ASSOCIATION ANALYSIS

Objective

To create association rules that will allow you to identify relationships between variables in the dataset.

Context

The dataset contains data of items bought by different customers. The project aims to create a model using association rule to predict item purchasing behaviors

Loading libraries

```
library(arules)
## Loading required package: Matrix
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
##
       abbreviate, write
##Loading and Previewing data
url <-"http://bit.ly/SupermarketDatasetII"</pre>
order<-read.transactions(url, sep = ",")</pre>
## Warning in asMethod(object): removing duplicated items in
transactions
First 6 records
orders<-as.data.frame(itemLabels(order))</pre>
colnames(orders) <- "Item"</pre>
head(orders, 6)
##
                  Item
## 1
               almonds
## 2 antioxydant juice
## 3
             asparagus
## 4
               avocado
## 5
         babies food
## 6
                 bacon
First 6 orders
inspect(order[1:6])
       items
## [1] {almonds,
       antioxydant juice,
##
##
      avocado,
##
      cottage cheese,
```

```
##
        energy drink,
##
        frozen smoothie,
##
        green grapes,
##
        green tea,
##
        honey,
##
        low fat yogurt,
##
        mineral water,
##
        olive oil,
##
        salad,
##
        salmon,
##
        shrimp,
##
        spinach,
##
        tomato juice,
##
        vegetables mix,
##
        whole weat flour,
##
        yams }
## [2] {burgers,
##
        eggs,
##
        meatballs}
## [3] {chutney}
## [4] {avocado,
##
        turkey}
## [5] {energy bar,
##
        green tea,
##
        milk,
        mineral water,
##
        whole wheat rice}
## [6] {low fat yogurt}
Last 6 records
orders<-as.data.frame(itemLabels(order))</pre>
colnames(orders) <- "Item"</pre>
tail(orders, 6)
##
                     Item
## 114 whole weat flour
## 115 whole wheat pasta
## 116 whole wheat rice
## 117
                     yams
              yogurt cake
## 118
## 119
                 zucchini
Dataset Dimension
dim(order)
## [1] 7501 119
Data types
class(order)
## [1] "transactions"
## attr(,"package")
## [1] "arules"
```

Data Cleaning

Duplicates

```
#Checking for duplicated records
sum(duplicated(order))
## [1] 2347
#dropping duplicates
order<-order[!duplicated(order)]
order
## transactions in sparse format with
## 5154 transactions (rows) and
## 119 items (columns)</pre>
```

Exploratory Data Analysis

```
summary(order)
## transactions as itemMatrix in sparse format with
## 5154 rows (elements/itemsets/transactions) and
## 119 columns (items) and a density of 0.04272605
##
## most frequent items:
## mineral water
                     spaghetti
                                                 chocolate french
                                        eggs
fries
##
            1546
                          1186
                                        1072
                                                       1050
994
         (Other)
##
##
           20357
##
## element (itemset/transaction) length distribution:
## sizes
##
     1
       2
             3
                 4
                    5
                         6
                           7
                                 8
                                     9 10 11
                                                12
                                                     13
                                                         14
                                                             15 16
                                                                     18
   2.0
19
## 110 744 969 802 667 493 391 324 259 139 102
                                                                      1
                                                67
                                                     40
                                                         22
                                                             17
    1
##
##
     Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                              Max.
                     4.000
##
     1.000
             3.000
                             5.084
                                     7.000
                                            20.000
##
## includes extended item information - examples:
##
                labels
## 1
               almonds
```

Most Purchased Items

Building Model

```
#Applying the arules algorithim with 80% confidence level
model<- apriori (order, parameter = list(supp = 0.001, conf = 0.8))</pre>
## Apriori
##
## Parameter specification:
    confidence minval smax arem aval original Support maxtime support
minlen
                                                   TRUE
##
           0.8
                   0.1
                          1 none FALSE
                                                               5
                                                                   0.001
1
##
    maxlen target
                   ext
##
        10 rules TRUE
##
## Algorithmic control:
```

```
## filter tree heap memopt load sort verbose
##
      0.1 TRUE TRUE FALSE TRUE
                              2
##
## Absolute minimum support count: 5
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[119 item(s), 5154 transaction(s)] done
[0.00s].
## sorting and recoding items ... [117 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 done [0.01s].
## writing ... [247 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
#A model with 247 rules is created
model
## set of 247 rules
#Describing the model
summary(model)
## set of 247 rules
##
## rule length distribution (lhs + rhs):sizes
##
    3
           5
       4
               6
## 28 125 91
               3
##
##
    Min. 1st Qu. Median
                          Mean 3rd Qu.
                                         Max.
                 4.000
                          4.279 5.000
##
    3.000 4.000
                                         6.000
##
## summary of quality measures:
##
      support
                       confidence
                                       coverage
                                                           lift
## Min. :0.001164 Min.
                           :0.8000
                                    Min.
                                           :0.001164
                                                      Min. :
2.667
##
  1st Qu.:
2.858
## Median :0.001164 Median :0.8571 Median :0.001358
                                                      Median:
3.477
## Mean :0.001391 Mean :0.8790
                                   Mean :0.001595
                                                      Mean
3.866
## 3rd Qu.:0.001552 3rd Qu.:0.8819 3rd Qu.:0.001746
                                                      3rd Qu.:
4.177
## Max.
          :0.003104 Max. :1.0000
                                   Max.
                                          :0.003686
                                                      Max.
:14.501
##
       count
## Min.
         : 6.00
## 1st Qu.: 6.00
## Median : 6.00
        : 7.17
## Mean
## 3rd Qu.: 8.00
##
   Max. :16.00
```

```
##
## mining info:
    data ntransactions support confidence
##
## order
                   5154
                          0.001
##
                                                                  call
## apriori(data = order, parameter = list(supp = 0.001, conf = 0.8))
#The model has a minimum of three items and a maximum of six items
#Showing the first five record and the predicted items likely to be
inspect(model[1:5])
##
       lhs
                                      rhs
                                                       support
confidence
## [1] {burgers, hand protein bar} => {mineral water} 0.001164144
0.8571429
## [2] {chili, escalope}
                                   => {mineral water} 0.001164144
0.8571429
## [3] {frozen smoothie, spinach} => {mineral water} 0.001552192
0.8888889
## [4] {shrimp, strong cheese} => {mineral water} 0.001358168
0.8750000
## [5] {green beans, tomatoes}
                                   => {spaghetti} 0.001164144
0.8571429
##
      coverage
                   lift
                            count
## [1] 0.001358168 2.857512 6
## [2] 0.001358168 2.857512 6
## [3] 0.001746217 2.963346 8
## [4] 0.001552192 2.917044 7
## [5] 0.001358168 3.724886 6
# A person who buys bugers, hand protein bar has the likelihood of
85.7% of buying mineral water
#sorting by confidence level
model<-sort(model, by="confidence", decreasing=TRUE)</pre>
inspect(model[1:5])
##
       lhs
                                                    support confidence
                               rhs
             lift count
coverage
## [1] {nonfat milk,
                            => {mineral water} 0.001164144
##
        soup}
                                                                     1
0.001164144 3.333765
                         6
## [2] {nonfat milk,
##
        spaghetti,
                            => {mineral water} 0.001164144
##
        tomatoes}
                                                                     1
0.001164144 3.333765
## [3] {frozen vegetables,
##
        nonfat milk,
                            => {mineral water} 0.001164144
        spaqhetti}
0.001164144 3.333765
## [4] {ground beef,
##
       milk,
```

```
## nonfat milk}
                        => {mineral water} 0.001358168
0.001358168 3.333765
## [5] {ground beef,
##
      light cream,
                         => {mineral water} 0.001746217
##
       olive oil}
                                                              1
0.001746217 3.333765
#A person buying nonfat milk and soup is 100% likely to buy mineral
water
#Predicting items likely to be bought buy a customer who has pick
mineral water as an item
`mineral water` <- subset(model, subset = lhs %pin% "mineral water")</pre>
# Order by confidence
`mineral water`<-sort(`mineral water`, by="confidence",</pre>
decreasing=TRUE)
# inspect top 10
inspect(`mineral water`[1:10])
##
                             rhs
                                            support confidence
coverage lift count
## [1] {cake,
##
       meatballs,
       mineral water}
                         => {milk}
                                      0.001552192 1.0000000
0.001552192 5.870159
## [2] {grated cheese,
      herb & pepper,
##
##
       mineral water,
                          => {ground beef} 0.001164144 1.0000000
##
       rice}
0.001164144 7.331437
## [3] {frozen vegetables,
##
       milk,
       mineral water,
##
       0.001164144 4.345700
## [4] {frozen vegetables,
##
       herb & pepper,
       mineral water,
##
       tomatoes}
                         => {spaghetti} 0.001164144 1.0000000
##
0.001164144 4.345700
## [5] {burgers,
       frozen vegetables,
##
##
       herb & pepper,
                          => {ground beef} 0.001164144 1.0000000
       mineral water}
0.001164144 7.331437
## [6] {eggs,
       ground beef,
##
##
       mineral water,
                          => {milk} 0.001164144 1.0000000
##
      turkey}
```

```
0.001164144 5.870159 6
## [7] {burgers,
## mineral water,
## olive oil,
## pancakes}
                         => {spaghetti} 0.001164144 1.0000000
0.001164144 4.345700 6
## [8] {burgers,
## frozen vegetables,
## mineral water,
## mineral water,
## pancakes}
                         => {spaghetti} 0.001164144 1.0000000
0.001164144 4.345700 6
## [9] {eggs,
## mineral water,
## pasta}
                         => {shrimp} 0.001940241 0.9090909
0.002134265 9.151278 10
## [10] {herb & pepper,
      mineral water,
##
                         => {ground beef} 0.001940241 0.9090909
## rice}
0.002134265 6.664942 10
```