École chercheurs MEXICO, La Rochelle, Mars 2018

Model Based Optimization

Victor Picheny, victor.picheny@inra.fr, Nicolas Durrande, nicolas@prowler.io

Introduction: global optimization

Optimisation pour l'aide à la conception / décision

- Réponse du modèle = performance ou coût
- Recherche des paramètres optimaux :

$$x^* = \arg\min cout(x)$$
 ou $\arg\max perf(x)$

Optimisation pour la calibration

- Sorties du modèle \Rightarrow comparaison à des observations
- On veut minimiser un écart quadratique (ou autre métrique)

$$x^* = \arg\min WLS(x)$$

Dans les 2 cas

- L'optimisation nécessite beaucoup d'appels au code
 - Métamodèle : solution naturelle

Le compromis **exploration** / **intensification**

Est-ce qu'on souhaite

- améliorer une solution existante ?
- essayer "toutes" les valeurs possibles de paramètres pour trouver la meilleure

Dans la vraie vie : tout essayer n'est pas possible

On va chercher un compromis entre

- améliorer l'existant par de petites modifications
- chercher une meilleure solution radicalement différente

Le compromis **exploration** / **intensification**

Optimisation locale

Amélioration depuis un point initial

Optimisation globale: on cherche un compromis entre

- Exploration : recherche partout dans l'espace pour ne pas rater la zone optimale
- Intensification : une fois une zone identifiée : on recherche le minimum local

Dans un contexte de planification d'expériences

- Exploration : remplissage d'espace
- Intensification: "ciblage"

Introduction à l'optimisation globale : l'algorithme DIRECT

Garanti sans métamodèle!

DIRECT: Dividing RECTangles

- Découpage de l'espace en (hyper)rectangles
- Un échantillon au centre de chaque rectangle
- On divise les rectangles les plus "intéressants" :
 - soit les plus grands (exploration)
 - soit ceux qui ont une valeur au centre basse (intensification)
- Pour diviser : ajout de 2 points, division en 3

D. Jones, C. Perttunen, B. Stuckman (1993) Lipschitzian optimization without the Lipschitz constant Journal of Optimization Theory and Applications 79(1), 157-181

Exemple en dimension 2

- Départ : 3 points équirépartis dans une direction aléatoire
- On divise le rectangle ayant la meilleure observations

Exemple en dimension 2

Global optim.

Après 191 évaluations

- Echantillonnage intense dans la zone de l'optimum
- Bonne exploration

Source figures :

D. E. Finkel DIRECT Optimization Algorithm User Guide (2003)

Intêret et limites

- + Exploration de tout l'espace de recherche
- + Stratégie robuste
- Limité aux petites dimensions
- Exploitation limitée de l'information
- ⇒ même principe général, avec un métamodèle ?

Trust regions (quadratic metamodels)

Si le nombre d'appels au modèle est trop limité, on peut optimiser le métamodèle à la place :

Et on espère qu'à la fin on ait :

$$argmin(m) \approx argmin(f)$$

 $min(m) \approx min(f)$

Schéma global

Optimisation et métamodèle : ce qu'on est tenté de faire...

"Le métamodèle donne l'optimum"

- On cherche le minimum x* sur le métamodèle
- On évalue le vrai $y(x^*)$ sur le simulateur
- ⇒ C'est fini!

Répartition de l'effort

- Plan initial : 49 expériences
- 98% exploration, 2% exploitation

Que faire si x^* n'est pas bon ?

Optimisation et métamodèle : ce qu'il faut faire

Si le budget est fixe

- On divise le budget en 2
- Budget 1 : plan initial (LHS)
- Budget 2 : optimisation

Utilisation séquentielle du métamodèle

- Métamodèle initial : a priori peu précis
- Le métamodèle sert à **choisir** pour les nouvelles observations
- A chaque nouvelle observation : amélioration du métamodèle

Schéma général : métamodèle = guide

Optimisation basée sur les modèles polynomiaux Principe

- On construit une surface de réponse $y = \beta_0 + \beta_1 x + \beta_2 x^2$
- On cherche le point qui minimise la surface de réponse
- On ajoute ce point
- On met à jour la surface de réponse
- On recommence...

Itérations 3 à 7

Optimisation basée sur les modèles polynomiaux

Problème: modèle "rigide"

Le modèle ne s'ajuste pas aux données : $Y=\mathbf{X}\beta+\epsilon$ Pas de convergence vers un modèle précis, même localement

Solutions

- 1. Augmenter le dégré du polynôme
 - ⇒ risque de surapprentissage & d'instabilité!
- 2. Supprimer des points
 - ⇒ méthode de région de confiance

Régions de confiance : principe

Modèle quadratique "creux"

- Valide à l'intérieur d'une région de confiance (petite)
- Construit uniquement avec les points à l'intérieur de la région
- Selon les valeurs des simulations, on modifie la taille de la région

Gestion de la région de confiance

A chaque itération :

- $\hat{y}(x^*)$ bon \Rightarrow confiance dans le modèle : on augmente la taille
- $\hat{y}(x^*)$ mauvais \Rightarrow modèle peu fiable : on diminue la taille

+ beaucoup de règles pour sélectionner les points et enrichir le plan d'expériences

Illustration (source : F. Vanden Berghen)

Illustration (source : F. Vanden Berghen)

Illustration (source : F. Vanden Berghen)

Avantages

- Garantie de convergence
- Méthodes assez parcimonieuses
- Robuste
- Accepte un très grand nombre de variables

Conn, Scheinberg, and Vicente Introduction to derivative-free optimization MPS-SIAM Series on Optimization (2009)

Powell

The NEWUOA software for unconstrained optimization without derivatives Large-scale nonlinear optimization (2006)

Méthode locale (proche méthode de gradient)

Pas de métamodèle final utilisable globalement - mais gradient + hessien!

Kriging-based optimization (EGO)

Global optimization methods are a trade-off between

- Exploitation of past good results
- Exploration of the space

How can GPR models be helpful?

In our example, the best observed value is 1.79

Various criteria can be studied

- probability of improvement
- Expected improvement

Probability of Improvement:

$$PI(x) = cdf\left(\frac{\min(F) - m(x)}{\sqrt{(c(x,x))}}\right)$$

The point with the highest PI is often very close to the best observed value. We can show that there is a x in the neighbourhood of x^* such that $PI(x) \ge 0.5$.

For such points, the improvement cannot be large...

Can we find another criterion?

$$EI(x) = \int_{-\infty}^{\min(F)} \max(0, Y(x)) \ dy(x) = \dots =$$

$$\sqrt{c(x, x)} (u(x)cdf(u(x)) + pdf(u(x))) \quad \text{with } u(x) = \frac{\min(F) - m(x)}{\sqrt{(c(x, x))}}$$

Let's see how it works... iteration 1

Let's see how it works... iteration 2

Let's see how it works... iteration 3

Let's see how it works... iteration 4

Let's see how it works... iteration 5

This algorithm is called **Efficient Global Optimization** (EGO, Jones et al., 1998):

- 1. make an initial design of experiments X and calculate the associated F, t = length(F)
- 2. built a GP from (X, F) (max. log-likelihood on σ and θ_i 's)
- 3. $X_{t+1} = \operatorname{arg\,max}_{x} EI(x)$
- 4. calculate $F_{t+1} = f(X_{t+1})$, increment t
- 5. stop $(t > t^{\text{max}})$ or go to 2.
- + EGO provides a good trade-off between exploitation and exploration without arbitrary parameters.
- + It requires few function observations (10 in the example) to get close to optimal regions.

 \Rightarrow demo with mainInversionPunctualDisplSource.R !!! normalize the data: WLS has a few very large values, it is always > 0: make it more gaussian, wls_norm = log(1 + wls) and all x's and wls_norm between 0 and 1.

100 {xs, ys, zs, a, p} points chosen through an optimized Latin Hypercube Sampling (R libraries DiceDesign or 1hs).

110 random $\{xs, ys, zs, a, p\}$ test points.

110 test points.

(demo with mainInversionPunctualDisplSource.R, cont.) EGO parameters: anisotropic Matèrn 5/2 kernel, GP updated (log-likelihood maximized) every 5 added points, BFGS with bounded variables (from optim() function) restarted from random initial points for maximizing log-likelihood and EI.

Preferential sampling of good regions of S, but global therefore sometimes increasing WLS. Lower bound on θ_i 's increased from 0.08 to 0.1 at t=250 (x_i 's and θ_i 's normed between 0 and 1).

Black: LHS initial points.

Blue: EGO points.

Note the patterns in new points. Accumulation at lower bound of a and mid interval of p before t = 250.

15% best sampled points. Note the "function" for the (a, p) pair, i.e., $a^*(p^*)$.

La Rochelle, March 2018 École chercheurs MEXICO 36 / 58

Mogi model only dependency in a and p is through $a^3 \times p$: it is not identifiable.

EGO tells it by preferential sampling in the valley

$$a^3 \times p = \text{const.} = a^{*3} \times p^*$$

Other EGO output: a statistical model of WLS. The last length scales are an indication of the sensitivity of WLS to each variable: a, p and zs are very sensitive (θ_i 's small, in [0.08, 0.1]), xs a little sensitive (θ in [0.1, 2.5]) and ys insensitive ($\theta \approx 3$).

Difficulties and challenges with EGO

- Standard GPs are limited to $n \approx 1000$ points (covariance matrix inversion).
- EGO clusters points in good regions, the covariance matrix may become ill-conditionned if length scales θ_i are too large w.r.t. X.
- Although the method perfectly applies to large dimensional spaces (d > 100), larger d may require larger n, back 2 lines above.
- EGO does not converge in the traditional sense: it creates dense samples in the volume of *S*. The efficiency comes from the order in which points are sampled.
- \Rightarrow these are the topics of current research. Let's mention a few extensions next.

EGO continuations

- Parallelized EGO: estimate the *EI* of groups of points, cf. Ginsbourger et al.
- Finite budget: *EI* of a single *x* is only optimal at the last iteration. Theory of dynamic *EI*, cf. Ginsbourger et al.
- EGO and bad covariance matrix conditioning: replace points that are close-by by one point and the associated derivatives (cf. M. Osborn, L. Laurent), regularizations (cf. Le Riche et al.)
- SUR strategies: (Step-wise Uncertainty Reduction), reduce the entropy of the optimum (cf. Vasquez et al.), or the average probability of incursions below *min(F)* (cf. Picheny).

Related problems addressed with GPs

- EGO with constraints: $\min_x f(x)$ s.t. $g(x) \le 0$, multiply the El by the probability of constraints satisfaction.
- GP for target attainment: find the set of x s.t. f(x) = T, change the EI into $c(x,x) \times pdf((T-m(x))/sqrt(c(x,x)))$, cf. Picheny et al.
- GP for probability estimation: find $\mathbb{P}(f(x, U) \leq T)$ where U is a random vector.
- GP for multi-objective optimization: $\min_{x} \{f_1(x), \dots f_m(x)\},\$ cf. Binois et al.

Robust optimization

La Rochelle, March 2018 École chercheurs MEXICO 41/58

Can EGO be adapted when observations are noisy?

First of all, using the current best observation as a minimum does not make much sense...

Some solutions are

- S1 Build a new model that interpolates m(X) at X where m(X) accounts for the noise (non interpolating GP, e.g. with a white noise part in the kernel).
- S2 Include observation noise and replace min(F) by min(m(X)) in the EI expression
- S3 Similar to 2 but consider an Expected Mean Improvement (V. Picheny).

iteration 0

iteration 1

iteration 2

iteration 3

iteration 4

Kernel Design

La Rochelle, March 2018 École chercheurs MEXICO 44 / 58

Kernel Design

Making new from old: Many operations can be applied to psd functions while retaining this property

Kernels can be:

- Summed together
 - On the same space $k(x,y) = k_1(x,y) + k_2(x,y)$
 - On the tensor space $k(x, y) = k_1(x_1, y_1) + k_2(x_2, y_2)$
- Multiplied together
 - On the same space $k(x, y) = k_1(x, y) \times k_2(x, y)$
 - On the tensor space $k(x, y) = k_1(x_1, y_1) \times k_2(x_2, y_2)$
- Composed with a function
 - $k(x,y) = k_1(f(x), f(y))$

How can this be useful?

La Rochelle, March 2018 École chercheurs MEXICO 45 / 58

Example (The Mauna Loa observatory dataset)

This famous dataset compiles the monthly CO_2 concentration in Hawaii since 1958.

Let's try to predict the concentration for the next 20 years.

We first consider a squared-exponential kernel:

$$k_{se}(x,y) = \sigma^2 \exp\left(-\frac{(x-y)^2}{\theta^2}\right)$$

The results are terrible!

La Rochelle, March 2018 École chercheurs MEXICO 47 / 58

What happen if we sum both kernels?

$$k(x,y) = k_{se1}(x,y) + k_{se2}(x,y)$$

La Rochelle, March 2018 École chercheurs MEXICO 48 / 58

What happen if we sum both kernels?

$$k(x, y) = k_{se1}(x, y) + k_{se2}(x, y)$$

The model is drastically improved!

La Rochelle, March 2018 École chercheurs MEXICO 48 / 58

We can try the following kernel:

$$k(x, y) = \sigma_0^2 x^2 y^2 + k_{\text{sel}}(x, y) + k_{\text{sel}}(x, y) + k_{\text{per}}(x, y)$$

La Rochelle, March 2018 École chercheurs MEXICO 49 / 58

We can try the following kernel:

$$k(x,y) = \sigma_0^2 x^2 y^2 + k_{se1}(x,y) + k_{se2}(x,y) + k_{per}(x,y)$$

Once again, the model is significantly improved.

Sum of kernels over tensor space

Property

$$k(x, y) = k_1(x_1, y_1) + k_2(x_2, y_2)$$

is valid covariance structure.

Remark: From a GP point of view, k is the kernel of

$$Z(x) = Z_1(x_1) + Z_2(x_2)$$

La Rochelle, March 2018 École chercheurs MEXICO 50 / 58

Sum of kernels over tensor space

We can have a look at a few sample paths from Z:

⇒ They are additive (up to a modification)

Tensor Additive kernels are very useful for

- Approximating additive functions
- Building models over high dimensional inputs spaces

La Rochelle, March 2018 École chercheurs MEXICO 51 / 58

Product over the same space

Property

$$k(x, y) = k_1(x, y) \times k_2(x, y)$$

is valid covariance structure.

Example

We consider the product of a squared exponential with a cosine:

La Rochelle, March 2018 École chercheurs MEXICO 52 / 58

Product over the tensor space

Property

$$k(x, y) = k_1(x_1, y_1) \times k_2(x_2, y_2)$$

is valid covariance structure.

Example

We multiply 2 squared exponential kernel

Calculation shows this is the usual 2D squared exponential kernel.

Composition with a function

Property

Let k_1 be a kernel over $D_1 \times D_1$ and f be an arbitrary function $D \to D_1$, then

$$k(x,y) = k_1(f(x), f(y))$$

is a kernel over $D \times D$. **proof**

$$\sum \sum a_i a_j k(x_i, x_j) = \sum \sum a_i a_j k_1 \underbrace{(f(x_i), f(x_j))}_{y_i} \ge 0$$

Remarks:

- k corresponds to the covariance of $Z(x) = Z_1(f(x))$
- This can be seen as a (non-linear) rescaling of the input space

Example

We consider
$$f(x) = \frac{1}{x}$$
 and a Matérn 3/2 kernel $k_1(x,y) = (1+|x-y|)e^{-|x-y|}$.

We obtain:

All these transformations can be combined!

Example

$$k(x, y) = f(x)f(y)k_1(x, y)$$
 is a valid kernel.

This can be illustrated with $f(x) = \frac{1}{x}$ and $k_1(x, y) = (1 + |x - y|)e^{-|x - y|}$:

Example

\Rightarrow R demo

Other kernel design methods

There are two other popular methods for kernel design:

- Bochner Theorem
 There is an equivalence between positive measures and stationnary positive definite functions.
- Linear operators If the function to approximate has particular properties that can be obtained via a linear transform, it is possible to build a GP with the wanted properties. For example, one can build symmetric GPs or GPs with integral equal to zero.

La Rochelle, March 2018 École chercheurs MEXICO 58 / 58