باسمه تعالى

ساعت شروع : ٨ صبح مدّت امتحان : ١٢٠ دقيقه	رشت ه: علوم تجربی	سؤالات امتحان نهایی درس : فیزیک (۳) و آزمایشکاه	
تاریخ امتحان : ۲۰/۰۳/ ۱۳۹۱	سال سوم أموزش متوسطه		
مرکز سنجش آموزش و پرورش http://aee.medu.ir	دانش آموزان و داوطلبان آزاد سراسر کشور در خرداد ماه سال ۱۳۹۱		

	مرکز سنجش آموزش و پرورش http://aee.medu.ir	آموزان و داوطلبان آزاد سراسر کشور در خرداد ماه سال ۱۳۹۱	دانش ا
تمره		سؤالات	رديف
-/٧۵		قانون کولن را با ذکر رابطه بنویسید.	1
+/ Y &	قطه ی A تا B جابه جا می کنیم. A •B ———————————————————————————————	بار الکتریکی منفی q را با سرعت ثابت دریک میدان الکتریکی یکنواخت از آ با توجه به شکل در جاهای خالی کلمه های مناسب بنویسید. الف)انرژی پتانسیل الکتریکی بار منفی q می یابد. ب) کاری که ما در این جابه جایی انجام می دهیم است. پ) پتانسیل الکتریکی نقطه ی A از پتانسیل الکتریکی نقطه ی B	
•/٧۵	· 3-	هر یک از تغییرات زیر چه تاثیری در ظرفیت خازن دارد؟ الف) افزایش فاصله ی بین صفحه های خازن. ب) کاهش ولتاژ دو سر خازن. پ) بر داشتن دی الکتریک بین صفحه های خازن.	٣
1/4	h '	دو بار الکتریکی نقطه ای هم نام $Q_1 = q_7 = \Delta \mu C$ مطابق شکل به فاصله ی Q_1 الف) اندازه ی میدان الکتریکی در نقطه ی A واقع بر عمود منصف خط وات در فاصله ی A سانتی متر از نقطه ی A چند نیوتون بر کولن است A با رسم شکل تعیین کنید.	ſ
	O T Cm T Cm	$k = 9 \times 1^{-9} \frac{N.m^{4}}{C^{4}}$	
•/ Ya •/ a	$c_{\gamma} = \gamma \mu F$ $V = \gamma \circ V$	در مدار روبه رو : الف) ظرفیت خازن معادل چند <u>میکرو فاراد</u> است؟ ب) انرژی ذخیره شده در خازن C_{ϵ} چند <u>میکرو ژول</u> است؟	۵
•		جمله های درست و نادرست را تعیین کنید و عبارت نادرست را تصحیح کنی الف)اگر پایانه های یک مولد را فقط به دو سر یک ولت سنج ببندیم، عددی نیروی محرکه ی مولد است. $ u$ افت پتانسیل در مولد به جریانی که از مولد می گذرد بستگی ندارد. $ u$ توان مصرفی در مولد برابر $ u$ است.	

مدّت امتحان: • ۱۲ دقیقه	ساعت شروع : 🛦 صبح	رشته: علوم تجربی	سؤالات امتحان نهایی درس : فیزیک (۳) و آزمایشکاه
1441/-4/-2	تاريخ امتحان :	·	سال سوم أموزش متوسطه
آموزش و پرورش http://aee.i	- ' '	سال ۱۳۹۱	دانش آموزان و داوطلبان آزاد سراسر کشور در خرداد ماه
مين		سالات	ردیف ا

	http://aee.medu.ir	
ثمره	سؤالات	ردیف
١	الف) مقاومت رسانا های فلزی به چه عامل هایی بستگی دارد؟(چهار مورد)	٧
-/۲۵	ب)در آزمایشگاه برای اندازه گیری مقاومت لامپ خاموش از چه و سیله ای استفاده می کنند؟ 	
1 -/46 -/6	در مدار روبه رو : $I_{\mathbf{P}}$ الف) نیروی محرکه ی مولد چند ولت است؟ $I_{\mathbf{P}}$ ب) شدت جریان $I_{\mathbf{P}}$ چند آمپر است؟ \mathbf{P} پ)انرژی مصرفی در مقاومت ۳ اهمی در مدت ۱۰ ثانیه چند ژول است؟ \mathbf{P}	٨
	۰ - ۱۵۵ - ۲ - ۲ - ۲ - ۲ - ۲ - ۲ دانش آموزی مداری مطابق شکل زیر می بندد و تعدادی سوزن فولادی در زیر سیملوله قرار می دهد. بابستن کلید مشاهده می کند، تعدادی از سوزن های فولادی جذب میله ی آهنی درون سیملوله می شوند.	٩
./4	ببستان حیث مشاهده می تعدا مندادی از سوری های فودادی جدب مینه ی استی داروی سیمتونه می سودد. الف) علت مشاهده ی این پدیده را بنویسید. ب) اگر مقاومت رئوستا را کاهش دهد ،پیش بینی می کنید تعداد سوزن هایی	
	که جذب میله می شوند، افزایش می یابد یا کاهش؟ توضیح دهید.	
./۲۵	در شکل رو به رو، از دو سیم بلند و موازی که به فاصله ی یک متر از یک دیگر قرار دارند، جریان های مساوی به شدت ۲ آمپر عبور می کند. الف)با توجه به خط های میدان مغناطیسی ناشی از جریان سیم (۱)	1.
140	جهت جریان در سیم (۱) را تعیین کنید. (۲) بررگی نیرویی که سیم (۱) بر یک متر از سیم (۲) وارد می کند، $\mu_{\circ} = *\pi \times 1 \cdot {}^{-7} \frac{Tm}{A}$ بیند نیوتون است؟	
+/4	پ) جهت نیروی مغناطیسی وارد بر سیم (۲) را با رسم شکل، تعیین کنید	11
-1ω	جهت نیروی وارد بر بارالکتریکی مثبت را در هر یک از شکل های زیر تعیین کنید. \vec{B} $\otimes \qquad \qquad \vec{V}$ \vec{B} $(الف) $	77
	« ادامه ی سؤال ها در صفحه ی سوم »	

ا دقيقه	مذت امتحان: ۲۰	ساعت شروع : 🖈 صبح	رشته: علوم تجربی	امتحان نهایی درس : فیزیک (۳) و آزمایشکاه	سؤالات
	1891/-8/-7	تاريخ امتحان:		سال سوم أموزش متوسطه	
	آموزش و پرورش http://aee.		سال ۱۳۹۱	موزان و داوطلبان آزاد سراسر کشور در خرداد ماه	انش آ
نمره			سؤالات		ديف
T a monatory				الرومنيانيس المحت الرومورسافت الرومورسافت	

.

٠.

1	پیچه ی مسطحی به شعاع ۶ سانتی متر از ۲۰۰ دور سیم نازک روپوش دار ساخته شده است، اگر بزرگی میدان $\mu_{\circ} = 17 \times 10^{-7} \frac{Tm}{4}$ مغناطیسی در مرکز پیچه ۱۰۰ گاوس باشد، جریان عبوری از پیچه چند آمپر است؟	14
1	از سیملوله ای که در هر متر طول آن ۲۰۰۰ دور سیم روپوش دار پیچیده شده است، جریانی به شدت γ آمپر عبور $\mu_0 = 17 \times 1 \cdot \sqrt{\frac{Tm}{A}}$ همی کند.بزرگی میدان مغناطیسی درون سیملوله (مور از لبه ها) چند میلی تسلااست؟	18
•/Y ۵	الف) شار مغناطیسی عبوری از یک حلقه به چه عواملی بستگی دارد؟	16
•/۲۵	ب) مطابق شکل حلقه و آهنربا در مقابل یک دیگر قرار دارند با توجه به جریان القاشده در حلقه، آهنربا در حال دور شدن از حلقه است یا نزدیک شدن ؟ N	
·/Y۵ ·/Y۵	با توجه به جریان القاشده در حلقه، آهنربا در حال دور شدن از حلقه است یا نزدیک شدن ؟	18
· ·	با توجه به جریان القاشده در حلقه، آهنربا در حال دور شدن از حلقه است یا نزدیک شدن ؟ به کمک عبارت های داخل مستطیل متن زیر را کامل کنید. افزایش کاهش خودالقایی فاراده لنز شار مغناطیسی که از سیملوله افزایش بابد، در مدتی که جریان در حال افزایش است ، شارمغناطیسی که از سیملوله می گذرد پیدا می کند. بنابر قانون	18
•/٧۵	با توجه به جریان القاشده در حلقه، آهنربا در حال دور شدن از حلقه است یا نزدیک شدن ؟ به کمک عبارت های داخل مستطیل متن زیر را کامل کنید. افزایش کاهش خودالقایی فاراده لنز شار مغناطیسی که از سیملوله افزایش یابد، در مدتی که جریان در حال افزایش است ، شارمغناطیسی که از سیملوله می گذرد	

ساعت شروع : 🛦 صبح	رشته: علوم تجربي	راهنمای تصحیح سؤالات امتحان نهایی درس : فیزیک (۳) و آزمایشکاه
تاریخ امتحان: ۲۰/۰۳ / ۱۳۹۱		سال سوم آموزش متوسطه
مرکز سنجش اموزش و پرورش http://aee.medu.ir		دانش آموزان و داوطلبان آزاد سراسر کشور در خ رداد ماه سال ۱۳۹۱

<u> </u>	http://aee.medu.ir				
نمره	راهنمای تصحیح	رديف			
-/٧۵	نیروی رانشی یا ربایشی بین دو ذره ی باردار با حاصل ضرب بار دو ذره نسبت مستقیم و با مجذور فاصله ی دو				
	$F=rac{kq_1q_1}{r^1}$ (٠/٢۵) (٠/٢۵) پار از هم نسبت وارون دارد.				
-/٧۵	الف) افزایش (۰/۲۵) بیش تر (۰/۲۵)	۲			
-/٧۵	الف) ظرفیت خازن کاهش می یابد. (۰/۲۵) ب) ظرفیت خازن تغییر نمی کند. (۰/۲۵) پ) ظرفیت خازن کاهش می یابد. (۰/۲۵)	٣			
	$r = \sqrt{r^{\Upsilon} + r^{\Upsilon}} = r\sqrt{r}$ (٠/٢۵)	۴			
۲	$F = \sqrt{r^{\Upsilon} + r^{\Upsilon}} = r\sqrt{r} \qquad (\cdot/r\Delta)$ $E = \frac{kq}{r^{\Upsilon}} (\cdot/r\Delta)$ $E_{\gamma} = E_{\gamma} = \frac{q \times 1 \cdot {}^{q} \times \Delta \times 1 \cdot {}^{-p}}{(r\sqrt{r} \times 1 \cdot {}^{-r})^{\Upsilon}} = r/\Delta \times 1 \cdot {}^{\Upsilon} \frac{N}{C} \qquad (\cdot/\Delta)$				
<u> </u>	$E_T = \Upsilon E_{\gamma} Cos \frac{\alpha}{\Upsilon} \qquad (\cdot / \Upsilon \Delta)$				
والمعجدة المراجعة	$E_T = Y \times Y / \Delta \times \frac{\sqrt{Y}}{Y} \times 1.^{Y} = Y / \Delta \sqrt{X} \times 1.^{Y} \frac{N}{C} \qquad (*/Y\Delta)$	· Telegraphy			
	E_{Y}				
	E_T (\cdot/Δ)				
1/70	$C_{\Upsilon,\Upsilon} = \Upsilon + \Upsilon = \Delta \mu F$ ($\cdot/\Upsilon\Delta$) $C_{\Upsilon,\Upsilon} = \frac{\Delta \times \Upsilon \cdot}{\Delta + \Upsilon \cdot} = \Upsilon \mu F$ ($\cdot/\Upsilon\Delta$) (نان) $C_{T} = \varphi + \Upsilon = \Upsilon \cdot \mu F$ ($\cdot/\Upsilon\Delta$)	۵			
	$U_{\tau} = \frac{1}{r} C_{\tau} V^{\tau} (\cdot/\tau \Delta) \qquad \qquad U_{\tau} = \frac{1}{r} \times \rho \times (\tau \cdot)^{\tau} = 1 \tau \cdot \cdot \mu J (\cdot/\tau \Delta) \qquad \qquad (\varphi)$				
١	الف) درست (۰/۲۵) پ) نادرست (۰/۲۵) ، دارد (۰/۲۵) پ) درست (۰/۲۵)	۶			
1/70	الف) طول رسانا (۰/۲۵) ، مساحت مقطع رسانا (۰/۲۵) ، دما (۰/۲۵) ب) اهم متر (۰/۲۵)	٧			
· ۲/۲۵	$R_T = \Upsilon + rac{\mathbf{f} \times \Upsilon \Upsilon}{\mathbf{f} + \Upsilon \Upsilon} + \Upsilon = \Lambda \Omega$ (\cdot/Δ) $I = \frac{\mathcal{E}}{R_T + r}$ $(\cdot/\Upsilon\Delta)$ (ف) $\mathcal{E} = \Upsilon(\Lambda + \Upsilon) = \Upsilon \cdot (V) \ (\cdot/\Upsilon\Delta)$ $\mathcal{F}I_1 = \Upsilon I_{\Upsilon} \implies I_1 = \Upsilon I_{\Upsilon} \ (\cdot/\Upsilon\Delta) \qquad \Upsilon I_{\Upsilon} + I_{\Upsilon} = \Upsilon \ (\cdot/\Upsilon\Delta) \qquad I_{\Upsilon} = \cdot/\Delta A \ (\cdot/\Upsilon\Delta) \ (\cdot/\Upsilon\Delta)$	٨			
	$\varepsilon = \Upsilon(\lambda + \Upsilon) = \Upsilon \cdot (V) (\cdot/\Upsilon\Delta)$ $\forall I_{\gamma} = \Upsilon \cdot I_{\gamma} \implies I_{\gamma} = \Psi I_{\gamma} (\cdot/\Upsilon\Delta) \qquad \forall I_{\gamma} + I_{\gamma} = \Upsilon (\cdot/\Upsilon\Delta) \qquad I_{\gamma} = \cdot/\Delta A (\cdot/\Upsilon\Delta) (\downarrow)$				
	$U = RI^{Y} t (\cdot/Y\Delta) \qquad \qquad U = Y \times Y \times I \cdot = I Y \cdot J \qquad (\cdot/Y\Delta) \qquad \qquad (\mathbf{\psi})$				

	ساعت شروع : 🛦 صبح	رشته: علوم تجربي	راهنمای تصحیح سؤالات امتحان نهایی درس : فیزیک (۳) و آزهایشکاه
I	تاریخ امتحان: ۲۰/۰۳/ ۱۳۹۱		سال سوم أموزش متوسطه
	مرکز سنجش أموزش و پرورش http://aee.medu.ir		دانش آموزان و داوطلبان آزاد سراسر کشور در خرداد ماه سال ۱۳۹۱

	nup.//acc.mcuu.n	
ثمره	راهنمای تصحیح	رديف
	« ادامه در صفحه ی دوم »	
1/40	الف) با بستن کلید میله ی آهنی تبدیل به آهنربای الکتریکی می شود و میدان مغناطیسی ناشی از آن باعث	٩
	القای خاصیت مغناطیسی در سوزن های فولادی می شود. (۰/۷۵)	
1/40	ب) افزایش(۰/۲۵)چون جریان افزایش می یابد و خاصیت مغناطیسی میله ی آهنی نیز افزایش می یابد (۰/۲۵) ۔ ۱	10
	(•/YΔ) \ \ \ (·/YΔ)	,,,
	$F = \frac{\mu J_1 I_7 L}{7\pi d} \qquad (\cdot/7\Delta) \qquad F = \frac{\Upsilon \times 1 \cdot \overline{} \times \Upsilon \times 1}{(\cdot/7\Delta)} = A \times 1 \cdot \overline{} \times N \qquad (\cdot/7\Delta) \qquad (\psi$	
. / \	(·/1a) ← · · · · · · · · · · · · · · · · · · 	11
+/4	$\otimes_{ec F}^{(\cdot)}$ (ب $ec F$	11
		-14
i		''
	C: آهنربای دائمی (۰/۲۵) D: آلومینیوم (و یا هر مورد دیگر) (۰/۲۵)	١٣
1	$B = \frac{\mu_{\circ} NI}{\gamma R} (\cdot/\gamma \Delta) \dot{\cdot} \cdot \cdot \times 1 \cdot^{-\dot{\gamma}} = \frac{1 \Upsilon \times 1 \cdot^{-\dot{\gamma}} \times \Upsilon \cdot \cdot \times I}{\Upsilon \times \dot{\gamma} \times 1 \cdot^{-\dot{\gamma}}} (\cdot/\Delta) I = \Delta(A) \; (\cdot/\gamma \Delta)$	"
•	$B = \mu_{o} n I (\cdot/\Upsilon \Delta) B = \Upsilon \times \Upsilon$	14
1	الف) مساحت حلقه (۰/۲۵) ، بزرگی میدان مغناطیسی (۰/۲۵) زاویه ی بردار عمود بر سطح حلقه با میدان	10
	مغناطیسی (۰/۲۵)	
•	ب) نزدیک شدن (۰/۲۵)	
-/٧۵	ا ف زایش (۰/۲۵) ، فاراده (۰/۲۵) ، خودالقایی (۰/۲۵)	18
1/۲۵	$\left \overline{\varepsilon} \right = \left -N \frac{\Delta \phi}{\Delta t} \right (\cdot/\Upsilon \Delta) \qquad \qquad \left \overline{\varepsilon} \right = \left -N \frac{A Cos \theta \Delta B}{\Delta t} \right (\cdot/\Upsilon \Delta)$	14
	$\left \overline{\varepsilon} \right = \left \frac{-1 \times Y \times 1 \cdot^{-Y} \times 1 \times (\cdot/1Y - \cdot/YY)}{\Delta \times 1 \cdot^{-Y}} \right = F \times 1 \cdot^{-Y} (V) (\cdot/Y\Delta)$ (\cdot/Δ)	
1	$\omega = \frac{\forall \pi}{T}$ (./\dagger\dagger) $T = \frac{\forall \pi}{1 \cdot \cdot \pi} = \frac{1}{\delta} \cdot (s)$ (./\dagger\dagger) $I = \cdot / \forall Sin \cdot \cdot \pi \left(\frac{1}{1 \cdot \cdot \pi}\right)$ (./\dagger\dagger) $I = \cdot / \forall (A)$ (./\dagger\dagger)	1.6
	$I = \cdot/\Upsilon Sin \cdot \cdot \cdot \pi \left(\frac{\Upsilon}{\Upsilon \cdot \cdot}\right) (\cdot/\Upsilon \delta) \qquad \qquad I = \cdot/\Upsilon(A) (\cdot/\Upsilon \delta) \qquad (\psi)$	