Jacob Bramley
Dejice Jacob
Andrei Lascu
Jeremy Singer
Laurence Tratt

Picking a CHERI: Security and Performance Considerations

16/06/23

ISMM'23

Motivation

Rank	ID	Name		KEV Count (CVEs)	Rank Change vs. 2021
1*	CWE-787	Out-of-bounds Write		62	0
2	CWE-79	Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')	45.97	2	0
3	CWE-89	Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')	22.11	7	+3 🔺
4	CWE-20	Improper Input Validation	20.63	20	0
5 🛨	CWE-125	Out-of-bounds Read	17.67	1	-2 V
6	CWE-78	Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')	17.53	32	-1 🔻
7 🜟	CWE-416	Use After Free	15.50	28	0
8	CWE-22	Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')	14.08	19	0
9	CWE-352	Cross-Site Request Forgery (CSRF)	11.53	1	0
10	CWE-434	Unrestricted Upload of File with Dangerous Type	9.56	6	0
11 ★	CWE-476	NULL Pointer Dereference		0	+4 🔺

Source: https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

Capability Hardware Enhanced RISC Instructions

Capability Hardware Enhanced RISC Instructions

Capability Hardware Enhanced RISC Instructions

CHERI allocators

jemalloc	dlmalloc	snmalloc	
xalloc	dmalloc	ElectricFence	
ptmalloc	libmalloc_simple		

CHERI allocators

jemalloc	dlmalloc	snmalloc		
xalloc	dmalloc	ElectricFence		
ptmalloc	libmalloc_simple			

√ snmalloc

x jemalloc

x libmalloc_simple

```
uint8_t *arr = malloc(256);
for (uint8_t i = 0; i < 256; i++)
    arr[i] = i;
arr = realloc(arr, 1);
arr = realloc(arr, 256);
for (uint8_t i = 0; i < 256; i++)
    assert(arr[i] == i);</pre>
```

```
11
```

```
uint8_t *arr = malloc(16);
assert(cheri_perms_get(arr) & CHERI_PERM_STORE));
arr = cheri_perms_clear(arr);
assert((cheri_perms_get(arr) & CHERI_PERM_STORE) == 0);
arr = realloc(arr, 16);
assert(cheri_perms_get(arr) & CHERI_PERM_STORE);
√ snmalloc
✓ libmalloc_simple
x jemalloc
```

```
uint8_t *arr = malloc(16);
assert(cheri_tag_get(arr));
arr = cheri_tag_clear(arr);
assert(!cheri_tag_get(arr));
arr = realloc(arr, 16);
assert(cheri_tag_get(arr));
```

```
✓ snmalloc✓ libmalloc_simple✓ jemalloc
```

Performance

Performance

Purecap

void *

Hybrid

void __capability__ *

Performance - machine

- quad-core Armv8-A 2.5GHz CPU
- 64KiB L1 data cache
- 64KiB L1 instruction cache
- 1MiB L2 unified cache per core
- two 1MiB L3 unified caches (shared between a pair of cores)
- 16GiB DDR4 RAM
- CheriBSD 22.12

Performance - benchmarks

Benchmark	Source	Characterisation
barnes binary-tree cfrac espresso glibc-simple mstress richards	boehm mimalloc mimalloc mimalloc	

Table 3. Our benchmark suite. We list the benchmark name, the source of the benchmark, and a brief characterisation of it as a workload. *Alloc* is short-hand for 'allocator intensive' (i.e. frequent allocation and deallocation).

Performance - jemalloc

<u>Performance</u>

Conclusions

- Security implementation versus expectations
- Performance tooling and space
- snmalloc as default?

Questions?

https://github.com/capablevms/cheri_misidioms