Exercice 1 : ACP sur la matrice des distances

On observe un p-vecteur aléatoire quantitatif sur n individus, soit \mathbf{X}_i , i=1,...,n la i-ème observations de dimension p. On note $X_{i,k}$ la k-ème composante du vecteur \mathbf{X}_i , k=1,...,p. Notons $\mathbf{X}=(\mathbf{X}_1,...,\mathbf{X}_n)'$ la matrice $(n\times p)$ des observations. On suppose que les composantes de \mathbf{X}_i sont centrées. Soit \mathbf{D} la matrice diagonale des poids $p_i=1/n$. On munit \mathbb{R}^p d'une métrique \mathbf{M} ; $\|x\|_{\mathbf{M}}^2=x'\mathbf{M}x$, $x\in\mathbb{R}^p$. Soit $\mathcal{D}=(d_{ij}^2)_{i,j=1,...,n}$ la matrice $n\times n$ des carrés des distances entre les n individus $(d_{ij}$ est la distance entre \mathbf{X}_i et \mathbf{X}_j , $d_{ii}=0$):

$$d_{ij}^2 = (\mathbf{X}_i - \mathbf{X}_j)' \mathbf{M} (\mathbf{X}_i - \mathbf{X}_j) = \|\mathbf{X}_i - \mathbf{X}_j\|_{\mathbf{M}}^2$$

Posons

$$d_{i.}^{2} = \sum_{j=1}^{n} p_{j} d_{ij}^{2}, d_{.j}^{2} = \sum_{i=1}^{n} p_{i} d_{ij}^{2}, d_{..}^{2} = \sum_{i=1}^{n} p_{i} d_{i.}^{2}.$$

Soit $I_g = \sum_{i=1}^n p_i \|\mathbf{X}_i\|_{\mathbf{M}}^2$, dit inertie du nuage de points des observations.

- 1. Montrer que la matrice de variance-covariance empirique des X_i est S = X'DX.
- 2. Montrer que $\forall i=1,...n,\,d_{i.}^2=\|\mathbf{X}_i\|_{\mathbf{M}}^2+I_g.$
- 3. En déduire que $d_{..}^2 = 2I_g$
- 4. Posons $\mathbf{W} = (w_{ij} = \langle \mathbf{X}_i, \mathbf{X}_j \rangle_{\mathbf{M}} = \mathbf{X}_i' \mathbf{M} \mathbf{X}_j)_{i,j}$ la matrice des produits scalaires, montrer que

$$w_{ij} = -\frac{(d_{ij}^2 - d_{i.}^2 - d_{.j}^2 + d_{..}^2)}{2}$$

- 5. Exprimer **W** en fonction de \mathcal{D}
- 6. Supposons dans la suite que $\mathbf{M} = \mathbf{I}_p$ et que l'ACP du nuage de \mathbf{X} donne p axes principaux normés $(u_k)_{k=1,\ldots,p}$ de valeurs propres correspondants λ_k . Notons v_k les composantes principales associées. Montrer que $\mathbf{XS}u_k = \lambda_k v_k$. Que peut-on en déduire?
- 7. Montrer que, toujours si $\mathbf{M} = \mathbf{I}_p, v_k$ est également vecteur propre de \mathbf{WD} .
- 8. Soit le vecteur $f_k \in \mathbb{R}^n$ dont la composante numéro i est $f_{ik} = \sqrt{p_i} v_{ik}$. En déduire que la matrice **WD** admet pour vecteur propre f_k avec valeur propre associé à λ_k .
- 9. Montrer que le vecteur $(\sqrt{p_i})_{i=1,\dots,n}$ est vecteur propre de **WD** associé à la valeur propre 0.
- 10. Montrer que $\sum_{i=1}^{n} f_{ik}^2 = \lambda_k$ et pour tout $k \neq l$, $\sum_{i=1}^{n} f_{ik} f_{il} = 0$.
- 11. Application sous Python: Soit un nuage de points de 3 individus tel que

$$d_{12}^2 = d_{23}^2 = 1, d_{13}^2 = 2, p_i = 1/3, i = 1, ..., 3$$

Déterminer **WD**, les valeurs propres λ_k et les vecteurs propres propres f_k associés.

Exercice 2: Application sur données réelles avec Python

On considère 11 pôles de dépenses d'un Etat (répartitions des dépenses en pourcentages) entre plusieurs années successives. On note X la matrice des données dont les pôles de dépenses (en colonne) : PVP : pouvoirs publics ; AGR : agriculture ; CMI : commerce et industrie ; TRA : travail ; LOG : logement et aménagement du territoire ; EDU : éducation ; ACS : action sociale ; ACO : anciens combattants ; DEF : défense ; DET : dette ; DIV : divers.

- 1. Effectuer sur ces données une Analyse en Composantes Principales.
- 2. Combien d'axes retiendriez-vous pour cette analyse? pourquoi?
- 3. Donner une interprétation globale des dépenses sur les axes retenus.

Exercice 3 : Convergence des vecteurs propres d'une matrice de variance-covariance empirique

Soit $\mathbf{X}_1, \ldots, \mathbf{X}_n$ des p-vecteurs aléatoires Gaussiens i.i.d. d'espérances nulles et de matrices de variance-covariance $\mathbf{\Sigma} = \mathbf{I}_p$. Soit $\hat{\mathbf{S}}$ la matrice de variance-covariance empirique des $\hat{\mathbf{X}}_i$, $i = 1, \ldots, n$ et sa décomposition spectrale $\hat{\mathbf{S}} = \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\Lambda}}\hat{\boldsymbol{\beta}}'$. Ici, $\hat{\boldsymbol{\Lambda}}$ est une matrice diagonale dont les p éléments diagonaux sont bien ordonnés et $\hat{\boldsymbol{\beta}} \in \mathcal{SO}_p$. Nous rappelons que par le théorème central limite multivarié, nous avons que $\sqrt{n}(\hat{\mathbf{S}} - \mathbf{I}_p) = O_P(1)$.

- 1. Montrer que $\sqrt{n}(\hat{\mathbf{\Lambda}} \mathbf{I}_p) = O_P(1)$ pour $n \to \infty$.
- 2. Montrer que pour toute matrice $\Theta \in \mathcal{SO}_p$, $\Theta \sqrt{n}(\hat{\mathbf{S}} \mathbf{I}_p)\Theta' \stackrel{\mathcal{D}}{=} \sqrt{n}(\hat{\mathbf{S}} \mathbf{I}_p)$.
- 3. Montrer qu'il existe $\tilde{\mathbf{\Theta}} \in \mathcal{SO}_p$ tel que $\tilde{\mathbf{\Theta}}\sqrt{n}(\hat{\mathbf{\Lambda}} \mathbf{I}_p)\tilde{\mathbf{\Theta}}'$ et $\sqrt{n}(\hat{\mathbf{\Lambda}} \mathbf{I}_p)$ ne convergent pas vers la même distribution lorsque $n \to \infty$.
 - Indice: Rappelez-vous que les valeurs propres de $\hat{\Lambda}$ sont $ordonn\acute{e}es$.
- 4. Montrer que les trois premières questions impliquent qu'il n'existe pas de matrice β telle que $\hat{\beta} = \beta + o_P(1)$ pour $n \to \infty$.
- 5. En considérant le résultat obtenu au point 4, est-il pertinent de donner une interprétation du type de celle donnée dans l'exercice 2.3 aux différents vecteurs propres contenus dans $\hat{\boldsymbol{\beta}}$?