a Subci>

32 (new).

A memory cell comprising:

an access device;

a memory element operatively coupled to the access device, the memory element comprising

dielectric material having a pore therein, the pore being smaller than a photolithographic limit;

a first electrode disposed within the pore;

a memory material disposed over the first electrode; and

a second electrode disposed over to the memory material.

33 (new). The memory cell, as set forth in claim 32, wherein the access device comprises a diode.

34 (new). The memory cell, as set forth in claim 33, wherein the diode comprises:

a layer of N doped polysilicon disposed adjacent a layer of P doped polysilicon.

35 (new). The memory cell, as set forth in claim 32, wherein the first electrode is comprised of a plurality of layers.

36 (new). The memory cell, as set forth in claim 32, wherein the first electrode is comprised of a plurality of materials.

37 (new). The memory cell, as set forth in claim 32, wherein the first electrode comprises:

a layer of carbon; and

a layer of titanium nitride disposed adjacent the layer of carbon.

38 (new). The memory cell, as set forth in claim 32, wherein the second electrode is comprised of a plurality of layers.

I. Contil

39 (new). The memory cell, as set forth in claim 32, wherein the second electrode is comprised of a plurality of materials.

40 (new). The memory cell, as set forth in claim 32, wherein the second electrode comprises:

a layer of carbon; and

a layer of titanium nitride disposed adjacent the layer of carbon.

41 (new). The memory cell, as set forth in claim 32, wherein the memory material comprises structure changing material.

42 (new). The memory cell, as set forth in claim 41, wherein the structure changing material comprises a material which changes between different states of crystallinity in response to electrical stimulus.

43 (new). The memory cell, as set forth in claim 42, wherein each of the different states of crystallinity corresponds to a given resistance level.

Condl'd

44 (new). The memory cell, as set forth in claim 32, wherein the memory material comprises a chalcogenide material.

45 (new). The memory cell, as set forth in claim 32, wherein the memory material comprises a programmable resistive element.

46 (new). The memory cell, as set forth in claim 45, wherein the programmable resistive element changes between different resistance levels in response to electrical stimulus.

resistive of the state of the s

47 (new). Amemory cell comprising:

an access device;

a memory element operatively coupled to the access device, the memory element comprising a memory material disposed between a first electrode and a second electrode; and

dielectric material having a pore therein, the pore being smaller than a photolithographic limit, wherein at least one of the first electrode, the memory material, and the second electrode is disposed within the pore.



48 (new). The memory cell, as set forth in claim 47, wherein the access device comprises a diode.

49 (new). The memory cell, as set forth in claim 48, wherein the diode comprises:

4.5

a layer of N doped polysilicon disposed adjacent a layer of P doped polysilicon.

50 (new). The memory cell, as set forth in claim 47, wherein the first electrode is comprised of a plurality of layers.

51 (new). The memory cell, as set forth in claim 47, wherein the first electrode is comprised of a plurality of materials.

52 (new). The memory cell, as set forth in claim 47, wherein the first electrode comprises:

a layer of carbon; and

a layer of titanium nitride disposed adjacent the layer of carbon.

53 (new). The memory cell, as set forth in claim 47, wherein the second electrode is comprised of a plurality of layers.

54 (new). The memory cell, as set forth in claim 47, wherein the second electrode is comprised of a plurality of materials.

55 (new). The memory cell, as set forth in claim 47, wherein the second electrode comprises:

a layer of carbon; and

a layer of titanium nitride disposed adjacent the layer of carbon.

56 (new). The memory cell, as set forth in claim 47, wherein the memory material comprises structure changing material.

57 (new). The memory cell, as set forth in claim 56, wherein the structure changing material comprises a material which changes between different states of crystallinity in response to electrical stimulus.

Cont'd

58 (new). The memory cell, as set forth in claim 57, wherein each of the different states of crystallinity corresponds to a given resistance level.

59 (new). The memory cell, as set forth in claim 47, wherein the memory material comprises a chalcogenide material.

60 (new). The memory cell, as set forth in claim 47, wherein the memory material comprises a programmable resistive element.

61 (new). The memory cell, as set forth in claim 60, wherein the programmable resistive element changes between different resistance levels in response to electrical stimulus.

62 (new). An X-point memory cell comprising:

a first conductive line extending in a first direction;

a second conductive line extending in a second direction different than the first direction, the first conductive line and the second conductive line being spaced apart by a portion of a substrate, the second conductive line intersecting the first conductive

line in an overlapping manner to form an area of intersection in the portion of the substrate;

an access device wholly disposed in the area of intersection, the access device being operatively coupled to one of the first conductive line and the second conductive line;

a memory element wholly disposed in the area of intersection, the memory element being operatively coupled to the access device, the memory element comprising a memory material disposed between a first electrode and a second electrode; and

dielectric material having a pore therein, the pore being smaller than a photolithographic limit and being wholly disposed in the area of intersection, wherein at least one of the first electrode, the memory material, and the second electrode is disposed within the pore.

63 (new). The memory cell, as set forth in claim 62, wherein the access device comprises a diode.

4

t Carty

64 (new). The memory cell, as set forth in claim 63, wherein the diode comprises:

a layer of N doped polysilicon disposed adjacent a layer of P doped polysilicon.

65 (new). The memory cell, as set forth in claim 62, wherein the first electrode is comprised of a plurality of layers.

66 (new). The memory cell, as set forth in claim 62, wherein the first electrode is comprised of a plurality of materials.

67 (new). The memory cell, as set forth in claim 62, wherein the first electrode comprises:

a layer of carbon; and

a layer of titanium nitride disposed adjacent the layer of carbon.

68 (new). The memory cell, as set forth in claim 62, wherein the second electrode is comprised of a plurality of layers.

Ori Cont d

69 (new). The memory cell, as set forth in claim 62, wherein the second electrode is comprised of a plurality of materials.

70 (new). The memory cell, as set forth in claim 62, wherein the second electrode comprises:

a layer of carbon; and

a layer of titanium nitride disposed adjacent the layer of carbon.

71 (new). The memory cell, as set forth in claim 62, wherein the memory material comprises structure changing material.

72 (new). The memory cell, as set forth in claim 71, wherein the structure changing material comprises a material which changes between different states of crystallinity in response to electrical stimulus.

73 (new). The memory cell, as set forth in claim 72, wherein each of the different states of crystallinity corresponds to a given resistance level.