心理實驗法第16週作業

公衛三 梁嫚芳 B07801003

使用 JASP 分析 d1.0.csv 來比較統計推論與機器學習。

1. 使用獨立樣本 T-test: 報告顯著性 p, Cohen's d, & BF10 (須截圖,各 1分)

p < .001

Cohen's d = -0.955 (95% CI: (-1.047, -0.862))

BF10 = 2.928e + 87

Independent Samples T-Test ▼

					95% CI for Cohen's d		
	t	df	р	Cohen's d	Lower	Upper	
X	-21.351	1998	< .001	-0.955	-1.047	-0.862	

Note. Student's t-test.

Bayesian Independent Samples T-Test

	BF ₁₀	error %		
Х	2.928e +87	2.532e -90		

2. 使用 kNN 分類: 報告 Validation & Test Accuracy (須截圖, 各 1 分)

Validation Accuracy = 0.688

Test Accuracy = 0.620

K-Nearest Neighbors Classification

Nearest neighbors	Weights	Distance	n(Train)	n(Validation)	n(Test)	Validation Accuracy		Test Accuracy
9	rectangular	Euclidean	1280	320	400		0.684	0.623

Note. The model is optimized with respect to the validation set accuracy.

Data Split

討論為何統計效應這麼顯著且效應這麼大,機器學習卻沒辦法預測很好? (2分)

以描述性統計表格來看,A與B組之X的平均值差異接近1,標準差數值皆近似1,以下方 violin plot 來看,B組之X 稍高於A組,接著,觀察下方 dirstribution plot,可發現A與B組之X分布極大部分都重疊。

以統計檢定來看,下圖可見A與B組之X平均值的信賴區間均十分窄,且 距離差異顯著,為何於前段描述性統計時,乍看兩分布大多重疊,卻會如此顯著 差異呢,我認為此與統計的定義有關。

針對信賴區間,以t分布來說,公式為:

$$\bar{x} \pm t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}}$$

t 為事先決定之定值(如 95% CI 約為 1.96),因此可知 S (標準差)愈小,n (樣本數)愈大,信賴區間寬度愈小,而此資料特徵為 s 不大 (0.939,0.974),且 n 極大,A 與 B 組之 n=1000,因此 s 除以 $\sqrt{n}\approx 31.6$ 後,信賴區間即縮小得極窄,彌補 mean X 相差不遠 (約為 1) 的較難顯著的劣勢,從而促成倆距離遙遠的信賴區間,並於 t 檢定時顯著(p<.001)。

針對 Cohen's d,公式為:

$$d = \frac{\overline{x_A} - \overline{x_B}}{S_{pooled}}$$

其中, $\overline{x_A}$ 與 $\overline{x_B}$ 分別為兩組之 X 平均值, S_{pooled} 公式如下:

$$S_{pooled} = \sqrt{\frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{n_A + n_B - 2}}$$

因此可見,若要彌補兩組 X 平均值差異僅接近 0.913,來達成如此大的 Cohen's d, S_{pooled} 勢必要小到接近平均值差異,這點可由標準差不大來達成,A 與 B 組標準差分別為 0.939,0.974,僅較平均值差異較大一些,因此 Cohen's d 最終計算結果為-0.955 > 0.8 非常大。

針對 BF10,若樣本數 n 愈大,則 Bayes factor 愈大,而此**資料之樣本數極**大,經由 Bayes Factor for Grouped or Two-Sample t-Tests (http://pcl.missouri.edu/bf-two-sample) 網路計算機測試結果具有顯著差異,當 n=10 時 BS10 約為 9.1e+10,當 n=1000 時 (此資料) BS10 約為 2.9e+87,遠大於 100。

以機器學習而言,KNN 為以鄰近樣本來判斷屬於哪個群集,能夠預測得最佳的情況為,A與B組的 X分布得足夠離散 (分成兩群),或者數個群集 (clusters),而非混雜,然而此資料中,兩組之 X 幾乎重疊,因此預測時表現不佳。儘管前述兩分布於統計檢定時差異顯著,為統計意義上兩分布間有差異,但由於兩分布幾乎交織在一起,中間重疊的部分於預測時就無法透過此差異去進行良好的判斷。

由機器學習模型的 ROC curve 可見,兩條 AB 曲線非常靠近虛線,代表此分類工具無論敏感性 (Sensitivity; Recall) 或特異度 (Specificity) 均不佳,以篩檢工具而言,此即為兩分布重疊較大的結果。

我認為統計是對數據的數學研究與推論解釋,機器學習則犧牲可解釋性以獲 得強大的預測能力,目的不同,因此兩者間結果的可比性不高,正如此題中的情 況,雖於統計檢定中取得顯著,機器學習卻無法預測得宜。