Linear Regression

Jia-Bin Huang Virginia Tech

Recap: Machine learning algorithms

	Supervised Learning	Unsupervised Learning
Discrete	Classification	Clustering
Continuous	Regression	Dimensionality reduction

Today's plan: Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

House pricing prediction

Training set

_	Price (\$) in 1000's (y)	Size in feet^2 (x)
	460	2104
	232	1416
m - 17	315	1534
-m = 47	178	852

Notation:

- m = Number of training examples
- x =Input variable / features
- y = Output variable / target variable
- (x, y) = One training example
- $(x^{(i)}, y^{(i)}) = i^{th}$ training example

Examples:

$$x^{(1)} = 2104$$
$$x^{(2)} = 1416$$

$$v^{(1)} = 460$$

Model representation

Univariate linear regression

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Training set

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	-m = 47
852	178	111 - 47
•••		

• Hypothesis
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_0, θ_1 : parameters/weights

How to choose θ_i 's?

$$\theta_0 = 1.5$$
$$\theta_1 = 0$$

$$\theta_0 = 0$$
$$\theta_1 = 0.5$$

$$\theta_0 = 1$$
$$\theta_1 = 0.5$$

Cost function

• Idea: Choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y for our training example (x, y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize
$$J(\theta_0, \theta_1)$$
 Cost function

Simplified

• Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x \quad ----$$

Hypothesis:

$$\rightarrow h_{\theta}(x) = \theta_1 x$$

$$\theta_0 = 0$$

Parameters:

$$\theta_0$$
 , θ_1

Parameters:

$$heta_1$$

Cost function:

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \longrightarrow J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

• Goal:

minimize
$$J(\theta_0, \theta_1)$$

 θ_0, θ_1

Goal:

$$\begin{array}{c}
\text{minimize } J(\theta_1) \\
\theta_0, \theta_1
\end{array}$$

• Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

• Parameters: θ_0 , θ_1

• Cost function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

• **Goal**: minimize $J(\theta_0, \theta_1)$ θ_0, θ_1

Cost function

What are Contour Plots?

- Contour plots are a way to show a three-dimensional surface on a <u>two-dimensional plane</u>. It graphs two predictor variables X, Y on the y-axis and a <u>response variable</u> Z as contours. These contours are sometimes called *z-slices* or *iso-response values*.
- A contour plot is appropriate if you want to see how some value Z changes as a <u>function</u> of two inputs, X and Y: z = f(x, y).

How do we find good θ_0 , θ_1 that minimize $J(\theta_0, \theta_1)$?

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Gradient descent

```
Have some function J(\theta_0, \theta_1)
Want argmin J(\theta_0, \theta_1)
\theta_0, \theta_1
```

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at minimum

Gradient descent

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

 α : Learning rate (step size)

$$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$$
: derivative (rate of change)

Gradient descent

Correct: simultaneous update

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$temp1 \coloneqq \theta_1 - \alpha \ \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq \mathsf{temp0}$$

$$\theta_1 \coloneqq \text{temp1}$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq \mathsf{temp0}$$

$$\theta_0 \coloneqq \mathsf{temp0}$$

$$\mathsf{temp1} \coloneqq \theta_1 - \alpha \; \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 \coloneqq \text{temp1}$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Learning rate

Gradient descent for linear regression

Repeat until convergence{

$$\theta_j := \theta_j - \alpha \, \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

Linear regression model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Computing partial derivative

•
$$j = 0$$
: $\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$
• $j = 1$: $\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$

Gradient descent for linear regression

Repeat until convergence{

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Update θ_0 and θ_1 simultaneously

Batch gradient descent

"Batch": Each step of gradient descent uses all the training examples
 Repeat until convergence{

m: Number of training examples

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Mini Batch gradient descent

```
Say b = 10, m = 1000.
Repeat {
   for i = 1, 11, 21, 31, \dots, 991 {
     \theta_j := \theta_j - \alpha \frac{1}{10} \sum_{k=i}^{i+9} (h_\theta(x^{(k)}) - y^{(k)}) x_j^{(k)}
              (for every j = 0, \ldots, n)
```

Mini Batch gradient descent

Stochastic Batch gradient descent

Algorithm 2: Pseudo-code for SGD

```
Function SGD:
```

```
Set epsilon as the limit of convergence for i=1,\ldots,m do  \begin{vmatrix} \mathbf{for}\ j=0,\ldots,n\ \mathbf{do} \\ & \mathbf{while}\ |\omega_{j+1}-\omega_j| < epsilon\ \mathbf{do} \\ & |\ \omega_{j+1}:=\omega_j-\alpha\cdot(h_\omega(x^{(i)})-y^{(i)})\cdot x_j^{(i)}; \\ & \mathbf{end} \\ & \mathbf{end} \end{vmatrix}  end
```

GD VS MGD VS SGD

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Training dataset

Size in feet^2 (x)	Price (\$) in 1000's (y)		
2104	460		
1416	232		
1534	315		
852	178		
•••			

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (input variables)

Some in (1)	beror canno (3/2)	MU Æ	A FOME SHALL	Price (\$) in 1000's (y)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••				•••

Notation:

n = Number of features $x^{(i)}$ = Input features of i^{th} training example $x_i^{(i)}$ = Value of feature j in i^{th} training example

$$x_3^{(2)} = ?$$
 $x_3^{(4)} = ?$

Slide credit: Andrew Ng

Hypothesis

Previously:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• For convenience of notation, define $x_0 = 1$ $(x_0^{(i)} = 1 \text{ for all examples})$

$$\bullet \ \mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

Gradient descent

• Previously (n = 1)

• New algorithm $(n \ge 1)$

Repeat until convergence{

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Repeat until convergence{

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

Simultaneously update θ_i , for $j = 0, 1, \dots, n$

Gradient descent in practice: Feature scaling

- Idea: Make sure features are on a similar scale (e.g., $-1 \le x_i \le 1$)
- E.g. $x_1 = \text{size (0-2000 feat^2)}$ $x_2 = \text{number of bedrooms (1-5)}$

Slide credit: Andrew Ng

Gradient descent in practice: Learning rate

- Automatic convergence test
- α too small: slow convergence
- α too large: may not converge
- To choose α , try

0.001, ... 0.01, ..., 0.1, ... , 1

Image credit: CS231n@Stanford

House prices prediction

- $h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$
- Area $x = \text{frontage} \times \text{depth}$
- $h_{\theta}(x) = \theta_0 + \theta_1 x$

Polynomial regression

$$x_1$$
 = (size)
 x_2 = (size)^2
 x_3 = (size)^3

•
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

= $\theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

(x_0)	Senzon (.)	 	(as _e)	Age of home (years) (x_4)	Price (\$) in 1000's (y)
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
	•••				
$X = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$	2104 5 $1416 3$ $1534 3$ $852 2$	$\begin{bmatrix} 1 & 45 \\ 2 & 40 \\ 2 & 30 \\ 1 & 36 \end{bmatrix}$		<i>y</i> :	= \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}
			$\theta = (X^{\top}X)$	$(X)^{-1}X^{T}y$	Slide credit: Andrew Ng

m training examples, n features

Gradient Descent

- Need to choose α
- Need many iterations
- Works well even when n is large

Normal Equation

- No need to choose α
- Don't need to iterate
- Need to compute $(X^TX)^{-1}$
- Slow if *n* is very large

Things to remember

Model representation

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n = \theta^{\mathsf{T}} x$$

- Cost function $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^2$
- Gradient descent for linear regression Repeat until convergence $\{\theta_j \coloneqq \theta_j \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)}\right) y^{(i)}\right) x_j^{(i)} \}$
- Features and polynomial regression

Can combine features; can use different functions to generate features (e.g., polynomial)

• Normal equation $\theta = (X^T X)^{-1} X^T y$