

Deep Compressed sensing

Guillo Clément Meunier Dimitri

ENS Paris Saclay, MVA Master

Compressed Sensing with Generative Models

Deep Compressed Sensing

Experiments

Goal

- recover $x \in \mathbb{R}^n$ with m measurements, m << n
- Formalization: y = Ax

Hypothesis

- x lives in a high dimensional space and has to be sparse (with sparsity s) or approximatly sparse
- requires a minimal number of measures $s \log(en/s)$ if A is Gaussian random matrix

Problem

Optimization problem: For given A and y, solve,

$$\underset{x \in \mathbb{R}^n: Ax = y}{\text{arg min}} \|x\|_1 \quad \text{Basis Pursuit}$$

Noisy formulation:

$$\mathop{\arg\min}_{x \in \mathbb{R}^n: \|Ax-y\|_2^2 \leq \delta} \|x\|_1 \qquad \text{ Denoising Basis Pursuit}$$

Equivalent to the LASSO,

$$\underset{x \in \mathbb{R}^{n}}{\arg\min} \frac{1}{2} \left\| Ax - y \right\|_{2}^{2} + \lambda \left\| x \right\|_{1}$$

Solution, constraints

- Convex optimization allows to solve this problems
 (Linear programming, simplex methods, interior point methods)
- Can be relaxed with approximate sparsity and change-of-basis (wavelets, Fourier)
- The sparsity hypothesis is still very strong
- Use of Generative models in order to relax the hypothesis

Compressed Sensing with Generative Models

Deep Compressed Sensing

Experiments

Generative Models

- let $G: z \longmapsto \hat{x}$ be a Generative model, $z \in \mathbb{R}^k$ and $\hat{x} \in \mathbb{R}^n$
- z belongs to the latent space such that k << n
- we want to use the generative power of G to reconstruct x
- If $z \sim p_z$, G is trained such that $p_{G(z)} \approx p_{data}$
- Two main types of generative models: Generative Adversarial Networks (GAN) and Variational Auto Encoders (VAE)

Pre-trained Generative model

• new problem:

$$\hat{z} \in \operatorname*{arg\;min}_{z \in \mathbb{R}^k} \|AG(z) - y\|_2^2$$

- use of a pre-trained generative model G
- optimization in the latent space in order to find \hat{z} , highly non convex
- use of deep learning libraries to back-propagate through the generative model and perform gradient descent

guarantees, limits

- (Ashish Bora et al): with only m = O(kdlog(n)) measures, $G(\hat{z})$ can be sufficiently closed to x
- we do not need the sparsity constraint anymore, *k* replaces the sparsity *s* here
- we need the signal to lie in the range of G
- performance limited by the generative power of G and the dimension of the latent space
- trade-off between the generative power of G and the required number of measurements
- Alternative $(\hat{z},\hat{v}) \in \mathop{\mathrm{arg\,min}}_{z \in \mathbb{R}^k, v \in \mathbb{R}^n} \|A(G(z)+v)-y\|_2^2 + \|v\|_1$, unstable

Compressed Sensing with Generative Models

Deep Compressed Sensing

Experiment

Learning Generative models

- We use a pretrain generative model in the previous slides
- We want now learn the generative model during the reconstruction process
- Deep compressed sensing algorithm: $G \to G_{\theta}$ is optimized such that $(A(G_{\theta}(\hat{z}_i)) y_i)^2$ is small for all observations i.
- need to avoid the degenerate mapping of G into the null space of A, pseudo-RIP condition enforced by minimizing an empirical loss $\frac{1}{N_s}\sum_{j=1}^{N_s}\left[\left(\left\|A(x_1^j-x_2^j)\right\|_2-\left\|x_1^j-x_2^j\right\|_2\right)^2\right]$

Algorithm 1

Algorithm 1: DCS Algorithm

Data: Input minibatchs of data $\{x_i\}_{i=1}^N$

initialize A, G_{θ} , learning rates α_z , α_{θ} initialization;

$$\begin{aligned} & \text{for } i = 1 \text{ to N do} \\ & y_i = A(x_i); \\ & \hat{z}_i \sim p_z(z); \\ & \text{for for } t = 1 \text{ to T do} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

$$\mathcal{L}_G = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\theta}(y_i, \hat{z}_i)$$

Sample $(x_1^j, x_2^j)_{j=1}^{N_s}$ with (x_1^j, x_2^j) coming from the data or the Generator G_θ

$$\mathcal{L}_{A} = \frac{1}{N_{s}} \sum_{j=1}^{N_{s}} \left[\left(\left\| A(x_{1}^{j} - x_{2}^{j}) \right\|_{2} - \left\| x_{1}^{j} - x_{2}^{j} \right\|_{2} \right)^{2} \right]
\theta = \theta - \alpha_{\theta} \frac{\partial}{\partial \theta} (\mathcal{L}_{G} + \mathcal{L}_{A})$$

- requires an inner loop for each observation, very costly
- The second algorithm aims to learn the measurement function during the training,
- ullet now, $A o A_\phi(.)$ with A a **function** represented by another neural network.

Algorithm 2

Algorithm 2: DCS Algorithm

Data: Input minibatchs of data $\{x_i\}_{i=1}^N$

initialize A_{ϕ} , G_{θ} , learning rates α_z , α_{θ} , α_{ϕ} initialization;

for
$$i = 1$$
 to N do

$$y_i = A_{\phi}(x_i);$$

 $\hat{z}_i \sim p_z(z);$

for for t = 1 to T do

Optimize
$$\hat{z}_i = \hat{z}_i - \alpha_z \frac{\partial}{\partial z} \mathbb{E}(y_i, \hat{z}_i)$$

$$\mathcal{L}_{G} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\theta}(y_{i}, \hat{z}_{i})$$

Sample $(x_1^j, x_2^j)_{j=1}^{N_s}$ with (x_1^j, x_2^j) coming from the data or the Generator G_θ

$$\mathcal{L}_{A} = \frac{1}{N_{s}} \sum_{j=1}^{N_{s}} \left[\left(\left\| A_{\phi}(x_{1}^{j} - x_{2}^{j}) \right\|_{2} - \left\| x_{1}^{j} - x_{2}^{j} \right\|_{2} \right)^{2} \right]$$

$$\theta = \theta - \alpha_{\theta} \frac{\partial}{\partial \theta} \hat{\mathcal{L}}_{G}$$

$$\phi = \phi - \alpha_{\phi} \frac{\partial}{\partial \phi} \mathcal{L}_{A}$$

- closed to Generative Adversarial Network frame work with G the Generator and D the discriminator
- The obtained results during our experiments are not relevant, G does not train correctly, need a lot of computation time to study the algorithm behaviour
- Our experiments focus on the first methods

Compressed Sensing with Generative Models

Deep Compressed Sensing

Experiments

Experiments description

- work on the data set Fashion Mnist more complex than the classical Mnist
- Comparison between Basis Pursuit results, LASSO and Compressed sensing with generative models
- We use VAE generative models with different possible architectures here

Example of images from Mnist

Training Image Example: Fashion MNIST (10 classes)

Reconstruction error by experiment

Reconstruction error obtained by experiment:

	m=50	m=300	m=700
Basis Pursuit	0.197316	0.141270	0.010251
LASSO	0.197908	0.136915	0.010131
VAE reg=0.1 (fc)	0.023475	0.051690	0.075682
VAE reg=0 (fc)	0.009879	0.007643	0.007189
VAE reg=0.1 (cnn)	0.025307	0.051965	0.076860
VAE reg=0, (cnn)	0.025307	0.051965	0.076860
Sparse-VAE (fc)	0.010684	0.007541	0.007273
Sparse-VAE (cnn)	0.043342	0.009443	0.008696

Qualitative results LASSO

Top: Original cloth images
2nd row: Reconstruction with 50 measurements
3nd row: Reconstruction with 300 measurements
4nd row: Reconstruction with 700 measurements
with LASSO

Qualitative results VAE

Top: Original cloth images
2nd row: Reconstruction with 50 measurements
3nd row: Reconstruction with 300 measurements
4nd row: Reconstruction with 700 measurements
with Fully connected VAE (regularization=0, z dim=100)

Generation with VAE

Training Image Example: Fashion MNIST (10 classes)

Observations

- VAE is better with a small number of measurements
- The Basis pursuit and LASSO needs a lot of measurements in order to perform correctly
- generative model capacity limits the performances even if the number of measurements increases

Thank You for Listening.