pf

Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант <u>11</u>

Виконав студент	<u>IП-13, Дем'янчук Олександр Петрович</u>		
	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
	(прізвище, ім'я, по батькові)		

Основи програмування – 1. Алгоритми та структури даних

Лабораторна робота 3 Дослідження алгоритмів розгалуження

Мета — дослідити подання операторів повторення дій та набути практичних навичок під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 11

Завдання

3 точністю ε = 10-4 обчислити квадратний корінь із довільного цілого числа, використовуючи метод Ньютона:

$$y_n = \frac{y_{n-1} + a/y_{n-1}}{2}$$
, $y_0 = 1$, де a - вихідне число.

Якщо а від'ємне, то вивести відповідне повідомлення.

1. Постановка задачі

Використовуючи ітераційні цикли, знайти значення кореня числа а — lastY, де n-ний член вираховується за формулою lastY = (prevY+a/(prevY))/2. Цикл переривається, якщо abs(lastY-prevY)<Epsilon

2. Математична модель

Побудуємо таблицю імен змінних:

Змінна	Tun	Ім'я	Призначення
Основне число	Цілий	a	Вхідні дані
Епсілон	Дійсний	Epsilon	Проміжні дані
Початкове ітер. знач.	Дійсний	y(0)	Проміжні дані
Ітераційна змінна	Цілий	n	Проміжні дані
Модуль	Дійсний	abs(lastY-prevY)	Проміжні дані
Передостання ітерація у	Дійсний	prevY	Проміжні дані
Остання ітерація у	Дійсний	lastY	Вихідні дані

Основи програмування – 1. Алгоритми та структури даних

```
Epsilon \epsilon сталим значенням і дорівню \epsilon 10^-4; y(0) \epsilon сталим значенням і дорівню \epsilon 1; lastY обчислюємо за формулою (prevY+(a/prevY))/2;
```

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії

Крок 2. Деталізуємо дію знаходження першого члена послідовності **prevY**

Крок 2. Деталізуємо дію обчислення кореня основного числа як ітераційний цикл

Псевдокод

```
Крок 1
початок
введення а
задання перших двох елементів prevY і LastY
цикл знаходження lastY
виведення у
кінець
```

```
Крок 2
початок
введення а
prevY := 1
цикл знаходження lastY
виведення у
кінець
```

Основи_програмування – 1. Алгоритми та структури даних

```
Крок 3
початок
     введення а
     prevY := y(o) := 1
     якщо a < 0
     T0
           виведення "Дане число не є коректним для розрахунку"
     інакше
           повторити
             prevY := lastY
             lastY := (prevY + (a/prevY))/2
           поки abs(lastY-prevY) >= Epsilon
           все повторити
     все якщо
     виведення lastY
кінець
```

Блок-схема

Основи_програмування – 1. Алгоритми та структури даних

Тестування

Блок	Дія
	Початок
1	Введення а := 117
2	prevY := 1; lastY := 1
3	(a < 0) := false
4	prevY := 1; lastY := $(1 + (117 / 1)) / 2 := 59$
5	(abs(59 -1) >= Epsilon) := true
6	prevY := 59; lastY := (59 + (117 / 59)) / 2 := 30.491525423728813
7	(abs(30.491525423728813 - 59) >= Epsilon) := true
8	prevY := 30.491525423728813; lastY := (30.491525423728813 + (117 / 30.491525423728813)) / 2 := 17.164328581792144
9	abs(17.164328581792144 - 30.491525423728813) >= Epsilon) := true
10	prevY := 17.164328581792144; lastY := (17.164328581792144 + (117 / 17.164328581792144)) / 2 := 11.990395479272212
11	(abs(11.990395479272212 - 17.164328581792144) >= Epsilon) := true
12	prevY := 11.990395479272212; lastY := (11.990395479272212 + (117 / 11.990395479272212)) / 2 := 10.874102701622466
13	(abs(10.874102701622466 - 11.990395479272212) >= Epsilon) := true
14	prevY := 10.874102701622466; lastY := (10.874102701622466 + (117 / 10.874102701622466)) / 2 := 10.816805580212758
15	(abs(10.816805580212758 - 11.990395479272212) >= Epsilon) := true
16	prevY := 10.816805580212758; lastY := (10.816805580212758 + (117 / 10.816805580212758)) / 2 := 10.816653827456479
17	(abs(10.816653827456479 - 10.816805580212758) >= Epsilon) := true
18	prevY := 10.816653827456479; lastY := (10.816653827456479 + (117 / 10.816653827456479)) / 2 := 10.816653826391967
19	(abs(10.816653826391967 - 10.816653827456479) >= Epsilon) := false
20	Виведення lastY := 10.816653826391967
21	Кінець

Основи_програмування – 1. Алгоритми та структури даних

Висновок

На лабораторній роботі навчився складати цикли та дослідив подання операторів повторення дій.