PCT/JP 00/02317

19//19/38

1 0.04.00

POT

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

REC'D 26 MAY 2000

JP00/23/7

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

EV

出 願 年 月 日 Date of Application:

1999年 4月 9日

出 願 番 号 Application Number:

平成11年特許願第103347号~

三菱重工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 5月12日

特許庁長官 Commissioner, Patent Office

近藤隆

出証番号 出証特2000-3034967

【書類名】 特許願

【整理番号】 98P02606

【提出日】 平成11年 4月 9日

【あて先】 特許庁長官 殿

【国際特許分類】 B01J 19/08

【発明の名称】 有機ハロゲン化合物の分解装置

【請求項の数】 3

【発明者】

【住所又は居所】 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業

株式会社 名古屋研究所内

【氏名】 別所 正博

【発明者】

【住所又は居所】 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業

株式会社 名古屋研究所内

【氏名】 服部 敏夫

【発明者】

【住所又は居所】 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業

株式会社 名古屋研究所内

【氏名】 椿 泰廣

【特許出願人】

【識別番号】 000006208

【氏名又は名称】 三菱重工業株式会社

【代理人】

【識別番号】 100100077

【弁理士】

【氏名又は名称】 大場 充

【選任した代理人】

【識別番号】 100064908

【弁理士】

【氏名又は名称】 志賀 正武

【選任した代理人】

【識別番号】 100108578

【弁理士】

【氏名又は名称】 高橋 詔男

【選任した代理人】

【識別番号】 100101465

【弁理士】

【氏名又は名称】 青山 正和

【手数料の表示】

【予納台帳番号】 008707

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9724027

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 有機ハロゲン化合物の分解装置

【特許請求の範囲】

【請求項1】 有機ハロゲン化合物を含むガスにマイクロ波を照射することによって熱プラズマを生成し、該熱プラズマ中で有機ハロゲン化合物を水蒸気と 反応させて分解する分解装置であって、

ヒータ本体に形成された流路に水源から供給された水を通過させることによって水蒸気を生成するヒータを備えるとともに、前記流路には、その入口側から出口側へと連通する隙間を残しつつ当該流路を閉塞する充填部材が設けられていることを特徴とする有機ハロゲン化合物の分解装置。

【請求項2】 前記充填部材は、無機材料からなることを特徴とする請求項 1記載の有機ハロゲン化合物の分解装置。

【請求項3】 前記ヒータには、前記流路とは別に有機ハロゲン化合物を流通させる第2流路が形成されていることを特徴とする請求項1記載の有機ハロゲン化合物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、プラズマを利用した有機ハロゲン化合物の分解装置に係わり、特に、マイクロ波を利用してプラズマを発生させるようにした有機ハロゲン化合物の分解装置に関するものである。

[0002]

【従来の技術】

分子内にフッ素、塩素、臭素等を含んだフロン、トリクロロメタン、ハロン等 の有機ハロゲン化合物は、冷媒、溶剤、消火剤等の幅広い用途に大量に使用され ており、産業分野における重要度は極めて高い。

しかし、これら化合物は揮発性が高く、未処理のまま大気, 土壌, 水等の環境 に放出されると、発ガン性物質の生成, オゾン層の破壊等、環境に悪影響を及ぼ すことがあるため、環境保全の見地から無害化処理を行う必要がある。 [0003]

従来から有機ハロゲン化合物の処理方法として報告されているものは、主として高温での分解反応を利用したものがあり、この処理方法は更に焼却法とプラズマ法とに大別される。

焼却法は、有機ハロゲン化合物を樹脂等の通常の廃棄物と一緒に焼却するものであるのに対し、プラズマ法は、プラズマ中で有機ハロゲン化合物を水蒸気と反応させ、二酸化炭素、塩化水素、フッ化水素に分解するものである。

[0004]

さらに、後者のプラズマ法に係る有機ハロゲン化合物の分解装置については、 マイクロ波を利用してプラズマを発生させるものが近年開発されている。

この分解装置は、アルカリ液を収容する排ガス処理タンクと、開口した下端部をアルカリ液に浸漬した状態で配設される反応管と、該反応管の上方において垂直方向に延在する円筒導波管と、該円筒導波管の内部に配されその下端を貫通して反応管に連通する放電管と、水平方向に延在しその一端部近傍において円筒導波管に連接される方形導波管と、該方形導波管の他端に装着されるマイクロ波発信器等を具備してなる。

[0005]

この分解装置では、放電管に有機ハロゲン化合物および水蒸気が供給される一方で、マイクロ波発信器から発信されたマイクロ波が方形導波管を介して円筒導波管に伝送される。

そして、円筒導波管の内部に形成されたマイクロ波電界で放電を起こし、反応 管内で有機ハロゲン化合物を熱プラズマにより分解する。

他方、この分解反応により生成された生成ガスは、アルカリ液中を通って中和 されるとともに、炭酸ガス等を含む残りのガスは排気ダクトから排出される。

[0006]

【発明が解決しようとする課題】

ところで、この分解装置には、水源から供給された水を加熱することによって 水蒸気を生成するヒータが設けられている。

しかし、従来のヒータは、貫通形成された断面円形の流路に水源からの水を通

[0007]

すなわち、水が流路内を短時間で通過してしまううえに、水と流路壁面との接 触面積が小さいため、均一に水が加熱されない。

すると、脈動や突沸による飛散水の発生を招いて、放電管に水蒸気が安定供給 されず、プラズマの消失や分解反応が不安定になるおそれが生じ得る。

[0008]

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、乾燥 した水蒸気を安定供給することによるプラズマの消失防止および分解反応の安定 化にある。

[0009]

【課題を解決するための手段】

上記課題を解決するために、本発明においては以下の構成を採用した。

すなわち、請求項1記載の有機ハロゲン化合物の分解装置は、有機ハロゲン化合物を含むガスにマイクロ波を照射することによって熱プラズマを生成し、該熱プラズマ中で有機ハロゲン化合物を水蒸気と反応させて分解する分解装置であって、ヒータ本体に形成された流路に水源から供給された水を通過させることによって水蒸気を生成するヒータを備えるとともに、前記流路には、その入口側から出口側へと連通する隙間を残しつつ当該流路を閉塞する充填部材が設けられていることを特徴とするものである。

[0010]

この構成では、ヒータ内における水の円滑な流通が妨げられるだけでなく、水が流路内の各隙間に分流することで流路の内壁面のみならず内側からも加熱されることになるため、ヒータ内の水は、ヒータとの接触時間および接触面積が十分に確保された状態で均一に加熱され、水蒸気へと変化する。

[0011]

また、このようにして生成された水蒸気についても、流路を円滑に流通することができないため、ヒータには常に一定量の水蒸気が滞留した状態になり、流出量が安定する。

なお、充填部材としては、無機または有機の粒状,繊維状,多孔質のもの若し くはこれらを成形したものが採用される。

[0012]

請求項2記載の有機ハロゲン化合物の分解装置は、請求項1記載の有機ハロゲン化合物の分解装置において、前記充填部材は、無機材料からなることを特徴とするものである。

[0013]

この構成では、高温環境下における充填部材の劣化を有効に防止することがで きる。

無機材料としては、 SiO_2 , Al_2O_3 , TiO_2 , MgO, ZrO_2 等に代表される酸化物や、炭化物,窒化物等が採用される。

[0014]

請求項3記載の有機ハロゲン化合物の分解装置は、請求項1記載の有機ハロゲン化合物の分解装置において、前記ヒータには、前記流路とは別に有機ハロゲン化合物を流通させる第2流路が形成されていることを特徴とするものである。

[0015]

この構成では、有機ハロゲン化合物が水蒸気と混合する前に予熱されるため、 水蒸気が有機ハロゲン化合物に冷やされて再凝縮するといったことがない。

また、有機ハロゲン化合物を予熱するためのヒータと、水蒸気を発生させるためのヒータとを一体に構成したため、熱源およびスペースの有効利用が図られる

[0016]

【発明の実施の形態】

以下、本発明の一実施形態について、図1から図6を参照しながら説明する。 図3において水平方向に延びる方形導波管1は、その始端部(左端部)に周波数2.45GHzのマイクロ波を発信するマイクロ波発信器2を備えており、始端側から終端(右端)側に向けてマイクロ波を伝送する。

方形導波管1には、図1に示すように、その終端部側で反射して始端部側に戻ってきたマイクロ波を吸収することにより反射波の発信側への影響を防止するア

イソレータ3と、複数の波動調整部材4を各々出入りさせることにより電波の波動的な不整合量を調整して放電管5に電波を収束させるチューナー6が設けられている。

[0017]

この動作を以下に少し詳しく説明する。

マイクロ波発信機2は断面矩形の導波管の一端に置かれマグネトロンを駆動して所定周波数の電磁波を放射する。この電磁波の伝播現象は電磁波に関るマクスウエルの波動方程式を解くことによって特性が把握される訳であるが、結果的には伝播方向に電界成分を持たない電磁波TE波として伝播する。

此れの1次成分TE₁₀の例を方向が交番する矢印で図2の矩形導波管の伝播方向に示す。

又矩形導波管1の他端部に2重の円筒状導体からなる2重円筒導波管の環状空洞には、導波管1を伝播する電磁波、管端で反射する電磁波の導体9による結合作用により、環状空洞部には、進行方向に電界成分を持つTM波が生じる。

[0018]

この1次成分である TM_{01} 波を同じく図2の環状空洞部に矢印で示す。

電磁波の波動の伝播に関る2次以上の高調波に起因する微妙な調整はチューナ 4で調整される。

アイソレータ3は発信機2に根本的なダメージを及ぼすのを防止している。

このようにして、円筒導波管7内に安定したモード TM_{01} の電界が形成される

当然のことながら磁界は電界に直交叉する方向に生じている。

この振動する電磁界により該部に投入された物質はプラズマ状態に加熱される ため、点火装置13に連結された電極13に高電圧を印加すれば、内側導体9と の間に火花放電が発生し、着火することとなる。

[0019]

円筒導波管7は、図2に示すように、外側導体8と、それよりも小径の内側導体9とから構成され、方形導波管1の終端部近傍において当該方形導波管1に連通した状態で垂直方向に延びるように接続されている。

内側導体9は、方形導波管1の上部に固定された状態で石英製の放電管5を囲みつつ外側導体8の端板8Aに向けて延在し、この延在部分をプローブアンテナ9aとしている。

[0020]

放電管5は、内管11と外管12とから構成され、円筒導波管7の中心軸に対して同軸となるように配置されている。

また、放電管5の内管11には、着火装置13により発熱するテスラコイル1 4が挿入されている。

[0021]

さらに、内管11の先端(下端)は、プローブアンテナ9aの先端よりも所定の距離だけ外管12の先端よりも内方に配されている。

この距離は、例えばプローブアンテナ9 a の先端とマイクロ波によるエネルギー集中部との距離に等しく設定される。

[0022]

他方、外管12の先端部は、外側導体8の端板8Aを貫通して銅製の反応管1 5に連通し、また、外管12の基端側(上端側)は、内側導体9との間に隙間を あけた状態で取り付けられている。

符号17は、外側導体8の端板8Aと反応管15との間に露出する外筒12に 向けられた光センサ17である。

この光センサ17は、光度を検出することにより、プラズマの生成状態を監視 するものである。

[0023]

そして、前記隙間には、ガス供給管16が外管12の接線方向に沿って挿入され、アルゴンガス、フロンガス(有機ハロゲン化合物)、エアー、および水蒸気は、ガス供給管16を介して放電管5に供給される。

[0024]

アルゴンガスは、プラズマの発生に先立って着火を容易にするために供給されるもので、アルゴンボンベ21に貯蔵されている。

このアルゴンボンベ21と電磁弁19aとの間には、圧力調整機22と圧力スイッチ23が設けられている。

[0025]

エアーは、系内に残存する水分を除去して着火の安定性を高めるために、また、系内に残存するガスを排出するために、エアーコンプレッサ24から供給されるもので、空気、窒素ガス、アルゴンガス等が用いられる。

水蒸気は、フロンガスの分解に必要なもので、プランジャポンプ25によって 貯水タンク26内の水をヒータ18に送り込むことで生成される。

この貯水タンク26には、水位の変動を検知するレベルスイッチ27が設けられている。

[0026]

フロンガスは、回収フロンボンベ28に液貯蔵されていて、この回収フロンボンベ28と電磁弁19bとの間には、絞り装置31,ミストセパレータ32,および圧力スイッチ33が設けられている。

絞り装置31は、流れの定量化を図るために設けられたもので、例えばキャピラリ管とオリフィスとの組み合わせにより構成されている。

ミストセパレータ32は、フロンガス中に含まれる油分(潤滑油)および水分を除去するためのもので、衝突式や遠心分離式のものが採用される。

[0027]

ヒータ18は、フロンガスに反応させる水蒸気を生成するだけでなく、フロンガス等をあらかじめ加熱しておくことにより、装置内で水蒸気がフロンガス等に冷やされて再凝縮するといった不具合を回避することも意図して設けられており、電気式、スチーム式等の加熱方式が採用される。

[0028]

ヒータ本体18aは、図5に示すように、例えば発熱コイル(またはスチームパイプ等)18bを溶融アルミニウムで鋳込むことにより成形され、その内部には、並列する二つの流路34a,34bが形成されている。

一方の流路(第2流路)34aにはフロンガス,アルゴンガス,およびエアーが流通し、他方の流路34bには貯水タンク(水供給源)26からの水が流通する。

また、流路34bには、その入口側から出口側へと連通する隙間を残しつつ当 該流路34bを閉塞する充填部材35が設けられている。

[0029]

充填部材35には、無機または有機の粒状,繊維状,多孔質のもの若しくはこれらを成形したものが採用されるが、高温下における劣化を防止する観点から、 SiO_2 , Al_2O_3 , TiO_2 ,MgO, ZrO_2 等に代表される酸化物や、炭化物,窒化物等の無機材であることが好ましい。

なお、ヒータ18の出口近傍には、熱電対36が設けられている。

[0030]

しかるに、ヒータ18を通過したフロンガス等と水蒸気は、ミキサー37内で混合された後、ガス供給管16を通って放電管5へと供給される。

ミキサー37の内部には、図4に示すように、オリフィス38が設けられ、その開口38aは ϕ 0.1 $mm\sim$ 5mmに設定されている。

また、この開口38aが臨むミキサー37の出口側端面37Aは、流路断面が 漸次縮小するような傾斜面をなしている。

[0031]

排ガス処理タンク41は、フロンガスを分解した際に生成される酸性ガス(フッ化水素および塩化水素)を中和して無害化するために設けられたものであり、水に水酸化カルシウムを加えたアルカリ性懸濁液が収容されている。

例えば、分解するフロンガスが廃冷蔵庫から回収した冷媒用のフロンR12の 場合には、式1に示す分解反応によせい生成された生成ガスは式2に示す中和反 応により無害化される。

[0032]

[式1]

 $\texttt{CC1}_2\texttt{F}_2\texttt{+2H}_2\texttt{O}\!\rightarrow\!\texttt{2HC1+2HF+CO}_2$

[式2]

 $2 \text{ HC } 1 + \text{C a } (\text{OH})_2 \rightarrow \text{C a C } 1_2 + 2 \text{ H}_2\text{O}$ $2 \text{ HF } + \text{C a } (\text{OH})_2 \rightarrow \text{C a F}_2 + 2 \text{ H}_2\text{O}$ [0 0 3 3]

式2の中和反応により生成された中和生成物(塩化カルシウムおよびフッ化カルシウム)は溶解度が小さいため、一部はアルカリ液に溶解するが、ほとんどはスラリーとして存在する。

また、式1の分解反応により生成された二酸化炭素と、式2の中和反応により 排出基準値以下の微少量に低減された酸性ガスは、排ガス処理タンク41の上方 に接続された排気ダクト42からブロア43により系外に排出される。

[0034]

排ガス処理タンク41の内部には、交換継手44を介して反応管15に接続される吹込管45が、その下端部をアルカリ液に浸漬した状態で垂直方向に延びるように配置されている。

この吹込管45の先端部45aは、垂直方向に対して所定の角度傾斜するように形成されている。

[0035]

反応管15の周囲には、冷水配管を(図示略)備えた冷却器46が付設されている。

冷却器46は、式1の分解反応による生成ガスを冷却するものであるが、反応 管15内の残留水蒸気の再凝縮を防止すべく、その露点以下には冷却しないよう に制御される。

本実施形態においては、400℃程度に冷却する。

[0036]

反応管15を冷却することで温められた冷却器46の冷却水(温水)は、回収 フロンボンベ28の加熱源として有効利用される。

すなわち、回収フロンボンベ28の周りには、温水配管(図示略)を備えた加熱器47が付設されていて、この温水配管に反応管15の冷却に使用された冷却水が流通することにより、回収フロンボンベ28は加熱される。

[0037]

交換継手44は、図2に示すように、反応管15と吹込管45との間に着脱可能に接続されていて、その内部に向けて水噴射ノズル51が連通している。

この水噴射ノズル51からは冷却水が吐出され、樹脂製、例えばテフロン(登録商標)製の吹込管45はその耐熱温度範囲にまで急冷される。

ちなみに、吹込管45がテフロン管の場合には、100℃以下に冷却される。

[0038]

吹込管45を樹脂製にする理由は、吹込管45は酸性ガスが冷却水に溶解してできた酸性液と、排ガス処理タンク41内のアルカリ液との双方に対して良好な耐食性を備える必要があり、金属ではその実現が困難だからである。

これに対し、反応管 1 5 の場合には、その内部が常に乾燥状態とされているから腐食のおそれがあまりない一方で耐熱性が要求されるため、銅製とすることで長寿命化を図っている。

[0039]

吹込管45の先端(下端)からは、式1の分解反応による生成ガスがアルカリ 液中に気泡となって放出される。

アルカリ液中での中和反応は、気泡とアルカリ液との接触面積が大きく、気泡が液面に到達するまでの時間が長いほど促進されるため、排ガス処理タンク41 内には、気泡を細かく分断させることで式2の中和反応を促進させる気泡分断手段52が設けられている。

[0040]

気泡分断手段52は、モータ52aにより回転駆動される軸部52bと、この軸部52bの先端に固定される円盤状のブレード保持部52cと、このブレード保持部52cの外縁部に固定される6つのブレード52dとを具備して構成される。

[0041]

これら軸部52a,ブレード保持部52c,およびブレード52dは、いずれもSUS材で製作され、ブレード52dは、ブレード保持部52cに対して交差し、かつその周方向に等しい間隔をおいて銀口ウ付けにより固定されている。

このように銀口ウ付け固定としたのは、一般の溶接ではアルカリ液に対する腐

食が激しいからである。

[0042]

気泡分断手段52は、ブレード保持部52cの中心が反応管15の先端の上方に位置するように配置されていて、反応管15の先端から浮上する気泡は、300rpmで回転するブレード52dに当たって直径約3mm~5mmの気泡に細かく分断される。

また、この気泡分断手段52は、排ガス処理タンク41に投入した水酸化カルシウムの粉末を攪拌することにより、水に不溶性の水酸化カルシウムと水の懸濁液を作る役目も果たしている。

[0043]

また、排ガス処理タンク41には、式2の中和反応が発熱反応であることから、タンク内温度を吹込管45の耐熱温度以下に冷却する冷却機53が設けられている。

この冷却機53は、ファン53aにより冷却される放熱部53bに接続された配管の一部が、排ガス処理タンク41内を挿通してなり、この配管に水等の冷却媒体を流通させることで熱を奪い、これを放熱部53bにおいて放熱するものである。

ちなみに、タンク内温度は熱電対54により検出される。

[0044]

さらに、排ガス処理タンク41には、pHセンサ55が設けられている。

アルカリ液のpH値は、このpHセンサ55を介して常に制御装置61により 監視されており、例えばpH値が9(運転開始時は11~12)になると、制御 装置61からの指令によって警報手段が作動するとともに、分解運転が停止する ようになっている。

警報手段としては、周囲に注意を喚起できるものであれば何でもよく、例えば ランプを点滅させたり、警笛をならす等の手段が採用される。

[0045]

排ガス処理タンク41内のスラリーは、運転時間の経過に伴って次第に増加するため、運転停止後にアルカリ液とともに固液分離器62に受け入れられ、固液

分離された後、廃棄物として処分されるか、他の用途に利用される。

他方、分離されたアルカリ液は、再び排ガス処理タンク41内に戻され、再利 用される。

ちなみに、排ガス処理タンク内の液位の変動は、レベルスイッチ56により検 知される。

[0046]

以上の構成からなる有機ハロゲン化合物の分解装置において、電磁弁の開閉動作およびテスラコイル14の点火動作は、制御装置61によって図6に示すように制御される。

この図から明らかなように、この分解装置では、8時間を1サイクルとしたバッチ処理によりフロンガスの分解が行われる。

[0047]

すなわち、フロンガスや水蒸気を供給する前に、まず、残留水分の除去を目的 としてエアーを所定の時間(3分間)供給し、その供給停止後、着火の安定性向 上を目的としてアルゴンガスの供給を開始する。

そして、アルゴンガス供給中に、マイクロ波を発信してテスラコイルによる着 火を行うとともに水蒸気およびフロンガスを供給し、その後、アルゴンガスの供 給を停止する。

[0048]

分解運転の停止後は、安全性を確保することを目的として、エアーを反応管 1 5に所定時間(5分)供給し、残留酸性ガスをパージする。

このガスパージ用のエアーは、電磁弁19a,19bを閉にし、かつ電磁弁19cを開にした状態で、エアコンプレッサー24からガス供給管16を介して供給される。

[0049]

以上の工程では、アルゴンガスの供給とフロンガスの供給とがオーバーラップ しているときがあるが、フロンガスの供給を始めてからアルゴンガスの供給を止 めるまでの間は、ごくわずかでよい。

その理由は、着火の状態が安定しさえすれば、アルゴンガスを供給し続ける必

要はなくなり、また、低コスト化を図る観点からもアルゴン消費量を低く抑える必要があるからである。

[0050]

また、制御装置 6 1 は、圧力スイッチ 2 3 , 3 3 、熱電対 3 6 , 5 4 、レベルスイッチ 2 7 , 5 6 、光センサ 1 7 等の各種センサから信号を受信することにより、アルゴンガスおよびフロンガスのヒータ 1 8 への供給圧、貯水タンク 2 6 内の液位、プラズマの生成状態、排ガス処理タンク 4 1 内の温度および液位を常に監視しており、これらが規定値を外れた場合には、運転が正常または効率的に行われていないおそれがあるため、運転を停止する。

そして、運転停止後は、安全性を確保すべく上記の通りエアーを供給し、装置 内の残留ガスを掃気する。

[0051]

以下、本実施形態に係る分解装置の作用について説明する。

この分解装置では、まず、電磁弁19a, 19bを閉にするとともに電磁弁19cを開にして、エアコンプレッサー24からのエアーをガス供給管16を介して放電管5に3分間供給する。

このエアーは、ヒータ18を通過することにより、100~180℃に加熱されているため、装置内の残留水分は確実に除去されることになる。

[0052]

次に、電磁弁19cを閉にするとともに電磁弁19aを開にして、アルゴンガスを放電管5に供給する。

このとき、アルゴンガスは、外管12の接線方向から供給されて螺旋状に流下するため、内管11の先端近傍によどみが形成され、プラズマが保持されやすくなる。

[0053]

また、このときのガス供給量は、 $4 \sim 4 \; 0 \; l/min$ 、望ましくは $1 \; 5 \; l/min$ 以上に設定する。

この設定範囲では、よどみが効果的に形成されてプラズマが一層保持され易くなるとともに、プラズマの熱的影響を放電管5が受け難くなり、その溶融変形や

破損が効果的に防止されることになる。

[0054]

そして、アルゴンガスの供給開始から一定の間隔をおいて、マイクロ波発信器 2からマイクロ波を発信する。

マイクロ波は、方形導波管1によりその後端部側に伝送され、さらに円筒導波管7へと伝送される。

[0055]

このとき、円筒導波管7内の電界としては、電界強度の大きなTM₀₁モードが 形成され、しかも、内側導体9により、方形導波管1内の電界モードと、円筒導 波管7内の電界モードとがカップリングされているため、円筒導波管7内の電界 は安定している。

[0056]

次に、点火装置13によりテスラコイル14を発熱させて着火させる。

このとき、放電管5の内部は、エアーにより水分が除去され、かつ着火し易い アルゴンガスがあらかじめ供給されているため、容易に着火する。

次いで、プランジャポンプ25により貯水タンク26から水を吸引し、これを ヒータ18に通すことにより生成した水蒸気を放電管5に供給する。

[0057]

ヒータ1 8に流入した水は、流路34 b内に設けられた充填部材35によって、流路内を円滑に流通することができないうえに、水が流路内の各隙間に分流することで流路34 bの内壁面のみならず内側からも加熱されることになるため、ヒータ18内の水はヒータ18との接触時間および接触面積が十分に確保された状態で均一に加熱され、水蒸気へと変化する。

また、生成された水蒸気についても、流路34b内を円滑に流通することができないため、ヒータ18内には常に一定量の水蒸気が滞留した状態になる。

[0058]

しかして、当該ヒータ18によれば、脈動や突沸による飛散水の発生を防いで 水蒸気の流出量を安定させることができ、ミキサー37の上流側における流量変 動を効果的に抑制することが可能になる。 よって、プラズマの消失を招くことなく分解反応を安定させて、処理能力の向上を図ることができる。

[0059]

さらに、充填部材35を上記無機材料から構成すれば、高温環境下での劣化を 有効に防止し得て、かかる処理能力を長時間継続的に維持することができる。

また、水蒸気の再凝縮防止に必要なフロンガス等の予熱ヒータと、当該ヒータ 18とが一体に構成されるため、熱源およびスペースの有効利用も図ることがで きる。

[0060]

次いで、電磁弁19bを開にして、フロンガスを放電管5に供給する。

このとき、回収フロンボンベ28から流出したフロンガスは、ミストセパレー タ32を通過することで油分および水分が除去されている。

このため、フロンガス中の潤滑油による配管等の汚れおよび副生成物の生成が抑制されて、フロンガス等の効率的かつ安定的な供給が可能になり、しかも余分な水分供給を防止し得てプラズマの消失を招くこともない。

よって、プラズマを安定化させて、処理能力の向上を図ることができる。

[0061]

また、ヒータ18を通過してミキサー37内に流入した水蒸気,アルゴンガス ,およびフロンガスは、オリフィス38に当たった後、流向を変えて互いに衝突 することで十分に混合されることになる。

また、オリフィス38の下流側には乱流が形成されているため、開口38aを 通過したフロンガス等はオリフィス下流側でも混合される。

[0062]

さらに、本実施形態においては、これらフロンガス等が出口側端面37Aに衝突することによっても混合が促進されるため、より均一に混合された状態でミキサー37から流出して、放電管5に供給されることになる。

このため、式1の分解反応が十分に行われることになって、塩素ガスや一酸化 炭素等の副生成物の生成を抑制することができる。

[0063]

このようにして放電管5に供給されたフロンガスにマイクロ波が照射されると、放電管5内には、電子エネルギーが高く、しかも温度が2,000K~6,00Kに高められた熱プラズマが発生する。

このとき、放電管5には、フロンガスと水蒸気のみならず、アルゴンガスも同時に供給されているため、プラズマの消失を招くこともない。

[0064]

また、内管11の先端が、プローブアンテナ9aの先端よりも所定の距離だけ 内方に配置されているため、生成されたプラズマの熱的影響を回避し得て、内管 11の溶融破損が防止される。

これにより、プラズマ形状の著しい変形をなくして、安定した分解運転が可能 になる。

[0065]

しかして、熱プラズマの発生により、フロンガスは塩素原子,フッ素原子,および水素原子に解離し易い状態になるため、式1に示すように、水蒸気と反応して容易に分解される。

そして、プラズマが安定したら、電磁弁19aを閉にしてアルゴンガスの供給 を止める。

[0066]

分解反応による生成ガスは、交換継手44および吹込管45を通って排ガス処理タンク41内のアルカリ液中に放出される。

ただし、これらの生成ガスは極めて高温であるため、吹込管45に流入するまでの間に、まず、反応管15の下部に付設された冷却器46によって約400℃に冷却される。

[0067]

この温度では、反応管 1 5 の内部で残留水蒸気が再凝縮することはないため、 反応管 1 5 は乾燥状態に保持され、プラズマの消失を招くことはない。

他方、反応管15を冷却することで約50℃に温められた冷却器46の冷却水は、回収フロンボンベ28に付設された加熱器47に導かれ、回収フロンボンベ28内の液体フロンが気化する際に生じる該ボンベ28およびその下流側配管で

の霜の生成を防止するとともに、温度低下による圧力変動も抑制する。

また、これにより熱を奪われた冷却水は、冷却器46の冷却水に再度用いることができ、水の消費量を低く抑えることができる。

[0068]

冷却器46により冷却された生成ガスは、交換継手44を通過する間に、さらに水噴射ノズル51から吐出される冷却水によって約100℃以下となるように 急冷される。

これにより、樹脂製の吹込管45をその耐熱温度範囲内で使用することができ 、高温による熱的損傷から保護することができる。

[0069]

このとき、式1の分解反応による生成ガスが冷却水に溶解することによって酸性液が生成されるため、交換継手44は次第に腐食することになるが、かかる場合には腐食の程度に応じて交換すればよい。

すなわち、反応管15の下流側については、腐食による交換部分が交換継手4 4のみで済むため、低コスト化および交換作業の容易化が図られる。

[0070]

しかして、吹込管45を通ってアルカリ液中に放出された生成ガスは、式2の中和反応によって無害化され、排気ダクト42から排出される。

この中和反応は発熱反応であるため、吹込管45の熱的損傷を防止すべく、アルカリ液の温度は冷却機53によって70℃以下に保持される。

[0071]

また、吹込管45の先端から気泡として放出された生成ガスは、気泡分断手段52のブレード52dに当たって細かく分断させられるため、アルカリ液との接触面積が増大するとともに液面までに達する時間も長くなり、中和反応が促進されることになる。

これにより、中和処理不足によって基準値を超える量の酸性ガスが系外に排出されるといったことがない。

[0072]

中和反応により生成された中和生成物は、アルカリ液中にスラリーとして存在

しているが、このスラリーは分解運転停止後にアルカリ液とともに固液分離器 6 2 に受け入れられ、連続的に固液分離される。

この分離液は、排ガス処理タンク41内に戻されて再利用されるため、本分解 装置では、上記冷却水の再利用と相まって水消費量の大幅な低減が図られる。

また、分解運転停止後は、エアコンプレッサ24を駆動することにより、装置 内に残留する酸性ガスを掃気するようにしているため、安全性も高められる。

[0073]

なお、本発明に係る有機ハロゲン化合物の分解装置は、上述の実施形態に限定 されるものではなく、以下の形態をも含むものである。

(1) ミキサー37内での混合を促進するための手段として、オリフィス38の 代わりに、ミキサー37内にビーズ等を充填するようにしてもよい。

この構成では、フロンガス等と水蒸気がミキサー37内に形成された隙間をランダムに流通するため、混合が促進される。

[0074]

また、ミキサー37の内周面に複数のじゃま板を、例えば上下または左右に交 互に間隔をおいて設置するようにしてもよい(スタティックミキサー)。

この構成では、フロンガス等と水蒸気が蛇行しながら流通するため、混合が促進される。

[0075]

さらに、ミキサー37の入口側に接続される配管を流方向に対して傾斜させる とともに、ミキサー37の内周面に螺旋状に延びる案内板を設置するようにして もよい(スワールミキサー)。

この構成では、フロンガス等と水蒸気が螺旋を描きながら流れるため、混合が 促進される。

(2) 中和処理不足による酸性ガスの系外排出を未然に回避する手段として、アルカリ液のpH管理に代えて、モータ電流値を管理するようにしてもよい。

すなわち、モータ回転数が低下したり停止すると、吹込管45から放出された 気泡が十分に分断されず、中和反応が十分に行われないことがある。

そこで、モータ回転の異常をモータ電流値に基づき検出し、制御装置61から

の指令によって分解装置の運転を停止させるようにすれば、酸性ガスの系外排出 を未然に防止することができる。

[0076]

(3) 反応管 1 5 の内部は乾燥状態に保たれているため、式 1 の分解反応で生成された酸性ガスによる腐食の影響はほとんどない。

しかしながら、安全性をより一層高めるために、反応管 1 5 を内包するような 簡易型ブースを設置するとともに、該ブースと反応管 1 5 との間に C O 2 ガスや C O ガス等を検出する排ガスセンサを設けるようにしてもよい。

[0077]

この構成では、反応管15の腐食状態を排ガスセンサを介して制御装置61により常に監視することができ、たとえ反応管15が腐食して式1の分解反応による生成ガスが反応管15から流出しても、制御装置61からの指令によって分解装置の運転を停止させるとともに、流出した生成ガスを吸引することにより、酸性ガスの系外排出を防止することができる。

この場合のガス吸引は、排気ダクト42に設けられたブロア43で兼用する。

[0078]

(4) 排ガス処理タンク41内のスラリーは、運転停止後、一晩放置しておけば 沈降するため、沈降した高濃度スラリーをポンプで汲み上げ、これを固液分離し て処分するようにしてもよい。

この場合には、高濃度スラリーのみを遊離アルカリ液と混合することなく汲み 上げることができるため、効率の良いスラリー処理が可能になる。

また、アルカリ液に造粒剤、凝集剤等を添加してスラリー粒子を増大させておけば、沈降時間を短縮し得て、より効率良くスラリー処理を行える。

[0079]

- (5) テスラコイル14の先端を放電管5の内部に配置する代わりに、放電管5の外部に配置して、火花放電で着火するようにしてもよい。
- (6)回収フロンボンベ28を加熱することによりガス状態にしてフロンガスを 流出させる代わりに、回収フロンボンベ28を倒立させて液状態のまま回収フロ ンを流出させ、さらに差圧制御弁等の絞り装置に通して流れを定量化したうえで

、加熱気化させてヒータ18側へと送るようにしてもよい。

この場合には、絞り装置および配管を加熱することにより、温度低下による流 量変動を抑制する。

[0080]

- (7)回収フロンボンベ28の加熱には、反応管15の冷却に用いた冷却水に代えて、排ガス処理タンク41内のスラリー冷却に使用された冷却機53の冷却水を用いてもよい。
- (8) 内管11の先端がプローブアンテナ9aの先端から外管12の内方に離間する距離は、内管11が溶融しなければ上述のようにプローブアンテナ9aの先端とマイクロ波によるエネルギー集中部との距離に等しく設定するのが最適であるが、外管12の溶融を考慮して適宜変更してもよい。

[0081]

(9) 気泡分断手段 5 2 は、軸部の先端にプロペラを固定してなるスクリュー式のものであってもよい。

また、気泡分断手段52は、各構成要素52b,52c,52dをテフロン等の樹脂製とし、かつこれらをネジ結合することにより構成してもよい。

この構成では、溶接部分がないうえに各構成要素 5 2 b, 5 2 c, 5 2 d が樹脂製とされるため、耐食性に極めて優れることになる。

[0082]

- (10) 吹込管45の先端部を垂直方向に対して所定角度傾斜させる代わりに、 略U字状に形成してもよい。
- (11)排ガス処理タンク41に貯留される中和液は、上記のアルカリ性懸濁液 に限らず、水酸化ナトリウム水溶液等のアルカリ性水溶液を用いても構わない。

[0083]

【発明の効果】

以上の説明から明らかなように、本発明によれば、以下の効果を奏することが できる。

(a)請求項1記載の有機ハロゲン化合物の分解装置によれば、ヒータとの接触時間および接触面積が十分に確保された状態でヒータ内の水を均一に加熱して水

蒸気を生成し、しかもヒータ内に常に一定量の水蒸気が滞留した状態になるよう にしているため、脈動や突沸による飛散水の発生を防ぐとともに、水蒸気の流出 量を安定させることができる。

よって、プラズマの消失を招くことなく分解反応を安定させて、処理能力の向 上を図ることができる。

[0084]

(b)請求項2記載の有機ハロゲン化合物の分解装置によれば、高温環境下における充填部材の劣化を有効に防止し得て、上記の効果を長時間継続的に維持することができる。

[0085]

(c)請求項3記載の有機ハロゲン化合物の分解装置によれば、有機ハロゲン化合物が水蒸気と混合する前に予熱されるため、水蒸気が有機ハロゲン化合物に冷やされて再凝縮するといったことがなく、しかも再凝縮防止に必要な予熱ヒータと、水蒸気を生成させるヒータとが一体に構成されるため、熱源およびスペースの有効利用も図ることができる。

【図面の簡単な説明】

- 【図1】 本発明の一実施形態を示すシステム系統図である。
- 【図2】 同分解装置の全体構成を示す斜視図である。
- 【図3】 同分解装置の要部拡大図である。
- 【図4】 同分解装置に設けられたミキサーの要部断面図である。
- 【図5】 同分解装置に設けられたヒータの拡大断面図である。
- 【図 6】 同分解装置においてマイクロ波、アルゴンガス等が供給される時期と点火の時期を経時的に示す比較図である。

【符号の説明】

- 18 ヒータ
- 18b ヒータ本体
- 26 貯水タンク(水源)
- 34a 流路(第2流路)
- 34b 流路

35 充填部材

図面

【図1】

【図2】

【図3】

【図4】

【図5】

18;ヒータ 18a:発熱コイル 18b;ヒータ本体 34a;第2流路 34b;流路 35;充填部材 【図6】

【書類名】

要約書

【要約】

【課題】 乾燥した水蒸気を安定供給することによるプラズマの消失防止および 分解反応の安定化。

【解決手段】 有機ハロゲン化合物を含むガスにマイクロ波を照射することによって熱プラズマを生成し、該熱プラズマ中で有機ハロゲン化合物を水蒸気と反応させて分解する分解装置において、ヒータ本体18bに形成した流路34bに貯水タンクから供給された水を通過させることによって水蒸気を生成するヒータ18を設けた。さらに、流路34bに、その入口側から出口側へと連通する隙間を残しつつ当該流路34bを閉塞する充填部材35を設けた。これにより、ヒータ18との接触時間および接触面積が十分な状態で水を均一に加熱できるようにした。

【選択図】 図5

出 願 人 履 歴 情 報

識別番号

[000006208]

1. 変更年月日 1990年 8月10日

[変更理由] 新規登録

住 所 東京都千代田区丸の内二丁目5番1号

氏 名 三菱重工業株式会社