Universidad de San Carlos de Guatemala Facultad de ingeniería Escuela de Ciencias Área de Física Laboratorio de Física Básica

PRACTICA2: MEDICION DE TIEMPOS Y DESPLAZAMIENTOS

Nombre: Javier Andrés Monjes Solórzano

Carné: 202100081

Sección de laboratorio: "B2" Fecha de realización: 11/09/2022

Instructor: Aux JOSÉ ANDRÉS HERRERA

Fecha de entrega: 11/09/2022

Ejercicio#1

Tiempo de Reacción

Datos:

Altura Y (m)						
1.	0.17	11.	0.13	21.	0.12	
2.	0.16	12.	0.23	22.	0.09	
3.	0.19	13.	0.2	23.	0.14	
4.	0.12	14.	0.14	24.	0.11	
5.	0.11	15.	0.14	25.	0.11	
6.	0.09	16.	0.13	26.	0.26	
7.	0.13	17.	0.15	27.	0.2	
8.	0.16	18.	0.1	28.	0.12	
9.	0.18	19.	0.11	29.	0.22	
10.	0.13	20.	0.08	30.	0.21	

Media Y:

Formula:

$$Y = \frac{x_1 + x_2 + \dots + x_n}{N}$$

$$Y = \frac{0.17 + 0.16 + 0.19 + 0.12 + 0.11.... + 0.21}{30}$$

$$Y = \frac{4.43}{30}$$

Valor de la media: Y = 0.147666666

Desviación estándar

Formula

$$\sigma_y = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

$$=\sqrt{\frac{0.060536667}{30-1}}$$

= 0.045683695

Desviación estándar de la media:

Formula

$$\sigma_{\bar{Y}} = \frac{\sigma_y}{\sqrt{N}}$$

$$=\frac{0.045683696}{\sqrt{30}}$$

= 0.008340663

Tiempo de reacción:

Formula:

$$t = \sqrt{\frac{2Y}{g}}$$

$$t = \sqrt{\frac{2(0.147666666)}{9.8m/s}}$$

$$t = 0.173597391$$

Incerteza del tiempo:

Formula:

$$\Delta t = \frac{\Delta Y}{2} \sqrt{\frac{2}{Yg}}$$

$$\Delta t = \frac{0.008340}{2} \sqrt{\frac{2}{(0.147666)(9.8m/s)}}$$

$$\Delta t = 0.0049022$$

Resultados:

Promedio / Incerteza	(0.148 ± 0.008) m	
Tiempo de Reacción / Incerteza	(0.174 ± 0.005) s	
Desviación estándar	0.046 m	
Desviación estándar de la media	0.008 m	

......

Pregunta 1

Respuesta guardada

Puntaje de 15.00

Señalar con bandera la pregunta Con base en la hoja de datos de la practica 2 y sus resultados obtenidos, elija la respuesta correcta para la distancia Y en **unidades SI** (Tabla 1 hoja de datos)

Seleccione una:

$$\odot$$
 a. $Y=14.8\pm0.8$

$$\odot$$
 b. $Y=0.28\pm0.08$

$$ullet$$
 c. $Y = 0.148 \pm 0.008$

$$\odot$$
 d. $Y=0.16\pm0.09$

Borrar mi elección

Pregunta 2

Respuesta guardada

Puntaje de 15.00

♥ Señalar con bandera la pregunta Con base en la hoja de datos de la practica 2 y sus resultados obtenidos, elija la respuesta correcta para el tiempo de reacción de la persona.

Seleccione una:

$$\odot$$
 a. $t=(1.74\pm0.05)s$

$$\odot$$
 b. $t=(0.20\pm0.09)s$

$$left$$
 c. $t = (0.174 \pm 0.005)s$

O d.
$$t = (0.19 \pm 0.05)s$$

Borrar mi elección

Ejercicio#2

Distancia L

Datos:

Distancia L (m)						
1.	0.18	11.	0.19			
2.	0.22	12.	0.205			
3.	0.2	13.	0.18			
4.	0.21	14.	0.23			
5.	0.28	15.	0.185			
6.	0.225	16.	0.215			
7.	0.215	17.	0.21			
8.	0.205	18.	0.225			
9.	0.23	19.	0.205			
10.	0.185	20.	0.22			

Formula:

$$Y = \frac{x_1 + x_2 + \dots + x_n}{N}$$

$$Y = \frac{0.18 + 0.22 + 0.20 + 0.21 + 0.28 + 0.225.....+0.22}{20}$$

$$Y = \frac{4.215}{20}$$

Valor de la media: Y = 0.21075

Desviación estándar

Formula

$$\sigma_y = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

$$=\sqrt{\frac{0.01001375}{20-1}}$$

$$= 0.0229573$$

Desviación estándar de la media:

Formula

$$\sigma_{\bar{Y}} = \frac{\sigma_y}{\sqrt{N}}$$

$$=\frac{0.0229573}{\sqrt{20}}$$

$$= 0.005133408$$

Resultados:

Promedio / Incerteza	(0.211 ± 0.005) m
Desviación estándar	0.023 m

Pregunta 3

Respuesta guardada

Puntaje de 15.00

Señalar con bandera la pregunta Con base en la hoja de datos de la practica 2 y sus resultados obtenidos, elija la respuesta correcta para la **distancia** que recorre la esfera al caer al suelo **En unidades SI.**

Seleccione una:

$$\odot$$
 a. $L=21.1\pm0.5$

$$leftar{}{}$$
 b. $L=0.211\pm0.005$

$$\odot$$
 c. $L=0.111\pm0.009$

$$\odot$$
 d. $L=0.11\pm0.02$

Borrar mi elección

Pregunta 4
Respuesta
guardada
Puntaje de
15.00
© Señalar con
bandera la

Sin Procedimiento

Pregunta **5**

Respuesta guardada

Puntaje de 10.00

♥ Señalar con bandera la pregunta ¿cuál es la ecuación que se utiliza para calcular la media de n cantidad de datos?

Seleccione una:

$$\sigma_x = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (d_i)^2}$$

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$I = I_s \left(e^{\frac{qV_d}{nkT}} - 1 \right)$$

Borrar mi elección

Sin Procedimiento

Elegido por la hoja de datos de explicación del laboratorio.

Tiempo restante 0:29:16

Pregunta 6

Respuesta guardada

Puntaje de 10.00

Señalar con bandera la pregunta ¿Cuál es la ecuación que se utiliza para calcular la desviación estándar de n cantidad de datos?

Seleccione una:

$$\sigma_x = \sqrt{\frac{1}{(N-1)} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

$$\overline{x} = rac{\sum_{i=1}^{N} x_i}{N}$$

$$\frac{d^2\theta}{d^2t} = \frac{d\omega}{dt} = \alpha = \text{cte.}$$

Borrar mi elección

Sin Procedimiento

Elegido por la hoja de datos de explicación del laboratorio.

Cuando se tiene n cantidad de datos de una medida, la forma correcta de expresar el resultado es:

$$X = (\bar{x} \pm \sigma_{\bar{x}})u$$

Sin Procedimiento

Puntaje de 5.00

♥ Señalar con bandera la

Pregunta 7

Respuesta

guardada

pregunta

Elija una;

- Verdadero
- O Falso

Pregunta 8

Respuesta guardada

Puntaje de 5.00

Señalar con bandera la pregunta Suponga que de una serie de datos agrupados se obtuvo la media y la desviación estándar de la media obteniendo los siguientes valores $\bar{x}=12.846~\sigma_{\bar{x}}=0.082$. Exprese el resultado correctamente.

$$M = (\begin{bmatrix} 12.85 \end{bmatrix} \pm \begin{bmatrix} 0.08 \end{bmatrix})u$$

Sin Procedimiento

Pregunta **9**

Respuesta guardada

Puntaje de 5.00

Señalar con bandera la pregunta Suponga que de una serie de datos agrupados se obtuvo la media y la desviación estándar de la media obteniendo los siguientes valores $\bar{x}=0.846~\sigma_{\bar{x}}=0.012$. Exprese el resultado correctamente.

$$M = (0.846) \pm (0.012) u$$

Sin Procedimiento

Pregunta 10

Respuesta guardada

Puntaje de 5.00

Señalar con bandera la pregunta Suponga que de una serie de datos agrupados se obtuvo la media y la desviación estándar de la media obteniendo los siguientes valores $\bar{x}=1.423~\sigma_{\bar{x}}=0.89$. Exprese el resultado correctamente.

$$M = (1.4) \pm (0.9) u$$

Sin Procedimiento