

BIG Data and Business Intelligence In-Course Assessment

ACROMEGALY AND IGF ANALYSIS

Section 1: Business Intelligence Design

15/01/2021

STUDENT

Mohana Kamanooru

A0223038@tees.ac.uk

MODULE LEADER

Dr. Annalisa Occhipinti

a.occhipinti@tees.ac.uk

Acknowledgements

Thanks to my Professor Dr. Annalisa Occhipinti for her continual guidance, support and advice throughout the research process. I want to thank my parents Mr. Ramanachari Kamanooru, Mrs. Vijayalakshmi Kamanooru, and husband, Mr. Santhosh Kanakam, for their continued encouragement and support in my career, and I am very grateful for everything I could learn from all the support received.

Table of Contents

knov	wledgements
D	ata Source Description and Business Questions
1.	Introduction
2.	Purpose of Research
3.	Intended Findings in Study
4.	Dataset Description
4.1.	Data Source
4.2.	
4.3.	Disclosure
5.	Table Description
5.1	Acromegaly IGF
5.2	Ensembl Gene Annotation
5.3	HTSEQ_Counts9
5.4	Patient_Sample_Mapping10
5.5	Patient Table
5.6	IGF_RKPM_Count14
5.7	Transcript Count19
D	ata Pre-Processing and Data Cleansing
1.	Table 1: Acromegaly IGF1
1.1.	
	11. 22. 33. 44. 44.1. 44.2. 44.3. 55.1 55.4 55.6 57.7 D

1.2	Replacing Values	18
1.3	Model View	19
2.	Table 2: Ensembl Gene Annotation	19
2.1	Removing Columns	20
2.2	. Model View	21
3.	Table 3: HTSEQ_Counts	22
3.1	Model View	22
4.	Table 4: Patient_sample_maping	24
4.1	Renaming Columns	25
4.2	Removing Columns	25
4.3	Replacing Values	26
4.4	Filtering Rows	27
4.5	Model View	29
5.	Table 5: Patient Information Table	30
5.1	. Replace Values	31
5.2	Renaming the table	32
5.3	Model View	32
6.	Table 6: IGF_RKPM_Count	33
6.1	. Rename Column	33
6.2	. Model View	35
7.	Table 7: Transcripts Count	36
7.1	. Rename Column	37
C) [Data Modelling –Schema Facts and Dimensions	38
4.2 4.3 4.4 4.5 5. 5.1 5.2 5.3 6. 6.1 6.2 7.	Removing Columns	2 2 3 3 3 3

1.	Data	a Modelling Process	38
	1.1.	Creating Relationships	38
	1.2.	Edit Relationships	41
	1.3.	Unpivoting Columns	43
	1.4.	Renaming Columns	44
2.	Star	Schema / Snowflake Schema – Facts and Dimensions	50
	2.1.	Dimension Tables	54
	2.2.	Fact Table	55
	2.3.	Avoid Many to Many Relationships	55
	2.4.	Filter Rows	57
	2.5.	Merge Queries	59
	2.6.	Create New Relationship	65

A) Data Source Description and Business Questions

1. Introduction

Human beings are one of the most fantastic creatures in the world. Every single organ and single-cell are essential for human survival. Among the parts of the human body, the pituitary is a tiny gland located behind the bridges of nose attached to the human brain's base. Though the gland's size is small, it is still known as the master gland because it controls all the hormones produced in the human body.

- The problems caused by the pituitary gland are broadly categorized into three types:
- The conditions that alter the size or shape of the gland itself called empty Sella syndrome.
- The conditions which make pituitary to secrete hormone in lower levels than that are required. These are hypopituitarism and diabetes insipidus.

The conditions that cause the pituitary to secrete hormones much more than required like Acromegaly, Cushing's and prolactinoma.

In this thesis, we are interested in Acromegaly, which is a rare pituitary tumour and secretes too much growth hormone GH in the body. The tumour less than 1cm it is called microadenoma, and > 1 cm known as pituitary macroadenoma. They develop DNA mutations and makes cells to grow and divide rapidly. Acromegaly may also result in shortening the life expectancy of the patient. Scientists estimate that about 3 to 14 of every 100,000 people have been diagnosed with Acromegaly. Any research and analysis would be helpful in the medical field, which is snowballing. The DNA, transcript sequence counts, and patient-related data are enormous and complex to analyze or visualize using traditional algorithms and methods. Power BI would work wonders for the same purposes.

2. Purpose of Research

Knowing an extraordinarily little about Acromegaly, my curiosity to understand the disease and its rarity by analyzing in depth encouraged me in choosing this dataset. During the current research I intend to learn the complete process of data analysis, therefore be able to apply these skills systematically to find the required information from the huge data available in real time scenarios.

3. Intended Findings in Study

We analyze the processed data to find if there are any significant **physical differences** between acromegaly patients and Control patients. Also, be able to determine if **age factor** of the patient plays any role in the medical condition. We also study the effects of **IGF** (IGF1, IGF2) and **insulin (blood glucose levels)** levels in both patient categories.

To analyze all the mentioned factors, the data should be properly mapped and the relationships and hidden connections between data should be identified. Then we will be able to choose appropriate visualization tools to present the information drawn from our huge data.

4. Dataset Description

4.1. Data Source

The raw data is captured from the studies carried out by Bridges Lab on neuroendocrine disorders Acromegaly and Cushing's. The raw data is recorded from the patients after clinical and metabolic profiling including HOMA-IR assessment. The physical observations, ceramide levels, insulin glucose, and various other parameters have been recorded in the dataset for patients of both acromegaly and control categories.

4.2. Description

The downloaded dataset contains the raw folder, in which all the patient and sample data is stored in text and CSV files. The file and table information screenshot of the raw folder is shown below.

Table 1 Filenames and Data Tables

No.	File Name	Table Name
Table 1	acromegaly_patient_IGF1.csv	AcromegalyIGF
Table 2	Ensembl Gene Annotation	Ensembl Gene Annotation
Table 3	htseq_gene_counts_GRCh37.74	HTSEQ_Counts
Table 4 patient_sample_mapping		Patient_Sample_Mapping
Table 5 patient_table		Patient_Table
Table 6	RPKM_counts_Acromegaly_GRCh37.74	IGF_RKPM
Table 7 transcript_counts_table		Transcript_Counts

Figure 1 Raw Data Files

4.3. Disclosure

This dataset contains the raw data and analysis code for the studies described in this manuscript, publication, and data source links are provided below.

Table 2 Dataset Source

Publication	Dataset	Tag
Hochberg, I, Q. T. Tran, A. L. Barkan, A. R. Saltiel, W. F. Chandler, D. Bridges. Gene Expression Signature in Adipose Tissue of Acromegaly Patients, <i>PLoS One</i> 10, e0129359 (2015). doi:10.1371/journal.pone.0129359	Dataset Open Access	Acromegaly-v1.0.0

5. Table Description

5.1 Acromegaly IGF

4 Columns and 8 rows - provides IGF1 levels observed in the patients diagnosed with Acromegaly.

Table 3 Acromegaly IGF Columns

Column 1	patient_id	Id gave to the patients. (identified after analyzing other tables
Column 2	patient initials	First name and Second name Initials of the patient
Column 3	diagnosis	Patient's medical condition
Column 4	igf1	levels of IGF1 hormone for respective patients

5.2 Ensembl Gene Annotation

3 Columns and 57383 rows – Provides gene mapping information from Ensembl and HGNC

Table 4 Ensembl Gene Annotation Columns

Column1	Column1 index	
Column2	ensembl_gene_id	Gene ID from Ensembl Database
Column3	hgnc_symbol	Approves gene symbol by HUGO Gene Nomenclature Committee

5.3 HTSEQ_Counts

24 Columns and 63684 rows - provides patients gene counts

Table 5 HTSEQ_Counts Columns

Column1	Genes	Gene ID from Ensembl Database

5.4 Patient_Sample_Mapping

5 columns and 13 rows- This table provides patient and sample mapping information.

column 4 and column5 have no useful information for analysis.

Table 6 Patient_Sample_Mapping Columns

Column1	Patient_id	patient id
Column2	Sample_id	Gene ID from Ensembl Database
Column3	Group	diagnosis information of the patient.

5.5 Patient Table

36 Columns, 29 rows – Patient observations and details

Table 7 Patient Table Columns

Column 1	Id	ID allotted to the patient
Column 2	Diagnosis	Patient's medical condition
Column 3	Height	Height of the patient in cm
Column 4	Weight	Weight of the patient in kg
Column 5	BMI	BMI of the patient in kg/cm2
Column 6	abdominal circumference	Measurement in cm
Column 7	Cer C14	Ceramide species 14:0
Column 8	Cer C18:1	Ceramide species 18:1
Column 9	Cer C16	Ceramide species 16:0
Column 10	Cer C18	Ceramide species 18:0
Column 11	Cer C20	Ceramide species 20:0
Column 12	Cer C22 (area)	Ceramide species 22:0
Column 13	Cer C24:1 (area)	Ceramide species 24:1
Column 14	Cer C24	Ceramide species 24:0
Column 15	Glu-Cer C16	Glucosylcermaide species 16:0
Column 16	Glu-Cer C18	Glucosylcermaide species 18:0
Column 17	Glu-Cer C18:1	Glucosylcermaide species 18:1
Column 18	insulin	Patient's insulin levels in uIU/ml
Column 19	glucose	Patient's glucose in mg/dL
Column 20	HOMA-IR	Homeostatic Model Assessment of Insulin Resistance
Column 21	glycerol no tx	Adipose tissue incubation
Column 22	glycerol insulin 2 nM	Adipose tissue incubation with insulin2nM
Column 23	glycerol iso 30 nM	Adipose tissue incubation with isoproterenol 30nM
Column 24	glycerol ins+iso	Adipose tissue incubation with isoproterenol and insulin
Column 25	glycerol ins/ctrl	Adipose tissue incubation with insulin controlled
Column 26	glycerol iso/ctrl	Adipose tissue incubation with isoproterenol controlled
Column 27	glycerol ins+iso/iso	Adipose tissue incubation
Column 28	age	Age of the patient
Column 29	largest diameter of tumor	Size in cm
Column 30	Creatinine	

Column 31	AST	
Column 32	ALT	
Column 33	alk phos	
Column 34	HTN	
Column 35	diabetes	If the patient is diabetic or not
Column 36	smoking	Does the patient smoke or not

5.6 IGF_RKPM_Count

RPKM is made for single-end RNA-seq, where every read corresponded to a single fragment that was sequenced.

Table 8 IGF_RKPM_Count Columns

Column1	Genes id	Gene ID from Ensembl Database
Column2 to 24	Sample121xx	Gene counts for 23 patients respectively

5.7 Transcript Count

Table 9 Transcript Count Columns

Column1 Genes		Gene ID from Ensembl Database		
Column2 to 24	Sample121xx	Gene transcript counts for 23 patients respectively		

 \square \times

transcript_counts_table.csv

B) Data Pre-Processing and Data Cleansing

Is there any evidence of steps performed to cleanse the data? For example: • Removing NAs, • Renaming columns • Changing data types • Removing errors • Removing columns • Merging tables, etc

1. Table 1: Acromegaly IGF

1.1. Renaming Columns

Renaming the first blank column to "patient_id" using the M formula shown below.

M Formula = Table.RenameColumns(#"Changed Type",{{"", "patient_id"}})

1.2. Replacing Values

The table name is changed to Acromegaly_IGF_Table and replaced diagnosis column values from "acromegaly" to "Acromegaly".

M formula: = Table.ReplaceValue(#"Renamed Columns","acromegaly","Acromegaly",Replacer.ReplaceText,{"diagnosis"})

1.3. Model View

2. Table 2: Ensembl Gene Annotation

Ensembl Gene Annotation.csv

2.1. Removing Columns

The first blank column has index values and is not very useful in analysis. Removing the column as below.

2.2. Model View

3. Table 3: HTSEQ Counts

3.1. Model View

4. Table 4: Patient_sample_maping

4.1. Renaming Columns

Renaming the first two columns of the table from "patient #" to "patient_id" and "sample #" to "sample_id" using M language in the advanced editor.

4.2. Removing Columns

The last two columns "notes" and the blank column at the end do not have useful information for analysis. Delete the two columns highlighted below.

4.3. Replacing Values

Replace the "group "column values from "acromegaly" to "Acromegaly"

Replace Values		×
·		
Replace one value with another in the selected columns.		
/alue To Find		
acromegaly		
Replace With		
Acromegaly		
Advanced options	ОК	Cancel
	<u> </u>	Carrott
Also, replace "non-functioning" with Control		
Replace Values		
Replace one value with another in the selected columns.		
/alue To Find		
value to Find		
non-functioning		

4.4. Filtering Rows

The dataset consists of data related to Acromegaly and Cushing's and Normal patients. The analysis is based only on Acromegaly and Control Patients. Hence filtering the Cushing's columns from the table.

4.5. Model View

5. Table 5: Patient Information Table

patient_table.csv

Display Options *

5.1. Replace Values

patient_information

```
#"Changed Type" = Table.TransformColumnTypes(#"Promoted Headers",{{"id", Int64.Type}, {"diagnosis", type text}, {"height", type number}, {
    // renaming the ID column to patient_id
    RenameIDCol = Table.RenameColumns(#"Changed Type",{{"id", "patient_id"}}),

    // replacing acromegaly to Acromegaly
    ReplaceValue = Table.ReplaceValue(RenameIDCol, "acromegaly", "Acromegaly", Replacer.ReplaceText,{"diagnosis"}),

    // replacing non secreting adenoma to Control
    ReplaceValue1 = Table.ReplaceValue(ReplaceValue, "non secreting adenoma", "Control", Replacer.ReplaceText,{"diagnosis"}),

    // replacing cushing with Cushing's
    ReplaceValue2= Table.ReplaceValue(ReplaceValue1, "cushing's", "Cushing", Replacer.ReplaceText, {"diagnosis"}),

    //Remove patient data fro Cushing's
    FilteredRows = Table.SelectRows(ReplaceValue2, each [group] <> "Cushing")

in
    FilteredRows
```

✓ No syntax errors have been detected.

Done Cancel

5.2. Renaming the table

5.3. Model View

 \square \times

6. Table 6: IGF_RKPM_Count

6.1. Rename Column

Import the table as and rename the first column to "Genes"

RenameCols = Table.RenameColumns(#"Changed Type",{{"", "Genes"}})

RPKM_counts_Acromegaly_GRCh37.74.csv

File Origin		Delimiter	Delimiter		Data Type Detection			
1252: Western Eur	opean (Windows)	Comma	Comma ▼			Based on first 200 rows ▼		
	sample12101	sample12104	sample12105	sample12109	sample12110	sample12112	sample12115	sample121:
ENSG0000000003	5.518469762	6.233986557	5.19391143	6.057900257	3.541228116	5.715240986	6.335384794	7.09120
ENSG00000000005	6.822975501	15.54829588	7.949771415	38.89274393	3.64253357	2.702522875	25.25733611	12.5626
ENSG00000000419	7.847628554	6.247658246	7.381850024	8.37917521	7.319635133	7.732156031	7.282698951	6.55716
ENSG00000000457	1.128832114	1.424582084	1.120966341	0.926099887	0.996885675	0.95376995	1.033829375	0.73325
ENSG00000000460	0.652193634	0.562812095	0.612093012	0.618994608	0.479459021	0.565683888	0.517276838	0.38751
ENSG00000000938	3.957306503	2.483967822	7.103911711	2.246330874	1.227713204	1.179857905	2.706307149	3.44262
ENSG00000000971	8.97345131	13.73649176	7.666989722	13.59907528	10.18424477	3.801805469	16.22777643	15.628 3
ENSG0000001036	6.200335252	6.256207545	6.121393977	5.844683576	6.422129927	4.67027839	6.861900937	4.83067
ENSG0000001084	3.979503004	3.986742534	3.367306493	2.655655199	2.501837909	3.434968419	3.269535198	3.38746
ENSG0000001167	2.433679482	2.101121065	2.022504477	2.571900903	2.018464608	1.472642134	1.564434704	1.79985
ENSG00000001460	0.463554521	0.337847632	0.490027337	0.278640011	0.393602406	0.607332288	0.314221709	0.37872

6.2. Model View

7. Table 7: Transcripts Count

transcript_counts_table.csv

7.1. Rename Column

Import the table as and rename the first column to "Genes"

RenameCols = Table.RenameColumns(#"Changed Type",{{"", "Genes"}})

C) Data Modelling –Schema Facts and Dimensions

1. Data Modelling Process

The data model after loading the tables looks as below. On further investigating the relationships shown in the model, the tables are not connected correctly.

1.1. Creating Relationships

When we try to map the sample ID from the "Patient_sample_mapping" table and htseq_counts_Table, IGF_RKPM_Table, transcript_counts_table. The model relationships are mapped as below. When trying to map the sample from htseq_counts_Table and IGF_RKPM_Table, this leads many to many relationships.

 \times

Create relationship

To avoid this, we transform our data into tables a bit more as shown below.

1.2. Edit Relationships

Right-click on the relationship and select edit properties, we see the image below. Where the relationships are incorrectly mapped. Sample12109 is mapped with sample_id. But the correct relationship is sample_id column should be mapped to the column names in htseq_counts Table. This can be achieved by unpivoting the table.

1.3. Unpivoting Columns

Select all the sample columns from the htseq counts Table and click on Unpivot Columns as shown below.

236

Table transforms as below, now rename the **Attribute** and **Value** Columns to **sample** and **counts** respectively.

1.4. Renaming Columns

Renaming Attribute and Value Column using M formula,

15 ENSG00000000003

= Table.RenameColumns(#"Unpivoted Columns",{{"Attribute", "sample"}, {"Value", "counts"}})

sample12114

The tables look as below after unpivoting the columns in htseq_counts Table.

Repeating the unpivot and rename column steps in IGF_RKPM_Table.

```
IGF_RKPM_Table
```

```
Display Options *
Source = Csv.Document(File.Contents("D:\Power BI\Assessment\BridgesLab-CushingAcromegalyStudy-820e332\data\raw\acromegaly\RPKM_counts_Acro
#"Promoted Headers" = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),
#"Changed Type" = Table.TransformColumnTypes(#"Promoted Headers",{{"", type text}, {"sample12101", type number}, {"sample12104", type number}
#"Renamed Columns" = Table.RenameColumns(#"Changed Type",{{"", "Genes"}}),
UnPivotCols = Table.UnpivotOtherColumns(#"Renamed Columns", {"Genes"}, "Attribute", "Value"),
Renamecol1 = Table.RenameColumns(UnPivotCols,{{"Attribute", "sample"}, {"Value", "counts"}})
Renamecol1
```


Repeating the unpivot and rename column steps in transcript_counts_Table.

```
transcript_counts_table
```

```
0
                                                                                                                             Display Options ▼
    Source = Csv.Document(File.Contents("D:\Power BI\Assessment\BridgesLab-CushingAcromegalyStudy-820e332\data\raw\acromegaly\transcript_count
    #"Promoted Headers" = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),
    #"Changed Type" = Table.TransformColumnTypes(#"Promoted Headers",{{"", type text}, {"sample12100", Int64.Type}, {"sample12101", Int64.Type
    \verb| #"Renamed Columns" = Table.RenameColumns( \verb| #"Changed Type", {{"", "Genes"}}), \\
    UnPivotCols = Table.UnpivotOtherColumns(#"Renamed Columns", {"Genes"}, "Attribute", "Value"),
    Renamecol1 = Table.RenameColumns(UnPivotCols,{{"Attribute", "sample"}, {"Value", "counts"}})
in
   Renamecol1
```


The model view of the data table is as below.

2. Star Schema / Snowflake Schema – Facts and Dimensions

On importing the data and processing the data in the tables, the Model view of the data is shown below.

From the model view, it is evident that **the patient_sample_maping** table is the connecting table between all the other tables. Patient information and acromegaly patient-related data are stored in the tables with **patient_id** as the key. The gene_id, sequence counts in the other tables are related with sample_id as the key value.

To connect the samples in **htseq_counts**, **IGF_RKPM_Counts**, and **transcript_counts** with the patients, we need to create a custom column. Create a custom column "**sample**" in the **patient_sample_mapping**" table using the formula below.

On creating the new column, the tables can be related using **sample_id** and **patient_id** as below, while avoiding the many to many relationships.

The schema looks like a star schema (before connecting Ensembl Gene Annotation Table into the model).

2.1. Dimension Tables

Patient_information Table – stores all the patient-related data with **patient_**id as the key.

AcromegalyIGF_Table – Contains the information of acromegaly patients and their IGF levels with <u>patient</u> id as key

Htseq_counts Table – maps the htsequence gene ids to sample counts with the <u>sample</u> as its key column

IGF_RKPM_Table – stores the IGF RKPM counts with the **sample** as the key column

Transcript_counts_table – Contains the information of gene id and counts **sample** as the key

2.2. Fact Table

The fact table "patient_sample_mapping" doesn't store any information relating to any events, measures, or other information. This table only acts as a mapping bridge between other dimension tables. Patient_sample_mapping table has only columns that serve as a key in the dimension table. Hence, we can say this is a <u>fact-less fact table</u>.

Until we establish the connection of Ensembl Gene Annotation table, the data model replicates **Star Schema** with Dimension tables and Fact less fact table,

2.3. Avoid Many to Many Relationships

To connect the **Ensembl Gene Annotation table** we have only one related column is "Genes" in **htseq_counts Table**. And we only need IGF-related Gene Information. When we connect these tables, it shows many to many relationships as shown in the screenshot below.

To avoid this many to many and connect the tables we need to follow 3 steps as below.

- 1. Filter Rows: We need only IGF gene-related Data, so we filter the Ensembl Gene Annotation table with hgnc_symbol containing "igf"
- 2. Merge Queries: merge htseq counts Table with patient sample mapping and create a new column with diagnosis "group" details.
- 3. Create a New Relationship:

2.4. Filter Rows

We need only IGF gene-related Data, so we filter the Ensembl Gene Annotation table with hgnc_symbol containing "igf"

2.5. Merge Queries

Merging htseq_counts Table with patient_sample_mapping and create a new column with diagnosis "group" details.

 \times

[a

Merge

Select a table and matching columns to create a merged table.

HTSEQ_Counts

Genes	sample	counts
ENSG0000000003	sample12100	336
ENSG0000000003	sample12101	249
ENSG0000000003	sample12102	247
ENSG0000000003	sample12103	244
ENSG0000000003	sample12104	238

patient_sample_mapping

patient_id	sample_id	group	sample
1	12100	Acromegaly	sample12100
2	12101	Control	sample12101
3	12102	Acromegaly	sample12102
5	12103	Acromegaly	sample12103
6	12104	Control	sample12104

Join Kind

Full Outer (all rows from both)

Use fuzzy matching to perform the merge

> Fuzzy matching options

✓ The selection matches 1146276 of 1464686 rows from the first table, and...

OK Cancel

Selecting group Column from

Selecting "group" column from the resulting table after merge.

2.6. Create a New Relationship

Now we relate ensembl_gene_id to the Genes Column in the HTSEQ_Counts Table. This doesn't show any * to * relationships. Instead, it is mapped with one to many relations

Finally looking at the data model, we can confirm that it is a **snowflake schema**.

