Chapter 1

Introduction to Topology

1.1 Continuity

Definition 1.1.1. The function $f: \mathbb{R} \to \mathbb{R}$ is continuous at a point $x \in \mathbb{R}$ if x is sufficiently closed to x, and f(x) is sufficiently closed to f(a), that is

If
$$x \in (a - \delta, a + \delta)$$
, then $f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon)$

Theorem 1.1.1. The function $f : \mathbb{R}$ is continuous (you can check by $\delta - \varepsilon$ definition) if and only if the subset $S \subset \mathbb{R}$ and its preimage $f^{-1}(S)$ are both open.

Example 1.1.2. Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = 4x^2 - 4x$. Compute the following preimages

$$f^{-1}{5}, f^{-1}(8,24),$$

For $f^{-1}\{5\}$ (this is a fixed point), we need to solve the equation $4x^2-4x=5 \Rightarrow 4x^2-4x-5=0$.

$$4x^{2}-4x-5=0$$

$$x = \frac{-(-4) \pm \sqrt{16+4(4 \times 5)}}{2(4)}$$

$$= \frac{1 \pm \sqrt{6}}{2}$$

the results yield to $f^{-1}{5} = \left\{ \frac{1 - \sqrt{6}}{2}, \frac{1 + \sqrt{6}}{2} \right\}.$

$$8 < 4x^{2}-4x < 24$$

$$4x^{2}-4x > 8 \quad \text{and} \quad 4x^{2}-4x < 24$$

$$x^{2}-x-2 > 0 \qquad x^{2}-x-6 < 0$$

$$(x-2)(x+1) > 0 \qquad (x-3)(x+2) < 0$$

1.2 Homeomorphism

A homeomorphism is a map between two topological spaces that preserves some properties.

Definition 1.2.1. The two topological spaces (X, τ_X) , (Y, τ_Y) are homeomorphic if they are continuous mapping $f: X \to Y$ and $g: Y \to X$ such that $f \circ g = 1_Y$ and $g \circ f = 1_X$, where 1_X and 1_Y are both indentity functions such that $1_X: X \to X$ and $1_Y: Y \to Y$.

Example 1.2.2. The surface of a cube is homeomorphic to a sphere on the same dimension.

Example 1.2.3. $\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ is a homeomorphism.

Example 1.2.4. Let S^n denotes the n-dimensional unit sphere, in mathematical way, it can be written as

$$S^{n} = \left\{ (x_{0}, x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid \sum_{i=0}^{n} x_{i}^{2} = x_{0}^{2} + x_{1}^{2} + \dots + x_{n}^{2} = 1 \right\}$$

Let $N = (1, 0, \dots, 0)$ denote the north pole of the n-dimensional unit sphere, then $S^n \setminus \{N\}$ will be homeomorphic to \mathbb{R}^n .

Figure~1.1:~Source:~http://gallery.bridges mathart.org/exhibitions/2016-joint-mathematics-meetings/henrys

By defining a mapping $f: S^n \setminus \{N\} \to \mathbb{R}^n$, and there has another preimage function $g: \mathbb{R}^n \to S^n \setminus \{N\}$ which are given by

$$f(x_0, x_1, \dots, x_n) = \frac{1}{1 - x_0}(x_1, x_2, \dots, x_n)$$

and

$$g(y_1, y_2, \dots, y_n) = \frac{1}{1+|y|^2}(|y|^2-1, 2y_1, \dots, 2y_n)$$

where $|y|^2 = y_1^2 + y_2^2 + \dots + y_n^2$.

Certainly, since $x_0 \neq 1$ (you had already taken away the north pole), for all $(x_0, x_1, \dots, x_n) \in S^n \setminus \{N\}$, f is well-defined and continuous function. For all $(y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, we have

$$(|y|^{2}-1)^{2} + 4y_{1}^{2} + \dots + 4y_{n}^{2} = |y|^{4} - 2|y|^{2} + 1 + 4(y_{1}^{2} + \dots + y_{n}^{2})$$

$$= |y|^{4} - 2|y|^{2} + 1 + 4|y|^{2}$$

$$= |y|^{4} + 2|y|^{2} + 1$$

$$= (|y|^{2} + 1)^{2}$$

implies that g is also well-defined and continuous function.

Now, in order to identify whether $S^n \setminus \{N\}$ is homeomorphic to \mathbb{R}^n , we need to check if $f \circ g = 1_X$ and $g \circ f = 1_Y$ (the \circ here is function composition, not multiplication). In another words, this is equivalent to show that the functions f and g are mutually inverse.

$$g(f(x_0, x_1, \dots, x_n)) = g\left(\frac{1}{1 - x_0}(x_1, x_2, \dots, x_n)\right)$$

$$= \frac{1}{1 + \frac{x_0^2 + x_1^2 + \dots + x_n^2}{(1 - x_0)^2}} \left(\frac{x_1^2 + \dots + x_n^2}{(1 - x_0)^2} - 1, \frac{2x_1}{1 - x_0}, \dots, \frac{2x_n}{1 - x_0}\right)$$

$$= \frac{(1 - x_0)^2}{2 - 2x_0} \left(\frac{1 - x_0^2}{(1 - x_0)^2} - 1, \frac{2x_1}{1 - x_0}, \dots, \frac{2x_n}{1 - x_0}\right)$$

$$= \frac{1}{2}(1 + x_0 - 1 + x_0, 2x_1, \dots, 2x_n)$$

$$= (x_0, x_1, \dots, x_n)$$

$$= 1_X$$

where $1_X: (x_0, x_1, \dots, x_n) \rightarrow (x_0, x_1, \dots, x_n)$ is an identity mapping.

On the other hand, for any $(y_1, y_2, \dots, y_n) \in \mathbb{R}^n$, we need to compute

$$f(g(y_1, y_2, \dots, y_n)) = f\left(\frac{1}{1+|y|^2}(|y|^2 - 1, 2y_1, \dots, 2y_n)\right)$$

$$= \frac{1}{1-\frac{|y|^2 - 1}{|y|^2 + 1}}\left(\frac{2y_1}{|y|^2 + 1}, \dots, \frac{2y_n}{|y|^2 + 1}\right)$$

$$= (y_1, \dots, y_n)$$

$$= 1_V$$

Non-example 1.2.5. The cartesian plane \mathbb{R}^2 is not homeomorphic to the real line \mathbb{R} .

Theorem 1.2.1. There is no continuous surjective map $\mathbb{R} \to S^0$.

1.3 Hausdorff Property

Definition 1.3.1. A topological space X is Hausdorff if for any distinct points $x, y \in X$, there are two open subsets $U, V \subset X$ such that $x \in U$, $y \in V$, $U \cap V = \emptyset$.

Theorem 1.3.1 (Weierstrass Intermediate Value Theorem). *content...*

Theorem 1.3.2 (Intermediate Value Theorem). If $f:[a,b] \to \mathbb{R}$ is a continuous function and f(a) < 0, f(b) > 0, then there is some value $x \in [a,b]$ such that f(x) = 0.

