DeepMAC model

DeepMAC (Deep Mask heads Above CenterNet) is a neural network architecture that is designed for the partially supervised instance segmentation task. For details see the The surprising impact of mask-head architecture on novel class segmentation paper. The figure below shows improved mask predictions for unseen classes as we use better mask-head architectures.

Just by using better mask-head architectures (no extra losses or modules) we achieve state-of-the-art performance in the partially supervised instance segmentation task.

Code structure

- deepmac_meta_arch.py implements our main architecture, DeepMAC, on top of the CenterNet detection architecture.
- The proto message DeepMACMaskEstimation in center_net.proto controls the configuration of the mask head used.
- The field allowed_masked_classes_ids controls which classes recieve mask supervision during training.
- Mask R-CNN based ablations in the paper are implemented in the TF model garden code base.

Prerequisites

- 1. Follow TF2 install instructions to install Object Detection API.
- 2. Generate COCO dataset by using create coco tf record.py

Configurations

We provide pre-defined configs which can be run as a TF2 training pipeline. Each of these configurations needs to be passed as the pipeline_config_path argument to the object_detection/model_main_tf2.py binary. Note that the 512x512 resolution models require a TPU v3-32 and the 1024x1024 resolution models require a TPU v3-128 to train. The configs can be found in the configs/tf2 directory. In the table below X->Y indicates that we train with masks from X and evaluate with masks from Y. Performance is measured on the coco-val2017 set.

Partially supervised models

	Mask	Train-		Mask
Resolutionhead		>Eval	Config name	mAP
512x512	Hourglass- 52	VOC -> Non-VOC	center_net_deepmac_512x512_voc_on132.5con	

Mask	Train-	C C	Mask
Resolutionhead	>Eval	Config name	$\frac{\text{mAP}}{}$
1024x1024Hourglass-	$VOC \rightarrow$	center_net_deepmac_1024x1024_	voc_ombly.config
100	Non-VOC		
1024 x 1024 Hourglass-	Non-VOC	center_net_deepmac_1024x1024_n	non_w30clonly.config
100	-> VOC		

Fully supervised models

Here we report the Mask mAP averaged over all COCO classes on the ${\tt test-dev2017}$ set .

Resolution	Mask head	Config name	Mask mAP
1024x1024	Hourglass- 100	center_net_deepmac_1024x1024_coco	config9.4

Demos

- DeepMAC Colab lets you run a pre-trained DeepMAC model on user-specified boxes. Note that you are not restricted to COCO classes!
- iWildCam Notebook to visualize instance masks generated by DeepMAC on the iWildCam dataset.

Pre-trained models

• COCO Checkpoint - Takes as input Image + Boxes and produces per-box instance masks as output.

See also

- Mask RCNN code in TF Model garden code base.
- Project website git.io/deepmac

Citation