Correction

Partie I

- 1. Supposons que le produit (p_n) converge et posons $\ell = \lim p_n$. On a $\ell \neq 0$, $p_n \to \ell$ et $p_{n+1} \to \ell$ donc par opérations sur les limites $\frac{p_{n+1}}{p_n} \to \frac{\ell}{\ell}$ i.e. $u_{n+1} \to 1$ donc $u_n \to 1$.
- 2. Par récurrence sur $n \in \mathbb{N}$, on montre facilement $p_n = n+1$.

On peut aussi observer :
$$p_n = \prod_{p=1}^n \frac{p+1}{p} = \frac{2 \times \dots \times (n+1)}{1 \times \dots \times n} = n+1$$
.

On a $p_n \to +\infty$ donc (p_n) diverge.

$$3. \qquad p_n \sin \frac{a}{2^n} = \left(\cos \frac{a}{2} \cos \frac{a}{4} \cdots \cos \frac{a}{2^{n-1}}\right) \left(\cos \frac{a}{2^n} \sin \frac{a}{2^n}\right)_{\sin 2a = 2\sin a \cos a} \frac{1}{2} \left(\cos \frac{a}{2} \cos \frac{a}{4} \cdots \cos \frac{a}{2^{n-1}}\right) \sin \frac{a}{2^{n-1}}$$

En reprenant ce processus : $p_n \sin \frac{a}{2^n} = \frac{1}{2^{n-1}} \cos \frac{a}{2} \sin \frac{a}{2} = \frac{1}{2^n} \sin a$.

$$p_n = \frac{\sin a}{2^n \sin \frac{a}{2^n}} \sim \frac{\sin a}{2^n \frac{a}{2^n}} = \frac{\sin a}{a} \neq 0 \text{ donc le produit } (p_n) \text{ converge et } \lim p_n = \frac{\sin a}{a}.$$

Partie II

- $\begin{array}{ll} \text{1.a} & \text{Puisque} \;\; u_{\scriptscriptstyle n} \to 1 \; \text{, on a} \;\; \forall \varepsilon > 0, \\ \exists N \in \mathbb{N}, \forall n \geq N, \left| u_{\scriptscriptstyle n} 1 \right| \leq \varepsilon \; \text{.} \\ & \text{En prenant} \;\; \varepsilon = 1/2 \; \text{, il existe} \;\; n_{\scriptscriptstyle 0} \in \mathbb{N} \;\; \text{tel que} \;\; \forall n \geq n_{\scriptscriptstyle 0} \; \text{, } \; \left| u_{\scriptscriptstyle n} 1 \right| \leq 1/2 \;\; \text{donc} \;\; u_{\scriptscriptstyle n} \geq 1/2 > 0 \; \text{.} \end{array}$
- $1.b \qquad S_{\scriptscriptstyle n} = \ln \biggl(\prod_{\scriptscriptstyle p=n_0}^{\scriptscriptstyle n} u_{\scriptscriptstyle p} \biggr) = \ln \frac{p_{\scriptscriptstyle n}}{p_{\scriptscriptstyle n_0-1}} \, .$

Si le produit (p_n) converge alors, puisque la suite (p_n) tend vers une limite finie non nulle, le rapport $\frac{p_n}{n}$ tend vers une limite finie strictement positive. Par composition de limites, la suite (S_n) converge.

Si la suite (S_n) converge vers ℓ alors $\frac{p_n}{p_{n_0-1}} = e^{S_n} \to e^{\ell}$ donc $p_n \to p_{n_0-1} e^{\ell} \neq 0$ donc le produit (p_n)

2.a $H_{n+1} - H_n = \frac{1}{n+1} \ge 0$ donc la suite (H_n) est croissante.

$$H_{2n} - H_n = \sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n} = \frac{1}{2}.$$

Puisque (H_n) est croissante, soit cette suite converge vers $\ell \in \mathbb{R}$, soit cette suite diverge vers $+\infty$.

Or, si $H_n \to \ell \in \mathbb{R}$ alors $H_{2n} - H_n \ge \frac{1}{2}$ donne à la limite $\ell - \ell = 0 \ge \frac{1}{2}$ ce qui est absurde.

Donc, nécessairement $H_n \to +\infty$.

2.b Pour $p \ge 3$, on a $\frac{\ln p}{p} \ge \frac{1}{p}$ donc $S_n - S_2 \ge H_n - H_2$ d'où $S_n \ge H_n - H_2 + S_2 \to +\infty$.

Par comparaison, $S_n \to +\infty$. Par suite (S_n) et (p_n) divergent.

 $1. \text{a} \qquad \text{Etudions} \ \ f: x \mapsto x - \ln(1+x) \quad \text{définie sur} \ \ \mathbb{R}^+ \subset \left] -1, +\infty \right[.$

$$f$$
 est dérivable et $f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} \ge 0$ sur \mathbb{R}^+ .

Par suite f est croissante et puisque f(0) = 0, f est positive d'où l'inégalité voulue.

- 1.b $S'_{n+1} S'_n = v_{n+1} \ge 0$ donc (S'_n) est croissante.
- 1.c Supposons que (S'_n) converge vers un réel ℓ . On a $\forall n \in \mathbb{N}^*, S'_n \leq \ell$.

$$\ln(p_n) = \ln \prod_{p=1}^n (1 + v_p) = \sum_{p=1}^n \ln(1 + v_p) \leq \sum_{\ln(1+x) \leq x} \sum_{p=1}^n v_p = S_n' \leq \ell.$$

La suite $(\ln p_n)$ est donc majorée.

Pour tout
$$n \in \mathbb{N}^*$$
, $\ln p_{n+1} - \ln p_n = \ln \frac{p_{n+1}}{p_n} = \ln(1 + v_{n+1}) \ge 0$ donc $(\ln p_n)$ est une suite croissante.

Etant croissante et majorée, la suite $(\ln p_n)$ converge vers un réel m et par opérations $p_n \to e^m \neq 0$. Par suite le produit (p_n) converge.

Notons, qu'on peut aussi reprendre le résultat de la question II.1 avec $n_0 = 1$ et en observant $S_n \leq S_n'$.

- 2.a Si $a \ge 1$ alors $p_n \ge \prod_{p=1}^n 2 = 2^n \to +\infty$ et donc le produit (p_n) diverge.
- 2.b On reprend les notations de la question III.1 à partir de $v_p = a^{2^p}$.

$$S'_n = \sum_{n=1}^n a^{2^n} \le \sum_{k=1}^{2^n} a^k = a \frac{1 - a^{2^n}}{1 - a} \le \frac{a}{1 - a}$$

La suite (S'_n) est croissante et majorée donc elle converge et par suite le produit (p_n) aussi.

$$2.c \qquad (1-a^2)p_n = \left((1-a^2)(1+a^2)\right)\left((1+a^4)\dots(1+a^{2^n})\right) = (1-a^4)\left((1+a^4)\dots(1+a^{2^n})\right).$$

En réitérant le processus : $(1-a^2)p_n = 1-a^{2^{n+1}}$. Par suite $p_n \to \frac{1}{1-a^2}$.