E-928

B. E. IInd Semester (Main & Re-Exam) Examination, May – 2019 **MATHEMATICS - II**

(New Course)

Branch: Civil, CSE, ECE, EE & ME

Time: Three Hours]

[Maximum Marks: 60

[Minimum Marks : 30

Attempt all questions in Section - A, any four questions from Section - B and three questions from Section - C.

SECTION - A

[Marks : $1 \times 10 = 10$

The particular integral of the differential equation $\frac{d^2y}{dx^2} + a^2y = \sin ax$ is:

(a)
$$-\frac{x}{2a}\cos ax$$
 (b) $\frac{x}{2a}\cos ax$ (c) $-\frac{ax}{2}\cos ax$ (d) $\frac{ax}{2}\cos ax$

(b)
$$\frac{x}{2a}\cos ax$$

(c)
$$-\frac{ax}{2}\cos ax$$

(d)
$$\frac{ax}{2}\cos ax$$

On putting $x = e^z$, the transformed differential equation of $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x$ is:

(a)
$$\frac{d^2y}{dz^2} - y = e^x$$
 (b) $\frac{d^2y}{dz^2} + y = e^z$ (c) $\frac{dy}{dz} + y = e^z$ (d) $\frac{dy}{dz} - y = e^{z^2}$

(b)
$$\frac{d^2y}{dz^2} + y = e^z$$

(c)
$$\frac{dy}{dz} + y = e^z$$

(d)
$$\frac{dy}{dz} - y = e^{z^2}$$

- 3. At x = 0 the differential equation $\frac{d^2y}{dx^2} + \frac{1}{r^2}\frac{dy}{dx} + \frac{1}{r^3}y = 0$ has:
 - Ordinary point (a)

- Regular singular point
- Irregular singular point (c)
- (d) None of these point
- Legendre differential equation is:

(a)
$$(1+x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + n(n+1)y = 0$$
 (b) $(1+x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$

(b)
$$(1+x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$$

(c)
$$(1-x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + n(n+1)y = 0$$

(c)
$$(1-x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + n(n+1)y = 0$$
 (d) $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$

E-928

- 5. Laplace transform of t^3e^{-3t} is:
- (a) $\frac{7}{(s+4)^2}$ (b) $\frac{s}{(s+3)^2}$ (c) $\frac{6}{(s+3)^4}$
- (d) $-\frac{2}{(s+6)^3}$

- **6.** Inverse Laplace Transform of $\frac{e^{-3s}}{s^3}$ is:
- $(t-3) u_3(t)$ (b) $(t-3)^2 u_3(t)$
- (c) $(t+3)^2 u_3(t)$
- (d) $(t+3) u_3(t)$
- 7. If $f(x) = x^2$ is expanded in a Fourier series in $(-\pi, \pi)$ then $b_n =$
- (b)

- (d)
- If the roots of the A.E. are m_1 , m_1 , m_2 then the C.F. is:
 - (a) $f_1(y+m_1x) + xf_2(y+m_1x) + f_3(y+m_1x)$
 - (b) $f_1(y-m_1x)+xf_2(y+m_1x)+f_3(y+m_1x)$
 - (c) $f_1(y+m_1x)+xf_2(y+m_1x)+f_3(y-m_1x)$
 - (d) $f_1(y+m_1x)+xf_2(y+m_1x)+f_3(y+m_1x)$
- Laplace equation in polar coordinate system is:

 - (a) $\frac{\partial^2 u}{\partial r^2} + \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta} = 0$ (b) $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial^2 u}{\partial r} = 0$
 - (c) $\frac{\partial^2 u}{\partial u^2} + \frac{1}{r} \frac{\partial u}{\partial r} = 0$

- (d) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x} + \frac{1}{x} \frac{\partial^2 u}{\partial x^2} = 0$
- In one dimensional heat flow, the condition on temperature is:
 - Temperature always increases
 - Temperature decreases as time increases (b)
 - Temperature always decreases (c)
 - (d) Temperature remains always nonzero at all times

SECTION - B

[Marks : $5 \times 4 = 20$

- 1. Solve the differential equation $(D^2 + 4D + 4)y = 8x^2e^{2x} \sin 2x$.
- Prove that $P_n(x)$ is the coefficient of z^n in the expansion of $(1-2xz+z^2)^{-\frac{1}{2}}$ in ascending powers of x.
- Draw the graph of the periodic function $f(t) = \begin{cases} t, & 0 < t < \pi \\ \pi t, & \pi < t < 2\pi \end{cases}$ and find its Laplace transform.

- 4. Solve $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x \partial y} = \sin x \cos 2y$.
- 5. Solve the partial differential equation by separation of variables method, $u_{xx} = u_y + 2u$ given that u(0, y) = 0 and $\frac{\partial}{\partial x} u(0, y) = 1 + e^{-3y}$.
- 6. Solve the following differential equation $x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x + \log x$.

[Marks : $10 \times 3 = 30$

- 1. Solve the following differential equation by using method of variation of parameter $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}.$
- 2. Solve in series the following differential equation $x \frac{d^2y}{dx^2} + \frac{dy}{dx} + x^2y = 0$.
- 3. Solve the following differential equation by using Laplace transform ty''+y'+4ty=0 given that y=3 and y'=0 when t=0.
- 4. Find the half rage Fourier sine series for f(x) given in the range (0, l) by the graph OPQ as shown in figure.

5. A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = k(lx - x^2)$ from which it is released at time t = 0. Find the displacement of any point on the string at a distance x from one end at time t.