Enumeration of tableaux and plane partitions

Sylvie Corteel

June 14, 2016

1 Lecture 1

1.1 Integer partitions

Partitions $\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots)$, $\lambda_1 \geq \lambda_2 \geq \cdots \geq 0$, $|\lambda| = \sum_i \lambda_i n$, we write it as $\lambda \vdash n$. By convention we let $\lambda_0 = \infty$ and there exists k such that $\lambda_i = 0$ for i > k, the number of distinct parts $\#\{\lambda_j > \lambda_{j+1}\}$.

Example 1.1. Partitions of 5 are 5, 41, 32, 311, 221, 2111, 11111.

Let p(n) be the number of partitions of n.

Proposition 1.2. $\sum_{n\geq 0} p(n)q^n = \prod_{i\geq 1} \frac{1}{1-a^i}$.

Proof. Note that
$$\frac{1}{1-q^i} = q + q^i + q^{2i} + q^{3i} + \cdots$$
.

Let $p_S(n)$ be the number of partitions of n where the parts belong to a multiset S, then

$$\sum_{n>0} p_S(n)q^n = \prod_{i \in S} \frac{1}{1 - q^i}.$$

1.2 Young diagrams

A Young diagram is an arrangement of boxes left justified such that there are λ_i squares/cell in the *i*th row.

Example 1.3. For the partition
$$\lambda = (4, 3, 1, 1)$$
 the Young diagram is \Box .

The partitions form a poset called *Young's lattice* consisting of partitions ordered by containment of their Young diagrams: $\lambda \triangleleft \mu$ if the diagram of λ is contained in the diagram of μ and $|\lambda| = |\mu| - 1$.

Our goal is to enumerate walks in Young's lattice that start at \varnothing arrive at λ and use up (U) or down steps (D).

Fix a word $w \in \{U, D\}^*$ $w = A_n A_{n-1} \cdots A_2 A_1$ where A_i is U or D.

Example 1.4. \emptyset , (1), (2), (1), (1, 1), (1, 1, 1), (2, 1, 1), (1, 1, 1) = λ where the steps are U, U, D, U, U, U, D and so w = DUUDUU.

Example 1.5 (Walks of type U^n).

$$\varnothing$$
, $\boxed{1}$, $\boxed{12}$, $\boxed{13}$, $\boxed{5}$

Definition 1.6 (Standard Young tableaux). Let $\lambda \vdash n$, a Standard Young tableau (SYT) of shape λ is a filling of the cells of the Young diagram of λ with all the elements $\{1, 2, ..., n\}$ that is increases in rows and columns. The number of SYT of shape λ is denoted by f^{λ} .

The number f^{λ} has a beautiful product formula proved in the 50s.

Theorem 1.7.

$$f^{\lambda} = \frac{n!}{\prod_{u \in \lambda} h(u)},$$

where h(u) is the length of the hook of u: the number of cells under in the same column and to the right in the same row of u (including u).

Example 1.8. For the shape (2,2,1), the hook-lengths are given by $\begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$.

$$f^{(2,2,1)} = \frac{5!}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 1} = 5.$$

There are several proofs of this formula including a beautiful probabilistic proof by Greene-Nijenhuis-Wilf.

Lemma 1.9. $w = D^{S_k}U^{r_k} \dots D^{S_1}U^{r_1}$. and $\lambda \vdash n$. There exists at least one walk from \varnothing to λ of type W if

- $\sum_{i=1}^{k} r_i \sum_{i=1}^{k} s_i = n$,
- for all $j \sum_{i=1}^{j} (r_i s_i) \ge 0$

We call such a word is λ -valid.

Remark 1.10. The number of valid words of length 2n starting at \emptyset to \emptyset is given by the nth Catalan number $\frac{1}{n+1}\binom{2n}{n}$.

1.3 Linear transformations on integer partitions

We will use physics notation: $\langle \lambda |$ ("bra") and $| \lambda \rangle$ ("ket") so that

$$\langle \lambda | \mu \rangle = \begin{cases} 1 & \text{if } \lambda = \mu, \\ 0 & \text{otherwise.} \end{cases}$$

$$\begin{split} U \left| \lambda \right\rangle &= \sum_{\mu \rhd \lambda} \left| \mu \right\rangle, \\ \left\langle \lambda \right| U &= \sum_{\mu \rhd \lambda} \left\langle \mu \right|, \\ D \left| \lambda \right\rangle &= \sum_{\mu \lhd \lambda} \left| \mu \right\rangle, \\ \left\langle \lambda \right| D &= \sum_{\mu \lhd \lambda} \left\langle \mu \right|, \end{split}$$

Example 1.11.

$$U |(3,2)\rangle = |(3,2,1)\rangle + |(3,3)\rangle + |(4,2)\rangle,$$

$$\langle (3,2)| D = \langle (3,2,1)| + \langle (3,3)| + \langle (4,2)|.$$

Proposition 1.12. If λ has r distinct parts then $U|\lambda\rangle$ has r+1 terms and $D|\lambda\rangle$ has r-1 parts.

Proof. The number of distinct parts of λ is the number of corners of λ . The operator U will add a corner to λ and the operator D will delete a corner to λ .

The key lemma to study our goal is the following identity.

Lemma 1.13.

$$DU = UD + I$$
,

where I is the identity operator.

Proof.

$$DU |\lambda\rangle = \sum_{\mu} |\mu\rangle + (r+1) |\lambda\rangle$$

where the first sum is over μ such that there exist j, k such that $\lambda_j = \mu_j - 1$ and $\lambda_k = \mu_k + 1$.

$$UD |\lambda\rangle = \sum_{\mu} |\mu\rangle + r |\lambda\rangle.$$

where the first sum is over μ such that there exist j, k such that $\lambda_j = \mu_j - 1$ and $\lambda_k = \mu_k + 1$. When we take the difference $(DU - UD) |\lambda\rangle$ we obtain $|\lambda\rangle$.

Theorem 1.14. Let λ be a partition, w be a λ -valid word. The number of walks from \emptyset to λ of type w is $f^{\lambda} \cdot \prod_{i \in S_w} (a_i - b_i)$, where $a_i = \#\{j < i \mid A_j = U\}$, $b_i = \#\{j < i \mid A_j = D\}$ and $S_w = \{i \mid A_i = D\}$.

Note that the second term in the product is independent of λ .

Example 1.15. $W = U^3 D^2 U^2 D U T 3$, $S_w = \{4,7,8\}$ (positions from right to left), $a_4 = 3, a_7 = 5, a_8 = 5, b_4 = 0, b_7 = 1, b_8 = 2$. Then the number of walks from \varnothing to any $\lambda \vdash 5$ is $f^{\lambda} \cdot (3-0)(5-1)(5-2)$.

Proof. We want to compute $\langle \lambda | w | \varnothing \rangle$. When w see a DU by Lemma ?? we replace it by UD or I repeatedly and we obtain

$$\langle \lambda | W | \varnothing \rangle = \sum_{i-j=n} r_{i,j}(w) \langle \lambda | U^i D^j | \varnothing \rangle = \sum_{i-j=n} r_{n,0}(\varnothing) \langle \lambda | U^n | \varnothing \rangle,$$

donde $\langle \lambda | U^n | \varnothing \rangle = f^{\lambda}$. One can show that the coefficients $r_{i,j}(w)$ satisfy

$$\begin{split} r_{i,j}(w) &= 0; & \text{if } i < 0 \text{ or } j < 0 \text{ or } i - j \neq n \\ r_{0,0}(\emptyset) &= 1 \\ r_{i,j}(Uw) &= r_{i-1,j}(w); \\ r_{i,j}(Dw) &= r_{i,j-1}(w) + (i+1)r_{i+1,j}(w). \end{split}$$

This determines the $r_{i,j}(w)$ to be $\prod_{i \in S_w} (a_i - b_i)$.