Espaces de Sobolev

$4\ {\rm octobre}\ 2014$

Table des matières

1	Les ${f espaces}\ L^p$	2
	1.1 Rappels d'analyse fonctionnelle	 2
	1.2 Les espaces L^p	 3

Introduction

On s'intéresse aux problèmes de la forme :

$$\begin{cases} Lu = -\sum_{i,j=1}^{N} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i \frac{\partial u}{\partial x_i} + cu = f \text{ sur } \Omega \subset \mathbb{R}^N \text{ born\'e ouvert} \\ u = g \text{ sur } \partial \Omega \end{cases}$$
 (P)

🔩 Définition: Hölderienne

fhölderienne d'exposant α si :

$$\exists c > 0; \forall x, y, |f(x) - f(y)| \le c|x - y|^{\alpha}, 0 < \alpha < 1$$

⇔ Théorème: Unicité et existence

Soit $\partial\Omega$ de classe \mathcal{C}^1 , L uniformément elliptique :

$$\exists \alpha > 0; \forall x \in \overline{\Omega}, \forall \xi \in \mathbb{R}^N, \sum_{i,j=1}^N a_{ij}(x)\xi_i \xi_j \ge \alpha |\xi|^2$$

On suppose $a_{ij}, b_i, c \in \mathcal{C}^{0,\alpha}(\Omega)$ (continue et hölderienne), $\alpha \in]0,1[,c \geq 0.$ $f \in \mathcal{C}^{0,\alpha}(\overline{\Omega}), g \in \mathcal{C}^0(\partial\Omega).$

Alors $\exists ! u$ solution de (\mathbf{P}) tel que $u \in \mathcal{C}^{2,\alpha}(\Omega) \cap \mathcal{C}^0(\overline{\Omega})$.

⇔ Théorème: estimation de Schender

Si de plus, $\partial\Omega$ de classe $\mathcal{C}^{2,\alpha}$, $g\in\mathcal{C}^{2,\alpha}(\partial\Omega)$, alors $u\in\mathcal{C}^{2,\alpha}(\overline{\Omega})$ et on a :

$$||u||_{\mathcal{C}^{2,\alpha}(\overline{\Omega})} \le c \left(||f||_{\mathcal{C}^{0,\alpha}(\overline{\Omega})} + ||g||_{\mathcal{C}^{2,\alpha}(\partial\Omega)} \right)$$

1 Les espaces L^p

1.1 Rappels d'analyse fonctionnelle

♣ Définition: Dual

Soit X un evn. On appelle dual de X l'espace

$$X' = \mathcal{L}(X, \mathbb{R})$$

Si $\phi \in X'$ et $x \in X$, on note souvent :

$$\phi(x) = \langle \phi, x \rangle_{X'X}$$

appelé crochet de dualité.

♦ Définition: Bidual

Soit X un evn. On appelle bidual de X l'espace

$$X'' = (X')'$$

qui est un Banach.

Remarque : On peut identifier X avec un sous-espace de X'' à travers une isométrie, de la manière suiva,te : $\forall x \in X$, on définit :

$$f_x: x' \in X' \mapsto \langle x', x \rangle_{X'X} \in \mathbb{R}$$

 f_x est dans X'' car linéaire, et $|\langle x', x \rangle| \le ||x||_X ||x'||_{X'}$ donc f_x est borné. On peut montrer que :

$$\mathcal{F}: x \in X \mapsto f_x \in X''$$

est une isométrie, ie $||x||_X = ||f_x||_{X''}$, $\forall x \in X$. Donc on identifie x avec f_x et on écrit $X \subset X''$. Question : a-t-on X = X''? autrement dit, \mathcal{F} est-elle surjective? En général, non.

🔩 Définition: Reflexif

Si \mathcal{F} est surjective, on dit que C est reflexif.

⇔ Théorème: représentation de Riesz-Fréchet

Soit H de Hilbert.

$$\forall F \in H', \exists ! \tau(F) \in H; \forall x \in H, \langle F, x \rangle_{H'H} = (\tau(F), x)_H$$

De plus, l'application

$$\Phi: H' \to H$$

$$F \mapsto \tau(F)$$

est une isométrie.

1.2 Les espaces L^p

Dans la suite, O est un ouvert de $\mathbb{R}^N,\ N\geq 2$ Ω est un ouvert borné de \mathbb{R}^N dx la mesure de Lebesgue

Definition:

Soit $1 \le p < +\infty$.

$$\begin{split} L^p(O) &= \{f: O \to \mathbb{R} \text{ mesurable }; \int |f|^p dx < \infty \} \\ L^p(O) &= \{f: O \to \mathbb{R} \text{ mesurable }; |f| < \infty \text{ p.p. dans } O \} \\ \forall 1 \leq p \leq +\infty, L^p_{loc}(O) &= \{f \in L^p(\omega), \forall \omega \text{ ouvert born\'e}, \bar{\omega} \subset O \} \end{split}$$

i Propriété:

 $L^p({\cal O})$ est de Banach muni de la norme :

$$||f||_{L^p(O)} = \begin{vmatrix} \left(\int_O |f|^p dx \right)^{\frac{1}{p}} & \text{si} & p < \infty \\ \inf\{C; |f| \le C \text{ pp}\} & \text{si} & p = \infty \end{vmatrix}$$

$\blacksquare Remarque:$

Si $p=2,\,L^2(O)$ est un Hilbert par rapport au produit scalaire

$$(f,g)_{L^2(O)} = \int_O f(x)g(x)dx$$