Grundlagen der Informationssicherheit WS 2017/2018: Übungsblatt #2

Due on Dienstag, November 21, 2017 Gruppenabgabe

Marco Hildenbrand, Felix Bühler, Lukas Baur

Aufgabe 1

Getting the code (a, b)

Als erstes sendet der Angreifer eine Anfrage zum verschlüsseln von 0 (also E(0,(a,b))). Zurückgegeben wird demnach: $E(x,(a,b)) = E(x,(a,b)) = (0*a) +_n b = b$.

Im Anschluss sendet der Angreifer eine Anfrage zum Verschlüsseln von 1. Es gilt offensichtlich:

```
E(x,(a,b)) = E(1,(a,b)) = (1*a) +_n b = a +_n b Nun kann a leicht bestimmt werden, da E(1,(a,b)) sowie b bekannt ist. (a berechnet sich aus E(1,(a,b)) - b bzw. n + (E(1,(a,b)) - b) falls E(1,(a,b)) - b negativ ist.)
```

Win the game with advantage = 1

Da der Schlüssel (a, b) nun bekannt ist, kann trivialerweise jeder Cifer-Text damit entschlüsselt werden. Dass der advantage demzufolge bei 1 liegt, dürfte offensichtlich sein.

Da der Angreifer den Code nun dechiffrieren kann, kann er das Tupel (z_0, z_1) senden und erhält $z_i =: c$. Er verschlüsselt nun (ggf. eigenständig) z_0 und z_1 . Nun kann er vergleichen ob $E(z_0, (a, b)) = c$ gilt. Falls ja, so war i = 0, sonst i = 1.

Alternativ entschlüsselt er c mit (a, b) und erhält z_0 oder z_1 und entscheidet entsprechend.

Aufgabe 2

Siehe externes Blatt

Aufgabe 3

```
Wir schreiben um:
```

```
a=p_1+r_1 mit 0 \le r1 < n und p_1=k*n, k \in \mathbb{N} und demnach offensichtlich r_1=a \mod n b=p_2+r_2 mit 0 \le r2 < n und p_2=\tilde{k}*n, \tilde{k} \in \mathbb{N} und demnach offensichtlich r_2=b \mod n
```

```
Dann gilt: (a * b) \mod n

= (p_1 + r_1) * (p_2 + r_2) \mod n

= (p_1p_2 + r_1p_2 + p_1r_2 + r_1r_2) \mod n

= p_1p_2 \mod n + r_1p_2 \mod n + p_1r_2 \mod n + r_1r_2 \mod n

= kn\tilde{k}n \mod n + r_1n\tilde{k} \mod n + knr_2 \mod n + r_1r_2 \mod n

= 0 + 0 + 0 + r_1r_2 \mod n

= r_1r_2 \mod n

= (a \mod n)(b \mod n)\mod n \pmod n (nach Definition)
```

Aufgabe 4

Da (R, +, *) ein kommutativer Ring ist, gilt:

$$(R, +, *)$$
 ist assoziativ

in (R, +, *) existiert ein neutrales Element e bzg. der Multiplikation

(R, +, *) ist distributiv

(R, +, *) ist kommutativ bezüglich *.

 R^* ist nun definiert als die Menge aller invertierbaren Elemente aus (R, +, *).

Z7:

- 1. $(x*y)*z = x*(y*z) \forall x, y, z \in R^*$
- 2. $\exists x^{-1} \in R^* : x * x^{-1} = x^{-1} * x = e, \forall x \in R^*$
- 3. $\exists e \in R^* : x * e = e * x = x, \forall x \in R^*.$
- 1. Da $R^* \subseteq R$ ist, gilt (1) offensichtlich immer noch.
- 2. Nach Voraussetzung besteht R^* nur aus invertierbaren Elementen, also existiert auch ein Inverses e in R^* :

Sei x invertierbar in R^* , dann existiert ein $x^{-1} \in R^*$, das dessen Inverse bildet (nach Definition von R^*). Da $e * e^{-1} = e^{-1} * e = 1 \Leftrightarrow e^{-1} = e$. Da $e \in R$ war, und offensichtlich invertierbar ist, so ist es auch $\in R^*$

3. Da (R, +, *) ist kommutativ bezüglich * war, und für jedes $y \in R$ ein neutrales Element existiert, so gilt auch $x * e = e * x = x, \forall x \in R^*$ sofern, dieses e auch in R^* vorhanden ist. Dies ist gemäß (2) erfüllt. Also erfüllt $(R^*, *)$ alle Gruppenaxiome. \square

Aufgabe 5

```
ggT(a,b) := d
ggT(b, a \mod b) := e
\mathbf{Z}: d = e
Hilfssatz:
d|a \wedge d|b
q = \left| \frac{a}{b} \right|
a \mod b = a - qb
also: d|(a-qb) Lemma Linearkombination
also d|(a \mod b)
da d|a \mod b \wedge d|b
\Rightarrow d|e
e = ggT(b, a \mod b) \Rightarrow e|b \mod e|a \mod b
\Rightarrow e | (a \mod b - qb)
\Rightarrow e|a
\Rightarrow e|ggT(a,b) = d
\Rightarrow e|d
\Rightarrow e|d \wedge d|e \Leftrightarrow e = d
```

Aufgabe 6

ExtendedEuclid(32,51):

a'	b'	x_0	y_0	x_1	y_1	q	r
32	51	1	0	0	1	0	
51	32	0	1	1	0	1	
32		1	0	-1	1	1	
19		-1	1	2	-1	1	
13		2	-1	-3	2	2	
6		-3	2	8	-5	6	
1		8	-5	-51	32		

$$1 = 8 * 32 + (-5) * 51$$

$$32^{-1} = 51 \ 8$$

 $32^{-1} * 32 \mod 51 = 8 * 32 \mod 51 = 256 \mod 51 = 1$