Correction du DS n°4

Sujet groupe A

3 On a une suite arithmético-géométrique d'équation caractéristique: $x = 4x - 2 \iff 3x = 2 \iff x = 2/3$. Soit $n \in \mathbb{N}$. On a:

$$u_{n+1} = 4u_n -2$$

2/3 = $4 \times 2/3 -2$

Par différence, $u_{n+1} - 2/3 = 4(u_n - 2/3)$ c'est-à-dire que la suite de terme général $u_n - 2/3$ est géométrique de raison 4 donc $u_n - 2/3 = 4^n(u_0 - 2/3) = 4^n \times 4/3$. Finalement :

$$u_n = \frac{4^{n+1} + 2}{3}$$

4 On a une suite récurrente linéaire d'ordre 2 dont l'équation caractéristique est: $x^2 = 7x - 12 \iff x^2 - 7x + 12 = 0$ dont les solutions sont 3 et 4. Dès lors, il existe λ et μ (uniques) tels que, pour tout n, $u_n = \lambda \times 3^n + \mu \times 4^n$. Pour n = 0, cela donne $-3 = \lambda + \mu$ donc $\lambda = -3 - \mu$ et, pour n = 1, on trouve:

$$-7 = 3\lambda + 4\mu$$
$$= 3(-3 - \mu) + 4\mu$$
$$= -9 + \mu$$

si bien que $\mu = 2$ et donc $\lambda = -5$. En conclusion :

$$\forall n \in \mathbb{N}, u_n = -5 \times 3^n + 2 \times 4^n$$

Encore une fois, il ne coûte pas très cher de vérifier que, pour n = 0 et n = 1, on retombe sur les bonnes valeurs de u_0 et u_1 .

Soit $n \in \mathbb{N}$. Tout d'abord, $u_n = (8/e^3)^n$ et e > 2 donc $e^3 > 8$ donc $8/e^3 < 1$: on a une suite géométrique de raison strictement inférieure à 1 (et positive) donc

$$u_n \xrightarrow[n \to +\infty]{} 0$$

Pour v_n , mettons en facteur le terme prépondérant, c'est-à-dire 3^n .

$$v_n = \frac{3^n \left(\frac{e^n}{3^n} - \frac{n^2 \times 2^n}{3^n} + 1\right)}{3^n \left(\frac{e^n}{3^n} + \frac{n^2 \times 2^n}{3^n} - 1\right)}$$

$$= \frac{(e/3)^n - n^2 \times (2/3)^n + 1}{(e/3)^n + n^2 \times (2/3)^n - 1}$$

Or, e < 3 si bien que (suite géométrique de raison < 1) $(e/3)^n \xrightarrow[n \to +\infty]{} 0$ et 2/3 < 1 donc (croissances comparées) $n^2 \times (2/3)^n \xrightarrow[n \to +\infty]{} 0$. Dès lors, le numérateur tend vers 1 et le dénominateur vers -1 si bien que

$$v_n \xrightarrow[n \to +\infty]{} -1$$

Si on se trompe de terme prépondérant et qu'on pense que c'est (par exemple) e^n , alors cela donne de même après simplification :

$$v_n = \frac{1 - (n^2 \times 2^n / e^n) + (3/e)^n}{1 + (n^2 \times 2^n / e^n) - (3/e)^n}$$

et là on ne peut pas conclure car 3 > e donc $(3/e)^n \xrightarrow[n \to +\infty]{} +\infty$ et on a une forme indéterminée du type $+\infty/+\infty$: si on ne repère pas du premier coup d'oeil le terme prépondérant, on s'en rend compte tout de même!

 $\boxed{\mathbf{6.(a)}}$ $k! = k \times \cdots \times 2$ (multiplier ou non par 1 ne change pas la valeur d'un produit) donc k! est un produit de k-1 termes supérieurs ou égaux à 2 donc (on peut multiplier des inégalités positives) $k! \geqslant 2^{k-1}$ et on conclut par décroissance de la fonction inverse sur \mathbb{R}_+^* .

Si
$$k \geqslant 1$$
, $\frac{1}{k!} \leqslant \frac{1}{2^{k-1}}$

6.(b) En sommant la question précédente pour k allant de 1 à n:

$$\sum_{k=1}^{n} \frac{1}{k!} \leqslant \sum_{k=1}^{n} \frac{1}{2^{k-1}}$$

En ajoutant le terme d'indice k = 0 qui vaut 1, il vient :

$$S_n \leqslant 1 + \sum_{k=1}^n \frac{1}{2^{k-1}}$$

$$\leqslant 1 + \sum_{j=0}^{n-1} \frac{1}{2^j}$$

$$\leqslant 1 + \frac{1 - (1/2)^n}{1 - 1/2}$$

$$\leqslant 1 + \frac{1 - (1/2)^n}{1/2}$$

$$\leqslant 1 + 2 \times (1 - (1/2)^n)$$

donc $S_n \leq 1+2=3$ et $S_{n+1}-S_n=1/(n+1)!>0$ donc la suite est croissante majorée donc converge.

La suite
$$(S_n)$$
 converge.

Attention, la majoration $S_n \leq 1 + 2 \times (1 - (1/2)^n)$ ne suffit pas car, pour appliquer le théorème de convergence monotone, il faut majorer par une CONSTANTE!

7 Soit $n \in \mathbb{N}$. Par définition de la partie entière, $a-1 < |a| \le a$ pour tout réel a donc:

$$\frac{10^n \pi - 1}{10^n} = \pi - \frac{1}{10^n} < u_n \leqslant \frac{10^n \pi}{10^n} = \pi$$

D'après le théorème d'encadrement,

$$u_n \xrightarrow[n \to +\infty]{} \pi$$

8 Soit $x \in \mathbb{R}$.

$$f$$
 est définie en $x \iff x > 0$ et $\ln(x) \neq 0$

$$\iff x > 0$$
 et $x \neq 1$

On en déduit que f est définie sur] 0; 1 [\cup] 1; $+\infty$ [. Or, $\ln(x) \xrightarrow[x \to 0^+]{} -\infty$ donc $f(x) \xrightarrow[x \to 0^+]{} 0$: f est prolongeable par continuité en 0 en posant f(0) = 0. Cependant, $\ln(x) \xrightarrow[x \to 1^+]{} 0^+$ donc $f(x) \xrightarrow[x \to 1^+]{} +\infty$: f n'admet pas de limite finie en 1 donc n'est pas prolongeable par continuité en 1.

f est définie sur] $0\,;1\,[\,\cup\,]\,1\,;+\infty\,[$ et est prolongeable par continuité en 0 mais pas en 1.

Attention, f n'a pas de limite en 1 puisque la limite en 1^+ vaut $+\infty$ et celle en 1^- vaut $-\infty$, attention de ne pas dire que $f(x) \xrightarrow[x \to 1]{} +\infty$!

9 Soit

$$\varphi \colon \begin{cases} [\,0\,;1\,] \longrightarrow \mathbb{R} \\ x \longmapsto f(x) - 2024g(x) \end{cases}$$

 φ est continue car f et g le sont, $\varphi(0) = 0 - 2024 \times 1 = -2024$ et $\varphi(1) = 1 - 2024 \times 0 = 1$ donc, d'après le TVI,

Il existe
$$x_0 \in [0; 1]$$
 tel que $f(x_0) = 2024g(x_0)$.

10 Soit $x \in \mathbb{R}$. Par densité de \mathbb{Q} dans \mathbb{R} , il existe une suite (x_n) à valeurs dans \mathbb{Q} qui converge vers x. Par hypothèse, pour tout $n, f(x_n) < g(x_n)$. Par continuité de f et $g, f(x_n) \xrightarrow[n \to +\infty]{} f(x)$ et $g(x_n) \xrightarrow[n \to +\infty]{} g(x)$. L'inégalité LARGE passe à la limite donc $f(x) \leq g(x)$.

On a
$$f \leqslant g$$
.

Cependant, on peut avoir f(x) = g(x) en certains points: par exemple, si f est la fonction nulle, et si $g(x) = |x - \sqrt{2}|$ (voir graphe ci-dessous), alors f(x) < g(x) si $x \neq \sqrt{2}$ donc en particulier si $x \in \mathbb{Q}$, f et g sont continues mais $f(\sqrt{2}) = g(\sqrt{2}) = 0$.

11.(a) Par croissances comparées,

$$f(x) \xrightarrow[x \to \pm \infty]{} 0$$

11.(b) Découle du fait que $f(x) \xrightarrow[x \to +\infty]{} 0$.

Il existe
$$A > 0$$
 tel que, pour tout $x \ge A, |f(x)| \le 1$.

11.(c) De même, $f(x) \xrightarrow[x \to -\infty]{} 0$ donc il existe B < 0 tel que, pour tout $x \leqslant B, |f(x)| \leqslant 1$. Or, f est continue sur le segment [B;A] donc est bornée (et atteint ses bornes). En particulier, il existe M tel que $|f(x)| \leqslant M$ pour tout $x \in [B;A]$. Finalement, pour tout $x \in \mathbb{R}, |f(x)| \leqslant \max(1, M)$ donc

$$f$$
 est bornée sur \mathbb{R} .

 $\boxed{12} \text{ Soit } x \in \mathbb{R}.$

- Posons $g(x) = \sin(2x)$. Alors $g'(x) = 2\cos(2x)$.
- Posons $h(x) = e^{\sin(2x)} = e^{g(x)}$ donc $h'(x) = g'(x)e^{g(x)} = 2\cos(2x)e^{\sin(2x)}$.
- Posons $u(x) = 3 + \cos\left(e^{\sin(2x)}\right) = 3 + \cos(h(x))$ si bien que

$$u'(x) = -h'(x)\sin(h(x)) = -2\cos(2x)e^{\sin(2x)}\sin\left(e^{\sin(2x)}\right)$$

• Posons $v(x) = \ln (3 + \cos (e^{\sin(2x)})) = \ln(u(x))$ si bien que

$$v'(x) = \frac{u'(x)}{u(x)} = \frac{-2\cos(2x)e^{\sin(2x)}\sin(e^{\sin(2x)})}{3 + \cos(e^{\sin(2x)})}$$

• Enfin, f(x) = Arctan(v(x)) donc

$$f'(x) = \frac{v'(x)}{1 + v(x)^2} = \frac{-2\cos(2x)e^{\sin(2x)}\sin(e^{\sin(2x)})}{3 + \cos(e^{\sin(2x)})} \times \frac{1}{1 + \ln(3 + \cos(e^{\sin(2x)}))^2}$$

13 f est tout d'abord dérivable (et même \mathscr{C}^{∞}) sur \mathbb{R}^* . Soit $x \neq 0$. Alors $-1 \leqslant \sin(1/x) \leqslant 1$ et $x^2 \geqslant 0$ donc $-x^2 \leqslant f(x) \leqslant x^2$. D'après le théorème d'encadrement, $f(x) \xrightarrow[x \to 0]{} 0$: on peut prolonger f par continuité en 0 en posant f(0) = 0. f est à présent continue sur \mathbb{R} , il suffit donc de prouver qu'elle est dérivable en 0. Pour cela, étudions son taux d'accroissement:

$$\tau_0(x) = \frac{f(x) - f(0)}{x - 0} = x\sin(1/x)$$

puisqu'on rappelle que f(0) = 0. Attention de ne pas dire que $-x \le \tau_0(x) \le x$ car on ne connaît pas le signe de x!

- Soit on différencie les cas selon le signe de x, c'est-à-dire que si x>0 alors $-x\leqslant \tau_0(x)\leqslant x$ donc, théorème d'encadrement, $\tau_0(x)\xrightarrow[x\to 0^+]{}0$ donc f est dérivable à droite en 0 et $f'_d(0)=0$. De même, si x<0, alors $x\leqslant \tau_0(x)\leqslant -x$ (l'inégalité change de sens car on multiplie par x<0) et on conclut de même que f est dérivable à gauche en 0 de dérivée $f'_d(0)=0=f'_d(0)$.
- Soit on utilise la valeur absolue: $|\tau_0(x)| \leq |x|$ donc, théorème d'encadrement, $\tau_0(x) \xrightarrow[x \to 0]{} 0$.

Dans tous les cas, on en déduit que f est dérivable en 0 et f'(0) = 0:

f est donc bien prolongeable en une fonction dérivable sur \mathbb{R} .

14 cf. question 3 des préliminaires du devoir groupes B et C.

15 φ est continue sur [0;a], dérivable sur]0;a[(car f est dérivable). Attention, $\varphi(a)=f(a)-f(-a)$ et $\varphi(0)=0$ qui n'est a priori pas égal à $\varphi(a)$ donc on ne peut pas appliquer le théorème de Rolle mais on peut appliquer l'égalité des accroissements finis : il existe $c \in]0;a[$ (et en particulier c>0) tel que

$$\varphi'(c) = \frac{\varphi(a) - \varphi(0)}{a - 0}$$

c'est-à-dire que $a \times \varphi'(c) = f(a) - f(-a)$. Il suffit de voir (dérivée d'une composée) que $\varphi'(c) = f(c) + f'(-c)$ et on a le résultat voulu.

Il existe
$$c > 0$$
 tel que $f(a) - f(-a) = a(f'(c) + f'(-c))$.

16.(a) Soit

$$g: \begin{cases} \mathbb{R}_+ \longrightarrow \mathbb{R} \\ x \longmapsto e^{-x/2} - x \end{cases}$$

Même pas besoin de donner son tableau de variations: g est strictement décroissante (car somme de $x \mapsto e^{-x/2}$ et $x \mapsto -x$ qui sont strictement décroissantes), continue (car somme de fonctions continues), g(0) = 1 et $g(x) \xrightarrow[x \to +\infty]{} -\infty$ donc, d'après le théorème de la bijection, g s'annule une unique fois, c'est-à-dire qu'il existe un unique réel x tel que $e^{-x/2} = x$.

$$f$$
 admet un unique point fixe.

16.(b) On cherche à appliquer l'IAF (version 2 i.e. avec une valeur absolue). Pour cela, il faut majorer |f'|. Soit $x \in \mathbb{R}_+$. f est \mathscr{C}^{∞} sur \mathbb{R}_+ et $f'(x) = -e^{-x}/2$ et $f''(x) = e^{-x}/4$, d'où le tableau de variations de f' (attention, pas de f):

x	0	+∞
f''(x)		+
f'	-1/2	0

On en déduit que |f'| est majorée par 1/2: d'après l'IAF (rappelons que $u_{n+1} = f(u_n)$ et que $\alpha = f(\alpha)$ car c'est un point fixe):

Pour tout
$$n \in \mathbb{N}$$
, $|u_{n+1} - \alpha| = |f(u_n) - f(\alpha)| \le \frac{1}{2} \times |u_n - \alpha|$

16.(c) Par une récurrence immédiate en utilisant la question précédente (on peut dire avec les mains que $(|u_n - \alpha|)$ est « sous-géométrique »), pour tout n, $|u_n - \alpha| \leq (1/2)^n \times |u_0 - \alpha|$. Or, 1/2 < 1 donc, d'après le théorème d'encadrement,

$$u_n \xrightarrow[n \to +\infty]{} \alpha$$

17 Soit $x \in \mathbb{R}$. Notons $g(x) = 7x^2 + 5x$ et $h(x) = e^{2x}$. Alors g et h sont dérivables n fois. D'après la formule de Leibniz:

$$f^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} g^{(k)}(x) h^{(n-k)}(x)$$

Or, g est polynomiale de degré 2 donc $g^{(k)}(x) = 0$ si $k \ge 3$: il ne reste donc plus que les termes d'indices k = 0, 1, 2 dans la somme. De plus, $h^{(n-k)}(x) = 2^{n-k}e^{2x}$ si bien que:

$$f^{(n)}(x) = \binom{n}{0}g(x)h^{(n)}(x) + \binom{n}{1}g'(x)h^{(n-1)}(x) + \binom{n}{2}g''(x)h^{(n-2)}(x)$$

En conclusion

$$f^{(n)}(x) = (7x^2 + 5x) \times 2^n e^{2x} + n(14x + 5) \times 2^{n-1} e^{2x} + \frac{n(n-1)}{2} \times 14 \times 2^{n-2} e^{2x}$$

19 f est définie sur \mathbb{R}_+^* et y est dérivable deux fois (et même \mathscr{C}^{∞}). Soit x>0. Alors

$$f'(x) = 2x \ln(x) + x^2 \times \frac{1}{x}$$
$$= 2x \ln(x) + x$$

et

$$f''(x) = 2\ln(x) + 2x \times \frac{1}{x} + 1$$
$$= 2\ln(x) + 3$$

Par conséquent, $f''(x) \ge 0 \iff \ln(x) \ge -3/2 \iff x \ge e^{-3/2}$. Par conséquent, f'' est positive sur $\left[e^{-3/2}; +\infty\right]$ (et nulle en $e^{-3/2}$). Finalement:

f est convexe sur $[e^{-3/2}; +\infty[$ et concave sur $]e^{-3/2}; +\infty]$ et admet un point d'inflexion en $e^{-3/2}$.

20 Appliquons l'inégalité de Jensen à la racine carrée qui est concave (donc elle est dans le sens inverse de celle en cours) avec les λ_i égaux à 1/n (on est donc dans le cas particulier) et les x_k égaux à $1, 2, \ldots, n$:

$$\frac{\sqrt{1}+\cdots+\sqrt{n}}{n}\leqslant\sqrt{\frac{1+\cdots+n}{n}}$$

c'est-à-dire

$$\frac{1}{n} \sum_{k=1}^{n} \sqrt{k} \leqslant \sqrt{\frac{n(n+1)}{2n}}$$

En multipliant par n, on a le résultat voulu.

$$\boxed{\sum_{k=1}^{n} \sqrt{k} \leqslant n\sqrt{\frac{n+1}{2}}}$$

Sujet groupes B et C Préliminaires

3 Soit

$$g: \begin{cases} [0;1] \longrightarrow \mathbb{R} \\ x \longmapsto f(x) + \cos(2\pi x) \end{cases}$$

g est continue sur [0;1] et dérivable sur]0;1[(car f est dérivable) et g(0)=g(1)=2 par hypothèse sur f. D'après le théorème de Rolle, il existe $x \in]0;1[$ tel que g'(x)=0. Or, pour tout $x, g'(x)=f'(x)-2\pi\sin(2\pi x)$, d'où le résultat.

Il existe
$$x \in]0;1[$$
 tel que $f'(x) = 2\pi \sin(2\pi x)$

Exercice - Fonctions de Hermite

Puisque $f^{(0)} = f$, on a évidemment $h_0: x \mapsto 1 \times e^{\pi x^2} \times e^{-2\pi x^2} = e^{-\pi x^2}$. Soit $x \in \mathbb{R}$. f étant \mathscr{C}^{∞} , on peut la dériver autant de fois qu'on veut (et donc les h_n sont bien définies, même s'il n'était pas demandé de le justifier) et $f'(x) = -4\pi x e^{-2\pi x^2}$ et $f''(x) = \left(-4\pi + 16\pi^2 x^2\right) e^{-2\pi x^2}$. Ensuite, pour h_1 , on multiplie par $-e^{\pi x^2}$ et, pour h_2 , par $e^{\pi x^2}/2$. On en déduit h_1 et h_2 :

$$h_0: x \mapsto e^{-\pi x^2}, h_1: x \mapsto 4\pi x e^{-\pi x^2}$$
 et $h_2: x \mapsto (-2\pi + 8\pi^2 x^2) e^{-\pi x^2}$

Soient donc $n \in \mathbb{N}$ et $x \in \mathbb{R}$ et dérivons h_n (qui est évidemment dérivable, toutes les fonctions de cet exercice sont \mathscr{C}^{∞}):

$$h_n'(x) = \frac{(-1)^n}{n!} \times 2\pi x e^{\pi x^2} \times f^{(n)}(x) + \frac{(-1)^n}{n!} \times e^{\pi x^2} \times f^{(n+1)}(x)$$

Dès lors

$$h_n'(x) - 2\pi x h_n(x) = \frac{(-1)^n}{n!} \times e^{\pi x^2} \times f^{(n+1)}(x)$$

$$= -(n+1) \times \frac{(-1)^{n+1}}{(n+1)!} \times e^{\pi x^2} \times f^{(n+1)}(x)$$

En conclusion

$$h_n'(x) - 2\pi x h_n(x) = -(n+1)h_{n+1}(x)$$

3.(a) Posons $g(x) = -4\pi x$ si bien que $\varphi = g \times f$. Appliquons la formule de Leibniz (f et g sont évidemment dérivables b fois car \mathscr{C}^{∞}):

$$\varphi^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} g^{(k)}(x) f^{(n-k)}(x)$$

Or, $g^{(k)}(x) = 0$ si $k \ge 2$ donc il ne reste que les termes d'indices k = 0 et k = 1 dans la somme:

$$\varphi^{(n)}(x) = \binom{n}{0} g(x) f^{(n)}(x) + \binom{n}{1} g'(x) f^{(n-1)}(x)$$

ce qui permet de conclure puisque $\binom{n}{0} = 1$, $\binom{n}{1} = n$ et $g'(x) = -4\pi$:

$$\varphi^{(n)}(x) = -4\pi x f^{(n)}(x) - 4n\pi f^{(n-1)}(x)$$

3.(b) Comme dans la question 2 (ici, les $2\pi x$ s'ajoutent et ne se compensent pas):

$$h_n'(x) + 2\pi x h_n(x) = \frac{(-1)^n}{n!} \times 4\pi x e^{\pi x^2} \times f^{(n)}(x) + \frac{(-1)^n}{n!} \times e^{\pi x^2} \times f^{(n+1)}(x)$$

Or, $f^{(n+1)}=(f')^{(n)}$ et $f'(x)=-4\pi xe^{-2\pi x^2}=\varphi(x)$ si bien que $f^{(n+1)}(x)=\varphi^{(n)}(x)$ et donc, d'après la question précédente :

$$h_n'(x) + 2\pi x h_n(x) = \frac{(-1)^n}{n!} \times 4\pi x e^{\pi x^2} \times f^{(n)}(x) + \frac{(-1)^n}{n!} \times e^{\pi x^2} \times (-4\pi x f^{(n)}(x) - 4n\pi f^{(n-1)}(x))$$

$$= -4n\pi \times \frac{(-1)^n}{n!} \times e^{\pi x^2} \times f^{(n-1)}(x)$$

$$= 4\pi \times \frac{(-1)^{n-1}}{(n-1)!} \times e^{\pi x^2} \times f^{(n-1)}(x)$$

Finalement

$$h_n'(x) + 2\pi x h_n(x) = 4\pi h_{n-1}(x)$$

Problème - Problème de Dyer

Partie I. Préliminaires

2 C'est quasiment une question de cours. Si f - g n'est pas de signe constant, il existe x_1 et x_2 appartenant à [0;1] tels que $(f-g)(x_1) > 0$ et $(f-g)(x_2) < 0$. Les fonctions f et g sont continues donc f - g l'est aussi. D'après le TVI, il existe $x_3 \in [x_1; x_2]$ tel que $(f-g)(x_3) = 0$ c'est-à-dire tel que $f(x_3) = g(x_3)$ ce qui est absurde. D'où le résultat.

$$f - g$$
 est de signe constant.

3 Là aussi, c'est quasiment une question de cours. La fonction f-g est continue sur le segment [0;1] donc est bornée et atteint ses bornes: il existe $x_0 \in [0;1]$ tel que $(f-g)(x_0) = \min f - g$. Puisque f-g est strictement positive alors $(f-g)(x_0) > 0$. Posons $\alpha = (f-g)(x_0)$. Alors, par définition d'un minimum, pour tout $u \in [0;1], (f-g)(u) \geqslant \alpha$ c'est-à-dire $f(u) \geqslant g(u) + \alpha$.

4 Soit $x \in [0, 1]$. En appliquant ce qui précède à u = f(x) (qui appartient à [0, 1]) il vient

$$f(f(x)) \geqslant g(f(x)) + \alpha$$

Or, f et g commutent donc g(f(x)) = f(g(x)) si bien que $f(f(x)) \ge f(g(x)) + \alpha$. En appliquant de nouveau la question précédente à u = g(x), il vient $f(g(x)) \ge g(g(x)) + \alpha$. En combinant les deux inégalités précédentes on obtient le résultat voulu.

$$|f \circ f(x)| \geqslant g \circ g(x) + 2\alpha$$

- 5.(a) Raisonnons par récurrence.
 - Si $n \ge 1$, on note H_n : « $f^n \circ g = g \circ f^n$ ».
 - H₁ est vraie par hypothèse.
 - Soit $n \ge 1$. Supposons H_n vraie et montrons que H_{n+1} est vraie. On a

$$f^{n+1} \circ g = f^n \circ f \circ g$$

 $= f^n \circ g \circ f$ (car f et g commutent)
 $= g \circ f^n \circ f$ (par H.R.)
 $f^{n+1} \circ g = g \circ f^{n+1}$

c'est-à-dire que H_{n+1} est vraie.

• D'après le principe de récurrence, H_n est vraie pour tout $n \ge 1$.

Pour tout
$$n \ge 1$$
, f^n et g commutent.

- 5.(b) Raisonnons encore une fois par récurrence.
 - Si $n \ge 1$, on note H_n : « $\forall x \in [0;1], f^n(x) \ge g^n(x) + n\alpha$ ».
 - H₁ et H₂ sont vraies d'après les questions précédentes.
 - Soit $n \ge 2$. Supposons H_n vraie et montrons que H_{n+1} est vraie. Soit $x \in [0, 1]$. D'après la question 2 avec $u = f^n(x)$:

$$f^{n+1}(x) = f(f^n(x)) \geqslant g(f^n(x)) + \alpha$$

Or, f^n et g commutent d'après la question précédente, donc $g(f^n(x)) = f^n(g(x))$. Par hypothèse de récurrence, $f^n(g(x)) \ge g^n(g(x)) + n\alpha = g^{n+1}(x) + n\alpha$ et donc

$$f^{n+1}(x) \geqslant q^{n+1}(\alpha) + n\alpha + \alpha = q^{n+1}(\alpha) + (n+1)\alpha$$

c'est-à-dire que H_{n+1} est vraie.

• D'après le principe de récurrence, H_n est vraie pour tout $n \ge 1$.

$$\forall x \in [0;1], \qquad f^n(x) \geqslant g^n(x) + n\alpha$$

6 f étant à valeurs dans [0;1] et g étant à valeurs positives, d'après la question précédente, pour tout $n \ge 1$ et tout $x \in [0;1]$,

$$1 \geqslant f^n(x) \geqslant g^n(x) + n\alpha \geqslant n\alpha$$

En particulier, $1 \ge n\alpha$ pour tout n ce qui est absurde car $n\alpha \xrightarrow[n \to +\infty]{} +\infty$ car $\alpha > 0$ et donc $n\alpha$ finit par être strictement supérieur à 1. On pouvait également utiliser le théorème de minoration pour dire que $f^n(x) \xrightarrow[n \to +\infty]{} +\infty$ ce qui est absurde pour la même raison.

Il existe donc
$$x$$
 tel que $f(x) = g(x)$.

7 Il faut donc montrer que g(x) est un point fixe de f, c'est-à-dire que f(g(x)) = g(x). Or, f et g commutent donc f(g(x)) = g(f(x)) et f(x) = x car x est un point fixe donc g(f(x)) = g(x) ce qui est le résultat voulu.

$$|\operatorname{Fix}(f)|$$
 est stable par g .

8.(a) Fix(h) est non vide d'après la question 1 (h est continue) et majoré par 1 car inclus dans [0;1] (le domaine de définition de h). On a une partie non vide majorée de \mathbb{R} donc elle admet une borne supérieure. C'est également une partie non vide minorée (par 0) de \mathbb{R} donc admet une borne inférieure.

 $\operatorname{Fix}(h)$ admet une borne supérieure et une borne inférieure.

8.(b) Pour tout n, x_n est un point fixe de h donc $h(x_n) = x_n \xrightarrow[n \to +\infty]{} L$. Or, h est continue donc $h(x_n) \xrightarrow[n \to +\infty]{} h(L)$. Par unicité de la limite, h(L) = L c'est-à-dire que:

$$L \in Fix(h)$$

8.(c) Notons α la borne supérieure de Fix(h) (qui existe d'après la question 8.(a)). Par caractérisation séquentielle de la borne supérieure, il existe une suite (x_n) d'éléments de Fix(h) qui converge vers α donc, d'après la question précédente, $\alpha \in \text{Fix}(h)$ donc c'est un maximum. De même, la borne inférieure est un minimum.

Fix(h) admet un minimum et un maximum.

Partie II. CAS MONOTONE (ET AUTRES CAS FACILES)

1.(a) La fonction $h: x \mapsto f(x) - x$ (attention, la notation g est déjà prise) est alors strictement décroissante (somme d'une fonction décroissante, f, et d'une fonction strictement décroissante, $x \mapsto -x$, et il suffit que l'une des deux soit strictement décroissante) et continue. De plus, $h(0) = f(0) \ge 0$ et $h(1) = f(1) - 1 \le 0$ (car f est à valeurs dans [0;1]). D'après le corollaire du TVI, h s'annule une unique fois donc:

$$f$$
 admet un unique point fixe.

Soit α l'unique point fixe de f. D'après le lemme-clef, $g(\alpha)$ est un point fixe de f. Or, l'unique point fixe de f est α donc $g(\alpha) = \alpha$: α est un point fixe de g.

f et g ont un point fixe commun lorsque f est décroissante.

Notons Fix(f) = [a; b]. Soit $x \in [a; b]$. D'après le lemme-clef, g(x) est un point fixe de f donc $g(x) \in [a; b]$: en d'autres termes, g est une fonction continue de [a; b] dans lui-même si bien que, comme d'habitude, on montre que g admet un point fixe dans cet intervalle, qui est donc un point fixe commun à f et g.

Si Fix(f) est un intervalle, f et g ont un point fixe commun.

Soit $n \in \mathbb{N}$, supposons que le résultat soit vrai au rang n. Par croissance de f, en composant cette inégalité par f (et donc l'inégalité ne change pas de sens), $f^{n+2}(x) \leq f^{n+1}(x)$ ce qui clôt la récurrence.

Pour tout
$$n, f^{n+1} \leq f^n(x)$$
: la suite est donc décroissante.

On montre de même que la suite est croissante si f(x) > x. Puisque cette suite est à valeurs dans [0;1], elle est monotone et bornée donc converge.

Cette suite converge.

2.(b) Par symétrie des rôles, Fix(g) est stable par f d'après le lemme-clef donc, pour tout $n, f^n(x_0) \in \text{Fix}(g)$. Par hypothèse, cette suite converge vers une limite L donc, d'après la question 8.(b), L est un point fixe de g. Il suffit donc de prouver que c'est un point fixe de f. Or, pour tout $n, f(f^n(x_0)) = f^{n+1}(x_0) \xrightarrow[n \to +\infty]{} L$. De plus, f étant continue, $f(f^n(x_0)) \xrightarrow[n \to +\infty]{} f(L)$ donc, avec le même raisonnement que d'habitude (unicité de la limite), L = f(L) donc L est un point fixe de f.

Si f est croissante, f et g ont un point fixe commun.

Partie III. LE CAS ACYCLIQUE

1 Cette suite est à valeurs dans [0;1] donc est bornée: on conclut avec le théorème de Bolzano-Weierstraß.

Pour tout x, la suite $(f^n(x))$ admet une sous-suite convergente.

2.(a) Découle du principe des tiroirs: il y a une infinité d'entiers et la suite prend uniquement un nombre fini de valeurs donc une infinité de ces termes sont égaux, et donc en particulier deux.

Il existe
$$p < q$$
 tels que $f^p(x_0) = f^q(x_0)$.

2.(b) D'après le lemme-clef, Fix(g) est stable par f donc $f^p(x_0)$ est un point fixe de g. Or, d'après la question précédente, $f^{q-p}(f^p(x_0)) = f^q(x_0) = f^p(x_0)$ c'est-à-dire que $f^p(x_0)$ est un point périodique de f donc un point fixe de f (par hypothèse sur f: les points périodiques sont exactement les points fixes).

$$f^p(x_0)$$
 est un point fixe commun à f et g .

3 Soit $k \in \mathbb{N}$. Par hypothèse, il existe une suite extraite de $(f^n(\alpha))$, qu'on note $(f^{n_p}(\alpha))_p$ qui converge vers α . Dès lors, par continuité de f^k :

$$f^k(f^{n_p}(\alpha)) \xrightarrow[p \to +\infty]{} f^k(\alpha)$$

On en déduit que $f^k(\alpha)$ est limite de la suite $(f^{k+n_p}(\alpha))_{p\in\mathbb{N}}$ qui est extraite de $(f^n(\alpha))$ donc que $f^k(\alpha)$ est valeur d'adhérence de cette suite : par hypothèse sur α (c'est la plus petite des valeurs d'adhérence de cette suite), on a le résultat voulu.

$$\forall k \in \mathbb{N}, f^k(\alpha) \geqslant \alpha$$

4 On suppose donc que α est un point périodique de f, si bien que c'est un point fixe de f. Or, il existe une sous-suite de $(f^n(x_0))$ qui converge vers α . D'après le lemme clef, cette suite est à valeurs dans Fix(g) donc sa suite extraite également, donc sa limite aussi d'après la question 8.(b) de la partie I, c'est-à-dire que α est un point fixe de g.

$$\alpha$$
 est un point fixe commun à f et g .

5.(a) Par hypothèse, il existe une suite extraite de $(f^n(\alpha))$ qui converge vers α , et celle-ci ne prend que des valeurs strictement plus grandes que α , donc il existe p tel que $\alpha < f^p(\alpha) \leqslant \alpha + 1/n$. Si tous les termes postérieurs à p sont supérieurs ou égaux à $f^p(\alpha)$, alors la limite de cette suite extraite sera aussi supérieurs ou égale à $f^p(\alpha)$ (l'inégalité large passe à la limite), ce qui est absurde car cette limite vaut α . On pouvait aussi dire qu'il existe une infinité de termes de la suite dans $]\alpha; f^p(\alpha)$ [(toujours car une suite extraite converge vers α) donc au moins un terme postérieur à $f^p(\alpha)$. Il existe donc un terme postérieur à $f^p(\alpha)$, que l'on note $f^{p+q}(\alpha)$, tel que $\alpha < f^{p+q}(\alpha) < f^p(\alpha)$.

C'est bon.

[5.(b)] f étant continue, f^q est aussi continue car composée de fonctions continues, donc φ est continue par somme. De plus, d'après la question précédente, $\varphi(f^p(\alpha)) = f^{p+q}(\alpha) - f^p(\alpha) < 0$ et $\varphi(\alpha) = f^q(\alpha) - \alpha > 0$ par hypothèse. D'après le TVI, il existe c_n sur cet intervalle tel que $\varphi(c_n) = 0$ c'est-à-dire $f^p(c_n) = c_n : c_n$ est donc un point périodique.

Il existe un point périodique dans $[\alpha; f^p(\alpha)]$.

5.(c) Découle du théorème d'encadrement puisque, pour tout $n, \alpha \leq c_n \leq f^p(\alpha) \leq \alpha + 1/n$.

$$c_n \xrightarrow[n \to +\infty]{} \alpha$$

6 D'après la question précédente, pour tout n, c_n est un point périodique de f donc un point fixe de f donc la limite de (c_n) aussi (toujours question 8.(b), partie I) donc α est un point fixe de f. Or, de même que dans la question 4, α est limite d'une sous-suite de $(f^n(x_0))$ donc d'une suite d'éléments de Fix(g) donc α est un point fixe de g.

 α est un point fixe commun à f et g.

Partie IV. THÉORÈME DE CANO

1.(a) Soit $\varepsilon > 0$. On cherche un $\eta > 0$ (indépendant de n) tel que :

$$\forall n \in \mathbb{N}, \forall x \in [0, 1], |x| \leqslant \eta \Rightarrow |x^n| \leqslant \varepsilon$$

Puisque $x^n \xrightarrow[n \to +\infty]{} 0$ en décroissant, le η initial (pour n=0) conviendra aussi pour les suivants. Plus précisément, prenons $\eta = \varepsilon$. Soient $n \in \mathbb{N}$ et soit $x \in [0;1]$ tel que $|x| \leqslant \eta$. Alors $|x|^n \leqslant |x| \leqslant \eta = \varepsilon$. On a donc bien la majoration voulue.

P est équicontinu en 0.

1.(b) Soit $n \in \mathbb{N}$. La fonction ln étant strictement croissante,

$$(1-\eta)^n < 1/2 \iff n \ln(1-\eta) < -\ln(2) \iff n > -\ln(2)/\ln(1-\eta)$$

(car $\ln(1-\eta) < 0$). Dès lors:

$$n_0 = \left[-\frac{\ln(2)}{\ln(1-\eta)} \right] + 1 \text{ convient.}$$

Pour montrer que P n'est pas équicontinu en 1, commençons par donner la négation de « P est équicontinu en 1 »:

$$\exists \varepsilon > 0, \forall \eta > 0, \exists n \in \mathbb{N}^*, \exists x \in [0, 1], |x - 1| \leqslant \eta$$
 et $|x^n - 1| > \varepsilon$

Or, on vient de prouver qu'il existe $\varepsilon = 1/2 > 0$ tel que, pour tout $\eta > 0$, il existe $n_0 \in \mathbb{N}$ et $x = 1 - \eta$ tel que $|x - 1| \le \eta$ et $|x^{n_0} - 1| > 1/2$: la négation est vérifiée, c'est-à-dire que

P n'est pas équicontinue en 1.

3 Par équicontinuité de P en a, en prenant $\varepsilon = (b-a)/2$, il existe $\eta > 0$ tel que:

$$\forall n \in \mathbb{N}, \forall x \in [0, 1], |x - a| \leq \eta \Rightarrow |f^n(x) - f^n(a)| \leq (b - a)/2$$

a étant un point fixe de f, c'est un point fixe de f^n pour tout n donc:

$$\forall n \in \mathbb{N}, \forall x \in [0;1], |x-a| \leq \eta \Rightarrow |f^n(x) - a| \leq (b-a)/2$$

On peut intervertir deux quantificateurs \forall donc:

$$\forall x \in [0, 1], \forall n \in \mathbb{N}, |x - a| \leq \eta \Rightarrow |f^n(x) - a| \leq (b - a)/2$$

En particulier, il existe un réel x_0 qui vérifie les hypothèses de l'énoncé.

C'est bon.

Dès lors, pour tout n, $f^n(x_0) - a \le (b-a)/2$ donc $f^n(x_0) \le a + (b-a)/2 = (a+b)/2 < b$ donc cette suite ne peut pas tendre vers b.

Cette suite ne converge pas vers b.

Attention, cela ne veut pas dire qu'elle converge vers autre chose : elle peut très bien ne pas admettre de limite!

A Soit $x \in]a; b[$. Par hypothèse faite dans la question 2, f(x) - x > 0 donc f(x) > x > a et on a supposé que f(x) < b donc $f(x) \in]a; b[$:

$$a; b$$
 [est stable par f .]

Il en découle, par une récurrence immédiate, que $f^n(x_0) \in]a;b[$ pour tout n. Or, $f^{n+1}(x_0) = f(f^n(x_0)) > f^n(x_0)$ (toujours l'hypothèse faite dans la question 2, car $f^n(x_0) \in]a;b[$). En d'autres termes :

La suite
$$(f^n(x_0))$$
 est croissante.

Elle est également à valeurs dans] a; b [donc est majorée par b donc elle converge vers une limite L. Or, si on la note (u_n) , on a $u_{n+1} = f(u_n)$ et f est continue donc (cf. cours) sa limite est un point fixe. Or, elle est à valeurs dans] a; b [et l'inégalité large passe à la limite donc L \in [a; b] donc L = a ou b puisqu'il n'y a aucun autre point fixe sur cet intervalle. La suite étant strictement croissante, L $> u_n > a$ donc L = b ce qui contredit la question 3.

Absurde: il existe
$$x \in]a; b[$$
 tel que $f(x) \ge b$.

5.(a) Découle du TVI: f(a) = a < b et il existe $x \in a$; b [tel que $f(x) \ge b$, et f est évidemment continue.

Il existe
$$z_1 \in]a; b[$$
 tel que $f(z_1) = b$.

5.(b) Idem, découle du TVI car $f(a) = a < z_1$ et $f(z_1) = b > z_1$.

Il existe
$$z_2 \in]a; z_1[$$
 tel que $f(z_2) = z_1.$

 $\boxed{\mathbf{6}}$ On a une suite strictement décroissante minorée par a donc

La suite
$$(z_k)$$
 converge vers une limite L.

7 Attention, ici, on n'a pas une relation de récurrence de la forme $z_{n+1} = f(z_n)$ mais le contraire! On ne peut donc pas appliquer le résultat du cours, mais la démonstration est analogue. Pour tout n, $f(z_{n+1}) = z_n \xrightarrow[n \to +\infty]{} L$ et $f(z_{n+1}) \xrightarrow[n \to +\infty]{} f(L)$ car f est continue donc, par unicité de la limite, f(L) = L:

L est un point fixe de
$$f$$
.

Or, l'inégalité large passant à la limite, $a \leq L$ et $L < z_1 < b$ car la suite est strictement décroissante, donc le seul point fixe possible est a.

$$L = a$$

8 Découle de l'équicontinuité de P en a en prenant $\varepsilon = (b-a)/2$ et du fait que a est un point fixe de f donc $f^n(a) = a$ pour tout n.

 $\boxed{ \mathbf{9} } (z_k)$ converge vers a donc il existe k tel que $|z_k - a| \leq \eta$ si bien que (le résultat précédent étant valable pour tout n, il est valable pour k) $|f^k(z_k) - a| \leq (b-a)/2$. Or, $f^k(z_k) = b$ donc $b-a \leq (b-a)/c$ ce qui est absurde (car b-a>0).

Ouf!