AVL Tree

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

In this lab, you will implement a self-balancing binary tree (AVL Trees).

You will be given Q queries. Each query will be of the following type.

ADD x

Add element x to the tree.

COUNT L

Count the number of Left rotations happened so far.

COUNT R

Count the number of right rotations happened so far.

PARENT x

Print the parent of x. If x is not present in the tree, print -1. Parent of the root is always 0.

Input

First-line contains an integer Q. $(1 \le Q \le 10^6)$

Q lines follow with each line having a query described above. $(1 \le x \le 10^9)$

Example

standard input	standard output
8	4
ADD 3	0
ADD 4	4
ADD 5	1
PARENT 3	0
PARENT 4	
PARENT 5	
COUNT L	
COUNT R	

Note

It is guaranteed that all the elements in the tree will be **UNIQUE**.