3éme année collège Prof :Omar ABIDAR

Série (1) Trigonométrie

Collège Lycée Alatlas Casablanca 2017-2018

Exercice 01

ABC est un triangle rectangle en A.

1) On donne : AB = 3 et BC = 5.

Calculer: AC; $\cos \widehat{ABC}$; $\sin \widehat{ABC}$; $\tan \widehat{ABC}$

2) On donne : AC = 7 et BC = 9.

Calculer: \overrightarrow{AB} ; $\cos \widehat{ACB}$; $\sin \widehat{ACB}$; $\tan \widehat{ACB}$

3) On donne: AB = 1 et $AC = \sqrt{3}$.

Calculer: BC; $\cos \widehat{ABC}$; $\sin \widehat{ABC}$; $\tan \widehat{ABC}$

4) On donne: BC = 8 et $\cos \widehat{ABC} = \frac{1}{6}$.

Calculer: AB; AC; $\sin \widehat{ABC}$; $\tan \widehat{ABC}$

5) On donne : AB = 7 et $\tan \widehat{ABC} = 2$.

Calculer: BC; AC; $\sin \widehat{ACB}$; $\cos \widehat{ACB}$

Exercice 02

 α est un angle aigu.

- 1) Calculer $\sin(\alpha)$ et $\tan(\alpha)$ sachant que $\cos(\alpha) = \frac{1}{3}$.
- 2)Calculer $\sin(\alpha)$ et $\tan(\alpha)$ sachant que $\cos(\alpha) = \frac{\sqrt{5}}{3}$
- 3) Calculer $\cos(\alpha)$ et $\tan(\alpha)$ sachant que $\sin(\alpha) = \frac{\sqrt{2}}{3}$
- 4)Calculer $\sin(\alpha)$ et $\tan(\alpha)$ sachant que $\cos(\alpha) = \frac{\sqrt{3}}{5}$.
- 5)Calculer $\sin(\alpha)$ et $\cos(\alpha)$ sachant que $\tan(\alpha) = \sqrt{6}$
- 6)Calculer $\sin(\alpha)$ et $\cos(\alpha)$ sachant que $\tan(\alpha) = \sqrt{11}$

Exercice 03

Calculer:

$$A = \cos^2 35^\circ + \sin^2 33^\circ + \sin^2 35^\circ + \cos^2 33^\circ$$

$$B = \cos^2 15^\circ + \cos^2 75^\circ - 2tg35^\circ \times tg55^\circ$$

 $C = \sin 25^{\circ} - \sin 65^{\circ} + \cos 25^{\circ} - \cos 65^{\circ}$

Exercice 04

 α est un angle aigu. Simplifier :

$$A = (\cos \alpha + \sin \alpha)^2 + (\cos \alpha - \sin \alpha)^2$$

$$B = 2\cos^2\alpha + 3\sin^2\alpha - 2$$

$$C = \frac{1}{1 + \cos \alpha} + \frac{1}{1 - \cos \alpha} - \frac{2}{\sin^2 \alpha}$$

 $D = \sin \alpha \sqrt{1 - \cos \alpha} \sqrt{1 + \cos \alpha} + \cos \alpha \sqrt{1 + \sin \alpha} \sqrt{1 - \sin \alpha}$

Exercice 05

 α est un angle aigu. Simplifier : $\cos^2 \alpha = \frac{1}{1 + \lg^2 \alpha}$

Exercice 6

Soit ABC un triangle rectangle et isocèle en point A tel que AB = x.

La bissectrice intérieure de l'angle \widehat{ABC} coupe la droite (AC) en point D. La parallèle à (BD) passant par le point A coupe la droite (BC) en point E.

- 1) Montrer que $DC = \frac{x\sqrt{2}}{\sqrt{2}+1}$.
- 2) Calculer en fonction de x les distances AD et BD
- 3) Déduire $\cos(22,30)^{\circ}$, $\sin(22,30)^{\circ}$

Exercice7

déterminer la hauteur EC.

Exercice 8

On donne BD = 4 cm; BA = 6 cm et $\widehat{DBC} = 60^{\circ}$. On ne demande pas de faire une figure en vraie grandeur.

- 1) Montrer que BC = 8 cm.
- 2) Calculer CD . Donner la valeur arrondie au dixième.
- 3) Calculer AC.
- 4) Quelle est la valeur de $\tan \widehat{BAC}$?
- **5**) En déduire la valeur arrondie au degré de \widehat{BAC} .

Exercice 9

Soient a et b deux nombres réels . α est un angle aigu.

♣ ad2math.com ♣

Un **mathématicien** ce n'est pas quelqu'un qui passe son temps à faire des <u>calculs</u>, c'est quelqu'un qui trouve des techniques pour ne pas avoir à les faire.