

SH367309

Preliminary

5-16串锂电池BMS用前端芯片

1. 特点

- 硬件保护功能
 - 过充电保护功能
 - 过放电保护功能
 - 充电高温保护功能
 - 充电低温保护功能
 - 放电高温保护功能
 - 放电低温保护功能
 - 充放电过流保护功能
 - 短路保护功能
 - 二次过充电保护功能
 - 断线保护功能
- 内置平衡开关
- 禁止低压电芯充电功能
- 小电流检测功能
- 支持乱序上下电
- 内置看门狗模块
- 模式设计
 - 采集模式(SH367309配合MCU应用)
 - 保护模式(SH367309独立应用)
 - 仓运模式
 - 烧写模式

- 13-bit VADC用于采集电压/温度/电流
 - 转换频率: 10Hz
 - 16路电压采集通道
 - 1路电流采集通道
 - 3路温度采集通道
- 16-bit Σ- ΔCADC用于采集电流
 - 转换频率: 4Hz
- 内置EEPROM
 - 编程/擦除次数: ≤100次
- 稳压电源
 - 3.3V(25mA@MAX)
- MOSFET驱动: 电池组负端NMOS驱动
- CTL管脚: 优先控制充放电MOSFET关闭
- TWI通讯接口:支持CRC8校验
- 低功耗设计:
 - IDLE状态
 - SLEEP状态
 - Powerdown状态
- 封装
 - TQFP48

2. 概述

SH367309是锂电池BMS用数字前端芯片,适用于总电压不超过70V的锂电池Pack。

SH367309工作在保护模式下,可独立保护锂电池Pack。提供过充电保护、过放电保护、温度保护、充放电过流保护、短路保护、二次过充电保护等。集成平衡开关提高电芯一致性。

SH367309工作在采集模式下,可配合MCU管理锂电池Pack,同时使能所有保护功能。

SH367309内置VADC,用于采集电芯电压、温度以及电流;内置CADC采集电流,用于统计Pack剩余容量;内置EEPROM,用于保存保护阈值及延时等可调参数;内置TWI通讯接口,用于操作相关寄存器及EEPROM。

1

3. 方框图

图1 SH367309系统方框图

4. 管脚配置图

图2 SH367309管脚配置图(TQFP48)

5. 管脚描述

管脚号	管脚名	I/O	功能描述					
1-17	VC17~VC1	I	电芯连接端(VC17为最高压电芯的正端, VC1为最低压电芯的负端)					
18	RS1	I	电流采集端负端					
19	RS2	I	电流采集端正端					
20~22	T1~T3	I	温度电阻连接端					
23	NC	-	不连接端					
24	NC	-	不连接端					
25	ALARM	0	对外通讯端(开漏输出)					
26	SCL	ı	TWI时钟信号线(开漏输出)					
27	SDA	I/O	TWI数据信号线(开漏输出)					
28	VCC	0	3.3V稳压源输出端					
29	VSS	Р	芯片供电负端					
30	CAPS	I/O	DCDC转换控制端					
31	CAPN	I/O	DCDC转换控制端					
32	CAPP	I/O	DCDC转换控制端					
33	V11	0	11V稳压源输出端					
34	DSG	0	放电MOSFET控制端					
35	PCHG	0	预充电MOSFET控制端(开漏输出)					
36	CHG	0	充电MOSFET控制端(开漏输出)					
37	LDO_P	Р	LDO3供电正端					
38	LDO_O	0	LDO3稳压源输出端					
39	NC	-	不连接端					
40	VPRO	Р	EEPROM烧写供电端					
41	DSGD	I	负载检测端					
42	CHGD	ı	充电器检测端					
43	SHIP	I	仓运模式控制端					
44	LDO_EN	I	LDO3使能控制端					
45	MODE	I	模式切换控制端					
46	CTL	I	充放电MOSFET优先控制端					
47	PF	0	二次过充电过充电保护输出端					
48	VBAT	Р	芯片供电正端					

表1 管脚描述(共计48管脚)

6. 典型应用电路

6.1 保护模式16串同口应用

图3 SH367309 16串同口应用

6.2 保护模式16串半分口应用

图4 SH367309 16串半分口应用

6.3 保护模式带平衡16串半分口应用

图5 SH367309 16串半分口及外部平衡应用

6.4 保护模式16串全分口应用

图6 SH367309 16串全分口应用

6.5 保护模式10串全分口应用

图7 SH367309 10串全分口应用

6.6 采集模式16串半分口应用

图8 SH367309 16串半分口应用

7. 工作模式

7.1 概述

SH367309支持四种工作模式:保护模式、采集模式、仓运模式、烧写模式。

图9 工作模式转换

	保护	^中 模式		仓运		
功能/模块	正常状态	Powerdown 状态	正常状态	IDLE 状态	SLEEP 状态	模式
过充电/过放电/温度保护 功能	\checkmark	Х	√	Х	Х	Х
电流保护功能	$\sqrt{}$	Х	√	√	Х	Х
二次过充电保护功能	√	Х	√	Х	Х	Х
平衡功能	√	Х	√	Х	Х	Х
VADC	√	Х	√	Х	Х	Х
CADC [●]	Х	Х	√	Х	Х	Х
TWI	Х	Х	√	√	Х	Х
充电器检测	V	V	√	√	√	Х
STA检测 ^❷	Х	Х	Х	√	√	Х
充放电电流检测❷	Х	Х	Х	√	Х	Х
看门狗WDT [●]	Х	Х	√	0	Х	Х
LDO1, LDO2	V	Х	√	√	√	Х
LDO3 [€]	Х	Х	√	√	√	Х
功耗(uA)	<55	<5	<105	<50	<45	<2

表2 功能模式列表

注释:功耗测试条件见AC/DC部分。

*注释:"√"表示功能开启;"X"表示功能关闭;"O"*表示该功能维持进入IDLE之前的状态。

注释: ●采集模式下,CADC和WDT上电默认关闭,需要MCU通过TWI通讯模块对SH367309内部寄存器进行操作置位。 ●STA检测定义为系统内部检测电路(TWI通讯的起始信号),主要用于采集模式低功耗唤醒使用。其中,充放电电流检测电压 阈值为V_{CD},如果超过V_{CD},且维持充放电电流检测延时t_{CD}以上,则置位WAKE_FLG,产生ALARM中断。●LDO3可通过LDO_EN 管脚控制,LDO_EN为V_{L-LDO_EN}时,LDO3关闭,LDO_EN为V_{H-LDO_EN}时,LDO3开启。

11

7.2 保护模式

MODE管脚外接低电平V_{L-MODE}, SH367309工作在保护模式。

7.2.1 正常工作状态

SH367309开启内置保护功能模块,开启平衡功能,关闭看门狗和TWI通讯模块。

7.2.2 Powerdown状态

当满足以下条件,SH367309进入Powerdown状态,关闭充放电MOSFET:

- (1) 任意节电芯电压低于Powerdown允许电压V_{PD}
- (2) 状态(1)持续时间超过Powerdown允许延时TPD

当满足以下条件,SH367309退出Powerdown状态:

(1) 连接充电器(检测到CHGD管脚电平低于V_{CHGD3})

注释: 当充电器连接时,不能进入Powerdown状态; 退出PowerDown状态后, SH367309产生硬件复位。

7.3 采集模式

MODE管脚外接高电平V_{H-MODE}, SH367309工作在采集模式。

7.3.1 正常状态

SH367309开启内置保护功能模块,开启TWI通讯模块,MCU可通过TWI通讯模块操作SH367309内部寄存器。

7.3.2 IDLE状态

当满足以下条件, SH367309进入IDLE状态:

- (1) 未发生任何保护, 也未触发任何保护延时
- (2) 检测Sense电阻两端(RS2-RS1)电压大于充电电流检测阈值Vcp2且(RS2-RS1)电压小于放电电流检测阈值Vcp1
- (3) 寄存器CONF中的IDLE位置1

注释:保护状态包括过充电保护、过放电保护、二次过充电保护、短路保护、充电过流保护、放电过流1保护、放电过流2保护、放电高温保护、放电低温保护、充电高温保护、充电低温保护、预充电状态、禁止低压充电状态,并不包括看门狗保护及CTL管脚关充放电MOSFET情况。

SH367309进入IDLE状态后, 执行以下操作:

- (1) 关闭VADC、CADC、TWI模块,同时关闭电压和温度相关的保护功能
- (2) 清零BALANCEH和BALANCEL寄存器
- (3) 开启STA检测和充放电电流检测模块

当满足以下任一条件, SH367309退出IDLE状态:

- (1) 检测到STA信号(TWI通讯的起始信号)
- (2) 检测Sense电阻两端(RS2-RS1)电压小于充电电流检测阈值V_{CD2}或电压大于放电电流检测阈值V_{CD1},且持续时间超过充放电电流检测延时t_{CD}

方式(2)退出IDLE状态时,SH367309通过ALARM管脚输出低电平脉冲通知MCU。

7.3.3 SLEEP状态

当满足以下条件,SH367309进入SLEEP状态:

(1) 寄存器CONF中的SLEEP位置1

SH367309进入SLEEP状态后,执行以下操作:

- (1) 关闭充放电MOSFET,关闭VADC、CADC、TWI和WDT模块,同时关闭所有保护功能
- (2) 清零BALANCEH和BALANCEL寄存器
- (3) 开启STA检测
- (4) 开启充电器检测

当满足以下任一条件,SH367309退出SLEEP状态:

- (1) 检测到STA信号(TWI通讯的起始信号)
- (2) 连接充电器(检测到CHGD管脚电平低于V_{CHGD1},且延时超过t_{D3})

方式(2)退出SLEEP状态时,SH367309通过ALARM管脚输出低电平脉冲通知MCU。

注释: 当连接充电器时,寄存器CONF中的SLEEP位置1,SH367309会先进入SLEEP状态再退出。

7.4 仓运模式

SHIP管脚外接低电平V_{L-SHIP}, SH367309进入仓运模式:

- (1) 关闭充放电MOSFET,同时关闭所有功能模块
- (2) 连接充电器无任何动作

当SH367309处于仓运模式,只有SHIP管脚外接高电平V_{H-SHIP},才可退出仓运模式,产生硬件复位。

7.5 烧写模式

VPRO管脚外接EEPROM烧写电压V_{PRO},且延时10mS,SH367309进入烧写模式,关闭充放电MOSFET及内置保护功能模块。此时其他设备可通过TWI接口读/写内置EEPROM,且内置EEPROM仅在烧写模式下方可进行写操作。

7.6 WarmUp

7.6.1 硬件复位

硬件复位方式包括上电复位、LVR复位、退出仓运模式以及退出PowerDown状态。

发生上电复位、退出仓运模式以及退出PowerDown状态后:

- (1) LDO EN管脚外接高电平V_{H-LDO EN}, SH367309进入待激活状态,关闭充放电MOSFET和TWI通讯模块
- (2) LDO_EN管脚外接低电平V_{L-LDO EN}, SH367309进入WarmUp状态

系统处于方式(1)时, 需满足以下条件才可退出待激活状态,, 进入WarmUp状态:

- (1) 连接充电器(CHGD管脚电平低于V_{CHGD1})
- (2) 状态(1)持续时间超过t_{D3}

发生LVR复位后,SH367309直接进入WarmUp状态。

WarmUp状态持续时间为T_{WARMUP},期间关闭充放电MOSFET,禁止TWI通讯,WarmUp结束后,系统开始正常工作。

7.6.2 软件复位

SH367309工作在采集模式,当TWI模块接收到MCU发送的软件复位指令后,发生软件复位,进入WarmUp状态。 *注释: WarmUp结束后,8分钟内不检测断线和二次过充电保护状态。*

图10上电时序图

8. 保护功能

8.1 概述

工作在保护模式或者采集模式下,SH367309内置完备的锂电池保护功能。

8.2 过充电保护

同时满足下述条件时,SH367309进入过充电保护状态:

- (1) 任意电芯电压高于过充电保护电压Vov
- (2) 状态(1)持续时间超过过充电保护延时tov

SH367309处于过充电保护状态时,执行下述动作:

- (1) 关闭充电MOSFET
- (2) BSTATUS1寄存器中OV状态位置1
- (3) BFLAG1寄存器中OV_FLG标志位置1

同时满足下述条件时,SH367309退出过充电保护状态:

- (1) 所有电芯电压均低于过充电恢复电压VOVR
- (2) 状态(1)持续时间超过过充电保护恢复延时tovR

SH367309退出过充电保护状态时,执行下述动作:

- (1) 开启充电MOSFET
- (2) BSTATUS1寄存器中OV状态位置0

注释: Vov、VovR、tov可以在相应的EEPROM寄存器中设置。

Table 8.1 系统状态RAM寄存器BSTATUS1

43H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BSTATUS1	WDT	PF	SC	occ	OCD2	OCD1	UV	OV
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
0	ov	过充电保护状态位 1: 发生过充电保护 0: 未发生过充电保护

Table 8.2 系统标志RAM寄存器BFLAG1

70H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BFLAG1	WDT_FLG	PF_FLG	SC_FLG	OCC_FLG	LOAD_FLG	OCD_FLG	UV_FLG	OV_FLG
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
0	OV_FLG	过充电保护标志位 1: 发生过过充电保护 0: 未发生过过充电保护

Table 8.3 过充电保护设置EEPROM寄存器

02H, 03H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OVH	OVT3	OVT2	OVT1	OVT0	LDRT1	LDRT0	OV.9	OV.8
OVL	OV.7	OV.6	OV.5	OV.4	OV.3	OV.2	OV.1	OV.0
读/写	读 / 写							

位编号	位符号	说明
7:4	OVT3~OVT0	过充电保护延时设置控制位
1:0 7:0	OV.9~OV.0	过充电保护电压,计算方式: Vov =寄存器值×5mV

Table 8.4 过充电恢复设置EEPROM寄存器

04H, 05H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OVRH	UVT3	UVT2	UVT1	UVT0	-	-	OVR.9	OVR.8
OVRL	OVR.7	OVR.6	OVR.5	OVR.4	OVR.3	OVR.2	OVR.1	OVR.0
读/写	读 / 写	读 / 写	读 / 写	读 / 写	读/写	读 / 写	读 / 写	读/写

位编号	位符号	说明
3:2	-	Reserved
1:0 7:0	OVR.9~OVR.0	过充电恢复电压,计算方式: V _{OVR} =寄存器值×5mV(V _{OVR} < V _{OV})

8.3 过放电保护

同时满足下述条件时,SH367309进入过放电保护状态:

- (1) 任意电芯电压低于过放电保护电压V_{UV}
- (2) 状态(1)持续时间超过过放电保护延时tuv

SH367309处于过放电保护状态时,执行下述动作:

- (1) 关闭放电MOSFET
- (2) BSTATUS1寄存器中UV状态位置1
- (3) BFLAG1寄存器中UV_FLG标志位置1

EUVR=0,同时满足下述条件时,SH367309退出过放电保护状态:

- (1) 所有电芯电压均高于过放电恢复电压VuvR
- (2) 状态(1)持续时间超过过放电保护恢复延时tuvR

EUVR=1,同时满足下述条件时,SH367309退出过放电保护状态:

- (1) 所有电芯电压均高于过放电恢复电压VUVR
- (2) 状态(1)持续时间超过过放电保护恢复延时t_{UVR}
- (3) 负载断开 (DSGD管脚电平低于V_{DSGD})

SH367309退出过放电保护状态时,执行下述动作:

- (1) 开启放电MOSFET
- (2) BSTATUS1寄存器中UV状态位置0

SH367309允许通过UV_OP位设置过放电保护后是否关闭充电MOSFET:

- (1) UV_OP=1,过放电保护后,关闭充放电MOSFET,此时连接充电器(CHGD管脚电平低于V_{CHGD1}),延时100mS开启充电MOSFET
 - (2) UV_OP=0, 过放电保护后,关闭放电MOSFET

注释: Vuv、VuvR、tuv可以在相应的EEPROM寄存器中设置。

Table 8.5 系统配置EEPROM寄存器2

01H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF2	E0VB	-	UV_OP	DIS_PF	CTLC1	CTLC0	OCRA	EUVR
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
5	UV_OP	过放电时MOSFET控制位 0: 过放电只关闭放电MOSFET 1: 过放电关闭充放电MOSFET
0	EUVR	过放电恢复设置控制位 0:过放电保护状态释放与负载释放无关 1:过放电保护状态释放还需负载释放

Table 8.6 系统状态寄存器BSTATUS1

43H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BSTATUS1	WDT	PF	SC	occ	OCD2	OCD1	UV	OV
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
1	uv	过放电保护状态位 1: 发生过放电保护 0: 未发生过放电保护

Table 8.7 系统标志寄存器BFLAG1

70H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BFLAG1	WDT_FLG	PF_FLG	SC_FLG	OCC_FLG	LOAD_FLG	OCD_FLG	UV_FLG	OV_FLG
读/写	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
1	UV_FLG	过放电保护标志位 1: 发生过过放电保护 0: 未发生过过放电保护

Table 8.8 过充电恢复电压/过放电保护延时设置寄存器

04H, 05H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OVRH	UVT3	UVT2	UVT1	UVT0	-	-	OVR.9	OVR.8
OVRL	OVR.7	OVR.6	OVR.5	OVR.4	OVR.3	OVR.2	OVR.1	OVR.0
读/写	读/写	读/写	读 / 写	读/写				

位编号	位符号	说明
		过放电保护延时设置控制位 UVT[3:0] = 0000: 过放电保护延时 = 100mS UVT[3:0] = 0001: 过放电保护延时 = 200mS UVT[3:0] = 0010: 过放电保护延时 = 300mS UVT[3:0] = 0011: 过放电保护延时 = 400mS UVT[3:0] = 0100: 过放电保护延时 = 600mS UVT[3:0] = 0101: 过放电保护延时 = 800mS UVT[3:0] = 0110: 过放电保护延时 = 1S
7:4	UVT3~UVT0	UVT[3:0] = 0111: 过放电保护延时 = 2S UVT[3:0] = 1000: 过放电保护延时 = 3S UVT[3:0] = 1001: 过放电保护延时 = 4S UVT[3:0] = 1010: 过放电保护延时 = 6S UVT[3:0] = 1011: 过放电保护延时 = 8S UVT[3:0] = 1100: 过放电保护延时 = 10S UVT[3:0] = 1101: 过放电保护延时 = 20S UVT[3:0] = 1110: 过放电保护延时 = 30S UVT[3:0] = 1111: 过放电保护延时 = 40S

Table 8.9 过放电保护电压设置寄存器

06H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UV	UV.7	UV.6	UV.5	UV.4	UV.3	UV.2	UV.1	UV.0
读/写	读 / 写	读/写						

位编号	位符号	说明
7:0	UV.7~ UV.0	过放电保护电压,计算方式: V _{UV} =寄存器值×20mV

Table 8.10 过放电恢复电压设置寄存器

07H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UVR	UVR.7	UVR.6	UVR.5	UVR.4	UVR.3	UVR.2	UVR.1	UVR.0
读/写	读 / 写	读 / 写	读/写	读/写	读 / 写	读/写	读 / 写	读/写

位编号	位符号	说明
7:0	UVR.7~UVR.0	过放电恢复电压,计算方式: Vuvr =寄存器值×20mV(Vuvr > Vuv)

8.4 电流保护

SH367309内置三档放电过流保护以及一档充电过流保护,统称为电流保护。放电过流1保护和放电过流2保护的操作方法和执行动作一致,故以放电过流保护1为例介绍。

8.4.1 放电过流1保护

同时满足下述条件时,SH367309进入放电过流1保护状态:

- (1) RS2-RS1的电压值大于VDOC1
- (2) 状态(1)持续时间超过放电过流1保护延时t_{DOC1}
- SH367309处于放电过流1保护状态时,执行下述动作:
- (1) 关闭放电MOSFET
- (2) BSTATUS1寄存器中OCD1状态位置1
- (3) BFLAG1寄存器中OCD FLG标志位置1

同时满足下述条件时,SH367309退出放电过流1保护状态:

- (1) 负载断开 (DSGD管脚电平低于V_{DSGD})
- (2) 状态(1)持续时间超过负载释放延时t_{D1}

8.4.2 短路保护

同时满足下述条件时, SH367309进入短路保护状态:

- (1) RS2-RS1的电压值大于VDOC3
- (2)状态(1)持续时间超过放电过流3保护延时tpoc3

SH367309处于短路保护状态时,执行下述动作:

- (1) 关闭放电MOSFET
- (2) BSTATUS1寄存器中SC状态位置1
- (3) BFLAG1寄存器中SC_FLG标志位置1

同时满足下述条件时,SH367309退出短路保护状态:

- (1) 负载断开 (DSGD管脚电平低于V_{DSGD})
- (2) 状态(1)持续时间超过负载释放延时t_{D1}

8.4.3 充电过流保护

同时满足下述条件时,SH367309进入充电过流保护状态:

- (1) RS2-RS1的电压值小于Vcoc
- (2)状态(1)持续时间超过充电过流保护延时tcoc

SH367309处于充电过流保护状态时,执行下述动作:

- (1) 关闭充电MOSFET
- (2) BSTATUS1寄存器中OCC状态位置1
- (3) BFLAG1寄存器中OCC_FLG标志位置1

同时满足下述条件时, SH367309退出充电过流保护状态:

- (1) 充电器断开 (CHGD管脚电平高于V_{CHGD2})
- (2) 状态(1)持续时间超过延时t_{D2}

注释: V_{DOC1}、t_{DOC2}、t_{DOC2}、t_{DOC2}、V_{DOC3}、t_{DOC3}、V_{COC}以及t_{COC}可在EEPROM內设置。

Table 8.11 系统状态寄存器BSTATUS1

43H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BSTATUS1	WDT	PF	SC	occ	OCD2	OCD1	UV	OV
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
5	sc	短路保护状态位 1: 发生短路保护 0: 未发生短路保护
4	occ	充电过流保护状态位 1: 发生充电过流保护 0: 未发生充电过流保护
3	OCD2	放电过流2保护状态位 1: 发生放电过流2保护 0: 未发生放电过流2保护
2	OCD1	放电过流1保护状态位 1: 发生放电过流1保护 0: 未发生放电过流1保护

Table 8.12 系统标志寄存器BFLAG1

70H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BFLAG1	WDT_FLG	PF_FLG	SC_FLG	OCC_FLG	LOAD_FLG	OCD_FLG	UV_FLG	OV_FLG
读/写	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
5	SC_FLG	短路保护标志位 1: 发生过短路保护 0: 未发生过短路保护
4	OCC_FLG	充电过流保护标志位 1: 发生过充电过流保护 0: 未发生过充电过流保护
2	OCD_FLG	放电过流保护标志位 1: 发生过放电过流保护 0: 未发生过放电过流保护

Table 8.13 放电过流1设置寄存器

0CH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OCD1V/OCD1T	OCD1V3	OCD1V2	OCD1V1	OCD1V0	OCD1T3	OCD1T.2	OCD1T.1	OCD1T.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
121-7/Pd 3	1117 4	放电过流1保护电压设置控制位
		OCD1V[3:0] = 0000: 放电过流1保护电压 = 20mV
		OCD1V[3:0] = 0001: 放电过流1保护电压 = 30mV
		OCD1V[3:0] = 0010: 放电过流1保护电压 = 40mV
		OCD1V[3:0] = 0011: 放电过流1保护电压 = 50mV
		OCD1V[3:0] = 0100: 放电过流1保护电压 = 60mV
		OCD1V[3:0] = 0101:放电过流1保护电压 = 70mV
	00041/0	OCD1V[3:0] = 0110:放电过流1保护电压 = 80mV
7:4	OCD1V3~ OCD1V0	OCD1V[3:0] = 0111:放电过流1保护电压 = 90mV
	OCDIVO	OCD1V[3:0] = 1000:放电过流1保护电压 = 100mV
		OCD1V[3:0] = 1001:放电过流1保护电压 = 110mV
		OCD1V[3:0] = 1010:放电过流1保护电压 = 120mV
		OCD1V[3:0] = 1011:放电过流1保护电压 = 130mV
		OCD1V[3:0] = 1100:放电过流1保护电压 = 140mV
		OCD1V[3:0] = 1101:放电过流1保护电压 = 160mV
		OCD1V[3:0] = 1110:放电过流1保护电压 = 180mV
		OCD1V[3:0] = 1111:放电过流1保护电压 = 200mV
		放电过流1保护延时设置控制位
		OCD1T[3:0] = 0000:放电过流1保护延时 = 50mS
		OCD1T[3:0] = 0001:放电过流1保护延时 = 100mS
		OCD1T[3:0] = 0010:放电过流1保护延时 = 200mS
		OCD1T[3:0] = 0011:放电过流1保护延时 = 400mS
		OCD1T[3:0] = 0100:放电过流1保护延时 = 600mS
		OCD1T[3:0] = 0101:放电过流1保护延时 = 800mS
	OCD1T3~	OCD1T[3:0] = 0110:放电过流1保护延时 = 1S
3:0	OCD113~	OCD1T[3:0] = 0111:放电过流1保护延时 = 2S
	OODIII	OCD1T[3:0] = 1000:放电过流1保护延时 = 4S
		OCD1T[3:0] = 1001:放电过流1保护延时 = 6S
		OCD1T[3:0] = 1010:放电过流1保护延时 = 8S
		OCD1T[3:0] = 1011:放电过流1保护延时 = 10S
		OCD1T[3:0] = 1100:放电过流1保护延时 = 15S
		OCD1T[3:0] = 1101:放电过流1保护延时 = 20S
		OCD1T[3:0] = 1110:放电过流1保护延时 = 30S
		OCD1T[3:0] = 1111:放电过流1保护延时 = 40S

注释:放电过流1保护电压值为V_{RS2}-V_{RS1。}

Table 8.14 放电过流2设置寄存器

0DH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OCD2V/OCD2T	OCD2V3	OCD2V2	OCD2V1	OCD2V0	OCD2T3	OCD2T2	OCD2T1	OCD2T0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
		放电过流2保护电压设置控制位
		OCD2V[3:0] = 0000: 放电过流2保护电压 = 30mV
		OCD2V[3:0] = 0001:放电过流2保护电压 = 40mV
		OCD2V[3:0] = 0010: 放电过流2保护电压 = 50mV
		OCD2V[3:0] = 0011:放电过流2保护电压 = 60mV
		OCD2V[3:0] = 0100:放电过流2保护电压 = 70mV
		OCD2V[3:0] = 0101:放电过流2保护电压 = 80mV
	0.000//0	OCD2V[3:0] = 0110: 放电过流2保护电压 = 90mV
7:4	OCD2V3~ OCD2V0	OCD2V[3:0] = 0111:放电过流2保护电压 = 100mV
	OCD2V0	OCD2V[3:0] = 1000:放电过流2保护电压 = 120mV
		OCD2V[3:0] = 1001:放电过流2保护电压 = 140mV
		OCD2V[3:0] = 1010:放电过流2保护电压 = 160mV
		OCD2V[3:0] = 1011:放电过流2保护电压 = 180mV
		OCD2V[3:0] = 1100:放电过流2保护电压 = 200mV
		OCD2V[3:0] = 1101:放电过流2保护电压 = 300mV
		OCD2V[3:0] = 1110: 放电过流2保护电压 = 400mV
		OCD2V[3:0] = 1111:放电过流2保护电压 = 500mV
		放电过流2保护延时设置控制位
		OCD2T[3:0] = 0000:放电过流2保护延时 = 10mS
		OCD2T[3:0] = 0001:放电过流2保护延时 = 20mS
		OCD2T[3:0] = 0010:放电过流2保护延时 = 40mS
		OCD2T[3:0] = 0011:放电过流2保护延时 = 60mS
		OCD2T[3:0] = 0100:放电过流2保护延时 = 80mS
		OCD2T[3:0] = 0101:放电过流2保护延时 = 100mS
	OCD2T3~	OCD2T[3:0] = 0110:放电过流2保护延时 = 200mS
3:0	OCD2T3~	OCD2T[3:0] = 0111:放电过流2保护延时 = 400mS
	OCDZIO	OCD2T[3:0] = 1000:放电过流2保护延时 = 600mS
		OCD2T[3:0] = 1001:放电过流2保护延时 = 800mS
		OCD2T[3:0] = 1010:放电过流2保护延时 = 1S
		OCD2T[3:0] = 1011:放电过流2保护延时 = 2S
		OCD2T[3:0] = 1100:放电过流2保护延时 = 4S
		OCD2T[3:0] = 1101:放电过流2保护延时 = 8S
		OCD2T[3:0] = 1110:放电过流2保护延时 = 10S
		OCD2T[3:0] = 1111:放电过流2保护延时 = 20S

注释:放电过流2保护电压值为V_{RS2}-V_{RS1}。

Table 8.15 短路保护设置寄存器

0EH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCV/SCT	SCV3	SCV2	SCV1	SCV0	SCT3	SCT2	SCT1	SCT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号		说明
<u> </u>	-14 V	短路保护保护电压设置控制位
		SCV[3:0] = 0000: 短路保护电压 = 50mV
		SCV[3:0] = 0001: 短路保护电压 = 80mV
		SCV[3:0] = 0010: 短路保护电压 = 110mV
		SCV[3:0] = 0011:短路保护电压 = 140mV
		SCV[3:0] = 0100: 短路保护电压 = 170mV
		SCV[3:0] = 0101:短路保护电压 = 200mV
	001/0	SCV[3:0] = 0110: 短路保护电压 = 230mV
7:4	SCV3~ SCV0	SCV[3:0] = 0111:短路保护电压 = 260mV
	3070	SCV[3:0] = 1000: 短路保护电压 = 290mV
		SCV[3:0] = 1001: 短路保护电压 = 320mV
		SCV[3:0] = 1010: 短路保护电压 = 350mV
		SCV[3:0] = 1011:短路保护电压 = 400mV
		SCV[3:0] = 1100: 短路保护电压 = 500mV
		SCV[3:0] = 1101:短路保护电压 = 600mV
		SCV[3:0] = 1110: 短路保护电压 = 800mV
		SCV[3:0] = 1111:短路保护电压 = 1000mV
		短路保护延时设置控制位
		SCT[3:0] = 0000: 短路保护延时 = 0uS
		SCT[3:0] = 0001: 短路保护延时 = 64uS
		SCT[3:0] = 0010: 短路保护延时 = 128uS
		SCT[3:0] = 0011: 短路保护延时 = 192uS
		SCT[3:0] = 0100: 短路保护延时 = 256uS
		SCT[3:0] = 0101: 短路保护延时 = 320uS
	SCT3~	SCT[3:0] = 0110: 短路保护延时 = 384uS
3:0	SCT0	SCT[3:0] = 0111: 短路保护延时 = 448uS
		SCT[3:0] = 1000: 短路保护延时 = 512uS
		SCT[3:0] = 1001: 短路保护延时 = 576uS
		SCT[3:0] = 1010: 短路保护延时 = 640uS
		SCT[3:0] = 1011: 短路保护延时 = 704uS
		SCT[3:0] = 1100: 短路保护延时 = 768uS
		SCT[3:0] = 1101: 短路保护延时 = 832uS
		SCT[3:0] = 1110: 短路保护延时 = 896uS
<i>公子•双 七百四八</i>	1-15 由 压 / 古 - 1-1 11	SCT[3:0] = 1111: 短路保护延时 = 960uS

注释: 短路保护电压值为V_{RS2}-V_{RS1}。

注释: 短路保护延时仅指内部电路检测延时,如果Sense电阻两端有RC滤波网络,则会因此引入一定延时(<100uS)。

Table 8.16 充电过流设置寄存器

0FH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OCCV/OCCT	OCCV3	OCCV2	OCCV1	OCCV0	OCCT3	OCCT2	OCCT1	OCCT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号		说明
<i></i>	— i v	充电过流保护电压设置控制位
		OCCV[3:0] = 0000: 充电过流保护电压 = 20mV
		OCCV[3:0] = 0001: 充电过流保护电压 = 30mV
		OCCV[3:0] = 0010: 充电过流保护电压 = 40mV
		OCCV[3:0] = 0011: 充电过流保护电压 = 50mV
		OCCV[3:0] = 0100: 充电过流保护电压 = 60mV
		OCCV[3:0] = 0101:充电过流保护电压 = 70mV
	0001/0	OCCV[3:0] = 0110: 充电过流保护电压 = 80mV
7:4	OCCV3~ OCCV0	OCCV[3:0] = 0111: 充电过流保护电压 = 90mV
	OCCVU	OCCV[3:0] = 1000:充电过流保护电压 = 100mV
		OCCV[3:0] = 1001:充电过流保护电压 = 110mV
		OCCV[3:0] = 1010:充电过流保护电压 = 120mV
		OCCV[3:0] = 1011:充电过流保护电压 = 130mV
		OCCV[3:0] = 1100:充电过流保护电压 = 140mV
		OCCV[3:0] = 1101:充电过流保护电压 = 160mV
		OCCV[3:0] = 1110:充电过流保护电压 = 180mV
		OCCV[3:0] = 1111:充电过流保护电压 = 200mV
		充电过流保护延时设置控制位
		OCCT[3:0] = 0000:充电过流保护延时 = 10mS
		OCCT[3:0] = 0001:充电过流保护延时 = 20mS
		OCCT[3:0] = 0010: 充电过流保护延时 = 40mS
		OCCT[3:0] = 0011:充电过流保护延时 = 60mS
		OCCT[3:0] = 0100: 充电过流保护延时 = 80mS
		OCCT[3:0] = 0101: 充电过流保护延时 = 100mS
	OCCT3~	OCCT[3:0] = 0110: 充电过流保护延时 = 200mS
3:0	OCCT0	OCCT[3:0] = 0111: 充电过流保护延时 = 400mS
		OCCT[3:0] = 1000: 充电过流保护延时 = 600mS
		OCCT[3:0] = 1001: 充电过流保护延时 = 800mS
		OCCT[3:0] = 1010: 充电过流保护延时 = 1S
		OCCT[3:0] = 1011: 充电过流保护延时 = 2S
		OCCT[3:0] = 1100: 充电过流保护延时 = 4S
		OCCT[3:0] = 1101: 充电过流保护延时 = 8S
		OCCT[3:0] = 1110: 充电过流保护延时 = 10S
<i>计权</i> 大山村	海4伊拉市压炼头	OCCT[3:0] = 1111: 充电过流保护延时 = 20S

注释: 充电过流1保护电压值为V_{RS1}-V_{RS2}。

8.4.4 电流保护特殊设置

8.4.4.1 电流保护自恢复设置

EEPROM寄存器SCONF2中OCRA位可设置是否允许电流保护自动恢复。

Table 8.17 系统配置寄存器2

01H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF2	E0VB	-	UV_OP	DIS_PF	CTLC1	CTLC0	OCRA	EUVR
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
1	OCRA	电 流恢复设置控制位 0: 不允许电流保护定时恢复 1: 允许电流保护定时恢复

当寄存器SCONF2中OCRA=1时,此时电流保护恢复条件为下述任意之一:

- (1) 放电过流保护发生后,负载释放且延时超过负载释放延时t_{D1}
- (2) 充电过流保护发生后, 充电器断开且延时超过tp2
- (3) 电流保护后持续时间超过电流保护自恢复延时t_{AUTO}

Table 8.18 电流保护自动恢复/二次过充电保护延时设置寄存器

10H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
MOST/OCRT/PFT	CHS1	CHS0	MOST1	MOST0	OCRT1	OCRT0	PFT1	PFT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

 位编号
 位符号
 说明

 电流保护自恢复延时设置
 OCRT[1:0] = 00: 电流保护自动恢复延时 = 8S

 OCRT[1:0] = 01: 电流保护自动恢复延时 = 16S
 OCRT[1:0] = 10: 电流保护自动恢复延时 = 32S

 OCRT[1:0] = 11: 电流保护自动恢复延时 = 64S

8.4.4.2 电流保护软件恢复设置

SH367309工作在采集模式时,MCU可通过写RAM寄存器CONF中OCRC位来释放电流保护状态,开启已关闭的MOSFET: (1) 按照"0-1-0"时序连续写OCRC位

Table 8.19 系统配置寄存器

40H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CONF	OCRC	PCHMOS	DSGMOS	CHGMOS	CADCON	ENWDT	SLEEP	IDLE
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	1	1	1	0	0	0	0

位编号	位符号	说明
7	OCRC	电流保护控制位 电流保护状态清除需在OCRC位连续写: 0-1-0

8.4.4.3 电流保护执行动作设置

EEPROM寄存器SCONF中OCPM位可设置电流保护发生后是否同时关闭充放电MOSFET。

Table 8.20 系统配置寄存器1

00H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF1	ENPCH	ENMOS	ОСРМ	BAL	CN3	CN2	CN1	CN0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
5	ОСРМ	电 流保护MOSFET控制位 0: 充电过流只关闭充电MOSFET; 放电过流/短路只关闭放电MOSFET 1: 电流保护关闭充放电MOSFET

8.5 温度保护

温度保护包括充电高温保护、充电低温保护、放电高温保护以及放电低温保护。

8.5.1 充电高温保护

同时满足下述条件时,SH367309进入充电高温保护状态:

- (1) 任意温度点温度高于充电高温保护温度Torc
- (2) 状态(1)持续时间超过温度保护延时tr

SH367309处于充电高温保护状态时,执行下述动作:

- (1) 关闭充电MOSFET
- (2) BSTATUS2寄存器中OTC状态位置1
- (3) BFLAG2寄存器中OTC_FLG标志位置1

同时满足下述条件时,SH367309退出充电高温保护状态:

- (1) 所有温度点温度低于充电高温恢复温度TotcR
- (2) 状态(1)持续时间超过温度保护延时tr
- SH367309退出充电高温保护状态时,执行下述动作:
- (1) 开启充电MOSFET
- (2) BSTATUS2寄存器中OTC状态位清0

8.5.2 充电低温保护

同时满足下述条件时,SH367309进入充电低温保护状态:

- (1) 任意温度点温度低于充电低温保护温度Tutc
- (2) 状态(1)持续时间超过温度保护延时t_T

SH367309处于充电低温保护状态时,执行下述动作:

- (1) 关闭充电MOSFET
- (2) BSTATUS2寄存器中UTC状态位置1
- (3) BFLAG2寄存器中UTC_FLG标志位置1

同时满足下述条件时,SH367309退出充电低温保护状态:

- (1) 所有温度点温度高于充电低温恢复温度Tutcr
- (2) 状态(1)持续时间超过温度保护延时t_T

SH367309退出充电低温保护状态时,执行下述动作:

- (1) 开启充电MOSFET
- (2) BSTATUS2寄存器中UTC状态位清0

8.5.3 放电高温保护

同时满足下述条件时,SH367309进入放电高温保护状态:

- (1) 任意温度点温度高于放电高温保护温度ToTD
- (2) 状态(1)持续时间超过温度保护延时t_T

SH367309处于放电高温保护状态时,执行下述动作:

- (1) 关闭放电MOSFET
- (2) BSTATUS2寄存器中OTD状态位置1
- (3) BFLAG2寄存器中OTD_FLG标志位置1

同时满足下述条件时,SH367309退出放电高温保护状态:

- (1) 所有温度点温度低于放电高温恢复温度TOTDR
- (2) 状态(1)持续时间超过温度保护延时t_T
- SH367309退出放电高温保护状态时,执行下述动作:
- (1) 开启放电MOSFET
- (2) BSTATUS2寄存器中OTD状态位清0

8.5.4 放电低温保护

同时满足下述条件时,SH367309进入放电低温保护状态:

- (1) 任意温度点温度低于放电低温保护温度Tutp
- (2) 状态(1)持续时间超过温度保护延时tr

SH367309处于放电低温保护状态时,执行下述动作:

- (1) 关闭放电MOSFET
- (2) BSTATUS2寄存器中UTD状态位置1
- (3) BFLAG2寄存器中UTD_FLG标志位置1

同时满足下述条件时,SH367309退出放电低温保护状态:

- (1) 所有温度点温度高于放电低温恢复温度Tutdr
- (2) 状态(1)持续时间超过温度保护延时t_T

SH367309退出过放电保护状态时,执行下述动作:

- (1) 开启放电MOSFET
- (2) BSTATUS2寄存器中UTD状态位清0

注释: Totc、Totcr、Tutc、Tutcr、Totd、Totdr、Tutd、Tutdr可在EEPROM中设置。

Table 8.21 系统状态寄存器BSTATUS2

44H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BSTATUS2	-	-	-	-	OTD	UTD	OTC	UTC
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description 1)
7:4	-	Reserved
3	OTD	放电高温保护状态位 1: 发生放电高温保护 0: 未发生放电高温保护
2	UTD	放电低温保护状态位 1: 发生放电低温保护 0: 未发生放电低温保护
1	отс	充电高温保护状态位 1: 发生充电高温保护 0: 未发生充电高温保护
0	UTC	充电低温保护状态位 1: 发生充电低温保护 0: 未发生充电低温保护

Table 8.22 系统标志寄存器BFLAG2

71H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BFLAG2	RST_FLG	WAKE_FLG	CADC_FLG	VADC_FLG	OTD_FLG	UTD_FLG	OTC_FLG	UTC_FLG
读/写	读/写"0"	读/写"0"	读	读	读/写"0"	读/写"0"	读/写"0"	读/写"0"
复位值	1	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description 2)
3	OTD_FLG	放电高温保护标志位: 1: 发生过放电高温保护 0: 未发生过放电高温保护
2	UTD_FLG	放电低温保护标志位 1: 发生过放电低温保护 0: 未发生过放电低温保护
1	OTC_FLG	充电高温保护标志位 1: 发生过充电高温保护 0: 未发生过充电高温保护
0	UTC_FLG	充电低温保护标志位 1: 发生过充电低温保护 0: 未发生过充电低温保护

Table 8.23 充电高温保护设置寄存器

11H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ОТС	OTC7	OTC6	OTC5	OTC4	OTC3	OTC2	OTC1	OTC0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	OTC7~OTC0	充电高温保护阈值

Table 8.24 充电高温保护释放设置寄存器

12H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OTCR	OTCR7	OTCR6	OTCR5	OTCR4	OTCR3	OTCR2	OTCR1	OTCR0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	OTCR7~OTCR0	充电高温保护释放阈值

Table 8.25 充电低温保护设置寄存器

13H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UTC	UTC7	UTC6	UTC5	UTC4	UTC3	UTC2	UTC1	UTC0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	UTC7~UTC0	充电低温保护阈值

Table 8.26 充电低温保护释放设置寄存器

14H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UTCR	UTCR7	UTCR6	UTCR5	UTCR4	UTCR3	UTCR2	UTCR1	UTCR0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	UTCR7~UTCR0	充电低温保护释放阈值

Table 8.27 放电高温保护设置寄存器

15H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OTD	OTD7	OTD6	OTD5	OTD4	OTD3	OTD2	OTD1	OTD0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	OTD7~OTD0	放电高温保护阈值

Table 8.28 放电高温保护释放设置寄存器

16H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OTDR	OTDR7	OTDR6	OTDR5	OTDR4	OTDR3	OTDR2	OTDR1	OTDR0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	OTDR7~OTDR0	放电高温保护释放阈值

Table 8.29 放电低温保护设置寄存器

17H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UTD	UTD7	UTD6	UTD5	UTD4	UTD3	UTD2	UTD1	UTD0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	UTD7~UTD0	放电低温保护阈值

Table 8.30 放电低温保护释放设置寄存器

18H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UTDR	UTDR7	UTDR6	UTDR5	UTDR4	UTDR3	UTDR2	UTDR1	UTDR0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	UTDR7~UTDR0	放电低温保护释放阈值

8.5.5 温度保护阈值计算公式

(1) 充放电高温保护及保护释放阈值设置公式为:

阈值(OTC、OTC、OTD、OTDR) =
$$\frac{R_{_{T1}}}{R_{_{REF}} + R_{_{T1}}} \times 512$$

(2) 充放电低温保护及保护释放阈值设置公式为:

阈值(UTC、UTC、UTD、UTDR) =
$$\left(\frac{R_{\text{T1}}}{R_{\text{REF}} + R_{\text{T1}}} - 0.5\right) \times 512$$

其中 R_{T1} 为温度保护阈值对应的热敏电阻阻值(单位为 $k\Omega$), R_{REF} 为内部参考电阻阻值(单位为 $k\Omega$)。

内部参考电阻R_{REF}计算公式为:

$$R_{REF} = 6.8 + 0.05 * TR[6:0]$$

Table 8.31 温度内部参考电阻系数寄存器

19H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TR	=	TR6	TR5	TR4	TR3	TR2	TR1	TR0
读	-	读	读	读	读	读	读	读

位编号	位符号	说明
7	-	Reserved
6:0	TR6~ TR0	温度内部参考电阻系数

8.6 二次过充电保护

EEPROM寄存器SCONF2中DIS_PF=0,同时满足下述条件时,SH367309进入二次过充电保护状态:

- (1) 任意电芯电压高于二次过充电保护电压V_{P2N}
- (2) 状态(1)持续时间超过二次过充电保护延时t_{P2N}

SH367309处于二次过充电保护状态时,不允许进入Powerdown状态和SLEEP状态,执行下述动作:

- (1) 关闭充放电MOSFET
- (2) 关闭VADC和CADC模块(VADC和CADC相关寄存器值保持之前的数据)
- (3) PF管脚输出VSS电平
- (4) BSTATUS1寄存器中PF状态位置1

- (5) BFLAG1寄存器中PF_FLG标志位置1
- (6) ALARM管脚输出低电平脉冲(采集模式)

满足下述任意条件时,SH367309退出二次过充电保护状态:

- (1) 系统重新上电
- (2) 软件复位
- (3) 进入SHIP模式后再退出SHIP模式
- 注释: V_{P2N}和t_{P2N}可在EEPROM中设置。

Table 8.32 系统配置寄存器2

01H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF2	E0VB	-	UV_OP	DIS_PF	CTLC1	CTLC0	OCRA	EUVR
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
4	DIS_PF	二次过充电保护模块使能控制位 0: 启用二次过充电保护 1: 禁止二次过充电保护

Table 8.33 系统状态寄存器BSTATUS1

43H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BSTATUS1	WDT	PF	SC	occ	OCD2	OCD1	UV	OV
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description					
6	PF	二次过充电保护状态位 1: 发生二次过充电保护 0: 未发生二次过充电保护					

Table 8.34 系统标志寄存器BFLAG1

70H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BFLAG1	WDT_FLG	PF_FLG	SC_FLG	OCC_FLG	LOAD_FLG	OCD_FLG	UV_FLG	OV_FLG
读/写	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
6	PF_FLG	二次过充电保护标志位 1: 发生过二次过充电保护 0: 未发生过二次过充电保护

Table 8.35 二次过充电保护电压设置寄存器

0BH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PFV	PFV.7	PFV.6	PFV.5	PFV.4	PFV.3	PFV.2	PFV.1	PFV.0
读/写	读 / 写							

位编号	位符号	说明
7:0	PFV.7~ PFV.0	二次过充电保护电压,计算方式:寄存器值×20mV

注释:二次过充电保护电压= PFV寄存器值x20mV。

Table 8.36 充放电过流自动恢复/二次过充电保护延时设置寄存器

10H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
MOST/OCRT/PFT	CHS1	CHS0	MOST1	MOST0	OCRT1	OCRT0	PFT1	PFT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
1:0	PFT1~PFT0	二次过充电保护延时设置 PFT[1:0] = 00: 二次过充电保护延时 =8S PFT[1:0] = 01: 二次过充电保护延时= 16S PFT[1:0] = 10: 二次过充电保护延时= 32S PFT[1:0] = 11: 二次过充电保护延时= 64S

8.7 断线保护功能

EEPROM寄存器SCONF2中DIS_PF=0,使能断线保护功能,当发生断线保护后,不允许进入Powerdown状态和SLEEP状态,且执行下述动作:

- (1) 关闭充放电MOSFET
- (2) 关闭VADC和CADC模块(VADC和CADC相关寄存器值保持之前的数据)
- (3) PF管脚输出VSS电平
- (4) BSTATUS1寄存器中PF状态位置1
- (5) BFLAG1寄存器中PF_FLG标志位置1
- (6) ALARM管脚输出低电平脉冲(采集模式)

满足下述任意条件时,SH367309退出断线保护状态:

- (1) 系统重新上电
- (2) 软件复位
- (3) 进入SHIP模式后再退出SHIP模式

注释: 断线保护延时和二次过充电保护延时复用设置寄存器PFT[1:0]。

8.8 禁止低压电芯充电功能

EEPROM中寄存器SCONF2的E0VB可开关低压电芯充电禁止功能。

Table 8.37 系统配置寄存器2

01H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF2	E0VB	-	UV_OP	DIS_PF	CTLC1	CTLC0	OCRA	EUVR
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7	E0VB	禁止低压电芯充电功能设置控制位 0:关闭"禁止低压电芯充电"功能 1:开启"禁止低压电芯充电"功能

开启禁止低压电芯充电功能时,满足下述条件SH367309关闭充电MOSFET:

- (1) 当任意电芯电压低于低电压禁止充电电压VLOV
- (2) 状态(1)持续时间超过10* tcycle

 V_{LOV} 小于过放电保护电压 V_{UV} ,当禁止低压电芯充电功能启动,一旦电芯电压低于 V_{LOV} 则电芯永久无法充电。

注释: 低电压禁止充电电压VLov可在EEPROM中设置。

Table 8.38 低电压禁止充电电压设置寄存器

0AH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
L0V	-	L0V.6	L0V.5	L0V.4	L0V.3	L0V.2	L0V.1	L0V.0
读/写	读 / 写	读/写						

位编号	位符号	说明						
7:0	L0V.6~ L0V.0	低电压禁止充电电压,计算方式: 寄存器值×20mV						

注释: 低电压禁止充电电压VLOV设定值= LOV寄存器值x20mV。

8.9 平衡功能

SH367309内置平衡功能,EEPROM寄存器SCONF1中BAL位可设置平衡模块的工作模式。

Table 8.39 系统配置寄存器1

00H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF1	ENPCH	ENMOS	ОСРМ	BAL	CN3	CN2	CN1	CN0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
4	BAL	平衡功能模块使能控制位 0:平衡开启由SH367309内部逻辑控制 1:平衡开启由外部MCU控制,平衡时序仍由SH367309内部逻辑控制

平衡由SH367309控制时,满足下述条件时,开启CellN的平衡:

- (1) 未发生温度保护
- (2) 未发生二次过充电保护
- (3) CellN电压超过平衡开启电压V_{BAL}
- (4) 状态(1)~(3)持续时间超过tbalanceT

SH367309停止CellN平衡的条件:

- (1) CellN电压小于平衡开启电压V_{BAL}
- (2) 发生温度保护
- (3) 发生二次过充电保护

注释: VBAL可在EEPROM中设置。

SH367309内部平衡采取奇偶平衡时序,具体如下图:

图11 奇偶平衡时序

Table 8.40 平衡开启电压设置寄存器

08H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
BALV	BALV.7	BALV.6	BALV.5	BALV.4	BALV.3	BALV.2	BALV.1	BALV.0
读/写	读 / 写	读/写						

位编号	位符号	说明
7:0	BALV.7~ BALV.0	平衡开启电压,计算方式:寄存器值×20mV

34

注释: 平衡开启电压= BALV寄存器值x20mV。

9. AFE功能

SH367309处于采集模式时,具备AFE的相应功能,开启TWI模块。ADC模块以及TWI模块在12章中介绍。

9.1 平衡控制功能

采集模式下,EEPROM寄存器SCONF1中BAL位置位时,MCU可自主控制平衡模块。

Table 9.1 系统配置寄存器1

00H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF1	ENPCH	ENMOS	OCPM	BAL	CN3	CN2	CN1	CN0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
4	BAL	平衡功能模块使能控制位 0:平衡开启由SH367309内部逻辑控制 1:平衡开启由外部MCU控制,平衡时序仍由SH367309内部逻辑控制

平衡由外部MCU控制时,同时满足下述条件,开启CellN的平衡回路:

- (1) 未发生温度保护
- (2) 未发生二次过充电保护
- (3) BALANCE寄存器中任意CBn被置位

当满足下述任一条件,关闭CellN平衡回路:

- (1) BALANCE寄存器中的CBn被清零
- (2) 平衡开启持续1分钟
- (3) 发生温度保护
- (4) 发生二次过充电保护

注释: 当平衡持续1分钟后,会自动停止平衡,Balance寄存器中所有位均被清零,如果需要继续平衡,MCU需要重新配置 Balance寄存器。平衡过程中,平衡寄存器中任意位被置1,会重新开始1分钟计时。

Table 9.2 平衡寄存器

41H,42H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
BALANCEH	CB16	CB15	CB14	CB13	CB12	CB11	CB10	CB9
BALANCEL	CB8	CB7	CB6	CB5	CB4	CB3	CB2	CB1
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
15:0	CBn	平衡回路控制位 1: 开启CellN平衡回路 0: 关闭CellN平衡回路

9.2 充放电状态

同时满足下述条件时,SH367309判定系统处于充电状态:

- (1) (RS2-RS1)电压≤-V_{CH}
- (2) 状态(1)持续时间超过2* tcycle

处于充电状态时,SH367309置位寄存器BSTATUS3的CHGING位。

同时满足下述条件时,SH367309判定系统处于放电状态:

- (1) (RS2-RS1)电压≥V_{CH}
- (2) 状态(1)持续时间超过2* tcvcle

处于放电状态时,SH367309置位寄存器BSTATUS3的DSGING位。

SH367309实时检测系统充放电状态,当寄存器BSTATUS3的CHGING位和DSGING位均为零时,SH367309判定系统处于静置状态。

Table 9.3 系统状态寄存器BSTATUS3

45H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BSTATUS3	CHGING	DSGING	-	EEPR_WR	L0V	PCHG_FET	CHG_FET	DSG_FET
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	CHGING	充电状态位 1: 充电状态 0: 非充电状态
6	DSGING	放电状态位 1: 放电状态 0: 非放电状态

9.3 看门狗寄存器 (WDT)

SH367309内置看门狗功能,但是只有采集模式下才允许启用看门狗功能。看门狗定时器是一个递减计数器,有效的TWI通讯可复位看门狗计数器,重新开始计数。

当看门狗定时器溢出时,SH367309执行下述动作:

- (1) 关闭充放电MOSFET及预充电MOSFET
- (2) 清零平衡控制寄存器BALANCEH和BALANCEL

满足下述任一条件时,SH367309解除看门狗溢出状态:

- (1) TWI通讯清零寄存器BFLAG1的WDT_FLG位
- (2) 芯片复位

SH367309内置看门狗模块溢出的进退(复位除外),不清除任何保护状态。

RAM寄存器RSTSTAT可设置看门狗溢出时间,RAM寄存器CONF的ENWDT位可开关看门狗模块。

Table 9.4 看门狗寄存器

72H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RSTSTAT	-	-	-	-	-	-	WDT.1	WDT.0
读/写	读	读	读	读	读	读	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明				
1:0	WDT.1~ WDT.0	看门狗溢出时间控制位 WDT[1-0]=00: 看门狗溢出时间为32S; WDT[1-0]=01: 看门狗溢出时间为16S; WDT[1-0]=10: 看门狗溢出时间为8S; WDT[1-0]=11: 看门狗溢出时间为4S;				

Table 9.5 系统配置寄存器

40H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CONF	OCRC	PCHMOS	DSGMOS	CHGMOS	CADCON	ENWDT	SLEEP	IDLE
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	1	1	1	0	0	0	0

位编号	位符号	说明
2	ENWDT	看门狗设置控制位 0: SH367309关闭看门狗模块 1: SH367309开启看门狗模块

10. MOSFET驱动

SH367309内置N沟道MOSFET驱动,包含放电MOSFET驱动、充电MOSFET驱动以及预充电MOSFET驱动。

驱动管脚	说明	高电平	低电平
DSG	放电MOSFET驱动管脚	V_{DSGH}	V_{DSGL}
CHG	充电MOSFET驱动管脚	V _{CHGH}	高阻态
PCHG	预充电MOSFET驱动管脚	V _{РСНGН}	高阻态

表3 MOSFET驱动电压表

RAM寄存器BSTATUS3中可以查看MOSFET管脚驱动状态。

Table 10.1 系统状态寄存器BSTATUS3

45H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BSTATUS3	CHGING	DSGING	-	EEPR_WR	L0V	PCHG_FET	CHG_FET	DSG_FET
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
2	PCHG_FET	预充电MOSFET开关状态位 1: 预充电MOSFET开启 0: 预充电MOSFET关闭
1	CHG_FET	充电MOSFET开关状态位 1: 充电MOSFET开启 0: 充电MOSFET关闭
0	DSG_FET	放电MOSFET开关状态位 1: 放电MOSFET开启 0: 放电MOSFET关闭

通过操作RAM寄存器CONF中相应位,可控制MOSFET驱动。

Table 10.2 系统配置寄存器

40H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CONF	OCRC	PCHMOS	DSGMOS	CHGMOS	CADCON	ENWDT	SLEEP	IDLE
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	1	1	1	0	0	0	0

位编号	位符号	说明
6	PCHMOS	预充电MOSFET控制位 0: 预充电MOSFET关闭 1: 预充电MOSFET由硬件保护模块决定
5	DSGMOS	放电MOSFET控制位 0: 放电MOSFET关闭 1: 放电MOSFET由硬件保护模块决定
4	CHGMOS	充电MOSFET控制位 0: 充电MOSFET关闭 1: 充电MOSFET由硬件保护模块决定

10.1 预充电MOSFET

寄存器SCONF1中ENPCH位可开关SH367309的预充电功能模块。

Table 10.3 系统配置寄存器1

00H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF1	ENPCH	ENMOS	OCPM	BAL	CN3	CN2	CN1	CN0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7	ENPCH	预充电模块控制位 0: 禁用预充电功能 1: 启用预充电功能

ENPCH=1时,当满足以下条件时,开启预充电MOSFET:

- (1) 过放电状态下,任意节电芯低于预充电开启电压VPCH,且持续时间超过预充电延时tPCHG
- (2) 未发生过充电保护、充电高温/低温保护、充电过流保护、放电过流保护(OCPM=1时)、二次过充电过充电保护
- (3) CTL管脚未控制预充电MOSFET关闭
- (4) 看门狗寄存器未溢出
- (5) CONF寄存器的PCHMOS控制位设置为1(预充电MOSFET开启); (保护模式此条件无效)
- (6) 关闭低电压禁止充电功能,或者低电压禁止功能有效,但此时电芯电压都在低电压禁止充电电压V_{LOV}以上 预充电MOSFET开启期间,SH367309关闭充电MOSFET。处于预充电过程中,平衡功能有效。

满足以下任一条件时,关闭预充电MOSFET:

- (1) 所有电芯电压高于预充电开启电压VPCH, 且持续时间超过2* tcvcle
- (2) 发生过充电保护、充电高温/低温保护、充电过流保护、放电过流保护(OCPM=1时)、二次过充电过充电保护
- (3) CTL管脚控制预充电MOSFET关闭
- (4) 看门狗寄存器溢出
- (5) CONF寄存器的PCHMOS控制位设置为0(预充电MOSFET开启); (保护模式此条件无效)
- (6) 低电压禁止功能有效,且此时有电芯电压低于低电压禁止充电电压VLOV

注释: 预充电开启电压V_{PCH}可在EEPROM中设置,是否允许预充电功能也可在EEPROM中设置。

Table 10.4 预充电电压设置寄存器

09H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PREV	PREV.7	PREV.6	PREV.5	PREV.4	PREV.3	PREV.2	PREV.1	PREV.0
读/写	读/写	读 / 写						

位编号	位符号	说明
7:0	PREV.7~ PREV.0	预充电电压,计算方式:寄存器值×20mV

注释: 预充电开启电压V_{PCH}设定值= PREV寄存器值x20mV。

10.2 强制开启充电MOSFET功能

EEPROM寄存器SCONF1中ENMOS位可设置SH367309强制开启充电MOSFET功能:

Table 10.5 系统配置寄存器1

00H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF1	ENPCH	ENMOS	ОСРМ	BAL	CN3	CN2	CN1	CN0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
6	ENMOS	充电MOSFET恢复控制位 0: 禁用充电MOSFET恢复控制位 1: 启用充电MOSFET恢复控制位。当过充电/温度保护关闭充电MOSFET后,如果检测到放电过流1或者放电状态,则开启充电MOSFET;

ENMOS=1时,当满足下述任一条件时,SH367309强制开启充电MOSFET

- (1) 检测到放电电流超过放电过流1电流,且超过充放电MOSFET开启延时t_{MOSFET}
- (2) 检测到当前为放电状态

若充电MOSFET强制开启条件均不满足,相应保护状态未解除,且充电MOSFET已开启,延迟10mS后关闭充电MOSFET。

11. 管脚功能

11.1 CTL管脚

通过SH367309的CTL管脚可控制充放电MOSFET,通过RAM寄存器SCONF2的CTLC[1:0]可设置CTL管脚功能。

Table 11.1系统配置寄存器2

01H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF2	E0VB	-	UV_OP	DIS_PF	CTLC1	CTLC0	OCRA	EUVR
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明					
3:2	CTLC1~0	CTL管脚功能设置控制位 CTLC[1:0]=00: 不控制任何MOSFET,CTL管脚输入无效 CTLC[1:0]=01: 同时控制充电和预充电MOSFET。 CTLC[1:0]=10: 控制放电MOSFET。 CTLC[1:0]=11: 同时控制充放电和预充电MOSFET。					

CTL管脚输入和控制功能对应关系如下表:

CTL 管脚输入	MOSFET 状态				
高电平 V _{H-CTL}	取决于 SH367309 内部逻辑				
低电平 V _{L-CTL}	关闭相应 MOSFET				

表4 CTL管脚功能

11.2 LDO_EN管脚

LDO_EN管脚为SH367309 LDO3使能控制端,功能模式如下表:

LDO_EN管脚输入	LDO3功能模块
高电平V _{H-LDO_EN}	开启
低电平V _{L-LDO_EN}	关闭

表5 LDO_EN管脚功能

11.3 MODE管脚

MODE管脚为SH367309 采集模式和保护模式选择端,功能模式如下表:

MODE管脚输入	SH367309工作模式
高电平V _{H-MODE}	采集模式
低电平V _{L-MODE}	保护模式

表6 MODE管脚功能

11.4 ALARM管脚

SH367309处于采集模式下,ALARM管脚为对外通讯管脚;处于保护模式下,ALARM管脚为高阻态。 采集模式下,ALARM管脚正常输出逻辑高电平。出现下表中的系统状态,ALARM管脚输出一个低电平脉冲。

系统状态(状态位从0→1)	ALARM管脚输出
VADC采集完成(100mS采集周期)	低电平脉冲
CADC采集完成(250mS采集周期)	低电平脉冲
进入过充电/过放电保护状态	低电平脉冲
进入充电过流/放电过流/短路保护状态	低电平脉冲
进入温度保护状态	低电平脉冲
进入二次过压保护状态	低电平脉冲
看门狗溢出	低电平脉冲
外部LDO3供电电路发生过流保护	低电平脉冲
电流检测唤醒IDLE状态	低电平脉冲
充电器连接唤醒SLEEP状态	低电平脉冲

表7 ALARM管脚功能

ALARM管脚低电平脉冲的时序图如下:

图12 ALARM管脚对外通讯示意图

11.5 STA检测

SH367309工作在采集模式,且处于IDLE状态或SLEEP状态,系统会开启STA检测。当系统接收到TWI通讯的的Start信号,SH367309先下拉SCL引脚,退出IDLE或SLEEP状态,并同时释放SCL引脚。此时,寄存器BFLAG2的WAKE_FLG位被置1。

12. 功能模块

12.1 电压/温度/电流采集用VADC

12.1.1 特性

- ◆ 13位Σ-Δ模/数转换器
- ◆ 10Hz转换频率
- ◆ 20通道数据采集

12.1.2 采集范围及结果存放

SH367309内置VADC有20个通道的数据采集: 16个电芯电压采集通道,1个电流采集通道以及3个温度采集通道。

电压采集通道输入范围: 0~5V;

电流采集通道电压输入范围: -0.2~0.2V; 温度采集通道电压输入范围: 0~3.0V。

图13 VADC通道示意图

VADC的电压转换结果以电芯电压值的形式存放于寄存器,转换结果为有符号16bit数据,CELL1是靠近VSS端口的电芯,CELL16是靠近VBAT端口的电芯;温度转换结果以温度电阻分压比的形式存放于寄存器,转换结果为有符号16bit数据;电流以采样电阻电压值的形式存放于寄存器,转换结果为有符号16 bit数据。

所有VADC转换结果均有专用寄存器存储,具体如下:

Table 12.1 Cell1电芯电压寄存器

4EH, 4FH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL1H	CELL1.15	CELL1.14	CELL1.13	CELL1.12	CELL1.11	CELL1.10	CELL1.9	CELL1.8
CELL1L	CELL1.7	CELL1.6	CELL1.5	CELL1.4	CELL1.3	CELL1.2	CELL1.1	CELL1.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL1.15- CELL1.0	当转换完成后,数据更新为电芯1电压对应的数值

Table 12.2 Cell2电芯电压寄存器

50H, 51H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL2H	CELL2.15	CELL2.14	CELL2.13	CELL2.12	CELL2.11	CELL2.10	CELL2.9	CELL2.8
CELL2L	CELL2.7	CELL2.6	CELL2.5	CELL2.4	CELL2.3	CELL2.2	CELL2.1	CELL2.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL2.15- CELL2.0	当转换完成后,数据更新为电芯2电压对应的数值

Table 12.3 Cell3电芯电压寄存器

52H, 53H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL3H	CELL3.15	CELL3.14	CELL3.13	CELL3.12	CELL3.11	CELL3.10	CELL3.9	CELL3.8
CELL3L	CELL3.7	CELL3.6	CELL3.5	CELL3.4	CELL3.3	CELL3.2	CELL3.1	CELL3.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL3.15- CELL3.0	当转换完成后,数据更新为电芯3电压对应的数值

Table 12.4 Cell4电芯电压寄存器

54H, 55H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL4H	CELL4.15	CELL4.14	CELL4.13	CELL4.12	CELL4.11	CELL4.10	CELL4.9	CELL4.8
CELL4L	CELL4.7	CELL4.6	CELL4.5	CELL4.4	CELL4.3	CELL4.2	CELL4.1	CELL4.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL4.15- CELL4.0	当转换完成后,数据更新为电芯4电压对应的数值

Table 12.5 Cell5电芯电压寄存器

56H, 57H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL5H	CELL5.15	CELL5.14	CELL5.13	CELL5.12	CELL5.11	CELL5.10	CELL5.9	CELL5.8
CELL5L	CELL5.7	CELL5.6	CELL5.5	CELL5.4	CELL5.3	CELL5.2	CELL5.1	CELL5.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL5.15- CELL5.0	当转换完成后,数据更新为电芯5电压对应的数值

Table 12.6 Cell6电芯电压寄存器

58H, 59H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL6H	CELL6.15	CELL6.14	CELL6.13	CELL6.12	CELL6.11	CELL6.10	CELL6.9	CELL6.8
CELL6L	CELL6.7	CELL6.6	CELL6.5	CELL6.4	CELL6.3	CELL6.2	CELL6.1	CELL6.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL6.15- CELL6.0	当转换完成后,数据更新为电芯6电压对应的数值

Table 12.7 Cell7电芯电压寄存器

5AH, 5BH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL7H	CELL7.15	CELL7.14	CELL7.13	CELL7.12	CELL7.11	CELL7.10	CELL7.9	CELL7.8
CELL7L	CELL7.7	CELL7.6	CELL7.5	CELL7.4	CELL7.3	CELL7.2	CELL7.1	CELL7.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编	号	位符号	说明
7: 7:	^	CELL7.15- CELL7.0	当转换完成后,数据更新为电芯7电压对应的数值

Table 12.8 Cell8电芯电压寄存器

5CH, 5DH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL8H	CELL8.15	CELL8.14	CELL8.13	CELL8.12	CELL8.11	CELL8.10	CELL8.9	CELL8.8
CELL8L	CELL8.7	CELL8.6	CELL8.5	CELL8.4	CELL8.3	CELL8.2	CELL8.1	CELL8.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL8.15- CELL8.0	当转换完成后,数据更新为电芯8电压对应的数值

Table 12.9 Cell9电芯电压寄存器

5EH, 5FH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL9H	CELL9.15	CELL9.14	CELL9.13	CELL9.12	CELL9.11	CELL9.10	CELL9.9	CELL9.8
CELL9L	CELL9.7	CELL9.6	CELL9.5	CELL9.4	CELL9.3	CELL9.2	CELL9.1	CELL9.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL9.15- CELL9.0	当转换完成后,数据更新为电芯9电压对应的数值

Table 12.10 Cell10电芯电压寄存器

60H, 61H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL10H	CELL10.15	CELL10.14	CELL10.13	CELL10.12	CELL10.1 1	CELL10.1 0	CELL10.9	CELL10. 8
CELL10L	CELL10.7	CELL10.6	CELL10.5	CELL10.4	CELL10.3	CELL10.2	CELL10.1	CELL10.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL10.15- CELL10.0	当转换完成后,数据更新为电芯10电压对应的数值

Table 12.11 Cell11电芯电压寄存器

62H,63H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL11H	CELL11.15	CELL11.14	CELL11.13	CELL11.12	CELL11.1 1	CELL11.1 0	CELL11.9	CELL11. 8
CELL11L	CELL11.7	CELL11.6	CELL11.5	CELL11.4	CELL11.3	CELL11.2	CELL11.1	CELL11.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL11.15- CELL11.0	当转换完成后,数据更新为电芯11电压对应的数值

Table 12.12 Cell12电芯电压寄存器

64H, 65H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL12H	CELL12.15	CELL12.14	CELL12.13	CELL12.12	CELL12.1 1	CELL12.1 0	CELL12.9	CELL12. 8
CELL12L	CELL12.7	CELL12.6	CELL12.5	CELL12.4	CELL12.3	CELL12.2	CELL12.1	CELL12.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL12.15- CELL12.0	当转换完成后,数据更新为电芯12电压对应的数值

Table 12.13 Cell13电芯电压寄存器

66H, 67H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL13H	CELL13.15	CELL13.14	CELL13.13	CELL13.12	CELL13.1 1	CELL13.1 0	CELL13.9	CELL13. 8
CELL13L	CELL13.7	CELL13.6	CELL13.5	CELL13.4	CELL13.3	CELL13.2	CELL13.1	CELL13.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0	CELL13.15-	当转换完成后,数据更新为电芯13电压对应的数值
7:0	CELL13.0	三·

Table 12.14 Cell14电芯电压寄存器

68H, 69H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL14H	CELL14.15	CELL14.14	CELL14.13	CELL14.12	CELL14.1 1	CELL14.1 0	CELL14.9	CELL14. 8
CELL14L	CELL14.7	CELL14.6	CELL14.5	CELL14.4	CELL14.3	CELL14.2	CELL14.1	CELL14.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL14.15- CELL14.0	当转换完成后,数据更新为电芯14电压对应的数值

Table 12.15 Cell15电芯电压寄存器

6AH, 6BH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL15H	CELL15.15	CELL15.14	CELL15.13	CELL15.12	CELL15.1 1	CELL15.1 0	CELL15.9	CELL15. 8
CELL15L	CELL15.7	CELL15.6	CELL15.5	CELL15.4	CELL15.3	CELL15.2	CELL15.1	CELL15.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL15.15- CELL15.0	当转换完成后,数据更新为电芯15电压对应的数值

Table 12.16 Cell16电芯电压寄存器

6CH, 6DH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CELL16H	CELL16.15	CELL16.14	CELL16.13	CELL16.12	CELL16.1 1	CELL16.1 0	CELL16.9	CELL16. 8
CELL16L	CELL16.7	CELL16.6	CELL16.5	CELL16.4	CELL16.3	CELL16.2	CELL16.1	CELL16.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CELL16.15- CELL16.0	当转换完成后,数据更新为电芯16电压对应的数值

Table 12.17 T1温度寄存器

46H, 47H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TEMP1H	TEMP1.15	TEMP1.14	TEMP1.13	TEMP1.12	TEMP1.11	TEMP1.10	TEMP1.9	TEMP1.8
TEMP1L	TEMP1.7	TEMP1.6	TEMP1.5	TEMP1.4	TEMP1.3	TEMP1.2	TEMP1.1	TEMP1.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	TEMP1.15- TEMP1.0	当转换完成后,数据更新为温度电阻1上的电压分压比对应的数值

Table 12.18 T2温度寄存器

48H, 49H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TEMP2H	TEMP2.15	TEMP2.14	TEMP2.13	TEMP2.12	TEMP2.1 1	TEMP2.10	TEMP2.9	TEMP2.8
TEMP2L	TEMP2.7	TEMP2.6	TEMP2.5	TEMP2.4	TEMP2.3	TEMP2.2	TEMP2.1	TEMP2.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	TEMP2.15- TEMP2.0	当转换完成后,数据更新为温度电阻2上的电压分压比对应的数值

Table 12.19 T3温度寄存器

4AH, 4BH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ТЕМРЗН	TEMP3.15	TEMP3.14	TEMP3.13	TEMP3.12	TEMP3.1 1	TEMP3.10	TEMP3.9	TEMP3.8
TEMP3L	TEMP3.7	TEMP3.6	TEMP3.5	TEMP3.4	TEMP3.3	TEMP3.2	TEMP3.1	TEMP3.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	TEMP3.15- TEMP3.0	当转换完成后,数据更新为温度电阻3上的电压分压比对应的数值

Table 12.20 电流寄存器

4CH, 4DH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CURH	CUR.15	CUR.14	CUR.13	CUR.12	CUR.11	CUR.10	CUR.9	CUR.8
CURL	CUR.7	CUR.6	CUR.5	CUR.4	CUR.3	CUR.2	CUR.1	CUR.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0	CUR.15- CUR.0	CUR15为符号位,"1"表示放电,"0"表示充电。
7:0	CUR. 13- CUR.U	当转换完成后,数据更新为Sense电阻两端电压对应的数值

12.1.3 电压/温度/电流计算公式

根据VADC转换结果可以计算出各电芯电压值、温度检测值以及电流值。

(1) 电芯电压计算公式,以CELL1为例(单位: mV,其中CELL1为CELL1寄存器值):

$$V_{CELL1} = CELL1 \times \frac{5}{32}$$

(2) 温度计算公式,以TEMP1为例(单位: $k\Omega$,其中 R_{T1} 为外部热敏电阻阻值, R_{REF} 为内部参考电阻阻值,TEMP1为TEMP1 寄存器值,可依据外部热敏电阻阻值 R_{T1} 与温度之间对应关系获取真实温度值):

$$R_{T1} = \frac{TEMP1}{32768\text{-TEMP1}} \times R_{REF}$$

内部参考电阻 R_{REF} 计算公式为(单位: $k\Omega$, 其中TR[6:0]是寄存器TR的低7bit):

$$R_{REF} = 6.8 + 0.05 * TR[6:0]$$

(3) 电流计算公式(单位: mA,其中CUR为CUR寄存器值, R_{SENSE}为Sense电阻(单位为Ω)):

$$Current = \frac{200 \times CUR}{26837 \times R_{SENSE}}$$

12.1.4 VADC采集时序

SH367309的VADC转换频率为10Hz, VADC以固有时序采集电芯电压、温度以及电流。

- (1) 每1个t_{cvcle}周期内,VADC按照固定的时序采集16通道电压以及1通道电流
- (2) 每1S周期内, VADC按照固定的时序采集一次3通道温度

每个t_{cycle}周期采集完成后,SH367309会置起VADC_FLG中断标志位,同时ALARM管脚输出一个低电平脉冲。当BFLAG2 寄存器被读取后,VADC_FLG标志自动被清除。电芯串数和温度检测点数的调整不改变VADC的检测时序。

Table 12.21 系统标志寄存器BFLAG2

71H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BFLAG2	RST_FLG	WAKE_FLG	CADC_FLG	VADC_FLG	OTD_FLG	UTD_FLG	OTC_FLG	UTC_FLG
读/写	读/写"0"	读/写"0"	读	读	读/写"0"	读/写"0"	读/写"0"	读/写"0"
复位值	1	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
4	VADC_FLG	VADC转换完成标志位 1: VADC转换完成 0: VADC未转换完成 该bit被读取之后,硬件会自动清零

若发生平衡动作,VADC采集时序相应调整:VADC采集循环与平衡间隔进行,具体如下图。

图14 奇偶平衡时序

若平衡开启后, SH367309相应的检测和状态进退时间会发生变化:

- (1) 发生过充电/过充电恢复/过放电/过放电恢复/Powerdown/二次过充电保护/预充电/禁止低压充电等异常现象,此时保护延时可能产生最大 $t_{balanceT}$ 的偏差
 - (2) 温度检测和保护不受影响
 - (3) 电流检测和保护不受影响

12.2 电流采集专用CADC

12.2.1 特性

- ◆ 16位Σ-Δ模/数转换器
- ◆ 4Hz转换频率
- ◆ 1通道双端差分输入

12.2.2 采集范围及结果存放

CADC仅有1个采集通道: 电流采集通道。

电流通道电压输入范围: -0.20~0.20V。

CADC采集结果存放在专用寄存器CADCD中。

Table 12.22 CADC电流寄存器

6EH, 6FH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CADCDH	CDATA.15	CDATA.14	CDATA.13	CDATA.12	CDATA.11	CDATA.10	CDATA.9	CDATA.8
CADCDL	CDATA.7	CDATA.6	CDATA.5	CDATA.4	CDATA.3	CDATA.2	CDATA.1	CDATA.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7:0 7:0	CDATA.15- CDATA.0	CDATA.15为符号位,"1"表示放电;"0"表示充电。 当转换完成后,数据更新为Sense电阻两端电压对应的数值

12.2.3 电流计算公式

根据CADC转换结果可以计算出电流值(单位: mA, 其中CADCD为CADCD寄存器值, R_{SENSE}为Sense电阻,单位为Ω):

$$Current = \frac{200 \times CADCD}{21470 \times R_{SENSE}}$$

12.2.4 CADC工作模式设置

RAM寄存器CONF中CADCON位可用于开关CADC模块,每250mS完成一次电流通道的数据采集。每次采集完成后,寄存器BFLAG2的CADC_FLG被置位同时ALARM管脚会输出一个低电平脉冲。CADC的工作不受CADC_FLG影响,当BFLAG2寄存器被读取后,CADC_FLG标志被清除。

Table 12.23 系统配置寄存器

40H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CONF	OCRC	PCHMOS	DSGMOS	CHGMOS	CADCON	ENWDT	SLEEP	IDLE
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	1	1	1	0	0	0	0

位编号	位符号	说明
3	CADCON	CADC设置控制位 0: SH367309关闭CADC 1: SH367309开启CADC进行电流采集

Table 12.24 系统标志寄存器BFLAG2

71H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BFLAG2	RST_FLG	WAKE_FLG	CADC_FLG	VADC_FLG	OTD_FLG	UTD_FLG	OTC_FLG	UTC_FLG
读/写	读/写"0"	读/写"0"	读	读	读/写"0"	读/写"0"	读/写"0"	读/写"0"
复位值	1	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
5	CADC_FLG	CADC中断标志位 1: 发生过CADC中断 0: 未发生过CADC中断 该bit被读取之后,硬件会自动清零

12.3 TWI串行通讯接口

12.3.1 特性

- ◆ 两线模式,简单快捷
- ◆ 只支持从机模式(Slave), 且地址固定为0x1A
- ◆ 允许发送数据(Transmitter)和接收数据(Receiver)
- ◆ 具有低电平总线超时判断(Timeout)
- ◆ 支持CRC8校验
- ◆ IDLE状态和SLEEP状态下通信可唤醒系统

12.3.2 工作方式

SH367309工作在采集模式,开启TWI模块。TWI串行总线采用两根线(SDA和SCL)在总线和装置之间传递信息。SH367309 完全符合TWI总线规范,自动对字节进行传输进行处理,并对串行通讯进行跟踪。

12.3.3 数据传输格式

数据传输中数据线上每一位的传输均需要时钟线上一个脉冲。在时钟高电平时数据线应保持稳定。但发送起始条件和终止条件时不需要遵守此规则。

和I2C通讯协议相似,TWI定义了两个特殊的波形:起始条件和终止条件。在时钟线为高电平时数据线的下降沿定义为起始条件,在时钟线为高电平时数据线的上升沿定义为终止条件。起始条件和终止条件均由主机发出。

主机可以发起和终结一次传输。当主机发送一个起始条件时开始一次传输, 发送一个终止条件时结束本次传输。在起始条件和终止条件之间,总线定义为"忙碌"状态。其它主机不应该去试图发起传输。在"忙碌"状态下,如果主机再次发送起始条件,则定义为"重复起始条件",表示主机希望不放弃总线的情况下开始一次新的传输。发送重复起始条件后,总线仍处于"忙碌"状态,一直到总线出现终止条件。鉴于重复起始条件和起始条件性质完全一致,除非特别声明,本文中将采用起始条件来代替两者。

所有数据包(包括地址包)均有9位组成,包括1个字节和一个应答位。主机负责发出时钟和起始及终止条件,接收者负责给出应答信号。接收者通过在第九个时钟脉冲处将数据线拉低发出"应答(ACK)"信号;或维持第九个脉冲处维持高电平表示"不应答(NACK)"信号。当接收方接收到最后一个字节,或因某种原因无法继续接收数据时,应回应"不应答(NACK)"信号。TWI采用从高到低逐位进行传输。

一次传输通常包括一个起始条件,地址+读/写,一个或多个数据包和一个终止条件。仅包含起始条件和终止条件的数据格式是不合通讯规则的。值得注意的是"线与"结构给主机和从机之间的握手信号提供了方便。当主机相对太快或从机需要处理其它事务时,从机可以通过拉低时钟线来拉长时钟线的低电平时间,从而降低通讯频率。从机可以拉长时钟线低电平周期但不会影响到时钟线高电平的周期。

在产生应答信号时,SH367309拉低SDA信号线。当SH367309接收好数据后,释放SCL信号线。

12.3.4 传输模式

(1) 概述

下面将分别介绍TWI作为从机通讯的两种模式:从机发送模式和从机接收模式。在初始状态,SH367309等待总线对自己地址的响应。如果方向标志位是"读",则TWI进入从机发送模式,否则将进入从机接收模式。下图中有如下缩写:

 S
 : 开始条件

 Rs
 : 重复开始条件

R : 读控制位
W : 写控制位
A : 应答位
Ā : 无应答位
DATA : 8位数据
P : 终止条件
SLA : 从机地址

(2) 从机发送模式

从机发送模式中,从机发送一系列数据给主机。传送完一个字节,如果主机回应"应答"信息,则SH367309准备发送下一个字节;如果主机回应"不应答",则不继续发送数据(如果主机还在继续读取数据,则返回全"1"数据),等待主机发送"停止条件"或者"重复起始条件"。

(3) 从机接收模式

从机接收模式中,从主机接收一系列数据。

12.3.5 通信协议

12.3.5.1 概述

TWI通讯协议包括两部分: 读写EEPROM寄存器和读写RAM寄存器。

当VPRO管脚外接EEPROM烧写电压V_{PRO}时,TWI通信可写EEPROM寄存器。

TWI通讯中,SH367309作为从机,其固定地址为:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	1	1	0	1	0	R/W

12.3.5.2 EEPROM寄存器读写协议

(1) 写操作指令

SH367309 VPRO管脚接EEPROM烧写电压V_{PRO}时,EEPROM寄存器才可被改写。可写EEPROM寄存器地址为00H~18H,写操作的数据长度固定为1Byte。

当写完一个寄存器后需要延时35mS才能开始写下一个寄存器。

图15 TWI EEPROM写时序

(2) 读操作指令

SH367309可读取EEPROM的寄存器地址为00H~19H。可读取的数据长度需发送给SH367309,单位是Byte(该长度不包括读取的CRC字节)。如果读取的寄存器地址超出定义,则返回"全1"数据。

图16 TWI EEPROM读时序

12.3.5.3 RAM寄存器读写协议

(1) 写操作指令

SH367309 可写RAM寄存器地址为40H~42H、70H~72H。写操作的数据长度固定为1Byte,当写完1个寄存器后需要延时1mS才能开始写下一个寄存器。

图17 TWI RAM写单字节时序

(2) 读操作指令

SH367309可读取RAM寄存器地址为40H~72H。可读取的数据长度需发送给SH367309,单位是Byte(该长度不包括读取的CRC字节)。如果读取的寄存器地址超出定义,则返回"全1"数据。

图18 TWI RAM读字节时序

12.3.5.4 软件复位协议

SH367309 接收到以下指令协议后,会执行软件复位操作(如果EEPROM寄存器被改写,需执行软件复位操作才有效)。

图19 系统软件复位时序

12.3.5.5 CRC8校验

TWI写操作固定为写1Byte,CRC8会从起始位之后的数据开始校验,包括从机地址(含读/写位)、寄存器地址、写数据,多项式=X⁸+X²+X+1,如果CRC校验正确,SH367309会将数据更新至指定的寄存器,并返回ACK给主机,反之,则不会更新,并返回NACK给主机。

TWI读操作的数据长度可通过主机设置,CRC8会从起始位之后的数据开始校验,包括从机地址(含读/写位)、寄存器地址、所读取的数据长度N、以及重复开始条件之后的从机地址(含读/写位)、N字节数据进行校验,多项式=X⁸+X²+X+1,SH367309会将计算后的CRC8传递给主机。

软件复位指令按照固定格式。SH367309会根据接收到的第1Byte"0xEA"判定后续接收到的数据长度及CRC8。 *注释: CRC8初始值固定为0x00。*

13. EEPROM及RAM寄存器设置

13.1 EEPROM及RAM概述

图20 寄存器配置图

13.2 EEPROM寄存器列表及详述

序号(Hex)	名字				状态位	Ĺ			
分亏(Hex)	名子	7	6	5	4	3	2	1	0
00H	SCONF1	ENPCH	ENMOS	OCPM	BAL	CN3	CN2	CN1	CN0
01H	SCONF2	E0VB	-	UV_OP	DIS_PF	CTLC1	CTLC0	OCRA	EUVR
02H	OVT/LDRT /OVH	OVT3	OVT2	OVT1	OVT0	LDRT1	LDRT0	OV.9	OV.8
03H	OVL	OV.7	OV.6	OV.5	OV.4	OV.3	OV.2	OV.1	OV.0
04H	UVT/OVRH	UVT3	UVT2	UVT1	UVT0	-	-	OVR.9	OVR.8
05H	OVRL	OVR.7	OVR.6	OVR.5	OVR.4	OVR.3	OVR.2	OVR.1	OVR.0
06H	UV	UV.7	UV.6	UV.5	UV.4	OV.3	UV.2	UV.1	UV.0
07H	UVR	UVR.7	UVR.6	UVR.5	UVR.4	UVR.3	UVR.2	UVR.1	UVR.0
08H	BALV	BALV.7	BALV.6	BALV.5	BALV.4	BALV.3	BALV.2	BALV.1	BALV.0
09H	PREV	PREV.7	PREV.6	PREV.5	PREV.4	PREV.3	PREV.2	PREV.1	PREV.0
0AH	L0V	-	L0V.6	L0V.5	L0V.4	L0V.3	L0V.2	L0V.1	L0V.0
0BH	PFV	PFV.7	PFV.6	PFV.5	PFV.4	PFV.3	PFV.2	PFV.1	PFV.0
0CH	OCD1V/OCD1T	OCD1V3	OCD1V2	OCD1V1	OCD1V0	OCD1T3	OCD1T2	OCD1T1	OCD1T0
0DH	OCD2V/OCD2T	OCD2V3	OCD2V2	OCD2V1	OCD2V0	OCD2T3	OCD2T2	OCD2T1	OCD2T0
0EH	SCV/SCT	SCV3	SCV2	SCV1	SCV0	SCT3	SCT2	SCT1	SCT0
0FH	OCCV/OCCT	OCCV3	OCCV2	OCCV1	OCCV0	OCCT3	OCCT2	OCCT1	OCCT0
10H	MOST/OCRT/PFT	CHS1	CHS0	MOST1	MOST0	OCRT1	OCRT0	PFT1	PFT0
11H	отс	OTC7	OTC6	OTC5	OTC4	OTC3	OTC2	OTC1	OTC0
12H	OTCR	OTCR7	OTCR6	OTCR5	OTCR4	OTCR3	OTCR2	OTCR1	OTCR0
13H	UTC	UTC7	UTC6	UTC5	UTC4	UTC3	UTC2	UTC1	UTC0
14H	UTCR	UTCR7	UTCR6	UTCR5	UTCR4	UTCR3	UTCR2	UTCR1	UTCR0
15H	OTD	OTD7	OTD6	OTD5	OTD4	OTD3	OTD2	OTD1	OTD0
16H	OTDR	OTDR7	OTDR6	OTDR5	OTDR4	OTDR3	OTDR2	OTDR1	OTDR0
17H	UTD	UTD7	UTD6	UTD5	UTD4	UTD3	UTD2	UTD1	UTD0
18H	UTDR	UTDR7	UTDR6	UTDR5	UTDR4	UTDR3	UTDR2	UTDR1	UTDR0
19H	TR	-	TR6	TR5	TR4	TR3	TR2	TR1	TR0
1AH~1FH	Reserved	-	-	-	-	-	-	-	-

表8 EEPROM寄存器列表

Table 13.1 系统配置寄存器1

00H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF1	ENPCH	ENMOS	ОСРМ	BAL	CN3	CN2	CN1	CN0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7	ENPCH	预充电模块控制位 0: 禁用预充电功能 1: 启用预充电功能
6	ENMOS	充电MOSFET恢复控制位 0: 禁用充电MOSFET恢复控制位 1: 启用充电MOSFET恢复控制位。当过充电/温度保护关闭充电MOSFET后,如果检测到放电过流1或者放电状态,则开启充电MOSFET;
5	ОСРМ	充放电过流MOSFET控制位 0: 充电过流只关闭充电MOSFET; 放电过流只关闭放电MOSFET 1: 充放电过流关闭充放电MOSFET
4	BAL	平衡功能模块使能控制位 0:平衡开启由SH367309内部逻辑控制 1:平衡开启由外部MCU控制,平衡时序仍由SH367309内部逻辑控制
3:0	CN3~CN0	申数配置控制位 CN[3:0] = 0101: 5串电芯应用 CN[3:0] = 0110: 6串电芯应用 CN[3:0] = 0111: 7串电芯应用 CN[3:0] = 1000: 8串电芯应用 CN[3:0] = 1001: 9串电芯应用 CN[3:0] = 1010: 10串电芯应用 CN[3:0] = 1011: 11串电芯应用 CN[3:0] = 1100: 12串电芯应用 CN[3:0] = 1110: 13串电芯应用 CN[3:0] = 1111: 15串电芯应用 CN[3:0] = 1111: 15串电芯应用 CN[3:0] = 1111: 15串电芯应用 CN[3:0] = 1111: 15串电芯应用 CN[3:0] = ½它: 16串电芯应用 注释: SH367309兼容5~16串锂电池保护,当串数设置小于16串数,不使用的电芯输入端(靠近VBAT)短接至最高串电芯的正端即可

Table 13.2 系统配置寄存器2

01H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCONF2	E0VB	-	UV_OP	DIS_PF	CTLC1	CTLC0	OCRA	EUVR
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7	E0VB	禁止低压电芯充电功能设置控制位 0:关闭"禁止低压电芯充电"功能 1:开启"禁止低压电芯充电"功能
6	-	Reserved
5	UV_OP	过放电时MOSFET控制位 0: 过放电只关闭放电MOSFET 1: 过放电关闭充放电MOSFET
4	DIS_PF	二次过充电模块使能控制位 0: 启用二次过充电保护 1: 禁止二次过充电保护
3:2	CTLC1~0	CTL管脚功能设置控制位CTLC[1:0]=00: 充放电和预充电MOSFET由内部逻辑控制,CTL管脚输入无效CTLC[1:0]=01: 控制充电和预充电MOSFET。CTL输入V _{L-CTL} 电平时强制关闭充电和 预充电MOSFET; CTL输入V _{H-CTL} 电平时充电和预充电MOSFET由内 部逻辑控制CTLC[1:0]=10: 控制放电MOSFET。CTL输入V _{L-CTL} 电平时强制关闭放电MOSFET; CTL输入V _{H-CTL} 电平时,放电MOSFET由内部逻辑控制CTLC[1:0]=11: 控制充放电和预充电MOSFET。CTL输入V _{L-CTL} 电平时强制关闭充放 电和预充电MOSFET; CTL输入V _{H-CTL} 电平时,充放电和预充电 MOSFET由内部逻辑控制
1	OCRA	电流恢复设置控制位 0: 不允许电流保护定时恢复 1: 允许电流保护定时恢复
0	EUVR	过放电恢复设置控制位 0:过放电保护状态释放与负载释放无关 1:过放电保护状态释放还需负载释放

Table 13.3 过充电保护电压/过充电保护延时/负载释放延时设置寄存器

02H, 03H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OVH	OVT3	OVT2	OVT1	OVT0	LDRT1	LDRT0	OV.9	OV.8
OVL	OV.7	OV.6	OV.5	OV.4	OV.3	OV.2	OV.1	OV.0
读/写	读 / 写	读/写						

位编号	位符号	说明
7:4	OVT3~OVT0	过充电保护延时设置控制位
3:2	LDRT1~LDRT0	负载释放延时设置控制位 LDRT[1:0] = 00: 负载释放延时 = 100mS LDRT[1:0] = 01: 负载释放延时 = 500mS LDRT[1:0] = 10: 负载释放延时 = 1000mS LDRT[1:0] = 11: 负载释放延时 = 2000mS
1:0 7:0	OV.9~OV.0	过充电保护电压,计算方式:寄存器值×5mV

注释: 过充电保护电压=OV寄存器值x5mV。

Table 13.4 过充电恢复电压/过放电保护延时设置寄存器

04H, 05H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OVRH	UVT3	UVT2	UVT1	UVT0	-	-	OVR.9	OVR.8
OVRL	OVR.7	OVR.6	OVR.5	OVR.4	OVR.3	OVR.2	OVR.1	OVR.0
读/写	读/写	读 / 写	读 / 写	读/写	读 / 写	读 / 写	读 / 写	读 / 写

位编号	位符号	说明
7:4	UVT3~UVT0	対放电保护延时设置控制位
3:2	-	Reserved
1:0 7:0	OVR.9~OVR.0	过充电恢复电压,计算方式:寄存器值×5mV

注释: 过充电恢复电压=OVR寄存器值x5mV, OVR < OV。

Table 13.5 过放电保护电压设置寄存器

06H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UV	UV.7	UV.6	UV.5	UV.4	UV.3	UV.2	UV.1	UV.0
读/写	读 / 写							

位编号	位符号	说明
7:0	UV.7~ UV.0	过放电保护电压,计算方式: 寄存器值×20mV

注释: 过放电保护电压=UV寄存器值x20mV。

Table 13.6 过放电恢复电压设置寄存器

07H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UVR	UVR.7	UVR.6	UVR.5	UVR.4	UVR.3	UVR.2	UVR.1	UVR.0
读/写	读 / 写							

位编号	位符号	说明
7:0	UVR.7~UVR.0	过放电恢复电压,计算方式: 寄存器值×20mV

注释: 过放电恢复电压= UV寄存器值x20mV,且UV<UVR。

Table 13.7 平衡开启电压设置寄存器

08H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
BALV	BALV.7	BALV.6	BALV.5	BALV.4	BALV.3	BALV.2	BALV.1	BALV.0
读/写	读 / 写	读/写						

Preliminary SH367309

位编号	位符号	说明
7:0	BALV.7~ BALV.0	平衡开启电压,计算方式:寄存器值×20mV

注释: 平衡开启电压= BALV寄存器值x20mV。

Table 13.8 预充电电压设置寄存器

09H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PREV	PREV.7	PREV.6	PREV.5	PREV.4	PREV.3	PREV.2	PREV.1	PREV.0
读/写	读 / 写	读/写	读 / 写	读 / 写				

位编号	位符号	说明
7:0	PREV.7~ PREV.0	预充电电压,计算方式:寄存器值×20mV

注释: 预充电电压设定值= PREV寄存器值x20mV。

Table 13.9 低电压禁止充电电压设置寄存器

0AH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
L0V	-	L0V.6	L0V.5	L0V.4	L0V.3	L0V.2	L0V.1	L0V.0
读/写	读 / 写	读/写						

位编号	位符号	说明
7:0	L0V.6~ L0V.0	低电压禁止充电电压,计算方式:寄存器值×20mV

注释: 低电压禁止充电电压设定值= L0V寄存器值x20mV。

Table 13.10 二次过充电保护电压设置寄存器

0BH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PFV	PFV.7	PFV.6	PFV.5	PFV.4	PFV.3	PFV.2	PFV.1	PFV.0
读/写	读 / 写	读 / 写	读 / 写	读/写	读 / 写	读 / 写	读 / 写	读 / 写

Ī	位编号	位符号	说明
	7:0	PFV.7~ PFV.0	二次过充电保护电压,计算方式:寄存器值×20mV

注释:二次过充电保护电压= PFV寄存器值x20mV。

Table 13.11 电压阈值关系

	高 → 低							
PFV	ov	OVR	UVR	UV	V_{PD}	PREV	L0V	
二次过充电保	过充电保护电	过充电恢复电	过放电恢复电	过放电保护电	Powerdown	预充电开启电	低电压禁止充	
护电压	压	压	压	压	允许电压	压	电电压	

Table 13.12 放电过流1设置寄存器

0CH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OCD1V/OCD1T	OCD1V3	OCD1V2	OCD1V1	OCD1V0	OCD1T3	OCD1T.2	OCD1T.1	OCD1T.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

11. (A) II	Δ). δ / ς □	ти м
位编号	位符号	说明
		放电过流1保护电压设置控制位
		OCD1V[3:0] = 0000: 放电过流1保护电压 = 20mV
		OCD1V[3:0] = 0001: 放电过流1保护电压 = 30mV
		OCD1V[3:0] = 0010:放电过流1保护电压 = 40mV
		OCD1V[3:0] = 0011: 放电过流1保护电压 = 50mV
		OCD1V[3:0] = 0100:放电过流1保护电压 = 60mV
		OCD1V[3:0] = 0101:放电过流1保护电压 = 70mV
	OCD1V3~	OCD1V[3:0] = 0110:放电过流1保护电压 = 80mV
7:4	OCD1V3	OCD1V[3:0] = 0111:放电过流1保护电压 = 90mV
	CODIVO	OCD1V[3:0] = 1000:放电过流1保护电压 = 100mV
		OCD1V[3:0] = 1001:放电过流1保护电压 = 110mV
		OCD1V[3:0] = 1010:放电过流1保护电压 = 120mV
		OCD1V[3:0] = 1011:放电过流1保护电压 = 130mV
		OCD1V[3:0] = 1100:放电过流1保护电压 = 140mV
		OCD1V[3:0] = 1101:放电过流1保护电压 = 160mV
		OCD1V[3:0] = 1110:放电过流1保护电压 = 180mV
		OCD1V[3:0] = 1111:放电过流1保护电压 = 200mV
		放电过流1保护延时设置控制位
		OCD1T[3:0] = 0000:放电过流1保护延时 = 50mS
		OCD1T[3:0] = 0001:放电过流1保护延时 = 100mS
		OCD1T[3:0] = 0010:放电过流1保护延时 = 200mS
		OCD1T[3:0] = 0011:放电过流1保护延时 = 400mS
		OCD1T[3:0] = 0100:放电过流1保护延时 = 600mS
		OCD1T[3:0] = 0101:放电过流1保护延时 = 800mS
	000470	OCD1T[3:0] = 0110:放电过流1保护延时 = 1S
3:0	OCD1T3~ OCD1T0	OCD1T[3:0] = 0111:放电过流1保护延时 = 2S
	OCDITO	OCD1T[3:0] = 1000:放电过流1保护延时 = 4S
		OCD1T[3:0] = 1001:放电过流1保护延时 = 6S
		OCD1T[3:0] = 1010: 放电过流1保护延时 = 8S
		OCD1T[3:0] = 1011: 放电过流1保护延时 = 10S
		OCD1T[3:0] = 1100: 放电过流1保护延时 = 15S
		OCD1T[3:0] = 1101: 放电过流1保护延时 = 20S
		OCD1T[3:0] = 1110: 放电过流1保护延时 = 30S
		OCD1T[3:0] = 1111: 放电过流1保护延时 = 40S

注释:放电过流1保护电压值为V_{RS2}-V_{RS1}。

Table 13.13 放电过流2设置寄存器

0DH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OCD2V/OCD2T	OCD2V3	OCD2V2	OCD2V1	OCD2V0	OCD2T3	OCD2T2	OCD2T1	OCD2T0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
		放电过流2保护电压设置控制位
		OCD2V[3:0] = 0000: 放电过流2保护电压 = 30mV
		OCD2V[3:0] = 0001: 放电过流2保护电压 = 40mV
		OCD2V[3:0] = 0010: 放电过流2保护电压 = 50mV
		OCD2V[3:0] = 0011: 放电过流2保护电压 = 60mV
		OCD2V[3:0] = 0100: 放电过流2保护电压 = 70mV
		OCD2V[3:0] = 0101:放电过流2保护电压 = 80mV
	00001/0	OCD2V[3:0] = 0110: 放电过流2保护电压 = 90mV
7:4	OCD2V3~ OCD2V0	OCD2V[3:0] = 0111:放电过流2保护电压 = 100mV
	OCDZVU	OCD2V[3:0] = 1000:放电过流2保护电压 = 120mV
		OCD2V[3:0] = 1001:放电过流2保护电压 = 140mV
		OCD2V[3:0] = 1010:放电过流2保护电压 = 160mV
		OCD2V[3:0] = 1011:放电过流2保护电压 = 180mV
		OCD2V[3:0] = 1100:放电过流2保护电压 = 200mV
		OCD2V[3:0] = 1101:放电过流2保护电压 = 300mV
		OCD2V[3:0] = 1110:放电过流2保护电压 = 400mV
		OCD2V[3:0] = 1111:放电过流2保护电压 = 500mV
		放电过流2保护延时设置控制位
		OCD2T[3:0] = 0000: 放电过流2保护延时 = 10mS
		OCD2T[3:0] = 0001:放电过流2保护延时 = 20mS
		OCD2T[3:0] = 0010: 放电过流2保护延时 = 40mS
		OCD2T[3:0] = 0011:放电过流2保护延时 = 60mS
		OCD2T[3:0] = 0100:放电过流2保护延时 = 80mS
		OCD2T[3:0] = 0101:放电过流2保护延时 = 100mS
	OCD2T3~	OCD2T[3:0] = 0110. 放电过流2保护延时 = 200mS
3:0	OCD2T3~	OCD2T[3:0] = 0111:放电过流2保护延时 = 400mS
	OODZIO	OCD2T[3:0] = 1000. 放电过流2保护延时 = 600mS
		OCD2T[3:0] = 1001:放电过流2保护延时 = 800mS
		OCD2T[3:0] = 1010:放电过流2保护延时 = 1S
		OCD2T[3:0] = 1011:放电过流2保护延时 = 2S
		OCD2T[3:0] = 1100: 放电过流2保护延时 = 4S
		OCD2T[3:0] = 1101:放电过流2保护延时 = 8S
		OCD2T[3:0] = 1110: 放电过流2保护延时 = 10S
		OCD2T[3:0] = 1111: 放电过流2保护延时 = 20S

注释:放电过流2保护电压值为V_{RS2}-V_{RS1}。

Table 13.14 短路保护设置寄存器

0EH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCV/SCT	SCV3	SCV2	SCV1	SCV0	SCT3	SCT2	SCT1	SCT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
j=1/j Q	<u> </u>	短路保护保护电压设置控制位
		SCV[3:0] = 0000: 短路保护电压 = 50mV
		SCV[3:0] = 0001: 短路保护电压 = 80mV
		SCV[3:0] = 0010: 短路保护电压 = 110mV
		SCV[3:0] = 0011:短路保护电压 = 140mV
		SCV[3:0] = 0100: 短路保护电压 = 170mV
		SCV[3:0] = 0101: 短路保护电压 = 200mV
	001/0	SCV[3:0] = 0110: 短路保护电压 = 230mV
7:4	SCV3~ SCV0	SCV[3:0] = 0111: 短路保护电压 = 260mV
	SCVU	SCV[3:0] = 1000: 短路保护电压 = 290mV
		SCV[3:0] = 1001: 短路保护电压 = 320mV
		SCV[3:0] = 1010: 短路保护电压 = 350mV
		SCV[3:0] = 1011:短路保护电压 = 400mV
		SCV[3:0] = 1100: 短路保护电压 = 500mV
		SCV[3:0] = 1101:短路保护电压 = 600mV
		SCV[3:0] = 1110: 短路保护电压 = 800mV
		SCV[3:0] = 1111:短路保护电压 = 1000mV
		短路保护延时设置控制位
		SCT[3:0] = 0000: 短路保护延时 = 0uS
		SCT[3:0] = 0001: 短路保护延时 = 64uS
		SCT[3:0] = 0010: 短路保护延时 = 128uS
		SCT[3:0] = 0011: 短路保护延时 = 192uS
		SCT[3:0] = 0100: 短路保护延时 = 256uS
		SCT[3:0] = 0101: 短路保护延时 = 320uS
	SCT3~	SCT[3:0] = 0110: 短路保护延时 = 384uS
3:0	SCT0	SCT[3:0] = 0111: 短路保护延时 = 448uS
		SCT[3:0] = 1000: 短路保护延时 = 512uS
		SCT[3:0] = 1001: 短路保护延时 = 576uS
		SCT[3:0] = 1010: 短路保护延时 = 640uS
		SCT[3:0] = 1011: 短路保护延时 = 704uS
		SCT[3:0] = 1100: 短路保护延时 = 768uS
		SCT[3:0] = 1101: 短路保护延时 = 832uS
		SCT[3:0] = 1110: 短路保护延时 = 896uS
<i>〉〉→ 至</i> 又	护力压炼头、	SCT[3:0] = 1111: 短路保护延时 = 960uS

注释: 短路保护电压值为V_{RS2}-V_{RS1}。

注释: 短路保护延时仅指内部电路检测延时,如果Sense电阻两端有RC滤波网络,则会因此引入一定延时(<50uS)。

Table 13.15 充电过流设置寄存器

0FH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OCCV/OCCT	OCCV3	OCCV2	OCCV1	OCCV0	OCCT3	OCCT2	OCCT1	OCCT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
<i></i> // •	_,,,,	充电过流保护电压设置控制位
		OCCV[3:0] = 0000: 充电过流保护电压 = 20mV
		OCCV[3:0] = 0001: 充电过流保护电压 = 30mV
		OCCV[3:0] = 0010: 充电过流保护电压 = 40mV
		OCCV[3:0] = 0011: 充电过流保护电压 = 50mV
		OCCV[3:0] = 0100: 充电过流保护电压 = 60mV
		OCCV[3:0] = 0101: 充电过流保护电压 = 70mV
		OCCV[3:0] = 0110: 充电过流保护电压 = 80mV
7:4	OCCV3~	OCCV[3:0] = 0111: 充电过流保护电压 = 90mV
	OCCV0	OCCV[3:0] = 1000: 充电过流保护电压 = 100mV
		OCCV[3:0] = 1001: 充电过流保护电压 = 110mV
		OCCV[3:0] = 1010: 充电过流保护电压 = 120mV
		OCCV[3:0] = 1011: 充电过流保护电压 = 130mV
		OCCV[3:0] = 1100:充电过流保护电压 = 140mV
		OCCV[3:0] = 1101:充电过流保护电压 = 160mV
		OCCV[3:0] = 1110:充电过流保护电压 = 180mV
		OCCV[3:0] = 1111: 充电过流保护电压 = 200mV
		充电过流保护延时设置控制位
		OCCT[3:0] = 0000: 充电过流保护延时 = 10mS
		OCCT[3:0] = 0001: 充电过流保护延时 = 20mS
		OCCT[3:0] = 0010: 充电过流保护延时 = 40mS
		OCCT[3:0] = 0011: 充电过流保护延时 = 60mS
		OCCT[3:0] = 0100: 充电过流保护延时 = 80mS
		OCCT[3:0] = 0101:充电过流保护延时 = 100mS
	осстз~	OCCT[3:0] = 0110:充电过流保护延时 = 200mS
3:0	OCCT0	OCCT[3:0] = 0111:充电过流保护延时 = 400mS
	000.0	OCCT[3:0] = 1000:充电过流保护延时 = 600mS
		OCCT[3:0] = 1001:充电过流保护延时 = 800mS
		OCCT[3:0] = 1010:充电过流保护延时 = 1S
		OCCT[3:0] = 1011: 充电过流保护延时 = 2S
		OCCT[3:0] = 1100: 充电过流保护延时 = 4S
		OCCT[3:0] = 1101: 充电过流保护延时 = 8S
		OCCT[3:0] = 1110: 充电过流保护延时 = 10S
建权 大山村	公人但拉由压炼头	OCCT[3:0] = 1111:充电过流保护延时 = 20S

注释: 充电过流1保护电压值为V_{RS1}-V_{RS2}。

Table 13.16 充放电过流自动恢复/二次过充电保护延时设置寄存器

10H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
MOST/OCRT/PFT	CHS1	CHS0	MOST1	MOST0	OCRT1	OCRT0	PFT1	PFT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
		充放电状态检测电压设置
		CHS [1:0] = 00: 充放电状态检测电压 = 200uV
7:6	CHS1~ CHS0	CHS [1:0] = 01: 充放电状态检测电压 = 500uV
		CHS [1:0] = 10: 充放电状态检测电压 = 1000uV
		CHS [1:0] = 11: 充放电状态检测电压 = 2000uV
		充放电MOSFET开启延时设置
		MOST[1:0] = 00: 充放电MOSFET开启延时 = 64uS
5:4	MOST1~MOST0	[-]
		MOST[1:0] = 10: 充放电MOSFET开启延时 = 256uS
		MOST[1:0] = 11: 充放电MOSFET开启延时 = 512uS
		充放电过流自恢复延时设置
		OCRT[1:0] = 00: 充放电过流自动恢复延时 = 8S
3:2	OCRT1~OCRT0	
		OCRT[1:0] = 10: 充放电过流自动恢复延时 = 32S
		OCRT[1:0] = 11: 充放电过流自动恢复延时 = 64S
		二次过充电保护延时设置
		PFT[1:0] = 00: 二次过充电保护延时 =8S
1:0	PFT1~PFT0	PFT[1:0] = 01: 二次过充电保护延时= 16S
		PFT[1:0] = 10: 二次过充电保护延时= 32S
		PFT[1:0] = 11: 二次过充电保护延时= 64S

Table 13.17 充电高温保护设置寄存器

11H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OTC	OTC7	OTC6	OTC5	OTC4	OTC3	OTC2	OTC1	OTC0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	OTC7~OTC0	充电高温保护阈值

Table 13.18 充电高温保护释放设置寄存器

12H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OTCR	OTCR7	OTCR6	OTCR5	OTCR4	OTCR3	OTCR2	OTCR1	OTCR0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	OTCR7~OTCR0	充电高温保护释放阈值

Table 13.19 充电低温保护设置寄存器

13H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UTC	UTC7	UTC6	UTC5	UTC4	UTC3	UTC2	UTC1	UTC0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	UTC7~UTC0	充电低温保护阈值

Table 13.20 充电低温保护释放设置寄存器

14H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UTCR	UTCR7	UTCR6	UTCR5	UTCR4	UTCR3	UTCR2	UTCR1	UTCR0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	UTCR7~UTCR0	充电低温保护释放阈值

Table 13.21 放电高温保护设置寄存器

15H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OTD	OTD7	OTD6	OTD5	OTD4	OTD3	OTD2	OTD1	OTD0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	OTD7~OTD0	放电高温保护阈值

Table 13.22 放电高温保护释放设置寄存器

16H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
OTDR	OTDR7	OTDR6	OTDR5	OTDR4	OTDR3	OTDR2	OTDR1	OTDR0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	OTDR7~OTDR0	放电高温保护释放阈值

Table 13.23 放电低温保护设置寄存器

17H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UTD	UTD7	UTD6	UTD5	UTD4	UTD3	UTD2	UTD1	UTD0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	UTD7~UTD0	放电低温保护阈值

Table 13.24 放电低温保护释放设置寄存器

18H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UTDR	UTDR7	UTDR6	UTDR5	UTDR4	UTDR3	UTDR2	UTDR1	UTDR0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写

位编号	位符号	说明
7:0	UTDR7~UTDR0	放电低温保护释放阈值

Table 13.25 温度内部参考电阻系数寄存器

19H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TR	-	TR6	TR5	TR4	TR3	TR2	TR1	TR0
读	-	读	读	读	读	读	读	读

位编号	位符号	说明
7	-	Reserved
6:0	TR6~ TR0	温度内部参考电阻系数

13.3 EEROM&RAM寄存器列表及详述

序号(Hex)	名字				状态	位			
庁与(⊓ex)	石子	7	6	5	4	3	2	1	0
00H	SCONF1	ENPCH	ENMOS	OCPM	BAL	CN3	CN2	CN1	CN0
01H	SCONF2	E0VB	-	UV_OP	DIS_PF	CTLC1	CTLC0	OCRA	EUVR
02H	OVT/LDRT/OVH	OVT3	OVT2	OVT1	OVT0	LDRT1	LDRT0	OV.9	OV.8
03H	OVL	OV.7	OV.6	OV.5	OV.4	OV.3	OV.2	OV.1	OV.0
04H	UVT/OVRH	UVT3	UVT2	UVT1	UVT0	-	-	OVR.9	OVR.8
05H	OVRL	OVR.7	OVR.6	OVR.5	OVR.4	OVR.3	OVR.2	OVR.1	OVR.0
06H	UV	UV.7	UV.6	UV.5	UV.4	UV.3	UV.2	UV.1	UV.0
07H	UVR	UVR.7	UVR.6	UVR.5	UVR.4	UVR.3	UVR.2	UVR.1	UVR.0
08H	BALV	BALV.7	BALV.6	BALV.5	BALV.4	BALV.3	BALV.2	BALV.1	BALV.0
09H	PREV	PREV.7	PREV.6	PREV.5	PREV.4	PREV.3	PREV.2	PREV.1	PREV.0
0AH	L0V		L0V.6	L0V.5	L0V.4	L0V.3	L0V.2	L0V.1	L0V.0
0BH	PFV	PFV.7	PFV.6	PFV.5	PFV.4	PFV.3	PFV.2	PFV.1	PFV.0
0CH	OCD1V/OCD1T	OCD1V3	OCD1V2	OCD1V1	OCD1V0	OCD1T3	OCD1T2	OCD1T1	OCD1T0
0DH	OCD2V/OCD2T	OCD2V3	OCD2V2	OCD2V1	OCD2V0	OCD2T3	OCD2T2	OCD2T1	OCD2T0
0EH	SCV/SCT	SCV3	SCV2	SCV1	SCV0	SCT3	SCT2	SCT1	SCT0
0FH	OCCV/OCCT	OCCV3	OCCV2	OCCV1	OCCV0	OCCT3	OCCT2	OCCT1	ОССТ0
10H	MOST/OCRT/PFT	CHS1	CHS0	MOST1	MOST0	OCRT1	OCRT0	PFT1	PFT0
11H	ОТС	OTC7	OTC6	OTC5	OTC4	OTC3	OTC2	OTC1	OTC0
12H	OTCR	OTCR7	OTCR6	OTCR5	OTCR4	OTCR3	OTCR2	OTCR1	OTCR0
13H	UTC	UTC7	UTC6	UTC5	UTC4	UTC3	UTC2	UTC1	UTC0
14H	UTCR	UTCR7	UTCR6	UTCR5	UTCR4	UTCR3	UTCR2	UTCR1	UTCR0
15H	OTD	OTD7	OTD6	OTD5	OTD4	OTD3	OTD2	OTD1	OTD0
16H	OTDR	OTDR7	OTDR6	OTDR5	OTDR4	OTDR3	OTDR2	OTDR1	OTDR0
17H	UTD	UTD7	UTD6	UTD5	UTD4	UTD3	UTD2	UTD1	UTD0
18H	UTDR	UTDR7	UTDR6	UTDR5	UTDR4	UTDR3	UTDR2	UTDR1	UTDR0
19H	TR	-	TR6	TR5	TR4	TR3	TR2	TR1	TR0
1AH~3FH	Reserved	-	-	-	-	-	-	-	-

表9 EEROM寄存器列表

序号	ta rès				状況				
(Hex)	名字	7	6	5	4	3	2	1	0
40H	CONF	OCRC	PCHMOS	DSGMOS	CHGMOS	CADCON	ENWDT	SLEEP	IDLE
41H	BALANCEH	CB16	CB15	CB14	CB13	CB12	CB11	CB10	CB9
42H	BALANCEL	CB8	CB7	CB6	CB5	CB4	CB3	CB2	CB1
43H	BSTATUS1	WDT	PF	SC	OCC	OCD2	OCD1	UV	OV
44H	BSTATUS2	-	-	-	-	OTD	UTD	OTC	UTC
45H	BSTATUS3	CHGING	DSGING	-	EEPR_W R	LOV	PCHG_FE T	CHG_FET	DSG_FET
46H	TEMP1H	TEMP1.15	TEMP1.14	TEMP1.13	TEMP1.12	TEMP1.11	TEMP1.10	TEMP1.9	TEMP1.8
47H	TEMP1L	TEMP1.7	TEMP1.6	TEMP1.5	TEMP1.4	TEMP1.3	TEMP1.2	TEMP1.1	TEMP1.0
48H	TEMP2H	TEMP2.15	TEMP2.14	TEMP2.13	TEMP2.12	TEMP2.11	TEMP2.10	TEMP2.9	TEMP2.8
49H	TEMP2L	TEMP2.7	TEMP2.6	TEMP2.5	TEMP2.4	TEMP2.3	TEMP2.2	TEMP2.1	TEMP2.0
4AH	TEMP3H	TEMP3.15	TEMP3.14	TEMP3.13	TEMP3.12	TEMP3.11	TEMP3.10	TEMP3.9	TEMP3.8
4BH	TEMP3L	TEMP3.7	TEMP3.6	TEMP3.5	TEMP3.4	TEMP3.3	TEMP3.2	TEMP3.1	TEMP3.0
4CH	CURH	CUR.15	CUR.14	CUR.13	CUR.12	CUR.11	CUR.10	CUR.9	CUR.8
4DH	CURL	CUR.7	CUR.6	CUR.5	CUR.4	CUR.3	CUR.2	CUR.1	CUR.0
4EH	CELL1H	CELL1.15	CELL1.14	CELL1.13	CELL1.12	CELL1.11	CELL1.10	CELL1.9	CELL1.8
4FH	CELL1L	CELL1.7	CELL1.6	CELL1.5	CELL1.4	CELL1.3	CELL1.2	CELL1.1	CELL1.0
50H	CELL2H	CELL2.15	CELL2.14	CELL2.13	CELL2.12	CELL2.11	CELL2.10	CELL2.9	CELL2.8
51H	CELL2L	CELL2.7	CELL2.6	CELL2.5	CELL2.4	CELL2.3	CELL2.2	CELL2.1	CELL2.0
52H	CELL3H	CELL3.15	CELL3.14	CELL3.13	CELL3.12	CELL3.11	CELL3.10	CELL3.9	CELL3.8
53H	CELL3L	CELL3.7	CELL3.6	CELL3.5	CELL3.4	CELL3.3	CELL3.2	CELL3.1	CELL3.0
54H	CELL4H	CELL4.15	CELL4.14	CELL4.13	CELL4.12	CELL4.11	CELL4.10	CELL4.9	CELL4.8
55H	CELL4L	CELL4.7	CELL4.6	CELL4.5	CELL4.4	CELL4.3	CELL4.2	CELL4.1	CELL4.0
56H	CELL5H	CELL5.15	CELL5.14	CELL5.13	CELL5.12	CELL5.11	CELL5.10	CELL5.9	CELL5.8
57H	CELL5L	CELL5.7	CELL5.6	CELL5.5	CELL5.4	CELL5.3	CELL5.2	CELL5.1	CELL5.0
58H	CELL6H	CELL6.15	CELL6.14	CELL6.13	CELL6.12	CELL6.11	CELL6.10	CELL6.9	CELL6.8
59H	CELL6L	CELL6.7	CELL6.6	CELL6.5	CELL6.4	CELL6.3	CELL6.2	CELL6.1	CELL6.0
5AH	CELL7H	CELL7.15	CELL7.14	CELL7.13	CELL7.12	CELL7.11	CELL7.10	CELL7.9	CELL7.8
5BH	CELL7L	CELL7.7	CELL7.6	CELL7.5	CELL7.4	CELL7.3	CELL7.2	CELL7.1	CELL7.0
5CH	CELL8H	CELL8.15	CELL8.14	CELL8.13	CELL8.12	CELL8.11	CELL8.10	CELL8.9	CELL8.8
5DH	CELL8L	CELL8.7	CELL8.6	CELL8.5	CELL8.4	CELL8.3	CELL8.2	CELL8.1	CELL8.0
5EH	CELL9H	CELL9.15	CELL9.14	CELL9.13	CELL9.12	CELL9.11	CELL9.10	CELL9.9	CELL9.8
5FH	CELL9L	CELL9.7	CELL9.6	CELL9.5	CELL9.4	CELL9.3	CELL9.2	CELL9.1	CELL9.0
60H	CELL10H	CELL10.1 5	CELL10.1 4	CELL10.1 3	CELL10.1 2	CELL10.1 1	CELL10.1 0	CELL10.9	CELL10.8

表10 RAM寄存器列表

SH367309

序号	F 12-7				状态				
(Hex)	名字	7	6	5	4	3	2	1	0
61H	CELL10L	CELL10.7	CELL10.6	CELL10.5	CELL10.4	CELL10.3	CELL10.2	CELL10.1	CELL10.0
62H	CELL11H	CELL11.1 5	CELL11.1 4	CELL11.1 3	CELL11.1 2	CELL11.1 1	CELL11.1 0	CELL11.9	CELL11.8
63H	CELL11L	CELL11.7	CELL11.6	CELL11.5	CELL11.4	CELL11.3	CELL11.2	CELL11.1	CELL11.0
64H	CELL12H	CELL12.1 5	CELL12.1 4	CELL12.1 3	CELL12.1 2	CELL12.1 1	CELL12.1 0	CELL12.9	CELL12.8
65H	CELL12L	CELL12.7	CELL12.6	CELL12.5	CELL12.4	CELL12.3	CELL12.2	CELL12.1	CELL12.0
66H	CELL13H	CELL13.1 5	CELL13.1 4	CELL13.1 3	CELL13.1 2	CELL13.1 1	CELL13.1 0	CELL13.9	CELL13.8
67H	CELL13L	CELL13.7	CELL13.6	CELL13.5	CELL13.4	CELL13.3	CELL13.2	CELL13.1	CELL13.0
68H	CELL14H	CELL14.1 5	CELL14.1 4	CELL14.1 3	CELL14.1 2	CELL14.1 1	CELL14.1 0	CELL14.9	CELL14.8
69H	CELL14L	CELL14.7	CELL14.6	CELL14.5	CELL14.4	CELL14.3	CELL14.2	CELL14.1	CELL14.0
6AH	CELL15H	CELL15.1 5	CELL15.1 4	CELL15.1 3	CELL15.1 2	CELL15.1 1	CELL15.1 0	CELL15.9	CELL15.8
6BH	CELL15L	CELL15.7	CELL15.6	CELL15.5	CELL15.4	CELL15.3	CELL15.2	CELL15.1	CELL15.0
6CH	CELL16H	CELL16.1 5	CELL16.1 4	CELL16.1 3	CELL16.1 2	CELL16.1 1	CELL16.1 0	CELL16.9	CELL16.8
6DH	CELL16L	CELL16.7	CELL16.6	CELL16.5	CELL16.4	CELL16.3	CELL16.2	CELL16.1	CELL16.0
6EH	CADCDH	CDATA.15	CDATA.14	CDATA.13	CDATA.12	CDATA.11	CDATA.10	CDATA.9	CDATA.8
6FH	CADCDL	CDATA.7	CDATA.6	CDATA.5	CDATA.4	CDATA.3	CDATA.2	CDATA.0	CDATA.0
70H	BFLAG1	WDT_FL G	PF_FLG	SC_FLG	OCC_FLG	LOAD_FL G	OCD_FLG	UV_FLG	OV_FLG
71H	BFLAG2	RST_FLG	WAKE_FL G	CADC_FL G	VADC_FL G	OTD_FLG	UTD_FLG	OTC_FLG	UTC_FLG
72H	RSTSTAT	-	-	-	-	-	-	WDT1	WDT0

表11 RAM寄存器列表

13.1 RAM特殊寄存器

Table 13.26 系统配置寄存器

40H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CONF	OCRC	PCHMOS	DSGMOS	CHGMOS	CADCON	ENWDT	SLEEP	IDLE
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	1	1	1	0	0	0	0

位编号	位符号	说明
7	OCRC	过流保护控制位 过流保护状态清除需在OCRC位连续写: 0-1-0
6	PCHMOS	预充电MOSFET控制位 0: 预充电MOSFET关闭 1: 预充电MOSFET由硬件保护模块决定
5	DSGMOS	放电MOSFET控制位 0: 放电MOSFET关闭 1: 放电MOSFET由硬件保护模块决定
4	CHGMOS	充电MOSFET控制位 0: 充电MOSFET关闭 1: 充电MOSFET由硬件保护模块决定
3	CADCON	CADC设置控制位 0: SH367309关闭CADC 1: SH367309开启CADC进行电流采集
2	ENWDT	看门狗设置控制位 0: SH367309关闭看门狗模块 1: SH367309开启看门狗模块
1	SLEEP	SLEEP设置控制位 0: SH367309不进入SLEEP状态 1: SH367309将进入SLEEP状态,唤醒后硬件自动清零 注释: 当设置为"1"时,如果SH367309连接充电器,则不进入SLEEP状态,硬件会自 动清零。
0	IDLE	IDLE设置控制位 0: SH367309不进入IDLE状态 1: SH367309将进入IDLE状态,唤醒后硬件自动清零 注释: 当设置为"1"时,如果SH367309发生了任何保护,则不进入IDLE状态,硬件会自动清零。

Table 13.27 系统状态寄存器BSTATUS1

43H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BSTATUS1	WDT	PF	SC	occ	OCD2	OCD1	UV	OV
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	WDT	看门狗状态位 1: 看门狗溢出 0: 看门狗正常
6	PF	二次过充电保护状态位 1:发生二次过充电保护 0:未发生二次过充电保护
5	sc	短路保护状态位 1: 发生短路保护 0: 未发生短路保护
4	occ	充电过流保护状态位 1: 发生充电过流保护 0: 未发生充电过流保护
3	OCD2	放电过流2保护状态位 1: 发生放电过流2保护 0: 未发生放电过流2保护
2	OCD1	放电过流1保护状态位 1: 发生放电过流1保护 0: 未发生放电过流1保护
1	UV	欠压保护状态位 1: 发生欠压保护 0: 未发生欠压保护
0	ov	过压保护状态位 1: 发生过压保护 0: 未发生过压保护

Table 13.28 系统状态寄存器BSTATUS2

44H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BSTATUS2	-	-	-	-	OTD	UTD	OTC	UTC
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7:4	-	Reserved
3	OTD	放电高温保护状态位 1: 发生放电高温保护 0: 未发生放电高温保护
2	UTD	放电低温保护状态位 1: 发生放电低温保护 0: 未发生放电低温保护
1	отс	充电高温保护状态位 1: 发生充电高温保护 0: 未发生充电高温保护
0	UTC	充电低温保护状态位 1: 发生充电低温保护 0: 未发生充电低温保护

Table 13.29 系统状态寄存器BSTATUS3

45H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BSTATUS3	CHGING	DSGING	-	EEPR_WR	L0V	PCHG_FET	CHG_FET	DSG_FET
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	CHGING	充电状态位 1: 充电状态 0: 非充电状态
6	DSGING	放电状态位 1: 放电状态 0: 非放电状态
5	-	Reserved
4	EEPR_WR	EEPROM写操作状态位 1: EEPROM写操作错误 0: EEPROM写操作正确
3	L0V	低电压禁止充电状态位 1: 发生低电压禁止充电 0: 未发生低电压禁止充电
2	PCHG_FET	预充电MOSFET开关状态位 1: 预充电MOSFET开启 0: 预充电MOSFET关闭
1	CHG_FET	充电MOSFET开关状态位 1: 充电MOSFET开启 0: 充电MOSFET关闭
0	DSG_FET	放电MOSFET开关状态位 1: 放电MOSFET开启 0: 放电MOSFET关闭

Table 13.30 系统标志寄存器BFLAG1

70H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BFLAG1	WDT_FLG	PF_FLG	SC_FLG	OCC_FLG	LOAD_FLG	OCD_FLG	UV_FLG	OV_FLG
读/写	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"	读/写"0"
复位值	0	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	WDT_FLG	看门狗标志位 1: 发生过看门狗溢出 0: 未发生过看门狗溢出
6	PF_FLG	二次过充电保护标志位 1: 发生过二次过充电保护 0: 未发生过二次过充电保护
5	SC_FLG	短路保护标志位 1: 发生过短路保护 0: 未发生过短路保护
4	OCC_FLG	充电过流保护标志位 1: 发生过充电过流保护 0: 未发生过充电过流保护
3	LOAD_FLG	LDO3过流标志位 1: 发生过过流 0: 未发生过过流
2	OCD_FLG	放电过流保护标志位 1: 发生过放电过流保护 0: 未发生过放电过流保护
1	UV_FLG	欠压保护标志位 1: 发生过欠压保护 0: 未发生过欠压保护
0	OV_FLG	过压保护标志位 1: 发生过过压保护 0: 未发生过过压保护

Table 13.31 系统标志寄存器BFLAG2

71H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
BFLAG2	RST_FLG	WAKE_FLG	CADC_FLG	VADC_FLG	OTD_FLG	UTD_FLG	OTC_FLG	UTC_FLG
读/写	读/写"0"	读/写"0"	读	读	读/写"0"	读/写"0"	读/写"0"	读/写"0"
复位值	1	0	0	0	0	0	0	0

Bit Number	Bit Mnemonic	Description
7	RST_FLG	复位标志位 1: 系统复位后,自动置1,需MCU清零 0: 未被唤醒
6	WAKE_FLG	唤醒中断标志位 1: 从IDLE状态(检测到充放电电流)或者SLEEP状态(充电器连接)被唤醒 0: 未被唤醒
5	CADC_FLG	CADC中断标志位 1: 发生过CADC中断 0: 未发生过CADC中断 该bit被读取之后,硬件会自动清零
4	VADC_FLG	VADC中断标志位 1: 发生过VADC中断 0: 未发生过VADC中断 该bit被读取之后,硬件会自动清零
3	OTD_FLG	放电高温保护标志位: 1: 发生过放电高温保护 0: 未发生过放电高温保护
2	UTD_FLG	放电低温保护标志位 1: 发生过放电低温保护 0: 未发生过放电低温保护
1	OTC_FLG	充电高温保护标志位 1: 发生过充电高温保护 0: 未发生过充电高温保护
0	UTC_FLG	充电低温保护标志位 1: 发生过充电低温保护 0: 未发生过充电低温保护

13.2 EEPROM映射寄存器

00H~3FH为EEPROM对应地址映像区,寄存器相关特性及功能参见EEPROM寄存器即可。

13.3 其他寄存器

ADC相关寄存器在规格书中均有详细描述,不再赘述。

14. 极限电气参数

若工作条件超过"极限参数"的范围,将造成SH367309永久性破坏。

信号名	信号类型	管脚名	极限范围	单位
供电端	模拟	VBAT	VSS -0.3 ~ 70	V
供电响	模拟	LDO_P	VSS-0.3~13	V
	模拟	RS1	VSS-0.3 ~ VSS+0.3	V
	模拟	VC1	-0.3 ~ 5	V
	模拟	VC2~VC17	VSS -0.3 ~ 70	V
	模拟	RS2	VSS-1V ~ V _{CC} +0.3	V
输入	模拟	CHGD/DSGD	V_{BAT} -70 ~ V_{BAT} +0.3	V
יעפור	模拟	CTL/SHIP/ MODE/LDO_EN	VSS-0.3 ~ V _{BAT} +0.3	V
	模拟	T1~T3	VSS-0.3 ~ V _{CC} +0.3	V
	数字	SCL/SDA	VSS-0.3 ~ 5.5	V
	模拟	VPRO	VSS-0.3 ~ V _{PRO} +0.3	V
	模拟	CHG/PCHG	V_{BAT} -70 ~ V_{11} +0.3	V
	模拟	DSG	VSS-0.3 ~ V ₁₁ +0.3	V
	模拟	PF	VSS-0.3 ~ V _{BAT} +0.3	V
输出	模拟	V11/ CAPP/	VSS-0.3 ~ V ₁₁ +0.3	V
	模拟	CAPS/CAPN	VSS-0.3 ~ 5.5	V
	数字	VCC/ALARM	VSS-0.3 ~ 5.5	V
	模拟	LDO_O	VSS-0.3~5.5	V
	工作温度		-40 to 85	°C
	存储温度		-40 to 125	°C

表12 极限参数表

15. 电气特性

15.1 常温电气特性(以下所有电气特性,均为T_A=25℃)

			工作参	数		
参数	说明	最小值	典型值	最大值	单位	测试条件
V_{BAT}	工作电压	8.5	-	65	V	无保护出现,LDO1、LDO2无负载
I _{OP1}	采集模式	-	70	105	μΑ	
I _{OP2}	保护模式	-	40	55	μΑ	VBAT=60V,采集模式/保护模式功耗测
I _{OP3}	仓运模式	-	1.5	2	μA	试时:无保护出现,无平衡动作,LDO1、
I _{OP4}	IDLE状态	-	40	50	μΑ	LDO2无负载,CHG/DSG 悬空,在芯
I _{OP5}	Powerdown状态	-	3	5	μΑ	片VSS处测量
I _{OP6}	SLEEP状态	-	35	45	μΑ	
I _{VCN-1}	电芯到芯片管脚漏电	-	-	1	μA	VCn-VCn-1=3.8V,针对VC1~VC16
I _{VCN-2}	电芯到芯片管脚漏电	-	-	1.5	μA	VCn-VCn-1=3.8V,针对VC17

		系	统配置			
参数	说明	最小值	典型值	最大值	单位	测试条件
V _{H-CTL}	CTL高电平	V _{CC} -0.3	-	V_{BAT}	V	
V _{L-CTL}	CTL低电平	-	-	0.3	V	
V _{H-MODE}	MODE高电平	V _{BAT} -0.3	-	V _{BAT}	V	
V _{L-MODE}	MODE低电平	-	-	0.3	V	
V _{H-LDO_EN}	LDO_EN高电平	V _{BAT} -0.3	-	V_{BAT}	V	
$V_{\text{L-LDO}_{\text{EN}}}$	LDO_EN低电平	-	-	0.3	V	
V _{H-SHIP}	SHIP高电平	V _{BAT} -0.3	-	V _{BAT}	V	
V _{L-SHIP}	SHIP低电平	-	-	0.3	V	
T _{L-ALARM}	ALARM方波低电平时间	0.8	1	1.2	mS	
T _{I-ALARM}	ALARM方波间隔时间	0.8	1	1.2	mS	
tmosfet	充放电MOSFET开启延时	64		512	uS	MOST/OCRT/PFT(10H)可设置
UNIOSFEI	充放电MOSFET开启延时精度			64	uS	
t _{cycle}	VADC采集电压/电流周期	95	100	105	mS	每1S采集一次温度

	Powerdown状态								
参数	说明	最小值	典型值	最大值	单位	测试条件			
V_{PD}	Powerdown允许电压	Vuv-150	Vuv-200	Vuv-250	mV				
T _{PD}	Powerdown允许延时	-	10	-	S	当过放电状态发生后再检测 Powerdown状态			
T _{WARMUP}	上电WarmUp时间	-	-	250	mS				

	数字/模拟端口电平									
参数	说明	最小值	典型值	最大值	单位	测试条件				
V _{IH}	数字输入逻辑高电平	2	-	5	V	SDA/SCL				
V _{IL}	数字输入逻辑低电平	-	-	0.6	V	SDA/SCL				
		-	-	0.4	V	SDA/SCL, I _{oL} =3mA				
V_{OL}	数字输出逻辑低电平	-	-	0.4	V	PF,I _{OL} =100uA				
		-	-	0.4	V	ALARM, I _{OL} =1mA				
V_{PRO}	EEPROM烧写电压	7.7	8	8.3	V	由外部提供				

LDO1 Regulator									
参数	说明	最小值	典型值	最大值	单位	测试条件			
\/	稳压源输出电平	3.1	3.3	3.5	V	13≲VBAT≲60V,I _{load} ≲10mA			
Vcc	怎么 <u>你</u> 和出电干	3.1	3.3	3.5	V	8.5≤VBAT<13V,I _{load} ≤2mA			

LDO2 Regulator								
参数	说明	最小值	典型值	最大值	单位	测试条件		
V	稳压源输出电平	8.5	11	13	V	VBAT≥13V,I _{LOAD} =5mA		
V ₁₁	怎 <i>你</i> 那 出 电干	8	-	-	V	VBAT=10V,I _{LOAD} =5mA		

	LDO3 Regulator									
参数	说明	最小值	典型值	最大值	单位	测试条件				
V_{out}	稳压源输出电平	3.1	3.3	3.5	V					
REGLINE	电压线性度	-	10	50	mV	12≤VBAT≤60V,I _{load} =25mA				
REGLOAD	负载线性度	-	30	100	mV	VBAT=50V, 0.1 mA \leqslant I $_{load}$ \leqslant 25mA				
I _{LOAD}	过流电流阈值	50	75	100	mA					
tover	过流检测延时	-	2	-	mS					

注释: 当负载电流超过过流电流阈值 I_{LOAD}, 系统会锁定在最大电流, 此时不能保证输出电压。

	电压采集							
参数	说明	最小值	典型值	最大值	单位	测试条件		
V _{IN1}	输入范围	0	-	5	V			
T _{IN1}	转换时间	-	5	-	mS			
V_{ACC}	绝对精度	-5	-	5	mV			

	温度采集							
参数	说明	最小值	典型值	最大值	单位	测试条件		
V_{IN2}	输入范围	0	-	3	V			
T _{IN2}	转换时间	-	5	-	mS			
T _{ACC}	绝对精度	-2		2	$^{\circ}$			

	电流采集							
参数	说明	最小值	典型值	最大值	单位	测试条件		
V _{IN3}	输入范围	-200	-	200	mV			
T _{IN3}	转换时间	-	5	-	mS			
I _{ACC}	绝对精度	-150	-	150	uV			

	CADC							
参数	说明	最小值	典型值	最大值	单位	测试条件		
V _{IN4}	输入范围	-200	-	200	mV			
T _{IN4}	转换时间	237.5	250	262.5	mS	4Hz采样率		
INL	积分非线性误差	-	±1	±3	LSB			

	MOSFET驱动能力									
参数	说明	最小值	典型值	最大值	单位	测试条件				
\/ \/\ \/\ \/	CHG/DSG/PCHG高电	8	11	13	V	VBAT≥13V,外接1MΩ电阻到地				
V _{CHGH} /V _{DSGH} / V _{PCHGH}	平	6.5	-	-	V	VBAT=8.5V(LDO1、LDO2无负载),外接1MΩ电阻到地				
V _{DSGL}	DSG低电平	-	-	1	V	I _{OL} =0.5mA				
tсн	CHG上拉时间	-	100	200	uS	CLOAD = 50nF,Vcнg由10%升高到90%				
t _{РСН}	PCHG上拉时间	-	500	1000	uS	CLOAD = 4700pF,Vpcнg由10%升高90%				
t _{DL}	DSG下拉时间	-	150	400	uS	C_{LOAD} = 50nF,串联电阻为1kΩ, V_{DSG} 由90%降低到10%				
t _{DH}	DSG上拉时间	-	200	600	uS	C_{LOAD} = 50nF,串联电阻为1kΩ, V_{DSG} 由10%升高到90%				

	充放电状态检测							
参数	说明	最小值	典型值	最大值	单位	测试条件		
	充放电状态检测电压	50	200	350	uV	CHS[1:0]=00		
V		350	500	650	uV	CHS[1:0]=01		
V _{сн}		850	1000	1150	uV	CHS[1:0]=10		
		1850	2000	2150	uV	CHS[1:0]=11		

	过充电保护									
参数	说明	最小值	典型值	最大值	单位	测试条件				
Vov	过充电保护电压	3.6	ı	4.5	V	寄存器OV可设置				
V_{OVR}	过充电恢复电压	3.3	-	4.5	V	寄存器OVR可设置				
Vova	过充电保护/恢复电压精 度	-25	-	25	mV					
	过充电保护延时	0.1	-	40	S	可配置				
t _{ov}	过充电保护延时精度	100mS -t _{ov} *5%		200mS +t _{ov} *5%						
t _{ovr}	过充电保护恢复延时	-	2*t _{cycle}	-	mS	t _{cycle} =100mS				

	过放电保护									
参数	说明	最小值	典型值	最大值	单位	测试条件				
Vuv	过放电保护电压	2.0	ı	3.1	V	寄存器UV可设置				
V_{UVR}	过放电恢复电压	2.0	-	3.6	V	寄存器UVR可设置				
Vuva	过放电保护/恢复电压精 度	-25	-	25	mV					
	过放电保护延时	0.1	-	40	S	可配置				
Tuv	过放电保护延时精度	100mS -t _{uv} *5%		200mS +t _{uv} *5%						
T_{UVR}	过放电恢复延时	-	2*t _{cycle}	-	mS	t _{cycle} =100mS				

Preliminary

SH367309

	平衡								
参数	说明	最小值	典型值	最大值	单位	测试条件			
V_{BAL}	平衡开启电压	3.3	-	4.5	V	可设置寄存器BALV			
V _{BALA}	平衡开启电压精度	-25	-	25	mV				
R _{BL}	平衡内阻	120	260	400	Ω	电芯电压等于V _{BAL} +100mV			
t _{balanceT}	平衡开启时间	-	400	-	mS				

	负载释放/充电器/电流检测									
参数	说明	最小值	典型值	最大值	单位	测试条件				
V _{CHGD1}	充电器检测电平1	-0.25	-	-	V	进退SLEEP状态,充电器检测方式: CHGD电平小于V _{CHGD1} ,判为充电器 连接				
V _{CHGD2}	充电器释放电平2	-	-	-0.05	٧	充电过流释放,充电器检测方式: CHGD电平大于V _{CHGD2} ,判为充电器 释放				
V _{CHGD3}	充电器检测电平3	1.0	-	-	V	进退Powerdown状态,充电器检测方式:CHGD电平小于V _{CHGD3} ,判为充电器连接				
$V_{ t DSGD}$	负载释放判断电平	1.0	-	-	V					
R _{DSGD}	DSGD管脚内部下拉电阻	500	900	1400	ΚΩ	VBAT=50V,DSGD管脚外接3V电源				
V _{CD1}	放电电流检测阈值	0.5	1.4	2.6	mV					
V _{CD2}	充电电流检测阈值	-2.6	-1.4	-0.5	mV					
tcp	充放电电流检测延时	10	15	20	mS	IDLE唤醒到ALARM输出低电平脉冲 的时间间隔				

	预充电								
参数	说明	最小值	典型值	最大值	单位	测试条件			
V _{PCH}	预充电开启电压	1.0	-	3.0	V	通过寄存器PREV可设置			
V _{PCHA}	预充电开启电压精度	-25	-	25	mV				
t _{РСНG}	预充电延时	950	1000	1250	mS				

	二次过充电保护										
参数	参数 说明			最大值	单位	测试条件					
V_{P2N}	二次过充电保护电压	3.8	-	5	V	通过寄存器PFV可设置					
V _{P2NA}	二次过充电保护电压精 度	-25	-	25	mV						
	二次过充电保护延时	8	-	64	S	可配置					
t _{P2N}	二次过充电保护延时精 度	100mS -t _{P2N} *5%		200mS +t _{P2N} *5%							

低电压禁止充电								
参数	说明	最小值	典型值	最大值	单位	测试条件		
V_{L0V}	低电压禁止充电电压	0.5	-	2	V	可通过寄存器L0V设置		
V_{L0VA}	低电压禁止充电电压精度	-25	-	25	mV			

	过流保护									
参数	说明	最小值	典型值	最大值	单位	测试条件				
V _{DOC1}	放电过流1保护电压	20	-	200	mV	可配置				
M	No state of the st	-10	-	10	mV	V _{DOC1} < 100mV				
V _{DOCA1}	V _{DOC1} 精度	-10%		10%	V _{DOC1}	V _{DOC1} ≥ 100mV				
	放电过流1保护延时	0.05	-	40	S	可配置				
t _{DOC1}	放电过流1保护延时精度	-t _{DOC1} *5%		t _{DOC1} *5%						
V_{DOC2}	放电过流2保护电压	30	-	500	mV	可配置				
V	V _{DOC2} 精度	-10	-	10	mV	V_{DOC2} < 100mV				
V _{DOCA2}	V DOC2作月/文	-10%		10%	V_{DOC2}	V _{DOC2} ≥ 100mV				
	放电过流2保护延时	0.01	-	20	S	可配置				
t _{DOC2}	放电过流2保护延时精 度	-t _{DOC2} *5%		t _{DOC2} *5%						
V _{DOC3}	短路保护电压	50	-	1000	mV	可配置				
M	V _{DOC3} 精度	-10	-	10	mV	V _{DOC3} < 100mV				
V _{DOCA3}		-10%		10%	V _{DOC3}	V _{DOC3} ≥ 100mV				
t _{DOC3}	短路保护延时	0	-	960	μS	测试时,短路保护电压输入≥ 500mV+100mV				
	短路保护延时精度	0		64	uS					
V _{coc}	充电过流保护电压	-200	-	-20	mV	可配置				
Vcoca	Vcoc精度	-10	-	10	mV	V_{coc} < 100mV				
V COCA	V COC作/文	-10%	-	10%	V _{coc}	V _{coc} ≥ 100mV				
4	充电过流保护延时	0.01	-	20	S	可配置				
tcoc	充电过流保护延时精度	-tcoc*5%		tcoc*5%						
4	放电过流检测负载 释放延时	100	-	2000	mS	可配置				
t _{D1}	放电过流检测负载 释放延时精度	-t _{D1} *5%		t _{D1} *5%						
t _{D2}	充电器拔出释放延时	400	500	600	mS	检测充电过流退出				
t _{D3}	检测充电器连接延时	400	500	600	mS	退SLEEP状态,退"上电待激活状态"				
	充放电过流自恢复延时	8	-	64	S	可配置				
tаuто	充放电过流自恢复延时 精度	-t _{AUTO} *5%		t _{AUTO} *5%						

	温度保护										
参数	说明	最小值	典型值	最大值	单位	测试条件					
Тотс	充电高温保护温度	45	-	70	${\mathbb C}$	寄存器OTC可设置,1℃一档					
Титс	充电低温保护温度	-20	-	10	$^{\circ}$	寄存器UTC可设置,1℃一档					
Тотр	放电高温保护温度	45	-	80	$^{\circ}$	寄存器OTD可设置,1℃一档					
Титр	放电低温保护温度	-40	-	10	$^{\circ}$	寄存器UTD可设置,1℃一档					
Totcr	充电高温恢复温度	40	-	70	$^{\circ}$	寄存器OTCR可设置,1℃一档					
T _{UTCR}	充电低温恢复温度	-20	-	15	$^{\circ}$	寄存器UTCR可设置,1℃一档					
T _{OTDR}	放电高温恢复温度	40	-	80	$^{\circ}$	寄存器OTDR可设置,1℃一档					
T _{UTDR}	放电低温恢复温度	-40	-	15	$^{\circ}$	寄存器UTDR可设置,1℃一档					
t⊤	温度保护延时	-	2	-	S						
ToA	温度精度	-	±2	<u>±</u> 4	$^{\circ}$						

TWI通讯时序										
参数	符号	最小值	典型值	最大值	单位	条件				
TWI频率范围	f _{TWI}	10	-	100	kHz					
总线空闲间隔	t _{BUF}	4.7	-	1	μs					
低电平周期	t _{LOW}	4.7	-	1	μs					
高电平周期	t _{HIGH}	4.0	-	50	μs					
数据保持时间	t _{HD:DAT}	300	-	1	ns					
数据建立时间	t _{SU:DAT}	250	-	1	ns					
STA 保持时间	t _{HD:STA}	4.0	-	1	μs					
STA 建立时间	t _{SU:STA}	4.7	-	1	μs					
STO 建立时间	t _{SU:STO}	4.0	-	1	μs					
上升时间	t _R	-	-	1000	ns	$(V_{ILMAX} - 0.15V)$ to $(V_{IHMIN} + 0.15V)$				
下降时间	t _F	-	-	300	ns	(V _{IHMIN} + 0.15V) to (V _{ILMAX} – 0.15)				
超时周期	t _{TIMEOUT}	-	25	-	ms					
RC精度	f _E	-	-	±10	%	Ta=-40°C~85 °C				

15.2 全温度电气特性(以下所有电气特性,均为T_A=-40℃~85℃)

参数	说明	最小值	典型值	最大值	单位	测试条件
T _A	工作环境温度	-40	-	85	$^{\circ}\mathbb{C}$	340000
I _{OP1}	采集模式	-	70	105	μA	
I _{OP2}	保护模式	-	40	55	μA	VBAT=60V,采集模式/保护模式功耗测
I _{OP3}	仓运模式	-	1.5	2	μA	试时:无保护出现,无平衡动作,LDO
I _{OP4}	IDLE状态	-	40	50	μA	无负载,CHG/DSG 悬空,在芯片VSS
I _{OP5}	Powerdown状态	-	3	6	μA	端测量。
I _{OP6}	SLEEP状态	-	35	45	μA	
I _{VCN-1}	电芯到芯片管脚漏电	-	-	1	μΑ	VCn-VCn-1=3.8V,针对VC1~VC16
I _{VCN-2}	电芯到芯片管脚漏电	-	-	2	μA	VCn-VCn-1=3.8V,针对VC17
t _{сн}	CHG上拉时间	-	100	200	uS	CLOAD=50nF, VCHG由10%升高到90%
tрсн	PCHG上拉时间	-	500	1000	uS	CLOAD = 4700pF, VPCHG由10%升高90%
t _{DL}	DSG下拉时间	-	150	400	uS	C_{LOAD} = 50nF,串联电阻为1kΩ, V_{DSG} 由90%降低到10%
t _{DH}	DSG上拉时间	-	200	600	uS	C_{LOAD} = 50nF,串联电阻为1kΩ, V_{DSG} 由10%升高到90%
		50	200	350	uV	CHS[1:0]=00
V _{сн}	充放电状态检测电压	350	500	650	uV	CHS[1:0]=01
5	7 5,000 6 70 6 70 70 70 70 70 70 70 70 70 70 70 70 70	850 1850	1000 2000	1150 2150	uV uV	CHS[1:0]=10
R _{BL}	 平衡内阻	75	300	500	Ω	CHS[1:0]=11 电芯电压等于V _{BAL} +100mV
IVBT		73	300	300	12	电心电压争 1 ABML 100IIIA
V _{OVA}	过充电保护/恢复电压精 度	-50	-	50	mV	
V_{UVA}	过放电保护/恢复电压精 度	-50	-	50	mV	
V _{BALA}	平衡开启电压精度	-50	-	50	mV	
V _{PCHA}	预充电开启电压精度	-50	-	50	mV	
V_{P2NA}	异常过充电保护电压精 度	-50	-	50	mV	
V _{L0VA}	低电压禁止充电电压精 度	-50	-	50	mV	
V _{СНБD1}	充电器检测电平1	-0.25	_		1/	进退SLEEP状态,充电器检测方式:
i l	, ,			-	V	CHGD电平小于V _{CHGD1} ,判为充电器连接
V _{CHGD2}	充电器释放电平2	-	-	-0.05	V	
V _{CHGD2}		1.0	-	-0.05	-	接 充电过流释放,充电器检测方式: CHGD电平大于V _{CHGD2} ,判为充电器释
	充电器释放电平2	-	-	-0.05	V	接 充电过流释放,充电器检测方式: CHGD电平大于V _{CHGD2} ,判为充电器释放 进退Powerdown状态,充电器检测方 式: CHGD电平小于V _{CHGD3} ,判为充电
V _{CHGD3}	充电器释放电平2 充电器检测电平3	1.0	- - - 900	-	V	接 充电过流释放,充电器检测方式: CHGD电平大于V _{CHGD2} ,判为充电器释放 进退Powerdown状态,充电器检测方式: CHGD电平小于V _{CHGD3} ,判为充电器连接
V _{CHGD3}	充电器释放电平2 充电器检测电平3 负载释放判断电平	1.0		-	V	接 充电过流释放,充电器检测方式: CHGD电平大于V _{CHGD2} ,判为充电器释放 进退Powerdown状态,充电器检测方式: CHGD电平小于V _{CHGD3} ,判为充电器连接 检测负载释放
V _{CHGD3} V _{DSGD} R _{DSGD}	充电器释放电平2 充电器检测电平3 负载释放判断电平 DSGD管脚内部下拉电阻	1.0 1.0 500	900	- - 1400	V V V KΩ	接 充电过流释放,充电器检测方式: CHGD电平大于V _{CHGD2} ,判为充电器释放 进退Powerdown状态,充电器检测方式: CHGD电平小于V _{CHGD3} ,判为充电器连接 检测负载释放
V _{CHGD3} V _{DSGD} R _{DSGD} V _{CD1}	充电器释放电平2 充电器检测电平3 负载释放判断电平 DSGD管脚内部下拉电阻 放电电流检测阈值	1.0 1.0 500 0.5	900	- 1400 2.6	V V V KΩ mV	接 充电过流释放,充电器检测方式: CHGD电平大于V _{CHGD2} ,判为充电器释放 进退Powerdown状态,充电器检测方式: CHGD电平小于V _{CHGD3} ,判为充电器连接 检测负载释放

Preliminary SH367309

参数	说明	最小值	典型值	最大值	单位	测试条件
V	放电过流2保护精度	-10	-	10	mV	$V_{ t DOC2}$ $<$ 100mV
V _{DOCA2}		-10%	-	10%	V _{DOC2}	$V_{DOC2} \geqslant 100 mV$
N/	短路保护精度	-10	-	10	mV	V _{DOC3} < 100mV
V_{DOCA3}		-10%	-	10%	V _{DOC3}	$V_{DOC3} \geqslant 100 mV$
V	充电过流保护精度	-10	-	10	mV	V _{coc} < 100mV
V _{COCA}		-10%	-	10%	Vcoc	V _{coc} ≥ 100mV
ToA	温度保护精度	-	±2	±4	$^{\circ}$	

16. 封装信息

TQFP 48L unit: inches/mm

Symbol	Dimension	s in inches	Dimensions in mm		
Cymbol	MIN MAX		MIN	MAX	
Α		0.047		1.2	
A1	0.002	0.006	0.05	0.15	
A2	0.035	0.041	0.9	1.05	
D	0.270	0.281	6.85	7.15	
E	0.270	0.281	6.85	7.15	
H _D	0.346	0.362	8.8	9.2	
H _E	0.346	0.362	8.8	9.2	
b	0.005	0.011	0.15	0.27	
е	0.020	TYP	0.500	TYP	
С	0.004	0.008	0.090	0.200	
L	0.018	0.030	0.45	0.75	
L1	0.033	0.045	0.85	1.15	
θ2	0°	10°	0°	10°	

注意:

- 1. 封装尺寸不包括模的毛边凸起或门毛刺
- 2. 如无特殊规定,容差为±0.1毫米
- 3. 共面性: 0.1毫米
- 4. 控制尺寸为毫米。对转换成的英寸不做要求

17. 订购信息

产品编号	封装	包装	最小起订量
SH367309U/048UR	TQFP48L	Tray盘	2.5K

18. 规格书更改记录

	SH367309规格书更改记录						
版本	内容	日期					
V0.9A	1. 修改"参考原理图", VCN端口滤波电容及其他部分电容耐压值16V调整为25V, 为了BOM表统一	2019.01.31					
V0.8A	 修改"参考原理图"VC17滤波电容耐压值调整为16V(原耐压为50V) 修改"表2.功能模式列表": IDLE模式,看门狗WDT取决于进入IDLE之前的状态,故建议进入IDLE之前,关闭WDT模块 修改"8.6 二次过充电描述": DIS_PF=0,二次过充电有效;二次过充电保护后,关闭VADC和CADC采集 新增"8.7 断线保护功能"描述 修改"9.1 平衡功能控制": 新增MCU控制平衡进退方式描述 修改"15.1 常温电气特性": 预充电延时单位修改为mS 修改"17. 订购信息": 最小起订量2.5K 	2018.08.30					

目录

1.	特点	1
2.	概述	1
3.	方框图	2
4.	管脚配置图	3
5.	管脚描述	
6.	典型应用电路	5
6.	S.1 保护模式16串同口应用	5
6.	3.2 保护模式 16 串半分口应用	6
6.	5.3 保护模式带平衡16串半分口应用	7
6.	5.4 保护模式 16 串全分口应用	8
6.	6.5 保护模式 10 串全分口应用	9
6.	5.6 采集模式 16 串半分口应用	10
7.	工作模式	11
7.	7.1 概述	11
7.	7.2 保护模式	12
7.	7.2.1 正常工作状态	12
7.	7.2.2 Powerdown状态	12
7.	7.3 采集模式	12
7.	7.3.1 正常状态	12
7.	7.3.2 IDLE状态	12
7.	7.3.3 SLEEP状态	12
7.	7.4 仓运模式	13
7.	7.5 烧写模式	13
7.	7.6 WarmUp	13
7.	7.6.1 硬件复位	13
7.	7.6.2 软件复位	13
8.	保护功能	14
8.	3.1 概述	14
8.	3.2 过充电保护	14
8.	3.3 过放电保护	15
8.	3.4 电流保护	18
8.	3.4.1 放电过流1保护	18
8.	3.4.2 短路保护	18
8.	3.4.3 充电过流保护	18
8.	3.4.4 电流保护特殊设置	24

SH367309

Ω /	1.4.1 电流保护自恢复设置	24
	1.4.2 电流保护软件恢复设置	
	I.4.3 电流保护执行动作设置	
	5 温度保护	
	5.1 充电高温保护	
	5.2 充电低温保护	
	5.3 放电高温保护	
	5.4 放电低温保护	
	5.5 温度保护阈值计算公式	
	5 二次过充电保护	
	/ 断线保护功能	
	3 禁止低压电芯充电功能	
	9 平衡功能	
9.	AFE功能	
	平衡控制功能	
	2 充放电状态	
_	3 看门狗寄存器(WDT)	
10.	MOSFET驱动	
10.	.1 预充电MOSFET	38
	.2 强制开启充电MOSFET功能	
11.	管脚功能	40
11.	.1 CTL管脚	
11.2	.2 LDO_EN管脚	40
11.3	.3 MODE管脚	40
11.4	.4 ALARM管脚	41
11.	.5 STA检测	41
12.	功能模块	42
12.	.1 电压/温度/电流采集用VADC	42
12.	.1.1 特性	42
12.	.1.2 采集范围及结果存放	42
12.	.1.3 电压/温度/电流计算公式	47
12.	.1.4 VADC采集时序	48
12.2	.2 电流采集专用CADC	48
12.2	.2.1 特性	48
12.2	.2.2 采集范围及结果存放	48
12.2	.2.3 电流计算公式	49
12.2	.2.4 CADC工作模式设置	49

Preliminary

SH367309

12	2.3 TWI串行通讯接口	50
12	2.3.1 特性	50
12	2.3.2 工作方式	50
12	2.3.3 数据传输格式	50
12	2.3.4 传输模式	51
12	2.3.5 通信协议	51
12	2.3.5.1 概述	51
12	2.3.5.2 EEPROM寄存器读写协议	51
12	2.3.5.3 RAM寄存器读写协议	52
12	2.3.5.4 软件复位协议	52
12	2.3.5.5 CRC8校验	52
13.	EEPROM及RAM寄存器设置	53
13	3.1 EEPROM及RAM概述	53
13	3.2 EEPROM寄存器列表及详述	54
13	3.3 EEROM&RAM寄存器列表及详述	67
13	3.1 RAM特殊寄存器	70
13	3.2 EEPROM映射寄存器	75
13	3.3 其他寄存器	75
14.	极限电气参数	76
15.	电气特性	77
15	5.1 常温电气特性(以下所有电气特性,均为T _A =25℃)	77
15	5.2 全温度电气特性(以下所有电气特性,均为T _A =-40℃~85℃)	83
16.	封装信息	85
17.	订购信息	86
18.	规格书更改记录	86