Classic Stripmap SAR

ullet SAR azimuth antenna length L_0 and azimuth resolution δ_0 related by

$$L_0 = 2\delta_0. (1)$$

• View δ_0 as a function of required beamwidth (for wavelength λ),

$$\Theta_0 \approx \frac{\lambda}{L_0} = \frac{\lambda}{2\delta_0}.$$
 (2)

• Required spatial sampling is δ_0 which means, for platform velocity v_s , we need a PRF of

$$f_p = \frac{v_s}{\delta_0}. (3)$$

• To minimize δ_0 , minimize L_0 which maximizes Θ_0 .

Maximize azimuth beamwidth

Figure: Spotlight mode to increase range of look angles.

- It's not the beamwidth but the fact that the target/scene is viewed from a wide range of azimuth angles.
- A wide beamwidth is one way to achieve this.
- Spotlighting (mechanical or electronic) is another

Approach

• Divide total beamwidth into M parts

$$\Theta_M = \frac{\Theta_0}{M} = \frac{\lambda}{2M\delta_0}. (4)$$

Each part needs an antenna of length

$$L_{M}=2M\delta_{0}, (5)$$

and a PRF of

$$f_p = \frac{2v_s}{\lambda}\Theta_M = \frac{2v_s}{L_M} = \frac{v_s}{M\delta_0},\tag{6}$$

• Arrange a set of antennas of length L_M in the azimuth direction and change the beam direction from pulse to pulse

Five channel example with ideal PRF

Figure: Five channel example. Circles denote the phase-centre location while the angle denotes the direction of the Tx and Rx patterns.

Azimuth antenna configuration

- Arrange a set of subarrays in the along track direction as illustrated.
- Two-way phase-centre separation will be $d=M\delta_0$
- With each subarray of length $2M\delta_0$, the total array length is

$$L = ML_M = 2M^2 \delta_0. (7)$$

Figure: Antenna Lengths to achieve desired resolution for an example 11 channel system for a desired resolution of δ_0 .

Example antenna lengths

Table: System parameters for $\delta_0=0.1m$ and $\nu_s=7500m/s$. The swath is the simply related to the time between pulses without consideration of pulse length and margins.

M	L_M m	L m	f_p Hz	Swath (slant-range Km)
1	0.20	0.20	75000	2.00
3	0.60	1.80	25000	6.00
5	1.00	5.00	15000	10.00
7	1.40	9.80	10710	14.00
9	1.80	16.20	8330	18.00
11	2.20	24.20	6810	22.00
13	2.60	33.80	5760	26.00
15	3.00	45.00	5000	30.00

Signal processing

Figure: Equivalent HRWS system.

- Have to generalize to non-ideal PRFs.
- Similar approach to non-uniform sampling for HRWS mode.
- Number of samples grows as $1/\delta_0^2$ in both azimuth and range.
- Developed a wavenumber processing approach
 - Based on paramterisation by arclength
 - Generalised Stolt interpolation

Simulation

Table: Simulation parameters

	f_p	L	L_M	М	Swath	f_0	В
mode	Hz	m	m		km	GHz	MHz
40 cm	4500.00	20.0	4.0	5	16.5	9.65	374.74
30 cm	5000.00	21.4	3.6	6	13.5	9.65	499.65
25 cm	5142.86	24.4	3.5	7	12.7	9.65	599.58
20 cm	6428.57	19.6	2.8	7	7.5	9.65	749.48
12 cm	7500.00	24.0	2.4	10	4.5	9.65	1249.14
10 cm	8181.82	24.2	2.2	11	3.0	9.65	1498.96

swath width has been computed in the slant-range.

Swath
$$(f_p; \tau_p) = (1/f_p - 2 * \tau_p) * \frac{c}{2} \times 90\%$$
 (8)

- au_p is the pulse duration, selected as $au_p = 50 imes 10^{-6}$ s.
- 10% margin incorporated.

Processed signal

Figure: Reconstructed signals in azimuth wavenumber domain.

mode.

PSF

- Over the wider azimuth range, one observes a different generation of sidelobes with a peak rising to around -18dB.
- A Doppler weighting could suppress these at the expense of resolution.

Figure: Azimuth cross-section of 10cm mode.

NESZ

Table: Computed NESZ

Mode	f_p (Hz)	NESZ (dB)		
40 cm	4500.00	-30.9		
30 cm	5000.00	-29.8		
25 cm	5142.86	-29.7		
20 cm	6428.57	-29.2		
12 cm	7500.00	-25.5		
10 cm	8181.82	-30.2		