Auxiliary Sections > Integral Transforms > Tables of Fourier Cosine Transforms > Fourier Cosine Transforms: Expressions with Power-Law Functions

Fourier Cosine Transforms: Expressions with Power-Law Functions

No	Original function, $f(x)$	Cosine transform, $\check{f}_{c}(u) = \int_{0}^{\infty} f(x) \cos(ux) dx$
1	$\begin{cases} 1 & \text{if } 0 < x < a, \\ 0 & \text{if } a < x \end{cases}$	$\frac{1}{u}\sin(au)$
2	$\frac{1}{a+x}$, $a>0$	$-\sin(au)\sin(au) - \cos(au)\operatorname{Ci}(au)$
3	$\frac{1}{a^2 + x^2}, a > 0$	$\frac{\pi}{2a}e^{-au}$
4	$\frac{1}{a^2 - x^2}, a > 0$	$\frac{\pi \sin(au)}{2u}$ (the integral is understood in the sense of Cauchy principal value)
5	$\frac{a}{a^2 + (b+x)^2} + \frac{a}{a^2 + (b-x)^2}$	$\pi e^{-au}\cos(bu)$
6	$\frac{b+x}{a^2 + (b+x)^2} + \frac{b-x}{a^2 + (b-x)^2}$	$\pi e^{-au}\sin(bu)$
7	$\frac{1}{a^4 + x^4}, a > 0$	$\frac{1}{2}\pi a^{-3} \exp\left(-\frac{au}{\sqrt{2}}\right) \sin\left(\frac{\pi}{4} + \frac{au}{\sqrt{2}}\right)$
8	$\frac{1}{(a^2+x^2)(b^2+x^2)}, a,b>0$	$\frac{\pi}{2} \frac{ae^{-bu} - be^{-au}}{ab(a^2 - b^2)}$
9	$\frac{x^{2m}}{(x^2+a)^{n+1}}, n, m = 1, 2,; n+1 > m \ge 0$	$(-1)^{n+m} \frac{\pi}{2n!} \frac{\partial^n}{\partial a^n} \left(a^{1/\sqrt{m}} e^{-u\sqrt{a}} \right)$
10	$\frac{1}{\sqrt{x}}$	$\sqrt{\frac{\pi}{2u}}$
11	$\frac{1}{\sqrt{a^2 + x^2}}$	$K_0(au)$
12	$(a^2 + x^2)^{-1/2} [(a^2 + x^2)^{1/2} + a]^{1/2}$	$(2u/\pi)^{-1/2}e^{-au}, a>0$
13	$x^{-\nu}$, $0 < \nu < 1$	$\sin\left(\frac{1}{2}\pi\nu\right)\Gamma(1-\nu)u^{\nu-1}$

Notation: Ci(z) is the integral cosine, $K_0(z)$ is the modified Bessel function of the second kind, $\Gamma(z)$ is the gamma function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Fourier Cosine Transforms: Expressions with Power-Law Functions