Computer Networks and Network Security

Qiao Xiang

https://qiaoxiang.me/courses/cnnsxmuf21/index.shtml

9/14/2021

Outline

- > Administrative trivia's
- What is a network protocol?
- A brief introduction to the Internet: past and present
- Summary

Personnel

- □ Instructor
 - Qiao Xiang, qiaoxiang@xmu.edu.cn
 - · office hours: by appointment

- □ Teaching assistant
 - Zhihao Zhang, zhihao@stu.xmu.edu.cn

Self-Introduction

- Joined XMU as a professor this January
- Research: Computer Networks, Computer Systems
- Previously,
 - Research assistant professor, Yale University, US., 2019-2020
 - Postdoctoral fellow, Yale University, US. 2016-2018
 - Postdoctoral fellow, McGill University, Canada, 2014-2015
 - Ph.D. in Computer Science, Wayne State University, US, 2014
 - □ B.E. in Information Security and B.Econ., NKU, 2007

Textbook

□ Textbook

- Computer Networking: A Top-Down Approach, 7/e
 by Jim Kurose and Keith Ross
- Reference books
 - Computer Networks by Tanenbaum and Wetherall
 - Computer Networks, A Systems Approach by Larry Peterson and Bruce Davie
 - TCP/IP Illustrated, Volume 1: The Protocols by W. Richard Stevens
 - Java Network Programming, by Elliotte Harold

Resources

 https://giaoxiang.me/courses/cnnsxmuf21/index.shtml

What are the Goals of this Course?

- □ Learn design principles and techniques of:
 - the Internet infrastructure (Internet service provider, data center, cloud)
 - large-scale Internet applications
- □ Focus on how the principles and techniques apply and adapt in real world:
 - real examples from the Internet

Computer Networks and Network Security vs. Computer Networks and Communication

CNNS:

- Bilingual:
 - English in slides / homework / exams
 - Chinese in lecture / lab classes / discussions
- More emphasis on design principles, theories and programming
- □ More emphasis on security issues
- Less emphasis on communication (e.g., physical layer and wireless networks)
- □ A top-down roadmap

□ Looking for a job

Domestic	International
Huawei	Amazon
Alibaba	Google
Tencent	Microsoft
Xiaomi	Facebook
JD	Uber
•••	•••

Be an entrepreneur

□ Pursue graduate degrees overseas

Systems Research Group - NetOS

□ Pursue graduate degrees domestically

Xin Jin PKU

Tong Yang PKU

Chenren Xu PKU

Linghe Kong SJTU

If you are interested in working with me on research projects, please send me an email at qiaoxiang@xmu.edu.cn

Chen Tian NJU Peng Zhang XJTU Qiao Xiang XMU

Lu Tang XMU

What Do You Need To Do?

- Please go to the class website to fill out the class background survey
 - help us determine your background
 - help us determine the depth, topics, and the details of assignments
 - suggest topics that you want to be covered (if you think of a topic later, please send me email)

What Do You Need To Do?

- Your workload
 - 6 lab assignments
 - 2 written assignments
 - 4 programming assignments
 - one HTTP 1.1 server, one TCP, one routing protocol, one programmable network
 - 1 class project (2-4 persons a team)
 - 2 exams

How to Succeed in this Class?

- Engage in lectures
 - Questions are highly encouraged
- Read textbooks / references / online materials
- Apply the principles / techniques you learned in lectures to assignments and the project
- Do not procrastinate assignments and the project
 - For programming assignments and projects, follow the timeline of checkpoints to avoid the deadline panic

Class Project

- Research or engineering project related to computer networks and network security
- Grading criteria:
 - Innovation 25%, Practicality 25%, Completeness 25%, Presentation 25%
- Suggestions
 - Identify teams and talk to the instructor to decide on the topic as early as possible
 - Read latest papers/technical documents to get inspiration
 - If possible, target research papers / patents

Grading

Class Participation	10%
Lab Assignments	40%
Class Project	15%
Exams	15%+20%

- Grades are important, but you do not need worry too much about them
- □ More important is what you realize/learn than the grades!!

Questions?

Outline

- Administrative trivia's
- > What is a network protocol?

What is a Network Protocol?

□ A network protocol defines the format and the order of messages exchanged between two or more communicating entities, as well as the actions taken on the transmission and/or receipt of a message or other events.

Example Protocol: Simple Mail Transfer Protocol (SMTP)

- Messages from a client to a mail server
 - o HELO
 - o MAIL FROM: <address>
 - o RCPT TO: <address>
 - o DATA
 <This is the text end with a
 line with a single .>
 - o QUIT
- Messages from a mail server to a client
 - status code
 - The first digit of the response broadly indicates the success, failure, or progress of the previous command.
 - 1xx Informative message
 - 2xx Command ok
 - 3xx Command ok so far, send the rest of it.
 - 4xx Command was correct, but couldn't be performed for some reason.
 - 5xx Command unimplemented, or incorrect, or a serious program error occurred.
 - content

Example Protocol: TCP Connection Close Protocol

■ Why connection close?

 so that each side can release resource and remove state about the communication

General Case: The Two-Army Problem

The gray (blue) armies need to agree on whether or not they will attack the white army. They achieve agreement by sending messengers to the other side. If they both agree, attack; otherwise, no. Note that a messenger can be captured!

Example: TCP Protocol Handshakes

Host B

Example: Google' new QUIC

Figure 4: Timeline of QUIC's initial 1-RTT handshake, a subsequent successful 0-RTT handshake, and a failed 0-RTT handshake.

Protocol Standardization

- □ Most widely used protocols are defined in standards
- □ Why standard?

Internet Standardization Process

- All standards of the Internet are published as RFC (Request for Comments)
 - e.g., the SMTP protocol is specified in RFC821
 - but not all RFCs are Internet Standards:
 http://qiaoxiang.me/courses/cnns-xmuf21/readings/interestingrfcs.html

Internet Standardization Process

- All standards of the Internet are published as RFC (Request for Comments)
 - e.g., the SMTP protocol is specified in RFC821
 - but not all RFCs are Internet Standards:
 http://qiaoxiang.me/courses/cnns-xmuf21/readings/interestingrfcs.html
- □ A typical (but not the only) way of standardization:
 - Internet draft
 - RFC
 - proposed standard
 - draft standard (requires 2 working implementations)
 - Internet standard (declared by Internet Architecture Board)
- □ David Clark, 1992:

We reject: kings, presidents, and voting. We believe in: rough consensus and running code.

Outline

- Administrative trivia's
- What is a network protocol?
- > A brief introduction to the Internet
 - > past (a brief history)
 - present

√Subnet

Internet 1.0: Initial ARPANET

- **1969**
 - ARPANET commissioned: 4 nodes, 50kbps

Initial Expansion of the ARPANET

RFC 527: ARPAWOCKY; RFC 602: The Stockings Were Hung by the Chimney with Care

The Internet Becomes a Network of Networks

- □ 1970: ALOHAnet, the first packet radio network, developed by Norman Abramson, Univ of Hawaii, becomed operational
- 1973: Bob Kahn posed the Internet problem---how to connect ARPANET, packet radio network, and satellite network
- □ 1974: Vint Cerf, Bob Kahn published initial design of TCP (NCP) to connect multiple networks
 - 1978: TCP (NCP) split to TCP/IP
 - 1983: TCP (NCP) converted to TCP/IP (Jan. 1)

Growth of the Internet

- 1981: BITNET (Because It's Time NETwork) between CUNY and Yale
- 1986: NSF builds NSFNET as backbone, links 6 supercomputer centers, 56 kbps; this allows an explosion of connections, especially from universities
- □ 1987: 10,000 hosts
- 1987: China's first email "Across the Great Wall we can reach every corner in the world" sent to Germany
- 1988: Internet congestion collapse; TCP congestion control
- □ 1989: 100,000 hosts

RFC 1121: Act One - The Poem WELCOME by Leonard Kleinrock

We've gathered here for two days to examine and debate And reflect on data networks and as well to celebrate. To recognize the leaders and recount the path we took.

We'll begin with how it happened; for it's time to take a look. Yes, the history is legend and the pioneers are here. Listen to the story - it's our job to make it clear. We'll tell you where we are now and where we'll likely go. So welcome to ACT ONE, folks.

Sit back - enjoy the show!!

<u>Internet 2.0: Web, Commercialization, Social</u> <u>Networking of the Internet</u>

- 1990: ARPANET ceases to exist
- □ 1991: NSF lifts restrictions on the commercial use of the Net; Berners-Lee of European Organization for Nuclear Research (CERN) released World Wide Web
- □ 1992: 1 million hosts (RFC 1300: Remembrances of Things Past)
- □ 1994: China's first 64K dedicated circuit to the Internet
- 1998: Google was founded
- 2004: Facebook was founded
- 2006: Amazon AWS cloud computing

For a link of interesting RFCs, please see http://qiaoxiang.me/courses/cnns-xmuf21/readings/interestingrfcs.html

For more on Internet history, please see http://www.zakon.org/robert/internet/timeline/

<u>Growth of the Internet</u> in Terms of Number of Hosts

Number of Hosts on the Internet:

Aug. 1981	213
Oct. 1984	1,024

Dec. 1987 28,174

Oct. 1990 313,000

Jan. 1993 1,313,000

Jan. 1996 9,472,000

Jan. 1999 43,218,000

Jan. 2002 147,344,723

Jan. 2005 317,646,084

Jan. 2007 433,193,199

Jan. 2010 732,740,444

Jan. 2013 963,518,598

Jan. 2016 1,048,766,623

Jan. 2017 1,062,660,523

Source: Internet Systems Consortium (www.isc.org)

CAIDA router level view

Internet 3.0: Always-Connected, Virtualized Life

- Office
- Shopping
- Education
- Entertainment
- Environment

- => Virtual workspace
- => Online shopping
- => Remote education
- ⇒ Online media/games
- \Rightarrow Internet of things

Internet in China

- □ 5 major networks: CHINANET, UNINET, CMNET, CERNET, CSTNET
- □ International exit bandwidth: 8.8Tbps, 2019
- □ 4G base stations: >5.5 million (<9 million globally)</p>
- □ 5G base stations: ~0.7 million (~70% of the world), 2020

What Will We Cover?

- Network architecture and design principles
 - Layered network arch; e2e principle
- Application architecture and design principles
 - o application paradigms; high performance network app.
 - HTTP/Web, Email, DNS, P2P, Blockchain, Content distribution
- Transport
 - transport services
 - reliability; distributed resource allocation; primal-dual
 - transport protocols: TCP/UDP

What Will We Cover?

- Network and link layers
 - distributed, asynchronous, autonomous routing algorithms; scalable router design; IP/IPv6; mobile IP; cellular networks
 - multiple access; queueing analysis; capacity analysis
- Next-generation network:
 - Cloud and data center design, programmable networks, RDMA
- Physical layer
- Wireless Networks
- Network security
 - security primitives; BAN logic, SSL

Summary

- Course administration
- A protocol defines the format and the order of messages exchanged between two or more communicating entities, as well as the actions taken on the transmission and/or receipt of a message or other events.
- The past:
 - o facts:
 - The Internet started as ARPANET in late 1960s
 - The initial link bandwidth was 50 kbps
 - The number of hosts at the end of 1969 was 4
 - some implications of the past:
 - ARPANET is sponsored by ARPA → design should survive failures
 - The initial IMPs were very simple → keep the network simple
 - Many networks → need a network to connect networks
- Current:
 - The number of hosts connected to the Internet is around 1 billions
 - The backbone speed of the current Internet is about 40/100 Gbps
 - The Internet is roughly hierarchical where ISPs interconnect at PoP and IXP
 - Needs to handle scale, complexity, decentralization, security

Preview

- We have only looked at the topology/connectivity of the Internet
 - a communication network is a mesh of interconnected devices
- A fundamental question: how is data transferred through a network?