Package 'DamiaNN'

October 12, 2022

Type Package

Title Neural Network Numerai
Version 1.0.0
Author Damian Siniakowicz
Maintainer Damian Siniakowicz < Damian Siniakowicz@gmail.com>
Date 2016-09-13
Description Interactively train neural networks on Numerai, https://numer.ai/ , data. Generate tournament predictions and write them to a CSV.
Imports caret, methods, testthat
License GPL-3
LazyData FALSE
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-09-14 18:50:32
R topics documented:
back_propogation,Neural_Network,numeric,numeric,numeric-method2forward_propogation,Neural_Network,matrix-method2Get_Cost,Neural_Network,numeric-method3Get_LogLoss3Get_Number_Observations,Neural_Network-method4initialize,Neural_Network-method4Neural_Network-class5Predict,Neural_Network,data.frame-method5Start6Train,Neural_Network,data.frame,numeric,numeric,numeric-method6
Index 7

 $back_propogation, \verb+Neural_Network+, \verb+numeric+, \verb+n$

Description

updates connection strengths using results of last forward prop

Usage

```
## S4 method for signature 'Neural_Network, numeric, numeric, numeric'
back_propogation(object,
   target, regularization_parameter, learning_rate)
```

Arguments

object is a Neural_Network target is a numeric vector

regularization_parameter

is non-negative number punishes strong connections

learning_rate is a positive number that controls the rate at which connections are adjusted

Value

Neural_Network

```
forward\_propogation, Neural\_Network, matrix-method \\ f\_prop
```

Description

... part of the training program

Usage

```
## S4 method for signature 'Neural_Network,matrix'
forward_propogation(object, dataset)
```

Arguments

object is a Neural_Network

dataset is a matrix not containing the target vector

Value

Neural_Network

```
{\tt Get\_Cost}, {\tt Neural\_Network}, {\tt numeric-method} \\ cost
```

Description

get the logarithmic loss for a set of predictions

Usage

```
## S4 method for signature 'Neural_Network,numeric'
Get_Cost(object, target)
```

Arguments

object ... a Neural_Network that has run forward_prop at least once

target ... a numeric vector ... the target ...

Value

Numeric

Get_LogLoss

log loss

Description

get log loss

Usage

```
Get_LogLoss(predictions, target)
```

Arguments

predictions is a numeric vector target is a numeric vector

Value

Numeric

Description

returns the number of observations that the network has processed

Usage

```
## S4 method for signature 'Neural_Network'
Get_Number_Observations(object)
```

Arguments

object

... a Neural Network that has called fprop. ie. that has called train/predict

Value

Numeric

Description

initalizes a neural network capable of studying datasets with ncol = to the ncol(sample_dataset) and making predictions on such datasets

Usage

```
## $4 method for signature 'Neural_Network'
initialize(.Object, number_predictors,
   hidden_layer_lengths)
```

Arguments

```
.Object ... a Neural_Network object
number_predictors
... a numeric telling how many preditors there are
hidden_layer_lengths
... a numeric telling the number of layers and the number of neurons in each layer
```

Neural_Network-class 5

Details

NN is parametrized by its connection_strength matrices

Value

Neural_Network

Neural_Network-class Neural Network implementation

Description

Neural Network implementation

Predict, Neural_Network, data.frame-method predict stuff

Description

returns predictions

Usage

```
## S4 method for signature 'Neural_Network,data.frame'
Predict(object, dataset)
```

Arguments

 ${\tt object} \qquad \quad : a \; neural \; network$

dataset : a dataframe of features and observations

Value

Numeric

Start

start script

Description

main function that runs the interactive script

Usage

Start()

Details

takes your numerai training data and trains a neural network to your architectural specifications. provides you with the out of sample error offers to retrain with a new architecture or predict on a numerai tournament dataset. Can then write the predictions to a CSV

```
\label{lem:train_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_numeric_num
```

Description

gets NN parameters that minimize cost on dataset using optimization_method

Usage

```
## S4 method for signature 'Neural_Network,data.frame,numeric,numeric'
Train(object,
   dataset, regularization_constant, learning_rate, tolerable_error)
```

Arguments

object is a Neural Network

dataset is a data.frame, the original data frame that includes the target

regularization_constant

is a numeric

learning_rate is a numeric

tolerable_error

is a numeric, units: log loss

Value

Neural_Network

Index