А.В. Веснин, студент 3 курса напр. «Электроэнергетика и электротехника», В.А. Соловьев, д.т.н., профессор, ДВГУПС, г. Хабаровск, Российская Федерация

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОВОДНЫХ И БЕСПРОВОДНЫХ СИСТЕМ «УМНОГО ДОМА»

Анотация: актуальность исследования – вызвана большим ко личеством различных решений на рынке домашней автоматизации.

Цель исследования – провести сравнительный анализ систем умного дома, выявить их преимущества и недостатки, рассмотреть применяемость систем в разных условиях. В результате исследован ия был проведен сравнительный анализ проводных и беспроводных систем «умного дома», выявлены их преимущества и недостатки.

Ключевые слова: умный дом, автоматизация, анализ, автоматизированная система управления

A.V. Vesnin,
3rd year student
ex. «Power engineering
and electrical engineering»,
V.A. Soloviev,
doctor of technical sciences, professor,
FVGUPS,
Khabarovsk, Russian Federation

COMPARATIVE ANALYSIS OF WIRED AND WIRELESS SMART HOME SYSTEMS

Abstract: the relevance of the study is caused by a large number of different

solutions in the home automation market. The purpose of the study is to conduct a comparative analysis of smart home systems, to identify their advantages and disadvantages, to consider the applicability of the systems in different conditions.

As a result of the study, a comparative analysis of wired and wireless systems of «smart home» was carried out, their advantages and disadvantages were revealed.

Keywords: smart home, automation, analysis, automated control system

1. Введение

В последние годы все более широкое использование в эксплуатации жилых помещений находят системы управления типа «умный дом», основной целью которых является, упрощение управления большим количеством бытовых приборов, повышение комфорта и безопасности проживания.

Существует множество систем связи как проводных, так и беспроводных, которые используются в технологии «умного дома». Ни одна коммуникационная система сама по себе не может удовлетворить все требования безопасной, комфортной и интеллектуальной системы умного дома.

Следовательно, важно проанализировать как проводную, так и беспроводную систему связи, выявить преимущества и недостатки каждой системы связи, чтобы найти правильную систему связи для применения в том или ином случае.

2. Система «умного дома»

Условно, система умного дома состоит из четырех основных компонентов:

- **1. Физические компоненты**, обеспечивающие получение и первичную обработку информации, а также непосредственное управление исполнительным электрооборудованием,
- **2. Контроллеры, хабы, программируемые реле**, обеспечивающие локальное управление подсистемами, дальнейшую обработку и передачу информации системам управления «умным домом»,
- **3.** Системы управления (программное обеспечение/экосистемы умного дома),
- **4.** Система связи (проводная/беспроводная сеть/комбинированные сети), которая соединяет физические компоненты и систему управления «умным домом».

Система управления может получить доступ к «умному дому» через внешнюю сеть, подключенную к домашней сети, такую как мобильная сеть или Интернет. В системе «умного дома» физические компоненты анализируют окружающую среду и передают информацию контроллерам, хабам «умного дома», они в свою очередь передают полученную информацию в систему управления «умным домом» через домашние подсети и сети. На основе полученной информации от различных датчиков, система управления принимает решение и передает управляющие команды исполнительным механизмам через домашнюю сеть.

Например, датчик газа обнаруживает утечку газа в умном доме и передает это сообщение в систему управления домом через беспроводную сеть Z-Wave. Система управления получает сигнал и подает команду электроприводу на закрытие газового клапана.

2.1. Физические компоненты

Физические компоненты являются неотъемлемой частью системы умного дома. Они измеряют и собирают информацию из окружающей среды и передают ее системе управления умным домом через сеть(шину). К физическим компонентам относятся различные датчики, оборудование сигнализации, исполнительные механизмы (реле, контакторы и т.п.). В зависимости от системы умного дома, могут использоваться разные устройства. Некоторые устройства могут работать только в одной системе и быть не совместимыми с другой. В таблице 2.1.1 приведено сравнение различных датчиков по стоимости, типу используемой связи и сложности монтажа [1, 2, 3]. Сравнение производится для «бюджетных» систем.

Таблица 1 – Сравнительные характеристики датчиков дыма, используемых в

разных системах умного дома

разных системах ум	пого дома						
Наименование	Стоимость	Тип связи	Примечание				
Датчики задымления							
Датчик дыма Xiaomi Mijia Honeywell Smoke Detector	~ 2700 рублей	беспроводная, протокол: Wi-Fi 2.4 GHz, ZigBee	Легкое подключение				
Датчик дыма FIBARO Smoke Sensor	~ 4000 рублей	Беспроводная, протокол: Z-Wave	Легкое подключение				
Извещатель пожарный дымовой оптико- электронный Рубеж ИП 212- 141	~ 300 рублей	проводной	Необходимы навыки настройки контроллеров				

Преимущества беспроводных датчиков: легкость монтажа и настройки, нет необходимости штробления стен, прокладки кабельных линий, не используют внешние источники питания. **Недостатки:** высокая стоимость – дороже проводных в 5-9 раз, низкая скорость передачи данных, небольшой радиус действия, необходимость менять батарейки. Рекомендуется

использовать на небольших объектах, где возможна стабильная связь и небольшие расстояния. Оптимальны для использования в квартире с уже сделанным ремонтов.

Преимущества проводных датчиков: низкая стоимость, по сравнению с беспроводными, надежность, высокая скорость отклика, линии. Недостатки: часто протяженность необходимо дополнительное питание, необходимы навыки программирования контроллеров, необходима прокладка кабельных линий, высокая стоимость монтажа. Рекомендуется использовать на крупных и сложных объектах, где монтаж системы на беспроводных технологиях занимает много времени, либо вообще невозможен.

2.2. Контроллеры, хабы.

Являются «сердцем» любой системы Получают умного дома. информацию различных датчиков системам И передают управления(серверу) для дальнейшей обработки, либо самостоятельно, на информации принимают решения об полученной исполнительными устройствами. Некоторые контроллеры работают совместно с сервером умного дома, некоторые имеют встроенный сервер и операционную систему, но также могут работать и совместно.

В таблице 2 приведено сравнение различных контроллеров и хабов для систем «умного дома» [1, 3, 4, 5]. Сравнение производится для «бюджетных» систем.

Талица 2 Характеристики контроллеров

Наименование	Стоимость	Тип связи	Примечание
Шлюз Xiaomi Smart Home Gateway 2	~ 4300 рублей	беспроводная, протокол: Wi-Fi 2.4 GHz, ZigBee	Легкое подключение и управление, использует свой облачный сервер
Шлюз Fibaro Home Center 2	~ 43000 рублей	Беспроводная, протокол: Z-Wave	Легкое подключение и управление, использует свой облачный сервер
Контроллер Wiren Board 6	~ контроллер 14900 рублей + 2(дополнительных модуля ~ 3000руб) = 20900 рублей	Проводная и беспроводная: Ethernet, Wi-Fi 802.11n, Bluetooth 4.0, RS-485, CAN, 1-Wire	Имеет встроенный Linux сервер, Необходимы навыки настройки

			контроллеров, необходимы дополнительные модули ввода-вывода
Контроллер МедаD-2561	~ контроллер 3850 рублей + дополнительный модуль ~ 3700руб = 7550 рублей	Проводная: Ethernet, I2C, 1- wire, Single-wire, RS-485	Необходимы навыки настройки контроллеров, необходимы дополнительные модули вводавывода, не имеет встроенного сервера

Беспроводные хабы(шлюзы) как правило используются в готовых системах «умного дома», таких как Хіаоті, Fibaro и имеют следующие преимущества: не требуются прокладка кабельных линий, легкость настройки, имеют свою экосистему и приложения для управления умным домом, нет необходимости дополнительно покупать и настраивать сервер «умного дома», так как используется облачный от производителя, но это также является и недостатком, так как данные передаются на сторонний сервер. Недостатки: невозможно организовать сложные сценарии автоматизации — возможны только те, что заявлены производителем, ограниченный радиус действия сети (хаб-устройство).

Программируемые логические контроллеры используются в сложных системах автоматизации и позволяют гибко настраивать сценарии управления, имеют большую протяженность кабельных линий, высокую надежность систем связи, возможность интеграции с разными экосистемами «умного дома», не передают информацию на сторонние сервера, как следствие повышенная безопасность. Недостатки: обязательно наличие кабельных линий, сложность программирования и интеграции с другими системами, очень часто необходимо наличие дополнительного сервера «умного дома» для реализации сложных сценариев управления и возможность управлять системой через Интернет – удаленно.

2.3. Система управления

К системам управления относится различное программное обеспечение, используемое в составе «умного дома». Экосистемы, веб-интерфейсы, мобильные приложения и системы архивирования информации, различные скрипты и базы данных. Готовые системы «умного дома» такие как Хіаоті и

Fibaro используют свои мобильные приложения и экосистемы для управления, работают через свои облачные сервера и службы [1, 3].

При использовании программируемых логических контроллеров, устанавливать и настраивать программное обеспечение, сервера, системы управления и мобильные приложения необходимо самостоятельно, что требует определенных навыков и затрат на покупку дополнительного оборудования и оплату работы специалистов.

2.3. Система связи

Связь также является важным аспектом технологии «умного дома». Система связи используется для обмена информацией между физическими компонентами и контроллером (хабом) «умного дома», а также между устройством и пользователем и может происходить как в проводной, так и в беспроводной системе связи.

Системы проводной связи предпочтительны из-за высокой пропускной способности и устойчивости. Популярными проводными технологиями связи, используемыми в системах «умного дома» являются: Ethernet, протокол Modbus, протокол 1-Wire, протокол X10, EIB/KNX [6, 7]. Однако это не дешево, а процесс установки не простой и быстрый.

Широко распространенными беспроводными технологиями являются Bluetooth (Low Energy), WiFi, Z-Wave, ZigBee [6, 7].

Сравнение вышеупомянутых технологий [8, 9, 10, 11, 12, 13] организации сети показано в таблице 3.

Таблица 3 – Сравнительные характеристики сетевых технологий

Техно- логия	Скорость	Стандарт / интер- фейсы	Преимущества	Недостатки	Примеча- ние
Ethernet	скорости передачи данных от 10 Мбит/с до 100 Гбит/с	IEEE 802.3	Высокая произво- дитель- ность (скорост ь), надежность — пакеты не теряются, практически неограниченная расширя- емость сети, возможность	При большом количестве устройств дорогая в создании	Основное назначение – организация компьютерных сетей

			обслуживания сегментов сети с разными топологиями, защищенность сети		
Modbus	Скорость до 1 Мбит/с	RS-485, RS-422, RS-232 и сети TCP/IP (Modbus TCP)	массовость, большая длинна кабельной линии — до 1200 метров, простота диагностики и отладки, высокая надёжность и достоверность при передаче данных	Архитектура ведущий — ведомый (master-slave), ведомое устройство не может обнаружить потерю связи с мастером, нет шифрования.	Применя- ется в про- мышленно- сти и в си- стемах до- машней ав- томатиза- ции
1-Wire	от 15,4 Кбит/с, до 125 Кбит/с	свои	простая и понятная архитектура сети (использование топологии «общая шина»), изменяемость конфигурации любой сети 1- Wire в процессе её работы, низкие требования к кабельным ли-	Архитектура ведущий — ведомый (master-slave), низкая скорость передачи данных, чувствителен к помехам	Применяется в системах: СКУД, измерениях температуры, освещения. Используется для передачи простых данных

			ниям, длина линии до 300м, низкая стоимость и простота компонентов 1-wire		
X10	Около 3/4 секунды занимает передача адреса устройств а и команды	СВОИ	поддерживает как проводной, так и беспроводной способ передачи управляющих сигналов(команд)	медленная скорость передачи сигнала, в конкретный момент времени, в сети может передаваться только одна команда, высокая чувствительность к помехам	Применя- ется для связи раз- личных устройств, по силовым линиям (бытовой сети элек- тропитания
EIB/KN X	 – витая пара – 9600 бит/с – силовая линия 1200 бит/с, первоначальн о только поверх 230В, 50Гц – ІР-сеть (ЕІВ.net) – например, 	исполь- зует метод передачи данных (CSMA/C A) с учетом приори- тетов	Высокая надежность, простая модернизация и перепрограмм ирование, большая протяженность кабельных линий – 1000 м; максимальное расстояние от устройства до блока питания – 350 м; мак-	Высокая сто- имость по сравнению с другими тех- нологиями	Использу- ется на объектах крупного масштаба, в премиум системах «умного дома»

	Еthernet - радиоканал – для обмена используется частотная полоса		симальное расстояние между двумя устройствами – 700 м; минимальное напряжение на устройствах – 21 В.), устройства обладают		
	868,0 – 870,0 МГц		энергонезави- симой памя- тью.		
Bluetoot h Low Energy	1-2 Мбит/с	все уровни модели OSI	низкое энер- гопотребление , спящий ре- жим работы, высокая ско- рость	Малый радиус действия (максимум до 10 м в помещениях), влияние помех в диапазоне 2,4 GHz	Вluetooth Low Energy использу- ется для приложени й, которым не нужно обмени- ваться большими объемами данных
Wi-Fi	до 150 Мбит/с	IEEE 802.11	широко распространен в компьютерах и мобильных устройствах, обеспечивает высокую скорость передачи данных	высокое энер- гопотреблени е, топология "звезда" не гарантирует отказоустой- чивость сети, проблемы совместимо- сти разных устройств (прикладной	Применя- ется в ум- ных лам- почках и других устройства х умного дома

			работает в диапазоне до	уровень OSI не стандарти- зирован), сложный процесс до- бавления в сеть некото- рых устройств, проблемы с безопасно- стью Передача данных в	
Z-Wave	скорость до 100 кбит/с	все уровни модели OSI	1ГГц – не имеет помех от Wi-Fi, Zigbee или других беспроводных технологий 2,4 ГГц, работающих в аналогичном диапазоне. Стандартизация протокола является обязательной и покрывает все уровни OSI моделей, поэтому все сертифицированные Z-Wave продукты могут работать с любыми про-	разных странах осуществляется на разных частотах, поэтому невозможно использования устройства Z-Wave, лицензированные в разных странах, в одной сети. Если в домашней автоматизации планируется более 30 устройств, Z-Wave становится более дорогим рещением, чем	Используются маломощные и миниатюрные радиочастотные модули, которые встраиваются в приборы освещения, отопления, СКУД, развлекательные системы и бытовую технику

			дуктами Z- Wave от раз- ных произво- дителей, мас- штабируется и расширяется в любой момент новыми устройствами	кабельные системы Использует	
ZigBee	Предусма тривает передачу ин-формации в радиусе от 5 до 75 метров в помещении и до 200 метров на открытой местности, с максимальной скоростью 250 кбит/с	IEEE 802.15.4	длительный срок службы устройств от одной батареи, поддержку большого количества подключений, высокая отказоустойчи вость и масштабируемост ь благодаря ячеистой топологии сети (Mesh сети), низкое энергопотребление	диапазон 2,4 ГГц, где сильны по- мехи от Wi- Fi, Bluetooth, микроволно- вых печей и т.п, крайне плохая совме- стимость между устройствами ZigBee раз- личных про- изводителей из-за слишком мягких усло- вий сертифи- кации, выдвигаемых кон- сорциумом ZigBee Alliance, про- блемы с без- опасностью	применяетс я в самых разно- образных сетевых устрой- ствах от до- машних си- стем, работа- ющих на ак- кумулятор- ных батареях, до индустри- альных и коммерче- ских систем автоматиза- ции зданий.

		из-за несо-	
		блюдения	
		производите-	
		лями требо-	
		ваний сер-	
		тификации	

Из таблицы видно, что скорость передачи данных по проводной связи значительно выше, чем у беспроводной связи. Несмотря на то, что скорость передачи данных высокая, затраты на реализацию проводной системы относительно выше, чем беспроводной, а также необходимо дополнительное оборудование, прокладка кабельных линий, программирование логических контроллеров.

Напротив, на беспроводной технологии систему «умного дома» можно построить с меньшими затратами и меньшим количеством оборудования. Но, выбор оборудования в каждом конкретном случае следует рассматривать индивидуально, так как не все сценарии алгоритмизации можно построить на беспроводных системах. В особых случаях следует использовать и проводные и беспроводные технологии для построения гибкой системы.

Заключение.

Технологии умного дома, помогают сделать жизнь людей проще, комфортнее и безопаснее, а также повысить эффективность в повседневной деятельности.

В работе проанализированы различные технологии проводной и беспроводной связи, а также контроллеры и хабы, которые широко используются в системе «умного дома».

Беспроводная связь гибкая, требует незначительного количества инструментов, относительно дешевая и простая в установке, но ключевой проблемой для системы беспроводной связи в технологии умного дома является низкая скорость передачи данных, возможные помехи для некоторых систем.

Напротив, проводная связь обеспечивает лучшую производительность за счет обеспечения более высокой скорости передачи данных и бесперебойной связи, но потребители должны платить значительную сумму за услуги монтажа и пуско-наладки системы «умного дома».

Оптимальным решением является использование комбинированных систем связи для обеспечения наилучшей производительность с точки зрения скорости передачи данных и зоны покрытия.

Список использованных источников и литературы:

[1] Fibaro [Электронный ресурс] – URL: http://www.fiaro.com/

- [2] Компания Рубеж [Электронный ресурс] URL: https://td.rubezh.ru
- [3] Умный дом Хіаоті [Электронный ресурс] URL: https://xiaomi-smarthome.ru/
- [4] Компания ООО «АБ-ЛОГ» [Электронный ресурс] URL: https://ablog.ru/
- [5] Компания Wiren Board [Электронный ресурс] URL: https://wirenboard.com/
 - [6] Портал Хабр [Электронный ресурс] URL: https://habr.com/
 - [7] Проект Sprut.AI [Электронный ресурс] URL: https://sprut.ai/
 - [8] Компания X10 [Электронный ресурс] URL: https://www.x10.com/
 - [9] Сайт Zigbee [Электронный ресурс] https://zigbeealliance.org/
 - [10] Сайт Modbus [Электронный ресурс] https://modbus.org/
 - [11] Сайт KNX [Электронный ресурс] https://www.knx.org/
 - [12] Сайт Z-Wave [Электронный ресурс] https://www.z-wave.com/
- [13] Maxim Integrated [Электронный ресурс] URL: https://www.maximintegrated.com/en.html

© А.В. Веснин, В.А. Соловьев, 2021