CSC 5521 – Intro to Machine Learning HW1

Saksham Goel goelx029 | 5138568

Question # Pages Question 1 1-2 Question 2 3-9 Question 3 10-11 Question 4 12-15

```
CSCI 5521
                             Homework !
Name - Saksham God
ID - goelx029 5138568
               D = Event that a Rosson Day the disease
               + = Event that the checkup comes 't' for Director
  · Given:
                                                   ) = 0.0550
                                                                      know
                                                                      P(+10)+P(-10)=1
                          P(+|D) P(D)
                        P(+|D)P(D) + P(+|\overline{D})P(\overline{D})
                                                    0.783x1xx + 0.055x9999x1
                             0.983
                                                  0.983 = 0.00178
                                                 550.928
                       0.983 + 549-945
                                                               10.17.87. dances.
                                  Exped (ast of Treatment = C(T/5) × P(5) + C(T/6) P(D)

/ (when no feet = 1000 × 0.9991 + 0 × 0.0001
                     1000
          TD) = 1000 000
                                                  = [1999.9
     0=(317)
                                E(C(T))= C(T|D)1(D) + ((T|D)P(D)= 1000 000 x - 2/00)
```

```
c) <u>E(T/+)</u>
      Exhaded cost given + test
      E(T|+) = E(T|D) P(D|+) + E(T|D) P(D|+)
                    0 × 0.00 178 + 1000 × 0.99822
               = 1$ 998.02
 d) We know
      E(T) = $999.9
        E(T)+) = $998.22
  Anding
         E(\tilde{\gamma}|+) = E(\tilde{\gamma}|D) P(D|+) + E(\tilde{\gamma}|D) P(D|+)
                   = 1000000 x 0.00178 + 0 x 0.99822
                   = $1780
  So as E(T/+) is the Janet = $998.22, we can say
       going for a tecentement when tested the for the disease is the
       least Justy often
e) F(T|-) = E(T|D) P(D|-) + E(T|5) P(5 |-)
   using bayes theman to final
         P(D)-) = P(-1D)P(D) = 0.017 × 1844 = 0.017

P(-1D) P(D) + P(-1D)P(D) = 0.017 × 1844 = 0.017

P(-1D) P(D) = 0.017 × 1844 = 0.017 × 0.017 × 0.017 × 0.017
                                                                   - 1.6×10-6
* E(T|-) = 1000000 x 1.8 x 10-6 + 0x (1-1.8 x 10-6)
   [E(T|-) = $1.8
```

θ^2 of given $\theta(x x) = \begin{cases} \frac{1}{4} & 0 \leq x \leq 4 \\ 0 & \text{otherwise} \end{cases}$
P(x 5) 2
$\frac{\ell(C_1) = \ell(C_2) = 0.5}{\ell(C_1) = 1.5} = \frac{\ell(2-1.5) C_1 \times \ell(C_1)}{\ell(2-1.5) C_1 \times \ell(C_1)} = \frac{1}{2}$
$\frac{P(\zeta_{1} x_{2} .5) = \frac{P(x_{2} .5 \zeta_{1})P(\zeta_{2})}{P(x_{2} .5 \zeta_{2})P(\zeta_{1})} = \frac{2}{3}}{P(\zeta_{1} x_{2} .5) = \frac{2}{3}}$ $\frac{P(\zeta_{1} x_{2} .5) > P(\zeta_{1} x_{2} .5)}{P(\zeta_{1} x_{2} .5)} = \frac{2}{3}$ $\frac{P(\zeta_{1} x_{2} .5) > P(\zeta_{1} x_{2} .5)}{P(\zeta_{1} x_{2} .5)} = \frac{2}{3}$ $\frac{P(\zeta_{1} x_{2} .5) > P(\zeta_{1} x_{2} .5)}{P(\zeta_{1} x_{2} .5)} = \frac{2}{3}$ $\frac{P(\zeta_{1} x_{2} .5) > P(\zeta_{1} x_{2} .5)}{P(\zeta_{1} x_{2} .5)} = \frac{2}{3}$ $\frac{2}{3}$ $\frac{P(\zeta_{1} x_{2} .5) > P(\zeta_{1} x_{2} .5)}{P(\zeta_{1} x_{2} .5)} = \frac{2}{3}$ $\frac{2}{3}$ $\frac{2}$
b) $P(q x=1:5) = P(x=1:5 q)P(q) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{5}$ $P(x=1:5 q)P(q) + P(x=1:5 q)P(q) = \frac{1}{4} \times \frac{3}{4} + \frac{3}{4} \times \frac{1}{4} = \frac{3}{5}$
$P(C_2 _{x=1:5}) = P(x=1:5 _{G_1})P(C_2) = \frac{2}{4} \times \frac{1}{4} = \frac{2}{5}$ $P(x=1:5 _{G_1})P(C_1) + P(x=1:5 _{G_2})P(C_2) = \frac{2}{4} \times \frac{2}{4} + \frac{2}{4} \times \frac{1}{4} = \frac{2}{5}$
as $log(P(C_1 x)) = log(3/5) = log(3/5) > 0$ hance $C_1 \text{ is the class}$

Oux new clarifier is given by the following definit::
$\begin{cases} \zeta & \phi(x) < 0 & \text{so} & \phi(x) = x-2 - \alpha \\ \lambda & \phi(x) \geq 0 \end{cases}$
their leads to the fellowing definition -> G if 2-2 n 2 2+x she C, demoing this on graph using the for $x \in [0, 1]$ Symmetry of given distribution & classifiers
decision houndry Given this Clarifies the foundably SC2 of misclandication can be given
to p(x/c) P(x/c) Probability of an object of G will x72-x
2-a grant clas in the region where
P(histographon) = P(histographon Co as C1) + P(histographon Can C2) -2 P(x C2) P(x) dx + P(x C1) P(charge x 2 (accout & superating)
$\frac{1}{2} \left(\frac{1}{2} - 1 \right) dx + \int \frac{1}{2} \left(\frac{1}{2} - x \right)^{2} dx + \left[\frac{1}{2} x \right]^{2} dx$
2-2 12 1-4 12-21

P(Mischarfication) = \((2-a)^2 - (2-a) - 1+1 \} + \(\frac{1}{4}(2-2+a) \} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
P(Mi) clanfication) = 2)(2-x) - (2-a) - 1+1(+ }-(2-2+a))
)) 2
the state of the s
$\frac{2}{2}\left(\frac{(2-\alpha)^2+5}{2}+\frac{5}{4}\times\frac{-3}{2}\right)$
$\frac{2}{(\lambda-\alpha)} + \frac{3}{5} \times \frac{3}{2}$
2 1 -0
Non Minimizing P(Mindany) > Min P(mindan)
& P(Hid) = d ((2-a)2 + 5 x - 3) >0
d. ((Wid) = d (d-a) + 5 (2))
da dall 2 4
$\frac{2\left(-\beta(\lambda-\alpha)+5\right)}{z} = 0$
7 9
2 X-2+520
this original boundaries
\alpha = 3/4 \rightarrow this gives us our offinal boundary.
The Older hand
Finding ((Misclarification) -
P(Milly) = { (2-x)2 + 5 x - 3 } 2 { (2-3/4) + 5 x 3 - 3 }
1(1011)
2 (0C + 1/ - 2) x/ = x+30 -2
$= \frac{2}{3216} + \frac{15}{168} - \frac{3}{16} + \frac{25+30-3}{16}$
× 168 /
= 55-46,17/
16 32

d) Cost D. Tome broken True Classified Ci -5 +1 classify Ci And Ci +3 -5
Exported (or+ > -5 × P (dollard (bough G) -5 & P (correct (borg) G) + 3 × P (Whong closed G, as G) + 1×P (Who closed G, as G)
$E(cost) = \begin{cases} -5x & P(x q) P(x) dx & -5x & P(x q) P(x) dx \\ +3x & P(x c) P(c) dx & +1x & P(x q) P(x) dx \end{cases}$
$= -5 \int \frac{1}{4} dx - 5 \int (\lambda - 1) dx + 3 \int \frac{1}{4} dx + 1 \int (\lambda - 1) dx$
$\frac{2}{4}\left(2-\alpha\right) - 5\left(\left(2-\alpha\right) - \left(2-\alpha\right)^{2}\right) + \frac{3}{4}\alpha + \left(\left(2-\alpha\right)^{2} - \left(2-\alpha\right) - 1 + 1\right)$
$\frac{2 - 5(3-\alpha) - 5(3-\alpha) + 5(3-\alpha)^{2} + \frac{3}{4} \times + (3-\alpha)^{2} - (3-\alpha) + 1}{2}$
$= (2-\alpha)\left(-\frac{5}{4} - 5 - 1\right) + (2-\alpha)^{2}\left(\frac{5}{2} + \frac{1}{2}\right) + \frac{3}{4}\alpha + \frac{1}{2}$ $= 3(2-\alpha)^{2} - \frac{39}{4}(2-\alpha) + \frac{3}{4}\alpha + \frac{1}{2} = 3(2-\alpha)^{2} + 8\alpha - 14$
$\frac{1}{2} \frac{1}{2} \frac{1}$

$$\oint F(2|G) = \int_{0}^{4} 2 f(2|G) dx$$

$$= \int_{0}^{4} x \int_{0}^{4} dx = \int_{0}^{4} \frac{2 dx}{8} \cdot \frac{2 \cdot 2}{8} \cdot \frac{2 \cdot 2}{8}$$

$$= \int_{0}^{4} x \int_{0}^{4} dx + \int_{0}^{4} 2 f(2|G) dx$$

$$= \int_{0}^{4} x \int_{0}^{4} dx + \int_{0}^{4} \frac{2 f(2|G) dx}{2}$$

$$= \int_{0}^{4} x \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= \int_{0}^{4} \frac{1}{2} \cdot \frac{1}{2$$

$$\frac{1}{8} \cdot \text{Way}(n|s) \quad \text{findy} \quad \frac{1}{8}((n|s)^{2})$$

$$\frac{1}{8}((n|s)^{2})^{2} \quad \frac{1}{8}x^{2}(n-1)dx + \frac{1}{2}x^{2}(3-x)dx$$

$$= \frac{1}{8}(3-x^{2})dx + \frac{1}{2}(3x^{2}-x^{3})dx + \frac{1}{2}x^{2}(3-x^{2})dx$$

$$= \frac{1}{8}(3-x^{2})dx + \frac{1}{2}(3-x^{2})dx + \frac{1}{2}x^{2}(3-x^{2})dx$$

$$= \frac{1}{8}(3-x^{2})dx + \frac{1}{2}(3-x^{2})dx + \frac{1}{2}x^{2}(3-x^{2})dx$$

$$= \frac{1}{8}(3-x^{2})dx + \frac{1}{2}(3-x^{2})dx + \frac{1}{2}(3-x^{2})dx$$

$$= \frac{1}{8}(3-x^{2})dx + \frac{1}{8}(3-x^{2})dx$$

Standard Deviation (x | C1) = sqrt(4/3) = 1.1547

Standard Deviation (x | C2) = sqrt(1/6) = 0.4082

ond based on which bin' it likes on, it gives the corresponding when
so a classifier can supposed to have a Anappeng from bin no. to a class considering those are be total bins (sub-intermals) the frap looks something
Bin No Clay) mapping it as a binary no when Clay 1 -> 0
2 2 a douritée ? 1001 2 2 (234
K i O

So the total no. of classificans famille in Hypothesis space the for given k ->
THE DK total no. of binary no. honible
D VC Dimension of the is equivalent → k.
Reasoning:- (orwider & points, then can juit all & points in scherate bins, then in H, there always exist a classific for each fasticular configuration of these & points which need to be classified.
Cosidor k+1 faints, using figerhole francipal car from text at least on bin (see internal) worder have at least two points. As soon as this happens no clarifier would be able to exist or will exist in the such that it is able to generally clarify those two or more faints if their original class is different from each other.
thera the can shalter upto & faints

```
In formulas
                                                                                         \leq X-train (i,:) \times I ? Y-train (i) == 1 ?
                                                                                                                          > I ( y + + coin(i) = = 1 }

    X_+ + (i, :) x I } y_- + (i) == 2 }

    I } y_- + (i) == 2 }

                                mul
                                                                             = (X-+rain(i):) - \mu1) x (X-+rain(i):) -mu1) x I }y +rain(i)==)
                                                                                                                                               2 7 3y - train(i) == 13.

\[
\leq \leq \text{ (x-train(i,:) - mu2)}^\tau\right\leq \leq \text{ (x-train (i,:) - mu2)} \times \text{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{\superscript{
                    Sa =
                          here X-rain - Dataset of the infer featives forom training data of Matrix
                                                      y terain : Dalmet of the labels from terining date, -> Column victor
                                                     X-termin (i, :) - it from - now vector
                                                        y train(i) -> it clament -> one clament
                                                       Is? - Identity function, n = Total number of elements in figuring
                                                                                                                                                                                                m = # feloment in test data
            Egrenstate = ZI&y_test(i) } y_hred(i)}
                                                                                                           w/-
```

[mu1, mu2, S1, S2, ConfuisonMatrix, ErrorRate] = classify('./data/training_data.txt', './data/test_data.txt')

mu1 =

1.0554 2.5181 3.2967 -1.8927 -1.3918 4.0635 -4.3540 -5.8705

mu2 =

3.8052 5.3740 5.7333 1.1596 1.1777 6.8000 -2.0286 -2.5044

S1 =

0.97290.71350.45700.89380.30960.19750.73621.66290.71353.06582.59820.38781.29940.14420.91684.93880.45702.59826.66120.90841.63970.81480.07795.41680.89380.38780.90845.07540.09631.06112.39784.59460.30961.29941.63970.09632.3973-0.01910.21752.53780.19750.14420.81481.0611-0.01911.0412-0.05311.86040.73620.91680.07792.39780.2175-0.05316.51543.86091.66294.93885.41684.59462.53781.86043.860917.0931

S2 =

1.3486	0.8658	0.1559	0.5847	0.9473	0.2543	0.3705	0.9435
0.8658	2.8161	-0.1819	0.2152	0.7141	0.6797	-0.2383	2.4194
0.1559	-0.1819	6.6734	1.7716	1.0318	0.6526	1.6795	3.8992
0.5847	0.2152	1.7716	3.5433	0.3570	1.3665	2.1207	3.0899
0.9473	0.7141	1.0318	0.3570	2.7517	0.1225	1.4342	2.4651
0.2543	0.6797	0.6526	1.3665	0.1225	1.8107	0.3445	1.5113
0.3705	-0.2383	1.6795	2.1207	1.4342	0.3445	7.1134	2.6246
0.9435	2.4194	3.8992	3.0899	2.4651	1.5113	2.6246	13.9151

ConfuisonMatrix =

24 11

6 59

ErrorRate =

0.1700