Architettura degli Elaboratori

Rappresentazione in virgola mobile

Punto della situazione

Abbiamo visto le rappresentazioni dei numeri:

- Sistema posizionale pesato per
 - Interi positivi (nelle varie basi)
 - Numeri con la virgola positivi (frazioni proprie)
- Modulo e segno per interi col segno
- Complemento a 2 per interi col segno

Ora vedremo la rappresentazione in virgola mobile per i numeri reali (con virgola e segno)

Numeri Reali

- L'insieme dei numeri reali (R) comprende
- I numeri naturali (N)
- I numeri interi (Z)
- I numeri razionali (Q)

Numeri Reali

- > Alcuni esempi di numeri reali
 - $\pi = 3,14159265..._{10}$
 - \geq e = 2,71828...₁₀ (numero di Nepero)
 - \triangleright 0,00000001₁₀ (numero di secondi in un nanosecondo)
 - > 3155760000₁₀ (numero di secondi in un secolo)
- Per numeri molto piccoli o molto grandi si utilizza la notazione scientifica in base 10
 - E' un modo conciso di esprimere i numeri, utilizzando potenze intere (positive o negative) di 10
 - > Il numero viene scritto con una sola cifra prima della virgola
 - \rightarrow 1,0₁₀ × 10⁻⁹
 - > 3,15576₁₀ \times 10⁹

Notazione scientifica

Vantaggi

- Permette di rappresentare in maniera compatta numeri molto grandi o molto piccoli
- Fornisce un'idea immediata sull'ordine di grandezza del numero

Notazione scientifica normalizzata

- Notazione scientifica in cui non ci sono zeri a sinistra della virgola
- Esempi:
 - $> 1,0_{10} \times 10^{-9}$ è in notazione normalizzata
 - $> 0,1_{10} \times 10^{-8}$ non è in notazione normalizzata

Spostare la virgola

Il numero $12345,6789012345_{10}$ può essere scritto come:

 $12345,6789012345_{10} \times 10^{0}$

 $1234,56789012345_{10} \times 10^{1}$

 $123,456789012345_{10} \times 10^{2}$

 $12,3456789012345_{10} \times 10^3$

 $1,23456789012345_{10} \times 10^{4}$

Spostare la virgola a sinistra di n cifre decimali corrisponde ad incrementare l'esponente del 10 di n

Spostare la virgola

Il numero 12345,6789012345 può essere scritto come:

 $12345,6789012345_{10} \times 10^{0}$

 $123456,789012345_{10} \times 10^{-1}$

 $1234567,89012345_{10} \times 10^{-2}$

 $12345678,9012345_{10} \times 10^{-3}$

 $123456789,012345_{10} \times 10^{-4}$

Spostare la virgola a destra di n cifre decimali corrisponde ad decrementare l'esponente del 10 di n

Notazione scientifica

- Esempio:
 - $> 1,0_2 \times 2^{-1}$ è in notazione normalizzata
 - $> 0,1_2 \times 2^2 \text{ non } \hat{\mathbf{e}} \text{ in notazione normalizzata}$
- Forma generale di un numero binario in notazione scientifica normalizzata

 $1,xxx_2 \times 2yyy$

Spostare la virgola

Il numero 10111,11010111012 può essere scritto come:

```
10111,1101011101<sub>2</sub> x 2<sup>0</sup>
1011,111010111101<sub>2</sub> x 2<sup>1</sup>
101,1111010111101<sub>2</sub> x 2<sup>2</sup>
10,1111101011101<sub>2</sub> x 2<sup>3</sup>
1,01111101011101<sub>2</sub> x 2<sup>4</sup>
```

Spostare la virgola a sinistra di n cifre binarie corrisponde ad incrementare l'esponente del 2 di n

Spostare la virgola

Il numero 10111,11010111012 può essere scritto come:

```
10111,11010111101<sub>2</sub> x 2<sup>0</sup>
101111,1010111101<sub>2</sub> x 2<sup>-1</sup>
1011111,010111101<sub>2</sub> x 2<sup>-2</sup>
10111110,1011101<sub>2</sub> x 2<sup>-3</sup>
101111101,0111101<sub>2</sub> x 2<sup>-4</sup>
```

Spostare la virgola a destra di n cifre binarie corrisponde ad decrementare l'esponente del 2 di n

Notazione a virgola fissa

- La rappresentazione vista la volta scorsa per i numeri con la virgola in binario viene detta "a virgola fissa"
- Utilizza un numero finito (n+s) di cifre, di cui
 - > n dedicate alla parte intera
 - > s dedicate alla parte frazionaria
- Fornisce una *rappresentazione approssimata* del numero dato
 - Ha dei limiti quando si devono rappresentare numeri molto grandi o molto piccoli

Rappresentazione FP

- La rappresentazione in virgola mobile, anche detta FP (Floating Point)
 - Estende l'intervallo dei numeri rappresentabili a parità di cifre
 - Permette di rappresentare in maniera compatta numeri molto grandi, ma anche molto piccoli (sia positivi che negativi)
 - Utilizza la notazione scientifica normalizzata, specificando
 - > Segno (+,-)
 - Mantissa (parte frazionaria)
 - Esponente (intero con segno)

Rappresentazione FP

- I numeri binari in forma normalizzata sono rappresentati da una tripla <5, M, E>, dove
 - > s = segno (0 per i positivi, 1 per i negativi)
 - M = mantissa
 - > E = esponente
- > Il numero corrispondente è

$$N = (-1)^{s} \times (1+M) \times 2^{E}$$

Rappresentazione FP

Fissato il numero totale di bit per la rappresentazione, bisogna stabilire:

- Quanti bit assegnare per la mantissa M?
 - > Maggiore è il numero di bit, maggiore è la precisione
- Quanti bit assegnare per l'esponente E?
 - Maggiore è il numero di bit, più ampio è l'intervallo di rappresentabilità

Standard IEEE 754

- E' importante definire uno standard per la rappresentazione dei numeri FP
- Lo standard IEEE 754 (IEEE standard for binary floating arithmetic), proposto nel 1985
 - Specifica il formato, le operazioni aritmetiche e di confronto per numeri FP
 - > E' utilizzato dal MIPS che studieremo in seguito
 - Propone due formati:
 - Precisione Singola (32 bit: 1 parola macchina)
- ANG A

Precisione Doppia (64 bit: 2 parole macchina)

Suddivide i 32 bit in:

- >1 bit per il segno s
- >8 bit per rappresentare l'esponente E
- >23 bit per rappresentare la mantissa M

Esponente (8 bit)

Mantissa (23 bit)

Il numero rappresentato è

- Il segno è dato da (-1)^s
- Analogamente alla rappresentazione in complemento a 2:
 - > Il bit <=0 rappresenta numeri positivi
 - > Il bit <= 1 rappresenta numeri negativi

Segno	Esponente (8 bit)	Mantissa (23 bit)
-------	----------------------	----------------------

- Come usare gli 8 bit per rappresentare esponenti negativi e positivi?
- Se usiamo la rappresentazione in complemento a 2, l'intervallo è [-128,+127]
 - > Il confronto tra numeri però non risulta naturale
 - Quindi questa rappresentazione non viene utilizzata

Esponente (8 bit)

Mantissa (23 bit)

- Come usare gli 8 bit per rappresentare esponenti negativi e positivi?
- La scelta dello standard è quella di usare la rappresentazione in binario puro
 - L'intervallo rappresentabile è [0,+255], di cui
 - > 0=00000000 è riservato allo zero
 - > 255=11111111 è riservato a ∞ e NaN (Not a Number), usato per definire il risultato di operazioni non valide
 - ➤ I numeri nell'intervallo restante ([1,+254]) sono messi in corrispondenza con i 254 appartenenti all'intervallo [-126,127]

Questa corrispondenza viene definita "polarizzazione"

- L'esponente E sarà ottenuto come E=e-127, dove e è il contenuto del campo esponente
- > 00000000 = 0 RISERVATO (per lo 0)
- > 00000001 = 1 rappresenta 1-127 =-126
- > 00000010 = 2 rappresenta 2-127 =-125
- > 00000011 = 3 rappresenta 3-127=-124
-
- > 11111101 = +253 rappresenta 253-127=+126
- 111111110 = +254 rappresenta 254-127=+127
- > 11111111 = +255 RISERVATO (ad infinito e NaN)

s (8 bit)

Mantissa (23 bit)

Il valore di un numero in notazione polarizzata è quindi

$$(-1)^{s} \times (1+M) \times 2^{(e-127)}$$

S	e (8 bit)	M
		(23 bit)

Standard IEEE 754 Esempio

- Scrivere in notazione FP IEEE 754 (precisione singola) il numero -0.25_{10}
- Innanzitutto calcoliamo la frazione binaria equivalente, senza considerare il segno: $0.25_{10} = 0.01_2$
- Poi la esprimiamo in notazione scientifica normalizzata: $0.01_2 = 1.0_2 \times 2^{-2}$
- Aggiungiamo il segno ed esplicitiamo la mantissa: $(-1)^1 \times (1+0,0) \times 2^{-2}$
- \triangleright Infine, l'esponente polarizzato -2=e-127 \rightarrow e=125
- \triangleright Quindi s = 1, $e = 125 = 01111101_2$, $M = 00...00_2$

01111101

Standard IEEE 754 Esempio

Quale numero decimale è rappresentato dalla seguente sequenza di bit nello standard IEEE 754 (precisione singola)?

1 00001011

0100000000000000000000

- > s=1,
- \geq e = 00001011₂ = 11₁₀,
- \rightarrow M = 0,01₂ = 0,25₁₀
- > Il numero rappresentato è

$$(-1)^1 \times (1+0.25) \times 2^{(11-127)} = -1.25_{10} \times 2^{(-116)}$$

- L'intervallo di rappresentabilità con 32 bit è:
 - > Numeri positivi:
 - \triangleright minimo $\approx 2_{10} \times 10^{-38}$
 - \triangleright Massimo $\approx 2_{10} \times 10^{+38}$
 - > Numeri negativi:
 - \triangleright minimo $\approx -2_{10} \times 10^{-38}$
 - \triangleright Massimo $\approx -2_{10} \times 10^{+38}$

Standard IEEE 754 (precisione doppia)

- ≥1 bit per il segno s
- >11 bit per rappresentare l'esponente E
- >52 bit per rappresentare la mantissa M

Esponente (11 bit)

Mantissa (52 bit)

Il numero rappresentato è

Standard IEEE 754 (precisione doppia)

- L'intervallo di rappresentabilità con 64 bit è:
 - > Numeri positivi:
 - \triangleright minimo $\approx 2_{10} \times 10^{-308}$
 - \triangleright Massimo $\approx 2_{10} \times 10^{+308}$
 - > Numeri negativi:
 - > minimo ≈ -2₁₀ × 10⁻³⁰⁸
 - \triangleright Massimo $\approx -2_{10} \times 10^{+308}$

Rispetto alla precisione singola, l'intervallo è molto più ampio, e ciascun numero viene rappresentato con una maggiore accuratezza

IEEE 754: Confronto tra due numeri

Come effettuare il confronto tra due numeri in formato IEEE 754

IEEE 754: Confronto tra due numeri

- Il confronto tra due numeri in formato IEEE 754 è un'operazione facilitata dal formato
 - Innanzitutto si confrontano i segni s₁ ed s₂ dei due numeri
 - Poi si confrontano gli esponenti e₁ ed e₂
 - Numeri con esponenti più grandi sono più grandi, indipendentemente dalle mantisse
 - \triangleright Infine si confrontano le mantisse M_1 ed M_2

s ₁	e ₁ (8 bit)	M ₁ (23 bit)
s ₂	e ₂ (8 bit)	M ₂ (23 bit)

IEEE 754: Somma di due numeri

Come effettuare la somma di due numeri in formato IEEE 754 >

IEEE 754: Somma di due numeri

- Bisogna innanzitutto che i loro esponenti abbiano lo stesso ordine di grandezza
 - Se così non è, per il numero con esponente più piccolo si sposta la virgola a sinistra del numero di posizioni necessario (allineamento delle mantisse)
- > Poi si sommano i valori ottenuti
- > Si normalizza il risultato
- Si arrotonda al numero di bit richiesto per la mantissa (precisione)
 - > Ed eventualmente si normalizza di nuovo

Esempio 1

- Calcoliamo $5_{10} + 3,625_{10}$ (con precisione a 4 bit)
- > 5₁₀ = 101₂ = 1,01₂ x 2²
- \rightarrow 3,625₁₀ = 11,101₂ = 1,1101₂ x 2¹
- Hanno ordini di grandezza differenti!
 - Spostiamo la virgola a sinistra di un posto per il numero con esponente più piccolo: $3,625_{10} = 1,1101_2 \times 2^1 = 0,11101_2 \times 2^2$
- Effettuiamo la somma dei valori ottenuti:

```
1,01000+ 

0,11101= 

10,00101 \times 2^{2}
```

- Normalizziamo il risultato: 1,000101 x 23
- Arrotondiamo la mantissa al numero di bit richiesto: 1.0001×2^3

Esempio 1 (cont.)

- Il risultato ottenuto per 5_{10} + $3,625_{10}$ è $1,0001 \times 2^3$ che corrisponde a $1000,1_2$ = $8,5_{10}$
- Facendo la somma in decimale si ha che $5_{10} + 3,625_{10} = 8,625_{10}$ che corrisponde a $1000,101_2$
 - Quindi l'aver utilizzato solo 4 bit per la mantissa ha comportato un errore di arrotondamento

Esempio 2

- \rightarrow 0,4375₁₀ = 0,0111₂ = 1,110₂ x 2⁻²
- \rightarrow 0,5₁₀ = 0,1₂ = 1,000₂ × 2⁻¹
- Hanno ordini di grandezza differenti!
 - Effettuiamo lo spostamento della virgola a sinistra di un posto per il numero con esponente più piccolo: $0.4375_{10} = 1.110_2 \times 2^{-2} = 0.111_2 \times 2^{-1}$
- Effettuiamo la somma dei valori ottenuti:

 $\begin{array}{c}
 1,000 - \\
 0,111 = \\
 0,001 \times 2^{-1}
 \end{array}$

Si tratta di una sottrazione in binario perchè il secondo valore è negativo

Normalizziamo il risultato: $1,000 \times 2^{-4}$

Il numero di bit della mantissa è già quello richiesto

Esempio 2 (cont.)

Facendo la somma in decimale si ha che $-0.4375_{10} + 0.5_{10} = 0.0625_{10}$

I due valori coincidono perché non ci sono state modifiche dovute all'arrotondamento

Per concludere

- Non studieremo moltiplicazione e divisione di numeri FP
- Le istruzioni MIPS che studieremo tratteranno numeri rappresentati in complemento a 2
 - Per esempio: add, sub,...
- Il MIPS supporta anche il formato IEEE 754 a singola (e doppia) precisione con istruzioni particolari:
 - Per esempio: add.s, sub.s,...

Riepilogo e riferimenti

- I numeri in virgola mobile e lo standard IEEE 754 a singola e doppia precisione
 - > [PH] par. 3.5
- Somma in virgola mobile
 - [PH] par. 3.5 (escluso 'La moltiplicazione in virgola mobile')

