Package 'MPAT'

October 5, 2015

Type Package

Title This package is for multiple phenotype genetic association studies	
Version 1.0	
Date 2015-09-10	
Author Zhonghua Liu	
Maintainer Zhonghua Liu <zliu@mail.harvard.edu></zliu@mail.harvard.edu>	
Description Conduct multiple phenotype genetic association studies based on summary statistics.	
License GPL (>= 2)	
NeedsCompilation yes	
Imports mytnorm	
Archs i386, x64	
ATCHS 1380, X04	
R topics documented:	
MPAT-package	2
	2
lipids	3
MinP	4
mixAda	5
	6
ϵ	7
11	7
	8
	9
PCFisher	
PCLC	
PCLogit 1 PCMinP 1	_
SUM	
VC	
Wald	1
WI	-
Index 1	

DSUM DSUM

MPAT-package

Multiple Phenotype Genetic Association Testings by Combining Univariate Testing Summary Statistics.

Description

This package is for conducting multiple phenotype genetic association testings by combining univariate summary statistics for each phentype in GWAS. It contains fourteen methods that can be used in a variety of situations. An overall p-value will be returned for assessing the significance of associations between a SNP and multiple phenotypes. It contains the following functions: PC, PCMinP, PCFisher, PCLogit, PCLC, PCSS, MinP, WI, VC, DSUM, SUM, Wald, mixAda, mix-Fisher, mixTippett, mixVarWeight, mixSDWeight.

Details

Package: MPAT Type: Package Version: 1.0

Date: 2014-09-11

License: GPL(>= 2)

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

Maintainer: Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

DSUM

Direct summation of Z-statistics

Description

For SNP, the Z testing statistics for multiple phenotypes are summed together as an overall testing statistic.

Usage

DSUM(Z.vec, Sigma)

Arguments

Z.vec is a vector representing the Z testing statistics for multiple phenotypes.

Sigma is the correlation matrix among the Z testing statistics that can be esti-

mated by its sample version over the SNPs.

lipids 3

Value

p-value

An overall p-value assessing the association between a genetic variant and multiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore )
DSUM(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

lipids

An example data set that contains summary statistics from GWAS studies of four lipids levels.

Description

This is an example data set that contains summary statistics (Z-scores) for 2000 genetic variants and four lipids levels.

Usage

```
data(lipids)
```

Format

A data frame with 2000 observations on the following 15 variables.

MarkerName SNP names

Allele1 This the allele used as the effect allele

Allele2 This is the "other" allele

W. HDL The sum of the individual study weights (typically, N) for this marker

 ${\tt Zscore.HDL}\ \ Z\ scores\ for\ HDL$

Pvalue. HDL P-values for HDL

W.LDL The sum of the individual study weights (typically, N) for this marker

Zscore.LDL Z scores for LDL

Pvalue.LDL P-values for LDL

W. TC The sum of the individual study weights (typically, N) for this marker

Zscore.TC Z scores for TC

Pvalue.TC P-values for TC

4 MinP

```
W. TG The sum of the individual study weights (typically, N) for this marker Zscore. TG Z scores for TG P-value. TG P-values for TG ^{\prime\prime}
```

Source

http://www.sph.umich.edu/csg/abecasis/public/lipids2010/

References

http://www.nature.com/nature/journal/v466/n7307/full/nature09270.html

Examples

```
data(lipids)
head(lipids)
```

MinP

MinP takes the minimum of the p-values for multiple phenotypes as the overall testing statistic.

Description

MinP uses the minimum of the p-values for multiple phenotypes as the overall testing statistic. The p-value of MinP is calculated based on multivariate normal distribution.

Usage

```
MinP(Z.vec, Sigma)
```

Arguments

 ${\tt Z.vec} \hspace{3em} \hbox{$\tt Z.vec is a vector representing the $\tt Z$ testing statistics for multiple phenotypes.} \\$

Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

mixAda 5

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore)
MinP(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

mixAda

Adaptively select optimal combination coefficient of two independentscore statistics based on linear mixed effects model.

Description

mixAda combines the Z testing statistics for multiple phenotypes at a genetic variant in an adaptive fashion to maximize the power.

Usage

```
mixAda(Z.vec, Sigma)
```

Arguments

Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore)
mixAda(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

6 mixFisher

mixFisher	Combine Z-statistics for multiple phenotypes using Fisher's method in a linear mixed effects model.
	a unear mixea effects moder.

Description

Z-statistics for multiple phenotypes are modeled using a linear mixed effects model. Two independent score testing statistics are combined using Fisher's method.

Usage

```
mixFisher(Z.vec, Sigma)
```

Arguments

Z.vec	Z.vec is a vector representing the Z testing statistics for multiple phenotypes.
Sigma	Sigma is the correlation matrix among the Z testing statistics.

Value

p_group	p-value for the group effects of a genetic variant on the multiple phenotypes
p_individual	p-value for the individual effects of a genetic variant on the multiple phenotypes
p_overall	An overall p-value assessing the association between a genetic variant and multiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore)
mixFisher(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

mixSDWeight 7

mixSDWeight	Combine Z-statistics for multiple phenotypes using inverse standard deviation weighting method in a linear mixed effects model.

Description

Z-statistics for multiple phenotypes are modeled using a linear mixed effects model. Two independent score testing statistics are combined using inverse standard deviation weighting method.

Usage

```
mixSDWeight(Z.vec, Sigma)
```

Arguments

Z.vec is a vector representing the Z testing statistics for multiple phenotypes.Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore)
mixSDWeight(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

mixTippett

Combine Z-statistics for multiple phenotypes using Tippett's method in a linear mixed effects model.

Description

Z-statistics for multiple phenotypes are modeled using a linear mixed effects model. Two independent score testing statistics are combined using Tippett's method.

Usage

```
mixTippett(Z.vec, Sigma)
```

8 mix Var Weight

Arguments

Sigma is the correlation matrix among the Z testing statistics.

Value

p_group
 p-value for the group effects of a genetic variant on the multiple phenotypes
 p_individual
 p-value for the individual effects of a genetic variant on the multiple phenotypes
 p_overall
 An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore)
mixTippett(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

mixVarWeight

Combine Z-statistics for multiple phenotypes using inverse variance weighting method in a linear mixed effects model.

Description

Z-statistics for multiple phenotypes are modeled using a linear mixed effects model. Two independent score testing statistics are combined using inverse variance weighting method.

Usage

```
mixVarWeight(Z.vec, Sigma)
```

Arguments

Z.vec is a vector representing the Z testing statistics for multiple phenotypes.

Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

PC 9

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore )
mixVarWeight(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

PC

PC is a function used to combine correlated GWAS summary statistics for multiple phenotypes at a genetic locus.

Description

By combining univariate summary statistics for multiple phenotypes, we can obtain an overall association p-value that assess the association between a genetic variant and multiple phenotypes as a whole. PC allows users to conduct dimension reduction by specifying which principal component to use to represent the original multiple summary statistics.

Usage

```
PC(Z.vec, Sigma, PCorder)
```

Arguments

tiple phenotypes.

Sigma is the correlation matrix of the multiple Z testing statistics.

PCorder specifys which principal component to use, it takes integer values. For

example, PCorder=1 means we choose to use the first principal component.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

PCFisher

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore)
PC(Z.vec=lipids_zscore[1,],Sigma,PCorder=1) ## p-value for the first SNP using PC1
```

PCFisher

Fisher's method to combine principal components based on Z testing statistics

Description

Z testing statistics for multiple phenotype are orthogonally transformed onto principal component axes and combined using Fisher's method.

Usage

```
PCFisher(Z.vec, Sigma)
```

Arguments

Z.vec is a vector representing the Z testing statistics for multiple phenotypes.

Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore )
PCFisher(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

PCLC 11

PCLC	Linear combination of the principal components of the Z testing statistics.

Description

Z testing statistics for multiple phenotype are orthogonally transformed onto principal component axes and combined in a linear fashion.

Usage

```
PCLC(Z.vec, Sigma)
```

Arguments

Z.vec is a vector representing the Z testing statistics for multiple phenotypes.Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore )
PCLC(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

PCLogit Logit method to combine principal components based on Z testing statistics

Description

Z testing statistics for multiple phenotype are orthogonally transformed onto principal component axes and combined using Logit method.

Usage

```
PCLogit(Z.vec, Sigma)
```

12 PCMinP

Arguments

Z.vec is a vector representing the Z testing statistics for multiple phenotypes.

Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore )
PCLogit(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

PCMinP

Use the mininum p-value of the principal components of the Z testing statistics as the testing statistic

Description

The p-values using principal components of the Z testing statistics are computed, and the minimum one is taken as the testing statistic.

Usage

```
PCMinP(Z.vec, Sigma)
```

Arguments

Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

SUM 13

References

MPAT: an R package for multivariate phenotype association studies.

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore )
PCMinP(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

SUM

Use SUM method to combine Z testing statistics

Description

The Z testing statistics for multiple phenotypes are combined using SUM method with correlation structures explicitly taken into account.

Usage

```
SUM(Z.vec, Sigma)
```

Arguments

Z.vec is a vector representing the Z testing statistics for multiple phenotypes.

Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore)
SUM(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

14 Wald

۷C

Use variance component test (VC) to combine Z testing statistics

Description

Use variance component test (VC) to combine Z testing statistics of multiple phenotypes.

Usage

```
VC(Z.vec, Sigma)
```

Arguments

Z.vec is a vector representing the Z testing statistics for multiple phenotypes.

Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore )
VC(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

Wald

Traditional Wald type combination of Z testing statistics

Description

The Z testing statistics for multiple phenotypes are combined using Wald type method.

Usage

```
Wald(Z.vec, Sigma)
```

WI 15

Arguments

Z.vec is a vector representing the Z testing statistics for multiple phenotypes.

Sigma is the correlation matrix among the Z testing statistics.

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

References

MPAT: an R package for multivariate phenotype association studies.

Examples

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore)
Wald(Z.vec=lipids_zscore[1,],Sigma) ## p-value for the first SNP
```

WI

Use WI method to combine Z testing statistics.

Description

Use WI method to combine Z testing statistics.

Usage

```
WI(Z.vec, Sigma, method)
```

Arguments

Z.vec is a vector representing the Z testing statistics for multiple phenotypes.

Sigma Sigma is the correlation matrix among the Z testing statistics.

method specify which method to be used to compute the p-value

Value

p-value An overall p-value assessing the association between a genetic variant and mul-

tiple phenotypes is returned.

Author(s)

Zhonghua Liu <zliu@mail.harvard.edu>

16 WI

References

MPAT: an R package for multivariate phenotype association studies.

```
data(lipids)
lipids = as.data.frame(lipids)
lipids_zscore = as.matrix(lipids[,c("Zscore.HDL","Zscore.LDL","Zscore.TG","Zscore.TC")])
Sigma = cor(lipids_zscore )
WI(Z.vec=lipids_zscore[1,],Sigma,method="liu") ## p-value for the first SNP
```

Index

```
* \\ Topic \ \boldsymbol{datasets}
     lipids, 3
DSUM, 2
lipids, 3
MinP, 4
mixAda, 5
mixFisher, 6
{\tt mixSDWeight}, {\tt 7}
mixTippett, 7
mixVarWeight, 8
{\tt MPAT}\ ({\tt MPAT-package}),\, {\tt 2}
MPAT-package, 2
PC, 9
PCFisher, 10
PCLC, 11
PCLogit, 11
PCMinP, 12
PCSS (Wald), 14
SUM, 13
VC, 14
Wald, 14
WI, 15
```