HW 6

 Q_5

Joo Hyun Lee

jhl504@nyu.edu

NYUCSBR Summer 24-week

Question 5

(a)
$$5n^3 + 2n^2 + 3n = \Theta(n^3)$$

Let $f(n) = 5n^3 + 2n^2 + 3n$ and $g(n) = n^3$. We will prove that $c_1g(n) \le f(n) \le c_2g(n)$.

For any $n \ge 1$, $5n^3 \le 5n^3 + 2n^2 + 3n$. So, $c_1 = 5$.

Therefore, $5g(n) \le f(n)$ and $f = \Omega(g)$

For any $n \ge 1$, $5n^3 + 2n^2 + 3n \le 5^3 + 2n^3 + 3n^3 = 10n^3$. So, $c_2 = 10$.

Therefore, $f(n) \leq 10g(n)$ and f = O(g).

If we take $c_1 = 5$, $c_2 = 10$, and $n_0 = 1$, for all $n \ge n_0$, $5n^3 + 2n^2 + 3n = \Theta(n^3)$.

(b)
$$\sqrt{7n^2 + 2n - 8} = \Theta(n)$$

Let $f(n) = \sqrt{7n^2 + 2n - 8}$ and g(n) = n. We will prove that $c_1g(n) \le f(n) \le c_2g(n)$.

For any positive $n, \sqrt{7n^2 + 2n - 8} \le \sqrt{7n^2 + 2n^2} = \sqrt{9n^2} = 3n$. So, $c_2 = 3$.

Therefore, $f(n) \leq 3g(n)$ and f = O(g).

For $2n-8 \ge 0, \sqrt{7n^2} \le \sqrt{7n^2+2n-8}$. So, $c_1 = \sqrt{7} \approx 2$.

Therefore, $2g(n) \leq f(n)$ and $f = \Omega(g)$.

Since $2n - 8 \ge 0$, $n_0 = \sqrt{4} = 2$.

If we take $c_1=2,c_23,$ and $n_0=2,$ for all $n\geq 2,\sqrt{7n^2+2n-8}=\Theta(n).$ \blacksquare