

Lexical Analysis

Lecture 2

Exercise

Question?

For the code fragment below, choose the correct number of tokens in each class that appear in the code fragment

$$x = 0; \n \text{ twhile } (x > 10) { \n \text{ } x++; \n}$$

$$\bigcirc$$
 W = 9; K = 1; I = 3; N = 2; O = 9

$$\bigcirc$$
 W = 11; K = 4; I = 0; N = 2; O = 9

$$\bigcirc$$
 W = 9; K = 4; I = 0; N = 3; O = 9

$$\bigcirc$$
 W = 11; K = 1; I = 3; N = 3; O = 9

W: Whitespace

K: Keyword

I: Identifier

N: Number

O: Other Tokens:

Prof. Aiken

Answer!

For the code fragment below, choose the correct number of tokens in each class that appear in the code fragment

$$x = 0$$
; $\n \times (x > 10) {\n \times ++; \n}$
IWOWNO W W K OIWOWNOO W W I OOW O

- W = 9; K = 1; I = 3; N = 2; O = 9
- W = 11; K = 4; I = 0; N = 2; O = 9
- W = 9; K = 4; I = 0; N = 3; O = 9
- \bigcirc W = 11; K = 1; I = 3; N = 3; O = 9

W: Whitespace

K: Keyword

Identifier

N: Number

O: Other Tokens:

Question?

How many distinct strings are in the language of the following regular expression:

$$(0 + 1 + \varepsilon)(0 + 1 + \varepsilon)(0 + 1 + \varepsilon)(0 + 1 + \varepsilon)$$

- 0 31
- 0 64
- 0 32
- 0 81

Prof. Aiken 4

Answer!

How many distinct strings are in the language of the following regular expression:

$$(0 + 1 + \varepsilon)(0 + 1 + \varepsilon)(0 + 1 + \varepsilon)(0 + 1 + \varepsilon)$$

- 0 31
- 0 64
- 0 32
- 0 81

Question?

The language of the regular expression (abab)* is equivalent to the language of which of the following regular expressions?

Choose all that apply

- (ab)*
- \circ (aba (baba)* b) + ϵ
- \circ (ab (abab)* ab) + ϵ
- \circ (a (ba)* b) + ϵ

Prof. Aiken 6

Answer!

The language of the regular expression (abab)* is equivalent to the language of which of the following regular expressions?

Choose all that apply

- (ab)*
- (aba (baba)* b) + ε (ab (abab)* ab) + ε
- \circ (a (ba)* b) + ϵ