

Data Structures and Algorithms (ECEG 4171)

Chapter One Algorithm Analysis

- An algorithm is a well-defined computational procedure that takes some input and produces some output.
 - A tool for solving a wel-specified computational problem

- An algorithm is a well-defined computational procedure that takes some input and produces some output.
 - A tool for solving a wel-specified computational problem

• For example: the sorting problem

- An algorithm is a well-defined computational procedure that takes some input and produces some output.
 - A tool for solving a wel-specified computational problem

- For example: the sorting problem
 - **Input:** A sequence of *n* numbers $\langle a_1, a_2, \ldots, a_n \rangle$

- An algorithm is a well-defined computational procedure that takes some input and produces some output.
 - A tool for solving a wel-specified computational problem

- For example: the sorting problem

 - Input: A sequence of n numbers $\langle a_1, a_2, \ldots, a_n \rangle$ Output: A permutation (reordering) $\langle a_1, a_2, \ldots, a_n' \rangle$ of the input sequence such that $\langle a_1' \leq a_2' \leq \cdots \leq a_n' \rangle$

• If computers were infinitely fast and computer memory was free, would you have any reason to study algorithms?

• If computers were infinitely fast and computer memory was free, would you have any reason to study algorithms?

The Answer is **YES**

• If computers were infinitely fast and computer memory was free, would you have any reason to study algorithms?

The Answer is **YES**

 You would still like to demonstrate that your solution method terminates and does so with the correct answer.

• If computers were infinitely fast and computer memory was free, would you have any reason to study algorithms?

The Answer is **YES**

- You would still like to demonstrate that your solution method terminates and does so with the correct answer.
- In reality, computers are not infinitely fast and memory is not free. Computing time and space in memory are bounded resources.
- Use algorithms that are efficient in terms of time and space.

Consider the following example

Computer A

- Implements **insertion sort** to sort *n* items.
- takes time $\approx c_1 n^2$
- executes 10 billion instructions per second
- insertion sort was written in machine language with code taking 2n² instructions.
- for n = 10 million $\frac{2.(10^7)^2 instructions}{10^{10} instructions/second} = 20,000$ seonds (more than 5.5 hours).

Computer B

- Implements merge sort to sort n items.
- takes time $\approx c_2 n lg n$
- executes 10 million instructions per second
- merge sort was written in high-level language with an inefficient compiler with the code taking 50nlgn instructions.
- for n = 10 million $\frac{50.(10^7)lg10^7 instructions}{10^7 instructions/second} = 1163$ seonds (less than 20 minutes).

By using a faster algorithm, even with a poor compiler and slower execetion speed, computer B runs more than 17 times faster than computer A!

Algorithms and other technologies

- Example above shows we should consider algorithms, like computer hardware, as a technology.
- The importance of algorithms is comparable to other advanced techologies such as:
 - advanced computer architecture and fabrication technologies.
 - easy-to-use, intuitive, GUIs
 - object-oriented systems
 - integrated web technologies
 - fast networking, both wired and wireles

Pseudocodes

- In this chapter and the next, we use pseudocodes to represent algorithms
- Pseucodes are used to represent algorithms clearly and succinctly
- Ignore the details of a particular programming language.
 - Do not address error-handling and other software engineering issues.

Example:

Sample Java Code

```
void insertionSort(int[] A){
  int key, j, i;
  for(int j = 1; j < A.length; j++){
    key = A[j];
    //Insert A[j] into the sorted A[1..j-1]
    i = j - 1;
    while(i >= 0 && A[i] > key){
        A[i + 1] = A[i];
        i = i - 1;
    }
    A[i + 1] = key;
}
```

Sample pseudocode

```
 \begin{aligned} & \textbf{function} \ & \text{INSERTION-SORT}(A) \\ & \textbf{for} \ j = 2 \ \text{to} \ \textit{A.length} \ \textbf{do} \\ & \textit{key} = \textit{A[j]} \\ & \textit{//Insert} \ \textit{A[j]} \ & \text{into} \ \text{the sorted} \ \textit{A[1..j-1]} \\ & \textit{i} = \textit{j} - 1 \\ & \textbf{while} \ \textit{i} > 0 \ \text{and} \ \textit{A[i]} > \textit{key} \ \textbf{do} \\ & \textit{A[i+1]} = \textit{A[i]} \\ & \textit{i} = \textit{i} - 1 \\ & \textit{A[i+1]} = \textit{key} \end{aligned}
```

Pseudocode Conventions

- Indentation indicates block structures. for and while loops and if-else statements are block structures.
- The looping constructs **while**, **for**, and **repeat-until** and the **if-else** conditionals have interpretations similar to those in C, C++, Java, Python, and Pascal.
- Use the keyword **to** when a for loop increments its loop counter in each iteration, and use keyword **downto** when a loop decrements its loop counter. When the loop counter changes by an amount greater than 1, the amount of change follows the optional keyword **by**.
- The symbol "//indicates that the remainder of the line is a comment.
- Multiple assignment of the form i = j = e is equivalent to the assignment j = e followed by i = j.

Pseudocode Conventions

- Variables (such as i, j, and key) are local to the given procedure.
- Accessing array elements: A[i] indicates the *ith* element and A[1..j] indicates elements $A[1], A[2], \ldots, A[j]$
- A return statement immediately transfers control back to the point
 of call in the calling procedure. They also take a value to pass back to
 the caller. They also allow multiple values to be returned in a single
 return statement.
- The boolean operators and and or are short circuiting.
- The keyword **error** indicates that an error occured because conditions were wrong for the procedure to have been called.
- Array indexing always starts with 1.

Analysis of Algorithms

- Predicting the resources that the algorithm requires.
 - ⇒ Memory
 - ⇒ Bandwidth
 - ⇒ Computer hardware
 - ⇒ Computational time
- We will usually use a generic uniprocessor random access machine (RAM) model.
 - All memory are equally expensive to access.
 - No concurrent operations
 - All reasonable instructions take unit time
 - Except, of course, functions calls.
 - Constant word size.
 - Unless we are explicitly manipulating bits.

Running Time

- Number of primitive steps that are executed
 - Except for time of executing a function call most statements roughly require the same amount of time
- Time and space complexity are generally a function of input size.
 - Sorting: number of input items
 - Multiplication: total number of bits
 - Graph algorithms: number of nodes and edges
 - Etc

Types of Analysis

Best-case analysis

- Provides a lower bound on running time
- We must know the case that causes minimum number of operations to be executed.

Worst-case analysis

- Provides an upper bound on running time
- We must know the case that causes maximum number of operations to be executed.
- An absolute guarantee

Average-case analysis

- Provides the expected running time
- We must know (or predict) the mathematical distribution of all possible inputs.
- Very useful, but treat with care: what is "average"?
 - Random (equally likely) inputs
 - Real-life inputs

Analsis of insertion sort

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i + 1] = A[i]

7 i = i - 1

8 A[i + 1] = key
```

An Example: Insertion Sort

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```

An Example: Insertion Sort

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i - 1

8 A[i+1] = key
```

$$j = 4$$
 $i = 2$ $key = 20$ $A[i] = 10$ $A[i+1] = 20$

Done!

Proof of Correctness

- We will use a technique known as loop invariant
- Help us understand why an algorithm is correct. We must show three things about a loop invariant:
 - Initialization: The loop invariant is satisfied at the beginning of the for loop.
 - Maintenance: If the loop invariant is true before the ith iteration, then
 the loop invariant will be true before the i + 1st iteration.
 - Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Loop Invariant for Insertion Sort

- Initialization: Before the first iteration (which is when j = 2), the subarray [1..j 1] is just the first element of the array, A[1]. This subarray is sorted, and consists of the elements that were originally in A[1..1].
- Maintenance: Suppose A[1..j 1] is sorted. Informally, the body of the for loop works by moving A[j 1], A[j 2], A[j 3] and so on by one position to the right until it finds the proper position for A[j] (lines 4-7), at which point it inserts the value of A[j] (line 8). The subarray A[1..j] then consists of the elements originally in A[1..j], but in sorted order. Incrementing j for the next iteration of the for loop then preserves the loop invariant.
- **Termination**: The condition causing the for loop to terminate is that j > n. Because each loop iteration increases j by 1, we must have j = n + 1 at that time. By the initialization and maintenance steps, we have shown that the subarray A[1..n + 1 1] = A[1..n] consists of the elements originally in A[1..n], but in sorted order.

```
INSERTION-SORT(A) cost times

1 for j = 2 to A.length

2 key = A[j]

3 //Insert A[j] to the sorted A[1..j-1]

4 i = j - 1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i - 1

8 A[i+1] = key
```

```
INSERTION-SORT (A) cost times 1 for j=2 to A.length c_1
2 key=A[j]
3 //Insert A[j] to the sorted A[1..j-1]
4 i=j-1
5 while i>0 and A[i]>key
6 A[i+1]=A[i]
7 i=i-1
8 A[i+1]=key
```

```
INSERTION-SORT(A)
                                            cost
                                                  times
1 for i = 2 to A.length
                                            C1
                                                  n
   kev = A[i]
3 //Insert A[j] to the sorted A[1..j-1]
   i = i - 1
5
   while i > 0 and A[i] > key
6
        A[i+1] = A[i]
        i = i - 1
     A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                             cost
                                                   times
1 for i = 2 to A.length
                                             C1
                                                   n
   kev = A[i]
                                             C_2
3 //Insert A[j] to the sorted A[1..j-1]
   i = i - 1
5
    while i > 0 and A[i] > key
6
        A[i+1] = A[i]
        i = i - 1
     A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                            cost
                                                  times
1 for i = 2 to A.length
                                            C1
                                                  n
   kev = A[i]
                                            c_2 \quad n-1
3 //Insert A[j] to the sorted A[1..j-1]
   i = j - 1
5
   while i > 0 and A[i] > key
6
        A[i+1] = A[i]
        i = i - 1
     A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                            cost
                                                   times
1 for i = 2 to A.length
                                            C1
                                                   n
   kev = A[i]
                                            c_2 \quad n-1
3 //Insert A[j] to the sorted A[1..j-1]
   i = j - 1
5
    while i > 0 and A[i] > key
6
        A[i+1] = A[i]
        i = i - 1
     A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                           cost
                                                  times
1 for i = 2 to A.length
                                           C1
                                                  n
                                           c_2 \qquad n-1
   kev = A[i]
                                           0 n-1
3 //Insert A[j] to the sorted A[1..j-1]
   i = j - 1
5
    while i > 0 and A[i] > key
6
        A[i+1] = A[i]
        i = i - 1
     A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                            cost
                                                  times
1 for i = 2 to A.length
                                            C1
                                                  n
                                           c_2 \qquad n-1
   kev = A[i]
                                            0 n-1
3 //Insert A[j] to the sorted A[1..j-1]
   i = j - 1
                                            C4
5
   while i > 0 and A[i] > key
6
        A[i+1] = A[i]
        i = i - 1
     A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                           cost
                                                 times
1 for i = 2 to A.length
                                           C1
                                                 n
                                           c_2 \qquad n-1
   kev = A[i]
                                           0 n-1
  //Insert A[j] to the sorted A[1..j-1]
                                           c_4 n-1
   i = i - 1
5
   while i > 0 and A[i] > key
6
        A[i+1] = A[i]
       i = i - 1
     A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                            cost
                                                  times
1 for i = 2 to A.length
                                            C1
                                                  n
                                           c_2 \qquad n-1
   kev = A[i]
                                            0 n-1
     //Insert A[j] to the sorted A[1..j-1]
                                            c_4 n-1
   i = i - 1
5
   while i > 0 and A[i] > key
                                            C_5
6
        A[i+1] = A[i]
        i = i - 1
     A[i + 1] = key
8
```

```
INSERTION-SORT(A)
                                             cost
                                                    times
1 for i = 2 to A.length
                                             C1
                                                    n
                                             c_2 \quad n-1
    kev = A[i]
3 //Insert A[j] to the sorted A[1..j-1]
                                             0 n-1
                                             c_4 n-1
   i = i - 1
                                             c_5 \qquad \sum_{j=2}^n t_j
5
    while i > 0 and A[i] > key
6
        A[i+1] = A[i]
        i = i - 1
     A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                             cost
                                                    times
1 for i = 2 to A.length
                                             C1
                                                    n
                                             c_2 \quad n-1
    kev = A[i]
3 //Insert A[j] to the sorted A[1..j-1]
                                             0 n-1
                                             c_4 n-1
   i = i - 1
                                             c_5 \qquad \sum_{i=2}^n t_i
5
    while i > 0 and A[i] > key
6
        A[i+1] = A[i]
                                             c_6
        i = i - 1
     A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                                 cost
                                                        times
1 for i = 2 to A.length
                                                 C1
                                                        n
                                                 c_2 \quad n-1
    kev = A[i]
3 //Insert A[j] to the sorted A[1..j-1]
                                                 0 n-1
                                                 c_4 n-1
   i = i - 1
                                                 c_5 \qquad \sum_{j=2}^n t_j
5
    while i > 0 and A[i] > key
                                                       \sum_{i=2}^{n} (t_i - 1)
6
         A[i + 1] = A[i]
                                                 C<sub>6</sub>
         i = i - 1
      A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                               cost
                                                      times
1 for i = 2 to A.length
                                               C1
                                                      n
                                               c_2 n-1
    kev = A[i]
3 //Insert A[j] to the sorted A[1..j-1]
                                               0 n-1
                                               c_4 n-1
   i = i - 1
                                               c_5 \qquad \sum_{j=2}^n t_j
5
    while i > 0 and A[i] > key
                                               c_6 \qquad \sum_{i=2}^n (t_i - 1)
6
         A[i + 1] = A[i]
        i = i - 1
                                               C7
     A[i + 1] = kev
8
```

```
cost
                                                         times
INSERTION-SORT(A)
1 for i = 2 to A.length
                                                  C1
                                                         n
                                                  c_2 \quad n-1
    kev = A[i]
3 //Insert A[j] to the sorted A[1..j-1]
                                                  0 n-1
                                                  c_4 n-1
   i = i - 1
                                                 c_5 \qquad \sum_{i=2}^n t_i
5
    while i > 0 and A[i] > key
                                                  c_6 \qquad \sum_{j=2}^{n} (t_j - 1)
6
         A[i + 1] = A[i]
         i = i - 1
                                                        \sum_{i=2}^{n} (t_i - 1)
      A[i + 1] = kev
8
```

```
INSERTION-SORT(A)
                                                  cost
                                                         times
1 for i = 2 to A.length
                                                  C1
                                                         n
                                                  c_2 \quad n-1
    kev = A[i]
3 //Insert A[j] to the sorted A[1..j-1]
                                                  0 n-1
                                                  c_4 n-1
    i = i - 1
                                                  c_5 \qquad \sum_{i=2}^n t_i
5
    while i > 0 and A[i] > key
                                                 c_6 \qquad \sum_{j=2}^{n} (t_j - 1)
6
         A[i + 1] = A[i]
         i = i - 1
                                                        \sum_{i=2}^{n} (t_i - 1)
                                                  C7
      A[i + 1] = kev
8
                                                  C8
```

```
cost
                                                         times
INSERTION-SORT(A)
1 for i = 2 to A.length
                                                  C1
                                                         n
                                                  c_2 \quad n-1
    kev = A[i]
3 //Insert A[j] to the sorted A[1..j-1]
                                                  0 n-1
                                                  c_4 n-1
   i = i - 1
                                                  c_5 \qquad \sum_{i=2}^n t_i
5
    while i > 0 and A[i] > key
6
                                                  c_6 \qquad \sum_{i=2}^{n} (t_i - 1)
         A[i + 1] = A[i]
         i = i - 1
                                                  c_7 \qquad \sum_{i=2}^{n} (t_i - 1)
      A[i + 1] = kev
8
                                                       n — 1
                                                  C8
```

INS	ERTION-SORT(A)	cost	times
1 fc	or $j=2$ to A.length	<i>c</i> ₁	n
2	key = A[j]	<i>c</i> ₂	n-1
3	$//Insert\ {A[j]}$ to the sorted ${A[1j-1]}$	0	n-1
4	i = j - 1	<i>C</i> 4	n-1
5	while $i > 0$ and $A[i] > key$	<i>C</i> ₅	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	C ₇	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	<i>c</i> ₈	n-1

Running time = sum the prodcuts of the *cost* and *times* columns

INSERTION-SORT (A)
$$cost times$$

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 $//Insert A[j]$ to the sorted $A[1..j-1]$ 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$ c_6 $\sum_{j=2}^{n} (t_j - 1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j - 1)$

8 $A[i+1] = key$ c_8 $n-1$

Running time = sum the prodcuts of the *cost* and *times* columns

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8(n-1)$$

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

Occurs if the array is aleardy sorted.

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

- Occurs if the array is aleardy sorted.
 - For each j = 2, 3, ..., n, A[i] ≤ key in line $5 ⇒ t_j = 1$ for j = 2, 3, ..., n. Therefore,

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

- Occurs if the array is aleardy sorted.
 - For each $j=2,3,\ldots,n$, $A[i] \leq key$ in line $5 \Rightarrow t_j=1$ for $j=2,3,\ldots,n$. Therefore,

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

$$= an + b \text{ (linear function)}$$

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

Occurs if the array is reverse sorted.

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

- Occurs if the array is reverse sorted.
 - Must compare each element A[j] with each element in the entire sorted subarray $A[1..i-1] \Rightarrow t_i = j$ for j = 2, 3, ..., n.

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

- Occurs if the array is reverse sorted.
 - Must compare each element A[j] with each element in the entire sorted subarray $A[1..j-1] \Rightarrow t_j=j$ for $j=2,3,\ldots,n$. Note that.

$$\sum_{i=2}^{n} j = \frac{n(n+1)}{2} - 1$$

and

$$\sum_{i=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

Therefore,

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- \left(c_2 + c_4 + c_5 + c_8\right)$$

$$= an^2 + bn + c \text{ (Quadratic running time)}$$

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

 Roughly equivalent to randomly choosing n numbers and applying insertion sort.

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

- Roughly equivalent to randomly choosing n numbers and applying insertion sort.
 - On average half elements are less than A[j] and half elements are greater $\Rightarrow t_j \approx j/2$. By substitution, the running time will be a quadratic function of the input size.

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

- Roughly equivalent to randomly choosing n numbers and applying insertion sort.
 - On average half elements are less than A[j] and half elements are greater $\Rightarrow t_j \approx j/2$. By substitution, the running time will be a quadratic function of the input size.

$$= an^2 + bn + c$$

Asymptotic Performance

- How does an algorithm behave when the input size get very large?
- Asymptotic efficiency is studying the running time for large enough input sizes.
- This makes only the the order of growth of the running relevant.
- Asymtotic behavior (as n gets large) is determined entirely by the leading term.
- Example: $T(n) = 10n^3 + n^2 + 40n + 80$
 - If n = 1000, then T(n) = 10,001,040,800
 - error is 0.01% if we drop all but the n^3 term.

Asymptotic Performance

 Usually, an algorithm that is asymptotically more efficient will be the best choice for all but very small inputs.

	n	$n \log_2 n$	n ²	n³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

- There are three commonly used asymptotic notations:
 - − O − notation
 - $-\Omega$ notation
 - $-\Theta$ notation

Commonly encountered functions in the analysis of algorithms

description	notation	definition
floor	$\lfloor x \rfloor$	largest integer not greater than x
ceiling	$\lceil x \rceil$	smallest integer not smaller than \boldsymbol{x}
natural algorithm	InN	$\log_e N$
binary algorithm	ΙgΝ	$\log_2 N$
logarithmic exponentiation	lg ^k n	$(Ign)^k$
logarithmic composition	lglgn	lg(lgn)
harmonic numbers	H_N	$1 + 1/2 + 1/3 + \cdots + 1/N$
factorial	N !	1X2X3XXN

Definition

A function t(n) is said to be in O(g(n)), denoted $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \leq cg(n)$$
 for all $n \geq n_0$

Definition

A function t(n) is said to be in O(g(n)), denoted $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \leq cg(n)$$
 for all $n \geq n_0$

Example: Show that $100n + 5 \epsilon O(n^2)$

Definition

A function t(n) is said to be in O(g(n)), denoted $t(n)\epsilon O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \leq cg(n)$$
 for all $n \geq n_0$

Example: Show that $100n + 5 \in O(n^2)$ 100n + 5 < 100n + n for n > 5

Definition

A function t(n) is said to be in O(g(n)), denoted $t(n)\epsilon O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \leq cg(n)$$
 for all $n \geq n_0$

Example: Show that $100n + 5 \epsilon O(n^2)$

$$100n + 5 \le 100n + n \text{ for } n \ge 5$$

 $\le 101n$

Definition

A function t(n) is said to be in O(g(n)), denoted $t(n)\epsilon O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \leq cg(n)$$
 for all $n \geq n_0$

Example: Show that $100n + 5 \epsilon O(n^2)$

$$100n + 5 \le 100n + n \text{ for } n \ge 5$$

$$\le 101n$$

$$< 101n^{2}$$

Definition

A function t(n) is said to be in O(g(n)), denoted $t(n)\epsilon O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \leq cg(n)$$
 for all $n \geq n_0$

Example: Show that $100n + 5 \in O(n^2)$

$$100n + 5 \le 100n + n \text{ for } n \ge 5$$

 $\le 101n$
 $\le 101n^2$

Therefore, for c = 101 and $n_0 = 5$ $100n + 5 = O(n^2)$

Definition

A function t(n) is said to be in O(g(n)), denoted $t(n)\epsilon O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \leq cg(n)$$
 for all $n \geq n_0$

Example: Show that $100n + 5 \epsilon O(n^2)$

$$100n + 5 \le 100n + n \text{ for } n \ge 5$$

 $\le 101n$
 $\le 101n^2$

Therefore, for c = 101 and $n_0 = 5$ $100n + 5 = O(n^2)$

Definition

A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n)\epsilon\Omega(g(n))$, if t(n) is bounded below by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \geq cg(n)$$
 for all $n \geq n_0$

Definition

A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n)\epsilon\Omega(g(n))$, if t(n) is bounded below by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \geq cg(n)$$
 for all $n \geq n_0$

Example: Show that $n^3 \in \Omega(n^2)$

Definition

A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n)\epsilon\Omega(g(n))$, if t(n) is bounded below by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \geq cg(n)$$
 for all $n \geq n_0$

Example: Show that $n^3 \in \Omega(n^2)$ $n^3 > n^2$ for all n > 0

Definition

A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n)\epsilon\Omega(g(n))$, if t(n) is bounded below by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \geq cg(n)$$
 for all $n \geq n_0$

Example: Show that $n^3 \in \Omega(n^2)$ $n^3 \ge n^2$ for all $n \ge 0$ Therefore, for c = 1 and $n_0 = 0$, $n^3 = \Omega(n^2)$

Definition

A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n)\epsilon\Omega(g(n))$, if t(n) is bounded below by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \geq cg(n)$$
 for all $n \geq n_0$

Example: Show that $n^3 \in \Omega(n^2)$ $n^3 \ge n^2$ for all $n \ge 0$ Therefore, for c = 1 and $n_0 = 0$, $n^3 = \Omega(n^2)$

⊝-Notation

Definition

A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n)\epsilon\Theta(g(n))$, if t(n) is bounded both above and below by some constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \leq t(n) \leq c_1g(n)$$
 for all $n \geq n_0$

⊝-Notation

Definition

A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n)\epsilon\Theta(g(n))$, if t(n) is bounded both above and below by some constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \leq t(n) \leq c_1g(n)$$
 for all $n \geq n_0$

Example: Prove that $\frac{1}{2}n(n-1) \in \Theta(n^2)$

Θ-Notation

Definition

A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n)\epsilon\Theta(g(n))$, if t(n) is bounded both above and below by some constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \leq t(n) \leq c_1g(n)$$
 for all $n \geq n_0$

Example: Prove that $\frac{1}{2}n(n-1) \in \Theta(n^2)$

First, we prove the right inequality (the upper bound):

Definition

A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n)\epsilon\Theta(g(n))$, if t(n) is bounded both above and below by some constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \le t(n) \le c_1g(n)$$
 for all $n \ge n_0$

Example: Prove that $\frac{1}{2}n(n-1) \in \Theta(n^2)$

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$$
 for all $n \ge 0$

Definition

A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n)\epsilon\Theta(g(n))$, if t(n) is bounded both above and below by some constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \leq t(n) \leq c_1g(n)$$
 for all $n \geq n_0$

Example: Prove that $\frac{1}{2}n(n-1) \in \Theta(n^2)$

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$$
 for all $n \ge 0$ Second, we prove the left inequality (the lower bound):

Definition

A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n)\epsilon\Theta(g(n))$, if t(n) is bounded both above and below by some constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \le t(n) \le c_1g(n)$$
 for all $n \ge n_0$

Example: Prove that $\frac{1}{2}n(n-1) \in \Theta(n^2)$

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$$
 for all $n \ge 0$ Second, we prove the left inequality (the lower bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n \text{ for all } n \ge 2 = \frac{1}{4}n^2$$

Definition

A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n)\epsilon\Theta(g(n))$, if t(n) is bounded both above and below by some constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \leq t(n) \leq c_1g(n)$$
 for all $n \geq n_0$

Example: Prove that $\frac{1}{2}n(n-1) \in \Theta(n^2)$

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$$
 for all $n \ge 0$ Second, we prove the left inequality (the lower bound):

$$\begin{array}{l} \frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \geq \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n \text{ for all } \\ n \geq 2 = \frac{1}{4}n^2 \\ \text{Hence, } \frac{1}{2}n(n-1) = \Theta(n^2) \text{ for } c_2 = \frac{1}{4}, \\ c_1 = \frac{1}{2}, \text{ and } n_0 = 2. \end{array}$$

Useful Properties

- ① If $t_1(n) = O(g_1(n))$ and $t_2(n) = O(g_2(n))$, then $t_1(n) + t_2(n) = O(\max\{g_1(n), g_2(n)\})$.
- ② For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- 3

$$\lim_{n\to\infty}\frac{t(n)}{g(n)}=\left\{\begin{array}{c} 0 & \text{implies that } t(n) \text{ has a smaller order of growth than } g(n),\\ c & \text{implies that } t(n) \text{ has the same order of growth as } g(n),\\ \infty & \text{implies that } t(n) \text{ has a larger order of growth than } g(n). \end{array}\right.$$

- The first two cases mean t(n) = O(g(n)), the last two mean that $t(n) = \Omega(g(n))$, and the second case means that $t(n) = \Theta(g(n))$

• Compare the orders of growth of $5n^3 - n + 2$ and n^2 .

• Compare the orders of growth of $5n^3 - n + 2$ and n^2 .

$$\lim_{n\to\infty} \frac{5n^3-n+2}{n^2} = \infty$$

1 Compare the orders of growth of $5n^3 - n + 2$ and n^2 .

$$\lim_{n\to\infty} \frac{5n^3-n+2}{n^2} = \infty$$

 $\Rightarrow 5n^3 - n + 2$ has larger order of growth than n^2 .

• Compare the orders of growth of $5n^3 - n + 2$ and n^2 .

$$\lim_{n\to\infty} \frac{5n^3-n+2}{n^2} = \infty$$

$$\Rightarrow 5n^3 - n + 2$$
 has larger order of growth than n^2 .

$$\Rightarrow 5n^3 - n + 2 = \Omega(n^2).$$

• Compare the orders of growth of $5n^3 - n + 2$ and n^2 .

$$\lim_{n\to\infty}\frac{5n^3-n+2}{n^2}=\infty$$

$$\Rightarrow 5n^3-n+2 \text{ has larger order of growth than } n^2.$$

$$\Rightarrow 5n^3-n+2=\Omega(n^2).$$

② Compare the orders of growth of lgn and \sqrt{n} .

1 Compare the orders of growth of $5n^3 - n + 2$ and n^2 .

$$\lim_{n\to\infty} \frac{5n^3 - n + 2}{n^2} = \infty$$

$$\Rightarrow 5n^3 - n + 2 \text{ has larger order of growth than } n^2.$$

$$\Rightarrow 5n^3 - n + 2 = \Omega(n^2).$$

② Compare the orders of growth of lgn and \sqrt{n} .

$$\lim_{n\to\infty} \frac{\lg n}{\sqrt{n}} = \lim_{n\to\infty} \frac{(\lg n)'}{(\sqrt{n})'} = \lim_{n\to\infty} \frac{(\log_2 e)(\ln n)'}{(\sqrt{n})'} = \lim_{n\to\infty} \frac{(\log_2 e)\frac{1}{n}}{\frac{1}{2\sqrt{n}}}$$
$$= 2\log_2 e \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0.$$

• Compare the orders of growth of $5n^3 - n + 2$ and n^2 .

$$\lim_{n\to\infty} \frac{5n^3 - n + 2}{n^2} = \infty$$

$$\Rightarrow 5n^3 - n + 2 \text{ has larger order of growth than } n^2.$$

$$\Rightarrow 5n^3 - n + 2 = \Omega(n^2).$$

② Compare the orders of growth of lgn and \sqrt{n} .

$$\begin{split} &\lim_{n\to\infty} \frac{\lg n}{\sqrt{n}} = \lim_{n\to\infty} \frac{(\lg n)'}{(\sqrt{n})'} = \lim_{n\to\infty} \frac{(\log_2 e)(\ln n)'}{(\sqrt{n})'} = \lim_{n\to\infty} \frac{(\log_2 e)\frac{1}{n}}{\frac{1}{2\sqrt{n}}} \\ &= 2\log_2 e \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0. \end{split}$$

Therefore, lgn has a smaller order of growth than \sqrt{n} .

• Compare the orders of growth of $5n^3 - n + 2$ and n^2 .

$$\lim_{n\to\infty} \frac{5n^3-n+2}{n^2} = \infty$$

$$\Rightarrow 5n^3 - n + 2$$
 has larger order of growth than n^2 .

$$\Rightarrow 5n^3 - n + 2 = \Omega(n^2).$$

② Compare the orders of growth of lgn and \sqrt{n} .

$$\lim_{n\to\infty} \frac{\lg n}{\sqrt{n}} = \lim_{n\to\infty} \frac{(\lg n)'}{(\sqrt{n})'} = \lim_{n\to\infty} \frac{(\log_2 e)(\ln n)'}{(\sqrt{n})'} = \lim_{n\to\infty} \frac{(\log_2 e)\frac{1}{n}}{\frac{1}{2\sqrt{n}}}$$
$$= 2\log_2 e \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0.$$

Therefore, lgn has a smaller order of growth than \sqrt{n} .

$$\Rightarrow Ign = O(\sqrt{n})$$

$$sum = 0$$

for $i = 1$ to N do
 $sum = sum + i$

$$sum = 0
 for i = 1 to N do
 sum = sum + i$$

$$\Rightarrow O(N)$$

```
 sum = 0 
 for i = 1 to N do 
 sum = sum + i
```

$$sum = 0$$

$$for i = 1 to N do$$

$$sum = sum + i$$

sum = 0
for
$$i = 1$$
 to N do
for $j = 1$ to M do
sum = sum + $(i + j)$

$$\Rightarrow O(N)$$

$$\Rightarrow T(n) = \sum_{i=1}^{N} \sum_{j=1}^{M} 1 =$$

Find the worst-case, best-case, and average-case running for pseudocode given below:

```
ALGORITHM SequentialSearch(A[1..n], K)

//Input: An Array A[1..n] and a search key K

//Output: The index of the first element in A that

//matches K or -1 if there are maching elements i=1

while i \leq n and A[i] \neq K do

i=i+1

if i \leq n then

return i

else

return -1
```

ALGORITHM SequentialSearch(A[1..n], K)

$$i=1$$

while $i \leq n$ and $A[i] \neq K$ do
 $i=i+1$
if $i \leq n$ then
return i
else
 $return -1$

- Worst-case running time:
 - Occurs when there are no matching elements or the mathing element happens to be the last one in the list.

$$\Rightarrow T_{worst}(n) = n = O(n).$$

- Best-case running time:
 - Occurs when the first element is equal to the search key.

$$\Rightarrow T_{best}(n) = 1 = \Theta(1).$$

ALGORITHM SequentialSearch(A[1..n], K)

$$i=1$$
 while $i \leq n$ and $A[i] \neq K$ do $i=i+1$ if $i \leq n$ then return i else

Average-case running time:

- The probability of successful search is equal to p.
- The probability of the first match occurring in the *ith* position is the same for every *i*.
 - ⇒ The probability of the first match occurring in the ith position of the list is p/n for every i.
 ⇒ The number of comparisons made by the algorithm
 - The number of comparisons made by the algorithm in such a situation is i.
 - ⇒ For an unsuccessful search, the number of comparisons will be n with the probability of such a search being (1 − p). Therefore,

$$T_{avg}(n) = \left[1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n}\right] + n \cdot (1 - p)$$

$$= \frac{p}{n} \left[1 + 2 + \dots + n\right] + n(1 - p)$$

$$= \frac{p}{n} \frac{n(n+1)}{2} + n(1 - p)$$

$$= \frac{p(n+1)}{2} + n(1 - p)$$

$$= \Theta(n)$$

return -1

Find the time complexity of the following algorithm.

```
//Input: An Array A[1..n] of real numbers.

//Output: The value of the largest element in A maxval = A[1] for i = 2 to n do

if A[i] > maxval then

maxval = A[i]

return maxval
```

```
//Input: An Array A[1..n] of real numbers.

//Output: The value of the largest element in A maxval = A[1] for i=2 to n do if A[i] > maxval then maxval = A[i]
```

Here, the number of comparisons
 A[i] > maxval will be the same for all arrays of size n; therefore, there is no need to distinguish between the worst, average, and best cases.

return maxval

```
//Input: An Array A[1..n] of real numbers.

//Output: The value of the largest element in A maxval = A[1] for i=2 to n do if A[i] > maxval then maxval = A[i]
```

- Here, the number of comparisons
 A[i] > maxval will be the same for all arrays of size n; therefore, there is no need to distinguish between the worst, average, and best cases.
 - The algorithm makes one comparison on each execution of the loop:

return maxval

```
//Input: An Array A[1..n] of real numbers.

//Output: The value of the largest element in A maxval = A[1] for i=2 to n do if A[i] > maxval then maxval = A[i]
```

- Here, the number of comparisons
 A[i] > maxval will be the same for all arrays of size n; therefore, there is no need to distinguish between the worst, average, and best cases.
 - The algorithm makes one comparison on each execution of the loop:

$$T(n) = \sum_{i=2}^{n} 1 = n - 1 = \Theta(n)$$

return maxval

ALGORITHM SequentialSearch(A[1..n], K)

$$i=1$$
 while $i \leq n$ and $A[i] \neq K$ do $i=i+1$ if $i \leq n$ then return i else

Average-case running time:

- The probability of successful search is equal to p.

 $=\Theta(n)$

- The probability of the first match occurring in the *ith* position is the same for every *i*.
 - ⇒ The probability of the first match occurring in the ith position of the list is p/n for every i.
 ⇒ The number of comparisons made by the algorithm
 - The number of comparisons made by the algorithm in such a situation is i.
 - ⇒ For an unsuccessful search, the number of comparisons will be n with the probability of such a search being (1 − p). Therefore,

$$T_{\text{avg}}(n) = \left[1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n}\right] + n \cdot (1 - p)$$

$$= \frac{p}{n} \left[1 + 2 + \dots + n\right] + n(1 - p)$$

$$= \frac{p}{n} \frac{n(n+1)}{2} + n(1 - p)$$

$$= \frac{p(n+1)}{2} + n(1 - p)$$

return -1

The following algorithm finds the number of binary digits in the binary representation of a positive decimal integer. Find its time comlexity.

```
//Input: A positive decimal integer n.
//Output: The number of binary digits in the n's binary representation count = 1 while n > 1 do count = count + 1 n = \lfloor \frac{n}{2} \rfloor return count
```

The following algorithm finds the number of binary digits in the binary representation of a positive decimal integer. Find its time comlexity.

```
//Input: A positive decimal integer n. //Output: The number of binary digits in the n's binary representation count = 1 while n > 1 do count = count + 1 n = \lfloor \frac{n}{2} \rfloor return count
```

• The most frequently executed operation here is the while loop. Since the value of n is about halved on each repetition of the loop, the answer should be about lgn. The exact number of times the comparison n>1 is executed is |lgn|+1

The following algorithm finds the number of binary digits in the binary representation of a positive decimal integer. Find its time comlexity.

```
//Input: A positive decimal integer n. //Output: The number of binary digits in the n's binary representation count = 1 while n > 1 do count = count + 1 n = \lfloor \frac{n}{2} \rfloor return count
```

• The most frequently executed operation here is the while loop. Since the value of n is about halved on each repetition of the loop, the answer should be about lgn. The exact number of times the comparison n>1 is executed is |lgn|+1

$$T(n) \approx lgn$$

 $T(n) = O(lgn)$