* parametres du réseau F:

$$F(s) = \frac{V\Theta}{V_1} = \frac{R_1}{R_1 + R_2} \frac{1}{1 + (R_1/IR_2) Cin S}$$

$$GF \qquad PF = \frac{1}{2\pi (R_1/IR_2) Cin} (m)$$

$$GF = 1/4$$
 $PF = 10,6 MH2$ $(-12dB)$

A a quelle fréquence
$$|A| = \frac{J}{GF}$$
? ou $|A| = 12dB$
 $A_0 - 12dB = 68dB \Rightarrow$ rapport = x2510
 $donc |A| = 12dB$ a $f = P_1 \times 2510 \approx 5Mm$

autre façon: $12dB \Rightarrow pa rapport = \times 4$ $donc |A| = 12dB \Rightarrow f = \frac{GRW}{4} = 5MH2$

|A|=12dB à une fréquence fix à pF => on n'a donc PAS le triangle classique

$$\mathcal{L}_{A} = -\operatorname{anchy} \frac{fi}{Pi} - \operatorname{anchy} \frac{fi}{Pi}$$

$$= -90^{\circ} - 7^{\circ} \approx -97^{\circ}$$

$$\Psi_F = - andy \frac{fi}{P_F} \approx -25^\circ$$

 $\Psi_{T} = \Psi_{A} + \Psi_{F} = -122^\circ$

b) PM= M80°-19H= 58°

on ent quariment à la valour édésle de la marge de phose (60°) => Strible et optimal

2/ BRUIT

a) voir tableaux

b) entre V4 et V1 => passibas des premier ordre, $\int_{c} = \frac{1}{2\pi R_{3} C_{1}} = 994,7 \text{ Hz} => 1 \text{ KHz}$

en V1 => Snvi = 74 10-15 V2/m

Phroit= Snv1 = Je = 116 10-12 V2

c) fréquence signal 2< ce fc => pas d'attenuation

Signal: Vs = 10mVpk - x = 4 = 40mVpk (caslet defamosle) $Psignal = \frac{(40.10^{-3})^2}{2} = 800.10^{-6} V^2$

SNR = Promit = 6,9 106 => 68,4 dB.

SNR convertisieur => 6×8+1,2 = 49,8 dB => pas suffisant il fauchait plus que 8 bits (environ 12 bits) pour profiser du SNR de l'ampli

 $e_{n^2} = 900 \cdot 10^{-18} \cdot V^2/m$ $e_{n^2} = 64 \cdot 10^{-24} \cdot A^2/m$

Nom:

Bruit en V1		(V2/HL)
Source de bruit	Expression littérale	Application numérique
R1	UKTR1 (R2)2	184 10-15
R ₂	$\frac{4kT}{R_2}\left(R_2\right)^2 = 4kTR_2$	0,48 10-15
en 2	$e_{n}^{2}\left(1+\frac{R_{2}}{R_{1}}\right)^{2}$	14,4 10-15
In2®	0 (mask car Ve=0)	0
in20	in ² R ₂ ²	57,6 10-15
	TOTAL 2	74 10-15