Национальный исследовательский университет ИТМО Прикладная математика и информатика

Методы оптимизации

Отчет по лабораторной работе №4 "Изучение алгоритмов метода Ньютона и его модификаций, в том числе квазиньютоновских методов"

Выполнили:

Михайлов Максим Загребина Мария Кулагин Ярослав

Команда:

 $\forall \bar{R} \in \mathscr{R}^n : \mathbf{R}(\bar{R}) \in \mathscr{R}$

(KaMa3)

Группа: М3237

1 Цель

- 1. Разработать программы для безусловной минимизации функций многих переменных
- 2. Реализовать метод Ньютона
 - классический
 - с одномерным поиском
 - с направлением спуска
- 3. Продемонстрировать работу методов на 2-3 функциях, исследовать влияние выбора начального приближения на результат
- 4. Исследовать работу методов на двух функциях с заданным начальным приближением
 - $f(x) = x_1^2 + x_2^2 1.2x_1x_2, \ x^0 = (4,1)^T$
 - $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2$, $x^0 = (-1.2, 1)^T$
- 5. Реализовать метод Давидона-Флетчера-Пауэлла и метод Пауэлла и сравнить с наилучшим методом Ньютона

2 Ход работы

Обозначение цветов на иллюстрациях:

Классический метод - зеленый

Метод Ньютона с одномерным поиском - голубой

Метод Ньютона с направлением спуска - оранжевый

Во всех измерениях для одномерного поиска использовался метод Брента.

2.1 Метод Ньютона

$$\varepsilon = 10^{-5}$$

Начальная точка (0.1, 0, 1)

$$f_1 = 108x^2 + 116y^2 + 80xy + 43x + 33y - 211$$

 $f_2 = sin(x) + cos(y) + 0.3y^2 + 0.3x^2 + 0.1y$

Классический метод Ньютона

Количество точек

Начальная точка	f_1	f_2
(0.1, 0.1)	2	ı
(1,1)	2	-
(2,2)	2	-
(-5,-5)	2	-
(10,10)	2	-

Метод Ньютона с одномерным поиском

Количество точек

Начальная точка	f_1	f_2
$(0.1,\!0.1)$	2	5
(1,1)	2	5
(2,2)	2	6
(-5,-5)	2	5
(10,10)	2	5

lpha, полученные одномерным поиском для f_2

$N_{\bar{0}}$	(0.1; 0.1)	(1; 1)	(2; 2)	(-5; -5)	(10; 10)
1	0.500975	-0.422133	-1.12804	0.157377	2.46763
2	-24.8939	-6.86726	6.07175	0.983785	0.72357
3	0.991506	1.03457	1.03309	1.11796	1.01044
4	1.00048	1.00347	1.01409	1.00082	1.00006
5	-	-	0.999954	-	-

Для f_1 $\alpha=1$

Метод Ньютона с направлением спуска

Количество точек

Начальная точка	f_1	f_2
(0.1, 0.1)	3	5
(1,1)	3	5
(2,2)	3	6
(-5,-5)	3	5
(10,10)	3	6

Если начальное приближение недостаточно близко к решению, то метод Ньютона может не сойтись.

Выбор начального приближения влияет на количество итераций методов.

Так как матрица Гессе квадратичной функции положительно определена, все методы сходятся за одну итерацию и накладываются на графике.

2.2 Исследование на заданных функциях

$$f_1 = x_1^2 + x_2^2 - 1.2x_1x_2, \ x^0 = (4,1)^T$$

$$f_2 = 100(x_2 - x_1^2)^2 + (1 - x_1)^2, \ x^0 = (-1.2, 1)^T$$

Количество точек

Метод	f_1	f_2
Классический	2	7
Одномерный поиск	2	14
С направлением спуска	2	13
Наискорейший спуск	18	97

По результатам измерений на данных функциях самый быстрый метод Ньютона - классический, но он не гарантирует сходимость, поэтому в следующем задании с квазиньютоновскими методами будет сравниваться метод с направлением спуска.

Все методы работают гораздо медленнее на овражной функции f_2 . По сравнению с наискорейшим спуском из 2-ой лабораторной работы, методы используют меньшее число итераций, и не так сильно зависят от числа обусловленности.

2.3 Квазиньютоновские методы

Начальная точка (-1.2,1) $f_1 = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$,

$$f_2 = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2)$$

$$f_3 = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$

$$f_4 = 100 - \frac{2}{1 + (\frac{x_1 - 1}{2})^2 + (\frac{x_2 - 1}{3})^2} - \frac{1}{1 + (\frac{x_1 - 2}{2})^2 + (\frac{x_2 - 1}{3})^2}$$

Метод Ньютона с направлением спуска

Количество точек

Начальная точка	f_1	f_2	f_3	f_4
(0.1, 0.1)	17	6	12	4
(-1.2,1)	13	5	26	3
(-2,2)	16	5	30	4
(3,-3)	12	5	10	5
(-5,-5)	11	5	31	7

Метод Давидона-Флетчера-Пауэлла

Количество точек

Начальная точка	f_1	f_2	f_3	f_4
(0.1, 0.1)	31	10	31	7
(-1.2,1)	20	7	31	4
(-2,2)	27	6	31	8
(3,-3)	25	8	31	13
(-5,-5)	29	7	31	14

Метод Пауэлла

Количество точек

Начальная точка	f_1	f_2	f_3	f_4
(0.1,0.1)	31	10	31	9
(-1.2,1)	23	7	31	4
(-2,2)	27	6	31	15
(3,-3)	20	8	31	12
(-5,-5)	26	7	31	23

Все методы работают в несколько раз медленнее на функции с большим числом обусловленности и многомерной. Траектории всех методов оказались одинаковыми. Метод Ньютона с направлением спуска сходится за меньшее количество итераций, чем квазиньютоновские методы, т.к. с большей точностью выбирает направление для движения.

3 Выводы

- Классический метод Ньютона сходится не для каждого начального приближения, так как в нем нет оптимизации по выбору α. Остальные методы Ньютона более надежные и показали похожий результат.
- 2. Выбор начального приближения, как и число обусловленности, влият на количество итераций методов.
- 3. Методы ДФП и Пауэлла работают примерно с одинаковой скоростью и находят значения с заданной точностью на всех рассмотренных функциях.
- 4. Метод Ньютона с направлением спуска находит минимум быстрее остальных методов, расмотренных в данной работе.

4 Исходный код

Функция

```
#pragma once
1
2
      #include <memory>
3
     #include <vector>
4
5
      #include "lab2/matrix.h"
6
      #include "lab2/n_function.h"
      #include "lab2/vector.h"
8
9
     namespace lab4 {
10
          class NFunctionImpl : public lab2::NFunction {
11
12
            public:
              NFunctionImpl(std::size_t dim, std::function<double(lab2::Vector)> f,
13
                             std::function<lab2::Vector(lab2::Vector)> grad_f,
14
                             std::function<lab2::Matrix(lab2::Vector)> hessian_f);
16
              double operator()(lab2::Vector x) override;
17
              lab2::Vector grad(lab2::Vector x) override;
18
              std::size_t get_dim() override;
19
              lab2::Matrix hessian(lab2::Vector x) override;
20
21
22
            private:
              const std::size_t dim;
23
              const std::function<double(lab2::Vector)> f;
24
              const std::function<lab2::Vector(lab2::Vector)> grad_f;
25
              const std::function<lab2::Matrix(lab2::Vector)> hessian_f;
26
27
          };
      } // namespace lab4
28
```

Функция

```
#include "lab4/n_function_impl.h"
1
2
      #include <utility>
3
4
      using namespace lab4;
5
6
      NFunctionImpl::NFunctionImpl(
7
          std::size_t dim, std::function<double(lab2::Vector)> f,
8
          std::function<lab2::Vector(lab2::Vector)> grad_f,
9
          std::function<lab2::Matrix(lab2::Vector)> hessian_f)
10
          : dim(dim),
11
            f(std::move(f)),
12
            grad_f(std::move(grad_f)),
13
            hessian_f(std::move(hessian_f)) {}
14
15
      lab2::Vector NFunctionImpl::grad(lab2::Vector x) { return grad_f(x); }
16
      double NFunctionImpl::operator()(lab2::Vector x) { return f(x); }
18
19
      lab2::Matrix NFunctionImpl::hessian(lab2::Vector x) { return hessian_f(x); }
^{20}
^{21}
      std::size_t NFunctionImpl::get_dim() { return dim; }
22
```

Классический метод Ньютона

```
#pragma once
1
2
     #include "lab2/n_optimizer.h"
3
4
     namespace lab4 {
5
         class ClassicNewton : public lab2::NOptimizer {
7
              ClassicNewton();
8
9
              lab2::Vector iteration(lab2::NFunction& f, double epsilon) override;
10
              bool is_done(lab2::NFunction& f, double epsilon) const override;
11
12
            private:
13
14
              lab2::Vector p;
15
     } // namespace lab4
16
```

Классический метод Ньютона

```
#include "lab4/classic_newton.h"
1
2
3
      #include <lab3/solver.h>
4
      #include <utility>
5
      #include "iostream"
     using namespace lab4;
8
9
      ClassicNewton::ClassicNewton() : p(lab2::Vector({1})) {}
10
11
      lab2::Vector ClassicNewton::iteration(lab2::NFunction& f, double) {
12
          lab2::Vector x = get_points().back();
13
                         = lab3::Solver::solve(f.hessian(x), f.grad(x) * (-1));
14
          return x + p;
15
     }
16
17
      bool ClassicNewton::is_done(lab2::NFunction&, double epsilon) const {
18
          return p.norm() < epsilon;</pre>
19
      }
^{20}
```

метод Давидона-Флетчера-Пауэлла

```
#pragma once
1
2
3
      #include "lab2/matrix.h"
      #include "lab2/n_optimizer.h"
4
5
      namespace lab4 {
6
          class DFP : public lab2::NOptimizer {
7
            public:
8
              DFP();
9
10
              lab2::Vector iteration(lab2::NFunction& f, double epsilon) override;
11
              bool is_done(lab2::NFunction& f, double epsilon) const override;
12
13
            private:
14
              lab2::Vector s, d;
15
              lab2::Matrix G;
16
              const double ONE_DIM_EPS = 1e-7;
17
              const int ONE_DIM_START = -100, ONE_DIM_END = 100;
18
          };
19
      } // namespace lab4
^{20}
```

метод Давидона-Флетчера-Пауэлла

```
#include "lab4/dfp.h"
1
2
      #include "iostream"
3
      #include "lab1/brent.h"
4
      #include "lab3/solver.h"
5
      using namespace lab4;
7
      DFP::DFP()
9
          : s(lab2::Vector({1})),
10
            d(lab2::Vector({1})),
11
            G(lab2::Matrix({{1}}, std::nullopt)) {}
12
13
      lab2::Vector DFP::iteration(lab2::NFunction &f, double) {
14
          lab2::Vector x_k_1 = get_points().back(), g_x = f.grad(x_k_1);
15
          if (iteration_count == 0) {
16
              G = lab2::Matrix::I(x_k_1.size());
              d = g_x * (-1);
18
              return x_k_1;
19
20
          const auto r = lab1::Brent(
21
                              [&f, x = x_k_1, d_ = d](double a) {
22
                                  return f(x + d_* a);
23
24
                              ONE_DIM_EPS, ONE_DIM_START, ONE_DIM_END)
25
                               .optimize();
26
                 = d * r;
27
          auto x = x_k_1 + s, g_y = g_x;
28
29
                 = f.grad(x);
          auto p = g_x - g_y, v = G * p;
30
          G = G + lab2::Matrix::vector_mul(s, s) / (s * p)
31
              - lab2::Matrix::vector_mul(v, v) / (v * p);
^{32}
          d = (G * g_x) * (-1);
33
          return x;
34
      }
35
36
      bool DFP::is_done(lab2::NFunction &, double epsilon) const {
37
          return s.norm() < epsilon;</pre>
38
      }
39
```

Метод Ньютона с направлением спуска

```
#pragma once
1
2
3
      #include "lab2/matrix.h"
      #include "lab2/n_optimizer.h"
4
5
      namespace lab4 {
6
          class DFP : public lab2::NOptimizer {
7
            public:
8
              DFP();
9
10
              lab2::Vector iteration(lab2::NFunction& f, double epsilon) override;
11
              bool is_done(lab2::NFunction& f, double epsilon) const override;
12
13
            private:
14
              lab2::Vector s, d;
15
              lab2::Matrix G;
16
              const double ONE_DIM_EPS = 1e-7;
17
              const int ONE_DIM_START = -100, ONE_DIM_END = 100;
18
          };
19
      } // namespace lab4
^{20}
```

Метод Ньютона с направлением спуска

```
#include "lab4/dfp.h"
1
2
      #include "iostream"
3
      #include "lab1/brent.h"
4
      #include "lab3/solver.h"
5
6
      using namespace lab4;
7
8
      DFP::DFP()
9
          : s(lab2::Vector({1})),
10
            d(lab2::Vector({1})),
11
            G(lab2::Matrix({{1}}, std::nullopt)) {}
12
13
      lab2::Vector DFP::iteration(lab2::NFunction &f, double) {
14
          lab2::Vector x_k_1 = get_points().back(), g_x = f.grad(x_k_1);
15
          if (iteration_count == 0) {
16
              G = lab2::Matrix::I(x_k_1.size());
17
              d = g_x * (-1);
18
              return x_k_1;
19
20
          const auto r = lab1::Brent(
21
                              [&f, x = x_k_1, d_ = d](double a) {
22
                                  return f(x + d_* a);
23
24
                              ONE_DIM_EPS, ONE_DIM_START, ONE_DIM_END)
25
                               .optimize();
26
                 = d * r;
27
          auto x = x_k_1 + s, g_y = g_x;
28
29
                 = f.grad(x);
          auto p = g_x - g_y, v = G * p;
30
          G = G + lab2::Matrix::vector_mul(s, s) / (s * p)
31
              - lab2::Matrix::vector_mul(v, v) / (v * p);
^{32}
          d = (G * g_x) * (-1);
33
          return x;
34
      }
35
36
      bool DFP::is_done(lab2::NFunction &, double epsilon) const {
37
          return s.norm() < epsilon;</pre>
38
      }
39
```

Метод Пауэлла

```
#pragma once
1
2
3
      #include "lab2/matrix.h"
      #include "lab2/n_optimizer.h"
4
5
      namespace lab4 {
6
          class Powell : public lab2::NOptimizer {
7
            public:
8
              Powell();
9
10
              lab2::Vector iteration(lab2::NFunction& f, double epsilon) override;
11
              bool is_done(lab2::NFunction& f, double epsilon) const override;
12
13
            private:
14
              lab2::Vector s, d;
15
              lab2::Matrix G;
16
              const double ONE_DIM_EPS = 1e-7;
17
              const int ONE_DIM_START = -100, ONE_DIM_END = 100;
18
          };
19
      } // namespace lab4
^{20}
```

Метод Пауэлла

```
#include "lab4/powell.h"
1
2
      #include "iostream"
3
      #include "lab1/brent.h"
4
      #include "lab3/solver.h"
5
6
      using namespace lab4;
7
8
      Powell::Powell()
9
          : s(lab2::Vector({1})),
10
            d(lab2::Vector({1})),
11
            G(lab2::Matrix({{1}}, std::nullopt)) {}
12
13
      lab2::Vector Powell::iteration(lab2::NFunction &f, double) {
14
          lab2::Vector x_k_1 = get_points().back(), g_x = f.grad(x_k_1);
15
          if (iteration_count == 0) {
16
              G = lab2::Matrix::I(x_k_1.size());
              d = g_x * (-1);
18
              return x_k_1;
19
20
          const auto r = lab1::Brent(
21
                               [&f, x = x_k_1, d_ = d](double a) {
22
                                  return f(x + d_* a);
23
24
                              ONE_DIM_EPS, ONE_DIM_START, ONE_DIM_END)
25
                               .optimize();
26
                 = d * r;
27
          auto x = x_k_1 + s, g_y = g_x;
28
29
                 = f.grad(x);
          auto p = g_x - g_y, v = G * p;
30
          G = G + lab2::Matrix::vector_mul(s, s) / (s * p)
31
              - lab2::Matrix::vector_mul(v, v) / (v * p);
^{32}
33
          d
                             = (G * g_x) * (-1);
          auto delta_x_wave = s + G * p;
34
                             = G
35
              - lab2::Matrix::vector_mul(delta_x_wave, delta_x_wave)
36
                     / (p * delta_x_wave);
37
          return x;
38
      }
39
40
      bool Powell::is_done(lab2::NFunction &, double epsilon) const {
41
          return s.norm() < epsilon;</pre>
42
      }
43
```