计算机视觉(深度学习部分)课程与实践 --- 培 训

卷积神经网络是计算机视觉的主流网络

CS231n的全称是<u>CS231n: Convolutional Neural Networks for Visual Recognition</u>,即**面向视觉识别的卷积神经网络**。该课程是斯坦福大学计算机视觉实验室推出的课程。

推荐: 贺完结! CS231n官方笔记授权翻译总集篇发布 - 知乎 (zhihu.com)

通过整套课程(尤其是实践)会对计算机视觉的原理有一个深入的理解

一、课程

CS231n课程链接:【公开课】最新斯坦福李飞飞cs231n计算机视觉课程【附中文字幕】哔哩哔哩bilibili

CS231n课程【同济子豪兄】精讲: <u>【子豪兄】精讲CS231N斯坦福计算机视觉公开课(2020最新)哔哩哔哩</u>bilibili

两者择其一即可。

以同济子豪兄精讲为例 (一下加粗的内容为重点掌握内容)

课程内容	课程时长	备注
计算机视觉发展历史与课程概述	36:11	了解
图像分类: kNN与线性分类器	1:04:15	
线性分类、损失函数与梯度下降	1:19:25	
神经网络与反向传播	1:04:15	重点
卷积神经网络	1:26:30	重点
可视化卷积神经网络	1:22:08	了解
训练 神经网络(一)	1:00:55	
训练 神经网络(二)	1:19:49	
卷积神经网络工程实践技巧	39:01	重点
迁移学习与fine tuning	48:37	
经典卷积神经网络结构案列分析	1:34:47	重点
深度学习硬件算力基础-GPU与TPU	53:22	了解
深度学习硬件算力基础-英特尔神经棒	04:37	了解

课程内容	课程时长	备注
讲座_加速深度学习计算的算法和硬件	1:14:09	了解
边缘计算案例	01:24	
深度学习软件编程框架: Tensorflow、Pytorch	58:39	实践
循环神经网络	55:22	

加餐: 个人认为理解网络结构的典中典

深度学习框架-Backbone汇总 David-Chow的博客-CSDN博客

其中介绍了网络的构成(主流划分层次), Backbone、Neck、Head

译者反馈:

- 1. 转载须全文转载并注明原文链接, 否则保留维权权利;
- 2. 如对翻译有意见建议,请通过评论批评指正,贡献者均会补充提及;
- 3. 知行合一,建议深度学习入门阶段的知友用心实现作业,将有收获;
- 4. 后续我将根据作业内容和自己的学习笔记原创教程。

二、实践

官网: CS231n Convolutional Neural Networks for Visual Recognition

github: amanchadha/stanford-cs231n-assignments-2020: This repository contains my solutions to the assignments for Stanford's CS231n "Convolutional Neural Networks for Visual Recognition" (Spring 2020). (github.com)

如果在本地做的话,建议使用miniconda或者anaconda

实践使用ipynb, 引导你完成

如果能把所有的实践都做一遍,对计算机视觉理解会上一层楼,下面仅给出个人认为的必备内容

挑选的部分内容

Assignment #1: Image Classification, kNN, SVM, Softmax, Neural Network**

Q4: Two-Layer Neural Network

Assignment #2: Fully-Connected Nets, Batch Normalization, Dropout, Convolutional Nets

Q1: Fully-connected Neural Network

Q4: Convolutional Networks

Q5: PyTorch / TensorFlow v2 on CIFAR-10 / TensorFlow v1 (Tweaked TFv1 model)

三、进阶 (个人补充)

虽然叫了进阶,但是难度不大

目标检测也是很重要的一环

- 阅读yolov8的 训练(train.py) 和 部署部分的代码
- 尝试训练一个yolov8的代码 (train)
- 能够使用yolov8提供的预训练和部署代码进行推理 (inference)