Simulação Física para Jogos

Mark Joselli mark.joselli@pucpr.br

Sumário

- * Objetivos de hoje
- * Grandezas físicas
- * Vetores
- * Operações com vetores
- * Exercicio

Aula Passada

- * Apresentação da disciplina
- * Introdução a física de jogos

Objetivos de Hoje

* Revisão de vetores

O que são grandezas físicas?

Grandezas físicas são todos os valores passíveis de medição;

EX:

Temperatura (quantitativo - numérico) VS
Saudade (qualitativo - muito, pouco, bastante);

Uma grandeza física sempre é acompanhada de um número e uma medida.

Grandezas Escalares e Vetoriais

Algumas grandezas, são representadas por um simples número, dentro de uma escala qualquer;

Essas são as Grandezas Escalares. Ex:

A massa e a distância são grandezas escalares pois, se alguém menciona 3 Kg ou 5 metros, você entende o que esses valores significam;

Grandezas Escalares e Vetoriais

- Outras grandezas não são tão fáceis de descrever assim:
 - Como descrever a direção que o seu corpo se move?
 - Como entender a força do vento?
- Além de uma intensidade, a força do vento também tem uma direção. Por isso, ela não é simplesmente uma Grandeza Escalar, mas sim, uma Grandeza Vetorial;
- Ex: Velocidade é uma grandeza vetorial pois, quando alguém menciona 5Km/h, para entendermos a velocidade precisamos ainda saber se é na horizontal ou na vertical, se é para a direita ou para a esquerda e para cima ou para baixo;
- O mesmo acontece com a Força (em Newton).

Vetores

- Vetores representam na essência uma diferença relativa entre coisas;
- São propriedades dos vetores:
- Um tamanho: também chamado de magnitude ou intensidade (10, 15, 30, ...);
- Uma direção: Que indica a "inclinação" do vetor no espaço (horizontal, vertical, inclinado);
- E um sentido: Que indica para onde o vetor aponta (esquerda, direita, cima, baixo).
- Notem que posição não é uma propriedade dos vetores:
 - A posição inicial de um vetor é sempre relativa a algum sistema de coordenadas.

FIGURE 4.1 A point in space is both a vertex and a vector.

Vetores

Representação matemática de um vetor

- Vetores representam deslocamentos com sinal em cada eixo;
- Portanto, em 2 dimensões teremos um valor para x e y; Em 3, para x, y e z; Em 4, x, y, z e w;
- Graficamente, representamos vetores como uma flecha;
- A posição da flecha não importa, desde que sua direção, tamanho e sentido sejam mantidos (lembrem-se que vetores não possuem posição no espaço).

Vetores não possuem posição no espaço

Vetores como uma sequência de deslocamentos

- No sistema de coordenadas retangular, uma forma conveniente de pensar em vetores é quebrá-los em seus 3 componentes, alinhados com os eixos;
- Por exemplo, o vetor [1 -3 4] representa um deslocamento, mas também podemos pensar no deslocamento que se faz ao mover uma unidade para direita, três para baixo, e quatro para frente;
- A ordem que realizamos esses passos não é importante.
- Por isso, costumam-se chamar a intensidade de um vetor em cada eixo de componentes do vetor.

Vetores como uma intersecção entre planos

Um vetor pode ser representado pelo ponto fatiado por todos os eixos ao mesmo tempo:

Posições Relativas

- Um vetor também pode ser encarado como uma posição relativa;
- Isto é, dado um ponto qualquer, podemos entender o vetor como uma diretriz para chegar num próximo ponto;
 - Agora, pergunta-se:
 - O que seria uma posição absoluta?
 - Isso realmente existe?
 - É possível definir uma posição, sem que ela seja relativa a absolutamente nada?

Relação entre Sim, posições absolutas existem:

São os chamados pontos!

Entretanto, é impossível descrever onde essa posição está sem algum tipo de referência:

Essa referência é o Sistema de Coordenadas;

Relação entre pontos e vetores

- Os pontos, portanto, possuem coordenadas relativas a origem do Sistema de Coordenadas;
- Por isso, podemos usar vetores para representar pontos;
- Assim, podemos concluir que todo um Sistema de Coordenadas que não é relativo a nenhum outro possui um posicionamento absoluto;
- No CSS, o conceito de posicionamento relativo e absoluto é bem definido.

Um ponto pode ser representado como um vetor, mas não o contrário

Posições relativas e o movimento dos corpos

- No estudo dos movimentos relativos são considerados via de regra dois referenciais:
 - Um referencial supostamente fixo, denominado de referencial fixo;
 - E um outro que se movimente em relação a ele, denominado de referencial móvel.

Posições relativas e o movimento dos corpos

O movimento do corpo em relação ao referencial fixo é denominado de movimento absoluto:

Ex: Movimento do barco em relação à árvore da costa.

O movimento do corpo em relação ao referencial móvel é denominado de movimento relativo:

Ex: Movimento do barco em relação à água.

O movimento do referencial móvel em relação ao referencial fixo é denominado de movimento de arrastamento:

Ex: Movimento que a água aplica no barco.

Posições relativas e o movimento dos corpos

Exemplo:

- Quando andamos dentro de um ônibus em movimento, podemos considerar a rua como referencial fixo e o ônibus como referencial móvel;
- O nosso movimento em relação ao ônibus é o movimento relativo, e em relação à rua é o movimento absoluto. O movimento do ônibus em relação à rua é o movimento de arrastamento.

Vetores definidos por um tamanho e um ângulo

Também podemos definir um vetor 20 através do seu tamanho e seu ângulo em relação ao eixo x;

A esse formato damos o nome de Coordenada Polar, sendo esta definida sobre o Sistema de Coordenadas Polares;

Vetores no processing

Representando o vetor

```
class PVector {
  float x;
  float y;
  PVector(float x_, float y_) {
    x = x_{;}
    y = y_{;}
```

Operação sobre vetores

- Até agora, discutimos apenas a definição matemática de vetores.
- Agora veremos as operações matemáticas sobre eles de duas formas:
 - Primeiro, a definição matemática da operação;
 - A interpretação geométrica dessa operação;
 - Os exemplos em Processing das operações.

Nós podemos adicionar ou subtrair vetores, desde que sejam da mesma dimensão;

Usamos a mesma notação que a soma de escalares:

$$\begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_{n-1} \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \dots \\ a_{n-1} + b_{n-1} \\ a_n + b_n \end{bmatrix}$$

A subtração pode ser usada como a soma da negação do segundo termo.

Isto é: a - b = a + (-b):

$$\begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_{n-1} \\ a_n \end{bmatrix} - \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_{n-1} \\ a_n \end{bmatrix} + \begin{pmatrix} -\begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 - b_1 \\ a_2 - b_2 \\ \dots \\ a_{n-1} - b_{n-1} \\ a_n - b_n \end{bmatrix}$$

Note que a subtração não é comutativa. Ou seja: a — b não é igual b — a.

Geometricamente, somamos a e b ligando a cabeça de a no rabo de b;

Essa é chamada de "regra do polígono da adição de vetores";

A ponta do vetor resultante apontará para o elemento que está sofrendo a subtração;

Nela, inverter a ordem das operações resulta num vetor de sentido oposto;

Podemos estender a regra do polígono para mais de dois vetores;

Um conjunto de vetores sendo aplicados ao mesmo tempo sobre um vetor normalmente é chamado de sistema de forças.

Soma de Vetores = offset

- Um vetor sozinho pode representar a posição de um objeto no espaço:
 - Vimos que essa representação, se relacionada ao Sistema de Coordenadas do Mundo, também define o vetor como um ponto.
- Um vetor também pode representar a distância de um objeto em relação a outro;
- Chamamos isso de offset;
- Se somarmos a posição de um objeto com o offset, automaticamente obtemos a posição do outro objeto:

Vetores de um ponto até outro

- É muito comum que queiramos calcular o deslocamento necessário para de um ponto chegar a outro;
- Podemos fazer isso usando a regra do polígono e uma subtração:
 - Consideramos o centro do Sistema de Coordenadas Local do objeto como o vetor da sua posição;
- Note que b a, resulta num vetor que vai de a até b.

OU SEJA... Subtração de vetores = trajetórias

A subtração entre dois vetores resulta num terceiro vetor que é a trajetória entre dois pontos;

O tamanho desse vetor representa a distância que terá de ser percorrida entre os dois pontos.

Soma e Subtração de Vetores

```
void add(PVector v) {
   y = y + v.y;
   x = x + v.x;
}
```

```
void sub(PVector v) {
    x = x - v.x;
    y = y - v.y;
}
```

Multiplicação por um escalar

- Podemos multiplicar um vetor por um escalar;
- O resultado é um vetor com tamanho diferente, mesma direção e:
 - Mesmo sentido se o escalar for maior que zero;
 - Sentido oposto, com o escalar menor que 0;
 - O vetor zero, se o escalar for 0.

$$\begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_{n-1} \\ a_n \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_{n-1} \\ a_n \end{bmatrix} k = \begin{bmatrix} ka_1 \\ ka_2 \\ \dots \\ ka_{n-1} \\ ka_n \end{bmatrix}$$

Multiplicação por um escalar

A divisão ocorre de forma análoga, já que ela equivale a multiplicação pela recíproca do escalar (a multiplicação pelo inverso resulta em 1):

A multiplicação tem precedência sobre somar ou subtrair vetores. 3a+b = (3a)+b, não 3(a+b);

Multiplicação por um escalar

Geometricamente, multiplicar o vetor por um escalar k significa aumentar ou diminuir seu tamanho em k vezes;

O exemplo ao lado mostra o mesmo vetor multiplicado por diferentes escalares.

Multiplicação por um escalar

```
void mult(float n) {
  x = x * n;
  y = y * n;
                    void div(float n) {
                      x = x / n;
                      y = y / n;
```

Negação de Vetores

- A negação de um vetor x, é um vetor y tal que x + y = 0;
- Para negar um vetor, simplesmente invertemos o sinal de todos os componentes do vetor;
 - Por exemplo: -[-3110] = [3-1-10];
- A negação gera um vetor que tem mesmo tamanho, direção, mas sentido oposto;

Negação de Vetores

A figura mostra exemplos de vetores e suas negativas;

Lembre-se que a posição dos vetores é irrelevante.

A negação de vetores pode ser vista como multiplicação pelo escalar - 1.

Tamanho de um vetor (Magnitude)

Podemos calcular o tamanho do vetor a partir do teorema de Pitágoras;

A fórmula pode ser extrapolada para qualquer dimensão:

$$|v| = \sqrt{a^2 + b^2}$$

$$|v| = \sqrt{x^2 + y^2 + z^2}$$

$$\|\mathbf{v}\| = \sqrt{\mathbf{v}_1^2 + \mathbf{v}_2^2 + \dots + \mathbf{v}_{n-1}^2 + \mathbf{v}_n^2}$$

$$\|\mathbf{v}\| = \sqrt{\sum_{i=1}^{n} \mathbf{v}_i^2}$$

Tamanho de um vetor (Magnitude)

```
float mag() {
  return sqrt(x*x + y*y);
}
```

- Sabemos que a distância entre dois pontos é dado pelo offset, e que o offset é descoberto pela subtração de dois vetores:
 - Se subtrairmos a b, teremos um vetor offset com a direção apontando para a;
 - Se subtrairmos b a, teremos um vetor com o mesmo tamanho do anterior, mas de direção oposta.
- Mas, muitas vezes não estamos preocupados com a distância (offset), mas sim com apenas a direção (versor).

- Nessas situações, é conveniente usarmos vetores unitários, ou seja, de tamanho 1;
- Esses vetores respondem perguntas do tipo: "Para que lado estou virado?"
- Criamos vetores unitários dividindo o vetor pelo seu tamanho:

$$|\vec{u}| = \left| \frac{\vec{v}}{|\vec{v}|} \right| = \frac{|\vec{v}|}{|\vec{v}|} = 1$$

$$\vec{u} = \frac{\vec{v}}{|\vec{v}|}$$

Geometricamente, em 2D, o vetor normalizado é aquele que sua ponta termina num círculo de raio 1:

Lembra que o seno e o cosseno possuem valores unitários devido à divisão do cateto pela hipotenusa?

Em 3D, numa esfera;

- O vetor zero não pode ser normalizado, já que não tem direção;
- Uma das utilidades de um vetor unitário é forçar o tamanho do vetor;
- Transformamos ele em unitário e o multiplicamos pelo tamanho desejado.

Normalização - Exemplo

$$\frac{[12 -5]}{\|[12 -5]\|} = \frac{[12 -5]}{\sqrt{12^2 + (-5)^2}}$$

$$=\frac{[12 -5]}{\sqrt{169}} = \frac{[12 -5]}{13}$$

$$= \begin{bmatrix} \frac{12}{13} & \frac{-5}{13} \\ \end{bmatrix} \approx [0,923 -0,385]$$

```
void normalize() {
  float m = mag();
  if (m != 0) {
    div(m);
  }
}
```

Pistancia entre dois vetores

```
float dist(PVector v){
    PVector r = PVector.sub(this,v);
    return r.mag();
}
```

Perceba que a ordem da subtração não altera o resultado do tamanho.

Vetor nulo

- Para um dado conjunto, chamamos de identidade somatória o elemento x, tal que: x + y = y;
- Para um vetor de uma dimensão particular, chamamos de vetor zero um vetor que tem 0 em todas as suas dimensões, sendo ele a identidade somatória dos vetores;
- O vetor zero é importante pois ele é o único vetor que não tem tamanho ou direção. Na verdade, ele representa a ausência de deslocamento;
- Cuidado: Algumas operações de vetores, como a normalização e o produto escalar, envolvem divisão pelo tamanho (ou seja, divisão por 0).

Ângulo entre dois vetores

float angleBetween(PVector v)

O produto escalar é definido como a soma do produto dos componentes do vetor;

Usamos para ele a notação a b (o que justifica o dot):

$$\begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_{n-1} \\ a_n \end{bmatrix} \bullet \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_{n-1} \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \dots + a_{n-1}b_{n-1} + a_nb_n$$

Ou, de maneira sucinta:

$$\sum_{i=1}^{n} a_i b_i$$

- Uma das utilidades do produto escalar é o cálculo de campos de visão (fov Field of View);
- O alcance da visão é chamado de Threshold, ângulo de visão ou limiar de visão:

- Na segunda figura, temos a·b < 0. Geralmente isso já representa alguém fora da visão ($\theta > 90^{\circ}$, se o threshold for igual a 90°);
- Na primeira, ainda temos que testar se o ângulo θ está dentro do campo de visão.

Outra importante propriedade do produto escalar é que seu valor representa a distância do vetor A projetado sobre o vetor Β (cos(α) • IAI • IBI):

float dot(PVector v)

Rotação de Vetores

Outra operação interessante é a rotação de um vetor. Com um pouco de trigonometria, a rotação pode ser descrita da seguinte forma:

float rotate(float angle)

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} * \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} newX \\ newY \end{bmatrix}$$

Exemplo 1 - Triângulo de Sierpinsky

- * Faça o algoritmo do triangulo de Sierpinsky
- * Para a resolução do exercício é obrigatório o uso de vetores.

- Comece com qualquer triângulo em um plano. O triângulo de Sierpinski utilizava um triângulo equilátero com a base paralela ao eixo horizontal.
- Encolha o triângulo pela metade (cada lado deve ter metade do tamanho original), faça três copias, e posicione cada triângulo de maneira que encoste nos outros dois em um canto.
- Repita o passo 2 para cada figura obtida, indefinidamente (ver a partir da terceira figura).

Exercício

Desenhar uma versão com quadrados (o carpete de Sierpinsky):

Referência

O uso de vetores nos jogos - Vinícius G. Mendonça.