МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Фундаментальная информатика» І семестр Задание 4 «Процедуры и функции в качестве параметров»

Группа	М8О-109Б-22
Студент	Серый Н.О.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

СОДЕРЖАНИЕ

1. Постановка задачи	.3
2. Теоретическая часть	.4
2.1. Метод Ньютона	
2.2. Метод дихотомии (половинного деления)	.4
3. Практическая часть	
3.1. Описание алгоритма	
3.2. Используемые переменные	
3.3. Исходный код программы	
3.4. Входные и выходные данные	
3.5. Протокол с тестами	
4. Вывод	
5. Список используемых источников	

Постановка задачи

Составить программу на языке Си с процедурами решения трансцендентных алгебраических уравнений различными методами (итераций, Ньютона, дихотомии). Нелинейные уравнения оформить как параметры-функции, разрешив относительно неизвестной величины при необходимости. Применить каждую процедуру к решению двух уравнений, заданных двумя строками таблицы, начиная с варианта с заданным номером. Если метод неприменим, дать математическое обоснование и графическую иллюстрацию, например, с использованием gnuplot.

Вариант 1:

Функция:

$$e^x + \ln x - 10x = 0$$

Отрезок, содержащий корень: [3,4]

Приближенное значение корня: 3.5265

Решение методом Ньютона.

Вариант 2:

Функция:

$$\cos x - e^{-\frac{x^2}{2}} + x - 1 = 0$$

Отрезок, содержащий корень: [1,2]

Приближенное значение корня: 1.0804

Решение методом дихотомии (половинного деления).

Теоретическая часть

Метод Ньютона

Метод Ньютона является частным случаем метода итераций.

Условие сходимости метода: $|F(x) \cdot F''(x)| < (F'(x))^2$ на отрезке [a,b].

Итерационный процесс: $x^{(k+1)} = x^{(k)} - F(x^{(k)}) / F'(x^{(k)})$.

Метод дихотомии (половинного деления)

Очевидно, что если на отрезке [a,b] существует корень уравнения, то значения функции на концах отрезка имеют разные знаки: $F(a) \cdot F(b) < 0$. Метод заключается в делении отрезка пополам и его сужении в два раза на каждом шаге итерационного процесса в зависимости от знака функции в середине отрезка.

Итерационный процесс строится следующим образом: за начальное приближение принимаются границы исходного отрезка $a^{(0)}=a$, $b^{(0)}=b$. Далее вычисления проводятся по формулам: $a^{(k+1)}=(a^{(k)}+b^{(k)})/2$, $b^{(k+1)}=b^{(k)}$, если $F(a^{(k)})\cdot F((a^{(k)}+b^{(k)})/2)>0$; или по формулам: $a^{(k+1)}=a^{(k)}$, $b^{(k+1)}=(a^{(k)}+b^{(k)})/2$, если $F(b^{(k)})\cdot F((a^{(k)}+b^{(k)})/2)>0$.

Процесс повторяется до тех пор, пока не будет выполнено условие окончания $\left|a^{(k)}-b^{(k)}\right|<\varepsilon$.

Приближенное значение корня к моменту окончания итерационного процесса получается следующим образом $x^* \approx (a^{(\text{конечное})} + b^{(\text{конечное})})/2$.

Практическая часть

Ход решения

1) Объявим в программе функции наших алгебраических уравнений и их производных.

Значения производных нужны, чтобы решить уравнение методом Ньютона.

- 2) Перенесём идею решения уравнений в отдельные функции Newton и Dichotomy в программу.
- 3) Для дополнительной проверки правильности решения выполним вычисления для вариантов обоими методами.

Используемые переменные

Название переменной	Тип переменной	Смысл переменной
X	double	Аргумент для вычисления зн. функций
a	double	Левая граница отрезка [a, b]
b	double	Правая граница отрезка [a, b]
С	double	Точка-середина отрезка [a, b]
DBL_EPSILON	double	Значение машинного эпсилон

Используемые функции

Название функции	Тип переменной	Смысл функции
func1	double	Возвращает функцию 1
func2	double	Возвращает функцию 2
derivative_func1	double	Возвращает производную 1 функции
derivative_func2	double	Возвращает производную 2 функции
f(double x)	double	Подфункция для подстановки в неё функции любого варианта на этапе вывода таблицы
d_f(double x)	double	Подфункция для подстановки в неё производной функции любого варианта на этапе вывода таблицы
Newton	double	Поиск значения функции методом Ньютона
Dichotomy	double	Поиск значения функции методом дихотомии

Исходный код программы

```
#include <stdio.h>
#include <math.h>
#include <float.h>
double func1(double x) {
  return exp(x) + log(x) - 10 * x;
}
double derivative_func1(double x) {
  return exp(x) + 1 / x - 10;
}
double func2(double x) {
  return cos(x) - exp(-pow(x, 2) / 2) + x - 1;
}
double derivative_func2(double x) {
  return -\sin(x) + x * \exp(-pow(x, 2) / 2) + 1;
double Newton(double f(double x1), double d_f(double x2), double a, double b) {
  double x = b;
  while (fabsl(f(x) / d_f(x)) >= DBL_EPSILON) {
    x \rightarrow f(x) / d_f(x);
  }
  return x;
}
double Dichotomy(double f(double x), double a, double b) {
  double c = 0;
  while (f(c) != 0 \&\& fabsl(b - a) > DBL_EPSILON) {
    c = (a + b) / 2;
    (f(c) * f(a) > 0) ? (a = c) : (b = c);
  }
  return c;
}
int main() {
  printf("*----*\n");
  printf("*----*\n");
  printf("*```*\n");
  printf("
            exp(x) + log(x) - 10 * x \n");
  printf("*----*\n");
  printf("Newton Method value: %f\n", Newton(func1, derivative_func1, 3, 4));
  printf("Dichotomy Method value: %f\n", Dichotomy(func1, 3, 4));
  printf("*----*\n");
  printf("*----*\n");
  printf("*```*\n");
  printf("cos(x) - exp(-pow(x, 2) / 2) + x - 1\n");
  printf("*```*\n");
  printf("Newton Method value: %f\n", Newton(func2, derivative_func2, 1, 2));
  printf("Dichotomy Method value: %f\n", Dichotomy(func2, 1, 2));
  printf("*----*\n");
}
```

Входные данные

Ввод данных с клавиатуры не предусмотрен моей программой.

Выходные данные

Программа выводит таблицу значений для 1 варианта и 2 варианта, посчитанных методами Ньютона дихотомии.

Протокол с тестами

Тест №1

Вывод:

Вывод

В работе описаны идеи и принципы трёх численных методов: дихотомии, итераций и Ньютона, а для методов дихотомии и Ньютона приведены и примеры решения уравнений.

Для этого была составлена программа на языке С, выводящая таблицу искомых значений.

Элегантное решение было достигнуто и благодаря повторению правил передачи имени функции в программу.

Список используемых источников

[1] Передача имени функции в подпрограмму — URL: http://victor192007.narod.ru/files/cpp21.html