Lecture 13: Procrustes, ICP

COMPSCI/MATH 290-04

Chris Tralie, Duke University

2/25/2016

Announcements

- Hackathon Saturday 2/27 4:00 PM 10:00 PM Gross Hall 330
- Rank Top 3 Final Project Choices By Next Wednesday 3/2 (Groups of 3-4)

Table of Contents

- ▶ Procrustes SVD Derivation
- ▷ ICP

Procrustes Rotation Problem

Given correspondences, find best rotation

Points are well aligned if

$$\vec{x_1} \cdot \vec{y_1} = ||\vec{x_1}||||\vec{y_1}|| \cos(\theta)$$

is maximized

Points are well aligned if

$$\vec{x_1} \cdot \vec{y_1} = ||\vec{x_1}||||\vec{y_1}|| \cos(\theta)$$

is maximized

In general, how to maximize?

$$\sum_{i=1}^{N} R_{x} \vec{x_{i}} \cdot R_{y} \vec{y_{i}}$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.0$$

$$0.2$$

$$0.0$$

$$0.2$$

$$0.0$$

$$0.2$$

$$0.0$$

$$0.3$$

$$0.0$$

$$0.3$$

$$0.0$$

$$0.3$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

In general, how to maximize?

$$\sum_{i=1}^{N} \mathbf{R}_{x} \vec{\mathbf{x}}_{i} \cdot \mathbf{R}_{y} \vec{\mathbf{y}}_{i}$$

VIDEO EXAMPLE

Choosing Orthogonal Dot Product Axes

Choosing Orthogonal Dot Product Axes

$$\sum_{i=1}^{N} \begin{bmatrix} - & \overrightarrow{R_{x1}} & - \\ - & \overrightarrow{R_{x2}} & - \\ - & \overrightarrow{R_{x3}} & - \end{bmatrix} \begin{bmatrix} \mid \\ \overrightarrow{x_i} \end{bmatrix} \cdot \begin{bmatrix} - & \overrightarrow{R_{y1}} & - \\ - & \overrightarrow{R_{y2}} & - \\ - & \overrightarrow{R_{y3}} & - \end{bmatrix} \begin{bmatrix} \mid \\ \overrightarrow{y_i} \end{bmatrix}$$

$$=$$

$$(\vec{R_{x1}} \cdot \vec{x_i})(\vec{R_{y1}} \cdot \vec{y_i}) + (\vec{R_{x2}} \cdot \vec{x_i})(\vec{R_{y2}} \cdot \vec{y_i}) + (\vec{R_{x3}} \cdot \vec{x_i})(\vec{R_{y3}} \cdot \vec{y_i})$$

How to maximize $\sum_{i=1}^{N} (\vec{R_{x1}} \cdot \vec{x_i}) (\vec{R_{y1}} \cdot \vec{y_i})$?

$$R_{x1}X, R_{y1}Y$$

How to write $\sum_{i=1}^{N} (\vec{R_{x1}} \cdot \vec{x_i}) (\vec{R_{y1}} \cdot \vec{y_i})$ in matrix form?

$$R_{x1}X, R_{y1}Y$$

How to write $\sum_{i=1}^{N} (\vec{R_{x1}} \cdot \vec{x_i}) (\vec{R_{y1}} \cdot \vec{y_i})$ in matrix form?

$$(R_{x1}X)(R_{y1}Y)^T = R_{x1}XY^TR_{y1}^T$$

How to find u_1 and v_1 that maximize this product?

$$(R_{x1}X)(R_{y1}Y)^T = R_{x1}XY^TR_{y1}^T$$

Take SVD: $XY^T = USV^T$ and substitute in

$$R_{x1}USV^TR_{y1}^T$$

$$R_{x1}USV^TR_{y1}^T$$

$$\begin{bmatrix} - & \vec{R_{x1}} & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ \vec{u_1} & \vec{u_2} & \vec{u_3} \\ | & | & | \end{bmatrix} \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \end{bmatrix} \begin{bmatrix} - & \vec{v_1} & - \\ - & \vec{v_2} & - \\ - & \vec{v_3} & - \end{bmatrix} \begin{bmatrix} | & \vec{R_{y1}} & | & | \\ | & \vec{R_{y1}} & | & | & | \\ | & & | & | & | \end{bmatrix}$$

Assume $s_1 > s_2 > s_3$, remember that U and V are orthogonal

$$R_{x1} USV^T R_{y1}^T$$

$$\begin{bmatrix} - & \vec{R_{x1}} & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ \vec{u_1} & \vec{u_2} & \vec{u_3} \\ | & | & | \end{bmatrix} \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \end{bmatrix} \begin{bmatrix} - & \vec{v_1} & - \\ - & \vec{v_2} & - \\ - & \vec{v_3} & - \end{bmatrix} \begin{bmatrix} | & \vec{R_{y1}} & | & | \\ | & \vec{R_{y1}} & | & | & | \\ | & & | & | & | \end{bmatrix}$$

Assume $s_1 > s_2 > s_3$, remember that U and V are orthogonal Raffle point question: Choose $\vec{R_{x1}}$ and $\vec{R_{y1}}$ to maximize this component of the dot product

$$R_{x1} USV^T R_{y1}^T$$

Assume $s_1 > s_2 > s_3$

$$\vec{R_{x1}} = \vec{u_1}, \vec{R_{y1}} = \vec{v_1}$$

In other words

- \triangleright First row of R_x is first column of U
- \triangleright First row of R_y is first column of V

Maximizing Dot Product: Second Component

What about the second rows of R_x and R_y for second component of dot product?

$$R_{x1} USV^T R_{y1}^T$$

$$R_{x2}USV^TR_{y2}^T$$

$$\left[\begin{array}{cccc} - & \vec{R_{x2}} & - \end{array}\right] \left[\begin{array}{cccc} | & | & | & | \\ \vec{u_1} & \vec{u_2} & \vec{u_3} \\ | & | & | \end{array}\right] \left[\begin{array}{cccc} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \end{array}\right] \left[\begin{array}{cccc} - & \vec{v_1} & - \\ - & \vec{v_2} & - \\ - & \vec{v_3} & - \end{array}\right] \left[\begin{array}{cccc} | \\ \vec{R_{y2}} \\ | \end{array}\right]$$

Assume $s_1 > s_2 > s_3$

$$\sum_{i=1}^{N} (\vec{R_{x1}} \cdot \vec{x_i}) (\vec{R_{y1}} \cdot \vec{y_i})$$

Maximizing Dot Product: Full Rotation Matrix

$$R_x USV^T R_y^T$$

Assume $s_1 > s_2 > s_3$

► Final answer for optimal rotations: $R_x = U^T$, $R^y = V^T$ (Carefully working with transposes)

Maximizing Dot Product: Full Rotation Matrix

▶ Final answer for optimal rotations: $R_x = U^T$, $R^y = V^T$

What if I want to just rotate Y and keep X fixed? What should R_Y be?

Maximizing Dot Product: Full Rotation Matrix

▶ Final answer for optimal rotations: $R_x = U^T$, $R^y = V^T$

What if I want to just rotate Y and keep X fixed? What should R_Y be?

$$R_y = UV^T$$

This is just SVD of XY^T without S!

Enforcing Right Handedness

Check if $\vec{u_1} \times \vec{u_2} = \vec{u_3}$. If not, switch the sign of $\vec{u_3}$. This subtracts from the function we're trying to maximize, but it does the minimal damage since $s_3 < s_2 < s_1$

Rotation to Align Points: Algebra

$$\sum_{i=1}^{N} ||R\vec{x_i} - \vec{y_i}||_2^2$$

How is this the same thing as maximizing sum of dot products?

$$||R\vec{x} - \vec{y}||^2 = (R\vec{x} - \vec{y}) \cdot (R\vec{x} - \vec{y})$$

Rotation to Align Points: Algebra

$$\sum_{i=1}^{N} ||R\vec{x_i} - \vec{y_i}||_2^2$$

How is this the same thing as maximizing sum of dot products?

$$||R\vec{x} - \vec{y}||^2 = (R\vec{x} - \vec{y}) \cdot (R\vec{x} - \vec{y})$$

$$(R\vec{x} - \vec{y}) \cdot (R\vec{x} - \vec{y}) = R\vec{x} \cdot R\vec{x} + \vec{y} \cdot \vec{y} - 2R\vec{x} \cdot \vec{y}$$

Rotation to Align Points: Algebra

$$\sum_{i=1}^{N} ||R\vec{x_i} - \vec{y_i}||_2^2$$

How is this the same thing as maximizing sum of dot products?

$$||R\vec{x} - \vec{y}||^2 = (R\vec{x} - \vec{y}) \cdot (R\vec{x} - \vec{y})$$

$$(R\vec{x} - \vec{y}) \cdot (R\vec{x} - \vec{y}) = R\vec{x} \cdot R\vec{x} + \vec{y} \cdot \vec{y} - 2R\vec{x} \cdot \vec{y}$$

$$(R\vec{x} - \vec{y}) \cdot (R\vec{x} - \vec{y}) = ||R\vec{x}||^2 + ||\vec{y}||^2 - 2R\vec{x} \cdot \vec{y}$$

Procrustes Application: Moving Head Alignment

VIDEO DEMO

Procrustes Application: Average Faces

Average Spaniards

Procrustes Application: Average Faces

Average Spaniards

Table of Contents

- > Procrustes SVD Derivation
- ► ICP

- Iterative Closest Points

Goal: Automatically align two point sets

Points Iteration 0

First mean center, now how to find correspondences automatically?

Mean-Center Iteration 0

Use Nearest Neighbor, then do procrustes with those correspondences

Correspondences Iteration 0

Use Nearest Neighbor, then do procrustes with those correspondences

Procrustes Iteration 0

4□▶4♬▶4≣▶ ■ **9**90

Continue, interactive...

ICP Computation

Steps in ICP Loop

- 1. Find nearest neighbors
- 2. Procrustes rotation matrix
- 3. Rotate Y Points, go back to step 1

For N points in X and Y, what is time complexity of each step?

ICP Examples / Pitfalls

Video Examples

Final Projects

Choices

- Equidecomposing polygon meshes into each other in 3D, with SLERP animation
- 2. Ghissi Alterpiece: Real Time Rendering Effects for NC Museum of Art
- 3. Nasher Muesum Brummer Statue Heads Speech Transfer
- 4. MOCAP Data Animation in Browser / Skinning / 3D Lemur Tracking(?)
- 5. 3D Face Verification

OR

6. Individual project with approval

