Homework 02

Due Date: 111/03/02

Instruction. Do not submit part B.

A Homework Problems

- o. (**Do this yourself but do NOT submit this**) In each of the following vector spaces, verify that the given function $\langle \cdot, \cdot \rangle$ is an inner product. That is, check the four conditions given in section 6.1.
 - (a) $V = \mathbb{C}^n$, $\langle (a_1, a_2, ..., a_n), (b_1, b_2, ..., b_n) \rangle = \sum_{k=1}^n a_k \overline{b_k}$.
 - (b) $V = M_n(\mathbb{C}), \langle A, B \rangle = \operatorname{Tr}(A^*B).$
 - (c) $V = \text{the set of all continuous functions } \mathbb{R} \to \mathbb{R}, \langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$.
- 1. (2020 NTU Math Master Entrance Exam) Let $A \in M_{n \times n}(F)$. Show that

$$\operatorname{rank}(A^2) - \operatorname{rank}(A^3) \le \operatorname{rank}(A) - \operatorname{rank}(A^2).$$

(Hint. Here is one possible way: Construct an injective linear transformation

$$N(A^3)/N(A^2) \longrightarrow N(A^2)/N(A)$$

either directly or by using isomorphism theorem.)

- 2. Let V be an inner product space over \mathbb{C} . For any $x,y,z\in V$, prove the followings.
 - (a) (Parallelogram law) $||x + y||^2 + ||x y||^2 = 2 ||x||^2 + 2 ||y||^2$.
 - (b) (Polarization identity) $\langle x,y\rangle=\frac{1}{4}\sum_{k=1}^4 i^k \left\|x+i^ky\right\|^2$, where $i^2=-1$.
 - (c) (Ptolemy's inequality) $||x y|| ||z|| + ||y z|| ||x|| \ge ||x z|| ||y||$.
- 3. Let $V=\mathbb{R}[x]_{\leq 2}$ be the vector space of all polynomials having degree at most 2 with coefficient over \mathbb{R} equipped with the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x) g(x) dx.$$

Find an orthonormal basis for V by applying Gram-Schmidt process on the set $\{1, x, x^2\}$.

B Supplementary Problems

4. (Correspondence theorem) Let V be a vector space over a field F, $W \subseteq V$ be a subspace, and $Q: V \to V/W$ be the quotient map Q(v) := v + W.

- (a) Suppose \overline{U} is a subspace of V/W. Show that $U:=Q^{-1}(\overline{U})$ is a subspace of V containing W and $\overline{U}=U/W$.
- (b) Suppose X is a subspace of V containing W. Show that $\overline{X} := X/W$ is a subspace of V/W and $Q^{-1}(\overline{X}) = X$.
- 5. (Modified from 2021 NTNU Math Master Entrance Exam) Let $T: \mathbb{R}^4 \to \mathbb{R}^5$ be the linear transformation given by T(x) = Ax for $x \in \mathbb{R}^4$, where

$$A = \begin{pmatrix} 2 & 1 & 1 & 2 \\ 3 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 4 & 1 & 2 & 3 \\ 4 & 1 & 3 & 4 \end{pmatrix}.$$

Let W denote the null space of T and $V = \mathbb{R}^4/W$ be the quotient space of \mathbb{R}^4 by W. Also let $\beta = \{e_1, e_2, e_3, e_4\}$ be the standard basis of \mathbb{R}^4 .

- (a) Determine whether $\overline{\beta} := \{e_1 + W, e_2 + W, e_3 + W, e_4 + W\}$ is linearly independent, and obtain an ordered basis γ of V from $\overline{\beta}$.
- (b) Define $\overline{T}:V\to\mathbb{R}^5$ by $\overline{T}(v+W):=T(v)$. Find the matrix representation $[\overline{T}]_{\gamma}^{\mathcal{E}}$, where \mathcal{E} is the standard basis of \mathbb{R}^5 . Then, verify the isomorphism theorem, that is, \overline{T} is an isomorphism $V=\mathbb{R}^4/W\to R(T)$.
- 6. Let $A, B \in M_{n \times n}$ (\mathbb{C}). Show that

$$\left|\operatorname{Tr}\left(AB^{*}\right)\right| \leq \left(\operatorname{Tr}\left(AA^{*}\right)\operatorname{Tr}\left(BB^{*}\right)\right)^{1/2} \leq \frac{1}{2}\left(\operatorname{Tr}\left(AA^{*}\right) + \operatorname{Tr}\left(BB^{*}\right)\right).$$

- 7. A vector space V over F ($F = \mathbb{R}$ or \mathbb{C}) is a **normed space** if there is a function $\|\cdot\|$: $V \to \mathbb{R}$ satisfying the conditions:
 - (1) $||x|| \ge 0$ for all $x \in V$. Also, ||x|| = 0 if and only if x = 0.
 - (2) $||ax|| = |a| \cdot ||x||$ for all $x \in V$ and $a \in F$.
 - (3) $||x+y|| \le ||x|| + ||y||$ for all $x, y \in V$.

Such function $\|\cdot\|$ is called a **norm** on V.

(a) Let V be a normed space with norm $\|\cdot\|$. Show that there exists an inner product $\langle\cdot,\cdot\rangle$ on V such that $\|x\|^2=\langle x,x\rangle$ for all $x\in V$ if and only if the norm satisfies the parallelogram law:

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$

for all $x, y \in V$.

(b) Consider V to be the set of real-valued continuous functions defined on [0,1]. Show that the norm

$$||f|| = \max_{x \in [0,1]} |f(x)|$$

on ${\cal V}$ is never induced by any inner product.

8. Let $(V, \langle -, - \rangle)$ be an inner product space over $\mathbb R$ or $\mathbb C$.

- (a) **(Bessel's Inequality)** Let $\{s_n\}_{n=1}^{\infty}$ be an orthonormal subset of V and $x \in V$. Prove that $\sum_{n=1}^{\infty} |\langle x, s_n \rangle|^2$ converges and $\sum_{n=1}^{\infty} |\langle x, s_n \rangle|^2 \leq ||x||^2$.
- (b) Let A be an orthonormal subset of V and $x \in V$. Prove that $\langle x, a \rangle = 0$ for all but countably many $a \in A$. (*Hint*: For each $n \ge 1$, let $A_n = \{a \in A : |\langle x, a \rangle| \ge 1/n\}$. By (8a), A_n is finite. But $\bigcup_{n=1}^{\infty} A_n = \{a \in A : \langle x, a \rangle \ne 0\}$.)
- 9. Let $(V, \langle -, \rangle)$ be an inner product space over $\mathbb R$ or $\mathbb C$.
 - (a) Prove that every orthonormal subset of V is contained in a maximal orthonormal subset of V. (*Hint*: Zorn's lemma.)
 - (b) Let S be an orthonormal subset of V. Prove that S is a maximal orthonormal subset of V if and only if for every $x \in V$, $\langle x, s \rangle = 0$ for all $s \in S$ implies x = 0.
 - (c) Find an example that a maximal orthonormal subset of V not being a basis for V.
 - (d) Show that every maximal orthonormal subset of V has the same cardinality. (*Hint*: Let A and B be maximal orthonormal subset of V. For $a \in A$, define $B(a) = \{b \in B : \langle a,b\rangle \neq 0\}$. Use (9b) to see that $B \subseteq \bigcup_{a \in A} B(a)$, and (8b) to see that B(a) is countable for each $a \in A$.)
- 10. (**Legendre polynomials**) Let $V = \mathbb{R}[x]$ be the space of polynomials with coefficients in \mathbb{R} . Let b > a be real numbers. Define the inner product on V by

$$\langle f, g \rangle = \int_{a}^{b} f(x) g(x) dx.$$

For each positive integer n, define

$$q_{2n}(x) = (x - a)^n (x - b)^n.$$

 $p_n(x) = \frac{d^n}{dx^n} (q_{2n}(x)).$

(a) Show that

$$\frac{d^{i-1}q_{2n}}{dx^{i-1}}(a) = \frac{d^{i-1}q_{2n}}{dx^{i-1}}(b) = 0$$

for all i = 1, 2, ..., n.

- (b) Show that p_n has degree n.
- (c) Show that p_1, p_2, \dots, p_n are orthogonal to each other.

Remark. After normalizing the polynomials $\{p_n\}_{n=1}^{\infty}$, we get the **Legendre polynomials** on [a,b].