

Departamento de Matemática Aplicada

E. T. S. I. Informática - 04/11/2014

Primer examen parcial - Curso 2014/2015

Cálculo para la Computación

Inf.B - Comp.A - Soft.C

Apellidos y Nombre:
DNI: Grupo: Grupo:
Normas para la realización del examen:
 Se deben justificar adecuadamente las respuestas e indicar los resultados más importantes que se aplican en cada momento.
■ Se debe escribir con bolígrafo azul o negro (no usar lápiz).
■ No se puede utilizar la calculadora.
1. (1 p.) Si consideramos el polinomio $p(x)=x^6-12x^5+x^4-x^3+2x^2-2x+6$, entonces ¿pará que valor de a es nulo el coeficiente de $(x-a)^5$ en la expresión de $p(x)$ centrada en a ?
2. (4 p.) Responda a las siguientes cuestiones:
a) $(1.5~\mathrm{p.})$ Exprese en forma binómica todas las raíces cuartas complejas del número 16
$b) (1\mathrm{p.})$ Determine la forma centrada en -1 del polinomio $p(x)=x^4+4x^3+6x^2+4x-15$
$c)$ $(1.5 \; \mathrm{p.})$ Utilice los resultados anteriores para factorizar en $\mathbb R$ y en $\mathbb C$ el polinomio $p(x)$
3. (2 p.) Utilice la descomposición en fracciones simples para calcular la siguiente integral
$\int rac{4x^2-8x+5}{4x^3-4x^2+5x}dx$
4. (3 p.) Polinomios de Taylor.
a) (1.5 p.) Determine el polinomio de McLaurin de orden 4 de la función $\dfrac{1}{(x+1)^2}$
y utilice el operador sumatorio para escribirlo. $(x+1)^2$
$b)~(1.5~{\rm p.})$ Utilice el resultado anterior y, sin aplicar la fórmula de Taylor, compruebe si es cierto que
$x-2x^3$ es el polinomio de McLaurin de orden 4 de la función $\dfrac{x}{(x^2+1)^2}$
y utilice el método de Horner para evaluar dicho polinomio en $x=1/2$

Departamento de Matemática Aplicada

E. T. S. I. Informática - 05/11/2014

Primer examen parcial - Curso 2014/2015

Cálculo para la Computación

Grupo de Tarde (Inf.C - Soft.B - Comp.B)

DNI:	Titulación:	Grupo:
Apellidos y Nombre:		

Normas para la realización del examen:

- Se deben justificar adecuadamente las respuestas e indicar los resultados más importantes que se aplican en cada momento.
- Se debe escribir con bolígrafo azul o negro (no usar lápiz).
- No se puede utilizar la calculadora.
- 1. (3 p.) Consideremos la función $f(x) = \operatorname{sen}^3 x$
 - a) (2 p.) Exprese la función f(x) en términos de senos y/o cosenos de múltiplos de x
 - b) (1 p.) Utilice el resultado del apartado anterior para calcular $\int_0^{\pi/3} f(x) \, dx$
- 2. (3 p.) Consideremos el polinomio $p(x) = x^4 2x^3 2x + 15$
 - a) (1 p.) Utilice el método de Horner para evaluar el polinomio p(x) en el punto x=2-i
 - b) (1 p.) Utilice el resultado anterior para factorizar en $\mathbb C$ el polinomio p(x)
 - c) (1 p.) Utilice el resultado anterior para factorizar en $\mathbb R$ el polinomio p(x)
- 3. (2 p.) Utilice la descomposición en fracciones simples para calcular la siguiente integral

$$\int \frac{x^5 - 10x^3 + 20x^2 - 15x}{(x-1)^5} \, dx$$

- 4. (2 p.) Polinomio de Taylor.
 - a) (1 p.) Determine el polinomio de McLaurin de orden 10 de la función $\operatorname{senh} x$ y utilice el operador sumatorio para escribirlo.
 - b) (1 p.) Utilice el resultado anterior y, sin aplicar la fórmula de Taylor, determine el polinomio de McLaurin de orden 5 de la función $(x^2 + 1) \operatorname{senh} x$