Chapter 5 One-Factor Risk Metrics and Hedges

Overview

- Measure of risk
 - -DV01
 - Duration
 - Convexity
- Yield-based risk management
 - Hedging

Definition of DV01, cont'd

• Suppose the price of a security is the function of a yield, y, then DV01 of the security is the change in price for one-basis point of change in yield:

$$DV01 = -\Delta P(y)$$

= -P(y + 0.01%) + P(y)

Example

Ex: The yield of 5s of 2/15/2011 at 2/15/2001 is y=5%. What is its DV01?

$$P(y) = 100$$

$$P(y+0.01\%) = 100 \left[\frac{c}{y} + \left(1 - \frac{c}{y} \right) \left(1 + \frac{y}{2} \right)^{-2T} \right]_{\substack{c=y=5\%\\T=10}} = 99.9221$$

$$\Rightarrow DV01 = -99.9221 + 100 = 0.0779$$

Example, cont'd

When yield drops by one basis point, there is

$$P(y) = 100$$

$$P(y-0.01\%) = 100 \left[\frac{c}{y} + \left(1 - \frac{c}{y} \right) \left(1 + \frac{y}{2} \right)^{-2T} \right]_{\substack{c=y=5\%\\T=10}} = 100.0780$$

$$\Rightarrow DV01 = 100.0780 - 100 = 0.0780$$

So

$$P(y-0.01\%) - P(y) \neq P(y) - P(y+0.01\%)$$

DV01 Redefined

For symmetry and higher accuracy, we redefine

$$DV01 = -\frac{P(y+0.01\%) - P(y-0.01\%)}{2}$$

In the last example

$$DV01 = 0.07794$$

Price curve

For bond

FIGURE 5.1 The Price-Rate Function of the 5s of February 15, 2011

Bond Option Value vs. Yields

For option

FIGURE 5.2 The Price-Rate Function of a One-Year European Call Option Struck at Par on the 5s of February 15, 2011

Option Definition

- A call option on a bond is a right to buy the bond in a future date for a specified price.
 - -Ex: At 2/15/2001, you acquire the right to buy 5s 2/15/2011 at par in 2/15/2006.
- A put option on a bond is a right a sell the bond in a future date for a specified price
 - -Ex: At 2/15/2001, you acquire the right to sell 5s 2/15/2011 at par in 2/15/2006.

DV01 of bond & option

 Ex: In 2/15/2002, the price of a call option to buy 5s of 2/15/2011 at PAR is

TABLE 5.1 Selected Option Prices, Underlying Bond Prices, and DV01s at Various Rate Levels

Rate Level	Option Option Bond Price DV01 Price			Bond DV01	
3.99%	8.2148		108.2615		
4.00%	8.1506	0.0641	108.1757	0.0857	
4.01%	8.0866		108.0901		
4.99%	3.0871		100.0780		
5.00%	3.0501	0.0369	100.0000	0.0779	
5.01%	3.0134	0.03685	99.9221	0.07795	
5.99%	0.7003		92.6322		
6.00%	0.6879	0.0124	92.5613	0.0709	
6.01%	0.6756		92.4903		

DV01 based hedging

- Question: a market maker sells \$100m face value of the call option when the yield is 5%.
 How should the market maker hedge the market risk?
- Answer: Long the underlying bond of certain face value to make the total DV01 vanishes, or make the hedge "DV01 neutral".

The hedge

Let F be the face value for bond buying, then
 F is subject to

$$F \times DV01_{bond} = \$100m \times DV01_{option}$$

If follows that

$$F = \$100m \times \frac{DV01_{option}}{DV01_{bond}} = \$100m \times \frac{0.0369}{0.0779}$$
$$= \$47,370,000$$

Reality Check

 If yield decreases by one bps, then the value of the portfolio (of short call and long bond) is

$$Before = -\$100m \times \frac{3.0501}{100} + 47,370,000 \times \frac{100}{100}$$

$$= \$44,319,900$$

$$After = -\$100m \times \frac{3.0871}{100} + 47,370,000 \times \frac{100.078}{100}$$

$$= \$44,319,847$$

$$Change = \$53 \implies \text{negligible!}$$

General DV01 hedge

• If we hedge security A with security B, the face amount of B for hedging is given by

$$F_B = F_A \times \frac{DV01_A}{DV01_B}$$

Duration

 We often need to calculate price change by percentage:

$$\frac{\Delta P}{P} = \frac{P(y + \Delta y) - P(y)}{P(y)}$$

There is

$$\frac{\Delta P}{P} = \frac{1}{P} \frac{\Delta P}{\Delta y} \Delta y \triangleq -D\Delta y$$

where $D = -\frac{1}{P} \frac{\Delta P}{\Delta y}$ is called *duration*.

Duration, cont'd

- Duration measures the rate of change per dollar value of a security.
- Duration value is not sensitive to the size of $\Delta y \ll 1$. When an explicit formula for the pricerate function is available, we calculate the duration by

$$D = -\frac{1}{P} \frac{\Delta P}{\Delta y} \approx -\frac{1}{P} \frac{dP}{dy}$$

Example of duration

TABLE 5.2 Selected Option Prices, Underlying Bond Prices, and Durations at Various Rate Levels

Rate Level	Option Option Bond Price Duration Price			Bond Duration
3.99%	8.2148		108.2615	
4.00%	8.1506	78.60	108.1757	7.92
4.01%	8.0866		108.0901	
4.99%	3.0871		100.0780	
5.00%	3.0501	120.82	100.0000	7.79
5.01%	3.0134		99.9221	
5.99%	0.7003		92.6322	
6.00%	0.6879	179.70	92.5613	7.67
6.01%	0.6756		92.4903	

Example

• Ex: (see table 5.2) Central differencing is used to calculate the duration. At y = 4%, we have, for bond

$$D = -\frac{1}{108.1751} \frac{(108.0901 - 108.2615)}{0.02\%} = 7.92$$

While for the option

$$D = -\frac{1}{8.1506} \frac{\left(8.0866 - 8.2148\right)}{0.02\%} = 78.60$$

Origin of Duration

• MacCaulay duration (1932): let $T_i = i \times \Delta T = 0.5i$, then

$$D_{mac} = \frac{1}{P} \left(\sum_{i=1}^{2T} \Delta Tc \times d(T_i) \times T_i + d(T) \times T \right)$$

--- the weighted average of cash flow (coupon and/or principal) dates.

• $D = -\frac{1}{P} \frac{\Delta P}{\Delta v}$ is called the modified duration.

Duration of a portfolio

• Consider a portfolio of two securities, $P = \{P_1, P_2\}$, assume $P_1 + P_2 \neq 0$. By definition

$$\begin{split} D_p &= -\frac{1}{P_1 + P_2} \frac{\Delta (P_1 + P_2)}{\Delta y} \\ &= -\frac{1}{P_1 + P_2} \left(P_1 \frac{1}{P_1} \frac{\Delta P_1}{\Delta y} + P_2 \frac{1}{P_2} \frac{\Delta P_2}{\Delta y} \right) \\ &= \frac{P_1}{P_1 + P_2} \left(-\frac{1}{P_1} \frac{\Delta P_1}{\Delta y} \right) + \frac{P_2}{P_1 + P_2} \left(-\frac{1}{P_2} \frac{\Delta P_2}{\Delta y} \right) \\ &= \frac{P_1}{P_1 + P_2} D_1 + \frac{P_2}{P_1 + P_2} D_2 \end{split}$$

Duration neutral hedge

• If we try to hedge P_1 using P_2 , we long or short P_2 in the amount

$$P_2 = -\frac{D_1}{D_2} P_1$$

Example

 To hedge one unit of LONG option in Table 5.1, we need to short

$$P_2 = -\frac{78.60}{7.92} \times \$8.1506 = -\$80.88$$

or 80.88/108.1751 = 0.74 unit of the bond.

Duration vs. DV01

Duration links to DV01 linearly

$$D = -\frac{1}{P} \frac{\Delta P}{\Delta y}$$

$$= \frac{1}{P} \frac{DV01}{0.0001}$$

$$= \frac{10000}{P} DV01$$

Duration neutral vs. DV01 neutral

- The same.
- Ex: To hedge a unit of LONG option in Table
 5.1, we need to short

$$F_2 = \frac{DV01_{option}}{DV01_{bond}} F_1$$
$$= \frac{0.0641}{0.0857} \times \$100m = \$74,795,799$$

The same answer.

2nd-order approximation of price change

A second-order Taylor approximation of the price-rate function

$$P(y + \Delta y) \approx P(y) + \frac{dP}{dy} \Delta y + \frac{1}{2} \frac{d^2 P}{dy^2} \Delta y^2$$
$$\Delta P \approx \frac{dP}{dy} \Delta y + \frac{1}{2} \frac{d^2 P}{dy^2} \Delta y^2$$

So,

$$\frac{\Delta P}{P} \approx \frac{1}{P} \frac{dP}{dy} \Delta y + \frac{1}{2} \frac{1}{P} \frac{d^2 P}{dy^2} \Delta y^2$$
$$\frac{\Delta P}{P} \approx -D\Delta y + \frac{1}{2} C\Delta y^2$$

Convexity

where

$$C \equiv \frac{1}{P} \frac{d^2 P}{dy^2}$$

is called the convexity or convexity measure.

Quality of approximations: bond

FIGURE 5.7 First and Second Order Approximations to Price of 5s of February 15, 2011

Quality of approximations: option

FIGURE 5.6 First and Second Order Approximations to Call Option Price

Approximation in general

Calculation of Convexity

The central-differencing formula

$$C = \frac{1}{P} \frac{P(y + \Delta y) - 2P(y) + P(y - \Delta y)}{\Delta y^2}$$

• Table 4.3

TABLE 5.3 Convexity Calculations for the Bond and Option at Various Rates

Rate Level	Bond Price	First Derivative	Convexity	•	First Derivative	Convexity
3.99%	108.2615			8.2148		
4.00%	108.1757	-857.4290	75.4725	8.1506	-641.8096	2,800.9970
4.01%	108.0901	-856.6126		8.0866	-639.5266	
4.99%	100.0780			3.0871		
5.00%	100.0000	-779.8264	73.6287	3.0501	-369.9550	9,503.3302
5.01%	99.9221	-779.0901		3.0134	-367.0564	
5.99%	92.6322			0.7003		
6.00%	92.5613	-709.8187	71.7854	0.6879	-124.49842	25,627.6335
6.01%	92.4903	-709.1542		0.6756	-122.7355	

Convexity In Asset-liability Management

- Positive convexity increases return so long as interest rates move.
- The bigger the move in either direction, the greater the gains from positive convexity.
- Negative convexity works in the reverse.
- Asset-liability managers (or hedgers, more generally) can achieve greater protection against interest rate changes by hedging duration and maintaining a non-negative convexity.

Duration of Portfolios

 The duration of a portfolio is the weighted average of those of its components, since

$$P = \sum P^{i}, \frac{dP}{dy} = \sum \frac{dP^{i}}{dy}$$
$$-\frac{1}{P}\frac{dP}{dy} = \sum -\frac{1}{P}\frac{dP^{i}}{dy}$$
$$-\frac{1}{P}\frac{dP}{dy} = \sum -\frac{P^{i}}{P}\frac{1}{P^{i}}\frac{dP^{i}}{dy}$$
$$D = \sum \frac{P^{i}}{P}D^{i}$$

Convexity Of Portfolios

 Similarly, the convexity of a portfolio is the weighted average of those of its components:

$$C = \sum \frac{P^i}{P} C^i$$