

Instituto Tecnológico de Aeronáutica - ITA

Divisão de Engenharia Eletrônica Departamento de Eletrônica Aplicada Laboratório de EEA-21

<u>3ª Experiência</u> **Projeto e montagem de Redes Iterativas**

1. Objetivos

- a. Familiarização com a implementação de circuitos digitais em *protoboard*;
- **b.** Familiarização com as operações aritméticas básicas;
- c. Familiarização com as operações relacionais; e
- **d.** Familiarização com síntese de redes iterativas.

2. Instruções gerais

Para cada um dos tópicos abaixo, <u>observe</u> o que se pede em negrito. Quando a solicitação é da forma:

- "Projete", espera-se que os alunos projetem os circuitos seguindo algum tipo de especificação dada. Assim, os <u>cálculos combinacionais</u>, <u>procedimentos de minimização</u> ou <u>outros mecanismos utilizados para o projeto</u> e o diagrama esquemático final do circuito devem ser <u>mostrados</u> (constar do relatório).
- "Monte", espera-se que o circuito dado ou projetado seja montado em *protoboard* de <u>maneira organizada</u>, com as entradas e saídas identificadas. Os **componentes** serão fornecidos pelo almoxarifado, devendo os mesmos ser retornados <u>após a avaliação dos circuitos pelo instrutor</u>.
- "Simule", espera-se que seja utilizado um software de captura esquemática para a obtenção dos resultados. Assim, o diagrama esquemático (no caso de captura esquemática) deve ser apresentado, bem como o diagrama de temporização contendo as entradas e as saídas.
- "Analise", espera-se que sejam obtidas as expressões lógicas, tabelas verdade, a partir de um diagrama esquemático, diagrama de temporização ou outra informação sobre o circuito lógico. Dessa forma, os procedimentos de análise devem ser mostrados no relatório.

Um breve comentário sobre os resultados, observações e dificuldades é esperado para todas as tarefas.

3. Informações úteis

3.1 Circuitos integrados TTL

Os circuitos integrados que serão utilizados nesta prática pertencem à família TTL (*Transistor Transistor Logic*). A **fonte de alimentação** a ser utilizada para o correto funcionamento destes dispositivos é de **5V**. É fundamental ter muito cuidado na hora de ligar os pinos de VCC (5V) e GND (terra ou 0V). **Se os pinos de alimentação forem invertidos haverá a perda do componente**. Após efetuar a montagem do circuito, <u>verifique se as ligações estão corretas antes de alimentar o circuito</u>. Utilize o **multímetro**, verificando a continuidade do ponto de alimentação e terra para os pinos correspondentes do CI.

Atente para a correta identificação dos pinos do componente. As formas mais comuns para enumeração dos pinos é mostrada na figura a seguir. Se houver um ponto no encapsulamento, este indica o Pino número 1. Se houver um chanfro, o pino número 1 é o primeiro abaixo do chanfro, como se vê na disposição da figura abaixo. A contagem dos pinos é feita a partir do número 1, no sentido anti-horário.

3.2 Níveis de tensão na entrada e saída da família TTL

Para a família TTL, existe uma certa faixa de **tensão na entrada** de uma porta que é tipicamente reconhecida como nível lógico baixo, e uma certa faixa de tensão na entrada da porta que é tipicamente reconhecida como nível lógico alto. A faixa aceita como nível baixo é o intervalo $[V_{ILmin}, V_{ILmax}]$, e a faixa aceita como nível alto é o intervalo $[V_{IHmin}, V_{IHmax}]$. Os valores exatos destes parâmetros devem ser consultados no *datasheet* específico de cada componente, mas abaixo é mostrado um exemplo para um componente típico desta família.

A **tensão na saída** também está sujeita a variar dentro de uma faixa. Quando o nível lógico da saída é baixo, a tensão estará entre $[V_{OLmin}, V_{OLmax}]$. Quando o nível lógico da saída for alto, a tensão estará entre $[V_{OHmin}, V_{OHmax}]$. A figura a seguir ilustra um exemplo típico para a família TTL (valores específicos devem ser consultados em datasheet.

Observe que é necessário que a faixa $[V_{OLmin}, V_{OLmax}]$ esteja dentro da faixa $[V_{ILmin}, V_{ILmax}]$, e que a faixa $[V_{OHmin}, V_{OHmax}]$ esteja dentro da faixa $[V_{IHmin}, V_{IHmax}]$ para o correto funcionamento da família.

3.3 5CIs: NANDs, NOTs, ANDs, ORs e XORs

Circuitos integrados da família TTL 7400 que serão utilizados nesta prática:

NOTA1: Sobre tecnologias → 74LS00 – CI 7400, com tecnologia Low Shotcky;

74HC00 - CI 7400, com tecnologia High Speed CMOS.

• <u>CI 7400 4 NANDs</u>

Connection Diagram

Function Table

$Y = \overline{AB}$			
Inputs		Output	
Α	В	Y	
L	L	Н	
L	Н	Н	
Н	L	Н	
Н	Н	L	

H = HIGH Logic Level L = LOW Logic Level

CI 7404 6 NOTs

Connection Diagram

Function Table

Y = A		
Inputs	Output	
Α	Y	
L	Н	
Н	L	

H = HIGH Logic Level L = LOW Logic Level

• <u>CI 7408</u> 4 ANDs

Connection Diagram

Function Table

$$Y = AB$$

Inputs		Output
Α	В	Υ
L	L	L
L	Н	L
н	L	L
н	Н	Н

H = High Logic Level L = Low Logic Level

• <u>CI 7432</u> 4 ORs

Connection Diagram

Function Table

$$Y = A + B$$

Inputs		Output
Α	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	Н

H = HIGH Logic Level L = LOW Logic Level

• <u>CI 7486</u> 4 XORs

Connection Diagram 74

Function Table

 $Y = A \oplus B$

Inputs		Output
Α	В	Y
L	L	L
L	H	н
Н	L	н
Н	н	L

H = HIGH Logic Level L = LOW Logic Level

Não deixe de consultar os datasheets para mais informações.

4. Material necessário para as montagens

3 CIs 7400; 1 CI 7404, 1 CI 7408, 1 CI 7432 e 1 CI 7486; fios para proto-board; fonte de +5V; e proto-board.

5. Montagens

5.1 Tarefa 5.1: Montagem de um circuito combinacional com portas NAND2

Monte a função combinacional abaixo esquematizada que contém apenas portas *NAND* de 2 entradas. Levante <u>experimentalmente</u> qual função básica está sendo implementada.

Obtenha a tabela verdade e a expressão de F em função de A e B.

Dica: não desmonte este circuito até finalizar a tarefa 5.3.

5.2 Tarefa 5.2: Projeto e montagem da célula básica de um comparador

Projete e Monte a célula básica de um comparador de duas palavras de n bits que utiliza a técnica de redes iterativas, tal que:

Observe a representação abaixo.

Procedimento:

- a. Elabore a tabela verdade da célula básica;
- b. Obtenha as funções lógicas da célula básica;
- c. Implemente em protoboard a célula básica;
- d. Demonstre o circuito funcionando e apresente os resultados em forma de tabela verdade; e
- e. Mostre como obter Y₁, Y₂ e Y₃ a partir das variáveis mostradas na rede iterativa do comparador de n bits.

5.3 Tarefa 5.3: Projeto e montagem de um subtrator completo de 1 bit

Projete e Monte um subtrator completo de 1 bit do tipo propagação do empresta-um. Este subtrator pode ser usado como célula básica para projeto de subtratores de N bits.

Observe a representação abaixo.

Procedimento:

- a. Elabore a tabela verdade da célula básica;
- b. Obtenha as funções lógicas da célula básica (S_i e E_i);
- c. Minimize simultaneamente as expressões obtidas em (b), colocando-as num formato que utilize apenas a operação NAND com duas variáveis;
- d. Usando apenas portas NAND de 2 entradas, implemente em protoboard a célula básica;

e. Demonstre o circuito funcionando e apresente os resultados em forma de tabela verdade, comparando o resultado com o esperado.

Dica: não desmonte este circuito até finalizar a tarefa 5.4.

5.4 Tarefa 5.4: Projeto e montagem de um somador completo de 1 bit

Projete e Monte um somador completo de 1 bit do tipo propagação do vai-um (carry). Este somador pode ser usado como célula básica para projeto de somadores de N bits.

Procedimento:

- a. Elabore a tabela verdade da célula básica;
- b. Obtenha as funções lógicas da célula básica (S_i e C_i);
- c. Minimize simultaneamente as expressões obtidas em (b), colocando-as num formato que utilize apenas a operação NAND com duas variáveis;
- d. Usando portas *NAND de 2 entradas* e portas *XOR*, implemente em *protoboard* a célula básica;
- e. Demonstre o circuito funcionando e apresente os resultados em forma de tabela verdade e comparando com o resultado esperado.

6. Simulação:

6.1 Projeto e simulação de um somador/subtrator de um dígito

Projete e **simule** um somador/subtrator paralelo decimal de um dígito. Os operandos e o resultante da soma (ou subtração) estão representados em BCD (4 bits). Os números negativos deverão ser representados em complemento de 2. Quando o resultado for um número de dois dígitos, apenas o dígito da unidade será apresentado, estando em complemento de 2 no caso de o resultado ser negativo.

Comentário sobre operações com números representados em BCD:

As operações aritméticas onde os operandos estão representados em BCD precisam ser corrigidas sempre que os resultados caírem fora de certo intervalo (maior que 9 para e menor que -9). Com o objetivo de visualizar este fato observe os seguintes exemplos de operações (adição/subtração) em BCD.

Exemplo de operações que não precisam correção do resultado:

Ex1:
$$(2)_d + (5)_d = (7)_d$$

 $(0010)_b + (0101)_b = (0111)_b \implies (7)_d$
Ex2: $(9)_d - (4)_d = (5)_d$
 $(1001)_b - (0100)_b = (0101)_b \implies (5)_d$

Soma de dois dígitos representados em BCD: Sempre que dois números positivos representados em BCD forem somados e o resultado for maior ou igual a $10_{\rm d}$ o resultado precisa ser corrigido. A correção é feita somando $6_{\rm d}$ (ou $0110_{\rm b}$) ao resultado.

Subtração de dois dígitos representados em BCD: Quando um número negativo é representado em complemento de 2 tem-se um caso crítico na subtração se o minuendo é negativo e o subtraendo positivo. Neste caso o resultado pode ser menor que -10_d e o resultado deve ser corrigido somando -6_d. Observe que -6_d equivale a 10_d em complemento de 2.

$$\begin{array}{cccc}
-2_d & \stackrel{\text{Comp. 2}}{\Rightarrow} & (1110)_b & & 1110 \\
& & & & \\
& & & \\
-3_d & \stackrel{\text{Comp. 2}}{\Rightarrow} & (1101)_b & & & & \\
& & & & & \\
\end{array}$$

$$\begin{array}{c}
1110 \\
\Rightarrow & +1101 \\
& & & \\
\end{array}$$

$$\begin{array}{c}
(-5 \text{ comp. 2})$$

 $\mathbf{Ex5}^{\cdot} (-2)_{\mathbf{d}} - (3)_{\mathbf{d}} = -(5)_{\mathbf{d}}$

Restrições: com o objetivo de reduzir a complexidade do exercício considere que:

- a) o operando B é sempre positivo;
- b) o intervalo de variação do operando A é de +7_d até -8_d.
- c) os resultados negativos estão representados em complemento de 2;

Observe que:

- a) para o caso da soma: poderá ser necessária a correção do resultado BCD caso o operando A seja positivo. Estando o valor deste limitado a $+7_d$, é possível reconhecer esta situação pelo bit mais significativo deste operando (a₃). O circuito deverá gerar a correção se a comparação do resultado da soma com o valor 10_d exigir ou quando houver *carry* na soma.
- b) para o caso da subtração: poderá ser necessária a correção do resultado BCD se o operando A for negativo. É possível reconhecer esta situação pelo bit mais significativo de A. O circuito deverá neste caso gerar a correção se a comparação do resultado da soma com o valor (-10)_d exigir, ou se o *carry* for nulo.

Exemplos de resultados esperados:

A = 3	B = 6	E = 0 (soma)	Resultado: $1001 \rightarrow (9)_d$
A = -7	B = 2	E = 0 (soma)	Resultado: $1011 \rightarrow (-5)_d$
A = 6	B = 9	E = 0 (soma)	Resultado: $0101 \rightarrow (5)_d$
A = 2	B = 9	E = 1 (subtração	Resultado: $1001 \rightarrow (-7)_d$
A = -5	B = 8	E = 1 (subtração	Resultado: $1101 \rightarrow (-3)_d$

Obtenha:

- a. O diagrama esquemático completo, mostrando os passos do desenvolvimento deste; no Quartus II, utilize o somador de 4 bits 74283;
- b. A simulação funcional (Functional Simulation) da realização das seguintes operações:

$$(4)_d + (5)_d$$

 $(7)_d + (4)_d$
 $(7)_d + (9)_d$
 $(-5)_d + (8)_d$
 $(-8)_d + (4)_d$

$$(1)_{d} - (7)_{d}$$

 $(-7)_{d} - (7)_{d}$

$$(-8)_{d} - (9)_{d}$$

Mostre os resultados de forma clara para confirmar o funcionamento do circuito.

Um diagrama de blocos para o circuito é mostrado na figura a seguir, onde E é a entrada seletora que define se a operação é de soma ou subtração, s_3 é o bit mais significativo da saída do somador, a_3 é o bit mais significativo do operando A e C_0 é o carry in.

6.2 Projeto e simulação de um circuito multiplicador 2 n de 2 b

Projete e simule um circuito capaz de multiplicar 2 números de 2 bits, resultando num número de 4 bits.

Note que:

$$\begin{array}{c}
A_{1}A_{0} \\
\times B_{1}B_{0} \\
\hline
C_{1}C_{0} \\
+ D_{1}D_{0} \\
\hline
M_{3}M_{2}M_{1}C_{0}
\end{array}$$

Obtenha:

a. O diagrama esquemático, apresentando os passos do desenvolvimento deste;

b. O diagrama de temporização, resultante da simulação funcional do circuito, para as multiplicações: (10) * (11) * (00) * (01) * (01) * (11) * (11)

$$(10)_b^* (11)_b, (10)_b^* (00)_b, (01)_b^* (01)_b e (11)_b^* (11)_b.$$