Problem Set 4

Linear Independence; Constant Coefficient Linear ODES (real roots)

Math 51 Fall 2021

This problem set won't be collected. You should complete it before the exam, though!

Reminders

• Midterm 1 is February 14 in the open block – 12:00-1:20 PM.

These problems cover (Nitecki and Guterman 1992, secs. 2.4, 2.5)

1. Decide whether the indicated functions are linearly independent on the interval $(-\infty,\infty)$. If the functions are linearly independent, show that this is the case using the definition, or using the Wronskian test. To show that the functions $f_1(t), f_2(t), \ldots, f_n(t)$ are linearly dependent, you need to give explicit values c_1, c_2, \cdots, c_n for which at least one c_i is non-zero and such that $0 = c_1 h_1(t) + c_2 h_2(t) + \cdots + c_n h_n(t)$ for every t.

a.
$$h_1(t) = 1$$
, $h_2(t) = t - 2$, $h_3(t) = (t - 2)^2$.

b.
$$h_1(t) = t^5$$
, $h_2(t) = |t^5|$.

c.
$$h_1(t) = \sin^2(t) + 1$$
, $h_2(t) = 2\cos^2(t)$, $h_3(t) = 10$

$${\rm d.}\ h_1(t)=e^t,\quad h_2(t)=e^{t+1},\quad h_3(t)=1.$$

2. Find the general solution of each of the following ODEs:

a.
$$(D^2-2)(D+4)^2x=0$$

b.
$$D(D^2-4)^2x=0$$
.

c.
$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} - 4x = 0$$
.

3. Solve the initial value problem

$$(D+2)^2Dx = 0;$$
 $x(0) = x'(0) = 1,$ $x''(0) = 0.$

4. Use the exponential shift formula (see the reminder below) to compute the function Lf = L[f] in each case:

a.
$$L = D^2 + D - 1$$
, $f(t) = e^t \sin(t)$

b.
$$L = (D-1)(D^2 + D + 1), \quad f(t) = te^{2t}.$$

Exponential shift formula

Reminder: the exponential shift formula shows that for a polynomial P(r), application of the corresponding differential operator P(D) to the product $e^{\lambda t}y$ for a function y yields

$$P(D)[e^{\lambda t}y] = e^{\lambda t}P(D+\lambda)[y]$$

Bibliography

Nitecki, Zbigniew, and Martin Guterman. 1992. Differential Equations: A First Course. Saunders.