Тема: Двійкове кодування. Одиниці вимірювання довжини двійкового коду. Кодування текстових даних. Таблиці кодів символів

Після цього заняття потрібно вміти:

- Розуміти поняття двійкового коду, називати одиниці вимірювання його довжини та пояснювати їх співвідношення.
- Пояснювати деякі принципи кодування графічних даних.
- Кодувати і декодувати повідомлення за певними правилами.
- Описувати загальний принцип побудови таблиці кодів символів.

Пригадайте:

- 1. Що таке кодування повідомлень? З якою метою кодують повідомлення?
- 2. Наведіть приклади кодування повідомлень.
- 3. Що таке декодування повідомлень?
- 4. В чому полягає різниця між кодуванням та шифруванням?

Ознайомтеся з інформацією

На цьому занятті ви дізнаєтесь про кодування, яке використовує комп'ютер — *двійкове кодування* й познайомитесь з одиницями вимірювання цифрової інформації.

Якщо не вдаватись в безліч деталей та звести все до елементарних речей то комп'ютер — це лампочка (схожі обчислювальні машини на основі ламп існували в 60 роках минулого століття). Як працює наша лампочка? Вона або світиться або ні, бо до неї або біжить струм або ні. Так само і комп'ютер — або до нього поступає струм або ні (це в дуже спрощеному розумінні). І для загального позначення наявність струму позначили як 1, а його відсутність 0. Саме через це кодування на комп'ютері відбувається за двійковою системою (бо 2 символи 0 та 1).

Ідея кодувати повідомлення двома символами прийшла до Самюєля Морзе, який і ϵ творцем азбуки Морзе. В нього використовується лише крапочка та тире. Так і на комп'ютері $\mathbf{0}$ та $\mathbf{1}$, але поєднання цих $\mathbf{0}$ та $\mathbf{1}$ дає змогу закодувати не лише якихось $\mathbf{2}$ поняття а на багато більше.

I так кодування повідомлень з використанням сигналів лише двох видів називають двійковим кодуванням. Повідомлення, отримане в результаті двійкового кодування повідомлення, називають двійковим кодом повідомлення.

В інформатиці символ 0 або 1 називають бітом. Біт — це найменша частинка інформації.

Комп'ютер

І що ж ми можемо закодувати цим бітом? Або одну літеру, цифру, символ, або якесь поняття. Наприклад 0 — твердження хибне, 1 — твердження істинне, або стать (бо їх лише дві) 0 — чоловіча та 1 жіноча. Правда тут виникає питання: «Понять, символів, букв, цифр є набагато більше, що ж робити?»

Для цього потрібно всього на всього більше бітів. Взявши три біти ми можемо закодувати набагато більше інформації – це 000, 001, 010, 100, 011, 110, 101, 111.

Отже, ми познайомились з найменшими розмірами інформації, але існують і більші:

1 Біт – найменша частинка інформації

8 Біт = 1 Байт

1024 Байти = 1 КілоБайт

1024 КБ = 1 МегаБайт

1024 МБ = 1 ГігаБайт

1024 ГБ = 1 ТераБайт

Кодування тексту

 Для кодування окремих символів достатньо коду довжиною 1 байт

2⁸=256 різних символів ASCII

Кодування зображень

Для кодування зображення

однієї чорно-білої точки достатньо 1 біту,

для 16-кольорової картинки кожна точка кодується 4 бітами,

для 256-кольорової - 8 бітами (1 байтом).

Кодування зображень

Чорно-білий малюнок бх5 точок = 30 бітів ~ 4 байти

	0	1	1	1	0	
-	1	1	1	1	1	100
	1	0	1	0	1	011
	0	0	1	0	0	010
	0	0	1	0	0	100
	0	1	1	0	0	
	W 16	1001	0.00	- F		00 1
) H (H	1 180 0 1 560 0 1 560 0	10 (N) 10 (N) 10 (N)	= F = 6 = 6		01 0 00 1

Приклади двійкового кодування

Символ	Число	Відповідний байт
!	33	00100001
@	64	01000000
W	103	01100111
ю	254	11111110
я	255	1111111

Таким чином, кожен символ у таблиці кодів символів Windows-1251 має двійковий код завдовжки 1 Б.

Перегляньте презентацію за посиланням нижче:

<u>8_5</u> Двійкове кодування.pptx - Google Диск

Для тих хто хоче знати більше:

Урок 03. Двійкове кодування - 8 КЛАС - YouTube

Завдання

1) § 1.2, 1.3 опрацювати, с.20 № 5,6 письмово

Виконане завдання надішліть вчителю на HUMAN або на електронну пошту balag.elizaveta@gmail.com