Focus 7. Kinetics Overview

Topic 7A. Reaction Rates

- 7A.I Concentration and Reaction Rate
- 7A.2 The Instantaneous Rate of Reaction
- 7A.3 Rate Laws and Reaction Order

- Reaction rate: the 'speed' of a chemical reaction As the change in concentration of one of the reactants or products at a selected stage of the reaction divided by the time interval over which the change takes place.
- Average reaction rate for a reaction $R \rightarrow P$

$$\Delta[R] = [R]_{t2} - [R]_{t1}, \Delta t = t_2 - t_1$$

Average rate of consumption of R =
$$-\frac{\Delta[R]}{\Delta t}$$

Average rate of formation of
$$P = \frac{\Delta[P]}{\Delta t}$$

• For a reaction $H_2 + I_2 \rightarrow 2HI$

$$\frac{\Delta[H_2]}{\Delta t} = -\frac{1}{2} \frac{\Delta[HI]}{\Delta t}$$

■ Unique average rate for $aA + bB \rightarrow cC + dD$

Unique average reaction rate
$$= -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$$

- How can we measure reaction rates?
- Stopped-flow method

Spectrometry

The Instantaneous Rate of Reaction

Instantaneous rate of reaction
 the slope of a tangent drawn to the graph of concentration as a function of time

Rate of consumption of
$$R = -\frac{d[R]}{dt}$$

Rate of formation of
$$P = \frac{d[P]}{dt}$$

Reaction rate
$$= -\frac{1}{a} \frac{d[A]}{dt} = -\frac{1}{b} \frac{d[B]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = \frac{1}{d} \frac{d[D]}{dt}$$

- Initial rate
 The rate can be calculated without intervention of products.
- $2 N_2O_5 (g) \rightarrow 4 NO_2 (g) + O_2 (g)$ Initial rate of consumption of N_2O_5 $\propto [N_2O_5]_{initial} = k_r \times [N_2O_5]_{initial}$
- k_r : Rate constant

■ Second order: $2 \text{ NO}_2 (g) \rightarrow 2 \text{ NO} (g) + O_2 (g)$ Rate of consumption of $\text{NO}_2 = k_r \times [\text{NO}_2]^2$

■ Zeroth order: $2 \text{ NH}_3 (g) \rightarrow \text{N}_2 (g) + 3 \text{ H}_2 (g)$ Rate of consumption of $\text{NH}_3 = k_r$

Reaction	Rate law*	Temperature, T/K [†]	Rate constant
Gas phase			
$H_2 + I_2 \longrightarrow 2 HI$	$k_{\mathrm{r}}[\mathrm{H}_{2}][\mathrm{I}_{2}]$	500	$4.3 \times 10^{-7} \text{L·mol}^{-1} \cdot \text{s}^{-1}$
		600	4.4×10^{-4}
		700	6.3×10^{-2}
		800	2.6
$2 \text{ HI} \longrightarrow \text{H}_2 + \text{I}_2$	$k_{ m r}[{ m HI}]^2$	500	$6.4 \times 10^{-9} \text{L·mol}^{-1} \cdot \text{s}^{-1}$
		600	9.7×10^{-6}
		700	1.8×10^{-3}
		800	9.7×10^{-2}
$2 N_2 O_5 \longrightarrow 4 NO_2 + O_2$	$k_{\mathrm{r}}[\mathrm{N_2O_5}]$	298	$3.7 \times 10^{-5} \mathrm{s}^{-1}$
		318	5.1×10^{-4}
		328	1.7×10^{-3}
		338	5.2×10^{-3}
$2 N_2 O \longrightarrow 2 N_2 + O_2$	$k_{ m r}[{ m N}_2{ m O}]$	1000	0.76 s^{-1}
		1050	3.4
$2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + \text{O}_2$	$k_{ m r}[{ m NO}_2]^2$	573	$0.54 \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$
$C_2H_6 \longrightarrow 2 CH_3$	$k_{\rm r}[{ m C_2H_6}]$	973	$5.5 \times 10^{-4} \mathrm{s}^{-1}$
$cyclopropane \rightarrow propene$	$k_{\rm r}$ [cyclopropane]	773	$6.7 \times 10^{-4} \mathrm{s}^{-1}$
Aqueous solution			
$H_3O^+ + OH^- \longrightarrow 2 H_2O$	$k_{\rm r}[{ m H_3O}^+][{ m OH}^-]$	298	$1.5 \times 10^{11} \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$
$CH_3Br + OH^- \longrightarrow CH_3OH + Br^-$	$k_{\rm r}[{ m CH_3Br}][{ m OH}^-]$	298	$2.8 \times 10^{-4} \text{L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$
$C_{12}H_{22}O_{11} + H_2O \longrightarrow 2 C_6H_{12}O_6$	$k_{\rm r}[{\rm C}_{12}{\rm H}_{22}{\rm O}_{11}][{\rm H}^+]$	298	$1.8 \times 10^{-4} \text{L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$

Rate = constant x [concentration]^a
 nth reaction order according to a

Order in A	Rate law	
0	Rate = $k_{\rm r}$	
1	$Rate = k_{r}[A]$	
2	$Rate = k_{\rm r}[A]^2$	

The rate law for a reaction is determined experimentally and cannot in general be inferred from the chemical equation for the reaction.

- For general case, Rate = $k_r \times [A]^a [B]^b$
 - Overall order = a + b
 - Units of k_r

Overall order:	1	2	3
Units of k_r :	s^{-1}	$L \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	$L^2 \cdot \text{mol}^{-2} \cdot \text{s}^{-1}$
Overall order:	1	2	3
Units of k_r :	s^{-1}	$kPa^{-1} \cdot s^{-1}$	$kPa^{-2}\cdot s^{-1}$

■ $2 O_3 (g) \rightarrow 3 O_2 (g)$ with a negative reaction order

Rate =
$$k_r \frac{[O_3]^2}{[O_2]} = k_r [O_3]^2 [O_2]^{-1}$$

■ $2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$ with a fractional reaction order

Rate =
$$k_r \frac{[SO_2]}{[SO_3]^{1/2}} = k_r [SO_2][SO_3]^{-1/2}$$

Topic 7B. Integrated Rate Laws

- 7B.I First-Order Integrated Rate Laws
- 7B.2 Half-Lives for First-Order Reactions
- 7B.3 Second-Order Integrated Rate Laws

First-Order Integrated Rate Laws

For zeroth order reaction

$$[A]_0 - [A] = k_r t$$
 or $[A] = [A]_0 - k_r t$

First-Order Integrated Rate Laws

For first order reaction

Rate of consumption of
$$A = -\frac{d[A]}{dt} = k_r[A]$$

$$\int_{[A]_0}^{[A]_t} \frac{\mathrm{d}[A]}{[A]} = -k_r \int_0^t \mathrm{d}t = -k_r t$$

$$\int_{[A]_0}^{[A]_t} \frac{d[A]}{[A]} = (\ln [A]_t + \text{constant}) - (\ln [A]_0 + \text{constant})$$

$$\ln\frac{[\mathbf{A}]_t}{[\mathbf{A}]_0} = -k_{\mathbf{r}}t$$

$$\ln \frac{[A]_t}{[A]_0} = -k_r t \qquad [A]_t = [A]_0 e^{-k_r t}$$

First-Order Integrated Rate Laws

For first order reaction

$$\underbrace{\ln [A]_t}_{\text{intercept}} = \underbrace{\ln [A]_0}_{\text{o}} - \underbrace{k_r t}_{\text{o}}$$

Half-Lives for First-Order Reactions

From $\ln([A]_t/[A]_0) = -k_r t$ and $\ln(1/x) = -\ln x$

$$t = \frac{1}{k_{\rm r}} \ln \frac{[A]_0}{[A]_t}$$

Now set
$$t = t_{1/2}$$
 and $[A]_t = \frac{1}{2}[A]_0$

$$t_{1/2} = \frac{1}{k_{\rm r}} \ln \frac{[A]_0}{\frac{1}{2}[A]_0} = \frac{1}{k_{\rm r}} \ln 2$$

Second-Order Integrated Rate Laws

For second order reaction

$$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = k_{\mathrm{r}}[\mathrm{A}]^2$$

$$\int_{[A]_0}^{[A]_t} \frac{\mathrm{d}[A]}{[A]^2} = -k_r \int_0^t \mathrm{d}t = -kt$$

$$\int_{[A]_0}^{[A]_t} \frac{d[A]}{[A]^2} = \left(-\frac{1}{[A]_t} + \text{constant}\right) - \left(-\frac{1}{[A]_0} + \text{constant}\right)$$
$$= \frac{1}{[A]_0} - \frac{1}{[A]_t}$$

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = k_r t \quad [A]_t = \frac{[A]_0}{1 + k_r t [A]_0}$$

Second-Order Integrated Rate Laws

For second order reaction

$$\frac{y}{\underbrace{1}_{[A]_t}} = \frac{1}{\underbrace{1}_{[A]_0}} + \underbrace{k_r}^{slope} \underbrace{t}^{x}$$

Second-Order Integrated Rate Laws

		Order of reaction			
	0	1	2		
Rate law	Rate = $k_{\rm r}$	$Rate = k_r[A]$	$Rate = k_{r}[A]^{2}$		
Integrated rate law	$[\mathbf{A}]_t = -k_{\mathbf{r}}t + [\mathbf{A}]_0$	$[\mathbf{A}]_t = [\mathbf{A}]_0 \mathrm{e}^{-k_t t}$	$[A]_t = \frac{[A]_0}{1 + k_r t [A]_0}$		
			$\frac{1}{[\mathrm{A}]_t} = \frac{1}{[\mathrm{A}]_0} + k_\mathrm{r}t$		
Plot to determine order	$ \underbrace{ \left[A \right]_0}_{0} $	$\begin{bmatrix} \begin{bmatrix} A \end{bmatrix} \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}_0$ $\begin{bmatrix} A \end{bmatrix}_0$ t	$\begin{bmatrix} k_{r} \\ -1/[A]_{0} \\ 0 \\ t \end{bmatrix}$		
Slope of the line plotted	$-k_{ m r}$	$-k_{ m r}$	$k_{ m r}$		
Half-life	$t_{1/2} = \frac{[A]_0}{2k_{\rm r}}$	$t_{1/2} = \frac{\ln 2}{k_{\rm r}} \approx \frac{0.693}{k_{\rm r}}$	$t_{1/2} = \frac{1}{k_{\rm r}[{ m A}]_0}$		
	(not used)		(not used)		