Structure ! Symmetry in BVPs

$$-\partial_{x}^{2}uzf$$

s.t.
 $u(0)z(1)z\partial$

Higher-order FDs burdhidth (cost to factor)

E.s. 4th order stencil => pentadougonal ! o (NH)

Q: What structure/symmetry appears in (4) and how does it appear in An?

=> These structures/symmetries are what we exploit to design fast solvers.

J- Smooth		
B.3.	-2x2 = f	An
(step3)	Smooth Sohn	order-mapprox
(step2)	locality	bundedness
?	translation invariant	Toephite (const. diags)
(geometry)	Symmetric about x= {	oddleven som's decouple
•		

*Careful about boundary conditions!

Fast Finite Differences (10 Warm Up)

Can we develop first solvers for any orderschene?

=> haverge other structure in (*)/An

Example 1: persodie boundery conditions $-\partial_x^2 u z f$ s.t. u(0)=(1) and u(0)=u(1) $\begin{bmatrix}
1 & 2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{bmatrix}$ $\begin{bmatrix}
4 & 1 & 2 \\
4 & 1 & -1 \\
4 & 1 & -1
\end{bmatrix}$ An is called a "circulum" matrix A, u, <u>f</u>, It's eigenrectors are very special! ith exercetor: $V_{i} = \int_{\mathcal{N}} \left(1, \omega_{i}^{i}, \omega^{2i}, \ldots, \omega^{(n-1)i} \right)$ $\omega = e^{2\pi i/n}$ $\lambda_{i} = 2 - e^{-2\pi i s/n} - e^{-2\pi i s/n} = 2 - e^{-2\pi i s/n} - e^{-2\pi i s/n} = 2\pi i s/n$ = 2-2003 (200) $A_{n} = \begin{bmatrix} v_{1} & \cdots & v_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & \cdots & \lambda_{n} \end{bmatrix} \begin{bmatrix} -\overline{v}_{1}^{\tau} - \overline{v}_{1}^{\tau} - \overline{v}_{1}^{\tau} \end{bmatrix}$ => The metrix V is called the

Discrete Fontier Transform

=> It has a powerful algorithm for nut-vees in O(alog n') flops

"Fast Fourier Trensform"

Now fast algorithm:

1) compute
$$\hat{\xi}_n : V^* \hat{\xi}_n$$
 $O(nby n)$

Fast transform to discrete Fourier basis leads to a fast D(aboga) abgorithm for any order FD scheme, ble it exploits the Circulant (translation invariance) property intstead of the bundedness (beality) property.

More about FFT and FFT-based schemes in Lecture ?.