Algorithm Foundations of Data Science and Engineering Welcome Tutorial :-) Tutorial 5

GAO Ming

DaSE @ ECNU

25 Mar., 2019

Tutorial 5

1. Given a matrix

$$A = \left(\begin{array}{cc} 1 & 3 \\ 3 & 4 \end{array}\right)$$

- a. Using the Rayleigh Quotient method to find the largest eigenvalue λ_1 ;
- b. Knowing that 1 is closer to the other eigenvalue λ_2 than to λ_1 , find it and corresponding eigenvector.
- 2. By using power method, find the second largest eigenvalue λ_2 and corresponding eigenvector \mathbf{v}_2 of a matrix A, where λ_1 and \mathbf{v}_1 are the largest eigenvalue and corresponding eigenvector.
- 3. Find the eigenpairs for the following matrix:

$$\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\right)$$

4. For any matrix A, prove that both AA^T and A^TA are symmetric and semi-positive definite.