FINM 36700 Final Exam

Portfolio and Risk Management

December 9, 2024

Name:	
UChicago ID:	
<u> </u>	

- This exam is **closed book** and **closed notes**.
- You are **not** allowed any eletronics or calculator.
- Every numbered question is worth **3 points**.

Section	Points Awarded	Possible
1		27
2		18
3		15
4		15
5		12
6		15
Total		102

1 Multiple Choice

1.	The $___$ factor is widely use in factor pricing models, but the statistical evidence for it mattering is weak.
	(a) market
	(b) profitability
	(d) momentum
	(e) size
	(f) value
2.	A momentum strategy going long on the upper decile (top 10%) and short on the lower decile (bottom 10%) of past winners/losers will probably have and than the same strategy using quintiles (20%).
	(a) higher volatility, higher mean return
	(b) higher volatility, lower mean return
	(c) lower volatility, higher mean return
	(d) lower volatility, lower mean return
3.	The performance of the momentum strategy may be an indication of
	Select all that apply
	\square market inefficiency
	\square risk premium
	\square arbitrage
4.	The APT says that
	Select all that apply
	\square perfect linear factor decomposition implies complete linear factor pricing
	\square complete linear factor pricing implies perfect linear factor decomposition
5.	More specifically, what type of linear factor decomposition is required by the APT?
	Select all that apply
	$\square R^2 = 1$ for all assets.
	\square Zero cross-correlation of returns.
	\square Uncorrelated residuals of decomposed asset returns
6.	The 10-year Sharpe ratio of an investment series with zero serial correlation will be the 1-year Sharpe ratio.
	(a) smaller than
	(b) equal to
	(c) larger than

	The 10-year Sharpe ratio of an investment series with negative serial correlation will be the 1-year Sharpe ratio.
	(a) smaller than
	(b) equal to
	(c) larger than
7.	Suppose we have a portfolio of 100 stocks, and we want to consider if we should add a new stock to our portfolio. Our primary consideration should be:
	(a) P/E ratio.
	(b) dividend yield.
	(c) correlation to our portfolio.
	(d) skewness.
	(e) kurtosis.
	(f) maximum drawdown.
	(g) Sharpe ratio.
8.	Some possible issue(s) with using maximum drawdown as a risk-metric is/are that: $___$
	Select all that apply.
	\square It assumes log-normal returns.
	\square It assumes returns are i.i.d.
	☐ It is path dependent.
	☐ It is biased towards higher volatility assets.
9.	Which of the following is notable about LTCM's performance?
	Select all that apply.
	\square High alpha
	☐ Low alpha
	☐ High beta
	Low beta
	☐ Long realized volatility
	☐ Short realized volatility
	☐ High information ratio
	Low information ratio

2 Fill-In-The-Blank

Fill in each blanks with a single word. Use the following words: low(er), high(er), positive, negative.

- 1. Typically, stock returns have ______ skewness and _____ excess kurtosis.
- 2. A problem with MV-optimization is _____ correlations among assets and _____ out-of-sample \mathbb{R}^2 .
- 3. Fama-French use different "cuts" of SMB when constructing HML and RMW to achieve _____ correlations among their factors.
- 4. All else being equal, an asset with a smaller tracking error will have a _____ absolute information ratio.
- 5. Assuming an asset has positive excess returns, our forecasted probability of negative cummulative returns is ______ for longer time horizons. The volatility of our forecasted cumulative return is _____ for longer time horizons.
- 6. Consider the following calculation of VaR 5% based on a 60-day window.

$$VaR_{t+1} = \hat{\mu}_{i,t} + z_{0.05}\hat{\sigma}_{i,t}$$
$$\hat{\sigma}_{i,t}^2 = \frac{1}{T-1} \sum_{k=t-60}^{t} (r_{i,k} - \hat{\mu}_i)^2$$

Many practitioners modify this formula. Rewrite the formula with this modification.

3 Factor Pricing Tests

Consider that you run time-series and a cross-sectional tests for the Fama-French 3 Factor model. First, you run the time-series test for 25 test-assets:

$$\tilde{r}_t^i = \alpha + \beta_{\text{MKT}}^i \tilde{r}_{\text{MKT},t} + \beta_{\text{SMB}}^i \tilde{r}_{\text{SMB},t} + \beta_{\text{HML}}^i \tilde{r}_{\text{HML},t} + \varepsilon_t^i$$

After, you run a cross-sectional test:

$$\mathbb{E}[\hat{r}^i] = \eta + \lambda_{\text{MKT}} \beta_{\text{MKT}}^i + \lambda_{\text{SMB}} \beta_{\text{SMB}}^i + \lambda_{\text{HML}} \beta_{\text{HML}}^i + \nu^i$$

Answer the following questions only mentioning the relevant parameter or equation.

1.	Wł	nat is the market premium implied by the cross-sectional estimation?
2.	Wł	nat is the market premium implied by the time-series estimation?
3.	Wł	nat 4 parameters are you estimating in the cross-sectional test?

4.	If you have estimates of the equ	ations above,	which	${\it estimate}$	would	be	most	important	to
	assess the cross-sectional test?								

5. If you have estimates of the equations above, which estimate would be most important to assess the **time-series** test?

4 Regressions

Write a regressions that you would estimate to solve the following:

- $\bullet~$ Use \tilde{r} to represent excess returns.
- ullet Use r to represent returns.

1.	Sheck if a hedge fund that invested in stocks listed in the Small Cap Index (SC) and in the PY (SPY) generates value by doing active investing.
2.	Calculate the optimal hedge ratio between AAPL's excess returns (\tilde{r}_{A}) and SPY excess returns (\tilde{r}_{A}) considering that the past mean excess return of AAPL is a good proxy for the future nean return AAPL.
3.	Test a factor model that uses the market excess returns (\tilde{r}_{MKT}) and the unemployment rate u) - only write the final regression.
4.	Theck if a particular stock has momentum in its excess returns (\tilde{r}_i) .
5.	The ck if a hedge fund $(\tilde{r}_{\mathrm{HF}})$ has exposure to SPY puts by performing a regression analysis.

5 Allocation

1. The table below gives the annualized estimates of an excess-return mean-variance investment problem. (Recall that GMV stands for Global Minimum Variance portfolio)

	Estimate
Sharpe of GMV	1.1
Expected Return of the GMV	4.0%
Sharpe of the Tangency	1.5
Expected Return of the Tangency	6.0%
Return of the Risk-Free Rate	3.0%

Table 1: Estimates for the Portfolios and Risk-Free Rate

The investor aims for a 5% annualized return and has access to all three investments: GMV, tangency portfolio, and risk-free asset.

How much should the investor allocate in each of the assets? Write the optimal weights for each asset in the following table:

Asset	Portfolio Weight
GMV Portfolio	
Risk-Free Asset	
Tangency Portfolio	

Consider that you are doing analysis on two different hedge funds: Gamma Investors and Eletron Capital. Both are stock driven hedge-funds having the SPY as benchmark.

We run the following regression on the excess-returns of the hedge-funds in the past 5 years:

$$\tilde{r}_{p,t} = \alpha + \beta \tilde{r}_{\mathrm{SPY},t} + \varepsilon_t$$

We arrive to the following numbers in which $\hat{\alpha}$, $\tilde{\mu}$ and σ are already annualized.

Estimate	Gamma Investors	Electron Capital	SPY
$\hat{\alpha}$	0.5%	3%	-
\hat{eta}	1.5	0.8	-
$\tilde{\mu}$	15.5%	11%	10%
σ	15%	8%	10%
R^2	87.3%	87.3%	-

Table 2: Estimates for the past 5 years

Based solely on the previous statistics:

- 2. Consider that your $\mathbb{E}[\tilde{r}_{SPY,t+1}]$ is equal to the average historical excess return (10%). You aim to maximize your expected return for t+1 (expected return for the next year). If you could choose only one hedge-fund to allocate **ALL** your money, which one would you choose?
 - (a) Gamma
 - (b) Electron
- 3. Now, consider that even though SPY's premium has been 10% in the past, we now believe it will be lower going forward: $\mathbb{E}[\tilde{r}_{SPY,t+1}] = 4\%$. Given the same objective and restriction as the previous question, which hedge-fund would you choose?
 - (a) Gamma
 - (b) Electron

4. Finally, consider that you have no view on SPY's future returns and prefer not to be exposed to SPY risk. You will allocate \$100 in only one hedge-fund but now you can also allocate any dollar amount in SPY.

Select the hedge fund in which you would allocate your \$100:

- (a) Gamma
- (b) Eletron

Dollar position in SPY:	

6 FX Carry

1. Being a US FX Carry trader, you run the following regression for different currencies "OTH" against the USD:

$$\mathbf{s}_{t+1} - \mathbf{s}_t = \alpha + \beta \left(\mathbf{r}_{\text{USD},t+1} - \mathbf{r}_{\text{OTC},t+1} \right) + \varepsilon_{t+1}$$

In which:

- OTC represents the other currency.
- s is the log spot exchange rate of the USD against the OTC currency.
- $\mathbf{r}_{\mathrm{USD},t}$ is the log risk-free rate of the USD at time t.
- $\mathbf{r}_{\text{OTC},t}$ is the log risk-free rate of the OTC currency at time t.

The result of the regression is the following:

Currency	$\hat{\alpha}$	\hat{eta}	R^2
EUR (Euro)	0.010	0.85	12.1%
BRL (Brazilian Real)	0.049	3.41	9.7%
ARS (Argentine Peso)	0.000	-1.00	8.1%
JPY (Japanese Yen)	-0.005	0.65	15.2%
GBP (British Pound)	0.082	0.84	10.5%
AUD (Australian Dollar)	0.000	1.92	0.3%
CAD (Canadian Dollar)	0.012	0.95	13.1%
CHF (Swiss Franc)	0.000	0.00	0%
INR (Indian Rupee)	0.020	1.25	7.8%
CNY (Chinese Yuan)	0.005	0.80	12.1%
MXN (Mexican Peso)	0.025	-1.10	9.1%
ZAR (South African Rand)	-0.055	-1.50	8.3%
RUB (Russian Ruble)	0.050	1.60	5.1%
KRW (South Korean Won)	0.010	0.00	11.1%
NOK (Norwegian Krone)	0.018	1.07	76.3%
SEK (Swedish Krona)	-0.150	0.22	21.4%
NZD (New Zealand Dollar)	0.000	1.00	9.4%

Table 3: FX Regression Results with Additional Currencies

- (a) Indicate which currency provides no negative or positive premium:
- (b) Indicate which currency provides the most compeling evidence that the UIP holds:
- 2. Consider the following data for the USD and the EUR, where each t is one year:

$$R_{t,t+10}^{f\$} = 2$$

Where $R_{t,t+10}^{f\$}:=(1+r_{t,t+1}^{f\$})$ and $r_{t,t+1}^{f\$}$ is the risk free rate for the USD.

$$R_{t,t+10}^{f \in} = 3$$

Where $R_{t,t+10}^{f \in} := (1 + r_{t,t+1}^{f \in})$ and $r_{t,t+10}^{f \in}$ is the risk free rate for the EUR.

The spot exchange rate is $1.5~\mathrm{USD/EUR}$ and the forward exchange rate for $10~\mathrm{years}$ is $1.2~\mathrm{USD/EUR}$.

- (a) True or False: The situation is consistent with CIP.
- (b) **True or False:** The situation is consistent with UIP.
- 3. Take a look at the following regressions:

Equation A:
$$\mathbf{f}_t - \mathbf{s}_t = \alpha + \beta \left(\mathbf{r}_{t,t+1}^{f,\$} - \mathbf{r}_{t,t+1}^{f,\in} \right) + \varepsilon_t$$

Equation B:
$$\mathbf{s}_{t+1} - \mathbf{s}_t = \alpha + \beta \left(\mathbf{r}_{t,t+1}^{f,\$} - \mathbf{r}_{t,t+1}^{f,\in} \right) + \varepsilon_t$$

where:

- f is the log forward exchange rate.
- s is the log spot exchange rate.
- $\mathbf{r}^{f,\$}$ is the log risk-free rate for the USD.
- $\mathbf{r}^{f, \in}$ is the log risk-free rate for the EUR.

Which equation is testing the CIP and which equation is testing the UIP? Choose the best answer:

(a) Equation A is testing the CIP and Equation B is testing the UIP.

- (b) Equation A is testing the UIP and Equation B is testing the CIP.
- (c) Both equations are testing the UIP.
- (d) Both equations are testing the CIP.