Life-time of minimal tubes and coefficients of univalent functions in a circular ring

Vladimir G. Tkachev

Abstract. We obtain various estimates of the life-time of two-dimensional minimal tubes in \mathbb{R}^3 by potential theory methods.

1. Introduction.

Let $x = (x_1, x_2, \dots, x_n, x_{n+1})$ be a point in Euclidean space \mathbb{R}^{n+1} with the *time* axis Ox_{n+1} and M be a p-dimensional Riemannian manifold, $2 \le p \le n$.

Definition 1. We say that a surface $\mathcal{M} = (M, \mathbf{u})$ given by C^2 -immersion $\mathbf{u} : M \to \mathbb{R}^{n+1}$ is a *tube* with the projection interval $\tau(\mathcal{M}) \subset Ox_{n+1}$, if (i) for any $\tau \in \tau(\mathcal{M})$ the sections $\Sigma_{\tau} = f(\mathcal{M}) \cap \Pi_{\tau}$ by hyperplanes $\Pi_{\tau} = \{x \in \mathbb{R}_1^{n+1} : x_{n+1} = \tau\}$ are not empty compact sets; (ii) for $\tau', \tau'' \in \tau(\mathcal{M})$ any part of \mathcal{M} situated between two different $\Pi_{\tau'}$ and $\Pi_{\tau''}$ is a compact set.

Definition 2. A surface \mathcal{M} is called *minimal* if the mean curvature of \mathcal{M} vanishes everywhere.

It is the well known fact (see [5], p.331) that the minimality condition of \mathcal{M} is equivalent to that all coordination functions of the immersion \mathbf{u} are harmonic. For this reason, the two-dimensional minimal tubes can be considered as direct analog of the closed relative string conception in the modern nuclear physics (cf. [2]). This approach was proposed by V.M.Miklyukov and the author in [7] for an arbitrary dimension p.

From this point of view many intrinsic geometric invariants of \mathcal{M} have the natural physical meaning. Namely, the length of the projection interval $|\tau(\mathcal{M})|$ can be interpreted as a *life-time* of the tube \mathcal{M} .

To introduce the following important characteristic we denote by ν the unit normal to Σ_{τ} with respect to \mathcal{M} which is co-directed with the time-axis Ox_{n+1} . Then by virtue of the harmonicity of the coordinate functions $u_k(m) = x_k \circ \mathbf{u}(m)$,

¹⁹⁹¹ Mathematics Subject Classification. Primary 53A10; Secondary 53A35.

This paper was supported in part by Russian Fundamental Researches Fund, project 93-011-176 **Published in:** Bull. Soc. Sci. Lett. Łódź. Sér. Rech. Déform. **20** (1995), 19–26.

 $1 \le k \le n+1$, the flow integrals

$$J_k = \int_{\Sigma_{\tau}} \langle \nabla u_k, \nu \rangle \ d\Sigma$$

are independent of $\tau \in \tau(\mathcal{M})$. Here $d\Sigma$ is the 1-Hausdorff measure along Σ_{τ} .

Definition 3. We call $Q(\mathcal{M}) = (J_1, J_2, \dots, J_{n+1}) \in \mathbb{R}^{n+1}$ the full flow-vector of \mathcal{M}

We notice the positiveness of J_{n+1} as a consequence of the choice of ν direction. Moreover, $Q(\mathcal{M})$ is an 1-homogeneous functional of \mathcal{M} under the homotheties group action in \mathbb{R}^{n+1} . Let us denote by $\alpha(\mathcal{M})$ the angle between $Q(\mathcal{M})$ and the time-axis Ox_{n+1} .

In this paper we are interested in the following question: What sufficient conditions yield the finiteness of the time-life of a two-dimensional minimal tube? As it shown in the series of papers [6]–[8], in the case $p \geq 3$ this quantity is always finite and the following estimation holds

$$|\tau(\mathcal{M})| \leq \varrho(\mathcal{M})c_p$$

where c_p depends only on p, and $\varrho(\mathcal{M})$ is the smallest diameter of sections Σ_{τ} . The last relationship is sharp and the equality occurs if and only if \mathcal{M} is a minimal surface of revolution.

A special feature of the two-dimensional case is that there exist tubes with finite as well as infinite values of the life-time. Indeed, a family of slanted minimal surfaces with circular cross-sections Σ_{τ} was discovered by B. Riemann [10]. Some other recent examples can also be found in [4].

In this paper we prove

Theorem 1. Let \mathcal{M} , dim $\mathcal{M} = 2$ be a minimal two-connected tube with univalent Gaussian mapping. If the angle $\alpha(\mathcal{M})$ is different from zero, then the life-time $|\tau(\mathcal{M})|$ of \mathcal{M} is finite and

$$\tau(\mathcal{M}) \le \frac{\pi \|Q\| \cos \alpha(\mathcal{M})}{\ln \tan(\frac{\pi}{4} + \frac{\alpha}{2})}.$$

Let us denote by $a_0[f]$ the central coefficient of the Laurent decomposition of an holomorphic function f(z) in an annulus $K_R = \{z : 1/R < |z| < R\}$, i.e.

$$a_0[f] \equiv \int_{C_1} \frac{g(\zeta) \, d\zeta}{\zeta}.$$

where C_1 is the unite circle $\{z \in \mathbb{C} : |z| = 1\}$. The following auxiliary assertion is a key ingredient in the proof of Theorem 1.

Theorem 2. Let g(z) be a univalent holomorphic function defined in the annulus K_R omitting zero. Assume that

(1)
$$a_0[g] = \lambda, \qquad a_0[1/g] = -\lambda,$$

Life-time of minimal tubes and coefficients of univalent functions in a circular ring

for some real positive λ . Then

(2)
$$\ln R \le \ln R_0(\lambda) = \frac{\pi^2}{\ln(\lambda + \sqrt{1 + \lambda^2})}$$

Remark 1. We note that estimate (2) has well asymptotic behaviour for $R \to \infty$ as shows Riemannian example mentioned above. But we cannot now present the sharp value of $R_0(\lambda)$. Nevertheless, it seemed us very probably that the following conjecture is true.

Remark 2. The best upper bound in the left side of (2) is achieved for holomorphic function $g_0(z)$ which provides a conformal map of the annulus K_R onto the plain \mathbb{C} with two slits: $(-1/\alpha; 0)$ and $(\alpha; +\infty)$, for the suitable choice of parameter α .

Acknowledgement. I wish to thank V.M.Miklyukov for many useful discussions concerning the topic of this paper.

2. Proof of Theorem 2

Let $\Gamma = \{C_{\rho} : 1/R < \rho < R\}$ be a family of all concentric circles $C_{\rho} = \{z : |z| = \rho\}$ in the annulus K_R . It follows easily from the non-vanishing property of g(z) that the loop C_1 in the integrals (1) may be replaced by an arbitrary circle $C_{\rho} \in \Gamma$. It follows from the mean value theorem and (1) that for every $\rho \in (1/R; R)$ there exist t_1 and t_2 such that

(3)
$$\operatorname{Re} g(\rho e^{it_1}) = \lambda \quad \text{and} \quad \operatorname{Re} \frac{1}{g(\rho e^{it_2})} = -\lambda.$$

Let $\gamma_{\rho} = g(C_{\rho})$. Then by virtue of the univalence of g(z), the curve γ_{ρ} is the simple Jordan one. Let $g(\rho e^{it}) = x(t) + iy(t)$ be the representation of γ_{ρ} . Then we obtain from (3)

$$x(t_1) = \lambda;$$
 $x^2(t_2) + y^2(t_2) + \frac{1}{\lambda}x(t_2) = 0.$

The last relations have the helpful geometric interpretation:

(*) The curve γ_{ρ} has a non-empty intersection with the vertical rightline $L_1 = \{z : \text{Re}z = \lambda\}$ and the circle $L_2 = \{z : |z + 1/2\lambda| = 1/2\lambda\}$.

We shall make use the technique from the potential theory (the length-are method). Recall the exact definition. Let E be a family of locally rectifiable curves γ and $\varphi(z) \geq 0$ be a Baire function with the property

$$\int_{\gamma} \varphi(z) \, |dz| \ge 1,$$

for every $\gamma \in E$. The infimum

$$\mod E = \inf \int \varphi^2(z) \, dx \, dy$$

over all such $\varphi(z)$ is called a *conformal module* of the family E.

Then it is known (see [1]) that mod E is the conformal invariant. As a consequence we obtain in our situation

(4)
$$\operatorname{mod} \Gamma = \operatorname{mod} \Gamma_1$$
,

where $\Gamma_1 = \{ \gamma_\rho : 1/R < \rho < R \}$.

Let us denote by D the two-dimensional domain

$$D = \left\{ z : \operatorname{Re} z < \lambda; \ \left| z + \frac{1}{2\lambda} \right| > \frac{1}{2\lambda} \right\}.$$

Using the (\star) -property, we can find for every $\rho \in (1/R; R)$ the continuum $\gamma'_{\rho} \subset \gamma_{\rho}$ joining the boundary components of D. Then a family Γ_2 consisting of all continua γ'_{ρ} is "shorter" than Γ_1 and it follows from Theorem 1.2, [1] that

(5)
$$\operatorname{mod} \Gamma_1 \leq \operatorname{mod} \Gamma_2$$
.

On the other hand, Γ_2 is the subfamily of $\Gamma(D)$, where the last term means the family of *all* curves joining the boundary components of a domain D. The monotonicity property of infimum and Definition 4 lead to the following inequality

(6)
$$\operatorname{mod} \Gamma_2 \leq \operatorname{mod} \Gamma(D).$$

Now, combining the standard fact

(7)
$$\operatorname{mod} \Gamma = \frac{\ln R}{\pi}$$

with relations (4), (5) and (6) we arrive at the following inequality

$$\frac{\ln R}{\pi} \le \operatorname{mod} \Gamma(D).$$

To compute the last module we note that the linear-fractional function

$$f(z) = \frac{1}{\lambda^*} \cdot \frac{z + \lambda^*}{1 - z\lambda^*}$$

maps D onto an annulus $K_1 = \{w : 1 < |w| < 1/\lambda^{*2}\}$, where $\lambda^* = \sqrt{\lambda^2 + 1} - \lambda$. Thus, using the invariance property of conformal module we obtain

$$\frac{\ln R}{\pi} \le \operatorname{mod}(D) \equiv \frac{2\pi}{\ln\left(1/{\lambda^*}^2\right)} = \frac{\pi}{\ln(\lambda + \sqrt{1 + \lambda^2})}.$$

and Theorem 2 is proved.

3. The Gaussian map of two-dimensional minimal tubes and their full-flow vector

In this section we express the full flow-vector of an arbitrary two-dimensional tube $\mathcal{M} \in \mathbb{R}^n$ via Chern-Weierstrass representation for minimal surfaces. Namely, if \mathcal{M} is a two-connected surface then we can arrange that \mathcal{M} is conformally equivalent

Life-time of minimal tubes and coefficients of univalent functions in a circular ring

to an annulus K_R for the appropriate R > 1. Then there exist the corresponding parametrization of \mathcal{M} (see [9]):

$$\mathbf{u}(z) = \operatorname{Re} \int_{z_0}^z F(\zeta) \, d\zeta : K_R \to \mathbb{R}^n,$$

where

$$F(z) = (\varphi_1(\zeta), \dots, \varphi_n(\zeta))$$

and $\varphi_i(\zeta)$ are holomorphic functions satisfying the following conditions

(8)
$$\sum_{i=1}^{n} \varphi_i(\zeta)^2 = 0;$$

and

(9)
$$\operatorname{Re} \int_{|z|=1} F(\zeta) \, d\zeta = \mathbf{0}.$$

Lemma 1. Under the above hypotheses we have

(10)
$$Q(\mathcal{M}) = \operatorname{Im} \int_{|z|=1} F(\zeta) d\zeta.$$

Proof. It sufficient to show that

(11)
$$J_k \equiv \int_{\Sigma_{\tau}} \langle \nabla u_k, \nu \rangle \ d\Sigma = \operatorname{Im} \int_{|z|=1} \varphi_k(\zeta) \ d\zeta,$$

for every k = 1, 2, ..., n + 1.

To prove (11) we introduce the conjugate to $u_k(z)$ function $v_k(z)$ by

$$v_k^*(z) = \operatorname{Im} \int_{z_0}^z \varphi_k(\zeta) d\zeta,$$

We notice that $v_k(z)$ in general is a multivalued function. On the other hand, the covariant derivative ∇v_k is well defined and using the properties of Hodge \star - operator we have

$$\int_{\Sigma_{\tau}} \langle \nabla u_k, \nu \rangle \ d\Sigma = \int_{\Sigma_{\tau}} \langle \star \nabla u_k, \star \nu \rangle \ d\Sigma = \int_{\Sigma_{\tau}} \langle \nabla v_k, \star \nu \rangle \ d\Sigma =$$

$$= \int_{\Sigma_{\tau}} d v_k = \operatorname{Im} \int_{|z|=1} \varphi_k(\zeta) \ d\zeta,$$

and (11) is proved.

In our case n=2, Chern-Weierstrass representation can be simplified in the following classic way. Namely, there exist a holomorphic function f(z) and a meromorphic function g(z) which are well defined in the annulus K_R and such that

(12)
$$F(z) = ((1 - g^2)f; i(1 + g^2)f; 2gf).$$

Moreover, poles of g(z) coincide with zeros of f(z) and the order of a pole of g(z) is precisely the order of the corresponding zero of f(z). We emphasize that g(z) is a composition of the stereographic projection and Gaussian map of \mathcal{M} .

Lemma 2. In our assumptions

(13)
$$2fg \equiv \frac{\langle Q(\mathcal{M}), e_3 \rangle}{2\pi z},$$

and g(z) omits the zero and infinity values.

Proof. We use the method proposed by M. Schiffman in [11]. We recall that the coordinate function $u_3(z)$ is harmonic in the annulus K_R and by virtue of Definition 1,

(14)
$$\lim_{z \to 1/R} u_3(z) = \tau_1, \qquad \lim_{z \to R} u_3(z) = \tau_2,$$

where $\tau(\mathcal{M}) = (\tau_1; \tau_2)$ is the projection of the tube \mathcal{M} onto x_3 -axis.

We consider an auxiliary harmonic function

$$h(z) = \tau_1 + \frac{\tau_2 - \tau_1}{2 \ln R} \ln |z|.$$

It is easily seen that h(z) satisfies (14). Thus $h_1(z) = u_3(z) - h(z)$ is harmonic in the annulus and

$$\lim_{z \to \partial K_P} h_1(z) = 0.$$

Then the maximum principle implies that $h_1(z) \equiv 0$ everywhere in K_R and hence

(15)
$$u_3(z) \equiv \tau_1 + \frac{\tau_2 - \tau_1}{2 \ln R} \ln |z|.$$

In particular, it follows from (15) that

$$du_3(z) \equiv \frac{\tau_2 - \tau_1}{\ln R} \cdot \frac{z}{|z|^2}$$

doesn't vanish in K_R . We have, as a consequence, the normal n(z) to \mathcal{M} isn't parallel to e_3 at any point. Taking into account the above remark about the geometrical sense of g(z) we obtain that $g(z):K_R\to\mathbb{C}-\{0;\infty\}$.

By comparing of (15) and (12) we deduce that

(16)
$$2g(z)f(z) = \frac{\tau_2 - \tau_1}{2\ln R} \cdot \frac{dz}{z}.$$

In order to eliminate $\ln R$ from the latter equality we substitute (16) into (12), and after using (10) we obtain

(17)
$$\ln R = \frac{\pi(\tau_2 - \tau_1)}{J_3}.$$

On substituting of the found relationship into (16) we arrive at the conclusion of the lemma.

Life-time of minimal tubes and coefficients of univalent functions in a circular ring

4. Proof of Theorem 1

Let us denote $w = (J_1 + iJ_2)/J_3$. Combining Lemma 2, (12) and (9) we obtain

$$\int_{C_1} \frac{1 - g^2(\zeta)}{2g(\zeta)} \frac{d\zeta}{\zeta} = 2\pi w_1 i,$$

$$\int_{C_1} \frac{1 + g^2(\zeta)}{2g(\zeta)} \frac{d\zeta}{\zeta} = 2\pi w_2.$$

Simplifying the last expressions and denoting $w = |w| \cdot e^{i\theta}$, $g_1(z) = -e^{-i\theta}g(z)$ give the following system

$$\frac{1}{2\pi} \int_{C_1} \frac{g_1(\zeta)d\zeta}{\zeta} = |w|,$$

$$\frac{1}{2\pi} \int_{C_1} \frac{d\zeta}{g_1(\zeta)\zeta} = -|w|.$$

Applying Theorem 2 we arrive at the inequality

$$\ln R \le \frac{\pi^2}{|w| + \sqrt{1 + |w|^2}}$$

where $|w| \equiv |J_1 + iJ_2|/|J_3| = \tan \alpha(\mathcal{M})$. Using (17) we obtain the required estimate and the theorem is proved.

References

- L. Ahlfors, Lectures on quasiconformal mappings, New York, Van Nostrand Math. Studies, 1966.
- [2] L. Brink and M. Henneaux, Principles of string theory, Plenum Press, New York, 1988.
- [3] M. Callahan, D. Hoffman and W. H. Meeks, Embedded minimal surfaces with an infinite number of ends, Invent. math., 96(1989), 459-505.
- [4] D. Hoffman and W. H. Meeks, Minimal surfaces based on the catenoid, Amer. Math. Monthly, 97(1990), 702-730.
- [5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 2, Intersci. Publish., New York, 1969.
- [6] V. A. Klyachin, Estimate of spread for minimal surfaces of arbitrary codimension, Sibirsk. Mat. Zh., 33(1992), N 5, p.201-207.
- [7] V. M. Miklyukov and V. G. Tkachev, Some properties of tubular minimal surfaces of arbitrary codimension, Math. USSR-Sb., 180(1989), 1278-1295.
- [8] V. M. Miklyukov and V. D. Vedenyapin, Extrinic dimension of tubular minimal hypersurfaces, Math. USSR-Sb., 131(1986), 240-250.
- [9] R. Osserman, A survey of minimal surfaces, New York: Dover Publications, 1987.
- [10] B. Riemann, Quevres Mathematiques de Riemann, Paris, Gautheriers-Villars, 1898.
- [11] M. Schiffman, On surfaces of stationary area bunded of two circles, or convex curves, in parallel planes, Annals of Math., 63(1956), 77-90.