計量経済 II: 宿題 13

村澤 康友

提出期限: 2024年1月29日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. gretl のサンプル・データ nysewk は、ニューヨーク証券取引所の株価指数(NYSE 総合指数)の 1965 \sim 2006 年の週次データである.このデータについて以下の分析を行いなさい.
 - (a) 対数階差の時系列グラフとコレログラムを描きなさい.
 - (b) 対数階差の2乗の時系列グラフとコレログラムを描きなさい.
- 2. gretlで ARCH・GARCH モデルを推定する手順は以下の通り.
 - (a) メニューから「モデル」 \rightarrow 「一変量時系列」 \rightarrow 「GARCH」を選択.
 - (b)「従属変数」を1つ選択.
 - (c)「説明変数(回帰変数)」は選択しない.
 - (d)「GARCH p」「ARCH q」に次数を入力.
 - (e) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (f) $\lceil OK \rfloor$ $\geq D \cup D = 0$.

推定結果の画面のメニューから「グラフ」 \rightarrow 「残差プロット」でボラティリティの変動も図示できる. 前問と同じデータを用いて以下の 2 つのモデルを推定し、ボラティリティの変動を図示しなさい.

- (a) 定数項+ ARCH(1)
- (b) 定数項+ GARCH(1,1)

解答例

1. (a) 対数階差の時系列グラフ

対数階差のコレログラム

自己相関係数(ACF) Id_close

偏自己相関係数(PACF) Id_close

(b) 対数階差の2乗の時系列グラフ

対数階差の2乗のコレログラム

自己相関係数(ACF) sq_ld_close

偏自己相関係数(PACF) sq_ld_close

2. (a) ARCH(1) モデルの推定結果

モデル 1: GARCH, 観測: 1966-01-12-2006-07-26 (T=2116)

従属変数: ld_close

標準誤差はヘッシアン (Hessian) に基づく

	係数	標準誤差	z	p 値
const	0.00165697	0.000414282	4.000	0.0001
α_0	0.000316822	$1.34709\mathrm{e}{-005}$	23.52	0.0000
α_1	0.253542	0.0359155	7.059	0.0000

Unconditional error variance = 0.000424434

ボラティリティの変動

(b) GARCH(1,1) モデルの推定結果

モデル 2: GARCH, 観測: 1966-01-12-2006-07-26 (T=2116)

従属変数: ld_close

標準誤差はヘッシアン(Hessian)に基づく

	係数	標準誤差	z	p 値
const	0.00177396	0.000385365	4.603	0.0000
α_0	$1.56000\mathrm{e}{-005}$	$4.52504\mathrm{e}{-006}$	3.447	0.0006
α_1	0.111680	0.0171808	6.500	0.0000
β_1	0.854932	0.0229210	37.30	0.0000

Unconditional error variance = 0.000467228

ボラティリティの変動

