

sample方法实现AQP

汇报人: 李晓桐

- ✓ Design of Sample
- ✓ Analysis on Sample method
- √ Various methods of Sample
- ✓ Code for Sample

Review

- AQP = Approximate
 Query Process
- Goal: Accurate and Fast
- Histogram achieves the goal by divide data into various buckets
- Sample achieves the goal by sample from full data

index	value(t)	
1	3	
2	4	
3	5	
4	6	_
5	9	
6	10	_
7	12	
8	13	
9	15	
10	19	

	sample index	sample value
	6	10
samula	3	5
sample	5	9
	3	5
	9	15

Design of Sample: A simple example

- SELECT SUM(R.a) FROM R;
- R: <3, 4, 5, 6, 9, 10, 12, 13, 15, 19>
- size of full data N = 10
- sample size n = 5
- ground truth Q = 96
- How to sample?
- How to estimate?

index		value(t)	
	1		3
	2		4
	3		3 4 5 6 9
	4		6
	5		9
	6		10
	7		12
	8		13
	9		15
	10		19

Design of Sample: A simple example

- Step 1: get sample
 - roll ten-sided die 5 times via approximate pseudorandom number generator (PRNG)
 - simple random sampling with replacement (SRSWR)
 - e.g sample index <6, 3, 5, 3, 9>
 - sample value<10, 5, 9, 5, 15>
- Step 2: calculate sum on sample
 - sum = 10+5+9+5+15 = 44
- Step 3: scale up estimation
 - estimation Y = 44 * N / n = 88

sample index	sample value
6	10
3	5
5	9
3	5
9	15

- ground truth = 96
- estimation = 88
- q-error = 96/88 = 1.09
- Important conclusion:
 Y is unbias estimation of ground truth
- Important conclusion: Error of Y is bounded by variance

index	value(t)
1	3
2	4
3	5
4	3 4 5 6 9
5	9
6	10
7	12
8	13
9	15
10	19

sample index	sample value
6	10
3	5
5	9
3	5
9	15

Y is unbias estimation of ground truth

$$E[Y] = E\left[\sum_{i=1}^{N} \frac{X_i t_i}{E[X_i]}\right] = \sum_{i=1}^{N} E\left[\frac{X_i t_i}{E[X_i]}\right] = \sum_{i=1}^{N} \frac{E[X_i] t_i}{E[X_i]} = \sum_{i=1}^{N} t_i.$$

$$= Q = \sum_{j} t_{j}$$

- Error of Y is bounded by variance
- 95% chance our estimation is within ±37.10
- q-error < 1.63

$$\sigma^{2}(Y) = E[(Y - E[Y])^{2}] = E[Y^{2}] - E^{2}[Y]$$

$$\sigma^{2}(Y) = E[Y^{2}] - E^{2}[Y] = E\left[\left(\sum_{i} \frac{X_{i}t_{i}}{\pi_{i}}\right)^{2}\right] - \left(\sum_{i} t_{i}\right)^{2}$$

$$= E\left[\sum_{i} \sum_{j} \frac{X_{i}t_{i}}{\pi_{i}} \frac{X_{j}t_{j}}{\pi_{j}}\right] - \sum_{i} \sum_{j} t_{i}t_{j}$$

$$= \sum_{i} \sum_{j} \frac{\pi_{ij}t_{i}t_{j}}{\pi_{i}\pi_{j}} - \sum_{i} \sum_{j} t_{i}t_{j} = \sum_{i} \sum_{j} \left(\frac{\pi_{ij}}{\pi_{i}\pi_{j}} - 1\right)t_{i}t_{j}.$$
(2.3)

Chebyshev Bounds

$$\Pr[|Y - Q| \ge p^{-\frac{1}{2}}\sigma(Y)] \le p$$

Hoeffding Bounds

$$\Pr[|Y - E[Y]| \ge d] \le 2\exp\left(-\frac{2d^2n^2}{\sum_i(hi_i - low_i)^2}\right)$$

Central limit Theorem

这里 $\Phi(x)$ 是标准正态分布 N(0,1) 的分布函数,即

定理 4.2 设 $X_1, X_2, \dots, X_n, \dots$ 为独立同分布的随机变量, $E(X_i) = a$, $Var(X_i) = \sigma^2$, $0 < \sigma^2 < \infty$. 则对任何实数 x, 有

$$\lim_{n\to\infty}P\left(\frac{1}{\sqrt{n\sigma}}(X_1+\cdots+X_n-na)/(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{n\sigma}),\frac{(X_1+\cdots+X_n-na)}{\sqrt{(N_1+\cdots+N_n-na)}}(\sqrt{(N_1+\cdots+N_n-na)})$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-t^2/2} dt$$
 (4.8)

注意 $X_1 + \cdots + X_n$ 有均值 na, 方差 $n\sigma^2$. 故

$$(X_1 + \cdots + X_n - na)/(\sqrt{n\sigma}).$$

N(0,1)的均值方差符合。

Pros & Cons

- Simplicity
- Pervasiveness
- Extensive theory
- Immediacy
- Adaptivity
- Flexibility
- Insensitivity to dimension
- Ease of implementation

- Unsuitable for approximating the answer to queries that depend only upon a few tuples from the dataset
- Slower than histogram
- Sensitive to skew
- Do not support some important classes of aggregation queries

Pros

- PostgreSQL support various sample methods
- BERNOULLI sample: Scan the whole table and return N% of the total sampling records
- SYSTEM Sample: Scan the whole BLOCKS of the table and return N% of the total sampling blocks.

postgres=# ctid	select id	ctid,*	from tbl	TABLESAMPLE endid	BERNOULLI	(1)	limit 10;
(1,6) (3,8) (4,19) (6,25) (7,3) (9,5) (10,51) (12,20) (12,33) (17,15) (10 rows)	76 218 299 445 493 635 751 860 873 1205	2006 3280 708 3195 1867 2125 1151 2302 15 2540	100034889 100105401 100145769 100220431 100247252 100318350 100374936 100430532 100438908 100607913	10010557 10014644 10022119 10024804 10031908 10037588 10043067	1 9 2 8 7 3 4		

postgres=#	sele	ect	t ctid,	* from	tbl	T	ABLESAMPLE	system	(5)	limit	10
ctid	id		loc	begi	nid		endid 	- 1 1			
(10,1)	701	Ì	2675	10034	8960	i	100349937				
(10,2)	702		4307	10034	9937		100350353				
(10,3)	703		475	10035	0353		100351093				
(10,4)	704		1611	10035	1093		100351171				
(10,5)	705		4307	10035	1171		100351692				
(10,6)	706		2841	10035	1692		100352448				
(10,7)	707		3680	10035	2448		100353372				
(10,8)	708		1085	10035	3372	1	100354108				
(10,9)	709		2137	10035	4108	1	100354314				
(10,10)	710		3381	10035	4314		100354905				
(10 rows)											
Time: 0.54	7 ms										

- unsuitable for approximating the answer to queries that depend only upon a few tuples from the dataset
- When query is highly selective (e.g 10 / 1 million), 1% sample is unlikely to contribute to accuracy
- ps: Histogram is widely used in commercial database systems

- slower than histogram
- 5% sample \rightarrow 20* speed up
- ps: histogram offers a faster speed O(1)

- sensitive to skew
- e.g (3,4,5,6,9,10,12,13,15,10^99)
- sample 1: $<3,4,5,6,9> \rightarrow Y = 54$
- sample 2: $<10,12,13,15,10^99> \rightarrow Y = 2*10^99 + 100$

- Do not support some important classes of aggregation queries
- e.g SELECT SUM(R.a) FROM R WHERE R.b NOT IN (SELECT S.c FROM S)
- Hard to decide scope of sample

Various methods of Sample

- Simple Random Sampling With Replacement
- Simple Random Sampling Without Replacement
- Bernoulli and Poisson Sampling
 - Bernoulli: each tuple i is sampled w.p. p_i in which p_i is same for each i
 - Poisson: p_i can be different
- Stratified Sampling
 - group data into m different subclasses
 - perform sample in each subclass

Code Example


```
# get samples
sample_size = 5
sample_list = []
for i in range(sample_size):
    sample_idx = np.random.randint(0, len(full_data))
    sample_item = full_data[sample_idx]
    sample_list.append(sample_item)
# get estimation
est = get_sum_est(sample_list, full_size)
print(sample_list)
print(get_q_err(est, ground_truth))
[12, 4, 3, 15, 13]
1.0212765957446808
```

Take home message

- Basic idea of Sample
- Accuracy of Sample is guaranteed by math
- Pros & Cons: sample is easy but fails in some situation

- various methods of sample
- Code example

Evaluation

• $loss = MSLE + relu(all_online_time - 5)/5 + relu(all_offline_time - 180)/180$

https://www.tensorflow.org/api_do
cs/python/tf/keras/activations/relu

https://zh.wikipedia.org/wiki/%E7% BA%BF%E6%80%A7%E6%95%B4%E 6%B5%81%E5%87%BD%E6%95%B0

Reference

- Cormode, G. (2011). Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Foundations and Trends in Databases, 4(1-3), 1–294. doi:10.1561/1900000004
- 概率论与数理统计(陈希孺):
 file:///Users/xiaotong/Downloads/%E6%A6%82%E7%8E%87%E8%AE%BA%E4%B8%8E%E6%95%B0%E7%90%86%E7%BB%9F%E8%AE%A1%EF%BC%88%E9%99%88%E5%B8%8C%E5%AD%BA%EF%BC%89.pdf
- https://www.alibabacloud.com/blog/postgresql-randomquery-sampling-table-sample-method_599392
- https://www.postgresql.org/docs/current/row-estimationexamples.html