ТОПОЛОГИЯ СЛОЕНИЙ ЛИУВИЛЛЯ ФАЗОВОГО ПРОСТРАНСТВА СЛУЧАЯ КОВАЛЕВСКОЙ НА АЛГЕБРЕ ЛИ so(4)

В.А. Кибкало

(МГУ им. М.В. Ломоносова; slava.kibkalo@gmail.com) Работа выполнена при поддержке РНФ, грант 17-11-01303

1. Рассмотрим вполне интегрируемую по Лиувиллю система $v=\operatorname{sgrad} H$ на фазовом пространстве.

На симплектическом (M^4, ω) такие системы имеют два инволютивных, функционально независимых первых интеграла H, K с полными потоками. Фазовое пространство расслаивается на двумерные неособые торы и особые слои — совместные уровни первых интегралов. Почти все траектории реализуют условно-периодическую обмотку тора.

В работах А.Т. Фоменко и его школы исследовались свойства таких слоений на трехмерных поверхностях Q^3 [1]. Согласно теореме Фоменко-Цишанга, два слоения на неособых Q_1^3 и Q_2^3 эквивалентны \Leftrightarrow совпадает их инвариант Фоменко-Цишанга. Он является графом с числовыми метками (r, ε, n) , вершины которого соответствуют особым слоям, а ребра — семействам неособых. Лиувиллев анализ (их вычисление) для классических систем проводился многими авторами.

2. Гамильтоновы системы порождают динамические системы на орбитах коприсоединенного представления алгебр Ли. Ряд новых систем получается из классических "возмущением" гамильтониана и скобки Ли–Пуассона. Например, И.В. Комаров [2] вложил (при $\varkappa=0$) случай Ковалевской на $\mathrm{e}(3)$ в семейство динамических систем на пучке алгебр Ли $\mathrm{e}(3,1)-\mathrm{e}(3)-\mathrm{so}(4)$ на $\mathbb{R}^6(\mathbf{J},\mathbf{x})$ со скобками Пуассона–Ли:

$$\{J_i, J_j\} = \varepsilon_{ijk}J_k, \quad \{J_i, x_j\} = \varepsilon_{ijk}x_k, \quad \{x_i, x_j\} = \varkappa \varepsilon_{ijk}J_k,$$

 $\varepsilon_{ijk} = sgn(\{123\} \to \{ijk\})$. При $\varkappa > 0$ имеем алгебру so(4). Орбита является совместным уровнем функций Казимира

$$f_1 = (x_1^2 + x_2^2 + x_3^2) + \varkappa (J_1^2 + J_2^2 + J_3^2), \qquad f_2 = x_1 J_1 + x_2 J_2 + x_3 J_3.$$

 Γ амильтониан H и дополнительный интеграл K имеют вид

$$H = J_1^2 + J_2^2 + 2J_3^2 + 2c_1x_1,$$

$$K = (J_1^2 - J_2^2 - 2c_1x_1 + \varkappa c_1^2)^2 + (2J_1J_2 - 2c_1x_2)^2.$$

3. При $\varkappa > 0$ автором классифицированы слоения неособых изоэнергетических $Q_{a,b,h}^3 = \{f_1 = a, f_2 = b, H = h\}.$

Теорема 1. 1) В системе Ковалевской на so(4) существует ровно 27 классов $L_1, \ldots L_{27}$ лиувиллево неэквивалентных слоений на связных компонентах неособых $Q_{a,b,h}^3$.

2) $\mathbb{R}^3_{a,b,h}$ разбито на 54 связных открытых множества с фиксированным классом слоения на $Q_{a,b,h}$ и особое \mathbb{A}^2 .

Эквивалентность слоений двух систем на Q^3 означает совпадение замыканий их решений при данных энергиях.

Теорема 2. Следующие слоения интегрируемых систем эквиваленты слоениям L_i на $Q_{a,b,h}^3$ Ковалевской на $\mathrm{so}(4)$

- 1) случай Ковалевской на e(3) моделируется полностью: A, \ldots, J (см. [3]) эквивалентны $L_i, i \in \{1, 12, 3, 4, 15, 27, 24, 20, 24, 18\},$
 - 2) Ковалевская–Яхьи: h_{10} и h_2 эквивалентны L_{23} и L_2 ,
 - 3) Клебш: 1, 2, 6, 7 эквивалентны L_1, L_2, L_9, L_{10} ,
 - 4) Соколов на e(3): A, B, F эквивалентны L_1, L_2, L_4 ,
- 5) интегрируемые биллиарды в софокусных квадриках со склейками по выпуклым и невыпуклым дугам границы: $A'_0, A_2, A_1, A_0, \Delta_{\alpha}(A_1 + A_1)$ (см. [5]) моделируют L_1, L_2, L_6, L_8, L_7 .

Каждая орбита (a,b) задается значениями f_1,f_2 , ей соответствует бифуркационная диаграмма отображения момента Σ ([4]). При $\varkappa>0$ для орбит (a,b) с a>g(b) особые точки Σ , не встречавшиеся при $\varkappa=0$, лежат в области

Рис. 1: Случай e(3) "вложен" в случай so(4).

 $\{h > h_0(a,b)\}$, а остальные — в $\{h < h_0(a,b)\}$. Т.е. случай Ковалевской с $\varkappa = 0$ в a,b > 0 можно послойно отождествить с системой $\varkappa > 0\{a > g(b), h < h_0(a,b)\}$.

Литература

- 1. *Болсинов А.В., Фоменко А.Т.* Интегрируемые гамильтоновы системы. Геометрия, топология, классификация. Ижевск.: Издат. дом "Удмурт. ун-т", 1999.
- 2. *Комаров И.В.* Базис Ковалевской для атома водорода. ТМФ 1981. **47** № 1. 67–72.
- 3. Болсинов А.В., Рихтер П.Х., Фоменко А.Т. Метод круговых молекул и топология волчка Ковалевской. Матем. сб. 2000. **191**, № 2. 3–42.
- 4. *Козлов И.К.* Топология слоения Лиувилля для интегрируемого случая Ковалевской на алгебре Ли so(4). Матем. сб. 2014. **205**, № 4. 79–120.
- 5. Bедюшкина В.В. Слоение Лиувилля невыпуклых топологических биллиардов. ДАН 2018. 418 № 1.