CS5691: Pattern Recognition and Machine Learning

Assignment #3

Team 34
M Jaswanth Kumar, ED19B017 and Nitin Yadav, AM20M004

A) K-means and GMM

K-means Clustering

Fig: Decision boundary for K = 20

Fig: Contour plot for K=20

Fig: Decision boundary for K = 18

Fig: Contour plot for K=18

Fig: Decision boundary for K = 16

Fig: Contour plot for K=14

Fig: Decision boundary for K = 12

Fig: Contour plot for K=12

Fig: Decision boundary for K = 10

Fig: Contour plot for K=10

Confusion Matrix for K-means is saved as the variable confMat.

For GMM we found optimal value of K equal to 14, 15, 16 from K-means.

B) DTW and Discrete HMM

Isolated Spoken Digits

Fig: ROC & DET curves for Isolated spoken digits data. We can see that DTW is performing better than HMM

Online Handwritten Characters

Fig: Confusion matrix for DTW applied on Handwritten characters

Fig: Confusion matrix for HMM applied on Handwritten characters

Fig: ROC & DET curves for Handwritten characters data. We can see that DTW is performing better than HMM