Optimal Binary Search Tree (without dummy keys)

Optimal Binary Search Trees

Problem

- » Given sequence $K = k_1 < k_2 < \cdots < k_n$ of n sorted keys, with a search probability p_i for each key k_i .
- » Want to build a binary search tree (BST) with minimum expected search cost.
- » Actual cost = # of items examined.
- » For key k_i , $cost(k_i) = depth_T(k_i) + 1$, where $depth_T(k_i) = depth$ of k_i in BST T.

Expected Search Cost

 $E[\operatorname{search} \operatorname{cost} \operatorname{in} T]$

$$= \sum_{i=1}^{n} cost(k_i) \cdot p_i$$

$$= \sum_{i=1}^{n} (\operatorname{depth}_T(k_i) + 1) \cdot p_i$$

$$= \sum_{i=1}^{n} \operatorname{depth}_T(k_i) \cdot p_i + \sum_{i=1}^{n} p_i$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_T(k_i) \cdot p_i \qquad (15.16)$$

Sum of probabilities is 1.

Example

Consider 5 keys with these search probabilities:

$$p_1 = 0.25, p_2 = 0.2, p_3 = 0.05, p_4 = 0.2, p_5 = 0.3.$$

Therefore, E[search cost] = 2.15.

Example

• $p_1 = 0.25$, $p_2 = 0.2$, $p_3 = 0.05$, $p_4 = 0.2$, $p_5 = 0.3$.

Therefore, E[search cost] = 2.10.

This tree turns out to be optimal for this set of keys.

Observation

Observations:

- » Optimal BST may not have smallest height.
- » Optimal BST may not have highest-probability key at root.
- Build by exhaustive checking?
 - » Construct each *n*-node BST.
 - » For each, assign keys and compute expected search cost.
 - » But there are $\Omega(4^n/n^{3/2})$ different BSTs with n nodes.

Optimal Substructure

♦ Any subtree of a BST contains keys in a contiguous range $k_i, ..., k_j$ for some $1 \le i \le j \le n$.

- If T is an optimal BST and T contains subtree T' with keys $k_i, ..., k_j$, then T' must be an optimal BST for keys $k_i, ..., k_j$.
- **Proof:**

Optimal Substructure

- One of the keys in $k_i, ..., k_j$, say k_r , where $i \le r \le j$, must be the root of an optimal subtree for these keys.
- Left subtree of k_r contains $k_i, ..., k_{r-1}$.
- Right subtree of k_r contains $k_{r+1}, ..., k_j$.

- To find an optimal BST:
 - » Examine all candidate roots k_r , for $i \le r \le j$
 - » Determine all optimal BSTs containing k_i , ..., k_{r-1} and containing k_{r+1} , ..., k_i

Recursive Solution

- ◆ Find optimal BST for k_i , ..., k_j , where $i \ge 1, j \le n, j \ge i-1$. When j = i 1, the tree is empty.
- Define e[i, j] = expected search cost of optimal BST for $k_i, ..., k_j$.
- If j = i 1, then e[i, j] = 0.
- If $j \geq i$,
 - » Select a root k_r , for some $i \le r \le j$.
 - » Recursively make an optimal BSTs
 - for k_i , ..., k_{r-1} as the left subtree, e[i, r-1] and
 - for k_{r+1} , ..., k_j as the right subtree, e[r+1, j].

Recursive Solution

- When the OPT subtree becomes a subtree of a node:
 - » Depth of every node in OPT subtree goes up by 1.
 - » Expected search cost increases by

$$w(i, j) = \sum_{l=i}^{j} p_l$$
 from (15.16)

• If k_r is the root of an optimal BST for $k_i,...,k_j$:

»
$$e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j))$$

= $e[i, r-1] + e[r+1, j] + w(i, j)$. (because $w(i, j) = w(i, r-1) + p_r + w(r+1, j)$)

• But, we don't know k_r . Hence,

$$e[i,j] = \begin{cases} 0 & \text{if } j = i - 1\\ \min_{i \le r \le j} \{e[i,r-1] + e[r+1,j] + w(i,j)\} & \text{if } i \le j \end{cases}$$

Computing an Optimal Solution

For each subproblem (i, j), store:

- expected search cost in a table e[1..n + 1, 0..n]
 - » Will use only entries e[i, j], where $j \ge i-1$.
- root[i, j] = root of subtree with keys k_i , ..., k_j , for $1 \le i \le j \le n$.
- w[1..n + 1, 0..n] = sum of probabilities
 - $w[i, i-1] = 0 \text{ for } 1 \le i \le n.$
 - $w[i, j] = w[i, j 1] + p_i \text{ for } 1 \le i \le j \le n.$

Pseudo-code

```
OPTIMAL-BST(p, n)
      for i \leftarrow 1 to n+1
2.
         do e[i, i-1] \leftarrow 0
             w[i, i-1] \leftarrow 0
3.
      for l \leftarrow 1 to n \leftarrow
5.
         do for i \leftarrow 1 to n-l+1 \leftarrow
              \operatorname{do} j \leftarrow i + l - 1 \leftarrow
6.
7.
       w[i, j] \leftarrow w[i, j-1] + p_i
8.
       e[i,j] \leftarrow \infty
9.
     for r \leftarrow i to j
                do t \leftarrow e[i, r-1] + e[r+1, j] + w[i, j]
10.
11.
                 if t < e[i, j]
12.
                 then e[i, j] \leftarrow t
13.
                root[i, j] \leftarrow r
10. return e and root
```

Consider all trees with l keys.

Fix the first key.

Fix the last key

Determine the root of the optimal (sub)tree

Time: $O(n^3)$

$$e[i, j] = \begin{cases} 0 & \text{if } j = i - 1 \\ \min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w(i, j)\} & \text{if } i \le j \end{cases}$$

Example

Construct an optimal binary search tree over five key values k1 < k2 < k3 < k4 < k5 with access probability 0.3, 0.2, 0.1, 0.15, and 0.25, respectively.

1. w[i,j]

	j=0	1	2	3	4	5
i=1	0	0.3				
2		0	0.2			
3			0	0.1		
4				0	0.15	
5					0	0.25
6						0

1. e[i,j]

	j =0	1	2	3	4	5
i=1	0	0.3				
2		0	0.2			
3			0	0.1		
4				0	0.15	
5					0	0.25
6						0

	j=0	1	2	3	4	5
i=1		1				
2			2			
3				3		
4					4	
5						5
6						

	j=0	1	2	3	4	5
i=1	0	0.3	0.5			
2		0	0.2	0.3		
3			0	0.1	0.25	
4				0	0.15	0.4
5					0	0.25
6						0

2. e[i,j]

	j=0	1	2	3	4	5
i=1	0	0.3	0.7			
2		0	0.2	0.4		
3			0	0.1	0.35	
4				0	0.15	0.55
5					0	0.25
6						0

	j=0	1	2	3	4	5
i=1		1	1			
2			2	2		
3				3	4	
4					4	5
5						5
6						

	_j=0	1	2	3	4	5
i=1	0	0.3	0.5	0.6		
2		0	0.2	0.3	0.45	
3			0	0.1	0.25	0.5
4				0	0.15	0.4
5					0	0.25
6						0

3. e[i,j]

	_j=0	1	2	3	4	5
i=1	0	0.3	0.7	1		
2		0	0.2	0.4	0.8	
3			0	0.1	0.35	0.85
4				0	0.15	0.55
5					0	0.25
6						0

	j=0	1	2	3	4	5
i=1		1	1	2		
2			2	2	3	
3				3	4	5
4					4	5
5						5
6						

	j=0	1	2	3	4	5
i=1	0	0.3	0.5	0.6	0.75	
2		0	0.2	0.3	0.45	0.7
3			0	0.1	0.25	0.5
4				0	0.15	0.4
5					0	0.25
6						0

4. e[i,j]

	j=0	1	2	3	4	5
i=1	0	0.3	0.7	1	1.4	
2		0	0.2	0.4	0.8	1.35
3			0	0.1	0.35	0.85
4				0	0.15	0.55
5					0	0.25
6						0

	j=0	1	2	3	4	5
i=1		1	1	2	2	
2			2	2	3	4
3				3	4	5
4					4	5
5						5
6						

	j=0	1	2	3	4	5
i=1	0	0.3	0.5	0.6	0.75	1
2		0	0.2	0.3	0.45	0.7
3			0	0.1	0.25	0.5
4				0	0.15	0.4
5					0	0.25
6						0

5. e[i,j]

	j=0	1	2	3	4	5
i=1	0	0.3	0.7	1	1.4	2.15
2		0	0.2	0.4	0.8	1.35
3			0	0.1	0.35	0.85
4				0	0.15	0.55
5					0	0.25
6						0

	j=0	1	2	3	4	5
i=1		1	1	1	2	2
2			2	2	2	4
3				3	4	4
4					4	5
5						5
6						

r[1, 5] = 2 shows that the root of the tree over k1, k2, k3, k4, k5 is k2.

r[3, 5] = 4 shows that the root of the subtree over k3, k4, k5 is k4.

Elements of Dynamic Programming

- Optimal substructure
- Overlapping subproblems

Optimal Substructure

- Show that a solution to a problem consists of making a choice, which leaves one or more subproblems to solve.
- Suppose that you are given this last choice that leads to an optimal solution.
- Given this choice, determine which subproblems arise and how to characterize the resulting space of subproblems.
- Show that the solutions to the subproblems used within the optimal solution must themselves be optimal. Usually use cut-and-paste.
- Need to ensure that a wide enough range of choices and subproblems are considered.

Optimal Substructure

- Optimal substructure varies across problem domains:
 - » 1. *How many subproblems* are used in an optimal solution.
 - » 2. *How many choices* in determining which subproblem(s) to use.
- ◆ Informally, running time depends on (# of subproblems overall) × (# of choices).
- How many subproblems and choices do the examples considered contain?
- Dynamic programming uses optimal substructure bottom up.
 - » *First* find optimal solutions to subproblems.
 - » *Then* choose which to use in optimal solution to the problem.

Optimal Substucture

- Does optimal substructure apply to all optimization problems? No.
- Applies to determining the shortest path but NOT the longest simple path of an unweighted directed graph.
- Why?
 - » Shortest path has independent subproblems.
 - » Solution to one subproblem does not affect solution to another subproblem of the same problem.
 - » Subproblems are not independent in longest simple path.
 - Solution to one subproblem affects the solutions to other subproblems.
 - » Example:

Overlapping Subproblems

- The space of subproblems must be "small".
- The total number of distinct subproblems is a polynomial in the input size.
 - » A recursive algorithm is exponential because it solves the same problems repeatedly.
 - » If divide-and-conquer is applicable, then each problem solved will be brand new.