

Viterbi Algorithm

CSCI-GA.2590 - Natural Language Processing

Ralph Grishman

Computing Probabilities

for each s, t:

record which s', t-1 contributed the maximum

Analyzing

Fish sleep.

A Simple POS HMM

Word Emission Probabilities P (word | state)

- A two-word language: "fish" and "sleep"
- Suppose in our training corpus,
 - "fish" appears 8 times as a noun and 5 times as a verb
 - "sleep" appears twice as a noun and 5 times as a verb
- Emission probabilities:
 - Noun
 - P(fish | noun): 0.8
 - P(sleep | noun): 0.2
 - Verb
 - P(fish | verb): 0.5
 - P(sleep | verb) : 0.5

Viterbi Probabilities

 $0 \qquad 1 \qquad 2 \qquad 3$

start

verb

noun

end

0 1 2 3

start 1

verb 0

noun 0

end 0

Token 1: fish

end

0 1 2 3
start 1 0
verb 0 .2 * .5
noun 0 .8 * .8

Token 1: fish

0 1 2 3
start 1 0
verb 0 .1
noun 0 .64

end 0 0

.64

noun

end

.004

.0128

Token 3: end

Complexity?

• How does time for Viterbi search depend on number of states and number of words?

Complexity

time =
$$O(s^2 n)$$

for s states and n words

(Relatively fast: for 40 states and 20 words, 32,000 steps)