midterm1WIP

Exercise 6. Let L_1, L_2 be some subspaces in \mathbb{R}^n , and $L_2 \subseteq L_1 \subseteq \mathbb{R}^n$. Let P_{L_1}, P_{L_2} denote orthogonal projections on these subspaces. Prove the following properties:

(a) $P_{L_2} - P_{L_1}$ is an orthogonal projection,

Denote L_1 as a subset of R^n with orthonormal basis $span\{u_1, u_2, ..., u_p\}$, and L_2 with basis $span\{u_1, u_2, ..., u_{p-k}\} \subseteq span\{u_1, ..., u_p\}$. For a vector $x \in R^n$, we have an orthogonal projection onto L_1 and L_2 denoted as follows:

$$P_{L_1}(x) = \sum_{i=1}^{p} (x \cdot u_i)u_i, \ P_{L_2}(x) = \sum_{i=1}^{p-k} (x \cdot u_i)u_i$$

The difference of these projections is then:

$$P_{L_2}(x) - P_{L_1}(x) = (P_{L_2} - P_{L_1})x = \sum_{i=1}^{p-k} (x \cdot u_i)u_i - \sum_{i=1}^{p} (x \cdot u_i)u_i = (-1) \cdot \sum_{i=p-k+1}^{p} (x \cdot u_i)u_i$$

which is an orthogonal projection onto the subspace, defined as $span\{u_{p-k+1}, u_{p-k+2}, ..., u_p\} \subseteq span\{u_1, ..., u_p\}$.

(b) $||PL2x|| \le ||PL1x|| \ \forall x \in \mathbb{R}^n$

We have $||P_{L_2}x|| = ||\sum_{i=1}^{p-k} (x \cdot u_i)u_i||$ and $||P_{L_1}x|| = ||\sum_{i=1}^p (x \cdot u_i)u_i||$. For k < p, we have

$$||P_{L_1}x - P_{L_2}|| = ||\sum_{i=p-k+1}^{p} (x \cdot u_i)u_i|| \ge 0$$
,

and

$$||P_{L_2}x|| \le ||P_{L_1}|| = ||P_{L_1}x - P_{L_2}x + P_{L_2}x|| \le ||P_{L_1}x - P_{L_2}x|| ||P_{L_2}x||$$

(c) $PL2 \cdot PL1 = PL2$

We can denote $P_{L_1}(x) = \sum_{i=1}^p (x \cdot u_i) u_i = UU^{\mathsf{T}}x$, where matrix $U_{n \times p}$ consists of orthnormal vectors $[u_1, ..., u_p]$, and denote

$$P_{L_2}(x) = \sum_{i=1}^{p-k} (x \cdot u_i) u_i = V V^{\mathsf{T}} x$$

where matrix $V_{n\times(p-k)}$ consists of orthnormal vectors $[u_1,...,u_{p-k}]$. So the product $P_{L_2}P_{L_1}$ can be written

$$P_{L_2}P_{L_1} = VV^{\mathsf{T}}UU^{\mathsf{T}}$$

Since the first p-k column vectors of V and U are the same, and orthonormal, the inner product $V^{\dagger}U$ generates a $(p-k)\times p$ block matrix of the form $\begin{bmatrix} I_{p-k} & 0 \end{bmatrix}$ where 0 is a $k\times k$ matrix of zeroes. We then have

$$P_{L_2}P_{L_1} = VV^\intercal UU^\intercal = V \left[\begin{array}{cc} I_{p-k} & 0 \end{array} \right] U^\intercal = VV^\intercal = P_{L_2}$$

Section 1.1

Exercise 3. Consider the linear regression model from exercise 1. Suppose, that the target of estimation is $h^{\dagger}\theta$ for some determinate non-zero vector $h \in R^p$. Find expression for the LSE of $h^{\dagger}\theta$. Is this estimate optimal in sense of Gauss-Markov theorem, i.e. does it have the smallest variance among all linear unbiased estimators?

—Start with this —By Gauss Markov, we know that a BLUE estimator has $Var(\theta_{OLS}) = \sigma^2(XX^{\dagger})^{-1}$). However in the case of heterscedastic noise, we have $Var(\theta) = (XX^{\dagger})^{-1}XDX^{\dagger}(XX^{\dagger})^{-1}$, which must be greater than $\sigma^2(XX^{\dagger})^{-1}$). An so, in this case, our estimator is not BLUE. Study the same issue for the target $\eta = H^{\dagger}\theta$, where $H \in \mathbb{R}^{q \times p}$ is some non-zero matrix with $q \leq p$.

Section 1.3

Exercise 6. Let L1, L2 be some subspaces in \mathbb{R}^n , and L2 \subseteq L1 \subseteq \mathbb{R}^n . Let PL1, PL2 denote orthogonal projections on these subspaces. Prove the following properties:

- (a) PL2 PL1 is an orthogonal projection,
- (b) $|PL2| \le |PL1| \ \forall x \in \mathbb{R}^n$,
- (c) $PL2 \cdot PL1 = PL2$

Section 2.1

Exercise 7. (a) Using the notation from section 2.1, consider $X \sim N(\mu, I_n)$ for some $\mu \in \mathbb{R}^n$. Find E(Q(X)) and Var(Q(X))

For $Q(X) = \sum_{i} \sum_{j} a_{ij} X_i X_j = X^{\mathsf{T}} A X, X \sim N(\mu, I_n)$, we have, using the property of trace operator:

$$E(Q(X)) = tr(E(Q(X)) = E(tr(Q(X)) = E(tr(X^\intercal A X)) = E(tr(A X X^\intercal)) = tr(A E(X X^\intercal))$$

Since $E(XX^{\intercal}) = I_n + \mu \mu^{\intercal}$, we have,

$$tr(AE(XX^{\mathsf{T}})) = tr(A(I_n + \mu\mu^{\mathsf{T}})) = trA + tr(A\mu\mu^{\mathsf{T}}) = trA + \mu^{\mathsf{T}}A\mu$$

Var(Q(X)) =

(b) Generalize the results from part (a) to the case $X \sim N(\mu, \Sigma)$ for some positive-definite covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. For $X \sim N(\mu, \Sigma)$ we have,

$$E(Q(X)) = tr(AE(XX^\intercal)) = tr(A(\Sigma + \mu\mu^\intercal)) = tr(A\Sigma) + tr(A\mu\mu^\intercal) = tr(A\Sigma) + \mu^\intercal A\mu$$

Var(Q(X)) =

Section 2.2

Exercise 9. In the Gaussian linear regression model 3, consider the target of estimation $\eta = H^{\dagger}\theta^*$, where $H \in R^{q \times p}$ is some non-zero matrix with $q \leq p$. Find an analogue of the quadratic form S2 (from (4)) for the new target η^* , and prove for the new quadratic form statements similar to (e) from Theorem 2.1, and Corollary 2.1.2.

Exercise 11. Find an elliptical confidence set for the expected response E[Y] in model (3).

Exercise 12. Construct simultaneous confidence intervals (e.g., as in Corollary 2.2.1) for the expected responses $E[Y_1], ..., E[Y_n]$ in model (3).