Package 'SPIGA'

October 12, 2022

Type Package

Title Compute SPI Index using the Methods Genetic Algorithm and Maximum Likelihood
Version 1.0.0
Date 2016-06-09
Maintainer Iván Ayala-Bizarro <ivan.ayala@unh.edu.pe></ivan.ayala@unh.edu.pe>
NeedsCompilation no
Description Calculate the Standardized Precipitation Index (SPI) for monitoring drought, using Artificial Intelligence techniques (SPIGA) and traditional numerical technique Maximum Likelihood (SPIML). For more information see: http://drought.unl.edu/monitoringtools/downloadablespiprogram.aspx.
Depends GA
License GPL-2
LazyData TRUE
Encoding UTF-8
Repository CRAN
Author Iván Ayala-Bizarro [aut, cre], Jessica Zúñiga-Mendoza [aut]
Date/Publication 2016-06-16 18:26:21
R topics documented:
Drought Index
Index

2 Drought Index

Drought Index	Calculation of Standardized Precipitation Index, using the Genetic Algorithm Method (SPIGA) and Maximum Likelihood (SPIML)

Description

Calculate the standardized precipitation index (SPI) for monitoring drought using the technique of Genetic Algorithm (SPIGA) and Maximum Likelihood (SPIML) of a series of monthly rainfall for different time scales.

Usage

```
SPIGA(Pmon, scale = 3, population = 500, maxIter = 50, plotGA = FALSE, plotCDF = FALSE)
SPIML(Pmon, scale =3)
```

Arguments

Pmon	monthly precipitation series ordered according to time. It is a data frame with columns: year, month, station 1, station 2, etc.
scale	an integer value representing the time scale of analysis. The most common are 1, 3, 6, 9, 12, 48, etc.
population	an integer value that sets the number of population for the use of the technique of Genetic Algorithm.
maxIter	an integer value that sets the maximum number of iterations also called cycles within the concept of Genetic Algorithm.
plotGA	optional, value Boolean default false. Shows the performance versus the number of cycles in the Genetic Algorithm.
plotCDF	optional, value Boolean default false. Shows the cumulative distribution function of each station. The graphics are monthly.

Details

The SPIGA and SPIML, are functions to calculate the SPI using Artificial Intelligence techniques - Genetic Algorithms (GA) and numerical method - Maximum Likelihood (ML) and both provide quantitative results for monitoring DROUGHT. The GA optimize the parameters alpha and beta of the probability function Gamma given by McKee.

The population parameter must be an integer and balanced value, large values can generate higher time run, ie, high computational effort and small values can influence the accuracy of the results. By plotGA option and its corresponding graph, you can see the number of cycles to obtain a proper balance of the accuracy of the results and the computational effort.

Input data: similar to Pm_Pisco.

Year	Mon	st_1	st_2	st_3	st_4
1981	1	120.25	125.25	90.55	150.25

Drought Index 3

1981	2	145.25	140.25	120.70	145.50
1981	3	120.80	150.28	90.50	130.40
1981	4	90.25	80.25	70.52	120.40
1981	5	50.25	58.25	60.50	80.50
1981	6	40.25	38.45	80.25	50.40
1981	7	20.25	30.69	50.40	40.40
1981	8	1.25	8.85	10.40	25.80
1981	9	25.25	14.25	5.80	20.80
1981	10	13.25	10.23	10.50	30.45
1981	11	50.25	40.25	30.50	80.50
1981	12	80.25	90.52	80.70	90.40
1982	1	145.80	110.25	105.40	120.25
		•	•	•	•
•	•	•	•	•	•

Value

Functions SPIGA and SPIML return values saved in .txt formats (Tabular) and .pdf (graphics). They are located in the working folder of R [getwd()].

Note

Dependencies: the SPIGA function, depend on the library GA.

Author(s)

Iván Arturo Ayala Bizarro <ivan.ayala@unh.edu.pe> Jessica Zúñiga Mendoza <zumeje@gmail.com>

References

McKee, Thomas B. and Doesken, Nolan J. and Kleist, John. 1993. The relationship of Drought Frequency and Duration to Time Scales. *Eighth Conference on Applied Climatology*

A. Belauneh and J. Adamowski. Standard Precipitation Index Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Support Vector Regression. *Applied Computational Intelligence and Soft Computing*, http://dx.doi.org/10.1155/2012/794061

See Also

SPIFromParameters to calculate the standardized precipitation index, from alpha and beta parameter of the Gamma function.

Examples

```
#### Load data
data(Pm_Pisco)
Pmon<-Pm_Pisco  # dataframe Precipitation</pre>
```

```
summary(Pm_Pisco)
                  # view summary
Pmon<-Pm_Pisco[,]</pre>
#### Computing SPI with Genetic Algorithms
pob
        <-50 # Define population number
        <-10
                    # Define Max iteration
iMax
# Total stations calculation. It may take some time.
#SPIGA(Pmon, scale=3, population=pob, maxIter = iMax, plotGA=TRUE, plotCDF=TRUE)
# station 1 computing
Pmon1<-data.frame(Pmon[,1:2], Pmon$Pm_St1)</pre>
SPIGA(Pmon1, scale=3, population=pob, maxIter = iMax)
# station 2 computing
Pmon2<-data.frame(Pmon[,1:2], Pmon$Pm_St2)</pre>
SPIGA(Pmon2, scale=3, population=pob, maxIter = iMax)
#### Computing SPI with Maximun Likelihood
SPIML(Pmon, scale=3)
```

Drought Index from Parameters

Calculation of standardized precipitation index from alpha and beta parameter of the Gamma function.

Description

calculate the standardized precipitation index, from alpha and beta parameter of the Gamma function.

Usage

```
SPIFromParameters(Pmon, scale =3, Param_Alpha, Param_Beta)
```

Arguments

Pmon	monthly precipitation series ordered according to time. It is a data frame with columns: year, month, station 1, station 2, etc.
scale	an integer value representing the time scale of analysis. The most common are $1,3,6,9,12,48,\text{etc.}$
Param_Alpha	data frame monthly data values corresponding to the alpha parameter to the function Gamma.
Param_Beta	data frame monthly data values corresponding to the alpha parameter to the function Gamma.

Details

Analysis stations are in the columns of dataframe. the apha and beta parameters, are monthly and are in the rows of dataframe.

Input data: similar to Pm_Pisco.

st_1	st_1	st_2	st_3
9.584860915	9.227918987	10.35269003	8.433823824
13.76378505	15.02620223	12.1021093	10.85133914
26.09112343	17.41749632	21.10924889	23.53649421
17.34996675	17.4451073	13.00894394	16.66595319
9.943259493	9.46815537	9.164645239	9.455850664
5.103175852	5.041710686	4.080851346	5.790986084
2.85804336	3.042484994	2.797962575	2.645188236
3.033862506	3.183267843	3.435303986	2.631287947
3.815308513	2.627317533	3.550365645	3.66482456
7.430925356	3.956716609	7.023105167	7.540706878
6.303310502	5.339943557	6.358902249	5.556660824
5.84110559	5.899534971	6.581657735	4.889599504
	9.584860915 13.76378505 26.09112343 17.34996675 9.943259493 5.103175852 2.85804336 3.033862506 3.815308513 7.430925356 6.303310502	9.5848609159.22791898713.7637850515.0262022326.0911234317.4174963217.3499667517.44510739.9432594939.468155375.1031758525.0417106862.858043363.0424849943.0338625063.1832678433.8153085132.6273175337.4309253563.9567166096.3033105025.339943557	9.584860915 9.227918987 10.35269003 13.76378505 15.02620223 12.1021093 26.09112343 17.41749632 21.10924889 17.34996675 17.4451073 13.00894394 9.943259493 9.46815537 9.164645239 5.103175852 5.041710686 4.080851346 2.85804336 3.042484994 2.797962575 3.033862506 3.183267843 3.435303986 3.815308513 2.627317533 3.550365645 7.430925356 3.956716609 7.023105167 6.303310502 5.339943557 6.358902249

Value

return values of standardized precipitation index in .txt formats.

Author(s)

Iván Arturo Ayala Bizarro <ivan.ayala@unh.edu.pe> Jessica Zúñiga Mendoza <zumeje@gmail.com>

References

McKee, Thomas B. and Doesken, Nolan J. and Kleist, John. 1993. The relationship of Drought Frecuency and Duration to Time Scales. *Eighth Conference on Applied Climatology*

A. Belauneh and J. Adamowski. Standard Precipitation Index Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Support Vector Regression. *Applied Computational Intelligence and Soft Computing*, http://dx.doi.org/10.1155/2012/794061

Examples

```
#### Load data
data(Pm_Pisco)
data(alphaGA_SPI3)
data(betaGA_SPI3)

#### Computing SPI with Genetic Algorithms
Pmon<-Pm_Pisco
Param_Alpha <- alphaGA_SPI3
Param_Beta <- betaGA_SPI3</pre>
```

SPIFromParameters(Pmon, scale =3, Param_Alpha, Param_Beta)

Generic methods for spei objects $% \frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}$

Generic methods for SPIGA objects.

Description

Generic methods for extracting information and plotting SPIGA objects.

Usage

```
calcSPI(Pt,alpha, beta,m, nd)
```

Arguments

Pt monthly precipitation series.

alpha parameter to Gamma function.

beta parameter to Gamma function.

Mumber of zeros in the column.

nd Number total data.

Author(s)

Iván Arturo Ayala Bizarro <ivan.ayala@unh.edu.pe> Jessica Zúñiga Mendoza <zumeje@gmail.com> SPIDataset 7

References

McKee, Thomas B. and Doesken, Nolan J. and Kleist, John. 1993. The relationship of Drought Frequency and Duration to Time Scales. *Eighth Conference on Applied Climatology*

A. Belauneh and J. Adamowski. Standard Precipitation Index Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Support Vector Regression. *Applied Computational Intelligence and Soft Computing*, http://dx.doi.org/10.1155/2012/794061

SPIDataset

The data set for illustratrating the functions of the SPIGA package

Description

The set used, data are monthly rainfall (1981-2015) and the dimensionless parameters to calculate the SPI drought.

Usage

```
data(Pm_Pisco)
data(alphaGA_SPI3)
data(betaGA_SPI3)
```

Format

Pm_Pisco dataframe with:

YEAR monthly precipitation totals, in mm.

MONTH monthly precipitation totals, in mm.

P1 monthly precipitation totals st-1, in mm.

P2 monthly precipitation totals st-2, in mm.

... monthly precipitation totals st-n, in mm.

alphaGA_SPI3 dataset: monthly alpha parameter.

mon month analysis

st-1 monthly alpha parameter station 1

st-2 monthly alpha parameter station 2

st-n monthly alpha parameter station n

betaGA_SPI3 dataset: monthly beta parameter.

mon month analysis

st-1 monthly beta parameter station 1

st-2 monthly beta parameter station 2

st-n monthly beta parameter station n

8 SPIDataset

Author(s)

Iván Arturo Ayala Bizarro <ivan.ayala@unh.edu.pe> Jessica Zúñiga Mendoza <zumeje@gmail.com>

Source

The Pm_Pisco data were obtained from the Peruvian Interpolation data of the SENAMHI's Climatological and Hidrological Observations, SENAMHI-PERU. http://peruclima.pe/.

References

McKee, Thomas B. and Doesken, Nolan J. and Kleist, John. 1993. The relationship of Drought Frequency and Duration to Time Scales. *Eighth Conference on Applied Climatology*

A. Belauneh and J. Adamowski. Standard Precipitation Index Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Support Vector Regression. *Applied Computational Intelligence and Soft Computing*, http://dx.doi.org/10.1155/2012/794061

Examples

```
data(Pm_Pisco)
names(Pm_Pisco)
summary(Pm_Pisco)

data(alphaGA_SPI3)
names(alphaGA_SPI3)
summary(alphaGA_SPI3)
data(betaGA_SPI3)
names(betaGA_SPI3)
summary(betaGA_SPI3)
```

Index

```
alphaBetaMV (Generic methods for spei
        objects), 6
alphaGA_SPI3 (SPIDataset), 7
betaGA_SPI3 (SPIDataset), 7
calcSPI (Generic methods for spei
        objects), 6
distEmpiric (Generic methods for spei
        objects), 6
Drought Index, 2
Drought Index from Parameters, 4
fitnessGamma (Generic methods for spei
        objects), 6
Generic methods for spei objects, 6
matrizToSerie (Generic methods for
        spei objects), 6
plotSerieStandart(Generic methods for
        spei objects), 6
Pm_Pisco (SPIDataset), 7
SPIDataset, 7
SPIFromParameters, 3
SPIFromParameters (Drought Index from
        Parameters), 4
SPIGA (Drought Index), 2
SPIML (Drought Index), 2
sumaMoviles(Generic methods for spei
        objects), 6
sumaMovilesSerie (Generic methods for
        spei objects), 6
testNS (Generic methods for spei
        objects), 6
```