Université: Mohamed Khieder

Faculté des Sciences exactes, des Sciences de la nature et de la vie

Département: de Mathématiques

Module: Introd. Proc. Stoch.

2013/2014

Serie N°01

On travaille sur un espace (Ω, F, P) muni d'une sous-tribu de F notée G

Exercice 01

Soient X, Y deux v. a., X est G-mesurable, et E|Y|, $E|XY| < \infty$,

1) montrer que E[XY/G] = XE[Y/G].

2) Si $E[X^2] < \infty$, montrer que E(X/G) est la v.a. qui minimise $E[(X-Y)^2]$.

Soit X, Y deux v.a. telles que la v.a. X - Y est indépendante de G, d'espérance m et de variance σ^2 . On suppose que Y est G-mesurable. Calculer E[X-Y/G]. En déduire E(X/G). Calculer $E[(X-Y)^2/G]$. En déduire $E[X^2/G]$.

Exercice 03

- 1. Soient X et Y deux variables aléatoires de carré intégrables définie sur un espace de probabilité (Ω, F, P) et G une sous tribu de F. On suppose que $E(X^2/G) = Y^2$ et E(X/G) = Y P-p.s. Montrer que X = Y P-p.s.
 - 2. Montrer que si Y est une variable aléatoire intégrable et Z une variable aléatoire bornée alors

$$\int_{\Omega} Z.E\left(Y/G\right)dP = \int_{\Omega} Y.E\left(Z/G\right)dP = \int_{\Omega} E\left(Z/G\right).E\left(Y/G\right)dP.$$

Exercice 04

Soit (X_n) une suite de variables aléatoires indépendantes et iquidistribuées telle que $E(X_i) = \mu$ et $var\left(X_{i}\right)=\sigma^{2}$. Soit N une variable aléatoire entière, indépendante des X_{i} avec $E\left(N\right)=m$ et $var\left(N\right)=\tilde{s}^{2}$. On pose $S_N = \sum_{n=1}^N X_n$.

1. Montrer que $E(S_N/N=n)=E(S_n)$.

2. En déduire $E\left(S_{N}\right)$ et $var\left(S_{N}\right)$.

Exercice 05

Soit (Ω, F, P) un espace de probabilité et T une application de Ω dans Ω , F-mesurable. Montrer que si Y est une variable aléatoire intégrable et G une sous-tribu de F, alors

$$E(Y \circ T/T^{-1}(G)) = E(Y/G) \circ T.$$
 P. Pour

Exercice 06

Soit X une variable aléatoire réelle et Y une variable aléatoire à valeurs dans \mathbb{R}^d .

1) Montrer que si X a pour loi conditionnelle sachant Y un noyau $N\left(y,dx\right)$ qui ne dépend pas de y (i.e. $N\left(y,dx\right)=\mu\left(dx\right)$ probabilité sur \mathbb{R}^{d}) alors X et Y sont indépendantes, et $\mu\left(dx\right)$ est la loi de X.

2) Réciproquement si X et Y sont indépendantes et si $N\left(y,dx\right)$ est une version régulière de la loi conditionnelle de X sachant Y, montrer que pour P_{Y} -presque tout y, $N\left(y,dx\right)=P_{x}\left(dx\right)$.

Exercice 07

Soit (X,Y) une variable aléatoire à valeur dans \mathbb{R}^2 telle que Y^2 soit intégrable, et soit $N\left(y,dx\right)$ une version régulière de la loi conditionnelle de Y sachant X. On pose par définition

$$m(x) = E[Y/X = x] = \int yN(x, dy),$$

 $s^{2} = E[(Y - m(x))^{2}/X = x] = \int (y - m(x))^{2}N(x, dy).$

1) Montrer que E(m(X)) = E(Y).

2) Montrer que $var(Y) = E(s^2(X)) + var(m(X))$.

Exercice 08

RH

Un couple de variables aléatoires X,Y est tel que: la loi de X est normale réduite N(0,1). La loi de Ysachant X est donnée par

$$P\left[Y \in dy \middle/ X = x\right] = \exp\left(\left[-\frac{\left(1 + x^2\right)|y|}{2}\right]\right) \left[\frac{1 + x^2}{4}\right] dy.$$

- 1) Donner la loi du couple (X, Y).
- 2) Donner la loi de Y. Montrer que

$$P\left[Y \leq y\right] = \frac{1}{2}e^{\frac{y}{2}}\frac{1}{\sqrt{1-y}}\mathbf{1}_{\{y \leq 0\}} + \left[1 - \frac{1}{2}e^{-\frac{y}{2}}\frac{1}{\sqrt{1+y}}\right]\mathbf{1}_{\{y \geq 0\}}.$$

3) Calculer $E\left[Y/X=x\right]$ et $E\left[Y^2/X=x\right]=s^2\left(x\right)$. En déduire la variance de Y. Exercice 09

Soit $\varphi:(E,\xi)\to(\Omega,\mathcal{F})$ une application mesurable. Montrer qu'il existe une probabilité de transition de (E,ξ) vers (Ω,F) qu'on notera $\pi_{\varphi}\left(x,A\right)$ telle que

$$\pi_{\varphi}(x, A) = \begin{cases} 1 & \text{si } \varphi(x) \in A \\ 0 & \text{sinon} \end{cases}$$

Exercice 10

Soit (Ω, F, P) un espace de probabilité et $T: L^1(\Omega, \xi, P) \to L^1(\Omega, \xi, P)$ une transformation linéaire telle que T(1) = 1 et $T(f) \ge 0$ si $f \ge 0$. On pose pour $x \in \Omega, A \in \xi, P(x, A) = (T1_A)(x)$.

1) Montrer que P(x, A) est une probabilité de transition de (Ω, ξ) vers (Ω, ξ) .

2) Montrer que pour toute fonction $f:\Omega\to\mathbb{R}$ mesurable et bornée, on a: $(Tf)(x)=\int_{\Omega}f(y)\,P(x,dy)$.

Université: Mohamed Khieder

Faculté des Sciences exactes, des Sciences de la nature et de la vie

Département: de Mathématiques

Module: Intro. Process. 2011/2012

Serie d'exercice N02

Exercice 01. On suppose que la loi du couple (X,Y) prossède une densité $\psi(x,y)>0$, par rapport à la mesure de Lebesgue sur $\mathbb{R}\times\mathbb{R}^d$

Dans le cons

$$P_{(X,Y)}(dx, dy) = \psi(x, y) dxdy.$$

Montrer que la version régulière de la loi conditionnelle de X sachant Y est donnée par

$$N\left(y,A\right) = \frac{\int_{A}\psi\left(x,y\right)dx}{\int_{\mathbb{R}}\psi\left(x,y\right)dx}.$$

Exercice 02. Soit f la fonction de \mathbb{R}^2 dans \mathbb{R} définie par

$$f(x,y) = e^{-y} 1_{\{x \ge 0\}} 1_{\{y \ge x\}}.$$

 \mathbf{x} a) Montrer que f(x,y) dxdy est une probabilité.

b) Soit (X,Y) une v.a. à valeurs dans \mathbb{R}^2 de loi f(x,y) dxdy, determiner les lois de X et Y.

c) Montrer qu'une version régulière de la loi conditionnelle de Y sachant X est donnée par

$$N(x, dy) = e^{x-y} 1_{\{y \ge x\}} dy.$$

On rappelle qu'il faut démontrer que pour toute fonction borelienne bornée φ

$$E\left[\varphi\left(Y\right)\diagup X\right]=\int\varphi\left(y\right)N\left(X,dy\right),\ P-p.s.$$

Exercice 03. Soit (X,Y) une v.a. à valeurs dans \mathbb{R}^2 de loi

$$f(x,y) dxdy = 2\theta^2 e^{-\theta(x+y)} 1_{\{x \ge 0\}} 1_{\{y \ge x\}}$$

a) Donner des expressions des lois conditionnelles $N_1\left(x,dy\right)$ de Y sachant X et $N_2\left(dx,y\right)$ de X sachant Y.

b) Le graphe de l'application $x \to E[Y/X = x] = \int y N_1(x, dy)$ est appelé ligne de regression de Y en X. Montrer que c'est une droite parallèle à la 1ère bissectrice.

Exercice 04 Soit (Ω, A, P) un espace de probabilité et (B_n) une suite décroissante de sous-tribus de A. Posons $B = \bigcap_n B_n$,

Montrer que pour toute variable aléatoire $X \in L^2(\Omega, A, P)$ on a

$$E(X/B) = \lim_{n} E(X/B_n)$$

Indication: on montrera, grâce aux lients entre espérance conditionnelle et projection dans L^2 . En déduire le résultat en montrant que

 $\bigcap_{n}L^{2}\left(\Omega,B_{n},P\right)=L^{2}\left(\Omega,B,P\right).$

Université: Mohamed Khieder

Faculté des Sciences exactes, des Sciences de la nature et de la vie

Département: de Mathématiques Module: Proc. Stocha. 2013/2014

Série N⁰03

Exercice 01.

- 1. Soit τ un temps d'arrêt. Montrer que F_{τ} est une tribu.
- 2. Soit T un temps d'arrêt et X une variable aléatoire appartenant a F_T , vérifiant $X \geq T$. Montrer que X est un temps d'arrêt.
 - 3. Soit S et T deux temps d'arrêt tels que $S \leq T$. Montrer que $F_S \subset F_T$.
- 4. Soit S et T deux temps d'arrêt. Montrer que $\{S \leq T\}$, $\{T \leq S\}$ appartiennent a F_S . 5. Soit S et T deux temps d'arrêt tels que S < T. Montrer que le processus $Z_t = 1(t)_{[S,T]}$ est un processus càdlàg.

Exercice 02.

Soit $\left\{ X\left(t\right),t\in\mathbb{R}\right\}$ un processus aléatoire vérifie les conditions suivantes

- 1. $E\left|X\left(t\right)\right|<\infty, \forall t\in\mathbb{R}$
- 2. $\forall \omega \in \Omega$ il existe

$$X'(t) = X'(t; \omega) = \frac{d}{dt}X(t, \omega).$$

3. $|X'(t,\omega)| \leq Y(\omega)$, $\omega \in \Omega$, où Y est une variable aléatoire telle que $E|Y| < \infty$. Montrer que E[X(t)] est différentiable par rapport à t et on a

$$\frac{d}{dt}EX\left(t\right) =EX^{\prime }(t).$$

Exercice 03.

Soit $\{X(t), t \in [a, b]\}$ un processus aléatoire tel que

- 1. $|X(t,\omega)| \leq Y(\omega)$, $\omega \in \Omega$, $\forall t \in [a,b]$, où Y est une variable aléatoire intégrable.
- 2. pour tout $\omega \in \Omega$ les trajectoires $X\left(t,\omega\right)$ sont integrables sur [a,b].
- 3. EX(t) est intégrable au sens de Riemann sur [a, b].

Montrer que

$$\int_{a}^{b} E[X(t)] dt = E\left[\int_{a}^{b} X(t) dt\right].$$

Exercice 04.

Soit $X_t, t \in \mathbb{Z}$ un processus aléatoire, avec $X_t = mt + b + \xi_t$, où $\xi_t, t \in \mathbb{Z}$ sont des variables aléatoires indépendantes et identiquement distribiées

$$E\left[\xi_{t}\right]=0, \text{ et } Var\left[\xi_{t}\right]=\sigma^{2}, \forall t\in\mathbb{Z}.$$

- 1) Le processus X_t est stationnaire?
- 2) On considère un nouveau processus $Y_t, t \in \mathbb{Z}$, par $Y_t = X_t X_{t-1}$. Montrer que Y_t est stationnaire.

Exercice 05.

Soit $X_t, t \in \Im$ un processus aléatoire, tel que

$$P(X_t = 1) = P(X_t = -1) = 0.5, \forall t \in \Im.$$

Ce processus est stationnaire?

Exercice 06.

Soit $X_t, t \in \Im$ un processus aléatoire, tel que

$$P(X_t = 0) = 1 - \frac{1}{t}$$

$$P(X_t = \sqrt{t}) = \frac{1}{2t},$$

$$P(X_t = -\sqrt{t}) = \frac{1}{2t}$$

Ce processus est stationnaire?

Exercice 07.

Soit $Y_t, t \in \mathbb{N}$ un processus aléatoire,

$$Y_t = (-1)^t X_t, t \in \mathbb{N}.$$

où $X_t, t \in \mathbb{N}$ est un processus stationnaire

$$E[X_t] = 0, E[X_tX_s] = 0 \forall t \neq s, \text{ et } Var[X_t] = \sigma^2, \forall t \in \mathbb{N}.$$

Considérons le processus $Z_t = X_t + Y_t, t \in \mathbb{N}$. Ce processus est stationnaire?

Exercice 08

Soit $X_n, n \in \mathbb{N}$ un processus aléatoire à temps discret tel que $E[X_n] = 0$, $\forall t \in \mathbb{N}$

$$Var\left[X_{n}\right] = \left\{ \begin{array}{l} \frac{\sigma^{2}}{1-\mu^{2}}, \text{ si } n=0, \\ \sigma^{2}, \text{ si } n \geq 1, \end{array} \right.$$

avec $0 < \mu^2 < 1$, et $E[X_i X_j] = 0, \forall i \neq j$. Maintenant on construit un nouveau processus à temps discrèt

$$Z_n = \begin{cases} X_0, & \text{si } n = 0, \\ \mu Z_{n-1} + X_n, & \text{si } n \ge 1, \end{cases}$$

connu comme le processus de autorégression du premier ordre. Montrer que Z_n est stationnaire.

Exercice 09

On suppose que la durée de vie X d'un produit est une variable aléatoire continue de fonction de répartition F et de densité f. on suppose qu'après défaillance le produit est réparé et la durée de vie après la répartition a la même répartition. On observe donc une suite de variables aléatoires i.i.d $X_1, X_2, ..., X_n, ...$ Désignons par

$$S_n = \sum_{k=1}^n X_k$$

le moment de la n-ème défaillance et par N(t) le nombre de défaillances dans l'intervalle [0,t]; F_n et f_n sont respectivement la fonction de répatition et la densité de S_n .

Montrer que

(a)

$$P\{N(l) = n\} = F_n(l) - F_{n+1}(l), \quad (n = 0, 1, ...; F_0 \equiv 0)$$

(b)

$$H\left(t\right) = EN\left(t\right) = \sum_{n=1}^{+\infty} F_n\left(t\right)$$

(c) notons $W_t = S_{N(t)+1} - t$ le temps entre le moment t et le moment de la première défaillance après t. Montrer que si les fonctions $f_n(l)$ et la somme $\sum_{n=1}^{\infty} f_n(l)$ sont continues sur $[0, +\infty)$, alors la fonction de répartition de W_t est donnée par la formule

$$F_{W_t}\left(s
ight) = F\left(t+s
ight) - \int_0^t \left\{1 - F\left(t+s-x
ight)\right\} h\left(x
ight) dx, \quad s \ge 0,$$

où h(x) = H'(x).

(d) Montrer que lorsque les X_i sont distribuées exponentiellement avec le paramètre $\lambda > 0$, alors

$$N(t) \sim P(\lambda t), h(t) = \lambda, W_t \sim 1 - e^{-\lambda t}, t \ge 0$$

Exercice 10.

Soit X(t) un processus de Poisson. Trouver $cov(X(t), X(t+\tau)), t > 0, \tau > 0$.