Cálculo 1

O Teorema do Valor Intermediário

(solução da tarefa)

No desenho ao lado temos uma possível configuração para os gráficos das funções f e da função h(x) = x, plotados no mesmo plano cartesiano. Geometricamente o que ocorre é que, pela continuidade de f, em algum momento o seu gráfico tem que tocar a diagonal do quadrado (que é o gráfico de h). Neste ponto temos $f(x_0) = x_0$.

Para a prova analítica do teorema vamos considerar a função g(x) = x - f(x), definida para $x \in [0,1]$. Ela é contínua por ser uma diferença de funções contínuas.

Note que

$$g(x_0) = 0 \Longleftrightarrow x_0 - f(x_0) = 0 \Longleftrightarrow f(x_0) = x_0,$$

e portanto as raízes de g são exatamente os pontos fixos de f. Como $f(0) \ge 0$, temos que

$$g(0) = 0 - f(0) = -f(0) \le 0.$$

Por outro lado, como $f(1) \leq 1$,

$$g(1) = 1 - f(1) \ge 1 - 1 = 0.$$

Assim, temos que $g(0) \le 0 \le g(1)$, e segue então do TVI que g possui pelo menos uma raiz $x_0 \in [0, 1]$. Conforme observado anteriormente, esta raiz é um ponto fixo de f.