Enunciare le condizioni di complementarietà primale-duale in generale. Applicare tali condizioni per dimostrare che (x1, x2, x3) = (1, 4, 0) è soluzione ottima del seguente

AMIN > MOX (DUALUTÀ FORTS) STESSO VAL F.O. [F.O.] (DUALUTÀ DEBOUE) /B/UB.

Teorema 5 Condizioni di ortogonalità (o di complementarietà) primale-duale. Data la coppia di problemi primale-duale

$$\min\{c^Tx:x\geq 0, Ax\geq b\}\\ \max\{u^Tb:u\geq 0, u^TA\leq c^T\}\\$$

$$x\ e\ u\ ottime\\ primale\ e\ duale\ (risp.)$$

$$\iff \begin{cases} Ax\geq b\land x\geq 0\\ u^TA\leq c^T\land u\geq 0\\ u^T(Ax-b)=0\\ (c^T-u^TA)x=0 \end{cases} (ammissibilità\ primale)$$

In altri termini, siano u e x soluzioni ammissibili di una coppia di problemi primale-duale $\min\{c^Tx: x \geq 0, Ax \geq b\}$ e $\max\{u^Tb: x \geq 0, u^TA \leq c^T\}$. $x \in u$ sono ottime se e solo se:

1) variabile primale positiva $|x_j>0$ $\Rightarrow u^T A_j = c_j$ vincolo duale saturo $u^T A_j < c_j \implies x_j = 0$ vincolo duale lasco variabile primale nulla variabile duale positiva $u_i > 0$ \Rightarrow $a_i^T x = b_i$ vincolo primale saturo 4) vincolo primale lasco $a_i^T x > b_i \implies u_i = 0$ variabile duale nulla

1 WRIFKA AMM. PRYAIS

min Uz +242-363+244

Enunciare le condizioni di complementarietà primale-dual condizioni per dimostrare che (x1, x2, x3) = (1, 4, 0) problema: x_1 libera $x_2 \ge 0$ $x_3 \le 0$

 $= u_1 - 2u_2 + 2u_4 = 0$ $= u_1 + u_2 + 2u_3 \ge 1$ +2M1 +My < 1

Propris

1) Verifica dell'ammissibilità primale della soluzione data

della soluzione data
$$-x_1 - x_2 + 2x_3 = -5 \le 1 \ (OK)$$

$$-2x_1 + x_2 = 2 \le 2 \ (OK)$$

$$2x_2 = 8 \ge -3 \ (OK)$$

$$2x_1 + x_3 = 2 = 2 \ (OK)$$

 $x_1 \ libera, x_2 = 4 \ge 0, x_3 = 0 \le 0 \ (domini \ OK)$

BUANG

2) Passaggio al duale

$$= \mathcal{U}_{1} + \mathcal{U}_{2} + 2\mathcal{U}_{3} \ge 1$$

My LBORA

 $u_1 \geq 0, u_2 \geq 0, u_3 \leq 0, u_4 \; libera$

APPLICATIONS CCPD

Primo vincolo primale: $u_1(-x_1-x_2+2x_3-1)=0 \Rightarrow u_1(-6)=0 \Rightarrow u_1=0$ (prima condizione)

Secondo vincolo primale: $u_2(-2x_1+x_2-2)=0 \Rightarrow u_2(0) \Rightarrow 0$ // (non si deducono condizioni di complementarietà su u_2)

Terzo vincolo primale: $u_3(2x_2+3)=0 \Rightarrow u_3(11) \Rightarrow u_3=0$ (seconda condizione)

Quarto vincolo primale di uguaglianza, pertanto non ci sono da imporre condizioni di complementarietà con la relativa variabile $u_{\scriptscriptstyle 4}$

Primo vincolo duale di uguaglianza: non si impongono condizioni di complementarietà con x_1 (in quanto la condizione $(-u_1 - 2u_2 + 2u_4)x_1 = 0$ è diretta conseguenza dell'ammissibilità duale; l'equazione $-u_1$ $2u_2 + 2u_4 = 0$ sarà comunque da considerare come condizione di ammissibilità duale

Secondo vincolo duale: $(-u_1 + u_2 + 2u_3 - 1)x_2 \Rightarrow (-u_1 + u_2 + 2u_3 - 1)4 \Rightarrow -u_1 + u_2 + 2u_3 - 1 = 0$ (terza condizione)

Terzo vincolo duale: $(2u_1 + u_4 - 1)x_3 = 0 \rightarrow (2u_1 + u_4 - 1)0 = 0 //$

4) Sistema delle condizioni CCPD e ammissibilità duale trovate

5) Verifica ammissibilità duale

La soluzione duale trovata:

- Soddisfa i tre vincoli duali: $-u_1 2u_2 + 2u_4 \rightarrow 0 = 0, -u_1 + u_2 + 2u_3 = 1 \ge 1, 2u_1 + u_4 = 1 \le 1$
- Soddisfa i vincoli di dominio: $u_1=0\geq 0$, $u_2=1\geq 0$, $u_3=0\leq 0$, u_4 libera
- 6) Conclusioni

Abbiamo a disposizione una soluzione primale x e una soluzione duale u tali che:

- x è ammissibile primale (come da verifica);
- ullet u è ammissibile duale (come da costruzione e da verifica);
- $x \in u$ sono in scarti complementari (per costruzione).

Pertanto, le due soluzioni sono ottime per i rispettivi problemi primale e duale,

(Per verifica, i valori delle funzioni obiettivo sono uguali, infatti valgono entrambe 4 everifica il corollario della dualità forte)

2. Si risolva il seguente problema di programmazione lineare con il metodo del simplesso, a partire dalla base relativa alle variabili x1, x2, x3 e applicando la regola di Bland

$$5.4. \times 1 + \times 4 = 3 \times 1.52.1\times3.74$$
 $\times 1 + \times 2 + \times 3 = -1 \times 1.52.1\times3.74$
 $\times 2 + 2\times3 = -2$

Passo alla forma standard:

- 1. Funzione obiettivo di minimo: $\min -x_1 - 5x_2$
- 2. vincoli di uguaglianza:

$$x_1 + x_4 = 5$$

 $x_1 + x_2 - x_5 = -1$
 $x_2 + 2x_3 = -2$

 $\min -x_1 +5\hat{x}_2$

4. termini noti non negativi

	1					
	x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$
-z	-1	5	0	0	0	0
?	1	0	0	1	0	5
?	-1	1	0	0	1	1
?	0	1	-2	0	0	2

Procedo quindi mettendo il tableau in forma canonica rispetto alla base data: faccio entrare in base la variabile x_1 trasformando, con operazioni elementari, la colonna di x_1 nella prima colonna della matrice identità sormontata da 0;

		1					
	x_1	\hat{x}_2	x_3	x_4	x_5	$\overline{m{b}}$	<u> </u>
-z	0	5	0	1	0	5	$R_0' \leftarrow R_0 + R_1'$
x_1	1	0	0	1	0	5	$R_1' \leftarrow R_1$
?	0	1	0	1	1	6	$R_2' \leftarrow R_2 + R_1'$
?	0	1	-2	0	0	2	$R'_0 \leftarrow R_0 + R'_1$ $R'_1 \leftarrow R_1$ $R'_2 \leftarrow R_2 + R'_1$ $R'_3 \leftarrow R_3$
							U

faccio entrare in base la variabile \hat{x}_2 (corrispondente a x_2) trasformando, con operazioni elementari, la colonna di \hat{x}_2 nella seconda colonna della matrice identità sormontata da

			1				
	x_1	\hat{x}_2	x_3	x_4	x_5	$ar{m{b}}$	
-z	0	0	0	-4	-5	-25	$R_0' \leftarrow R_0 - 5R_2'$
x_1	1	0	0	1	0	5	$R_1' \leftarrow R_1$
\hat{x}_2	0	1	0	1	1	6	$R_2' \leftarrow R_2$
?	0	0	-2	-1	-1	-4	$R_3' \leftarrow R_3 - R_2'$

faccio entrare in base la variabile x_3 trasformando, con operazioni elementari, la colonna di x_3 nella terza colonna della matrice identità sormontata da 0.

 $\beta = \left[\times_{1} \times_{2} \times_{3} \right]$

Il tableau è ora in forma canonica rispetto alla base x_1, \hat{x}_2, x_3 , come richiesto. Inoltre la base proposta è ammissibile, essendo tutte le variabili della forma standard ≥ 0 e,

 $\begin{array}{c} \text{Lterazione 1} \\ \text{Ci sono due variabili candidate a entrare in base } (x_4 \in x_5) \\ \text{g. applicando la regola di Bland,} \\ \text{entra in base } x_4. \\ \text{Esce dalla base arg min} \\ \begin{cases} \frac{5}{2} & \frac{6}{2} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3}$

Esce dalla base $\arg\min\left\{\frac{5}{1}, \frac{6}{1}, \frac{2}{1/2}\right\} = \arg\{4\} = x_3$

Eseguo quindi l'operazione di pivot sull'elemento cerchiato (riquatrato per motivi tipografici, ndr) nella tabella precedente, ottenendo:

					↓		
	x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$	
-z	0	0	8	0	-1	-9	$R_0' \leftarrow R_0 + 4R_3'$
x_1	1	0	-2	0	-1	1	$R_1' \leftarrow R_1 - R_3'$
\hat{x}_2	0	1	-2	0	0	2	$R_2' \leftarrow R_2 - R_3'$
$\leftarrow x_4$	0	0	2	1	1	4	$R_3' \leftarrow 2R_3$

<u>Iterazione 2</u>

C'è una sola variabile candidata a entrare in base: entra in base x_5 .

Esce dalla base $\arg\min\left\{X,X,\frac{4}{1}\right\}=\arg\{4\}=x_4$ Eseguo quindi l'operazione di pivot sull'elemento cerchiato (riquatrato per motivi tipografici, ndr) nella tabella precedente, ottenendo:

	x_1	\hat{x}_2	x_3	x_4	x_5	\bar{b}	
(-z)	0	0	10	1	0	(-5)	$R_0' \leftarrow R_0 + R_3'$
$\overline{x_1}$	$\overline{}_1$	0	0	1	0	5	$R_1' \leftarrow R_1 + R_3'$
\hat{x}_2	0	1	-2	0	0	2	$R_2' \leftarrow R_2$
x_5	0	0	2	1	1	4	$R_3' \leftarrow R_3$

Non essendoci costi ridotti negativi, abbiamo raggiunto la condizione di arresto del simplesso per ottimalità della base trovata. Abbiamo quindi la soluzione ottima, per il problema in forma standard:

$$x_1 = 5, \hat{x}_2 = 2, x_5 = 4, x_3 = x_4 = 0$$
 $z_{MIN} = (-5) = 5$

Per il problema originario, la soluzione è:

$$x_1 = 5, x_2 = -2, x_3 = 0$$
 $z = -5$

con il primo vincolo soddisfatto all'uguaglianza $(x_4 = 0)$ e il secondo vincolo lasco $(x_5 > 0)$. Per verifica, i valori della funzione obiettivo e il modo di soddisfazione dei vincoli possono essere controllati sostituendo i valori delle variabili nella formulazione originaria.

LASCHI (C)