

FUNCTIONS

Why

We want a notion for a correspondence between two sets.

Definition

A function (or mapping or map) f from a set X to a set Y is a relation (see Relations) whose domain is X, whose range is a subset of Y, such that for each $x \in X$, there exists a unique $y \in Y$ so that $(x, y) \in f$.

We call the unique $y \in Y$ the result of the function at the argument x. We call Y the codomain. If the range is Y we say that f is a function from X onto Y (or f is surjective). If distinct elements of X are mapped to distinct elements of Y, we say that the function is one-to-one (or injective).

We say that the function maps (or takes) elements from the domain to the codomain. Since the word "function" and the verb "maps" connote activity, some authors refer to the set of ordered pairs as the graph of a function and avoid defining "function" in terms of sets.

Notation

Let X and Y denote sets. We denote a function named f whose domain is X and whose codomain is Y by $f: X \to Y$. We read the notation aloud as "f from X to Y". We denote the set of all functions from X to Y (which is a subset of $\mathcal{P}((X \times Y))$) by Y^X . A less standard but equally good notation is $X \to Y$, read aloud as "A to B". Using the earlier notation, we denote that $f \in (A \to B)$ by $f: A \to B$. We tend to denote function by lower case latin letters, especially f, g, and h. f is a mnemonic for function and g and h are nearby in the usual ordering of the Latin alphabet.

Let $f: A \to B$. For each element $a \in A$, we denote the result of applying f to a by f(a), read aloud "f of a." We sometimes drop the parentheses, and write the result as f_a , read aloud as "f sub a." Let

 $g: A \times B \to C$. We often write g(a, b) or g_{ab} instead of g((a, b)). We read g(a, b) aloud as "g of a and b". We read g_{ab} aloud as "g sub a b."

Examples

If $X \subset Y$, the function $\{(x,y) \in X \times Y \mid x=y\}$ is the *inclusion function* of X into Y. We often introduce such a function as "the function from X to Y defined by f(x) = y". We mean by this that f is a function and that we are specifying the appropriate ordered pairs using the statement, called *argument-value notation*. The inclusion function of X into X is called the *identity function* of X. If we view the identity function as a relation on X, it is the relation of equality on X.

The functions $f:(X\times Y)\to X$ defined by f(x,y)=x is the pair projection of $X\times Y$ ono X. Similarly $g:(X\times Y)\to Y$ defined by g(x,y)=y is the pair projection of $X\times Y$ onto Y. The identity function is one-to-one and onto, the inclusion functions are one-to-one but not always onto, and the pair projections are usually not one-to-one.

