[Total No. of CO's: 2]	Seat No:	[Total No. of Pages: 1]
[10tal No. 01 CO'S: 2]	Seat No:	[10tal No. 01 Pages: 1]

G. H. Raisoni College of Engineering and Management, Pune.

(An Autonomous Institution)
F.Y B.Tech (All Branches)
Winter 2020
CAE-III(2020 Pattern)

Subject Name: Matrices and Differential Calculus (UBSL103)

[Time: 1 Hour] [Max. Marks-15]

COURSE OUTCOME:

- 1. Understand and use the theory of Matrices to solve the system of linear equations and engineering problems in respective disciplines.
- 2. Determine the Eigenvalues and Eigenvectors of a matrix and apply to various engineering problems in respective disciplines.
- 3. Apply concepts of differentiation in solving engineering problems.
- 4. Use applications of partial differentiation to solve various problems in engineering.
- 5. Apply the Knowledge of vector differentiation to solve various problems in engineering.

Instructions to the candidates:.

- 1. All questions are compulsory.
- 2. Neat diagrams must be drawn wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

CO3 a) If
$$y = \cos(5x+3)$$
 then n^{th} order derivative of y is [1] L1

B) If $Y = \cos(a \log x)$, then prove that $x^2Yn+2+(2n+1)xYn+1+(n^2+a^2)Yn=0$

CO4 a) If $y = \log(x^2+y^2+xy)$ then calculate $y = \log(x^2+y^2+xy)$ then calculate $y = \log(x^2+y^2+xy)$ then calculate $y = \log(x^2+y^2+xy)$ b) Explain Euler's first and second theorem [2] L2

CO1 a) Find rank of matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ by reducing to normal form

CO2 a) Find all eigen values and eigen vector corresponding to largest [3] L4 eigen value for matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$