Xử lý ảnh số và video số

Tuần 6: Phát hiện biên cạnh dựa trên miền không gian

TS. Lý Quốc Ngọc

- 6.1. Toán tử Gradient
- 6.2. Toán tử Laplace
- 6.3. Toán tử Laplace of Gaussian
- 6.4. PP Canny

$$(\nabla f)(x,y) = [\partial f / \partial x \ \partial f / \partial y]^T = [f_x \ f_y]^T$$

$$e(x,y) = (f_x^2(x,y) + f_y^2(x,y))^{1/2}$$

$$\phi(x,y) = \arctan(f_x \ f_y)$$

6.1. Toán tử Gradient

Differencing

$$f_x(x,y) \approx f(x,y) - f(x+1,y)$$
$$f_y(x,y) \approx f(x,y) - f(x,y-1)$$

6.1. Toán tử Gradient

Differencing

Vertical step edge

0 0 0 0 h 0 0 0

6.1. Toán tử a a a a c b b b b b

Differencing a a a a c b b b b b

h=b-a

a a a a c b b b b b

a a a a c b b b b b

Vertical ramp edge

 $0 \ 0 \ 0 \ h/2 \ h/2 \ 0 \ 0$

TS. Lý Quốc Ngọc

6.1. Toán tử Gradient

Robert

$$f_x(x,y) \approx f(x,y) - f(x+1,y+1)$$

 $f_y(x,y) \approx f(x,y+1) - f(x+1,y)$

6.1. Toán tử Gradient

Differencing (localize edge center of ramp edge)

$$f_x(x,y) \approx f(x-1,y) - f(x+1,y)$$

 $f_y(x,y) \approx f(x,y+1) - f(x,y-1)$

Vertical ramp edge

 $0 \ 0 \ h/2 \ h \ h/2 \ 0 \ 0$

Ao	A ₁	A ₂
A ₇	F(j,k)	A ₃
Α ₆	A ₅	Α4

6.1. Toán tử Gradient

Prewitt (k=1)

$$f_x \approx \frac{1}{k+2} [(A_2 + kA_3 + A_4) - (A_0 + kA_7 + A_6)]$$

$$f_y \approx \frac{1}{k+2} [(A_0 + kA_1 + A_2) - (A_6 + kA_5 + A_4)]$$

6.1. Toán tử Gradient

Sobel (k=2)

$$f_x \approx \frac{1}{k+2} [(A_2 + kA_3 + A_4) - (A_0 + kA_7 + A_6)]$$

$$f_y \approx \frac{1}{k+2} [(A_0 + kA_1 + A_2) - (A_6 + kA_5 + A_4)]$$

6.1. Toán tử Gradient

Frei-Chen (k=2^{1/2})

$$f_x \approx \frac{1}{k+2} [(A_2 + kA_3 + A_4) - (A_0 + kA_7 + A_6)]$$

$$f_y \approx \frac{1}{k+2} [(A_0 + kA_1 + A_2) - (A_6 + kA_5 + A_4)]$$

aaaacbbbb

Prewitt

Sobel

Frei-Chen

aaacbbbb

aaaacbbbbb

aaacbbbb

h=b-a

Vertical ramp edge

 $0 \ 0 \ h/2 \ h \ h/2 \ 0 \ 0$

6.1. Toán tử Gradient

Prewitt

Sobel

Frei-Chen

Diagonal ramp edge

$$0 \frac{h}{\sqrt{2}(2+k)} \frac{h}{\sqrt{2}} \frac{\sqrt{2}(1+k)h}{(2+k)} \frac{h}{\sqrt{2}} \frac{h}{\sqrt{2}(2+k)} 0$$

Frei - Chen:
$$k = \sqrt{2} \Rightarrow \frac{\sqrt{2}(1+k)h}{(2+k)} = h$$

Prewitt:
$$k = 1 \Rightarrow \frac{\sqrt{2}(2)h}{(3)} = 0.94 \times h$$

Sobel:
$$k = 2 \Rightarrow \frac{\sqrt{2}(3)h}{(4)} = 1.06 \times h$$

$$h = b - a$$

$$(\nabla f)(x,y) = [\partial f / \partial x \ \partial f / \partial y]^T = [f_x \ f_y]^T$$

$$e(x,y) = (f_x^2(x,y) + f_y^2(x,y))^{1/2}$$

$$\phi(x,y) = \arctan(f_x \ f_y)$$

6.1. Toán tử Gradient

Phép tích chập (Convolution operator)

$$g = f * h$$

 $g(x,y) = \sum_{i} \sum_{j} f(x-i, y-j).h(i, j),$

$$(i,j) \in O$$

6.1. Toán tử Gradient

Xét ảnh f và nhân h

	and the second	X		
	THE RESIDENCE			
	72	53	60	
У	76	56	65	EU PER
	88	78	82	

6.1. Toán tử Gradient

g được tính tại (x,y)

$$g(x,y) = h(-1,-1)f(x+1,y+1) + h(0,-1)f(x,y+1) + h(1,-1)f(x-1,y+1) + h(-1,0)f(x+1,y) + h(0,0)f(x,y) + h(1,0)f(x-1,y) + h(-1,1)f(x+1,y-1) + h(0,1)f(x,y-1) + h(1,1)f(x-1,y-1)$$

$$g(x, y) = 40$$

6.1. Toán tử Gradient (Pixel difference)

$$f_{x} \approx \hat{f}_{x} = f * W_{x}$$

$$f_{y} \approx \hat{f}_{y} = f * W_{y}$$

$$W_{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}, W_{y} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

6.1. Toán tử Gradient (Separated Pixel difference)

$$f_{x} \approx \hat{f}_{x} = f * W_{x}$$

$$f_{y} \approx \hat{f}_{y} = f * W_{y}$$

$$W_{x} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}, W_{y} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

6.1. Toán tử Gradient (Roberts)

$$f_{x} \approx \hat{f}_{x} = f * W_{x}$$

$$f_{y} \approx \hat{f}_{y} = f * W_{y}$$

$$W_{x} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, W_{y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

6.1. Toán tử Gradient (Prewitt)

$$f_x \approx \hat{f}_x = f * W_x$$

$$f_{y} \approx \hat{f}_{y} = f * W_{y}$$

$$W_{x} = \frac{1}{3} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}, W_{y} = \frac{1}{3} \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

6.1. Toán tử Gradient (Sobel)

$$f_{x} \approx \hat{f}_{x} = f * W_{x}$$

$$f_{y} \approx \hat{f}_{y} = f * W_{y}$$

$$W_{x} = \frac{1}{4} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}, W_{y} = \frac{1}{4} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

6.1. Toán tử Gradient (Frei-Chen)

$$f_x \approx \hat{f}_x = f * W_x, f_y \approx \hat{f}_y = f * W_y,$$

$$W_{x} = \frac{1}{2 + \sqrt{2}} \begin{bmatrix} 1 & 0 & -1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & 0 & -1 \end{bmatrix},$$

$$W_{y} = \frac{1}{2 + \sqrt{2}} \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ 0 & 0 & 0 \\ 1 & \sqrt{2} & 1 \end{bmatrix}$$

6.2. Toán tử Laplace

$$(\nabla^2 f)(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$
$$(\nabla^2 f)(x, y) \approx f(x+1, y) + f(x-1, y) +$$
$$f(x, y+1) + f(x, y-1) - 4f(x, y)$$

6.2. Toán tử Laplace

$$\nabla^2 f \approx f * Laplace$$

$$Laplace = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

6.2. Toán tử Laplace

$$\nabla^2 f \approx f * Laplace$$

$$Laplace = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

6.2. Toán tử Laplace

 $0 - 3h/8 \ 3h/8 \ 0$

6.2. Toán tử Laplace

 $0 - 3h/16 \ 0 \ 3h/16 \ 0$

6. Phát hiện biên cạnh dựa trên miền không gian

6.2. Toán tử Laplace

0 - h/8 - h/8 + 0 h/8 h/8 = 0

6.2. Toán tử Laplace

Smoothed transition

0 - h/16 - h/8 - h/16 0 h/16 h/8 h/16 0

6.3. Toán tử Laplace of Gaussian

$$\nabla^2[G(x,y,\sigma)*f(x,y)] = [\nabla^2G(x,y,\sigma)]*f(x,y)$$

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2+y^2)/2\sigma^2}$$

$$\nabla^2 G(x, y, \sigma) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

$$= \frac{1}{\pi \sigma^4} \left[\frac{x^2 + y^2}{2\sigma^2} - 1 \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

6.3. Toán tử Laplace of Gaussian

TS. Lý Quốc Ngọc

Cdio-

6. Phát hiện biên cạnh dựa trên miền không gian

6.4. **PP Canny**

Giải thuật

B1.
$$G(x, y, \sigma) * f(x, y)$$

- **B2.** Tại mỗi pixel xác định hướng cạnh $n = \nabla(G * f)$
- **B3**. Xác định vị trí cạnh dựa vào non-maximal suppression.
- **B4.** Tính biên độ cạnh dựa vào $|\nabla(G^*f)|$
- B5. Phân ngưỡng để loại kết quả dư thừa

Phát hiện biên cạnh dựa trên miền không gian

6.4. **PP Canny**

Giải thuật

B6. Lặp lại các bước từ 1-5 với giá trị tăng dần của σ

B7. Kết hợp thông tin về biên cạnh ở các mức scale dựa vào tổng hợp đặc trưng.

Hinh 92 70

Phát hiện biên cạnh dựa trên miền không gian

6.4. **PP Canny**

(Non-maximal suppression of directional edge data)

- **B3.1.** Với mỗi pixel thuộc biên cạnh, khảo sát 2 pixel kề đc xác định bởi hướng cạnh.
- **B3.2.** Nếu biên độ của 1 trong 2 pixel kề vượt quá pixel đang xét thì đánh dấu loại pixel đang xét.
- **B3.3**. Sau khi đã đánh dấu xong tất cả, tổng duyệt để loại bổ các điểm bị đánh dấu.

Phát hiện biên cạnh dựa trên miền không gian

6.4. PP Canny

(Non-maximal suppression of directional edge data)

Phát hiện biên cạnh dựa trên miền không gian

6.4. PP Canny

(Hysteresis to filter output of an edge detector)

- **B5.1.** Kết nạp các điểm biên cạnh có biên độ lớn hơn $\mathbf{t_1}$.
- **B5.2.** Khảo sát các pixel có biên độ thuộc $[\mathbf{t}_0 \ \mathbf{t}_1]$
- **B5.3**. Nếu pixel liền kề với pixel khảo sát thuộc biên cạnh thì kết nạp pixel khảo sát vào biên cạnh.
- B5.4. Lặp lại bước B5.2 đến khi ổn định.