AG21S - Algoritmos 1 Estrutura de decisão

 2^a CCH

Nome:	Turma:	Código:	N^{o} .
Nome.	Turma.	Courgo	IN

1. Leia 2 valores com uma casa decimal (x e y), que devem representar as coordenadas de um ponto em um plano. A seguir, determine qual o quadrante ao qual pertence o ponto, ou se está sobre um dos eixos cartesianos ou na origem (x = y = 0).

Se o ponto estiver na origem, escreva a mensagem "Origem". Se o ponto estiver sobre um dos eixos escreva "Eixo X" ou "Eixo Y", conforme for a situação.

Entrada

A entrada contém as coordenadas de um ponto.

Saída

A saída deve apresentar o quadrante em que o ponto se encontra.

Exemplo de saída
Q4
Q1
Origem

2. Leia 3 valores inteiros e ordene-os em ordem crescente. No final, mostre os valores em ordem crescente, uma linha em branco e em seguida, os valores na sequência como foram lidos.

Entrada

A entrada contem três números inteiros.

Saída

Imprima a saída conforme foi especificado.

Dicas

• Não esqueça do \n.

Exemplo de entrada	Exemplo de saída
7 21 -14	-14
7 21 -14	
	7
	21
	7
	21
	-14
	- -
-14 21 7	-14
	7
	21
	-14
	21
	7

3. Leia 3 valores de ponto flutuante A, B e C e ordene-os em ordem decrescente, de modo que o lado A representa o maior dos 3 lados. A seguir, determine o tipo de triângulo que estes três lados formam, com base nos seguintes casos, sempre escrevendo uma mensagem adequada:

se A >= B + C, apresente a mensagem: NAO FORMA TRIANGULO

se $A^2 = B^2 + C^2$, apresente a mensagem: TRIANGULO RETANGULO

se $A^2 > B^2 + C^2$, apresente a mensagem: TRIANGULO OBTUSANGULO

se $A^2 < B^2 \, + \, C^2,$ apresente a mensagem: TRIANGULO ACUTANGULO

se os três lados forem iguais, apresente a mensagem: TRIANGULO EQUILATERO

se apenas dois dos lados forem iguais, apresente a mensagem: TRIANGULO ISOSCE-LES

Entrada

A entrada contem três valores de ponto flutuante de dupla precisão A (0 < A), B (0 < B) e C (0 < C).

Saída

Imprima todas as classificações do triângulo especificado na entrada.

Exemplo de entrada	Exemplo de saída
7.0 5.0 7.0	TRIANGULO ACUTANGULO TRIANGULO ISOSCELES
6.0 6.0 10.0	TRIANGULO OBTUSANGULO TRIANGULO ISOSCELES
6.0 6.0 6.0	TRIANGULO ACUTANGULO TRIANGULO EQUILATERO
5.0 7.0 2.0	NAO FORMA TRIANGULO
6.0 8.0 10.0	TRIANGULO RETANGULO

4. Com base na tabela abaixo, escreva um programa que leia o código de um item e a quantidade deste item. A seguir, calcule e mostre o valor da conta a pagar.

CODIGO	ESPECIFICAÇÃO	PREÇO
1	Cachorro Quente	R\$ 4.00
2	X-Salada	R\$ 4.50
3	X-Bacon	R\$ 5.00
4	Torrada simples	R\$ 2.00
5	Refrigerante	R\$ 1.50

Entrada

O arquivo de entrada contém dois valores inteiros correspondentes ao código e à quantidade de um item conforme tabela acima.

Saída

O arquivo de saída deve conter a mensagem "Total: R\$" seguido pelo valor a ser pago, com 2 casas após o ponto decimal.

Exemplo de entrada	Exemplo de saída
3 2	Total: R\$ 10.00
4 3	Total: R\$ 6.00
2 3	Total: R\$ 13.50

5. Leia um número inteiro que representa um código de DDD para discagem interurbana. Em seguida, informe à qual cidade o DDD pertence, considerando a tabela abaixo:

DDD	Destination
61	Brasilia
71	Salvador
11	Sao Paulo
21	Rio de Janeiro
32	Juiz de Fora
19	Campinas
27	Vitoria
31	Belo Horizonte

Se a entrada for qualquer outro DDD que não esteja presente na tabela acima, o programa deverá informar: DDD nao cadastrado

Entrada

A entrada consiste de um único valor inteiro.

Saída

Imprima o nome da cidade correspondente ao DDD existente na entrada. Imprima DDD nao cadastrado caso não existir DDD correspondente ao número digitado.

Exemplo de entrada	Exemplo de saída
11	Sao Paulo
100	DDD nao cadastrado

Dicas

• Não esqueça do \n.

6. Leia um valor inteiro entre 1 e 12, inclusive. Correspondente a este valor, deve ser apresentado como resposta o mês do ano por extenso, em inglês, com a primeira letra maiúscula. Para valores menores que 1 e maiores que 12, o sistema deve imprimir a mensagem "Valor invalido.".

Entrada

A entrada contém um único valor inteiro.

Saída

Imprima por extenso o nome do mês correspondente ao número existente na entrada, com a primeira letra em maiúscula.

Exemplo de entrada	Exemplo de saída
1	January
12	December

7. Leia um valor do tipo caractere que representa a nota de um aluno seguindo o sistema americano de notas. Imprima uma mensagem dependendo da nota do aluno considerando a tabela abaixo:

Letra	Mensagem
Α	Excelente! Parabens!
B, C	Voce foi bem.
D	Foi por muito pouco!
F	Estudar mais na proxima.

Para valores inválidos, o sistema deve mostra a mensagem: "Valor invalido.".

Entrada

A entrada contém um caractere c que representa a nota do aluno.

Saída

A saída deve ser a mensagem seguindo a tabela acima.

Exemplo de entrada	Exemplo de saída
A	Excelente! Parabens!
x	Valor invalido.
	valur invarido.