

Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/02
Paper 2 Pure Mathe	matics 2 (P2)	For E	Examination from 2017
SPECIMEN PAPER			1 hour 15 minutes
Candidates answer o	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

giving the answer correct to 3 significant figures.		$5^{x+3} = 7^{x-1},$	
	g the answer correct to 3 significant	figures.	

2	A	curve	has	eq	uatio	n
_	$\boldsymbol{\Gamma}$	cui vc	mas	CU	luano	

·· –	3x + 1	
<i>y</i> –	$\overline{x-5}$	•

Find the coordinates of the points on the curve at which the gradient is -4.	[5]
	•••••
	••••••
	•••••
	••••••
	•••••

	of α correct to 2 decimal places.	< 90°. Give the
		•••••
ii)	Hence solve the equation $8 \sin \theta + 15 \cos \theta = 6$	
i i)		
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	
ii)	$8\sin\theta + 15\cos\theta = 6$	

(i)	By sketching a suitable pair of graphs, show that the equation	
	$\ln x = 4 - \frac{1}{2}x$	
	has exactly one real root, α .	[2]
(ii)	Verify by calculation that $4.5 < \alpha < 5.0$.	[2]
		•••••
(iii)	Use the iterative formula $x_{n+1} = 8 - 2 \ln x_n$ to find α correct to 2 decimal places. Give the resolution of each iteration to 4 decimal places.	sult [3]
		••••
		•••••
		••••

	Find $\int (\tan^2 x + \sin 2x) \mathrm{d}x.$	
•		
•		•••••
•		•••••
•		
•		
•		
•		••••••
•		
•		•••••
•		
•		
•		
•		
•		
•		
•		•••••
•		
•		•••••

	nd the exact value	J 0				
•••••				 		
				 ••••••	•••••	
				 •••••	•••••	
•••••	•••••	•••••	•••••	 ••••••	•••••	•••••
•••••				 ••••••	•••••	
•••••				 		
					•	
•••••	•••••	•••••	•••••	 •••••	•••••	•••••
•••••				 •••••	•••••	
•••••				 		
			•••••	 	•••••	
				 	•••••	

6	(i)	Find the	quotient a	and remainde	er when
---	-----	----------	------------	--------------	---------

$x^4 + x^3 + 3x^2 + 12x + 6$	
is divided by $(x^2 - x + 4)$.	[4]

(ii)	It is given that, when
	$x^4 + x^3 + 3x^2 + px + q$
	is divided by $(x^2 - x + 4)$, the remainder is zero. Find the values of the constants p and q . [2]
(iii)	When p and q have these values, show that there is exactly one real value of x satisfying the
	equation
	$x^4 + x^3 + 3x^2 + px + q = 0$
	and state what that value is. [3]

7

The parametric equations of a curve are

$$x = 6\sin^2 t$$
, $y = 2\sin 2t + 3\cos 2t$,

for $0 \le t < \pi$. The curve crosses the *x*-axis at points *B* and *D* and the stationary points are *A* and *C*, as shown in the diagram.

(i)	Show that $\frac{dy}{dx} = \frac{2}{3} \cot 2t - 1$.	[5]
		· · · · · · · · ·
		· • • • • • • • • • • • • • • • • • • •
		•••••
		• • • • • • •
		,
		· • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •

•••••		•••••	•••••	 •••••
•••••		•••••	•••••	
Find the value	of the gradie	ent of the curve at	<i>R</i>	
Find the value	e of the gradie	ent of the curve at	В.	
Find the value	e of the gradie	ent of the curve at	В.	
Find the value	e of the gradie	ent of the curve at	В.	
Find the value	e of the gradie	ent of the curve at	В.	
Find the value	e of the gradie	ent of the curve at	В.	
Find the value	e of the gradie	ent of the curve at	B.	
Find the value	e of the gradie	ent of the curve at	B.	
Find the value	e of the gradie	ent of the curve at	B.	
Find the value	e of the gradie	ent of the curve at	B.	
Find the value	e of the gradie	ent of the curve at	B.	
Find the value	e of the gradie	ent of the curve at	B.	
Find the value	e of the gradie	ent of the curve at	B.	
Find the value	e of the gradie	ent of the curve at	B.	
Find the value	e of the gradic	ent of the curve at	B.	

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.