RELAZIONE DI PROGETTO PER IL CORSO BASI DI DATI

Anno Accademico 2017/2018

Imbelli Cai Marco

Capellini Alessandro

Berti Nicola

Sommario

Sommario	pag. 2
1. Analisi della realtà data	pag. 5
2. Glossario	pag. 6
2.1. Area Registrazione	pag. 6
2.2. Area Car_Sharing	pag. 7
2.3. Area Car-Pooling	pag. 9
2.4. Area Ride-Sharing	pag. 9
2.5. Area Social	pag. 10
2.6. Area Analytics	pag. 10
3. Progettazione concettuale del diagramma Entità-Relazioni	pag. 11
3.1. Attributi derivabili	pag. 11
3.2. Generalizzazioni	pag. 16
3.3. Attributi multipli	pag. 16
4. Ristrutturazione del diagramma E-R	pag. 17
4.1. Traduzione delle generalizzazioni	pag. 17
4.2. Eliminazione degli attributi multivalore	pag. 18
4.3. Accorpamento / Partizionamento di entità e relazioni	pag. 19
4.4. Scelta degli identificatori	pag. 20
4.4.1. Area Registrazione	pag. 20
4.4.2. Area Car-Sharing	pag. 22
4.4.3. Area Car-Pooling	pag. 24
4.4.4. Area Ride-Sharing	pag. 25
4.4.5. Area Social	pag. 27
4.4.6. Area analytics	pag. 27

	si delle prestazioni e individuazioni delle operazioni
!	5.1. Tavola dei volumi pag. 28
	5.1.1. Area Registrazione pag. 28
	5.1.2. Area Car-Sharing pag. 30
	5.1.3. Area Car-Pooling pag. 34
	5.1.4. Area Ride-Sharing pag. 36
	5.1.5. Area Social pag. 38
	5.1.6. Area Analytics pag. 40
!	5.2. Individuazione delle operazioni significative e tavola degli acessi pag. 40
	5.2.1. Stima del tempo di percorrenza di un tragitto pag. 43
	5.2.2. Ricerca di un tragitto simile di pool pag. 47
	5.2.3. Calcolo della spesa di un pool pag. 49
	5.2.4. Calcolo della spesa di uno sharing pag. 50
	5.2.5. Previsione della congestione stradale pag. 53
	5.2.6. Calcolo dell'affidabilità di un utente in base alla sua osservanza dei limiti di velocità, degli orari, in base ai sinistri in cui è coinvolto e in base alle sue
	valutazioni pag. 59
	valutazioni
	5.2.7. Event una volta al minuto per il controllo e la modifica dello stato del pool
	5.2.7. Event una volta al minuto per il controllo e la modifica dello stato del pool (aperto, partito, chiuso)
!	5.2.7. Event una volta al minuto per il controllo e la modifica dello stato del pool (aperto, partito, chiuso)
ļ	5.2.7. Event una volta al minuto per il controllo e la modifica dello stato del pool (aperto, partito, chiuso)
	5.2.7. Event una volta al minuto per il controllo e la modifica dello stato del pool (aperto, partito, chiuso)
6. Tradi	5.2.7. Event una volta al minuto per il controllo e la modifica dello stato del pool (aperto, partito, chiuso)
6. Trado	5.2.7. Event una volta al minuto per il controllo e la modifica dello stato del pool (aperto, partito, chiuso)

7. Analisi delle dipendenze funzionali e normalizzazione	pag. 92
7.1. Dipendenze funzionali	pag. 92
8. Materializad View	pag. 99
9. Implementazione su DBMS	pag. 99

1. Analisi della realtà data

Il seguente progetto ha come finalità quella di creare e gestire una base di dati di un'azienda operante a livello multinazionale nel settore della mobilità intelligente.

In particolare i servizi che si desiderano gestire ed erogare sono i seguenti :

- Servizio di Car Sharing
- Servizio di Car Pooling
- Servizio di Ride Sharing

Per motivi di organizzazione e di comprensione della documentazione stessa e della relativa struttura sviluppata, il documento è suddiviso in sei aree fondamentali ognuna delle quali conterrà tutte le spiegazioni e gli sviluppi effettuati, al fine di completare il progetto. Le aree individuate sono le stesse riportate nella documentazione originale presentata dai docenti. In particolare esse sono :

- Area registrazione
- Area car sharing
- Area car pooling
- Area ride sharing
- Area social
- Area analytics

Al fine di evitare incomprensioni, per l'uso di termini che talvolta possono non essere subito chiari, nel paragrafo successivo si trova un glossario relativo ad ogni area sopra descritta, contenente le parole più particolari utilizzate e i relativi collegamenti che esse hanno con altre entità all'interno del diagramma E-R. Poiché il glossario è stato effettuato dopo la ristrutturazione del diagramma E-R, qualora il termine utilizzato non sia presente nel diagramma E-R ristrutturato, verrà riportata la stringa "nessun collegamento", la quale indicherà la mancanza di correlazioni con i termini presenti nel diagramma E-R ristrutturato. Inoltre per ognuno di essi verrà riportata una breve descrizione e i sinonimi più comuni che si possono trovare.

2. Glossario

2.1) Area registrazione

Termine	Descrizione	Sinonimi	Collegamenti
Utente	Persona fisica, che eroga o usufruisce dei tre servizi sopra indicati	Desintari, consumatori, clienti	Account, Documento d'identità, Valutazione di viaggio, Prenotazione Di Noleggio, Prenotazione Di Pool, Autovettura, Chiamata
Utente Proponente	Persona fisica che mettendo a disposizione la sua autovettura eroga i servizi di car sharing e car pooling	Proponente, offerente	Nessun collegamento
Utente Fruitore	Persona fisica che usufruisce dei servizi messi a disposizione	Acquirente, consumatore, compratore	Nessun collegamento
Documento Di Identità	Oggetto che identifica univocamente una persona fisica		Utente
Account	complesso dei dati identificativi di un utente, che gli consentono l'accesso a un servizio telematico	Autorizzazione, accesibilità	Utente
Autovettura	Denominazione generica degli autoveicoli destinati al trasporto	Automobile, auto	Utente, Sharing, Sinistro, Optional, Prenotazione di

	privato di		Noleggio, Pool, Fasce
	persone.		Orarie, Stato
Optional	Oggetti che	Accessorio extra, accessorio	Autovettura
	aumentano il	a richiesta	
	comfort di		
	un'autovettura		
Fasce Orarie	Fasce Orarie,	Intervalli di orari	Autovettura
	nelle quali le		
	automobili		
	iscritte al		
	servizio risultano		
	disponibili		

2.2) Area Car Sharing

Termine	Descrizione	Sinonimi	Collegamenti
Stato	Esso indica la quantità di carburante e il chilometraggio di un'auto	condizione, situazione, disposizione	Autovettura
Prenotazione Di Noleggio	Prendere in prestito un'auto per una prefissata quantità di tempo	Noleggio, prestito	Valutazione Di Viaggio, Utente, Autovettura, Spezzone
Strada	Area di uso pubblico,destinata al passaggio e al transito di persone e di veicoli	Via, carreggiata, via di comunicazione	Limite, spezzone, pedaggio, km
Limite	Massima velocità consentita dalla legge ai mezzi di trasporto circolanti su quella strada.	Valore massimo, soglia, divieto	Strada
Spezzone	Segmento di una strada, all'interno del quale non sono presenti incroci	Segmento stradale	Strada, Pool, Prenotazione Di Pool, Prenotazione Di Noleggio, Sharing

Pedaggio	Tassa che si eroga al gestore di una strada per il suo uso	Tassa, tributo, imposta, dazio	Strada
Km	Segnale di una strada il quale viene posto mille metri dopo il suo antecedente	Segnale di progressione chilometrica	Tracking, Sinistro, Chiamata, Strada
Posizione	Insieme di dati che permette di individuare un punto su una strada	Luogo, posto, punto, zona, sito, ubicazione	Nessun collegamento
Autostrada	Particolare tipo di strada, caratterizzato da alte velocità di percorrenza	Strada di collegamento rapido	Nessun collegamento
Tragitto	Insieme di strade che tra di loro formano un percorso	Cammino, giro, viaggio, itinerario	Nessun collegamento
Tracking	Tracciamento ad intervalli di tempo regolari del tragitto effettuato da un'autovettura	Tracciamento, Rilevazione di una posizione	Prenotazione Di Noleggio, Sharing, Pool, Km
Sinistro	Il sinitro stradale è un evento in cui rimangano coinvolti veicoli, esseri umani o animali dal quale derivino lesioni a cose, animali, o persone.	Incidente stradale, episodio, scontro, imprevisto	Autovettura, Autovettura Ext
Autovettura Ext	Tale parola, indica le autovetture esterne al nostro servizio, coinvolte in un sinitro	Autovettura esterna al servizio	Sinistro

2.3) Area Car Pooling

Termine	Descrizione	Sinonimi	Collegamenti
Pool	Evento che permette di percorrere un tragitto condiviso da altri individui mediante una automobile iscritta al servizio	Non presenti	Prenotazione Di Pool, Autovettura, Tracking, Spezzone, Valutazione Di Viaggio
Prenotazione Di Pool	Prenotazione di un posto all'interno dell'autovettura condivisa in un pool	Fissare un pool, fermare un pool, riservare un pool	Utente, Pool, Spezzone
Variazione	Modifica del tragitto di un pool proposta da un utente	Modificazione, mutamento, cambiamento, diversificazione	Nessun collegamento

2.4) Area Ride Sharing

Termine	Descrizione	Sinonimi	Collegamenti
Sharing	Evento che	Non presenti	Chiamata, Autovettura,
	permette di		Tracking, Spezzone
	effettuare un		
	tragitto mediante		
	un'auto iscritta al		
	servizio		
Chiamata	Richiesta di	Telefonata,	Km, Sharing, Utente
	erogazione del	Convocazione,	
	servizio di Sharing	Richiamo,	
		Richiesta	

2.5) Area Social

Termine	Descrizione	Sinonimi	Collegamenti
Valutazione Di	Contiene le	Valutazione,	Sharing, Utente,
Viaggio	valutazioni degli	Recensione	Prenotazione Di
	utenti proponenti		Noleggio, Pool
	verso i fruitori e		
	viceversa		
Valutazione	Valutazione di un	Recensione	Nessun
Proponente	proponente verso	proponente	collegamento
	un fruitore		
Valutazione Fruitore	Valutazione di un	Recensione fruitore	Nessun
	fruitore verso un		collegamento
	proponente		

2.6) Area Analytics

All'interno del diagramma E-R non è presente alcun riferimento ad elementi presenti nell'area analytics, comprendendo essa aspetti della realtà considerata puramente tecnici e non concettuali. Questa sezione è stata quindi lasciata vuota.

1. Progettazione concettuale del diagramma entità-relazioni

In questo capitolo viene descritta la progettazione concettuale della base di dati e le varie componenti ad essa legate come attributi derivabili, generalizzazioni, attributi multipli ecc. Sotto segue anche una breve descrizione della strategia utilizzata per progettare il database.

Per progettare il diagramma E-R è stata scelta una strategia **ibrida.** Infatti abbiamo inizialmente usato una strategia del tipo *bottom up*, per individuare le varie entità e associazioni all'interno delle sei aree sopra descritte. Successivamente ogni area è stata raffinata mediante una strategia di *top-down*, decomponendo e espnandendo le varie entità ed associazioni per completare al meglio ciò che è richiesto dalle specifiche.

Tale strategia è stata attuata poiché, vista la complessità e la grandezza del progetto preso in considerazione, non era possibile procedere direttamente con una strategia del tipo bottom-up, generando direttamente le entità ed associazioni senza poi attuare un miglioramento delle stesse. Di seguito viene descritto il diagramma E-R prima della ristrutturazione, nella sua prima versione (Diagramma E-R ver. 1). I cambiamenti realizzati sono descritti nel dettaglio nel paragrafo successivo, con le correzioni e miglioramenti implementati nel diagramma E-R.

3.1) Attributi derivabili

• Entità Utente:

- L'attributo stato deriva dalla validità del documento di identità. Ogni qualvolta che un utente si registra, viene verificata la validità del documento inserito e delle informazioni immesse. Se tali risultati sono positivi, lo stato viene settato su attivo, altrimenti esso sarà inattivo.
- L'attributo **ruolo** stabilisce il ruolo che l'utente avrà all'interno dei servizi. Nel particolare l'attributo ruolo varrà :
 - 1 se l'utente è un utente proponente
 - 2 se l'utente è un utente fruitore
 - 0 se l'utente ha entrambi i ruoli

• Entità Prenotazione Di Noleggio:

- L'attributo accettata indica la validità o meno della prenotazione stessa. Quando un utente richiede una prenotazione di Noleggio, il tempo in cui essa è richiesta viene confrontato con la disponibilità dell'autovettura selezionata. Se tale prenotazione è fuori dalle fasce orarie in cui l'autovettura è disponibile oppure se è già stata prenotata, non verrà consentita la prenotazione, altrimenti sarà messa in attesa di accettazione da parte del proponente.

• Entità Autovettura:

- L'attributo costo al km dipende dal costo di usura e dal costo operativo che caratterizzano ogni veicolo. Nel progetto abbiamo ipotizzato un costo al km per ogni autoveicolo inserito, tenendo conto degli attuali prezzi del carburante e dei relativi costi di usura e mantenimento che ha un'autovettura (cambio delle gomme ogni 20 000 km circa, revisioni, tagliandi, cambio delle pasticche dei freni, cambio dell'olio motore ecc.).
- L'attributo **livello comfort**, contiene un numero di stelle che variano da 1 a 5 in base agli optional che ogni autovettura possiede. Sotto segue la tipologia di ragionamento utilizzata per l'assegnamento di esse.

Numero	<= 3	>3 e <=10	>10 e <=15	>15 e <=20	>20
Optional					
Livello	1	2	3	4	5
comfort					

• Entità Spezzone:

- L'attributo **Livello Iniziale** indica il sopraelevamento o meno di un'inizio di spezzone, relativo ad una strada. Se sotto l'incrocio relativo alla strada presa in considerazione,

- non sono presenti altre strade allora il livello sarà 0, altrimenti sarà il numero delle strade sottostanti esso.
- L'attributo Livello Finale indica il sopraelevamento o meno della fine di spezzone, relativo ad una strada. Se sotto l'incrocio relativo alla strada presa in considerazione, non sono presenti altre strade allora il livello sarà 0, altrimenti sarà il numero delle strade sottostanti esso.
- L'attributo **Senso di Marcia** indica il senso di percorrenza di uno spezzone. Tale attributo vale :
 - 0 se lo spezzone ha un solo senso di marcia dalle coordinate iniziali a quelle finali.
 - 1 se lo spezzone ha un solo senso di marcia dalle coordinate finali a quelle iniziali.
 - 2 se lo spezzone ammette una percorrenza in entrambi i sensi di marcia.

• Entità Pool:

- L'attributo **Costo Al Km** indica il costo di percorrenza ad ogni km per quel pool. Tale costo è dato dalla seguente formula :
 - Costo Al Km = Costo Al Km Autovettura * 3,5. Tale rincaro è dovuto al fatto che l'utente proponente deve guadagnare sul servizio che egli eroga.
- Gli attributi **Grado di Flessibilità** e **Percentuale aumento** indicano l'aumento del costo finale di un pool per un utente fruitore, se esso vuole proporre delle variazioni al pool di partenza. Sotto segue una tabella con i relativi ricari :

Grado di	Alto	Medio	Basso	NULL
flessibilità				
Percentuale di	Dal 10 al 15 %	30 %	50 %	Non sono
aumento				permesse
				variazioni

- L'attributo **stato** deriva dallo stato nel quale è il pool, nell'attimo in cui lo stiamo analizzando. Un pool come specificato nella documentazione fornita può essere :
 - Aperto

- Chiuso
- Partito
- L'attributo **Periodo di Validità** è un numero di ore, le quali indicano per quanto tempo è possibile ancora accedere al pool, prima che egli cambi stato.

• Entità Sharing:

- L'attributo **tragitto**, deriva dal percorso che effettuerà quello sharing. Il tragitto è memorizzato nella relativa entità, il quale sarà composto a sua volta da spezzoni.

• Entità Chiamata:

- L'attributo **stato** deriva dallo stato che può assumere la chiamata stessa. Come specificato nella documentazione fornita, gli stati che può assumere una chiamata sono :
 - Pending
 - Accepted
 - Rejected

• Entità Prenotazione Di Pool:

- L'attributo stato, deriva dalla riposta che il proponente fornisce al fruitore relativa alla prenotazione di pool effettuata dal fruitore stesso. Lo stato di una prenotazione di pool può essere :
 - Accettata (Da parte del proponente)
 - Non Accettata (Da parte del proponente)

- L'attributo **costo**, indica il costo iniziale che l'utente fruitore dovrà erogare al proponente per partecipare al pool, al momento della prenotazione. Il costo viene calcolato con la seguente formula :

costo iniziale = costo al km * lunghezza del percorso.

Tale costo iniziale, può variare se l'utente effettua delle variazioni, le quali comporterrano una percentuale di aumento a seconda del grado di flessibilità espresso dall'utente proponente. Il costo finale che un fruitore dovrà sostenere è calcolato con la seguente formula :

costo finale = costo iniziale + (costo iniziale / 100) * Percentuale aumento.

3.2) Generalizzazioni

Nel diagramma E-R non ristrutturato è presente una generalizzazione, la quale poi mediante i dovuti accorgimenti è stata implementata nel diagramma E-R ristrutturato. Sotto riportiamo una breve descrizione di essa e la relativa porzione del diagramma E-R interessata. Questa scelta di progettazione è stata effettuata poiché, avevamo entità con attributi molto simili tra loro, se non addirittura uguali.

Inizialmente per le *autostrade*, avevamo pensato di effettuare una generalizzazione con strade, poiché le autostrade stesse differivano solamente dall'attributo "*seconda numerazione*" da strada. Vista la minima differenza, tale entità è stata subito accorpata insieme a strada, aggiungendo l'attributo "*seconda numerazione*" su essa.

A fianco riportiamo la generalizzazione relativa alle valutazioni di viaggio. Il problema posto inizialmente, era quello di capire data una recensione se essa fosse stata effettuata da parte di un utente proponente verso un utente fruitore e viceversa. Cossichè abbiamo individuato due tipi di valutazione :

- Una effettuata dal proponente verso il fruitore
- La seconda effettuata dal fruitore verso il proponente

3.3) Attributi multipli

Per come è stato sviluppato il diagramma E-R non abbiamo previsto di inserire attributi multipli, poiché se presenti sono stati scomposti fin da subito ed implementati mediante l'uso di più attributi singoli. Infatti per esempio l'attributo multiplo *indirizzo* presente nell'entità Utente, è stato implementato su di essa suddividendolo in più attributi i quali rispettivamente sono :

Cap, Civico, Comune, Nome_Luogo_Di_Residenza

2. Ristrutturazione del diagramma E-R

In questo capitolo viene trattata la prima parte della progettazione logica della base di dati, ossia la ristrutturazione dello schema E-R. Nello specifico viene trattata, la traduzione della generalizzazione vista soopra, l'accorpamento e il partizionamento di alcune entità e relazioni e infine la scelta finale degli identificatori per le entità.

4.1) Traduzione delle generalizzazioni

La generalizzazione delle valutazioni di viaggio è stata tradotta a livello di diagramma E-R, effettuando un doppio collegamento tra l'entità valutazione di viaggio ed utente in modo che si sappia per ogni valutazione chi la effettua e chi la riceve. L'implementazione a livello logico verrà spiegata approfonditamente nella traduzione del diagramma E-R nel relativo schema logico. Sotto la porzione di diagramma E-R interessata.

4.2) Eliminazione degli attributi multivalore

Come detto nel paragrafo precedente l'unico attributo multivalore *indirizzo* presente nell'entità Utente, è stato implementato su di essa suddividendolo in più attributi. Sotto segue la porzione di diagramma E-R interessata :

Come possiamo vedere gli attributi **Cap, Nome_Luogo_Di_Residenza,Civico** e **Comune** sono stati inseriti nell'entità utente.

4.3) Accorpamento/Partizionamento di entità e relazioni

- Partizionamento dell'attributo disponibilità in Autovettura. Tale attributo è stato scomposto, creando l'entità Fasce_Orarie. Un'autovettura può avere più fasce orarie nello stesso giorno, per questo è nata l'esigenza di tale entità.
- Creazione della relazione Dispone Di tra Autovettura e Fasce_Orarie, per indiciare le varie fasce orarie di ogni autovettura.
- Accorpamento dell'entità Posizione in Km. Un km di una strada identifica una posizione ed il relativo indirizzo che ne è associato, quindi tali informazioni sono deducibili dal km.
- Eliminazione della relazione Deriva Da tra posizione e Km.
- Eliminazione della relazione **Relativa A** tra chiamata e posizione.
- Creazione della relazione Arriva A tra chiamata e Km per identificare il kilometro di arrivo di una chiamata.
- Creazione della relazione Parte Da tra chiamata e Km per identificare il kilometro di partenza di una chiamata.
- Accorpamento dell'entità Tragitto mediante Spezzone. Un tragitto è formato da più spezzoni, i quali identificano i segmenti stradali di ogni tragitto.
- Eliminazione della relazione Relativo A tra Sharing e Tragitto.
- Eliminazione della relazione Formato Da tra Tragitto e Spezzone.
- Creazione delle relazione Passa Da-3 tra Sharing e Spezzone, per identificare il tragitto realmente percorso da uno Sharing.
- Creazione della relazione Formato Da-2 tra Sharing e Spezzone, per identificare il tragitto inizialmente impostato dall'utente proponente.
- Eliminazione della relazione Relativa A tra tragitto e Valutazione di Viaggio
- Creazione della relazione Corrisponde -1 tra Sharing e Valutazione di Viaggio.
- Eliminazione della relazione **Possiede** tra tragitto e Variazione
- Accorpamento dell'entità Variazione su Prenotazione Di Pool.
- Eliminazione della relazione **Relativa A-2** tra Variazione e Prenotazione Di Pool.
- Creazione della relazione Relativa A tra Prenotazione Di Pool e Spezzone. Così facendo un'utente fruitore specifica la propria variazione, corredando alla prenotazione stessa li spezzoni che compongono la sua variazione di tragitto.
- Eliminazione della relazione **Compie -4** tra Utente e Valutazione Di Viaggio
- Creazione della relazione Riceve tra Utente e Valutazione Di Viaggio, per capire chi riceve tale valutazione, come scritto sopra nella traduzione della generalizzione.
- Creazione della relazione Effettua tra Utente e Valutazione Di Viaggio, per capire chi
 effettua tale valutazione, come scritto sopra nella traduzione della generalizzione.

- Eliminazione della relazione **Propone -2** tra Utente e Sharing.
- Eliminazione della relazione Propone -3 tra Utente e Pool.
- Creazione della relazione Corrisponde -2 tra Prenotazione Di Noleggio e Valutazione di Viaggio.
- Modifica della relazione Possiede -3 tra Prenotazione di Pool e Pool in Possiede -1.
- Modifica della relazione Possiede tra Pool e Tracking in Soggetto A-1.
- Modifica della relazione Formato Da tra Pool e Spezzone in Formato Da -1.
- Creazione della relazione Ammette tra Pool e Autovettura.
- Creazione della relazione Corrisponde -3 tra Pool e Valutazione Di Viaggio.
- Creazione della relazione Passa Da -1 tra Pool e Spezzone, per memorizzare il tragitto che realmente percorrerà quel Pool.
- Creazione della relazione Passa Da -2 tra Prenotazione Di Noleggio e Spezzone, per memorizzare il tragitto che percorrerà quella Prenotazione Di Noleggio.
- Creazione della relazione Ammette -2 tra Autovettura e Sharing
- Eliminazione della relazione **Dipende Da** tra Km e Pedaggio

4.4) Scelta degli identificatori

Al termine delle operazioni di ristrutturazione sono stati scelti o eventualmente aggiunti/modificati gli identificatori per ogni entità, ottenendo quindi il diagramma E-R nella sua forma finale. Di seguito è illustrata la tabella contenente tutte le entità e relazioni del database, per le prime sono stati specificati gli attributi e gli identificatori, mentre per le seconde una breve descrizione, le entità che mettono in relazione con la relativa cardinalità ed infine eventuali attributi.

4.4.1) Area Registrazione

Entità	Attributi	Identificatore/i
Utente	Cognome, CF, Nome, Ruolo,	CF
	Stato,	
	Cap, Telefono,	
	Data_Iscrizione, Comune,	
	Nome_Luogo_Di_Residenza,	
	Civico, Provincia	
Documento Di Identità	Numero_Documento,	Numero_Documento,
	Tipologia, Data_Scadenza,	Tipologia
	Ente_Rilascio, Data_Rilascio	

Account	Risposta_Domanda, Id_Account Password, Id_Account, Username, Domanda_Recupero	
Autovettura	Alimentazione, Modello, Cilindrata, Costo_Al_Km, Casa_Produttrice, Anno_Immatricolazione, Livello_Comfort, Numero_Posti, Consumo_Extraurbano, Consumo_Urbano, Targa	Targa
Optional	Id_Optional, Nome, Descrizione	Id_Optional
Fasce_Orarie	Ora_Di_Inizio, Ora_Di_Fine	Ora_Di_Inizio, Ora_Di_Fine

Relazione	Descrizione	Entità Coinvolte	Attributi
Presenta	Associa ad ogni	Utente (1,1),	
	utente un	Documento Di	
	documento	Identità (1,1)	
	d'identità		
Possiede -1	Associa ad ogni	Utente (1,1),	
	utente un account	Account (1,1)	
Propone	Associa ad ogni	Utente (0,N),	
	utente proponente	Autovettura (1,1)	
	le autovetture che		
	possiede		
Dispone Di	Associa ad un	Autovettura (0,N),	
	autovettura le	Fasce Orarie (1,1)	
	varie fasce orarie		
	nelle quali è		
	disponibile		
На	Associa alle	Autovettura (0,N),	
	autovetture i vari	Optional (0,N)	
	optional di cui		
	dispongono		

4.4.2) Area Car Sharing

Entità	Attributi	Identificatore/i
Pedaggio	Id_Pedaggio, Costo	Id_Pedaggio
Limite	Limite, Km_Partenza,	Id_Limite
	Km_Arrivo, Id_Limite	
Stato	Id_Stato, Chilometraggio,	Id_Stato
	Quantità_Carburante	
Prenotazione Di Noleggio	Accettata, Id_Prenotazione,	Id_Prenotazione
	Data_Fine, Data_Inizio	
Strada	Tipologia, Velocità_Max,	Id_Strada
	Categorizzazione, Id_Strada,	
	Suffisso_Numerale,	
	Nome_Comune, Seconda	
	Numerazione,	
	N_Careggiate,	
	N_Sensi_Di_Marcia,	
	Numero_Tipologia,	
	Tipologia	
Spezzone	Id_Spezzone,	Id_Spezzone
	Livello_Iniziale,	
	Senso_Di_Marcia,	
	Longitudine_Finale,	
	Latitudine_Iniziale,	
	Latitudine_Finale,	
	Lunghezza, Livello_Finale,	
	Longitudine_Iniziale,	
	Tempo_Medio_Percorrenza,	
Km	Numero_Km, Latitudine,	Id_Kilometro
	Longitudine, Id_Kilometro	
Autovettura_Ext	Targa_Ext	Targa_Ext
Sinistro	Id_Sinistro, Orario,	Id_Sinistro
	Dinamica	
Tracking	Id_Tracking, Timestamp,	Id_Tracking
	Latitudine, Longitudine	

Relazione	Descrizione	Entità Coinvolte	Attributi
Possiede	Associa ad ogni	Autovettura (1,1),	
	autovettura uno ed un	Stato (1,1)	
	solo stato		
Compie-1	Associa ad ogni	Utente (0,N),	
	utente le varie	Prenotazione Di	
	prenotazioni di	Noleggio (1,1)	
	noleggio che effettua		
Possiede-4	Associa ad ogni strada i	Strada (0,N),	
	vari limiti di velocità	Limite (1,1)	
	presenti su di essa		
Prevede	Associa (se presenti) ad	Strada (0,N),	Km_Finale,
	ogni strada i relativi	Pedaggio (1,N)	Km_Iniziale
	pedaggi che essa		
	contiene		
Divisa In	Associa ad ogni strada i	Strada (1,N),	
	vari spezzoni che la	Spezzone (1,1)	
	compongono		
Passa Da-2	Associa ad ogni	Spezzone (0,N),	Timestamp_Di_Inizio,
	prenotazione di	Prenotazione Di	Timestamp_Di_Fine,
	noleggio effettuata, il	Noleggio (1,N)	Conteggio
	percorso che l'auto ha		
	effettuato		
	rappresentato		
	mediante spezzoni		
Composto Da	Associa ad ogni record	Tracking (1,1), Km	
	di tracking il km della	(0,N)	
	strada sulla quale ho		
	memorizzato la		
	posizione		
Composta Da	Associa ad ogni strada	Km (1,1), Strada	
	il/i kilometro/i che la	(1,N)	
	compone/compongono		
Avviene In	Associa ad ogni sinistro	Sinistro (1,1), Km	
	il km nel quale avviene	(0,N)	
Commette	Associa ad ogni	Autovettura (0,N),	
	autovettura i sinistri	Sinistro (1,N)	
	che ha commesso		
Comprende	Associa ad ogni sinistro	Sinistro (0,N),	
	le autovetture esterne	Autovettura_Ext	
	ai servizi analizzati che	(1,N)	
	vi hanno partecipato		

Soggetta A	Associa ad ogni	Prenotazione Di	
	Prenotazione Di	Noleggio (1,N),	
	Noleggio il suo tracking	Tracking (0,1)	
	(composto dai vari		
	record)		
Possiede -2	Associa ad ogni	Prenotazione Di	
	prenotazione di	Noleggio (1,1),	
	noleggio l'autovettura	Autovettura (0,N)	
	che si vuole affittare		

4.4.3) Area Car Pooling

Entità	Attributi	Identificatore/i
Pool	Latitudine_Partenza,	Id_Pool
	Id_Pool, Giorno_Arrivo,	
	Stato,	
	Percentuale_Aumento,	
	Latitudine_Arrivo,	
	Longitudine_Arrivo,	
	Grado_Di_Flessibilità,	
	Costo_Al_Km,	
	Periodo_Validità,	
	Longitudine_Partenza,	
	Giorno_Partenza	
Prenotazione Di Pool	Longitudine_Partenza,	Codice_Prenotazione
	Longitudine_Arrivo, Stato,	
	Codice_Prenotazione,	
	Latitudine_Arrivo, Spesa,	
	Latitudine_Partenza	

Relazione	Descrizione	Entità Coinvolte	Attributi
Soggetto A-1	Associa ad ogni	Pool (1,N),	
	pool i relativi	Tracking (0,1)	
	record di tracking		
Formato Da-1	Associa ad ogni	Pool (1,N),	Conteggio
	pool, i vari	Spezzone (0,N)	
	spezzoni che		
	compongono il		
	tragitto scelto dal		
	proponente		

Passa Da-1	Associa ad ogni	Pool (1,N),	Conteggio,
	pool, il tragitto che	Spezzone (0,N)	Time_Stamp_Di_Inizio,
	è stato realmente		Time_Stamp_Di_Fine
	percorso		
Possiede -3	Associa ad ogni	Pool (0,N),	
	Pool, le varie	Prenotazione Di	
	prenotazioni di	Pool (1,1)	
	Pool effettuate		
	dagli utenti fruitori		
Ammette	Associa ad ogni	Pool (1,1),	
	Pool, l'autovettura	Autovettura (0,N)	
	con la quale esso		
	sarà svolto		
Compie -3	Associa ad ogni	Prenotazione Di	
	Prenotazione Di	Pool (1,1), Utente	
	Pool, l'utente	(0,N)	
	fruitore che l'ha		
	effettuata		
Relativa A	Correda ad ogni	Prenotazione Di	Conteggio
	prenotazione di	Pool (0,N),	
	pool gli spezzoni	Spezzone (0,N)	
	che formano una		
	variazione,		
	espressa da un		
	utente fruitore		

4.4.4) Area Ride Sharing

Entità	Attributi	Identificatore/i
Sharing	Latitudine_Partenza,	Id_Sharing
	Longitudine_Partenza,	
	Longitudine_Arrivo,	
	Orario_Partenza,	
	Id_Sharing,	
	Latitudine_Arrivo,	
	Orario_Stimato_Arrivo	
Chiamata	Destinazione,	Id_Chiamata
	Timestamp_Chiamata,	
	Id_Chiamata, Stato,	
	Timestamp_Fine_Corsa,	
	Timestamp_Risposta	

Relazione	Descrizione	Entità Coinvolte	Attributi
Relativa A	Associa ad ogni	Chiamata (1,1),	
	chiamata lo	Sharing (0,N)	
	sharing al quale ci		
	si riferisce		
Parte Da	Associa ad ogni	Chiamata (1,1),	
	chiamata il Km di	Km (0,N)	
	partenza		
Arriva A	Associa ad ogni	Chiamata (1,1),	
	chiamata il Km di	Km (0,N)	
	arrivo		
Soggetto A-2	Associa ad ogni	Sharing (1,N),	
	sharing i relativi	Tracking (0,1)	
	record di tracking		
Ammette-2	Associa ad ogni	Sharing (1,1),	
	sharing,	Autovettura (0,N)	
	l'autovettura con		
	la quale sarà		
	effettuato		
Compie-2	Associa ad una	Chiamata (1,1),	
	chiamata l'utente	Utente (0,N)	
	che l'ha compiuta		
Formato Da-2	Associa ad ogni	Sharing (1,N),	Conteggio
	sharing il tragitto	Spezzone (0,N)	
	che il proponente		
	vuole effettuare,		
	mediante gli		
	spezzoni	(5.5.)	
Passa Da-3	Associa ad ogni	Spezzone (0,N),	Conteggio,
	sharing il tragitto	Sharing (1,N)	Time_Stamp_Di_Fine,
	che è stato		Time_Stamp_Di_Inizio
	effettuato		
	realmente		

4.4.5) Area Social

Entità	Attributi	Identificatore/i
Valutazione Di Viaggio	Valutazione_Piacere,	Id_Valutazione
	Valutazione_Persona,	
	Valutazione_Serietà,	
	Recensione_Testuale,	
	Valutazione_Comportamento,	
	Id_Valutazione	

Relazione	Descrizione	Entità Coinvolte	Attributi
Riceve	Associa ad ogni	Utente (0,N),	
	utente la	Valutazione Di	
	valutazione di	Viaggio (1,1)	
	viaggio ricevuta		
Effettua	Associa ad ogni	Utente (0,N),	
	utente la	Valutazione Di	
	valutazione di	Viaggio (1,1)	
	viaggio effettuata		
Corrisponde -2	Associa Ad una	Prenotazione Di	
	prenotazione di	Noleggio (0,2),	
	noleggio la relativa	Valutazione Di	
	valutazione di	Viaggio (1,1)	
	viaggio		
Corrisponde -1	Associa ad uno	Sharing (0,N),	
	Sharing la relativa	Valutazione Di	
	valutazione di	Viaggio (1,1)	
	viaggio		
Corrisponnde -3	Associa ad un Pool	Pool (0,N),	
	la relativa	Valutazione Di	
	valutazione di	Viaggio (1,1)	
	Viaggio		

4.4.6) Area Analytics

L'area Analytics, non prevede entità a livello di E-R ristrutturato, per cui le tabelle risultano vuote.

3. Analisi delle prestazioni e individuazione delle operazioni

Nel seguente paragrafo viene illustrata la tavola dei volumi, le operazioni significative individuate e le relative tavole degli accessi; infine vengono illustrate le ridondanze utilizzate per ridurre il carico applicativo sul database. La tavola dei volumi mostra una stima del carico di dati per ogni entità e relazione della base di dati, (dopo un anno di uso del database); grazie a questa è stato possibile individuare delle operazioni che avessero un forte contributo nel carico applicativo del sistema. La tavola degli accessi serve invece ad illustrare proprio il carico applicativo, in base al numero di scritture e letture necessarie per effettuare ognuna delle operazioni descritte.

5.1) Tavola dei volumi

5.1.1) Area registrazione

Nome	E/R	Numero Istanze	Motivazione
Utente	E	120 000	Ipotesi Iniziale:
			Si suppone che gli
			utenti sono 120 000
			:
			- 1/10 degli utenti è
			proponente
			(120 000/10=12 000
			proponenti)
			- 1/10 degli utenti
			ha entrambi i ruoli
			(120 000/10=12 000
			sia proponenti che
			fruitori)
			- 8/10 sono fruitori
			(120 000/10 x 8 =96
			000 fruitori)
Possiede-1	R	120 000	Ogni Utente
			possiede

			obbligatoriamente uno e un solo account.
Account	E	120 000	Ogni Utente possiede uno e un solo Account ed è obbligato ad immettere i dati necessari
Presenta	R	120 000	Ogni Utente deve presentare uno e un solo documento di identità in corso di validità
Documento_Di_Identità	E	120 000	Cardinalità (1,1) con Presenta
Propone	R	24 000	24 000 utenti hanno almeno un'autovettura più 1/5 degli utenti proponenti (24 000) possiedono 3 autovetture. In totale abbiamo quindi 33 600 autovetture registrate al servizio.
Autovettura Ha	E R	33 600 100 800	Autovetture totali Ogni autovettura ha in media 3 optional, da cui 108 000 = 33 600 *3.
Optional	E	100	Ipotesi iniziale: lista degli optional

Dispone Di	R	336 000	Si suppone che ogni
			autovettura
			disponga in media
			di 10 fasce orarie
			336 000 = 33 600 *
			10
Fasce_Orarie	E	336 000	Tutte le fasce orarie
			di tutte le auto

5.1.2) Area car sharing

Nome	E/R	Numero Istanze	Motivazione
Possiede	R	33 600	Ogni auto possiede
			uno stato
Stato	E	33 600	Lo stato corrente
			dell'autovettura
Possiede-2	R	504 000	Ogni autovettura è
			stata prenotata in
			media 15 volte
			33 600 x 15 = 504
			000
Prenotazione Di	E	504 000	Cardinalità (1,1) con
Noleggio			Possiede-2
Compie-1	R	504 000	Prenotazioni di
			noleggio / utenti
			fruitori totali =
			prenotazioni
			effettuate da ogni
			utente fruitore in
			media
			504 000 / 108 000 =
			4,6
Corrisponde-2	R	924 000	Si suppone che 1/12
			delle prenotazioni di
			noleggio non
			vengano accettate
			504 000 / 12 = 42
			000
Corrisponde-2	R	924 000	fruitori totali = prenotazioni effettuate da og utente fruitore media 504 000 / 108 00 4,6 Si suppone che 1, delle prenotazion noleggio non vengano accetta 504 000 / 12 = 4

	T	1	
			Prenotazioni totali – prenotazioni non accettate = Prenotazioni accettate 504 000 – 42 000 = 462 000
			Prenotazioni accettate x 2 = totale delle valutazioni 462 000 x 2 = 924 000
Soggetta A	R	221 760 000	In media ogni prenotazione di noleggio dura 8 ore (ipotesi) (8 x 60 = 480 min a noleggio) Si effettua 1 registrazione al minuto Totale noleggi x tempo medio (in minuti) di durata del noleggio = Totale tracking dei noleggi 462 000 x 480 = 221 760 000
Tracking	E	239 433 600	Totale tracking noleggi + Totale tracking pool +

			Totale tracking
			sharing =
			Totale Finale
			tracking
			221 760 000+
			11 760 000 +
			5 913 600 =
			239 433 600
Strada	E	1 600 000	Ipotesi iniziale
Possiede-4	R	2 560 000	Si suppone che ogni
			strada possegga in
			media 8/5 limiti di
			velocità
			1 600 000 x 8/5 =
			2 560 000
Limite	E	2 560 000	Cardinalità (1,1) con
			Possiede-4
Prevede	R	1 200	Si suppone (ipotesi)
			che delle strade
			registrate solo 100
			prevedano pedaggio
			Ci aumana aha assi
			Si suppone che ogni
			strada di queste
			preveda 12 diversi
			costi al km in diversi
			tratti
Dodozaio	Г	200	100 x 12 = 1 200
Pedaggio	E	200	Si suppone (ipotesi) che i costi al km dei
			pedaggi siano 200
Divisa In	R	8 000 000	Si suppone (ipotesi)
			che in media ogni
			strada sia divisa in 5
			spezzoni
			1 600 000 x 5 =
			8 000 000
<u> </u>		I.	

Spezzone	E	8 000 000	Cardinalità (1,1) con
	_		Divisa In
Composta Da	R	2 080 000	Si suppone che ogni
			strada in media sia
			composta da 1,3 km
			1 600 000 x 1,3 =
			2 080 000
Km	E	2 080 000	Cardinalità (1,1) con
	_		Composta Da
Passa Da-2	R	138 600 000	Si suppone che in
			media un tragitto di
			noleggio sia
			formato da 300
			spezzoni
			Numero noleggi
			accettati x 300=
			462 000 x 300 =
			138 600 000
Commette	R	4 032	In media 1/10 delle
			autovetture
			registrate al servizio
			sono coinvolte in
			uno o più sinistri
			33 600 / 10 = 3 360.
			Tra queste
			autovetture, in
			media ognuna
			partecipa a 6/5
			degli incidenti
			registrati; per un
			totale di record
			uguale a :
			3 360 x 6/5 = 4 032
Sinistro	E	3 024	I sinistri al massimo
			possono essere
			3360 poiché
			vengono registrati
			solamente sinistri
			nei quali sono

			coinvolte
			autovetture iscritte
			al servizio; però và
			considerato anche
			che più autovetture
			registrate al
			servizio, possano
			compiere sinistri tra
			di loro. Per cui
			ipotizziamo di avere
			3024 sinistri.
Comprende	R	5 141	In media ogni
			incidente
			comprende anche
			17/10 autovetture
			esterne al servizio,
			da cui :
			3 024 x 17/10 = 5
			141
Autovettura_Ext	Е	9 400	Si ipotizza che le
			autovetture esterne
			al servizio siano
			9400.

5.1.3) Area car pooling

Nome	E/R	Numero Istanze	Motivazione
Ammette	R	336 000	Si ipotizza che in
			media ogni
			autovettura ha
			ospitato 10 pool
			33 600 x 10 =336
			000
Pool	E	336 000	Cardinalità (1,1) con
			Ammette
Possiede-3	R	571 200	In media ogni pool è
			stato prenotato da
			17/10 utenti
			336 000 x 17/10 =

			571 200
Prenotazione Di Pool	E	571 200	Cardinalità (1,1) con
Tremotazione Bir ooi	_	371200	Compie-3
Compie-3	R	571 200	prenotazioni di pool
·			/ utenti fruitori
			totali =
			pool prenotati da
			ogni utente fruitore
			in media
			571 200 / 108 000 =
			5,3
Soggetto A-1	R	11 760 000	In media ogni pool
			dura 35 min
			(ipotesi)
			Si effettua 1
			registrazione al
			minuto
			Totale pool x tempo
			medio (in minuti) di
			durata del pool =
			Totale tracking dei
			pool
			336 000 x 35 =
			11 760 000
Formato Da-1	R	10 080 000	Si suppone che in
			media un tragitto di
			un pool sia formato
			da 30 spezzoni
			336 000 x 30 =
			10 080 000
Passa Da-1	R	10 416 000	Si suppone che il
			tragitto effettivo di
			un pool sia formato
			da 1 spezzone in più
			(31 spezzoni)
			336 000 x 31 =
<u> </u>		I.	i

			10 416 000
Relativa A	R	3 600	Si suppone che solo
			100 pool
			posseggano una
			variazione ancora
			da
			accettare/rifiutare,
			e che ogni pool con
			variazione sia
			formato da 36
			spezzoni
			36 x 100 = 3 600

5.1.4) Area ride sharing

Nome	E/R	Numero Istanze	Motivazione
Ammette-2	R	268 800	In media ogni
			autovettura ha
			compiuto 8 sharing
			33 600 x 8 = 268
			800
Sharing	Е	268 800	Cardinalità (1,1) con
			Ammette-2
Relativa A	R	562 800	In media uno
			sharing ha 21/10
			chiamate
			268 800 x 21/10 =
			562 800
Chiamata	E	562 800	Cardinalità (1,1) con
			Relativa A
Compie-2	R	562 800	Chiamate / utenti
			fruitori totali =
			chiamate effettuate
			da ogni utente
			fruitore in media
			562 800 / 108 000 =
			5,2

	_		T
Parte Da	R	562 800	Cardinalità (1,1) con Chiamata
Arriva A	R	562 800	Cardinalità (1,1) con Chiamata
Corrisponde-1	R	1 013 040	Si suppone che 1/10
Corrisponde-1	IX.	1013040	delle chiamate non
			vengano accettate
			562 800 / 10 = 56
			280 chiamate non
			accettate.
			Chiamate totali –
			chiamate non
			accettate =
			chiamate accettate
			562 800 – 56 280 =
			506 520
			Chiamate accettate
			x 2 = totale delle
			valutazioni
			506 520 x 2 = 1 013
			040
Soggetto A-2	R	5 913 600	In media ogni
			sharing dura 22
			minuti (ipotesi)
			Si effettua 1
			registrazione al
			minuto
			Totalo charing v
			Totale sharing x
			tempo medio (in
			minuti) di durata
			dello sharing =
			Totale tracking degli
			sharing
			268 800 x 22 =
			5 913 600

Formato Da-2	R	5 376 000	Si suppone che in
			media un tragitto di
			sharing sia formato
			da 20 spezzoni
			268 800 x 20 =
			5 376 000
Passa Da-3	R	5 644 800	Si suppone che il
			tragitto effettivo di
			uno sharing sia
			formato da 1
			spezzone in più
			(21 spezzoni)
			268 800 x 21 =
			5 644 800

5.1.5) Area social

Nome	E/R	Numero Istanze	Motivazione
Corrisponde-3	R	979 200	Si suppone che 1/7
			delle prenotazioni di
			pool non vengano
			accettate.
			571 200 x 1/7 = 81
			600 :
			Prenotazioni totali –
			prenotazioni non
			accettate =
			Prenotazioni
			accettate
			571 200 – 81 600 =
			489 600
			Prenotazioni di pool
			x 2= totale delle
			valutazioni

			489 600 x 2 = 979
			200
Valutazione Di Viaggio	E	3 079 440	Valutazioni Pool +
			Valutazioni
			Noleggio +
			Valutazioni Sharing
			=
			Totale Finale delle
			valutazioni
			979 200 + 924 000 +
			1 013 040 =
			2 916 240
			In media un utente
			può ricevere più
			valutazioni da un
			altro utente quindi il volume reale dei
			dati è più grande.
Effettua	R	1 458 120	Valutazioni totali / 2
		555	=
			Valutazioni
			effettuate
			2 916 240/ 2 =
			1 458 120
			Ogni utente
			effettua in media
			1 458 120 / 120 000
			=
			12,1 recensioni
Riceve	R	1 458 120	Valutazioni totali / 2
			=
			Valutazioni ricevute
			2 916 240 / 2 =
			1 458 120
			Ogni utente riceve
			in media

	1 458 120/ 120 000
	=
	12,1 recensioni

5.1.6) Area Analytics

All'interno della tavola dei volumi non è presente alcun riferimento ad elementi presenti nell'area analytics, comprendendo essa aspetti della realtà considerata puramente tecnici e non concettuali. Questa sezione è stata quindi lasciata vuota.

5.2) Individuazione delle operazioni significative e tavola degli accessi

Sotto segue la lista delle operazioni individuate con le quali abbiamo scelto di introdurre delle ridondanze candidate, le quali poi mediante la valutazione delle tavole degli accessi verrà scelto se mantenerle oppure no.

Ridondanza 1:

Poiché calcolare il tempo medio di percorrenza di ogni spezzone risulta essere molto oneroso, visto che ogni volta andrebbero letti tutti i tempi di percorrenza di ogni spezzone i quali aumentano continuamente nel tempo, si introduce allora la ridondanza salvando quante volte è stato percorso ogni singolo spezzone e la somma dei suoi tempi di percorrenza. Questi attributi ci permetteranno di calcolare il tempo medio di percorrenza di ogni spezzone molto facilmente, e di svolgere quondi in maniera efficiente l'operazione 1. Quindi questa ridondanza può essere eliminata senza perdita di informazioni.

Ridondanza 2:

Poiché calcolare il numero di sinistri può risultare oneroso, visto che ogni volta andrebbero letti tutti i sinistri effettuati da un utente i quali aumentano continuamente nel tempo, si introduce allora la ridondanza salvando il numero di sinistri effettuati da ogni utente. Quindi tale ridondanza può essere eliminata senza perdita di informazioni.

Ridondanza 3:

Poiché calcolare il livello di rispetto dei limiti stradale può risultare molto oneroso, visto che ogni volta andrebbero letti tutti i tempi medi di percorrenza di ogni spezzone e confrontati con i reali tempi che ha effettuato l'utente attribuendone un ranking a seconda delle velocità percorse con un punteggio che va da 1 a 5 il quale è relativo ad ogni passaggio su uno spezzone, si introduce una ridondanza che memorizzerà il ranking totale di ogni utente nel rispettare i limiti; nello specifico avremo la somma dei punteggi sopra spiegati e il numero dei punteggi stessi. Quindi tale ridondanza può essere eliminata senza perdita di informazioni.

Ridondanza 4:

Per il calcolo della media della valutazione aggiungiamo per ogni campo di una valutazione (persona, comportamento, serietà, piacere di viaggio, rispetto degli orari) una ridondanza per la somma dei valori di ogni campo più il numero delle valutazioni relative all'utente

nella tabella Utente.

Queste ridondanze possono essere eliminate senza perdita di informazioni.

Ridondanza 5:

Per il calcolo della valutazione di un'autovettura in base al numero degli optional si ipotizza di inserire una ridondanza che conterrà il numero di optional dell'autovettura. Questa ridondanza possono essere eliminate senza perdita di informazioni.

Operazione 1

- Descrizione: L'utente chiama la funzione che riceve il relativo tragitto;
 dopodiché essa stimerà quanto ci vorrà a percorrere il tragitto
- o Frequenza: 2500 volte al giorno

Operazione 2

- Descrizione: L'utente chiama la procedure per ricercare un tragitto simile ad uno specificato (stesso spezzone di arrivo), valuta il grado di flessibilità del proponente e mostra il/i risultato/i
- o Frequenza: 1000 volte al giorno

Operazione 3

- Descrizione: Calcolo della spesa di una prenotazione di pool che un utente dovrà affrontare
- o Frequenza: 2000 volte al giorno

Operazione 4

- Descrizione: Calcolo della spesa che un fruitore dovrà affrontare dopo l'accettazione della sua chiamata in uno Sharing
- o Frequenza: 1400 volte al giorno

• Operazione 5

o Descrizione: Rilevazione delle criticità stradali

o Frequenza: 1500 volte al giorno

• Operazione 6

- Descrizione: Calcolo dell'affidabilità di un utente in base alla sua osservanza dei limiti di velocità, degli orari, in base ai sinistri in cui è coinvolto e alle sue valutazioni
- o Frequenza: 5000 volte al giorno

Operazione 6.1

Descrizione: Numero dei sinistri commessi da un utente

Operazione 6.2

Descrizione: Livello di rispetto dei limiti stradali

Operazione 6.3

Descrizione: Livello di rispetto degli orari

Operazione 6.4

Descrizione: Media delle valutazioni di un utente

Operazione 7

- Descrizione: Event una volta al minuto per il controllo e la modifica lo stato del pool (aperto, partito, chiuso)
- o Frequenza: 1440 volte al giorno

Operazione 8

 Descrizione: Trigger che aggiorna il livello comfort di un'auto in base ai suoi optional

o Frequenza: 300 volte al giorno

Operazione 9

Descrizione: Trigger che modifica il percorso di un pool, dopo
 l'accettazione di una prenotazione di pool corredata da una variazione

o Frequenza: 270 volte al giorno

5.2.1) Stima del tempo di percorrenza di un tragitto

Descrizione: L'utente chiama la funzione che riceve il tragitto; dopodiché essa stimerà quanto ci vorrà a percorrere tale percorso.

Input: Id del servizio che è relativo al tragitto (Pool o ride sharing)

Output : Stima del tempo di percorrenza di tale tragitto

Frequenza Giornaliera: 2500 volte al giorno (Ipotesi)

Porzione di diagramma interessata:

Porzione tavola dei volumi interessata:

Passa Da-1	R	10 416 000	Si suppone che il
			tragitto effettivo di
			un pool sia formato
			da 1 spezzone in più
			(31 spezzoni)
			336 000 x 31 =
			10 416 000
Passa Da-2	R	138 600 000	Si suppone che in
			media un tragitto di
			noleggio sia
			formato da 300
			spezzoni
			Numero noleggi
			accettati x 300=
			462 000 x 300 =
			138 600 000
Passa Da-3	R	5 644 800	Si suppone che il
			tragitto effettivo di
			uno sharing sia
			formato da 1
			spezzone in più
			(21 spezzoni)
			268 800 x 21 =
			5 644 800
Spezzone	E	8 000 000	Cardinalità (1,1) con
			Divisa In

Tavole degli accessi:

Senza Ridondanza 1:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
FormatoDa	R	25 ¹	L	Leggo gli spezzoni che compongono il tragitto del servizio dalla tabella formato Da
PassaDa-1	R	32 ²	L	Si leggono i passaggi in PassaDa -1 per poi calcolare la media
PassaDa-2	R	17 ²	L	Si leggono i passaggi in PassaDa -2 per poi calcolare la media
PassaDa-3	R	434 ²	L	Si leggono i passaggi in PassaDa -3 per poi calcolare la media
-	oni elementari per operazione	508		•
Totale operaz	ioni elementari al iorno	508 x 2500 = 1 270 000		000

- 1 In media ogni tragitto di pool ha 30 spezzoni, uno di sharing 20 quindi: (30+20) /2 = 25 spezzoni che compongono in media un tragitto di pool o sharing
- 2 Sotto seguono le medie degli spezzoni in cui passa ogni servizio.

Segue un esempio per il servizio di car pooling :

Si prendono i pool presenti cioè 336 000, si moltiplicano per gli spezzoni medi di ogni pool cioè 31, e si dividono per il numero di spezzoni presenti nel DB :

1,28 = (336 000 * 31) / 8 000 000

32 = (25*1,28) cioè per sapere quante volte sono stati percorsi gli spezzoni di un servizio moltiplico il numero di spezzoni che compongono inizialmente il tragitto per quante volte si passa sugli spezzoni in media per quel servizio (Devo fare la media per sapere il tempo di percorrenza).

- 1,28 volte per il servizio di car pooling;
- 0,68 volte per il servizio di ride sharing on demand;
- 17,36 volte per il servizio di car sharing.

Con Ridondanza 1:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
FormatoDa	R	25	L	Leggo gli spezzoni che compongono il tragitto del servizio dalla tabella Formato Da
Spezzone	E	25	L	Leggo il numero di volte che è stato percorso quello spezzone e la somma dei tempi medi, calcolandole il tempo medio
-	ni elementari per perazione		50	
<u> </u>	ni elementari al rno		50 x 2500 = 125 000)

5.2.2) Ricerca di un tragitto simile di pool

Descrizione: L'utente chiama la procedura per ricercare un tragitto simile ad uno specificato (stesso spezzone di arrivo), valuta il grado di flessibilità del proponente e mostra il/i risultato/i.

Input: Spezzone di arrivo

Output: Pool che percorrono un tragitto simile a quello che il fruitore cerca

Frequenza Giornaliera: 1000 volte al giorno (Ipotesi)

Porzione di diagramma interessata:

Porzione tavola dei volumi interessata:

Pool	E	336 000	Cardinalità (1,1) con
			Ammette
Formato Da-1	R	10 080 000	Si suppone che in
			media un tragitto di
			un pool sia formato
			da 30 spezzoni
			336 000 x 30 =
			10 080 000

Tavola degli accessi:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Pool	E	336 000	L	Leggo tutti i pool per verificare quali di quelli registrati sono nello stato 'Aperto' (Si ipotizza che di 336 000 pool circa 10 000 si trovino nello stato 'Aperto')
Formato Da -1	R	10 000 x 30 = 300 000 ¹	L	Controllo che nel tragitto dei pool considerati siano presenti gli spezzoni passati come parametro
<u> </u>	azioni elementari guite	336 000 + 300 000 = 636 000		
Totale delle opera	zioni elementari al rno	636 (000 x 1000 = 636 C	000 000

¹ In media ogni pool ha 30 spezzoni per cui se 10 000 pool sono nello stato aperto, dovrò controllare 300 000 spezzoni appartenenti ai pool, per verificare che abbiano il mio stesso spezzone di arrivo.

5.2.3) Calcolo della spesa di un pool

Descrizione: Dopo che una prenotazione di pool è stata accettata da parte di un utente proponente, la seguente funzione calcola la spesa **iniziale** che il fruitore dovrà sostenere, previa variazione del tragitto

Input : Codice_Prenotazione

Output : Spesa provvisoria del pool

Frequenza Giornaliera: 1000 volte al giorno (Ipotesi)

Porzione di diagramma interessata:

Porzione tavola dei volumi interessata:

Pool	E	336 000	Cardinalità (1,1) con
			Ammette
Formato Da-1	R	10 080 000	Si suppone che in
			media un tragitto di
			un pool sia formato
			da 30 spezzoni
			336 000 x 30 =
			10 080 000

Relativa A	R	3 600	Si suppone che solo
			100 pool
			posseggano una
			variazione ancora
			da
			accettare/rifiutare,
			e che ogni pool con
			variazione sia
			formato da 36
			spezzoni
			36 x 100 = 3 600

Tavola degli accessi:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Pool	E	1	L	Leggo il Costo_Al_Km, la percentuale di aumento del prezzo e il grado di flessibilità del Pool passato come parametro alla funzione
Formato Da -1	R	30	L	Lettura della lunghezza totale del percorso del Pool
Relativa A	R	1	L	Leggo la prenotazione di pool e controllo se presenta (esistono) variazioni
•	azioni elementari guite	30 + 1 + 1 = 32		
·	zioni elementari al rno	32 x 2000 = 64 000		

5.2.4) Calcolo della spesa di uno sharing

Descrizione: Dopo che la chiamata è stata accettata da parte di un utente proponente, la seguente funzione calcola la spesa **iniziale** che il fruitore dovrà sostenere.

Input: Id_Chiamata

Output: Spesa provvisoria a fine corsa dello sharing

Frequenza Giornaliera: 1400 volte al giorno (Ipotesi)

Porzione di diagramma interessata:

Porzione tavola dei volumi interessata:

Sharing	E	268 800	Cardinalità (1,1) con
			Ammette-2
Formato Da-2	R	5 376 000	Si suppone che in
			media un tragitto di
			sharing sia formato
			da 20 spezzoni
			268 800 x 20 =
			5 376 000

Tavole degli accessi:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Sharing	E	1	L	Leggo il Costo_Al_Km dello Sharing passato come parametro alla funzione
Formato Da -2	R	20	L	Lettura della lunghezza totale del percorso dello Sharing
Totale delle operazioni elementari eseguite			20 + 1 = 21	
<u> </u>	zioni elementari al rno	21 x 1 400 = 29 400)

5.2.5) Previsione della congestione stradale

Descrizione: Se un utente (fruitore o proponente) sta percorrendo un determinato tragitto, la seguente funzione in tempo reale mostra al guidatore dell'autoveicolo lo stato della viabilità della strada che egli sta percorrendo. Se tale viabilità risulta essere compromessa l'utente verrà informato dalla funzione e potrà scegliere di cambiare percorso per evitare ulteriori rallentamenti e/o intasamenti.

5.2.5.1) *Descrizione:* Aggiornamento del log della materialized view contenente i livelli di congestione di ogni spezzone.

Frequenza Giornaliera: 640 872 volte al giorno.

In media ogni giorno si hanno :

920 Pool, 736 RideSharing e 1380 CarSharing i quali possiedono in media rispettivamente 32, 17 e 434 spezzoni.

5.2.5.2) *Descrizione:* Aggiornamento della materialized view contenente i livelli di congestione di ogni spezzone.

Frequenza Giornaliera : 1440 volte al giorno. (1 volta al minuto)

Input: Lettura della tabella MV_CRITICITA.

Output: Stato delle congestione del traffico relativo a quello spezzone di strada

Frequenza Giornaliera: 2500 volte al giorno (Ipotesi)

Porzione di diagramma interessata:

Per la seguente funzione non è presente nessuna porzione di diagramma E-R interessata, poiché si tratta di una lettura di una MV.

Porzione tavola dei volumi interessata:

Per la seguente funzione non è presente nessuna porzione di tavola dei volumi interessata, poiché si tratta di una lettura di una MV.

Tavola degli accessi operazione 5.2.5:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
MV_CRITICITA	Е	1	L	Si legge l'attributo livello criticità dello spezzone richiesto
Totale delle o elementari e	•		1	
Totale delle o elementari a	•		1 x 2 500 = 2 500	

Operazione 5.2.5.1:

Input: Id dello spezzone percorso dall'utente.

Output : Aggiornamento della LOG_MV_CRITICITA con i relativi livelli di congestione attuali per quello spezzone.

Porzione di diagramma interessata:

Porzione di tavola dei volumi interessata:

Passa Da-1	R	10 416 000	Si suppone che il
			tragitto effettivo di

			un pool sia formato
			da 1 spezzone in più
			(31 spezzoni)
			336 000 x 31 =
			10 416 000
Passa Da-2	R	138 600 000	Si suppone che in
			media un tragitto di
			noleggio sia
			formato da 300
			spezzoni
			Numero noleggi
			accettati x 300=
			462 000 x 300 =
			138 600 000
Passa Da-3	R	5 644 800	Si suppone che il
			tragitto effettivo di
			uno sharing sia
			formato da 1
			spezzone in più
			(21 spezzoni)
			268 800 x 21 =
			5 644 800
Spezzone	E	8 000 000	Cardinalità (1,1) con
			Divisa In

Tavole degli accessi operazione 5.2.5.1

Senza ridondanza 1:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
PassaDa-1	R	1 ¹	L	Si leggono i
				passaggi
				in PassaDa -1
				per poi
				calcolare la
				media
PassaDa-2	R	1 ¹	L	Si leggono i
				passaggi
				in PassaDa -2
				per poi
				calcolare la
				media
PassaDa-3	R	17 ¹	L	Si leggono i
				passaggi
				in PassaDa -3
				per poi
				calcolare la
				media
PassaDa-N	R	1	L	Leggo il tempo
				di percorrenza
				del mio
				spezzone per
				determinarne la
				criticità
LOG_MV_CRITICITA	E	$1 \times 2 = 2$	S	Aggiorno il
				livello di criticità
				per quello
				spezzone nel log
Totale operazioni elementari per singola			22	
operazio			640.076	20.101
Totale operazioni elementari al giorno		22 x (640 872 = 14.0	99.184

¹ Segue un esempio per il servizio di car pooling:

Si prendono i pool presenti cioè 336 000, si moltiplicano per gli spezzoni medi di ogni pool cioè 31, e si dividono per il numero di spezzoni presenti nel DB:

1,28 = (336 000 * 31) / 8 000 000.

Siccome va visto il tempo di un singolo spezzone sotto segue in media quante volte esso è stato percorso per ogni servizio. (Abbiamo effettuato un'approsimazione per inserire valori interi all'interno della tavola degli accessi).

- 1,28 volte per il servizio di car pooling
- 0,68 volte per il servizio di ride sharing on demand
- 17,36 volte per il servizio di car sharing

Con ridondanza 1:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Spezzone	E	1	L	Leggo il tempo medio di percorrenza per quello spezzone
PassaDa-N	R	1	L	Leggo il tempo di percorrenza del mio spezzone per determinarne la criticità
LOG_MV_CRITICITA	E	1 x 2 = 2	S	Aggiorno il livello di criticità per quello spezzone nel log
Totale operazioni elementari per singola operazione			4	
Totale operazioni elem	entari al giorno	4 x	640 872 = 2 56	3 488

Operazione 5.2.5.2

Input : Log_MV_CRITICITA

Output : Aggiornamento della MV_CRITICITA con i relativi livelli di congestione per quello spezzone.

Porzione di diagramma interessata : Per la seguente funzione non è interessata nessuna porzione di diagramma, poiché si tratta di una lettura della log table, della MV_CRITICITA.

Porzione di tavola dei volumi interessata:

Spezzone	Е	8 000 000	Cardinalità (1,1) con
			Divisa In

Tavola degli accessi operazione 5.2.5.2:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
LOG_MV_CRITICITA	E	8 000 000	L	Leggo lo stato di criticita di ogni spezzone della log table
MV_CRITICITA	E	8 000 000 x 2 = 16 000 000	S	Aggiorno lo stato di criticità di ogni spezzone della MV
Totale operazioni elementari per singola operazione			24 000 000	
Totale operazioni elementari al giorno		24 000 000	x 1 440 = 34 5	60 000 000

5.2.6) Calcolo dell'affidabilità di un utente in base alla sua osservanza dei limiti di velocità, degli orari, in base ai sinistri in cui è coinvolto e alle sue valutazioni

Descrizione: Ogni volta che un utente non rispetta o rispetta, una delle seguenti caratteristiche sopra descritte, tale funzione calcola l'affidabilità generale di un utente in base a tali caratteristiche.

Siccome la seguente operazione richiede l'uso di altre funzioni allora essa è stata suddivisa in altre quattro sottofunzioni che sono rispettivamente :

5.2.6.1) *Descrizione:* Numero dei sinistri commessi da un utente

5.2.6.2) *Descrizione:* Livello di rispetto dei limiti stradali

5.2.6.3) *Descrizione:* Livello di rispetto degli orari

5.2.6.4) *Descrizione:* Media delle valutazioni di un utente

Input: Una delle quattro operazioni sopra descritte

Output: Affidabilità di un utente in base ad un ranking che va da 1 a 5 stelle

Frequenza Giornaliera : 5000 volte al giorno (Ipotesi). Tale frequenza è anche la stessa delle quattro operazioni sopra descritte.

5.2.6.1) Numero dei sinistri commessi da un utente

Porzione di diagramma interessata:

Porzione tavola dei volumi interessata:

Autovettura	E	33 600	Autovetture totali
Commette	R	4 032	In media 1/10 delle
			autovetture
			registrate al servizio
			sono coinvolte in
			uno o più sinistri
			33 600 / 10 = 3 360.
			Tra queste
			autovetture, in
			media ognuna
			partecipa a 6/5
			degli incidenti
			registrati; per un
			totale di record
			uguale a :
			3 360 x 6/5 = 4 032

Tavole degli accessi:

Senza ridondanza 2:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Autovettura	E	21	L	Si leggono le targhe delle autovetture interessate dalla Tabella Autovettura (in media un utente possiede 2 auto)
Commette	R	1	L	Si leggono le targhe delle autovetture per capire in quali sinistri sono coinvolte
Totale operazione per singola o			2 + 1 = 3	
Totale operazional gio			3 x 5000 = 15 000	

^{1 36 000 (}autovetture totali) / (12 000 (Proponenti) + 12 000 (Entrambi i ruoli)) \approx 2

Con ridondanza 2:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Utente	E	1	L	Si legge l'attributo contenente il totale dei sinistri commessi dall'utente passato alla funzione
· ·	oni elementari operazione		1	

Totale operazioni	1 x 5000 = 5000
elementari al giorno	

5.2.6.2) Livello di rispetto dei limiti stradali

Porzione di diagramma interessata:

Porzione di tavola dei volumi interessata :

Autovettura	E	33 600	Autovetture totali
Pool	Е	336 000	Cardinalità (1,1) con
			Ammette
Sharing	E	268 800	Cardinalità (1,1) con
			Ammette-2
Prenotazione Di	E	504 000	Cardinalità (1,1) con
Noleggio		40.446.000	Possiede-2
Passa Da-1	R	10 416 000	Si suppone che il
			tragitto effettivo di
			un pool sia formato
			da 1 spezzone in più
			(31 spezzoni)
			336 000 x 31 =
			10 416 000
Passa Da-2	R	138 600 000	Si suppone che in
			media un tragitto di
			noleggio sia
			formato da 300
			spezzoni
			Numero noleggi
			accettati x 300=
			462 000 x 300 =
			138 600 000
Passa Da-3	R	5 644 800	Si suppone che il
			tragitto effettivo di
			uno sharing sia
			formato da 1
			spezzone in più
			(21 spezzoni)
			268 800 x 21 =
			5 644 800

Tavole degli accessi:

Senza ridondanza 1, 3:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
	CASO CAR	POOLING		•
Autovettura	E	2	L	Si leggono le autovetture che possiede un utente
Pool	E	20	L	Si leggono i pool che ha effettuato quell'autovettura (10 Pool in media per ogni autovettura)
PassaDa-1	R	793 ³	L	Si leggono i passaggi in PassaDa -1 per poi calcolare la media
PassaDa-3	R	421 ³	L	Si leggono i passaggi in PassaDa -2 per poi calcolare la media
PassaDa-2	R	10 763 ³	L	Si leggono i passaggi in PassaDa -3 per poi calcolare la media
PassaDa-1	R	620	L	Si leggono i passaggi in PassaDa -1 dei relativi pool fatti dall'utente (Poiché dobbiamo valutare il rispetto dei limiti

				per quegli
				spezzoni).
	CASO CAR	SHARING	1	
Prenotazione_Di_Noleggio	E	5 ¹	L	Lettura delle prenotazioni di noleggio effettuate dall'utente
PassaDa-1	R	2 520 ³	L	Si leggono i passaggi in PassaDa -1 per poi calcolare la media
PassaDa-3	R	1 020 ³	L	Si leggono i passaggi in PassaDa -2 per poi calcolare la media
PassaDa-2	R	26 040 ³	L	Si leggono i passaggi in PassaDa -3 per poi calcolare la media
PassaDa-2	R	1500	L	Si leggono i passaggi in PassaDa -2 effettuati dall'utente nelle sue prenotazioni di noleggio
	I	ING ON DEMAN	D	
Autovettura	Е	2	L	Si leggono le autovetture che possiede un utente
Sharing	E	16 ²	L	Lettura degli sharing di ogni autovettura relativa all'utente
PassaDa-1	R	430 ³	L	Si leggono i passaggi in PassaDa -1

		1	1	
				per poi calcolare
				la media
PassaDa-3	R	228 ³	L	Si leggono i
				passaggi
				in PassaDa -2
				per poi calcolare
				la media
PassaDa-2	R	5833 ³	L	Si leggono i
				passaggi
				in PassaDa -3
				per poi calcolare
				la media
PassaDa-3	R	336	L	Si leggono i
				passaggi
				in PassaDa -3
				degli sharing
				effettuati
				dall'utente
Totale operazioni elementari per singola			50 549	
operazione	operazione			
Totale operazioni elementar	i al giorno	50 549 x 5 000 = 252 745 000		

- 1 In media ogni utente possiede **circa** 5 prenotazioni di noleggio poiché $504\ 000\ /\ (96\ 000\ +\ 12\ 000) = 5$
- 2 In media ogni autovettura ha compiuto 8 sharing, da cui 8 x 2 = 16

3

Ogni Pool è formato da 31 spezzoni (Compresa la variazione).

Quindi bisogna calcolare la media per $31 \times 20 = 620$ spezzoni per i pool (considerando che sono tutti spezzoni diversi). Poi ogni valore andrà moltiplicato per la costante dei passaggi relativa al servizio.

Ogni Prenotazione Di Noleggio è formata da 300 spezzoni.

Quindi bisogna calcolare la media per $300 \times 5 = 1500$ spezzoni per i noleggi (considerando che sono tutti spezzoni diversi). Poi ogni valore andrà moltiplicato per la costante dei passaggi relativa al servizio.

Ogni tragitto di ride sharing on demand è formata da 21 spezzoni.

Quindi bisogna calcolare la media per 16 x 21 = 336 spezzoni per i ride sharing (considerando che sono tutti spezzoni diversi). Poi ogni valore andrà moltiplicato per la costante dei passaggi relativa al servizio.

Ogni spezzone è stato attraversato in media :

- 1,28 volte per il servizio di car pooling
- 0,68 volte per il servizio di ride sharing on demand
- 17,36 volte per il servizio di car sharing

Con Ridondanza 1, 3:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Utente	E	1	L	Leggo la somma dei punteggi e il numero delle valutazioni dell'utente e ne calcolo la media
Totale operazioni elementari per singola operazione			1	
Totale operazioni elementari al	giorno	1	x 5 000 = 5 0	00

5.2.6.3) Livello di rispetto degli orari

Porzione di diagramma interessata:

Porzione di tavola dei volumi interessata :

Valutazione Di Viaggio	E	3 079 440	Valutazioni Pool +
			Valutazioni
			Noleggio +
			Valutazioni Sharing
			=
			Totale Finale delle
			valutazioni
			979 200 + 924 000 +
			1 013 040 =
			2 916 240
			In media un utente
			può ricevere più
			valutazioni da un
			altro utente quindi il
			volume reale dei
			dati è più grande.

Tavole degli accessi:

Senza ridondanza 4:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
ValutazioneDiViaggio	E	26 ¹	L	Si leggono dalla tabella ValutazioneDiViaggio tutte le valutazioni relative ad un utente, riguardo il suo rispetto degli orari e se ne calcola una media
Totale operazioni elementari per singola operazione			26	
Totale operazioni elementari al giorno			26 x 5 000 =	= 130 000

 $^{{\}color{red}1}$ Le valutazioni totali sono 3 079 440 / 120 000 $^{\sim}$ 26

Con ridondanza 4:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Utente	Е	1	L	Leggo gli attributi nella tabella Utente ed eseguo la divisione per avere la media
Totale o	perazioni		1	
	per singola izione			
	perazioni ri al giorno		1 x 5000 = 5000	

5.2.6.4) Media delle valutazioni di un utente

Porzione di diagramma interessata:

Porzione di tavola dei volumi interessata :

Valutazione Di Viaggio	E	3 079 440	Valutazioni Pool +
			Valutazioni
			Noleggio +
			Valutazioni Sharing
			=
			Totale Finale delle
			valutazioni
			979 200 + 924 000 +
			1 013 040 =
			2 916 240
			In media un utente
			può ricevere più
			valutazioni da un
			altro utente quindi il
			volume reale dei
			dati è più grande.

Tavole degli accessi:

Senza ridondanza 4:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
ValutazioneDiViaggio	Е	26 ¹	L	Si leggono dalla tabella ValutazioneDiViaggio tutte le valutazioni relative ad un utente e se ne calcola una media
Totale operazioni elementari per singola operazione			26	
Totale operazioni elementari al giorno			26 x 5 000 =	130 000

¹ Le valutazioni totali sono 3 079 440 / 120 000 ~ 26

Con ridondanza 4:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Utente	E	1	L	Leggo gli attributi nella tabella Utente ed eseguo la divisione per avere la media
Totale operazioni elementari per singola operazione		1		
Totale operazioni elementari al giorno		1 x 5000 = 5000		

5.2.7) Event una volta al minuto per il controllo e la modifica dello stato del pool (aperto, partito, chiuso)

Descrizione: Ogni volta al minuto, il seguente evento aggiorna lo stato di tutti i pool

Input: Lettura dei pool

Output: Nessun output a schermo, si aggiornano i pool nella relativa tabella.

Frequenza Giornaliera: 1440 volte al giorno (Minuti in un giorno)

Porzione di diagramma interessata:

Porzione di tavola dei volumi interessata:

Pool	E	336 000	Cardinalità (1,1) con
			Ammette

Tavola degli accessi:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione	
Pool	Е	336 000	L	Leggo tutti i pool per controllare il loro stato	
Pool	Е	1 ¹ x 2 = 2	S	Aggiorno lo stato del pool	
Totale operazioni elementari		336 002			
per singola operazione					
Totale operazioni elementari al giorno		336 000 x 1 440 = 483 840 000			

¹ Si suppone che in media ogni minuto venga aggiornato lo stato di 1 solo pool.

5.2.8) Aggiornamento livello comfort

Descrizione: Ogni volta che viene aggiunto ad un'autovettura un optional si calcola il livello comfort di tale autovettura.

Input: Numero totale degli optional dell'autovettura

Output: Livello comfort

Frequenza Giornaliera: 300 volte al giorno (Ipotesi)

Porzione di diagramma interessata:

Porzione tavola dei volumi interessata:

Autovettura	E	33 600	Autovetture totali
На	R	100 800	Ogni autovettura ha
			in media 3 optional,
			da cui 108 000 = 33
			600 *3.
Optional	E	100	Ipotesi iniziale: lista
			degli optional

Tavole degli accessi:

Senza ridondanza 5:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione	
На	R	31	L	Leggo gli optional dell'autovettura interessata	
Autovettura	E	1 x 2 = 2	Scrittura	Aggiorno il campo Livello_Comfort	
Totale op elementari opera:	per singola		5		
Totale op elementari		5 x 300 = 1 500			

¹ In media ogni autovettura ha 3 optional.

Con ridondanza 5:

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione	
Autovettura	E	1	L	Leggo il numero degli optional	
Autovettura	Е	1 x 2 = 2	Scrittura	Aggiorno il campo Livello_Comfort	
Totale op	erazioni		3		
elementari	per singola				
opera	zione				
Totale op	erazioni	3 x 300 = 900			
elementar	i al giorno				

5.2.9) Aggiornamento del tragitto di un pool

Descrizione: Ogni volta che cambia lo stato di una prenotazione di pool, un trigger aggiorna il percorso di un pool, se tale prenotazione è corredata da una variazione

Input: Cambio di stato di una prenotazione di pool

Output : Aggiornamento percorso di un pool

Frequenza Giornaliera: 270 volte al giorno (Ipotesi)

Porzione di diagramma interessata:

Porzione di tavola dei volumi interessata:

Pool	E	336 000	Cardinalità (1,1) con Ammette
Formato Da-1	R	10 080 000	Si suppone che in
			media un tragitto di
			un pool sia formato
			da 30 spezzoni
			336 000 x 30 =
			10 080 000
Relativa A	R	3 600	Si suppone che solo
			100 pool
			posseggano una
			variazione ancora
			da
			accettare/rifiutare,
			e che ogni pool con
			variazione sia
			formato da 36
			spezzoni
			36 x 100 = 3 600

Tavola degli accessi interessata:

Nome costrutto	Tipo	Numero	Tipo	Descrizione
	costrutto	operazioni		
		elementari		
	CASO VA	RIAZIONE ACCET	TATA	
Relativa A	R	1	L	Leggo la
				prenotazione di
				pool interessata
				e verifico
				l'esistenza della
				variazione
Formato - Da 1	R	30 x 2 = 60	S	Cancello il
				tragitto del pool
Formato - Da 1	R	31 x 2 = 62 ¹	S	Aggiorno il
				tragitto del pool
				con la variazione

Relativa A	R	31 x 2 = 62 ¹	S	Cancello la variazione
	CASO VARIA	⊥ ZIONE NON ACC	ΈΤΤΔΤΔ	Variazione
Relativa A	R	1	L	Leggo la prenotazione di pool interessata e verifico l'esistenza della variazione
Relativa A	R	31 x 2 =	62 ¹ S	Cancello la variazione
Totale operazioni elementar per singola operazione	i 248	·	<u>,</u>	
Totale operazioni elementar al giorno	i 248 x 270 =	= 66 960		

¹ Si suppone che in media una variazione sia composta da 1 spezzone. Siccome un pool ha in media 30 spezzoni il percorso finale compresa la variazione è di 31 spezzoni.

5.3) Verifica della convenienza delle ridondanze

Nel paragrafo precedente, sono state illustarte le operazioni scelte con le relative tavole degli accessi. In alcune di esse erano presenti due tavole degli accesi, una senza la presenza della ridondanza e l'altra con la ridondanza. Nel seguente paragrafo, vengono illustarti i costi di aggiornamento di tali ridondanze dai quali verificheremo se converrà mantenerle oppure eliminarle.

5.3.1) Aggiornamento delle ridondanze:

Aggiornamento ridondanza 1:

Ogni qual volta che in uno dei tre servizi si percorre uno spezzone, dovremo aggiornare la ridondanza per incrementare quante volte è stato percorso quello spezzone e affinare il tempo medio di percorrenza, cioè memorizzarne la somma dei tempi.

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
PassaDa	R	1 ¹	Lettura	Lettura degli spezzoni interessati dalle tabelle PassaDa dato il relativo id dello spezzone
Spezzone	E	1 x 2 = 2	Scrittura	Scrittura per aggiornare le ridondanze dello spezzone interessato
Totale operazioni per singola ope			1 + 2 = 3	
Totale operazioni e giorno	lementari al	3 x 456 591 = 1 369 773		773

Costo operazione 1:

$$f^{T} = 2500$$

 $o^{T} = 508$
 $n^{T} = f^{T} * o^{T} = 1270000$

$$o^{T}_{RID} = 50$$

 $n^{T}_{RID} = f^{T} * o^{T}_{RID} = 125 000$

Si può già vedere che $o^T_{RID} << o^T$ e che si risparmiano $\Delta_{read} = n^T - n^T_{RID} = 1$ 145 000 operazioni elementari.

$$g^{A} = 456 591$$

 $o^{A} = 3$
 $n^{A} = g^{A} * o^{A} = 1369773$

Anche se n^A è > Δ_{read} la ridondanza 1 è utilizzata anche sull'operazione 6.2 e su 5.2.5.1 e come si può vedere porta a una elevata riduzione del carico applicativo sul DB. Quindi tale ridondanza verrà mantenuta.

Costo operazione 5.2.5.1:

$$f^{T} = 640 872$$

 $o^{T} = 22$
 $n^{T} = f^{T} * o^{T} = 14 099 184$
 $o^{T}_{RID} = 4$
 $n^{T}_{RID} = f^{T} * o^{T}_{RID} = 2 563 488$

Si può già vedere che $o^T_{RID} << o^T$ e che si risparmiano $\Delta_{read} = n^T - n^T_{RID} = 11 535 696$ operazioni elementari.

$$g^{A} = 456 591$$

 $o^{A} = 3$
 $n^{A} = g^{A} * o^{A} = 1 369 773$

Si evince che $n^A\grave{e}<\Delta_{read}$ per cui risulta conveniente mantenere tale ridondanza.

Aggiornamento ridondanza 2:

Ogni volta che viene commesso un sinistro dovremo aggiornare la ridondanza presente nella tabella Utente, contenente il totale di sinistri da egli commesso.

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Autovettura	E	1	L	Si legge la targa dell'autovettura coinvolta
Utente	E	1 x 2 = 2	S	Si aggiorna il totale dei sinistri commessi dall'utente considerato
Totale operazioni per singola ope			2 + 1 = 3	
Totale operazioni e giorno	lementari al		3 x 8 = 24	

Costo operazione 6.1:

$$f^{T} = 5 000$$

 $o^{T} = 3$
 $n^{T} = f^{T} * o^{T} = 15 000$
 $o^{T}_{RID} = 1$
 $n^{T}_{RID} = f^{T} * o^{T}_{RID} = 5 000$

Si può già vedere che $o^T_{RID} << o^T$ e che si risparmiano $\Delta_{read} = n^T - n^T_{RID} = 10\,000$ operazioni elementari.

$$g^{A} = 8$$

 $o^{A} = 3$
 $n^{A} = g^{A} * o^{A} = 24$

Si evince che il mantenimento della ridondanza è conveniente poiché $n^A < \Delta_{read}$.

Aggiornamento ridondanza 3:

Ogni volta che si compie un passaggio su uno spezzone dobbiamo verificare se l'utente ha rispettato il limite stradale e aggiornare la relativa ridondanza.

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
PassaDa -n	R	1	L	Si legge il tempo di percorrenza
Spezzone	E	1	L	Leggo il tempo medio di percorrenza dello spezzone e lo confronto
Utente	E	1 x 2 = 2	S	Aggiorno il ranking di utente
Totale operazioni per singola ope			2 + 1 + 1 = 4	
Totale operazioni e giorno		4 x 456 591 = 1 826 364		364

Costo operazione 6.2:

$$f^{T} = 5 000$$

 $o^{T} = 50 549$
 $n^{T} = f^{T} * o^{T} = 252 745 000$
 $o^{T}_{RID} = 1$
 $n^{T}_{RID} = f^{T} * o^{T}_{RID} = 5 000$

Si può già vedere che $o^T_{RID} << o^T$ e che si risparmiano $\Delta_{read} = n^T - n^T_{RID} = 252 740 000$ operazioni elementari.

$$g^{A} = 456591$$

 $o^{A} = 4$
 $n^{A} = g^{A} * o^{A} = 1826364$

Si evince che il mantenimento della ridondanza è conveniente poiché $n^A < \Delta_{read}$.

Aggiornamento ridondanza 4:

Ogni volta che l'utente riceve una valutazione si aggiornano i campi ridondanti nella tabella Utente.

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Utente	E	1 x 2 = 2	S	Vengono aggiornati i campi relativi alle valutazioni in Utente
Totale operazioni per singola op			2	
Totale operazioni al giorr			2 x 8 437 = 16 874	ļ

Costo operazione 6.3:

$$f^{T} = 5 000$$

 $o^{T} = 26$
 $n^{T} = f^{T} * o^{T} = 130 000$
 $o^{T}_{RID} = 1$
 $n^{T}_{RID} = f^{T} * o^{T}_{RID} = 5 000$

Si può già vedere che $o^T_{RID} << o^T$ e che si risparmiano $\Delta_{read} = n^T - n^T_{RID} = 125\,000$ operazioni elementari.

$$g^{A} = 8 437$$

 $o^{A} = 2$
 $n^{A} = g^{A} * o^{A} = 16 874$

Si evince che il mantenimento della ridondanza è conveniente poiché $\, n^A < \Delta_{read}. \,$

Costo operazione 6.4:

$$f^{T} = 5 000$$

 $o^{T} = 26$
 $n^{T} = f^{T} * o^{T} = 130 000$
 $o^{T}_{RID} = 1$

$$n^{T}_{RID} = f^{T} * o^{T}_{RID} = 5000$$

Si può già vedere che $o^T_{RID} << o^T$ e che si risparmiano $\Delta_{read} = n^T - n^T_{RID} = 125\,000$ operazioni elementari.

$$g^{A} = 8 \ 437$$

 $o^{A} = 2$
 $n^{A} = g^{A} * o^{A} = 16 \ 874$

Si evince che il mantenimento della ridondanza è conveniente poiché $\, n^A < \Delta_{read}. \,$

Aggiornamento ridondanza 5:

Ogni volta si inserisce un nuovo optional si aggiorna il totale degli optional delle autovetture che lo posseggono.

Nome costrutto	Tipo costrutto	Numero operazioni elementari	Tipo	Descrizione
Autovettura	E	1 x 2 = 2	S	Si aggiorna il livello comfort dell'autovettura a cui è stato aggiunto l'optional
Totale operazioni per singola ope			2	
Totale operazioni e giorno	lementari al		2 x 276 = 552	

Costo operazione 8:

$$f^{T} = 300$$

 $o^{T} = 5$
 $n^{T} = f^{T} * o^{T} = 1500$
 $o^{T}_{RID} = 3$
 $n^{T}_{RID} = f^{T} * o^{T}_{RID} = 900$

Si può già vedere che $o^T_{RID} << o^T$ e che si risparmiano $\Delta_{read} = n^T - n^T_{RID} = 600$ operazioni elementari.

$$g^{A} = 276$$

 $o^{A} = 2$
 $n^{A} = g^{A} * o^{A} = 552$

Si evince che il mantenimento della ridondanza è conveniente poiché $\, n^A < \Delta_{read}. \,$

4. Traduzione verso il modello relazionale

Avendo ottenuto il diagramma E-R ristrutturato, dopo la procedura di ottimizzazione e ristrutturazione dell'E-R non ristrutturato, si procede quindi alla traduzione nel modello logico relazionale; a differenza delle sezioni precedenti non è stata effettuata una suddivisione in aree tematiche in quanto entità di aree diverse possono essere messe in relazione tramite associazioni.

6.1) Modello relazionale

Sotto il modello relazionale del database:

UTENTE (<u>CF</u>, Cap, Provincia, Totale_Sinistri, Somma_Punteggi_Rispetto_Limiti, Totale_Voti_Rispetto_Limiti, Somma_Valutazioni_Persona, Somma_Valutazioni_Piacere, Totale_Valutazioni_Piacere, Somma_Valutazioni_Comportamento, Somma_Valutazioni_Serieta, Somma_Valutazioni_Rispetto_Orari, Totale_Valutazioni, Comune, Nome, Cognome, Telefono, Data_Iscrizione, Ruolo, Stato, Civico, Nome_Luogo_Residenza)

DOCUMENTO_DI_IDENTITA (<u>Numero Documento</u>, <u>Tipologia</u>, <u>Utente</u>, Data_Scadenza, Data_Rilascio, Ente_Rilascio)

ACCOUNT (<u>Username</u>, <u>Utente</u>, <u>Password</u>, Risposta Domanda, Domanda Recupero)

AUTOVETTURA (<u>Targa, Utente, Modello, Cilindrata, Numero_Optional,</u> Consumo_Extra_Urbano, Consumo_Urbano, Livello_Comfort, Anno_Immatricolazione, Numero Posti, Alimentazione, Costo Al Km)

STATO (Autovettura, Kilometraggio, Quantità Carburante)

AUTOVETTURA-OPTIONAL (Targa, Id Optional)

OPTIONAL (Id Optional, Nome, Descrizione)

FASCE ORARIE (Ora Di Inizio, Autovettura, Ora Di Fine)

AUTOVETTURA-SINISTRO (Targa, Id Sinistro)

SINISTRO (Id Sinistro, Km, Orario, Dinamica)

AUTOVETTURA-EXT (Id Sinistro, Targa)

KM (Id Kilometro, Strada, Latitudine, Longitudine, Numero Km)

TRACKING (Italian: Italian: Noleggio, Pool, Sharing, Km, Timestamp, Latitudine, Longitudine)

PRENOTAZIONE_DI_NOLEGGIO (<u>Id_Prenotazione, Autovettura, Utente, Accettata, Data_Di_Inizio, Data_Di_Fine</u>)

PRENOTAZIONE_DI_NOLEGGIO-SPEZZONE (<u>Id_Prenotazione, Id_Spezzone, Conteggio</u>, Time Stamp Di_Inizio, Time Stamp Di_Fine)

PRENOTAZIONE_DI_POOL (<u>Codice_Prenotazione, Utente, Pool, Spesa, Latitudine_Partenza, Longitudine_Partenza, Longitudine_Arrivo, Latitudine_Arrivo</u>)

PRENOTAZIONE_DI_POOL-SPEZZONE (Codice_Prenotazione, Id_Spezzone, Conteggio)

POOL (<u>Id_Pool, Autovettura,</u> Giorno_Partenza, Giorno_Arrivo, Stato, Periodo_Validità, Percentuale_Aumento, Costo_Al_Km, Grado_Di_Flessbilità, Latitudine_Partenza, Longitudine_Partenza, Latitudine_Arrivo, Longitudine_Arrivo)

POOL-PASSADA_SPEZZONE (<u>Id_Pool, Id_Spezzone</u>, <u>Conteggio</u>, <u>Timestamp_Inizio</u>, <u>Timestamp_Fine</u>)

SHARING (Id-sharing, Autovettura, Orario_Partenza, Orario_Stimato_Arrivo, Latitudine_Arrivo, Longitudine_Arrivo, Costo_Al_Km)

SHARING-FORMATO DA SPEZZONE (Id Sharing, Id Spezzone, Conteggio)

SHARING-PASSA_DA_SPEZZONE (<u>Id_Sharing, Id_Spezzone, Conteggio</u>, Time_Stamp_Di_Inizio, Time_Stamp_Di_Fine)

CHIAMATA (<u>Id Chiamata, Utente, Id Km_Partenza, Id_Km_Arrivo, Sharing, Stato, Destinazione, Timestamp_Chiamata, Timestamp_Risposta, Spesa)</u>

SPEZZONE (Id=Spezzone, Strada, Livello_Iniziale, Somma_Tempi_Percorrenza, Totale, Livello_Finale, Livello_Finale, Livellogitudine_Finale, <a href="Livellogitudine_Finale, Livellogitudine_Finale, <a href="Livellogitudine_Finale, <a href="Livellogitudine_Finale, <a href="Livellogitudine_Finale, <a href="Livellogitudine_Finale, <a href="Livellogitudine_Finale, <a href="Livellogitudine_Finale, <a hre

POOL-FORMATO DA SPEZZONE (Id Pool, Id Spezzone, Conteggio)

STRADA (<u>Id Strada</u>, Classificazione_Tecnica, Velocità_Max, Nome_Comune, Tipologia, Categorizzazione, Suffisso_Numerale, Prima_Numerazione, Seconda_Numerazione, N Sensi Di Marcia, Numero Di Corsie)

LIMITE (Id Limite, Strada, Limite, Km Partenza, Km Arrivo)

STRADA-PEDAGGIO (Id Strada, Id Pedaggio, Km_Iniziale, Km_Finale)

PEDAGGIO (Id Pedaggio, Costo)

VALUTAZIONE_DI_VIAGGIO (<u>Id_Valutazione, Recensore, Ricevente, Prenotazione_Di_Noleggio, Pool, Sharing, Valutazione_Serietà, Valazione_Piacere, Valutazione_Persona, Valutazione_Comportamento, Recensione_Testuale, Valutazione_Rispetto_Orari)</u>

6.2) Vincoli di integrità referenziale

Si noti che la lista dei vincoli che segue, si riferisce allo schema logico normalizzato che si trova nei paragrafi seguenti.

- Esiste un vincolo di integrità referenziale tra l'attributo Cap della tabella UTENTE e l'attributo Cap della tabella CAP.
- Esiste un vincolo di integrità referenziale tra l'attributo Utente della tabella ACCOUNT e l'attributo CF della tabella UTENTE.
- Esiste un vincolo di integrità referenziale tra l'attributo Utente della tabella DOCUMENTO_DI_IDENTITA' e l'attributo CF della tabella UTENTE.
- Esiste un vincolo di integrità referenziale tra l'attributo Utente della tabella AUTOVETTURA e l'attributo CF della tabella UTENTE.
- Esiste un vincolo di integrità referenziale tra l'attributo Modello della tabella AUTOVETTURA e l'attributo Modello della tabella PRODUTTORE.
- Esiste un vincolo di integrità referenziale tra l'attributo Autovettura della tabella STATO e l'attributo Targa della tabella AUTOVETTURA.
- Esiste un vincolo di integrità referenziale tra l'attributo Targa della tabella AUTOVETTURA_OPTIONAL e l'attributo Targa della tabella AUTOVETTURA.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Optional della tabella AUTOVETTURA_OPTIONAL e l'attributo Id_Optional della tabella OPTIONAL.
- Esiste un vincolo di integrità referenziale tra l'attributo Autovettura della tabella FASCE ORARIE e l'attributo Targa della tabella AUTOVETTURA.
- Esiste un vincolo di integrità referenziale tra l'attributo Strada della tabella CARREGGIATA e l'attributo Id_Strada della tabella STRADA.
- Esiste un vincolo di integrità referenziale tra l'attributo Strada della tabella KM e l'attributo Id Strada della tabella Strada.

- Esiste un vincolo di integrità referenziale tra l'attributo Autovettura della tabella AUTOVETTURA SINISTRO e l'attributo Targa della tabella AUTOVETTURA.
- Esiste un vincolo di integrità referenziale tra l'attributo Sinistro della tabella AUTOVETTURA_SINISTRO e l'attributo Id_Sinistro della tabella Sinistro.
- Esiste un vincolo di integrità referenziale tra l'attributo Autovettura della tabella SHARING e l'attributo Targa della tabella AUTOVETTURA.
- Esiste un vincolo di integrità referenziale tra l'attributo Cap della tabella UTENTE e l'attributo Cap della tabella CAP.
- Esiste un vincolo di integrità referenziale tra l'attributo Autovettura della tabella PRENOTAZIONE DI NOLEGGIO e l'attributo Targa della tabella AUTOVETTURA.
- Esiste un vincolo di integrità referenziale tra l'attributo Utente della tabella PRENOTAZIONE DI NOLEGGIO e l'attributo CF della tabella UTENTE.
- Esiste un vincolo di integrità referenziale tra l'attributo Autovettura della tabella
 POOL e l'attributo Targa della tabella Autovettura.
- Esiste un vincolo di integrità referenziale tra l'attributo Utente della tabella PRENOTAZIONE DI POOL e l'attributo CF della tabella UTENTE.
- Esiste un vincolo di integrità referenziale tra l'attributo Pool della tabella PRENOTAZIONE_DI_POOL e l'attributo Id_Pool della tabella POOL.
- Esiste un vincolo di integrità referenziale tra l'attributo Utente della tabella CHIAMATA e l'attributo CF della tabella UTENTE.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Km_Partenza della tabella CHIAMATA e l'attributo Id_Kilometro della tabella KM.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Km_Arrivo della tabella CHIAMATA e l'attributo Id Kilometro della tabella KM.
- Esiste un vincolo di integrità referenziale tra l'attributo Sharing della tabella CHIAMATA e l'attributo Id_Sharing della tabella SHARING.
- Esiste un vincolo di integrità referenziale tra l'attributo Strada della tabella SPEZZONE e l'attributo Id_Srada della tabella STRADA.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Pool della tabella POOL_FORMATO_DA_SPEZZONE e l'attributo Id_Pool della tabella POOL.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Spezzone della tabella POOL_FORMATO_DA_SPEZZONE e l'attributo Id_Spezzone della tabella SPEZZONE.
- Esiste un vincolo di integrità referenziale tra l'attributo Strada della tabella LIMITE e l'attributo Id_Strada della tabella STRADA.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Strada della tabella STRADA_PEDAGGIO e l'attributo Id_Strada della tabella STRADA.

- Esiste un vincolo di integrità referenziale tra l'attributo Id_Pedaggio della tabella STRADA_PEDAGGIO e l'attributo Id_Pedaggio della tabella PEDAGGIO.
- Esiste un vincolo di integrità referenziale tra l'attributo Recensore della tabella VALUTAZIONE_DI_VIAGGIO e l'attributo CF della tabella UTENTE.
- Esiste un vincolo di integrità referenziale tra l'attributo Ricevente della tabella VALUTAZIONE DI VIAGGIO e l'attributo CF della tabella UTENTE.
- Esiste un vincolo di integrità referenziale tra l'attributo Prenotazione_Di_Noleggio della tabella VALUTAZIONE_DI_VIAGGIO e l'attributo Id_Prenotazione della tabella Prenotazione_Di_Noleggio.
- Esiste un vincolo di integrità referenziale tra l'attributo Pool della tabella VALUTAZIONE DI VIAGGIO e l'attributo Id Pool della tabella POOL.
- Esiste un vincolo di integrità referenziale tra l'attributo Sharing della tabella VALUTAZIONE DI VIAGGIO e l'attributo Id Sharing della tabella SHARING.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Pool della tabella POOL_PASSA_DA_SPEZZONE e l'attributo Id_Pool della tabella POOL.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Spezzone della tabella POOL_PASSA_DA_SPEZZONE e l'attributo Id_Spezzone della tabella SPEZZONE.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Sharing della tabella SHARING PASSA DA SPEZZONE e l'attributo Id Sharing della tabella SHARING.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Spezzone della tabella SHARING PASSA DA SPEZZONE e l'attributo Id Spezzone della tabella SPEZZONE.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Prenotazione della tabella PRENOTAZIONE_DI_NOLEGGIO_SPEZZONE e l'attributo Id_Prenotazione della tabella PRENOTAZIONE DI NOLEGGIO.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Spezzone della tabella PRENOTAZIONE_DI_NOLEGGIO_SPEZZONE e l'attributo Id_Spezzone della tabella SPEZZONE.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Sinistro della tabella AUTOVETTURA EXT e l'attributo Id Sinistro della tabella SINISTRO.
- Esiste un vincolo di integrità referenziale tra l'attributo Codice_Prenotazione della tabella PRENOTAZIONE_DI_POOL_SPEZZONE e l'attributo Codice_Prenotazione della tabella PRENOTAZIONE_DI_POOL.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Spezzone della tabella PRENOTAZIONE_DI_POOL_SPEZZONE e l'attributo Id_Spezzone della tabella SPEZZONE.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Sharing della tabella SHARING_FORMATO_DA_SPEZZONE e l'attributo Id_Sharing della tabella SHARING.

- Esiste un vincolo di integrità referenziale tra l'attributo Id_Spezzone della tabella SHARING_FORMATO_DA_SPEZZONE e l'attributo Id_Spezzone della tabella SPEZZONE.
- Esiste un vincolo di integrità referenziale tra l'attributo Km della tabella TRACKING e l'attributo Id Kilometro della tabella KM.
- Esiste un vincolo di integrità referenziale tra l'attributo Prenotazione_Di_Noleggio della tabella TRACKING e l'attributo Id_Prenotazione della tabella PRENOTAZIONE DI NOLEGGIO.
- Esiste un vincolo di integrità referenziale tra l'attributo Pool della tabella TRACKING e l'attributo Id Pool della tabella POOL.
- Esiste un vincolo di integrità referenziale tra l'attributo Sharing della tabella TRACKING e l'attributo Id_Sharing della tabella SHARING.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Kilometro della tabella KM TRACKING e l'attributo Id Kilometro della tabella KM.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Tracking della tabella KM_TRACKING e l'attributo Id_Tracking della tabella TRACKING.
- Esiste un vincolo di integrità referenziale tra l'attributo Id_Grado della tabella GRADO_FLESSIBILITA' e l'attributo Grado_Flessibilita' della tabella POOL

6.3) Vincoli di integrità generici

Analizzando le specifiche di progetto, sono stati individuati dei vincoli di integrità generici per far sì che i dati nelle diverse tabelle rimangano correttamente aggiornati.

- (RV1) CF deve avere una lunghezza esatta di 16 caratteri e deve essere regolare.
- (RV2) La data di inizio di una prenotazione di noleggio deve essere < della data di fine prenotazione.
- (RV3) Il CAP deve avere 5 caratteri numerici.
- (RV4) Il ruolo di un utente può essere 0,1 o 2.
- (RV5) Il telefono deve essere composto da soli numeri e deve avere una lunghezza massima di 10 caratteri.
- (RV6) Lo stato di un utente deve essere attivo o inattivo.
- (RV7) La tipologia del documento di identità deve essere : "Patente" o "Carta di identità".

- (RV8) Il numero documento della carta d'identità deve essere di nove caratteri e i primi due iniziali, devono essere testuali.
- (RV9) La data di scadenza di un documento deve essere > Data di rilascio
- (RV10) In una chiamata devon valere le seguenti condizioni :
- Il timestamp chiamata < TimestampRisposta < Timestamp di fine corsa.
- (RV11) Lo stato di una chiamata deve essere: "pending", "rejected" o "accepted".
- (RV12) La targa ext di un'auto non deve essere presente tra le targhe memorizzate.
- (RV13) L'alimentazione di un'auto deve essere : "Benzina", "Elettrico", "Diesel", "GPL", "Metano".
- (RV14) Il numero posti di un'auto deve essere >= 1
- (RV15) Il chilometraggio deve essere >= 0 e la quantità carburante >= 0
- (RV16) L'ora di inizio in fasce orarie deve essere < ora di fine
- (RV17) Il numero di un km deve essere >= 0
- (RV18) Il limite di una strada deve essere > 0 e il km partenza < km arrivo
- (RV19) In prevede il km iniziale deve essere < km finale
- (RV20) In strada la velocità massima deve essere > 0
- (RV21) Il numero delle carreggiate deve essere > 0
- (RV22) Il senso di marcia in uno spezzone deve essere 0,1 o 2
- (RV23) La lunghezza di uno spezzone deve essere > 0 e il suo livello > 0
- (RV24) Per Passa Da 1,2,3 il timestampfinale > timestampiniziale
- (RV25) I campi della valutazione devono essere compresi tra 1 e 5
- (RV26) Giorno partenza < Giorno Arrivo in Pool
- (RV27) Il grado di flessibilità di un pool puo essere: "basso", "medio", "alto" o NULL

5. Analisi delle dipendenze funzionali e normalizzazione

Dopo aver tradotto il modello Entità – Relazioni nel modello Relazionale e aver individuato i vincoli di integrità referenziale è seguita l'analisi delle dipendenze funzionali e la normalizzazione della base di dati, come richiesto dalla documentazione specificata dai docenti.

Sotto seguono le dipendenze funzionali, dalle quali individuiamo lo schema logico normalizzato :

7.1) Dipendenze funzionali

UTENTE (<u>CF</u>, Totale_Sinistri, Somma_Punteggi_Rispetto_Limiti, Totale_Voti_Rispetto_Limiti, Somma_Valutazioni_Persona, Somma_Valutazioni_Piacere, Totale_Valutazioni_Piacere, Somma_Valutazioni_Comportamento, Somma_Valutazioni_Serieta, Somma_Valutazioni_Rispetto_Orari, Totale_Valutazioni, Nome, Cognome, Telefono, Data_Iscrizione, Ruolo, Stato, Civico, Nome_Luogo_Residenza)

CF-> (Totale_Sinistri, Somma_Punteggi_Rispetto_Limiti, Totale_Voti_Rispetto_Limiti, Somma_Valutazioni_Persona, Somma_Valutazioni_Piacere, Totale_Valutazioni_Piacere, Somma_Valutazioni_Comportamento, Somma_Valutazioni_Serieta, Somma_Valutazioni_Rispetto_Orari, Totale_Valutazioni, Nome, Cognome, Telefono, Data Iscrizione, Ruolo, Stato, Civico, Nome Luogo Residenza)

Poiché gli attributi a sinistra sono superchiave, UTENTE è in BCNF, quindi non necessita di ulteriori cambiamenti.

Cap -> Provincia, Comune. Si procede a decomporre la tabella in:

CAP (Cap, Provincia, Comune)

Poiché gli attributi a sinistra sono superchiave, CAP è in BCNF, e non necessita di ulteriori cambiamenti.

DOCUMENTO_DI_IDENTITA (<u>Numero_Documento</u>, <u>Tipologia</u>, <u>Utente</u>, Data_Scadenza, Data_Rilascio, Ente_Rilascio)

Numero Documento, Tipologia -> Utente, Data Scadenza, Data Rilascio, Ente Rilascio

Poiché gli attributi a sinistra sono superchiave, DOCUMENTO_DI_IDENTITA' è in BCNF, quindi non necessita di ulteriori cambiamenti.

ACCOUNT (<u>Username</u>, <u>Utente</u>, <u>Password</u>, Risposta Domanda, Domanda Recupero)

Username -> Utente, Password, Risposta Domanda, Domanda Recupero

Poiché gli attributi a sinistra sono superchiave, ACCOUNT è in BCNF, quindi non necessita di ulteriori cambiamenti.

AUTOVETTURA (<u>Targa, Utente, Modello,</u> Cilindrata, Numero_Optional, Consumo_Extra_Urbano, Consumo_Urbano, Livello_Comfort, Anno_Immatricolazione, Numero Posti, Alimentazione, Costo Al Km)

Targa -> <u>Utente</u>, Modello, Cilindrata, Casa_Produttrice, Consumo_Extra_Urbano, Consumo_Urbano, Livello_Comfort, Anno_Immatricolazione, Numero_Posti, Numero_Optional, Alimentazione, Costo_Al_Km

Poiché gli attributi a sinistra sono superchiave, AUTOVETTURA è in BCNF, quindi non necessita di ulteriori cambiamenti.

Modello -> Casa_Produttrice. Allora si procede a decomporre la tabella in:

PRODUTTORE (Modello, Casa_Produttrice)

Poiché gli attributi a sinistra sono superchiave, PRODUTTORE è in BCNF, quindi non necessita di ulteriori cambiamenti.

STATO(<u>Autovettura</u>, Kilometraggio, Quantità_Carburante)

Autovettura -> Kilometraggio, Quantità Carburante

Poiché gli attributi a sinistra sono superchiave, STATO è in BCNF, quindi non necessita di ulteriori cambiamenti.

AUTOVETTURA-OPTIONAL (Targa, Id Optional)

La relazione non presenta dipendenze significative

OPTIONAL(Id Optional, Nome, Descrizione)

Id Optional -> Nome, Descrizione

Poiché gli attributi a sinistra sono superchiave, OPTIONAL è in BCNF, quindi non necessita di ulteriori cambiamenti.

FASCE_ORARIE (Ora Di Inizio, Autovettura, Ora_Di_Fine)

Ora_Di_Inizio, Autovettura -> Ora_Di_Fine

Poiché gli attributi a sinistra sono superchiave, FASCE_ORARIE è in BCNF, quindi non necessita di ulteriori cambiamenti.

AUTOVETTURA-SINISTRO (Targa, Id Sinistro)

La relazione non presenta dipendenze significative

SINISTRO (Id Sinistro, Km, Orario, Dinamica)

Id Sinistro -> Km, Orario, Dinamica

Poiché gli attributi a sinistra sono superchiave, SINISTRO è in BCNF, quindi non necessita di ulteriori cambiamenti.

AUTOVETTURA-EXT (Id Sinistro, Targa)

La relazione non presenta dipendenze significative

KM (Id Kilometro, Strada, Latitudine, Longitudine, Numero Km)

Id_Kilometro -> Strada, Latitudine, Longitudine, Numero_Km

Poiché gli attributi a sinistra sono superchiave, KM è in BCNF, quindi non necessita di ulteriori cambiamenti.

Id_Tracking -> Prenotazione_Di_Noleggio, Pool, Sharing, Km, Timestamp, Latitudine, Longitudine

Poiché gli attributi a sinistra sono superchiave, TRACKING è in BCNF, quindi non necessita di ulteriori cambiamenti.

PRENOTAZIONE_DI_NOLEGGIO (<u>Id Prenotazione, Autovettura, Utente, Accettata, Data Di Inizio, Data Di Fine</u>)

Id Prenotazione -> Autovettura, Utente, Accettata, Data Di Inizio, Data Di Fine

Poiché gli attributi a sinistra sono superchiave, PRENOTAZIONE_DI_NOLEGGIO è in BCNF, quindi non necessita di ulteriori cambiamenti.

PRENOTAZIONE_DI_NOLEGGIO-SPEZZONE (<u>Id_Prenotazione, Id_Spezzone, Conteggio</u>, Time_Stamp_Di_Inizio, Time_Stamp_Di_Fine)

Id_Prenotazione, Id_Spezzone, Conteggio -> Time_Stamp_Di_Inizio, Time_Stamp_Di_Fine

Poiché gli attributi a sinistra sono superchiave, PRENOTAZIONE_DI_NOLEGGIO-SPEZZONE è in BCNF, quindi non necessita di ulteriori cambiamenti.

PRENOTAZIONE_DI_POOL (<u>Codice_Prenotazione, Utente, Pool, Spesa, Latitudine_Partenza, Longitudine_Partenza, Longitudine_Arrivo, Latitudine_Arrivo</u>)

Codice_Prenotazione -> Utente, Pool, Spesa, Latitudine_Partenza, Longitudine_Partenza,

Longitudine_Arrivo, Latitudine_Arrivo

Poiché gli attributi a sinistra sono superchiave, PRENOTAZIONE_DI_POOL è in BCNF, quindi non necessita di ulteriori cambiamenti.

PRENOTAZIONE DI POOL-SPEZZONE (Codice Prenotazione, Id Spezzone, Conteggio)

La relazione non presenta dipendenze significative

POOL (<u>Id Pool, Autovettura</u>, Giorno_Partenza, Giorno_Arrivo, Stato, Periodo_Validità, Percentuale_Aumento, Costo_Al_Km, Grado_Di_Flessibilità, Latitudine_Partenza, Longitudine Partenza, Latitudine Arrivo, Longitudine Arrivo)

Id_Pool -> Autovettura, Giorno_Partenza, Giorno_Arrivo, Stato, Periodo_Validità, Percentuale_Aumento, Costo_Al_Km, Grado_Di_Flessbilità, Latitudine_Partenza, Longitudine Partenza, Latitudine Arrivo, Longitudine Arrivo

Poiché gli attributi a sinistra sono superchiave, POOL è in BCNF, quindi non necessita di ulteriori cambiamenti.

Grado_Di_Flessibilità -> Percentuale_Aumento. Per cui la relazione viene decomposta in

Flessibilità (Grado Di Flessibilità, Percentuale Aumento)

Poiché gli attributi a sinistra sono superchiave, FLESSIBILITA' è in BCNF, quindi non necessita di ulteriori cambiamenti.

POOL-PASSA_DA_SPEZZONE (<u>Id_Pool, Id_Spezzone</u>, <u>Conteggio_Timestamp_Inizio</u>, <u>Timestamp_Fine</u>)

Id Pool,Id Spezzone,Conteggio -> Timestamp Inizio,Timestamp Fine

Poiché gli attributi a sinistra sono superchiave, POOL-PASSADA_SPEZZONE è in BCNF, quindi non necessita di ulteriori cambiamenti.

SHARING (Id-sharing, Autovettura, Orario_Partenza, Orario_Stimato_Arrivo, Latitudine_Partenza, Latitudine_Arrivo, Longitudine_Partenza, Longitudine_Arrivo, Costo_Al_Km)

Id_Sharing -> Autovettura, Orario_Partenza, Orario_Stimato_Arrivo, Latitudine_Partenza,

Latitudine_Arrivo, Longitudine_Partenza, Longitudine_Arrivo, Costo_Al_Km

Poiché gli attributi a sinistra sono superchiave, SHARING è in BCNF, quindi non necessita di ulteriori cambiamenti.

SHARING-FORMATO_DA_SPEZZONE (Id_Sharing, Id_Spezzone, Conteggio)

La relazione non presenta dipendenze significative

SHARING-PASSA_DA_SPEZZONE (<u>Id_Sharing, Id_Spezzone, Conteggio</u>, Time_Stamp_Di_Inizio, Time_Stamp_Di_Fine)

Id_Sharing,Id_Spezzone,Conteggio -> Time_Stamp_Di_Inizio, Time_Stamp_Di_Fine

Poiché gli attributi a sinistra sono superchiave, SHARING-PASSA_DA_SPEZZONE è in BCNF, quindi non necessita di ulteriori cambiamenti.

CHIAMATA (<u>Id Chiamata, Utente, Id Km_Partenza, Id Km_Arrivo, Sharing, Stato, Destinazione, Timestamp_Chiamata, Timestamp_Risposta, Spesa)</u>

Id_Chiamata -> Utente, Id_Km_Partenza, Id_Km_Arrivo, Sharing, Stato, Destinazione, Timestamp_Chiamata, Timestamp_Risposta, Spesa

Poiché gli attributi a sinistra sono superchiave, CHIAMATA è in BCNF, quindi non necessita di ulteriori cambiamenti.

SPEZZONE (Id-strada, Livello_Iniziale, Livello_Finale, Latitudine_Iniziale, Latitudine_Finale, Longitudine_Finale, Senso_Di_Marcia, Tempo_Medio_Percorrenza, Lunghezza)

Id_Spezzone -> Strada, Livello_Iniziale, Livello_Finale, Latitudine_Iniziale, Latitudine_Finale,
Longitudine_Iniziale, Longitudine_Finale, Senso_Di_Marcia,
Tempo_Medio_Percorrenza,Lunghezza

Poiché gli attributi a sinistra sono superchiave, SPEZZONE è in BCNF, quindi non necessita di ulteriori cambiamenti.

POOL-FORMATO_DA_SPEZZONE (Id_Pool, Id_Spezzone, Conteggio)

La relazione non presenta dipendenze significative

STRADA (<u>Id Strada</u>, Classificazione_Tecnica, Velocità_Max, Nome_Comune, Tipologia, Categorizzazione, Suffisso_Numerale, Prima_Numerazione, Seconda_Numerazione, N Sensi Di Marcia, Numero Di Corsie)

Id_Strada -> Classificazione_Tecnica, Velocità_Max, Nome_Comune, Tipologia, Categorizzazione, Suffisso_Numerale, Prima_Numerazione, Seconda_Numerazione, N_Sensi_Di_Marcia, Numero_Di_Corsie

Poiché gli attributi a sinistra sono superchiave, STRADA è in BCNF, quindi non necessita di ulteriori cambiamenti.

Classificazione_Tecnica -> Velocità_Max da cui la relazione si decompone in :

VELOCITA MAX (Classificazione Tecnica, Velocità Max)

Poiché gli attributi a sinistra sono superchiave, VELOCITA_MAX è in BCNF, quindi non necessita di ulteriori cambiamenti.

CARREGGIATA (Id Carreggiata, Strada, Numero_Di_Corsie)

Id_Carreggiata, Strada -> Numero_Di_Corsie

Poiché gli attributi a sinistra sono superchiave, CARREGGIATA è in BCNF, quindi non necessita di ulteriori cambiamenti.

LIMITE (Id Limite, Strada, Limite, Km Partenza, Km Arrivo)

Id_Limite -> Strada, Limite, Km_Partenza, Km_Arrivo

Poiché gli attributi a sinistra sono superchiave, LIMITE è in BCNF, quindi non necessita di ulteriori cambiamenti.

STRADA-PEDAGGIO (Id Pedaggio, Km_Iniziale, Km_Finale)

Id_Strada, Id_Pedaggio -> Km_Iniziale, Km_Finale

Poiché gli attributi a sinistra sono superchiave, STRADA-PEDAGGIO è in BCNF, quindi non necessita di ulteriori cambiamenti.

PEDAGGIO (Id Pedaggio, Costo)

Id_Pedaggio -> Costo

Poiché gli attributi a sinistra sono superchiave, PEDAGGIO è in BCNF, quindi non necessita di ulteriori cambiamenti.

VALUTAZIONE_DI_VIAGGIO (<u>Id_Valutazione, Recensore, Ricevente, Prenotazione_Di_Noleggio, Pool, Sharing, Valutazione_Serietà, Valazione_Piacere, Valutazione_Persona, Valutazione_Comportamento, Recensione_Testuale, Valutazione_Rispetto_Orari)</u>

Id_Valutazione -> Recensore, Ricevente, Prenotazione_Di_Noleggio, Pool, Sharing, Valutazione_Serietà, Valazione_Piacere, Valutuzione_Persona, Valutazione Comportamento, Recensione Testuale, Valutazione Rispetto Orari

Poiché gli attributi a sinistra sono superchiave, VALUTAZIONE_DI_VIAGGIO è in BCNF, quindi non necessita di ulteriori cambiamenti.

6. Materialized View

Nel DB è presente una Materialized View, per tenere traccia della congestione sui diversi tratti di strada aggiornata in ogni momento:

MV_CRITICITA (Id_Spezzone, Livello_Criticita)

7. Implementazione su DBMS

L'ultimo passaggio del progetto è stato l'implementazione della base di dati su DBMS di tutte le tabelle e le operazioni. Per la sua codifica abbiamo utilizzato il sistema Oracle MySQL, il quale è stato utilizzato durante lo svolgimento del corso di basi di dati.