Exercise 7.1

- (a) I will disprove the statement with a counter example. For a=b=c=2 we have that $a\mid c$ and $b\mid c$ is true because we have ak=bk=2k=c=2 for k=1. But $ab\mid c$ which is equivalent to $4\mid 2$ is not true because there exists no $k\in\mathbb{Z}$ such that abk=4k=2=c. Therefore $a\mid c$ and $b\mid c$ does not imply $ab\mid c$.
- (b) If $a \mid b$ and $a \mid b c$ there exist $k_1, k_2 \in \mathbb{Z}$ s.t. $ak_1 = b$ and $ak_2 = b c$. By substitution we get $ak_2 = ak_1 c \leftrightarrow ak_1 ak_2 = c \leftrightarrow a(k_1 k_2) = c$. We have that $k_1 k_2 = k_3 \in \mathbb{Z}$. Therefore $ak_3 = c$ which implies $a \mid c$.

Exercise 7.2

- (a)
- (b)

Exercise 7.3

Exercise 7.4

```
The graph G = (V, E) with V = \{H, I, J, K, L, M, N\} and E = \{\{K, J\}, \{K, M\}, \{K, N\}, \{K, H\}, \{K, L\}, \{J, M\}, \{M, N\}, \{M, L\}\} satisfies the properties.
```

Exercise 7.5

- (a) The walk $\pi = \langle D, B, A, B \rangle$ from D to B is not a path.
- (b) The set $P = \{ \langle A, B, C \rangle, \langle C, B, A \rangle, \langle D, B, A \rangle, \langle D, B, C \rangle \}$ contains all paths with length 2.
- (c) The tour $\langle A \rangle$ satisfies $v_0 = v_n = A$ and is not a cycle.

(d) There are 6 cycles in the graph.