Cana Assignment 4

Name: Shubh Sharma Roll Number: BMC202170

1. PG 130, Problem 5

If f has an essential singularity, it would come arbitrarily close to every point, then f is would not be bounded, hence f does not have an essential singularity.

Let z_0 be a pole of f, then by the open mapping theorem, an open set around z_0 would be mapped to an open neighbourhood of ∞ , which would mean, either the Re or the Im parts are unbounded, Hence f does not have a pole either.

Hence an isolated singularity of f(z) is removable.

2. PG 130, Problem 6

If $e^{f(z)}$ has a pole at z_0 then the real part of f(z) goes to ∞ as z goes to z_0 . Hence f(z) would also have a pole at z_0 .

Having a pole at z_0 implies, given any $M>0,\ \exists \epsilon>0$ Such that $z\in B_\epsilon(z_0)\implies |f(z_0)|>M.$ Pick $z\in B_\epsilon(z_0)\neq z_0$, its image is finite and the sequence $f(z)+2n\pi i$ converges to ∞ ., take the inverse images of each of the points of the sequence. which form a sequence $z_n\to z_0$. $e^{f(z_n)}$ is a constant sequence which is finite, hence z_0 is not a pole of $e^{f(z)}$ which is a contradiction.

3. PG 133, Problem 3

Let $f(z)=\cos z$ and let $z_0=0$, f(z)-1 has a root at z_0 . The derivative of $f'(0)=\sin 0=0$, second derivative is $-\cos 0=-1$. Hence the root has degree 2. Hence $\cos z-1=z^2g(z)=\zeta^2(z)$, hence $\zeta(z)=z\sqrt{g(z)}$ and we get

$$egin{aligned} f(z)-1&=\cos z-1\ &=-2\sin^2\left(rac{z}{2}
ight)\ &=\zeta^2(z)\ dots \cdot \zeta(z)&=\sqrt{2}i\sin\left(rac{z}{2}
ight) \end{aligned}$$

4. PG 133, Problem 4

 $f(z^n)-f(0)$ has all i order derivatives for $i\in\{1\dots n-1\}$ and 0 is a root hence $f(z^n)-f(0)=z^nh(z)$ where $h(0)\neq 0$

Hence we can choose a neighborhood of 0 such that $|h(z) - h(0)| \le |h(0)|$ for all z in the neighborhood, so we can define a single valued branch of $\sqrt[n]{h(z)}$ in the neighbourhood of 0

$$f(z^n)-f(0)=\left(z\sqrt[n]{h(z)}
ight)^n$$

and have $g(z)=z\sqrt[n]{h(z)}$

5. PG 136, Problem 1

The equation 36 in ahlfors states that, given a function f analytic on |z| < R, such taht |f(z)| < M, $f(z_0) = w_0$, then we have

$$\left|rac{M(f(z)-w_0)}{M^2-ar{w}_0f(z)}
ight| \leq \left|rac{R(z-z_0)}{R^2-ar{z}_0z}
ight|$$

putting R = M = 1 we get

$$\left|rac{f(z)-w_0}{1-ar{w}_0f(z)}
ight| \leq \left|rac{z-z_0}{1-ar{z}_0z}
ight|$$

as $z o z_0$ we have $f(z) o w_0$

$$\left|rac{f'(z_0)}{1-|f^2(z_0)|}
ight| \leq \left|rac{1}{1-|z_0|^2}
ight|$$

but z_0 can be any point

$$\left|rac{f'(z)}{1-|f^2(z)|}
ight| \leq \left|rac{1}{1-|z|^2}
ight|$$

6. PG 136, Problem 2

Consider the map $g:\mathcal{H}\to\mathcal{D}$, where \mathcal{D} is an open unit disk and \mathcal{H} is the upper half plane, given by $g(z)=rac{z-z_0}{z-z_0}$, where $z_0\in\mathcal{H}$ is a fixed point.

Consider the map $h(z)=rac{z-f(z_0)}{z-\overline{f(z_0)}}$

And consider the map $h\circ f\circ g^{-1}:\mathcal{D} o ar{\mathcal{D}}$

This satisfies the conditions that the function is analytic on \mathcal{D} , and $|h(f(g^{-1}(z)))| \leq 1$ for all $z \in \mathcal{D}$ also $h(f(g^{-1}(0))) = 0$.

This gives $|h(f(g^{-1}(z)))| \leq |z| \implies |h(f(z))| \leq |g(z)| \implies \left|\frac{f(z)-f(z_0)}{f(z)-f(z_0)}\right| \leq \frac{z-z_0}{z-\overline{z}_0}$ taking $z \to z_0$ we get

$$\frac{|f'(z_0)|}{Im(f(z_0))} \leq \frac{1}{Im(z_0)}$$

7. PG 136, Problem 3

In problem 5, equality holds iff

$$\left|rac{f(z)-w_0}{1-\overline{w}_0f(z)}
ight|=\left|rac{z-z_0}{1-\overline{z}_0z}
ight|$$

which holds iff equality holds in (36) with M=R=1 hence $|Sf(T^{-1}\zeta)|=|\zeta|$ where S adn T are linear fractional transformations.

This gives $SfT^{-1}(\zeta) = c\zeta$ for some c. This gives $f = S^{-1}(cT(\zeta))$ which is a composition of 3 linear fractional transformationsm, and hence is a Linear fractional transformation.

In Problem 6, equality holds iff $|h(f(g^{-1}(z)))| = |z|$ which gives $h(f(g^{-1}(z))) = cz$ for some constant c. That gives f as $f(z) = h^{-1}(cg(z))$ which is also a linear fractional transformation.

8. PG 148, Problem 2

Let S be a simply connected space.

Let $P = S \setminus M$ where M is a set with m points

The $P^c = S^C \cup M$ points which are m+1 connected components, hence p has connectivity m+1

The homology basis consists of m loops each centered around the m points. So for each of the m points, we can find a circle γ_i around the points $a_i \in M$ and we will have $n(\gamma_i, a_j) = \delta_{i,j}$ which forms a basis

9. PG 148, Problem 5

Any closed curve γ in the domain Ω that winds around 1 also winds around -1. consider some point $z_0 \in \gamma$ and choose some value of $\theta_1 = arg(1-z)$ such that $(1-z_0) = r_1 e^{i\theta_1}$. and take a branch of $\sqrt{1-z_0}$. Now as we travel around γ , as we come back to z_0 we add 2π to the argument of (1-z). The same works for the argument of (1+z) and so the argument of the product changes by 4π . Now when we take the square root, we divide the argument by 2 which means that as we move around γ and come back to z_0 , the argument of $\sqrt{1-z^2}$ changes by 2π .

Now we compute

$$\int_{\gamma} \frac{1}{\sqrt{1-z^2}} dz.$$

And by Cauchy's Theorem, we can assume γ is a very large cirle and so acts as a small disc about infinity. we apply the change of variables $z = \frac{1}{w}$ and we get the integral

$$-\int_{|w|=\delta}rac{dw}{w\sqrt{w^2-1}}$$

 $\sqrt{w^2-1}$ is analytic in a neighbourhood of 0 so we can compute the integral by cauchy's formula to be 2π