Asymptotic anaysis

October 1, 2019 11:01 AM

Notes

- Lab 2 quiz this week strings, strings func
- print notes
- Homework due Oct 11

Structure variables

```
- can declare and initialize a local record
struct Fight {
    int flightnumber;
    char source[32];
    char destination[32];
}
struct Flight AC = {101,"Vanouver, "Calgary"}
AC.flightnubmer = 101;
strcpy(AC.source, "Vanvouver");
strcpy(AC.destination, "Calgary");
```

Using a pointer to declare and assign values to struct

```
struct Flight* dynamicAC;
dynamicAC = (struct Flight*) malloc(sizeof(struct Flight));
dynamicAC ->flightnumber = 301;
strcpy(dynamicAC->source, "Montreal");
strcpy(dynamicAC->destination, "Toronto");
```

- can also dynamically allocate more than one struct with 1 pointer
 dynamicAC = (struct Flight*) malloc(3*sizeof(struct Flight));
- Local array of pointers to structs, can point to 0, 1 or more dynamically allocated Flight structs

```
struct Flight* dynamicWFJ[10];
dynamicWJ[0] = NULL; // zero flights
dynamicWJ[7] = (struct Flight*) malloc(5*sizeof(struct Flight));
dynamicWJ[8] = (struct Flight*) malloc(1*sizeof(struct Flight));
```

- dynamic 2D array

```
struct Flight** dynamicAA;
dynamicAA = (struct Flight**) malloc(20*sizeof(struct Flight*));
dynamicAA[0] = (struct Flight*) malloc(5*sizeof(struct Flight));
```

Asymptotic Analysis

- Complexity theory studies algorithm efficiency
 - o how well algorithm scales as problem in size increases
- Want to compare efficiency
 - Time run, space memory, other (I/O), elegance, energy, etc.
- Number of operations
 - o focusing on num of operations performed by algorithm on input of given size
 - o ex. num instructions executed, num comparisons
- runtime
- Running time is function of n such as T(n), no longer depends on hardware or subjective conditions
 - o ex. dictionary: # of words, Restaurant: # of customers, Airline: # of flights

Comparing algorithms, order notation
 Simple approximate way to make comparisons between behaviours of different algorithms' rates of growth

Order notation O-notation

 $T(n) \in O(f(n))$ if there are constants c and n_0 such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$

 $T(n) \in O(f(n))$ if there are constants c and n_0 such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$

- T(n) is bounded from above by $c \cdot f(n)$
- i.e. the growth of T(n) is no faster than f(n)

$$T(n) \in \Omega(f(n))$$
 if $f(n) \in O(T(n))$

- T(n) is bounded from below by $d \cdot f(n)$
- i.e. T(n) grows no slower than f(n)

$$T(n) \in \Theta(f(n))$$
 if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$

- -T(n) is bounded from above and below by f(n)
- i.e. T(n) grows at the same rate as f(n)

Omega Notation

 $T(n) \in \Omega(f(n))$ if $\exists d, n_0$ such that $T(n) \ge d \cdot f(n) \ \forall n \ge n_0$

Theta- Notation

$$T(n) \in \Theta(f(n))$$
 if $\exists c, d, n_0$ such that $d \cdot f(n) \le T(n) \le c \cdot f(n) \ \forall n \ge n_0$

Asymptotic Analysis Hacks

- Running time approximation
- Eliminate low order terms
 - \circ 4n + 5 => 4n
 - 0.5nlogn-2n+7 => 0.5nlogn
 - o 2^n + n^3 + 3n => 2^n
- Eliminate constant coeffictients
 - o 4n => n
 - 0.5nlogn => nlogn
 - o nlog(n^2)=> 2nlogn => nlogn

Common growth rate functions

Common Browen rate ranctions		
Typical growth rates in order		
- Constant:	0(1)	
- Logarithmic:	$O(\log n)$	$(\log_k n, \log(n^2) \in O(\log n))$
- Poly-log:	$O\left((\log n)^k\right)$	
- Linear:	O(n)	
Log-linear:	$O(n \log n)$	
- Superlinear:	$O(n^{1+c})$	(c is a constant, $0 < c < 1$)
- Quadratic:	$O(n^2)$	
- Cubic:	$O(n^3)$	
- Polynomial	$O(n^k)$	(k is a constant) "tractable"
- Exponential	$O(c^n)$	(c is a constant > 0) "intractable"

Dominance

- can look at dominant term to guess at a big-O growth rate Up to n = 100, the constant term dominates Between n = 100 and n = 300, the linear term dominates Beyond n = 300, the quadratic term dominates, $T(n) \in O(n^2)$
- which will be faster in the long run? n^3 vs n^3 logn?
 - o split up, use dominance relationships n^3 vs $n^{3.01}/logn$

 $f(n) \in O(n \log n)$ and

Order notation use

 $f(n) \in O(2^n)$

- for f(n) = 3nlog_2 n are both true

- one is more meaningful
 - \circ "Our function f n has growth behaviour no worse than this other pretty well-behaved function"
 - \circ "Our function f n has growth behaviour no worse than one of the worst functions known
- want to obtain tightest upper or lower bounding function that still satisfies the O/Om relation

Asymptotic analysis proofs

- Use definitions of O and/or Om to determine either a witness pair (c, n_0) satisfying the definition or show that no such witness pair is possible
 - ex. prove that for $f(n) = 2log_6n$ and g(n) = 3n, f(n) = O(g(n)) prove $2log_6n = O(3n)$ $2log_6n <= c*3n$ for $n >= n_0$ let c=1, $2log_6n <= 3n$ choose $n_0 = 6$, $2log_6 <= 3*6$, 2 <= 8Therefore, valid solution is $(c=1, n_0 = 6)$

```
There are constants c>0 and n_0>0 such that 2\log_6 n \le c \cdot 3n for all n\ge n_0
Choose c=1, n_0=6, it can be seen that LHS \le RHS and remains so as n increases.
```

```
    ex. Prove that for f(n) = 2log<sub>6</sub>n and g(n) = 3n, g(n) !E O(f(n))
    Assume (contradiction) g(n) E O(f(n))
    There exists consts c>0, n<sub>0</sub>>0, f(n) <= c*f(n) for all n >= n<sub>0</sub>
    3n <= c*2log<sub>6</sub>n, rearrange inequality for c, c>= 3n/2log<sub>6</sub>n
    as n --> inf, increases to inf, no constant that can remain larger than RHS for all increasing vales of n
    Contradiction, initial assumption g(n) E O(f(n)) is false
```

Input size

- described the number of operations as a function of a given input size n
- how are n items organized?

Analysing code

- Boudn flavour
 - Upper bound O
 - Lowerbound Om
 - Asympotically tight T
- Analysis case
 - Best case (lucky)
 - Worst case (adversary)
 - Average case
 - o "common" case
- Analysis quality
 - o Loose bound
 - o Tight bound
- Steps
 - Step 1: what is the input size n?
 - Step 2: what kind of analysis should we perform? Worst? Best? Average?
 - Step 3: How much does each line cost? correct unit?
 - Step 4: What is T(n) in its raw form?
 - Step 5: Simplify T(n) and convert to order notation? Which notation O? Om? T?
 - Step6: Prove asymptotic bound by finding constants c and n₀ satisfying the required

inequalities

- ex. pseudo code:
 - o each loop runs n times, const amount of work done inside

for i = 1 to n do
for j = 1 to n do
sum = sum + 1

$$T(n) = \sum_{i=1}^{n} \left(1 + \sum_{j=1}^{n} 2\right) = \sum_{i=1}^{n} (1 + 2n) = n + 2n^2 = O(n^2)$$

count number of times sum = sum + 1 is executed

$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} n = n^2 = O(n^2)$$

- ex.

- T(n²)
- o max range i: O(n) * j: $O(n) = O(n^2)$
- o or = sum of all iterations, 1+2+3... + n-1 + n
- $\circ \sum_{k=1}^{n} k = n(n+1)/2 = O(n^2)$

ex.

$=\frac{n^2}{2}+\frac{3n}{2}-1$

$$T(n) \in \Theta(n^2)$$

 $T(n) = 1 + \sum_{i=1}^{n-1} (n-i+2)$

Visual aid for loop executions

- determine range of loop variable
- determine how many elements within that range will be hit
- Complexities of nested loops usually multiplied
- Complexities of separate loops usually added
- $log_29n \rightarrow O(logn$
- O(n₂)
- loop var mltiplied/divided by some const c --> log_crange
- loop var increented/decremented by some const c --> linear in range

```
int i, j;
for (i = 1; i < 9*n; i = i*2) {
  for (j = n*n; j > 0; j--) {
    ...
  }
}
```