System Frameworks

System Concepts

Joseph J. Simpson

April 16th, 2004

Presentation Goals

Outline and define basic concepts, including system, meta-system, complexity and complexity measures.

Present a systematic approach to system framework development and use

Discuss typical system frameworks, architectures and reference models

Discuss and further define system "meta-models" and system abstraction frames

Overview

Provide definitions and context

Discuss system application modes

Outline system complexity measures

Define system engineering process as a problem solving activity

Introduce system abstraction frames

CCFRAT concepts (self-similar, recursive) for complexity control

Outline system design engine

Define system context and value network

Discuss system meta-levels and context refinement

Define Terms

System – "Functional" Definition:

"A system is a constraint on variety." (Heylighen 1994)

System – "Construction Rule" Definition:

"A system is a non-empty set of objects and a non-empty set of relationships mapped over these objects and their attributes."

(Simpson & Simpson 2003)

Define Terms

Meta-system:

"A meta-system is a set of value sentences which describe the wanted physical system, and which imply or actually comprise the parts and relationships of the meta-system." (A.D. Hall, 1989)

Meta-system:

"The meta-system indicates the field within which the system arises and within which it interacts with other systems." (K.D. Palmer, 2000)

Meta-system:

"A meta-system is a constrained variation of constrained varieties." (Heylighen 1994)

Discovery Mode & Design Mode

Two Primary System Application Modes

System	Ohiects	which nap" Relationships
Discovery Mode	Know the Objects	Discover the Relationships
Design Mode	Design the Objects	Know the Relationships

Discovery (Kepler)	Know the Planets	Discover the Mathematical Relationships	
Design	Design the	Know "Man on	
(Kennedy)	Objects, Config	the Moon"	

A Mapping Context for Complexity

(Does Not Address System Boundary Directly)

Eight Primary System Complexity Metrics

- 1 Number of objects Weinberg
- 2 Number of relationships
- 3 Number of different types of objects
- 4 Number of different types of relationships
- 5 Rate of change of objects Warfield (structure)
- 6 Rate of change of relationships Warfield (structure)
- 7 Rate of change of the environment
- 8 Range of variability

Meta Process in SE Notional Format

FRAT - System Views*

Any system must be expressed in four views

Problem Space Topology

Complexity # of Individuals, # of Variables	Problem Space Well-defined vs Ill-Defined	Solution Space Unique vs Multiple Solution(s)	
Simple	Well-Defined	Closed	
Simple	III-Defined	Closed	
Simple	Well-Defined	Open	
Simple	III-Defined	Open	
Complex	Well-Defined	Closed	
Complex	III-Defined	Closed	
Complex	Well-Defined	Open	
Complex	III-Defined	Open	

Complexity

Increasing

Features of a system are largely driven by its problem space

A systems approach is characterized hierarchically by

Abstraction frames

Deductive

Inductive

- Degree of complexity
- · Levels of detail

System Frameworks **CONTEXT VIEW CONCEPT VIEW** CONTEXT VIEW **Funct. View** Reqt. View Arch. View **Test View** CONTEXT VIEW **Function** Requirement **Architecture Test** F_2 **A**₁ R_1 R_2 R_3 A_3 T₂ A_2 **CONCEPT VIEW CONTEXT VIEW** Copyright 2004 Joseph Simpson 16

System Frameworks CONTEXT VIEW CONTEXT VIEW CONTEXT VIEW Value Set 1 Value Set 2 Copyright 2004 Joseph Simpson 17

Systems Approach: Phases, Hierarchies, Content

Meta Process **Pick One Aspect from Each Axis**

Applies to:

System Frameworks systems Meta-Levels -

Being's Meta-levels	Bateson's Series	Modalities of Being-in-the- World	Associated Cognitive Abilities	Systems Meta-levels
Being meta-level 5 ULTRA	This step into non- Being is ultimately unthinkable	Empty Handedness Emptiness or Void	Cognitive Inability	Rules For Developing Rules
Being meta-level WILD	Learning ⁴ to learn to learn to learn	Out-of-Hand	Encompassing	Rules For Developing Frameworks
Being meta-level 3 HYPER	Learning ³ to learn to learn	In-Hand	Bearing	Architectural Frameworks
Being meta-level PROCESS	Learning ² to learn	Ready-to-Hand	Grasping	Architectural System Schema
Being meta-level 1 PURE	Learning ¹ as an ideal gloss	Present-at-Hand	Pointing	Conceptual System Schema
Being meta-level ENTITY	Concrete Instances ⁰ of learning in world	Orientation toward Things	Thing	Single Physical Instance

(5)

4

3

2

0

Table from Palmer, Kent D., "Meta-systems Engineering,"
. 10th Annual Symposium of INCOSE, 2000

Copyright 2004 Joseph Simpson

Summary and Conclusions

Summary and Conclusions

Increasing system and environmental complexity can be measured and managed.

Systems engineering processes and principles provide a logical framework for evaluation of system complexity.

As product systems grow in size and complexity, system engineering must find and utilize the proper abstraction frame which reduces the system complexity and retains the proper level of system analysis.

The CCFRAT concepts and methods combined with welldefined meta-levels provide a foundation for a specialized systems engineering language.

Questions?