```
In [2]:
```

```
import pandas as pd
import numpy as np
import matplotlib as mpl
```

In [3]:

```
%matplotlib inline
```

In [4]:

```
# read data.csv
df = pd.read_csv('data.csv')
```

In [5]:

df

Out[5]:

	编号	脾气	身高	身材	经济	年龄差	结果
0	1	差	168	佳	有	小	合适
1	2	好	158	佳	没有	小	合适
2	3	一般	170	良	有	小	不合适
3	4	一般	160	佳	没有	大	不合适
4	5	一般	162	不好	没有	大	不合适
5	6	差	163	良	有	小	合适
6	7	差	164	佳	有	大	不合适
7	8	好	168	良	没有	小	合适
8	9	好	153	不好	有	大	不合适
9	10	差	160	良	有	大	合适

In [6]:

df. head()

Out[6]:

	编号	脾气	身高	身材	经济	年龄差	结果
0	1	差	168	佳	有	小	合适
1	2	好	158	佳	没有	小	合适
2	3	一般	170	良	有	小	不合适
3	4	一般	160	佳	没有	大	不合适
4	5	一般	162	不好	没有	大	不合适

请分别采用 (a) 信息增益ID3算法; (b) 信息增益率C4.5算法; (c) 基尼系数CART算法; 判断"某女朋友" 是否合适? 该"某女朋友"特征为: 脾气差、身高163cm之上、身材良、有经济条件、年龄差大。

In [7]:

df.head

Out[7]:

〈bound method NDFrame.head of 编号 脾气 身高 身材 经济 年龄差 结果

- 0 1 差 168 佳 有 小 合适
- 1 2 好 158 佳 没有 小 合适
- 2 3 一般 170 良 有 小 不合适
- 3 4 一般 160 佳 没有 大 不合适
- 4 5 一般 162 不好 没有 大 不合适
- 5 6 差 163 良 有 小 合适
- 6 7 差 164 佳 有 大 不合适
- 7 8 好 168 良 没有 小 合适
- 8 9 好 153 不好 有 大 不合适
- 9 10 差 160 良 有 大 合适>

In [8]:

import math
import sklearn

In [9]:

```
# read data.csv
df = pd.read_csv('data.csv')
df
```

Out[9]:

	编号	脾气	身高	身材	经济	年龄差	结果
0	1	差	168	佳	有	小	合适
1	2	好	158	佳	没有	小	合适
2	3	一般	170	良	有	小	不合适
3	4	一般	160	佳	没有	大	不合适
4	5	一般	162	不好	没有	大	不合适
5	6	差	163	良	有	小	合适
6	7	差	164	佳	有	大	不合适
7	8	好	168	良	没有	小	合适
8	9	好	153	不好	有	大	不合适
9	10	差	160	良	有	大	合适

In [10]:

```
df['脾气']=df['脾气']. map({'好':2,'一般':1,'差':0})
# 大于163 为1 小于等于163 为0
df['身高']=df['身高']. map(lambda x:1 if x>163 else 0)
df['身材']=df['身材']. map({'佳':2,'良':1,'不好':0})
df['经济']=df['经济']. map({'有':1,'没有':0})
df['年龄差']=df['年龄差']. map({'小':1,'大':0})

df['结果']=df['结果']. map({'合适':1,'不合适':0})
```

In [11]:

```
# X 为第2-6列
x = df.iloc[:, 1:6]
print(x)
y = df.iloc[:,6]
print(y)

predict_df = pd.DataFrame([[0, 1, 1, 1, 0]], columns=['脾气', '身高', '身材', '经济', '年龄差'])
print(predict_df)
```

```
脾气
       身高
              身材 经济 年龄差
           2
0
   0
       1
               1
                    1
   2
           2
               0
                   1
1
       0
2
   1
       1
           1
               1
                   1
           2
                   0
3
   1
       0
               0
       0
           0
               0
                   0
4
   1
5
   0
           1
               1
                   1
6
   0
           2
                   0
       1
               1
7
   2
       1
           1
               0
                   1
   2
8
       0
           0
               1
                    0
9
   0
                    0
           1
               1
0
    1
1
    1
2
    0
3
    0
4
    0
5
    1
6
    0
7
    1
8
    0
9
    1
Name: 结果, dtype: int64
   脾气 身高 身材 经济 年龄差
  0 1 1
             1
```

ID3 Algorithm

In [12]:

```
from sklearn.tree import DecisionTreeClassifier id3 = DecisionTreeClassifier(criterion='entropy') id3 = id3.fit(x, y)

# 该 "某女朋友"特征为: 脾气差、身高163cm之上、身材良、有经济条件、年龄差大。
# 请问该女朋友是否合适?

print(id3.predict(predict_df))
```

[0]

In [13]:

```
from sklearn import tree
tree.plot_tree(id3)
```

Out[13]:

```
[Text (0.5, 0.875, 'X[4] \le 0.5 \setminus 1.0 \setminus 1
```


C4.5 Algorithm

In [14]:

```
# 信息增益率C4.5算法;

from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model = model.fit(x, y)

print(model.predict(predict_df))
```

[0]

In [17]:

```
tree.plot_tree(model)
```

Out[17]:

```
[Text (0. 5, 0. 875, 'X[4] <= 0. 5\ngini = 0. 5\nsamples = 10\nvalue = [5, 5]'),
    Text (0. 3, 0. 625, 'X[0] <= 0. 5\ngini = 0. 32\nsamples = 5\nvalue = [4, 1]'),
    Text (0. 2, 0. 375, 'X[1] <= 0. 5\ngini = 0. 5\nsamples = 2\nvalue = [1, 1]'),
    Text (0. 1, 0. 125, 'gini = 0. 0\nsamples = 1\nvalue = [0, 1]'),
    Text (0. 3, 0. 125, 'gini = 0. 0\nsamples = 1\nvalue = [1, 0]'),
    Text (0. 4, 0. 375, 'gini = 0. 0\nsamples = 3\nvalue = [3, 0]'),
    Text (0. 7, 0. 625, 'X[0] <= 0. 5\ngini = 0. 32\nsamples = 5\nvalue = [1, 4]'),
    Text (0. 8, 0. 375, 'gini = 0. 0\nsamples = 2\nvalue = [0, 2]'),
    Text (0. 7, 0. 125, 'gini = 0. 0\nsamples = 2\nvalue = [0, 2]'),
    Text (0. 9, 0. 125, 'gini = 0. 0\nsamples = 1\nvalue = [1, 0]')]
```


CART Algorithm

In [15]:

```
gini = tree.DecisionTreeClassifier(criterion='gini')
gini = gini.fit(x, y)
print(gini.predict(predict_df))
```

[1]

In [16]:

```
tree.plot tree(gini)
```

Out[16]:

```
[Text (0. 5, 0. 875, 'X[4] <= 0.5\ngini = 0.5\nsamples = 10\nvalue = [5, 5]'),

Text (0. 3, 0. 625, 'X[0] <= 0.5\ngini = 0.32\nsamples = 5\nvalue = [4, 1]'),

Text (0. 2, 0. 375, 'X[2] <= 1.5\ngini = 0.5\nsamples = 2\nvalue = [1, 1]'),

Text (0. 1, 0. 125, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]'),

Text (0. 3, 0. 125, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),

Text (0. 4, 0. 375, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]'),

Text (0. 7, 0. 625, 'X[0] <= 0.5\ngini = 0.32\nsamples = 5\nvalue = [1, 4]'),

Text (0. 8, 0. 375, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]'),

Text (0. 8, 0. 375, 'X[0] <= 1.5\ngini = 0.444\nsamples = 3\nvalue = [1, 2]'),

Text (0. 7, 0. 125, 'gini = 0.0\nsamples = 1\nvalue = [1, 0]'),

Text (0. 9, 0. 125, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]')]
```



```
In [ ]:
```

In []:

In []: