STA663 Statistical Computation Final Project

Implementation of the Indian Buffet Process (IBP)

Christine P. Chai

Executive Summary

1 Introduction

The paper I selected is "Infinite Latent Feature Models and the Indian Buffet Process" (IBP) [5]. In unsupervised machine learning, discovering the hidden variables that generate the observations is important. Many statistical models [1, 3] can provide a latent structure in probabilitistic modeling, but the problem lies in the unknown dimensionality, i.e. how many classes/features to express the latent structure. Bayesian nonparametric methods are able to determine the number of latent features; the Chinese Restaurant Process (CRP) is an example [4], but it assigns each customer to a single component (table). The Indian Buffet Process allows each customer to be assigned to multiple components (dishes), and the process can serve as a prior for an potentially infinite array of objects. In my implementation, IBP is regarded as a prior for the linear-Gaussian binary latent feature model, and I referred to some Matlab code online [8, 7].

1.1 Algorithm Description

The Indian Buffet Process is a metaphor of Indian restaurants offering buffets with a close-to-infinite number of dishes, and the number of dishes sampled by a customer is a Poisson distribution. Assume N customers enter a restaurant one after another, and the first customer takes a Poisson(α) of dishes. Starting from the second person, the ith customer takes dish k with probability $\frac{m_k}{i}$, where m_k is the number of previous customers who have sampled that dish. In this way, the ith customer samples dishes proportional to their popularity. After reaching the end of all previously sampled dishes, the ith customer tries a Poisson($\frac{\alpha}{i}$) number of new dishes. Which customer sampled which dish is recorded in a binary array Z with N rows (representing customers) and infinitely many columns (representing dishes), where $z_{ik} = 1$ if customer i sampled the dish k. Note that the customers are not exchangeable, i.e. the dishes a customer samples is dependent on whether previous customers have sampled that dish [5].

In terms of probability,

$$P(z_{ik} = 1|\mathbf{z}_{-i,k}) = \frac{m_{-i,k}}{N} \tag{1}$$

The subscript $_{-i,k}$ indicates dish k and all customers except for the ith one. If the number of dishes is truncated to K, then the above equation becomes

$$P(z_{ik} = 1 | \mathbf{z}_{-i,k}) = \frac{m_{-i,k} + \frac{\alpha}{K}}{N + \frac{\alpha}{K}}$$
(2)

Figure 1: Graphical model for the linear-Gaussian binary latent feature model

The N customers can be viewed as objects, and the K dishes can be regarded as features. Formally writing, $Z \sim \text{IBP}(\alpha)$, and

$$P(Z|\alpha) = \frac{\alpha^K}{\prod_{h=1}^{2^N - 1} K_h!} \exp(-\alpha H_N) \prod_{k=1}^K \frac{(N - m_k)!(m_k - 1)!}{N!}$$
(3)

 α is a variable influencing the number of features (denoted as D in later sections); m_k is the number of objects with feature k; K_h is the number of features with history h (whether the N objects possess this feature, $2^N - 1$ possibilities in total); H_N is the N^{th} harmonic number, i.e. $H_N = \sum_{k=1}^N \frac{1}{k}$.

1.2 Applications and Evaluation

Many applications and variations of the Indian Buffet Process exist. For example, the linear-Gaussian binary latent feature model I implemented [8] can be used to model "noisy" matrices and reveal the latent features. In this way, image data can be processed because we can interpret binary matrices with structured representations. For another example, Yildirim and Jacob [9] proposed an IBP-based Bayesian nonparametric approach to multisensory perception in an unsupervised manner. Furthermore, variations of the Indian Buffet Process include focused topic modeling [6], hierarchical beta processes [6], and variational inference [2].

The advantages and disadvantages of IBP are clear. Using a Poisson distribution, IBP is able to model an infinite sequence of integers, and the sequence can be truncated as needed. In the implementation of IBP, the advantages of Gibbs sampling and Metropolis-Hastings (MH) can be combined. Nevertheless, IBP relies on the assumption that datapoints (dishes) in a single string are exchangeable; each dish is assumed to be equally desired by customers. Another drawback is that the number of parameters increase as the dataset gets large, but Bayesian nonparameteric methods generally have this problem [8].

2 Code Structure and Simulated Data

To implement the linear-Gaussian binary latent feature model [5, 8] with IBP as the prior, a Gibbs sampler is used to generate the posterior samples, and the graphical model is shown in Figure 1. The IBP function is described in Section 1.1, and denoted as $Z \sim \text{IBP}(\alpha)$, where Z is the binary matrix and $\alpha \sim Ga(1, 1)$.

2.1 Simulated Data for Likelihood

The likelihood involves simulated image data, and the variables are defined as follows:

- N = 100 is the number of images (customers or objects)
- $D = 6 \times 6 = 36$ is the length of vectors (dishes or features) for each image
- K=4 is the number of basis images (latent or underlying variables)
- X represents the images generated by the K bases (each basis is present with probability 0.5), with white noises Normal(0, $\sigma_X^2 = 0.5^2$) added

The likelihood function is

$$\mathbf{X}|(\mathbf{Z}, \mathbf{A}, \sigma_{\mathbf{X}}) \sim \text{Normal}(\mathbf{Z}\mathbf{A}, \Sigma_{X} = \sigma_{X}^{2}\mathbf{I})$$

$$P(\mathbf{X}|\mathbf{Z}, \sigma_{X}, \sigma_{A}) = \frac{1}{(2\pi)^{ND/2} \sigma_{X}^{(N-K)D} \sigma_{A}^{KD} |\mathbf{Z}^{T}\mathbf{Z} + \frac{\sigma_{X}^{2}}{\sigma_{A}^{2}}\mathbf{I}|^{D/2}} \exp\{-\frac{1}{2\sigma_{X}^{2}} \text{tr}(\mathbf{X}^{T}(\mathbf{I} - \mathbf{Z}(\mathbf{Z}^{T}\mathbf{Z} + \frac{\sigma_{X}^{2}}{\sigma_{A}^{2}}\mathbf{I})^{-1}\mathbf{Z}^{T})\mathbf{X})\}$$

$$(5)$$

Each object i has a D-dimensional vector of properties named x_i , where:

- $x_i \sim \text{Normal}(\mathbf{z_i}\mathbf{A}, \Sigma_X = \sigma_X^2 \mathbf{I})$
- $\mathbf{z_i}$ is a K-dimensional binary vector (features)
- **A** is a $K \times D$ matrix of weights, with prior $\mathbf{A} \sim \text{Normal}(0, \sigma_A^2 \mathbf{I})$

The four basis images and an example of the simulated data are shown in Figure 2. Note that the likelihood involves close-to-zero probabilities, so the log likelihood is used in my code instead.

Figure 2: Simulated dataset: The four basis images (left) and an example image (right)

2.2 Gibbs Sampler for the Posterior Distribution

The full (posterior) conditional distribution is

$$P(z_{ik}|\mathbf{X}, \mathbf{Z_{-i,k}}, \sigma_X, \sigma_A) \propto P(\mathbf{X}|\mathbf{Z_{-i,k}}, \sigma_X, \sigma_A)P(z_{ik}|\mathbf{z_{-i,k}})$$
 (6)

When initializing the Gibbs sampler, set $\sigma_A = 1, \sigma_X = 1, \alpha \sim Ga(1,1)$. Then the sampler does the following steps: (K in my code is denoted as K_+ , to differentiate it from the true value.

- 1. Generate $P(z_{ik}|\mathbf{X},\mathbf{Z}_{-\mathbf{i},\mathbf{k}},\sigma_X,\sigma_A)$ using the full conditional distribution
 - (a) Remove singular features (at most one object has it); decrease K_{+} by 1 for each feature removed
 - (b) Determine each z_{ik} to be 0 or 1 by Metropolis
 - (c) Add new features from $Pois(\frac{\alpha}{i})$
- 2. Sample $\sigma_X^* = \sigma_X + \epsilon$, where $\epsilon \sim \text{Unif}(-0.05, 0.05)$, and accept σ_X^* by Metropolis
- 3. Sample $\sigma_A^* = \sigma_A + \epsilon$, where $\epsilon \sim \text{Unif}(-0.05, 0.05)$, and accept σ_A^* by Metropolis
- 4. Generate $\alpha | Z \sim Ga(1 + K_+, 1 + \sum_{i=1}^{N} H_i)$, where K_+ is the number of features with $m_k > 0$

The Metropolis part for σ_A is demonstrated as follows (similar case for σ_X):

- Genenerate a candidate value $\sigma_A^* = \sigma_A + \epsilon$, with $\epsilon \sim \text{Unif}(-0.05, 0.05)$
- Generate a random number $r \sim \text{Unif}(0,1)$
- Accept σ_A^* if $r < \min\{1, \frac{P(\sigma_A^* | \mathbf{Z}, \mathbf{X}, \sigma_X)}{P(\sigma_A | \mathbf{Z}, \mathbf{X}, \sigma_X)}\}$, where σ_A is the current value

The candidate value σ_A^* is always accepted when the likelihood ratio $\frac{P(\sigma_A^*|\mathbf{Z},\mathbf{X},\sigma_X)}{P(\sigma_A|\mathbf{Z},\mathbf{X},\sigma_X)}$ is larger than 1, i.e. $P(\sigma_A^*|\mathbf{Z},\mathbf{X},\sigma_X) > P(\sigma_A|\mathbf{Z},\mathbf{X},\sigma_X)$. Nevertheless, when the likelihood ratio is less than 1, there is still a non-zero probability to accept σ_A^* , so the sampler can "move forward". Note that in my code, the log likelihoods are used in the following way:

$$\min\{1, \frac{P(\sigma_A^*|\mathbf{Z}, \mathbf{X}, \sigma_X)}{P(\sigma_A|\mathbf{Z}, \mathbf{X}, \sigma_X)}\} = \exp(\min\{0, \log(P(\sigma_A^*|\mathbf{Z}, \mathbf{X}, \sigma_X)) - \log(P(\sigma_A|\mathbf{Z}, \mathbf{X}, \sigma_X))\})$$
(7)

3 Algorithm Output and Testing

My implementation of the linear-Gaussian binary latent feature model with the IBP prior generates the results in images and traceplots. The simulated dataset contains four latent features (see Figure 2), but my result in Figure 4 has five, three of which are the linear combinations of two latent features. The traceplots in Figure 3 show my Gibbs sampler is converging: K_+ fluctuates between 5 and 8; the IBP parameter α is within [0.5,1.5]; σ_X converges to the true value 0.5; σ_A oscillates around 0.4.

I also performed in-line code testing by various methods. In the IBP prior, the **assert** command is used to verify $\frac{m_k}{i}$ to be a probability, i.e. between 0 and 1 – because the *i*th (i > 2) customer takes dish k with probability $\frac{m_k}{i}$ in the IBP algorithm. In many parts of my code, I used np.dot from numpy to do matrix multiplications even when the size of matrices is small, instead of multiplying each column/row one by one. In this way, the dimensions in matrix multiplications are assured to match each other.

4 Optimization

Start with the profiling, then do optimization.

4.1 Profiling

Need to insert a GSP graph.

Figure 3: The traceplots for K_+ , α , σ_X , σ_A

Figure 4: Simulated dataset: My results

- 4.2 Remove Redundant Calculations
- 4.3 Cythonized Code
- 5 Comparative Analysis
- 5.1 Chinese Restaurant Process
- 5.2 Another Matlab Version Online
- 5.3 Another Python Version Online
- 6 Results

dog	cat
2.0000	3.0000
4.0000	7.0000
5.0000	8.0000

Table 1: Our top noise discoveries.

7 Conclusion

Write your conclusion here

References

- [1] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. *Journal of Machine Learning Research*, 3:993–1022, 2003.
- [2] Finale Doshi, Kurt Tadayuki Miller, Jurgen Van Gael, and Yee Whye Teh. Variational inference for the indian buffet process. 2008.
- [3] Samuel J Gershman and David M Blei. A tutorial on bayesian nonparametric models. *Journal of Mathematical Psychology*, 56(1):1–12, 2012.
- [4] DMBTL Griffiths and MIJJB Tenenbaum. Hierarchical topic models and the nested chinese restaurant process. Advances in neural information processing systems, 16:17, 2004.
- [5] Thomas Griffiths and Zoubin Ghahramani. Infinite latent feature models and the indian buffet process. 2005.
- [6] Sinead Williamson, Chong Wang, Katherine Heller, and David Blei. Focused topic models. In NIPS workshop on Applications for Topic Models: Text and Beyond, Whistler, Canada, 2009.
- [7] Ilker Yildirim. Indian buffet process sample code. http://www.mit.edu/~ilkery/. Online; accessed 2015.
- [8] Ilker Yildirim. Bayesian statistics: Indian buffet process. Technical report, Department of Brain and Cognitive Sciences, 2012. Gatsby Unit Technical Report GCNU-TR-2005-001.
- [9] Ilker Yildirim and Robert A Jacobs. A bayesian nonparametric approach to multisensory perception. 2010.