Announcement

- Homework I was due 30 seconds ago...
- Project I is due at 7PM on Tuesday, 3/8.
- Homework 2 will start on Tuesday, 3/1.
- TA: Anu Aggarwal < anuagg0102@gmail.com >
- Contact me by tomorrow if you want to give the senior oral presentation in this class

Last Time

- DES: 64-bit plaintext, 64-bit ciphertext, 64-bit key
- ECB vs. CBC
- Hash Functions: one-way, collision resistant

Message Authentication Code

- Authenticate the integrity of messages
 - Given hash function h(), key k, and message mMAC(k, m) = h(m|k)
 - Send both message m and the message authentication code MAC(k, m) to the receiver
 - The receiver computes h(m|k) using the received message and compares the result with the received MAC(k, m)
- Q:Why does MAC(k, m) provide integrity?
 - Cannot generate MAC(k, m) without knowing the key k
- Can we use h(m) instead?

Public Key Cryptography

- Each individual has two keys: a public key k^+ known to everyone, a private key k^- kept secret to the owner
 - $D(E(m, k^+), k^-) = m; D(E(m, k^-), k^+) = m$
- Everyone can use the receiver's public key to encrypt a message, and only the receiver can use his private key to decrypt it
 - $E(m, k^+) = c$ and $D(c, k^-) = m$
- Digital Signature
 - $E(m, k^{-}) = c$ and $D(c, k^{+}) = m$
- Also known as asymmetric key cryptography

Modular Arithmetic

- Use non-negative integers less than some positive integer *n*, perform arithmetic operations, and then replace the result with the remainder when divided by *n*
- Modular Addition
 - Example:

$$6 + 9 \mod 10 = 5 \mod 10$$

$$3 + 7 \mod 10 = 0 \mod 10$$

- Modular Multiplication
- Modular Exponentiation

Modular Multiplication

- Example: $3 \times 7 = 1 \mod 10$; $5 \times 2 = 0 \mod 10$
- Multiplicative Inverse
 - If $xy = 1 \mod n$, then x and y are each other's multiplicative inverse mod n.
 - Example: 3 is the multiplicative inverse of 7 modular 10
 - A number x has multiplicative inverse mod n if and only if x is relatively prime to n
- Totient Function $\phi(n)$
 - The number of numbers that are relatively prime to n
 - If n=pq where p and q are prime, $\phi(n)=\phi(pq)=(p-1)(q-1)$
 - Example: $\phi(10) = \phi(2 \times 5) = (2-1)(5-1) = 4$

Modular Exponentiation

- Example: $3^5 = 243 = 3 \mod 10$; $4^6 = 4096 = 6 \mod 10$
- We have $x^y \mod n = x^{(y \mod \phi(n))} \mod n$
 - $3^5 = 3^{(5 \mod \phi(10))} = 3^{(5 \mod 4)} = 3 \mod 10$
- If $y = 1 \mod \phi(n)$, then we have $x^y \mod n = x \mod n$

RSA

- A dominant public key cryptosystem named after Rivest, Shamir, and Adleman
 - The encryption/decryption algorithms are conceptually simple
 - Why it is secure is very deep (number theory)
 - Key length is variable
 - Plaintext block must be smaller than the key length, ciphertext block is the same as the key length

RSA

- Key Generation
 - STEP1: Pick two large primes p and q (512 bits)
 - STEP2: Calculate n = pq
 - STEP3: Choose e such that it is relatively prime to $\phi(n) = (p-1)(q-1)$
 - STEP4: Find d that is the multiplicative inverse of e mod $\phi(n)$, i.e., ed = I mod $\phi(n)$. (Euclid's Algorithm)

Example:

- STEPI: p = 3, q = 11
- STEP2: $n = pq = 3 \times 11 = 33$
- STEP3: $\phi(n) = (p-1)(q-1) = (3-1) \times (11-1) = 20$, choose e = 7
- STEP4: $3 \times 7 = 1 \mod 20$, so d = 3

RSA

- In RSA, public key k^+ is $\langle e, n \rangle$ and private key k^- is $\langle d, n \rangle$
- Encryption algorithm: $c = E(k^+, m) = m^e \mod n$
- Decryption algorithm: $m = D(k^-, c) = c^d \mod n$ (why?)
 - Recall $x^y \mod n = x^{(y \mod \phi(n))} \mod n$

Example:

- Public key $k^+ = <7, 33>$, Private key $k^- = <3, 33>$
- Plaintext m = 4
- Encryption: $c = E(k^+, m) = 4^7 \mod 33 = 16384 \mod 33 = 16$
- Decryption: $m = D(k^-, c) = 16^3 \mod 33 = 4096 \mod 33 = 4$

Attacks on RSA

- Brute-force attack: try all possible private keys
 - Solution: use a large key space
- Mathematical attack
 - Given n and e, factor n = pq. Then, find $\phi(n)$ and d.
 - Given *n* and *e*, determine $\phi(n)$. Then, find *d*.
 - The second method is equivalent to the first one
 - Fact: factoring large numbers is computationally hard

