

XFT: Practical Fault Tolerance beyond Crashes

Shengyun Liu (NUDT, China)
Paolo Viotti (EURECOM, France)
Christian Cachin (IBM Research – Zurich)
Vivien Quéma (INP Grenoble, France)
Marko Vukolić (IBM Research – Zurich)

Fault tolerance

Building systems that tolerate machine and network faults

What machine faults?

Non-crash (a.k.a. Byzantine) faults (BFT) Data losses, omissions, data corruptions, bugs, misconfigurations, hardware faults, cosmic rays, incorrect firmware, operator errors, ...

...and malicious behavior

Network faults (a.k.a network partitions, asynchrony)

Reflect the inability of **correct** machines to communicate in a timely manner (i.e., synchronously)

This paper in one slide: XFT (cross fault tolerance)

in absence of non-crash faults

the same fault-tolerance guarantees as asynchronous CFT

(i.e., with the same thresholds)

in presence of non-crash faults

fault-tolerance guarantees as long as the number of <u>faulty or partitioned</u> machines is within a threshold

XFT showcase: XPaxos

- The first state-machine replication (SMR) protocol in the XFT model
- (almost) as efficient as optimized CFT Paxos

CFT vs. BFT deterministic SMR

NB: These are only common-case message patterns

FT guarantees: CFT SMR

Non-crash faults

none

none

Crash faults

Consistency

w. up to n/2 machine faults

very good (production use)

no

w. any number of faulty or partitioned machines

w. up to n/2 faulty or partitioned machines

© 2016 IBM Corporation

6

FT guarantees:(BFT SMR)

Non-crash faults

Consistency

w. up to n/3 machine faults and any no. of partitioned machines

Availability

w. up to n/3 faulty or partitioned machines

Consistency & Availability

w. up to n/3 machine faults

Crash faults

Consistency

w. any number of machine faults

w. up to n/3 machine faults

Performance/cost

poor (compared to CFT)

Consistency

w. any number of faulty or partitioned machines

Availability

w. up to n/3 faulty or partitioned machines

The Cost of Asynchronous BFT (Infamous 3t+1)

The cost of BFT comes from providing consistency when

> 0 and

≥ n/2

Such a particular adversary is in many use cases irrelevant

t = 1

XFT (cross fault tolerance)

in absence of non-crash faults

the same fault-tolerance guarantees as asynchronous CFT

(i.e., with the same thresholds)

in presence of non-crash faults

fault-tolerance guarantees as long as the number of <u>iaulty or partitioned</u> machines is within a threshold

XFT showcase: XPaxos

- The first state-machine replication (SMR) protocol in the XFT model
- (almost) as efficient as optimized CFT Paxos

XPaxos: XFT SMR

Non-crash faults

w. up to n/2 machine faults

w. up to n/2faulty or partitioned machines

Availability

w. up to n/2 faulty or partitioned machines

Crash faults

Consistency

w. up to n/2 machine faults

Performance/cost

very good (compared to CFT)

w. any number of faulty or partitioned machines

w. up to n/2faulty or partitioned machines

XPaxos message pattern (common case)

client leader replica replica

Digitally signed messages

Paxos (t>1, here t=2)
client
leader
replica
replica
replica
replica

View-change sketch: a problem

View-change sketch: XPaxos solution

Wait for at least 1 response

Connection <u>timeout</u> to all t+1 replicas (including at least one correct)

Deployment: geo-replication playground

Choosing the timeout (for view-change)

Machines TCP ping-ing each other every 100ms for 3 months

- Amazon AWS EC2 micro VMs in 6 regions
 - US West (CA), US East (VA), Ireland (EU), Brazil (BR), Tokyo (JP), Sydney (AU)

Round-trip Latency [ms]	avg	99%	99.9%	99.99%	max
min	85 [CA-VA]	130 [CA-JP]	1082 [CA-VA	1097 [CA-VA]	5208 [JP-AU]
max	401 [AU-BR]	516 [AU-BR]	1474 [AU-BR]	2495 [JP-BR]	169749 [VA-EU]

IBM Softlayer

Mexico (MX), San Jose (CA), Washington (DC), London (UK), Tokyo (JP), Sydney (AU)

	Max	
A-MX] 1077 [CA-[OC] 3476 [U	K-DC]
IK-AU] 1440 [UK- <i>i</i>	(U] 127869	[JP-DC]

15

< 2.5s

Where/when to use XFT?

Tolerating "accidental" non-crash (Byzantine) faults

Wide-area networks and geo-replicated systems

When adversary cannot control the network at will

"Permissioned" blockchain

Thank you!

IBM Research - Zurich is hiring

Keywords: distributed systems fault-tolerance consistency blockchain