

数学建模

浙江大学数学科学学院 谈之奕

tanzy@zju.edu.cn

数学规划

• 若干个变量在满足一些等式或不等式限制条件下,使一个或多个目标函数取得最大值或最小值

min 极小

max 极大

• 极值问题

• 求函数 $f(\mathbf{x})$ 在 $\mathbf{x} \in S$ 上的极

大(小)值

• 条件极值

• 求函数 $f(\mathbf{x})$ 在满足 $h_j(\mathbf{x}) = 0, \quad j = 1, \dots, t$

条件下的极大(小)值

• 数学规划

s.t. $g_i(\mathbf{x}) \ge 0$ $i = 1, \dots, s$ $h_i(\mathbf{x}) = 0$ $j = 1, \dots, t$

 \longrightarrow min $f(\mathbf{x}) \longleftarrow$

 $\mathbf{x} \in \mathbb{R}^n$

等式约束

目标函数

subject to: 以下为约束条件 变量取值范围约束

不等式约束

数学规划

- 可行解与最优解
 - 满足所有约束条件的点称为可行点(解)(feasible point),可行点的集合称为可行域(feasible region),记为
 - $\mathbf{x}^* \in S$ 称为(单目标、极小化)优化问题的最优解(optimal solution),若对任意 $\mathbf{x} \in S$,均有 $f(\mathbf{x}^*) \leq f(\mathbf{x})$; $f(\mathbf{x}^*)$ 称为最优值
 - 局部最优解和全局最优解

分类

- 线性规划与非线性规划
 - 线性规划:目标函数为线性函数,约束条件为线性等式或不等式
 - 非线性规划:目标函数为非线性函数,或者至少有一个约束条件 为非线性等式或不等式
 - 二次规划(Quadratic Programming): 目标函数为二次函数,约束条件为线性等式或不等式
 - 带二次约束的二次规划(Quadratically Constrained Quadratic Program, QCQP): 目标函数为二次函数,约束条件为线性或二次等式或不等式
- 整数规划: 至少有一个决策变量限定取整数值
 - 混合整数规划(Mixed Integer Programming, MIP): 部分决策 变量取整数值
 - 0-1规划:所有决策变量都取0或1

问题建模

- Missing University
 - 数学建模

- 将实际问题表示成数学规划的 形式使得可以借助数学规划的 算法或软件求解一些具体的实 例,也可利用数学规划的理论 和方法分析解决问题
- 建立实际问题的数学规划模型 一般包含确定决策变量、给出 目标函数、列出约束条件等步骤

Williams HP. Model Building in Mathematical Programming. Wiley, 2013.

Chen DS, Batson RG, Dang Y. Applied Integer Programming: Modeling and Solution. Wiley, 2011.

- 食谱问题 (diet problem)
 - 在市场上可以买到 n种不同的食品,第 j种食品的单位售价为 c_j
 - 人体正常生命活动过程需要 m 种基本营养成分,一个人每天至少需要摄入第 i 种营养成分 b_i 个单位
 - 每单位第 j 种食物包含第 i 种营养成分 a_{ij} 个单位
 - 在满足人体营养需求的前提下,如何寻找最经济的配食方案

George Joseph Stigler (1911—1991) 美国经济学家 1982年诺贝尔经 济学奖得主

- 决策变量: 食谱中第 j种食物的数量为 x_j 个单 $\phi=1,\dots,n$ $\sum_{j=1}^{n} c_{j} x_{j}$
- 目标函数: 所有食物费用之和
- 约束条件:
 - 满足人体营养需求
 - 个单位第一种食物中含第一种营养成绩。 个单位
 - 人体摄入的第一种营养成分的总量 $\lambda_{ij}^n x_i^{j=1} \ge b_i, i=1,\dots,m$
 - 每种营养成分应满足人,体需要..,n
 - 摄入食物量非负

数学建模

$$\min \sum_{j=1}^{n} c_j x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i}, i = 1, \dots, m$$

 $x_{i} \ge 0, j = 1, \dots, n$

min cx

$$\mathbf{x} = (x_1, x_2, \cdots, x_n)^{\mathrm{T}}$$

s.t. $Ax \ge b$

$$\mathbf{A} = (a_{ij})_{m \times n}$$

$$x \ge 0$$

$$\mathbf{c}=(c_1,\cdots,c_n)$$

$$\mathbf{b} = (b_1, \cdots, b_m)^{\mathrm{T}}$$

MATHEMATICA

```
in[55]:= c = \{4, 2, 3\};

b = \{4, 11\};

A = \begin{pmatrix} 2 & 0 & 2 \\ 4 & 3 & 1 \end{pmatrix};
```

LinearProgramming[c, A, b]

Out[58]= $\{2, 1, 0\}$

MODEL:

nut/1..2/:b; food/1..3/:c,x; cost(nut,food):a; endsets Global optimal solution found.
Objective value:
Infeasibilities:
Total solver iterations:

Variable

X(1)

X(2)

X(3)

Value 2.000000 1.000000

0.000000

10.00000

0.000000

enddata

c=4 2 3;

a=2 0 2 4 3 1;

data:

min=@sum(food(j):c(j)*x(j));

@for(nut(i): @sum(food(j):a(i,j)*x(j))>b(i););
END

营养物质	PDA
热量	3000卡
蛋白质	70 克
钙	0.8克
铁	12毫克
维生素A	5000IU
维生素B1	1.8毫克
维生素B2	2.7毫克
烟碱酸	18毫克
维生素C	75毫克

1943年美国研究院发布的从事中等强度活动,体重为154磅的成年男性9种营养成分的每天推荐摄入量(PDA)

TABLE A. NUTRITIVE VALUES OF COMMON FOODS PER DOLLAR OF EXPENDITURE, AUGUST 15, 1989

Commodity	Unit	Price Aug. 15, 1939 (cents)	Edible Weight per \$1.00 (grams)	Calories (1,000)	Protein (grams)	Calcium (grams)	Iron (mg.)	Vitamin A (1,000 I.U.)	Thiamine (mg.)	Ribo- flavin (mg.)	Niacin (mg.)	Ascorbic Acid (mg.)
**1. Wheat Flour (Enriched) 2. Macaroni 3. Wheat Cereal (Enriched) 4. Corn Flakes 5. Corn Meal 6. Hominy Grits 7. Rice	10 lb. 1 lb. 28 oz. 8 oz. 1 lb. 24 oz. 1 lb.	36.0 14.1 24.2 7.1 4.6 8.5 7.5	12,600 3,217 3,280 3,194 9,861 8,005 6,048	44.7 11.6 11.8 11.4 36.0 28.6 21.2	1,411 418 377 252 897 680 460	2.0 .7 14.4 .1 1.7 .8 .6	365 54 175 56 99 80 41	30.9	55.4 3.2 14.4 13.5 17.4 10.6 2.0	83.3 1.9 8.8 2.3 7.9 1.6 4.8	441 68 114 68 106 110 60	
71. Tea 72. Cocoa 73. Chocolate 74. Sugar 75. Corn Sirup 76. Molasses 77. Strawberry Preserves	1 lb. 8 oz. 8 oz. 10 lb. 24 oz. 18 oz. 1 lb.	17.4 8.6 16.2 51.7 13.7 13.6 20.5	652 2,637 1,400 8,773 4,966 3,752 2,213	8.7 8.0 84.9 14.7 9.0 6.4	937 77 — — — —	8.0 1.3 — .5 10.8	72 39 74 244 7	.2	2.0 .9	2.3 11.9 3.4	42 40 14 5 146 3	

77种常见食物所含各种营养成分数量(以价值1美元计)

G. J. Stigler, The Cost of Subsistence, *Journal of Farm Economics*, 27, 303-314, 1945

食品种类	Stigler所	得近似解	最优解			
(选自77种常用食品)	年摄入量	费用 (\$)	年摄入量	费用 — (\$)		
小麦粉(Wheat Flour)	370磅	13.33	299磅	10.78		
炼乳(Evaporated Milk)	57加仑	3.84				
卷心菜(Cabbage)	111磅	4.11	111磅	4.10		
菠菜(Spinach)	23磅	1.85	23磅	1.83		
干菜豆(Dried Navy Beans)	285磅	16.80	378磅	22.29		
牛肝 (Beef Liver)			2.57磅	0.69		
年度总费用 (以1939年度价格计算)		39.93		39.69		

数学建模

- 运输问题(Transportation Problem)
 - 某货物有 *m* 个产地,产地 *i* 的产量为 *a_i*, *i* = 1, ···, *m* , *n* 个销地,销地的销量为 1, ···, *n*
 - 由产地 i 到销地 j 的运输单价为 c_{ij} , $i=1,\dots,m,\ j=1,\dots,n$
 - 产销平衡, $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$
 - 如何调运货物从产地到销地, 可使总运输费用最小

1925年全球主要港口到港离港货物量(百万吨)

Koopmans TC. Optimum utilization of the transportation system. Econometrica, 17(S), 136-146, 1949.

	到港	离岗	净值
纽约(New York)	23.5	32.7	-9.2
旧金山(San Francisco)	7.2	9.7	-2.5
圣托马斯(St. Thomas)	10.3	11.5	-1.2
布宜诺斯艾利斯(Buenos Aires)	7.0	9.6	-2.6
安托法加斯塔(Antofagasta)	1.4	4.6	-3.2
鹿特丹(Rotterdam)	126.4	130.5	-4.1
里斯本 (Lisbon)	37.5	17.0	20.5
雅典(Athens)	28.3	14.4	13.9
敖德萨(Odessa)	0.5	4.7	-4.2
拉各斯(Lagos)	2.0	2.4	-0.4
德班 (Durban)	2.1	4.3	-2.2
孟买 (Bombay)	5.0	8.9	-3.9
新加坡(Singapore)	3.6	6.8	-3.2
横滨(Yokohama)	9.2	3.0	6.2
悉尼(Sydney)	2.8	6.7	-3.
The second secon	The second second		The second secon

运输问题

• 决策变量

• *x_{ij}* : 产地 *i* 调运到 销地 *j* 的货物数量

$$\min \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} = a_i, i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \ j = 1, \dots, n$$

$$x_{ij} \ge 0$$

以净输入港口为产地,净输出港口为销地的运输问题的最优解,给出了最优空船调运路线

下料问题

- 下料问题(Cutting-Stock Problem)
 - 给定生产一批产品所需的某种材料的大小与数量列表,如何从相同规格的原料中下料,使所用的原料最少

现有W米长的钢管若干。生产某产品需长为 w_i 米的短管 b_i 根, $i=1,\dots,k$ 如何截取方能使材料最省

如何选择决策变量

- 装箱问题(bin-packing problem)
 - 给定一系列大小已知的物品 和若干个容量相同的箱子, 如何将物品放入箱子中,使 所用箱子数尽可能少

下料问题

数学建模

- 确定每根钢管的截法
- 决策变量
 - x_{ji} : 第 j 根钢管截取的第 i 种短管数量 $i=1,\cdots,k,j=1,\cdots,n$ 截取后才能 p 生短管 p 其他, p 其他,
 - 约束条件
 - $\sum_{i=1}^{n} x_{ji} \ge b_i, i = 1, \dots, k$
 - $\sum_{k=1}^{j=1} x_{ji} w_i \leq W, j = 1, \dots, n$
- 目标函数
 - $\min \sum_{j=1}^{n} y_{j}$

$$\exists i, x_{ji} > 0 \Rightarrow y_j = 1 \longrightarrow \sum_{i=1}^k x_{ji} > 0 \Rightarrow y_j = 1$$

$$y_j \ge \sum_{i=1}^k x_{ji} \qquad Wy_j \ge \sum_{i=1}^k x_{ji} w_i$$

n=200+150+100 钢管只有被

 $y_j = 1 \Rightarrow \exists i, x_{ji} > 0$ 在给定目标下, 最优解自动满足

钢管之间没有区别, 重复变量过多

下料问题

- 列举所有可能的截取方式
- 决策变量
 - x_i : 按第 i 种方式截取的原料的数量, $i=1,\dots,7$
 - x_i 必须取正整数值
- 约束条件应取不等式

min $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$ s.t. $2x_1 + x_2 + x_3$ ≥ 200 $x_2 + 3x_4 + 2x_5 + x_6$ ≥ 150 $2x_3 + x_5 + 2x_6 + 3x_7 \geq 100$ $x_i \geq 0$ 且 x_i 为整数, $i = 1, 2, \dots, 7$.

钢管长15米,所需4米,5米,7米长的短管分别为100,150,200根

方式	1	2	3	4	5	6	7
7米	2	1	1	0	0	0	0
5米	0	1	0	3	2	1	0
4米	0	0	2	0	1	2	3
余料	1	3	0	0	1	2	3

列生成法 (column generation)

0-1变量

- 仅当0-1变量 y = 1时,n 个0-1变量 x_1, x_2, \dots, x_n 中的任一个才能取值 1
 - $\sum_{j=1}^{n} x_{j} \leq ny$
- $n ext{ } extstyle ^{J=1}_{n}$ **1** 0 **1** 0 **2** 0 **1** 0 **3** 0 **4** 0 **4** 0 **4** 0 **5** 0 **6** 0 **7** 0 **1** 0 **9** 0 **1**
 - $\sum_{j=1}^{n} x_{j} = 1$, 且取值为1的那个变量的足标为 $\sum_{j=1}^{n} jx_{j}$
- 整变量 0≤y≤a 是否取非零值
 - 0-1变量 w 满足 w ≤ y ≤ aw
- 两个整变量 y, z, 当 y > z 时, **0-1**变量 w = 1
 - $w = 1 \Rightarrow y \ge z + 1, w = 0 \Rightarrow y \le z$
 - $(1+M)w-M \le y-z \le Mw$

选址问题

- 选址问题
 - 设在平面上有 n 个点,第 j 个点的坐标为 (x_i, y_i)
 - 求一个面积最小的圆,使这 *n*个点均为 该圆内的点

A QUESTION IN THE GEOMETRY OF SITUATION.

By J. J. SYLVESTER.

It is required to find the least circle which shall contain a given system of points in a plane.

THE

QUARTERLY JOURNAL

OP

PURE AND APPLIED

MATHEMATICS.

EDITED BY

J. J. SYLVESTER, M.A., F.R.S.,
PROFESSOR OF MATHEMATICS IN THE ROYAL MILITARY ACADEMY,
WOOLVICH; AND

N. M. FERRERS, M.A.,

FELLOW OF GONVILLE AND CAIUS COLLEGE, CAMBRIDGE:

ASSISTED BY

G. G. STOKES, M.A., F.R.S.,
LUCASIAN PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF CAMBRIDGE.

A. CAYLEY, M.A., F.R.S.,

LATE FELLOW OF TRINITY COLLEGE, CAMBRIDGE; AND

M. HERMITE,

CORRESPONDING EDITOR IN PARIS.

VOL. I.

ο τι ούσία πρός γένεσιν, έπιστημή πρός πίστιν καὶ διάνοια πρός εἰκασίαν έστι,

LONDON: JOHN W. PARKER AND SON, WEST STRAND.

选址问题

- 选址问题
 - 决策变量: 圆心(x₀, y₀), 半径 r
 - 目标函数: r²
 - 约束条件:每个点到圆心的距离不超过半径

 $\min r^2$

带二次约束的二次规划

s.t.
$$(x_i - x_0)^2 + (y_i - y_0)^2 \le r^2$$
, $i = 1, 2, \dots, n$

• 定义新决策变量 $\lambda = r^2 - (x_0^2 + y_0^2)$ 替代 r

min
$$\lambda + x_0^2 + y_0^2$$

st $\lambda + 2x_0 x + 2y_0 y > x_0^2$

二次规划

s.t.
$$\lambda + 2x_0x_i + 2y_0y_i \ge x_i^2 + y_i^2$$
, $i = 1, 2, \dots, n$

James Joseph Sylvester (1814-1897) 英国数学家

$$x_i^2 - 2x_0x_i + x_0^2 + y_i^2 - 2y_0y_i + y_0^2 \le r^2 \implies x_i^2 - 2x_0x_i + y_i^2 - 2y_0y_i \le r^2 - x_0^2 - y_0^2 = \lambda$$

支持向量机

- 支持向量机(Support Vector Machine)
 - 拟将一数据集分为 C_1, C_2 两类。每个数据有 n 个特征,用 n 维实向 量表示数据
 - 重表不致据
 训练集 $S = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$,其分类已知,记 $y_i = \begin{cases} 1 & \mathbf{x}_i \in C_1 \\ -1 & \mathbf{x}_i \in C_2 \end{cases}$
 - 训练集可线性分离(linearly separable),即存在超平
 面 $\mathbf{w} \cdot \mathbf{x} + b = 0$,使得 $\begin{cases} \mathbf{w} \cdot \mathbf{x}_i + b > 0 & \mathbf{x}_i \in C_1 \end{cases}$,或 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$
 留平面 $\begin{cases} \mathbf{w} \cdot \mathbf{x}_i + b < 0 & \mathbf{x}_i \in C_2 \end{cases}$
- 超平面
 - 设 w为 n 维实向量,b 为实数,称 $\mathbf{w} \cdot \mathbf{x} + b = 0$ 为 \mathbb{R}^n 中的超平面 (hyperplane)
 - \mathbb{R}^n 中点 \mathbf{x} 到超平面 $\mathbf{w} \cdot \mathbf{x} + b = 0$ 的距离为 $\frac{|\mathbf{w} \cdot \mathbf{x} + b|}{\sqrt{\mathbf{w} \cdot \mathbf{w}}}$ 不妨要求 **w**·w = 1

Cortes C, Vapnik V. Support-vector networks. Machine Learning, 20(3), 273-297, 1995.

支持向量机

- ZheJlang University
 - 数学建模

- 若(I)有解,(I)与(II)等价
 - (I) 的可行域包含在(II) 的可行域内
 - (II)的最优解在(I)的可行域内
 - 由于 (I) 有解,存在 \mathbf{w}, b ,满足 $\mathbf{w} \cdot \mathbf{w} = 1$ 与 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$, $i = 1, \dots, m$ 。这也是 (II) 的一组可行解,故 (II) 的最优值非负。因此 (II) 的最优解 \mathbf{w}^*, b^* 总满足 $y_i(\mathbf{w}^* \cdot \mathbf{x}_i + b^*) > 0$, $i = 1, \dots, m$

所有点至超平面距离 的最小值尽可能大

- 在(I)的可行域内,对相同决策变量,(I)的目标值与(II)的目标值相等
 - 由于 $y_i = \pm 1$, 若 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0$, 则 $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = |\mathbf{w} \cdot \mathbf{x}_i + b|$

(I)
$$\max_{i=1,\dots,m} |\mathbf{w} \cdot \mathbf{x}_i + b|$$

$$\max \quad \min_{i=1,\dots,m} y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$$

s.t.
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 0, i = 1, \dots, m$$

s.t.
$$\mathbf{w} \cdot \mathbf{w} = 1$$

$$\mathbf{w} \cdot \mathbf{w} = 1$$

支持向量机

- 若 \mathbf{w}_0, b_0 是 (III) 的最优解,则 $\frac{\mathbf{w}_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}, \frac{b_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}$ 是 (II) 的最优解

 - 设 \mathbf{w}^*, b^* 是(II)的最优解, $\mathbf{w}^* \cdot \mathbf{w}^* = 1$,最优值为 $\gamma^* = \min_{i=1,\cdots,m} y_i(\mathbf{w}^* \cdot \mathbf{x}_i + b^*)$ $y_i(\mathbf{w}^* \cdot \mathbf{x}_i + b^*) \ge \gamma^*$, $i = 1, \cdots, m$,即 $y_i\left(\frac{\mathbf{w}^*}{\gamma^*} \cdot \mathbf{x}_i + \frac{b^*}{\gamma^*}\right) \ge 1$, $i = 1, \cdots, m$,故 $\frac{\mathbf{w}^*}{\gamma^*}, \frac{b^*}{\gamma^*}$ 是(III)的可行解
 - 由于 \mathbf{w}_0', b_0 是(III)的最优解, $\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0} \le \sqrt{\frac{\mathbf{w}^*}{\nu^*}} \cdot \frac{\mathbf{w}^*}{\nu^*} = \frac{1}{\nu^*}$
 - $y_i \left(\frac{\mathbf{w}_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}} \cdot \mathbf{x}_i + \frac{b_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}} \right) \ge y_i \left(\gamma^* \mathbf{w}_0 \cdot \mathbf{x}_i + \gamma^* b_0 \right) = \gamma^* y_i \left(\mathbf{w}_0 \cdot \mathbf{x}_i + b_0 \right) \ge \gamma^*, i = 1, \dots, m$ 故 $\frac{\mathbf{w}_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}, \frac{\vec{b}_0}{\sqrt{\mathbf{w}_0 \cdot \mathbf{w}_0}}$ 的目标值不小于 \mathbf{w}^*, b^* 的目标值,也是(II)的最优解 带不等式约束的二次规划

 $\max \quad \min_{i=1,\cdots,m} y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$

(III)

 $\min \mathbf{w} \cdot \mathbf{w}$

(II)
$$s.t. \quad \mathbf{w} \cdot \mathbf{w} = 1$$

s.t.
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, i = 1, \dots, m$$

数学规划

- 建立实际问题数学规划的原则与技巧
 - 选择合适的决策变量,数量适中,目标函数和约束条件表达清晰、形式简单
 - 约束条件完整反映问题要求,不遗漏,不冗余。确保数学规划的最优值与原问题的最优值一致
 - 善于转化和变形,一般应尽量减少非线性约束和整数取值限制,灵活处理绝对值、分段函数等复杂情况
 - 善于运用0-1变量建立决策变量之间的联系和描述逻辑 关系
 - 结合计算求解检验、修正和改进已有规划

线性规划

- 标准型
 - 要求
 - 目标为极小化函数
 - 所有约束均为等式约束
 - 约束等式右端均为非负常数
 - 决策变量取非负值
 - 任意形式的线性规划可 以变形为标准型

- 线性规划最优解的类型
 - 唯一最优解
 - 无穷多最优解

有限个最优解

- 最优值无下界
- 无可行解

min cx

$$s.t.$$
 $Ax = b$

$$x \ge 0$$

 $\mathbf{A}\mathbf{x} \ge \mathbf{b} \implies \mathbf{A}\mathbf{x} - \mathbf{y} = \mathbf{b}$ x_i 无约束 $\implies x_i = x'_i - x''_i$

$$\min -2x_1 + x_2$$
s.t. $-x_1 + x_2 \le 2$

$$x_1 - 4x_2 \le 2$$

$$x_1 \ge 0, x_2 \ge 0$$

$$x_1 = 2M, x_2 = M$$

基本可行解

- 基与基本可行解
 - 设系数矩阵 A 为 m×n 行满秩矩阵
 - 将 \mathbf{A} 分块为 (\mathbf{B} , \mathbf{N}) (必要时调整列的次序) \mathbf{B} 其中 为 阶可逆方阵,称为基 $\mathbf{x} \geq \mathbf{0}$ (basis) \mathbf{x} 中(\mathbf{B} , \mathbf{N}) 中(\mathbf{B} , \mathbf{N}) 中(\mathbf{B} , \mathbf{N}) 中(\mathbf{B} , \mathbf{N})
 - 的 A_N 的 A_B A_B 的 A_B A_B 的 A_B A_B 的 A_B 的 A_B A_B
 - 相序于基的基本解
 - 时,称 为一基本可行解

min cx

$$s.t.$$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$x \ge 0$$

$$+ (\mathbf{B}, \mathbf{N}) \begin{pmatrix} \mathbf{x}_B \\ \mathbf{x}_N \end{pmatrix} = \mathbf{b}$$

$$\mathbf{B}\mathbf{x}_B + \mathbf{N}\mathbf{x}_N = \mathbf{b}$$

$$\mathbf{x}_B \ge 0, \, \mathbf{x}_N \ge 0$$

线性规划基本定理

Mジュラ ZheJlang University 数学建模

- 线性规划基本定理
 - 若线性规划有可行解,必有基本可行解
 - 若线性规划有有界最优解,则必有最优基本可行解
- 寻求线性规划的最优解,只需在所有基本可行解中寻找
 - 基本可行解的数目不超过系数矩阵所有 可能的不同的基的数目 (n)

单纯形法

- 单纯形法 (Simplex Method) 的基本思想
 - 寻找到一个初始基本可行解,判断是否是最优解
 - 若不是最优解,则转换到另一个基本可行解(它们对应的基只有一列不同),并使目标值下降(或不上升)
 - 重复有限次,可找到最优解或判断解无界
- 单纯形法的几何意义
 - 线性规划的可行域是一个凸多面体(有界或无界),每个基本可行解对应于凸多面体的一个顶点
 - 单纯形法每次迭代过程对应于从凸多面体的一个顶点转到相邻的另一个顶点,直至找到最优解

时间复杂度

数学建模

- 大量实践表明,对多数线性规划问题,单纯形法迭代次数为 m和 n 的多 项式
- 存在含m个变量的线性规划,单纯形法需要进行 2^m -次迭代

$$\max \sum_{i=1}^{m} 10^{m-i} x_i$$

s.t.
$$2\sum_{i=1}^{j-1} 10^{j-i} x_i + x_j \le 100^{j-1}, j = 1, \dots, m$$

$$x_i \ge 0, i = 1, \dots, m$$

Klee V, Minty GJ, How good is the simplex algorithm? In Inequalities - III (Shisha O, Eds.), Academic Press, 159-175, 1972

多项式时间算法

- 対ける Zhe Jiang University
 - 数学建模

- 1979年,Khachiyan 给出了求解 线性规划的第一个多项式时间算 法——椭球算法(Ellipsoid algorithm),解决了关于线性规 划问题复杂性的open问题
- 1984年,Karmarkar 给出了实际效果更好的多项式时间算法——内点法(Interior Point Method),在数学规划领域产生了深远的影响

Karmarkar NK, A new polynomialtime algorithm for linear programming, *Combinatorica*, 4, 373–395, 1984

Narendra Karmarkar (1957-) 印度数学家

Leonid Genrikhovich Khachiyan (1952-2005) 苏联数学家

松弛

- Mジナ学 ZheJlang University 数学建模
- 设有整数线性规划(IP),去除决策变量取整数约束后所得线性规划记为(LP),称(LP)为(IP)的松弛(relaxation)
 - (IP)的可行域包含于(LP)的可行域中
 - (IP)的可行解也是(LP)的可行解,但反之不然
 - (IP)的最优值不优于(LP)的最优值
 - 若(LP)的最优解为整数解,则它也是(IP) 的最优解

min cx

(IP)
$$s.t.$$
 $Ax = b$

$$\mathbf{x} \in \mathbb{Z}_+^n$$

min cx

(LP)
$$s.t.$$
 $Ax = b$

 $\mathbf{x} \in \mathbb{R}^n_+$

松弛线性规划

数学建模

$$\min -30x_1 - 36x_2$$
(IP) $s.t.$ $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \ge 0$ 且为整数
 $\min -30x_1 - 36x_2$
(LP) $s.t.$ $x_1 + x_2 \le 6$
 $5x_1 + 9x_2 \le 45$
 $x_1, x_2 \ge 0$

不存在简单的取整策略将 (LP)的最优解变为(IP)的 最优解

分枝定界法

- (BP) had ambitions to extend the model to deal also with the planning of world movement of oil from source to refinery, but knew that the capacity restrictions on the ships and storage tanks introduced discrete variables into their models
- the solution of this type of problem required electronic computation, but unfortunately LSE at that time did not have any access to such a facility. However, we had no doubt that using the same approach to computing could be achieved, if rather painfully, on desk computers, which were plentifully available. We became quite skilful at doing vector operations by multiplying with the left hand, and adding and subtracting with the right hand on another machine

Ailsa Land Alison Doig

An automatic method of solving discrete programming problems, *Econometrica* 28, 497–520, 1960.

ECONOMETRICA

数学建模

- Branch and Bound (B-B)
 - (分枝) 求解整数线性规划 (IP) 的松弛(LP) ,若其 最优解不为整数解,选择最 优解中任一个不取整数值的 变量,在(IP) 中分别加入 一对互斥的约束,形成两个 分枝整数线性规划。原 (IP) 的任一可行解分属两 个分枝的可行域之一

分枝定界法

- 分枝定界法是求解整数规划最常用的算法之一, 但仍是指数时间算法。采用更为复杂的定界方法 或选择适宜的分枝策略可在一定程度上减少运算 时间
- 用于求解0-1规划等特殊整数规划的分枝定界法有更为简单的表现形式和更好的实际效果
- 分枝定界法的思想可用于其它离散优化问题的求解,分枝、定界的策略与方法和问题特征密切相关

多目标规划

多目标规划研究变量在满足给 定约束条件下,如何使多个目 标函数同时极小化的问题

min
$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_p(\mathbf{x}))^{\mathrm{T}}$$

(MOP) s.t.
$$\mathbf{g}_i(\mathbf{x}) \ge \mathbf{0}, i = 1, \dots, s,$$

 $\mathbf{h}_i(\mathbf{x}) = \mathbf{0}, j = 1, \dots, t.$

Vilfredo Federico Damaso Pareto (1848-1923) 意大利经济学家

解的类型

- $\mathcal{L} \mathbf{x}^* \in S$
 - 若对任意 $\mathbf{x} \in S$, $f_k(\mathbf{x}^*) \le f_k(\mathbf{x})$, $k = 1, \dots, p$,则称 \mathbf{x}^* 为 (MOP) 的绝对最优解
 - 若不存在 $\mathbf{x} \in S$,使得 $f_k(\mathbf{x}) \leq f_k(\mathbf{x}^*), k = 1, \dots, p$,且至少存在某个 $k, f_k(\mathbf{x}) < f_k(\mathbf{x}^*)$,则称 \mathbf{x}^* 为(MOP)的Pareto最优解
 - 若不存在 $\mathbf{x} \in S$,使得 $f_k(\mathbf{x}) < f_k(\mathbf{x}^*), k = 1, \dots, p$,则称 \mathbf{x}^* 为 (MOP) 的弱Pareto最优解
- (MOP) 的所有绝对最优解,Pareto最优解,弱 Pareto最优解的集合分别记作 S_a , S_p 和 S_{wp}

解的关系

数学建模

记 Sⁱ 为单目标
 规划 min f_i(x)的
 最优解,则

$$S_a = \bigcap_{i=1}^p S^i$$

$$S^i \subseteq S_{wp}$$

解的关系

- $S_a \subseteq S_p \subseteq S_{wp} \subseteq S$
 - 若 $\mathbf{x}^* \in S_a$,但 $\mathbf{x}^* \notin S_p$,则存在 $\overline{\mathbf{x}} \in S$ 和某个 k,使得 $f_k(\overline{\mathbf{x}}) < f_k(\mathbf{x}^*), f_l(\overline{\mathbf{x}}) \le f_l(\mathbf{x}^*), l \ne k$,与 $\mathbf{x}^* \in S_a$ 矛盾
 - 若 $\mathbf{x}^* \in S_p$, 但 $\mathbf{x}^* \notin S_{wp}$, 则存在 $\overline{\mathbf{x}} \in S$, 使得 $f_k(\overline{\mathbf{x}}) < f_k(\mathbf{x}^*), k = 1, \dots, p$, 与 $\mathbf{x}^* \in S_p$ 矛盾
- 若 $S_a \neq \emptyset$,则 $S_a = S_p$
 - 若 $\mathbf{x}^* \in S_p$,但 $\mathbf{x}^* \notin S_a$,由于 $S_a \neq \emptyset$,存在 $\overline{\mathbf{x}} \in S_a$,使得 $f_k(\overline{\mathbf{x}}) \leq f_k(\mathbf{x}^*), k = 1, \dots, p$,由于 $\mathbf{x}^* \neq \overline{\mathbf{x}}$,存在某个 $k, f_k(\overline{\mathbf{x}}) \neq f_k(\mathbf{x}^*), f_k(\overline{\mathbf{x}}) < f_k(\mathbf{x}^*)$,与 $\mathbf{x}^* \in S_p$ 矛盾

多目标问题解法

- 求(MOP)所有的Pareto最优解或弱Pareto最优解
- 加权法

 - 令 $\Lambda = \{\lambda \mid \lambda > 0, \sum_{k=1}^{p} \lambda_{k} = 1\}$ 线性加权和法 $(SP_{\lambda}) \min_{\mathbf{x} \in S} \sum_{k=1}^{p} \lambda_{k} f_{k}(\mathbf{x})$ 极小化极大法 $(P_{\lambda}) \min_{\mathbf{x} \in S} \max_{1 \le k \le p} \lambda_{k} f_{k}(\mathbf{x})$

 - 对任意 $\lambda \in \Lambda$, (SP_i)的最优解必是(MOP)的Pareto最 优解, (P_{λ}) 的最优解必是(MOP)的弱Pareto最优解

多目标问题解法

- 分层排序法
 - 将目标按重要程度排序,在前一个目标的最优解集中,寻找后一个目标的最优解集,并把最后一个目标的最优解作为(MOP)的解
 - 分层排序法得到的解必为(MOP)的Pareto最 优解
- 带宽容值的分层排序法

多目标问题解法

- 主要目标法
 - 确定一个目标函数,如 $f_1(x)$,为主要目标,对其余 p-1个目标函数 $f_k(x)$,选定一定的界限值 $u_k, k = 2, \dots, p$,求解单目标规划 min $f_1(\mathbf{x})$

$$(SP)$$
 s.t. $f_k(\mathbf{x}) \le u_k, k = 2, \dots, p,$

 $\mathbf{x} \in S$

• (SP)的最优解都是(MOP)的弱Pareto最优解

赛程编制问题

- - 数学建模

- 10个成员国,4.5个决赛阶段名额 双循环主客场制,9阶段18轮。两轮为一个阶段,每阶段跨时一周,不同阶段相隔一月或数月
- 2002-2014世界杯南美赛区预选赛赛程

	1	2	3	4	5	6	7	8	9
ARG	CHI	VEN	BOL	COL	ECU	BRA	PAR	PER	URU
			ARG						
BRA	COL	ECU	PER	URU	PAR	ARG	CHI	BOL	VEN
CHI	ARG	PER	URU	PAR	BOL	VEN	BRA	COL	ECU
COL	BRA	BOL	VEN	ARG	PER	ECU	URU	CHI	PAR
ECU	VEN	BRA	PAR	PER	ARG	COL	BOL	URU	CHI
PAR	PEK	URU	ECU	CHI	BRA	BOL	ARG	VEN	COL
PER	PAR	CHI	BRA	ECU	COL	URU	VEN	ARG	BOL
URU	BOL	PAR	CHI	BRA	VEN	PER	COL	ECU	ARG
VEN	ECU	ARG	COL	BOL	URU	CHI	PER	PAR	BRA

•	Argentina 阿根廷
	Bolivia 玻利维亚
•	Brazil 巴西
*	Chile 智利
	Colombia 哥伦比亚
- 10	Ecuador 厄瓜多尔
0	Paraguay 巴拉圭
	Peru 秘鲁
•	Uruguay 乌拉圭
Ò	Venezuela 委内瑞拉

数学建模

- 2002-2014世界杯南美赛区预选赛赛程特点
 - 任意两队在前后两个半程各交手一次,两场 比赛的主客场互换
 - 镜像双循环

- 1~10, 2~11,, 9~18
- 不存在多于两场的连续主场与客场
- 任一队不连续对阵巴西与阿根廷
- 赛程缺点
 - 存在同一阶段内两场比赛均为主场或客场的情况,且各队出现上述情况的次数不均衡
 - 同一阶段内各队先主后客和先客后主的次数不均衡 最后一轮: 阿根廷——乌拉圭
 - 赛程编制原理不透明,关键比赛存在争议

Durán G, Guajardo M, Sauré D. Scheduling the South American Qualifiers to the 2018 FIFA World Cup by integer programming. *European Journal of Operational Research*, 262, 1109-1115, 2017.

	2002-2014							
	主主,	主客	客主					
ARG	0	9	0					
BOL	4	2	3					
BRA	0	0	9					
СНІ	2	1	6					
COL	2	6	1					
ECU	2	4	3					
PAR	2	3	4					
PER	2	6	1					
URU	2	4	3					
VEN	2	1_	6					

赛程编制新举措

- 2018世界杯新举措
 - 各成员国提交候选方案,南美洲足联投票决定最终 赛程模板
 - 赛程模板中各队用编号代替,抽签决定编号与球队 对应关系(种子队与非种子队分别抽签)
 - Durán团队为智利足联编制赛程已逾十年,他们设计的方案为智利足联所采纳,并最终在投票中胜出

Alarcón F, Durán G, Guajardo M. Referee assignment in the Chilean football league using integer programming and patterns. *International Transactions in Operational Research*, 21: 415-438, 2014.

Bonomo F, Cardemil A, Durán G, et al. An application of the traveling tournament problem: The Argentine volleyball league. *Interfaces*, 42: 245-259, 2012.

Durán G, Guajardo M, Wolf-Yadlin R. Operations research techniques for scheduling Chile's second division soccer league. *Interfaces*, 42: 273-285, 2012.

Guillermo Durán
Professor of
Department of
Mathematics and
Calculus Institute
Faculty of Exact and
Natural Sciences
University of Buenos
Aires

镜像赛程

- n 支队伍的单循环赛程,全程所有队伍总break数至少为 n-2
 - 用形如 HAH...HA,长度为 n-1(奇数)的字符串表示每支队伍的主客 场安排,称为模式
 - 任何两支队伍的模式互不相同
 - 只有HAHA...HAH 和 AHAH...AHA 两种模式没有break, 其它模式的 break数至少为 1
- n 支队伍的镜像双循环赛程,全程所有队伍总break数至少为 3n-6
 - 若半程没有break,则全程也没有break,这样的队伍至多有两支
 - 若半程只有一个break,由于模式字符串长度为奇数,在前后半程之间有一个break
 - 若半程有至少两个break,全程break数至少为 4
 - 总break数至少为 3(n-2) = 3n-6

	1	2	3	•••	9	10	11	12	•••	18	
镜像 (mirror)	1	2	3	•••	9	1	2	3	<u>.</u>	9	意大利

单循环赛程

数学建模

		X 1 Z X									
. 23,808(2)	1	2	3	4	5						
1	-6	+3	-5	+2	_4						
2	-5	+6	+4	-1	+3						
3	+4	$\overline{-1}$	-6	+5	-2						
4	-3	+5	-2	+6	+1)						
5	+2	<u>-4</u>	+1(-3	-6						
6	+1	-2	+3	-4	+5						

镜像赛程

- 根据世界杯南美赛区预选赛的特点,不必考虑连续两场比赛之间的 break,只需考虑同一阶段两场比赛之间的double-round break
- 10支队的镜像赛程的double-round break数至少为16

如何证明?

- 若半程没有break,则全程也没有break,这样的队伍至多有两支。其他 队伍半程至少有1个break,全程至少有2个double-round break
 - 前后半程之间若有break,必为double-round break
 - 若前半程的break不为double-round,后半程的break必为double-round

	1	2	3	•••	9	10	11	12	•••	17	18	
镜像(mirror)	1	2	3	•••	9	1	2	3	•••	8	9	意、德
法制(French)	1	2	3	•••	9	2	3	4	•••	9	1	法、俄
英制(English)	1	2	3	•••	9	9	1	2	•••	7	8	奥
逆向(Inverted)	1	2	3	•••	9	9	8	7		2	1	瑞士

决策变量

決策变量

$$x_{ijk} = \begin{cases} 1 & \text{第 } k \text{ 轮队 } i \text{ 在主场与队 } j \text{比赛,} \\ 0 & \text{其他,} \end{cases}$$

 约束条件

 $i, j = 1, \dots, 10, k = 1, \dots, 18$

每轮各队恰有一场比赛

$$\sum_{i=1}^{10} (x_{ijk} + x_{jik}) = 1, \quad j = 1, \dots, 10, k = 1, \dots, 18$$

任意两队在前后半程各交手一次

$$\sum_{k=1}^{9} \left(x_{ijk} + x_{jik} \right) = 1, \ i, j = 1, \dots, 10$$

$$\sum_{k=10}^{18} \left(x_{ijk} + x_{jik} \right) = 1, \ i, j = 1, \dots, 10$$

任意两队之间的两场比赛中每队均有一个主场

$$\sum_{k=1}^{18} x_{ijk} = 1, \quad i, j = 1, \dots, 10, i \neq j$$

- 约束条件
 - 法制规则

$$x_{i,j,1} = x_{j,i,18}, x_{i,j,k} = x_{j,i,k+8}, k = 2, \dots, 9, i, j = 1, \dots, 10$$

- 任一队不连续与种子队(用 I_s 表示)对阵 $\sum_{j \in I_s} (x_{ijk} + x_{jik} + x_{i,j,k+1} + x_{j,i,k+1}) \le 1, i \in I \setminus I_s, k = 1, \dots, 17$
- 各支队伍各阶段先主后客(先客后主)的次数尽可能均衡
- 同一阶段出现两个客场的次数尽可能少

• (辅助)决策变量

$$y_{il} = \begin{cases} 1 & \text{第} l \text{ 阶段队} i \text{ 两场比赛为先主后客} \\ 0 & \text{其他} \end{cases}$$

 $i = 1, \dots, 10, l = 1, \dots, 9$

• 两组决策变量之间的联系

$$y_{il} = 1$$

队 i 在第 2l-1 轮为主场作战,第 2l 轮为客场作战

存在
$$j_1$$
,使得 $x_{i,j_1,2l-1}=1$,
存在 j_2 ,使得 $x_{j_2,i,2l}=1$

$$\sum_{i=1}^{10} x_{i,j,2l-1} = 1, \sum_{i=1}^{10} x_{j,i,2l} = 1$$

$$\sum_{i=1}^{10} \left(x_{i,j,2l-1} + x_{j,i,2l} \right) \le 1 + y_{il}, \quad i = 1, \dots, 10, l = 1, \dots, 9$$

$$y_{il} \le \sum_{j=1}^{10} x_{i,j,2l-1}, i = 1, \dots, 10, l = 1, \dots, 9$$

$$y_{il} \le \sum_{j=1}^{10} x_{j,i,2l}, \ i = 1, \dots, 10, l = 1, \dots, 9$$

$$4 \le \sum_{l=1}^{9} y_{il} \le 5, \quad i = 1, \dots, 10$$

• (辅助)决策变量

$$w_{il} = \begin{cases} 1 & \text{第} l \text{ 阶段队} i \text{ 两场比赛均为客场} \\ 0 & \text{其他} \end{cases}$$

 $i = 1, \dots, 10, l = 1, \dots, 9$

• 两组决策变量之间的联系

$$w_{il} = 1$$

$$\sum_{j=1}^{10} \left(x_{j,i,2l-1} + x_{j,i,2l} \right) \le 1 + w_{il}, \quad i = 1, \dots, 10, l = 1, \dots, 9$$

队 i 在第 2l-1 轮和第 2l 轮均为客场作战

存在
$$j_1$$
,使得 $x_{j_1,i,2l-1} = 1$,
存在 j_2 ,使得 $x_{j_2,i,2l} = 1$

$$w_{il} \le \sum_{j=1}^{10} x_{j,i,2l-1}, i = 1, \dots, 10, l = 1, \dots, 9$$

$$w_{il} \le \sum_{j=1}^{10} x_{j,i,2l}, i = 1, \dots, 10, l = 1, \dots, 9$$

• 目标函数: $\min \sum_{i=1}^{10} \sum_{l=1}^{9} w_{il}$

最终赛程

数:	11/2	· 4	吐
本了!	7	建り	堂
	1		天

	1	2	3	4	5	6	7	8	9
ARG	ECU	PAR	BRA	COL	CHI	BOL	URU	VEN	PER
BOL	URU	ECU	VEN	PAR	COL	ARG	PER	CHI	BRA
BRA	CHI	VEN	ARG	PER	URU	PAR	ECU	COL	BOL
CHI	BRA	PER	COL	URU	ARG	VEN	PAR	BOL	ECU
COL	PER	URU	CHI	ARG	BOL	ECU	VEN	BRA	PAR
ECU	ARG	BOL	URU	VEN	PAR	COL	BRA	PER	CHI
PAR	VEN	ARG	PER	BOL	ECU	BRA	CHI	URU	COL
PER	COL	CHI	PAR	BRA	VEN	URU	BOL	ECU	ARG
URU	BOL	COL	ECU	CHI	BRA	PER	ARG	PAR	VEN
VEN	PAR	BRA	BOL	ECU	PER	CHI	COL	ARG	URU

排名	•		٠				-0	76		0
积分	41	31	28	27	26	26	24	20	14	12
净胜球	30	12	3	2	**1	-1	-6	-3	-22	-16

	2	018	
	主主,	主客	客主
ARG	0	5	4
BOL	0	5	4
BRA	0	4	5
СНІ	0	5	4
COL	0	5	4
ECU	0	4	5
PAR	0	4	5
PER	0	4	5
URU	0	4	5
VEN	0	5	4

