

Stata (Level 1 - Data) Workshop

Quantitative and Computing Lab (QCL)

Before We Begin

- 1. Sign-in Link
- 2. Retrieve Workshop file at (GitHub URL)
 - ► Make sure to unzip the file on "Desktop" folder on your Windows/MacOS!

Workshop Agenda

1	User Interface: Console	04:00 PM - 04:05 PM
2	Data Import	04:05 PM - 04:10 PM
3	Define Data	04:10 PM - 04:25 PM
4	Summary Statistics	04:25 PM - 04:35 PM
5	Regression Analysis	04:35 PM - 04:50 PM
6	Charts: Histogram and Scatter Plot	04:50 PM - 05:05 PM
7	Hands-on Exercises	05:05 PM - 05:25 PM
8	Q&A	05:25 PM - 05:30 PM

Stata Console - Main Window

Stata window largely consists of command history, command line, output window, variable list, and data format.

- Results: displays commands and resulting outputs from current session
- Command Line: a window where a user enters a command
- **Variable List**: lists all variables specified in active session
- Command History: shows every command performed in active session
- 5 Data Format: detailed description of highlighted variable (e.g., type)

Stata Console - How It Works

While Stata is truly "interactive," users can also run a program as a "batch" mode (running commands listed on a file)

- **1. Interactive Use**: typing Stata commands *directly* on the Command window to produce results.
- **2. Batch Mode**: All commands are compiled in a file (called *Do-Files*), which Stata reads and executes.

During this workshop, we are going to use Do-File ".do" to import and explore data and conduct relevant analysis

2 3 4 5 6 7

- 1. Press "File" on a top menu bar
- 2. Select "Open..."
- Go to "QCL_Workshop" folder we downloaded on "Desktop" folder
- 4. Open "Rose_Workshop_QCL.do" file

Stata Console - Do-Files

- ► Think of it as a set of *instructions* for Stata to conduct without manual input
- ▶ It is a good practice to compile *Do-File* since doing so allows others to *reproduce*
- **▶** Comment:
 - /* [INSERT COMMENT] */: comments a specified section
 - *: comments a whole line
- Press boxed icon shown on the screenshot to execute the file

```
Rose_Workshop_QCL.do
                       Q ¶ 116% ~
      /* Stata code for Rose Institute RAs */
      /* Instructors: Cynthia Cheng, Seungho (Samuel) Lee */
      /* Date: October 28, 2020 */
      *** Initialization Commands ***
                    /* Use Stata Version 14 Interpreter */
      capture log close /* Close log (if one is open) */
      /* Set Working Directory */
      cd "\Desktop\QCL_STATA_Workshop" /* MacOs: cd "Desktop/QCL_STATA_Workshop" */
      /* Open new log file in Working Directory */
      log using "Workshop_Presentation_output.log", replace
      clear all /* Clear memory */
                         /* Uninterrupted Scrolling for Results */
      * 3. Load the Data File "2016_Election_train.csv" into Stata's Working Memory
      import delimited using "2016_Election_train.csv"
      * 4. Check list of variables and number of observations
      * 5. Check summary statistics of all variables separated by 4 variables
      summarize, separator(4)
      * 6. Let's check one of the variables `inc910213
      summarize inc910213
      summarize inc910213, detail
      hist inc910213
      * 7. Check Categorical (Binary) Variable "winner 16"
      codebook winner16
      * 8. Encode winner16
      label variable winner16 "Outcome of the 2016 Election for Each County"
      label define winner16 0 "Dem" 1 "Rep"
      * 9. Let's check whether there is a difference in education level (% of people with bachelors degree) between counties that
      elected Republican candidate and those that elected Democratic candidate
      ttest edu685213, by(winner16)
      * 10. Turn Categorical (Binary) Variable to Dummy Variable
      generate rep = winner16=="Rep"
      generate dem = winner16=="Dem"
      * 11. Save the data in working memory to the Stata data file "2016_Election_Data.dta"
      save "2016 Election Data.dta"
Automatic 

Line: 16, Col: 35
```


Data Import

► Setting Working Directory:

- "cd" command sets which folder you are going to be working on
- Make sure to include data files in the folder

▶ Importing Data

- ► Run <u>import delimited using "filename.csv"</u> command to import data files
- ➤ You can also import Excel files (and many others) as well as direct URL link!

Define data

Whenever you use *import* function, it outputs a message that indicates the numbers of variables and observations in the dataset. For more details, use describe

```
. * 3. Load the Data File "2016_Election_train.csv" into Stata's Working Memory
. import delimited using "2016_Election_train.csv"
(52 vars, 2,489 obs)
.
. * 4. Check list of variables and number of observations
. describe

Contains data
  obs: 2,489
vars: 52
```

variable name	storage type	display format	value label	variable label	
pst045214	long	%12.0g		PST045214	
pst040210	long	%12.0g		PST040210	
pst120214	float	%9.0g		PST120214	
pop010210	long	%12.0g		POP010210	
age135214	float	%9.0g		AGE135214	
age295214	float	%9.0g		AGE295214	
age775214	float	%9.0g		AGE775214	
sex255214	float	%9.0g		SEX255214	
rhi125214	float	%9.0g		RHI125214	
rhi225214	float	%9.0g		RHI225214	

- ▶ Data: Sampled 2016 Presidential Election Data by Counties (ECON122)
- describe function can be used see a more detailed information of the imported data:
 - ▶ Observations, Variables
 - Variable Name, Storage Type (e.g., long, float),
 Display format, value label, variable label
 - On Stata, you can label values and variables, which are helpful references (we will look at these functions during the Hands-on Exercise)

Define data

Whenever you use *import* function, it outputs a message that indicates the numbers of variables and observations in the dataset. For more details, use describe

```
. * 3. Load the Data File "2016_Election_train.csv" into Stata's Working Memory
. import delimited using "2016_Election_train.csv"
(52 vars, 2,489 obs)

. . * 4. Check list of variables and number of observations
. describe

Contains data
obs: 2,489
vars: 52
```

variable name	storage type	display format	value label	variable label	
pst045214	long	%12.0g		PST045214	
pst040210	long	%12.0g		PST040210	
pst120214	float	%9.0g		PST120214	
pop010210	long	%12.0g		POP010210	
age135214	float	%9.0g		AGE135214	
age295214	float	%9.0g		AGE295214	
age775214	float	%9.0g		AGE775214	
sex255214	float	%9.0g		SEX255214	
rhi125214	float	%9.0g		RHI125214	
rhi225214	float	%9.0g		RHI225214	

▶ Common Storage Types

- ▶ byte: integer values between -127 and 100
- ▶ int: integer values between -32,767 and 32,740
- ▶ long: integer values between -2,147,483,647 and 2,147,483,620
- float: real numbers (i.e., numbers with decimal points) with about 8 digits of accuracy
- double: real numbers (i.e., numbers with decimal points) with about 16 digits of accuracy
- str3: string values with a maximum length of 3
- ► What does having string values imply about the variable? (winner16 is a string variable!)

1 2 3 4 5 6 7

- ► **summarize** function can be used see a more detailed information of the imported data:
 - ► Observations: number of observations in the variable
 - ► Mean: Mean (Average) Value of the variable
 - ► Standard Deviation
 - ► Min
 - ► Max

				nc910213	. summarize i
Max	Min	Std. Dev.	Mean	0bs	Variable
62498	11818	5382.698	23558.73	2,489	inc910213

1 2 3 4 5 6 7

- ► Including *detail* option in *summarize* allows users to check more specific statistics:
 - ► **Percentiles**: a value of the variable at a given percentile (50th Percentile = Median)
 - ► Smallest/Largest: 4 lowest/highest values
 - ► **Skewness**: degree of distortion in our distribution (from normal) and direction
 - ► **Positive**: skewed to the right
 - ▶ **Negative**: skewed to the left
 - ► Zero: Normal
 - ► **Kurtosis**: how "fat" the tails are in the distribution, which shows whether there are extreme outliers in the data
 - ► **High deviation from 3** indicates that there is *high kurtosis*

. summarize inc910213, detail

INC910213

	Percentiles	Smallest		
1%	13954	11818		
5%	16540	12042		
10%	17842	12113	0bs	2,489
25%	19929	12177	Sum of Wgt.	2,489
50%	22888		Mean	23558.73
		Largest	Std. Dev.	5382.698
75%	26187	54608		
90%	29905	56791	Variance	2.90e+07
95%	33170	62018	Skewness	1.437638
99%	42210	62498	Kurtosis	7.982021

Mean cannot be captured correctly, leading to wrong interpretation!

1 2 3 4 5 6 7

Mean cannot be captured correctly, leading to wrong interpretation!

Summarize function can be used to see more detailed information about each variable. This can be done with all at once or on an individual basis

. summarize, separator(4)

Max	Min	Std. Dev.	Mean	0bs	Variable
1.01e+07	262	351141.8	105939.7	2,489	pst045214
9818664	286	337237.6	102615.3	2,489	pst040210
72.9	-17	4.212294	.4666131	2,489	pst120214
9818605	286	337229.8	102609.2	2,489	pop010210
12.2	1.5	1.166596	5.88188	2,489	age135214
37.5	7.4	3.291917	22.52294	2,489	age295214
52.9	4.1	4.405271	17.66199	2,489	age775214
56.8	30.2	2.167879	49.99574	2,489	sex255214
99.3	12.8	15.331	85.68112	2,489	rhi125214
84.1	0	14.22124	9.123423	2,489	rhi225214
82.2	0	5.948727	1.916191	2,489	rhi325214
42.4	0	2.427037	1.322981	2,489	rhi425214
12.7	0	.3537572	.0992768	2,489	rhi525214
29.4	0	1.278885	1.849538	2,489	rhi625214
95.2	.2	13.41946	9.007553	2,489	rhi725214
98.6	3.1	19.34094	77.68726	2,489	rhi825214
99.8	50.8	4.401603	86.40723	2,489	pop715213
47.8	0	5.482427	4.461511	2,489	pop645213
94.2	0	11.31973	9.077139	2,489	pop815213
99	54	6.806949	84.56774	2,489	edu635213

- ► For a summary statistics output for all variables, following values are produced for each variable:
 - ▶ Observations
 - ▶ Mean
 - ▶ Standard Deviation
 - ► Min
 - ► Max
- ▶ What can we know about winner16 variable?

1 2 3 4 5 6 7

Summarize function can be used to see more detailed information about each variable. This can be done with all at once or on an individual basis

Variable	0 b s	Mean	Std. Dev.	Min	Max
winner16	0				

- ▶ Why does *winner16* have 0 observation?
 - As we mentioned before, it is stored as a string type, which needs to be recoded
 - ► Let's try *codebook* function to check what string inputs are recorded in the variable

. codebook winner16

winner16 (unlabeled)

```
type: string (str3)
unique values: 2 missing "": 0/2,489
tabulation: Freq. Value
378 "Dem"
2,111 "Rep"
```

- ▶ We can see that there are 378 occurrences of "Dem" and 2,111 occurrences of "Rep"
 - ▶ As we can see from a boxed corner, our binary variable is not labeled
 - ▶ By labeling / encoding our data, we are able to assess statistical significance of differences between different groups (or *string* values), which is done with *t*-test
- ► Let's **label** winner16 variable and run **t-test**

Labeling is useful in analyzing variables from different observations based on their string values

- 1 label variable winner16 "Outcome of the 2016 Election for Each County"
- 2 label define winner16 0 "Dem" 1 "Rep"
- 3 table winner16

Outcome	
of the	
2016	
Election	
for Each	
County	Freq.
Dem	378
Rep	2,111

▶ Descriptions of Executed Commands

- Sets variable label as "Outcome of the 2016 Election for Each County"
- 2 Sets value label as 0 for "Dem" and 1 for "Rep" values
- Shows encoded result of winner16
- ► We will now run a *t*-test to check whether there is a difference in education level between counties that elected Republican candidate and those that elected Democratic candidate

- ► This is *t*-test of % of county residents with bachelor's degree (*edu685213*) on two *string* groups
 - ➤ Shows *t*-test result on *difference between the two groups* with summary statistics of each group and a complete dataset
 - ► Running t-test <u>without specifying by condition</u> produces the test on whether the variable is statistically significantly different from 0

▶ Results

- ▶ We find the difference statistically significant at almost 0% confidence level
- We also find that the counties that elected a democratic candidate have higher proportion of college educated residents

. ttest edu685213, by(winner16)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Dem	378	28.08862	.6283082	12.21571	26.8532	29.32405
Rep	2,111	18.1973	.1462483	6.719467	17.91049	18.48411
combined	2,489	19.69948	.1718544	8.573794	19.36249	20.03647
diff		9.891324	.4359419		9.036478	10.74617

$$\label{eq:diff} \begin{array}{lll} \mbox{diff = mean(Dem) - mean(Rep)} & \mbox{t = } & 22.6895 \\ \mbox{Ho: diff = 0} & \mbox{degrees of freedom = } & 2487 \end{array}$$

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
$$Pr(T < t) = 1.0000$$
 $Pr(|T| > |t|) = 0.0000$ $Pr(T > t) = 0.0000$

Regression - Background

Before jumping into analyzing winner16, let's take a look at how population size impacts the number of firms in counties

- ➤ Correlation Analysis: evaluates the strength of relationship between two numerical variables
 - ▶ If the coefficient is close to ±1, a relationship between the two are strongly correlated
 - Strongly Positive: two variables move along the same direction
 - ► Strongly Negative: two variables move along the opposite direction

Regression - Background

1 2 3 4 5 6 7

Before jumping into analyzing winner16, let's take a look at how population size impacts the number of firms in counties

. corr sbo001207 pst045214
(obs=2,489)

	s~001207	p~045214
sbo001207	1.0000	
pst045214	0.9845	1.0000

- ➤ Correlation Analysis: evaluates the strength of relationship between two numerical variables
 - ► If the coefficient is **close to ±1**, a relationship between the two are **strongly correlated**
 - Strongly Positive: two variables move along the same direction
 - Strongly Negative: two variables move along the opposite direction
- ▶ If the two variables have corr. coefficient of 0.9845, how would the regression look like?

Regression - Background

Regression Output

. reg sbo001207 pst045214

Source	SS	df	MS	Number of obs	=	2,489
				F(1, 2487)	=	78154.33
Model	2.7093e+12	1	2.7093e+12	Prob > F	=	0.0000
Residual	8.6213e+10	2,487	34665466.3	R-squared	=	0.9692
				Adj R-squared	=	0.9691
Total	2.7955e+12	2,488	1.1236e+09	Root MSE	=	5887.7

sbo001207	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
pst045214 _cons		.0003362 123.2708			.0933169 -1091.179	.0946353 -607.7304

- ► R² value is 0.9692, meaning that 96.92% of variation is explained
 - ► This is squared value of correlation coefficient that we saw earlier

Regression Plot

- ► Commands required to plot the regression:
 - predict yhat (right after running the regression)
 - twoway scatter yhat y x, connect(I .) symbol(i 0)

Regression – Background (Categorical)

We will be creating dummy variables from a binary variable winner16 to analyze how certain variables impact the election outcome

- ▶ Categorical Variables
 - ▶ Binary, Nominal, Ordinal
 - Can be used for <u>classifying different categories</u>, <u>predicting categorical events</u>, or <u>explaining</u> <u>differences among categorical values</u>
- Numerical Variables
 - ► Continuous (infinite interval) or Discrete (finite)
 - Take on any value within a finite or infinite interval
 - Can be used for <u>finding relationships</u> and <u>identifying characteristics</u>

```
* 10. Turn Categorical (Binary) Variable to Dummy Variable generate rep = winner16=="Rep"

generate dem = winner16=="Dem"
```

- 1 Creates *rep* variable with 1 = "Rep" (all else are 0)
- 2 Creates dem variable with 1 = "Dem" (all else are 0)

Regression – Simple Regression

reg rep edu6	85213						
Source	SS	df	MS	Numbe	r of obs	=	2,489
				- F(1,	2487)	=	514.82
Model	54.9822781	1	54.982278	1 Prob	> F	=	0.0000
Residual	265.611535	2,487	.10679997	4 R-squ	ared	=	0.1715
				– Adj R	-squared	=	0.1712
Total	320.593813	2,488	.12885603	4 Root	MSE	=	.3268
rep	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
edu685213	0173386	.0007642	-22.69	0.000	018837	7	0158401
_cons	1.189692	.0164171	72.47	0.000	1.157	5	1.221885

- ▶ This is a simple linear regression model, $y = \beta_0 + \beta_1 \cdot \text{edu685213} + \epsilon$.
 - \blacktriangleright We can see from R^2 that there is a lot of room to improve (82.85% of variation is still not explained)
 - ► Let's try to add more explanatory (independent) variables

Regression - Multiple Regression

- ► Take a look at a correlation between % of residents with bachelor's degree and those with high school diploma (edu635213)
- ▶ Rules of Thumb:

No linear relationship = 0 Perfect linear relationship = ± 1 Weak linear relationship = |0 - 0.3|Moderate linear relationship = |0.3 - 0.7|Strong linear relationship = |0.7 - 1.0|

► Generally, adding two or more variables with R < 0.7 does not increase a presence of Multicollinearity . corr edu685213 edu635213
(obs=2,489)

	e~685213	e~635213
edu685213	1.0000	
edu635213	0.5958	1.0000

				•
Dadraccian		nla	DOM	raccian
Regression	 IVIUILII	UIC	NEU	6 33 0
9			9	

reg rep ed	u685213 edu63	5213					
Source	SS	df	MS	Numbe	r of obs	=	2,489
				F(2,	2486)	=	451.47
Model	85.4182128	2	42.7091064	Prob	> F	=	0.0000
Residual	235.1756	2,486	.0946	R-squ	ared	=	0.2664
				Adj R	-squared	=	0.2658
Total	320.593813	2,488	.128856034	Root	MSE	=	.30757
rep	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
edu685213	0269097	.0008955	-30.05	0.000	028665	7	0251536
edu635213	.0202324	.001128	17.94	0.000	.018020	5	.0224443
cons	3327694	.0862735	-3.86	0.000	501944	R	163594

- ▶ This is a multiple linear regression model, $y = \beta_0 + \beta_1 \cdot \text{edu}685213 + \beta_2 \cdot \text{edu}635213 + \epsilon$.
 - \blacktriangleright We can see from R^2 that there is a lot of room to improve (82.85% of variation is still not explained)
 - ► Let's try to add more explanatory (independent) variables

Regression – Multiple Regression

. reg rep edu685213 edu635213 age295214

2,489)s =	ımber of ob	Nu	MS	df	SS	Source
303.19	=	3, 2485)	— F(
0.0000	=	ob > F	75 Pr	28.6341475	3	85.9024426	Model
0.2679	=	-squared	7 R-	.094443207	2,485	234.69137	Residual
0.2671	ed =	ij R-square	— Ad				
.30732	=	ot MSE	34 Ro	.128856034	2,488	320.593813	Total
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	rep
0251546	638	0286	0.000	-30.07	.0008948	0269092	edu685213
.0228986	175	.0184	0.000	18.08	.0011426	.0206581	edu635213
.008077	058	.00	0.024	2.26	.0019116	.0043285	age295214
.0000//							

- ▶ Let's try to add more explanatory variable: age295214 (persons under 18 years)
 - \blacktriangleright We can see from R^2 that there is a lot of room to improve (82.85% of variation is still not explained)
 - ▶ Also, note that age295214 is not statistically significant at 99% confidence
- ▶ Let's try to add interaction variable of age295214 and another with strongest correlation

Regression - Multiple Regression

- ► From the correlation coefficients, we can see that age295214 is weakly correlated with edu685213 with second highest value.
- ► Let's try to make interaction term from the two variables:

 $AGE295_EDU685 = AGE295214 \cdot EDU685213$

► Use gen age295_edu685 = age295214 * edu685213 command to generate the interaction variable

```
. corr edu635213 edu685213 age295214
(obs=2,489)
```

	e~635213	e~685213	a~295214
edu635213	1.0000		
edu685213	0.5958	1.0000	
age295214	-0.2035	-0.1214	1.0000

1 2 3 4 5 6 7

- ▶ We see that there is a very slight improvement in R², which is pretty common in variable selection process:
 - ▶ Depending on what kinds of variables are being included, interaction variables could drastically help to better fit or does not have much impact in the model
- ► Let's include one more variable: rhi825214
 - Definition: "White alone, not Hispanic"

```
gen age295_edu635 = age295214 * edu635213
. reg rep edu685213 edu635213 age295214 age295 edu635
                      SS
      Source
                                                      Number of obs
                                                                             2,489
                                                      F(4, 2484)
                                                                            229.81
                 86.595906
                                     4 21.6489765
                                                      Prob > F
       Model
                                                                            0.0000
   Residual
                233.997907
                                                                            0.2701
                                2,484
                                        .094202056
                                                      R-squared
                                                     Adj R-squared
                                                                            0.2689
       Total
                320.593813
                                2.488
                                       .128856034
                                                      Root MSE
                                                                            .30692
                      Coef.
                              Std. Err.
                                                    P>|t|
                                                              [95% Conf. Interval]
          rep
   edu685213
                  -.0264762
                               .0009078
                                          -29.17
                                                    0.000
                                                             -.0282563
                                                                          -.0246961
   edu635213
                                            1.21
                   .0064699
                               .0053524
                                                   0.227
                                                             -.0040257
                                                                           .0169655
   age295214
                  -.0451726
                              .0183442
                                           -2.46
                                                   0.014
                                                             -.0811441
                                                                          -.0092012
age295 edu635
                   .0005926
                               .0002184
                                            2.71
                                                    0.007
                                                              .0001643
                                                                            .001021
                   .7138551
                              .4472872
                                                             -.1632391
                                            1.60
                                                   0.111
                                                                           1.590949
        _cons
```


Regression - Multiple Regression

	reg	rep	edu635213	edu685213	age295214	rhi825214	edu635_685	
--	-----	-----	-----------	-----------	-----------	-----------	------------	--

Source	SS	df	MS		=	2,489
				F(5, 2483)	=	376.54
Model	138.256344	5	27.6512688	Prob > F	=	0.0000
Residual	182.337469	2,483	.073434341	R-squared	=	0.4313
				Adj R-squared	=	0.4301
Total	320.593813	2,488	.128856034	Root MSE	=	.27099

rep	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
edu635213	.007472	.0019186	3.89	0.000	.0037098	.0112342
edu685213	.0290921	.0105674	2.75	0.006	.0083703	.0498138
age295214	.0176986	.0017595	10.06	0.000	.0142485	.0211488
rhi825214	.0100813	.0003783	26.65	0.000	.0093394	.0108231
edu635_685	0005053	.0001162	-4.35	0.000	0007332	0002774
_cons	6792475	.1682171	-4.04	0.000	-1.009108	3493873

- ► Taking a similar approach, we end up with $y = edu635213 + edu685213 + age295214 + rhi825214 + edu635_685$
 - ▶ Interaction Variable: $edu635_685 = edu635213 \cdot edu685213$
 - ► Final R² value is 0.4301, which is a significant improvement from a simple linear model we constructed
 - ▶ p-values also suggest that all variables that we use have statistical significance

▶ **Logistic Regression**: a binary classification model, with a $0 \le h_{\theta(x)} \le 1$ range, that outputs probability of an observation to be either of the binary values, using:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_{1X} + \dots + \beta_x X_x$$

- Good for analyzing binary variables since it is bound between 0 and 1
- ➤ Coefficients: the expected change in log odds for one-unit increase in one of the independent variables (all held constant)
- ► We can see that Pseudo R2 is 0.5396, which is an improve from the previous model. Therefore, logistic regression can better capture binary values

```
. logit rep edu635213 edu685213 age295214 rhi825214
Iteration 0:
               log\ likelihood = -1060.1549
Iteration 1:
               log\ likelihood = -613.33484
Iteration 2:
               log\ likelihood = -497.25696
Iteration 3:
               log\ likelihood = -488.21436
               log\ likelihood = -488.11949
Iteration 4:
Iteration 5:
               log\ likelihood = -488.11942
Iteration 6:
               log\ likelihood = -488.11942
Logistic regression
                                                 Number of obs
                                                                           2,489
                                                 LR chi2(4)
                                                                         1144.07
                                                 Prob > chi2
                                                                          0.0000
Log likelihood = -488.11942
                                                 Pseudo R2
                                                                          0.5396
```

rep	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
edu635213 edu685213	0726455 1565054	.0223479	-3.25 -11.81	0.001	1164466 1824772	0288445 1305336
age295214	.2281572	.0251916	9.06	0.000	.1787825	.2775319
rhi825214 _cons	.1311172 -2.670578	.0077747 1.508954	16.86 -1.77	0.000 0.077	.1158791 -5.628074	.1463552 .2869181

Histogram of INC910213

Command: hist ubc819213

Regression Plot of Simple Linear Regression

twoway scatter yhat_ex sbo001207 pst045214, connect(I .) symbol(i 0)

Simple Linear Regression Plot

twoway scatter yhat_linear rep edu685213, connect(I .) symbol(i 0) sort ylabel(0 1)

twoway scatter yhat_logit rep edu685213, connect(l i) msymbol(i 0) sort ylabel(0 1)

Simple Linear vs. Multiple Linear Regression Plot

twoway scatter rep MLR yhat_linear edu685213, connect(. I -) msymbol(. i i) sort ylabel(0 1)

Regression Plot of Multiple Logistic Regression (Logit)

twoway scatter yhat_all rep edu685213, connect(l i) msymbol(i 0) sort ylabel(0 1)

Hands-on Exercise

- Using the sqf-2019.xlsx (NYCLU's 2019 NYC Stop-and-Frisk Dataset), generate the following output:
 - Histogram plot using the age variable, divide the ranges into 5 groups.
 - 2. Summary statistics for age, weight and height variables.
 - 3. Correlation using age, weight and height variables.
 - 4. Scatter plot using age and weight variables.
 - 5. Simple regression equation using age and weight variables.
 - 6. Multiple regression equation using age, weight and height variables.

Summary / Q&A

- ▶ Key Takeaways:
 - ▶ User Interface (Do-File)
 - Data Import and Exploration
 - ► Summary Statistics
 - Regression Analysis
- ► Tips:
 - Stata/R Useful Packages: https://geocenter.github.io/StataTraining/portfolio/06_resource/
 - ► Internet Guide to Stata: http://wlm.userweb.mwn.de/Stata/
 - ▶ UCLA IDRE Guide: https://stats.idre.ucla.edu/stata/
- ► Contact: qcl@cmc.edu (with a title: "Re: Rose Institute Stata Workshop")
 - ► Feel free to contact me (<u>slee19@students.cmc.edu</u>) if you have any questions on PowerPoint and Stata materials

