Mr. Marth, Ephemeris etc. XLI. 8,

Ephemeris for finding the Positions of the Satellite of Neptune,

1881–82, By A. Marth, Esq.

P, angle of position of the minor axis of the satellite's apparent orbit, in the direction of superior conjunction.

a, b, major and minor semi-axis of the apparent orbit.

Long.=longitude of the satellite in its orbit, reckoned from the point which is in superior conjunction with the planet.

G. Noor	1.	P.	\boldsymbol{a}	b	$\log a$	$\log. b$	Long.	Diff.	
1881. Sept.	6	315 72	16.68	6 ["] 80	I.5255	0.8323	99 [°] 6 5	612.20	
.]	16	315.64	16·7 6	6.82	.2243	·8336	352.12	'44	
.2	26	315.23	16.83	6 83	.5561	.8342	244.59	•40	
Oct.	6	315.39	16.89	6.83	1.2276	0.8342	136.99	•36	
. 1	16	315.23	16.93	6·81	•2288	·8 ₃₃₄	29.35	*33	
2	26	315.06	16.96	6.79	.2295	.8320	281.68	'31	
Nov.	5	314.89	16.97	6.76	1.2298	0.8301	173.99	'29	
]	15	314.71	16.97	6.72	.2296	.8275	66.28	29	
. 2	25	314.54	16.94	6 ·68	.2290	·8 2 46	318.57	·31	
Dec.	5	314.38	16.90	6.63	1.2279	0.8213	210.88	·32	
1	15	314.25	16.84	6.57	.226†	·8178	103.20	·34	
3	25	314.14	16.77	6.52	.2246	·8143	355 ⁻ 56	·39	
_ 1882.		_				0		37	
Jan.	4	314.06	16.69	6.47	1.5552	0.8109	247.95	.44	
;	14	314.01	16.60	6.42	'2202	·8o77	140.39	•50	
:	24	314.00	16.21	6.38	.2177	·8o49	32 89	·54	
Feb.	3	314.02	16 [.] 41	6.32	1.2122	0.8025	285.43	60	
	13	314.07	16.32	6.32	'2127	.8006	178.03	.65	
•	23	314.16	16.53	6.30	. 2103	.7 993	70.68	612.71	
Mar.	5	314.59	16·14	6.29	1.2080	o [.] 7986	323.39	01 2 / 1	

These values are to be interpolated for the times for which the apparent places of the satellite are required, and the positionangles p and distances s are then found by

$$s \sin (P-p) = a \sin \log s$$

 $s \cos (P-p) = b \cos \log s$

The satellite moves in the direction of decreasing position-angles, and will be at its greatest elongations ("nf." in posit. $P+90^{\circ}$ and distance a, "sf." in posit. $P-90^{\circ}$) and at its conjunctions ("sup." in posit. P and distance b, "inf." in posit. P-180°) at the following hours, Gr. M. T.:-

14.		- •	-		, ,, , , , , , , , , , , , , , , ,			1			. 3		
	"sp." Elong.			"in	"inf." Conj.			"nf." Elong.			" sup." Conj.		
§ 881, Se	pt.	5	20.2	Sept.	7	7.5	Sept.	8	18.7	Sept.	10	6.0	
1881N		11	17.3		13	4.2		14	15.8		16	3.1	
T		17	14.3		19	1.6		20	12.9		22	0.5	
		23	11.4		24	22.7		2 6	10.0		27	21.5	
		29	8.5		30	19.8	Oct.	2	7.0	Oct.	3	18.3	
Oc	t.]	5	5.6	Oct.	6	16.9		8	4·I		9	15.4	
		II	2.7		12	13.9		14	I.3		15	12'5	
		16	23.8		18	11.0		19	22.3		2 I	9.6	
		22	20.9		24	8.1		25	19.4		27	6.7	
		2 8	18.0		30	5.3		31	16.2	Nov.	2	3.8	
No	ŅV.	3	15.1	Nov.	5	2.4	Nov.	6	13.6		8	0.8	
		9	12.2		Ю	23.2		12	10.7		13	22'0	
		15	9.3		16	20.6		18	7.9		19	19.1	
		21	6.4		22	17.7		24	5.0		25	16.3	
		27	3.2		2 8	14.8		30	2·I	Dec_{ullet}	1	13.3	
$\mathbf{D}\epsilon$	ec.	3	0.6	Dec.	4	11.9	Dec.	5	23.5		7	10.4	
		8	21.7		10	9.0		11	20.3		13	7.5	
•		14	18.8		16	6·1		17	17:4		19	4·6	
		20	15.9		22	3.2		23	14.2	*	25	1:7	
		26	13.0		28	0.3		29	11.6		30	22.8	
188 2, Ja	n.	I	IO.I	Jan.	2	21.4	Jan.	4	8.6	Jan.	5	19.9	
		7	7.2		8	18.2		10	5.7		11	17.0	
		13	4.3		14	15.2		16	2.8		17	14.1	
		19	1,3		20	12.6		21	23.8		2 3	II.I	
		24	22.4		26	9.6		27	20.9		29	8.2	
		30	19.4	Feb.	1	6.7	\mathbf{Feb} .	2	18.0	Feb.	4	5.5	
${ m F}\epsilon$	b.	5	16.2		7	3.7		8	15.0		10	2.3	
		11	13.2		13	0.8		14	12.0		15	23'3	
		17	10.2		18	21.8		20	3 .1		21	20.3	
		23	7.6		24	18.8		26	6.1		27	17.3	
M	arc	h I	4.6	Marc	h 2	15.8	Marc	h 4	3.1	Marc	h 5	14.3	

In reference to his Paper, "Telegraphic Determination of the Longitude of Shanghai," *Monthly Notices*, December No. ante, pp. 64-67, Dr. L. S. Little writes:—

[&]quot;The object and public use of the determination of the longitude of the Observatory was, that by it I determined the longitude of the British Consular Flagstaff, which is the point of departure of the charts, &c. This point is 1^s·o2 E. of Observatory, and the only point in China determined telegraphically"