(Pages : 3) M - 7125

Reg. No. :	 	•
Name :	 	

Third Semester M.Sc. Degree Examination, March 2022 Physics

PH 231 : ADVANCED QUANTUM MECHANICS (2018 - 2019 Admission)

Time: 3 Hours Max. Marks: 75

SECTION - A

Answer any five questions. Each question carries 3 marks.

- 1. (a) A conservation law implies the existence of a symmetry transformation for the system. Comment.
 - (b) What are ladder operators? Why are they called so?
 - (c) For s electron, the spin orbit interaction is zero. Why?
 - (d) Explain the validity conditions of WKB approximation
 - (e) Explain what is dipole approximation
 - (f) What are singlet and triplet states?
 - (g) What are partial waves?
 - (h) The dimension of Dirac matrices has to be even. Why?

 $(5 \times 3 = 15 \text{ Marks})$

SECTION - B

Answer all questions. Each question carries 15 marks.

2. (a) Discuss the variation method as applied to the ground state of Helium.

OR

- (b) Discuss the barrier penetration problem based on the WKB method
- 3. (a) Describe the scattering by a central potential on the basis of partial wave analysis.

OR

- (b) What are Pauli's spin matrices and explain their properties. Using Pauli's spin matrix representation, reduce the operators S^2_x , S^2_y and S^2_z
- 4. (a) Obtain the eigen values of J^2 and J_z where J^2 and J_z have the usual meaning.

OR

(b) Set up Dirac equation for an electron in an electromagnetic field and obtain an expression for the electron spin magnetic moment.

 $(3 \times 15 = 45 \text{ Marks})$

SECTION - C

Answer any three questions. Each question carries 5 marks.

- 5. (a) Prove that the conservation of total angular momentum is a consequence of the rotational invariance of a system.
 - (b) Show that $[L^2, L_x] = 0$
 - (c) For Pauli spin matrices show that $\sigma_x \sigma_y \sigma_z = i$.

- (d) Explain dipole approximation and dipole moment. Comment on the transitions $1s \to 2s$ and $1s \to 2p$
- (e) List out the Boson states and Fermion states with spatial and spin part included
- (f) Write down the Dirac matrices in the standard notation. What are the conditions applied to Dirac matrices.

$(3 \times 5 = 15 \text{ Marks})$