Présentation projet de recherche

Théodore CHAPUIS-CHKAIBAN, Ghita CHEMIA, Paul LIEUTIER, Hugo SERVANT, Victor SANSAC

CentraleSupélec

15/06/2020

Page Rank

- Classer les noeuds d'un graphe par ordre d'importance
- Parcourir le graphe avec une **marche aléatoire** (chaîne de Markov) : selon le nombre de visites d'un noeud, on lui **attribue un score**
- Cela revient à diagonaliser la matrice d'occurrences A du graphe (si les sommets i et j sont connectés alors A[i][j] = 1, sinon 0)

FIGURE 1 – Exemple de Graphe sur lequel fonctionne le Page Rank.

Page Rank

- Problème avec la diagonalisation : matrice de **dimension** $10^9 \times 10^9$: trop calculatoire
 - → Projeter les valeurs propres sur un **espace de dimension inférieure** (SVD par ACP)
- Analogie avec la transformée de Fourier : que se passe-t-il si on applique la transformée de Fourier au PageRank?
 - → Objectif : analogue quantique de la transformée de Fourier pour les graphes ?

FIGURE 2 – Mise en évidence de la décomposition en fréquences pour un graphe

Applications actuelle du pageRank

Principale application directe à l'heure actuelle :

• La classification des pages internet.

Les vecteurs du PageRank sont aussi utilisés pour :

- Trouver des clusters dans un graphe
- Calcul de **partitions** de graphe
- Intelligence artificielle
- Quantifier / classer les noeuds selon leur importance
- → Dans tous les cas : établir l'importance de certains **noeuds** par rapport aux autres

Outline

- Introduction
 - Principales idées du projet
 - Applications
- 2 Formalisation du PageRank
 - Classique
 - Quantique
 - Complexité
- 3 Graph Spectral Theory
 - Origine
 - Graph Fourier Transform
 - Graphes orientés
- 4 Algorithmes
 - Classiques
 - Algorithme de résolution du PageRank
 - Difficultés et travail à venir

Notion d'Importance

Importance des noeuds d'un graphe

• L'importance d'un noeud d'un graphe orienté G=(V,E) est définie par l'équation :

$$I(P_i) = \sum_{j \in B_i} \frac{I(P_j)}{deg(P_j)}$$

- Avec P_i la page i, $deg(P_i)$ le nombre de liens sortant de la page i et B_i l'ensemble des pages pointant sur la page i.
- Cette **équation est récursive** (I est définie en fonction des autres valeurs de l'importance)

Equation aux valeurs propres

• Soit alors I le vecteur de \mathbb{R}^N (avec N le nombre de page du web) et H une matrice telle que $H_{i,j} = \frac{1}{deg(P_j)} \delta_{j \in B_i}$, il vient :

$$HI = I$$

- H est **typiquement de taille** $10^9 * 10^9$, il est impensable de diagonaliser directement H (en tout cas par des méthodes classiques)
- On travaille sur une forme légèrement différente de H (matrice primitive) qui puisse nous permettre d'appliquer le théorème de Perron Frobenius

Matrice de Google

- En posant : G = αH + ^{1-α}/_NF avec F une matrice qui ne comporte que des 1, on peut appliquer le théorème de Perron-Frobenius et obtenir le résultat par approximations successives.
- G est appelée "matrice de Google"

Quantum Page Rank

Google Page Rank

- Utilise la Grover search
- Cela revient à faire une marche aléatoire quantique sur le graphe de Google

FIGURE 3 – La recherche de Grover est utilisée pour calculer le PageRank par réflexions successives.

Principe de la Grover Search

• On met le système dans un état initial superposé :

$$\psi_0 = \sum_{j=1}^{N} (j \otimes \sum_{k=1}^{N} \sqrt{G_{kj}} k)$$

- Que l'on fait **évoluer par réflexions successives** autour de l'espace engendré par les $\psi_j = j \otimes \sum_{k=1}^N \sqrt{G_{kj}} k$.
- L'opérateur d'évolution est défini de la manière suivante :

$$U = SR = S(2P - I)$$

 \to S l'opérateur de Swap $(\sum_{i,j}ijji)$ et P la projection $(\sum_{i,j}\psi_j\psi_i)$

Calcul de complexité

Théorème

La complexité moyenne de cette méthode est \sqrt{N} où N est la taille des données en entrée.

Origines de la Transformée de Fourier sur les Graphes

Théorie spectrale des graphes : très récent (2015 pour les premiers articles)

Comment définir une transformée de Fourier sur des Graphes?

\rightarrow structure irrégulière

Formalisation

- $\frac{d\phi}{dt} = -k\underbrace{(D-A)}_{=L} \phi$; équation de la chaleur
- D : matrice des degrés, $D \doteq diag(deg(0), ..., deg(n))$; A : matrice d'adjacence, ϕ : distribution de chaleur
- ∇ : gradient; $\nabla f(i,j) = \sqrt{A_{ij}}(f(j) f(i))$
- $L = \nabla^T \nabla$: Laplacien

Définition

Transformée de Fourier sur les graphes

- Vecteurs propres du Laplacien u_k : base de décomposition de Fourier
- $\hat{f}(\lambda_k) \dot{=} \sum_{i \in V} f(i) u_k(i) = \langle f | u_k \rangle$: changement de base
- $f(i) \doteq \sum_{k=0}^{N-1} \hat{f}(\lambda_k) u_k(i)$: transformation inverse

Modes de Fourier

• Energie de Dirichlet :

$$< f|Lf> = \int_{(i,j)\in E} A_{ij}(f(j) - f(i))^2 = ||\nabla f||_2^2$$

- Interprétation : Mesure des oscillations sur le graphe.
- Théorème MiniMax : obtention des valeurs propres de L avec certaines valeurs de l'énergie de Dirichlet.
- Plus valeur propre est **grande**, plus énergie est **élevée**.

FIGURE 5 – Modes de fourier dans un graphe : u_1 , u_2 , u_3 .

Application Graphes orientés

- Particularité des graphes non-orientés à poids réels : matrice d'adjacence est symétrique réelle
 → permet de toujours diagonaliser le laplacien dans ℝ (théorème spectral).
- Cela n'est plus le cas pour les graphes orientés et il faut trouver un moyen de contourner cela : solution réside dans les marches aléatoires.

Opérateur de Marche aléatoire

On considère une marche aléatoire sur un graphe dirigé fortement connexe G = (V, E, w) (chaîne de Markov homogène à espace d'états fini et dont les probabilités de transitions sont proportionnelles aux poids des arêtes).

Matrice de Transition

Pour un graphe dirigé la matrice de probabilité de transition est définie par :

$$P_{i,j} = \mathbb{P}(X_{n+1} = i | X_n = j) = (D^{-1}A)_{i,j}$$

Avec D la matrice diagonale des degrés sortants des noeuds et A la matrice d'adjacence du graphe.

Ergodicité d'une marche aléatoire

4

Ergodicité

Une marche aléatoire est dite **ergodique** si elle est **irréductible et apériodique**.

Irréductibilité d'une marche_aléatoire

- Une marche aléatoire est irréductible si la probabilité d'atteindre un noeud x depuis un noeud y en un temps fini est strictement positive.
- On a vu que cela était équivalent à avoir un graphe fortement connexe.
- La matrice de google est irréductible.

Apériodicité

Apériodicité

• Une marche aléatoire est apériodique si :

$$\forall x \in V, \rho(x) = pgcd\{n \in \mathbb{N}^* : P^n(x, x) > 0\} = 1.$$

- Cela correspond à une marche aléatoire où l'on ne peut pas revenir sur un noeud pour un multiple d'une période.
- \rightarrow Comment faire pour rendre une marche aléatoire apériodique?

Apériodicité

Lazy random Walk

• On définit la marche aléatoire apériodique suivante :

$$\tilde{P} = \frac{Id + P}{2}$$

• Il est facilement vérifiable que cette marche aléatoire est apériodique : modifier la matrice de transition de la sorte revient à ajouter des arcs bouclés au graphe de départ.

Intérêt de l'ergodicité

- Si la matrice de transition \mathbb{P} est diagonalisable, le théorème de Perron Frobenius s'applique.
- Une marche aléatoire ergodique possède vers une distribution stationnaire de probabilité (ie (P^n) converge).

Manque une notion de réversibilité pour définir correctement le laplacien

Réversibilité

Marche aléatoire renversée

• La marche aléatoire renversée pour une marche aléatoire ergodique est définie par la matrice de transition suivante :

$$P_{i,j}^* = \frac{\pi_i}{\pi_j} \times P_{j,i}$$
$$P^* = \Pi^{-1} P^T \Pi$$

- \bullet π est la distribution stationnaire de probabilité.
- Une marche aléatoire est réversible si $P = P^*$

Marches aléatoire sur graphes non-dirigés sont réversibles, l'inverse n'est pas vrai.

Reversibilisation

Additive reversibilisation

• On rend la matrice de transition d'une marche aléatoire ergodique réversible :

$$\bar{P} = \frac{P + P^*}{2}$$

Comment définir le Laplacien?

Laplacien sur Graphe orienté

• Le Laplacien du graphe est :

$$L = \Pi L_{RW}$$

On a noté L_{RW} le laplacien de la marche aléatoire.

$$L_{RW} = I - \bar{P}$$

- Généralisations de propriétés obtenues pour les graphes non-orientés
- L'on retrouve les notions d'Energie de Dirichlet définies ci-dessus.
- On peut définir le gradient d'une façon similaire et on retrouve l'idée d'oscillation

Algorithmes

- Classique : L'algorithme de pagerank est en open source donc nous avons pu le trouver facilement
- Quantique : Pas de documentation précise sur le code. Travail basé sur le projet de l'année dernière et utlisation d'IBM pour mieux implémenter le code.
- En parallèle nous essayons d'utiliser le créateur de circuit d'IBM pour créer des circuits comme celui de groover :

FIGURE 6 - Circuit de Groover

Jalons principaux

- Effectuer une approximation de faible rang de la matrice du Laplacien de la marche aléatoire. (théorème d'Eckart-Young)
- Cette approximation s'effectue par SVD ou PCA.
 - → Il existe plusieurs algorithmes quantiques qui réalisent ces opérations en O(log(N)) avec N la taille de la matrice de départ (voir par exemple Quantum Higher Order Singular Value Decomposition de Lejia Gu, Xiaoqiang Wang, H. W. Joseph Lee, and Guofeng Zhang.)
- L'importance résultante sera une somme des vecteurs singuliers obtenus par PCA.
 - \rightarrow Pondérer les vecteurs de fréquence différentes par un coefficient relatif à leurs participation au signal de départ.

Difficultés

- Réussir à mettre le système dans un état superposé pour obtenir le résultat souhaité.
 - → Chaque algorithme quantique de SVD a sa propre manière de procéder : trouver la manière qui **correspond le plus à nos données initiales** et qui soit **réalisable avec un nombre de Qbits raisonnable** (le laplacien est une matrice de taille de l'ordre de 10⁹...)
- Quantifier les résultats de notre algorithme par rapport à l'algorithme classique de PageRank : ici l'idée principale de l'algorithme change et il convient de quantifier les modifications que cela induit.
- Choix des coefficients de pondération qui ne peut être arbitraire. Quel jeu de coefficients maximise la pertinence des résultats sans nuire aux hubs secondaires?

Remerciements

Pour finir, nous souhaitons remercier tout particulièrement Zeno Toffano et Benoit Valiron, chargés de l'encadrement de notre projet, pour leur présence et implication tout au long de cette étude.