1: Vectors and Vector Spaces

Vectors, Lengths and Directions

Vectors and their Representations

Length of Vector

$$\mathbf{x}_{11D} = \sqrt{\sum_{k=1}^{11} x_k^2}$$

$$\mathbf{x}_{11D} = \begin{bmatrix} x_2 \\ x_3 \\ \vdots \end{bmatrix}$$

Length of Vector

Direction of Vector

Direction is a unit vector that is collinear with the original vector

Collinear — points in the same direction, parallel

Operations with Vectors Scalar Product

Vector Operations

Sum of vectors:

$$\mathbf{z} = \mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_N + y_N \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$$

Scaling:

$$\mathbf{z} = \alpha \mathbf{x} = \alpha \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_N \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$$

Elementwise Operations

Elementwisely you can do with vectors everything that you can do with normal numbers:

And even you can calculate functions:

Sum
$$\mathbf{z} = \mathbf{x} + \mathbf{y}$$

Difference $\mathbf{z} = \mathbf{x} - \mathbf{y}$

Product
$$\mathbf{z} = \mathbf{x} \cdot \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} x_1 y_1 \\ x_2 y_2 \\ \vdots \\ x_N y_N \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$$

$$\begin{bmatrix} x_N \end{bmatrix} \begin{bmatrix} y_N \end{bmatrix} \begin{bmatrix} x_N y_N \end{bmatrix} \begin{bmatrix} z_N \end{bmatrix}$$
Division $\mathbf{z} = \mathbf{x}/\mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} / \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} \frac{x_1}{y_1} \\ \frac{x_2}{y_2} \\ \vdots \\ \frac{x_N}{y_N} \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$

Remainder Extraction
$$\mathbf{z} = \mathbf{x} \% \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \% \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} x_1 \% y_1 \\ x_2 \% y_2 \\ \vdots \\ x_N \% y_N \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$$
 And many others ...

Square root:
$$\mathbf{z} = \sqrt{\mathbf{x}} = \begin{bmatrix} \sqrt{x_1} \\ \sqrt{x_2} \\ \vdots \\ \sqrt{x_N} \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$$

Sinus:
$$\mathbf{z} = \sin(\mathbf{x}) = \begin{bmatrix} \sin x_1 \\ \sin x_2 \\ \vdots \\ \sin x_N \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$$

Dot Product

Scalar (Dot) Product: Equivalence

Definition #2 $\langle x, y \rangle = x \quad y \cos(\angle_x^y)$

Dot Product: Length, Cosine, Projection

Using scalar product one can calculate:

Length of vector:
$$\mathbf{x}^2 = \langle \mathbf{x}, \mathbf{x} \rangle$$

Cosine between vectors:
$$cos(\angle_{x}^{y}) = \frac{\langle x, y \rangle}{\langle x, y \rangle}$$

Length of projection of y on X:

$$\mathbf{y}_{\parallel \mathbf{x}} = \mathbf{y} \cos \angle_{\mathbf{y}}^{\mathbf{x}} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\mathbf{x}}$$

Definition #2
$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \quad \mathbf{y} \cos \left(\angle_{\mathbf{x}}^{\mathbf{y}} \right)$$

Collinear and Orthogonal Components

Orthonormalisation Procedure

Two principal steps:

- 1. Remove collinear components
- 2. Shrink a vector to a unit vector


```
res = []
for y in input_vectors:
    for x in res:
        # Remove all collinearities
        y = y - projection(y, x)
# Make vector unit
    y = y / length(y)
    # Add vector to new system
    res_append(y)
```

Linear (In)Dependency Basis and Coordinates

Linear (in)Dependency

Basis

System of vectors:
$$\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$$

Linearly dependent if:
$$\exists \mathbf{a} \neq \mathbf{0} : \sum_{k=1}^{N} a_k \mathbf{x}_k = \mathbf{0}$$

None of the vectors can be represented as weighted sum of the others

Linearly independent if:
$$\forall \mathbf{a} \neq \mathbf{0} : \sum_{k=1}^{N} a_k \mathbf{x}_k \neq \mathbf{0}$$

Some vector can be represented as weighted sum of the others

$$\mathbf{x}_1 = -\frac{a_2}{a_1}\mathbf{x}_2 - \frac{a_3}{a_1}\mathbf{x}_3 - \dots - \frac{a_N}{a_1}\mathbf{x}_N$$

Some vector space

Select some vector from it

And another one linearly independent from previous ones

When you cannot select linearly independent vector you've found basis!

Basis and Coordinates

Contravriant and Covariant Coordinates

Contravariant coordinates:

$$\mathbf{x} = x_1 \mathbf{e}_1 + \dots + x_N \mathbf{e}_N$$

Covariant coordinates:

$$x_k^* = \langle \mathbf{x}, \mathbf{e}_k \rangle$$

Linear Subspaces

Vector Spaces: Planes and HyperSurfaces

Linear Subspace

Inclusion:

All the vectors that are linear combination of the given ones:

$$\forall \mathbf{x}: \mathbf{x} = a\mathbf{l} + \mathbf{x}_0, \quad a \in \mathbb{R}$$
 Included 1 One point \mathbf{x}_0

To select more than one dimension:

$$\forall \mathbf{x} : \mathbf{x} = \sum_{k=1}^{M} a_k \mathbf{l}_k + \mathbf{x}_0, \quad a \in \mathbb{R}$$

Exclusion

All the vectors that are orthogonal to the given ones

$$\forall \mathbf{x} : \langle \mathbf{x}, \mathbf{n} \rangle + b = 0$$

$$\mathbf{Excluded} \mathbf{n}$$

$$\mathbf{x}_0$$

Cannot exclude more than one dimension

Takeaways

- * Vector and its representation:
 - Arrow with coordinates

-}-

Pars
$$x_2 x_3$$
 $x_6 x_7$ $x_{11D} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{11} \end{bmatrix}$

* Length and direction of vector

* Operations with vectors:

$$\mathbf{z} = \mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_N + y_N \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$$

$$\mathbf{z} = \alpha \mathbf{x} = \alpha \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_N \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_N \end{bmatrix}$$

* Dot product

Definition #1
$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{N} x_k y_k$$

Definition #2 $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \quad \mathbf{y} \cos \left(\angle_{\mathbf{x}}^{\mathbf{y}} \right)$

Length and cosine through dot product

$$\cos(\angle_{\mathbf{x}}^{\mathbf{y}}) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\mathbf{x} \quad \mathbf{y}}$$

 $\mathbf{x}^2 = \langle \mathbf{x}, \mathbf{x} \rangle$

* Normal and collinear components

Length of projection

* Basis

* Covariant and contravariant coordinates

