

Week 2 Quiz

TOTAL POINTS 10

1.			onventio be refere				lessons	s, given	three di	sjoint sets (1,3,5,7), (2,8) and (4,6), which one of these	1 point	
	\bigcirc	(1,3,5,7)									
	(2,8)											
	\bigcirc	(4,6)										
	\bigcirc	None o	f the abo	ove.								
2.	Wha	t is the	union of	f the dis	joint set	:s (1,3,5,	,7) and (i	2,8)?			1 point	
	\bigcirc	((1,2),(1	,8),(3,2),((3,8),(5,2	2),(5,8),(7	⁷ ,2),(7,8)))					
	((1,2),(1,8),(3,2),(3,8),(5,2),(5,8),(7,2),(7,8)) (3,11)											
	(2,6,8,10,14,16,24,40,56)											
		(1,2,3,5										
3.	Wha	t happe	ens wher	n you ta	ke the u	nion of	two disj	oint set	s that co	ontain the same value?	1 point	
	The union operation must first check to see if the same element appears in both disjoint sets and then ensures the element appears only once in the resulting union set.											
	Two different disjoint sets by definition can never share the same value.											
	The elements cancel and neither appears in the union of the two disjoint sets.											
	Any element found in both disjoint sets will appear twice in the union of these two disjoint sets.											
4.			o the dis entation					n the vi	deo less	sons, Which of the following arrays would NOT be a	1 point	
	\circ	-1	-1	1	-1	3	-1	5	-1			
		1	2	3	4	5	6	7	8			
	0	3	-1	5	-1	7	-1	1	-1			
	L	1	2	3	4	5	6	7	8			
]		
		- 1	-1	3	-1	1 5	-1	1 7	- 1			
		,										
	0	5	-1	-1	-1	3	-1	1	-1			
		1	2	3	4	5	6	7	8			

5. When encoding height into the root of an up-tree, what value should be placed in element 7 of the following array?

1 point

	3	-1	7	-1	7	-1	???			
	1	2	3	4	5	6	7			
	<u>-3</u>									
(1									
	-4									
	-2									
6	When encoding	r siza into the re	at of an up tree	what value she	uld bo placed in	a alamant 7 of th	o following array?			
0.	when encoung	3 SIZE IIILO LITE FOI	ot of all up-tiee	, wriat value silo	did be placed if	relefficitive of the	ne following array?			
	3	-1	7	-1	7	-1	???			
	1	2	3	4	5	6	7			
(O -1									
,	O -3									
,										
(O -4									
(-2									
							per path compressi			
,	which of these	strategies result	s in a better ove	erall run time co	mplexity than th	ne other options	5?			
	Always ma	ke the up-tree w	ith fewer eleme	ents a subtree of	the root of the	up-tree with mo	ore elements.			
(Always make the up-tree with a shorter height a subtree of the root of the up-tree with a larger height.									
	The overall	l run time compl	exity is not affe	cted by which uլ	o-tree is chosen	to become a su	btree of the other u			
-	Using eithe	er size or height :	strategies abov	e results in the s	ame overall rur	n time complexit	y.			
8.	Recall that the i	iterated log func	tion is denoted	log*(n) and is de	efined to be					
	• 0 for n <= 1,									
	• 1 + log*(log(r	n)) for n > 1.								
	Let lg*(n) be thi	is iterated log fu	nction compute	ed using base 2 le	ogarithms.					
	Blue Waters, housed at the University of Illinois, is the fastest university supercomputer in the world. It can run about 2^53 (about 13 quadrillion) instructions in a second. There are about 2^11 seconds in half an hour, so Blue Waters would run 2^64 instructions in about half an hour.									
	Which one of the following is equal to $\lg^*(2^64)$?									
,	which one of tr			,						
	65536			,						
(65536			,						
	65536			,						
	65536			,						

9. Which of these is considered the least run-time complexity?

1 point

	O(log N)
	O(log* N)
	O(log log N)
	O(1)
0	nich of the following best describes "path compression" as described in the video lessons to accelerate disjoint set erations? (Here we say "parent pointer" to mean whatever form of indirection is used to refer from a child to its parent; s could be a literal pointer or it could be an array index as in the lectures.)
	When traversing the up-tree from an element to its root, if any elements in the traversal (including the first element, but excluding the root itself) do not point directly to the root as their parent yet, they will have their parent pointer changed to point directly to the root.
	When the root of the up-tree containing an element is found, the element and all of its siblings that share the same parent have their parent pointers reset to point to the root node.
	When the root of the up-tree containing an element is found, both the element and its parent will always have their parent pointers set to point to the root node.
	When the root of an element's node is found, all of the descendants of the root have their parent pointer set to the root.
	I, Jiarong Yang , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.
	Learn more about Coursera's Honor Code
	Save Submit