

Biodiversity knowledge synthesis: an introduction to meta-analyses and systematic reviews

Quantitative data extraction

October 2025 - Montpellier

Dakis-Yaoba Ouédraogo (PhD) dakis.ouedraogo@gmail.com

Extraction of quantitative data

Extraction of the data needed to calculate effect sizes (e.g. mean, sample size, sd/se/95% CI)

+ extraction of variables that could explain the heterogeneity of effect sizes (*effect modifiers*)

Extraction from

- text
- table
- figure
- supp. mat.
- + calculations may be needed (keep a record)

Extraction of quantitative data

! Warning!

Data extraction is time-consuming: clearly define the extraction grid and the effect modifiers to be extracted

Importance of **testing** the extraction sheet on a sample of articles to check that it matches the content of the studies

Document the work/decisions (transparency, repeatability)

Decide what to do in case of **missing information** ("missing data", contact the authors, imputation)

Recovering Missing or Partial Data from Studies:
A Survey of Conversions and Imputations
for Meta-analysis

Marc J. Lajeumesse

Metain E
and E

Julia
Jessice
& Kerrie

Consistency check

To be sure that data extraction is objective / robust:

- Data extraction of each study carried out independently by 2 people
- if several people share the work, **check the consistency of data extraction** between people on a sample before starting the actual extraction (discuss any disagreements)
- if only 1 person, have someone to check a sample of the extracted data at the start of the work (discuss any disagreements)

Example of extraction sheet

A study = a taxon \times an exposure \times an outcome

Case study level: ex. several concentrations of a chemical

IDdata	ID_map	author	 taxon	Population_descri	Life_stage	Type_system	Tempera	рН
ScreenTA_9680	880	Cantin, N.E	 Acropora tenuis	Colonies	Adult	500 L outdoor tank	27.5	NA
ScreenTA_9680	880	Cantin, N.E	 Acropora tenuis	Colonies	Adult	500 L outdoor tank	27.5	NA
ScreenTA_9680	884	Cantin, N.E	 Acropora valida	Colonies	Adult	500 L outdoor tank	27.5	NA
ScreenTA_9680	884	Cantin, N.E	 Acropora valida	Colonies	Adult	500 L outdoor tank	27.5	NA
ScreenTA_9680	889	Cantin, N.E	 Pocillopora damicornis	Colonies	Adult	500 L outdoor tank	27.5	NA
ScreenTA_9680	889	Cantin, N.E	 Pocillopora damicornis	Colonies	Adult	500 L outdoor tank	27.5	NA

Treatment_description	Control_description	Solvent	Concentration_nom	Concentration_eff	Duration	Measured_variable	Time_after
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	53 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	53 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	90 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	90 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	67 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	67 days	Symbiodinium density / total protein	NA

Example of extraction sheet

Treatment_description	Control_description	Solvent	Concentration_nom	Concentration_eff	Duration	Measured_variable	Time_after
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	53 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	53 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	90 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	90 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	1 μg/L	0.91 μg/L	67 days	Symbiodinium density / total protein	NA
Diuron	Unfiltered oceanic seawater	No	10 μg/L	8.8 μg/L	67 days	Symbiodinium density / total protein	NA

Metaanalyse_data	unit	ID_experiment	ID_case	ID_cc	mmon_control	N_c	Mean_c	Type_variation_c	Variation_c	N_t	Mean_t	Type_variation_t	Variation_t
OK (Fig3, SE, n=6)	x 10^6 / mg protein	1	3	1		6	4.2	sd	1.714642819	6	3.514285	sd	0.979795897
OK (Fig3, SE, n=6)	x 10^6 / mg protein	1	4	1		6	4.2	sd	1.714642819	6	3.6	sd	0.524890659
OK (Fig3, SE, n=6)	x 10^6 / mg protein	2	7	2		6	0.928571	sd	0.45490523	6	1.414285	sd	0.979795897
OK (Fig3, SE, n=6)	x 10^6 / mg protein	2	8	2		6	0.928571	sd	0.45490523	6	1.314285	sd	0.699854212
OK (Fig3, SE, n=6)	x 10^6 / mg protein	3	11	3		6	1.714285	sd	0.699854212	6	2.228571	4sd	0.699854212
OK (Fig3, SE, n=6)	x 10^6 / mg protein	3	12	3		6	1.714285	sd	0.699854212	6	0.914285	sd	0.244948974
													'

Method_extraction	Source	Comment_extract	Name_data_extraction
Figure	Figure 3	NA	DYO
Figure	Figure 3	NA	DYO
Figure	Figure 3	NA	DYO
Figure	Figure 3	NA	DYO
Figure	Figure 3	NA	DYO
Figure	Figure 3	NA	DYO

→ Narrative synthesis of the results

Text description of the results + narrative synthesis table

Effects that were statistically tested

Table 9 Summary table of the findings detailed in the narrative synthesis (except the "Other category")

Chemical	Exposure	Effect	Species	Blas
Detergent				
Linear alkylbenzene sulfonate [74]	0.75, 1 and 5 mg/L for 24 h	Decrease in horizontal tissue growth	Stylophora pistillata, Pocillopora damicornis	L
Nonylphenol ethoxylate [74]	0.1—5 mg/L for 24 h	[No effect on horizontal tissue growth]	Stylophora pistillata, Pocillopora damicornis	L
4-nonylphenol [75]	1 ppb for 42 days	[No effect on release of planula, cholesterol, estrone, estradiol, testosterone, progesterone, and 3-beta-hydroxysteroid dehydrogenase, cytochrome P450, glutathione-S-transferase, and beta-glucuronidase activity]	Pocillopora damicornis	U
4-nonylphenol [75]	1 ppb for 42 days	increase in UDP-Glycosyltransferase activity and decrease in sulfotransferase 1A1 activity	Pocillopora damicornis	U
Dispersant				
Corexit 9527 [76]	1 ppm for 24 h	[No effect on polyp retraction]	Pseudodiploria strigosa	L
Corexit 9527 [78]	1 ppm for 8 h	[no effect on incorporation of photosynthetic carbon in tissues]	Pseudodiploria strigosa	U
Corexit 9527 [79]	1–50 ppm for 8 h	[No effect on the gene expression of the heat shock protein Hsp90]	Orbicella franksi	U
Corexit 9527 [79]	10 and 50 ppm for 8 h	increase in the gene expression of P-glyco- protein	Orbicella franksi	U
Corexit 9527 [79]	5, 10 and 50 ppm for 8 h	increase in the gene expression of the heat shock protein Hsp70	Orbicella franksi	U

Example narrative synthesis table

author	▼ title	▼ year	-	taxon	Treatment_descri	ption	Concentration_nom -	Measured_outcome_cat	▼ Narrative_result	Result_description	Result_reference	Effect_direction
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Stylophora p	Linear alkylbenze	ne sulfonates	(0.1 mg/L	Tissue growth	(ns)	At iour doses of 0.	1 and Text n. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Stylophora p	Linear alkylbenze	ne sulfonates	(0.25 mg/L	Tissue growth	(ns)	At lower doses of 0.	1 and Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Stylophora p	Linear alkylbenze	ne sulfonates	(0.75 mg/L	Tissue growth	(-)	At concentrations of	f 0.75 Text p. 7	(-)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Stylophora p	Linear alkylbenze	ne sulfonates	(1 mg/L	Tissue growth	(-)	At concentrations of	f 0.75 Text p. 7	(-)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Stylophora p	Linear alkylbenze	ne sulfonates	(5 mg/L	Tissue growth	(-)	At concentrations of	f 0.75 Text p. 7	(-)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Pocillopora o	Linear alkylbenze	ne sulfonates	(0.1 mg/L	Tissue growth	(ns)	At lower doses of 0.	1 and Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Pocillopora o	Linear alkylbenzei	ne sulfonates	(0.25 mg/L	Tissue growth	(ns)	At lower doses of 0.	1 and Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Pocillopora o	Linear alkylbenze	ne sulfonates	(0.75 mg/L	Tissue growth	(-)	At concentrations of	f 0.75 Text p. 7	(-)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Pocillopora o	Linear alkylbenzei	ne sulfonates	(1 mg/L	Tissue growth	(-)	At concentrations of	f 0.75 Text p. 7	(-)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Pocillopora o	Linear alkylbenzei	ne sulfonates	(5 mg/L	Tissue growth	(-)	At concentrations of	f 0.75 Text p. 7	(-)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Stylophora p	Nonylphenol etho	xylate (NPE,	h 0.1 mg/L	Tissue growth	(ns)	Horizontal growth u	nder Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Stylophora p	Nonylphenol etho	xylate (NPE,	h 0.25 mg/L	Tissue growth	(ns)	Horizontal growth u	nder Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Stylophora p	Nonylphenol etho	xylate (NPE,	h 0.75 mg/L	Tissue growth	(ns)	Horizontal growth u	nder Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Stylophora p	Nonylphenol etho	xylate (NPE,	h 1 mg/L	Tissue growth	(ns)	Horizontal growth u	nder Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Stylophora p	Nonylphenol etho	xylate (NPE,	h 5 mg/L	Tissue growth	(ns)	Horizontal growth u	nder Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Pocillopora o	Nonylphenol etho	xylate (NPE,	h 0.1 mg/L	Tissue growth	(ns)	Horizontal growth u	nder Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Pocillopora o	Nonylphenol etho	xylate (NPE,	h 0.25 mg/L	Tissue growth	(ns)	Horizontal growth u	nder Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Pocillopora o	Nonylphenol etho	xylate (NPE,	h 0.75 mg/L	Tissue growth	(ns)	Horizontal growth u	nder Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Pocillopora o	Nonylphenol etho	xylate (NPE,	h 1 mg/L	Tissue growth	(ns)	Horizontal growth u	nder Text p. 7	(ns)
Shafir, S. and Hal	perin, Toxicology of house	hold deterg 2014		Pocillopora o	Nonylphenol etho	xylate (NPE,	h 5 mg/L	Tissue growth	(ns)	Horizontal growth u	nder Text p. 7	(ns)
Silva. D.P. and Vi	llela. I Multi-domain probi	otic consort 2021		Millepora ale	Corexit 9500	-	0.05% v/v	Microbiome	(ns)	Species diversity, re	pres Text p. 7	(ns)

! Warning ! No vote counting

Table 7 Summary of the main effects found for the specific question Q2 (role of habitat of LTI verges) for each biological group (birds, small mammals, bats, other mammals, amphibians, and reptiles), LTI (roads, waterways, powerlines, and railways), and risk of bias (low or medium)

	Risk of blas	Roads	Waterways	Powerlines	Railways
Birds	Low	(3) — or NS [+ Molothrus ater]	(1) NS or +	(3) NS or + [— forest interior species]	/
	Medium	(10) Depends on species	(2) +	(2) NS [— Iridoprocne bicolor]	/
Small mammals	Low	(4) NS or + [—]	/	(1) NS or + [— Antechinus agilis]	/
	Medium	(5) NS or +	/	/	(3) NS [+]
Bats	Low	/	/	/	/
	Medium	(6) Depends on species	(8) NS or +	/	(1) — or NS
Other mammals	Low	/	/	/	/
	Medium	(2) NS or +	/	(1) NS or +	/
Amphibians	Low	/	/	/	/
	Medium	/	(1) NS or + [—]	/	/
Reptiles	Low	/	(1) NS or +	/	/
	Medium	/	/	/	/

No study about pipelines were included in the review. All outcomes related to abundance, diversity or demography were considered here but outcomes related to similarity between communities were not. The number of studies is indicated in parenthesis, "—" indicates a negative effect of exposure to LTI (i.e. lower biodiversity in LTI verges compared to similar habitats away from LTis), "NS" statistically non-significant (P > 0.05) differences between LTI verges and similar habitats away from LTI, and "+" a positive effect of exposure to LTI (i.e. higher biodiversity in LTI verges compared to similar habitats away from LTIs). Effects indicated in brackets were exceptions to the main effects reported. Studies with no information on biological group [54] or with results mixed for several groups [76] were not included

Example narrative synthesis table

Table S4: Key results of the seven studies included in the narrative synthesis of the question: Are vertebrate movements in LTI verges equal to, higher, or lower than their movements in similar habitats away from LTIs? (question Q4)

[ref]	Reference	Risk of bias	Country	Biological group	LTI	LTI verge	Comparison	Key results	Grp.
[80]	Andersen et al., 2017	Low	Australia	Other mammals	Road	Roadsides	4WD tracks that recive limits for no traffic	(+) Sarcophilus harrisii individuals were eight and a half times more likely to be along a sealed road, [] and almost three times more likely to be along a 4WD track than away from a road (text p. 2, confidence intervals do not overlap in table 1). (ns) Dasyurus maculatus individuals were similarly likely to be along a sealed road or a 4WD track than away from a road (table 1, confidence intervals overlap).	
[81]	Robley et al., 2010	Low	Australia	Other mammals	Road	Roadsides	Watercourses sides	(+) Wild dogs (Canis lupus dingo, C. I. familiaris and hybrids of the two) displayed differential use of linear habitat features. They were found more often than expected within 25 m of roads, and less often than expected within 25 m of watercourses (text p. 4).	į
[82]	Hinton et al., 2016	Medium	United States of America	Other mammals <i>Capis culus</i>	Road	Roadsides	Habitat edges	(ns) Transient [i.e. moving] red wolves strongly selected for edges and roads (text p. 12, table 5 confidence intervals overlap).	į
[83]	Trewhella and Harris, 1990	Medium	United Kingdom	Other mammals Vulpes vulpes	Railway	500-m square grid cells with railway lines	500-m square grid cells without railway lines	(ns) There was no evidence that the distribution of dispersal movements was other than randomly distributed for foxes in both "railway" and "non railway" squares (text p. 3).	į
[84]	Svobodova et al., 2007	Low	Czech Republic	Other mammals	Road	Roadsides	Sides of gravel roads or unstabilized forest paths	(ns) Contrary to the prediction of the "travel line" hypothesis, no difference was found in predation rate between edge and interior nests. Similarly, nest predation was not either significantly associated with the road type (text p. 4).	j
[85]	Vignieri 2005	Medium	United States of America	Small mammals Zagus trinatatus	Waterway	Distance travelled along river only	Genetic distance	(ns) There was no relationship between genetic distance and river distance (text p.10).	j
[86]	Wilson et al., 2016	Medium	United Kingdom	Small mammals Apodemus sylvaticus	Road, railway, waterway	Distance along roads, rivers, or railways	Genetic distance	(ns) The distance along roads, railways or rivers did not explain significantly genetic differentiation patterns in either [arable or urban] habitat (Table 5) (text p. 5).	j

WebPlotDigitizer https://automeris.io/WebPlotDigitizer/

Extract data from charts

A large quantity of useful data is locked away in images of data visualizations. WebPlotDigitizer is a computer vision assisted software that helps extract numerical data from images of a variety of data visualizations.

Launch v5

Learn more about the latest version (v5)

Access archived v4

Plotdigitizer https://plotdigitizer.com/

Received: 13 July 2018 | Accepted: 12 October 2018

DOI: 10.1111/2041-210X.13118

APPLICATION | Methods in Ecology and Evolution | BRITISH ECOLOGICAL SOCIETY

Reproducible, flexible and high-throughput data extraction from primary literature: The METADIGITISE R package

Joel L. Pick D | Shinichi Nakagawa | Daniel W. A. Noble D

- (+) possible to save, trace and modify data extraction
- (-) no zoom

https://cran.r-project.org/web/packages/metaDigitise/vignettes/metaDigitise.html

metaDigitise

6	Da	ıta outpu	ıt	(5	6		
filename	variable	group_id	mean	-sd	, n	r	plot_type
iris_box.png	Sepal length	setosa	5.01	0.317	50	NA	boxplot
		versicolor	5.93	0.497	50	NA	boxplot
iris_box.png	Sepal length						
iris_box.png	Sepal length	virginica	6.49	0.603	50	NA	boxplot
iris_hist.png	Sepal Length	setosa	4.95	0.364	50	NA	histogram
iris_mean_error.png	Sepal Length	setosa	5.01	0.680	50	NA	mean_error
iris_mean_error.png	Sepal Length	versicolor	5.94	1.025	50	NA	mean_error
iris_mean_error.png	Sepal Length	virginica	6.59	1.251	50	NA	mean_error
iris_scatter.png	Petal Length	setosa	1.44	0.215	20	0.109	scatterplot
iris_scatter.png	Sepal Length	setosa	5.03	0.427	20	0.109	scatterplot
iris_scatter.png	Petal Length	versicolor	4.29	0.415	20	0.786	scatterplot
iris_scatter.png	Sepal Length	versicolor	5.97	0.603	20	0.786	scatterplot
iris_scatter.png	Petal Length	virginica	5.66	0.668	20	0.932	scatterplot

FUNCTIONALITY

1) Different plot types

Capable of handling A) mean error plots, B) boxplots, C) histograms and D) scatterplots

2 Entry of Metadata

Enter sample sizes variable and group names while digitising that are displayed on plot

3 Grouped Data

Enter as many groups as needed to capture descriptive statistics for sub-samples of data

4 Digitise, edit or replot digitisations

Simple user interface to guide user.
Can digitise new images, edit
digitisations or easily replot
previous digitisations and metadata
by cycling through images or
choosing specific images

(5) Summarising data

Get descriptive statistics automatically calculated for all plot types or use raw x,y data, if desired

6 Multiple image processing

Process as many images at once as needed and of varying types efficiently and quickly. New plots automatically plotted for digitisation


```
> dat <- metaDigitise(dir = "./figs")
Do you want to...
1: Process new images
2: Import existing data
3: Edit existing data
Sélection : 1
Are all plot types Different or the Same? (d/s)
Please specify the plot type as either:
m: Mean and error
b: Box plot
 s: Scatter plot
h: Histogram
**** NEW PLOT ****
mean error and boxplots should be vertically orientated
 I.E. o NOT |-0-|
If they are not then chose flip to correct this.
If figures are wonky, chose rotate.
Otherwise chose continue
Flip, rotate or continue (f/r/c)
```

```
What is the y variable?
Fv/Fm
On the Figure, click IN ORDER:
     y1, y2
    Step 1 ----> Click on known value on v axis - vl
  y1
    Step 2 ---> Click on another known value on v axis - v2
  v^2
What is the value of vl ?
What is the value of y2 ?
0.8
Re-calibrate? (y/n)
```


! If display problem -> exit Rstudio -> use Rgui


```
Do you know sample sizes? (y/n)

Y

If there are multiple groups, enter unique group identifiers (otherwise press enter)
Group identifier:
CO

Group sample size:
30

Click on Error Bar, followed by the Mean

Add group, Edit Group, Delete group or Finish plot? (a/e/d/f)
```



```
Do you know sample sizes? (y/n)

Y

If there are multiple groups, enter unique group identifiers (otherwise press enter)
Group identifier:
CO

Group sample size:
30

Click on Error Bar, followed by the Mean

Add group, Edit Group, Delete group or Finish plot? (a/e/d/f)
```

```
Add group, Edit Group, Delete group or Finish plot? (a/e/d/f) f

Type of error (se, CI95, sd): sd

Do you want continue: 1 plots out of 2 plots remaining (y/n) y
```



```
Do you know sample sizes? (y/n)

Y

If there are multiple groups, enter unique group identifiers (otherwise press enter)
Group identifier:
CO

Group sample size:
30

Click on Error Bar, followed by the Mean

Add group, Edit Group, Delete group or Finish plot? (a/e/d/f)
```

```
Add group, Edit Group, Delete group or Finish plot? (a/e/d/f) f

Type of error (se, CI95, sd):
sd

Do you want continue: 1 plots out of 2 plots remaining (y/n)
y
```

```
Add group, Edit Group, Delete group or Finish plot? (a/e/d/f)

f

Type of error (se, CI95, sd):
sd

Congratulations! Looks like you have finished digitising all figures in this directory.
> |
```


Question: estimate the effects of chemicals on the photosynthetic performance (maximum quantum yield, Fv/Fm) of tropical reef-building corals

A **study** = combination of a taxon \times an exposure \times an outcome

A case study = one tested concentration-duration

Effect size = mean standardized difference

$$d = \frac{\overline{Y_1} - \overline{Y_2}}{\sqrt{\frac{(n_1 - 1)(s_1^2) + (n_2 - 1)(s_2^2)}{(n_1 + n_2) - 2}}} J,$$

where
$$J = 1 - \frac{3}{4(n_1 + n_2 - 2) - 1}$$

If monitoring over time, extraction of the longest duration of exposure

Files:

```
data_TD.xlsx (sheet 5)
```

Hedouin2016_Improving.pdf

Hedouin2016_Fig8_SummerCu.png, Hedouin2018_Fig8_WinterCu.png (folder « figs »)

Exercise: extract data using metaDigitise (15-20 min)

Prepare the figures with the data to be extracted (screenshot -> .png), put them in a "figs" folder in the "TD_extraction" working directory

In R: Install & load metaDigitise package library(metaDigitise)

```
Set working directory setwd("C:/Users/... /TD_extraction")
dat <- metaDigitise(dir = "./figs")</pre>
```

```
write.csv2(dat, "extracted_data_TD_metadigitise.csv", quote=F, row.names=F)
```

Extract data into data_TD.xlsx (sheet 5)

TD

Hédouin et al. 2016

Table 1 Nominal versus measured concentrations (mean \pm standard deviation, n = 3) of Cu and Pb (μ g L $^{-1}$) used in the toxicity experiments for the adult *Pocillopora damicornis* corals.

Condition	Concentra	tion (μg L ⁻¹)	
	Nominal	Measured – summer	Measured-Winter
Cu			
Control − C ₀	0	1.5 ± 0.6	8.1 ± 0.6
Concentration $1 - C_1$	10	12.6 ± 2.8	15.0 ± 1.3
Concentration 2 − C ₂	50	49.2 ± 11.3	48.9 ± 5.0
Concentration $3 - C_3$	100	90.0 ± 15.3	85.2 ± 16.2
Concentration 4 - C ₄	250	206 ± 33.6	222 ± 29.4
Concentration 5 — C ₅	500	378 ± 49.8	434 ± 72.6
Pb			
Control- C ₀	0	0.5 ± 0.7	1.9 ± 3.0
Concentration $1 - C_1$	80	75.6 ± 4.2	67.9 ± 7.8
Concentration 2 − C ₂	160	151 ± 8.2	133 ± 23.1
Concentration 3 - C ₃	320	308 ± 10.0	316 ± 30.6
Concentration 4 - C ₄	640	604 ± 37.1	605 ± 34.3
Concentration 5 - C ₅	1280	1200 ± 92.2	1138 ± 57.4

N = 30

SD

Fig. 8. Dark-adapted quantum yield (F_v/F_m , mean \pm standard deviation, n = 30 nubbins per condition, -pooled data-) of *Pocillopora damicornis* corals exposed for 96 h to a range of dissolved Cu and Pb concentration in the summer and winter seasons.

Hédouin et al. 2016

Fig. 8. Dark-adapted quantum yield (F_v/F_m , mean \pm standard deviation, n = 30 nubbins per condition, -pooled data-) of *Pocillopora damicornis* corals exposed for 96 h to a range of dissolved Cu and Pb concentration in the summer and winter seasons.

26

N = 30 SD

Hédouin et al. 2016

> dat filename variable group id se error type plot type Fv/Fm Hedouin2016 Fig8 SummerCu.png CO 0.6396917 0.04007707 30 NA 0.007317039 sd mean error Hedouin2016 Fig8 SummerCu.png Fv/Fm C1 0.6551060 0.03699422 30 NA 0.006754190 sd mean error Hedouin2016 Fig8 SummerCu.png Fv/Fm sd mean error C2 0.6612717 0.02928709 30 NA 0.005347067 Hedouin2016 Fig8 SummerCu.png Fv/Fm C3 0.5872832 0.11560694 30 NA 0.021106842 sd mean error Hedouin2016 Fig8 SummerCu.png Fv/Fm C4 0.5657033 0.10944123 30 NA 0.019981144 sd mean error Hedouin2016 Fig8 SummerCu.png Fv/Fm C5 0.4100193 0.15722543 30 NA 0.028705306 sd mean error Hedouin2018 Fig8 WinterCu.png Fv/Fm CO 0.6707692 0.03538462 30 NA 0.006460317 sd mean error Hedouin2018 Fig8 WinterCu.png Fv/Fm C1 0.6646154 0.02769231 30 NA 0.005055901 sd mean error Hedouin2018 Fig8 WinterCu.png Fv/Fm C2 0.6584615 0.06307692 30 NA 0.011516218 sd mean error 10 Hedouin2018 Fig8 WinterCu.png Fv/Fm C3 0.6553846 0.05538462 30 NA 0.010111801 sd mean error 11 Hedouin2018 Fig8 WinterCu.png Fv/Fm C4 0.5400000 0.18615385 30 NA 0.033986887 sd mean error 12 Hedouin2018 Fig8 WinterCu.png Fv/Fm C5 0.1769231 0.13230769 30 NA 0.024155969 sd mean error

> dat _____

	filename	variable	group	id	mean	sd	n	r	se	error_type	plot	type
1	Hedouin2016_Fig8_SummerCu.png	Fv/Fm		C0	0.6396917	0.04007707	30	NA	0.007317039	sd	mean_	error
2	Hedouin2016_Fig8_SummerCu.png	Fv/Fm		Cl	0.6551060	0.03699422	30	NA	0.006754190	sd	mean_	error
3	Hedouin2016_Fig8_SummerCu.png	Fv/Fm		C2	0.6612717	0.02928709	30	NA	0.005347067	sd	mean	error
4	Hedouin2016_Fig8_SummerCu.png	Fv/Fm		C3	0.5872832	0.11560694	30	NA	0.021106842	sd	mean_	error
5	Hedouin2016_Fig8_SummerCu.png	Fv/Fm		C4	0.5657033	0.10944123	30	NA	0.019981144	sd	mean_	error
6	Hedouin2016 Fig8 SummerCu.png	Fv/Fm		C5	0.4100193	0.15722543	30	NA	0.028705306	sd	mean	error
7	Hedouin2018 Fig8 WinterCu.png	Fv/Fm		C0	0.6707692	0.03538462	30	ΝA	0.006460317	sd	mean_	error
8	Hedouin2018_Fig8_WinterCu.png	Fv/Fm		Cl	0.6646154	0.02769231	30	NA	0.005055901	sd	mean_	error
9	Hedouin2018_Fig8_WinterCu.png	Fv/Fm		C2	0.6584615	0.06307692	30	NA	0.011516218	sd	mean_	error
10	Hedouin2018_Fig8_WinterCu.png	Fv/Fm		C3	0.6553846	0.05538462	30	NA	0.010111801	sd	mean	error
11	Hedouin2018 Fig8 WinterCu.png	Fv/Fm		C4	0.5400000	0.18615385	30	NA	0.033986887	sd	mean	error
12	Medouin2018_Fig8_WinterCu.png	Fv/Fm		C5	0.1769231	0.13230769	30	NA	0.024155969	sd	mean_	error
>												

L	M	N	0	Р	Q	R	S	Т	ш	V	\//	X	Y	Z	AA
Concentration_nom	Concentration_eff	Duration	Measured_outcome	ID_experiment	ID_case	N_c	Mean_c	Type_variation	Variation_c	N_t	Mean_t	Type_variation	Variation_t	Method_exti	Source
10 μg/L	12.6 μg/L	96h	Fv/Fm (Maximum dark-	Summer_Exp	1	30	0,63969171	sd	0,04007707	30	0,65510597	sd	0,03699422	Figure	Figure 8
50 μg/L	49.2 μg/L	96h	Fv/Fm (Maximum dark-	Summer_Exp	2	30	0,63969171	sd	0,04007707	30	0,66127168	sd	0,02928709	Figure	Figure 8
100 μg/L	90 μg/L	96h	Fv/Fm (Maximum dark-	Summer_Exp	3	30	0,63969171	sd	0,04007707	30	0,58728324	sd	0,11560694	Figure	Figure 8
250 μg/L	206 μg/L	96h	Fv/Fm (Maximum dark-	Summer_Exp	4	30	0,63969171	sd	0,04007707	30	0,56570328	sd	0,10944123	Figure	Figure 8
500 μg/L	378 μg/L	96h	Fv/Fm (Maximum dark-	Summer_Exp	5	30	0,63969171	sd	0,04007707	30	0,41001927	sd	0,15722543	Figure	Figure 8
10 μg/L	15 μg/L	96h	Fv/Fm (Maximum dark-	Winter_Exp	6	30	0,67076923	sd	0,03538462	30	0,66461538	sd	0,02769231	Figure	Figure 8
50 μg/L	48.9 μg/L	96h	Fv/Fm (Maximum dark-	Winter_Exp	7	30	0,67076923	sd	0,03538462	30	0,65846154	sd	0,06307692	Figure	Figure 8
100 μg/L	85.2 μg/L	96h	Fv/Fm (Maximum dark-	Winter_Exp	8	30	0,67076923	sd	0,03538462	30	0,65538462	sd	0,05538462	Figure	Figure 8
250 μg/L	222 μg/L	96h	Fv/Fm (Maximum dark-	Winter_Exp	9	30	0,67076923	sd	0,03538462	30	0,54	sd	0,18615385	Figure	Figure 8
500 μg/L	434 μg/L	96h	Fv/Fm (Maximum dark-	Winter_Exp	10	30	0,67076923	sd	0,03538462	30	0,17692308	sd	0,13230769	Figure	Figure 8