

悉尼大学本科 2020.S1

免费预习课

Bachelor of Commerce

by *zoe

*QBUS2310

*Management

Science

每个人都可以 是学神

QBUS2310 Week 1-2

Terminology

- Management Science is a scientific approach to decision making that seeks to <u>best</u>
 <u>design and operate a system</u>, usually under conditions requiring the <u>allocation of</u>
 scarce resources.
- Mathematical model is a mathematical representation of the actual situation.
- Analytics
 - O Descriptive analytics: what happened and why?
 - o Predictive analytics: what might happen?
 - o Prescriptive analytics: what should we do?

Prescriptive analytics and Mathematical Models

- Prescriptive analytics uses mathematical <u>optimization</u> models to prescribe behaviour for an organisation to best meet its goals.
- Components of these models
 - o objective function: a function we wish to optimise
 - decision variables: variables whose values are under our control and influence system performance
 - o constraints: restrictions on the decision variable values

QBUS1040 material

- Least squares
- Vectors
 - o A **vector** is an ordered finite list of numbers
 - o **Element**s of a vector are the values in the array
 - The **size (dimension)** of the vector is the number of elements it contains
 - o **zero vector** is a vector with all elements equal to zero

unit vector is a vector with all elements equal to zero, except one element
which is equal to one

Matrices

- A matrix is a rectangular array of numbers written between rectangular brackets. $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$
- The matrix above has 2 rows and 3 columns so its **size** is 2*3.
- The number in the i-th row and j-th column of a matrix A is called the ij-th element and is denoted aii
- O In the matrix above, $A_{12} = 2$, $A_{23} = 6$.
- o square matrix has an equal number of rows and columns (size n*n)
- o tall matrix has more rows than columns (size m*n with m>n)
- o wide matrix has more columns than rows (size m*n with n>m)
- o zero matrix is a matrix with all elements equal to zero
- o **identity matrix:** diagonal elements of a square matrix are those elements a_{ij} such that i= j (denotes as I_n or I). $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Linear programming (LP)

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,...,m \\ & h_i(x)=0, \quad i=1,...,p \end{array}$$

- f₀, f_i, h_i are linear (or affine)
- convex problem with affine objective and constraint functions
- feasible set is a polyhedron
- often write as:

$$\begin{array}{ll} \text{minimize} & c^Tx+d \\ \text{subject to} & Gx \leq h \\ & Ax=b \end{array}$$

• it is common to omit the <u>constant d</u> in the objective function, since it <u>does not</u> affect the feasible set.

Linear programming - example

$\operatorname*{Minimise}_{\boldsymbol{x}}$	$8x_1 + 10x_2 + 11x_3 + 14x_4$	(1)
subject to	$0.03x_1 + 0.06x_2 + 0.1x_3 + 0.12x_4 \ge 80$	(2)
	$0.02x_1 + 0.04x_2 + 0.03x_3 + 0.09x_4 \ge 40$	(3)
	$0.01x_1 + 0.01x_2 + 0.04x_3 + 0.04x_4 \ge 20$	(4)
	$x_1 + x_2 + x_3 + x_4 = 1000$	(5)
	$x_2 \ge 100$	(6)
	$x_i > 0 \ \forall i$	(7)

- $x = \{x_1, x_2, x_3, x_4\}$ is the **decision variable**
- $f_0 = 8x_1 + 10x_2 + 11x_3 + 14x_4$ is the **objective function** we wish to minimise
- there are five inequality constraints and one equality constraint

Multiple solutions, infeasibility and unboundedness

Every LP must fall into one of the following four cases:

Case 1: LP has a <u>unique</u> solution

Case 2: LP has multiple solutions

Case 3: LP is infeasible

Case 4: LP is <u>unbounded</u>

