Set Operations: Union and Intersection Cheat Sheet

Definitions

• Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

• Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Key Properties

General Laws

Property	Union	Intersection
Commutative	$A \cup B = B \cup A$	$A\cap B=B\cap A$
Associative	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A\cap B)\cap C=A\cap (B\cap C)$
Idempotent	$A \cup A = A$	$A\cap A=A$
Identity	$A \cup \emptyset = A$	$A\cap U=A$ (U = universal set)
Domination	$A \cup U = U$	$A\cap\emptyset=\emptyset$

Distributive Laws

1. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

2. $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$

Absorption Laws

• $A \cup (A \cap B) = A$

• $A \cap (A \cup B) = A$

Proof Strategies

Equality Proofs

To prove X=Y:

1. Show $X\subseteq Y$

(Assume $x \in X$, prove $x \in Y$)

2. Show $Y\subseteq X$

(Assume $y \in Y$, prove $y \in X$)

Subset Relations

To prove $A \subseteq B$:

Assume $a \in A$, then show $a \in B$.

Proof Examples

1. Distributive Law Proof: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof

(i) Show $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$

Let $x \in A \cup (B \cap C)$.

Then $x \in A$ or $x \in B \cap C$.

- If $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$, so $x \in (A \cup B) \cap (A \cup C)$.
- If $x \in B \cap C$, then $x \in B$ and $x \in C$. Thus $x \in A \cup B$ and $x \in A \cup C$, so $x \in (A \cup B) \cap (A \cup C)$.

(ii) Show $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

Let $x \in (A \cup B) \cap (A \cup C)$.

Then $x \in A \cup B$ and $x \in A \cup C$.

- If $x \in A$, then $x \in A \cup (B \cap C)$.
- If $x \notin A$, then $x \in B$ (from $x \in A \cup B$) and $x \in C$ (from $x \in A \cup C$). Thus $x \in B \cap C$, so $x \in A \cup (B \cap C)$.

2. Absorption Law Proof: $A\cap (A\cup B)=A$

Proof

(i) Show
$$A\cap (A\cup B)\subseteq A$$

Let $x \in A \cap (A \cup B)$.

Then $x \in A$ and $x \in A \cup B$. Thus $x \in A$.

(ii) Show
$$A\subseteq A\cap (A\cup B)$$

Let $x \in A$.

Then $x \in A \cup B$ (since $A \subseteq A \cup B$), so $x \in A \cap (A \cup B)$.

.. Equality holds by double inclusion.

De Morgan's Laws (Sets)

- $(A \cup B)^c = A^c \cap B^c$
- $(A \cap B)^c = A^c \cup B^c$

Tips for Proofs

- Membership Tables: Verify identities by enumerating cases.
- Venn Diagrams: Visualize relationships (but not formal proofs).
- Logical Equivalence: Convert \cup to \vee and \cap to \wedge in logic statements.