MATH1550 Mid-term examination

1. Let

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{bmatrix}$$

(a) Find $A^T A$ and AA^T .

(b) Find $\begin{bmatrix} A & 0 \\ I_2 & A^T \end{bmatrix} \begin{bmatrix} A^T & I_2 \\ 0 & A \end{bmatrix}$ where I_2 is the identity matrix of order 2.

Answer. (a)

$$A^{T}A = \begin{pmatrix} 5 & -1 \\ -1 & 2 \end{pmatrix}.$$

$$AA^{T} = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 1 & 0 \\ 2 & 0 & 4 \end{pmatrix}.$$

(b)
$$\begin{pmatrix} A & 0 \\ I & A^T \end{pmatrix} \begin{pmatrix} A^T & I \\ 0 & A \end{pmatrix} = \begin{pmatrix} AA^T & A \\ A^T & I + A^T A \end{pmatrix} = \begin{pmatrix} 2 & -1 & 2 & 1 & -1 \\ -1 & 1 & 0 & 0 & 1 \\ 2 & 0 & 4 & 2 & 0 \\ 1 & 0 & 2 & 6 & -1 \\ -1 & 1 & 0 & -1 & 3 \end{pmatrix}.$$

2. Consider the system of linear equations

$$\begin{cases} 2x_1 - 4x_2 + x_3 + 5x_4 = 7 \\ x_1 - 2x_2 + 2x_4 = 3 \\ -3x_1 + 6x_2 + 4x_3 - 2x_4 = -5 \end{cases}$$

(a) Write down the augmented matrix of the system.

(b) Show that the reduced row echelon form of the augmented matrix is

$$\left[\begin{array}{ccc|ccc|c}
1 & -2 & 0 & 2 & 3 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

(c) Write down the solution set of the system.

Answer. (a) The augmented matrix is $\begin{pmatrix} 2 & -4 & 1 & 5 & 7 \\ 1 & -2 & 0 & 2 & 3 \\ -3 & 6 & 4 & -2 & -5 \end{pmatrix}$.

(b) Omitted.

(c) The solution set is $\{(2a-2b+3,a,-b+1,b)|a,b\in\mathbb{R}\}.$

3. Given that the systems of linear equations

$$\begin{cases} x_1 + 2x_2 + ax_3 = 3\\ 3x_1 - x_2 + 5x_3 = -5\\ -x_1 + 4x_2 + 2x_3 = b \end{cases}$$

has infinitely many solutions.

- (a) Show that a = 4.
- (b) Find the value of b.
- (c) Write down a solution to the system with $x_1 = 5$.

Answer. (a) (b)

Do row reduction, we get $\begin{pmatrix} 1 & 2 & a & 3 \\ 0 & 1 & \frac{3a-5}{7} & 2 \\ 0 & 0 & -\frac{11}{7}a + \frac{44}{7} & b-9 \end{pmatrix}$. To make this system has infinitely many solutions, we must have

$$-\frac{11}{7}a + \frac{44}{7} = b - 9 = 0.$$

i.e. a = 4 and b = 9.

(c) Substitute a,b and to row reduction, we have $\begin{pmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. The solution set is $\{(-2t-1, -t+2, t) | t \in \mathbb{R}\}$. When $x_1 = 5, t = -3$. Thus the solution is (5,5,-3).

4. Determine whether the following subsets of \mathbb{R}^3 are vector subspaces.

- (a) $\{[x_1, x_2, x_3]^T | x_1 + 2x_3 = 0\}$
- (b) $\{[x_1, x_2, x_3]^T | x_1 = x_2 \text{ or } x_3 = 0\}$

Answer. (a) This is a vector space.

0 = (0,0,0) is in this set.

Choose u, v in this set and $a, b \in \mathbb{R}$. We have

$$u_1 + 2u_3 = 0$$

and

$$v_1 + 2v_3 = 0.$$

Therefore we have

$$(au_1 + bv_1) + 2(au_3 + bu_3) = a(u_1 + 2u_3) + b(v_1 + 2v_3) = 0.$$

This shows au + bv is in this set.

(b) This is not a vector space. Consider u = (1, 1, 1) and v = (1, 0, 0). We have u + v = (2, 1, 1) which is not in this set.

- 5. Determine whether the following sets of vectors are linearly independent. If the vectors are linearly dependent, express the zero vector as a linear combination of the vectors in a non-trivial way.
 - (a) $\mathbf{v}_1 = [2, 1, 1]^T$, $\mathbf{v}_2 = [1, 2, 1]^T$, $\mathbf{v}_3 = [1, 1, 2]^T$
 - (b) $\mathbf{v}_1 = [1, 2, 3]^T$, $\mathbf{v}_2 = [2, 4, 6]$, $\mathbf{v}_3 = [5, -2, 7]^T$

Answer. (a) Consider the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. Do row elimination and we

get the row reduced form $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, which shows A is of full rank. Therefore, $v_1, ..., v_3$ are linearly independent

(b) Consider the matrix $A = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 4 & -2 \\ 3 & 6 & 7 \end{pmatrix}$. Do row elimination and we get the row reduced form $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. This matrix is not of full rank, i.e. $v_1, ..., v_3$

are linearly dependent.

The equation Ax = 0 has one solution (-2, 1, 0). Thus we have a nontrivial relation $-2v_1 + v_2 = 0.$

- 6. Let $\mathbf{v}_1 = [4, -1, 1]^T$, $\mathbf{v}_2 = [3, 0, 2]^T$, $\mathbf{v}_3 = [1, 5, a]^T$ be vectors in \mathbb{R}^3 . Let $\mathbf{u}_1 = [3, -3, 8]^T$ and $\mathbf{u}_2 = [2, 1, 3]^T$.
 - (a) Find the value of a if $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ do not constitute a basis for \mathbb{R}^3 .
 - (b) Suppose a = -2.
 - (i) Express \mathbf{u}_1 and \mathbf{u}_2 as linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
 - (ii) Express $-3\mathbf{u}_1 + \mathbf{u}_2$ as linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Answer. (a) Consider the matrix $A = \begin{pmatrix} 4 & 3 & 1 \\ -1 & 0 & 5 \\ 1 & 2 & a \end{pmatrix}$. Do row elimination and

we get $\begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 7 \\ 0 & 0 & a - 2 \end{pmatrix}$. To make v_1, v_2, v_3 not a basis, i.e. to make Ax = 0 have

nonzero solution, we only need a = 2.

(b)
$$A = \begin{pmatrix} 4 & 3 & 1 \\ -1 & 0 & 5 \\ 1 & 2 & -2 \end{pmatrix}$$
.

- (i) Solve the equation $Ax = u_1$, we have x = (-2, 4, -1). Thus $u_1 = -2v_1 + 4v_2 v_3$. Solve the equation $Ax = u_2$, we have x = (-1, 2, 0). Thus $u_1 = -v_1 + 2v_2$.
- (ii) $-3u_1 + u_2 = -3(-2v_1 + 4v_2 v_3) + (-v_1 + 2v_2) = 5v_1 10v_2 + 3v_3.$
- 7. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be 3 vectors in \mathbb{R}^n .
 - (a) Prove that if \mathbf{v} is a linear combination of $\mathbf{v}_1, \mathbf{v}_2$, then \mathbf{v} is a linear combination of $\mathbf{v}_1 + \mathbf{v}_2$ and $\mathbf{v}_1 \mathbf{v}_2$.
 - (b) Prove that if $\mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$ are linearly independent, then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.

Answer. (a) Proof. Suppose $v = a_1v_1 + a_2v_2$. We can write it as $v = \frac{a_1+a_2}{2}(v_1 + v_2) + \frac{a_1-a_2}{2}(v_1-v_2)$, which is a linear combination of $v_1 + v_2$ and $v_1 - v_2$.

(b) We write $(v_1, v_1 + v_2, v_1 + v_2 + v_3) = (v_1, v_2, v_3) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Here the transition

matrix $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ is of full rank. Thus v_1, v_2, v_3 are linearly independent.