Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně

FYZIKÁLNÍ PRAKTIKUM

Zpracoval: Jakub Jedlička Naměřeno: 11.11.2022

Obor: Bi F Ročník: 2. Semestr: 3. Testováno:

Úloha č. 10: Polarizace světla

T = 22,2 °C p = 1001 hPa ϕ = 50 %

1. Úvod

V této úloze se budeme zabývat měřením indexu lomu pro různé koncentrace roztoků sacharózy a měřením optické stáčivosti těchto roztoků.

V druhé části úlohy se změříme polarizační schopnost reálného polaroidu využitím Masulova zákona.

2. Teorie

a. Optická aktivita látek

Látky jsou opticky aktivní, pokud mají schopnost stáčet rovinu lineární polarizace. Tuto schopnost mají některé pevné látky, tak i látky kapalné, které v molekule obsahují třeba asymetricky umístěný uhlík, což je v našem případě vodný roztok sacharózy. Podle směru stáčivosti kmitové roviny se opticky aktivní látky dělí na pravotočivé a levotočivé vzhledem, který hledí proti směru šíření světla. Vztah pro úhel stočení kmitové roviny po průchodu aktivní látkou je popsán touto rovnicí:

$$\alpha = [\alpha]d$$

Kde $[\alpha]$ je specifická stáčivost zkoumané látky a d je tloušťka této látky.

Veličina $[\alpha]$ je závislá na teplotě a vlnové délce světla. Pokud jde o roztok, pak se tento vztah změní na:

$$\alpha = [\alpha]. c. d$$

Kde c označuje koncentraci opticky aktivní látky. Specifickou stáčivost lze pak stanovit polarimetrem pomocí tohoto vztahu:

$$[\alpha] = \frac{100.\,\alpha}{d.\,q}$$

Kde q je počet gramů látky ve 100 ml roztoku.

b. Malusův zákon

Na obrázku 1. označuje A analyzátor a P polarizátor. I_0 je pak intenzita přirozeného světla, které dopadá na polarizátor. I_0 je intenzita světla, které prošlo polarizátorem. Dále pak I je intenzita svazku, který prošel analyzátorem A a α je úhel mezi kmitovými rovinami vektoru \vec{E} před a po průchodu analyzátorem. Pokud označíme amplitudu vektoru \vec{E} před průchodem jako a_0 a po průchodu jako a, tak bude platit:

$$a = a_0 . cos \alpha$$
 4)

Intenzita světla je úměrná délce mocnině amplitudy, proto je intenzita, které prošlo analyzátorem dána vztahem:

$$I = I_0 . \cos^2 \alpha$$
 5)

Což je matematický zápis Malusova zákona.

3. Postup

Prvně jsem si pomocí vah odměřil sacharózu pro přípravu 5%, 10% a 15% roztoků. Dále pro destilovanou vodu používám označení 0% roztok sacharózy. Pipetou naberu 0% roztok sacharózy a nanesu jej na na spodní hranol refraktometru. Aby voda nevytekla, tak rychlým a plynulým pohybem přiklopím hranoly refraktometru k sobě a zaaretuji šroubem. Poté v refraktometru najdu rozhraní světla a tmy a doostřím pohybem zrcátka. Toto zaostřené rozhraní poté umístím pomocí šroubu doprostřed nitkového kříže a odečtu hodnoty indexu lomu. Takto postupuji u každého roztoku sacharózy třikrát a mezi jednotlivými měřeními refraktometr čistím od minulého měření.

Pro měření speciální stáčivosti roztoku sacharózy prvně nastavím referenční hodnotu a to tak, že nastavím polostín a odečtu hodnotu na stupnici. Dále do polarimetru vkládám jednotlivé roztoky v kyvetách, nastavuji pro ně jednotlivé hodnoty polostínů a odečítám hodnoty stáčivosti. Toto dělám pro každý roztok pětkrát.

Pro měření polarizace světla si vyberu jeden filtr a ten umístím před zdroj. Jeden polarizátor nechám v pevné poloze a druhým polarizátorem otáčím o 10° a na ampérmetru sleduji a zapisuji měnící se hodnoty proudu. Toto opakuji než otočným polarizátorem udělám celý cyklus.

4. Zpracování měření

a) Měření indexu lomu a koncentrace roztoků sacharózy dvouhranolovým refraktometrem

namíchaná	naměřená		
koncentrace [%]	koncentrace [%]	index lomu n	
0	0,0	1,3322	
5	4,6	1,3398	
10	9	1,3462	
15	14,2	1,3542	

Tabulka 1. namíchané a naměřené hodnoty

Graf 1. závislost indexu lomu na koncentraci roztoku

Pomocí QtiPlotu jsem nafitoval lineární funkci a parametry fitu vyšly:

Linear Regression of dataset: Table1_2, using function: A*x+B

Sort: No

Weighting Method: No weighting

From x = 0,000000000000000e+00 to x = 1,42000000000000e+01

Parameter	Value	Error
B (y-intercept)	1,3323950266751e+00	2,2546196630851e-04
A (slope)	1,5402839316394e-03	2,5870772753051e-05

Errors were scaled with sqrt(Chi^2/doF) = 2,7206165160360e-04

Statistics	Table1_2
N (data points)	4
Degrees of Freedom (doF)	2
Chi^2/doF	7,4017542273276e-08
RSS (Residual Sum of Squares)	1,4803508454655e-07
R	9,9971801013316e-01
R^2	9,9943609978460e-01
Adjusted R^2	9,9915414967690e-01
RMSE (Root Mean Squared Error)	2,7206165160360e-04

b) Měření specifické stáčivosti roztoků sacharózy

	α[°]				
i	0,00 %	4,60 %	9,00 %	14,20 %	
1	-0,1	3,35	6,5	9,95	
2	0	3,4	6,55	10	
3	0	3,35	6,6	10,5	
4	-0,1	3,3	6,5	10	
5	0	3,3	6,55	10	

Tabulka 2. naměřené hodnoty úhlů na polarimetru

 $\alpha_0 = -0.04(5)$

 $\alpha_1 = 3,38(4)$

 $\alpha_2 = 6,54(4)$

 $\alpha_3 = 10,09(0,2)$

Délka kyvety byl d = 10 cm. Při výpočtu stáčivosti bylo potřeba odečíst hodnotu úhlu α_0 pro nulovou hodnotu od výsledků měřených úhlů pro různé roztoky sacharózy.

[α] [°cm³g ⁻¹ dm ⁻¹]				
4,6%	9,0%	14,2%		
71,96	71,78	69,79		
73,04	72,33	70,14		
71,96	72,89	73,66		
70,87	71,78	70,14		
70,87	72,33	70,14		

Tabulka 3. specifická stáčivost

$$\begin{split} & [\alpha_1] = 71,\!74(91) \text{ °cm}^3\text{g}^{\text{-}1}\text{dm}^{\text{-}1} \\ & [\alpha_2] = 72,\!22(46) \text{ °cm}^3\text{g}^{\text{-}1}\text{dm}^{\text{-}1} \\ & [\alpha_3] = 70,\!77(1,\!62) \text{ °cm}^3\text{g}^{\text{-}1}\text{dm}^{\text{-}1} \end{split}$$

c) Malusův zákon

α [°]	Ι [μΑ]	α [°]	Ι [μΑ]	α [°]	Ι [μΑ]
0	1,25	120	0,42	240	0,42
10	1,24	130	0,6	250	0,3
20	1,15	140	0,78	260	0,2
30	1,02	150	0,96	270	0,16
40	0,83	160	1,11	280	0,19
50	0,64	170	1,22	290	0,27
60	0,45	180	1,26	300	0,42
70	0,3	190	1,23	310	0,58
80	0,2	200	1,15	320	0,77
90	0,15	210	1,02	330	0,95
100	0,19	220	0,84	340	1,09
110	0,28	230	0,62	350	1,2

Tabulka 4. hodnoty fotoproudu pro různé úhly otáčení

Tyto hodnoty zapíšeme do grafu a proložím fitem $I = A \cdot (\cos (B \cdot \alpha + C)^2 + D)$, protože takový tvar očekáváme z Mulosova zákona a vztahu 5.

Graf 2. závislost fotoproudu na úhlu otočení polarizátoru

Nelineární Umístění záznamu s údaji: Tabulka1_2, za použití funkce: a*(cos(b*x+c))^2+d Obvyklé chyby Y: Neznámý

Simplexní Nelder-Mead Algoritmus s povolenou odchylkou = 0,0001

Od x = 0 do x = 350

a = -1,09977752271353 +/- 5,82734166867433e-05

b = 9,44221772356175 + -2,81865799556311e-07

c = -4,733015179041 + -5,74204806987852e-05

d = 1,25750776716063 + / -3,76028012734468e - 05

Chi^2 = 0,00391455908491683

 $R^2 = 0,999280771840802$

Iterace (opakování) = 317

Stav = success

$$I_{max} = 1,26(1) mA$$

 $I_{min} = 0,15(1) mA$

Stupeň polarizace V spočítám vztahem a nejistotu ze zákona šíření nejistot:

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

6)

V = 0.787(13)

5. Závěr

a) Měření indexu lomu a koncentrace roztoků sacharózy dvouhranolovým refraktometrem V této části úlohy jsem měřil koncentraci roztoků, které jsem si připravil navážkou sacharózy. Pokusil jsem se připravit 5%, 10% a 15% roztok sacharózy, ale ve skutečnosti jsem připravil roztoky 4,6%, 9% a 14,2%. Toto je pravděpodobně dáno málo citlivým vahám a chybám při ředění sacharózy. Těmto roztokům jsou i přiřazené i indexy lomu, po řadě: 1,3398; 1,3462; 1,3542, společně i s indexem vody (v tabulce uvedeném jako 0% roztok sacharózy) a má hodnotu 1,3322. Dále jsem aproximoval závislost indexu lomu na koncentraci jako lineární vztah.

b) Měření specifické stáčivosti roztoků sacharózy

Z mého měření jsem pro sacharózu dostal 3 hodnoty její specifické stáčivosti, jejichž hodnoty jsou $[\alpha_1] = 71,74(91)$ °cm³g-¹dm-¹, $[\alpha_2] = 72,22(46)$ °cm³g-¹dm-¹, $[\alpha_3] = 70,77(1,62)$ °cm³g-¹dm-¹. Tabelovaná hodnota této veličin je, ale 66,53 °cm³g-¹dm-¹, toto lze vysvětli chybami při nastavování polostínu při práci s polarimetrem. Z relativně malých nejistot usuzuji, že jsem dělal velkou systematickou chybu a malou chybu náhodnou.

c) Malusův zákon

Stupeň polarizace mého polarizátoru vyšel V = 0,787(13). Pokud bych chtěl měření zpřesnit, tak bych musel při otáčení polarizátorem dělat menší kroky, například po 2° a měření provádět v absolutní tmě, aby detektor světla nebyl zkreslován okolím.