Tìm kiếm trên đồ thị

Nội dung

- 1. Đặt đầu bài
- 2. Tìm kiếm theo chiều rộng (BFS)
- 3. Tìm kiếm theo chiều sâu (DFS)
- 4. So sánh DFS và BFS
- 5. Bài tập

Đặt đầu bài (1)

• Từ đỉnh **0** có thể đi đến được những đỉnh nào?

Đặt đầu bài (2)

• Tìm đường đi từ A đến B trong mê cung?

Nội dung

- 1. Đặt đầu bài
- 2. Tìm kiếm theo chiều rộng (BFS)
- 3. Tìm kiếm theo chiều sâu (DFS)
- 4. So sánh DFS và BFS
- 5. Bài tập

Tìm kiếm theo chiều rộng (1) (Breadth First Search – BFS)

- BFS(u): duyệt theo chiều rộng xuất phát từ đỉnh u
 - Thăm đỉnh *u*
 - Thăm các đỉnh kề với *u* mà chưa được thăm (gọi là các đỉnh mức 1)
 - Thăm các đỉnh kề với các đỉnh mức 1 mà chưa được thăm (gọi là các đỉnh mức 2)
 - Thăm các đỉnh kề với các đỉnh mức 2 mà chưa được thăm (gọi là các đỉnh mức 3)
 - . . .
- Sử dụng cấu trúc hàng đợi (queue) để cài đặt

Tìm kiếm theo chiều rộng (2)

```
BFS(u) {
 d(u) = 0;
  khởi tạo màu của các đỉnh là WHITE;
  khởi tạo hàng đợi Q;
 enqueue(Q,u);
 color(u) = GRAY;
 while(Q khác rỗng) {
    \nu = dequeue(Q);
    foreach(x kề với v) {
      if(color(x) = WHITE){
        d(x) = d(v) + 1;
        color(x) = GRAY;
        enqueue(Q,x);
```

Ví dụ quá trình thực hiện BFS (1)

Ví dụ quá trình thực hiện BFS (2)

BFS(1)

1

Ví dụ quá trình thực hiện BFS (3)

Ví dụ quá trình thực hiện BFS (4)

Ví dụ quá trình thực hiện BFS (5)

Bài tập

• Vẽ lại quá trình tìm kiếm theo chiều rộng với đồ thị sau

Vẽ lại quá trình tìm kiếm theo chiều rộng với đồ thị sau bắt đầu từ đỉnh 8

Nội dung

- 1. Đặt đầu bài
- 2. Tìm kiếm theo chiều rộng (BFS)
- 3. Tìm kiếm theo chiều sâu (DFS)
- 4. So sánh DFS và BFS
- 5. Bài tập

Tìm kiếm theo chiều sâu (Depth First Search – DFS)

- DFS(*u*): duyệt theo chiều sâu bắt đầu từ đỉnh *u*,
 - Nếu tồn tại đỉnh v trong danh sách kề của
 u mà chưa được thăm thì tiến hành thăm v
 và gọi DFS(v)
 - Nếu tất cả các đỉnh kề với u đã được thăm thì DFS quay lui lại đỉnh t mà từ đó thăm u để tiến hành thăm các đỉnh khác kề với t mà chưa được thăm. Lúc này đỉnh u được gọi là đã duyệt xong.

Tìm kiếm theo sâu

- Cấu trúc dữ liệu: với mỗi đỉnh v của đồ thị
 - p(v): là đỉnh từ đó thăm v
 - d(v): thời điểm v được thăm nhưng chưa duyệt xong
 - f(v): thời điểm đỉnh v đã được duyệt xong
 - color(v)
 - WHITE: chưa thăm
 - GRAY: đã được thăm nhưng chưa duyệt xong
 - BLACK: đã duyệt xong

Tìm kiếm theo chiều sâu

```
DFS(u) {
  t = t + 1;
 d(u) = t;
  color(u) = GRAY;
  foreach (đỉnh v kề với u) {
    if(color(v) = WHITE) {
      p(v) = u;
      DFS(v);
  t = t + 1;
 f(u) = t;
  color(u) = BLACK;
```

Ví dụ quá trình thực hiện DFS (1)

Đồ thị

	1	2	3	4	5	6	7
d							
f							
р	-	-	-	-	-	-	-
color	W	W	W	W	W	W	W

Cấu trúc dữ liệu

Ví dụ quá trình thực hiện DFS (2)

	1	2	3	4	5	6	7
d	1						
f							
р	-	-	-	-	-	-	-
color	G	W	W	W	W	W	W

Ví dụ quá trình thực hiện DFS (3)

	1	2	3	4	5	6	7
d	1		2				
f							
р	-	-	1	-	-	-	-
color	G	W	G	W	W	W	W

Ví dụ quá trình thực hiện DFS (4)

	1	2	3	4	5	6	7
d	1		2	3			
f							
р	-	-	1	3	-	-	-
color	G	W	G	G	W	W	W

Ví dụ quá trình thực hiện DFS (5)

	1	2	3	4	5	6	7
d	1		2	3	4		
f							
р	-	-	1	3	4	-	-
color	G	W	G	G	G	W	W

Ví dụ quá trình thực hiện DFS (5)

	1	2	3	4	5	6	7
d	1		2	3	4		
f					5		
р	-	-	1	3	4	-	-
color	G	W	G	G	В	W	W

Ví dụ quá trình thực hiện DFS (6)

DFS(1)

	1	2	3	4	5	6	7
d	1		2	3	4		6
f					5		
р	-	-	1	3	4	-	4
color	G	W	G	G	В	W	G

25

Ví dụ quá trình thực hiện DFS (7)

	1	2	3	4	5	6	7
d	1		2	3	4		6
f					5		7
р	-	-	1	3	4	-	4
color	G	W	G	G	В	W	В

Ví dụ quá trình thực hiện DFS (8)

DFS(1)

	1	2	3	4	5	6	7
d	1		2	3	4		6
f				8	5		7
р	-	-	1	3	4	-	4
color	G	W	G	В	В	W	В

27

Ví dụ quá trình thực hiện DFS (9)

DFS(1)

	1	2	3	4	5	6	7
d	1		2	3	4		6
f			9	8	5		7
р	-	-	1	3	4	-	4
color	G	W	В	В	В	W	В

28

Ví dụ quá trình thực hiện DFS (10)

	1	2	3	4	5	6	7
d	1		2	3	4	10	6
f			9	8	5		7
р	-	-	1	3	4	1	4
color	G	W	В	В	В	G	В

Ví dụ quá trình thực hiện DFS (11)

	1	2	3	4	5	6	7
d	1	11	2	3	4	10	6
f			9	8	5		7
р	-	6	1	3	4	1	4
color	G	G	В	В	В	G	В

Ví dụ quá trình thực hiện DFS (12)

	1	2	3	4	5	6	7
d	1	11	2	3	4	10	6
f		12	9	8	5		7
р	-	6	1	3	4	1	4
color	G	В	В	В	В	G	В

Ví dụ quá trình thực hiện DFS (13)

	1	2	3	4	5	6	7
d	1	11	2	3	4	10	6
f		12	9	8	5	13	7
р	-	6	1	3	4	1	4
color	G	В	В	В	В	В	В

32

Ví dụ quá trình thực hiện DFS (14)

	1	2	3	4	5	6	7
d	1	11	2	3	4	10	6
f	14	12	9	8	5	13	7
р	-	6	1	3	4	1	4
color	В	В	В	В	В	В	В

33

Tìm kiếm theo chiều sâu

- Kết quả DFS trên đồ thị sẽ cho 1, bao gồm các cây DFS
- Phân loại cạnh
 - Cạnh của cây (tree edge): (u, v) là cạnh của cây nếu v được thăm từ u
 - Cạnh ngược (back edge): (u, v) là cạnh ngược nếu v là tổ tiên của u trong cây DFS
 - Cạnh thuận (forward edge): (u, v) là cạnh thuận nếu u là tổ tiên của v trong cây DFS
 - Cạnh ngang (crossing edge): các cạnh còn lại

Tìm kiếm theo chiều sâu

- Phân loại cạnh
 - Cạnh của cây: (1, 6), (1, 3),
 (6, 2), (3, 4), (4, 5), (4, 7)
 - Cạnh ngược:
 - Cạnh thuận: (3, 7)
 - Cạnh ngang: (6, 3), (6, 4), (2, 4), (2,5)

Bài tập

• Vẽ lại quá trình tìm kiếm theo chiều sâu với đồ thị sau

Nội dung

- 1. Đặt đầu bài
- 2. Tìm kiếm theo chiều rộng (BFS)
- 3. Tìm kiếm theo chiều sâu (DFS)
- 4. So sánh DFS và BFS
- 5. Bài tập

So sánh: BFS và DFS (1)

So sánh: BFS và DFS (2)

BFS	DFS
Thường dùng cấu trúc dữ liệu Hàng đợi (Queue)	Thường dùng cấu trúc dữ liệu Ngăn xếp (Stack)
Hiệu quả khi đỉnh cần tìm gần với đỉnh xuất phát	Hiệu quả khi đỉnh cần tìm xa với đỉnh xuất phát
Duyệt trước tất cả các hàng xóm của đỉnh trước nên không phù hợp với các bài toán dạng ra quyết định trong game	Phù hợp với các bài toán dạng ra quyết định trong game
Độ phức tạp O(V + E)	Độ phức tạp O(V + E)
Thường dùng nhiều bộ nhớ hơn DFS	Thường dùng ít bộ nhớ hơn BFS
Không cần quay lui	Cần quay lui (backtracking)
Cây tìm kiếm thường rộng và ngắn	Cây tìm kiếm thường hẹp và dài

So sánh: BFS và DFS (3)

BFS	DFS
Ứng dụng:	Ứng dụng:
- Tìm đường đi ngắn nhất, cây khung nhỏ nhất	- Cây đường đi ngắn nhất và cây khung nhỏ
trong đồ thị không trọng số	nhất trên đồ thị có trọng số
- Tìm hàng xóm trên mạng ngang hàng	- Phát hiện chu trình trong đồ thị
- Web crawlers	- Tìm đường đi giữa 2 đỉnh
- Network broadcasting	- Tìm kiếm thành phần liên thông mạnh

Nội dung

- 1. Đặt đầu bài
- 2. Tìm kiếm theo chiều rộng (BFS)
- 3. Tìm kiếm theo chiều sâu (DFS)
- 4. So sánh DFS và BFS
- 5. Bài tập

Bài tập (1)

• Bài tập 1: Mô tả quá trình thực hiện DFS (0) và BFS(0) trên đồ thị sau:

Bài tập (2)

• Bài tập 2: Tìm tất cả thành phần liên thông của đồ thị sau:

