Lecture 3: Genetic Algorithms Examples

Sabah Sayed

Department of Computer Science
Faculty of Computers and Artificial Intelligence
Cairo University
Egypt

Implementing Randomization in GAs

Canonical Genetic Algorithm

```
Canonical Genetic Algorithm()
{
   Initialize the Population = G_0; // population size is constant ...
   For (i=1 to Max Generations) // Continue Evolution ...
         Evaluate Fitness of Individuals of G<sub>i-1</sub>; // By Objective Function ...
         Select Parents for Reproduction; // Roulette Wheel?
         Crossover; // According to probability of crossover...
        Mutation; // According to probability of mutation
        Replacement; // Replacing old generation G<sub>i-1</sub> with new generation G<sub>i</sub>
```

- fixed parameter in GA $[0.4 \rightarrow 0.7]$ Probability that crossover will occur between two selected chromosomes
 - Generate random number $r_1 \in [1, L-1]$
 - Where L = length of chromosome
- Crossover point = r_1 - Crossover will occur between two individuals after r_1
 - genes
 - Generate random number $r_2 \in [0, 1]$ if $r_2 \leq P_c$ then perform crossover

 - else no crossover occur ...
 - Offspring1 = Parent1
 - Offspring2 = Parent2
 - Can steps of generating (r₁) and (r₂) be swapped?

• Assume $P_c = 0.7$

Single point crossover after 2 bits (Genes)

• Assume $P_c = 0.7$

- Single point crossover after 2 bits (Genes)
- No Crossover occurs

• Assume $P_c = 0.7$

Single point crossover after 3 bits

Mutation Probabilities

```
• P_m fixed parameter in GA [0.001 \rightarrow 0.1]

    Probability that mutation will occur for a gene/bit in some chromosomes

Chromosome = bits[1...L]
  for(i=1 to L)
      Generate Random number r_i \in [0, 1]
      if(r_i \leq P_m)
             flip bit[i]
      elseif(r_i > pm)
             no change to bit[i]
```

Mutation Probabilities

• $P_m = 0.1$

${f r_i}$	Value
\mathtt{r}_1	0.2
r_2	0.01
r ₃	0.5
r ₄	0.11
\mathtt{r}_{5}	0.1

 $\begin{array}{c} 11100 \\ 21 \rightarrow 28 \end{array}$

Example: $f(x) = x^2$

- Find the maximum of a function:
 - $-f(x)=x^2$

Example: $f(x) = x^2$

Finding the maximum of a function:

- $f(x) = x^2$
- Range [0, 63]
- Binary representation: string length $6 \rightarrow 64$ numbers (0-63)

genotype	000101	
mapping	2 ² 2 ¹ 2 ⁰ 4 2 1	•
phenotype	1*4+0*2+1*1 = 5	
fitness	25	= f(x)

$$f(x) = x^2$$

$f(x) = x^2$ Initial Random Population

	binary	value X	fitness x
String 1	000110 🗸	6	36
String 2	000011 🗸	3	9
String 3	001010 🗸	10	100
String 4	010101 🗸	21	441)
String 5	000001	1	

$$f(x) = x^2$$
 Selection

	binary	value	fitness
String 1	000110	6	36
String 2	000011	3	9
String 3	001010	10	100
String 4	010101	21	441
String 5	000001	1	*

Worst one can be removed

$$f(x) = x^2$$
 Selection

	binary	value	fitness
String 1	000110	6	36
String 2	000011	3	9
String 3	001010	10	100
String 4	010101	21	441
String 5	000001	1	1

 Best individual: can be reproduced twice → keep population size constant

$$f(x) = x^2$$
 Selection

	binary	value	fitness
String 1	000110	6	36-
String 2	000011	3	9
String 3	001010	10	100
String 4	010101	21	441
String 5	000001	1	1

• All others are reproduced once

$$f(x) = x^2$$
 Recombination

 Parents and x-position randomly selected

	partner x-position	
String 1	String 2	5 Y ₁
String 3	String 4	3 k,

$$f(x) = x^2$$
 Recombination

Parents and x-position randomly selected

12

12

	partner	x-position
String 1	String 2	5
String 3	String 4	3

String 3:

O 0 1 0 1 0 1

O 0 1 1 0 1

String 4:

Mutation

- Offspring-String 1:
- String 5:

 $000111(7) \rightarrow 010111(23)$

 $010101(21) \rightarrow 010001(17)$

$f(x) = x^2$ Old Generation

	binary	value	fitness
String 1	000110	6	36
String 2	000011	3	9
String 3	001010	10	100
String 4	010101	(21	441
String 5	000001	1	1

$$f(x) = x^2$$

New Generation

- All individuals in the parent population are replaced by offspring in the new generation
 - (generations are *discrete*!)
- **New population (Offspring):**

opulation (Offspring):	O M AX	fitn rage	m > =	
	binary	value	y fit	ness	
String 1	010111	(23)		529) \
String 2	000010	2		4	
String 3	001101	13		169	
String 4	010010	18		324	
String 5	010001	17		289/	

$$f(x) = x^2$$
 When to stop?

- Iterate until termination condition reached, e.g.:

 (1)— Best fitness <

 According 7 9 5 %
 - Number of generations
 - No New Chromosomes
 - \mathcal{L} No improvements after a number of generations
- Result after one generation:
 - Best individual: 010111 (23) fitness 529

Drilling for Oil Example

- Imagine you had to drill for oil somewhere along a single 1km desert road
- Problem: choose the best place on the road that produces the most oil per day
- We could represent each solution as a position on the road
- Say, a whole number between [0..1000]

Where to drill for oil?

Road

Digging for Oil

- The set of all possible solutions [0..1000] is called the search space or state space
- Often GA's code numbers in binary producing a bitstring representing a solution
- In our example we choose 10 bits which is enough to represent 0..1000

Convert to binary string

		512	256	128	64	32	16	8	4	2	1
	900	1	1	1	0	0	0	0	1	0	0
	300	0	1	0	0	1	0	1	1	0	0
-	1023	1	1	1	1	1	1	1	1	1	1

The objective function

Individuals on Curve

Distribution of Individuals in Generation 0

Distribution of Individuals in Generation N

Optimal Solution

Summary

- Represent possible solutions as a number
- Encoded a number into a binary string
- Ensure that all genotypes correspond to feasible solutions
- Generate a score for each number given a function of "how good" each solution is
- Our oil example is really optimisation over a function f(x) where we adapt the parameter x