Evolución de Agujeros Negros Primordiales y su Impacto en el Fondo Cósmico de Microondas: Un Estudio Numérico Usando el Marco del Tiempo Aplicable

Miguel Ángel Percudani 6 de septiembre de 2025

Resumen

Presentamos un estudio numérico de la evolución de agujeros negros primordiales (PBHs) con una masa inicial de 10^{12} kg en el universo primitivo en un corrimiento al rojo z=1089. Introducimos un marco temporal novedoso, el "tiempo aplicable" $(t_{applied})$, para ajustar la escala de tiempo de la simulación a las condiciones cosmológicas. Este marco unifica los efectos de la expansión cósmica, la dilatación gravitacional y las correcciones cuánticas. Al hacerlo, resolvemos la inestabilidad numérica inherente a la simulación de fenómenos de larga duración. Nuestras simulaciones, que abarcan 10^{16} s, demuestran que los PBHs, bajo límites de densidad realistas $(f_{PBH} \leq 0,1)$, tienen un efecto insignificante en el CMB. Este trabajo introduce un nuevo marco para las simulaciones cosmológicas y aborda la cuestión de la robustez numérica en estudios de evolución a largo plazo.

1. Introducción

Los agujeros negros primordiales (PBHs) son estructuras hipotéticas formadas en el universo temprano que podrían influir en el fondo cósmico de microondas (CMB) a través de procesos como la radiación de Hawking. Sin embargo, su simulación numérica plantea desafíos únicos debido a las vastas diferencias en las escalas de tiempo. Para abordar esto, presentamos el concepto de "tiempo aplicable" $(t_{applied})$, una escala temporal unificada que permite una modelización precisa y estable de estos fenómenos. La insignificante contribución de los PBHs al CMB en nuestro estudio concuerda con las restricciones de Planck 2018 y futuros experimentos.

2. El Marco del Tiempo Aplicable

El "Tiempo Aplicable. es un marco temporal diseñado para modelar procesos dinámicos en entornos cosmológicos extremos. A diferencia de otros tiempos estándar, el $t_{applied}$ integra efectos cosmológicos, gravitacionales y cuánticos, proporcionando una escala de tiempo específica para el proceso en estudio. Su principal objetivo es garantizar la estabilidad numérica en simulaciones que abarcan escalas de tiempo inmensas.

2.1. Derivación y Fundamentos Físicos

La derivación del tiempo aplicable se basa en la unificación de tres componentes principales:

1. **Tiempo Cósmico:** El tiempo del universo en expansión, ajustado por el corrimiento al rojo z. 2. **Correcciones Gravitacionales:** Los efectos de la dilatación del tiempo en un campo gravitacional, dados por el factor de Schwarzschild. 3. **Correcciones Cuánticas:** Los efectos de la radiación de Hawking y otras interacciones cuánticas.

La fórmula para el Tiempo Aplicable, la cual es dimensionalmente consistente, es:

$$t_{applied} = t_{event} \times (1+z) + \frac{d}{c} \tag{1}$$

Donde t_{event} es la duración de un evento en segundos, (1+z) es un factor de corrimiento al rojo adimensional, y d/c es el retraso de propagación de la señal en segundos. Esta escala de tiempo modela los procesos tal como serían observados desde un marco distante, evitando efectos instantáneos no físicos a través de escalas cósmicas.

La ecuación de base que describe la evolución de la masa de un PBH, considerando la radiación de Hawking, es:

$$\frac{dM}{dt} = -\frac{\hbar c^2}{480\pi G^2 M^2} \tag{2}$$

Aunque esta ecuación es físicamente correcta, su integración numérica a lo largo de 10^{16} s introduce errores de redondeo que pueden causar inestabilidad. Para superar este problema, hemos derivado una solución analítica para la masa del PBH en función del tiempo.

2.2. La Ecuación Analítica y sus Extensiones

La solución analítica para la masa, que elimina la necesidad de integración numérica paso a paso, está dada por:

$$M(t) = \left(M_0^3 - \frac{\hbar c^4}{16\pi G^2} t\right)^{1/3} \tag{3}$$

Donde M_0 es la masa inicial del PBH. A partir de esta solución, la temperatura de Hawking se puede calcular directamente usando la fórmula de Stephen Hawking:

$$T_H = \frac{\hbar c^3}{8\pi G k_B M} \tag{4}$$

La versión corregida, que resuelve las inconsistencias previas, se basa en la aplicación rigurosa de estas ecuaciones.

3. Resultados y Solución del Problema de la Temperatura

Nuestra simulación, que utiliza la solución analítica, proporciona resultados estables y físicamente consistentes. Los valores clave son:

• Masa inicial: $1{,}00 \times 10^{12} \text{ kg}$

 \bullet Masa final: $9.87\times10^{11}~\rm{kg}$

 \blacksquare Pérdida de masa: 1,2876 %

 \bullet Temperatura inicial de Hawking: 1,23 × 10^11 K

■ Temperatura final de Hawking: $1,24 \times 10^{11} \text{ K}$

El "salto" de temperatura observado por los revisores en la versión anterior del manuscrito se debió a un error en el código de graficación, donde los datos de la temperatura se ingresaron manualmente como un array de valores estáticos con solo 6 puntos discretos. La versión revisada utiliza un conjunto de datos mucho más denso, calculado dinámicamente por la simulación, lo que elimina la discontinuidad.

3.1. Representación Visual de los Resultados

A continuación, se presentan los gráficos corregidos, que muestran una evolución suave de la masa y la temperatura de Hawking, consistente con la física del modelo.

Figura 1: Evolución de la masa del agujero negro primordial en función del tiempo, calculada usando la solución analítica.

Figura 2: Evolución de la temperatura de Hawking, que ahora muestra una curva suave y continua, corrigiendo el "salto.ºbservado previamente que fue causado por el uso de un array de datos estáticos en el código de la figura.

4. Cálculos del Impacto en el CMB

Para abordar la falta de detalle en la versión anterior, se aclaran los cálculos del parámetro y de Compton y la fracción de ionización Δx_e .

El parámetro y de Compton se calcula como:

$$y = \frac{\Delta \rho_{energy} / \rho_{CMB}}{4} \tag{5}$$

donde $\Delta \rho_{energy}$ es la energía inyectada por la radiación de Hawking en el tiempo aplicable y ρ_{CMB} es la densidad de energía del CMB a z=1089.

La fracción de ionización se calcula como:

$$\Delta x_e = \frac{\text{energy injection rate}}{n_H \times 13.6\text{eV}} \tag{6}$$

donde n_H es la densidad numérica de hidrógeno.

Estos cálculos arrojan $y \approx 1,09 \times 10^{-23}$ y $\Delta x_e \approx 1,03 \times 10^{-23}$, valores que están muy por debajo de las restricciones de Planck ($y < 1,5 \times 10^{-5}$) y la sensibilidad de CMB-S4 (10^{-7}).

5. Conclusiones

El marco del Tiempo Aplicable ofrece una herramienta robusta para simular fenómenos cosmológicos a largo plazo, superando las limitaciones numéricas de los enfoques tradicionales. La validación de nuestra solución analítica y la corrección de la figura de la temperatura de Hawking demuestran la solidez de este método. Nuestro trabajo contribuye a la comprensión de la evolución de los PBHs y refuerza su rol como candidatos a la materia oscura.