第2章: 关系数据库

Relational Databases

邹兆年

哈尔滨工业大学 计算机科学与技术学院 海量数据计算研究中心 电子邮件: znzou@hit.edu.cn

2019年春

◆ロ ト ◆ 個 ト ◆ 重 ト ● ■ り へ で

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春 1 / 49

教学内容1

- 关系数据模型
 - ▶ 关系数据结构
 - ▶ 关系操作
 - ▶ 关系完整性约束
- ② 关系代数
 - ▶ 基本关系代数操作
 - ▶ 派生关系代数操作
 - ▶ 扩展关系代数操作

2.1 关系数据模型

Relational Data Model

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

3 / 49

关系数据模型(Relational Data Model)

- 关系数据模型是一种被广泛使用的实现数据模型(implementation data model)
- 关系数据模型是众多关系数据库管理系统的模型基础

关系数据模型的三要素

- ❶ 关系数据结构
- 2 关系操作
- ③ 关系完整性约束

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

4 / 49

关系数据模型要素1:关系数据结构

关系数据模型的三要素

- 关系数据结构
- △ 关系操作
- ③ 关系完整性约束
- 关系数据模型使用唯一的数据结构—关系(relation)
- 不严格地讲,关系就是一张二维表(table)
 - ▶ 行—元组(tuple)/记录(record),表示对象
 - ▶ 列—属性(attribute)/域(field),表示对象的性质

Student

Sno	Sname	Ssex	Sage	Sdept
221101	Nick	М	20	Physics
231101	Elsa	F	19	CS
231102	Eric	М	19	CS
232101	Abby	F	18	Math

邹兆年 (CS@HIT)

2019年春

关系(Relation)的定义

Definition (关系)

设 D_1, D_2, \ldots, D_n 是n个值域(domain), $D_1 \times D_2 \times \cdots \times D_n$ 的子集R称 作 D_1, D_2, \ldots, D_n 上的关系(relation), 记作 $R(D_1, D_2, \ldots, D_n)$ 。

- R—关系名
- n—关系R的度(degree)
- $(d_1, d_2, ..., d_n) \in R$ —关系R的元组(tuple),其中 d_i 是元组的分 量(component)

 $D_1 = \text{ } \forall \forall F \notin A, D_2 = \text{ } \forall f \notin A, D_3 = \{M, F\}, D_4 = \mathbb{N}, D_5 = \text{ } f \notin A$

Student

221101	Nick	М	20	Physics
231101	Elsa	F	19	CS
231102	Eric	М	19	CS
232101	Abby	F	18	Math

 $Student \subseteq D_1 \times D_2 \times D_3 \times D_4 \times D_5$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

关系的正确性

- D₁ × D₂ ×···× D_n的任意子集都是关系,但未必都是正确的关系
- 只有符合客观实际的关系才是正确的关系

Student						
221101	Nick	М	20	Physics		
231101	Elsa	F	19	CS		
231102	Eric	М	19	CS		
232101	Abby	F	18	Math		
232101	Abby	F	19	Math		

上面的Student关系是不正确的,因为一个人不能同时有2个年龄

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

7 / 49

关系的属性(Attributes)

Definition (属性)

由于域可能相同,为了加以区分,可为关系 $R(D_1,D_2,\ldots,D_n)$ 的每个域 D_i 起一个不同的名字 A_i ,称作属性(attribute),故关系R常表示为 $R(A_1,A_2,\ldots,A_n)$ 。

Student

Sno	Sname	Ssex	Sage	Sdept
221101	Nick	М	20	Physics
231101	Elsa	F	19	CS
231102	Eric	М	19	CS
232101	Abby	F	18	Math

属性Sno的域是学号集合, 属性Sname的域是姓名集合, 属性Ssex的域是 $\{M,F\}$, 属性Sage的域是 \mathbb{N} , 属性Sdept的域是系名集合

关系的键(Keys)

关系的某些属性具有区分不同元组的作用,称作键(key)

Definition (超键)

如果关系的某一组属性的值能唯一标识每个元组,则称该组属性为超 键(super key)。

• 例: 在关系Grade(StudentNo, CourseNo, Score)中,属性 组{StudentNo, CourseNo}和{StudentNo, CourseNo, Score}都是超键

Definition (候选键)

如果一个超键的任意真子集都不是超键,则称该超键为候选 键(candidate key)。候选键=极小的(minimal)超键。

• 例: {StudentNo, CourseNo}为关系Grade的候选键

Definition (主键)

一个关系有至少一个候选键,指定其中一个作为主键(primary key)。

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

关系的键(Keys)

不同关系中的元组可以存在联系,这种联系是通过外键建立起来的

Definition (外键)

邹兆年 (CS@HIT)

设F是关系R的属性子集,但F不是R的主键。若F与关系S的主健K相对 应,则称F是R的外键(foreign key)

- R—参照关系(referring relation)
- S—被参照关系(referred relation)
- R与S可以是同一关系(什么情况下可以?)

Student

Sno	Sname	Ssex	Sage	Sdept
221101	Nick	М	20	Physics
231101	Elsa	F	19	CS
231102	Eric	М	19	CS
232101	Abby	F	18	Math
232102	Cincy	F	18	

Department

Dept	Sloc
Physics	В1
CS	B2
Math	B3

{Sdept}是Student的外键,它参照Department的主键{Dept}

关系数据模型要素2:关系操作

关系数据模型的三要素

- 关系数据结构
- 2 关系操作
- ③ 关系完整性约束
- 查询操作: 从关系数据库中查找数据
- 更新操作: 对关系数据库进行更新
 - ▶ 插入数据
 - ▶ 修改数据
 - ▶ 删除数据

邹兆年 (CS@HIT)

第2章, 关系数据库

2019年春

11 / 49

查询语言(Query Languages)

查询语言是用于表示关系操作的语言查询语言的类型

- 关系代数(relational algebra) (第2章第2.2节)
 - ▶ 使用关系代数表达式明确给出查询的执行过程
- 关系演算(relational calculus)
 - ▶ 使用谓词逻辑表达式描述查询
 - ▶ 元组关系演算(tuple relational calculus): 谓词逻辑变量是元组
 - ▶ 域关系演算(domain relational calculus): 谓词逻辑变量是域
- 结构化查询语言SQL (第3章)
 - ▶ 具有关系代数和关系演算的双重特点
 - ▶ 集DDL、DML、DCL于一体

关系数据模型要素3:关系完整性约束

关系数据模型的三要素

- 关系数据结构
- 2 关系操作
- ③ 关系完整性约束
- 完整性约束(integrity constraints): 关系数据库中的所有数据必须满足的约束条件
- 完整性约束的类型
 - ① 实体完整性(entity integrity)
 - ② 参照完整性(referential integrity)
 - ③ 用户定义完整性(user-defined integrity)

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

13 / 49

实体完整性约束

实体完整性约束规则

- ① 关系中任意元组的主键值必须唯一(unique)
- ② 关系中任意元组在主键中的属性值非空(not null)
 - 室值(null)表示值不存在,它既不是0,也不是空串

Student

Sno	Sname	Ssex Sage		Sdept
221101	Nick	М	20	Physics
231101	Elsa	F	19	CS
231102	Eric	М	19	CS
232101	Abby	F	18	Math

参照完整性约束

不同关系中的元组可以存在联系,这种联系是通过外键建立起来的

参照完整性约束规则

设F是关系R的外键,F参照关系S的主键,则R中任意元组的F属性值必须满足以下两个条件之一:

- ① F的值为空
- ② 若F的值不为空,则F的值必须在S中存在

~		- 1			
St	t i i	А	Δ	n	+
ン	LИ	u	ᆫ	11	L

Sno	Sname	Ssex	Sage	Sdept
221101	Nick	М	20	Physics
231101	Elsa	F	19	CS
231102	Eric	М	19	CS
232101	Abby	F	18	Math
232102	Cincy	F	18	

Department

Dept	Sloc
Physics	B1
CS	B2
Math	B3

◆□▶ ◆□▶ ◆■▶ ◆■ りへで

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

15 / 49

用户定义完整性约束

根据应用需求定义的完整性约束条件

- 考试成绩在0-100分之间
- 性别必须为'M'或'F'

关系的模式(Schema)与实例(Instance)

- 关系的模式(schema)是对关系的结构与语义的描述
 - ▶ 关系名、属性名、属性值域、主键、完整性约束、属性依赖关系等
 - ▶ 关系模式是不经常变化的
- 关系的实例(instance)是关系在某一时刻的取值
 - ▶ 关系实例必须符合关系模式
 - ▶ 关系实例是动态变化的
- 关系模式与关系实例的关系如同面向对象程序设计中类(class)与对象(object)的关系

4□ > 4□ > 4□ > 4□ > 4□ > 9

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

17 / 49

2.2 关系代数

Relational Algebra

邹兆年 (CS@HIT)

2019年春 18 / 49

关系代数(Relational Algebra)

- 关系代数是一种使用关系运算(operation)表达式来表示查询的语言
- 关系代数查询表达式明确给出了查询的执行过程
- 关系运算的三要素
 - ① 运算对象: 关系
 - ② 运算符: 选择 σ 、投影 Π 、笛卡尔积 \times 、并U、E-、重命名 ρ 、交 Ω 、 连接 \bowtie 等
 - ③ 运算结果: 关系

4□ ▶ 4□ ▶ 4□ ▶ 4□ ▶ 900

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

19 / 49

基本关系代数操作

六项基本关系代数操作

- 🗓 选择σ
- ② 投影∏
- ③ 笛卡尔积×
- 并∪
- 5 差—
- 6 重命名ρ

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

20 / 49

选择操作(Selection)

- 功能: 从一个关系中选出满足给定条件的元组
- 语法: $\sigma_{\theta}(R)$
 - ► σ—选择操作符
 - ▶ R—关系名
 - ▶ θ —条件表达式,形如A = 10, B > 5的简单逻辑表达式,或由与 \land 、或 \lor 、非¬逻辑运算构成的复杂逻辑表达式

Example

- ① 找出计算机系的全体学生 $\sigma_{Sdept='CS'}(Student)$
- ② 找出计算机系的全体男同学 σ_{Sdept='CS'∧Ssex='M'}(Student)

Student				
Sno	Sname	Ssex	Sage	Sdept
221101	Nick	М	20	Physics
231101	Elsa	F	19	CS
231102	Eric	М	19	CS
232101	Abby	F	18	Math

查询1的结	果				
Sno	Sname	Ssex	Sage	Sdept	
231101	Elsa	F	19	CS	
231102	Eric	М	19	CS	
查询2的结果					
Sno	Sname	Ssex	Sage	Sdept	
231102	Eric	M	19	CS	

邹兆年 (CS@HIT)

第2章: 关系数据库

2010年春

21 / 49

选择操作

关系代数在线练习https://dbis-uibk.github.io/relax/calc.htm 电子产品数据库

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)

Example (练习)

- What PC models have a speed of at least 3.00?
- What PC models have a speed of at least 3.00 and ram of at lest 1024MB?
- What PC models have a speed of at least 3.00 or ram of at lest 1024MB?

投影操作(Projection)

- 功能: 从一个关系中选出指定的列,并去掉重复元组
- 语法: Π_L(R)
 - ▶ □—投影操作符
 - ▶ R—关系名
 - ▶ L—投影属性列表

Example

■ 找出全体学生的学号和姓名 $\Pi_{Sno.Sname}(Student)$

② 找出全部的系 Π_{Sdept}(Student)

Student

Sno	Sname	Ssex	Sage	Sdept
221101	Nick	М	20	Physics
231101	Elsa	F	19	CS
231102	Eric	М	19	CS
232101	Abby	F	18	Math

查询1的结果

旦网工切石水					
Sno	Sname				
221101	Nick				
231101	Elsa				
231102	Eric				
232101	Abby				

查询2的结果

Sdept **Physics** CS Math

邹兆年 (CS@HIT)

23 / 49 2019年春

投影操作

电子产品数据库

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)

Example (练习)

- What are the manufacturers?
- What models does the manufacturer A produce?
- ③ Find the model numbers of all color laser printers (课后练习)

笛卡尔积操作

- 功能: 计算两个关系的笛卡尔积
- 语法: R×S
 - ► R,S—关系名
 - ▶ ×—笛卡尔积操作符

	9	Student				
Sno	Sname	Sname Ssex Sage				
221101	Nick	М	20	Physics		
231101	Elsa	F	19	CS		
231102	Eric	М	19	CS		
232101	Abby	F	18	Math		
232102	Cincy	F	18	Math		

	SC	
Sno	Cno	Grade
221101	1002	92
221101	1003	85
221101	1006	88
231101	1006	90
231102	1003	80
232101	1002	100

4□ > 4□ > 4 = > 4 = > = =

_			
Stud	100+	\/	c_{C}
SLUU	eni	Х	20

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
221101	Nick	М	20	Physics	221101	1002	92
221101	Nick	М	20	Physics	221101	1003	85
221101	Nick	М	20	Physics	221101	1006	88
221101	Nick	М	20	Physics	231101	1006	90
221101	Nick	М	20	Physics	231102	1003	80
221101	Nick	М	20	Physics	232101	1002	100

邹兆年 (CS@HIT)

52章: 关系数据库

2019年春

25 / 49

笛卡尔积操作

Tips

- 笛卡尔积的作用仅仅是将R和S中的元组无条件地连接起来
- 单独计算R×S一般是没有实际意义的(为什么?)
- 笛卡尔积操作通常和选择操作一起使用,即连接(join)

电子产品数据库

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)

Example (练习)

- What PC models with a price less than \$500 does the manufacturer A produce?
- What manufactures make laptops with a hard disk of at least 100GB?

邹兆年 (CS@HIT) 第2章: 关系数据库 2019年春 26 / 49

并操作(Union)

- 功能: 计算关系R和S的并集
- 语法: R∪S
 - ► R, S—关系名
 - ► U—并操作符
- 要求:
 - ① R和S必须具有相同个数的属性
 - ② R和S对应属性的值域必须相容

Example (练习)

电子产品数据库

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Find the model numbers and price of all PC's and all laptops

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春 27 / 49

差操作(Difference)

- 功能: 计算关系R和S的差集
- 语法: R − S
 - ▶ R, S—关系名
 - ▶ --差操作符
- 要求:
 - ① R和S必须具有相同个数的属性
 - ② R和S对应属性的值域必须相容

Example (练习)

电子产品数据库

- Product(maker, model, type)
- PC(model, speed, ram, hd, price)
- Laptop(model, speed, ram, hd, screen, price)
- Printer(model, color, type, price)
- Find the manufacturers that sell laptops but not PC's

邹兆年 (CS@HIT) 第2章: 关系数据库 2019年春 28 / 49

重命名操作(Renaming)

- 功能: 修改关系名和(或)属性名
- 语法:
 - $Φ_{B\leftarrow A}(R)$: 将关系R的属性A更名为B
 - ② ρ_S(R): 将关系R更名为S
 - **③** *ρ_{S(A₁,A₂,...,A_n)}(R)*: 将关系R更名为S, 并将R的全部属性更名 为A₁, A₂,...,A_n

Tips

当把一个关系和它自身进行自连接(self-join)时,需要区分同一个关系的两个副本。在这种情况下,重命名操作发挥着重要作用。

Example (练习)

- Rename the hd attribute of a PC to ssd
- ★★ Find the model numbers of all printers that are cheaper than the printer model 3002

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

29 / 49

派生关系代数操作

- 目的: 只用基本关系代数操作来编写复杂查询是非常繁琐的,因此 我们引入派生(derived)关系代数操作来简化查询编写
- 任何一项派生关系代数操作都可以用基本关系代数操作来表示

派生关系代数操作

- ① 交∩
- ② 内连接⋈θ
- 3 自然连接⋈
- ④ 外连接: 左外连接≥<

 、右外连接≥

 、全外连接≥

 <br/
- ⑤ 除÷

交操作(Intersection)

• 功能: 计算关系R和S的交集

语法: R∩S

▶ R, S—关系名

▶ ∩—交操作符

- 要求:
 - ① R和S必须具有相同个数的属性
 - ② R和S对应属性的值域必须相容

Property

$$R \cap S = R - (R - S)$$

Example (练习)

Find the manufacturers that sell both laptops and PC's

邹兆年 (CS@HIT)

第2章・关系数据库

2019年春

31 / 49

内连接(Inner Join)/ θ 连接(θ -Join)

- 功能: 将关系R和S中满足给定连接条件θ的元组进行连接
- 语法: R ⋈_θ S
 - ▶ N—内连接操作符
 - lackbrack heta—连接条件,条件表达式的语法与选择操作条件相同
- R ⋈ S的结果包含R和S中的全部属性, 同名属性加关系名前缀

	S	Student				
Sno	Sname Ssex Sage Sdep					
221101	Nick	М	20	Physics		
231101	Elsa	F	19	CS		
231102	Eric	М	19	CS		
232101	Abby	F	18	Math		
232102	Cincy	F	18	Math		

	<u> SC </u>	
Sno	Cno	Grade
221101	1002	92
221101	1003	85
221101	1006	88
231101	1006	90
231102	1003	80
232101	1002	100

C+				c_{ℓ}
Student	X Student	Sno-SC	Sno	SC

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
221101	Nick	М	20	Physics	221101	1002	92
221101	Nick	М	20	Physics	221101	1003	85
221101	Nick	М	20	Physics	221101	1006	88
231101	Elsa	F	19	CS	231101	1006	90
231102	Eric	М	19	CS	231102	1003	80
232101	Abby	F	18	Math	232101	1002	100

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

32 / 49

内连接(Inner Join)/ θ 连接(θ -Join)

Property

 $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$

Example (练习)

- Find those pairs of PC models that have both the same speed and RAM. A pair should be listed only once
- ② ★ Find those hard-disk sizes that occur in two or more PC's
- ★★ Find the PC model with the highest available speed
- ◆★ Find the manufacturers of PC's with at least three different speeds

等值连接(equi-join): 连接条件仅涉及相等比较的连接称作等值连接

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

33 / 49

自然连接(Natural Join)

- 功能: 设 $\{A_1, A_2, \dots, A_k\}$ 是关系R和S的同名属性集合 $R.A_1 = S.A_1 \land R.A_2 = S.A_2 \land \dots \land R.A_k = S.A_k$
 - 从连接结果中去掉重复的同名属性(为什么?)
- · 语法: R ⋈ S

	5	<u>Student</u>					
Sno	Sname						
221101	Nick	М	20	Physics			
231101	Elsa	F	19	CS			
231102	Eric	М	19	CS			
232101	Abby	F	18	Math			
232102	Cincy	F	18	Math			

	SC	
Sno	Cno	Grade
221101	1002	92
221101	1003	85
221101	1006	88
231101	1006	90
231102	1003	80
232101	1002	100

Student M SC

		Sii	uaent 🛛	30		
Sno	Sname	Ssex	Sage	Sdept	Cno	Grade
221101	Nick	М	20	Physics	1002	92
221101	Nick	М	20	Physics	1003	85
221101	Nick	М	20	Physics	1006	88
231101	Elsa	F	19	CS	1006	90
231102	Eric	М	19	CS	1003	80
232101	Abby	F	18	Math	1002	100

自然连接(Natural Join)

• 自然连接与θ连接的区别

	自然连接	θ连接
连接条件	隐含给出	明确给出
连接结果的属性	去除重复的同名属性	保留重复的同名属性

Property

$$R \bowtie S = \prod_{attr(R) \cup attr(S)} (R \bowtie_{\bigwedge_{A \in attr(R) \cap attr(S)} R.A = S.A} S)$$

Example (练习)

- 1 What manufacturers make laptops with a hard disk of at least 100GB?
- ② ★ Explain the result of *Product* ⋈ *Printer*

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

35 / 49

左外连接(Left Outer Join)

目的: R ⋈θ S(内连接)的结果只包含R和S中满足连接条件θ的元组,有些情况下我们需要在连接结果中保留R或(和)S中的全部元组,例如学校想了解学生的选课情况,既要知道哪些学生选了哪些课,也要知道哪些学生没选课

Sno	Sname	Ssex	Sage	Sdept
221101	Nick	М	20	Physics
231101	Elsa	F	19	CS
231102	Eric	М	19	CS
232101	Abby	F	18	Math
232102	Cincy	F	18	Math

	SC	
Sno	Cno	Grade
221101	1002	92
221101	1003	85
221101	1006	88
231101	1006	90
231102	1003	80
232101	1002	100

想要的查询结果

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
221101	Nick	М	20	Physics	221101	1002	92
221101	Nick	М	20	Physics	221101	1003	85
221101	Nick	М	20	Physics	221101	1006	88
231101	Elsa	F	19	CS	231101	1006	90
231102	Eric	М	19	CS	231102	1003	80
232101	Abby	F	18	Math	232101	1002	100
232102	Cincy	F	18	Math			

邹兆年 (CS@HIT) 第2章: 关系数据库 2019年春 36 / 49

左外连接(Left Outer Join)

- 指定R为左关系(left relation), S为右关系(right relation)
- 功能:
 - ① 将R和S中满足给定连接条件 θ 的元组进行连接,即计算 $R \bowtie_{\theta} S$
 - ② 对于R中不满足给定连接条件θ的元组, 左外连接结果中也包含该元组, 只不过S中属性的值都为空(null)
- 语法: R ⋈_A S
 - ▶ 赵—左外连接操作符

Example (练习)

- Execute Product >>> PC
- ② ** Find the PC model with the highest available speed (第2次出现,上一次怎么做的?)

Question

为什么没有左内连接?

邹兆年 (CS@HIT)

室9音, 至系料据房

► < \(\bullet \) \(\lambda \) \(\lambda \)

2019年春 37 / 49

右外连接(Right Outer Join)

- 指定R为左关系(left relation), S为右关系(right relation)
- 功能:
 - ① 将R和S中满足给定连接条件 θ 的元组进行连接,即计算 $R \bowtie_{\theta} S$
 - ② 对于S中不满足给定连接条件θ的元组,右外连接结果中也包含该元组,只不过R中属性的值都为空(null)
- 语法: R ⋈_θ S
 - ▶ ⋈—右外连接操作符

Example (练习)

1 Execute $Product \bowtie PC$

全外连接(Full Outer Join)

- 指定R为左关系(left relation), S为右关系(right relation)
- 功能:
 - ① 将R和S中满足给定连接条件 θ 的元组进行连接,即计算 $R \bowtie_{\theta} S$
 - ② 对于R中不满足给定连接条件θ的元组,全外连接结果中也包含该元组,只不过S中属性的值都为空(null)
 - ③ 对于S中不满足给定连接条件θ的元组,全外连接结果中也包含该元组,只不过R中属性的值都为空(null)
- 语法: R ™_θ S

Property

 $R \bowtie_{\theta} S = R \bowtie_{\theta} S \cup R \bowtie_{\theta} S$

Example (练习)

■ Execute Product > PC

、数据库

2019年春

30 / 40

邹兆年 (CS@HIT)

除(Division)

- 目的:我们经常要做下面这种查询:找出选修了所有课程的学生。用基本关系代数操作来编写这种查询非常不便,因此引入除操作。
- 整数除法: 设x和y为正整数, $x \div y$ 的商是使得 $yz \le x$ 的最大的正整数z
- 关系除法
 - ▶ R÷S的结果是一个关系,它只包含R中的属性,但不包含S中的属性
 - ▶ $R \div S$ 的结果是使得 $S \times T \subseteq R$ 的最大的关系T
- 语法: R÷S
 - ▶ :--除操作符

Sno	Cno]			
221101	1002				
221101	1003]	Cno]	Sno
221101	1006	l <u>.</u> :	1002)] =	221101
231101	1002	•		—	
231101	1006		1006	J	231101
231102	1003				
232101	1002				

除(Division)

Example (练习)

① What manufacturers make all types of products (PC, laptop, and printer)? (还有其他做法)

Question

如何用基本关系代数操作来等价地表示除操作?

邹兆年 (CS@HIT)

第2章・关系数据库

2019年春

41 / 49

扩展关系代数操作

• 目的: 用基本关系代数操作能够实现的查询功能有限,为了增强关系代数的查询表示能力,我们引入扩展(extended)关系代数操作

扩展关系代数操作

- ① 分组操作γ
- ② 赋值操作=

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

42 / 49

分组操作(Group-By)

目的: 我们经常需要对数据进行统计,例如统计每名学生的选课数和平均分。基本关系代数操作无法实现这种功能,因此需要引入分组操作。

• 功能:

- ① 根据指定的分组属性,对一个关系中的元组进行分组,分组属性值相同元组的分为一组
- ② 对每个组中元组的非分组属性的值进行聚集(aggregation)—计数count、求最小值min、求最大值max、求和sum、求平均值avg
- 聚集函数只作用于非空(null)值, count(*)除外(它计算分组内所有元组的数量)

	SC	
Sno	Cno	Grade
221101	1002	92
221101	1003	85
221101	1006	88
231101	1002	95
231101	1006	90
231102	1003	80
232101	1002	100

每名	学生	的过	も课者	敖和	平均分	
----	----	----	-----	----	-----	--

Sno	Amount	AvgGrade
221101	3	83.3
231101	2	92.5
231102	1	80
232101	1	100

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

口 ト 4回 ト 4 豆 ト 4 豆 ト

43 / 49

分组操作(Group-By)

- 语法: γ_{L;agg}(R)
 - γ—分组操作符
 - ▶ R—关系名
 - ▶ L—分组属性列表,用逗号分隔
 - ightharpoonup agg—聚集函数表达式列表,用逗号分隔,每个聚集函数表达式形如 sum(score)
 ightarrow TotalScore (计算score属性值的和,并将结果命名为属性TotalScore)

Example (练习)

- How many models does every manufacturer have?
- ② How many models does every manufacturer have for every type of products?
- ③ ★★ Find those hard-disk sizes that occur in two or more PC's (第2次出现,上一次是怎么做的?)
- ★★ What manufacturers make all types of products (PC, laptop, and printer)? (第2次出现,上一次是怎么做的?)

邹兆年 (CS@HIT) 第2章: 关系数据库 2019年春 44 / 49

赋值操作(Assignment)

- 目的: 仅用一个关系代数表达式来编写复杂查询通常会太冗长,不 易理解。为了便于理解,需要将一个冗长的关系代数查询表达式分 解为一系列简单的表达式,这需要暂存一些中间结果。
- 功能: 将关系代数查询表达式的结果赋值给临时关系
- 语法: *R* = *expr*
 - ▶ R—临时关系名
 - ▶ =—赋值操作符
 - ▶ expr—关系代数查询表达式

Example (练习)

① ** What manufacturers make all types of products (PC, laptop, and printer)? (第3次出现,以前两次是怎么做的?)

邹兆年 (CS@HIT)

第2章, 关系数据库

2019年春 45 /

总结

- ① 关系数据模型
 - ▶ 关系数据结构: 关系、属性、键
 - ▶ 关系操作: 查询操作、更新操作(插入、修改、删除)、查询语言(关系代数、关系演算、SQL)
 - ▶ 关系完整性约束: 实体完整性、参照完整性、用户定义完整性
- ② 关系代数
 - ト 基本关系代数操作: 选择 σ 、投影 Π 、笛卡尔积 \times 、并 \cup 、差-、重命名 ρ
 - ▶ 派生关系代数操作: 交∩、内连接⋈0、自然连接⋈0、外连接(左外连接⋈0、右外连接⋈0、全外连接⋈1、除÷
 - 扩展关系代数操作:分组操作γ、赋值操作=
- ③ 在线练习: https://dbis-uibk.github.io/relax/calc.htm

课堂练习

设关系R(A,B)中包含r个元组,关系S(B,C)中包含s个元组,其中r,s>0。求下列关系代数表达式的结果中元组数的最小值和最大值。

关系代数表达式	元组数最小值	元组数最大值
$\sigma_{A < B}(R)$	0	r
$\Pi_A(R)$	1	r
$R \bowtie S$	0	rs
$R\bowtie S$	r	rs
$R \bowtie S$	r+s	rs
$\Pi_B(R) \cup \Pi_B(S)$	1	r+s
$\Pi_B(R) \cap \Pi_B(S)$	0	$\min(r,s)$
$\Pi_B(R) - \Pi_B(S)$	0	r
$R \div \Pi_B(S)$	0	$\lfloor r/s \rfloor$
$\gamma_{A;count(B)\to D}(R)$	1	r

邹兆年 (CS@HIT)

第2章: 关系数据库

2019年春

47 / 49

问题汇编

① 一个关系的外键可以参照该关系自身的主键吗? 答: 可以。考虑关系Student(Sno, Sname, Ssex, Sage, Sdept, Mno), 其中Sno是主键,Mno是学生的班长的学号。因为班长也是学生, 所以Mno是Student的外键,它参照Student的主键Sno。但是,一个 关系的外键不能参照该外键自身。

致谢

- 感谢李治霖同学指出课件中的错误
- 感谢龚利锋、王梓宣、肖潇、李一鸣同学提供课堂练习题的笔记

邹兆年 (CS@HIT)

2019年春 49 / 49