Model Checking

Ivo Melse s1088677 & Floris Van Kuijen s1155667 January 2025

3.1

The traces are described by the following ω -regular expression: $\{a\}(\emptyset+\{a\})(\{a,b\}\{a\})^\omega$

5.1

- (a) $\{s_1, s_2, s_3, s_4\}$
- (b) $\{s_1, s_2, s_3, s_4\}$
- (c) Ø
- (d) $\{s_1, s_2, s_3, s_4\}$
- (e) $\{s_1, s_2, s_3, s_4\}$
- (f) $\{s_1, s_2, s_3, s_4\}$

5.2

TS $\not\models \varphi_1$, let $\pi = s_1(s_3s_4)^{\omega}$.

TS $\vDash \varphi_2$. All states reach strongly connected component $\{s_2, s_3, s_4, s_5\}$, and there are states in this SCC include c.

TS $\vDash \varphi_3$, because in the SCC a state where $\neg c$ is always followed by a state where c.

TS $\not\models \varphi_4$, take $\pi = s_1(s_3s_4)^{\omega}$.

TS $\vDash \varphi_5$, because after getting out of s_1 , you enter the SCC where always $b \lor c$. TS $\not\vDash \varphi_6$, take $\pi = s_1(s_4s_2)^{\omega}$.

5.4

- (a) $\Box(\neg Peter.use \lor \neg Betsy.use)$
- (b) $\square(\lozenge(\neg \text{Peter.use}) \lor \lozenge(\neg \text{Betsy.use}))$
- (c) \square (user.request $\rightarrow \diamond$ user.use) for user $\in \{\text{Peter, Betsy}\}$.

- (d) Assumption: only one user an request at the same time. This means that they should not be allowed to request forever. $\Box(\diamond \neg user.request)$ for user $\in \{Peter, Betsy\}$.
- (e) \Box (Peter.release $\rightarrow \circ$ Betsy.use \land Peter.use $\rightarrow \circ$ Betsy.release)

5.6

(a) Equivalent.

$$\Box \varphi \to \diamond \psi \equiv \neg \Box \varphi \lor \diamond \psi$$

Suppose $\neg \Box \varphi$. Then it follows that there exists an $i \geq 0$ such that $\varphi \notin A_i$. Furthermore, A_i was preceded by a (possibly empty) sequence $A_0, \ldots A_{i-1}$ where $\forall j, 0 \leq j < n : \varphi \in A_j$. It follows that $\varphi \cup (\psi \cup \neg \varphi)$.

Suppose $\diamond \varphi$. If $\neg \Box \varphi$ refer to previous case so consider cases where $\Box \varphi$. Then it follows that there exists an $i \geq 0$ such that $\psi \in A_i$. Furthermore, A_i was preceded by a (possibly empty sequence) $A_0, \ldots A_{i-1}$ where $\forall j, 0 \leq j < n : \varphi \in A_j$. It follows that $\varphi \cup (\psi \cup \neg \varphi)$ holds.

Suppose that $\Box \varphi$ and $\neg \diamond \psi$. Then for all $i \geq 0$, $\varphi \in A_i$ and $\psi \notin A_i$. Then $\varphi \cup (\psi \cup \neg \varphi)$ clearly does not hold since $\psi \cup \neg \varphi$ will never be true.

(b) Equivalent. $\diamond \Box \varphi \to \Box \diamond \psi \equiv \Box \diamond \neg \varphi \lor \Box \diamond \varphi$.

Suppose that $\square \diamond \neg \varphi$. Then for every $i \geq 0$, there exists a $j \geq i$, s.t. $\varphi \notin A_j$. Then $\varphi \cup (\psi \vee \neg \varphi)$ holds for $A[i \dots]$ because there exists a j s.t. $A[j \dots]$ satisfies $(\psi \vee \neg \varphi)$. Since i was arbitrary, therefore $\square \varphi \cup (\psi \vee \neg \varphi)$.

Suppose that $\square \diamond \psi$. Then for every $i \geq 0$, there exists a $j \geq i$, s.t. $\psi \in A_j$. If there is a $k, i \leq k < j$ for which $\varphi \notin A_k$, then apply the previous case. Otherwise, $\varphi \cup (\psi \vee \neg \varphi)$ holds for $A[i \dots]$ because there exists a j s.t. $A[j \dots]$ satisfies $(\psi \vee \neg \varphi)$. Since i was arbitrary, therefore $\square \varphi \cup (\psi \vee \neg \varphi)$.

Suppose that $\Box \varphi$ and $\neg \Box \diamond \varphi \equiv \diamond \Box \neg \varphi$. Then there exists some $k \geq 0$ such that $\Box \neg \varphi$ holds for $A[k \ldots]$. Then $\varphi \cup (\psi \vee \neg \varphi)$ does not hold for $A[k \ldots]$. It follows that $\Box \varphi \cup (\psi \vee \neg \varphi)$ does not hold.

- (c) $\Box\Box(\varphi\vee\neg\psi)\equiv\Box(\varphi\vee\neg\psi)\equiv\Box\neg(\varphi\wedge\psi)\equiv\neg\diamond(\neg\varphi\wedge\psi)$
- (d) Not equivalent. Consider $\emptyset \to \{\varphi\} \to \{\psi\}$ where the last state self-loops. Then $\diamond \varphi \land \diamond \psi$ is satisfied, while $\diamond (\varphi \land \psi)$ is not.
- (e) Equivalent because $\Box \varphi \to \circ \diamond \varphi$.
- (f) Not equivalent. Consider $\{\varphi\} \to \emptyset$ where the last state self-loops. Then $\diamond \varphi$ is satisfied while $\diamond \varphi \land \diamond \Box \varphi$ is not.