目 录

第一部分	高等数学	. 1
第二部分	线性代数	. 9
第三部分	概率论与数理统计	16

第一部分高等数学

-、选择题

- 1、若 $\lim_{x\to 0} \left[1 + \ln(1+3x)\right]^{\frac{a}{sinx}} = \int_{-a}^{+\infty} xe^{-3x} dx$, 则a = ().

 - $(A) \frac{8}{3}$ $(B) \frac{4}{3}$ $(C) \frac{4}{3}$ $(D) \frac{8}{3}$

- 2、设 $x \in [0,1]$ 时, $f(x) = x(1-x^2)$, 且f(1+x) = af(x) ($a \neq 0$), 若f(x)在x=0处可导,则a=().
 - (A) -1 (B) -2 (C) 1 (D) 2

- 3、曲线 $y = x^2 arctan \frac{1}{x} + \frac{1}{x} arctan(x^2)$ ().
 - (A) 有一条渐近线

(B) 有 2 条渐近线

(C) 有三条渐近线

(D) 没有渐近线

- 4、设有二元方程 $x^2 + y^2 2y + ln(1 + xy) = -1$,根据隐函数存在定理,存在点(0,1)的一个邻域,在此邻域内该方程().
- (A) 既能确定一个具有连续导数的隐函数y=y(x),也能确定一个具有连续导数的隐函数x=x(y).
- (B) 既不能确定一个具有连续导数的隐函数y=y(x),也不能确定一个具有连续导数的隐函数x=x(y).
- (C) 可以确定一个具有连续导数的隐函数x=x(y). 但是不能确定一个具有连续导数的隐函数y=y(x).
- (D) 可以确定一个具有连续导数的隐函数y=y(x),但是不能确定一个具有连续导数的隐函数x=x(y).

5、设 $\frac{\cos x}{x}$ 是f(x)的一个原函数,若 $a \neq 0$,则 $\int f(ax)dx = ()$.

$$(A) \frac{cosax}{ax} + C$$

$$(B)$$
 $\frac{\cos ax}{a^2x} + C$

$$(C) \frac{\cos ax}{a^3x} + C$$

$$(D) \frac{cosax}{x} + C$$

6 、 设 反 常 积 分
$$I_1 = \int_0^1 \frac{dx}{\sqrt{x}(1+x)}, I_2 = \int_1^{+\infty} \frac{dx}{\left(1+\sqrt{x}\right)(1+x)},$$

$$I_{3} = \int_{0}^{+\infty} rac{dx}{\sqrt{x}(1+x)}$$
,则有().

- (A) I_1 , I_2 收敛, I_3 发散
- (B) I_1,I_3 收敛, I_2 发散
- (C) I_2 , I_3 收敛, I_1 发散
- (D) I_1,I_2,I_3 都收敛

7 、 设
$$y_1(x)=rac{2\sin x+\cos x}{x},\;y_2(x)=rac{\sin x+2\cos x}{x}$$
 是 微 分 方 程

y'' + p(x)y' + q(x)y = 0的两个解,则().

(A)
$$p(x) = \frac{2}{x}$$
, $q(x) = 1$ (B) $p(x) = 1$, $q(x) = \frac{2}{x}$

(B)
$$p(x) = 1, q(x) = \frac{2}{x}$$

(C)
$$p(x) = \frac{1}{x}, q(x) = 2$$

(C)
$$p(x) = \frac{1}{x}, q(x) = 2$$
 (D) $p(x) = 2, q(x) = \frac{1}{x}$

8 、 设 平 面 区 域
$$D_1 = \{(x,y) | 0 \leq x \leq 1, 1-x \leq y \leq 1\},$$

$$D_2 = \{(x,y) \mid 0 \leqslant x \leqslant 1, 1 - \sqrt{2x - x^2} \leqslant y \leqslant 1 \}, 二重积分$$

$$I_1 = \iint\limits_{D_1} ln\left(x+y
ight) d\sigma, \;\; I_2 = \iint\limits_{D_2} ln\left(x+y
ight) d\sigma, \;\; I_3 = \iint\limits_{D_2} \ln\sqrt{\left(x^2+y^2
ight)} \, d\sigma$$
 ,

则 I_1, I_2, I_3 的大小关系为().

$$(A)$$
 $I_1 < I_2 < I_3$

$$(B)$$
 $I_3 < I_2 < I_1$

$$(C)$$
 $I_2 < I_3 < I_1$

$$(D) I_1 < I_3 < I_2$$

9、若级数
$$\sum_{n=1}^{\infty} a_n^2$$
 收敛,则下列结论不正确的是().

$$(A)$$
 $\sum_{n=1}^{\infty} a_n^3$ 必收敛

$$(B)$$
 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 必收敛

$$(C)$$
 $\sum_{n=1}^{\infty} (-1)^n a_n$ 必收敛

$$(D)$$
 $\sum_{n=1}^{\infty}a_{n}a_{n+1}$ 必收敛

10 、 函 数
$$f(x,y)$$
 在 点 $(0,0)$ 处 连 续 ,且 $\lim_{\substack{x\to 0 \ y\to 0}} \frac{f(x,y)-2x+3y}{\sqrt{x^2+y^2}}=0$,则

$$\lim_{x\to 0} \frac{f(x,0) - f(0,-2x)}{x} = ().$$

$$(A)$$
 -2

$$(B)$$
:

$$(C)$$
 -

$$(A)$$
 -2 (B) 3 (C) -1 (D) -4

二、填空题

11、设
$$y = f(x)$$
由 $\begin{cases} x = t^2 + 2t \\ t^2 - y - siny = 0 \end{cases}$ $(t \ge 0)$ 确定,则 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\Big|_{t=0} = \underline{\qquad}$.

12 、 己 知
$$f(x^2+y^2,x^2-y^2)=4-2x^4-2y^4,D:x^2+y^2\leqslant 4$$
,则

$$\iint \sqrt{f(x,y)} \, d\sigma = \underline{\qquad}.$$

$$14. \lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + n^4}} + \frac{2}{\sqrt{4n^2 + n^4}} + \frac{3}{\sqrt{9n^2 + n^4}} + \dots + \frac{n}{\sqrt{n^4 + n^4}} \right) =$$

.

15、设函数 f(x,y) 连续,区域 D 是由曲线 $(x^2+y^2)^2=2xy$ 在第一象限所围成的部分,则 $\iint_D f(x,y) dx dy$ 在极坐标下先 θ 后 r 的二次积分为______.

$$16$$
、由曲线 $y=rac{3}{x}(x>0)$ 与直线 $x+y=4$ 所围成的平面图形 D 的形心坐标为

17、曲线xy = 1在点(1,1)处的曲率圆方程为 .

18、设
$$u = ln(x^2 + y^2 + z^2)$$
,则 rot (grad u) =_____.

19、函数 $f(x) = x + 1(0 \le x \le \pi)$ 余弦级数为_____.

20、设曲面 S 为
$$x^2+y^2+z^2=2z$$
,则曲面积分 $I=\oiint(x^2+y^2+z^2)dS=$

.

21、设
$$f(x) = \begin{cases} 1, & 0 \leqslant x \leqslant \frac{\pi}{2} \\ 2, & \frac{\pi}{2} \leqslant x \leqslant \pi \end{cases}$$
, $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) cosnx dx, \ n = 1, 2, \cdots$,

$$S(x) = \sum_{n=1}^{\infty} a_n cosnx$$
,则 $S(-2) =$ _______.

三、解答题

22、(I)证明:
$$x > 0$$
时, $x - \frac{x^2}{2} < \ln(1+x) < x$;

(II) 设
$$x_n = \left(1 + \frac{1}{n^2}e^{\frac{1}{n}}\right)\left(1 + \frac{1}{n^2}e^{\frac{2}{n}}\right)\cdots\left(1 + \frac{1}{n^2}e^{\frac{n}{n}}\right)$$
,证明极限 $\lim_{n\to\infty}x_n$ 存

在,并求它的值.

23、设常熟a>0,且f(x)为[-a,a]上连续的偶函数,证明:对任意实数 λ ,有

$$\int_{-a}^{a} \frac{f(x)}{1 + e^{-\lambda x}} = \int_{0}^{a} f(x) dx,$$
并利用上式计算积分 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{e^{x} sin^{2} x}{1 + e^{x}} dx.$

24、设函数f(x)在[-2,2]上二阶可导, $|f(x)| \leqslant 1$,且 $f^2(0) + f'^2(0) > 2$,证明:

(I) 存在不同的两个点 $\xi_1, \xi_2 \in (-2, 2)$,使得 $|f'(\xi_1)| \le 1$, $|f'(\xi_2)| \le 1$;
(II) 存在 $\xi \in (-2, 2)$,使得 $f(\xi) + f''(\xi) = 0$.

25、设区域
$$D = \left\{ (r,\theta) | 0 \leqslant r \leqslant \pi \sec \theta \right., 0 \leqslant \theta \leqslant \frac{\pi}{4} \right\}$$
,计算
$$I = \iint_D r^2 \cos \theta \cos \left[\sqrt{2} \, r \sin \left(\theta + \frac{\pi}{4} \right) \right] dr d\theta \,.$$

26、设位于第一象限且原点与x轴相切的光滑曲线y=y(x),P(x,y)为曲线上任一点,该点与原点间的弧长为 s_1 ,记P点的切线与y轴交点为A,且P,A 两点的距离为 s_2 ,已知 $x(3s_1+2)=2(x+1)s_2$,求该曲线方程.

27、设函数 $z=xf(x-y,\varphi(xy^2)),f$ 具有二阶连续偏导数, φ 具有二阶导数,且 $\left. \varphi(x) 满足 \lim_{x\to 1} \frac{\varphi(x)-1}{(x-1)^2} = 1, 求 \frac{\partial^2 z}{\partial x \partial y} \right|_{(1,1)}.$

28、求函数 $f(x,y)=x^2+4y^2+xy+2$ 在区域 D 上最大值与最小值, 其中 D 为 $\frac{x^2}{4}+y^2\!\leqslant\!1\, \mathrm{ll}\,y\!\geqslant\!\frac{1}{2}x-1\,.$

29、设函数
$$f_n'(x) = f_n(x) + \frac{n}{n^2 - 1}e^x x^{n-1} (n = 2, 3, \cdots)$$
且 $f_n(0) = 0$,试求:

- (I) 函数 $f_n(x)$ 的表达式;
- (II) 级数 $\sum_{n=2}^{\infty} f_n(x)$ 的和函数.

第二部分 线性代数

一、选择题

1、设A为n阶方阵, α , β 为n维列向量, a, b, c为常数, 已知|A|=a,

$$\begin{vmatrix} b & \alpha^T \\ \beta & A \end{vmatrix} = 0 \;, \;\; \text{M} \begin{vmatrix} c & \alpha^T \\ \beta & A \end{vmatrix} = \; (\qquad) \;.$$

- (A) 0 (B) $\alpha^T \beta$ (C) (c-b)a (D) a

2、设n阶方阵A,B满足 $(AB)^2 = E$,则必有().

(A) AB = E

(B) AB = -E

(C) $A^2 B^2 = E$

(D) $(BA)^2 = E$

3、设A为n阶可逆矩阵,交换A的第一行与第二行得到矩阵B,则下列矩阵中必 为正交矩阵的是().

- (A) AB (B) AB^{-1} (C) $A^{-1}B$ (D) $B^{-1}A$

4、设A, B 为n 阶实对称可逆阵,则下列结论不正确的是().

- (A) 存在可逆阵P,Q, 使得PAQ = B
- (B) 存在可逆阵P, 使得 $P^{-1}ABP = BA$
- (C) 存在可逆阵P, 使得 $P^TA^2P=B^2$
- (D) 存在正交阵Q, 使 $Q^{-1}AQ = Q^TAQ = B$

- 5、设 $m \times n$ 矩阵A 的秩r(A) = n < m,则下列结论正确的是().

 - (A) 若AB = AC, 则B = C (B) 若BA = CA, 则B = C

 - (C) A 的任意n 个行向量线性无关 (D) A 的任意n 个行向量线性相关
- 6、设A为 $m \times n$ 矩阵,r(A) = m < n,则下列说法不正确的是().
- (A) A一定可以只经过一系列的初等行变换化为 (E_m, O) , E_m 为m阶单位矩阵
- (B) 对任意的m维列向量b, Ax = b有无穷多解
- (C) 如果m阶方阵B满足BA = O,则一定有B = O
- (D) 行列式 $|A^T A| = 0$
- 7、设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为4阶方阵, A经过初等行变换化为

$$B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
,则下列说法不正确的是().

- (A) $\alpha_2, \alpha_3, \alpha_4$ 为 A 的列向量组的最大无关组
- (B) $\alpha_1, \alpha_2, \alpha_3$ 线性相关
- (C) 有一组全不为零的数 k_1, k_2, k_3 , 使得 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$
- (D) α_4 必可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示

8、设 A 为 $m \times n$ 阶矩阵, B 为 $n \times s$ 阶	矩阵,且 $AB=C$,则 A 的行向量组线		
性无关是 C 的行向量组线性无关的().			
(A) 充分必要条件	(B) 充分不必要条件		
(C) 必要不充分条件	(D) 既不成分也不必要条件		
9 、设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 为三维非零向量,则下列命题正确的是().			
(A)如果 $lpha_1,lpha_2$ 线性相关, $lpha_3,lpha_4$ 线性	上相关,则 $\alpha_1+\alpha_3,\ \alpha_2+\alpha_4$ 线性相关		
(B) 如果 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则 $\alpha_1+\alpha_4,\ \alpha_2+\alpha_4,\ \alpha_3+\alpha_4$ 线性无关			
(C) 如果 $lpha_4$ 不能用 $lpha_1,lpha_2,lpha_3$ 线性表示,则 $lpha_1,lpha_2,lpha_3$ 一定线性相关			
(D) 如果 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 中任意 3 个向量均线性无关,则 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关			
10、设 A 与 B 都是 n 阶方阵, $Ax=0$ 的	$ 解都是Bx =0$ 的解, ξ_1,ξ_2,ξ_3 为		
Ax = 0 的基础解系,则在下列线性方程组中,	以 $\xi_1 + \xi_2$, $\xi_2 + \xi_3$, $\xi_1 + \xi_3$ 为基础解		
系的是().			
(A) (A+B)x=0	(B) $(A-B)x=0$		
(C) $ABx = 0$	(D) $\binom{A}{B}x = 0$		
11 、设 A 为 $m \times n$ 矩阵, $m \neq n$, b 为 m 维列向量,则下列结论			
①若 $r(A) = n$,则 $Ax = b$ 必有解;	②若 $r(A) = m$,则 $Ax = b$ 必有解;		
③ $Ax = 0$ 与 $A^T Ax = 0$ 必同解;	④ $A^T A x = A^T b$ 必有解.		

(A) 1 (B) 2 (C) 3 (D) 0

中正确的个数是().

- 12、设n 阶矩阵A 的各列元素之和为2,且|A|=6,则它的伴随矩阵 A^* 的各列 元素之和为().

 - (A) 2 (B) $\frac{1}{3}$ (C) 3 (D) 6
- 13、设A为三阶实对称矩阵,二次型 $f = x^T Ax$ 的规范形为 $y_1^2 y_2^2 + y_3^2$,则下 列结论中正确的个数为().
 - ①A的特征值必为1, -1, 1; ②A的秩为2;
 - ③A的行列式小于0;
- (4) **4 A** 必相似于对角阵 $\begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \end{pmatrix}$;
- ⑤A合同于对角阵 $\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 \end{pmatrix}$; ⑥A合同于对角阵 $\begin{pmatrix} -1 & & \\ & 2 & \\ & & 3 \end{pmatrix}$.
- (A) $1 \uparrow$ (B) $2 \uparrow$ (C) $3 \uparrow$ (D) $4 \uparrow$

- 14、设向量 $\alpha = (a_1, a_2, a_3)^T$, $\beta = (b_1, b_2, b_3)^T$ 线性无关,

 $x = (x_1, x_2, x_3)^T$,二次型

 $f(x_1,x_2,x_3)=(a_1x_1+a_2x_2+a_3x_3)(b_1x_1+b_2x_2+b_3x_3)$,则下列结论中不正确的 是().

(A) f 的秩为1

(B) f 的规范形为 $f = z_1^2 - z_2^2$

(C) f 必不正定

(D) $|\alpha \beta^T + \beta \alpha^T| = 0$

15、设 $A = (a_{ij})_{3\times 3}$ 为正定矩阵,则必有 ().

(A)
$$a_{11} + a_{22} > 2a_{12}$$

(B)
$$a_{11} + a_{22} < 2a_{12}$$

(C)
$$a_{11} + a_{22} \leq 2a_{12}$$

(D)
$$a_{11} + a_{22} \ge 2a_{12}$$

二、填空题

16、设A为三阶方阵, $|\lambda E - A| = \lambda^3 + 3\lambda + 2$, $\lambda_1, \lambda_2, \lambda_3$ 为A的特征值,则

$$\begin{vmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_3 & \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 & \lambda_1 \end{vmatrix} = \underline{\hspace{1cm}}.$$

17、设
$$\alpha=\begin{pmatrix}1\\2\\3\end{pmatrix}$$
, $\beta=\begin{pmatrix}2\\-1\\0\end{pmatrix}$,对任意的正整数 n ,矩阵 $(E+lphaeta^T)^n=$

_____•

18、若
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
,则 $E + A + A^2 + A^3 + A^4 = \underline{\hspace{1cm}}$

三、解答题

19、设A为三阶方阵, λ_1 , λ_2 , λ_3 是A的互不相等的特征值, α_1 , α_2 , α_3 分别是 其对应的特征向量,令 $\beta=\alpha_1+\alpha_2+\alpha_3$.

(I)证明 β , $A\beta$, $A^2\beta$ 线性无关;

20、设三阶实对称矩阵A的秩为2, $lpha_1,lpha_2$ 是A的两个线性无关的特征向量,且 $A(lpha_1+lpha_2)=lpha_2$.

(I) 证明 $\alpha_1^T\alpha_2=0$; (II) 求线性方程组 $Ax=\alpha_2$ 的通解.

21、设A为三阶方阵,并有可逆阵 $P=(p_1,p_2,p_3)$, p_i (i=1,2,3)为三维列向

量,使得
$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

(I) 证明: $p_1,\;p_2$ 为(E-A)x=0的解, p_3 为 $(E-A)x=-p_2$ 的解,且 A不可相似对角化;

(II) 当
$$A = \begin{pmatrix} 2 & -1 & -1 \\ 2 & -1 & -2 \\ -1 & 1 & 2 \end{pmatrix}$$
时,求可逆阵 P ,使得 $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

22、设A为三阶实对称矩阵, $P=(\alpha_1,\alpha_2,\alpha_3)$ 为三阶正交阵,且

$$P^T A P = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 2 \end{pmatrix}.$$

(I) 证明 $\alpha_i^T A \alpha_i > 0$, $\alpha_i^T A \alpha_j = 0$ $(i, j = 1, 2, 3, i \neq j)$;

(日)若 $Q=(lpha_1+lpha_2,lpha_2,lpha_3)$,计算 $Q^{ ext{-}1}AQ$,并证明 $Q^{ ext{-}1}AQ$ 与 Q^TAQ 合同但不相似.

23、设已知二次型
$$f(x_1,x_2,\cdots,x_n)=n\sum_{i=1}^n x_i^2-\left(\sum_{i=1}^n x_i
ight)^2$$
 $(n>1)$.

(I) 证 明 二 次 型 $f(x_1,x_2,\cdots,x_n)$ 的 矩 阵 $A=nE-\alpha\alpha^T$, 其 中 $\alpha=(1,1,\cdots,1)^T$, E 为n 阶单位阵;

(II) 求 A^k (k为自然数);

(III) 求二次型 $f(x_1,x_2,\cdots,x_n)$ 在正交变换下的标准形及规范形.

24、二次型 $f(x_1,x_2,x_3)=x^TAx$, A为实对称矩阵,且f(1,1,1)=3,且

$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \end{pmatrix} A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}. \quad \vec{x}:$$

(I) 二次型 $f(x_1,x_2,x_3)$;

(II) 可逆变换x = Cy, 化二次型 $f(x_1, x_2, x_3)$ 为标准形.

第三部分 概率论与数理统计

一、选择题

1、设事件A,B,C是一个完备事件组,即它们两两互不相容且其和为 Ω ,则下 列结论中一定成立的是().

- (A) \overline{A} , \overline{B} , \overline{C} 是一个完备事件组
- (B) **A**,**B**,**C**两两独立
- (C) $A \cup B = \overline{A} \cup \overline{B}$ 独立
- (D) \overline{A} , \overline{B} , \overline{C} 是两两对立事件

2、设X,Y为随机变量, $P\{XY \le 0\} = \frac{3}{5}$, $P\{\max(X,Y) > 0\} = \frac{4}{5}$,则 $P\{\min(X,Y) \leq 0\} = ().$

- (A) $\frac{1}{5}$ (B) $\frac{2}{5}$ (C) $\frac{3}{5}$

3、商店出售10台洗衣机,其中恰有3台次品.现已售出一台洗衣机,在余下的洗 衣机中任取两台发现均为正品,则原先售出的一台是次品的概率为().

- (A) $\frac{3}{10}$ (B) $\frac{3}{8}$ (C) $\frac{1}{3}$ (D) $\frac{2}{3}$

4、设A,B为两个随机事件,P(AB) > P(A)P(B),若存在 $C \subset AB$,使得 A-C与B相互独立,则P(C)=().

(A) $P(A) - P(A|\overline{B})$

(B) P(A) - P(A|B)

(C) $P(B) - P(B|\overline{A})$

(D) P(B) - P(B|A)

- 5、下列函数中,为某随机变量X的分布函数的是().
 - (A) $F(x) = \frac{1 + \operatorname{sgn}(x)}{2}$

(B) $F(x) = \frac{x}{x + e^{-x}}$

(C) $F(x) = \frac{1}{1 + e^x}$

- (D) $F(x) = \frac{1}{1 + e^{-x}}$
- 6、设随机变量X的取值非负,其分布函数为F(x),且EX存在,则EX=(
 - (A) $\int_0^{+\infty} x F(x) dx$

(B) $\int_{0}^{+\infty} x[1-F(x)]dx$

(C) $\int_0^{+\infty} F(x) dx$

- (D) $\int_{0}^{+\infty} [1 F(x)] dx$
- 7、设随机变量 X_1, X_2 相互独立且均服从于 $N(0, \sigma^2)$,且 $P\Big(\Big|rac{X_2}{X_1}\Big| < k\Big) = lpha$,则

k = ().

(A) $t_{\frac{1-\alpha}{2}}(1)$

(B) $t_{1-\alpha}(1)$

(C) $F_{\frac{1-\alpha}{2}}(1,1)$

- (D) $F_{1-\alpha}(1,1)$
- 8、设 X_1,X_2,\cdots,X_n 是来自正态总体N(0,1)的简单随机样本, \overline{X},S^2 是样本均值与样本方差,则下列不服从 $\chi^2(n-1)$ 分布的随机变量是().
 - $\text{(A) } \sum_{i=1}^n X_i^2 n\overline{X}^2$

(B) $\sum_{i=1}^{n} X_{i}^{2} - \overline{X}^{2}$

(C) $(n-1)S^2$

 $(\mathbb{D}) \sum_{i=1}^{n-1} X_i^2$

9、设随机变量 $X_i \sim B(i, 0.1)$, $i=1,2,\cdots,15$,且 X_1,X_2,\cdots,X_{15} 相互独立,

根据切比雪夫不等式,则 $Pigg\{8<\sum_{i=1}^{15}X_i<16igg\}$ 的值()

$$(A) \geqslant 0.325$$

(B)
$$\leq 0.325$$

(C)
$$\geq 0.675$$

(D)
$$\leq 0.675$$

10、设总体X的方差存在, X_1,X_2,\cdots,X_n 是取自总体X的简单随机样本,其样本均值和样本方差分别为 \overline{X},S^2 ,则 EX^2 的矩估计量是().

(A)
$$S^2 + \overline{X}^2$$

(B)
$$\frac{n-1}{n}S^2 + \overline{X}^2$$

(C)
$$\frac{n}{n-1}S^2 + \overline{X}^2$$

(D)
$$\frac{n}{n-1}S^2 + n\overline{X}^2$$

二、填空题

11、设试验的成功率 p=20% ,现在将试验独立地重复进行100 次,则试验成功的 次 数 介 于 16 次 和 32 次 之 间 的 概 率 $\alpha=$ _____. $(\varPhi(1)=0.8413,\ \varPhi(3)=0.9987)$

12、掷一枚不均匀的硬币,设正面出现的概率为p,反面出现的概率为q=1-p,随机变量X为一直掷到正面和反面都出现为止所需要的次数,则X的概率分布为

、设随机变量 X_1,X_2,X_3 相互独立,均服从 [0,1] 上的均匀分布, $X=\min\{\max\{X_1,X_2\},\ X_3\}$,则 $0\leqslant x\leqslant 1$ 时, X 的密度函数为 $f_X(x)=$.

、设随机变量X,Y独立且同服从于 $N(\mu,\sigma^2)$,其联合概率密度f(x,y)在(2,2)处有驻点,且 $f(0,0)=rac{1}{4\pi e^2}$,则(X,Y)服从的分布是______.

、在一次晚会上,有n ($n \ge 3$)对夫妻做一游戏,将男士与女士随机配对,则夫妻配成对的期望值为 .

、 设 二 维 随 机 变 量 (X,Y) 服 从 正 态 分 布 $N(\mu,\mu;\sigma^2,\sigma^2;0)$, 则 $E[\min(X,Y)] =$ ______.

、设 (X_1,X_2,\cdots,X_n) 为来自总体 $X\sim N(\mu,\sigma^2)$ 的一个简单随机样本,其中 σ^2 已 知 . 如 果 μ 的 置 信 度 为 90% 的 置 信 区 间 为 $(9.765,\ 10.235)$, 且 $\Phi(1.645)=0.95$, $\Phi(1.96)=0.975$,其中 $\Phi(x)$ 为标准正态分布的分布函数,则 μ 的置信度为95% 的置信区间为 .

三、解答题

18、设随机变量 $X\sim U[0,2]$,Y=[X]+X, $[\cdot]$ 表示取整函数,求:

(I) 随机变量Y的概率密度函数 $f_Y(y)$; (II) Cov(X,Y).

19 、 设 随 机 变 量 $X\sim N(0,1),\; Y\sim N(0,1)$, 且 X,Y 相 互 独 立 . 令 $U=X+2Y,\; V=X+aY$.

(I) 问常数a取何值时, U和V相互独立?

(II) 当U和V相互独立时,求概率 $P\{X>0|X+2Y=2\}$.

20、在区间[0,3]上随机地取一个实数X. 若 $0 \le X \le 1$,则随机变量Y在[0,X]上服从均匀分布,若 $1 < X \le 3$,则Y在[X,3]上服从均匀分布,

(I) 求(X,Y)的概率密度函数 f(x,y);

(II) 求Y的概率密度函数 $f_Y(y)$.

21、设随机变量 $X,\;Y,\;Z$ 相互独立,且X和Y均服从 $N(0,1),\;Z$ 的分布律为 $P\{Z=0\}=P\{Z=1\}=rac{1}{2},\;T=(X^2+Y^2)Z$.

(I) 求T的分布函数 $F_T(t)$; (II) 求ET.

- 22 、 设 随 机 变 量 (X,Y) 在 区 域 D : $|x|+|y|\leq 1$ 上 服 从 均 匀 分 布 , $U=X+Y,V=Y-X\;.$
 - (I) 求(U,V)的分布函数F(u,v);
 - (II) 问U与V是否独立同分布?

- 23、设随机变量X的密度函数为f(x),方差DX=4,而随机变量Y的密度函数为2f(-2y),且X与Y的相关系数 $ho_{XY}=-\frac{1}{2}$,记Z=X+2Y.
 - (I) 求EZ, DZ;
 - (II) 用切比雪夫不等式估计概率 $P\{|Z| \ge 4\}$.

- 24、设随机变量 $\chi^2 \sim \chi^2(1)$, $F \sim F(1,1)$, $T \sim t(1)$. 求:
 - $(\ \ |\)\ P\{\chi^2\!\leqslant\!1\},\qquad (\ ||\)\ P\{F\!\leqslant\!1\},$
 - (||||) $P{-1 < T < 1}$, 其中 $\Phi(1) = 0.8413$.