2 Projektive Varietäten

Der projektive Raum $\mathbb{P}^n(k)$ **§**8

Erinnerung

$$\mathbb{P}^{n}(k) = \{ \text{ Geraden in } k^{n+1} \text{ durch } 0 \}$$
$$= (k^{n+1} \setminus \{0\}) /_{\sim} \text{ mit } (x_0, \dots, x_n) \sim (y_0, \dots, y_n) : \Leftrightarrow \exists \lambda \in k^{\times} : \lambda x_i = y_i \text{ für } i = 1, \dots, n \}$$

Schreibweise $(x_0: \dots : x_n) := [(x_0, \dots, x_n)]_{\sim}$ ("homogene Koordinaten")

Beispiele

 $\underline{n} = 0$: $\mathbb{P}^0(k)$ ist ein Punkt.

$$\underline{n=1}$$
: $\mathbb{P}^1(k) \longrightarrow k \cup \{\infty\}$ ist bijektiv.

$$(x_0:x_1) \mapsto \begin{cases} \frac{x_1}{x_0}: & x_0 \neq 0 \\ \infty: & x_0 = 0 \end{cases} \text{Also: } \mathbb{P}^1(\mathbb{R}) = \frac{S^1}{\pm 1}$$

$$k \in {\mathbb{R}, \mathbb{C}}$$
:

$$\overline{\mathbb{P}^n(k) = (k^{n+1} \setminus \{0\})} / \sim \stackrel{(k=\mathbb{R})}{=} S^n / + 1$$

 $\mathbb{P}^2(\mathbb{R})$ ist nicht orientierbar ("Kreuzhaube").

$$\pi_1(\mathbb{P}^2(\mathbb{R})) \cong \mathbb{Z}/_{2\mathbb{Z}}$$

$$\underline{k = \mathbb{F}_q} \colon \mathbb{P}^n(\mathbb{F}_q) \text{ hat } \underbrace{\frac{q^{n+1} - 1}{q - 1}}_{=1 + q + q^1 + \dots + q^n} \text{ Punkte.}$$

Bemerkung 2.8.1

Für $n \ge 1$ und $i = 0, \dots, n$ sei

$$U_i := \{(x_0 : \dots : x_n) \in \mathbb{P}^n(k) | x_i \neq 0\}$$

(a)
$$\mathbb{P}^n(k) = \bigcup_{i=0}^n U_i$$

$$\rho_i: \begin{array}{ccc} U_i & \longrightarrow & k^n \\ (x_0: \cdots: x_n) & \longmapsto & (\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}) \end{array}$$

ist wohldefiniert und bijektiv.

Umkehrabbildung:

$$(y_1, \ldots, y_n) \mapsto (y_1 : \cdots : y_i : 1 : y_{i+1} : \cdots : y_n)$$

(c) $\varphi_i: \mathbb{P}^n(k) \setminus U_i \longrightarrow \mathbb{P}^{n-1}(k), (x_0:\cdots:x_n) \mapsto (x_0:\cdots:x_{i-1}:x_{i+1}:\cdots:x_n)$ ist bijektiv.

Folgerung 2.8.2

 $\mathbb{P}^n(k)$ ist disjunkte Vereinigung von $\mathbb{A}^n(k)$ und $\mathbb{P}^{n-1}(k)$, oder auch von $\mathbb{A}^n(k)$, $\mathbb{A}^{n-1}(k)$, ..., $\mathbb{A}^0(k)$.

Beobachtung

- (a) Ist $f \in k[X_0, \dots, X_n]$ homogen vom Grad $d \geq 0$, so gilt für $(x_0, \dots, x_n) \in k^{n+1}$ und $\lambda \in k$ stets $f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n)$.
- (b) Jedes homogene Polynom in $k[X_0,\ldots,X_n]$ hat eine wohldefinierte Nullstellenmenge in $\mathbb{P}^n(k)$.

Definition 2.8.3

Eine Teilmenge $V \subseteq \mathbb{P}^n(k)$ heißt **projektive Varietät**, wenn es eine Menge $\mathcal{F} \subset k[X_0, \dots, X_n]$ von homogenen Polynomen gibt, sodass

$$V = V(\mathcal{F}) := \{ x = (x_0 : \dots : x_n) \in \mathbb{P}^n(k) | f(x) = 0 \text{ für alle } f \in \mathcal{F} \}.$$

Beispiele 2.8.4

- (a) $H_i = V(X_i) = \mathbb{P}^n(k) \setminus U_i \stackrel{\varphi_i}{=} \mathbb{P}^{n-1}(k)$ ist eine projektive Varietät ("Hyperebene").
- (b) $V = V(X_0X_2 X_1^2) \subset \mathbb{P}^2(k)$ ist eine projektive Varietät. $V \cap U_0 = V(\frac{x_2}{x_0} - (\frac{x_1}{x_0})^2) \text{ Parabel in } \mathbb{A}^2(k)$ $V \cap U_1 = V(\frac{x_0}{x_1} \cdot \frac{x_2}{x_1} - 1) \text{ Hyperbel in } \mathbb{A}^2(k)$

Definition + Bemerkung 2.8.5

(a) $S = k[X_0, ..., X_n]$ ist **graduierter Ring** (genau: graduierte k-Algebra), das heißt:

$$S = \bigoplus_{d=0}^{\infty} S_d, \ S_d \cdot S_e \subseteq S_{d+e}$$

(hier: $S_d = \{ f \in k[X_0, \dots, X_n] \mid f \text{ homogen vom Grad } d \}, S_0 = k \}$

- (b) Ein Ideal $I \subseteq S$ heißt **homogen**, wenn I von homogenen Elementen erzeugt wird. Äquivalent: $I = \bigoplus_{d=0}^{\infty} (I \cap S_d)$
- (c) Summe, Produkt, Durchschnitt und Radikal von homogenen Idealen sind wieder homogen.

Beweis (c) Seien I_1, I_2 homogene Ideale mit homogenen Erzeugern $(f_i)_{i \in \mathcal{I}}$ beziehungsweise $(g_i)_{i\in\mathcal{J}}$, dann folgt, dass I_1+I_2 von den f_i und g_i erzeugt wird. Genauso $I_1\cdot I_2$.

$$\bigoplus_{d=0}^{\infty} ((I_1 \cap I_2) \cap S_d) = \bigoplus_{d=0}^{\infty} ((I_1 \cap S_d) \cap (I_2 \cap S_d))$$
$$= \left(\bigoplus_{d=0}^{\infty} I_1 \cap S_d\right) \cap \left(\bigoplus_{d=0}^{\infty} I_2 \cap S_d\right) = I_1 \cap I_2$$

 $\Rightarrow I_1 \cap I_2$ ist homogen.

Sei $I := I_1, x \in \sqrt{I}, x = \sum_{d=0}^n x_d, x_d \in S_d$. Zu zeigen: $x_d \in \sqrt{I}$.

Dann gibt es $m \ge 0$ mit $x^m \in I$: $x^m = x_n^m +$ Terme kleineren Grades $\Rightarrow x_n^m \in I$ da die Summe aller Monome gleichen Grades auch immer in I liegen $\Rightarrow x_n \in \sqrt{I}$. Mit Induktion folgt die Behauptung $(x - x_n = \sum_{d=0}^{n-1} x_d \in \sqrt{I} \Rightarrow x_{n-1} \in I)$

Definition + Bemerkung 2.8.6

- (a) Für $V \subseteq \mathbb{P}^n(k)$ sei I(V) das Ideal in $k[X_0, \dots, X_n]$, das von allen homogenen Polynomen f erzeugt wird, für die $f(x) = 0 \ \forall x \in V \ \text{gilt.} \ I(V)$ heißt **Verschwindungsideal** von V. I(V) ist Radikalideal.
- (b) Für eine Menge $F \subset k[X_0, \dots, X_n]$ von homogenen Polynomen sei $V(F) = \{x \in \mathbb{P}^n(k) : f(x) = 0 \ \forall f \in F\}$ die zugehörige projektive Varietät. Für ein homogenes Ideal I sei $V(I) = \{x \in \mathbb{P}^n(k) : f(x) = 0 \text{ für alle homogenen } f \in I\}$. Dann ist $V(F) = V((F)) = V(\sqrt{(F)})$ wobei (F) das von F erzeugte Ideal sei.

Beweis (a) $\sqrt{I(V)}$ ist nach 2.8.5 c) auch ein homogenes Ideal, wird also von homogenen Elementen f_i erzeugt.

$$\Rightarrow f_i^m(x) = 0 \ \forall x \in V \text{ und ein } m \ge 0 \Rightarrow f_i(x) = 0 \Rightarrow f_i \in I(V) \Rightarrow \sqrt{I(V)} = I(V)$$

Proposition 2.8.7

- (a) Die projektiven Varietäten bilden die abgeschlossenen Mengen einer Topologie. Diese heißt die **Zariski-Topologie** auf $\mathbb{P}^n(k)$.
- (b) Eine projektive Varietät V ist genau dann irreduzibel, wenn I(V) ein Primideal ist.
- (c) Jede projektive Varietät besitzt eine eindeutige Zerlegung in irreduzible Komponenten.

Beweis Wie im affinen Fall.

Definition + Bemerkung 2.8.8

- (a) Für eine nicht leere projektive Varietät $V \subseteq \mathbb{P}^n(k)$ heißt $\tilde{V} := \{x = (x_0, \dots, x_n) \mid (x_0 : \dots : x_n) \in V\} \cup \{(0, \dots, 0)\}$ der **affine Kegel** über V.
- (b) \tilde{V} ist affine Varietät. Genauer V = V(I) für ein homogenes Ideal I in $k[X_0, \ldots, X_n]$, so ist $\tilde{V} = V(I)$ als affine Varietät in $\mathbb{A}^{n+1}(k)$.
- (c) $I(\tilde{V}) = I(V)$

Beweis (b) Klar ist $(x_0 : \cdots : x_n) \in V \Leftrightarrow (x_0, \dots, x_n) \in \tilde{V} \setminus \{(0, \dots, 0)\}$. Da $V \neq \emptyset$, enthält das Ideal I, für das V = V(I) ist, kein Element aus $k \setminus \{0\}$. Für jedes homogene Element $f \in I$ ist daher $deg(f) > 0 \Rightarrow f(0, \dots, 0) = 0 \Rightarrow \tilde{V} = V(I)$.

(c) Für jedes homogene Polynom $f \in k[X_0, ..., X_n]$ gilt $f \in I(V) \Leftrightarrow f \in I(\tilde{V})$. Es genügt zu zeigen, dass $I(\tilde{V})$ ein homogenes Ideal ist.

Sei also $f \in I(\tilde{V})$ mit $f = \sum_{i=0}^{d} f_i$, f_i homogen vom Grad i. Sei $x = (x_0, \dots, x_n) \in \tilde{V}$. Dann ist $(\lambda x_0, \dots, \lambda x_n) = \lambda x \in \tilde{V} \ \forall \lambda \in k$, also $0 = f(\lambda x) = \sum_{i=0}^{d} \lambda^i f_i(x) \ \forall \lambda \in k$. Dies ist ein lineares Gleichungssystem mit |k| Zeilen. k ist aber algebraisch abgeschlossen, hat also unendlich viele Elemente $\Rightarrow f_i(x) = 0 \ \forall i \in \{0, \dots, d\} \Rightarrow f_i \in I(\tilde{V})$.

Proposition 2.8.9 (Projektiver Nullstellensatz)

Sei k algebraisch abgeschlossen, $n \geq 0$. Für jedes von (X_0, \ldots, X_n) verschiedene Radikalideal $I \subseteq k[X_0, \ldots, X_n]$ gilt $I(\underbrace{V(I)}_{\subset \mathbb{P}^n(k)}) = \sqrt{I}$.

Beweis Für gegebenes Radikalideal I sei $V \subseteq \mathbb{P}^n(k)$ die zugehörige projektive Varietät. Ist $I = k[X_0, \dots, X_n]$, so ist $V(I) = \emptyset$ und $I(V(I)) = k[X_0, \dots, X_n] = \sqrt{k[X_0, \dots, X_n]}$. Ist $I \subseteq k[X_0, \dots, X_n]$ homogen, so ist mit der Voraussetzng $I \neq (X_0, \dots, X_n)$ $I \subseteq (X_0, \dots, X_n)$, und so ist die affine Nullstellenmenge von I in $\mathbb{A}^n(k)$ echte Obermenge von $\{(0,\ldots,0)\}$, enthält also einen Punkt $(x_0,\ldots,x_n)\neq (0,\ldots,0)$. Dann ist $(x_0:\cdots:x_n)\in V$, also $V\neq\emptyset$. Nach 2.8.8 b) ist \tilde{V} auch die durch I bestimmte affine Varietät in $\mathbb{A}^{n+1}(k)$. Nach 2.8.8 c) ist $I(\tilde{V})=I(V)$. Nach Satz 3 (Hilbertscher Nullstellensatz) ist $I(\tilde{V})=\sqrt{I}$.

Definition + Bemerkung 2.8.10

Sei $V \subseteq \mathbb{P}^n(k)$ projektive Varietät mit homogenem Verschwindungsideal I(V). Dann heißt $k[V] := k[X_0, \dots, X_n]/I(V)$ der **homogene Koordinatenring** von V. k[V] ist graduierte k-Algebra. Dabei ist $k[V]_d := k[X_0, \dots, X_n]_d/(I(V) \cap k[X_0, \dots, X_n]_d)$.

§9 Affine und projektive Varietäten

Es ist
$$U_i = \{(x_0 : \dots : x_n) \in \mathbb{P}^n(k) : x_i \neq 0\} = \mathbb{P}^n(k) \setminus V(X_i)$$
 offen.
 $\rho_i : U_i \to \mathbb{A}^n(k) \ (x_0 : \dots : x_n) \mapsto (\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i})$ ist bijektiv.

Proposition 2.9.1

Die Bijektionen $\rho_i: U_i \to \mathbb{A}^n(k), i = 0, \dots, n$ sind Homöomorphismen bzgl. der jeweiligen Zariski-Topologie.

Beweis OE i=0, $\rho:=\rho_0$

(i) ρ ist stetig: Genügt zu zeigen: Für jedes $f \in k[X_1, \ldots, X_n]$ ist $\rho^{-1}(D(f))$ offen in U_0 . Äquivalent dazu: $\rho^{-1}(V(f))$ ist abgeschlossen in U_0 . Dies folgt aus:

Bemerkung + Definition 2.9.2

Für $f \in k[X_1, ..., X_n]$ ist $\rho^{-1}(V(f)) = U_0 \cap V(F)$.

Dabei sei $f = \sum_{i=0}^{d} f_i$, f_i homogen vom Grad i, $f_d \neq 0$ und $F := \sum_{i=0}^{d} f_i \cdot X_0^{d-i} \in k[X_0, \dots, X_n]$. F ist homogen vom Grad d und heißt die **Homogenisierung** von f.

Beweis
$$x = (x_1, \dots, x_n) \in V(f) \Leftrightarrow f(x_1, \dots, x_n) = 0 \Leftrightarrow \sum_{i=0}^d f_i(x_1, \dots, x_n) = 0 \Leftrightarrow F(1:x_1:\dots:x_n) = 0 \Leftrightarrow \rho^{-1}(x) \in V(F).$$

Damit ist gezeigt, dass ρ stetig ist.

(ii) ρ^{-1} ist stetig: Wie in (i) genügt zu zeigen: Für jedes homogene $F \in k[X_0, \ldots, X_n]$ ist $\rho(V(F) \cap U_0)$ abgeschlossen in $\mathbb{A}^n(k)$.

Beachte: Die $D(F), F \in k[X_0, ..., X_n]$ homogen bilden eine Basis der Zariski-Topologie auf $\mathbb{P}^n(k)$ (Bew. wie in Bemerkung 1.2.7 (ii)).

Bemerkung + Definition 2.9.3

 $\rho(V(F)\cap U_0)=V(f)$, wobei mit $y_i:=\frac{x_i}{x_0}, i=1,\ldots,n,\ f\in k[Y_1,\ldots,Y_n]$ definiert sei durch $f(Y_1,\ldots,Y_n)=F(1,\frac{x_1}{x_0},\ldots,\frac{x_n}{x_0})$.

f heißt **Dehomogenisierung** von F bzgl. x_0 .

Beweis
$$x = (x_0 : \dots : x_n) \in V(F) \cap U_0 \Leftrightarrow x_0 \neq 0 \text{ und } F(x) = 0 \Leftrightarrow F(1, \frac{x_1}{x_0}, \dots, \frac{x_n}{x_0}) = 0 \Leftrightarrow f(\rho(x)) = 0 \Leftrightarrow \rho(x) \in V(f)$$

Beispiele 2.9.4

 $F(X_0, X_1, X_2) = X_1^2 - X_0 X_2, \quad f_{X_0}(Y_1, Y_2) = F(1, \frac{x_1}{x_0}, \frac{x_2}{x_0}) = Y_1^2 - Y_2, \quad f_{X_1}(Y_0, Y_2) = 1 - Y_0 Y_2$ Frage: Wie sieht F aus, wenn $V(F) \cap U_0 = \emptyset$?

Antwort: z.B. $F = X_0^d, \sqrt{(F)} = (X_0)$.

Bemerkung 2.9.5

- (a) Sei $f \in k[X_1, ..., X_n]$, $F \in k[X_0, ..., X_n]$ die Homogenisierung. Dann gilt für die Dehomogenisierung \tilde{f} von F bzgl. X_0 : $\tilde{f} = f$.
- (b) Sei $F \in k[X_0, ..., X_n]$ homogen, $f \in k[Y_1, ..., Y_n]$ die Dehomogenisierung bzgl. X_0 , \tilde{F} die Homogenisierung von f. Dann gilt: $F = \tilde{F} \cdot X_0^d$ für ein $d \ge 0$.

Beweis (a) Sei $f = \sum_{i=0}^{d} f_i$, $f_d \neq 0 \Rightarrow F = \sum_{i=0}^{d} f_i X_0^{d-i} \Rightarrow \tilde{f} = \sum_{i=0}^{d} f_i \cdot 1 = f$.

(b) Schreibe $F = X_0^d \cdot \tilde{F}$ mit $X_0 \nmid \tilde{F}$. Dann hat die Dehomogenisierung von \tilde{F} bzgl. X_0 denselben Grad wie $\tilde{F} \Rightarrow$ ihre Homogenisierung ist \tilde{F} .

Definition + Bemerkung 2.9.6

Eine Teilmenge $W \subseteq \mathbb{P}^n(k)$ heißt *quasiprojektive Varietät*, wenn eine der folgenden Bedingungen erfüllt ist:

- (i) W ist offen in einer projektiven Varietät.
- (ii) Es gibt eine offene Teilmenge $U \subset \mathbb{P}^n(k)$ und eine abgeschlossene Teilmenge $V \subset \mathbb{P}^n(k)$, so dass $W = U \cap V$.

Beispiele 2.9.7

 $\mathbb{P}^2 \setminus \{(0:0:1)\}$ ist quasiprojektiv, aber weder projektiv noch affin (was zu zeigen wäre).

Proposition 2.9.8

Betrachte $\mathbb{A}^n(k)$ über $\rho_0: U_0 \xrightarrow{\sim} \mathbb{A}^n(k)$ als Teilmenge von $\mathbb{P}^n(k)$. Für ein Radikalideal $I \subseteq k[X_1, \ldots, X_n]$ sei $I^* \subseteq k[X_0, \ldots, X_n]$ das von den Homogenisierungen aller $f \in I$ erzeugte Ideal. Dann ist $V_p(I^*) \subseteq \mathbb{P}^n(k)$ der Zariski-Abschluss von $V_a(I) \subseteq \mathbb{A}^n(k)$.

Beweis (i) " $V_a(I) \subseteq V_p(I^*)$ ": Sei $x = (x_1, \dots, x_n) \in V_a(I)$ und sei $f \in I$, $F \in I^*$ die Homogenisierung von f.

Dann ist $F(\rho_0^{-1}(x)) = F(1:x_1:\dots:x_n) = f(x_1,\dots,x_n) = 0$, weil $f \in I = I(V(I))$.

(ii) Sei $V \in \mathbb{P}^n(k)$ abgeschlossen, mit $V_a(I) \subseteq V$.

Zu zeigen: $V(I^*) \subseteq V$.

Sei dazu $V=V(\mathcal{J})$ für ein homogenes Ideal $\mathcal{J}.$ Zu zeigen also: $\mathcal{J}\subseteq I^*.$

Sei $F \in \mathcal{J}$ homogen, $f = F(1, \frac{x_1}{x_0}, \dots, \frac{x_n}{x_0})$ die Dehomogenisierung von F bzgl. x_0 .

Sei $y = (y_1, \dots, y_n) \in V_a(I)$.

Dann ist $f(y) = F(1, y_1, \dots, y_n) = 0$, weil $\rho_0^{-1}(y) \in V(\mathcal{J})$. Somit folgt $f \in I$.

Sei \tilde{F} die Homogenisierung von f, also $\tilde{F} \in I^*$, dann folgt mit 2.9.5: $F = \tilde{F} \cdot X_0^d$ für ein $d \geq 0 \Rightarrow F \in I^*$.

Bemerkung 2.9.9

Sei W eine quasiprojektive Varietät in $\mathbb{P}^n(k)$.

- (a) Die Zariski-Topologie auf W besitzt eine Basis aus affinen Varietäten.
- (b) W ist quasikompakt (d.h. jede offene Überdeckung von W besitzt eine endliche Teilüberdeckung)

Beweis (a) Sei $W = \bigcup_{i=0}^n (W \cap U_i)$ mit $U_i = \{(x_0 : \cdots : x_n) \in \mathbb{P}^n(k) : x_i \neq 0\} \cong \mathbb{A}^n(k)$.

Also Œ $W \subseteq \mathbb{A}^n(k)$, W ist offen in einer affinen Varietät, nämlich dem Zariski-Abschluss V_i von $W \cap U_i$ in U_i . Nach 1.2.7(ii) bilden die D(f), $f \in k[V_i]$ eine Basis der Zariski-Topologie auf $W \cap U_i$. Jedes D(f) ist aber isomorph zu einer affinen Varietät mittels

$$\rho: \begin{array}{ccc} D(f) & \longrightarrow & \mathbb{A}^{n+1}(k) \\ (x_1, ..., x_n) & \longmapsto & (x_1, ..., x_n, \frac{1}{f(x_1, ..., x_n)}) \end{array}$$

für $f \in k[X_1, ..., X_n]$. Bild von ρ ist V(Yf - 1).

(b) Sei $(O_j)_{j\in J}$ offene Überdeckung von W. Nach dem Beweis von (a) wird jedes O_j überdeckt von offenen Teilen der Form D(f) für geeignete $f \in k[\overline{O_j} \cap \overline{U_i}]$.

Also Œ $O_j = D(f_j)$ für ein $f_j \in k[X_0, \dots, \hat{X}_i, \dots, X_n]$ (im Folgenden bedeutet \hat{X}_i : "die *i*-te Variable streichen").

Sei $F_i \in k[X_0, \dots, X_n]$ die Homogenisierung von f_i . Dann ist

$$W \subseteq \bigcup_{j \in J} D(F_j) = \mathbb{P}^n(k) - \bigcap_{j \in J} V(F_j) = \mathbb{P}^n(k) - V(\underbrace{\sum_{j \in J} (F_j)}_{=:I})$$

I ist endlich erzeugtes Ideal, z.B. von $F_1, \ldots, F_r \Rightarrow W \subseteq \bigcup_{j=1}^r D(F_j) \Rightarrow W \subseteq \bigcup_{j=1}^r D(f_j)$

§10 Reguläre Funktionen

Definition 2.10.1

Sei $W \subseteq \mathbb{P}^n(k)$ eine quasiprojektive Varietät. Eine Abbildung $f: W \to k$ heißt **reguläre Funktion** auf W, wenn $f|_{W \cap U_i}$ reguläre Funktion ist für $i = 0, \ldots, n$.

Bemerkung 2.10.2

Sind $G, H \in k[X_0, ..., X_n]$ homogen vom gleichen Grad, so ist $\frac{G(x)}{H(x)}$ wohlbestimmte Funktion auf $\mathbb{P}^n(k) \setminus V(H)$.

Bemerkung 2.10.3

Sei $V \subseteq \mathbb{P}^n(k)$ quasiprojektive Varietät. Dann gilt:

 $f: V \to k$ ist regulär genau dann, wenn für alle $p \in V$ eine Umgebung U_p von p existiert, sowie homogene Polynome G_p, H_p vom gleichen Grad, so dass $f(x) = \frac{G_p(x)}{H_p(x)}$ für alle $x \in U_p$.

Beweis " \Rightarrow " Sei $p \in U_i$, $g_p, h_p \in k[V_i]$ $(V_i = \overline{V \cap U_i})$ wie in 1.6.2 (d.h. es gibt ein $U_p \subseteq U$, $g_p, h_p \in k[V_i]$, $h_p(x) \neq 0 \ \forall x \in U_p$: $f(x) = \frac{g_p(x)}{h_p(x)}$).

Seien \tilde{g}_p , \tilde{h}_p Repräsentanten von g_p bzw. h_p in $k[X_0,...,\hat{X}_i,...,X_n]$ und G_p,H_p Homogenisierungen.

Ist $deg(G_p) \neq deg(H_p)$, so ersetze G_p durch $G_p \cdot X_i^{deg(H_p) - deg(G_p)}$ (falls $deg(H_p) > deg(G_p)$). $\forall x \in U_p$ ist dann

$$f(x) = \frac{g_p(x)}{h_p(x)} = \frac{G_p(x_0 : \dots : x_{i-1} : 1 : x_{i+1} : \dots : x_n)}{H_p(x_0 : \dots : x_{i-1} : 1 : x_{i+1} : \dots : x_n)}$$

"⇐" Dehomogenisieren ...

Bemerkung 2.10.4

Sei $V \subseteq \mathbb{P}^n(k)$ eine quasiprojektive Varietät. Für jede offene Teilmenge U von V sei $\mathcal{O}(U) = \mathcal{O}_V(U) = \{f : U \to k \mid f \text{ regulär}\}.$

- (a) $\mathcal{O}(U)$ ist k-Algebra.
- (b) \mathcal{O}_V ist eine Garbe von k-Algebren auf V.

Lemma 1

Sei $V \subseteq \mathbb{P}^n(k)$ eine projektive Varietät, $f \in k[V]$ homogen, $l \in \mathcal{O}_V(D(f))$. Dann besitzt D(f) eine offene Überdeckung $(U_i)_{i \in J}$ mit $U_i = D(h_i)$ für homogene $h_i \in k[V]$, so dass

$$l(x) = \frac{g_i(x)}{h_i(x)} \quad \forall x \in U_i$$

 $g_i \in k[V]$ ebenfalls homogen mit $deg(g_i) = deg(h_i)$

Beweis Eine offene Überdeckung $(U'_i)_{i \in J'}$ mit $l(x) = \frac{G_i(x)}{H_i(x)} \, \forall x \in U'_i, \ G_i, H_i$ vom gleichen Grad, existiert nach Bem 10.3. Seien g'_i und h'_i deren Restklassen in k[V]. (Beachte: $D(h'_i)$ kann größer als U'_i sein)

Nach dem Beweis von 9.9 a) wird U_i' überdeckt von offenen Mengen der Form $D(\tilde{h_i}')$ für homogene $\tilde{h_i'} \in k[V]$ (da die $D(\tilde{h_i'})$ eine Basis der Zariski-Topologie bilden), also

$$D(\tilde{h}'_i) \subseteq U'_i \subseteq D(h'_i)$$

$$\Rightarrow V(h'_i) \subseteq V(\tilde{h}'_i), \text{ also } \tilde{h}'_i \in \sqrt{(h'_i)} \quad (HNS)$$

$$\Rightarrow (\tilde{h}'_i)^m = ah'_i \text{ für ein } a \in k[V] \text{ und ein } m \ge 0$$

$$\Rightarrow \text{Auf } D(\tilde{h}'_i) \text{ ist } l = \frac{g'_i}{h'_i} = \frac{g'_i a}{(\tilde{h}'_i)^m}$$

Da $D(\tilde{h'_i}) = D((\tilde{h'_i})^m)$, ist mit $h_i := (\tilde{h'_i})^m$ die Behauptung erfüllt.

Satz 5

Sei $V \subseteq \mathbb{P}^n(k)$ eine projektive Varietät.

- (a) Ist V zusammenhängend, so ist $\mathcal{O}(V) \cong k$.
- (b) Sei k[V] der homogene Koordinatenring von $V, f \in k[V]$ homogen. Dann ist $\mathcal{O}_V(D(f)) \cong k[V]_{(f)} := \{\frac{g}{f^r} : g \in k[V] \text{ homogen, } deg(g) = r \cdot deg(f)\} \not$ ("homogene Lokalisierung" von k[V] nach den Potenzen von f).

Beweis (b) $k[V]_{(f)}$ ist k-Algebra $\sqrt{}$

Sonderfälle: f = 0

$$\deg(f) = 0$$
: $D(f) = V \stackrel{a)}{\Rightarrow} \mathcal{O}(D(f)) \cong k$

 $k[V]_{(f)} = \{ \frac{g}{f^r} : \deg(g) = 0 \} \cong k.$

Sei also $\deg(f) \geq 1$:

Sei $\alpha: k[V]_{(f)} \to \mathcal{O}(D(f)), \frac{g}{f^r} \mapsto \frac{G}{F^r} (G, F \in k[X_0, ..., X_n] \text{ Repräsentanten})$ ist wohldefinierter, injektiver k-Algebra-Homomorphismus (Kern ist 0).

<u>surjektiv</u>: Sei $l \in \mathcal{O}(D(f))$

Nach dem Lemma gibt es eine offene Überdeckung $(U_i)_{i\in J}$ von D(f) und $g_i, h_i \in k[V]$ homogen vom gleichen Grad mit

$$l(x) = \frac{g_i}{h_i}(x)$$
 für alle $x \in U_i$

und $U_i = D(h_i) \ \forall i \in J$

<u>Beh.</u>: Œ $g_i h_j = g_j h_i$ in k[V] für alle i, j.

<u>Denn</u>: Auf $U_i \cap U_j$ gilt $\frac{g_i}{h_i} = \frac{g_j}{h_j}$, deshalb ist $g_i h_j = g_j h_i$ Nach dem Lemma ist $V \setminus (U_i \cap U_j) = V(h_i) \cup V(h_j) \Rightarrow h_i h_j (g_i h_j - g_j h_i) = 0$ auf ganz V. Setze $\tilde{g}_i = g_i h_i$, $\tilde{h}_i = h_i^2 \Rightarrow \frac{\tilde{g}_i}{\tilde{h}_i} = \frac{g_i}{h_i} = l$ auf U_i und $\tilde{g}_i \tilde{h}_j - \tilde{g}_j h_i = 0$ auf V $\Rightarrow \tilde{g_i}\tilde{h_i} = \tilde{g_i}\tilde{h_i} \text{ in } k[V].$

Nach Bem 9.9 und dem Lemma überdecken endlich viele der $D(h_i)$ ganz D(f), also Œ

$$\begin{split} D(f) &= \bigcup_{i=1}^r D(h_i) \\ \Rightarrow &V(f) = \bigcap_{i=1}^r V(h_i) = V(h_1, ..., h_r) \\ \Rightarrow &f \in I(V(h_1, ..., h_r)) \overset{HNS}{=} \sqrt{(h_1, ..., h_r)} \\ \Rightarrow &f^m = \sum_{i=1}^r a_i h_i \text{ für geeignetes } m \geq 0, a_i \in k[V] \text{ homogen.} \end{split}$$

Setze $g := \sum_{i=1}^r a_i g_i$. Dann ist g homogen und $\deg(g) = \deg(f)$. Für j = 1, ..., r gilt

$$f^{m}g_{j} = \sum_{i=1}^{r} (a_{i}h_{i})g_{j} \stackrel{Beh.}{=} \sum_{i=1}^{r} a_{i}g_{i}h_{j} = gh_{j}$$

 \Rightarrow auf U_j ist $\frac{g}{f^m} = \frac{g_j}{h_j} = l$

V irreduzibel (Die Konstante auf jeder Komponente muss auf den Durchschnitten gleich sein)

Sei $V_i := V \cap U_i$ (wobei $U_i = D(X_i) = \{(x_0 : \dots : x_n) \in \mathbb{P}^n(k) : x_i \neq 0\}$). Œ $V_i \neq \emptyset$

Sei $f \in \mathcal{O}(V)$. Dann ist $f|_{V_i} \in \mathcal{O}(V_i) \stackrel{b)}{=} k[V]_{(X_i)}$ (i = 0, ..., n).

(Beachte: Beim Beweis des (b)-Teils wurde der (a)-Teil nur für den Fall, dass deg f=0 ist, verwendet. Hier ist aber $f = X_i$, also deg f = 1).

Da V irreduzibel ist, folgt mit 2.8.7 b), dass k[V] nullteilerfrei ist.

Sei also $L := \operatorname{Quot}(k[V])$. Insbes. $f_i := f \mid_{V_i} \in L$.

Schreibe $f_i = \frac{g_i}{X_i^{d_i}}$ für ein homogenes $g_i \in k[V]$ vom Grad d_i .

 $f_i = f_j$ auf $U_i \cap U_j \Rightarrow f_i = f_j = f$ in L.

Beh. 1: f ist ganz über k[V].

Dann ist
$$f^m + \sum_{j=1}^{m-1} a_j f^j = 0$$
 für geeignetes $m \ge 0$, $a_j \in k[V]$.

Multipliziere mit $X_i^{d_i m} \Rightarrow \underbrace{g_i^m}_{\text{deg}=d_i m} + \sum_{j=1}^{m-1} a_j \underbrace{g_i^j \cdot X^{d_i (m-j)}}_{\text{deg}=d_i m} = 0$

 \Rightarrow Œ a_j homogen vom Grad $0 \Rightarrow a_j \in k$ und damit auch $f \in k$.

Beweis von Beh. 1:

Genügt (Alg II): k[V][f] ist in einem endlich erzeugten k[V]-Modul enthalten.

<u>Beh. 2</u>: $k[V][f] \subseteq \frac{1}{X_0^a} k[V]$, wobei $d = \sum_{i=0}^n d_i$

Beweis von Beh. 2: Zu zeigen: $X_0^d \cdot f^j \in k[V]$ für jedes $j \geq 0$. Dies folgt aus

Beh. 3: $k[V]_d \cdot f^j \subseteq k[V]_d$ für alle $j \ge 0$.

Beweis von Beh. 3:

 $k[V]_d$ wird erzeugt von den Restklassen der Monome $X_0^{j_0} \cdot \ldots \cdot X_n^{j_n}$ mit $\sum_{i=0}^n j_i = d$ (und $j_i \geq 0$) $\Rightarrow \exists i \text{ mit } d_i \leq j_i$

$$\Rightarrow X_0^{j_0} \cdot \dots \cdot X_n^{j_n} \cdot f = X_0^{j_0} \cdot \dots \cdot X_i^{j_i - d_i} \cdot \dots \cdot X_n^{j_n} \cdot g_i \in k[V]_d$$

§11 Morphismen

Definition + Bemerkung 2.11.1

Seien $V \subseteq \mathbb{P}^n(k)$ und $W \subseteq \mathbb{P}^m(k)$ quasiprojektive Varietäten.

- (a) Eine Abbildung $f: V \longrightarrow W$ heißt **Morphismus** wenn es zu jedem $x \in V$ eine Umgebung U_x und homogene Polynome $f_0^{(x)}, \ldots, f_m^{(x)} \in k[X_o, \ldots, X_n]$, alle vom gleichen Grad, sodass $f(y) = \left(f_0^{(x)}(y) : \cdots : f_m^{(x)}(y)\right)$ für jedes $y \in U_x$.
- (b) Die Morphismen $V \longrightarrow \mathbb{A}^1(k)$ entsprechen bijektiv den regulären Funktionen auf V.
- (c) Morphismen sind stetig.
- (d) Die quasiprojektiven Varietäten über k bilden mit den Morphismen aus a.) eine Kategorie $Var^{\circ}(k)$.

Beweis (a) -

- (b) Sei $f: V \longrightarrow \mathbb{A}^1(k)$ ein Morphismus. Sei $x \in V, U_x, f_0^{(x)}, f_1^{(x)}$ wie in a.), das heißt: $f(y) = \left(f_0^{(x)}: f_1^{(x)}\right)$ für alle $y \in U_x$ (wobei $\mathbb{A}^1(k)$ mit U_0 identifiziert sei). Dann ist $\frac{f_1^{(x)}(y)}{f_0^{(x)}(y)} \in k$ für alle $y \in U_x$. $\Rightarrow f \in \mathcal{O}(V)$. Die Umkehrung folgt aus Bemerkung 2.10.3.
- (c) Wie für affine Varietäten, siehe 1.5.3.

Beispiele

1.) Die Abbildung $(x_0 : x_1 : x_2) \mapsto (x_0 : x_1)$ ist ein Morphismus $\mathbb{P}^2(k) \setminus \{(0 : 0 : 1)\} \longrightarrow \mathbb{P}^1(k)$, der sich nicht stetig auf ganz $\mathbb{P}^2(k)$ fortsetzen lässt.

Für
$$(\lambda : \lambda : \mu), \lambda \neq 0$$
, ist $f(\lambda : \lambda : \mu) = (1 : 1)$
aber für $(\lambda : -\lambda : \mu), \lambda \neq 0$, ist $f(\lambda : -\lambda : \mu) = (1 : -1)$

 $\{(1:1)\}$ und $\{(1:-1)\}$ sind abgeschlossen, also müssen ihre Urbilder auch abgeschlossen sein. Der Abschluss von $\{(x_0:x_1:x_2)\subseteq \mathbb{P}^2(k):x_0=x_1\}$ ist aber in $V(X_0-X_1)$ enthalten, denn $V(X_0-X_1)$ ist irreduzibel und es gilt:

$$V(X_0 - X_1) = \{(x_0 : x_1 : x_2) \subseteq \mathbb{P}^2(k) : x_0 = x_1\}$$

= \{(0 : 0 : 1)\} \cup \{(\lambda : \lambda : \mu) \in \mathbb{P}^2(k) : \lambda \in k^\times, \mu \in k\}

Das Urbild von $\{1,1\}$ ist $V(X_0-X_1)\setminus\{(0:0:1)\}$, also nicht abgeschlossen.

2.) Sei $E := V(X_0X_2^2 - X_1^3 + X_1X_0^2)$ (elliptische Kurve $y^2 = x^3 - x$).

$$f: \begin{array}{ccc} E \setminus \{(0:0:1)\} & \longrightarrow & \mathbb{P}^1(k) \\ (x_0:x_1:x_2) & \longmapsto & (x_0:x_1) \end{array}$$

lässt sich zu einem Morphismus $E \longrightarrow \mathbb{P}^1(k)$ fortsetzen.

Sei $(x_0: x_1: x_2) \in E \setminus \{(0:0:1), (1:0:0)\}$ mit $x_2^2 + x_1 x_0 \neq 0$ Dann ist auch $x_1 \neq 0$ und somit

$$f(x_0: x_1: x_2) = (x_0: x_1) \stackrel{x_2^2 + x_1 x_0 \neq 0}{=} (x_0(x_2^2 + x_1 x_0) : x_1(x_2^2 + x_1 x_0))$$
$$= (x_1^3: x_1(x_2^2 + x_1 x_0)) \stackrel{x_1 \neq 0}{=} (x_1^2: x_2^2 + x_1 x_0)$$

Seien

$$U = E \setminus \{(0:0:1)\}$$

$$U' = E \setminus \{(1:0:0)\}$$

 $\Rightarrow E = U \cup U'$.

$$f: U \longrightarrow \mathbb{P}^1$$
, $(x_0: x_1: x_2) \mapsto (x_0: x_1)$ ist ein Morphismus.
 $f': U' \longrightarrow \mathbb{P}^1$, $(x_0: x_1: x_2) \mapsto (x_1^2: x_2^2 + x_1 x_0)$ ist ein Morphismus.

Auf $U \cap U'$ gilt f(y) = f'(y).

Folgerung 2.11.2

Eine Abbildung $f: V \longrightarrow W$ von quasiprojektiven Varietäten ist genau dann ein Morphismus, wenn f stetig ist und für jedes offene $U \subseteq W$ und jedes $g \in \mathcal{O}_W(U)$ gilt:

$$g \circ f \in \mathcal{O}_V(f^{-1}(U))$$

Beweis Folgt aus 2.11.1 b). Alternativ: Beweis von Proposition 1.6.6 anpassen.

" \Rightarrow " f ist ein Morphismus $\Rightarrow f$ ist stetig. Mit 2.11.1.b) folgt: $g: U \to k$ ist ein Morphismus $(U \subseteq W) \Rightarrow g \circ f$ ist als Komposition von Morphismen auch ein Morphismus, also folgt mit 2.11.1.b), dass $g \circ f \in \mathcal{O}_V(f^{-1}(U))$

" \Leftarrow " Angenommen, f ist kein Morphismus.

Sei $f = (f_1, ..., f_m)$. Dann existiert ein f_i , dass sich auf U_x nicht als Polynom darstellen lässt.

Sei g_i die Projektion auf diese Komponente.

Dann ist $g \circ f = f_i$ kein Morphismus, also $g \circ f \notin \mathcal{O}_V(f^{-1}(U))$

Folgerung 2.11.3

Sind V, W affine Varietäten, so ist eine Abbildung $f: V \longrightarrow W$ genau dann ein Morphismus von affinen Varietäten, wenn sie ein Morphismus im Sinne von Definition 2.11.1 a) ist.

Eleganter: Die Homöomorphismen $\mathbb{A}^n(k) \xrightarrow{\sim} U_0 \subseteq \mathbb{P}^n(k) \ (n \geq 0)$ induzieren einen volltreuen Funktor $Aff(k) \longrightarrow Var^{\circ}(k)$.

Proposition 2.11.4

Für jedes $n \geq 1$ ist $Aut(\mathbb{P}^n(k)) \simeq \operatorname{PGL}_{n+1}(k) = \operatorname{GL}_{n+1}(k)/\{\lambda \cdot I_{n+1} : \lambda \in k^{\times}\}$

Beweis Für $A \in GL_{n+1}(k)$ sei

$$\sigma_A : \mathbb{P}^n(k) \to \mathbb{P}^n(k)$$
 die Abbildung $\sigma_A(x_0 : \dots : x_n) = (y_0 : \dots : y_n)$ mit $A \cdot \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_0 \\ \vdots \\ y_n \end{pmatrix}$.

 σ_A ist wohldefiniert, da $A(\lambda x) = \lambda Ax$.

 σ_A ist Morphismus, denn y_i ist lineares Polynom in den x_i

 σ_A ist Automorphismus, da $\sigma_A \circ \sigma_{A^{-1}} = id$

Es ist $\sigma_A \circ \sigma_B = \sigma_{A \cdot B} \Rightarrow \sigma : \operatorname{GL}_{n+1}(k) \to \operatorname{Aut}(\mathbb{P}^n(k)), A \mapsto \sigma_A$ ist Gruppenhomomorphismus. Noch zu zeigen:

- 1. $\{\lambda \cdot I_{n+1} : \lambda \in k^{\times}\} = \ker \sigma$
- 2. σ ist surjektiv.

Beweis von 1:

"⊆": klar.

" \supseteq ": Sei $\sigma_A = id$. Dann gibt es für $i = 0, \ldots, n$ ein $\lambda_i \in k^{\times}$ mit

$$A \cdot \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \lambda_i \\ \vdots \\ 0 \end{pmatrix} \leftarrow i$$

$$\Rightarrow A = \begin{pmatrix} \lambda_0 \\ \vdots \\ \lambda_n \end{pmatrix}$$

$$\Rightarrow A \cdot \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda_0 \\ \vdots \\ \lambda_n \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \lambda \\ \vdots \\ \lambda \end{pmatrix} \text{ für ein } \lambda \in k^{\times}$$

$$\Rightarrow \lambda_0 = \dots = \lambda_n = \lambda$$

Bemerkung 2.11.5

Sei $f: \mathbb{P}^n(k) \to \mathbb{P}^m(k)$ ein Morphismus, dann gibt es homogene Polynome $f_0, \ldots, f_m \in$ $k[X_0,\ldots,X_n]$, so dass $f(x)=(f_0(x):\cdots:f_m(x))$ für alle $x\in\mathbb{P}^n(k)$.

Beweis Übungsblatt 8, Aufgabe 3

Beweis (von Beh. 2) Sei $f: \mathbb{P}^n(k) \to \mathbb{P}^n(k)$ Automorphismus, dann gibt es also nach 2.11.5 homogene Polynome $f_0, \ldots, f_n \in k[X_0, \ldots, X_n]$ vom gleichen Grad d mit $f(x) = (f_0(x) : \cdots : f_n(x) : \cdots$ $f_n(x)$). Genauso gibt es homogene Polynome $g_0, \ldots, g_n \in k[X_0, \ldots, X_n]$ vom gleichen Grad e mit $f^{-1}(x) = (g_0(x) : \cdots : g_n(x)).$

Es ist $(f_0(f^{-1}(x)):\cdots:f_n(f^{-1}(x)))=(x_0:\cdots:x_n)$ für jedes $x\in\mathbb{P}^n(k)$.

 $\Rightarrow f_i \circ f^{-1} = X_i \cdot h$ für ein homogenes Polynom h vom Grad $d \cdot e - 1$. h kann keine Nullstelle haben, denn $f_i \circ f^{-1}$ ist auf ganz $\mathbb{P}^n(k)$ definiert.

$$\Rightarrow h \in k^{\times} \Rightarrow d \cdot e = 1 \Rightarrow d = 1 \text{ und } e = 1$$

$$\Rightarrow f_i = \sum_{j=0}^m a_{ij} X_j$$
 für geeignete $a_{ij} \in k$.

$$\Rightarrow f = \sigma_A \text{ mit } A = (a_{ij}).$$

Beispiele
Seien
$$n = 1, A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k), x = (x_0 : x_1) \in \mathbb{P}^1(k)$$

Dann ist $\sigma_A(x) = (ax_0 + bx_1 : cx_0 + dx_1)$

In U_1 ist also

$$\sigma_A(x) = \frac{ax_0 + bx_1}{cx_0 + dx_1} = \frac{a\frac{x_0}{x_1} + b}{c\frac{x_0}{x_1} + d}$$

Erinnerung / Definition + Bemerkung 2.11.6

Sei $V \subset \mathbb{P}^n(k)$ quasiprojektive Varietät.

(a) Eine **rationale Funktion** auf V ist eine Äquivalenzklasse von Paaren (U, f), wo $U \subset V$ offen und dicht und $f \in \mathcal{O}_V(U)$ mit der Äquivalenzrelation (U, f) $(U', f') :\Leftrightarrow f|_{U \cap U'} =$ $f'|_{U\cap U'}$.

- (b) Ist V irreduzibel, so bilden die rationalen Funktionen auf V einen Körper k(V), den **Funktionenkörper** von V.
- (c) Ist V irreduzibel, so ist $k(V) \simeq Quot(k[U])$ für jede dichte, affine und offene Teilmenge $U \subset V$.
- (d) Ist W eine weitere quasi-projektive Varietät, so ist eine $rationale\ Abbildung\ f:V \dashrightarrow W$ eine Äquivalenzklasse von Paaren (U,f_U) , wo $U\subset V$ offen, dicht und $f_U:U\to W$ Morphismus und $(U,f_U)\sim (U',f'_U):\Leftrightarrow f_U|_{U\cap U'}=f_{U'}|_{U\cap U'}.$
- (e) Erinnerung: Eine rationale Abbildung $f: V \dashrightarrow W$ heißt **dominant**, wenn $f_U(U)$ dicht in W ist, für einen (jeden) Repräsentanten (U, f_U) von f.
- (f) Die Zuordnung $V \mapsto k(V)$ ist eine kontravariante Äquivalenz von Kategorien

$$\left\{ \begin{array}{ll} & \text{irred. quasi-proj. Variet"aten} \\ + & \text{dom. rationale Abb.} \end{array} \right\} \leftrightarrow \left\{ \begin{array}{ll} & \text{endl. erzeugte K\"orpererweiterungen } K/k \\ + & k\text{-Algebra-hom.} \end{array} \right\}$$

§12 Graßmann-Varietäten

Sei k ein algebraisch abgeschlossener Körper, $1 \le d \le n$ natürliche Zahlen.

Definition + Bemerkung 2.12.1

Sei V ein n-dimensionaler k-Vektorraum.

- (a) $G(d,n)(V) := \{U \subseteq V : U \text{ ist Untervektorraum von } V, \dim(U) = d\}$
- (b) $G(d, n) := G(d, n)(k^n)$
- (c) Es gibt eine Bijektion $G(d, n)(V) \to G(d, n)$.

Beispiele

$$d = 1$$
: $G(1, n) = \mathbb{P}^{n-1}(k)$

Bemerkung 2.12.2

Es gibt "natürliche" Bijektionen

$$G(d,n) \to G(n-d,n)$$

für alle $1 \le d \le n - 1$.

Beweis Sei V^* der Dualraum zu V. Dann ist die Bijektion gegeben durch

$$G(d, n)(V) \to G(n - d, n)(V^*)$$

$$U \mapsto \{l \in V^* : U \subseteq \text{Kern}(l)\}$$

$$\bigcap_{l \in U^*} \text{Kern}(l) \leftrightarrow U^*$$

Bemerkung + Definition 2.12.3

Sei
$$\mathcal{F}_n(k) = \{((x_1 : ... : x_n), (y_1, ..., y_n)) \in \mathbb{P}^{n-1}(k) \times k^n :$$

$$(y_1:...:y_n)=(x_1:...:x_n) \text{ oder } (y_1,...,y_n)=(0,...,0)$$

Beh. $\mathcal{F}_n(k)$ ist quasiprojektive Varietät, als Untervarietät von

$$\mathbb{P}^{n-1} \times \mathbb{P}^n \hookrightarrow \mathbb{P}^N$$
$$((x_1 : \dots : x_n), (y_0 : \dots : y_n)) \mapsto (x_1 y_0 : x_1 y_1 : \dots : x_n y_n)$$

mit N = n(n+1) und $x_i y_k : x_j y_k = x_i y_l : x_j y_l$

Denn: $\mathcal{F}_n(k) = V(x_i y_j - x_j y_i, 1 \le i \le j)$

Sei $pr: \mathcal{F}_n(k) \to \mathbb{P}^{n-1}(k)$ die Projektion auf die erste Komponente.

pr ist ein surjektiver Morphismus.

Für $x := (x_1 : \cdots : x_n) \in \mathbb{P}^{n-1}(k)$ ist

$$pr^{-1} = \{((x_1 : \dots : x_n)(y_1, \dots, y_n)) \in \mathbb{P}^{n-1} \times k^n : y_i = \lambda x_i \text{ für ein } \lambda \in k \text{ und alle } i = 1, \dots, n\}$$

$\mathcal{F}_n(k)$ heißt tautologisches Bündel

Für die folgende Proposition, sei zunächst folgende

Erinnerung: Ist e_1, \dots, e_n Basis von v, so ist $e_{i_1} \wedge \dots \wedge e_{i_d}$, $1 \leq i_1 \leq \dots < i_j \leq n$ Basis von $\bigwedge^d V$. (zwei e_{i_j} vertauschen dreht das Vorzeichen, zwei gleiche e_{i_j} gibt deshalb 0)

Proposition 2.12.4

G(d,n)(V) "ist" quasiprojektive Varietät.

Genauer: Sei $\bigwedge^d V$ die d-te äußere Potenz von V und sei

$$\psi := \psi_{d,n}: \begin{array}{ccc} G(d,n)(V) & \longrightarrow & \mathbb{P}(\bigwedge^d V) \\ U & \longmapsto & [u_1 \wedge \cdots \wedge u_d] \end{array}$$

wobei u_1, \dots, u_d eine Basis von U ist. Dann gilt:

- (a) ψ ist wohldefiniert.
- (b) ψ ist injektiv

(c) Bild(
$$\psi$$
) ist Zariski-abgeschlossen in $\mathbb{P}(\bigwedge^d V) = \mathbb{P}^{N-1}(k)$, $N = \dim(\bigwedge^d V) = \begin{pmatrix} n \\ d \end{pmatrix}$

Beweis (a) Sei v_1, \dots, v_n eine weitere Basis von U.

Dann gibt es ein
$$A \in GL_d(k)$$
 mit $A \cdot \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$
 $\Rightarrow v_1 \wedge \dots \wedge v_d = \sum_{i=1}^d a_{1i} u_i \wedge \dots \wedge \sum_{i=1}^d a_{di} u_i = (\sum_{\sigma = S_d} (-1)^{sign(\sigma)} a_{1\sigma(1)} \cdot \dots \cdot a_{d\sigma(d)}) \cdot u_1 \wedge \dots \wedge u_d = \det A \cdot u_1 \wedge \dots \wedge u_d$

(b) Sei $u_i, ..., u_d$ eine Basis von U

Zu zeigen: U ist durch $[u_1 \wedge ... \wedge u_d]$ eindeutig bestimmt.

Dies folgt aus der Behauptung:

$$U = \{ v \in V : v \land (u_1 \land \dots \land u_d) = 0 \}$$

Beweis der Beh.: $v \wedge (u_1 \wedge ... \wedge u_d) = 0$

 $\Leftrightarrow v, u_1, ..., u_d$ sind linear abhängig

$$\Leftrightarrow v \in \langle u_1, ..., u_d \rangle = U$$

(c) Wir brauchen homogene Gleichungen, die in allen Punkten in $\mathrm{Bild}(\psi)$ erfüllt werden. Beoobachtung:

Bild
$$(\psi) = \{ [\omega] : \omega \in \bigwedge^d V \text{ und } \omega = u_1 \wedge \cdots \wedge u_d \text{ für lin. unabh. Vektoren } u_1, \dots, u_d \text{ in } V \}$$

$$(\omega \text{ ist "total zerlegbar"})$$

Für $\omega \in \bigwedge^d V$ sei

$$\varphi_{\omega}: \begin{array}{ccc} V & \longrightarrow & \bigwedge^{d+1} V \\ v & \longmapsto & \omega \wedge v \end{array}$$

und $L_{\omega} = (l_{ij}(\omega))$ ("Plücker Koordinaten") die Darstellungsmatrix von φ_{ω} bezüglich der Basen e_1, \ldots, e_n und $\{e_{i_1} \wedge \cdots \wedge e_{i_{d+1}} : 1 \leq i_1 < \cdots < i_d \leq n\}$. Die Abbildung

$$\varphi: \begin{array}{ccc} \bigwedge^d V & \longrightarrow & \operatorname{Hom}_k(V, \bigwedge^{d+1} V) \\ \omega & \longmapsto & \varphi_\omega \end{array}$$

ist linear. Dabei sind die $l_{ij}(\omega)$ linear in ω , das heißt

$$l_{ij}: \bigwedge^d V \longrightarrow k$$

 $\omega \longmapsto l_{ij}(\omega)$

ist eine lineare Abbildung.

Behauptung

 $[\omega] \in \text{Bild}(\psi) \Leftrightarrow \det(l_{ij}(\omega))_{\substack{i \in \mathcal{I} \\ j \in \mathcal{J}}} = 0$ für alle (n-d+1)-Minoren $\mathcal{I} \times \mathcal{J}$ von L_{ω} Diese Determinaten sind homogene Polynome vom Grad n-d+1 in den Linearformen l_{ij} . Also ist

$$Bild(\psi) = V((\det(l_{ij})_{\substack{i \in \mathcal{I} \\ j \in \mathcal{J}}}) : \mathcal{I} \times \mathcal{J} \text{ ist } (n-d+1)\text{-Minor })$$

das heißt Bild (ψ) ist abgeschlossen.

Beweis (der Behauptung)

$$\det(l_{ij})_{\substack{i \in \mathcal{I} \\ j \in \mathcal{J}}} = 0 \text{ für alle } (n - d + 1)\text{-Minoren}$$
$$\Leftrightarrow \operatorname{Rg}(\varphi_{\omega}) \leq n - d$$
$$\Leftrightarrow \dim(\operatorname{Kern}(\varphi_{\omega})) \geq d$$

Die Behauptung lautet also:

Behauptung (')

 ω total zerlegbar $\Leftrightarrow \dim(\operatorname{Kern}(\varphi_{\omega})) \geq d$

Behauptung (")

- a) $\dim(\operatorname{Kern}(\varphi_{\omega})) \leq d$
- b) $\dim(\operatorname{Kern}(\varphi_{\omega})) = d \Leftrightarrow \omega \text{ total zerlegbar}$
- c) Für $v \neq 0$: $v \in \text{Kern}(\varphi_{\omega}) \Leftrightarrow \exists \omega' \in \bigwedge^{d-1} V \text{ und } \omega = v \wedge \omega'$

Beweis (c) $\times v = e_n$

$$\begin{split} \omega &= \sum_{1 \leq i_1 < \dots < i_d \leq n} \lambda_{\underline{i}} \cdot e_{i_1} \wedge \dots \wedge e_{i_d} \\ \Rightarrow 0 &= \omega \wedge v = \sum_{1 \leq i_1 < \dots < i_d \leq n} \lambda_{\underline{i}} \cdot e_{i_1} \wedge \dots \wedge e_{i_d} \wedge e_n \\ \Leftrightarrow \lambda_{\underline{i}} &= 0 \text{ für alle } \underline{i} = (i_1, \dots, i_d) \text{ mit } i_d \neq n \\ \Rightarrow \omega &= \left(\sum_{1 \leq i_1 < \dots < i_{d-1} \leq n} \lambda_{i_1, \dots, i_{d-1}, n} \cdot e_{i_1} \wedge \dots \wedge e_{i_{d-1}}\right) \wedge e_n =: \omega' \wedge e_n \end{split}$$

- (a) Aus (c) folgt mit Induktion über m: Sind $v_1, \ldots, v_m \in \text{Kern}(\varphi_\omega)$ linear unabhängig, so gibt es $\omega \in \bigwedge^{d-m} V$ mit $\omega = \omega_m \wedge v_1 \wedge \cdots \wedge v_m \Rightarrow m \leq d$
- (b) " \Rightarrow " Sei v_1, \ldots, v_m eine Basis von Kern (φ_{ω}) $\stackrel{Bew.a)}{\Rightarrow} \omega = \lambda \cdot v_1 \wedge \cdots \wedge v_d$ für ein $\lambda \in k^{\times}$ " \Leftarrow " Sei $\omega = u_1 \wedge \cdots \wedge u_d$

$$v \in \operatorname{Kern}(\varphi_{\omega}) \Leftrightarrow v, u_1, \dots, u_d$$
 linear abhängig
$$\Leftrightarrow v \in < u_1, \dots, u_d >$$

$$\Rightarrow \operatorname{Kern}(\varphi_{\omega}) = < u_1, \dots, u_d >$$
 mit dim $\operatorname{Kern}(\varphi_{\omega}) = d$

§13 Varietäten

Seien V_1 , V_2 quasiprojektive Varietäten, $U_i \subseteq V_i$ offen (i = 1, 2), $\varphi : U_1 \to U_2$ ein Isomorphismus.

Sei $V := (V_1 \stackrel{\cdot}{\cup} V_2) /_{\sim}$, wobei für $x \in V_1$ und $y \in V_2$ gelte

$$x \sim y : \Leftrightarrow x \in U_1 \text{ und } y = \varphi(x) \in U_2$$

V ist ein topologischer Raum mit der Quotiententopologie. Für $U\subseteq V$ offen sei

$$\mathcal{O}_V(U) := \{ f : U \to k \mid \forall x \in U \ \exists U_x \text{ offen mit } U_x \subseteq V_1 \text{ oder } U_x \subseteq V_2 \text{ und } f \mid_{U_x} \text{ ist regulär} \}$$

d.h. $f|_{U_x} \in \mathcal{O}_{V_1}(U_x)$, bzw. $\mathcal{O}_{V_2}(U_x)$.

Ist $x \in U_1$ (oder $x \in U_2$), so ist $\times U_x \subseteq U_1$ und $\varphi(U_x) \subseteq U_2$ ebenfalls offene Umgebung von x in V.

dann ist
$$f \in \mathcal{O}_{V_2}(\varphi(U_x)) \Leftrightarrow f \circ \varphi \in \mathcal{O}_{V_1}(U_x)$$

Bemerkung 2.13.1

 \mathcal{O}_V ist Garbe von k-Algebra auf V.

Definition 2.13.2

V wie oben heißt die aus V_1 und V_2 durch Verkleben längs U_1 und U_2 via φ entstandene **Prävarietät**. (Begriff nicht so in der Literatur)

Beispiele 2.13.3

(a) $V_1 = V_2 = \mathbb{A}^1(k), U_1 = U_2 = \mathbb{A}^1 \setminus \{0\}$ $\varphi : U_1 \to U_2, x \mapsto \frac{1}{r}$

Dann ist die Verklebung V von V_1 und V_2 längs φ isomorph zu $\mathbb{P}^1(k)$.

Dabei heißt $\Psi: V \to \mathbb{P}^1(k)$ **Isomorphismus**, wenn Ψ ein Homöomorphismus ist und für jedes offene $U \subset \mathbb{P}^1(k)$ gilt:

$$\mathcal{O}_{\mathbb{P}^n(k)} \to \mathcal{O}_V(\Psi^{-1}(U)), \quad f \mapsto f \circ \Psi$$

ist ein Isomophismus von k-Algebren. $\Psi: V \to \mathbb{P}^1(k)$ sei wie folgt definiert:

$$\Psi \mid V_1 = \rho_0 : \mathbb{A}^1(k) \to \mathbb{P}^1(k), \quad x \mapsto (1:x)$$

$$\Psi \mid V_2 = \rho_1 : \mathbb{A}^1(k) \to \mathbb{P}^1(k), \quad y \mapsto (y:1)$$

für $x \in U_1$ ist $(1:x) = (\varphi(x):1) = (\frac{1}{x}:1)$

<u>Übungsaufgabe</u>: Verklebe n+1 Kopien von $\mathbb{A}^n(k)$, so dass $\mathbb{P}^n(k)$ entsteht.

(b) $\overline{V_1 = V_2 = \mathbb{A}^1(k)}$, $U_1 = U_2 = \mathbb{A}^1(k) \setminus \{0\}$ $\varphi : U_1 \to U_2$, $\varphi = \mathrm{id}$, V Verklebung längs φ . Für jedes offene $U \subseteq V$ mit $0_1 \in U$ und $0_2 \in U$ und jedes $f \in \mathcal{O}_V(U)$ ist $f(0_1) = f(0_2)$. So ein V heißt **separiert**.

Bemerkung 2.13.4

Ein topologischer Raum ist genau dann hausdorffsch, wenn die Diagonale

$$\Delta := \{(x, x) \mid x \in X\} \subset X \times X$$

abgeschlossen in $X \times X$ ist.

Beweis " \Rightarrow " Sei X hausdorffsch, $(x, y) \in (X \times X) \setminus \Delta$

 $\Rightarrow x \neq y$. Dann gibt es ein $x \in U$ offen, $y \in V$ offen mit $U \cap V = \emptyset$

 $\Rightarrow U \times V$ ist offene Umgebung von (x,y) mit $(U \times V) \cap \Delta = \emptyset$

"\(\sim \)" Sei $x \neq y \in X$, W eine offene Umgebung von (x,y) in $X \times X$ mit $W \cap \Delta = \emptyset$

Œ $W = U \times V$, da die $U \times V$ eine Basis der Toplogie auf $X \times X$ bilden $\Rightarrow U \cap V = \emptyset$

Definition 2.13.5

Eine Prävarietät X heißt **separiert**, wenn $\Delta \subset X \times X$ abgeschlossen ist.

Beispiele 2.13.6

Sei V wie im letzten Beispiel. Dann ist $\Delta \subset V \times V$ nicht abgeschlossen:

In $V \times V$ gibt es über (0,0) die folgenden Punkte:

 $(0_1, 0_1), (0_1, 0_2), (0_2, 0_1), (0_2, 0_2).$

Davon liegen $(0_1, 0_1)$ und $(0_2, 0_2)$ in Δ , die beiden anderen nicht. Diese liegen aber in $\overline{\Delta}$.

Definition 2.13.7

(a) Eine **Prävarietät** über k ist ein topologischer Raum X, zusammen mit einer Garbe \mathcal{O}_X von k-Algebren, der eine endliche offene Überdeckung $X = U_1 \cup ... \cup U_n$ besitzt, so dass $(U_i, \mathcal{O}_X |_{U_i})$ isomorph zu einer affinen Varietät ist.

(b) Eine separierte Prävarietät heißt *Varietät*.

Definition 2.13.8

Für eine Prävarietät X mit affiner Überdeckung $(U_i)_{i=1,\dots,n}$ sei $X \times X$ die Prävarietät, die durch Verkleben der $U_i \times U_j$, $i, j = 1, \dots, n$ hervorgeht.

Dabei ist $U_i \times U_j$ die affine Varietät, die durch $\mathcal{O}_X(U_i) \otimes_k \mathcal{O}_X(U_j)$ bestimmt ist. Produkt ist folgendes:

