

Overview

Explanatory vs. Predictive Analytics

- Using a hold-out sample.

Regression for Predicting values

- Model Testing and Performance

Variable selection

Modeling Binary Response variables

- Logistic Regression

Explanatory Models

Goal: Explain relationship between predictors (explanatory variables) and target (response)

Familiar use of regression in data analysis

Model Goal: Fit the data well and understand the contribution of explanatory variables to the model

"Goodness-of-fit": R2, residual analysis, p-values, visual tests, etc.

Predictive Analytics

][

Goal: predict target values in other data where we have values of predictors, but not target values

Model Goal: Optimize prediction accuracy

Develop model on training data

Assess performance on validation (hold-out) data

Predict prices of used Toyota Corollas based on their features

Prices of 1,436 used Toyota Corollas, with their information

Data are in Toyota.csv – available for download from website below.

Data and Variables (First 5 Rows)

Variable	Description		
Price	Offer price in euros		
Age	Age in months as of August 2004		
Kilometers	Accumulated kilometers on odometer		
Fuel type	Fuel type (Petrol, Diesel, CNG)		
Horse Power	Horsepower		
Metallic	Metallic color? (Yes = 1 , No = 0)		
Automatic	Automatic (Yes = 1 , No = 0)		
CC	Cylinder volume in cubic centimeters		
Doors	Number of doors		
Weight	Weight in kilograms		

Price	Age	KM	FuelType	HP	MetColor	Automatic	CC	Doors	Weight
13500	23	46986	Diesel	90	1	0	2000	3	1165
13750	23	72937	Diesel	90	1	0	2000	3	1165
13950	24	41711	Diesel	90	1	0	2000	3	1165
14950	26	48000	Diesel	90	0	0	2000	3	1165
13750	30	38500	Diesel	90	0	0	2000	3	1170

Train, validate, test

Out of 1,436 Observations, We randomly select 1,292 rows for Training and last 144 rows for Testing our predictions.

Please select 90/10/0 — this will create 90% train, 10 % validate and 0% on test

Categorical Predictors

Fuel Type has 3 categories

Estimate the regression model

```
Call:
lm(formula = Price ~ ., data = crs$dataset[crs$train, c(crs$input,
   crs$target)])
Residuals:
          10 Median 30 Max
   Min
-9997.0 -741.4 3.5 750.5 6474.6
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) -2733.512690 1362.752613 -2.006 0.04508 *
            -123.176881 2.770001 -44.468 < 2e-16 ***
Age
             -0.016251 0.001392 -11.677 < 2e-16 ***
KM
FuelTypeDiesel 3539.895137 539.913528 6.556 7.97e-11 ***
FuelTypePetrol 1077.421607 346.283057 3.111 0.00190 **
         63.091432 5.915904 10.665 < 2e-16 ***
MetColor 34.338215 79.645115 0.431 0.66644
Automatic 434.004145 167.010650 2.599 0.00947 **
CC
              -4.103270 0.571006 -7.186 1.13e-12 ***
           -10.328114 42.474256 -0.243 0.80792
Doors
             18.805412 1.254988 14.985 < 2e-16 ***
Weight
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1329 on 1281 degrees of freedom
Multiple R-squared: 0.8661, Adjusted R-squared: 0.865
F-statistic: 828.2 on 10 and 1281 DF, p-value: < 2.2e-16
```

Predicted versus Observed on Validation Data Predicted vs. Observed

Predicted vs. Observed Linear Model Toyota.csv [validate]

Rattle 2020-Apr-14 18:42:29 ashis

Predicted price and residuals: Use Score function under Evaluate

Predicted Prices on Test Set

4	Α	В	С	D	E	F	G	Н	- 1	J
1	Price	glm			Actual Price	Predicted	Residual	Residual Squared		
2	13750	15928.45			13750	15928.44526	-2178.445265	4745623.772		1204.27
3	16950	14760.86			16950	14760.8587	2189.141297	4792339.616		
4	14950	15674.63			14950	15674.6271	-724.6270991	525084.4327		
5	16950	16707.26			16950	16707.2631	242.7368982	58921.20175		
6	16950	17488.16			16950	17488.16082	-538.160817	289617.0649		
7	16950	15191.67			16950	15191.67441	1758.325587	3091708.87		
8	17450	16363.86			17450	16363.85846	1086.141541	1179703.447		
9	19950	19465.72			19950	19465.72249	484.2775114	234524.7081		
10	19950	19409.52			19950	19409.51625	540.4837546	292122.689		
11	18500	17885.11			18500	17885.1058	614.8942036	378094.8817		
12	21950	20982.05			21950	20982.04798	967.9520196	936931.1123		
13	19950	18690.79			19950	18690.78576	1259.214245	1585620.514		
14	18950	16852.35			18950	16852.34845	2097.651551	4400142.029		
15	16500	16543.58			16500	16543.57881	-43.57881369	1899.113002		
16	17950	17403.72			17950	17403.72109	546.2789142	298420.6521		
17	15950	17413.13			15950	17413.12982	-1463.129815	2140748.857		
18	16500	16749.08			16500	16749.08387	-249.0838735	62042.77606		
19	23000	22963.07			23000	22963.06631	36.93368726	1364.097255		
20	18500	16903.58			18500	16903.58481	1596.415192	2548541.466		
21	19950	17299.96			19950	17299.96187	2650.038129	7022702.086		
22	19750	19129.64			19750	19129.63786	620.3621398	384849.1844		
23	18950	18427.98			18950	18427.978	522.0219987	272506.9671		
24	21125	19325.89			21125	19325.89344	1799.106556	3236784.401		
25	11950	12257.39			11950	12257.38801	-307.3880078	94487.38731		
26	12950	13028.76			12950	13028.76448	-78.76447837	6203.843054		
7	11950	12413 43			11050	12/13 /3261	-463 4326104	214769 7844		

The saved csv has two columns: Price (the actual price), and glm(the predicted price.

Copied into
Actual_Price and
Predicted_Price

We create column (G) of residuals which is Predicted_price — Actual_Price

RMSE

Root mean square error (RMSE)

Visual fit

Variable Selection

)[

Variable selection pros and cons -- bias versus precision

Measures used commonly: Residual Mean Square error, Mallows Cp, Information Criteria (AIC and BIC), and adjusted R squared

Parsimony preferred

Collinearity and variable selection -- caution

Why complete search an issue: 2^(number of variables) too much.

Use Model Selection.R

Subset Selection Techniques

Forward selection
Backward elimination
Exhaustive

Toyota <- read.csv("Toyota.csv") # read data

install.packages("leaps")
library(leaps)

nvmax represents the maximum number of predictors to incorporate in the model # method represents "exhaustive", "backward", "forward" models <- regsubsets(Price~., data = Toyota, nvmax = 9, method="forward") summary(models)

res.sum <- summary(models) # select the best model based on the following criteria data.frame(

Adj.R2 = which.max(res.sum\$adjr2))

The models output

```
ן כ
```

```
Selection Algorithm: forward
              Age KM FuelTypeDiesel FuelTypePetrol HP
                                                                                          Color
Automatic
                                                                                              ** **
                                                                                              ** **
                                                                                              ** **
                                                                                              ** **
                                                                         11 * 11 11
                                                                                              ** **
                                                                          11 * 11 11
                                                                                              ** **
                                                  11 * 11
                                                                          11 * 11 11
                                                                                              11 11
8
              11 * 11 * 11 * 11 * 11
                                                                         11 🛨 11 11 11
                                                                                              11 🛠 11
                                                  11 🖈 11
                                                  II * II
                                                                         11 * 11 * 11
              11 * 11 * 11 * 11 * 11
                                                                                              II * II
                    Doors Weight
                              11 * 11
                              11 * 11
                              11 * 11
              11 * 11 11
                              11 * 11
                              11 🛨 11
              11 * 11 11
                              II * II
```

Fit a model with selected variables

Dat	Data Explore Test Transform Cluster Associate Model Evaluate Log									
Sou	Source: ARFF ODBC R Dataset RData File Library Corpus Script									
File	Filename: Toyota.csv E Separator: , Decimal: . 🗹 Header									
\checkmark	Partition 90/10/0 Seed: 42 View Edit									
	Input									
No.	Variable	Data Type	Input	Target	Risk	ldent	lgnore	Weight	Comment	
1	Price	Numeric	0	•	0	0	0	0	Unique: 236	
2	Age	Numeric	\odot	0	0	0	0	0	Unique: 77	
3	KM	Numeric	\odot	0	0	0	0	0	Unique: 1,263	
4	FuelType	Categoric	\odot	0	0	0	0	0	Unique: 3	
5	HP	Numeric	•	0	0	0	0	0	Unique: 12	
6	MetColor	Numeric	0	0	0	0	•	0	Unique: 2	
7	Automatic	Numeric	\odot	0	0	0	0	0	Unique: 2	
8	CC	Numeric	\odot	0	0	0	0	0	Unique: 12	
9	Doors	Numeric	0	0	0	0	•	0	Unique: 4	
10	Weight	Numeric	•	0	0	0	0	0	Unique: 59	

Adj R Square .8652 from .865, with simpler model.

Predicted vs. Observed Linear Model Toyota.csv [validate]

RMSE 1206 in Validate set

Price Rattle 2020-Apr-13 20:26:20 31202

Further Improve the model

][

Higher predictive accuracy

Make it more robust

Other considerations

][

Dependence on sample

Inference

How about if the outcome variable is binary?

- Win an auction or not?
- Is it going to rain or not?
- Will customer abandon contract?
- Can we use regression?

Ebay auctions for Atmos Clocks

Data Dictionary						
MSRP	Manufacturere suggested retail price					
Price	Price Bid					
Year	Year of manufacture					
Model	Three models					
Serviced	1 = Yes, 0 = No					
Number of Bidders	Number of active bidders					
Won auction	1 = Yes, 0 = No					

Bid	MSRP	Price	MSRP-Price	Year	Model 528	Model 526	Model Baby	Serviced? (1/0)	Number of bidders	won auctio
1	4500	1604	2896	1986	1	0	0	0	3	0
2	4600	2140	2460	1976	0	1	0	0	1	0
3	4600	2116	2484	1977	0	1	0	0	18	1
4	4600	2483	2117	1980	0	1	0	0	8	1
Į.	4600	2726	1874	1982	0	1	0	0	16	0
(4600	1984	2616	1987	0	1	0	0	14	1
-	4600	3030	1570	1985	0	1	0	1	3	1

Win Loss as a function of the bid

Won auction?

Price Bid

Introduce Logistic Regression

Extends idea of linear regression to situation where outcome variable is in binary category

Popular, particularly where a structured model is useful to explain or to predict

We focus on binary classification

i.e.
$$Y=0$$
 or $Y=1$

Steps: Logistic Function

$$f(x) = b0 + b1 x1 + b2 x2 + b3 x3 + ... + bn xn$$

Probability(win auction), p

$$= \exp(f(x))/[1 + \exp(f(x))]$$

Features of the object. One could be price.

Or,

$$exp(f(x)) = p/(1-p)$$
 called the odds ratio

Rattle

7870		in (maniorii							_
Pro	ject <u>T</u> ools <u>S</u> etting	gs <u>H</u> elp							attle Version 5.2.0 <u>togaw</u>
E	ecute New		120	oport		uit			
Dat	Explore Test Tra	ansform C	luster Ass	ociate Mo	odel Evalu	ate Log			
Sou	urce: File	ARFF ()	ODBC C	R Dataset	t O RDat	a File O Li	ibrary 🔾 C	orpus 🔘	Script
	W	-	-						
File	name: 🕍 auction.c	SV	Separa	tor: , D	ecimal: .	✓ Header	r		
~	Partition 80/20/0	Seed:	42	•	View	dit			
						T	D-1- T		
	Input 🛑 Ignore	Weight Ca	alculator:			-	Data Type uto Cate	goric 🔘 N	umeric O Survival
No.	Variable	Data Type	Input	Target	Risk	ldent	Ignore	Weight	Comment
1	Bid	Numeric	0	0	0	•	0	0	Unique: 272
2	MSRP	Numeric	0	0	0	0	•	0	Unique: 3
3	Price	Numeric	0	0	0	0	•	0	Unique: 249
4	MSRP.Price	Numeric	•	0	0	0	0	0	Unique: 252
5	Year	Numeric	•	0	0	0	0	0	Unique: 36
6	Model.528	Numeric	\odot	0	0	0	0	0	Unique: 2
7	Model.526	Numeric	•	0	0	0	0	0	Unique: 2
8	Model.Baby	Numeric	0	0	0	0	•	0	Unique: 2
9	Serviced1.0.	Numeric	•	0	0	0	0	0	Unique: 2
10	Number.of.bidders	Numeric	•	0	0	0	0	0	Unique: 20
11	won.auction.	Numeric	0	•	0	0	0	0	Unique: 2

Example in Rattle:

Split used 80/20

-1.8681 -0.6931 -0.3351 0.7203

Coefficients:

AIC: 207.07

Deviance Residuals:

Project Tools Settings Help

New

Open

Execute

Plot

Call:

Estimate Std. Error z value Pr(>|z|) (Intercept) 24.7335873 34.8019554 0.711 0.4773 MSRP.Price -0.0027022 0.0004382 -6.166 0.0000000007 *** Year -0.0086799 0.0175194 -0.495 0.6203 Model.528 -1.4534789 0.7290395 -1.994 0.0462 * Model.526 0.0245 * -1.4439479 0.6417695 -2.250 Serviced...1.0. -2.1721588 0.5025526 -4.322 0.0000154445 *** Number.of.bidders -0.0286160 0.0323124 -0.886 0.3758 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1)

Null deviance: 269.85 on 216 degrees of freedom Residual deviance: 193.07 on 210 degrees of freedom

Odds Ratio

Ratio of prob win/(1-prob win)

If serviced, odds everything else same, drops to 11% of previous value. (exp(-2.172))

To recover the same log odds, price may have to increase approximately by \$1000 (exp(1000*0.002))

To cancel exp(-2.172) drop price must contribute exp(+2) approximately

Model Performance

80% OF BIDS ARE LOST BASE PREDICTION IS THE CLASS WITH HIGHEST PROBABILITY (PREDICT ALWAYS LOSE AND WILL BE RIGHT 80%)

MODEL PREDICTS 74.5% RIGHT

BUT PREDICTS 7 OUT OF 11 WINS RIGHT WHEREAS BASE CASE IS ALWAYS INCORRECT FOR WINS

Model Performance

Error matrix for the Linear model on auction.csv [validate] (counts):

Error matrix for the Linear model on auction.csv [validate] (proportions):

	Predicted							
Actual	0	1	Error					
0	34	10	22.7					
1	4	7	36.4					

Pre			
Actual	0	1	Error
0	61.8	18.2	22.7
1	7.3	12.7	36.4

Overall error: 25.5%,

Averaged class error: 29.55%

Logistic Regression Takeaways

Similar to linear regression, except that it is used with a categorical response

It can be used for both explanatory and predictive analytics

Logistic Regression Takeaways

Independent and response variables are related via a nonlinear function called the *logit*

As in linear regression, reduction of variables can be done via variable selection

Exercise for Logistic Regression

) [

Use Boston Housing data from R library (don't partition data). Use the mlbench data.

Run logistic regression to predict whether the tract bounds Charles river (CHAS variable) based on the following variables: medv and indus.

Exercise for Logistic Regression

Check your coefficients for indus and medv are 0.08177 and 0.07774.

Report Error matrix for the training data. It should be 6.9%.

References

Ledolter, J. (n.d.) Data Text. Retrieved from https://bit.ly/2vfZggf

Rattle

GUI / Togaware (https://rattle.togaware.com/)