

Novel Slot Detection Trong Hệ Thống Đối Thoại Hướng Nhiệm Vụ

GVHD: ThS. Nguyễn Văn Kiệt

Sinh Viên: Trần Triệu Vũ - 19522539

Võ Minh Trí - 19522396

Phạm Đức Thể - 19522253

Khoa Khoa học và Kỹ thuật thông tin Bộ môn Khoa học dữ liệu

CONTENTS

- 1. Introduction
- 2. Input/output
- 3. Dataset
- 4. Model
- 5. Experiment and Result Analysis
- 6. Conclusion
- 7. Demo

Introduction

What is Slot filling?

- Slot filling plays a vital role to understand user queries in personal assistants such as Alexa (Amazon), Siri (Apple), Google Assistant (Google), etc.
- It aims at identifying a sequence of tokens and extracting semantic constituents from the user queries.
- Given a large scale pre-collected training corpus, existing neuralbased models have been actively applied to slot filling and achieved promising results.

Introduction

What is Novel Slot Detection?

- A reliable slot filling model should not only predict the pre-defined slots but also detect potential unknown slot types to know what it doesn't know, which we call Novel Slot Detection (NSD).
- Novel Slot (NS) as new slot types that are not included in the predefined slot set.
- NSD aims to discover potential new or out-of-domain (OOD) entity types to strengthen the capability of a dialogue system based on in-domain (IND) pre-collected training data.

Input/output

An example of Novel Slot Detection in the taskoriented dialogue system.

Dataset

Dataset	train utterances	dev utterances	test utterance		
<u>Snips</u>	13,084	700	700		
ATIS	4,478	500	893		

Dataset

- Random select part of slot types in 2 dataset as unknown slots
 15%
 30%
- For OOD intent detection, we just need to remove these sentences in training and validation set. However, for Novel Slot Detection, a sentence perhaps contains both in-domain slots and unknown slots, which is nontrivial for tackling unknown slots at the token level.

Dataset

Therefore, they propose three different processing strategies as follows:

Replace	Mask	Remove
Label the unknown slot values with all O in the training set while the original values remain unchanged.	Label the unknown slot values with all <i>O</i> and mask these slot values with a special token <i>MASK</i> .	All the sentences containing unknown slots are removed.

Original U	Original Utterance		is	this	my	world	by	leo	arnaud
Original S	Slot Filling Labels	О	B-album	I-album	I-album	I-album	O	B -artist	I-artist
Replace	play	is	this	my	world	by	leo	arnaud	
	Kepiace	О	O	O	O	O	O	B-artist	I-artist
Strategy	Mask	play	MASK	MASK	MASK	MASK	by	leo	arnaud
Strategy		О	O	O	O	O	O	B-artist	I-artist
	Remove	-	-	-	-	-	-	-	-
	Kemove	-	-	-	-	-	-	-	-

- In the training stage, we either train a multiple-class classifier or binary classifier using different training objective. We use public BERT-large embedding layer and BiLSTM-CRF for token level feature extraction. Then, in the test stage, we use the typical neural multiple classifier to predict the in-domain slot labels.
- Meanwhile, we use the detection algorithm, MSP or GDA to figure out novel slot tokens. Finally, we override the slot token labels which are detected as NS.

Training objective:

In-domain slot								
Multiple classifier	Binary classifier							
Refers to the traditional slot filling objective setting	Non-O or O							

Training objective: in test stage

In-domain slot	Novel slot detection								
Multiple	Multiple	Binary	Multiple + Binary						
classifier	classifier	classifier							

Multiple + Binary: the token = "NS" only both classifiers predict it as NS.

Detection algorithm:

Maximum Softmax Probability	Gaussian Discriminant Analysis
	Is a generative distancebased classifier for out-of-domain detection with Euclidean space.

Distance strategy

- In original GDA, when the Minimum distance is greater than a certain threshold, it is predicted to be "ns".
- Author propose a novel strategy named Difference, which uses the maximum distance minus the minimum distance, when the difference value of a target is less than a threshold, it is predicted as "ns".

Experiment

Model			5%			15%		30%			
		IND	NSD		IND	NSD		IND	NSD		
detection method	objective	distance stragy	Span F1	Span F1	Token F1	Span F1	Span F1	Token F1	Span F1	Span F1	Token F1
GDA	multiple	minimum	92.33	28.27	58.09	85.21	18.46	42.11	87.32	17.21	42.14

Bảng V: Kết quả thực nghiệm trên Snips-NSD 5%, 15%, 30%.

Models		5%			15%			30%			
Models			IND	N	SD	IND	N	SD	IND	N	SD
detection method	objective	distance strategy	Span F1	Span F1	Token F1	Span F1	Span F1	Token F1	Span F1	Span F1	Token F1
	binary	-	87.21	12.34	25.16	71.44	12.31	39.50	58.88	8.73	40.38
MSP	multiple	-	88.05	14.04	30.50	79.71	20.97	40.02	78.52	25.26	46.91
	binary+multiple	-	89.59	23.58	37.55	83.72	24.70	45.32	79.08	30.66	52.10
	binary	difference	87.95	23.83	35.83	83.65	22.06	43.99	78.72	32.50	44.13
MSP	binary	minimum	61.29	10.36	17.08	49.11	16.91	31.10	48.07	15.56	33.78
GDA	multiple	difference	93.14	29.73	45.99	90.07	31.96	53.02	85.56	36.16	54.55
	multiple	minimum	93.10	31.67*	46.97*	90.18	32.19	53.75*	86.26*	38.64*	55.24*

Table 5: IND and NSD results with different proportions (5%, 15% and 30%) of classes are treated as unknown slots on Snips-NSD. * indicates the significant improvement over all baselines (p < 0.05).

	Models		5%			15%			30%		
Models		IND NSD		IND	IND NSD		IND	IND NSD			
detection method	objective	distance strategy	Span F1	Span F1	Token F1	Span F1	Span F1	Token F1	Span F1	Span F1	Token F1
	binary	-	92.04	19.73	29.63	91.74	23.40	33.89	80.49	21.88	39.17
MSP	multiple	-	94.33	27.15	31.16	92.54	39.88	42.29	87.63	40.42	47.64
	binary+multiple	-	94.41	32.49	43.48	93.29	41.23	43.13	90.14	41.76	51.87
	binary	difference	93.69	27.02	34.21	92.13	30.51	36.30	88.73	30.91	45.64
CDA	binary	minimum	93.57	15.90	20.96	90.98	24.53	27.26	88.21	26.40	39.83
GDA	multiple	difference	95.20	47.78*	51.54*	93.92	50.92*	52.24*	92.02	51.26*	56.59*
	multiple	minimum	95.31*	41.74	45.91	93.88	43.78	46.18	91.67	45.44	52.37

Table 6: IND and NSD results with different proportions (5%, 15% and 30%) of classes are treated as unknown slots on ATIS-NSD. * indicates the significant improvement over all baselines (p < 0.05).

[E] info@uit.edu.vn

Result

Author's

Conclusion

- Research about Novel Slot Detection.
- Experiment on Snips-NSD.
- Analysis the result, challenge and suggest development directions for future research.

Demo

Thanks for watching