Statistical Data Analysis

Jana de Wiljes

Lecture 19

Idea behind Reinforcement Learning

Reach a specific target goal via sensible choice of actions (which are improved via successive feedback)

Example:

- find best strategy for games such as Tic Tac Toe, connect four, chess, ...
- find the fastest path out of a maze
- let robots learn to perform simple tasks by themselves
- train autonomous cars
- optimale treatment of patients

Alpha Go

Computerprogramm trained via RL that plays board game Go

Fakts:

- developed by DeepMind
- 2015 won against Europamaster in Go
- 2016 beats World champion Lee Sedol in Go
- documentation
 https://www.youtube.com/watch?v=WXuK6gekU1Y

Simple rules however very complex strategies

Facts:

- one of the oldes gamest in the world
- popular sport in many asian countries
- ullet there are 3^{361} combinations to place the stones on the 19×19 broad
- huge challenge for computer players due to the many combinations

Player 1 Player 2

Player 1 Player 2

Players take turns choosing to take 1, 2 or 3 matchsticks The Player that takes the last match looses

Player 1: takes 3 matchsticks

Player 1: takes 3 matchsticks

Player 2: takes 2 matchsticks

Player 1: 1 matchstick

t = 2

5

Player 2: 3 matchsticks

Player 1: 3 matchsticks

Player 2: 2 matchsticks

Player 1: 2 matchsticks

Player 2: 2 matchsticks

Player 1: 2 matchsticks

t = 5

5

Player 2: 1 matchstick

Player 1: wins

Player 1 wins, since Player 2 took the last matchstick.

RL learning procedure

Interaction model of RL in the context of the matchstick game

Figure adapted from Sutton & Barto (2018) Reinforcement Learning

Examples for potential rewards

- Goal: get out of a maze:
 - + positive reward for finding the exit
 - negative reward if the path has been crossed before
- · Goal: win in chess:
 - + positive Belohnung if a figure has been beat
 - negative reward if you lost on of the figures
- Manage a power plant:
 - $\,+\,$ positive Belohnung for a specific amount of energy production
 - negative reward for core melt accident
- Goal: training a robot to walk:
 - + positive reward for movement
 - negative reward for falling down
- Goal: be successful in playing Atari-games:
 - + positive reward for beating the highscores
 - negative reward for loosing the game

Interaktion Modell

Agent decides which action (A_t) to take conditioned on the feedback of the environment $(S_t \& R_t)$:

Interaktion model

at time t:

• Agent:

- (1. obtains reward R_t)
- 2. registers state S_t
- 3. performs action A_t

Interaktion model

at time t:

Agent:

- (1. obtains reward R_t)
 - 2. registers state S_t
 - 3. performs action A_t

• environment:

- 1. obtains aktion A_t
- 2.a sends reward R_{t+1}
- 2.b evolves to state S_{t+1}

Player 2: selected 2 matchsticks

$$S_4 = 7$$
:

at time t = 4:

- Agent (Player 1):
 - registers state $S_4 = 7$: 7 matchsticks left
 - obtains reward $R_4 = 0$ (no winner or looser yet)

Player 1: take 2 matchsticks (A_4)

$$S_{4+1/2} = 5$$
:

at time t = 4:

- Agent (Player 1):
 - registers $S_4 = 7$: 7 matchsticks left
 - ontains reward $R_4 = 0$ (no winner/looser yet)
 - performs action $A_4 = 2$: take 2 matchsticks

Player 2: takes 2 matchsticks

Zum Zeitpunkt t = 4:

- environment (Player 2):
 - obtains the action $A_4 = 2$: 5 matchesticks remaining $(S_{4+1/2})$
 - evolves state to $S_5 = 3$: takes 2 matchsticks
 - sends reward $R_5 = 0$ (no winner/looser yet)

Player 1: takes 2 matchsticks (A_5)

$$S_{5+1/2}=1$$
:

Zum Zeitpunkt t = 5:

- Agent (Player 1):
 - registers state $S_5 = 3$: 3 matchsticks left
 - obtains reward $R_5 = 0$ (no winner yet)
 - performs actions $A_5 = 2$: takes 2 matchsticks

Player 2: takes 1 matchstick

at time t = 5:

- environment (Player 2):
 - obtains action $A_5 = 2$: 1 matchstick left $(S_{5+1/2})$
 - evolves the state to $S_6 = 0$: takes 1 matchstick
 - sends reward $R_6 = 1$ (Player 1 wins)

Player 1: wins

Player 1 wins because the Player 2 took the last matchstick.

$$S_6 = 0$$
:

$$t = 6$$

Zum Zeitpunkt t = 6:

- Agent (Player 1):
 - registers state $S_6 = 0$: no matchsticks left
 - obtains reward $R_6 = 1$ (won)

Markov Decision Process

Markov Process

Defintion 1.0

Let the state space X be a bounded compact subset of the Euclidean space, the discrete-time dynamic system $(x_t)_{t\in\mathbb{N}}\in X$ is a Markov chain if it satisfies the Markov property

$$\mathbb{P}(x_{t+1} = x | x_t, x_{t-1}, \dots, x_0) = \mathbb{P}(x_{t+1} = x | x_t)$$

Given an initial state $x_0 \in X$, a Markov chain is defined by the transition probability p

$$p(y|x) = \mathbb{P}(x_{t+1} = y|x_t = x) \tag{1}$$

Markov Decision Process

Defintion 1.0

A Markov Decision Process (MDP) \mathcal{M} is defined to be a tuple $\langle \mathcal{S}, \mathcal{A}, P, P_0, q \rangle$ where

- S is the set of states,
- \bullet \mathcal{A} is the set of actions,
- $P(\cdot|s, a) \in \mathcal{P}(S)$ is the probability distribution over next states, conditioned on action a being take in state s
- $P_0 \in \mathcal{P}(S)$ is the probability distribution according to which the initial state is selected
- $R(s, a) \sim q(\cdot | s, a) \in \mathcal{P}(\mathbb{R})$ is a random variable representing the reward obtained when action a is taken in state s

MPD assumptions

Assumptions:

- P_0 , P and q are assumed to be stationary
- ullet Assume that rewards are bounded by $R_{
 m max}$ and that the expected reward

$$\bar{r}(s,a) = \int rq(r|s,a)dr \le \bar{R} \le R_{max}$$
 (2)

In the beginning: reward is assumed to be deterministic

Matchstick Game

• States: number of matchsticks left

$$\mathcal{S} = \{0, 1, \dots, 21\}$$

- Actions: choose 1, 2 oder 3 matchsticks $A = \{1, 2, 3\}$
- Belohnungen:

$$\mathcal{R}(s,a) = \begin{cases} -1 & \text{, if agent takes last matchstick} \\ 0 & \text{, if agent does not take last matchstick} \\ +1 & \text{, game over and agent did not take last matchstick} \end{cases}$$

Policy

Defintion 1.0

A Markov policy is a mapping from the set of States $\mathcal S$ to the set of actions $\mathcal A$. A policy that does not change over time is called stationary. One can consider two variations of stationary Markov policies:

- a stochastic policy $\mu(\cdot|s)$ which is a probability distribution over the set of actions given a state $s \in \mathcal{S}$
- ullet a deterministic policy which is given by map: $\mu:\mathcal{S}
 ightarrow \mathcal{A}$

MDP controlled by a policy μ

Defintion 1.0

A MDP controlled by a policy μ induces a Markov chain \mathcal{M}^{μ} with

- reward distribution $q^{\mu}(\cdot|s) = q(\cdot|s,\mu(s))$ such that $R^{\mu}(s) = R(s,\mu(s)) \in q^{\mu}(\cdot|s)$
- transition kernel $P^{\mu}(\cdot|s) = P(\cdot|s, \mu(s))$

Defintion 1.0

In a Markov chain \mathcal{M}^{μ} , for action pairs $z=(s,a)\in\mathcal{Z}=\mathcal{S}\times\mathcal{A}$, we define the transition density and the initial (state-action) density as

$$P^{\mu}(z'|z) = P(s'|s,a)\mu(a'|s')$$
 (3)

and

$$P_0^{\mu}(z_0) = P_0 \mu(a_0|s_0) \tag{4}$$

respectively. Further let $\xi = \{z_0, z_1, \dots, z_T\} \in \Xi$ with $T \in \{0, 1, \dots, \infty\}$ denote a path (or trajectory generated by this Markov chain.)

Note: The probability density of such a path is given by

$$Pr(\xi|\mu) = P_0^{\mu}(z_0) \prod_{t=1}^{T} P^{\mu}(z_t|z_{t-1})$$
 (5)

Defintion 1.0

The so called discounted return is a random variable $\rho: \Xi \to \mathbb{R}$

$$\rho(\xi) = \sum_{t=0}^{T} \gamma^t R(z_t)$$
 (6)

where R is assumed to be deterministic with $\gamma \in [0,1]$.

Expected return

Defintion 1.0

The expected return of a policy μ is defined by

$$\eta(\mu) = \mathbb{E}[\rho(\xi)] = \int_{\Xi} \rho(\xi) Pr(\xi|\mu) d\xi. \tag{7}$$

The expectations is over all possible trajectories generated by policy μ and all possible rewards collected in them.

expected return of a state s

Defintion 1.0

Analogously for a given policy μ the return of a state s is defined by

$$D^{\mu}(s) = \sum_{t=0}^{\infty} \gamma^{t} R(Z_{t}) | Z_{0} = (s, \mu(\cdot|s)) \text{ with } S_{t+1} \sim P^{\mu}(\cdot|S_{t})$$
 (8)

The expected value of D^μ is called the value function of policy μ

$$V^{\mu}(s) = \mathbb{E}[D^{\mu}(s)] = \mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^{t} R(Z_{t}) | Z_{0} = (s, \mu(\cdot|s))\Big]$$
(9)

Bellman equation

The Bellmann equation for the value function allows to write the value of a state s under a policy μ in terms of its immediate reward and values of its successor states under μ

$$V^{\mu}(s) = R^{\mu}(s) + \gamma \int_{\mathcal{S}} P^{\mu}(s'|s) V^{\mu}(s') ds'$$
 (10)

$\mathcal{P}(s'|s,a)$ for Matchstick Game

- Agent (Player 1): plays according to policy $\mu(s) = 1 \ \forall \ s \in \mathcal{S}$
 - registers state S_4 : only 7 matchsticks left $\rightarrow s = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)^T$
 - performs action: takes 1 matchstick

Action-value function

Defintion 1.0

The action-value function of a policy is the total expected (discounted reward) when it starts in state s, takes action a and then executes policy μ

$$Q^{\mu}(z) = \mathbb{E}[D^{\mu}(z)] = \mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^t R(Z_t) | Z_0 = z)\Big]$$
 (11)

Bellman equation

Theorem 1.1

Let T be the known time horizon. The value functions of a deterministic policy μ satisfies the following equations

$$V_t^{\mu}(s) = R^{\mu}(s) + \gamma \sum_{s' \in \mathcal{S}} P^{\mu}(s'|s) V_{t+1}^{\mu}(s')$$
 (12)

for all $t \in \{1, ..., T\}$ with the convention that $V_{T+1}^{\mu}(s) = 0$ for all $s \in \mathcal{S}$.

Complexity: for a finite state space S such that |S| = S

- $lackbr{V}_1^\mu(s)$ can be determined using backwards induction
- $S \times T$ memory

 $Figure\ adapted\ from\ Youtube:\ https://www.youtube.com/watch?v=bHeeaXgqVig$

•
$$S = \{(1,1), \dots, (4,3)\} \setminus \{(2,2)\}$$

 $Figure\ adapted\ from\ Youtube:\ https://www.youtube.com/watch?v=bHeeaXgqVig$

- $S = \{(1,1), \ldots, (4,3)\} \setminus \{(2,2)\}$
- $\bullet \ \mathcal{A} = \{\uparrow, \downarrow, \leftarrow, \rightarrow\} = \{(0,1), (0,-1), (-1,0), (1,0)\}$

 $Figure\ adapted\ from\ Youtube:\ https://www.youtube.com/watch?v=bHeeaXgqVig$

•
$$S = \{(1,1), \dots, (4,3)\} \setminus \{(2,2)\}$$

• $A = \{\uparrow, \downarrow, \leftarrow, \rightarrow\} = \{(0,1), (0,-1), (-1,0), (1,0)\}$
• $\mathcal{R}(s,a) = \begin{cases} -0.04 & \text{each step} \\ -1 & \text{touching the trap (X)} \\ +1 & \text{reaching goal (O)} \end{cases}$

•
$$S = \{(1,1),\ldots,(4,3)\} \setminus \{(2,2)\}$$

$$\bullet \ \mathcal{A} = \{\uparrow, \to, \downarrow, \leftarrow\} = \\ \{(0,1), (1,0), (0,-1), (-1,0)\}$$

•
$$\mathcal{R}(s, a) = \begin{cases} -0.04 & \text{each step} \\ -1 & \text{on X} \\ +1 & \text{on O} \end{cases}$$

$$\bullet \ \mathcal{P}^{a}_{ss'} = \mathbb{P}\left[s' \mid s, a\right] = \begin{cases} 0, 8 & \text{target direction (a)} \\ 0, 1 & \text{on the right of a} \\ 0, 1 & \text{on the left of a} \end{cases}$$

•
$$S = \{(1,1), \ldots, (4,3)\} \setminus \{(2,2)\}$$

•
$$A = \{\uparrow, \to, \downarrow, \leftarrow\} = \{(0,1), (1,0), (0,-1), (-1,0)\}$$

•
$$\mathcal{R}(s, a) = \begin{cases} -0.04 & \text{each step} \\ -1 & \text{on X} \\ +1 & \text{on O} \end{cases}$$

$$\begin{array}{l} \bullet \ \ \mathcal{P}^{a}_{ss'} = \mathbb{P}\left[s' \mid s, a\right] = \\ \begin{cases} 0,8 & \text{target direction (a)}: s' = s + a \\ 0,1 & \text{on the right of a}: s' = s + a \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ 0,1 & \text{on the left of a}: s' = s + a \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \\ \end{cases}$$

•
$$S = \{(1,1),\ldots,(4,3)\} \setminus \{(2,2)\}$$

•
$$A = \{\uparrow, \rightarrow, \downarrow, \leftarrow\} = \{(0,1), (1,0), (0,-1), (-1,0)\}$$

•
$$\mathcal{R}(s, a) = \begin{cases} -0.04 & \text{each step} \\ -1 & \text{on X} \\ +1 & \text{on O} \end{cases}$$

$$\bullet \ \mathcal{P}^{a}_{ss'} = \begin{cases} 0,8 & s' = s + a \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{cases}$$

• leaving the grid:
$$A: \mathcal{S} \times \mathcal{A}(s) \to \mathcal{S}, (s, a) \mapsto \mathcal{A}(s, a) = \begin{cases} s' & s' \in \mathcal{S} \\ s & s' \notin \mathcal{S} \end{cases}$$

•
$$S = \{(1,1),\ldots,(4,3)\} \setminus \{(2,2)\}$$

•
$$A = \{\uparrow, \to, \downarrow, \leftarrow\} = \{(0,1), (1,0), (0,-1), (-1,0)\}$$

•
$$\mathcal{R}(s, a) = \begin{cases} -0.04 & \text{each step} \\ -1 & \text{on X} \\ +1 & \text{on O} \end{cases}$$

$$\bullet \ \mathcal{P}^{a}_{ss'} = \begin{cases} 0,8 & s' = s + a \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{cases}$$

$$\bullet \ \mathsf{A(a,s)} = \begin{cases} s' & s' \in \mathcal{S} \\ s & s' \notin \mathcal{S} \end{cases}$$

•
$$S = \{(1,1), \ldots, (4,3)\} \setminus \{(2,2)\}$$

$$\bullet \ \mathcal{A} = \{\uparrow, \to, \downarrow, \leftarrow\} = \\ \{(0,1), (1,0), (0,-1), (-1,0)\}$$

•
$$\mathcal{R}(s, a) = \begin{cases} -0.04 & \text{each step} \\ -1 & \text{on X} \\ +1 & \text{on O} \end{cases}$$

$$\bullet \ \mathcal{P}^{a}_{ss'} = \begin{cases} 0,8 & s' = s + a \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{cases}$$

$$\bullet \ \mathsf{A(a,s)} = \begin{cases} s' & s' \in \mathcal{S} \\ s & s' \notin \mathcal{S} \end{cases}$$

•
$$S = \{(1,1),\ldots,(4,3)\} \setminus \{(2,2)\}$$

•
$$A = \{\uparrow, \rightarrow, \downarrow, \leftarrow\} = \{(0,1), (1,0), (0,-1), (-1,0)\}$$

•
$$\mathcal{R}(s, a) = \begin{cases} -0.04 & \text{each step} \\ -1 & \text{on X} \\ +1 & \text{on O} \end{cases}$$

$$\bullet \ \mathcal{P}^{a}_{ss'} = \begin{cases} 0,8 & s' = s + a \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{cases}$$

$$\bullet \ \mathsf{A(a,s)} = \begin{cases} s' & s' \in \mathcal{S} \\ s & s' \notin \mathcal{S} \end{cases}$$

•
$$S = \{(1,1), \ldots, (4,3)\} \setminus \{(2,2)\}$$

•
$$A = \{\uparrow, \rightarrow, \downarrow, \leftarrow\} = \{(0,1), (1,0), (0,-1), (-1,0)\}$$

•
$$\mathcal{R}(s, a) = \begin{cases} -0.04 & \text{each step} \\ -1 & \text{on X} \\ +1 & \text{on O} \end{cases}$$

$$\bullet \ \mathcal{P}^{a}_{ss'} = \begin{cases} 0,8 & s' = s + a \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{cases}$$

$$\bullet \ \mathsf{A}(\mathsf{a},\mathsf{s}) = \begin{cases} \mathsf{s}' & \mathsf{s}' \in \mathcal{S} \\ \mathsf{s} & \mathsf{s}' \notin \mathcal{S} \end{cases}$$

→	→	→	+1
≈ 0.812	≈ 0.868	≈ 0.918	
↑ ≈ 0.762		↑ ≈ 0.660	-1
↑	←	←	←
≈ 0.705	≈ 0.655	≈ 0.611	≈ 0.388

•
$$S = \{(1,1),\ldots,(4,3)\} \setminus \{(2,2)\}$$

•
$$A = \{\uparrow, \rightarrow, \downarrow, \leftarrow\} = \{(0,1), (1,0), (0,-1), (-1,0)\}$$

•
$$\mathcal{R}(s, a) = \begin{cases} -0.04 & \text{each step} \\ -1 & \text{on X} \\ +1 & \text{on O} \end{cases}$$

$$\bullet \ \mathcal{P}^{a}_{ss'} = \begin{cases} 0, 8 & s' = s + a \\ 0, 1 & s' = s + a \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ 0, 1 & s' = s + a \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{cases}$$

$$A(a,s) = \begin{cases} s' & s' \in \mathcal{S} \\ s & s' \notin \mathcal{S} \end{cases}$$

Example for $s=(3,3), \mu(s) = (1,0)$:

$$V^{\mu}((3,3)) = -0.04 + 0.8 \cdot V^{\mu}(s+a) + 0.1 \cdot V^{\mu}(s+a \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}) + 0.1 \cdot V^{\mu}(s+a \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix})$$

•
$$S = \{(1,1),\ldots,(4,3)\} \setminus \{(2,2)\}$$

•
$$A = \{\uparrow, \to, \downarrow, \leftarrow\} = \{(0,1), (1,0), (0,-1), (-1,0)\}$$

•
$$\mathcal{R}(s,a) = egin{cases} -0.04 & \text{each step} \\ -1 & \text{on X} \\ +1 & \text{on O} \end{cases}$$

$$\bullet \ \mathcal{P}^{a}_{ss'} = \begin{cases} 0,8 & s' = s + a \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ 0,1 & s' = s + a \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{cases}$$

$$\bullet \ \mathsf{A}(\mathsf{a},\mathsf{s}) = \begin{cases} s' & s' \in \mathcal{S} \\ s & s' \notin \mathcal{S} \end{cases}$$

Example for $s=(3,3), \mu(s) = (1,0)$:

$$\begin{split} V^{\mu}((3,3)) &= -0.04 + 0.8 \cdot V^{\mu}((4,3)) + 0.1 \cdot V^{\mu}((3,2)) + 0.1 \cdot V^{\mu}((3,3)) \\ &= 0.8 \cdot (+1) + 0.1 \cdot 0.660 + 0.1 \cdot 0.918 - 0.04 \\ &\approx 0.918 \end{split}$$

Solving the Bellman equations

For a fixed stationary, deterministic policy $\boldsymbol{\mu}$ we know that following equations are satisfied

$$V^{\mu}(s) = R^{\mu}(s) + \gamma \sum_{s' \in S} P^{\mu}(s'|s) V^{\mu}(s')$$
 (13)

Introducing the vectors

$$V^{\mu} = V^{\mu}(s))_{s=1}^{S} \in \mathbb{R}^{S}$$
 (14)

$$R^{\mu} = R^{\mu}(s))_{s=1}^{S} \in \mathbb{R}^{S}$$
 (15)

and the matrix

$$P^{\mu} = (P(s'|s, \mu(s)))_{1 \le s \le S \text{ and } 1 \le s' \le S} \in \mathbb{R}^{S \times S}$$
 (16)

the Bellman equation yields:

$$V^{\mu} = R^{\mu} + \gamma P^{\mu} V^{\mu} \tag{17}$$

Solving the Bellman equations

Due to

$$V^{\mu} = R^{\mu} + \gamma P^{\mu} V^{\mu} \tag{18}$$

the vector $V^{\mu} \in \mathbb{R}^{S}$ satisfies

$$(I - \gamma P^{\mu})V^{\mu} = R^{\mu} \tag{19}$$

$$V^{\mu} = (I - \gamma P^{\mu})^{-1} R^{\mu} \tag{20}$$

provided that the matrix $I-\gamma P^{\mu}$ is invertible.

Note: complexity $\mathcal{O}(S^3)$

Alternative approach to solve Bellman equations

Defintion 1.1

The Bellman operator associated to a policy μ is defined by

$$T^{\mu}: \mathcal{R}^{\mathcal{S}} \to \mathcal{R}^{\mathcal{S}} \tag{21}$$

$$V \mapsto T^{\mu}(V) \tag{22}$$

where

$$T^{\mu}(V)(s) = R^{\mu}(s, \mu(s)) + \gamma \sum_{s' \in \mathcal{S}} P^{\mu}(s'|s, \mu(s))V(s')$$
 (23)

Idea: Solve Bellman equation via Fix Point iteration

Banach Fix Point Theorem

Theorem 1.2

Let be (X,d) a complete metric space and let $T:X\to X$ be contraction mapping on X, i.e., there exists $\gamma\in[0,1)$ such that

$$d(T(x), T(y)) \le \gamma d(x, y) \tag{24}$$

for all x, y in X. Then

- T admits a unique fixed-point x* in X, i.e., $T(x^*) = x^*$
- for any $x_0 \in X$ the fix point iteration $x_n = T(x_{n-1})$ converges to x^* (linear convergence dependent on γ)

Note : \mathcal{T}^{μ} has a unique fixed-point V_{μ}

Optimal value function

Goal: for a MDP find a policy μ that maximizes the value function:

Defintion 1.2

The optimal

$$V^*(s) = \sup_{\mu} V^{\mu}(s) \tag{25}$$

for all states $s \in \mathcal{S}$.

Theorem 1.3

There exists an optimal policy μ^* which satisfies

$$\mu^* \in \operatorname{argmax}_{\mu} V^{\mu}(s) \quad \forall s \in \mathcal{S}.$$
 (26)

Therefore we can write $V^* = V^{\mu^*}$.

Optimal policy

Defintion 1.3

A policy μ^* is referred to as optimal if it attain the optimal values at all states

$$V^{\mu^*}(s) = V^*(s) \tag{27}$$

for all $s \in \mathcal{S}$.

Theorem 1.4

 $V^*(s) = \sup_{\mu} V^{\mu}(s)$ satisfy the Bellman equations :

$$V^*(s) = \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \int_{\mathcal{S}} P^{\mu}(s'|s, a) V^*(s') ds' \right]$$
 (28)

Moreover, an optimal policy is given by

$$\mu^*(s) \in \operatorname{argmax}_{a \in \mathcal{A}} \left[R(s, a) + \gamma \int_{\mathcal{S}} P^{\mu}(s'|s, a) V^*(s') ds' \right] \quad \forall s \in \mathcal{S}.$$
 (29)

Greedy policy

Defintion 1.4

A deterministic policy is referred to as a greedy policy if

$$\mu(s) = \operatorname{argmax}_{a \in \mathcal{A}} \left[R(s, a) + \gamma \int_{\mathcal{S}} P(s'|s, a) V^*(s') ds' \right] \quad \forall s \in \mathcal{S}$$
(30)

Bellman equations for the optimal values

Defintion 1.4

The optimal Bellman operator is defined by

$$T^*: \mathcal{R}^S \to \mathcal{R}^S \tag{31}$$

$$V \mapsto T^*(V) \tag{32}$$

where

$$T^*(V)(s) = \max_{a \in \mathcal{A}} \left[R^{\mu}(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V(s') \right]$$
(33)

Optimal action-value function

Goal: for a MDP find a policy μ that maximizes the value function:

$$Q^*(z) = \sup_{\mu} Q^{\mu}(z) \tag{34}$$

for all states $s \in \mathcal{S}$.

Bellman equation for action-value function

The Bellmann equation for the action-value function under a policy μ in terms of its immediate reward and values of its successor states and actions under μ

$$Q^{\mu}(s,a) = R(s,a) + \gamma \int_{\mathcal{S}} P^{\mu}(s'|s,a) \left(\int_{a' \in \mathcal{A}} \mu(a'|s') Q^{\mu}(s',a') da' \right) ds'$$
(35)

Link between action-value and value function

$$V^{\mu}(s) = \int_{a \in A} Q^{\mu}(s, a) \tag{36}$$

$$Q^*(s,a) = R(s,a) + \gamma \int_{\mathcal{S}} P^{\mu}(s'|s,a) \Big(\max_{a \in \mathcal{A}} Q^*(s',a') \Big) ds'$$
 (37)