

BINARY TREE CLASS - 1 HOMEWORK

Types of Binary Tree

Types of Binary Tree based on the number of children:

- 1. Full Binary Tree
- 2. Perfect Binary Tree
- 3. Complete Binary Tree
- 4. Degenerate or Pathological Tree
- 5. Skewed Binary Tree
- 6. Balanced Binary Tree

1. Full Binary Tree

A full Binary tree is a special type of binary tree in which every parent node/internal node has either two or no children.

2. Perfect Binary Tree

A perfect binary tree is a type of binary tree in which every internal node has exactly two child nodes and all the leaf nodes are at the same level.

3. Complete Binary Tree

A complete binary tree is just like a full binary tree, but with two major differences

- I. Every level must be completely filled
- II. All the leaf elements must lean towards the left.
- III. The last leaf element might not have a right sibling
- i.e. a complete binary tree doesn't have to be a full binary tree.

4. Degenerate or Pathological Tree

A degenerate or pathological tree is the tree having a single child either left or right.

5. Skewed Binary Tree

A skewed binary tree is a pathological/degenerate tree in which the tree is either dominated by the left nodes or the right nodes. Thus,

There are two types of skewed binary tree:

Left-skewed binary tree and right-skewed binary tree

6. Balanced Binary Tree

It is a type of binary tree in which the difference between the height of the left and the right subtree for each node is either 0 or 1.

Left and Right Sub Tree Ki height

Ka diff." At Most 1 Hong chaigh.

LH - RH E [011]

This is Not a Balanud
Binary TREE

BFS & DFS Algorithms of Binary Tree

BFS - Breath First Search Level-Order Traversal

GABCOEFG

DFS - Depth First Search

Pre-Order Traversal (NLR)

ABDECFA

In-Order Traversal (LNR)

D B E A F C a

Post-Order Traversal (LRN)

DEBFACA

DFS Traversals:

- 1. Pre-order traversal (NLR)
- 2. In order traversal (LNR)
- 3. Post order traversal (LRN)

BFS Traversals:

4. Level order traversal

Why do we care?

There are many tree questions that can be solved using any of the above four traversals.

Using DFS Traversal:

- a.) Finding Size of Tree.
- b.) Finding Height of Tree.
- c.) Finding Max or Min element in a Tree.
- d.) Diameter of Binary Tree.
- e.) Print nodes at K distance.
- f.) Checking if a binary tree is subtree of another binary tree.
- g.) Ancestors of a given node.

Using BFS Traversal:

- a.) Maximum Width of Binary Tree.
- b.) Left View of Tree.
- c.) Connect Nodes at same level.