EXERCICES — CHAPITRE 14

Exercice 1 $(\star\star)$ – Étudier la convexité des fonctions suivantes.

- 1. $f(x) = 6x^5 15x^4 + 10x^3 + 1$ sur \mathbb{R} 2. $g(x) = \frac{x^2}{x+1}$ sur $\mathbb{R} \setminus \{-1\}$ 3. $h(x) = \frac{\ln(x)}{x^2}$ sur \mathbb{R}^* 4. $i(x) = (x^2 9x + 22)e^x$ sur \mathbb{R}

Exercice 2 $(\star\star)$ – Soit f la fonction définie pour tout réel x de l'intervalle $]0, +\infty[$ par

$$f(x) = \frac{2x^2 + x - 1}{x^2}.$$

On note C_f sa courbe représentative dans le plan muni d'un repère.

- 1. Déterminer les coordonnées des points d'intersection éventuels de la courbe C_f avec l'axe des abscisses.
- 2. On note f' la dérivée de la fonction f.
 - a) Montrer que pour tout réel x appartenant à l'intervalle $]0, +\infty[$, $f'(x) = \frac{2-x}{x^3}$.
 - b) Donner le tableau de variation de la fonction f.
- 3. a) Étudier la convexité de la fonction f.
 - b) La courbe représentative de la fonction *f* a-t-elle un point d'inflexion?
- 4. Tracer l'allure de la courbe représentative de la fonction *f* .

Exercice 3 $(\star\star)$ – On considère la fonction f définie sur $]0,+\infty[$ par

$$\forall x \in]0, +\infty[, f(x) = 2 - \frac{1}{2}\ln(x) - x.$$

- 1. Calculer les limites suivantes : $\lim_{x \to 0^+} f(x)$ et $\lim_{x \to +\infty} f(x)$.
- 2. Calculer f'(x) pour tout $x \in]0, +\infty[$ puis dresser le tableau de variation de f sur $]0, +\infty[$.
- 3. Prouver que l'équation f(x) = 0 admet une unique solution sur $[0, +\infty[$. On la note α .
- 4. Justifier que $\alpha \in [1, e]$.

Exercice 4 $(\star \star \star)$ – [BSB 2013 / Ex2]

On considère la fonction f définie sur $]0, +\infty[$ par $f(x) = \ln(x) - 2x + 3$, pour tout $x \in]0, +\infty[$. On note \mathcal{C} sa représentation graphique dans un repère orthonormé d'unité 2cm.

- 1. a) Calculer $\lim_{x\to 0} f(x)$. Que pouvez-vous en déduire sur la courbe \mathcal{C} ?
 - b) Calculer $\lim_{x \to +\infty} f(x)$.
- 2. Calculer f'(x) pour tout réel x > 0. Dresser le tableau de variation de f. On fera figurer les limites aux bornes. On déterminera aussi l'expression de $f\left(\frac{1}{2}\right)$ et on en donnera une valeur approchée. On donne $ln(2) \approx 0.7$.
- 3. Établir que f est concave sur $[0, +\infty[$.
- 4. a) Déterminer une équation de la tangente \mathcal{T} à la courbe \mathcal{C} au point d'abscisse 1.
 - b) Justifier sans calcul que \mathcal{T} est située au-dessus de \mathcal{C} sur $]0, +\infty[$.
- 5. a) Montrer que l'équation f(x) = 0 admet exactement deux solutions α et β dans l'intervalle $]0, +\infty[$ avec $\alpha < \beta$.
 - b) Justifier que $\beta \in]1,2[$.
- 6. Tracer l'allure de C et de T. On donne $\alpha \approx 0.06$ et $\beta \approx 1.79$.

Exercice 5 $(\star \star \star)$ – [Extrait de BSB 2016 / Ex2]

On considère la fonction f définie sur $]-2,+\infty[$ par

$$\forall x \in]-2, +\infty[, f(x) = \ln(x+2) - x.$$

On nomme \mathcal{C} sa représentation graphique dans un repère orthonormé.

- 1. a) Calculer la limite de f(x) lorsque x tend vers -2 par valeurs supérieures. Comment interpréter graphiquement le résultat?
 - b) Calculer $\lim_{x \to +\infty} \frac{\ln(x+2)}{x}$. En déduire $\lim_{x \to +\infty} f(x)$.
- 2. Calculer la dérivée de f. Dresser le tableau de variation de f sur $-2, +\infty$ en y faisant figurer les limites calculées en 1.
- 3. a) Montrer que l'équation f(x) = 0 admet une unique solution α sur $-1, +\infty$
 - b) On donne $\ln(2) \approx 0.69$ et $\ln(3) \approx 1.10$. Justifier que $\alpha \in [1,2]$.
 - c) Justifier que l'équation f(x) = 0 admet une autre solution β entre -2 et -1.
- 4. Calculer la dérivée seconde de f. Montrer que f est concave sur $]-2,+\infty[$.
- 5. On donne $\alpha \approx 1.15$ et $\beta = -1.8$. Tracer l'allure de la courbe C.

Exercice 6 $(\star \star \star)$ - [BSB 2017 / Ex2]

On considère la fonction f définie sur $]0, +\infty[$ par $f(x) = e^x - \ln(x)$ et la fonction g définie sur $[0, +\infty[$ par $g(x) = xe^x - 1$.

- 1. a) Calculer $\lim_{x \to +\infty} g(x)$.
 - b) Calculer la dérivée g' de g sur $[0, +\infty[$. En déduire le tableau de variation de g. On y fera figurer la valeur en 0 et la limite en $+\infty$.
 - c) Montrer que l'équation g(x) = 0 admet une unique solution α dans $[0, +\infty[$. Vérifier que $\alpha \in [0, 1]$.
 - d) Préciser le signe de g(x) selon les valeurs de x.
- 2. a) Calculer la limite de f(x) lorsque x tend vers 0 par valeurs supérieures et la limite de f(x) lorsque x tend vers $+\infty$.
 - b) Montrer que la dérivée de *f* vérifie, pour tout réel *x* strictement positif,

$$f'(x) = \frac{g(x)}{x}.$$

En déduire le tableau de variation de f sur $]0, +\infty[$.

- c) Justifier que le réel α vérifie $\frac{1}{\alpha} = e^{\alpha}$. En déduire que $f(\alpha) = \alpha + \frac{1}{\alpha}$.
- 3. a) Montrer que la dérivée seconde de f vérifie, pour tout réel $x \in]0, +\infty[$,

$$f''(x) = e^x + \frac{1}{x^2}.$$

- b) Étudier la convexité de f sur $]0, +\infty[$.
- 4. Tracer la représentation graphique de f dans un repère orthonormé (O, \vec{t}, \vec{j}) d'unité 2cm. *On donne* $\alpha \approx 0.57$ *et* $f(\alpha) \approx 2.33$.