New Delhi

DEPARTMENT OF AEROSPACE ENGINEERING

	Introduction to Dron	o Toobrelees	
Sem	I Semester	Offline Test-1	
Course Code	AS114AT	Duration	90 Min
Date	NOV 2023	Maximum Marks	50

SI. No.	Questions	М	BT	CO
1.	Provide an Overview of UAV system with the help of neat diagram highlighting the importance of subsystems.	10	1	1
2.	Classify and explain briefly about the following UAVs a)UAVs based on airframe b)UAVs based on Range and Endurance	10	2	2
3.	India has high potential in the field of Developing indigenous Drones, Justify this statement providing an atleast four suitable example regarding its achievement.	10	3	1
4.	Describe briefly about the parts of Quadcopter with the help of labeled diagram.	10	2	2
5a	Define the following terms a)Range b)Endurance c)Altitude d)Maneuver e)Surveillance	05	1	
5b.	Explain briefly the forces acting on the aircraft with the help of neat diagram.	05	1	1

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

			DI-DI	Johns La	conomy,	CO-Cou	ise Oute	Ottico, ivi	LIVIGIENS			
Marka	Parti	culars	COI	CO2	CO3	CO4	Ll	L2	L3	L4	L5	L6
Marks Distribution	Test	Max Marks	30	20	00	00	30	10	10	00	00	00

July super

RV Educational Institutions *
RV College of Engineering

Autonomous Institution Affiliated to Viavesvaraya Technological University, Betagavi Approved by AICTE New Deini

Academic year 2023-2024 (Odd Sem)

DEPARTMENT OF

AEROSPACE ENGINEERING

Date	December 2023	Maximum Marks	50
Course Code	ASTI4AT	Duration	90 Min
Sem	I Semester	JEGINE III AHAI	

NINC PHAM

Sl. No.	Questions	M	BT	CO
1.	List and explain the following with the help of labeled sketch. a)Airfoil terminology b)Wing terminology	10	1	2
2a	Observe a flapping wing bird or an insect, comment on aerodynamics involved in its flight with the help of illustration.	5	2	3.
2b	Compare the Laminar and Turbulent boundary layer with the help of illustration.	5	2	1
3.	Describe the types of drag acting on an UAV with the help of formula. Present a graph showing the variation of drag with increased airspeed and explain the nature of graph.	10	2	2
4.	Describe the construction and working of Turbojet engine with the help of illustration.	10	1	4
5	Explain the following with the help of labeled sketch. a)Lithium ion battery b)Fuel cell	10	1	

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

			DI-DI	JOHNS 1 az	conomy,	COCOU	and the second		1.2	4.0	11-21	L6
7.	Parti	culars	COI	CO2	CO3	CO4	LI	L2	LJ	L4	E3	LO
Marks	100000		100000		10	10	30	20	00	00	00	00
Distribution	Test	Max	05	20	15	10	20	200	3500	(217)	-	
		Marks						1		-		

SKIN FRIC

PRONDETON

30 Jul 2024, 19:51

to Visvesvaraya

Technological University, Belagavi Academic year 2023-24(ODD SEM)

DEPARTMENT OF

AEROSPACE ENGINEERING

Date	January 2024	Maximum Marks	50
Course Code	AS114AT	Duration	90 Min
Sem	I Semester		

Sl. No.	Questions	M	BT	CO
1,	Discuss the construction and working of 4 stroke gasoline engine with the help of illustration	10	1	2
2.	Write a brief note on the following: a)BLDC motor b)Solar cell	10	2	3
3.	Explain the Major Structural stresses action on Drone with an example for each.	10	2	2
4.	Describe about the structural members used in the construction of drone with the help of diagram.	10	1	4
5	Describe the methods involved in the construction of composite parts with the help of illustration.	10	1	3

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

14.4.	Parti	culars	CO1	CO2	CO3	CO4	Ll	L2	L3	L4	L5	L6
Marks Distribution	Test	Max Marks	00	20	20	10	30	20	00	00	00	00

Monocogne

worland enjoy

USN

RV COLLEGE OF ENGINEERING*

(An Autonomous Institution affiliated to VTU)

I / II Semester B. E. Regular / Supplementary Examinations Feb-2024 Common to all programs

INTRODUCTION TO DRONE TECHNOLOGY (ELECTIVE)

Time: 03 Hours

Maximum Marks: 100

orlo

Instructions to candidates:

 Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

 Answer FIVE full questions from Part B. Question number 2 is compulsory. Choose any one full question from 3 or 4, 5 or 6, 7 or 8 and 9 or 10.

PART-A

1 1.1,		01
1.2 -		01
1.3	In India, drone operations are regulated by	01
1.4	UAV systems typically consist of airframe, and payload.	01
1.5	UAVs are classified into various classes based on their	01
1.6	The aerodynamic lift generated by an airfoil depends on its	0
1.7	Fixed-wing UAVs generate lift using	0
1.8	Rotary-wing UAVs achieve lift through	0
1.9	Flapping-wing UAVs mimic the flight of	0
1.10	UAVs can be powered by piston engines, and electric systems.	0
1.11	Gas turbine engines are known for their high	0
1.12	Electric-powered UAVs offer the advantage of	0
1.13	The term "thrust" refers to the force that propels a UAV in the directions.	0
1.14	Powered lift technology is crucial for	(
	The structural integrity of <i>UAVs</i> is affected by	1
	Carbon fiber composites are favored for <i>UAV</i> construction due to their	
1.16		1
1.17	high Truss structures are commonly used in UAVs.	
	Truss structures are commonly used in on	
1.18	Magnetometers provide heading information based on	1
1.19	RADAR is useful for obstacle detection and mapping in	
10.000	conditions.	
1:20	No Drone Zones often include areas near	100

PART-B

	2	a b	Discuss the historical development of Unmanned Aerial Vehicle (UAVs) and their evolution into essential tools for various missions. Analyze the specific role of UAVs in India's context and classify UAVs based on size, range, and endurance.	08
--	---	--------	--	----

	a Explain the nomenclature used to describe airfoils and provide a
	Explain the nomenclature used to design bightights
	Explain the nomenclature do example. b Explain the nomenclature do example. Describe the generation of lift on airfoils and wings, highlighting to
	b Describe the generation
	key principles involved. OR
	Explain the basic aerodynamics of fixed-wing, rotary-wing (helicopter), and flapping-wing UAVs. Discuss the key differences in the fixed-wing the principles of airfoil nomenclature and the basis aerodynamics of fixed-wing UAVs. Calculate the lift force generated by a fixed-wing UAV with a wing area of 4 sq.m., an airfoil with a lift a fixed-wing UAV with a wing area of 1.2kg/m³, and a velocity of coefficient (CI) of 0.6, an air density of 1.2kg/m³, and a velocity of
	30m/s.
1	Explain the principles of thrust generation in UAVs and the concept of powered lift. Describe a scenario where powered lift might be advantageous for a UAV. Provide an example of UAV that uses powered lift technology. Discuss the sources of power commonly used for UAVs, including piston engines, rotary engines, gas turbine engines, and disadvantages of each power source in the context of UAVs.
	applications. OR
	Explain the working principle of a gas turbine engine commonly used in UAVs. Provide a brief overview of the components involved in a gas turbine engine and their functions. Discuss the advantages and challenges of using electric/battery-the flight endurance of an electric-powered example to calculate capacity of 10000mAh and a power consumption rate of 200W.
I	a Explain the
i i	Explain the various types of loads that act on <i>UAVs</i> during flight, Provide examples of how these loads can affect the design and Discuss the materials commonly used for constructing <i>UAVs</i> and the examples of application where specific materials excel.
	OR
8 a	Explain
b	manufacturing, including monocoque, semi-monocoque, and truss and the trade of when each technique is advantageous of
	and its signice concept of structural load testing in UAV manufactural
	of a load test procedure for a fixed-wing UAV.

