Projection method for Maxwell equation (Mixed finite element method)

Jiang Guo

Nankai University, China E-mail: jiangliuer0705@gmail.com

March 22,2013

Outline

- 1 Projection finite element method for Maxwell equation
 - curl-curl problem
 - curl-curl-grad-div problem
- 2 Projection finite element method for Maxwell eigenproblem
 - Maxwell Eigenproblem
 - Projection Finite Element Method for Maxwell Eigenproblem
- Numerical results
 - Example
 - Numerical Results

Equation

Let $\Omega \subset \mathbb{R}^d (d=2,3)$ be an open,bounded domain with boundary $\Gamma = \partial \Omega$. We consider the following Maxwell curl-curl problem:

$$\nabla \times \nabla \times \mathbf{u} - \omega^2 \mathbf{u} = \mathbf{f}, \quad \text{in } \Omega$$
 (1)

$$\nabla \cdot \mathbf{u} = g, \quad \text{in } \Omega \tag{2}$$

$$\mathbf{u} \times \mathbf{n} = \mathbf{0}, \quad \text{in } \Gamma$$
 (3)

Hilbert Space

$$H_0(\nabla \times; \Omega) = \left\{ \mathbf{v} \in (L^2(\Omega))^d : \nabla \times \mathbf{v} \in (L^2(\Omega))^{2d-3}, \mathbf{v} \times \mathbf{n} = 0 \right\}$$

$$\mathcal{U} = (H^1(\Omega))^d \cap H_0(\nabla \times; \Omega) \cap H(\nabla \cdot; \Omega)$$

Classical Variational Form

Find $\mathbf{u} \in \mathcal{U}$ such that

$$(\triangledown \times \mathbf{u}, \triangledown \times \mathbf{v}) + (\triangledown \cdot \mathbf{u}, \triangledown \cdot \mathbf{v}) - \omega^2(\mathbf{u}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}) + (\mathbf{g}, \triangledown \cdot \mathbf{v}), \qquad \forall \ \mathbf{v} \in \mathcal{U}$$

Definition of Projection

$$Q_{h} = \{ g \in H_{0}^{1}(\Omega) : q|_{T} \in P_{1}(T), \forall T \in \mathcal{T}_{h} \}$$

$$W_{h} = \{ w \in (H^{1}(\Omega) \cap L_{0}^{2}(\Omega))^{2d-3} : w|_{T} \in (P_{1}(T))^{2d-3}, \forall T \in \mathcal{T}_{h} \}$$

$$\begin{cases} (\check{R}_{h}(\nabla \cdot \mathbf{v}), q)_{0,h} = -(\mathbf{v}, \nabla q), & \forall q \in Q_{h} \\ \check{R}_{h}(\nabla \cdot \mathbf{v}) \in Q_{h} \end{cases}$$

$$\begin{cases} (R_{h}(\nabla \times \mathbf{v}), w)_{0,h} = (\mathbf{v}, \nabla \times w), & \forall w \in W_{h} \\ R_{h}(\nabla \times \mathbf{v}) \in W_{h} \end{cases}$$

$$(5)$$

Projection FEM Variational Form

Find $\mathbf{u}_h \in \mathcal{U}_h$, such that

$$B_h(\mathbf{u}_h, \mathbf{v}_h) = L_h(\mathbf{v}_h), \forall \ \mathbf{v}_h \in \mathcal{U}_h$$
 (6)

where

$$\mathcal{U}_h = \{ \mathbf{v} \in \mathcal{U} : \mathbf{v}|_T \in (P_1^+(T))^d, \forall T \in \mathcal{T}_h \} (Mini \ element) \}$$

$$B_h(\mathbf{u}_h, \mathbf{v}_h) := (R_h(\nabla \times \mathbf{u}_h), R_h(\nabla \times \mathbf{v}_h)) + (\check{R}_h(\nabla \cdot \mathbf{u}_h), \check{R}_h(\nabla \cdot \mathbf{v}_h)) - \omega^2(\mathbf{u}_h, \mathbf{v}_h) + (g, \check{R}_h(\nabla \cdot \mathbf{v}_h))$$

$$L_h(\mathbf{v}_h) := (\mathbf{f}, \mathbf{v}_h) + (g, \check{R}_h(\nabla \cdot \mathbf{v}_h))$$

Implementation of Projection by Mixed FEM

Let $\mathcal{M}_h = \mathcal{U}_h \times Q_h \times W_h$, find $(\mathbf{u}_h, p_h, \xi_h) \in \mathcal{M}_h$ such that $\forall (\mathbf{v}_h, q_h, w_h) \in \mathcal{M}_h$, we have the following equations

1
$$(p_h, q_h)_{0,h} + (\mathbf{u}_h, \nabla q_h) = 0$$

2
$$(\xi_h, w_h)_{0,h} - (\mathbf{u}_h, \nabla \times w) = 0$$

$$(\nabla \times p_h, \mathbf{v}_h) - (\nabla \xi_h, \mathbf{v}_h) - \omega^2(\mathbf{u}_h, \mathbf{v}_h) = (\mathbf{f}, \mathbf{v}_h) + (Sg, \nabla \cdot \mathbf{v}_h)$$

where

Sg is the projection of g onto the space of Q_h , namely, find $Sg \in Q_h$ such that

$$(Sg, q_h)_{0,h} = (g, q_h), \quad \forall q_h \in Q_h$$

Note1: To simplify, we sometimes omit $(.,.)_{0,h}$.

curl-curl-grad-div problem

Equation

Let $\Omega \subset \mathbb{R}^d (d=2,3)$ be an open,bounded domain with boundary $\Gamma = \partial \Omega$. We consider the following Maxwell curl-curl-grad-div problem:

$$\nabla \times \nabla \times \mathbf{u} - \nabla \nabla \cdot \mathbf{u} - \omega^2 \mathbf{u} = \mathbf{f}, \quad \text{in } \Omega$$
 (7)

$$\nabla \times \mathbf{n} = \mathbf{0}, \quad in \Gamma$$
 (8)

$$\nabla \cdot \mathbf{u} = 0, \quad in \Gamma$$
 (9)

Classical Variational Form

Find $\mathbf{u} \in \mathcal{U} \cap H_0(\nabla \cdot; \Omega) := \mathcal{U}^0$ such that

$$(\triangledown \times \mathbf{u}, \triangledown \times \mathbf{v}) + (\triangledown \cdot \mathbf{u}, \triangledown \cdot \mathbf{v}) - \ \omega^2(\mathbf{u}, \mathbf{v}) = (\mathbf{f}, \mathbf{v}), \qquad \forall \ \mathbf{v} \in \mathcal{U}^0$$

curl-curl-grad-div problem

Projection FEM Variational Form

Find $\mathbf{u}_h \in \mathcal{U}_h^0$, such that

$$B_h(\mathbf{u}_h, \mathbf{v}_h) = L_h(\mathbf{v}_h), \forall \ \mathbf{v}_h \in \mathcal{U}_h^0$$

where

$$\mathcal{U}_{h}^{0} = \left\{ \mathbf{v} \in \mathcal{U}^{0} : \mathbf{v}|_{\mathcal{T}} \in \left(P_{1}^{+}(\mathcal{T})\right)^{d}, \forall \mathcal{T} \in \mathcal{T}_{h} \right\}
B_{h}(\mathbf{u}_{h}, \mathbf{v}_{h}) := \left(R_{h}(\nabla \times \mathbf{u}_{h}), R_{h}(\nabla \times \mathbf{v}_{h})\right)
+ \left(\check{R}_{h}(\nabla \cdot \mathbf{u}_{h}), \check{R}_{h}(\nabla \cdot \mathbf{v}_{h})\right) - \omega^{2}(\mathbf{u}_{h}, \mathbf{v}_{h})
L_{h}(\mathbf{v}_{h}) := (\mathbf{f}, \mathbf{v}_{h})$$

Note2: The implementation of projection by mixed finite element method is similar as curl-curl problem.

Maxwell Eigenproblem

• curlcurl eigenproblem Find $(\omega^2, \mathbf{u} \neq \mathbf{0}) \in \mathbb{R} \times \mathcal{U}^0$, such that

$$\left\{ \begin{array}{ll} \nabla \times \mu^{-1} \nabla \times \mathbf{u} = \omega^2 \epsilon \mathbf{u} & \text{in } \Omega \\ \nabla \cdot \epsilon \mathbf{u} = 0 & \text{on } \Gamma \\ \mathbf{u} \times \mathbf{n} = \mathbf{0} & \text{on } \Gamma \end{array} \right.$$

② curlcurlgraddiv eigenproblem Find $(\omega^2, \mathbf{u} \neq \mathbf{0}) \in \mathbb{R} \times \mathcal{U}^0$, such that

$$\left\{ \begin{array}{ccc} \triangledown \times \mu^{-1} \triangledown \times \mathbf{u} - \epsilon \triangledown \triangledown \cdot \epsilon \mathbf{u} = \omega^2 \epsilon \mathbf{u} & \text{in } \Omega \\ \triangledown \cdot \epsilon \mathbf{u} = 0 & \text{on } \Gamma \\ \mathbf{u} \times \mathbf{n} = \mathbf{0} & \text{on } \Gamma \end{array} \right.$$

Note3: we only consider ccgd eigenproblem, cc is the same.

Maxwell Eigenproblem

The Classical Variational Form(ccgd)

Find $(\omega^2, \mathbf{u} \neq \mathbf{0}) \in \mathbb{R} \times \mathcal{U}^0_{\epsilon}$, such that

$$(\mu^{-1} \triangledown \times \mathbf{u}, \triangledown \times \mathbf{v}) + \ s(\triangledown \cdot \epsilon \mathbf{u}, \triangledown \cdot \epsilon \mathbf{v}) = \ \omega^2(\epsilon \mathbf{u}, \mathbf{v}), \quad \forall \ \mathbf{v} \in \mathcal{U}^0_\epsilon$$

where

$$\mathcal{U}_{\epsilon}^0 = H_0(\triangledown \times; \Omega) \cap H_0(\triangledown \cdot \epsilon; \Omega)$$

s is used to distinguish between true and false eigenvalue.

Both sides plus $(\epsilon \mathbf{u}, \mathbf{v})$, we have the following equivalent variational form: Find $(\lambda, \mathbf{u} \neq \mathbf{0}) \in \mathbb{R} \times \mathcal{U}_{\epsilon}^0$ $(\lambda = 1 + \omega^2)$, such that

$$(\mu^{-1} \triangledown \times \mathbf{u}, \triangledown \times \mathbf{v}) + s(\triangledown \cdot \epsilon \mathbf{u}, \triangledown \cdot \epsilon \mathbf{v}) + (\epsilon \mathbf{u}, \mathbf{v}) = \lambda(\epsilon \mathbf{u}, \mathbf{v}), \quad \forall \ \mathbf{v} \in \mathcal{U}^0_{\epsilon}$$

Projection FEM for Maxwell Eigenproblem

For any given $\mathbf{v} \in (L^2(\Omega))^d$, define $\breve{R}_h(\nabla \cdot \epsilon \mathbf{v}) \in Q_h$ and $R_h(\mu^{-1}\nabla \times \mathbf{v}) \in W_h$ as follows:

$$(\breve{R}_h(\nabla \cdot \epsilon \mathbf{v}), q) = -(\mathbf{v}, \epsilon \nabla q), \quad \forall q \in Q_h$$

$$(R_h(\mu^{-1} \nabla \times \mathbf{v}), w)_{\mu} = (\mathbf{v}, \nabla \times w), \quad \forall w \in W_h$$

Projection FEM:

Find
$$(\lambda_h, \mathbf{u}_h \neq \mathbf{0}) \in \mathbb{R} \times \mathcal{U}^0_{\epsilon h}$$
 such that

$$B_h(\mathbf{u_h}, \mathbf{v}_h) = \lambda_h(\epsilon \mathbf{u}_h, \mathbf{v}_h), \ \forall \ \mathbf{v_h} \in \mathcal{U}_{\epsilon h}^0$$

where:
$$\mathcal{U}_{\epsilon h}^{0} = \left\{ \mathbf{v} \in \mathcal{U}_{\epsilon}^{0} : \mathbf{v}|_{\mathcal{T}} \in \left(P_{1}^{+}(\mathcal{T})\right)^{d}, \forall \mathcal{T} \in \mathcal{T}_{h} \right\}$$

$$B_{h}(\mathbf{u}_{h}, \mathbf{v}_{h}) := \left(R_{h}(\mu^{-1} \nabla \times \mathbf{u}_{h}), R_{h}(\mu^{-1} \nabla \times \mathbf{v}_{h})\right)_{\mu}$$

$$+ s\left(\breve{R}_{h}(\nabla \cdot \epsilon \mathbf{u}_{h}), \breve{R}_{h}(\nabla \cdot \epsilon \mathbf{v}_{h})\right) + \left(\epsilon \mathbf{u}_{h}, \mathbf{v}_{h}\right)$$

Example

L-shaped Domain (cc - projection - mixed fem)

L-shape domain: $\Omega = [-1,1]^2/[0,1] \times [-1,0]$ Let $\omega = 1$ and $\varphi(x,y) = r^{\frac{2}{3}} \sin(\frac{2}{3}\theta)$, the exact solution is given by $\mathbf{u}(x,y) = \nabla \left((x^2-1)(y^2-1)\varphi(x,y) \right)$

where $x = r \cos(\theta)$, $y = r \sin(\theta)$ and (r, θ) is polar coordinates.

Figure: L-shape domain Figure: Mesh

Example

Cracked Square Domain (cc - projection - mixed fem)

Cracked square domain: $\Omega = [-1,1]^2/[0,1] \times [0]$ Let $\omega = 1$ and $\varphi(x,y) = r^{\frac{1}{2}}\sin(\frac{1}{2}\theta)$, the exact solution is given by $\mathbf{u}(x,y) = \nabla((x^2-1)(y^2-1)\varphi(x,y))$

where $x = r \cos(\theta)$, $y = r \sin(\theta)$ and (r, θ) is polar coordinates.

Figure: Cracked square domain

Figure: Mesh

L-shape

L-shape Relative error of **u** by projection-mixed-fem

mesh	1/4	1/8	1/16	1/32	1/64
$\frac{\ u_1 - u_{1h}\ _0}{\ u_1\ _0}$	0.08746	0.04818	0.02870	0.01767	0.01103
ratio		1.81	1.68	1.62	1.60
$\frac{\ u_2-u_{2h}\ _0}{\ u_2\ _0}$	0.13403	0.07837	0.04795	0.02987	0.01874
ratio		1.71	1.63	1.61	1.59

L-shape Relative error of **u** by projection-fem(ssyang)

mesh	1/4	1/8	1/16	1/32	1/64
$\frac{\ u_1 - u_{1h}\ _0}{\ u_1\ _0}$	0.1903	0.1115	0.0684	0.0427	0.0268
ratio		1.7067	1.6301	1.6019	1.5933
$\frac{\ u_2-u_{2h}\ _0}{\ u_2\ _0}$	0.1903	0.1115	0.0684	0.0427	0.0268
ratio		1.7067	1.6301	1.6019	1.5933

Cracked-square

Cracked-square Relative error of **u** by projection-mixed-fem

mesh	1/8	1/16	1/32	1/64	1/128
$\frac{\ u_1 - u_{1h}\ _0}{\ u_1\ _0}$	4.32192	1.73049	0.79694	0.39595	0.206631
ratio		2.45	2.17	2.01	1.92
$\frac{\ u_2-u_{2h}\ _0}{\ u_2\ _0}$	4.3627	1.7712	0.83032	0.423606	0.230516
ratio		2.46	2.13	1.96	1.83

