Oxford A0 - Linear Algebra

Dan Davison

December 3, 2017

Sheet 1

1. (a) Prove that $\mathbb{F}_p = \{0, 1, \dots, p-1\}$, the set of equivalence classes of integers modulo a prime p, satisfies the axioms of a field. How many elements are there in a vector space of dimension n over the field \mathbb{F}_p ?

Let $a, b, c \in \mathbb{Z}$ with $0 \le a < p$, $0 \le b < p$, $0 \le c < p$.

Let $\overline{a}, \overline{b}, \overline{c} \in \mathbb{F}$ be equivalence classes of integers modulo p.

The field axioms are listed below, together with proof that they hold for \mathbb{F}_p .

- 1. \mathbb{F}_p is an abelian group under addition Define $\overline{a} + \overline{b} := \overline{a+b}$, then:
 - (a) Existence of identity: $\overline{0}$ is the identity since $\overline{a} + \overline{0} = \overline{a+0} = \overline{a}$ for all $\overline{a} \in \mathbb{F}_p$.
 - (b) Existence of inverses: $(\overline{a})^{-1} = \overline{-a}$ since $\overline{a} + \overline{-a} = \overline{a} + \overline{-a} = \overline{0}$ for all $a \in \mathbb{F}_p$.
 - (c) Commutativity: $\overline{a} + \overline{b} = \overline{a+b} = \overline{b} + \overline{a}$ for all $a, b \in \mathbb{F}_p$.
 - (d) Associativity: $\overline{a} + (\overline{b} + \overline{c}) = \overline{a} + \overline{b+c} = \overline{a+b+c} = \overline{a+b} + \overline{c} = (\overline{a} + \overline{b}) + \overline{c}$.
- 2. $\mathbb{F}_p \setminus \{\overline{0}\}$ is an abelian group under multiplication Define \overline{a} $\overline{b} := \overline{ab}$, then:
 - (a) Existence of identity: $\overline{1}$ is the identity since $\overline{a}\overline{1} = \overline{a \cdot 1} = \overline{a}$ for all $\overline{a} \in \mathbb{F}_p$.

https://courses.maths.ox.ac.uk/node/5353

¹Unlike the question, I am trying to use notation that distinguishes between integers and their equivalence classes.

(b) Existence of inverses for everything except additive identity:

The claim is that for all $\overline{a} \in \mathbb{F}_p \setminus \{\overline{0}\}$ there exists $\overline{b} \in \mathbb{F}_p$ such that $\overline{a} \ \overline{b} = \overline{1}$.

Proof 1

We show that elements cannot repeat in a row/column of the group operation table, therefore something muct be the inverse.

$$a \cdot b = a \cdot c \mod p$$

$$a(b - c) = 0 \mod p$$

$$a = 0 \text{ or } b = c \mod p$$

Proof 2

Fix an arbitrary $a \in \{1, \dots, p-1\}$.

The claim is equivalent to the following: there exists $b \in \{0, 1, ..., p\}$ such that for all $i, j \in \mathbb{Z}$ there exists $k \in \mathbb{Z}$ such that (ip + a)(jp + b) = kp + 1.

But note that (ip + a)(jp + b) = p(ijp + aj + bi) + ab and therefore

$$(ip+a)(jp+b) = kp+1$$

$$\iff ab = p(k-ijp-aj-bi)+1.$$

Since k can be chosen freely, the condition is simply that for all $i, j \in \mathbb{Z}$ there exists $k \in \mathbb{Z}$ such that ab = kp + 1.

Note² that a and p are coprime (gcd is 1). By Bezout's identity, there exists $b, -k \in \mathbb{Z}$ such that

$$ba + (-k)p = 1 \iff ab = kp + 1.$$

- (c) Commutativity: $\overline{a}\ \overline{b} = \overline{ab} = \overline{b}\ \overline{a}$ for all $a, b \in \mathbb{F}_p$.
- (d) Associativity: $\overline{a}(\overline{b}\overline{c}) = \overline{a} + \overline{bc} = \overline{abc} = \overline{ab} \ \overline{c} = (\overline{a} \ \overline{b})\overline{c}$.

3. Distributive axiom

(a) Multiplication distributes over addition: $\overline{a}(\overline{b}+\overline{c}) = \overline{a}(\overline{b}+\overline{c}) = \overline{a}(\overline{b}+\overline{c}) = \overline{ab+ac} = \overline{ab} + \overline{ac} = \overline{a} \ \overline{b} + \overline{a} \ \overline{c}$

There are p^n elements in a vector space of dimension n over the field \mathbb{F}_p .

²I eventually allowed myself to google for a hint here which brought up people pointing to Bezout's identity.

(b) Determine all subspaces of $(\mathbb{F}_2)^3$.

Remark: This is like the 8 vectors that form the unit cube in \mathbb{R}^3 , except that when extended beyond the cube by vector addition or scalar multiplication they "wrap around".

Note that

$$\begin{split} (\mathbb{F}_2)^3 &= \{\overline{0}, \overline{1}\}^3 \\ &= \{(\overline{0}, \overline{0}, \overline{0}), \\ &\quad (\overline{0}, \overline{0}, \overline{1}), \\ &\quad (\overline{0}, \overline{1}, \overline{0}), \\ &\quad (\overline{0}, \overline{1}, \overline{1}), \\ &\quad (\overline{1}, \overline{0}, \overline{0}), \\ &\quad (\overline{1}, \overline{0}, \overline{1}), \\ &\quad (\overline{1}, \overline{1}, \overline{0}), \\ &\quad (\overline{1}, \overline{1}, \overline{1})\}. \end{split}$$

The set of subspaces of $(\mathbb{F}_2)^3$ is

Per AC this is missing, at least, a subspace of size 4. Also see Sylov theorems.

2. Show that the vector space of polynomials $\mathbb{R}[x]$ is isomorphic to a proper subspace of itself.

We need to:

1. Exhibit a proper subspace $S[x] \subset \mathbb{R}[x]$ and a bijection $f : \mathbb{R}[x] \to S[x]$

Let $a_i \in \mathbb{R}$ for i = 0, 1, 2, ... so that $\mathbb{R}[x] = \{a_0 + a_1 x^1 + a_2 x^2 + ...\}$.

Define $S[x] = \{0 + a_1x^1 + a_2x^2 + a_3x^3 + \ldots\}$, i.e. the restriction of $\mathbb{R}[x]$ to those polynomials that have constant term zero.

S[x] is a proper subspace of $\mathbb{R}[x]$ since it contains the zero polynomial, and is closed under addition and scalar multiplication.

Define $f: \mathbb{R}[x] \to S[x]$ where $f(a_0 + a_1 x^1 + a_2 x^2 + \ldots) = 0 + a_0 x^1 + a_1 x^2 + a_2 x^3 + \ldots$

f is clearly injective, since if f(r(x)) = f(r'(x)) then their coefficients a_0, a_1, \ldots are the same and hence r(x) = r'(x).

Also, f is clearly surjective since if $s(x) = a_1x^1 + a_2x^2 + a_3x^3 + ...$ then $s(x) = f(a_1 + a_2x^1 + a_3x^2 + ...)$.

2. Prove that f preserves addition

Let $a_i, b_i \in \mathbb{R}$ for $i = 0, 1, 2, \dots$

Let
$$r(x) = a_0 + a_1 x^1 + a_2 x^2 + \dots$$
 and $r'(x) = b_0 + b_1 x^1 + b_2 x^2 + \dots$

Then

$$f(r(x) + r'(x)) = f((a_0 + b_0) + (a_1 + b_1)x^1 + (a_2 + b_2)x^2 + \dots)$$

$$= 0 + (a_0 + b_0)x^1 + (a_1 + b_1)x^2 + (a_2 + b_2)x^3 + \dots$$

$$= (0 + a_0x^1 + a_1x^2 + a_2x^3 + \dots)$$

$$+ (0 + b_0x^1 + b_1x^2 + b_2x^3 + \dots)$$

$$= f(r(x)) + f(r'(x)).$$

3. Prove that f preserves scalar multiplication

$$f(\lambda r(x)) = f(\lambda a_0 + \lambda a_1 x^1 + \lambda a_2 x^2 + \dots)$$

$$= 0 + \lambda a_0 x^1 + \lambda a_1 x^2 + \lambda a_2 x^3 + \dots$$

$$= \lambda (0 + a_0 x^1 + a_1 x^2 + a_2 x^3 + \dots)$$

$$= \lambda f(r(x))$$

3. Show that the space of functions $f: \mathbb{N} \to \mathbb{R}$ does not have a countable basis.

Note:

- 1. The space of functions $f: \mathbb{N} \to \mathbb{R}$ is the space of real-valued infinite sequences.
- 2. A basis is countable iff a bijection exists between the basis and \mathbb{N} .

I haven't managed to do this. What follows is what I was thinking, but must be wrong since it contradicts the question.

Let $x_i \in \mathbb{R}$ for $i \in \mathbb{N}$ and define the following:

- $F_n := \{(x_1, x_2, \dots, x_n) \mid x_1, x_2, \dots, x_n \in \mathbb{R}\}$ is the space of functions $f : \{1, 2, \dots, n\} \to \mathbb{R}$
- $F_{\infty} := \{(x_1, x_2, \ldots) \mid x_1, x_2, \ldots \in \mathbb{R}\}$ is the space of functions $f : \mathbb{N} \to \mathbb{R}$.

Note that $F_1 = \{x_1 \mid x_1 \in \mathbb{R}\} = \mathbb{R}$. Therefore every basis for F_1 has cardinality 1 (every basis is a set containing a single non-zero real number).

Similarly, $F_2 = \mathbb{R}^2$, and every basis of F_2 has cardinality 2.

Basically it seems like the following is a basis of this space of functions, but it is countable:

$$(1,0,0,\ldots),$$

 $(0,1,0,\ldots),$
 $(0,0,1,\ldots),$

I think the answer here is that E is a basis for F_{∞} iff every element of F_{∞} can be expressed as a linear combination of a *finite* number of elements from E. But this is untrue, at least for the basis I have suggested, since for example the constant function $f(i) = 1 \,\forall i$ fails.

4. Let \mathbb{F} be a field and f(x) be an irreducible polynomial in $\mathbb{F}[x]$. Show that the set of polynomials modulo f(x) form a field.

Let P be the set of polynomials modulo f(x).

The field axioms are listed below, together with proof that they hold for P.

1. P is an abelian group under addition

Define $\overline{g(x)} + \overline{h(x)} := \overline{g(x) + h(x)}$, then:

- (a) Existence of identity: The additive identity is $\overline{0} = \{ f(x)g(x) \mid g(x) \in \mathbb{F}[x] \}$.
- (b) Existence of inverses: $\overline{g(x)}^{-1} = \overline{-g(x)}$ for all $g(x) \in P$.
- (c) Commutativity and Associativity: Proofs of these are essentially the same as for \mathbb{F}_p (question 1).

2. $P \setminus \{\overline{0}\}\$ is an abelian group under multiplication

Define $\overline{g(x)} \cdot \overline{h(x)} := \overline{g(x) \cdot h(x)}$, then:

- (a) Existence of identity: The multiplicative identity is $\overline{1} = \{f(x)g(x) + 1 \mid g(x) \in \mathbb{F}[x]\}.$
- (b) Existence of inverses for everything except additive identity:

The claim is that for all $\overline{a} \in \mathbb{F}_p \setminus \{\overline{0}\}$ there exists $\overline{b} \in \mathbb{F}_p$ such that $\overline{a} \ \overline{b} = \overline{1}$.

Fix an arbitrary $a \in \{1, \dots, p-1\}$.

The claim is equivalent to the following: there exists $b \in \{0, 1, ..., p\}$ such that for all $i, j \in \mathbb{Z}$ there exists $k \in \mathbb{Z}$ such that (ip + a)(jp + b) = kp + 1.

But note that (ip + a)(jp + b) = p(ijp + aj + bi) + ab and therefore

$$(ip+a)(jp+b) = kp+1$$

$$\iff ab = p(k-ijp-aj-bi)+1.$$

Since k can be chosen freely, the condition is simply that for all $i, j \in \mathbb{Z}$ there exists $k \in \mathbb{Z}$ such that ab = kp + 1.

Note³ that a and p are coprime (gcd is 1). By Bezout's identity, there exists $b, -k \in \mathbb{Z}$ such that

$$ba + (-k)p = 1 \iff ab = kp + 1.$$

- (c) Commutativity: $\overline{a}\ \overline{b} = \overline{ab} = \overline{b}\ \overline{a}$ for all $a, b \in \mathbb{F}_p$.
- (d) Associativity: $\overline{a}(\overline{b}\overline{c}) = \overline{a} + \overline{bc} = \overline{abc} = \overline{ab} \ \overline{c} = (\overline{a} \ \overline{b})\overline{c}$.

3. Distributive axiom

(a) Multiplication distributes over addition: $\overline{a}(\overline{b}+\overline{c}) = \overline{a}(\overline{b}+\overline{c}) = \overline{a}(\overline{b}+\overline{c}) = \overline{ab+ac} = \overline{ab} + \overline{ac} = \overline{ac} + \overline{ac}$

³I eventually allowed myself to google for a hint here which brought up people pointing to Bezout's identity.

5. (a) A non-empty subset I of a ring R is an ideal if for all $s,t\in I$ and all $r\in R$ we have

$$s-t \in I$$
 and $rt, tr \in I$.

List all the ideals of a field \mathbb{F} and of the ring \mathbb{Z} . Show that the kernel of any ring homomorphism is an ideal.

- (b) Show that (r+I)(r'+I) := rr' + I gives a well defined multiplication on the set of cosets R/I making it into a ring.
- (c) Formulate the first isomorphism theorem for rings.

- 6. (a) Show that the set $M_n(R)$ of $(n \times n)$ -matrices with entries in a ring R is a ring with the usual matrix addition and multiplication.
- (b) Show that the canonical surjection $R \to R/I$ induces a surjective ring homomorphism $M_n(R) \to M_n(R/I)$. What is the kernel? Consider the example when $R = \mathbb{Z}$ and $I = 3\mathbb{Z}$.
- (c) Describe the ideals of $M_n(R)$ for a ring R with multiplicative unit 1.
- 7. Prove that a linear transformation $P:V\to V$ of a finite dimensional vector space satisfies $P^2=P$ if and only if there exists a basis such that the matrix of P with respect to that basis is a block matrix

$$\left(\begin{array}{cc} I & 0 \\ 0 & 0 \end{array}\right).$$

Hence determine the minimal and characteristic polynomials of P.

- 8. Let $T:V\to V$ be a linear transformation of a finite dimensional vector space over a field $\mathbb F$ to itself. Prove that T is invertible if and only if x does not divide the minimal polynomial $m_T(x)$.
- 9. Let $T:V\to V$ be a linear transformation of a finite dimensional vector space over a field $\mathbb F$ to itself. Assume that $\{v,Tv,T^2v,\dots\}$ span V for some $v\in V$. Show that
 - (i) there exists a k such that $v, Tv, \dots, T^{k-1}v$ are linearly independent and for some $\alpha_i \in \mathbb{F}$

$$T^k v = \alpha_0 v + \alpha_1 T v + \dots + \alpha_{k-1} T^{k-1} v;$$

(ii) the set $\{v, Tv, \dots, T^{k-1}v\}$ forms a basis for V;

(iii) its minimal polynomial is given by $m_T(x) = x^k - \alpha_{k-1}x^{k-1} - \cdots - \alpha_0$.

What is the characteristic polynomial $\chi_T(x)$?