Connections on principal bundles

Santiago Quintero de los Ríos*

April 7, 2020

Contents

I	Con	nections on principal bundles	2
	I.I	Connections as horizontal distributions	2
	I.2	Connections as 1-forms	3
	1.3	Local expressions, or, why physicists did nothing wrong	6
	1.4	Horizontal lifts	9
2	Curvature		10
	2.I	The curvature 2-form and structure equation	10
	2.2	The exterior covariant derivative	14
3	The relation with connections on vector bundles		17
	3.I	From vector bundles to principal bundles	17
	3.2	Interlude: Associated bundles	19
	3.3	From principal bundles to vector bundles	23
	3.4	In physics language	25

Notation

These notes compile some general facts about connections on principal bundles, and their relation to connections on vector bundles.

A few notes on notation: We are working in the context of a **principal** G-bundle P over a manifold M. This we denote as $G \hookrightarrow P \xrightarrow{\pi} M$; where $\pi: P \to M$ is the projection map. The right action of G on P is denoted as $\sigma: P \times G \to P$. For any $g \in G$, we denote right multiplication by g as $\sigma_g: P \to P$; and for every $p \in P$, we denote the orbit map as $\sigma_p: G \to P$.

Given a smooth function $f: M \to N$ between manifolds, we denote the tangent map at some $x \in M$ as $T_x f: T_x M \to T_{f(x)} N$. This is to explicitly show the functoriality of T_x .

 $^{^*}$ Please send corrections, suggestions, etc. to squinterodlr@gmail.com. Latest version on homotopico.com/notes .

Connections on principal bundles

1.1 Connections as horizontal distributions

Recall that a vector $v \in T_p P$ is called **vertical** if

$$T_p\pi(v)=0.$$

We denote the subspace of vertical vectors by $V_pP \subset T_pP$. By definition, V_pP is nothing more than the kernel of $T_p\pi$, so we have a short exact sequence

$$0 \longrightarrow V_p P \longrightarrow T_p P \xrightarrow{T_p \pi} T_{\pi(p)} M \longrightarrow 0.$$

Since this is a sequence of vector spaces, it splits, and thus we have an isomorphism

$$T_p P \cong V_p P \oplus T_{\pi(p)} M$$
.

However, the splitting (and thus the isomorphism) is not canonical: it depends on a choice of a subspace $H_p \subset T_p P$ that is complementary to $V_p P$, and an isomorphism $T_{\pi(p)} M \to H_p$. We call any complementary space to $V_p P$ a **horizontal space** at p, such that:

$$T_p P = V_p P \oplus H_p.$$

Figure 1: A choice of a horizontal space H_p at T_pP . There are many such choices (in dotted lines).

Once we have chosen a single horizontal subspace $H_p\subset T_pP$ at p, we can find horizontal subspaces for all points in the same fiber of p. This follows since the action of G on P, which we denote $\sigma_g(p)=p\cdot g$, is a fiber-preserving diffeomorphism, and thus $T_p\sigma_g$ is an isomorphism of tangent spaces that preserves the vertical subspace. This suggests that $T_p\sigma_g(H_p)$ is a horizontal subspace at $p\cdot g$. Indeed, noting that

$$T_{p \cdot g} \pi \circ T_p \sigma_g = T_p(\pi \circ \sigma_g) = T_p \pi(v),$$

we see that $T_p\pi(V_pP)\subseteq V_{p\cdot g}P$. Similarly, if $u\in V_{p\cdot g}P$, we can write

$$u = T_p \sigma_g(T_{p \cdot g} \sigma_{g^{-1}}(u)) = T_p \sigma_g(\tilde{u}),$$

where by the same argument above $\tilde{u}=T_{p\cdot g}\sigma_{g^{-1}}(u)\in V_pP$ is vertical. Therefore, we obtain that

$$V_{p \cdot g}P = T_p \sigma_g(V_p P).$$

Furthermore, since $T_p \sigma_g : T_p P \to T_{p,g} P$ is an isomorphism, we obtain that

$$T_{p \cdot g}P = T_p\sigma_g(T_pP) = T_p\sigma_g(V_pP) \oplus T_p\sigma_g(H_p) = V_{p \cdot g}P \oplus T_p\sigma_g(H_p),$$

And so we have proved the following:

Lemma 1.1 (Translation of horizontal subspaces). If $H_p \subset T_p P$ is horizontal at p, then for all $g \in G$, $T_p \sigma_g(H_p)$ is horizontal at $p \cdot g$.

So far we have been working at a single point $p \in P$. We can now consider a smooth choice of horizontal spaces above each element of P:

Definition 1.2 ((Principal) Connection). A connection on P is a distribution H on P such that for all $p \in P$, $H_p \subset T_pP$ is a horizontal subspace. We say that a connection H is **principal** if it is compatible with the group action in the sense that for all $g \in G$ and all $p \in P$,

$$T_p\sigma_g(H_p)=H_{p\cdot g}.$$

The notion of connection is independent of the group action on the total space *P*, and indeed it applies to general fiber bundles. The condition for a connection to be principal states that our choice of horizontal subspaces along a single fiber is consistent with the "translation" lemma 1.1.

We think of a connection H as a *preferred* way of relating "neighboring" fibers of the bundle. Once we have $p \in P$, we might think that the preferred way of moving to another fiber is along a "direction" (i.e. tangent vector) in the horizontal space H_p . This gives us a little bit of intuition and (sort of) justifies (kind of) the name *connection*. In practice, however, working with distributions might be cumbersome. Fortunately for us, there are other (equivalent) presentations of connections.

1.2 Connections as 1-forms

Let \mathfrak{g} be the Lie algebra of G. Recall that for all $p \in P$, we have the infinitesimal action of \mathfrak{g} on T_pP , $a_p:\mathfrak{g}\to T_pP$ given as

$$a_p(X) := \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} p \cdot \exp(tX).$$

Writing $\sigma_p:G\to P$ as $\sigma_p(g)=p\cdot g$, we see that the infinitesimal action is simply the differential of σ_p :

$$a_p(X) = T_e \sigma_p(X).$$

This infinitesimal action induces, for each $X \in \mathfrak{g}$, a vector field X^{\sharp} called the **fundamental** vector field associated to X given by

$$X_p^{\sharp} := a_p(X).$$

We have that σ_p is a diffeomorphism onto the fiber containing p, and thus $a_p=T_e\sigma_p$ induces a linear isomorphism $\mathfrak{g}\stackrel{a_p}{\cong} V_p P$.

Suppose that we have a principal connection H on P. Then in particular, we have a subspace $H_p \subset T_p P$ such that $T_p P = V_p P \oplus H_p$, and so we can construct a map $\omega_p : T_p P \to \mathfrak{g}$ as

$$\omega_p(v^V + v^H) = a_p^{-1}(v^V),$$

where $v^V \in V_p P$ and $v^H \in H_p$. By construction, we have that

$$\omega_n(a_n(X)) = X$$

for all $X \in \mathfrak{g}$. We can also see how ω_p compares to $\omega_{p \cdot g}$, since we know that our horizontal distribution behaves nicely along the fibers of the action.

For this, first note that for all $g \in G$,

$$T_p \sigma_g(a_p(X)) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \sigma_g(p \cdot \exp(tX))$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} p \cdot \exp(tX)g$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} (p \cdot g) \cdot (g^{-1} \exp(tX)g).$$

Now we ask ourselves, do we know what the tangent vector of $g^{-1} \exp(tX)g$ is? Yes, yes we do:

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} g^{-1} \exp(tX)g = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \mathrm{Conj}_{g^{-1}}(\exp(tX)) = \mathrm{Ad}_{g^{-1}}(X),$$

where we have written $^{\text{\tiny I}}$ Conj $_g(h)=ghg^{-1}$, and $\mathrm{Ad}_g=T_e\,\mathrm{Conj}_g$. Then we have

$$T_p \sigma_g(a_p(X)) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} (p \cdot g) \cdot (g^{-1} \exp(tX)g) = a_{p \cdot g}(\mathrm{Ad}_{g^{-1}}(X)).$$

With this, we can see that for $v \in T_p P$, which we write as $v = v^V + v^H$ with $v^V = a_p(X)$ for some $X \in \mathfrak{g}$:

$$(\sigma_g^*\omega)_p(v^V+v^H)=\omega_{p\cdot g}(T_p\sigma_g(v^V)+T_p\sigma_g(v^H))=\omega_{p\cdot g}(T_g\sigma_g(a_p(X)))=\operatorname{Ad}_{g^{-1}}(X)=(\operatorname{Ad}_{g^{-1}}\circ\omega_p)(v),$$

and so we conclude that

$$(\sigma_g^*\omega)=\mathrm{Ad}_{g^{-1}}\circ\omega.$$

Then we have proved, modulo the small detail of smoothness², the following:

Proposition 1.3 (1-form induced by principal connection). Let H be a principal connection on $G \hookrightarrow P \xrightarrow{\pi} M$. Then there exists a (unique) \mathfrak{g} -valued 1-form $\omega \in \Omega^1(P,\mathfrak{g})$, such that for all $p \in P$, $g \in G$ and $X \in \mathfrak{g}$:

- $I. \ \omega_p(a_p(X)) = X,$
- 2. $\sigma_{g}^{*}\omega = \mathrm{Ad}_{g-1} \circ \omega$, and
- 3. $\ker(\omega_p) = H_p$.

We call any g-valued 1-form satisfying these properties a connection 1-form:

Ihttps://xkcd.com/927/

 $^{^{2}}$ We can handwave it away by saying that it follows from the smoothness of the distribution H.

Definition 1.4 (Connection 1-form). A connection 1-form on P is a g-valued 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ such that for all $p \in P$, $g \in G$ and $X \in \mathfrak{g}$:

- 1. $\omega_p(a_p(X)) = X$, and
- 2. $\sigma_g^*\omega = \mathrm{Ad}_{g^{-1}} \circ \omega$.

The converse to proposition 1.3 is also true:

Proposition 1.5. Principal connection induced by connection 1-form Let $\omega \in \Omega^1(P, \mathfrak{g})$ be a connection 1-form. Then the distribution H defined pointwise as

$$H_p = \ker(\omega_p) \subset T_p P$$

is a principal connection on P.

Proof. — First, let's see that indeed $H_p = \ker(\omega_p)$ is horizontal. If $v \in \ker(\omega_p) \cap V_p P$, then $v = a_p(X)$ for some $X \in \mathfrak{g}$, so that

$$0 = \omega_p(v) = \omega_p(a_p(X)) = X,$$

and thus v = 0. Therefore $\ker(\omega_p) \cap V_p P = \{0\}$. Now for an arbitrary $v \in T_p P$, set

$$v^V = a_p(\omega_p(v)).$$

Then we have that $T_p\pi(v^V)=0$, since it is in the image of a_p , and thus $v^V\in V_pP$. Finally, setting $v^H=v-v^V$, we have

$$\omega_p(v^H) = \omega_p(v) - \omega_p(\alpha_p(\omega_p(v))) = \omega_p(v) - \omega_p(v) = 0,$$

and so $v^H \in \ker \omega_p = H_p$. We have then shown that $v = v^V + v^H$, with $v^V \in V_p P$ and $v^H \in H_p$, and so

$$T_p P = V_p P \oplus H_p$$
.

Thus H_p is a horizontal subspace. Now to see that H is principal, note that

$$\omega_{p \cdot g}(T_p \sigma_g(v)) = \operatorname{Ad}_{g^{-1}}(\omega_p(v)).$$

Since both $T_p\sigma_g$ and $\mathrm{Ad}_{g^{-1}}$ are isomorphisms, we have that $v\in\ker\omega_p$ if and only if $T_p\sigma_g(v)\in\ker\omega_{p\cdot g}$, and thus

$$T_p \sigma_g(H_p) = H_{p \cdot g}.$$

Finally, smoothness follows from the fact that ω is a smooth form.

From now on, if ω is a connection 1-form, we will simply call it a connection. In physics lingo, connections are often called *gauge fields* or *gauge potentials*.

Example 1.6 (Maurer-Cartan connection). Let G be a Lie group, which we interpret as a principal G-bundle over a one-point space $G \hookrightarrow G \stackrel{\pi}{\to} \{\star\}$. For each $g \in G$, we have a way to map T_gG to $\mathfrak{g} = T_eG$, simply by pushing vectors via one of the multiplications; for instance

$$T_gL_{g^{-1}}\,:\,T_gG\to\mathfrak{g}=T_eG.$$

We then define the **Maurer-Cartan** form of G, denoted by $\Theta \in \Omega^1(G, \mathfrak{g})$, as

$$\Theta_g = T_g L_{g^{-1}}.$$

The heading of the example spoiled the surprise: Θ is a connection on G. Indeed, for $X \in \mathfrak{g} = T_eG$, we have that

$$a_g(X) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} g \exp(tX) = T_e L_g(X),$$

so that

$$\Theta_g(a_g(X)) = T_g(L_{g^{-1}})(T_eL_g(X)) = T_g(L_{g^{-1}} \circ L_g)(X) = X.$$

Now for any $h \in G$, we have

$$(\sigma_{\varrho}^*\Theta)_h(X) = \Theta_{h\varrho}(T_h\sigma_{\varrho}(X)) = T_{h\varrho}L_{\varrho^{-1}h^{-1}}T_h\sigma_{\varrho}(X) = T_h(L_{\varrho^{-1}h^{-1}}\circ\sigma_{\varrho})(X).$$

But then, we see that

$$(L_{g^{-1}h^{-1}}\circ\sigma_g)(x)=g^{-1}h^{-1}xg=(\mathsf{Conj}_{g^{-1}}\circ L_{h^{-1}})(x),$$

such that the differential at *h* is

$$T_h(L_{g^{-1}h^{-1}}\circ\sigma_g)=T_h(\mathsf{Conj}_{g^{-1}}\circ L_{h^{-1}})=T_e\,\mathsf{Conj}_{g^{-1}}\,T_hL_{h^{-1}}=\mathsf{Ad}_{g^{-1}}\circ\Theta_h,$$

and so, indeed

$$(\sigma_g^*\Theta)=\mathrm{Ad}_{g^{-1}}\circ\Theta.$$

With the Maurer-Cartan form, we can construct connections on any principal bundle.

Example 1.7 (Trivial connection on a trivial bundle). Let $P = M \times G$ be a trivial bundle, and $\operatorname{pr}_2 : M \times G \to G$ be the projection onto G. If Θ is the Maurer-Cartan form of G, then $\operatorname{pr}_2^*\Theta$ is a connection on $M \times G$, and its horizontal distribution is precisely given by $H_{(x,g)} := T_x M \oplus 0 \subset T_{(x,g)}(M \times G)$.

Example 1.8 (Flat connection on a bundle). Let $G \hookrightarrow P \xrightarrow{\pi} M$ be a principal G-bundle, with a trivializing cover $\{(U_j, \Psi_j)\}_{j \in J}$. We write each $\Psi_j : \pi^{-1}(U_j) \to U_j \times G$ as

$$\Psi_i(p) = (\pi(p), \psi(p)),$$

with $\psi: \pi^{-1}(U_j) \to G$. Then $\psi_j^*\Theta$ is a connection on the trivial bundle $\pi^{-1}(U_j) \cong U_j \times G$, where Θ is the Maurer-Cartan form of G. Now let $\{f_j\}_{j \in J}$ be a partition of unity subordinate to $\{U_j\}_{j \in J}$. Then the form defined as

$$\omega = \sum_{j} (f_{j} \circ \pi) \psi_{j}^{*} \Theta$$

is a connection on P.

1.3 Local expressions, or, why physicists did nothing wrong

Consider a trivializing cover $\{(U_j, \Psi_j)\}_{j \in J}$ of the bundle $\pi: P \to M$, where we write each $\Psi_i: \pi^{-1}(U_i) \to U_i \times G$ as

$$\Psi_i(p) = (\pi(p), \psi_i(p)),$$

with $\psi_i: U_i \to G$. We know that each trivialization Ψ_i has an associated section $s_i: U_i \to P$, given by

$$s_i(x) = \Psi_i^{-1}(x, e)$$

for all $x \in U_i$. These sections are called **local gauges** in the physics literature.

Note that for all $x \in U_i$ and $p \in \pi^{-1}(x)$,

$$\Psi_i(s_i(x) \cdot \psi_i(p)) = (x, \psi_i(s_i(x))\psi_i(p)) = (x, \psi_i(p)) = \Psi_i(p),$$

and therefore we have that

$$p = s_i(x) \cdot \psi_i(p)$$
.

Now if $x \in U_{ij} = U_i \cap U_j$, for all elements $p \in \pi^{-1}(x)$, we obtain for both sections

$$s_i(x) \cdot \psi_i(p) = p = s_j(x) \cdot \psi_j(p),$$

and thus

$$s_i(x) = s_i(x) \cdot \psi_i(p) \psi_i(p)^{-1}.$$

But now, since the trivializations are *G*-equivariant, $\psi_i(p \cdot g) = \psi_i(p)g$, the product $\psi_i(p)\psi_j(p)^{-1}$ is *G*-invariant, and is precisely the transition function $g_{ij} : U_{ij} \to G$:

$$g_{ij}(x) := \psi_i(p)\psi_j(p)^{-1}$$
.

We then conclude:

$$s_j(x) = s_i(x) \cdot g_{ij}(x).$$

See figure 2.

Figure 2: The transition functions g_{ij} relate the sections s_i , s_j induced by the trivializations.

Now let $\omega \in \Omega^1(P, \mathfrak{g})$ be a connection. For each U_i , the pullback of ω by s_i is again a \mathfrak{g} -valued 1-form on U_i . We denote it by

$$\omega_i := s_i^* \omega$$

and call it the **local gauge potential** (in the gauge s_i). How do different local gauges relate to one another?

Proposition 1.9 (Transformation of local potentials). Let ω be a connection on $G \hookrightarrow P \xrightarrow{\pi} M$, and $\{U_i\}_{i \in J}$ a trivializing cover with induced sections $s_i : U_i \to P$, and transition maps $g_{ij} : U_i \cap U_j \to G$. Let $\omega_i = s_i^* \omega$ be the local gauge potentials. Then for all $x \in U_{ij} = U_i \cap U_j$,

$$(\omega_j)_x = \operatorname{Ad}_{g_{ij}(x)^{-1}} \circ (\omega_i)_x + (g_{ij}^* \Theta)_x, \tag{1}$$

where Θ is the Maurer-Cartan form of example 1.6.

Proof. — Let's try to brute-force it first, and see what else we need. we have that

$$(\omega_j)_x = (s_i^* \omega)_x = \omega_{s_i(x)} \circ T_x s_j,$$

so we need to find the expression for $T_x s_j$, preferably in terms of s_i . To do so, let $\sigma: P \times G \to P$ be the action, i.e. $\sigma(p,g) = p \cdot g$. Then for all $x \in U_{ij}$ we can write $s_i(x)$ as

$$s_i(x) = s_i(x) \cdot g_{ij}(x) = \sigma(s_i(x), g_{ij}(x)) = (\sigma \circ (s_i, g_{ij}))(x),$$

where we have $(s_i, g_{ij}): U \to P \times M$ is defined in the natural way. This tells us that

$$T_x s_j = T_x(\sigma \circ (s_i, g_{ij})) = T_{(s_i(x), g_{ij}(x))} \sigma \circ T_x(s_j, g_{ij}) = T_{(s_i(x), g_{ij}(x))} \sigma \circ (T_x s_j, T_x g_{ij}).$$

Now we need to find the expression for $T_{(p,g)}\sigma$. We proceed carefully, in parts, noting that $T_{(p,g)}(P \times G) \cong T_pP \oplus T_gG$. Let $u \in T_pP$, and γ an integral curve of u. Then we have that

$$T_{(p,g)}\sigma(u,0) = \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \sigma(\gamma(t),g) = \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \gamma(t) \cdot g = \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \sigma_g(\gamma(t)) = T_p\sigma_g(u).$$

On the other hand, let $\xi \in T_gG$. Then we have that $\Theta_g(\xi) := X \in \mathfrak{g} = T_eG$ is the (unique) element of the Lie algebra that satisfies

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} g \exp(tX) = T_e L_g(X) = \xi,$$

so that $t\mapsto g\exp\bigl(t\Theta_g(\xi)\bigr)$ is an integral curve of ξ . Therefore

$$T_{(p,g)}\sigma(0,\xi) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \sigma(p,g\exp(t\Theta_g(\xi)))$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} p \cdot g\exp(t\Theta_g(\xi))$$

$$= \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (p \cdot g) \cdot \exp(t\Theta_g(\xi))$$

$$= a_{p \cdot g}(\Theta_g(\xi)).$$

We put these two together, and obtain

$$T_{(p,g)}\sigma(u,\xi) = T_p\sigma_g(u) + a_{p\cdot g}(\Theta_g(\xi)).$$

Substituting in $T_x s_i$, and evaluating at some $v \in T_x U_{ij}$,

$$T_{x}s_{j}(v) = T_{(s_{i}(x),g_{ij}(x))}\sigma(T_{x}s_{j}(v),T_{x}g_{ij}(v)) = T_{s_{i}(x)}R_{g_{ij}(x)}(T_{x}s_{i}(v)) + a_{s_{i}(x)\cdot g_{ij}(x)}(\Theta_{g_{ij}(x)}(T_{x}g_{ij}(v))).$$

$$= T_{s_{i}(x)}R_{g_{ii}(x)}(T_{x}s_{i}(v)) + a_{s_{i}(x)}((g_{ij}^{*}\Theta)_{x}(v)).$$

Now we evaluate $\omega_{s_i(x)}$ on $T_x s_j(v)$. By definition, we have

$$\omega_{s_i(x)}(a_{s_i(x)}((g_{ij}^*\Theta)_x(v))) = (g_{ij}^*\Theta)_x(v).$$

We have to do a little bit more work for the other term. We will simply write s_j , g_{ij} , s_j for $s_j(x)$, etc., to avoid the clutter. Then we have

$$\begin{split} \omega_{s_{j}}(T_{x}s_{j}(u)) &= \omega_{s_{j}}(T_{s_{i}}R_{g_{ij}}(T_{x}s_{i}(u))) \\ &= \omega_{s_{i}g_{ij}}(T_{s_{i}}R_{g_{ij}}(T_{x}s_{i}(u))) \\ &= (R_{g_{ij}}^{*}\omega)_{s_{i}}(T_{x}s_{i}(u)) \\ &= \operatorname{Ad}_{g_{ij}^{-1}}(\omega_{s_{i}}(T_{x}s_{i}(u))) \\ &= \operatorname{Ad}_{g_{ij}^{-1}}((s_{i}^{*}\omega)_{x}(u)) \\ &= (\operatorname{Ad}_{g_{ij}(x)^{-1}} \circ (\omega_{i})_{x})(u). \end{split}$$

Placing these two last results together, we obtain the result.

This proposition, in physics, is often called *gauge transformation* of a potential. In physics we mostly work with the local potentials, not with the global connection in the total space P, and we define a gauge potential as *some* object that under a certain set of (local) transformations, transforms as in equation ($\mathbf{1}$). Indeed, the following result tells us that this information is sufficient to reconstruct the global object. The proof is a bit tedious and not particularly enlightening (we did a lot of the work in previous proposition).

Proposition 1.10 (Physicists did nothing wrong). Let $G \hookrightarrow P \xrightarrow{\pi} M$ be a principal G-bundle, and $\{(U_i, \Psi_i)\}_{i \in J}$ a trivializing cover with induced sections $s_i : U_i \to P$. Suppose that for each U_i , there is a \mathfrak{g} -valued 1-form $\omega_i \in \Omega^1(U_i, \mathfrak{g})$, such that for all $x \in U_i \cap U_i$,

$$(\omega_j)_x = \mathrm{Ad}_{g_{ij}(x)^{-1}} \circ (\omega_i)_x + g_{ij}^* \Theta_x.$$

Then there exists a unique connection $\omega \in \Omega^1(P, \mathfrak{g})$ such that for all $i \in J$,

$$s_i^*\omega = \omega_i$$
.

1.4 Horizontal lifts

Once we have a connection, we now have a preferred way of *lifting* vectors from TM to TP. Recall that a vector $Y \in T_pP$ is a **lift** of $X \in T_{\pi(p)}M$ if $T_p\pi(Y) = X$. In absence of a connection, there are many different choices of lifts of a vector, and any two choices differ by a vertical vector. That is, if Y, Y' are lifts of X, then Y - Y' is vertical. Once we have a connection, we can define the **horizontal lift** (with respect to a connection H) of $X \in T_xM$ as the horizontal component of *any* lift of X. This definition is, of course, independent of the choice of lift, since any two differ by a vertical vector, whose horizontal component vanishes. Denoting the horizontal component of a vector by Y^H , we have then

$$Y^H = (Y' + (Y - Y'))^H = (Y')^H.$$

Similarly, we can lift vector fields by lifting them in a pointwise fashion.

Definition 1.11 (Horizontal lift of vector fields). Let $X \in \mathfrak{X}(M)$ be a vector field. We define the **horizontal lift** of X as a vector field $Y \in \mathfrak{X}(P)$, where Y_p is the horizontal lift of $X_{\pi(p)}$.

If *H* is a principal connection, then the horizontal lift *Y* of a vector field *X* is *G*-invariant, since $T_p \sigma_g(Y_p)$ is a horizontal vector that projects to $X_{\pi(p)}$. Therefore we have that

$$R_{g*}Y = Y$$

We also expect a horizontal lift to commute with (some) vertical fields, since, in a sketchy intuitive sense, we define these two directions as independent. Actually, this is true of any *G*-invariant field.

Lemma 1.12 (G-invariant fields commute with fundamental vector fields). Let $X^{\sharp} \in \mathfrak{X}(P)$ be the fundamental vector field associated to $X \in \mathfrak{g}$, and let $Y \in \mathfrak{X}(P)$ be a G-invariant field, i.e. $R_{g*}Y = Y$. Then [X,Y] = 0.

Proof. — Let Φ_t be the flow of X^{\sharp} . It is straightforward to check that

$$\Phi_t(p) = p \cdot \exp(tX) = R_{g_t}(p),$$

where we denote $g_t = \exp(tX)$. Then

$$[X,Y]_p = \frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} T_{\Phi_t(p)} \Phi_{-t}(Y_{\Phi_t(p)}) = \frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} T_{p \cdot g_t} R_{g_t^{-1}}(Y_{p \cdot g_t}) = \frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} Y_p = 0.$$

2 Curvature

2.1 The curvature 2-form and structure equation

Let $G \hookrightarrow P \stackrel{\pi}{\to} M$ be a principal G-bundle, and $\mathfrak g$ be the Lie algebra of G. For any $\mathfrak g$ -valued k-form $\omega \in \Omega^k(P,\mathfrak g)$, we define $\mathrm{d}\omega \in \Omega^{k+1}(P,\mathfrak g)$ as follows: choose a basis $\{e_1,\dots,e_m\}$ of $\mathfrak g$. Then we can write

$$\omega = \sum_{a=1}^{m} \omega^a e_a,$$

where each $\omega^a \in \Omega^k(P)$. Then we define

$$d\omega := \sum_{a=1}^{m} d\omega^a e_a.$$

This definition is independent of the choice of basis of g, as can be readily checked. In order to define curvature, we also need another definition.

Definition 2.1 (Bracket of valued forms). Let $\alpha \in \Omega^k(P, \mathfrak{g})$ and $\beta \in \Omega^l(P, \mathfrak{g})$. We define a (k+l)-form $[\alpha, \beta] \in \Omega^{k+l}(P, \mathfrak{g})$ in terms of a basis $\{e_1, \dots, e_m\}$ of \mathfrak{g} as

$$[\alpha,\beta] = \sum_{a,b} \alpha^a \wedge \beta^b [e_a,e_b].$$

This definition is independent of the choice of basis (and in some references it is written as $\alpha \wedge \beta$).

In the case where $\alpha, \beta \in \Omega^1(P, \mathfrak{g})$, the definition becomes

$$\begin{split} [\alpha,\beta](X,Y) &= \sum_{a,b} (\alpha^a \wedge \beta^b)(X,Y)[e_a,e_b] \\ &= \sum_{a,b} (\alpha^a(X)\beta^b(Y) - \alpha^a(Y)\beta^b(X))[e_a,e_b] \\ &= \sum_{a,b} [\alpha^a(X)e_a,\beta^b(Y)e_b] - [\alpha^a(Y)e_a,\beta^b(X)e_b] \\ &= [\alpha(X),\beta(Y)] - [\alpha(Y),\beta(X)]. \end{split}$$

In general, we have a way to evaluate the bracket of forms:

Lemma 2.2 (Evaluation of bracket). Let $\alpha \in \Omega^i(P, \mathfrak{g})$ and $\beta \in \Omega^j(P, \mathfrak{g})$. Then for vectors X_1, \dots, X_{i+j} :

$$[\alpha,\beta](X_1,\dots,X_{i+j}) = \frac{1}{i!j!} \sum_{\sigma \in \mathfrak{S}_k} \mathrm{sgn}(\sigma)[\alpha(X_{\sigma(1)},\dots,X_{\sigma(i)}),\beta(X_{\sigma(i+1)},\dots,X_{\sigma(i+j)})].$$

Proof. — The proof is a straightforward evaluation and application of the definition of the wedge product.

Now we define the curvature 2-form of a connection.

Definition 2.3 (Curvature 2-form). Let ω be a connection on $G \hookrightarrow P \xrightarrow{\pi} M$. The curvature of ω is a \mathfrak{g} -valued 2-form $\Omega \in \Omega^2(P,\mathfrak{g})$ defined as

$$\Omega = d\omega + \frac{1}{2}[\omega, \omega]. \tag{2}$$

Equation (2) is called the Cartan structure equation.

Now let's do an example that comes with a bit of motivation.

Example 2.4 (Curvature of the Maurer-Cartan form). Recall that for a Lie group G (which we see as a G-bundle over a one-point space), we have a canonical connection Θ on G, called the Maurer-Cartan form (see example 1.6), given pointwise as

$$\Theta_{\varphi} = T_{\varphi}(L_{\varphi^{-1}}).$$

The Maurer-Cartan form is also left-invariant,

$$(L_g^*\Theta)_h = \Theta_{gh} \circ T_h L_g = T_{gh} L_{(gh)^{-1}} T_h L_g = T_h (L_{(gh)^{-1}} \circ L_g) = T_h L_{h^{-1}} = \Theta_h,$$

and so it is uniquely defined by its value at the identity $e \in G$. Now fix a basis $\{e_1, \dots, e_m\}$ of \mathfrak{g} , so that the Maurer-Cartan form can be written as

$$\Theta = \sum_{a} \Theta^{a} e_{a},$$

where each component $\Theta^a \in \Omega^1(G)$ is a usual 1-form. If we write ξ_a as the left-invariant field generated by e_a ;

$$\xi_a(g) := T_e L_g(e_a),$$

then at each point $g \in G$, the set $\{\xi_1(g), \dots, \xi_m(g)\}$ are a frame for T_gG , and furthermore, we have that

$$\Theta_g(\xi_a(g)) = e_a$$
.

But on the other hand, we have

$$\Theta_g(\xi_a(g)) = \sum_b \Theta_g^b(\xi_a(g))e_a,$$

which implies that for all g, $\Theta_g^b(\xi_a(g)) = \delta_a^b$, and so $\{\Theta^1, \dots, \Theta^m\}$ forms a coframe of T_g^*G that is dual to $\{\xi_1, \dots, \xi_m\}$. Now we have that

$$d\Theta^{a}(\xi_{h},\xi_{c}) = \xi_{h}(\Theta^{a}(\xi_{c})) - \xi_{c}(\Theta^{a}(\xi_{h})) - \Theta^{a}([\xi_{h},\xi_{c}]) = -\Theta^{a}_{e}([e_{h},e_{c}]) = -[e_{h},e_{c}]^{a} = -C^{a}_{hc}$$

where $[e_b, e_c]^a$ is the *a*-th component of $[e_b, e_c]$, which is precisely the definition of the structure coefficients C_{bc}^a . Now since the ξ_a vectors form a frame of TG, whose dual coframe is precisely the Θ^a forms, this tells us that

$$\mathrm{d}\Theta^a = -\frac{1}{2} \sum_{b,c} C^a_{bc} \Theta^b \wedge \Theta^c,$$

and thus,

$$\mathrm{d}\Theta = \sum_{a} \mathrm{d}\Theta^a e_a = -\frac{1}{2} \sum_{a,b,c} C^a_{bc} \Theta^b \wedge \Theta^c e_a = -\frac{1}{2} \sum_{b,c} \Theta^b \wedge \Theta^c [e_b,e_c] = -\frac{1}{2} [\Theta,\Theta].$$

Therefore, conclude that

$$\Omega = d\Theta + \frac{1}{2}[\Theta, \Theta] = 0.$$

From this example, we can see that the curvature of the flat connection of example 1.8 has vanishing curvature as well.

Example 2.5 (Flat connection induced by Maurer-Cartan has vanishing curvature).

Let ω be the flat connection of $G \hookrightarrow P \xrightarrow{\pi} M$, as in example 1.8. Then on each $\pi^{-1}(U_j)$, writing $\omega_j = \omega|_{\pi^{-1}(U_j)}$ we have

$$\Omega|_{\pi^{-1}(U_j)} = \mathrm{d}\omega_j + \frac{1}{2}[\omega_j,\omega_j] = \mathrm{d}\left(\psi_j^*\Theta\right) + \frac{1}{2}[\psi_j^*\Theta,\psi_j^*\Theta] = \psi_j^*(\mathrm{d}\Theta + \frac{1}{2}[\Theta,\Theta]) = 0.$$

We now see one of the most (if not the most) important properties of the curvature 2-form:

Proposition 2.6 (Curvature is basic). Let ω be a connection on $G \hookrightarrow P \xrightarrow{\pi} M$ and Ω its curvature. Then $\Omega \in \Omega^2_{bas}(P, \mathfrak{g})$, that is,

- 1. If X is a vertical field, then $\iota_X \Omega = 0$, i.e. Ω is horizontal; and
- 2. For all $g \in G$, $\sigma_g^* \Omega = \operatorname{Ad}_{g-1} \circ \Omega$, i.e. Ω is pseudotensorial of type Ad.

Proof. — First, let's see that Ω is pseudotensorial of type Ad:

$$\sigma_g^*\Omega = \sigma_g^*\mathrm{d}\omega + \frac{1}{2}\sigma_g^*[\omega,\omega] = \mathrm{d}\sigma_g^*\omega + \frac{1}{2}[\sigma_g^*\omega,\sigma_g^*\omega] = \mathrm{d}(\mathrm{Ad}_{g^{-1}}\circ\omega) + \frac{1}{2}[\mathrm{Ad}_{g^{-1}}\circ\omega,\mathrm{Ad}_{g^{-1}}\circ\omega].$$

^athis is sometimes called G-invariance, or G-equivariance, but let's avoid that discussion.

The occurrences of $\mathrm{Ad}_{g^{-1}}$ in this previous expression may seem like there's some care required with d and the commutator, but by definition, $\mathrm{Ad}_{g^{-1}}$ acts on the element of $\mathfrak g$ that ω outputs. We can see this more clearly when we choose a basis $\{e_1,\dots,e_m\}$ of $\mathfrak g$ and write $\omega=\sum_a\omega^ae_a$. When we write $\mathrm{Ad}_{g^{-1}}\circ\omega$, this actually stands for

$$\mathrm{Ad}_{g^{-1}} \circ \omega = \sum_{a} \omega^{a} \mathrm{Ad}_{g^{-1}}(e_{a}),$$

so that the terms in the previous expression are

$$d\left(\mathrm{Ad}_{g^{-1}}\circ\sum_{a}\omega^{a}e_{a}\right)=\sum_{a}\mathrm{d}\omega^{a}\mathrm{Ad}_{g^{-1}}(e_{a})=\mathrm{Ad}_{g^{-1}}\circ\mathrm{d}\omega.$$

Now we consider the case of the bracket. Since $\mathrm{Ad}_g = T_e C_g$ is the differential of a diffeomorphism, it is a pushworward evaluated at e and thus it distributes into the Lie bracket of vector fields

$$\begin{aligned} \operatorname{Ad}_{g}[X_{e}, Y_{e}] &= (\operatorname{Conj}_{g*}[X, Y])_{e} \\ &= [\operatorname{Conj}_{g*}X, \operatorname{Conj}_{g*}Y]_{e} \\ &= [\operatorname{Ad}_{g}(X_{e}), \operatorname{Ad}_{g}(Y_{e})]. \end{aligned}$$

Then we have

$$(\sigma_g^*\Omega)=\mathrm{Ad}_{g^{-1}}\left(\mathrm{d}\omega+\frac{1}{2}[\omega,\omega]\right)=\mathrm{Ad}_{g^{-1}}\circ\Omega.$$

We now need to show that Ω is horizontal. Since we have a connection, we can decompose any vector $v \in T_pP$ in a vertical and horizontal part, $v = v^V + v^H$. Then the action on Ω on a pair $u, v \in T_pP$ is

$$\Omega_{n}(u,v) = \Omega_{n}(u^{V} + u^{H}, v^{V} + v^{H}) = \Omega_{n}(u^{V}, v^{V}) + \Omega_{n}(u^{V}, v^{H}) + \Omega_{n}(u^{H}, v^{V}) + \Omega_{n}(u^{H}, v^{H}),$$

and thus, it suffices to consider two cases: when both u and v are vertical, or when u is vertical and v is horizontal.

Let's begin with with the case where both u and v are vertical, so that $u=a_p(X)$ and $v=a_p(Y)$ for some $X,Y\in\mathfrak{g}$ (namely $X=\omega_p(u)$ and $Y=\omega_p(v)$). If we write X^\sharp,Y^\sharp for the fundamental vector fields associated to X,Y, given by $X_p^\sharp=a_p(X)=\sigma_{p*}(X)$ (and same for Y), we have then that

$$\begin{split} \Omega_p(u,v) &= \mathrm{d}\omega_p(u,v) + \frac{1}{2}[\omega,\omega](u,v) \\ &= u(\omega(Y^{\sharp})) - v(\omega(X^{\sharp})) - \omega([u,v]) + [\omega(u),\omega(v)]. \end{split}$$

But $\omega(X^{\sharp}) = X$ and $\omega(Y^{\sharp}) = Y$ are constant, so

$$\Omega_n(u,v) = -\omega([u,v]) + [X,Y].$$

Finally, we see that

$$[u,v] = [X^{\sharp},Y^{\sharp}]_p = [\sigma_{p*}X,\sigma_{p*}Y]_p = \sigma_{p*}([X,Y]_e) = a_p([X,Y]),$$

so $\omega([u, v]) = [X, Y]$, and thus

$$\Omega_p(u,v)=0.$$

Now let's consider the case where u is vertical and v is horizontal. Again, let $X = \omega_p(u) \in \mathfrak{g}$, and X^{\sharp} be the fundamental vector field associated to X, so that $X_p^{\sharp} = u$; and let v be a horizontal field such that $v_p = v$. We then have

$$\begin{split} \Omega_p(u,v) &= \mathrm{d}\omega_p(u,v) + \frac{1}{2}[\omega,\omega](u,v) \\ &= u(\omega(v)) - v(\omega(X^\sharp)) - \omega([u,v]) + [\omega(u),\omega(v)] \\ &= -\omega([u,v]). \end{split}$$

Now it suffices to show that [u, v] is horizontal if v is horizontal and u is vertical. First, we have that the flow of the fundamental vector field X^{\sharp} is given by

$$\Phi_t(p) = p \cdot \exp(tX),$$

as can be readily checked. Then

$$[u, v] = \frac{d}{dt} \Big|_{t=0} (\Phi_{-t*}(v))_p = \frac{d}{dt} \Big|_{t=0} T_{\Phi_t(p)} \Phi_{-t}(v_{\Phi_t(p)})$$

If we write $g_t = \exp(tX)$, then it is clear that $\Phi_t(p) = \sigma_{g_t}(p)$, so

$$[u,v] = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} T_{\Phi_t(p)} \Phi_{-t}(\nu_{\Phi_t(p)}) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} T_{p \cdot g_t} \sigma_{g_t^{-1}}(\nu_{p \cdot g_t}).$$

However, we know that $(\sigma_{g*})(v)$ is horizontal for all g if v is horizontal, and thus we obtain that

$$T_{p \cdot g_t} \sigma_{g_t^{-1}}(\nu_{p \cdot g_t}) \in H_p$$
 for all t

and so [u, v] is horizontal as well. Therefore $\omega([u, v]) = 0$, and our result is proved.

Since Ω is horizontal, its values are uniquely determined by the horizontal components of the vectors that it is evaluated at. The following corollary is often given as the definition of the curvature form:

Corollary 2.7. Let ω be a connection and Ω its curvature. Then for all $u, v \in TP$:

$$\Omega(u, v) = d\omega(u^H, v^H),$$

where u^H , v^H are the horizontal components of u, v, determined by ω .

2.2 The exterior covariant derivative

From corollary 2.7, we see that the curvature Ω can be defined as the horizontal component of $d\omega$. We can extend this notion, and define the **exterior covariant derivative** d^{ω} : $\Omega^k(P,\mathfrak{g}) \to \Omega^{k+1}(P,\mathfrak{g})$ as the horizontal component of the usual de Rham differential:

$$\mathrm{d}^{\omega}\alpha(X_1,\ldots,X_{k+1}):=\mathrm{d}\alpha(X_1^H,\ldots,X_{k+1}^H).$$

With this definition, we can simply write

$$\Omega = \mathrm{d}^{\omega}\omega$$
.

Clearly, by definition, $d^{\omega}\alpha$ is horizontal for any form $\alpha \in \Omega^k(P, \mathfrak{g})$. We also see that $d^{\omega}\alpha$ is pseudotensorial of type Ad if α also is. The idea is that σ_g preserves horizontality and the

pullback commutes with d, so in general pulling back by σ_g should behave reasonable well. Indeed, let $\alpha \in \Omega^k(P, \mathfrak{g})$ be pseudotensorial of type Ad. Then

$$\begin{split} (\sigma_g^*\mathrm{d}^\omega\alpha)_p(X_1,\dots,X_{k+1}) &= (\mathrm{d}^\omega\alpha)_{p\cdot g}(\sigma_{g*}X_1,\dots,\sigma_{g*}X_{k+1}) \\ &= \mathrm{d}\alpha_{p\cdot g}((\sigma_{g*}X_1)^H,\dots,(\sigma_{g*}X_{k+1})^H) \\ &= \mathrm{d}\alpha_{p\cdot g}(\sigma_{g*}(X_1^H),\dots,\sigma_{g*}(X_{k+1}^H)) \\ &= (\sigma_g^*\mathrm{d}\alpha)_p(X_1^H,\dots,X_{k+1}^H) \\ &= \mathrm{d}(\sigma_g^*\alpha)_p(X_1^H,\dots,X_{k+1}^H) \\ &= \mathrm{Ad}_{g^{-1}}\mathrm{d}\alpha_p(X_1^H,\dots,X_{k+1}^H) \\ &= \mathrm{Ad}_{g_{-1}}\mathrm{d}^\omega\alpha_p(X_1,\dots,X_{k+1}^H). \end{split}$$

He have then shown:

Lemma 2.8 (Exterior covariant derivative preserves basicness). If $\alpha \in \Omega_{bas}(P, \mathfrak{g})$, then $\mathrm{d}^{\omega}\alpha \in \Omega_{bas}^{k+1}(P, \mathfrak{g})$.

This result suggests that d^{ω} is particularly well-behaved on basic forms.

Proposition 2.9 (Expression for exterior covariant derivative on basic forms). Let $\alpha \in \Omega^k_{bas}(P, \mathfrak{g})$ be a basic form. Then

$$d^{\omega}\alpha = d\alpha + [\omega, \alpha].$$

Proof. — Let's consider the right-hand side. Let $X_0, ..., X_k$ be vectors on T_pP . If all of them are horizontal, then the term $[\omega, \alpha]$ vanishes on them because, by definition, ω vanishes on horizontal vectors, and we end up with the definition of the exterior covariant derivative. Recalling the coordinate-free expression for the exterior differential

$$\begin{split} \mathrm{d}\alpha(X_0,\ldots,X_k) &= \sum_{j=0}^k (-1)^j X_j(\alpha(X_0,\ldots,\hat{X}_j,\ldots,X_k)) \\ &+ \sum_{i< j} (-1)^{i+j} \alpha([X_i,X_j],X_0,\ldots,\hat{X}_i,\ldots,\hat{X}_j,\ldots,X_k), \end{split}$$

we see that the whole thing vanishes whenever there is more than 1 vertical vector, since we will always end up evaluating α in one of them. Similarly, we can see that in the evaluation of the bracket (following lemma 2.2),

$$[\omega,\alpha](X_0,\dots,X_k) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_{k+1}} \mathrm{sgn}(\sigma)[\omega(X_{\sigma(0)}),\alpha(X_{\sigma(1)},\dots,X_{\sigma(k)})],$$

if there is more than one vertical vector, we will always evaluate α in one of them, so everything vanishes. Then, since $d^{\omega}(\alpha)$ is horizontal, we trivially obtain the result.

The only non-trivial case is the one where we evaluate in exactly one vertical vector. Without loss of generality, suppose X_0 is vertical and X_1, \dots, X_k are horizontal. We still have that

$$\mathrm{d}^{\omega}\alpha(X_0,\ldots,X_k)=0,$$

so we need to show that

$$\mathrm{d}\alpha(X_0,\ldots,X_k)=-[\omega,\alpha](X_0,\ldots,X_k).$$

On the right-hand side, we see that the evaluation of $[\omega, \alpha]$ reduces to the sum of the permutations where we evaluate ω on the vertical vector X_0 , that is,

$$\begin{split} [\omega,\alpha](X_0,\dots,X_k) &= \frac{1}{k!} \sum_{\substack{\sigma \in \mathfrak{S}_{k+1} \\ \sigma(0) = 0}} \operatorname{sgn}(\sigma)[\omega(X_{\sigma(0)}),\alpha(X_{\sigma(1)},\dots,X_{\sigma(k)})] \\ &= \frac{1}{k!} \sum_{\substack{\sigma' \in \mathfrak{S}_k \\ \sigma' \in \mathfrak{S}_k}} \operatorname{sgn}(\sigma')[\omega(X_0),\alpha(X_{\sigma'(1)},\dots,X_{\sigma'(k)})] \\ &= \frac{1}{k!} \sum_{\substack{\sigma' \in \mathfrak{S}_k \\ \sigma' \in \mathfrak{S}_k}} \operatorname{sgn}(\sigma')^2[\omega(X_0),\alpha(X_1,\dots,X_k)] \\ &= [\omega(X_0),\alpha(X_1,\dots,X_k)]. \end{split}$$

Here we used the fact that a permutation that fixes 0 can be written as $\sigma(0) = 0$; $\sigma(i) = \sigma'(i)$ with $\sigma' \in \mathfrak{S}_k$, and these satisfy $\operatorname{sgn}(\sigma') = \operatorname{sgn}(\sigma)$. We have also used the fact that α is antisymmetric.

Now we want to evaluate $d\alpha$, and for such we will use the long coordinate-free expression of the exterior derivative. First, letting $\xi = \omega_p(X_0) \in \mathfrak{g}$, we can extend X_0 to a vertical vector field (which we denote with the same symbol), as $X_0(p) = a_p(\xi)$; i.e. to the fundamental vector field associated to ξ . Second, we can also extend the vectors X_1, \dots, X_k to horizontal vector fields that are furthermore *G-invariant*. To do so, we extend $T_p\pi(X_j) \in T_{\pi(p)}M$ to a vector field on M, and consider its horizontal lift (see section 1.4), which we denote with the same symbol X_j . With this construction, since horizontal lifts are G-invariant and G-invariant fields commute with fundamental vector fields (lemma 1.12), we have that

$$\alpha([X_i,X_i],X_0,\dots,\hat{X}_i,\dots,\hat{X}_i,\dots,X_k)=0.$$

This follows for i=0, since we evaluate on the bracket of a fundamental vector field and a *G*-invariant field, which is vanishing. When i>0, we are evaluating α directly on a vertical field, so everything vanishes as well. Then we need only consider

$$d\alpha(X_0, ..., X_k) = \sum_{j=0}^k (-1)^j X_j(\alpha(X_0, ..., \hat{X_j}, ..., X_k)) = X_0(\alpha(X_1, ..., X_k)).$$

The only term in the sum that does not immediately vanish is the one where we don't evaluate α on X_0 . Now we evaluate at a point p. An integral curve of X_0 at p is $t \mapsto p \cdot \exp(t\xi)$, and we write $g_t = \exp(t\xi)$, so

$$\begin{split} \mathrm{d}\alpha_p(X_0,\dots,X_k) &= X_0(p)(\alpha(X_1,\dots,X_k)) \\ &= \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \alpha_{p\cdot g_t}(X_1(p\cdot g_t),\dots,X_k(p\cdot g_t)) \\ &= \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \alpha_{p\cdot g_t}(T_p\sigma_{g_t}(X_1(p)),\dots,T_p\sigma_{g_t}(X_k(p))) \\ &= \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} (\sigma_{g_t}^*\alpha)_p(X_1(p),\dots,X_k(p)) \\ &= \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \mathrm{Ad}_{g_t^{-1}}\alpha_p(X_1(p),\dots,X_k(p)) \\ &= \mathrm{ad}(-\xi)(\alpha_p(X_1(p),\dots,X_k(p))) \\ &= -[\xi,\alpha_p(X_1(p),\dots,X_k(p))] \\ &= -[\omega(X_0),\alpha_p(X_1(p),\dots,X_k(p))]. \end{split}$$

A corollary of this expression is that d^{ω} is not nilpotent. This means that we cannot (immediately) construct a cohomology theory based on basic forms and the exterior covariant derivative!

Corollary 2.10 (Exterior covariant derivative is not nilpotent). Let $\varphi \in \Omega^0_{bas}(P,\mathfrak{g})$.

$$(d^{\omega} \circ d^{\omega})\varphi = [\Omega, \varphi].$$

Proof. — We have

$$\begin{split} \mathrm{d}^{\omega}(\mathrm{d}^{\omega}\varphi) &= \mathrm{d}\big(\mathrm{d}^{\omega}\varphi\big) + [\omega,\mathrm{d}^{\omega}\varphi] \\ &= \mathrm{d}\big(\mathrm{d}\varphi + [\omega,\varphi]\big) + [\omega,\mathrm{d}\varphi] + [\omega,[\omega,\varphi]] \\ &= \mathrm{d}[\omega,\varphi] + [\omega,\mathrm{d}\varphi] + [\omega[\omega,\varphi]] \\ &= [\mathrm{d}\omega,\varphi] - [\omega,\mathrm{d}\varphi] + [\omega,\mathrm{d}\varphi] + [\omega[\omega,\varphi]] \\ &= [\mathrm{d}\omega,\varphi] + [\omega,[\omega,\varphi]]. \end{split}$$

Here we used the fact that for $\alpha \in \Omega^k(P, \mathfrak{g})$ and $\beta \in \Omega^l(P, \mathfrak{g})$:

$$d[\alpha, \beta] = [d\alpha, \beta] + (-1)^k [\alpha, d\beta].$$

This can be readily checked from the definition, and it follows since the bracket is defined in terms of the wedge product.

Now let's evaluate at two vectors $u, v \in TP$:

$$\begin{split} [\omega,[\omega,\varphi]](u,v) &= [\omega(u),[\omega,\varphi](v)] - [\omega(v),[\omega,\varphi](u)] \\ &= [\omega(u),[\omega(v),\varphi]] - [\omega(v),[\omega(u),\varphi]] \\ &= -[\omega(u),[\varphi,\omega(v)]] - [\omega(v),[\omega(u),\varphi]] \\ &= [\varphi,[\omega(v),\omega(u)]] \\ &= [[\omega(u),\omega(v)],\varphi] \\ &= \left[\frac{1}{2}[\omega,\omega],\varphi\right](u,v). \end{split}$$

Therefore, we obtain

$$\mathrm{d}^\omega(\mathrm{d}^\omega\varphi) = [\mathrm{d}\omega,\varphi] + \frac{1}{2}[[\omega,\omega],\varphi] = [\Omega,\varphi].$$

3 The relation with connections on vector bundles

3.1 From vector bundles to principal bundles

Let's go back to known waters. Let $\pi_E: E \to M$ be a vector bundle of rank k over M. Recall that a **connection** ∇ on E is (at least in one of its several flavors) a bilinear map

$$\nabla : \mathfrak{X}(M) \times \Gamma(E) \to \Gamma(E),$$

where we denote $\nabla(X)(s) = \nabla_X(s)$, such that for all $X \in \mathfrak{X}(M)$, $s \in \Gamma(E)$ and $f \in C^{\infty}(M)$:

- 1. $\nabla_{fX}s = f\nabla_X s$, and
- 2. $\nabla_X(fs) = f\nabla_X s + \mathcal{L}_X(f)s$ (Leibniz rule).

At this point, we know that we have a special principal $GL(k,\mathbb{R})$ -bundle that is directly related to E, namely the frame bundle Fr(E). Is there any relation between the connection ∇ and possible connections on Fr(E)? Can we find a connection 1-form $\omega_{\nabla} \in \Omega^{1}(Fr(E), \mathfrak{gl}(k,\mathbb{R}))$ that is induced by ∇ ?

Indeed, we can. First, we can rethink this map by fixing $s \in \Gamma(E)$. With s held fixed, we can then write

$$\nabla s : \mathfrak{X}(M) \to \Gamma(E)$$

 $X \mapsto \nabla_X s.$

By property (1) above, the map ∇s is $C^{\infty}(M)$ -linear, and so we can interpret it as an E-valued 1-form on M:

$$\nabla s \in \Omega^1(M, E)$$
.

If $f \in C^{\infty}(M)$ is a function, then from the Leibniz rule we obtain that for all $X \in \mathfrak{X}(M)$,

$$\nabla(fs)(X) = \nabla_X(fs) = (\mathcal{L}_X f)s + f\nabla_X s = \mathrm{d}f(X)s + f\nabla_S(X),$$

so we may write

$$\nabla(fs) = \mathrm{d}f \otimes s + f \nabla s$$

Now let U be a trivializing open set of the bundle, and let $\{e_1, ... e_k\}$ be a frame on $E_U := \pi^{-1}(U)$. Of course, each element e_j is a section of E, so we can consider $\nabla e_j \in \Omega^1(U, E_U)$ (why E_U and not just E?). In particular, we can write ∇e_j as

$$\nabla e_j = \sum_i \Gamma_j^i e_i,$$

where each $\Gamma_j^i \in \Omega^1(U)$ is a 1-form. We can collect all the Γ_j^i in a $\mathfrak{gl}(k,\mathbb{R})$ -valued form, whose entries are called the **connection coefficients** (or in some cases, the Christoffel symbols)

$$\Gamma = \begin{pmatrix} \Gamma_1^1 & \dots & \Gamma_k^1 \\ \vdots & \ddots & \vdots \\ \Gamma_1^k & \dots & \Gamma_k^k \end{pmatrix} \in \Omega^1(U, \mathfrak{gl}(k, \mathbb{R})).$$

What do we have at this point? For each frame $\{e_1, \dots, e_k\}$ of E, which is defined locally on $U \subseteq M$, we have a $\mathfrak{gl}(k, \mathbb{R})$ -valued 1-form Γ . This smells quite a lot like what we're looking for! If we can show that the connection coefficients transform nicely with respect to change of frames, we can invoke the physicists-did-nothing-wrong proposition (proposition 1.10) and construct a connection on Fr(E).

So let e'_1, \dots, e'_k be another frame, defined on an open $U' \subseteq M$. On $U \cap U'$, each element e'_j can be expressed in terms of the first frame. For each $x \in U \cap U'$ there is a matrix $A(x) \in \operatorname{GL}(k, \mathbb{R})$ such that

$$e'_j(x) = \sum_i A(x)^i{}_j e_i(x),$$

or rather, we have a $GL(k, \mathbb{R})$ -valued function A on $U \cap U'$, which is precisely the transition

function of the trivialization of Fr(E). Now, when we evaluate the connection on e'_i , we get

$$\begin{split} \nabla e_j' &= \sum_i \nabla (A^i{}_j e_i) \\ &= \sum_i \left(\mathrm{d} A^i{}_j \otimes e_i + A^i{}_j \nabla e_i \right) \\ &= \sum_i \left(\mathrm{d} A^i{}_j \otimes e_i + A^i{}_j \sum_r \Gamma_i^r e_r \right) \\ &= \sum_i \left(\mathrm{d} A^i{}_j + \sum_r A^r{}_j \Gamma_r^i \right) \otimes e_i. \end{split}$$

On the other hand,

$$\nabla e_j' = \sum_r \Gamma_j'^r e_r' = \sum_{i,r} \Gamma_j'^r A_r^i e_i.$$

Comparing with the previous result, we obtain

$$\sum_{r} \Gamma_{j}^{\prime r} A^{i}_{r} = \mathrm{d} A^{i}_{j} + \sum_{r} A^{r}_{j} \Gamma_{r}^{i}.$$

Noting that the upper index is the column index, we see that the previous equation is for the components of the matrix equation

$$A\Gamma' = dA + \Gamma A$$
.

that is

$$\Gamma' = A^{-1}\Gamma A + A^{-1} dA.$$

Indeed, we can now invoke proposition 1.10 and claim:

Theorem 3.1 (Connection induced by connection on vector bundle). Let ∇ be a connection on a vector bundle $E \to M$ of rank k. Then there is a unique connection 1-form ω_{∇} on the frame bundle Fr(E) such that, given a local frame $e: U \to Fr(E)$, the local gauge potential is given by the connection coefficients:

$$e^*\omega_{\nabla} = \Gamma$$
.

There's also a direct way to construct ω_{∇} given a connection ∇ , that does not require using the physicists-did-nothing-wrong proposition. It can be found in [Bärii, example 2.3.3] and [Crais, section 2.3.5].

3.2 Interlude: Associated bundles

The converse of theorem 3.1 can be done with a little bit more generality, without any additional complications. We will see that given any connection $\omega \in \Omega^1(P,\mathfrak{g})$, we can find a connection on a wide array of vector bundles that are related to P.

Let $G \hookrightarrow P \stackrel{\pi}{\to} M$ be a principal G-bundle, V a vector space and $\rho: G \to \operatorname{GL}(V)$ a representation. We define the **associated bundle** $P \times_{\rho} V$ as the quotient of $P \times V$ under the action

$$(p,v)\cdot g=(p\cdot g,\rho(g^{-1})v).$$

We will denote $\rho(g)v$ simply as $g \cdot v$ whenever there is no chance for confusion, and the elements of E in terms of representatives, e.g. [p,v]. We have a projection map $\pi_E: E \to M$ a $\pi_E([p,v]) = \pi(p)$. This map is well-defined since $\pi(p \cdot g) = \pi(p)$ for all $p \in P$ and $g \in G$.

Of course, we have just given the definition as a set. We should check that $P \times_{\rho} V$ is 1. a manifold 2. a vector bundle. Usually we would skip this part but actually the construction of the charts and trivialization on E will give us a better understanding of it, and will tell us how it looks locally.

First, let's look at trivializations. Once we have the trivializations, we can construct a coordinate atlas adapted from the atlas of *M*, as with all fiber bundles.

For each $p \in P$, we define a map $i_p : V \to E$ as

$$i_p(v) = [p, v].$$

This map is a bijection from V to the fiber $E_{\pi(p)}$ above $\pi(p)$. Clearly, by construction i_p is surjective. And to see injectivity, suppose that $i_p(v) = i_p(v')$. Then [p, v] = [p, v'], so there exists a $g \in G$ such that $(p, v) = (p \cdot g, g^{-1} \cdot v')$. But the action of G is free on P, so necessarily g = e, and so v = v'. This allows us to endow $E_{\pi(p)}$ with a vector space structure such that i_p is a linear isomorphism; i.e. as $[p, v] + \alpha[p, v'] = [p, v + \alpha v']$ with the same p. Of course, this should be the same regardless of the choice of p (in the fiber of π , that is). Indeed, if $p' \in P$ is such that $\pi(p') = \pi(p)$, then there is a $g \in G$ such that $p' = p \cdot g$.

Therefore, we have that

$$i_{p'}(v) = [p', v] = [p \cdot g, v] = [p, g \cdot v] = i_p(g \cdot v) = (i_p \circ \rho(g))(v).$$

Then $i_{p'}$ and i_p are related by an automorphism of V, so the induced vector space structure on $E_{\pi(p)}$ is the same. This last result will be useful again later, so let's put it as a lemma.

Lemma 3.2. Let $G \hookrightarrow P \xrightarrow{\pi} M$ be a principal G-bundle, V a vector space and $\rho: G \to GL(V)$ a representation. Write $E = P \times_{\rho} V$ for the bundle associated to P via ρ . For $\rho \in P$, define $i_p: V \to E_{\pi(p)}$ as $i_p(v) = [p, v]$. Then i_p is a bijection, and for all $g \in G$,

$$i_{p \cdot g} = i_p \circ \rho(g).$$

Let $\{U_i\}_{i\in I}$ be a cover of M that trivializes P. For each U_i we have a canonical section (or local gauge) $s_i: U_i \to P_{U_i}$ (see section 1.3). With this canonical section we can construct a trivialization $\Psi_i: U_i \times V \to E_{U_i}$ as

$$\Psi_i(x, v) = i_{s_i(x)}(v) = [s_i(x), v].$$

It can be shown [see e.g. Nab10, pp. 381] that when we endow E with the quotient topology, E is Hausdoff and each map Ψ_i is a homeomorphism. This is a straightforward (albeit a bit tedious) check.

How do the transition functions look? Consider two trivializing open sets U_i , U_j with their canonical sections s_i , s_j , and let $U_{ij} = U_i \cap U_j$. We have that there is a transition function $g_{ij}: U_{ij} \to G$ such that for all $x \in U_{ij}$,

$$s_i(x) = s_i(x) \cdot g_{ij}(x).$$

Then, for $(x, v) \in U_{ij} \times V$, we have

$$\Psi_i(x, v) = [s_i(x), v] = [s_i(x) \cdot g_{ij}(x), v] = [s_i(x), g_{ij}(x) \cdot v] = \Psi_i(x, g_{ij}(v)).$$

This implies that

$$(\Psi_i^{-1} \circ \Psi_i)(x, v) = (x, g_{ij}(x) \cdot v) = (x, \rho(g_{ij}(x))(v)). \tag{3}$$

Then the transition functions are of the form $\rho(g_{ij}) \in GL(V)$, with g_{ij} the gauge transitions of the principal bundle. This tells us that there is a unique smooth structure on E such that the Ψ_i are diffeomorphisms, and such that $\pi_E : E \to M$ is a smooth surjection. Thus, E is a vector bundle over M with typical fiber V. Let's put it as a proposition.

Proposition 3.3 (Associated bundle is a smooth vector bundle). Let $G \hookrightarrow P \xrightarrow{\pi} M$ be a principal G-bundle, V a vector space and $\rho: G \to \operatorname{GL}(V)$ a representation. Write $E = P \times_{\rho} V$ for the bundle associated to P via ρ . Then E is a smooth vector bundle over M with typical fiber V. Furthermore, given a cover $\{U_i\}_{i \in I}$ that trivializes P, with canonical sections $s_i: U_i \to P$ and transition functions $g_{ij}: U_i \cap U_j \to G$, the maps $\Psi_i: U_i \times V \to E$ given as $\Psi_i(x,v) = [s_i(x),v]$ are trivializations of E, with transition functions $\rho(g_{ij}): U_i \cap U_j \to \operatorname{GL}(V)$.

In physics, we usually keep to local gauges. In a local gauge (U_i, s_i) , the bundle $P \times_{\rho} V$ is trivial and "looks like" $U_i \times V$. Equation (3) says that under a change of gauge $s_i \mapsto s_j$, an element $v \in V$ transforms as $v \to \rho(g_{ij})v$.

Example 3.4 (Frame bundles). Let $E \stackrel{\pi_E}{\to} M$ be a real vector bundle of rank k over a smooth manifold M. We have a principal $GL(k,\mathbb{R})$ -bundle over M, which is the frame bundle Fr(E), and the identity representation of $GL(k,\mathbb{R})$ on \mathbb{R}^k , id : $GL(k,\mathbb{R}) \to GL(\mathbb{R}^k)$. It is a straightforward check to see that

$$E \cong \operatorname{Fr}(E) \times_{\operatorname{id}} \mathbb{R}^k$$
.

Example 3.5 (Adjoint bundle). Let $G \hookrightarrow P \xrightarrow{\pi} M$ be a principal G bundle. We have a natural representation Ad: $G \to GL(\mathfrak{g})$. The vector bundle associated to P via Ad is called the **adjoint bundle** of P, and is denoted $Ad(P) := P \times_{Ad} \mathfrak{g}$.

In particular, if $E \stackrel{\pi_E}{\to} M$ is a vector bundle of rank k, and Fr(E) is its frame bundle, then we have that

$$Ad(Fr(E)) \cong End(E)$$
.

How do sections of E look like locally? If we fix a cover $\{U_i\}_{i\in I}$ of M that trivializes P, with canonical sections $s_i: U_i \to P$, we have that this cover also trivializes E. Suppose that $\psi: M \to E$ is a section of E. When restricted to U_i , we have that ψ looks locally like

$$(\Psi_i^{-1} \circ \psi)(x) = (x, \psi_i(x)),$$

for some smooth $\psi_i: U_i \to V$. In fact, given a local gauge s_i , there is a *bijection* between smooth maps $\psi_i: U_i \to V$ and local sections $\psi: U_i \to E$. On the overlaps $U_i \cap U_j$, the same argument of before shows that the "trivializations" of the sections transform as

$$\psi_i(x) = g_{ii}(x) \cdot \psi_i(x).$$

Now we see that there is a deeper relation between sections of E (in fact, of E-valued forms) and V-valued forms on P. Again, let $\psi: M \to E$ be a section. In a local trivialization

 U_i with canonical section $s_i:U_i\to P$, we can write any element $p\in P_{U_i}=\pi^{-1}(U_i)$ uniquely as

$$p = s_i(x) \cdot g_i$$

where $x = \pi(p)$. By the discussion above, there is a function $\psi_i : U_i \to V$ such that for all $x \in U_i, \psi$ looks like

$$\psi(x) = [s_i(x), \psi_i(x)].$$

So in general, we can change the representative of $\psi(x)$ to be of the form [p, v] for any p in the fiber above x;

$$\psi(x) = [s_i(x), \psi_i(x)] = [s_i(x) \cdot g_i, g_i^{-1} \cdot \psi_i(x)].$$

We can thus define a function $ilde{\psi}_i: P_{U_i} o V$ as

$$\tilde{\psi}_i(s_i(x) \cdot g_i) := g_i^{-1} \cdot \psi_i(x).$$

It is a straightforward check to see that this function is well-defined on P_{U_i} ; and in fact that the collection of $\left\{\tilde{\psi}_i\right\}_{i\in I}$ glues together to a map $\tilde{\psi}:P\to V$ which satisfies that for all $p\in P$ and $g\in G$,

$$\tilde{\psi}(p \cdot g) = g^{-1} \cdot \tilde{\psi}(p).$$

We say that $\tilde{\psi}$ is G-equivariant or pseudotensorial of type ρ .

This is a general fact: *k*-forms on *M* which are valued in *E* correspond to a certain kind to *k*-forms on *P* which are valued in *P*.

Definition 3.6 (Tensorial form). Let $G \hookrightarrow P \stackrel{\pi}{\to} M$ be a principal G-bundle. We say that a form $\alpha \in \Omega^k(P,V)$ is **tensorial** of type ρ or **basic** if

- 1. α is horizontal, i.e. $\iota_X \alpha = 0$ for any vertical vector $X \in TP$; and
- 2. α is pseudotensorial of type ρ , that is,

$$\sigma_g^* \alpha = \rho(g^{-1}) \circ \alpha.$$

We denote the space of tensorial k-forms of type ρ by $\Omega_{\rho}^{k}(P, V)$.

Theorem 3.7 (Lowering of tensorial forms). Let $G \hookrightarrow P \xrightarrow{\pi} M$ be a principal bundle, V a vector space, $\rho: G \to GL(V)$ a representation of G on V and $E = P \times_{\rho} V$ the associated vector bundle. Then there is a linear isomorphism $h: \Omega_{\rho}^k(P,V) \to \Omega^k(M,E)$.

Proof (Sketch). — Define $h: \Omega^k_o(P,V) \to \Omega^k(M,E)$ as follows: given $\overline{\phi} \in \Omega^k_o(P,V)$, define

$$h(\overline{\phi})_x(V_1,\dots,V_k) := \left[p, \overline{\phi}_p(\overline{V}_1,\dots,\overline{V}_k) \right],$$

where $p \in \pi^{-1}(x)$, $V_1, \dots, V_k \in T_x M$, and the \overline{V}_i are lifts of the V_i ; that is, $T_p \pi(\overline{V}_i) = V_i$ for $i = 1, 2, \dots, k$.

It is straightforward, but a bit long, to check that *h* is well-defined.

The inverse of h can be given explicitly: given $\psi \in \Omega^k(M, E)$, we define $h^{-1}\phi \in \Omega^k_\rho(P, V)$ as

$$(h^{-1}\phi)_p(\overline{V}_1,\dots,\overline{V}_k):=i_p^{-1}(\pi^*\phi)_x(\overline{V_1},\dots,\overline{V}_k).$$

Again, it is a straightforward check to see that these maps are well-defined, linear, and inverses of one another. These maps are natural in the sense that they are the obvious choice given the data that we have.

The associated bundle is a vector bundle with fiber V, so we now can ask ourselves if, given a connection ω on P, there is an induced connection ∇^{ω} on E.

3.3 From principal bundles to vector bundles

As above, for any connection ∇ on E, given a section $s \in \Gamma(E)$, we have an E-valued 1-form $\nabla s \in \Omega^1(M, E)$, so we can think of a connection as a map $\nabla : \Gamma(E) \to \Omega^1(M, E)$. Noting that a section of E is just an E-valued 0-form, and using the isomorphism P0 of theorem 3.7, we see that the problem is reduced to finding a suggestively-named map

$$\mathrm{d}^{\omega}:\Omega_{\mathrm{bas}}^{0}(P,V)\to\Omega_{\mathrm{bas}}^{1}(P,V),$$

that is *nicely* related to ω and that satisfies the Leibniz rule when we go back to M. Once we have such a map, we can define ∇^{ω} on E such that the following diagram commutes:

$$\begin{array}{ccc} \Omega^{0}_{\rho}(P,V) & \stackrel{\mathrm{d}^{\omega}}{\longrightarrow} & \Omega^{1}_{\rho}(P,V) \\ & & & \downarrow^{h} & & \downarrow^{h} \\ \Gamma(E) & \stackrel{\nabla^{\omega}}{\longrightarrow} & \Omega^{1}(M,E) \end{array}$$

But wait a minute... for the case where $\rho = \operatorname{Ad}$ and $V = \mathfrak{g}$, we already have a such a map, namely the exterior covariant derivative d^{ω} , which acts on basic forms according to proposition 2.9 as

$$d^{\omega}\alpha = d\alpha + [\omega, \alpha].$$

And now we use the ancient art of reverse-engineering. If α is a 0-form, we can rewrite $[\omega, \alpha]$ in terms of the adjoint representation, precisely as $[\omega, \alpha] = \operatorname{ad}(\omega)(\alpha)$, where $\operatorname{ad} = T_e \operatorname{Ad}$, so that

$$\mathrm{d}^{\omega}\alpha=\mathrm{d}\alpha+(T_{e}\mathrm{Ad}\circ\omega)(\alpha).$$

This suggests that for a general vector space V and representation $\rho: G \to GL(V)$, we define

$$d^{\omega}\alpha := d\alpha + (T_{\varrho}\rho \circ \omega)(\alpha),$$

on all basic 0-forms. The derivative $T_e \rho : \mathfrak{g} \to \operatorname{End}(V)$ is called the **infinitesimal action** of \mathfrak{g} on V, induced by the action ρ .

Explicitly, for $p \in P$ and $X \in T_pP$, it is defined as

$$\mathrm{d}^{\omega}\alpha_p(X) = (\mathrm{d}\alpha)_p(X) + ((T_e\rho)(\omega_p(X)))(\alpha(p)).$$

What we now need to show is that the map

$$\nabla^{\omega} := h \circ d^{\omega} \circ h^{-1} : \Gamma(E) \to \Omega^{1}(M, E),$$

satisfies the Leibniz rule,

$$\nabla^{\omega}(fs)=\mathrm{d} f\otimes s+f\nabla^{\omega}s.$$

for all $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$.

To prove this, we need to get our hands dirty. Let $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$. The basic 0-form induced on P by fs is

$$h^{-1}(fs)(p) = i_p^{-1}((f(\pi(p))s(\pi(p))) = (f \circ \pi)(p)i_p^{-1}(s(\pi(p))),$$

and so $h^{-1}(fs) = (f \circ \pi)h^{-1}(s)$. Write $\tilde{f} = f \circ \pi$, and $\tilde{s} = h^{-1}(s)$. Then \tilde{f} is a *G*-invariant real-valued function and \tilde{s} is a basic *V*-valued function. Now we apply d^{ω} :

$$d^{\omega}(\tilde{f}\tilde{s}) = d(\tilde{f}\tilde{s}) + (T_{\rho}\rho \circ \omega)(\tilde{f}\tilde{s}) = d\tilde{f}\tilde{s} + \tilde{f}d\tilde{s} + \tilde{f}(T_{\rho}\rho \circ \omega)(\tilde{s}) = d\tilde{f}\tilde{s} + \tilde{f}d^{\omega}\tilde{s}.$$

Here we have that \tilde{f} comes out of the differential of the representation, because once evaluated at $\omega_p(X)$ for some $p \in P, X \in T_pP$, $(T_e\rho)(\omega_p(X))$ is *linear*. Now we apply h, evaluate at a point $x \in M$ and a vector $X \in T_xM$:

$$\begin{split} \nabla^{\omega}(fs)_{x}(X) &= h(\mathrm{d}^{\omega}\big(h^{-1}(fs)\big))_{x}(X) \\ &= h(\mathrm{d}\tilde{f}\,\tilde{s} + \tilde{f}\,\mathrm{d}^{\omega}\tilde{s})_{x}(X) \\ &= [p, T_{n}\tilde{f}(\tilde{X})\tilde{s}(p) + \tilde{f}(p)\,\mathrm{d}^{\omega}\tilde{s}_{n}(\tilde{X})]. \end{split}$$

Now we recall that $\tilde{f} = f \circ \pi$, so $\tilde{f}(p) = f(x)$ and

$$T_n \tilde{f}(\tilde{X}) = T_x f T_n \pi(\tilde{X}) = T_x f(X).$$

Therefore

$$\begin{split} \nabla^{\omega}(fs)_{x}(X) &= [p, T_{x}f(X)\tilde{s}(p)] + [p, f(x) \operatorname{d}^{\omega}\tilde{s}_{p}(\tilde{X})] \\ &= T_{x}f(X)[p, \tilde{s}(p)] + f(x)[p, \operatorname{d}^{\omega}\tilde{s}_{p}(\tilde{X})] \\ &= (\operatorname{d} f \otimes s + f \nabla^{\omega}s)_{p}(X). \end{split}$$

Then ∇^{ω} is, indeed, a connection on E. We have then proved

Theorem 3.8 (Connection induced by a connection on principal bundle). Let $G \hookrightarrow P \xrightarrow{\pi} M$ be a principal G-bundle, V a vector space, $\rho : G \to GL(V)$ a representation and $E = P \times_{\rho} V$ the associated bundle. Given a connection $\omega \in \Gamma^1(P, \mathfrak{g})$, there is an induced connection $\nabla^{\omega} : \Gamma(E) \to \Omega^1(M, E)$ such that the following diagram commutes:

$$\begin{array}{ccc} \Omega^0_\rho(P,V) & \stackrel{\mathrm{d}^\omega}{\longrightarrow} & \Omega^1_\rho(P,V) \\ & & \downarrow_h & & \downarrow_h \\ & \Gamma(E) & \stackrel{\nabla^\omega}{\longrightarrow} & \Omega^1(M,E) \end{array}.$$

Another way to prove this theorem is to go local, and define the connection in terms of the connection coefficients. This suffices to uniquely define a connection on a vector bundle [see Nic18, Proposition 3.3.5], if the coefficients transform well enough.

So let's go local, and try to see what the beast of $\nabla^{\omega} = h \circ d^{\omega} \circ h^{-1}$ is. As always, let $\{U_i\}_{i \in I}$ be a cover of M that trivializes P, with canonical sections $s_i : U_i \to P_{U_i}$, and gauge transitions $g_{ij} : U_i \cap U_j \to G$. As we saw in section 3.2, this trivialization also induces a trivialization of the associated bundle $E = P \times_{\wp} V$.

We can go further and see that the trivialization of P also makes a further identification in the isomorphism $\Omega^k_{\rho}(P,V) \cong \Omega^k(M,E)$. Given a form $\alpha \in \Omega^k_{\rho}(P,V)$, we have that

$$h(\alpha)_x(V_1,\dots,V_k) = [p,\alpha_p(\overline{V}_1,\dots,\overline{V}_k)]$$

for $p \in \pi^{-1}(x)$ and $\overline{V}_1, \dots, \overline{V}_k$ lifts of the V_1, \dots, V_k . But we have a preferred choice of element in the fiber of x, namely $p = s_i(x)$. Similarly, we have a preferred lift of the V_j , namely as $\overline{V}_j = T_x s_i(V_j)$. We then have that

$$h(\alpha)_x(V_1,\ldots,V_k) = [s_i(x),(s_i^*\alpha)_x(V_1,\ldots,V_k)].$$

Thus, we have that the following diagram commutes:

This tells us that, given a choice of trivialization (gauge), *V*-valued tensorial forms on *P* and *E*-valued forms on *M* both reduce to *V*-valued forms on *M*.

In particular, given section $\psi: M \to E$, which looks locally on U_i as

$$\psi(x) = [s_i(x), \psi_i(x)]$$

the above diagram tells us that

$$\psi(x) = (h \circ h^{-1})(\psi(x))) = (i_{s_i(x)} \circ s_i^*)(h^{-1}(\psi(x))) = [s_i(x), s_i^*(h^{-1}\psi)(x)],$$

but since $i_{s_i(x)}$ is an isomorphism, then

$$\psi_i(x) = s_i^*(h^{-1}\psi)(x).$$

Now apply $\nabla^{\omega}\psi$. By the previous result,

$$\nabla^{\omega}\psi(x) = h(\mathrm{d}^{\omega}(h^{-1}\psi)(x)) = [s_i(x), s_i^*(\mathrm{d}^{\omega}h^{-1}\psi)(x)].$$

Therefore, it suffices to find $s_i^*(d^{\omega}h^{-1}\psi)(x)$. For the first term, we have

$$s_i^*(dh^{-1}\psi) = ds_i^*(h^{-1}\psi) = d\psi_i.$$

For the second term we need to be more careful. Let's evaluate at $x \in U_i$ and $V \in T_xM$:

$$s_i^*(T_e\rho\circ\omega(h^{-1}\psi))_x(V)=(T_e\rho(\omega_{s_i(x)}(s_{i*}V)))(h^{-1}\psi(s_i(x))):=(T_e\rho\circ\omega_i)_x(V)(\psi_i(x)).$$

Here we have denoted $\omega_i = s_i^* \omega$ (in consistence with the notation of proposition 1.9). Therefore, the local expression of the connection on *E* is (dropping the arguments)

$$\nabla^{\omega}\psi = [s_i, d\psi_i + (T_{\varrho}\rho \circ \omega_i)(\psi_i)].$$

3.4 In physics language

We can reduce the notation a bit more (and make it a bit more confusing), add coordinates, and obtain the equations of the "covariant derivative on matter fields" that is used by physicists. In physics, a matter field is a (local expression of a) section of the associated bundle E to a principal G-bundle. The group G is called the group of local invariance. A section $S: U \to P$ is a local gauge, and the local potentials of a connection are denoted by $A:=S^*\omega$.

The infinitesimal action is not denoted explicitly, so we only write $\xi \cdot v$ instead of $T_e \rho(\xi)(v)$, for $\xi \in \mathfrak{g}$ and $v \in V$. Thus, if we choose a basis $\{e_1, \dots, e_k\}$ of V, then we can write the infinitesimal action as a matrix product:

$$\mathcal{A} \cdot e_a = \mathcal{A}^b{}_a e_b$$

with $\mathcal{A}^b{}_a \in \Omega^1(U)$ for all a, b. If we have a section $\Psi: M \to E$, then in the local gauge s it can be written as $\Psi = [s, \psi]$, with $\psi: U \to V$. This ψ is called a **matter field**, and in the basis of V, it becomes

$$\psi = \psi^a e_a$$

If we assume that out trivializing cover is also a coordinate atlas, then on the chart U_i we also have coordinates x^{μ} . Therefore, we write

$$\mathcal{A}^b_{\ a} = \mathcal{A}^b_{\ a\mu} \, \mathrm{d} x^\mu \, .$$

Finally, when we apply the connection to Ψ

$$\nabla^{\omega}\Psi = [s, \mathcal{D}\psi],$$

where

$$\begin{split} \mathcal{D}\psi &= \mathrm{d}\psi + \mathcal{A} \cdot \psi \\ &= (\partial_{\mu}\psi^{a} + \mathcal{A}^{a}{}_{b\mu}\psi^{b})\,\mathrm{d}x^{\mu} \otimes e_{a} \\ &\vcentcolon= \mathcal{D}_{\mu}\psi^{a}(\mathrm{d}x^{\mu} \otimes e_{a}). \end{split}$$

Here, the operator \mathcal{D}_{μ} is called the covariant derivative:

$$\mathcal{D}_{\mu}=\partial_{\mu}+\mathcal{A}_{\mu}.$$

References

- [Bär11] Christian Bär. Lecture notes on Gauge Theories. 2011.
- [Cra15] Marius Crainic. Lecture notes for the Mastermath course Differential Geometry 2015/2016. 2015.
- [KN96] Shoshichi Kobayashi and Katsumi Nomizu. *Foundations of Differential Geometry*. Vol. 1. Wiley Classics Library. Wiley, 1996.
- [Lee12] John M. Lee. Introduction to Smooth Manifolds. Second edition. Springer, 2012.
- [Moro1] Shigeyuki Morita. *Geometry of Differential Forms*. American Mathematical Society, 2001.
- [Nab10] Gregory L. Naber. *Topology, Geometry and Gauge Fields: Foundations.* Second edition. Springer, 2010.
- [Nic18] Liviu I. Nicolaescu. Lectures on the Geometry of Manifolds. 2018.
- [Qui18] Alexander Quintero Vélez. Notas de Fundamentos Matemáticos de las Teorías de Campos Gauge. 2018.