Sr.	Question								
	Unit-III: Sampling and Hypothesis Testing								
1	Explain what is sampling process and types of sampling. Give one example of, i)Random sampling ii) systematic sampling iii) cluster sampling iv) snowball sampling v) purposive vi) quota sampling								
2	Mice with an average lifespan of 32 months will live up to 40 months when fed by a certain nutritious food. If 64 mice fed on this diet have an average lifespan of 38 months and standard deviation of 5.8 months, is there any reason to believe that average lifespan is less than 40 months at 1% l.o.s? (Given: $z = -2.33$)								
3	In a Mathematics examination, 6 students scored the following marks 52, 70, 42, 62, 36, 50. Test the hypothesis that the average score is 51 for the exam at 1% l.o.s. (Given: $t_{5,0.01} = 3.365$)								
4	The lifetime (in months) of an item for a random sample of 8 from a large consignment is, 4.2, 4.6, 3.9, 4.1, 5.2, 3.8, 3.9, 4.3. Can we accept the hypothesis at 5% l.o.s that the average life time of item is 4 months? (Given: $t_{7,0.025} = \pm 2.365$)								
5	An auditor claims that he takes on an average 10.5 days to file income tax returns. Can this claim be accepted if a random sample of 8 shows that he took 13, 19, 15, 10, 12, 11, 14, 18 days to file I.T. returns at $\alpha = 5\%$ l.o.s? (Given: $t_{7,0.05} = 1.895$)								
6	A hospital utilizes four teller windows to render fast service to the patients. On a particular day 800 patients were observed and given service at different windows, (Given: $\chi^2_{0.05} = 7.815$) Window no 1 2 3 4 No of patients 150 250 230 170 Test whether the patients are uniformly distributed over the windows at 5% level of significance.								
7	The following table of frequencies of seeds were observed in an experiment on pea breeding:								
	(Given: $x_{3,0.05}^2 = 7.815$)								
	Round and Green Wrinkled and Green Round and Yellow Wrinkled and Yellow								
	316 102 109 33								
	Theory predicts that the frequencies should be in proportion 9:3:3:1. Examine the correspondence								
8	between theory and experiment at 5% level of significance. The demand for a particular spare part in a factory was found to vary from day to day. In a sample study								
0	the following information was obtained:								
	Days: Mon. Tues. Wed. Thurs Fri. Sat.								
	No. of Parts Demanded: 24 21 17 20 23 15								
	Test the hypothesis that the number of parts demanded does not depend on the day of the week at 5% level of significance. [Given: $\chi^2_{5,0.05} = 11.07$]								
9	Perform one-way analysis of variance (ANOVA) to determine if there is a significant difference in the								
	means of 3 sets given below at 5% l.o.s: (Given: $\square_{2,9} = 4.26$)								
	A 8 5 9 6								
	B 6 5 8 5								
	C 9 6 10 7								
10	Perform one-way analysis of variance (ANOVA) to determine if there is a significant difference in the								
	means of 3 sets given below at 5% l.o.s: (Given: $F_{2,9} = 4.26$)								
	A 7 8 5 9 6								
	B 4 6 5								
	C 5 7 4 8								

11	Three types of fertilizers are used on three groups of plants for 5 weeks. We want to check if there is a										
	difference in the mean growth of each group. Using the data given below apply a one way ANOVA test										
	at 0.05 significant level	level. Given $F(0.05, 2, 15) = 3.68$									
		Fertilize	er 1	6	8	4	5		3 4	1	
		Fertilize	er 2	8	12	9	11		6 8	3	
		Fertilize	er 3 1	.3	9	11	8		7 1	2	
12	Make analysis of variance for following data, (Given: for dof $v_1 = 2$, $v_2 = 6$ at 5% los, F=5.14)										
	A 8 10 6										
			В		7	4	10				
	C 13 9 8										
	Unit-IV: Transportation and Assignment Problems										
1	Consider a problem of										
	are assumed to be fung										
	keep an unwanted car										
											Z require 9, 7, and 11
	cars respectively. The sites is shown in the tal	-	t for each	n site	e 18 10	00, 10	00, and 8	80.	The co	st to	move the cars between
	sites is shown in the tai		Destinati	on	Х	7	Y		Z	٦	
		Site (I	A	OII	46	-	350		640	1	
			В		51		420		350	1	
					48	-	620		530		
	Formulate Transportati	on as LP n	nodel to	mini				spoi		_ cost.	
2	Determine an initial ba										
	i.North West Corner method (NWCM) ii. Least cost method (LCM)										
			D_1		D_2	2	D_3		Suppl	у	
		S_1	6		4		9		200)	
		S_2	10		5		8		175	5	
		S_3	12		7	1	6		75		
		Demand	250		10	0	150				
3	Determine an initial ba								tation	probl	em by using
	i.North West Corner m	ethod (NW	, 	Leas			`	CM)			1
			D_1		D_2	2	D_3		Suppl	У	
		S_1	2		3		1		30		
		S_2	5		4		8		40		
		S_3	5		6		8		20		
		Demand	20		5()	20				
4	Determine an initial basic feasible solution to the following transportation problem by using Vogel's Approximation method (VAM).										
	ppromission memor	. () .	D_1	D) ₂	D_3	D	4	Sup	ply	
		S_1	11	1	3	17	14	4	25		
		S_2	16	1	8	14	10	0	30	00	1
		S_3	21	2	4	13	10	0	40	00	
	I –						-				-

Demand

Test the Optimality for given initial basic feasible solution of Transportation Problem using Modified Distribution (MODI) Method. Hence find the optimal solution.

	D_1	D_2	D_3	D_4	Supply
S_1	19 (5)	30	50	10 (2)	7
S_2	70	30	40 (7)	60 (2)	9
S_3	40	8 (8)	70	20 (10)	18
Demand	5	8	7	14	

[Numbers in () represents number of allocation for respective S_i/D_i]

Test the Optimality for given initial basic feasible solution of Transportation Problem using Modified Distribution (MODI) Method. Hence find the optimal solution.

	D_1	D_2	D_3	Supply
S_1	6 (10)	3 (12)	5	22
S_2	5	9	2(15)	15
S_3	4(6)	7	8 (2)	8
Demand	16	12	17	

7 Test the Optimality for given initial basic feasible solution of Transportation Problem using Modified Distribution (MODI) Method. Hence find the optimal solution.

	D_1	D_2	D_3	D_4	Supply
\mathcal{S}_1	6	3 (12)	5 (1)	4(9)	22
S_2	5	9	2(15)	7	15
S_3	5(7)	7	8(1)	6	8
Demand	7	12	17	9	

8 Test the Optimality for given initial basic feasible solution of Transportation Problem using Modified Distribution (MODI) Method. Hence find the optimal solution.

	D_1	D_2	D_3	D_4	Supply
S_1	6	5 (28)	8	5 (2)	30
S_2	5 (35)	11	9	7 (5)	40
S_3	8	9	7 (32)	13 (18)	50
Demand	35	28	32	25	

[Numbers in () represents number of allocation for respective S_i/D_i]