0109 update on ABCD simulation

Instead of 2 events, Simulated as 4 events

- 3 PVC x 2 HL cue x 3 HML stim
- 4 event type: 1) cue, 2) expectation rating, 3) stimulus administration, 4) judgmer

Design

Originally coded for 2 events (cue+expect / stimuli + actual) updated to code for 4 events with 4 jitters.

event1duration = 1; % duration of cue

```
event2duration = 4; % duration of expect
event3duration = 9; %
                                                                                                   Check if this is correct?
event4duration = 4;
             = 18; %4 % neutral, 2 levels of loss, 2 levels of gain
trialtypes
trialspertype = 36;
ISI1 is constant (as opposed to jittered).
ISI1constantvalue = 0; % in seconds, used only if ISI2isconstant
isidistribution = 'exponential'; % 'exponential' or 'geometric'
ISI1min = 1; %0 % Constraints: Psychological (can subjects process cue) and statistical (longer = less BOLD nonlinearity, which is difficult to model).
ISI1mean = 2; %2 % For 'exponential' only. Includes ISImin. There is an optimal empirical value -- longer is better for deconvolution/FIR, but we also need to fit
                    % For 'geometric' only. There is an optimal empirical value -- longer is better for deconvolution/FIR, but we also need to fit within total scan time c
ISI1step = .65;
ISI1max = 5; %4 % Truncate to avoid VERY long ISIs
                      % Constraints: Psychological (can subjects process cue) and statistical (longer = less BOLD nonlinearity, which is difficult to model).
ISI2min = 0; %0
                        % For 'exponential' only. Includes ISImin. There is an optimal empirical value -- longer is better for deconvolution/FIR, but we also need to fit
ISI2mean = 0; %2
                   % For 'geometric' only. There is an optimal empirical value -- longer is better for deconvolution/FIR, but we also need to fit within total scan time cor
ISI2step = 0;
ISI2max = 0; \%4
                        % Truncate to avoid VERY long ISIs
ISI3min = 0.5; %0
                        % Constraints: Psychological (can subjects process cue) and statistical (longer = less BOLD nonlinearity, which is difficult to model).
                        % For 'exponential' only. Includes ISImin. There is an optimal empirical value -- longer is better for deconvolution/FIR, but we also need to fit
ISI3mean = 1; %2
                    % For 'geometric' only. There is an optimal empirical value -- longer is better for deconvolution/FIR, but we also need to fit within total scan time c
ISI3step = .65;
                        % Truncate to avoid VERY long ISIs
ISI3max = 5; %4
ISI4min = 0; %0
                      % Constraints: Psychological (can subjects process cue) and statistical (longer = less BOLD nonlinearity, which is difficult to model).
                        % For 'exponential' only. Includes ISImin. There is an optimal empirical value -- longer is better for deconvolution/FIR, but we also need to fit
ISI4mean = 0;
                   % For 'geometric' only. There is an optimal empirical value -- longer is better for deconvolution/FIR, but we also need to fit within total scan time cor
ISI4step = 0;
ISI4max = 0;
                        % Truncate to avoid VERY long ISIs
```

72 regressors 25 contrasts of interest Current version

0.9

8.0

0.7

0.6

0.3

0.2

0.1

0.5

1.5

True effect size

Power 0.5

hrf fit

overall cue

P cue effect P cue effect tim

P stim linear P stim interaction

V cue effect V cue effect_stim V stim linear V stiminteraction

overall linear stim

overall interaction

P judgement linear

V judgement linear

C judgement linear

C cue effect C cue effect tim

- C stim linear - C stiminteraction

P judgment cue interaction

V judgment cue interaction

C judgment cue interaction

0.9

8.0

0.7

0.6

Power 0.5

0.3

0.2

0.1

0.9

0.7

Dower 0.5

0.3

0.1

0.5

1.5

True effect size

misfit

72 regressors 25 contrasts of interest

hrf fit

Wouldn't simulate. Looking into it.

misfit

72 regressors 25 contrasts of interest

judgment

hrf fit

misfit

72 regressors 25 contrasts of interest

0106

- code map
- 2 simulations

Code map

Input

onset

- Cell structure
- Each regressor as column
- Each column has onsets

Example

Example

- 6 regressors (2 x 3 design)
- 12 trials per each cell

Design discussion (Dec 19)

- Efficiency / run length (previous version. 1219 version)
- 5s plateau. 3 mental rotations.
- Arm move the thermode. (after every session)
- Mix the trials (not separate PVC conditions)
- 48 49 50 celcius.
- Mental rotation same and different is balanced out so not a problem

18 regressors 3 contrasts of interest

54 regressors 5 contrasts of interest

