Formelsammlung - Grundlagen der Mathematik - Stand: 09.02.2014 - Christian Löhle

Dieses Werk ist unter der Creative-Commons-Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International lizenziert. Um eine Kopie dieser Lizenz einzusehen, besuchen Sie http://creativecommons.org/licenses/by-sa/4.0/ oder schreiben Sie einen Brief an Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

1 Logik

		Negation	Konjunktion	Disjunktion	Exklusives Oder	Implikation	Äquivalenz
		Nicht A	A und B	A oder B	Entweder A oder B	wenn A dann B	A genau dann wenn B
A	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \oplus B$	$A \Rightarrow B$	$A \Leftrightarrow B$
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

Eine Formel F heißt:

- erfüllbar, wenn F bei mindestens einer Variabelbelegung 1 ist.
- unerfüllbar, wenn F bei jeder Variabelbelegung 0 ist.
- Tautologie(\tau)/gültig, wenn F bei jeder Variabelbelegung 1 ist.

1.1 Rechengesetze

Kommutativgesetze:

$$x \wedge y = y \wedge x$$

$$x \lor y = y \lor y$$

Assoziativgesetze:

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$

$$(x \lor y) \lor z = x \lor (y \lor z)$$

Distributivgesetze:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

Absorptionsgesetze:

$$x \wedge (x \vee y) = x$$

$$x \lor (x \land y) = x$$

De Morgansche Gesetze:

$$\neg(x \land y) = \neg x \lor \neg y$$

Sonstiges:

$$x \oplus 0 = x$$

$$x \oplus 1 = \neg x$$

$$x \oplus y = (x \lor y) \land \neg (x \land y) = (x \land \neg y) \lor (\neg x \land y)$$

$$x \Rightarrow y = \neg x \lor y$$

1.2 Normalformen

Disjunktive Normalform(DNF) besteht aus einer Disjunktion(\vee) von Konjunktionstermen(\wedge). Nehme die Variabelbelegung(z.B. $A \wedge \neg B \wedge \neg C$) wo F=1 ist und verknüpfe sie mit \vee .

Konjunktive Normalform(KNF) besteht aus einer Konjunktion(\land) von Disjunktionstermen(\lor). Nehme die Variabelbelegung(z.B. $A \land \neg B \land \neg C$) wo F=0 ist, **negiere** sie($\neg A \land B \land C$) und verknüpfe sie mit \lor .

Normalformen sind möglich, da \land , \neg und \lor , \neg eine vollständige Basis für die Aussagenlogik bilden. Um zu zeigen, dass andere Operatoren ebenfalls eine vollständige Basis bilden, muss man \land , \neg oder \lor , \neg als Formel bilden.

Α	В	С	Ergebnis	Klausel		
0	0	0	0	AVBVC		
0	0	1	0	A∨B∨¬C	^	
0	1	0	1	¬А∧В∧¬С		
0	1	1	1	¬А∧В∧С		
1	0	0	0	¬A∨B∨C		
1	0	1	1	A∧¬B∧C		
1	1	0	0	¬А ∨ ¬В ∨ С		
1	1	1	1	АлВлС		
DNF: (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ B ∧ C) ∨ (A ∧ ¬B ∧ C) ∨ (A ∧ B ∧ C)						
KNF: (A ∨ B ∨ C) ∧ (A ∨ B ∨ ¬C) ∧ (¬A ∨ B ∨ C) ∧ (¬A ∨ ¬B ∨ C)						

Lizenz: CC-by-sa 2.0/de Urheber: WikiBasti

2 Mengen

```
[n] := {1, 2, 3, ..., n} 

A = {1, 3, 7, 21} \Rightarrow |A| = 4

Die Potenzmenge \mathcal{P}(A) ist eine neue Menge, die aus allen Teilmengen von A besteht.

\mathcal{P}(\emptyset) = {\emptyset}

\mathcal{P}(\{a\}) = {\emptyset, \{a\}}

\mathcal{P}(\{a,b\}) = {\emptyset, \{a\}, \{b\}, \{a,b\}}

\mathcal{P}(\{a,b,c\}) = {\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}}

\mathcal{P}(\mathcal{P}(\emptyset)) = {\emptyset, \{\emptyset\}}

|\mathcal{P}(A)| = 2^{|A|}
```

2.1 Operationen auf Mengen

- Schnitt: $A \cap B := \{x \mid (x \in A) \land (x \in B)\}$
- Vereinigung: $A \cup B := \{x \mid (x \in A) \lor (x \in B)\}$
- Differenz(auch –): $A \setminus B := \{x \mid (x \in A) \land (x \notin B)\} = A \cap \neg B$
- Symmetrische Differenz: $A \triangle B := (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

2.2 Rechengesetze

- Reflexivität: $A \subseteq A$
- Antisymmetrie: $AusA \subseteq BundB \subseteq AfolgtA = B$
- Transitivität: Aus $A \subseteq B$ und $B \subseteq C$ folgt $A \subseteq C$ Die Mengen-Operationen Schnitt \cap und Vereinigung \cup sind kommutativ, assoziativ und zueinander distributiv:

- Assoziativgesetz: $(A \cup B) \cup C = A \cup (B \cup C)$ und $(A \cap B) \cap C = A \cap (B \cap C)$
- Kommutativgesetz: $A \cup B = B \cup A$ und $A \cap B = B \cap A$
- Distributivgesetz: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ und $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- De Morgansche Gesetze: $\neg (A \cup B) = \neg A \cap \neg B$ und $\neg (A \cap B) = \neg A \cup \neg B$
- Absorptions gesetz: $A \cup (A \cap B) = A$ und $A \cap (A \cup B) = A$ Differenzmenge:
- Assoziativgesetze: $(A \setminus B) \setminus C = A \setminus (B \cup C)$ und $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$
- Distributivg esetze: $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$ und $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$ und $(B \cap C) = (A \setminus B) \cap (A \setminus C)$ und $(A \setminus C) = (A \setminus B) \cap (A \setminus C)$ Sonstiges:
- $A\triangle B = \neg A\triangle \neg B$
- $A \setminus B = \neg B \setminus \neg A$

2.3 Kartesisches Produkt

$$\begin{array}{l} A \times B := \{(a,b) \mid a \in A, b \in B\} \\ A^2 = A \times A = \{(a,a') \mid a,a' \in A\} \\ \text{Sei } A = \{a,b,c\} undB = \{x,y\} \text{ dann gilt:} \\ A \times B = \{(a,x),(a,y),(b,x),(b,y),(c,x),(c,y)\} \\ B \times A = \{(x,a),(x,b),(x,c),(y,a),(y,b),(y,c)\} \\ A \times A = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)\} \\ \text{Ausserdem: } |A_1 \times A_2 \times A_3 \times \ldots \times A_n| = |A_1| * |A_2| * |A_3| * \ldots * |A_n| \text{ wenn } A_1 \text{ bis } A_n \text{ endlich sind.} \end{array}$$

3 Summen

Sei
$$m > n$$
 dann gilt: $\sum_{k=m}^{n} a_k = 0$
Gauss: $\sum_{i=1}^{n} i = 1 + 2 + ... + n = \frac{n(n+1)}{2}$
Konstantes Glied(wie bei Gauss): $\sum_{k=m}^{n} x = (n-m+1)x$
Faktor $\sum_{k=m}^{n} c \cdot a_k = c \cdot \sum_{k=m}^{n} a_k$
Geometrische Reihe: $s_n = a_0 \sum_{k=0}^{n} q^k = a_0 \frac{1-q^{n+1}}{1-q}$
Aufteilung: $\sum_{k=m}^{n} a(k) = \sum_{k=m}^{l} a(k) + \sum_{k=l+1}^{n} a(k)$

3.1 Vollständige Induktion

Die Gausssche Summenformel lautet: Für alle natürliche Zahlen n ≥ 1 gilt $\sum_{k=1}^n k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$ Der Induktionsanfang ergibt sich unmittelbar: $\sum_{k=1}^1 k = 1 = \frac{1(1+1)}{2}$ Der Induktionsschritt wird über folgende Gleichungskette gewonnen, bei der die Induktionsvoraussetzung mit der zweiten Umformung verwendet wird: $\sum_{k=1}^{n+1} k = \sum_{k=1}^n k + (n+1) = \frac{n(n+1)}{2} + (n+1)$ $= \frac{n(n+1)+2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$

4 Relationen

Eine Relation ist eine Teilmenge des Kreuzprodukt zweier Mengen: $R \subseteq A \times B$

Sei Relation
$$R \subseteq [4]^2$$
 und $R = \{(1,2), (2,1), (2,3), (3,4)(4,3)\}$, dann ist die Adjazenzmatrix $R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Verkettung: $S \circ R := \{(a,d) \in A \times D \mid \exists b \in B \cap C : (a,b) \in R \land (b,d) \in S\}$

Umkehrrelation: $R^{-1} = \{(b, a) \in B \times A \mid (a, b) \in R\}$ Man erhält die Umkehrrelation an einem Graphen indem man die Pfeilspitzen umdreht. An der Adjazenzmatrix muss man alle 1en an der Hauptdiagonalen spiegeln.

4.1 Eigenschaften von Relationen

Reflexivität(R): $\forall a \in A : (a, a) \in R$ Jedes Element steht zu sich selbst in Relation. Die Hauptdiagonale ist 1.

Symmetrie(S): $\forall a, b \in A : (a, b) \in R \Rightarrow (b, a) \in R$ Pfeilspitzen sind immer auf beiden Seiten, können dann auch weggelassen werden(ungerichtet Graph). Die Adjazenzmatrix ist symmetrisch zur Hauptdiagonalen

Transitivität(T): $\forall a, b, c \in A : (a, b) \in R \land (b, c) \in R \Rightarrow (a, c) \in R$ Wenn es einen Weg über mehrere Relationen von einem Knoten zum Anderen gibt, müssen diese auch direkt in Relation stehen.

Asymmetrie: $\forall a, b \in A : (a, b) \in R \Rightarrow (b, a) \notin R$ Pfeilspitze immer nur auf maximal einer Seite. Keine Reflexivität

Antisymmetrie(AS): $\forall a, b \in A : (a, b) \in R \land (b, a) \in R \Rightarrow a = b$ Gleich wie Asymmetrie, aber Reflexivität ist erlaubt.

Totalität(TO): $\forall a, b \in A : (a, b) \in R \lor (b, a) \in R$ Zwischen zwei beliebigen Knoten gibt es immer eine Relation in mindestens eine Richtung.

R heißt Äquivalenzrelation wenn (R), (S) und (T) gelten.

R heißt **Halbordnung** wenn (R), (AS) und (T) gelten. Ein Graph beschreibt nur dann eine Halbordnung, wenn er azyklisch ist.

R heißt (Totale) Ordnung wenn sie eine Halbordnung ist und (TO) erfüllt.

Die Äquivalenzklasse eines Objektes a ist die Klasse der Objekte, die äquivalent zu a sind. Sei $R \subseteq A^2$.

 $[a]_R = \{x \in A \mid (x, a) \in R\} \subseteq M$

Der **Quotient** von R bezüglich R ist die Menge $A/R = \{[a|_R \mid a \subseteq A\} \text{ (Die Anzahl Äquivalenzklassen)}.$

4.2 Funktionen

Eine Relation heißt **Funktion**, wenn sie eindeutig ist, sprich von jedem Knoten genau ein Pfeil weggeht. Eine Funktion fordnet jedem Element x einer Definitionsmenge D genau ein Element y einer Zielmenge Z zu. $f \colon D \to Z, x \mapsto y$.

Eine Funktion ist **injektiv**, wenn jedes Element der Zielmenge höchstens ein Urbild hat. D. h. aus $f(x_1) = y = f(x_2)$ folgt $x_1 = x_2$.

Sie ist **surjektiv**, wenn jedes Element der Zielmenge mindestens ein Urbild hat. D. h. zu beliebigem y gibt es ein x, so dass f(x)=y.

Gelten diese beiden Eigenschaften für f, nennt man f **bijektiv**. wenn eine Funktion bijektiv ist ihre Umkehrfunktion (f^{-1}) auch eine (bijektive) Funktion.

Die Anzahl der Funktionen $f:A\to B$ ist $|B|^{|A|}$. Die Anzahl der injektiven Funktionen $f:A\to B$ ist $|B|^{|A|}$.

4.3 Permutationen

Eine bijektive Funktion $f: [n] \rightarrow [n]$ heißt **Permutation**. Die Adjazentmatrix einer Permutation hat in jeder Spalte und Zeile genau eine 1. $\varphi^0 = id$ $\varphi^2 = \varphi \circ \varphi$

Bsp: S_6

k	1	2	3	4	5	6
$\varphi(k)$	4	6	5	2	3	1
φ^2	2	1	3	6	5	4
φ^0	1	2	3	4	5	6

Die Ordnung von φ ist dann wie oft sich φ mit sich selbst verknüpfen lässt bis wieder id herauskommt. Die Ordnung von dem Beispiel wäre 4 da $\varphi^4 = \varphi^0$. Die inverse Permutation φ^{-1} ist $\varphi^{ord(\varphi)-1}$.

Wenn zwei verschiedene Permutationen verknüpft werden, ist dies nicht kommutativ. Bei $\tau \circ \pi$ wird zuerst π angewendet und auf das Resultat dann τ .

z.B.
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Die Vorgehensweise um die nächstgrößte Permutation zu bestimmen ist:

- 1. Bestimme längstes abfallend-sortiertes Endstück.
- 2. Erhöhe vorgehende Zahl kleinstmöglich mit einer der Ziffer rechts davon.
- 3. Sortiere Endstück aufsteigend.

5 Graphentheorie

Ein ungerichteter Graph G=(V,E) heißt Baum, falls G azyklisch und zusammenhängend ist.

Ein ungerichteter Graph G=(V,E) heißt **Wald**, falls G azyklisch ist. Die Anzahl der benachbarten Knoten eines Knoten v nennt man grad(v). Ist grad(v) = 1 heißt der Knoten **Blatt**.

Ein ungerichteter Graph heißt **k-regulär**, falls jeder Knoten genau Grad k besitzt.

Man nennt einen Graph **planar**, wenn man ihn ohne Überschneidungen zeichnen kann. Der **Satz von Kuratowski** besagt, dass K5 und K3,3 die einzig nichtplanaren Graphen sind, ein nichtplanarer Graph muss also einer der beiden Graphen als Minor enthalten.

Anzahl **Gebiete**(mit Äußerem Gebiet): |E| - |V| + 2

Für einen planaren Graphen lässt sich folgende Abschätzung machen: $|E| \le 3|V| - 6$, hat er mindestens 3 Knoten dann auch: $|E| \le 2|V| - 4$. Ist diese Abschätzung nicht erfüllt ist G nicht planar, ist sie erfüllt folgt daraus aber nicht dass G planar ist.

Die **Knotenfärbung** eines Graphen ist, wenn man die Knoten so färbt, dass zwei Knoten die in Relation zueinander stehen nicht dieselbe Farbe haben. Die **chromatische Zahl** χ ist die geringste Anzahl an Farben die der Graph benötigt. Bei Kreisen C_n ist $\chi = 2$ wenn n gerade, und $\chi = 3$ wenn n ungerade. Ein Graph hat genau dann $\chi = 2$, wenn er bipartit ist.

Ein **Matching** ist eine Auswahl an Kanten die disjunkt sind, also sich nicht an einem Knoten "berühren". Wenn das Matching an jedem Knoten eine Kante beinhaltet, ist es maximal und heißt auch **perfektes Matching**. Das perfekte Matching von C_n besteht aus $\frac{n}{2}$ Kanten wenn n gerade ist und $\frac{n-1}{2}$ wenn nicht. Bei dem vollständigem Graphen $K_{n,m}$ beinhaltet das perfekte Matching n Kanten und es gibt $m^{\underline{n}}$ verschiedene perfekte Matchings, vorausgesetzt $n \leq m$ (bei beiden).

Zwei Graphen heißen **isomorph**, wenn sie, bis auf Umbenennung der Knoten, gleich sind $n \leq m$.

6 Kombinatorik

	Ohne Zurücklegen	Mit Zurücklegen
Ohne Reihenfolge	$\binom{n}{k} = \binom{n}{n-k}$	$\binom{n+k-1}{k}$
Mit Reihenfolge	$n^{\underline{k}} = \frac{n!}{(n-k)!}$	n^k

Rechenregeln:

- wenn k > n dann gilt $\binom{n}{k} = 0$
- \bullet $\binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \ \binom{n}{1} = \binom{n}{n-1} = n$
- $\bullet \ \binom{n}{2} = \frac{n(n-1)}{2}$
- $k \cdot \binom{n}{k} = n \cdot \binom{n-1}{k-1}$
- $\bullet \ \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

6.1 Binomialtheorem

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3,$$

 $(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$

•
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

•
$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

•
$$(x+y+z)^n = \sum_{k=0}^n \sum_{l=0}^{n-k} \binom{n}{k,l} x^k y^l z^{n-k-l}$$
 wobei $\binom{n}{k,l} = \frac{n!}{k!l!(n-k-l)!}$

6.2 Kürzeste Gitterwege

Es gibt $w(s,t) = \binom{a+b}{a} = \binom{a+b}{b}$ kürzeste Wege von s nach t in einem a×b-Gitter.

Ist der Punkt c gesperrt dann gibt es $w(s,t) - \binom{a+c}{a} * \binom{b+c}{c}$ Wege.

Wenn Punkt c und d gegeben sind und mindestens einer der beiden besucht werden muss gilt: w(a,c) * w(c,b) + w(a,d) * w(d,b) - w(a,c) * w(c,d) * w(d,b).

w(a,d)*w(d,b)-w(a,c)*w(c,d)*w(d,b). Umformuliert: $\binom{a+c}{a}*\binom{b+c}{c}-\binom{a+d}{a}*\binom{b+d}{b}-\binom{a+c}{a}*\binom{c+d}{c}*\binom{b+d}{b}$

7 Zahlentheorie

Für m,n $\in \mathbb{Z}$ und m > 0, ist m **Teiler von** n, falls $\exists t \in \mathbb{Z} \ n = t * m$. Kurz: $m \setminus n$.

Die Menge aller Teiler ist $T_n = \{ m \mid m \setminus n \}$. $T_{m,n} = T_m \cap T_n$.

Der größte gemeinsame Teiler von n und m ist: max $T_{m,n}$. Das kleinste gemeinsame Vielfache ist: min $\{k \mid m \setminus k \land n \setminus k\}$.

Es gilt kgV(m,n) * ggT(m,n) = mn oder kgV(m,n) = mn/ggT(m,n).

Lemmas: 1) $\forall a, b \in \mathbb{Z}$ $T_{m,n} \subseteq T_{am+bn}$ 2) $\forall a \in \mathbb{Z}$ $T_{m,n} = T_{m,n-am}$ 3) $T_{m,n} = T_{ggT(m,n)}$

Der euklidische Algorithmus euklid(m, n) bestimmt den ggT:(für m < n)

if m = 0 return n

 $else\ euklid(n\ mod\ m,m)$

Der ggT lässt sich als Linearkombination von m und n darstellen, berechnet wird diese mithilfe des **erweiterten euklidischen Algorithmus**:

n	m	q	r	X	у
84	60	1	24	-2	1 - (-2) * 1 = 3
60	24	2	12	1	0 - 1 * 2 = -2
24	12	2	0	0	1

Hierbei muss auch wieder $m \leq n$ gelten. Allgemein betrachtet (Zeile 0 ist die unterste):

 $q_i = \lfloor \frac{n_i}{m_i} \rfloor$ $r_i = n_i \bmod m_i$

 $x_0 = 0$ $y_0 = x_1 = 1$ $x_i = y_{i-1}$ $y_i = x_{-1} - q_i * y_{-1}$

Als Probe: $n_i * x_i + m_i * y_I = ggT(m, n)$ gilt in jeder Zeile.

7.1 Kongruenzen

 $a \equiv b \pmod{m} \iff m \setminus (a - b)$

Seien $a \equiv b \pmod{m}$ und $c \equiv d \pmod{m}$ Dann gilt:

1) $a + c \equiv b + d \pmod{m}$ 2) $a - c \equiv b - d \pmod{m}$ 3) $ac \equiv bd \pmod{m}$

Ist $a \equiv b \pmod{m}$, dann ist $a^n \equiv b^n \pmod{m}$

Die Division gilt nur wenn der Quotient teilerfremd zu m ist: Sei $d \perp m$ und $ad \equiv bd \pmod{m}$, dann gilt $a \equiv b \pmod{m}$.

ist $a \perp m$, dann hat die Kongruenz $ax \equiv b \pmod{m}$ die in \mathbb{Z}_m eindeutige Lösung $x = a^{-1}b \mod m$. Man erhält a^{-1} indem man den erweiterten euklidischen Algorithmus auf a und m anwendet.

Die Anzahl der teilerfremdem Zahlen m in \mathbb{Z}_m wird als **eulersche** φ -Funktion bezeichnet: $\varphi(m) = |\mathbb{Z}_m^*|$

Es gilt: $\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n)$

Für Primzahlen: $\varphi(p) = p - 1$

Für Primzahlpotenzen: $\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1) = p^k \left(1 - \frac{1}{p}\right)$

z.B. $\varphi(16) = \varphi(2^4) = 2^4 - 2^3 = 2^3 \cdot (2 - 1) = 2^4 \cdot \left(1 - \frac{1}{2}\right) = 8$

Allgemein: $\varphi(n) = \prod_{p|n} p^{k_p-1}(p-1) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$

z.B. $\varphi(84) = \varphi(2^2 * 3 * 7) = 84 * (1 - \frac{1}{2}) * (1 - \frac{1}{3}) * (1 - \frac{1}{7}) = 24$

Um die **Anzahl der Teiler** von n zu berechnen, braucht man die Primfaktorzerlegung $(\prod p^k)$. $|T_n| = \prod (k+1)$

Exponentation(nur wenn $a \perp m$): $a^{\varphi(m)} \equiv 1 \pmod{m}$

z.B. $5^{99} \pmod{84}$ $\varphi(84) = 24 \longrightarrow 5^{24} * 5^{24} * 5^{24} * 5^{3} = 1 * 1 * 1 * 125 \equiv 41 \pmod{84}$

7.2 Lineare Kongruenzen(Chinesischer Restsatz)

Ist ein Gleichungssystem der folgenden Art gegeben:

 $x \equiv a_1 \bmod m_1$

 $x \equiv a_2 \bmod m_2$

Dann bestimmt man x_1 und x_2 mithilfe des erweiterten euklidischen Algorithmus jeweils über m_1 und m_2 :

 $m_2 * x_1 \equiv 1 \bmod m_1$

 $m_1 * x_2 \equiv 1 \bmod m_2$

Dann gilt: $x = a_1 * m_2 * x_1 + a_2 * m_1 * x_2$.

Das Ergebnis ist nun ($mod \ m_1 * m_2$) zu betrachten. Alle Lösungen haben also die Form $x + m_1 * m_2 * t$, wobei $t \in \mathbb{Z}$.

8 Algebraische Strukturen

 (G, \circ) heißt **Gruppe** falls folgende Eigenschaften gelten:

(AG) Assoziativgesetz: $\forall a, b, c \in G$ $a \circ (b \circ c) = (a \circ b) \circ c$

(N) Neutrales Element: $\exists e \in G \ \forall a \in G \quad a \circ e = a$

(I) Inverses Element: $\forall a \in G \ \exists b \in G \quad a \circ b = e$

Die Verknüpfung muss außerdem abgeschlossen über G sein. Falls auch auch das Kommutativgesetz(KG) $a \circ b = b \circ a$ gilt, heißt die Gruppe kommutativ(oder abelsch).

Ist $U \subseteq G$ und (U, \circ) ebenfalls eine Gruppe, heißt sie **Untergruppe**. {e} und G sind **triviale Untergruppe**n. Sei (G, \circ) endliche Gruppe und $a \in G$. Dann ist $\langle a \rangle = \{a^0, a^1, a^2, ...\}$ die von a erzeugte **Untergruppe**. a heißt **Generator** oder **erzeugendes Element** von G.

|U| heißt **Ordnung** von $\langle a \rangle$, $a^{ord(a)} = e$. |U| teilt immer |G|.

 $(R, +, \cdot)$ heißt **Ring** falls:

1) (R, +) ist kommutative Gruppe. 2) $(AG) \ \forall a, b, c, \in G$ $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

3)(DG) $\forall a, b, c \in G$ $a \cdot (b+c) = a \cdot b + a \cdot c$

R ist kommutativer Ring falls $\forall a, b \in R \ a \cdot b = b \cdot a$

R ist Ring mit **Eins(-Element)** falls $\exists 1 \in R \quad a \cdot 1 = a$

8.1 RSA

Wähle zwei ungleiche Primzahlen p und q.

N = p * q

$$\varphi(N) = (p-1) * (q-1)$$

Wähle eine zu $\varphi(N)$ teilerfremde Zahl e, für die gilt $1 < e < \varphi(N)$.

Berechne den Entschlüsselungsexponenten d als Multiplikatives Inverses(erweiterter euklidischer Algorithmus) von e bezüglich des Moduls $\varphi(N)$. Es soll also die folgende Kongruenz gelten:

$$e * d \equiv 1 \mod \varphi(N)$$

Verschlüsseln: $c \equiv m^e \mod N$ Entschlüsseln: $m \equiv c^d \mod N$

Primzahlen: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101