

Exercise 7 Prep

DC Motor Control and Speed Monitoring

Exercise & Overview

- Hardware Components
 - DC gear motor
 - H-bridge motor driver
 - Voltage regulator
- Software
 - Part A simple on/off control of motor
 - Part B speed control with PWM
 - Part C measure speed using motor encoder
- Work in your Project 3 teams

DC Motor Basics

An element conducting current will experience a mechanical force when in a magnetic field

Gear Motor

- DC motor with non-removable gear reducer (gearhead).
- Available in many gear ratios for different speed and torque requirements
- Do not have the positional control of servo motors, only speed/direction control, similar to continuous motion servos.

Gearmotor Characteristics

Torque = force that causes rotation (N*m)

Stall – situation when applied torque stops motor spinning

Stall current and torque and free run speed and current for our motors available on spec sheet on Nexus

4 Motors Available

- All have different speeds, based on gear ratio
- All have 250mA current draw at no load
- All have 2.4A stall current (current draw when stalled)

 Number
 Item Description

Number	Item Description
2282	9.7:1 Metal Gearmotor 25Dx48L mm LP 6V with 48 CPR Encoder
2284	34:1 Metal Gearmotor 25Dx52L mm LP 6V with 48 CPR Encoder
2281	4.4:1 Metal Gearmotor 25Dx48L mm LP 6V with 48 CPR Encoder
2283	20.4:1 Metal Gearmotor 25Dx50L mm LP 6V with 48 CPR Encoder

Built In Encoder

Color	Function				
Red	motor power (connects to one motor terminal)				
Black	motor power (connects to the other motor terminal)				
Green	encoder GND				
Blue	encoder Vcc (3.5 – 20 V)				
Yellow	encoder A output				
White	encoder B output				

Motor Shaft Encoder

- "Rotary Encoder"
 - Optical

Magnetic

Our Gearbox Motor

- Two sensors, 90 degrees out of phase
- 48 Counts Per Revolution (CPR) Encoder*
- 12 Periods Per Revolution (PPR)
- For gear ratio 9.68:1
 - Periods per revolution of gear shaft = 12(9.68) = 116.16

Gear Ratio	PPR
4.4:1	52.8
9.68:1	116.16
20.4:1	244.8
34:1	408.17

^{*} Note that a "count" is specified as a rising or falling edge of both decoder signals, so to get the number of PERIODs of a single decoder, we would need to divide this by 4, and so there are 12 encoder PERIODS per revolution.

Motor Driver

Logical behavior

Details of electronics in datasheet

7.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC1}	Logic supply voltage	4.5	5.5	V
V _{CC2}	Output supply voltage	4.5	36	V
V _{IH}	High-level input voltage	2	5.5	V
V _{IL}	Low-level input voltage	-0.3 ⁽¹⁾	0.8	V

5V Regulator

TO-220 (NDE) Package 4 Pins Front View

Connect capacitors very close to the regulator

Software

Part A – Simple on-off control using Port B pins

Software

Part B – PWM control using OC1 and OC2, similar to Project 2

Variable "duty cycle"

PWM Signal for DC Motor

50% to 100%

Recommended PWM frequency is 9.8KHz for our DC Motor.

Pulse widths should vary between 50% and 100% of the full period.

Project 3 Teams

P3_W A	Celina Munoz, Natalia Pezzuco
P3_W B	Amanda Ashmen, Ian Krause
P3_W C	Nils Carlson, Spencer Paradis-Fichtner
P3_W D	Alexander Bruno, Di Wu
P3_W E	Brian Zick

P3_T A	Marlie Norbrun, Ethan Oswald
P3_T B	Yusen Meng, Kyle Meza
P3_T C	Nikolaos Papaioannou, Conor Willsie
P3_T D	Alexis Juarez, Xavier Quinn
P3_T E	Andrew James, Jacob Karaul
P3 T F	Miles Duncan, Dale MacLeod

Part C – Using Motor Encoder

5V Regulator

Color	Function
Red	motor power (connects to one motor terminal)
Black	motor power (connects to the other motor terminal)
Green	encoder GND
Blue	encoder Vcc (3.5 – 20 V)
Yellow	encoder A output
White	encoder B output

6V Battery

Output Compare and Input Capture

- Output Compare used to control PWM to motor
- Input Capture used to capture pulse edges from motor encoder
- Need to have separate timers

Input Capture Module

(Think of a stop watch)

Each capture channel available on dsPIC33F/PIC24H family devices has these registers:

- ICxCON: Input Capture Control register
- ICxBUF: Input Capture Buffer register (see Table 12-3 for bit information)

Input Capture "Event"

- The Input Capture module captures the 16-bit value of the selected timer (Timer2 or Timer3), when a capture event occurs.
- A capture "event" is defined as a write of a timer value into the capture buffer.
- The capture "mode" determine what causes the "event" (rising edge, falling edge, etc)

Input Capture Modes

- Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Choose a mode that will provide enough accuracy, but not be more Timer Tcks than the 16-bit IC1BUF register will hold. Depends on the input signal frequency.

d Systems

ICxCON IC Control Register

Register 12-1: ICxCON: Input Capture x Control Register

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	ICSIDL	_	_	_	_	_
bit 15 bit 8							

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7					bit 0		

Legend:	HC = Cleared in Hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3

bit 15-14 Unimplemented: Read as '0'

bit 13

bit 6-5

bit 4

ICSIDL: Input Capture x Stop in Idle Control bit

1 = Input capture halts in CPU Idle mode

0 = Input capture continues to operate in CPU Idle mode bit 2-0

bit 12-8 Unimplemented: Read as '0'

bit 7 ICTMR: Input Capture x Timer Select bit

1 = TMR2 contents are captured on capture event

0 = TMR3 contents are captured on capture event

ICI<1:0>: Select Number of Captures per Interrupt bits

11 = Interrupt on every fourth capture event

10 = Interrupt on every third capture event

01 = Interrupt on every second capture event

00 = Interrupt on every capture event

ICOV: Input Capture x Overflow Status Flag bit (read-only)

1 = Input capture overflow occurred

0 = No input capture overflow occurred

ICBNE: Input Capture x Buffer Empty Status Flag bit (read-only)

1 = Input capture buffer is not empty, at least one more capture value can be read

0 = Input capture buffer is empty

ICM<2:0>: Input Capture x Mode Select bits

111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode detect only, all other control bits are not applicable)

110 = Unused (Input Capture module disabled)

101 = Capture mode, every 16th rising edge

100 = Capture mode, every 4th rising edge

011 = Capture mode, every rising edge

010 = Capture mode, every falling edge

001 = Capture mode, every edge - rising and falling (ICI<1:0> bits do not control interrup for this mode)

000 = Input Capture module turned off

References for Exercise 7

All Available on Nexus

- Motor driver chip
- 5V regulator
- DC motor specifications
- P24HJ128GP502 Datasheet
 - Section 14 describes Input Capture
- Input Capture Datasheet