

Data Analysis and Visualization

CentraleDigitalLab@Nice

Deborah Dore - PhD - <u>ddore@i3s.unice.fr</u>
MARIANNE, I3S, CNRS, INRIA, Université Côte d'Azur

Introduction

Definition: Missing values occur when no data is recorded for a variable in an observation, creating gaps in datasets

Significance:

- Impacts the quality and reliability of data analysis.
- Affects the performance of predictive models.
- Can introduce bias if not handled properly.

Examples:

- Missing age in a patient dataset.
- Missing survey responses.

Types of missing values

- MCAR (Missing Completely at Random): Missingness has no relationship to any values, observed or missing.
- The probability of missingness is the same for all observations. In other words, the missingness is independent of both observed and unobserved data.

Example: Random equipment failure during data collection.

Types of missing values

- MAR (Missing at Random): Missingness is related to observed data but not the missing data itself.
- The probability of missingness is systematic and can be predicted by other observed data, but not by the missing data itself.

Example: Income data missing but correlated with age.

Types of missing values

- MNAR (Missing Not at Random): Missingness depends on the missing data itself.
- The probability of missingness is related to the missing data itself, even when controlling for other observed variables.

Example: People with high income may choose not to disclose it.

Why Handle Missing Values?

Impact on Analyses:

- Leads to incorrect statistical conclusions
- Reduces model accuracy and robustness

Broad Approaches:

- Deletion Methods
- Imputation Methods
- Hybrid Approaches

Key Goal: Preserve as much useful information as possible.

Deletion Methods Overview

Definition: Removing observations or variables with missing data

When to Use: Deletion methods are used when the missing data is small and random and the loss of data does not critically affect analysis

Advantages:

- Simple and quick to implement.
- Ensures that the remaining dataset is complete and consistent.
- Reduces the risk of introducing biases due to imputation assumptions.

Disadvantages

- Can result in significant data loss, especially with high proportions of missing values.
- o May introduce bias if the missing data mechanism is not MCAR (e.g., if missingness is related to other variables).
- Reduces statistical power and the generalizability of results.

Deletion Methods Overview: row-wise deletion

Definition: Removes rows with any missing values

Advantages:

- Simplifies analysis by ensuring complete cases.
- Commonly used in statistical software.

Disadvantages:

- Significant loss of data.
- Can introduce bias if not MCAR.

Example: In a dataset with 100 rows and 10 rows have missing values, row-wise deletion retains 90 rows.

Deletion Methods Overview: column-wise deletion

Definition: Removes columns with high proportions of missing data

Advantages:

Retains rows and focuses on well-populated features

Disadvantages:

- Loss of potentially important variables
- Reduces feature space for modelling

Example: Removing a column with 80% missing values from a survey dataset

Imputation Methods Overview

Definition: Replace missing values with estimated values computed on available data

When to Use: Imputation is used when the proportion of missing data is not excessive, and the missing data mechanism is either MCAR or MAR

Advantages:

- Retains the size of the dataset
- Reduces bias in comparison to deletion methods
- Reduces risk of loss of information

Disadvantages:

- Introduces assumptions into the dataset
- Risk of underestimating the true spread of data

Imputation Methods Overview: Mean Imputation

Definition: Replace missing values with the mean of the observed data in the column.

Advantages:

- Easy to implement.
- Maintains overall mean of the dataset.

Disadvantages:

- Reduces data variability.
- Introduces bias in skewed distributions.

Example: For a column of ages [25, 30, 35, NaN], replace the missing value with the mean (30)

Imputation Methods Overview: Median Imputation

Definition: Replace missing values with the median of the observed data in the column

Advantages:

- Robust to outliers
- Maintains central tendency for skewed data

Disadvantages:

Reduces data variability.

Example: For incomes [30,000, 50,000, NaN, 80,000], replace the missing value with the median (50,000).

Imputation Methods Overview: Mode Imputation

Definition: Replace missing values with the mode (most frequent value) of the observed data.

Advantages:

- Useful for categorical variables.
- Simple to apply.

Disadvantages:

Over-represents the mode value.

Example: For colors ["red", "blue", "blue", NaN], replace the missing value with "blue."

Imputation Methods Overview: KNN Imputation

Definition: Estimates missing values using the k-nearest neighbours based on similarity

Advantages:

- Retains data relationships and variability
- Works for both numerical and categorical data

Disadvantages:

- Computationally expensive for large datasets
- Sensitive to the choice of k (number of neighbours)

Example: Predict missing house prices based on nearby houses with similar features

Imputation Methods Overview: KNN Imputation

Who does it works?

- 1. For each data point with missing values, the algorithm identifies the k most similar data points (nearest neighbours) based on the available features
- 2. The missing values are then estimated by calculating a weighted average of the corresponding values from these nearest neighbours
- 3. The weights are typically based on the distance between the data point with missing values and its neighbours, with closer neighbours having more influence

Hybrid Approaches

Definition: Combining multiple methods for complex datasets.

Example: Apply median imputation for numerical data and KNN for categorical data

Comparison of Techniques

Factors to Consider:

- Dataset size and complexity
- Proportion of missing data
- Type of variable (numerical or categorical)
- Computational resources

Case Study 1

Scenario: Dataset with 5% missingness in numerical features (e.g., customer ages).

Case Study 1

Scenario: Dataset with 5% missingness in numerical features (e.g., customer ages).

Technique Used: Mean imputation.

Outcome:

- Quickly resolved missingness.
- Minor bias in mean calculations

Case Study 2

Scenario: Dataset with 20% missingness in categorical features (e.g., survey responses).

Case Study 2

Scenario: Dataset with 20% missingness in categorical features (e.g., survey responses).

Technique Used: Mode imputation.

Outcome:

- Preserved majority category distributions.
- Slight over-representation of most frequent values.

Visualising Missing Data

Techniques:

- Heatmaps: Highlight missing values (e.g., seaborn heatmap in Python)
- Bar Charts: Show proportions of missing values per column
- Missingness Matrices: Visualize patterns of missingness

Visualising Missing Data: Heatmap

Visualising Missing Data: Bar plots

Demo with Notebook_Missing_Data.ipynb

Useful links

- https://scikit-learn.org/stable/modules/impute.html
- https://scikit-learn.org/stable/api/sklearn.impute.html