

Time Series Analysis Administration

Dr. Ludovic Amruthalingam ludovic.amruthalingam@hslu.ch

Applied AI Research Lab (AAI)
Informatik

About me

Studied computer science at EPFL & ETH

PhD in AI for clinical dermatology at the University of Basel

- AI decision support
- AI challenges & opportunities for dermatology clinics

Dozent at HSLU

- 80% research projects with industry in MedTech & FinTech
- 20% lecturing: Time Series Analysis, Explainable AI, Medical Imaging

Applied AI Research Lab

AAI Research Lab

Applied AI Research Lab (AAI)
https://hslu.ch/aai

Research & Development

Department of Computer Science and Information Technology
Suurstoffi 4, CH-6343 Rotkreuz ZG

Lucerne University of Applied Sciences and Arts

Part of the HSLU <u>Applied AI Center</u> and of the HSLU <u>MedTech Cooperation</u>

HSLU Hochschule Luzern

Applied AI Research Lab: Vision & Values

Mission: Innovation Transfer

- Link science with practice
- Use AI to bring value to people, companies, and institutions

Mindset: Problem Solving

- Identify, build, and evaluate the right technologies
- Embrace partner usecases, challenges, and capabilities

Know-how: Machine Learning

- Follow the field's scientific progress
- Develop and contribute own methods and findings

Values: Ethical Research

- Develop technology along ethical principles
- Engage in interdisciplinary research and cooperation

Selected research projects – MedTech

Hearable steering in complex acoustic scenes

Selected research projects – FinTech

Benchmarking Synthetic Time Series Quality

Applied AI Research Lab: Example Projects

- Multimodal Recommender Systems for Betty Bossi
- Recommender Systems for the Event Industry with Eventfrog
- Machine Learning for Financial Advisory with Finpension
- Predictive Maintenance with Roche Diagnostics
- Optimization of the Swiss Upper Airspace with Skyguide
- AI for Hearing Aids with Sonova
- Recommender Systems for Value Added Programs with STU
- Digital Dermatology with University Hospital Basel

skyguide

HSLU

Course objectives

Theoretical foundations of time series analysis

- Time & frequency domain methods
- Machine learning & deep learning approaches

Practical applications to real-world data

- Design and conduct analysis & modeling workflow
- Forecasting, anomaly detection, classification
- Python implementation

Review and utilize methods from scientific publications

HSLU Seite 8

Provisional agenda

SW 1	SW 2	SW 3	SW 4
Introduction	Foundations I	Foundations II	Time Domain Methods I
 Course administration Concepts and definitions Real-world applications across various domains Discrete time series and Nyquist sampling 	 Decomposition: Understanding trend, seasonality, cyclicality Visualization techniques Introduction to stationarity 	 Achieving stationarity: differencing and transformations Correlation and autocorrelation analysis Hands-on: Exploratory data analysis on time series 	 - Autoregressive (AR) models - Moving Average (MA) models - Combining AR and MA: the ARIMA model
SW 5	SW 6	SW 7	SW 8
Forecasting with Time Domain Methods - Forecasting future values - Evaluation metrics - Hands-on: Forecasting with ARIMA models	Time Domain Methods II - Seasonal ARIMA (SARIMA) models - Model selection criteria and diagnostics - Hands-on: Building and selecting SARIMA models	Frequency Domain Methods I - The Fourier transform and its properties - Discrete Fourier transform (DFT) - Fast Fourier transform (FFT)	Applications of Frequency Domain Methods I - Visualization of Fourier transforms - Hands-on: Noise reduction in time series data
SW 9	SW 10	SW 11	SW 12
Frequency Domain Methods II - Spectral analysis - Spectrum, periodogram	Applications of Frequency Domain Methods II - Power spectral density estimation - Hands-on: Signal decomposition and reconstruction using spectral analysis	Machine Learning for Time Series - Feature engineering - Regression models in time series - Hands-on: Using regression models for time series forecasting	Deep Learning for Time Series I - Convolutional Neural Networks (CNNs) for time series - Hands-on: Implementing CNNs for classifying time series patterns
SW 13	SW 14		
Deep Learning for Time Series II	Wrap-Up		
- Recurrent Neural Networks	- Dos and don'ts		

SW 13	SW 14	
Deep Learning for Time Series II	Wrap-Up	
 Recurrent Neural Networks (RNNs) for Time Series Long Short-Term Memory (LSTM) networks Hands-on: Building and training LSTM models for forecasting 	Dos and don'tsExam preparationDiscussion and outlook	

Course administration

Course (3 ECTS):

Thursday on-site/streaming

Lecture materials (uploaded to ILIAS):

Lecture slides + theoretical and practical exercises

Exam (no Testat)

Theoretical exercises at end of lectures are in the form of the exam

Written examination 1.5h, during exam period

Bonus point (extra)

In groups of 3, finish all lecture practicals no later than the final course session

HSLU Seite 10

Literature

Time Series Analysis and its Applications, Shumway & Stoffer, Springer, 4th edition (2017).

Forecasting Principles and Practice, Hyndman & Athanasopoulos, Otexts, 3rd edition (2021).

Time Series Forecasting in Python, Peixeiro, Manning, 1st edition, (2022).

HSLU

Credits

Unless cited otherwise, examples, figures & images are taken from own work or

- Public image databases: Pexels, Pixabay, Unsplash
- Adobe Stock Images
- Generated with OpenAI tools

HSLU Seite 12