I wear a chain complex now. Chain complexes are cool

27.01.2017

27/01/2017

Kristin Krogh Arnesen

Oystein Skartsaeterhagen

Kamal Saleh

Kristin Krogh Arnesen

Email: kristink@math.ntnu.no

Homepage: http://www.math.ntnu.no/~kristink

Address: Trondheim

Oystein Skartsaeterhagen

Email: oysteini@math.ntnu.no

Homepage: http://www.math.ntnu.no/~oysteini

Address: Trondheim

Kamal Saleh

Email: kamal.saleh@uni-siegen.de

Homepage: https://github.com/kamalsaleh/complex

Address: Siegen

Contents

1 Complexes			3
	1.1	Chain and cochain complex categories	3
	1.2	Creating chain and cochain complexes	4
	1.3	Attributes and operations on complexes	6
	1.4	Truncations	Ç
	1.5	Examples	10
In	dev		13

Chapter 1

Complexes

1.1 Chain and cochain complex categories

1.1.1 IsChainOrCochainComplex (for IsCapCategoryObject)

 ${\scriptstyle \rhd} \ \, {\tt IsChainOrCochainComplex(\it arg)} \\$

Returns: true or false

bla bla

1.1.2 IsChainComplex (for IsChainOrCochainComplex)

▷ IsChainComplex(arg)

(filter)

(filter)

Returns: true or false

bla bla

1.1.3 IsCochainComplex (for IsChainOrCochainComplex)

 \triangleright IsCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.4 IsBoundedBelowChainOrCochainComplex (for IsChainOrCochainComplex)

▷ IsBoundedBelowChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.5 IsBoundedAboveChainOrCochainComplex (for IsChainOrCochainComplex)

▷ IsBoundedAboveChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.6 IsBoundedChainOrCochainComplex (for IsBoundedBelowChainOrCochainComplex and IsBoundedAboveChainOrCochainComplex)

▷ IsBoundedChainOrCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.7 IsBoundedBelowChainComplex (for IsBoundedBelowChainOrCochainComplex and IsChainComplex)

▷ IsBoundedBelowChainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.8 IsBoundedBelowCochainComplex (for IsBoundedBelowChainOrCochainComplex and IsCochainComplex)

▷ IsBoundedBelowCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.9 IsBoundedAboveChainComplex (for IsBoundedAboveChainOrCochainComplex and IsChainComplex)

▷ IsBoundedAboveChainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.10 IsBoundedAboveCochainComplex (for IsBoundedAboveChainOrCochain-Complex and IsCochainComplex)

▷ IsBoundedAboveCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.11 IsBoundedChainComplex (for IsBoundedChainOrCochainComplex and Is-ChainComplex)

▷ IsBoundedChainComplex(arg)

(filter)

Returns: true or false

bla bla

1.1.12 IsBoundedCochainComplex (for IsBoundedChainOrCochainComplex and Is-CochainComplex)

▷ IsBoundedCochainComplex(arg)

(filter)

Returns: true or false

bla bla

1.2 Creating chain and cochain complexes

1.2.1 ChainComplex (for IsCapCategory, IsZList)

▷ ChainComplex(A, diffs)

(operation)

▷ CochainComplex(A, diffs)

(operation)

Returns: a chain complex

The input is category A and an infinite list diffs. The output is the chain (cochain) complex $M_{\bullet} \in \operatorname{Ch}(A)$ ($M^{\bullet} \in \operatorname{CoCh}(A)$) where $d_i^M = \operatorname{diffs}[i]$ ($d_M^i = \operatorname{diffs}[i]$).

1.2.2 ChainComplex (for IsDenseList, IsInt)

▷ ChainComplex(diffs, n)

(operation)

▷ CochainComplex(diffs, n)

(operation)

Returns: a (co)chain complex

The input is a finite dense list diffs and an integer n. The output is the chain (resp. cochain) complex $M_{\bullet} \in \operatorname{Ch}(A)$ ($M^{\bullet} \in \operatorname{CoCh}(A)$) where $d_n^M := \operatorname{diffs}[1](d_M^n := \operatorname{diffs}[1]), d_{n+1}^M = \operatorname{diffs}[2](d_M^{n+1} := \operatorname{diffs}[2])$, etc.

1.2.3 ChainComplex (for IsDenseList)

▷ ChainComplex(diffs)

(operation)

▷ CochainComplex(diffs)

(operation)

Returns: a (co)chain complex

The same as the previous operations but with n = 0.

1.2.4 StalkChainComplex (for IsCapCategoryObject, IsInt)

▷ StalkChainComplex(diffs, n)

(operation)

▷ StalkCochainComplex(diffs, n)

(operation)

Returns: a (co)chain complex

The input is an object $M \in A$. The output is chain (resp. cochain) complex $M_{\bullet} \in Ch(A)(M^{\bullet} \in CoCh(A))$ where $M_n = M(M^n = M)$ and $M_i = 0(M^i = 0)$ whenever $i \neq n$.

1.2.5 ChainComplexWithInductiveSides (for IsCapCategoryMorphism, IsFunction, IsFunction)

▷ ChainComplexWithInductiveSides(d, G, F)

(operation)

Returns: a chain complex

The input is a morphism $d \in A$ and two functions F, G. The output is chain complex $M_{\bullet} \in \operatorname{Ch}(A)$ where $d_0^M = d$ and $d_i^M = G^i(d)$ for all $i \leq -1$ and $d_i^M = F^i(d)$ for all $i \geq 1$.

1.2.6 CochainComplexWithInductiveSides (for IsCapCategoryMorphism, IsFunction, IsFunction)

▷ CochainComplexWithInductiveSides(d, G, F)

(operation)

Returns: a cochain complex

The input is a morphism $d \in A$ and two functions F,G. The output is cochain complex $M^{\bullet} \in \text{CoCh}(A)$ where $d_M^0 = d$ and $d_M^i = G^i(d)$ for all $i \le -1$ and $d_M^i = F^i(d)$ for all $i \ge 1$.

1.2.7 ChainComplexWithInductiveNegativeSide (for IsCapCategoryMorphism, Is-Function)

▷ ChainComplexWithInductiveNegativeSide(d, G)

(operation)

Returns: a chain complex

The input is a morphism $d \in A$ and a functions G. The output is chain complex $M_{\bullet} \in \operatorname{Ch}(A)$ where $d_0^M = d$ and $d_i^M = G^i(d)$ for all $i \leq -1$ and $d_i^M = 0$ for all $i \geq 1$.

1.2.8 ChainComplexWithInductivePositiveSide (for IsCapCategoryMorphism, IsFunction)

▷ ChainComplexWithInductivePositiveSide(d, F)

(operation)

Returns: a chain complex

The input is a morphism $d \in A$ and a functions F. The output is chain complex $M_{\bullet} \in \operatorname{Ch}(A)$ where $d_0^M = d$ and $d_i^M = F^i(d)$ for all $i \ge 1$ and $d_i^M = 0$ for all $i \le 1$.

1.2.9 CochainComplexWithInductiveNegativeSide (for IsCapCategoryMorphism, Is-Function)

▷ CochainComplexWithInductiveNegativeSide(d, G)

(operation)

Returns: a cochain complex

The input is a morphism $d \in A$ and a functions G. The output is cochain complex $M^{\bullet} \in \operatorname{CoCh}(A)$ where $d_M^0 = d$ and $d_M^i = G^i(d)$ for all $i \le -1$ and $d_M^i = 0$ for all $i \ge 1$.

1.2.10 CochainComplexWithInductivePositiveSide (for IsCapCategoryMorphism, IsFunction)

▷ CochainComplexWithInductivePositiveSide(d, F)

(operation)

Returns: a cochain complex

The input is a morphism $d \in A$ and a functions F. The output is cochain complex $M^{\bullet} \in \operatorname{CoCh}(A)$ where $d_M^0 = d$ and $d_M^i = F^i(d)$ for all $i \ge 1$ and $d_M^i = 0$ for all $i \le 1$.

1.3 Attributes and operations on complexes.

1.3.1 Differentials (for IsChainOrCochainComplex)

▷ Differentials(C)

(attribute)

Returns: an infinite list

The command returns the differentials of the chain or cochain complex as an infinite list.

1.3.2 Objects (for IsChainOrCochainComplex)

▷ Objects(C)

(attribute)

Returns: an infinite list

The command returns the objects of the chain or cochain complex as an infinite list.

1.3.3 CatOfComplex (for IsChainOrCochainComplex)

 \triangleright CatOfComplex(C) (attribute)

Returns: a Cap category

The command returns the category in which all objects and differentials of C live.

1.3.4 \[\] (for IsChainOrCochainComplex, IsInt)

 $\triangleright \setminus [\setminus] (C, i)$ (operation)

Returns: an object

The command returns the object of the chain or cochain complex in index i.

1.3.5 \^ (for IsChainOrCochainComplex, IsInt)

Returns: a morphism

The command returns the differential of the chain or cochain complex in index i.

1.3.6 CertainCycle (for IsChainOrCochainComplex, IsChainOrCochainComplex)

▷ CertainCycle(C, n) (operation)

Returns: a morphism

The input is a chain or cochain complex C and an integer n. The output is the kernel embedding of the differential in index n.

1.3.7 CertainBoundary (for IsChainOrCochainComplex, IsChainOrCochainComplex)

▷ CertainBoundary(C, n)

(operation)

Returns: a morphism

The input is a chain (resp. cochain) complex C and an integer n. The output is the image embeddin of i+1'th (resp. i-1'th) differential of C.

1.3.8 DefectOfExactness (for IsChainOrCochainComplex, IsChainOrCochainComplex)

▷ DefectOfExactness(C, n)

(operation)

Returns: a object

The input is a chain (resp. cochain) complex C and an integer n. The outout is the homology (resp. cohomology) object of C in index n.

1.3.9 IsExactInIndex (for IsChainOrCochainComplex, IsChainOrCochainComplex)

▷ IsExactInIndex(C, n)

(operation)

Returns: true or false

The input is a chain or cochain complex C and an integer n. The outout is true if C is exact in i. Otherwise the output is false.

1.3.10 SetUpperBound (for IsChainOrCochainComplex, IsInt)

▷ SetUpperBound(C, n)

(operation)

Returns: Side effect

The command sets an upper bound n to the chain (resp. cochain) complex C. This means $C_{i\geq n}=0$ ($C^{\geq n}=0$). This upper bound will be called *active* upper bound of C. If C already has an active upper bound m, then m will be replaced by n only if n is better upper bound than m, i.e., $n\leq m$. If C has an active lower bound l and $n\leq l$ then the upper bound will set to equal l and as a consequence C will be zeroised.

1.3.11 SetLowerBound (for IsChainOrCochainComplex, IsInt)

▷ SetLowerBound(C, n)

(operation)

Returns: Side effect

The command sets an lower bound n to the chain (resp. cochain) complex C. This means $C_{i \le n} = 0$ ($C^{\le n} = 0$). This lower bound will be called *active* lower bound of C. If C already has an active lower bound m, then m will be replaced by n only if n is better lower bound than m, i.e., $n \ge m$. If C has an active upper bound u and $n \ge u$ then the lower bound will set to equal u and as a consequence C will be zeroised.

1.3.12 HasActiveUpperBound (for IsChainOrCochainComplex)

(operation)

Returns: true or false

The input is chain or cochain complex. The output is *true* if an upper bound has been set to *C* and *false* otherwise.

1.3.13 HasActiveLowerBound (for IsChainOrCochainComplex)

▷ HasActiveLowerBound(C)

(operation)

Returns: true or false

The input is chain or cochain complex. The output is *true* if a lower bound has been set to *C* and *false* otherwise.

1.3.14 ActiveUpperBound (for IsChainOrCochainComplex)

▷ ActiveUpperBound(C)

(operation)

Returns: an integer

The input is chain or cochain complex. The output is its active upper bound if such has been set to *C*. Otherwise we get error.

1.3.15 ActiveLowerBound (for IsChainOrCochainComplex)

▷ ActiveLowerBound(C)

(operation)

Returns: an integer

The input is chain or cochain complex. The output is its active lower bound if such has been set to *C*. Otherwise we get error.

1.3.16 Display (for IsChainOrCochainComplex, IsInt, IsInt)

$$\triangleright$$
 Display(C , m , n) (operation)

Returns: nothing

The input is chain or cochain complex C and two integers m and n. The command displays all components of C between the indices m, n.

1.4 Truncations

1.4.1 GoodTruncationBelow (for IsChainComplex, IsChainComplex)

▷ GoodTruncationBelow(C, n)

Returns: chain complex

Let C_{\bullet} be chain complex. A good truncation of C_{\bullet} below n is the chain complex $\tau_{\geq n}C_{\bullet}$ whose differentials are defined by

$$d_i^{\tau_{\geq n}C_{\bullet}} = \begin{cases} 0: 0 \leftarrow 0 & \text{if} \quad i < n, \\ 0: 0 \leftarrow Z_n & \text{if} \quad i = n, \\ \text{KernelLift}(d_n^C, d_{n+1}^C): Z_n \leftarrow C_{n+1} & \text{if} \quad i = n+1, \\ d_i^C: C_{i-1} \leftarrow C_i & \text{if} \quad i > n+1. \end{cases}$$

where Z_n is the cycle in index n. It can be shown that $H_i(\tau_{\geq n}C_{\bullet}) = 0$ for i < n and $H_i(\tau_{\geq n}C_{\bullet}) = H_i(C_{\bullet})$ for $i \geq n$.

$$C_{\bullet}$$
 $\cdots \longleftarrow C_{n-1} \longleftarrow C_n \longleftarrow C_{n+1} \longleftarrow C_{n+2} \longleftarrow \cdots$
 $\tau_{\geq n} C_{\bullet}$ $\cdots \longleftarrow 0 \longleftarrow Z_n$

1.4.2 GoodTruncationAbove (for IsChainComplex, IsChainComplex)

▷ GoodTruncationAbove(C, n)

(operation)

(operation)

Returns: chain complex

Let C_{\bullet} be chain complex. A good truncation of C_{\bullet} above n is the quotient chain complex $\tau_{< n} C_{\bullet} = C_{\bullet} / \tau_{\geq n} C_{\bullet}$. It can be shown that $H_i(\tau_{< n} C_{\bullet}) = 0$ for $i \geq n$ and $H_i(\tau_{< n} C_{\bullet}) = H_i(C_{\bullet})$ for i < n.

1.4.3 GoodTruncationAbove (for IsCochainComplex, IsCochainComplex)

▷ GoodTruncationAbove(C, n)

(operation)

Returns:

Let C^{\bullet} be cochain complex. A good truncation of C^{\bullet} above n is the cochain complex $\tau_{\leq n}C^{\bullet}$ whose differentials are defined by

$$d_{\tau_{\leq n}C^{\bullet}}^{i} = \begin{cases} 0: 0 \to 0 & \text{if} \quad i > n, \\ 0: Z_{n} \to 0 & \text{if} \quad i = n, \\ \text{KernelLift}(d_{C}^{n}, d_{C}^{n-1}): C_{n-1} \to Z_{n} & \text{if} \quad i = n-1, \\ d_{C}^{i}: C_{i} \to C_{i+1} & \text{if} \quad i < n-1. \end{cases}$$

where Z_n is the cycle in index n. It can be shown that $H^i(\tau_{\leq n}C^{\bullet}) = 0$ for i > n and $H^i(\tau_{\leq n}C^{\bullet}) = H_i(C^{\bullet})$ for $i \leq n$.

1.4.4 GoodTruncationBelow (for IsCochainComplex, IsCochainComplex)

▷ GoodTruncationBelow(C, n)

(operation)

Returns: cochain complex

Let C^{\bullet} be cochain complex. A good truncation of C^{\bullet} above n is the quotient cochain complex $\tau_{>n}C^{\bullet} = C^{\bullet}/\tau_{\leq n}C^{\bullet}$. It can be shown that $H^{i}(\tau_{>n}C^{\bullet}) = 0$ for $i \leq n$ and $H^{i}(\tau_{>n}C^{\bullet}) = H_{i}(C^{\bullet})$ for i > n.

1.4.5 BrutalTruncationBelow (for IsChainComplex, IsChainComplex)

▷ BrutalTruncationBelow(C, n)

(operation)

Returns: chain complex

Let C_{\bullet} be chain complex. A brutal truncation of C_{\bullet} below n is the chain complex $\sigma_{\geq n}C_{\bullet}$ where $(\sigma_{\geq n}C_{\bullet})_i = C_i$ when $i \geq n$ and $(\sigma_{\geq n}C_{\bullet})_i = 0$ otherwise.

1.4.6 BrutalTruncationAbove (for IsChainComplex, IsChainComplex)

▷ BrutalTruncationAbove(C, n)

(operation)

Returns: chain complex

Let C_{\bullet} be chain complex. A brutal truncation of C_{\bullet} above n is the chain quotient chain complex $\sigma_{< n} C_{\bullet} := C_{\bullet} / \sigma_{> n} C_{\bullet}$. Hence $(\sigma_{< n} C_{\bullet})_i = C_i$ when i < n and $(\sigma_{< n} C_{\bullet})_i = 0$ otherwise.

1.4.7 BrutalTruncationAbove (for IsCochainComplex, IsCochainComplex)

▷ BrutalTruncationAbove(C, n)

(operation)

Returns: chain complex

Let C^{\bullet} be cochain complex. A brutal truncation of C_{\bullet} above n is the cochain complex $\sigma_{\leq n}C^{\bullet}$ where $(\sigma_{\leq n}C^{\bullet})_i = C_i$ when $i \leq n$ and $(\sigma_{\leq n}C^{\bullet})_i = 0$ otherwise.

1.4.8 BrutalTruncationBelow (for IsCochainComplex, IsCochainComplex)

▷ BrutalTruncationBelow(C, n)

(operation)

Returns: chain complex

Let C^{\bullet} be cochain complex. A brutal truncation of C^{\bullet} bellow n is the quotient cochain complex $\sigma_{>n}C^{\bullet} := C^{\bullet}/\sigma_{< n}C_{\bullet}$. Hence $(\sigma_{>n}C^{\bullet})_i = C_i$ when i > n and $(\sigma_{< n}C^{\bullet})_i = 0$ otherwise.

1.5 Examples

```
gap> S := KoszulDualRing( HomalgFieldOfRationalsInSingular()*"x,y,z" );;
gap> right_pre_category := RightPresentations( S );;
gap> m := HomalgMatrix( "[ [ e0, e1, e2 ],[ 0, 0, e0 ] ]", 2, 3, S );;
```

```
gap> M := AsRightPresentation( m );;
gap> F := FreeRightPresentation( 2, S );;
gap> f_matrix := HomalgMatrix( "[ [ e1, 0 ], [ 0, 1 ] ]",2, 2, S );;
gap> f := PresentationMorphism( F, f_matrix, M );;
gap> g := KernelEmbedding( f );;
gap> K := Source( g );;
gap> h := ZeroMorphism( M, K );;
gap> 1 := RepeatListZ( [ h, f, g ] );;
gap> C := ChainComplex( right_pre_category, 1 );;
gap> Display( C, 0, 3 );
______
In index 0
Object is
e0,e1,e2,
0, 0, e0
An object in Category of right presentations of Q{e0,e1,e2}
Differential is
0,0,
0,0,
0,0
A zero morphism in Category of right presentations of Q{e0,e1,e2}
In index 1
Object is
(an empty 2 x 0 matrix)
An object in Category of right presentations of Q{e0,e1,e2}
Differential is
e1,0,
0, 1
A morphism in Category of right presentations of Q{e0,e1,e2}
In index 2
Object is
0, 0, 0, 0, 0,
e2,e1,0, e0,0,
0, e2,e1,0, e0
An object in Category of right presentations of Q{e0,e1,e2}
Differential is
1,0, 0,
```

```
O,-e0*e2,-e0*e1

A monomorphism in Category of right presentations of Q{e0,e1,e2}

In index 3

Object is e0,e1,e2, 0, 0, e0

An object in Category of right presentations of Q{e0,e1,e2}

Differential is 0,0, 0,0, 0,0
0,0
A zero morphism in Category of right presentations of Q{e0,e1,e2}

gap> C[2];; gap> C^2;;
```

Index

\[\]	for IsDenseList, 5
for IsChainOrCochainComplex, IsInt, 7	for IsDenseList, IsInt, 5
\^	CochainComplexWithInductiveNegative-
for IsChainOrCochainComplex, IsInt, 7	Side
•	for IsCapCategoryMorphism, IsFunction, 6
ActiveLowerBound	CochainComplexWithInductivePositive-
for IsChainOrCochainComplex, 8	Side
ActiveUpperBound	for IsCapCategoryMorphism, IsFunction, 6
for IsChainOrCochainComplex, 8	CochainComplexWithInductiveSides
	for IsCapCategoryMorphism, IsFunction, Is-
BrutalTruncationAbove	Function, 5
for IsChainComplex, IsChainComplex, 10	Tunction, 5
for IsCochainComplex, IsCochainComplex,	DefectOfExactness
10	for IsChainOrCochainComplex, IsChainOr-
BrutalTruncationBelow	CochainComplex, 7
for IsChainComplex, IsChainComplex, 10	Differentials
for IsCochainComplex, IsCochainComplex,	for IsChainOrCochainComplex, 6
10	Display
0.1000	for IsChainOrCochainComplex, IsInt, IsInt,
CatOfComplex	9
for IsChainOrCochainComplex, 7	
CertainBoundary	GoodTruncationAbove
for IsChainOrCochainComplex, IsChainOr-	for IsChainComplex, IsChainComplex, 9
CochainComplex, 7	for IsCochainComplex, IsCochainComplex,
CertainCycle	9
for IsChainOrCochainComplex, IsChainOr-	GoodTruncationBelow
CochainComplex, 7	for IsChainComplex, IsChainComplex, 9
ChainComplex	for IsCochainComplex, IsCochainComplex,
for IsCapCategory, IsZList, 5	10
for IsDenseList, 5	
for IsDenseList, IsInt, 5	HasActiveLowerBound
${\tt ChainComplexWithInductiveNegativeSide}$	for IsChainOrCochainComplex, 8
for IsCapCategoryMorphism, IsFunction, 6	HasActiveUpperBound
${\tt Chain Complex With Inductive Positive Side}$	for IsChainOrCochainComplex, 8
for IsCapCategoryMorphism, IsFunction, 6	
ChainComplexWithInductiveSides	${\tt IsBoundedAboveChainComplex}$
for IsCapCategoryMorphism, IsFunction, Is-	for Is Bounded Above Chain Or Cochain Com-
Function, 5	plex and IsChainComplex, 4
CochainComplex	${\tt IsBoundedAboveChainOrCochainComplex}$
for IsCapCategory, IsZList, 5	for IsChainOrCochainComplex, 3

IsBoundedAboveCochainComplex				
for IsBoundedAboveChainOrCochainCom-				
plex and IsCochainComplex, 4				
IsBoundedBelowChainComplex				
for IsBoundedBelowChainOrCochainCom-				
plex and IsChainComplex, 4				
IsBoundedBelowChainOrCochainComplex				
for IsChainOrCochainComplex, 3				
IsBoundedBelowCochainComplex				
for IsBoundedBelowChainOrCochainCom-				
plex and IsCochainComplex, 4				
IsBoundedChainComplex				
for IsBoundedChainOrCochainComplex and				
IsChainComplex, 4				
${\tt IsBoundedChainOrCochainComplex}$				
for IsBoundedBelowChainOrCochainCom-				
plex and IsBoundedAboveChainOr-				
CochainComplex, 4				
IsBoundedCochainComplex				
for IsBoundedChainOrCochainComplex and				
IsCochainComplex, 4				
IsChainComplex				
for IsChainOrCochainComplex, 3				
IsChainOrCochainComplex				
for IsCapCategoryObject, 3				
IsCochainComplex				
for IsChainOrCochainComplex, 3				
IsExactInIndex				
for IsChainOrCochainComplex, IsChainOr-				
CochainComplex, 7				
Objects				
for IsChainOrCochainComplex, 6				
Tot ischainoreochaineoinpiex, o				
SetLowerBound				
for IsChainOrCochainComplex, IsInt, 8				
SetUpperBound				
for IsChainOrCochainComplex, IsInt, 8				
StalkChainComplex				
for IsCapCategoryObject, IsInt, 5				
StalkCochainComplex				
for IsCapCategoryObject, IsInt, 5				