CS 215 Homework 2

Omkar Shirpure 22B0910 Krish Rakholiya 22B0927

1. Question 1:

		1.3
		Date
	Answer 1	
	, , , , , , , , , , , , , , , , , , ,	. ,
	Given, n Independent Identically distrib	outed RV
		«
	and $Y_1 = max(x_1, x_2, -x_n)$	
	$Y_2 = \min(X_1, X_2, -X_n)$	-
A	180,	
,	cdF of X = F(x) and PdF of X = I	F'(X)
Codf) Fy (x) = P (max among the x < x)
	$= P(x_1 < x, x_2 < x, x_3 < x_{1})$	(n(x)
	as all xis are Independant.	
	$= P(x_1) P(x_2) - P(x_n < x)$)*
	$=F_{X_1}(x)F_{X_2}(x)F_{X_n}(x)$)
(Pd	f) $F_{Y_1}(x) = \frac{1}{4} F_{Y_1}(x) = F_{x_1}(x) F_{x_2}(x) - F_{x_2}(x)$	(x)
	$\frac{dx}{x} = \frac{x \int_{x_1}^{x_1} f(x)}{f_{x_1}(x)}$	+ F'x2(X)
	If all Fx: (x) one Equal then,	
	$cdF \Rightarrow (F_{x}(x))^{m} = F_{y_{x}}(x)$	
	pdF=> FY(x)=nFx(x) (Fx(x))	
		Page No.

	Date
	For Y2,
	cdf Fy(x)= P(min. among Xi <x)< td=""></x)<>
	= 1-P(min. among xi >x)
	=1-P(alm all Xis 7x)
	=1-P(X17/X/X27/X, Xn7/X)
	as all X; are Independent.
	$= 1 - P(X_1 \times X) P(X_1 \times X) - P(X_1 \times X)$
	$= 1 - \left[1 - P(X_1 \leq x)\right] \left[1 - P(X_2 \leq x)\right]$
_	[1-P(Xn <x)]< td=""></x)]<>
	$= 1 - (1 - F_{x_1}(x))(1 - F_{x_2}(x)) - (1 - F_{x_n}(x))$
	Pdf F'y2(x) = + (1-Fx, (x))(1-Fxn(x)) x
	$\left[\frac{F_{\chi_{1}}'(x)}{1-F_{\chi_{1}}'(x)} + \frac{F_{\chi_{2}}'(x)}{1-F_{\chi_{2}}'(x)} + \frac{F_{\chi_{n}}'(x)}{1-F_{\chi_{n}}'(x)}\right]$
	If all fx, (x) are Equal & = fx(x)
	Then,
	$cdF = 1 - (1 - F_X(X))^{\eta} = F_{\gamma_2}(x)$
	$PdF = F'_{\chi_2}(x) = (1 - f_{\chi}(x))^{m-1} F'_{\chi}(x)$
	Page No.

2. Question 2:

	Date
Answer 2	
Given - x belongs to a G	tausian Mixt. mode
×~ S P: NCui	(GIVIII)
[N	(Mi, oi2) represent
210 -	Gaussian dist. with
i-l m	ean lli 8 var. 012
· So,	
	$\sum_{i=1}^{K} \frac{k}{\sum_{i=1}^{N} (u_i, \sigma_i^2) d\tau}$
K , (, α
= > 2000	fetx N(Ui, oi2) da
,, v v,	
· MGF of a Go	msian > ox(t)
	= e ut + 02
\Rightarrow M(t) = $\sum_{k} P_{i} e^{ikt}$	+ 0,2t2 2
=======================================	
So, $E(x) \Rightarrow d M_{x}(t) \Big _{t=0}$	$= \sum_{i=1}^{K} \frac{xit+6^2t^2}{2}$
at t=0	$\hat{i} = 1$
k .	2
=> E(x) = EPilli	
C = 1	Page No.

 $Var(x) = \frac{d^2 MgF_X(t)}{dt^2} - \left(\frac{d M_X(t)}{dt}\right)$ t = 0 $\Rightarrow Var(x) = \sum_{i} P_{i}(u_{i}^{i} + \sigma_{i}^{2}) - \left(\sum_{i} P_{i}u_{i}\right)^{2}$ given, z = EPixi & xi~ N(ui, oi2) Gaussian with mean $u_i^2 \approx var \sigma_i^2$. $\star E(z) = \sum_{i=1}^{n} P_i E(x_i)$ $E(x_i - u_i)^2$ → E(Z) = E PEUL $\neq Var(z) = E[(z-E(z))^2]$ $= E\left[\left(\frac{\xi_{PiXi} - \xi_{PiXi}}{\xi_{PiXi}}\right)^2\right]$ = E[(Exp-Eup) 1 = #2 E ((En(xi-Li))2) $= \mathbb{E}\left\{ \sum_{i=1}^{K} \left(\sum_{i=1}^{K} (x_i - u_i)^2 p_i^2 + \sum_{i=1}^{K} \sum_{j=1}^{K} (x_j - u_j)^2 p_i^2 + \sum_{j=1}^{K} \sum_{j=1}^{K} (x_j - u_j)^2 p_j^2 + \sum_{i=1}^{K} \sum_{j=1}^{K} (x_j - u_j)^2 p_i^2 + \sum_{i=1}^{K} \sum_{j=1}^{K} \sum_{j=1}^{K} (x_j - u_j)^2 p_i^2 + \sum_{j=1}^{K} \sum_{j$ Tas all Xi's are Independent RV, (i=1, ..., k) $E[(x_i-u_i)(x_j-u_j)] = E(x_i-u_i)E(x_j-u_j)$ = 0Page No.

3. Question 3:

	Date
	Answer 3
	Given, a Random variable x , & Ret Y be a $RV = X - E(X)$ Y = X - IL
	30, using RV $(Y+b)^2$ and a constant $(7+b)^2$ (>0).
	By Morrkovs Ineq.
	$P((1/+b)^{2} > (b+\tau)^{2}) \leq \frac{E((1/+b)^{2})}{(b+\tau)^{2}}$ $= \frac{E(1/+b)^{2}}{(b+\tau)^{2}}$ $= \frac{E(1/+b)^{2}}{(b+\tau)^{2}}$
	$E(2bY) = 2bE(Y) = 2bE(x-u) = 2b(0) = 0$ $E(b^2) = b^2 \{const.\}$
	$= E[(x-u)^2] + 0 + b^2$ $= (b+\tau)^2$
	$= \frac{\sigma^2 + b^2}{(b+\tau)^2}, \sigma = var. of *$
	$\int \frac{dt}{(b+\tau)^2} = f \rightarrow \frac{df}{db} = \frac{b}{(b+\tau)^2} = \frac{2(\sigma^2 + b^2)}{(b+\tau)^3} = 0$ $\Rightarrow b = \frac{\sigma^2}{\tau}$
	f takes max. value at $b=\frac{\sigma^2}{\tau}$ (min. at $b\to\infty$)
-	Page No.

		Ī	Date
So, P((y+b)2>(b+2)2)< 02+62	$\leq \ell_n$	1/ax
,	$=0^{2}+($	7	
	10-2	+ 0T)2	
Ţ	= 02 (5-2+72)
	$= \frac{1}{\tau^2} \left(\sigma \right)$ $= \frac{\sigma^2}{\tau^2 + \sigma^2}$	-2+72)2
	$= \frac{\sigma^2}{\tau^2 + \sigma^2}$		
e, 'a tank			
So, P((Y+b) ² >,(b+c)	$(2)^2$ $(2)^2$	for	all bi
So, b=0,			
P(Y2.>, T2)	0 ² 7 ² +0 ⁻²		
P(CX-U)2 > T2) 5 0° 2	2	
for 770,	C 10		
P(XY2 >, T2)	= p(Y 7,4)) + P(Y.	(-t) (02 63+7
finally, P(Y>t), f	アイメーモリカ	0,80	,
P(77t) < P(Y27, T2)	< 0.5	
		D 2+	-T2
			Page No.

	Date
	55.0
801	
> P(X-11 > T)	F 0 2 A
/ (02472
we can also welte	that
$P(Y \leqslant -\tau) \leqslant P($	$ \Upsilon^2 \times \Upsilon^2) < \sigma^2 $ $ \sigma^2 + \Upsilon^2 $
P(X-11 <-2	$)$ $\stackrel{6}{\checkmark}$ $\stackrel{2}{\checkmark}$ $\stackrel{1}{\checkmark}$ $\stackrel{1}{\checkmark}$ here $\stackrel{7}{\checkmark}$
Substituting T	oy -7,
0/2 11 5-6-5	$\frac{(0)}{(0)} < \frac{(0)^2}{(0)^2} > \frac{(-1)^2}{(0)^2} > \frac{(-1)^2}{(0)^2} = \frac{(-1)^2}{(0)^2} $
[(x-u %-c-)	$\frac{1}{5^2+(-7)^2} = \frac{1}{5^2+(-7)^2}$
P(X-457)	€ 5 2 × 2
1- P(x-u > 7	c) < 0 ²
	o 2+ 2
> P(X-11 7, T)	-2
> 10x-20 1/1 C)	1 1 - 0 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 0
	\sim
	,
1 No. 1	
	Page No.

4. Question 4:

			Date
A	A		Date
Answer-	4		-
For to	o, and Ran	dom varial	ple X,
P((X > X) = P(tx>tx)	
		etx 7, et n	
&s the Parame	new random ter etx >0	voviable etx	70 and
So, By M	larkov's Inequa	lity,	
P(X≥x)	= P(etx zetx	$(\frac{E(e)}{e^{t}})$	tx)
=	» P(x7, x) <	e-tx px	$\{\phi_{x}(t) = E(e)\}$
For t<	0		
P(X <:	$x) = P(e^{tx} $	etx)	
	y Markovs gr	nea as Eaulies	4.
	$\frac{1}{2}$	ot X) / F	(etx)
P(X &	$x) = P(e^{tX} > $		
	$\Rightarrow P(X \leq X)$	$\leq e^{-tx} \phi_X$	(t)
			Page No.

Date NOW. Given X=Sum of n Independent Bernoulli RV $X = X_1 + X_2 + \dots + X_n$ & $E(x_i) = p_i$ & $u = \sum_{i=1}^{n} p_i$ In eq. (1), as t >0 and replacing x with (1+8) u, we get, $\frac{p(x>(1+\delta)u)}{e^{t(1+\delta)u}} = \frac{\phi_{x}(t)}{e^{t(1+\delta)u}}$ ---(3) as $X = X_1 + X_2 + \dots + X_n$ where $X_1, X_2, \dots X_n$ are all Independent. So, $\Phi_{x}(t) = \prod_{i=1}^{n} \Phi_{x_{i}}(t) = \prod_{i=1}^{n} E(e^{t \times i})$ For any Bernoulli RV, Xi, MGF = 0 (t) = (1-Pi+Piet) = 1+ Pi(et-1) as $1+x < e^{x}$, replacing $x \Rightarrow P(e^{t}-1)$. 1+ Pi(et-1) < epi(et-1) Page No.

				Date
Con	t. from eq.	(3) ,		4
P (X > (1+8)21	$\frac{e^{P_{1}(e^{t}-1)}}{e^{P_{1}(e^{t}-1)}}$ $= e^{(e^{t}-1)}$	$\Phi_{x,(t)}$	$\chi(t) = \phi_{\chi_{\eta}}(t)$
	, A	et(1+8)	u t(1+	8)11
		« ep, let-1	elet-1) Pate	-1) Pn(e-1)
		= 0 Cet-1)CP1+P2+	$\rho_n)$
		0	EC1+8)21	
		= e (et-	1)21	ray ? Epi=n]
		etc1+	8)21	izl = M
Thus	proved,	8)U) < e	(et-1)	1
	P(X >CTE	$\frac{8)u}{e^{t}}$	(1+8) JL	t.
	as above	is true for	all £,	
S	0, p(x >/	1+8) N) <	reucet-1)	
Jofi	nd min.,	1+8) 21) < () - t(1+8)21	min
	e ulet	dt (1	let-(1+б)и)=0
	=	$e^{t} = 1 + \delta$ $t = ln(1+\delta)$)	
So				
PC	, (>(1+8)µ)	Bound is, N(8+1- Se N(1+2) ln(1	$\frac{1}{(1+\epsilon)} = \frac{e^{\lambda t}}{(1+\epsilon)^2}$	8 u(1+8)
		0	- (1+8)	Page No.

5. Question 5:

• To run the code, just run the file named as q5.m in MatLab

5.1 plot a:

5.2 plot b:

5.3 plot c:

6. Question 6:

- To run the code, run the file *q6.m*
 - to get data of *original* image, keep the *img2* as the path of *original* image.
 - to get data of the *negative* image, change the *img2* to 255-img1.

in MatLab. Change the path of the image according to its location

- In the below figure, the blue lines represent the data extracted from the positive i.e., *T1.jpg* and orange represents data of *T2.jpg*.
- In the first section, we calculate the linear dependence between the two images based on the correlation coefficient. As tx gets closer to 0, we observe that there is less linear dependency but more non-linear dependence since the QMI has a substantial value.
- Contrarily, in the second section, we observe that when the two images align, the correlation coefficient approaches peak, indicating a significant linear dependence between the two. Additionally, the QMI is rising as well, indicating some nonlinear connection between the two as well.

Data of the negative image

Data of the actual image

7. Question 7:

		Date
Answer 7		
The mome	nt generating fi	unc. of a vien by,
φ(t) = (P,et+ P2e+2+ P3	ets+ Pretryn
where	Pi are success promutinomial pr	
The (ij)th	term of covar, s	matrix be Cij
= Ci	= E(XIXI) - E	(Xi)E(Xi)
		derived by just.
E(x;)	$= \frac{\partial}{\partial t_i^2} \phi(t) \cdot \left t_k \right $	= 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
	$= \frac{\partial}{\partial t}, \left(t \right)$	
Cimilarly		
E(XIX	$j = \frac{\partial}{\partial t_i} \left(\frac{\partial}{\partial t_j} \right) \phi (0)$	$\left(\begin{array}{c} t \\ t_{k} = 0 \end{array}\right)$
So, finally,		v
CCXi	(x_i) or $(x_i) = \begin{cases} \delta^2 \phi \\ \delta t_i \delta \end{cases}$	$\frac{\partial (t)}{\partial t} = \frac{\partial \phi(t)}{\partial t} \frac{\partial \phi(t)}{\partial t}$
	yield us Cij. Cij	

n-1	Date
E(xi) = Pn (Piet+ ++ + Pketk) n-1	Pietr) t=0
= n Pi (P1+-+ PK) = n Pi	
Similarly,	
$E(X_j) = n P_j$	
And $E(XiXi) = \frac{\partial}{\partial ti} (m CPie^{ti} - + Pke^{ti})$	(Pjeti)) t=0
$= nP_{j} \left[e^{t_{j}} \right] (n-1) (P_{i}e^{t_{j}})$	
= n P; (n-1) Pi (P1++Px	n-2
$=(n^2-n)PiPj$	
So, $Cij = E(x_i x_j) - E(x_i)E(x_j)$	
$= (m^2 - n) PiPj - (m Pi)$	(n P;)
$A \Rightarrow Cij = -nP_iP_i$	()
of i=j, Cii=-nPi ²	I have are the element of our
	covar matrix.
	,
•	
	Page No.