Grundbegriffe der Informatik Aufgabenblatt 9

Matr.nr.:	
Nachname:	
Vorname:	
Tutorium:	Nr. Name des Tutors:
Ausgabe:	15. Dezember 2011
Abgabe:	23. Dezember 2011, 12:30 Uhr im Briefkasten im Untergeschoss von Gebäude 50.34
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet abgegeben werden.	
Vom Tutor auszufüllen:	
erreichte Punkte	
Blatt 9:	/ 18
Blätter 1 – 9:	/ 177

Aufgabe 9.1 (2+2+2+2 Punkte)

Zeigen oder widerlegen Sie:

a)
$$\frac{n^3+2n}{2n+1} \in O(n^2)$$

b)
$$5^n \in O(3^n)$$

c)
$$n^5(\log_2 n)^2 \in \Theta(2^{5\log_2 n + \log_2 \log_2 n} \log_2(n^5))$$

d) Für alle Funktionen
$$f(n) > 0$$
, $g(n) > 0$ gilt: $f(n) \in O(g(n)) \Rightarrow (f(n) + g(n)) \in \Theta(g(n))$

e) Für alle Funktionen
$$f(n) > 0$$
, $g(n) > 0$, $p(n) > 0$, $q(n) > 0$ gilt: $f(n) \in O(p(n)) \land g(n) \in O(q(n)) \Rightarrow (f(n))^{g(n)} \in O((p(n))^{q(n)})$

Aufgabe 9.2 (3+3 Punkte)

Überprüfen Sie folgende Relationen R_1 und R_2 auf alle Eigenschaften einer Äquivalenzrelation:

a)
$$m, n \in \mathbb{R} \setminus \{0\} : mR_1n \iff \exists k \in \mathbb{R}, k > 0 : \frac{m}{n} = k$$

b)
$$m, n \in \mathbb{R} : mR_2n \iff \frac{m}{2} < n$$

Aufgabe 9.3 (2 Punkte)

Es sei *a* ein Array der Länge *n*. Gegeben sei folgender Algorithmus:

$$x \leftarrow 0$$

for $i \leftarrow 0$ to $n - 1$ do

for $j \leftarrow i$ to $n - 1$ do

 $x \leftarrow x + a[j]$

od

for $k \leftarrow 1$ to n^2 do

 $x \leftarrow x + k * a[i]$

od

od

Schätzen Sie die Laufzeit möglichst passend im O-Kalkül ab. Begründen Sie dabei Ihre Abschätzung auf Basis der einzelnen Zeilen des Algorithmus.

Eulenfest 2011

Am Dienstag, 20.12.2011, ab 20 Uhr findet im Infobau am HSaF des alljährliche Eulenfest statt. Euch erwarten Musik, Glühwein, Tanzmatten und tolle Menschen. Und das Beste: Freier Eintritt!

Es werden noch Helfer gesucht: http://fsmi.uni-karlsruhe.de/helfen

