Package 'holiglm'

December 20, 2024

Sype Package
Citle Holistic Generalized Linear Models
Version 1.0.1
Description Holistic generalized linear models (HGLMs) extend generalized linear models (GLMs) by enabling the possibility to add further constraints to the model. The 'holiglm' package simplifies estimating HGLMs using convex optimization. Additional information about the package can be found in the reference manual, the 'README' and the accompanying paper <doi:10.18637 jss.v108.i07="">.</doi:10.18637>
Depends R (>= 3.5.0), ROI.plugin.ecos
mports slam, checkmate, MASS, SuppDists, ROI (>= 0.3-0)
Encoding UTF-8
Suggests ROI.plugin.scs, ROI.plugin.clarabel, tinytest (>= 1.0.0), parallel, knitr, rmarkdown, bookdown, DiagrammeR
cicense GPL-3
'ignetteBuilder knitr
RoxygenNote 7.3.1
NeedsCompilation no
Author Benjamin Schwendinger [aut, cre], Florian Schwendinger [aut], Laura Vana [aut]
Maintainer Benjamin Schwendinger <benjaminschwe@gmail.com></benjaminschwe@gmail.com>
Repository CRAN
Date/Publication 2024-12-20 09:20:02 UTC
Contents
holigIm-package active_coefficients agg_binomial as.OP.hgIm_model bike

2 holigIm-package

8 9 10 10 13 14
9 10 10 13 14
10 10 13 14
10 13 14
13 14
14
1.5
15
16
17
18
19
20
21
22
23
24
24
25
26
26
28

holiglm-package

Holistic Generalized Linear Models Package

Description

The holistic generalized linear models package simplifies estimating generalized linear models under constraints. The constraints can be used to,

- bound the domains of specific covariates,
- impose linear constraints on the covariates,
- induce sparsity via best subset selection,
- impose sparsity on groups of variables,
- restrict the pairwise correlation between the selected coefficients,
- impose sign coherence constraints on selected covariates and
- force all predictors within a group either to be selected or not.

This sophisticated constraints are internally implemented via conic optimization. However, the package is designed such that the user, is not required to be familiar with conic optimization but is only required to have basic R knowledge.

holigIm-package 3

Author(s)

- Benjamin Schwendinger (Maintainer <benjaminschwe@gmail.com>)
- Florian Schwendinger
- · Laura Vana

References

Holistic regression

Schwendinger, B., Schwendinger, F., & Vana, L. (2024). Holistic Generalized Linear Models. doi: 10.18637/jss.v108.i07.

Bertsimas, D., & King, A. (2016). OR Forum-An Algorithmic Approach to Linear Regression Operations Research 64(1):2-16. doi: 10.1287/opre.2015.1436

Bertsimas, D., & Li, M. L. (2020). Scalable Holistic Linear Regression. Operations Research Letters 48 (3): 203–8. doi: 10.1016/j.orl.2020.02.008.

Constrained regression

McDonald, J. W., & Diamond, I. D. (1990). On the Fitting of Generalized Linear Models with Nonnegativity Parameter Constraints. Biometrics, 46 (1): 201–206. doi: 10.2307/2531643

Slawski, M., & Hein, M. (2013). Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization. Electronic Journal of Statistics, 7: 3004-3056. doi: 10.1214/13EJS868

Carrizosa, E., Olivares-Nadal, A. V., & Ramírez-Cobo, P. (2020). Integer Constraints for Enhancing Interpretability in Linear Regression. SORT. Statistics and Operations Research Transactions, 44: 67-98. doi: 10.2436/20.8080.02.95.

Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems. Society for Industrial and Applied Mathematics. Society for Industrial and Applied Mathematics. doi: 10.1137/1.9781611971217

Generalized Linear Models

McCullagh, P., & Nelder, J. A. (2019). Generalized Linear Models (2nd ed.) Routledge. doi: 10.1201/9780203753736.

Conic Optimization

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization (1st ed.) Cambridge University Press. https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf. doi: 10.1017/cbo9780511804441

Theußl, S., Schwendinger, F., & Hornik, K. (2020). ROI: An Extensible R Optimization Infrastructure. Journal of Statistical Software 94 (15): 1–64. doi: 10.18637/jss.v094.i15.

See Also

hglm, holiglm

4 agg_binomial

Description

The function returns a logical vector which is TRUE for all active (i.e., non-zero) coefficients in the fitted model and FALSE otherwise.

Usage

```
active_coefficients(object, ...)
acoef(object, ...)
```

Arguments

object an object inheriting from "hglm" or "hglm.fit" from which the active coefficients obtained from.

... optional arguments currently ignored.

Value

a logical vector giving the active coefficients.

Examples

```
dat <- rhglm(100, c(1, 2, -3, 4, 5, -6)) fit <- hglm(y \sim ., constraints = k_max(3), data = dat) active_coefficients(fit)
```

 ${\tt agg_binomial}$

Aggregate Binomial Data

Description

A simple function for aggregating binomial data, from a form where y contains only \emptyset and 1 and X could contain duplicated rows, into a format where y is the matrix of counted successes and failures and X does not contain duplicates. If X contains factor variables, the model matrix corresponding to X will be returned.

Usage

```
agg_binomial(formula, data, as_list = TRUE)
```

as.OP.hglm_model 5

Arguments

formula a formula object defining the aggregation. data a data. frame to be aggregated. as_list

a logical giving if the return value should be a list. If FALSE the return value is

a data.frame.

Value

A list (or data.frame) containing aggregated binomial data with counted successes and failures.

Examples

```
set.seed(12345)
data \leftarrow data.frame(y = rbinom(50, 1, 0.7),
                   a = factor(sample(c(1, 2), 50, TRUE)),
                   b = factor(sample(c(1, 2, 3), 50, TRUE)))
agg_binomial(y ~ ., data)
```

as.OP.hglm_model

Convert to OP

Description

Convert an object of class "hglm_model" into a ROI optimization problem (OP).

Usage

```
## S3 method for class 'hglm_model'
as.OP(x)
```

Arguments

an object inheriting from "hglm_model". Χ

Details

This function is mainly for internal use and advanced users which want of alter the model object or the underlying optimization problem. This function converts the model object created by hglm_model into a conic optimization problem solveable via ROI_solve.

Value

A ROI object of class "OP".

6 bike

Examples

```
dat <- rhglm(100, c(1, 2, -3, 4, 5, -6))
# Use hglm with option dry_run
model <- hglm(y ~ ., data = dat, dry_run = TRUE)
op <- as.OP(model)
# User hglm_model
x <- model.matrix(y ~ ., data = dat)
model <- hglm_model(x, dat[["y"]])
op <- as.OP(model)</pre>
```

bike

Bike Sharing Dataset

Description

This data set contains the daily count of rented bikes from the the Capital Bikeshare system in Washington D.C., USA, for the years 2011 and 2012. The dataset is already prepared (correct types + factor encodings) for model building.

Format

A data frame of dimension 731 x 12 containing daily data related to related bikes.

dteday a date vector giving the date of the rental.

season a factor with levels 'spring', 'summer', 'fall' and 'winter'.

year a factor with levels '2011' and '2012'.

mnth a factor with levels 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov' and 'Dec'.

holiday a boolean vector indicating if the day is a holiday.

weathersit a factor with levels 'good', 'neutral', 'bad' and 'very bad' giving the weather situation.

temp a numeric vector containing max-normalized temperature in Celsius with 41 as maximum.

atemp a numeric vector containing max-normalized feeling temperature in Celsius with 50 as maximum.

hum a numeric vector containing max-normalized humidity with 100 as maximum.

windspeed a numeric vector containing max-normalized windspeed with 67 as maximum.

cnt an integer vector containing counts of rented bikes.

Source

```
https://archive.ics.uci.edu/
```

References

Fanaee-T, Hadi. (2013). Bike Sharing Dataset. UCI Machine Learning Repository.

coef.hglm 7

Examples

```
data("bike")
hglm(formula = cnt ~ ., data=bike, family="poisson")
```

coef.hglm

Extract Model Coefficients

Description

The function returns different types of coefficients for a model.

Usage

```
## S3 method for class 'hglm'
coef(object, type = c("unscaled", "scaled", "selected"), ...)
```

Arguments

object an object inheriting from "hglm" or "hglm.fit" from which the coefficients are obtained from.
 type Default value is "unscaled". Allowed values are "unscaled", "scaled" and "selected".
 optional arguments currently ignored.

Details

The types "scaled" and "unscaled" refer to the coefficients of the scaled/unscaled optimization problem. Type "selected" refers to the active coefficients in the model active_coefficients.

Value

a vector containing the unscaled, scaled or selected coefficients.

```
dat <- rhglm(1000, 1:3)
fit <- hglm(y ~ ., data = dat)
coef(fit)
coef(fit, type="scaled")
coef(fit, type="selected")</pre>
```

group_equal

COV	mat	rıx

Construct Covariance matrix

Description

Utility function for constructing covariance matrices based on a simple triplet format (simple_triplet_matrix).

Usage

```
cov_matrix(k, i, j, v)
```

Arguments

k	an integer giving the number of rows and columns of the constructed covariance matrix.
i	an integer vector giving the row indices.
j	an integer vector giving the row indices.
V	a numeric vector giving the corresponding values.

Value

A dense matrix of covariances.

See Also

Other simulation: rhglm()

Examples

```
cov_matrix(5, c(1, 2), c(2, 3), c(0.8, 0.9))
```

group_equal

Group Equal Constraint

Description

Forces all covariates in the specified group to have the same coefficient.

Usage

```
group_equal(vars)
```

Arguments

vars

a vector specifying the indices or names of the covariates to which the constraint shall be applied.

group_inout 9

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

See Also

```
Other Constraint-Constructors: group_inout(), group_sparsity(), include(), k_max(), linear(), lower(), pairwise_sign_coherence(), rho_max(), sign_coherence(), upper()
```

Examples

```
dat <- rhglm(100, c(1, 2, 3, 4, 5, 6)) constraints <- group_equal(vars = c("x1", "x3")) hglm(y ~ ., constraints = constraints, data = dat)
```

group_inout

In-Out Constraint

Description

Forces coefficients of the covariates in the specified group to be either all zero or all nonzero.

Usage

```
group_inout(vars)
```

Arguments

vars

a vector specifying the indices or names of the covariates to which the constraint shall be applied.

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

See Also

```
Other Constraint-Constructors: group_equal(), group_sparsity(), include(), k_max(), linear(), lower(), pairwise_sign_coherence(), rho_max(), sign_coherence(), upper()
```

```
dat <- rhglm(100, c(1, 2, 3, 4, 5, 6)) constraints <- group_inout(c("x1", "x2", "x3")) hglm(y \sim ., constraints = constraints, data = dat)
```

10 hglm

grou	o spa	arsity

Group Sparsity Constraint

Description

Constraint which restricts the number of covariates selected from a specific group.

Usage

```
group\_sparsity(vars, k = 1L)
```

Arguments

vars a vector specifying the indices or names of the covariates to which the group

constraint shall be applied.

k an integer giving the maximum number of covariates to be included in the model

from the specified group.

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

See Also

```
Other Constraint-Constructors: group_equal(), group_inout(), include(), k_max(), linear(), lower(), pairwise_sign_coherence(), rho_max(), sign_coherence(), upper()
```

Examples

```
dat <- rhglm(100, c(1, 2, 0, 4, 5, 0)) constraints <- group_sparsity(c("x1", "x2", "x5"), 1L) hglm(y \sim ., constraints = constraints, data = dat)
```

hglm

Fitting Holistic Generalized Linear Models

Description

Fit a generalized linear model under holistic constraints.

hglm 11

Usage

```
hglm(
  formula,
  family = gaussian(),
  data,
  constraints = NULL,
 weights = NULL,
 scaler = c("auto", "center_standardization", "center_minmax", "standardization",
    "minmax", "off"),
  scale_response = NULL,
 big_m = 100,
  solver = "auto",
  control = list(),
  dry_run = FALSE,
  approx = FALSE,
 object_size = c("normal", "big"),
)
holiglm(
  formula,
  family = gaussian(),
  data,
  constraints = NULL,
 weights = NULL,
 scaler = c("auto", "center_standardization", "center_minmax", "standardization",
    "minmax", "off"),
  scale_response = NULL,
 big_m = 100,
  solver = "auto",
  control = list(),
  dry_run = FALSE,
  approx = FALSE,
  object_size = c("normal", "big"),
)
hglm_seq(
  k_seq,
  formula,
  family = gaussian(),
  data,
  constraints = NULL,
 weights = NULL,
 scaler = c("auto", "center_standardization", "center_minmax", "standardization",
    "minmax", "off"),
  big_m = 100,
  solver = "auto",
```

12 hglm

```
control = list(),
  object_size = c("normal", "big"),
  parallel = FALSE
)
```

Arguments

formula an object of class "formula" giving the symbolic description of the model to be

fitted.

family a description of the error distribution and link function to be used in the model.

data a data. frame or matrix giving the data for the estimation.

constraints a list of 'HGLM' constraints stored in a list of class "lohglmc". Use NULL to

turn off constraints.

weights an optional vector of 'prior weights' to be used for the estimation.

scaler a character string giving the name of the scaling function (default is "auto") to

be employed for the covariates. This typically does not need to be changed.

scale_response a boolean whether the response shall be standardized or not. Can only be used

with family gaussian(). Default is TRUE for family gaussian() and FALSE for

other families.

big_m an upper bound for the coefficients, needed for the big-M constraint. Required

to inherit from "hglmc". Currently constraints created by group_sparsity(), group_inout(), include() and group_equal() use the big-M value specified

here.

solver a character string giving the name of the solver to be used for the estimation.

control a list of control parameters passed to ROI_solve.

 $\mbox{dry_run} \qquad \mbox{a logical; if TRUE the model is not fit but only constructed}.$

approx a logical; if TRUE uses linear approximation of log-likelihood.

object_size a character string giving the object size, allowed values are "normal" and "big".

If "big" is choosen, also the **ROI** solution and the "hglm_model" object are

returned.

... For 'approx': further arguments passed to or from other methods.

k_seq an integer vector giving the values of k_max for which the model should be

estimated.

parallel whether estimation of sequence shall be parallelized

Details

In the case of binding linear constraints the standard errors are corrected, more information about the correction can be found in Schwendinger, Schwendinger and Vana (2024) doi: 10.18637/jss.v108.i07.

Value

An object of class "hglm" inheriting from "glm".

hglmc 13

References

Schwendinger B., Schwendinger F., Vana L. (2024). Holistic Generalized Linear Models doi: 10.18637/jss.v108.i07

Bertsimas, D., & King, A. (2016). OR Forum-An Algorithmic Approach to Linear Regression Operations Research 64(1):2-16. doi: 10.1287/opre.2015.1436

McCullagh, P., & Nelder, J. A. (2019). Generalized Linear Models (2nd ed.) Routledge. doi: 10.1201/9780203753736.

Dobson, A. J., & Barnett, A. G. (2018). An Introduction to Generalized Linear Models (4th ed.) Chapman and Hall/CRC. doi: 10.1201/9781315182780

Chares, Robert. (2009). "Cones and Interior-Point Algorithms for Structured Convex Optimization involving Powers and Exponentials."

Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95 (3): 759–771. Oxford University Press. doi: 10.1093/biomet/asn034

Zhu, J., Wen, C., Zhu, J., Zhang, H., & Wang, X. (2020). A polynomial algorithm for best-subset selection problem. Proceedings of the National Academy of Sciences, 117 (52): 33117–33123. doi: 10.1073/pnas.2014241117

Examples

```
dat <- rhglm(100, c(1, 2, -3, 4, 5, -6)) hglm(y ~ ., constraints = NULL, data = dat) # estimation without constraints hglm(y ~ ., constraints = NULL, data = dat) # estimation with an upper bound on the number of coefficients to be selected hglm(y ~ ., constraints = k_max(3), data = dat) # estimation without intercept hglm(y ~ . - 1, data = dat)
```

hglmc

Generic Functions for hglmc Objects

Description

Generic functions for holistic 'GLM' constraints.

Usage

```
## S3 method for class 'hglmc'
c(...)
is.hglmc(x)
```

Arguments

```
... multiple objects inheriting from "hglmc" to be combined.
x an R object.
```

14 hglm_fit

Details

The 'HGLM' constraints are all of class "hglmc" and can be combined with the typical combine function c(). To verify that an object is a 'HGLM' constraint, the function is.hglmc can be used.

Value

The combine function c() returns an object of class "hglmc". The is.hglmc function returns TRUE if the object inherits from class "hglmc" otherwise FALSE.

Examples

```
constraints <- c(k_max(7), pairwise_sign_coherence())
is.hglmc(constraints)</pre>
```

hglm_fit

Fitting Holistic Generalized Linear Models

Description

Fit a generalized linear model under constraints.

Usage

```
hglm_fit(
  model,
  constraints = NULL,
  big_m,
  solver = "auto",
  control = list(),
  dry_run = FALSE,
  approx = FALSE,
  object_size = c("normal", "big")
)
```

Arguments

model	a 'HGLM' model (object of class "hglm_model").
constraints	a list of 'HGLM' constraints stored in a list of class "lohglmc".
big_m	an upper bound for the coefficients, needed for the big-M constraint. Required to inherit from "hglmc". Currently constraints created by group_sparsity(), group_inout(), include() and group_equal() use the big-M set here.
solver	a character string giving the name of the solver to be used for the estimation.
control	a list of control parameters passed to ROI_solve.
dry_run	a logical; if TRUE the model is not fit but only constructed.
approx	a logical; if TRUE uses linear approximation of log-likelihood.

hglm_model 15

```
object_size
```

a character string giving the object size, allowed values are "normal" and "big". If "big" is choosen, also the **ROI** solution and the "hglm_model" object are returned.

Value

```
an object of class "hglm.fit" inheriting from "glm".
```

Examples

```
dat <- rhglm(100, c(1, 2, -3, 4, 5, -6))
x <- model.matrix(y ~ ., data = dat)
model <- hglm_model(x, y = dat[["y"]])
fit <- hglm_fit(model, constraints = k_max(3))</pre>
```

hglm_model

Create a HGLM Model

Description

Create a HGLM model object.

Usage

```
hglm_model(
    x,
    y,
    family = gaussian(),
    weights = NULL,
    frame = NULL,
    solver = "auto",
    approx = FALSE
)
```

Arguments

Х	a numeric matrix giving the design matrix.
У	a vector giving the response variables.
family	a description of the error distribution and link function to be used in the model.
weights	an optional vector of 'prior weights' to be used for the estimation.
frame	an optional model frame object.
solver	a character string giving the name of the solver to be used for the estimation.
approx	a logical; if TRUE uses linear approximation of log-likelihood.

16 include

Details

No standardization prior to fitting the model takes place. If a x or y standardization is wanted, the user has to do this beforehand.

Value

An object of class "hglm_model".

Examples

```
dat <- rhglm(100, c(1, 2, -3, 4, 5, -6))
x <- model.matrix(y ~ ., data = dat)
hglm_model(x, y = dat[["y"]])</pre>
```

include

Include Constraint

Description

Ensures that all covariates specified by vars coefficients are active.

Usage

```
include(vars)
```

Arguments

vars

an integer vector specifying the indices for covariates which have to be in the model.

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

See Also

```
Other Constraint-Constructors: group_equal(), group_inout(), group_sparsity(), k_max(), linear(), lower(), pairwise_sign_coherence(), rho_max(), sign_coherence(), upper()
```

```
dat <- rhglm(100, c(1, 2, 3, 4, 5, 6)) constraints <- include(vars = c("x1", "x3")) hglm(y ~ ., constraints = constraints, data = dat)
```

k_max 17

k_max

Constraint on the Number of Covariates

Description

Constraint on the maximum number of covariates to be used in the model.

Usage

```
k_{max}(k)
```

Arguments

k

an positive integer with $k \leq k_{max}$ giving the maximum number of covariates to be used in the model.

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

Note

- If an intercept is used, the upper bound on $k_{max} + 1$ is given by number of columns of the model matrix.
- If no intercept is used, the upper bound on k_{max} is given by number of columns of the model matrix.

See Also

```
Other Constraint-Constructors: group_equal(), group_inout(), group_sparsity(), include(), linear(), lower(), pairwise_sign_coherence(), rho_max(), sign_coherence(), upper()
```

```
dat <- rhglm(100, c(1, 2, -3, 4, 5, -6))
hglm(y \sim ., constraints = k_max(3), data = dat)
```

18 linear

-					
- 1	1	n	ρ	а	r

Linear Constraint

Description

Linear Constraint

Usage

```
linear(L, dir, rhs, on_big_m = FALSE)
```

Arguments

a named vector or matrix defining the linear constraints on the coefficients of the covariates.

dir a character vector giving the direction of the linear constraints.

rhs a numeric vector giving the right hand side of the linear constraint.

on_big_m a logical indicating if the constraint should be imposed on the big-M related binary variables.

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

References

Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems. Society for Industrial and Applied Mathematics. Society for Industrial and Applied Mathematics. doi: 10.1137/1.9781611971217

See Also

```
Other Constraint-Constructors: group_equal(), group_inout(), group_sparsity(), include(), k_max(), lower(), pairwise_sign_coherence(), rho_max(), sign_coherence(), upper()
```

```
# vector constraint
beta <- c(1, -2, 3)
dat <- rhglm(100, beta)
constraints <- c(linear(c(x1 = 2, x2 = 1), "==", 0), rho_max(1))
hglm(y ~ ., data = dat, constraints = constraints)

# matrix constraint
dat <- rhglm(100, c(1, -2, 3, 4, 5, 6, 7))
mat <- diag(2)
colnames(mat) <- c("x1", "x5")
constraints <- c(linear(mat, c("==", "=="), c(-1, 3)), rho_max(1))</pre>
```

lower 19

```
hglm(y ~ ., data = dat, constraints = constraints)
```

lower

Lower Bound

Description

Set a lower bound on the coefficients of specific covariates.

Usage

```
lower(kvars)
```

Arguments

kvars

a named vector giving the lower bounds. The names should correspond to the names of the covariates in the model matrix.

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

References

McDonald, J. W., & Diamond, I. D. (1990). On the Fitting of Generalized Linear Models with Nonnegativity Parameter Constraints. Biometrics, 46 (1): 201–206. doi: 10.2307/2531643

Slawski, M., & Hein, M. (2013). Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization. Electronic Journal of Statistics, 7: 3004-3056. doi: 10.1214/13EJS868

See Also

```
Other Constraint-Constructors: group_equal(), group_inout(), group_sparsity(), include(), k_max(), linear(), pairwise_sign_coherence(), rho_max(), sign_coherence(), upper()
```

```
set.seed(0) dat <- rhglm(100, c(1, 2, -3, 4, 5, -6)) constraints <- lower(c(x2 = 0, x5 = 1)) hglm(y \sim ., constraints = constraints, data = dat) # non-negative least squares dat <- rhglm(100, c(1, 2, -3, 4, 5, -6)) constraints <- lower(setNames(double(5), paste0("x", 1:5))) hglm(y \sim ., constraints = constraints, data = dat)
```

```
pairwise_sign_coherence
```

Pairwise Sign Coherence

Description

Ensures that coefficients of covariates which exhibit strong pairwise correlation have a coherent sign.

Usage

Arguments

rho	a value in the range $[0,1]$ specifying the maximum allowed collinearity between pairs of covariates.
exclude	a character vector giving the names of the covariates to be excluded from the constraint (default is "(Intercept)").
big_m	a double giving the big-M parameter.
eps	a double giving the epsilon for the equal sign constraint. Since most numerical solvers can only handle constraints up to some epsilon, e.g., the constraint $Ax \geq b$ is typically transformed to $ Ax-b \geq 0$. By providing an eps > 0 and changing the constraint to $ Ax-b \geq 0$ eps we can ensure $ Ax-b > 0$.
use	an optional character string giving a method for computing covariances in the presence of missing values. The parameter is passed to cor, therefore see cor for more information.
method	a character string indicating which correlation coefficient is to be computed. The parameter is passed to cor, therefore see cor for more information.

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

References

Carrizosa, E., Olivares-Nadal, A. V., & Ramírez-Cobo, P. (2020). Integer Constraints for Enhancing Interpretability in Linear Regression. SORT. Statistics and Operations Research Transactions, 44: 67-98. doi: 10.2436/20.8080.02.95.

predict.hglm 21

See Also

```
Other Constraint-Constructors: group_equal(), group_inout(), group_sparsity(), include(), k_max(), linear(), lower(), rho_max(), sign_coherence(), upper()
```

Examples

```
constraints <- c(k_max(7), pairwise_sign_coherence())</pre>
```

predict.hglm

Predict Method for HGLM Fits

Description

Obtains predictions from a fitted holistic generalized linear model object.

Usage

```
## S3 method for class 'hglm'
predict(object, newdata = NULL, type = c("link", "response"), ...)
```

Arguments

object a fitted object of class inheriting from "hglm".

newdata an optional data frame containing new observations for which predictions are to be made. If ommitted, the fitted linear predictors are used.

type the type of predictions to be made. Possible values are "link" (default) or "response". If "link", the predictions are in the link scale; if "response", the predictions are transformed to the response scale.

... optional arguments currently ignored.

Value

A vector of predicted values. If type = "link", the predicted values are in the link scale; if type = "response", the predicted values are in the response scale.

```
dat <- rhglm(100, c(1, 2, -3, 4, 5, -6)) fit <- hglm(y \sim ., constraints = k_max(3), data = dat) pred <- predict(fit) pred2 <- predict(fit, newdata=dat)
```

22 rhglm

rhglm

Random HGLM Data

Description

A simple data generator for testing and example purposes.

Usage

```
rhglm(
    n,
    beta,
    sigma = diag(length(beta) - 1L),
    family = gaussian(),
    truncate_mu = FALSE,
    as_list = FALSE,
    ...
)
```

Arguments

n	the number of observations to be created.
beta	a numeric vector giving the magnitude of the coefficients (the first element is assumed to be the intercept).
sigma	a positive-definite symmetric matrix giving the covariance structure of the covariates (passed to MASS::mvrnorm).
family	the family of the inverse link.
truncate_mu	a logical giving if mu should be truncated if necessary.
as_list	a logical (default is FALSE), if TRUE a list is returned otherwise a ${\tt data.frame}$ is returned.
	additional optional parameters. The arguments are passed to the random variables generating function of the response.

Value

A data.frame (or list) containing the generated data.

See Also

```
Other simulation: cov_matrix()
```

```
rhglm(10, 1:5)
rhglm(10, 1:5, family = binomial())
```

rho_max 23

rho_max

Constraint on the Pairwise Correlation of Covariates

Description

Constraint which ensures that only one covariate out of a pair of covariates with a correlation of at least rho will be included in the final model.

Usage

Arguments

rho	a value in the range [0,1] specifying, the maximum allowed collinearity between pairs of covariates.
exclude	variables to be excluded form the pairwise correlation constraints (default is "(Intercept)").
use	an optional character string giving a method for computing co-variances in the presence of missing values. The parameter is passed to cor, therefore see cor for more information.
method	a character string indicating which correlation coefficient is to be computed. See cor for more information.

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

See Also

```
Other Constraint-Constructors: group_equal(), group_inout(), group_sparsity(), include(), k_max(), linear(), lower(), pairwise_sign_coherence(), sign_coherence(), upper()
```

```
beta <- 1:3

Sigma <- cov_matrix(k = length(beta) - 1L, 1, 2, 0.9)

dat <- rhglm(100, beta, sigma = Sigma)

hglm(y \sim ., constraints = rho_max(0.8), data = dat)
```

24 sign_coherence

```
scale_constraint_matrix
```

Scale Linear Constraint Matrix

Description

Auxiliary function to scale the linear constraint matrices to be consistent with the scaled model matrix.

Usage

```
scale\_constraint\_matrix(L, xs, ys = 1)
```

Arguments

L a matrix giving the linear constraints.

xs a vector of length ncol(L) giving the scaling of the model matrix.

ys a double giving the scaling of the response.

sign_coherence

Sign Coherence Constraint

Description

Constraint which ensures that the coefficients of the specified covariates have a coherent sign.

Usage

```
sign_coherence(vars, big_m = 100, eps = 1e-06)
```

Arguments

vars a character vector giving the names of the covariates the constraint should be

applied to.

big_m a double giving the big-M parameter.

eps a double giving the epsilon used to ensure that the constraint holds.

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

References

Carrizosa, E., Olivares-Nadal, A. V., & Ramírez-Cobo, P. (2020). Integer Constraints for Enhancing Interpretability in Linear Regression. SORT. Statistics and Operations Research Transactions, 44: 67-98. doi: 10.2436/20.8080.02.95.

solution.hglm 25

See Also

```
Other Constraint-Constructors: group_equal(), group_inout(), group_sparsity(), include(), k_max(), linear(), lower(), pairwise_sign_coherence(), rho_max(), upper()
```

Examples

```
dat <- rhglm(100, c(1, -2, 3, 4, 5, 6)) constraints <- sign_coherence(c("x1", "x3")) hglm(y \sim ., constraints = constraints, data = dat)
```

solution.hglm

Extract Solution

Description

The solution of the underlying optimization problem, can be accessed via the method 'solution'.

Usage

```
## S3 method for class 'hglm'
solution(
    x,
    type = c("primal", "dual", "aux", "psd", "msg", "objval", "status", "status_code"),
    force = FALSE,
    ...
)
```

Arguments

x an object of type 'hglm'.

type a character giving the name of the solution to be extracted.

force a logical to control the return value in the case that the status code is equal to

1 (i.e. something went wrong). By default force is FALSE and a solution is only provided if the status code is equal to 0 (i.e. success). If force is TRUE the status code is ignored and solutions are returned also where the solver signaled

an issue.

... further arguments passed to or from other methods.

Value

the extracted solution.

26 upper

update_objective

Update the Model Object

Description

Update the Model Object

Usage

```
update_objective(model, op)
```

Arguments

model an object inheriting from "hglm_model".

op an OP giving the new objective.

upper

Upper Bound

Description

Set a upper bound on the coefficient of specific covariates.

Usage

```
upper(kvars)
```

Arguments

kvars

a named vector giving the upper bounds. The names should correspond to the names of the covariates in the model matrix.

Value

A holistic generalized model constraint, object inheriting from class "hglmc".

References

McDonald, J. W., & Diamond, I. D. (1990). On the Fitting of Generalized Linear Models with Nonnegativity Parameter Constraints. Biometrics, 46 (1): 201–206. doi: 10.2307/2531643

Slawski, M., & Hein, M. (2013). Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization. Electronic Journal of Statistics, 7: 3004-3056. doi: 10.1214/13EJS868

upper 27

See Also

```
Other Constraint-Constructors: group_equal(), group_inout(), group_sparsity(), include(), k_max(), linear(), lower(), pairwise_sign_coherence(), rho_max(), sign_coherence()
```

```
dat <- rhglm(100, c(1, 2, -3, 4, 5, -6)) constraints <- upper(c(x1 = 0, x4 = 1)) hglm(y \sim ., constraints = constraints, data = dat)
```

Index

* Constraint-Constructors	holiglm-package, 2
<pre>group_equal, 8</pre>	
<pre>group_inout,9</pre>	include, 9, 10, 16, 17–19, 21, 23, 25, 27
<pre>group_sparsity, 10</pre>	is.hglmc(hglmc), 13
include, 16	
k_max, 17	k_max, 9, 10, 16, 17, 18, 19, 21, 23, 25, 27
linear, 18	1: 0.10.16.17.10.10.21.22.25.27
lower, 19	linear, 9, 10, 16, 17, 18, 19, 21, 23, 25, 27
pairwise_sign_coherence, 20	lower, 9, 10, 16–18, 19, 21, 23, 25, 27
rho_max, 23	OP, 5, 26
sign_coherence, 24	UP, 3, 20
upper, 26	pairwise_sign_coherence, 9, 10, 16-19, 20,
* datasets	23, 25, 27
bike, 6	predict.hglm, 21
* simulation	predict.rigini, 21
cov_matrix, 8	rhglm, 8, 22
rhglm, 22	rho_max, 9, 10, 16–19, 21, 23, 25, 27
	ROI_solve, 5
<pre>acoef (active_coefficients), 4</pre>	
active_coefficients, 4, 7	<pre>scale_constraint_matrix, 24</pre>
agg_binomial, 4	sign_coherence, 9, 10, 16–19, 21, 23, 24, 27
as.OP.hglm_model, 5	simple_triplet_matrix, 8
	solution.hglm, 25
bike, 6	3
	update_objective, 26
c.hglmc(hglmc), 13	upper, 9, 10, 16–19, 21, 23, 25, 26
coef.hglm,7	
cor, 20, 23	
cov_matrix, 8, 22	
group equal 9 0 10 16 10 21 22 25 27	
group_equal, 8, 9, 10, 16–19, 21, 23, 25, 27	
group_inout, 9, 9, 10, 16–19, 21, 23, 25, 27	
group_sparsity, 9, 10, 16–19, 21, 23, 25, 27	
hglm, 3, 10	
hglm_fit, 14	
hglm_model, 5, 15	
hglm_seq (hglm), 10	
hglmc, 13	
holiglm, 3	
holiglm (hglm), 10	