Lecture 5 Derivatives

Stewart 14.1, McCallum 12.3, 12.5

Lecture 5. Key Ideas In differential calculus, we learned how to us derivatives to find tangent lines to a curve. A surface may have many tangent lines at a point, but there is only one tangent *plane*.

- understand and compute partial derivatives
- understand and compute the gradient of a function
- find tangent planes to a surface
- understand and compute second order partials
- understand and compute the Hessian of a funciton

Lecture 5.1 The partial derivative

Definition 5.1.

- The partial derivative of f(x,y) with respect to x, denoted $f_x(x,y)$ or $\frac{\partial f}{\partial x}$ is the function gotten by holding y constant and differentiating with respect to x.
- The partial derivative of f(x,y) with respect to y, denoted $f_y(x,y)$ or $\frac{\partial f}{\partial y}$ is the function gotten by holding x constant and differentiating with respect to y.

Example 5.2. Find the partial derivatives of $f(x,y) = x^2 \sin(y) + x$.

Example 5.3. Find the partial derivatives of $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.

Definition 5.4. The **gradient** of a function f(x, y), denoted $\nabla f(x, y)$ is the vector

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$

Example 5.5. Find the gradient of $x^2 \sin(y)$ at the point (1,0).

Example 5.6. Show that

Theorem 5.7. The tangent plane to f(x,y) at the point $P(x_0,y_0,z_0)$ has equation $z-z_0=f_x(P)(x-x_0)+f_y(P)(y-y_0)$.

Example 5.8. Find the tangent plane to $f(x,y) = x^2 \sin(y) + x$ at (x,y) = (1,0)

Definition 5.9. A second order partial derivative of a function f(x,y) is one that is a partial derivative of f_x or f_y . We have

$$f_{xx} = \frac{\partial}{\partial x} f_x$$
 $f_{yy} = \frac{\partial}{\partial y} f_y$ $f_{xy} = \frac{\partial}{\partial y} f_x$ $f_{yx} = \frac{\partial}{\partial x} f_y$

Example 5.10. Compute the second partials of $f(x,y) = x^2 \sin(y) + x$.

Theorem 5.11. If f_{xy} and f_{yx} are defined and continuous near a point P, then $f_{xy}(P) = f_{yx}(P)$.

Definition 5.12. The **Hessian** of a function f(x, y) is

$$\operatorname{Hess}(f) = \left| \begin{array}{cc} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{array} \right| = f_{xx} f_{yy} - (f_{xy})^2.$$

Example 5.13. Find the Hessians of $f(x) = x^2 + y^2$ and $g(x) = x^2 - y^2$ and evaluate them both at (x, y) = (0, 0).