Show all necessary work neatly.

In Exercises 3–8, find the exact arc length of the curve over the stated interval.

3.
$$y = 3x^{3/2} - 1$$
 from $x = 0$ to $x = 1$

7.
$$24xy = y^4 + 48$$
 from $y = 2$ to $y = 4$

In Exercises 9–12, find the exact arc length of the parametric curve without eliminating the parameter.

11.
$$x = \cos 2t$$
, $y = \sin 2t$ $(0 \le t \le \pi/2)$

17.

Consider the curve $y = x^{2/3}$.

- (a) Sketch the portion of the curve between x = -1 and x = 8.
- (b) Explain why Formula (4) cannot be used to find the arc length of the curve sketched in part (a).
- (c) Find the arc length of the curve sketched in part (a).

25. Find a positive value of k (to two decimal places) such that
the curve $y = k \sin x$ has an arc length of $L = 5$ units
over the interval from $x = 0$ to $x = \pi$. [Hint: Find an
integral for the arc length L in terms of k , and then use a
CAS or a scientific calculator with a numeric integration
capability to find integer values of k at which the values of
L-5 have opposite signs. Complete the solution by using
the Intermediate-Value Theorem (2.5.8) to approximate the
value of k to two decimal places.]

31.

(a) Show that the total arc length of the ellipse

$$x = 2\cos t, \quad y = \sin t \qquad (0 \le t \le 2\pi)$$
 is given by
$$4 \int_0^{\pi/2} \sqrt{1 + 3\sin^2 t} \, dt$$