

MINED

Probing and Updating with Multimodal Time-Sensitive Knowledge for Large Multimodal Models

Kailin Jiang ^{1*} Ning Jiang ^{2*} Yuntao Du ^{3*} Yuchen Ren ⁴ Yuchen Li ⁵ Yifan Gao ¹ Jinhe Bi ⁶ Yunpu Ma ⁶ Qingqing Liu⁷ Xianhao Wang¹ Yifan Jia³ Hongbo Jiang⁸ Yaocong Hu⁵ Bin Li¹ Lei Liu¹

¹University of Science and Technology of China, USTC ²Northeast Forestry University, NEFU ³Shandong University, SDU ⁴The University of Sydney, USYD ⁵Anhui Polytechnic University, AHPU ⁶Ludwig Maximilian University of Munich, LMU ⁷Beijing Institute of Technology, BIT ⁸Xiamen University, XMU

Teaser:

Temporal Awareness Evaluation, Comprehensive Benchmarking, and Multi-Dimensional Analysis!

Comparison:

Benchmark	Multimodal	Cog.	Awa.	Tru.	Und.	Rea.	Rob.	P-Agr.
TimeQA (Chen et al., 2021)	8	⊘	8	⊘	Ø	83	83	⊘
MenatQA (Wei et al., 2023)	8					8	8	8
TempReason (Tan et al., 2023)	8		8	8		8	8	8
DyKnow (Mousavi et al., 2024)	8		8	8	8	8	8	
UnSeenTimeQA (Uddin et al., 2025)		8	8	8	8		8	8
EvoWiki (Tang et al., 2025)	8		8	8	8	8	8	8
EvolveBench (Zhu et al., 2025)	8						8	
LiveVQA (Fu et al., 2025)		\bigcirc	8	8	8	8	8	8
MINED (Ours)	②	②	⊘	②	②	⊘	⊘	⊘

Key Statistics of MINED

Table 2: **Key Statistics of MINED.**

Statistic	Number
Total questions	4,208
- Cognition questions	1,328 (31.6%)
 Awareness questions 	834 (19.8%)
- Trustworthiness questions	828 (19.7%)
- Understanding questions	510 (12.1%)
- Reasoning questions	324 (7.7%)
- Robustness questions	384 (8.1%)
Total dimension/subtasks	6/11
Total fine-grained knowledge types	6
Number of unique images	450
Maximum question length	54
Maximum answer length	13
Average question length	11.4
Average answer length	2

Figure 3: Subtasks for evaluating each capability dimension.

Probing Multimodal tIme-seNsitive knowlEDge

Table 3: **Overall Performance Comparison** (%) **on MINED.** The top two and worst performing results are highlighted in red (1st), yellow (2nd) and blue (bottom) backgrounds, respectively. Subscripts M. and I. stand for Mistral-7B and Instruct, respectively.

(Palaga Tima) Madala		Cog.		Av	va.	To	ru.	Und.	Re	ea.	Rob.	Awa
(Release Time) Models	T.A ↑	T.I.A↑	T.S.A ↑	F.M.C ↑	P.M.C ↑	P.U.D ↑	F.U.D↑	I.T.C ↑	R.K↑	C.A ↑	A.T.E ↑	Avg.
Open-source LMMs												
(2023.04) LLaVA-v1.5 (7B)	6.96	9.25	16.88	7.66	6.40	53.99	50.00	1.57	15.12	6.17	0.39	15.85
(2023.08) Qwen-VL (7B)	12.45	17.30	42.09	6.04	6.91	81.28	70.17	3.53	25.00	17.59	0.00	25.67
(2023.11) mPLUG-Owl2 (7B)	10.59	14.53	44.62	42.69	38.67	11.47	44.20	2.16	42.90	14.20	6.12	24.74
(2024.01) LLaVA-Next $_{M.}$ (7B)	10.69	14.53	41.14	33.69	28.87	96.74	90.22	3.73	38.58	20.99	0.00	34.47
(2024.08) LLaVA-OV (7B)	11.86	11.34	26.79	30.93	31.35	39.61	76.21	3.63	51.54	8.95	2.21	26.77
(2024.08) mPlug-Owl3 (8B)	9.80	10.03	29.01	29.77	28.31	97.95	99.76	3.14	41.98	7.10	3.65	32.77
(2024.08) MiniCPM-V2.6 (8B)	22.16	21.66	55.70	38.88	31.35	81.52	97.83	4.22	52.78	24.38	14.45	40.45
(2024.09) Qwen2- $VL_{I.}$ (7B)	15.98	16.72	31.96	17.90	11.46	99.52	99.76	4.61	49.38	14.20	9.90	33.76
(2024.12) InternVL2.5 (8B)	20.49	18.46	44.83	42.37	38.26	98.31	99.88	4.22	61.73	19.14	0.00	40.70
(2025.02) Qwen2.5-VL _{I.} (7B)	18.33	16.86	41.67	40.04	33.98	99.64	99.76	4.02	38.89	25.00	16.86	39.55
				Closed-	-source LM	Ms						
(2025.02) Kimi-Latest	26.41	26.60	72.43	68.64	67.27	72.10	85.39	7.06	45.99	42.59	6.38	47.35
(2025.02) Doubao-1.5-Vision-Pro	35.78	27.91	69.83	74.36	70.76	93.12	100.00	5.29	18.52	34.57	12.24	49.31
(2025.03) Gemini-2.5-Pro	34.25	56.40	84.96	83.09	84.30	80.31	97.10	18.73	38.48	76.54	39.58	63.07
(2025.04) GPT-4.1	37.58	37.94	80.91	78.07	77.49	65.22	91.30	8.63	15.74	59.57	17.58	51.82
(2025.08) Seed-1.6-Vision	37.19	41.76	78.69	75.95	80.71	74.15	96.86	7.55	21.60	59.57	32.68	55.16

Analysis of Exploratory Results

Figure 4: The cognitive capacity of various LMMs across six specific knowledge types when queried with Time-Agnostic tasks.

Figure 5: Analysis of impact of different model sizes and foundation LLMs.

Analysis of Exploratory Results

Table 4: Fine-grained analysis of predicted output in Time-Agnostic.

Madal	Time-Agnostic						
Model	Lat. ↑	Out. ↓	Irr.↓				
Open-so	urce LM	Ms					
LLaVA-v1.5 (7B)	14.90	27.45	57.65				
$LLaVA$ -Next $_{M_{\cdot}}$ (7B)	19.22	36.47	44.31				
InternVL2.5 (1B)	14.12	33.73	44.31				
InternVL2.5 (8B)	16.08	43.92	40.00				
Qwen2.5-VL $_{I.}$ (7B)	20.00	56.86	23.14				
Closed-s	ource LM	<i>IMs</i>					
Kimi-Latest	24.71	58.82	16.47				
GPT-4.1	28.04	53.53	18.43				
Seed-1.6-Vision	21.57	64.31	14.12				

Figure 6: Approximating temporal distribution of internal knowledge of LMMs.

Analysis of Exploratory Results

Table 5: Error analysis when provide misaligned context.

Madal	Future	Misaligned	Context	Past Misaligned Context						
Model	Con. ↓	Con. \downarrow Oth. \downarrow Irr. \downarrow		Con.↓ Oth.↓		Irr.↓				
w/ Misaligned Context										
GPT-4.1	7.94	5.61	8.37	10.64	4.83	7.04				
Qwen2-VL $_{I.}$ (7B)	64.72	5.93	11.44	77.21	4.42	6.91				
LLaVA-Next $_{M.}$ (7B)	52.44	4.98	9.11	57.46	5.39	8.29				
Qwen2.5-VL $_{I.}$ (72B)	8.79	8.16	3.16 12.61		8.01	10.50				
		w/o Misalig	ned Context	t						
GPT-4.1	3.92	6.78	8.47	6.01	7.47	8.12				
OI 1-4.1	(-4.02)	(+1.17)	(+0.10)	(-4.63)	(+2.64)	(+1.08)				
Qwen2-VL $_{I_{\perp}}$ (7B)	5.51	23.41	39.41	12.18	20.62	40.91				
Qweii2-VL _I (/B)	(-59.21)	(+17.48)	(+27.97)	(-65.03)	(+16.20)	(+34.00)				
LLaVA-Next $_{M.}$ (7B)	7.84	15.15	36.23	12.5	14.77	39.29				
	(-44.60)	(+10.17)	(+27.12)	(-44.96)	(+9.38)	(+31.00)				
Qwen2.5-VL _{I.} (72B)	5.72	10.06	12.92	7.95	9.58	13.8				
QWCII2.3- VL _{1.} (72B)	(-3.07)	(+1.90)	(+0.31)	(-4.20)	(+1.57)	(+3.30)				

Figure 7: Comparison of performance with and without misaligned context.

Updating Multimodal tIme-seNsitive knowlEDge

Table 6: **Single Editing Performance Comparison** (%) **on MINED.** The top and worst performing results are highlighted in red (1st) and blue (bottom) backgrounds, respectively.

Method			Cog.		Tr	u.	Und.	Rea.		Rob.	A
		T.A	T.I.A	T.S.A	P.U.D	F.U.D	I.T.C	R.K	C.A	A.T.E	Avg
LLaVA-v1.5 (7B)											
Modifying	FT-LLM	97.99	93.54	92.87	100.00	100.00	96.16	96.00	97.81	100.00	97.15
Parameters	FT-VIS	85.78	82.92	94.88	79.17	76.49	78.33	93.33	88.60	99.64	86.57
T draineters	MEND	66.81	69.79	73.95	26.62	18.09	65.71	73.78	69.74	100.00	62.72
Preserving	SERAC	66.09	67.71	71.78	65.28	65.12	66.53	55.56	67.54	28.67	61.59
Parameters	IKE	85.70	82.40	99.38	47.45	44.44	75.24	59.11	91.23	99.19	76.02
					Qwen-VI	(7B)					
Modifying	FT-LLM	86.55	86.58	89.94	100.00	100.00	81.81	87.50	88.98	100.00	91.25
Parameters	FT-VIS	81.14	79.64	80.50	69.92	74.27	75.70	74.07	80.19	100.00	79.49
T draineters	MEND	68.13	70.47	54.93	79.67	84.80	64.14	65.74	50.24	100.00	70.90
Preserving	SERAC	57.16	66.22	62.05	69.92	74.56	56.44	62.96	52.17	18.36	57.76
Parameters	IKE	86.52	78.08	91.09	72.15	60.82	74.17	68.75	92.75	92.34	79.63

Updating Multimodal tIme-seNsitive knowlEDge

Table 7: Lifelong Editing Performance on MINED. All results are base on LLaVA-v1.5 (7B). Red and green values mean negative and positive effects relative to data in Table 6, respectively.

Method		Cog.			Tru.		Re	ea.	Rob.	
	T.A	T.I.A	T.S.A	P.U.D	F.U.D	I.T.C	R.K	C.A	A.T.E	Avg
FT-LLM	31.03 (-66.96)	32.29 (-61.25)	25.89 (-66.98)	100.00 (+0.00)	98.97 (-1.03)	9.33 (-86.83)	60.44 (-35.56)	27.63 (-70.18)	100.00 (+0.00)	53.95 (-43.20)
FT-VIS	12.64 (-73.14)	12.50 (-70.42)	2.17 (-92.71)	73.61 (-5.56)	78.55 (+2.06)	6.45 (-71.88)	16.00 (-77.33)	10.96 (-77.64)	100.00 (+0.36)	34.76 (-51.81)
SERAC	53.74 (-12.35)	53.33 (-14.38)	70.08 (-1.70)	65.97 (+0.69)	66.41 (+1.29)	5.87 (-60.66)	42.67 (-12.89)	61.84 (-5.70)	41.22 (+12.55)	51.24 (-10.35)

Qualitative Examples

Figure 9: Case study of Time-Agnostic.

Qualitative Examples

Figure 10: Case study of Timestamp-Aware.

Qualitative Examples

Figure 11: Case study of Temporal Interval-Aware.