Fysik – lektion 1

Første lektions emner:

- Kap. 2: Bevægelse langs en linje
- Kap. 4: Bevægelse i 2 og 3 dimensioner.
- Videnskabelig metode
- * SI enhedssystemet m.m.
- Middelhastighed og øjeblikshastighed
- Bevægelse med konstant acceleration det frie fald
- Projektilbevægelsen
- Jævn cirkulær bevægelse
- Relative bevægelser
- Introduktion til lektion 2 (næste gang)
- Opgaveregning

Fysik – lektion 1

Robotingeniør og fysik?

STATIONARY ROBOTS

Cylindrical

WHEELED

LEGGED ROBOTS

SWIMMING ROBOTS

MICRO Robots

Robotic lab assistant is 1,000 times faster at conducting research

Working 22 hours a day, seven days a week, in the dark

Uni. Liverpool

Robotic lab assistant, able to move around a laboratory and conduct scientific experiments just like a human

Videnskabelig metode i naturvidenskab

Kræver målesystemer

Galileo Galilei:

Mål hvad der kan måles, og gør det måleligt, som endnu ikke er det.

International standardisering af måleenheder under kontrol af: <u>Systéme International d'Unités</u>

SI-enhedssystemet benyttes i det meste af verdenen undtagen USA.

7 grundlæggende SI-enheder for:

Længde [meter]

Masse [kilogram]

Tid [sekunder]

Elektrisk strøm [Ampere]

Temperatur [Kelvin]

Stofmængde [mol]

Lysstyrke [candela]

Plus mange andre afledte af disse syv SI-enheder!

Definitionerne af enhederne i det nyligt vedtagende SI-enhedssystem er udtrykt ved

7 definerende konstanter

Konstanternes værdi er konsistent med de bedste eksperimentelle værdier til rådighed ved vedtagelsen af de nye definitioner

Defining constant	Symbol	Numerical value	Unit
hyperfine transition frequency of caesium	$\Delta v_{_{\mathrm{Cs}}}$	9 192 631 770	Hz
speed of light in vacuum	С	299 792 458	m s ⁻¹
Planck constant	h	6.626 070 15 × 10 ⁻³⁴	Js
elementary charge	е	1.602 176 634 × 10 ⁻¹⁹	С
Boltzmann constant	k	1.380 649 × 10 ⁻²³	J K ⁻¹
Avogadro constant	N _A	6.022 140 76 × 10 ²³	mol ⁻¹
luminous efficacy	K_{cd}	683	Im W ⁻¹

time	The second , symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency Δv_{cs} , the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be 9192 631 770 when expressed in the unit Hz, which is equal to s ⁻¹ .
length	The metre , symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum c to be 299 792 458 when expressed in the unit m s ⁻¹ , where the second is defined in terms of the caesium frequency Δv_{cs} .
mass	The kilogram , symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 ×10 ⁻³⁴ when expressed in the unit J s, which is equal to kg m ² s ⁻¹ , where the metre and the second are defined in terms of c and Δv_{cs} .

electric current

The **ampere**, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge e to be 1.602 176 634 \times 10⁻¹⁹ when expressed in the unit C, which is equal to A s, where the second is defined in terms of Δv_{cs} .

thermodynamic temperature

The **kelvin**, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant k to be 1.380 649 ×10⁻²³ when expressed in the unit J K⁻¹, which is equal to kg m² s⁻² K⁻¹, where the kilogram, metre and second are defined in terms of h, c and Δv_{cs} .

amount of substance

The **mole**, symbol mol, is the SI unit of amount of substance. One mole contains exactly $6.022\ 140\ 76\ \times 10^{23}$ elementary entities. This number is the fixed numerical value of the Avogadro constant, $N_{\rm A}$, when expressed in the unit mol⁻¹ and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.

luminous intensity

The **candela**, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540 $\times 10^{12}$ Hz, K_{cd} , to be 683 when expressed in the unit Im W⁻¹, which is equal to cd sr W⁻¹, or cd sr kg⁻¹ m⁻² s³, where the kilogram, metre and second are defined in terms of h, c and Δv_{cs} .

Derived quantity	Name of derived unit	Symbol for unit	Expression in terms of other units
plane angle	radian	rad	m/m = 1
solid angle	steradian	sr	$m^2/m^2=1$
frequency	hertz	Hz	s^{-1}
force	newton	N	m kg s^{-2}
pressure, stress	pascal	Pa	$N/m^2 = m^{-1} kg s^{-1}$
energy, work, amount of heat	joule	J	$N\ m=m^2\ kg\ s^{-2}$
power, radiant flux	watt	W	$J/s = m^2 kg s^{-3}$
electric charge	coulomb	С	s A
electric potential difference	volt	V	$W/A = m^2 kg s^{-3}A^{-1}$
capacitance	farad	F	$C/V = m^{-2} kg^{-1} s^4 A^2$
electric resistance	ohm	Ω	$V/A = m^2 kg s^{-3} A^{-2}$

Derived quantity	Name of derived unit	•	ol Expression in terms of other units
electric conductance	siemens	S	$\begin{array}{l} A/V = \\ m^{-2} \; kg^{-1} \; s^3 \; A^2 \end{array}$
magnetic flux	weber	Wb	$V s = m^2 kg s^{-2}A^{-1}$
magnetic flux density	tesla	T	$Wb/m^2 = kg s^{-2} A^{-1}$
inductance	henry	Н	$Wb/A = m^2 kg s^{-2} A^{-2}$
Celsius temperature	degree Celsius	°C	K
luminous flux	lumen	lm	cd sr = cd
illuminance	lux	lx	$lm/m^2 = m^{-2} \ cd$
activity referred to a radionuclide	becquerel	Bq	s^{-1}
absorbed dose	gray	Gy	$J/kg = m^2 s^{-2}$
dose equivalent	sievert	Sv	$J/kg = m^2 \ s^{-2}$
catalytic activity	katal	kat	s^{-1} mol

SI præfixer

Factor	Name	Symbol	Factor	Name	Symbol
10^{1}	deca	da	10^{-1}	deci	d
10^{2}	hecto	h	10^{-2}	centi	c
10^{3}	kilo	k	10^{-3}	milli	m
10^{6}	mega	M	10^{-6}	micro	μ
10^{9}	giga	G	10^{-9}	nano	n
10^{12}	tera	T	10^{-12}	pico	p
10^{15}	peta	P	10^{-15}	femto	f
10^{18}	exa	Е	10^{-18}	atto	a
10^{21}	zetta	Z	10^{-21}	zepto	Z
10^{24}	yotta	Y	10^{-24}	yocto	y

Det græske alfabet

Stort	Lille	Navn
A	α	alfa
В	β	beta
Γ	γ	gamma
Δ	δ	delta
Е	3	epsilon
Z	ζ	zeta
Н	η	eta
Θ	θ	theta
I	ι	iota
K	κ	kappa
Λ	λ	lambda
M	μ	my
N	ν	ny
Ξ	ξ	ksi
O	0	omicron
П	π	pi
P	ρ	rho
Σ	σ	sigma
T	τ	tau
Y	υ	ypsilon
Φ	φ	phi
X	χ	chi
Ψ	Ψ	psi
Ω	ω	omega

Lineær bevægelse - hastighed

Strækning vs. tid for en bevægelse

Gennemsnitsfart i tidsintervallet Δt:

$$v_{\text{middel}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
 (2-2)

 $\Delta x \equiv x_2 - x_1$ $\Delta t = t_2 - t_1$ Forskydning:

Tidsinterval:

Lineær bevægelse - hastighed

Strækning vs. tid for en bevægelse

Øjeblikshastigheden til t=3 s:

$$v(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

(2-4)

Lineær bevægelse - acceleration

Hastighed vs. tid

Acceleration vs. tid

$$a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$
(2-9)

Lineær bevægelse - acceleration

Lineær bevægelse - acceleration

$$a(t) = \frac{dv}{dt} \Rightarrow dv = a(t)dt \rightarrow$$

$$\int_{v_0}^{v} dv = \int_{t_0}^{t} a(t)dt \implies \Delta v = v - v_0 = \int_{t_0}^{t} a(t)dt$$
(2-27)

$$v(t) = \frac{dx}{dt} \Rightarrow dx = v(t)dt \rightarrow$$

$$\int_{x_0}^{x} dx = \int_{t_0}^{t} v(t)dt \implies \Delta x = x - x_0 = \int_{t_0}^{t} v(t)dt$$
(2-29)

Lineær bevægelse – <u>konstant</u> acceleration

Table 2-1 Equations for Motion with Constant Acceleration^a

Equation Number	Equation	Missing Quantity
2-11	$v = v_0 + at$	$x - x_0$
2-15	$x - x_0 = v_0 t + \frac{1}{2} a t^2$	ν
2-16	$v^2 = v_0^2 + 2a(x - x_0)$	t
2-17	$x - x_0 = \frac{1}{2}(v_0 + v)t$	\boldsymbol{a}
2-18	$x - x_0 = vt - \frac{1}{2}at^2$	v_0

^aMake sure that the acceleration is indeed constant before using the equations in this table.

Lineær bevægelse – konstant acceleration

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 (2-15)

Slopes of the position graph are plotted on the velocity graph.

$$v_{avg} = \frac{x - x_0}{t - 0} \Longrightarrow x = x_0 + v_{avg}t$$

$$v_{avg} = \frac{1}{2}(v_0 + v) = \frac{1}{2}(v_0 + v_0 + at) = v_0 + \frac{1}{2}at$$

Slope of the velocity graph is plotted on the acceleration graph.

$$a = a_{avg} = \frac{v - v_0}{t - 0} \Rightarrow v = v_0 + at$$
 (2-11)

Lineær bevægelse – konstant acceleration

$$(2-11) v = v_0 + at \Rightarrow t = \frac{v - v_0}{a}$$

(2-15)
$$x - x_0 = v_0 t + \frac{1}{2} a t^2 = v_0 \frac{v - v_0}{a} + \frac{1}{2} a \left[\frac{v - v_0}{a} \right]^2 \Leftrightarrow$$

$$2a(x - x_0) = 2v_0 v - 2v_0^2 + v^2 + v_0^2 - 2v_0 v = v^2 - v_0^2 \Leftrightarrow$$

(2-16)
$$v^2 = v_0^2 + 2a(x - x_0)$$

(2-11)
$$v = v_0 + at \Rightarrow a = \frac{v - v_0}{t}$$
 eller $v_0 = v - at$

(2-15)
$$x - x_0 = v_0 t + \frac{1}{2} a t^2 = v_0 t + \frac{1}{2} \left[\frac{v - v_0}{t} \right] t^2 = \frac{1}{2} (v_0 + v) t$$

(2-18)
$$x - x_0 = \frac{1}{2} \left[v - at + v \right] t = vt - \frac{1}{2} at^2 \implies x = x_0 + vt - \frac{1}{2} at^2$$

Bevægelse i 3 dimensioner - position

Position

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \tag{4-1}$$

Forskydning

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1 \tag{4-2}$$

$$\Delta \vec{r} = x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k} - (x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k})$$

$$\Delta \vec{r} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

$$\Delta \vec{r} = \Delta x \hat{i} + \Delta y \hat{j} + \Delta z \hat{k} \quad (4-4)$$

Bevægelse i 3 dimensioner - hastighed

Gennemsnitshastighed

$$\vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t} \tag{4-8}$$

$$\vec{v}_{avg} = \frac{\Delta x}{\Delta t} \hat{i} + \frac{\Delta y}{\Delta t} \hat{j} + \frac{\Delta z}{\Delta t} \hat{k}$$
 (4-9)

Øjebliksshastighed

$$\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t} = \frac{d\vec{r}}{dt}$$

$$\vec{v} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\hat{k}$$

 $\vec{v} = v_x \hat{i} + v_y \vec{j} + v_z \hat{k}$ (4-11)

The velocity vector is always tangent to the path.

Bevægelse i 3 dimensioner - acceleration

Gennemsnitsacceleration

$$\vec{a}_{avg} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t}$$
 (4-15)

$$v_{avg} = \frac{\Delta x}{\Delta t} \hat{i} + \frac{\Delta y}{\Delta t} \hat{j} + \frac{\Delta z}{\Delta t} \hat{k}$$

Øjebliksacceleration

$$\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t} = \frac{d\vec{v}}{dt}$$

$$\vec{a} = \frac{dv_x}{dt}\hat{i} + \frac{dv_y}{dt}\vec{j} + \frac{dv_z}{dt}\hat{k}$$
 (4-18)

$$\vec{a} = a_x \hat{i} + a_y \vec{j} + a_z \hat{k}$$

These are the *x* and *y* components of the vector at this instant.

Plan bevægelse - projektilbevægelsen

Objekts bevægelse under indflydelse af tyngdekraften:

$$a_v = -g$$
 $(g = 9.82 \,\mathrm{m/s^2} \,(\mathrm{dk}))$

Hastighedens x-komposant er konstant (ikke påvirket af g):

$$v_x = v_{0x} = v_0 \cos \theta_0 \implies x = x_0 + (v_0 \cos \theta_0)t$$
 (4-21)

Hastighedens y-komposant findes ved at benytte ligninger for konstant acceleration:

$$v_y = v_{0y} - gt = v_0 \sin \theta_0 - gt \implies y = y_0 + (v_0 \sin \theta_0) t - \frac{1}{2} gt^2$$
 (4-22)

Plan bevægelse - projektilbevægelsen

Antager vi, at objektet kastes fra positionen $(x_0, y_0) = (0, 0)$ fås:

$$x = (v_0 \cos \theta_0)t \Rightarrow t = \frac{x}{v_0 \cos \theta_0}$$

$$y = (v_0 \sin \theta_0)t - \frac{1}{2}gt^2 = (v_0 \sin \theta_0) \left[\frac{x}{v_0 \cos \theta_0}\right] - \frac{1}{2}g\left[\frac{x}{v_0 \cos \theta_0}\right]^2 \Rightarrow$$

$$y = x \tan \theta_0 - \frac{1}{2}\left[\frac{g}{(v_0 \cos \theta_0)^2}\right]x^2 \quad \text{(4-25)} \quad \text{(ligningen for en parabel)}$$

Kastelængde: $R = \frac{{v_0}^2}{g} \sin 2\theta_0$ Max højde: $H = \frac{{v_0}^2}{2g} (\sin \theta_0)^2$

Jævn cirkulær bevægelse

Beskrives ved polære koordinater:

Radius: R

Vinkel: Φ

Buelængde:
$$\Delta s = R \Delta \phi$$

$$v = \frac{ds}{dt} = R \frac{d\phi}{dt}$$

$$\omega \equiv \frac{d\phi}{dt}$$
 $v = 1$

$$T = \frac{2\pi R}{v} = \frac{2\pi R}{\omega R} = \frac{2\pi}{\omega}$$

$$f = \frac{1}{T} = \frac{\omega}{2\pi} \quad \omega = 2\pi f$$

Jævn cirkulær bevægelse

Ændringen i hastighedsvektoren angiver retningen af : $\vec{a}_{avg} = \frac{\Delta v}{\Delta t}$

Ud fra de ligedannede trekanter i figurerne ses:

$$\frac{\Delta v}{v} = \frac{\Delta r}{r} \iff \Delta v = \frac{v}{r} \Delta r \implies \frac{\Delta v}{\Delta t} = \frac{v}{r} \frac{\Delta r}{\Delta t}$$

Den øjeblikkelige acceleration findes som:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{v}{r} \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = \frac{v}{r} v = \frac{v^2}{r} = r\omega^2$$
 (4-34)

$$\vec{a} = -\frac{v^2}{r} \hat{r}$$

Relativ bevægelse

En dreng står stille en bus og kaster en bold op. Observatører som bevæger sig i forhold til hinanden vil beskrive bevægelsen forskelligt.

Relativ bevægelse

$$\vec{r}_{PB} = \vec{r}_{PB} + \vec{r}_{BA}$$
 (4-43)

$$\vec{v}_{PB} = \vec{v}_{PB} + \vec{v}_{BA}$$
 (4-44)

$$\vec{a}_{PA} = \vec{a}_{PB} \tag{4-45}$$

Næste gang: Newton's Love

Newton's Første Lov

Et legeme som ikke er påvirket af en kraft, eller af kræfter der ophæver hinandens virkning, vil enten være i hvile eller foretage en jævn retlinet bevægelse.

Newton's Anden Lov

Et legeme med massen m, der påvirkes af en resulterende kraft F, vil have en acceleration a, som opfylder: $\vec{F} = m\vec{a}$

Newton's Tredie Lov

Et legeme A der påvirker et legeme B med en kraft, vil blive påvirket med en lige stor modsat rettet (Lov om aktion og reaktion)