Parcours d'un arbre : Rappels

Parcours d'un arbre : Rappels

On peut parcourir un arbre binaire :

• En largeur, cela revient à lister les noeuds par ordre croissant de profondeur et de gauche à droite

- En largeur, cela revient à lister les noeuds par ordre croissant de profondeur et de gauche à droite
 L'implémentation de ce parcours peut se faire à l'aide d'une file dans laquelle on stocke les noeuds restants à parcourir. A chaque fois qu'on traite un
 - on stocke les noeuds restants à parcourir. A chaque fois qu'on traite un noeud, on le defile et on enfile ses fils (voir la fiche d'activité).
- En profondeur, on tire alors partie de la structure récursive des arbres. Pour parcourir l'arbre T = (e, sag, sad) on doit relancer le parcours sur sag et sad. On distingue alors trois parcours suivant que e est affiché avant, entre ou après sag et sad :

On peut parcourir un arbre binaire :

- En largeur, cela revient à lister les noeuds par ordre croissant de profondeur et de gauche à droite L'implémentation de ce parcours peut se faire à l'aide d'une file dans laquelle
 - on stocke les noeuds restants à parcourir. A chaque fois qu'on traite un noeud, on le defile et on enfile ses fils (voir la fiche d'activité).
- En profondeur, on tire alors partie de la structure récursive des arbres. Pour parcourir l'arbre T = (e, sag, sad) on doit relancer le parcours sur sag et sad. On distingue alors trois parcours suivant que e est affiché avant, entre ou après sag et sad :

Dans le parcours préfixé, e est affiché avant de parcourir sag et sad.

- En largeur, cela revient à lister les noeuds par ordre croissant de profondeur et de gauche à droite
 - L'implémentation de ce parcours peut se faire à l'aide d'une file dans laquelle on stocke les noeuds restants à parcourir. A chaque fois qu'on traite un noeud, on le defile et on enfile ses fils (voir la fiche d'activité).
- En profondeur, on tire alors partie de la structure récursive des arbres. Pour parcourir l'arbre T = (e, sag, sad) on doit relancer le parcours sur sag et sad. On distingue alors trois parcours suivant que e est affiché avant, entre ou après sag et sad :
 - Dans le parcours préfixé, e est affiché avant de parcourir sag et sad. Dans le parcours infixé, e est affiché après le parcours de sag mais avant celui de sad.

- En largeur, cela revient à lister les noeuds par ordre croissant de profondeur et de gauche à droite
 - L'implémentation de ce parcours peut se faire à l'aide d'une file dans laquelle on stocke les noeuds restants à parcourir. A chaque fois qu'on traite un noeud, on le defile et on enfile ses fils (voir la fiche d'activité).
- En profondeur, on tire alors partie de la structure récursive des arbres. Pour parcourir l'arbre T = (e, sag, sad) on doit relancer le parcours sur sag et sad. On distingue alors trois parcours suivant que e est affiché avant, entre ou après sag et sad :
 - Dans le parcours préfixé, e est affiché avant de parcourir sag et sad.
 - Dans le parcours infixé, e est affiché après le parcours de sag mais avant celui de sad.
 - Dans le parcours suffixé, e est affiché après le parcours de sag et sad

Arbre binaire de recherche

Un arbre binaire de recherche (noté abr), est un arbre binaire tel que :

Arbre binaire de recherche

Un arbre binaire de recherche (noté abr), est un arbre binaire tel que :

• Les étiquettes des noeuds, appelées clé sont toutes comparables entre elles.

Arbre binaire de recherche

Un arbre binaire de recherche (noté abr), est un arbre binaire tel que :

• Les étiquettes des noeuds, appelées clé sont toutes comparables entre elles.

Arbre binaire de recherche

Un arbre binaire de recherche (noté abr), est un arbre binaire tel que :

Les étiquettes des noeuds, appelées clé sont toutes comparables entre elles.
 Par exemple, les étiquettes sont toutes des nombres ou encore des chaines de caractères (comparées par ordre alphabétique).

Arbre binaire de recherche

Un arbre binaire de recherche (noté abr), est un arbre binaire tel que :

- Les étiquettes des noeuds, appelées clé sont toutes comparables entre elles.
 Par exemple, les étiquettes sont toutes des nombres ou encore des chaines de caractères (comparées par ordre alphabétique).
- Pour tous les noeuds l'ensemble des clés présentes dans le sous arbre gauche (resp. droit) sont strictement inférieures (resp. supérieures) à la clé du noeud.

Arbre binaire de recherche

Un arbre binaire de recherche (noté abr), est un arbre binaire tel que :

- Les étiquettes des noeuds, appelées clé sont toutes comparables entre elles.
 Par exemple, les étiquettes sont toutes des nombres ou encore des chaines de caractères (comparées par ordre alphabétique).
- Pour tous les noeuds l'ensemble des clés présentes dans le sous arbre gauche (resp. droit) sont strictement inférieures (resp. supérieures) à la clé du noeud.
 Par souci de simplicité, on admettra que les clés sont uniques dans un abr ce qui permet d'éviter le cas de clés égales

Recherche dans un abr

• La recherche d'un élément dans un abr a pour complexité la hauteur de cet arbre. En effet, on descend d'un niveau dans l'arbre à chaque étape de la recherche en choisissant d'aller à gauche ou à droite suivante que l'élément recherché est plus petit ou plus grand que le noeud parcouru.

Recherche dans un abr

- La recherche d'un élément dans un abr a pour complexité la hauteur de cet arbre. En effet, on descend d'un niveau dans l'arbre à chaque étape de la recherche en choisissant d'aller à gauche ou à droite suivante que l'élément recherché est plus petit ou plus grand que le noeud parcouru.
- Par conséquent, si l'arbre est dégénéré, la hauteur est égale au nombre de noeuds et l'algorithme équivaut à la recherche dans une liste.

Recherche dans un abr

- La recherche d'un élément dans un abr a pour complexité la hauteur de cet arbre. En effet, on descend d'un niveau dans l'arbre à chaque étape de la recherche en choisissant d'aller à gauche ou à droite suivante que l'élément recherché est plus petit ou plus grand que le noeud parcouru.
- Par conséquent, si l'arbre est dégénéré, la hauteur est égale au nombre de noeuds et l'algorithme équivaut à la recherche dans une liste.
- Si l'arbre est complet par contre la complexité est logarithmique et équivaut à une recherche dichotomique dans une liste triée.