Report No: CCIS15070052902

FCC REPORT

Applicant: Shenzhen Rainbow Time Technology Co.,Ltd.

Address of Applicant: Room 905, ChangHong Technology Building, Science and

Technology Park, Nanshan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: VP5003A, Q1

Trade mark: Vulcan, UBTEL

FCC ID: 2AFC6-VP5003A

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 01 Jul., 2015

Date of Test: 02 Jul., to 28 Jul., 2015

Date of report issued: 28 Jul., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Jul., 2015	Original

Prepared by: Date: 28 Jul., 2015

Report Clerk

Reviewed by: CAN Date: 28 Jul., 2015

Project Engineer

3 Contents

			Page
1	С	OVER PAGE	1
2	V	/ERSION	2
3	C	CONTENTS	2
4		EST SUMMARY	
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	7
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	T	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	Hopping Channel Number	26
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
	_	.9.1 Conducted Emission Method	
	_	.9.2 Radiated Emission Method	
	6.10	0.0.000	
	_	.10.1 Conducted Emission Method	
	_	.10.2 Radiated Emission Method	
7	Т	EST SETUP PHOTO	62
8	Е	UT CONSTRUCTIONAL DETAILS.	63

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Rainbow Time Technology Co.,Ltd.
Address of Applicant:	Room 905, ChangHong Technology Building, Science and Technology Park, Nanshan District, Shenzhen, China
Manufacturer:	Shenzhen Rainbow Time Technology Co., Ltd.
Address of Manufacturer:	Room 905, ChangHong Technology Building, Science and Technology Park, Nanshan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	VP5003A, Q1
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	1.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-1900mAh
AC adapter:	Model:HJ-0501000
	Input:100-240V AC,50/60Hz 0.15A
	Output:5.0V DC MAX 1000mA

Operation	Frequency eac	h of channe	el for GFSK, π	/4-DQPSK,	8DPSK		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCIS15070052902

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	SCHWAR7F		VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 1.0 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.4:2009				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limit (dBuV)				
Limit:	Frequency range (MHz)	Limit (d	lBuV)		
	, , , ,	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm				
Test setup:	Reference Plane LISN LISN				
	AUX Equipment Test table/Insulation plane Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 				
Test Instruments:	Refer to section 5.7 for details	}			
Test mode:	Bluetooth (Continuous transm	itting) mode			
Test results:	Pass				
	l				

Measurement Data

Line:

Trace: 21

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE Site Condition

: 529RF
EUT : Mobile phone
Model : VP5003A
Test Mode : BT MODE
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey
Remark :

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	dB	₫B	dBu∜	dBu∜	dB	
0.274	26.44	0.26	10.74	37.44	60.98	-23.54	QP
0.299	16.78	0.26	10.74	27.78	50.28	-22.50	Average
0.471	12.55	0.29	10.75	23.59	46.49	-22.90	Average
0.474	27.68	0.29	10.75	38.72	56.45	-17.73	QP
0.705	25.21	0.22	10.77	36.20	56.00	-19.80	QP
0.739	11.98	0.22	10.79	22.99	46.00	-23.01	Average
1.928	8.25	0.26	10.96	19.47	46.00	-26.53	Average
2.033	26.19	0.26	10.96	37.41	56.00	-18.59	QP
3.140	10.48	0.27	10.91	21.66	46.00	-24.34	Average
5.447	24.56	0.30	10.84	35.70	60.00	-24.30	QP
24.142	24.88	0.49	10.88	36.25	60.00	-23.75	QP
24.271	11.30	0.49	10.88	22.67	50.00	-27.33	Average
	0. 274 0. 299 0. 471 0. 474 0. 705 0. 739 1. 928 2. 033 3. 140 5. 447 24. 142	MHz dBuV 0.274 26.44 0.299 16.78 0.471 12.55 0.474 27.68 0.705 25.21 0.739 11.98 1.928 8.25 2.033 26.19 3.140 10.48 5.447 24.56 24.142 24.88	MHz dBuV dB 0.274 26.44 0.26 0.299 16.78 0.26 0.471 12.55 0.29 0.474 27.68 0.29 0.705 25.21 0.22 0.739 11.98 0.22 1.928 8.25 0.26 2.033 26.19 0.26 3.140 10.48 0.27 5.447 24.56 0.30 24.142 24.88 0.49	MHz dBuV dB dB 0.274 26.44 0.26 10.74 0.299 16.78 0.26 10.74 0.471 12.55 0.29 10.75 0.474 27.68 0.29 10.75 0.705 25.21 0.22 10.77 0.739 11.98 0.22 10.79 1.928 8.25 0.26 10.96 2.033 26.19 0.26 10.96 3.140 10.48 0.27 10.91 5.447 24.56 0.30 10.84 24.142 24.88 0.49 10.88	MHz dBuV dB dB dBuV 0.274 26.44 0.26 10.74 37.44 0.299 16.78 0.26 10.74 27.78 0.471 12.55 0.29 10.75 23.59 0.474 27.68 0.29 10.75 38.72 0.705 25.21 0.22 10.77 36.20 0.739 11.98 0.22 10.79 22.99 1.928 8.25 0.26 10.96 19.47 2.033 26.19 0.26 10.96 37.41 3.140 10.48 0.27 10.91 21.66 5.447 24.56 0.30 10.84 35.70 24.142 24.88 0.49 10.88 36.25	MHz dBuV dB dB dBuV dBuV 0.274 26.44 0.26 10.74 37.44 60.98 0.299 16.78 0.26 10.74 27.78 50.28 0.471 12.55 0.29 10.75 23.59 46.49 0.474 27.68 0.29 10.75 38.72 56.45 0.705 25.21 0.22 10.77 36.20 56.00 0.739 11.98 0.22 10.79 22.99 46.00 1.928 8.25 0.26 10.96 37.41 56.00 2.033 26.19 0.26 10.96 37.41 56.00 3.140 10.48 0.27 10.91 21.66 46.00 5.447 24.56 0.30 10.84 35.70 60.00 24.142 24.88 0.49 10.88 36.25 60.00	MHz dBuV dB dB dBuV dBuV dB 0.274 26.44 0.26 10.74 37.44 60.98 -23.54 0.299 16.78 0.26 10.74 27.78 50.28 -22.50 0.471 12.55 0.29 10.75 23.59 46.49 -22.90 0.474 27.68 0.29 10.75 38.72 56.45 -17.73 0.705 25.21 0.22 10.77 36.20 56.00 -19.80 0.739 11.98 0.22 10.79 22.99 46.00 -23.01 1.928 8.25 0.26 10.96 19.47 46.00 -26.53 2.033 26.19 0.26 10.96 37.41 56.00 -18.59 3.140 10.48 0.27 10.91 21.66 46.00 -24.34 5.447 24.56 0.30 10.84 35.70 60.00 -24.30 24.142 24.88 0.49

Neutral:

Trace: 19

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL Condition

: 529RF Pro

EUT : Mobile phone Model : VP5003A Test Mode : BT MODE Power Rating : AC 120/60Hz Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Carey

Vemark.	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
-	MHz	dBu∜	dB	dB	dBu∀	dBu∇	<u>dB</u>		
1	0.158	30.69	0.25	10.78	41.72	65.56	-23.84	QP	
1 2 3	0.162	19.17	0.25	10.77	30.19	55.34	-25.15	Average	
3	0.406	16.88	0.25	10.72	27.85	47.73	-19.88	Average	
4 5 6 7 8 9	0.474	32.84	0.28	10.75	43.87	56.45	-12.58	QP	
5	0.474	24.59	0.28	10.75	35.62	46.45	-10.83	Average	
6	0.708	16.16	0.18	10.77	27.11	46.00	-18.89	Average	
7	0.779	23.97	0.19	10.80	34.96	56.00	-21.04	QP	
8	1.868	25.28	0.28	10.95	36.51	56.00	-19.49	QP	
9	1.868	14.46	0.28	10.95	25.69	46.00	-20.31	Average	
10	2.474	12.74	0.29	10.94	23.97	46.00	-22.03	Average	
11	2.622	25.21	0.29	10.93	36.43	56.00	-19.57	QP	
12	24.271	22.82	0.49	10.88	34.19	60.00	-25.81	QP	
10 11	2.622	25.21	0.29	10.93	23.97 36.43	46.00 56.00	-22.03 -19.57	Averag QP	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

			1	
	GFSK mo	de		
Test channel	Peak Output Power (dBm) Limit (dBm) Result		Result	
Lowest	4.11	21.00	Pass	
Middle	4.68	21.00	Pass	
Highest	4.92	21.00	Pass	
	π/4-DQPSK ι	mode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	3.53	21.00	Pass	
Middle	4.11	21.00	Pass	
Highest	4.32	21.00	Pass	
	8DPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	3.62	21.00	Pass	
Middle	4.23	21.00	Pass	
Highest	4.48	21.00	Pass	

Test plot as follows:

Modulation mode: GFSK

Date: 8..TII..2015 17:03:43

Lowest channel

Date: 8.JUL.2015 20:33:12

Middle channel

Date: 8.JUL.2015 17:04:14

Highest channel

Modulation mode: π/4-DQPSK

Date: 8.JUL.2015 17:05:10

Lowest channel

Date: 8..TIIT..2015 20:32:49

Middle channel

Date: 8.JUL. 2015 17:04:38

Highest channel

Modulation mode: 8DPSK

Date: 8.JUL.2015 17:05:29

Lowest channel

Date: 8..TUT..2015 20:32:23

Middle channel

Date: 8.JUL.2015 17:06:19

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

Test channel	20dB Occupy Bandwidth (kHz)		
rest channel	GFSK	π/4-DQPSK	8DPSK
Lowest	832	1116	1168
Middle	836	1120	1164
Highest	832	1116	1168

Test plot as follows:

Modulation mode: GFSK

Date: 8.JUL.2015 17:14:00

Lowest channel

Date: 8.JUL.2015 17:13:22

Middle channel

Date: 8.JUL.2015 17:12:43

Highest channel

Modulation mode: π/4-DQPSK

Date: 8.JUL.2015 17:10:28

Lowest channel

Date: 8..TIIT..2015 17:11:13

Middle channel

Date: 8.JUT..2015 17:11:46

Highest channel

Modulation mode: 8DPSK

Date: 8.JUL.2015 17:09:43

Lowest channel

Date: 8..TIIT..2015 17:09:07

Middle channel

Date: 8.JUT..2015 17:08:21

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data

GFSK mode			
Test channel	Carrier Frequencies Separation (kHz) Re		Result
Lowest	1000	557.33	Pass
Middle	1000	557.33	Pass
Highest	1000	557.33	Pass
π/4-DQPSK mode			
Test channel	Carrier Frequencies Separation (kHz) Resu		Result
Lowest	1000 746.67 Pass		Pass
Middle	1000	746.67	Pass
Highest	1008	746.67	Pass
8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz)		Result
Lowest	1004	778.67	Pass
Middle	1004	778.67	Pass
Highest	1004 778.67 Pass		Pass

Note: According to section 6.4

Note. According to section	U. T	
Mode	20dB bandwidth (kHz)	Limit (kHz)
Wode	(worse case)	(Carrier Frequencies Separation)
GFSK	836	557.33
π/4-DQPSK	1120	746.67
8DPSK	1168	778.67

Test plot as follows:

Modulation mode: GFSK

Date: 8.JUL.2015 20:02:50

Lowest channel

Date: 8..TUT..2015 20:03:34

Middle channel

Date: 8.JUT..2015 20:04:11

Highest channel

Modulation mode: π/4-DQPSK

Date: 8.JUL.2015 20:07:00

Lowest channel

Date: 8..TUT..2015 20:05:46

Middle channel

Date: 8.JUT..2015 20:05:03

Highest channel

Modulation mode: 8DPSK

Date: 8.JUL.2015 20:08:03

Lowest channel

Date: 8..TUT..2015 20:09:02

Middle channel

Date: 8.JUT..2015 20:09:51

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

GFSK

Date: 8.JUT..2015 20:17:38

π/4-DQPSK

Date: 8..TIIT..2015 20:14:46

8DPSK

Date: 8.JUL.2015 20:12:22

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case)

	<u> </u>			
Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12672		
GFSK	DH3	0.27040	0.4	Pass
	DH5	0.31509		
	2-DH1	0.12800		
π/4-DQPSK	2-DH3	0.26752	0.4	Pass
	2-DH5	0.31488		
	3-DH1	0.12800		
8DPSK	3-DH3	0.26688	0.4	Pass
	3-DH5	0.31275		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.396*(1600/(2*79))*31.6=126.72ms DH3 time slot=1.690*(1600/(4*79))*31.6=270.40ms DH5 time slot=2.954*(1600/(6*79))*31.6=315.09ms

2-DH1 time slot=0.400*(1600/ (2*79))*31.6=128.00ms

2-DH3 time slot=1.672*(1600/ (4*79))*31.6=267.52ms

2-DH5 time slot=2.952*(1600/ (6*79))*31.6=314.88ms

3-DH1 time slot=0.400*(1600/ (2*79))*31.6=128.00ms

3-DH3 time slot=1.668*(1600/ (4*79))*31.6=266.88ms

3-DH5 time slot=2.932*(1600/ (6*79))*31.6=312.75ms

Test plot as follows:

Modulation mode: GFSK

Date: 8.JUL.2015 20:19:33

DH1

Date: 8.JUL.2015 20:20:28

DH3

Date: 8.JUL.2015 20:21:02

DH5

Modulation mode: π/4-DQPSK

Date: 8.JUL.2015 20:21:38

2-DH1

Date: 8.JUL.2015 20:22:16

2-DH3

Date: 8.JUL.2015 20:23:09

2-DH5

Modulation mode: 8DPSK

Date: 8.JUL.2015 20:23:49

3-DH1

Date: 8..TIIT..2015 20:24:25

3-DH3

Date: 8.JUL.2015 20:24:53

3-DH5

Report No: CCIS15070052902

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

GFSK

Lowest Channel

Date: 8.JUL.2015 17:15:12

No-hopping mode

Date: 8.JIII..2015 17:15:54

Hopping mode

Highest Channel

Date: 8.JUL.2015 17:27:04

No-hopping mode

Date: 8.JUL.2015 17:28:37

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

Date: 8.JUL.2015 17:21:05

No-hopping mode

Hopping mode

Highest Channel

Date: 8.JUL.2015 17:30:26

No-hopping mode

Date: 8.JUL.2015 17:29:45

Date: 8.JUL.2015 17:20:28

Hopping mode

8DPSK

Lowest Channel

Date: 8.JUL.2015 17:23:38

No-hopping mode

Date: 8.JUL.2015 17:24:42

Hopping mode

Highest Channel

Date: 8.JUL.2015 17:31:20

No-hopping mode

Date: 8.JUL.2015 17:32:12 Hopping mode

6.9.2 Radiated Emission Method

0.9.2	Nadiated Lilission Wet					
	Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205		
	Test Method:	ANSI C63.10:20	013			
	Test Frequency Range:	2.3GHz to 2.5G	Hz			
	Test site:	Measurement D	istance: 3m			
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark
		Above 1GHz	Peak RMS	1MHz	3MHz	Peak Value
	Limit:	Freque		1MHz Limit (dBuV/	3MHz (m @3m)	Average Value Remark
	LIIIII.		•	54.0		Average Value
		Above 1	IGHz	74.0		Peak Value
	Test setup:	AE EI (Turntable	Ground Reference Pt	Hom Antenna To	wer	
	Test Procedure:	ground at a 3 determine th 2. The EUT wa antenna, white tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum resonant in the specified Ba 6. If the emissic limit specified EUT would be 10dB margin	B meter cambine position of the position of the set 3 meters of the set 4 meters of th	er. The table was set to Pea Maximum Hole Was set to Pea Maximum Hole Was set to Pea Maximum Hole EUT in peak In could be stop Was the each	was rotated diation. The interference of a variable of a variable of the field the antenna was arranging from 1 in grees to 36 at Detect Field Mode. The mode was apped and the missions the one using processing processing in the mode was one using processing proces	ole-height antenna If meters above the distrength. Both are set to make the led to its worst case meter to 4 meters of degrees to find the led to its worst case meter to 4 meters of degrees to find the led to its worst case meter to 4 meters of the led to its worst case meter to 4 meters of the led to its worst case meter to 4 meters of the led to its worst case meter to 4 meters of the led to its worst case meter to 4 meters of the led to its worst case me
	Test Instruments:	Refer to section	5.7 for detail	s		
	Test mode:	Non-hopping m	ode			
	Test results:	Passed				

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 529

Pro EUT : Mobile phone : VP5003A Model Test mode : DH1-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey Remark :

marr			Antenna Factor				Limit Line	Over Limit	Remark	
9	MHz	dBu∜	dB/m	d₿	dB	dBuV/m	dBuV/m	dB		-
1 2	2390.000 2390.000	7.70				49.52 42.20			Peak Average	

Site Condition

Pro

EUT : Mobile phone Model : VP5003A Test mode : DH1-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey

Remark

		Read.	Antenna	Cable	Preamp		Limit	Over	G.	
	Freq	Freq Level								
Ī	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB		
1	2390.000	18.63	27.58	6.63	0.00	52.84	74.00	-21.16	Peak	
2	2390.000	8.01	27.58	6.63	0.00	42.22	54.00	-11.78	Average	

Test channel: Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 529

Pro

: Mobile phone : VP5003A : DH1-H Mode EUT Model Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

Remark

	Freq			a Cable r Loss					
-	MHz	dBu₹	<u>dB</u> /m	₫B	<u>dB</u>	dBu∜/m	dBuV/m	<u>dB</u>	
The state of	2483.500 2483.500		27.52 27.52						

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 529 Condition

Pro EUT : Mobile phone : VP5003A Model Test mode : DH1-H Mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

Remark

OMETR			adAntenna Cable I el Factor Loss I						Remark
750	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
10000	2483.500 2483.500				0.00				Peak Average

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 529 Condition

Pro

EUT : Mobile phone Model : VP5003A

Test mode : 2DH1-L Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

Remark

	Freq		Antenna Factor			Limit Line		
	MHz	dBu∀	dB/m	 <u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000		27.58 27.58		52.78 42.22			

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 529 Condition

Pro

EUT : Mobile phone
Model : VP5003A
Test mode : 2DH1-L Mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey

Remark

marr	•	Read	Antenna	Cable	Preamp		Limit	Over		
	Freq		Factor						Remark	
÷	MHz	dBu∜	dB/m	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		-
	2390.000 2390.000					51.51 42.22				

Test channel: Highest

Horizontal:

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 529

Pro

: Mobile phone : VP5003A EUT : VP5003A
Test mode : 2DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
Remark :

mar.			Antenna Factor						Remark	
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	2483.500 2483.500	71.73.10.10.70.70.70				53.40 42.65			Peak Average	

Site

Condition

Pro

: Mobile phone : VP5003A : 2DH1-H Mode EUT Model Test mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey
Remark:

CILLAT									
	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	19.76	27.52	6.85	0.00	54.13	74.00	-19.87	Peak
2	2483.500	8.29	27.52	6.85	0.00	42.66	54.00	-11.34	Average

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 529 Condition

Pro

EUT : Mobile phone Model : VP5003A
Test mode : 3DH1-L Mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey

Remark

1 2

	Freq			enna Cable ctor Loss			Limit Line	Over Limit	Remark	
i.	MHz	dBu₹	—dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1	2390.000 2390.000		27.58 27.58			50.45 42.20			Peak Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 529 Pro

: Mobile phone EUT Model : VP5003A Test mode : 3DH1-L Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Carey Remark :

CMAIK	B2 (5)		Antenna Factor				Limit Line		Remark
	MHz	dBu∜	<u>d</u> B/m	<u>d</u> B	dB	$\overline{dB}\overline{u}\overline{V}/\overline{m}$	$\overline{dB}\overline{uV/m}$	āB	
1 2	2390.000 2390.000				0.00 0.00				Peak Average

Test channel: Highest

Horizontal:

Site

Condition

Pro

: Mobile phone EUT Model : VP5003A : 3DH1-H Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

Remark

Freq		Antenna Factor							
 MHz	dBu₹	dB/m	d₿	<u>dB</u>	dBu∜/m	dBuV/m	<u>dB</u>		_
2483.500 2483.500								Peak Average	

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

529 Pro

: Mobile phone : VP5003A EUT Model Test mode : 3DH1-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: Carey

Remark

	Freq		Antenna Factor						Remark
7	MHz	dBu₹		dB	<u>dB</u>	dBu∜/m	dBuV/m	dB	
	2483.500 2483.500				0.00 0.00				

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and DA00-705							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Non-hopping mode							
Test results:	Pass							

GFSK

Lowest channel

Date: 8.JUL.2015 21:17:58

30MHz~25GHz

Middle channel

Date: 8.JUL.2015 21:18:40

30MHz~25GHz

Highest channel

Date: 8.JUT..2015 21:19:31

30MHz~25GHz

π/4-DQPSK

Lowest channel

Date: 8.JUL.2015 21:21:41

30MHz~25GHz

Middle channel

Date: 8.JUT.2015 21:20:59

30MHz~25GHz

Highest channel

Date: 8.JUL.2015 21:20:26

30MHz~25GHz

8DPSK

Lowest channel

Date: 8.JUL.2015 21:22:03

30MHz~25GHz Middle channel

Date: 8.JUL.2015 21:22:57

30MHz~25GHz

Highest channel

Date: 8.JUL.2015 21:24:04

30MHz~25GHz

6.10.2 Radiated Emission Method

10.2 Radiated Emission Method										
Test Requirement:	FCC Part 15 C Section 15.209									
Test Method:	ANSI C63.4: 20	09								
Test Frequency Range:	9 kHz to 25 GH	Z								
Test site:	Measurement D	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark					
	30MHz- 1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value					
		Peak	1MHz	3MHz	Peak Value					
	Above 1GHz	Average Value	1MHz	10Hz	Average Value					
Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark					
	30MHz-8	8MHz	40.0)	Quasi-peak Value					
	88MHz-2	16MHz	43.5	5	Quasi-peak Value					
	216MHz-9	60MHz	46.0)	Quasi-peak Value					
	960MHz-	1GHz	54.0)	Quasi-peak Value					
	Above 1	GHz	54.0)	Average Value					
	7,5000	OTIZ	74.0)	Peak Value					
Test setup:	Above 1GHz									

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark.

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Condition: FCC PART15 CLASS B 3m
Pro: 529
EUT: Mobile phone
Model: VP5003A
Test mode: BT Mode
Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey
Remark:

Remark

	Freq		Antenna Factor					Over Limit	
-	MHz	dBu∜	dB/m	dB	dB	$\overline{dB} \overline{uV}/\overline{m}$	dBu∜/m	<u>dB</u>	
1	34.276	36.12	12.30	0.47	29.95	18.94	40.00	-21.06	QP
2	58.613	38.95	12.79	0.68	29.78	22.64	40.00	-17.36	QP
2	148.441	41.39	8.25	1.31	29.23	21.72	43.50	-21.78	QP
4	178.758	47.57	9.62	1.36	28.98	29.57	43.50	-13.93	QP
4 5	315.481	42.79	13.28	1.82	28.49	29.40	46.00	-16.60	QP
6	393.472	39.85	14.92	2.10	28.75	28.12	46.00	-17.88	QP

Horizontal:

Site

Condition

Pro

rro : 529
EUT : Mobile phone
Model : VP5003A
Test mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
Remark

Remark

	Freq		Antenna Factor						Remark
=	MHz	dBu∜	dB/m	₫B	dB	$\overline{dBuV/m}$	dBuV/m		
1	59.649	34.67	12.73	0.69	29.77	18.32	40.00	-21.68	QP
2	92.787	37.03	12.41	0.92	29.56	20.80	43.50	-22.70	QP
2	178.758	50.05	9.62	1.36	28.98	32.05	43.50	-11.45	QP
4	315.481	41.54	13.28	1.82	28.49	28.15	46.00	-17.85	QP
4 5	397.633	42.65	15.01	2.11	28.77	31.00	46.00	-15.00	QP
	485.609	39.46	16.26	2.36	28.93	29.15	46.00	-16.85	QP

Above 1GHz:

Te	st channel:		Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	46.62	31.53	8.90	40.24	46.81	74.00	-27.19	Vertical	
4804.00	44.48	31.53	8.90	40.24	44.67	74.00	-29.33	Horizontal	
Te	st channel:		Low	vest	Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	36.94	31.53	8.90	40.24	37.13	54.00	-16.87	Vertical	
4804.00	34.24	31.53	8.90	40.24	34.43	54.00	-19.57	Horizontal	

Te	st channel:		Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	45.47	31.58	8.98	40.15	45.88	74.00	-28.12	Vertical
4882.00	44.61	31.58	8.98	40.15	45.02	74.00	-28.98	Horizontal
Te	st channel:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	35.32	31.58	8.98	40.15	35.73	54.00	-18.27	Vertical
4882.00	34.08	31.58	8.98	40.15	34.49	54.00	-19.51	Horizontal

Te	st channel:		Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.81	31.69	9.08	40.03	46.55	74.00	-27.45	Vertical
4960.00	44.85	31.69	9.08	40.03	45.59	74.00	-28.41	Horizontal
Te	st channel:	•	Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.10	31.69	9.08	40.03	35.84	54.00	-18.16	Vertical
4960.00	34.53	31.69	9.08	40.03	35.27	54.00	-18.73	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.