Esercizi 8 – 28 novembre 2001

1) Dimostrare che f(z) è olomorfa se e solo se $\overline{f(\overline{z})}$ è olomorfa.

Se $f(z)=u(x,y)+i\,v(x,y)$, allora $\overline{f(\overline{z})}=u(x,-y)-i\,v(x,-y)=U(x,y)+i\,V(x,y)$. Si ha allora $U_x(x,y)=u_x(x,-y),\ U_y(x,y)=-u_y(x,-y),\ V_x(x,y)=-v_x(x,-y)$ e $V_y(x,y)=v_y(x,-y)$. Siccome f è olomorfa, u e v soddisfano le equazioni di Cauchy-Riemann, e quindi $u_x(x,-y)=v_y(x,-y)$ (da cui segue che $U_x(x,y)=V_y(x,y)$ e $u_y(x,-y)=-v_x(x,-y)$ (da cui segue che $U_y(x,y)=-V_x(x,y)$); pertanto, $\overline{f(\overline{z})}$ è olomorfa dal momento che U e V sono C^1 e soddisfano le equazioni di Cauchy-Riemann.

2) Dimostrare che non esiste nessuna funzione olomorfa f(z) tale che $\Re(f(z)) = 3x^2 + y^2$; trovare due funzioni continue su C di cui $3x^2 + y^2$ sia la parte reale.

Sia $f(z) = 3x^2 + y^2 + i v(x, y)$. Se f fosse olomorfa, dovrebbero valere le equazioni di Cauchy-Riemann, e quindi $v_x(x,y) = -2y$ e $v_y(x,y) = 6x$. Equivalentemente, v dovrebbe essere una funzione il cui gradiente ∇v è uguale a (-2y, 6x). Dal momento che la forma differenziale $\omega(x,y) = -2y dx + 6x dy$ non è esatta (non essendo chiusa), una tale funzione non esiste. Se $\varphi(x,y)$ è una qualsiasi funzione continua su \mathbf{R}^2 , la funzione $f(z) = f(x+iy) = 3x^2 + y^2 + i \varphi(x,y)$ ha come parte reale $3x^2 + y^2$ ed è continua.

3) Determinare una funzione non nulla $\varphi : \mathbf{R} \to \mathbf{R}$ tale che $u(x,y) = \varphi(x) \operatorname{sen}(y)$ sia la parte reale di una funzione olomorfa definita su \mathbf{C} . Successivamente, determinare almeno una funzione olomorfa f(z) la cui parte reale sia u(x,y).

Sia $f(z) = \varphi(x) \operatorname{sen}(y) + i v(x, y)$. Chiedere che f sia olomorfa è equivalente a chiedere che φ sia $C^{\infty}(\mathbf{R})$, che v sia $C^{\infty}(\mathbf{R}^2)$ e che valgano le equazioni di Cauchy-Riemann. In particolare, deve essere

$$\nabla v(x,y) = (v_x(x,y), v_y(x,y)) = (-\varphi(x) \cos(y), \varphi'(x) \sin(y)).$$

Equivalentemente, deve essere esatta su \mathbb{R}^2 la forma differenziale

$$\omega(x,y) = -\varphi(x)\cos(y)\,dx + \varphi'(x)\sin(y)\,dy.$$

Essendo \mathbb{R}^2 semplicemente connesso, condizione necessaria e sufficiente affinché ω sia esatta è che sia chiusa. Pertanto, deve essere

$$\varphi(x)\operatorname{sen}(y) = \varphi''(x)\operatorname{sen}(y)$$
,

ovvero $\varphi''(x) = \varphi(x)$, da cui $\varphi(x) = A e^x + B e^{-x}$, con A e B costanti reali (che scegliamo diverse da (0,0) se vogliamo φ non nulla). Per determinare una funzione f(z) di cui u sia la parte reale, prendiamo A = 1 e B = 0 e troviamo $u(x,y) = e^x \operatorname{sen}(y)$, da cui (a meno di costanti arbitrarie) $v(x,y) = -e^x \operatorname{cos}(y)$. Pertanto $f(z) = e^x (\operatorname{sen}(y) - i \operatorname{cos}(x)) = -i e^z$.

4) Sia f(z) = u(x,y) + iv(x,y) una funzione olomorfa. Dimostrare che (per ogni c_1 e c_2) le curve di livello $u(x,y) = c_1$ e $v(x,y) = c_2$ sono ortogonali tra di loro dove si intersecano. Disegnare le curve di livello nel caso $f(z) = z^2$.

In ogni punto della curva di livello $u(x,y)=c_1$ il gradiente $\nabla u(x,y)=(u_x,u_y)$ è parallelo alla normale alla curva, e lo stesso vale per il gradiente $\nabla v(x,y)=(v_x,v_y)$. Dal momento che, per le equazioni di Cauchy-Riemann,

$$(\nabla u(x,y)|\nabla v(x,y)) = u_x(x,y)\,v_x(x,y) + u_y(x,y)\,v_y(x,y) = v_y(x,y)\,v_x(x,y) - v_x(x,y)\,v_y(x,y) = 0\,,$$

se (x,y) appartiene ad una curva di livello di u e ad una di v, ne segue che le normali sono ortogonali, e quindi le (tangenti, ovvero le) curve sono ortogonali. Si veda la figura per il caso $f(z) = z^2$, quando $u(x,y) = x^2 - y^2$ e v(x,y) = 2xy.

5) Sia n in \mathbf{Z} ; calcolare

$$\int_{\gamma} \frac{1}{z^n}, \qquad \gamma(t) = e^{i\theta}, \ \theta \in [0, 2\pi).$$

Dal momento che, lungo la curva, $z^n=(\mathrm{e}^{i\theta})^n=\mathrm{e}^{i\,n\theta}$, mentre il differenziale vale $i\,\mathrm{e}^{i\,\theta}$ si ha

$$\int_{\gamma} \frac{1}{z^n} = \int_{0}^{2\pi} i e^{-in\theta} e^{i\theta} d\theta = i \int_{0}^{2\pi} \left[\cos((n-1)\theta) - i \sin((n-1)\theta) \right] d\theta = \begin{cases} 2\pi i & \text{se } n = 1, \\ 0 & \text{se } n \neq 1. \end{cases}$$

Ci si poteva logicamente attendere il risultato (almeno per n > 0, dal momento che l'integrale è (a meno di un fattore $\frac{2\pi i}{(n-1)!}$) il valore della derivata (n-1)-sima nell'origine della funzione olomorfa $f(z) \equiv 1$.

6) Sia n in \mathbb{N} ; sia

$$I_n = i \int_0^{2\pi} \left[2 \cos(\theta) \right]^{2n} d\theta.$$

Dimostrare che si ha

$$I_n = \int_{\gamma} \left(z + \frac{1}{z} \right)^{2n} \frac{1}{z}, \qquad \gamma(t) = e^{i\theta}, \ \theta \in [0, 2\pi).$$

Calcolare successivamente I_n usando l'esercizio precedente e la formula del binomio di Newton.

Lungo la curva γ si ha, ricordando che $2\cos(\theta)=\mathrm{e}^{i\,\theta}+\mathrm{e}^{-i\,\theta},$

$$I_n = \int_0^{2\pi} \left[e^{i\theta} + e^{-i\theta} \right] i \, d\theta = i \int_0^{2\pi} \left[2 \cos(\theta) \right]^{2n} d\theta,$$

come volevasi dimostrare. Essendo

$$\left(z + \frac{1}{z}\right)^{2n} = \sum_{k=0}^{2n} \binom{2n}{k} z^k \left(\frac{1}{z}\right)^{2n-k} = \sum_{k=0}^{2n} \binom{2n}{k} \left(\frac{1}{z}\right)^{2n-2k} ,$$

si ha

$$I_n = \sum_{k=0}^{2n} {2n \choose k} \int_{\gamma} \frac{1}{z^{2n+1-2k}}.$$

Per l'esercizio precedente, l'integrale è diverso da zero se e solo se 2n + 1 - 2k = 1, ovvero se e solo se k = n. Pertanto,

$$I_n = 2\pi i \binom{2n}{n} = 2\pi i \frac{(2n)!}{(n!)^2}.$$

7) Calcolare

$$\int_{\gamma_1} \frac{\sin(z)}{z - i}, \quad \gamma_1(t) = 2e^{i\theta}, \ \theta \in [0, 2\pi), \qquad \int_{\gamma_2} \frac{\cos(z)}{z^2}, \quad \gamma_1(t) = e^{i\theta}, \ \theta \in [0, 2\pi).$$

Dette $f_1(z) = \text{sen}(z)$ e $f_2(z) = \cos(z)$, si ha (da momento che γ_1 "gira" intorno a $z_0 = i$ e γ_2 "gira" intorno a $z_0 = 0$),

$$f_1(i) = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f_1(z)}{z - i}, \qquad f'_2(0) = \frac{1}{2\pi i} \int_{\gamma_2} \frac{f_2(z)}{z^2}.$$

Pertanto, il primo integrale vale $\pi(e^{-1} - e)$, mentre il secondo vale 0.

8) Calcolare

$$\int_{\gamma} \frac{z^2 + 4}{z(z^2 + 1)}, \quad \gamma(t) = 4e^{i\theta}, \ \theta \in [0, 2\pi).$$

La curva γ "gira" intorno all'origine, a z=i e a z=-i. Inoltre,

$$\frac{z^2+4}{z(z^2+1)} = \frac{4}{z} - \frac{3}{2} \frac{1}{z+i} - \frac{3}{2} \frac{1}{z-i},$$

e quindi

$$\int_{\gamma} \frac{z^2 + 4}{z(z^2 + 1)} = 4 \int_{\gamma} \frac{1}{z} - \frac{3}{2} \int_{\gamma} \frac{1}{z + i} - \frac{3}{2} \int_{\gamma} \frac{1}{z - i}.$$

Dal momento che tutti e tre gli integrali valgono $2\pi i$ (essendo uguali a $2\pi i$ volte il valore della funzione $g(z) \equiv 1$ in 0, $i \in -i$),

$$\int_{\gamma} \frac{z^2 + 4}{z(z^2 + 1)} = 2\pi i.$$

Alternativamente, si può osservare che l'integrale di $\frac{z^2+4}{z(z^2+1)}$ lungo γ è uguale a

$$\int_{\gamma_1} \frac{z^2 + 4}{z^2 + 1} \frac{1}{z} + \int_{\gamma_2} \frac{z^2 + 4}{z(z+i)} \frac{1}{z-i} + \int_{\gamma_3} \frac{z^2 + 4}{z(z-i)} \frac{1}{z+i}$$

dove γ_1 , γ_2 e γ_3 sono tre circonferenze centrate in 0, i e -i rispettivamente. Pertanto, per il teorema di Cauchy,

$$\begin{split} \int_{\gamma_1} \frac{z^2+4}{z^2+1} \frac{1}{z} &= 2\pi \, i \, \left. \frac{z^2+4}{z^2+1} \right|_{z=0} = 8\pi \, i \, , \\ \int_{\gamma_2} \frac{z^2+4}{z(z+i)} \frac{1}{z-i} &= 2\pi \, i \, \left. \frac{z^2+4}{z(z+i)} \right|_{z=i} = -3\pi \, i \, , \\ \int_{\gamma_3} \frac{z^2+4}{z(z-i)} \frac{1}{z+i} &= 2\pi \, i \, \left. \frac{z^2+4}{z(z-i)} \right|_{z=-i} = -3\pi \, i \, . \end{split}$$

9) Calcolare

$$g(z_0) = \int_{\gamma} \frac{\overline{z}}{z - z_0}, \qquad \gamma(t) = z_0 + e^{i\theta}, \ \theta \in [0, 2\pi).$$

Perché la funzione g non è olomorfa?

Essendo, lungo la curva γ , $\overline{z} = \overline{z_0} + e^{-i\theta}$, si ha

$$g(z_0) = \int_{\gamma} \frac{\overline{z}}{z - z_0} = \int_0^{2\pi} i \left[\overline{z_0} + e^{-i\theta} \right] d\theta = 2\pi i \overline{z_0}.$$

Pertanto, $g(z_0) = 2\pi i \overline{z_0}$ si può rappresentare come integrale, esattamente come ogni funzione olomorfa. La differenza con le funzioni olomorfe è dovuta al fatto che il percorso di integrazione dipende anche esso da z_0 e pertanto non si può derivare "impunemente" sotto il segno di integrale per ottenere una rappresentazione della derivata di g (che, infatti, non esiste).

10) Sia $\alpha > 0$ e sia V_{α} lo spazio vettoriale (su ${\bf C}$) definito da

 $V_{\alpha} = \left\{ f: \mathbf{C} \to \mathbf{C} \text{ olomorfe tali che esiste } C > 0 \text{ per il quale } |f(z)| \leq C(1+|z|)^{\alpha} \text{ per ogni } z \text{ in } \mathbf{C} \right\}.$

Calcolare la dimensione di V_{α} su ${\bf C}$.

Sia k intero maggiore di α . Allora, essendo f olomorfa,

$$f^{(k)}(z_0) = \frac{k!}{2\pi i} \int_{\gamma_R} \frac{f(z)}{(z - z_0)^{k+1}},$$

dove γ_R è la circonferenza di centro z_0 e raggio R. Pertanto

$$|f^{(k)}(z_0)| \le \frac{k!}{2\pi} \int_0^{2\pi} \frac{|f(z)|}{R^{k+1}} R d\theta \le C k! \frac{(1+R)^{\alpha}}{R^k}.$$

Facendo tendere R ad infinito, si ottiene che $f^{(k)}(z_0) = 0$ per ogni $k > \alpha$ e quindi f è un polinomio di grado minore di k. Detta K la parte intera di α , allora

 $V_{\alpha} = \{ \text{polinomi di grado minore o uguale a } K \},$

e quindi la dimensione di V_{α} è K+1.

Esercizi 9 - 5 dicembre 2001

1) Sia $u(x,y) = a_0x^2 + 2a_1xy + a_2y^2$, con a_i in **R**. Determinare tutte le funzioni olomorfe f di cui u è la parte reale.

Affinché esista v tale che u+iv sia olomorfa, deve essere $v_y=u_x=2a_0x+2a_1y$ e $v_x=-u_y=-2a_1x-2a_2y$. Integrando la prima, si trova

$$v(x,y) = 2a_0xy + a_1y^2 + g(x),$$

e derivando rispetto a x,

$$v_x(x,y) = 2a_0y + g'(x) = -2a_1x - 2a_2y,$$

da cui deve essere $a_0 = -a_2$ e $g(x) = -a_1x^2 + c_1$, con c_1 costante arbitraria in **R**. In definitiva,

$$v(x,y) = -a_1 x^2 + 2a_0 xy + a_1 y^2 + c_1.$$

Pertanto,

$$f(z) = u(x,y) + iv(x,y) = a_0x^2 + 2a_1xy - a_0y^2 + i(-a_1x^2 + 2a_0xy + a_1y^2 + c_1)$$

= $a_0[x^2 - y^2 + 2ixy] + a_1i[x^2 - y^2 + 2ixy] + ic_1$,

ovvero $f(z) = (a_0 + ia_1) z^2 + i c_1$ e, per l'arbitrarietà di a_0 e a_1 , $f(z) = c_0 z^2 + i c_1$, con c_0 in \mathbf{C} e c_1 in \mathbf{R} .

2) Siano

$$f(z) = \frac{z^2 - 2}{z(z+2)}, \qquad \gamma(\theta) = \frac{\theta + 1}{3} e^{i\theta}, \quad \theta \in [0, 2\pi].$$

Calcolare

$$\int_{\gamma} f(z) \,.$$

La curva γ non è chiusa: costruiamo allora, a partire da γ , la curva chiusa $\bar{\gamma}$ ottenuta aggiungendo il segmento S dell'asse reale di estremi $\frac{1}{3}$ e $\frac{2\pi+1}{3}$ (si veda la figura).

Per il teorema di Cauchy, essendo

$$f(z) = \frac{z^2 - 2}{z + 2} \frac{1}{z},$$

e dal momento che z=-2 è fuori dalla parte di piano racchiusa da $\bar{\gamma}$, mentre l'origine è dentro,

$$-1 = \frac{z^2 - 2}{z + 2} \bigg|_{z=0} = \frac{1}{2\pi i} \int_{\bar{\gamma}} \frac{z^2 - 2}{z + 2} \frac{1}{z} = \frac{1}{2\pi i} \left(\int_{\gamma} \frac{z^2 - 2}{z(z + 2)} - \int_{S} \frac{z^2 - 2}{z^2 + 2z} \right).$$

Pertanto,

$$\int_{\gamma} f(z) = -2\pi\,i + \int_{S} \frac{z^2-2}{z^2+2z} = -2\pi\,i + \int_{\frac{1}{2}}^{\frac{2\pi+1}{3}} \frac{t^2-2}{t^2+2}\,dt\,,$$

con l'ultimo integrale di calcolo immediato.

3) Sia $Q = [-1, 1] \times [-1, 1]$. Verificare che la serie

$$\sum_{k=0}^{+\infty} \frac{\cos(kz)}{3^k} \,,$$

converge uniformemente in Q e calcolare la somma della serie. Successivamente, determinare il più grande insieme di convergenza puntuale della serie.

Per definizione, $\cos(kz) = \frac{e^{ikz} + e^{-ikz}}{2}$, e quindi

$$f(z) = \frac{1}{2} \sum_{k=0}^{+\infty} \frac{e^{ikz}}{3^k} + \frac{1}{2} \sum_{k=0}^{+\infty} \frac{e^{-ikz}}{3^k}.$$

Ponendo $\xi=\mathrm{e}^{iz}$ nella prima, e $\eta=\mathrm{e}^{-iz}$ nella seconda, otteniamo due serie di potenze,

$$f(\xi, \eta) = \frac{1}{2} \sum_{k=0}^{+\infty} \frac{\xi^k}{3^k} + \frac{1}{2} \sum_{k=0}^{+\infty} \frac{\eta^k}{3^k}.$$

La prima converge per $|\xi| < 3$, ovvero per (x, y) tale che $e^{-y} < 3$, la seconda per $|\eta| < 3$, ovvero per (x, y) tale che $e^y < 3$. Pertanto, si ha convergenza puntuale in $\mathbf{R} \times (-\ln(3), \ln(3))$, e convergenza uniforme sui compatti contenuti, ed in particolare su Q. Inoltre, essendo $\xi + \eta = 2\cos(z)$ e $\xi \eta = 1$,

$$f(z) = f(\xi, \eta) = \frac{1}{2} \left(\frac{1}{1 - \frac{\xi}{3}} + \frac{1}{1 - \frac{\eta}{3}} \right) = \frac{3}{2} \frac{6 - (\xi + \eta)}{9 - 3(\xi + \eta) + \xi \eta} = \frac{3}{2} \frac{6 - 2\cos(z)}{10 - 6\cos(z)} = \frac{9 - 3\cos(z)}{10 - 6\cos(z)}.$$

Si noti che f non è definita per $z = \pm i \ln(3)$, in quanto $\cos(\pm i \ln(3)) = \frac{5}{3}$.

4) Sia $\{a_n\}$ una successione di numeri reali tendente a zero e sia

$$u(x,y) = \Re\left(\sum_{k=0}^{+\infty} a_k e^{ikz}\right).$$

Verificare che u è armonica all'interno dell'insieme di definizione.

Se definiamo $\xi = e^{iz}$, la serie diventa la serie di potenze

$$\sum_{k=0}^{+\infty} a_k \, \xi^k \, .$$

Dal momento che a_n tende a zero, definitivamente $|a_n| \leq 1$, e quindi $\sqrt[n]{|a_n|} \leq 1$; pertanto,

$$\frac{1}{\rho} = \limsup_{n \to +\infty} \sqrt[n]{|a_n|} \le 1,$$

da cui segue che il raggio di convergenza della serie di potenze è più grande di 1. La serie converge allora "almeno" per $|\xi| = |e^{iz}| = e^{-y} < 1$, ovvero per ogni x in \mathbf{R} e per y > 0. All'interno dell'insieme dove la serie converge, comunque, la somma della serie è una funzione olomorfa. Scrivendo $e^{ikz} = e^{-ky} (\cos(kx) + i\sin(kx))$, allora, essendo a_k reale,

$$u(x,y) = \sum_{k=0}^{+\infty} a_k \cos(kx) e^{-ky},$$

e u è armonica come parte reale di una funzione olomorfa.

5) Sia g in $C^1([-\pi, \pi])$, pari e tale che

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kx) g(x) \, dx = \frac{1}{2^k} \, .$$

Trovare una funzione u armonica in $[-\pi, \pi] \times [0, +\infty)$ tale che u(x, 0) = g(x).

La funzione g è sviluppabile in serie di Fourier in $[-\pi, \pi]$, e si ha (aggiungendo $\frac{1}{2}$ per rendere compatta la formula)

$$g(x) + \frac{1}{2} = \sum_{k=0}^{+\infty} \frac{1}{2^k} \cos(kx),$$

con convergenza uniforme della serie. Definiamo

$$u(x,y) = \frac{1}{2} + \sum_{k=0}^{+\infty} \frac{1}{2^k} \cos(kx) e^{-ky},$$

in modo tale che u(x,0)=g(x). Per l'esercizio precedente, la serie è la parte reale di una serie che converge per $|e^{iz}|<2$, ovvero per x qualsiasi e $y>\ln(2)$, ad una funzione olomorfa. Pertanto, u è armonica in $[-\pi,\pi]\times[0,+\infty)$.

6) Classificare le singolarità delle funzioni

$$\frac{\sec(z)}{z}$$
, $\frac{\cos(z)}{z}$, $\frac{1}{(2-z)^3}$, $\frac{z^2}{1+z}$, $ze^{\frac{1}{z}}$.

 $\frac{\sec(z)}{z} \qquad \frac{\cos(z)}{z} \qquad \frac{1}{(2-z)^3} \qquad \frac{z^2}{1+z} \qquad z \, \mathrm{e}^{\frac{1}{z}}$ eliminabile ' polo di ordine 1 ' polo di ordine 3 ' polo di ordine 1 ' essenziale

7) Sviluppare $f(z) = \frac{1}{z^3 - z^4}$ in serie di Laurent di potenze di z, prima nel cerchio di centro l'origine e raggio 1 (privato dell'origine) e poi fuori dal cerchio di centro l'origine e raggio 1.

Per il primo sviluppo, scriviamo

$$f(z) = \frac{1}{z^3} \frac{1}{1-z} = \frac{1}{z^3} \sum_{k=0}^{+\infty} z^k = \sum_{k=-3}^{+\infty} z^k,$$

mentre per il secondo

$$f(z) = \frac{1}{z^4} \frac{1}{\frac{1}{z} - 1} = -\frac{1}{z^4} \sum_{k=0}^{+\infty} \frac{1}{z^k} = -\sum_{k=4}^{+\infty} \frac{1}{z^k}.$$

8) Sviluppare $f(z) = \frac{e^z}{(z+1)^2}$ in serie di Laurent di potenze di z+1.

Se definiamo $g(z) = e^z$, dal momento che $g^{(k)}(-1) = e^{-1}$ per ogni k, si ha

$$e^z = \sum_{k=0}^{+\infty} \frac{e^{-1}}{k!} (z+1)^k,$$

e quindi

$$f(z) = \sum_{k=-2}^{+\infty} \frac{e^{-1}}{k!} (z+1)^k.$$

9) Sia, per y reale e t > 0, $t^{iy} = e^{iy \ln(t)} = \cos(y \ln(t)) + i \sin(y \ln(t))$, e sia

$$\Gamma(z) = \int_0^{+\infty} e^{-t} t^{z-1} dt, \qquad z \in \mathbf{C}.$$

Dimostrare che Γ è ben definita per $\Re(z) > 0$, e che $\Gamma(z) = (z-1)\Gamma(z-1)$; calcolare $\Gamma(n)$ per ogni n in \mathbb{N} .

Si ha $|t^{z-1}| = |t^{x-1}t^{iy}| = t^{x-1}$, dal momento che $|t^{iy}| = 1$. Pertanto, $|e^{-t}t^{z-1}| = e^{-t}t^{x-1}$. Essendo $x = \Re(z) > 0$, la funzione $e^{-t}t^{x-1}$ è integrabile vicino a 0, mentre lo è a $+\infty$ qualsiasi sia x. Pertanto, essendo $|e^{-t}t^{z-1}|$ in $L^1((0,+\infty))$ se x > 0, la funzione Γ è ben definita per $\Re(z) > 0$. Si ha poi, integrando per parti,

$$\Gamma(z) = \int_0^{+\infty} e^{-t} t^{z-1} dt = -e^{-t} t^{z-1} \Big|_{t=0}^{t=+\infty} + (z-1) \int_0^{+\infty} e^{-t} t^{z-2} dt = (z-1) \Gamma(z-1).$$

Essendo (come si verifica facilmente) $\Gamma(1) = 1$, dalla relazione precedente si ricava $\Gamma(n) = (n-1)!$.

10) Siano

$$\zeta(z) = \sum_{n=1}^{+\infty} \frac{1}{n^z}, \qquad \zeta_{\mathbf{a}}(z) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^z}.$$

Dimostrare che la serie che definisce ζ converge puntualmente per $\Re(z) > 1$, totalmente per $\Re(z) \ge R > 1$; che la serie che definisce ζ_a converge uniformemente per $\Re(z) \ge R > 0$; dimostrare che, se $\Re(z) > 1$, allora

$$\zeta_{\mathrm{a}}(z) = \zeta(z) - \frac{2}{2^z} \zeta(z),$$

e che pertanto è possibile prolungare analiticamente ζ per $\Re(z) > 0, z \neq 1$, definendo

$$\zeta(z) = \frac{\zeta_{\rm a}(z)}{1 - 2^{1-z}}.$$

Infine, dimostrare che se $\zeta(z_0) = 0$, e $\Im(z_0) \neq 0$, allora $\Re(z_0) = \frac{1}{2}$.

Si ha $|n^z| = |n^x n^{iy}| = n^x$. Pertanto, se $\Re(z) > 1$, la serie dei moduli è uguale a

$$\sum_{n=1}^{+\infty} \frac{1}{n^x},$$

che converge (come serie armonica generalizzata con esponente x > 1). Inoltre, essendo

$$\sup_{[R,+\infty)} \frac{1}{n^x} = \frac{1}{n^R} \,,$$

la serie converge totalmente se $\Re(z) \geq R > 1$. Per quanto riguarda la seconda serie, se $\Re(z) \geq R > 0$, allora

$$\sup_{[R,+\infty)} \frac{1}{n^x} = \frac{1}{n^R},$$

che è una successione decrescente a zero. Per il criterio di Leibnitz per serie di funzioni a segni alterni, la serie converge uniformemente. Ovviamente, ζ e ζ_a sono olomorfe per $\Re(z) \geq R > 1$ e $\Re(z) \geq R > 0$ rispettivamente. Sia ora z tale che $\Re(z) > 1$. Allora

$$\sum_{n=1}^{+\infty} \frac{1}{n^z} - \sum_{n=1}^{+\infty} \frac{2}{(2n)^z} = \left(1 + \frac{1}{2^z} + \frac{1}{3^z} + \frac{1}{4^z} + \ldots\right) - \left(\frac{2}{2^z} + \frac{2}{4^z} + \frac{2}{6^z} + \ldots\right) = 1 - \frac{1}{2^z} + \frac{1}{3^z} - \frac{1}{4^z} + \ldots,$$

e i passaggi sono leciti perché entrambe le serie sono assolutamente convergenti. Pertanto,

$$\zeta_{\mathbf{a}}(z) = \zeta(z) - \frac{2}{2^z} \zeta(z) \,,$$

e da questa formula si ottiene il prolungamento analitico di ζ per $0 < \Re(z) \le 1$ (tolto z = 1).

L'ultima domanda è la cosiddetta **ipotesi di Riemann**: il fatto che tutti gli zeri non reali di ζ (detta **funzione zeta di Riemann**) abbiano parte reale $\frac{1}{2}$ non è ancora stato dimostrato (anche se si sa che è vero per i primi 1500000001 zeri); dopo che Wiles ha dimostrato l'Ultimo Teorema di Fermat nel 1994, è probabilmente il più importante problema aperto della matematica...

Una seconda rappresentazione (significativa) della funzione ζ è la seguente (dovuta ad Eulero):

$$\zeta(z) = \prod_{p \text{ primo}} \frac{1}{1 - p^{-z}}.$$

Infatti,

$$\frac{1}{1 - p^{-z}} = \sum_{k=0}^{+\infty} \left(\frac{1}{p^z}\right)^k \,,$$

e quindi

$$\prod_{p \text{ primo}} \frac{1}{1 - p^{-z}} = \left(\sum_{k_1 = 0}^{+\infty} \left(\frac{1}{2^z}\right)^{k_1}\right) \left(\sum_{k_2 = 0}^{+\infty} \left(\frac{1}{3^z}\right)^{k_2}\right) \left(\sum_{k_3 = 0}^{+\infty} \left(\frac{1}{5^z}\right)^{k_3}\right) \dots \\
= \left(1 + \frac{1}{2^z} + \frac{1}{4^z} + \dots\right) \left(1 + \frac{1}{3^z} + \frac{1}{9^z} + \dots\right) \left(1 + \frac{1}{5^z} + \frac{1}{25^z} + \dots\right) \\
= 1 \cdot 1 \cdot 1 \cdot \dots + \frac{1}{2^z} \cdot 1 \cdot 1 \cdot \dots + \frac{1}{3^z} \cdot 1 \cdot 1 \cdot \dots + \frac{1}{4^z} \cdot 1 \cdot 1 \cdot \dots + \frac{1}{5^z} \cdot 1 \cdot 1 \cdot \dots + \dots$$

cioè proprio $\zeta(z)$, dal momento che ogni numero n si può esprimere in maniera unica come prodotto di primi. Se, poi, calcoliamo il logaritmo di $\zeta(z)$, abbiamo, detto $\pi(x)$ = numero dei numeri primi minori o uguali a x (ad esempio, $\pi(2) = 1$, $\pi(3) = 2 = \pi(\pi)$, $\pi(30) = 10$ (se non ho sbagliato a contare)), si ha

$$\ln(\zeta(z)) = z \int_2^{+\infty} \frac{\pi(x)}{x(x^z - 1)} dx,$$

cosicché è (nuovamente) evidente il legame tra la ζ di Riemann ed i numeri primi.

Esercizi 10 - 12 dicembre 2001

1) Sia n in N; calcolare

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^{2n}}.$$

La funzione $f(z) = \frac{1}{1+z^{2n}}$ ha, nel semipiano $\Im(z) \ge 0$, esattamente n radici date da

$$z_k = e^{i\frac{(2k+1)\pi}{2n}}, \qquad k = 0, \dots, n-1,$$

e tali che

$$\operatorname{Res}[f(z), z_k] = \frac{1}{2n z_k^{2n-1}} = -\frac{z_k}{2n},$$

dal momento che $z_k^{2n} = -1$. Pertanto,

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^{2n}} = -\frac{\pi}{n} i \sum_{k=0}^{n-1} e^{i\frac{(2k+1)\pi}{2n}} = -\frac{\pi}{n} i e^{i\frac{\pi}{2n}} \sum_{k=0}^{n-1} \left(e^{i\frac{\pi}{n}} \right)^k = -\frac{\pi}{n} i e^{i\frac{\pi}{2n}} \frac{1-e^{i\frac{n\pi}{n}}}{1-e^{i\frac{\pi}{n}}} = \frac{\frac{\pi}{n}}{\operatorname{sen}\left(\frac{\pi}{2n}\right)}.$$

2) Si P(x) un qualsiasi polinomio di grado 2 con due radici reali. Calcolare

$$\int_{-\infty}^{+\infty} \frac{P(x)}{(x^2+4)(x^2-2x+2)}.$$

Sia $f(z) = \frac{P(z)}{(z^2+4)(z^2-2x+2)}$. Allora

$$\int_{-\infty}^{+\infty} \frac{P(x)}{(x^2+4)(x^2-2x+2)} = 2\pi i \sum_{k=1}^{2} \text{Res}[f(z), z_k],$$

dove $z_1=2i$ e $z_2=1+i$ (gli unici poli di f nel semipiano $\Im(z)\geq 0$). Eseguendo i calcoli, si ha

$$\int_{-\infty}^{+\infty} \frac{P(x)}{(x^2+4)(x^2-2x+2)} = 2\pi i \left(\frac{P(2i)}{16-8i} + \frac{P(1+i)}{8i-4} \right) = \frac{\pi}{20} \left(8\alpha + 2\beta + 3\gamma \right),$$

se $P(x) = \alpha x^2 + \beta x + \gamma$.

3) Siano a e b reali e maggiori di 1. Calcolare

$$\int_0^{2\pi} \frac{a + \operatorname{sen}(\theta)}{b + \cos(\theta)} d\theta.$$

Effettuando la sostituzione $z = e^{i\theta}$, si ha

$$\int_0^{2\pi} \frac{a + \operatorname{sen}(\theta)}{b + \operatorname{cos}(\theta)} \, d\theta = \frac{1}{i} \int_{|z| = 1} \frac{1}{z} \frac{a + \frac{1}{2i} \left(z - \frac{1}{z}\right)}{b + \frac{1}{2} \left(z + \frac{1}{z}\right)} = - \int_{|z| = 1} \frac{1}{z} \frac{z^2 + 2aiz - 1}{z^2 + 2bz + 1} \, .$$

Gli zeri del denominatore sono z=0 e $_-z_+=-b\pm\sqrt{b^2-1}$; degli ultimi due, solo $z_+=\sqrt{b^2-1}-b$ è all'interno di centro l'origine e raggio 1; pertanto

$$\int_0^{2\pi} \frac{a + \sin(\theta)}{b + \cos(\theta)} d\theta = -2\pi i \left(\text{Res}[g(z), 0] + \text{Res}[g(z), z_+] \right), \qquad g(z) = \frac{1}{z} \frac{z^2 + 2aiz - 1}{z^2 + 2bz + 1}.$$

Svolgendo i calcoli, si ha

Res
$$[g(z), 0] = -1$$
, Res $[g(z), z_{+}] = 1 + \frac{ai}{\sqrt{b^{2} - 1}}$,

cosicché

$$\int_0^{2\pi} \frac{a + \operatorname{sen}(\theta)}{b + \cos(\theta)} d\theta = \frac{2\pi a}{\sqrt{b^2 - 1}}.$$

4) Sia $\gamma = +\partial B_2(0)$. Calcolare

$$\int_{\gamma} \frac{z^5 + 3}{(z^2 + 1)^3 (z - 3)^2} \,.$$

All'interno di γ la funzione integranda ha 2 poli $(\pm i)$, entrambi di ordine 3. Fuori, invece, c'è z=3, che è polo di ordine 2. Conviene allora calcolare l'integrale come

$$\int_{\gamma} \frac{z^5 + 3}{(z^2 + 1)^3 \, (z - 3)^2} = -2\pi \, i(\mathrm{Res}[f(z), 3] + \mathrm{Res}[f(z), \infty]) \, .$$

Ora

$$\operatorname{Res}[f(z), 3] = -\frac{189}{5000}$$

mentre $\operatorname{Res}[f(z), \infty] = 0$ (come si vede facendo tendere R ad infinito nell'integrale di f lungo la circonferenza di centro l'origine e raggio R, che si comporta come R^{-2}), e quindi

$$\int_{\gamma} \frac{z^5 + 3}{(z^2 + 1)^3 \, (z - 3)^2} = \frac{189 \pi \, i}{2500} \, .$$

5) Calcolare

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + 1} \, dx \, .$$

Si ha

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + 1} dx = \Im\left(\int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 + 1} dx\right).$$

Se definiamo $f(z)=\frac{\mathrm{e}^{iz}}{z^2+1},$ allora f è olomorfa nel semipiano $\Im(z)\geq 0$ tranne z=i. Pertanto,

$$\int_{-\infty}^{+\infty} \frac{\mathrm{e}^{ix}}{x^2 + 1} \, dx = 2\pi \, i \, \mathrm{Res}[f(z), i] = \frac{\pi}{\mathrm{e}} \,,$$

e questo è anche il risultato dell'integrale.

6) Sia r > 0 e sia $\gamma_r = \gamma_1 \cup \gamma_2 \cup \gamma_3$, dove γ_1 è il segmento tra (0,0) e (r,0), γ_2 è l'arco di circonferenza $r e^{i\theta}$, con $0 \le \theta \le \frac{\pi}{4}$, e γ_3 è il segmento tra $r e^{i\frac{\pi}{4}}$ e l'origine. Ricordando che

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2},$$

calcolare

$$\int_{0}^{+\infty} e^{ix^2} dx,$$

integrando e^{iz^2} lungo γ_r . Ottenere il valore dell'integrale da 0 ad infinito di $\cos(x^2)$.

Essendo e^{iz^2} olomorfa, si ha

$$0 = \int_{\gamma_r} e^{iz^2} = \int_{\gamma_1} e^{iz^2} + \int_{\gamma_2} e^{iz^2} + \int_{\gamma_3} e^{iz^2}.$$

Si ha

$$\int_{\gamma_1} e^{iz^2} = \int_0^r e^{ix^2} dx,$$

e, parametrizzando γ_3 come $t\left(\frac{1+i}{\sqrt{2}}\right)$ con t tra r e 0, si ha

$$\int_{\gamma_3} e^{iz^2} = \int_r^0 e^{it^2 \left(\frac{1+i}{\sqrt{2}}\right)^2} \left(\frac{1+i}{\sqrt{2}}\right) dt = -\int_0^r e^{-t^2} \left(\frac{1+i}{\sqrt{2}}\right) dt,$$

e quindi

$$\lim_{r \to +\infty} \int_{\gamma_3} e^{iz^2} = -\left(\frac{1+i}{\sqrt{2}}\right) \frac{\sqrt{\pi}}{2}.$$

Infine,

$$\int_{\gamma_2} {\rm e}^{iz^2} = \int_0^{\frac{\pi}{4}} {\rm e}^{ir^2\,{\rm e}^{2i\theta}} \, i\, r\, {\rm e}^{i\theta} \, d\theta = r\, i\, \int_0^{\frac{\pi}{4}} {\rm e}^{-r^2{\rm sen}(2\theta) + i\, (r^2\cos(2\theta) + \theta)} \, d\theta \, .$$

Pertanto,

$$\left| \int_{\gamma_2} e^{iz^2} \right| \le r \int_0^{\frac{\pi}{4}} e^{-r^2 \operatorname{sen}(2\theta)} d\theta.$$

Ora $sen(2\theta) \ge \frac{4}{\pi}\theta$ per ogni θ tra $0 e^{\frac{\pi}{4}}$, per cui

$$\left| \int_{\gamma_2} e^{iz^2} \right| \le r \int_0^{\frac{\pi}{4}} e^{-\frac{4r^2\theta}{\pi}} d\theta = r \left(-\frac{e^{-\frac{4r^2\theta}{\pi}}}{\frac{4r^2}{\pi}} \right|_{\theta=0}^{\theta=\frac{\pi}{4}} \right) = \frac{\pi}{4r} \left(1 - e^{-r^2} \right),$$

che tende a zero per r tendente ad infinito. Pertanto,

$$\int_0^{+\infty} e^{ix^2} dx = \left(\frac{1+i}{\sqrt{2}}\right) \frac{\sqrt{\pi}}{2},$$

da cui segue

$$\int_0^{+\infty} \cos(x^2) \, dx = \frac{\sqrt{2\pi}}{4} \, .$$

7) Sia $P(z) = z^3 + 2z^2 + 5z + 1$. Calcolare il numero di radici di P(z) in $B_1(0)$ ed in $B_4(0)$.

Siano f(z) = 5z e $\varphi(z) = z^3 + 2z^2 + 1$; dal momento che se |z| = 1 si ha $|f(z)| = 5 > 4 \ge |\varphi(z)|$, allora P(z) = 5 ha un solo zero in P(z) = 5 si ha un

8) Calcolare il numero di zeri di $z^3 + \operatorname{sen}(z)$ in $B_2(0)$. Dimostrare che $z^k + \operatorname{sen}(z)$ ha k zeri in $B_R(0)$ se $k > \frac{R}{\ln(R)}$.

Si ha

$$|\operatorname{sen}(z)| = \left| \sum_{k=0}^{+\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} \right| \le \sum_{k=0}^{+\infty} \frac{|z|^{2k+1}}{(2k+1)!} \le \sum_{k=0}^{+\infty} \frac{|z|^k}{k!} = e^{|z|}.$$

Pertanto, dette $f(z)=z^3$ e $\varphi(z)=\mathrm{sen}(z)$, se |z|=2 si ha $|f(z)|=8>\mathrm{e}^2\geq |\varphi(z)|$. Pertanto $z^3+\mathrm{sen}(z)$ ha tre zeri in $B_2(0)$. La risposta alla seconda domanda segue osservando che $R^k>\mathrm{e}^R$ se $k>\frac{R}{\ln(R)}$.

9) Dimostrare che non esiste una funzione $f: \overline{B_1(0)} \to \partial B_1(0)$ olomorfa e tale che f(z) = z per ogni z in $\partial B_1(0)$. Suggerimento: se esistesse, allora g(z) = -f(z) sarebbe...

...una funzione olomorfa da $\overline{B_1(0)}$ a $\overline{B_1(0)}$. Per il Teorema di Brouwer, esisterebbe z_0 in $\overline{B_1(0)}$ tale che $g(z_0)=z_0$. Essendo in realtà g una funzione a valori in $\partial B_1(0)$, allora z_0 sarebbe in $\partial B_1(0)$ e

$$z_0 = g(z_0) = -f(z_0) = -z_0$$

da cui $z_0 = 0$, assurdo.

10) Sia

$$\zeta(z) = \sum_{n=1}^{+\infty} \frac{1}{n^z} = \prod_{p \text{ primo}} \frac{1}{1 - p^{-z}}.$$

Dimostrare che, se z = x è reale maggiore di 1,

$$\ln(\zeta(x)) = x \int_2^{+\infty} \frac{\pi(t)}{t(t^x - 1)} dt,$$

dove $\pi(t)$ è il numero di numeri primi minori o uguali a t. Dimostrare (usando $\zeta(1) = +\infty$) che

$$\lim_{t \to +\infty} \frac{\pi(t) \left[\ln(t) \right]^{\alpha}}{t} = +\infty \,, \qquad \forall \alpha > 1 \,.$$

Dalla definizione (e dalle proprietà del logaritmo), si ha

$$\ln(\zeta(x)) = -\sum_{p \text{ primo}} \ln\left(1 - \frac{1}{p^x}\right).$$

Ora, come si vede immediatamente derivando rispetto a t la funzione $t \mapsto \ln(1 - t^{-x})$,

$$-\ln\left(1 - \frac{1}{p^x}\right) = \int_p^{+\infty} \frac{x}{t(t^x - 1)} dt = \int_2^{+\infty} \frac{x}{t(t^x - 1)} \chi_{(p, +\infty)}(t) dt,$$

e pertanto (per il teorema di convergenza monotona),

$$\ln(\zeta(x)) = \int_{2}^{+\infty} \frac{x}{t(t^{x} - 1)} \left(\sum_{p \text{ primo}} \chi_{(p, +\infty)}(t) \right) dt,$$

da cui la tesi, essendo (come si verifica immediatamente)

$$\sum_{p \text{ primo}} \chi_{(p,+\infty)}(t) = \pi(t).$$

Se esistesse M>0 tale che

$$0 \le \frac{\pi(t) \left[\ln(t)\right]^{\alpha}}{t} \le M, \qquad \forall t \ge 2,$$

allora

$$\frac{\pi(t)}{t(t-1)} \le \frac{M}{(t-1) [\ln(t)]^{\alpha}} \in L^1((2,+\infty)),$$

e quindi $\zeta(1)$ sarebbe finito.

Esercizi 11 - 19 dicembre 2001

1) Calcolare

$$\mathcal{F}\left(\frac{\cos(x)}{1+x^2}\right)(\xi).$$

Scriviamo $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$, cosicché

$$\mathcal{F}\left(\frac{\cos(x)}{1+x^2}\right)(\xi) = \frac{1}{2} \int_{\mathbf{R}} \frac{\mathrm{e}^{-i\xi x + ix}}{1+x^2} \, dx + \frac{1}{2} \int_{\mathbf{R}} \frac{\mathrm{e}^{-i\xi x - ix}}{1+x^2} \, dx = \frac{1}{2} \, \mathcal{F}\left(\frac{1}{1+x^2}\right)(\xi-1) + \frac{1}{2} \, \mathcal{F}\left(\frac{1}{1+x^2}\right)(\xi+1) \, .$$

Siccome

$$\mathcal{F}\left(\frac{1}{1+x^2}\right) = \pi e^{-|\xi|},\,$$

si ha

$$\mathcal{F}\left(\frac{\cos(x)}{1+x^2}\right)(\xi) = \frac{\pi\left(e^{-|\xi-1|} + e^{-|\xi+1|}\right)}{2}.$$

2) Calcolare (nell'ordine)

$$\mathcal{F}\left(\frac{x}{(1+x^2)^2}\right)(\xi), \qquad \mathcal{F}\left(\frac{x^2}{(1+x^2)^2}\right)(\xi).$$

Si ha

$$\left(\frac{1}{1+x^2}\right)' = \frac{-2x}{(1+x^2)^2}.$$

Pertanto,

$$\mathcal{F}\left(\frac{x}{(1+x^2)^2}\right)(\xi) = -\frac{1}{2}\,\mathcal{F}\left(\frac{-2x}{(1+x^2)^2}\right) = -\frac{1}{2}\,\mathcal{F}\left(\left(\frac{1}{1+x^2}\right)'\right) = -\frac{i\xi\,\pi}{2}\,\mathrm{e}^{-|\xi|}\,.$$

Inoltre,

$$\mathcal{F}\left(\frac{x^2}{(1+x^2)^2}\right)(\xi) = \mathcal{F}\left(x\,\frac{x}{(1+x^2)^2}\right)(\xi) = i\,\left(\mathcal{F}\left(\frac{x}{(1+x^2)^2}\right)(\xi)\right)' = \frac{\pi}{2}\left(1-|\xi|\right)\mathrm{e}^{-|\xi|}\,.$$

3) Calcolare

$$\mathcal{F}\left(\frac{1}{(1+x^2)^2}\right)(\xi).$$

Suggerimento: si usi l'esercizio precedente.

Si ha

$$\frac{-2x}{(1+x^2)^2} = \left(\frac{1}{1+x^2}\right)',$$

e quindi

$$-2\mathcal{F}\left(x\frac{1}{(1+x^2)^2}\right)(\xi) = \mathcal{F}\left(\left(\frac{1}{1+x^2}\right)'\right)(\xi).$$

Pertanto

$$-2i \left(\mathcal{F} \left(\frac{1}{(1+x^2)^2} \right) (\xi) \right)' = i\xi \, \mathcal{F} \left(\frac{1}{1+x^2} \right) (\xi) = i \, \xi \, \pi \, \mathrm{e}^{-|\xi|} \, .$$

In definitiva,

$$\mathcal{F}\left(\frac{1}{(1+x^2)^2}\right)(\xi) = -\frac{\pi}{2} \mathcal{F}\left(\frac{1}{(1+x^2)^2}\right)(0) \int_0^{\xi} t e^{-|t|} dt = \frac{\pi}{2} (1+|\xi|) e^{-|\xi|}.$$

4) Calcolare (nell'ordine)

$$\mathcal{F}\left(\frac{1}{1+x^4}\right)(\xi), \qquad \mathcal{F}\left(\operatorname{arctg}\left(\frac{1}{x^2}\right)\right)(\xi).$$

Con lunghi (e faticosi) calcoli, si trova

$$\mathcal{F}\left(\frac{1}{1+x^4}\right)(\xi) = \frac{\pi\sqrt{2}}{2} e^{\frac{\xi\sqrt{2}}{2}} \left(\cos\left(\frac{\xi\sqrt{2}}{2}\right) - \sin\left(\frac{\xi\sqrt{2}}{2}\right)\right),\,$$

se $\xi \geq 0$, e la stessa funzione (calcolata in $-\xi$) se $\xi < 0$. Inoltre, essendo

$$\left(\operatorname{arctg}\left(\frac{1}{x^2}\right)\right)' = -\frac{2x}{1+x^4}.$$

Pertanto,

$$-2i\left(\mathcal{F}\left(\frac{1}{1+x^4}\right)(\xi)\right)' = -2\mathcal{F}\left(x\frac{1}{1+x^4}\right) = \mathcal{F}\left(\operatorname{arctg}\left(\frac{1}{x^2}\right)\right)' = i\,\xi\,\mathcal{F}\left(\operatorname{arctg}\left(\frac{1}{x^2}\right)\right)(\xi)\,,$$

da cui

$$\mathcal{F}\left(\operatorname{arctg}\left(\frac{1}{x^2}\right)\right)(\xi) = -\frac{2}{\xi}\left(\mathcal{F}\left(\frac{1}{1+x^4}\right)(\xi)\right)'$$
.

5) Sia $u(x) = \max(1 - |x|, 0)$. Calcolare (in due modi) $\mathcal{F}(u)(\xi)$.

Osservando che $u'(x) = \chi_{(0,1)} - \chi_{(-1,0)}$, e che

$$i\xi \mathcal{F}(u)(\xi) = \mathcal{F}(u')(\xi) = \frac{2 - 2\cos(\xi)}{i\xi},$$

si ottiene

$$\mathcal{F}(u)(\xi) = \frac{2\cos(\xi) - 2}{\xi^2} \,.$$

Allo stesso risultato si arriva calcolando $\mathcal{F}(u)(\xi)$ con la definizione.

6) Dimostrare che se u in $L^1(\mathbf{R})$ è pari, allora $\mathcal{F}(u)$ è reale e pari, mentre se u è dispari, allora $\mathcal{F}(u)$ è puramente immaginaria e dispari.

Se u è pari, allora

$$\int_{\mathbf{R}} \operatorname{sen}(\xi \, x) \, u(x) = 0 \,,$$

e quindi $\mathcal{F}(u)$ è reale; inoltre,

$$\mathcal{F}(u)(\xi) = \int_{\mathbf{R}} \cos(\xi \, x) \, u(x) \, dx = \int_{\mathbf{R}} \cos(-\xi \, x) \, u(-x) \, dx = \int_{\mathbf{R}} \cos(-\xi \, x) \, u(x) \, dx = \mathcal{F}(u)(-\xi) \, .$$

Ragionamento analogo vale se u è dispari.

7) Trovare una formula risolutiva per l'equazione

$$u'(x) + au(x) = f(x), a > 0, f \in L^1(\mathbf{R}).$$

Trasformando l'equazione si trova

$$i \xi \mathcal{F}(u)(\xi) + a \mathcal{F}(u) \xi = \mathcal{F}(f)(\xi)$$
,

ovvero

$$\mathcal{F}(u)(\xi) = \frac{\mathcal{F}(f)(\xi)}{i\xi + a}.$$

Antitrasformando $\frac{1}{\xi+a}$, si trova

$$v(x) = \frac{1}{2\pi} \int_{\mathbf{R}} \frac{e^{i\xi x}}{i\xi + a} d\xi.$$

Se x > 0, la funzione $g(z) = \frac{1}{iz+a}$ ha un polo in z = ia, che si trova nel semipiano $\Im(z) > 0$. Pertanto,

$$\int_{\mathbf{R}} \frac{e^{i\xi x}}{i\xi + a} d\xi = 2\pi i \operatorname{Res} \left[\frac{e^{iz x}}{iz + a}, ia \right] = 2\pi e^{-ax}.$$

Se x<0, la funzione $g(z)=\frac{1}{iz+a}$ non ha poli nel semipiano $\Im(z)<0$, e pertanto

$$\int_{\mathbf{R}} \frac{\mathrm{e}^{i\xi x}}{i\xi + a} \, d\xi = 0 \,.$$

Se x=0, v non è definita. In definitiva, $v(x)=\mathrm{e}^{-ax}\,\chi_{(0,+\infty)}(x)$, e quindi

$$u(x) = \int_{\mathbf{R}} f(y) e^{-a(x-y)} \chi_{(0,+\infty)}(x-y) dy = \int_{-\infty}^{x} f(y) e^{-a(x-y)} dy.$$

8) Trovare una formula risolutiva per l'equazione

$$u''(x) + 2u'(x) + u(x) = f(x), f \in L^1(\mathbf{R}).$$

Trasformando l'equazione, si ha

$$-\xi^2 \mathcal{F}(u)(\xi) + 2i\xi \mathcal{F}(u)(\xi) + \mathcal{F}(u)(\xi) = \mathcal{F}(f)(\xi),$$

da cui

$$\mathcal{F}(u)(\xi) = -\frac{\mathcal{F}(f)(\xi)}{\xi^2 - 2i\xi - 1}.$$

Antitrasformando $\frac{1}{\xi^2-2i\xi-1}$ si ha

$$v(x) = \frac{1}{2\pi} \int_{\mathbf{R}} \frac{e^{i\xi x}}{\xi^2 - 2i\xi - 1} d\xi.$$

Se x>0, la funzione $g(z)=\frac{1}{z^2-2iz-1}=\frac{1}{(z-i)^2}$ ha un polo di ordine due in z=i (ovvero, nel semipiano $\Im(z)>0$). Allora

$$\int_{\mathbf{R}} \frac{e^{i\xi x}}{\xi^2 - 2i\xi - 1} d\xi = 2\pi i \operatorname{Res} \left[\frac{e^{iz x}}{(z - i)^2}, i \right] = -2\pi x e^{-x}.$$

Se x < 0, v(x) vale zero (perché i poli di g(z) non sono nel semipiano $\Im(z) < 0$), così come v(0) = 0. In definitiva,

$$v(x) = -x e^{-x} \chi_{(0,+\infty)}(x),$$

e quindi

$$u(x) = \int_{\mathbf{R}} f(y) (x - y) e^{-(x - y)} \chi_{(0, +\infty)}(x - y) dy = \int_{-\infty}^{x} f(y) (x - y) e^{-(x - y)} dy.$$

9) Trovare una formula risolutiva per l'equazione

$$u''(x) + a^2 u(x) = f(x), \quad a > 0, f \in L^1(\mathbf{R}).$$

Trasformando l'equazione, si trova

$$-\xi^2 \mathcal{F}(u)(\xi) + a^2 \mathcal{F}(u)(\xi) = \mathcal{F}(f)(\xi),$$

ovvero

$$\mathcal{F}(u)(\xi) = \frac{\mathcal{F}(f)(\xi)}{a^2 - \xi^2}.$$

Sia ora

$$v(x) = \frac{1}{2\pi} \int_{\mathbf{R}} \frac{e^{i\xi x}}{a^2 - \xi^2} d\xi.$$

Sia x>0; dal momento che $g(z)=\frac{1}{a^2-z^2}$ ha due poli sull'asse reale, per calcolare l'integrale dobbiamo scegliere un percorso che "eviti" $z=\pm a$. Sia $\gamma_{R,\delta}$ l'unione della semicirconferenza C_R' di centro l'origine e raggio R>a contenuta nel semipiano $\Im(z)>0$, dei segmenti da -R a $-a-\delta$, da $-a+\delta$ ad $a-\delta$ e da $a+\delta$ ad R, e delle due semicirconferenze C_δ^- e C_δ^+ di centro $\pm a$ e di raggio δ , contenute nel semipiano $\Im(z)>0$. Siccome l'integrale su C_R' tende a zero per R tendente ad infinito, mentre l'integrale sui segmenti tende al valore principale dell'integrale che definisce v, si ha

$$v(x) = \frac{1}{2\pi} \lim_{\delta \to 0^+} \int_{C_s^- \cup C_s^+} \frac{e^{iz \, x}}{a^2 - z^2} \, .$$

Svolgendo i conti, si trova

$$v(x) = \frac{\operatorname{sen}(ax)}{2a} \,.$$

Se x < 0 l'integrale vale v(-x) (basta cambiare variabile), e pertanto

$$u(x) = \frac{1}{2a} \int_{-\infty}^{+\infty} f(y) \operatorname{sen}(a|x - y|) \, dy \,.$$

10) Sia $\delta(x)$ l'antitrasformata di $f(\xi) \equiv 1$ (non provare a calcolarla esplicitamente!). Dimostrare che

$$\int_{\mathbf{R}} \delta(x - y) g(y) dy = g(x),$$

per ogni x in \mathbf{R} e per ogni g in $L^1(\mathbf{R})$ tale che $g = \mathcal{F}^{-1}(\mathcal{F}(g))$. Dedurne che, se δ fosse una funzione, si avrebbe $\delta(x) = 0$ quasi ovunque in \mathbf{R} (suggerimento: si scelga $g = \chi_{(x-\varepsilon,x+\varepsilon)}$).

Per definizione.

$$\delta(x) = \frac{1}{2\pi} \int_{\mathbf{R}} e^{i\xi x} d\xi.$$

Pertanto, per Fubini, e per le ipotesi su g,

$$\int_{\mathbf{R}} \delta(x - y) g(y) dy = \frac{1}{2\pi} \int_{\mathbf{R}} \left(\int_{\mathbf{R}} e^{i\xi (x - y)} d\xi \right) g(y) dy$$
$$= \frac{1}{2\pi} \int_{\mathbf{R}} \left(\int_{\mathbf{R}} e^{-i\xi y} g(y) dy \right) e^{i\xi x} d\xi$$
$$= \frac{1}{2\pi} \int_{\mathbf{R}} e^{i\xi x} \mathcal{F}(u)(\xi) d\xi = g(x).$$

Se $g = \chi_{(x-\varepsilon,x+\varepsilon)}$, allora

$$1 = \int_{x-\varepsilon}^{x+\varepsilon} \, \delta(x-y) \, dy = \int_{-\varepsilon}^{\varepsilon} \, \delta(z) \, dz \,,$$

qualsiasi sia ε . Pertanto,

$$\int_{E} \delta(z) \, dz = 0 \,,$$

per ogni E sottoinsieme di ${\bf R}$ che non contiene lo zero. La "non funzione" δ si chiama "delta di Dirac", ed è una misura.