Regression Models Project: Motor Trend MPG Analysis

Telvis Calhoun

February 26, 2016

Executive Summary

We explore the Motor Trend Car Road Tests (mtcars) dataset. We'll analyze this dataset to answer the following questions.

- 1. "Is an automatic or manual transmission better for MPG"
- 2. "Quantify the MPG difference between automatic and manual transmissions"

To accomplish this, we will first determine the relationship between the covariates in the mtcars data. Next, we build several linear regression models and use model selection techniques to find the "best fit" model. Finally, we perform statistical inference using the "best fit" model to determine the relationship between MPG and the transmission type after adjusting for statistically significant covariates.

We conclude that both "automatic" and "manual" transmissions have roughly equal MPG after we adjust for for Number of Cylinders, Gross Horsepower and weight. The analysis shows that MPG for a manual transmission decreases by 1.8 mpg holding other variables constant.

Exploratory Analysis

First, lets load libraries and datasets used in the analysis.

```
library(datasets)
library(ggplot2)
library(dplyr)
data("mtcars")
```

Appendix 1 shows the mtcars dataset has 11 variables. Let's change the am variable to a factor. This will make the R output show the strings 'automatic' where am == 1 and 'manual' where am == 0. We also make cyl a factor since its values are only 4 and 6.

```
## ## automatic manual ## 13 19
```

The boxplot below shows the group mean is 24.4 mpg for 'automatic' transmissions and 17.14 mpg for 'manual' transmissions. The difference in the group means seem significant. However, we will show that the difference is less significant after we adjust for other variables.

MPG vs Transmission Type

Transmission Type

Model Selection

Before we can characterize the relationship between mpg and the transmission type (am), we must first search for other variables that can distort, or confound the relationship between the mpg and am. The analysis performed in **Appendix 2** shows that cyl, disp, hp, drat, wt all significantly change the am coefficient when included in a linear model with am. In **Appendix 3**, we generate nested models for am plus these 5 variables then evaluate them using nested likelihood ratio tests.

The "best fit" model includes: am, cyl, hp and wt.

```
best_fit <- lm(mpg ~ am + cyl + hp + wt, data=mtcars)
r_squared <- round(summary(best_fit)$adj.r.squared, digits=3)*100</pre>
```

The r.squared value for this model indicates that 84% of the total variablity is explained by the linear relationship between the outcome mpg and the predictors am, cyl, hp and wt.

Finally, in **Appendix 4** we plot the residuals to search for a pattern in the versus the fitted (yhat) values. The plot shows a slight curve in the values - but nothing too bad.

Automatic Vs. Manual Comparison

Now that we have a model containing the necessary covariates, let's calculate the change in mpg for transmission type after adjusting for Number of Cylinders (cyl), Gross Horsepower (hp) and weight (wt). The results show that the mpg for a manual transmission decreases by 1.80 mpg holding other variables constant.

```
summary(best_fit)$coef
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35.51753528 2.03171034 17.481594 6.811749e-16
## ammanual -1.80921138 1.39630450 -1.295714 2.064597e-01
## cyl6 -3.03134449 1.40728351 -2.154040 4.068272e-02
## cyl8 -2.16367532 2.28425172 -0.947214 3.522509e-01
## hp -0.03210943 0.01369257 -2.345025 2.693461e-02
## wt -2.49682942 0.88558779 -2.819404 9.081408e-03
```

However, the confidence interval for am ranges from -4.6 to 1.06. Because it includes 0, we cannot reject the null hypothesis after adjusting for Number of Cylinders (cyl), Gross Horsepower (hp) and weight (wt). Therefore, we conclude that both "automatic" and "manual" transmissions have roughly equal MPG after we adjust for cyl, hp and wt.

confint(best_fit)

```
## 2.5 % 97.5 %

## (Intercept) 31.34129487 39.693775694

## ammanual -4.67935639 1.060933628

## cyl6 -5.92405718 -0.138631806

## cyl8 -6.85902199 2.531671342

## hp -0.06025492 -0.003963941

## wt -4.31718120 -0.676477640
```

Conclusion

We conclude that both "automatic" and "manual" transmissions have roughly equal MPG after we adjust for for Number of Cylinders (cyl), Gross Horsepower (hp) and weight (wt). The analysis shows that the mpg for a manual transmission decreases by 1.8 mpg holding other variables constant.

Appendix

Appendix 1: mtcars summary

summary(mtcars)

```
##
                           cyl
                                            disp
         mpg
                                                               hp
##
           :10.40
                             :4.000
                                              : 71.1
                                                                : 52.0
    Min.
                     Min.
                                       Min.
                                                        Min.
##
    1st Qu.:15.43
                     1st Qu.:4.000
                                       1st Qu.:120.8
                                                        1st Qu.: 96.5
##
    Median :19.20
                     Median :6.000
                                       Median :196.3
                                                        Median :123.0
##
    Mean
            :20.09
                     Mean
                             :6.188
                                       Mean
                                              :230.7
                                                        Mean
                                                                :146.7
##
    3rd Qu.:22.80
                     3rd Qu.:8.000
                                       3rd Qu.:326.0
                                                        3rd Qu.:180.0
##
    Max.
            :33.90
                             :8.000
                                               :472.0
                                                                :335.0
                     Max.
                                                        Max.
##
         drat
                            wt
                                            qsec
                                                               VS
##
    Min.
            :2.760
                     Min.
                             :1.513
                                       Min.
                                               :14.50
                                                        Min.
                                                                :0.0000
##
    1st Qu.:3.080
                     1st Qu.:2.581
                                       1st Qu.:16.89
                                                        1st Qu.:0.0000
    Median :3.695
                     Median :3.325
                                       Median :17.71
                                                        Median :0.0000
##
##
    Mean
            :3.597
                     Mean
                             :3.217
                                       Mean
                                              :17.85
                                                        Mean
                                                                :0.4375
##
    3rd Qu.:3.920
                     3rd Qu.:3.610
                                       3rd Qu.:18.90
                                                        3rd Qu.:1.0000
            :4.930
                             :5.424
                                               :22.90
                                                                :1.0000
##
    Max.
                     {\tt Max.}
                                       Max.
                                                        Max.
```

```
##
                           gear
                                             carb
             am
    automatic:13
##
                             :3.000
                                               :1.000
                     \mathtt{Min}.
                                       Min.
##
    manual
              :19
                     1st Qu.:3.000
                                       1st Qu.:2.000
##
                     Median :4.000
                                       Median :2.000
##
                     Mean
                             :3.688
                                       Mean
                                               :2.812
##
                     3rd Qu.:4.000
                                       3rd Qu.:4.000
##
                     Max.
                             :5.000
                                       Max.
                                               :8.000
```

Appendix 2: covariate selection

Let's "get our hands dirty" and quantify the percentage change in the am coefficient when we adjust for all other variables. The output shows that cyl, disp, hp, drat, wt all change the am coefficient by greater than +/-25%

```
# baseline
a <- summary(lm(mpg ~ am, data=mtcars))$coef[2]
# calc percent change in the baseline for each covariate
rbind(
  c('baseline', 'cyl', 'disp', 'hp', 'drat', 'wt', 'qsec', 'vs', 'gear', 'carb'),
  round(c((a-a)/a,
    100 * (a - summary(lm(mpg ~ am + cyl, data=mtcars))$coef[2])/a,
    100 * (a - summary(lm(mpg ~ am + disp, data=mtcars))$coef[2])/a,
    100 * (a - summary(lm(mpg ~ am + hp, data=mtcars))$coef[2])/a,
    100 * (a - summary(lm(mpg ~ am + drat, data=mtcars))$coef[2])/a,
   100 * (a - summary(lm(mpg ~ am + wt, data=mtcars))$coef[2])/a,
   100 * (a - summary(lm(mpg ~ am + qsec, data=mtcars))$coef[2])/a,
    100 * (a - summary(lm(mpg ~ am + vs, data=mtcars))$coef[2])/a,
    100 * (a - summary(lm(mpg ~ am + gear, data=mtcars))$coef[2])/a,
    100 * (a - summary(lm(mpg ~ am + carb, data=mtcars))$coef[2])/a
  ), digits=2)
)
```

```
[,1]
                    [,2]
                            [,3]
                                     [,4]
                                             [,5]
                                                               [,7]
                                                                         [8,]
##
                                                      [,6]
                            "disp" "hp"
   [1,] "baseline" "cyl"
                                             "drat"
                                                      "wt"
                                                               "qsec"
   [2,] "0"
                    "64.67" "74.69" "27.16" "61.25" "100.33" "-22.52" "16.26"
##
        [,9]
                [,10]
## [1,] "gear" "carb"
## [2,] "1.43" "-5.63"
```

Appendix 3: model selection

We generate nested models for these 5 variables using and evaluate them using a nested likelihood ratio tests. The results show that models 2, 4 and 6 have the greatest significance. This suggests that disp and drat should be excluded from the model.

```
fit1 <- lm(mpg ~ am, data=mtcars)
fit2 <- lm(mpg ~ am + cyl, data=mtcars)
fit3 <- lm(mpg ~ am + cyl + disp, data=mtcars)
fit4 <- lm(mpg ~ am + cyl + disp + hp, data=mtcars)
fit5 <- lm(mpg ~ am + cyl + disp + hp + drat, data=mtcars)
fit6 <- lm(mpg ~ am + cyl + disp + hp + drat + wt, data=mtcars)
anova(fit1, fit2, fit3, fit4, fit5, fit6)</pre>
```

```
## Analysis of Variance Table
##
## Model 1: mpg ~ am
## Model 2: mpg ~ am + cyl
## Model 3: mpg ~ am + cyl + disp
## Model 4: mpg ~ am + cyl + disp + hp
## Model 5: mpg ~ am + cyl + disp + hp + drat
## Model 6: mpg ~ am + cyl + disp + hp + drat + wt
##
    Res.Df
              RSS Df Sum of Sq
## 1
        30 720.90
## 2
        28 264.50 2
                        456.40 36.4876 5.28e-08 ***
        27 230.46 1
                        34.04 5.4421 0.02837 *
## 3
                        47.42 7.5822 0.01106 *
## 4
        26 183.04 1
## 5
        25 182.38 1
                         0.66 0.1052 0.74847
## 6
        24 150.10 1
                         32.28 5.1614 0.03234 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The comparison below shows that a model with the variables: am, cyl, hp and wt is a better fit than a model containing only am. This is our "best fit" model.

```
fit1 <- lm(mpg ~ am, data=mtcars)
fit7 <- lm(mpg ~ am + factor(cyl) + hp + wt, data=mtcars)
anova(fit1, fit7)</pre>
```

```
## Analysis of Variance Table
##
## Model 1: mpg ~ am
## Model 2: mpg ~ am + factor(cyl) + hp + wt
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 30 720.90
## 2 26 151.03 4 569.87 24.527 1.688e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Appendix 4: residual plot for final model

Finally, we plot the residuals (top left) to search for a pattern in the residuals vs the fitted (yhat) values.

