Efficient Visual Reasoning with Language Grounding

April 11th ,2022 Presenter: Sihui Wang

Problem Statement

Motivation

- What are the trends and challenges for VQA?
- Make a retrospective comparison for current methods
- Find ideas for the Next Generation VQA models

Problem Statement

Long Term Goals

- Find ideas for Next Generation VQA models
- Reimplementation/Modification of Current Methods
- In-depth Experiments and Analysis; Experiments on GQA Dataset

Short Term Goals

- Make a Survey of the Current Methods; Trend Analysis
- Test and Comparison of Current Methods on CLEVR Dataset

Problem Statement

- Input
 - CLEVR Dataset
 - Codes for PG + EE, NS-VQA
 - Codes for Baseline Methods (LSTM + CNN + Attention + MLP)
- Output
 - Trend Analysis
 - Comparison of Performance of PG + EE & NS-VQA against Baselines

- 3 Current Approaches
 - (PG + EE) Inferring and Executing Programs for Visual Reasoning
 - FiLM: Visual Reasoning with a General Conditioning Layer
 - (NS-VQA) Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
- Baseline Methods
 - (LSTM-Q) Visual Question Answering
 - (LSTM + CNN + Self Attention) Stacked Attention Networks for Image Question Answering

Comparison:

- Baseline Models: Combinations of LSTM, CNN, Attention...
- PG + EE: Explicit Modelling of Reasoning Process (to avoid learning the biases)
- FiLM: Refined Design of Feature Interaction Layer
- NS-VQA: Question Parser Guided Program Generator

	PG + EE	FiLM	NS-VQA
Features	CNN + LSTM	CNN + LSTM	CNN+LSTM
Reasoning	Dynamic Combination of Module Networks (RL)	Feature-wise Linear Modulation	Dynamic Combination of Module Networks (Symbolic Parsing)
High Level Ideas	Explicit Modelling of Reasoning	Efficient and Expressive Feature Interactions	Symbolic Structure as Prior Knowledge
Interpretability	High	Moderate (Visualization of Attention)	High

- Trend:
 - From Basic Building Blocks to High-Level Ideas
 - Interpretability
 - Data Efficiency
 - Capacity
- Why This Project:
 - Retrospective Perspective and Evaluation

Approach

- Literature Review and Trend Analysis
- Compare Current Methods' Performance on CLEVR Dataset
- Models to Use:
 - PG + EE
 - NS VQA
 - Baseline Models: LSTM, LSTM + CNN, LSTM + CNN + Self
 Attention, LSTM + CNN + Self Attention + MLP

Results and Analysis: Quantitative

Accuracy on CLEVR Validation Dataset

	Accuracy	Accuracy (Previously Reported)
LSTM	47.05 %	46.8 - 47.0 %
LSTM + CNN	54.19%	52.3 - 54.3 %
LSTM + CNN + SA	69.48 %	68.5 – 76.6 %
LSTM + CNN + SA + MLP	73.15 %	73.2 %
PG + EE (18K Prog)	95.19%	95.4 %
NS - VQA	99.8 %	99.8 %

Results and Analysis: Qualitative

Case Study: Why does PG + EE fail?

Typical Scenes:

Complex Questions: Logical Composition + Multiple Attributes (Color, Location, Texture,...) + Ask Number

How many objects are either metal things behind the small green rubber cylinder or small green rubber objects?

Correct Answer: 2 Predicted Answer: 1

Results and Analysis: Qualitative

Case Study: Why does PG + EE fail?

What color is the small ball? Correct Answer: red

Predicted Answer: cyan

Where does cyan come from? Biases?

Results and Analysis: Qualitative

Case Study: Why does PG + EE fail?

What shape is the brown thing?

Correct Answer: cylinder

Predicted Answer: no

Totally irrelevant

Conclusion

- All models' performance on CLEVR validation dataset match the claims in the papers
- Top-Peformance VQA models are guided by high-level insights and refined architecture design
- Even though PG + EE achieves good performance on CLEVR dataset, qualitative results show that it still doen't fully understand the questions.

Limitations

- CLEVR's synthetic nature provides us the opportunity to perform breakdown analysis why certain method fails. However, in-depth comparison is not presented in this work.
- Comparisons are made only on synthetic datasets. Real world dataset should also be included in the study.
- Top performance on CLEVR doesn't mean current methods have learned reasoning abilities.

Future works

- Include more breakdown analysis: which building block contributes to performance? What are the reasons for the failures?
- Make comparisons on real-world datasets, such as GQA
- Current Methods still lacks the real reasoning abilities. Future work should focus on improvements/mitigations.

Takeaway

Current VQA models still don't fully understand the questions and images. Substantial work is required towards learning real reasoning abilities.

Q & A