Задача синтеза регулятора в задаче управления вертолётом

1 Постановка задачи

Для фиксированных значений скорости вертолета $V_i = (i-1)\Delta V, i=1,\ldots,8$, где $\Delta V = 20$ узлов в час, получены уравнения линеаризованной системы

$$\dot{x}(t) = A_i(t) + B_i(t), \quad i = 1, \dots, 8, \quad x(0) = x_0,$$

где $A_i = A(V_i), B_i = B(V_i)$ — матрицы размеров $(8 \times 8), (8 \times 4)$ соответственно.

Для каждой модели определим критерий качества

$$I_i = \frac{1}{2} \int_{-\infty}^{+\infty} [x^T(t)S_i x(t) + u^T(t)Q_i u(t)]dt \to min, \ i = 1, \dots, 8,$$

где S_i — неотрицательно определенная матрица размеров (8 × 8), Q_i — положительно определенная матрица размеров (4 × 4). Начать можно с единичных матриц соответствующего порядка.

2 Анализ синтеза

Для каждой модели найти оптимальный регулятор:

$$u^{*(i)}(x) = -Q_i^{-1}B_i^T P_i \ x = -F_i x, \quad F_i = Q_i^{-1}B_i^T P_i,$$

где P_i — положительно определённая симметрическая матрица, удовлетворяющая алгебраическому уравнению Риккати:

$$-A_i^T P_i - P_i A_i + P_i B_i Q_i^{-1} B_i^T P_i - S_i = 0.$$

Решение этого уравнения, удовлетворяющее критерию Сильвестра, единственно. Замкнутая система, описываемая уравнением:

$$\dot{x}(t) = [A_i - B_i Q_i^{-1} B_i^T P_i] x(t), \quad x(0) = 0,$$

является асимптотически устойчивой, т.е. $x(t) \to +\infty$.

- 1) Решить уравнение Риккати (найти P_i), i = 1, ..., 8 с помощью MatLab;
- 2) Найти матрицу $F_i = Q_i^{-1} B_i^T P_i, i = 1, ..., 8;$
- 3) Промоделировать систему $\dot{x}(t) = A_i \ x(t) + B_i \ u(t), \quad i = 1, \dots, 8$, с разными начальными условиями, немного отличающимися от нуля с управлением $u^{(i)}(t) = u^{*(i)}(x(t)) = -Q_i^{-1}B_i^T P_i \ x(t) = -F_i \ x(t)$;
 - 4) Убедиться в выполнении свойства асимптотической устойчивости.

Выявить время переходных процессов.

3 Пример динамики полёта вертолёта для разных значений скорости

1) $\Delta V = 0$ узлов в час

Матрица А

-0.0199	0.0215	0.6674	-9.7837	-0.0205	-0.1600	0.0000	0.0000
0.0237	-0.3108	0.0134	-0.7215	-0.0028	-0.0054	0.5208	0.0000
0.0468	0.0055	-1.8954	0.0000	0.0588	0.04562	0.0000	0.0000
0.0000	0.0000	0.9985	0.0000	0.0000	0.0000	0.0000	0.0532
0.0207	0.0002	-0.1609	0.0380	-0.0351	-0.6840	9.7697	0.0995
0.3397	0.0236	-2.6449	0.0000	-0.2715	-10.9759	0.0000	-0.0203
0.0000	0.0000	-0.0039	0.0000	0.0000	1.0000	0.0000	-0.0737
0.0609	0.0089	-0.4766	0.0000	-0.0137	-1.9367	0.0000	-0.2743

Матрица В

6.9417	-9.2860	2.0164	0.0000
-93.9179	-0.0020	-0.0003	0.0000
0.9554	26.4011	-5.7326	0.0000
0.0000	0.0000	0.0000	0.0000
-0.3563	-2.0164	-9.2862	3,6770
7.0476	-33.2120	-152.9537	-0.7358
0.0000	0.0000	0.0000	0.0000
17.3054	-5.9909	-27.5911	-9.9111

собственные значения (сопряжённые)	собственные значения (несопряжённые)
$0.2394 \pm 0.5337i$	$0.0556 \pm 0.4743i$
$-0.1703\pm0.6027i$	$-0.0414\pm0.4714i$
-0.2451	-0.1843
-0.3110	-0.3127
-2.2194	-2.0247
-10.8741	-11.0182

2) $\Delta V=20$ узлов в час

Матрица А

-0.0082	0.0254	-0.0685	-9.7868	-0.0158	-0.1480	0.0000	0.0000
-0.1723	-0.4346	10.4965	-0.6792	-0.0150	-0.1044	0.45450	0.0000
0.0417	0.0157	-2.0012	0.0000	0.0482	0.4441	0.0000	0.0000
0.0000	0.0000	0.9989	0.0000	0.0000	0.0000	0.0000	0.0464
0.0173	0.0161	-0.1435	0.0311	-0.0604	0.0308	99.77607	-10.1108
0.1531	0.2739	-2.4044	0.0000	-0.2439	-10.9208	0.00000	-0.0793
0.0000	0.0000	-0.0032	0.0000	0.0000	1.0000	0.00000	0.0694
0.0037	0.0455	-0.3753	0.0000	0.0025	-1.9201	0.00000	-0.4404

Матрица В

5.6326	-8.9083	2.0273	0.0000
-89.9908	-6.0809	0.0010	0.0000
3.8558	26.6794	-5.7663	0.0000
0.0000	0.0000	0.0000	0.0000
0.1249	-2.0098	-9.3275	3.4515
13.2029	-32.8252	-153.5913	-0.6907
0.0000	0.0000	0.0000	0.0000
16.5240	-5.9080	-27.5007	-9.3029

собственные значения (сопряжённые)	собственные значения (несопряжённые)
$0.1273 \pm 0.5157i$	$0.0471 \pm 0.4396i$
-0.0526	-0.0986
$0.2213 \pm 0.8272i$	$-0.1637\pm0.7956i$
-0.3554	-0.3556
-2.4185	-2.1826
-10.8511	-10.9956