

Network Basics

Lecturer Erhan AKAGÜNDÜZ

- ✓ Bir ağdaki bilgisayarların;
 - Nasıl konumlandırılacağını,
 - Birbirine nasıl bağlanacağını,
 - Aralarındaki veri iletiminin nasıl olacağını belirleyen genel yapıdır.

İki tür ağ topolojisi vardır

- ✓ **Fiziksel topoloji:** Bilgisayarlar arasındaki fiziksel kablo bağlantısının nasıl olacağını belirler. Fiziksel katman (OSI 1. katman) ile ilgilidir.
- ✓ Mantıksal topoloji: Bilgisayarlar arasındaki veri akışının nasıl olacağını belirler. Veri iletim katmanı (OSI 2. katman) ile ilgilidir.

OSI Modeli

✓ Unicast: Paketin tek bir kaynak istasyondan, tek bir hedef istasyona gönderilmesidir.

✓ **Broadcast:** Paketin tek bir istasyondan, ağda çoğaltılarak ağa dahil olan bütün istasyonlara gönderilmesidir. Buna bilgi iletişimi de denir.

✓ **Multicast:** Paketin tek bir istasyondan, ağda çoğaltılarak birden fazla hedef istasyona gönderilmesidir.

LAN(Local Area Network) topolojileri arasında en çok kullanılan 3 topoloji vardır:

- ✓ Ortak yol (Bus),
- ✓ Halka (Ring) ve
- ✓ Yıldız (Star) topolojileridir.

Günümüzde kullanılan en yaygın kullanılan yıldız(star) topolojidir.

Bunun sebebi performans, kablolama kolaylığı ve fiyatıdır.

Bunlar dışında <u>ağaç (tree)</u> topolojisi ve <u>mesh</u> topolojileri de vardır.

- ✓ Ortak yol topolojisinde (BUS) tüm Workstation (iş istasyonlarının) üzerinde olduğu bir hat (omurga) mevcuttur.
- ✓ Bütün istasyonlar hattaki tüm mesajları inceler ve kendine ait mesajları alır.
- ✓ Hattaki bilgi akışı çift yönlüdür.

Bus Topology

- ✓ Kaynak istasyon bilgiyi hatta bırakır.
- ✓ Bilgi her iki yönde ilerleyerek hatta yayılır.
- ✓ Ancak bu topolojide aynı anda iki istasyonun bilgi göndermesi durumunda bilgi trafiği karışır.
- ✓ Bunu önlemek için hattın paylaşımını düzenleyen protokoller kullanılmalıdır.

- ✓ Ortak yol topolojisi kullanılarak kurulan ağlarda koaksiyel kablo kullanılır.
- ✓ Her bir istasyona T-konnektör takılır.
- ✓ İlk ve son istasyona ise sonlandırıcı (terminatör) bağlanarak ağ sonlandırılır.

- ✓ Bu topoloji ağ performansı en düşük olan topolojilerden biridir.
- ✓ İki istasyon arası mesafe ince koaksiyel kullanıldığında 185 metre,
- ✓ Kalın koaksiyel kullanıldığında 500 metredir.
- ✓ İki istasyon arası mesafe minimum 0,5 metre olmalıdır.
- ✓ Maksimum **30 istasyon** kullanılabilir.

COAXIAL CABLE

- ✓ Ortak yol topolojisine uygun bağlantıda dikkat edilmesi gereken noktalar şunlardır:
- ✓ Bağlantı gerçekleştirilirken T-konnektörler doğrudan network kartına takılmalıdır.

✓ Eğer bir istasyon uzağa yerleştirilecekse T- konnektör'den çıkacak bir kablo ile uzatma yapılmamalıdır.

✓ Uzaktaki bir bilgisayarın sisteme bağlanması için aşağıdaki şekillerde olduğu gibi 2 çözüm üretebiliriz.

Avantajları

- ✓ Kablo yapısı güvenilirdir.
- ✓ Yeni bir istasyon eklemek kolaydır.
- ✓ Merkez birime ihtiyaç duyulmaz.

Dezavantajları

- ✓ Maksimum 30 istasyon bağlanabilir.
- ✓ Ağın uzunluğu ince koaksiyelde 185, kalın koaksiyelde 500 metreden fazla olamaz.
- ✓ Bir istasyonun arızalanması bütün ağı devre dışı bırakır.
- Arıza tespiti zordur.

- ✓ Bu topolojide ağdaki iletişimin gerçekleşmesi için bir merkezî birim bulunur ve bütün istasyonlar bu merkezî birime bağlanır.
- ✓ BUS topolojisine göre performansı daha yüksektir.
- ✓ Güvenilirdir fakat daha pahalı çözümler sunar.
- ✓ Bir istasyondan diğerine gönderilen bilgi önce bu merkez birime gelir.
- ✓ Buradan hedefe yönlendirilir.
- ✓ Ağ trafiğini düzenleme yeteneğine sahip bu merkezî birim, **HUB** veya switch (anahtar) olarak adlandırılır.

Star Topology

- ✓ Bu topolojiye dayalı bir sistem kurulurken korumasız çift bükümlü UTP (Unshielded Twisted Pair-Korumasız Çift Bükümlü) veya korumalı çift bükümlü STP (Shielded Twisted Pair-Korumalı Çift Bükümlü) kablo kullanılır.
- ✓ İstasyonların merkezi birime (Hub) olan uzaklığı maksimum 100 metredir.
- ✓ Kullanılan ağ kartına veya kabloya göre ağ farklı hızlarda çalışabilir.

✓ Merkezde bulunan Hub veya anahtar(switch) üzerindeki ışıklara bakılarak arızalı olan istasyon bulunabilir.

Avantajları

- ✓ Bir istasyonun arızalanması ağı etkilemez.
- ✓ Network e yeni bir istasyon eklemek çok kolaydır.
- ✓ Ağ yönetimi çok kolaydır.
- ✓ Kullanılan ağ elemanlarına göre yüksek hızlar elde edilebilir.

Dezavantajları

- ✓ Merkezî birimdeki hub'da oluşacak bir arıza, hub'a bağlı bütün istasyonları devre dışı bırakır.
- ✓ Her bir istasyon için ayrı bir kablo çekilmesi gerekir.
- ✓ Bu da maliyeti ve kablo kirliliğini arttırır.

- ✓ Günümüzde bir çok ağ bus, star ve ring topolojilerinin kombinasyonu şeklinde tasarlanmıştır.
- ✓ Bunlardan bir tanesi de star-bus topolojidir.
- ✓ Star-bus topolojide, her ağ kendi içerisinde bir star topoloji yapısında çalışırken, hub'lar arasında ise bus topoloji yapısı kullanılmaktadır.
- ✓ Star-bus topoloji içerisinde bir bilgisayar arızalanır ise bu bilgisayar diğerlerinin çalışmasını engellemez.
- ✓ Yani diğer bilgisayar birbirleriyle iletişime devam edebilirler.

STAR-BUS TOPOLOGY

✓ Eğer kenardaki hublar/switchler arızalanırsa, bu hub/switch'e bağlı olan bilgisayarlar diğer hub/switch'lere bağlı olan bilgisayarlarla iletişime geçemez.

✓ Fakat diğer hub/switch'lere bağlı olan bilgisayarlar kendi araları iletişime devam

ederler.

STAR-BUS TOPOLOGY

- ✓ Eğer ortadaki hub/switch arızalanırsa, kenarlardaki hub/switch'lere bağlı olan bilgisayarlar birbirleriyle iletişim kuramazlar.
- ✓ Sadece kenarlardaki hub/switch'e bağlı olan bilgisayarlar kendi aralarında haberleşirler.

Ethernet Using Star Bus Topology

- ✓ Bu topolojide her istasyon bir halkanın elemanıdır ve halkada dolaşan bilgi bütün istasyonlara ulaşır.
- ✓ Her istasyon halkada dolaşan bilgiyi ve hedef adresi alır.
- ✓ Hedef adres kendi adresi ise kabul eder.
- ✓ Aksi takdirde gelen bilgi işlem dışı kalır.

- ✓ Halkadaki bilgi akışı tek yönlüdür.
- ✓ Yani halkaya dâhil olan bilgisayarlar gelen bilgiyi iletmekle görevlidir.
- ✓ Herhangi bir sonlandırmaya gerek duyulmaz.

- ✓ En yaygın olarak kullanılan, IBM tarafından oluşturulan token ring topolojisidir.
- ✓ Halka içinde dolanan bilginin denetimi amacıyla token (jeton) adı verilen bir bilgi ağda dolanır.
- ✓ Token hedef bilgisayara ulaştıktan sonra o bilgisayar tarafından değiştirilerek tekrar ağa bırakılır.
- ✓ Yani her bir istasyon gelen kablo için alıcı, giden kablo için de gönderici görevi görür.
- ✓ Halka topoloji kullanılarak 4 16 Mbps hıza ulaşmak mümkündür.

Avantajları

- ✓ Maliyeti düşüktür.
- ✓ Her bir istasyon gönderici olarak görev yaptığından sinyal zayıflaması çok düşüktür.
- ✓ Ağda hiçbir çakışma meydana gelmez. Performansı yüksektir.
- ✓ Kolay ve hızlı kurulur. Arıza tespiti kolaydır.

Dezavantajları

✓ Halkaya dâhil olan bir istasyonun arızalanması, ağın çökmesine sebep olur.

TREE TOPOLOGY

- ✓ Hiyerarşik topoloji olarak da bilinir.
- ✓ Bu ağ topolojisinde bir merkezi kök düğüm (hiyerarşinin en üst seviyesinde), hiyerarşide bir alt seviyede (ikinci seviye) bir veya daha fazla düğüm ile bağlanır.
- ✓ Merkezî düğüm ile ikinci seviyedeki her bir düğüm arasında noktadan noktaya bağlantı vardır.

TREE TOPOLOGY

- ✓ İkinci seviyedeki her bir düğüm de ,bir alt seviyedeki (üçüncü seviye) bir veya daha fazla düğüm ile bağlı ise merkezî düğüm ile noktadan noktaya bağlantı ile bağlıdır.
- ✓ Hiyerarşide sadece en üst seviyedeki merkezî kök düğümün üstünde başka bir düğüm yoktur. (Ağaç hiyerarşisi simetriktir.).
- ✓ Ağda bulunan her bir düğüm bir sonraki alt seviyedeki düğümlere bağlayan sabit değişmez bir numaraya sahiptir. Bu numara "dallanma
- ✓ faktörü" olarak anılacaktır.

TREE TOPOLOGY

- ✓ Ağaç topolojisi de yol topolojisine benzer iletim ortamı kapalı döngüsü olmayan ve dallanan bir kablodur.
- ✓ Ağaç düzeni kablo bağı (headend) olarak bilinen bir noktadan bağlar.
- ✓ Bir ya da daha fazla kablo, kablo başından başlar ve her biri dallara sahip olabilir.
- ✓ Bu dalların, daha karmaşık bir düzene imkân tanımak için ilave dalları olabilir.
- ✓ Yine herhangi bir istasyondan gelen iletim, ortam boyunca yayılır.
- ✓ Diğer tüm istasyonlar tarafından alınabilir ve uç noktalarda yok edilir.

- ✓ Data transmission form; adres ve kullanıcı bilgisini içeren paketler şeklindendir.
- ✓ Her istasyon ortamı izler ve kendisine adreslenen paketleri kopyalar.
- ✓ Tüm istasyonlar ortak bir iletim bağlantısını paylaştıklarından bir zaman diliminde yalnızca bir istasyon iletimde bulunabilir ve erişimi düzenlemek için ortama erişim kontrol tekniğine ihtiyaç vardır.

- ✓ Yol ve ağaç topolojilerinde bükümlü ikili kablo ve koaksiyel kablo kullanılabilir.
- ✓ Fiber optik kablo koaksiyel kablodan daha büyük kapasiteye sahiptir ve gelecekteki yerel şebeke tesisatları için oldukça iddialı bir adaydır.
- ✓ Ancak maliyetinden ve teknik sınırlılıklarından dolayı nadiren kullanılmaktadır.

- ✓ Ağ topolojileri içerisindeki en sağlam ve sağlıklı olan yapıdır.
- ✓ Mesh topolojide, her bilgisayar bütün diğer bilgisayarlara ayrı kablo ile bağlanır.
- ✓ Bu konfigürasyon sayesinde eğer kablolardan biri arızalanırsa, diğer hatlar üzerinden trafiğin geçişini sağlayacaktır.

✓ Problemleri gidermede kolaylıklar sağlaması, daha sağlam bir yapıya sahip olması gibi bir çok avantajının yanında, çok fazla kablo masrafı ve karmaşasından dolayı bu tip ağlar kullanılmamaktadır.

✓ *Tamamen bağlı*: Topoloji sadece küçük bir sayıda düğüm birbirine bağlı olduğu zaman kullanılmasına rağmen, fiziksel tam bağlı örgü topolojisi pratik ağlar için genel olarak çok masraflı ve karmaşıktır.

- ✓ **Kısmen bağlı:** Bu tip ağ topolojisinde ağda bulunan bazı düğümler, birden fazla düğüme noktadan noktaya bağlantı ile bağlıdır.
- ✓ Bu ağdaki her düğüm arasında gider ve karmaşıklığı olmayan fiziksel tam bağlı örgü topolojisinin bazı tekrarlarından faydalanmayı mümkün kılar.

Avantajları

- ✓ Her istasyonun kendi başına diğerleri ile uçtan uca bağlantı kurmasından dolayı çoklu bağlantı oluşmaktadır.
- ✓ Böylece herhangi bir bağlantının kopması durumunda sinyalin hedefine ulaşabilmesi için diğer bağlantıları kullanması en önemli avantajdır.
- ✓ Bir istasyondan yayınlanan sinyal farklı hedeflere yöneldiğinde çoklu oluşan bağlantı sayesinde kısa süre içerisinde ağdaki hedeflerine varacaktır, böylece taşınım zamanı kısalacaktır.

Dezavantajları

- ✓ Ağ üzerinde az sayıda düğümün bulunduğu durumlarda ve ortam boyutunun küçük olması hâlinde ortaya çıkan bağlantı miktarının çok fazla gözükmesi ve bu durumda ağ hızının yavaşlamasıdır.
- ✓ Mantıksal bir perspektiften bakılacak olunursa bu yapının durumu, performansı, ağdaki merkezî dağıtıcıların ve diğer cihazların sayısı ile doğru orantılıdır.
- ✓ Ayrıca ağdaki her birim diğer tüm birimler için birer bağlantı gerektirdiğinden dolayı genellikle uygulamada pek fazla pratik bulunmayan bir özelliğe sahiptir.

NETWORK TOPOLOGY

COMPARISON CHART

	Avantajları	Dezavantajları
BUS	Kablo kullanımı ekonomiktir. Maliyeti düşüktür. Kurulumu kolaydır. Basit bir sistemdir ve dayanıklıdır. Kolaylıkla büyütülebilir.	Ağ trafiği yoğun olduğunda network yavaş çalışır. Problemi çözmek oldukça zordur. Kablo kırılması bütün ağı etkiler.
RING	Sistem tüm bilgisayarlara eşit erişim hakkı tanır. Performans hemen hemen aynıdır.	Bir bilgisayarın bozulması geriye kalan tüm ağı etkiler. Problemi çözmek çok zordur. Ağın yeniden yapılandırılması işlemleri durdurur.
STAR	Sistem üzerinde değişiklik yapmak ve yeni bilgisayarlar eklemek oldukça kolaydır. Merkezi izleme ve yönetim yapılabilir. Bir bilgisayarın bozulması tüm ağı etkilemez.	Eğer merkezi bağlantı komponenti bozulursa ağ haberleşmesi devre dışı kalır.
MESH	Daha sağlıklı ve sağlam bir sistemdir. Sorunların çözülmesi son derece kolaydır	Sistem kurmanın maliyeti aşırı kablodan dolayı pahalıdır.

KAYNAKÇA

Ağ Temelleri Ders Modülleri – MEGEP MEB (2011)