)

Pin name	Number of pins	1/0	Functions
PB2/	1	1/0	Port PB2: I/O Port
SO1/SI1		I/O (schmitt)	SIO1 send data 1 and receive data 1 (Internally connected)
		Open Drain	push/pull or open drain output selectable
PB3/	1	1/0	Port PB3: I/O Port
SCK1		I/O	SIO1 transfer clock input/output 1
		(schmitt)	
		Open Drain	push/pull or open drain output selectable
PB4/	1	1/0	Port PB4: I/O Port
SDA1		1/0	I ² CBUS SDA line 1
		(schmitt)	
		Open Drain	push/pull or open drain output selectable
PB5/	1	1/0	Port PB5: I/O Port
SCL1		1/0	I ² CBUS SCL line 1
		(schmitt)	
		Open Drain	push/pull or open drain output selectable
DVCC1, 2, 3	3		Power supply pins All of these pins should be connected to power
			source.
DGND1, DGND2 (ADGND),	3		GND pins (0 V) All of these pins should be connected to GND (0 V)
DGND3			line.
			DGND2 are also used as ADGND for A/D converter.

STV5348

- COMPLETE TELETEXT AND VPS DECODER INCLUDING AN 8 PAGE MEMORY ON A SIN-**GLE CHIP**
- UPWARD SOFTWARE COMPATIBLE WITH PREVIOUS SGS-THOMSON'S MULTICHIP SOLUTIONS (SAA5231, SDA5243, STV5345)
- PERFORM PDC SYSTEM A (VPS) AND PDC SYSTEM B (8/30/2) DATA STORAGE SEPA-**RATLY**
- DEDICATED "ERROR FREE" OUTPUT FOR VALID PDC DATA
- INDICATION OF LINE 23 FOR EXTERNAL USE
- SINGLE +5V SUPPLY VOLTAGE
- SINGLE 13.875MHz CRYSTAL
- REDUCED SET OF EXTERNAL COMPO-NENTS, NO EXTERNAL ADJUSTMENT
- OPTIMIZED NUMBER OF DIGITAL SIGNALS REDUCING EMC RADIATION
- HIGH DENSITY CMOS TECHNOLOGY
- DIGITAL DATA SLICER AND DISPLAY **CLOCK PHASE LOCK LOOP**
- 28 PIN DIP & SO PACKAGE

DIP₂₈ (Plastic Package) **ORDER CODE:** STV5348 West European STV5348/H East European STV5348/T Turkish & European **SO28** (Plastic Package) **ORDER CODE:** STV5348D West European STV5348D/H East European STV5348D/T Turkish & European

PIN CONNECTIONS

DESCRIPTION

The STV5348 decoder is a computer-controlled teletext device including an 8 page internal memory. Data slicing and capturing extracts the teletext information embedded in the composite video signal. Control is accomplished via a two wire serial I²C bus ®. Chip address is 22h. Internal ROM provides a character set suitable to display text using up to seven national languages. Hardware and software features allow selectable master/slave synchronization configurations. The STV5348 also supports facilities for reception and display of current level protocol data.

PIN DESCRIPTION

Pin Nº	Symbol	Function	Description	Figure
1	CVBS	Input	Composite Video Signal Input through Coupling Capacitor	9
2	MA/SL	Input	Master/Slave Selection Mode	11
3	V_{DDA}	Analog Supply	+5V	-
4	POL	Input	STTV / LFB / FFB Polarity Selection	12
5	STTV/LFB	Output / Input	Composite Sync Output, Line Flyback Input	15
6	FFB	Input	Field Flyback Input	12
7	V_{SSD}	Ground	Digital Ground	-
8	R	Output	Video Red Signal	13
9	G	Output	Video Green Signal	13
10	В	Output	Video Blue Signal	13
11	RGBREF	Supply	DC Voltage to define RGB High Level	13
12	BLAN	Output	Fast Blanking Output TTL Level	15
13	COR	Output	Open Drain Contrast Reduction Output	15
14	ODD/EVEN	Output	25Hz Output Field synchronized for non-interlaced display	15
15	Υ	Output	Open Drain Foreground Information Output	15
16	SCL	Input	Serial Clock Input	16
17	SDA	Input/ Output	Serial Data Input/Output	17
18	L23	Output	Line 23 Identification	15
19	DV	Output	VPS Data Valid	15
20	RESERVED	Test	To be connected to V _{SSD} through a resistor	15
21	VCR/TV	Input	PLL Time Constant Selection	15
22	V_{DDD}	Digital Supply	+5V	-
23	XTO	Crystal Output	Oscillator Output 13.875MHz	14
24	XTI	Crystal Input	Oscillator Input 13.875MHz	14
25	Vsso	Ground	Oscillator Ground	-
26	V _{SSA}	Ground	Analog Ground	-
27	TEST	Test	Grounded to V _{SSA}	11
28	CBLK	Input / Output	To connect Black Level Storage Capacitor	28

BLOCK DIAGRAM

VHF/UHF television tuner

UV1336K MK3

FEATURES

Member of UV1300 MK3 family of small-sized

UHF/VHF tuners

Integrated with passive splitter

Covers systems M, N

Digitally-controlled (PLL) tuning via I2C-bus

Fast 400kHz I²C bus protocol compatible with

3.3V and 5V micro controllers

181 channels coverage (Off-air and full cable)

World standardized mechanical dimensions and pinning. Horizontal mounting is optionally

The UV1336K MK3 splitter - tuner belongs to the UV1300 family of WSP tuners, which are designed to meet a wide range of TV applications. It is a full band tuner suitable for NTSC M, N and PAL M, N. The low IF output impedance is designed for direct drive of a wide variety of SAW filters with sufficient suppression of triple transient.

The UV1336K MK3 incorporates internal wideband-AGC with selectable TOP adjustment via I²C.

This tuner complies with the requirements of radiation, conforming with:

FCC Part 15, Subpart B

BETS 7

CISPR13

MARKING

The following items of information are printed on a sticker that is on the top cover of the tuner:

Type number

Code number

Origin letter of factory

Change code

Year and week code

ORDERING INFORMATION

TYPE	DESCRIPTION	ORDER NUMBERS
UV1336K/A F G S-3	F connector, wideband AGC, switchable FM trap	3139 147 17011

VHF/UHF television tuner

UV1336K MK3

BLOCK DIAGRAM

** ADC option not available in NTSC versions

PINNING

SYMBOL	PIN	DESCRIPTION
AGC	1	Gain Control Voltage
TU	2	Tuning voltage
AS	3	I ² C-Bus Address Select
SCL	4	I ² C-Bus Serial Clock
SDA	5	I ² C-Bus Serial Data
n.c.	6	Not Connected
Vs	7	PLL Supply Voltage +5V
n.c	8	Not Connected
V _{ST}	9	Fixed tuning Supply Voltage +33V
n.c	10	Not connected
IF1	11	Asymmetrical IF Output
GND	M1,M2,M3,M4	Mounting Tags (Ground)

9.8 IC's Digital Board

9.8.1 IC7100: VSM

VERSATILE STREAM MANAGER

GENERAL DESCRIPTION

The Versatile Stream Manager (VSM) is an ASIC used in the first generation DVD Video Recorder. Main function of the VSM is to interface directly to the different hardware modules such as Basic Engine, MPEG encoders, MPEG decoders and buffering the data streams that are coming from or going to these hardware modules.

The VSM contains a memory interface to support one 4M*16 SDRAM device. A host interface allows a CPU to directly access this memory and the VSM's internal registers.

Handling of data streams is done using scatter / gather DMA's under software control. Hardware support is provided in the VSM to support software MPEG AV multiplexing.

FEATURES

The VSM features include:

SDRAM memory interface to support one 4 banks*1M*16 (64Mbit) SDRAM device.

Glueless Host Interface for STM's STi5505.

Glueless MPEG Decoder interface for STM's STi5505

Glueless interface to Philips' SAA6750 MPEG Video Encoder or SAA6752 MPEG AV Encoder.

Glueless interface to Motorola's DSP56362 used as MPEG Audio Encoder.

Glueless interface to Philips' HDR65 as part of Basic Engine interface including the Sector Processor as also included in the STi5505.

Audio Clock Control providing PLL loop and clock lock detection.

Double Extraction of VBI decoded data from extended CCIR 656 stream.

Double UART with hardware handshake and 8 byte Rx/Tx FIFO.

Generation of additional Host Bus to support Audio Encoder DSP56362.

Descriptor based DMA Controllers for data stream handling.

Hardware support for software MPEG multiplex process.

Internal Interrupt Controller to handle internal and 4 external interrupt sources.

Operates from single 27 MHz clock input.

JTAG for production tests.

3.3V logic core.

3.3V / 5V toleration IO pins.

208 PIN LQFP Package. (CR1087)

BLOCK DIAGRAM

Figure 2.1 shows the block diagram of the VSM. The hardware blocks can be divided in to three categories:

General modules: Host Interface, Memory Interface, Interrupt Controller.

DMA Controllers.

Functional Interfaces; the link between the actual external hardware interface and the DMA Controller. Some Functional Interfaces have knowledge about the stream coming through in order to perform for example MPEG stream characteristics extraction and insertion.

Figure 2.1: VSM Overview

OVERVIEW

Name	Pins	Туре	Function
System			
RESETn	1	ln	
SYSCLK (27MHz)	1	In	
Host Interface			
HO_A(21:1)	21	ln	
HO_D(15:0)	16	In/Out	
HO_BEn(1:0)	2	In	
HO_RWn	1	ln	
HO_CSLn	1	ln	
HO_CSHn	1	ln	
HO_A22	1	ln	
HO_WAIT	1	Out	
HO_PROCCLK	1	ln	
Memory Interface			
M_A(13:0)	14	Out	
M_DQ(15:0)	16	In/Out	
M_RASn	1	Out	
M_CASn	1	Out	
M_WEn	1	Out	
M_LDQM	1	Out	
M_UDQM	1	Out	
M_CLKOUT	1	Out	
M_CLKEN	1	Out	
Basic Engine Interface			
BE_BCLK	1	In	
BE_DATI	1	ln	
BE_WCLK	1	ln .	
BE_SYNC	1	In/Out	·
BE_FLAG	1	in In	
BE_V4	1	ln	
BE_DATO	1	Out	
Video Encoder Interface		•	
VE_D(15:0)	16	ln	
VE_DSn	1	Out	
VE_DTACKn	1	In	
VE_VIP_ERROR	1	ln	Signal coming from SAA7114
Audio Encoder Interface		4	
AE_CSn	1	Out	
AE_BCLK	1	In/Out	(CR151,CR157)
AE_WCLK	1	In/Out	(CR151,CR157)
AE_DATA	1	ln	(CR157)

Decoder Interface			
D_PAR_D(7:0)	8	Out	
D PAR DVALID	1	Out	
D PAR STR	1 1	Out	
D PAR REQ	1	In	
D PAR SYNC	+ 1	Out	
D WCLK	 		
D V4	1	Out	
Audio Clock Control	_1	Out	1
ACC FID	1 4	I n	(CR200)
ACC_FID	1 1	In Out	(01/200)
		Out	
ACC_ACLK_OSC	1 1	ln In	
ACC_ACLK_DAI	1	ln In	
ACC_ACLK_PLL	1 1	ln Out	
ACC_ACLK_DEC	1	Out	L
VBI Extractor		I	
VBI_IPD(7:0)	8	ln -	
VBI_ICLK UART 1	1 1	<u>In</u>	1
UART1 RX	1 4	T 1=	1
	1 1	In	
UART1_TX UART1 CTSn	1	Out (OC)	
UART1_CTSII	1	Out (OC)	
UART 2	l l		
UART2 RX	1	In	
UART2 TX	1	Out (OC)	
UART2 CTSn	1	In	
UART2 RTSn	1	Out (OC)	
UART 3 (VSM1B)			
UART3 RX	1	In	
UART3 TX	1	Out	
UART3 CTSn	1	In	
UART3 RTSn	1 1	Out	
Interrupt Controller	<u> </u>	Out	
EXTINT(3:0)	4	In	From: VEnc, AEnc, BE, VSync (STi5505)
CPUINT(1:0)	2	Out (OC)	Trom: VEne, Acrie, BE, Voyne (313303)
JTAG		Out (OO)	
TCK	1	In	Boundary Scan
TDI	1	In	Bodinary Ocarr
TDO	1 1	Out/Z	
TMS	1 1	In	
TRSTn	1 1	In	
Test		111	
TESTO	1 1	ln	Amsal Test
TEST1	1 1	In	Alliadi Teat
Power Supply] 181	
VDD	20	Power	10% of total pipe package
VSS	20		10% of total pins package
¥ 00		Power	10% of total pins package
Total Pins	208		1
i Jian i ilis	200	l	

SYNCHRONOUS DRAM

MT48LC16M4A2 - 4 Meg x 4 x 4 banks MT48LC8M8A2 - 2 Meg x 8 x 4 banks MT48LC4M16A2 - 1 Meg x 16 x 4 banks

For the latest data sheet, please refer to the Micron web site: www.micronsemi.com/datasheets/sdramds.html

FEATURES

- PC66-, PC100- and PC133-compliant
- · Fully synchronous; all signals registered on positive edge of system clock
- Internal pipelined operation; column address can be changed every clock cycle
- Internal banks for hiding row access/precharge
- Programmable burst lengths: 1, 2, 4, 8 or full page
- Auto Precharge, includes CONCURRENT AUTO PRECHARGE, and Auto Refresh Modes
- Self Refresh Modes: standard and low power
- 64ms, 4,096-cycle refresh
- LVTTL-compatible inputs and outputs
- Single +3.3V ±0.3V power supply

OPTIONS .	MARKING
 Configurations 	
16 Meg x 4 (4 Meg x 4 x 4 banks)	16M4
8 Meg x 8 (2 Meg x 8 x 4 banks)	8M8
4 Meg x 16 (1 Meg x 16 x 4 banks)	4M16
WRITE Recovery ('WR)	
'WR = "2 CLK"	A2
Plastic Package – OCPL ²	
54-pin TSOP II (400 mil)	TG
Timing (Cycle Time)	
10ns @ CL = 2 (PC100)	-8E 4
7.5ns @ CL = 3 (PC133)	-75
$7.5 \text{ns} \ \text{@ CL} = 2 \ (PC133)$	-7E

 Self Refresh 	
Standard	None
Low Power	I.

•	Operating Temperature Range	
	Commercial (0°C to +70°C)	None
	Extended (-40°C to +85°C)	IT 3

NOTE:1. Refer to Micron Technical Note TN-48-05.

- 2. Off-center parting line.
- 3. Consult Micron for availability.
- 4. Not recommended for new designs.

Part Number Example: MT48LC8M8A2TG-75

PIN ASSIGNMENT (Top View) 54-Pin TSOP x4 x8 x16 x16 x8 x4 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 33 33 33 33 32 31 30 29 28 RARRERERERERE BETTER NC The # symbol indicates signal is active LOW. A dash (-) Note:

indicates x8 and x4 pin function is same as x16 pin function.

	16 Magra A	O Mague \$	4 May 2 10
Configuration	4 Meg x 4 x 4 banks	2 Meg x 8 x 4 banks	1 Meg x 16x 4 banks
Refresh Count	4K	4K	4K
Row Addressing	4K (A0-A11)	4K (A0-A11)	4K (A0A 1) *
Bank Addressing	4 (BAO, BA1)	4 (BAO, BA1)	4 (BA0,8A-1)
Column Addressing	1K (AO-A9)	512 (A0-A8)	256 (N-A-7)

KEY TIMING PARAMETERS

SPEED	CLOCK	ACCES	ACCESS TIME		HOLD
GRADE	FREQUENCY	CL = 2°	CL = 3.	TIME	TEME
-7E	143 MHz	-	5.4ns	1.5ns	0_8ns
-75	133 MHz	-	5.4ns	1.5ns	0_8ns
-7E	133 MHz	5.4ns	-	1.5ns	0_8ns
-8E 3, 4	125 MHz	-	6ns	2ns	1ns
-75	100 MHz	6ns	_	1.5ns	0_8ns
-8E 3, 4	100 MHz	6ns	_	2ns	1ns

* CL = CAS (READ) latency

64Mb SDRAM PART NUMBERS

PART NUMBER	ARCHITECTURE	
MT48LC16M4A2TG	16 Meg x 4	
MT48LC8M8A2TG	8 Meg x 8	
MT48LC4M16A2TG	4 Meg x 16	

GENERAL DESCRIPTION

The 64Mb SDRAM is a high-speed CMOS, dynamic random-access memory containing 67,108,864 bits. It is internally configured as a quad-bank DRAM with a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the x4's 16,777,216-bit banks is organized as 4,096 rows by 1,024 columns by 4 bits. Each of the x8's 16,777,216-bit banks is organized as 4,096 rows by 512 columns by 8 bits. Each of the x16's 16,777,216-bit banks is organized as 4,096 rows by 256 columns by 16 bits.

Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BAO. BA1 select the bank; A0-A11 select the row). The address bits registered coincident with the READ or WRITE

command are used to select the starting column location for the burst access.

The SDRAM provides for programmable READ or WRITE burst lengths of 1, 2, 4, or 8 locations, or the full page, with a burst terminate option. An auto precharge function may be enabled to provide a selftimed row precharge that is initiated at the end of the burst sequence.

The 64Mb SDRAM uses an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2n rule of prefetch architectures, but it also allows the column address to be changed on every clock cycle to achieve a highspeed, fully random access. Precharging one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed. random-access operation.

The 64Mb SDRAM is designed to operate in 3.3V memory systems. An auto refresh mode is provided, along with a power-saving, power-down mode. All inputs and outputs are LVTTL-compatible.

SDRAMs offer substantial advances in DRAM operating performance, including the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks in order to hide precharge time and the capability to randomly change column addresses on each clock cycle during a burst access.

DVD HOST PROCESSOR WITH ENHANCED AUDIO **FEATURES**

■ Integrated 32-bit host CPU @ 60MHz

2 Kbytes of Icache, 2 Kbytes of Dcache, and 4Kbytes of SRAM configurable as Dcache.

Audio decoder

- 5.1 channel Dolby Digital® /MPEG-2 multi-channel decoding, 3 X 2-channel PCM outputs
- IEC60958 -IEC61937 digital output
- SRS®/TruSurround®
- DTS digital out and MP3 decoding

■ Karaoke processor

 Echo, pitch shift, microphone inputs, voice cancellation and multiple other effects

Video decoder

- Supports MPEG-2 MP@ML
- · Fully programmable zoom-in and zoom-out
- PAL to NTSC and NTSC to PAL conversion

DVD and SVCD subpicture decoder

■ High performance on-screen display

- · 2 to 8 bits per pixel OSD options
- · Anti-flicker, anti-flutter and anti-aliasing filters

■ PAL/NTSC/SECAM encoder

- RGB, CVBS, Y/C and YUV outputs with 10-bit DACs
- Macrovision® 7.01/6.1 compatible

■ Shared SDRAM memory interface

- Supports 1 or 2x16Mbit, or 1x64Mbit 125MHz SDRAM
- Programmable CPU memory interface for SDRAM, ROM, peripherals...

■ Front-end interface

- DVD, VCD, SVCD and CD-DA compatible
- Serial, parallel and ATAPI interfaces
- Hardware sector filtering
- Integrated CSS decryption and track buffer

Integrated peripherals

- · 2 UARTS, 2 SmartCards, I2C controller, 3 PWM outputs, 3 capture timers
- Modem support
- 38 bits of programmable I/O

■ Professional toolset support

- ANSI C compiler and libraries
- 208 pin PQFP package

The STi5508 provides a highly integrated back-end solution for DVD applications. A host CPU handles both the general application (the user interface, and the DVD, CD-DA, VCD, SVCD navigation) and the drivers of the different embedded peripheral (audio/video, karaoke, sub-picture decoders, OSD, PAL/NTSC encoder...).

Because of its memory savings, increased number of internal peripherals, improved development platform and reference design, the STi5508 offers a cost-effective solution to DVD applications, with rapid time-to-market.

Architecture overview

1.1 Introduction

The figure below shows the architecture of the STi5508. This device has the same global architecture as the STi5505, with the addition of new features such as karaoke, a shared SDRAM memory interface and extra display planes. Because of this increased performance, the STi5508 and STi5505 are not pin compatible. This chapter gives a brief overview of each of the functional blocks of the STi5508.

Figure 1 Functional block diagram

1.2 Central processor

The STi5508 Central Processing Unit is a ST20C2+ 32-bit processor core. It contains instruction processing logic, instruction and data pointers, and an operand register. It directly accesses the high-speed on-chip SRAM, which can store data or programs and uses the cache to reduce access time to off-chip program and data memory.

The processor can access memory via the Programmable CPU Interface (often referred to as the EMI) or the Shared Memory Interface (SMI), which is shared with the video, audio, sub-picture and OSD decoders.

1.3 MPEG video decoder

This is a real-time video compression processor supporting the MPEG-1 and MPEG-2 standards at video rates up to 720 x 480 x 60 Hz and 720 x 576 x 50 Hz. Picture format conversion for display is performed by vertical and horizontal filters. User-defined bitmaps can be super-imposed on the display picture by using the on-screen display function.

The display unit is part of the MPEG video decoder, it overlays the four display planes shown in the figure below. The display planes are normally overlaid in the order illustrated, with the background color at the back and the sub-picture at the front (used as a cursor plane). The sub-picture plane can alternatively be positioned between the OSD and MPEG video planes where it can be used as a second on-screen display plane.

Figure 2 Display planes

1 Architecture overview

Audio decoder

The audio decoder accepts: Dolby Digital, MPEG-1 layers I and II, MPEG-2 layer II 6-channel, PCM, CDDA data formats; MPEG2 PES streams for MPEG-2, MPEG-1, Dolby Digital, MP3, and Linear PCM (LPCM). The audio decoder supports DTS digital out (DVD DTS and CDDA DTS).

S/PDIF input data (IEC-60958 or IEC-61937 standards) is accepted if an external circuitry extracts the PCM clock from the stream

Skip frame, repeat blocks and soft mute frame features can be used to synchronize audio and video data. PTS audio extraction is also supported.

The device outputs up to 6 channels of PCM data and appropriate clocks for external digital-to-analog converters.

Programmable downmix enables 1,2,3 or 4 channel outputs. Data can be output in either I2S format or Sony format. The decoder can format output data according to IEC-60958 standard (for non compressed data: L/R channels, 16, 18, 20 and 24-bits) or IEC-61937 standard (for compressed data), for F_S = 96kHz, 48kHz, 44.1kHz or 32kHz.

Sampling frequencies of 96kHz, 48kHz, 44.1kHz, 32kHz and half sampling frequencies are supported. A downsampling filter (96kHz/48kHz) is available.

The decoder supports dual mode for MPEG and Dolby Digital. It is karaoke aware and capable in Dolby Digital and MPEG formats according to DVD specifications. It includes a Dolby surround compatible downmix and a ProLogic decoder.

A pink noise generator enables the accurate positioning of speakers for optimal surround sound setup.

In global mute mode, the decoder decodes the incoming bitstream normally but the PCM and SPDIF outputs are softmuted. This mode is used to prepare a period of decoding mode, to synchronize audio and video data without hearing the audio.

Slow-forward and fast-forward trick modes are available for compressed and non-compressed data.

The control interface of the decoder is activated via memory mapped registers in the ST20 address space.

1.5 Karaoke

The karaoke processor is a post-processing module which supports the following features: 2 micro PCM input, pitch shift, echo effect, reverberation, chorus, voice cancellation, level-sensitive vocal cancelling, vocal partnering, independant volume control on music and vocal channels.

Modem analog front-end interface 1.6

The Modem Analog Front-end interface is used to transfer transmit and receive DAC and ADC samples between the memory and an external modem analog front-end (MAFE), using a synchronous serial protocol. DMA is used to transfer the sample data between memory buffers and the MAFE interface module, with separate transmit and receive buffers and double buffering of the buffer pointers. FIFOs are used to take into account the access latency to memory, in a worst case system and to allow the use of bursts for memory bandwidth efficiency improvement. The V22 bis standard is supported.

1.7 **Memory subsystem**

On-chip

The on-chip memory includes 2Kbytes of instruction cache, 2Kbytes of data cache and 4Kbytes of SRAM that can be optionally configured as data cache. The subsystem provides 240M/bytes of internal bandwidth, supporting pipelined 2cycle internal memory access.

1 Architecture overview

STi5508

The instruction and data caches are direct-mapped, with a write-back system for the data-cache. The caches support burst accesses to the external memories for refill and write-back. Burst access increases the performance of pagemode DRAM memories.

Off-chip

There are two off-chip memory interfaces:

- The external memory interface (EMI) accessed by the ST20 is used for the transfer of data and programs between the STi5508 and external peripherals, flash and additional SDRAM and DRAM.
- Shared memory interface (SMI) controls the movement of data between the STi5508 and 16, 32 or 64 Mbits of SDRAM. This external SDRAM stores the display data generated by the MPEG decoder and CPU and the C2+ code data.

The EMI uses minimal external support logic to support memory subsystems, and accesses a 32 Mbytes of physical address space (greater if SDRAM or DRAM is used) in four general purpose memory banks of 8 or 16 bits wide, 21 or 22 address lines, and byte select. For applications requiring extra memory, the EMI supports this extra memory with zero external support logic, even for 16-bit SDRAM devices. The EMI can be configured for a wide variety of timing and decode functions by the configuration registers. The timing of each of the four memory banks can be set separately. with different device types being placed in each bank with no need for external hardware.

Serial communication 1.8

Asynchronous serial controllers

The Asynchronous Serial Controller (ASC), also referred to as the UART interface, provides serial communication between the STi5508 and other microcontrollers, microprocessors or external peripherals. The STi5508 has four ASCs, two of which are generally used by the SmartCard controllers.

Eight or nine bit data transfer, parity generation, and the number of stop bits are programmable. Parity, framing, and overrun error detection increase data transfer reliability. Transmission and reception of data can be double-buffered, or 16-deep FIFOs can be used. A mechanism to distinguish the address from the data bytes is included for multiprocessor communication. Testing is supported by a loop-back option. A 16-bit baud-rate generator provides the ASC with a separate serial clock signal.

Each ASC supports full-duplex asynchronous communication where both the transmitter and the receiver use the same data frame format and the same baud-rate. Each ASC can be set to operate in SmartCard mode for use when interfacing to a SmartCard.

Synchronous serial control

The Synchronous Serial Controller (SSC) provides a high-speed interface to a wide variety of serial memories, remote control receivers and other microcontrollers. The SSC supports all of the features of the Serial Peripheral Interface bus (SPI) and the I²C bus. The SSC can be programmed to interface to other serial bus standards. The SSC shares pins with the parallel input/output (PIO) ports, and support full-duplex and half-duplex synchronous communication when used in conjunction with the PIO configuration.

Front-end interface 1.9

The STi5508 can be connected to a front-end through the following interfaces:

- 12S interface;
- multi-format serial interface;
- multi-format parallel interface;

1 Architecture overview

ATAPI interface (for DVD-ROMs)

1.10 On-chip PLL

The on-chip PLL accepts 27 MHz input and generates all the internal high-frequency clocks needed for the CPU, MPEG and audio subsystems.

1.11 Diagnostic controller (DCU)

The ST20 Diagnostic Controller Unit (DCU) is used to boot the CPU and to control and monitor the chip systems via the standard IEEE 1194.1 Test Access Port. The DCU includes on-chip hardware with ICE (In Circuit Emulation) and LSA (Logic State Analyzer) features to facilitate verification and debugging of software running on the on-chip CPU in real time. It is an independent hardware module with a private link from the host to support real-time diagnostics.

1.12 Interrupt subsystem

The interrupt system allows an on-chip module or external interrupt pin to interrupt an active process so that an interrupt handling process can be run. An interrupt can be signalled by one of the following: a signal on an external interrupt pin, a signal from an internal peripheral or subsystem, software asserting an interrupt in the pending register.

Interrupts are implemented by an on-chip interrupt controller and an on-chip interrupt-level controller. The interrupt controller supports eight prioritized interrupts as inputs and manages the pending interrupts. This allows the nesting of pre-emptive interrupts for real-time system design. Each interrupt can be programmed to be at a lower or higher priority than the high priority process queue.

1.13 PAL/NTSC/SECAM encoder

The integrated digital encoder converts a multiplexed 4:2:2 or 4:4:4 YCbCr stream into a standard analog baseband PAL/NTSC or SECAM signal and into RGB, YUV, Yc and CVBS components. The encoder can perform closed-caption, CGMS encoding, and allows Macrovision TM 7.01/6.1 copy protection.

1.14 SmartCard interfaces

Two SmartCard interfaces support SmartCards compliant with ISO7816-3. Each interface is has a UART (ASC), a dedicated programmable clock generator, and eight bits of parallel IO port.

1.15 PWM and counter module

The PWM and counter module provides three PWM encoder outputs, three PWM decoder (capture) inputs and four programmable timers. Each capture input can be programmed to detect rising edge, falling edge, both edges or neither edge (disabled). These facilities are clocked by two independent clocks, one for PWM outputs and one for capture inputs/timers. The PWM counter is 8-bit, with 8-bit registers to set the output-high time. The capture/compare counter and the compare and capture registers are 32-bit. The module generates a single interrupt signal.

1.16 Parallel I/O module

38 bits of parallel I/O are configured in 5 ports, and each bit is programmable as output or input. The output can be configured as a totem-pole or open-drain driver. The input compare logic can generate an interrupt on any change of any input bit. Many parallel IO have alternate functions and can be connected to an internal peripheral signal such as a UART or SSC.

2 Pin data

2.1 Pin out

2 Pin data

2.2 Pin list sorted by function

Alternate functions printed in Italic show a suggested use of the PIO; alternate functions not printed in Italic are multiplexed with a specific hardware.

Pin number	Pin name	Main function	Alternate function		Туре
riii ilulliber	Pin name	Main function	Input Output		
Audio DAC					
51	DAC_SCLK	OVER SAMPLING CLK		EXT_AUD_CLK	0
52	DAC_PCMOUT0	PCM_OUT0		EXT_AUD_DATA	0
53	DAC_PCMOUT1	PCM_OUT1	EXT_AUD_REQ		1/0
54	DAC_PCMOUT2	PCM_OUT2			0
55	DAC_PCMCLK	PCM_CLOCK			1/0
56	DAC_LRCLK	LEFT/RIGHT CLK		EXT_AUD_WCLK	0
57	SPDIF_OUT	SPDIF_OUT			0
48	VDD_PCM	VDD FREQ SYNTHE=2.5V			PWR 2.5V
49	VSS_PCM	VSS FREQ SYNTHE=GND			PWR
Audio ADC inpu	ıt				•
104	ADC_LRCLK	Left/Right Clock			1/0
106	ADC_PCMCLK	PCM CLOCK			I/O
105	ADC_DATA	DATA			ı
103	ADC_SCLK	SAMPLING CLK			1/0
Clock & reset					
124	RESET	CHIP RESET			I
122	VDD_PLL	VDD PLL=2.5V			PWR 2.5V
123	VSS_PLL	GND PLL=GND			PWR
120	PIX _CLK	27 MHz main clock			I
PIOs and comm	nunication				
186	PIO0[0]	PIO0[0]	UARTO_DATA (SCO_	_DATA)	1/0
187	PIO0[1]	PIO0[1]		ATAPI_RD	1/0
188	PIO0[2]	PIO0[2]		ATAPI_WR	1/0
189	PIO0[3]	PIO0[3]		SC0_CLOCK	1/0
190	PIO0[4]	PIO0[4]		SC0_RST	1/0
191	PIO0[5]	PIO0[5]		SC0_CMD_VCC	1/0
192	PIO0[6]	PIO0[6]	1897	SC0_DATA_DIR	I/O
193	PIO0[7]	PIO0[7]	SC0_DETECT		1/0
194	PIO1[0]	PIO1[0]	SSC0_DATA (MTSF	ROut/MRSTin)	I/O
195	PIO1[1]	PIO1[1]	SSC0_CLOCK		I/O
196	PIO1[2]	PIO1[2]	SC EXTERNAL CLOCK	PARA_DVALID	1/0
197	PIO1[3]	PIO1[3]		UART2_TXD	1/0
200	PIO1[4]	PIO1[4]	UART2_RXD		1/0

Table 1 Pins sorted by function

	Din nom-		Alternate function		
Pin number	Pin name	Main function	Input	Output	Туре
201	PIO1[5]	PIO1[5]	PARA_SYNC	UART1_TXD	1/0
202	TRIGGER_IN	TRIGGER_IN for DCU			1/0
203	TRIGGER_OUT	TRIGGER_OUT for DCU			1/0
204	PIO2[0]	PIO2[0]	UART3_DATA (SC1_	_DATA)	1/0
205	PIO2[1]	PIO2[1]	UART1_RXD	MAFEIF_DOUT PARA_REQ	I/O
206	PIO2[2]	PIO2[2]	PARA_STROBE	MAFEIF_HC1	I/O
207	PIO2[3]	PIO2[3]		SC1_CLOCK	I/O
208	PIO2[4]	PIO2[4]		SC1_RST	1/0
1	PIO2[5]	PIO2[5]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SC1_CMD_VCC	1/0
2	PIO2[6]	PIO2[6]		SC1_DATA_DIR	1/0
3	PIO2[7]	PIO2[7]	SC1_DETECT		1/0
6	PIO3[0]	PIO3[0]	MAFEIF_SCLK PARA_DATA(0)		1/0
7	PIO3[1]	PIO3[1]	MAFEIF_DIN PARA_DATA[1]		1/0
8	PIO3[2]	PIO3[2]	MAFEIF_FSI PARA_DATA[2]		I/O
9	PIO3[3]	PIO3[3]	CAPTURE_IN0 PARA_DATA[3]		1/0
10	PIO3[4]	PIO3[4]	CAPTURE_IN1 PARA_DATA[4]		1/0
11	PIO3[5]	PIO3[5]	CAPTURE_IN2 PARA_DATA[5]		I/O
12	PIO3[6]	PIO3[6]	PARA_DATA[6]	COMP_OUT1	I/O
13	PIO3[7]	PIO3[7]	PARA_DATA[7]	COMP_OUT0	I/O
39-46	PIO4[0:7]	PIO4[0:7]	YC[0:7]		I/O
			SSC1_DATA	V NRSS_CLOCK ¹	
			SSC	1_CLOCK	
			SDAV_CLK/ P1394_Clk ²		
				AV_DATA ²	\top
				/P1394_P_CLK ²	
		·	oso	C_IN_CLK ²	
EMI Interface					
161-170	CPU_ADR[1:10]	ADR[1:10]			0
173-183	CPU_ADR[11:21]	ADR[11:21]			0
141-148	CPU_DATA[0:7]	DATA[0:7]			I/O
151-158	CPU_DATA[8:15]	DATA[8:15]			1/0
138	CPU_RAS1	DRAM RAS		NOT_SDRAM_CS1	I/O
131	CPU_WAIT	WAIT STATE			I

Table 1 Pins sorted by function

2 Pin data

Pin number	Pin name	Main function	Alternate function		
Pin number	Pin name	Main function	Input	Output	Туре
130	CPU_RW	READ-NOT WRITE		NOT_SDRAM_WE	0
128	CPU_BE[0]	BYTE 0 ENABLE		DQM[0]	0
129	CPU_BE[1]	BYTE 1 ENABLE		DQM[1]	0
139	CPU_CAS0	DRAM CASO		SDRAM_CAS/ CPU_ADR[22]	0
140	CPU_CAS1	DRAM		NOT_SDRAM_CS0	0
135	CPU_CE[0]	DRAM_RAS0		SDRAM_RAS	0
134	CPU_CE[1]	CHIP SEL. BANK 1	·		0
133	CPU_CE[2]	CHIP SEL. BANK 2			0
132	CPU_CE[3]	CHIP SEL. BANK 3		CS_SUB_BANK3	0
118	CPU_RAM_CLK	SDRAM CLOCK			0
117	CPU_OE	OUTPUT ENABLE			1/0
Interrupt					
127	IRQ[0]	IRQ[0] (SERVO_IRQ)			ı
126	IRQ[1]	IRQ[1] (ATAPI IRQ)			ī
125	IRQ[2]	IRQ[2] (MD_IRQ)			ı
Timers					
116	PWM0	Pulse Width Modula 0	HSYNC	THE STATE OF THE S	0
115	PWM1	Pulse Width Modula1	BOOT FROM ROM ³		1/0
114	PWM2	Pulse Width Modula 2	VSYNC	1	0
JTAG					
113	TCK	TEST CLOCK			ı
112	TDI	TEST DATA IN			ı
111	TDO	TEST DATA OUT			0
110	TMS	TEST MODE SELECT			ī
109	TRST⁴	TEST RESET			ı
Front-end					
16	B_DATA	I2S DATA	SER_DATA		l I
17	B_BCLK	I2S BIT CLOCK	SER_BCLK		I
18	B_FLAG	I2S ERROR FLAG DVD	SER_VALID		I
19	B_SYNC	I2S SECTOR/ABS TIME	SER_SYNC		
20	B_WCLK	I2S WORD CLOCK		NRSS CLOCK	1/0
21	B_V4	I2S VERSATILE INPUT PIN	NRSS_IN		l.
22	NRSS_OUT	NRSS OUT			0
Video DAC					1-
27, 26, 25	R_OUT, G_OUT, B_OUT	R_OUT, G_OUT, B_OUT			0
32, 33, 34	Y_OUT, C_OUT, CV_OUT	Y_OUT, C_OUT, CV_OUT			0
29	I_REF_RGB	I_REF_DAC_RGB			1
			I		ļ.
28	V_REF_RGB	V_REF_DAC_RGB	1	ĺ	11

Table 1 Pins sorted by function

2 Pin data

STi5508

Pin number	Pin name	Main Armadian	Alternate function		
	Pin name	Main function	Input	Output	Туре
35	V_REF_YCC	V_REF_DAC_YCC			ı
23	VDD_RGB	VDDA_RGB=2.5V			PWR 2.5V
24	VSS_RGB	VSSA_RGB=GND			PWR
30	VDD_YCC	VDDA_YCC=2.5V			PWR 2.5V
31	VSS_YCC	VSSA_YCC=GND			PWR
Shared memory	interface				
69-66	SMI_ADR[0:3]	Address bus SDRAM			0
58-63	SMI_ADR[4:9]	Address bus SDRAM			0
70-73	SMI_ADR [10:13]	Address bus SDRAM			0
84-93, 97-102	SMI_DATA[0:15]	Data bus SDRAM			1/0
74, 75	SMI_CS[0,1]	Chip select bank 0,1			0
76	SMI_RAS	RAS SDRAM			0
77	SMI_CAS	CAS SDRAM			0
78	SMI_WE	SDRAM write enable			0
79, 80	SMI_DQML, U	DQ MASK EN LOW, UP			0
82	SMI_CLKIN	SDRAM CLOCK IN			ı
95	SMI_CLKOUT	SDRAM CLOCK OUT			0
Power supply					
4, 47, 81, 107, 136, 159, 184	VDD3_3	3.3 V POWER SUPPLY			PWR
14, 37, 64, 94, 119, 149, 171, 198	VDD2_5	2.5V POWER SUPPLY			PWR
5, 15, 38, 50, 65, 83, 96, 108, 121, 137, 150, 160, 172, 185, 199		GROUND			PWR

- Table 1 Pins sorted by function

 1. FEI_CFG bits 8 and 9 must be programmed according to the required NRSS configuration.
- 2. Register LNK_SDAV_CONF bit 22 (SDE) must be set to 1 to validate the output path.
- 3. BOOTFROMROM is active during reset.
- 4. Tie low whenever JTAG is not used.

2 Pin data

Pins sorted by pin number 2.3

Din NO	Dia mama	Main formation	Alternate function	Dis forms	
Pin N°	Pin name	Main function	Input	Output	Dir func.
Left Side					
1	PIO2[5]	PIO2[5]		SC1_CMD_VCC	I/O
2	PIO2[6]	PIO2[6]		SC1_DATA_DIR	I/O
3	PIO2[7]	PIO2[7]	SC1_DETECT		1/0
4	VDD3_3	3.3 V POWER SUPPLY			POWER
5	VSS	GROUND			POWER
6	PIO3[0]	PIO3[0]	MAFEIF_SCLK PARA_DATA{0}		1/0
7	PIO3[1]	PIO3[1]	MAFEIF_DIN PARA_DATA[1]	76	1/0
8	PIO3[2]	PIO3[2]	MAFEIF_FSI PARA_DATA[2]		1/0
9	PIO3[3]	PIO3[3]	CAPTURE_IN0 PARA_DATA[3]		1/0
10	PIO3[4]	PIO3[4]	CAPTURE_IN1 PARA_DATA[4]		1/0
11	PIO3[5]	PIO3[5]	CAPTURE_IN2 PARA_DATA[5]		1/0
12	PIO3[6]	PIO3[6]	PARA_DATA[6]	COMP_OUT1	1/0
13	PIO3[7]	PIO3[7]	PARA_DATA[7]	COMP_OUT0	1/0
14	VDD2_5	2.5V POWER SUPPLY			POWER
15	VSS	GROUND			POWER
16	B_DATA	I2S DATA	SER_DATA		ı
17	B_BCLK	I2S BIT CLOCK	SER_BCLK		Ī
18	B_FLAG	I2S ERROR FLAG DVD	SER_VALID		I
19	B_SYNC	I2S SECTOR/ABS TIME	SER_SYNC		1
			SSC1_DATA	V NRSS_CLOCK ¹	
				C1_CLOCK	
			SDAV CL		
20	B_WCLK	I2S WORD CLOCK		NRSS CLOCK	1/0
21	B_V4	I2S VERSATILE INPUT	NRSS_IN		1
22	NRSS_OUT	NRSS OUT			0
23	VDD_RGB	VDDA_RGB=2.5V			POWER
24	VSS_RGB	VSSA_RGB=GND			POWER
25	B_OUT	B_OUT			0
26	G_OUT	G_OUT			0
27	R_OUT	R_OUT			0
28	V_REF_RGB	V_REF_DAC_RGB	,		-

Table 2 Pins sorted by number

2 Pin data

STi5508

Din No	Din nome	Main function	Alternate function		Dir func.
Pin N°	Pin name	Main function	Input	Output	Dir runc.
29	I_REF_RGB	I_REF_DAC_RGB			I
30	VDD_YCC	VDDA_YCC=2.5V			POWER
31	VSS_YCC	VSSA_YCC=GND			POWER
32	Y_OUT	Y_OUT			0
33	C_OUT	C_OUT			0
34	CV_OUT	CV_OUT			0
35	V_REF_YCC	V_REF_DAC_YCC			ı
36	I_REF_YCC	I_REF_DAC_YCC			ı
37	VDD2_5	2.5V POWER SUPPLY			POWER
38	VSS	GROUND			POWER
39	PIO4[0]	PIO4[0]	YC[0]		1/0
40	PIO4[1]	PIO4[1]	YC[1]		1/0
41	PIO4[2]	PIO4[2]	YC[2]		1/0
42	PIO4[3]	PIO4[3]	YC[3]		1/0
43	PIO4[4]	PIO4[4]	YC[4]		I/O
44	PIO4[5]	PIO4[5]	YC[5]		1/0
45	PIO4[6]	PIO4[6]	YC[6]		1/0
46	PIO4[7]	PIO4[7]	YC[7]		1/0
47	VDD3_3	3.3 V POWER SUPPLY			POWER
48	VDD_PCM	VDD FREQ SYNTH=2.5V			POWER
49	VSS_PCM	VSS FREQ SYNTH=GND			POWER
50	VSS	GROUND			POWER
51	DAC_SCLK	SAMPLING CLK		EXT_AUD_CLK	0
52	DAC_PCMOUT0	PCM_OUT0		EXT_AUD_DATA	0
Bottom si	de				
53	DAC_PCMOUT1	PCM_OUT1	EXT_AUD_REQ		I/O
54	DAC_PCMOUT2	PCM_OUT2			0
55	DAC_PCMCLK	PCM_CLOCK			1/0
56	DAC_LRCLK	LEFT/RIGHT CLK		EXT_AUD_WCLK	0
57	SPDIF_OUT	SPDIF_OUT			0
58	SMI_ADR[4]	Adress bus SDRAM			0
59	SMI_ADR[5]	Adress bus SDRAM			0
60	SMI_ADR[6]	Adress bus SDRAM			0
61	SMI_ADR[7]	Adress bus SDRAM			0
62	SMI_ADR[8]	Adress bus SDRAM		***************************************	0
63	SMI_ADR[9]	Adress bus SDRAM	harden halfa teddi		0
64	VDD2_5	2.5V POWER SUPPLY			POWER
65	VSS	GROUND			POWER
66	SMI_ADR[3]	Adress bus SDRAM			0
67	SMI_ADR[2]	Adress bus SDRAM			0

Table 2 Pins sorted by number

2 Pin data

Pin N°	Din nome	Main function	Alternate function		Dinter
rin N	Pin name		Input	Output	Dir func.
68	SMI_ADR[1]	Adress bus SDRAM			0
69	SMI_ADR[0]	Adress bus SDRAM			0
70	SMI_ADR[10]	Adress bus SDRAM			0
71	SMI_ADR[11]	Adress bus SDRAM			0
72	SMI_ADR[12]	Adress bus SDRAM			0
73	SMI_ADR[13]	Adress bus SDRAM			0
74	SMI_CS[0]	Chip select bank 0			0
75	SMI_CS[1]	Chip select bank 1			0
76	SMI_RAS	RAS SDRAM			0
77	SMI_CAS	CAS SDRAM			0
78	SMI_WE	SDRAM write enable			0
79	SMI_DQML	DQ MASK EN LOW			0
80	SMI_DQMU	DQ MASK EN UP			0
81	VDD3_3	3.3 V POWER SUPPLY			POWER
82	SMI_CLKIN	SDRAM CLOCK IN			ı
83	vss	GROUND			POWER
84	SMI_DATA[0]	Data bus SDRAM			1/0
85	SMI_DATA[1]	Data bus SDRAM			1/0
86	SMI_DATA[2]	Data bus SDRAM			1/0
87	SMI_DATA[3]	Data bus SDRAM			1/0
88	SMI_DATA[4]	Data bus SDRAM			1/0
89	SMI_DATA[5]	Data bus SDRAM			1/0
90	SMI_DATA[6]	Data bus SDRAM			1/0
91	SMI_DATA[7]	Data bus SDRAM			1/0
92	SMI_DATA[8]	Data bus SDRAM			1/0
93	SMI_DATA[9]	Data bus SDRAM			1/0
94	VDD2_5	2.5V POWER SUPPLY			POWER
95	SMI_CLKOUT	SDRAM CLOCK OUT		***************************************	0
96	vss	GROUND			POWER
97	SMI_DATA[10]	Data bus SDRAM			1/0
98	SMI_DATA[11]	Data bus SDRAM			1/0
99	SMI_DATA[12]	Data bus SDRAM			1/0
100	SMI_DATA[13]	Data bus SDRAM			I/O
101	SMI_DATA[14]	Data bus SDRAM			I/O
102	SMI_DATA[15]	Data bus SDRAM			I/O
103	ADC_SCLK	SAMPLING CLK			1/0
104	ADC_LRCLK	Left/Right Clock			I/O
				SDAV_DATA ²	
			Sday	_dir / P1394_P_CLK ²	
Right side	L		Guav	_GII / I 1007_F_OLK	

Table 2 Pins sorted by number

2 Pin data

STi5508

Din Nº	Din name	Main franchis	Alternate function	Dir func.	
Pin N°	Pin name	Main function	Input	Output	Dir lunc.
105	ADC_DATA	DATA			ı
106	ADC_PCMCLK	PCM CLOCK			1/0
			OSC_II	N_CLK ²	
107	VDD3_3	3.3 V POWER SUPPLY			POWER
108	VSS	GROUND			POWER
109	TRST ³	TEST RESET			ı
110	TMS	TEST MODE SELECT			ı
111	TDO	TEST DATA OUT			0
112	TDI	TEST DATA IN			Ti Ti
113	TCK	TEST CLOCK			ī
114	PWM2	Pulse Width Modul 2	VSYNC		0
115	PWM1	Pulse Width Modul 1	BOOT_FROM_ROM4		1/0
116	PWM0	Pulse Width Modul 0	HSYNC		0
117	CPU_OE	OUTPUT ENABLE			I/O
118	CPU_RAM_CLK	SDRAM CLOCK			0
119	VDD2_5	2.5V POWER SUPPLY			POWER
120	PIX _CLK	27 MHz main clock			ı
121	VSS	GROUND			POWER
122	VDD_PLL	VDD PLL=2.5V			POWER
123	VSS_PLL	GND PLL=GND			POWER
124	RESET	CHIP RESET			ı
125	IRQ[2]	IRQ[2] (MD_IRQ)			I
126	IRQ[1]	IRQ[1] (ATAPI IRQ)			1
127	IRQ[0]	IRQ[0] (SERVO_IRQ)			I
128	CPU_BE[0]	BYTE 0 ENABLE		DQM[0]	0
129	CPU_BE[1]	BYTE 1 ENABLE		DQM[1]	0
130	CPU_RW	READ-NOT WRITE		NOT_SDRAM_WE	0
131	CPU_WAIT	WAIT STATE			ı
132	CPU_CE[3]	CHIP SEL. BANK 3		CS_SUB_BANK3	0
133	CPU_CE[2]	CHIP SEL. BANK 2			0
134	CPU_CE[1]	CHIP SEL. BANK 1			0
135	CPU_CE[0]	DRAM_RAS0		SDRAM_RAS	0
136	VDD3_3	3.3 V POWER SUPPLY			POWER
137	VSS	GROUND			POWER
138	CPU_RAS1	DRAM RAS		NOT_SDRAM_CS1	1/0
139	CPU_CAS0	DRAM CASO		SDRAM_CAS/ CPU_ADR[22]	0
140	CPU_CAS1	DRAM		NOT_SDRAM_CS0	0
141	CPU_DATA[0]	DATA[0]			I/O
142	CPU_DATA[1]	DATA[1]			I/O

Table 2 Pins sorted by number

2 Pin data

Pin N°	Pin name	Main function	Alternate function		Di- 4
PIII IN	Pin name	main function	Input	Output	Dir func.
143	CPU_DATA[2]	DATA[2]			1/0
144	CPU_DATA[3]	DATA[3]			1/0
145	CPU_DATA[4]	DATA[4]			I/O
146	CPU_DATA[5]	DATA[5]			I/O
147	CPU_DATA[6]	DATA[6]			I/O
148	CPU_DATA[7]	DATA[7]			1/0
149	VDD2_5	2.5V POWER SUPPLY			POWER
150	VSS	GROUND			POWER
151	CPU_DATA[8]	DATA[8]			1/0
152	CPU_DATA[9]	DATA[9]			1/0
153	CPU_DATA[10]	DATA[10]			1/0
154	CPU_DATA[11]	DATA[11]			1/0
155	CPU_DATA[12]	DATA[12]			1/0
156	CPU_DATA[13]	DATA[13]			1/0
Top side					TO THE STATE OF TH
157	CPU_DATA[14]	DATA[14]			I/O
158	CPU_DATA[15]	DATA[15]			1/0
159	VDD3_3	3.3 V POWER SUPPLY			POWER
160	vss	GROUND			POWER
161	CPU_ADR[1]	ADR[1]			0
162	CPU_ADR[2]	ADR[2]			0
163	CPU_ADR[3]	ADR[3]			0
164	CPU_ADR[4]	ADR[4]		1.	0
165	CPU_ADR[5]	ADR[5]			0
166	CPU_ADR[6]	ADR[6]			0
167	CPU_ADR[7]	ADR[7]			0
168	CPU_ADR[8]	ADR[8]			0
169	CPU_ADR[9]	ADR[9]			0
170	CPU_ADR[10]	ADR[10]			0
171	VDD2_5	2.5V POWER SUPPLY			POWER
172	VSS	GROUND			POWER
173	CPU_ADR[11]	ADR[11]			О
174	CPU_ADR[12]	ADR[12]			0
175	CPU_ADR[13]	ADR[13]			0
176	CPU_ADR[14]	ADR[14]			0
177	CPU_ADR[15]	ADR[15]			0
178	CPU_ADR[16]	ADR[16]			0
179	CPU_ADR[17]	ADR[17]			0
180	CPU_ADR[18]	ADR[18]			0
181	CPU_ADR[19]	ADR[19]			0

Table 2 Pins sorted by number

2 Pin data

STi5508

Pin N°	Din name		Alternate function	Dis form	
rin N°	Pin name	Main function	Input	Output	Dir func.
182	CPU_ADR[20]	ADR[20]	1		0
183	CPU_ADR[21]	ADR[21]			0
184	VDD3_3	3.3 V POWER SUPPLY			POWER
185	VSS	GROUND			POWER
186	PIO0[0]	PIO0[0]	UARTO_DATA (SCO_DATA)		I/O
187	PIO0[1]	PIO0[1]		ATAPI_RD	1/0
188	PIO0[2]	PIO0[2]		ATAPI_WR	I/O
189	PIO0[3]	PIO0[3]		SC0_CLOCK	I/O
190	PIO0[4]	PIO0[4]		SC0_RST	1/0
191	PIO0[5]	PIO0[5]		SC0_CMD_VCC	1/0
192	PIO0[6]	PIO0[6]		SC0_DATA_DIR	1/0
193	PIO0[7]	PIO0[7]	SC0_DETECT		I/O
194	PIO1[0]	PIO1[0]	SSC0_DATA		1/0
195	PIO1[1]	PIO1[1]	SSC0_CLOCK		I/O
196	PIO1[2]	PIO1[2]	SC EXTERNAL CLOCK	PARA_DVALID	I/O
197	PIO1[3]	PIO1[3]		UART2_TXD	1/0
198	VDD2_5	2.5V POWER SUPPLY			POWER
199	VSS	GROUND			POWER
200	PIO1[4]	PIO1[4]	UART2_RXD		I/O
201	PIO1[5]	PIO1[5]	PARA_SYNC	UART1_TXD	I/O
202	TRIGGER_IN	TRIGGER_IN for DCU			1/0
203	TRIGGER_OUT	TRIGGER_OUT for DCU			I/O
204	PIO2[0]	PIO2[0]	UART3_DATA (SC1_DAT	A)	I/O
205	PIO2[1]	PIO2[1]	UART1_RXD	MAFEIF_DOUT PARA_REQ	1/0
206	PIO2[2]	PIO2[2]	PARA_STROBE	MAFEIF_HC1	1/0
207	PIO2[3]	PIO2[3]		SC1_CLOCK	I/O
208	PIO2[4]	PIO2[4]		SC1_RST	1/0

- Table 2 Pins sorted by number

 1. FEI_CFG bits 8 and 9 must be programmed according to the required NRSS configuration.
- 2. Register LNK_SDAV_CONF bit 22 (SDE) must be set to 1 to validate the output path.
- 3. Tie low whenever JTAG is not used
- 4. BOOTFROMROM is active during reset.

9.8.4 IC7201: NVRAM

M24C64 M24C32

64/32 Kbit Serial I²C Bus EEPROM

- Compatible with I²C Extended Addressing
- Two Wire I²C Serial Interface Supports 400 kHz Protocol
- Single Supply Voltage:
 - 4.5V to 5.5V for M24Cxx
 - 2.5V to 5.5V for M24Cxx-W
 - 1.8V to 3.6V for M24Cxx-R
- Hardware Write Control
- BYTE and PAGE WRITE (up to 32 Bytes)
- RANDOM and SEQUENTIAL READ Modes
- Self-Timed Programming Cycle
- Automatic Address Incrementing
- Enhanced ESD/Latch-Up Behavior
- 1 Million Erase/Write Cycles (minimum)
- 40 Year Data Retention (minimum)

DESCRIPTION

These I²C-compatible electrically erasable programmable memory (EEPROM) devices are organized as 8192x8 bits (M24C64) and 4096x8 bits (M24C32), and operate down to 2.5 V (for the -W version of each device), and down to 1.8 V (for the -R version of each device).

The M24C64 and M24C32 are available in Plastic Dual-in-Line, Plastic Small Outline and Thin Shrink Small Outline packages.

Table 1. Signal Names

E0, E1, E2	Chip Enable Inputs
SDA	Serial Data/Address Input/ Output
SCL	Serial Clock
<u>wc</u>	Write Control
Vcc	Supply Voltage
V _{SS}	Ground

Figure 1. Logic Diagram

Figure 2A. DIP Connections

Figure 2C. TSSOP Connections

Note: 1. NC = Not Connected

Figure 2B. SO Connections

These memory devices are compatible with the I²C extended memory standard. This is a two wire serial interface that uses a bi-directional data bus and serial clock. The memory carries a built-in 4bit unique Device Type Identifier code (1010) in accordance with the 12C bus definition.

The memory behaves as a slave device in the I²C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a START condition, generated by the bus master. The START condition is followed by a Device Select Code and RW bit (as described in Table 3), terminated by an acknowledge bit.

When writing data to the memory, the memory inserts an acknowledge bit during the 9th bit time, following the bus master's 8-bit transmission.

Table 2. Absolute Maximum Ratings ¹

Symbol	Parameter		Value	Unit
T _A	Ambient Operating Temperature		-40 to 125	°C
T _{STG}	Storage Temperature		-65 to 150	°C
T _{LEAD}	Lead Temperature during Soldering	PSDIP8: 10 sec SO8: 40 sec TSSOP14: t.b.c.	260 215 t.b.c.	°C
V _{IO}	Input or Output range		-0.6 to 6.5	V
V _{CC}	V _{CC} Supply Voltage		-0.3 to 6.5	V
V _{ESD} Electrostatic Discharge Voltage (Human Body model) ²		4000	V	

Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and operation of the device at these or any otherconditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rairing conditions for extended periods may affect device reliability. Refer also to the ST SURE Program and other relevant quality to cuments. 2. MIL-STD-883C, 3015.7 (100 pF, 1500 Ω)

IC7301; IC7302: FLASH

M29W160DT M29W160DB

16 Mbit (2Mb x8 or 1Mb x16, Boot Block) 3V Supply Flash Memory

PRELIMINARY DATA

FEATURES SUMMARY

- SINGLE 2.7 to 3.6V SUPPLY VOLTAGE for PROGRAM, ERASE and READ OPERATIONS
- ACCESS TIME: 70ns
- **PROGRAMMING TIME**
 - 10µs per Byte/Word typical
- 35 MEMORY BLOCKS
 - 1 Boot Block (Top or Bottom Location)
 - 2 Parameter and 32 Main Blocks
- PROGRAM/ERASE CONTROLLER
 - Embedded Program and Erase algorithms
- ERASE SUSPEND and RESUME MODES
 - Read and Program another Block during Erase Suspend
- UNLOCK BYPASS PROGRAM COMMAND
 - Faster Production/Batch Programming
- **TEMPORARY BLOCK UNPROTECTION** MODE
- SECURITY MEMORY BLOCK
- **LOW POWER CONSUMPTION**
 - Standby and Automatic Standby
- 100,000 PROGRAM/ERASE CYCLES per **BLOCK**
- **ELECTRONIC SIGNATURE**
 - Manufacturer Code: 0020h
 - Top Device Code M29W160DT: 22C4h
 - Bottom Device Code M29W160DB: 2249h

SUMMARY DESCRIPTION

The M29W160D is a 16 Mbit (2Mb x8 or 1Mb x16) non-volatile memory that can be read, erased and reprogrammed. These operations can be performed using a single low voltage (2.7 to 3.6V) supply. On power-up the memory defaults to its Read mode where it can be read in the same way as a ROM or EPROM.

The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased. Each block can be protected independently to prevent accidental Program or Erase commands from modifying the memory. Program and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents.

The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.

The blocks in the memory are asymmetrically arranged, see Tables 2 and 3, Block Addresses. The first or last 64 Kbytes have been divided into four additional blocks. The 16 Kbyte Boot Block can be used for small initialization code to start the microprocessor, the two 8 Kbyte Parameter Blocks can be used for parameter storage and the remaining 32K is a small Main Block where the application may be stored.

Chip Enable, Output Enable and Write Enable signals control the bus operation of the memory. They allow simple connection to most microprocessors, often without additional logic.

The memory is offered in TSOP48 (12 x 20mm), SO44 and LFBGA48 (0.8mm pitch) packages and it is supplied with all the bits erased (set to '1').

Figure 2. Logic Diagram

Note: RB not available on SO44 package.

Table 1. Signal Names

Address Inputs
Data Inputs/Outputs
Data Inputs/Outputs
Data Input/Output or Address Input
Chip Enable
Output Enable
Write Enable
Reset/Block Temporary Unprotect
Ready/Busy Output (Not available on SO44 package)
Byte/Word Organization Select
Supply Voltage
Ground
Not Connected Internally
Don't Use as internally connected

M29W160DT, M29W160DB

Figure 3. TSOP Connections

Figure 4. SO Connections

SAA6752HS

FEATURES

Video input and preprocessing

- Digital YUV input according to "ITU-R BT.656" (8 bits at 27 MHz) and "ITU-R BT.601"
- Support of enhanced "ITU-R BT.656" input format containing decoded VBI data readable via I2C-bus; Closed Caption (CC), Wide Screen Signalling (WSS) and copyright information [Copy Generation Management System (CGMS)]
- Processing of non broadcast video signals from analog VCR according to IEC 756
- Two video clock input pins for switching two digital video sources
- "ITU-R BT.601" format conversion to 1/2D1, 2/3D1 and Standard Interchange Format (SIF)
- 4:2:2 to 4:2:0 colour format conversion
- Decimation filtering for all format conversions
- Adaptive median filter and motion compensated filter for input noise reduction.

1.2 Video compression

- Real time MPEG-2 encoding compliant to Main Profile at Main Level (MP@ML) for 625 and 525 interlaced line systems
- Supported resolutions: D1, 2/3D1, 1/2D1 and SIF
- IPB frame, IP frame and I frame only encoding supported at all modes
- Supported bit rates: up to 25 Mbit/s I-only encoding; up to 15 Mbit/s IP-only or IBP encoding.
- Variable video bit rate mode for constant picture quality and constant bit rate mode to gain optimum picture quality from a fixed channel transfer rate
- Access to bit rate control parameters whilst encoding to support external real-time control algorithms (e.g. constrained variable bit rate control)
- Programmable Group Of Pictures (GOP) structure
- Innovative motion estimation with wide search range
- · Adaptive quantization
- Motion compensated noise filter.

Audio input

- Audio inputs: I²S format or EIAJ format (16, 18 or 20 bits), master or slave mode at 32, 44.1 and 48 kHz
- Two digital I²S input ports for selection between two digital audio sources

- Audio clock generation: 256/384 × f_s (48 kHz) locked to video frame rate (if video is present)
- · Sample rate conversion to 48 kHz (locked to video frame rate) for slave mode operation in all modes except Digital Versatile Disc (DVD) compliant bypass.

1.4 **Audio compression**

- Dolby®⁽¹⁾ Digital Consumer Encoding (DDCE) also known as AC-3(2) 2 channel audio encoding at 256 kbit/s or 384 kbit/s (only for SAA6752HS/01)
- MPEG-1 layer 2 audio encoding at 256 kbit/s or 384 kbit/s
- Input data bypass for Linear Pulse Code Modulation (LPCM) and compressed audio data [MPEG-1, MPEG-2, Dolby® Digital (DD) and Digital Theatre System (DTS)] according to IEC 61937
- Preamble Pc, Preamble Pd and bit stream information captured for identification of modes during bypass of compressed audio data for MPEG-1, MPEG-2, DD and DTS according to IEC 61937
- Audio mute via l²C-bus control for all modes except DVD-compliant bypass.

1.5 Stream multiplexer

- Multiplexing of video and audio streams according to the MPEG-2 systems standard ("ISO 13818-1")
- Generation and output of MPEG-2 Transport Streams (TS), MPEG-2 Program Streams (PS), Packetized Elementary Streams (PES) and Elementary Streams (ES) compliant to the DVD, D-VHS and DVB standards
- MPEG time stamp (PTS/DTS/SCR/PCR) generation and insertion (synchronization)
- Insertion of metadata
- Optional generation of empty time slots for subsequent insertion of application specific data packets
- Optional insertion of user data in the GOP header and in the picture header.
- (1) Dolby is a registered trademark of Dolby Laboratories Licensing Corporation.
- AC-3 is a registered trademark of Dolby Laboratories Licensing Corporation.

SAA6752HS

1.6 **Output interface**

- Parallel interface 8-bit master/slave output
- · 3-state output port
- Glueless interfacing with IEEE 1394 chip sets (for example, PDI 1394 L11)
- Data Expansion Bus Interface (DEBI) interface.

1.7 **Control domain**

- All control done via I²C-bus
- I2C-bus slave transceiver up to 400 kHz
- I²C-bus slave address select pin
- Host interrupt flag pin.

1.8 Other features

- Single external clock or single crystal 27 MHz
- · Separate 27 MHz system clock output
- Interface voltage 3.3 V
- TTL compatible digital outputs
- Power supply voltage 3.3 and 2.5 V
- Boundary Scan Test (BST) supported
- Power-down mode
- Single SDRAM system memory (16 Mbit@16 bit or 64 Mbit@16 bit).

2 **GENERAL DESCRIPTION**

2.1 General

Philips Semiconductors' second generation real time MPEG-2 encoder, the SAA6752HS, is a highly integrated single chip audio and video encoding solution with very flexible multiplexing functionality. With our expertise in two critical areas for consumer video encoding, noise filtering and motion estimation, we have pushed the boundaries for video quality even further, providing enhanced quality for low bit rates and enabling increased recording times for a given storage capacity. The SAA6752HS will also enable a key driver for new consumer digital recording applications; system cost reduction. By integrating all audio encoding and multiplexing functionality we will be moving from a three chip to a one chip system, with cost efficient design and process technology, thus providing a truly low cost, high quality encoding system.

The SAA6752HS/02 is intended for customers whose application does not require the DDCE function.

The SAA6752HS gives significant advantages to customers developing digital recording applications:

- Fast time-to-market and low development resources: By adding a simple external video input processor IC, audio analog-to-digital converter, and an external SDRAM, analog video and audio sources are compressed into high quality MPEG-2 video and MPEG-1 layer 2 or AC-3 audio streams, multiplexed into a single program or transport stream for simple connection to various storage media or broadcast media. Hence, making design effort for our customers a minimum, as well as removing the need for in-depth experience in MPEG encoding.
- Low system host resources: All video and audio encoding algorithms and software are run on an internal MIPS®(1) processor. The SAA6752HS only requires small amount of communication from system host processor to set up and control required encoding parameters via I²C-bus.

2.2 **Application ?elds**

DVD BASED OPTICAL DISC RECORDERS (DVD+RW, 2.2.1 DVD-RW, DVD-RAM)

Emerging optical disc based recording systems target to replace the existing consumer recording (VCR) and playback (DVD and VCD) products. The first generation recordable DVD based products will want to maximise recording times for the 4.7 Gbyte storage capacity. For these systems the SAA6752HS is critical, with its superior noise filtering and motion estimation, in enabling high quality at low bit rates.

Playback compatibility with existing DVD decoding solutions will also be important, which is why the SAA6752HS provides Dolby® digital consumer (AC-3) audio encoding to allow playback through existing players implementing DDCE (AC-3) decoding dominant in current DVD platforms.

The DVD stream is based on MPEG Program Stream (PS). The SAA6752HS directly outputs MPEG PS compliant to the DVD standard.

(1) MIPS is a registered trademark of MIPS Technologies.

SAA6752HS

2.2.2 HDD BASED TIME SHIFT RECORDING

Hard Disc Drive (HDD) based time-shift systems enable Personalized TV (PTV) functionality, providing consumers with new powers of control over what and when to watch broadcast content. With the audio and video content recorded digitally, identification, search and retrieval becomes a 'no brainer' task as compared to traditional VCR functionality. Combine this with electronic program guides and intelligent control, and the PTV can also analyse the viewers watching habits to search for programs likely to be of interest and automatically recorded in anticipation of the viewers preferences.

Since HDD recorders are closed systems, the recording format stream can be proprietary. SAA6752HS flexible multiplexing formats, support a number of recording stream formats for HDD including MPEG Transport Stream (TS) or MPEG Packetized Elementary Stream (PES).

2.2.3 DIGITAL VCR (DVHS) RECORDING

A DVHS player records streams based on MPEG Transport Streams (TS) packed in logical tape tracks. The SAA6752HS output streams are compliant with DVHS standard requirements.

2.2.4 VIDEO EDITING/TRANSMISSION/SURVEILLANCE/ CONFERENCING

The SAA6752HS can operate as a stand-alone device in all above applications. The SAA6752HS' full features and flexibility allows customers to tailor functionality and performance to specific application requirements. All required control settings such as GOP size and bit rate modes can be selected via I²C-bus.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DDP}	digital supply voltage (pad cells)	3.0	3.3	3.6	٧
V _{DDCO}	digital supply voltage (core)	2.3	2.5	2.7	V
V_{DDA}	analog supply voltage (oscillator and PLL)	2.3	2.5	2.7	V
I _{DD(tot)}	analog + digital supply current	407	453	525	mA
P _{tot}	total power dissipation	1.2	1.4	1.9	W
f _{DCXO}	quartz frequency (digital controlled tuning)	$27 \times (1 - 200 \times 10^{-6})$	27	27 × (1 + 200 × 10 ⁻⁶)	MHz
f _{SDRAM}	SDRAM clock frequency	_	108	_	MHz
f _{SCL}	I ² C-bus input clock frequency	100	_	400	kHz
В	output bit-rate	1.5	_	25	Mbit/s
V _{IH}	HIGH-level digital input voltage	1.7	_	3.6	V
V _{IL}	LOW-level digital input voltage	-0.5	-	+0.7	٧
V _{OH}	HIGH-level digital output voltage	V _{DDP} – 0.4	_	V _{DDP}	٧
V _{OL}	LOW-level digital output voltage	0	-	0.4	٧
T _{amb}	ambient temperature	0	-	70	°C

ORDERING INFORMATION

TYPE NUMBER	PACKAGE					
I TPE NUMBER	NAME	DESCRIPTION	VERSION			
SAA6752HS/01 ⁽¹⁾	SQFP208	plastic shrink quad ?at package; 208 leads (lead length 1.3 mm);	SOT316-1			
SAA6752HS/02 ⁽²⁾		body $28 \times 28 \times 3.4$ mm; high stand-off height				

Notes

- MPEG-2 video and MPEG-audio/AC-3 audio encoder with multiplexer.
- 2. MPEG-2 video and MPEG-audio encoder with multiplexer, but without AC-3 audio encoder.

2001 Aug 01

SAA6752HS

BLOCK DIAGRAM 5

SAA6752HS

6 PINNING

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION	
V _{SSP}	1	ground	T -	pad ground	
SDATA1	2	input	_	I ² S-bus serial data input port 1 with internal pull-down resistor	
SCLK1	3	input/output	4	I ² S-bus serial clock port 1 with internal pull-down resistor	
SWS1	4	input/output	4	4 I ² S-bus word select port 1 with internal pull-down resistor	
V _{DDP}	5	supply	-	 pad ring supply voltage (3.3 V) 	
SDATA2	6	input/output	4	I ² S-bus serial data port 2 with internal pull-down resistor	
SCLK2	7	input/output	4	I ² S-bus serial clock port 2 with internal pull-down resistor	
SWS2	8	input/output	4	I ² S-bus word select port 2 with internal pull-down resistor	
ACLK	9	output	4	audio clock output (256 \times f _s or 384 \times f _s)	
V _{SSP}	10	ground	-	pad ground	
IDQ	11	input	-	reserved (recommended connect to pin V _{SSP}) with internal pull-down resistor	
YUV0	12	input	-	video input signal bit 0 (LSB)	
YUV1	13	input	1 -	video input signal bit 1	
YUV2	14	input	-	video input signal bit 2	
YUV3	15	input	-	video input signal bit 3	
YUV4	16	input	 	video input signal bit 4	
YUV5	17	input	T -	video input signal bit 5	
YUV6	18	input	-	video input signal bit 6	
YUV7	19	input	-	video input signal bit 7 (MSB)	
V _{SSP}	20	ground	-	pad ground	
HSYNC	21	input	_	horizontal sync input (video) with internal pull-down resistor	
VSYNC	22	input	-	vertical sync input (video) with internal pull-down resistor	
FID	23	input	-	video ?eld identi?cation input (odd/even ?eld) with internal pull-down resistor	
VCLK1	24	input	-	video clock input 1 (27 MHz) with internal pull-down resistor	
V _{SSCO}	25	ground	_	core ground	
V _{SSCO}	26	ground	1 -	core ground	
V_{DDCO}	27	supply	-	core supply voltage (2.5 V)	
V_{DDCO}	28	supply	_	core supply voltage (2.5 V)	
V_{DDP}	29	supply	-	pad ring supply voltage (3.3 V)	
VCLK2	30	input	-	video clock input 2 (27 MHz) with internal pull-down resistor	
PDOAV	31	3-state output	4	parallel stream data output for audio/video identi?er	
PDIDS	32	input	-	parallel stream data input for data strobe (request for packet in Data Expansion Bus Interface (DEBI) slave mode) with internal pull-up resistor	
PDOSYNC	33	3-state output	4	parallel stream data output for packet sync	
V _{SSP}	34	ground	-	pad ground	
PDOVAL	35	3-state output	4	parallel stream data valid output with internal pull-up resistor	
PDO0	36	3-state output	4	parallel stream data output bit 0 (LSB)	

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION
PDO1	37	3-state output	4	parallel stream data output bit 1
PDO2	38	3-state output	4	parallel stream data output bit 2
V_{DDP}	39	supply	T -	pad ring supply voltage (3.3 V)
PDO3	40	3-state output	4	parallel stream data output bit 3
PDO4	41	3-state output	4	parallel stream data output bit 4
PDO5	42	3-state output	4	parallel stream data output bit 5
PDO6	43	3-state output	4	parallel stream data output bit 6
V _{SSP}	44	ground	-	pad ground
PDO7	45	3-state output	4	parallel stream data output bit 7 (MSB)
PDIOCLK	46	input/output	4	parallel stream clock input/output
I2CADDRSEL	47	input	-	I ² C-bus address select input with internal pull-up resistor
SD_DQ15	48	input/output	8	SDRAM data input/output bit 15 (MSB)
V_{DDP}	49	supply	_	pad ring supply voltage (3.3 V)
SD_DQ0	50	input/output	. 8	SDRAM data input/output bit 0 (LSB)
SD_DQ14	51	input/output	8	SDRAM data input/output bit 14
SD_DQ1	52	input/output	8	SDRAM data input/output bit 1
V _{SSP}	53	ground	-	pad ground
SD_DQ13	54	input/output	8	SDRAM data input/output bit 13
SD_DQ2	55	input/output	8	SDRAM data input/output bit 2
SD_DQ12	56	input/output	8	SDRAM data input/output bit 12
V _{DDP}	57	supply	-	pad ring supply voltage (3.3 V)
SD_DQ3	58	input/output	8	SDRAM data input/output bit 3
SD_DQ11	59	input/output	8	SDRAM data input/output bit 11
SD_DQ4	60	input/output	8	SDRAM data input/output bit 4
SD_DQ10	61	input/output	8	SDRAM data input/output bit 10
V _{SSP}	62	ground	-	pad ground
SD_DQ5	63	input/output	8	SDRAM data input/output bit 5
SD_DQ9	64	input/output	8	SDRAM data input/output bit 9
SD_DQ6	65	input/output	8	SDRAM data input/output bit 6
SD_DQ8	66	input/output	8	SDRAM data input/output bit 8
V _{DDP}	67	supply	_	pad ring supply voltage (3.3 V)
SD_DQ7	68	input/output	8	SDRAM data input/output bit 7
SD_DQM1	69	output	8	SDRAM data mask enable output bit 1
SD_DQM0	70	output	8	SDRAM data mask enable output bit 0 (LSB)
SD_WE	71	output	8	SDRAM write enable output (active LOW)
V _{SSP}	72	ground	_	pad ground
SD_CAS	73	output	8	SDRAM column address strobe output (active LOW)
SD_CLK	74	output	8	SDRAM clock output
SD_RAS	75	output	8	SDRAM row address strobe output (active LOW)
SD_CKE	76	output	8	SDRAM clock enable output

SAA6752HS

SYMBOL PIN		INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION		
V _{SSCO}	77	ground	_	core ground		
V _{SSCO}	78	ground	-	core and substrate ground		
V _{DDCO}	79	supply	-	core supply voltage (2.5 V)		
V _{DDCO}	80	supply	-	core supply voltage (2.5 V)		
V _{DDP}	81	supply	 pad ring supply voltage (3.3 V) 			
SD_CS	82	output	8	SDRAM chip select output (active LOW)		
SD_A13	83	output	8	SDRAM address output bit 13 (bank selection for 64 Mbit)		
SD_A9	84	output	8	SDRAM address output bit 9		
SD_A8	85	output	8	SDRAM address output bit 8		
V _{SSP}	86	ground	_	pad ground		
SD_A11	87	output	8	SDRAM address output bit 11 (bank selection for 16 Mbit)		
SD_A7	88	output	8	SDRAM address output bit 7		
SD_A12	89	output	8	SDRAM address output bit 12 (bank selection for 64 Mbit)		
SD_A6	90	output	8	SDRAM address output bit 6		
V_{DDP}	91	supply	-	pad ring supply voltage (3.3 V)		
SD_A10	92	output	8	SDRAM address output bit 10		
SD_A5	93	output	8	SDRAM address output bit 5		
SD_A0	94	output	8	SDRAM address output bit 0 (LSB)		
SD_A4	95	output	8	SDRAM address output bit 4		
V _{SSP}	96	ground	-	pad ground		
SD_A1	97	output	8	SDRAM address output bit 1		
SD_A3	98	output	8	SDRAM address output bit 3		
SD_A2	99	output	8	SDRAM address output bit 2		
SD_DQM3	100	output	8	reserved (do not connect)		
V _{DDP}	101	supply	-	pad ring supply voltage (3.3 V)		
SD_DQM2	102	output	8	reserved (do not connect)		
SD_DQ31	103	input/output	8	reserved (do not connect)		
SD_DQ16	104	input/output	8	reserved (do not connect)		
V _{SSP}	105	ground	_	pad ground		
SD_DQ30	106	input/output	8	reserved (do not connect)		
SD_DQ17	107	input/output	8	reserved (do not connect)		
SD_DQ29	108	input/output	8	reserved (do not connect)		
V _{DDP}	109	supply	-	pad ring supply voltage (3.3 V)		
SD_DQ18	110	input/output	8	reserved (do not connect)		
SD_DQ28	111	input/output	8	reserved (do not connect)		
SD_DQ19	112	input/output	8	reserved (do not connect)		
SD_DQ27	113	input/output	8	reserved (do not connect)		
V _{SSP}	114	ground	-	pad ground		
SD_DQ20	115	input/output	8	reserved (do not connect)		
SD_DQ26	116	input/output	8	reserved (do not connect)		

2001 Aug 01 9

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION	
V _{SSCO}	77	ground	_	core ground	
V _{SSCO}	78	ground	_	core and substrate ground	
V _{DDCO}	79	supply	_	core supply voltage (2.5 V)	
V _{DDCO}	80	supply	_	core supply voltage (2.5 V)	
V _{DDP}	81	supply	-	pad ring supply voltage (3.3 V)	
SD_CS	82	output	8	SDRAM chip select output (active LOW)	
SD_A13	83	output	8	SDRAM address output bit 13 (bank selection for 64 Mbit)	
SD_A9	84	output	8	SDRAM address output bit 9	
SD_A8	85	output	8	SDRAM address output bit 8	
V _{SSP}	86	ground	-	pad ground	
SD_A11	87	output	8	SDRAM address output bit 11 (bank selection for 16 Mbit)	
SD_A7	88	output	8	SDRAM address output bit 7	
SD_A12	89	output	8	SDRAM address output bit 12 (bank selection for 64 Mbit)	
SD_A6	90	output	8	SDRAM address output bit 6	
V _{DDP}	91	supply	T -	pad ring supply voltage (3.3 V)	
SD_A10	92	output	8	SDRAM address output bit 10	
SD_A5	93	output	8	SDRAM address output bit 5	
SD_A0	94	output	8	SDRAM address output bit 0 (LSB)	
SD_A4	95	output	8	SDRAM address output bit 4	
V _{SSP}	96	ground	-	pad ground	
SD_A1	97	output	8	SDRAM address output bit 1	
SD_A3	98	output	8	SDRAM address output bit 3	
SD_A2	99	output	8	SDRAM address output bit 2	
SD_DQM3	100	output	8	reserved (do not connect)	
V _{DDP}	101	supply	-	pad ring supply voltage (3.3 V)	
SD_DQM2	102	output	8	reserved (do not connect)	
SD_DQ31	103	input/output	8	reserved (do not connect)	
SD_DQ16	104	input/output	8	reserved (do not connect)	
V _{SSP}	105	ground	T -	pad ground	
SD_DQ30	106	input/output	8	reserved (do not connect)	
SD_DQ17	107	input/output	8	reserved (do not connect)	
SD_DQ29	108	input/output	8	reserved (do not connect)	
V _{DDP}	109	supply	-	pad ring supply voltage (3.3 V)	
SD_DQ18	110	input/output	8	reserved (do not connect)	
SD_DQ28	111	input/output	8	reserved (do not connect)	
SD_DQ19	112	input/output	8	reserved (do not connect)	
SD_DQ27	113	input/output	8	reserved (do not connect)	
V _{SSP}	114	ground	_	pad ground	
SD_DQ20	115	input/output	8	reserved (do not connect)	
SD_DQ26	116	input/output	8	reserved (do not connect)	

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION	
SD_DQ21	117	input/output	8	reserved (do not connect)	
SD_DQ25	118	input/output	8	reserved (do not connect)	
V _{DDP}	119	supply	-	pad ring supply voltage (3.3 V)	
SD_DQ22	120	input/output	8	reserved (do not connect)	
SD_DQ24	121	input/output	8	reserved (do not connect)	
SD_DQ23	122	input/output	8 reserved (do not connect)		
EXTCLK	123	input	_	27 MHz external clock input with internal pull-up resistor	
V _{SSP}	124	ground	-	pad ground	
V _{SSA}	125	ground	-	oscillator analog ground	
XTALI	126	analog input	-	crystal oscillator input (27 MHz); note 2	
XTALO	127	analog output	-	crystal oscillator output (27 MHz)	
V_{DDA}	128	supply	-	oscillator analog supply voltage (2.5 V)	
V _{SSCO}	129	ground	-	core ground	
V _{SSCO}	130	ground	-	core ground	
V _{DDCO}	131	supply	-	core supply voltage (2.5 V)	
V _{DDCO}	132	supply	-	core supply voltage (2.5 V)	
V _{DDP}	133	supply	_	pad ring supply voltage (3.3 V)	
TDI	134	input	-	boundary scan test data input; pin must ?oat or set to HIGH during normal operating; with internal pull-up resistor; note 3	
TMS	135	input		boundary scan test mode select; pin must ?oat or set to HIGH during normal operating; with internal pull-up resistor; note 3	
TCK	136	input	_	boundary scan test clock; pin must be set to LOW during normal operating; with internal pull-up resistor; note 3	
TDO	137	3-state output	4	boundary scan test data output; pin not active during normal operating; with 3-state output; note 3	
V _{SSP}	138	ground	-	pad ground	
TRST	139	input	-	test reset input (active LOW), for boundary scan test (with internal pull-up); notes 3 and 4	
CLKOUT	140	output	4	27 MHz system clock output	
TEST0	141	input/output	4	reserved (do not connect)	
TEST1	142	input/output	4	reserved (do not connect)	
V _{DDP}	143	supply	_	pad ring supply voltage (3.3 V)	
TEST2	144	input/output	4	reserved (do not connect)	
SDA	145	input/open-drain output	-	serial data input/output (I ² C-bus)	
SCL	146	input/open-drain output	-	- serial clock input/output (I ² C-bus)	
RESET	147	input	_	reset input (active LOW); with internal pull-up resistor	
V _{SSP}	148	ground	-	pad ground	
RTS	149	output	4	reserved (do not connect); Universal Asynchronous Receiver/Transmitter (UART) request to send output (active LOW)	

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION	
CTS	TS 150 input		_	reserved (recommended connect to pin V_{DDP}); UART clear to send input; external static memory select input (active LOW); with internal pull-up resistor	
RXD	151	input	-	reserved (recommended connect to pin V _{DDP}); UART receive data; internal boot select input; with internal pull-up resistor	
TXD	152	output	4	reserved (do not connect); UART transmit data	
V _{DDP}	153	supply	-	pad ring supply voltage (3.3 V)	
SM_LB	154	input/output	4	reserved (do not connect)	
SM_UB	155	input/output	4	reserved (do not connect)	
H_IRF	156	3-state output	4	host interrupt ?ag output; with internal pull-up resistor	
V _{SSP}	157	ground	I -	pad ground	
SM_OE	158	output	4	reserved (do not connect), static memory output enable output (active LOW)	
SM_A9	159	output	4	reserved (do not connect), static memory address output bit 9	
SM_A10	160	output	4	reserved (do not connect), static memory address output bit 10	
V _{DDP}	161	supply	T -	pad ring supply voltage (3.3 V)	
SM_A8	162	output	4	reserved (do not connect), static memory address output bit 8	
SM_A11	163	output	4	reserved (do not connect), static memory address output bit 11	
SM_A7	164	output	4	reserved (do not connect), static memory address output bit 7	
SM_A12	165	output	4	reserved (do not connect), static memory address output bit 12	
V _{SSP}	166	ground	 	pad ground	
SM_A6	167	output	4	reserved (do not connect), static memory address output bit 6	
SM_A13	168	output	4	reserved (do not connect), static memory address output bit 13	
SM_A5	169	output	4	reserved (do not connect), static memory address output bit 5	
SM_A14	170	output	4	reserved (do not connect), static memory address output bit 14	
V _{DDP}	171	supply	_	pad ring supply voltage (3.3 V)	
SM_WE	172	output	4	reserved (do not connect), static memory write enable output (active LOW)	
SM_D7	173	input/output	4	reserved (do not connect), static memory data input/output bit 7 with internal pull-down resistor	
SM_D8	174	input/output	4	reserved (do not connect), static memory data input/output bit 8 with internal pull-down resistor	
SM_D6	175	input/output	4	reserved (do not connect), static memory data input/output bit 6 with internal pull-down resistor	
V _{SSP}	176	ground	-	pad ground	
SM_D9	177	input/output	4	A	
SM_D5	178	input/output	4	reserved (do not connect), static memory data input/output bit 5 with internal pull-down resistor	
SM_D10	179	input/output	4	reserved (do not connect), static memory data input/output bit 10 with internal pull-down resistor	

SYMBOL	PIN	INPUT/OUTPUT ⁽¹⁾	I _{max} (mA)	DESCRIPTION		
SM_D4	180	input/output	4	reserved (do not connect), static memory data input/output bit 4 with internal pull-down resistor		
V _{SSCO}	181	ground	_	internal pre-driver and substrate ground		
V _{SSCO}	182	ground	-	core ground		
V _{DDCO}	183	supply	- core supply voltage (2.5 V)			
V _{DDCO}	184	supply	-	internal pre-driver supply voltage (2.5 V)		
V _{DDP}	185	supply	_	pad ring supply voltage (3.3 V)		
SM_D11	186	input/output	4	reserved (do not connect), static memory data input/output bit 11 with internal pull-down resistor		
SM_D3	187	input/output	4	reserved (do not connect), static memory data input/output bit 3 with internal pull-down resistor		
SM_D12	188	input/output	4	reserved (do not connect), static memory data input/output bit 12 with internal pull-down resistor		
SM_D2	189	input/output	4	reserved (do not connect), static memory data input/output bit 2 with internal pull-down resistor		
V _{SSP}	190	ground	-	pad ground		
SM_D13	191	input/output	4	reserved (do not connect), static memory data input/output bit 13 with internal pull-down resistor		
SM_D1	192	input/output	4	reserved (do not connect), static memory data input/output bit 1 with internal pull-down resistor		
SM_D14	193	input/output	4	reserved (do not connect), static memory data input/output bit 14 with internal pull-down resistor		
SM_D0	194	input/output	4	reserved (do not connect), static memory data input/output bit 0 (LSB) with internal pull-down resistor		
V_{DDP}	195	supply	-	pad ring supply voltage (3.3 V)		
SM_D15	196	input/output	4	reserved (do not connect), static memory data input/output bit 15 (MSB) with internal pull-down resistor		
SM_CS3	197	output	4	reserved (do not connect), static memory chip select output for external ROM or RAM (active LOW)		
SM_A4	198	output	4	reserved (do not connect), static memory addressoutput bit 4		
SM_A3	199	output	4	reserved (do not connect), static memory address output bit 3		
V _{SSP}	200	ground	-	pad ground		
SM_A2	201	output	4	reserved (do not connect), static memory address output bit 2		
SM_A15	202	output	4	reserved (do not connect), static memory address ou tput bit 15		
SM_A1	203	output	4	reserved (do not connect), static memory address output bit 1		
SM_A16	204	output	4	reserved (do not connect), static memory address ou tput bit 16		
$V_{\rm DDP}$	205	supply	_	pad ring supply voltage (3.3 V)		
SM_A0	206	output	4	reserved (do not connect), static memory address output bit 0 (LSB)		
SM_A17	207	output	4	reserved (do not connect), static memory address out put bit 17 (MSB)		
SM_CS0	208	output	4	reserved (do not connect)		

SAA6752HS

Notes

- 1. All input pins, input/output pins (in input mode), output pins (in 3-state mode) and open-drain output pins are limited to 3.3 V.
- 2. If used with external clock source the input voltage has to be limited to 2.5 V.
- 3. In accordance with the "IEEE 1149.1" standard.
- 4. Special function of pin TRST:
 - a) For board designs without boundary scan implementation, pin TRST must be connected to ground.
 - b) Pin TRST provides easy initialization of the internal BST circuit. By applying a LOW it can be used to force the internal Test Access Port (TAP) controller to the Test-Logic-Reset state (normal operating) at once.

SAA7118

FEATURES

The SAA7118 is a video capture device for application at the image port of VGA controller, with following feature high lights:

Video Acquisition/ Clock

Up to sixteen analog CVBS, split as desired (All of the CVBS inputs optionally can be used to convert VSB signals)

Up to eight analog Y+C inputs, split as desired

Up to four analog component inputs, with embedded or separate sync, split as desired

Four on-chip anti-aliasing filters in front of the ADC's

Automatic Clamp Control (ACC) for CVBS, Y and C (or VSB) and component signal

Switchable white Peak Control

Four 9 Bit Low Noise CMOS analog-to-digital converters at two-fold ITU-656 oversampling (27 MHz)

Digitized CVBS or Y+C-signals are available on the expansion port

Fully programmable static gain or automatic gain control, matching to the particular signal properties

On-Chip Line Locked Clock Generation according **ITU601**

Requires only one crystal (32.11 or 24.576 MHz) for all standards

Horizontal and vertical Sync Detection

Video Decoder

Digital PLL for Synchronization and Clock Generation from all Standards and Non-Standard Video Sources e.g. consumer grade VTR

Digital PLL for Synchronization and Clock Generation from all Standards and Non-Standard Video Sources e.g. consumer grade VTR

Automatic detection of any supported colour standard Luminance and chrominance signal processing for PAL BGDHIN, Combination-PAL N, PAL M, NTSC M, NTSC-Japan, NTSC 4.43 and SECAM

Adaptive 2/4-line comb filter for two dimensional chrominance/luminance-separation, also with VTR signals

- Increased Luminance and Chrominance Bandwidth for all PAL and NTSC-standards
- Reduced cross colour and cross luminance artefacts

PAL delay line for correcting PAL phase errors

Brightness Contrast Saturation (BCS)- adjustment, separately for composite and baseband signals

User programmable sharpness control

Fast Blanking between component inputs and a CVBS input through a dedicated pin

Detection of copy-protected signals acc. to the Macrovision standard, indicating level of protection

Independent Gain and Offset - adjustment for raw data path

Component Video Processing

Synchronous Component Video (RGB) input via fast blanking, YCbCr input

Digital matrix

Video Scaler

Horizontal and Vertical Down-Scaling and Up-Scaling to randomly sized windows

Horizontal and Vertical Scaling range: variable zoom to 1/64 (icon)

(Note: H and V zoom are restricted by the transfer data rates)

Anti-Alias- and Accumulating Filter for Horizontal Scaling

Vertical Scaling with Linear Phase Interpolation and Accumulating Filter for Anti-Aliasing (6 bit phase accuracy)

Horizontal Phase Correct Up- and Down-Scaling for improved signal quality of scaled data, especially for compression and video phone applications, with 6 bit phase accuracy (1.2 nsec step width)

Two independent programming sets for scaler part, to define two "ranges" per field or sequences over frames

Fieldwise switching between Decoder-part and Expansion port (X-port) input

Brightness, contrast and saturation controls for scaled outputs

VBI-Data Decoder and Slicer

versatile VBI-data decoder, slicer, clock regeneration and byte synchronization

e.g. for WST, NABST, Close Caption, WSS, et c.

Audio Clock Generation

Generation of a field locked Audio Master Clock to support a constant number of audio clocks per video field

SAA7118

Generation of an audio serial and left/right (channel) clock signal

Digital I/O Interfaces

Real Time signal port (R - port), incl. continuous line locked reference clock and real time status information supporting RTC level 3.1 (refer to external document "RTC Functional Specification" for details)

Bidirectional Expansion Port (X - port) with half duplex functionality (D1), 8-bit YCbCr

- output from Decoder part, real time and unscaled, or
- input to Scaler part, e.g. video from MPEG-decoder (extension to 16 bit possible)

Video Image port (I - port) configurable for 8 - bit data (extension to 16 bit possible) in Master Mode (own clock), or Slave Mode (external clock), with auxiliary timing and hand shake signals

Discontinuous data streams supported

32-word * 4 Byte FIFO register for video output data 28-word * 4 Byte FIFO register for decoded VBI output data

Scaled 4:2:2, 4:1:1, 4:2:0, 4:1:0 YCbCr output Scaled 8-bit luminance only and raw CVBS data output sliced, decoded VBI data output

Miscellaneous

Power On Control

5 V tolerant digital inputs and I/O ports

Software controlled power saving stand-by modes supported

Programming via serial I²C-bus, full read-back ability by an external controller, bit rate up to 400 kbit/s

Boundary Scan Test circuit complies to the IEEE Std. 1149.b1 -1994

BGA156 package

2 APPLICATIONS

Multimedia

Digital Television

Image Processing

Video Phone

PC- Editing cards

PC- Tuner cards

3 GENERAL DESCRIPTION

Philips X-VIP is a new Multistandard Comb Filter Video Decoder chip with additional component processing, providing high quality, optionally scaled, video.

The SAA7118 is a combination of a four channel analog preprocessing circuit including source selection, anti-aliasing filter and A/D-converter, an automatic clamp and gain control, a Clock Generation Circuit (CGC), a Digital Multi Standard Decoder containing two-dimensional chrominance/luminance separation by an adaptive comb filter and a high performance scaler. including variable horizontal and vertical up and down scaling and a Brightness- Contrast- Saturation- Control circuit.

It is a highly integrated circuit for Desktop Video and similar applications. The decoder is based on the principle of line-locked clock decoding and is able to decode the colour of PAL, SECAM and NTSC signals into ITU-601 compatible colour component values. The SAA7118 accepts as analog inputs CVBS or S-Video (Y+C) from TV or VCR sources, including weak and distorted signals, as well as baseband component signals YCbCr or RGB. An expansion port (X-port) for digital video (bi-directional half duplex, D1 compatible) is also supported to connect to MPEG or video phone codec. At the so called image port (I-port) the 7118 supports 8 (16) bit wide output data with auxiliary reference data for interfacing to VGA controllers.

The target application for SAA7118 is to capture and optionally scale video images, to be provided as digital video stream through the image port of a VGA controller, for capture to system memory, or just to provide digital baseband video to any picture improvement processing.

SAA7118 also provides means for capturing the serially coded data in the vertical blanking interval (VBI-data). Two principal functions are available:

- to capture raw video samples, after interpolation to the required output data rate, via the scaler and
- a versatile data slicer (data recovery) unit.

SAA7118 incorporates also a field locked audio clock generation. This function ensures that there is always the same number of audio samples associated with a field, or a set of fields. This prevents the loss of sychronization between video and audio, during capture or playback.

All of the A/D- converters may be used to digitize a VSB signal for further for further decoding; a dedicated output port and a selectable VSB clock input is provided.

The circuit is controlled via I²C-bus (full write / read capability for all programming registers, bit rate up to 400 kbits/s)

SAA7118

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
V _{DDx}	digital supply voltage	3.0	3.3	3.6	٧
V _{DDCx}	digital core supply voltage	3.0	3.3	3.6	٧
V _{DDA}	analog supply voltage	3.1	3.3	3.5	V
T _{amb}	ambient temperature	0	-	70	°C
P _{A+D}	analog and digital power dissipation ⁽¹⁾	-	t.b.d.	-	W

Note

1. Power consumption is measured in CVBS-input mode (only one ADC active) and 8 bit image port output mode, expansion port is tristated

ORDERING AND PACKAGE INFORMATION

EXTENDED TYPE		PACKAGE						
NUMBER	PINS	PIN POSITION	MATERIAL	CODE				
SAA7118	156	BGA156	Plastic	SOT 472-1 (BB3)				

SAA7118

SYSTEM BLOCK DIAGRAM

SAA7118

PINNING AND CONFIGURATION

7.1 **Pinning List**

Table 1 Pinning List SAA7118

PIN	NAME	TYPE	DESCRIPTION
A02	XTOUT	0	Crystal oscillator output signal
A03	XTAL	0	Connect output pin for quartz
A04	VXSS	Р	Ground for crystal oscillator
A05	TDO	0	Test Data Output for Boundary Scan Test (2)
A06	XRDY	0	Status flag or ready signal from scaler
A07	XCLK	I/O	Clock I/O expansion port
A08	XPD0	I/O	LSB of expansion port bus
A09	XPD2	1/0	MSB-5 of expansion port bus
A10	XPD4	I/O	MSB-3 of expansion port bus
A11	XPD6	I/O	MSB-1 of expansion port bus
A12	TEST5	l/pu	Scan test input; do not connect
A13	TEST3	l/pu	Scan test input; do not connect
B01	Al41	ı	Analog input #41
B02	RES1	0	Reserved pin for future extensions or testing, do not connect
B03	VXDD	Р	Supply for crystal oscillator

SAA7118

PIN	NAME	TYPE	DESCRIPTION
B04	XTALI	ı	Connect input pin for quartz
B05	TDI	l/pu	Test Data Input for Boundary Scan Test (with internal pull-up) (2)
B06	TCK	l/pu	Test Clock for Boundary Scan Test (with internal pull-up) (2)
B07	XDQ	1/0	Data qualifier for expansion port
B08	XPD1	1/0	MSB-6 of expansion port bus
B09	XPD3	1/0	MSB-4 of expansion port bus
B10	XPD5	1/0	MSB-2 of expansion port bus
B11	XTRI	1	X-port output control signal; effects (XPD[7:0], XRH, XRV, XDQ and XCLK)
B12	TEST4	0	Scan test output; do not connect
B13	RES2	NC	Reserved pin for future extensions or testing, do not connect
B14	RES3	NC	Reserved pin for future extensions or testing, do not connect
C01	VSSA4	Р	Ground for analog input Al4x
C02	AGND	Р	Analog Signal Ground
C03	RES4	NC	Reserved pin for future extensions or testing, do not connect
C04	RES5	NC	Reserved pin for future extensions or testing, do not connect
C05	VDDE1	Р	Digital supply peripheral cells
C06	TRSTN	I/pu	Test ReSeT Not for Boundary Scan Test (with internal pull-up) (1)
C07	XRH	1/0	Horizontal reference expansion-port
C08	VDDI1	Р	Digital supply core
C09	VDDE2	Р	Digital supply peripheral cells
C10	VDDI2	Р	Digital supply core
C1 1	XPD7	I/O	MSB of expansion port bus
C12	RES6	NC	Reserved pin for future extensions or testing, do not connect
C13	RES7	NC	Reserved pin for future extensions or testing, do not connect
C14	TEST2	l/pu	Scan test input; do not connect
D01	Al43	ı	Analog input #43
D02	Al42	1	Analog input #42
D03	AI4D	I/O	Differential input for Al4x
D04	VDDA4	Р	Supply for analog input Al4x
D05	VSSE1	Р	Digital ground peripheral cells
D06	TMS	l/pu	Test Mode Select for Boundary Scan Test or Scan Test (with internal pull-up) (2)
D07	VSSI1	Р	Digital ground core (Substrate connection)
D08	XRV	I/O	Vertical reference for expansion-port
D09	VSSE2	Р	Digital ground peripheral cells
D10	VSSI2	Р	Digital ground core
D1 1	VSSE3	Р	Digital ground peripheral cells
D12	VDDE3	Р	Digital supply peripheral cells
D13	TEST1	I/pu	Scan test input; do not connect
D14	HPD0	I/O	LSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port
E01	Al44	1	Analog input #44

SAA7118

E02 VDDA4A P Supply for analog input Alax E03 Al31 I Analog input #31 E04 VSSA3 P Ground for analog input Alax E11 HPD1 I/O MSB-6 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port E12 HPD3 I/O MSB-6 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port E13 HPD2 I/O MSB-5 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port E14 HPD4 I/O MSB-3 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port E14 HPD4 I/O MSB-3 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port F01 Al3D I/O Differential input for Al3x F02 Al32 I Analog input #32 F03 Al33 I Analog input #32 F04 VDDA3 P Supply for analog input Al3x F11 VSSI3 P Digital ground core F12 VDDI3 P Digital supply core MSB-2 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port F14 HPD6 I/O MSB-1 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G01 Al34 I Analog input #34 G02 VDDA3A P Supply for analog input Al3x G03 Al22 I Analog input #21 G11 VSSE4 P Digital ground peripheral cells G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB-6 of Image port bus G14 IPD0 O LSB of Image port bus H04 VDDA2 P Supply for analog input Al2x H05 VSSA2 P Ground for analog input Al2x H06 NSB-3 of Image port bus H11 IPD2 O MSB-6 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-6 of Image port bus H14 IPD3 O MSB-6 of Image port bus H14 IPD3 O MSB-6 of Image port bus H15 VSDA2 P Supply for analog input Al2x J02 Al11 I Analog input #24 J03 Al24 I Analog input #24 J04 Al24 I Analog input #24 J05 Al11 I Analog input #24 J06 Al24 I Analog input #24 J07 Al24 P Supply for analog input Al2x J08 Al24 I Analog input #24 J09 Al24 I Analog input #24 J09 Al24 I Analog input #24 J09 Al25 P Supply for analog input Al2x J09 Al24 I Analog input #24 J09 Al25 P Supply for	PIN	NAME	TYPE	DESCRIPTION	
E04	E02	VDDA4A	Р	Supply for analog input Al4x	
E11 HPD1 I/O MSB-6 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port E12 HPD3 I/O MSB-4 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port E13 HPD2 I/O MSB-5 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port E14 HPD4 I/O MSB-3 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port E14 HPD4 I/O Differential input for Al3x F01 Al3D I/O Differential input for Al3x F02 Al32 I Analog input #32 F03 Al33 I Analog input #33 F04 VDDA3 P Supply for analog input Al3x F11 VSSI3 P Digital ground core F12 VDDI3 P Digital supply core F13 HPD5 I/O MSB-2 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port F14 HPD6 I/O MSB-1 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G01 Al34 I Analog input #34 G02 VDDA3A P Supply for analog input Al3x G03 Al22 I Analog input #22 G04 Al21 I Analog input #22 G05 IMSB-6 of Image port bus G16 IMSB of Image port bus G17 Al32 I Analog input #23 G18 IPD1 O MSB-6 of Image port bus G19 Al32 I Analog input #23 H00 VSSA2 P Ground for analog input Al2x H01 Al2D I/O Differential input for Al2x H02 Al23 I Analog input #23 H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H05 VDDA4 P Digital supply peripheral cells H11 IPD2 O MSB-6 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #24	E03	Al31	ı	Analog input #31	
E11	E04	VSSA3	Р	Ground for analog input Al3x	
E12	E11	HPD1	1/0		
E13	E12	HPD3	1/0		
F01	E13	HPD2	1/0		
F02	E14	HPD4	I/O		
F03	F01	AI3D	I/O	Differential input for Al3x	
F04 VDDA3 P Supply for analog input Al3x F11 VSSI3 P Digital ground core F12 VDDI3 P Digital supply core F13 HPD5 I/O MSB-2 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port F14 HPD6 I/O MSB-1 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G01 Al34 I Analog input #34 G02 VDDA3A P Supply for analog input Al3x G03 Al22 I Analog input #22 G04 Al21 I Analog input #21 G11 VSSE4 P Digital ground peripheral cells G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G14 IPD0 O LSB of Image port bus H01 Al2D I/O Differential input for Al2x H02 Al23 I Analog input #23 H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H11 IPD3 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #11 J03 Al24 I Analog input #24	F02	Al32	ı	Analog input #32	
F11 VSSI3 P Digital ground core F12 VDDI3 P Digital supply core F13 HPD5 I/O MSB-2 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port F14 HPD6 I/O MSB-1 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G01 AI34 I Analog input #34 G02 VDDA3A P Supply for analog input AI3x G03 AI22 I Analog input #22 G04 AI21 I Analog input #21 G11 VSSE4 P Digital ground peripheral cells G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G14 IPD0 O LSB of Image port bus H01 AI2D I/O Differential input for AI2x H02 AI23 I Analog input #23 H03 VSSA2 P Ground for analog input AI2x H04 VDDA2 P Supply for analog input AI2x H11 IPD2 O MSB-5 of Image port bus H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus J01 VDDA2A P Supply for analog input AI2x J02 AI11 I Analog input #11 J03 AI24 I Analog input #11	F03	Al33	ı	Analog input #33	
F12 VDDI3 P Digital supply core F13 HPD5 I/O MSB-2 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port F14 HPD6 I/O MSB-1 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G01 AI34 I Analog input #34 G02 VDDA3A P Supply for analog input AI3x G03 AI22 I Analog input #22 G04 AI21 I Analog input #21 G11 VSSE4 P Digital ground peripheral cells G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB-6 of Image port bus G14 IPD0 O LSB of Image port bus H01 AI2D I/O Differential input for AI2x H02 AI23 I Analog input #23 H03 VSSA2 P Ground for analog input AI2x H04 VDDA2 P Supply for analog input AI2x H11 IPD2 O MSB-5 of Image port bus H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-3 of Image port bus J01 VDDA2A P Supply for analog input AI2x J02 AI11 I Analog input #11 J03 AI24 I Analog input #24	F04	VDDA3	Р	Supply for analog input Al3x	
F13 HPD5 I/O MSB-2 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port F14 HPD6 I/O MSB-1 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G01 AI34 I Analog input #34 G02 VDDA3A P Supply for analog input AI3x G03 AI22 I Analog input #22 G04 AI21 I Analog input #21 G11 VSSE4 P Digital ground peripheral cells G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G14 IPD0 O LSB of Image port bus H01 AI2D I/O Differential input for AI2x H02 AI23 I Analog input #23 H03 VSSA2 P Ground for analog input AI2x H04 VDDA2 P Supply for analog input AI2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-3 of Image port bus J01 VDDA2A P Supply for analog input AI2x J02 AI11 I Analog input #11 J03 AI24 I Analog input #24	F11	VSSI3	Р	Digital ground core	
F13 HPD6 I/O I-port F14 HPD6 I/O MSB-1 of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G01 Al34 I Analog input #34 G02 VDDA3A P Supply for analog input Al3x G03 Al22 I Analog input #22 G04 Al21 I Analog input #21 G11 VSSE4 P Digital ground peripheral cells G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB-6 of Image port bus G14 IPD0 O LSB of Image port bus H01 Al2D I/O Differential input for Al2x H02 Al23 I Analog input #23 H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #11 J03 Al24 I Analog input #124	F12	VDDI3	Р	Digital supply core	
F14	F13	HPD5	1/0		
G02 VDDA3A P Supply for analog input Al3x G03 Al22 I Analog input #22 G04 Al21 I Analog input #21 G11 VSSE4 P Digital ground peripheral cells G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G14 IPD0 O LSB of Image port bus H01 Al2D I/O Differential input for Al2x H02 Al23 I Analog input #23 H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24	F14	HPD6	I/O		
G03 Al22 I Analog input #22 G04 Al21 I Analog input #21 G11 VSSE4 P Digital ground peripheral cells G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G14 IPD0 O LSB of Image port bus H01 Al2D I/O Differential input for Al2x H02 Al23 I Analog input #23 H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24	G01	Al34	ı	Analog input #34	
G04 Al21 I Analog input #21 G11 VSSE4 P Digital ground peripheral cells G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G14 IPD0 O LSB of Image port bus H01 Al2D I/O Differential input for Al2x H02 Al23 I Analog input #23 H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24	G02	VDDA3A	Р	Supply for analog input Al3x	
G11 VSSE4 P Digital ground peripheral cells G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G14 IPD0 O LSB of Image port bus H01 AI2D I/O Differential input for AI2x H02 AI23 I Analog input #23 H03 VSSA2 P Ground for analog input AI2x H04 VDDA2 P Supply for analog input AI2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input AI2x J02 AI11 I Analog input #11 J03 AI24 I Analog input #24	G03	Al22	I o	Analog input #22	
G12 IPD1 O MSB-6 of Image port bus G13 HPD7 I/O MSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G14 IPD0 O LSB of Image port bus H01 Al2D I/O Differential input for Al2x H02 Al23 I Analog input #23 H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24	G04	Al21	ı	Analog input #21	
G13 HPD7 I/O MSB of H-port bus, extended CbCr input for X-port, extended CbCr output for I-port G14 IPD0 O LSB of Image port bus H01 AI2D I/O Differential input for AI2x H02 AI23 I Analog input #23 H03 VSSA2 P Ground for analog input AI2x H04 VDDA2 P Supply for analog input AI2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input AI2x J02 AI11 I Analog input #11 J03 AI24 I Analog input #24	G11	VSSE4	Р	Digital ground peripheral cells	
G14 IPD0 O LSB of Image port bus H01 Al2D I/O Differential input for Al2x H02 Al23 I Analog input #23 H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #21 J03 Al24 I Analog input #24	G12	IPD1	0	MSB-6 of Image port bus	
H01 Al2D I/O Differential input for Al2x H02 Al23 I Analog input #23 H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24	G13	HPD7	I/O		
H02 Al23 I Analog input #23 H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24	G14	IPD0	0	LSB of Image port bus	
H03 VSSA2 P Ground for analog input Al2x H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24	H01	Al2D	I/O	Differential input for Al2x	
H04 VDDA2 P Supply for analog input Al2x H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24	H02	Al23	ı	Analog input #23	
H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24	H03	VSSA2	Р	Ground for analog input Al2x	
H11 IPD2 O MSB-5 of Image port bus H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24	H04	VDDA2	Р	Supply for analog input Al2x	
H12 VDDE4 P Digital supply peripheral cells H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24		IPD2	0		
H13 IPD4 O MSB-3 of Image port bus H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24		VDDE4	Р	Digital supply peripheral cells	
H14 IPD3 O MSB-4 of Image port bus J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24					
J01 VDDA2A P Supply for analog input Al2x J02 Al11 I Analog input #11 J03 Al24 I Analog input #24					
J02 Al11 I Analog input #11 J03 Al24 I Analog input #24					
J03 Al24 I Analog input #24			ı		
			T.		
I DOT I YOUNT I I NOUTH TO ANALY INDUCTION	J04	VSSA1	Р	Ground for analog input Al1x	

SAA7118

PIN	NAME	TYPE	DESCRIPTION	
J11	VSSI4	Р	Digital ground core	
J12	VDDI4	Р	Digital supply core	
J13	IPD6	0	MSB-1 of Image port bus	
J14	IPD5	0	MSB-2 of Image port bus	
K01	Al12	ı	Analog input #12	
K02	Al13	ı	Analog input #13	
К03	Al1D	I/O	Differential input for Al1x	
K04	VDDA1	Р	Supply for analog input Al1x	
K1 1	IPD7	0	MSB of Image port bus	
K12	IGPH	0	Multi purpose horizontal reference signal	
K13	IGP1	0	General purpose signal #1	
K14	IGPV	0	Multi purpose vertical reference signal	
L01	VDDA1A	Р	Supply for analog input Al1x	
L02	AGNDA	Р	Analog signal ground connection	
L03	Al14	ı	Analog input #14	
L04	VSSE5	Р	Digital ground peripheral cells	
L05	VSSI5	Р	Digital ground core	
L06	ADP6	0	MSB-2 of Direct A/D-converted output bus (VSB)	
L07	ADP3	0	MSB-5 of Direct A/D-converted output bus (VSB)	
L08	VSSE6	P	Digital ground peripheral cells	
L09	VSSI6	Р	Digital ground core	
L10	RTCO	O/st/pd	RTC output; strap to LOW (4k7) for first I ² C slave address 42h	
2.0	11100	(3)	strap to HIGH (4k7) for second I ² C slave address 40h	
L11	VSSE7	P	Digital ground peripheral cells	
L12	ITRI	1/0	Image-port control signal, effects all Image port pins	
L13	IDQ	0	Data qualifier for image port	
L14	IGP0	0	General purpose signal #0	
M01	AOUT	0	Analog test output (not for use in application)	
M02	VSSA0	Р	Ground for internal clock generator	
M03	VDDA0	Р	Supply for internal clock generator	
M04	VDDE5	Р	Digital supply peripheral cells	
M05	VDDI5	Р	Digital supply core	
M06	ADP7	0	MSB-1 of Direct A/D-converted output bus (VSB)	
M07	ADP2	0	MSB-6 of Direct A/D-converted output bus (VSB)	
M08	VDDE6	Р	Digital supply peripheral cells	
M09	VDDI6	Р	Digital supply core	
M1O	RTS0	0	Real time status or sync information	
M1 1	VDDE7	Р	Digital supply peripheral cells	
M12	AMXCLK	ı	Audio Master External clock input	

SAA7118

PIN	NAME	TYPE	DESCRIPTION	
M13	FSW	l/pd	Fast Switch (Blanking), with internal pull-down, inserts component inputs into CVBS signal	
M14	ICLK	I/O	Clock output signal for image-port, LCLK of LPB image port mode, or option asynchronous backend clock input	
N01	RES8	NC	Reserved pin for future extensions or testing, do not connect	
N02	RES9	I/pu	Reserved pin for future extensions or testing, do not connect	
N03	RES10	I/pd	Reserved pin for future extensions or testing, do not connect	
N04	CE	l/pu	Chip Enable or Reset with internal pull-up	
N05	LLC2	0	Line-locked clock at half frequency (13.5 MHz nominal)	
N06	CLKEXT	1	External clock input intended for A/D-conversion of VSB signals (36 MHz)	
N07	ADP5	0	MSB-3 of Direct A/D-converted output bus (VSB)	
N08	ADP0	0	LSB of Direct A/D-converted output bus (VSB)	
N09	SCL	1	I ² C Serial Clock	
N10	RTS1	0	Real time status or sync information	
N11	ASCLK	0	Audio serial clock	
N12	ITRDY	1	arget Ready for image port bus	
N13	RES11	NC	Reserved pin for future extensions or testing, do not connect	
N14	RES12	NC	Reserved pin for future extensions or testing, do not connect	
P02	RES13	I/O	Reserved pin for future extensions or testing, do not connect	
P03	EXMCLR	l/pd	External Mode Clear, with internal pull-down	
P04	LLC	0	Line-locked clock (27 MHz nominal)	
P05	RESON	0	Reset Output Not signal	
P06	ADP8	0	MSB of Direct A/D-converted output bus (VSB)	
P07	ADP4	0	MSB-4 of Direct A/D-converted output bus (VSB)	
P08	ADP1	0	MSB-7 of Direct A/D-converted output bus (VSB)	
P09	INT_A	O/od	I ² C interrupt flag (Low if any enabled status bit has changed)	
P10	SDA	I/O/od	I ² C Serial Data	
P11	AMCLK	0	Audio Master clock, must be less than half the crystal clock frequency	
P12	ALRCLK	O/st/pd	Audio left/right clock, strap to LOW (4k7) for 24.576 MHz crystal strap to HIGH (4k7) for 32.11 MHz crystal (3)	
P13	TEST0	I/pu	Scan test input; do not connect	

I=input, O=output, P=power, NC=not connected, st=strapping, pu=pull-up, pd=pull-down, od=open drain

- 1. This pin provides easy initialization of BST circuitry. TRSTN can be used to force the TAP (Test Access Port) controller to the Test-Logic-Reset state (normal operation) at once
- 2. According to the IEEE1149.b1-1994 standard the pads TDI and TMS are input pads with a internal pull-up t ransistor and TDO a tri-state output pad. TCK, TRSTN are also built with internal pile-up
- 3. Strapping remark: If the strapping pin is unused, the internal pull-down resistor is sufficient for strap function. If pin is used in an application, an external strapping resistor (4,7k) is necessary to get a certain strap func tion.

FLI2200 9.8.8

FLI2200

Description

The FLI2200 is a single chip implementation of Faroudja Laboratories' award winning deinterlacing and postprocessing algorithms that produce the highest quality progressive video output from a variety of interlaced video inputs including 525/60 (NTSC) or 625/50 (PAL or SECAM). It uses patented and patent pending motion-adaptive deinterlacing that selects the optimal filtering on a per-pixel basis. This includes detection and proper interleaving of 3:2 and 2:2 pulldown for film-base sources, including continuous monitoring and compensation for bad edits that occur frequently in broadcast material due to poor scene cuts or insertion of commercials. Video material is processed by a set of content-sensitive spatio-temporal filters that adapt to the appropriate direction for smoothest interpolation using the patented Faroudja DCDi™ algorithm. The FLI2200 also includes motion-adaptive cross-color suppression that removes highly objectionable coloration artifacts produced by commonly used video decoders. Its internal processing uses 10 bits per channel to maintain the highest quality. Its inputs and outputs are 10 bits/channel for best quality but also supports 8 bits/channel for more cost-sensitive applications. The FLI2200 requires 4 MB of low cost SDRAM for best quality deinterlacing, but it can also be operated in an optimized intra-field mode without memory for more costsensitive applications. This makes possible the use of a single design for both high-end and low-end applications.

The FLI2200 integrates a number of functions to provide maximum flexibility in a low cost configuration. This includes an on-chip clock generator, SDRAM controller, display controller, input and output color-space converters. It uses a standard 2-wire serial control interface for easy control and access to the registers.

The FLI2200 can be connected without glue logic to the FLI2000 video decoder and FLI2220 Enhancer and OSD Generator to produce the highest quality video pipeline for premium applications. It is also fully compatible with other decoders having a ITU-R BT 656 output format.

Applications

Flat panel TV - LCD, PDP Progressive scan TVs Multimedia front/rear projectors Home Theater Scan Converters Multimedia PCs/Workstations

DCDi™ is a Faroudja trademark

Features

Motion-adaptive cross-color suppression removes artifacts produced by improper Y/C separation in lowcost video decoders

Motion-adaptive video deinterlacing selects optimal filtering on a per-pixel basis

Film-mode for proper handling of 3:2 and 2:2 pulldown material

Bad-edit detection/correction compensates for poor scene cuts and insertions common in broadcast material

Motion-weighted interpolation for video sources produces maximum resolution without introducing motion artifacts

Directional Correlational Deinterlacing (DCDiTM) minimizes jaggies on angled lines

8/10-bit Y/Cb/Cr (D1) (ITU-R BT 656), 16/20-bit Y Cb/Cr (ITU-R BT 601), 24/30-bit RGB or YCbCr/YPbPr interlaced input options

- Supports 525/60 (NTSC), 625/50 (PAL/SECAM)
- Accepts up to 1100 pixels/line

8/10-bit, 16/20-bit YUV, 24/30-bit RGB or YCbCr/YPbPr progressive output options

Supports 8- or 10-bit inputs and outputs 10-bit internal processing for highest quality Includes color-space converters at input and output for maximum flexibility

Auto-detection of NTSC/PAL/SECAM inputs High-order filtering produces smooth chroma output in 4:2:2 to 4:4:4 or 4:4:4 to 4:2:2 conversions

Resolution recovery maximizes output signal-to-noise ratio and dynamic range

Can be operated without glue logic with FLI2000 Video Decoder and FLI2220 Enhancer and OSD Generator ICs to produce highest quality video pipeline

Glue-less interface to most standard video decoders

Built-in display timing generator

On-chip clock generator eliminates external PLLs

On-chip SDRAM controller

Uses low cost SDRAM as field memory – 4 MB

Optimized intra-field operation allows memory-less configuration for lowest cost applications with same design and layout as for high-end applications 2-wire serial control interface for easy control

176-pin TQFP package

Simplified Block Diagram

Pin description

Pin Connections and Functions

Pin#	Name	Description
	3,555	
See list	V _{SS}	Ground connections. Connect to the digital ground plane. Pins: 2, 17, 34, 55, 64, 74, 85, 96, 106, 115, 124, 132, 138, 145, 152, 159, 168
See list	V_{DD33}	Pad Ring digital power connections. Connect to the digital 3.3 volt power supply and decouple to the digital ground plane. Pins: 1, 33, 63, 73, 84, 95, 105, 114, 123, 137, 144, 151, 167
See list	V _{DD25}	Core Logic digital power connections. Connect to the digital 2.5 volt power supply and decouple to the digital ground plane. Pins: 16, 54, 107, 158
43	AV _{SS}	Ground connection for the clock PLL circuits. Connect to the digital ground plane
42	AV _{DD}	Analog power connections for the clock PLL circuit. Connect to a separately decoupled 2.5 volt power supply and decouple directly to the AV_{SS} pin
49	RESETB	Reset. When this input is set low it will reset all the internal registers to the default states. Refer to the section on the control registers for details of these states. The device must be reset after it is powered-up.
53	OE	When this pin is set high the outputs of the FLI2200 will be enabled; when it is set low the outputs will be set into a high-impedance state.
56-58	IFORMAT ₂₋₀	Input signal format control. The settings of these pins set the format of the input signal. This can be overridden by the IFmtOvr bit, bit 3 in register 00_H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 00_H for details.
59-61	OFORMAT ₂₋₀	Output signal format control. The settings of these pins set the format of the output signal. This can be overridden by the OFmtOvr bit, bit 3 in register 07_H , allowing this function to be set or changed via the I^2C bus. Please refer to the description of register 07_H for details.
44-45	DADDR ₁₋₀	The settings of $DADDR_{1-0}$ allow the device address of the control bus to be programmed to prevent conflict with the other devices connected to the bus. $DADDR_{1-0}$ allow the device address to be set to any of the following values: $C0/C1_H$, $C2/C3_H$, $E0/E1_H$, $E2/E3_H$. Please refer to the section "Control Bus Operation and Protocol" for further information.
46	MODE	When this pin is set low the control bus will operate in the slave mode; allowing the device to programmed from an external controller. When it is set high the FLI2200 will self-program from an external I^2C memory connected to the bus. Please refer to the "Control Bus Operation and Control Protocol" section for more details.
47	SDA	2-wire serial control bus data. Data can be written to the control registers via this pin when it is in the input mode and data can be read from the status registers when it is in the output mode. Refer to the section on the serial port for timing and format details and to the section on the registers for programming information.
48	SCL	2-wire serial control bus clock. When the control port operates in slave mode this pin will be an input and when it operates in the self programming mode it will be an output.
40	PIXCLK	Pixel clock input. This clock is used to drive all the circuits in the FLI2200. An internal PLL is used to upconvert this clock to provide the master clock signal and other clocks used internally. Note that when the FLI2200 is used in the D1 input mode the PIXCLK input should run at the rate of two cycles per pixel (one for luma and one for chroma).
62	N/P/IN/OUT	NTSC/PAL input or output. The default function of this pin is NTSC/PAL signal indicator output. When the input video signal is a 525 line signal this pin will be set high and when it is a 625 line signal the pin is set low. This function of this pin can be programmed to be an input according to the setting of this pin if the NPOp ₁₋₀ bits, bits 5-4 in register $03_{\rm H}$, are set to $00_{\rm H}$, overriding the internal line counter. i.e., it will treat the signal as a 525 line signal when it is set high and a 625 line signal when it is set low.

Pin #	Name	Description
THE S		
52	NOMEM	No Memory Mode control input. This pin controls the operation of the FLI2200 as follows: When this pin is set low the device is used with external field memories and operates in the full set of deinterlacing modes, i.e., motion adaptive video deinterlacing and full frame film source deinterlacing using 3:2 pulldown detection (2:2 pulldown for 625/50 sources). When this pin is set high the FLI2200 is forced into the intra-field only deinterlacing mode, which requires no external memories, allowing the FLI2200 to be used in low-cost applications where the ultimate video quality is not a requirement. <i>To ensure proper startup of the SDRAMs this pin should be set high during the power-up sequence</i> . This can be overridden by the NMOvr bit, bit 1 in register 05 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 05 _H for details.
27-18	G/YIN ₉₋₀	10-bit green or luminance signal input bus. The mode is set by the IFORMAT $_{2-0}$ pins. This can be overridden by the IFmtOvr bit, bit 3 in register 00_H , allowing this function to be set or changed via the I 2 C bus. Please refer to the description of register 00_H for details. This signal is sampled on the rising edge of PIXCLK.
15-6	B/CbIN ₉₋₀	10-bit blue or Cb chroma signal input bus. The mode is set by the IFORMAT ₂₋₀ pins. This can be overridden by the IFmtOvr bit, bit 3 in register 00 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 00 _H for details. Bits 6, 4 and 3 in register 08 _H specify the busses used in the multiplexed modes. In all cases the signals are sampled on the rising edges of PIXCLK. In the Y Cb Cr and Y Pb Pr modes the Cb or Pb signal is sampled on alternate rising edges of PIXCLK in 4:2:2 mode. The frequency of PIXCLK will be 27 MHz in the multiplexed Y/Cb/Cr mode and 13.5 MHz in all other modes. These pins should be tied low when not used.
39-35 32-28	R/CrIN ₉₋₀	10-bit red or Cr chroma signal input bus. The mode is set by the IFORMAT ₂₋₀ pins. This can be overridden by the IFmtOvr bit, bit 3 in register 00 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 00 _H for details. Bits 6, 4 and 3 in register 08 _H specify the busses used in the multiplexed modes. In all cases the signals are sampled on the rising edges of PIXCLK. In the Y Cb Cr mode the Cr signal is sampled on alternate rising edges of PIXCLK in 4:2:2 mode. The frequency of PIXCLK will be 27 MHz in the multiplexed Y/Cb/Cr mode and 13.5 MHz in all other modes. These pins should be tied low when not used.
3	HSYNCREFI	Horizontal sync or reference. The horizontal sync or reference of the input signal should be connected to this pin. The function is programmed with bit 4 in register 00_H . The polarity and position of the sync or reference pulse relative to the start of active video are both programmable within a small range. When the FLI2200 is used in the ITU-R BT 601/D1 input mode with embedded syncs (IFormat = 110) this input is not used and should be tied low; in this case all sync information will be derived from the signal.
4	VSYNCREFI	Vertical sync or reference. The vertical sync or reference of the input signal should be connected to this pin. The function is programmed with bit 4 in register 00_H . The polarity and position of the sync or reference pulse relative to the start of active video are both programmable within a small range. When the FLI2200 is used in the ITU-R BT 601/D1 input mode with embedded syncs (IFormat = 110) this input is not used and should be tied low; in this case all sync information will be derived from the signal.
5	FLDIN	Field identifier input. The field identifier output of the source signal should be connected to this pin. A low setting signifies an even field and a high level signifies an odd field. When bit 4 in register 00_H is set low, the input timing is based on HREF and VREF and this signal is required. When this bit is set high the input timing is based on HSYNC and VSYNC and this signal is generated internally and is not required. When bit 5 in register 06 is set high this signal is also used as the frame boundary identifier for 30 Hz film sources.

Pin #	Name	Description
65-72 75-76	G/YOUT ₉₋₀	Green or luminance output bus. In the RGB mode this output is the Green signal and in the YCbCr mode it is the Y signal. The mode is set by the OFORMAT ₂₋₀ pins. This can be overridden by the OFmtOvr bit, bit 3 in register 07 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 07 _H for details. The signal is clocked out on the falling edge of YCLKO.
93-94 97-104	B/CbOUT ₉₋₀	Blue or Cb chrominance output bus. In the RGB mode this output is the Blue signal, in the Y Cb Cr mode it is the Cb signal. The mode is set by the OFORMAT ₂₋₀ pins. This can be overridden by the OFmtOvr bit, bit 3 in register 07 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 07 _H for details. The busses used in the multiplexed modes are set by means of bit 5 in register 08 _H . The signal is clocked out on the falling edge of YCLKO in the RGB and YUV 4:4:4 modes, on the falling edge of YCLKO prior to the next rising edge of CCLKO in the YUV 4:2:2 mode, and on the rising edge of MEMCLKO in the multiplexed YCbCr (pseudo D1) mode.
77-83 86-88	R/CrOUT ₉₋₀	Red or Cr chrominance output bus. In the RGB mode this output is the Red signal, in the YCbCr mode it is the Cr signal. The mode is set by the OFORMAT ₂₋₀ pins. This can be overridden by the OFmtOvr bit, bit 3 in register 07 _H , allowing this function to be set or changed via the I ² C bus. Please refer to the description of register 07 _H for details. The busses used in the multiplexed modes are set by means of bit 5 in register 08 _H . The signal is clocked out on the falling edge of YCLKO in the RGB and YUV 4:4:4 modes, on the falling edge of YCLKO prior to the next rising edge of CCLKO in the YUV 4:2:2 mode, and on the rising edge of MEMCLKO in the multiplexed YCbCr (pseudo D1) mode.
116	CCLKO	Chroma output sampling clock. This clock is derived from PIXCLK and will be at half the frequency of YCLKO. In 30-bit 4:2:2 output mode the chroma output signals will change on the falling edge of YCLKO prior to the next rising edge this clock.
117	YCLKO	Luma output sampling clock. This clock is derived from PIXCLK and is double the frequency of PIXCLK. In 30-bit and 20-bit output modes the output signals will change on the falling edge of this clock.
89	VREFO	Start of active field or frame indicator. This signal goes high to indicate the first active line in each field or frame and goes low during the vertical blanking interval. The polarity and timing of this signal are programmable.
90	HREFO	Start of active line indicator output. This signal goes high to indicate the first active pixel in each line and goes low during the horizontal blanking interval. The polarity and timing of this signal are programmable.
91	VSYNC/ CREFO	Vertical sync output. This signal provides the vertical sync function for the outputs. Its polarity is programmable to be active high or active low. It can also be programmed to be a composite reference for applications requiring this instead of sync.
92	H/CSYNCO	Horizontal or composite sync output. This signal provides the horizontal sync function for the outputs. Its polarity is programmable to be active high or active low. This signal can also be programmed to be the composite sync output, CSYNC.
108	FSYNC	Film mode sync output. When film mode is detected this pin will toggle in sync with the 3:2 (NTSC) or 2:2 (PAL and 30 Hz film in NTSC) pulldown sequence detected in the source.
110	FILM	Film mode detector output. This pin will be set high when the FLI2200 detects that the video input was converted from 24 fps film with a teleciné machine. If film mode is not detected this pin will be set low.

Pin #	Name	Description
	and the second s	
125-131 133-136	ADDR ₁₀₋₀	SDRAM Address bus. This signal bus is used to address the external SDRAM(s) used for field memories. It should be connected to the A_{10-0} bus of the memory chip(s). Please refer to the Applications section of this data sheet for further details.
176-169 166-160 157-153 150-146 143-139	DATA ₂₉₋₀	SDRAM Data bus. This signal bus is used to transfer the data to and from the external SDRAM(s) used for field memories. It should be connected to the DQ ₂₉₋₀ bus of the memory chip when using a 64 Mbit SDRAM. When using two 16 Mbit SDRAMs this 30-bit bus may be connected to the two 16-bit data busses of the memories in two ways: either connect 16 lines to one chip and 14 to the other, or connect 15 to both. In all cases the two unused data lines on the memory chip(s) should be connected to ground via 22 k? resistors. Please refer to the Applications section of this data sheet for further details.
118	MEMCLKO	SDRAM clock and 2x output sampling clock. This clock is derived from PIXCLK and will be at double the frequency of YCLKO. This active signal should be connected to the CLK pin(s) on the SDRAM(s). When the 10-bit output mode selected the output signals will also change at this clock rate and this should then be used as the output clock.
119	WEN	SDRAM Write Enable. This active low signal should be connected to the WE pin(s) on the SDRAM(s).
120	RASN	SDRAM Row Address Select. This active low signal should be connected to the RAS pin(s) on the SDRAM(s).
121	CASN	SDRAM Column Address Select. This active low signal should be connected to the CAS pin(s) on the SDRAM(s).
122	BSEL	SDRAM Bank Select. When using two 16 Mbit SDRAMs this signal should be connected to the BA (also called BS or A_{11}) pin on both SDRAMs. When using a 64 Mbit SDRAM this signal should be connected to the BA0 (also called BS0 or A_{11}) pin on the SDRAM and BA1/BS1 (also called BA when BA0 is referred to as A_{11}) should be tied low.
41, 50, 51, 109, 111	TEST ₄₋₀	These pins are used for test purposes only and should always be tied low for normal operation.
112, 113	TESTO ₁₋₀	These pins are test outputs and should be left unconnected in normal operation.

9.

64Mb: x32 **SDRAM**

SYNCHRONOUS DRAM

MT48LC2M32B2 - 512K x 32 x 4 banks

For the latest data sheet, please refer to the Micron Web site: www.micronsemi.com/datasheets/sdramds.html

FEATURES

- PC100 functionality
- Fully synchronous; all signals registered on positive edge of system clock
- Internal pipelined operation; column address can be changed every clock cycle
- Internal banks for hiding row access/precharge
- Programmable burst lengths: 1, 2, 4, 8, or full page
- Auto Precharge, includes CONCURRENT AUTO PRECHARGE, and Auto Refresh Modes
- Self Refresh Mode
- 64ms, 4,096-cycle refresh (15.6µs/row)
- LVTTL-compatible inputs and outputs
- Single +3.3V ±0.3V power supply
- Supports CAS latency of 1, 2, and 3.

OPTIONS

MARKING

- Configuration 2 Meg x 32 (512K x 32 x 4 banks) 2M32B2
- Plastic Package OCPL¹ 86-pin TSOP (400 mil)
 - TG
- Timing (Cycle Time)
 - 5ns (200 MHz) 5.5ns (183 MHz) 6ns (166 MHz) 7ns (143 MHz)
- Operating Temperature Range Commercial (0° to +70°C)
 - None Extended (-40°C to +85°C) TT^2
- NOTE: 1. Off-center parting line
 - 2. Available on -7

Part Number Example: MT48LC2M32B2TG-7

KEY TIMING PARAMETERS

SPEED GRADE	CLOCK FREQUENCY	ACCESS TIME CL = 3°	SETUP TIME	HOLD TIME
-5	200 MHz	4.5ns	1.5ns	1ns
-55	183 MHz	5ns	1.5ns	1ns
-6	166 MHz	5.5ns	1.5ns	1ns
-7	143 MHz	5.5ns	2ns	1ns

*CL = CAS (READ) latency

PIN ASSIGNMENT (TOP VIEW) **86-PINTSOP**

Voc CE		26	III Wai
DO0	2	85	DQ15
VooQ CE	3	84	ID VWO
DQ1	4	83	□ 0014
DO2	5	82	D DO13
VIIQ C	6	81	33 VooQ
DQ3	7	80	DQ12
DQ4	8	79	D DQ11
Vooq II	9.	78	DI VIIIO
DQS I	10	77	□ DQ10
DQ6 III	11	76	DQ9
VaiQ II	12	75	ID VeoQ
DQ7	13	74	III DQ8
NC C	14	73	ID NC
Voo C	15	72	⊒D Vss
DOMO CE	16 17	71	II DQM1
	K	70	II NC
CAS# CE	18	69	D RC
(C)	20	68	D OK
X H		66	II CKE
W II	22	65	D 28
MI	23	64	3 77
A10 III	24	63	II A6
A0 EE	25	62	II 75
A1 CE		61	B A
A2 III	27		30 A3
DQM2 II			DQM3
Voo C	29	58	10 V%
NC CE	30	57	II NC
DQ16	31		□ DQ31
VssQ I	32	- 55	I VooQ
DQ17	33	54	DQ30
DQ18	34	53	□ DQ29
VooQ I	35	52	T) Vano
DQ19	36		□ DQ28
DQ20 -	37		□ DQ27
VsQ CC	38		T) VDDQ
DQ21 III	39 40	48	□ DQ26
Vec0 E	41		DQ25
DO23	42		
Vec E	43		II) DQ24
Abb. ry			- A39

Note: The # symbol indicates signal is active LOW.

Configuration	512K x 32 x 4 banks	
	4	
	2K (A0-A10)	
	4 (BAO, BA1)	
	256 (AO-A7)	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
		184

64Mb: x32 SDRAM

64Mb (x32) SDRAM PART NUMBER

PART NUMBER	ARCHITECTURE
MT48LC2M32B2TG	2 Meg x 32

GENERAL DESCRIPTION

The 64Mb SDRAM is a high-speed CMOS, dynamic random-access memory containing 67,108,864-bits. It is internally configured as a quad-bank DRAM with a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the 16,777,216-bit banks is organized as 2,048 rows by 256 columns by 32 bits.

Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BAO, BA1 select the bank, A0-A10 select the row). The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

The SDRAM provides for programmable READ or WRITE burst lengths of 1, 2, 4, or 8 locations, or the full page, with a burst terminate option. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst sequence.

The 64Mb SDRAM uses an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2n rule of prefetch architectures, but it also allows the column address to be changed on every clock cycle to achieve a high-speed, fully random access. Precharging one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, random-access operation.

The 64Mb SDRAM is designed to operate in 3.3V. low-power memory systems. An auto refresh mode is provided, along with a power-saving, power-down mode. All inputs and outputs are LVTTL-compatible.

SDRAMs offer substantial advances in DRAM operating performance, including the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks to hide precharge time and the capability to randomly change column addresses on each clock cycle during a burst access.

64Mb: x32 **SDRAM**

FUNCTIONAL BLOCK DIAGRAM 2 Meg x 32 SDRAM

64Mb: x32 SDRAM

PIN DESCRIPTIONS

PIN NUMBERS	1371/13-OL	THE	DESCRIPTION AND ADDRESS.
68	ССК	Input	Clock: CLK is driven by the system clock. All SDRAM input signals are sampled on the positive edge of CLK. CLK also increments the internal burst counter and controls the output registers.
67	ΟŒ	Input	Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal. Deactivating the clock provides PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), ACTIVE POWER-DOWN (row active in any bank) or CLOCK SUSPEND operation (burst/access in progress). CKE is synchronous except after the device enters power-down and self refresh modes, where CKE becomes asynchronous until after exiting the same mode. The input buffers, including CLK, are disabled during power-down and self refresh modes, providing low standby power. CKE may be tied HIGH.
20	œ	Input	Chip Select: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when CS# is registered HIGH. CS# provides for external bank selection on systems with multiple banks. CS# is considered part of the command code.
17, 18, 19	WE#, CAS#, RAS#	Input	Command Inputs: WE#, CAS#, and RAS# (along with CS#) define the command being entered.
16, 71, 28, 59	DQM0- DQMB	Input	Input/Output Mask: DQM is sampled HIGH and is an input mask signal for write accesses and an output enable signal for read accesses. Input data is masked during a WRITE cycle. The output buffers are placed in a High-Z state (two-clock latency) during a READ cycle. DQM0 corresponds to DQ0-DQ7; DQM1 corresponds to DQ8-DQ15; DQM2 corresponds to DQ16-DQ23; and DQM3 corresponds to DQ24-DQ31. DQM0-DQM3 are considered same state when referenced as DQM.
22, 23	BAO, BA1	Input	Bank Address Input(s): BA0 and BA1 define to which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied.
25-27, 60-66, 24	AD-A10	Input	Address Inputs: A0-A10 are sampled during the ACTIVE command (rowaddress A0-A10) and READ/WRITE command (column-address A0-A7 with A10 defining auto precharge) to select one location out of the memory array in the respective bank. A10 is sampled during a PRECHARGE command to determine if all banks are to be precharged (A10 HIGH) or bank selected by BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD MODE REGISTER command.
2, 4, 5, 7, 8, 10, 11, 13, 74, 76, 77, 79, 80, 82, 83, 85, 31, 33, 34, 36, 37, 39, 40, 42, 45, 47, 48, 50, 51, 53, 54, 56	DQ0-DQ31	Input/ Output	Data VOs: Data bus.
14, 21, 30, 57, 69, 70, 73	NC		No Connect: These pins should be left unconnected. Pin 70 is reserved for SSTL reference voltage supply.
3, 9, 35, 41, 49, 55, 75, 81	VocQ	Supply	DQ Power Supply: Isolated on the die for improved noise immunity.
6, 12, 32, 38, 46, 52, 78, 84	VsQ	Supply	DQ Ground: Provide isolated ground to DQs for improved noise immunity.
1, 15, 29, 43	Voo	Supply	Power Supply: +3.3V ±0.3V.
44, 58, 72, 86	Vss	Supply	Ground.

9.8.10 ADV7196

ADV7196A

INPUT FORMATS

YCrCb in 2x10-Bit (4:2:2) or 3x10-Bit (4:4:4) format compliant to SMPTE-293M (525p), ITU-R.BT1358 (625p), SMPTE274M (1080i), SMPTE296M (720p) and any other High Definition standard using Async Timing Mode RGB in 3x10 Bit 4:4:4 format

OUTPUT FORMATS

YPrPb Progressive Scan (EIA-770.1, EIA-770.2) YPrPb HDTV (EIA 770.3) RGB levels compliant to RS-170 and RS-343A 11-Bit + Sync (DAC A) 11-Bit DACs (DAC B, DAC C)

PROGRAMMABLE FEATURES

Internal Testpattern Generator with Color Control Y/C delay (+/-) Gamma Correction Individual DAC on/off control 54MHz Output (2xOversampling) Sharpness filter with programmable gain/attenuation

GENERAL DESCRIPTION

The ADV7196A is a triple high speed, digital-to-analog encoder on a single monolithic chip. It includes of three high speed video D/A converters with TTL compatible inputs.

The ADV7196A has three separate 10-Bit wide input ports which accept data in 4:4:4 10-Bit YCrCb or RGB or 4:2:2 10-Bit YCrCb. This data is accepted in progressive scan format at 27MHz or HDTV format at 74.25MHZ or 74.1758MHz. For any other High Definition standard but SMPT E 293M, ITU-R BT.1358, SMPT E274M or SMPT E296M the Async Timing Mode can be used to input data to the ADV7196A. For all standards, external horizontal, vertical and blanking signals or EAV/SAV codes control the insertion of appropriate synchronisation signals into the digital data stream and therefore the output signals.

The ADV7196A outputs analog YPrPb progressive scan format complying to EIA770.1, EIA 770.2 or YPrPb HDTV complying to EIA 770.3 or RGB complying to RS-170/RS 343A.

The ADV7196A requires a single 3.3V power supply, an optional external 1.235 V reference and a 27 MHz clock in Progressive Scan Mode or a 74.25MHz (or 74.1758MHz) clock in HDTV mode.

Programmable Adaptive Filter Control Undershoot Limiter **VBI Open Control** I2C Filter

Macrovision Rev 1.0 (525p) CGMS-A (525p) 2 Wire Serial MPU Interface

Single Supply +3.3 V Operation 52-MQFP package

APPLICATIONS

Progressive Scan / HDTV Display Devices **DVD** Players Progressive Scan/HDTV Projection Systems MPEG2@81MHz Digital Video Systems High Resolution Color Graphics Image Processing/ Instrumentation Digital Radio Modulation/ Video Signal Reconstruction

In Progressive Scan Mode, a Sharpness Filter with programmable gain allows high frequency enhancement on the luminance signal. Programmable Adaptive Filter Control which may be used, allows removal of ringing on the incoming Y data. The ADV7196A supports CGMS-A data control generation and the Macrovision Anticopy algorithm in 525p mode.

The ADV7196A is packaged in a 52-Pin MQFP package.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

Pin MnemonicInput/Output		Function		
GND	G	Digital Ground		
AGND	G	Analog Ground		
ALSB	I	TTL Address Input. This signal sets up the LSB of the MPU address. When this pin is tied high the I2C filter is activated which reduces noise on the I2C interface. When this pin is tied low, the input bandwidth on the I2C lines is increased.		
DV	1	Video Blanking Control Signal Input.		
CLKIN	1	Pixel Clock Input. Requires a 27MHz reference clock for standard operation in Progressive Scan Mode or a 74.25MHz (74.1758MHz) reference clock in HDTV mode.		
COMP	0	Compensation Pin for DACs. Connect $0.1\mu F$ Capacitor from COMP pin to V_{AA} .		
DAC A	0	Y analog output.		
DAC B	0	Color component analog output of input data on Cr 9-0 input pins.		
DAC C	0	Color component analog output of input data on Cb/Cr 9-0 input pins.		
HSYNC/ SYNC	1	HSYNC, horizontal sync control signal input or SYNC input control signal in Async Timing Mode.		
Cr 9-0	I .	10-Bit Progressive scan/ HDTV input port for color data in 4:4:4 input mode. In 4:2:2 mode this input port is not used. Input port for R data when RGB data is input.		
Cb/Cr 9-0	I	10-Bit Progressive scan/ HDTV input port for color data. In 4:2:2 mode the multiplexed CrCb data must be input on these pins. Input port for B data when RGB is input.		
RESET	I	This input resets the on-chip timing generator and sets the ADV7196A into Default Register setting. Reset is an active low signal.		
R _{SET}		A 2470 Ohms resistor (for input ranges 64-940 and 64-960, output standards EIA770.1-3) must be connected from this pin to AGND and is used to control the amplitudes of the DAC outputs. For input ranges 0 -1023 (RS-170,RS-343A) the R_{SET} value must be 2820 Ohms.		
SCL	1 .	MPU Port Serial Interface Clock Input		
SDA	1/0	MPU Port Serial Data Input/Output		
VSYN C/ TSYN C	I	<u>VSYNC</u> , vertical sync control signal input or TSYNC input control signal in AsyncTiming Mode.		
V _{DD}	Р	Digital power supply		
VAA	Р	Analog power supply		
V _{REF}	1/0	Optional External Voltage Reference Input for DACs or Voltage Reference Output (1.235V).		
Y9 -Y0	1	10-Bit Progressive scan/ HDTV input port for Y data. Input for G data when RGB data is input.		

IC7101: 58PDI1394P25PHY 9.9.1

PDI1394P25

1.0 FEATURES

- Fully supports provisions of IEEE 1394±1995 Standard for high performance serial bus and the P1394a±2000 Standard1
- Fully interoperable with Firewire? and i.LINK? implementations of the IEEE 1394 Standard.2
- Full P1394a support includes:
 - ± Connection debounce
 - ± Arbitrated short reset
 - Multispeed concatenation
 - ± Arbitration acceleration
 - ± Fly-by concatenation
 - ± Port disable/suspend/resume
- Provides one 1394a fully-compliant cable port at 100/200/400 Mbps. Can be used as a one port PHY without the use of any extra external components
- Fully compliant with Open HCI requirements
- Cable ports monitor line conditions for active connection to remote
- Power down features to conserve energy in battery-powered applications include:
 - ± Automatic device power down during suspend
 - ± Device power down terminal
 - ± Link interface disable via LPS
 - ± Inactive ports powered-down
- Logic performs system initialization and arbitration functions
- Encode and decode functions included for data-strobe bit level encoding
- Incoming data resynchronized to local clock
- Single 3.3 volt supply operation
- Minimum V_{DD} of 2.7 V for end-of-wire power-consuming devices
- While unpowered and connected to the bus, will not drive TPBIAS on a connected port, even if receiving incoming bias voltage on that port

- · Supports extended bias-handshake time for enhanced interoperability with camcorders
- Interface to link-layer controller supports both low-cost bus-holder isolation and optional Annex J electrical isolation
- Data interface to link-layer controller through 2/4/8 parallel lines at 49.152 MHz
- Low-cost 24.576 MHz crystal provides transmit, receive data at 100/200/400 Mbps, and link-layer controller clock at 49.152 MHz
- Does not require external filter capacitors for PLL
- Interoperable with link-layer controllers using 3.3 V and 5 V supplies
- Interoperable with other Physical Layers (PHYs) using 3.3 V and
- Node power class information signaling for system power management
- Cable power presence monitoring
- Separate cable bias (TPBIAS) for each port
- Register bits give software control of contender bit, power class bits, link active bit, and 1394a features
- Function and pin compatible with the Texas Instruments TSB41LV01? 400 Mbps Phy

2.0 DESCRIPTION

The PDI1394P25 provides the digital and analog transceiver functions needed to implement a one port node in a cable-based EEE 1394±1995 and/or 1394a network. Each cable port incorporates two differential line transceivers. The transceivers include circuitry to monitor the line conditions as needed for determining connection status, for initialization and arbitration, and for packet reception and transmission. The PDI1394P25 is designed to interface with a Link Layer Controller (LLC), such as the PDI1394L11 or PDI1394L21.

3.0 ORDERING INFORMATION

PACKAGE	TEMPERATURE RANGE	ORDER CODE	PKG. DWG. #
64-pin plastic LQFP	0 to +70°C	PDI1394P25BD	SOT3 14-2

4.0 PIN CONFIGURATION

5.0 PIN DESCRIPTION

Name	Pin Type	Pin Numbers	I/O	Description
AGND	Supply	32, 33, 39, 48, 49, 50	Đ	Analog circuit ground terminals. These terminals should be tied together to the low impedance circuit board ground plane.
AV _{DD}	Supply	30, 31, 42, 51, 52	Đ	Analog circuit power terminals. A combination of high frequency decoupling capacitors on each side are suggested, such as paralleled 0.1 μF and 0.001 μF . These supply terminals are separated from PLLV_DD and DV_DD internal to the device to provide noise isolation. They should be tied at a low impedance point on the circuit board.
C/LKON	CMOS 5 V tol	19	1/0	Bus Manager Contender programming input and link-on output. On hardware reset, this terminal is used to set the default value of the contender status indicated during self-ID. Programming is done by tying the terminal through a $10\text{-k}\Omega$ resistor to a high (contender) or low (not contender). The resistor allows the link-on output to override the input.
				If this pin is connected to a LLC driver pin for setting Bus Manager/IRM contender status, then a 10-k Ω series resistor should be placed on this line between the PHY and the LLC to prevent possible contention. In this case, the pull-high or pull-low resistors mentioned in the previous paragraph should not be used. Refer to Figure 9.
				Following hardware reset, this terminal is the link-on output, which is used to notify the LLC to power-up and become active. The link-on output is a square-wave signal with a period of approximately 163 ns (8 SYSCLK cycles) when active. The link-on output is otherwise driven low, except during hardware reset when it is high impedance.
				The link-on output is activated if the LLC is inactive (LPS inactive or the LCtrl bit cleared) and when:
				a) the PHY receives a link-on PHY packet addressed to this node,
				b) the PEI (port-event interrupt) register bit is 1, or
				c) any of the CTOI (configuration-timeout interrupt), CPSI (cable-power-status interrupt), or STOI (state-timeout interrupt) register bits are 1 and the RPIE (resuming-port interrupt enable) register bit is also 1.
				Once activated, the link-on output will continue active until the LLC becomes active (both LPS active and the LCtrl bit set). The PHY also deasserts the link-on output when a bus-reset occurs unless the link-on output would otherwise be active because one of the interrupt bits is set (i.e., the link-on output is active due solely to the reception of a link-on PHY packet).
				NOTE: If an interrupt condition exists which would otherwise cause the link-on output to be activated if the LLC were inactive, the link-on output will be activated when the LLC subsequently becomes inactive.
CNA	CMOS	3	0	Cable Not Active output. This terminal is asserted high when there are no ports receiving incoming bias voltage.
CPS	CMOS	24	1	Cable Power Status input. This terminal is normally connected to cable power through a 390 k Ω resistor. This circuit drives an internal comparator that is used to detect the presence of cable power.
CTL0, CTL1	CMOS 5 V tol	4, 5	I/O	Control I/Os. These bi-directional signals control communication between the PDI1394P25 and the LLC. Bus holders are built into these terminals.
D0±D7	CMOS 5 V tol	6, 7, 8, 9, 10, 11, 12, 13	I/O	Data I/Os. These are bi-directional data signals between the PDI1394P25 and the LLC. Bus holders are built into these terminals, Unused Dn pins should be pulled to ground through 10 k Ω resistors.
DGND	Supply	17, 18, 63, 64	Ð	Digital circuit ground terminals. These terminals should be tied together to the low impedance circuit board ground plane.
DV _{DD}	Supply	25, 26, 61, 62	Đ	Digital circuit power terminals. A combination of high frequency decoupling capacitors near each side of the IC package are suggested, such as paralleled 0.1 μF and 0.001 μF. Lower frequency 10 μF filtering capacitors are also recommended. These supply terminals are separated from PLLV _{DD} and AV _{DD} internal to the device to provide noise isolation. They should be tied at a low impedance point on the circuit board.

Name	Pin Type	Pin Numbers	1/0	Description
ISO	CMOS	23	I	Link interface isolation control input. This terminal controls the operation of output differentiation logic on the CTL and D terminals. If an optional isolation barrier of the type described in Annex J of IEEE Std 1394±1395 is implemented between the PDI1394P25 and LLC, the ISO terminal should be tied low to enable the differentiation logic. If no isolation barrier is implemented (direct connection), or bus holder isolation is implemented, the ISO terminal should be tied high to disable the differentiation logic.
LPS	CMOS 5 V tol	15		Link Power Status input. This terminal is used to monitor the active/power status of the link layer controller and to control the state of the PHY-LLC interface. This terminal should be connected to either the V_{DD} supplying the LLC through a 10 $k\Omega$ resistor, or to a pulsed output which is active when the LLC is powered. A pulsed signal should be used when an isolation barrier exists between the LLC and PHY. (See Figure 8)
				The LPS input is considered inactive if it is sampled low by the PHY for more than 2.6 μ s (128 SYSCLK cycles), and is considered active otherwise (i.e., asserted steady high or an oscillating signal with a low time less than 2.6 μ s). The LPS input must be high for at least 21 ns in order to be guaranteed to be observed as high by the PHY.
				When the PDI1394P25 detects that LPS is inactive, it will place the PHY-LLC interface into a low-power reset state. In the reset state, the CTL and D outputs are held in the logic zero state and the LREQ input is ignored; however, the SYSCLK output remains active. If the LPS input remains low for more than 26 µs (1280 SYSCLK cycles), the PHY-LLC interface is put into a low-power disabled state in which the SYSCLK output is also held inactive. The PHY-LLC interface is placed into the disabled state upon hardware reset.
				The LLC is considered active only if both the LPS input is active and the LCtrl register bit is set to 1, and is considered inactive if either the LPS input is inactive or the LCtrl register bit is cleared to 0.
LREQ	CMOS 5 V tol	1	ı	LLC Request input. The LLC uses this input to initiate a service request to the PDI1394P25. Bus holder is built into this terminal.
NC	No connect	54, 55	Đ	These pins are not internally connected and consequently are adon't cares. Other vendors' pin compatible chips may require connections and external circuitry on these pins.
NC	No connect	16, 43, 44, 45, 46, 47	Đ	No connect.
PC0, PC1, PC2	CMOS 5 V tol	20, 21, 22	ı	Power Class programming inputs. On hardware reset, these inputs set the default value of the power class indicated during self-ID. Programming is done by tying the terminals high or low. Refer to Table 21 for encoding.
PD	CMOS 5 V tol	14	I	Power Down input. A logic high on this terminal turns off all internal circuitry except the cable-active monitor circuits which control the CNA output. For more information, refer to Section 17.2
PLLGND	Supply	57, 58	Ð	PLL circuit ground terminals. These terminals should be tied together to the low impedance circuit board ground plane.
PLLV _{DD}	Supply	56	Đ	PLL circuit power terminals. A combination of high frequency decoupling capacitors near each terminal are suggested, such as paralleled 0.1 μF and 0.001 μF . These supply terminals are separated from DV $_{DD}$ and AV $_{DD}$ internal to the device to provide noise isolation. They should be tied at a low impedance point on the circuit board.
RESET	CMOS 5 V tol	53	·	Logic reset input. Asserting this terminal low resets the internal logic. An internal pull-up resistor to V _{DD} is provided so only an external delay capacitor is required for proper power-up operation. For more information, refer to Section 17.2. This input is otherwise a standard Schmitt logic input, and can also be driven by an open-drain type driver.
R0, R1	Bias	40, 41	Đ	Current setting resistor pins These pins are connected to an external resistance to set the internal operating currents and cable driver output currents. A resistance of 6.34 k Ω ±1% is required to meet the IEEE 1394±1995 Std. output voltage limits.

Name	Pin Type	Pin Numbers	1/0	Description
SYSCLK	CMOS	2	0	System clock output. Provides a 49.152 MHz clock signal, synchronized with data transfers, to the LLC.
TEST0	CMOS	29	Ī	Test control input. This input is used in manufacturing tests of the PDI1394P25. For normal use, this terminal should be tied to GND.
TEST1	CMOS	28	i	Test control input. This input is used in manufacturing tests of the PDI1394P25. For normal use, this terminal should be tied to GND. Other vendors' pin compatible chips may require connections and external circuitry on this pin.
TESTM	CMOS	27	1	Test control input. This input is used in manufacturing tests of the PDI1394P25. For normal use, this terminal should be tied to V_{DD} .
TPA0+	Cable	37	I/O	Twisted-pair cable A differential signal terminals. Board traces from each pair of positive and negative differential signal terminals should be kept matched and as short as possible to the external load resistors and to the cable connector.
TPA0±	Cable	36	1/0	
TPB0+	Cable	35	1/0	Twisted-pair cable B differential signal terminals. Board traces from each pair of positive and negative differential signal terminals should be kept
TPB0±	Cable	34	1/0	matched and as short as possible to the external load resistors and to the cable connector.
TPBIAS0	Cable	38	I/O	Twisted-pair bias output. This provides the 1.86 V nominal bias voltage needed for proper operation of the twisted-pair cable drivers and receivers, and for signaling to the remote nodes that there is an active cable connection. These terminals must be decoupled with a 0.3 $\mu\text{F}\pm1~\mu\text{F}$ capacitor to ground.
XO, XI	Crystal	59, 60	Đ	Crystal oscillator inputs. These terminals connect to a 24.576 MHz parallel resonant fundamental mode crystal. The optimum values for the external shunt capacitors are dependent on the specifications of the crystal used. Can also be driven by an external clock generator (leave XO unconnected in this case and start supplying the external clock before resetting the PDI1394P25). For more information, refer to Section 17.5

DVDR980-985 /0X1

BLOCK DIAGRAM

7.0 FUNCTIONAL SPECIFICATION

The PDI1394P25 requires only an external 24.576 MHz crystal as a reference. An external clock can be connected to XI instead of a crystal. An internal oscillator drives an internal phase-locked loop (PLL), which generates the required 393.216 MHz reference signal. This reference signal is internally divided to provide the clock signals used to control transmission of the outbound encoded Strobe and Data information. A 49.152 MHz clock signal, supplied to the associated LLC for synchronization of the two chips, is used for resynchronization of the received data. The Power Down (PD) function, when enabled by asserting the PD terminal high, stops operation of the PLL and disables all circuits except the cable bias detectors at the TPB terminals. The port transmitter circuitry and the receiver circuitry are also disabled when the port is disabled, suspended, or disconnected.

The PDI1 394P25 supports an optional isolation barrier between itself and its LLC. When the ISO input terminal is tied high, the LLC interface outputs behave normally. When the ISO terminal is tied low, internal differentiating logic is enabled, and the outputs are driven such that they can be coupled through a capacitive or transformer galvanic isolation barrier as described in IEEE 1394a section 5.9.4. To operate with single capacitor (bus holder) isolation, the ISO on the PHY terminal must be tied high. For more details on using single capacitor isolation, please refer to the Philips Isolation Application Note AN2452.

Data bits to be transmitted through the cable ports are received from the LLC on two, four or eight parallel paths (depending on the requested transmission speed). They are latched internally in the PDI1394P25 in synchronization with the 49.152 MHz system clock. These bits are combined serially, encoded, and transmitted at 98.304/196.608/392.216 Mbps (referred to as \$100, \$200, and S400 speed, respectively) as the outbound data-strobe information stream. During transmission, the encoded data information is transmitted differentially on the TPB cable pair(s), and the encoded strobe information is transmitted differentially on the TPA cable pair(s).

During packet reception the TPA and TPB transmitters of the receiving cable port are disabled, and the receivers for that port are enabled. The encoded data information is received on the TPA cable pair, and the encoded strobe information is received on the TPB cable pair. The received data-strobe information is decoded to recover the receive clock signal and the serial data bits. The serial

data bits are split into two-, four- or eight-bit parallel streams (depending upon the indicated receive speed), resynchronized to the local 49.152 MHz system clock and sent to the associated LLC.

Both the TPA and TPB cable interfaces incorporate differential comparators to monitor the line states during initialization and arbitration. The outputs of these comparators are used by the internal logic to determine the arbitration status. The TPA channel monitors the incoming cable common-mode voltage. The value of this common-mode voltage is used during arbitration to set the speed of the next packet transmission (speed signaling). In addition, the TPB channel monitors the incoming cable common-mode voltage on the TPB pair for the presence of the remotely supplied twisted-pair bias voltage (cable bias detection).

The PDI1394P25 provides a 1.86 V nominal bias voltage at the TPBIAS terminal for port termination. The PHY contains two independent TPBIAS circuits. This bias voltage, when seen through a cable by a remote receiver, indicates the presence of an active connection. This bias voltage source must be stabilized by an external filter capacitor of 0.3 µF±1 µF.

The line drivers in the PDI1394P25 operate in a high-impedance current mode, and are designed to work with external 112 Ω line-termination resistor networks in order to match the 110 Ω cable impedance. One network is provided at each end of all twisted-pair cable connections. Each network is composed of a pair of series-connected 56 Ω resistors. The midpoint of the pair of resistors that is directly connected to the twisted-pair A terminals is connected to its corresponding TPBIAS voltage terminal. The midpoint of the pair of resistors that is directly connected to the twisted-pair B terminals is coupled to ground through a parallel R-C network with recommended values of 5 k Ω and 220 pF. The values of the external line termination resistors are designed to meet the standard specifications when connected in parallel with the internal receiver circuits. An external resistor connected between the R0 and R1 terminals sets the driver output current, along with other internal operating currents. This current setting resistor has a value of 6.34 k Ω ±1%.

When the power supply of the PDI1394P25 is removed while the twisted-pair cables are connected, the PDI1394P25 transmitter and receiver circuitry presents a high impedance to the cable in order to not load the TPBIAS voltage on the other end of the cable.

The TEST0 and TEST1 terminals are used to set up various manufacturing test conditions. For normal operation, they should be connected to ground. TEST1 can also be tied through a 1 $k\Omega$ resistor to ground to accommodate other vendors' pin compatible

The TESTM terminal is used to set up various manufacturing test conditions. For normal operation it should be tied to V_{DD}.

Four package terminals, used as inputs to set the default value for four configuration status bits in the self-ID packet, should be hard-wired high or low as a function of the equipment design. The PC0±PC2 terminals are used to indicate the default power-class status for the node (the need for power from the cable or the ability to supply power to the cable). See Table 21 for power class encoding. The C/LKON terminal is used as an input to indicate that the node is a contender for bus manager.

The PHY supports suspend/resume as defined in the IEEE 1394a specification. The suspend mechanism allows pairs of directly connected ports to be placed into a low power state while maintaining a port-to-port connection between 1394 bus segments. While in a low power state, a port is unable to transmit or receive data transaction packets. However, a port in a low power state is

capable of detecting connection status changes and detecting incoming TPBIAS. When the PDI1394P25's port is suspended, all circuits except the bias-detection circuits are powered down, resulting in significant power savings. The TPBIAS circuit monitors the value of incoming TPA pair common-mode voltage when local TPBIAS is inactive. Because this circuit has an internal current source and the connected node has a current sink, the monitored value indicates the cable connection status. This monitor is called connect-detect.

Both the cable bias-detect monitor and TPBIAS connect-detect monitor are used in suspend/resume signaling and cable connection detection. For additional details of suspend/resume operation, refer to the 1394a specification. The use of suspend/resume is recommended for new designs.

The port transmitter and receiver circuitry is disabled during power down (when the PD input terminal is asserted high), during reset (when the RESET input terminal is asserted low), when no active cable is connected to the port, or when controlled by the internal arbitration logic. The port twisted-pair bias voltage circuitry is disabled during power down, during reset, or when the port is disabled as commanded by the LLC.

The CNA (cable-not-active) terminal provides a high when the twisted-pair cable port is not receiving incoming bias (i.e., it is either disconnected or suspended), and can be used along with LPS to determine when to power-down the PDI1394P25. The CNA output is not debounced. When the PD terminal is asserted high, the CNA detection circuitry is enabled (regardless of the previous state of the ports) and a pull-down is activated on the RESET terminal so as to force a reset of the PDI1394P25 internal logic.

The LPS (link power status) terminal works with the C/LKON terminal to manage the power usage in the node. The LPS signal from the LLC is used in conjunction with the LCtrl bit (see Table 1 and Table 2) to indicate the active/power status of the LLC. The LPS signal is also used to reset, disable, and initialize the PHY-LLC interface (the state of the PHY-LCC interface is controlled solely by the LPS input regardless of the state of the LCtrl bit).

The LPS input is considered inactive if it remains low for more than 2.6 μs and is considered active otherwise. When the PDI1394P25 detects that LPS is inactive, it will place the PHY-LLC interface into a low-power reset state in which the CTL and D outputs are held in the logic zero state and the LREQ input is ignored; however, the SYSCLK output remains active. If the LPS input remains low for more than 26 μs, the PHY-LLC interface is put into a low-power disabled state in which the SYSCLK output is also heldinactive. The PHY-LLC interface is also held in the disabled state during hardware reset. The PDI1394P25 will continue the necessary repeater functions required for normal network operation regardless of the state of the PHY-LLC interface. When the interface is inthe reset or disabled state and LPS is again observed active, the PHY will initialize the interface and return it to normal operation.

The PHY uses the C/LKON terminal to notify the LLC to power up and become active. When activated, the C/LKON signal is a square wave of approximately 163 ns period. The PHY activates the C/LKON output when the LLC is inactive and a wake-up event occurs. The LLC is considered inactive when either the PS input is inactive, as described above, or the LCtrl bit is cleared > 0. A wake-up event occurs when a link-on PHY packet addressed to this node is received, or conditionally when a PHY interrupt occurs. The PHY deasserts the C/LKON output when the LLC becomes active (both LPS active and the LCtrl bit set to 1). The PHY also deasserts

9.9.2 IC7103: PDI1394L40

Philips Semiconductors

Preliminary specification

1394 enhanced AV link layer controller

PDI1394L40

1.0 FEATURES

- IEEE1394a and IEEE1394-1995 Standard Link Layer Controller
- Hardware Support for the IEC61883 International Standard of Digital Interface for Consumer Electronics
- Interface to any IEEE 1394-1995 or 1394a Physical Layer Interface
- 5 V Tolerant I/Os
- Single 3.3 V supply voltage
- Full-duplex isochronous operation
- Operates with 400/200/100 Mbps physical layer devices
- 12K byte fully programmable FIFO pool for isochronous and
- Supports single capacitor isolation mode and IEEE 1394–1995, Annex J. isolation
- 6-field deep SYT buffer added to enhance real-time isochronous synchronization using the AVFSYNC pin
- Generates its own AV port clocks under software control. Select one of three frequencies: 24.576, 12.288, or 6.144 MHz
- On chip timer resources
- Flexible 8/16 bit multiplexed/non-multiplexed host interface
- Parallel AV interface

2.0 DESCRIPTION

The PDI11394L40, Philips Semiconductors Full Duplex 1394 Audio/Video (AV) Link Layer Controller, is an IEEE 1394a-2000 compliant link layer controller featuring 2 embedded AV layer interfaces

The application data is packetized according to the iEC 61883 International Standard of Interface for Consumer Electronic Audio/Video Equipment. Both AV layer interfaces are byte-wide ports capable or accommodating various MPEG-2 and DVC codecs. A flexible host interface is provided for internal register configuration as well as performing asynchronous data transfers. Both 8 bit and 16 bit wide data paths, as well as multiplexed/non-multiplexed access modes are supported.

The PDI1394L40 is powered by a single 3.3 V power supply and the inputs and outputs are 5 V tolerant. It is available in the LQFP144 package.

3.0 QUICK REFERENCE DATA

GND = 0 V; Tamb = 25 °C

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{DD}	Functional supply voltage range		3.0	3.3	3.6	٧
loo	Supply current @ V _{DD} = 3.3 V	Operating		110	200	mA
SCLK	Device clock		49.147	49.152	49.157	MHz

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
144-pin LQFP144	0 to +70 °C	PDI1394L40BE	PDI1394L40BE	SOT486-1

NOTE:

This datasheet is subject to change. Please visit our internet website www.semiconductors.philips.com/1394 for latest changes.

1394 enhanced AV link layer controller

PDI1394L40

PIN CONFIGURATION

Philips Semiconductors

Preliminary specification

1394 enhanced AV link layer controller

DVDR980-985 /0X1

PDI1394L40

6.0 FUNCTIONAL DIAGRAM

INTERNAL BLOCK DIAGRAM

3

1394 enhanced AV link layer controller

PDI1394L40

6.0 FUNCTIONAL DIAGRAM

INTERNAL BLOCK DIAGRAM

2000 Dec 15

Philips Semiconductors

Preliminary specification

1394 enhanced AV link layer controller

PDI1394L40

APPLICATION DIAGRAM

9.0 PIN DESCRIPTION

Host Interface

PIN No.	PIN SYMBOL	1/0	NAME AND FUNCTION			
13, 14, 15, 16, 19, 20, 21, 22	HIF AD[7:0]	1/0	Host Interface Data 7 (MSB) through 0. Byte wide data path to internal registers.			
1, 2, 3, 4, 7, 8, 9, 10	HIF D[15:8]	1/0	Host Interface Data 15 (MSB) through 8. Only used in 16 bit access mode (HIF 16BIT = HIGH).			
26, 27, 28, 29, 30, 31, 32, 33	HIF A[7:0]	⁻ 1/O	Host Interface Address 0 through 8. Provides the host with a byte wide interface to internal registers. See description of Host Interface for addressing rules (Section 12.5).			
` ⁻ 25	HIF A8	1	Control bit used to indicate the first byte/word of a read function or the last byte/word of a write function so that the data quadlet is fetched or stored. See Section 12.5 for more information regarding the host interface.			
36	HIF CSN	ı	Chip Select (active LOW). Host bus control signal to enable access to the FIFO and control and status registers.			
⁻ 37	-HIF WRN	1	Write enable. When asserted (LOW) in conjunction with HIF CSN, a write to the PDI1394L40 internal registers is requested. (NOTE: HIF WRN and HIF RDN: if these are both LOW in conjunction with HIF CSN, then a write cycle takes place. This can be used to connect CPUs, that use R/W_N line rather than separate RD_N and WR_N lines. In that case, connect the R/W_N line to the HIF WRN and tie HIF RDN LOW.)			
38	HIF INTN	·o	Interrupt (active LOW). Indicates a interrupt internal to the PDI1394L40. Read the General Interrupt Register for more information. This pin is open drain and requires a $1K\Omega$ pull-up resistor.			
39	HIF ALE	1	Address latch enable. Used in multiplex mode only.			
40	HIF RDN	Ι.	Read enable. When asserted (LOW) in conjunction with HIF CSN, a read of the PDI1394L40 internal registers is requested.			
41	HIF WAIT	0	Wait signal. Signals Host interface in WAIT condition when HI. See Section 12.5.			
42	RESETN	ı	Reset (active LOW). The asynchronous master reset to the PDI1394L40.			
45	HIF 16BIT	ı	Host interface mode pin. When LOW HIF operates in 8 bit mode. When HIGH HIF operates in 16 bit mode.			
46	HIF MUX	ı	Host interface mode pin. When LOW HIF operates in non-multiplex mode, when HIGH HIF operates in multiplex mode. When HIGH, the low-order eight address bits are multiplexed with data on HIF AD[7:0], otherwise they are non-multiplexed and supplied on A[7:0].			

1394 enhanced AV link layer controller

PDI1394L40

9.2 AV Interface 1

NOTE: This AV interface may be configured to transmit or receive according to the condition of "DIRAV1" bit in GLOBCSR register (0x018)—default is transmit.

PIN No.	PIN SYMBOL	1/0	NAME AND FUNCTION			
96	AV1ERR0	ō	CRC error. Indicates bus packet delivered on AV1 D[7:0] had a CRC error; the current AV packet is unreliable.			
97	AV1ERR1	0	Sequence Error. Indicates at least one source packet was lost before the current AV1 D [7:0] data.			
98	AV1ENDPCK	ı	End of application packet indication from data source. Required only if input packet is not multiple of 4 bytes. It can be tied LOW for data packets that are 4*N in size.			
99	AV1CLK	- I/O	External application clock. Rising edge active. This pin can be programmed to be an output and the application clock. Depending on the configuration of AV Port 1 as transmitter or receinthe output enable is located in the ITXPKCTL register (address 0x020) or IRXPKCTL regist (address 0x040).			
100	AV1FSYNC	· I/O	Programmable frame sync, is set to input when AV interface 1 is a transmitter and to output when the interface is configured as a receiver. When the pin is an input, it is used to design a frame of data for Digital Video (DV). The signal is time stamped and transmitted in the SY field of ITXHQ2. When set to an output, the signal is derived from SYT field of IRXHQ2.			
⁻ 101	AV1 SY	- 1/O	SY Value. When port AV1 is configured as a transmitter, this pin is an input. When the AV pois configured to as a receiver, the pin is an output. See the description for bit 0 of the ITXCTL (0x034) and IRXCTL (0x054) registers.			
102	AV1VALID	1/0	Indicates data on AV1 D [7:0] is valid.			
103	-AV1SYNC	- 1/O	Indicates that the data currently being clocked by the source under the condition of AV1VALID is the start of an application packet. If the AV interface is configured as a receiver, then it will assert AV1SYNC when an application packet becomes available and persist until the first data of the packet is clocked out. Thus, AV1VALID may last for more than one cycle, but for exactly one cycle in which AV1VALID is asserted.			
117, 116, 115, 114, 111, 110, 109, 108	AV1 D[7:0]	1/0	Audio/Video Data 7 (MSB) through 1. Part of byte-wide interface to the AV layer 1.			
		ı	When the AV port is configured as a receiver, this pin is an input. This is a flow control signal that allows the application to indicate whether it is able to accept data flowing across AV Interface 1. The AV interface responds to an inactive AV1READY by not asserting AV1VALID, and thereby withholding data from the application.			
	_		The AV1READY signal is processed through one level of pipelining, which means that the AV Link will accept data on the cycle in which AV1READY is de-asserted and will not accept data on the cycle in which AV1READY is asserted.			
118	AV1READY	ADY O	When the AV port is configured to transmit, this pin is an output. This is a flow control signal that allows the link chip to indicate whether it is able to accept data flowing across AV Interface 1. The source of data, an external entity, responds to an inactive AV1READY by not asserting AV1VALID, and thereby withholding data.			
			The AV1READY signal should be processed by the sink through one level of pipelining, which means that the receiver must be able to accept data on the cycle in which AV1READY is de-asserted. The receiving interface does not have to accept data on the cycle in which AV1READY is asserted.			

Philips Semiconductors

Preliminary specification

1394 enhanced AV link layer controller

PDI1394L40

9.3 AV Interface 2

NOTE: This AV interface may be configured to transmit or receive according to the condition of "DIRAV1" bit in GLOBCSR register—default is receive.

PIN No.	PIN SYMBOL	VO	NAME AND FUNCTION
⁻ 121	AV2ERR0/ LTLEND	Î/O	CRC error, indicates bus packet containing AV2 D [7:0] had a CRC error, the current AV packet is unreliable. This pin is also used to input the mode of LTLEND (Little Endian) bit after a chip reset. An appropriate pull-up or pull-down resistor (22 k Ω recommended) should be connected to place the pin in the desired state during reset. Please see details related to use of the LTLEND bit in the "Host Interface" section (of the datasheet (Section 12.5).
122	AV2ERR1/ DATINV	-1/O	Sequence Error. Indicates at least one source packet was lost before the current AV2 D [7:0] data. This pin is also used to input the mode of DATINV (Data Invariant) bit after a chip reset. An appropriate pull-up or pull-down resistor (22 k Ω recommended) should be connected to place the pin in the desired state during reset. Please see details related to use of the DATINV bit in the "Host Interface" section (of the datasheet (Section 12.5).
123	AV2ENDPCK	1	End of application packet indication from data source. Required only if input packet is not multiple of 4 bytes. It can be tied LOW for data packets that are 4*N in size.
124	AV2CLK	· I/O	External application clock. Rising edge active. This pin can be programmed to be an output and the application clock. Depending on the configuration of AV Port 2 as transmitter or receiver, the output enable is located in the ITXPKCTL register (address 0x020) or IRXPKCTL register (address 0x040).
125	AV2FSYNC	1/O	Programmable frame sync, is set to input when AV interface 2 is a transmitter, and to output when the interface is configures as a receiver. When the pin is an input, it is used to designate a frame of data for Digital Video (DV). The signal is time stamped and transmitted in the SYT field of ITXHQ2. When set to an output, the signal is derived from SYT field of IRXHQ2.
126	AV2 SY	ī/O	SY Value: When port AV2 is configured as a transmitter, this pin is an input. When the AV port is configured to as a receiver, the pin is an output. See the description for bit 0 of the ITXCTL (0x034) and IRXCTL (0x054) registers.
127	AV2VALID	1/0	Indicates data on AV2 D [7:0] is valid.
⁻ 128	-AV2SYNC	- I/O	Indicates that the data currently being clocked by the source under the condition of AV2VALID is the start of an application packet. If the AV interface is configured as a receiver, then it will assert AV2SYNC when an application packet becomes available and persist until the first data of the packet is clocked out. Thus, AV2VALID may last for more than one cycle, but for exactly one cycle in which AV2VALID is asserted.
14 2 , 14 1 , 140, 139, 136, 135, 134, 133	AV2 D[7:0]	1/0	Audio/Video Data 7 (MSB) through 0. Part of byte-wide interface to the AV layer 2.
		-	When the AV port is configured as a receiver, this pin is an input. This is a flow control signal that allows the application to indicate whether it is able to accept data flowing across AV Interface 2. The AV interface responds to an inactive AV2READY by not asserting AV2VALID, and thereby withholding data from the application.
			The AV2READY signal is processed through one level of pipelining, which means that the AV Link will accept data on the cycle in which AV2READY is de-asserted and will not accept data on the cycle in which AV2READY is asserted.
⁻ 143	AV2READY		When the AV port is configured to transmit, this pin is an output. This is a flow control signal that allows the link chip to indicate whether it is able to accept data flowing across AV Interface 2. The source of data, and external entity, responds to an inactive AV2READY by not asserting AV2VALID, and thereby withholding data.
		ō	The AV2READY signal should be processed by the sink through one level of pipelining, which means that the receiver must be able to accept data on the cycle in which AV2READY is de-asserted. The receiving interface does not have to accept data on the cycle in which AV2READY is asserted.

1394 enhanced AV link layer controller

PDI1394L40

9.4 Phy Interface

PIN No.	PIN SYMBOL	VO	NAME AND FUNCTION
82, 81, 80, 79, 76, 75, 74, 73	PHY D[0:7]	· I/O	Data 0 (MSB) through 7 (NOTE: To preserve compatibility to the specified Link-Phy interface of the IEEE 1394–1995 standard, Annex J, bit 0 is the most significant bit). Data is expected on AV D[0:1] for 100Mb/s, AV D[0:3] for 200Mb/s, and AV D[0:7] for 400Mb/s. See IEEE 1394–1995 standard, Annex J for more information.
86, 85	PHY CTL[0:1]	1/0	Control Lines between Link and Phy. See 1394 Specification for more information.
47	1394 MODE	1	1394–1995 Annex J PHY (HIGH), or 1394a PHY (LOW)
87	LREQ	ō	Link Request. Bus request to access the PHY. See IEEE 1394–1995 standard, Annex J for more information. (Used to request arbitration or read/write PHY registers).
88	SCLK	ı	System clock. 49.152MHz input from the PHY (the PHY-LINK interface operates at this frequency).
91	LPS	0	Link power status. Outputs a frequency (typically 1.4 MHz) with 25% duty cycle which tells the PHY chip that the L40 is active.
92	LINKON	1	L40 generates a host interrupt when this pin receives a link on signal from the PHY. Interrupt is a request from another node for the L40 to be powered up (see PD pin).
93	ISON	ı	Isolation mode. This pin is asserted (LOW) when an Annex J type isolation barrier is used. See IEEE 1394–1995 Annex J. for more information. When tied HIGH, this pin enables internal bushold circuitry on the affected PHY interface pins (see below). Active bushold circuits allow either the direct connection to PHY pins or the use of the single capacitor isolation mode.

9.5 Other Pins

PIN No.	PIN SYMBOL	1/0	NAME AND FUNCTION			
5, 11, 17, 23, 34, 43, 53, 60, 69, 77, 83, 89, 94, 106, 112, 119, 131, 137	GND		Ground reference			
6, 12, 18, 24, 35, 44, 54, 61, 70, 78, 84, 90, 95, 107, 113, 120, 132, 138	· V _{DD}		3.3 V ± 0.3 V power supply			
48	PD1,2,3,4	ı	Power Down. When asserted (high), the AV Link goes into a low power mode and de-asserts the LPS pin. When in this state, reads and writes to the registers are not allowed. The AV Link will resume operation when PD is de-asserted (low), all register settings and configurations are restored to their pre power down values.			
49, 50, 51, 52, 58, 59, 65, 66, 67, 68, 71, 72 104, 105, 129, 130, 144	RESERVED	-NA	These pins are reserved for factory testing. For normal operation they should be connected to ground.			
55	CLK50	0	Auxiliary clock, value is SCLK (usually 49.152 MHz)			
56	CYCLEIN	ı	Provides the capability to supply an external cycle timer signal for the beginning of 1394 bus cycles.			
57	CYCLEOUT	0	Reproduces the 8kHz cycle clock of the cycle master.			
62, 63, 64	TESTPIN		Test pins. These signals must be connected to ground.			

Before asserting the RPL bit, SWPD or setting the PD pin high, the user should assure that the link chip is in the following state of operation:

- 1. The isochronous transmit FIFO is not receiving data for transmission
- 2. The isochronous transmitter is disabled
- No asynchronous packets are being generated for transmission
 Both the ASYNC request and response queues are empty

9.9.3 IC7203: P89C51RD

80C51 8-bit Flash microcontroller family 16KB/32KB/64KB ISP/IAP Flash with 512B/512B/1KB RAM

P89C51RB2/P89C51RC2/ P89C51RD2

DESCRIPTION

The P89C51RB2/RC2/RD2 device contains a non-volatile 16kB/32kB/64kB Flash program memory that is both parallel programmable and serial In-System and In-Application Programmable. In-System Programming (ISP) allows the user to download new code while the microcontroller sits in the application. In-Application Programming (IAP) means that the microcontroller fetches new program code and reprograms itself while in the system. This allows for remote programming over a modern link. A default serial loader (boot loader) program in ROM allows serial In-System programming of the Flash memory via the UART without the need for a loader in the Flash code. For In-Application Programming, the user program erases and reprograms the Flash memory by use of standard routines contained in ROM.

This device executes one machine cycle in 6 clock cycles, hence providing twice the speed of a conventional 80C51. An OTP configuration bit lets the user select conventional 12 clock timing if desired.

This device is a Single-Chip 8-Bit Microcontroller manufactured in advanced CMOS process and is a derivative of the 80C51 microcontroller family. The instruction set is 100% compatible with the 80C51 instruction set.

The device also has four 8-bit I/O ports, three 16-bit timer/event counters, a multi-source, four-priority-level, nested interrupt structure, an enhanced UART and on-chip oscillator and timing circuits.

The added features of the P89C51RB2/RC2/RD2 makes it a powerful microcontroller for applications that require pulse width modulation, high-speed I/O and up/down counting capabilities such as motor control.

FEATURES

80C51 Central Processing Unit

On-chip Flash Program Memory with In-System Programming (ISP) and In-Application Programming (IAP) capability

Boot ROM contains low level Flash programming routines for downloading via the UART

Can be programmed by the end-user application (IAP)

6 clocks per machine cycle operation (standard)

12 clocks per machine cycle operation (optional)

Speed up to 20 MHz with 6 clock cycles per machine cycle (40 MHz equivalent performance); up to 33 MHz with 12 clocks per machine cycle

Fully static operation

RAM expandable externally to 64 kB

4 level priority interrupt

7 interrupt sources

Four 8-bit I/O ports

Full-duplex enhanced UART

- ± Framing error detection
- Automatic address recognition

Power control modes

- ± Clock can be stopped and resumed
- + Idle mode
- Power down mode

Programmable clock out

Second DPTR register

Asynchronous port reset

Low EMI (inhibit ALE)

Programmable Counter Array (PCA)

- ± PWM
- ± Capture/compare

BLOCK DIAGRAM

80C51 8-bit Flash microcontroller family 16KB/32KB/64KB ISP/IAP Flash with 512B/512B/1KB RAM

P89C51RB2/P89C51RC2/ P89C51RD2

LOGIC SYMBOL

PINNING

Plastic Dual In-Line Package

Plastic Leaded Chip Carrier

Plastic Quad Flat Pack

80C51 8-bit Flash microcontroller family 16KB/32KB/64KB ISP/IAP Flash with 512B/512B/1KB RAM

P89C51RB2/P89C51RC2/ P89C51RD2

PIN DESCRIPTIONS

		IN NUMBE	R			
MNEMONIC	PDIP	PLCC	LQFP	TYPE	NAME AND FUNCTION	
V _{SS}	20	22	16	ı	Ground: 0 V reference.	
V _{CC}	40	44	38	1	Power Supply: This is the power supply voltage for normal, idle, and power-down operation.	
P0.0±0.7	39±32	43±36	37±30	1/0	Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s	
P1.0±P1.7	1±8	2±9	40±44, 1±3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups on all pins except P1.6 and P1.7 which are open drain. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _{IL}).	
	1	2	40	1/0	Alternate functions for 89C51RB2/RC2/RD2 Port 1 include: T2 (P1.0): Timer/Counter 2 external count input/Clockout (see Programmable Clock-Out)	
	2 .	3	41		T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control	
	3	4	42	1	ECI (P1.2): External Clock Input to the PCA	
	4	5	43	1/0	CEX0 (P1.3): Capture/Compare External I/O for PCA module 0	
	5	6	44	1/0	CEX1 (P1.4): Capture/Compare External I/O for PCA module 1	
	6	7	1	1/0	CEX2 (P1.5): Capture/Compare External I/O for PCA module 2	
	7	8	2	1/0	CEX3 (P1.6): Capture/Compare External I/O for PCA module 3	
	8	9	3	1/0	CEX4 (P1.7): Capture/Compare External I/O for PCA module 4	
P2.0±P2.7	21±28	24±31	18±25	I/O	Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register.	
					P2.7 must be a ^a l ^o to program and erase the device.	
P3.0±P3.7	10±17	11, 13±19	5, 7±13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: I _{IL}). Port 3 also serves the special features of the 89C51RB2/RC2/RD2, as listed below:	
	10	11	5	ı	RxD (P3.0): Serial input port	
	11	13	7	0	TxD (P3.1): Serial output port	
	12	14	8	1	INTO (P3.2): External interrupt	
	13	15	9	1	INT1 (P3.3): External interrupt	
	14	16	10	1	T0 (P3.4): Timer 0 external input	
	15	17	11	- 1	T1 (P3.5): Timer 1 external input	
	16	.18	12	0	WR (P3.6): External data memory write strobe	
	17	19	13	0	RD (P3.7): External data memory read strobe	
RST	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is rurning, resets the device. An internal resistor to V _{SS} permits a power-on reset using only an external capacitor to V _{CC} .	
ALE	30	33	27	0	Address Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted twice every machine cycle, and can be used for external timing or clocking. Not e that one	
					ALE pulse is skipped during each access to external thing of clocking. Note that the ALE pulse is skipped during each access to external data memory. ALE an be disabled by setting SFR auxiliary.0. With this bit set, ALE will be active on ly during a MOVX instruction.	

80C51 8-bit Flash microcontroller family 16KB/32KB/64KB ISP/IAP Flash with 512B/512B/1KB RAM

P89C51RB2/P89C51RC2/ P89C51RD2

MNEMONIC	Р	PIN NUMBER		TYPE	NAME AND FUNCTION
	PDIP	PLCC	LQFP	ITPE	NAME AND FONCTION
PSEN	29	32	26	0	Program Store Enable: The read strobe to external program memory. When executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
EA/V _{PP}	31	35	29	ı	External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations. If EA is held high, the device executes from internal program memory. The value on the EA pin is latched when RST is released and any subsequent changes have no effect. This pin also receives the programming supply voltage (V _{PP}) during Flash programming.
XTAL1	19	21	15	ı	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier.

To avoid a latch-up o effect at power-on, the voltage on any pin (other than V_{PP}) must not be higher than V_{CC} + 0.5 V or less than V_{SS} ± 0.5 V.

9.9.4 IC7303: FPGA/EPLD

Spartan and Spartan-XL Families Field Programmable Gate Arrays

DS060 (v1.6) September 19, 2001

Product Specification

Introduction

The Spartan[™] and the Spartan-XL families are a high-volume production FPGA solution that delivers all the key requirements for ASIC replacement up to 40,000 gates. These requirements include high performance, on-chip RAM, core solutions and prices that, in high volume, approach and in many cases are equivalent to mask programmed ASIC devices.

The Spartan series is the result of more than 14 years of FPGA design experience and feedback from thousands of customers. By streamlining the Spartan series feature set, leveraging advanced process technologies and focusing on total cost management, the Spartan series delivers the key features required by ASIC and other high-volume logic users while avoiding the initial cost, long development cycles and inherent risk of conventional ASICs. The Spartan and Spartan-XL families in the Spartan series have ten members, as shown in Table 1.

Spartan and Spartan-XL Features

Note: The Spartan series devices described in this data sheet include the 5V Spartan family and the 3.3V Spartan-XL family. See the separate data sheet for the 2.5V Spartan-II family.

- First ASIC replacement FPGA for high-volume production with on-chip RAM
- Density up to 1862 logic cells or 40,000 system gates
- Streamlined feature set based on XC4000 architecture
- System performance beyond 80 MHz
- Broad set of AllianceCORE™ and LogiCORE™ predefined solutions available
- Unlimited reprogrammability
- Low cost

- System level features
 - Available in both 5V and 3.3V versions
 - On-chip SelectRAM™ memory
 - Fully PCI compliant
 - Full readback capability for program verification and internal node observability
 - Dedicated high-speed carry logic
 - Internal 3-state bus capability
 - Eight global low-skew clock or signal networks
 - IEEE 1149.1-compatible Boundary Scan logic
 - Low cost plastic packages available in all densities
 - Footprint compatibility in common packages
- Fully supported by powerful Xilinx development system
 - Foundation Series: Integrated, shrink-wrap software
 - Alliance Series: Dozens of PC and workstation third party development systems supported
 - Fully automatic mapping, placement and routing

Additional Spartan-XL Features

- 3.3V supply for low power with 5V tolerant I/Os
- Power down input
- Higher performance
- Faster carry logic
- More flexible high-speed clock network
- · Latch capability in Configurable Logic Blocks
- · Input fast capture latch
- Optional mux or 2-input function generator on outputs
- 12 mA or 24 mA output drive
- 5V and 3.3V PCI compliant
- Enhanced Boundary Scan
- · Express Mode configuration
- Chip scale packaging

Table 1: Spartan and Spartan-XL Field Programmable Gate Arrays

Device	Logic Cells	Max System Gates	Typical Gate Range (Logic and RAM) ⁽¹⁾	CLB Matrix	Total CLBs	No. of Flip-flops	Max. Avail. User I/O	Total Distributed RAM Bits
XCS05 and XCS05XL	238	5,000	2,000-5,000	10 x 10	100	360	77	3,20 O
XCS10 and XCS10XL	466	10,000	3,000-10,000	14 x 14	196	616	112	6,272
XCS20 and XCS20XL	950	20,000	7,000-20,000	20 x 20	400	1,120	160	12,800
XCS30 and XCS30XL	1368	30,000	10,000-30,000	24 x 24	576	1,536	192	18,432
XCS40 and XCS40XL	1862	40,000	13,000-40,000	28 x 28	784	2,016	224	25,088

Notes:

1. Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

General Overview

Spartan series FPGAs are implemented with a regular, flexible, programmable architecture of Configurable Logic Blocks (CLBs), interconnected by a powerful hierarchy of versatile routing resources (routing channels), and surrounded by a perimeter of programmable Input/Output Blocks (IOBs), as seen in Figure 1. They have generous routing resources to accommodate the most complex interconnect patterns.

The devices are customized by loading configuration data into internal static memory cells. Re-programming is possible an unlimited number of times. The values stored in these

memory cells determine the logic functions and interconnections implemented in the FPGA. The FPGA can either actively read its configuration data from an external serial PROM (Master Serial mode), or the configuration data can be written into the FPGA from an external device (Slave Serial mode).

Spartan series FPGAs can be used where hardware must be adapted to different user applications. FPGAs are ideal for shortening design and development cycles, and also offer a cost-effective solution for production rates well beyond 50,000 systems per month.

Figure 1: Basic FPGA Block Diagram

Pin Descriptions

There are three types of pins in the Spartan/XL devices:

- Permanently dedicated pins
- User I/O pins that can have special functions
- Unrestricted user-programmable I/O pins.

Before and during configuration, all outputs not used for the configuration process are 3-stated with the I/O pull-up resistor network activated. After configuration, if an IOB is unused it is configured as an input with the I/O pull-up resistor network remaining activated.

Any user I/O can be configured to drive the Global Set/Reset net GSR or the global three-state net GTS. See Global Signals: GSR and GTS, page 20 for more informa-

Device pins for Spartan/XL devices are described in Table 18.

Table 18: Pin Descriptions

Pin Name	I/O During Config.	I/O After Config.	Pin Description
Permanently D	Dedicated P	ins	
V _{CC}	Х	X	Eight or more (depending on package) connections to the nominal +5V supply voltage (+3.3V for Spartan-XL devices). All must be connected, and each must be decoupled with a 0.01 –0.1 μ F capacitor to Ground.
GND	X	Х	Eight or more (depending on package type) connections to Ground. All must be connected.
CCLK	I or O	ı	During configuration, Configuration Clock (CCLK) is an output in Master mode and is an input in Slave mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on Spartan/XL devices, except during Readback. See Violating the Maximum High and Low Time Specification for the Readback Clock, page 39 for an explanation of this exception.
DONE	I/O	0	DONE is a bidirectional signal with an optional internal pull-up resistor. As an open-drain output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs. The optional pull-up resistor is selected as an option in the program that creates the configuration bitstream. The resistor is included by default.
PROGRAM	1	I	PROGRAM is an active Low input that forces the FPGA to clear its configuration memory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT. The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to VCC.
MODE (Spartan)	ı	X	The Mode input(s) are sampled after INIT goes High to determine the configuration mode to be used.
M0, M1 (Spartan-XL)			During configuration, these pins have a weak pull-up resistor. For the most popular configuration mode, Slave Serial, the mode pins can be left unconnected. For Master Serial mode, connect the Mode/M0 pin directly to system ground.

Spartan and Spartan-XL Families Field Programmable Gate Arrays

Table 18: Pin Descriptions (Continued)

Pin Name	I/O During Config.	I/O After Config.	Pin Description
PWRDWN	I	I	PWRDWN is an active Low input that forces the FPGA into the Power Down state and reduces power consumption. When PWRDWN is Low, the FPGA disables all I/O and initializes all flip-flops. All inputs are interpreted as Low independent of their actual level. VCC must be maintained, and the configuration data is maintained. PWRDWN halts configuration if asserted before or during configuration, and re-starts configuration when removed. When PWRDWN returns High, the FPGA becomes operational by first enabling the inputs and flip-flops and then enabling the outputs. PWRDWN has a default internal pull-up resistor.
User I/O Pins	That Can Ha	ave Special	Functions
TDO	0	0	If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output without a register, after configuration is completed.
		-	To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used.
TDI, TCK, TMS	I	I/O or I (JTAG)	If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select inputs respectively. They come directly from the pads, bypassing the IOBs. These pins can also be used as inputs to the CLB logic after configuration is completed.
			If the BSCAN symbol is not placed in the design, all boundary scan functions are inhibited once configuration is completed, and these pins become user-programmable I/O. In this case, they must be called out by special library elements. To use these pins, place the library components TDI, TCK, and TMS instead of the usual pad symbols. Input or output buffers must still be used.
HDC	0	I/O	High During Configuration (HDC) is driven High until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, HDC is a user-programmable I/O pin.
LDC	0	I/O	Low During Configuration (LDC) is driven Low until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, LDC is a user-programmable I/O pin.
INIT	I/O	I/O	Before and during configuration, $\overline{\text{INIT}}$ is a bidirectional signal. A 1 k Ω to 10 k Ω external pull-up resistor is recommended.
			As an active Low open-drain output, $\overline{\text{INIT}}$ is held Low during the power stabilization and internal clearing of the configuration memory. As an active Low input, it can be used to hold the FPGA in the internal WAIT state before the start of configuration. Master mode devices stay in a WAIT state an additional 30 to 300 μ s after $\overline{\text{INIT}}$ has gone High.
			During configuration, a Low on this output indicates that a configuration data error has occurred. After the I/O go active, $\overline{\text{INIT}}$ is a user-programmable I/O pin.
PGCK1 - PGCK4 (Spartan)	Weak Pull-up	I or I/O	Four Primary Global inputs each drive a dedicated internal global net with short delay and minimal skew. If not used to drive a global buffer, any of these pins is a user-programmable I/O.
			The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol connected directly to the input of a BUFGP symbol is automatically placed on one of these pins.

Spartan and Spartan-XL Families Field Programmable Gate Arrays

XILINX®

Table 18: Pin Descriptions (Continued)

Pin Name	I/O During Config.	I/O After Config.	Pin Description
SGCK1 - SGCK4 (Spartan)	Weak Pull-up (except SGCK4 is DOUT)	l or I/O	Four Secondary Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin. The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global
	,		Buffers. Any input pad symbol connected directly to the input of a BUFGS symbol is automatically placed on one of these pins.
GCK1 - GCK8 (Spartan-XL)	Weak Pull-up (except	I or I/O	Eight Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin.
	GCK6 is DOUT)		The GCK1-GCK8 pins provide the shortest path to the eight Global Low-Skew Buffers. Any input pad symbol connected directly to the input of a BUFGLS symbol is automatically placed on one of these pins.
CS1 (Spartan-XL)	ı	I/O	During Express configuration, CS1 is used as a serial-enable signal for daisy-chaining.
D0-D7 (Spartan-XL)	1	I/O	During Express configuration, these eight input pins receive configuration data. After configuration, they are user-programmable I/O pins.
DIN	. 1	I/O	During Slave Serial or Master Serial configuration, DIN is the serial configuration data input receiving data on the rising edge of CCLK. After configuration, DIN is a user-programmable I/O pin.
DOUT	0	I/O	During Slave Serial or Master Serial configuration, DOUT is the serial configuration data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the DIN input.
			In Spartan-XL Express mode, DOUT is the status output that can drive the CS 1 of daisy-chained FPGAs, to enable and disable downstream devices.
		_	After configuration, DOUT is a user-programmable I/O pin.
Unrestricted L	iser-Program	nmable I/O	Pins
I/O	Weak Pull-up	I/O	These pins can be configured to be input and/or output after configuration is completed. Before configuration is completed, these pins have an internal high-value pull-up resistor network that defines the logic level as High.

9.9.5 IC7307; IC7308: CY2071AS

CY2071A

EPROM Programmable Clock Generator

Features	Benefits
Single phase-locked loop architecture	Generates a custom frequency from an external source
EPROM programmability	Easy customization and fast turnaround
Factory-programmable (CY2071A, CY2071AI) or field-programmable (CY2071AF, CY2071AFI) device options	Programming support available for all opportunities
Up to three configurable outputs	Generates three related frequencies from a single device
Low-skew, low-jitter, high-accuracy outputs	Meets critical industry standard timing requirements
Internal loop filter	Alleviates the need for external components
Power management (OE)	Supports low-power applications
Frequency select options	3 outputs with 2 user selectable frequencies
Configurable 5V or 3.3V operation	Supports industry standard design platforms
8-pin 150-mil SOIC package	Industry-standard packaging saves on board space

Selector Guide

Part Number	Outputs	Input Frequency Range	Output Frequency Range	Specifics
CY2071A	3	10 MHz-25 MHz (external crystal) 1 MHz-30 MHz (reference clock)	500 kHz–130 MHz (5V) 500 kHz–100 MHz (3.3V)	Factory Programmable Commercial Temperature
CY2071AI	3			Factory Programmable Industrial Temperature
CY2071AF	3	10 MHz-25 MHz (external crystal) 1 MHz-30 MHz (reference clock)	500 kHz-100 MHz (5V) 500 kHz-80 MHz (3.3V)	Field Programmable Commercial Temperature
CY2071AFI	3	10 MHz-25 MHz (external crystal) 1 MHz-30 MHz (reference clock)	500 kHz-90 MHz (5V) 500 kHz-66.6 MHz (3.3V)	Field Programmable Industrial Temperature

Pin Summary

Name	Number	Description	
CLKA	1	Configurable Clock Output	
GND	2	round	
XTALIN	3	ference Crystal Input or External Reference Clock Input	
XTALOUT	4	leference Crystal Feedback	
CLKB	5	Configurable Clock Output	
CLKC	6	onfigurable Clock Output	
V_{DD}	7	oltage Supply	
OE / FS	8	output Control Pin, either Output Enable or Frequency Select Input Active-HIGH, internal pull-up resistor to V _{DD})	

Notes:

For best accuracy, use a parallel-resonant crystal, C_L = 17 pF.

Float XTALOUT pin if XTALIN is driven by reference clock (as opposed to an external crystal).

Functional Description

The CY2071A is a general-purpose clock synthesizer designed for use in applications such as modems, disk drives, CD-ROM drives, video CD players, games, set-top boxes, and data/telecommunications. The device offers up to three configurable clock outputs in an 8-pin, 150-mil SOIC package and can operate off either a 3.3V or 5V power supply. The on-chip reference oscillator is designed for 10-MHz to 25-MHz crystals. Alternatively, an external reference clock of frequency between 1 MHz and 30 MHz can be used.

The CY2071A has one PLL and outputs three factory-EPROM configurable clocks: CLKA, CLKB, and CLKC. The output clocks can originate either from the PLL or the reference, or selected dividers thereof. Additionally, pin 8 can be configured to be an Output Enable or a Select input.

The CY2071A can replace multiple Metal Can Oscillators (MCO) in a synchronous system, providing cost and board space savings to the manufacturer. Hence, these devices are ideally suited for applications that require multiple, accurate, and stable clocks synthesized from low-cost generators in small packages. A hard-disk drive is an example of such an application. In this case, CLKA drives the PLL in the Read Controller, while CLKB and CLKC drive the MCU and associated sequencers.

CyClocks™ Software

CyClocks is an easy-to-use software application that allows you to configure any one of the EPROM-Programmable Clocks offered by Cypress. You may specify the input frequency, PLL and output frequencies, and different functional options. Please note the output frequency ranges in this data sheet when specifying them in CyClocks to ensure that you stay within the limits. You can download a copy of CyClocks free on the Cypress Semiconductor website at www.cypress.com.

Consider using the CY2081 for applications that require unrelated output frequencies. Consider using the CY2291, CY2292, or CY2907 for applications that require more than three output clocks.

Cypress FTG Programmer

The Cypress Frequency Timing Generator (FTG) Programmer is a portable programmer designed to custom program our family of EPROM Field Programmable Clock Devices. The FTG programmers connect to a PC serial port and allow users of CyClocks software to quickly and easily program any of the CY2291F, CY2292F, CY2071AF, and CY2907F devices. The ordering code for the Cypress FTG Programmer is CY3670.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Supply Voltage	0.5 / to +7.0 V
DC Input Voltage	–0.5V to V _{DD} +0.5V
Storage Temperature	65°Cto+150°C
Max. Soldering Temperature (10 sec)	260°C
Junction Temperature	150°C
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2000V

IC7402; IC7403: EDORAM

EDO DRAM

FEATURES

- JEDEC- and industry-standard x16 timing. functions, pinouts, and packages
- High-performance CMOS silicon-gate process
- Single power supply ($\pm 3.3V \pm 0.3V$ or $5V \pm 10\%$)
- All inputs, outputs and clocks are TTL-compatible

DVDR980-985 /0X1

- Refresh modes: RAS#-ONLY, CAS#-BEFORE-RAS# (CBR), HIDDEN; optional self refresh (S)
- BYTE WRITE access cycles
- 1,024-cycle refresh (10 row, 10 column addresses)
- Extended Data-Out (EDO) PAGE MODE access
- 5V-tolerant inputs and I/Os on 3.3V devices

OPTIONS	MARKING
• Voltages ¹ 3.3V 5V	LC C
 Refresh Addressing 1,024 (1K) rows 	E5
 Packages Plastic SOJ (400 mil) Plastic TSOP (400 mil) 	DJ TG
• Timing 50ns access 60ns access	-5 -6
 Refresh Rates Standard Refresh (16ms period) Self Refresh (128ms period) 	None S ²
 Operating Temperature Range Commercial (0°C to +70°C) Extended (-20°C to +80°C) 	None ET

Part Number Example:

MT4LC1M16E5TG-6

NOTE: 1. The third field distinguishes the low voltage offering: LC designates Vcc = 3.3V and C designates Vcc = 5V.

2. Available only on MT4LC1M16E5 (3.3V)

KEY TIMING PARAMETERS

SPEED	*RC	^t RAC	^t PC	¹AA	¹ CAC	¹CAS
-5	84ns	50ns	20ns	25ns	15ns	8ns
-6	1 04ns	60ns	25ns	30ns	17ns	10ns

44/50-P	in TSOP	42-Pin SOJ		
Vcc □ 1. DQ0 ■ 2 DO1 ■ 3	50 DQ15	V∞ □ 1. DQ0 □ 2	42 Vss 41 DQ15	
Q2	48	DQ1	40 DQ14 39 DQ13 38 DQ12 37 Vss	
OQ5 == 8 OQ6 == 9 OQ7 == 10 NC == 11	43 EDQ10 42 EDQ9 41 EDQ8 40 NC	DQ4 E 7 DQ5 E 8 DQ6 E 9 DQ7 E 10	36 3 DQ11 35 3 DQ10 34 3 DQ9 33 3 DQ8	
NC III 15 NC III 16 VE# III 17	36 □ NC 35 □ CASL# 34 □ CASH#	NC	32 NC 31 CASL# 30 CASH# 29 OE#	
AS# 118 NC 119 NC 1120 AO 1121 AO 1121	33 DE# 32 A9 31 A8 30 A7	NC C 15 NC C 16 AO E 17	28 3 A9 27 3 A8 26 3 A7	
A1 E 22 A2 E 23 A3 E 24 Voc E 25	29 型 A6 28 型 A5 27 型 A4 26 □ Vss	A1	25 D A6 24 D A5 23 D A4 22 D Vss	

1 MEG x 16 EDO DRAM PART NUMBERS

PARTNUMBER	Vec	REFRESH	PACKAGE	REFRESH
MT4LC1M16E5DJ-x	3.3V	1K	400-SOJ	Standard
MT4LC1M16E5DJ-xS	3.3V	1K	400-SOJ	Self
MT4LC1M16E5TG-x	3.3V	1K	400-TSOP	Standard
MT4LC1M16E5TG-xS	3.3V	1K	400-TSOP	Self
MT4C1M16E5DJ-x	5V	1K	400-SOJ	Standard
MT4C1M16E5TG-x	5V	1K	400-TSOP	Standard

NOTE: "-x" indicates speed grade marking under timing options.

GENERAL DESCRIPTION

The 1 Meg x 16 is a randomly accessed, solid-state memory containing 16,777,216 bits organized in a x16 configuration. The 1 Meg x 16 has both BYTE WRITE and WORD WRITE access cycles via two CAS# pins (CASL# and CASH#). These function like a single CAS# found on other DRAMs in that either CASL# or CASH# will generate an internal CAS#.

The CAS# function and timing are determined by the first CAS# (CASL# or CASH#) to transition LOW and the last CAS# to transition back HIGH. Using only one

GENERAL DESCRIPTION (continued)

of the two signals results in a BYTE WRITE cycle. CASL# transitioning LOW selects an access cycle for the lower byte (DQ0-DQ7), and CASH# transitioning LOW selects an access cycle for the upper byte (DQ8-DQ15).

Each bit is uniquely addressed through the 20 address bits during READ or WRITE cycles. These are entered 10 bits (A0-A9) at a time. RAS# is used to latch the first 10 bits and CAS#, the latter 10 bits. The CAS# function also determines whether the cycle will be a refresh cycle (RAS# ONLY) or an active cycle (READ, WRITE or READ-WRITE) once RAS# goes LOW.

The CASL# and CASH# inputs internally generate a CAS# signal that functions like the single CAS# input on other DRAMs. The key difference is each CAS# input (CASL# and CASH#) controls its corresponding eight DQ inputs during WRITE accesses. CASL# controls DQ0-DQ7, and CASH# controls DQ8-DQ15. The two CAS# controls give the 1 Meg x 16 both BYTE READ and BYTE WRITE cycle capabilities.

A logic HIGH on WE# dictates read mode, while a logic LOW on WE# dictates write mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS# (CASL# or CASH#), whichever occurs last. An EARLY WRITE occurs when WE is taken LOW prior to either CAS# falling. A LATE WRITE or READ-MODIFY-WRITE occurs when WE falls after CAS# (CASL# or CASH#) was taken LOW. During EARLY WRITE cycles, the data outputs (Q) will remain High-Z, regardless of the state of OE#. During LATE WRITE or READ-MODIFY-WRITE cycles, OE# must be taken HIGH to disable the data outputs prior to applying input data. If a LATE WRITE or READ-MODIFY-WRITE is attempted while keeping OE# LOW, no WRITE will occur, and the data outputs will drive read data from the accessed location.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O. Pin direction is controlled by OE# and WE#.

The 1 Meg x 16 DRAM must be refreshed periodically in order to retain stored data.

Figure 1 **OE# Control of DQs**

FUNCTIONAL BLOCK DIAGRAM

GIVIC

NW700

DV Decoder **Daytona Beach Reference Solution**

Enhanced Feature set

- **Fully DV-SD Compliant**
- Automatic Audio and AUX Code Processing
- Pin compatible with NW701 (DV CODEC)

Low System Cost

- Integrated single-chip design including AV processing and video decoding
- Glue-less interface to Video Encoder (SAA7121), Audio Encoder (UDA1340), Micro-controller, and memory
- Integrated shuffle memory logic
- Requires only one 256K x 32 EDO DRAM

Real-time Performance

- High speed (33Mbytes/s throughput)
- 54MHz double clock speed for dual stream applications

Video and Audio Support

- CCIR656 Video output and I2S **Audio output**
- Support NTSC and PAL
- Selectable Audio channel (A/B or C/D)
- 48, 44.1, and 32KHz (12- and 16-bit) audio support

Simple Host Bus connectivity

- 8 or 16-bit asynchronous host bus interface
- built-in 512 byte DV FIFO
- Three interrupt pins for enhanced system control

Jaytona Beach Reference Solution

divio introduces the NW700, the world's first single-chip DV decoder. Fully DV-SD compliant and designed with divio's patented pending compression technology, the NW700 delivers unrivaled video quality, performance and compatibility. With a single-chip design and glueless interface to standard video components, divio's single chip DV decoder will replace current multi-chip solution and enable a new generation of cost-effective digital video consumer products.

divio has created the "Daytona Beach" reference solution that includes the NW700, Philips Semiconductor's PDI1394L4X audio/video 1394 LINK layer controller and PDI1394P11A 200 Mbits/sec PHY. divio provides a complete easy to integrate DV/IEEE1394 solution to OEMs to reduce time-to-market and development costs.

The NW700 provides an unprecedented feature-set that deliver realtime DV decoding functions to empower the next generation of consumer electronics devices.

BEACH DV Decode Module

O N S

NW700

DV Decoder **Daytona Beach Reference Solution**

Digital VCR / D-VHS **DVD-RAM** Digital Set-top-box **HDTV**

Paytona Beach Reference Kit

Board Components

- divio NW700 DV Decoder
- 8051 pC (P89C51RD2)
- 100p FPGA/32k x 8 SRAM
- IEEE1394 LINK (PDI1394LAX)
- IEEE1394 PHY (PDI1394P11A)
- 2.56 x 32 EDO Memory

Manufacturing Kit Contents

- Daytona Beach Reference Design
- Schematics, Gerber Files and BOM
- Technical Documents and Manuals
- FPGA and Firmware Source Code

Ordering Information

Part Number

Description

NW700LO

Sales Information

divio, inc.

997 East Arques Avenue Sunnyvale, CA 94086 USA

Phone: (408) 732-1205 Fax: (408)732-4022

E-mail: sales@divio.com http://www.divio.com

Worldwide contacts: visit http://www.divio.com

DV Decoder

Manufacturing Kit Daytona Beach

divio.

UDA1334ATS

FEATURES

General 1.1

- 2.4 to 3.6 V power supply voltage
- On-board PLL to generate the internal system clock:
 - Operates as an asynchronous DAC, regenerating the internal clock from the WS signal (called audio mode)
 - Generates audio related system clock (output) based on 32, 48 or 96 kHz sampling frequency (called video mode).
- · Integrated digital filter plus DAC
- Supports sample frequencies from 16 to 100 kHz in asynchronous DAC mode
- · No analog post filtering required for DAC
- Easy application
- SSOP16 package.

Multiple format data interface

- I²S-bus and LSB-justified format compatible
- 1f_s input data rate.

1.3 **DAC** digital features

- Digital de-emphasis for 44.1 kHz sampling frequency
- · Mute function.

Advanced audio configuration

• High linearity, wide dynamic range and low distortion.

PLL system clock generation

- Integrated low jitter PLL for use in applications in which there is digital audio data present but the system cannot provide an audio related system clock. This mode is called audio mode.
- The PLL can generate 256×48 kHz and 384×48 kHz from a 27 MHz input clock. This mode is called video mode.

BITSTREAM CONVER

APPLICATIONS

This audio DAC is excellently suitable for digital audio portable application, specially in applications in which an audio related system clock is not present.

3 **GENERAL DESCRIPTION**

The UDA1334ATS is a single chip 2 channel digital-to-analog converter employing bitstream conversion techniques, including an on-board PLL. The extremely low power consumption and low voltage requirements make the device eminently suitable for use in low-voltage low-power portable digital audio equipment which incorporates a playback function.

The UDA1334ATS supports the I²S-bus data format with word lengths of up to 24 bits and the LSB-justified serial data format with word lengths of 16, 20 and 24 bits.

The UDA1334ATS has basic features such as de-emphasis (44.1 kHz sampling frequency, only supported in audio mode) and mute.

ORDERING INFORMATION

TYPE		PACKAGE			
NUMBER	NAME	DESCRIPTION	VERSION		
UDA1334ATS	SSOP16	SSOP16 plastic shrink small outline package; 16 leads; body width 4.4 mm			

UDA1334ATS

BLOCK DIAGRAM

UDA1334ATS

PINNING

SYMBOL	PIN	PAD TYPE	DESCRIPTION	
BCK	1	5 V tolerant digital input pad	bit clock input	
ws	2 5 V tolerant digital input pad		word select input	
DATAI	3	5 V tolerant digital input pad	serial data input	
V_{DDD}	4	digital supply pad	digital supply voltage	
V _{SSD}	5	digital ground pad	digital ground	
SYSCLK/PLL1			system clock input in video mode/PLL mode control 1 input in audio mode	
SFOR1	7	5 V tolerant digital input pad	serial format select 1 input	
MUTE	8	5 V tolerant digital input pad	mute control input	
DEEM/CLKOUT	M/CLKOUT 9 5 V tolerant digital input/output pad		de-emphasis control input in audio mode/clock output in video mode	
PLL0	10	3-level input pad; note 1 PLL mode control 0 input		
SFOR0	11	digital input pad; note 1	serial format select 0 input	
V _{ref(DAC)}	12	analog pad	DAC reference voltage	
V _{DDA}	13 analog supply pad DAC analog supply voltage		DAC analog supply voltage	
VOUTL	14	analog output pad DAC output left		
V _{SSA}	15	analog ground pad DAC analog ground		
VOUTR	16	analog output pad	DAC output right	

Note

1. Because of test issues these pads are not 5 V tolerant and both pads should be at power supply voltage level or at a maximum of 0.5 V above that level.

UDA1334ATS

8 FUNCTIONAL DESCRIPTION

8.1 System clock

The UDA1334ATS incorporates a PLL capable of generating the system clock. The UDA1334ATS can operate in 2 modes:

- It operates as an asynchronous DAC, which means the device regenerates the internal clocks using a PLL from the incoming WS signal. This mode is called audio mode
- It generates the internal clocks from a 27 MHz clock input, based on 32, 48 and 96 kHz sampling frequencies. This mode is called video mode.

In video mode, the digital audio input is slave, which means that the system must generate the BCK and WS signals from the output clock available at pin CLKOUT of the UDA1334ATS. The digital audio signals should be frequency locked to the CLKOUT signal.

Remarks:

- The WS edge MUST fall on the negative edge of the BCK at all times for proper operation of the digital I/O data interface
- 2. For LSB-justified formats it is important to have a WS signal with a duty factor of 50%.

8.1.1 AUDIO MODE

Audio mode is enabled by setting pin PLL0 to LOW. De-emphasis can be activated via pin DEEM/CLKOUT according to Table 5.

In audio mode, pin SYSCLK/PLL1 is used to set the sampling frequency range as given in Table 1.

Table 1 Sampling frequency range in audio mode

SYSCLK/PLL1	SELECTION
LOW	f _s = 16 to 50 kHz
HIGH	f _s = 50 to 100 kHz

8.1.2 VIDEO MODE

In video mode, the master clock is a 27 MHz external clock (as is available in video environment). A clock-out signal is generated at pin DEEM/CLKOUT. The output frequency can be selected using pin PLL0. The output frequency is either 12.228 MHz (256 \times 48 kHz) with pin PLL0 being at MID level or 18.432 MHz (384 \times 48 kHz) with pin PLL0 being HIGH, as given in Table 2.

Table 2 Clock output selection in video mode

PLLO	SELECTION
MID	12.228 MHz clock; note 1
HIGH	18.432 MHz clock; note 2
LOW	audio mode

Notes

- The supported sampling frequencies are: 96, 48 and 24 kHz or 64, 32 and 16 kHz.
- The supported sampling frequencies are:96, 48 and 24 kHz; 72 and 36 kHz or 32 kHz.

8.2 Interpolation filter

The interpolation digital filter interpolates from 1f_s to 64f_s by cascading FIR filters (see Table 3).

Table 3 Interpolation filter characteristics

ITEM	CONDITION	VALUE (dB)	
Pass-band ripple	Of _s to 0.45f _s	±0.02	
Stop band	>0.55f _s	-50	
Dynamic range	Of _s to 0.45f _s	>114	

8.3 Noise shaper

The 5th-order noise shaper operates at 64f_s. It shifts in-band quantization noise to frequencies well above the audio band. This noise shaping technique enables high signal-to-noise ratios to be achieved. The noise shaper output is converted into an analog signal using a Filter Stream DAC (FSDAC).

UDA1334ATS

8.4 Filter stream DAC

The FSDAC is a semi-digital reconstruction filter that converts the 1-bit data stream of the noise shaper to an analog output voltage. The filter coefficients are implemented as current sources and are summed at virtual ground of the output operational amplifier. In this way very high signal-to-noise performance and low clock jitter sensitivity is achieved. No post filter is needed due to the inherent filter function of the DAC. On-board amplifiers convert the FSDAC output current to an output voltage signal capable of driving a line output.

The output voltage of the FSDAC scales proportionally to the power supply voltage.

8.5 Power-on reset

The UDA1334ATS has an internal Power-on reset circuit (see Fig.3) which resets the test control block.

The reset time (see Fig.4) is determined by an external capacitor which is connected between pin V_{ref(DAC)} and ground. The reset time should be at least 1 µs for $V_{ref(DAC)}$ < 1.25 V. When V_{DDA} is switched off, the device will be reset again for $V_{ref(DAC)} < 0.75 \text{ V}$.

During the reset time the system clock should be running.

UDA1334ATS

8.6 Feature settings

8.6.1 DIGITAL INTERFACE FORMAT SELECT

The digital audio interface formats (see Fig.5) can be selected via pins SFOR1 and SFOR0 as shown in Table 4.

For the digital audio interface holds that the BCK frequency can be maximum 64 times WS frequency.

The WS signal must change at the negative edge of the BCK signal for all digital audio formats.

Table 4 Data format selection

SFOR1	SFOR0	INPUT FORMAT
LOW	LOW	I ² S-bus input
LOW	HIGH	LSB-justified 16 bits input
HIGH	LOW	LSB-justified 20 bits input
HIGH	HIGH	LSB-justified 24 bits input

8.6.2 **DE-EMPHASIS CONTROL**

This function is only available in audio mode. In that case, pin DEEM/CLKOUT can be used to activate the digital de-emphasis for 44.1 kHz as given in Table 5.

Table 5 De-emphasis control (audio mode)

DEEM/CLKOUT	FUNCTION
LOW	de-emphasis off
HIGH	de-emphasis on

8.6.3 MUTE CONTROL

The output signal can be soft muted by setting pin MUTE to HIGH as given in Table 6.

Table 6 Mute control

MUTE	FUNCTION
LOW	mute off
HIGH	mute on

9.10 List of Abbreviations

Digital Board

+12V

+12V Power Supply

+2V5_FLI

+2V5 Power Supply for FLI

+2V5_PLL

+2V5 Power Supply for PLL

+3V3

+3V3 Power Supply

+3V3_ANA

+3V3 Power Supply Analogue

+3V3_DD

+3V3 Power Supply Digital

+3V3_FLI

+3V3 Power Supply for FLI

+5V

+5V Power Supply

+5V_BUFFER

+5V Power Supply for Video Filters

5508_HS

Horizontal Synchronisation from Host Decoder to Progressive

Scan

5508_ODD_EVEN

Odd - Even control from Host Decoder to Progressive Scan

-5V

-5V Power Supply

-5V_BUFFER

-5V Power Supply for Video Filters

A_EMPRESS(13:0)

EMPRESS address output to SDRAM

ACC_ACLK_OSC

Audio Clock PLL output sync with incoming video for record

ACC_ACLK_PLL

Audio Clock PLL output for play back

ACLK_EMP

EMPRESS audio clock output

AD_ACLK

Audio Decoder Clock

AD_BCLK

Audio Decoder I2S bit clock

AD_DATAO

Audio Decoder Output data (PCM)

AD_SPDIF33

Audio digital output to the analog board

AD_WCLK

Audio Decoder I2S word clock

AE_ACLK

Audio Encoder Clock AE_ACLK_OEN

Audio Encoder Clock Output Enable

AE_BCLK

Audio Encoder I2S bit clock

AE_BCLK_DV

Audio Encoder I2S bit clock to DVIO

AE_BCLK_VSM

Audio Encoder I2S bit clock to VSM

AE_DATAI

Audio Encoder Input data (PCM)

AE_DATAI_DV

Audio Encoder Input data (PCM) from DVIO

AE_DATAO

Audio Encoder Output data (PCM)

AE_WCLK

Audio Encoder I2S word clock

AE_WCLK_DV Audio Encoder I2S word clock to DVIO

AE_WCLK_VSM

Audio Encoder I2S word clock to VSM

ANA_WE

Analogue write enable

ANA_WE_LV

Analogue write enable Low Voltage

Video blue input to Video Input Processor

Video blue output from Host Decoder

B_OUT_B

Filtered blue video output

BA

Bank Address

BCLK CTL SERVICE

Bitclock control Service Interface

BE BCLK

Basic Engine I2S bit clock

BE BCLK VSM

Basic Engine I2S bit clock to VSM

Basic Engine Control Processor ready to accept data

BE_DATA_RD

Basic Engine Data read

BE_DATA_WR

Basic Engine Data write

BE_FAN

Basic Engine FAN

BE_FLAG

Basic Engine error flag

BE_IRQN

Basic Engine interrupt request

BE_LOADN

Basic Engine LOAD(LOW active)

BE_RXD

Basic Engine S2B received data

BE_SUR

Basic Engine servo unit ready to accept data (S2B)

BE_SYNC

Basic Engine sector/abs time sync

BE_TXD

Basic Engine S2B transmitted data

BE_V4

Basic Engine versatile input pin BE_WCLK

Basic Engine I2S word clock

C_IN Video Chrominance input

C_IN_VIP Chrominance input to Video Input Processor

Chrominance output from Host Decoder

C_OUT_B

Filtered Chrominance output

CAS

Column Address strobe

CB_OUT(9:0)

Chrominance Blue out

CLK4

SDRAM clock

CPLIINTO

Control processor unit interrupt

CPUINT1

Control processor unit interrupt

CR_OUT(9:0)

Chrominance Red out

CTS1P

Clear to send (Service Interface)

CVBS_OUT

Composite video output out of the Host Decoder

CVBS_OUT_B

Filtered Composite video output

CVBS_OUT_B_VIP

Composite video output to Video Input Processor(digital board

video loop) CVBS_Y_IN

Composite video/Luminance input

CVBS_Y_IN_A

Composite video/Luminance input to Video Input Processor

CVBS_Y_IN_B

Composite video/Luminance input to Video Input Processor

CVBS_Y_IN_C

Composite video/Luminance input to Video Input Processor

D ADDR(10:0) Address bus D_DATA(29:0) Data bus

D_EMPRESS(15:0)

SDRAM data input/output of EMPRESS

D_PAR_D(7:0)

Front-end parallel interface data (record)

D_PAR_DVALID

Front-end parallel interface data valid

D PAR_REQ

Front-end parallel interface request

D_PAR_STR

Front-end parallel interface strobe

D_PAR_SYNC

Front-end parallel interface sync

DV_IN_CLK

Digital Video in clock from DVIO board

DV_IN_DATA(7:0)

Digital Video in data bus from DVIO board

DV IN HS

Digital Video in horizontal synchronisation from DVIO board

DV_IN_VS

Digital Video in vertical synchronisation from DVIO board

EMI A(21:1)

External Memory Interface Address Bus(Host Decoder)

EMI BEON

External Memory Interface Lower byte enable(Host Decoder)

EMI_BE1N

External Memory Interface Upper byte enable(Host Decoder)

EMI_CASON External Memory Interface SDRAM column address

strobe(Host Decoder)

EMI_CE1N

External Memory Interface VSM Lower bank enable

EMI_CE2N

External Memory Interface VSM Higher bank enable

EMI_CE3N

External Memory Interface flash IC's enable

EMI_D(15:0)

External Memory Interface Data Bus(Host Decoder)

EMI PROCCLK

External Memory Interface Processor Clock(Host Decoder)

EMI_RWN

External Memory Interface Read/Write control signal(Host

Decoder) EMI_WAIT

External Memory Interface Wait state request(Host Decoder)

EMPRESS_BOOT

EMPRESS BOOT select input

EMPRESS_IRQN

EMPRESS Interrupt request output

FLASH_OEN

FLASH output enable control signal

G_IN_VIP

Video green input to Video Input Processor

G_OUT

Video green output from Host Decoder

G_OUT_B

Filtered green video output from Host Decoder

GNDD

Digital Ground HD_M_AD(13:0)

Host Decoder SDRAM address bus

HD_M_CASN

Host Decoder SDRAM column address strobe

HD_M_CLK

Host Decoder SDRAM clock

HD_M_CS0N

Host Decoder SDRAM chip select

HD_M_DQ(15:0)

Host Decoder SDRAM data bus

HD_M_DQML

Host Decoder SDRAM data mask enable(Lower)

HD_M_DQMU

Host Decoder SDRAM data mask enable(Upper)

HD_M_RASN

Host Decoder SDRAM row address strobe

HD_M_WEN

Host Decoder SDRAM write enable

HSOUT

Horizontal synchronisation OUT

ION

Inverted ON: Enable the power supply for the digital board

when LOW IRESET DIG

Initialisation of the digital board, HIGH when power ON

JTAG3_TCK JTAG Test Clock JTAG3_TD_VIP_TO_VE

JTAG Transmitted Data Video Input Processor to Video

Encoder

JTAG3_TD_VSM_TO_VIP

JTAG Transmitted Data Versatile Stream Manager to Video

Input Processor JTAG3_TMS JTAG Test Mode Select JTAG3_TRSTN JTAG Test part ResetN LOAD_DVN

LOAD Digital Video(LOW active)

MUTEN Mute enable MUTEN_LV

Mute enable Low Voltage

P_SCAN_YUV(7:0) Progressive Scan digital video bus

R_IN_VIP

Video Red input to Video Input Processor

R OUT

Video Red output from Host Decoder

R_OUT_B

Filtered Red Video output from Host Decoder

RAS

Row Address Strobe

RESETN

Reset Host Decoder

RESETN_BE

System reset basic engine (buffered)

RESETN_DVIO

System reset Digital Video Input Output (buffered)

RESETN_VE

System reset Video Encoder

ROMH_CEN Flash 2 chip enable ROMI CEN Flash 1 chip enable

RSTN_BE

Reset control of basic engine

RSTN DVIO Reset control of DVIO

RTS1P

Ready To Send data to service serial interface

RX1P

Receive data from service serial interface

SCL

I2C bus clock SD CASN

SDRAM Column Address strobe output (active **L**OW)

SD CLK

SDRAM clock output

SD CLKE

SDRAM clock enable output

SD_CSN SDRAM SD_DQM(1:0)

SDRAM data mask enable output

SD_RASN

SDRAM row address strobe output

SD_WEN

SDRAM write enable output

SDA

I2C bus data SEL_ACLK1

Select audio clock(playback)

SM_CS3N

SRAM chip select

SM_LBN

SRAM lower bank

SM_OEN

SRAM output enable

SM_UBN

SRAM upper bank

SM_WEN

SRAM write enable

SMA(17:0)

SRAM address output

SMD(15:0)

SRAM data input/output

SYSCLK_EMPRESS

System clock EMPRESS SYSCLK_PROGSCAN

System clock Progressive Scan

SYSCLK_VSM_5508

System clock VSM and Host decoder

TX1P

Transmit data to service serial interface

U_IN

Video U input U_IN_VIP

Video U input to Video Input Processor

V_IN

Video V input V_IN_VIP

Video V input to Video Input Processor

VCC3_CLK_BUF

Power supply 3V3 clock buffer

VCC3_VSM

Power supply 3V3 Versatile Stream Manager

VCC3_VSM_MEM

Power supply 3V3 Versatile Stream Manager Memory

VCC5_4046

Power supply 5V to PLL IC

VDD_125

Power supply 5V to buffer 7202

VDD_CORE

Sti5508 Core supply voltage 2.5V

VDD_EMP

Empress supply voltage 3.3V

VDD_EMP_CORE

Empress Core supply voltage 2.5V

VDD_FLASH_H

Flash 7301 supply voltage

VDD_FLASH_L

Flash 7302 supply voltage

VDD_LVC32

Power supply LVC32

VDD_PCM

Power supply Audio decoder of Sti5508

VDD_PLL

Power supply PLL audio decoder of Sti5508

VDD RGB

Power supply video encoder of Sti5508

VDD_STI

Power supply of Sti5508

VDD YCC

Power supply video encoder of Sti5508

VDD5 MK2703

Power supply MK2703

VDD5 osc

Power supply Oscillator

VDDA 1A_7118

Power supply for analog input of VIP

VDDA2A_7118

Power supply for analog input of VIP

VDDA3A_7118

Power supply for analog input of VIP

VDDA4A_7118

Power supply for analog input of VIP

VDDE_7118

Power supply digital for peripheral cells of VIP

VDDI_7118

Power supply digital for core of VIP

VDDX_7118

Power supply for crystal oscillator of VIP

VE_DATA(7:0)

Video Encoder data Bus

VE_DSN

Video Encoder Data Strobe

VE_DTACKN

Video Encoder Data Transfer acknowledge

VIP_ERROR

Video Input Processor error

VIP_FB

Video Input Processor Fast Blanking

VIP_FID_FF

Video Input Processor field indentifier to Flip Flop

Video Input Processor horizontal synchronisation

VIP_ICLK

Video Input Processor input Clock VIP_IDQ

Video Input Processor output data qualifier

VIP_IGP1

Video Input Processor input general purpose 1

VIP INT

Video Input Processor interrupt

VIP_RTS1 Video Input Processor ready to send

VIP VS

Video Input Processor vertical synchronisation

VIP_YUV(7:0) Video Input Processor digital video(CCIR 656)

VS IN

Vertical synchronisation IN

VSM_M_A(13:0)

Versatile Stream Manager SDRAM address bus

VSM_M_CASN

Versatile Stream Manager SDRAM column address strobe

VSM_M_CLKEN

Versatile Stream Manager SDRAM clock enable VSM_M_CLKOUT

Versatile Stream Manager SDRAM clock out

VSM_M_D(15:0)

Versatile Stream Manager SDRAM data bus

VSM_M_LDQM Versatile Stream Manager SDRAM lower data mask enable

VSM_M_RASN

Versatile Stream Manager SDRAM row address strobe

VSM_M_UDQM

Versatile Stream Manager SDRAM upper data mask enable

VSM_M_WEN

Versatile Stream Manager SDRAM write enable

VSM_UART1_CTSN

Versatile Stream Manager UART1 clear to send to analog

board (UART1 is gateway to analog board)

VSM_UART1_RTSN

Versatile Stream Manager UART2 clear to send to DVIO board

(UART2 is gateway to DIVIO board)

VSM_UART1_RX

Versatile Stream Manager UART1 ready to send to analog

VSM_UART1_TX

Versatile Stream Manager UART2 ready to send to DVIO

board

VSM_UART2_CTSN

Versatile Stream Manager UART1 received data to analog

board

EN 325

Circuit-, IC Descriptions and List of Abbreviations DVDR980-985 /0X17 VSM UART2_RTSN Versatile Stream Manager UART2 received data to DVIO board VSM UART2_RX Versatile Stream Manager UART1 transmitted data to analog board VSM UART2_TX Versatile Stream Manager UART2 transmitted data to DVIO board **VSOUT** Vertical synchronisation OUT WE Write Enable Y IN Luminance input from analog board Y_OUT Luminance output from Host Decoder Y_OUT_B Filtered luminance output YY_OUT(9:0) Luminance output from FLI Divio Board +35V DV EDO +3V3 Power supply EDO Bus IC7404 +3V3 +3V3 Power supply +3V3 DLY +3V3 Power supply for IC7500 +3V3 DV +3V3 Power supply for IC7404 +3V3_FPGA +3V3 Internal Power supply for IC7303 +3V3_FPGA_CONF +3V3 Power supply for IC 7300 +3V3_IEEE_A +3V3 Analogue Power supply for PHY IC 7101 +3V3_IEEE_D

+3V3 Digital Power supply for PHY IC 7101 +3V3_IEEE_PLL +3V3 PLL Power supply for PHY IC 7101 +3V3_LINK +3V3 Power supply IC7103 +3V3_PLL +3V3 Power supply IC7307 & IC7308 +3V3 SRAM +3V3 Power supply IC7301, IC7302, IC7305 & IC7306 +5V +5V Power supply

+5V_PROC +5V Power supply IC7200, IC7201, IC7203 & IC7208 +VCC_DV_RAM +3V3 Power supply for DV_RAM (IC7400--> IC7404) Reset of LINK IC (7103) and PHY IC (7101) A(0:8) Address lines AUD_BCLK Audio Bit Clock AUD_MUTE Audio Mute AUD_SDI Audio Serial Data Input AUD_SDO_CON Audio Serial Data Output to buffer IC 7505 AUD_SDO_DAC

Audio Serial Data Output to DAC IC 7506 AUD_WS_701 Audio Word Select to DV CODEC IC 7404 AUD_WS_OUT Audio Word Select to buffer IC 7505 **BUFENN_AUD Buffer Enable Audio** BUFENN_VID Buffer Enable Video **CCLK**

Configuration Clock CLK27M 27MHz Clock CLK27M_CON 27MHz Clock to Digital Board CLK27M DV 27MHz Clock Digital Video Codec

CLK27M_OSC 27MHz Clock IC7304 CLOCKGENAUD Clock generator Audio CLOCKGENVID Clock generator Video CTSN

Clear to Send DATA Data from config ROM DONE

Indication of the completion of the configuration process DOUT

Serial configuration data output DV_ASN **DVCODEC Address Strobe** DV_DRQN **DVCODEC Data Request Interrupt**

DV_DSLN **DVCODEC Data Strobe Lower 8 bits**

DV_DSUN **DVCODEC Data Strobe Upper 8 Bits** DV DTACKN

DVCODEC Data Transfer Acknowledge DV ERRN

DVCODEC Error Interrupt DV_HS_IN

DVCODEC Horizontal synchronisation In DV_HS_OUT

DVCODEC Horizontal synchronisation Out DV_LCN

DVCODEC Last Code Interrupt DV_PDN **DVCODEC Power Down** DV_RSTN

DVCODEC System Reset for NW701 DV_RWN

DVCODEC Read/Write control signal DV_VS

DVCODEC Vertical synchronisation FIFOA_A(0:15)

FIFO buffer A Address bus FIFOA_OEN FIFO buffer A Output enable FIFOA_WEN

FIFO buffer A Write enable

Host Address/Data bus for register settings d IC7404 INITN

Initiate Configuration 10(0:30) Data bus of IC7404 ISPN

In System Program Line (used for programming IC7203)

Lower Column Address strobe for IC7404 DFAIMS LINK_AVCLK

LINK IC Audio/Video Interface Clock LINK_AVFSYNC

LINK IC Audio/Video frame sync LINK_AVREADY

LINK IC Audio/Video data ready to send

LINK_AVSYNC LINK IC Audio/Video packet sync LINK_AVVALID

LINK IC Audio/Video data valid LINK_CSN LINK IC chip select

LINK_INTN

LINK IC interrupt

LINKFIFO_DQ(0:7)

Audio Video data interface

PA(0:15)

SRAM processor address

PAD(0:7)

SRAM processor data

PALE

Processor Address Latch Enable

PHY_CNA

PHY 1394 cable not active PHY_LPS

LINK IC power status

PINTON

Processor interrupt 0

PINT1N

Processor interrupt 1

PRDN

Processor read

PROGRAMN

Low active input to initiate a configuration cycle

PRSTN

Processor reset

PWRN

Processor write

RASN

Row address strobe

RESETN

DVIO board reset

RTSN

System Reset

RXD

Receive Data

SRAMCEON

SRAM processor chip enable 0

SRAMRDN

SRAM processor output enable

TCK

Boundary scan Test Clock

TDI

Boundary scan Test Data Input

TDO

Boundary scan Test Data Output

TDO_CONF

Boundary scan Test Data Output from IC 7309

Boundary scan Test Mode Select

TXD

Transmitted Data

UCASN

Upper column address strobe

WEN

Write Enable control signal to SRAM

YUV(0:7)

Digital Video

Mechanical DVDR980 /001 /021

Variou	IS	
0060	3104 127 13280	CONNECTOR FRONT ASSY (EU)
0065	3104 127 13450	
0081		VAE8010/02
0081	010110710000	VAE8015/01
0151	3104 127 13320	
0191	3104 124 07455	FILTER AIR INLED BOTTOM
0197	3104 123 30002	DUST FILTER
0198	3104 124 07733	FILTER AIR INLET COVER
0199	3104 128 93031	DC BRUSHLESS FAN
0251	3104 127 10740	FOOT SILVER ASSY
0252	3104 127 10740	FOOT SILVER ASSY
0253	3104 127 10740	FOOT SILVER ASSY
0254	3104 127 10740	
0309▲	3104 125 24250	USER MANUAL DVDR980/ EUR
0370	9307 002 60006	DVDRW/006 PHILIPS DISC EUROPE
1001▲	3104 128 07750	DVDR DIG. BOARD 1.5 EMPRESS/EU
1002▲	3122 427 22711	PSU DVDR1000-2 EURO 50PS203
1003▲	3103 608 50290	DVDR ANALOG BOARD EUR GEN 1.5
8001	3104 157 11641	CWAS FLEX DVD 22 70 32S
8002	3104 157 11641	CWAS FLEX DVD 22 70 32S
8003	3104 157 11790	CWAS SPLIT FLEX 30 100 32S
8004	3104 157 11531	CWAS FLEX DVD 10 110 32S

Mechanical DVDR980 /051

Variou	ıs	
0060	3104 127 13420	CONNECTOR FRONT ASSY (UK)
0065	3104 127 13450	
0081		VAE8010/02
0081		VAE8015/01
0151	3104 127 13320	COVER ASSY
0191	3104 124 07455	FILTER AIR INLED BOTTOM
0197	3104 123 30002	DUST FILTER
0198	3104 124 07733	FILTER AIR INLET COVER
0199	3104 128 93031	DC BRUSHLESS FAN
0251	3104 127 10740	FOOT SILVER ASSY
0252	3104 127 10740	
0253	3104 127 10740	
0254	3104 127 10740	
0309▲	3104 125 24270	USER MANUAL DVDR980 UK
0370	9307 002 60006	DVDRW/006 PHILIPS DISC EUROPE
1001▲	3104 128 07750	DVDR DIG. BOARD 1.5 EMPRESS/EU
1002▲	3122 427 22711	PSU DVDR1000-2 EURO 50PS203
1003▲	3103 608 50290	DVDR ANALOG BOARD EUR GEN 1.5
8001	3104 157 11641	CWAS FLEX DVD 22 70 32S
8002	3104 157 11641	CWAS FLEX DVD 22 70 32S
8003	3104 157 11790	CWAS SPLIT FLEX 30 100 32S
8004	3104 157 11531	CWAS FLEX DVD 10 110

Mechanical DVD985 /001 /021

variou	18	
0060	3104 127 13600	CONNECTOR FRONT
		ASSY 985/EUR
0065	3104 127 13450	TRAY FRONT ASSY
		COMPLETE
0081		VAE8015/01
0151	3104 127 13320	COVER ASSY
0191	3104 124 07455	FILTER AIR INLED
		BOTTOM

	0197	3104 123 30002	DUST FILTER
	0198	3104 124 07733	FILTER AIR INLET COVER
-	0199	3104 128 93031	DC BRUSHLESS FAN
	0251	3104 127 10740	FOOT SILVER ASSY
	0252		FOOT SILVER ASSY
		3104 127 10740	FOOT SILVER ASSY
	0254	3104 127 10740	FOOT SILVER ASSY
	0309		FN-FR-FS-BR.PORT-
	0000	1022 100 10100	TRAD.CHIN
	0370	9307 002 60006	
	00.0	0007 002 00000	EUROPE
	1001▲	3104 128 07750	DVDR DIG. BOARD 1.5
			FMPRESS/EU
	1002▲	3122 427 22711	PSU DVDR1000-2 EURO
			50PS203
1	1003▲	3103 608 50290	DVDR ANALOG BOARD
			EUR GEN 1.5
	1005	3104 128 07900	PB DVDR1000 DVIO
			GEN.1.5 ASSY
	8001	3104 157 11641	CWAS FLEX DVD 22 70 32S
	8002	3104 157 11641	CWAS FLEX DVD 22 70 32S
/	8003	3104 157 11790	CWAS SPLIT FLEX 30 100
			32\$
	8004	3104 157 11531	CWAS FLEX DVD 10 110
			32\$
	8013	3104 128 92921	CABLE IEEE-1394 4P AMP
	8015	3104 157 12191	CWAS FLEX DVDR 7 360
			32S

Accessorieskit DVDR980 /001 /021

0320	4822 321 22611	
0321	3104 128 92490	VIDEO CORD SET GOLD PLATED
0322▲	2422 070 98133	MAINSCORD EUR 1M5 BK
0323	4822 321 61847	SCART
0324	3111 170 21592	CORDON ANT. L.1,50M
0370	3104 128 93041	S-VHS CABLE 1.5M
0371	9307 002 60006	DVDRW/006 PHILIPS DISC
		FUROPE

Accessories DVDR980 /051

Various

0318	3128 147 13670	RC2056/01 IRT PROD ASSY
0320	4822 321 22611	
0321	3104 128 92490	VIDEO CORD SET GOLD
		PLATED
0322▲	4622 001 60590	CORDSET UK (WITH COIL)
0323	4822 321 61847	SCART
0324	3111 170 21592	CORDON ANT. L.1,50M
0370	3104 128 93041	S-VHS CABLE 1.5M
0371	9307 002 60006	DVDRW/006 PHILIPS DISC
		EUROPE

Accessories DVDR985 /051

0320	4822 321 22611	
0321	3104 128 92490	VIDEO CORD SET GOLD
		PLATED
0322▲	4622 001 60590	CORDSET UK (WITH COIL)
0323	4822 321 61847	SCART `
0324	3111 170 21592	CORDON ANT. L.1,50M
0370	3104 128 93041	S-VHS CABLE 1.5M
0371	9307 002 60006	DVDRW/006 PHILIPS DISC
		EUROPE

0318 3128 147 13670 RC2056/01 IRT PROD ASSY

Front complete

Various

0001	3104 127 13470	FRONT ASSY
0002	3104 127 13220	SIDE PLATE LEFT ASSY
0003	3104 127 13230	SIDE PLATE RIGHT ASSY
0004	3104 124 08470	FRONT ASSY SIDE PLATE LEFT ASSY SIDE PLATE RIGHT ASSY WINDOW

0005	3139 244 00761	LIGHT GUIDE DVD STEP 2K
0011	3104 127 13240	BUTTON STANDBY ASSY
0012	3104 127 13250	BUTTON PLAY/STOP/
		RECORD ASSY
0013	3104 127 13260	BUTTON OPENCLOSE/
		RECVOLUM ASSY
0014	3104 127 13270	BUTTON DISPLAY ASSY
0015	3104 127 13530	IR LENS ASSY
1001	3104 128 08270	DISPLAYPANEL 4330 ASSY
		DVDR980

Front assy DVD985 /001 /021

	Variou	IS	
	0001	3104 127 13580	FRONT ASSY
	0002	3104 127 13220	SIDE PLATE LEFT ASSY
3	0003	3104 127 13230	SIDE PLATE RIGHT ASSY
3	0004	3104 124 08470	WINDOW
2	0005	3139 244 00761	LIGHT GUIDE DVD STEP 2K
	0011	3104 127 13240	BUTTON STANDBY ASSY
	0012	3104 127 13250	BUTTON PLAY/STOP/
			RECORD ASSY
	0013	3104 127 13260	BUTTON OPENCLOSE/
			RECVOLUM ASSY
	0014	3104 127 13270	BUTTONDISPLAY ASSY
	0015	3104 127 13530	IR LENS ASSY
-	1001	3104 128 08270	DISPLAYPANEL 4330 ASSY
			DVDR980
	1006	3104 128 07610	PCB ASSY 4319 DVIO-
-			FRONT

0318 3128 147 13670 RC2056/01 IRT PROD ASSY | Display PWB

Various

	1140	4822 276 13/32	SWITCHTACTPUSH
	1150	2422 086 10947	PROT DEV 65V 250MA PSC
			Α
	1153	5322 242 73686	CST12,00MTW-TF01
	1156	2422 527 00513	BUZZERPI EZO CB13PA-X5
	1159	4822 276 13732	SWITCH TACT PUSH
	1160	4822 276 13732	SWITCH TACT PUSH
	1162	4822 276 13732	SWITCH TACT PUSH
	1163	4822 276 13732	SWITCH TACT PUSH
	1167	4822 276 13732	SWITCH TACT PUSH
	1168	4822 276 13732	SWITCH TACT PUSH
1	1169	4822 276 13732	SWITCH TACT PUSH
	1170	4822 276 13732	SWITCH TACT PUSH
	1171	4822 276 13732	SWITCH TACT PUSH
	1174	4822 276 13732	SWITCH TACT PUSH
	I		

⊣⊢

2140	4822 124 11946 22μF 20% 1 6 V
2150	4822 124 80231 47μF 20% 1 6V
2151	4822 126 14305 100nF 10% 16V 0603
2152	4822 121 43526 47nF 5%25€0V
2154	4822 124 40849 330μF 20% 16V
2155	4822 126 14305 100nF 10% 16V 0603
2156	2238 586 59812 0603 50V1 O 0NP80M
2157	5322 126 11583 10nF 10% 5 OV 0603
2158	4822 126 14305 100nF 10% 16V 0603
2159	2238 586 59812 0603 50V1 ONP80M
2160	4822 126 14305 100nF 10% 16V 0603
2161	4822 126 14305 100nF 10% 16V 0603
2165	5322 126 11583 10nF 10%5 OV 0603
2167	4822 126 13881 470pF 5%5 © V
2168	4822 122 31765 100pF 2%6 3 V 1206
2169	5322 126 11583 10nF 10%5 © V 0603
2170	5322 126 11583 10nF 10%5 € V 0603
2171	4822 126 13879 220nF 20% 16V
2173	5322 126 11583 10nF 10%5 € V 0603
2174	4822 126 14305 100nF 10% 16V 0603
2175	F COL Rهـرا 3198 017 41050 0603 10V
2177	5322 126 11583 10nF 10%5 OV 0603
2179	5322 126 11583 10nF 10%5 © V 0603
2180	4822 126 14305 100nF 10% 16V 0603

\neg

3135	4822 117 12063	NTC DC 5/V" 10k 5%
3136	4822 051 30472	4k7 5% 0)6 2W
3137	4822 051 30472	4k7 5% 0)6-2W
3138	4822 051 30103	10k 5% 0 6 2W

EN 328	10.	DVDR980-985 /0X1	Spare Parts List

3139		390Ω 5% 0.062W	6170	9340 260 20115		1		
3140 3141		220Ω 5% 0.062W 4k7 5% 0.062W	6171	0040 000 00115	BAW56W(PHSE) R	→-		
3142		47k 1% 0.063W 0603	6171	9340 260 20115	BAW56W(PHSE) R	6100	0322 1/6 61685	DIO REG SM DF3A6.8FU
3143		10k 5% 0.062W	6172	9340 260 20115		10100	9322 140 01003	TOSJ
3144		390Ω 5% 0.062W	1		BAW56W(PHSE) R	6101	9322 146 61685	DIO REG SM DF3A6.8FU
3145 3146		10k 5% 0.062W	6173	9340 260 20115			0000 440 04005	TOSJ
3146	4822 051 30103	10k 5% 0.062W 10k 5% 0.062W	6174	9340 260 20115	BAW56W(PHSE) R	6102	9322 146 61685	DIO REG SM DF3A6.8FU TOSJ
3148	4822 051 30222		" "	0040 200 20110	BAW56W(PHSE) R	6103	9322 146 61685	DIO REG SM DF3A6.8FU
3149		4k7 5% 0.062W	6175	4822 130 30621	1N4148			TOSJ
3150	4822 051 30562	5k6 5% 0.063W 0603 RC21	6176	4822 130 30621		6104	9322 146 61685	DIO REG SM DF3A6.8FU
3151	4822 051 30102	RST SM 1k 5% 0 062W	6177 6178	4822 130 30621 4822 130 30621				TOSJ
3152	4822 116 52257		6179	4822 130 30621				
3153	2322 704 65608	RST SM 603 RC22H 5Ω6	6180	4822 130 30621		Anal	og PWB	
3154	4822 050 21003	PM1	6181 6182	4822 130 30621 4822 130 30621				
3155	4822 051 30222		6183	4822 130 30621		Vario	JS	
3156	4822 050 21003		6184	4822 130 30621		10044	0400 000 40054	PROT PEN SEN 14 POO
3157	4822 116 83884		6185	4822 130 30621				PROT DEV 65V 1A PSC PROT DEV 65V 500MA PSC
3158 3159	4822 051 30223 4822 051 30562	5k6 5% 0.062W 0603 RC21	6186 6187	4822 130 30621 4822 130 30621				PROT DEV 65V 1A PSC
0100	4022 001 00302	RST SM	6188	4822 130 30621				PROT DEV 65V 500MA PSC
3160	2322 704 65608	RST SM 603 RC22H 5Ω6	6189	4822 130 30621	1N4148	1600	4822 242 10434	
2161	4900 OE4 00000	PM1	6190	4822 130 30621		1700	4822 242 81436	0E1(18,432MHz) OFWK3953M
3161 3162	4822 051 30683 4822 051 30683		6191 6192	4822 130 30621 4822 130 30621		1701	4822 242 10307	
3163	4822 051 30103		6193	4822 130 30621		1702	2422 549 44341	FIL SAW 38MHz 9
3164	4822 050 21003	10k 1% 0.6W	6194	4822 130 30621		1702	4000 040 70506	OFWK9656M
3165	4822 051 30222		6195	4822 130 30621		1703 1705		TPS5,5MB-TF20 TUNER UV1316MK3(NON
3166 3167	4822 1 16 83876 4822 1 16 83876		6196 6197	4822 130 30621 4822 130 30621			0.00	EURO)
3168	4822 1 16 52175		6198	4822 130 83757		1802		TA252E00 (32,768KHZ)
3169	4822 051 30103	10k 5% 0.062W				1900		52030-2210 (22P)
3171	4822 051 30222		-® #			1910 1911	2422 033 00355 2422 025 10185	CON BM H 9P M 2.00 PH B
3172 3173	4822 051 30472 4822 051 30103					1932		CON BM V 07P M 2.50 EH B
3174		4M7 5% 0.062W	7140	9322 155 22667	REMOTE RECEIVER	1943	9322 155 28667	OPT FIB CON GP1FA550TZ
3177	4822 051 30102		7141	4822 130 61553	TSOP2236ZC1	1945	2422 026 05107	(SRPJ)L CON BM CINCH H 1P F BK B
3178 3180	4822 051 30222		7142		TRA SIG SM BC847BW	1950		CON BM EURO H 42P F BK
3182	4822 051 30103 4822 051 30152				(PHSE) R			GRND-L
3183	4822 051 30222		7143	9340 218 50115	TRA SIG SM BC857BW	1953		CON BMT 9P VERT PH-B
3186	4822 051 30102		7144	0340 218 50115	(PHSE) R TRA SIG SM BC857BW	1954 1955		52030-2210 (22P) CON BM MDIN 8P F
3187 3188	4822 051 30222		1' '	3040 210 30113	(PHSE) R	1933	2422 020 03040	TCX0310B
3189	4822 051 30472 4822 051 30103		7145	9340 217 70115	TRA SIG SM BC847BW	1958	2422 026 05093	CON BM CINCH 4P F
3190		47k 1% 0.063W 0603	7450	0700 474 07704	(PHSE) R			2*WHRD
3192	4822 051 30102		7150 7151		VFD BJ-801GNK 120X32 TRA SIG SM BC847BW	1959	2422 026 05096	CON BM CINCH H 2P F YEYE
3193 3194	4822 051 30103		1′'3'	3040 217 70113	(PHSE) R	1960	4822 267 10565	
3194	4822 051 30222 4822 051 30472		7152	9322 148 79668	FET PÓW SM	1982	4822 267 11031	
3999	4822 1 17 12842	487 578 6.56244	7450	0040 047 70445	STN3NE06(ST00)	1983▲	2422 086 10919	PROT DEV 65V 125MA
			7153	9340 217 70115	TRA SIG SM BC847BW (PHSE) R	1984	2412 020 00724	MP13 CON BM V 2P M 2.50 EH B
			7155	9340 217 70115	TRA SIG SM BC847BW	1987		CON BM V 12P M 2.00 PH B
					(PHSE) R	1990	4822 242 73552	
5150	4822 157 51462	10μH 10% 4X9.8MM	7156		OTPROM ASSY DDCP1-1U	1994	4822 242 10956	20MHz 20P AT-49
5151	4822 157 51462	LAL04T100K 10µH 10% 4X9.8MM	7157	9340 217 70115	TRA SIG SM BC847BW (PHSE) R			
0.0.	1022 107 01402	LAL04T100K	7160	5322 209 11147		⊣⊢		
5153	2422 531 02423	TRANSFORMER HEATER	7164		TRA SIG SM BC847BW	2000	4000 106 14404	22nF 10% 25V 0603
			7405	4000 400 04550	(PHSE) R	2002		0603 50V 330P COL R
→ -			7165 7166	4822 130 61553 9340 217 70115	TRA SIG SM BC847BW	2003		22nF 10% 25V 0603
6140	0000 1 40 17070	LED VOLTE 440H (UTO)4		15.5217 70115	(PHSE) R		4822 124 40433	47μF 20% 25V
6140 6150		DIO REG SM BZM55-C6V8				2005 2006	4822 126 14305 4822 124 40433	100nF 10% 16V 0603
	20 00000	(TEG0)	Fron	t con PWB		2007	4822 126 13883	
6151	4822 130 83757			COLLEND		2008	4822 126 14241	0603 50V 330P COL R
6152	9340 260 20115		Varia	10				100nF 10% 16V 0603
6154	9322 102 64685	BAW56W(PHSE) R DIO REG SM UDZ2.7B	Variou	13			4822 126 14305 4822 124 40433	100nF 10% 16V 0603
	. 52 04000	(RHM0) R	1910	2422 033 00355	YKC22-0489			100nF 10% 16V 0603
6155	9340 260 20115	DIO SIĠ SM	1911	2422 025 10185	CON BM H 9P M 2.00 PH B	2013	4822 124 80151	47μF 16V
6156	4922 120 02757	BAW56W(PHSE) R		·				100nF 10% 16V 0603
6156 6157	4822 130 83757 4822 130 30621		⊣⊢				4822 124 40433 4822 126 14305	47μF 20% 25V 100nF 10% 16V 0603
6158	4822 130 30621		0400	4000 400 44044	0000 FOV 000D COL D		4822 124 80151	
6159	4822 130 30621	1N4148	2102 2105		0603 50V 330P COL R 0603 50V 330P COL R	2018	4822 126 13883	220pF 5% 50V
6160	9340 260 20115		2106		100nF 10% 16V 0603			100nF 10% 16V 0603
6161	9340 260 20115	BAW56W(PHSE) R DIO SIG SM					4822 122 33777 4822 124 41584	
		BAW56W(PHSE) R	-					0603 50V 330P COL R
6164	4822 130 30621	1N4148				2105	4822 126 14241	0603 50V 330P COL R
6165 6166	4822 130 30621 4822 130 30621		3101	4822 051 30102				100nF 10% 16V 0603
6167	4822 130 30621		3102 3106	4822 051 30105 4822 051 30102				100nF 10% 16V 0603 100nF 10% 16V 0603
6168	9340 260 20115		3107	4822 051 30102				0603 16V 47nF COL
6460		BAW56W(PHSE) R	3110	4822 051 30151	150Ω 5% 0.062W	2324	2020 552 96327	16V 330nF PM10
6169	9340 260 20115	DIO SIG SM BAW56W(PHSE) R	3111 3112	4822 051 30759				100nF 10% 16V 0603
		DATOUT(FIGE) II	3112	4822 051 30759 4822 051 30759			4822 124 41584 3198 017 44740	100µF 20% 10V 0603 10V 470nF COL

```
10nF 10% 50V 0603
                                                                                                       2991
                                                                                                              4822 124 40433 47μF 20% 25V
2331
                                                   2601
                                                           5322 126 11583
       4822 124 40196 220uF 20% 16V
                                                                                                              4822 126 14305 100nF 10% 16V 0603
4822 126 14305 100nF 10% 16V 0603
       4822 124 12095
                                                           4822 124 40248
                                                                          10μF 20% 63V
2332
                       100 uF 20% 16V
                                                   2602
                                                           4822 126 14305
                                                                          100nF 10% 16V 0603
                                                                                                       2993
2400
       5322 126 11583
                       10nF 10% 50V 0603
                                                   2603
                                                                                                              4822 126 14305 100nF 10% 16V 0603
2401
       4822 126 14305
                       100nF 10% 16V 0603
                                                   2604
                                                           5322 126 11583
                                                                          10nF 10% 50V 0603
                                                                                                       2994
                                                                                                                              22pF 5% 50V
                       100nF 10% 16V 0603
                                                                          10nF 16V
                                                                                                       2995
                                                                                                              4822 122 33761
2402
       4822 126 14305
                                                   2605
                                                           4822 124 23002
                                                                                                              4822 122 33761 22pF 5% 50V
                                                                          10nF 10% 50V 0603
                                                                                                       2996
                                                           5322 126 11583
2403
       4822 124 40433
                       47uF 20% 25V
                                                   2606
                                                                          56pF 5% 50V 0603
2404
       5322 126 11583
                       10nF 10% 50V 0603
                                                           4822 126 14225
                                                   2607
                                                           4822 124 40248
                                                                          10μF 20% 63V
2405
       5322 126 11583
                       10nF 10% 50V 0603
                                                   2608
2406
       5322 126 11578
                       1nF 10% 50V 0603
                                                   2609
                                                           4822 126 14225
                                                                          56pF 5% 50V 0603
                                                                          10nF 10% 50V 0603
2407
       4822 126 14305
                       100nF 10% 16V 0603
                                                   2610
                                                          5322 126 11583
                                                                                                       3000
                                                                                                              4822 051 30472 4k7 5% 0.062W
                                                           4822 124 40769
                                                                          4.7µF 20% 100V
2408
       5322 126 11578
5322 126 11583
                       1nF 10% 50V 0603
                                                   2612
                                                                                                       3001
                                                                                                              4822 117 13632 100k 1% 0603 0.62W
                                                                          EL SM 50V 2U2 PM20 COL
2410
                       10nF 10% 50V 0603
                                                           3198 030 82280
                                                   2614
                                                                                                       3002
                                                                                                              4822 051 30103 10k 5% 0.062W
2411
       5322 126 11583
                       10nF 10% 50V 0603
                                                                                                              4822 051 30103
                                                                                                                              10k 5% 0.062W
                                                                                                       3003
                                                          3198 030 82280 EL SM 50V 2U2 PM20 COL
2430
       5322 126 11583
                       10nF 10% 50V 0603
                                                   2615
                                                                                                       3004
                                                                                                              4822 051 30103
                                                                                                                              10k 5% 0.062W
2431
       4822 124 40433
                       47µF 20% 25V
                                                                                                       3005
                                                                                                              5322 117 13026 4k7 1% 0.063W 0603 RC22H
                       10nF 10% 50V 0603
                                                           3198 016 33380 0603 50V 3P3 COL
                                                   2620
2432
       5322 126 11583
                                                                                                       3006
                                                                                                              5322 117 13026 4k7 1% 0.063W 0603 RC22H
2433
       4822 124 81151
                       22μF 50V
                                                           3198 016 33380
                                                                          0603 50V 3P3 COL
                                                   2621
                                                                                                              5322 117 13026 4k7 1% 0.063W 0603 BC22H
                                                                                                       3007
2434
       4822 124 40207
                       100μF 20% 25V
                                                   2622
                                                           4822 124 40248
                                                                          10μF 20% 63V
                                                                                                                              RST SM 0603 ERJ3G 1Ω5
                                                                                                              2120 108 94006
                                                                                                       3008
                                                                          10nF 10% 50V 0603
2436
       5322 124 41945
                       22µF 20% 35V
                                                   2623
                                                           5322 126 11583
                                                                                                                              PM5
                       100nF 10% 16V 0603
100nF 10% 16V 0603
                                                                          EL SM 50V 2U2 PM20 COL
2437
       4822 126 14305
                                                   2624
                                                           3198 030 82280
                                                                                                       3009
                                                                                                              2322 704 65102 RST SM 0603 RC22H 5k1
2438
       4822 126 14305
                                                                                                                              PM<sub>1</sub>
                                                           3198 030 82280 EL SM 50V 2U2 PM20 COL
2439
       4822 124 81151
                       22µF 50V
                                                   2625
                                                                                                       3010
                                                                                                              2120 108 94006 RST SM 0603 EBJ3G 1Ω5
2440
       4822 124 40207
                       100μF 20% 25V
                                                                                                                              PM5
2441
       4822 124 81151
                       22μF 50V
                                                   2700
                                                           4822 124 81151
                                                                          22uF 50V
                                                                                                                              4k7 1% 0.063W 0603 RC22H
                                                                                                       3011
                                                                                                              5322 117 13026
                       10μF 20% 16V
                                                           5322 122 33861
                                                                          120pF 10% 50V
2442
       4822 124 11947
                                                   2701
                                                                                                       3012
                                                                                                              5322 117 13026 4k7 1% 0.063W 0603 RC22H
                                                           4822 126 13883
                                                                          220pF 5% 50V
2443
                                                   2702
       4822 124 11947
                       10uF 20% 16V
                                                                                                       3013
                                                                                                              4822 117 12139
                                                                                                                              22Ω 5% 0.062W
                                                           5322 124 41379
                                                                          2.2μF 20% 50V
2446
       4822 126 13881
                       470pF 5% 50V
                                                   2703
                                                                                                              4822 117 12139
                                                                                                                              22Ω 5% 0.062W
                                                                                                       3014
2447
                       470pF 5% 50V
                                                   2704
                                                           4822 126 13881
                                                                          470pF 5% 50V
        4822 126 13881
                                                                                                              4822 117 12139
                                                                                                       3015
                                                                                                                              22Ω 5% 0.062W
                                                                          100nF 10% 16V 0603
100nF 10% 16V 0603
2460
       4822 124 40433 47μF 20% 25V
                                                   2705
                                                           4822 126 14305
                                                                                                              4822 117 12139
                                                                                                                              22Ω 5% 0.062W
                                                                                                       3016
                       4.7µF 20% 100V
       4822 124 40769
                                                   2706
                                                           4822 126 14305
2461
                                                                                                                              4k7 1% 0.063W 0603 RC22H RST SM 0603 ERJ3G 1\Omega5
                                                                                                       3017
                                                                                                              5322 117 13026
2462
       4822 124 40433
                       47µF 20% 25V
                                                   2707
                                                           5322 126 11583
                                                                           10nF 10% 50V 0603
                                                                                                       3018
                                                                                                              2120 108 94006
       4822 124 40769
                                                           4822 124 40248
                                                                          10μF 20% 63V
2463
                       4.7μF 20% 100V
                                                   2708
                                                                                                                              PM<sub>5</sub>
                                                                          220nF 20% 16V
2464
       4822 126 14305
                       100nF 10% 16V 0603
                                                   2709
                                                           4822 126 13879
                                                                                                              2120 108 94006
                                                                                                                              RST SM 0603 ERJ3G 1Ω5
                                                                                                       3019
                                                                          0603 50V 8P2 PM0P5
2465
       4822 126 14305
5322 126 11583
                       100nF 10% 16V 0603
                                                   2710
                                                           2020 552 94523
                                                                                                                              PM<sub>5</sub>
                       10nF 10% 50V 0603
                                                           5322 126 11578
                                                                          1nF 10% 50V 0603
2466
                                                   2711
                                                                                                                              12k 1% 0.063W 0603 RC22H
12k 1% 0.063W 0603 RC22H
                                                                                                       3020
                                                                                                              5322 117 13028
                                                           5322 126 11578
                                                                          1nF 10% 50V 0603
2467
       4822 126 13881
                       470pF 5% 50V
                                                                                                              5322 117 13028
                                                                                                       3021
2468
       4822 126 13881
                       470pF 5% 50V
                                                   2713
                                                           3198 024 44730 47nF 50V 0603
                                                                                                       3022
                                                                                                              2322 704 65102 RST SM 0603 RC22H 5k1
                                                                          2.2uF 20% 50V
2469
       3198 017 41050
                       0603 10V 1μF COL R
                                                   2714
                                                           4822 124 22652
                                                                                                                              PM<sub>1</sub>
                       100nF 10% 16V 0603
                                                           5322 126 11578
                                                                          1nF 10% 50V 0603
                                                   2715
2470
       4822 126 14305
                                                                                                       3023
                                                                                                              4822 117 12925
                                                                                                                              47k 1% 0.063W 0603
                                                                          100μF 20% 10V
2473
       4822 122 33753
                       150pF 5% 50V
                                                   2716
                                                           4822 124 41584
                                                                                                              4822 117 12925 47k 1% 0.063W 0603
                                                                                                       3024
                                                           4822 124 22652
                                                                          2.2μF 20% 50V
2474
       4822 126 14305
                       100nF 10% 16V 0603
                                                    2717
                                                                                                              4822 117 12139 22Ω 5% 0.062W
                                                                                                       3025
                                                           4822 124 40433
3198 017 44740
                                                                          47μF 20% 25V
0603 10V 470nF COL
2477
       4822 126 14305
                       100nF 10% 16V 0603
                                                   2718
                                                                                                       3026
                                                                                                              4822 117 12139
                                                                                                                              22Ω 5% 0.062W
2481
       2222 867 15339
                       0603 50V 33P PM5
                                                   2800
                                                                                                       3027
                                                                                                              4822 117 12139 22Ω 5% 0.062W
       3198 017 41050
                       0603 10V 1μF COL R
                                                           4822 126 14238
                                                                          0603 50V 2N2 COL R
                                                   2801
2483
                                                                                                       3028
                                                                                                              4822 117 13608 4.7Ω 5% 0603 0.0016W
                                                                          470nF 80/20% 16V
                                                           4822 126 13482
2484
       5322 126 11578
                       1nF 10% 50V 0603
                                                    2802
                                                                                                              4822 051 30008 0Ω jumper
4822 117 12139 22Ω 5% 0.062W
                                                                                                       3029
                       100nF 10% 16V 0603
                                                    2803
                                                           4822 126 13883
                                                                          220pF 5% 50V
2500
        4822 126 14305
                                                                                                       3030
                                                                          0603 10V 470nF COL
2501
       4822 126 14305
                       100nF 10% 16V 0603
                                                    2806
                                                           3198 017 44740
                                                                                                              4822 051 30008 OΩ jumper
                                                                                                       3032
                                                           4822 126 13482
                       4.7μF 20% 100V
                                                                          470nF 80/20% 16V
2502
       4822 124 40769
                                                   2807
                                                                                                       3101
                                                                                                              4822 051 30102 1k 5% 0.062W
       4822 124 40769
                       4.7µF 20% 100V
                                                   2810
                                                           5322 126 11578
                                                                          1nF 10% 50V 0603
2503
                                                                                                       3102
                                                                                                              4822 051 30105
                                                                                                                              1M 5% 0.062W
                       100nF 10% 16V 0603
                                                           4822 124 11968
                                                                          220mF 20% 5.5V
2505
        4822 126 14305
                                                    2811
                                                                                                              4822 051 30102
                                                                                                                              1k 5% 0.062W
                                                                                                       3106
2506
        4822 126 14305
                       100nF 10% 16V 0603
                                                   2812
                                                           4822 126 14305
                                                                          100nF 10% 16V 0603
                                                                                                       3107
                                                                                                              4822 051 30105
                                                                                                                              1M 5% 0.062W
                       100nF 10% 16V 0603
                                                                           10nF 10% 50V 0603
2507
       4822 126 14305
                                                   2814
                                                           5322 126 11583
                                                                                                       3110
                                                                                                              4822 051 30151
                                                                                                                              150Ω 5%0.062W
                                                                           18pF 5% 50V 0603
                       47uF 20% 25V
                                                           4822 126 14507
       4822 124 40433
                                                   2815
2508
                                                                                                       3111
                                                                                                              4822 051 30759 75Ω 5% 0.062W
        4822 124 40769
                       4.7μF 20% 100V
                                                    2816
                                                           3198 017 41050
                                                                          0603 10V 1μF COL R
2509
                                                                                                       3112
                                                                                                              4822 051 30759
                                                                                                                              750.5% (O62W
        4822 124 40433
                       47μF 20% 25V
                                                    2817
                                                           5322 126 11578
                                                                          1nF 10% 50V 0603
2510
                                                                                                              4822 051 30759
                                                                                                                              75Ω 5% 0.062W
                                                                                                       3113
2511
        4822 122 33777
                       47pF 5% 63V
                                                   2818
                                                           5322 126 11583
                                                                          10nF 10% 50V 0603
                                                                                                              4822 117 12891
                                                                                                       3321
                                                                                                                              220k 1% ΕFRJ3Ω
                                                                          0603 10V 470nF COL
                       47pF 5% 63V
                                                           3198 017 44740
2512
        4822 122 33777
                                                   2819
                                                                                                              4822 117 12891
                                                                                                                              220k 1% ΕFRJ3Ω
                                                                                                       3325
                       100nF 10% 16V 0603
                                                           3198 017 44740
                                                                          0603 10V 470nF COL
       4822 126 14305
                                                   2820
2513
                                                                                                       3326
                                                                                                              4822 051 30103
                                                                                                                              10k 5% 0062W
                       100nF 10% 16V 0603
2514
        4822 126 14305
                                                    2821
                                                           2020 552 96305
                                                                          4U7 20% 10V
                                                                                                              4822 051 30472 4k7 5% 0062W
                                                                                                       3335
        4822 124 40769
                       4.7μF 20% 100V
                                                   2822
                                                           2020 552 96305
                                                                          4U7 20% 10V
2515
                                                                                                              4822 051 30103
                                                                                                                              10k 5% 0062W
                                                                                                       3336
2516
       3198 017 41050
                       0603 10V 1μF COL R
                                                   2823
                                                           4822 126 14305
                                                                          100nF 10% 16V 0603
                                                                                                              4822 117 13632
                                                                                                                              100k 1% 16 O3 0.62W
                                                                                                       3337
                       0603~10V~1\mu F~COL~R
                                                                          47μF 20% 25V
                                                           4822 124 40433
2517
       3198 017 41050
                                                   2831
                                                                                                       3338
                                                                                                              4822 117 12891
                                                                                                                             220k 1% ΕF3J3Ω
                       0603 10V 1µF COL R
                                                           4822 126 14305
                                                                          100nF 10% 16V 0603
       3198 017 41050
2518
                                                   2832
                                                                                                       3339
                                                                                                              4822 117 12891
                                                                                                                             220k 1% EF3J3Ω
       3198 017 41050
                                                                           10nF 10% 50V 0603
2519
                       0603 10V 1μF COL R
                                                    2900
                                                           5322 126 11583
                                                                                                              4822 117 12891
                                                                                                                              220k 1% FF3J30
                                                                                                       3340
                                                                          47μF 16V
        4822 124 41584
2520
                       100μF 20% 10V
                                                   2901
                                                           4822 124 80151
                                                                                                       3402
                                                                                                              4822 117 13632
                                                                                                                              100k 1% 603 0.62W
                                                                          100nF 10% 16V 0603
2521
        4822 126 14305
                       100nF 10% 16V 0603
                                                   2902
                                                           4822 126 14305
                                                                                                       3403
                                                                                                              4822 051 30101
                                                                                                                              100Ω 5%0. O62W
                                                                          220nF 20% 16V
                       0603 10V 1μF COL R
                                                           4822 126 13879
       3198 017 41050
                                                   2903
2522
                                                                                                       3404
                                                                                                              4822 051 30101
                                                                                                                              100Ω 5%0. O62W
                                                           3198 017 41050
                       100nF 10% 16V 0603
                                                   2904
                                                                          0603 10V 1μF COL R
2523
        4822 126 14305
                                                                                                       3405
                                                                                                              4822 051 30759
                                                                                                                              75Ω 5% (0.62W
       3198 017 41050
                       0603 10V 1μF COL R
                                                           4822 124 40433
                                                                          47μF 20% 25V
2524
                                                    2905
                                                                                                                              75Ω 5% (0.62W
                                                                                                       3406
                                                                                                              4822 051 30759
                                                                          100nF 10% 16V 0603
2525
        3198 017 41050
                       0603 10V 1μF COL R
                                                   2906
                                                           4822 126 14305
                                                                                                       3407
                                                                                                              4822 051 30101
                                                                                                                              100Ω 5%0. O62W
                                                                           10nF 10% 50V 0603
                       100nF 10% 16V 0603
100nF 10% 16V 0603
2526
        4822 126 14305
                                                   2907
                                                           5322 126 11583
                                                                                                              4822 051 30759
                                                                                                                              75Ω 5% (O 62W
                                                                                                       3408
                                                                           100nF 10% 16V 0603
        4822 126 14305
                                                           4822 126 14305
                                                   2909
2527
                                                                                                       3409
                                                                                                              4822 051 30103
                                                                                                                              10k 5% 0062W
       3198 017 41050
                                                           4822 126 11669
2528
                       0603 10V 1μF COL R
                                                   2910
                                                                          27pF
                                                                                                       3410
                                                                                                              2322 574 10402
                                                                                                                             VDR 080; 1 M A/6V4 MAX
                       100nF 10% 16V 0603
                                                           2222 867 15339
                                                                          0603 50V 33P PM5
2529
        4822 126 14305
                                                    2911
                                                                                                                              21VR
2530
        3198 017 41050
                       0603 10V 1μF COL R
                                                   2914
                                                           4822 126 14305
                                                                          100nF 10% 16V 0603
100nF 10% 16V 0603
                                                                                                       3411
                                                                                                              4822 117 13632
                                                                                                                             100k 1% 6 O3 0.62W
2531
        4822 126 14305
                       100nF 10% 16V 0603
                                                   2915
                                                           4822 126 14305
                                                                                                              4822 051 30103 10k 5% 00652W
                                                                                                       3412
                                                                           100nF 10% 16V 0603
                        10μF 20% 16V
                                                           4822 126 14305
        4822 124 11947
                                                   2916
2532
                                                                                                       3413
                                                                                                              4822 051 30103
                                                                                                                              10k 5% 0062W
                                                                           100nF 10% 16V 0603
100nF 10% 16V 0603
                        10μF 20% 16V
                                                           4822 126 14305
2533
        4822 124 11947
                                                    2917
                                                                                                              4822 051 30103 10k 5% 00€2W 4822 117 13632 100k 1% 6€03 0
                                                                                                       3414
2534
        4822 126 14305
                       100nF 10% 16V 0603
                                                    2918
                                                           4822 126 14305
                                                                                                                              100k 1% 6 Q3 0.62W
                                                                           100nF 10% 16V 0603
                                                                                                       3415
2535
        4822 124 11947
                       10μF 20% 16V
                                                   2950
                                                           4822 126 14305
                                                                                                       3416
                                                                                                              2322 574 10402
                                                                                                                             VDR 080; 1 M A/6V4 MAX
                       0603 10V 1μF COL R
                                                           4822 124 40248
                                                                           10μF 20% 63V
                                                   2951
2536
        3198 017 41050
                                                                                                                              21VR
        3198 017 41050
                       0603 10V 1μF COL R
                                                           4822 126 14238
                                                                          0603 50V 2N2 COL R
                                                    2952
2537
                                                                                                       3417
                                                                                                              4822 117 13632
                                                                                                                             100k 1% 16€03 0.62W
        3198 017 41050
                       0603 10V 1μF COL R
                                                           4822 126 14238
                                                                          0603 50V 2N2 COL R
2538
                                                    2953
                                                                                                              4822 117 13632
4822 117 13632
                                                                                                                             100k 1% 6€3 0.62W
100k 1% 6€3 0.62W
                                                                                                       3418
        4822 124 11947
                       10μF 20% 16V
                                                    2954
                                                           4822 126 14508
                                                                           180pF 5% 50V 0603
2539
                                                                                                       3419
                                                                           180pF 5% 50V 0603
2540
        5322 126 11578
                       1nF 10% 50V 0603
                                                    2955
                                                           4822 126 14508
                                                                                                       3423
                                                                                                              4822 117 12864
                                                                                                                             82k 5% 05VV
                                                                          0603 10V 1μF COL R
                                                           3198 017 41050
2541
                       100nF 10% 16V 0603
                                                   2956
        4822 126 14305
                                                                                                       3424
                                                                                                              4822 051 30474 470k 5% LO62W
                                                           3198 017 41050
                                                                          0603 10V 1μF COL R
2542
        4822 126 13879
                       220nF 20% 16V
                                                    2957
                                                                                                       3425
                                                                                                              4822 051 30474
                                                                                                                             470k 5% (. 362W
2544
                       100nF 10% 16V 0603
                                                    2970
                                                           4822 124 11947
                                                                           10μF 20% 16V
        4822 126 14305
                                                                                                              4822 051 30474 470k 5% C 62W
                                                                                                       3426
2545
        4822 126 13881
                       470pF 5% 50V
                                                    2980
                                                           4822 124 40207
                                                                           100μF 20% 25V
                                                                                                       3428
                                                                                                              4822 051 30101 100Ω 5%). O62W
                                                                           100nF 10% 16V 0603
                       470pF 5% 50V
                                                           4822 126 14305
2546
        4822 126 13881
                                                    2981
                                                                                                       3429
                                                                                                              4822 051 30561 560Ω 5%). Ø62W
                                                                           100μF 20% 25V
2549
                       0603 10V 1μF COL R
                                                    2982
                                                           4822 124 40207
        3198 017 41050
                                                                                                       3431
                                                                                                              4822 051 30472 4k7 5% 0) 52W
                       0603 10V 1μF COL R
                                                                          10nF 10% 50V 0603
2550
        3198 017 41050
                                                    2983
                                                           5322 126 11583
                                                                                                       3432
                                                                                                              4822 051 30759 75Ω 5% 00€2W
2551
        5322 126 11583 10nF 10% 50V 0603
                                                    2984
                                                           3198 016 31020 0603 25V 1nF
2600
        4822 124 40248 10µF 20% 63V
                                                   2990
                                                           4822 126 14305 100nF 10% 16V 0603
```

EN 330 | 10. DVDR980-985 /0X1 | Spare Parts List

3433	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM	3536	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM	3816		100Ω 5% 0.062W
3434	4822 117 12864		3537	4822 051 30689	68Ω 5% 0.063W 0603 RC21	3817 3818		1k 5% 0.062W 100Ω 5% 0.062W
3435		100k 1% 0603 0.62W			RST SM	3819	4822 051 30101	100Ω 5% 0.062W
3436 3437	4822 051 30759 4822 117 12864	75Ω 5% 0.062W	3538	4822 051 30102		3820		4k7 5% 0.062W
3438		100k 1% 0603 0.62W	3539 3540	4822 051 30102 5322 117 13068	82Ω 1% 0.063W 0603	3821 3822		10k 5% 0.062W 100k 1% 0603 0.62W
3439		470Ω 5% 0.062W	"	30220000	RC22H	3823		10k 5% 0.062W
3440		100Ω 5% 0.062W	3541		470Ω 5% 0.062W	3824		10k 5% 0.062W
3441 3442		100k 1% 0603 0.62W 4k7 5% 0.062W	3542 3543		470Ω 5% 0.062W 100Ω 5% 0.062W	3825 3829	4822 051 30103 4822 051 30008	10k 5% 0.062W
3443		47Ω 5% 0.062W	3544		4k7 5% 0.062W	3830		4k7 5% 0.062W
3445		470Ω 5% 0.062W	3545	4822 051 30689	68Ω 5% 0.063W 0603 RC21	3831		10k 5% 0.062W
3446 3450		100Ω 5% 0.062W 100k 1% 0603 0.62W	3546	4822 051 30102	RST SM	3832 3833		100k 1% 0603 0.62W 2k2 5% 0.062W
3451	4822 051 30472		3547		150Ω 5% 0.062W	3834		2k2 5% 0.062W
3455		100k 1% 0603 0.62W	3548		100Ω 5% 0.062W	3835		10k 5% 0.062W
3458 3459		1k5 5% 0.062W 4k7 5% 0.062W	3549	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM	3837 3838		100k 1% 0603 0.62W 4k7 5% 0.062W
3460		470Ω 5% 0.062W	3550	4822 051 30102		3839		10k 5% 0.062W
3461		4k7 5% 0.062W	3551		100Ω 5% 0.062W	3840	4822 051 30101	100Ω 5% 0.062W
3462	2322 5 / 4 10402	VDR 0805 1M A/6V4 MAX 21VR	3552	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM	3841 3842		100Ω 5% 0.062W
3463	4822 117 13632	100k 1% 0603 0.62W	3553	4822 051 30102		3843		680k 5% 0.062W 10k 5% 0.062W
3464	4822 117 13632	100k 1% 0603 0.62W	3554	4822 051 30759	75Ω 5% 0.062W	3844	4822 051 30102	1k 5% 0.062W
3465	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR	3555 3556		10k 5% 0.062W 47k 1% 0.063W 0603	3845 3846	4822 051 30472 4822 051 30102	4k7 5% 0.062W
3466	4822 051 30471	470Ω 5% 0.062W	3557		47k 1% 0.063W 0603 47k 1% 0.063W 0603	3847		3k3 5% 0.062W
3467	4822 051 30472	4k7 5% 0.062W	3558	4822 051 30223	22k 5% 0.062W	3848	4822 117 12925	47k 1% 0.063W 0603
3468	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR	3559 3560		3k9 5% 0.063W 0603 220k 1% ERJ3Ω	3849 3850	4822 051 30103	
3469	4822 1 17 13632	100k 1% 0603 0.62W	3561		3k3 5% 0.062W	3851	4822 051 30472 4822 051 30103	10k 5% 0.062W
3470	4822 1 17 13632	100k 1% 0603 0.62W	3562	4822 051 30101	100Ω 5% 0.062W	3852	4822 051 30223	22k 5% 0.062W
3471	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR	3563 3567	4822 051 30101 4822 051 30103	100Ω 5% 0.062W	3853 3854		100k 1% 0603 0.62W 1k0 1% 0.063W 0603 RC22H
3472	4822 051 30471	470Ω 5% 0.062W	3568	4822 051 30472		3855	4822 051 30472	
3473	4822 051 30689	68Ω 5% 0.063W 0603 RC21	3570		100k 1% 0603 0.62W	3856		100k 1% 0603 0.62W
3474	4822 051 30471	RST SM 470Ω 5% 0.062W	3600 3601	4822 051 30103 4822 051 30101	10k 5% 0.062W 100Ω 5% 0.062W	3857 3858	4822 051 30222	2k2 5% 0.062W 100k 1% 0603 0.62W
3475	4822 051 30102	1k 5% 0.062W	3602	4822 051 30472		3859	4822 051 30223	
3476	5322 1 17 13068	82Ω 1% 0.063W 0603	3603		100Ω 5% 0.062W	3860	4822 051 30682	6k8 5% 0.062W
3477	4822 1 17 12925	RC22H 47k 1% 0.063W 0603	3604 3605	4822 051 30102 4822 051 30102		3861 3862	4822 051 30103 4822 051 30223	
3478	4822 051 30759	75Ω 5% 0.062W	3606	4822 051 30102	1k 5% 0.062W	3863		100Ω 5% 0.062W
3479 3480	4822 051 30472	4k7 5% 0.062W 75Ω 5% 0.062W	3607 3700	4822 051 30102		3864		100Ω 5% 0.062W
3481		75Ω 5% 0.062W	3701	4822 051 30333 4822 051 30681	680Ω 5% 0.062W	3865 3866		100Ω 5% 0.062W 47k 1% 0.063W 0603
3482	4822 051 30101	100Ω 5% 0.062W	3702		5k6 5% 0.063W 0603 RC21	3867	4822 051 30101	100Ω 5% 0.062W
3483	4822 051 30689	68Ω 5% 0.063W 0603 RC21 RST SM	3703	4822 051 30154	RST SM 150k 5% 0.062W	3868 3869	4822 051 30103 4822 051 30332	
3484	4822 051 30759		3704	4822 051 30472		3870		100Ω 5% 0.062W
3485 3486	4822 051 30102		3705	4822 051 30183		3872	4822 051 30103	
3487		150Ω 5% 0.062W 100Ω 5% 0.062W	3706 3707	4822 051 30331 4822 100 12158	330Ω 5% 0.062W 22k 30%	3873 3874	4822 051 30103 4822 051 30123	
3488	4822 051 30101	100Ω 5% 0.062W	3708	4822 051 30101	100Ω 5% 0.062W	3875	4822 051 30102	
3489 3490	4822 051 30103		3709 3710	4822 051 30183		3876		330Ω 5% 0.062W
3492	4822 1 17 13632	470Ω 5% 0.062W 100k 1% 0603 0.62W	3711	4822 051 30101	100Ω 5% 0.062W 0Ω iumper	3877 3878		100Ω 5% 0.062W 100Ω 5% 0.062W
3494	4822 051 30759	75Ω 5% 0.062W	3712	4822 051 30222	2k2 5% 0.062W	3879	4822 051 30103	10k 5% 0.062W
3495 3497	4822 051 30222	2k2 5% 0.062W 100Ω 5% 0.062W	3713 3714	4822 051 30682		3880	4822 051 30103	
3499		330Ω 5% 0.062W	3715	4822 051 30472 4822 051 30101	4K7 5% 0.062W 100Ω 5% 0.062W	3881 3882	4822 051 30103 4822 117 13632	10k 5% 0.062W 100k 1% 0603 0.62W
3500	4822 051 30272	2k7 5% 0.062W	3716	4822 051 30101	100Ω 5% 0.062W	3883	4822 051 30331	330Ω 5% 0.062W
3501 3503	4822 051 30272 4822 051 30221	2k7 5% 0.062W 220Ω 5% 0.062W	3717 3718	4822 051 30102 4822 051 30472		3885 3886	4822 051 30222	
3504	4822 051 30222		3719	4822 051 30472		3887	4822 051 30479 4822 051 30474	47Ω 5% 0.062W 470k 5% 0.062W
3505	4822 051 30222		3720	4822 051 30101	100Ω 5% 0.062W	3888	4822 051 30223	22k 5% 0.062W
3506 3515		220Ω 5% 0.062W 100k 1% 0603 0.62W	3721 3722	4822 051 30271 4822 051 30332	270Ω 5% 0.062W 3k3 5% 0.062W	3889 3890	4822 051 30102 4822 051 30101	1k 5% 0.062W 100Ω 5% 0.062W
3516	4822 051 30471	470Ω 5% 0.062W	3723	4822 117 13632	100k 1% 0603 0.62W	3892	4822 051 30101	
3517	2322 574 10402	VDR 0805 1M A/6V4 MAX	3724		680Ω 5% 0.062W	3893	4822 051 30103	10k 5% 0.062W
3518	4822 051 30472	21VR 4k7 5% 0.062W	3725 3726	4822 051 30472 4822 051 30562	4k7 5% 0.062W 5k6 5% 0.063W 0603 RC21	3896 3898	4822 051 30103 4822 051 30103	
3519	4822 1 17 13632	100k 1% 0603 0.62W			RST SM	3899	4822 051 30103	
3520	2322 574 10402	VDR 0805 1M A/6V4 MAX	3727	4822 051 30272		3900	4822 051 30103	10k 5% 0.062W
3521	4822 051 30102	21VR 1k 5% 0.062W	3728 3729		330Ω 5% 0.062W 5k6 5% 0.063W 0603 RC21	3901 3902	4822 117 12925 4822 051 30472	47k 1% 0.063W 0603 4k7 5% 0.062W
3522	4822 051 30471	470Ω 5% 0.062W			RST SM	3903	4822 051 30102	1k 5% 0.062W
3523	2322 574 10402	VDR 0805 1M A/6V4 MAX 21VR	3730		5k6 5% 0.063W 0603 RC21 RST SM	3904 3905	4822 051 30102	
3524	4822 051 30101	100Ω 5% 0.062W	3800	4822 051 30103		3905	4822 051 30102 4822 051 30333	
3525	4822 051 30101	100Ω 5% 0.062W	3801	4822 051 30273	27k 5% 0.062W	3907	4822 051 30101	100Ω 5% 0.062W
3526 3527	4822 1 17 13632 4822 051 30472	100k 1% 0603 0.62W 4k7 5% 0.062W	3803 3804	4822 051 30682 4822 051 30222		3908 3909		100Ω 5% 0.062W 100Ω 5% 0.062W
3528		470Ω 5% 0.062W	3805	4822 051 30222		3910	4822 051 30101	
3529	4822 1 1 7 13632	100k 1% 0603 0.62W	3807	4822 051 30008	0Ω jumper	3911	4822 051 30472	4k7 5% 0.062W
3530	23225/410402	VDR 0805 1M A/6V4 MAX 21VR	3808 3809	4822 051 30333 4822 051 30103		3912 3913	4822 051 30103 4822 117 13632	10k 5% 0.062W 100k 1% 0603 0.62W
3531		470Ω 5% 0.062W	3810	4822 117 13632	100k 1% 0603 0.62W	3914		100Ω 5% 0.062W
3532 3533		470Ω 5% 0.062W	3811	4822 051 30472	4k7 5% 0.062W	3915	4822 051 30101	100Ω 5% 0.062W
3534		47k 1% 0.063W 0603 100Ω 5% 0.062W	3812 3813	4822 051 30221 4822 051 30684		3918 3919	4822 051 30103 4822 051 30103	
3535		470Ω 5% 0.062W	3814	4822 051 30008	0Ω jumper	3920	4822 117 12891	220k 1% ERJ3Ω
			3815	5322 11/ 13018	1k0 1% 0.063W 0603 RC22H	3925	4822 117 12139	22Ω 5% 0.062W

					Spare Paris List	חעעה	960-965 /UA	III.
2042	4922.051.20102	10k E9/ 0.060W	6102	0222 146 61685	DIO REG SM DF3A6.8FU	7460	4822 130 42804	BC817-25
3943 3944	4822 051 30103 4822 117 12891		0102	9322 140 0 1003	TOSJ	7461	4822 130 42804	
3947	4822 051 30103		6103	9322 146 61685	DIO REG SM DF3A6.8FU	7462	3198 010 42310	
3948	4822 051 30008				TOSJ	7463	4822 130 42804	BC817-25
3950	4822 051 30472		6104	9322 146 61685	DIO REG SM DF3A6.8FU	7464	3198 010 42310	
3951		100k 1% 0603 0.62W			TOSJ	7466	4822 130 42804	
3952	4822 051 30223		6402	9322 146 61685	DIO REG SM DF3A6.8FU	7470 7500	5322 209 11517	TRA SIG SM BC857BW
3953 3954	4822 051 30153 4822 051 30472		6403	9322 146 61685	TOSJ DIO REG SM DF3A6.8FU	/300	9340 216 30113	(PHSE) R
3955	4822 051 30472		0400	00EE 140 01000	TOSJ	7501	9340 218 50115	TRA SIG SM BC857BW
3956	4822 051 30222		6405	9322 146 61685	DIO REG SM DF3A6.8FU			(PHSE) R
3957	4822 051 30222	2k2 5% 0.062W			TOSJ	7505	4822 130 42804	
3958	4822 051 30472		6430	9322 146 61685	DIO REG SM DF3A6.8FU	7506	4822 130 42804	IC SM STV6410AD (ST00) Y
3959	3198 021 31060	RST SM 0603 10M PM5COL R	6431	0322 146 61685	TOSJ DIO REG SM DF3A6.8FU	7507 7508	3198 010 42310	
3960	3198 021 31060	RST SM 0603 10M PM5COL	0431	3322 140 01003	TOSJ	7509	3198 010 42310	
0000	0100 021 01000	R	6432	9322 146 61685	DIO REG SM DF3A6.8FU	7510	3198 010 42310	BC847BW
3961	4822 051 30333	33k 5% 0.062W			TOSJ	7511	4822 130 42804	
3962	4822 051 30333		6439	9322 146 61685	DIO REG SM DF3A6.8FU	7512	3198 010 42310	
3963	4822 051 30333		6440	0222 146 61695	TOSJ DIO REG SM DF3A6.8FU	7513 7514	3198 010 42310	TRA SIG SM BC857BW
3964 3965	4822 051 30333 4822 051 30333		0440	9322 140 01003	TOSJ	/314	5040 210 50110	(PHSE) R
3966	4822 051 30333		6460	9322 129 38685	DIO REG SM BZM55-C6V8	7515	4822 130 42804	
3967	4822 051 30109				(TEG0)	7516	3198 010 42310	
3968	4822 051 30109		6461	9322 129 42685	DIO REG SM BZM55-C15	7517	9340 218 50115	TRA SIG SM BC857BW
3969	4822 051 30109		6460	0222 120 20605	(TEG0) R DIO REG SM BZM55-C6V8	7600	0222 167 63668	(PHSE) R IC SM MSP3415G-QG-B8
3970 3971		220k 1% ERJ3Ω 33k 1% 0.063W 0603 RC22H	6462	9322 129 30005	(TEG0)	, 1,000	9322 107 03000	(MIAS) R
3972		470Ω 5% 0.062W	6463	9322 129 38685	DIO REG SM BZM55-C6V8	7700	4822 130 61553	
3973	4822 051 30102				(TEG0)	7701	4822 130 61553	
3975	4822 051 30563		6464	9322 129 38685	DIO REG SM BZM55-C6V		4822 130 61553	
3976	4822 051 30393		.405	0000 100 00005	(TEG0)	7703	9352 606 11118	IC SM TDA9818T/V1(PHSE)
3977 3978	4822 051 30223 4822 051 30109		6465	9322 129 30005	DIO REG SM BZM55-C6V8 (TEG0)	7704	9340 218 50115	TRA SIG SM BC857BW
3979	4822 051 30109		6466	9322 146 61685	DIO REG SM DF3A6.8FU	1,,,,,	0040 210 00110	(PHSE) R
3980	4822 051 30333				TOSJ	7705	5322 130 42755	BC847C
3981	4822 051 30153	15k 5% 0.062W	6468	4822 130 83757		7706	9340 218 50115	TRA SIG SM BC857BW
3982	4822 051 30183		6501	9322 129 42685	DIO REG SM BZM55-C15	7707	0400 040 40040	(PHSE) R
3983	4822 051 30563		6502	0222 120 28685	(TEG0) R DIO REG SM BZM55-C6V8	7707 7708	3198 010 42310 4822 130 61553	
3984 3985	4822 051 30102 4822 051 30562	5k6 5% 0.063W 0603 RC21	0502	9322 129 30003	(TEG0)	7709	3198 010 42310	
0000	4022 001 0000E	RST SM	6503	9322 129 38685	DIO REG SM BZM55-C6V			IC SM TL074CD (ST00) R
3986	4822 051 30103	10k 5% 0.062W			(TEG0)	7801	3198 010 42310	BC847BW
3987	4822 051 30102		6504	9322 129 38685	DIO REG SM BZM55-C6V		4822 209 16884	TDA CIC SA A DOSEZDIA
3988	4822 051 30273		6505	0222 146 61685	(TEG0) DIO REG SM DF3A6.8FU	7804	9340 218 50115	TRA SIG SM BC857BW (PHSE) R
3989 3990	4822 051 30103 4822 117 12925	47k 1% 0.063W 0603	0303	9322 140 01003	TOSJ	7805	3198 010 42310	
3991		47k 1% 0.063W 0603	6506	9322 129 38685	DIO REG SM BZM55-C6V8			TRA SIG SM BC857BW
3992		47k 1% 0.063W 0603			(TEG0)			(PHSE) R
3993		100Ω 5% 0.062W	6507	9322 129 38685	DIO REG SM BZM55-C6V8		4822 130 60854	
3994		100Ω 5% 0.062W	6508	0222 120 20605	(TEG0) DIO REG SM BZM55-C6V8	7809 7810	3198 010 42310 4822 209 63604	
3995 3996	4822 051 30103	10Ω 5% 0.062W	6506	9322 129 30003	(TEG0)	7811	4822 209 15139	
3997		10Ω 5% 0.062W	6509	9322 150 38685		7812		TRA SIG SM BC857BW
					BAS385(VISH)R			(PHSE) R
			6600	4822 130 83757		7813	3198 010 42310	
			6700 6701	4822 130 11525 4822 130 11525		7815 7816	4822 209 16954 3198 010 42310	
5000	4822 157 11074		6702	4822 130 11525		7817	3198 010 42310	
5001	4822 157 11074		6703	4822 130 83757		7900		TL7705A0D 1013TRA
5002		EL0305RA-100J BLM11P600SPT	6801	9322 150 38685		7901	4822 209 73852	
5003 5004		BLM11P600SPT		1000 100 00757	BAS385(VISH)R	7902	9340 560 36235	
5009	4822 157 11775		6802 6803	4822 130 83757 4822 130 83757		7906	9322 152 30008	ICSM M29F800AT- 70N1(ST0)
5400		EL0305RA-100J	6805	9322 150 38685		7907	9322 161 94668	IC SM CY62 128-
5430		EL0305RA-100J			BAS385(VISH)R	1		70SC(CYPR)R
5470	2422 536 00019	TRANSFORMER 6RG (SAGA) B	6807	4822 130 83757		7909	4822 130 61553	
5600	4822 157 11299	EL0305RA-100J	6970	4822 130 83757		7950	4822 209 60177	
5601		IND FXD EL0305 S 100U	6971 6972	4822 130 83757 4822 130 83757		7951 7952	3198 010 42310 3198 010 42310	
		PM5 A		-02E 130 03/3/	MOLT ITO	7970	4822 209 63709	
5602		EL0305RA-100J	<i>∞</i> <u>••••</u>	na,		7971	4822 130 41087	
5700	4822 157 11074		₩	rot ⁱ		7972	3198 010 42310	
5701 5702	4822 157 11775 2422 549 44162	1ND VAR 7MM Y 77M8 B	7000	9340 218 50115	TRA SIG SM BC857BW	7974	3198 010 42310	
5703		IND VAR 7MM Y 77M8 B	1		(PHSE) R	7975 7990	9340 560 36235 4822 209 17505	
5705	4822 157 11299	EL0305RA-100J	7001	4822 209 17423	UAD1328T	1990	-1022 2U3 1/3U3	J. 100-100
5706	4822 157 11775		7002	4822 209 62312			_	
5 7 07		EL0305RA-150J BLM11P600SPT	7004	9352 015 3/118	IC SM UDA1360TS/N1 (PHSE) R	Tray	Front	
5 9 01 5 9 03		BLM11P600SPT	7321	9322 147 95668	FET SIG SM 2SK2839			
5 9 04		BLM11P600SPT			(TOSJ)	Vario	us	
5990	4822 157 11299	EL0305RA-100J	7323	9322 147 95668	FET SIG SM 2SK2839		0101:	DIM DADOT
5 9 91	4822 157 11074	100μΗ	700 :	4000 400 04550	(TOSJ)	0002	3104 120 00272	HM RAD(E
			7324 7329	4822 130 61553 3198 010 42310				
→+			7330	3198 010 42310		PSU	PWB	
00	1000 100 00=	MOI 4440	7331	3198 010 42310			-	
6000 6100	4822 130 83757	MCL4148 DIO REG SM DF3A6.8FU	7332	4822 209 33665		ຸ Vario	us	
0100	3322 140 0 1003	TOSJ	7400		IC SM BA7652AF (RHM0)	n j		
6101	9322 146 61685	DIO REG SM DF3A6.8FU	7401 7430		IC SM BA7652AF (RHM0) IC BA7660FS-E2	0010	4822 492 63066	
		TOSJ	7431	4822 130 42804		0021	4822 492 63066	EIV TRAID STOR
			7433	4822 130 42804	BC817-25	0025	+022 482 03324	FIX. TRAIS STOR

EN:	332 10.	DVDR980-985 /0X1	S	pare Parts Li	st			
0040	4822 492 63066		3234	4822 117 10833	10k 1% 0.1W	7502	4822 209 81397	TL431CLPST
0060	4822 492 63066		3250		470Ω 5% 0.5W	7511		FET POW SM IRLML2502
0090 0101 ▲	4822 492 63066 4822 265 31015		3253 3254	4822 117 12925	47k 1% 0.063W 0603 470Ω 5% 0.5W	7512	5322 130 60159	(INR0) R BC846B
0120▲	4822 265 11253	FUSE HOLDER 2P	3255	5322 117 13026	4k7 1% 0.063W 0603 RC22H	7515		FET POW SM IRLML2502
	4822 253 30383		3256 3501	5322 117 13026 4822 116 52256	4k7 1% 0.063W 0603 RC22H	7520	4900 100 11006	(INRO) R
13202	4022 252 11144	19398E1(3,150A)	3502		4k7 1% 0.063W 0603 RC22H	7520 7521	4822 130 11336 4822 209 81397	
⊣⊢			3503	4822 051 30681	680Ω 5% 0.062W			
			3504 3511		4k7 1% 0.063W 0603 RC22H 10k 5% 0.062W	Dia	1.5 PWB	
2119▲	2020 554 90186	CERSAF KX 250V S 1nF PM20 A	3512	4822 051 20472			1.01 110	
2120▲	4822 121 10697	220nF 20% 275V	3513 3514	4822 117 12925 4822 050 21003	47k 1% 0.063W 0603	Vario	us	
2125		EL 151 400V S 68μF PM20	3515	4822 117 10833		1100	0400 005 47040	00N DM V 45D E 4 00 5E0
2129 2130	4822 121 70162 4822 126 14525		3516		10k 5% 0.062W	1100	2422 025 17018	CON BM V 15P F 1.00 FFC 0.3 R
		CÉRSAF KX 250V S 1nF	3520 3521	4822 051 20511 4822 051 30102		1101	2422 025 17018	CON BM V 15P F 1.00 FFC
2136	4822 126 12263	PM20 A 220pF 10%) 1KV	3522	4822 117 11449	2k2 5% 0.1W 0805	1200	2422 025 16704	0.3 R CON BM V 7P F 1.00 FFC
2139	2222 580 15649		3523 3524	4822 051 30681 4822 051 20332	680Ω 5% 0.062W	'200	2422 020 10704	0.3 R
2140	2222 580 15649		3525		1k2 1% 0.063W 0603 RC22H	1500	2422 543 01115	RES XTL SM 24M576 12P
2141 2142	4822 126 13881 4822 122 33575	220pF 5% 63V CASE				1600	2422 025 16729	CX-11F R CON BM V 10P F 1.00 FFC
2143	4822 126 14305	100nF 10% 16V 0603						0.3 R
2144 2145		470nF 10% 16V XTR 470nF 10% 16V XTR	5110	2422 535 94634	IND FXD LHL08 S 2U2 PM20	1601	2422 025 16389	CON BM V 22P F 1.00 FFC 0.3 R
2146	5322 122 34099	470pF 10% 63V			Α	1602	2422 025 16389	CON BM V 22P F 1.00 FFC
2147 2151	4822 124 40248		5115	2422 535 94634	IND FXD LHL08 S 2U2 PM20	1602	2422 025 16020	0.3 R CON BM V 60P F 0.80 84616
2151	2222 580 15649 4822 126 14241	0603 50V 330P COL R	5120▲	4822 157 11846	Α	1603	2422 023 10939	CON BM V 60P F 0.80 84616
2153	4822 126 13694		5125	4822 157 70826				
2200 2201	4822 124 11566 2222 580 15649		5131▲ 5210		TRAFO CT395FANF/PVF IND FXD LHL08 S 10U PM20	⊣⊢		
2210		EL YXG 16V S 680μF PM20	5240		IND FXD LHL08 S 1U PM30	2100	4000 106 14005	100nE 109/ 16V 0600
2211	4900 104 40055	B	EE01	0400 505 04604	A IND EVELLUOS COUR DIAGO	2100		100nF 10% 16V 0603 100nF 10% 16V 0603
2211 2214	4822 124 40255 4822 124 12285	2200μF 20% 63V 2200μF 20% 16V YXG EL	5501	2422 535 94634	IND FXD LHL08 S 2U2 PM20 A	2102	4822 126 14305	100nF 10% 16V 0603
2220	4822 124 80144	220μF 20% 25V	5505		IND FXD LHL08 S 10U PM20	2103 2104		100nF 10% 16V 0603 100nF 10% 16V 0603
2221 2223	4822 124 40255 2222 580 15649		5511 5515		IND FXD LHL08 S 10U PM20 IND FXD LHL08 S 10U PM20	2105		100nF 10% 16V 0603
2230	4822 124 40255		5520		IND FXD LHL08 S 2U2 PM20	2106 2107		100nF 10% 16V 0603 100nF 10% 16V 0603
2235 2240		EL YK 50V S 330µF PM20 B			A	2107		100nF 10% 16V 0603
2240	2020 021 91004	EL YXG 16V S 1000μF PM20 B	<u> </u>			2109		100nF 10% 16V 0603
2241	4822 124 40255		→ ⊢			2110 2111		100nF 10% 16V 0603 100nF 10% 16V 0603
2251 2501		22nF 10% 25V 0603 22nF 10% 25V 0603	6125	4822 130 42606		2112	4822 126 14305	100nF 10% 16V 0603
2502	4822 124 40255	100μF 20% 63V	6130 6131	5322 130 34574 5322 130 34574		2113 2114		100nF 10% 16V 0603 100nF 10% 16V 0603
2506 2511	4822 124 40255	100μF 20% 63V 100nF 10% 16V 0603	6132	5322 130 34574		2115		100nF 10% 16V 0603
2512	4822 124 40255		6140	4822 130 30842		2116		100nF 10% 16V 0603
2513	2222 580 15649		6141 6142	4822 130 83757 4822 130 30842		2117 2118		100nF 10% 16V 0603 100nF 10% 16V 0603
2515 2520	4822 124 40255 4822 126 14494	22nF 10% 25V 0603	6143	4822 130 30842	BAV21	2119		EL SM 35V 4U7 PM20 COL
2521	4822 124 40255		6144	9340 387 30115	DIO REG SM BZX284-C16 (PHSE) R	2120	4822 126 14305	R 100nF 10% 16V 0603
			6145	4822 130 83757	MCL4148	2121	4822 126 14305	100nF 10% 16V 0603
\Box			6146 6151	4822 130 83757 4822 130 31603		2122 2123		100nF 10% 16V 0603 100nF 10% 16V 0603
3120▲	2122 550 00147	VDR DC 1M A/423V S MAX	6152	4822 130 31603		2124		100nF 10% 16V 0603
04004	4000 050 04004	775V B	6153	4822 130 31603		2125		100nF 10% 16V 0603
3125	4822 053 21684 4822 1 16 83866		6154 6200	4822 130 31603 4822 130 42606		2126 2127		100nF 10% 16V 0603 EL SM 35V 4U7 PM20 COL
3126	4822 1 16 83866	1M 5% 0.5W	6201	4822 130 34142	BZX79-B33			R
3127 3128	4822 116 83874 4822 116 83874		6210 6211	4822 130 11596 5322 130 34574		2128 2129	3198 016 31020 4822 126 13956	0603 25V 1nF 68pF 5% 63V CASE 0603
3131	4822 1 16 52195	47Ω 5% 0.5W	6215		DIO REC STPS745FP	2130		EL SM 50V 2U2 PM20 COL
3132 3133	4822 1 16 52195 4822 1 16 80676		6220	5322 130 31938	(ST00) L	2131	5000 104 4104F	R 22E 20% 25V
3134	4822 1 16 80676		6221	4822 130 31938		2131	5322 124 41945 4822 126 14305	100nF 10% 16V 0603
3135	4822 1 1 6 80676	1Ω5 5% 0.5W	6230	4822 130 42606	BYD33J	2135		EL SM 35V 4U7 PM20 COL
3139 3140	4822 1 1 7 13632 4822 051 30272	100k 1% 0603 0.62W 2k7 5% 0.062W	6231 6240	4822 130 34142 4822 130 11596		2136	4822 122 33777	R 47pF 5% 63V
3141	4822 116 52257	22k 5% 0.5W	6505	4822 130 32245	BYV10-40	2137	4822 126 14305	100nF 10% 16V 0603
3142 3143	4822 051 30221 4822 051 30102	220Ω 5% 0.062W	6511 6512			2139 2141		100nF 10% 16V 0603
3144	4822 051 30102		6515	4822 130 34278	BZX79-B6V8	2146	4822 122 33777 4822 126 14305	100nF 10% 16V 0603
3145 3146	4822 051 20223			4822 130 83757		2200	3198 016 31020	0603 25V 1nF
3146	4822 1 1 6 52175 4822 051 30222		- E	м,		2201 2202		22nF 10% 25V 0603 100nF 10% 16V 0603
3148	4822 116 52256	2k2 5% 0.5W	TOX Sum	₩	 	2203	3198 030 74780	EL SM 35V 4U7 PM20 COL
	4822 1 1 6 52256 4822 053 10689					2204		R 0603 50V 33P PM5
3151	4822 1 1 7 13632	100k 1% 0603 0.62W		5322 130 60159 4822 130 60373		2205	4822 126 14305	100nF 10% 16V 0603
	4822 116 52261 4822 116 52262					2206	4822 126 14305	100nF 10% 16V 0603
	4822 1 1 6 52263 4822 0 5 1 20333		7143	5322 130 60159	BC846B	2207 2208		0603 50V 33P PM5 100nF 10% 16V 0603
3220	4822 051 30222	2k2 5% 0.062W	/200▲	9322 149 04682	OPT CP TCET1102(G) (VISH) L	2209	4822 126 14305	100nF 10% 16V 0603
	4822 051 30223 4822 051 30472				L7905CV	2210 2211		100nF 10% 16V 0603 100nF 10% 16V 0603
3223	4822 116 52283	4k7 5% 0.5W	7241 7251	4822 130 60373 4822 209 81397		2212	4822 126 14305	100nF 10% 16V 0603
	4822 052 10479 4822 1 1 7 10833				FET POW SM IRLML2502	2213 2214		100nF 10% 16V 0603 100nF 10% 16V 0603
	/ 1/ 10000				(INR0) R	1-7	.022 120 14000	100111 1070 104 0000
		·			•			

2215	4822 126 14305	100nF 10% 16V 0603	2513		100nF 10% 16V 0603	-	
2216		100nF 10% 16V 0603	2514		100nF 10% 16V 0603 100nF 10% 16V 0603	-	
2217 2218		100nF 10% 16V 0603 EL SM 35V 4U7 PM20 COL	2515 2516		100nF 10% 16V 0603	3100	4822 051 30103 10k 5% 0,062W
2210	3130 030 74700	R	2517		EL SM 35V 4U7 PM20 COL	3101	4822 051 30222 2k2 5% 0.062W
2220		100nF 10% 16V 0603	0540	0400 000 74700	R	3102	4822 051 30103 10k 5% 0.062W
2221 2222		100nF 10% 16V 0603 100nF 10% 16V 0603	2518	3198 030 74780	EL SM 35V 4U7 PM20 COL R	3104 3105	4822 051 30479 47Ω 5% 0.062W 4822 051 30479 47Ω 5% 0.062W
2223		100nF 10% 16V 0603	2519	3198 030 74780	EL SM 35V 4U7 PM20 COL	3106	4822 051 30479 47Ω 5% 0.062W
2224	4822 126 14305	100nF 10% 16V 0603			R	3107	4822 051 30109 10Ω 5% 0.062W
2225		100nF 10% 16V 0603	2520	3198 030 74780	EL SM 35V 4U7 PM20 COL R	3108 3109	4822 051 30479 47Ω 5% 0.062W 4822 051 30479 47Ω 5% 0.062W
2226 2227		100nF 10% 16V 0603 100nF 10% 16V 0603	2521	4822 126 14305	100nF 10% 16V 0603	3110	4822 051 30479 47Ω 5% 0.062W
2228	4822 126 14305	100nF 10% 16V 0603	2522		100nF 10% 16V 0603	3111	4822 051 30472 4k7 5% 0.062W
2229		100nF 10% 16V 0603	2523 2524		100nF 10% 16V 0603 100nF 10% 16V 0603	3112 3113	4822 051 30472 4k7 5% 0.062W 4822 051 30472 4k7 5% 0.062W
2230	3198 030 74780	EL SM 35V 4U7 PM20 COL R	2525		100nF 10% 16V 0603	3114	4822 051 30472 4k7 5% 0.062W
2231	4822 126 14305	100nF 10% 16V 0603	2526		100nF 10% 16V 0603	3115	4822 051 30103 10k 5% 0.062W
2300		100nF 10% 16V 0603	2527 2528		100nF 10% 16V 0603 100nF 10% 16V 0603	3116 3117	4822 051 30103 10k 5% 0.062W 4822 117 12139 22Ω 5% 0.062W
2301 2302		100nF 10% 16V 0603 100nF 10% 16V 0603	2529		100nF 10% 16V 0603	3118	4822 117 12139 22Ω 5% 0.062W
2303	4822 126 14305	100nF 10% 16V 0603	2530	4822 126 14305	100nF 10% 16V 0603	3119	4822 051 30222 2k2 5% 0.062W
2304	3198 030 74780	EL SM 35V 4U7 PM20 COL	2531		100nF 10% 16V 0603	3120	4822 051 30153 15k 5% 0.062W 4822 117 12917 1Ω 5% 0.062W CASE0603
2305	3198 030 74780	R EL SM 35V 4U7 PM20 COL	2532 2533		100nF 10% 16V 0603 100nF 10% 16V 0603	3121 3122	4822 117 12917 1225% 0.062W CASE0003 4822 051 30123 12k 5% 0.062W
2000		R	2534	4822 126 14305	100nF 10% 16V 0603	3123	2322 704 62002 RST SM 0603 RC22H 2k
2306		100nF 10% 16V 0603	2535		100nF 10% 16V 0603	2404	PM1 R
2307 2308		100nF 10% 16V 0603 100nF 10% 16V 0603	2536 2537		100nF 10% 16V 0603 100nF 10% 16V 0603	3124	2322 704 63002 RST SM 0603 RC22H 3k PM1 R
2309		100nF 10% 16V 0603	2538	4822 126 14305	100nF 10% 16V 0603	3125	4822 117 12139 22Ω 5% 0.062W
2310	4822 126 14305	100nF 10% 16V 0603	2539	3198 030 74780	EL SM 35V 4U7 PM20 COL	3126	4822 117 12891 220k 1% ERJ3Ω
2311	3198 030 74780	EL SM 35V 4U7 PM20 COL R	2540	3198 030 74780	R EL SM 35V 4U7 PM20 COL	3127 3128	4822 051 30479 47Ω 5% 0.062W 4822 051 30479 47Ω 5% 0.062W
2312	4822 126 14305	100nF 10% 16V 0603			R	3129	4822 051 30479 47Ω 5% 0.062W
2402	4822 126 14305	100nF 10% 16V 0603	2541	3198 030 74780	EL SM 35V 4U7 PM20 COL	3130	2120 611 00019 NTC SM 0603 0W1 4k7 PM R
2403	3198 030 74780	EL SM 35V 4U7 PM20 COL R	2542	3198 030 74780	EL SM 35V 4U7 PM20 COL	3131	4822 117 12917 1Ω 5% 0.062W CASE0603
2404	4822 126 14305	100nF 10% 16V 0603			R	3132	4822 117 12917 1Ω 5% 0.062W CASE0603
2405		100nF 10% 16V 0603	2543		100nF 10% 16V 0603 100nF 10% 16V 0603	3133 3134	4822 117 12917 1Ω 5% 0.062W CASE0603 4822 117 12917 1Ω 5% 0.062W CASE0603
2406 2407		100nF 10% 16V 0603 100nF 10% 16V 0603	2544 2565	4822 122 33753		3135	4822 117 12917 1Ω 5% 0.062W CASE0603
2408		100nF 10% 16V 0603	2600	4822 126 14305	100nF 10% 16V 0603	3136	4822 117 12917 1Ω 5% 0.062W CASE0603
2409		100nF 10% 16V 0603	2601	4822 122 33777		3137	4822 051 30472 4k7 5% 0.062W
2410 2411		100nF 10% 16V 0603 EL SM 35V 4U7 PM20 COL	2602 2605	4822 122 33777 4822 126 14305	100nF 10% 16V 0603	3138 3200	4822 051 30472 4k7 5% 0062W 4822 051 30332 3k3 5% 0062W
2411	0100 000 14700	R	2606	4822 122 33777	47pF 5% 63V	3201	4822 051 30152 1k5 5% 0062W
2412		100nF 10% 16V 0603	2607	4822 122 33777	47pF 5% 63V 100nF 10% 16V 0603	3202 3203	4822 051 30103 10k 5% 00 62W 4822 117 12139 22Ω 5% 0.0 62W
2413 2414		100nF 10% 16V 0603 100nF 10% 16V 0603	2608 2609		100nF 10% 16V 0603	3203	4822 051 30101 100Ω 5%0.062W
2415	4822 126 14305	100nF 10% 16V 0603	2610	4822 126 14305	100nF 10% 16V 0603	3205	4822 051 30101 100Ω 5%0. O 62W
2416		100nF 10% 16V 0603	2611 2612	4822 122 33777 4822 122 33777		3206 3207	4822 051 30101 100Ω 5%0. O 62W 4822 051 30103 10k 5% 00 62W
2417 2418		100nF 10% 16V 0603 100nF 10% 16V 0603	2613		100nF 10% 16V 0603	3208	4822 117 12139 22Ω 5% 0.062W
2419		100nF 10% 16V 0603	2614	4822 126 14305	100nF 10% 16V 0603	3209	4822 051 30103 10k 5% 0062W
2420		100nF 10% 16V 0603	2615		100nF 10% 16V 0603	3211 3212	4822 051 30222 2k2 5% 0062W 4822 051 30152 1k5 5% 0062W
2421 2422		100nF 10% 16V 0603 100nF 10% 16V 0603	2616 2617	4822 122 33777		3213	4822 051 30103 10k 5% 0.062W
2423		100nF 10% 16V 0603	2618	4822 126 14305	100nF 10% 16V 0603	3214	4822 051 30103 10k 5% 0062W
2424		100nF 10% 16V 0603	2619		100nF 10% 16V 0603	3215	4822 051 30103 10k 5% 0062W
2425 2426		100nF 10% 16V 0603 100nF 10% 16V 0603	2620 2621	4822 122 33777	100nF 10% 16V 0603 47pF 5% 63V	3216 3217	4822 051 30103 10k 5% 00 62W 4822 051 30101 100Ω 5%0. O62 W
2427	4822 126 14305	100nF 10% 16V 0603	2622	4822 122 33777	47pF 5% 63V	3218	4822 051 30101 100Ω 5%0. O 62W
2428	4822 126 14305	100nF 10% 16V 0603	2625		100nF 10% 16V 0603	3219	4822 051 30103 10k 5% 0062W
2429 2430		100nF 10% 16V 0603 100nF 10% 16V 0603	2626 2627	4822 122 33777 4822 122 33777		3220 3221	4822 051 30103 10k 5% 0062W 4822 051 30103 10k 5% 0062W
2431		EL SM 35V 4U7 PM20 COL	2628	4822 126 14305	100nF 10% 16V 0603	3222	4822 051 30103 10k 5% 0062W
		R	2629		100nF 10% 16V 0603	3223	4822 051 30222 2k2 5% 0)62W
2432 2433		100nF 10% 16V 0603 100nF 10% 16V 0603	2630	3190 030 74780	EL SM 35V 4U7 PM20 COL R	3224 3225	4822 051 30103 10k 5% 0)62W 4822 051 30103 10k 5% 0)62W
2433		100nF 10% 16V 0603	2632		100nF 10% 16V 0603	3226	4822 051 30103 10k 5% 0062W
2435	4822 126 14305	100nF 10% 16V 0603	2633		100nF 10% 16V 0603	3227	4822 117 12139 22Ω 5% (062W
2436 2437		100nF 10% 16V 0603 100nF 10% 16V 0603	2634 2635		22nF 10% 25V 0603 100nF 10% 16V 0603	3228 3229	4822 117 12139 22Ω 5% (0662W 2322 704 61303 RST SM (603 RC22H 13k
2438		100nF 10% 16V 0603	2636		EL SM 35V 4U7 PM20 COL		PM1 R
2439	4822 126 14305	100nF 10% 16V 0603	0700	4000 400 4400	R	3230	2322 704 61303 RST SM 60 3 RC22H 13k
2440 2441		100nF 10% 16V 0603 EL SM 35V 4U7 PM20 COL	2722 2900		100nF 10% 16V 0603 100nF 10% 16V 0603	3231	PM1 R 5322 117 13042 3k9 1% 0∌6≾W 0603 RC 22
∠ 44 1	3130 030 74700	R	2901	4822 126 14305	100nF 10% 16V 0603	3232	5322 117 13042 3k9 1% 0)63W 0603 RC 22
2442		100nF 10% 16V 0603	2902		100nF 10% 16V 0603	3234	3198 031 14720 RST NETV 1 2064X4k7 PM
2444 2446	4822 126 14305 3198 016 31020	100nF 10% 16V 0603	2903 2904		100nF 10% 16V 0603 100nF 10% 16V 0603	3235	COL R 4822 117 12917 1Ω 5% 0.6≥W CASE06O3
2 44 6 2500	3198 016 31020		2904		100nF 10% 16V 0603	3236	4822 117 13576 NETW 4 13 3Ω 5% 1206
2501	4822 126 14305	100nF 10% 16V 0603	2907	3198 030 74780	EL SM 35V 4U7 PM20 COL	3237	4822 117 13576 NETW 4 13 3Ω5% 1206
2502		100nF 10% 16V 0603	2908	4822 126 14205	R 100nF 10% 16V 0603	3300 3301	4822 051 30479 47Ω 5% (0€2W 4822 051 30479 47Ω 5% (0€2W
2503 2504		100nF 10% 16V 0603 100nF 10% 16V 0603	2909		0603 50V 1N5 COL R	3400	4822 051 30101 100Ω 5%). ⊘ 62W
2505	4822 126 14305	100nF 10% 16V 0603	2911		100nF 10% 16V 0603	3401	4822 051 30101 100Ω 5%). ⊘6 2W
2506 2507		100nF 10% 16V 0603 100nF 10% 16V 0603	2912 2914		0603 50V 1N5 COL R EL SM 35V 4U7 PM20 COL	3403 3404	4822 051 30103 10k 5% 0)6 2W 4822 051 30008 0Ω jumpe
2508		100nF 10% 16V 0603			R	3404	4822 117 12917 1Ω 5% 0.62W CASE06O3
2509		100nF 10% 16V 0603	2915		100nF 10% 16V 0603	3405	4822 051 30332 3k3 5% 0)6 2W
2510 2511		18pF 5% 50V 0603 18pF 5% 50V 0603	2916	7022 120 14434	22nF 10% 25V 0603	3406 3407	4822 051 30479 47Ω 5% (0€2W 4822 051 30181 180Ω 5%). 62W
2512		100nF 10% 16V 0603					

EN 334	;10.	DVDR980-985 /0X1	Spare Parts List
--------	------------------	------------------	------------------

3408		22Ω 5% 0.062W				7901	4822 130 60511	
3409 3410		22Ω 5% 0.062W 22Ω 5% 0.062W				7902	9322 165 15685	IC SM NCP303LSN30 (ONSE) R
3500		100Ω 5% 0.062W	5100	4822 157 11717	BLM31P500SPT	7904	4822 209 16399	
3501	4822 051 30101	100Ω 5% 0.062W	5101		BLM31P500SPT	7905	5322 209 71568	
3502	4822 051 30222		5102		BLM11P600SPT	7906		27MHZ 120P FX0-31FT
3503	4822 051 30102		5103		BLM11P600SPT			
3503 3504		75Ω 5% 0.062W 680Ω 5% 0.062W	5200		BLM11P600SPT	DIVI	O front DVD	985 /001 /021
3505		22Ω 5% 0.062W	5201 5202		BLM11P600SPT BLM11P600SPT	וועוטן	ט ווטוונ טעט	965 /001 /021
3506	4822 051 30222		5203		BLM11P600SPT			
3507	4822 051 30472	4k7 5% 0.062W	5204		BLM11P600SPT	Vario	us	
3508	4822 051 30103		5205		BLM11P600SPT	1000	3433 033 00363	CON BM H 4P F 0.8 B
3513 3515		680Ω 5% 0.062W	5207		BLM11P600SPT	1001		CON BM H 4P F 0.8 IEEE R
3600		1Ω 5% 0.062W CASE0603 RST SM 0603 RC22H 56Ω	5208 5209		BLM11P600SPT BLM11P600SPT			
0000	2022 7 04 05005	PM1 R	5300		BLM11P600SPT	-11-		
3601	5322 117 13059	560Ω 1% 0.063W 0603	5302		BLM11P600SPT	"		
		RC22H	5400		BLM11P600SPT	2000	5322 126 10511	1nF 5% 50V
3602	5322 117 13059	560Ω 1% 0.063W 0603	5402		BLM11P600SPT	2001	5322 126 10511	
3603	4822 051 30102	RC22H	5403 5404		BLM11P600SPT BLM11P600SPT	2002		250V 4N7 PM10 R
3604		100Ω 5% 0.062W	5500		BLM11P600SPT	2002		50V 330nF P8020 R 250V 4N7 PM10 R
3604		22Ω 5% 0.062W	5501		BLM11P600SPT	2003		50V 330nF P8020 R
3605		1Ω 5% 0.062W CASE0603	5502		BLM11P600SPT	2004		250V 4N7 PM10 R
3606	5322 117 13059	560Ω 1% 0.063W 0603	5503		BLM11P600SPT	2005		250V 4N7 PM10 R
3607	5322 1 17 120E0	RC22H 560Ω 1% 0.063W 0603	5504		BLM11P600SPT	2204		0603 50V 33P PM5
3007	3322 117 13039	RC22H	5505 5506		BLM11P600SPT BLM11P600SPT	2205	2222 867 15339	0603 50V 33P PM5
3608	4822 051 30102		5507		BLM11P600SPT			
3610	4822 117 12917	1Ω 5% 0.062W CASE0603	5508		BLM11P600SPT	-		
3611	5322 1 17 13059	560Ω 1% 0.063W 0603	5600		12μH (NL322522T-120J)	3000	4822 051 20105	114 59/ 0 114/
3612	E222 1 17 120E0	RC22H	5601		12μH (NL322522T-120J)	3000	4022 031 20103	11VI 5 78 U. 1 VV
3012	5522 11/ 15059	560Ω 1% 0.063W 0603 RC22H	5602 5603		12μH (NL322522T-120J) 12μH (NL322522T-120J)			
3613	4822 051 30102		5604	4822 157 70651	12μH (NL322522T-120J)			
3615	4822 051 30101	100Ω 5% 0.062W	5605		12μH (NL322522T-120J)	5000	2422 549 44768	IND FXD SM EMI 100mH z
3616	5322 1 17 13059	560Ω 1% 0.063W 0603	5606		4.7μH (NL322522T-4R7J)			90R R
3617	E222 1 17 120E0	RC22H	5607		4.7μH (NL322522T-4R7J)	5001	2422 549 44768	IND FXD SM EMI 100mH z
3017	5522 1 17 15059	560Ω 1% 0.063W 0603 RC22H	5900 5901		BLM31P500SPT BLM31P500SPT			90R R
3618	4822 051 30102		5903		BLM11P600SPT			
3619	4822 051 30561	560Ω 5% 0.062W	5904		BLM31P500SPT	→ ⊢		
3620	4822 051 30222		5905		BLM11P600SPT	0000	4000 400 44005	TIMUOTOO
3621	5322 1 17 13059	560Ω 1% 0.063W 0603 RC22H	5907	4822 157 11499	BLM11P600SPT	6000 6001	4822 130 11395 9322 172 97668	DIO SUP SM6T39CA (ST00)
3622	5322 1 17 13059	560Ω 1% 0.063W 0603				1	00LL 11L 01000	R
								II .
	0022 1 17 10000	RC22H	→ ⊢					
3623	4822 051 30101	RC22H 100Ω 5% 0.062W		4922 120 11529	100700010		DWD DVD	
3623	4822 051 30101 4822 1 17 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W	6500	4822 130 11528 4822 130 80622		DIVIO	D PWB DVD	985 /001 /021
3623 3624	4822 051 30101 4822 1 17 12139 4822 051 30102	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W		4822 130 11528 4822 130 80622 4822 130 11528	BAT54			
3623 3624 3625	4822 051 30101 4822 1 17 12139 4822 051 30102 4822 051 30101	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W	6500 6500	4822 130 80622	BAT54 1PS76SB10	DIVIO		
3623 3624	4822 051 30101 4822 1 17 12139 4822 051 30102 4822 051 30101 4822 1 17 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W	6500 6500 6900	4822 130 80622 4822 130 11528	BAT54 1PS76SB10	Variou	IS	985 /001 /021
3623 3624 3625 3625 3626	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H	6500 6500 6900	4822 130 80622 4822 130 11528 4822 130 80622	BAT54 1PS76SB10		18 2422 025 17106	985 /001 /021 CON BM H 4P F 0.8 IEEE R
3623 3624 3625 3625	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603	6500 6500 6900 6900	4822 130 80622 4822 130 11528 4822 130 80622	BAT54 1PS76SB10 BAT54	Variou	18 2422 025 17106	985 /001 /021
3623 3624 3625 3625 3626 3627	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H	6500 6500 6900 6900	4822 130 80622 4822 130 11528 4822 130 80622	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1	Variou	2422 025 17106 2422 543 01115	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P
3623 3624 3625 3625 3626 3627	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W	6500 6500 6900 6900 7100	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y	1101 1102 1200	2422 025 17106 2422 543 01115 2422 543 01159	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840
3623 3624 3625 3625 3626 3627	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H	6500 6500 6900 6900	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG-	1101 1102	2422 025 17106 2422 543 01115 2422 543 01159	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 117 12917	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W	6500 6500 6900 6900 7100	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y	1101 1102 1200	2422 025 17106 2422 543 01115 2422 543 01159	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 117 12917 4822 051 30561	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 1Ω 5% 0.062W 1Ω 5% 0.062W 1Ω 5% 0.062W 560Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R	1101 1102 1200 1500	2422 025 17106 2422 543 01115 2422 543 01159	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 20Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 180Ω 5% 0.062W 10.5% 0.062W 10.5% 0.062W 10.5% 0.062W 10.5% 0.062W 560Ω 5% 0.062W 560Ω 5% 0.062W 560Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRNO)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04	1101 1102 1200	2422 025 17106 2422 543 01115 2422 543 01159	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10 5% 0.062W 10 5% 0.062W 10 5% 0.062W 560Ω 5% 0.062W 560Ω 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 1685 9352 456 50115 9322 169 81671	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG-7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM STI5508EVB (ST00) Y	1101 1102 1200 1500	2422 025 17106 2422 543 01115 2422 543 01159 2422 025 17084	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3635 3635	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10 5% 0.062W 10 5% 0.062W 10 5% 0.062W 560Ω 5% 0.062W 560Ω 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 1685 9352 456 50115 9322 169 81671	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6	1101 1102 1200 1500 -II- 2146 2147	2422 025 17106 2422 543 01115 2422 543 01159 2422 025 17084 4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3635 3636 3637	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 051 30101 4822 051 30101 4822 051 30101	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 16.5% 0.062W 100Ω 5% 0.062W 20Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 180Ω 5% 0.062W 10.5% 0.062W 10.065% 0.0	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T	1101 1102 1200 1500 -II- 2146 2147 2148	2422 025 17106 2422 543 01115 2422 543 01159 2422 025 17084 4822 126 14305 4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603 100nF 10% 16V 0603 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3635 3636 3637 3637	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139	$\begin{array}{l} \text{RC22H} \\ 100\Omega5\%0.062W \\ 22\Omega5\%0.062W \\ 1k5\%0.062W \\ 100\Omega5\%0.062W \\ 100\Omega5\%0.062W \\ 22\Omega5\%0.062W \\ 560\Omega1\%0.063W0603 \\ \text{RC22H} \\ 560\Omega1\%0.063W0603 \\ \text{RC22H} \\ 1k5\%0.062W \\ 180\Omega5\%0.062W \\ 180\Omega5\%0.062W \\ 180\Omega5\%0.062W \\ 180\Omega5\%0.062W \\ 10005\%0.062W \\ 20005\%0.062W \\ 10005\%0.062W \\ 100005\%0.062W \\ 100005\%0.062W \\ 100005\%0.062W \\ 100005\%0.062W \\ 100005\%0.062W \\ 100005\%$	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 1685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM STI5508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R	1101 1102 1200 1500 	2422 025 17106 2422 543 01115 2422 543 01159 2422 025 17084 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603 100nF 10% 16V 0603 100nF 10% 16V 0603 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3635 3636 3637 3637 3638	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 1685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG-	1101 1102 1200 1500 	2422 025 17106 2422 543 01115 2422 543 01159 2422 025 17084 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3635 3636 3637 3637	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 051 30101 4822 051 30101 4822 051 30101 4822 051 30101 4822 051 30222 4822 051 30222	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 11k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 10Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300	9352 692 48557 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM STI5508EVB (ST00) Y IC SM MZ4C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRN0)R	1101 1102 1200 1500 	2422 025 17106 2422 543 01115 2422 543 01159 2422 025 17084 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3637 3638 3900	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 11k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 10Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203	9352 692 48557 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM 74LVC00AD (PHSE)	1101 1102 1200 1500 	4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3635 3636 3637 3638 3900 3901 3902 3903	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 11k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 22Ω 5% 0.062W 22Ω 5% 0.062W 250Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 100Ω 5% 0.062W 12Ω 5% 0.062W 10K 5% 0.062W 10C 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16384 9322 169 81671 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM STI5508EVB (ST00) Y IC SM MZ4C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRN0)R	1101 1102 1200 1500 1500 1500 1500 1500	4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3637 3638 3900 3901 3902 3903 3904	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30181 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12925 4822 117 12925 4822 117 12639	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 11k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 100Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668 9352 499 60118 9322 166 67668	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM STI5508EVB (ST00) Y IC SM MZ4C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM T48LC4M16A2TG- 7E(MRN0)R IC SM 74LVC00AD (PHSE) R IC SM MT48LC4M16A2TG- 7E(MRN0)R	Variou 1101 1102 1200 1500 -II- 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155	2422 025 17106 2422 543 01115 2422 543 01159 2422 025 17084 4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3638 3900 3901 3902 3903 3904 3904	4822 051 30101 4822 117 12139 4822 051 30101 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 301301 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 1Ω 5% 0.062W 1Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 10Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 23Ω 5% 0.062W 24Σ 5% 0.062W 25 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668 9352 499 60118 9322 166 67668	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM STI5508EVB (ST00) Y IC SM STI5508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM 74LVC00AD (PHSE) R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM SAA6752HS/V101	1101 1102 1200 1500 	4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3635 3637 3637 3637 3637 3637	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 20Ω 5% 0.062W 20Ω 5% 0.062W 20Ω 5% 0.062W 20Ω 1% 0.063W 0603 RC22H 16 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 20Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16985 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668 9352 499 60118 9322 166 67668	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM STI5508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM 74LVC00AD (PHSE) R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM SAA6752HS/V101 (PHSE) Y	Variou 1101 1102 1200 1500 1500 1500 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157	4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3638 3900 3901 3902 3903 3904 3904	4822 051 30101 4822 117 12139 4822 051 30101 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 301301 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 11k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 22Ω 5% 0.062W 22Ω 5% 0.062W 250Ω 1% 0.063W 0603 RC22H 11k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 100Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668 9352 499 60118 9322 166 67668 9352 701 80557	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRNO)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRNO)R IC SM 74LVC00AD (PHSE) R IC SM MT48LC4M16A2TG- 7E(MRNO)R IC SM MT48LC4M16A2TG- 7E(MRNO)R IC SM MT48LC4M16A2TG- 7E(MRNO)R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R	Variou 1101 1102 1200 1500 1500 1500 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157	4822 126 14305 4822 126 14305 3198 017 41050	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3637 3637 3637	4822 051 30101 4822 117 12139 4822 051 30101 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 051 30479 4822 051 30479 4822 051 30101 4822 051 30101 4822 051 30101 4822 051 30101 4822 051 30103 4822 051 30103 4822 051 30103	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 100Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16884 9322 170 16885 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9352 499 60118 9352 499 60118 9352 701 80557 9322 142 88668 9352 701 80557	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM STI5508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM 74LVC00AD (PHSE) R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAAA7118E/V1 (PHSE) R	1101 1102 1200 1500 1500 1500 1500 1500	4822 126 14305 4822 126 14306 4822 126 14306	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603 100nF 10% 16V 0
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3635 3637 3637 3637 3637 3637	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 051 30479 4822 051 30101 4822 051 30101 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30103	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 20Ω 5% 0.062W 20Ω 5% 0.062W 20Ω 5% 0.062W 20Ω 1% 0.063W 0603 RC22H 16 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 20Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16884 9322 170 16885 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9352 499 60118 9352 499 60118 9352 701 80557 9322 142 88668 9352 701 80557	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM T48LC4M16A2TG- 7E(MRN0)R IC SM 74LVC00AD (PHSE) R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA67118E/V1 (PHSE)	1101 1102 1200 1500 1500 1500 1500 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2163 2170 2171	4822 126 14305 4822 126 14506	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3635 3635 3635 3636 3900 3901 3902 3903 3904 3908 3908 3910 3911 3911 3913	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30479 4822 051 30479 4822 051 30479 4822 051 30479	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 11k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 22Ω 5% 0.062W 22Ω 5% 0.062W 22Ω 5% 0.062W 360Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 47Ω 5% 0.062W 47Ω 5% 0.062W 47Ω 5% 0.062W 100Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9352 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668 9352 499 60118 9322 166 67668 9352 701 80557 9322 142 88668 9352 673 95518 9352 500 60118	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRNO)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRNO)R IC SM 74LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA67118E/V1 (PHSE) R IC SM 74LVC32AD (PHSE) R	Variou 1101 1102 1200 1500 1500 -II- 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2163 2171 2173	4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603 12pF 12pF 10pF 16V
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3635 3637 3637 3637 3637 3637	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30479 4822 051 30479 4822 051 30479 4822 051 30479 4822 051 30479 4822 051 30479 4822 051 30479 4822 051 30479 4822 051 30479 4822 051 30479 4822 051 30479	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 11k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 11k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10Σ 5% 0.062W 10Σ 5% 0.062W 10Ω 5% 0.062W 10Σ 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 169 81671 9322 142 88668 9352 166 67668 9352 499 60118 9352 701 80557 9322 142 88668 9352 701 80557 9322 142 88668 9352 701 80557 9322 142 88668 9352 701 80557	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM T48LC4M16A2TG- 7E(MRN0)R IC SM 74LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM SAA6752HS/V101 (PHSE) Y IC SM SAA7118E/V1 (PHSE) R IC SM 74LVC32AD (PHSE) R 74HC74D	1101 1102 1200 1500 1500 1500 1500 1500	4822 126 14305 4822 126 14506 4822 126 14506 4822 126 11663 4822 126 11663 4822 126 11663 4822 124 23002 4822 124 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11 F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603 12pF 12pF 12pF 12pF 12pF 10µF 16V 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3637 3637 3637	4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 117 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 100Ω 5% 0.062W 1Ω 5% 0.062W 2Ω 5% 0.062W 47k 1% 0.063W 0603 100k 1% 0603 0.62W 22Ω 5% 0.062W 100Ω 1% 0603 0.62W 2Ω 5% 0.062W 100Ω 1% 0603 0.62W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9352 499 60118 9352 499 60118 9352 701 80557 9352 701 80557 9352 673 95518 9352 500 60118 5322 209 71589 4822 130 60511	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM STI5508EVB (ST00) Y IC SM STI5508EVB (ST00) Y IC SM STI5508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM T48LC4M16A2TG- 7E(MRN0)R IC SM 74LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA7118E/V1 (PHSE) R IC SM 74LVC32AD (PHSE) R 74HC74D BC847B	Variou 1101 1102 1200 1500 1500 1500 1500 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2160 2171 2173 2174 2175 2176	4822 126 14305 4822 126 14506 4822 126 14506 4822 126 14506 4822 126 14506 4822 126 14506 4822 126 14506 4822 126 14505 4822 126 14305 4822 126 14305 4822 124 23002 4822 124 23002 4822 124 23002	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3635 3636 3900 3901 3902 3903 3904 3908 3908 3910 3911 3913 3914 3915 3918 3919	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30479 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4821 117 13632 4822 117 13632	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1 k 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 1 k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 100Ω 1% 0603 0.62W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 169 81671 9322 142 88668 9352 166 67668 9352 499 60118 9352 701 80557 9322 142 88668 9352 701 80557 9322 142 88668 9352 701 80557 9322 142 88668 9352 701 80557	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM ST15508EVB (ST00) Y IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM T4LVC00AD (PHSE) R IC SM T4LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA7118E/V1 (PHSE) R IC SM SAA7118E/V1 (PHSE) R IC SM 74LVC32AD (PHSE) R 74HC74D BC847B BC847B	1101 1102 1200 1500 1500 1500 1500 1500	4822 126 14305 4822 124 23002 4822 124 23002 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3638 3900 3901 3902 3903 3904 3906 3908 3911 3913 3914 3915 3917 3918 3919 3919 3919 3919	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30103 4822 051 30479 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 21Ω 5% 0.062W 22Ω 5% 0.062W 250 5% 0.062W 250 1% 0.063W 0603 RC22H 160Ω 1% 0.063W 0603 RC22H 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10Ω 5% 0.062W 10Ω 5% 0.062W 250 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501 7502 7504 7600 7601 7602	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 169 81671 9322 169 67668 9322 166 67668 9352 142 88668 9352 499 60118 9352 701 80557 9322 142 88668 9352 673 95518 9352 130 60511 4822 130 60511 4822 130 60511 4822 130 60511	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM T48LC4M16A2TG- 7E(MRN0)R IC SM 74LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM SAA6752HS/V101 (PHSE) Y IC SM T48LC4M16A2TG- 7E(MRN0)R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA7118E/V1 (PHSE) R IC SM 74LVC32AD (PHSE) R 74HC74D BC847B BC847B BC847B BC847B	1101 1102 1200 1500 1500 1500 1500 1500	4822 126 14305 4822 124 23002 4822 124 23002 4822 124 23002 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3637 3637 3637	4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 20Ω 5% 0.062W 20Ω 5% 0.062W 20Ω 5% 0.063W 20Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10Ω 5% 0.062W 10Ω 5% 0.062W 20Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501 7502 7504 7600 7600 7600 7600 7600 7600 7600 76	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9352 166 67668 5322 209 16384 9352 456 50115 9322 169 81671 9322 169 81671 9322 142 88668 9352 499 60118 9352 499 60118 9352 701 80557 9352 142 88668 9352 701 80557 9352 142 88668 9352 701 80557 9352 142 88668 9352 701 80557 9352 142 88668 9352 130 60511 4822 130 60511 4822 130 60511 4822 130 60511 4822 130 60511	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM STI5508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM T4LVC00AD (PHSE) R IC SM T4LVC00AD (PHSE) R IC SM MT48LC4M16A2TG- 7E(MRN0)R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA7118E/V1 (PHSE) R IC SM T4LVC32AD (PHSE) R IC SM 74LVC32AD (PHSE) R IC SM 74LVC32AD (PHSE) R R IC SM 74LVC32AD (PHSE) R R ROBERT B R R ROBERT B R R ROBERT B R R R ROBERT B R R R R R R R R R R R R R R R R R R R	1101 1102 1200 1500 1500 1500 1500 1500	4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603 100nF 10% 16V
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3638 3900 3901 3902 3903 3904 3906 3908 3911 3913 3914 3915 3917 3918 3919 3919 3919 3919	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 5322 117 13059 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30479 4822 117 12139 4822 051 30479 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 051 30103 4822 051 30103 4822 051 30103	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 20Ω 5% 0.062W 20Ω 5% 0.062W 20Ω 5% 0.063W 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10Ω 5% 0.062W 10Ω 5% 0.062W 20Ω 5% 0.062W 47k 1% 0.063W 0603 100k 1% 0603 0.62W 20Ω 5% 0.062W 100Ω 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501 7502 7504 7600 7601 7603 7603 7604	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668 9352 499 60118 9322 166 67668 9352 701 80557 9322 142 88668 9352 673 95518 9352 500 60118 5322 209 71589 4822 130 60511 4822 130 60511 4822 130 60511 4822 130 60511 4822 130 60511	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRN0)R PC74HCT9046AD IC SM ST15508EVB (ST00) Y IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM T4LVC00AD (PHSE) R IC SM T4LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA6752HS/V101 (PHSE) Y IC SM SAA6752HS/V101 (PHSE) Y IC SM SAA6752HS/V101 (PHSE) R IC SM SAA7118E/V1 (PHSE) R IC SM T4LVC32AD (PHSE) R IC SM 74LVC32AD (PHSE) R T4HC74D BC847B	Variou 1101 1102 1200 1500 -II- 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2163 2170 2171 2173 2174 2175 2176 2177 2178 2181 2182	4822 126 14305 4822 124 12305 4822 124 12095 4822 124 12095 4822 124 12095 4822 124 12095	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3638 3900 3901 3902 3903 3904 3906 3910 3911 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3923 3924	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 051 30101 4822 051 30479 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 12139 4822 117 12139 4822 051 30479 4822 117 12139 4822 051 30479 4822 117 12139 4822 117 12139 4822 117 13632 4822 117 12139 4822 117 13632 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 13632 4821 117 13632 4821 117 13632 4821 117 13632 4821 117 13632 4821 117 13632	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 100 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501 7502 7504 7600 7600 7600 7600 7600 7600 7600 76	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668 9352 499 60118 9322 166 67668 9352 701 80557 9322 142 88668 9352 673 95518 9352 500 60118 5322 209 71589 4822 130 60511 4822 130 60511 4822 130 60511 4822 130 60511 4822 130 60511 4822 130 60511 4822 130 60511	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRNO)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRNO)R IC SM 74LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA6752HS/V101 (PHSE) Y IC SM SAA6752HS/V101 (PHSE) Y IC SM SAA6752HS/V101 (PHSE) R IC SM 74LVC32AD (PHSE) R IC SM 74LVC32AD (PHSE) R T4HC74D BC847B	Variou 1101 1102 1200 1500	4822 126 14305 4822 124 23002 4822 124 23002 4822 124 12095 4822 124 12095 4822 124 13005	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603 100nF 10% 16V
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3635 3635 3635 3636 3637 3638 3900 3901 3902 3903 3904 3908 3910 3911 3915 3918 3919 3920 3921 3921 3922 3923	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30661 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30103 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30101 4822 051 30101 4822 051 30101 4822 051 30101 4822 051 30103 4822 051 30103 4822 051 30682 4822 051 30103	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 100 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501 7502 7504 7602 7603 7604 7605	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9352 499 60118 9352 499 60118 9352 701 80557 9352 701 80557 9352 701 80557 9352 701 80557 9352 701 80557 9352 142 88668 9352 701 80557 9352 142 88668 9352 701 80557 9352 130 60511 4822 130 60511 4822 130 60511 4822 130 60511 4822 130 60511 4822 130 60511 4822 130 60511	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRNO)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRNO)R IC SM 74LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA6752HS/V101 (PHSE) Y IC SM SAA6752HS/V101 (PHSE) Y IC SM SAA6752HS/V101 (PHSE) R IC SM 74LVC32AD (PHSE) R IC SM 74LVC32AD (PHSE) R T4HC74D BC847B	1101 1102 1200 1500 1500 1500 1500 1500	4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3638 3900 3901 3902 3903 3904 3906 3910 3911 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3923 3924	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 051 30101 4822 051 30479 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 12139 4822 117 12139 4822 051 30479 4822 117 12139 4822 051 30479 4822 117 12139 4822 117 12139 4822 117 13632 4822 117 12139 4822 117 13632 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 13632 4821 117 13632 4821 117 13632 4821 117 13632 4821 117 13632 4821 117 13632	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 100 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501 7502 7504 7600 7601 7602 7603 7604 7605 7606 7702	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668 9352 499 60118 9322 166 67668 9352 701 80557 9322 142 88668 9352 673 95518 9352 500 60118 5322 209 71589 4822 130 60511 4822 130 60511	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRNO)R PC74HCT9046AD IC SM ST15508EVB (ST00) Y IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRNO)R IC SM 74LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA6752HS/V101 (PHSE) Y IC SM SAA7118E/V1 (PHSE) R IC SM 74LVC32AD (PHSE) R IC SM 74LVC32AD (PHSE) R SC847B BC847B	Variou 1101 1102 1200 1500 1500 1500 1500 1500	4822 126 14305 4822 124 23002 4822 126 14305 4822 124 23002 4822 126 14305 4822 124 23002 4822 126 14305 4822 124 12095 4822 124 12095 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3638 3900 3901 3902 3903 3904 3906 3910 3911 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3923 3924	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 051 30101 4822 051 30479 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 12139 4822 117 12139 4822 051 30479 4822 117 12139 4822 051 30479 4822 117 12139 4822 117 12139 4822 117 13632 4822 117 12139 4822 117 13632 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 13632 4821 117 13632 4821 117 13632 4821 117 13632 4821 117 13632 4821 117 13632	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 100 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501 7502 7504 7605 7605 7606	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668 9352 499 60118 9322 166 67668 9352 701 80557 9322 142 88668 9352 673 95518 9352 500 60118 5322 209 71589 4822 130 60511 4822 130 60511	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRNO)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRNO)R IC SM 74LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA6752HS/V101 (PHSE) Y IC SM T4LVC32AD (PHSE) R 74HC74D BC847B	Variou 1101 1102 1200 1500 1500	4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603
3623 3624 3625 3625 3626 3627 3628 3629 3630 3631 3632 3633 3635 3636 3637 3637 3638 3900 3901 3902 3903 3904 3906 3910 3911 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3923 3924	4822 051 30101 4822 117 12139 4822 051 30102 4822 051 30101 4822 117 12139 5322 117 13059 5322 117 13059 4822 051 30102 4822 051 30181 4822 051 30181 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30561 4822 051 30101 4822 117 12139 4822 051 30101 4822 117 12139 4822 051 30103 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 051 30101 4822 051 30479 4822 117 13632 4822 117 13632 4822 117 13632 4822 117 12139 4822 117 12139 4822 051 30479 4822 117 12139 4822 051 30479 4822 117 12139 4822 117 12139 4822 117 13632 4822 117 12139 4822 117 13632 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 12139 4822 117 13632 4821 117 13632 4821 117 13632 4821 117 13632 4821 117 13632 4821 117 13632	RC22H 100Ω 5% 0.062W 22Ω 5% 0.062W 1k 5% 0.062W 100Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 560Ω 1% 0.063W 0603 RC22H 560Ω 1% 0.063W 0603 RC22H 1k 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 180Ω 5% 0.062W 10Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 10Ω 5% 0.062W 22Ω 5% 0.062W 100Ω 5% 0.062W 22Ω 5% 0.062W 100 5% 0.062W	6500 6500 6900 6900 7100 7101 7102 7103 7104 7200 7201 7202 7203 7300 7303 7402 7403 7404 7500 7501 7502 7504 7600 7601 7602 7603 7604 7605 7606 7702	4822 130 80622 4822 130 11528 4822 130 80622 9352 692 48557 9322 166 67668 5322 209 16384 9322 170 16685 9352 456 50115 9322 169 81671 9322 130 41668 4822 209 30212 9322 142 88668 9322 166 67668 9352 499 60118 9322 166 67668 9352 701 80557 9322 142 88668 9352 673 95518 9352 500 60118 5322 209 71589 4822 130 60511 4822 130 60511	BAT54 1PS76SB10 BAT54 IC SM SAA7333HL/M1 (PHSE) Y IC SM MT48LC4M16A2TG- 7E(MRNO)R PC74HCT9046AD IC SM NC7SZ58 (FSC0) R HC1G04 IC SM ST15508EVB (ST00) Y IC SM M24C64-WMN6 (ST00) R PC74HCT125T IC SM LF25CDT (ST00) R IC SM MT48LC4M16A2TG- 7E(MRNO)R IC SM 74LVC00AD (PHSE) R IC SM SAA6752HS/V101 (PHSE) Y IC SM LF25CDT (ST00) R IC SM SAA6752HS/V101 (PHSE) Y IC SM T4LVC32AD (PHSE) R 74HC74D BC847B	Variou 1101 1102 1200 1500 1500	4822 126 14305 4822 126 14305	985 /001 /021 CON BM H 4P F 0.8 IEEE R RES XTL SM 24M576 12P CX-11F R RES XTL SM 11M0592 20P DSX840 CON BM V 60P F 0.80 179161 R 100nF 10% 16V 0603

```
2195
        4822 126 14305
                        100nF 10% 16V 0603
                                                    3121
                                                           4822 117 12925 47k 1% 0.063W 0603
 2196
        4822 126 14305
                        100nF 10% 16V 0603
                                                            4822 117 12925
                                                                            47k 1% 0.063W 0603
        4822 126 14305
4822 126 11663
2197
                        100nF 10% 16V 0603
                                                    3123
                                                           4822 117 12925 47k 1% 0.063W 0603
                                                                                                               4822 157 11499 BLM11P600SPT
 2200
                        12pF
                                                    3124
                                                           4822 117 12925
                                                                           47k 1% 0.063W 0603
                                                                                                        5103
 2202
        4822 126 14305
                        100nF 10% 16V 0603
                                                    3125
                                                           4822 117 12925
                                                                           47k 1% 0.063W 0603
                                                                                                                                BLM11P600SPT
                                                                                                               4822 157 11499
                                                                                                        5106
 2203
        4822 126 14305
                        100nF 10% 16V 0603
                                                           4822 117 12925 47k 1% 0.063W 0603
                                                                                                               4822 157 11499
                                                                                                                                BLM11P600SPT
                                                    3126
                                                                                                        5109
2204
        4822 126 14305
                        100nF 10% 16V 0603
                                                    3127
                                                           4822 117 12925 47k 1% 0.063W 0603
                                                                                                               4822 157 11499
                                                                                                                                BLM11P600SPT
                                                                                                        5110
                                                           4822 117 12925 47k 1% 0.063W 0603
4822 117 12925 47k 1% 0.063W 0603
                                                                                                                                BLM11P600SPT
        4822 126 11663
                                                                                                               4822 157 11499
4822 157 11499
2205
                        12pF
                                                    3128
                                                                                                        5200
2206
        4822 122 31765
                        100pF 2% 63V 1206
                                                    3130
                                                                                                                                BLM11P600SPT
                                                                                                        5300
        4822 126 14305
                        100nF 10% 16V 0603
                                                            4822 117 12925 47k 1% 0.063W 0603
                                                                                                                                BLM11P600SPT
2207
                                                    3131
                                                                                                        5301
                                                                                                                4822 157 11499
                        100nF 10% 16V 0603
2301
        4822 126 14305
                                                    3132
                                                           4822 117 12925 47k 1% 0.063W 0603
                                                                                                               4822 157 11499
                                                                                                                                BLM11P600SPT
                                                                                                                                BLM11P600SPT
                        47uF 16V
                                                           4822 051 30223 22k 5% 0 062W
2302
        4822 124 80151
                                                    3133
                                                                                                        5303
                                                                                                               4822 157 11499
        4822 126 14305
                        100nF 10% 16V 0603
                                                           4822 051 30223 22k 5% 0.062W
                                                                                                                                BLM11P600SPT
2303
                                                    3134
                                                                                                               4822 157 11499
                                                                                                        5304
2304
        4822 126 14305
                        100nF 10% 16V 0603
                                                    3136
                                                           4822 117 12917
                                                                           1Ω 5% 0.062W CASE0603
                                                                                                        5402
                                                                                                               4822 157 11499
                                                                                                                                BLM11P600SPT
2305
        4822 126 14305
                        100nF 10% 16V 0603
                                                    3138
                                                           4822 051 30103 10k 5% 0.062W
                                                                                                               4822 157 11499
                                                                                                                                BLM11P600SPT
                                                                                                        5403
                        100nF 10% 16V 0603
100nF 10% 16V 0603
                                                                                                                                BLM11P600SPT
        4822 126 14305
                                                                                                               4822 157 11499
4822 157 11499
2306
                                                    3140
                                                           4822 051 30103 10k 5% 0.062W
                                                                                                        5404
                                                                           RST SM 0603 RC22H 6k34
2307
        4822 126 14305
                                                                                                                                BLM11P600SPT
                                                    3148
                                                           2322 704 66342
                                                                                                        5500
2308
        4822 126 14305
                        100nF 10% 16V 0603
                                                                            PM1 R
                                                                                                        5501
                                                                                                               4822 157 11499
                                                                                                                               BLM11P600SPT
                        100nF 10% 16V 0603
                                                                           0Ω jumper
2309
        4822 126 14305
                                                    3163
                                                           4822 051 30008
                                                                                                        5502
                                                                                                               4822 157 11499
                                                                                                                               BLM11P600SPT
                        100nF 10% 16V 0603
                                                                           RST SM 0805 RC12H 56\Omega
2310
        4822 126 14305
                                                    3164
                                                           2322 734 65609
                                                                                                        5503
                                                                                                               4822 157 11499 BLM11P600SPT
        4822 126 14305
                        100nF 10% 16V 0603
2311
                                                                            PM1 R
        4822 126 14305
                        100nF 10% 16V 0603
                                                           2322 734 65609
                                                                           RST SM 0805 RC12H 56Ω
2312
                                                    3165
                                                                                                        -
2313
        4822 126 14305
                        100nF 10% 16V 0603
                                                                           PM1 R
                       47μF 16V
2314
        4822 124 80151
                                                    3171
                                                           4822 051 30109
                                                                           \begin{array}{c} 10\Omega \ 5\% \ 0.062W \\ 10\Omega \ 5\% \ 0.062W \end{array}
                                                                                                        6300
                                                                                                               4822 209 17398 LD1117DT33
                        100nF 10% 16V 0603
                                                           4822 051 30109
2318
        4822 126 14305
                                                    3172
                        100nF 10% 16V 0603
100nF 10% 16V 0603
2319
        4822 126 14305
                                                    3173
                                                           2322 734 65609
                                                                           RST SM 0805 RC12H 56Ω
2324
        4822 126 14305
                                                                           PM1 R
                                                                                                        K K
        4822 126 14305
2325
                        100nF 10% 16V 0603
                                                    3174
                                                           4822 051 30109
                                                                           10Ω 5% 0.062W
2330
        4822 126 14305
                        100nF 10% 16V 0603
                                                    3176
                                                           4822 051 30109
                                                                           10Ω 5% 0.062W
                                                                                                               9352 683 02157 IC SM PDI1394P25BD
                                                                                                        7101
2331
        4822 126 14305
                        100nF 10% 16V 0603
                                                   3177
                                                           2322 704 65102
                                                                           RST SM 0603 RC22H 5k1
                                                                                                                                (PHSE) Y
                                                                                                                               IC SM PDI1394L40 (PHSE)
        4822 126 14305
                        100nF 10% 16V 0603
2332
                                                                           PM<sub>1</sub>
                                                                                                        7103
                                                                                                               9352 682 52557
2400
        4822 126 14305
                        100nF 10% 16V 0603
                                                    3178
                                                           2322 734 65609
                                                                           RST SM 0805 RC12H 56\Omega
2401
        4822 126 14305
                        100nF 10% 16V 0603
                                                                           PM1 R
                                                                                                                               UM62256EM70LL
                                                                                                       7201
                                                                                                               4822 209 91023
2402
        4822 126 14305
                        100nF 10% 16V 0603
                                                   3179
                                                           4822 051 30103
                                                                           10k 5% 0.062W
                                                                                                               4822 130 60511
                                                                                                                               BC847B
                                                                                                       7202
                                                                                                                               FET SIG SMBST82 (PHSE)
2403
                        100nF 10% 16V 0603
        4822 126 14305
                                                           4822 051 30479
                                                                           47Ω 5% 0.062W
                                                   3188
                                                                                                       7204
                                                                                                               9337 331 10215
2404
        4822 126 14305
                        100nF 10% 16V 0603
                                                   3189
                                                           4822 051 30109 10Ω 5% 0.062W
2405
        4822 126 14305
                        100nF 10% 16V 0603
                                                   3190
                                                           4822 051 30479
                                                                           47Ω 5% 0.062W
                                                                                                                               BC847B
                                                                                                       7207
                                                                                                               4822 130 60511
                        100nF 10% 16V 0603
100nF 10% 16V 0603
                                                                                                                               IC SM 74HCT1 GO4GW
2406
                                                           4822 051 30109
4822 117 12925
                                                                                                               9352 456 40115
        4822 126 14305
                                                   3191
                                                                           10Ω 5% 0.062W
                                                                                                       7208
2407
        4822 126 14305
                                                                           47k 1% 0.063W 0603
                                                   3192
                                                                                                                                (PHSE) R
2408
        4822 126 14305
                        100nF 10% 16V 0603
                                                           4822 117 12925
                                                                           47k 1% 0.063W 0603
                                                                                                                               IC ROM XC17530XL DVIO
                                                   3197
                                                                                                              3104 123 96640
                                                                                                       7300
2409
2410
        4822 126 14305
                        100nF 10% 16V 0603
                                                   3198
                                                           4822 117 12925
                                                                           47k 1% 0.063W 0603
                        100nF 10% 16V 0603
100nF 10% 16V 0603
                                                                                                                               IC SM CY7CIO 1 9BV33-
                                                           4822 117 12925
                                                                           47k 1% 0.063W 0603
        4822 126 14305
                                                   3199
                                                                                                       7301
                                                                                                               9322 166 64668
                                                                           47Ω 5% 0.062W
2411
        4822 126 14305
                                                           4822 051 30479
                                                   3201
                                                                                                                               10VC(CYPR)R
IC SM XCS3(XL-4TQ144C
2412
        4822 126 14305
                        100nF 10% 16V 0603
                                                           4822 051 30103
                                                                           10k 5% 0.062W
                                                    3202
                                                                                                       7303
                                                                                                              9322 169 90671
2413
        4822 126 14305
                        100nF 10% 16V 0603
                                                   3203
                                                           4822 051 30102
                                                                           1k 5% 0.062W
                                                                                                                                (XILI) Y
                       100nF 10% 16V 0603
100nF 10% 16V 0603
                                                                           10k 5% 0.062W
47k 1% 0.063W 0603
                                                                                                                               27MHZ 120PFXO-31FT
2414
        4822 126 14305
                                                   3204
                                                           4822 051 30103
                                                                                                       7304
                                                                                                               4822 242 10838
                                                                                                                               IC FLASH PLL CY2071A
2415
                                                           4822 117 12925
        4822 126 14305
                                                   3205
                                                                                                       7307
                                                                                                              3104 123 96620
2416
        4822 126 14305
                        100nF 10% 16V 0603
                                                    3206
                                                           4822 117 12925
                                                                           47k 1% 0.063W 0603
                                                                                                                                DVIO 1.5
                        100nF 10% 16V 0603
                                                                                                                               IC FLASH PL CY2071A
                                                           4822 051 30472 4k7 5% 0.062W
4822 051 30331 330Ω 5% 0.062W
2417
        4822 126 14305
                                                   3223
                                                                                                       7308
                                                                                                              3104 123 96620
2418
                        100nF 10% 16V 0603
        4822 126 14305
                                                   3224
                                                                                                                                DVIO 1.5
                                                                                                                               IC FLASH X(18V01 DVIO
                        100nF 10% 16V 0603
                                                           4822 051 30109
2419
        4822 126 14305
                                                   3225
                                                                           10Ω 5% 0.062W
                                                                                                              3104 123 96630
                                                                                                       7309
2420
        4822 126 14305
                       100nF 10% 16V 0603
                                                   3300
                                                           4822 051 30109
                                                                           10Ω 5% 0.062W
                       100nF 10% 16V 0603
100nF 10% 16V 0603
                                                                                                                               IC SM MT4L(1 M 16E5DJ-6
2421
        4822 126 14305
                                                   3301
                                                           4822 051 30102
                                                                           1k 5% 0.062W
                                                                                                       7402
                                                                                                              8204 056 07210
                                                                                                              9322 178 74668 MT4LC1M16:5 DJ-6
8204 056 07210 IC SM MT4L(1 M 16E5DJ-6
2500
        4822 126 14305
                                                           4822 051 30102
                                                                           1k 5% 0.062W
                                                   3303
                                                                                                       7402
2501
        4822 126 14305
                        100nF 10% 16V 0603
                                                           4822 051 30102
                                                                           1k 5% 0.062W
                                                   3305
                                                                                                       7403
2502
        4822 126 14305
                       100nF 10% 16V 0603
                                                   3306
                                                           4822 051 30102
                                                                           1k 5% 0.062W
                                                                                                       7403
                                                                                                              9322 178 74668
                                                                                                                               MT4LC1M16:5 DJ-6
                       100nF 10% 16V 0603
100nF 10% 16V 0603
                                                                                                                               IC SM NW70IL A TQFP160
2503
        4822 126 14305
                                                   3307
                                                           4822 051 30102
                                                                           1k 5% 0.062W
                                                                                                       7404
                                                                                                              8204 056 07160
2504
        4822 126 14305
                                                   3312
                                                           4822 051 30109
                                                                           10Ω 5% 0.062W
                                                                                                       7404
                                                                                                              9322 179 31671
                                                                                                                               IC SM NW70)
                                                                                                                               IC SM 74LVC)4APW
2505
        4822 124 80151
                       47μF 16V
                                                   3313
                                                           4822 051 30103
                                                                           10k 5% 0.062W
                                                                                                              9352 424 20118
                                                                                                       7500
2506
        4822 126 14305
                       100nF 10% 16V 0603
                                                   3314
                                                           4822 051 30103
                                                                           10k 5% 0.062W
                                                                                                                               (PHSE) R
                                                                                                                               IC SM 74LV06244ADGG
                       47μF 16V
2507
        4822 124 80151
                                                           4822 051 30339
                                                                           33Q 5% 0.062W
                                                   3315
                                                                                                       7505
                                                                                                              9352 351 50118
2508
        4822 126 14305
                       100nF 10% 16V 0603
                                                   3317
                                                           4822 051 30339
                                                                           33Ω 5% 0.062W
                                                                                                                               (PHSE) R
2509
        4822 126 14305
                       100nF 10% 16V 0603
                                                   3318
                                                           4822 051 30339 33Ω 5% 0.062W
                                                                                                                               IC SM UDA134 ATS/N2
                                                                                                       7506
                                                                                                              9352 668 39118
2510
                       100nF 10% 16V 0603
        4822 126 14305
                                                   3319
                                                           4822 051 30339
                                                                           33Ω 5% 0.062W
                                                                                                                               (PHSE) R
2511
        4822 124 80151
                       47μF 16V
                                                           4822 051 30479 47Ω 5% 0.062W
                                                   3320
2512
        4822 124 80151
                       47μF 16V
                                                   3321
                                                           4822 051 30479 47Ω 5% 0.062W
2514
        4822 124 80151 47µF 16V
                                                   3322
                                                           4822 051 30479 47Ω 5% 0.062W
                       47μF 16V
                                                           4822 051 30479 47\Omega 5% 0.062W 4822 051 30479 47\Omega 5% 0.062W
2515
        4822 124 80151
                                                   3325
2516
                       10nF 10% 50V 0603
        5322 126 11583
                                                   3327
                                                                           10k 5% 0.062W
2517
        5322 126 11583
                       10nF 10% 50V 0603
                                                   3328
                                                           4822 051 30103
2518
        4822 124 80151 47μF 16V
                                                   3329
                                                           4822 051 30103 10k 5% 0.062W
                                                           4822 051 30479 47Ω 5% 0.062W
2519
        4822 126 14305 100nF 10% 16V 0603
                                                   3330
                                                           4822 051 30479 47Ω 5% 0.062W
                                                    3331
                                                           4822 051 30103 10k 5% 0.062W
                                                    3400
--
                                                    3401
                                                           4822 117 13573
                                                                           NETW 4 X 47Ω 5% MNR14
                                                                           NETW 4 X 47Ω 5% MNR14
                                                           4822 117 13573
                                                   3402
3100
        4822 117 12925 47k 1% 0.063W 0603
                                                           4822 051 30479
                                                                           47Ω 5% 0.062W
                                                   3403
3101
        4822 117 12925 47k 1% 0.063W 0603
                                                    3404
                                                           4822 051 30479
                                                                           47Ω 5% 0.062W
3102
        4822 051 30103 10k 5% 0.062W
                                                    3405
                                                           4822 051 30479 47Ω 5% 0.062W
3103
        4822 051 30103 10k 5% 0.062W
                                                           4822 051 30339
                                                                           33Ω 5% 0.062W
                                                   3502
3104
        4822 117 12925
                       47k 1% 0.063W 0603
                                                                           NETW 4 X 33Ω 5% 1206
                                                           4822 117 13576
                                                   3504
3105
        4822 051 30109
                       10Ω 5% 0.062W
                                                           4822 117 13576
                                                                           NETW 4 X 33Ω 5% 1206
                                                    3505
3106
        4822 051 30103
                       10k 5% 0.062W
                                                   3506
                                                           4822 051 30339
                                                                           33Ω 5% 0.062W
3107
        4822 051 30109
                       10Ω 5% 0.062W
                                                    3510
                                                           4822 051 30479
                                                                           47Ω 5% 0.062W
3108
        4822 051 30109
                       10Ω 5% 0.062W
                                                           4822 051 30008
                                                                           0Ω jumper
                                                   3511
3109
        4822 117 12925 47k 1% 0.063W 0603
                                                    3518
                                                           4822 051 30101
                                                                           100Ω 5% 0.062W
3110
        4822 117 12925 47k 1% 0.063W 0603
                                                   3519
                                                           4822 051 30101
4822 117 12891
                                                                           100Ω 5% 0.062W
3113
        4822 051 30103 10k 5% 0.062W
                                                                           220k 1% ERJ3Ω
                                                    3520
3115
        4822 051 30102 1k 5% 0.062W
                                                           4822 117 12891
                                                                           220k 1% ERJ3Ω
                                                    3521
3116
        4822 117 12917
                       10.5% 0.062W CASE0603
                                                    3524
                                                           4822 051 30339
                                                                           33Ω 5% 0.062W
        4822 051 30109 10Ω 5% 0.062W
                                                                           33Q 5% 0.062W
                                                    3525
                                                           4822 051 30339
3118
        4822 117 12925
                       47k 1% 0.063W 0603
                                                           4822 051 30339
                                                                           33Ω 5% 0.062W
                                                    3526
3119
        4822 117 12925 47k 1% 0.063W 0603
                                                           4822 051 30339
                                                                           33Ω 5% 0.062W
3120
        4822 117 12925 47k 1% 0.063W 0603
```