Exercises on

Quantum Field Theory

(Based on the lectures by $Dr.\ M\ Arshad\ Momen)$

Contents

1	Exercise for Class-2 [Lecture-1]	2
2	Exercise for Class-4 [Lecture-1]	2
3	Exercise for Class-5 [Lecture-2] 3.1 Exercise-1 3.2 Exercise-2	2
4	Exercise for Class-6 [Lecture-3]	2
5	Exercise for Class-7 [Lecture-4]	3
6	Exercise for Class-8 [Lecture-5]	3

1 Exercise for Class-2 [Lecture-1]

Derive the Euler-Lagrange equations corresponding to this action:

$$S[x] = m \int \sqrt{\eta_{ab} \, dx^a dx^b} = m \int d\tau = m \int \sqrt{\eta_{ab} \, \frac{dx^a}{d\lambda} \, \frac{dx^b}{d\lambda}} \, d\lambda$$

2 Exercise for Class-4 [Lecture-1]

2.1 Assignment-1

How does \hat{J}^{rs} transform under Poincaré transformation? (It's a semi direct product)

2.2 Assignment-2

Recover 3D rotation algebra from angular momentum.

3 Exercise for Class-5 [Lecture-2]

3.1 Exercise-1

Show that we can recover the Lorentz force from the action:

$$S = \frac{1}{2} \int m \, \dot{\xi}^2 d\tau + q \int A_b(\xi) \dot{\xi}^b d\tau$$

[This latter interaction term is geometrical as well]

3.2 Exercise-2

Check the commutations:

$$[J, p] \sim p$$

 $[p, p] \sim 0$
 $[J, J] \sim J$
 $[J, p^2] \sim 0$
 $[J, p_a p^a] = [J, p_a] p^a + p_a [J, p^a] \sim 0$

4 Exercise for Class-6 [Lecture-3]

4.1 Exercise-1

Show that the lie derivatives of vector field satisfies:

$$\mathfrak{L}_{\hat{V}}\mathfrak{L}_{\hat{W}} - \mathfrak{L}_{\hat{W}}\mathfrak{L}_{\hat{V}} = \mathfrak{L}_{[\hat{V},\hat{W}]}$$

4.2 Exercise-2

Derive the lie derivative for a tensor $\mathfrak{L}_{\hat{V}} \tilde{T}^a{}_b$.

5 Exercise for Class-7 [Lecture-4]

• Calculate \mathfrak{L} g_{ab}

Hint: Let choose,

$$g_{ab} = P_a Q_b$$

$$\mathfrak{L}_{v}(P_{a}Q_{b}) = (\mathfrak{L}_{v}P_{a})Q_{b} + P_{a}(\mathfrak{L}_{v}Q_{b})$$

$$\mathfrak{L}_{v}g_{ab} = V^{c} \partial_{c} g_{ab} + g_{ac} \partial_{b}V^{c} + g_{cb} \partial_{a}V^{c}$$

• Verify if the partial derivative is switched with the covariant derivative $(\partial \to \nabla)$ the Lie derivative won't change.

6 Exercise for Class-8 [Lecture-5]

Derive the equation of motion for this action and compare with the KG equation to determine the constants -

$$S[\phi] = \alpha \phi_i \phi_i + \beta \partial \phi_i \partial \phi_i + \gamma_i \phi_i + K_i \partial \phi_i$$

Note: The last term is important for π -meson.