Amirfarhad Nilizadeh

Specialized in: Formal Verification in Hardware & Software | Developing, Testing and Debugging

Professional Experience

AMD | Orlando, FL

Member of Technical Staff, Hardware Formal Verification

Jan 2022 - Present

GPU Formal Verification

- Working with advanced formal verification tools including JasperGold and VC Formal, adept at leveraging their capabilities for comprehensive and effective verification.
- A complete end-to-end FPV (full proof) performed to ensure the correctness of six GPU blocks:
 - Used a range of reduced-complexity techniques, including Assume-Guarantee Reasoning, Symbolic Variables, Behavioral Modeling, Abstractions (Counters and Memories), Semi Formal, Black Boxing, Cut Point, Case Splitting, Parameters and Size Reduction, and Scoreboard Integration (Assertion IPs).
 - o Detected 22 critical RTL bugs in control logics, including one that caused system starvation and another in RTL IP.
 - o Identified four RTL issues affecting design performance.
 - o Achieved high formal and functional coverage for FPV sign-off, proving the correctness of all tested blocks. Also, establishing reliable bounds for challenging properties.
- Executed SEC (Sequential Equivalence Checking) verification for a critical GPU block:
 - Verified the clock gating behaviors for accurate power management.
 - o Reduced complexity, significantly using single side cut point and hierarchical SEC. (Improved bound from 30 to 75).
- Proved the correctness of several new sub-block designs using FPV (Bug Hunting). (Arbiters, FIFOs, credit/debit)
 - Detected several RTL and performance bugs.
- Performed connectivity checks for three major GPU blocks, ensuring interconnection accuracy.
 - o Detected numerous RTL and RDL mismatches (more than a hundred RDL issues).
- Co-authored a paper (related to Post-silicon FV) selected as "Best Paper" at an internal AMD conference.

Formal Methods Lab, UCF | Orlando, FL

Graduate Research Assistant (PhD), Software Formal Verification

2016 - 2021

Publications and Presentations:

- 14 publications (13 as the first author) and 9 presentations in top-tier conferences and journals. (Google Scholar)
- Finalist in UCF's 3MT competition (2021) for research contributions. (Short Video) (Final Presentation Video)

Main Project: Formal Methods in Dynamic Automated Program Repair

- Demonstrated formal verification's effectiveness in detecting overfitted patches with 100% success. (GitHub) (Paper)
- Developed JMLKelinci, a tool leveraging lightweight specifications to discover bugs. (GitHub) (Paper1) (Paper2)
- Created a prototype tool to convert SMT solver-generated complex counterexample traces into input tests. (Paper)
- Published the first public Java dataset with complete formal specifications, verified by OpenJML's extended checker. (GitHub)

Secondary Project: Evaluating Test Suite Characteristics for Automated Program Repair

- Enhanced test suite efficacy in automated program repair by incorporating SMT solver counterexamples, achieving 87% improvement. (Paper)
- Investigated the impact of coverage metrics beyond branch coverage using formal verification to guide program repair. (Paper)

Side Projects: Image Steganography Tool Development

 Designed and developed an image steganography method to securely hide and transfer digital data through unsecured public networks. (GitHub) (Paper1) (Paper2)

AMD | Orlando, FL

Internship at AMD

Fall 2021

 Conducted comprehensive connectivity checks using VC Formal to validate interconnections within a complex hardware architecture, identifying multiple RTL and RDL mismatches.

Google | Remote

Google Summer of Code

Summer 2021

 Designed and developed a tool leveraging lightweight behavioral specifications, guided fuzzing, and symbolic execution to identify behavioral and security vulnerabilities in Java applications. (Google Code) CyLab Security & Privacy Institute, CMU | Mountain View, CA

Internship at CyLab Security & Privacy in CMU (NASA Ames Research Center)

Summer 2018

- Applied software analysis techniques with a focus on fuzzing tools to identify space-time vulnerabilities (side channels) in code.
- Selected for DARPA Live Engagement 6, contributing to advanced cybersecurity research in Space/Time Analysis. (DARPA)

Azad University | Esfahan, Iran

University Lecturer | Computer Science and Computer Engineering

2013 - 2016

Delivered undergraduate courses in Computer Science and Computer Engineering, focusing on foundational and advanced topics.

Educational Background

Doctor of Philosophy, Computer Science — University of Central Florida (UCF) Orlando, FL	Dec. 2021
Master of Science, Computer Science — University of Central Florida (UCF) Orlando, FL	Dec. 2018
Master of Engineering, Computer Architecture — Arak University Arak, Iran	Feb. 2013
Bachelor of Engineering, Hardware Engineering — Isfahan University Isfahan, Iran	Sep. 2009

Technical Proficiencies

Hardware Formal Verification — Expertise in JasperGold, VC Formal, FPV, FEV (SEC), Bug Hunting, Complexity Reduction, Formal Coverage, Sign-off, Semi-Formal, Connectivity Check and AEP. Familiar with Post-silicon, Xprop, FEV (CEC), Data Path and Control Register Formal Verification.

Software Formal Verification — Proficient in Java Modeling Language (JML), OpenJML, Java PathFinder (JPF), SMT Solver and Symbolic and Concolic Execution. Familiar with Dafny and Coq.

Hardware Description Languages — Skilled in Verilog, SystemVerilog, SystemVerilog Assertions. Familiar with VHDL.

Hardware Design Verification — Familiar with UVM, constraint-random testing, coverage-driven verification.

Programming Languages — Skilled in Java, C, MATLAB, and Phyton. Familiar with C++, Haskell, and Assembly 8086.

Version Control — Experienced in using Perforce and GitHub for code management.

Scripting — Experienced in writing and manipulating TCL scripts for formal verification tasks.

Fuzzing and Software Testing Tools — Hands-on experience with Mutation, AFL, Junit, PITest, Randoop, EvoSuite, Kelinci, Kelinci-WCA, JMLKelinci, Diffuz.

Certificates

- Cadence Design Systems.
 - SystemVerilog Assertion
 - JasperGold Formal Fundamentals
 - JasperGold SEC
 - > Jasper Formal Coverage
- AMD advanced formal verification and sign-off training.
- Seventh and Eighth Summer School on Formal Techniques by SRI, 2017 and 2018.

Selected Publications (Further works available on Google Scholar)

- A co-author, A. Nilizadeh: Formal Verification: An Essential Methodology for Post-silicon, 4th Annual AMD Conference, 2023.
- A. Nilizadeh, G. T. Leavens, C. Pasareanu, Y. Noller, JMLKelinci+: Detecting Semantic Bugs and Covering Branches with Valid Inputs using Coverage-Guided Fuzzing and Runtime Assertion Checking, Formal Aspects of Computing, ACM, 2024.
- A. Nilizadeh, M. Calvo, G. T. Leavens, D. R. Cok, Generating Counterexamples in the Form of Unit Tests from Hoare-style Verification Attempts. IEEE/ACM 10th International Conference on Formal Methods in Software Engineering, IEEE, 2022.
- A. Nilizadeh, G. T. Leavens, X. D. Le, C. Pasareanu, D. Cok, Exploring True Test Overfitting in Dynamic Automated Program Repair using Formal Methods. 14th IEEE Conference on Software Testing, Verification and Validation (ICST), IEEE, 2021.

Awards and Honors

Paper Review in several IEEE, ACM, Springer, and Wiley journals.

Jan 2019 - present

Google Summer of Code Student Grant.

Summer 2021

DARPA Grant for Internship and live engagement 6, Space/Time Analysis for Cybersecurity.

Summer 2018

NSF Grant for RA position and travel grant for conferences and formal verification summer school.

Aug 2016 - Aug 2017

Chess Achievement

- International Chess Player, FIDE chess code: 12531600. World chess rating: 1797
- Among the top 10% of expert chess players in FL and in the USA. (Feb 2025)

^{*} References are available upon request.