				-							-							-				
1							1											1				
1							1											1				
1	1	1					P											1		L	۱	
-,	-1	_	•	╄	_	_	٠,	_	•		+		_					+		4	4	
ı	ı		I	L		3		4	7	1	a		1		a	١.	•	1		٠	1	
0)	1	н	ы	7		ı	J	٦.	7		А		u	и		1			ĸ	
ı	1		•	Ι'	•			•		•	۰	u	^	- (v	٦.	_	1			ı	
_!	-	-	-	-	_	_	_'	_	-	-	-	-	_	_'	-	_	_	-	_	-	=	,

1						1
				0 1	4.10	4.9
	22.02-		Временная и простран-	4.2	4.11	T5
	28.02	4	ственная когерентность	5.3	5.14	5.13
				0 2	5.20	5.30

610

 0 1. В двухлучевом интерференционном опыте используется источник света с длиной волны $\lambda = 500$ нм и шириной спектра $\Delta \lambda = 10$ нм. Оцените максимально допустимую разность хода лучей Δ_{\max} и максимальное число интерференционных полос m_{\max} , которые можно наблюдать в этом опыте.

Ответ: $\Delta_{\max} \sim 25$ мкм, $m_{\max} \sim 100$.

	1	١.,			_	L	
(L	Q	M	S)	:	

Penne.

 $\lambda = 300 \text{NM}$ $\Delta \lambda = 10 \text{NM}$

Inma norefutamement (pasemosnue, na nomohau eles

1

1

.

1

Dmay -3

corp. norehunneroems): L = cx, rge 2-8 parce

Mma - ?.

vorepunnement (anquorus - Jounnershoers 445a?

hungerseal - bleur, na nombhon eler octaiter

~ norehunners

y comm. mont: Δf = ½ - metuna enemeta

ο = κΔ + + 2Δ κ

-

Eeru $\Delta\lambda$, Δf - weehung enempa ($\delta\delta a > 0$), $\delta a = \frac{\lambda}{\Delta\lambda}$

1

Pajkoems xoda ke darina npelnuams drumy notefrettoete

Paudro, mu Duan = $\frac{\lambda^2}{\Delta \lambda} = \frac{500^2}{10} = \frac{250000}{10} = 25000 = 250000$

Thu snow were uniquen nave april $|\Delta| = |m|\lambda$, $m \in \mathbb{Z}$ m m.5 = 0the $|\Delta| \leq \Delta_{max}$, $7.2.1 mpl < \frac{\lambda^2}{\Delta \lambda} = 50$ (annuly). Horsel

=> m & C-50; 503 => kal-lo nauce na aubane Doeniuraet 101~100.

Orden: Dunas ~ 25 mm, ninas ~ 100

54.2.

4.2. Найти разность длин волн D-линий Na, если известно, что резкость интерференционной картины, наблюдаемой в интерферометре с двумя лучами, минимальна у 490-й, 1470-й и т. д., а максимальна у 1-й, 980-й и т. д. полос. Средняя длина волны D-линий $\lambda = 5893 \text{ Å}$ (см. задачу 4.1).

Dano:	Pewerer:
V.: 490,1470	Karigae y draw bonn P-rupière noutres
Vmax = 1,980,	eogaaet unnerheup napremeny; dance once
λ = 5893 A	nouveonce dont na donta
	Byennihe chemine naevels nourabulates of ships no ships no ships no. N. no get. V= Vina nper m=1
Daule, uj-ja mo	ro, une repueder unnerpréparement maprices y
	r cuaso(b namem engrace), no oninunarous - b nenouvopour
auluehm mulikal	nouvea naisseurs et elementes.

1, < hz => mennae nonvera y l, colnoider eo cherroir mesocie l. chettace y), nucleur à bemene nouver 2, nuembre noncen: 1: 0= 2 2: 5= 2, + 2 2: D = 2 12 · Mephaeu cobnady7 (N+1) chemnae y λ_1 e

N-u nueumon y λ_2 . $N+1: \Delta = N\lambda_1 + \frac{\lambda_1}{2}$ Union bemeu nouvea navonueact - 3 anne janolo cobnaggi na neunger pagnoemu xode cleenerae et cheminair. : emabandes unnaes No-smany Syder achidobanne budroener. $N\lambda$, $+\frac{\lambda}{2}$ = $N\lambda_2$ $N(\lambda_2 - \lambda_1) = \frac{\lambda_1}{2} = \sum_{i=1}^{N} \frac{\lambda_i}{2\Delta \lambda_i}$ $\lambda_1 \approx \lambda = 5893 \text{ Å}$ $\lambda = 490$ Ombern! DX = DX - D. bannarie jer even den tre nouver cheth/weets w To re coull

5.3. Изображение Солнца получено при помощи линзы с фокусным расстоянием f=50 мм на отверстии экрана (размер отверстия равен величине изображения). За экраном помещены две узкие параллельные щели на расстоянии D=1 мм друг от друга. При каком расстоянии l между экраном и щелями могут наблюдаться интерференционные полосы? Угловой диаметр Солнца $\alpha \approx 0.01$ рад.

N=0 mpm
$$\frac{4\Omega}{78}$$
 = $\frac{1}{4}$ => $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{8}$ = $\frac{1}{4}$ = $\frac{1}{4}$ = $\frac{1}{8}$ = $\frac{1}{4}$ = \frac

DADC = 13 CEU no nanuony u occupany yrry =>OA = EU u EU = x t q q Avavorumo EF = x tgy => AF // OE // KH BT = FM 6 enny napann/ => D = 2xtq4 $= \pm q \varphi$ -> $\frac{92}{2} = \varphi$; $92 = 2\varphi = 2\alpha(n-1)$ Ombern: BZ = 2d(n-1) 1 | | 1 1 . 1 1