1 Schémas numériques pour Équations Différentielles Ordinaires

1.1 Le Problème de Cauchy

On s'intéresse à la résolution numérique du problème de Cauchy (P) suivant :

(P)
$$\begin{cases} x'(t) = f(t, x(t)), & t \in [t_0, t_0 + T] \\ x(t_0) = x_0 \end{cases}$$

où $f:[t_0,t_0+T]\times\mathbb{R}^d\to\mathbb{R}^d$ est une fonction donnée, $x_0\in\mathbb{R}^d$ est la condition initiale, et $x(t)\in\mathbb{R}^d$ est la solution recherchée.

1.2 Schémas à un pas explicites

Pour approcher la solution de (P), on construit des schémas numériques. Un schéma à un pas explicite (S) se présente sous la forme générale :

(S)
$$\begin{cases} x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t) \\ x_0 \text{ donn\'e (souvent } x_0 = x(t_0)) \end{cases}$$

où:

- $t_n = t_0 + n\Delta t$ sont les points de la discrétisation en temps, pour $n = 0, \dots, N$.
- $\Delta t = T/N$ est le pas de temps, avec N le nombre total de pas.
- x_n est une approximation de la solution $x(t_n)$.
- $\bullet \ \Phi$ est la fonction d'increment qui caractérise le schéma.

1.3 Exemples de schémas à un pas explicites

1.3.1 Schéma d'Euler explicite

Pour ce schéma, la fonction d'increment est $\Phi(t_n, x_n, \Delta t) = f(t_n, x_n)$. Le schéma s'écrit :

$$x_{n+1} = x_n + \Delta t f(t_n, x_n)$$

1.3.2 Schéma du Point Milieu (Runge-Kutta d'ordre 2)

La fonction d'increment est $\Phi(t_n, x_n, \Delta t) = f\left(t_n + \frac{\Delta t}{2}, x_n + \frac{\Delta t}{2}f(t_n, x_n)\right)$. Le schéma s'écrit :

$$x_{n+1} = x_n + \Delta t f\left(t_n + \frac{\Delta t}{2}, x_n + \frac{\Delta t}{2} f(t_n, x_n)\right)$$

1.3.3 Schéma de Heun (Runge-Kutta d'ordre 2)

La fonction d'increment est $\Phi(t_n, x_n, \Delta t) = \frac{1}{2} [f(t_n, x_n) + f(t_n + \Delta t, x_n + \Delta t f(t_n, x_n))]$. Le schéma s'écrit :

$$x_{n+1} = x_n + \frac{\Delta t}{2} \left[f(t_n, x_n) + f(t_n + \Delta t, x_n + \Delta t f(t_n, x_n)) \right]$$

2 Étude de convergence pour les EDO

On s'intéresse à savoir si la suite $(x_n)_{0 \le n \le N}$ générée par un schéma (S) converge vers la solution x(t) du problème (P) lorsque $\Delta t \to 0$.

2.1 Convergence

Definition 2.1 (Convergence d'un schéma). Le schéma (S) est dit convergent si, pour toute solution x de (P) et pour toute suite $(x_n)_{0 \le n \le N}$ construite par (S) avec $x_0 = x(t_0)$, on a :

$$\lim_{\Delta t \to 0} \left(\max_{0 \le n \le N} \|x_n - x(t_n)\| \right) = 0$$

Remark 2.2. Si la suite $(x_n)_{0 \le n \le N}$ est "bien" construite (par exemple, si le problème (P) admet une solution unique x et si f est de classe C^p assurant une régularité suffisante à x), la convergence peut être établie. L'erreur globale $\max_{0 \le n \le N} \|x_n - x(t_n)\|$ dépend de Δt . En général, la convergence d'un schéma numérique est la conséquence de sa consistance et de sa stabilité (Théorème de Lax-Richtmyer, adapté aux EDO).

2.2 Consistance et Ordre d'un schéma

Remark 2.3. Pour analyser un schéma numérique pour EDO, on procède typiquement en deux étapes :

- 1. On étudie la consistance du schéma (quelle est l'erreur commise en un seul pas ?).
- 2. On examine sa stabilité (comment les erreurs se propagent-elles?).

Ces deux propriétés permettent ensuite de conclure sur la convergence.

2.2.1 Erreur de consistance (Erreur locale de troncature)

Definition 2.4 (Erreur de consistance). Soit x(t) la solution exacte du problème (P). On appelle erreur locale de troncature (ou erreur de consistance) du schéma (S) à l'instant t_{n+1} , la quantité e_{n+1} définie par :

$$e_{n+1} = x(t_{n+1}) - (x(t_n) + \Delta t \Phi(t_n, x(t_n), \Delta t))$$

Cette erreur mesure à quel point la solution exacte x(t) échoue à satisfaire l'équation du schéma numérique.

2.2.2 Ordre d'un schéma

Definition 2.5 (Ordre d'un schéma). Le schéma (S) est dit consistant d'ordre (au moins) $q \ge 1$ si, pour toute solution exacte x(t) de (P) suffisamment régulière, il existe une constante C > 0 (indépendante de Δt) telle que :

$$\max_{0 \le n \le N-1} \|e_{n+1}\| \le C(\Delta t)^{q+1}$$

Autrement dit, $e_{n+1}(\Delta t) = O((\Delta t)^{q+1})$. Si un schéma est consistant, alors $q \ge 1$. Le schéma est dit d'ordre q s'il est d'ordre au moins q et pas d'ordre au moins q+1. Cela signifie que $e_{n+1}(\Delta t) = K(\Delta t)^{q+1} + O((\Delta t)^{q+2})$ avec $K \ne 0$.

Example 2.6 (Étude de consistance du schéma d'Euler explicite). Pour le schéma d'Euler explicite, $\Phi(t, y, \Delta t) = f(t, y)$. L'erreur locale de troncature est, pour une solution x(t) suffisamment régulière :

$$e(t, \Delta t) = x(t + \Delta t) - (x(t) + \Delta t f(t, x(t)))$$

Comme x(t) est solution de (P), on a x'(t) = f(t, x(t)). Donc :

$$e(t, \Delta t) = x(t + \Delta t) - x(t) - \Delta t x'(t)$$

En effectuant un développement de Taylor de $x(t + \Delta t)$ autour de t, en supposant $x \in C^2([t_0, t_0 + T])$:

$$x(t + \Delta t) = x(t) + \Delta t x'(t) + \frac{(\Delta t)^2}{2} x''(t) + O((\Delta t)^3)$$

En substituant ce développement dans l'expression de $e(t, \Delta t)$:

$$e(t, \Delta t) = \left(x(t) + \Delta t x'(t) + \frac{(\Delta t)^2}{2} x''(t) + O((\Delta t)^3)\right) - x(t) - \Delta t x'(t)$$
$$= \frac{(\Delta t)^2}{2} x''(t) + O((\Delta t)^3)$$

Ainsi, pour le schéma d'Euler explicite, l'erreur locale de troncature à l'instant t_n est $e_{n+1} = \frac{(\Delta t)^2}{2}x''(t_n) + O((\Delta t)^3)$. On a q+1=2, donc q=1. Le schéma d'Euler explicite est d'ordre (au moins) 1 si $x \in C^2$. Si de plus $x \in C^3$ et $x''(t_n) \neq 0$ pour au moins un t_n , alors le schéma est exactement d'ordre 1.

2.2.3 Conditions d'ordre pour une fonction d'increment Φ

Remark 2.7 (Régularité de Φ). Soit $\Phi: I \times \mathbb{R}^d \times [0, \Delta t_0] \to \mathbb{R}^d$, où $I = [t_0, t_0 + T]$ et $\Delta t_0 > 0$. La fonction Φ est dite de classe C^p si toutes ses dérivées partielles par rapport à t, x (ou y), et Δt jusqu'à l'ordre p existent et sont continues sur $I \times \mathbb{R}^d \times [0, \Delta t_0]$.

Pour une fonction d'increment Φ de classe C^q , le schéma $x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t)$ est consistant d'ordre au moins q si et seulement si les conditions suivantes sont vérifiées pour tout (t, y) dans le domaine de définition :

1. $\Phi(t,y,0) = f(t,y)$ (Condition pour l'ordre 0, implique $q \ge 1$ pour la consistance)

2.
$$\frac{\partial^k \Phi}{\partial (\Delta t)^k}(t, y, 0) = \frac{1}{k+1} D_t^k f(t, y), \text{ pour } k = 1, \dots, q-1.$$

où $D_t f(t,y)$ est l'opérateur de dérivée totale par rapport à t le long des solutions de l'EDO:

$$D_t f(t, y) = \frac{\partial f}{\partial t}(t, y) + \frac{\partial f}{\partial y}(t, y) \cdot f(t, y)$$

et $D_t^0 f = f$, $D_t^k f = D_t(D_t^{k-1} f)$ pour $k \ge 1$.

Example 2.8 (Étude de consistance du schéma de Runge-Kutta d'ordre 2 (Point Milieu)). Le schéma est $x_{n+1} = x_n + \Delta t f(t_n + \frac{\Delta t}{2}, x_n + \frac{\Delta t}{2} f(t_n, x_n))$. La fonction d'increment est $\Phi(t, y, \Delta t) = f\left(t + \frac{\Delta t}{2}, y + \frac{\Delta t}{2} f(t, y)\right)$. Vérifions les conditions d'ordre :

1. Condition pour $q \ge 1$:

$$\Phi(t, y, 0) = f(t + 0, y + 0 \cdot f(t, y)) = f(t, y)$$

Cette condition est vérifiée. Donc le schéma est au moins d'ordre 1.

2. Condition pour $q \geq 2$ (correspond à k=1 dans la formule générale): On doit vérifier si $\frac{\partial \Phi}{\partial (\Delta t)}(t,y,0) = \frac{1}{2}D_t f(t,y)$. Calculons $\frac{\partial \Phi}{\partial (\Delta t)}$: Soient $u_1(t,\Delta t) = t + \frac{\Delta t}{2}$ et $u_2(y,\Delta t) = y + \frac{\Delta t}{2}f(t,y)$. Alors $\Phi(t,y,\Delta t) = f(u_1,u_2)$.

$$\begin{split} \frac{\partial \Phi}{\partial (\Delta t)}(t,y,\Delta t) &= \frac{\partial f}{\partial u_1}(u_1,u_2) \cdot \frac{\partial u_1}{\partial (\Delta t)} + \frac{\partial f}{\partial u_2}(u_1,u_2) \cdot \frac{\partial u_2}{\partial (\Delta t)} \\ &= \frac{\partial f}{\partial t} \left(t + \frac{\Delta t}{2}, y + \frac{\Delta t}{2} f(t,y) \right) \cdot \frac{1}{2} + \frac{\partial f}{\partial y} \left(t + \frac{\Delta t}{2}, y + \frac{\Delta t}{2} f(t,y) \right) \cdot \left(\frac{1}{2} f(t,y) \right) \end{split}$$

Évaluons en $\Delta t = 0$:

$$\frac{\partial \Phi}{\partial (\Delta t)}(t, y, 0) = \frac{1}{2} \frac{\partial f}{\partial t}(t, y) + \frac{1}{2} \frac{\partial f}{\partial y}(t, y) f(t, y)$$
$$= \frac{1}{2} \left(\frac{\partial f}{\partial t}(t, y) + \frac{\partial f}{\partial y}(t, y) f(t, y) \right)$$
$$= \frac{1}{2} D_t f(t, y)$$

Cette condition est vérifiée. Donc le schéma est au moins d'ordre 2.

3. Condition pour $q \geq 3$ (correspond à k=2 dans la formule générale): On devrait vérifier si $\frac{\partial^2 \Phi}{\partial (\Delta t)^2}(t,y,0) = \frac{1}{3}D_t^2 f(t,y)$. En général, cette condition n'est pas satisfaite pour une fonction f arbitraire. Pour montrer que le schéma n'est pas d'ordre au moins 3 (et donc qu'il est exactement d'ordre 2), il faudrait calculer $\frac{\partial^2 \Phi}{\partial (\Delta t)^2}(t,y,0)$ et montrer que cette expression est différente de $\frac{1}{3}D_t^2 f(t,y)$, ou que le terme g(t,y) dans $e_{n+1}=g(t,y)(\Delta t)^3+O((\Delta t)^4)$ est non nul.

Le schéma du point milieu est donc d'ordre 2.

2.3 Stabilité

Definition 2.9 (Stabilité d'un schéma). Le schéma (S) est dit stable pour une classe de fonctions f s'il existe une constante S > 0, indépendante de Δt , telle que pour toutes suites $(x_n)_{0 \le n \le N}$ et $(y_n)_{0 \le n \le N}$ vérifiant :

$$x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t)$$

$$y_{n+1} = y_n + \Delta t \Phi(t_n, y_n, \Delta t) + \delta_n \quad \text{(perturbation)}$$

pour n = 0, ..., N - 1, où les δ_n sont des perturbations, on ait la majoration :

$$\max_{0 \le n \le N} \|x_n - y_n\| \le S \left(\|x_0 - y_0\| + \sum_{j=0}^{N-1} \|\delta_j\| \right)$$

La stabilité garantit que de petites perturbations (erreurs initiales ou erreurs introduites à chaque pas) n'entraînent pas une divergence incontrôlée des solutions numériques.

Proposition 2.10 (Stabilité du schéma d'Euler explicite). Si la fonction f(t,y) est Lipschitzienne par rapport à y, uniformément en t, c'est-à-dire s'il existe $L_f > 0$ telle que $||f(t,y_1) - f(t,y_2)|| \le L_f ||y_1 - y_2||$ pour tous t, y_1, y_2 , alors le schéma d'Euler explicite est stable.

Preuve. Soient les suites (x_n) et (y_n) définies par :

$$x_{n+1} = x_n + \Delta t f(t_n, x_n)$$

$$y_{n+1} = y_n + \Delta t f(t_n, y_n) + \delta_n$$

Soustrayons les deux équations :

$$x_{n+1} - y_{n+1} = (x_n - y_n) + \Delta t (f(t_n, x_n) - f(t_n, y_n)) - \delta_n$$

En prenant la norme et en utilisant l'inégalité triangulaire et la condition de Lipschitz sur f:

$$||x_{n+1} - y_{n+1}|| \le ||x_n - y_n + \Delta t(f(t_n, x_n) - f(t_n, y_n))|| + || - \delta_n||$$

$$\le ||x_n - y_n|| + \Delta t||f(t_n, x_n) - f(t_n, y_n)|| + ||\delta_n||$$

$$\le ||x_n - y_n|| + \Delta t L_f ||x_n - y_n|| + ||\delta_n||$$

$$= (1 + L_f \Delta t)||x_n - y_n|| + ||\delta_n||$$

Posons $e_n = ||x_n - y_n||$ et $\gamma_n = ||\delta_n||$. On a $e_{n+1} \le (1 + L_f \Delta t)e_n + \gamma_n$. On utilise une version du lemme de Gronwall discret.

Lemma 2.11 (Lemme de Gronwall discret). Soient $(\alpha_n)_{0 \le n \le N}$, $(\gamma_n)_{0 \le n \le N-1}$ des suites de réels positifs ou nuls, et $(\beta_n)_{0 \le n \le N-1}$ une suite de réels positifs ou nuls. Si $\alpha_{n+1} \le (1+\beta_n)\alpha_n + \gamma_n$ pour $n=0,\ldots,N-1$, alors :

$$\alpha_n \le \left(\prod_{j=0}^{n-1} (1+\beta_j)\right) \alpha_0 + \sum_{j=0}^{n-1} \left(\prod_{k=j+1}^{n-1} (1+\beta_k)\right) \gamma_j$$

En utilisant $1+u \leq e^u$, on a $\prod (1+\beta_j) \leq \exp(\sum \beta_j)$. Ainsi, $\alpha_n \leq \exp\left(\sum_{j=0}^{n-1} \beta_j\right) \left(\alpha_0 + \sum_{j=0}^{n-1} \gamma_j\right)$ (en majorant $\exp(-\sum \beta_k) \leq 1$ dans une version plus précise). Plus précisément, si $\alpha_{n+1} \leq (1+B)\alpha_n + \Gamma$ pour $B \geq 0$, alors $\alpha_n \leq (1+B)^n\alpha_0 + \Gamma\sum_{j=0}^{n-1} (1+B)^j \leq e^{nB}\alpha_0 + \Gamma\frac{e^{nB}-1}{B}$. Si Γ_j varie: $\alpha_n \leq e^{\sum_{j=0}^{n-1} \beta_j} \left(\alpha_0 + \sum_{j=0}^{n-1} \gamma_j e^{-\sum_{k=0}^{j} \beta_k}\right)$.

Dans notre cas, $\beta_n = L_f \Delta t$. Donc $\sum_{j=0}^{n-1} \beta_j = nL_f \Delta t$. Comme $n\Delta t \leq N\Delta t = T$:

$$e^{\sum_{j=0}^{n-1} L_f \Delta t} = e^{nL_f \Delta t} < e^{L_f T}$$

Aussi, $e^{-\sum_{k=0}^{j} L_f \Delta t} \leq 1$. Donc, pour tout $n \in \{0, \dots, N\}$:

$$||x_n - y_n|| \le e^{L_f T} \left(||x_0 - y_0|| + \sum_{j=0}^{N-1} ||\delta_j|| \right)$$

Le schéma d'Euler explicite est donc stable avec une constante de stabilité $S = e^{L_f T}$.

Proposition 2.12 (Condition suffisante de stabilité pour Φ Lipschitzienne). Si la fonction d'increment $\Phi(t, y, \Delta t)$ est Lipschitzienne par rapport à y, uniformément en t et Δt , c'est-à-dire s'il existe une constante $\Lambda > 0$ telle que pour tous $y_1, y_2 \in \mathbb{R}^d$, pour tout $t \in [t_0, t_0 + T]$ et pour tout $\Delta t \in [0, \Delta t_0]$:

$$\|\Phi(t, y_1, \Delta t) - \Phi(t, y_2, \Delta t)\| \le \Lambda \|y_1 - y_2\|$$

alors le schéma (S) $x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t)$ est stable, avec une constante de stabilité $S = e^{\Lambda T}$.

Preuve. La preuve est analogue à celle pour le schéma d'Euler explicite. On a :

$$\begin{split} \|x_{n+1} - y_{n+1}\| &\leq \|x_n - y_n + \Delta t (\Phi(t_n, x_n, \Delta t) - \Phi(t_n, y_n, \Delta t))\| + \|\delta_n\| \\ &\leq \|x_n - y_n\| + \Delta t \|\Phi(t_n, x_n, \Delta t) - \Phi(t_n, y_n, \Delta t)\| + \|\delta_n\| \\ &\leq \|x_n - y_n\| + \Delta t \Lambda \|x_n - y_n\| + \|\delta_n\| \\ &= (1 + \Lambda \Delta t) \|x_n - y_n\| + \|\delta_n\| \end{split}$$

2.4 Convergence des schémas à un pas explicite

Le théorème suivant (parfois appelé Théorème de Lax pour les EDO) relie consistance, stabilité et convergence.

Theorem 2.13 (Convergence des schémas à un pas explicites). Si la méthode à un pas explicite (S) est stable et consistante d'ordre $q \ge 1$, alors elle est convergente. De plus, si la solution x(t) du problème de Cauchy (P) est de classe C^{q+1} et si la suite $(x_n)_{0 \le n \le N}$ est générée par (S) avec $x_0 = x(t_0)$, alors il existe une constante K > 0 telle que :

$$\max_{0 \le n \le N} \|x(t_n) - x_n\| \le K(\Delta t)^q$$

Plus précisément, si C_{cons} est la constante de l'erreur de consistance (i.e. $||e_{n+1}|| \le C_{cons}(\Delta t)^{q+1}$) et S est la constante de stabilité, on a :

$$\max_{0 \le n \le N} \|x(t_n) - x_n\| \le S \sum_{j=0}^{N-1} \|e_{j+1}\| \approx S \cdot N \cdot C_{cons}(\Delta t)^{q+1} = S \cdot \frac{T}{\Delta t} \cdot C_{cons}(\Delta t)^{q+1} = S \cdot C_{cons} \cdot T \cdot (\Delta t)^q$$

L'erreur globale est donc en $O((\Delta t)^q)$.

Preuve (Idée de la preuve). Soit x(t) la solution exacte. On a $x(t_{n+1}) = x(t_n) + \Delta t \Phi(t_n, x(t_n), \Delta t) + e_{n+1}$, où e_{n+1} est l'erreur locale de troncature. Le schéma numérique est $x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t)$. Soit $\varepsilon_n = x(t_n) - x_n$ l'erreur globale au temps t_n . $\varepsilon_{n+1} = x(t_{n+1}) - x_{n+1} = (x(t_n) - x_n) + \Delta t (\Phi(t_n, x(t_n), \Delta t) - \Phi(t_n, x_n, \Delta t)) + e_{n+1}$. En utilisant la condition de Lipschitz pour Φ (qui découle de la stabilité pour de nombreux schémas ou est une hypothèse pour la stabilité plus générale): $\|\varepsilon_{n+1}\| \leq \|\varepsilon_n\| + \Delta t \Lambda \|\varepsilon_n\| + \|e_{n+1}\| = (1 + \Lambda \Delta t) \|\varepsilon_n\| + \|e_{n+1}\|$. Puisque $x_0 = x(t_0)$, $\varepsilon_0 = 0$. L'erreur locale $\|e_{n+1}\| \leq C_{cons}(\Delta t)^{q+1}$. Par le lemme de Gronwall, avec $\alpha_n = \|\varepsilon_n\|$, $\beta_n = \Lambda \Delta t$, $\gamma_n = C_{cons}(\Delta t)^{q+1}$:

$$\|\varepsilon_n\| \le e^{n\Lambda\Delta t} \left(\|\varepsilon_0\| + \sum_{j=0}^{n-1} C_{cons}(\Delta t)^{q+1} e^{-(j+1)\Lambda\Delta t} \right)$$

En majorant $e^{-(j+1)\Lambda\Delta t} \leq 1$ et $e^{n\Lambda\Delta t} \leq e^{\Lambda T}$:

$$\|\varepsilon_n\| \le e^{\Lambda T} \sum_{j=0}^{n-1} C_{cons}(\Delta t)^{q+1} = e^{\Lambda T} n C_{cons}(\Delta t)^{q+1}$$

Comme $n\Delta t \leq T$, on a $n \leq T/\Delta t$.

$$\|\varepsilon_n\| \le e^{\Lambda T} \frac{T}{\Delta t} C_{cons}(\Delta t)^{q+1} = (e^{\Lambda T} T C_{cons})(\Delta t)^q$$

Ceci montre que $\max_{0 \le n \le N} \|\varepsilon_n\| = O((\Delta t)^q)$. La constante S du théorème est $e^{\Lambda T}$ et la constante c est C_{cons} .