Potencia Enésima de un Numero Complejo

Objetivo:

Calcular Potencias Enésimas en Coordenadas Polares de Números Complejos

Conocimientos Previos:

Coordenadas Polares Fórmula de Euler Propiedades de la Potenciación en C

REVISIÓN DEL CONCEPTO de Producto, Cociente y Potencias en N de Números Complejos

Recordemos la fórmula de Euler $e^{i\emptyset} = \cos\emptyset + i \ sen\emptyset = \operatorname{cis}\emptyset$

Recordar si $\pi < \emptyset < \pi/2$ entones 180°- \emptyset si $3\pi/2 < \emptyset < \pi$ entones 180°+ \emptyset si $2\pi/<\emptyset < 3\pi/2$ entones 360°- \emptyset

Dados: $Z = rcis\emptyset = re^{i\emptyset}$

$$(Z)^n = (rcis\emptyset)^n = (re^{i\emptyset})^n = r^n e^{in\emptyset} = r^n cis n\emptyset$$

Ejemplo: Dados $Z_1 = 1 + i$ $Z_2 = \sqrt{3} - i$

$$\mathbf{Z_1}^5 = (\sqrt{2} e^{i45^\circ})^5 = \sqrt{2}^5 e^{i45^\circ.5} = \mathbf{4}\sqrt{2} e^{225^\circ i} = \mathbf{4}\sqrt{2} cis(225^\circ)$$

Hoja de Trabajo para consolidar conocimientos

Dados $Z_1 = -\sqrt{3} - i$	$m{Z}_2 = m{1} + m{i}$ Hallar:	$Z_3=1-\sqrt{3}$	$Z_4 = \sqrt{2} - \sqrt{2} i$
$\boldsymbol{Z_1}$. $\boldsymbol{Z_2}$			
Z_1 / Z_2			
${Z_3}^2 =$			
$\frac{\boldsymbol{Z_{4.}}\;\boldsymbol{Z_{3}}}{\boldsymbol{Z_{2}}}=$			