Intelligent systems - KBS

- Reasoning techniques for uncertainty
 - Teory of Bayes probabilistic method
 - Theory of certainty
 - Theory of possibility (fuzzy logic)

- Theory of possibility
- Content and design
- Typology
- Tools

Advantages and limits

Teoria posibilității (logica fuzzy)

- Why fuzzy?
 - Problem: translate in C++ code the following sentences:
 - Georgel is tall.
 - It is cold outside.
- When fuzzy is important?
 - Natural queries
 - Knowledge representation for a KBS
 - Fuzzy control then we dead by imprecise phenomena (noisy phenomena)

Remember the components of a KBS

- □ Knowledge base → knowledge representation
 - Formal logic (formal languages)
 - Definition
 - Science of formal principles for rationing
 - Components
 - Syntax atomic symbols used by language and the constructing rules of the language
 - Semantic associates a meaning to each symbol and a truth value (true or false) to each rule
 - Syntactic inference rules for identifying a subset of logic expressions → theorems (for generating new expressions)
 - Typology
 - True value
 - Dual logic
 - Polyvalent logic
 - Basic elements
 - Classic → primitives = sentences (predicates)
 - Probabilistic → primitives = random variables
 - Working manner
 - Propositional logic → declarative propositions and fix or unique objects (Ionica is student)
 - First-order logic → declarative propositions, predicates and quantified variables, unique objects or variables associated to a unique object
 - Rules
 - Semantic nets
- Inference engine

Theory of possibility – a little bit of history

- Parminedes (400 B.C.)
- Aristotle
 - "Law of the Excluded Middle" every sentence must be True or False
- Plato
 - A third region, between True and False
 - Forms the basis of fuzzy logic
- Lukasiewicz (1900)
 - Has proposed an alternative and sistematic approach related to bi-valent logic of Aristotle – trivalent logic: true, false or possible
- Lotfi A. Zadeh (1965)
 - Mathematical description of fuzzy set theory and fuzzy logic: truth functions takes values in [0,1] (instead of {True, False})
 - He as proposed new operations in fuzzy logic
 - He has considered the fuzzy logic as a generalisation of the classic logic
 - He has written the first paper about fuzzy sets

Theory of possibility

- Fuzzy logic
 - Generalisation of Boolean logic
 - Deals by the concept of partial truth
 - Classical logic all things are expressed by binary elements
 - 0 or 1, white or black, yes or no
 - Fuzzy logic gradual expression of a truth
 - Values between 0 and 1

Logic vs. algebra

- Logical operators are expressed by using mathematical terms (George Boole)
 - □ Conjunction = minimum \rightarrow a \land b = min (a, b)
 - □ Disjunction = maximum \rightarrow a \vee b = max (a, b)
 - □ Negation = difference \rightarrow ¬a = 1- a

Remember: KBS - design

- Knowledge base
 - Content
 - Specific information
 - Facts correct affirmations
 - Rules special heuristics that generate knowledge
 - Aim
 - Store all the information (facts, rules, solving methods, heuristics) about a given domain (taken from some experts)

Inference engine

- Content
 - Rules for generating new information
 - Domain-independent algorithms
 - Brain of a KBS
- Aim
 - Help to explore the KB by reasoning for obtaining solutions, recommendations or conclusions

Content and design

- Main idea
 - Cf. to certainty theory:
 - Popescu is tall
 - Cf. to uncertainty theory
 - Cf. to probability theory
 - There is 80% chance that Popescu is young
 - Cf. fuzzy logic
 - Cf. teoriei informaţiilor certe
 - Popescu este tânăr
 - Cf. teoriei informaţiilor incerte
 - Cf. teoriei probabilităților:
 - Există 80% şanse ca Popescu să fie tânăr
 - Cf. logicii fuzzy:
 - Popescu's degree of membership to the group of young people is 0.80
- Necessity
 - Real phenomena involve fuzzy sets
 - Example
 - The room's temperature can be:
 - low,
 - Medium or
 - high
 - These sets of possible temperatures can overlap
 - A temperature can belong to more classes (groups) depends on the person that evaluates that temperature

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

59

April 2017 Artificial Intelligence - RBS

- Elements from probability theory (fuzzy logic)
 - Fuzzy facts (fuzzy sets)
 - Definition
 - Representation
 - Operations complements, containment, intersection, reunion, equality, algebraic product, algebraic sum
 - Properties associativity, commutativity, distributivity, transitivity, idempotency, identity, involution
 - Hedges
 - Fuzzy variables
 - Definition
 - Properties
 - Establish the fuzzy variables and the fuzzy sets based on membership functions

Content and design → fuzzification of input data

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → definition
 - Set definition 2 possibilities:
 - By enumeration of elements
 - Ex. Set of students = {Ana, Maria, Ioana}
 - By specifying a property of elements
 - Ex. Set of even numbers = $\{x \mid x = 2n, where n = 2k\}$
 - Characteristic function μ for a set
 - Let X a universal set and x an element of this set (xeX)
 - Classical logic
 - Let R a sub-set of X: R⊂X, R regular set
 - Every element x belong to set R

•
$$\mu_R: X \to \{0, 1\}, \text{ where } \mu_R(x) = \begin{cases} 1, & x \in R \\ 0, & x \notin R \end{cases}$$

- Fuzzy logic
 - Let F a sub-set of X (a univers) : F⊂X, F fuzzy set
 - Every elemt x belongs to F by a given degree of membership $\mu_{E}(x)$
 - $\mu_F: X \rightarrow [0, 1], \mu_F(x) = g, \text{ where } g \in [0, 1] \text{membership degree of } x \text{ to } F$
 - $g = 0 \rightarrow \text{not-belong}$
 - $g = 1 \rightarrow belong$

$$\mu_F(x) = \begin{cases} 1, & \text{if } x \text{ is totaly in } F \\ 0, & \text{if } x \text{ is not in } F \\ \in (0,1) & \text{if } x \text{ is part of } F(x \text{ is a fuzzy number}) \end{cases}$$

• A fuzzy set = a pair (F, μ_F), where

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → **definition**
 - Example 1
 - X -set of natural numbers < 11</p>
 - R set of natural numbers < 7
 - F set of natural numbers that are neighbours of 6

x	μ _R (x)	μ _F (x)
0	1	0
1	1	0.1
2	1	0.25
3	1	0.5
4	1	0.6
5	1	0.8
6	1	1
7	0	0.8
8	0	0.6
9	0	0.5
10	0	0.25

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → **definition**
 - Example 2
 - A temperature t can have 3 truth values:
 - Red (0): is not hot
 - Orange (0.3): warm
 - Blue (0.7): cold

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → representation
 - Regular sets
 - □ Exact limits → Venn diagrams
 - Fuzzy sets
 - □ Gradual limits → representations based on membership functions
 - Singular
 - $\mu(x) = s$, where s is a scalar
 - Triangular $\mu(x) = \max \left\{ 0, \min \left\{ \frac{x-a}{b-a}, 1, \frac{c-x}{c-b} \right\} \right\}$
 - Trapezoidal $\mu(x) = S(x) = \max \left\{ 0, \min \left\{ \frac{x-a}{b-a}, 1, \frac{d-x}{d-c} \right\} \right\}$
 - Z function
 - $\mu(x) = 1 S(x)$
 - In function $\mu(x) = \Pi(x) = \begin{cases} S(x), & \text{if } x \le c \\ Z(x), & \text{if } x > c \end{cases}$

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → representation
 - Example
 - Age of a person

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → operations
 - complement
 - Containment
 - Intersection
 - Union
 - Equality
 - Algebraic product
 - Algebraic sum

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → operations
 - Complement
 - X a universe
 - A a fuzzy set (with universe X)
 - B a fuzzy set (with universe X)
 - B is complement of A (B= 7 A) if:
 - $\mu_B(x) = \mu_{A}(x) = 1 \mu_A(x)$ for all $x \in X$

- Old persons (based on their age)
 - A={(30,0), (40, 0.2), (50, 0.4), (60, 0.6), (70, 0.8), (80, 1)}
- Young persons (that are not old) (based on their age)
 - A={(30,1), (40, 0.8), (50, 0.6), (60, 0.4), (70, 0.2), (80, 0)} 0.2

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → operations
 - Containment
 - X a universe
 - A a fuzzy set (with universe X)
 - B a fuzzy set (with universe X)
 - B is a subset of A (B⊂A) if:
 - $\mu_B(x) \le \mu_A(x)$ for all $x \in X$

- Old persons (based on their age)
 - A={(60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}
- Very old persons (based on their age)
 - B={(60, 0.6), (65, 0.67) (70, 0.8), (75, 0.8), (80, 0.95)}

Content and design → fuzzification of input data

□ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → operations

intersection

- X a universe
- A a fuzzy set (with universe X)
- B a fuzzy set (with universe X)
- C a fuzzy set (with universe X)
- C is an intersection of A and B if:
 - $\mu_{C}(x) = \mu_{A\cap B}(x) = \min\{\mu_{A}(x), \mu_{B}(x)\} = \mu_{A}(x) \cap \mu_{B}(x) \text{ for all } x \in X$

Example

- Old persons (based on their age)
 - A={(30,0) (40, 0.1) (50, 0.2) (60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}
- Middle-age persons
 - $B=\{(30,0.1) (40,0.2) (50,0.6) (60,0.5), (65,0.2) (70,0.1), (75,0), (80,0)\}$
- Old and middle age persons
 - C={(30,0) (40, 0.1) (50, 0.2) (60, 0.5), (65, 0.2) (70, 0.1), (75, 0), (80, 0)}

Content and design → fuzzification of input data

□ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → operations

union

- X a universe
- □ A a fuzzy set (with universe X)
- B a fuzzy set (with universe X)
- C a fuzzy set (with universe X)
- C is the union of A nad B if:
 - $\mu_{C}(x) = \mu_{A \cup B}(x) = \max\{\mu_{A}(x), \mu_{B}(x)\} = \mu_{A}(x) \cup \mu_{B}(x) \text{ for all } x \in X$

Example

- Old persons (based on their age)
 - A={(30,0) (40, 0.1) (50, 0.2) (60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}
- Middle-age persons
 - $B=\{(30,0.1) (40,0.2) (50,0.6) (60,0.5), (65,0.2) (70,0.1), (75,0), (80,0)\}$
- Old or middle-age persons
 - C={(30,0.1) (40, 0.2) (50, 0.6) (60, 0.6), (65, 0.7) (70, 0.8), (75, 0.9), (80, 1)}

Union of A and B

Content and design → fuzzification of input data

□ Elements from probability theory (fuzzy logic) → Fuzzy facts

(fuzzy sets) → **operations**

Equality, product and algebraic sum

- A a fuzzy set (with universe X)
- B a fuzzy set (with universe X)
- C a fuzzy set (with universe X)

•
$$\mu_B(x) = \mu_A(x)$$
 for all $x \in X$

- C is the product of A and B (C=A*B) if:
 - $\mu C(x) = \mu A * B(x) = \mu A(x) * \mu B(x)$ for all $x \in X$
- C is the sum of A and B (C=A+B) if:
 - μ C(x)= μ A+B(x)= μ A(x)+ μ B(x) for all x∈X

- □ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → properties
 - Asociativity
 - Commutativity
 - Distributivity
 - Transitivity
 - Idem potency
 - Identity
 - Involution

Content and design → fuzzification of input data

□ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → hedges

Main idea

- Modifiers, adjectives or adverbs that change the truth values of sentences
 - Ex. Very, less, much, more, close, etc.
- Change the shape of fuzzy sets
- Can act on
 - Fuzzy numbers
 - Truth values
 - Membership functions
- Heuristics

Utility

- □ Closer to the natural language → subjectivism
- Evaluation of linguistic variables

Content and design → fuzzification of input data

□ Elements from probability theory (fuzzy logic) → Fuzzy facts (fuzzy sets) → **hedges**

- Typology
 - Hedges that reduce the truth value (produce a concentration)
 - Very $\mu_{A_{-very}}(x) = (\mu_{A}(x))^{2}$
 - Extremly μ_A extremly $(x) = (\mu_A(x))^3$
 - Very very μ_A very very $(x) = (\mu_A$ foarte $(x))^2 = (\mu_A(x))^4$
 - Hedges that increase the truth value (produce a dilatation)
 - Somewhat $\mu_{A_somewhat}(x) = (\mu A(x))^{1/2}$
 - slightly $\mu_{A_slightly}(x) = (\mu A(x))^{1/3}$
 - Hedges cthat intensify the truth value
 - indeed $\mu_{A_indeed}(x) = \begin{cases} 2(\mu_A(x))^2, & \text{if } 0 \le \mu_A(x) \le 0.5 \\ 1 2(1 \mu_A(x))^2, & \text{if } 0.5 \le \mu_A(x) \le 1 \end{cases}$

Content and design → fuzzification of input data

- Elements from probability theory (fuzzy logic)
 - Fuzzy facts (fuzzy sets)
 - Definition
 - Representation
 - Operations complements, containment, intersection, reunion, equality, algebraic product, algebraic sum
 - Properties associativity, commutativity, distributivity, transitivity, idempotency, identity, involution
 - Hedges

Fuzzy variables

- Definition
- Properties
- Establish the fuzzy variables and the fuzzy sets based on membership functions

Content and design → fuzzification of input data

- □ Elements from probability theory (fuzzy logic) → Fuzzy variables → definition
 - A fuzzy variable is defined by $V = \{x, l, u, m\}$, where:
 - x name of symbolic variable
 - L set of possible labels for variable x
 - U universe of the variable
 - M semantic regions that define the meaning of labels from L (membership functions)

Membership functions

- Subjective assessment
 - The shape of functions is defined by experts
- Ad-hoc assessment
 - Simple functions that can solve the problem
- Assessment based on distributions and probabilities of information extracted from measurements
- Adapted assessment
 - By testing
- Automated assessment
 - Algorithms utilised for defining functions based on some training data

Example

- X = Temperature
- L = {low, medium, high}
- □ $U = \{x \in X \mid -70^{\circ} \le x \le +70^{\circ}\}$
- □ M =

- □ Elements from probability theory (fuzzy logic) → Fuzzy variables → properties
 - Completeness
 - □ A fuzzy variable V is complete if for all $x \in X$ there is a fuzzy set A such as $\mu_{\Delta}(x) > 0$

Content and design → fuzzification of input data

- □ Elements from probability theory (fuzzy logic) → Fuzzy variables → properties
 - Unit partition
 - A fuzzy variable V forms a unit partition if for all input values x we have $\sum_{i=1}^{p} \mu_{A_i}(x) = 1$
 - where p is the number of sets that x belongs to
 - There are no rules for defining 2 neighbour sets
 - Usually, the overlap is between 25% şi 50%

Artificial Intelligence - RBS

Unit partition

Non-unit partition

- □ Elements from probability theory (fuzzy logic) → Fuzzy variables → properties
 - Unit partition
 - A complete fuzzy variable can be transformed into a unit partition:

$$\mu_{\hat{A}_i}(x) = \frac{\mu_{A_i}(x)}{\sum_{j=1}^p \mu_{A_j}(x)}$$
 for $i = 1, ..., p$

- Elements from probability theory (fuzzy logic)
 - Fuzzy facts (fuzzy sets)
 - Definition
 - Representation
 - Operations complements, containment, intersection, reunion, equality, algebraic product, algebraic sum
 - Properties associativity, commutativity, distributivity, transitivity, idempotency, identity, involution
 - Hedges
 - Fuzzy variables
 - Definition
 - Properties
 - Establish the fuzzy variables and the fuzzy sets based on membership functions

- Mechanism
 - Establish the raw (input and out[put) data of the system
 - Define membership functions for each input data
 - Each membership function has associated a quality label linguistic variable
 - A raw variable can have associated one or more linguistic variables
 - Example
 - Raw variable: temperature T
 - Linguistic variable: law →A1, medium → A2, high → A3
 - Transform each raw input data into a linguistic data → fuzzification
 - Establish the fuzzy set of that raw input data
 - □ How?
 - For a given raw input determine the membership degree for each possible set
 - Example

•
$$T (=x_n) = 5^\circ$$

•
$$A_1 \rightarrow \mu_{A1}(T) = 0.6$$

•
$$A_2 \rightarrow \mu_{A2}(T) = 0.4$$

Content and design → fuzzification of input data

Mechanism

- Example air conditioner device
 - Inputs:
 - x (temperature cold, normal, hot) and
 - y (humidity small, large)
 - Outputs:
 - z (machine power law, medium, high)
 - Input data:
 - Temperature x = 37
 - $\mu_{A1}(x)=0$, $\mu_{A2}(x)=0.6$, $\mu_{A3}(x)=0.3$
 - Humidity y = 0.8

April 2017

Artificial Intelligence - RBS

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

83

April 2017 Artificial Intelligence - RBS

Content and design → Construct a base of rules – by an expert

- Rules
 - Definition
 - Linguistic constructions
 - Affirmative sentences: A
 - Conditional sentences: if A then B
 - Where A and B are (collections of) sentences that contain linguistic variables
 - A premise of the rule
 - B consequence of the rule
 - Typology
 - Non-conditional
 - x is (in) A_i
 - Eg. Save the energy
 - Conditional
 - If x is (in) A_i then z is (in) C_k
 - If x is (in) A_i and y is (in) B_i, then z is (in) C_k
 - If x is (in) A_i or y is (in) B_i, then z is (in) C_k

Content and design → Construct a base of rules – by an expert

- Rules
- Example

	Rules of classical logic	Rules of fuzzy logic
R_1	If temperature is -5, then is cold	If temperature is law, then is cold
R_2	If temperature is 15, then is warm	If temperature is medium, then is warm
R_3	If temperature is 35, then is hot	If temperature is high, then is hot

Content and design → Construct a base of rules – by an expert

- Rules
- Database of fuzzy rules

```
\square R<sub>11</sub>: if x is A<sub>1</sub> and y is B<sub>1</sub> then z is C<sub>u</sub>
```

- \square R₁₂: if x is A₁ and y is B₂ then z is C_v
- ...
- \square R_{1n}: : if x is A₁ and y is B_n then z is C_x
- R_{21} : if x is R_2 and y is R_1 then z is R_2
- \square R₂₂: if x is A₂ and y is B₂ then z is C_z
- ...
- \square R_{2n}: if x is A₂ and y is B_n then z is C_v
- \square R_{m1}: if x is A_m and y is B₁ then z is C_x
- R_{m2} : if x is R_m and y is R_2 then z is R_m
- ...
- \blacksquare R_{mn}: if x is A_m and y is B_n then z is C_u

Content and design → Construct a base of rules – by an expert

- Rules
- Properties
 - Completeness
 - A database of fuzzy rules is complete
 - If all input values have associated a value between 0 and 1
 - If all fuzzy variable are complete
 - If used fuzzy sets have a non-compact support
 - Consistency
 - A set of fuzzy rules is inconsistent if two rules have the same premises and different consequences
 - If x in A and y in B then z in C
 - If x in A and y in B then z in D
- Problems of the database
 - Rule's explosion
 - #of rules increases exponential whit the # of input variables
 - # of input set combinations is
 - Where the i^{th} variable is composed by p_i sets

$$P = \prod_{i=1}^{n} p_i$$

Content and design → Construct a base of rules – by an expert

- Decision matrix of the knowledge database
- Example air conditioner device
 - Inputs:
 - x (temperature cold, normal, hot) and
 - y (humidity small, large)
 - Outputs:
 - z (machine power law, constant, high)
 - Rules:
 - If temperature is normal and humidity is small then the power is constant

		Input data y	
		Small	Large
Input data x	Cold	Law	Constant
	Normal	Constant	High
	Hot	High	High

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

89

April 2017 Artificial Intelligence - RBS

Content and design → rule evaluation (fuzzy inference)

- Which rules are firstly evaluated?
 - Fuzzy inference
 - Rules are evaluated in parallel, each rules contributing to the shape of the final result
 - Resulted fuzzy sets are de-fuzzified after all the rules have been evaluated

Remember

- Forward inference
 - For a given state of problem, collect the required information and apply the possible rules
- Backward inference
 - Identify the rules that determine the final state and apply only that rules (if it is possible)
- How the rules are evaluated?
 - Evaluation of causes
 - Evaluation of consequences

Content and design → rule evaluation (fuzzy inference)

- Evaluation of causes
 - For each premise of a rule (if s is (in) A) establish the membership degree of raw input data to all fuzzy sets
 - A rule can have more premises linked by logic operators AND, OR or NOT → use fuzzy operators
 - □ Operator AND → intersection (minimum) of 2 sets

$$\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$$

□ Operator OR → union (maximum) of 2 sets

•
$$\mu_{A\cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$$

□ Operator *NOT* → negation (complement) of a set

$$\mu_{-a}(x) = 1 - \mu_a(x)$$

- The result of premise's evaluation
 - Degree of satisfaction
 - Other names:
 - Rule's firing strength
 - Degree of fulfillment

Content and design → rule evaluation (fuzzy inference)

- Evaluation of consequences
 - Determine the results
 - Establish the membership degree of variables (involved in the consequences) to different fuzzy sets
 - Each output region must be de-fuzzified in order to obtain crisp value
 - Based on the consequence's type
 - Mamdani model consequence of rule: "output variable belongs to a fuzzy set"
 - Sugeno model consequence of rule: "output variable is a crisp function that depends on inputs"
 - Tsukamoo model consequence of rule: "output variable belongs to a fuzzy set following a monotone membership function"

Content and design → rule evaluation (fuzzy inference) → **Evaluation of consequences**

- Mamdani model
 - Main idea:
 - consequence of rule: "output variable belongs to a fuzzy set"
 - Result of evaluation is applied for the membership function of the consequence
 - Example
 - if x is in A and y is in B, then z is in C
 - Typology (based on how the results is applied on the membership function of the consequence)
 - Clipped fuzzy sets
 - Scaled fuzzy sets

Content and design → rule evaluation (fuzzy inference) → **Evaluation of consequences**

- Mamdani model
 - Typology (based on how the results is applied on the membership function of the consequence)
 - Clipped fuzzy sets
 - Membership function of the consequence is cut at the level of the result's truth value
 - Advantage → easy to compute
 - Disadvantage → some information are lost

- Scaled fuzzy sets
 - Membership function of the consequence is adjusted by scaling (multiplication) at the level of the result's truth value
 - Advantage → few information is lost 0.6
 - Disadvantage → complicate computing

- □ Content and design → rule evaluation (fuzzy inference) → Evaluation of consequences → Mamdani model
 - Example air conditioner device
 - Inputs:
 - x (temperature cold, normal, hot) and
 - y (humidity small, large)
 - Outputs:
 - z (machine power law, constant, high)
 - Input data:
 - Temperature x = 37

•
$$\mu_{A1}(x)=0$$
, $\mu_{A2}(x)=0.6$, $\mu_{A3}(x)=0.3$

- Humidity y = 0.8
 - $\mu_{B1}(x)=0.9, \ \mu_{B2}(x)=0$

		Input data y	
		Small	Large
Input data x	Cold	Law	Constant
	Normal	Constant	High
	Hot	High	High

Content and design → rule evaluation → Evaluation of consequences → Mamdani model

R2: if x is in A_2 or y is in B_1 then z is in C_2

R3: if x is in A_3 or y is in B_2 then z is in C_3

Content and design → rule evaluation (fuzzy inference) → **Evaluation of consequences**

- Sugeno model
 - Main idea
 - consequence of rule: "output variable is a crisp function that depends on inputs"
 - Example

If x is in A and y is in B then z is f(x,y)

- Typology (based on charactersitics of f(x,y))
 - Sugeno model of degree $0 \rightarrow if (f(x,y) = k constant (membership function of the consequences are singleton a fuzzy set whose membership functions have value 1 for a single (unique) point of the universe and 0 for all other points)$
 - Sugeno model of degree $1 \rightarrow$ if f(x,y) = ax + by+c

Content and design \rightarrow rule evaluation \rightarrow Evaluation of consequences \rightarrow Sugeno model

R1: if x is in A_1 and y is in B_1 then z is in C_1

R2: if x is in A_2 or y is in B_1 then z is in C_2

R3: if x is in A_3 or y is in B_2 then z is in C_3

Content and design → rule evaluation (fuzzy inference) → **Evaluation of consequences**

- Tsukamoto model
 - Main idea
 - consequence of rule: "output variable belongs to a fuzzy set following a monotone membership function"
 - A crisp value is obtained as output → rule's firing strength

Content and design \rightarrow rule evaluation \rightarrow Evaluation of consequences \rightarrow Tsukamoto model

R1: if x is in A_1 and y is in B_1 then z is in C_1 $\mu_{A1}(x) = 0$ $\mu_{B1}(y)=0.9$ $\mu_{C1}(z)=0$ B_2 R2: if x is in A_2 or y is in B_1 then z is in C_2 $\mu_{A2}(x) = 0.6$ $\mu_{B1}(y)=0.9$ $\mu_{C2}(z)=0,9$ 0.6 35x=37 10 15 25 55 R3: if x is in A_3 or y is in B_2 then z is in C_3 $\mu_{C3}(z)=0.3$ $\mu_{\Delta 3}(x) = 0.3$ $\mu_{B2}(y)=0$ 0.3 10 15 y=0.8 0.5 1.0

April 2017

Artificial Intelligence - RBS

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

April 2017 Artificial Intelligence - RBS 101

Content and design → Aggregate the results

- Union of outputs for all the applied rules
- Consider the membership functions for all the consequences and combine them into a single fuzzy set (a single result)
- Aggregation process have as
- Inputs → membership functions (clipped or scaled) of the consequences
- Outputs → a fuzzy set of the output variable
- Example
- Mamdani

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

April 2017 Artificial Intelligence - RBS 103

Content and design → defuzzification

- Main idea
 - Transform the fuzzy result into a crisp (raw) value
 - Inference → obtain some fuzzy regions for each output variable
 - Defuzzification → transform each fuzzy region into a crisp value

Methods

- Based on the gravity center
 - COA Centroid Area
 - BOA Bisector of area
- Based on maximum of membership function
 - MOM Mean of maximum
 - SOM Smallest of maximum
 - LOM Largest of maximum

Content and design → defuzzification → methods

- COA Centroid Area
 - Identify the z point from the middle of aggregated set

$$COG = \frac{\sum_{i=0}^{n} x_{i} \mu_{A}(x_{i})}{\sum_{i=0}^{n} \mu_{A}(x_{i})} \quad \text{sau } COG = \frac{\int_{i=0}^{n} x_{i} \mu_{A}(x_{i})}{\int_{i=0}^{n} \mu_{A}(x_{i})}$$

- Example
 - Mamdani model \rightarrow estimation of COA by using a sample of n points (x_i , i =1,2,..., n) of the resulted fuzzy set

Sugeno or Tsukamoto model → COA becomes a weighted average of m crisp values obtained by applying all m rules

$$COA = \frac{9*0.9+11*0.3}{0.9+0.3}$$
$$COA \cong 9.5$$

Content and design → defuzzification → methods

- BOA Bisector of area
 - Identify the point z that determine the splitting of aggregated set in 2 parts of equal area

$$BOA = \int_{\alpha}^{z} \mu_{A}(x)dx = \int_{z}^{\beta} \mu_{A}(x)dx,$$
where $\alpha = \min\{x \mid x \in A\}$ and $\beta = \min\{x \mid x \in A\}$

Content and design → defuzzification → methods

- MOM Mean of maximum
 - Identify the point z that represents the mean of that points (from the aggregated set) that have a maximum membership function

$$MOM = \frac{\sum_{x_i \in \max \mu} x_i}{|max\mu|}, \text{ where } max\mu = \mu^* = \{x \mid x \in A, \mu(x) = maxim\}$$

- □ SOM Smallest of maximum
 - Identify the smallest point z (from the aggregated set) that have a maximum membership function
- LOM Largest of maximum
 - Identify the largest point z (from the aggregated set) that have a maximum membership function

Content and design → defuzzification

- Main idea
 - Transform the fuzzy result into a crisp (raw) value
 - Inference → obtain some fuzzy regions for each output variable
 - Defuzzification → transform each fuzzy region into a crisp value

Methods

- Based on the gravity center
 - COA Centroid Area
 - □ BOA Bisector of area
- Based on maximum of membership function

Artificial Intelligence - RBS

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
 - Construct a base of rules by an expert
 - Decision matrix
 - Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

April 2017 Artificial Intelligence - RBS 109

Content and design

- Steps for constructing a fuzzy system
 - Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Construct a base of rules by an expert
 - Evaluate the rules
 - Aggregate the results
 - Defuzzificate the result
 - Interpret the result

Advantages

- Imprecision and real-world approximations can be expressed through some rules
- Easy to understand, to test and to maintain
- Robustness → can operate when rules are not so clear
- Require few rules then other KBSs
- Rules are evaluated in parallel

Disadvantages

- Require many simulations and tests
- Do not automatically learn
- It is difficult to identify the most correct rules
- There is not mathematical model

Applications

- Space control
 - Altitude of satellites
 - Setting the planes
- Auto-control
 - Automatic transmission, traffic control, anti-breaking systems
- Business
 - Decision systems, personal evaluation, fond management, market predictions, etc.
- Industry
 - Energy exchange control, water purification control
 - pH control, chemical distillation, polymer production, metal composition
- Electronic devices
 - Camera exposure, humidity control. Air conditioner, shower setting
 - Freezer setting
 - Washing machine setting

Applications

- Nourishment
 - Cheese production
- Military
 - Underwater recognition, infrared image recognition, vessel traffic decision
- Navy
 - Automatic drivers, route selection
- Medical
 - Diagnostic systems, pressure control during anesthesia, modeling the neuropathology results of Alzheimer patients
- Robotics
 - Kinematics (arms)

Review

KBSs

- Computation systems where knowledge database and inference engine overlap
- KBSs can work
 - In certainty environment
 - LBS
 - RBS
 - In uncertainty environments
 - Bayes systems
 - Rules have associated some probabilities
 - Systems based on certainty factors
 - Fact and rules have associated certainty factors
 - Fuzzy systems
 - Fact have associated degree of membership to some sets