SunQuarTeX-enpre Test

Subtitle Here

sun123zxy

SunQuarTeX

 $2024-02-22^{1}$

¹Last modified on 2024-02-22.

Texts

- left bar.
 - narrow left bar.

- right bar.
- wide right bar.

Lists

- This is a list.
- A compact list.

Wow.

- This is a list.
 - A sparse list.

A definition list below.

Reflexivity $a \sim a$

Antisymmetry $a \le b \land b \le a \implies a = b$

Citations

Blah [1]. Blah blah [1], [2]. Blah blah blah².

²This is a footnote

Code

```
#include<bits/stdc++.h>
using namespace std;

int main(){
    return 0;
}
```

Tables

$L_i \times C_j$	2	\mathbb{N}	\mathbb{R}
2	4	\mathbb{N}	\mathbb{R}
\mathbb{N}	\mathbb{N}	\mathbb{N}	?
\mathbb{R}	\mathbb{R}	?	\mathbb{R}

(a) Products

2	\mathbb{N}	\mathbb{R}
4	\mathbb{R}	$2^{\mathbb{R}}$
\mathbb{N}	?	?
\mathbb{R}	?	?
	$\stackrel{-}{4}$ \mathbb{N}	4 ℝ ℕ ?

(b) Powers

Table 1: Several results on cardinality

Referable Table 1a.

Figures

Figure 1: This is a figure

Referable Figure 1.

Computations

Complex side by side. (Figure 2, Figure 2a, Figure 2b)

Figure 2: solar panel

Theorems I

Theorem 2.1 (Test)

This is a theorem.

$$\sum_{d|n} \varphi(d) = n$$

Proof.

This is a proof ended with a display math.

$$\sum_{d|n} \mu(d) = [n=1]$$

Theorems II

Proof.

This is a really reall

Definition 2.1

This is a definition.

Example 2.1 (An example)

This is an example.

Solution

This is the solution to the example.

Theorems III

Exercise 2.1

This is an exercise.

Remark

This is a remark of Exercise 2.1.

Lemma 2.1

This is a lemma.

Corollary 2.1

This is a corollary of Theorem 2.1.

Theorems IV

Proposition 2.1

This is a proposition.

Conjecture 2.1

This is a conjecture.

References I

- Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "Closing the gap to human-level performance in face verification. deepface," in Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), vol. 5, p. 6.
- [2] M. Turk and A. Pentland, "Eigenfaces for recognition," *Journal of Cognitive Neuroscience*, vol. 3, no. 1, pp. 71–86,