Special Topics in Learning, Games and Optimization

SUTD 40.616 – Fall 2025

[Introductory Lecture and Course Overview]

Co-instructors:
Anas Barakat
John Lazarsfeld
Joseph Sakos

Course website: learning-in-games.github.io

What is this Course?

New special topics course on online learning and learning in games.

Optimization-based paradigm for sequential decision-making in multi-agent, game-theoretic settings.

 Co-designed and instructed by three Postdoctoral Research Fellows (ESD Pillar) working in these areas:

John Lazarsfeld

Anas Barakat

Joseph Sakos

- Target audience: graduate students broadly interested in ML theory (game theory, multi-agent learning, RL, optimization, economics, ...)
- **Objective:** introduce core algorithms, results, proof techniques; bring students to frontier of research in these fields (very active area of ML).

Today's Class

- (1) Overview of topics and motivating examples.
- (2) Course logistics (schedule, assignments, project)
- (3) Lecture 1: Introduction to Online Learning

(These slides will be posted on eDimension / course website)

Overview of Topics

Overview of Topics

- This course: 1. Introduce fundamental algorithms and concepts in online learning.
 - Study (non)-equilibria arising from simultaneous use of learning algorithms in multi-agent settings.

Sequential decision-making setting:

Every round/day....

- 1. Learner: chooses an action from a fixed set.
- 2. Nature: chooses a loss function over actions.
- 3. Learner incurs loss and observes feedback.

Goal of learner: minimize total incurred loss over time.

Learning = choosing a sequence of actions with total loss not much worse than that of a fixed benchmark sequence.

Challenge: non-stationarity – the future is unknown, and losses can be adversarially changing with time!

Example 1: Weather forecast publishing

Setting: weather app needs to display current conditions and hourly/weekly forecast, but many possible data sources to choose from.

After each day, can evaluate whether each source was accurate.

Example 2: Portfolio Selection

Setting: investment manager must allocate money across a set of stocks (e.g., 20% in Apple, 10% in Google, etc.)

After each day, can observe a company's change in share price and update portfolio weightings.

Example 3: Online Shortest Paths

Setting: recommend route to user requesting directions.

Can observe true travel time for a route after a user completes a trip.

Modern paradigm: iterative, gradient-based algorithms.

 Online learning / online convex optimization: active area of research since 1990s!

- Today: standardized models and performance metrics (regret).
- Powerful toolkit of (near-)optimal algorithms and analysis techniques (e.g., regularization, adaptive learning rates, convex analysis tools, etc.).

Online learning/optimization: provides the algorithmic/theoretical foundation for problems in statistical learning, RL, economics,

Learning in Games

Learning in Games

Online Learning

Game Theory

Learning in Games

Game Theory

Framework for studying strategic interactions and incentives.

<u>Players/Agents</u>: choose actions and receive a utility/payoff.

Agents' utility functions depend jointly on actions of all agents!

Example: Rock-Paper-Scissors

Alice: chooses action x from {R, P, S} Bob: chooses action y from {R, P, S}

Given (x, y): - Alice gains A(x, y) - Bob loses A(x,y)

A =		R	P	S
	R	0	-1	1
	P	1	0	-1
	S	-1	1	0

Key object of study: **equilibria** of games

<u>Informally:</u> actions that capture *stability*: agents have no incentive to change their actions.

Mathematically: solutions to certain (constrained) optimization problems

Learning in Games

- Main view: decentralized learning of equilibria via repeated play.
- Motivation: study collective behavior of individual learning agents in multi-agent settings. What outcomes emerge from simultaneous use of online learning algorithms?

Fundamental Theorem of Learning in Games: in many games settings, performance guarantees for *single-agent online learning* correspond to global convergence guarantees to an underlying equilibrium.

- In the past decade: many advances in the theory and practice of learning in games (training GANs, self-play in RL, solving large games).
- Today: Complex, multi-agent systems increasingly prevalent.
 - Heightened need for understanding (global) behavior of learning algorithms in these systems.

Goal of this class: give foundational tools for addressing these problems.

Example 1: Algorithmic Pricing in Online Marketplaces

- Sellers use algorithmic pricing methods based on other observable prices in market.
- Simultaneous deployment of such learning algorithms can lead to undesirable outcomes.

Example 2: Online Advertising Systems

 Multi-billion dollar industry: complex incentive structure between platform, advertisers, and users.

 Undesirable outcomes may emerge – broader questions on social welfare.

TECHNOLOGY

Facebook Algorithm Shows Gender Bias in Job Ads, Study Finds

Researchers found the platform's algorithms promoted roles to certain users; company pledges to continue work in removing bias from recommendations

Example 3: Rideshare Surge Pricing

• **Setting:** rideshare platforms use *surge pricing* to adjust to demand/supply in real time.

 Non-equilibrium outcomes: resulting from pricing algorithms and strategic behavior of drivers

Example 4: Energy Markets

The AI Energy Crisis: How Big Tech's Power Demands Are Reshaping Global Infrastructure Markets

TrendPulse Finance • Thursday, Aug 14, 2025 7:18 pm ET

- New paradigms for energy markets: by 2025, AI data centers will consume 22% of the electricity used by all U.S. households.
- More agents in system: individual households increasingly sell excess energy back to power grids.

 Non-equilibrium behavior can have negative environmental impacts.

Example 5: Superhuman Game Play and RL

Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

David Silver,^{1*} Thomas Hubert,^{1*} Julian Schrittwieser,^{1*}
Ioannis Antonoglou,¹ Matthew Lai,¹ Arthur Guez,¹ Marc Lanctot,¹
Laurent Sifre,¹ Dharshan Kumaran,¹ Thore Graepel,¹
Timothy Lillicrap,¹ Karen Simonyan,¹ Demis Hassabis¹

¹DeepMind, 6 Pancras Square, London N1C 4AG.
*These authors contributed equally to this work.

- More recently: extend approach to more complex games requiring cooperation, like *Diplomacy*.
- Also: learning in games approach for LLM alignment via RLHF.

 Learning in games paradigm: used to achieve superhuman levels in Go via self-play.

COMPUTER SCIENCE

Human-level play in the game of *Diplomacy* by combining language models with strategic reasoning

Meta Fundamental Al Research Diplomacy Team (FAIR)†, Anton Bakhtin¹‡, Noam Brown¹*‡, Emily Dinan¹*‡, Gabriele Farina¹, Colin Flaherty¹‡, Daniel Fried¹², Andrew Goff¹, Jonathan Gray¹‡, Hengyuan Hu¹³‡, Athul Paul Jacob¹⁴‡, Mojtaba Komeili¹, Karthik Konath¹, Minae Kwon¹³, Adam Lerer¹*‡, Mike Lewis¹*‡, Alexander H. Miller¹‡, Sasha Mitts¹, Adithya Renduchintala¹‡, Stephen Roller¹, Dirk Rowe¹, Weiyan Shi²¹⁵‡, Joe Spisak¹, Alexander Wei¹.⁵, David Wu¹‡, Hugh Zhang¹¹‡, Markus Zijlstra¹

COMAL: A Convergent Meta-Algorithm for Aligning LLMs with General Preferences

Example 6: Adversarial Training and Robust ML

 Generative Adversarial Networks (GANS): training objective as minmax optimization problem.

TRAINING GANS WITH OPTIMISM

• Adversarial training: make models robust to "attacks".

$$\min_{ heta} rac{1}{|S|} \sum_{x,y \in S} \max_{\|\delta\| \leq \epsilon} \ell(h_{ heta}(x+\delta), y).$$

Goals of this Course

Goal 1: Teach fundamental techniques and concepts, in order to understand latest research in these and adjacent fields.

Goal 2: Prepare students to pursue research in these areas.

Learning outcomes – understand the online learning paradigm for learning in games, including:

- Fundamental algorithms
- Key results and the landscape of open questions
- Core analysis techniques for proving rigorous guarantees.

Course Structure

Lectures: Tuesdays/Thursdays, 10am-12pm

Four parts: Part I: Introduction to Online Learning (John)

Part II: Learning in Normal Form and Stochastic Games (Anas)

Part III: Learning in Extensive Form and Continuous Games (Joseph)

Part IV: Special Topics (all 3 Instructors)

Notes/slides posted on eDimension/course website.

- Evaluation: 2 problem sets and Final Project
 - Problem sets 40% of grade (20% each)
 - Final project 60% of grade

Overview of Topics – Part I

Part I: Online Learning – *Lectures given by John*

- (Lo1) Introduction to Online Learning
 Prediction with expert advice, online convex optimization, regret, Multiplicative Weights Update and Online Gradient Descent.
- (Lo2) Follow-the-Regularized-Leader: No-regret via Regularization
 Family of leader-based algorithms, analysis of Follow-the-Regularized-Leader (FTRL) via coupling with Be-the-Leader/Follow-the-Leader, Multiplicative Weights Update as FTRL, lower bounds for online learning.
- (Lo3) Follow-the-Perturbed-Leader and Online Mirror Descent: No-regret via Perturbation and Penalty Follow-the-Perturbed-Leader (FTPL) analysis, equivalence between FTPL and FTRL, Online Mirror Descent analysis.
- (Lo₄) Online Learning with Bandit Feedback
 Bandit feedback model, expected regret and pseudo-regret, EXP₃ algorithm for adversarial bandits, Explore-then-Commit and UCB algorithms for stochastic bandits.
- (Lo5) Φ-Regret Minimization
 Beyond external regret: swap-regret, internal-regret, and Φ-regret framework. Blum-Mansour and Stoltz-Lugosi algorithms.
- (Lo6) Blackwell Approachability and Regret Matching
 Blackwell's Approachability theorem, Regret Matching (RM) and Regret Matching+ (RM+) algorithms.

Overview of Topics – Part II

Part II: Learning in Normal-Form and Stochastic Games – Lectures given by Anas

- (Lo7) Introduction to Normal-Form Games and Nash Equilibria Normal-form games, Nash equilibria (NE), game classes (potential, zero-sum, decomposition).
- (Lo8) No-Regret Learning in Games and Learning NEs in Zero-Sum and Potential Games Hindsight rationality, proof of minimax theorem via online learning, learning NE in potential games.
- (Lo9) Learning (Coarse)-Correlated Equilibria in General-Sum Games
 (Coarse)-correlated equilibria, time-average convergence via no-φ-regret learning, average vs. last-iterate convergence.
- (L10) Optimistic Learning and Social Welfare of No-Regret Dynamics Optimistic FTRL algorithms, RVU bounds, individual vs. sum of regrets, fast convergence of social welfare.
- (L11) Introduction to Stochastic Games and Multi-Agent Reinforcement Learning
 Introduction to Markov Decision Processes (MDPs) and Reinforcement Learning, definition of stochastic games, Shapley's minimax theorem, existence of Nash equilibria.
- (L12) Learning Equilibria in Stochastic Games
 Independent and decentralized learning, zero-sum Markov games and Markov potential games, policy gradient methods.

Overview of Topics – Part III

Part III: Learning in Extensive-Form and Continuous Games – Lectures given by Joseph

- (L13) Introduction to Extensive-Form Games
 Game trees, imperfect information, perfect recall, strategy representations, Kuhn's theorem.
- (L14) Learning Equilibria in Extensive-Form Games
 Counterfactual Regret Minimization (CFR) algorithm and speedups.
- (L15) Introduction to Continuous Games
 Concave games, Rosen's theorem, variational inequalities, monotone games, zero-sum games and Gradient Descent Ascent (GDA), divergence of GDA in bilinear case.
- (L16) Learning Equilibria in Continuous Games
 Proximal point method, Optimistic GDA and Extragradient algorithms for zero-sum games, learning equilibria in potential games, general concave games.
- (L17) Price of Anarchy and Equilibrium Selection

 Braess's paradox, Pigou's network, smooth games, introduction to Price of Anarchy (PoA) bounds.

Overview of Topics – Part IV

Part IV: Special Topics

The final six lectures will cover more advanced topics based on results in the field over the past five years:

- (L18) Online Learning in Time-Varying Games (Anas)
- (L19) (Multi-Agent) Online Nonstochastic Control (Anas)
- (L20) Bridging Continuous-time and Discrete-time Learning in Games (John)
- (L21) Unregularized Learning in Zero-Sum Games (John)
- (L22) Sum-of-Squares Optimization in Games (Joseph)
- (L23) Hidden Games (Joseph)

Assignments

- 2 Problem Sets (40% of total grade)
 - Problem Set A: released Friday, Sep 18; due Friday, Oct 10.
 - Problem Set B: released Friday, Oct 17; due Friday, November 14.
 - Each problem set will consist of roughly 4-5 exercises related to algorithms and analysis techniques covered in lectures.
 - Can collaborate with classmates, but each student must submit their own assignment.

Final Project

- Final project containing 3 components (60% of total grade).
 - Project is based on reading, synthesizing, and presenting on several related research papers based on topics covered in class.
 - Topics and research papers will be based on recent works published in top ML venues (ICML, NeurIPS, COLT, ICLR) etc.
- Structure of project / important dates
 - Start of Week 2 (Sep 23): list of project topics announced by instructors
 - End of Week 3 (Oct 02): students rank topics; matched with project.
 - Midterm Presentation (10% of grade) in class on Tues, November 4.
 - 5-10 min presentations per student (including questions)
 - Goal: give initial overview of paper topics; receive some feedback.
 - **Final Presentation** (20% of grade) in class on Dec 16 and Dec 18
 - Final Report (30% of grade) due Friday, Dec 19.

Final Project

- Purpose of project: gain methodological research experience
 - After matching with topic (based on an active area of research in online learning and learning in games), instructors will provide 2-3 recent papers on the topic.
 - Your goal: understand the main contributions, techniques, and connections between the papers. Identify possible directions for future work.
 - Why? Gain experience in quickly (but deeply) learning about and understanding a new line of work.
 - Midterm presentation (5min), final presentation (15min), and final report will involve demonstrating this understanding.
 - For motivated students, your project can serve as a springboard for a full research project supervised by the instructors.
- More details on rubric/structure/examples in upcoming lectures

Resources

- Course material is designed from scratch, but further reading on topics can be found in following texts:
 - **Cesa-Bianchi and Lugosi, 2006**. *Prediction, Learning, Games.*
 - **Hazan**, **2016**. Introduction to Online Convex Optimization.
 - Nisan, Roughgarden, Tardos, and Vazirani, 2007.
 Algorithmic Game Theory.
 - **Orabona**, **2019**. A Modern Introduction to Online Learning.
- Additional references/pointers will be given throughout the lectures.
- All lecture material will be posted on eDimension and course website: <u>learning-in-games.github.io</u>
- Prerequisites: Prior courses/background in calculus, linear algebra, and basic notions of probability and analysis. A prior course in optimization is helpful (See instructors after class if you have questions).
- Office Hours: 1 hour per week (to be announced); or by appointment
 email for all course staff: sutd.glo.course@gmail.com