Álgebra - Curso de Verão - UFV

$2^{\underline{a}}$ Lista de Exercícios – 2015

Prof. José Antônio O. Freitas

Exercício 1: Determine a ordem de cada elemento de D_4 . Determine todos os subgrupos de D_4 .

Exercício 2: Seja G um grupo. Defina $G' = \langle \{xyx^{-1}y^{-1} \mid x, y \in G\} \rangle$. Mostre que

- (a) G' é um subgrupo normal de G.
- (b) G/G' é abeliano.
- (c) G' é o menor subgrupo normal de G com esta propriedade, isto é, se $H \subseteq G$ é tal que G/H é abeliano, então $G' \subseteq H$.

O subgrupo G' é chamado de **subgrupo de comutadores**.

Exercício 3: Seja G um grupo tal que $\{1\}$ e G são seus únicos subgrupos. Mostre que a ordem de G é um número primo.

Exercício 4: Prove que um grupo G é abeliano, se e somente se, a função $f: G \to G$ dada por $f(a) = a^{-1}$ é um homomorfismo.

Exercício 5: Seja G um grupo e H um subgrupo de G. Mostre que se [G:H]=2, então $H \subseteq G$.

Exercício 6: Sejam $G \in H$ grupos e $\phi : G \to H$ um homomorfismo. Mostre que ker $\phi \subseteq G$.

Exercício 7: É verdade que se $K \subseteq H \subseteq G$, então $H \subseteq G$?

Exercício 8: Seja G um grupo. Um isomorfismo $\phi: G \to G$ é chamado de um **automorfismo** de G. Seja Aut $G = \{\phi: G \to G \mid \phi \text{ é um automorfismo de } G\}$. Mostre que Aut G é um grupo com a composição de funções.

Exercício 9: Sejam G um grupo e $\mathcal{I}_a: G \to G$, para $a \in G$ fixado, definido por $\mathcal{I}_a(x) = a^{-1}xa$.

- (a) Mostre que \mathcal{I}_a é um isomorfismo.
- (b) Seja $\mathcal{I}(G) = \{\mathcal{I}_a \mid a \in G\} \subseteq \operatorname{Aut}(G)$. Mostre que $\mathcal{I}(G)$ é um subgrupo normal de $\operatorname{Aut}(G)$.

Exercício 10: Considere a função

$$\mathcal{I}: (G, \cdot) \to (\mathcal{I}(G), \circ)$$

 $a \mapsto \mathcal{I}_a.$

Por definição, \mathcal{I} é uma função sobrejetora.

(a) Mostre que \mathcal{I} é um homomorfismo de grupos.

- (b) Mostre que $\ker \mathcal{I} = Z(G)$ e que $\mathcal{I}(G) \cong G/Z(G)$.
- (c) Mostre que se G não é abeliano, então $\mathcal{I}(G)$ não é cíclico.

Exercício 11: Seja G um grupo finito e sejam K < H < G. Mostre que

$$[G:K] = [G:H][H:K].$$

Exercício 12: Sejam G um grupo e $a, b \in G$. Mostre que $(a^{-1}ba)^n = a^{-1}b^na$ para todo $n \in \mathbb{Z}$.

Exercício 13: Seja G um grupo. Mostre que se $H \subseteq G$ e $K \subseteq G$, então

$$\frac{K}{H \cap K} \cong \frac{HK}{H}.$$

Exercício 14: Seja G um grupo. Mostre que se $K \leq H \leq G$ com $K \subseteq G$ e $H \subseteq G$, então

$$\frac{G/K}{H/K} \cong \frac{G}{H}.$$

Exercício 15: Sejam G e H grupos e $\phi:G\to H$ um homomorfismo. Mostre que se $|x|<\infty$, então $|\phi(x)|$ divide |x|.

Exercício 16: Mostre que todo grupo G tal que |G| < 6 é abeliano.

Exercício 17: Mostre que se G é um grupo de ordem 6, então ou G é cíclico ou $G \cong S_3$.