Patent Poc. 3 JP-A-03-089577

(19)日本国特許庁 (JP)

(12) 特 許 公 報(B2)

(11)特許番号

第2545994号

(45)発行日 平成8年(1996)10月23日

(24)登録日 平成8年(1996)8月8日

(51) Int.Cl. 8

庁内整理番号 識別記号

FΙ

技術表示箇所

H01S 3/18

H01S 3/18

請求項の数1(全 3 頁)

(21)出願番号 特願平1-226865

(22)出願日

平成1年(1989)8月31日

(65)公開番号

特開平3-89577

(43)公開日

平成3年(1991)4月15日

(73)特許権者 999999999

日本電気株式会社

東京都港区芝5丁目7番1号

(72)発明者 井元 康雅

東京都港区芝5丁目33番1号 日本電気

株式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

審査官 上野 信

(56)参考文献 特開 昭62-14479 (JP, A)

特開 昭63-108790 (JP, A)

特期 昭58-102590 (JP, A)

実開 昭62-199969 (JP, U)

(54) 【発明の名称】 半導体光装置

1

(57) 【特許請求の範囲】

【請求項1】P型InP基板上に形成されたInP及びInGaAs Pよりなるレーザ層を電気的に分割し、一部をレーザと して、一部をフォトダイオードとして機能させる素子が 複数個配列されて成り、前記レーザ層は、p型InPクラ ッド層、InGaAsP活性層、n型InPクラッド層を含むダブル ヘテロ構造を有し、当該ダブルヘテロ構造の発光領域 (活性領域)とすべき領域の両側に溝を形成し、この溝 内及び前記ダブルヘテロ構造上にp型InP第1埋込み層、 込み層、n型InGaAsPキャップ層を順次積層した構造とし たことを特徴とする半導体光装置。

【発明の詳細な説明】

〔産業上の利用分野〕

本発明は、レーザと光出力モニター用フォトダイオー

2

ドとが複数個集積された半導体光装置に関する。

〔従来技術とその問題点〕

光通信技術の進歩に伴ないその適用分野は基幹回線か ら加入者型回線、ローカルエリアネットワーク、データ リンク等へと多様化して来ている。伝送システムとして も基幹回線の様に一本の光ファイバで大量の情報を伝送 するものだけでなく、たとえばコンピュータのデータバ ス等の様に多数本の光ファイバでデータを並列に伝送す る様なものも必要となる。このような並列伝送システム n型InP第2埋込み層, p型InP第3埋込み層, n型InP第4埋 10 では、光デバイスをアレイ化集積する事が光ファイバと の結合を容易にする、装置を小型化できる等実装上非常 に重要となってくる。特に半導体レーザでは、光出力モ ニター用のフォトダイオードも同時に集積化する事が非 常に重要である。

ところで、通信に用いられる光デバイスはInPを基板

۵

3

に用い、 $1.3\sim1.5\mu$ m帯の波長域で用いられる。一方、 従来からは半導体レーザと光出力モニター用フォトダイ オードをn-型InP基板上に形成されたものが知られて いたが(電子情報通信学会、光量子エレクトロニクス研 究会予稿OQE87-52 P.41~P46 (1987) 参照) 、n型In P基板は1.3~1.5μm帯の波長光を殆ど吸収しない為、 半導体レーザとフォトダイオードを各々1個ずつ集積し た場合は問題ないが多数個集積した場合には、基板を介 して半導体レーザの自然放出光成分や散乱光成分が隣接 するフォトダイオードへ回り込み、クロストークが生じ 10 ているためフォトダイオードでの光出力モニターが正確 に行なえないといった欠点を有していた。

(発明が解決しようとする課題)

本発明の目的はこのような問題点を解決し半導体レー ザと光出力モニター用フォトダイオードとを多数個集積 した場合に、光出カモニター用フォトダイオードのクロ ストークを小さく抑えることのできる半導体光装置を提 供することにある。

〔課題を解決するための手段〕

nP及びInGaAsPよりなるレーザ層を電気的に分離し、一 部をレーザとして、一部をフォトダイオードとして機能 させる素子が複数個配置されている。レーザ層は、p型 InPクラッド層、InGaAsP活性層、n型InPクラッド層を含む ダブルヘテロウェハーの発光領域(活性領域)とすべき 領域の両側に溝を形成した後、p型InP層、n型InP層、p型 InP層, n型InP層, n型InGaAsP層を順次積層して横モード 制御と電流狭搾がなされていることを特徴とする構造に なっている。

〔実施例〕

次に図面を用いて本発明を詳細に説明する。第1図は 本発明の一実施例の半導体レーザと光出力モニター用フ ォトダイオードをアレイ化集積した半導体光装置の概観 図を示す。図に示すように本実施例ではp型InP基板1 上にInP及びInGaAsPよりなる半導体レーザ2と光出力モ ニター用フォトダイオード3がアレイ状に300μmピッ チで集積され、各素子はドライエッチングにより形成し た溝により電気的分離とレーザの共振器ミラー形成がな されている。

第2図は半導体光装置の断面構造図を示し、第2図 (a) はレーザの共振器方向、第2図(b) は(a)の

垂直方向の断面をそれぞれ示す。図に示す様に、この半 導体光装置は、まず p型InP基板 1上に層厚0. 1μmのノ ンドープInGaAsPよりなる活性層4、層厚1μm キャリア 濃度 $1 \times 10^{18} \text{cm}^{-3}$ の n 型 $\ln P$ よりなるクラッド層 5 を積 層した後、平行な2本の溝を形成し、この溝に挟まれた ストライプ領域を活性領域とする。この溝の形成は、フ ォトダイオードをマスクとして臭素とメタノールの混合 液によるエッチングで行なう。次にキャリア濃度1×10 18 cm $^{-3}$ のp型の第1埋込み層6. キャリア濃度1×10 18 cm -3のn型InPの第2埋込層7, キャリア濃度1×10¹⁸cm-3 のp型InPの第3埋込み層8,キャリア濃度1×10¹⁸cm⁻³ のn型InPの第4埋込み層9,キャリア濃度5×10¹⁸cm⁻³ のn型InGaAsPのキャップ層10を積層してレーザ層を形 成した後、AuGeNi/Auのn側電極11を形成し、フォトレ ジストをマスクとしCl2の反応性イオンビームエッチン グにより図示の如く溝を形成して素子分離と、レーザの 共振器端面形成を行なう。この後、基板裏面にTi/Auの p側電極12を形成して完成する。

本実施例ではp型InP基板の吸収係数が50~60cm⁻¹あ 本発明の半導体装置は、p型InP基板上に形成されたI 20 る為、基板を介して回り込む自然放出光は従来のn型基 板を用いた場合に比べ約8dB低減される。また光出力モ ニター用フォトダイオードとなるストライプ状活性領域 の両側、すなわち、ストライプを挟む平行な2本の溝の 外側にあるInGaAsP層で活性領域の活性層4と結合しな いレーザ光が結合し、光の回り込みをおさえる事ができ る為、光出力モニター用フォトダイオードのクロストー クを大幅に低減できる。

[発明の効果]

以上説明したように本発明によれば、クロストークの 30 小さい光出力モニター用フォトダイオードの半導体レー ザが複数個集積された半導体光装置が得られる。

【図面の簡単な説明】

第1図は本発明の一実施例の半導体レーザと光出力モニ ター用フォトダイオードをアレイ化集積した半導体光装 置の概観図を、第2図は各素子の断面構造図を示す。図 中で、1はp型InP基板、2は半導体レーザ、3は光出 カモニター用フォトダイオード、4は活性層、5はクラ ッド層、6は第1埋込み層、7は第2埋込み層、8は第 3埋個み層、9は第4埋込み層、10はキャップ層、11は 40 n 側電極、12は p 側電極である。

【第1図】

【第2図】

