8 Proporcionalidad numérica

INTRODUCCIÓN

Comenzamos recordando la importancia del significado y la comprensión de las fracciones equivalentes. Objetos y situaciones de la vida real nos ayudan a introducir las relaciones entre magnitudes. Mediante la construcción de tablas de valores y la obtención de valores relacionados entre sí establecemos las relaciones de proporcionalidad.

Planteados los conceptos de magnitud y proporción, se resuelven situaciones problemáticas de la vida cotidiana mediante la aplicación de la regla de tres (conocidos tres de los valores) y el método de reducción a la unidad, en magnitudes directamente proporcionales.

Las relaciones entre magnitudes inversamente proporcionales plantean un mayor grado de dificultad, y se ofrecen desde el mismo punto de vista que las anteriores, mediante las relaciones entre proporciones y la reducción a la unidad.

También presentamos la resolución de problemas con porcentajes, relacionada con el concepto de regla de tres. Los aumentos y las disminuciones porcentuales ayudarán a los alumnos en la resolución de las actividades.

RESUMEN DE LA UNIDAD

- Una magnitud es cualquier cualidad o característica de un objeto que podemos medir. Cuando las magnitudes se relacionan entre sí se establece una relación de proporcionalidad.
- Una *razón* es el cociente entre dos números a y b que se pueden comparar: $\frac{a}{b}$.
- Si igualamos dos razones obtenemos una proporción.
 De una serie de razones se obtiene un valor constante llamado constante de proporcionalidad.
- Dos magnitudes son *directamente proporcionales* cuando al aumentar o disminuir una, también aumenta o disminuye la otra en la misma cantidad.
- Mediante la regla de tres simple directa calculamos el valor desconocido de una proporción en la que los valores son directamente proporcionales.
- Dos magnitudes son inversamente proporcionales cuando al aumentar o disminuir una, disminuye o aumenta la otra en la misma cantidad.
- Mediante la regla de tres simple inversa calculamos el valor desconocido de una proporción en la que los valores son inversamente proporcionales.

OBJETIVOS	CONTENIDOS	PROCEDIMIENTOS
Identificar la relación de proporcionalidad entre dos magnitudes.	 Concepto de magnitud y proporcionalidad. Serie de razones iguales. Constante de proporcionalidad. Proporciones. Propiedades. 	 Identificación de las relaciones de proporcionalidad. Construcción de tablas de valores de dos magnitudes. Aplicación de las propiedades de las proporciones.
2. Reconocer magnitudes directamente proporcionales.	 Magnitudes directamente proporcionales. Regla de tres simple directa. Método de reducción a la unidad. 	 Identificación de magnitudes directamente proporcionales. Resolución de problemas: utilización de la regla de tres simple directa y reducción a la unidad.
3. Reconocer magnitudes inversamente proporcionales.	 Magnitudes inversamente proporcionales. Regla de tres simple inversa. Método de reducción a la unidad. 	 Identificación de magnitudes inversamente proporcionales. Resolución de problemas: utilización de la regla de tres simple inversa y reducción a la unidad.
4. Resolver problemas de porcentajes mediante regla de tres.	Regla de tres y porcentaje.	Resolución de problemas mediante el uso del tanto por ciento.

OBJETIVO 1

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE DOS MAGNITUDES

NOMBRE: ______ FECHA: _____

FRACCIONES EQUIVALENTES

Para comprobar si dos fracciones son **equivalentes** se **multiplican en cruz**, obteniéndose, en el caso de que sí lo sean, el mismo resultado.

$$\frac{2}{5} = \frac{6}{15}$$
 $2 \cdot 15 = 5 \cdot 6$ 30 30

PROPIEDAD FUNDAMENTAL DE LAS FRACCIONES

Si se multiplican o se dividen el numerador y el denominador de una fracción por un mismo número distinto de cero, obtenemos una fracción equivalente y el valor de la fracción no varía.

- $\frac{2}{5}$ multiplicamos numerador y denominador por 3: $\frac{2 \cdot 3}{5 \cdot 3} = \frac{6}{15}$ \rightarrow $\frac{2}{5}$ \rightarrow $\frac{6}{15}$ \rightarrow $2 \cdot 15 = 5 \cdot 6$ Si multiplicamos, se utiliza el término **amplificar**.
- Si multiplicamos, se utiliza el termino **ampinica**.

 $\frac{18}{12}$ dividimos numerador y denominador entre 6: $\frac{18:6}{12:6} = \frac{3}{2}$ $\frac{18}{12}$ $\frac{3}{2}$ $18 \cdot 2 = 12 \cdot 3$ Si dividimos, se utiliza el término **simplificar**.

1 Comprueba si son equivalentes las siguientes fracciones.

a)
$$\frac{3}{5}$$
 y $\frac{6}{10}$

c)
$$\frac{1}{3}$$
 y $\frac{3}{2}$

b)
$$\frac{4}{6}$$
 y $\frac{10}{15}$

d)
$$\frac{3}{7}$$
 y $\frac{5}{12}$

a)
$$\frac{2}{3} = \frac{4}{x}$$

c)
$$\frac{6}{x} = \frac{4}{8}$$

b)
$$\frac{3}{5} = \frac{x}{10}$$

d)
$$\frac{x}{3} = \frac{6}{9}$$

3 Escribe 4 fracciones equivalentes a las dadas mediante amplificación.

a)
$$\frac{2}{5} = --- = --- = ---$$

c)
$$\frac{3}{4} = --- = --- = ---$$

b)
$$\frac{1}{2} = --- = --- = ---$$

d)
$$\frac{7}{10} = --- = --- = ---$$

4 Escribe 3 fracciones equivalentes a las dadas mediante simplificación.

a)
$$\frac{40}{60} = --- = ---$$

c)
$$\frac{60}{144} = --- = ---$$

b)
$$\frac{132}{88} = --- = ---$$

d)
$$\frac{90}{120} = --- = ---$$

- Una **magnitud** es cualquier cualidad o característica de un objeto que podemos medir. Ejemplo: la longitud, la masa, el número de alumnos, la capacidad, la velocidad, el precio, etc.
- Las magnitudes se expresan en unidades de medida: metros, kilómetros, kilógramos, gramos, número de personas, litros, kilómetros por hora, metros por segundo, euros, dólares, etc.
- En ocasiones las magnitudes se relacionan entre sí. Esta relación se denomina de **proporcionalidad**, y nos ayuda a solucionar problemas de la vida cotidiana.

EJEMPLO

Un saco de harina pesa 10 kilogramos, 2 sacos de harina pesan 20 kilogramos y 3 sacos pesan 30 kilogramos. ¿Cuánto pesan 4 sacos? ¿Y 5 sacos? ¿Y 6 sacos? ¿Y 10 sacos?

Tenemos dos magnitudes: número de sacos de harina y peso de los sacos.

Entre ambas existe una relación de proporcionalidad: cuantos más sacos sean, más pesarán.

Este ejemplo lo podemos expresar mediante una tabla, llamada tabla de proporcionalidad:

N.º DE SACOS	1	2	3	4	5	6	7	8	9	10	
PESO (kg)	10	20	30	40	50	60	70	80	90	100	4

100

Las series de números de ambas magnitudes, número de sacos y peso, son proporcionales entre sí; por tanto, podemos pasar de una serie a otra, multiplicando o dividiendo por 10.

- 5 Referido al ejemplo anterior:
 - a) Indica el peso (en kg) de 15, 17, 18, 20, 50 sacos y elabora una tabla de proporcionalidad.
 - b) ¿Cuántos sacos suponen 700 kilogramos de harina? ¿Y 1.000 kg?
- 6 En una cafetería cada menú: bebida, bocadillo y patatas cuesta 3 €. Elabora una tabla de proporcionalidad con las magnitudes que se relacionan y expresa la relación entre los 10 primeros menús que se compran.
- 7 En las siguientes tablas de proporcionalidad, averigua el número por el que hay que multiplicar y/o dividir para pasar de una serie a otra, y completa las tablas.

a)	2	3	5	7	9	11
	8	12				44

b)	1	2	3	4	5	6	
	5	10					

RAZÓN ENTRE DOS NÚMEROS O CANTIDADES

Una **razón** es el cociente entre dos números cualesquiera, a y b, que se pueden comparar: $\frac{a}{b}$

En una razón, los números pueden ser naturales y/o decimales: $\frac{2,5}{5}$, $\frac{4}{35}$, $\frac{10}{25}$, mientras que en una fracción los números son naturales: $\frac{2}{5}$, $\frac{4}{3}$, $\frac{10}{25}$

PROPORCIÓN

Si igualamos dos razones, obtenemos una proporción.

$$\frac{a}{b} = \frac{c}{d}$$
 es una proporción.

TÉRMINOS DE	a, c se llaman antecedentes	b, d se llaman consecuentes
UNA PROPORCIÓN	a, d se llaman extremos	b, c se llaman medios

Lectura de las proporciones

La proporción
$$\frac{a}{b} = \frac{c}{d}$$
 se lee: $\begin{vmatrix} a \text{ es } a \text{ } b \text{ como} \\ c \text{ es } a \text{ } d \end{vmatrix}$

La proporción
$$\frac{3}{4} = \frac{9}{12}$$
 se lee: $\begin{vmatrix} 3 \text{ es a } 4 \text{ como } 9 \\ \text{es a } 12 \end{vmatrix}$

Recuerda el ejemplo de los sacos de harina

N.º DE SACOS	1	2	3	4	5	6	7	8	9	10
PESO (kg)	10	20	30	40	50	60	70	80	90	100

Formamos las siguientes proporciones y observamos que:

$$\frac{1}{10} = 0.1$$
 $\frac{2}{20} = 0.1$ $\frac{3}{30} = 0.1$ $\frac{4}{40} = 0.1$ $\frac{5}{50} = 0.1$... $\frac{10}{100} = 0.1$

Son una serie de razones iguales. Su valor es el mismo: 0,1.

$$\frac{1}{10} = \frac{2}{20} = \frac{3}{30} = \frac{4}{40} = \frac{5}{50} = \frac{6}{60} = \frac{7}{70} = \frac{8}{80} = \frac{9}{90} = \frac{10}{100} = 0,1$$

- Este valor es constante y es el mismo en todas las proporciones.
- Se llama constante de proporcionalidad.

8 Indica los términos antecedentes, consecuentes, extremos y medios.

PROPORCIÓN	SE LEE	ANTECEDENTES	CONSECUENTES	EXTREMOS	MEDIOS
$\frac{4}{7} = \frac{16}{28}$					
$\frac{1}{8} = \frac{3}{24}$					
$\frac{3}{10} = \frac{6}{20}$					

9 Observa la siguiente tabla de valores.

3	9	18	27	36	45	54
1	3	6	9	12	15	18

- a) Comprueba si forman una serie de razones iguales.
- b) Halla el valor de cada proporción.
- c) ¿Es el mismo en todas las proporciones? ¿Cómo se llama ese valor?
- Dadas estas series de razones iguales, añade tres proporciones e indica la constante de proporcionalidad.

a)
$$\frac{3}{5} = \frac{6}{10} = --- = ---$$

c)
$$\frac{10}{8} = \frac{20}{16} = \dots = \dots = \dots$$

b)
$$\frac{6}{15} = \frac{12}{30} = \dots = \dots = \dots$$

d)
$$\frac{5}{8} = \frac{15}{24} = \dots = \dots = \dots$$

- 11 Un quiosco vende las gominolas solo de una forma: 3 bolsas que cuestan 2 €.
 - a) Forma una tabla de proporcionalidad si se adquieren 6, 9, 12, 15 y 18 bolsas de gominolas.
 - b) Escribe tres parejas de razones iguales.
 - c) Indica la constante de proporcionalidad

PROPIEDADES DE LAS PROPORCIONES

1.ª La suma de los antecedentes dividida entre la suma de los consecuentes es igual a la constante de proporcionalidad.

$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{a+c+e}{b+d+f} = k \qquad \frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{1+2+3+4}{2+4+6+8} = \frac{10}{20} = 0,5$$

2.ª En una proporción, el producto de extremos es igual al producto de medios. (Recuerda el concepto de fracciones equivalentes y los productos cruzados.)

$$\frac{a}{b} = \frac{c}{d} \longrightarrow a \cdot d = b \cdot c \qquad \qquad \frac{1}{2} = \frac{2}{4} \longrightarrow 1 \cdot 4 = 2 \cdot 2 \qquad \qquad \frac{3}{6} = \frac{4}{8} \longrightarrow 3 \cdot 8 = 6 \cdot 4$$

En las siguientes series de razones iguales, comprueba que la suma de los antecedentes dividida entre la suma de los consecuentes es igual a la constante de proporcionalidad.

a)
$$\frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{4}{16} = \frac{5}{20}$$

b)
$$\frac{8}{2} = \frac{16}{24} = \frac{32}{8} = \frac{48}{12} = \frac{80}{20}$$

Constante de proporcionalidad =

Constante de proporcionalidad =

OBJETIVO 2

RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES

___ CURSO: _____ FECHA: ___ NOMBRE: __

MAGNITUDES DIRECTAMENTE PROPORCIONALES

- Dos magnitudes son directamente proporcionales cuando:
 - Al aumentar una cantidad el doble, el triple..., la otra también aumenta el doble, el triple...
 - Al disminuir una cantidad la mitad, la tercera parte..., la otra también disminuye la mitad, la tercera parte...
- La razón entre dos cantidades es siempre la misma y se llama constante de proporcionalidad.

EJEMPLO

Un cupón de lotería cuesta 2 €, dos cupones 4 €, 3 cupones 6 €...

- Distinguimos dos magnitudes: número de cupones y precio.
 - Al aumentar el número de cupones, aumenta su precio.
 - Al **disminuir** el número de cupones, también **disminuye** su precio.
 - Son magnitudes directamente proporcionales:

N.º DE CUPONES	1	2	3	4	5	6	.2
PRECIO (€)	2	4	6	8	10	12	

• Observamos las razones de las proporciones:

$$\frac{1}{2} = \frac{2}{4} = 0.5$$
 $\frac{3}{6} = \frac{5}{10} = 0.5$ $\frac{4}{8} = \frac{6}{12} = 0.5$ $\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \frac{6}{12} = 0.5$

La constante de proporcionalidad es siempre la misma: 0,5. Son series de razones iguales y forman fracciones equivalentes.

• Multiplicando o dividiendo por el mismo número obtenemos valores equivalentes:

$$\frac{1}{2} \xrightarrow{\cdot 4} \frac{4}{8}$$

$$\frac{1}{2} \xrightarrow{\cdot 4} \xrightarrow{4} \xrightarrow{8} \qquad \qquad \frac{6}{12} \xrightarrow{:3} \xrightarrow{2} \xrightarrow{4} \qquad \qquad \frac{5}{10} \xrightarrow{:5} \xrightarrow{1} \xrightarrow{2}$$

$$\frac{5}{10} \xrightarrow{:5} \frac{1}{2}$$

Indica si las siguientes magnitudes son directamente proporcionales.

- a) El peso de unos bombones y el dinero que valen.
- b) La velocidad de un coche y el tiempo que tarda en recorrer una distancia.
- c) El número de hojas de un libro y su peso.
- d) El precio de una tela y los metros comprados.
- e) La edad de un alumno y su altura.

En una fábrica de ladrillos, 5 ladrillos apilados ocupan 1 metro de altura. Completa la tabla con los valores correspondientes.

- a) Indica si son magnitudes directamente proporcionales.
- b) Forma proporciones y halla la constante de proporcionalidad.
- c) ¿Qué altura ocuparían 100 ladrillos? ¿Y 500 ladrillos?

N.º DE LADRILLOS	5	10	15	20	25	30	50
ALTURA (m)	1						

- 3 Luisa y Ana tienen que pintar durante el verano la valla de la casa de sus abuelos. La valla tiene una longitud de 30 metros y su abuelo les ha dicho que por cada 6 metros que pinten les dará 5 €.

a) Forma la tabla de valores con las magnitudes correspondientes.

- b) Forma proporciones y halla la constante de proporcionalidad.
- c) Si la valla tuviera 42 metros, ¿cuánto dinero ganarían Luisa y Ana?

REGLA DE TRES SIMPLE DIRECTA

- La regla de tres simple directa nos permite **calcular el valor desconocido** de una proporción en la que las magnitudes son directamente proporcionales.
- Conocemos **tres** de los cuatro valores de la proporción, y el término desconocido (incógnita) lo nombramos con la letra **x**, **y** o **z**.

EJEMPLO

Tres cajas de latas de refrescos pesan 15 kg. ¿Cuánto pesarán 4 cajas?

Las 4 cajas pesarán 20 kg.

- 4 Si 4 pasteles cuestan 12 €, ¿cuánto costarán 6 pasteles? ¿Y 15 pasteles?
- Tres obreros realizan una zanja de 6 m en un día. Si mantienen el mismo ritmo de trabajo, ¿cuántos metros de zanja abrirán en un día, si se incorporan 5 obreros más?
- 6 El precio de 12 fotocopias es 0,50 €. ¿Cuánto costará hacer 30 fotocopias?

8

Un excursionista recorre 10 km en 2,5 horas. Si mantiene el mismo ritmo ¿cuántos kilómetros recorrerá en 5 horas? ¿Y en 7 horas?

Podemos resolver los problemas mediante la regla de tres directa utilizando el **método de reducción a la unidad**, es decir, hallando el valor desconocido para el valor 1, y luego multiplicándolo por los restantes valores.

Resuelve los siguientes problemas, utilizando el método de reducción a la unidad.

8 En un túnel de lavado se limpian 10 coches en una hora. ¿En cuánto tiempo se lavarán 25 coches? ¿Y 50 coches?

Si 10 coches se lavar en
$$\longrightarrow$$
 60 minutos

1 coche se lavar en \longrightarrow $\frac{60}{10}$ = 6 minutos

Después de calcular el tiempo que se tarda en lavar un coche, hallamos el tiempo empleado para lavar 25 y 50 coches.

25 coches se lavan en $25 \cdot 6 =$

- 9 Ignacio cobra 120 € por cada 5 días de trabajo. ¿Cuánto cobrará por 15 días? ¿Y por 20 días?
- 10 Si 3 cafés cuestan 2,70 €, ¿cuánto costarán 5 cafés? ¿Y 10 cafés?
- Un bono de autobús con diez viajes cuesta 6 €. ¿Cuánto cuesta cada viaje? ¿Y cuánto costarán 3 bonos?
- 12 Si 4 yogures valen 1,20 €, ¿cuánto cuestan 12 yogures? ¿Y 30 yogures?

_____ CURSO: _____ FECHA: ____ NOMBRE: ___

MAGNITUDES INVERSAMENTE PROPORCIONALES

- Dos magnitudes son inversamente proporcionales cuando:
 - Al **aumentar** una el doble, el triple..., la otra **disminuye** la mitad, la tercera parte...
 - Al **disminuir** una la mitad, la tercera parte..., la otra **aumenta** el doble, el triple...
- Al multiplicar (o dividir) uno de los valores de una magnitud por un número, el valor correspondiente de la otra magnitud queda dividido (o multiplicado) por el mismo número.

EJEMPLO

Un grifo vierte 3 litros de agua cada minuto, tardando 15 minutos en llenar un tonel. Si aumentamos el caudal a 6 litros por minuto, tarda 7,5 minutos en llenarlo. Si lo aumentamos a 9 litros por minuto, lo llenará en 5 minutos. Si lo aumentamos a 12 litros por minuto, tardará 3,75 minutos, etc.

- Distinguimos dos magnitudes: caudal de agua (en litros por minuto) y tiempo en llenar el tonel.
 - Al **aumentar** el número de litros por minuto, **disminuye** el tiempo en que se llenaría el tonel.
 - Si disminuye el caudal, aumenta el tiempo.
 - Son magnitudes inversamente proporcionales:

CAUDAL (l/min)	3	6	9	12
TIEMPO (min)	15	7,5	5	3,75

Vemos que en las razones de las proporciones se invierte el orden de los valores:

$$\frac{3}{6} = \frac{7.5}{15} = 0.5$$

$$\frac{3}{9} = \frac{5}{15} = 0.3$$

$$\frac{3}{6} = \frac{7.5}{15} = 0.5$$
 $\frac{3}{9} = \frac{5}{15} = 0.3$ $\frac{12}{6} = \frac{7.5}{3.75} = 2$

• Al multiplicar (o dividir) uno de los valores, el valor correspondiente queda dividido (o multiplicado) por el mismo número.

Indica si las siguientes magnitudes son o no inversamente proporcionales.

- a) La velocidad de un coche y el tiempo que tarda en recorrer una distancia.
- b) El número de operarios de una obra y el tiempo que tardan en terminarla.
- c) El número de hojas de un libro y su peso.
- d) El peso de la fruta y el dinero que cuesta.
- e) La velocidad de un excursionista y la distancia que recorre.
- f) El número de grifos de un depósito y el tiempo que tarda en llenarse.

2 Completa estas tablas de valores inversamente proporcionales.

a)	5	10	20	4		
	60	30			25	5

b)	1	2		4		
	36		12		6	4

c)	8			3	1	6
	3	12	4			

d)	6	3	21	7		1
	7				1	

REGLA DE TRES SIMPLE INVERSA

- La regla de tres simple inversa nos permite **calcular el valor desconocido** de una proporción en la que las magnitudes son inversamente proporcionales.
- Conocemos **tres** de los cuatro valores de la proporción, y el valor desconocido (incógnita) lo nombramos con la letra **x**, **y** o **z**.

EJEMPLO

Diez albañiles tardan 45 días en construir un muro. Si deben terminar la obra en 15 días, ¿cuántos albañiles hacen falta?

Las magnitudes son número de albañiles y días de trabajo.

Son **inversamente** proporcionales: si queremos que se realice la obra en **menos** tiempo, tendremos que **aumentar** el número de trabajadores.

Lo resolvemos de la siguiente manera:

30 albañiles terminarán la obra en 15 días.

- 3 Averigua el número de albañiles que realizarían el anterior trabajo si quisiéramos que lo acabasen en 5 días.
- 4 Un depósito de agua se llena en 18 horas si un grifo vierte 360 litros de agua cada minuto.
 - a) ¿Cuánto tardaría en llenarse si vertiera 270 litros por minuto?
 - b) ¿Y si salieran 630 litros por minuto?

ADAPTACIÓN CURRICULAR

- 5 Un ganadero tiene 36 vacas y pienso suficiente para alimentarlas durante 24 días. Si decide comprar 18 vacas más, ¿para cuántos días tendría pienso?
- 6 Se está construyendo una autopista y hay que realizar un túnel en la montaña. Está planificado que dos máquinas realicen la obra en 90 días. Para reducir ese tiempo a la tercera parte, ¿cuántas máquinas harían falta?

Podemos resolver los problemas mediante la regla de tres inversa utilizando el **método de reducción a la unidad**, es decir, hallando el valor desconocido para el valor 1, y luego dividiendo entre los valores correspondientes.

Resuelve los siguientes ejercicios, mediante el método de reducción a la unidad.

- 7 Tres pintores tardan 2 horas en pintar una valla. Si se incorpora un pintor más, ¿cuánto tiempo tardarán?
- 8 Si 20 obreros levantan un muro de ladrillos en 6 días, ¿cuántos días tardarían 12 obreros?
- 9 En recorrer una distancia un camión tarda 4 horas a una velocidad constante de 65 km/h.
 - a) ¿Qué velocidad llevará un automóvil que recorre la misma distancia en la mitad de tiempo?
 - b) ¿Y una avioneta que emplease 45 minutos?

OBJETIVO 4

RESOLVER PROBLEMAS DE PORCENTAJES MEDIANTE REGLA DE TRES

NOMBRE: ______ FECHA: _____

1 En una clase de 2.º ESO el 60 % son chicas. Si en total hay 30 alumnos, calcula el número de alumnas, alumnos y el porcentaje de estos últimos.

- 2 Una fábrica produce 1.500 automóviles al mes. El 25 % son furgonetas, el 60 % turismos y el resto monovolúmenes. Halla las unidades producidas de cada tipo de automóvil.
- 3 Unas zapatillas que antes costaban 60 € tienen un descuento del 15 %. Calcula cuánto valen ahora.
- 4 En un instituto de 1.200 alumnos se han publicado los resultados de una encuesta sobre música moderna: el 30 % de los alumnos prefieren música tecno, el 25 % pop, un 40 % rock, y el resto, música melódica. Calcula los alumnos que prefieren cada modalidad musical y el porcentaje de los que eligen la música melódica.
- De un colegio con 600 alumnos, el 50 % son de Educación Primaria, el 35 % de ESO y el 15 % de Bachillerato. Halla el número de alumnos de cada nivel educativo.
- 6 Un pantano tiene una capacidad total de 5 millones de metros cúbicos de agua. Actualmente está lleno al 75 % de su capacidad. Calcula los metros cúbicos de agua que contiene.