ELE476 Week-2 GNU Radio

Murat Sever ytregitim@gmail.com

Outline

GNU Radio Intro

GR Companion

GR Flow Graphs

Signal Exploration with GR

GR with Sound Card

GNU Radio

- We will use GNU Radio to
 - o analyze & simulate signals
 - teach signal processing
- So let's learn how to use it first!

GNU Radio is...

- A signal processing library
- Designed for real-time

- The software part of an SDR
- Not a radio application
- The tool to build your own transceivers
- FOSS: Free and Open Source Software

GNU Radio

- GNU Radio is an open source framework to do DSP for radio (communications, RADAR, radio astronomy...).
- Also useful for applications that do similar computing (even particle accelerators!).
- It comes with:
 - A GUI application called "GNU Radio companion" where systems can be implemented by dragging and dropping blocks onto a canvas (making a "flowgraph")
 - A rich library of processing blocks accessible both through GNU Radio companion, and C++ and Python APIs
 - A "runtime", that moves data between these blocks and runs the code of each block
- In the GNU Radio ecosystem there are out-of-tree modules, which implement new blocks that don't fit into or exist in the in-tree library
- There are also full applications that use GNU Radio for their DSP (for instance, GQRX, or QRadioLink)

GNU Radio

- Open-source framework for SDR and signal processing
- Founded by Eric Blossom in 2001
- Block-based dataflow architecture
- Each block runs in its own thread
- Data flows through a graph called a Flowgraph
 Blocks are nodes in a Flowgraph, and perform operations and signal processing
 Signals normalized between -1.0 and +1.0
- Similar in concept to MathWorks SimulinkTM
- Running C++ and Python under-the-hood
 Can write code directly, or use the GNU Radio Companion (GRC) graphical tool

Basic Concept: Flow Graph

- Transceivers are implemented as flow graphs
- Similar to Simulink / schematics
- Define structure and parameters of blocks

Basic Concept: Block

- Written in C++ or Python
- Implement one logical step
- Each block run in separate thread

Data Streams

Samples are buffered

Data types are color-coded

Color Types

Click on menu item Help->Types

GNU Radio Companion

Search Blocks

GUI Output and Instrumentation

GQRX - a **GNU** Radio Application

Out Of Tree Modules

- GNU Radio can be extended with OOTs
- OOTs cover more specific functionality
- There is a large number available
- CGRAN is our central database

GNU Radio is used by

GNU Radio is an Ecosystem

- Active Open Source community since 2001
- PyBombs, OOTs
- GRCon since 2011
- GNU Radio Foundation
- FOSDEM SDR DevRoom
- GSoC, SoCIS, R&S Competition, SDR Academy
- GNU Radio Europe

Learn // Discuss // Connect

- Website: www.gnuradio.org
- Development: github.com/gnuradio
- Mailing List: discuss-gnuradio@gnu.org
- Wiki: wiki.gnuradio.org
- Slack: slack.gnuradio.org
- Facebook: gnuradioproject
- Twitter: @gnuradio

Exploration of Signals in Frequency Domain

Thanks!
ytregitim@gmail.com
LinkedIn: murat-sever