Упражнения и задачи

1. Геометрическая интерпретация ЗЛП

1-11. Решить следующие ЗЛП графически или убедиться в их неразрешимости.

1.
$$f = x_1 + x_2 \rightarrow \max$$
$$\{x_1 + x_2 \le 1$$
$$x_1 \ge 0, x_2 \ge 0$$

2.
$$f = x_1 + 2x_2 \rightarrow \max$$

$$\begin{cases} x_1 + x_2 \le 1 \\ x_1 - x_2 \le 1 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$4. \quad f = x_1 + x_2 \to \max$$

$$\begin{cases} x_1 + 2x_2 \le 1 \\ 2x_1 + x_2 \le 1 \\ x_1 - x_2 \le 1 \\ x_1 - 2x_2 \le 1 \\ 2x_1 - x_2 \le 1 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$6. \quad f = x_1 + x_2 \to \min$$

$$\begin{cases} 0 \le x_1 & \le 1 \\ 0 \le x_2 \le 2 \\ 0 \le x_1 + x_2 \le 3 \\ -1 \le x_1 - x_2 \le 0 \end{cases}$$

3.
$$f = x_1 + 2x_2 \to \max$$

$$\begin{cases} x_1 - x_2 \le 1 \\ x_1 - 2x_2 \le 1 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$5. \quad f = x_1 - x_2 \to \min$$

$$\begin{cases} x_1 + x_2 \le 1 \\ x_1 - 2x_2 \le 1 \\ 2x_1 + 3x_2 \le 2 \\ 3x_1 + 2x_2 \le 3 \\ x_1 + x_2 \ge 1/2 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

$$7. \quad f = x_1 - x_2 \to \max$$

$$\begin{cases} 1 \le x_1 + x_2 \le 2 \\ 2 \le x_1 - 2x_2 \le 3 \\ 1 \le 2x_1 - x_2 \le 2 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

8.
$$f = x_1 + 2x_2 \rightarrow \max$$

9.
$$f = 2x_1 + x_2 \rightarrow \max$$

$$\begin{cases} 3x_1 - 2x_2 \le 6 \\ -x_1 + 2x_2 \le 4 \\ 3x_1 + 2x_2 \le 12 \\ x_1 \ge 0 \end{cases}$$

$$\begin{cases}
-x_1 + x_2 \le 2 \\
x_1 + 2x_2 \le 7 \\
4x_1 - 3x_2 \le 6 \\
x_1 \ge 0, x_2 \ge 0
\end{cases}$$

10.
$$f = 7x_1 + 5x_2 \rightarrow \min$$

11.
$$f = -x_1 + 2x_2 \rightarrow \min$$

$$\begin{cases} x_1 + x_2 \ge 3 \\ x_1 + 5x_2 \ge 5 \\ 2x_1 + x_2 \ge 4 \end{cases}$$

$$\begin{cases} 2x_1 - 3x_2 \ge 0 \\ x_1 - x_2 \le 3 \\ 2x_1 - x_2 = 4 \end{cases}$$

12-15. Используя метод исключения неизвестных и графический способ, найти решения следующих ЗЛП:

12
$$f = 8x_1 - 2x_2 - 3x_3 \rightarrow \max$$
 13 $f = x_1 + x_3 - 7x_4 + x_5 \rightarrow \max$

$$\begin{cases}
-x_1 + 3x_2 + x_3 \le 4 \\
7x_1 - 2x_3 \le 16 \\
2x_1 - x_2 - x_3 = 2 \\
x_1 \ge 0, x_2 \ge 0, x_3 \ge 0
\end{cases}$$

$$\begin{cases}
-x_1 + 3x_2 + x_3 \le 4 \\
7x_1 - 2x_3 \le 16 \\
2x_1 - x_2 - x_3 = 2
\end{cases} \begin{cases}
x_1 - x_2 + 6x_4 - 2x_5 = -7 \\
x_2 - x_3 - 4x_4 + 6x_5 = 24 \\
x_1 + x_2 - x_3 - 3x_4 + 7x_5 = 32
\end{cases}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

$$x_j \ge 0, j \in 1:5$$

14.
$$f = -x_1 + x_2 + x_4 + 3x_5 \rightarrow \min$$

$$\begin{cases} x_1 + 2x_2 - x_3 - 5x_4 + 2x_5 = -5 \\ x_1 + x_2 + x_3 - 2x_4 + 5x_5 = -2 \\ -2x_2 + x_3 + 3x_4 - 3x_5 = 6 \end{cases}$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

15.
$$f = x_1 + x_2 + 2x_3 - 9x_4 \rightarrow \max$$

$$\begin{cases} 2x_1 - x_2 + x_3 - 4x_4 \le 6 \\ x_1 + 2x_2 - x_3 + 7x_4 = 5 \\ 5x_1 + x_2 - 3x_4 = 11 \\ 3x_1 + 2x_2 + x_3 - 3x_4 = 7 \\ x_j \ge 0, \quad j \in 1:4 \end{cases}$$

- 2.Базисные решения. Метод полного перебора вершин.
- **16-23**. Найти базисы решений систем, приведенных в условиях (в случае вырожденности решения найти все его базисы).

$$16. \begin{cases} x_{1} - x_{2} = 1 \\ x_{1} \ge 0, x_{2} \ge 0 \end{cases}$$

$$X_{0} = (1, 0)$$

$$17. \begin{cases} 3x_{1} + 2x_{2} = 1 \\ x_{1} \ge 0, x_{2} \ge 0 \end{cases}$$

$$X_{0} = (0, 1/2)$$

$$18. \begin{cases} x_{1} - x_{2} = 0 \\ x_{1} \ge 0, x_{2} \ge 0 \end{cases}$$

$$X_{0} = (0, 0)$$

$$19. \begin{cases} x_{1} + x_{2} = 2 \\ x_{1} - x_{2} = 0 \\ x_{1} \ge 0, x_{2} \ge 0 \end{cases}$$

$$X_{0} = (1, 1)$$

$$20. \begin{cases} x_{1} + x_{2} + x_{3} = 1 \\ x_{1} - x_{3} = 0 \\ x_{i} \ge 0, i \in 1:3 \end{cases}$$

$$X_{0} = (1/2, 0, 1/2)$$

$$21. \begin{cases} x_{1} + x_{2} + x_{3} = 0 \\ x_{1} - x_{2} + x_{3} = 0 \\ x_{i} \ge 0, i \in 1:3 \end{cases}$$

$$X_{0} = (0, 0, 0)$$

$$22 \begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 - x_2 + x_3 - x_4 = 1 \\ x_i \ge 0, i \in 1:4 \end{cases}$$

$$X_0 = (1, 0, 0, 0)$$

$$23. \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \\ x_1 + x_2 - x_3 + x_4 = 0 \\ x_i \ge 0, i \in 1:4 \end{cases}$$

$$X_0 = (0, 0, 0, 0)$$

24-27. Найти решения следующих ЗЛП методом полного перебора вершин.

24.
$$f = x_1 + x_2 + x_3 \rightarrow \max$$

24.
$$f = x_1 + x_2 + x_3 \rightarrow \max$$
 25. $f = x_1 + x_2 + 2x_3 + 3x_4 \rightarrow \min$

$$\begin{cases} x_1 - x_2 + x_3 \le 4 \\ 2x_1 + x_2 + x_3 \le 3 \\ 3x_1 + x_2 + 2x_3 \le 6 \\ -x_1 + 2x_2 - x_3 \le -3 \end{cases}$$

$$\begin{cases} 2x_1 - x_2 + x_3 - 4x_4 \le 6 \\ x_1 + x_2 + 3x_3 + 4x_4 = 12 \\ x_1 - x_2 + x_3 - x_4 = 2 \\ x_j \ge 0, \quad j \in 1:4 \end{cases}$$

26.
$$f = x_1 + 2x_2 - 3x_3 \rightarrow \max$$

27.
$$f = x_1 + x_2 - 4x_3 + 2x_4 \rightarrow \max$$

$$\begin{cases} -x_1 + 2x_2 + 2x_3 \le 1 \\ x_1 + x_2 - x_3 = 0 \end{cases}$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

$$\begin{cases}
-x_1 + 2x_2 - 3x_3 + x_4 = -4 \\
3x_1 - x_2 - x_3 + 2x_4 \le -3 \\
x_1 + 5x_2 + x_3 + 3x_4 \le 4
\end{cases}$$

$$x_2 \ge 0, \quad x_3 \ge 0$$

3. Прямой алгоритм симплекс-метода.

28-45. Решить ЗЛП, рассматривая в качестве начального базисного решения приведенное в условии.

28.
$$f = x_1 - 2x_2 + x_3 \rightarrow \max$$
 29. $f = x_1 + x_2 + x_3 \rightarrow \max$

29.
$$f = x_1 + x_2 + x_3 \rightarrow \max$$

$$\begin{cases} x_1 + 4x_2 + x_3 = 5 \\ x_1 - 2x_2 - x_3 = -1 \end{cases}$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$
$$X_0 = (1, 1, 0)$$

$$\begin{cases} -x_1 + x_2 + x_3 = 2\\ 3x_1 - x_2 + x_3 = 0 \end{cases}$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$
$$X_0 = (0, 1, 1)$$

30.
$$f = 2x_1 + x_2 + 3x_3 + x_4 \rightarrow \text{max}$$
 31. $f = 6x_1 + x_2 + 4x_3 - 5x_4 \rightarrow \text{max}$

$$\begin{cases} x_1 + 2x_2 + 5x_3 - x_4 = 4 \\ x_1 - x_2 - x_3 + 2x_4 = 1 \end{cases}$$

$$\begin{cases} 3x_1 + x_2 - x_3 + x_4 = 4 \\ 5x_1 + x_2 + x_3 - x_4 = 4 \end{cases}$$

$$x_j \ge 0, \quad j \in 1:4$$

$$X_0 = (0, 0, 1, 1)$$

$$X_0 = (1, 0, 0, 1)$$

32.
$$f = x_1 + 2x_2 + 3x_3 - x_4 \rightarrow \text{max}$$
 33. $f = x_1 - 3x_2 - 5x_3 - x_4 \rightarrow \text{max}$

$$\begin{cases} x_1 - 3x_2 - x_3 - 2x_4 = -4 \\ x_1 - x_2 + x_3 = 0 \end{cases} \begin{cases} x_1 + 4x_2 + 4x_3 + x_4 = 5 \\ x_1 + 7x_2 + 8x_3 + 2x_4 = 9 \end{cases}$$

$$x_j \ge 0, \quad j \in 1:4$$

$$X_0 = (0, 1, 1, 0)$$

$$X_0 = (1, 0, 1, 0)$$

34.
$$f = x_1 + x_2 + x_3 + x_4 \rightarrow \text{max}$$
 35. $f = x_1 + 2x_2 - x_3 + x_4 \rightarrow \text{max}$

$$\begin{cases} x_1 + 3x_2 + x_3 + 2x_4 = 5 \\ 2x_1 - x_3 + x_4 = 1 \end{cases}$$

$$\begin{cases} x_1 + x_2 - 2x_3 + 3x_4 = 1 \\ 2x_1 - x_2 - x_3 + 3x_4 = 2 \end{cases}$$

$$x_j \ge 0, \quad j \in 1:4$$

$$X_0 = (0, 1, 0, 1)$$

$$X_0 = (0, 0, 1, 1)$$

36.
$$f = x_1 + x_2 + x_3 + x_4 + x_5 \rightarrow \max$$

$$\begin{cases} 2x_1 + 3x_2 + 5x_3 + 7x_4 + 9x_5 = 19 \\ x_1 - x_2 + x_4 + 2x_5 = 2 \end{cases}$$
$$x_j \ge 0, \quad j \in 1:5$$
$$X_0 = (0, 0, 1, 2, 0)$$

37.
$$f = -2x_1 + x_2 + x_3 - x_4 + 4x_5 + x_6 \rightarrow \max$$

$$\begin{cases} 3x_1 + x_2 + 2x_3 + 6x_4 + 9x_5 + 3x_6 = 15 \\ x_1 + 2x_2 - x_3 + 2x_4 + 3x_5 + x_6 = 5 \end{cases}$$
$$x_j \ge 0, \quad j \in 1:6$$
$$X_0 = (1, 0, 0, 0, 0, 4)$$

38.
$$f = x_1 + x_2 + 2x_3 - x_4 + x_5 - x_6 \rightarrow \max$$

$$\begin{cases} x_1 + 3x_2 + x_3 - 3x_4 + 4x_5 + x_6 = 6 \\ x_1 - x_2 - x_3 + x_4 - x_6 = 2 \end{cases}$$
$$x_j \ge 0, \quad j \in 1:6$$
$$X_0 = (0, 0, 0, 0, 1, 2)$$

39.
$$f = x_1 - x_2 + x_3 + x_4 - x_5 - x_6 \rightarrow \max$$

$$\begin{cases} 2x_1 + x_2 + x_3 + 3x_4 + 3x_5 + 2x_6 = 7 \\ x_1 - x_3 + x_5 - x_6 = -2 \\ x_2 + x_3 + x_4 + x_5 + 2x_6 = 5 \end{cases}$$

$$x_j \ge 0, \quad j \in 1:6$$

$$X_0 = (0, 0, 2, 0, 1, 1)$$

40.
$$f = 5x_1 + x_2 + 2x_3 + x_4 \rightarrow \max$$
 41. $f = x_1 + 3x_2 + x_3 - x_4 \rightarrow \max$

$$\begin{cases} x_1 - x_2 + x_3 &= 1 \\ 2x_1 + x_2 &+ x_4 = 5 \end{cases} \qquad \begin{cases} x_1 + 2x_2 &+ x_4 = 3 \\ -x_1 + x_2 + x_3 &= 1 \end{cases}$$
$$x_j \ge 0, \quad j \in 1:4$$
$$X_0 = (0, 0, 1, 5) \qquad X_0 = (0, 0, 1, 3)$$

42.
$$f = 3x_1 + 7x_2 + 4x_3 - 3x_4 + 2x_5 + 2x_6 \rightarrow \max$$

$$\begin{cases}
-x_1 + 3x_2 + 2x_3 + x_4 + x_5 + 3x_6 = 3 \\
4x_1 - 2x_2 - 3x_3 - 4x_4 + x_5 - 7x_6 = -2
\end{cases}$$

$$x_j \ge 0, \quad j \in 1:6$$

$$X_0 = (0, 0, 1, 0, 1, 0)$$

43.
$$f = x_1 + 3x_2 + 2x_3 + 4x_4 - 2x_5 \rightarrow \min$$

$$\begin{cases} -x_1 + x_3 - 2x_4 = -2\\ x_2 - x_3 + x_4 - 2x_5 = 0\\ 2x_1 + x_2 + 5x_4 + x_5 = 7 \end{cases}$$
$$x_j \ge 0, \quad j \in 1:5$$
$$X_0 = (3, 1, 1, 0, 0)$$

44.
$$f = 3x_1 - 2x_2 + x_3 + 3x_4 + 3x_5 \rightarrow \max$$

$$\begin{cases} 2x_1 - x_2 + x_3 + x_4 + x_5 = 2\\ -4x_1 + 3x_2 - x_3 - x_4 - 3x_5 = -4\\ 3x_1 + 2x_2 + 3x_3 + 5x_4 = 3\\ x_j \ge 0, \quad j \in 1:5\\ X_0 = (1, 0, 0, 0, 0) \end{cases}$$

45.
$$f = x_1 + 3x_2 - 2x_3 - x_4 + x_5 + 3x_6 \rightarrow \max$$

$$\begin{cases} x_2 + x_3 + x_4 - x_5 + x_6 = 1 \\ x_1 - x_2 - x_3 + x_4 + 4x_5 - 3x_6 = -1 \\ x_1 + x_2 + x_4 + x_5 = 1 \\ x_1 + x_2 + x_3 + x_4 + x_6 = 1 \end{cases}$$

$$x_j \ge 0, \quad j \in 1:6$$

$$X_0 = (0, 1, 0, 0, 0, 0)$$

46-48. Решить следующие ЗЛП, предварительно преобразовав их к канонической форме.

46.
$$f = -x_1 + x_2 - 2x_3 + 3x_4 + x_5 \rightarrow \max$$

$$\begin{cases} x_1 + 2x_2 - x_3 - 2x_4 + x_5 \le 3 \\ -x_1 - x_2 + x_3 + 2x_4 + x_5 \le 1 \\ 2x_1 + x_2 + x_3 - x_4 \le 1 \end{cases}$$

$$x_j \ge 0, \quad j \in 1:5$$

48.
$$f = x_1 + x_2 + x_3 - 2x_4 \rightarrow \min$$

47.
$$f = x_1 + 2x_2 - 4x_3$$
 \to max

$$\begin{cases} x_1 - x_2 - x_3 + x_4 \le 1 \\ 2x_1 - x_2 + x_3 \le 3 \\ -x_1 + 3x_2 - 2x_3 - x_4 \le 2 \end{cases}$$

$$x_j \ge 0, \quad j \in 1:4$$

$$\begin{cases} 2x_1 - x_2 & +x_4 \le 3 \\ x_1 + x_2 + x_3 - x_4 \le 1 \\ x_1 + 2x_2 - x_3 & \le 1 \\ x_1 + 3x_2 - 2x_3 + x_4 \le 1 \\ x_j \ge 0, \quad j \in 1:4 \end{cases}$$

4. Искусственные переменные.

49-58. Решить ЗЛП, используя метод искусственных переменных.

49.
$$f = x_1 + 4x_2 + x_3 \rightarrow \max$$

50.
$$f = x_1 - 10x_2 + x_3 \rightarrow \max$$

$$\begin{cases} x_1 - x_2 + x_3 = 3 \\ 2x_1 - 5x_2 - x_3 = 0 \end{cases}$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

$$\begin{cases} -x_1 + 5x_2 + 7x_3 = 13 \\ x_1 + 14,5x_2 + 7x_3 = 15 \end{cases}$$
$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

51.
$$f = x_1 + 2x_2 + 3x_3 - 4x_4 \rightarrow \text{max}$$
 52. $f = x_1 - 4x_2 + 3x_3 + 10x_4 \rightarrow \text{max}$

52.
$$f = x_1 - 4x_2 + 3x_3 + 10x_4 \rightarrow \text{max}$$

$$\begin{cases} x_1 + x_2 - x_3 + x_4 = 2 \\ x_1 + 14x_2 + 10x_3 - 10x_4 = 24 \\ x_j \ge 0, \quad j \in 1:4 \end{cases}$$

$$\begin{cases} x_1 + x_2 - x_3 + x_4 = 2 \\ x_1 + 14x_2 + 10x_3 - 10x_4 = 24 \end{cases} \begin{cases} x_1 + x_2 - x_3 + x_4 = 0 \\ x_1 + 14x_2 + 10x_3 - 10x_4 = 11 \end{cases}$$
$$x_j \ge 0, \quad j \in 1:4$$
$$x_j \ge 0, \quad j \in 1:4$$

54.
$$f = x_1 + 10x_2 - x_3 + 5x_4 \rightarrow \max$$

53.
$$f = x_1 - 5x_2 - x_3 + x_4 \rightarrow \max$$

$$\begin{cases} x_1 + 3x_2 + 3x_3 + x_4 = 3 \\ 2x_1 + 3x_3 - x_4 = 4 \\ x_j \ge 0, \quad j \in 1:4 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - x_3 - x_4 = 1 \\ -x_1 + 2x_2 + 3x_3 + x_4 = 2 \\ x_1 + 5x_2 + x_3 - x_4 = 5 \end{cases}$$

$$x_j \ge 0, \quad j \in 1:4$$

55.
$$f = -2x_1 + 2x_2 + x_3 + 2x_4 - 3x_5 \rightarrow \text{max}$$

$$\begin{cases}
-2x_1 + x_2 - x_3 - x_4 &= 1 \\
x_1 - x_2 + 2x_3 + x_4 + x_5 = 4 \\
-x_1 + x_2 &- x_5 = 4
\end{cases}$$

$$x_i \ge 0, \quad j \in 1:5$$

56.
$$f = 5x_1 - 2x_2 + 2x_3 - 4x_4 + x_5 + 2x_6 \rightarrow \max$$

$$\begin{cases} 2x_1 - x_2 + x_3 - 2x_4 + x_5 + x_6 = 1 \\ -3x_1 + x_2 + x_4 - x_5 + x_6 = 2 \\ -5x_1 + x_2 - 2x_3 + x_4 - x_6 = 3 \end{cases}$$

$$x_i \ge 0, \quad j \in 1:6$$

57.
$$f = 5x_1 + 4x_2 + 3x_3 + 2x_4 - 3x_5 \rightarrow \max$$

$$\begin{cases} 2 x_1 + x_2 + x_3 + x_4 - x_5 = 3 \\ x_1 - x_2 + x_4 + x_5 = 1 \\ -2x_1 - x_2 - x_3 + x_4 = 1 \end{cases}$$

$$x_j \ge 0, \quad j \in 1:5$$

58.
$$f = 2x_1 + x_2 - x_3 + 3x_4 - 2x_5 \rightarrow \min$$

$$\begin{cases} 8x_1 + 2x_2 + 3x_3 + 9x_4 + 9x_5 = 30\\ 5x_1 + x_2 + 2x_3 + 5x_4 + 6x_5 = 19\\ x_1 + x_2 + 3x_4 = 3\\ x_i \ge 0, \quad j \in 1:5 \end{cases}$$

- 5. Теория двойственности.
- 59-71. Построить двойственные задачи к ЗЛП, заданным в условиях.

59.
$$f = x_1 + x_2 \rightarrow \max$$
 60. $f = x_1 - x_2 \rightarrow \min$

60.
$$f = x_1 - x_2 \to \min$$

$$\begin{cases} x_1 - x_2 \le 1 \\ x_1 \ge 0 \end{cases}$$

$$\begin{cases} x_1 &= 1 \\ x_2 \le 0 \end{cases}$$

61.
$$f = x_1 + 10x_2 - x_3 \rightarrow \text{max}$$

61.
$$f = x_1 + 10x_2 - x_3 \rightarrow \text{max}$$
 62. $f = x_1 + 2x_2 + 3x_3 \rightarrow \text{min}$

$$\begin{cases} x_1 + x_2 + x_3 \ge 1 \\ x_1 - x_2 - x_3 \le 2 \end{cases} \qquad \begin{cases} x_1 + x_2 - 4x_3 \ge 1 \\ x_1 - x_2 = 2 \end{cases}$$
$$x_2 \le 0 \qquad x_1 \ge 0$$

$$\begin{cases} x_1 + x_2 - 4x_3 \ge 1 \\ x_1 - x_2 = 2 \end{cases}$$
$$x_1 \ge 0$$

63.
$$f = 2x_1 + x_2 - x_3 - x_4 \rightarrow \min$$
 64. $f = x_1 + 4x_4 \rightarrow \max$

$$4. \quad f = x_1$$

$$+4x_4 \rightarrow \max$$

$$\begin{cases} x_1 + x_2 - x_3 + x_4 = 1 \\ x_1 - x_2 + x_3 - x_4 \ge 2 \\ x_1 - x_3 \le 3 \end{cases}$$
$$x_1 \ge 0, x_2 \le 0$$

$$\begin{cases} x_1 + x_2 - x_3 + x_4 = 1 \\ x_1 - x_2 + x_3 - x_4 \ge 2 \\ x_1 - x_3 \le 3 \end{cases} \qquad \begin{cases} x_2 + x_3 \le 4 \\ x_1 - x_2 + x_3 + x_4 \ge 3 \\ x_1 - x_2 + 2x_3 \ge 5 \end{cases}$$
$$x_1 \ge 0, x_2 \le 0 \qquad x_1 \le 0, x_2 \le 0$$

65.
$$f = x_1 + x_2 + x_3 - x_4 + x_5 \rightarrow \max$$

$$\begin{cases} x_1 + x_2 - x_3 + x_4 + x_5 \le 1 \\ x_1 - x_2 + x_3 - x_4 - x_5 \le 2 \\ x_1 - x_2 - x_3 - x_4 + x_5 \ge 0 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \le 0, x_4 \le 0,$$

66.
$$f = x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 \rightarrow \min$$

$$\begin{cases} x_1 & + x_3 + x_4 + x_5 \ge 0 \\ x_1 & + x_4 + x_5 \le 0 \\ x_1 & + x_5 = 1 \end{cases}$$
$$x_1 \ge 0, x_2 \ge 0, x_5 \le 0$$

67.
$$f = x_1 + 2x_2 - x_3 + 4x_4 - x_5 + x_6 \rightarrow \min$$

$$\begin{cases} 2 x_1 - x_2 + x_3 & \leq 2 \\ x_2 - x_3 - x_4 & \leq 3 \\ x_3 + x_4 - x_5 & \geq 4 \\ x_5 + x_6 & = 7 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0, x_4 \le 0, x_5 \le 0$$

68.
$$f = 17x_1 - 5x_2 + x_3 + x_4 - 8x_5 \rightarrow \text{max}$$

$$\begin{cases} 3x_1 - x_2 - x_3 + 4x_4 + 7x_5 \le 11 \\ x_1 - 5x_2 - 5x_3 + x_4 + 2x_5 \ge -8 \\ x_1 + x_2 + x_3 + 3x_4 - x_5 = 4 \\ x_1 \ge 0, x_4 \ge 0 \end{cases}$$

69.
$$f = 4x_1 - 6x_2 - 2x_3 + 3x_4 + x_5 \rightarrow \min$$

$$\begin{cases} x_1 + 2x_2 - 3x_3 + x_4 - 3x_5 \ge -5 \\ 2x_1 + 3x_2 + x_3 + x_4 + 2x_5 \ge 1 \\ -2x_1 - x_2 - x_4 - x_5 \le 3 \end{cases}$$

70.
$$f = 3x_2 - 2x_3 + x_4 \rightarrow \min$$

$$\begin{cases} -x_1 + x_3 - x_4 = 5 \\ 2x_1 + x_2 - 2x_3 + 2x_4 \le 7 \end{cases}$$
$$x_j \ge 0, j \in 1:4$$

71.
$$f = 4x_1 + x_2 + x_3 + 2x_4 + x_5 \rightarrow \max$$

$$\begin{cases} 4x_1 + x_2 - x_3 - x_4 + x_5 \ge 9 \\ x_1 + x_2 - x_3 + x_4 + 6x_5 = 10 \\ -x_1 - 3x_2 + 5x_3 \le 1 \end{cases}$$

$$x_i \ge 0, j \in 1:4$$

72-76. Используя теорию двойственности и графический метод, найти решения следующих ЗЛП.

72.
$$f = 3ax_1 + 11x_2 + 5bx_3 + x_4 \rightarrow \min$$

$$\begin{cases}
-3x_1 + x_2 + (2+b)x_3 - x_4 \ge c \\
(2+a)x_1 + 3x_2 - 5x_3 - 3x_4 \ge 7 \\
x_j \ge 0, j \in 1:4
\end{cases}$$

	а	b	С		а	b	С		а	b	С		а	b	С
1	1	1					1			1	3	16		1	
2				7	2	2	3	12	3	2	2	17	4		
3			3	8	2	3	2	13	3	3		18	4		1
4	1	4	2	9	2	4	4	14	3	4	1	19	4	4	3
5		5					1				3			5	

73.
$$f = 7x_1 + x_3 - 4x_4 \rightarrow \max$$

$$\begin{cases} x_1 - x_2 + 2x_3 - x_4 \le 6 \\ 2x_1 + x_2 - x_3 \le -1 \\ x_j \ge 0, j \in 1:4 \end{cases}$$

74.
$$f = x_1 + x_3 + x_5 \rightarrow \max$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 - x_4 - x_5 \le 6 \\ x_1 - x_2 - 2x_3 + x_4 + x_5 \le 5 \end{cases}$$
$$x_i \ge 0, j \in 1:5$$

75.
$$f = 4x_1 + 5x_2 + 2x_3 + x_4 + 2x_5 \rightarrow \min$$

$$\begin{cases} -3x_1 + 5x_2 + 4x_3 + 2x_4 + 2x_5 = 1 \\ -4x_1 - 6x_2 - x_3 + x_4 + 3x_5 = -1 \end{cases}$$

 $x_j \ge 0, j \in 1:5$

76.
$$f = 6x_1 + 3x_2 - x_3 - 2x_4 \to \max$$

$$\begin{cases} 3x_1 + 2x_2 + x_3 + 4x_4 \le 0 \\ 2x_1 + 2x_2 - x_3 - x_4 = 1 \end{cases}$$

$$x_2 \ge 0, x_3 \ge 0, x_4 \ge 0,$$

77. Используя теорию двойственности, графический метод и способ исключения неизвестных, найти решения следующих ЗЛП.

77.
$$f = 2x_1 + x_2 - (2 + 12a)x_3 + (1 + 6a)x_4 - 3bx_5 \to \max$$

$$\begin{cases} x_1 + 3x_3 - x_4 - 2x_5 = 1 \\ x_2 - 2x_3 + x_4 = 1 \end{cases}$$

$$\begin{cases} x_1 + x_2 - (5 + 2a - 2b)x_3 + (2 + a - b)x_4 - (b - 2)x_5 \le -b \\ x_1 + x_2 + 3x_5 \le 4 \end{cases}$$

	а	b		а	b		а	b		а	b
1	4	3	6	5	3	11	6	3	16	7	3
2	5	4	7	6	4	12	7	4	17	8	4
3	6	5	8	7	5	13	8	5	18	9	5
4	7	6	9	8	6	14	9	6	19	10	6
5	8	7	10	9	7	15	10	7	20	11	7

78-80. Решить следующие ЗЛП, применив симплекс-метод к соответствующей двойственной задаче.

78.
$$f = 3x_1 + 2x_2 + x_3 \rightarrow \max$$

$$\begin{cases} 2x_1 - x_2 + x_3 \le 1 \\ -x_1 + x_2 - x_3 \le 1 \\ x_1 - 2x_2 + 3x_3 \le -6 \\ x_1 + 3x_2 + x_3 \le 2 \\ 2x_1 + x_2 - 3x_3 \le 12 \end{cases}$$

79.
$$f = 19x_1 + x_2 + 16x_3 \rightarrow \max$$

$$\begin{cases} 2x_1 - x_2 + 3x_3 \le -2 \\ 3x_1 - 5x_2 + 7x_3 \le -10 \\ 4x_1 + 3x_2 + x_3 \le 3 \\ x_1 + 2x_2 - x_3 \le 3 \\ 3x_1 + 2x_3 \le -1 \end{cases}$$

80.
$$f = 4x_1 + 6x_2 - 3x_3 \rightarrow \max$$

$$\begin{cases}
-3x_1 - x_2 + x_3 \ge 2 \\
-2x_1 - 4x_2 + x_3 \ge 5 \\
-2x_1 + 2x_2 + x_3 \le 1 \\
-x_1 - x_2 + x_3 \ge 3 \\
2x_2 + x_3 \le 2
\end{cases}$$

7. Построение моделей экономических задач в виде ЗЛП.

81-88. Построить линейные модели в виде ЗЛП для задач, приведенных в условиях.

81. (задача о планировании выпуска продукции при ограниченных ресурсах)

Нефтеперерабатывающий завод производит за месяц 1 500 000 л алкилата, 1 200 000 л крекинг-бензина и 1 300 000 л изопентола. В результате смешивания этих компонентов в пропорциях 1:1:1 и 3:1:2 получается бензин сорта А и Б соответственно. Стоимость 1000 л бензина сорта А и Б соответственно равна 90 ед. и 120 ед.

Определить месячный план производства бензина сорта А и Б, максимизирующий стоимость выпущенной продукции.

82. (задача о диете)

Рацион кормления коров на молочной ферме может состоять из трех продуктов - сена, силоса и концентратов. Эти продукты содержат питательные вещества - белок, кальций и витамины. Численные данные представлены в таблице.

	Питательные вещества					
Продукты	Белок (г/кг)	Белок (г/кг) Кальций (г/кг)				
Сено	50	10	2			
Силос	пос 70		3			
Концентраты	180	3	1			

В расчете на одну корову суточные нормы потребления белка и кальция составляют не менее 2000 и 210 г соответственно. Потребление витаминов строго дозировано и должно быть равно 87 мг в сутки.

Составить самый дешевый рацион, если стоимость 1кг сена, силоса и концентрата равна соответственно 1,5 2 и 6 ед.

83. (матричная транспортная задача)

В области имеются два цементных завода и три потребителя их продукции - домостроительных комбината. В таблице указаны суточные объемы производства цемента, суточные потребности в нем комбинатов и стоимость перевозки 1 т цемента от каждого завода к каждому комбинату.

Заводы	Производство	Стоимость перевозки 1 т цемента (ед.)					
Заводы	цемента (т/сут)	Комбинат 1	Комбинат 2	Комбинат 3			
1	40	10	15	25			
2	60	20	30	30			
	Потребности в цементе (т/сут)	50	20	30			

Требуется составить план суточных перевозок цемента с целью минимизации транспортных расходов.

84. (задача о смесях)

В металлургический цех в качестве сырья поступает латунь (сплав меди с цинком) четырех типов с содержанием цинка 10, 20, 25 и 40 % по цене 10, 30, 40 и 60 ед. за 1 кг соответственно.

В каких пропорциях следует переплавлять это сырье в цехе, чтобы получить сплав (латунь), содержащий 30 % цинка и при этом самый дешевый ?

85. (задача о загрузке оборудования)

Цех выпускает три вида деталей, которые изготавливаются на трех станках. На рисунке показана технологическая схема изготовления детали каждого вида с указанием времени ее обработки на станках.

Суточный ресурс рабочего времени станков 1, 2 и 3 составляет соответственно 890, 920 и 840 мин. Стоимость одной детали вида 1,2 и 3 равна соответственно 3,1 и 2 ед.

Требуется составить суточный план производства с целью максимизации стоимости выпущенной продукции.

86. (задача о ранце с дополнительными ограничениями)

Участник экспедиции укладывает рюкзак, и ему требуется решить, какие положить продукты. В его распоряжении имеются мясо, мука, сухое молоко и сахар. В рюкзаке для продуктов осталось лишь 45 дм³ объема, и нужно, чтобы суммарная масса продуктов не превосходила 35 кг. Врач экспедиции рекомендовал, чтобы мяса (по массе) было больше муки по крайней мере в два раза, муки не меньше молока, а молока по крайней мере в восемь раз больше, чем сахара.

Сколько и каких продуктов нужно положить в рюкзак, с тем чтобы суммарная калорийность продуктов была наибольшей? Характеристики продуктов приведены в таблице.

V	Продукты							
Характеристики	Мясо	Мука	Молоко	Сахар				
Объем (дм ³ /кг)	1	1,5	2	1				
Калорийность (ккал/кг)	1500	5000	5000	4000				

87. (задача плоского прямоугольного раскроя)

На мебельной фабрике требуется раскроить 5000 прямоугольных листов фанеры размером 4 x 5 м каждый, с тем чтобы получить два вида прямоугольных деталей: деталь A должна иметь размер 2 x 2 м, деталь Б - размер 1 x 3 м. Необходимо, чтобы деталей A оказалось не меньше, чем деталей Б.

Каким образом следует производить раскрой, чтобы получить минимальное (по площади) количество отходов ?

88. (задача одномерного раскроя)

Для серийного производства некоторого изделия требуются комплекты заготовок профильного проката. Каждый комплект состоит из двух заготовок длиной 1800 мм и пяти заготовок длиной 700 мм.

Как следует раскроить 770 полос проката стандартной длины 6000 мм, чтобы получить наибольшее количество указанных комплектов ?