Dept. of Math.

2023.2.13

具体>抽象~具体

1 Vector Spaces (向量空间) J. linear maps 结性映射

- Introduction
- ② Complex Numbers (复数)
- 3 Lists
- \P^n : the higher-dimensional analogues of \mathbb{R}^2
- Degression on Fields
- Definition of Vector Space
- Homework Assignment 1

Introduction

- Linear algebra is the study of <u>linear maps</u> on finite-dimensional vector spaces.
- In linear algebra, better theorems and more insight emerge if complex numbers are investigated along with real numbers.
- We will begin by introducing the complex numbers and their basic properties.
- We will generalize the examples of a plane and ordinary space to \mathbb{R}^n and \mathbb{C}^n .
- We then will generalize to the notion of a vector space.
- Then our next topic will be subspaces, which play a role for vector spaces analogous to the role played by subsets for sets.

Complex Numbers (复数)

The idea is to assume we have a square root of -1, denoted i, that obeys the usual roles of arithmetic. Here are the formal definitions:

1.1 **Definition** complex numbers

- A *complex number* is an ordered pair (a, b), where $a, b \in \mathbb{R}$, but we will write this as a + bi.
- The set of all complex numbers is denoted by C:

$$\mathbf{C} = \{a + bi : a, b \in \mathbf{R}\}.$$

• Addition and multiplication on C are defined by

$$(a+bi) + (c+di) = (a+c) + (b+d)i,$$

 $(a+bi)(c+di) = (ac-bd) + (ad+bc)i;$

here $a, b, c, d \in \mathbf{R}$.

EULER

The symbol i was first used to denote $\sqrt{-1}$ by Swiss mathematician Leonhard Euler in 1777.

(Courtesy: New York Hall of Science, August 11, 2019)

1.3 Properties of complex arithmetic

commutativity

$$\alpha + \beta = \beta + \alpha$$
 and $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in \mathbb{C}$;

associativity

$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 and $(\alpha \beta)\lambda = \alpha(\beta \lambda)$ for all $\alpha, \beta, \lambda \in \mathbb{C}$;

identities

$$\lambda + 0 = \lambda$$
 and $\lambda 1 = \lambda$ for all $\lambda \in \mathbb{C}$;

additive inverse

for every $\alpha \in \mathbb{C}$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha + \beta = 0$;

multiplicative inverse

for every $\alpha \in \mathbb{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha\beta = 1$;

distributive property

$$\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$$
 for all $\lambda, \alpha, \beta \in \mathbb{C}$.

1.5 **Definition** $-\alpha$, subtraction, $1/\alpha$, division

Let $\alpha, \beta \in \mathbb{C}$.

• Let $-\alpha$ denote the additive inverse of α . Thus $-\alpha$ is the unique complex number such that

$$\alpha + (-\alpha) = 0.$$

• Subtraction on C is defined by

$$\beta - \alpha = \beta + (-\alpha)$$
.

• For $\alpha \neq 0$, let $1/\alpha$ denote the multiplicative inverse of α . Thus $1/\alpha$ is the unique complex number such that

$$\alpha(1/\alpha) = 1.$$

• Division on C is defined by

$$\beta/\alpha = \beta(1/\alpha)$$
.

Notation

So that we can conveniently make definitions and prove theorems that apply to both real and complex numbers, we adopt the following notation:

1.6 Notation F

Throughout this book, F stands for either R or C.

- \bullet The letter $\mathbb F$ is used because $\mathbb R$ and $\mathbb C$ are examples of what are called fields.
- Elements of F are called scalars.
- The word "scalar", a fancy word for "number", is often used when we want to emphasize that an object is a number, as opposed to a vector.

Scalar multiplication

Lists
$$((X_1, X_2), (X_2, X_4, X_5))$$

length=2

1.8 Definition list, length

Suppose n is a <u>nonnegative</u> integer. A *list* of <u>length</u> n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length n looks like this:

$$(x_1,\ldots,x_n).$$

Two lists are equal if and only if they have the same length and the same elements in the same order.

- Many mathematicians call a list of length *n* an *n*-tuple.
- Lists differ from sets in two ways: in lists, order matters and repetitions have meaning: in sets, order and repetitions are irrelevant.

1.10 **Definition** \mathbf{F}^n

 \mathbf{F}^n is the set of all lists of length n of elements of \mathbf{F} :

$$\mathbf{F}^n = \{(x_1, \dots, x_n) : x_j \in \mathbf{F} \text{ for } j = 1, \dots, n\}.$$

For $(x_1, ..., x_n) \in \mathbb{F}^n$ and $j \in \{1, ..., n\}$, we say that x_j is the jth *coordinate* of $(x_1, ..., x_n)$.

- Addition in \mathbb{F}^n .
- Commutativity of addition in \mathbb{F}^n .
- Definition of 0 in \mathbb{F}^n .
- Additive inverse in \mathbb{F}^n .
- Scalar multiplication in \mathbb{F}^n .

Degression on Fields

Definition

A field is a set containing at least two distinct elements called 0 and 1, along with operations of addition and multiplication satisfying all the properties listed in 1.3.

Example

Thus $\mathbb R$ and $\mathbb C$ are fields, as is the set of rational numbers along with the usual operations of addition and multiplication.

Example

Another example of a field is the set $\{0,1\}$ with the usual operations of addition and multiplication except that 1+1 is defined to equal 0.

addition, scalar multiplication

The motivation for the definition of a vector space comes from properties of addition and scalar multiplication in \mathbb{F}^n :

- Addition is commutative, associative, and has an identity.
- Every element has an additive inverse.
- Scalar multiplication is associative.
- Addition and scalar multiplication are connected by distributive properties.

1.18 **Definition** addition, scalar multiplication

- Cannot be outside on a set V is a function that assigns an element $u+v \in V$ to each pair of elements $u, v \in V$.
- A scalar multiplication on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \mathbf{F}$ and each $v \in V$.

Vector Space: Definition

Definition

A <u>vector space is a set V</u> along with an addition on V and a scalar multiplication on V such that the following properties hold:

- (1) Commutativity: u + v = v + u for all $u, v \in V$;
- (2) Associativity: $(\underline{u+v}) + \underline{w} = \underline{u+(v+w)}$ and $(\underline{ab})\underline{v} = \underline{a(bv)}$ for all $\underline{u,v,w} \in V$ and all $\underline{a,b} \in \mathbb{F}$; \rightarrow Scalars
- (3) <u>Additive Identity</u>: there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$;
- (4) Additive Inverse: for every $v \in V$, there exists $w \in V$ such that u + w = 0;
- (5) Multiplicative Identity: 1v = v for all $v \in V$;
- (6) Distributive Properties: a(u+v) = au + av and (a+b)v = av + bv for all $a,b \in \mathbb{F}$ and all $u,v \in V$.

One more definition

1.23 Notation

F={+ S-F}

- If S is a set, then \mathbf{F}^S denotes the set of functions from S to \mathbf{F} .
- For $f, g \in \mathbf{F}^S$, the sum $f + g \in \mathbf{F}^S$ is the function defined by

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in S$.

• For $\lambda \in \mathbf{F}$ and $f \in \mathbf{F}^S$, the **product** $\lambda f \in \mathbf{F}^S$ is the function defined by

$$(\lambda f)(x) = \lambda f(x)$$

for all $x \in S$.

eg. R R F1,2,00,115

eq. f(1)=x,

f(1)=

 F^S is a vector space.

Elementary Properties of Vector Spaces

vector, point

- "a best"> R or C
- real vector space, complex vector space
- Unique additive identity: A vector space has a unique additive identity.
- Unique additive inverse: Every element in a vector space has a unique additive inverse.
- Notation -v, w-v
- Notation V: For the rest of the book, V denotes a vector space over \mathbb{F} .
- The number 0 times a vector. e.g. $0.\vec{v} = \vec{v}$ $0.\vec{v} = \vec{v}$ $0.\vec{v} = (0+0)\vec{v}$
- A number times the vector 0.

$$\Rightarrow {}^{=}_{0} {}^{0} {}^{+}_{0} {}^{0} {}^{0}$$

• The number -1 times a vector. (-1)) = -

$$0.40 = 0.7 = (1+(-1))V$$

= 1. $V+(-1)\cdot V = 1/1+(-1)V$.

Cancellation Law for Vector Addition

Theorem

If x, y, and z are vectors in a vector space V such that x + z = y + z, then x = y.

Proof.

There exists a vector \underline{v} in \underline{V} such that $\underline{z} + \underline{v} = \underline{0}$. Thus

$$x = x + 0 = x + (z + v) = (x + z) + v$$
$$= (y + z) + v = y + (z + v) = y + 0 = y.$$

Example

Example

Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. For $(a_1, a_2), (b_1, b_2) \in V$ and $c \in \mathbb{R}$, define

$$(a_1,a_2)+(b_1,b_2)=(a_1+2b_1,a_2+2b_2)$$

and

$$c(a_1, a_2) = (ca_1, ca_2).$$

Is V a vector space over \mathbb{R} with these operations? Justify your answer.

Homework Assignment 1

1.A: 1, 3, 11, 12, 14.

1.B: 2, 3, 4, 5.