Workshop eliciting Adaptive Sequences for Learning (WeASeL)

UQAM, Montréal (Canada), 12 June 2018

Optimizing Recommendation in Collaborative E-Learning by Exploring DBpedia and Association Rules

¹Samia Beldjoudi ²Hassina Seridi

¹Superior School of Industrial Technologies, Annaba, Algeria

^{1, 2}Laboratory of Electronic Document Management LabGED Badji
Mokhtar University, Annaba, Algeria

¹s.beldjoudi@epst-annaba.dz ²Seridi@labged.net

ITS 2018

Work plan

General Context: Social Web

General Context: Collaborative E-learning

General Context: Folksonomies

Indexing systems produced within internet communities

General Context:

Recommendation and Collaborative E-learning

suggest items: movies, music or products by analyzing what the users with similar tastes have chosen in the past

Issues in Folksonomies

• Tag ambiguity (Polysemy: many sense):

Example

Recommender system issue: Diversity and Novelty

 Accuracy vs Diversity and Novelty in Recommendation:

Linked Open Data (LOD)

Research Question

How using LOD to improve recommendation when searching personalized and relevant resources within social E-learning applications?

Main Contributions

Contribution

Reduce tag ambiguity problem in recommendation

Using LOD to ensure diversity and novelty in recommendation

Approach description

Formally:

a folksonomy is a tuple F = <L, T, R, A>

L: learners

T: tags

R: resources

A: the relationships between the three

preceding elements, i.e. $A \subseteq U \times T \times R$

Approach description

- → Extacting 3 Social networks:
- ✓ network relating tags and users,
- √ network relating tags and resources
- ✓ network relating users and resources.

- → We represent these social networks by three matrices LT, RT, RL:
- \circ LT = [X_{ij}] where : X_{ij}
- \circ RT = [Y_{ii}] where: Y_{ii}

$$RL = [Z_{ij}]$$
 where: Z_{ij}

```
 = \begin{cases} 1 \text{ if } \exists \ r \in \mathbb{R}, < uj, ti, r > \in \mathbb{A} \\ 0 \text{ otherwise} \end{cases} 
 = \begin{cases} 1 \text{ if } \exists \ u \in \mathbb{U}, < u, ti, rj > \in \mathbb{A} \\ 0 \text{ otherwise} \end{cases} 
 = \begin{cases} 1 \text{ if } \exists \ t \in \mathbb{T}, < ui, t, rj > \in \mathbb{A} \\ 0 \text{ otherwise} \end{cases}
```

Association Rules

Associations Rules and Folksonomies

Transaction-id → Learner
Transaction items → tags used by the

Learner (transaction-id)	Tags (itemsets)		
L1	Software, Java		
L2	Software,		
L3	Java,,Software		
L4	Java		
L5	Java,,Software		

Software ⇒ **Java**

Example

Example

19

Diversity in Recommendation

LOD exploration to insure diversity and novelty

Del.icio.us database

120 association rules (support= 0.5 and confidence = 0.6.

computer ⇒
programming:
60% of the
users using the
tag "computer"
also use the tag
"programming".

Evaluation Methodology

Experimental Results

Precision	Recall	F1	Diversity	Novelty
0.78	0.71	0.74	0.76	1.2

Deviation value:

Precision	Recall	F1	Diversity	Novelty
0.15	0.09	0.1	0.2	0.34

The averages are very promising for the community in general → the small values of standard deviations indicate that the metrics are also promising for each user individually.

Conclusion

Future work

 Ant Colony Optimization (ACO) Algorithm

Event detection

Thanks...

s.beldjoudi@epst-annaba.dz

