

Smart Observer

Lishicoin Audit

Introduction

Smart Observer team was commissioned by Lishicoin team to perform project audit.

Audit Notes

Project Name: Lishicoin

Project Website: https://lishicoinlsc.com/

Audit Date: Oct 31 2021 - Nov 1 2021 Audit Scope: Website, Smart Contract

Disclaimer

Smart Observer Disclaimer

You agree to the terms of this disclaimer by reading this report or any portion thereof. This audit is not financial, investment, or any other kind of advice and is for informational purposes only. No one shall be entitled to depend on the report or its contents, and Smart Observer and its affiliates shall not be held responsible to you or anyone else, nor shall Smart Observer provide any guarantee or representation to any person with regard to the accuracy or integrity of the report. The report is provided as "as is" and does not contain any terms and conditions.

This report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal compliance.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its programming language, and other software related to the smart contract can have their own vulnerabilities that can lead to hacks. Thus, the audit can not guarantee explicit security of the audited smart contracts.

Table Of Contents

Introduction	02
Audit Notes	02
Disclaimer	02
Website Audit	04
Basic Information	04
Design & Usability	04
Domain Lookup	05
Performance Test	05
Static Scan	06
SSL & Protection	06
Automated Scan	06
Manual Scan	07
OWASP TOP10 Scan	07
Smart Contract Audit	08
Basic Information	08
Contract Details	08
Smart Observer Scan Page	08
Inheritance Graph	09
Static Scan	10
ERC Compliance	10
Severity Definitions	11
Vulnerabilities Scan	11
Manual Scan	13
Audit Conclusion	14

Website Audit

Basic Information

https://lishicoinlsc.com/

Design & Usability

The user experience is great, both on the big screen and on mobile devices. There are no errors in the console. There are no spelling errors either. We think this site is good enough both visually and technically.

Domain Lookup

Expiration	2022-09-15
•	
Updated	2022-09-15
Created	2021-09-15

Since the domain name was purchased several weeks before the launch of the project, we can conclude that the project team was prepared in advance and it is not a one-day project.

Performance Test

Data Provider GTmetrix

We consider this a good enough result for a site that has such heavy design elements like video demonstrations and high-quality illustrations

Static Scan

SSL & Protection

The site is fully protected by hosting. This means having a fresh security certificate at all times, which will ensure that your data is transmitted securely. It also implies protection against DDOS attacks, which means you will always be able to access the site.

Automated Scan

Automated vulnerability scanning of the website did not reveal any critical threats

Performed by OWASP ZAP on Kali Linux

Manual Scan

OWASP TOP10 Scan

A manual scan for the top 10 web applicati on security threats did not reveal any critical vulnerabilities. The functionality of the website is fairly simple and has no potential for serious threats

#	Name	Result
A1	Injection	Not Found
A2	Broken Authentication	Not Found
A3	Sensitive Data Exposure	Not Found
A4	XML External Entities (XXE)	Not Found
A5	Broken access control	Not Found
A6	Security Misconfigurations	Not Found
A7	Cross Site Scripting (XSS)	Not Found
A8	Insecure Deserialization	Not Found
A9	Using Components with Known Vulnerabilities	Not Found
A10	Insufficient Logging & Monitoring	Not Found

Within the audit stage the website does not provide registration and personal profile, in terms of functionality the resource should be considered as purely informational. The presale page offers integration with Metamask wallet and works satisfactorily. In case additional functionality is introduced, another audit is required.

Smart Contract Audit

Basic information

Contract Details

Contract address 0x464dc763fD4f85BA501F02F0044f665aeFA66770

Token supply 100,000,000 LSC

Token ticker LSC

Decimals 9

Deployer address 0xc233Dc511D81CC6D5CAd3B2F8321d5EBD9A1044d

Current owner address 0xc233Dc511D81CC6D5CAd3B2F8321d5EBD9A1044d

Smart Observer Scan Page

Smart Observer Scan Page

Inheritance Graph

Inheritance Graph

remove Liquidity ETH Supporting Fee On Transfer Tokens (address, uint 256, uint 256, uint 256, address, uint 256)

remove Liquidity ETHWith Permit Supporting Fee On Transfer Tokens (address, uint 256, uint 256, uint 256, address, uint 256, bool, uint 8, bytes 32, bytes 32) and the properties of the prope

swap Exact Tokens For Tokens Supporting Fee On Transfer Tokens (uint 256, uint 256, address [], address, uint 256)

swap Exact ETHF or Tokens Supporting Fee On Transfer Tokens (uint 256, address [], address, uint 256) and the supporting Fee On Transfer Tokens (uint 256, address [], address, uint 256) and under the supporting Fee On Transfer Tokens (uint 256, address [], address, uint 256) and under the supporting Fee On Transfer Tokens (uint 256, address [], address, uint 256) and under the supporting Fee On Transfer Tokens (uint 256, address [], address, uint 256) and under the supporting Fee On Transfer Tokens (uint 256, address [], addre

swap Exact Tokens For ETH Supporting Fee On Transfer Tokens (uint 256, uint 256, address [], address, uint 256)

IPancakeRouter01

Public Functions

factory()

WETH()

add Liquidity (address, address, uint 256, uint 256, uint 256, uint 256, address, uint 256)

addLiquidityETH(address,uint256,uint256,uint256,address,uint256)

removeLiquidity(address,address,uint256,uint256.uint256.address.uint256)

removeLiquidityETH(address,uint256,uint256,uint256,address,uint256)

remove Liquidity With Permit (address, address, uint 256, uint 256, address, uint 256, bool, uint 8, bytes 32, bytes 32)

removeLiquidityETHWithPermit(address,uint256,uint256,uint256,address,uint256,bool,uint8,bytes32,bytes32)

swapExactTokensForTokens(uint256,uint256,address[],address,uint256) swapTokensForExactTokens(uint256,uint256,address[],address,uint256)

swap Exact ETHF or Tokens (uint 256, address [], address, uint 256)

swapTokensForExactETH(uint256,uint256,address[],address,uint256)

swapExactTokensForETH(uint256,uint256,address[],address,uint256)

swapETHForExactTokens(uint256,address[],address,uint256)

quote(uint256.uint256.uint256)

getAmountOut(uint256,uint256,uint256)

getAmountIn(uint256,uint256,uint256)

getAmountsOut(uint256,address[]) getAmountsIn(uint256,address[])

IPancakePair

Public Functions:

name()

symbol()

decimals() totalSupply()

balanceOf(address)

allowance(address.address)

approve(address,uint256)

transfer(address,uint256)

transferFrom(address,address,uint256)

DOMAIN_SEPARATOR()

PERMIT_TYPEHASH()

nonces(address)

permit(address,address,uint256,uint256,uint8,bytes32,bytes32)

MINIMUM_LIQUIDITY()

factory()

token0() token1()

getReserves()

price0CumulativeLast()

price1CumulativeLast()

kLast()

mint(address)

burn(address)

swap(uint256,uint256,address,bytes)

skim(address)

sync()

initialize(address,address)

Δddress

Private Functions:

isContract(address)

sendValue(address.uint256)

functionCall(address.bytes)

functionCall(address,bytes,string)

functionCallWithValue(address,bytes,uint256)

functionCallWithValue(address,bytes,uint256,string)

functionStaticCall(address,bytes)

functionStaticCall(address,bytes,string)

functionDelegateCall(address,bytes)

functionDelegateCall(address,bytes,string) verifyCallResult(bool,bytes,string)

SafeBEP20

Private Functions

safeTransfer(IBEP20,address,uint256)

safeTransferFrom(IBEP20,address,address,uint256)

safeApprove(IBEP20,address,uint256)

safeIncreaseAllowance(IBEP20,address,uint256)

safeDecreaseAllowance(IBEP20,address,uint256) _callOptionalReturn(IBEP20,bytes)

IPancakeFactory | |

Public Functions:

feeTo()

feeToSetter() getPair(address,address)

allPairs(uint256)

allPairsLength()

createPair(address,address)

setRewardFeeTo(address)

setRewardFeeToSetter(address)

SafeMath

Private Functions

trvAdd(uint256.uint256)

trySub(uint256,uint256) tryMul(uint256,uint256)

tryDiv(uint256,uint256)

tryMod(uint256,uint256)

add(uint256,uint256)

sub(uint256,uint256)

mul(uint256,uint256) div(uint256.uint256)

mod(uint256.uint256)

sub(uint256.uint256.string)

div(uint256,uint256,string) mod(uint256,uint256,string)

Static Scan

ERC Compliance

```
## Check functions
[√] totalSupply() is present
[√] totalSupply() → () (correct return value)
[√] totalSupply() is view
[√] balanceOf(address) is present
[/] balanceOf(address) -> () (correct return value)
[√] balanceOf(address) is view
[√] transfer(address,uint256) is present
[/] transfer(address, uint256) -> () (correct return value)
[√] Transfer(address,address,uint256) is emitted
[√] transferFrom(address,address,uint256) is present
[√] transferFrom(address,address,uint256) -> () (correct return value)
[√] Transfer(address,address,uint256) is emitted
[√] approve(address,uint256) is present
[/] approve(address, uint256) -> () (correct return value)
[√] Approval(address,address,uint256) is emitted
[√] allowance(address,address) is present
[/] allowance(address, address) -> () (correct return value)
[√] allowance(address, address) is view
[√] name() is present
[√] name() -> () (correct return value)
[√] name() is view
[√] symbol() is present
[√] symbol() -> () (correct return value)
[√] symbol() is view
[√] decimals() is present
[/] decimals() -> () (correct return value)
[√] decimals() is view
## Check events
[√] Transfer(address,address,uint256) is present
[√] parameter 0 is indexed
[√] parameter 1 is indexed
[√] Approval(address,address,uint256) is present
[√] parameter 0 is indexed
 [√] parameter 1 is indexed
```

Severity Definitions

Risk Level	Description
Critical	Critical vulnerabilities are usually straightforward to exploit and can lead to assets loss or data manipulations
High	High-level vulnerabilities are difficult to exploit; however, they also have a significant impact on smart contract execution, e.g., public access
Medium	Medium-level vulnerabilities are important to fix; however, they can not lead to assets loss or data manipulations
Low	Low-level vulnerabilities are mostly related to outdated, unused, etc. code snippets that can not have a significant impact on execution
Lowest / Code Style / Best Practice	Lowest-level vulnerabilities, code style violations, and info statements can not affect smart contract execution and can be ignored

Vulnerabilities Scan

Critical

No critical severity vulnerabilities were found

High

1. Sends eth to arbitrary user

```
LishiCoinToken.clearBNB() (LishiCoinToken.sol#1389-1392) sends eth to arbitrary user

Dangerous calls:
- _msgSender().transfer(address(this).balance)
(LishiCoinToken.sol#1391)
```

Explanation: It is considered safe as long as the exchange address is correct

Medium

1. Uninitialized storage variables

```
LishiCoinToken.reflectionFromToken(uint256,bool)._rv_scope_0
(LishiCoinToken.sol#1310) is a storage variable never initialized

LishiCoinToken.reflectionFromToken(uint256,bool)._tv_scope_1
(LishiCoinToken.sol#1310) is a storage variable never initialized
```

Description: An uninitialized storage variable will act as a reference to the first state variable, and can override a critical variable.

Recommendation: Initialize all storage variables. (Can be left as is.)

2. Local variable shadowing

```
LishiCoinToken.allowance(address,address).owner
(LishiCoinToken.sol#1144) shadows:
- Ownable.owner() (LishiCoinToken.sol#902-904) (function)

LishiCoinToken._approve(address,address,uint256).owner
(LishiCoinToken.sol#1498) shadows:
- Ownable.owner() (LishiCoinToken.sol#902-904) (function)
```

Description: Detection of shadowing using local variables. Recommendation: Rename the local variables that shadow another component. (In this case, it can be left as is.)

Low / Lowes

Several low severity vulnerabilities were found

Description: Some minor vulnerabilities (weak documentation for some functions, minor vulnerabilities in already tested libraries)

Recommendation: This vulnerabilities can not affect smart contract execution and can be ignored.

Manual Scan

No critical severity vulnerabilities were found.

Issue Description	Checking Status
Compiler Errors	Passed
Outdated Complier Version	Passed
Re-entrancy	Passed
Possible delays in data delivery	Passed
Shadowing State Variables	Passed
Assert Violation	Passed
Oracle calls	Passed
Front running	Passed
Timestamp dependence	Passed
Integer Overflow and Underflow	Passed
DoS with Revert	Passed
Malicious Event log	Passed
Uninitialized storage pointers	Passed
Arithmetic accuracy	Passed

Audit Conclusion

delight We find this project quite safe.

Smart contracts within the scope were manually reviewed and analyzed with static analysis tools. Low-severity issues exist within smart contracts. Smart contracts are free from any critical or high-severity issues.

smartobserver.online