Aufgabe 1

1. Virtualbox starten.

2. Import klicken und die heruntergeladene .ova Datei auswählen.

3. Einstellungen der importierten Maschine öffnen, auf den Reiter Storage wechseln.

4. Unter SATA, neues Medium hinzufügen. Nach Klick auf Add, die heruntergeladene .iso auswählen.

5. Klick auf *Start*. Die defaults der graphischen Installation sind ausreichend, nur bei der auswahl des DE muss Xfce statt Gnome gewählt werden.

6. Fertig.

Aufgabe 2

• \$ cat /proc/version Linux version 5.10.0-12-amd64 (debian-kernel@lists.debian.org) (gcc -10 (Debian 10.2.1-6) 10.2.1 20210110, GNU ld (GNU Binutils for Debian) 2.35.2) #1 SMP Debian 5.10.103-1 (2022-03-07)}

cat file gibt den Inhalt der Datei file aus. /proc/version beinhaltet informationen über die Version des laufenden Linux-Kernels und die Umgebung in und mit der er gebaut wurde.

uname gibt Systeminformationen aus. Der -a switch gibt alle bekannten Informationen aus. Obenstehend zu sehen sind der Kernelname (Linux), der Network Hostname (hier debian, kann vom Benutzer üblicherweise bei Installation geändert werden), das verwendete Kernelrelease (5.10.0-12-amd64), Kernelversionsinformationen (#1 SMP Debian 5.10.103-1 (2022-03-07), Distributionsabhängig), Prozessortyp (x86_64) und Betriebssystem (GNU/Linux).

• \$ lshw -short

WARNING: you H/W path	should run Device	this program as Class	super-user. Description
/0		system bus	Computer Motherboard
/0/0		memory	1GiB System memory
/0/1 CPU @ 1.8	0	processor	Intel(R) Core(TM) i7-8550U
/0/100]		bridge	440FX — 82441FX PMC [Natoma

/0/100/1		bridge	82371SB PIIX3 ISA [Natoma/				
Triton II] /0/100/1.1		storage	82371AB/EB/MB PIIX4 IDE				
/0/100/2		display	SVGA II Adapter				
'. '. '. '.	enp0s3	network	82540EM Gigabit Ethernet				
Controller	onposo	nooworn	ozorozni digasir zinerner				
/0/100/4		generic	VirtualBox Guest Service				
/0/100/5		multimedia	82801AA AC'97 Audio				
Controller							
/0/100/6		bus	KeyLargo/Intrepid USB				
/0/100/7		bridge	82371AB/EB/MB PIIX4 ACPI				
/0/100/b		bus	82801FB/FBM/FR/FW/FRW (ICH6				
Family) U							
/0/100/d	scsi3	storage	82801HM/HEM (ICH8M/ICH8M-E)				
SATA Cont		_	, , , , , , , , , , , , , , , , , , , ,				
/0/100/d/0.0.0	/dev/cdrom	disk	CD-ROM				
/0/2	•	input	PnP device PNP0303				
/0/3		input	PnP device PNP0f03				
WARNING: output may be incomplete or inaccurate, you should run							
this program as super-user.							

1shw gibt Informationen über die Systemhardware aus. Zu sehen sind etwa RAM, CPU, Netzwerkkarte, diverse andere Mikrochips, (virtuelle) Festplatte, etc.

- pstree gibt die dem System laufenden Prozesse als Baum aus. Durch den -p switch werden PIDs (Prozess IDs) mitausgegeben. systemd ist als Initialisierungssystem und Servicemanager mit PID 1 die Wurzel des Baums. Weitere nennenswerte Prozesse waren etwa xfce4-terminal, NetworkManager, polkitd (permission managemenet) und lightdm (desktop management).
- 1scpu gibt Informationen über den Prozessor aus; etwa die Architektur, Byte-Reihenfolge, Anzahl der Kerne und Threads pro Kern, Geschwindigkeit der Kerne, Virtualisierungskapabilität, Cache-Größe, etc.

•	total	used	free	shared	buff/cache	available
Mem:	976Mi	562Mi	69Mi	7.0Mi	344Mi	270Mi
Swap:	974Mi	74Mi	900Mi			
Total:	1.9Gi	637Mi	969Mi			

free gibt Aufschluss über den freien und verwendeten Arbeitsspeicher. Der -h switch erzeugt menschenlesbaren Output (Werte werden automatisch auf die größtmögliche Einheit skaliert), der -t switch erzeugt einen Zeile mit Gesamtwerten. Die Swap-Spalte repräsentiert hier jenen Teil der Festplatte der zum Ablagern von selten verwendeten Speicherpages verwendet wird (oder potentiell für eine Hibernate Funktionalität, etc.).

• \$ uptime -s 2022-03-13 11:01:14

uptime gibt Informationen darüber, seit wann das System läuft. Der switch -s zeigt diese Information in Form des Startdatums, was die Information abhängig von der konfigurierten Zeitzone macht.