Optically Detected Magnetic Resonance; Computational Predictions and Experimental Results

Scott Leland Crossen

A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of

Bachelor of Science

Dr. John S. Colton, Advisor

Department of Physics and Astronomy

Brigham Young University

[Approval Month] [Year]

Copyright © [Year] Scott Leland Crossen

All Rights Reserved

ABSTRACT

Optically Detected Magnetic Resonance; Computational Predictions and Experimental Results

Scott Leland Crossen
Department of Physics and Astronomy, BYU
Bachelor of Science

[The abstract is a summary of the thesis/dissertation with emphasis on the findings of the study. The abstract must not exceed 350 words in length and fit on one page, single spaced.]

Keywords: [A comma-separated list of descriptive words for search purposes]

Contents

Tab	ole of	e of Contents			
Lis	t of I	Figures	1		
1	Intr	oduction	3		
	1.1	Qualitative Description of ESR and ODMR	3		
	1.2	The Defect Nature of Materials	5		
	1.3	Electron Spin, Quantum Computing, and Qubits	6		
	1.4	Previous Work (Our Research Group and Others)	8		
		1.4.1 Preliminary Work and Results	8		
		1.4.2 Experimental Setup	9		
		1.4.3 Samples and Collaborative Efforts	9		
		1.4.4 <i>EasySpin</i> Computational Modeling System	10		
	1.5		10		
	1.6		11		
	1.7		13		
2	Com	aputational Model and Theory	15		
	2.1	·	15		
	2.2	· · · · · · · · · · · · · · · · · · ·	17		
		· ·	17		
			18		
	2.3		19		
			20		
			21		
			22		
3	Expe	erimental Methods	24		
-	3.1		- • 24		
	3.2	<u>.</u>	25		
	3.3	= = = = = = = = = = = = = = = = = = = =	25 25		
	3.4	•	26		

<u>CONTENTS</u> iv

		3.4.1	Temperature Controller and Static Magnetic Field				
		3.4.2 3.4.3	Laser and Optics	27			
		3.4.4	Software Controller Interfaces and Data Recording	28			
4	Resu	ılts		29			
	4.1	Comp	outational Predictions	29			
	4.2		imental Results				
	4.3	Data A	Analysis	29			
	4.4	Concl	usion	29			
Aj	Appendix A Electron Spin Studies of Electron Irradiated SiC						
Aj	pend	ix B	Optical Studies of Cadmium Telluride	32			
Aj	Appendix C Electron Spin Coherence of Silicon Vacancies in Proton-Irradiated 4H-SiC 3						
Bi	bliogr	aphy		35			

List of Figures

1.1	Zeeman effect and resonant conditions in matter	5
1.2	Magnetic field and microwave frequency relationship	11
1.3	Preliminary ODMR data	12
2.1	Example of spin-hamiltonion fields	16
2.2	Simple Spin System Definition	18
2.3	ESR Spectrum Presented by Stehr et al	21
2.4	Recreation of ZnO Nanowire ESR	21
2.5	The EasySpin representation of SiC	23
2.6	The EasySpin representation of CdTe	23
3.1	SiC Depth-Dependent Photoluminescence	25
3.2	Photoluminence Spectra of Silicon Carbide	26
3.3	Photoluminence Spectra of Cadmium Telluride	26
3.4	Diagram of Experimental Setup for ODMR	26
4.1	ODMR computational model for SiC	29
4.2	ODMR computational model for CdTe	29
4.3	Experimental ODMR for SiC	30
4.4	Experimental ODMR for CdTe	30

LIST OF FIGURES	2

A.1	Electron-irradiated SiC lifetime summary	31
A.2	ODMR/Photoluminescence vs temperature	31
4.1	Setup for using counter-propagating light	33
4.2	SiC energy levels and zero-field splitting	34

Chapter 1

Introduction

1.1 Qualitative Description of ESR and ODMR

Optically Detected Magnetic Resonance (ODMR) is a particular form of Electron Paramagnetic Resonance (EPR) which is more commonly known as Electron Spin Resonance (ESR). The latter two of these terms (EPR and ESR) are synonymous; The former (ODMR) is a particular subset of ESR that utilizes a luminescence measuring technique as a means to collect ESR information. In literature, it is common to see both of these terms followed by the designation "spectroscopy" which signifies that they are tools to study properties of matter via electromagnetic radiation. Though the extent of their application has grown over the years, ESR and ODMR are most commonly used to study the spin-properties of electrons and electron-holes trapped in metal lattices. They can be used to study free radicals in organic materials and are also important in studying the local environment of lattice defects through a technique using angular-dependent ODMR. One particular use of ODMR is the study of electron-spin coherence via a technique known as Electron Spin Echo. This can be useful when studying what properties and conditions lead to superior state coherence for qubit candidate materials in quantum computing.

The intellectual foundation of Electron Spin Resonance is rooted in Quantum Mechanics. Bound electrons in matter have discrete and quantized energy levels that govern what frequencies of light are emitted when transitions between energy levels are made. For electron systems, which are fermions and thus subject to the Pauli exclusion principle, the energy levels are 2nd order degenerate when bound in matter. In Quantum Mechanics we choose to describe this degeneracy in terms of spins: we say an electron is either "spin-up" or "spin-down". Each energy level can have at most two electrons of opposite spins inhabiting it (and thus the degeneracy). The spin terminology is arbitrary however, and is really just an attempt at comparing electrons to particles. In truth, electron spin is a term for a property that is emergent from solving the wave equation. However, it nonetheless describes the principle of conservation of momentum that would be found in classical system such as a top and so the term makes sense and has persisted in usage today. In this case, the electron's spin is a description of the magnetic moment for when the particle is in the presence of a magnetic field. In the case of electrons bound in matter within a magnetic field, the energy levels of the molecule will split according to the "Zeeman Effect" and the spin-states of the electrons can be observed - most commonly through a photoluminescence or other fluorescence measuring technique.

The Zeeman effect itself is crucial in understanding the principles of ESR. In the presence of a magnetic field, populations of free electrons will form a spin-1/2 system between a higher-energy "spin-up" state and a lower-energy "spin-down" state. In matter, different parities of spin-states can be formed between the interactions of different energy levels with different transition selection rules. A spin-1/2 system in the presence of a magnetic field is shown in 1.1. As seen here, the energy levels of the two differing spins diverge linearly for an increasing magnetic field. The difference in energy between these two levels is typically in the microwave frequency domain. For a given magnetic-field strength there will be a set of characteristic microwave frequencies that the electrons are most prone to emitting when transitioning between these quantized states. In

Figure 1.1 Zeeman effect for a two level system showing spin ($\pm 1/2$) energy levels as a function of applied magnetic field. For arbitrary field strength the energy difference is shown as a function of μ , g, and the field strength B.

a spin-1/2 system there will only be one frequency for a given magnetic field corresponding to the difference between the two Zeeman lines at the given field strength. Likewise, for a given microwave target signal, there will be a variety of magnetic field strengths which are most adept at transitioning bound electrons between states. This unique pairing between both the microwave frequency and magnetic field strength is the resonant condition upon which ESR is based off of and also the means it uses to discover information about materials.

1.2 The Defect Nature of Materials

[Rough - More] In solid-state physics, materials form crystal lattices for molecular tessellation. These structures are not perfect, however, and often have intrinsic interstitial defects. These defects come in the form of either additional or missing atoms. [continued]

[Rough - More] Crystal lattice defects are important as they contribute to the overall spin

system of the material via either electrons or electron-holes.

[Rough - More] Optically Detected Magnetic Resonance (ODMR) can be used in conjunction with a varied applied angle (between the magnetic field and c-plane) to study the local nature of each type of defect in the material.

[Rough - More] ODMR can give the information necessary in understanding how the lattice is formed.

[Rough - More] Defects can be introduced via high-fluence irradiation of particles.

1.3 Electron Spin, Quantum Computing, and Qubits

Classical Computation is almost always based upon a binary system. In these architectures, the computer's register, memory, and general logical states are either in a logical 'true' or a logical 'false' state. A 'true' state corresponds to a high voltage and a 'false' state corresponds to a grounded voltage. A computer's bits can be in either of these two states - 1 or 0 - but not both.

A spin-1/2 system also describes a binary system between a higher-energy basis state and a lower-energy basis state. In this comparison, the spin-1/2 system will be measured (and the wave function collapsed) to be in either of these two states - but not both. The important difference between the spin-1/2 system and the classical computer bit model is that the spin system can have states that exist as linear combinations of the two basis up/down states. In accordance with Quantum Mechanics, this means that the spin-1/2 system can exist as a superposition between both the spin-up and spin-down states and has a certain probability of being measured in each. It is important to note that this superposition does not mean that the state exists as some value in between an excited state and a lower state. Rather, it exists with some value in both states simultaneously.

Because of this unique property of spin systems, they can be used as a basis for forming what is

7

called a "quantum computer". Though it largely depends on the architecture, Quantum computers can be thought of to manipulate information in a similar fashion to that of a classical computer. Both have logical operators and storage bits and both are algorithmically based. Quantum computers, however, utilize this unique possibility of superposition to make probabilistic calculations for many different states at the same time. This happens through the quantum mechanical operators that initialize and manipulate the states that are stored in "qubits" - or the quantum computer's version of classical bits that can exist in these superposition types of states. Because of the existing theoretical construction from nondeterministic finite automata to deterministic finite automata, quantum computers are also "turing complete" in the broad definition of that term. This statement is trivial however, because quantum computers can be operated in the discrete binary limit and so should be able to do anything a classical computer can.

Today, there is large emphasis within the scientific community in building viable, scalable quantum computers. The reason for this is that quantum computers offer reduced computational time limits for certain types of algorithms. Certainly however, these machines are not necessarily more adept at common tasks such as processing videos to be scrubbed by common users, but are rather designed to carry out a few types of intense calculations in logarithmic time that would normally have a polynomial time dependence. The most notable use for quantum computers in our modern society is within the field of computer security and encryption. Quantum computers have the ability to compute prime factors via Shor's algorithm in a much faster time than traditional computers. This ability would essentially render all of the current RSA encryption methods obsolete in addition to anything that relies on public/private key encryption such as bitcoin.

Although more than just spin systems can be used as the all-important qubits for quantum computing, we will focus on this type - specifically spin-1/2 systems formed from electrons - for the basis of our discussion. As mentioned earlier, Electron Spin Resonance is the major tool used to study the spin properties of materials. In the case of quantum computation, ESR is used to study

possible qubit materials that might eventually be used in such machines. Currently, one of the major difficulties in creating quantum computers is finding materials that can form superposition states that remain coherent (and reliable) over prolonged periods of time. In order to understand what properties of materials lead to superior qubit construction and state coherence, ESR can be used in conjunction with electron spin echo experiments to study the coherence of electrons in a spin-1/2 system. Moreover, ESR can be used alone to study the spin system itself and the local environment of the defects in materials that form them. Knowledge of this important topic will serve to increase our ability to construct better qubits for use in quantum computers.

1.4 Previous Work (Our Research Group and Others)

1.4.1 Preliminary Work and Results

The work performed in this thesis references in large part the work done by Kyle Miller and Jacob Embley - two students who worked under Dr. John Colton and have since graduated from Brigham Young University. Their work was mostly performed on the topic of Electron Spin Coherence in Proton-Irradiated Silicon Carbide and is documented in their senior theses both of related titles. This thesis, however, will not be on the same topic as the former two but will expand on one aspect used by both of these two students in their work - ODMR. In addition, both Miller and Embley used a particular species of SiC which is one of the two principal materials of investigation in this thesis.

Appendix C includes a publication that Embley, Colton, Miller, Myself and a few others produced on the topic of spin coherence in proton irradiated silicon carbide. It has been accepted by *Physical Review B* and will appear in publication later in the year 2017. This publication serves as a capstone to the work of both Embley and Miller as included in their senior theses and will serve as the context for which this thesis was produced.

In addition to the work done by Miller and Embley, an additional study was performed on a similar material of the SiC specimen which is not included in either the aforementioned theses or publication. This project is included in Appendix A. The major difference with Appendix A and the theses produced by Miller and Embley is the fluence of irradiation used on the SiC sample in question. Miller's work was primarily concerned with a $10^{14} \ cm^{-2}$ proton-irradiated sample of SiC. Embley likewise worked with a $10^{13} \ cm^{-2}$ proton-irradiated sample of SiC. In Appendix A I work with a $10^{17} \ cm^{-2}$ electron-irradiated sample of SiC in much the same way as used by Embley. With this additional sample, a more comprehensive analysis and additional results are presented.

1.4.2 Experimental Setup

The experimental setup used for the majority of this thesis was set up and tested by Kyle Miller and Jacob Embley. Miller initially set up all the necessary instrumentation to be used in his experiment which is detailed in his thesis. Later, Embley improved upon most of Miller's design and achieved increased precision and improved results. The experiment used by both Embley and Miller was eventually repurposed and slightly modified for the experiment detailed in this thesis. A full summary and implementation of the experimental setup can be found in 3.4. This section includes both the setup used by Miller and Embley as well as the components I modified for the purposes of performing this work.

1.4.3 Samples and Collaborative Efforts

The work done for this thesis was done in collaboration with two groups of people. Firstly, the silicon carbide samples used were produced and partially characterized by Dr. Sam Carter of the Naval Research Lab. These samples were irradiated with different fluences of particles in order to introduce different concentrations of defects into the material. It was Carter's work that ultimately led us to obtain such high quality samples for optical characterization and electron spin resonance

studies.

The second collaborative group that we worked with was Dr. Mike Scarpulla of the University of Utah. Scarpulla was responsible for providing the second species of material (CdTe) that was characterized for this report. Like the SiC, this sample was provided with partial characterization and given to us for optical study. Appendix B gives the full report (at least up to the publication date of this thesis) for the optical studies performed on the CdTe sample.

1.4.4 EasySpin Computational Modeling System

EasySpin is a library for MATLAB designed to computationally model ESR data. The majority of computational work for this thesis was done using this program which was provided free of charge by the vendor's website. Though most of the necessary functions to model ESR data were included in the *EasySpin* library, I still found it necessary to create custom definitions in addition to what was already supplied.

1.5 Preliminary Results of Experimental ODMR

The work done for this thesis is based around two different materials. The first, SiC, has had prior work done on it for ODMR characterization. The second sample, CdTe, was not optically characterized for this work prior to our experimentation and was left to us for detailed analysis.

[Rough] Dr. Sam Carter of the Naval Research Lab provided the samples for the silicon carbide used. In addition, he also presented a series of plots to describe the spin system present in the material. According to the information he provided, the silicon vacancies in silicon carbide form a spin-3/2 system with a metastable doublet state to allow for non-radiative transitions. Another interesting characteristic of this system is that it has a zero-field splitting effect which accounts for a difference of energies without a magnetic field between the spin states +1/2 and +3/2 with -1/2

1.6 Overview of Thesis

Figure 1.2 The relationship between magnetic field strength and microwave Frequency for 4H-SiC, a spin-3/2 system. Resonant conditions are shown via bright coloration on the axes of frequency vs field. Notice the linear dependence between both microwave energy and field strength.

and -3/2.

In addition to the information provided by Dr. Carter regarding the spin system of SiC, he also provided preliminary ODMR results performed at low field strengths of around 31 mT. The results of his measurements are found in 1.3 and show the transitions between different spin states which will be more fully developed in 3.1. Moreover, Carter also provided angular dependent measurements of the resonant relationship between magnetic field strength and microwave frequency. As mentioned in 1.1, there exists a unique pairing between the applied magnetic field and the resonant microwave energy transition. For a given magnetic field there will exist different resonant frequencies depending on the spin system in question. In addition, these characteristic frequencies will have associated linewidths that describe what range of frequencies the gaussian distribution is centered around and how wide it is. For the case of a spin-3/2 system as found in 4H-SiC, the relationship is best represented by 1.2 which is a plot produced by Dr. Carter for the samples used in this project.

1.6 Overview of Thesis

The purpose of this thesis is to describe in detail the methods and procedures behind experimental and theoretical ESR and to answer the question as to how both experimental and theoretical methods compare to each other. By so doing we will also introduce the fundamental theory behind ESR and computational modelling packages such as *EasySpin*. In addition, we will also discuss the experimental frameworks and setups necessary for collecting ODMR information from materials. This analysis will not be comprehensive but is rather purposed as an introduction into the

1.6 Overview of Thesis

Figure 1.3 The preliminary ODMR data for Proton Irradiated Silicon Carbide in a constant magnetic field of 2.455 Tesla. The plot shows resonant paramagnetic conditions at 10.35 GHz and 10.47 GHz where the absorption is greatest.

techniques used in the field. As such, we will restrict our analysis to only solid-state ESR and ODMR.

In addition, this thesis will analyze what factors and properties inherent in materials contribute to ESR detection and spectroscopy. This analysis will be geared towards understanding the nature of defects within materials and how these defects are emergent in ODMR spectroscopy. As a final note on this topic we will introduce multiple examples of different defect-types to show resultant ODMR data.

We will use two main materials for this thesis: SiC and CdTe. These materials will be valuable in our understanding of lattice defect contribution towards ODMR results. In addition, we will primarily use these as controls to compare the experimental data with respective computational predictions. It will be through these two specimens that we will ultimately show the similarity between experimental results and theoretical predictions.

In the end, this thesis will conclude that computational modelling is accurate to the same degree as the spin system is understood. In other words: the level of precision that computational modelling can present is restricted by how much information is known about the hamiltonian for that given system.

As supplementary material, I have included multiple appendixes detailing further expansion projects and studies of ESR. Though these appendices are not purposed with the same thrust as this thesis, all of them are excellent resources that would serve to broaden the reader's understanding of the applications and use of this important experiment in condensed-matter physics.

1.7 Explanatory Notes and Background Information

The content of this thesis will use the term *ESR* when referring to the general theory and mathematical model of Electron Spin Resonance and will use the term *ODMR* when referring to the experimental methods used for collecting ESR information. As mentioned earlier, ODMR is a specific type of ESR that is ultimately used to collect the same information through a fluorescence technique. Because we have implemented an ODMR-type experiment in our lab we will use this term for descriptive accuracy when referring to our experimental application.

By way of information, the work done for this thesis was performed using MATLAB R2016b (version 9.1) and *EasySpin* version 5.1.9. It will be assumed that the reader is proficient in basic MATLAB or C constructs and is at least familiar with data types and terms such as "struct", "parameter" and "field" as related to computer programming.

All plots and figures were created using a combination of Mathematica version 10.4 and Origin version 7.5.

In addition, pertinent git repositories will be hosted online via GitHub for all code developed for this project. The LabVIEW suite used for data acquisition can be found at the permanent

14

URL https://github.com/coltonlab/LabVIEW-programs. The programs developed on top of the *EasySpin* library that were used for theoretical modeling can be found along with this thesis at https://github.com/scottcrossen/SeniorThesis.

Chapter 2

Computational Model and Theory

2.1 Mathematical Theory

As mentioned in the Introduction, spin systems and Electron Spin Resonance (ESR) are best understood in terms of interaction Hamiltonians. 'Hamiltonians' in this context are quantum mechanical operators (as opposed to the classical mechanical version) that act on energy states and form specific eigensystems with defined energy eigenvalues. For example, in the Zeeman effect there exists a Hamiltonian that – when diagonlized – gives the energy-splitting for a given magnetic field in terms of its eigensystem. Since ESR spectroscopy measures the resonant conditions between energy-levels and magnetic field strength, it is important to find the field-dependent Hamiltonian for each system before we can calculate the theoretical ESR spectrum.

Thankfully, the general Hamiltonian for atoms in a magnetic field is commonly known. In this case, the interaction energy of an atom in a constant magnetic field is given by the overall spin Hamiltonian \mathcal{H}_{tot} :

$$\mathcal{H}_{tot} = \mathcal{H}_{elect} + \mathcal{H}_{cf} + \mathcal{H}_{LS} + \mathcal{H}_{SS} + \mathcal{H}_{Zee} + \mathcal{H}_{hfs} + \mathcal{H}_{Q} + \mathcal{H}_{N}$$

where $\mathscr{H}_{\text{elect}}$ is the electronic energy, \mathscr{H}_{cf} is the crystal field energy, $\mathscr{H}_{\text{LS}} = \lambda L \cdot S$ is the spin-

Figure 2.1 An Example of Spin-Hamiltonian fields in terms of S and g

orbit interaction, $\mathscr{H}_{SS} = D\left[S_z^2 - \frac{1}{3}S(S+1)\right]$ is the spin-spin interaction, $\mathscr{H}_{Zee} = \beta H \cdot (L+2S)$ is the Zeeman interaction energy, $\mathscr{H}_{hfs} = (A_x S_x I_x + A_y S_y I_y + A_z S_z I_z)$ is the hyperfine structure, \mathscr{H}_Q is the quadrupole energy, and $\mathscr{H}_N = \gamma \beta_N H \cdot I$ is the nuclear spin energy. All of these components are defined in terms of the spin angular momentum operator S, the orbital angular momentum operator S, the Nuclear Spin Operator S, the spin-orbit coupling constant S, the hyperfine coupling constant S, the nuclear gyromagnetic ratio S, and the zero-field splitting constant S.

Some terms in the Hamiltonian dominate the system and can be focused on individually. Though we do not restrict our analysis to them, the most important terms are the Zeeman interaction energy, the crystalline electric field, the spin-spin interaction energy, and the hyperfine term. We will specifically review all of these terms at some point in this paper.

[Rough - More] I should probably give a more in-depth explanation of the all-important Zeeman term at this point. During this explanation I'll explain the g-tensor (and its simplifications) and the spin parameter S.

Once the Hamiltonian is known for the system, the ESR spectrum can be computationally predicted. A variety of methods are available to go from the basic Hamiltonian components to the finished ESR plot. The most notable is a software suite called *EasySpin*?? (that was a link I need to fix), which vastly simplifies the amount of calculations and explicit Hamiltonian definitions that the investigator has to make.

2.2 EasySpin Interaction Modeling System

The purpose of this thesis is to comprehensively show the intricacies and unique methodologies of both computational and experimental ESR. As for the former of these two, the most common tool used to computationally model ESR is known as *EasySpin*. This package is built as an open library on top of the MATLAB program and serves to add functionality to the already-useful suite of functions that components within MATLAB.

2.2.1 The EasySpin Struct Definition

The core utility of the *EasySpin* package is the struct definition used in the spin system. The *EasySpin* library is built around the idea of a struct (a term describing a publicly-scoped group of fields) to define all necessary components of the system being studied. In fact, most methods in the *EasySpin* library usually require just a struct of this type as the sole parameter in the function declaration.

The struct represents the spin system and is usually defined by the user to the extent that the system is known. Though there are many optional parameters that can be included in the struct, the most simplest spin system needs to include a '.S' parameter representing either a list or a value for the parity of spin being worked with as well as a '.g' parameter to represent the g-factor of that material in solid-state ESR. The g-factor could be either a list or a value depending on the crystal type being investigated. After these two parameters are defined, the system can then be passed to any other functions for analysis and plotting. Figure 2.2 shows an example of what this basic definition might look like in MATLAB.

```
Sys.S = 1/2;
Sys.g = 2.017;
Sys.lw = 1;

Exp.mwFreq = 9.2; % GHz
Exp.Range = [320 330]; % mT
```

Figure 2.2 An example declaration of the basic *EasySpin* struct used in defining the spin system. In this example, 'Sys' represents an arbitrary name for the struct, '.S' is the spin parity, '.g' is the g-factor, '.lw' is the ESR line-width, '.mwFreq' is the position of the microwave frequency being probed, and '.Range' is the range of the magnetic field being scanned.

2.2.2 Basic Class Structure

The term 'class' is used loosely in this context. Unlike most languages, MATLAB (and thus *EasySpin*) is based on plain C and thus not really object oriented. However, unlike C, basic class definitions have been added to MATLAB though they aren't commonly used. *EasySpin* uses a series of '.m' files that represent different abstractions of the overall modeling system that may or may not be implemented in the form of classes. For this thesis, I will use the term 'class' to refer to any modular component of the provided *EasySpin* library.

The most notable classes that are supplied with the library are the core plotting functions for ESR spectrums. These include such jocose names as "garlic" for cw isotropic ESR and "pepper" for solid state CW ESR (which I will use). Table 2.1 shows the full list of possible plotting functions supplied in the library. Other functions supplied in Easyspin are mostly related to data import/export, data analysis, and system optimizations.

In addition to the classes supplied in the *EasySpin* library, I have also built a few of my own for better visualization of spin systems. One such class (which is included in the online repository cited in the introduction) is called "zeeman.m". This program draws the field splitting of the Zeeman interactions in the spin system over increasing magnetic field. Another class I implemented builds upon this one and is called "animate.m". This draws the Zeeman diagram and then animates the

Table 2.1 List of possible *EasySpin* plotting functions. '*pepper*' is the main function that will be used in this thesis.

Function	Description
garlic	cw EPR, isotropic and fast motion
chili	cw EPR, slow motion
pepper	cw EPR, solid state
salt	ENDOR, solid state
saffron	pulse EPR/ENDOR, solid state
curry	SQUID magnetometry
blochsteady	Bloch equations, steady-state
pulse	Shaped pulses
esfit	least-squares fitting

plot by drawing the resonant magnetic field differences for a given microwave frequency. Again, all of these additional classes are included in an online repository linked to in the introduction of this thesis.

2.3 Selecting Hamiltonian Arguments

In addition to experimentally gathering the ESR data via ODMR, this thesis is also concerned with emulating the ESR spectrum via EasySpin. However, in order to do this, the Hamiltonian for each material needs to be understood to the fullest possible extent.

Table 2.2 Summary of the spin-Hamiltonian parameters for the various defect centers of ZnO nanowires given by J. E. Stehr et al. The spin-parity and diagonalized g-tensor values are given for each defect center. For the non-axial centers, φ is the angle between the z and c axis.

		Axial		Nonaxial			
Center	S	g_{\perp}	g_{\parallel}	g _{xx}	<i>8</i> уу	g _{zz}	φ (deg)
$\overline{V_{\mathrm{Zn}}^{-}}$	1/2	2.0193	2.0024	2.0173	2.0183	2.0028	110.75
Z	1/2	2.006	2.020				20
$V_{Zn}/Zn_{i} \\$	1			1.9888	1.9893	1.9815	110.75
Zn_i^+	1/2	1.9595	1.9605				0
D^*	1/2	1.9595	1.9605				0

2.3.1 ZnO Nanowires

One of the works cited in this thesis investigates the resonant properties of zinc oxide nanowires??. The author, Stehr, models the ESR spectrum using g-tensor and spin-values given for each defect center. This data is summarized in table 2.2. Stehr uses the *EasySpin* modeling system to show the predicted ESR spectrum resulting from the V_{Zn}^- , V_{Zn}/Zn_i , and D^* defect center contributions. He models each Hamiltonian separately using *EasySpin* and then combines the results with MATLAB. Figure 2.3 shows the plots that he presented to the journal after this process.

However, one thing Stehr did not include was the ESR line-width parameters and derivations he used when constructing the spin system via EasySpin. As a verification for the process he used, I have included a reconstruction of the same ESR spectrum that was included in his publication. Through comparison I found that the line-width parameters used by Stehr were 1, 5, and 2 mT for V_{Zn}^- , V_{Zn}/Zn_i , and D^* respectively. Though it is unknown as to how he arrived at these values, it is likely that he compared the theoretical model to the experimental data until a reasonable fit was achieved. In Figure 2.4 I give the recreation of the spectrum and the code used to generate the spin

Figure 2.3 The ESR spectrum presented by Stehr et al. for ZnO Nanowires. The results of computational modeling using *EasySpin* are shown in dashed-red (individual) and solid-red (total). The black line represents actual data from the sample and the blue line is included for comparison to the bulk species.

Figure 2.4 The recreation of the plots given by Stehr et al. for the ZnO nanowire ESR spectrum. All three defect centers are included as in the original figure.

system that Stehr used.

2.3.2 Irradiated 4H-SiC

One of the two primary materials studied in this thesis is silicon carbide. In order to compare the theoretical prediction of the ESR spectrum with experimental results we first need to discover what

arguments are used in the overall spin Hamiltonian. Below I have listed the significance and value of each term used in the spin Hamiltonian. I have also included the pertinent code to represent this system in terms of the aforementioned *EasySpin* struct definition in figure 2.5.

SiC is a commonly known to be a spin-3/2 system with two major ESR peaks in its spectrum. The parameter '.S' given for the *EasySpin* system is then just 3/2. Moreover, as mentioned previously, SiC has one major defect of interest: the silicon divacancy in its lattice structure. The g-factor for this defect center is given as a rhomboidal two-termed g-factor [$g_{xx} = g_{yy}$, g_{zz}] of [2.003, 2.0045]. This is listed as the '.g' parameter in the struct definition.

The linewidths are relatively narrow for specimens related to SiC. By comparison to experiment we have found that the full-width-half-maximum value of the line-widths is close to unity. Using *EasySpin* this means that the '.lw' parameter should be set to around 1

One interesting property of this material is that it exhibits a zero-field splitting which divides the +3/2 and +1/2 from the -1/2 and -3/2 states even when there is no external magnetic field. In our definition we have measured this parameter to be about '.D= 450' MHz at the zero-field marking.

Though it is not readily apparent, SiC also exhibits hyperfine splitting in its major ESR peaks. To observe this splitting, two terms can be added to the spin-system: '.A' and '.Nucs'. For SiC these two parameters take on the value of '-120' and '29Si' respectively. However, in our example they are insignificant and therefore not included. In Figure 2.5 I have commented out these two lines of code to reflect that.

2.3.3 Thin-Film CdTe

[Rough - More] The other material of interest studied in this work is CdTe. (Writer's comment: honestly, I may just take anything related to CdTe out of my thesis. I don't really have that much information on it to produce good plots.)

```
Sys.S = 3/2;
Sys.g = [2.0003, 2.0045];
%Sys.A = -120;
%Sys.Nucs = '29Si';
Sys.D = 450;
Sys.lw = 1;

Exp.mwFreq = .4; % GHz
Exp.Range = [10 20]; % mT
```

Figure 2.5 The representation of the known parameters included in the *EasySpin* struct definition for analysis of 4H-SiC

Figure 2.6 The representation of the known parameters included in the *EasySpin* struct definition for analysis of thin-film CdTe.

[Rough - more] This system exhibits a dominating Cd interstitial defect (I think. I should look that one up) which contributes a spin-1/2 term to the Hamiltonian.

[Rough - more] The crystal structure of CdTe is (I'll have to look this up) and thus the g-factor included in the Hamiltonian is (again, i have to look this up).

[Rough - more] I have included the pertinent code to represent this system in terms of the aforementioned *EasySpin* struct definition in figure 2.6.

Chapter 3

Experimental Methods

3.1 Preparation of Silicon Carbide Samples

Three different samples of 4H-SiC were provided to us by our collaborator Dr. Sam Carter of the Naval Research lab. Each sample was prepared with a different irradiation fluence to introduce silicon defects into the lattice. The first sample that we tested was irradiated with 2 MeV protons at a fluence of 10^{14} cm⁻². The second sample was similarly irradiated with 2 MeV protons but at a fluence of 10^{13} cm⁻². The final sample was an electron-irradiated sample produced with a fluence of 10^{17} cm⁻². The different strengths of irradiation in each sample is presumed to change the concentration of vacancy defects formed within the sample. A higher fluence typically produces a higher concentration of defects. Fig 3.1 shows the distribution of defects in a 10^{12} cm⁻² sample as a function of spatial depth from the sample's normal face. This data was provided to us by our collaborator Sam Carter as part of a "Stopping and Range of Ions in Matter" (SRIM) study to predict the stopping range for the protons inside this particular species of silicon carbide material. From these calculations, Dr. Carter predicted that the stopping distance of the ions would be at about 44 μ m from the sample's surface. However, further photoluminescence studies showed the

Figure 3.1 Depth-dependent photoluminescence of the 10^{12} cm² sample at the V2 wavelength. The large peak at 34 μ m indicates the stopping position of the protons. The spatial resolution was 1 μ m.

concentrations to be closer to about 32 μ m rather than 44 μ m. Finally, each sample was cut such that the c-axis of the lattice was eight degrees from the direction normal to the sample face.

3.2 Preparation of Cadmium Telluride Samples

Like the silicon carbide, three different varieties of CdTe were prepared for the purpose of our optical study. One was CSS deposited and two were formed using solution deposition CdTe by our collaborator Dr. Mike Scarpulla of the University of Utah. All three samples were produced as a p-type semiconductor and contain vacancy defects in the crystal-lattice formed through a type of arsenic doping that has been predicted to yield superior results over current techniques commonly used.

All samples were quite old and required special surface preparation upon arrival in our lab. The age-acquired surface recombination velocity was reduced using the procedure discussed in ?? right before the measurements were taken.

3.3 Experiment Background

As mentioned earlier, ODMR is a particular type of ESR. The major difference is that ODMR uses a double-resonance technique to collect ESR data. Because of this, samples had to exhibit adequate resonance in their photoluminescence in order for the absorption of the microwave frequencies to be measured by our detectors. Figures 3.2 and 3.3 show the photoluminescence spectra of SiC and CdTe with the pertinent peaks of interest highlighted.

Figure 3.2 Photoluminence plot showing PL strength vs. wavelength in SiC. The peak near 915 nm is the primary peak of interest as it represents the V2 silicon vacancy defect.

Figure 3.3 Photoluminence plot showing PL strength vs. wavelength of CdTe.

Furthermore, the experiments performed in this thesis were performed in tandem with another study involving electron spin coherence in silicon carbide. Almost all of the equipment used in the spin-studies project was used directly for collecting data for this thesis as well. Because of this, the 3.4 section only summarizes the more important elements and details only those aspects of the experiment that significantly deviate from previous projects. For a more detailed description of the experiment please reference Jacob Embley's undergraduate senior thesis.

Figure 3.4 shows the overall setup used in this experiment. The basic components necessary to collect ODMR data are: A laser to stimulate photoluminescence, a constant magnetic field, and an adjustable microwave generator to transition spins between energy levels. The cryostat is not completely needed but is rather used as a means to keep the sample at a constant temperature for consistency in experiment. These components are described in detail in the next section.

3.4 Experiment Setup

3.4.1 Temperature Controller and Static Magnetic Field

A nonmagnetic *CryoIndustries* cryostat was used to maintain constant temperature on the sample throughout the duration of the experiments. A turbopump was used in conjunction with the cryostat to keep the pressure around 10^{-5} mbar. A PID *CryoCon* controller was used as the heating element

Figure 3.4 The diagram showing the necessary (labeled) components and arrangement for the ODMR experiment we used.

in the chamber. When used in combination with the cryostat, any temperature between 8 K and 300 K could be achieved. Many different temperatures of ODMR were recorded for the samples between these two temperatures.

An external static magnetic field of 0.37 T was applied constantly throughout the experiment. A large iron-core electromagnet was powered using a Magna-Power Electronics TS Series IV power supply. A Lakeshore DSP 750 gaussmeter was used as a PID controller to make fine adjustments to the magnetic field so that it stayed at 0.37 T. Most ESR-type experiments hold microwave frequency constant and sweep magnetic field strength, but for us it was easier to do the other way around. The results show the same thing either way.

3.4.2 Laser and Optics

In order for photoluminescence to be measured off the sample, a laser must stimulate the sample first. The laser used for the experiment was a 3900 S Ti:Sapph laser tuned to 870 nm and pumped by a 532 nm solid diode laser. The Ti:Sapph was focused to around 50 micrometers and controlled by a Brockton Electro-Optics Corp BEOC laser power controller. The laser was chopped with a NEOS Technology 15210 acousto-optic modulator (AOM) and paired with a stanford research system lock-in amplifier recording filtered light from a photodiode.

3.4.3 Microwave Generation and Amplification

Microwaves induce transitions between the Zeeman energy levels and are the fundamental variable modulated to retrieve ODMR data. The microwaves used for this experiment were produced using an Agilent Technologies E8257D microwave generator set at 10.4855 GHz at 0 dBm. A 20T4G18 traveling wave tube microwave amplifier increase the power of the microwaves up to about 40 dBM and then fed them to a coupling loop placed next to the sample within the cryostat.

3.4.4 Software Controller Interfaces and Data Recording

All experiments were conducted using a LabVIEW suite of programs designed to succinctly gather and record ODMR data. For our experiment, the LabVIEW suite controlled the microwave and laser modulating so that both could be referenced with a lock-in amplifier as necessary. The microwave generator and lock-in amplifier were interfaced using a GPIB addressing bus implemented as a separate class instantiation in the main LabVIEW program. The instrument classes were all designed to run in parallel to the main scanning software for better experiment control. The generic scanner object was built to handle an abstracted object implementing a "scannable" interface and another object implementing a "readable" interface. The scanner was built robustly enough to handle any combination of instrumentation that inherits from these two interfaces. It will give directives to the "scannable" object while also recording data from the "readable" object at the same time. A beta version of the program is linked-to in the introduction of this thesis and represents the ongoing work of myself, Ryan Peterson, Kyle Miller, Phil White, John Colton, and others.

In addition to the main LabVIEW suite of programs used, an additional PID VI was built to run on its own thread. This was used to handle the magnetic field strength incident on our sample and make minor adjustments to the power-supply for the magnet according to measurements read off of the gaussmeter inserted into the field.

The overall program would accept as input a range of microwave frequencies and then record the absorption from the sample representing the ODMR. After this data was recorded, a graphing software known as *Origin* was used to produce plots from the raw data. No other data analysis was needed apart from the straight reproduction of the raw data into readable plots. The concluding chapter shows these results.

Chapter 4

Results

- 4.1 Computational Predictions
- 4.2 Experimental Results
- 4.3 Data Analysis
- 4.4 Conclusion

Figure 4.1 This is the figure description.

Figure 4.2 This is the figure description.

4.4 Conclusion 30

Figure 4.3 This is the figure description.

Figure 4.4 This is the figure description.

Appendix A

Electron Spin Studies of Electron Irradiated SiC

Figure A.1 This is the figure description.

Figure A.2 This is the figure description.

Appendix B

Optical Studies of Cadmium Telluride

Appendix C

Electron Spin Coherence of Silicon

Vacancies in Proton-Irradiated 4H-SiC

word (Carlos et al. 2006) (Calusine et al. 2016) (Stoll 2015) (Stehr et al. 2013) (Stoll & Schweiger 2006) (Embley 2016) (Embley et al. 2017) (Miller 2015) (Poole 1967) (Muzafarova et al. 2016) (Stoll & Britt 2009) (Poole 1994) (Stavola 1998) (Kennedy & Glaser 1998) (Akhmedzhanov et al. 2016) (Shor 1999) (Bennett & Divincenzo 2000) (Baranov et al. 2011) (Srman et al. 2000) (Nehrkorn et al. 2015) (Bar-Gill et al. 2013) (Astakhov et al. 2016) (Carter et al. 2015) (Pake 1973) (?)

Figure 4.1 A mirror with a hole is used to extract high-order harmonics generated in counter-propagating laser beams.

Figure 4.2 This is the figure description.

Bibliography

Akhmedzhanov, R., Gushchin, L., Nizov, N., Nizov, V., Sobgayda, D., Zelensky, I., & Hemmer, P. 2016, Physical Review A - Atomic, Molecular, and Optical Physics, 94

Astakhov, G. V., et al. 2016, Applied Magnetic Resonance, 47, 793

Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D., & Walsworth, R. L. 2013, Nature Communications, 4

Baranov, P. G., Bundakova, A. P., Soltamova, A. A., Orlinskii, S. B., Borovykh, I. V., Zondervan,R., Verberk, R., & Schmidt, J. 2011, Physical Review B - Condensed Matter and MaterialsPhysics, 83

Bennett, C. H., & Divincenzo, D. P. 2000, Nature, 404, 247

Calusine, G., Politi, A., & Awschalom, D. D. 2016, Physical Review Applied, 6

Carlos, W. E., Garces, N. Y., Glaser, E. R., & Fanton, M. A. 2006, Physical Review B - Condensed Matter and Materials Physics, 74

Carter, S. G., Soykal, O. O., Dev, P., Economou, S. E., & Glaser, E. R. 2015, Physical Review B - Condensed Matter and Materials Physics, 92

Embley, J. S. 2016, Electron Spin Coherence in Silicon Vacancy Defects of Proton-irradiated Silicon Carbide

BIBLIOGRAPHY 36

Embley, J. S., et al. 2017, Electron spin coherence of silicon vacancies in proton-irradiated 4H-SiC

Kennedy, T. A., & Glaser, E. R. 1998, Magnetic Resonance of Epitaxial Layers Detected by Photoluminescence, Semiconductors and Semimetals, 93–136

Miller, K. G. 2015, Electron Spin Echo and Coherence Times in Silicon Carbide Defects

Muzafarova, M. V., Ilin, I. V., Anisimov, A. N., Mokhov, E. N., Soltamov, V. A., & Baranov, P. G. 2016, Physics of the Solid State, 58, 2406

Nehrkorn, J., Telser, J., Holldack, K., Stoll, S., & Schnegg, A. 2015, Journal of Physical Chemistry B, 119, 13816

Pake, G. E. 1973, The physical principles of electron paramagnetic resonance, 2nd edn. (W.A. Benjamin, Advanced Book Program, Reading, MA)

Poole, C. A. 1994, Handbook of electron spin resonance (American Institute of Physics, New York, N.Y.)

Poole, C. P. 1967, Electron spin resonance (Interscience Publishers, New York)

Shor, P. W. 1999, SIAM Review, 41, 303

Srman, E., Son, N. T., Chen, W. M., Kordina, O., Hallin, C., & Janzn, E. 2000, Physical Review B
- Condensed Matter and Materials Physics, 61, 2613

Stavola, M. 1998, Identification of defects in semiconductors (Academic Press, San Diego)

Stehr, J. E., Chen, S. L., Filippov, S., Devika, M., Reddy, N. K., Tu, C. W., Chen, W. M., & Buyanova, I. A. 2013, Nanotechnology, 24, 015701

Stoll, S. 2015, Methods in Enzymology, Vol. 563, CW-EPR Spectral Simulations: Solid State

BIBLIOGRAPHY 37

Stoll, S., & Britt, R. D. 2009, Physical Chemistry Chemical Physics, 11, 6614

Stoll, S., & Schweiger, A. 2006, Journal of Magnetic Resonance, 178, 42