Kinetics and Mechanism of MoO₃ Reduction. Comments on "In Situ XAS and XRD Studies on the Formation of Mo Suboxides during Reduction of MoO3"

Jerzy Słoczyński*

Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, PL 30-239 Krakow, Poland

Received: January 31, 2002

In this letter, I would like to present some comments on the paper by T. Ressler, R. E. Jentoft, J. Wienold, M. M. Günter, and O. Timpe-"In Situ XAS and XRD Studies on the Formation of Mo Suboxides during Reduction of MoO₃"published in J. Phys. Chem. B 2000, 104, 6360-6370.

The supposition raised in the paper that Mo₄O₁₁ is not an intermediate product in the reaction $MoO_3 \rightarrow Mo_4O_{11} \rightarrow MoO_2$ but is formed in the parallel reaction between MoO₃ and MoO₂ has not been sufficiently documented. This hypothesis is based on the observation that the reaction of MoO₃ reduction and the solid-state reaction between MoO₃ and MoO₂ have comparable rates. The observation does not, however, prove that Mo₄O₁₁ is not formed in the course of the reduction of MoO₃ but merely points to the possibility of formation of the lower oxide on a different competing path. Mo₄O₁₁ is formed, however, as the first product in the early stage of the reduction, as shown by Ueno et al.1 as well as by Sloczynski and Bobinski2 with the use of the XRD technique. This indicates that this suboxide is formed mainly as a result of the reduction of MoO3. Also, in their other paper,³ the authors claim that Mo₄O₁₁ is formed as the first product of the reduction of MoO₃, which contradicts the findings of the present publication. Furthermore, it should be noted that the reaction between MoO₃ and MoO₂ leading to the formation of Mo₄O₁₁ does not involve the reduction of molybdenum, so if Mo₄O₁₁ were formed along this path, as claimed by the authors, it would have to be reduced to MoO2 with hydrogen, hence Mo₄O₁₁ would , in fact, be the intermediate product.

The degree of reduction of MoO₃ was estimated from the analysis of phase composition during the reduction. This is an indirect method and therefore gives rise to several disputable issues:

(1) In the three-component mixture of solid phases, the content of each component is generally not proportional to the intensities of the reflections in the XRD diagram. The calibration curve shown in the paper refers to the two-component MoO₃-MoO₂ mixture. Its use in interpreting a three-component mixture may lead to errors. So far the most precise way of determining the actual degree of reduction in the oxide systems as well as the reduction rate has been the direct measurement of the loss of oxygen (e.g., by a gravimetric method). Using gravimetric measurements, as described in refs 2 and 4, the direct rate of reduction was recorded with high accuracy, which revealed more subtle effects such as a minimum and a maximum in the rate depending on the degree of reduction. Such effects are frequently

not observed if less accurate, indirect methods are used to measure the rate of reduction.

(2) If one accepts the authors' hypothesis that Mo₄O₁₁ is formed parallel to MoO₃ and MoO₂, then the determination of the degree of reduction on the basis of the MoO₃ content in the mixture will lead to errors. In this case, the disappearance of MoO₃ cannot be a measure of the degree of reduction because MoO₃ is consumed in two reactions: reduction by hydrogen and reaction with MoO₂ (the latter proceeding without oxygen

The most important problem concerns the proposed mechanism of the reaction. The authors believe that the slowest step, which determines the rate of reduction, is nucleation because their data fit the Avrami-Erofeev equation. This is not a proof because any sigmoidal curve can be described with better or worse accuracy with this equation even if the mechanism of the reaction is different. The authors instead have ignored the following facts that support the autocatalytic mechanism, according to which the dissociative adsorption of hydrogen (or a hydrocarbon as a reducing gas) constitutes the rate-determining step, which is accelerated catalytically by the product of the

- (1) The rate of reduction is proportional to the partial pressure of the reducing gas (hydrogen or a hydrocarbon).
- (2) The rate of reduction increases dramatically after adding even very small amounts of metals, thus facilitating the dissociative adsorption of the reducing gas (e.g., Pt or Pd) (a spillover effect).
- (3) The rate of the MoO₃ reduction increases after adding MoO₂, which is the product of the reaction. The parallel reaction mechanism cannot account for this effect.
- (4) The rate of reduction brought about by various reducing gases increases in the order $H_2 < C_3H_6 < C_4H_8$, which follows the decreasing energy necessary to detach a hydrogen atom from a reducing-gas molecule.
- (5) Atomic hydrogen can easily diffuse into the MoO₃ structure, as evidenced by the formation of H_xMoO₃ bronzes at low temperatures. This eliminates the necessity of O²⁻ ion diffusion or of their vacancies through the layer of the product. Water formed as a result of dehydroxylation leads to expansion of the layer of the product and contributes to uncovering new surfaces of MoO₃ according to the shrinking core model.

All of these facts supporting the autocatalytic mechanism of the MoO₃ reduction were described in my paper⁴ on the reduction of MoO₃. Also, Arnoldy et al.⁵ strongly supported the autocatalytic model on the basis of his investigations of the MoO₃ reduction. This is not mentioned either by the authors in their paper. All of the arguments mentioned above are entirely ignored by the authors.

References and Notes

- (1) Ueno, A.; Kotera, Y.; Okuda, S.; Bennett, C. O. In Chemistry and Uses of Molybdenum, Proceedings of the 5th International Conference of the Climax Molybdenum Company, Ann Arbor, MI, 1982; p 250.
 (2) Słoczyński, J.; Bobiński, W. *J. Solid State Chem.* **1991**, *92*, 436.
- (3) Ressler, T.; Jentoft, R. E.; Wienold, J.; Timpe, O. J. Synchrotron Radiat. 2001, 8, 683.
 - (4) Słoczyński, J. J. Solid State Chem. 1995, 118, 84.
- (5) Arnoldy, P.; de Jonge, J. C. M.; Moulijn, J. A. J. Phys. Chem. **1985**, 89, 4517.

^{*} Fax: 4812 4251923.