Quick Refresher on HMM and LDS

Shoichiro Yamanishi

May 10, 2020

Abstract

This is a personal notes as my own memory aid on Hidden Markov Models and Linear Dynamical Systems. Specifically the following topics.

- Baum-Welch EM algorithm
- Viterbi algorithm
- Kalman Filter
- Rauch-Tung-Striebel smoother and EM algorithm

Chapter 13 of PRML[2] Chap 13 is an excellent source for HMM (Baum-Welch, Viterbi) and Kalman Filter as in $p(\mathbf{z}_n|\mathbf{z}1,\cdots,\mathbf{z}_n)$, but not so good for Kalman smoother (RTS smoother) as in $p(\mathbf{z}_n|\mathbf{z}_1,\cdots,\mathbf{z}_N)$. Especially the derivation of $p(\mathbf{z}_n,\mathbf{z}_{n+1}|\mathbf{z}_1,\cdots,\mathbf{z}_N)$, which is required for EM-algorithm, is a bit shaky between (13.103) and (13.104). For deriving RTS smoother, I used an excellent course notes [4] from Professor Särkkä of Aalto Univ. Also, Chap 24 of Barber [1] contains comprehensive materials for LDS, but it is a bit difficult to understand and I personally do not like the style of notations.

1 Baum-Welch Algorithm

1.1 HMM Model formation

Figure 1: Parameter Reduction

Let x_i be the variables observed, and z_i be one-of-K latent variables. And let the joint distribution be:

$$p(x_1, x_2, \dots, x_N, z_1, z_2, \dots, z_N) = p(z_1|\pi) \prod_{n=1}^{N} p(z_n|z_{n-1}) \prod_{n=1}^{N} p(x_n|z_n)$$
 (1)

as a hidden Markov model. Please note that $(\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_N)$ are not i.i.d. We parameterize $p(\boldsymbol{z}_n|\boldsymbol{z}_{n-1})$ called transition probability as $p(\boldsymbol{z}_n|\boldsymbol{z}_{n-1}, A)$, where A is a $K \times K$ matrix, and each row A_i represent a multinomial distribution, i.e., $\sum_{j=1}^K A_{i,j} = 1$, and $A_{i,j} \geq 0$. This means A_i represents the distribution of \boldsymbol{z}_n , if $[\boldsymbol{z}_{n-1}]_i = 1$ (i is chosen for \boldsymbol{z}_{n-1} .) So,

$$p(z_n|z_{n-1}, A) = \prod_{j=1}^K \prod_{i=1}^K A_{i,j}^{[z_{n-1}]_i[z_n]_j}$$
(2)

and for the initial distribution,

$$p(\boldsymbol{z}_1|\boldsymbol{\pi}) = \prod_{j=1}^{K} \pi_j^{[\boldsymbol{z}_1]_j}$$
(3)

We also parameterize $p(\boldsymbol{x}_n|\boldsymbol{z}_n)$ called *emission probability* as

$$p(\boldsymbol{x}_n|\boldsymbol{z}_n,\boldsymbol{\phi}) = \prod_{j=1}^K p(\boldsymbol{x}_n|\phi_j)^{[\boldsymbol{z}_n]_j}$$
(4)

This can be a Gaussian mixture. Then we aggregate the parameters A and ϕ into θ The parameterized joint distribution is:

$$p(\boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_N, \boldsymbol{z}_1, \boldsymbol{z}_2, \cdots, \boldsymbol{z}_N | \boldsymbol{\theta}) = p(\boldsymbol{z}_1 | \boldsymbol{\pi}) \prod_{n=1}^{N} p(\boldsymbol{z}_n | \boldsymbol{z}_{n-1}, A) \prod_{n=1}^{N} p(\boldsymbol{x}_n | \boldsymbol{z}_n, \boldsymbol{\phi})$$
(5)

1.2 Maximum Likelihood with EM-algorithm

The maximum likelihodd estimate for the parameter θ given the observations x_1, x_2, \dots, x_N is:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \left\{ p(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{N} | \boldsymbol{\theta}) \right\} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \left\{ \sum_{\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N}} p(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{N}, \boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N} | \boldsymbol{\theta}) \right\}$$
(6)

The summation over z_1, z_2, \dots, z_N on RHS is intractable, and we need to use EM-framework. For that we need to form the following function of θ and θ^* derived from ELBO.

$$Q(\boldsymbol{\theta}_{old}, \boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{z}_{1}, \dots, \boldsymbol{z}_{N}) \sim p(\boldsymbol{z}_{1}, \dots, \boldsymbol{z}_{N} | \boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N}, \boldsymbol{\theta}_{old})} \left[\ln p(\boldsymbol{z}_{1}, \dots, \boldsymbol{z}_{N}, \boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N}, \boldsymbol{\theta}) \right]$$

$$= \mathbb{E} \left[\sum_{k=1}^{K} [\boldsymbol{z}_{1}]_{k} \ln \pi_{k} + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{i=1}^{K} [\boldsymbol{z}_{n-1}]_{i} [\boldsymbol{z}_{n}]_{j} \ln A_{i,j} + \sum_{n=1}^{N} \sum_{i=1}^{K} [\boldsymbol{z}_{n-1}]_{i} \ln p(\boldsymbol{x}_{n} | \boldsymbol{\phi}_{k}) \right]$$

$$= \sum_{k=1}^{K} \mathbb{E} \left[[\boldsymbol{z}_{1}]_{k} \right] \ln \pi_{k} + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{i=1}^{K} \mathbb{E} \left[[\boldsymbol{z}_{n-1}]_{i} [\boldsymbol{z}_{n}]_{j} \right] \ln A_{i,j} + \sum_{n=1}^{N} \sum_{i=1}^{K} \mathbb{E} \left[[\boldsymbol{z}_{n}]_{i} \right] \ln p(\boldsymbol{x}_{n} | \boldsymbol{\phi}_{k})$$

$$(7)$$

We introduce two types of marginal distributions,

$$\gamma(z_i) = p(z_i|x_1, \dots, x_N, \boldsymbol{\theta}_{old}), \in \mathcal{R}^K$$

$$\boldsymbol{\xi}(z_i, z_{i+1}) = p(z_i, z_{i+1}|x_1, \dots, x_N, \boldsymbol{\theta}_{old}) \in \mathcal{R}^{K \times K}$$
(8)

as in (13.13) and (13.14) of PRML [2]. Then we can express the expectations above as follows.

$$\mathbb{E}\left[[\boldsymbol{z}_{i}]_{k}\right] = \sum_{k=1}^{K} [\boldsymbol{\gamma}(\boldsymbol{z}_{i})]_{k} [\boldsymbol{z}_{i}]_{k}$$

$$\mathbb{E}\left[[\boldsymbol{z}_{i}]_{k}[\boldsymbol{z}_{i+1}]_{m}\right] = \sum_{k=1}^{K} \sum_{m=1}^{K} [\boldsymbol{\xi}(\boldsymbol{z}_{i}, \boldsymbol{z}_{i+1})]_{km} [\boldsymbol{z}_{i}]_{k} [\boldsymbol{z}_{i+1}]_{m}$$
(9)

Please note $p(\mathbf{z}_1, \dots, \mathbf{z}_N | \mathbf{x}_1, \dots, \mathbf{x}_N, \boldsymbol{\theta}_{old})$ is not cleanly factorized, i.e. Marginalization is required for $\gamma(\mathbf{z}_i)$ and $\boldsymbol{\xi}(\mathbf{z}_i, \mathbf{z}_{i+1})$. This is where the sum-product belief propagaion along the chain comes to the rescue.

First we factorize $\gamma(z_n)$ conditioned on x_1, \dots, x_N . using Baye's rule and the conditional independence.

$$\gamma(\boldsymbol{z}_{n}) = p(\boldsymbol{z}_{n}|\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N})
= \frac{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N}|\boldsymbol{z}_{n})p(\boldsymbol{z}_{n})}{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N})}
= \frac{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}|\boldsymbol{z}_{n})p(\boldsymbol{x}_{n+1}, \dots, \boldsymbol{x}_{N}|\boldsymbol{z}_{n})p(\boldsymbol{z}_{n})}{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N})}
= \frac{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}, \boldsymbol{z}_{n})p(\boldsymbol{x}_{n+1}, \dots, \boldsymbol{x}_{N}|\boldsymbol{z}_{n})}{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N})}
= \frac{\boldsymbol{\alpha}(\boldsymbol{z}_{n})\boldsymbol{\beta}(\boldsymbol{z}_{n})}{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N})}$$
(10)

where $\alpha(\boldsymbol{z}_n) = p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n, \boldsymbol{z}_n)$ and $\beta(\boldsymbol{z}_n) = p(\boldsymbol{x}_{n+1}, \dots, \boldsymbol{x}_N | \boldsymbol{z}_n)$.

In the same way, we factorize $\boldsymbol{\xi}(\boldsymbol{z}_i, \boldsymbol{z}_{i+1})$ conditioned on $\boldsymbol{x}_1, \dots, \boldsymbol{x}_N$.

$$\xi(z_{n}, z_{n+1}) = p(z_{n}, z_{n+1} | x_{1}, \dots, x_{N})
= \frac{p(x_{1}, \dots, x_{N}, z_{n}, z_{n+1})}{p(x_{1}, \dots, x_{N})}
= \frac{p(x_{1}, \dots, x_{N} | z_{n}, z_{n+1}) p(z_{n}, z_{n+1})}{p(x_{1}, \dots, x_{N})}
= \frac{p(x_{1}, \dots, x_{n} | z_{n}, z_{n+1}) p(x_{n+1} | z_{n}, z_{n+1}) p(x_{n+2}, \dots, x_{N} | z_{n}, z_{n+1}) p(z_{n+1} | z_{n}) p(z_{n})}{p(x_{1}, \dots, x_{N})}
= \frac{p(x_{1}, \dots, x_{n} | z_{n}) p(x_{n+1} | z_{n+1}) p(x_{n+2}, \dots, x_{N} | z_{n+1}) p(z_{n+1} | z_{n}) p(z_{n})}{p(x_{1}, \dots, x_{N})}
= \frac{p(x_{1}, \dots, x_{n} | z_{n}) p(z_{n}) p(x_{n+1} | z_{n+1}) p(z_{n+1} | z_{n}) p(x_{n+2}, \dots, x_{N} | z_{n+1})}{p(x_{1}, \dots, x_{N})}
= \frac{\alpha(z_{n}) p(x_{n+1} | z_{n+1}) p(z_{n+1} | z_{n}) \beta(z_{n+1})}{p(x_{1}, \dots, x_{N})}$$
(11)

1.3 Belief Propagation (Sum-Product Algorithm over a Chain

Next we define $\alpha(z_n)$ in the forward propagation, and $\beta(z_n)$ in the backward propagation as follows.

$$\alpha(\mathbf{z}_{1}) = p(\mathbf{x}_{1}, \mathbf{z}_{1}) = p(\mathbf{x}_{1}|\mathbf{z}_{1})p(\mathbf{z}_{1})$$

$$\alpha(\mathbf{z}_{n}) = p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{n})$$

$$= p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}|\mathbf{z}_{n})p(\mathbf{z}_{n})$$

$$= p(\mathbf{x}_{n}|\mathbf{z}_{n})p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n-1}|\mathbf{z}_{n})p(\mathbf{z}_{n})$$

$$= p(\mathbf{x}_{n}|\mathbf{z}_{n})p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n-1}, \mathbf{z}_{n})$$

$$= p(\mathbf{x}_{n}|\mathbf{z}_{n})\sum_{k=1}^{K} p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n-1}, [\mathbf{z}_{n-1}]_{k}, \mathbf{z}_{n})$$

$$= p(\mathbf{x}_{n}|\mathbf{z}_{n})\sum_{k=1}^{K} p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n-1}, \mathbf{z}_{n} | [\mathbf{z}_{n-1}]_{k})p([\mathbf{z}_{n-1}]_{k})$$

$$= p(\mathbf{x}_{n}|\mathbf{z}_{n})\sum_{k=1}^{K} p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n-1} | [\mathbf{z}_{n-1}]_{k})p(\mathbf{z}_{n} | [\mathbf{z}_{n-1}]_{k})$$

$$= p(\mathbf{x}_{n}|\mathbf{z}_{n})\sum_{k=1}^{K} p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n-1} | [\mathbf{z}_{n-1}]_{k})p([\mathbf{z}_{n-1}]_{k})p(\mathbf{z}_{n} | [\mathbf{z}_{n-1}]_{k})$$

$$= p(\mathbf{x}_{n}|\mathbf{z}_{n})\sum_{k=1}^{K} [\alpha(\mathbf{z}_{n-1})]_{k}p(\mathbf{z}_{n} | [\mathbf{z}_{n-1}]_{k})$$

This is a forward propagation summing over z_{n-1} . Please note $\alpha(z_n)$ is not a normalized probability distribution. In the same way,

$$\beta(z_{N}) = 1
\beta(z_{n}) = p(x_{n+1}, \dots, x_{N} | z_{n})
= \frac{p(x_{n+1}, \dots, x_{N}, z_{n})}{p(z_{n})}
= \frac{\sum_{k=1}^{K} p(x_{n+1}, \dots, x_{N}, z_{n}, [z_{n+1}]_{k})}{p(z_{n})}
= \frac{\sum_{k=1}^{K} p(x_{n+1}, \dots, x_{N}, z_{n} | [z_{n+1}]_{k}) p([z_{n+1}]_{k})}{p(z_{n})}
= \frac{\sum_{k=1}^{K} p(x_{n+1}, \dots, x_{N} | [z_{n+1}]_{k}) p(z_{n} | [z_{n+1}]_{k}) p([z_{n+1}]_{k})}{p(z_{n})}
= \frac{\sum_{k=1}^{K} p(x_{n+1}, \dots, x_{N} | [z_{n+1}]_{k}) p([z_{n}, [z_{n+1}]_{k})}{p(z_{n})}
= \frac{\sum_{k=1}^{K} p(x_{n+1}, \dots, x_{N} | [z_{n+1}]_{k}) p([z_{n+1}]_{k} | z_{n}) p(z_{n})}{p(z_{n})}
= \frac{p(z_{n}) \sum_{k=1}^{K} p(x_{n+1}, \dots, x_{N} | [z_{n+1}]_{k}) p([z_{n+1}]_{k} | z_{n})}{p(z_{n})}
= \sum_{k=1}^{K} p(x_{n+1}, \dots, x_{N} | [z_{n+1}]_{k}) p([z_{n+1}]_{k} | z_{n})
= \sum_{k=1}^{K} p(x_{n+1} | [z_{n+1}]_{k}) p(x_{n+2}, \dots, x_{N} | [z_{n+1}]_{k}) p([z_{n+1}]_{k} | z_{n})
= \sum_{k=1}^{K} \beta(z_{n+1}) p(x_{n+1} | [z_{n+1}]_{k}) p([z_{n+1}]_{k} | z_{n}),$$

This is a backward propagation summing over z_{n+1} . Please note that the derivation of $\beta(z_n)$ in PRML [2] in pp 621 is wrong between the 2nd and 3rd lines.

After finding $\alpha(z_n)$ and $\beta(z_n)$, we can calculate $\gamma(z_n)$ and $\xi(z_n, z_{n+1})$, and then $\mathbb{E}[[z_i]_k]$ and $\mathbb{E}[[z_i]_k[z_{i+1}]_m]$. This corresponds to the E-step.

Then at the M-step, we can find θ^* such that $\theta^* = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \{Q(\boldsymbol{\theta}_{old}, \boldsymbol{\theta})\}.$ Usually this is achieved by $\nabla_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}_{old}, \boldsymbol{\theta}) = 0$.

1.4 Scaling α and β

As stated above, $\alpha(z_n)$ and $\beta(z_n)$ are not normalized and it can lead to numerical issues through the recursion. To avoid those issues, we normalize $\alpha(z_n)$ and

we increase the value of $\beta(z_n)$ as follows.

$$\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_n) = \frac{\boldsymbol{\alpha}(\boldsymbol{z}_n)}{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n)} = \frac{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n, \boldsymbol{z}_n)}{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n)} = p(\boldsymbol{z}_n | \boldsymbol{x}_1, \cdots, \boldsymbol{x}_n)$$
(14)

$$\hat{\boldsymbol{\beta}}(\boldsymbol{z}_n) = \frac{\boldsymbol{\beta}(\boldsymbol{z}_n)}{p(\boldsymbol{x}_{n+1}, \cdots, \boldsymbol{x}_N | \boldsymbol{x}_1, \cdots, \boldsymbol{x}_n)} = \frac{p(\boldsymbol{x}_{n+1}, \cdots, \boldsymbol{x}_N | \boldsymbol{z}_n)}{p(\boldsymbol{x}_{n+1}, \cdots, \boldsymbol{x}_N | \boldsymbol{x}_1, \cdots, \boldsymbol{x}_n)} \quad (15)$$

Please note that $\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_n)$ is a proper pribability density function, but $\hat{\boldsymbol{\beta}}(\boldsymbol{z}_n)$ is not. Next, we calculate $\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_n)$ and $\hat{\boldsymbol{\beta}}(\boldsymbol{z}_n)$ recursively with belief propagation. For that, use a a tool as a factor as follows.

$$c_1 = p(\boldsymbol{x}_1)$$

$$c_n = p(\boldsymbol{x}_n | \boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_{n-1})$$
(16)

It has the following characteristics.

$$\prod_{i=1}^{n} c_{i} = p(\boldsymbol{x}_{1})p(\boldsymbol{x}_{2}|\boldsymbol{x}_{1})p(\boldsymbol{x}_{3}|\boldsymbol{x}_{1},\boldsymbol{x}_{2})\cdots p(\boldsymbol{x}_{n}|\boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots,\boldsymbol{x}_{n-1})$$

$$= p(\boldsymbol{x}_{1})\frac{p(\boldsymbol{x}_{2},\boldsymbol{x}_{1})}{p(\boldsymbol{x}_{1})}\frac{p(\boldsymbol{x}_{3},\boldsymbol{x}_{2},\boldsymbol{x}_{1})}{p(\boldsymbol{x}_{1},\boldsymbol{x}_{2})}\cdots \frac{p(\boldsymbol{x}_{n},\boldsymbol{x}_{n-1},\cdots,\boldsymbol{x}_{1})}{p(\boldsymbol{x}_{n-1},\cdots,\boldsymbol{x}_{1})}$$

$$= p(\boldsymbol{x}_{n},\boldsymbol{x}_{n-1},\cdots,\boldsymbol{x}_{1})$$
(17)

$$\prod_{i=n+1}^{N} c_i = p(\boldsymbol{x}_{n+1}|\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n) p(\boldsymbol{x}_{n+2}|\boldsymbol{x}_1, \cdots, \boldsymbol{x}_{n+1}) \cdots p(\boldsymbol{x}_N|\boldsymbol{x}_1, \cdots, \boldsymbol{x}_{N-1})$$

$$= \frac{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_{n+1})}{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n)} \frac{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_{n+2})}{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_{n+1})} \cdots \frac{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_N)}{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_{N-1})}$$

$$= \frac{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_N)}{p(\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n)}$$

$$= p(\boldsymbol{x}_{n+1}, \cdots, \boldsymbol{x}_N|\boldsymbol{x}_1, \cdots, \boldsymbol{x}_n)$$

Then analogous to the equatation 12, the recursive definision of $\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_n)$ will be

$$p(\boldsymbol{x}_{n}|\boldsymbol{z}_{n}) \sum_{k=1}^{K} [\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n-1})]_{k} p(\boldsymbol{z}_{n} \mid [\boldsymbol{z}_{n-1}]_{k})$$

$$= p(\boldsymbol{x}_{n}|\boldsymbol{z}_{n}) \sum_{k=1}^{K} \left[\frac{\boldsymbol{\alpha}(\boldsymbol{z}_{n-1})}{p(\boldsymbol{x}_{n}, \dots, \boldsymbol{x}_{n-1})} \right]_{k} p(\boldsymbol{z}_{n} \mid [\boldsymbol{z}_{n-1}]_{k})$$

$$= \frac{1}{p(\boldsymbol{x}_{n}, \dots, \boldsymbol{x}_{n-1})} p(\boldsymbol{x}_{n}|\boldsymbol{z}_{n}) \sum_{k=1}^{K} [\boldsymbol{\alpha}(\boldsymbol{z}_{n-1})]_{k} p(\boldsymbol{z}_{1} \mid [\boldsymbol{z}_{n-1}]_{k})$$

$$= \frac{\boldsymbol{\alpha}(\boldsymbol{z}_{n})}{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n-1})}$$

$$= \frac{\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n}) p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n-1})}{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n-1})}$$

$$= \hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n}) p(\boldsymbol{x}_{n}|\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n-1})$$

$$= c_{n} \hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n})$$

$$= c_{n} \hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n})$$

Since $\hat{\alpha}(z_n)$ is a normalized distribution, we can calculate c_n as the partition function of RHS of 19 as follows.

$$c_n = \sum_{k=1}^{K} [\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_n) p(\boldsymbol{x}_n | \boldsymbol{x}_1, \cdots, \boldsymbol{x}_{n-1})]_k$$
 (20)

In the same way, for $\hat{\beta}(z_n)$, analogous to 13,

$$\sum_{k=1}^{K} [\hat{\beta}(z_{n+1})]_{k} p(x_{n+1}|[z_{n+1}]_{k}) [p([z_{n+1}|[z_{n})]_{k}] \\
= \frac{\sum_{k=1}^{K} [\beta(z_{n+1})]_{k} p(x_{n+1}|[z_{n+1}]_{k}) [p([z_{n+1}|[z_{n})]_{k}]}{p(x_{n+2}, \dots, x_{N}|x_{1}, \dots, x_{n+1})} \\
= \frac{\beta(z_{n})}{p(x_{n+2}, \dots, x_{N}|x_{1}, \dots, x_{n+1})} \\
= \frac{p(x_{n+1}, \dots, x_{N}|x_{1}, \dots, x_{n})}{p(x_{n+2}, \dots, x_{N}|x_{1}, \dots, x_{n+1})} \hat{\beta}(z_{n}) \\
= \frac{\frac{p(x_{1}, \dots, x_{N})}{p(x_{1}, \dots, x_{N})}}{p(x_{1}, \dots, x_{n+1})} \hat{\beta}(z_{n}) \\
= \frac{p(x_{1}, \dots, x_{n+1})}{p(x_{1}, \dots, x_{n+1})} \hat{\beta}(z_{n}) \\
= p(x_{n+1}|x_{1}, \dots, x_{n}) \hat{\beta}(z_{n}) \\
= c_{n+1} \hat{\beta}(z_{n})$$
(21)

Then

$$\gamma(\boldsymbol{z}_{n}) = p(\boldsymbol{z}_{n}|\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N}) = \frac{\boldsymbol{\alpha}(\boldsymbol{z}_{n})\boldsymbol{\beta}(\boldsymbol{z}_{n})}{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N})} \\
= \frac{\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n})p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n})\hat{\boldsymbol{\beta}}(\boldsymbol{z}_{n})p(\boldsymbol{x}_{n+1}, \dots, \boldsymbol{x}_{N}|\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n})}{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N})} \\
= \frac{\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n})\hat{\boldsymbol{\beta}}(\boldsymbol{z}_{n})p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N})}{p(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{N})} \\
= \hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n})\hat{\boldsymbol{\beta}}(\boldsymbol{z}_{n})$$

$$(22)$$

and

$$\xi(z_{n}, z_{n+1}) = p(z_{n}, z_{n+1} | x_{1}, \dots, x_{N}) = \frac{\alpha(z_{n})p(x_{n+1} | z_{n+1})p(z_{n+1} | z_{n})\beta(z_{n+1})}{p(x_{1}, \dots, x_{N})}$$

$$= \frac{\hat{\alpha}(z_{n})p(x_{1}, \dots, x_{n})p(x_{n+1} | z_{n+1})p(z_{n+1} | z_{n})\hat{\beta}(z_{n+1})p(x_{n+2}, \dots, x_{N} | x_{1}, \dots, x_{n+1})}{p(x_{1}, \dots, x_{N})}$$

$$= \frac{\hat{\alpha}(z_{n})p(x_{1}, \dots, x_{n})p(x_{n+1} | z_{n+1})p(z_{n+1} | z_{n})\hat{\beta}(z_{n+1})p(x_{1}, \dots, x_{N})}{p(x_{1}, \dots, x_{N})p(x_{1}, \dots, x_{n+1})}$$

$$= \frac{\hat{\alpha}(z_{n})p(x_{1}, \dots, x_{n})p(x_{n+1} | z_{n+1})p(z_{n+1} | z_{n})\hat{\beta}(z_{n+1})}{p(x_{1}, \dots, x_{n+1})}$$

$$= \frac{\hat{\alpha}(z_{n})p(x_{n+1} | z_{n+1})p(z_{n+1} | z_{n})\hat{\beta}(z_{n+1})}{p(x_{n+1} | x_{1}, \dots, x_{n})}$$

$$= \frac{\hat{\alpha}(z_{n})p(x_{n+1} | z_{n+1})p(z_{n+1} | z_{n})\hat{\beta}(z_{n+1})}{c_{n+1}}$$

2 Viterbi Algorithm

Let's restate the chain model expressed by equation below.

$$p(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{N}, \boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N} | \boldsymbol{\theta}) = p(\boldsymbol{z}_{1} | \boldsymbol{\pi}) \prod_{n=1}^{N} p(\boldsymbol{z}_{n} | \boldsymbol{z}_{n-1}, A) \prod_{n=1}^{N} p(\boldsymbol{x}_{n} | \boldsymbol{z}_{n}, \boldsymbol{\phi})$$
(24)

Assume x_1, x_2, \dots, x_N are observed and θ is fixed. The Viterbi algorithm is used to find the set of z_1, z_2, \dots, z_N that maximizes the conditional distribu-

tion, i.e.,

$$\begin{aligned} \boldsymbol{z}_{1}^{*}, \boldsymbol{z}_{2}^{*}, \cdots, \boldsymbol{z}_{N}^{*} &= \underset{\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N}}{\operatorname{argmax}} \left\{ p(\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N} | \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{N}, \boldsymbol{\theta}) \right\} \\ &= \underset{\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N}}{\operatorname{argmax}} \left\{ p(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{N}, \boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N} | \boldsymbol{\theta}) \right\} \\ &= \underset{\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N}}{\operatorname{argmax}} \left\{ \ln p(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{N}, \boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N} | \boldsymbol{\theta}) \right\} \\ &= \underset{\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N}}{\operatorname{argmax}} \left\{ \ln p(\boldsymbol{z}_{1} | \boldsymbol{\pi}) + \sum_{n=1}^{N} \ln p(\boldsymbol{z}_{n} | \boldsymbol{z}_{n-1}, \boldsymbol{A}) + \sum_{n=1}^{N} \ln p(\boldsymbol{x}_{n} | \boldsymbol{z}_{n}, \boldsymbol{\phi}) \right\} \\ &= \underset{\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \cdots, \boldsymbol{z}_{N}}{\operatorname{argmax}} \left\{ \sum_{k=1}^{K} [\boldsymbol{z}_{1}]_{k} \ln \boldsymbol{\pi}_{k} + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{i=1}^{K} [\boldsymbol{z}_{n-1}]_{i} [\boldsymbol{z}_{n}]_{j} \ln \boldsymbol{A}_{i,j} + \sum_{n=1}^{N} \sum_{i=1}^{K} [\boldsymbol{z}_{n}]_{i} \ln p(\boldsymbol{x}_{n} | \boldsymbol{\phi}_{k}) \right\} \end{aligned}$$

$$(25)$$

This can be considered to be a MAP estimate with the non-informative prior over z_n . The above maximization is recursively defined using the property of the discrete variable z_n and distributive property of max operation as follows.

$$p(\boldsymbol{z}_{1}^{*}, \boldsymbol{z}_{2}^{*}, \cdots, \boldsymbol{z}_{N}^{*}) = \max_{\substack{k_{N} \text{ over } \boldsymbol{z}_{N} \\ k_{N-1} \text{ over } \boldsymbol{z}_{N-1}}} \left\{ \ln(\boldsymbol{x}_{N} | \boldsymbol{\phi}_{k_{N}}) + \ln A_{k_{N-1}, k_{N}} + \right.$$

$$\max_{\substack{k_{N-1} \text{ over } \boldsymbol{z}_{N-1} \\ k_{N-1} \text{ over } \boldsymbol{z}_{N-1}}} \left\{ \ln p(\boldsymbol{x}_{2} | \boldsymbol{\phi}_{k_{2}}) + \ln A_{k_{2}, k_{3}} + \right.$$

$$\max_{\substack{k_{1} \text{ over } \boldsymbol{z}_{1} \\ k_{1} \text{ over } \boldsymbol{z}_{1}}} \left\{ \ln p(\boldsymbol{x}_{1} | \boldsymbol{\phi}_{k_{1}}) + \ln A_{k_{1}, k_{2}} + \ln \pi_{k_{1}} \right\}$$

$$\left. \left. \right\} \right\}$$

$$\left. \left. \right\} \right\}$$

And $z_1^*, z_2^*, \dots, z_N^*$ are retrieved by back tracking.

3 Kalman Filter

3.1 Model Formation: Liniear Dynamical System

The underlying graphical model is the same as the HMM and the joint probability distribution is expressed by equation 1. The difference is that z_n and x_n are continuous and they all follow Gaussian distribution as follows.

$$p(\mathbf{z}_1) = \mathcal{N}(\mathbf{z}_1 | \boldsymbol{\mu}_0, P_0)$$

$$p(\mathbf{z}_1 | \mathbf{z}_{n-1}) = \mathcal{N}(\mathbf{z}_n | A\mathbf{z}_{n-1}, \Gamma)$$

$$p(\mathbf{x}_n | \mathbf{z}_n) = \mathcal{N}(\mathbf{x}_n | C\mathbf{z}_n, \Sigma)$$
(27)

3.2 Forward Propagation: Kalman Filter

In this section we mainly follow Section 13.3 of PRML [2], with significantly filling the gaps between the equations. The kalman filter is defined as $p(\mathbf{z}_n|\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_n)$.

This can be recursively defined as in equation 12 and 19 as follows. Let

$$p(\boldsymbol{z}_n|\boldsymbol{x}_1,\boldsymbol{x}_2,\cdots,\boldsymbol{x}_n) = \hat{\boldsymbol{\alpha}}(\boldsymbol{z}_n) = \mathcal{N}(\boldsymbol{z}_n|\boldsymbol{\mu}_n,V_n),$$

then

$$c_n \hat{\boldsymbol{\alpha}}(\boldsymbol{z}_n) = p(\boldsymbol{x}_n | \boldsymbol{z}_n) \int \hat{\alpha}(\boldsymbol{z}_{n-1}) p(\boldsymbol{z}_n | \boldsymbol{z}_{n-1}) d\boldsymbol{z}_{n-1}$$
(28)

where $c_n = p(x_n | x_1, x_2, \cdots, x_{n-1})$.

Now define μ_n and V_n recursively. In order to do that, we use the following identities repeatedly. First, two identies in the closed form among joint normal distributions. Let

$$p(\mathbf{v}) = \mathcal{N}(\mathbf{v}|\boldsymbol{\mu}, \Lambda^{-1})$$

$$p(\mathbf{w}|\mathbf{v}) = \mathcal{N}(\mathbf{w}|M\mathbf{v} + \mathbf{b}, L^{-1})$$
(29)

then

$$p(\boldsymbol{w}) = \int p(\boldsymbol{w}|\boldsymbol{v})p(\boldsymbol{v})d\boldsymbol{v}$$

$$= \int \mathcal{N}(\boldsymbol{w}|M\boldsymbol{v} + \boldsymbol{b}, L^{-1})\mathcal{N}(\boldsymbol{v}|\boldsymbol{\mu}, \Lambda^{-1})d\boldsymbol{v}$$

$$= \mathcal{N}(\boldsymbol{w}|M\boldsymbol{\mu} + \boldsymbol{b}, L^{-1} + M\Lambda^{-1}M^{T})$$
(30)

and

$$p(\boldsymbol{v}|\boldsymbol{w}) = \int \mathcal{N}(\boldsymbol{v}|Q(M^TL(\boldsymbol{w} - \boldsymbol{b}) + \Lambda \boldsymbol{\mu}), Q)$$

$$Q = (\Lambda + M^TLM)^{-1}$$
(31)

Let μ_{vw} and Cov_{vw} be the mean and the covariance of the joint distribution p(v, w).

$$\mu_{vw} = \begin{bmatrix} \mu \\ M\mu + b \end{bmatrix}$$
 (32)

$$Cov_{\boldsymbol{v}\boldsymbol{w}} = \begin{bmatrix} \Lambda^{-1} & \Lambda^{-1}M^T \\ M\Lambda^{-1} & L^{-1} + M\Lambda^{-1}M^T \end{bmatrix}$$
(33)

and

$$p(\boldsymbol{v}, \boldsymbol{w}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{v} \\ \boldsymbol{w} \end{bmatrix} \middle| \begin{bmatrix} \boldsymbol{\mu} \\ M\boldsymbol{\mu} + \boldsymbol{b} \end{bmatrix}, \begin{bmatrix} \Lambda^{-1} & \Lambda^{-1}M^T \\ M\Lambda^{-1} & L^{-1} + M\Lambda^{-1}M^T \end{bmatrix}\right)$$
(34)

Next, two identities of matrix inverse,

$$(P^{-1} + B^T R^{-1} B)^{-1} B^T R^{-1} = P B^T (B P B^T + R)^{-1}$$
(35)

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$
(36)

Equation 36 is called the Woodbury identity.

Now, we solve the integration in equation 28.

$$\int \hat{\alpha}(\boldsymbol{z}_{n-1})p(\boldsymbol{z}_{n}|\boldsymbol{z}_{n-1})d\boldsymbol{z}_{n-1} = \int \mathcal{N}(\boldsymbol{z}_{n}|A\boldsymbol{z}_{n-1},\Gamma)\mathcal{N}(\boldsymbol{z}_{n-1}|\mu_{n-1},V_{n-1})d\boldsymbol{z}_{n-1}
= \mathcal{N}(\boldsymbol{z}_{n}|A\boldsymbol{\mu}_{n-1},\Gamma+AV_{n-1}A^{T})
= \mathcal{N}(\boldsymbol{z}_{n}|A\boldsymbol{\mu}_{n-1},P_{n-1})
= p(\boldsymbol{z}_{n}|\boldsymbol{x}_{1},\boldsymbol{x}_{2},\cdots,\boldsymbol{x}_{n-1})$$
(37)

where $P_{n-1} = \Gamma + AV_{n-1}A^T$ and used identity 30. Then we solve the RHS of equation 28.

$$c_{n}\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n}) = p(\boldsymbol{x}_{n}|\boldsymbol{z}_{n}) \int \hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n-1})p(\boldsymbol{z}_{n}|\boldsymbol{z}_{n-1})d\boldsymbol{z}_{n-1}$$

$$= p(\boldsymbol{x}_{n}|\boldsymbol{z}_{n})\mathcal{N}(\boldsymbol{z}_{n}|\boldsymbol{A}\boldsymbol{\mu}_{n-1}, P_{n-1})$$

$$= \mathcal{N}(\boldsymbol{x}_{n}|\boldsymbol{C}\boldsymbol{z}_{n}, \boldsymbol{\Sigma})\mathcal{N}(\boldsymbol{z}_{n}|\boldsymbol{A}\boldsymbol{\mu}_{n-1}, P_{n-1})$$

$$= p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n}|\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \dots, \boldsymbol{x}_{n-1})$$
(38)

then we solve $\hat{\alpha}(z_n)$ as follows.

$$\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_{n}) = \frac{p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} | \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n-1})}{c_{n}}$$

$$= \frac{p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} | \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n-1})}{p(\boldsymbol{x}_{n} | \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n-1})}$$

$$= p(\boldsymbol{z}_{n} | \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n-1}, \boldsymbol{x}_{n})$$
(39)

Using $\mathcal{N}(\boldsymbol{x}_n|C\boldsymbol{z}_n,\Sigma)$, $\mathcal{N}(\boldsymbol{z}_n|A\boldsymbol{\mu}_{n-1},P_{n-1})$, and identity 31,

$$\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_n) = \mathcal{N}(\boldsymbol{z}_n | V_n(C^T \Sigma^{-1} \boldsymbol{x}_n + P_{n-1}^{-1} A \boldsymbol{\mu}_{n-1}), V_n)$$

$$= \mathcal{N}(\boldsymbol{z}_n | \boldsymbol{\mu}_n, V_n)$$
(40)

where

$$V_n = (P_{n-1}^{-1} + C^T \Sigma^{-1} C)^{-1}$$

$$= P_{n-1} - P_{n-1} C^T (\Sigma + C P_{n-1} C^T)^{-1} C P_{n-1} \quad \text{(from Eq. 36)}$$
(41)

and

$$\mu_{n} = V_{n}(C^{T}\Sigma^{-1}\boldsymbol{x}_{n} + P_{n-1}^{-1}A\boldsymbol{\mu}_{n-1})$$

$$= V_{n}C^{T}\Sigma^{-1}\boldsymbol{x}_{n} + V_{n}P_{n-1}^{-1}A\boldsymbol{\mu}_{n-1}$$

$$= (P_{n-1}^{-1} + C^{T}\Sigma^{-1}C)^{-1}C^{T}\Sigma^{-1}\boldsymbol{x}_{n} + V_{n}P_{n-1}^{-1}A\boldsymbol{\mu}_{n-1}$$

$$= P_{n-1}C^{T}(\Sigma - CP_{n-1}C^{T})^{-1}\boldsymbol{x}_{n} + V_{n}P_{n-1}^{-1}A\boldsymbol{\mu}_{n-1} \text{ from Eq.35}$$

$$= K_{n}\boldsymbol{x}_{n} + V_{n}P_{n-1}^{-1}A\boldsymbol{\mu}_{n-1}$$
(42)

where $K_n = P_{n-1}C^T(\Sigma - CP_{n-1}C^T)^{-1}$, and it is called **Kalman Gain**. Using K_n we redefine V_n as follows.

$$V_{n} = P_{n-1} - P_{n-1}C^{T}(\Sigma + CP_{n-1}C^{T})^{-1}CP_{n-1}$$

$$= P_{n-1} - K_{n}CP_{n-1}$$

$$= (I - K_{n}C)P_{n-1}$$
(43)

Then we continue the derivation of μ_n ,

$$\mu_{n} = K_{n} \boldsymbol{x}_{n} + V_{n} P_{n-1} A \mu_{n-1}$$

$$= K_{n} \boldsymbol{x}_{n} + (P_{n-1}^{-1} + C^{T} \Sigma^{-1} C)^{-1} P_{n-1}^{-1} A \mu_{n-1}$$

$$= K_{n} \boldsymbol{x}_{n} + (P_{n-1} - P_{n-1} C^{T} (\Sigma + C P_{n-1} C^{T})^{-1} C P_{n-1}) P_{n-1}^{-1} A \mu_{n-1} \quad \text{(from Eq. 36)}$$

$$= K_{n} \boldsymbol{x}_{n} + (P_{n-1} - K_{n} C P_{n-1}) P_{n-1}^{-1} A \mu_{n-1}$$

$$= K_{n} \boldsymbol{x}_{n} + (I - K_{n} C) A \mu_{n-1}$$

$$= A \mu_{n-1} + K_{n} (\boldsymbol{x}_{n} - C A \mu_{n-1})$$

$$(44)$$

The first term of equation 44 is the prediction, and the second term can be considered a correction after observing x_n .

 c_n is defined as follows.

$$c_n = p(\boldsymbol{x}_n | \boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_{n-1})$$

= $\mathcal{N}(\boldsymbol{x}_n | CA\boldsymbol{\mu}_{n-1}, CP_{n-1}C^T + \Sigma)$ (45)

where we have used the identify 30 for the marginal distribution.

The initial condition will be defined as follows.

$$c_1 \hat{\boldsymbol{\alpha}}(\boldsymbol{z}_1) = p(\boldsymbol{z}_1)(\boldsymbol{x}_1 | \boldsymbol{z}_1)$$

= $\mathcal{N}(\boldsymbol{x}_1 | C\boldsymbol{z}_1, \Sigma) \mathcal{N}(\boldsymbol{z}_1 | \boldsymbol{\mu}_0, P_0)$ (46)

Using $\mathcal{N}(\boldsymbol{x}_1|C\boldsymbol{z}_1,\Sigma)$, $\mathcal{N}(\boldsymbol{z}_1|\boldsymbol{\mu}_0,P_0)$, and identity 31,

$$\hat{\boldsymbol{\alpha}}(\boldsymbol{z}_1) = \mathcal{N}(\boldsymbol{z}_1 | V_1(C^T \Sigma^{-1} \boldsymbol{x}_1 + P_0^{-1} \boldsymbol{\mu}_0), V_1)$$

$$= \mathcal{N}(\boldsymbol{z}_1 | \boldsymbol{\mu}_1, V_1)$$
(47)

where

$$V_{1} = (P_{0}^{-1} + C^{T} \Sigma^{-1} C)^{-1}$$

$$= P_{0} - P_{0} C^{T} (\Sigma + C P_{0} C^{T})^{-1} C P_{0} \text{ (from Eq. 36)}$$

$$= P_{0} - K_{1} C P_{0}$$

$$= (I - K_{1} C) P_{0}$$
(48)

and

$$\mu_{1} = V_{1}(C^{T}\Sigma^{-1}\boldsymbol{x}_{1} + P_{0}^{-1}\boldsymbol{\mu}_{0})
= V_{1}C^{T}\Sigma^{-1}\boldsymbol{x}_{1} + V_{1}P_{0}^{-1}\boldsymbol{\mu}_{0}
= (P_{0}^{-1} + C^{T}\Sigma^{-1}C)^{-1}C^{T}\Sigma^{-1}\boldsymbol{x}_{1} + (I - K_{1}C)P_{0}P_{0}^{-1}\boldsymbol{\mu}_{0}
= P_{0}C^{T}(\Sigma - CP_{0}C^{T})^{-1}\boldsymbol{x}_{1} + \boldsymbol{\mu}_{0} - K_{1}C\boldsymbol{\mu}_{0}
= K_{1}\boldsymbol{x}_{1} + \boldsymbol{\mu}_{0} - K_{1}C\boldsymbol{\mu}_{0}
= \boldsymbol{\mu}_{0} + K_{1}(\boldsymbol{x}_{1} - C\boldsymbol{\mu}_{0})$$
(49)

4 Rauch-Tung-Striebel Smoother

Here we mainly follow the descirption of [4], which is more elegant and readable than PRML[2]. PRML tries to use HMM's α,β notations, but it messes up at the very end between (13.103) and (13.104) when deriving $p(z_{n-1}, z_n | x_1, x_2, \dots, x_N)$.

In the previous chapter we dealt with $p(\boldsymbol{z}_n|\boldsymbol{x}_1,\boldsymbol{x}_2,\cdots,\boldsymbol{x}_n)$ with the forward propagation. In this chapter we deal with $p(\boldsymbol{z}_n|\boldsymbol{x}_1,\boldsymbol{x}_2,\cdots,\boldsymbol{x}_N)$, i.e., conditioned on all the samples. We also derive $p(\boldsymbol{z}_n,\boldsymbol{z}_{n+1}|\boldsymbol{x}_1,\boldsymbol{x}_2,\cdots,\boldsymbol{x}_N)$, which is required for EM-like algorithms.

We follow the process in [4]. We assume $p(\boldsymbol{z}_n|\boldsymbol{x}_1,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n)$ is available. First we get $p(\boldsymbol{z}_n,\boldsymbol{z}_{n+1}|\boldsymbol{x}_1,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n)$ from $p(\boldsymbol{z}_{n+1}|\boldsymbol{z}_n)$ and $p(\boldsymbol{z}_n|\boldsymbol{x}_1,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n)$. Then we get $p(\boldsymbol{z}_n|\boldsymbol{z}_{n+1},\boldsymbol{x}_1,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_n)$ which is equivalent to $p(\boldsymbol{z}_n|\boldsymbol{z}_{n+1},\boldsymbol{x}_1,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_N)$ as \boldsymbol{z}_{n+1} blocks $\boldsymbol{x}_{n+1},\cdots,\boldsymbol{x}_N$. See figure 2

From $p(\boldsymbol{z}_n|\boldsymbol{z}_{n+1},\boldsymbol{x}_1,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_N)$ and $p(\boldsymbol{z}_{n+1}|\boldsymbol{x}_1,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_N)$, which is assumed to be available, we get $p(\boldsymbol{z}_n,\boldsymbol{z}_{n+1}|\boldsymbol{x}_1,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_N)$. By marginalizing it, we obtain $p(\boldsymbol{z}_n|\boldsymbol{x}_1,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_N)$.

Figure 2: z_{n+1} blocking x_{n+1}, \dots, x_N from x_n

By definition,

$$p(\boldsymbol{z}_{n+1}|\boldsymbol{z}_n) = \mathcal{N}(\boldsymbol{z}_{n+1}|A\boldsymbol{z}_n, \Gamma)$$

$$p(\boldsymbol{z}_n|\boldsymbol{x}_1, \boldsymbol{x}_1, \cdots, \boldsymbol{x}_N) = \mathcal{N}(\boldsymbol{z}_{n+1}|\boldsymbol{\mu}_n, V_n)$$
(50)

Then using identity 31,

$$p(\boldsymbol{z}_{n}|\boldsymbol{z}_{n+1},\boldsymbol{x}_{1},\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{N}) = p(\boldsymbol{z}_{n}|\boldsymbol{z}_{n+1},\boldsymbol{x}_{1},\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{n})$$
$$= \mathcal{N}(\boldsymbol{z}_{n}|\boldsymbol{\mu}'_{n},V'_{n})$$
(51)

where

$$V'_{n} = (V_{n}^{-1} + A^{T}\Gamma^{-1}A)^{-1}$$

$$= V_{n} - V_{n}A^{T} (\Gamma + AV_{n}A^{T})^{-1} AV_{n}$$

$$= V_{n} - K'_{n}AV_{n}$$

$$= (I - K'_{n}A)V_{n}$$
(52)

and

$$K'_{n} = V_{n}A^{T} \left(\Gamma + AV_{n}A^{T}\right)^{-1}$$

$$= \left(V_{n}^{-1} + A\Gamma^{-1}A\right)^{-1}A^{T}\Gamma^{-1} \text{ from identity35}$$
(53)

and

$$\mu'_{n} = V'_{n} \left(A^{T} \Gamma^{-1} \boldsymbol{z}_{n+1} + V_{n}^{-1} \boldsymbol{\mu}_{n} \right)$$

$$= (V_{n}^{-1} + A^{T} \Gamma^{-1} A)^{-1} A^{T} \Gamma^{-1} \boldsymbol{z}_{n+1} + (I - K'_{n} A) V_{n} V_{n}^{-1} \boldsymbol{\mu}_{n}$$

$$= K'_{n} \boldsymbol{z}_{n+1} + (I - K'_{n} A) \boldsymbol{\mu}_{n}$$
 from equation 53 (54)

Now we are ready to derive $p(\boldsymbol{z}_n, \boldsymbol{z}_{n+1} | \boldsymbol{x}_1, \boldsymbol{x}_1, \cdots, \boldsymbol{x}_N)$ and $p(\boldsymbol{z}_n | \boldsymbol{x}_1, \boldsymbol{x}_1, \cdots, \boldsymbol{x}_N)$. Let $p(\boldsymbol{z}_n | \boldsymbol{x}_1, \boldsymbol{x}_1, \cdots, \boldsymbol{x}_N) = \mathcal{N}(\boldsymbol{z}_n | \boldsymbol{\mu}_n^{\gamma}, V_n^{\gamma})$. From the equation 34,

$$p(\boldsymbol{z}_{n+1}, \boldsymbol{z}_{n} | \boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{N}) = p(\boldsymbol{z}_{n} | \boldsymbol{z}_{n+1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{N}) p(\boldsymbol{z}_{n+1} | \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{N})$$

$$= \mathcal{N}(\boldsymbol{z}_{n} | K'_{n} \boldsymbol{z}_{n+1} + (I - K'_{n} A) \boldsymbol{\mu}_{n}, V'_{n}) \mathcal{N}(\boldsymbol{z}_{n+1} | \boldsymbol{\mu}_{n+1}^{\gamma}, V_{n+1}^{\gamma})$$

$$= \mathcal{N}\left(\begin{bmatrix} \boldsymbol{z}_{n+1} \\ \boldsymbol{z}_{n} \end{bmatrix} \middle| \begin{bmatrix} \boldsymbol{\mu}_{n+1}^{\gamma} + (I - K'_{n} A) \boldsymbol{\mu}_{n} \end{bmatrix}, \begin{bmatrix} V'_{n+1} & V'_{n+1} {K'_{n}}^{T} \\ K'_{n} V'_{n+1} & V'_{n} + K'_{n} V'_{n+1} {K'_{n}} \end{bmatrix}\right)$$

$$(55)$$

and

$$p(\boldsymbol{z}_{n}|\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{N}) = \mathcal{N}\left(\boldsymbol{z}_{n}|K_{n}'\boldsymbol{\mu}_{n+1}^{\gamma} + (I - K_{n}'\boldsymbol{A})\boldsymbol{\mu}_{n}, V_{n}' + K_{n}'V_{n+1}^{\gamma}K_{n}'\right)$$
$$= \mathcal{N}\left(\boldsymbol{z}_{n}|\boldsymbol{\mu}_{n}^{\gamma}, V_{n}^{\gamma}\right)$$
(56)

with the initial condition

$$p(\boldsymbol{z}_{N}|\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{N}) = \mathcal{N}\left(\boldsymbol{z}_{N}|\boldsymbol{\mu}_{N}^{\gamma},V_{N}^{\gamma}\right)$$
$$= \mathcal{N}\left(\boldsymbol{z}_{N}|\boldsymbol{\mu}_{N},V_{N}\right)$$
(57)

For the EM algorithm, we need $\mathbb{E}[\boldsymbol{z}_n]$, $\mathbb{E}[\boldsymbol{z}_n\boldsymbol{z}_{n-1}^T]$, and $\mathbb{E}[\boldsymbol{z}_n\boldsymbol{z}_n^T]$ for the given $\boldsymbol{\mu}_0$, P_0 , A, Γ , C, and Σ . for the E-step. They are given by

$$\mathbb{E}[\boldsymbol{z}_{n}] = \boldsymbol{\mu}_{n}^{\gamma}$$

$$\mathbb{E}[\boldsymbol{z}_{n}\boldsymbol{z}_{n}^{T}] = V_{n}^{\gamma} + \boldsymbol{\mu}_{n}^{\gamma}\boldsymbol{\mu}_{n}^{\gamma T}$$

$$\mathbb{E}[\boldsymbol{z}_{n}\boldsymbol{z}_{n-1}^{T}] = V_{n}^{\gamma}K_{n-1}^{\prime T} + \boldsymbol{\mu}_{n}^{\gamma}\boldsymbol{\mu}_{n-1}^{\gamma T}$$
(58)

For the M-step, which maximizes μ_0 , P_0 , A, Γ , C, and Σ , please see pp 642, 643, 13.3.2 of PRML [2].

References

- [1] David Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2011.
- [2] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 1 edition, 2007.
- [3] Simon J. D. Prince. Computer Vision: Models, Learning, and Inference. Cambridge University Press, 2012.
- [4] Simmo Säkkä. Beyesian estimation of time-varying tems, lecture 7: Optimal smoothing aalto university. https://users.aalto.fi/ ssarkka/course_k2011/pdf/handout7.pdf, 03 2011. Accessed: 2020-03-30.