Cheatsheet - Sintesi e Analisi mono- e bivariata in R

Sintesi

media	mean(x)
mediana	median(x)
moda (solo se unica)	x[which.max(tabulate(match(x,unique(x))))]
deviazione standard	sd(x)
range interquartile	IQR(x)
tabella di contingenza	table(x,y)
tabella di contingenza con proporzioni (righe)	prop.table(table(x,y), margin = 1)
tabella di contingenza con proporzioni (colonne)	prop.table(table(x,y), margin = 2)

Rappresentazione

grafico a barre (una variabile)	<pre>barplot(table(x))</pre>
grafico a barre (due variabili, stacked)	barplot(table(y,x),legend.text = levels(factor(y)))
grafico a barre (due variabili, raggruppato)	<pre>barplot(table(y,x),beside = T,legend.text = levels(factor(y)))</pre>
grafico a torta	pie(x)
istogramma	hist(x)
boxplot (x ratio, y ratio)	boxplot(x,y)
boxplot (x ratio, y nominale)	boxplot(x~y)
mosaicplot	mosaicplot(table(x,y), color = T)
scatterplot	plot(x,y)

Test

test di Shapiro-Wilk	shapiro.test(x)
chi-square Goodness of Fit test	<pre>chisq.test(table(x))</pre>
chi square for Independence	chisq.test(x,y)
chi-square con simulazione Monte Carlo	<pre>chisq.test(x,y, simulate.p.value = T)</pre>
test esatto di Fisher	fisher.test(x,y)
one sample t-test	t.test(x)
one sample Wilcoxon signed-rank test	wilcox.test(x)
Student's t-test (Paired) (confronto misurazioni ripetute)	t.test(x,y, paired = T)
Student's t-test (Independent)*	t.test(x,y)
Wilcoxon signed-rank test (confronto misurazioni ripetute)	wilcox.test(x,y, paired = T)
Mann-Whitney U test*	<pre>wilcox.test(x,y)</pre>
Kruskal-Wallis test	kruskal.test(x~y)
one way ANOVA	<pre>summary(aov(x~y))</pre>
Coefficiente di correlazione di Pearson (r)	<pre>cor.test(x,y, method = "pearson")</pre>
Coefficiente di correlazione di Spearman (rho)	<pre>cor.test(x,y, method = "spearman")</pre>
Coefficiente di correlazione di Kendall (tau)	<pre>cor.test(x,y, method = "kendall")</pre>

^{*} per ognuno di questi test è valida sia la forma (x,y) in cui x e y sono variabili ratio da confrontare, sia la forma $(x \sim y)$, in cui x è la variabile ratio e y (nominale) rappresenta i gruppi di cui si vuole confrontare x, ad es.:

(f0[genere = "M"], f0[genere = "F"]) è intercambiabile con (f0 ~ genere)