Kathmandu University

Department of Computer Science and Engineering

Dhulikhel, Kavre

on

"Lab 1"

[Course Code: COMP 342]

(For partial fulfillment of III Year/ I Semester in Computer Science)

Submitted By

Nisham Ghimire (22)

Submitted To

Mr. Dhiraj Shrestha

Department of Computer Science and Engineering

Submission Date

5th October, 2023

1. Mention the name of the Programming language and Graphics Library you are using this semester for performing your Computer Graphics Lab and Project.

Ans:

I am using Python as my primary programming language. Graphics Library Used are:

- Opengl
- Glfw
- Pygame
- Turtle etc.
- 2. Write the code snippets for setting graphics environment in your chosen graphics library and display the resolution of your display system through functions/classes provided by your graphics library.

Ans:

Code snippets are:

```
import glfw

def main():
    if not glfw.init():
        return

monitor = glfw.get_primary_monitor()
    mode = glfw.get_video_mode(monitor)
    width, height = mode.size.width, mode.size.height
    print("Screen resolution: {}x{}".format(width, height))

    glfw.terminate()

if __name__ == "__main__":
    main()

PROBLEMS OUTPUT TERMINAL PORTS COMMENTS DEBUGCONSOLE

PS N:\Projects\Graphics lab\Lab 1> python -u "n:\Projects\Graphics lab\Lab 1\find_screen_resolution.py"

Screen resolution: 1920x10800
PS N:\Projects\Graphics lab\Lab 1> |
```

3. Get Familiar with the coordinate system and draw a flag of Nepal using the chosen Graphics geometrical functions/ classes provided by the your chosen graphics library and also color the flag accordingly.

Output:

Code:

```
import pygame
import math
from pygame.locals import *
from OpenGL.GL import *
from OpenGL.GLU import *
# Function to draw a circle using the specified parameters
def draw_circle(x, y, radius, num_segments, n):
    glBegin(GL_TRIANGLE_FAN)
    glVertex2f(x, y)
    for i in range(num_segments + 1):
        theta = n * math.pi * float(i) / float(num_segments)
        dx = radius * math.cos(theta)
        dy = radius * math.sin(theta)
        glVertex2f(x + dx, y + dy)
    glEnd()
# Function to draw attributes of the flag
def draw_flag_attributes(x, y, radius, num_segments, n):
    draw_circle(x, y, radius, num_segments, n)
    for i in range(num_segments):
        glBegin(GL_TRIANGLES)
        theta1 = n * math.pi * float(i) / float(num_segments)
        x1 = x + radius * math.cos(theta1)
        y1 = y + radius * math.sin(theta1)
        theta2 = n * math.pi * float(i + 1) / float(num_segments)
        x2 = x + radius * math.cos(theta2)
        y2 = y + radius * math.sin(theta2)
```

```
glVertex2f(x1, y1)
        glVertex2f(x2, y2)
        glVertex2f(((x1 + x2) / 2) + ((x1 + x2 - 2 * x) / 2), ((y1 + y2) / 2) + ((y1 + y2) / 2))
 2 * y) / 2))
        glEnd()
# Function to draw the flag of Nepal
def draw_nepal_flag():
    pygame.init()
    display = (800, 600)
    pygame.display.set_mode(display, DOUBLEBUF | OPENGL)
    while True:
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                pygame.quit()
                quit()
        # Red triangle on top of the flag
        glBegin(GL_TRIANGLES)
        glColor3f(0.8627, 0.0784, 0.2353)
        glVertex2f(0.0, 0.0)
        glVertex2f(0, 0.5)
        glVertex2f(0.75, 0)
        glEnd()
        # Red triangle on the bottom of the flag
        glBegin(GL_TRIANGLES)
        glColor3f(0.8627, 0.0784, 0.2353)
        glVertex2f(0, 0.25)
        glVertex2f(0, -0.5)
        glVertex2f(0.75, -0.50)
        glEnd()
        # Blue quadrilateral on the flag
        glBegin(GL_QUAD_STRIP)
        glColor3f(0.0, 0.2196, 0.5765)
        glVertex2f(0.00, -0.50)
        glVertex2f(0.00, 0.50)
        glVertex2f(-0.045, -0.50)
        glVertex2f(-0.045, 0.575)
        glEnd()
        # Additional blue quadrilaterals on the flag
        glBegin(GL_QUAD_STRIP)
        glColor3f(0.0, 0.2196, 0.5765)
        glVertex2f(0.00, 0.50)
        glVertex2f(-0.05, 0.585)
        glVertex2f(0.75, -0.05)
        glVertex2f(0.825, -0.05)
        glEnd()
        glBegin(GL_QUAD_STRIP)
        glColor3f(0.0, 0.2196, 0.5765)
        glVertex2f(0.75, 0.00)
        glVertex2f(0.75, -0.05)
        glVertex2f(0.248, 0.00)
        glVertex2f(0.30, -0.05)
        glEnd()
        glBegin(GL_QUAD_STRIP)
        glColor3f(0.0, 0.2196, 0.5765)
        glVertex2f(0.75, -0.545)
```

```
glVertex2f(0.810, -0.545)
        glVertex2f(0.30, -0.05)
        glVertex2f(0.357, -0.05)
        glEnd()
        glBegin(GL_QUAD_STRIP)
        glColor3f(0.0, 0.2196, 0.5765)
        glVertex2f(-0.045, -0.50)
        glVertex2f(-0.045, -0.545)
        glVertex2f(0.75, -0.50)
       glVertex2f(0.75, -0.545)
       glEnd()
        glColor3f(0.8275, 0.8275, 0.8275)
        # Draw circles on the flag
        draw_circle(0.18, 0.20, 0.1, 100, 2)
        glColor3f(0.8627, 0.0784, 0.2353)
        draw_circle(0.18, 0.24163, 0.09, 100, 2)
        # Draw specific attributes on the flag
        glColor3f(0.8275, 0.8275, 0.8275)
        draw_flag_attributes(0.20, -0.30, 0.065, 12, 2)
        glColor3f(0.8275, 0.8275, 0.8275)
        draw_flag_attributes(0.18, 0.1525, 0.05, 10, 1)
        pygame.display.flip()
# Call the function to draw the Nepal flag
draw_nepal_flag()
```

Conclusion:

After completing this lab work, I learned about creating windows and drawing various structures in the window, providing them with colors and dimensions. I learned to create and integrate triangles, circles and stars that can be found in Nepal flag.