CS & IT ENGINEERING

Data Structure & Programming Hashing Lec- 01

By-Pankaj Sharma Sir

TOPICS TO BE COVERED

7 comp

petter

God: 0(1)

$$m = 10$$

Keys: 13,22,15,78,86,91,107

0	
١	
2	
3	
4	
ς	
5	
7	
8	
7	

$$m = 10$$

Keys: 13,22,15,78,86,91,107

$$h(K) = K \mod m$$

$$h(22) = 22 \mod 10 = 2$$

$$m = 10$$
 $keys: 12, 14, 16, 22, 38, 47$
 $h(k) = k \mod m$
 $h(12) = 2$
 $h(14) = 4$
 $h(16) = 6$
 $h(22) = 2$
 $h(14) = 4$
 $h(16) = 6$
 $h(16) = 6$

Groud hash function

- (i) Easy to compute
- (ii) Uniformly distribute

Collission resolution Tech.

Hash function

$$h(k) = (k mod m) + 1$$

$$1, 2, \dots m$$

Linear Probing

Let
$$h(k) = k \mod m$$

$$h(k_1) = L \quad \text{collission occur}$$

$$H(k, i) = (h(k) + i) \mod m$$

$$H(k_1, i) = (h(k) + i) \mod m$$

$$h(k_{1}, 1) = 6$$

$$h(k_{1}) = 6$$

$$h(k_{1}) = (h(k_{1}) + 1)$$

$$= 6 + 1 = 7$$

$$h(k_{1}, 2) = (h(k_{1}) + 2) = 8$$

$$h(k_{1}, 3) = (h(k_{1}) + 3) = 9$$

$$h(k_{1}, 4) = (h(k_{1}) + 3) = 9$$

$$h(k_{1},$$

Keys: 31,26,43,27,34,46,14,58,13 m=12

(iii)
$$h(26) = 26 mod | 2 = 2$$

(iii)
$$h(43) = 43 \mod 12 = 7$$

 $i = 1$

$$H(k,i) = (h(k)+i) mod m$$

$$H(43,1) = (h(43)+1) \mod 12 = 8$$

$$(10) p(SJ) = 5Jwod15 = 3$$

34,46,14,58,13
vil harris and
vi) h(46) = 46 mod 12
= 10 collission
H(W1) - (1-1-1-1)
H(46,1) = (h(46)+1) mod12
= 11
Collission
Vi) h(14) = 14mod12=2
H(IV I) - (I-CI)
H(14,1) = (h(14)+1) mod12
= (3) (011, 22,01)
H(14,2) = (h(14)+2) mod12
() - (((1)+2) mod 2
Collission
VIII) h(58) = 58,000d10 -(10)
H(28,1) = (h(28)+1)mod12 = (1)
H(28/5) = (p(28/45) tenoq15 = 0
IN P(12) = (1/8/145) WOGIS = 0
IN P(13) = 13940915 = 1

0	28
1	13
2	26
3	27
1	14
5	
6	
7	31
8	43
1	
0	34
li	46

h(K) = Kmod m Keys: 31, 26, 43, 27, 34, 46, 14, 58, 13 m=12

X(S) 3 (0) 4(1) Jest h(K) = Kmod m Keys: 31, 26, 43, 27, 34, 46, 14, 58, 13 m=12

Primary clustering
Problem

Rey will get this slat (i) 5,10,11,0,1,2,3,4 <u>8</u>

0	28	
1	13	
2	26	
3	27	
4	14	
2 5		
6		
7	31	
8	43	
9		
10	34	
n	46	

h(K) = Kmod m)

Keys: 31, 26, 43, 27, 34, 46, 14, 58, 13

m=12

Primary clustering

Reg

Problem

Prob. that new Rey Will get this slat DS: 5:00-7:00

CRT

Open addressing

Sep. chaining

(i) Linear Probing: Prim. clustering

(II) Quadratic Probling: Secondary clustering

(iii) Double hashing:

