## **Queries and Explanations**

Let  $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}\$  (where x, y are the 24th, 25th lowercase letters of the alphabet and do not represent anything else, such as 3, 5, or {1, 2}). Then  $|\mathcal{U}| = 11$ .

- a) If  $A = \{1, 2, 3, 4\}$ , then |A| = 4 and here we have
  - i) *A* ⊆ *U*;
  - iv)  $\{A\} \subseteq \mathcal{U}$ ;
- ii) A ⊂ U;
  - v)  $\{A\} \subset \mathcal{U}$ ; but
- iii)  $A \in \mathcal{U}$ ;
- vi)  $\{A\} \notin \mathcal{U}$ .

How can we claim that, 
$$A \in \mathcal{P}(A)$$
?

$$A = \{1,2\}$$
  $P(A) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$   
 $A \in P(A)$ 

Example Relation:  $\rho = \{(x, y) \mid y = x + 1 \text{ and } x, y \in \mathbb{Z}\}$ NOT Reflexive, NOT Symmetric, NOT Transitive, BUT Anti-symmetric?

$$(x,y) & (y,x) \Rightarrow x = y$$

$$(x,y) & (y,x) \Rightarrow x = y$$

$$(x,y) & (x,y) \Rightarrow x = y$$

$$(x,y) & (x,y) \Rightarrow x = y$$

$$(x,y) & (x,y) \Rightarrow x = y$$

$$y=x+1$$
  
 $x=y+1$ } together

Let  $f: \mathcal{A} \to \mathcal{B}$ , with  $\mathcal{A}_1, \mathcal{A}_2 \subseteq \mathcal{A}$ . Now, if  $\mathcal{A}_1 \subset \mathcal{A}_2$ , then  $f(\mathcal{A}_1) \subseteq f(\mathcal{A}_2)$  – Will the equality also hold?

## Index Set and Partitions

#### Index Set

Definition: Let  $\mathcal{I} \neq \phi$  and  $\forall i \in \mathcal{I}$ , let  $\mathcal{A}_i \subseteq \mathcal{U}$  (universal set). Then,  $\mathcal{I}$  is called an

index set, and each  $i \in \mathcal{I}$  is an index.

Set Operations: (Union)  $\bigcup_{i \in \mathcal{I}} A_i = \{x \mid \exists i \in \mathcal{I}, x \in A_i\}$ 

(Intersection)  $\bigcap_{i \in \mathcal{I}} \mathcal{A}_i = \{x \mid \forall i \in \mathcal{I}, x \in \mathcal{A}_i\}$ 

Generalized DeMorgan's Law:  $\overline{\bigcup_{i\in\mathcal{I}}\mathcal{A}_i}=\bigcap_{i\in\mathcal{I}}\overline{\mathcal{A}_i}$  and  $\overline{\bigcap_{i\in\mathcal{I}}\mathcal{A}_i}=\bigcup_{i\in\mathcal{I}}\overline{\mathcal{A}_i}$ 

#### Partition of a Set

Definition: Let S be a non-empty set. A family of non-empty subsets,  $\{S_i \mid i \in \mathcal{I}\}$  ( $\mathcal{I}$  being the index set) is said to form a partition of S if the following two condition holds:

- ullet  $\bigcup_{i\in\mathcal{I}}\mathcal{S}_i=\mathcal{S}$  (Complete Set Cover), and
- $S_i \cap S_j = \phi, \forall i, j \in \mathcal{I}$  and  $i \neq j$  (Pairwise Disjoint).

Example: Let  $\mathcal{Z}_0 = \{3m \mid m \text{ is an integer}\} = \{0, \pm 3, \pm 6, \ldots\},\$   $\mathcal{Z}_1 = \{3m+1 \mid m \text{ is an integer}\} = \{\ldots, -8, -5, -2, +1, +4, +7, \ldots\}$   $\mathcal{Z}_2 = \{3m+2 \mid m \text{ is an integer}\} = \{\ldots, -7, -4, -1, +2, +5, +8, \ldots\}$ Now,  $\mathcal{Z}_0 \cup \mathcal{Z}_1 \cup \mathcal{Z}_2 = \mathbb{Z} \text{ and } \mathcal{Z}_0 \cap \mathcal{Z}_1 = \mathcal{Z}_1 \cap \mathcal{Z}_2 = \mathcal{Z}_2 \cap \mathcal{Z}_0 = \phi$ 

Definitions: Poset, Maximal/Minimal Elements and Greatest/Least Elements?

Example:  $\mathcal{S} = \{1, 2, 3\}$  with (i)  $(\mathcal{P}(\mathcal{S}), \subseteq)$ , and (ii)  $(\mathcal{P}(\mathcal{S}) - (\{\phi\} \cup \mathcal{S}), \subseteq)$ 







$$A = \{1, 2, 3\}$$

$$P(A) = \{ \emptyset, \{17, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3\}, \{1, 2, 3$$

# **Tutorial Problems**

Let  $A, B, C \in \mathcal{U}$  are three arbitrary sets such that  $A \cup B = A \cup C$  and  $A \cap B = A \cap C$ . Prove that, B = C.

$$B = B \cap (AUB)$$

$$= B \cap (AUC) = (B \cap A) \cup (B \cap C)$$

$$= (A \cap C) \cup (B \cap C) = (A \cup B) \cap (B \cap C)$$

$$= (A \cup C) \cap (B \cap C)$$

$$= (A \cup C) \cap (B \cap C)$$

$$= (A \cup C) \cap (B \cap C)$$

For a function  $f: A \to B$ , define a function  $\mathscr{F}: \mathscr{P}(A) \to \mathscr{P}(B)$  as  $\mathscr{F}(S) = f(S)$  for all  $S \subseteq A$ . Prove that:

(a)  $\mathscr{F}$  is injective if and only if f is injective. (b)  $\mathscr{F}$  is surjective if and only if f is surjective.

$$f(A) \rightarrow (B) \qquad (a) \leftarrow f \text{ is injective} \qquad \begin{cases} A_1, A_2 \in A \\ f(A_1) = f(A_2) \end{cases}$$

$$f(S_1) = f(S_2) \qquad \Rightarrow A_1 = A_2$$

$$f(S_1) = f(S_2) \qquad \Rightarrow A_1 = A_2$$

$$f(S_1) = f(S_2) \qquad \Rightarrow f(S_2) \qquad \Rightarrow f(S_1) = f(S_2)$$

$$f(S_1) = f(S_2) \qquad \Rightarrow f(S_2) \qquad$$

for any 
$$b \in B$$
we have  $a \in A$ ,  $s.t.$   $f(a) = b$ 

any  $\in P(B)$   $\longrightarrow x \in P(A) \quad f(x) = y$ ?

 $f(5) = \{f(S) \mid S \in S\}$ 

Let  $f: A \to B$  be a function and  $\sigma$  an equivalence relation on B. Define a relation  $\rho$  on A as:  $a \rho a'$  if and only if  $f(a) \sigma f(a')$ .

- (a) Prove that  $\rho$  is an equivalence relation on A.
- **(b)** Define a map  $\bar{f}: A/\rho \to B/\sigma$  as  $[a]_{\rho} \mapsto [f(a)]_{\sigma}$ . Prove that  $\bar{f}$  is well-defined.

(a) Ref: 
$$a pa iff f(a) \sigma f(a) V$$

Sym: if  $a pa'$  then  $a' pa ?$ 

$$f(a) \sigma f(a') \Rightarrow f(a') \sigma f(a)$$

Tran:
$$a pa' \text{ and } a' pa'' \Rightarrow a pa''$$

(b)  $A/p = \{ [a_1]_p, [a_2]_p, [a_3]_p \dots \}$ 

$$[x]=[x]_p \qquad f(a) \qquad$$

Let  $f: A \to B$  be a function and  $\sigma$  an equivalence relation on B. Define a relation  $\rho$  on A as:  $a \rho a'$  if and only if  $f(a) \sigma f(a')$ . Define a map  $f: A/\rho \to B/\sigma$  as  $[a]_{\rho} \mapsto [f(a)]_{\sigma}$ .

- Prove that f is injective.  $\checkmark$
- Prove or disprove: If f is a bijection, then so also is  $\bar{f}$ .  $\checkmark$
- Prove or disprove: If  $\bar{f}$  is a bijection, then so also is f. No

(c) 
$$[f(a_1)]_{\alpha} = [f(a_2)]_{\alpha} \Rightarrow f(a_1) \circ f(a_2) \Rightarrow a_1 f a_2$$
  
 $\vdots f is injective  $= [a_1]_{p} = [a_2]_{p}$$ 

(d) 
$$f$$
 is bijection any  $b \in B \longrightarrow a \in A$   $f(a)=b$ 

$$\Rightarrow$$
 f is onto any  $[b]_{0} = [f(a)]_{0}$ 

(e) 
$$A = \{x, y, z\}$$
  $B = \{1, 2\}$ 

$$P = \{(x, y), (x, y)$$

$$f(x) = f(y) = 1$$
  $f(z) = 2$ 

$$\begin{aligned}
*f(x) &= f(y) = 1 & f(z) = 2 \\
A/\rho &= \{ [x,y], [z] \} & = \{ (1,1), (2,z) \} \\
B|_{\sigma} &= \{ [1], [2] \} & f([x,y]) = 1 & f([z]) = 2
\end{aligned}$$

Let  $\rho$  be a total order on A. We call  $\rho$  a <u>well-ordering</u> of A if every non-empty subset of A contains a least element. In this exercise, we plan to construct a well-ordering of  $A = \mathbb{N} \times \mathbb{N}$ .

- (a) Define a relation  $\rho$  on A as (a,b)  $\rho$  (c,d) if and only if  $a \le c$  or  $b \le d$ .
- **(b)** Define a relation  $\sigma$  on A as (a,b)  $\sigma$  (c,d) if and only if  $a \le c$  and  $b \le d$ .
- (c) Define a relation  $\leq_L$  on A as  $(a,b) \leq_L (c,d)$  if either (i) a < c or (ii) a = c and  $b \leq d$ . Prove or disprove:  $\rho, \sigma, \leq_L$  is a well-ordering of A.

partial order 
$$\rightarrow$$
 total order  $\times$  (1,2)  $P(2,n)$  (a) Is the a  $P.0.$ ? (a,b)  $P(a,b) \vee Ref.$  [2,1)  $P(1,2)$  And  $P(a,b) \vee Ref.$  [2,1)  $P(1,2) \neq (0,1)$  (b)  $P(a,b) \vee Ref.$  [2,1)  $P(1,2) \neq (0,1)$  (b)  $P(a,b) \vee Ref.$  [2,1)  $P(1,2) \neq (0,1)$  And  $P(a,b) \vee Ref.$  [2,1)  $P(1,2) \neq (0,1)$  (n)  $P(a,b) \vee Ref.$  [1,2)  $P(a,b) \vee Ref.$  [2,1)  $P$ 

[Genesis of rational numbers] Define a relation  $\rho$  on  $A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$  as (a,b)  $\rho$  (c,d) if and only if ad = bc. Prove that  $\rho$  is an equivalence relation. Argue that  $A/\rho$  is essentially the set  $\mathbb{Q}$  of rational numbers. In abstract algebra, we say that  $\mathbb{Q}$  is the *field of fractions* of the integral domain  $\mathbb{Z}$ .

ad=bc 
$$\Rightarrow \frac{a}{b} = \frac{c}{d}$$
 (a,b)  $p(a,b)$  Ref  $p(a,b)$  Ref  $p(a,b)$   $p($ 

Let A be the set of all functions  $\mathbb{N}_0 \to \mathbb{R}^+$ .

- (a) Define a relation  $\Theta$  on A as  $f \Theta g$  if and only if  $f = \Theta(g)$ . Prove that  $\Theta$  is an equivalence relation.
- (b) Define a relation O on A as f O g if and only if f = O(g). Argue that O is not a partial order.

- DO YOURSELF -

Let A be the set of all functions  $\mathbb{N}_0 \to \mathbb{R}^+$ .

Define a relation O on  $A/\Theta$  as [f] O [g] if and only if f = O(g).

- (c) Establish that the relation O is well-defined. (d) Prove that O is a partial order on  $A/\Theta$ .
- (e) Prove or disprove: O is a total order on  $A/\Theta$ . (f) Prove or disprove:  $A/\Theta$  is a lattice under O.

### - DO YOURSELF -