

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • December 4, 2020

# Lecture Agenda Summary

- 1. Pre-Lecture Comments
- 2. Matrix Conjugate
- 3. Hermitian Conjugate
- 4. Hermitian Conjugate Properties

Part A

- 1. The Circle Group: U(1)
- 2. Unitary Groups: U(2) & U(n)
- 3. Special Unitary Groups: SU(2) & SU(n)
- 4. Study Material Comments
- 5. Fireside Chat Update

Part B

# December 2020 Agenda







The next fireside chat

# January 2021 Calendar

| Monday | Tuesday             | Wednesday                      | Thursday                                  | Friday                                               | Saturday                                                                                                                                 |
|--------|---------------------|--------------------------------|-------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|        |                     |                                |                                           | 1                                                    | 2                                                                                                                                        |
| 4      | 5                   | 6                              | 7                                         | 8                                                    | 9                                                                                                                                        |
| 11     | 12                  | 13                             | 14                                        | 15                                                   | 16                                                                                                                                       |
| 18     | 19                  | 20                             | 21                                        | 22                                                   | 23                                                                                                                                       |
| 25     | 26<br>Australia Day | 27                             | 28                                        | 29                                                   | 30                                                                                                                                       |
|        |                     |                                |                                           |                                                      |                                                                                                                                          |
|        | 11                  | 4 5<br>11 12<br>18 19<br>25 26 | 4 5 6<br>11 12 13<br>18 19 20<br>25 26 27 | 4 5 6 7<br>11 12 13 14<br>18 19 20 21<br>25 26 27 28 | 4     5     6     7     8       11     12     13     14     15       18     19     20     21     22       25     26     27     28     29 |



# Foundation Module Review

Rings and Fields 101 **Matrix Algebra** #1 #2 **Group Theory 101 Linear Operators 101** #1 #2

**Quantum Operators + Composite Systems** #3

> Finite dim. Hilbert Spaces #2

**Complex Vector spaces 101** #2

**Matrix Groups 101: U(2) + SU(2)** 

Completed

**Naive Set Theory Overview** 

#1

Ongoing | #n is the number of live lectures







# **PART A**

## **Matrix Conjugate**

#### Definition (1.0)

For 
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{C})$$
, we define  $A^* = \begin{pmatrix} a_{11}^* & a_{12}^* \\ a_{21}^* & a_{22}^* \end{pmatrix} \in M_2(\mathbb{C})$ .

- ▶ Where  $a_{ij}^*$  is the conjugate of  $a_{ij}$  i.e. if  $a_{ij} = x + yi$  then  $a_{ij}^* = x yi$ .
- Mathematicians normally use the notation  $\bar{a}_{ij}$  to denote the conjugate of  $a_{ij}$  and so use  $\bar{A}$ .

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,  $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ ,  $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$  and  $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$ .

$$X^* = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y^* = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, Z^* = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } H^* = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

### **Conjugate Transpose**

#### Definition (1.1)

For 
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbb{C}), A^{\dagger} = (A^*)^T = \begin{pmatrix} a_{11}^* & a_{21}^* \\ a_{12}^* & a_{22}^* \end{pmatrix} \in M_2(\mathbb{C}).$$

- ▶  $A^{\dagger}$  is also known as the Hermitian transpose of A and physicists often call it 'the A dagger'. Mathematicians use  $A^*$  instead of  $A^{\dagger}$ !
- ▶ The definition can be extended to matrices in  $M_n(\mathbb{C})$ .
- ▶ Just as a side note for now, A is called Hermitian if  $A = A^{\dagger}$ .

#### Proposition (1.0)

Let  $A, B \in M_2(\mathbb{C})$  and  $\lambda \in \mathbb{C}$ . The following identities hold:

- 1.  $(A^{\dagger})^{\dagger} = A$ .
- 2.  $(\lambda A)^{\dagger} = \lambda^* A$ .
- 3.  $(A + B)^{\dagger} = A^{\dagger} + B^{\dagger}$ .
- 4.  $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ .
- 5.  $det(A^{\dagger}) = det(A)^*$ .
- 6. If A is invertible then  $A^{\dagger}$  is also invertible.

Proof: Homework challenge?

▶ Of course, the properties above also apply to matrices in  $M_n(\mathbb{C})$ .

# **PART B**

#### **The Circle Group**

#### Definition (1.0)

 $\mathbb{C}^* = \left\{z \in \mathbb{C} \mid z \neq 0 \right\}$  i.e. the set of all non-zero complex numbers.

 $ightharpoonup \mathbb{C}^*$  is an abelian group under the multiplication in  $\mathbb{C}$ .

#### Definition (1.1)

We can now define this special set  $\mathit{U}(1) = \bigg\{\lambda \in \mathbb{C}^* \mid |\lambda| = 1\bigg\}.$ 

- ▶ It's easy to see that U(1) forms a subgroup of  $\mathbb{C}^*$  right?
- $\triangleright$  U(1) is called the circle group because it can be identified with the unit circle on the complex plane.



- ▶ The elements of the circle group are of the form  $e^{i\theta}$ .
- The group multiplication in U(1) can then be defined for two elements  $A=e^{i\theta_1}$  and  $B=e^{i\theta_2}$  as  $AB=e^{i(\theta_1+\theta_2)}$ .

## **Quantum Hint**

- U(1) is the simplest example of a Lie Group that we'll cover in the advanced module.
- U(1) is an important group in particle physics because it's an example of what theoretical physicists call 'gauge symmetry':
  - Quantum Electrodynamics (QED) is called 'abelian gauge theory' because U(1) is its 'gauge group' and as you know U(1) is abelian!
  - *U*(1) is indeed an important piece of the gauge group for the so-called Standard Model of particle physics.
  - For those interested in quantum hardware, I believe QED provides the theoretical basis for the so-called 'Cavity Quantum Electrodynamics' (CQED)? There is also something called 'Circuit Quantum Electrodynamics' (cQED)!

## **The Unitary Group**

### Definition (1.2)

We can define 
$$U(2) = \left\{ A \in GL(2,\mathbb{C}) \mid AA^{\dagger} = A^{\dagger}A = \mathbb{I} \text{ i.e. } A^{-1} = A^{\dagger} \right\}.$$

▶ The following matrices are of course elements of U(2):

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,  $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$  and  $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ .

▶ We can indeed generalise the definition above to any n > 0:

$$U(n) = \left\{ A \in GL(n,\mathbb{C}) \mid AA^{\dagger} = A^{\dagger}A = \mathbb{I} \right\}.$$

- ▶ Elements of U(n) are called unitary matrices or unitary operators when they act on the complex vector space  $\mathbb{C}^n$  which is generally equipped with a Hilbert space structure.
- ls U(2) or U(n) in general form a group?

### Proposition (1.0)

U(2) is a subgroup of  $GL(2,\mathbb{C})$ .

*Proof* : Homework challenge!

- ▶ Indeed for any n > 0, U(n) is a subgroup of  $GL(n, \mathbb{C})$ .
- For QC purposes, you'll probably want  $n = 2^k$  where k is the number of qubits so that the elements of U(n) can act as unitary operators on the Hilbert space of the k- qubit system i.e.  $\mathbb{C}^{2^k}$ .
- In the final section of this module you'll learn more about the interesting properties of U(n) elements acting as operators on  $\mathbb{C}^n$  state vectors.
- We'll also explore interesting relationships between unitary operators and hermitian operators!

### **Unitary Group Properties**

#### Proposition (1.1)

The centre of 
$$U(2)$$
 is  $Z(U(2)) = \left\{ \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \mid \lambda \in U(1) \right\}.$ 

*Proof*: Homework challenge? Which qubit gates are in Z(U(2))?

▶ The proposition above is indeed true for any n > 0:

$$Z(U(n))=\left\{\lambda \mathbb{I}_n\mid \lambda\in U(1)
ight\} ext{ where } \mathbb{I}_n=egin{pmatrix} 1&0&\cdots&0\0&1&0&0\ dots&0&\ddots&dots\0&0&\cdots&1 \end{pmatrix}.$$

▶ Is it true that  $Z(U(n)) \simeq U(1)$ ?

#### Proposition (1.2)

 $\det: \mathit{U}(2) \longrightarrow \mathbb{C}^*$  is a group homomorphism and  $\mathit{Ker}(\det) \subseteq \mathit{SL}(2,\mathbb{C}).$ 

Proof: Homework challenge!

▶ det : U(n)  $\longrightarrow$   $\mathbb{C}^*$  is also a homomorphism and of course  $Ker(\det) \subseteq SL(n,\mathbb{C})$ .

## **The Special Unitary Group**

### Definition (1.3)

We can now define 
$$SU(2) = \left\{ A \in U(2) \mid \det(A) = 1 \right\}$$
.

▶ We can indeed generalise the definition above to any n > 0:

$$SU(n) = \left\{ A \in U(n) \mid \det(A) = 1 \right\}.$$

▶ It's easy to see that  $SU(n) = U(n) \cap SL(n, \mathbb{C})$  right?

### Proposition (1.3)

SU(2) is a subgroup of U(2).

Proof: Homework challenge!

lndeed for any n > 0, SU(n) is a subgroup of U(n).

### **Special Unitary Group Properties**

#### Proposition (1.4)

$$Z(SU(2)) = \left\{ \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \mid \lambda \in U(1) : \lambda^2 = 1 \right\}.$$

*Proof*: Homework challenge? Which qubit gates are in Z(SU(2))?

► Can the propositon above be generalised to any n > 0?

$$Z(SU(n)) = \left\{\lambda \mathbb{I}_n \mid \lambda \in U(1) : \lambda^n = 1
ight\} \text{ where } \mathbb{I}_n = egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & 0 & 0 \ dots & 0 & \ddots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

#### Proposition (1.5)

 $Ker(\det) \subseteq SU(2)$  where  $\det: U(2) \longrightarrow \mathbb{C}^*$ .

Proof: Homework challenge!

- ▶ For det :  $U(n) \longrightarrow \mathbb{C}^*$  we also have  $Ker(\det) \subseteq SU(n)$ ?
- As extra home challenge, I encourage you to identify the famous two-level qubit gates that are elements of *SU*(4) i.e gates with determinant 1. How many such gates are out there?

## **QHint (Ask a particle Physicist to confirm!)**

- $\triangleright$  SU(n) groups are important in topics such as gauge theories:
  - The bible of particle physics called the Standard Model (SM) is a 'non-abelian gauge theory' because its gauge group is  $SU(3) \times SU(2) \times U(1)$  where:
    - SU(3) is responsible for the quark colour changes (red, green, blue) i.e. responsible for the strong nuclear force or in other words Quantum Chromodynamics (QCD) stuff.
    - 2. SU(2) is responsible for convertion between up and down quarks i.e. responsible for the weak nuclear force.
    - 3. U(1) is responsible for the QED force.
  - What about gravity? Why is it not included in the SM?

## **Particle Physics Books**











**Colin P. Williams** 

Where should you focus?

**Chapter 2:** Quantum Gates

-----(Pages 51 - 122)-----



#### **Guest Bio**

Laurentiu Nita is the founder of Quarks Interactive: a company with the mission of making quantum computing fun (through gamification) and accessible (by removing the need-to-know mathematics for understanding computation). He managed to secure funding to create Quantum Odyssey, a video game where the



- GitHub (Curated study materials): github.com/quantumformalism
- YouTube: youtube.com/zaikugroup
- Twitter: @ZaikuGroup
- Gitter: gitter.im/quantumformalism/community