DLP HW4

數據所 311554019 宋沛潔

1. Introduction:

這次的作業是使用 pytorch 來設計神經網路架構,對於糖尿病所引發視網膜病變的照片進行嚴重分類,類別共有五種(0:最輕微~4:最嚴重)。神經網路模型規定要實作 Resnet18 & Resnet50,其中分別對 pretrained model 及沒有 pretrained model 的結果進行比較,最後要呈現 confusion matrix 及 training/testing accuracy 的結果。

2. Experiment setups

A. The details of your model (ResNet):

ResNet18 & ResNet50 是多了 residual block, 去防止模型在神經網路傳遞時梯度消失或爆炸的問題。ResNet18 包含 basic block、ResNet50 包含 Bottleneck block。

使用 torchvision.models 中寫好的 ResNet18 & ResNet50 架構,版本是 v1.5,至於 pretrained model 的部分,torchvision 已經設計好,可以直接將 model pretrained 參數設成 True。不管是有 pretrained model 還是沒有,在訓練過程都會更新 weight。那在最後一層的後面加了 fully connection,主要的用意是要將照片分類。類別總共是 5 類,所以最後的輸出會是 5。ResNet 架構中 v1.0 與 v1.5 的差別是: v1.5 bottleneck blocks第一個 convolution 1x1 的 stride 由 2 改 1,第二個 convolution 3x3 stride 由 1 改 2。Downsampling 的工作由第一個 convolution 1x1 到第二個 convolution 3x3。那這個好處使高維特徵保留,第二個 convolution 3x3 可以得到較高維度的特徵抽取,訓練穩定,讓模型的泛化能力變高,不會使模型的特徵表示能力下降。

B. The details of your Dataloader:

RetinopathyLoader 的部分是使用助教給的,將照片進行轉換後,在將照片裝成一個一個 batch。Train data 會進行 shuffle。

```
train_dataset = RetinopathyLoader("./data/new_train", "train")

test_dataset = RetinopathyLoader("./data/new_test", "test")

train_loader = DataLoader(train_dataset, batch_size = batch_size, shuffle=True, num_workers=8)

test_loader = DataLoader(test_dataset, batch_size = batch_size, shuffle=False, num_workers=8)
```

在 RetinopathyLoader 中,__init__ function 中,root 會先取存放資料的位置。Mode 有兩種,train data 或是 test data。getData function 會透過 csv 去讀取 train/teat 對應資料。__len___會回傳 dataset 的大小。在__getitem__ 中,首先將 self.img_name 取取圖像路徑。再來,從 self.label 獲取 ground truth label 及進行 Transform 轉換。最後回傳處理後的 image 和 label。

```
def getData(mode):
   if mode == 'train':
       img = pd.read_csv('train_img.csv', header=None)
       label = pd.read_csv('train_label.csv', header=None)
       return np.squeeze(img.values), np.squeeze(label.values)
       img = pd.read_csv('test_img.csv', header=None)
       label = pd.read_csv('test_label.csv', header=None)
       return np.squeeze(img.values), np.squeeze(label.values)
class RetinopathyLoader(data.Dataset):
   def __init__(self, root, mode):
           mode : Indicate procedure status(training or testing)
           self.img_name (string list): String list that store all image names.
           self.label (int or float list): Numerical list that store all ground truth label values.
       self.img_name, self.label = getData(mode)
       self.mode = mode
       print("> Found %d images..." % (len(self.img_name)))
   def __len__(self):
         ""'return the size of dataset"""
       return len(self.img_name)
   def __getitem__(self, index):
       img = Image.open(os.path.join(self.root, self.img_name[index]) + '.jpeg')
       label = self.label[index]
       img = transformer(self.mode, img)
       return img, label
```

C. Describing your evaluation through the confusion matrix

利用 sklearn.metrics 中的 confusion_matrix 及 ConfusionMatrixDisplay 來呈現 confusion matrix。將 testing predict 的結果與 ground truth label 來進行比較。confusion matrix 中,x 軸代表 predict label,y 軸代表 ground truth label。進行 row normalization,顏色越淺代表機率越低。

下方的圖中,左邊是沒有 pretrained model 的 confusion matrix 結果,右邊是 pretrained model 的 confusion matrix 結果。可以看到沒有 pretrained model 會將照片全部歸類於 0,表示模型的泛化能力不好,都猜同一種類別。但是 pretrained model 的 confusion matrix 結果看起來不錯。

3. Data Preprocessing

A. How you preprocessed your data?

使用 torchvision 的 transformer, torchvision 包含了一些對於圖像進行預處理和數據增強的功能。首先我選擇將所有照片 resize 成 512x512,這樣轉向量後每一張照片的長度才會一致。至於 training data 對照片進行隨機選轉 180 度、每張照片都有 0.5 機率被水平翻轉、使用隨機 crop,來增加照片的多樣性,讓模型預測效果變好,可以提高模型的泛化能力。

B. What makes your method special?

經過將照片進行隨機選轉 180 度、每張照片都有 0.5 機率被水平翻轉、使用隨機 crop,來增加照片的多樣性。原本有使用多種轉換,但發現一次用太多,效果不好。

4. Experimental results

A. The highest testing accuracy

在最高的 accuracy 是用 Resnet50,參數為 epoch = 8、momentum = 0.9、 Learning rate = 1e-3、weight decay = 5e-4、batch size = 16。

B. Comparison figures

下方的圖中,左邊是 Resnet50 model 的結果,右邊是 Resnet18 model 的結果。Resnet50 在 epoch = 8 的時候就可以達到比 Resnet18 在 epoch = 15 還要好的結果。

Resnet18: \$\square\$ apoch = 15 \cdot momentum = 0.9 \cdot Learning rate = 1e-3 \cdot weight decay = 5e-4 \cdot batch size = 8

下方的圖中,左邊是 Resnet50 model 最好的 confusion matrix 結果,右邊是 Resnet18 model 最好的 confusion matrix 結果。

5. Discussion

- 1. 上圖左方是 Resnet50 batch size=4; 右方是 Resnet50 batch size=16。對於 batch size 的大小,只要是 batch size 越大,收斂較快,而且準確度就會 越好。
- 2. 對於照片 transformer 的處理中,如果套用太多效果不好。
- 3. 有另外加入 scheduler 去調整 learning rate,但也是效果沒有比較好。

4. 對於最好的 confusion matrix 結果來看,除了 0 跟 2 的預測結果有達 70%以上,剩餘的 label 結果都相當不好,可見泛化性還可以再提升。