AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A compound of formula I:

US Serial Number: 10/500 476

$$(R^{2})_{p}$$

$$(CH_{2})_{p}$$

$$(CH_{2})_{q}$$

$$(CH_{2})_{q}$$

$$(CH_{2})_{q}$$

$$(I)$$

or a pharmaceutically acceptable salt, solvate or stereoisomer thereof, wherein:

L and L1 are both hydrogen or combine together to form an oxo group;

E is: O, S, NR^{1b}, SO, SO₂, CR⁹, or C(R⁹)₂, provided that when E is CR⁹, or C(R⁹)₂, R⁹-may combine with an adjacent R¹ to form wherein R⁹ combines with and adjacent R¹ to form a 5, 6, or 7-member saturated or unsaturated carbocycle:

wherein the Z ring has 0, or 1 double bond;

R1 is selected from the group consisting of:

hydrogen,

C1-C8 alkyl,

Ca-Cs-alkenyl-

Ca-C4-haloalkyl

(D)C2-C2-cycloalkyl,

(D)phenyl,

arvl.

C(O)OC1-C8-alkyl,

wherein phenyl, aryl, alkenyl, and eycloalkyl groups are optionally substituted with hydroxy, halo, C_1 – C_3 alkyl, C_1 – C_4 alkoxy, C_2 – C_4 haloalkyl, and (D) C_3 – C_7 eycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

(D)phenyl,

(D)aryl,

(D)heteroarvl;

(D)C(O)C₁-C₄-alkyl,

(D)C(O)OC₁-C₄-alkyl,

(CH₂)_mN(R⁸)₂,

(CH2)mNR8C(O)C1-C4-alkyl,

(CH2)mNR8SO2(C1-C4-alkyl);

(CH2),,OR8;

(CH2)mSC1-C4-alkyl,

 $(CH_2)_mSO(C_4-C_4-alkyl)$,

 $(CH_2)_mSO_2(C_1-C_4$ -alkyl), or

(CH2)mSO2-N(R8)2;

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, and aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of perfluoroC₄- C_4 -alkoxyr, halo, hydroxy, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, and C_1 - C_4 haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom;

R1b is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

SO₂(C₁-C₈ alkyl),

(D)C(O)C₁-C₄ alkyl,

 $(\mathsf{D})\mathsf{C}(\mathsf{O})\mathsf{OC}_1\text{-}\mathsf{C}_4 \text{ alkyl},$

(D)CON(R8)2, or

SO₂(D)phenyl, wherein the phenyl group is optionally substituted with one to fivesubstituent selected from halo, and C₁-C₈ alkyl:

R² is: hydrogen, or

C₁-C₈ alkyl,

CONHC1-C4-alkyl,

(D)phenyl, oxo, or

(D)C₃-C₂-cycloalkyl, provided that when R² is oxo, R² is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

R3 is: phenyl, aryl or thienyl;

wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of: cyano, perfluoroC₁-C₄ alkoxy, halo, C₁-C₈ alkyl, (D)C₃-C₇ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl;

R4 is: hydrogen,

C₁-C₈ alkyl,

CH₂(CH₂)_mC₁-C₄-alkoxy,

C(O)C₁-C₄ alkyl or

 ${}^{C(O)OC_1\text{--}C_4\text{-alkyl}};$

halo,

 C_1 - C_8 -alkyl,

C2-C8-alkenyl,

 C_4 - C_8 -alkoxy,

 C_4 - C_4 -haloalkyl,

(D)C3-C7-eyeloalkyl,

(D)aryl,

(D)heteroaryl;

(D)C(O)C₁-C₄-alkyl,

 $\substack{\text{(D)C(O)OC}_{\underline{1}}\text{-C}_{\underline{4}}\text{-alkyl},}$

(D)C(O)heteroaryl,

```
(D)N(R8)2;
```

(D)NR8C(O)C1-C4-alkyl.

(D)NR⁸SO₂(C₁-C₄-alkyl),

(D)OC₁-C₄-alkyl,

(D)OC(O)C₁-C₄-alkyl,

(D)heterocyclic,

(D)SC₁-C₄-alkyl, or

(D)SO2N(R8)2:

wherein C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_2 - C_2 -eyeloalkyl, phenyl, aryl, heterocyclic, and heteroaryl are optionally substituted with one to five substituents independently selected from R^8 ; and provided that when R is halo or hydroxy it is not substituted on a carbon adjacent to a heteroatom;

each R8 is independently:

hydrogen,

oxo.

C1-C2 alkyl,

(D)C2-C2-eyeloalkyl,

phenyl,

arvl or

heteroarvl.

wherein C_1 - C_8 alkyl, C_3 - C_7 -eyeloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to three substituents selected from the group consisting of C_4 - C_8 alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are not substituted on a carbon adjacent—to a heteroatom;

R9 is independently:

hydrogen,

(C₁-C₈) alkyl,

C2-C8 alkenyl,

C(O)C1-C8 alkyl, or

C2-C8-alkynyl,

phenyl,

aryl, or

heteroaryl;

R¹⁰ is: hydrogen,

```
(C1-C8) alkyl,
         C2-C2-alkenvl.
         C(O)C1-C8 alkyl, or
         C2-C2-alkynyl,
         phenyl,
         arvl, or
         heteroaryl;
R11 is independently:
         hydrogen, (C1-C8) alkyl, (D)phenyl, or aryl;
R12 is independently:
         C1-C8 alkyl,
         phenyl,
         aryl;
         heteroaryl,
         (CH<sub>2</sub>)<sub>n</sub>N(R<sup>8</sup>)<sub>2</sub>,
         (CH2) NR8C(O)C1-C4-alkyl.
         (CH2),NR8C(O)OC1-C4-alkyl.
         (CH2)a(OCH2CH2)aN(R8)2;
         (CH2) (OCH2CH2) NR 8C(O)C1-C4-alkyl.
         (CH<sub>2</sub>)<sub>n</sub>(OCH<sub>2</sub>CH<sub>2</sub>)<sub>n</sub>NR<sup>8</sup>SO<sub>2</sub>(C<sub>1</sub>-C<sub>4</sub>-alkyl), or
         (CH<sub>2</sub>)<sub>n</sub>[O]<sub>G</sub>(C<sub>1</sub>-C<sub>8</sub>)alkylheterocyclie; and wherein for R<sup>12</sup>, n is 2-8 when R<sup>12</sup> is
         substituted on a carbon atom adjacent to a heteroatom;
R<sup>+3</sup> is independently:
```

hydrogen,
C₁-C₂-alkyl,
(D)C₂-C₇-cycloalkyl,
(D)phenyl,

```
C(O)C<sub>1</sub>-C<sub>8</sub> alkyl,
SO<sub>2</sub>C<sub>1</sub>-C<sub>8</sub> alkyl, or
SO<sub>2</sub>-phenyl:
```

D is: a bond or C1-C4 alkyl;

g is: 0, 1, or 2; y is: 1-or 2 and; m is: 1-4; n is: 0-8; p is: 0-4; and e is: 0-1.

- 2. (Canceled)
- 3. (Original) The compound according to Claim 1 wherein the Z ring is saturated.
- 4. (Canceled)
- (Currently Amended) The compound according to Claim 3 wherein E is O, S, NR^{1b}, or SO₂, SO, or CHR^a.
 - 6. (Canceled)
 - 7. (Canceled)
- 8. (Currently Amended) The compound according to Claim 1 wherein for the Z ring R^1 is hydrogen, C_1 - C_8 -alkeyl, C_2 - C_8 -alkeyl, C_2 - C_4 -haloalkyl, $(D)C_2$ - C_2 -eyeloalkyl, 2-fluorobenzyl, (D)-phenyl, (CH_2) - $(CO)C_1$ - C_4 -alkyl, (CH_2) - (CH_2) -(C
 - 9. (Canceled)
- (Currently Amended) The compound according to Claim 1 wherein R^{1a} is C₁-C₈ alkyl, C₁-C₈ alkenyl, C₂-C₄ haloalkyl, (D)C₃-C₇ cycloalkyl, <u>or</u> (D)phenyl, (D)COR⁸,
 (D)N(R⁸1₂-or (D)NR⁸COR⁸.
- 11. (Previously Presented) The compound according to Claim 10 wherein R^{1a} is isopropyl, isobutyl, cyclohexylmethyl, phenyl, 2-fluorobenzyl or benzyl.
- 12. (Currently Amended) The compound according to Claim 1 wherein E is selected from the group consisting of: -NCH₃, -NCH(CH₃)₂, S, CR⁹, C(R⁹)₂, -NC(O)CH₃, -NCH₂CH₃, NSO₂CH₃-and O.

13. (Currently Amended) The compound according to Claim 12 wherein E is-CR⁹-or C(R⁹)₂, wherein each-one R⁹ is independently-selected from hydrogen and C₁-C₄ alkyl, and wherein each-the other R⁹ may-combines with an adjacent R¹ to form a 5 or 6-member carbocycle.

- 14. (Currently Amended) The compound according to Claim 1 wherein \mathbb{R}^2 is hydrogen, \mathbb{C}_4 - \mathbb{C}_8 -alkyl, \mathbb{C}_4 - \mathbb{C}_4 -haloalkyl, (D) \mathbb{C}_3 - \mathbb{C}_7 -eyeloalkyl, (D)phenyl, or (D) $\mathbb{C}(\mathbb{O})$ \mathbb{C}_1 - \mathbb{C}_8 alkyl,
- 15. (Currently Amended) The compound of Claim 1 wherein R³ is phenyl optionally being para-substituted with chloro, bromo, benzyloxy, methoxy or methyl.
- 16. (Previously Presented) The compound of Claim 15 wherein R³ is phenyl parasubstituted with chloro.
- (Previously Presented) The compound of Claim 1 wherein R¹⁰ is hydrogen, C₁-C₄ alkyl, or C(O)C₁-C₄ alkyl.
- 18. (Previously Presented) The compound of Claim 17 wherein R¹⁰ is hydrogen at each occurrence.
 - 19. (Canceled)
- 20. (Previously Presented) The compound according to Claim I wherein "T" is a moiety of the formula:

21. (Previously Presented) The compound according to Claim 1 wherein "T" is a moiety selected from the group consisting of:

22. (Currently Amended) The compound of Claim 1 wherein T is a moiety of the formula:

wherein R is as described in Claim 1; and wherein the carbon atom marked * represents a chiral center.

23. (Previously Presented) The compound of Claim 1 wherein L and L¹ are each hydrogen; and T is a moiety of the formula:

- 24. (Canceled)
- 25. (Canceled)
- 26. (Canceled)
- 27. (Previously Presented) A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutical carrier.
- 28. (Withdrawn) The pharmaceutical composition of Claim 27 further comprising a second active ingredient selected from the group consisting of an insulin sensitizer, insulin mimetic, sulfonylurea, alpha-glucosidase inhibitor, HMG-CoA reductase inhibitor, sequestrant cholesterol lowering agent, beta 3 adrenergic receptor agonist, neuropeptide Y antagonist, phosphodiester V inhibitor, and an alpha2 adrenergic receptor antagonist.
 - 29. (Currently Amended) A compound selected from the group consisting of:

 $N-(1-(4-Chloro-benzyl)-2-\{4-[4-(2-fluoro-benzyl)-1-methyl-piperidin-4-yl]-piperazin-1-yl\}-2-oxo-ethyl)-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,$

 $N-\{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1-isopropyl-piperidin-4-yl)-piperazin-1-yl]-2-oxoethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,\\$

US Serial Number: 10/500,476

N-{1-(4-Chloro-benzyl)-2-[4-(4-cyclohexylmethyl-1-methyl-piperidin-4-yl)-piperazin-1-yl]-2-oxo-ethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1-methyl-piperidin-4-yl)-piperazin-1-yl]-2-oxoethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1-methanesulfonyl-piperidin-4-yl)-piperazin-1-yl]-2-oxo-ethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

US Serial Number: 10/500,476

 $\label{lem:n-lemma-lem$

N-[2-[4-(1-Acetyl-4-isobutyl-piperidin-4-yl)-piperazin-1-yl]-1-(4-chloro-benzyl)-2-oxo-ethyl]-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1,1-dioxo-hexahydro-116-thiopyran-4-yl)-piperazin-1-yl]-2-oxo-ethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

 $N-\{1-(4-Chloro-benzyl)-2-[4-(3-isobutyl-1-methyl-piperidin-3-yl)-piperazin-1-yl]-2-oxoethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,\\$

 $N-\{1-(4-Chloro-benzyl)-2-[4-(3-is obutyl-1-methyl-piperidin-3-yl)-piperazin-1-yl]-2-oxoethyl\}-2-(2,3-dihydro-1H-is oindol-1-yl)-acetamide,\\$

-Page 14 of 29-

 $N-\{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-tetrahydro-pyran-4-yl)-piperazin-1-yl]-2-oxoethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide, and$

1,2,3,4 Tetrahydro-isoquinoline 3 carboxylic acid {1 (4 chloro-benzyl) 2 [4 (1-diethylaminomethyl-cyclopentyl) piperazin 1 yl] 2 oxo-ethyl) amide, and its pharmaceutically acceptable salt, solvate, prodrug and enantiomer thereof.

30. (Currently Amended) A process for preparing a compound of formula I:

$$\mathbb{Q}^{N} \xrightarrow{(\operatorname{CH}_2)_y} \mathbb{R}^3 \xrightarrow{\operatorname{L}_1 \operatorname{L}^1} (\operatorname{CH}_2)_{\operatorname{n}^{-1}}$$

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:

-CLL'-(CH2)n-T is:

US Serial Number: 10/500,476

 $R^{10} \text{ is a CBz or Boc protecting group, hydrogen, } (C_1-C_8) \text{ alkyl, } C_3-C_8 \text{ alkenyl, } C(O)C_1-C_8 \text{ alkyl, } \underbrace{C_2-C_8 \text{ alkynyl, phenyl, aryl, or heteroaryl;}}$

Q is represent the moiety:

$$(CH_2)$$
 E
 $(CH_2)_g$
 R_{1u}

L and L¹ are both hydrogen or combine together to form an oxo group;

E is: O, S, NR^{1b}, SO, SO₂, CR⁹, or $C(R^9)_2$, provided that when E is CR^9 , or $C(R^9)_2$, R^9 may wherein R^9 combines with an adjacent R^1 to form a 5, 6, or 7-member saturated or unsaturated carbocycle;

wherein the Z ring has 0, or 1 double bond;

R1 is selected from the group consisting of:

hydrogen, and

C1-C8 alkvl.

C2-C8-alkenvl.

C2-C4-haloalkvl

(D)C₂-C₂-eyeloalkyl,

(D)phenyl,

arvl.

C(O)OC1-C2-alkyl,

wherein phenyl, aryl, alkenyl, and cycloalkyl groups are optionally substituted with hydroxy, halo, C₁-C₈ alkyl, C₁-C₄ alkoxy, C₂-C₄ haloalkyl, and (D)C₂-C₇ eycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;

C1-C8 alkyl,

- (D)C3-C7 cycloalkyl,
- (D)phenyl,
- (D)aryl,
- (D)heteroaryl;
- $\stackrel{(D)C(O)C_{4}\text{-}C_{4}\text{-}alkyl,}{}$
- $(D)C(O)OC_1$ - C_4 -alkyl,

(CH₂)_mN(R⁸)₂,

(CH₂),,NR⁸C(O)C₁-C₄-alkyl,

(CH₂)_mNR⁸SO₂(C₁-C₄-alkyl),

(CH2), OR8-

(CH2)mSC1-C4-alkyl,

(CH2)mSO(C1-C4-alkyl),

(CH2)mSO2(C1-C4-alkyl), or

(CH₂)_mSO₂ N(R⁸)₂;

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of $\frac{1}{2}$ - $\frac{1}{2$

C₁-C₄ haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom:

R1b is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

SO₂(C₁-C₈ alkyl),

 $(\mathsf{D})\mathsf{C}(\mathsf{O})\mathsf{C}_1\text{-}\mathsf{C}_4 \text{ alkyl},$

 $(\mathsf{D})\mathsf{C}(\mathsf{O})\mathsf{OC}_1\text{-}\mathsf{C}_4 \text{ alkyl},$

(D)CON(R8)2, or

 $SO_2(D) phenyl, wherein the phenyl group is optionally substituted with one to five substituents selected from halo, and C_1-C_8 alkyl; } \label{eq:sol_phenyl}$

R² is: hydrogen, or

 C_1 - C_8 alkyl,

CONHC1-C4-alkyl,

(D)phenvl.

oxo, or

(D)C₂-C₇ cycloalkyl, provided that when R² is oxo, R² is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

US Serial Number: 10/500 476 Docket No : X-15476

R3 is: phenyl, aryl or thienyl;

wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of:

cyano, perfluoro C_1 - C_4 alkoxy, halo, C_1 - C_8 alkyl, (D) C_3 - C_7 cycloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl;

R4 is: hydrogen,

C1-C2 alkyl,

CH2(CH2)mC1-C4-alkoxy,

C(O)C1-C4-alkyl, or

C(O)OC1-C4-alkyl;

halo.

C1-C2-alkyl,

C2-Cg-alkenyl,

C1-C2-alkoxy.

C1-C1-haloalkyl.

(D)C3-C7-eyeloalkyl,

(D)aryl,

(D)heteroaryl;

(D)C(O)C₁-C₄-alkyl,

 $\substack{\text{(D)C(O)OC}_1\text{-C}_4\text{-alkyl},}$

(D)C(O)heteroaryl,

(D)N(R8)2:

(D)NR⁸C(O)C₁-C₄-alkyl,

 $(D)NR^8SO_2(C_1-C_4-alkyl),$

(D)OC₁-C₄-alkyl,

 $\substack{\text{(D)OC(O)C}_{4}\text{-C}_{4}\text{-alkyl},}$

(D)heterocyclic,

(D)SC₁-C₄-alkyl, or

```
(D)SO<sub>2</sub>N(R<sup>8</sup>)<sub>2</sub>;
```

wherein C_4 - C_8 alkyl, C_4 - C_8 alkoxy, C_3 - C_7 eyeloalkyl, phenyl, aryl, heteroeyelic; and heteroaryl are optionally-substituted with one to five substituents independently selected from \mathbb{R}^8 ; and provided that when \mathbb{R} is halo or hydroxy it is not substituted on a carbon adjacent to a heteroatom;

each R8 is independently:

hydrogen,

oxo,

C1-C2-alkyl,

(D)C2-C2-cycloalkyl,

phenyl,

aryl or

heteroaryl,

wherein C_1 - C_8 -alkyl, C_2 - C_7 -cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to three substituents selected from the group consisting of C_1 - C_8 alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are not substituted on a carbon adjacent to a heteroatom;

 R^9 is independently hydrogen, (C_1-C_8) alkyl, C_2-C_8 alkenyl, $C(O)C_1-C_8$ alkyl, or C_2-C_8 alkenyl, phenyl, aryl, or heteroaryl;

R 11 is independently:

 $hydrogen, (C_1\hbox{-} C_8) \ alkyl, (D) phenyl \ or \ aryl;$

D is: a bond or C₁-C₄ alkyl;

g is: 0, 1, or 2:

y is: 1-or 2;

m is: 1 4:

n is: 0-8:

p is: 0-4; and

q is: 0-1;

US Serial Number: 10/500,476 Docket No.: X-15476

comprising the steps of:

reacting a compound having a structural formula 1:

with CH2CH=C(O)ORa wherein Ra is hydrogen or C1-C8 alkyl and X is halo, in the presence of a catalyst and a base in a suitable organic solvent to give the compound of formula 2:

b) reductively aminating the compound of formula 2 in the presence of amine in an acidic condition to give a compound of formula 3:

$$(R)_p$$
 $(R)_p$
 $(R)_$

c) cyclizing the compound of formula 3 by Michael addition to give a compound of formula 4 or stereoisomers thereof:

d) coupling the compound of formula 4 or stereoisomers thereof wherein R^a is H, with a compound of formula 5:

$$R^{a}O$$

$$NHR^{4} .HC1$$
(5);

wherein Ra is C1-C8 alkyl, to give a compound of formula 6:

e) coupling the compound of formula 6 wherein \mathbb{R}^a is H, with a compound having a structural formula:

$$(R^2)_{p} \xrightarrow{\qquad \qquad \prod_{Q}} (CH_2)_{y}$$

to afford the compound of formula 1.

31. (Currently Amended) The process of Claim 30, wherein:

in Step a) is 2-boromobenzaldehyde2-bromobenzaldehyde.

- 32. (Previously Presented) The process of Claim 30, wherein CH₂CH=C(O)OR^a in Step (a) is methylacrylate.
- 33. (Previously Presented) The process of Claim 30, wherein the catalyst in Step (a) is selected from the group consisting of: Pd(Ph₃P)₂Cl₂, Pd(Ph₃P)₄Cl₂, Pd(Ph₃P)₄, Pd(Ph₃P)₂Cl₂/Cul, Pd(OAc)₂/Ph₃P-Bu₄NBr, Pd(Ph₃P)₄Cl₂/H₂ and Pd(OAc)₂/P(O-tol)₃; and wherein the base in Step (a) is N(R)₃ where R is hydrogen or C₁-C₈ alkyl.
- 34. (Previously Presented) The process of Claim 30, wherein the amine in Step (b) is selected from the group consisting of benzylamine, alpha-methylbenzylamine and BocNH₂.
- 35. (Original) The process of Claim 34, wherein Step (b) further comprises the step of reducing an intermediate imine compound in the presence of reducing agent selected from the group consisting of: NaCNBH₃, Na(OAc)₃BH, NaBH₄/H+ and a combination of Et₃SiH and TFA in CH₃CN or CH₂Cl₂.
- 36. (Currently Amended) The process of Claim 30, wherein the stereoisomer of compound of formula (4) in Step (c) is a compound of formula 7a:

37. (Currently Amended) The process of Claim 36, wherein the compound of formula 7a is prepared by asymmetric hydrogenation of a compound having structural formula,

- 38. (Previously Presented) The process of Claim 30, wherein the Michael addition in Step (c) is carried out under basic workup condition.
- 39. (Currently Amended) The process of Claim 30, wherein the Step (e) further comprises deprotecting or protecting of the compound of formula (4) at the nitrogen of the NR¹⁰ substituent.

40-43. (Canceled)

US Serial Number: 10/500,476 Docket No.: X-15476

44. (Currently Amended) A method of preventing or-treating obesity in a mammal comprising the administration of a therapeutically effective amount of the compound of formula I as recited in Claim 1.

45-47. (Canceled)