

Engineering Formula Sheet

Statistics

Mean

$$\mu = \frac{\sum x_i}{n}$$

 μ = mean value

 $\Sigma x_i = \text{sum of all data values } (x_1, x_2, x_3, ...)$

n = number of data values

Standard Deviation

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}$$

 σ = standard deviation

 x_i = individual data value ($x_1, x_2, x_3, ...$)

 μ = mean value

n = number of data values

Mode

Place data in ascending order.

Mode = most frequently occurring value

If two values occur at the maximum frequency the data set is *bimodal*.

If three or more values occur at the maximum frequency the data set is *multi-modal*.

Median

Place data in ascending order.

If n is odd, median = central value

If n is even, median = mean of two central values

n = number of data values

Range

Range = $x_{max} - x_{min}$

 $x_{max} = maximum data value$

 x_{min} = minimum data value

Probability

Frequency

$$f_x = \frac{n_y}{n}$$

$$P_x = \frac{f_x}{f_a}$$

 f_x = relative frequency of outcome x

 n_x = number of events with outcome x

n = total number of events

 P_x = probability of outcome x

f_a = frequency of all events

$$P_k = \frac{n!(p^k)(q^{n-k})}{k!(n-k)!}$$

P_k = binomial probability of k successes in n trials

Binomial Probability (order doesn't matter)

p = probability of a success

q = 1 - p = probability of failure

k = number of successes

n = number of trials

Independent Events

 $P (A \text{ and } B \text{ and } C) = P_A P_B P_C$

P (A and B and C) = probability of independent events A and B and C occurring in sequence

P_A = probability of event A

Mutually Exclusive Events

 $P (A \text{ or } B) = P_A + P_B$

P (A or B) = probability of either mutually exclusive event A or B occurring in a trial

 P_A = probability of event A

 Σx_i = sum of all data values $(x_1, x_2, x_3, ...)$

n = number of data values

Conditional Probability

$$P(A|D) = \frac{P(A) \cdot P(D|A)}{P(A) \cdot P(D|A) + P(\sim A) \cdot P(D|\sim A)}$$

P(A|D) = probability of event A given event D

P(A) = probability of event A occurring

 $P(\sim A)$ = probability of event A not occurring

 $P(D \vdash A) = \text{probability of event D given event A did not occur}$

Plane Geometry

Circle

Circumference = $2 \pi r$ Area = π r²

Ellipse

Area = π a b

Rectangle

Perimeter = 2a + 2bArea = ab

Parallelogram

Area = bh

Triangle

Area = ½ bh

$$a^{2} = b^{2} + c^{2} - 2bc \cdot cos \angle A$$

$$b^{2} = a^{2} + c^{2} - 2ac \cdot cos \angle B$$

$$c^{2} = a^{2} + b^{2} - 2ab \cdot cos \angle C$$

Right Triangle

$$c^2 = a^2 + b^2$$

$$\sin \theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

Regular Polygons

Area =
$$n \frac{s(\frac{1}{2} f)}{2}$$

n = number of sides

Trapezoid

Area =
$$\frac{1}{2}(a + b)h$$

Solid Geometry

Cube

Volume = s^3 Surface Area = $6s^2$

Sphere

Volume $\frac{4}{3}\pi r^3$

Rectangular Prism

Volume = wdh

Surface Area = 2(wd + wh + dh)

Right Circular Cone

Volume =
$$\frac{\pi r^2 h}{3}$$

Surface Area = π r $\sqrt{r^2 + h^2}$

Pyramid

Volume =

A = area of base

Surface Area = $4 \pi r^2$

Cylinder

Volume = $\pi r^2 h$ Surface Area = $2 \pi r h + 2 \pi r^2$

Irregular Prism

Volume = Ah

A = area of base

Constants

 $g = 9.8 \text{ m/s}^2 = 32.27 \text{ ft/s}^2$

 $G = 6.67 \times 10^{-11} \,\mathrm{m}^3/\mathrm{kg} \cdot \mathrm{s}^2$

 $\pi = 3.14159$

Conversions

Mass

1 kg $= 2.205 lb_{m}$ 1 slug = $32.2 \, lb_m$ $= 2000 lb_{m}$ 1 ton

Area

1 acre = 4047 m^2 $= 43.560 \text{ ft}^2$ $= 0.00156 \text{ mi}^2$

Force

1 N $= 0.225 lb_f$ $= 1,000 lb_f$ 1 kip

Energy

1 J = 0.239 cal $= 9.48 \times 10^{-4}$ Btu $= 0.7376 \text{ ft} \cdot \text{lb}_{\text{f}}$ 1kW h = 3,6000,000 J

Length

= 3.28 ft1 m = 0.621 mi1 km = 2.54 cm1 in. = 5280 ft1 mi 1 yd = 3 ft

Volume

1L = 0.264 gal $= 0.0353 \text{ ft}^3$ = 33.8 fl oz $= 1 \text{ cm}^3 = 1 \text{ cc}$ 1mL

Pressure

1 atm = 1.01325 bar $= 33.9 \text{ ft H}_2\text{O}$ = 29.92 in. Hg= 760 mm Hg= 101,325 Pa = 14.7 psi $= 2.31 \text{ ft of H}_2\text{O}$ 1psi

Defined Units

1 J $= 1 \text{ N} \cdot \text{m}$ $= 1 \text{ kg} \cdot \text{m} / \text{s}^2$ 1 N $1 \text{ Pa} = 1 \text{ N} / \text{m}^2$ = 1 W/A1 V = 1 J/s1 W = 1 V/A1 W $1 \text{ Hz} = 1 \text{ s}^{-1}$ 1 F $= 1 A \cdot s / V$ 1 H = 1 V·s / V

Temperature Change

Time

1 d = 24 h= 60 min 1 h 1 min = 60 s1 yr = 365 d

Power

1 W = 3.412 Btu/h= 0.00134 hp= 14.34 cal/min $= 0.7376 \text{ ft} \cdot \text{lb}_{\text{f}}/\text{s}$

SI Prefixes

Numbe	ers Less Th	an One
Power of 10	Prefix	Abbreviation
10 ⁻¹	deci-	d
10 ⁻²	centi-	С
10 ⁻³	milli-	m
10 ⁻⁶	micro-	μ
10 ⁻⁹	nano-	n
10 ⁻¹²	pico-	р
10 ⁻¹⁵	femto-	f
10 ⁻¹⁸	atto-	а
10 ⁻²¹	zepto-	Z
10 ⁻²⁴	yocto-	у

Numbe	rs Greater Th	an One
Power of 10	Prefix	Abbreviation
10 ¹	deca-	da
10 ²	hecto-	h
10 ³	kilo-	k
10 ⁶	Mega-	M
10 ⁹	Giga-	G
10 ¹²	Tera-	T
10 ¹⁵	Peta-	Р
10 ¹⁸	Exa-	Е
10 ²¹	Zetta-	Z
10 ²⁴	Yotta-	Y

Equations

Mass and Weight

$$M = VD_m$$

$$W = mg$$

$$W = VD_w$$

$$D_m = mass density$$

$$m = mass$$

$$D_w$$
 = weight density

g = acceleration due to gravity

Temperature

$$T_{K} = T_{C} + 273$$

$$T_R = T_F + 460$$

$$\frac{T_F - 32}{180} = \frac{T_C}{100}$$

 T_K = temperature in Kelvin

T_C = temperature in Celsius

 T_R = temperature in Rankin

 T_F = temperature in Fahrenheit

Force

F = ma

F = force

m = mass

a = acceleration

Equations of Static Equilibrium

$$\Sigma F_x = 0$$
 $\Sigma F_y = 0$

 $\Sigma M_P = 0$

 F_x = force in the x-direction

 F_v = force in the y-direction \dot{M}_P = moment about point P

Equations (Continued)

Energy: Work

 $W = F \cdot d$

W = work

F = force

d = distance

Power

$$P = \frac{E}{t} = \frac{W}{t}$$

$$P = \frac{\tau \cdot rpm}{5252}$$

P = power

E = energy

W = work

t = time

 τ = torque

rpm = revolutions per minute

Efficiency

Efficiency (%) =
$$\frac{P_{out}}{P_{in}} \cdot 100\%$$

P_{out} = useful power output P_{in} = total power input

Energy: Potential

U = mgh

U = potential energy

m =mass

g = acceleration due to gravity

h = height

Energy: Kinetic

$$K = \frac{1}{2} mv^2$$

K = kinetic energy

m = mass

v = velocity

Energy: Thermal

Q = mcAT

Q = thermal energy

m = mass

c = specific heat

 ΔT = change in temperature

Fluid Mechanics

$$P = \frac{F}{A}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 (Charles' Law)

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$
 (Guy-Lussanc's Law)

$$P_1V_1 = P_2V_2$$
 (Boyle's Law)

Q = Av

 $A_1 V_1 = A_2 V_2$

Horsepower =
$$\frac{QP}{1714}$$

absolute pressure = gauge pressure + atmospheric pressure

P = absolute pressure

F = Force

A = Area

V = volume

T = absolute temperature

Q = flow rate

v = flow velocity

Mechanics

$$s = \frac{d}{t}$$
 (where acceleration = 0)

$$\mathbf{v} = \frac{\mathbf{d}}{\mathbf{d}}$$
 (where acceleration = 0)

$$a = \frac{v_f - v_i}{t}$$

$$X = \frac{v_i \sin(2\theta)}{-\alpha}$$

$$v = v_0 + at$$

$$d = d_0 + v_0 t + \frac{1}{2}at^2$$

$$v^2 = {v_0}^2 + 2a(d - d_0)$$

 $\tau = dFsin\theta$

s = speed

v = velocity

a = acceleration

X = range

t = time

d = distance

g = acceleration due to gravity

d = distance

 θ = angle

 $\tau = \text{torque}$

F = force

Electricity

Ohm's Law

$$V = IR$$

$$P = IV$$

$$R_T$$
 (series) = $R_1 + R_2 + \cdots + R_n$

$$R_{T}$$
 (parallel) = $\frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{n}}}$

Kirchhoff's Current Law

$$I_T = I_1 + I_2 + \cdots + I_n$$

or
$$I_T = \sum_{k=1}^{n} I_k$$

Kirchhoff's Voltage Law

$$V_T = V_1 + V_2 + \cdots + V_n$$

or
$$V_T = \sum_{k=1}^n V_k$$

V = voltage

 V_T = total voltage

I = current

 I_T = total current

R = resistance

 R_T = total resistance

P = power

Thermodynamics

$$P = Q' = AU\Delta T$$

$$P = \frac{Q}{\Lambda t}$$

$$U = \frac{1}{R} = \frac{k}{L}$$

$$P = \frac{kA\Delta T}{I}$$

$$A_1V_1 = A_2V_2$$

$$P_{net} = \sigma Ae(T_2^4 - T_1^4)$$

P = rate of heat transfer

Q = thermal energy

A = Area of thermal conductivity

U = coefficient of heat conductivity (U-factor)

 ΔT = change in temperature

Δ1 = change in temperature

 Δt = change in time

R = resistance to heat flow (R-value)

k = thermal conductivity

v = velocity

 P_{net} = net power radiated

 $\sigma = 5.6696 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$

e = emissivity constant

Section Properties

Moment of Inertia

$$I_{xx} = \frac{bh^3}{12}$$

I_{xx} = moment of inertia of a rectangular section about x-x axis

Complex Shapes Centroid

$$\overline{x} = \frac{\sum x_i A_i}{\sum A_i}$$
 and $\overline{y} = \frac{\sum y_i A_i}{\sum A_i}$

 \overline{x} = x-distance to the centroid

 $\overline{y} = y$ -distance to the centroid

 $x_i = x$ distance to centroid of shape i

 $y_i = y$ distance to centroid of shape i

A_i = Area of shape i

Rectangle Centroid

$$\overline{x} = \frac{b}{2}$$
 and $\overline{y} = \frac{h}{2}$

Right Triangle Centroid

$$\overline{x} = \frac{b}{3}$$
 and $\overline{y} = \frac{h}{3}$

Semi-circle Centroid

$$\overline{x} = r$$
 and $\overline{y} = \frac{4r}{3\pi}$

 \overline{x} = x-distance to the centroid

 \bar{y} = y-distance to the centroid

Material Properties

Stress (axial)

$$\sigma = \frac{\mathsf{F}}{\Delta}$$

 σ = stress

F = axial force

A = cross-sectional area

Strain (axial)

$$\epsilon = \frac{\delta}{L_0}$$

 ϵ = strain

 L_0 = original length

 δ = change in length

Modulus of Elasticity

$$\mathsf{E} = \frac{\mathsf{\sigma}}{\mathsf{\epsilon}}$$

$$E = \frac{\sigma(F_2 - F_1)L_0}{(\delta_2 - \delta_1)A}$$

E = modulus of elasticity

 $\sigma = stress$

 $\varepsilon = strain$

A = cross-sectional area

F = axial force

 δ = deformation

Structural Analysis

Deformation: Axial

$$_{3} = \frac{FL_{0}}{AE}$$

 δ = deformation

F = axial force

 L_0 = original length

A = cross-sectional area

E = modulus of elasticity

Truss Analysis

$$2J = M + R$$

J = number of joints

M =number of members

R = number of reaction forces

Simple Machines

Mechanical Advantage (MA)

$$IMA = \frac{D_E}{D_R}$$

$$AMA = \frac{F_R}{F_E}$$

% Efficiency=
$$\left(\frac{AMA}{IMA}\right)$$
 100

IMA = Ideal Mechanical Advantage AMA = Actual Mechanical Advantage

 D_E = Effort Distance D_R = Resistance Distance

 F_R = Resistance Force

 F_E = Effort Force

Pulley Systems

IMA = Total number of strands of a single string supporting the resistance

$$IMA = \frac{D_E \text{ (string pulled)}}{D_R \text{ (resistance lifted)}}$$

Inclined Plane

$$IMA = \frac{L \text{ (slope)}}{H}$$

Wedge

$$IMA = \frac{L (\perp to height)}{H}$$

Screw

$$IMA = \frac{C}{Pitch}$$

Pitch =
$$\frac{1}{TPI}$$

C = Circumference

r = radius

Pitch = distance between threads

TPI = Threads Per Inch

Compound Machines

 $MA_{TOTAL} = (MA_1) (MA_2) (MA_3) \dots$

Gears; Sprockets with Chains; and Pulleys with **Belts Ratios**

$$GR = \frac{N_{out}}{N_{in}} = \frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{r_{out}}{r_{in}}$$

$$\frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{\tau_{out}}{\tau_{in}} \text{ (pulleys)}$$

Compound Gears

GR = Gear Ratio

 ω_{in} = Angular Velocity - driver

ω_{out} = Angular Velocity - driven

 N_{in} = Number of Teeth - driver

Nout = Number of Teeth - driven

 d_{in} = Diameter - driver

dout = Diameter - driven

 τ_{in} = Torque - driver

 τ_{out} = Torque - driven

Structural Design

Steel Beam Design: Shear

$$V_a = \frac{V_n}{\Omega_v}$$

$$V_n = 0.6 F_y A_w$$

V_a = allowable shear strength

 V_n = nominal shear strength

 $\Omega_v = 1.5 = factor of safety for shear$

 F_v = yield stress

 A_w = area of web

Steel Beam Design: Moment

$$M_a = \frac{M_n}{\Omega_b}$$

$$M_n = F_y Z_x$$

M_a = allowable bending moment

 M_n = nominal moment strength $\Omega_b = 1.67 = factor of safety for$ bending moment

 F_v = yield stress

 Z_x = plastic section modulus about neutral axis

Spread Footing Design

 $q_{net} = q_{allowable} - p_{footing}$

$$p_{footing} = t_{footing} \cdot 150 \frac{lb}{ft^2}$$

$$q = \frac{P}{\Delta}$$

q_{net} = net allowable soil bearing pressure

q_{allowable} = total allowable soil bearing pressure

p_{footing} = soil bearing pressure due to footing weight

 t_{footing} = thickness of footing

q = soil bearing pressure

P = column load applied

A = area of footing

Storm Water Runoff

Storm Water Drainage

$$Q = C_fCiA$$

$$C_c = \frac{C_1 A_1 + C_2 A_2 + \cdots}{A_1 + A_2 + \cdots}$$

Q = peak storm water runoff rate (ft^3/s)

C_f = runoff coefficient adjustment factor

C = runoff coefficient

i = rainfall intensity (in./h)

A = drainage area (acres)

Runoff Coe Adjustmen	
Return	
Period	Cf
1, 2, 5, 10	1.0
25	1.1
50	1.2
100	1.25

Water Supply

Hazen-Williams Formula

$$h_{\rm f} = \frac{10.44 LQ^{1.85}}{C^{1.85} d^{4.8655}}$$

 h_f = head loss due to friction (ft of H_2O)

L = length of pipe (ft)

Q = water flow rate (gpm)

C = Hazen-Williams constant

d = diameter of pipe (in.)

Dynamic Head

dynamic head = static head - head loss

Rational Method Ru	noff Coefficients
Categorized by Surfa	ace
Forested	0.059—0.2
Asphalt	0.7—0.95
Brick	0.7—0.85
Concrete	0.8—0.95
Shingle roof	0.75—0.95
Lawns, well draine	ed (sandy soil)
Up to 2% slope	0.05—0.1
2% to 7% slope	0.10—0.15
Over 7% slope	0.15—0.2
Lawns, poor drain	
Up to 2% slope	0.13—0.17
2% to 7% slope	0.18—0.22
Over 7% slope	0.25—0.35
Driveways,	0.75—0.85
Categorized	
Farmland	0.05—0.3
Pasture	0.05—0.3
Unimproved	0.1—0.3
Parks	0.1—0.25
Cemeteries	0.1—0.25
Railroad yard	0.2-0.40
Playgrounds	0.2-0.35
Business D	
Neighborhood	0.5—0.7
City (downtown)	0.7—0.95
Residential	
Single-family	0.3—0.5
Multi-plexes,	0.4—0.6
Multi-plexes,	0.6—0.75
Suburban	0.25—0.4
Apartments,	0.5—0.7
Industr	rial
Light	0.5—0.8
Heavy	0.6—0.9

Hazen-Williams Constants

Typical Design Value	100	130	140	130	100
Clean, New Pipe	130	140	150	140	140
Typical Range	80 - 150	120 - 150		120 - 150	80-150
Pipe Material	Cast Iron and Wrought Iron	Copper, Glass or Brass	Cement lined Steel or Iron	Plastic PVC or ABS	Steel, welded and seamless or interior riveted

Equivalent Length of (Generic) Fittings

י י	Screway Fittings	azic ad ia										
	red i ittiliga	1/4	3/8	1/2	3/4	1	11/4	11/2	2	2 1/2	3	4
	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	9.9	7.4	8.5	9.3	11.0	13.0
Elbows	Long radius 90 degree	1.5	2.0	2.2	2.3	2.7	3.2	3.4	3.6	3.6	4.0	4.6
_	Regular 45 degree	€'0	6.0	2.0	6'0	1.3	1.7	2.1	2.7	3.2	4.0	5.5
	Line Flow	8.0	1.2	1.7	2.4	3.2	4.6	5.6	7.7	9.3	12.0	17.0
0	Branch Flow	2.4	3.5	4.2	5.3	6.6	8.7	6.6	12.0	13.0	17.0	21.0
Return Bends	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0
,	Gate	6.0	0.5	9.0	0.7	0.8	1.1	1.2	1.5	1.7	1.9	2.5
	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0
Strainer			4.6	5.0	9.9	7.7	18.0	20.0	27.0	29.0	34.0	42.0

		Pi pe Size																
LIGIL	rialigeu rittiligs	1/2	3/4	1	11/4	11/2	2	21/2	3	4	- 2	9	8	10	12	14	16	18
	Regular 90 degree	6'0	1.2	1.6	2.1	2.4	3.1	3.6	4.4	6'5	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Elbows	Long radius 90 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.7	3.4	4.2	5.0	5.7	0.7	8.0	0.6	9.4	10.0	11.0
	Regular 45 degree	0.5	9.0	0.8	1.1	1.3	1.7	2.0	2.6	3.5	4.5	5.6	7.7	0.6	11.0	13.0	15.0	16.0
****	Line Flow	0.7	8.0	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	0.9	6.4	7.2	7.6
9	Branch Flow	2.0	2.6	3.3	4.4	5.2	9.9	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return Bends	Return Bends Regular 180 degree	6.0	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	210	23.0
	Long radius 180 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Globe	38.0	40.0	45.0	54.0	29.0	0.07	17.0	94.0	120.0	150.0	190.0	260.0	310.0	390.0			
Valves	Gate						2.6	2.7	2.8	5.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
	Angle	15.0	15.0	17.0	18.0	18.0	210	22.0	28.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

555 Timer Design Equations

$$T = 0.693 (R_A + 2R_B)C$$

$$f = \frac{1}{T}$$

$$\text{duty-cycle} = \frac{(R_A + R_B)}{(R_A + 2R_B)} \cdot 100\%$$

T = period

f = frequency

 R_A = resistance A

 R_B = resistance B

C = capacitance

Boolean Algebra

Boolean Theorems

$$X \bullet X = X$$

$$X \cdot \overline{X} = 0$$

$$X + 0 = X$$

$$X + X = X$$

$$X + \overline{X} = 1$$

$$\overline{\overline{X}} = X$$

Commutative Law

$$X \bullet Y = Y \bullet X$$

$$X+Y = Y+X$$

Associative Law

$$X(YZ) = (XY)Z$$

$$X + (Y + Z) = (X + Y) + Z$$

Distributive Law

$$X(Y+Z) = XY + XZ$$

$$(X+Y)(W+Z) = XW+XZ+YW+YZ$$

Consensus Theorems

$$X + \overline{X}Y = X + Y$$

$$X + \overline{X}\overline{Y} = X + \overline{Y}$$

$$\overline{X} + XY = \overline{X} + Y$$

$$\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$$

DeMorgan's Theorems

$$\overline{XY} = \overline{X} + \overline{Y}$$

$$\overline{X+Y} = \overline{X} \cdot \overline{Y}$$

Speeds and Feeds

$$N = \frac{CS(12\frac{in.}{ft})}{\pi d}$$

$$f_m = f_t \cdot n_t \cdot N$$

Plunge Rate = ½·f_m

N = spindle speed (rpm)

CS = cutting speed (in./min)

d = diameter (in.)

f_m = feed rate (in./min)

 $f_t = feed (in./tooth)$

n_t = number of teeth

Aerospace Equations

Forces of Flight

$$C_D = \frac{2D}{A\rho v^2}$$

$$R_e = \frac{\rho v I}{\mu}$$

$$C_L = \frac{2L}{A\rho v^2}$$

M = Fd

 C_L = coefficient of lift

 C_D = coefficient of drag

L = lift

D = drag

A = wing area

 ρ = density

R_e = Reynolds number

v = velocity

I = length of fluid travel

 μ = fluid viscosity

F = force

m = mass

g = acceleration due to gravity

M = moment

d = moment arm (distance from datum perpendicular to F)

Propulsion

 $F_N = W(v_j - v_o)$

 $I = F_{ave} \Delta t$

 $F_{net} = F_{avq} - F_q$

a = v_f∆t

 F_N = net thrust

W = air mass flow

v_o = flight velocity

 v_i = jet velocity

I = total impulse

 F_{ave} = average thrust force

 Δt = change in time (thrust duration)

 $F_{net} = net force$

 F_{avg} = average force

 F_g = force of gravity

v_f = final velocity

a = acceleration

 Δt = change in time (thrust duration)

NOTE: F_{ave} and F_{avg} are easily confused.

Energy

$$K = \frac{1}{2} mv^2$$

$$U = \frac{-GMm}{R}$$

$$E = U + K = -\frac{GMm}{2R}$$

K = kinetic energy

m =mass

v = velocity

U = gravitational potential energy

G = universal gravitation constant

M =mass of central body

m = mass of orbiting object

R = Distance center main body to

center of orbiting object

E = Total Energy of an orbit

Orbital Mechanics

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

$$T = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{\mu}} = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{GM}}$$

$$F = \frac{GMm}{r^2}$$

e = eccentricity

b = semi-minor axis

a =semi-major axis

T = orbital period

a = semi-major axis

μ = gravitational parameter

F = force of gravity between two bodies

G = universal gravitation constant

M =mass of central body

m = mass of orbiting object

r = distance between center of two objects

Bernoulli's Law

$$\left(P_s + \frac{\rho v^2}{2}\right)_1 = \left(P_s + \frac{\rho v^2}{2}\right)_2$$

P_S = static pressure

v = velocity

 $\rho = density$

Atmosphere Parameters

T = 15.04 - 0.00649h

p = 101.29
$$\left[\frac{(T + 273.1)}{288.08} \right]^{5.256}$$

$$\rho = \frac{p}{0.2869(T + 273.1)}$$

T = temperature

h = height

p = pressure

 ρ = density