Numerical method

Unit - 2 & 3 (Report)

1. Find the square root of 2.5 using second order Lagrange interpolation polynomial using the following data table:

x	1	2	3	4	
f(x)	1	1.4142	1.7321	2	2.2361

2. Given the data points:

i	0	1	2
x_i	2	3	4
f_i	4	9	16

Estimate the function value of f at x = 2.5 using cubic splines.

3. From the following data:

	,	0			
x	0	1	2	3	4
у	1.5	2.5	3.5	5.0	7.5

- i) Fit a power function model of the form $y = ax^b$
- *ii)* Fit the curve of the form y = ax + b.

4. From the following table find the value of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point x = 1.0

$u\lambda = u\lambda$						
\boldsymbol{x}	1.0	1.1	1.2	1.3	1.4	1.5
y	5.4680	5.6665	5.9264	6.2551	6.6601	7.1488

- 5. Evaluate a) $\int_0^6 \left(\frac{1}{1+x^2}\right) dx$ b) $\int_0^{\left(\frac{\pi}{2}\right)} \sin x \ dx$ by using
 - i) Trapezoidal rule ii) Simpson's $\frac{1}{3}$ rule iii) Simpson's $\left(\frac{3}{8}\right)$ rule.
- 6. Use Romberg's method to compute $\int_0^1 \left(\frac{1}{1+x^2}\right) dx$, with h = 0.25 correct to three decimal place.