Engenharia CCR versão 1.0

Este documento tem como o objetivo auxiliar e orientar o processo de ingestão de dados na plataforma Azure CCR – Lab.

Visão geral

processo de ingestão de dados na plataforma:

Origem de dados

Os dados precisam ser analisados previamente e criado um mapa de dados inicial para realizar o início do processo de ingestão de dados.

Mapa de dados:

Eles podem ser de cunho técnico (nome da tabela, tipo de dado por coluna da tabela, quantidade de colunas da tabela, origem do dado, tipo de ingestão, entre outros) ou de cunho funcional [termo de negócio, glossário de termos de negócio, finalidade do dado, classificação PII (dado pessoal), descrição da regra de transformação (caso exista), etc.].

Exemplo:

					E	F	
				Tabelas			
				•			
Data	abase 🔻	Schema ▼	Nome Tabela	Obs	▼ LINK	SCRIPT COMENTARIO	
SUA	TPRODS	AVINEW	ADMCOB		ADMCOB		
SUA	TPRODS	AVINEW	AREA_VEICULO		AREA VEICULO		
SUA	TPRODS	AVINEW	ARRECADADOR		ARRECADADOR		
SUA	TPRODS	AVINEW	CATEGORIA		CATEGORIA		
SUA	TPRODS	AVINEW	CONCESS		CONCESS		
SUAT	TPRODS	AVINEW	CONTROLE		CONTROLE		
SUA	TPRODS	AVINEW	CONTROLE_MSG		CONTROLE MSG		
1 SUA	TPRODS	AVINEW	EFEITO_MOTIVO		EFEITO MOTIVO		
2 SUA	TPRODS	AVINEW	INTEGRA_LANCTO		INTEGRA LANCTO		
3 SUA	TPRODS	AVINEW	INTEGRA_RECEITA		INTEGRA RECEITA		
SUA	TPRODS	AVINEW	INTEGRA_RECEITA_DOC		INTEGRA RECEITA DOC		
SUA	TPRODS	AVINEW	LBRANCA1		LBRANCA1		
5 SUA	TPRODS	AVINEW	MARCA_VEICULO		MARCA VEICULO		
7 SUA	TPRODS	AVINEW	MOTIVO_DIFER		MOTIVO DIFER		
SUA ⁷	TPRODS	AVINEW	MOTIVO_IMAGEM		MOTIVO IMAGEM		
SUA	TPRODS	AVINEW	MOTIVO_LBRANCA		MOTIVO LBRANCA		
SUA	TPRODS	AVINEW	MUNICIPIO		MUNICIPIO		
		ı		1		-	
4	A		В	ט	E	F	
					DETALHAMENTO TABELA		
2							
	ABASE	SUATPRODS					
4 SCHE		AVINEW AREA VEICU	11.0				
5	II IADI-LA	AINEA_VEICE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	OLUNA 🔻	NOME_COL	UNA TIPO	▼ TAMANHO ▼	CHAVE GBS		
8	1	CDAREA_VE	ICULO CHAR	5	Sim	·	
	2	DCAREA VE	ICULO VARCHAR2	30			
9	-						

Azure Data Lake

O data lake é um repositório único e centralizado onde você pode armazenar todos os seus dados, estruturados e não estruturados. O armazenamento de dados utilizado na plataforma é **Data Lake Storage Gen2**.

A arquitetura adotada é baseada na arquitetura medallion que descreve uma série de camadas de dados que denotam a qualidade dos dados armazenados no Lakehouse. Essa abordagem de várias camadas para criar uma única fonte confiável para produtos de dados corporativos. Essa arquitetura garante a atomicidade, consistência, isolamento e durabilidade à medida que os dados passam por várias camadas de validações e transformações antes de serem armazenados em um layout otimizado para análise eficiente.

Storage:

Name	Last modified	Public access level	Lease state	
bronze	12/14/2022, 10:11:58	Private	Available	•••
config	12/14/2022, 10:12:24	Private	Available	***
gold	12/14/2022, 10:12:12	Private	Available	***
landing	12/14/2022, 10:12:34	Private	Available	•••
masterdata	3/7/2023, 9:02:44 AM	Private	Available	•••
silver	12/14/2022, 10:12:06	Private	Available	•••

Estrutura dos diretórios/Containers

CONFIG - Camada para arquivos de configurações

LANDING - Camada para recepção de dados streaming

BRONZE - Camada para recepção de dados brutos e integração

SILVER - Camada para histórico, limpeza e dados validados

MASTER DATA - camada para consumo de dados e mínimas regras de negócio foco e selfservice

GOLD - camada para consumo de dados com agregações, junções, filtragem e regras de negócio.

Subpastas

As subpastas dos containers serão organizadas por

Container/Tema/Projeto/

AUTOBAN

MSVIA

Authentication method: Access key (Switch to Azure AD User Account)
Location: bronze / RODOVIAS / SUAT

Search blobs by prefix (case-sensitive)

Name Modified

É interessante tentar manter as estruturas parecidas ou semelhantes em todos os containers para facilitar a manutenção e entendimento dos projetos e sua respectivos temas.

OBS: Para criação de pasta é importante manter o padrão de **CAIXA ALTA** nos textos das pastas.

Azure Data Factory

É o serviço de integração de dados e ETL baseado em nuvem que lhe permite criar fluxos de trabalho orientados a dados para orquestrar a movimentação e a transformação de dados em escala.

Pipelines

Um pipeline é um agrupamento lógico de atividades que realiza uma unidade de trabalho. Para desenvolvimento dos pipelines será adotado alguns padrões de nomenclatura e organizações de pastas.

Nomenclatura

- pip_sistema_livre
- pip_master_sistema_livre (pipeline que executa outros pipelines)

ex: pip_suat_carrega_tabela

PASTAS

PROJETOS/TEMA/SISTEMA

Atividades

As atividades representam uma etapa de processamento em um pipeline. O Data Factory dá suporte a três tipos de atividades: atividades de movimentação de dados, atividades de transformação de dados e atividades de controle.

Por exemplo, você pode usar uma atividade de cópia para copiar dados de um repositório de dados para outro.

Datasets

Os Datasets representam as estruturas de dados nos repositórios de dados.

Para criação de Datasets usar parâmetros preferencialmente assim podemos facilitar a utilizações para diversos usuários.

Dataset Com exemplo de parâmetro:

Importante sempre alinhar com o Dev lead para usar o padrão de nomenclaturas

- dt_tipoconexão

Linked services

Linked services são como cadeias de conexão, que definem as informações de conexão necessárias para que o serviço se conecte a recursos externos.

Para criação de Linked services usar parâmetros preferencialmente assim podemos facilitar a utilizações para diversos usuários.

Importante sempre alinhar com o Dev lead para usar o padrão de nomenclaturas

- ls_tipoconexão

Data Flow

Não é previsto uso de dataflow pois utilizamos o databricks para execução das transformações de dados.

Integration Runtime

O IR (Integration Runtime) é a infraestrutura de computação usada pelo Data Factory.

É utilizado um IR Self Hosted para execução dos pipelines (regra de conectividade e segurança).

Como padrão de execução utilizamos ir-dp-vm-adf.

TRIGGER

Trigger determina quando uma execução de pipeline precisa ser inicializada.

Nomenclatura:

- TGR_MASTER_SISTEMA_PERIODO_OPCIONAL (pipeline que executa outros pipelines)

-TGR_SISTEMA_PERIODO_OPCIONAL

Importante sempre alinhar com o Dev lead para usar o padrão de nomenclaturas

Branch

Para utilização do Data Factory é obrigatório a utilização de Branch. Todas as branch devem ser criadas a partir da RELEASE -DEV Branch

A criação das Branch deve seguir o padrão de nomenclaturas

Nomenclatura:

Brach_nome_data_livre

Ex: release_mayck_01012023

Todos os processos devem ser feitos pull request para inclusão na master e solicitar aprovação dos respectivos responsáveis.

Azure DataBricks

A Plataforma do Azure Databricks Lakehouse fornece um conjunto unificado de ferramentas para criar, implantar, compartilhar e manter soluções de dados. O Databricks implanta clusters de computação efêmeros usando recursos de nuvem na conta para processar e armazenar dados no armazenamento de objetos e outros serviços integrados controlados

Para utilização do Databricks será adota alguns padrões de desenvolvimento para facilitar a manutenção e controle dos processos de ingestão de dados

Repo

Os desenvolvimentos de projetos serão necessários cria uma Branch no repo do databricks no seu usuário para os notebooks ficarem atrelados ao git.

CCR devops acessar o projeto - *ccr-gbs-labinov-dataproject-eng*. Utilizar o *repo adb-eng-dev* (esse é o repo de notebooks)

Caso não tenha acesso ao devops no projeto ccr-gbs-labinov-dataproject-eng, solicitar ao arquiteto devops ou arquiteto de dados da dataplat.

Após adicionar repc criar a brach baseada na release-dev

Branch

Para utilização do Data Bricks é obrigatório a utilização de Branch. Todas as branch devem ser criadas a partir da RELEASE-DEV Branch

Nomenclatura:

Brach_nome_data_livre

Ex: release_mayck_01012023

Pastas

PROJETOS/TEMA/SISTEMA

Organização notebooks

Usar pastas para facilitar a localização dos notebooks

SETUP/ BRONZE/SILVER /MASTERDATA/GOLD

TABELAS

Para criação das tabelas no databricks é importante seguir alguns padrões.

Tabelas precisão ser criadas sempre apontando para o repositório do datalake utilizando o padrão DELTA e Iniciando com sigla TBL

Exemplo:

-Tabela logica:

NOMESCHEMA.TBL_SISTEMA_NOMETABELA

-Tabela física / delta table:

Caminho datalake /TBL_NOME_TABELA

Exemplo:

Obs: sempre criar tabelas apontando para o datalake não criar tabelas internas no databricks.

Mount

Cluster

Preferencialmente utilizar o cluster de acordo com o tema do projeto e alinhado com arquiteto de dados da plataforma.

DEVOPS

Todos os engenheiros de dados estarão centralizados no devops de engenharia

https://dev.azure.com/CCR-DEVOPS/ccr-gbs-labinov-dataproject-eng

Para subida de datafatory e databricks será necessário a criação de pull request para aprovação de pipelines e notebooks para ambientes de DEV/HML/PROD .

As pull requests precisam ser alinhadas e validas pelos arquitetos devops e dados. Na fase de envio do projeto de *hml* para *prod* será adicionado a validação dos pipelines e notebooks o respectivo PM do projeto.

Azure Synapse Próximos passos

Azure Purview