Motivation
Definitions
Differences with (ordinary) homology
Results
Computation

Alternating Homology

Josef Dean

May 2016

Motivation

$$f: X \longrightarrow Y$$

$$D^{k}(f) = \text{closure}\{(x_{1}, \dots, x_{k}) \in X^{k} \mid f(x_{1}) = \dots = f(x_{k}), x_{i} \neq x_{j} \text{ if } i \neq j\}$$

$$\pi_k: D^k(f) \longrightarrow D^{k-1}(f)$$

- Victor V. Goryunov. Semi-simplicial resolutions and homology of images and discriminants of mappings. Proceedings of the London Mathematical Society, s3-70(2):363–385, 1995.
- [2] Kevin Houston. Local topology of images of finite complex analytic maps. *Topology*, 5:1077–1121, 1997.

Image Computing Spectral Sequence

S_k -space

A topological space X acted on by symmetric group S_k .

Alternating Singular Homology

$$C_n^{alt}(X) = \{c \in C_n(X) \mid \sigma_{\#}(c) = \operatorname{sgn}(\sigma)c \quad \forall \sigma \in S_k\}$$

$$H_n^{alt}(X) = \frac{\operatorname{Ker} \partial}{\operatorname{Im} \partial}$$

Trivial space

$$\forall \sigma \in S_k \quad \sigma x = x$$

$$k > 1 \implies C_n^{alt}(\{x\}) = 0 \quad \forall n$$

Connected components

Homology

$$H_n(\lbrace x_0, x_1 \rbrace) \cong H_n(\lbrace x_0 \rbrace) \oplus H_n(\lbrace x_1 \rbrace)$$

$$X_0 \qquad X_1$$

Alternating Homology

$$H_0^{alt}(\{x_0,x_1\})\cong \mathbb{Z}$$

$$H_0^{alt}(\lbrace x_0\rbrace) \oplus H_0^{alt}(\lbrace x_1\rbrace) \cong 0 \oplus 0$$

Reduced Homology

...
$$\longrightarrow C_2(X) \xrightarrow{\partial} C_1(X) \xrightarrow{\partial} C_0(X) \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$$

$$\varepsilon(\Sigma \alpha_i \sigma_i) = \Sigma \alpha_i$$

$$c = \Sigma \alpha_i c_i \in C_n^{alt}(X), \quad \sigma_\#(\Sigma \alpha_i c_i) = \Sigma(-\alpha_i) c_i$$

S_k -homotopy invariance

S_k -homotopy invariance

S_k -homotopy invariance

Definition

For $f, g: X \to Y$ an S_k -homotopy $F: X \times I \longrightarrow Y$ is a homotopy from f to g that is equivariant in the first argument.

$$F(\sigma x, t) = \sigma F(x, t) \quad \forall t \in I, \forall \sigma \in S_k.$$

Excision

Relative Alternating Chain Groups

For
$$A \subset X$$
 an S_k -subspace, $C_n^{alt}(X,A) := \frac{C_n^{alt}(X)}{C_n^{alt}(A)}$

Theorem

For S_k -space X and S_k -subspaces $Z \subset A \subset X$ where $\overline{Z} \subset A$, the inclusion $(X \setminus Z, A \setminus Z) \hookrightarrow (X, A)$ induces isomorphisms $H_n^{alt}(X \setminus Z, A \setminus Z) \cong H_n^{alt}(X, A)$.

Theorem

For S_k -subspaces $A, B \subset X$, where $A \cup B = X$, the inclusion $(B, B \cap A) \hookrightarrow (X, A)$ induces isomorphisms $H_n^{alt}(B, B \cap A) \cong H_n^{alt}(X, A)$.

Excision

$$i: C_n^{alt}(A+B) \hookrightarrow C_n^{alt}(X)$$
 $\rho: C_n^{alt}(X) \to C_n^{alt}(A+B)$ $\partial D + D\partial = \mathbb{1} - i\rho \text{ and } \rho i = \mathbb{1}$

Excision

$$H_n^{alt}(\frac{C_n^{alt}(X)}{C_n^{alt}(A)}) \stackrel{i}{\cong} H_n^{alt}(\frac{C_n^{alt}(A+B)}{C_n^{alt}(A)}) \cong H_n^{alt}(\frac{C_n^{alt}(B)}{C_n^{alt}(A\cap B)})$$
$$H_n^{alt}(X,A) \cong H_n^{alt}(B,B\cap A)$$

Good S_k -pair

Definition

For $A \subset X$ a non-empty closed S_k -subspace, (X, A) is a Good S_k -pair if A is an equivariant deformation retract of some neighbourhood V, another S_k -subspace of X.

$$H_n^{alt}(X,A) \cong H_n^{alt}(X/A)$$

Simplicial Alternating Homology

If the action of S_k -space X induces an action of S_k on simplicial chain groups $\triangle_n(X)$ for some Δ -complex,

$$\triangle_n^{alt}(X) := \{ c \in \triangle_n(X) \mid \sigma_\#(c) = \operatorname{sgn}(\sigma)c \quad \forall \, \sigma \in S_k \}$$

$$H_{n,\triangle}^{alt}(X) = egin{cases} \mathbb{Z} & n=1 \ 0 & n
eq 1 \end{cases}$$

$$H_{n,\triangle}^{alt}(X) \cong H_n^{alt}(X)$$

Computation

Computation

Links to other theory

- Alternating Homology with Rational Coefficients $Alt H_n(X; \mathbb{Q}) \cong H_n^{alt}(X; \mathbb{Q}) \cong H_n^{alt}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$
- Alternating Homology as Homology with Local Coefficients