Superconductivity

levitov@mit.edu

Spring 2022

Superconductivity. Historical survey I

- Kamerlingh Onnes liquified helium in 1908, discovered SC in 1911
- Meissner and Ochsenfeld effect (1933): magnetic field expelled from SC bulk; complete expulsion from SC of type I, incomplete from type II SC
- London F. and H. (1935) phenomenological theory, explained MO effect
- Ginzburg-Landau theory (1950) symmetry-based approach, complex order parameter; provided basis for London eqs, explained type I and II SC
- Quantized vortices (Abrikosov 1957)

Superconductivity and magnetic field expulsion

Suppose superconductor has a hole drilled in it. Will magnetic field be expelled from it?

Timeline of superconductors and their transition temperatures (from Wikipedia)

Type I and type II superconductivity

Magnetization curves and phase diagrams

Phase diagrams for type I and type II superconductors

Vortex lattice in a type II superconductor

STM image of a vortex lattice in ${
m NbSe_2}$ at $H=1{
m T}$ and $T=1.8{
m K}.$ From H. F. Hess et al., Phys. Rev.Lett. 62, 214 (1989).

Specific heat and energy gap

Left: Behavior of heat capacity (C_v , blue) and resistivity (ρ , green) at the superconducting phase transition;

Right: Dimensionless energy gap $\Delta(T)/\Delta_0$ in niobium, tantalum, and tin. The solid curve is the prediction from BCS theory, derived below.

Superconductivity. Historical survey II

- Bardeen-Cooper-Schrieffer, microscopic theory (1957)
- Gor'kov: QFT-based framework, derived GL theory from BCS theory (1959)
- Josephson effect (1962)
- Magnetic flux quantization Little & Parks (1962)
- Exotic superconductivity in 3He (triplet pairing)
 Osheroff, Richardson & Lee (1971)
- High- T_c superconductivity Bednorz & Muller (1986)
- Superconducting qubits Nakamura, Pashkin & Tsai (1999)
- Majorana states & majorana qubits (stay tuned)

Historical survey: London equations

 Phenomenology = the way of reasoning when direct calculation is impossible.

$$\frac{\partial \vec{j_s}}{\partial t} = \frac{n_s e^2}{m} \vec{E}, \quad \nabla \times \vec{j_s} = -\frac{n_s e^2}{mc} \vec{B}$$

1st eqn follows from $\dot{\vec{v}} + \gamma \vec{v} = \frac{e}{m} \vec{E}$ after suppressing dissipation γ ; 2nd eqn follows from $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$.

Together they yield $\vec{j} = -\frac{n_s e^2}{mc} (\vec{A} - \nabla \chi)$ with some yet-unspecified function $\chi(r)$. Gauge invariance???

• Describes field penetration in SC: $\nabla^2 \vec{B} = \frac{1}{\lambda^2} \vec{B}$

$$ec{B}(x) = ec{B_0}e^{-x/\lambda}, \quad \lambda = \sqrt{mc^2/(4\pi n_s e^2)}$$

London length typical values: $\lambda \lesssim 10$ nm.

This page intentionally left blank

Historical survey: Ginzburg-Landau theory

• free energy functional for $\psi(x)$, complex order parameter (many-body w.f.), in a Mexican hat:

$$F = F_n + \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{1}{2m} |(-i\hbar \nabla - \frac{2e}{c} \vec{A})\psi|^2 + \frac{\vec{B}^2}{8\pi}$$

• spontaneous symmetry breaking in SC state, $\frac{\delta F}{\delta \psi}=0$ at $\vec{B}=0$, $\alpha<0$, yields $\psi=\sqrt{\frac{|\alpha|}{\beta}}e^{i\theta}$

• Phase transition: $\alpha(T)$ changing sign at $T=T_c$ • Derive London eqn from $\frac{\delta F}{\delta \vec{A}} = \frac{1}{c} \vec{j} - \frac{1}{4\pi} \nabla \times \vec{B} = 0$:

$$\vec{j} = \frac{e}{m} \psi^* (-i\hbar \nabla - \frac{2e}{c} \vec{A}) \psi + \text{c.c.} = -\frac{4e^2}{mc} |\psi|^2 (\vec{A} - \frac{\hbar c}{2e} \nabla \theta)$$

- Relation between superflow and gradient of θ the phase of ψ (a charged superfluid)
- Gauge invariance restored! $A(r) \rightarrow A(r) + \nabla \chi(r), \ \theta(r) \rightarrow \theta(r) + \frac{2e}{\hbar c} \chi(r)$

Why do superconductors superconduct?

Supercurrent flowing in a ring, no external B field

$$j(r) = |\psi|^2 \frac{e^* \hbar}{m^*} \nabla \theta, \quad \oint dr \cdot \nabla \theta = 2\pi n, \quad n = \pm 1, \pm 2...$$

- Topological invariant: the winding number. The ring is a circle, the order parameter space $0 \le \theta \le 2\pi$ is also a circle. Discrete winding number means that circulation of current is quantized in discrete units
- When a magnetic field is applied, magnetic flux through the ring is quantized (provided that the ring thickness is greater than λ)
- Superconducting flux quantum $\Phi_0 = \frac{hc}{2a} = 2.07 \times 10^{-7} \text{ gauss cm}^2$
- Vortices in the mixed phasee of type-II SC: quantized vorticity and magnetic flux

This page intentionally left blank

Some applications of GL theory

1) Second-order transition at $T = T_c$. Supefluid density vanishes continuously as T grows: $n_s(T < T_c) = |\psi|^2 \sim T_c - T$, and zero at $T > T_c$.

Zero latent heat. Jump in specific heat.2) Thermodynamic critical field for Meissner effect.Phase transition occurs when condensation energy

equals the energy of the expelled field:

$$V\frac{H_c^2}{8\pi} = F_N - F_S = V\frac{\alpha^2(T)}{2\beta}$$
, $(V = \text{system volume})$
Predicts $H_c = \sqrt{\frac{4\pi}{\beta}}\alpha(T)$ linear near T_c as seen in

experiment. An abrupt (first-order) transition at $H = H_c$.

Later we'll show that $\frac{H_c^2}{8\pi}\approx n_s\frac{\Delta^2}{E_F}$ (at $T\to 0$, from BCS theory)

15 / 72

Some applications of GL theory

3) Type-II superconductors. Continuous transition at $H = H_{c2}$, quantized vortices at $H < H_{c2}$. Superconductivity **survives** in the presence of a magnetic field by letting (some of) the field in.

Find the upper critical field?

Simplification: ψ small at transition, can neglect ψ^4 Minimize F in ψ at a finite B field (\rightarrow pset2):

$$-a(T_c-T)\psi(x)-\frac{\hbar^2}{4m}\left(\nabla+\frac{2ei}{\hbar c}\vec{A}\right)^2\psi(x)=0,\quad \vec{B}=\nabla\times\vec{A}$$

This eqn is identical to Schroedinger equation for Landau levels. Lowest energy states give $a(T_c - T) = \frac{1}{2}\hbar\tilde{\omega} = \frac{\hbar}{2}\frac{eB}{mc}$, giving $H_{c2} = \frac{2mc}{a\hbar}\alpha(T)$.

Nondimensionalize: $H_{c2} = \sqrt{2\kappa}H_c$, where $\kappa = \frac{mc}{e\hbar}\sqrt{\frac{\beta}{2\pi}}$.

Two distinct regimes:

$$\kappa > 1/\sqrt{2}$$
: type II superconductivity, $H_{c2} > H_c$ $\kappa < 1/\sqrt{2}$ type I superconductivity, $H_{c2} < H_c$ At $\kappa = 1/\sqrt{2}$ a sign change in NS surface tension

Josephson effect

Supercurrent in a weak link (see Leggett lecture notes)
Josephson effect(s):

- 1) $I = I_c \sin \Delta \phi$ dissipationless current $I < I_c$ (with zero voltage across the link)
- 2) $\frac{d}{dt}\Delta\phi=\frac{2eV}{\hbar}$ where V is voltage across junction

Understand Josephson effects 1 and 2:

Consider current in a massive SC ring with a weak link: $\vec{j}(r) \sim \nabla \phi(r) - 2e\vec{A}(r)/\hbar$; phase difference across the weak link:

$$\Delta \phi = 2\pi \Phi/\Phi_0, \quad \Phi_0 = h/2e$$

where $\Phi = \oint \vec{A} \cdot dr$ the magnetic flux. Can tune SC phase by a B field! JE2: Consider a time dependent flux $\Phi(t)$. From Faraday's law: $\frac{d}{dt}\Delta\phi = \frac{2e}{h}\frac{d\Phi}{dt} = \frac{2eV}{h}$

JE1: Energy of the ring must be a 2π -periodic function of the flux $\phi = \Phi/\Phi_0$, even under $\Phi \to -\Phi$. In general, $F(\Phi) = \sum_m F_m \cos 2\pi m \phi$. For a weak link the m=1 term dominates: $F(\Phi) = (-l_c \Phi_0/2\pi) \cos \Delta \phi$

Josephson effect

Find current from the work done under time-varying flux (and using JE2 relation):

$$\frac{dF}{dt} = \frac{\partial F}{\partial \Delta \phi} \frac{\Delta \phi}{dt} = IV = I \frac{\Phi_0}{2\pi} \frac{\Delta \phi}{dt}$$

This gives $I(\Delta\phi)^{\Phi_0}_{2\pi}=\frac{\partial F}{\partial \Delta\phi}$. For $F\sim\cos\Delta\phi$ obtain JE1. QED

Josephson junctions

- * control SC phase by magnetic field
- * SQUIDs: magnetometry, superconducting electronics
- * Josephson interference as probe of superconductivity
- * Macroscopic quantum phenomena
- * Qubits

This page intentionally left blank

Microscopic picture preview: the pairing gap $\Delta(p)$, the u_p and v_p amplitudes, the gap angular dependence, the density of states of quasiparticles

Microcopic picture: bound pairs in Cooper's toy model

- Two electrons $(\vec{k}\uparrow,-\vec{k}\downarrow)$ scattering near FS between states above the Fermi level, $\epsilon_k,\epsilon_{k'}>0$, while the states inside FS are Pauli-blocked
- Solve the two-body problem with an attractive interaction:

$$E\psi(r_1,r_2) = \left[-\frac{\hbar^2 \nabla_{r_1}^2}{2m} - \frac{\hbar^2 \nabla_{r_1}^2}{2m} + V(r_1 - r_2) \right] \psi(r_1,r_2)$$

• Change variables to the relative displacement $\vec{r} = \vec{r_1} - \vec{r_2}$ and the center of mass $\vec{R} = \frac{1}{2}(\vec{r_1} + \vec{r_2})$, giving $(m_* = 2m, \ \mu = m/2)$: $E\psi(r,R) = \left[-\frac{\hbar^2\nabla_R^2}{2m_*} - \frac{\hbar^2\nabla_r^2}{2\mu} + V(r)\right]\psi(r,R)$

- Since V does not depend on the center of mass coordinate R, we look for the solution $\psi(r,R)=\psi(r)e^{iKR}$ which gives $\tilde{E}\psi(r)=\left[-\frac{\hbar^2\nabla_r^2}{2\mu}+V(r)\right]\psi(r)$ with $\tilde{E}=E-\hbar^2K^2/2m_*$
- \bullet For a given eigenvalue \tilde{E} the lowest energy E is the one for which K=0
- Depending on the symmetry of the spatial part of the wave-function, even $(\psi(-r) = \psi(r))$ or odd $(\psi(-r) = -\psi(r))$, the spins of the electrons will form either a singlet or a triplet state, respectively, in order to ensure the anti-symmetry of the total wave-function.

Microcopic picture: bound pairs in Cooper's toy model

- Fourier transform: $\psi(r) = \int \frac{d^3k}{(2\pi)^3} \Delta(k) e^{-ikr}$, $r = r_1 r_2$ and demand that $\Delta(k)$ vanishes when $|\vec{k}| < k_F$
- $\psi(r_1 r_2) = \sum_{|\vec{k}| > k_F} \Delta(k) e^{i\vec{k}\vec{r_1}} e^{-i\vec{k}\vec{r_2}} (\alpha_1 \beta_2 \beta_1 \alpha_2)$
- The condition $|\vec{k}| > k_F$ accounts for Pauli blocking of states inside FS
- plugging it in SE gives: $(E-2\epsilon_k)\Delta(k)=\sum_{|\vec{k}'|>k_E}V_{kk'}\Delta(k')$
- ullet Bound state exists for any attractive interaction $V_{kk'}=-V$, no matter how weak
- Selfconsistency eqn: $1 = \sum_{|\vec{k}'| > k_E} V/(2\epsilon_k E)$
- Binding energy is a negative exponential in the coupling strength,

$$E = 2E_F - 2\omega_C e^{-2/N(0)V}$$

This dependence explains the widely varying SC temperature values, and why SC is so ubiquitous

• A more systematic approach is BCS theory that does not single out one pair but treats all electrons on equal footing predicts a similar relation for the gap, $\Delta \sim e^{-1/N(0)V}$

The origin of superconductivity

- Macroscopic coherent state: spontaneous breaking of gauge symmetry; characterized by a phase similar to QM wavefunction, but a globally phase-synchronized macroscopic state
- Cooper pairs, formed due to attractive interaction, are not particle-like objects
- The origin of attraction? Coulomb repulsion hurts SC: strong but short-ranged because of screening, and relatively short-lived (frequencies $\omega \sim E_F$); can be overwhelmed by H_{el-ph}

- Weakly bound "fluffy" pairs: $\xi = \frac{\hbar v_F}{\Delta} > 100 \text{ nm}$ in size (despite short e-e distances $d_{ee} < 1 \text{nm}$)
- Unique applications: nanodevices that behave as elementary but macrosocpic QM systems (Josephson junctions, qubits, etc)

phonon-mediated attraction: long-lived because of retardation at $\omega \sim \theta_D$, \rightarrow larger distances

Review second quantization for fermions

The BCS theory

 Two-body interaction Hamiltonian for pair scattering near FS:

$$H_2 = \frac{1}{2V} \sum_{k,k',r} \sum_{\vec{q},\vec{\sigma'}} U(\vec{q}) c^{\dagger}_{\vec{k}+\vec{q},\sigma} c^{\dagger}_{\vec{k'}-\vec{q},\sigma'} c_{\vec{k'},\sigma'} c_{\vec{k},\sigma}$$

• Creation and annihilation operators for Cooper pairs. One pair per each electron momentum \vec{k} :

$$b_k^{\dagger} = c_{\vec{k},\uparrow}^{\dagger} c_{-\vec{k},\downarrow}^{\dagger}, \quad b_k = c_{-\vec{k},\downarrow} c_{\vec{k},\uparrow}$$
 (1)

- Apprx 1: contact interaction U(q) = U < 0
- Apprx 2: concentrate on pairs with $\vec{k'} = -\vec{k}$, $\sigma = -\sigma'$ (throw away other terms, justify later)
- This yields the BCS interaction Hamiltonian

$$H_2^{BCS} = \frac{U}{2V} \sum_{k,q} \sum_{\sigma} c^{\dagger}_{\vec{k}+\vec{q},\sigma} c^{\dagger}_{-\vec{k}-\vec{q},-\sigma} c_{-\vec{k},-\sigma} c_{\vec{k},\sigma}$$

Cooper's toy model: one pair above the Fermi level

- Filled Fermi sea: $|FS\rangle=\prod_{|\vec{k'}|< k_F}c^\dagger_{\vec{k'},\uparrow}c^\dagger_{\vec{k'},\downarrow}|0\rangle$
- Add one pair: $|\psi_{pair}\rangle=\sum_{|\vec{k}|>k_F}g_kc_{\vec{k},\uparrow}^\dagger c_{-\vec{k},\downarrow}^\dagger|FS\rangle$
- $(H_1 + H_2^{BCS})|\psi\rangle = E|\psi\rangle$
- \bullet Apply ${\it H_{2}^{BCS}}$ to $|\psi\rangle,$ but leave $|{\it FS}\rangle$ intact
- $\bullet (E 2\epsilon_k)g_{\vec{k}} = U \sum_{|\vec{k}'| > k_F} g_{\vec{k}'}$
- Selfconsistency eqn: $1 = \sum_{|\vec{k'}| > k_F} \frac{U}{E 2\epsilon_{\vec{k}}}$
- Seek a bound state with energy $E=2E_F-\Delta$
- Approximate the sum over states as $\sum_{|k'|>k_F}...=N(0)\int_0^W d\xi...$, where W is the band of energies where pairing happens, and we defined $\xi=\epsilon_k-E_F$. Integrating over ξ gives $1=\frac{1}{2}N(0)|U|\ln\frac{2W+\Delta}{\Delta}$
- Solution for the one-pair bound state energy $\Delta = 2We^{-2/N(0)|U|}$ (good so long as $\Delta \ll W$)

Pairing field and SC order

- 1-pair bound state → many-body state?
- Can factor H_{BCS} in terms of pair operators (1) as

$$H_{BCS} = rac{U}{V} \left(\sum_{ec{k'}} b_{ec{k'}}^\dagger
ight) \left(\sum_{ec{k}} b_{ec{k}}
ight) \equiv rac{V}{U} \hat{\Delta}^\dagger \hat{\Delta}$$

- with $\hat{\Delta} = \frac{U}{V} \sum_{\vec{k}} b_{\vec{k}}$, $\hat{\Delta}^\dagger = \frac{U}{V} \sum_{\vec{k}} b_{\vec{k}}^\dagger$
- Particle nonconserving, analogous to SHO ladder operators b^{\dagger} , b
- ullet Zero for the Fermi sea $|g
 angle=\prod_{|ec{k}|< k_F,\sigma}c_{k,\sigma}^\dagger|0
 angle$

$$\langle g|\hat{\Delta}^{\dagger}|g\rangle = \langle g|\hat{\Delta}|g\rangle = 0$$

- ullet Create a paired state: $\Delta = \langle g_s | \hat{\Delta} | g_s
 angle
 eq 0$
- System can gain energy by going to the paired state since U < 0, $\langle g_s | H_{BCS} | g_s \rangle < 0$

BCS trial variational state

- $\psi_{BCS} = \prod_{\vec{k}} (u_k + v_k c_{-\vec{k},\downarrow}^{\dagger} c_{\vec{k},\uparrow}^{\dagger}) |0\rangle$ (intuition: a single pair and no-pair superposition, fermionic coherent states analogous to SHO bosonic coherent states $|\lambda\rangle = e^{-|\lambda|^2/4} \sum_{n=0}^{\infty} \frac{\lambda^n}{\sqrt{n!}} |n\rangle$)
- Arrive at a variational problem $E = \langle \psi_{BCS} | H_1 + H_2^{BCS} | \psi_{BCS} \rangle \rightarrow min$ constrained by the normalization condition $|u_k|^2 + |v_k|^2 = 1$
- $E = \sum_k 2\epsilon_k |v_k|^2 + \frac{U}{V} \left(\sum_k u_k \overline{v}_k \right) \left(\sum_{k'} \overline{u}_{k'} v_{k'} \right)$
- $\delta E = \sum_k 4\epsilon_k v_k \delta v_k + 2\Delta (u_k \delta v_k + v_k \delta u_k) = 0$ and $u_k \delta u_k + v_k \delta v_k = 0$, where $\Delta = \frac{U}{V} \sum_k u_k v_k$. Without loss of generality we suppressed phases, treating u_k , v_k and Δ as real variables (will generalize later).
- This gives $\frac{\delta E}{\delta v_k} = 4\epsilon_k v_k + 2\Delta(u_k v_k^2/u_k) = 0$
- Solved by $u_k^2, v_k^2 = \frac{1}{2}(1 \pm \frac{\epsilon_k}{\sqrt{\epsilon_k^2 + \Delta^2}})$

The BCS selfconsistency equation

• Energy change per single pair-nopair box:

$$\delta E_k = 2\epsilon_k v_k^2 + 2u_k v_k \Delta = \epsilon_k - \sqrt{\epsilon_k^2 + \Delta^2} < 0$$
(we used $v_k^2 = \frac{1}{2} (1 - \frac{\epsilon_k}{\sqrt{\epsilon_k^2 + \Delta^2}})$ and $u_k v_k = -\frac{1}{2} \frac{\Delta}{\sqrt{\epsilon_k^2 + \Delta^2}})$

- Negative $\delta E_k < 0$ means energy is gained through forming a paired state
- The order parameter

$$\Delta = \frac{U}{V} \sum_{k} u_{k} v_{k} = \frac{U}{V} \sum_{k} (-\frac{1}{2}) \frac{\Delta}{\sqrt{\epsilon_{k}^{2} + \Delta^{2}}}$$

• The selconsistency equation for Δ :

$$\Delta = \frac{|U|}{2V} \sum_{k} \frac{\Delta}{\sqrt{\epsilon_{k}^{2} + \Delta^{2}}} = \frac{|U|}{2} \int \frac{d^{3}k}{(2\pi)^{3}} \frac{\Delta}{\sqrt{\epsilon_{k}^{2} + \Delta^{2}}}$$

This equation has a nonzero solution (next page)

• A variational solution so far. Later ψ_{BCS} will be found to be an exact ground state.

Solving the selfconsistency equation

- Integrate over energies near the Fermi level: $\int \frac{d^3k}{(2\pi)^3}... = \int \nu(\epsilon) d\epsilon... \approx \nu_0 \int d\epsilon...$
- It is convenient to explicitly account for the energy band around Fermi level where pairing happens by replacing U with $U\chi_{\epsilon_k}\chi_{\epsilon_{k'}}$, where $\chi_{\epsilon}=1$ for $-W<\epsilon< W$, and zero elsewhere
- $\Delta = \frac{|U|\nu_0}{2} \Delta \int_{-W}^{W} d\epsilon \frac{\Delta}{\sqrt{\epsilon^2 + \Delta^2}} = |U|\nu_0 \Delta \sinh^{-1} \frac{W}{\Delta}$
- ullet At weak coupling we have $\Delta \ll W$, giving

$$\Delta = 2We^{-1/|U|\nu_0} \tag{2}$$

• The bandwidth W value depends on the pairing mechanism: $W \sim \theta_D$ for phonon-mediated attraction, $W \sim \epsilon_F$ for contact interaction (e.g. in cold atoms), etc.

Discussion

- SC persists at weak interaction (unlike, e.g. Stoner instability)
- The exponential dependence (2) explains why 1)
 SC is widespread; 2) occurs at low T
- Ga 1.1 K, Al 1.2 K, In 3.4 K, Sn 3.7 K, Hg 4.2 K, Pb 7.2 K, Nb 9.3 K
- La-Ba-Cu-oxide 17.9 K, Y-Ba-Cu-oxide 92 K, Ti-Ba-Cu-oxide 125 K
- BCS bandgap 2Δ at the Fermi level. Testable!
- Gap vs. critical temperature $2\Delta_{T=0} \approx 3.52 k_B T_c$
- SC correlation length (the Cooper pair size)

$$\xi = \frac{\hbar v_F}{\Lambda} \sim 100 - 1000 \, \mathrm{nm}$$

Superconductivity: quasiparticles and phase transition

• We have argued that fermion attraction gives rise to a very simple paired ground state – a direct product of pair/no-pair superposition states for all opposite momenta k and -k:

$$\Psi_{BCS} = \prod_{\vec{k}} (u_k + v_k c_{-k\downarrow}^{\dagger} c_{k\uparrow}^{\dagger}) |0\rangle.$$

- Next, we want to understand excitations in this state and describe the phase transition. We'll introduce an elegant and intuitive approach – a Bogoliubov transformation – to show that the excitations in the BCS state are superpositions of particles and holes. These quasiparticles are fermions with a gap in the energy spectrum. The energy gap is directly related to, and is in fact equal, the BCS order parameter Δ. Quasiparticle notes
- After introducing the quasiparticles we will discuss superconductivity at T>0. We will describe the pair-breaking effect of a finite temperature in terms of thermally excited quasiparticles. This will lead to a finite-temperature gap equation that predicts the critical temperature T_c at which superconductivity disappears.
- Describe thermodynamics of superconductors: the universal relation between T_c and the gap, the character of the phase transition and heat capacity at $T < T_c$. We will compare the behavior for the BCS and non-BCS (unconventional) superconductivity and identify the differences that help to experimentally determine the superconductivity type. Phase transition notes

The mean field approach

- We'll start with an example from spin physics (ferromagnetic order).
 The method, however, is completely general and applicable for ordering of any kind.
- Hamiltonian for Ising spin variables on a lattice

$$H = -rac{1}{2} \sum_{ec{x}
eq ec{x}'} J(ec{x} - ec{x}') s_{ec{x}} s_{ec{x}'}, \quad s_{ec{x}} = \pm 1$$

Describe the phase transition?

- The Curie-Weiss ("molecular field") method. Start with a single spin in an external field H=-hs. Ensemble-averaged magnetization is found as $m=\langle s\rangle=\frac{e^{\beta h}-e^{-\beta h}}{e^{\beta h}+e^{-\beta h}}=\tanh\beta h$.
- For many spins, consider one spin $(s_{\vec{x}})$ in an effective field of all other spins, $h_{\vec{x}} = \sum_{\vec{x}'} J(\vec{x} \vec{x}') s_{\vec{x}}$. Replacing spins by their average values, have

$$h = Um$$
, $m = \tanh \beta h$

where $U = \sum_{\vec{x'}} J(\vec{x} - \vec{x'})$. Ensemble average in partition function.

- The equation $m=\tanh \beta Um$ has zero solution at $\beta U<1$ and nonzero solutions at $\beta U>1$. Find critical temperature $T_c=1/U$.
- Validity: small fluctuations, large number of fluctuating spins coupled to each individual spin.

The mean field approach

- Describe symmetry breaking starting from *H*?
- The mean field method
- Introduce the mean field: $s_{\vec{x}} = \delta s_{\vec{x}} + m$, $\delta s_{\vec{x}} = s_{\vec{x}} m$

$$H = -\frac{1}{2} \sum_{\vec{x} \neq \vec{x}'} J(\vec{x} - \vec{x}') (s_{\vec{x}} - m + m) (s_{\vec{x}'} - m + m)$$

$$= -\frac{1}{2} \sum_{\vec{x} \neq \vec{x}'} J(\vec{x} - \vec{x}') (\delta s_{\vec{x}} + m) (\delta s_{\vec{x}'} + m)$$

$$= -\frac{1}{2} \sum_{\vec{x} \neq \vec{x}'} J(\vec{x} - \vec{x}') \left[\delta s_{\vec{x}} \delta s_{\vec{x}'} + \delta s_{\vec{x}} m + \delta s_{\vec{x}'} m + m^2 \right]$$

$$\approx -\frac{1}{2} \sum_{\vec{x} \neq \vec{x}'} J(\vec{x} - \vec{x}') \left[\delta s_{\vec{x}} m + \delta s_{\vec{x}'} m + m^2 \right] = \sum_{\vec{x} \neq \vec{x}'} J(\vec{x} - \vec{x}') s_{\vec{x}} m - \frac{1}{2} m^2$$

Each spin seeing an effective field $h=\mathit{Um}$ that depends on other spins.

- Find the energy $H(m) = \sum_{x} -Um \tanh \beta Um + \frac{1}{2} Um^2$
- A double well potential that describes symmetry breaking at $T < T_c$. A state with spontaneously broken Z_2 symmetry!

The mean field approach

- The mean field approach is valid when the number Z of spins interacting with each individual spin is large.
- An Ising magnet in a high-dimensional cubic lattice $(Z = 2d \gg 1)$
- Or, in d=3 with a long-range coupling $J(\vec{x}-\vec{x}')\sim \exp(-|\vec{x}-\vec{x}'|/\xi),\; \xi\gg a$ the lattice constant
- How does it apply to superconductivity?
- The superconducting coherence length $\xi = \hbar v_F/\Delta$ (the Cooper pair radius) defines the effective range for pairing interaction
- For the mean field approach to work need $\xi \gg \lambda_F$ (typical distance between electrons in a metal)
- This is (almost) always true! Exception: the strong-coupling regime when Cooper pairs are strongy bound and Bose-condense into a superconducting state (in which case, $T_c = T_{BEC}$)
- The BCS theory (within mean field) and the Ginzburg-Landau theory are highly accurate for most superconductors

BCS state as a "magnet" – broken U(1) symmetry

- This BCS interaction Hamiltonian $H = H_1^{kin} + H_2^{el-el}$
- The two-body interaction projected on pair states

$$H_2^{BCS} = \frac{\textit{U}}{2\textit{V}} \sum_{k,q} \sum_{\sigma} c^{\dagger}_{\vec{k}+\vec{q},\sigma} c^{\dagger}_{-\vec{k}-\vec{q},-\sigma} c_{-\vec{k},-\sigma} c_{\vec{k},\sigma}$$

- Can factor H_2^{BCS} in terms of pair operators $b_k = c_{-k\downarrow}c_{k\uparrow}$, $b_k^{\dagger} = c_{k\uparrow}^{\dagger}c_{-k\downarrow}^{\dagger}$ as $H_2^{BCS} = \frac{U}{V}\left(\sum_{\vec{k'}}b_{\vec{k'}}^{\dagger}\right)\left(\sum_{\vec{k}}b_{\vec{k}}\right)$
- Identify b_k with spin-1/2 raising and lowering operators. An XY spin model with an external B field $\parallel z$ (the B field varying vs. p)
- A spin-spin coupling of an infinite range (in p space)
- In this case the mean field approach is exact!

36 / 72

This page intentionally left blank

Exotic pairing: the gap function $\Delta(p)$, the u_p and v_p amplitudes, the gap angular dependence, the density of states of quasiparticles

This page intentionally left blank

Quantum Many-Body Problem

 Quantum mechanics of identical, indistinguishable particles. Exchange symmetry:

$$\Psi(..., \vec{r_i}, ..., \vec{r_j}, ...) = +\Psi(..., \vec{r_j}, ..., \vec{r_i}, ...)$$
 (bosons)
$$\Psi(..., \vec{r_i}, ..., \vec{r_j}, ...) = -\Psi(..., \vec{r_j}, ..., \vec{r_i}, ...)$$
 (fermions)

- Describe $N \gg 1$ (MANY) identical particles?
- First-quantized w.f. a Slater determinant (F), or a permanent (B). Huge = N! number of terms, unmanageable
- Instead, construct w.f. by filling up each single-particle state with a certain number of identical particles (due to Dirac, Fock, Jordan)
- Such as photons, which can be viewed as excitations of EM modes

Many-body QM in Fock space

Hilbert space for identical particles (B or F)

$$F = F_0 \oplus F_1 \oplus F_2 \oplus ... = \bigoplus_{n=0}^{\infty} F_n, \quad F_n = SV^{\otimes n}$$

 V_0 vacuum, V_1 one-particle state, V_2 two-particle state (symmetric for B, antisymmetric for F), etc Hamiltonian in F_N

$$H = -\sum_{i=1...N} -\frac{\hbar^2}{2m} \nabla_i^2 + V(\vec{r}_1...\vec{r}_N)$$

Eigenfunctions $H\psi_n(\vec{r_1}...\vec{r_N}) = E_n\psi_n(\vec{r_1}...\vec{r_N})$ symm for B, antisymm for F

Occupation number representation: bosons

Basis states: symmetrized products of complete 1-particle ONB states (position eigenstates, momentum eigenstates, noninteracting H eigenstates, etc)

$$\psi_B(\vec{x}_1, \vec{x}_2...\vec{x}_N) = c \sum_P \phi_1(P\vec{x}_1)\phi_2(P\vec{x}_2)...\phi_N(P\vec{x}_N)$$

 ϕ_q occurs n_q times $(n_q$ particles in state ϕ_q), q=1...Q N! permutations, $c=(N!/(n_1!...n_Q!))^{-1/2}$ Occupation number representation:

$$\psi_B = |n_1, n_2...n_Q...\rangle, \quad n_q = 0, \ q > Q$$

Creation and annihilation operators

$$\begin{array}{l} b_q^\dagger |n_1,n_2...n_q...n_Q...\rangle = \sqrt{n_q+1} |n_1,n_2...n_q+1...n_Q...\rangle \\ b_q |n_1,n_2...n_q...n_Q...\rangle = \sqrt{n_q} |n_1,n_2...n_q-1...n_Q...\rangle \\ \\ \text{prefactors } \sqrt{n_q+1} \text{ and } \sqrt{n_q} \text{ motivated by the ladder operators for simple harmonic oscillator.} \\ \\ \text{These operators obey} \end{array}$$

$$[b_r,b_s^{\dagger}]=\delta_{rs},\quad [b_r,b_s]=[b_r^{\dagger},b_s^{\dagger}]=0$$

Consistent with field quanta (e.g. photons or phonons) defined as excitations in the normal-mode oscillators

Occupation number representation: fermions

Antisymmetrized states, the Slater determinant

$$\psi_{F}(\vec{x}_{1}, \vec{x}_{2}...\vec{x}_{N}) = c \sum_{P} (-1)^{P} \phi_{1}(P\vec{x}_{1}) \phi_{2}(P\vec{x}_{2})...\phi_{N}(P\vec{x}_{N})$$

all ϕ_i different (equiv Pauli exclusion)

N! permutations, $c = (N!)^{-1/2}$

Occupation number representation:

$$\psi_F = |n_1, n_2, n_3...\rangle, \quad n_i = \begin{cases} 1 \text{ for } \phi_1...\phi_N \\ 0 \text{ else} \end{cases}$$

Note: order matters, affects the $(-1)^P$ sign

Fermion creation & annihilation operators

One particle: $|1\rangle$ a 1-particle state, $|0\rangle$ vacuum, or no-particle state

$$|a^\dagger|0
angle=|1
angle$$
, $|a^\dagger|1
angle=0$, $|a|1
angle=|0
angle$, $|a|0
angle=0$

©: $a^{\dagger}|1\rangle = 0$ enforces Pauli exclusion principle; ©: $|0\rangle$ and 0 not the same! (vacuum is a physical

state rather than nothing)

Algebra: $[a, a^{\dagger}]_{+} = 1$, $[a, a]_{+} = [a^{\dagger}, a^{\dagger}]_{+} = 0$

Many particles:

ordering condition

$$egin{aligned} a_q | n_1, n_2 ... n_q ...
angle &= \left\{ egin{aligned} (-1)^S | n_1, n_2 ... 0 ...
angle, & n_q = 1 \ 0, & n_q = 0 \end{aligned}
ight. \ a_q^\dagger | n_1, n_2 ... n_q ...
angle &= \left\{ egin{aligned} (0, & n_q = 1 \ (-1)^S | n_1, n_2 ... 1 ...
angle, & n_q = 0 \end{aligned}
ight. \ ext{with } S = n_1 + n_2 + ... + n_{q-1} ext{ to keep track of the} \end{aligned}$$

Full algebra:

$$[a_r,a_s^\dagger]_+=\delta_{rs},\quad [a_r,a_s]_+=[a_r^\dagger,a_s^\dagger]_+=0$$

②: $a_1^{\dagger}a_2^{\dagger}|0,0,...\rangle = -a_2^{\dagger}a_1^{\dagger}|0,0,...\rangle$ consistent with Slater determinant definition Particle number operators:

$$n_q = \left\{ egin{align*}{ll} b_q^\dagger b_q, & \textit{Bosons}, & n_q = 0, 1, 2... \ a_q^\dagger a_q, & \textit{Fermions}, & n_q = 0, 1 \end{array}
ight.$$

- $[n_s, n_r]_- = 0$ simultaneously diagonalizable
- ullet For a general state $\langle \psi | n_q | \psi
 angle$ may be nonintegral

Summing up:

- Complicated many-particle wavefunction
- A more simple occupation number representation
- Algebra for $a,\ a^\dagger$ operators, states $a_1^\dagger...a_s^\dagger|0\rangle$
- Few-body operators $T = \sum_{i} -\frac{1}{2m} \nabla_{i}^{2}$, $V = \sum_{i < j} u(x_{i} x_{j})$. Second-quantized?
- Basis dependent? Actually, basis independent (discuss later)

Physical operators

- One-body operators $O_1 = \sum_i f(x_i)$. Second-quantized form $O_1 = \sum_{rs} \langle \phi_r | f | \phi_s \rangle c_r^{\dagger} c_s$ with matrix elements $\langle \phi_r | f | \phi_s \rangle = \int d^3x \phi_r^*(x) f(x) \phi_s(x)$ c_r repres a_r (fermions) or b_r (bosons)
- Two-body operators $O_2 = \sum_{i < j} f(x_i, x_j)$. Second quantized form $O_2 = \sum_{pqrs} f_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_s$ with matrix elements $f_{pqrs} = \int d^3x d^3x' \phi_p^*(x) \phi_q^*(x') f(x, x') \phi_r(x') \phi_s(x)$ •: $\phi_s(x)$ are mutually orthogonal single-particle orbitals of any kind, e.g. plane waves, localized states, etc.
 - **:** the ordering matters for fermions, does not matter for bosons

Intuition for second-quantized operators

Consider a general two-body operator $O_2 = \sum_{i < j} f(x_i, x_j) = \sum_{pqrs} f_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_s$. This is a sum of terms describing transitions from states r, s to states p, q with transition amplitudes f_{pqrs} .

Transition amplitude is a matrix element of the two-body interaction $f_{pqrs} = \int d^3x d^3x' \phi_p^*(x) \phi_q^*(x') f(x,x') \phi_r(x') \phi_s(x)$. As we will see shortly, for plane-wave states this yields the actual two-body scattering amplitudes.

One-particle case $O_1 = \sum_i f(x_i) = \sum_{rs} \langle \phi_r | f | \phi_s \rangle c_r^\dagger c_s$

Prove it for fermions (more difficult). Consider

$$O_1|\Psi_N\rangle = \left(\sum_i f(x_i)\right) A\left[\phi_1(x_1)...\phi_N(x_N)\right]$$

- move $\sum_i f(x_i)$ inside antisymmetrization A
- Use completeness $f(x_i)\phi_s(x_i) = \sum_r \langle \phi_r | f | \phi_s \rangle \phi_r(x_i)$
- Obtain a sum, with weights $\langle \phi_r | f | \phi_s \rangle$, of antisymm products in which $\phi_s(x_i) \to \phi_r(x_i)$
- But this is the content of 2nd quantization, $c_r^{\dagger}c_s$ gives just that. QED

Prove for two-particle operators, analogously

$$O_2 = \sum_{i < j} f(x_i, x_j) = \sum_{pqrs} f_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_s$$

Consider

$$O_2|\Psi_N\rangle = \left(\sum_{i< j} f(x_i, x_j)\right) A\left[\phi_1(x_1)...\phi_N(x_N)\right]$$

- move $\sum_{i < j} f(x_i, x_j)$ inside A
- Use completeness to replace $\phi_r(x_i)\phi_s(x_j)$ with $\sum_{p,q} f_{pqrs}\phi_p(x_i)\phi_q(x_j)$
- The correct ordering of the operators arises because

$$\left(c_{p}^{\dagger}c_{q}^{\dagger}c_{s}c_{r}\right)c_{r}^{\dagger}c_{s}^{\dagger}|0
angle = c_{p}^{\dagger}c_{q}^{\dagger}|0
angle$$

agrees with (anti)commutation rules QED

Example: interacting particles in a box $V = L \times L \times L$

The Hamiltonian for identical particles with a two-body interaction:

$$H = K + P = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} U(\vec{r_i} - \vec{r_j}), \quad i, j = 1...N$$

Use plane-wave states as single-particle orbitals, $\phi_k(\vec{r}) = \frac{1}{\sqrt{V}} e^{i\vec{k}\vec{r}}, \ \vec{k} = \frac{2\pi}{L}(n_1, n_2, n_3),$

$$n_i = 0, \pm 1, \pm 2...$$

Compute matrix elements for kinetic energy:

$$f_{kk'} = \langle \vec{k'} | \frac{\vec{p}^2}{2m} | \vec{k} \rangle = \frac{1}{V} \int d^3r \frac{\hbar^2 \vec{k}^2}{2m} e^{i(\vec{k'} - \vec{k})\vec{r}} = \frac{\hbar^2 \vec{k}^2}{2m} \delta_{\vec{k'}, \vec{k}}.$$

Here we used the identity
$$\int d^3r e^{i(\vec{k'}-\vec{k})\vec{r}} = V \delta_{\vec{k'},\vec{k}}.$$

52 / 72

Next, we transform the interaction term. Writing the matrix elements $f_{\tilde{k}\tilde{k}'k'k} = \langle \vec{k} \, \vec{k}' | U(\vec{r} - \vec{r}') | \vec{k}'\vec{k} \rangle = \frac{1}{V^2} \int d^3r d^3r' \, U(\vec{r} - \vec{r}') e^{i(\vec{k} - \vec{k})\vec{r} + i(\vec{k}' - \vec{k}')\vec{r}'}$, and evaluating integrals in position space gives

$$f_{ ilde{k} ilde{k}'k'k} = rac{1}{V}\sum_{ec{q}}U(ec{q})\delta_{ ilde{k}',ec{k}'+ec{q}}\delta_{ ilde{k},ec{k}-ec{q}}.$$

Here we introduced momentum transfer \vec{q} through Fourier transform $U(\vec{r}-\vec{r}')=\int \frac{d^3q}{(2\pi)^3}U(\vec{q})e^{i\vec{q}(\vec{r}-\vec{r}')}$ and used the identity in Eq.3 to integrate over \vec{r} , \vec{r}' .

E.g. short-range interaction Fourier transformes as: $\lambda\delta(\vec{r}-\vec{r}')=\lambda\int\frac{d^3q}{(2\pi)^3}e^{i\vec{q}(\vec{r}-\vec{r}')}$, so that $U(\vec{q})=\lambda$; Likewise, Coulomb interaction:

Likewise, Coulomb interaction:
$$\frac{e^2}{|\vec{r}-\vec{r}'|} = \int \frac{d^3q}{(2\pi)^3} \frac{4\pi e^2}{|\vec{q}|^2} e^{i\vec{q}(\vec{r}-\vec{r}')}$$
, so $U(\vec{q}') = \frac{4\pi e^2}{|\vec{q}|^2}$;

The total Hamiltonian then takes the form

$$H = \sum_{k} \epsilon_k c_k^{\dagger} c_k + \frac{1}{2V} \sum_{k,k',q} U(\vec{q}) c_{\vec{k}'+\vec{q}}^{\dagger} c_{\vec{k}-\vec{q}}^{\dagger} c_{\vec{k}} c_{\vec{k}'}$$

where $\epsilon_k = \frac{\hbar^2 \vec{k}^2}{2m}$ and the factor 1/2 is introduced to avoid double counting in pairwise interaction.

©: Can generalize to particles with spin by adding spin labels to the states as well as creation and annihilation operators.

Feynman diagrams

As discussed earlier, we can interpret the interaction term as a transition amplitude for scattering from \vec{k} , $\vec{k'}$ to $\vec{k} - \vec{q}$, $\vec{k'} + \vec{q}$ with momentum transfer \vec{q} and scattering amplitude $U(\vec{q})$. The corresponding Feynman diagram looks like so:

This page intentionally left blank

Diagonalizing quadratic Hamiltonians

Physically important systems (superconductors, superfluids, ferromagnets, antiferromagnets) all can be described by a quadratic H (approximately). E.g. $H = \sum_{ij} H_{ij} c_i^{\dagger} c_j$. Here H_{ij} - hermitian, hence, can be diagonalized by a unitary transformation. Then

$$c_{j}=\sum_{l}U_{jl}lpha_{l},\quad c_{j}^{\dagger}=\sum_{l}lpha_{l}^{\dagger}\left(U^{\dagger}
ight)_{lj}$$

Use transformed c, c^{\dagger} operators to transform H:

$$H = \sum \alpha_I^{\dagger} (U^{\dagger} H U)_{Im} \alpha_m = \sum \varepsilon_m \alpha_m^{\dagger} \alpha_m = \sum \varepsilon_m n_m.$$

Note: Operator algebra is basis independent:

$$[c_i, c_j^{\dagger}]_{\pm} = \delta_{ij}, \ [c_i, c_j]_{\pm} = [c_i^{\dagger}, c_j^{\dagger}]_{\pm} = 0$$

 $UB = B, \ UF = F \ (\text{statistics unchanged!})$

For fermion operators consider the Hamiltonian

$$H = \epsilon (c_1^{\dagger} c_1 + c_2^{\dagger} c_2) + \lambda (c_1^{\dagger} c_2^{\dagger} + c_2 c_1),$$

which arises in the BCS theory of superconductivity. Note: λ must be real for H to be Hermitian (more generally, with complex λ the second term of H would read $\lambda c_1^{\dagger} c_2^{\dagger} + \lambda^* c_2 c_1$). Note also the opposite ordering of labels in the terms $c_1^{\dagger} c_2^{\dagger}$ and $c_2 c_1$, which is also a requirement of Hermiticity.

The fermionic Bogoliubov transformation is

$$c_1^{\dagger}=ud_1^{\dagger}+vd_2,\quad c_2^{\dagger}=ud_2^{\dagger}-vd_1,$$

where u and v are c-numbers, which we can in fact take to be real, because we have restricted ourselves to real λ .

Note: this can be brought to the particle-conserving form by interchanging c_2 and c_2^{\dagger} (a particle-hole transformation)

The transformation $c_1^{\dagger} = u d_1^{\dagger} + v d_2$, $c_2^{\dagger} = u d_2^{\dagger} - v d_1$, is useful only if fermionic anticommutation relations apply to both sets of operators. Let us suppose they apply to the operators d and d^{\dagger} , and check the properties of the operators c and c^{\dagger} .

The coefficients of the transformation have been chosen to ensure that $[c_1^{\dagger}, c_2^{\dagger}]_+ = 0$, while

$$[c_1^{\dagger}, c_1]_+ = u^2[d_1^{\dagger}, d_1]_+ + v^2[d_2^{\dagger}, d_2]_+$$

and so we must require $u^2 + v^2 = 1$. The transformation matrix $U = \begin{pmatrix} u & v \\ -v & u \end{pmatrix}$ is therefore unitary as expected. This suggests the parameterization $u = \cos \frac{\theta}{2}$, $v = \sin \frac{\theta}{2}$.

Note: we use notation identical to that in the BCS problem. This is intentional. As we will see, the angle θ is nothing but the polar angle introduced in the pseudospin-1/2 picture, $\cos\theta=\xi/E,\,E=\sqrt{\xi^2+\Delta^2}.$ The remaining step is to substitute in H for c^\dagger and c in terms of d^\dagger and d, and pick θ so that terms in $d_1^\dagger d_2^\dagger + d_2 d_1$ have vanishing coefficient.

The calculation is clearest when it is set out using matrix notation:

$$H = \left(\begin{array}{cc} c_1^\dagger & c_2 \end{array} \right) \left(\begin{array}{cc} \epsilon & \lambda \\ \lambda & -\epsilon \end{array} \right) \left(\begin{array}{c} c_1 \\ c_2^\dagger \end{array} \right) + \epsilon \hat{1}$$

where we have used the anticommutator to make substitutions of the type $c^\dagger c=1-cc^\dagger$. Next we write the Bogoliubov transformation

$$\left(egin{array}{c} c_1 \ c_2^\dagger \end{array}
ight) = \left(egin{array}{c} \cos rac{ heta}{2} & \sin rac{ heta}{2} \ -\sin rac{ heta}{2} & \cos rac{ heta}{2} \end{array}
ight) \left(egin{array}{c} d_1 \ d_2^\dagger \end{array}
ight)$$

We pick angle θ value so that

$$\left(\begin{array}{cc} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{array} \right) \left(\begin{array}{cc} \epsilon & \lambda \\ \lambda & -\epsilon \end{array} \right) \left(\begin{array}{cc} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{array} \right) = \left(\begin{array}{cc} \tilde{\epsilon} & 0 \\ 0 & -\tilde{\epsilon} \end{array} \right)$$

where $\tilde{\epsilon} = \sqrt{\epsilon^2 + \lambda^2}$. See next page for details.

To achieve this one can either directly multiply 2×2 matrices or use (pseudo)spin Pauli matrices and spin-1/2 rotation as

$$e^{i\theta\sigma_2/2}(\lambda\sigma_1+\epsilon\sigma_3)e^{-i\theta\sigma_2/2}=\lambda'\sigma_1+\epsilon'\sigma_3$$

with $\lambda' = \lambda \cos \theta - \epsilon \sin \theta$, $\epsilon' = \epsilon \cos \theta + \lambda \sin \theta$. Choosing θ such that λ' vanishes we obtain

$$H = \tilde{\epsilon}(d_1^{\dagger}d_1 + d_2^{\dagger}d_2) + (\epsilon - \tilde{\epsilon})\hat{1}.$$

We have arrived at quasiparticles described by free-fermion operators $d_{1,2}$ and $d_{1,2}^{\dagger}$. They are noninteracting fermions built out of original fermions, with the energy $\tilde{\epsilon} \neq \epsilon$ that accounts for the interactions in the original Hamiltonian.

Mixing c and c^{\dagger} by Bogoliubov transformations (bosons)

Next, consider a boson Hamiltonian

$$H = \varepsilon(c_1^{\dagger}c_1 + c_2^{\dagger}c_2) + \lambda(c_1c_2 + c_2^{\dagger}c_1^{\dagger})$$

Try a linear transformation (with real u, v):

$$c_1 = ud_1 + vd_2^{\dagger}, \qquad c_1^{\dagger} = ud_1^{\dagger} + vd_2, \ c_2 = ud_2 + vd_1^{\dagger}, \qquad c_2^{\dagger} = ud_2^{\dagger} + vd_1.$$

Bosonic algebra? 1) $[c_1^{\dagger}, c_2^{\dagger}] = 0$ for any u and v. 2) $[c_1, c_1^{\dagger}] = u^2[d_1, d_2] - v^2[d_2, d_2^{\dagger}] = 1$, giving

$$u^2 - v^2 = 1$$

Hence we make a Minkowski parametrization

$$u^2 - v^2 = 1$$
:
$$u = \cosh \theta,$$

$$v = \sinh \theta.$$

The matrix form of our transformation reads

$$\begin{pmatrix} c_1 \\ c_2^{\dagger} \end{pmatrix} = \begin{pmatrix} u & v \\ v & u \end{pmatrix} \begin{pmatrix} d_1 \\ d_2^{\dagger} \end{pmatrix}$$

Diagonalize *H***?** change order, $c_2^{\dagger}c_2 = c_2c_2^{\dagger} - \hat{1}$,

$$H = (c_1^\dagger \ c_2) egin{pmatrix} arepsilon & \lambda \ \lambda & arepsilon \end{pmatrix} egin{pmatrix} c_1 \ c_2^\dagger \end{pmatrix} - rac{arepsilon}{ ext{const (ignore)}}$$

Write in terms of d, d^{\dagger} :

$$H = (d_1^{\dagger} \ d_2) \begin{pmatrix} u & v \\ v & u \end{pmatrix} \begin{pmatrix} \varepsilon & \lambda \\ \lambda & \varepsilon \end{pmatrix} \begin{pmatrix} u & v \\ v & u \end{pmatrix} \begin{pmatrix} d_1 \\ d_2^{\dagger} \end{pmatrix}$$

Can use
$$2 \times 2$$
 Pauli matrices $H = d_i^{\dagger} H'_{ij} d_j$
 $\tilde{H} = (u\hat{1} + v\sigma_1)(\epsilon \hat{1} + \lambda \sigma_1)(u\hat{1} + v\sigma_1)$

$$\tilde{H} = \hat{1}(\varepsilon(u^2 + v^2) + \lambda uv) + \sigma_1(2\varepsilon uv + \lambda[u^2 + v^2]).$$

Setting $\tanh 2\theta = -\lambda/\varepsilon$ obtain

$$\tilde{H} = \tilde{\varepsilon}\hat{1} + \tilde{\lambda}\sigma_1, \quad \tilde{\varepsilon} = \sqrt{\varepsilon^2 - \lambda^2}, \quad \tilde{\lambda} = 0.$$

giving two decoupled bosons:

$$H = \widetilde{arepsilon}(d_1^{\dagger}d_1 + d_2^{\dagger}d_2) - \varepsilon + \widetilde{arepsilon}$$

 \odot : required $\varepsilon > |\lambda|$ for stability

Particle nonconserving transformations: Meaning?

Recall a, a^{\dagger} for 1D harmonic oscillator

$$\begin{split} H &= \frac{p^2}{2m} + \frac{m\omega^2 q^2}{2} = \hbar\omega \left(a^\dagger a + \frac{1}{2} \right), \\ a &= \sqrt{\frac{m\omega}{2\hbar}} \left(q + \frac{i}{m\omega} p \right), \quad a^\dagger = \sqrt{\frac{m\omega}{2\hbar}} \left(q - \frac{i}{m\omega} p \right) \end{split}$$

Squeezed states: Take \tilde{a} , \tilde{a}^{\dagger} with a 'wrong' value $\omega' \neq \omega$. 'Wrong' vacuum, 'wrong' excitations. H is hermitian, but particle-nonconserving!

$$\begin{split} H_{\omega} &= H_{\omega'} + \left(\frac{m\omega^2}{2} - \frac{m\omega'^2}{2}\right) q^2 = \hbar\omega' \left(a^{\dagger}a + \frac{1}{2}\right) + \frac{m\Delta(\omega^2)}{2} \frac{\hbar}{2m\omega'} \left(\tilde{a} + \tilde{a}^{\dagger}\right)^2 \\ &= \hbar \frac{\omega^2 + \omega'^2}{2\omega'} \tilde{a}^{\dagger} \tilde{a} + \frac{m\Delta(\omega^2)}{4\omega'} \left(\tilde{a}\tilde{a} + \tilde{a}^{\dagger}\tilde{a}^{\dagger}\right). \end{split}$$

- 1. Natural generalization to many modes
- 2. Works for B & F

This page intentionally left blank

Practical 2nd quantization: define field operators

$$\psi(\vec{r}) = \sum_{i} \varphi_{i}(\vec{r})c_{i}, \quad \psi^{\dagger}(\vec{r}) = \sum_{i} \varphi_{i}^{*}(\vec{r})c_{i}^{\dagger}.$$

for any orthonormal set of one-particle modes $\langle \varphi_i | \varphi_j \rangle = \delta_{ij}$ and associated Bose or Fermi operators, $[c_i, c_i^{\dagger}]_{\pm} = \delta_{ij}$, $[c_i, c_j]_{\pm} = [c_i^{\dagger}, c_i^{\dagger}]_{\pm} = 0$. In appearance, the field operators $\psi(\vec{r})$, $\psi^{\dagger}(\vec{r})$ are basis dependent. Is this really so? To prove that they aren't, go to a new basis by a unitary transformation and change c and c^{\dagger} 's accordingly, $\phi_i = \sum_{i'} U_{ii'} \tilde{\phi}_{i'}, \ c_i = \sum_{i'} U_{ii'} \tilde{c}_{i'}, \ c_i^{\dagger} = \sum_{i'} U_{ii'}^* \tilde{c}_{i'}^{\dagger}$ We see that $\tilde{\psi}(\vec{r}) = \sum_i \tilde{\phi}_i \tilde{c}_i = \sum_{i'} \phi_{i'} c_{i'} = \psi(\vec{r})$, $\tilde{\psi}^{\dagger}(\vec{r}) = ... = \psi^{\dagger}(\vec{r})$. Therefore the quantities $\psi(\vec{r})$

and $\psi^{\dagger}(\vec{r})$ are basis independent, as expected. QED

Many-body operators (reminder)

One-particle operators:

$$O_1 = \sum\limits_{i=1}^N f(\vec{r_i}) \rightarrow O_1 = \sum\limits_{rs} f_{rs} c_r^\dagger c_s$$
 with matrix elements $f_{rs} = \int d^3r \varphi_r^*(\vec{r}) f(\vec{r}) \varphi_s(\vec{r})$. Here $f(\vec{r})$, say, a 1-particle kinetic or potential energy operator: $f(\vec{r}) = -\frac{\hbar^2 \nabla^2}{2m}$ or $f(\vec{r}) = U(\vec{r})$. Two-particle operators are constructed in a similar manner:

$$O_2 = \sum_{i < j} g(ec{r_i}, ec{r_j})
ightarrow O_2 = rac{1}{2} \sum_{rspq} g_{rspq} c_r^\dagger c_s^\dagger c_p c_q^\dagger$$

with matrix elements

$$g_{rspq} = \int \int d^3r d^3r' g(\vec{r}, \vec{r}') \phi_r^*(\vec{r}) \phi_s^*(\vec{r}') \phi_p(\vec{r}') \phi_q(\vec{r}).$$

Now let's write it in terms of field operators!

The meaning of field operators: $\psi(\vec{r})$ annihilates particle at \vec{r} , $\psi^{\dagger}(\vec{r}')$ creates particle at \vec{r}' . Algebra:

$$[\psi(\vec{r}), \psi^{\dagger}(\vec{r}')]_{\pm} = \delta^{(3)}(\vec{r} - \vec{r}'), \quad [\psi(\vec{r}), \psi(\vec{r}')]_{\pm} = 0$$

Notation: $[A, B]_{\pm} = AB \pm BA$ one-particle/many-particle correspondence:

$$O_1 = \int d^3r \psi^\dagger(ec{r}) f(ec{r}) \psi(ec{r})$$

two-particle/many-particle correspondence:

$$O_2 = rac{1}{2} \int d^3r_1 d^3r_2 \psi^{\dagger}(\vec{r_1}) \psi^{\dagger}(\vec{r_2}) g(\vec{r_1}, \vec{r_2}) \psi(\vec{r_2}) \psi(\vec{r_1})$$

Resembles one-particle and two-particle H's with wavefunctions replaced by field operators.

For $H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i < j} V(\vec{r_i} - \vec{r_j})$ we arrive at a quantum field picture:

$$H = \int d^3r \, \psi^{\dagger}(\vec{r}) \frac{p^2}{2m} \psi(\vec{r})$$

+
$$\frac{1}{2} \int d^3r d^3r' \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}') V(\vec{r} - \vec{r}') \psi(\vec{r}') \psi(\vec{r}')$$

The result looks, tantalizingly, a lot like a single particle Hamiltonian but of course $\psi(\vec{r})$ and $\psi^{\dagger}(\vec{r})$ are operators not wavefunctions! More precisely, they are many-body operators paired together with single-particle orbitals — i.e. a quantum field.
②: a macroscopic system of $N \sim 10^{23}$ particles is described by H comprising only two terms!

Particle number operator N and its properties:

- Define $N = \int d^3r \psi^{\dagger}(\vec{r}) \psi(\vec{r})$. N obeys: $[N, H] = 0, [\psi(\vec{r}), N] = \psi(\vec{r})], [\psi^{\dagger}(\vec{r}), N] = -\psi^{\dagger}(\vec{r})$
 - with commutators rather than anticommutators, identical for B and F!
- Interpretation: action of ψ (ψ^{\dagger}) on eigenstate of N is to decrease (increase) eigenvalue by 1
- Define grand-canonical Hamiltonian, useful in problems w fluctuating particle #: $H' = H \mu N$
- Eigenstates of N: The vacuum state $\psi(\vec{r})|0\rangle = 0$ (for any \vec{r}) where $|0\rangle$ is a (nonzero) vacuum vector state and 0 is the null vector
- $\psi^{\dagger}(\vec{r_1})\psi^{\dagger}(\vec{r_2})...\psi^{\dagger}(\vec{r_m})|0\rangle$ w/ eigenvalue = m