Random Variables: Expectations and Variances

Charlie Gibbons Political Science 236

September 22, 2008

Outline

- 1 Expectations
 - Of Random Variables
 - Of Functions of Random Variables
 - Properties
 - Conditional Expectations

- 2 Dispersion
 - Variance
 - Conditional Variance
 - Covariance and Correlation

Expectations of Random Variables

The expectation, $\mathbb{E}(X) \equiv \mu$ of a random variable X is simply the weighted average of the possible realizations, weighted by their probability.

Expectations of Random Variables

The expectation, $\mathbb{E}(X) \equiv \mu$ of a random variable X is simply the weighted average of the possible realizations, weighted by their probability.

For discrete random variables, this can be written as

$$\mathbb{E}(X) = \sum_{x \in X} \Pr(X = x) x = \sum_{x \in X} f(x) x.$$

Expectations of Random Variables

The expectation, $\mathbb{E}(X) \equiv \mu$ of a random variable X is simply the weighted average of the possible realizations, weighted by their probability.

For discrete random variables, this can be written as

$$\mathbb{E}(X) = \sum_{x \in X} \Pr(X = x) x = \sum_{x \in X} f(x) x.$$

For continuous random variables:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{-\infty}^{\infty} x \, dF$$

Expectations of Functions of Random Variables

The definition of expectation can be generalized for functions of random variables, g(x).

Expectations of Functions of Random Variables

The definition of expectation can be generalized for functions of random variables, g(x).

We have the equations

$$\begin{split} \mathbb{E}[g(x)] &= \sum_{x \in X} f(x)g(x) \\ &= \int_{-\infty}^{\infty} g(x) \, dF \end{split}$$

for discrete and continuous random variables respectively.

Expectations are $linear\ operators,\ i.e.,$

$$\mathbb{E}(a\cdot g(X)+b\cdot h(X)+c)=a\cdot \mathbb{E}[g(X)]+b\cdot \mathbb{E}[h(X)]+c.$$

Expectations are linear operators, i.e.,

$$\mathbb{E}(a \cdot g(X) + b \cdot h(X) + c) = a \cdot \mathbb{E}[g(X)] + b \cdot \mathbb{E}[h(X)] + c.$$

Note that, in general, $\mathbb{E}[g(x)] \neq g[\mathbb{E}(X)]$.

Jensen's inequality states that, for a convex function g(x), $\mathbb{E}[g(x)] \geq g[\mathbb{E}(X)]$. For concave functions, the inequality is reversed.

Expectations preserve monotonicity; for $g(x) \ge h(x) \ \forall x \in X$, $\mathbb{E}[g(X)] \ge \mathbb{E}[h(X)]$.

As a special case, let h(x) = 0. If $g(x) \ge 0$, then $\mathbb{E}[g(x)] \ge 0$.

Expectations preserve monotonicity; for $g(x) \ge h(x) \ \forall x \in X$, $\mathbb{E}[g(X)] \ge \mathbb{E}[h(X)]$.

As a special case, let h(x) = 0. If $g(x) \ge 0$, then $\mathbb{E}[g(x)] \ge 0$.

Expectations also preserve equality; for $g(x) = h(x) \ \forall x \in X$, $\mathbb{E}[g(X)] = \mathbb{E}[h(X)]$.

The expectation of a random variable Y conditional on or given X is defined analogously to the preceding formulations, but uses the conditional distribution $f_{Y|X}(y|X=x)$, rather than the unconditional $f_Y(y)$.

Conditional distributions are about changing the population that you are considering.

Conditional distributions are about changing the population that you are considering.

For discrete random variables:

$$\mathbb{E}(Y|X=x) = \sum_{y \in Y} \Pr(Y=y|X=x)y = \sum_{y \in Y} f_{Y|X}(y)y.$$

Conditional distributions are about changing the population that you are considering.

For discrete random variables:

$$\mathbb{E}(Y|X=x) = \sum_{y \in Y} \Pr(Y=y|X=x)y = \sum_{y \in Y} f_{Y|X}(y)y.$$

For continuous random variables:

$$\mathbb{E}(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|X=x) \, dy = \int_{-\infty}^{\infty} y \, dF_{Y|X}(y|X=X)$$

Recall from the previous set of slides that, for independent random variables X and Y,

$$f_{Y|X}(y|X = x) = f_Y(y)$$
 and $f_{X|Y}(x|Y = y) = f_X(x)$

Recall from the previous set of slides that, for independent random variables X and Y,

$$f_{Y|X}(y|X = x) = f_Y(y)$$
 and $f_{X|Y}(x|Y = y) = f_X(x)$

Hence,

$$\mathbb{E}(Y|X) = \mathbb{E}(Y)$$
 and $\mathbb{E}(X|Y) = \mathbb{E}(X)$

This will be a heavily-used result later in the course.

Let's pause and consider what is random here.

Let's pause and consider what is random here.

First, there is one conditional distribution of Y given X = x, but a *family* of distributions of Y given X, since X takes many values and each value imparts its own conditional distribution for Y.

Let's pause and consider what is random here.

First, there is one conditional distribution of Y given X = x, but a *family* of distributions of Y given X, since X takes many values and each value imparts its own conditional distribution for Y.

Y|X=x derives its randomness solely from the fact that Y is random—X is fixed at x here.

Let's pause and consider what is random here.

First, there is one conditional distribution of Y given X = x, but a *family* of distributions of Y given X, since X takes many values and each value imparts its own conditional distribution for Y.

Y|X=x derives its randomness solely from the fact that Y is random—X is fixed at x here.

 $\mathbb{E}(Y|X=x)$ is not random, since X is fixed and we are integrating over all possible values of Y.

Let's pause and consider what is random here.

First, there is one conditional distribution of Y given X = x, but a *family* of distributions of Y given X, since X takes many values and each value imparts its own conditional distribution for Y.

Y|X=x derives its randomness solely from the fact that Y is random—X is fixed at x here.

 $\mathbb{E}(Y|X=x)$ is not random, since X is fixed and we are integrating over all possible values of Y.

 $\mathbb{E}(Y|X)$ is random, since X is no longer fixed (*i.e.*, it is random), though Y is integrated over.

The unconditional expected value of a function of X and Y, g(x,y) can be written as:

$$\begin{split} \mathbb{E}[g(X,Y)] &= \sum_{x \in X} \sum_{y \in Y} g(x,y) f_{X,Y}(x,y) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, dy \, dx \end{split}$$

The following holds for the conditional expectation of Y given X:

$$\mathbb{E}[g(X)h(Y)|X] = g(X)\mathbb{E}[h(Y)|X]$$

Question: Why does this hold when X is a random variable?

The law of iterated expectations states that

$$\mathbb{E}_Y(Y) = \mathbb{E}_X[\mathbb{E}(Y|X)],$$

which can be shown by

$$\mathbb{E}_{Y}(Y) = \int \int y f_{X,Y}(x,y) \, dx \, dy$$

$$= \int \int y f_{Y|X}(y|x) f_{X}(x) \, dx \, dy$$

$$= \int \left[y f_{Y|X}(y|x) \, dy \right] f_{X}(x) \, dx$$

$$= \int \mathbb{E}(Y|X) f_{X}(x) \, dx$$

$$= \mathbb{E}_{X}[\mathbb{E}(Y|X)]$$

Note that the LIE only holds when the necessary marginal moments exist.

The *variance* of a random variable is a measure of its dispersion around its mean. It is defined as the second central moment of X:

$$Var(X) = \mathbb{E}\left[(X - \mu)^2\right]$$

The *variance* of a random variable is a measure of its dispersion around its mean. It is defined as the second central moment of X:

$$Var(X) = \mathbb{E}\left[(X - \mu)^2\right]$$

Multiplying this out yields:

$$= \mathbb{E} (X^2 - 2\mu X + \mu^2)$$

$$= \mathbb{E} (X^2) - 2\mu \mathbb{E}(x) + \mu^2$$

$$= \mathbb{E} (X^2) - [\mathbb{E}(X)]^2$$

The *variance* of a random variable is a measure of its dispersion around its mean. It is defined as the second central moment of X:

$$Var(X) = \mathbb{E}\left[(X - \mu)^2\right]$$

Multiplying this out yields:

$$= \mathbb{E} (X^2 - 2\mu X + \mu^2)$$

$$= \mathbb{E} (X^2) - 2\mu \mathbb{E}(x) + \mu^2$$

$$= \mathbb{E} (X^2) - [\mathbb{E}(X)]^2$$

The standard deviation, σ , of a random variable is the square root of its variance; i.e., $\sigma = \sqrt{\operatorname{Var}(X)}$.

The *variance* of a random variable is a measure of its dispersion around its mean. It is defined as the second central moment of X:

$$Var(X) = \mathbb{E}\left[(X - \mu)^2\right]$$

Multiplying this out yields:

$$= \mathbb{E} (X^2 - 2\mu X + \mu^2)$$

$$= \mathbb{E} (X^2) - 2\mu \mathbb{E}(x) + \mu^2$$

$$= \mathbb{E} (X^2) - [\mathbb{E}(X)]^2$$

The standard deviation, σ , of a random variable is the square root of its variance; i.e., $\sigma = \sqrt{\operatorname{Var}(X)}$.

See that $Var(aX + b) = a^2 Var(X)$.

The conditional variance of Y given X is

$$\mathbb{E}\left[\left.\left(Y - \mathbb{E}(Y|X)\right)^2\right|X\right] = \mathbb{E}\left(\left.Y^2\right|X\right) - \left[\mathbb{E}(Y|X)\right]^2$$

The conditional variance of Y given X is

$$\mathbb{E}\left[\left.\left(Y - \mathbb{E}(Y|X)\right)^2\right|X\right] = \mathbb{E}\left(\left.Y^2\right|X\right) - \left[\mathbb{E}(Y|X)\right]^2$$

Note that

$$Var[g(X)h(Y)|X] = [g(X)]^{2}Var[h(Y)|X]$$

$$Var(Y) = \mathbb{E}_{Y} \left[(Y - \mathbb{E}_{Y}(Y))^{2} \right]$$

$$= \mathbb{E}_{Y} \left[(Y - \mathbb{E}_{Y|X}(Y|X) + \mathbb{E}_{Y|X}(Y|X) - \mathbb{E}_{Y}(Y))^{2} \right]$$

$$= \mathbb{E}_{Y} \left[(Y - \mathbb{E}_{Y|X}(Y|X))^{2} \right] + \mathbb{E}_{Y} \left[(\mathbb{E}_{Y|X}(Y|X) - \mathbb{E}_{Y}(Y))^{2} \right]$$

$$= \mathbb{E}_{X} \left[\mathbb{E} \left[(Y - \mathbb{E}_{Y|X}(Y|X))^{2} | X \right] \right]$$

$$+ \mathbb{E}_{X} \left[\mathbb{E} \left[(\mathbb{E}_{Y|X}(Y|X) - \mathbb{E}_{Y}(Y))^{2} | X \right] \right]$$

$$= \mathbb{E}_{X} \left[Var(Y|X) \right] + \mathbb{E}_{X} \left[(\mathbb{E}_{Y|X}(Y|X) - \mathbb{E}_{Y}(Y))^{2} \right]$$

$$= \mathbb{E}_{X} \left[Var(Y|X) \right] + Var \left[\mathbb{E}_{Y|X}(Y|X) \right]$$

$$\operatorname{Var}(Y) = \mathbb{E}_X \left[\operatorname{Var}(Y|X) \right] + \operatorname{Var} \left[\mathbb{E}_{Y|X}(Y|X) \right]$$

So what?

$$\operatorname{Var}(Y) = \mathbb{E}_X \left[\operatorname{Var}(Y|X) \right] + \operatorname{Var} \left[\mathbb{E}_{Y|X}(Y|X) \right]$$

So what?

$$Var(Y) \ge Var\left[\mathbb{E}_{Y|X}(Y|X)\right]$$

Conditioning on more X variables yields a smaller variance.

$$Var(Y) = \mathbb{E}_X \left[Var(Y|X) \right] + Var \left[\mathbb{E}_{Y|X}(Y|X) \right]$$

So what?

$$Var(Y) \ge Var\left[\mathbb{E}_{Y|X}(Y|X)\right]$$

Conditioning on more X variables yields a smaller variance.

Intuition: Adding more predictors can only make your guess of Y better. If you add something that isn't relevant or too noisy, you can just ignore it (in a regression, e.g., you give that predictor a 0 coefficient).

See Casella and Berger, pp. 167–168 for a similar, detailed exposition.

The covariance of random variables X and Y is defined as

$$Cov(X,Y) \equiv \sigma_{XY} = \mathbb{E}_{X,Y} [(X - \mathbb{E}_X(X)) (Y - \mathbb{E}_Y(Y))]$$
$$= \mathbb{E}(XY) - \mu_X \mu_Y$$

The *covariance* of random variables X and Y is defined as

$$Cov(X,Y) \equiv \sigma_{XY} = \mathbb{E}_{X,Y} [(X - \mathbb{E}_X(X)) (Y - \mathbb{E}_Y(Y))]$$
$$= \mathbb{E}(XY) - \mu_X \mu_Y$$

We have

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

The covariance of random variables X and Y is defined as

$$Cov(X,Y) \equiv \sigma_{XY} = \mathbb{E}_{X,Y} [(X - \mathbb{E}_X(X)) (Y - \mathbb{E}_Y(Y))]$$
$$= \mathbb{E}(XY) - \mu_X \mu_Y$$

We have

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$$

Note that covariance only measures the *linear* relationship between two random variables.

The correlation of random variables X and Y is defined as

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

The *correlation* of random variables X and Y is defined as

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Correlation is a normalized version of covariance—how big is the correlation relative to the variation in X and Y? Both will have the same sign.

If X and Y are independent, then

$$\mathbb{E}\left[g(X)h(Y)\right] = \mathbb{E}\left[g(X)\right]\mathbb{E}\left[h(Y)\right]$$

If X and Y are independent, then

$$\mathbb{E}\left[g(X)h(Y)\right] = \mathbb{E}\left[g(X)\right]\mathbb{E}\left[h(Y)\right]$$

Hence, for independent random variables, the covariance is 0.