Advanced Calibration Topics - I

Crystal Brogan (NRAO)

Sixteenth Synthesis Imaging Workshop 16-23 May 2018

Atmospheric Opacity and Correction Techniques

Constituents of Atmospheric Opacity

- Due to the troposphere (lowest layer of atmosphere): h < 10 km
- Temperature ↓ with ↑ altitude: clouds & convection can be significant
- "Dry" Constituents of the troposphere:, O₂, O₃, CO₂, Ne, He, Ar, Kr, CH₄, N₂, H₂
- H₂O: abundance is highly variable but is < 1% in mass, mostly in the form of water vapor

Column Density as a Function of Altitude

Optical Depth as a Function of Frequency

- At 1.3cm most opacity comes from H₂O vapor
- At 7mm biggest contribution from "dry" constituents
- At 3mm both components are significant
- "hydrosols" i.e. water droplets (not shown) can also add significantly to the opacity

Tropospheric Opacity Depends on Altitude:

Frequency (GHz)

Models of atmospheric transmission from 0 to 1000 GHz for the ALMA site in Chile, and for the VLA site in New Mexico

The difference is due primarily to the scale height of water vapor, not the "dryness" of the site.

 \Rightarrow Atmospheric transmission not a problem for λ > cm (most VLA bands)

Atmospheric Opacity at ALMA

(PWV = Precipitable Water Vapor)

Sensitivity: System noise temperature

In addition to receiver noise, at millimeter wavelengths the atmosphere has a significant brightness temperature (T_{sky}) :

For a perfect antenna, ignoring spillover and efficiencies

$$T_{\text{noise}} \approx T_{\text{rx}} + T_{\text{sky}}$$

where $T_{\text{sky}} = T_{\text{atm}} (1 - e^{-\tau}) + T_{\text{bg}} e^{-\tau}$
 $T_{\text{noise}} \approx T_{\text{rx}} + T_{\text{atm}} (1 - e^{-\tau})$

Receiver Emission from temperature atmosphere

 T_{atm} = temperature of the atmosphere $\approx 300 \text{ K}$ T_{bg} = 3 K cosmic background

Before entering atmosphere the source signal $S = T_{\text{source}}$

After attenuation by atmosphere the signal becomes $S=T_{\text{source}} e^{-\tau}$

Consider the signal-to-noise ratio:

$$S / N = (T_{\text{source }} e^{-\tau}) / T_{\text{noise}} = T_{\text{source}} / (T_{\text{noise}} e^{\tau})$$

$$T_{\text{sys}} = T_{\text{noise}} e^{\tau} \approx T_{\text{atm}} (e^{\tau} - 1) + T_{\text{rx}} e^{\tau}$$

⇒The system sensitivity drops rapidly (exponentially) as opacity increases

Impact of Atmospheric Noise

Assuming $T_{atm} = 300 \text{ K}$, elevation=40 degrees, ignoring antenna efficiencies

$$T_{\text{sys}} \approx T_{\text{atm}}(e^{\tau}-1) + T_{\text{rx}}e^{\tau}$$

$$\tau = \frac{\tau_{zenith}}{\sin(elevation)}$$

 τ_{40} = opacity at a observing elevation of 40 degrees

JVLA Qband (43 GHz)

- typical winter PWV = 5 mm \rightarrow τ_{zenith} =0.074 \rightarrow τ_{40} = 0.115
- typical Trx=35 K
- Tsys = 76 K

ALMA Band 6 (230 GHz)

- typical PWV = 1.8 mm $\rightarrow \tau_{zenith}$ =0.096 $\rightarrow \tau_{40}$ = 0.149
- typical Trx=50 K
- Tsys= 106 K

ALMA Band 9 (690 GHz)

- typical PWV = 0.7 mm \rightarrow τ_{zenith} =0.87 \rightarrow τ_{40} = 1.35
- typical Trx= 150 K
- Tsys= I435 K

Measurement of T_{sys} in the Sub(millimeter)

- How do we measure $T_{\text{sys}} = T_{\text{atm}}(e^{\tau}-1) + T_{\text{rx}}e^{\tau}$ without constantly measuring T_{rx} and the opacity?
- The "chopper wheel" method: putting an ambient temperature load ($T_{\rm load}$) in front of the receiver and measuring the resulting power compared to power when observing sky $T_{\rm atm}$ (Penzias & Burrus 1973).

ALMA two-load Tsys system also gives measure of Trx

Comparing in and out
$$\frac{V_{\text{in}} - V_{\text{out}}}{V_{\text{out}}} = \frac{T_{\text{load}}}{T_{\text{sys}}}$$

$$T_{\text{sys}} = T_{\text{load}} * T_{\text{out}} / (T_{\text{in}} - T_{\text{out}})$$

Power is really observed but is ∞ T in the R-J limit

ALMA Spectral Tsys: 4 Antennas Band 6 (230 GHz)

ALMA System Temperature: Example-I

ALMA Band 9 Test Data on the quasar NRAO530

Tsys measured every ~16 min

Notice:

 Inverse relationship between elevation and Tsys

 Large variation of Tsys among the antennas

$$Visibility Weight \propto \frac{1}{T_{sys}(i)T_{sys}(j)}$$

ALMA System Temperature: Example-2

Raw Amplitude vs. Time

Tsys vs. Time (all antennas)

Amplitude Corrected for Tsys

Fully Calibrated using flux reference

JVLA Atmospheric Correction

• At higher frequencies still need to account for atmospheric opacity and antenna gain variations with elevation (i.e. antenna gain curves)

$$\tau = \frac{\tau_{zenith}}{\sin(elevation)}$$

Hopefully in the future a "tipper" that directly monitors the atmospheric opacity will provide more accurate estimates

JVLA Switched Power

$$VisibilityWeight \propto \frac{1}{T_{sys}(i)T_{sys}(j)}$$

Alternative to a mechanical load system is a switched "calibration diode"

- Broad band, stable noise (Tcal~3K) is injected into receiver at ~20 Hz
- Svnchronous detector downstream of gives sum & difference powers

Advantages

- Removes gain variations due to electronics between the diode and correlator on 1 second timescales
- Puts data on absolute temperature scale

Caveats:

- Does not account for opacity effects
- Does not account for antenna gain curve

gain change that should be applied for 3-bit data now, and eventually 8-bit. This gain is also stored in the "switched power" table

JVLA Switched Power Example

Antenna Gain as a function of time

Gain solutions from calibrator-based calibration; all the sources are strong calibrators

This is what you get if you apply switched power first, large variations with time are removed

A science source will have similar gain variations with time, and only if you switch frequently to a strong calibrator for gain solutions can you TRY to take out these variations.

This calibration takes out electronic but not ionospheric or tropospheric gain variations. The latter would still need to be taken out by calibrator observations.

Absolute Flux Calibration

Absolute Flux Calibration

Goal:

- Observe a source of known flux density and spectral index, that is a point source on all observed scales (and thus constant phase and amplitude) and has no spectral line emission in the observing band
- Measure ratio of known flux density to observed mean amplitude (corrected for Tsys, phase, and amplitude with time variations)
- Transfer that ratio to gain calibrator (which in turn will correct science target)

Reality -- there are no perfect absolute flux calibrators

- In the centimeter regime there are a few good approximations
- In the (sub)mm the situation is harder
- In general the key is to derive accurate models and / or high cadence flux monitoring

VLA Quasar Flux Standards

01 37 41.40 41.38 41.36 41.34 41.32 41.30 41.28 41.26 41.24 41.22 RIGHT ASCENSION (J2000)

Only four quasars have been observed to vary by less than 1% over 20 years, and four others that are relatively stable that can be used across the full JVLA frequency range

(sub)mm ALMA Quasar Monitoring https://almascience.nrao.edu/sc/

Observation Date

Strong quasars in the submm tend to be highly time-

Flux calibrators – ALMA

- Solar system bodies are used as primary flux calibrators (Neptune, Jovian moons, Titan, Ceres) but with many challenges:
 - All are resolved on long ALMA baselines
 - Brightness varies with distance from Sun and Earth
 - Line emission (Neptune, Titan)
- ALMA primarily uses regular monitoring of a small grid (~20) of point-like quasars bootstrapped with Solar System objects

Other options:

- More asteroids? modeling is needed because they are not round!
- Red giant stars?

"SEFD" (System Equivalent Flux Density) Method

For one visibility (one baseline between antennas i, j) the noise is:

$$\sigma(i,j) = \frac{2K_B}{\eta_q \eta_c} \sqrt{\frac{1}{A_{eff}(i) A_{eff}(j)}} \sqrt{\frac{T_{sys}(i) T_{sys}(j)}{2 \Delta \nu t_{ij}}} \times 10^{26} \text{ Jy} = \frac{SEFD}{\sqrt{2 \Delta \nu t_{ij}}}$$
Relatively constant
$$Antenna / \text{Correlator properties (gain-1)}$$
Atmosphere / Receiver and observing setup
$$VLA 6 \text{ cm} \sim 8 \text{ Jy/K}$$
ALMA (12m) 1.3mm
$$\sim 35 \text{ Jy/K}$$

- K_B: Boltzmann's constant
- $\eta_q \eta_c$: digitizer quantization efficiency and correlator efficiency, respectively (0.96 and 0.88 for ALMA)
- A_{eff} : antenna effective area = $\eta_a \pi r^2$ where η_a is the aperture efficiency which depends on the antenna surface accuracy (depends on elevation, ambient temperature, and frequency), blockage, etc, slightly different for every antenna
- $T_{SVS}(i)$: system temperature for antenna i
- $\Delta v t_{ij}$: observing bandwidth and integration time, respectively

Summary

- Altitude and PWV have a very large impact on tropospheric opacity
- Atmospheric emission dominates the system temperature at higher frequencies
 - Calibration through T_{sys} or opacity/gain curves is essential
- Absolute flux calibration is difficult
 - At cm, there are few stable quasars but they have structure on small and large scales that require accurate models
 - At submm it is difficult due to options being either weak, over-resolved, or highly time variable

Next phase - model spectral lines Example: CO in Titan

