Vector spaces and Fourier theory Exam questions

(1) [Mock exam Q1]

(a) Let U be a finite-dimensional vector space, and let V and W be subspaces of V. Prove that

$$\dim(V+W) = \dim(V) + \dim(W) - \dim(V \cap W).$$

If you use a result about the existence of certain bases for V, W and $V \cap W$ then you should prove it. Other results may be quoted without proof. (13 marks)

- (b) State the rank-nullity formula. (5 marks)
- (c) Suppose that U = V + W and that $\phi \colon U \to Z$ is a surjective linear map with $\ker(\phi) = V$. Suppose that $\dim(V) = 5$, $\dim(W) = 4$ and $\dim(V \cap W) = 3$. What is $\dim(Z)$? (7 marks)

Solution:

(a) We claim that there exist elements

$$u_1, \ldots, u_p, v_1, \ldots, v_q, w_1, \ldots, w_r$$

such that

- $-u_1,\ldots,u_p$ is a basis for $V\cap W$
- $-u_1,\ldots,v_1,\ldots,v_q$ is a basis for V
- $-u_1,\ldots,w_1,\ldots,w_r$ is a basis for W
- $-u_1,\ldots,v_1,\ldots,v_q,w_1,\ldots,w_r$ is a basis for V+W.

[2] Assuming this, we have $\dim(V \cap W) = p$ and $\dim(V) = p + q$ and $\dim(W) = p + r$ and

$$\dim(V+W) = p + q + r = (p+q) + (p+r) - p = \dim(V) + \dim(W) - \dim(V \cap W),$$

as required [2]. To prove the claim, we first choose a basis u_1,\ldots,u_p for $V\cap W$ [1]. This list is then a linearly independent list in V, so can be extended to a basis $u_1,\ldots,u_p,v_1,\ldots,v_r$ for V [1]. Similarly, the list u_1,\ldots,u_p is a linearly independent list in W, so it can be extended to a basis $u_1,\ldots,u_p,w_1,\ldots,w_r$ for W [1]. All that is left is to prove that the list $\mathcal{X}=u_1,\ldots,v_1,\ldots,v_q,w_1,\ldots,w_r$ is a basis for V+W [1]. It is clear that $\mathcal{X}\subseteq V\cup W\subseteq V+W$ so $\mathrm{span}(\mathcal{X})\subseteq V+W$. Consider an element $x\in V+W$. We can then find $y\in V$ and $z\in W$ such that x=y+z. As $y\in V$ and $u_1,\ldots,u_p,v_1,\ldots,v_r$ is a basis for V, we have $y=\sum_i\lambda_iu_i+\sum_j\mu_jv_j$ for some constants $\lambda_i,\mu_j\in\mathbb{R}$. As $z\in W$ and $u_1,\ldots,u_p,w_1,\ldots,w_r$ is a basis for W, we have $z=\sum_i\lambda_i'u_i+\sum_k\nu_kw_k$ for some constants $\lambda_i',\nu_k\in\mathbb{R}$. It follows that

$$x = y + z = \sum_{i} (\lambda_i + \lambda'_i) u_i + \sum_{j} \mu_j v_j + \sum_{k} w_k \in \operatorname{span}(\mathcal{X}).$$

This proves that $V \subseteq \operatorname{span}(\mathcal{X})$, so \mathcal{X} spans V. Now suppose we have a linear relation

$$\sum_{i} \lambda_i u_i + \sum_{j} \mu_j v_j + \sum_{k} \nu_k w_k = 0.$$

Put $y = \sum_i \lambda_i u_i + \sum_j \mu_j v_j$ and $z = \sum_k \nu_k w_k$. It is clear that $y \in V$ and $z \in W$ but z = -y so $z \in V \cap W$. We also know that u_1, \ldots, u_p is a basis for $V \cap W$, so $z = \sum_i \lambda_i' u_i = 0$. This means that

$$\sum_{i} \lambda_i' u_i + \sum_{k} \nu_k w_k = 0.$$

On the other hand, we know that the list $u_1, \ldots, u_p, w_1, \ldots, w_r$ is a basis for W and so has no nontrivial linear relations, so

$$\lambda_1' = \cdots \lambda_n' = \nu_1 = \cdots \nu_r = 0.$$

This means that z = 0 but y = -z so y = z, so

$$\sum_{i} \lambda_i u_i + \sum_{j} \mu_j v_j = 0.$$

This list $u_1, \ldots, u_p, v_1, \ldots, v_q$ is a basis for V and so has no nontrivial linear relations, so

$$\lambda_1 = \dots = \lambda_p = \mu_1 = \dots = \mu_q = 0.$$

This means that our original relation

$$\sum_{i} \lambda_i u_i + \sum_{j} \mu_j v_j + \sum_{k} \nu_k w_k = 0.$$

is the trivial relation. This means that the list \mathcal{X} is linearly independent and so is a basis of V+W, as claimed.

(b) Let V and W be finite-dimensional vector spaces, and let $\phi: V \to W$ be a linear map. Then

$$\dim(V) = \dim(\ker(\phi)) + \dim(\operatorname{image}(\phi)).$$

(c) Part (a) gives

$$\dim(U) = \dim(V + W) = \dim(V) + \dim(W) - \dim(V \cap W) = 5 + 4 - 3 = 6.$$

As ϕ is surjective we have image $(\phi) = Z$, and we are also given that $\ker(\phi) = V$. The rank-nullity formula therefore gives

$$6 = \dim(U) = \dim(\operatorname{image}(\phi)) + \dim(\ker(\phi)) = \dim(Z) + 5,$$

which gives $\dim(Z) = 1$.

(2) [0506 Q1]

- (a) Let V and W be vector spaces over \mathbb{R} . Define what it means for a map $\alpha \colon V \to W$ to be linear. (3 marks)
- (b) Which of the following maps are linear? Justify your answers briefly, giving specific counterexamples where appropriate. (9 marks)
 - (i) $\phi: M_2\mathbb{R} \to \mathbb{R}, \ \phi(A) = [1, 1]A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - (ii) $\psi \colon \mathbb{R}[x] \to M_2\mathbb{R}, \ \psi(f) = \begin{bmatrix} f(0) & f(1) \\ f'(0) & f'(1) \end{bmatrix}$.
 - (iii) $\chi \colon M_2 \mathbb{R} \to M_2 \mathbb{R}, \ \chi(A) = A^T A.$
 - (iv) $\theta \colon \mathbb{R}^2 \to \mathbb{R}[x], \ \theta \begin{bmatrix} a \\ b \end{bmatrix} = ax^2 + b(1-x)^2.$
- (c) Consider the map $\alpha: M_2\mathbb{R} \to M_2\mathbb{R}$ given by $\alpha(A) = A^T \operatorname{trace}(A)I$.

- (i) Give a formula for $\alpha \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. (2 marks)
- (ii) Give bases for the spaces

$$V = \{ A \in M_2 \mathbb{R} \mid \alpha(A) = A \}$$
$$W = \{ A \in M_2 \mathbb{R} \mid \alpha(A) = -A \}$$

(11 marks)

Solution:

- (a) **Bookwork.** A map $\alpha: V \to W$ is linear iff for all $v, v' \in V$ and all $t, t' \in \mathbb{R}$ we have $\alpha(tv + t'v') = t\alpha(v) + t'\alpha(v')$. [3]
- (b) Similar to problem sheets
 - (i) We have

$$\phi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = [1, 1] \begin{bmatrix} a+b \\ c+d \end{bmatrix} = a+b+c+d.$$

This is linear [1] because if $A=\left[\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right]$ and $A'=\left[\begin{smallmatrix} a'&b'\\c'&d'\end{smallmatrix}\right]$ then

$$\phi(tA + t'A') = \phi \begin{bmatrix} ta + t'a' & tb + t'b' \\ tc + t'c' & td + t'd' \end{bmatrix} = ta + t'a' + tb + t'b' + tc + t'c' + td + t'd'$$
$$= t(a + b + c + d) + t'(a' + b' + c' + d') = t\phi(A) + t'\phi(A').[\mathbf{1}]$$

(ii) The map ψ is also linear [1], because if $f, g \in \mathbb{R}[x]$ and $s, t \in \mathbb{R}$ then

$$\psi(sf+tg) = \left[\begin{smallmatrix} sf(0) + tg(0) & sf(1) + tg(1) \\ sf'(0) + tg'(0) & sf'(1) + tg'(1) \end{smallmatrix} \right] = s\psi(f) + t\psi(g). \textbf{[1]}$$

- (iii) The map χ is not linear [1], because $\chi(I) = I$ and $\chi(-I) = I$, so $\chi((-1).I) \neq (-1).\chi(I)$. [2]
- (iv) The map θ is linear [1]because

$$\theta\left(t\left[\begin{smallmatrix} a \\ b \end{smallmatrix}\right] + t'\left[\begin{smallmatrix} a' \\ b' \end{smallmatrix}\right]\right) = \theta\left[\begin{smallmatrix} ta + t'a' \\ tb + t'b' \end{smallmatrix}\right] = (ta + t'a')x^2 + (tb + t'b')(1-x)^2$$

$$= t(ax^2 + b(1-x)^2) + t'(a'x^2 + b'(1-x)^2) = t\theta\left[\begin{smallmatrix} a \\ b \end{smallmatrix}\right] + t'\theta\left[\begin{smallmatrix} a' \\ b' \end{smallmatrix}\right].[1]$$

- (c) Similar to problem sheets
 - (i) $\alpha \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} (a+d) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -d & c \\ b & -a \end{bmatrix}$. [2]
 - (ii) Consider a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. We have $\alpha(A) = A$ iff -d = a and c = b and b = c and d = -a, [2] which means that A has the form

$$A = \begin{bmatrix} a & b \\ b & -a \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}. [\mathbf{2}]$$

It follows that the list $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a basis for V [2]. Similarly, we have $\alpha(A) = -A$ iff -d = -a and c = -b and b = -c and -a = -d [2], which means that A has the form

$$A = \left[\begin{smallmatrix} a & b \\ -b & a \end{smallmatrix} \right] = a \left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right] + b \left[\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right]. [\mathbf{1}]$$

It follows that the list $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ is a basis for W.[2]

(3) [0506R Q1]

(a) Let V be a finite-dimensional vector space over \mathbb{R} . Define what it means to say that W is a subspace of V. (3 marks)

- (b) Let W_0 and W_1 be subspaces of V. State a formula relating $\dim(W_0 + W_1)$ to the dimensions of various other spaces. (3 marks)
- (c) In which of the following cases is W a subspace of V? Justify your answers briefly, giving specific counterexamples where appropriate. (9 marks)
 - (i) $V = M_2 \mathbb{R}, W = \{ A \in M_2 \mathbb{R} \mid \det(A) = 0 \}.$
 - (ii) $V = M_2 \mathbb{R}, W = \{ A \in M_2 \mathbb{R} \mid \text{trace}(A) \ge 0 \}.$
 - (iii) $V = \mathbb{R}[x]_{<3}$, $W = \{ f \in V \mid f(1)^2 + f(-1)^2 = 0 \}$.
 - (iv) $V = \mathbb{R}^3$, $W = \{v \in V \mid Av = 0\}$, where $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$.
- (d) Put $u = [1, 1, 1]^T$ and

$$U = \{A \in M_3 \mathbb{R} \mid Au = 0\}$$

$$V = \{A \in M_3 \mathbb{R} \mid A^T = A\}$$

$$W = \{ A \in M_3 \mathbb{R} \mid A^T = -A \}.$$

Find bases for $V \cap U$ and $W \cap U$. (10 marks)

Solution:

- (a) **Bookwork.** A subspace of V is a subset $W \subseteq V$ such that (i) $0_V \in W$ (ii) for all $w, w' \in W$ we have $w + w' \in W$ and (iii) for all $w \in W$ and $t \in \mathbb{R}$ we have $tw \in W$. (Equivalently, one can combine (ii) and (iii) into the following condition: if $w, w' \in W$ and $t, t' \in \mathbb{R}$ then $tw + t'w' \in W$.) [3]
- (b) $\dim(W_0 + W_1) = \dim(W_0) + \dim(W_1) \dim(W_0 \cap W_1)$. [3]
- (c) Similar to problem sheets
 - (i) This is not a subspace [1], because $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in W$ but $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \notin W$. [1]
 - (ii) This is not a subspace [1], because $I \in W$ but $(-1).I \notin W$. [1]
 - (iii) This is a subspace [1]. To see this, we first note that $W = \{f \in V \mid f(1) = f(-1) = 0\}$ [1]. If $f, g \in W$ and $s, t \in \mathbb{R}$ and h = sf + tg then $h(\pm 1) = sf(\pm 1) + tg(\pm 1) = s.0 + t.0 = 0$, so $h \in W$. It is also clear that $0 \in W$, so W is a subspace as claimed. [1]
 - (iv) This is a subspace [1]. Indeed, it is clear that A0 = 0, so $0 \in W$. Moreover, if $u, v \in W$ (so Au = Av = 0) and $s, t \in \mathbb{R}$ then A(su + tv) = sAu + tAv = s.0 + t.0 = 0, so $su + tv \in W$. This means that W is closed under taking linear combinations, so it is a subspace. [1]
- (d) Similar to problem sheets A typical element of V has the form

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix} [\mathbf{1}] \text{ and so } Au = \begin{bmatrix} a+b+c \\ b+d+e \\ c+e+f \end{bmatrix} . [\mathbf{1}]$$

Thus A lies in $V \cap U$ iff c = -a - b and e = -b - d and f = -c - e = a + 2b + d [1], in which case A has the form

$$A = \begin{bmatrix} a & b & -a-b \\ b & d & -b-d \\ -a-b & -b-d & a+2b+d \end{bmatrix} = a \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 2 \end{bmatrix} + d \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}. [\mathbf{1}]$$

From this it is clear that the matrices

$$A_1 = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 2 \end{bmatrix}, \qquad A_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

give a basis for $V \cap U$. [1]

Similarly, a typical element of W has the form

$$B = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$
 [1], and so $Bu = \begin{bmatrix} a+b \\ c-a \\ -b-c \end{bmatrix}$.[1]

Thus B lies in $W \cap U$ iff b = -a and c = a (and -b - c = 0, which follows automatically from the other two equations) [1]. If so then $B = aB_1$, where

$$B_1 = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} . [\mathbf{1}]$$

This means that B_1 is a basis for $W \cap U.[1]$

- (4) [0607 Q1] Let V and W be vector spaces over \mathbb{R} .
 - (a) Define what it means for a map $\alpha: V \to W$ to be linear. (3 marks)
 - (b) Define what it means for a subset $U \subseteq V$ to be a subspace. (3 marks)
 - (c) Suppose that α is linear. Define the kernel of α , and prove that it is a subspace of V. (5 marks)
 - (d) Which of the following functions are linear? (You should justify your answers briefly.) (6 marks)
 - (i) $\rho: M_2(\mathbb{R}) \to \mathbb{R}$ given by $\rho(A) = \operatorname{trace}(A^2)$
 - (ii) $\sigma \colon \mathbb{R}^2 \to \mathbb{R}^2$ given by $\sigma \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y^3/(x^2+y^2) \\ x^3/(x^2+y^2) \end{bmatrix}$
 - (iii) $\tau: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $\tau(A) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
 - (e) Which of the following sets is a subspace? (You should justify your answers briefly.) (8 marks)
 - (i) $U_0 = \{ f \in \mathbb{R}[x] \mid f(1) \le f(2) \le f(3) \}$
 - (ii) $U_1 = \{ A \in M_2(\mathbb{R}) \mid \det(A+I) = \det(A-I) \}$
 - (iii) $U_2 = \{ A \in M_2(\mathbb{R}) \mid \operatorname{trace}(A^2) = 0 \}$

(**Hint:** which elements of the standard basis for $M_2(\mathbb{R})$ lie in U_2 ?)

Solution:

- (a) **Bookwork.** α is linear if $\alpha(tv + t'v') = t\alpha(v) + t'\alpha(v')$ for all $t, t' \in \mathbb{R}$ and $v, v' \in V$. [3]
- (b) **Bookwork.** U is a subspace if (i) $0 \in U$ and (ii) for all $t, t' \in \mathbb{R}$ and all $u, u' \in U$ we have $tu + t'u' \in U$. [3]
- (c) **Bookwork.** The kernel of α is the set $\{u \in V \mid \alpha(u) = 0\}$. [1] As α is linear we have $\alpha(0) = 0$, so $0 \in \ker(\alpha)$. [1] Now suppose that $t, t' \in \mathbb{R}$ and $u, u' \in \ker(\alpha)$. We then have $\alpha(u) = 0 = \alpha(u')$ [1] and also

$$\alpha(tu + t'u') = t\alpha(u) + t'\alpha(u') = t \cdot 0 + t' \cdot 0 = 0,$$

so $tu + t'u' \in \ker(\alpha)$. [2] This shows that $\ker(\alpha)$ is a subspace.

- (d) Similar to problem sheets
 - (i) We have $\rho(I) = 2 = \rho(-I)$, so $\rho(-I) \neq -\rho(I)$, so ρ is not linear. [2]

(ii) We have

$$\sigma([1,0]^T) = [0^3/(1^2+0^2), 1^3/(1^2+0^2)]^T = [0,1]^T$$

$$\sigma([0,1]^T) = [1^3/(1^2+0^2), 0^3/(1^2+0^2)]^T = [1,0]^T$$

$$\sigma([1,1]^T) = [1^3/(1^2+1^2), 1^3/(1^2+1^2)]^T = [1/2, 1/2]^T$$

so $\sigma(\mathbf{e}_1 + \mathbf{e}_2) \neq \sigma(\mathbf{e}_1) + \sigma(\mathbf{e}_2)$. Thus, σ is not linear. [2]

(iii) Put $Q = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ for brevity. We have

$$\tau(tA+t'A')=Q(tA+t'A')Q=QtAQ+Qt'A'Q=tQAQ+t'QA'Q=t\tau(A)+t'\tau(A'),$$
 so τ is linear. [2]

- (e) Similar to problem sheets
 - (i) U_0 is not a subspace, because the function f(x) = x lies in U_0 , but -f does not. [2]
 - (ii) Given a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ we have

$$\det(A+I) = \det\begin{bmatrix} a+1 & b \\ c & d+1 \end{bmatrix} = ad+a+d+1-bc$$

$$\det(A-I) = \det\begin{bmatrix} a-1 & b \\ c & d-1 \end{bmatrix} = ad-a-d+1-bc$$

$$\det(A+I) - \det(A-I) = 2(a+d).$$

This means that A lies in U_1 iff a+d=0 iff A has the form $\begin{bmatrix} a & b \\ c & -a \end{bmatrix}$. Given this, it is clear that U_1 is a subspace. [3]

- (iii) Given a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ we have $A^2 = \begin{bmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{bmatrix}$, so trace $(A^2) = a^2 + d^2 + 2bc$. Using this we see that the matrices $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ lie in U_2 , but their sum does not. Thus, U_2 is not a subspace. [3]
- (5) [0607R Q1] Let V and W be vector spaces over \mathbb{R} .
 - (a) Define what it means for a map $\alpha: V \to W$ to be linear. (3 marks)
 - (b) Define what it means for a subset $U \subseteq V$ to be a subspace of V. (3 marks)
 - (c) Suppose that α is linear. Define the image of α , and prove that it is a subspace of V. (7 marks)
 - (d) Which of the following functions are linear? (You should justify your answers.) (6 marks)
 - (i) $\rho: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $\rho(A) = A^T A$
 - (ii) $\sigma \colon \mathbb{R}^2 \to \mathbb{R}^2$ given by $\sigma \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y^2 \\ x^2+y \end{bmatrix}$
 - (iii) $\tau \colon \mathbb{R}[x] \to M_2(\mathbb{R})$ given by $\tau(f) = \begin{bmatrix} 0 & f(1) \\ f'(1) & 0 \end{bmatrix}$
 - (e) Which of the following sets is a subspace? (You should justify your answers.) (6 marks)
 - (i) $U_0 = \{ f \in \mathbb{R}[x] \mid f(1) = f(2) = f(3) \}$
 - (ii) $U_1 = \{ A \in M_2(\mathbb{R}) \mid \operatorname{trace}(A) \ge 0 \}$
 - (iii) $U_2 = \{ A \in M_2(\mathbb{R}) \mid \det(A) = 0 \}$

Solution:

(a) **Bookwork.** α is linear if $\alpha(tv + t'v') = t\alpha(v) + t'\alpha(v')$ for all $t, t' \in \mathbb{R}$ and $v, v' \in V$. [3]

- (b) **Bookwork.** U is a subspace if (i) $0 \in U$ and (ii) for all $t, t' \in \mathbb{R}$ and all $u, u' \in U$ we have $tu + t'u' \in U$. [3]
- (c) **Bookwork.** The image of α is

$$\operatorname{image}(\alpha) = \{\alpha(v) \mid v \in V\} = \{w \in W \mid w = \alpha(v) \text{ for some } v \in V\}.$$
[2]

As α is linear we have $0_W = \alpha(0_V)$, so $0_W \in \text{image}(\alpha)$. [1]

Now suppose we have elements $w, w' \in \operatorname{image}(\alpha)$, and real numbers $t, t' \in \mathbb{R}$; we must show that the element w'' = tw + t'w' lies in $\operatorname{image}(\alpha)$. [1]By the definition of $\operatorname{image}(\alpha)$, there must exist elements $v, v' \in V$ with $\alpha(v) = w$ and $\alpha(v') = w'$ [1]. Put $v'' = tv + t'v' \in V$. As α is linear we have

$$\alpha(v'') = t\alpha(v) + t'\alpha(v') = tw + t'w' = w''.[\mathbf{1}]$$

Thus w'' is α (something in V), so $w'' \in \text{image}(\alpha)$ as required. This shows that $\text{image}(\alpha)$ is a subspace of W. [1]

- (d) Similar to problem sheets and the June exam
 - (i) We have $\rho(I) = I = \rho(-I)$, so $\rho(-I) \neq -\rho(I)$, so ρ is not linear. [2]
 - (ii) We have

$$\sigma([1,0]^T) = [1,1]^T$$

$$\sigma(-[1,0]^T) = [-1,1]^T \neq -\sigma([1,0]^T)$$

so σ is not linear. [2]

(iii) We have

$$\begin{split} \tau(sf+tg) &= \begin{bmatrix} 0 & (sf+tg)(1) \\ (sf+tg)'(1) & 0 \end{bmatrix} = \begin{bmatrix} 0 & sf(1)+tg(1) \\ sf'(1)+tg'(1) & 0 \end{bmatrix} \\ &= s \begin{bmatrix} 0 & f(1) \\ f'(1) & 0 \end{bmatrix} + t \begin{bmatrix} 0 & g(1) \\ g'(1) & 0 \end{bmatrix} = s\tau(f) + t\tau(g). \end{split}$$

Thus, τ is linear. [2]

- (e) Similar to problem sheets and the June exam
 - (i) U_0 is a subspace. Indeed, if $f, g \in U_0$ and $s, t \in \mathbb{R}$, then f(1) = f(2) = f(3) (as $f \in U_0$) and g(1) = g(2) = g(3) (as $g \in U_0$) so

$$sf(1) + tg(1) = sf(2) + tg(2) = sf(3) + tg(3),$$

or in other words $sf + tg \in U_0$. [2]

- (ii) The set U_1 contains I but not -I, so it is not a subspace. [2]
- (iii) The set U_2 contains the matrices $E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ but not $E_1 + E_4$, so it is not a subspace. [2]
- (6) [0708 Q1] In this question, X denotes the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
 - (a) Let V and W be vector spaces. Define what it means for a map $\phi: V \to W$ to be linear. (3 marks)
 - (b) Which of the following maps are linear? Justify your answers. (8 marks)
 - (i) $\phi_1: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $\phi_1(A) = XAX$.
 - (ii) $\phi_2 \colon M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $\phi_2(A) = AXA$.

- (iii) $\phi_3 \colon \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 4}$ given by $\phi_3(f(x)) = f(x)^2$.
- (iv) $\phi_4 : \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 4}$ given by $\phi_4(f(x)) = f(x^2)$ (eg $\phi_3(3x^2 + 4x + 5) = 3x^4 + 4x^2 + 5$).
- (c) Define what it means for a linear map $\phi: V \to W$ to be (i) injective; (ii) surjective. (5 marks)
- (d) Which of the following maps are injective? Justify your answers. (9 marks)
 - (i) $\psi_1: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $\psi_1(A) = XA AX$.
 - (ii) $\psi_2 \colon M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $\psi_2(A) = XA$.
 - (iii) $\psi_3 : \mathbb{R}[x]_{\leq 2} \to \mathbb{R}^3$ given by $\psi_3(f(x)) = [f''(0), f'(1), f(2)]^T$.

Solution:

- (a) ϕ is linear iff $\phi(tv + t'v') = t\phi(v) + t'\phi(v')$ for all $t, t' \in \mathbb{R}$ and $v, v' \in V$. [3] Bookwork
- (b) Similar to problem sheets, lecture notes and past papers
 - (i) ϕ_1 is linear [1], because $\phi_1(tA + t'A') = X(tA + t'A')X = tXAX + t'XA'X = t\phi_1(A) + t'\phi_1(A')$ [1].
 - (ii) ϕ_2 is not linear [1], because $\phi_2(I) = IXI = X$ and $\phi_2(-I) = (-I)X(-I) = X \neq -\phi_2(I)$ [1].
 - (iii) ϕ_3 is not linear [1], because $\phi_3(-1) = \phi_3(1) = 1$, so $\phi_3(-1) \neq -\phi_3(1)$ [1].
 - (iv) ϕ_4 is linear [1]. To see this, suppose we have $f, g \in \mathbb{R}[x]_{\leq 2}$, say $f(x) = ax^2 + bx + x$ and $g(x) = px^2 + qx + r$, and $s, t \in \mathbb{R}$. Then

$$\phi_4(sf(x) + tg(x)) = \phi_3((sa + tp)x^2 + (sb + tq)x + (sc + tr))$$

$$= (sa + tp)x^4 + (sb + tq)x^2 + (sc + tr)$$

$$= s(ax^4 + bx^2 + c) + t(px^4 + qx^2 + r)$$

$$= s\phi_4(f(x)) + t\phi_4(g(x)).[1]$$

- (c) A linear map $\phi: V \to W$ is said to be *injective* if whenever $v, v' \in V$ and $\phi(v) = \phi(v')$ we have v = v'. [3] It is *surjective* if for each $w \in W$ there exists $v \in V$ with $\phi(v) = w$. [2] **Bookwork**
- (d) Similar to problem sheets, lecture notes and past papers
 - (i) We have $\psi_1(I) = XI IX = X X = 0$, so $I \in \ker(\psi_1)$, so $\ker(\psi_1) \neq 0$, so ψ_1 is not injective [3]. Alternatively, we have $\psi_1(X) = X^2 X^2 = 0$ and we can argue in the same way. For a more pedestrian approach, we have

$$\psi_1 \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a+2c & b+2d \\ 3a+4c & 3b+4d \end{bmatrix} - \begin{bmatrix} a+3b & 2a+4b \\ c+3d & 2c+4d \end{bmatrix} = \begin{bmatrix} 2c-3b & -2a-3b+2d \\ 3a+3c-3d & 3b-2c \end{bmatrix}.$$

This vanishes iff 2c - 3b = -2a - 3b + 2d = 3a + 3c - 3d = 3b - 2c = 0, and these equations reduce to c = 3b/2 and d = 3b/2 + a, so

$$\ker(\psi_1) = \left\{ \begin{bmatrix} a & b \\ 3b/2 & 3b/2 + a \end{bmatrix} \mid a, b \in \mathbb{R} \right\} \neq 0.$$

(ii) Note that $det(X) = -2 \neq 0$ so X is invertible. If $\psi_2(A) = XA = 0$ then $A = X^{-1}XA = X^{-1}.0 = 0$, so $ker(\psi_2) = 0$, so ψ_2 is injective [3]. For a more pedestrian approach, we have

$$\psi_2 \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] = \left[\begin{smallmatrix} 1 & 2 \\ 3 & 4 \end{smallmatrix} \right] \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] = \left[\begin{smallmatrix} a+2c & b+2d \\ 3a+4c & 3b+4d \end{smallmatrix} \right].$$

This vanishes iff a+2c=0 (1) and b+2d=0 (2) and 3a+4c=0 (3) and 3b+4d=0 (4). The equations (3) -2.(1) and (4) -2.(2) give a=b=0, and by substituting these in (1) and (3) we get c=d=0. This shows that $\ker(\psi_2)=0$ as required.

(iii) We have $\psi_3(ax^2 + bx + c) = [2a, 2a + b, 4a + 2b + c]^T$. This can only be zero if 2a = 2a + b = 4a + 2b + c = 0, which easily implies that a = b = c = 0. Thus $\ker(\psi_3) = 0$ and ψ_3 is injective. [3]

(7) [0708R Q1]

- (a) Let V be a finite-dimensional vector space over \mathbb{R} . Define what it means to say that W is a subspace of V. (3 marks)
- (b) Let W_0 and W_1 be subspaces of V. State a formula relating $\dim(W_0 + W_1)$ to the dimensions of various other spaces. (3 marks)
- (c) In which of the following cases is W a subspace of V? Justify your answers briefly, giving specific counterexamples where appropriate. (9 marks)
 - (i) $V = M_2(\mathbb{R}), W = \{A \in M_2(\mathbb{R}) \mid \det(A) \ge 0\}.$
 - (ii) $V = M_2(\mathbb{R}), W = \{A \in M_2(\mathbb{R}) \mid \text{trace}(A) = 0\}.$
 - (iii) $V = \mathbb{R}[x] \le 3$, $W = \{ f \in V \mid f(0)^4 + f(1)^4 + f(2)^4 = 0 \}$.
 - (iv) $V = \mathbb{R}^3$, $W = \{v \in V \mid Av = 0\}$, where $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}$.
- (d) Put u = [1, 0, 1] and

$$U = \{A \in M_3(\mathbb{R}) \mid uA = 0\}$$

$$V = \{A \in M_3(\mathbb{R}) \mid A^T = A\}$$

$$W = \{A \in M_3(\mathbb{R}) \mid A^T = -A\}.$$

Find bases for $V \cap U$ and $W \cap U$. (10 marks)

Solution: This is a slight modification of a question from a past paper.

- (a) **Bookwork.** A subspace of V is a subset $W \subseteq V$ such that (i) $0_V \in W$ (ii) for all $w, w' \in W$ we have $w + w' \in W$ and (iii) for all $w \in W$ and $t \in \mathbb{R}$ we have $tw \in W$. (Equivalently, one can combine (ii) and (iii) into the following condition: if $w, w' \in W$ and $t, t' \in \mathbb{R}$ then $tw + t'w' \in W$.) [3]
- (b) $\dim(W_0 + W_1) = \dim(W_0) + \dim(W_1) \dim(W_0 \cap W_1)$. [3]
- (c) Similar to problem sheets
 - (i) This is not a subspace [1], because $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \in W$ but $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \notin W$. [1]
 - (ii) This is a subspace [1], because if $A, A' \in W$ and $t, t' \in \mathbb{R}$ then $\operatorname{trace}(A) = \operatorname{trace}(A') = 0$ so $\operatorname{trace}(tA + t'A') = t\operatorname{trace}(A) + t'\operatorname{trace}(A') = t.0 + t'.0 = 0$, so $tA + t'A' \in W$.[1]
 - (iii) This is a subspace [1]. Indeed, as $f(n)^4 \ge 0$ for all n, we can only have $f(0)^4 + f(1)^4 + f(2)^4 = 0$ if f(0) = f(1) = f(2) = 0. Thus $W = \{f \in V \mid f(0) = f(1) = f(2) = 0\}$ [1], and this is easily seen to be a subspace [1].
 - (iv) This is a subspace [1]. Indeed, it is clear that A0 = 0, so $0 \in W$. Moreover, if $u, v \in W$ (so Au = Av = 0) and $s, t \in \mathbb{R}$ then A(su + tv) = sAu + tAv = s.0 + t.0 = 0, so $su + tv \in W$. This means that W is closed under taking linear combinations, so it is a subspace. [1]

(d) Similar to problem sheets A typical element of V has the form

$$A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix} [\mathbf{1}] \text{ and so } uA = [a+c, b+e, c+f][\mathbf{1}].$$

Thus A lies in $V \cap U$ iff a = -c and e = -b and f = -c [1], in which case A has the form

$$A = \left[\begin{smallmatrix} -c & b & c \\ b & d & -b \\ c & -b & -c \end{smallmatrix} \right] = b \left[\begin{smallmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{smallmatrix} \right] + c \left[\begin{smallmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{smallmatrix} \right] + d \left[\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right]. [\mathbf{1}]$$

From this it is clear that the matrices

$$A_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix}, \qquad A_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

give a basis for $V \cap U$. [1]

Similarly, a typical element of W has the form

$$B = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix} [\mathbf{1}], \text{ and so } uB = \begin{bmatrix} -b \\ a-c \\ b \end{bmatrix} . [\mathbf{1}]$$

Thus B lies in $W \cap U$ iff b = 0 and c = a [1]. If so then $B = aB_1$, where

$$B_1 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} . [\mathbf{1}]$$

This means that B_1 is a basis for $W \cap U.[1]$

- (8) [Mock exam Q2] Let V be a finite-dimensional vector space over \mathbb{R} .
 - (a) Define what is meant by an *inner product* on V.
- (b) State and prove the Cauchy-Schwartz inequality. (You need not discuss the case where it is actually an equality.)
- (c) Let $f:[0,1]\to\mathbb{R}$ be a continuous function. Prove that

$$\left(\int_0^1 x f(x) \, dx \right)^2 \le \frac{1}{3} \int_0^1 f(x)^2 \, dx.$$

(d) Find an orthogonal sequence u_1, u_2, u_3, u_4 in \mathbb{R}^4 such that $\operatorname{span}(u_1, \dots, u_i) = \operatorname{span}(v_1, \dots, v_i)$ for all i, where

$$v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \quad v_2 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \quad v_3 = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \quad v_4 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

Solution:

- (a) An inner product on V is a rule that assigns a number $\langle u, v \rangle \in \mathbb{R}$ to each pair of elements $u, v \in V$ such that
 - (i) $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$ for all $u,v,w\in V$.
 - (ii) $\langle tu, v \rangle = t \langle u, v \rangle$ for all $u, v \in V$ and $t \in \mathbb{R}$.
 - (iii) $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$.
 - (iv) We have $\langle u, u \rangle \geq 0$ for all $u \in V$, and $\langle u, u \rangle = 0$ iff u = 0.

(b) The Cauchy-Schwartz inequality says that for $u, v \in V$ we have $|\langle u, v \rangle| \leq ||u|| ||v||$. To see this, first note that it is obviously true if v = 0, so we may assume that $v \neq 0$ and so ||v|| > 0. Put $x = \langle v, v \rangle u - \langle u, v \rangle v$. Then

$$||x||^{2} = \langle x, x \rangle$$

$$= \langle v, v \rangle^{2} \langle u, u \rangle - 2 \langle v, v \rangle \langle u, v \rangle \langle u, v \rangle + \langle u, v \rangle^{2} \langle v, v \rangle$$

$$= \langle v, v \rangle (\langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^{2}).$$

As $\langle v, v \rangle = ||v||^2 > 0$, we can divide by this to get

$$\langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^2 = (\|x\|/\|v\|)^2.$$

This is a square, so it must be nonnegative, so $\langle u, u \rangle \langle v, v \rangle \geq \langle u, v \rangle^2$. As both sides are nonnegative this inequality reains valid when we take square roots. After noting that $\sqrt{t^2} = |t|$ for all $t \in \mathbb{R}$, we conclude that $||u|| ||v|| \geq |\langle u, v \rangle|$, as claimed.

(c) Now take V=C[0,1], with the usual inner product $\langle f,g\rangle=\int_0^1 f(x)g(x)\,dx$. Take g(x)=x, so $\|g\|^2=\int_0^1 x^2\,dx=1/3$. The Cauchy-Schwartz inequality then says that $\langle f,g\rangle^2\leq \|f\|^2\|g\|^2=\|f\|^2/3$, or in other words

$$\left(\int_0^1 x f(x) \, dx\right)^2 \le \frac{1}{3} \int_0^1 f(x)^2 \, dx.$$

(d) Put

$$v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \quad v_2 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \quad v_3 = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \quad v_4 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

We apply the Gram-Schmidt procedure as follows:

$$\begin{aligned} u_1 &= v_1 = \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \end{bmatrix} \\ \langle u_1, u_1 \rangle &= 1^2 + 1^2 + 1^1 + 1^2 = 4 \\ \langle v_2, u_1 \rangle &= 2 \\ u_2 &= v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 \\ &= \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ \frac{1}{1} \end{bmatrix} \\ \langle u_2, u_2 \rangle &= \frac{1}{4} (1^2 + 1^2 + 1^2 + 1^2) = 1 \\ \langle v_3, u_1 \rangle &= 1 \\ \langle v_3, u_2 \rangle &= 1/2 \\ u_3 &= v_3 - \frac{\langle v_3, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v_3, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 \\ &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \end{bmatrix} - \frac{1/2}{1} \cdot \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ \frac{1}{1} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \\ \langle u_3, u_3 \rangle &= \frac{1}{4} (0^2 + 0^2 + (-1)^2 + 1^2) = \frac{1}{2} \\ \langle v_4, u_1 \rangle &= 1 \\ \langle v_4, u_2 \rangle &= -\frac{1}{2} \\ \langle v_4, u_3 \rangle &= 0 \\ u_4 &= v_4 - \frac{\langle v_4, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v_4, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 - \frac{\langle v_4, u_3 \rangle}{\langle u_3, u_3 \rangle} u_3 \\ &= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \frac{-1/2}{1} \cdot \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}. \end{aligned}$$

We conclude that the sequence

$$u_1, u_2, u_3, u_4 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \ \frac{1}{2} \begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix}, \ \frac{1}{2} \begin{bmatrix} 0\\0\\-1\\1 \end{bmatrix}, \ \frac{1}{2} \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}$$

is an orthogonal sequence such that $\operatorname{span}(u_1,\ldots,u_i)=\operatorname{span}(v_1,\ldots,v_i)$ for $i=1,\ldots,4$.

(9) [0506 Q2]

- (a) Let V and W be finite-dimensional vector spaces, and let $\phi: V \to W$ be a linear map. Prove that there is a number $r \geq 0$ and lists $v_1, \ldots, v_n \in V$ and $w_1, \ldots, w_m \in W$ such that
 - (i) w_1, \ldots, w_m is a basis for W
 - (ii) $\phi(v_i) = w_i \text{ for } i = 1, ..., r$
 - (iii) v_{r+1}, \ldots, v_n is a basis for $\ker(\phi)$.

Prove also that the list v_1, \ldots, v_n is linearly independent. (13 marks)

(b) Find bases as in (a) for the following case: $V = M_2 \mathbb{R}$, $W = \mathbb{R}[x]_{\leq 3}$ and

$$\phi(A) = [x^2, x]A\begin{bmatrix} 1 \\ x \end{bmatrix}.$$

(12 marks)

Solution:

(a) This is a cut-down version of a theorem proved in lectures. I will tell the students that such questions may be set, and give them a short list of theorems that might be used.

Choose a basis w_1, \ldots, w_r for $\operatorname{image}(\phi) \leq W$ [1]. This is a linearly independent list in W [1], so it can be extended to a list $\mathcal{W} = w_1, \ldots, w_m$ (for some $m \geq n$) that is a basis for W [2]. Next, for $i = 1, \ldots, r$ we note that $w_i \in \operatorname{image}(\phi)$, so we can choose $v_i \in V$ such that $\phi(v_i) = w_i$ [1]. This gives us elements $v_1, \ldots, v_r \in V$. Now choose a basis for $\ker(\phi)$ [1], and label the elements as v_{r+1}, \ldots, v_n say [1]. Now (i), (ii) and (iii) are satisfied. We must show that the list $\mathcal{V} = v_1, \ldots, v_n$ is linearly independent. Consider a relation $\lambda_1 v_1 + \ldots + \lambda_n v_n = 0$ [1]. We apply ϕ , which gives

$$(\lambda_1 \phi(v_1) + \dots + \lambda_r \phi(v_r)) + (\lambda_{r+1} \phi(v_{r+1}) + \dots + \lambda_n \phi(v_n)) = 0.$$
[1]

In the first block of terms we have $\phi(v_i) = w_i$, and in the second block we have $\phi(v_i) = 0$. The equation therefore reduces to

$$\lambda_1 w_1 + \dots + \lambda_r w_r = 0.[1]$$

As the list w_1, \ldots, w_r is a basis for image (ϕ) , it is linearly independent, so we must have $\lambda_1 = \cdots = \lambda_r = 0$ [1]. Thus, our original relation simplifies to $\lambda_{r+1}v_{r+1} + \cdots + \lambda_n v_n = 0$. As the list v_{r+1}, \ldots, v_n is a basis for $\ker(\phi)$, it is linearly independent, so $\lambda_{r+1} = \cdots = \lambda_n = 0$ [1], so our original relation was the trivial one. This shows that \mathcal{V} is linearly independent [1].

(b) Now consider the map $\phi \colon M_2\mathbb{R} \to \mathbb{R}[x]_{\leq 3}$ given by $\phi(A) = [x^2, x]A\begin{bmatrix} 1 \\ x \end{bmatrix}$, or equivalently

$$\phi\left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right] = \left[x^2, \ x\right]\left[\begin{smallmatrix} a+bx \\ c+dx \end{smallmatrix}\right] = (a+bx)x^2 + (c+dx)x = bx^3 + (a+d)x^2 + cx. \textbf{[2]}$$

From this it is clear that the list $w_1, w_2, w_3 = x^3, x^2, x$ is a basis for image (ϕ) [2]. If we put $w_4 = 1$ then w_1, \ldots, w_4 is a basis for $\mathbb{R}[x]_{\leq 3}$ extending our basis for image (ϕ) [2]. Now put

$$v_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 $v_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $v_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ $v_4 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ [2]

Using the above formula for ϕ we see that $\phi(v_1) = x^3 = w_1$ and $\phi(v_2) = x^2 = w_2$ and $\phi(v_3) = x = w_3$ and $\phi(v_4) = 0$ [2]. More generally, the formula shows that $\phi \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is only zero when b = c = 0 and d = -a, which means that $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = av_4$. This shows that v_4 is a basis for $\ker(\phi)$ [2], so we have all the properties mentioned in (a).

(10) [0506R Q2]

- (a) Let V and W be finite-dimensional vector spaces, and let $\phi: V \to W$ be a linear map. Prove that there is a number $r \geq 0$ and lists $v_1, \ldots, v_n \in V$ and $w_1, \ldots, w_m \in W$ such that
 - (i) w_1, \ldots, w_m is a basis for W
 - (ii) $\phi(v_i) = w_i \text{ for } i = 1, ..., r$
 - (iii) v_{r+1}, \ldots, v_n is a basis for $\ker(\phi)$.

Prove also that the list v_1, \ldots, v_n is linearly independent. (15 marks)

(b) Find bases as in (a) for the following case: $V = \mathbb{R}[x]_{\leq 2}$, $W = \mathbb{R}^4$ and

$$\phi(f) = [f(0), f(1), f(0), f(1)]^T$$
.

(10 marks)

Solution:

(a) This is a cut-down version of a theorem proved in lectures, and is identical to the first half of a question on the June exam. I told the students that such questions might be set, and gave them a short list of theorems that might be used.

Choose a basis w_1, \ldots, w_r for image $(\phi) \leq W$ [2]. This is a linearly independent list in W [1], so it can be extended to a list $\mathcal{W} = w_1, \ldots, w_m$ (for some $m \geq n$) that is a basis for W [2]. Next, for $i = 1, \ldots, r$ we note that $w_i \in \text{image}(\phi)$, so we can choose $v_i \in V$ such that $\phi(v_i) = w_i$ [1]. This gives us elements $v_1, \ldots, v_r \in V$. Now choose a basis for $\ker(\phi)$ [2], and label the elements as v_{r+1}, \ldots, v_n say [1]. Now (i), (ii) and (iii) are satisfied. We must show that the list $\mathcal{V} = v_1, \ldots, v_n$ is linearly independent. Consider a relation $\lambda_1 v_1 + \ldots + \lambda_n v_n = 0$ [1]. We apply ϕ , which gives

$$(\lambda_1\phi(v_1) + \dots + \lambda_r\phi(v_r)) + (\lambda_{r+1}\phi(v_{r+1}) + \dots + \lambda_n\phi(v_n)) = 0.[1]$$

In the first block of terms we have $\phi(v_i) = w_i$, and in the second block we have $\phi(v_i) = 0$. The equation therefore reduces to

$$\lambda_1 w_1 + \dots + \lambda_r w_r = 0.[1]$$

As the list w_1, \ldots, w_r is a basis for image (ϕ) , it is linearly independent, so we must have $\lambda_1 = \cdots = \lambda_r = 0$ [1]. Thus, our original relation simplifies to $\lambda_{r+1}v_{r+1} + \cdots + \lambda_n v_n = 0$. As the list v_{r+1}, \ldots, v_n is a basis for $\ker(\phi)$, it is linearly independent, so $\lambda_{r+1} = \cdots = \lambda_n = 0$ [1], so our original relation was the trivial one. This shows that \mathcal{V} is linearly independent [1].

(b) Now consider the map $\phi \colon V = \mathbb{R}[x]_{\leq 2} \to \mathbb{R}^4 = W$ given by $\phi(f) = [f(0), f(1), f(0), f(1)]^T$, or equivalently

$$\phi(ax^2 + bx + c) = \begin{bmatrix} c \\ a+b+c \\ c \\ a+b+c \end{bmatrix} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + (a+b) \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} . [2]$$

Thus, if we put $w_1 = [1, 1, 1, 1]^T$ and $w_2 = [0, 1, 0, 1]^T$ then the list w_1, w_2 is a basis for image (ϕ) [2], which we can extend to a basis for all of \mathbb{R}^4 by taking $w_3 = [0, 0, 1, 0]^T$ and

 $w_4 = [0,0,0,1]^T$ [2]. If we put $v_1 = 1$ and $v_2 = x$ then we see that $\phi(v_i) = w_i$ for i = 1,2 [2]. We also see from the above formulae that for a polynomial $f(x) = ax^2 + bx + c$ we have $\phi(f) = 0$ iff a + b + c = c = 0 iff $f(x) = a(x^2 - x)$ for some a, so the element $v_3 = x^2 - x$ gives a basis for $\ker(\phi)$ [2]. In summary, we have r = 2 and

$$v_1 = 1$$
 $v_2 = x$ $v_3 = x^2 - x$ $w_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $w_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $w_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $w_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

(11) [0607 Q2] Consider the linear map $\alpha \colon \mathbb{R}[x]_{\leq 2} \to M_2(\mathbb{R})$ given by

$$\alpha(f) = \left[\begin{smallmatrix} f(0) & f(1) \\ f'(0) & f'(1) \end{smallmatrix} \right].$$

- (a) Write down a basis \mathcal{U} for $\mathbb{R}[x]_{\leq 2}$ and a basis \mathcal{V} for $M_2(\mathbb{R})$. (3 marks)
- (b) Find the matrix of α with respect to the bases \mathcal{U} and \mathcal{V} . (5 marks)
- (c) Show that α is injective. (4 marks)
- (d) Give a basis for the image of α . (4 marks)
- (e) Find a nonzero matrix $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that $\langle X, \alpha(x^i) \rangle = 0$ for i = 0, 1, 2. (5 marks) (Here we use the standard inner product for square matrices.)
- (f) Show (by an explicit example) that α is not surjective. (4 marks)

Solution:

(a) Similar to problem sheets The obvious basis for $\mathbb{R}[x]_{\leq 2}$ consists of the polynomials $p_0(x) = 1$, $p_1(x) = x$ and $p_2(x) = x^2$.[1] The obvious basis for $M_2(\mathbb{R})$ consists of the matrices

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ $E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ $E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.[2]

(b) Similar to problem sheets We have

$$\alpha(p_0) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 1.E_1 + 1.E_2 + 0.E_3 + 0.E_4$$

$$\alpha(p_1) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = 0.E_1 + 1.E_2 + 1.E_3 + 1.E_4$$

$$\alpha(p_2) = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} = 0.E_1 + 1.E_2 + 0.E_3 + 2.E_4 [3]$$

so the matrix of α with respect to our bases is

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix} . [\mathbf{2}]$$

(c) Similar to problem sheets From the above we see that

$$\alpha(a+bx+cx^2) = a\alpha(p_0) + b\alpha(p_1) + c\alpha(p_2) = \begin{bmatrix} a & a+b+c \\ b & b+2c \end{bmatrix} . [2]$$

Thus, if $\alpha(a+bx+cx^2)=0$ we see that a=a+b+c=b=b+2c=0, which easily implies that a=b=c=0. This shows that $\ker(\alpha)=\{0\}$ and thus that α is injective. [2]

(d) **Unseen** As α is injective, the matrices $\alpha(p_0) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\alpha(p_1) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $\alpha(p_2) = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$ form a basis for the image. [4]

14

(e) Similar to problem sheets We have

$$\langle X, \alpha(1) \rangle = \langle \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \rangle = a + b$$
$$\langle X, \alpha(x) \rangle = \langle \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \rangle = b + c + d$$
$$\langle X, \alpha(x^2) \rangle = \langle \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \rangle = b + 2d[\mathbf{2}]$$

We therefore must have a+b=b+c+d=b+2d=0, which gives a=2d, b=-2d and c=d, so $X=d\begin{bmatrix}2&-2\\1&1\end{bmatrix}$. [2] Here d is arbitrary so we can take d=1 and so $X=\begin{bmatrix}2&-2\\1&1\end{bmatrix}$. [1]

- (f) Unseen Observe that $\langle X, X \rangle = 2^2 + (-2)^2 + 1^2 + 1^2 = 10 \neq 0$, but $\langle X, A \rangle = 0$ for all A in the image of α (by part (d)). It follows that $X \notin \text{image}(\alpha)$, and thus that $\text{image}(\alpha) \neq M_2(\mathbb{R})$, so α is not surjective. [4]
- (12) [0607R Q2] Define linear maps $\phi, \psi \colon M_2(\mathbb{R}) \to M_2(\mathbb{R})$ by

$$\phi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-c & a-c \\ b-d & b-d \end{bmatrix}$$
$$\psi(A) = \phi(\phi(A)).$$

- (a) Write down a basis for $M_2(\mathbb{R})$. (2 marks)
- (b) Find the matrix of ϕ with respect to your basis. (5 marks)
- (c) Give a basis for $ker(\phi)$. (5 marks)
- (d) Give a formula for $\psi \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. (4 marks)
- (e) Give a basis for image(ψ). (3 marks)
- (f) Show that $image(\psi) \leq ker(\phi)$. (3 marks)
- (g) What can you conclude about $\phi(\phi(\phi(A)))$? (3 marks)

Solution:

(a) The list

$$E_1 = \left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix} \right], \qquad E_2 = \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right], \qquad E_3 = \left[\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix} \right], \qquad E_4 = \left[\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix} \right]$$

is a basis for $M_2(\mathbb{R})$. [2]

(b) We have

$$\phi(E_1) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = E_1 + E_2 + 0E_3 + 0E_4$$

$$\phi(E_2) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = 0E_1 + 0E_2 + E_3 + E_4$$

$$\phi(E_3) = \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} = -E_1 - E_2 + 0E_3 + 0E_4$$

$$\phi(E_4) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = 0E_1 + 0E_2 - E_3 - E_4$$
[3]

The matrix of ϕ is thus

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & -1 \end{bmatrix} . [2]$$

(c) Consider a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. We have $A \in \ker(\phi)$ iff a - c = 0 = b - d [1] iff c = a and d = b [1], iff A has the form

$$A = \begin{bmatrix} a & b \\ a & b \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}. [1]$$

It follows that the matrices $A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ give a basis for $\ker(\phi)$ [2].

- (d) We have $\phi \begin{bmatrix} a & b \\ c' & d' \end{bmatrix} = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}$, where a' = b' = a c and c' = d' = b d. Thus $\psi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \phi \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} = \begin{bmatrix} a' c' & a' c' \\ b' d' & b' d' \end{bmatrix} = \begin{bmatrix} a b c + d & a b c + d \\ a b c + d & a b c + d \end{bmatrix} = (a b c + d) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} . [4]$
- (e) From the above, we see that the matrix $A_3 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is a basis for image(ψ). [3]
- (f) Every element $X \in \operatorname{image}(\psi)$ has the form $X = tA_3$ for some t, but $A_3 = A_1 + A_2$, so $X = tA_1 + tA_2 \in \operatorname{span}\{A_1, A_2\} = \ker(\phi)$. Thus $\operatorname{image}(\psi) \leq \ker(\phi)$. [3]
- (g) We have $\phi(\phi(\phi(A))) = \phi(\psi(A))$, and $\psi(A) \in \text{image}(\psi) \leq \text{ker}(\phi)$, so this is just zero. Alternatively, we have

$$\phi(\psi(A)) = \phi((a-b-c+d) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}) = (a-b-c+d)\phi \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 0.$$
[3]

(13) [0708 Q2]

- (a) Let V be a vector space, and let $V = v_1, \ldots, v_n$ be a list of elements of V. Define what it means for V to (i) be linearly independent (ii) span V (iii) be a basis for V. (6 marks)
- (b) In each of the following cases, say whether the given list is linearly independent, whether it spans, and whether it is a basis. Justify your answers, giving explicit counterexamples where appropriate. (16 marks)

(i)
$$V = \mathbb{R}^4$$
, $v_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$.

- (ii) $V = \mathbb{R}[x]_{<2}$, $p_1(x) = (x-2)^2$, $p_2(x) = x^2$, $p_3(x) = (x+2)^2$.
- (iii) $V = M_2(\mathbb{R}), A_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}, A_4 = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}, A_5 = \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}, A_6 = \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix}.$
- (iv) $V = \{f \in C^{\infty}(\mathbb{R}) \mid f'' = f\}, f_0(x) = \exp(x), f_1(x) = \exp(-x), f_2(x) = \sinh(x), f_3(x) = \cosh(x).$ (Here you may quote standard facts about differential equations.)
- (c) Give a list of four nonzero vectors in \mathbb{R}^3 such that the first three vectors in the list form a basis, but the last three do not. (3 marks)

Solution:

- (a) Define $\mu_{\mathcal{V}} \colon \mathbb{R}^n \to V$ by $\mu_{\mathcal{V}}(\lambda) = \sum_i \lambda_i v_i$. The list \mathcal{V} is linearly dependent if there exists a nonzero λ with $\mu_{\mathcal{V}}(\lambda) = 0$; otherwise, the list is linearly independent [2]. The list spans V if for each $v \in V$ there exists $\lambda \in \mathbb{R}^n$ with $\mu_{\mathcal{V}}(\lambda) = v$ [2]. The list is a basis for V if it is linearly independent and also spans [2]. Bookwork. Formulations not involving $\mu_{\mathcal{V}}$ are also acceptable.
- (b) Similar to problem sheets, lecture notes and past papers. In each case there is one mark for independence, one mark for spanning, and two marks for justification.
 - (i) We have

$$\mu_{\mathcal{V}}(\boldsymbol{\lambda}) = \lambda_1 \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_3\\\lambda_1\\\lambda_2\\\lambda_2 + \lambda_3 \end{bmatrix}.$$

This can only vanish if $\lambda_1 + \lambda_3 = \lambda_1 = \lambda_2 = \lambda_2 + \lambda_3 = 0$, which easily implies that $\lambda_1 = \lambda_2 = \lambda_3 = 0$. Thus \mathcal{V} is linearly independent. However, if x is any of the vectors v_i then $x_1 - x_2 + x_3 - x_4 = 0$, so the same will be true for any $x \in \text{span}(\mathcal{V})$, so in particular the vector $\mathbf{e}_1 = [1, 0, 0, 0]^T$ does not lie in $\text{span}(\mathcal{V})$, so the list \mathcal{V} does not span \mathbb{R}^4 . It is also acceptable to say that \mathcal{V} is too short to span \mathbb{R}^4 , or to use row-reduction. It is therefore not a basis. [4]

(ii) We have

$$p_1(x) = x^2 - 4x + 4$$

 $p_2(x) = x^2$
 $p_3(x) = x^2 + 4x + 4$

so

$$x^{2} = p_{2}(x)$$

$$x = (p_{3}(x) - p_{1}(x))/8$$

$$1 = (p_{1}(x) - 2p_{2}(x) + p_{3}(x))/8.$$

Thus $x^2, x, 1 \in \text{span}(\mathcal{P})$, and these monomials form a basis for $\mathbb{R}[x]_{\leq 2}$, so \mathcal{P} spans $\mathbb{R}[x]_{\leq 2}$. As \mathcal{P} has length three, which is the same as the dimension of $\mathbb{R}[x]_{\leq 2}$, we see that \mathcal{P} is also linearly independent and thus a basis.[4]

A more equational proof is also acceptable. Some relevant formulae are given below.

$$\mu_{\mathcal{P}}(\lambda) = \lambda_1(x^2 - 4x + 4) + \lambda_2 x^2 + \lambda_3(x^2 + 4x + 4) = (\lambda_1 + \lambda_2 + \lambda_3)x^2 + (-4\lambda_1 + 4\lambda_3)x + (4\lambda_1 + 4\lambda_2)x + ($$

Given a polynomial $f(x) = ax^2 + bx + c$, we have $\mu_{\mathcal{P}}(\lambda) = f$ iff the following equations hold:

$$\lambda_1 + \lambda_2 + \lambda_3 = a \tag{A}$$

$$-4\lambda_1 + 4\lambda_3 = b \tag{B}$$

$$4\lambda_1 + 4\lambda_3 = c. (C)$$

These can be solved as follows:

$$\lambda_1 = (c - b)/8$$
$$\lambda_2 = a - c/4$$
$$\lambda_3 = (c + b)/8.$$

- (iii) The list $\mathcal{A} = A_1, \ldots, A_6$ is linearly dependent, because of the relation $A_1 + A_2 A_6 = 0$. Also, for each matrix A_i , the sum of all the entries is zero. It follows that any matrix in $\operatorname{span}(\mathcal{A})$ has the same property, so $I \notin \operatorname{span}(\mathcal{A})$, so \mathcal{A} is not a spanning set. It therefore cannot be a basis either. [4]
- (iv) It is standard that any function f(x) with f''(x) = f(x) has the form $f(x) = a e^x + b e^{-x}$ for some constants a and b. Thus, $f = af_1 + bf_2 + 0f_3 + 0f_4 \in \text{span}(\mathcal{F})$, so \mathcal{F} spans V. However, the relation $f_1 + f_2 2f_4 = 0$ shows that \mathcal{F} is linearly dependent, and thus not a basis. [4]
- (c) Unseen. There are many possible examples, such as the list

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}. [3]$$

- (14) [0708R Q2] Let V be a finite-dimensional vector space over \mathbb{R} .
 - (a) Define what is meant by an *inner product* on V. (5 marks)
 - (b) State and prove the Cauchy-Schwartz inequality. (You need not discuss the case where it is actually an equality.) (10 marks)

(c) Let $f:[0,1]\to\mathbb{R}$ be a continuous function. Prove that

$$\left(\int_0^1 x^2 f(x) \, dx\right)^2 \le \frac{1}{5} \int_0^1 f(x)^2 \, dx.$$

(4 marks)

(d) Find an orthogonal sequence u_1, u_2, u_3, u_4 in \mathbb{R}^4 such that $\operatorname{span}(u_1, \dots, u_i) = \operatorname{span}(v_1, \dots, v_i)$ for all i, where

$$v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \quad v_2 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \quad v_3 = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \quad v_4 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

(6 marks)

Solution: This is a slight modification of a question from a past paper.

- (a) **Bookwork.** An inner product on V is a rule that assigns a number $\langle u, v \rangle \in \mathbb{R}$ to each pair of elements $u, v \in V$ such that
 - (i) $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$ for all $u,v,w\in V.[1]$
 - (ii) $\langle tu, v \rangle = t \langle u, v \rangle$ for all $u, v \in V$ and $t \in \mathbb{R}.[1]$
 - (iii) $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$. [1]
 - (iv) We have $\langle u, u \rangle \geq 0$ for all $u \in V$, [1] and $\langle u, u \rangle = 0$ iff u = 0. [1]
- (b) **Bookwork.** Let V be a vector space with an inner product, and let u and v be elements of V. Then $|\langle u, v \rangle| \leq ||u|| ||v||.[2]$

Proof: For any s and t we have

$$0 < \|su - tv\|^2 [\mathbf{1}] = \langle su - tv, su - tv \rangle = s^2 \langle u, u \rangle - 2st \langle u, v \rangle + t^2 \langle v, v \rangle = s^2 \|u\|^2 + t^2 \|v\|^2 - 2st \langle u, v \rangle. [\mathbf{1}]$$

Now take $s = ||v||^2$ and $t = \langle u, v \rangle$ [2] to get

$$0 \le \|u\|^2 \|v\|^4 + \langle u, v \rangle^2 \|v\|^2 - 2\|v\|^2 \langle u, v \rangle^2 = \|v\|^2 (\|u\|^2 \|v\|^2 - \langle u, v \rangle^2). [1]$$

If v = 0 then we have $|\langle u, v \rangle| = 0 = ||u|| ||v||$ so the claim holds. [1] If $v \neq 0$ then $||v||^2 > 0$ so the above inequality will remain valid after dividing by $||v||^2$, giving $\langle u, v \rangle^2 \leq ||u||^2 ||v||^2$. [1] We now take square roots (and note that $\sqrt{a^2} = |a|$) to get $|\langle u, v \rangle| \leq ||u|| ||v||$, as claimed.[1]

(c) Similar to problem sheets Now take V = C[0,1], with the usual inner product $\langle f,g \rangle = \int_0^1 f(x)g(x)\,dx$. Take $g(x)=x^2$, so $\|g\|^2=\int_0^1 x^4\,dx=1/5$ [1]. The Cauchy-Schwartz inequality [1]then says that $\langle f,g \rangle^2 \leq \|f\|^2 \|g\|^2 = \|f\|^2/5$ [1], or in other words

$$\left(\int_0^1 x^2 f(x) \, dx\right)^2 \le \frac{1}{5} \int_0^1 f(x)^2 \, dx.$$
[1]

(d) Similar to problem sheets Put

$$v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
 $v_2 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$ $v_3 = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$ $v_4 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$

18

We apply the Gram-Schmidt procedure as follows:

$$\begin{aligned} u_1 &= v_1 = \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \end{bmatrix} \\ \langle u_1, u_1 \rangle &= 1^2 + 1^2 + 1^2 + 1^2 = 4 \\ \langle v_2, u_1 \rangle &= 2 \\ 1 \end{bmatrix} \\ u_2 &= v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 \\ \frac{1}{1} \end{bmatrix} \\ 1 \end{bmatrix} \\ \langle u_2, u_2 \rangle &= \frac{1}{4} (1^2 + 1^2 + 1^2 + 1^2) = 1 \\ \langle v_3, u_1 \rangle &= 1 \\ \langle v_3, u_2 \rangle &= 1/2 \\ u_3 &= v_3 - \frac{\langle v_3, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v_3, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} \frac{1}{1} \\ \frac{1}{1} \end{bmatrix} - \frac{1/2}{1} \cdot \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ \frac{1}{1} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \\ 1 \end{bmatrix} \\ \langle u_3, u_3 \rangle &= \frac{1}{4} (0^2 + 0^2 + (-1)^2 + 1^2) = \frac{1}{2} \\ \langle v_4, u_1 \rangle &= 1 \\ \langle v_4, u_2 \rangle &= -\frac{1}{2} \\ \langle v_4, u_3 \rangle &= 0 \\ u_4 &= v_4 - \frac{\langle v_4, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v_4, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 - \frac{\langle v_4, u_3 \rangle}{\langle u_3, u_3 \rangle} u_3 \\ &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \frac{-1/2}{1} \cdot \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} . \end{bmatrix}$$

We conclude that the sequence

$$u_1, u_2, u_3, u_4 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \ \frac{1}{2} \begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix}, \ \frac{1}{2} \begin{bmatrix} 0\\0\\-1\\1 \end{bmatrix}, \ \frac{1}{2} \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}$$

is an orthogonal sequence such that $\operatorname{span}(u_1,\ldots,u_i)=\operatorname{span}(v_1,\ldots,v_i)$ for $i=1,\ldots,4$.

(15) [Mock exam Q3] Define $\phi \colon \mathbb{R}[x]_{\leq 3} \to \mathbb{R}[x]_{\leq 3}$ by

$$\phi(f)(x) = x^3 f(4/x).$$

- (a) Find the matrix of ϕ with respect to the usual basis of $\mathbb{R}[x]_{\leq 3}$.
- (b) Hence or otherwise, find the eigenvalues of ϕ , and find a basis of $\mathbb{R}[x]_{\leq 3}$ consisting of eigenvectors for ϕ .
- (c) Is ϕ injective?
- (d) Is ϕ surjective?

Solution:

(a) We have

$$\phi(1) = x^3.1 = 0.1 + 0.x + 0.x^2 + 1.x^3$$

$$\phi(x) = x^3.\frac{4}{x} = 0.1 + 0.x + 4.x^2 + 0.x^3$$

$$\phi(x^2) = x^3.\left(\frac{4}{x}\right)^2 = 0.1 + 16.x + 0.x^2 + 0.x^3$$

$$\phi(x^3) = x^3.\left(\frac{4}{x}\right)^3 = 64.1 + 0.x + 0.x^2 + 0.x^3,$$

so the matrix of ϕ is

$$P = \begin{bmatrix} 0 & 0 & 0 & 64 \\ 0 & 0 & 16 & 0 \\ 0 & 4 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

(b) The characteristic polynomial of P is the determinant of the matrix tI - P, which is

$$\det \begin{bmatrix} t & 0 & 0 & -64 \\ 0 & t & -16 & 0 \\ 0 & -4 & t & 0 \\ -1 & 0 & 0 & t \end{bmatrix} = t \det \begin{bmatrix} t & -16 & 0 \\ -4 & t & 0 \\ 0 & 0 & t \end{bmatrix} - (-64) \det \begin{bmatrix} 0 & t & -16 \\ 0 & -4 & t \\ -1 & 0 & 0 \end{bmatrix}$$
$$= t^2(t^2 - 64) + 64 \cdot (-1) \cdot (t^2 - 64) = (t^2 - 64)^2 = (t - 8)^2(t + 8)^2.$$

It follows that the eigenvalues of P (or of ϕ) are 8 and -8. Consider a function $f(x)=a+bx+cx^2+dx^3$. We have $\phi(f)=64d+16cx+4bx^2+ax^3$, so $\phi(f)=8f$ iff 64d=8a and 16c=8b and 4b=8c and a=8d, which reduces to a=8d and b=2c, which means that f has the form $f(x)=d(x^3+8)+c(x^2+2x)$. It follows that x^3+8 and x^2+2x are eigenvectors of eigenvalue 8. Similarly, we have $\phi(f)=-8f$ iff 64d=-8a and 16c=-8b and 4b=-8c and a=-8d, which reduces to a=-8d and b=-2c, which means that f has the form $f(x)=d(x^3-8)+c(x^2-2x)$. It follows that x^3-8 and x^2-2x are eigenvectors of eigenvalue -8. We thus have a list $\mathcal{V}=x^3+8, x^2+2x, x^3-8, x^2-2x$ of eigenvectors of ϕ , and this list is easily seen to be a basis of $\mathbb{R}[x]_{<3}$.

- (c) We see from (b) that 0 is not an eigenvalue of ϕ , so $\ker(\phi) = 0$, so ϕ is injective.
- (d) The rank-nullity formula says that

$$\dim(\mathrm{image}(\phi)) + \dim(\ker(\phi)) = \dim(\mathbb{R}[x]_{<3}) = 4.$$

As $\ker(\phi) = 0$ this gives $\dim(\operatorname{image}(\phi)) = 4$, so $\operatorname{image}(\phi) = \mathbb{R}[x]_{\leq 3}$, so ϕ is surjective.

(16) [0506 Q3] Define linear maps $\phi, \psi \colon M_2\mathbb{R} \to M_2\mathbb{R}$ by

$$\phi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix}$$
$$\psi(A) = \phi(A) - 2A.$$

- (a) Write down a basis for $M_2\mathbb{R}$. (2 marks)
- (b) Find the matrix of ϕ with respect to your basis. (4 marks)
- (c) Find the matrix of ψ with respect to your basis. (3 marks)
- (d) Give bases for $\ker(\phi)$, $\operatorname{image}(\phi)$ and $\ker(\psi)$. (12 marks)
- (e) Using (d), give a basis for $M_2\mathbb{R}$ consisting of eigenvectors for ϕ . (4 marks)

Solution: This is all similar to questions on problem sheets, except perhaps for (e).

(a) The list

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \qquad E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

is a basis for $M_2\mathbb{R}$. [2]

(b) We have

$$\phi(E_1) = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = 1E_1 + 0E_2 + 1E_3 + 0E_4$$

$$\phi(E_2) = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = 0E_1 + 1E_2 + 0E_3 + 1E_4$$

$$\phi(E_3) = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = 1E_1 + 0E_2 + 1E_3 + 0E_4$$

$$\phi(E_4) = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = 0E_1 + 1E_2 + 0E_3 + 1E_4 [3]$$

The matrix of ϕ is thus

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} . [\mathbf{1}]$$

(c) The simplest thing is just to say that the matrix of ψ is the matrix of ϕ minus twice the identity. Alternatively, we have

$$\psi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix} - \begin{bmatrix} 2a & 2b \\ 2c & 2d \end{bmatrix} = \begin{bmatrix} c-a & d-b \\ a-c & b-d \end{bmatrix}$$

so

$$\psi(E_1) = \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix} = (-1)E_1 + 0E_2 + 1E_3 + 0E_4$$

$$\psi(E_2) = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} = 0E_1 + (-1)E_2 + 0E_3 + 1E_4$$

$$\psi(E_3) = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} = 1E_1 + 0E_2 + (-1)E_3 + 0E_4$$

$$\psi(E_4) = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} = 0E_1 + 1E_2 + 0E_3 + (-1)E_4[2]$$

The matrix of ψ is thus

$$\begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} . [1]$$

(d) Consider a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. We have $A \in \ker(\phi)$ iff a + c = 0 = b + d [1]iff A has the form

$$A = \begin{bmatrix} a & b \\ -a & -b \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$$
.[1]

It follows that $\begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$ is a basis for $\ker(\phi)$ [2]. Similarly, the formula in (c) shows that $\psi(A)=0$ iff c=a and d=b [1]iff A has the form

$$A = \begin{bmatrix} a & b \\ a & b \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, [1]$$

so $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ is a basis for $\ker(\psi)$ [2]. Next, the formula

$$\phi \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] = \left[\begin{smallmatrix} a+c & b+d \\ a+c & b+d \end{smallmatrix} \right]$$

shows that any matrix B in image(ϕ) has the form

$$B = \begin{bmatrix} p & q \\ p & q \end{bmatrix} = p \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + q \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} . [1]$$

Moreover, for any matrix B of the above form we have $B = \phi \begin{bmatrix} p & q \\ 0 & 0 \end{bmatrix}$, so $B \in \text{image}(\phi)$ [1]. This means that $\text{image}(\phi)$ is precisely the set of matrices of the above form, so $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ is a basis for $\text{image}(\phi)$ [2].

(e) The elements of $\ker(\phi)$ are eigenvectors for ϕ of eigenvalue 0 [1], and the elements of $\ker(\psi)$ are eigenvectors of ϕ of eigenvalue 2 [1]. It follows that the list

$$\mathcal{E} = \left[\begin{smallmatrix} 1 & 0 \\ -1 & 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 & 1 \\ 0 & -1 \end{smallmatrix} \right], \left[\begin{smallmatrix} 1 & 0 \\ 1 & 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 & 1 \\ 0 & 1 \end{smallmatrix} \right]$$

consists of eigenvectors of ϕ . It is easily seen to be a basis of $M_2\mathbb{R}$. [2]

- (17) [0506R Q3] Define a linear map $\phi: M_2\mathbb{R} \to M_2\mathbb{R}$ by $\phi(A) = QA AQ$, where $Q = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$.
 - (a) Show that I and Q are eigenvectors for ϕ . (**Hint:** you do not need any elaborate calculation for this.) (3 marks)
 - (b) Give a formula for $\phi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)$ (3 marks)
 - (c) Write down a basis for $M_2\mathbb{R}$. (2 marks)
 - (d) Find the matrix of ϕ with respect to your basis. (4 marks)
 - (e) Find X such that X is an eigenvector of ϕ with eigenvalue 10, and show that X^T is an eigenvector of ϕ of eigenvalue -10. (9 marks)
 - (f) What is the matrix of ϕ with respect to the basis I, Q, X, X^T of $M_2\mathbb{R}$? (4 marks)

Solution:

- (a) We have $\phi(I) = QI IQ = Q Q = 0$ [1] and $\phi(Q) = Q^2 Q^2 = 0$ [1], so I and Q are eigenvectors of eigenvalue 0 [1].
- (b) $\phi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 3a+4c & 3b+4d \\ 4a-3c & 4b-3d \end{bmatrix} \begin{bmatrix} 3a+4b & 4a-3b \\ 3c+4d & 4c-3d \end{bmatrix} = \begin{bmatrix} -4b+4c & -4a+6b+4d \\ 4a-6c-4d & 4b-4c \end{bmatrix} [\mathbf{3}]$
- (c) The list $E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \qquad E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ is a basis for $M_2\mathbb{R}$. [2]
- (d) Using the formula in (b) we have

$$\phi(E_1) = \begin{bmatrix} 0 & -4 \\ 4 & 0 \end{bmatrix} = 0.E_1 - 4.E_2 + 4.E_3 + 0.E_4$$

$$\phi(E_2) = \begin{bmatrix} -4 & 6 \\ 0 & 4 \end{bmatrix} = -4.E_1 + 6.E_2 + 0.E_3 + 4.E_4$$

$$\phi(E_3) = \begin{bmatrix} 4 & 0 \\ -6 & -4 \end{bmatrix} = 4.E_1 + 0.E_2 - 6.E_3 - 4.E_4$$

$$\phi(E_4) = \begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix} = 0.E_1 + 4.E_2 - 4.E_3 + 0.E_4$$
[3]

The matrix of ϕ is thus

$$M = \begin{bmatrix} 0 & -4 & 4 & 0 \\ -4 & 6 & 0 & 4 \\ 4 & 0 & -6 & -4 \\ 0 & 4 & -4 & 0 \end{bmatrix} . [1]$$

(c) Take $X = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$ [1]. We need $\phi(X) = 10X$ [1], or in other words $\begin{bmatrix} -4x+4y & -4w+6x+4z \\ 4w-6y-4z & 4x-4y \end{bmatrix} = \begin{bmatrix} 10w & 10x \\ 10y & 10z \end{bmatrix}$ [1], or

$$-10w - 4x + 4y = 0$$

$$-4w - 4x + 4z = 0$$

$$4w - 16y + 4z = 0$$

$$4x - 4y - 10z = 0.[1]$$

From the first and last of these we get w=-z, and we can substitute this into the second and third equations to get x=2z and y=-z/2, so $X=\begin{bmatrix} -z & 2z \\ -z/2 & z \end{bmatrix}$. Here z is arbitrary so we take z=-2 to get $X=\begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix}$ [1].

We now have $X^T = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}$, so

$$\phi(X^T) = \begin{bmatrix} -4.1 + 4.(-4) & -4.2 + 6.1 + 4.(-2) \\ 4.2 - 6.(-4) - 4.(-2) & 4.1 - 4.(-4) \end{bmatrix} = \begin{bmatrix} -20 & -10 \\ 40 & 20 \end{bmatrix} = -10X^T, [3]$$

so X^T is an eigenvector of eigenvalue -10. [1]

(d) We have

$$\begin{split} \phi(I) &= 0 = 0.I + 0.Q + 0.X + 0.X^T \\ \phi(Q) &= 0 = 0.I + 0.Q + 0.X + 0.X^T \\ \phi(X) &= 10X = 0.I + 0.Q + 10.X + 0.X^T \\ \phi(X^T) &= -10X^T = 0.I + 0.Q + 0.X - 10.X^T, \textbf{[2]} \end{split}$$

so the relevant matrix is

(18) [0607 Q3]

- (a) Define the standard inner product on the space $M_2(\mathbb{R})$. (2 marks)
- (b) What is $\langle A, B \rangle$, where $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$? (2 marks)
- (c) Let R_{θ} denote the rotation matrix $\begin{bmatrix} \cos(\theta) \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$. Simplify $\langle R_{\theta}, R_{\phi} \rangle$, and thus describe when $\langle R_{\theta}, R_{\phi} \rangle = 0$. (6 marks)
- (d) Put $V = \{X \in M_2(\mathbb{R}) \mid X \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 0\}$ and $W = \{Y \in M_2(\mathbb{R}) \mid Y \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0\}$.
 - (i) Find the general form for elements of V, and thus the dimension of V.(3 marks)
 - (ii) Find the general form for elements of W, and thus the dimension of W.(2 marks)
 - (iii) Show that every element of V is orthogonal to every element of W.(1 marks)
 - (iv) By comparing dimensions, prove that $V^{\perp} = W.(4 \text{ marks})$
- (e) Find orthonormal bases for V and W. (5 marks)

Solution:

- (a) **Bookwork.** The standard inner product on $M_2(\mathbb{R})$ is $\langle A, B \rangle = \operatorname{trace}(AB^T)$. [2]
- (b) In particular, if $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ we have $B^T = A$ so $AB^T = A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ [1]so $\langle A, B \rangle = \text{trace} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = 2$ [1].
- (c) **Unseen.** We have

$$R_{\theta}R_{\phi}^{T} = \begin{bmatrix} \cos(\theta) - \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\phi) & \sin(\phi) \\ -\sin(\phi) & \cos(\phi) \end{bmatrix} = \begin{bmatrix} \cos(\theta)\cos(\phi) + \sin(\theta)\sin(\phi)\cos(\theta)\sin(\phi) - \sin(\theta)\cos(\phi) \\ \sin(\theta)\cos(\phi) - \cos(\theta)\sin(\phi)\cos(\phi) + \sin(\theta)\sin(\phi) \end{bmatrix}. [\mathbf{2}]$$

Taking traces, we get

$$\langle R_{\theta}, R_{\phi} \rangle = 2(\cos(\theta)\cos(\phi) + \sin(\theta)\sin(\phi)) = 2\cos(\theta - \phi).$$
[2]

In particular, this means that $\langle R_{\theta}, R_{\phi} \rangle = 0$ iff $\theta - \phi$ has the form $(n + \frac{1}{2})\pi$ for some integer n. [2]

- (d) Similar to problem sheets.
 - (i) For $X = \begin{bmatrix} w & x \\ y & z \end{bmatrix} \in M_2(\mathbb{R})$ we have $X \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} w+x \\ y+z \end{bmatrix}$, so $X \in V$ iff x = -w and z = -y. [1] This means that

$$X = \left[\begin{smallmatrix} w & -w \\ y & -y \end{smallmatrix} \right] = w \left[\begin{smallmatrix} 1 & -1 \\ 0 & 0 \end{smallmatrix} \right] + x \left[\begin{smallmatrix} 0 & 0 \\ 1 & -1 \end{smallmatrix} \right]. \textbf{[1]}$$

It follows that V has dimension 2, with basis $\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$. [1]

(ii) Similarly, for a matrix $Y = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \in M_2(\mathbb{R})$ we have $Y \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} p-q \\ r-s \end{bmatrix}$, so $Y \in W$ iff p = q and r = s. This means that

$$Y = \begin{bmatrix} p & p \\ r & r \end{bmatrix} = p \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + q \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} . [1]$$

It follows that W also has dimension 2. [1]

(iii) We have

$$\langle X, Y \rangle = \operatorname{trace}(XY^T) = \operatorname{trace}\left(\left[\begin{smallmatrix} w & -w \\ y & -y \end{smallmatrix}\right]\left[\begin{smallmatrix} p & r \\ p & r \end{smallmatrix}\right]\right) = \operatorname{trace}\left[\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix}\right] = 0.[1]$$

- (iv) Part (iii) tells us that $W \leq V^{\perp}$. [1]However, we also have $\dim(W) = 2$ and $\dim(V^{\perp}) = \dim(M_2(\mathbb{R})) \dim(V) = 4 2 = 2 = \dim(W)$, so we must have $V^{\perp} = W$. [3]
- (e) **Similar to problem sheets.** We have seen that $\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$ is a basis for V [1], and these two matrices are orthogonal [1]. It follows that $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$, $\frac{1}{\sqrt{2}}\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$ is an orthonormal basis for V [1]. Similarly, the list $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\frac{1}{\sqrt{2}}\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ is an orthonormal basis for W. [2]
- (19) [0607R Q3] Let $\phi: V \to W$ be a linear map.
 - (a) Define what it means for ϕ be (i) injective; (ii) surjective; (iii) bijective. (5 marks)
 - (b) Define $\ker(\phi)$, and show that it is a subspace of V. (5 marks)
 - (c) Show that ϕ is injective iff $\ker(\phi) = 0$. (7 marks)
 - (d) Consider the linear map $\psi \colon \mathbb{R}[x]_{\leq 3} \to M_2(\mathbb{R})$ given by

$$\psi(p) = \begin{bmatrix} p(1) & p(-1) \\ p'(1) & p'(-1) \end{bmatrix}.$$

Show that ψ is injective. (You need not prove that it is linear.) (4 marks)

(e) Use the rank-nullity formula to deduce that ψ is also surjective. (4 marks)

Solution:

- (a) Bookwork.
 - (i) ϕ is injective iff whenever $v, v' \in V$ and $\phi(v) = \phi(v')$ we have v = v'. [2]
 - (ii) ϕ is surjective iff for all $w \in W$ there exists some $v \in V$ with $\phi(v) = w$. [2]
 - (iii) ϕ is bijective iff it is both injective and surjective. [1]
- (b) **Bookwork.** $\ker(\phi)$ is defined to be the set of all $v \in V$ such that $\phi(v) = 0_W$ [2]. We certainly have $\phi(0_V) = 0_W$, so $0_V \in \ker(\phi)$ [1]. Suppose we have $v, v' \in \ker(\phi)$ and $t, t' \in \mathbb{R}$. We then have

$$\phi(tv + t'v') = t\phi(v) + t'\phi(v') = t.0_W + t'.0_W = 0_W,$$

so $tv + t'v' \in \ker(\phi)$. [2] This proves that $\ker(\phi)$ is a subspace.

(c) **Bookwork.** Suppose that ϕ is injective. If $v \in \ker(\phi)$ then we have $\phi(v) = 0 = \phi(0)$ and so (by injectivity) v = 0. Thus $\ker(\phi) = 0$. [3]

Conversely, suppose that $\ker(\phi) = 0$. Suppose we have $v, v' \in V$ with $\phi(v) = \phi(v')$. Then $\phi(v - v') = \phi(v) - \phi(v') = 0 - 0 = 0$, so $v - v' \in \ker(\phi) = \{0\}$, so v - v' = 0, so v = v'. This shows that ϕ is injective. [4]

(d) Similar to problem sheets. Now consider the map $\psi \colon \mathbb{R}[x]_{\leq 3} \to M_2(\mathbb{R})$ given by

$$\psi(p) = \begin{bmatrix} p(1) & p(-1) \\ p'(1) & p'(-1) \end{bmatrix}.$$

More explicitly, if $p(x) = ax^3 + bx^2 + cx + d$ then

$$\psi(p) = \begin{bmatrix} a+b+c+d & -a+b-c+d \\ 3a+2b+c & 3a-2b+c \end{bmatrix} . [\mathbf{1}]$$

If $p \in \ker(\psi)$ then $\psi(p) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, so

$$a+b+c+d=0\tag{A}$$

$$-a+b-c+d=0$$
 (B)

$$3a + 2b + c = 0 \tag{C}$$

$$3a - 2b + c = 0.[1]$$
 (D)

By subtracting (C) and (D) we get b=0. Similarly, by adding (A) and (B) we get 2b+2d=0 but b=0 so d=0. After substituting these values our equations become a+c=0 and 3a+c=0, and we can subtract these to get a=0 and thus also c=0. As a=b=c=d=0 we have p(x)=0. [1] This shows that $ker(\psi)=\{0\}$, so ψ is injective. [1]

(e) Similar to problem sheets. We have $\dim(\mathbb{R}[x]_{\leq 3}) = \dim(M_2(\mathbb{R})) = 4$. The rank-nullity formula says that

$$\dim(\ker(\psi)) + \dim(\operatorname{image}(\psi)) = \dim(\mathbb{R}[x]_{<3}) = 4.[\mathbf{1}]$$

As $\ker(\psi) = 0$ [1]this gives $\dim(\operatorname{image}(\psi)) = 4 = \dim(M_2(\mathbb{R}))$ [1], so $\operatorname{image}(\psi) = M_2(\mathbb{R})$ [1], so ψ is surjective.

(20) [0708 Q3]

- (a) Suppose we have a finite-dimensional vector space U, and subspaces V and W of U. State a theorem about the existence of compatible bases for $V \cap W$, V, W and V + W. (You need not give a proof.) (6 marks)
- (b) Deduce a formula relating the dimensions of $V \cap W$, V, W and V + W. (2 marks)

Now take $U = M_2(\mathbb{R})$, and consider the spaces

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}) \mid a+b=c+d \right\}$$
$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}) \mid a+c=b+d \right\}.$$

- (c) Find a basis A_1, A_2 for $V \cap W$ (5 marks)
- (d) Find a matrix B such that A_1, A_2, B is a basis for V. You should justify your answer carefully, either directly or by consideration of dimensions. (4 marks)
- (e) Find a matrix C such that A_1, A_2, C is a basis for W. Here you need not justify your answer. (2 marks)
- (f) Show that $V+W=M_2(\mathbb{R})$, either directly or by consideration of dimensions. (3 marks)
- (g) Write down a matrix X such that $\langle A, X \rangle = 0$ for all $A \in V$. (Here we use the standard inner product on $M_2(\mathbb{R})$.) (3 marks)

Solution:

- (a) **Bookwork.** There exist vectors $u_1, \ldots, u_p, v_1, \ldots, v_q$ and w_1, \ldots, w_r (for some $p, q, r \ge 0$) [2] such that
 - $-u_1,\ldots,u_p$ is a basis for $V\cap W$ [1]
 - $-u_1,\ldots,u_p,v_1,\ldots,v_q$ is a basis for V [1]
 - $-u_1,\ldots,u_p,w_1,\ldots,w_r$ is a basis for W [1]
 - $-u_1, \ldots, u_p, v_1, \ldots, v_q, w_1, \ldots, w_r$ is a basis for V + W. [1]
- (b) **Bookwork.** It follows that

$$\dim(V+W) = p+q+r = (p+r)+(q+r)-r = \dim(V)+\dim(W)-\dim(V\cap W).$$
[2]

(c) Similar to lecture notes and problem sheets. $V \cap W$ is the set of matrices $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfying a+b-c-d=0 and a-b+c-d=0 [1]. These equations easily reduce to a=d and b=c [1], so $V \cap W$ is the set of matrices of the form

$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} . [1]$$

From this, we see that the matrices $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ give a basis for $V \cap W$. [2]

(d) Similar to lecture notes and problem sheets. Take $B = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$ [1]. We find that $B \in V$ and A_1, A_2, B are linearly independent. They therefore span a subspace of V of dimension three, but V is a proper subspace of $M_2(\mathbb{R})$ and so has dimension at most three, so A_1, A_2, B must be a basis for V. More explicitly, a typical element $A \in V$ has the form $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with a + b = c + d, so d = a + b - c, so

$$A - aA_1 - bA_2 = \begin{bmatrix} a & b \\ c & a+b-c \end{bmatrix} - \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} - \begin{bmatrix} 0 & b \\ b & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ c-b & b-c \end{bmatrix} = (c-b)B,$$

so $A = aA_1 + bA_2 + (c - b)B$. Thus V is spanned by A_1, A_2, B . [3]

- (e) Take $C = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$. [2]
- (f) **Unseen.** In general, if V and W are two subspaces of a vector space U, we have $\dim(V + W) + \dim(V \cap W) = \dim(V) + \dim(W)$. In our case, part (a) tells us that $\dim(V \cap W) = 2$, and parts (b) and (c) tell us that $\dim(V) = \dim(W) = 3$. It follows that $\dim(V + W) = 3 + 3 2 = 4$ [2]. However, V + W is a subspace of the four-dimensional space $M_2(\mathbb{R})$, and a subspace of the same dimension as the total space must be equal to the total space, so $V + W = M_2(\mathbb{R})$ as required. [1]
- (g) **Unseen.** Put $X = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$. Then for $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ we have $\langle A, X \rangle = a + b c d$, so $\langle A, X \rangle = 0$ iff a + b = c + d iff $A \in V$. [3]
- (21) [0708R Q3] Consider the linear map $\alpha \colon \mathbb{R}[x]_{\leq 2} \to M_2(\mathbb{R})$ given by

$$\alpha(f) = \left[\begin{smallmatrix} f(1) & f(2) \\ f'(1) & f'(2) \end{smallmatrix} \right].$$

- (a) Write down a basis \mathcal{U} for $\mathbb{R}[x]_{\leq 2}$ and a basis \mathcal{V} for $M_2(\mathbb{R})$. (3 marks)
- (b) Find the matrix of α with respect to the bases \mathcal{U} and \mathcal{V} . (5 marks)
- (c) Show that α is injective. (4 marks)
- (d) Give a basis for the image of α . (4 marks)
- (e) Find a nonzero matrix $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that $\langle X, \alpha(x^i) \rangle = 0$ for i = 0, 1, 2. (5 marks) (Here we use the standard inner product for square matrices.)

(f) Show (by an explicit example) that α is not surjective. (4 marks)

Solution: This is a slight modification of a question from a past paper.

(a) Similar to problem sheets The obvious basis for $\mathbb{R}[x]_{\leq 2}$ consists of the polynomials $p_0(x) = 1$, $p_1(x) = x$ and $p_2(x) = x^2$.[1] The obvious basis for $M_2(\mathbb{R})$ consists of the matrices

$$E_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $E_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ $E_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ $E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} . [2]$

(b) Similar to problem sheets We have

$$\alpha(p_0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1.E_1 + 1.E_2 + 0.E_3 + 0.E_4$$

$$\alpha(p_1) = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = 1.E_1 + 2.E_2 + 1.E_3 + 1.E_4$$

$$\alpha(p_2) = \begin{bmatrix} 1 & 4 \\ 2 & 4 \end{bmatrix} = 1.E_1 + 4.E_2 + 2.E_3 + 4.E_4 [3]$$

so the matrix of α with respect to our bases is

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{bmatrix} . [\mathbf{2}]$$

(c) Similar to problem sheets From the above we see that

$$\alpha(a+bx+cx^2) = a\alpha(p_0) + b\alpha(p_1) + c\alpha(p_2) = \begin{bmatrix} a+b+c & a+2b+4c \\ b+2c & b+4c \end{bmatrix}. [2]$$

Thus, if $\alpha(a + bx + cx^2) = 0$ we see that

$$a+b+c=0$$

$$a+2b+4c=0$$

$$b+2c=0$$

$$b+4c=0$$

By subtracting the last two equations we see that c=0, and we can substitute this in the last equation to give b=0. The first equation then gives a=0 as well. This shows that $\ker(\alpha) = \{0\}$ and thus that α is injective. [2]

- (d) **Unseen** As α is injective, the matrices $\alpha(p_0) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $\alpha(p_1) = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $\alpha(p_2) = \begin{bmatrix} 1 & 4 \\ 2 & 4 \end{bmatrix}$ form a basis for the image. [4]
- (e) Similar to problem sheets We have

$$\langle X, \alpha(1) \rangle = \langle \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \rangle = a + b$$

$$\langle X, \alpha(x) \rangle = \langle \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \rangle = a + 2b + c + d$$

$$\langle X, \alpha(x^2) \rangle = \langle \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ 2 & 4 \end{bmatrix} \rangle = a + 4b + 2c + 4d[\mathbf{2}]$$

We therefore must have

$$a+b=0$$

$$a+2b+c+d=0$$

$$a+4b+2c+4d=0$$

The first equation gives b=-a, using which we rewrite the other two as -a+c+d=0 and -3a+2c+4d=0. Subtracting three times the first of these from the second gives c=d, using which we get a=2d. Thus X must have the form $X=\begin{bmatrix}2d-2d\\d&d\end{bmatrix}$. [2] Here d is arbitrary so we can take $X=\begin{bmatrix}2&-2\\1&1\end{bmatrix}$. [1]

- (f) **Unseen** Observe that $\langle X, X \rangle = 2^2 + (-2)^2 + 1^2 + 1^2 = 10 \neq 0$, but $\langle X, A \rangle = 0$ for all A in the image of α (by part (d)). It follows that $X \notin \text{image}(\alpha)$, and thus that $\text{image}(\alpha) \neq M_2(\mathbb{R})$, so α is not surjective. [4]
- (22) [Mock exam Q4] Define a linear map $\alpha \colon \mathbb{R}[x]_{\leq 2} \to \mathbb{R}^3$ by

$$\alpha(p) = \left[\int_{-1}^{1} p(x) \, dx, \int_{-2}^{2} p(x) \, dx, \int_{-3}^{3} p(x) \, dx \right]^{T}$$

- (a) Give a basis for $\mathbb{R}[x]_{\leq 2}$ and a basis for \mathbb{R}^3 .
- (b) Find the matrix of α with respect to your bases in (a).
- (c) Find bases for $ker(\alpha)$ and $image(\alpha)$.
- (d) Show that

$$\operatorname{image}(\alpha) = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid 5x - 4y + z = 0 \right\}.$$

Solution:

- (a) The list $\mathcal{P} = 1, x, x^2$ is a basis for $\mathbb{R}[x]_{\leq 2}$. The list $\mathcal{E} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a basis for \mathbb{R}^3 .
- (b) If $f(x) = a + bx + cx^2$ then $\int f(x) dx = F(x) = ax + bx^2/2 + cx^3/3$, so

$$\int_{-1}^{1} f(x) dx = F(1) - F(-1) = 2a + 2c/3$$

$$\int_{-2}^{2} f(x) dx = F(2) - F(-2) = 4a + 16c/3$$

$$\int_{-2}^{3} f(x) dx = F(3) - F(-3) = 6a + 54c/3,$$

so

$$\alpha(1) = \begin{bmatrix} 2\\4\\6 \end{bmatrix} \quad \alpha(x) = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \quad \alpha(x^2) = \begin{bmatrix} 2/3\\16/3\\54/3 \end{bmatrix}.$$

The matrix of α with respect to our bases is thus

$$A = \begin{bmatrix} 2 & 0 & 2/3 \\ 4 & 0 & 16/3 \\ 6 & 0 & 54/3 \end{bmatrix}$$

(c) If $f(x) = a + bx + cx^2$ we have

$$\alpha(f) = [2a + 2c/3, 4a + 16c/3, 6a + 54c/3]^T$$
.

For this to be zero we must have 2a + 2c/3 = 0 and 4a + 16c/3 = 0 and 6a + 54c/3 = 0, or equivalently a = -c/3 and a = -4c/3 and a = -3c, which together give a = 0 and c = 0. However, b can be arbitrary. It follows that x is a basis for $\ker(\alpha)$. On the other hand, using the equation

$$\alpha(f) = 2a \begin{bmatrix} 1\\2\\3 \end{bmatrix} + \frac{2c}{3} \begin{bmatrix} 1\\8\\27 \end{bmatrix},$$

we see that $[1,2,3]^T$, $[1,8,27]^T$ is a basis for image(α).

(d) Put

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid 5x - 4y + z = 0 \right\}.$$

We claim that $W = \text{image}(\alpha)$. Indeed, we have

$$5 \times 1 - 4 \times 2 + 3 = 0$$

$$5 \times 1 - 4 \times 8 + 27 = 0,$$

so the vectors $[1, 2, 3]^T$ and $[1, 8, 27]^T$ lie in W. As these vectors span image(α), we see that image(α) $\leq W$. On the other hand, W is a plane in \mathbb{R}^3 so it has dimension 2, which is the same as dim(image(α)), so image(α) = W as claimed.

- (23) [0506 Q4] Let $\phi: V \to W$ be a linear map.
 - (a) Define what it means for ϕ be (i) injective; (ii) surjective; (iii) bijective. (5 marks)
 - (b) Define $\ker(\phi)$, and show that it is a subspace of V. (5 marks)
 - (c) Show that ϕ is injective iff $\ker(\phi) = 0$. (7 marks)
 - (d) Consider the linear map $\psi \colon \mathbb{R}[x]_{\leq 3} \to M_2\mathbb{R}$ given by

$$\psi(p) = \left[\begin{smallmatrix} p(0) & p(1) \\ p(-1) & p(2) \end{smallmatrix} \right].$$

Show that ψ is injective. (You need not prove that it is linear.) (4 marks)

(e) Use the rank-nullity formula to deduce that ψ is also surjective. (4 marks)

Solution:

- (a) Bookwork.
 - (i) ϕ is injective iff whenever $v, v' \in V$ and $\phi(v) = \phi(v')$ we have v = v'. [2]
 - (ii) ϕ is surjective iff for all $w \in W$ there exists some $v \in V$ with $\phi(v) = w$. [2]
 - (iii) ϕ is bijective iff it is both injective and surjective. [1]
- (b) **Bookwork.** $\ker(\phi)$ is defined to be the set of all $v \in V$ such that $\phi(v) = 0_W$ [2]. We certainly have $\phi(0_V) = 0_W$, so $0_V \in \ker(\phi)$ [1]. Suppose we have $v, v' \in \ker(\phi)$ and $t, t' \in \mathbb{R}$. We then have

$$\phi(tv + t'v') = t\phi(v) + t'\phi(v') = t.0_W + t'.0_W = 0_W,$$

so $tv + t'v' \in \ker(\phi)$. [2] This proves that $\ker(\phi)$ is a subspace.

(c) **Bookwork.** Suppose that ϕ is injective. If $v \in \ker(\phi)$ then we have $\phi(v) = 0 = \phi(0)$ and so (by injectivity) v = 0. Thus $\ker(\phi) = 0$. [3]

Conversely, suppose that $\ker(\phi) = 0$. Suppose we have $v, v' \in V$ with $\phi(v) = \phi(v')$. Then $\phi(v - v') = \phi(v) - \phi(v') = 0 - 0 = 0$, so $v - v' \in \ker(\phi) = \{0\}$, so v - v' = 0, so v = v'. This shows that ϕ is injective. [4]

(d) Similar to problem sheets. Now consider the map $\psi \colon \mathbb{R}[x]_{\leq 3} \to M_2\mathbb{R}$ given by

$$\psi(p) = \left[\begin{smallmatrix} p(0) & p(1) \\ p(-1) & p(2) \end{smallmatrix} \right].$$

If $p \in \ker(\psi)$ then $\psi(p) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, so p(0) = p(1) = p(2) = p(3) = 0 [1]. Thus p is a polynomial of degree 3 with at least 4 different roots; this can only happen if p = 0. More explicitly, suppose that $p(x) = a + bx + cx^2 + dx^3$. Then

$$\psi(p) = \begin{bmatrix} a & a+b+c+d \\ a-b+c-d & a+2b+4c+8d \end{bmatrix}, [1]$$

so $\psi(p)=0$ iff a=0 and a+b+c+d=0 and a-b+c-d=0 and a+2b+4c+8d=0 [1]. Putting a=0 in the remaining equations gives b+c+d=0 and -b+c-d=0 and 2b+4c+8d=0. By adding the first two of these we get c=0, so b+d=0 and 2b+8d=0. These equations easily give b=d=0 as well, so $\begin{bmatrix} a & b \\ c & d \end{bmatrix}=0$ [1]. Thus $\ker(\psi)=0$ and so ψ is injective.

(e) Similar to problem sheets. We have $\dim(\mathbb{R}[x]_{\leq 3}) = \dim(M_2\mathbb{R}) = 4$. The rank-nullity formula says that

$$\dim(\ker(\psi)) + \dim(\operatorname{image}(\psi)) = \dim(\mathbb{R}[x]_{<3}) = 4.[1]$$

As $\ker(\psi) = 0$ [1]this gives $\dim(\operatorname{image}(\psi)) = 4 = \dim(M_2\mathbb{R})$ [1], so $\operatorname{image}(\psi) = M_2\mathbb{R}$ [1], so ψ is surjective.

- (24) [0506R Q4] Let $\phi: V \to W$ be a linear map.
 - (a) Define what it means for ϕ be (i) injective; (ii) surjective. (4 marks)
 - (b) Define image(ϕ), and show that it is a subspace of W. (5 marks)
 - (c) Define $\ker(\phi)$, and show that if $\ker(\phi) = \{0\}$ then ϕ injective. (5 marks)
 - (d) State the rank-nullity formula. (3 marks)
 - (e) Consider the linear map $\psi \colon \mathbb{R}[x]_{\leq 2} \to \mathbb{R}^2$ given by $\psi(f) = [f(2), f(3)]^T$. What are the dimensions of $\mathbb{R}[x]_{\leq 2}$, \mathbb{R}^2 and $\ker(\psi)$? (5 marks)
 - (f) Use the rank-nullity formula to deduce that ψ is surjective. (3 marks)

Solution:

- (a) Bookwork.
 - (i) ϕ is injective iff whenever $v, v' \in V$ and $\phi(v) = \phi(v')$ we have v = v'. [2]
 - (ii) ϕ is surjective iff for all $w \in W$ there exists some $v \in V$ with $\phi(v) = w$. [2]
- (b) **Bookwork.** image(ϕ) = { $w \in W \mid w = \phi(v)$ for some $v \in V$ } [1]. As $0_W = \phi(0_V)$, we see that $0_W \in \text{image}(\phi)$. [1]If $w, w' \in \text{image}(\phi)$ and $t, t' \in \mathbb{R}$ then we can choose $v, v' \in V$ such that $w = \phi(v)$ and $w' = \phi(v')$, and then we find that $\phi(tv + t'v') = t\phi(v) + t'\phi(v') = tw + t'w'$, so $tw + t'w' \in \text{image}(\phi)$. This proves that image(ϕ) is a subspace of W. [3]
- (c) **Bookwork.** $\ker(\phi) = \{v \in V \mid \phi(v) = 0\}$ [1]. Suppose that $\ker(\phi) = \{0\}$; we claim that ϕ is injective. Suppose that $v, v' \in V$ and $\phi(v) = \phi(v')$; we must show that v = v' [2]. As $\phi(v) = \phi(v')$ we have $\phi(v v') = \phi(v) \phi(v') = 0$ [1], so $v v' \in \ker(\phi) = \{0\}$, so v v' = 0, so v = v' as required [1].
- (d) Let $\phi: V \to W$ be a linear map between finite-dimensional vector spaces. Then $\dim(\operatorname{image}(\phi)) + \dim(\ker(\phi)) = \dim(V)$. [3]
- (e) Similar to problem sheets. Now consider the linear map $\psi \colon \mathbb{R}[x]_{\leq 2} \to \mathbb{R}^2$ given by $\psi(f) = [f(2), f(3)]^T$. The space $\mathbb{R}[x]_{\leq 2}$ has basis $1, x, x^2$ and so has dimension 3 [1]. The space \mathbb{R}^2 has basis $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and so has dimension 2 [1]. We have $\psi(f) = 0$ iff f(2) = f(3) = 0 iff f(x) is divisible by (x-2)(x-3). If so then f(x) must be a constant times (x-2)(x-3) (as otherwise the degree would be too large). Thus $\ker(\psi)$ has basis (x-2)(x-3) and thus dimension 1. [3]
- (f) The rank-nullity formula now tells us that the space $\operatorname{image}(\phi) \leq \mathbb{R}^2$ has dimension 3-1=2 [1], which is the same as the dimension of \mathbb{R}^2 itself [1], so $\operatorname{image}(\phi) = \mathbb{R}^2$, so ϕ is surjective [1].

- (25) [0607 Q4]
 - (a) State and prove the Cauchy-Schwartz inequality. (10 marks)
 - (b) Find constants α and β such that $\int_{-1}^{1} f(x) dx = \alpha f(-1) + \beta f(0) + \alpha f(1)$ for all $f \in \mathbb{R}[x]_{\leq 2}$. (6 marks)
 - (c) Deduce that if $f \in \mathbb{R}[x]_{\leq 2}$ and $\int_{-1}^{1} f(t)^2 dt = 1$, then $|f(-1) + 4f(0) + f(1)| \leq 3\sqrt{2}$. (9 marks)

(You may assume that the rule $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$ gives an inner product on $\mathbb{R}[x]_{\leq 2}$.)

Solution:

(a) **Bookwork.** Let V be a vector space with an inner product, and let u and v be elements of V. Then $|\langle u, v \rangle| \leq ||u|| ||v||.[2]$

Proof: For any s and t we have

$$0 \le \|su - tv\|^2 [\mathbf{1}] = \langle su - tv, su - tv \rangle = s^2 \langle u, u \rangle - 2st \langle u, v \rangle + t^2 \langle v, v \rangle = s^2 \|u\|^2 + t^2 \|v\|^2 - 2st \langle u, v \rangle. [\mathbf{1}]$$

Now take $s = ||v||^2$ and $t = \langle u, v \rangle$ [2] to get

$$0 \le \|u\|^2 \|v\|^4 + \langle u, v \rangle^2 \|v\|^2 - 2\|v\|^2 \langle u, v \rangle^2 = \|v\|^2 (\|u\|^2 \|v\|^2 - \langle u, v \rangle^2). [\mathbf{1}]$$

If v=0 then we have $|\langle u,v\rangle|=0=\|u\|\|v\|$ so the claim holds. [1]If $v\neq 0$ then $\|v\|^2>0$ so the above inequality will remain valid after dividing by $\|v\|^2$, giving $\langle u,v\rangle^2\leq \|u\|^2\|v\|^2$. [1]We now take square roots (and note that $\sqrt{a^2}=|a|$) to get $|\langle u,v\rangle|\leq \|u\|\|v\|$, as claimed.[1]

(b) Similar to problem sheets. Consider a polynomial $f(x) = ax^2 + bx + c$. We then have

$$\int_{-1}^{1} f(x) dx = \left[ax^3/3 + bx^2/2 + cx \right]_{-1}^{1} = 2a/3 + 2c. [2]$$

On the other hand, we have

$$\alpha f(-1) + \beta f(0) + \alpha f(1) = \alpha(a-b+c) + \beta c + \alpha(a+b+c) = 2\alpha a + (2\alpha + \beta)c.$$
 [2]

For these to match up for all a, b and c we must have $2/3 = 2\alpha$ and $2 = 2\alpha + \beta$, which gives $\alpha = 1/3$ and $\beta = 4/3$. [2]

- (c) **Unseen.** Part (b) tells us that $\langle f, 1 \rangle = (f(-1) + 4f(0) + f(1))/3$, so $|f(-1) + 4f(0) + f(1)| = \langle f, 3 \rangle$ [2]. The Cauchy-Schwartz inequality [1]tells us that this is at most ||f|||3|| [1]. Here $||f||^2 = \int_{-1}^1 f(t)^2 dt$, and we are given that this is equal to one, so ||f|| = 1 [1]. We also have $||3||^2 = \int_{-1}^1 3^2 dt = 18$ [1]and so $||3|| = \sqrt{18} = 3\sqrt{2}$ [1]. Putting this together, we get $|f(-1) + 4f(0) + f(1)| \le 3\sqrt{2}$ [2] as claimed.
- (26) [0607R Q4] Let V be a vector space, and let $V = v_1, \ldots, v_n$ be a list of elements of V.
 - (a) Define the map $\mu_{\mathcal{V}} \colon \mathbb{R}^n \to V$. (3 marks)
 - (b) Define, in terms of $\mu_{\mathcal{V}}$, what it means for \mathcal{V} to be (i) linearly independent; (ii) a spanning set; (iii) a basis. (6 marks)

(c) Consider the polynomials

$$p_0(x) = x^5$$

$$p_1(x) = 1 + x$$

$$p_2(x) = x + x^2$$

$$p_3(x) = x^2 + x^3$$

$$p_4(x) = x^3 + x^4$$

$$p_5(x) = x^4 + x^5$$

Is the list $\mathcal{P} = p_0, \dots, p_4$ a basis for $\mathbb{R}[x]_{\leq 5}$? Justify your answer. (7 marks)

(d) Consider the list $A = A_0, \ldots, A_4$, where

$$A_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad A_1 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad A_2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad A_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad A_4 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Prove that these are linearly independent. (6 marks)

(e) Find a linear relation between the following vectors (3 marks)

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 2\\1\\1\\2 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} \qquad \mathbf{v}_4 = \begin{bmatrix} 2\\2\\1\\1 \end{bmatrix} \qquad \mathbf{v}_5 = \begin{bmatrix} 1\\2\\1\\2 \end{bmatrix}.$$

Solution:

(a) The map $\mu_{\mathcal{V}} \colon \mathbb{R}^n \to V$ is defined by

$$\mu_{\mathcal{V}}([\lambda_1,\ldots,\lambda_n]^T) = \lambda_1 v_1 + \cdots + \lambda_n v_n.$$
[3]

(b) The list \mathcal{V} is linearly independent iff $\mu_{\mathcal{V}}$ is injective [2]. It spans V iff $\mu_{\mathcal{V}}$ is surjective [2]. It is a basis iff $\mu_{\mathcal{V}}$ is bijective [2].

(c) We have

$$\mu_{\mathcal{P}}(\lambda) = \lambda_0 x^5 + \lambda_1 (1+x) + \lambda_2 (x+x^2) + \lambda_3 (x^2 + x^3) + \lambda_4 (x^3 + x^4) + \lambda_5 (x^4 + x^5)$$
$$= \lambda_1 + (\lambda_1 + \lambda_2) x + (\lambda_2 + \lambda_3) x^2 + (\lambda_3 + \lambda_4) x^3 + (\lambda_4 + \lambda_5) x^4 + (\lambda_0 + \lambda_5) x^5. [2]$$

Thus, given a polynomial $f(x) = \sum_{i=0}^{5} a_i x^i$, we have $\mu_{\mathcal{P}}(\lambda) = f$ iff the following equations are satisfied:

$$\lambda_{1} = a_{0}$$

$$\lambda_{1} + \lambda_{2} = a_{1}$$

$$\lambda_{2} + \lambda_{3} = a_{2}$$

$$\lambda_{3} + \lambda_{4} = a_{3}$$

$$\lambda_{4} + \lambda_{5} = a_{4}$$

$$\lambda_{0} + \lambda_{5} = a_{5}.[2]$$

It is easy to see that these have the unique solution

$$\lambda_0 = a_5 - a_4 + a_3 - a_2 + a_1 - a_0$$

$$\lambda_1 = a_0$$

$$\lambda_2 = a_1 - a_0$$

$$\lambda_3 = a_2 - a_1 + a_0$$

$$\lambda_4 = a_3 - a_2 + a_1 - a_0$$

$$\lambda_5 = a_4 - a_3 + a_2 - a_1 + a_0.$$
[2]

As this solution always exists and is unique, we see that $\mu_{\mathcal{P}}$ is a bijection and thus that \mathcal{P} is a basis. [1]

(d) We have

$$\mu_{\mathcal{A}}(\boldsymbol{\lambda}) = \lambda_0 A_0 + \dots + \lambda_4 A_4 = \begin{bmatrix} \lambda_0 + \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 & \lambda_2 \\ \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 + \lambda_3 & \lambda_2 + \lambda_3 \\ \lambda_2 & \lambda_2 + \lambda_3 & \lambda_2 + \lambda_3 + \lambda_4 \end{bmatrix} . [\mathbf{2}]$$

For this to equal zero we would have to have

$$\lambda_0 + \lambda_1 + \lambda_2 = 0 \tag{1}$$

$$\lambda_1 + \lambda_2 = 0 \tag{2}$$

$$\lambda_2 = 0 \tag{3}$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 0 \tag{4}$$

$$\lambda_2 + \lambda_3 = 0 \tag{5}$$

$$\lambda_2 + \lambda_3 + \lambda_4 = 0.[\mathbf{1}] \tag{6}$$

From (3) we have $\lambda_2 = 0$, and we can substitute this in (2) and (5) to get $\lambda_1 = \lambda_3 = 0$. We can then substitute these values in (1) and (6) to get $\lambda_0 = \lambda_4 = 0$, so $\lambda = 0$. [2] This shows that the list \mathcal{A} has only the trivial linear relation, so it is linearly independent. [1]

(e) By inspection we have $3\mathbf{v}_1 - \mathbf{v}_3 - \mathbf{v}_4 = 0$. [3]

(27) [0708 Q4]

- (a) Define the notion of an *inner product* on a finite-dimensional vector space over \mathbb{R} . (5 marks)
- (b) Define what it means for a sequence of elements to be (i) orthogonal; (ii) orthonormal. (3 marks)
- (c) Let V and W be vector spaces with inner products, and let $\phi: V \to W$ and $\psi: W \to V$ be linear maps. Define what it means for these maps to be *adjoint* to each other. (2 marks)

For the rest of this question, we use the spaces $V = M_2(\mathbb{R})$ and $W = \mathbb{R}[x]_{\leq 2}$, with the inner products

$$\langle A, B \rangle = \operatorname{trace}(A^T B)$$
 for $A, B \in V$
 $\langle f, g \rangle = f(-1)g(-1) + f(0)g(0) + f(1)g(1)$ for $f, g \in W$.

(You need not check that these are inner products.)

- (d) Calculate $\langle x^i, x^j \rangle$ for $i, j = 0, \dots, 2$. (4 marks)
- (e) Using the Gram-Schmidt procedure or otherwise, find an orthonormal basis for W. (6 marks)
- (f) Define $\phi: V \to W$ by $\phi(A) = \begin{bmatrix} x & 1 \end{bmatrix} A \begin{bmatrix} x \\ 1 \end{bmatrix}$, and let $\psi: W \to V$ be adjoint to ϕ . Calculate $\langle \phi \begin{bmatrix} a & b \\ c & d \end{bmatrix}, px^2 + qx + r \rangle$, and thus give a formula for $\psi(px^2 + qx + r)$. (5 marks)

Solution:

- (a) **Bookwork.** An *inner product* on V is a rule that gives a number $\langle u, v \rangle \in \mathbb{R}$ for each $u, v \in V$ [1], with the following properties:
 - (i) $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$ for all $u,v,w\in V$. [1]
 - (ii) $\langle tu, v \rangle = t \langle u, v \rangle$ for all $u, v \in V$ and $t \in \mathbb{R}$. [1]
 - (iii) $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$. [1]
 - (iv) We have $\langle u, u \rangle \geq 0$ for all $u \in V$, and $\langle u, u \rangle = 0$ iff u = 0. [1]

- (b) **Bookwork.** Consider a sequence $\mathcal{V} = v_1, \ldots, v_n$ in a vector space V with inner product. We say that \mathcal{V} is *orthogonal* if $\langle v_i, v_j \rangle = 0$ for all $i \neq j$ [2], and *orthonormal* if it is orthogonal and also $\langle v_i, v_i \rangle = 1$ for all i. [1]
- (c) **Bookwork.** Let V and W be vector spaces with inner products, and let $\phi \colon V \to W$ and $\psi \colon W \to V$ be linear maps. We say that ϕ and ψ are adjoint if for all $v \in V$ and all $w \in W$ we have $\langle \phi(v), w \rangle = \langle v, \psi(w) \rangle$. [2]

Some students will probably attempt to do parts (d) to (f) using either $\langle f, g \rangle = \int_0^1 fg$ or $\langle f, g \rangle = \int_{-1}^1 fg$. There will be an overall penalty of one point for that, together with the implicit penalty that the calculations become a little harder.

(d) Similar to lecture notes and problem sheets. For the inner product given, we have

$$\langle x^i, x^j \rangle = (-1)^{i+j} + 0^{i+j} + 1.$$

If i = j = 0 this gives 3. In all other cases, the second term is zero and we get 0 if i + j is odd, and 2 if i + j is even. Thus

$$\begin{array}{lll} \langle 1,1\rangle = 3 & & \langle 1,x\rangle = 0 & & \langle 1,x^2\rangle = 2 \\ \langle x,1\rangle = 0 & & \langle x,x\rangle = 2 & & \langle x,x^2\rangle = 0 \\ \langle x^2,1\rangle = 2 & & \langle x^2,x\rangle = 0 & & \langle x^2,x^2\rangle = 2. \\ \end{array}$$

(e) Similar to lecture notes and problem sheets. We use the Gram-Schmidt procedure, starting with $u_1 = 1$ and $u_2 = x$ and $u_3 = x^2$. We then put

$$v_{1} = u_{1} = 1$$

$$v_{2} = u_{2} - \frac{\langle u_{2}, v_{1} \rangle}{v_{1}, v_{1}} v_{1} = x - \frac{\langle x, 1 \rangle}{\langle 1, 1 \rangle} 1 = x - \frac{0}{3} = x$$

$$v_{3} = u_{3} - \frac{\langle u_{3}, v_{1} \rangle}{\langle v_{1}, v_{1} \rangle} v_{1} - \frac{\langle u_{3}, v_{2} \rangle}{\langle v_{2}, v_{2} \rangle} v_{2}$$

$$= x^{2} - \frac{\langle x^{2}, 1 \rangle}{\langle 1, 1 \rangle} 1 - \frac{\langle x^{2}, x \rangle}{\langle x, x \rangle} x$$

$$= x^{2} - \frac{2}{3} 1 - \frac{0}{2} x = x^{2} - 2/3.[4]$$

This gives an orthogonal basis. We find that $||v_1|| = \sqrt{3}$ and $||v_2|| = \sqrt{2}$ and

$$||v_3||^2 = \langle x^2 - 2/3, x^2 - 2/3 \rangle = ((-1)^2 - 2/3)^2 + (0^2 - 2/3)^2 + (1^2 - 2/3)^2 = 6/9 = 2/3, [1]$$

so $||v_3|| = \sqrt{2/3}$. We then put $\hat{v}_i = v_i/||v_i||$, so

$$\hat{v}_1 = 1/\sqrt{3}$$
 $\hat{v}_2 = x/\sqrt{2}$
 $\hat{v}_3 = \sqrt{3/2}(x^2 - 2/3).$ [1]

This gives the required orthonormal basis.

(f) Similar to lecture notes and problem sheets. We have

$$\psi \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = ax^2 + (b+c)x + d, [1]$$

so

$$\begin{split} \left<\phi\left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right], px^2 + qx + r\right> &= \left< ax^2 + (b+c)x + c, px^2 + qx + r\right> \\ &= (a-b-c+d)(p-q+r) + cr + (a+b+c+d)(p+q+r) \\ &= ap - aq + ar - bp + bq - br - cp + cq - cr + dp - dq + dr + cr + ap + aq + ar + bp + bq + br + cp + cq + cr + dp + dq + dr \\ &= (2p+2r)a + 2qb + 2qc + (2p+3r)d[\mathbf{2}] \\ &= \left< \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right], \left[\begin{smallmatrix} 2p+2r & 2q \\ 2p+3r \end{smallmatrix}\right] \right>.[\mathbf{1}] \end{split}$$

It follows that $\psi(px^2 + qx + r) = \begin{bmatrix} 2p + 2r & 2q \\ 2q & 2p + 3r \end{bmatrix}$. [1]

- (28) [0708R Q4] Let V be a vector space, and let $\mathcal{V} = v_1, \ldots, v_n$ be a list of elements of V.
 - (a) Define the map $\mu_{\mathcal{V}} \colon \mathbb{R}^n \to V$. (3 marks)
 - (b) Define, in terms of $\mu_{\mathcal{V}}$, what it means for \mathcal{V} to be (i) linearly independent; (ii) a spanning set; (iii) a basis. (6 marks)
 - (c) Consider the polynomials

$$p_0(x) = x^5$$

$$p_1(x) = 1 + x$$

$$p_2(x) = x + x^2$$

$$p_3(x) = x^2 + x^3$$

$$p_4(x) = x^3 + x^4$$

$$p_5(x) = x^4 + x^5$$

Is the list $\mathcal{P} = p_0, \dots, p_5$ a basis for $\mathbb{R}[x]_{\leq 5}$? Justify your answer. (7 marks)

(d) Consider the list $A = A_0, \ldots, A_4$, where

$$A_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad A_1 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad A_2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad A_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad A_4 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Prove that these are linearly independent. (6 marks)

(e) Find a linear relation between the following vectors (3 marks)

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 2\\1\\1\\2 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} \qquad \mathbf{v}_4 = \begin{bmatrix} 2\\2\\1\\1 \end{bmatrix} \qquad \mathbf{v}_5 = \begin{bmatrix} 1\\2\\1\\2 \end{bmatrix}.$$

Solution: This is a slight modification of a question from a past paper.

(a) The map $\mu_{\mathcal{V}} \colon \mathbb{R}^n \to V$ is defined by

$$\mu_{\mathcal{V}}([\lambda_1,\ldots,\lambda_n]^T) = \lambda_1 v_1 + \cdots + \lambda_n v_n.$$
[3]

- (b) The list \mathcal{V} is linearly independent iff $\mu_{\mathcal{V}}$ is injective [2]. It spans V iff $\mu_{\mathcal{V}}$ is surjective [2]. It is a basis iff $\mu_{\mathcal{V}}$ is bijective [2].
- (c) We have

$$\mu_{\mathcal{P}}(\lambda) = \lambda_0 x^5 + \lambda_1 (1+x) + \lambda_2 (x+x^2) + \lambda_3 (x^2 + x^3) + \lambda_4 (x^3 + x^4) + \lambda_5 (x^4 + x^5)$$
$$= \lambda_1 + (\lambda_1 + \lambda_2) x + (\lambda_2 + \lambda_3) x^2 + (\lambda_3 + \lambda_4) x^3 + (\lambda_4 + \lambda_5) x^4 + (\lambda_0 + \lambda_5) x^5. [2]$$

Thus, given a polynomial $f(x) = \sum_{i=0}^{5} a_i x^i$, we have $\mu_{\mathcal{P}}(\lambda) = f$ iff the following equations are satisfied:

$$\lambda_1 = a_0$$

$$\lambda_1 + \lambda_2 = a_1$$

$$\lambda_2 + \lambda_3 = a_2$$

$$\lambda_3 + \lambda_4 = a_3$$

$$\lambda_4 + \lambda_5 = a_4$$

$$\lambda_0 + \lambda_5 = a_5.[2]$$

It is easy to see that these have the unique solution

$$\lambda_0 = a_5 - a_4 + a_3 - a_2 + a_1 - a_0$$

$$\lambda_1 = a_0$$

$$\lambda_2 = a_1 - a_0$$

$$\lambda_3 = a_2 - a_1 + a_0$$

$$\lambda_4 = a_3 - a_2 + a_1 - a_0$$

$$\lambda_5 = a_4 - a_3 + a_2 - a_1 + a_0.$$
[2]

As this solution always exists and is unique, we see that $\mu_{\mathcal{P}}$ is a bijection and thus that \mathcal{P} is a basis. [1]

(d) We have

$$\mu_{\mathcal{A}}(\boldsymbol{\lambda}) = \lambda_0 A_0 + \dots + \lambda_4 A_4 = \begin{bmatrix} \lambda_0 + \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 & \lambda_2 \\ \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 + \lambda_3 & \lambda_2 + \lambda_3 \\ \lambda_2 & \lambda_2 + \lambda_3 & \lambda_2 + \lambda_3 + \lambda_4 \end{bmatrix} . [\mathbf{2}]$$

For this to equal zero we would have to have

$$\lambda_0 + \lambda_1 + \lambda_2 = 0 \tag{1}$$

$$\lambda_1 + \lambda_2 = 0 \tag{2}$$

$$\lambda_2 = 0 \tag{3}$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 0 \tag{4}$$

$$\lambda_2 + \lambda_3 = 0 \tag{5}$$

$$\lambda_2 + \lambda_3 + \lambda_4 = 0.[1] \tag{6}$$

From (3) we have $\lambda_2 = 0$, and we can substitute this in (2) and (5) to get $\lambda_1 = \lambda_3 = 0$. We can then substitute these values in (1) and (6) to get $\lambda_0 = \lambda_4 = 0$, so $\lambda = 0$. [2] This shows that the list \mathcal{A} has only the trivial linear relation, so it is linearly independent. [1]

- (e) By inspection we have $3\mathbf{v}_1 \mathbf{v}_3 \mathbf{v}_4 = 0$. [3]
- (29) [Mock exam Q5] Let V be a vector space, and let $V = v_1, \ldots, v_n$ be a list of elements of V.
 - (a) Define the map $\mu_{\mathcal{V}} \colon \mathbb{R}^n \to V$.
 - (b) Define, in terms of $\mu_{\mathcal{V}}$, what it means for \mathcal{V} to be (i) linearly independent; (ii) a spanning set; (iii) a basis.
 - (c) Consider the polynomials $p_i(x) = x^i + x^{i+1}$. Is p_0, \ldots, p_4 a basis for $\mathbb{R}[x]_{\leq 5}$?
 - (d) Consider the matrices

$$A_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad A_1 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad A_2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad A_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad A_4 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Prove that these do not span the space V of all 3×3 symmetric matrices.

Solution:

(a) The map $\mu_{\mathcal{V}} \colon \mathbb{R}^n \to V$ is defined by

$$\mu_{\mathcal{V}}([\lambda_1,\ldots,\lambda_n]^T) = \lambda_1 v_1 + \cdots + \lambda_n v_n.$$

- (b) The list V is linearly independent iff $\mu_{\mathcal{V}}$ is injective. It spans V iff $\mu_{\mathcal{V}}$ is surjective. It is a basis iff $\mu_{\mathcal{V}}$ is bijective.
- (c) Put $p_i(x) = x^i + x^{i+1} = x^i(1+x)$. Then $p_i(-1) = 0$ for all i, so f(-1) = 0 for all $f \in \text{span}(p_0, \ldots, p_4)$. In particular, the constant polynomial 1 does not lie in $\text{span}(p_0, \ldots, p_4)$, so p_0, \ldots, p_4 does not span $\mathbb{R}[x]_{\leq 5}$ and so cannot be a basis.
- (d) Consider the matrix $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \in V$. We claim that this does not lie in span (A_0, \dots, A_4) . Indeed, we have

$$a_0 A_0 + \dots + a_4 A_4 = \begin{bmatrix} a_0 + a_1 + a_2 & a_1 + a_2 & a_2 \\ a_1 + a_2 & a_1 + a_2 + a_3 & a_2 + a_3 \\ a_2 & a_2 + a_3 & a_2 + a_3 + a_4 \end{bmatrix}$$

For this to equal B we would have to have

$$a_0 + a_1 + a_2 = 0$$

$$a_1 + a_2 = 0$$

$$a_2 = 1$$

$$a_1 + a_2 + a_3 = 0$$

$$a_2 + a_3 = 0$$

$$a_2 + a_3 + a_4 = 0$$

By subtracting the second and third equations we get $a_1 = -1$, but by subtracting the fourth and fifth equations we get $a_1 = 0$. This contradiction means that there is no list a_0, \ldots, a_4 such that $\sum_i a_i A_i = B$, so $B \notin \operatorname{span}(A_0, \ldots, A_4)$, so the list A_0, \ldots, A_4 does not span V.

(30) [0506 Q5] Consider the vector space $U = \mathbb{R}[x]_{\leq 2}$ with the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

- (a) Given a polynomial $u = a + bx + cx^2$, calculate $\langle u, x^i \rangle$ for i = 0, 1, 2. (3 marks)
- (b) Find an element $u \in U$ such that $\langle f, u \rangle = f(0)$ for all $f \in U$. (6 marks)
- (c) By taking f = u, calculate ||u||. (2 marks)
- (d) State and prove the Cauchy-Schwartz inequality. (You need not discuss the case where it is actually an equality.) (10 marks)
- (e) Deduce that

$$|f(0)| \le \frac{3}{\sqrt{8}} \sqrt{\int_{-1}^{1} f(x)^2 dx}$$

for all $f \in U$. (4 marks)

Solution:

(a) Straightforward use of definition. We have

$$\begin{split} \langle u,1\rangle &= \int_{-1}^{1} a + bx + cx^{2} \, dx = \left[ax + \frac{1}{2}bx^{2} + \frac{1}{3}cx^{3}\right]_{-1}^{1} \\ &= \left(a + \frac{b}{2} + \frac{c}{3}\right) - \left(-a + \frac{b}{2} - \frac{c}{3}\right) \\ &= 2a + \frac{2}{3}c \\ \langle u,x\rangle &= \int_{-1}^{1} ax + bx^{2} + cx^{3} \, dx = \left[\frac{1}{2}ax^{2} + \frac{1}{3}bx^{3} + \frac{1}{4}cx^{4}\right]_{-1}^{1} \\ &= \left(\frac{a}{2} + \frac{b}{3} + \frac{c}{4}\right) - \left(\frac{a}{2} - \frac{b}{3} + \frac{c}{4}\right) \\ &= \frac{2}{3}b \\ \langle u,x^{2}\rangle &= \int_{-1}^{1} ax^{2} + bx^{3} + cx^{4} \, dx = \left[\frac{1}{3}ax^{3} + \frac{1}{4}bx^{4} + \frac{1}{5}cx^{5}\right]_{-1}^{1} \\ &= \left(\frac{a}{3} + \frac{b}{4} + \frac{c}{5}\right) - \left(-\frac{a}{3} + \frac{b}{4} - \frac{c}{5}\right) \\ &= \frac{2}{3}a + \frac{2}{5}c[\mathbf{3}] \end{split}$$

(b) I have not yet written the relevant problem sheet, but will find something like this to put in.

Consider an element $u = a + bx + cx^2 \in V$. We want $\langle u, f \rangle = f(0)$, so we must have

$$1 = \langle u, 1 \rangle = 2a + \frac{2}{3}c$$
$$0 = \langle u, x \rangle = \frac{2}{3}b$$
$$0 = \langle u, x^2 \rangle = \frac{2}{3}a + \frac{2}{5}c$$
[3]

The second equation gives b=d=0. The third equation gives $c=-\frac{5}{3}a$, which can be substituted into the first equation to give $1=(2-\frac{10}{9})a=\frac{8}{9}a$, so $a=\frac{9}{8}$ and $c=-\frac{5}{3}a=-\frac{15}{8}$ [2]. This gives

$$u = (9 - 15x^2)/8.[1]$$

- (c) **Unseen.** Taking f = u gives $\langle u, u \rangle = u(0) = 9/8$, so $||u|| = \sqrt{9/8} = 3/\sqrt{8}$. [2]
- (d) **Bookwork.** The Cauchy-Schwartz inequality says that for $u, v \in U$ we have $|\langle u, v \rangle| \leq ||u|| ||v||$. [2] To see this, first note that it is obviously true if v = 0, so we may assume that $v \neq 0$ and so ||v|| > 0. [1] Put $x = \langle v, v \rangle u \langle u, v \rangle v$. [2] Then

$$||x||^{2} = \langle x, x \rangle$$

$$= \langle v, v \rangle^{2} \langle u, u \rangle - 2 \langle v, v \rangle \langle u, v \rangle \langle u, v \rangle + \langle u, v \rangle^{2} \langle v, v \rangle$$

$$= \langle v, v \rangle (\langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^{2}).[\mathbf{2}]$$

As $\langle v, v \rangle = ||v||^2 > 0$, we can divide by this to get

$$\langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^2 = (\|x\|/\|v\|)^2.$$

This is a square, so it must be nonnegative, so $\langle u, u \rangle \langle v, v \rangle \geq \langle u, v \rangle^2$ [2]. As both sides are nonnegative this inequality remains valid when we take square roots. After noting that $\sqrt{t^2} = |t|$ for all $t \in \mathbb{R}$, we conclude that $||u|| ||v|| \geq |\langle u, v \rangle|$, as claimed. [1]

(e) **Unseen.** The Cauchy-Schwartz inequality [1] says that $|\langle f, u \rangle| \leq ||u|| ||f|| [1]$, or in other words

$$|f(0)| \le \frac{3}{\sqrt{8}} ||f|| = \frac{3}{\sqrt{8}} \sqrt{\int_{-1}^{1} f(x)^2 dx}.$$

[2]

(31) [0506R Q5] Consider the vector space $V = M_2\mathbb{R}$ with the usual inner product $\langle A, B \rangle = \operatorname{trace}(A^T B)$. Let s and t be positive real numbers, and define $\phi \colon V \to \mathbb{R}$ by

$$\phi(A) = [s \ t] A [\stackrel{s}{t}]$$

- (a) Find a matrix P such that $\phi(A) = \langle P, A \rangle$ for all $A \in V$. (5 marks)
- (b) Calculate ||P||, simplifying your answer as much as possible. (2 marks)
- (c) State and prove the Cauchy-Schwartz inequality. (10 marks)
- (d) Deduce that $|\phi(A)| \leq s^2 + t^2$ for all $A \in V$ with $||A|| \leq 1$. (3 marks)
- (e) Find a matrix A such that ||A|| = 1 and and $\phi(A) = s^2 + t^2$. (5 marks)

Solution:

(a) If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then

$$\phi(A) = \begin{bmatrix} s \ t \end{bmatrix} \begin{bmatrix} a \ b \\ c \ d \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} s \ t \end{bmatrix} \begin{bmatrix} as+bt \\ cs+dt \end{bmatrix} = s^2a + stb + stc + t^2d.$$
 [2]

On the other hand, if $P = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$ then

$$\langle P,A\rangle = \operatorname{trace}\left(\left[\begin{smallmatrix} w & y \\ z & z \end{smallmatrix}\right]\left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right]\right) = \operatorname{trace}\left[\begin{smallmatrix} wa+yc & wb+yd \\ xa+zc & xb+zd \end{smallmatrix}\right] = wa+xb+yc+zd. [\mathbf{1}]$$

Thus, to have $\phi(A) = \langle P, A \rangle$ we must have $w = s^2$ and x = y = st and $z = t^2$, so $P = \begin{bmatrix} s^2 & st \\ st & t^2 \end{bmatrix}$. [2]

- (b) We now have $||P||^2 = s^4 + s^2t^2 + s^2t^2 + t^4[1] = (s^2 + t^2)^2$, so $||P|| = s^2 + t^2$. [1]
- (c) **Bookwork.** The Cauchy-Schwartz inequality says that for $u, v \in U$ we have $|\langle u, v \rangle| \le ||u|| ||v||$. [2] To see this, first note that it is obviously true if v = 0, so we may assume that $v \ne 0$ and so ||v|| > 0. [1] Put $x = \langle v, v \rangle u \langle u, v \rangle v$. [2] Then

$$||x||^{2} = \langle x, x \rangle$$

$$= \langle v, v \rangle^{2} \langle u, u \rangle - 2 \langle v, v \rangle \langle u, v \rangle \langle u, v \rangle + \langle u, v \rangle^{2} \langle v, v \rangle$$

$$= \langle v, v \rangle (\langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^{2}).[2]$$

As $\langle v, v \rangle = ||v||^2 > 0$, we can divide by this to get

$$\langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^2 = (\|x\|/\|v\|)^2.$$

This is a square, so it must be nonnegative, so $\langle u, u \rangle \langle v, v \rangle \geq \langle u, v \rangle^2$ [2]. As both sides are nonnegative this inequality remains valid when we take square roots. After noting that $\sqrt{t^2} = |t|$ for all $t \in \mathbb{R}$, we conclude that $||u|| ||v|| \geq |\langle u, v \rangle|$, as claimed. [1]

- (d) **Unseen.** The Cauchy-Schwartz inequality [1] now tells us that $|\phi(A)| = |\langle P, A \rangle| \le ||P|| ||A|| = (s^2 + t^2) ||A||$ [1]. In particular, if $||A|| \le 1$ then $|\phi(A)| \le s^2 + t^2$. [1]
- (e) Now take $A = P/(s^2 + t^2) = P/\|P\|$ [3]. We then have $\|A\| = 1$ and $\phi(A) = \langle P, P/\|P\| \rangle = \|P\|^2/\|P\| = \|P\| = s^2 + t^2$ [2].
- (32) [0607 Q5] Let V be a vector space over \mathbb{R} .
 - (a) Define the map $\mu_{\mathcal{V}} \colon \mathbb{R}^n \to V$ (where $\mathcal{V} = v_1, \dots, v_n$ is a list of elements of V). (2 marks)
 - (b) Show that any linear map $\phi \colon \mathbb{R}^n \to V$ has the form $\phi = \mu_{\mathcal{V}}$ for some list \mathcal{V} . (5 marks)

- (c) Some of the following situations are possible, and some are not. For each situation that is possible, give an example. For each situation that is impossible, give a brief argument to show that it is impossible. (8 marks)
 - (i) A space V with a spanning list $\mathcal A$ of length 4 and a linearly independent list $\mathcal B$ of length 3
 - (ii) A space V with a spanning list $\mathcal A$ of length 3 and a linearly independent list $\mathcal B$ of length A
 - (iii) A 3-dimensional space V with a list \mathcal{V} of length 3 that is linearly independent but does not span.
 - (iv) A 3-dimensional space V with a list $\mathcal V$ of length 3 that is linearly dependent and does not span.
- (d) Define what is meant by a jump in a sequence V. (3 marks)
- (e) Find the jumps in the following sequence:

$$v_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad v_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad v_3 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \qquad v_4 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \qquad v_5 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad v_6 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

(7 marks)

Solution:

- (a) **Bookwork.** The map $\mu_{\mathcal{V}}$ is just given by $\mu_{\mathcal{V}}([\lambda_1,\ldots,\lambda_n]^T) = \sum_i \lambda_i v_i$. [2]
- (b) **Bookwork.** Let $\phi : \mathbb{R}^n \to V$ be a linear map. Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the standard basis of \mathbb{R}^n , so $\mathbf{x} = \sum_i x_i \mathbf{e}_i$ for all $\mathbf{x} \in \mathbb{R}^n$ [1]. Put $v_i = \phi(\mathbf{e}_i) \in V$ [1] and $\mathcal{V} = v_1, \dots, v_n$. We claim that $\phi = \mu_{\mathcal{V}}$ [1]. Indeed, for any $\mathbf{x} \in \mathbb{R}^n$ we have

$$\phi(\mathbf{x}) = \phi(\sum_{i} x_i \mathbf{e}_i) = \sum_{i} x_i \phi(\mathbf{e}_i) = \sum_{i} x_i v_i = \mu_{\mathcal{V}}(\mathbf{x})[\mathbf{2}]$$

as claimed.

- (c) Unseen.
 - (i) An example is $V = \mathbb{R}^3$ with $\mathcal{A} = \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, 0$ and $\mathcal{B} = \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$. [2]
 - (ii) This is impossible [1] by Steinitz's Lemma: any spanning list must be at least as long as any linearly independent list. [1]
 - (iii) This is impossible [1]: in a 3-dimensional space, a list of length three is independent iff it spans [1].
 - (iv) An example is $V = \mathbb{R}^3$ with $\mathcal{V} = 0, 0, 0.$ [2]
- (d) **Bookwork.** Put $V_i = \text{span}(v_1, \dots, v_i)$ (with $V_0 = 0$). We then say that i is a jump if $v_i \notin V_{i-1}$. [3]
- (e) Similar to problem sheets. As $v_1 = 0 \in V_0$ and $v_3 = 2v_2 \in V_2$ and $v_5 = v_3 v_4 \in V_4$ and $v_6 = v_3 + v_4 \in V_5$, we see that 1, 3, 5 and 6 are not jumps [3]. As $V_1 = 0$ and $v_2 \neq 0$, we see that 2 is a jump [2]. It is also clear that V_3 is the set of vectors of the form $[t, t, t]^T$, and v_4 does not lie in that set, so 4 is a jump [2]. Thus, the set of jumps is precisely $\{2, 4\}$.
- (33) [0607R Q5] Consider the vector space $V = M_2(\mathbb{R})$ with the usual inner product $\langle A, B \rangle = \operatorname{trace}(A^T B)$. Define $\phi \colon V \to \mathbb{R}$ by

$$\phi(A) = [3 \ 4] A [\frac{3}{4}]$$

- (a) Find a matrix P such that $\phi(A) = \langle P, A \rangle$ for all $A \in V$. (5 marks)
- (b) Calculate ||P|| (2 marks)
- (c) State and prove the Cauchy-Schwartz inequality. (10 marks)
- (d) Deduce that $|\phi(A)| \leq 25$ for all $A \in V$ with $||A|| \leq 1$. (3 marks)
- (e) Find a matrix A such that ||A|| = 1 and and $\phi(A) = 25$. (5 marks)

Solution:

(a) If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then

$$\phi(A) = \begin{bmatrix} 3 \ 4 \end{bmatrix} \begin{bmatrix} a \ b \\ c \ d \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \ 4 \end{bmatrix} \begin{bmatrix} 3a+4b \\ 3c+4d \end{bmatrix} = 9a + 12b + 12c + 16d.$$

On the other hand, if $P = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$ then

$$\langle P,A\rangle = \operatorname{trace}\left(\left[\begin{smallmatrix} w & y \\ x & z \end{smallmatrix}\right]\left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right]\right) = \operatorname{trace}\left[\begin{smallmatrix} wa+yc & wb+yd \\ xa+zc & xb+zd \end{smallmatrix}\right] = wa+xb+yc+zd. \boldsymbol{[1]}$$

Thus, to have $\phi(A)=\langle P,A\rangle$ we must have w=9 and x=y=12 and z=16, so $P=\left[\begin{smallmatrix} 9&12\\12&16\end{smallmatrix}\right]$. [2]

- (b) We now have $||P||^2 = 9^2 + 12^2 + 12^2 + 16^2 = 625[1]$, so $||P|| = \sqrt{625} = 25$. [1]
- (c) **Bookwork.** The Cauchy-Schwartz inequality says that for any inner product space U and any $u, v \in U$ we have $|\langle u, v \rangle| \leq ||u|| ||v||$. [2] To see this, first note that it is obviously true if v = 0, so we may assume that $v \neq 0$ and so ||v|| > 0. [1] Put $x = \langle v, v \rangle u \langle u, v \rangle v$. [2] Then

$$||x||^2 = \langle x, x \rangle$$

$$= \langle v, v \rangle^2 \langle u, u \rangle - 2 \langle v, v \rangle \langle u, v \rangle \langle u, v \rangle + \langle u, v \rangle^2 \langle v, v \rangle$$

$$= \langle v, v \rangle (\langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^2). [2]$$

As $\langle v, v \rangle = ||v||^2 > 0$, we can divide by this to get

$$\langle u, u \rangle \langle v, v \rangle - \langle u, v \rangle^2 = (\|x\|/\|v\|)^2.$$

This is a square, so it must be nonnegative, so $\langle u, u \rangle \langle v, v \rangle \geq \langle u, v \rangle^2$ [2]. As both sides are nonnegative this inequality remains valid when we take square roots. After noting that $\sqrt{t^2} = |t|$ for all $t \in \mathbb{R}$, we conclude that $||u|| ||v|| \geq |\langle u, v \rangle|$, as claimed. [1]

- (d) **Unseen.** The Cauchy-Schwartz inequality [1] now tells us that $|\phi(A)| = |\langle P, A \rangle| \le ||P|| ||A|| = 25||A||$ [1]. In particular, if $||A|| \le 1$ then $|\phi(A)| \le 25$. [1]
- (e) Now take $A = P/25 = P/\|P\| = \begin{bmatrix} 0.36 & 0.48 \\ 0.48 & 0.64 \end{bmatrix}$ [3]. We then have $\|A\| = 1$ and $\phi(A) = \langle P, P/\|P\| \rangle = \|P\|^2/\|P\| = \|P\| = 25$ [2].
- (34) [0708 Q5] Let V be a finite-dimensional vector space over \mathbb{R} , and let $\phi \colon V \to V$ be a linear map.
 - (a) Define the kernel of ϕ , and prove that it is a subspace of V. (5 marks)
 - (b) Define the terms eigenvalue and eigenvector, and show that if ϕ is not injective then 0 is an eigenvalue of ϕ . (6 marks)

For the rest of this question, we take $V = \mathbb{R}[x]_{\leq 2}$, and we define $\phi \colon V \to V$ by

$$\phi(f(x)) = (f(2) - f(0))x.$$

- (c) Give a basis for V, and find the matrix of ϕ with respect to your basis. (4 marks)
- (d) Find the trace and determinant of ϕ . (3 marks)
- (e) Find a basis for V consisting of eigenvectors of ϕ . (7 marks)

Solution:

(a) **Bookwork.** The kernel of ϕ is the set $\ker(\phi) = \{v \in V \mid \phi(v) = 0\}$ [1]. We have $\phi(0) = 0$, so $0 \in \ker(\phi)$ [1]. If $u, v \in \ker(\phi)$ and $s, t \in \mathbb{R}$ then

$$\phi(su + tv) = s\phi(u) + t\phi(v) = s.0 + t.0 = 0,$$

so $su + tv \in \ker(\phi)$ [3]. This shows that $\ker(\phi)$ is a subspace of V.

- (b) **Bookwork.** We say that a number $\lambda \in \mathbb{R}$ is an eigenvalue for ϕ if there is a nonzero element $v \in V$ with $\phi(v) = \lambda v$. Any such element v is called an eigenvector for ϕ of eigenvalue λ . [2] If ϕ is not injective, then there must exist two elements $u, v \in V$ with $u \neq v$ but $\phi(u) = \phi(v)$ [1]. This means that the vector w = u v is nonzero and satisfies $\phi(w) = \phi(u) \phi(v) = 0 = 0.w$ [2], so w is a nonzero eigenvector of eigenvalue 0, so 0 is an eigenvalue of ϕ . [1]
- (c) Similar to lecture notes and problem sheets. The obvious basis is $x^2, x, 1$ [1]. We have

$$\phi(ax^{2} + bx + c) = (4a + 2b)x$$

$$\phi(x^{2}) = 0.x^{2} + 4.x + 0.1$$

$$\phi(x) = 0.x^{2} + 2.x + 0.1$$

$$\phi(1) = 0.x^{2} + 0.x + 0.1[2]$$

so the relevant matrix is

$$P = \begin{bmatrix} \begin{smallmatrix} 0 & 0 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} . [\mathbf{1}]$$

- (d) Similar to lecture notes and problem sheets. The trace and determinant of ϕ are defined to be the trace and determinant of the corresponding matrix [1](with respect to any basis), so $\operatorname{trace}(\phi) = \operatorname{trace}(P) = 0 + 2 + 0 = 2$ [1]and $\det(\phi) = \det(P) = 0$ [1].
- (e) Similar to lecture notes and problem sheets. The characteristic polynomial of ϕ is

$$\operatorname{char}(\phi)(t) = \det = \begin{bmatrix} \frac{t}{-4} & \frac{1}{0} & 0 \\ 0 & t & 0 & t \end{bmatrix} = t^2(t-2).$$

Thus, the eigenvalues are 0 and 2. [2] Consider a polynomial $f(x) = ax^2 + bx + c$, so $\phi(f) = (4a + 2b)x$. Then f is an eigenvector of eigenvalue 0 iff $\phi(f) = 0$ iff 4a + 2b = 0 iff f has the form $f(x) = ax^2 - 2ax + c = a(x^2 - 2x) + c$.1. Thus $x^2 - 2x$ and 1 are linearly independent eigenvectors of eigenvalue 0 [2]. Similarly, f is an eigenvector of eigenvalue 2 iff $\phi(f) = 2f$ iff $(4a + 2b)x = 2ax^2 + 2bx + 2c$ iff a = c = 0, so x is an eigenvector of eigenvalue 2. [2] Thus $1, x, x^2 - 2x$ is a basis consisting of eigenvectors. [1]

- (35) [0708R Q5] Let V be a finite-dimensional vector space over \mathbb{R} , and let $\phi: V \to V$ be a linear map.
 - (a) Define the kernel of ϕ , and prove that it is a subspace of V. (5 marks)
 - (b) Define the terms eigenvalue and eigenvector (for linear maps, not for matrices). Show that if ϕ is not injective then 0 is an eigenvalue of ϕ . (6 marks)

For the rest of this question, we take $V = \mathbb{R}[x]_{\leq 2}$, and we define $\phi \colon V \to V$ by

$$\phi(f(x)) = (f(2) - 2f(1))x^2.$$

- (c) Give a basis for V, and find the matrix of ϕ with respect to your basis. (4 marks)
- (d) Find the trace and characteristic polynomial of ϕ . (3 marks)
- (e) Find a basis for V consisting of eigenvectors of ϕ . (7 marks)

Solution: This is a slight modification of a question from the June exam.

(a) **Bookwork.** The kernel of ϕ is the set $\ker(\phi) = \{v \in V \mid \phi(v) = 0\}$ [1]. We have $\phi(0) = 0$, so $0 \in \ker(\phi)$ [1]. If $u, v \in \ker(\phi)$ and $s, t \in \mathbb{R}$ then

$$\phi(su + tv) = s\phi(u) + t\phi(v) = s.0 + t.0 = 0,$$

so $su + tv \in \ker(\phi)$ [3]. This shows that $\ker(\phi)$ is a subspace of V.

- (b) **Bookwork.** We say that a number $\lambda \in \mathbb{R}$ is an eigenvalue for ϕ if there is a nonzero element $v \in V$ with $\phi(v) = \lambda v$. Any such element v is called an eigenvector for ϕ of eigenvalue λ . [2] If ϕ is not injective, then there must exist two elements $u, v \in V$ with $u \neq v$ but $\phi(u) = \phi(v)$ [1]. This means that the vector w = u v is nonzero and satisfies $\phi(w) = \phi(u) \phi(v) = 0 = 0.w$ [2], so w is a nonzero eigenvector of eigenvalue 0, so 0 is an eigenvalue of ϕ . [1]
- (c) Similar to lecture notes and problem sheets. The obvious basis is $x^2, x, 1$ [1]. We have

$$\phi(ax^2 + bx + c) = ((4a + 2b + c) - 2(a + b + c))x^2 = (2a - c)x^2$$

$$\phi(x^2) = 2.x^2 + 0.x + 0.1$$

$$\phi(x) = 0.x^2 + 0.x + 0.1$$

$$\phi(1) = -1.x^2 + 0.x + 0.1[2]$$

so the relevant matrix is

$$P = \begin{bmatrix} \begin{smallmatrix} 2 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} . [\mathbf{1}]$$

(d) Similar to lecture notes and problem sheets. The trace and characteristic polynomial of ϕ are defined to be the trace and characteristic polynomial of the corresponding matrix (with respect to any basis), so $\operatorname{trace}(\phi) = \operatorname{trace}(P) = 2 + 0 + 0 = 2$ [1] and

$$\operatorname{char}(\phi)(t) = \det = \begin{bmatrix} t^{-2} & 0 & 1 \\ 0 & t & 0 \\ 0 & 0 & t \end{bmatrix} = t^2(t-2).[\mathbf{2}]$$

(e) Similar to lecture notes and problem sheets. From the characteristic polynomial we see that the eigenvalues are 0 and 2. [2] Consider a polynomial $f(x) = ax^2 + bx + c$, so $\phi(f) = (2a - c)x^2$. Then f is an eigenvector of eigenvalue 0 iff $\phi(f) = 0$ iff 2a - c = 0 iff f has the form $f(x) = ax^2 + bx + 2a = a(x^2 + 2) + bx$. Thus $x^2 + 2$ and x are linearly independent eigenvectors of eigenvalue 0 [2]. Similarly, f is an eigenvector of eigenvalue 2 iff $\phi(f) = 2f$ iff $(2a - c)x^2 = 2ax^2 + 2bx + 2c$ iff b = c = 0, so x^2 is an eigenvector of eigenvalue 2. [2] Thus $x^2 + 2$, x, x^2 is a basis consisting of eigenvectors. [1]