1. Se dau vectorii $\vec{u} = (\lambda - 1)\vec{i} - 3\lambda \vec{i}$ și $\vec{v} = 2\vec{i} + \vec{j}$. Să se determine $\lambda \in \mathbb{R}$, astfel încât \vec{u} și \vec{v} să fie paraleli. (5 pct.)

a) 2; b)
$$\frac{1}{7}$$
; c) 3; d) $\frac{1}{2}$; e) $\frac{1}{4}$; f) 1.

Soluție. Vectorii sunt paraleli doar dacă au componentele respectiv proporționale, deci

$$\frac{\lambda - 1}{2} = \frac{-3\lambda}{1} \Leftrightarrow \lambda - 1 = -6\lambda \Leftrightarrow \lambda = \frac{1}{7}.$$

2. Determinați $a \in \mathbb{R}$ astfel încât punctul A(0,2) să se găsească pe dreapta de ecuație x+ay+4=0. (5 pct.)

a) 0; b) 2; c) 5; d)
$$-3$$
; e) -1 ; f) -2 .

Soluție. Coordonatele punctului A trebuie să satisfacă ecuația dreptei. Înlocuind x=0, y=2 în ecuație, obținem $0+2a+4=0 \Leftrightarrow a=-2$.

3. Să se calculeze modulul numărului complex $z=1+i\sqrt{3}$. (5 pct.)

a)
$$\sqrt{3}$$
; b) -2; c) 0; d) 2; e) 4; f) -1.

Soluţie. Avem
$$|z| = \sqrt{(Re\ z)^2 + (Im\ z)^2} = \sqrt{1^2 + (\sqrt{3})^2} = 2.$$

4. Daca punctele $A(1,2), B(2,4), C(4,\lambda)$ sunt coliniare, atunci: (5 pct.)

a)
$$\lambda = 10$$
; b) $\lambda = 7$; c) $\lambda = 8$; d) $\lambda = 5$; e) $\lambda = 1$; f) $\lambda = 2$.

Soluție. Coliniaritatea revine la anularea determinantului $\Delta = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}$, deci

$$\Delta = 0 \Leftrightarrow \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 4 & \lambda & 1 \end{vmatrix} = 0 \stackrel{l_2 - 2l_1}{\iff} \begin{vmatrix} 1 & 2 & 1 \\ 0 & 0 & -1 \\ 4 & \lambda & 1 \end{vmatrix} \Leftrightarrow (-1)(-1) \begin{vmatrix} 1 & 2 \\ 4 & \lambda \end{vmatrix} \Leftrightarrow \lambda - 8 = 0 \Leftrightarrow \lambda = 8.$$

5. Să se calculeze produsul $P = \sin 45^{\circ} \cdot \cos 60^{\circ}$. (5 pct.)

a)
$$\frac{1}{4}\sqrt{\frac{2}{3}}$$
; b) $\frac{1}{3}\sqrt{\frac{2}{3}}$; c) $\frac{\sqrt{2}}{4}$; d) $\sqrt{\frac{2}{3}}$; e) 1; f) $\sqrt{6}$.

Soluţie.
$$P = \frac{\sqrt{2}}{2} \frac{1}{2} = \frac{\sqrt{2}}{4}$$
.

6. În reperul ortonormat xOy se consideră vectorii perpendiculari $\vec{u} = \vec{i} + \vec{j}$ și $\vec{v} = 2\vec{i} + m\vec{j}$. Atunci: (5 pct.)

a)
$$m = 2$$
; b) $m = 3$; c) $m = 0$; d) $m = -1$; e) $m = -2$; f) $m = 1$.

Soluție. Produsul scalar al celor doi vectori trebuie să se anuleze, deci

$$\langle \vec{u}, \vec{v} \rangle = 0 \Leftrightarrow 1 \cdot 2 + 1 \cdot m = 0 \Leftrightarrow m + 2 = 0 \Leftrightarrow m = -2.$$

7. Ştiind că $\sin x = \frac{1}{2}$, să se calculeze $\cos^2 x$. (5 pct.)

a)
$$\frac{1}{2}$$
; b) $-\frac{1}{2}$ c) $\frac{3}{4}$; d) $-\frac{3}{4}$; e) 0; f) 2.

Soluţie. Folosind identitatea trigonometrică $\sin^2 x + \cos^2 x = 1$, obţinem $\frac{1}{4} + \cos^2 x = 1$, deci $\cos^2 x = \frac{3}{4}$.

8. Dacă $z = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$, atunci z^3 este egal cu: (5 pct.)

a)
$$-1$$
; b) $1 + i\frac{\sqrt{3}}{2}$; c) $\sqrt{\frac{2}{3}}$; d) i ; e) $-i$; f) 1.

Soluţie. Aplicăm formula lui Moivre $[\rho(\cos \alpha + i \sin \alpha)]^n = \rho^n(\cos n\alpha + i \sin n\alpha)$, pentru $\rho = 1$, $\alpha = \frac{\pi}{3}$, n = 3. Obţinem $z^3 = \cos \pi + i \sin \pi = -1 + i \cdot 0 = -1$.

9. Dreapta care trece prin punctele A(1,2) și B(2,5) are ecuația: (5 pct.)

a)
$$2y - x + 1 = 0$$
; b) $y - 3x + 1$; c) $2x - y = 0$; d) $3y + 2x - 1 = 0$; e) $2x - y - 1 = 0$; f) $x + 3y - 1 = 0$.

Soluție. Ecuația dreptei care trece prin punctele $A=(x_A,y_A),\ B=(x_B,y_B)$ este $\frac{x-x_A}{x_B-x_A}=\frac{y-y_A}{y_B-y_A}$. În cazul nostru, obținem $\frac{x-1}{2-1}=\frac{y-2}{5-2}\Leftrightarrow 3\cdot(x-1)=y-2\Leftrightarrow y-3x+1=0$.

10. Fie vectorii \vec{u} , \vec{v} astfel încât $||\vec{u}|| = 2$, $||\vec{v}|| = 3$, şi $\vec{u} \cdot \vec{v} = 3\sqrt{3}$. Găsiți măsura α a unghiului dintre vectorii \vec{u} și \vec{v} . (5 pct.)

a)
$$\alpha = \frac{\pi}{2}$$
; b) $\alpha = \frac{\pi}{3}$; c) $\alpha = \frac{2\pi}{3}$; d) $\alpha = 0$; e) $\alpha = \frac{\pi}{6}$ f) $\alpha = \frac{\pi}{5}$.

Soluție. Unghiul θ dintre vectorii \vec{u} și \vec{v} este caracterizat de egalitatea $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|}, \theta \in [0, \pi].$

Obţinem $\cos \theta = \frac{3\sqrt{3}}{2 \cdot 3} = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{6}$.

11. Distanța de la punctul O(0,0) la dreapta 3x - 4y - 4 = 0 este: (5 pct.)

a)
$$d = \frac{8}{5}$$
; b) $d = 2$; c) $d = \frac{3}{4}$; d) $d = 4$; e) $d = 3$; f) $d = \frac{4}{5}$.

Soluție. Distanța de la un punct $A(x_A, y_A)$ la o dreaptă $\Delta : ax + by + c = 0$ este $d = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}$.

La noi A = O(0,0) și $\Delta : 3x - 4y - 4 = 0$, deci $d = \frac{|-4|}{\sqrt{3^2 + (-4)^2}} = \frac{4}{5}$.

- 12. Să se calculeze aria unui triunghi echilateral cu latura de lungime 6. (5 pct.)
 - a) $9\sqrt{3}$; b) $7\sqrt{3}$; c) $6\sqrt{2}$; d) 36; e) 18; f) 9.

Soluție. Aria triunghiului echilateral de latură l este $A = \frac{l^2\sqrt{3}}{4}$, deci pentru l = 6 obținem $A = \frac{6^2\sqrt{3}}{4} = 9\sqrt{3}$.

13. Fie A(1,0), B(0,1), C(-2,0) și S aria triunghiului ABC. Atunci: (5 pct.)

a)
$$S = \frac{1}{2}$$
; b) $S = 2$; c) $S = \frac{3}{2}$; d) $S = 3$; e) $S = 1$; f) $S = \frac{5}{2}$.

Soluţie. Aria triunghiului ABC este:

$$S = \frac{1}{2} \cdot abs(\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}) = \frac{1}{2} \cdot abs(\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -2 & 0 & 1 \end{vmatrix}) = \frac{1}{2} \cdot |3| = \frac{3}{2}.$$

14. Fie $\hat{A}, \hat{B}, \hat{C}$ unghiurile unui triunghi ABC. Dacă $\sin \hat{A} = 1$, calculați $\hat{B} + \hat{C}$. (5 pct.)

a)
$$\frac{3\pi}{4}$$
; b) $\frac{\pi}{4}$; c) $\frac{4\pi}{5}$; d) $\frac{\pi}{2}$; e) $\frac{2\pi}{3}$; f) $\frac{\pi}{3}$.

Soluţie. Se observă că $\sin \hat{A} = 1 \Rightarrow \hat{A} = \frac{\pi}{2}$. Dar $\hat{A} + \hat{B} + \hat{C} = \pi$, deci $\hat{B} + \hat{C} = \frac{\pi}{2}$

15. Perimetrul triunghiului de vârfuri O(0,0), A(1,0), B(0,1) este: (5 pct.)

a)
$$2 + \sqrt{2}$$
; b) $2 + \sqrt{3}$ c) 1; d) 3; e) 4; f) $2 - \sqrt{2}$.

Soluție. Lungimile celor trei laturi ale triunghiului *OAB* sunt:

$$\begin{cases} OA = \sqrt{(x_A - x_O)^2 + (y_A - y_O)^2} = \sqrt{1^2 + 0^2} = 1\\ AB = \sqrt{(-1)^2 + 1^2} = \sqrt{2}, OB = \sqrt{0^2 + 1^2} = 1, \end{cases}$$

deci perimetrul este $OA + AB + OB = 1 + \sqrt{2} + 1 = 2 + \sqrt{2}$.

16. Aria unui pătrat este 4. Calculati diagonala pătratului. (5 pct.)

a)
$$2\sqrt{3}$$
; b) $\sqrt{5}$; c) 2; d) 1; e) $\sqrt{2}$; f) $2\sqrt{2}$

Soluție. Aria unui pătrat de latură a este $A=a^2$, deci $a=\sqrt{A}$. Diagonala pătratului de latură a fiind $d=a\sqrt{2}$, rezultă $d=\sqrt{A}\sqrt{2}=\sqrt{2A}$. În cazul nostru, avem $d=\sqrt{2\cdot 4}=2\sqrt{2}$.

- 17. Se dă triunghiul dreptunghic de laturi 3, 4, 5. Să se calculeze înalţimea din vârful unghiului drept. (5 pct.)
 - a) 3; b) 2, 4; c) 4; d) 4, 1; e) 2; f) 2, 5.

Soluţie. Dacă a este ipotenuza triunghiului dreptunghic iar b, c sunt cele două catete, atunci a > b, a > c și deci $a = 5, \{b, c\} = \{3, 4\}$. Atunci înălţimea din vârful unghiului drept este

$$h = \frac{b \cdot c}{a} = \frac{3 \cdot 4}{5} = \frac{12}{5} = 2.4$$

- 18. Laturile paralele ale unui trapez au lungimile 4 și 6. Să se determine lungimea liniei mijlocii a trapezului. (5 pct.)
 - a) 5; b) $\frac{7}{2}$; c) $\frac{9}{2}$; d) 1; e) 6; f) 4.

Soluţie. Linia mijlocie are lungimea egală cu semisuma bazelor trapezului, deci $\frac{4+6}{2}=5$.