Function Analysis

Michael Xie Art of Problem Solving

December 2024

Exploring the Differences Between Two Functions

In this article, we explore the differences between the following two functions:

$$f(x) = \sqrt{\frac{x+5}{x-7}}$$
 and $h(x) = \frac{\sqrt{x+5}}{\sqrt{x-7}}$.

At first glance, these functions may seem very similar. However, there are key differences in their domains and ranges, which we will analyze in detail.

Domain and Range Analysis

Domain of f(x)

The function $f(x) = \sqrt{\frac{x+5}{x-7}}$ is defined only when both of the following conditions hold:

- The denominator $x 7 \neq 0$ (to avoid division by zero).
- The expression $\frac{x+5}{x-7} \ge 0$ (to ensure the square root is defined and real).

Step 1: Avoiding Division by Zero

The denominator $x - 7 \neq 0$ implies:

$$x \neq 7$$
.

Step 2: Ensuring Non-Negativity

To ensure $\frac{x+5}{x-7} \ge 0$, we analyze the signs of the numerator (x+5) and denominator (x-7) over different intervals of x:

- When $x + 5 \ge 0$ and x 7 > 0, the fraction is non-negative. This occurs when $x \ge 7$.
- When $x + 5 \le 0$ and x 7 < 0, the fraction is also non-negative. This occurs when $x \le -5$.

Combining these conditions, the domain of f(x) is:

$$x \in (-\infty, -5] \cup [7, \infty).$$

Step 3: Removing x = 7 (Division by Zero)

Finally, removing x = 7 from the domain:

Domain of
$$f(x): x \in (-\infty, -5] \cup (7, \infty) \subset \mathbb{R}$$
.

Domain of h(x)

The function $h(x) = \frac{\sqrt{x+5}}{\sqrt{x-7}}$ imposes stricter constraints due to the square roots in both the numerator and denominator. It is defined only when:

- The numerator $\sqrt{x+5}$ is defined, which requires $x+5 \ge 0 \implies x \ge -5$.
- The denominator $\sqrt{x-7}$ is defined and nonzero, which requires $x-7>0 \implies x>7$.

Combining these conditions, the domain of h(x) is:

Domain of
$$h(x): x \in (7, \infty) \subset \mathbb{R}$$
.

Comparison of Domains

The key difference between the domains of f(x) and h(x) lies in the inclusion of the interval $(-\infty, -5]$ for f(x), which is not part of the domain of h(x). This is because the two square roots in h(x) impose stricter constraints, requiring both $x + 5 \ge 0$ and x - 7 > 0 simultaneously, compared to f(x)'s one, encompassing square root.