In [5]: import pandas as pd import seaborn as sns %matplotlib inline pd.options.display.max_columns = 70 pd.options.display.max_rows = 20 top10_data = pd.read_csv('top_10.csv', header = None) top10_data = top10_data.transpose() top10_data.columns = top10_data.iloc[0] # set column header top10_data = top10_data.drop(0) # drop duplicated row top10_data = top10_data.drop(1) # drop duplicated row top10_data = top10_data.drop(8) # drop duplicated row top10_data['cat'] = "top 10" # create top/overall cat top10_data.rename(columns={'industry':'thermometer'}, inplace=True) random_data = pd.read_csv('random_comma_data.csv', header = None) random_data = random_data.transpose() random_data.columns = random_data.iloc[0] # set column header random_data = random_data.drop(0) # drop duplicated row random_data = random_data.drop(1) # drop duplicated row random_data = random_data.drop(8) # drop duplicated row random_data['cat'] = "random" # create top/overall cat random_data.rename(columns={'industry':'thermometer'}, inplace=True) top10 data

Out[5]:

	t	hermometer	automotive- automotive-other						
2	2 a	a_weighted_rating	0.800508673406529	0.899243370723261	0.617104285874213	1.0	0.996440454544235	0.840841115691487	0.84931235014502
3	3 a	a_visibility	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	l a	a_spread	0.45	0.88	0.598076923076923	0.5	0.348245614035088	0.88	0.88
5	i a	a_volume	0.45	0.275	0.675	0.475	0.475	0.6	0.65
6	а	a_time	1.0	0.285714285714286	1.0	0.642857142857143	1.0	0.821428571428571	1.0
7	' a	a_length	0.708812260536399	0.461538461538462	0.459302325581395	0.736842105263158	0.192982456140351	0.628571428571429	0.75

6 rows × 600 columns

In []:

```
import matplotlib.pyplot as plt
prev = None # print unique columns
for column in top10_data:
    if column != "cat" and column != "thermometer" and column != prev:
        print column
        temp = pd.melt(top10_data, id_vars=['thermometer', 'cat'], value_vars=[column])
        temp_random = pd.melt(random_data, id_vars=['thermometer', 'cat'], value_vars=[column])
        result = temp.append(temp_random)
result['value'] = result['value'].astype(float)
        sns.set()
        sns.set_context("paper")
        sns.stripplot(data = result, x="thermometer", y='value', hue='cat')
        plt.show()
```

automotive-automotive-other

automotive-dealer

automotive-oem

automotive-parts

automotive-rental

 $\verb"automotive-repair-\&-service"$

automotive-tires

beauty-beauty-other

beauty-hair-grooming

beauty-skin-care

beauty-spa

default-default

education-education-other

entertainment-amusement-park

entertainment-live-performance-&-sports

entertainment-museums-and-parks

entertainment-other

financial-services-accounting

financial-services-banks

 ${\tt financial-services-financial-services-other}$

financial-services-insurance

-0.2									
	a_weighted_rating	a_visibility	a_spread	a_volume	a_time	a_length			

health-care-dentists

health-care-health-care-other

health-care-home-care

 $\verb|health-care-hospitals-\&-facilities||$

health-care-medical-spa

