Московский авиационный институт (Национальный исследовательский университет)

Институт: «Информационные технологии и прикладная математика» Кафедра: 806 «Вычислительная математика и программирование»

Курсовой проект по курсу «Численные методы»

Студент:	Обыденкова Ю. Ю.
Группа:	М8О-308Б-18
Преподаватель:	Черкасов М.А.
Оценка:	
Дата:	

Москва, 2021

Оглавление

- 1. Задание
- 2. Теоретический материал
- 3. Решение
- 4. Ответ
- 5. Исследовательская часть
- 6. Выводы

1. ЗАДАНИЕ

308/27 Решить начально-краевую задачу для ДифУрЧа Π параболического типа. Использовать схему: не явную.

Осуществить реализацию варианта аппроксимации граничных условий, содержащих производные:

- двухточечная с первым порядком точности

2. ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

НАЧАЛЬНО-КРАЕВАЯ ЗАДАЧА ДЛЯ ДУЧП ПАРАБОЛИЧЕСКОГО ТИПА

МЕТОД СЕТОК

Рассмотрим решение дифференциального уравнения в частных производных параболического типа с начально-краевыми условиями:

$$\frac{\partial y}{\partial t} = \alpha_1 \cdot \frac{\partial^2 y}{\partial x^2} + \alpha_2 \frac{\partial y}{\partial x} + \alpha_3 y + f(t, x), \quad a \le x \le b, \quad 0 \le t \le T, \quad \alpha_I > 0$$
 (14.1)

для
$$x=a$$
 $\varphi_1 \frac{\partial y}{\partial x} + \varphi_2 y = f_1(t)$, (14.2)

для
$$x=b$$
 $\varphi_4 \frac{\partial y}{\partial x} + \varphi_5 y = f_2(t),$ (14.3)

для
$$t=0$$
 $y(0,x) = f_3(x)$. (14.4) (14.4)

Накроем область сеткой с шагом по x равным h и с шагом по t равным τ . Тогда $x_0=a$, $x_1=a+h$, ..., $x_N=b$, N=(b-a)/N, $t_0=0$, $t_1=\tau$, $t_2=2\cdot \tau$, $t_M=T=M\cdot \tau$, $M=T/\tau$.

Геометрически область представляет собой «стакан», с трёх сторон которого заданы начальные условия (14.4), слева и справа заданы краевые условия (14.2) и (14.3), а на верхней кромке (при t=T) значения функции y(t,x) не известны. Их вычисление и является целью рассматриваемых алгоритмов. Коэффициенты α_i уравнения и φ_i в краевых условиях представляют собой константы (могут быть и равны 0).

Тогда $y(t_k, x_i) = y_i^k$. Назовём её сеточной $a f_3(0, x_i)$ функцией. Рассмотрим несколько способов решения этой задачи.

НЕЯВНАЯ СХЕМА

В (14.1) производные будем вычислять в узле (x_i ; t_{k+1}). Заменим производные на конечно-разностные соотношения

$$\frac{\partial y}{\partial t} = \frac{y_i^{k+1} - y_i^k}{\tau} + O(\tau^1); \quad \frac{\partial^2 y}{\partial x^2} = \frac{y_{i+1}^{k+1} - 2y_i^{k+1} + y_{i-1}^{k+1}}{h^2} + O(h^2);$$

$$\frac{\partial y}{\partial x} = \frac{y_{i+1}^{k+1} - y_{i-1}^{k+1}}{2h} + O(h^2). \tag{14.11}$$

Подставим эти соотношения в (14.1) и получим для каждой внутренней точки $(x_i; t_{k+1})$:

$$\left(2\alpha_{1}-h\cdot\alpha_{2}\right)\frac{\tau}{2h^{2}}y_{i-1}^{k+1} + \left(\alpha_{3}\tau - \frac{2\alpha_{1}\tau}{h^{2}} - 1\right)y_{i}^{k+1} + \left(2\alpha_{1} + h\cdot\alpha_{2}\right)\frac{\tau}{2h^{2}}y_{i+1}^{k+1} =
= -y_{i}^{k} - \tau \cdot f(t_{k+1}; x_{i}) + O(\tau + h^{2}), \quad i=1,2,3,...,N-1.$$
(14.12)

Это уравнение содержит три неизвестных для i=1,3,...,n-1. Решение (14.1) по такой схеме носит название «неявная схема» и имеет графическое изображение:

Осталось дополнить систему (14.12) первым (для i=0, т.е. x=a) и последним (для i=N, т.е. x=b) уравнениями. Можно использовать формулы (14.7), но это ухудшит точность решения:

Для
$$x=a$$
 первое уравнение: $(h\varphi_2 - \varphi_1)y_0^1 + \varphi_1y_1^1 = f_1(t_1)*h$.

Для
$$x=b$$
 последнее уравнение: $-\varphi_4 y_{N-1}^1 + (h\varphi_5 + \varphi_4) y_N^1 = f_2(t_1) * h$. (14.13)

Используя (14.8), (14.9), (14.10), мы получим второй порядок точности по h, но эта трёхточечная схема сделает матрицу системы не трёхдиагональной:

Для
$$x=a$$
: $(2 h \varphi_2 - 3 \varphi_1) y_0 + 4 \varphi_1 y_1 - \varphi_1 y_2 = 2h f_1(t)$.
Для $x=b$: $\varphi_4 y_{N-2} - 4\varphi_4 y_{N-1} + (2h\varphi_5 + 3\varphi_4) y_{N-2} = 2h f_1(t)$. (14.14)

Исправить её не трёхдиагональность можно арифметическими операциями со строками: первой со второй и последней с предпоследней. После такого исправления матрица системы станет трёхдиагональной, но вероятно потеряет свойство диагонального преобладания, что для матриц больших порядков может привести к потерям точности при применении метода прогонки.

Для сохранения трёхдиагональности матрицы системы и второго порядка точности вычислений относительно h, разложим y_1^{k+1} в ряд Тейлора в окрестности точки $(t_{k+1}; x_0)$:

$$y_1^{k+1} = y_0^{k+1} + \frac{\partial y}{\partial x} \cdot h + \frac{\partial^2 y}{\partial x^2} \cdot \frac{h^2}{2} + O(h^2).$$
 (14.15)

Сюда вместо у``_{xx} подставим его выражение из (14.1) и из полученного соотношения выразим у`_x в точке (t_{k+1} ; x_0):

$$\frac{\partial y}{\partial x}\Big|_{i=0}^{k+1} = \frac{2\alpha_{1}}{h(2\alpha_{1} - \alpha_{2}h)} (y_{1}^{k+1} - y_{0}^{k+1}) - \frac{h}{2\alpha_{1} - \alpha_{2}h} \cdot \frac{\partial y}{\partial t}\Big|_{0}^{k+1} + \frac{\alpha_{3}h}{2\alpha_{1} - \alpha_{2}h} y_{0}^{k+1} + \frac{h}{2\alpha_{1} - \alpha_{2}h} f(t_{k+1}, x_{0}) + O(h^{2}).$$

Учтём, что $\frac{\partial y}{\partial t}\Big|_0^{k+1} = \frac{(y_0^{k+1} - y_0^k)}{\tau} + O(\tau)$ и получим первое уравнение (для

 $x=x_0$) будущей трёхдиагональной системы в случае, когда $\varphi_1\neq 0$:

$$\left(\frac{2\alpha_{1}}{h} + \frac{h}{\tau} - \alpha_{3}h - \frac{\varphi_{2}}{\varphi_{1}}(2\alpha_{1} - \alpha_{2}h)\right)y_{0}^{k+1} - \frac{2\alpha_{1}}{h}y_{1}^{k+1} =$$

$$= \frac{h}{\tau}y_{0}^{k} + h \cdot f(t_{k+1}, x_{0}) - \frac{2\alpha_{1} - \alpha_{2}h}{\varphi_{1}}f_{1}(t_{k+1}). \tag{14.16}$$

Если φ_1 =0, то первое уравнение будет выглядеть: $y_0^{k+1} = f_1(t_{k+1}) / \varphi_2$.

Аналогично последнее уравнение (для $x=x_N$) , будет для $\varphi_4=0$ выглядеть: $y_N^{k+1}=f_2(t_{k+1})/\varphi_5$, а если $\varphi_4\neq 0$ так:

$$-\frac{2\alpha_{1}}{h}y_{N-1}^{k+1} + \left(\frac{2\alpha_{1}}{h} + \frac{h}{\tau} - \alpha_{3}h + \frac{\varphi_{5}}{\varphi_{4}}(2\alpha_{1} + \alpha_{2}h)\right)y_{N}^{k+1} =$$

$$= \frac{h}{\tau}y_{N}^{k} + h \cdot f(t_{k+1}, x_{N}) + \frac{2\alpha_{1} + \alpha_{2}h}{\varphi_{4}}f_{2}(t_{k+1}). \tag{14.17}$$

Остальные N-1 уравнений для внутренних точек (для i=1,2,...,N-1) записываются по формуле (14.12).

При программировании неявной схемы надо учесть, что на каждом новом слое приходится решать систему линейных алгебраических уравнений с трёхдиагональной матрицей. Недостаток неявной схемы в необходимости решения трёхдиагональной СЛАУ (например, методом прогонки). Это несколько усложняет программирование, увеличивает количество арифметических операций (а значит ухудшение точности). Но решение получается устойчивым по сравнению с явной схемой. Поэтому вычисления возможно проводить с большим шагом по t, а это, даже с учётом метода прогонки, существенно уменьшает общее время вычисления

до t=T, а значит может уменьшаться общее количество арифметических операций.

10 Hynebour chae (grus t=0) botzuchaen y i gru i=1 ... n o populyer (*) $y^0 = 4 + 6 \sin (1.5 + 0 + 96 + 33 \cdot (-2)) = 4$ $y^1 = 4 + 6 \sin (1.5 + 0 + 96 + 33 \cdot (-1.2)) = -1.4 \cdot 06 + 38 \cdot 910$ $y^2 = 4 + 6 \sin (1.5 + 0 + 96 + 33 \cdot (-0.4)) = 0.4 + 3288486$ $y^3 = 4 + 6 \sin (1.5 + 0 + 96 + 33 \cdot (0.4)) = 7.526 \cdot 1151$ $y^4 = 4 + 6 \sin (1.5 + 0 + 96 \cdot 33 \cdot (1.2)) = 9.4 \cdot 06 \cdot 339 \cdot 10$ $y^0 = 4 + 6 \sin (1.5 + 0 + 96 \cdot 33 \cdot (1.2)) = 9.4 \cdot 06 \cdot 339 \cdot 10$

Dra borucreuse y^k , na croe k=1,2,3,4 b yp-e(1) nogetable opphyson therethor gusp speperusupobarus (14.5):

$$\frac{\partial y}{\partial t} = \frac{y_{i+1}^{i} - y_{i}^{i}}{0.025}; \quad \frac{\partial y}{\partial x} = \frac{y_{i+1}^{k+1} - y_{i-1}^{k+1}}{2.08}; \quad \frac{\partial^{2}y}{\partial x^{2}} = \frac{y_{i+1}^{k+1} - 2y_{i-1}^{k+1}}{0.8^{2}}$$

$$\frac{y_{i}^{k+1} - y_{i}^{k}}{0.025} = 5.8 \frac{y_{i+1}^{k+1} - 2y_{i}^{k+1} + y_{i-1}^{k+1}}{0.3^{k}} - 5.20 y_{i}^{k+1} + \frac{x_{i}+1}{t_{k+1}+9}$$

```
Umpayur 0
Cucnema gpahunui:

-5,4 yo + 3 y' = -32,2245

-4 y' + 3 y' = -22,611

0,226 563 y' -1,58313 y' +0,226 563 y' = 1,40689

0,226 563 y' -1,58313 y' +0,226 563 y' = -0,444951

0,226 563 y' -1,58313 y' +0,226 563 y' = -4,53059

0,226 563 y' -1,58313 y' +0,226 563 y' = -4,53059

0,226 563 y' -1,58313 y' +0,226 563 y' = -9,41243

Remembe:
y' = 5,93028
y' = -0,066 9834
y' = -0,066 9834
y' = 6,88 701
y' = -0,64 9977
```

Решение данной системы уравнений было получено по методу прогонки:

```
import numpy as np
def metod progonki(matrix):
   p = []
   q = []
   p.append(0)
   q.append(0)
    n = len(matrix)
   m = len(matrix[0])
    for i in range(n):
        if i == 0:
           a = 0
        else:
           a = matrix[i][i - 1]
        if i == (n - 1):
           c = 0
           c = matrix[i][i + 1]
        b = matrix[i][i]
        d = matrix[i][m - 1]
        p i = float(((-1) * c) / (b + a * p[i]))
        q_i = float((d - a * q[i]) / (b + a * p[i]))
        p.append(p i)
        q.append(q_i)
```

```
print(f'P-{p}')
    print(f'Q-{q}')
    x = []
    x.append(q[n])
    for i in range(n - 1, 0, -1):
        x i = q[i] + p[i] * x[n - i - 1]
        x.append(x i)
    x.reverse()
    return x
def check_slau(matrix, res):
    eps = 0.000001
    n = len(matrix)
    for i in range(n):
        elem = 0
        for j in range(n):
            elem += matrix[i][j] * res[j]
        if (elem - matrix[i][n] >= eps):
            return 'ERR'
    return 'OK'
matrix1 = [[-5.4, 3, 0, 0, 0, 0, -32.2245],
           [0.226563, -1.58313, 0.226563, 0, 0, 0, 1.70689],
           [0, 0.226563, -1.58313, 0.226563, 0, 0, -0.474951],
           [0, 0, 0.226563, -1.58313, 0.226563, 0, -7.53059],
           [0, 0, 0, 0.226563, -1.58313, 0.226563, -9.71243],
           [0, 0, 0, 0, -3, 3, -22.611]]
print('Результаты по методу прогонки:')
progonka = np.array(metod_progonki(matrix1.copy()))
print('x = ', progonka)
print('Проверка прогонки')
print(check slau(matrix1, progonka))
```

Результаты выполнения программы:

```
Результаты по методу прогонки:
P-[0, 0.555555555555555555, 0.15547173522943145, 0.14636742857368126,
0.14617264271718733, 0.1461684809550788, 0.0]
Q-[0, 5.96749999999999, -0.24352201503504878, 0.27119086069811754,
4.8981844078135985, 6.981992754592777, -0.65001962685571]
x = [5.93028 -0.06699 1.13548 5.90489 6.88701 -0.64997]
Проверка прогонки
ОК
```

Umepayue 1

$$\begin{cases}
-5.4y_0^2 + 3y_1^2 = -32,2295 \\
-3 y_1^2 + 3y_2^2 = -22,60.5
\end{cases}$$

$$0.226563 y_0^2 - 1,58313 y_1^2 + 0,226563 y_2^2 = 0,0645459$$

$$0.226563 y_1^2 - 1,58313 y_2^2 + 0,226563 y_3^2 = -1,13413$$

$$0.226563 y_2^2 - 1,58313 y_3^2 + 0,226563 y_4^2 = -5,90846$$

$$0.226563 y_3^2 - 1,58313 y_4^2 + 0,226563 y_5^2 = -6,80309$$
Pemerue:
$$y_0^2 = 6,59406$$

$$y_1^2 = 1,12045$$

$$y_2^2 = 1,53839$$

$$y_3^2 = 4,6098$$

Umepayur 2

44 = 4,59294

75 = -2,94088

```
\begin{cases}
-5,4 y_0^2 + 3y_1^3 = -32,2345 \\
-3 y_1^3 + 3y_2^3 = -22,591
\end{cases}
0,226563 y_0^3 - 1,58313 y_1^3 + 0,226563 y_2^3 = -1,1202
0,226563 y_1^3 - 1,58313 y_2^3 + 0,226563 y_3^3 = -1,54004
0,226563 y_2^3 - 1,58313 y_3^3 + 0,226563 y_3^3 = -4,61366
0,226563 y_3^3 - 1,52313 y_3^3 + 0,226563 y_3^3 = -4,61366
y_0^3 = 7,06435
y_1^3 = 1,971
y_2^3 = 1,46389
y_3^3 = 3,55691
y_3^4 = 2,72658
y_3^5 = -4,80374
```

(3)

Urepayue 3

$$\begin{cases}
-5,446 + 341 = -32,2395 \\
-344 + 345 = -22,5495
\end{cases}$$

$$0,226563 - 1,5831347 + 0,22656342 = -1,94045 - 0,226563 - 1,5831342 + 0,22656343 = -1,46554 - 0,226563 - 1,5231342 + 0,22656347 = -3,56045 - 0,226563 - 1,5831347 + 0,22656347 = -3,56045
$$0,226563 - 1,5831347 + 0,22656347 = -3,56045$$

$$36 = 4,39849$$

$$36 = 4,39849$$

$$36 = 1,86498$$

$$36 = 1,20649$$

$$36 = -6,32$$$$

4. OTBET

Получим решение задачи:

Y(x,t)	X = -2	X = -1.2	X = -0.4	X = 0.4	X = 1.2	X = 2
t = 0	4	-1.70633	0.47328	7.52671	9.70633	4
t = 0.025	5.93027	-0.06699	1.13547	5.90489	6.88701	-0.64997
t = 0.05	6.59105	1.12074	1.53838	4.60980	4.59294	-2.94087
t = 0.075	7.06434	1.97100	1.76388	3.55690	2.72658	-4.80374
t = 0.1	7.39849	2.57079	1.86798	2.68918	1.20648	-6.320003

График решения:

5. ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

При решении дифференциальных уравнений применяются явные и неявные методы. <u>Явными методами</u> решения дифференциальных уравнений называются такие методы, в которых используются значения с предыдущего шага. Эти значения являются аргументом в правой части:

$$y_{i+1} = f(y_i)$$

При применении <u>неявных методов</u> на каждой итерации искомые значения y_{i+1} входят в разностную форму производной и в правую часть уравнения, которое символически можно записать так:

$$f(y_{i+1}) = 0$$

Это заметно усложняет решение, поскольку на каждой итерации приходится решать уравнение или систему уравнений.

Явные методы проще реализовать, достаточно лишь задать рекуррентное соотношение. Однако, неявные методы применимы к сложным дифференциальным уравнениям, что является их особенностью.

6. ВЫВОДЫ

Дифференциальное уравнение параболического типа в частных производных на самом деле является уравнением теплопроводности. Таким образом, ДУ в данной задаче можно привести к виду:

$$u_t = \frac{x+1}{t+9} + 5.8u_{xx} - 5.2u$$

Такие методы, как метод Фурье, метод разделения переменных для решения ДУ в частных производных, имеют решение, которое записывается в виде суммы бесконечного ряда довольно сложной структуры, и нахождение численного значения функции в конкретной точке представляет собой отдельную математическую задачу. Поэтому широкое распространение получили численные методы решения уравнений в частных производных. Самым распространенным методом считается метод сеток.