

Autoguess

A Tool for Finding Guess-and-Determine Attacks and Key Bridges

Hosein Hadipour and Maria Eichlseder

ACNS 2022 - Rome, Italy

Outline

- 1 Guess-and-Determine (GD)
- Constraint Programming Model for GD
- 3 Autoguess
- 4 Key-Bridging (KB)
- 5 Conclusion

Guess-and-Determine

Guess-and-Determine (GD)

Guess-and-Determine

Given a set of variables and a set of relations between them, find the smallest subset of variables guessing the value of which uniquely determines the value of the remaining variables.

Guess-and-Determine (GD)

Guess-and-Determine

Given a set of variables and a set of relations between them, find the smallest subset of variables guessing the value of which uniquely determines the value of the remaining variables.

Example

- Θ $u,\ldots,z\in\mathbb{F}_2^{32}$
- \bigcirc F, G, H: bijective functions
- \bigcirc c_1, \ldots, c_5 : constants

$$\begin{cases}
F(u+v) \oplus G(x) \oplus y \oplus (z \ll 7) &= c_1 \\
G(u \oplus w) + (y \ll 3) + z &= c_2 \\
F(w \oplus x) + y \oplus z &= c_3 \\
F(u) \oplus G(w+z) &= c_4 \\
(F(u) \times G(w \ll 7)) + H(z \oplus v) &= c_5
\end{cases}$$

Guess-and-Determine (GD)

Guess-and-Determine

Given a set of variables and a set of relations between them, find the smallest subset of variables guessing the value of which uniquely determines the value of the remaining variables.

Example

- ♥ Guess w, z
- Oetermine u(4), y(2)
- Determine x (3), v (5)

```
F(u+v) \oplus G(x) \oplus y \oplus (z \ll 7) = c_1
G(u \oplus w) + (y \ll 3) + z = c_2
F(w \oplus x) + y \oplus z = c_3
F(u) \oplus G(w+z) = c_4
(F(u) \times G(w \ll 7)) + H(z \oplus v) = c_5
```

Assumption: Relations are symmetric or implication

Implication relations:

$$x_1,\ldots,x_n\Rightarrow y$$

Symmetric relations:

$$[x_1,\ldots,x_n]$$

Example

$$Z = X \times y$$

$$z = F(x + k) \oplus y$$

$$X, y \Rightarrow Z$$

Assumption: Relations are symmetric or implication

Implication relations:

$$x_1,\ldots,x_n\Rightarrow y$$

Symmetric relations:

$$[x_1,\ldots,x_n]$$

Example

Assume that $x,y,z,k\in\mathbb{F}_2^{32}$, and $F:\mathbb{F}_2^{32}\to\mathbb{F}_2^{32}$ is bijective: $z=x\times y$ $z=F(x+k)\in$

Assumption: Relations are symmetric or implication

Implication relations:

$$x_1,\ldots,x_n\Rightarrow y$$

Symmetric relations:

$$[x_1,\ldots,x_n]$$

Example

$$z = x \times y$$

$$z = F(x + k) \oplus y$$

$$X, y \Rightarrow Z$$

Assumption: Relations are symmetric or implication

Implication relations:

$$x_1,\ldots,x_n\Rightarrow y$$

Symmetric relations:

$$[x_1,\ldots,x_n]$$

Example

$$z = x \times y$$
 $z = F(x + k) \oplus y$
 $x, y \Rightarrow z$ $[x, y, z, k]$

Assumption: Relations are symmetric or implication

Implication relations:

$$x_1,\ldots,x_n\Rightarrow y$$

Symmetric relations:

$$[x_1,\ldots,x_n]$$

Example

$$z = x \times y$$

$$z = F(x + k) \oplus y$$

$$X, y \Rightarrow Z$$

Assumption: Relations are symmetric or implication

Implication relations:

$$x_1,\ldots,x_n\Rightarrow y$$

Symmetric relations:

$$[x_1,\ldots,x_n]$$

Example

$$z = x \times y$$
 $z = F(x + k) \oplus y$
 $x, y \Rightarrow z$ $[x, y, z, k]$

System of Equations

$$E: \left\{ \begin{array}{ll} e_1: F(u+v) \oplus G(x) \oplus y \oplus (z \lll 7) &= c_1 \\ e_2: G(u \oplus w) + (y \lll 3) + z &= c_2 \\ e_3: F(w \oplus x) + y \oplus z &= c_3 \\ e_4: F(u) \oplus G(w+z) &= c_4 \\ e_5: (F(u) \times G(w \lll 7)) + H(z \oplus v) &= c_5 \\ X = \{u, v, w, x, y, z\}, E = \{e_1, \dots, e_5\} \end{array} \right.$$

System of Equations ⇒ System of Relations

$$E: \begin{cases} e_1: F(u+v) \oplus G(x) \oplus y \oplus (z \ll 7) &= c_1 \\ e_2: G(u \oplus w) + (y \ll 3) + z &= c_2 \\ e_3: F(w \oplus x) + y \oplus z &= c_3 \\ e_4: F(u) \oplus G(w+z) &= c_4 \\ e_5: (F(u) \times G(w \ll 7)) + H(z \oplus v) &= c_5 \end{cases}$$

$$X = \{u, v, w, x, y, z\}, E = \{e_1, \dots, e_5\}$$

$$\mathcal{R}: \begin{cases} r_1: [u, v, x, y, z], & r_2: [u, w, y, z] \\ r_3: [w, x, y, z], & r_4: [u, w, z] \\ r_5: u, w \Rightarrow t, & r_6: [t, z, v] \end{cases}$$

$$\mathcal{R}: \{u, v, w, x, y, z, t\}, \mathcal{R} = \{r_1, \dots, r_6\}$$

 $(\mathcal{X}, \mathcal{R})$: System of relations, $K \subseteq \mathcal{X}$

 $(\mathcal{X}, \mathcal{R})$: System of relations, $K \subseteq \mathcal{X}$

 $(\mathcal{X},\mathcal{R})$: System of relations, $K\subseteq\mathcal{X}$

 $(\mathcal{X},\mathcal{R})$: System of relations, $K\subseteq\mathcal{X}$

 $(\mathcal{X},\mathcal{R})$: System of relations, $K\subseteq\mathcal{X}$

 $(\mathcal{X}, \mathcal{R})$: System of relations, $K \subseteq \mathcal{X}$

If $\mathcal{X} = \mathtt{Propagate}(K)$, then we say K is a Guess Basis

Naive Approach for GD

Given a system of relations $(\mathcal{X}, \mathcal{R})$, where $|\mathcal{X}| = n$, is there any guess basis of size $\leq m$?

Brute-force

- For $k = 1 \rightarrow m$
 - For each subset $K \subseteq \mathcal{X}$, where |K| = k:
 - If Propagate (K) = \mathcal{X} then return K

- Time complexity $\approx \sum_{k=1}^{m} \binom{n}{k}$
- Exponential with respect to both n and m

Naive Approach for GD

Given a system of relations $(\mathcal{X}, \mathcal{R})$, where $|\mathcal{X}| = n$, is there any guess basis of size $\leq m$?

Brute-force

- For $k = 1 \rightarrow m$
 - For each subset $K \subseteq \mathcal{X}$, where |K| = k:
 - If Propagate (K) = \mathcal{X} then return K

- Time complexity $\approx \sum_{k=1}^{m} \binom{n}{k}$
- Exponential with respect to both n and m

Naive Approach for GD

Given a system of relations $(\mathcal{X}, \mathcal{R})$, where $|\mathcal{X}| = n$, is there any guess basis of size $\leq m$?

Brute-force

- For $k = 1 \rightarrow m$
 - For each subset $K \subseteq \mathcal{X}$, where |K| = k:
 - If Propagate (K) = \mathcal{X} then return K

- Time complexity $\approx \sum_{k=1}^{m} \binom{n}{k}$
- Exponential with respect to both n and m

Previous Works

- Heuristic Approaches:
 - **⊘** Dynamic programming: [AE09]
 - → Dedicated algorithm for GD attaks on AES: [BDF11]
- Using off-the-shelf solvers:
 - ✓ MILP: [Cen+20]
 - Gröbner basis: [DK20]

We borrowed the idea introduced in [Cen+20] to convert the GD problem to the CP/SAT problem.

Previous Works

- Heuristic Approaches:
 - **⊘** Dynamic programming: [AE09]
 - → Dedicated algorithm for GD attaks on AES: [BDF11]
- Using off-the-shelf solvers:
 - ✓ MILP: [Cen+20]
 - Gröbner basis: [DK20]

We borrowed the idea introduced in [Cen+20] to convert the GD problem to the CP/SAT problem.

Constraint Programming Model for GD

Constraint Programming (CP)

In CP we specify the properties of the solution to be found:

- We define a set of variables: \mathcal{X}
- We specify the domain of each variable: $\mathbb{F}_2, \mathbb{Z}, \mathbb{R}, \dots$
- We define a set of constraints: C
- We define an objective function (if it is required)

CP Problem - Example


```
int: nc = 3;
array[1..9] of var 1..nc: r;
constraint r[1] != r[3]; constraint r[1] != r[6];
constraint r[2] != r[5]; constraint r[2] != r[6]; constraint r[2] != r[7];
constraint r[3] != r[9]; constraint r[3] != r[6]; constraint r[3] != r[4];
constraint r[4] != r[6]; constraint r[4] != r[5];
constraint r[5] != r[6]; constraint r[5] != r[7];
constraint r[7] != r[8];
solve satisfy;
```

CP Problem - Example


```
int: nc = 3;
array[1..9] of var 1..nc: r;
constraint r[1] != r[3]; constraint r[1] != r[6];
constraint r[2] != r[5]; constraint r[2] != r[6]; constraint r[2] != r[7];
constraint r[3] != r[9]; constraint r[3] != r[6]; constraint r[3] != r[4];
constraint r[4] != r[6]; constraint r[4] != r[5];
constraint r[5] != r[6]; constraint r[5] != r[7];
constraint r[7] != r[8];
solve satisfy;
```

CP Problem - Example


```
int: nc = 3;
array[1..9] of var 1..nc: r;
constraint r[1] != r[3]; constraint r[1] != r[6];
constraint r[2] != r[5]; constraint r[2] != r[6]; constraint r[2] != r[7];
constraint r[3] != r[9]; constraint r[3] != r[6]; constraint r[3] != r[4];
constraint r[4] != r[6]; constraint r[4] != r[5];
constraint r[5] != r[6]; constraint r[5] != r[7];
constraint r[7] != r[8];
solve satisfy;
r = [3, 3, 2, 3, 2, 1, 1, 2, 1];
```

Main Steps of Our Approach

Our method inspired from [Cen+20] has three main phases:

- Convert the system of equations to a system of (implication and symmetric) relations
- Convert the problem of finding a minimal guess basis for the system of relations to a CP problem or a sequence of SAT problems
- Employ the off-the-shelf SAT/CP solvers to solve the problem

```
r_0:[x,y,z]
```

 $r_1:[z,w,y]$

 $r_2:[w,x,u]$

 $r_0:[x,y,z]$

 $r_1:[z,w,y]$

 $r_2:[w,x,u]$

$$r_0:[x,y,z]$$

$$r_1 : [z, w, y]$$

$$r_2 : [w, x, u]$$

- Fix the number of steps in knowledge propagation (e.g. 2 here)
- $X = \{ x_i, y_i, z_i, w_i, u_i : 0 \le i \le 2 \}$
- $x_i = 1$ iff x is known after the ith step of knowledge propagation, otherwise $x_i = 0$
- $\mathcal{C} \leftarrow \emptyset$

 $r_0: [\mathbf{X}, \mathbf{y}, \mathbf{z}]$

 $r_1:[z,w,y]$

 $r_2:[w,x,u]$

$$X \leftarrow X \cup \{ x_{0,0}, x_{0,1} \}$$

$$\mathcal{C} \leftarrow \mathcal{C} \cup \{ x_{0,0} = y_0 \wedge z_0 \}$$

$$\mathcal{C} \leftarrow \mathcal{C} \cup \{ \mathbf{x}_{0,1} = \mathbf{w}_0 \wedge \mathbf{u}_0 \}$$

$$\mathcal{C} \leftarrow \mathcal{C} \cup \{x_1 = x_{0,0} \lor x_{0,1}\}$$

$$r_0 : [x, y, z]$$

$$r_1:[z,w,y]$$

$$r_2 : [w, x, u]$$

$$X \leftarrow X \cup \{ y_{0,0}, y_{0,1} \}$$

$$C \leftarrow C \cup \{ y_{0,0} = x_0 \land z_0 \}$$

$$C \leftarrow C \cup \{ y_{0,1} = z_0 \land w_0 \}$$

$$C \leftarrow C \cup \{ y_1 = y_{0,0} \lor y_{0,1} \}$$

 $r_0:[x,y,z]$

 $r_1:[z,w,y]$

 $r_2:[w,x,u]$

Do it for z, w, u as well

 $r_0:[x,y,z]$

 $r_1:[z,w,y]$

 $r_2:[w,x,u]$

Do it for each transition in knowledge propagation

 $r_0:[x,y,z]$

 $r_1:[z,w,y]$

 $r_2:[w,x,u]$

All variables should be known at the last step:

$$\mathcal{C} \leftarrow \mathcal{C} \cup \{x_2 \land y_2 \land z_2 \land w_2 \land u_2 = 1\}$$

$$r_0: [x, y, z]$$
 x_0, y_0, z_0, w_0, u_0 $r_1: [z, w, y]$ $r_2: [w, x, u]$ x_1, y_1, z_1, w_1, u_1 x_2, y_2, z_2, w_2, u_2

min
$$x_0 + y_0 + z_0 + w_0 + u_0$$

s.t. all constraints in C are satisfied

 $r_0:[x,y,z]$

 $r_1:[z,w,y]$

 $r_2:[w,x,u]$

min
$$x_0 + y_0 + z_0 + w_0 + u_0$$

s.t. all constraints in C are satisfied

Autoguess

Autoguess

Autoguess - Simple User Interface

$$\begin{cases}
F(u+v) \oplus G(x) \oplus y \oplus (z \ll 7) &= c_1 \\
G(u \oplus w) + (y \ll 3) + z &= c_2 \\
F(w \oplus x) + y \oplus z &= c_3 \\
F(u) \oplus G(w+z) &= c_4 \\
(F(u) \times G(w \ll 7)) + H(z \oplus v) &= c_5
\end{cases}$$

Autoguess - Simple User Interface

Input file (relations.txt):

```
# Comments
connection relations
u, v, x, y, z
u, w, y, z
w, x, y, z
u, w, z
u, w => t
t, z, v
end
```

Run Autoguess:

python3 autoguess.py -i relations.txt -maxsteps 5 -solver cp

Autoguess - Simple User Interface

Input file (relations.txt):

```
# Comments
connection relations
u, v, x, y, z
u, w, y, z
w, x, y, z
u, w, z
u, w => t
t, z, v
end
```

Output:

GD Attack on Block Ciphers (1 round of AES)

GD Attack on Block Ciphers (1 round of AES)

GD Attack on Block Ciphers (1 round of AES)

GD Attack on Block Ciphers (3 Rounds of AES)

GD Attack on Stream Ciphers (KCipher-2)

ISO/IEC 18033-4

GD Attack on Stream Ciphers (KCipher-2)

Found in 7 seconds on a 2.8 GHz i7-1165G7 CPU

- We want to determine a subset of sub-key bits: $B \cup F$
- Key schedule implies some relations between the sub-key bits in $B \cup F$

- We want to determine a subset of sub-key bits: $B \cup F$
- Key schedule implies some relations between the sub-key bits in *B* ∪ *F*

- We want to determine a subset of sub-key bits: $B \cup F$
- Key schedule implies some relations between the sub-key bits in $B \cup F$
- Find a minimal guess basis for $B \cup F$ (not for the entire set of variables)

\mathcal{DS} -MITM Attacks On SKINNY and TWINE

- We combined our CP-based method for KB with CP-based method to search for distinguishers
- We applied our method to optimize DS-MITM attack on SKINNY [Bei+16] and TWINE [Suz+11]

Cipher	#Rounds	Data	Memory	Time	Attack	Setting	Reference
SKINNY-128-256	19	2 ⁹⁶ CP	2 ^{210.99}	2 ^{238.26}	$\mathcal{DS} ext{-MITM}$	ST	This paper
SKINNY-64-192	21	2^{60} CP	$2^{133.99}$	$2^{186.63}$	$\mathcal{DS} ext{-MITM}$	ST	This paper
SKINNY-64-128	18	2 ³² CP	$2^{61.91}$	$2^{126.32}$	$\mathcal{DS}\text{-MITM}$	ST	This paper
TWINE-80	20	2 ³² CP	2 ^{62.91}	$2^{76.92}$	$\mathcal{DS} ext{-MITM}$	-	This paper
TWINE-80	20	2 ³² CP	2 ^{82.91}	2 ^{77.44}	$\mathcal{DS} ext{-MITM}$	-	[Shi+18]

Conclusion

Our Contributions - I

- We introduced two new encoding methods for GD technique (CP & SAT)
- We provided the open-source tool Autoguess integrating our new methods as well as almost all of the previous methods for GD technique
- We applied our tool on a wide variety of symmetric primitives:
 - Improving the GD attack on ZUC [ETS11; Tea18]
 - Rediscovering the GD attack on 3 rounds of AES in less than a minute
- We applied Autoguess to find key-bridges in key recovery attacks on block ciphers

Our Contributions - I

- We introduced two new encoding methods for GD technique (CP & SAT)
- We provided the open-source tool Autoguess integrating our new methods as well as almost all of the previous methods for GD technique
- We applied our tool on a wide variety of symmetric primitives:
 - Improving the GD attack on ZUC [ETS11; Tea18]
 - Rediscovering the GD attack on 3 rounds of AES in less than a minute
- We applied Autoguess to find key-bridges in key recovery attacks on block ciphers

Our Contributions - I

- We introduced two new encoding methods for GD technique (CP & SAT)
- We provided the open-source tool Autoguess integrating our new methods as well as almost all of the previous methods for GD technique
- We applied our tool on a wide variety of symmetric primitives:
 - Improving the GD attack on ZUC [ETS11; Tea18]
 - Rediscovering the GD attack on 3 rounds of AES in less than a minute
- We applied Autoguess to find key-bridges in key recovery attacks on block ciphers

Our Contributions - II

We combined our CP-based approach for key-bridging with the CP-based methods to search for distinguishers, and introduced a unified method to find key-recovery friendly distinguishers:

Thanks for your attention!

: https://github.com/hadipourh/autoguess

:https://ia.cr/2021/1529

Our Contributions - II

We combined our CP-based approach for key-bridging with the CP-based methods to search for distinguishers, and introduced a unified method to find key-recovery friendly distinguishers:

Thanks for your attention!

O: https://github.com/hadipourh/autoguess

https://ia.cr/2021/1529

Bibliography I

- [AE09] Hadi Ahmadi and Taraneh Eghlidos. Heuristic guess-and-determine attacks on stream ciphers. IET Information Security 3.2 (2009), pp. 66–73.
- [BDF11] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic search of attacks on round-reduced AES and applications. Advances in Cryptology – CRYPTO 2011. Springer. 2011, pp. 169–187.
- [Bei+16] Christof Beierle et al. The SKINNY family of block ciphers and its low-latency variant MANTIS. Advances in Cryptology CRYPTO 2016. Springer. 2016, pp. 123–153.
- [Cen+20] Zhe Cen et al. Minimizing Deduction System and its Application.

 arXiv preprint arXiv:2006.05833 (2020). URL:

 https://arxiv.org/abs/2006.05833.
- [DK20] J Danner and M Kreuzer. A fault attack on KCipher-2.

 International Journal of Computer Mathematics: Computer Systems Theory (2020), pp. 1–22.

Bibliography II

- [ETS11] ETSI/SAGE. Specification of the 3GPP confidentiality and integrity algorithms 128-EEA3 and 128-EIA3: ZUC specification. ETSI/SAGE, Document 2, Version 1.6 (2011).
- [Shi+18] Danping Shi et al. Programming the Demirci-Selçuk meet-in-the-middle attack with constraints. Advances in Cryptology – ASIACRYPT 2018. Springer. 2018, pp. 3–34.
- [Suz+11] Tomoyasu Suzaki et al. Twine: A lightweight, versatile block cipher. ECRYPT workshop on lightweight cryptography. Vol. 2011. 2011.
- [Tea18] ZUC Design Team. The ZUC-256 Stream Cipher. (2018). http://www.is.cas.cn/ztzl2016/zouchongzhi/201801/W020180126529970733243.pdf.