

### **Computational Physics (PHYS6350)**

Lecture 2: Data Visualization, Machine Precision

January 16, 2025

- Data visualization (plotting with matplotlib as an example)
- Accuracy of integer and floating-point number representation

Instructor: Volodymyr Vovchenko (<u>vvovchenko@uh.edu</u>)

#### **Course materials**

All course material will be available on Teams

Apart from Teams, course materials will be maintained and updated on GitHub\*

https://github.com/vlvovch/PHYS6350-ComputationalPhysics/tree/spring2025

<sup>\*</sup>Apart from homework and exams

# Data visualization

- Line plots
- Scatter plots
- Contour/density plots (2D data)

References: Chapter 3 of Computational Physics by Mark Newman

**Matplotlib documentation** 

#### **Plotting the data**

Computer programs produce numerical data

Numbers alone do not always make it easy to understand the behavior of the system and its properties

Consider a function  $y = \sin(x)$ 

Let us calculate it for 10 equidistant points in the interval x = 0...10

x sin(x) 0 0. 1 0.841471 2 0.9092974 3 0.14112 4 -0.7568025 5 -0.9589243 6 -0.2794155 7 0.6569866 8 0.9893582 9 0.4121185 10 -0.5440211

#### Putting it on a graph



sin(x)X 0. 0 0.841471 0.9092974 0.14112 -0.7568025-0.9589243-0.27941550.6569866 0.9893582 0.4121185 -0.5440211

Let us add more points...

#### Putting it on a graph



```
sin(x)
 X
0.
         0.
0.1
     0.09983342
0.2
     0.1986693
0.3
     0.2955202
0.4
     0.3894183
0.5
     0.4794255
0.6
     0.5646425
0.7
     0.6442177
     0.7173561
0.8
0.9
     0.7833269
      0.841471
1.
     -0.4575359
9.9
10.
     -0.5440211
```

Now we have enough points to join them by a smooth line

### Plot multiple lines to compare functions, profiles, etc.



# Things to avoid

Insufficient number of data points



# Things to avoid

Unlabeled axes



# Things to avoid

Indistinguishable line styles



#### **Scatter plots**

Not all data points are suitable to be joined by lines

Consider the observations of star surface temperature (= x) and brightness (= y)

Use scatter plot to study correlation and structures between these features



```
683.14508541 15.73
683.14508541 17.01
1012.83217289 15.86
1012.83217289 15.98
1012.83217289 16.73
1195.25068152 10.19
1195.25068152 16.56
1289.42232154 17.99
1384.98930374 15.0
1384.98930374 15.38
1384.98930374 15.39
1384.98930374 15.56
1384.98930374 15.64
1384.98930374 16.15
1481.51656803 7.86
```

#### **Contour and density plots**

For example fields, such as electric potential of a dipole



# Errors and accuracy

References: Chapter 4 of Computational Physics by Mark Newman

Chapter 1.1 of Numerical Recipes Third Edition by W.H. Press et al.

#### Integer representation

Numbers on a computer are represented by bits – the sequences of 0s and 1s



Most typical native formats:

- 32-bit integer, range  $-2,147,483,647 (-2^{31})$  to  $+2,147,483,647 (2^{31})$
- 64-bit integer, range  $\sim -10^{18}$  (-2<sup>63</sup>) to +10<sup>18</sup> (2<sup>63</sup>)

Python supports natively larger numbers but calculations can become slow

In C++ it is important to avoid under/over-flow

#### Floating-point number representation

Floating-point, or real, numbers are represented by a bit sequence as well,

which are separated into:

- Sign S
- Exponent E
- Mantissa M (significant digits)

$$x = S \times M \times 2^{E-e}$$



Double Precision
IEEE 754 Floating-Point Standard

e.g. 
$$-2195.67 = -2.19567 \times 10^3$$

Main consequence: Floating-point numbers are not exact!

For example, with 52 bits in mantissa one can store about 16 decimal digits

32-bit float (single precision) 64-bit float (double precision)

Bits: (sign-exponent-mantissa) 1-8-23 1-11-52

Significant digits:  $^{\sim}$ 7 decimal digits  $^{\sim}$ 16 decimal digits

Range:  $^{\sim}$ -10<sup>38</sup> to 10<sup>38</sup>  $^{\sim}$ -10<sup>308</sup> to 10<sup>308</sup>

### Floating-point number representation

When you write

$$x = 1$$
.

What it means

$$x=1.+arepsilon_{M}, \qquad arepsilon_{M} \sim 10^{-16}$$

$$arepsilon_{M} \sim 10^{-16}$$

for a 64-bit float

#### **Example: Equality test**

```
x = 1.1 + 2.2

print("x = ",x)

if (x == 3.3):
    print("x == 3.3 is True")
else:
    print("x == 3.3 is False")
```

x = 3.300000000000000 x == 3.3 is False

#### You can do instead

```
print("x = ",x)

# The desired precision
eps = 1.e-12

# The comparison
if (abs(x-3.3) < eps):
    print("x == 3.3 to a precision of",eps,"is True")
else:
    print("x == 3.3 to a precision of",eps,"is False")</pre>
```

#### **Error accumulation**

$$x=1.+\varepsilon_{M}, \qquad \varepsilon_{M}\sim 10^{-16}$$

$$arepsilon_{M} \sim 10^{-16}$$

unavoidable round-off error

Errors also accumulate through arithmetic operations, e.g.

$$y = \sum_{i=1}^{N} x_i$$

- $\sigma_{v} \sim \sqrt{N} \epsilon_{M}$  if errors are independent
- $\sigma_v \sim N \epsilon_M$  if errors are correlated
- In some cases  $\sigma_v$  can become "large" even in a single operation

### Two large numbers with a small difference

Let us have x = 1 and  $y = 1 + \delta\sqrt{2}$ 

Symbolically, one has  $\delta^{-1}(y-x) = \sqrt{2} = 1.41421356237...$ 

Let us test this relation on a computer for a very small value of  $\delta=10^{-14}$ 

```
from math import sqrt

delta = 1.e-14
x = 1.
y = 1. + delta * sqrt(2)
res = (1./delta)*(y-x)
print(delta,"* (y-x) = ",res)
print("The accurate value is sqrt(2) = ", sqrt(2))
print("The difference is ", res - sqrt(2))
```

```
1e-14 * (y-x) = 1.4210854715202004
The accurate value is sqrt(2) = 1.4142135623730951
The difference is 0.006871909147105226
```

#### Catastrophic loss of precision!

What happened?

#### **Quadratic equation**

$$ax^2 + bx + c = 0$$

Symbolically, the roots are:

$$\alpha_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 is very close to  $b$ 

Let us calculate the roots for  $a=10^{-4}$ ,  $b=10^4$ ,  $c=10^{-4}$  |ac|<<br/>b²

```
a = 1.e-4
b = 1.e4
c = 1.e-4

x1 = (-b + sqrt(b*b - 4.*a*c)) / (2.*a)
x2 = (-b - sqrt(b*b - 4.*a*c)) / (2.*a)

print("x1 = ", x1)
print("x2 = ", x2)
```

$$x1 = -9.094947017729282e-09$$
  
 $x2 = -100000000.0$ 

 $x_2$  looks ok but  $x_1$  seems off(?)

#### **Quadratic equation**

$$ax^2 + bx + c = 0$$

#### **Standard form:**

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

#### **Alternative form:**

$$x_{1,2} = \frac{2c}{-b \mp \sqrt{b^2 - 4ac}}$$

Using the alternative form

$$x1 = -1e-08$$
  
 $x2 = -109951162.7776$ 

 $x_1$  is fixed but now  $x_2$  is off

**Solution:** Make a judicious choice between standard and alternative form for each root separately, such that subtraction of two similar number is avoided

#### Other common situations

Simple numerical derivative (see the sample code)

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

Sometimes a small h is too small

Roots of high-degree polynomials

Advanced topic: Kahan summation

final project idea(?)



