

AULA 01- Conceitos Básicos de Comunicação

[1]

Conceitos Básicos de Comunicação

- Comunicação de Dados

[1.1] Comunicação de Dados

Comunicação de Dados

Os blocos funcionais que compõem um sistema de comunicação de informação foram propostos pela primeira vez por C. E. Shannon (1948);

- A comunicação de dados trata da transmissão de informação entre sistemas computacionais.
- A transmissão de informação envolve a passagem de sinais através dos meios físicos de comunicação.
- As propriedades físicas dos meios de transmissão e as características dos sinais transmitidos influenciam na construção e o projeto de redes de computadores.

- Comunicação de dados pode ser considerada a função básica de a um sistema de comunicação de informação.
- Os blocos funcionais que compõem um sistema de comunicação de informação foram propostos por C. E. Shannon (1948);
- E continua sendo o modelo de referência, tanto para o estudo como para a análise dos modernos Sistemas de Comunicação de Dados (SCD).

 O sistema é conhecido como sistema ponto-a-ponto de comunicação de informação:

Fluxo de Comunicação

- A informação gerada por uma fonte
- Passa por um codificador de fonte e por um codificador de canal
- Depois a informação é transmitida por um meio físico ao destinatário.
- O destinatário remoto recebe o sinal transmitido
- Executa um processo de decodificação de canal
- Um processo de decodificação de fonte, recuperando a informação original, que finalmente é repassada ao destinatário.

Fluxo de Comunicação

figura 1.1 Blocos funcionais de um sistema de comunicação de informação genérico conforme sugerido por C. E. Shannon (1948).

 Os estudos das fontes de informação e dos codificadores de fonte são especificamente da teoria de informação;

 Já a codificação de canal e os aspectos de transmissão e recepção pelo meio são das áreas de engenharia tais como telecomunicações e engenharia de computação.

- A fonte ou receptor de informação é qualquer dispositivo capaz de gerar ou receber informação.
- Equipamentos deste tipo são chamados de Equipamentos Terminais de Dados (ETDs).
- Os ETDs operam normalmente no modo duplex.
- Os fluxos de informação gerados pela fonte não são contínuo, mas sim discreto.

- Os codificadores e decodificadores de fonte executam algoritmos específicos para cada tipo de fluxo de informação, visando, principalmente, a compactação dos dados gerados pela fonte.
- Os tipos de informação podem ser agrupados em quatro classes: dados de computação, imagens, vídeos e áudio.
- Existem algoritmos específicos de compactação para cada uma das quatro classes de informação.

O transmissor/receptor pode ser dividido em dois blocos:

- Codificador/decodificador de canal
- Modulador/demodulador de sinal.

- O codificador de canal executa funções para otimizar a associação de símbolos elétricos aos fluxos de bits.
- Uma destas funções é maximizar a quantidade de dados transmitida
- Outras incluem técnicas de codificação que permitem recuperação de erros, conhecidas como FEC (Forward Error Correction)

O que é informação?

- Segundo Shannon, a informação está associada a um processo de seleção de símbolos;
- A partir de um determinado conjunto de símbolos, também chamado de alfabeto de símbolos.
- As seleções de vários símbolos formam a mensagem à qual está associada uma quantidade de informação.

- O processo de geração de informação pode ser caracterizado pela seleção de símbolos a partir de um alfabeto.
- A seleção de símbolos é geralmente cadenciada no tempo e, portanto, podemos falar na geração de um fluxo de informação.
- Os fluxos de informação de bits muitas vezes são agregados sob forma de pacotes de dados.

- No processo de comunicação podem ser utilizados os mais diversos alfabetos de símbolos.
- Um alfabeto muito usado em comunicação de informação no Brasil é o chamado alfabeto brasileiro para troca de informação, ou BRASCII
- BRASCII: Brazilian Standard Code for Information Interchange, é o equivalente brasileiro do ASCII (American Standard Code for Information Interchang

Comunicação de Dados | Alfabeto |

BRASCII é
baseado no
alfabeto
internacional n.5
do ITU-T, Rec. V.3

Codifica- ção		8	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
		7	0	0 0 1	0 1 0	1 1	0 0	0 1	1 0	1 1	0	0 0 1	0 1 0	1 1	0 0	0 1	1 1 0	1 1	
dos 8																			6
bits		5																	
1	2	3	4				C	aracte	eres d	e 8 b	its do	Alfal	oeto E	RASC	11				
0	0	0	0	NUL	DLE	SP	0	@	P		p				0	À	Đ	à	ð
0	0	0	1	SOH	DC1	1	1	A	Q	a	q			i.	±	Á	Ñ	á	ñ
0	0	1	0	STX	DCZ	"	2	В	R	b	r			¢	2	Â	Ò	â	ò
0	0	1	1	ETX	DC3	#	3	C	S	c	5			£	3	Ă	Ó	ā	ó
0	1	0	0	EOT	DC4	5	4	D	Т	d	t			п	*	Ā	Ô	ā	ô
0	1	0	1	ENQ	NAK	%	5	E	U	е	u			¥	ш	Å	Ő	å	ō
0	1	1	0	ACK.	SYN	&	6	F	٧	f	V			1	4	Æ	Ö	æ	ō
0	1	1	1	BEL	ETB	,	7	G	W	g	w			5		Ç	×	ç	+
1	0	0	0	85	CAN	(8	Н	Х	h	x					È	Ø	è	ø
1	0	0	1	HT	EM)	9	1.	Υ	i	у			0	1	É	Ù	é	ù
1	0	1	0	LF	SUB	*	:	1	Z	i	z			a	0	Ê	Ú	ê	ú
1	0	1	1	VT	ESC	+	:	K	1	k	1			Œ	30	Ë	Û	ē	û
1	1	0	0	FF	F5		<	L	1	1	ì			-	1/4	1	Ü	1	ū
1	1	0	1	CR	GS		=	M	1	m	}			-	1/2	1	Ý	ſ	ý
1	1	1	0	SO	RS		>	N	^	n	~			8	3/4	î	Þ	î	þ
1	1	1	1	SI	US	1	?	0		0	DEL				1	Ĭ	В	ĩ	Ŷ

Caracteres especiais de Controle de Transmissão.

- No processo de comunicação, há um duplo processo de seleção.
 - Ao ser formada a mensagem, é feita a seleção do caractere;
 - Uma codificação deste caractere a partir de um alfabeto de elementos binários ou dígitos binários - bits.

Comunicação de Dados | Resumindo |

ModeloGenérico deComunicação:

Comunicação de Dados | Resumindo |

Elementos do modelo

• Sistemas finais responsáveis por gerar e consumir a Fonte/Destino informação. Transmissor • Transforma a informação em sinal Receptor • Transforma o sinal em Informação. Canal de Comunicação Meio que transporta o sinal o sinal • Ato de transmitir informações, de forma que seu Comunicação significado seja preservado. Informação Dados manipulados e processados • Representação específica das informações no Sinal momento da transmissão

[1.3] Comunicação de Dados

Sinalização de Dados

Sinalização, em nosso contexto, referese à utilização da energia elétrica para efetuar uma comunicação.

- Sinalização, em nosso contexto, refere-se à utilização da energia elétrica para efetuar uma comunicação.
- O processo de alterar um sinal para ele transmitir dados é chamado modulação ou codificação.
- As sinalização pode ser digital ou analógica.

Sinalização Digital

- Número finito de estados.
- o Não é sinônimo de binário.
- Sinal binário é um tipo específico.
- É um sinal digital c/2 estados.
- O sinal digital binário é o utilizado nas redes de dados.

Sinalização Digital

- Maior atenuação que o analógico;
- Transporta mais dados/amostragem e pode ser comprimido.
- Sua sinalização pode ser produzida por pulsos de tensão elétrica ou luz.
- Os pulsos (ou slots) têm uma duração determinada.

Sinalização de Dados | Sinalização Analógico |

Sinalização Analógica

- Número infinito de estados.
- Uma onda de formato senoidal, em intervalo contínuo no eixo X, pode ter infinitos.

O PONTEIRO DOS MINUTOS INDICA TODOS OS VALORES (INFINITOS, AINDA QUE DE LEITURA IMPOSSÍVEL) ENTRE EM UM INTERVALO DE TEMPO.

Sinalização de Dados | Sinalização Analógico |

Sinalização Analógica

- Sofrem menor atenuação que os digitais
- Transportam menos informação.
- Pode ser facilmente modulada.

A modulação dos sinais analógicos é feita alterando-se as propriedades básicas das ondas:

- Amplitude, que expressa seu nível de tensão
- Frequência, a quantidade de períodos dentro de um segundo (Hz)
- Fase, a posição relativa da onda

[1.3] Comunicação de Dados

Sincronização de Dados

É IMPORTANTE QUE AS DUAS MÁQUINAS QUE SE COMUNICAM UTILIZEM A MESMA ESCALA DE TEMPO PARA INTERPRETAR O SINAL.

- É importante que as duas máquinas que se comunicam utilizem a mesma escala de tempo para interpretar o sinal.
- Como vimos, a interpretação dos dados depende do valor do slot de tempo.
- Este sincronismo entre as máquinas pode ser mantido por meios síncronos ou assíncronos.

- Assíncrona:
 - Na sincronização assíncrona, cada entidade tem seu próprio relógio.
 - Antes de transmitir os dados, um bit de inicialização é enviado.
 - Ao recebê-lo, o receptor aciona seu relógio (que opera na mesma frequência do transmissor) e interpreta do sinal.

- Síncrona:
 - Um sinal é utilizado para sincronizar os relógios das duas máquinas.
 - Pode ser um sinal separado ou incluído no que carrega os dados

[1.3] Comunicação de Dados

Banda de Transmissão

Utiliza-se o termo largura de banda para indicar a faixa de frequências que um certo meio é capaz de transmitir, isto é, a diferença entre o valor da frequência mais alta para a frequência mais baixa.

- Esta banda pode ser utilizada de duas maneiras:
 - Banda base (Bandbase)
 - Banda Larga (Broadband)

Bandbase

- Toda a largura é utilizada por uma única transmissão
- A capacidade plena do meio é utilizada para a transmissão de dados
- Uma única transmissão tem lugar por vez
- A utilização de várias comunicações pode ser feita permitindo que cada uma utilize o canal por uma fração de tempo.
- Utilizado com sinalização digital, em redes Ethernet,

Broadband

- A banda é dividida em canais de modo que dois ou mais possam ser utilizados simultaneamente.
- A largura de banda do meio de transmissão pode ser dividido em vários canais, possibilitando comunicações simultâneas.
- É utilizado com transmissões analógicas.
- Utilizado na comunicação telefônica, por exemplo.

[1.6]

Comunicação de Dados

Multiplexação

MULTIPLEXAR UM MEIO DE TRANSMISSÃO SIGNIFICA PERMITIR SEU COMPARTILHAMENTO PARA VÁRIAS COMUNICAÇÕES.

- Multiplexar um meio de transmissão significa permitir seu compartilhamento para várias comunicações.
- Esta ação permite que mais entidades comunicantes sejam adicionadas ao sistema sem o acréscimo de novos meios de comunicação.
- Permite também que, várias linhas de baixa capacidade sejam substituídas por uma única de capacidade superior.

- Existem várias técnicas de multiplexação.
- Consideramos as três técnicas básicas.
 - FDM Frequency Division Multiplexing
 - TDM Time Division Multiplexing
 - STDM Statistical Time Division Multiplexing

□ FDM − Frequency Division Multiplexing

- O multiplexador cria sinais portadores (carriers) de diferentes frequências
- Eles percorrer o meio de transmissão ao mesmo tempo.
- Estas frequências são chamados de canais.
- Os dados de cada entidade comunicante são codificados em seu respectivo canal, e separados pelo multiplexador do outro lado.

□ TDM − Time Division Multiplexing

- O multiplexador concede uma fração de tempo de utilização para cada entidade (quer ela vá utilizá-lo quer não).
- Embora num dado instante uma única transmissão esteja ocorrendo, a impressão geral é que todos estão obtendo acesso ao meio de transmissão.

STDM – Statistical Time Division Multiplexing

- É uma variação do TDM que procura minimizar o eventual desperdício do meio de comunicação, nos caso em que um slot de tempo é concedido a uma entidade que não está transmitindo.
- No STDM mais slots de tempo são concedidos às entidades que transmitem mais.

AULA 01- Conceitos Básicos de Comunicação