Ingeniería de Sistemas y Computación

Diseño y análisis de algoritmos Profesor: Mateo Sanabria Ardila Preparación parcial 1

Fecha de entrega: * 2023-20 Nota máxima: *

1 Ecuaciones de recurrencia

- 1. Soluciones las siguientes ecuaciones de recurrencia y determine el orden de complejidad, para las ecuaciones:
 - I Proponer una cota usando arboles de recurrencia.
 - II Demostrar la cota propuesta usando el método de sustitución.
 - III De ser posible compruebe su respuesta usando el método maestro.

.....

(a)
$$T(n) = T(n-1) + n$$
, $T(0) = 1$, $T(1) = 5$.

(b)
$$T(n) = T(n-2) + n^2$$
, $T(0) = 1$, $T(1) = 5$.

(c)
$$T(n-2) = 2T(n) - T(n-1)$$
, $T(0) = 1$, $T(1) = 5$.

(d)
$$T(n) = 3T(\frac{n}{2}) + n$$
, $T(0) = 1$.

(e)
$$T(n) = 7T(\frac{n}{2}) + 20n^2$$
.

(f)
$$T(n) = T(\frac{n}{2}) + T(\frac{n}{4}) + T(\frac{n}{8}) + n$$
.

(g)
$$T(n) = 4T(\frac{n}{2}) + n^2\sqrt{n}$$
.

2 Programación dinámica

- 1. Ejercicios propuestos de LeetCode, para estos ejercicios se deben hacer tres implementaciones y comparar las complejidades temporales de cada una:
 - I Fuerza bruta
 - II Dividir y conquistar
 - III Programación dinámica
 - (a) 62. Unique Paths
 - (b) 91. Decode Ways
 - (c) 152. Maximum Product Subarray
 - (d) 322. Coin Change
 - (e) 329. Longest Increasing Path in a Matrix
 - (f) 494. Target Sum
 - (g) 1143. Longest Common Subsequence