UNIVERSITAS INDONESIA TODAL PERIODE FARRILLAS MATEMATIKA DAN ILMU PENGETAHUAN

Ujian Akhir Semester Analisis Data Geofisika 1

Dosen Agus Riyanto, M.Si. Hari, Tanggal Jumat, 19 Juni 2020

Takehome (Dilarang mencontek/menduplikasi

pekerjaan orang lain)

Diberikan sebuah data well, ckeckshot dan data seismic.

Sifat

- A. Tampilkan data well dalam domain depth dengan rincian
- Log Caliper, sumbu axis X: 7-20, axis Y: 800-2300 (satuan inch)
- Log rhob, sumbu axis X: 1.35-3, axis Y: 800-2300 (satuan gr/cc)
- Log gamma Ray, sumbu axis X: 0-150, axis Y: 800-2300 (satuan API)
- Log Induction, sumbu axis X: 0.3-300, axis Y: 800-2300, sekala logaritmik(satuan ohmm)
- Log Neutron, sumbu axis X: 0.6-0, axis Y: 800-2300 (satuan frac)
- Log Sonic, sumbu axis X: 20-140, axis Y: 800-2300 (satuan us/feet)
- B. Tampilkan data chekshot (Sumbu X TWT, sumbu Y depth)
- C. Tampilkan data well dalam domain time, konversi depth menjadi time menggunakan data chekshot.
- Log Caliper, sumbu axis X: 7-20, axis Y: 800-2300 (satuan inch)
- Log rhob, sumbu axis X: 1.35-3, axis Y: 800-2300 (satuan gr/cc)
- Log gamma Ray, sumbu axis X: 0-150, axis Y: 800-2300 (satuan API)
- Log Induction, sumbu axis X: 0.3-300, axis Y: 800-2300, sekala logaritmik (satuan ohmm)
- Log Neutron, sumbu axis X: 0.6-0, axis Y: 800-2300 (satuan frac)
- Log Velocity, sumbu axis X: 1000-5000, axis Y: 800-2300 (satuan m/s) (**Ubah dahulu sonic menjadi velocity**)
- D. Time yang diberikan di cheksot tidak regular maka perlu dilakukan terlebih dahulu resampling terhadap data Al yang sudah dalam domain time, resampling dilakukan dengan sampling rate 2 ms. Tampilkan original Al overlay dengan Ai hasil resampling. (**Pergunakan fungsi interpolasi dalam melakukan proses resampling**). Saat ini Al yang dipunya sudah dalam sampling yang regular (sampling rate 2ms) seperti data seismic, selanjutnya buatlah seismic sintetik dengan wavelet ricker 30 Hz.
- E. Buatlah proses ray tracing untuk menghitung travel time gelombang refleksi dari model dibawah ini:

Layer	Vp (m/s)	Density (gr/cc)	Vs (m/s)	Depth (m)
1	3000	2.5	1500	0
2	3000	2.5	1500	400
3	2000	1.9	1000	600
4	3000	2.5	1500	900
5	3500	2.1	1750	1100
6	3300	2.5	1650	1500
7	4000	2.2	2000	1600
8	3400	1.5	1700	1800
9	3600	2.0	1800	2000