Intho to Computer sewrity Assignment 4. Part 1

Name: Rahul Venma

B-Number: B00892091

Criven: Security Clearance: (U1,5)

Security Level: (0,75), (02,5), (03,0), (04,0)

In Mandatory Access Control: No Read Up - A USES A can Frecid only those objects whose security level <= Security Level of A k No white -down - A usen A can chedle only objects whose security Level >= the security level of A.

- (1) VI can nead: 02,03,04
- (2) VI can white: 01,02

Ansz)

(1) We use a dual signature Gon this,

· Signed concatenated hashes of OI4PI
· Encrypt the final hash with the customer's private key.

DS = E (PR, [H(M(PI) || H(OI))])

Downal signature: DS = E (PRc, [H(H(PI)||H(OI))])

- (2) Menchant: the dual signature DS, OI, the message digest bon PI (PIMD), and the pub-key of the customer . The menchant computes O (PUc, Os), if the same as M (PIMO II H (OI))]), then the signature is verified.
- (3) Bank: the dual signature 05, PI, the message digest for OI (OIMO), and the public-key of the customer some as H (H(PI) || OIMD))), then the bank has venified the signature

153) (riven 5 gl Query:

and password = 6 " + password + 667;

where, ('): Close the user input pield and (--): Comments out the rest of the line)

The query will become:

SELETT * FROM U WHERE Login = '0' on 't'= 't'; -
and password = ";

Hene, the passaond part is commented so the query becomes:

SELECT * FROM U WHERE LOgin = "a" on "t" = "t";

And as t=t, the WHERE clouse is thue, so the guerry becomes:

SELECT * FROM U;

Thenefore, the atracker will be able to access the information of att table u, without knowing their pass word.

An54)	Given: The output of " & abode" is 169348921.	
_	This happens because the input (abode) is low than the size of buffer, so the input (abode) overwhites the memory location that stories to value of or (123)	ngen
	than the size of buffer, so the input (abode)	<i>O</i>
	ovenwhites the memory location that stones t	ne
	Thenefore, the output of "f abode" is 169348	921.
		· · ·
		4