

Detection and Characterization of Chemical Vapor Fugitive Emissions from Hyperspectral Infrared Imagery by Nonlinear Optimal Estimation

Christopher M. Gittins

gittins@psicorp.com

978-689-0003

SPIE Defense, Security, and Sensing
Orlando, FL
April 5-9, 2010

All slides previously approved for public release or derived from unlimited-distribution material:

DTRA PA Control 08-556

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comment arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE APR 2010		2. REPORT TYPE		3. DATES COVE 00-00-2010	to 00-00-2010	
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
Detection and Characterization of Chemical Vapor Fugitive Emissions from Hyperspectral Infrared Imagery by Nonlinear Optimal Estimation					5b. GRANT NUMBER	
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)					5d. PROJECT NUMBER	
					5e. TASK NUMBER	
		5f. WORK UNIT NUMBER				
	ZATION NAME(S) AND AD nc,20 New England A,01810-1077	8. PERFORMING ORGANIZATION REPORT NUMBER				
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	10. SPONSOR/MONITOR'S ACRONYM(S)				
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO U.S. Government of	or Federal Rights Li	cense				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	35		

Report Documentation Page

Form Approved OMB No. 0704-0188

VG10-076-1

Introduction

Nonlinear estimation

- Algorithm formulation
- Test data
- Results

Conclusions

Algorithm Development: Overview

VG10-076-2

Objectives

- Improve pixel-level detection: Reduce probability of false alarm for given P_d
- Address optically-thick plumes: Improve accuracy of estimated path integrated concentration (column density, CL)
- Compatible with real-time processing

Limitations of current practice

- Matched-filter-based detection presumes optically-thin plume
- Other approaches require prior measurements of background not compatible with on-the-move detection
- Payoff: Improve detection immediately following large-scale release, low-lying plumes; improve mass estimate

Problem Formulation

VG10-076-3

- Ensemble of measured spectra
- Measured spectra are nonlinear functions of atmospheric temperature, constituent profiles, background characteristics, etc.
- Desire inverse solution to radiative transfer equation (RTE)
- Inverse solution is mathematically ill-posed no unique solution for R_n

Relation to Atmospheric Profile Retrieval

VG10-076-4

- Stratified atmosphere model
- Profile retrieval
 - Many stratifications
 - Simple background
 - Apply constraints to layer-to-layer variation

Plume detection

- Simple atmosphere
- Complicated background
- Apply constraints to background characterization

Simplified Radiative Transfer Model

Physical Sciences Inc.

VG10-076-5

	Linear (approx.)	Non-Linear (exact)
Plume transmission (τ_p)	1-αs	exp(-αs)
Radiance contrast (L _a -x ₀)	$\propto \Delta T_{ m eff}$	any
Plume temperature (T _p)	$T_p = T_a$	$T_p = T_a$
Atmospheric scattering	No	No

Simplifying assumptions:

- Homogeneous atmosphere between sensor and vapor cloud
- Cloud is at air temperature
- Compare performance of non-linear (exact) RT model with linearized approximation

Adaptive InfraRed Imaging Spectroradiometer (AIRIS)

- Imaging Fabry-Perot spectrometer
 - Mirror spacing ~ λ
 - Staring IR FPA
 - Band sequential data acquisition
 - Co-registration of narrowband images
 - Tune time ~ 2 ms

- Selective sampling of wavelengths
 - Acquire imagery only at wavelengths which facilitate target ID
 - Minimize data volume
- Wide field-of-view, wide spectral coverage

TEP Detection: Shortcoming of Thin Plume Approximation Physical Sciences Inc.

VG10-076-7

• Triethyl phosphate (TEP) release

Post-processing:

- Non-linear estimator in IDL
- False alarm mitigation: 4 of 8 spatial filter
- Bad pixels substituted

Detection key:

- -TEP only
- -Yellow: OD ~ 0
- -Red: OD ≥ 1

Agenda

VG10-076-8

- Introduction
- Nonlinear estimation
 - Algorithm formulation
 - Test data
 - Results
- Conclusions

Optimal Estimation: Bayesian Approach

Physical Sciences Inc

VG10-076-9

Bayesian posterior pdf for model parameter values:

$$p(\theta|\widetilde{x}) = \frac{p(\widetilde{x}|\theta)p(\theta)}{p(\widetilde{x})}$$

Maximum likelihood parameter values maximize posterior:

$$\hat{\theta} = \arg\max\{p(\theta|\tilde{x})\}\$$

$$= \arg\min\{-\ln p(\theta|\tilde{x})\}\$$

Multi-variate normal pdf for deviation between model and measurement:

$$-\ln p(\widetilde{x}|\theta) = \frac{1}{2} \left[\widetilde{x} - f(\theta) \right]^T D^{-1} \left[\widetilde{x} - f(\theta) \right] + c_{x|\theta}$$
$$D = diag\left\{ \left[\sigma_1^2, \sigma_2^2, ..., \sigma_k^2 \right] \right\}$$

Prior pdf for model parameter values

$$-\ln p(\theta) = \frac{1}{2} \left[\theta - \theta_a \right]^T R \left[\theta - \theta_a \right] + c_{\theta}$$

Optimal Estimation: Signal Model

VG10-076-10

Signal model:

Plume transmission:

- Infrared background:
 - Linear mixing model

$$x_0 = \mu + B\beta$$

- Probabilistic Principal Components
- Robust estimate of sample covariance (Huber-type M-estimator)
- Model parameters:

$$\theta = \left[\alpha, T_a, \beta\right]$$

β: Parameters which account for bkgd. radiance given bkgd. model

Minimize Cost Function

VG10-076-11

- Maximum likelihood parameter values minimize cost function
- Multivariate normal pdfs result in "quadratic" cost function

$$C = \left[\widetilde{x} - f(\theta)\right]^T D^{-1} \left[\widetilde{x} - f(\theta)\right] + \left[\theta - \theta_a\right]^T R_{\theta} \left[\theta - \theta_a\right]$$

deviation between measured and model spectra

deviation of parameters from nominal values

- Quadratic formulation: $C = r^T r$
- Prior applied to background coefficients only: $\left[\theta \theta_a\right]^T R_{\theta} \left[\theta \theta_a\right] = \beta^T \beta$

$$\left[\theta - \theta_a\right]^T R_{\theta} \left[\theta - \theta_a\right] = \beta^T \beta$$

- Residuals vector: $r = [D^{-1/2}[\widetilde{x} f(\theta)]; \beta]$
- Determine maximum likelihood parameter values by nonlinear estimation
 - Approach not limited to quadratic cost function
 - Quadratic cost function amenable to computationally-efficient solution

Nonlinear Optimization Algorithms

Physical Sciences Inc.

VG10-076-12

Iterative determination of parameters, e.g., Newton's Method:

- Gauss-Newton algorithm
 - Appoximate Hessian matrix: $\mathbf{H} \approx 2\mathbf{J}^T\mathbf{J}$
 - Parameter update equation: $\mathbf{ heta}_{i+1} = \mathbf{ heta}_i \left(\mathbf{J}_i^T \mathbf{J}_i
 ight)^{\!\!-1} \mathbf{J}_i^T \mathbf{r}_i$
 - Initial guess at θ from linear model
- Levenberg-Marquardt algorithm also applicable

VG10-076-13

- Introduction
- Nonlinear estimation
 - Algorithm formulation
 - Test data
 - Results
- Conclusions
- Next generation algorithm(s)

Test Regions

AIRIS-WAD datacube: 256 x 256 pixels

- 64 x 5 pixels
- Max OD from 0 to 3.0 (base e)
- T(plume) = T(air) = 25.0 deg C

Thermal contrast

- ~0 K along horizon
- Monotonic increase with elev. angle

Test both favorable and unfavorable regions

Simulation: Synthetic R-134a Plumes

VG10-076-15

Effective plume transmission:

Reference spectrum from PNNL library

$$\tau(\lambda) = \exp[-CL \cdot \sigma(\lambda)]$$

- Specify column density
- Beer's Law + instrument resolution function

Data augmentation:

- Partition measurement into estimated signal, noise
- Modify signal w/plume signature
- Add back estimated noise

$$x_p = \hat{x}_0 + [1 - \tau_p] \circ [L_a - \hat{x}_0] + \hat{e}$$

$$\overline{\tau}_p(\lambda_s) = \int \tau(\lambda) \cdot g(\lambda, \lambda_s) \cdot d\lambda$$

Performance Metric: ROC Curves

Binary decision hypotheses

- H₀ ("plume absent") and H₁ ("plume present")
- pdfs for detection statistic: $p(F | H_i)$

- P_d from plume-augmented region
- P_{fa} from rest of scene
- ROC "surface": $P_d(\alpha; F_{th})$

$$P_{fa}(F_{th}) = \int_{F_{th}}^{\infty} p(F \mid H_0) dr$$

$$P_{fa}(F_{th}) = \int_{F_{th}}^{\infty} p(F \mid H_0) d\eta$$
$$P_d(F_{th}) = \int_{F_{th}}^{\infty} p(F \mid H_1) d\eta$$

Agenda

VG10-076-17

- Introduction
- Nonlinear estimation
 - Algorithm formulation
 - Test data
 - Results
- Conclusions

Performance Comparison with Matched Filter

VG10-076-18

- Objective: Compare nonlinear estimation with matched filter estimation
 - **Detection statistics**
 - Column density/optical density
- **Detection with nonlinear estimator: F test**

$$F(\widetilde{x}) = (k-1) \cdot \left[\frac{C(\widetilde{x}, \hat{\theta}_0)}{C(\widetilde{x}, \hat{\theta})} - 1 \right]$$

Analogous metric for clutter-matched filter: Adaptive Cosine Estimator (ACE)

$$D_{MF}(\widetilde{x}) = \frac{\left(s^{T} \widehat{\Sigma}^{-1} [\widetilde{x} - \mu]\right)^{2}}{\left(s^{T} \widehat{\Sigma}^{-1} s^{T})[\widetilde{x} - \mu]^{T} \widehat{\Sigma}^{-1} [\widetilde{x} - \mu]\right)} \qquad F_{MF} = (k-1) \frac{D_{MF}}{1 - D_{MF}}$$

$$F_{MF} = (k-1) \frac{D_{MF}}{1 - D_{MF}}$$

Matched-filter optical density estimate:

$$\hat{\alpha}_{MF} = \frac{s'^T \hat{\Sigma}^{-1} (\tilde{x} - \mu)}{s'^T \hat{\Sigma}^{-1} s'} \cdot \frac{\Delta T_0}{\Delta T_{eff}}$$

Expect near identical results for optically-thin plumes

R-134a Detection: Optically-Thin Plume, OD=0.1

AIRIS-WAD datacube: 256 x 256 pixels

- Plume column density = 82 mg/m² (20 ppmv-m)
- Detection statistics not favorable in either Region
- ACE and Gauss-Newton ROC curves are nearly identical
 - 20 bands in test datacube
 - OD=0 reference spectrum

R-134a Detection: Optically-Thin Plume, OD=0.3

- Plume column density = 246 mg/m² (59 ppmv-m)
- Detection statistics not favorable in Region 1, marginal in Region 2
 - Lower thermal contrast
 - ~2 orders of magnitude reduction in P_{fa} from Region 1 to Region 2
- ACE and Gauss-Newton ROC curves are nearly identical

R-134a Detection: Optically-Thick Plume, OD=1.0

- Plume column density = 822 mg/m² (197 ppmv-m)
- Detection statistics favorable in Region 2, marginal in Region 1
 - >2 orders of magnitude reduction in P_{fa} from Region 1 to Region 2
- Gauss-Newton produces significantly more favorable ROC curves than ACE
 - Factor of ~2 improvement in Region 1 (P_{fa} for fixed P_d)
 - Multiple orders of magnitude improvement in Region 2

R-134a Detection: Optically-Thick Plume, OD=2.0

- Plume column density = 1643 mg/m² (394 ppmv-m)
- Detection statistics favorable in both Regions
- Gauss-Newton produces significantly more favorable ROC curves than ACE
 - >1 order of magnitude improvement in Region 1
 - Multiple orders of magnitude improvement in Region 2

Column Density Estimation

- Increased thermal contrast reduces uncertainty, no effect overall accuracy
- Nonlinear estimation
 - Accurately recovers embedded OD (CL)
 - Systematic deviation at OD>1 is instrument resolution effect
- Matched Filter systematically underestimates CL
- Nonlinear estimator always as good or better than MF

VG10-076-24

- Gauss-Newton algorithm is iterative
- Termination criterion:

$$0 < \left\lceil 1 - \frac{C_{i+1}}{C_i} \right\rceil < \delta_{\max}$$

- Initial guess is Iteration 0
- Typical results:
 - 1-2 iterations for no plume (plume OD=0)
 - 3 iterations to converge for OD~2-3 TEP plume
- Decreasing δ to 0.0001 increase no. iteration but no statistically-significant effect on CL

$$\delta_{\text{max}} = 0.01$$

Summary and Conclusions

VG10-076-25

- Developed nonlinear estimator for plume detection and characterization based on RTE
 - Bayesian formulation
 - Statistical model for IR background
 - Gauss-Newton algorithm to estimate maximum a posteriori (MAP) values
- Signal model developed for non-scattering atmosphere, single layer plume
 - Easily modified to address more complicated atmospheres
- Nonlinear estimation significantly outperforms matched-filter-based with optically-thick plumes
 - "Orders of magnitude" improvement
 - NL estimator and matched filter produce equivalent results for optically-thin plumes
- This work was performed under Contracts from the Defense Threat Reduction Agency (HDTRA01-07-C-0067) and US Army ECBC Aberdeen Proving Ground, MD (W911SR-06-C-0022). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of HDRA or the Army.

Additional Material

Data Processing Chain

- Focus is pixel-level target detection
- New background characterization approach facilitates improved pixel-level detection
- "A chain is only as strong as its weakest link."
 - Provide higher quality input to False Alarm Mitigation block
 - False Alarm Mitigation is separate issue

Technical Approach

VG10-076-28

- Adapt methodology used for atmospheric profile retrieval from space-based sensor data (e.g. AIRS, IASI, MODIS, TES)
 - Parameterize Radiative Transfer Equation (RTE)
 - Apply Estimation Theory to determine max. likelihood parameter values
 - Exploit large data set: utilize ensemble statistics

Rationale:

- Physics-based model for observations
- Statistically-justified constraints
- Strong theoretical foundation (see, e.g., C.D.Rodgers, <u>Inverse Methods for Atmospheric Sounding</u>)

Benefits

- Adaptable framework
- Immediate application to non-scattering atmosphere
- Can modify RTE to address more complicated atmospheres

Linear Models

VG10-076-29

"Structured background"

"Unstructured background"

- "Structured Background"
 - Values of β are unconstrained
 - Generalized Likelihood Ratio Test:

$$D_{GLRT}(x) = \frac{x^T P_B^{\perp} x}{x^T P_{SB}^{\perp} x}$$

$$P_B^{\perp} = I - B(B^T B)^{-1} B^T$$

- Typical implementation: B = eigenvectors of sample covariance matrix
- "Unstructured Background"
 - ν_b is a random vector
 - Adaptive Cosine Estimator:

$$D_{ACE}(x) = \frac{\left[s^{T} \Sigma^{-1} x\right]^{2}}{\left[s^{T} \Sigma^{-1} s^{T} X\right]^{2}}$$

 Survey article: Manolakis, Marden, & Shaw, "Hyperspectral Image Processing for ATR Applications," *Lincoln Lab J.*, v.14 (2003)

Pros and Cons of Linear Approximation

Physical Sciences Inc.

VG10-076-30

- Pro: Matrix multiplication results in fast computation
 - All spectra in ensemble may be processed in parallel
 - Major computational expense is diagonalization of sample covariance matrix
 - AIRIS-WAD: <150 ms to process 65536 twenty element spectra for four target signatures (using 2005 vintage technology)
- Pro: Detection statistics well-understood for Gaussian noise
- Con: Underlying physical assumptions not valid for detection scenarios of interest
 - Mathematical model not matched to physics

$$\tau_p = \exp(-\alpha s) \approx 1 \alpha s$$

Linear approximation to Beer's Law can introduce significant error

Why Gauss-Newton Yields Better Results

Spectrum augmented with OD=3.0 plume

Ratios of rms residuals in plume region, OD=3.0 to OD=0

- Model is matched to the data
- Fit residuals are systematically larger with linear model
 - Result of least-squares minimization
 - Location of largest residuals highly correlated with strongest R-134a absorption features

Adaptive Infrared Imaging Spectroradiometer – Physical Sciences Inc. Wide Area Detector (AIRIS-WAD)

VG10-076-32

Optical:

- 256 x 256 pixels
- 30 deg x 30 deg FOV
- spectral coverage: 7.9 to 11.2 μm at ~0.1 μm resolution $(\sim 1\% \text{ of } \lambda)$

Datacubes:

- 20 wavelengths
- user selectable λ 's, specified prior to mission
- Real-time datacube processing: up to 3 Hz

Detection algorithm history:

- GLRT: Winter 2005-Spring 2006
- ACE: since Spring 2006

Calibration Blackbody

Hyperspectral Background Model

VG10-076-33

- Probabilistic Principal Componentsbased
 - M.E.Tipping & C.M.Bishop, *J.R.Statist.Soc. B* (1999)
- Linear mixing model

$$x = \mu + B\beta$$

 Eigenvalue-based covariance regularization

$$\Sigma \approx \hat{\Sigma} = BB^T + \varepsilon D$$

$$\Sigma = D^{1/2} (U\Lambda U^T) D^{1/2}$$

$$B = D^{1/2} U_m (\Lambda_m - \varepsilon I_m)^{1/2}$$

• Σ = robust estimate of sample covariance: Huber-type M-estimator

Gauss-Newton Algorithm

VG10-076-34

- Follows from Newton's method simplifying approximations
- Good for solving weakly nonlinear equations
- **Hessian matrix:**

$$\begin{split} H_{jk} &= 2 \sum_{q=1}^{m} \left[\frac{\partial r_{q}}{\partial \theta_{j}} \frac{\partial r_{q}}{\partial \theta_{k}} + r_{q} \frac{\partial^{2} r_{q}}{\partial \theta_{j} \partial \theta_{k}} \right] \\ &\approx 2 \sum_{q=1}^{m} \left[\frac{\partial r_{q}}{\partial \theta_{j}} \frac{\partial r_{q}}{\partial \theta_{k}} \right] = 2 J^{T} J \end{split} \qquad \qquad \boxed{J = \frac{\partial r}{\partial \theta}} \qquad \qquad \text{Jacobian} \end{split}$$

• Gradient:
$$\left[\nabla_{\theta} C \right]_{j} = \frac{\partial C}{\partial \theta_{j}} = 2 \sum_{q=1}^{m} \left[r_{q} \frac{\partial r_{q}}{\partial \theta_{j}} \right]$$

$$\nabla_{\theta} C = 2 J^{T} r$$

Parameter update equation:

$$\theta_{i+1} = \theta_i - \left(J_i^T J_i\right)^{-1} J_i^T r_i$$

Initial guess at θ from linear model