Filter Summary Report: CG,TIA,simple,Z2,ZL

Generated by MacAnalog-Symbolix

January 18, 2025

Contents

1 Examined $H(z)$ for CG TIA simple Z2 ZL: $\frac{Z_2Z_Lg_m+Z_L}{Z_2g_m+1}$
2 HP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.8 BP-8 $Z(s) = \left(\infty, \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, \frac{L_LR_Ls}{C_LL_LR_Ls^2+L_Ls+R_L}\right)$
4 LP
5 BS
5.1 BS-1 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{R_L\left(C_LL_Ls^2+1\right)}{C_LL_Ls^2+C_LR_Ls+1}\right)$
5.2 BS-2 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$
5.3 BS-3 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$
5.4 BS-4 $Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L \left(C_L L_L s^2 + 1 \right)}{C_L L_L s^2 + C_L R_L s + 1} \right)$
5.5 BS-5 $Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$
5.6 BS-6 $Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$
$5.7 \text{BS-7 } Z(s) = \left(\infty, \ \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L \left(C_L L_L s^2 + 1 \right)}{C_L L_L s^2 + C_L R_L s + 1} \right) \ \dots $
5.8 BS-8 $Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, \frac{R_L(C_LL_Ls^2+1)}{C_LL_Ls^2+C_LR_Ls+1} \right)'$
6 GE
7 AP
8 INVALID-NUMER
9 INVALID-WZ
10 INVALID-ORDER $10.1 \text{ INVALID-ORDER-1 } Z(s) = (\infty, R_2, \infty, \infty, \infty, R_L) $ $10.2 \text{ INVALID-ORDER-2 } Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \infty, \frac{1}{C_L s}\right) $ $10.3 \text{ INVALID-ORDER-3 } Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right) $

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$
10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$
10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$
10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$
10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$
10.9 INVALID-ORDER-9 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L\right)$
$10.10 \text{INVALID-ORDER-10 } Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right) $
$10.11 \text{INVALID-ORDER-11 } Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right) $
$10.12 \text{INVALID-ORDER-12 } Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \infty, \ $
$10.13 \text{INVALID-ORDER-} 13 \ Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right) $
$10.14 \text{INVALID-ORDER-} 14 \ Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) \ \dots $
$10.15 \text{INVALID-ORDER-15 } Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right) $
$10.16 \text{INVALID-ORDER-} 16 \ Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right) $
$10.17 \text{INVALID-ORDER-17 } Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L\right) $
$10.18 \text{INVALID-ORDER-} 18 \ Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right) \ \dots $
$10.19 \text{INVALID-ORDER-19 } Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right) \ \dots $
$10.20 \text{INVALID-ORDER-20 } Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right) $
$10.21 \text{INVALID-ORDER-21 } Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right) $
$10.22 \text{INVALID-ORDER-} 22 \ Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) $
$10.23 \text{INVALID-ORDER-} 23 \ Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s} \right) $
$10.24 \text{INVALID-ORDER-} 24 \ Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right) $
$10.25 \text{INVALID-ORDER-} 25 \ Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L\right) \ \dots $
$10.26 \text{INVALID-ORDER-} 26 \ Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right) $
$10.27 \text{INVALID-ORDER-27 } Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1} \right) $
$10.28 \text{INVALID-ORDER-28 } Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s} \right) $
$10.29 \text{INVALID-ORDER-29 } Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s} \right) $
$10.30 \text{INVALID-ORDER-30 } Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) $
$10.31 \text{INVALID-ORDER-31 } Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right) $
$10.32 \text{INVALID-ORDER-32 } Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1} \right) $
10.33INVALID-ORDER-33 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \infty, R_L\right)$
$10.34 \text{INVALID-ORDER-34 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right) \dots \dots$
$10.35 \text{INVALID-ORDER-35 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right) $
$10.36 \text{INVALID-ORDER-} 36 \ Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right) $
$10.37 \text{INVALID-ORDER-37 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right) $
$10.38 \text{INVALID-ORDER-38 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) $
$10.39 \text{INVALID-ORDER-39 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s} \right) $
$10.40 \text{INVALID-ORDER-40 } Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1} \right) $
$10.41 \text{INVALID-ORDER-41 } Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ R_L \right) $
$10.42 \text{INVALID-ORDER-} 42 \ Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s} \right) $
$10.43 \text{INVALID-ORDER-43 } Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1} \right) $

$10.44 \text{INVALID-ORDER-} 44 \ Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ R_L + \frac{1}{C_L s}\right) \dots \qquad 1$
$10.45 \text{INVALID-ORDER-45 } Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right) \dots \dots$
$10.46 \text{INVALID-ORDER-46 } Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right)$
$10.47 \text{INVALID-ORDER-47 } Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right) $
$10.48 \text{INVALID-ORDER-48 } Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right) $
$10.49 \text{INVALID-ORDER-49} \ Z(s) = \left(\infty, \ \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ R_L\right) $
$10.50 \text{INVALID-ORDER-50 } Z(s) = \left(\infty, \ \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_L s}\right) \dots \dots$
$10.51 \text{INVALID-ORDER-51 } Z(s) = \left(\infty, \ \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1}\right) \ \dots $
10.52INVALID-ORDER-52 $Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$
10.53INVALID-ORDER-53 $Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$
$10.54 \text{INVALID-ORDER-54} \ Z(s) = \left(\infty, \ \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \frac{L_L s}{C_L L_L s^2 + 1}\right) $
10.55INVALID-ORDER-55 $Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$
$10.56 \text{INVALID-ORDER-56} \ Z(s) = \left(\infty, \ \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \infty, \ \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right) \dots $
$10.57 \text{INVALID-ORDER-57 } Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \infty, \ \infty, \ R_L\right) $
$10.58 \text{INVALID-ORDER-} 58 \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right) \ \dots $
10.59INVALID-ORDER-59 $Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1} \right)$
10.60INVALID-ORDER-60 $Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_Ls} \right)$
10.61INVALID-ORDER-61 $Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls} \right)$
$10.62 \text{INVALID-ORDER-} 62 \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2 + 1\right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \infty, \ \infty, \ \infty, \ \frac{L_Ls}{C_LL_Ls^2 + 1} \right) $
10.63INVALID-ORDER-63 $Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls} \right)$
$10.64 \text{INVALID-ORDER-} 64 \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \infty, \ \infty, \ \frac{C_LL_LR_Ls^2+L_Ls+R_L}{C_LL_Ls^2+1} \right) \ \dots $

11 PolynomialError

1 Examined
$$H(z)$$
 for CG TIA simple Z2 ZL: $\frac{Z_2Z_Lg_m+Z_L}{Z_2g_m+1}$

$$H(z) = \frac{Z_2 Z_L g_m + Z_L}{Z_2 g_m + 1}$$

2 HP

3 BP

3.1 BP-1
$$Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

 $H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L} \label{eq:hamiltonian}$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: None
Wz: None

3.2 BP-2 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

 $H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R}$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: None
Wz: None

3.3 BP-3 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$

 $H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: None
Wz: None

3.4 BP-4
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: None
Wz: None

3.5 BP-5
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: None
Wz: None

3.6 BP-6
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$
K-LP: 0
K-HP: 0
K-BP: R_L
Qz: None
Wz: None

3.7 BP-7
$$Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, \frac{L_LR_Ls}{C_LL_LR_Ls^2 + L_Ls + R_L}\right)$$

Parameters:

Q:
$$C_L R_L \sqrt{\frac{1}{C_L L_L}}$$

wo: $\sqrt{\frac{1}{C_L L_L}}$
bandwidth: $\frac{1}{C_L R_L}$

$$H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$$

$$H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$$

$$H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$$

$$H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$$

K-LP: 0 K-HP: 0 K-BP: R_L

Qz: None Wz: None

3.8 BP-8
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, \frac{L_LR_Ls}{C_LL_LR_Ls^2+L_Ls+R_L}\right)$$

Parameters:

Q: $C_L R_L \sqrt{\frac{1}{C_L L_L}}$ wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{1}{C_L R_L}$ K-LP: 0 K-HP: 0 K-BP: R_L Qz: None Wz: None

4 LP

5 BS

5.1 BS-1 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$

Parameters:

Q: $\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$ wo: $\sqrt{\frac{1}{C_L L_L}}$ bandwidth: $\frac{R_L}{L_L}$ K-LP: R_L K-HP: R_L K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_L L_L}}$

5.2 BS-2 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$

Parameters:

 $\begin{aligned} &\text{Q: } \frac{\frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L}}{Wo: \sqrt{\frac{1}{C_LL_L}}} \\ &\text{bandwidth: } \frac{R_L}{L_L} \\ &\text{K-LP: } R_L \end{aligned}$

 $H(s) = \frac{L_L R_L s}{C_L L_L R_L s^2 + L_L s + R_L}$

 $H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$

 $H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$

K-HP:
$$R_L$$

K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_L L_L}}$

5.3 BS-3
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP: R_L K-HP: R_L K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

5.4 BS-4
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_L}{L_L} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

5.5 BS-5
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L \left(C_L L_L s^2 + 1\right)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP: R_L K-HP: R_L K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

5.6 BS-6
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L(C_L L_L s^2 + 1)}{C_L L_L s^2 + C_L R_L s + 1}\right)$$

Parameters:

Q:
$$\frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L}$$
 wo:
$$\sqrt{\frac{1}{C_L L_L}}$$
 bandwidth:
$$\frac{R_L}{L_L}$$
 K-LP: R_L K-HP: R_L K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_L L_L}}$$

5.7 BS-7
$$Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, \frac{R_L\left(C_LL_Ls^2 + 1\right)}{C_LL_Ls^2 + C_LR_Ls + 1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q:} \ \frac{L_L\sqrt{\frac{1}{C_LL_L}}}{R_L} \\ &\text{wo:} \ \sqrt{\frac{1}{C_LL_L}} \\ &\text{bandwidth:} \ \frac{R_L}{L_L} \\ &\text{K-LP:} \ R_L \\ &\text{K-HP:} \ R_L \\ &\text{K-BP:} \ 0 \\ &\text{Qz:} \ \text{None} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_LL_L}} \end{aligned}$$

5.8 BS-8
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \frac{R_L(C_LL_Ls^2+1)}{C_LL_Ls^2+C_LR_Ls+1}\right)$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{L_L \sqrt{\frac{1}{C_L L_L}}}{R_L} \\ &\text{wo: } \sqrt{\frac{1}{C_L L_L}} \\ &\text{bandwidth: } \frac{R_L}{L_L} \\ &\text{K-LP: } R_L \\ &\text{K-HP: } R_L \\ &\text{K-BP: } 0 \\ &\text{Qz: None} \\ &\text{Wz: } \sqrt{\frac{1}{C_L L_L}} \end{aligned}$$

6 **GE**

7 AP

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

$$H(s) = \frac{C_L L_L R_L s^2 + R_L}{C_L L_L s^2 + C_L R_L s + 1}$$

8 INVALID-NUMER

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, R_2, \infty, \infty, \infty, R_L)$

$$H(s) = R_L$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

$$H(s) = \frac{1}{C_L s}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_2 g_m + s (C_L R_2 R_L g_m + C_L R_L) + 1}{s (C_L R_2 g_m + C_L)}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_2 g_m + s^2 (C_L L_L R_2 g_m + C_L L_L) + 1}{s (C_L R_2 g_m + C_L)}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

$$H(s) = \frac{R_2 g_m + s^2 \left(C_L L_L R_2 g_m + C_L L_L \right) + s \left(C_L R_2 R_L g_m + C_L R_L \right) + 1}{s \left(C_L R_2 g_m + C_L \right)}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, R_2, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.9 INVALID-ORDER-9 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$

 $H(s) = R_L$

10.10 INVALID-ORDER-10 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

 $H(s) = \frac{1}{C_{L}s}$

10.11 INVALID-ORDER-11 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$

 $H(s) = \frac{R_L}{C_L R_L s + 1}$

10.12 INVALID-ORDER-12 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$

 $H(s) = \frac{C_2 C_L R_L s^2 + g_m + s \left(C_2 + C_L R_L g_m \right)}{C_2 C_L s^2 + C_L g_m s}$

10.13 INVALID-ORDER-13 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$

 $H(s) = \frac{C_2 C_L L_L s^3 + C_2 s + C_L L_L g_m s^2 + g_m}{C_2 C_L s^2 + C_L g_m s}$

10.14 INVALID-ORDER-14 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$

 $H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$

10.15 INVALID-ORDER-15 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$

 $H(s) = \frac{C_2 C_L L_L s^3 + g_m + s^2 \left(C_2 C_L R_L + C_L L_L g_m \right) + s \left(C_2 + C_L R_L g_m \right)}{C_2 C_L s^2 + C_L g_m s}$

10.16 INVALID-ORDER-16 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$

 $H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$

10.17 INVALID-ORDER-17 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L\right)$

 $H(s) = R_L$

10.18 INVALID-ORDER-18 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$

 $H(s) = \frac{1}{C_L s}$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_2 C_L R_2 R_L s^2 + R_2 g_m + s \left(C_2 R_2 + C_L R_2 R_L g_m + C_L R_L \right) + 1}{C_2 C_L R_2 s^2 + s \left(C_L R_2 g_m + C_L \right)}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_2 C_L L_L R_2 s^3 + C_2 R_2 s + R_2 g_m + s^2 \left(C_L L_L R_2 g_m + C_L L_L \right) + 1}{C_2 C_L R_2 s^2 + s \left(C_L R_2 g_m + C_L \right)}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_2 C_L L_L R_2 s^3 + R_2 g_m + s^2 \left(C_2 C_L R_2 R_L + C_L L_L R_2 g_m + C_L L_L \right) + s \left(C_2 R_2 + C_L R_2 R_L g_m + C_L R_L \right) + 1}{C_2 C_L R_2 s^2 + s \left(C_L R_2 g_m + C_L \right)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = R_L$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{C_L s}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m + s^2 \left(C_2 C_L R_2 R_L g_m + C_2 C_L R_L \right) + s \left(C_2 R_2 g_m + C_2 + C_L R_L g_m \right)}{C_L g_m s + s^2 \left(C_2 C_L R_2 g_m + C_2 C_L \right)}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_L L_L g_m s^2 + g_m + s^3 \left(C_2 C_L L_L R_2 g_m + C_2 C_L L_L \right) + s \left(C_2 R_2 g_m + C_2 \right)}{C_L g_m s + s^2 \left(C_2 C_L R_2 g_m + C_2 C_L \right)}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{g_m + s^3 \left(C_2 C_L L_L R_2 g_m + C_2 C_L L_L \right) + s^2 \left(C_2 C_L R_2 R_L g_m + C_2 C_L R_L + C_L L_L g_m \right) + s \left(C_2 R_2 g_m + C_2 + C_L R_L g_m \right)}{C_L g_m s + s^2 \left(C_2 C_L R_2 g_m + C_2 C_L \right)}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = R_L$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{C_L s}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_2 C_L L_2 R_L g_m s^3 + g_m + s^2 \left(C_2 C_L R_L + C_2 L_2 g_m \right) + s \left(C_2 + C_L R_L g_m \right)}{C_2 C_L L_2 g_m s^3 + C_2 C_L s^2 + C_L g_m s}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_2 C_L L_2 L_L g_m s^4 + C_2 C_L L_L s^3 + C_2 s + g_m + s^2 \left(C_2 L_2 g_m + C_L L_L g_m \right)}{C_2 C_L L_2 g_m s^3 + C_2 C_L s^2 + C_L g_m s}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_2C_LL_2L_Lg_ms^4 + g_m + s^3\left(C_2C_LL_2R_Lg_m + C_2C_LL_L\right) + s^2\left(C_2C_LR_L + C_2L_2g_m + C_LL_Lg_m\right) + s\left(C_2 + C_LR_Lg_m\right)}{C_2C_LL_2g_ms^3 + C_2C_Ls^2 + C_Lg_ms}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = R_L$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{1}{C_L s}\right)$$

$$H(s) = \frac{1}{C_{IS}}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{R_L}{C_L R_L s + 1}\right)$$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_2C_LL_2R_Lg_ms^3 + g_m + s^2\left(C_2C_LR_2R_Lg_m + C_2C_LR_L + C_2L_2g_m\right) + s\left(C_2R_2g_m + C_2 + C_LR_Lg_m\right)}{C_2C_LL_2g_ms^3 + C_Lg_ms + s^2\left(C_2C_LR_2g_m + C_2C_L\right)}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_2C_LL_2L_Lg_ms^4 + g_m + s^3\left(C_2C_LL_LR_2g_m + C_2C_LL_L\right) + s^2\left(C_2L_2g_m + C_LL_Lg_m\right) + s\left(C_2R_2g_m + C_2\right)}{C_2C_LL_2g_ms^3 + C_Lg_ms + s^2\left(C_2C_LR_2g_m + C_2C_L\right)}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, \frac{L_L s}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \infty, \infty, \infty, L_L s + R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{C_2C_LL_2L_Lg_ms^4 + g_m + s^3\left(C_2C_LL_2R_Lg_m + C_2C_LL_LR_2g_m + C_2C_LL_L\right) + s^2\left(C_2C_LR_2R_Lg_m + C_2C_LR_L + C_2L_2g_m + C_LL_Lg_m\right) + s\left(C_2R_2g_m + C_2+C_LR_Lg_m\right) + s\left(C_2R_2g_$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \infty, \ \infty, \ \infty, \ \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, R_L\right)$$

$$H(s) = R_L$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{1}{C_L s}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(\infty, \ \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \ \infty, \ \infty, \ \infty, \ \frac{R_L}{C_L R_L s + 1} \right)$$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(\infty, \frac{C_2 L_2 R_2 s^2 + L_2 s + R_2}{C_2 L_2 s^2 + 1}, \infty, \infty, \infty, \infty, R_L + \frac{1}{C_L s}\right)$$

$$H(s) = \frac{R_2 g_m + s^3 \left(C_2 C_L L_2 R_2 R_L g_m + C_2 C_L L_2 R_L \right) + s^2 \left(C_2 L_2 R_2 g_m + C_2 L_2 + C_L L_2 R_L g_m \right) + s \left(C_L R_2 R_L g_m + C_L R_L + L_2 g_m \right) + 1}{C_L L_2 g_m s^2 + s^3 \left(C_2 C_L L_2 R_2 g_m + C_2 C_L L_2 \right) + s \left(C_L R_2 g_m + C_L R_L + L_2 g_m \right) + 1}$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_L L_2 L_L g_m s^3 + L_2 g_m s + R_2 g_m + s^4 \left(C_2 C_L L_2 L_L R_2 g_m + C_2 C_L L_2 L_L\right) + s^2 \left(C_2 L_2 R_2 g_m + C_2 L_2 + C_L L_L R_2 g_m + C_L L_L\right) + 1}{C_L L_2 g_m s^2 + s^3 \left(C_2 C_L L_2 R_2 g_m + C_2 C_L L_2\right) + s \left(C_L R_2 g_m + C_L\right)}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\infty, \frac{C_2L_2R_2s^2 + L_2s + R_2}{C_2L_2s^2 + 1}, \infty, \infty, \infty, \infty, \frac{C_LL_LR_Ls^2 + L_Ls + R_L}{C_LL_Ls^2 + 1}\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, R_L\right)$$

$$H(s) = R_L$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \infty, \ \infty, \ \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{1}{C_L s}$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, \frac{R_L}{C_LR_Ls+1}\right)$$

$$H(s) = \frac{R_L}{C_L R_L s + 1}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_2 g_m + s^3 \left(C_2 C_L L_2 R_2 R_L g_m + C_2 C_L L_2 R_L\right) + s^2 \left(C_2 C_L R_2 R_L + C_2 L_2 R_2 g_m + C_2 L_2\right) + s \left(C_2 R_2 + C_L R_2 R_L g_m + C_L R_L\right) + 1}{C_2 C_L R_2 s^2 + s^3 \left(C_2 C_L L_2 R_2 g_m + C_2 C_L L_2\right) + s \left(C_L R_2 g_m + C_L\right)}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, L_Ls + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{C_2C_LL_LR_2s^3 + C_2R_2s + R_2g_m + s^4\left(C_2C_LL_2L_LR_2g_m + C_2C_LL_2L_L\right) + s^2\left(C_2L_2R_2g_m + C_2L_2 + C_LL_LR_2g_m + C_LL_L\right) + 1}{C_2C_LR_2s^2 + s^3\left(C_2C_LL_2R_2g_m + C_2C_LL_2\right) + s\left(C_LR_2g_m + C_L\right)}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \frac{L_Ls}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{L_L s}{C_L L_L s^2 + 1}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \infty, \infty, \infty, \infty, L_Ls + R_L + \frac{1}{C_Ls}\right)$$

$$H(s) = \frac{R_2 g_m + s^4 \left(C_2 C_L L_2 L_L R_2 g_m + C_2 C_L L_2 L_L \right) + s^3 \left(C_2 C_L L_2 R_L g_m + C_2 C_L L_2 R_L + C_2 C_L L_L R_2 \right) + s^2 \left(C_2 C_L R_2 R_L + C_2 L_2 R_2 g_m + C_2 L_2 + C_L L_L R_2 g_m + C_L L_L \right) + s \left(C_2 R_2 + C_L R_2 R_L g_m + C_L R_L \right) + s \left(C_2 R_2 R_L + C_2 R_L R_2 R_L g_m + C_L R_L \right) + s \left(C_2 R_2 R_L + C_2 R_L R_2 R_L g_m + C_L R_L \right) + s \left(C_2 R_2 R_L R_2 R_L$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \infty, \ \infty, \ \infty, \ \frac{C_LL_LR_Ls^2+L_Ls+R_L}{C_LL_Ls^2+1}\right)$$

$$H(s) = \frac{C_L L_L R_L s^2 + L_L s + R_L}{C_L L_L s^2 + 1}$$

11 PolynomialError