Kompakte Teilmengen von \mathbb{R}^n

Jendrik Stelzner

21. Dezember 2014

1 Stetige Funktionen auf abgeschlossenen Intervallen

Zur Motivation des Kompaktheitbegriffes wollen wir zunächst die folgende wichtige Aussage beweisen:

Lemma 1. Es seien $a, b \in \mathbb{R}$ mit a < b und $f : [a, b] \to \mathbb{R}$ stetig. Dann ist die Abbildung f beschränkt und nimmt auf [a, b] ihr Maximum und Minimum an, d.h. es gibt $x_{max}, x_{min} \in [a, b]$ mit

$$f(x_{max}) = \sup_{y \in [a,b]} f(y) \quad und \quad f(x_{min}) = \inf_{y \in [a,b]} f(y).$$

Für offene Intervalle oder halboffene Intervalle gilt diese Aussage nicht. Man betrachte etwa die Abbildung $(0,1] \to \mathbb{R}, x \mapsto 1/x$, oder gar $(0,1] \to \mathbb{R}, x \mapsto \sin(1/x)/x$.

Herzstück des Beweises ist die Beobachtung, dass auf [a,b] jede Folge eine konvergente Teilfolge besitzt.

Lemma 2. Es seien $a, b \in \mathbb{R}$ mit a < b und $(x_n)_{n \in \mathbb{N}}$ eine Folge auf [a, b]. Dann besitzt (x_n) eine konvergente Teilfolge $(x_{n_j})_{j \in \mathbb{N}}$, und für den Grenzwert $x := \lim_{j \to \infty} x_{n_j}$ gilt $x \in [a, b]$.

Beweis. Da $a \leq x_n \leq b$ für alle $n \in \mathbb{N}$ ist die Folge (x_n) beschränkt und besitzt daher nach Bolzano-Weierstraß eine konvergente Teilfolge $(x_{n_j})_{j \in \mathbb{N}}$. Es sei $x \coloneqq \lim_{j \to \infty} x_{n_j}$. Da $a \leq x_{n_j} \leq b$ für alle $j \in \mathbb{N}$ ist auch $a \leq x \leq b$, also $x \in [a, b]$.

Beweis von Lemma 1. Wir zeigen zunächst, dass f beschränkt ist: Angenommen, f wäre nach oben unbeschränkt. Dann gibt es für alle $n \in \mathbb{N}$ ein $x_n \in [a,b]$ mit $f(x_n) \geq n$. Nach Lemma 2 besitzt die Folge (x_n) eine konvergente Folge $(x_{n_j})_{j \in \mathbb{N}}$. Da f stetig ist, konvergiert auch die Folge $(f(x_{n_j}))_{j \in \mathbb{N}}$. Für alle $j \in \mathbb{N}$ ist aber $f(x_{n_j}) \geq n_j$, die Folge $f(x_{n_j})$ konvergiert also nicht. Dieser Widerspruch zeigt dass f nach oben unbeschränkt seien muss. Analog ergibt sich, dass f auch nach unten beschränkt ist. Also ist f beschränkt.

Es sei

$$M\coloneqq \sup_{y\in [a,b]} f(y).$$

Da f nach oben beschränkt ist, ist $M < \infty$. Nach der ε -Charakterisierung des Supremums gibt es für alle $n \ge 1$ ein $x_n \in [a, b]$ mit

$$M \ge f(x_n) \ge M - \frac{1}{n}$$
.

Nach Lemma 2 besitzt die Folge (x_n) eine konvergente Teilfolge $(x_{n_j})_{j\in\mathbb{N}}$. Es sei $x:=\lim_{j\to\infty}x_{n_j}$. Da f stetig ist, konvergiert auch die Folge $(f(x_{n_j}))$ und es gilt

$$\lim_{j \to \infty} f(x_{n_j}) = f(x).$$

Andererseits gilt für alle $j \in \mathbb{N}$

$$M \ge f(x_{n_j}) \ge M - \frac{1}{n_j}.$$

Also muss nach dem Sandwich-Lemma auch

$$\lim_{j \to \infty} f(x_{n_j}) = M.$$

Also ist f(x) = M. Das zeigt, dass f auf [a, b] sein Maximum annimmt. Analog ergibt sich, dass f auf [a, b] auch sein Minimum annimmt. \square

2 Kompaktheit

Zum Beweis von Lemma 1 haben wir Folgenstetigkeit und Lemma 2 benötigt. Diese Beobachtung legt nahe, dass sich Lemma 1 auf beliebige Teilmengen $K \subseteq \mathbb{R}^n$ verallgemeinern lässt, für die eine zu Lemma 2 analoge Aussage gilt.

Definition 3. Es sei $X \subseteq \mathbb{R}^n$ und (x_n) ein Folge auf X. Wir sagen (x_n) konvergiert auf X, falls die Folge (x_n) konvergiert und $\lim_{n\to\infty} x_n \in X$.

Beispiel(e). Die Folge $(1/n)_{n>1}$ konvergiert auf [0,1], nicht aber auch (0,1).

Definition 4. Eine Teilmenge $K \subseteq \mathbb{R}^n$ heißt kompakt, falls jede Folge (x_n) auf K eine auf K konvergente Teilfolge besitzt.

Beispiel(e). Lemma 2 zeigt, dass ein Intervall [a,b] mit a < b kompakt ist. Offene Intervalle hingegen sind niemals kompakt: Sind $a,b \in \mathbb{R}$ mit a < b, so ist $(a + (b - a)/(n + 2))_{n \in \mathbb{N}}$ eine Folge auf (a,b), die keine auf (a,b) konvergente Teilfolge besitzt.

Proposition 5. Es sei $K \subseteq \mathbb{R}^n$ kompakt und $f: K \to \mathbb{R}$ stetig. Dann ist die Abbildung f auf K beschränkt und nimmt auf K ihr Maximum und ihr Minimum an, d.h. es gibt $x_{min}, x_{max} \in K$ mit

$$f(x_{max}) = \sup_{y \in K} f(y)$$
 und $f(x_{min}) = \inf_{y \in K} f(y)$.

Beweis. Nehme den Beweis von Lemma 1 und ersetze [a,b] durch K und die Verweise auf Lemma 2 durch Kompaktheit.

Da sich stetige Funktionen auf kompakten Mengen gutartig verhalten, sind kompakte Mengen von großer Bedeutung für die Analysis.