Задание. Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

Методы: опорных векторов и случайный лес

Перова А.Е.

ИУ5-62Б Вариант №16

Импортируем библиотеки:

impo	ort panda	as as pd									
import numpy as np											
import matplotlib.pyplot as plt											
_		orn as sns									
_	-	lotlib.pyplot	t as plt								
		orn as sns									
			<pre>mport load_iri ing import Sta</pre>		. MinMayCoa	lor					
			ction import sta								
		n.svm import	_	rarn_cesc	spire, dilab	earchev					
			mport RandomFo	restClassi	fier						
			-			, recall score, f	1 score, confi	usion matrix, o	classification		
					_		_				
data	a = pd.re	ead_csv('rest	taurant-scores	-lives-star	ndard.csv',	sep=",")					
data	a.head()										
b	usiness_id	business_name	business_address	business_city	business_state	business_postal_code	business_latitude	business_longitude	business_location		
0	101192	Cochinita #2	2 Marina Blvd Fort Mason	San Francisco	CA	NaN	NaN	NaN	NaN		
1	97975	BREADBELLY	1408 Clement St	San Francisco	CA	94118	NaN	NaN	NaN		
2	92982	Great Gold Restaurant	3161 24th St.	San Francisco	CA	94110	NaN	NaN	NaN		
3	101389	HOMAGE	214 CALIFORNIA ST	San Francisco	CA	94111	NaN	NaN	NaN		
	85986	Pronto Pizza	798 Eddy St		CA						

5 rows × 23 columns

Обработка пропусков

```
data.isnull().sum()
```

```
business_id
business_name
business_address
                                     0
business_city
                                     0
business_state
                                 1018
business_postal_code
business_latitude
                                19556
business_longitude
                                19556
business_location
business_phone_number
                                19556
                                36938
inspection_id
inspection_date
                                     0
                                13610
inspection_score
inspection_type
violation_id
violation_description
                                    0
                                12870
                                12870
risk_category
                                12870
Neighborhoods (old)
                                19594
                                19594
Police Districts
Supervisor Districts
                                19594
Fire Prevention Districts
                                19646
Zip Codes
Analysis Neighborhoods
dtype: int64
                                19576
                                19594
data.shape
(53973, 23)
total_count = data.shape[0]
print('Bcero ctpok: {}'.format(total_count))
 Всего строк: 53973
data = data.dropna(axis=0, how='any')
data.shape
                                                                                        Снимок экрана
data.head()
```

business_id business_name	hueinace addrace	hueinage city	hueinaee etata	hueinage nagtal code	hueinaee latituda	hueinage langituda	hueineee location
business_iu business_name	business_address	business_city	business_state	business_postal_code	business_iautude	business_iongitude	business_iocation

11	4794	VICTOR'S	210 TOWNSEND St	San Francisco	CA	94107	37.778634	-122.393089	{'type': 'Point' 'coordinates' [-122.393089,
172	63652	SFDH - Banquet Main Kitchen	450 Powell St 2nd Floor	San Francisco	CA	94102	37.788918	-122.408507	{'type': 'Point' 'coordinates' [-122.408507,
327	328	Miyako	1470 Fillmore St	San Francisco	CA	94115	37.783017	-122.432584	{'type': 'Point' 'coordinates' [-122.432584,
372	2684	ERIC'S RESTAURANT	1500 Church St	San Francisco	CA	94131	37.746759	-122.426995	{'type': 'Point' 'coordinates' [-122.426995,
397	328	Miyako	1470 Fillmore St	San Francisco	CA	94115	37.783017	-122.432584	{'type': 'Point' 'coordinates' [-122.432584,

5 rows × 23 columns

Кодируем категориальные признаки

Удалим колонки, которые не влияют на целевой признак:

```
data = data.drop(columns='business_name')
data = data.drop(columns='business_address')
data = data.drop(columns='business_city')
data = data.drop(columns='business_state')
data = data.drop(columns='business_location')

Снимок экрана
```

```
data = data.drop(columns='business_phone_number')
data = data.drop(columns='violation_description')

data.shape
(6566, 16)

data.head()
```

	business_id	business_postal_code	business_latitude	business_longitude	inspection_id	inspection_date	inspection_score	inspection_type	vi
11	4794	94107	37.778634	-122.393089	4794_20181030	2018-10- 30T00:00:00.000	71.0	Routine - Unscheduled	4794_2018100
172	63652	94102	37.788918	-122.408507	63652_20190904	2019-09- 04T00:00:00.000	94.0	Routine - Unscheduled	63652_2019090
327	328	94115	37.783017	-122.432584	328_20161122	2016-11- 22T00:00:00.000	81.0	Routine - Unscheduled	328_2016112
372	2684	94131	37.746759	-122.426995	2684_20190715	2019-07- 15T00:00:00.000	87.0	Routine - Unscheduled	2684_201907 [.]
397	328	94115	37.783017	-122.432584	328_20161122	2016-11- 22T00:00:00.000	81.0	Routine - Unscheduled	328_2016112

data.dtypes

business_id int64 business_postal_code business_latitude business_longitude object float64 float64 inspection_id object inspection_date object inspection_score float64 inspection_type object violation_id object risk_category object Neighborhoods (old) Police Districts float64 float64 Supervisor Districts float64 Fire Prevention Districts float64 Zip Codes Analysis Neighborhoods float64 float64 dtype: object

Снимок экрана

Кодируем категориальные признаки:

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
df_int = le.fit_transform(data['business_postal_code'])
data['business_postal_code'] = df_int
df_int = le.fit_transform(data['inspection_id'])
data['inspection_id'] = df_int
df_int = le.fit_transform(data['inspection_date'])
data['inspection_date'] = df_int
df_int = le.fit_transform(data['inspection_type'])
data['inspection_type'] = df_int
df_int = le.fit_transform(data['violation_id'])
data['violation_id'] = df_int
df_int = le.fit_transform(data['risk_category'])
data['risk_category'] = df_int
data.head()
```

	business_id	business_postal_code	business_latitude	business_longitude	inspection_id	inspection_date	inspection_score	inspection_type	violation_id	risk
11	4794	5	37.778634	-122.393089	829	440	71.0	0	2734	
172	63652	1	37.788918	-122.408507	1335	604	94.0	0	3895	
327	328	13	37.783017	-122.432584	564	28	81.0	0	1925	
372	2684	22	37.746759	-122.426995	405	576	87.0	0	1406	
397	328	13	37.783017	-122.432584	564	28	81.0	0	1929	

Масштабируем числовые данные:

```
scl = MinMaxScaler()
data['business_id'] = scl.fit_transform(data[['business_id']])
data['business_latitude'] = scl.fit_transform(data[['business_latitude']])
data['business_longitude'] = scl.fit_transform(data[['business_longitude']])
data['inspection_score'] = scl.fit_transform(data[['inspection_score']])
data['Neighborhoods (old)'] = scl.fit_transform(data[['Inspection]score']])
data['Police Districts'] = scl.fit_transform(data[['Police Districts']])
data['Supervisor Districts'] = scl.fit_transform(data[['Supervisor Districts']])
data['Fire Prevention Districts'] = scl.fit_transform(data[['Fire Prevention Districts']])
data['Zip Codes'] = scl.fit_transform(data[['Zip Codes']])
data['Analysis Neighborhoods'] = scl.fit_transform(data[['Analysis Neighborhoods']])
data.head()
```

business_id business_postal_code business_latitude business_longitude inspection_id inspection_date inspection_score inspection_type violation_id risk

11	0.065966	5	0.700222	0.903650	829	440	0.480769	0	2734
172	0.885088	1	0.803468	0.784522	1335	604	0.923077	0	3895
327	0.003813	13	0.744225	0.598490	564	28	0.673077	0	1925
372	0.036601	22	0.380214	0.641674	405	Снимок	экрана ,2	0	1406

Делим выборку на обучающую и тестовую

```
x_train, x_test, y_train, y_test = train_test_split(data.drop(['risk_category'], axis=1), data['risk_category'], test_s
```

Масштабирование данных

```
scaler = StandardScaler().fit(x_train)
x_train_scaled = pd.DataFrame(scaler.transform(x_train), columns=x_train.columns)
x_test_scaled = pd.DataFrame(scaler.transform(x_test), columns=x_train.columns)
x_train_scaled.describe()
```

	business_id	business_postal_code	business_latitude	business_longitude	inspection_id	inspection_date	inspection_score	inspection_type	violation_
count	3.283000e+03	3.283000e+03	3.283000e+03	3.283000e+03	3.283000e+03	3.283000e+03	3.283000e+03	3283.0	3.283000e+0
mean	-5.059073e- 17	-3.151775e-17	-1.812609e-17	4.240693e-16	-4.490308e-17	-8.724872e-18	-3.872423e-16	0.0	-1.615200e-
std	1.000152e+00	1.000152e+00	1.000152e+00	1.000152e+00	1.000152e+00	1.000152e+00	1.000152e+00	0.0	1.000152e+0
min	-7.166362e- 01	-1.660029e+00	-2.307897e+00	-3.256321e+00	-1.604104e+00	-1.768765e+00	-4.811108e+00	0.0	-1.756056e+(
25%	-6.191142e- 01	-6.446684e-01	-6.091462e-01	-3.247809e-01	-8.625846e-01	-7.637860e-01	-5.953532e-01	0.0	-8.657228e-0
50%	-5.214277e- 01	-6.446242e-02	5.839182e-02	3.181117e-01	-1.272187e-01	-1.005139e-02	2.477978e-01	0.0	-7.923122e-(
75%	1.858585e-01	8.058465e-01	8.361879e-01	5.994102e-01	9.537794e-01	8.978562e-01	7.295984e-01	0.0	8.607211e-0
max	2.240713e+00	2.111310e+00	1.893510e+00	2.000217e+00	1.784527e+00	1.788633e+00	1.452299e+00	0.0	1.737318e+0

Метод опорных векторов

```
svm model = SVC()
svm_model.fit(x_train_scaled, y_train)
y_pred_svm = svm_model.predict(x_test_scaled)
print_metrics(y_test, y_pred_svm)
 weighted precision: 0.44530918329069746
 weighted recall: 0.4952787084983247
 weighted f1-score: 0.42810029971890773
          Матрица ошибок
                              1200
             3.1e+02 1.3e+02
                               1000
                              - 800
                              - 600
                              - 400
       22
                     2.8e+02
                             - 200
```

Подбор гиперпараметров

```
params = {'C': np.concatenate([np.arange(0.1, 2, 0.03), np.arange(2, 20, 1)])}
grid_cv = GridSearchCV(estimator=svm_model, param_grid=params, cv=10, n_jobs=-1, scoring='fl_macro')
grid_cv.fit(x_train_scaled, y_train)
print(grid_cv.best_params_)
{'C': 17.0}
Лучшая модель
```

```
best_svm_model = grid_cv.best_estimator_
best_svm_model.fit(x_train_scaled, y_train)
y_pred_svm = best_svm_model.predict(x_test_scaled)
print_metrics(y_test, y_pred_svm)
```

```
weighted precision: 0.47934527484451267
weighted recall: 0.5068534876637222
weighted f1-score: 0.48081097719528215
```


Случайный лес

```
def print_metrics(y_test, y_pred):
    rep = classification_report(y_test, y_pred, output_dict=True)
    print("weighted precision:", rep['weighted avg']['precision'])
    print("weighted recall:", rep['weighted avg']['recall'])
    print("weighted fl-score:", rep['weighted avg']['fl-score'])
    plt.figure(figsize=(4, 3))
    plt.title('Matpuia oшибок')
    sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, cmap="Blues");
CHUMMOK ЭКРАНА
```

Подбор гиперпараметров

```
params = {'n_estimators': [5, 10, 50, 100], 'max_features': [2, 3, 4], 'criterion': ['gini', 'entropy'], 'min_samples_l
grid_cv = GridSearchCV(estimator=rfc_model, param_grid=params, cv=10, n_jobs=-1, scoring='fl_weighted')
grid_cv.fit(x_train, y_train)
print(grid_cv.best_params_)

{'criterion': 'entropy', 'max_features': 4, 'min_samples_leaf': 1, 'n_estimators': 100}
```

Лучшая модель

```
Снимок экрана
best_rfc_model = grid_cv.best_estimator_
best_rfc_model.fit(x_train, y_train)
y_pred_rfc = best_rfc_model.predict(x_test)
print_metrics(y_test, y_pred_rfc)
 weighted precision: 0.6586578132508267
 weighted recall: 0.6567164179104478
 weighted f1-score: 0.6574876194933115
          Матрица ошибок
                              - 1000
  o - 2.3e+02
                               800
       89
                     3.7e+02
                              - 600
                              - 400
  ∾ - 1.2e+02
                              -200
```

Сравнение результатов

Модели с подобранными гиперпараметрами оказались лучше базовых моделей. Обе конечные модели показали довольно высокую точность прогноза. Метрики показывают, что точность модели случайный лес гораздо выше модели опорных векторов.