REAL ANALYSIS NOTEBOOK

K. GRAY

Contents

1.	Section 1.2 (Folland): σ -algebras	1	
1.1.	Section 1.2: Definitions and Theorems	1	
1.2.	August 26 Group Assignment	3	
1.3.	August 28 Group Assignment	4	
1.4.	August 31 Group Assignment	6	
1.5.	September 2 Group Assignment	8	
1.6.	September 4 Group Assignment	9	
1.7.	September 9 Group Assignment	9	
2.	Section 1.3 (Folland): Measures	12	
2.1.	Section 1.3 Definitions and Theorems	12	
2.2.	September 11 Group Assignment	14	
2.3.	September 14 Group Assignment	15	
2.4.	September 16 Group Assignment	17	
3.	3. Section 1.4 (Folland): Outer Measures		
3.1.	Section 1.4 Definitions and Theorems	19	
3.2.	September 18 Group Assignment	21	
3.3.	September 21 Group Assignment	25	
3.4.	September 28 Group Assignment	27	
3.5.	September 30 Group Assignment	29	
3.6.	October 2 Group Assignment	31	
4.	Section 1.3 (Folland): Complete proof of Theorem 1.9	32	

4.1. October 5 Group Assignment	32
5. Section 1.5 (Folland): Borel Measures on the Real Line	36
5.1. Section 1.5 Definitions and Theorems	36
5.2. October 9 Group Assignment	37
5.3. October 12 Group Assignment	40
6. Section 2.1 (Folland): Measurable Functions	41
6.1. Section 2.1 Definitions and Theorems	41
6.2. October 14 Group Assignment	42
6.3. October 16 Group Assignment	43
7. Section 2.2 (Folland): Integration of Non-Negative Functions	44
7.1. Section 2.2 Definitions and Theorems	44
7.2. October 19 Group Assignment	44
7.3. October 21 Group Assignment	45
7.4. October 23 Group Assignment	48
8. Section 2.3 (Folland): Integration of Complex Functions	48
8.1. Section 2.3 Definitions and Theorems	48
8.2. October 26 Group Assignment	49
8.3. October 28 Group Assignment	51
8.4. November 2 Group Assignment	53
9. Section 2.5 (Folland): Product Measures	55
9.1. Section 2.5 Definitions and Theorems	55
9.2. November 4 Group Assignment	57
9.3. November 6 Group Assignment	60
10. Section 2.4 (Folland): Modes of Convergence	61
10.1. Section 2.4 Definitions and Theorems	61
10.2. November 9 Group Assignment	63

10.3.	November 13 Group Assignment	64
11.	Section 3.1 (Folland): Signed Measures	65
11.1.	Section 3.1 Definitions and Theorems	66
11.2.	November 16 Group Assignment	67
11.3.	November 18 Group Assignment	70
12.	Section 3.2 (Folland): The Lebesgue-Radon-Nikodym-Theorem	72
12.1.	Section 3.2 Definitions and Theorems	72
12.2.	November 20 Group Assignment	75
12.3.	November 23 Group Assignment	76
12.4.	November 25 Group Assignment	78
13.	Section 3.4 (Folland): Differentiation on Euclidean Space	79
13.1.	Section 3.4 Definitions and Theorems	79
13.2.	December 2, 4	83
14.	Homework	85
14.1.	Assignment 1 (page 1)	85
14.2.	Assignment 2 (page 2)	89
14.3.	Assignment 3 (page 3)	92
14.4.	Assignment 4 (page 4)	96

1. Section 1.2 (Folland): σ -algebras

1.1. Section 1.2: Definitions and Theorems.

Definition 1 (algebra). An algebra A is a nonempty collection of subsets of a nonempty set X which is closed under finite unions and complements.

Example. If $X = \{1, 2, 3\}$ then the following are algebras:

- $\{\emptyset, X\}$,
- $\{\emptyset, \{1\}, \{2,3\}, X\},$
- $\{\emptyset, \{2\}, \{1,3\}, X\},$
- $\{\emptyset, \{3\}, \{1, 2\}, X\}$, and
- \bullet P(X).

Any other subset of the power set is not an algebra.

Definition 2 (σ -algebra). An algebra A is a σ -algebra if it is closed under countable unions.

Example. Any algebra over a finite set is a σ -algebra, as is the power set of the set X. More examples are found in exercises.

Definition 3 (co-countable sets). a cocountable subset of a set X is a subset Y whose complement in X is a countable set. In other words, Y contains all but countably many elements of X. While the rational numbers are a countable subset of the reals, for example, the irrational numbers are a cocountable subset of the reals.

Definition 4 (σ -algebra of co-countable or countable sets). The σ -algebra of co-countable or countable sets is the collection of subsets such that either the subset or its complement is countable.

Proposition 1. Given any nonempty collection \mathcal{E} in the power set of X, there is a smallest σ -algebra that contains \mathcal{E} .

Proof. The idea of the proof is to show that an arbitrary intersection of σ -algebras is a σ -algebra. One then considers the collection of σ -algebras that contain \mathcal{E} , which is nonempty since the power set is such a set, and then take the intersection of all such sets.

Lemma 1. If a collection of sets \mathcal{E} is contained in a σ -algebra \mathcal{B} then the σ -algebra generated by \mathcal{E} is contained in \mathcal{B} .

Definition 5 (σ -algebra generated by \mathcal{E}). If \mathcal{E} is a subset of P(X) then the σ -algebra generated by \mathcal{E} is the smallest σ -algebra that contains \mathcal{E} .

Definition 6 (Borel σ -algebra). The Borel σ -algebra for a metric space X (the σ -algebra of Borel sets) is the σ -algebra generated by open sets.

Definition 7 (G_{δ}, F_{σ}) . A set in a metric space is a G_{δ} set if it is the countable intersection of open sets, it is an F_{σ} set if it the countable union of a closed set.

Example. [0,1) is an F_{σ} set since $[0,1) = \bigcup [0,1-\frac{1}{n}]$. Any singleton is a G_{δ} set, it is also an F_{σ} set.

Proposition 2. Each of the following sets generates the Borel sets in \mathbb{R} :

- open intervals,
- closed intervals,
- half open intervals,
- open rays,
- closed rays.

Definition 8 (product σ -algebra). If M_{α} is a indexed collection of σ -algebras on an indexed collections of sets X_{α} , then the product σ -algebra on the product space $X = \prod X_{\alpha}$ is the σ algebra generated by the inverse image of elements of M_{α} under the coordinate maps π_{α} .

The σ -algebra of subsets of $X \times Y$ generated by the semi-algebra \mathcal{R} is called the product σ -algebra and is denoted by $\mathcal{A} \otimes \mathcal{B}$.

Example. If X_1, X_2 are the indexed set with associated σ -algebras M_1, M_2 then the inverse image of the coordinate maps are sets of the form $E_1 \times X_2$ and $X_1 \times F_2$, where $E_1 \in M_1$ and $F_2 \in M_2$. Notice that using intersections you get all sets of the form $E_1 \times F_2$.

Proposition 3. The product σ -algebra (in the case that the index set is countable) is generated by all products of things in the M_i 's

Proposition 4. If each M_{α} is generated by a set E_{α} then the product sigma algebra is generated by elements of the E_{α} , rather than arbitrary elements of M_{α} .

Theorem 1. If X_1, X_2, \dots, X_n are metric spaces then the Borel sets on the product space is the product of the Borel sets on the individual spaces.

Proof. The proof uses the preceding proposition.

Definition 9 (elementary family). An elementary family is a collection of subsets that contains the empty set, is closed under finite intersections, and the complement of any set in the collection is a finite disjoint union of elements of the collection.

Example. Any σ -algebra is an elementary family. In general the point of elementary families is starting with minimal information how does one build a σ -algebra, vs. knowing that there is a minimal σ -algebra.

Proposition 5. The finite disjoint union of members of an elementary family is an algebra.

1.2. August 26 Group Assignment. Note: solutions for the August 26th assignment were provided by Professor Duncan and expanded upon by author.

Let $\{A_k\}_{k=1}^{\infty}$ be a sequence of sets. We define

$$\limsup_{k \to \infty} A_k = \bigcap_{j=1}^{\infty} \left(\bigcup_{k=j}^{\infty} A_k \right) \quad \text{and} \quad \liminf_{k \to \infty} A_k = \bigcup_{j=1}^{\infty} \left(\bigcap_{k=j}^{\infty} A_k \right).$$

(1) Prove that $\limsup_{k\to\infty} A_k = \{x : x \in A_k \text{ for infinitely many } k\}.$

Proof. Let $E = \{x : x \in A_k \text{ for infinitely many } k\}$. To show $\limsup_{k \to \infty} A_k = E$, we will show $\limsup_{k \to \infty} A_k \subseteq E$ and $\limsup_{k \to \infty} A_k \supseteq E$. First, let's show $\limsup_{k \to \infty} A_k \subseteq E$. Let $x \in \limsup_{k \to \infty} A_k$. Suppose for the purposes of contradiction that $x \notin E$. If $x \notin E$, then it is not the case that x is in infinitely many sets A_k . If x is not in infinitely many sets A_k , then there must exist some j_0 such that for all $k \ge j_0$, $x \notin A_k$. Then, $x \notin \bigcup_{k=j_0}^{\infty} A_k$. Thus, $x \notin \limsup_{k \to \infty} A_k$ which contradicts our assumption that $x \in \limsup_{k \to \infty} A_k$. Hence, if $x \in \limsup_{k \to \infty} A_k$, $x \in E$.

Prove that $\liminf_{k\to\infty} A_k = \{x : \text{ there is a } j \text{ such that } x \in A_l \text{ for all } l \geq j\}.$

Proof. If there is some j such that $x \in A_l$ for any $l \geq j$ then $x \in \bigcap_{j=k}^{\infty} A_k$ and hence $x \in \liminf A_k$. If on the other hand if for any j there is $k_0 > j$ such that $x \notin A_{k_0}$ then $x \notin \bigcap_{k=j}^{\infty} A_k$ for any j and hence $x \notin \liminf A_k$.

(2) Prove that $\liminf A_k \subseteq \limsup A_k$.

Proof. If $x \in \liminf A_k$ then there is some j such that $x \in A_l$ for any $l \geq j$ then x is in infinitely many of the A_j and hence $x \in \limsup A_k$.

(3) Prove that $\limsup A_k = \liminf A_k = \bigcap A_k$ if $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$.

Proof. We have that $\bigcup_{j=k}^{\infty} A_k = A_j$ since the sequence is nested. It follows that $\limsup A_k = A_j$ $\bigcap_{j=1}^{\infty} A_j \subseteq \liminf A_k$.

(4) Give examples of sequences of sets that satisfy the following:

iii. $\liminf A_k \neq \emptyset$ and i. $\limsup A_k = \emptyset$.

 $X = \mathbb{N} \text{ and } A_k = \{k\}.$ $\limsup A_k \neq \liminf A_k.$ Then, $\limsup A_k = \{0, 1\}$

Let $X = \mathbb{R}$ and let and $\liminf A_k = \{0\}.$ ii. $\liminf A_k=\emptyset$. $X=\mathbb{R} \text{ and } A_k=[k,k+1]. \qquad A_k=\begin{cases} \{0,1\} & \text{if k is even}\\ \\ \{0\} & \text{otherwise} \end{cases}.$

1.3. August 28 Group Assignment.

(1) Show that the intersection of two σ -algebras is a σ -algebra.

Proof. Let \mathcal{M}, \mathcal{A} be any σ -algebras on some set X. We will show $\mathcal{M} \cap \mathcal{A}$ is a σ -algebra. Because \mathcal{M} and \mathcal{A} are σ -algebras, $X \in \mathcal{M}, \mathcal{A}$ and $\emptyset \in \mathcal{M}, \mathcal{A}$. Therefore $X, \emptyset \in \mathcal{M} \cap \mathcal{A}$, so $\mathcal{M} \cap \mathcal{A}$ is nonempty. Consider some $E \in \mathcal{M} \cap \mathcal{A}$. Then $E \in \mathcal{M}$ and $E \in \mathcal{A}$. Since $\mathcal{M}, \mathcal{A} \text{ are } \sigma\text{-algebras}, E \in \mathcal{M} \text{ and } E \in \mathcal{A} \text{ imply } E^c \in \mathcal{M} \text{ and } E^c \in \mathcal{A}. \text{ Thus, } E^c \in \mathcal{M} \cap \mathcal{A}.$ Consider $\{E_i\}_{i=1}^{\infty} \subset \mathcal{M} \cap \mathcal{A}$. Then, for all $i, E_i \in \mathcal{M}$ and $E_i \in \mathcal{A}$. \mathcal{M} and \mathcal{A} are closed under countable unions, so $\bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$ and $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$. Hence, $\bigcup_{i=1}^{\infty} E_i \in \mathcal{M} \cap \mathcal{A}$. Thus the intersection of any two σ -algebras is a σ -algebra.

(2) Show that an algebra \mathcal{A} is a σ -algebra if and only if it is closed under countable increasing unions.

Proof. Assume \mathcal{A} is a σ -algebra. Then, \mathcal{A} is closed under countable unions so \mathcal{A} must be closed under countable increasing unions.

Let \mathcal{A} be an algebra on some set X that is closed under countable increasing unions. Then, consider a countable collection of sets in \mathcal{A} , namely $\{E_i\}_{i=1}^{\infty}$. To show \mathcal{A} is a σ -algebra we must show $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$. Define $F_n = \bigcup_{j=1}^n E_j$. Since \mathcal{A} is an algebra, \mathcal{A} is closed under finite unions, so $F_n \in \mathcal{A}$ for all n. Further, $\{F_j\}_{j=1}^{\infty} \subset \mathcal{A}$. Additionally, notice $F_1 = E_1$, $F_2 = E_1 \cup E_2$, $F_3 = E_1 \cup E_2 \cup E_3$, \cdots so $F_1 \subseteq F_2 \subseteq F_3 \subseteq \cdots$. Thus, $\{F_j\}_{j=1}^{\infty}$ is an increasing collection of sets. Because \mathcal{A} is closed under countable increasing unions, $\bigcup_{j=1}^{\infty} F_j \in \mathcal{A}$. But $\bigcup_{j=1}^{\infty} F_j = \bigcup_{i=1}^{\infty} E_i$. Thus, $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$ so we have shown \mathcal{A} is a σ -algebra.

(3) Prove that the collection of countable or co-countable sets is a σ -algebra.

Proof. Let $\mathcal{A} = \{E \subset X : E \text{ is countable or } E^c \text{ is co-countable}\}$. We will show that \mathcal{A} is a σ -algebra on X. Since $|\emptyset| = 0$, \emptyset is countable which implies $\emptyset \in \mathcal{A}$. Also, $X^c = \emptyset$, so $X \in \mathcal{A}$. Consider any $A \in \mathcal{A}$. Then, either A is countable or A^c is countable. If A is countable, $(A^c)^c$ is countable, so $A^c \in A$. If A^c is countable, then $A^c \in \mathcal{A}$.

Now, consider $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$. To show \mathcal{A} is a σ -algebra we must show $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$. If for all $i \geq 1$, A_i is countable, then $\bigcup_{i=1}^{\infty} A_i$ is countable since the countable union of countable sets is countable. Thus, since $\bigcup_{i=1}^{\infty} A_i$ is countable, $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

Suppose there exists a least one $A_k \in \mathcal{A}$ for that is not countable. Then, $(A_k)^c$ is countable. Also, $(\bigcup_{i=1}^{\infty} A_i)^c = \bigcap_{i=1}^{\infty} (A_i)^c \subset (A_k)^c$. Since $(A_k)^c$ is countable, $(\bigcup_{i=1}^{\infty} A_i)^c$ must be countable. Thus, $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

(4) Let $\{A_k\}_{k=1}^{\infty}$ be a countable collection of sets in a σ -algebra, \mathcal{A} . Prove there exist disjoint sets $\{F_k\}_{k=1}^{\infty}$ in \mathcal{A} such that $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} F_k$.

Proof. Consider a countable collection of sets in a σ -algebra \mathcal{A} , $\{A_k\}_{k=1}^{\infty}$. Let

$$F_k = A_k \setminus \left[\bigcup_{j=1}^{k-1} A_j \right]$$
. So,

$$F_1 = A_1, \quad F_2 = A_2 \backslash A_1, \quad F_3 = A_3 \backslash (A_1 \cup A_2) = A_3 \cap A_1^c \cap A_2^c, \quad \cdots, \quad F_k = A_k \bigcap \left[\bigcup_{j=1}^{k-1} A_j\right]^c.$$
 Thus all F_k are disjoint and $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} F_k$.

1.4. August 31 Group Assignment.

- (1) Prove proposition 1.2 from Folland (p. 22): $\mathcal{B}_{\mathbb{R}}$ is generated by each of the following: the open intervals: $\mathcal{E}_1 = \{(a,b) : a < b\}$, the closed intervals: $\mathcal{E}_2 = \{[a,b] : a < b\}$, the half-open intervals: $\mathcal{E}_3 = \{(a,b] : a < b\}$ or $\mathcal{E}_4 = \{[a,b) : a < b\}$, the open rays: $\mathcal{E}_5 = \{(a,\infty) : a \in \mathbb{R}\}$ or $\mathcal{E}_6 = \{(-\infty,a) : a \in \mathbb{R}\}$, the closed rays: $\mathcal{E}_7 = \{[a,\infty) : a \in \mathbb{R}\}$ or $\mathcal{E}_8 = \{(-\infty,a] : a \in \mathbb{R}\}$. Proof. Let \mathcal{O} denote the collection of all open intervals in \mathbb{R} so that $\mathcal{M}(\mathcal{O}) = \mathcal{B}_{\mathbb{R}}$. For all $j, j \neq 3, 4$, the elements of \mathcal{E}_j are Borel sets so $\mathcal{E}_j \subset \mathcal{B}_{\mathbb{R}}$ implies $\mathcal{M}(\mathcal{E}_j) \subset \mathcal{B}_{\mathbb{R}}$. So we will prove $\mathcal{M}(\mathcal{E}_j) \supset \mathcal{B}_{\mathbb{R}}$ for all $j \neq 3, 4$. It will suffice to show $(a,b) \in \mathcal{M}(\mathcal{E}_j)$ for any $a,b \in \mathbb{R}$ with a < b since this implies $\mathcal{M}((a,b)) \subset \mathcal{M}(\mathcal{E}_j)$ and so $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}(\mathcal{E}_j)$ as desired.
 - \mathcal{E}_1 Every open set in \mathbb{R} is at most a countable union of open intervals, so for $\mathcal{E}_1 = \{(a,b) : a < b\}, \, \mathcal{M}(\mathcal{E}_1) \supset \mathcal{B}_{\mathbb{R}}.$
 - \mathcal{E}_2 Prove the closed intervals: $\mathcal{E}_2 = \{[a,b] : a < b\}$, generate $\mathcal{B}_{\mathbb{R}}$. Notice

$$(a,b) = \bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b - \frac{1}{n} \right]. \text{ Thus, } (a,b) \in \mathcal{M}(\mathcal{E}_2).$$

 \mathcal{E}_3 Prove the $\mathcal{E}_3 = \{(a, b] : a < b\}$ generate $\mathcal{B}_{\mathbb{R}}$. Notice

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a, b - \frac{1}{n} \right]$$
. Thus, $(a,b) \in \mathcal{M}(\mathcal{E}_3)$. So $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}(\mathcal{E}_3)$

Also, notice

$$(a,b] = \bigcap_{n=1}^{\infty} \left(a, b + \frac{1}{n} \right)$$
. Thus, $(a,b] \in \mathcal{B}_{\mathbb{R}}$. So $\mathcal{M}(\mathcal{E}_3) \subset \mathcal{B}_{\mathbb{R}}$. Therefore, $\mathcal{M}(\mathcal{E}_3) = \mathcal{B}_{\mathbb{R}}$.

 \mathcal{E}_4 Prove $\mathcal{E}_4 = \{[a,b) : a < b\}$, Notice

$$(a,b) = \bigcup_{n=1}^{\infty} \left[a - \frac{1}{n}, b \right)$$
. Thus, $(a,b) \in \mathcal{M}(\mathcal{E}_4)$. So $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}(\mathcal{E}_4)$.

Also, notice

$$[a,b) = \bigcap_{n=1}^{\infty} \left(a + \frac{1}{n}, b \right)$$
. Thus, $[a,b) \in \mathcal{B}_{\mathbb{R}}$. So $\mathcal{M}(\mathcal{E}_4) \subset \mathcal{B}_{\mathbb{R}}$. Therefore, $\mathcal{M}(\mathcal{E}_4) = \mathcal{B}_{\mathbb{R}}$.

 \mathcal{E}_5 Prove the open rays: $\mathcal{E}_5 = \{(a, \infty) : a \in \mathbb{R}\}$ generates $\mathcal{B}_{\mathbb{R}}$. Notice

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a + \frac{1}{n}, b - \frac{1}{n} \right] = \bigcup_{n=1}^{\infty} \left\{ \left(a + \frac{1}{n}, \infty \right) \cap \left(b - \frac{1}{n}, \infty \right)^c \right\}$$

implies $(a,b) \in \mathcal{M}(\mathcal{E}_5)$. Thus, $\mathcal{O} \subset \mathcal{M}(\mathcal{E}_5)$ which implies $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}(\mathcal{E}_5)$.

 \mathcal{E}_6 Prove $\mathcal{E}_6 = \{(-\infty, a) : a \in \mathbb{R}\}$ generates $\mathcal{B}_{\mathbb{R}}$. Notice

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a + \frac{1}{n}, b - \frac{1}{n} \right] = \bigcup_{n=1}^{\infty} \left\{ \left(a + \frac{1}{n}, \infty \right) \cap \left(b - \frac{1}{n}, \infty \right)^c \right\}$$

implies $(a,b) \in \mathcal{M}(\mathcal{E}_6)$. Thus, $\mathcal{O} \subset \mathcal{M}(\mathcal{E}_6)$ which implies $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}(\mathcal{E}_5)$.

 \mathcal{E}_7 Prove the closed rays $\mathcal{E}_7 = \{[a, \infty) : a \in \mathbb{R}\}$ generates $\mathcal{B}_{\mathbb{R}}$. Notice

$$(a,b) = \bigcup_{n=1}^{\infty} \left[a - \frac{1}{n}, b + \frac{1}{n} \right) = \bigcup_{n=1}^{\infty} \left\{ \left[a - \frac{1}{n}, \infty \right) \cap \left[b + \frac{1}{n}, \infty \right)^c \right\}$$

implies $(a,b) \in \mathcal{M}(\mathcal{E}_7)$. Thus, $\mathcal{O} \subset \mathcal{M}(\mathcal{E}_7)$ which implies $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}(\mathcal{E}_7)$.

 \mathcal{E}_8 Prove $\mathcal{E}_8 = \{(-\infty, a] : a \in \mathbb{R}\}$ generates $\mathcal{B}_{\mathbb{R}}$. Notice

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a + \frac{1}{n}, b - \frac{1}{n} \right] = \bigcup_{n=1}^{\infty} \left\{ \left(-\infty, b - \frac{1}{n} \right] \cap \left(-\infty, a + \frac{1}{n} \right]^c \right\}$$

implies $(a,b) \in \mathcal{M}(\mathcal{E}_8)$. Thus, $\mathcal{O} \subset \mathcal{M}(\mathcal{E}_8)$ which implies $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}(\mathcal{E}_8)$.

1.5. September 2 Group Assignment. For the following problems, let X be a nonempty set and let $E \subseteq \mathcal{P}(X)$. Note: I used the following resource on these problems: http://math.stackexchange.com/questions/612266/on-sigma-algebra-generated-by-mathcale.

(1) Let \mathcal{F} denote the collection of countable subsets of E. If $F \in \mathcal{F}$ prove that the σ -algebra generated by F is contained in the σ -algebra generated by E.

Proof. Let $F \in \mathcal{F}$, then $F \subset E$. Thus, by lemma 1.1, $\mathcal{M}(F) \subset \mathcal{M}(E)$.

(2) We will denote by M_F as the σ -algebra generated by F. Prove that $N := \bigcup_{F \in \mathcal{F}} M_F$ is a σ -algebra.

Proof. $F \in N$ so $N \neq \emptyset$. Suppose $Y \in N$. Then, $Y \in \mathcal{M}_F$. Since \mathcal{M}_F is a σ -algebra, $Y^c \in \mathcal{M}_F \subset N$. Thus, $Y^c \in N$. Consider $\{Y_i\}_{i=1}^{\infty} \subset N$. Then, $Y_i \in M_{F_i}$ for some i. Consider $K = \bigcup_{i=1}^{\infty} F_i$. Notice K is a countable union of countable subsets of E, so K is a countable subset of E and so $E \in \mathcal{F}$ and $E \in \mathcal{M}_F \subset N$. Then, for all $E \in \mathcal{K}_F \subset K$ so by lemma 1.1 in Rolland, $E \in \mathcal{M}_F \subset N$. Recall for all $E \in \mathcal{K}_F \subset K$ such that $E \in \mathcal{M}_F$. Thus, for all $E \in \mathcal{M}_F$.

- (3) Prove that E is contained in N and hence the σ -algebra generated by E is contained in N. Proof. Let $x \in E$. Then, consider a countable sub collection of E that contains x, namely, S_x , such that $S_x = \bigcup_{x \in S \subset E} x$. Then, since S_x is a countable subset of E, $S_x \in \mathcal{F}$, so $S_x \subset N := \bigcup_{F \in \mathcal{F}} M_F$. Notice $\bigcup_{x \in E} S_x = E$. From part (2), we know N is a σ -algebra, so if $S_x \subset N$, $\bigcup_{x \in E} S_x \subset N$ and so $E \subset N$. Thus, $\mathcal{M}(E) \subset N$.
- (4) Conclude that N is the σ -algebra generated by E.

Proof. From (3), we know $\mathcal{M}(E) \subset N$. So, we will show $N \subset \mathcal{M}(E)$. From part (1), we know for any $F \in \mathcal{F}$, $\mathcal{M}(F) \subset \mathcal{M}(E)$. Thus, $\bigcup_{F \in \mathcal{F}} M_F \subset \mathcal{M}(E)$. So, $N \subset \mathcal{M}(E)$. Hence, $N = \mathcal{M}(E)$, so N is the σ -algebra generated by E.

1.6. September 4 Group Assignment.

(1) Prove that any σ -algebra forms a monotone class.

Proof. Consider some σ -algebra \mathcal{A} . Then, \mathcal{A} is non-empty, closed under complements, and closed under countable unions. Since \mathcal{A} is closed under arbitrary countable unions, \mathcal{A} is closed under increasing countable unions. Also, since $\bigcap_j E_j = \left(\bigcup_j (E_j)^c\right)^c$, \mathcal{A} is closed under arbitrary countable intersections. Thus, \mathcal{A} is closed under decreasing countable intersections and so \mathcal{A} is a monotone class.

(2) Let $\{E_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of monotone classes on a space X. Prove that $\bigcap_{{\lambda}\in\Lambda} E_{\lambda}$ is a monotone class on X.

Proof. Consider $\{Y_i\}_{i=1}^{\infty} \subset \bigcap_{\lambda \in \Lambda} E_{\lambda}$. Then, for all λ , $\{Y_i\}_{i=1}^{\infty} \subset E_{\lambda}$ so, $\bigcup_{i=1}^{\infty} Y_i \subset E_{\lambda}$ for all $\lambda \in \Lambda$. Thus, $\{E_{\lambda}\}_{{\lambda \in \Lambda}}$ is closed under countable increasing unions.

Similarly, for all λ , $\{Y_i\}_{i=1}^{\infty} \subset E_{\lambda}$ so, $\bigcap_{i=1}^{\infty} Y_i \subset E_{\lambda}$ for all $\lambda \in \Lambda$. Thus, $\{E_{\lambda}\}_{{\lambda} \in \Lambda}$ is closed under countable decreasing intersections.

(3) Prove that given any subset of the power set of X there is a unique smallest monotone class containing the given subset.

Proof. Suppose there exist two smallest monotone classes M,N. From (2) we know $M\cap N$ must be a monotone class. Then, since M,N are the smallest monotone classes, $M\subset M\cap N$ and $N\subset M\cap N$. But, $M\cap N\subset M$ and $M\cap N\subset N$ which implies M=N and also that $M\cap N$ is a smaller monotone class. Thus, there must exist a unique smallest monotone class.

1.7. September 9 Group Assignment.

(1) Let M, N be σ -algebras on X, Y respectively. We define a rectangle to be a set $A \times B \subseteq X \times Y$ such that $A \in M$ and $B \in N$.

- (a) Prove that the σ -algebra generated by the set of rectangles is equal to $M \otimes N$. Proof. Let R denote the set of rectangles. Note $M \otimes N = \text{set}$ of all sets in $M \times Y \cup X \times \mathbb{R}$ set of all sets in N. We will show the σ -algebra generated by R, $R = M \otimes N$. First, show $R \subset M \otimes N$. For any $A \times B \in R$, $A \times B \subseteq X \times Y$ with $A \in M$ and $B \in N$. Then, $A \times B = (A \times Y) \cap (X \times B) \in M \otimes N$. Next, show $R \supset M \otimes N$. Note $M \otimes N = \text{set}$ of all sets in $M \times Y \cup X \times \mathbb{R}$ set of all sets in N. So for any $M_i \times N_i \in M \otimes N$, $M_i \times N_i = (A \times Y) \cap (X \times B)$ for some $A \in M$, $B \in N$. Then, $M_i \times N_i = A \times B$ for some $A \in M$ and $B \in N$, so $M_i \times N_i \in R$.
- (2) Let M, N be σ -algebras on X, Y respectively. Given a set $E \subseteq X \otimes Y$ and a fixed $x \in X$, we define the x cross-section $E_x = \{y : (x, y) \in E\}$ and for a fixed $y \in Y$ we define the y cross-section $E^y = \{x : (x, y) \in E\}$
 - (a) Prove that if $E = A \times B$ is a rectangle, then

$$E_x = \begin{cases} B & x \in A \\ & & \text{and} \end{cases}$$
 and

$$E^{y} = \begin{cases} A & y \in B \\ \emptyset & y \notin B \end{cases}$$

Proof. Let M, N be σ -algebras on X, Y respectively. Given a set $E \subseteq X \otimes Y$, with $E = A \times B$ and a fixed $x \in X$, $E_x = \{y : (x, y) \in E\}$. For all $(x, y) \in E$, $y \in B$. So, $E_x = B$ when $x \in A$. If $x \notin A$, then $(x, y) \notin E$ so $E_x = \emptyset$. Thus,

$$E_x = \begin{cases} B & x \in A \\ \emptyset & x \notin A \end{cases}$$

Next, for a fixed $y \in Y$, $E^y = \{x : (x, y) \in E\}$. For all $(x, y) \in E$, $x \in A$. So, $E^y = A$ when $y \in B$ and $(x, y) \in E$. If $y \notin B$, then, $(x, y) \notin E$ so $E^y = \emptyset$. Thus,

$$E^{y} = \begin{cases} A & y \in B \\ \emptyset & y \notin B \end{cases}$$

(b) Consider $M = N = B_{\mathbb{R}}$ and let $E = \{(x, y) : x < y\}$. Determine

$$E^{\frac{1}{3}}, E_{\frac{1}{3}}, E^0, E_1, \text{ and } E^{\frac{1}{2}}.$$

$$\begin{split} E^{\frac{1}{3}} &= \left\{ x: \left(x, \frac{1}{3} \right) \in E \right\}. \text{ This is the line } y = \frac{1}{3}. \\ E_{\frac{1}{3}} &= \left\{ y: \left(\frac{1}{3}, y \right) \in E \right\}. \text{ This is the line } x = \frac{1}{3} \end{split}$$

$$E^0 = \{x: (x,0) \in E\}$$
 . This is the line $y=0$

$$E_1 = \{y : (1, y) \in E\}$$
. This is the line $x = 1$

$$E^{\frac{1}{2}} = \left\{ x : \left(x, \frac{1}{2} \right) \in E \right\}$$
. This is the line $y = \frac{1}{2}$.

(c) Prove that the set \mathcal{R} consisting of $E \subseteq X \times Y$ such that $E_x \in N$ for all $x \in X$ and $E^y \in M$ for all $y \in Y$ contains all rectangles.

Proof. Consider $\mathcal{R} = \{E \subset X \times Y : E_x \in N \text{ for all } x \in X \text{ and } E^y \in M \text{ for all } y \in Y\}$. \mathcal{R} contains all rectangles since all x from $M \times N$ are either from N or \emptyset and all y are either from M or \emptyset .

(d) Prove that \mathcal{R} is a σ -algebra, and hence it contains all of $M \otimes N$.

Proof. Consider some $\{E_i\}_{i=1}^{\infty}$ with $E_i \subseteq X \times Y$ for all i. Then, $\bigcup_{i=1}^{\infty} E_i = (\cup E_i)_x \times (\cup E_i)^y$. By part (d), $E \in M \otimes N \subseteq \mathbb{R}$. So for all $E \in R$, $E_x \in N$ and $E_y \in M$. Notice $(\cup E_i)_x = \cup (E_i)_x$ and $(E_i)_x \in N$ implies $\cup (E_i)_x \in N$. N is an σ -algebra, so $(\cup E_i)_x \in N$. Similarly, $(\cup E_i)^y = \cup (E_i)^y$ and $(E_i)^y \in M$ implies $\cup (E_i)^y \in M$. M is an σ -algebra, so $(\cup E_i)^y \in M$. Thus, \mathcal{R} is closed under countable unions. Also, for any $E \in \mathcal{R}$, $E_x \in N$ and $E^y \in M$. Since M, N are σ -algebra $(E_x)^c = (E^c)_x$ and $(E^y)^c = (E^c)^y$ imply $(E^y)^c, (E_x)^c \in M, N$ respectively. Thus, \mathcal{R} is closed under complements. So, \mathcal{R} is a σ -algebra

2. Section 1.3 (Folland): Measures

2.1. Section 1.3 Definitions and Theorems.

Definition 10 (measure). Let X be a set equipped with a σ -algebra \mathcal{M} . A measure on \mathcal{M} or on (X, \mathcal{M}) is a function $\mu : \mathcal{M} \to [0, \infty]$ such that

i. $\mu(\emptyset) = 0$,

ii. (countable additivity) if $\{E_j\}_1^{\infty}$ is a sequence of disjoint sets in \mathcal{M} then

$$\mu\left(\bigcup_{1}^{\infty} E_j\right) = \sum_{1}^{\infty} \mu(E_j)$$

Definition 11 (measurable space). If X is a set and $\mathcal{M} \subset \mathcal{P}(X)$ is a σ -algebra, (X, \mathcal{M}) is called a measurable space and the sets in \mathcal{M} are called measurable sets. If μ is a measure on (X, \mathcal{M}) , then (X, \mathcal{M}, μ) is called a measure space.

Definition 12 (finite measure). Let (X, \mathcal{M}, μ) be a measure space. μ is called finite when $\mu(X) < \infty$. Note for all $E \in \mathcal{M}$, $\mu(X) = \mu(E) + \mu(E^c)$, so for all $E \in \mathcal{M}$, $\mu(E) < \infty$.

Definition 13. (σ -finite measure) Let (X, \mathcal{M}, μ) be a measure space. μ is σ -finite if

$$X = \bigcup_{1}^{\infty} E_j$$
 where $\mu(E_j) < \infty$ for all i, j .

Definition 14. (σ -finite set) Let (X, \mathcal{M}, μ) be a measure space. E is σ -finite for μ if

$$E = \bigcup_{1}^{\infty} E_j$$
 where $E_j \in \mathcal{M}, \ \mu(E_j) < \infty$ for all i, j .

Definition 15. (semi-finite measure) Let (X, \mathcal{M}, μ) be a measure space. μ is semi-finite if for each $E \in \mathcal{M}$ with $\mu(E) = \infty$ there exists $F \in \mathcal{M}$ with $F \subset E$ and $0 < \mu(F) < \infty$.

Example (measure). Let $X \neq \emptyset$, $\mathcal{M} = \mathcal{P}(X)$ and $f: X \to [0, \infty]$. f determines a measure μ on \mathcal{M} by the formula $\mu(E) = \sum_{x \in E} f(x)$.

- (1) μ is semifinite iff $f(x) < \infty \ \forall x \in X$
- (2) μ is σ -finite iff μ is semifinite and $\{x: f(x) > 0\}$ is countable
- (3) (counting measure) f(x) = 1 for all x, then μ is counting measure
- (4) (point mass, Dirac measure) f defined by $f(x_0) = 1$ and f(x) = 0 for all $x \neq x_0$, then μ is the point mass or Dirac measure

Example (measure). Let X be an uncountable set and let \mathcal{M} be the σ -algebra of countable or co-countable sets. The function μ on \mathcal{M} defined by $\mu(E) = 0$ if E is countable and $\mu(E) = 1$ if E is co-countable is a measure.

Example (finitely additive measure, not a measure). Let X be an infinite set and $\mathcal{M} = \mathcal{P}(X)$. Define $\mu(E) = 0$ if E is finite and $\mu(E) = \infty$ if E is infinite. μ is a finitely additive measure but not a measure.

Theorem 2. Let (X, \mathcal{M}, μ) be a measure space.

- (1) (monotonicity) If $E, F \in \mathcal{M}$ and $E \subset F$, then $\mu(E) \leq \mu(F)$.
- (2) (subadditivity) If $\{E_j\}_1^{\infty} \subset \mathcal{M}$, then $\mu(\cup_1^{\infty} E_j) \leq \sum_1^{\infty} \mu(E_j)$.
- (3) (continuity from below) If $\{E_j\}_1^{\infty} \subset \mathcal{M} \text{ and } E_1 \subset E_2 \subset \dots, \text{ then } \mu(\cup_1^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j).$
- (4) (continuity from above) If $\{E_j\}_1^{\infty} \subset \mathcal{M} \text{ and } E_1 \supset E_2 \supset \dots, \text{ then } \mu(\cap_1^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.

Definition 16 (null set). If (X, \mathcal{M}, μ) is a measure space, $E \in \mathcal{M}$ is called null if $\mu(E) = 0$.

Remark 1. Any countable union of null sets is a null set.

Definition 17 (almost-everywhere (a.e.)). If a statement is true about points $x \in X$ except for x in some null set, then it is true almost everywhere, a.e.

Remark 2. If $\mu(E) = 0$ and $F \subset E$, then $\mu(F) = 0$ by monotonicity provided that $F \in \mathcal{M}$. If $F \notin \mathcal{M}$ this may not be true.

Definition 18. (complete measure) A measure whose domain includes all subsets of null sets. This can always be achieved by enlarging the domain of μ as we can see in the theorem below.

Theorem 3. Suppose that (X, \mathcal{M}, μ) is a measure space. Let $\mathcal{N} = \{N \in \mathcal{M} : \mu(N) = 0\}$ and $\overline{\mathcal{M}} = \{E \cup F : E \in \mathcal{M} \text{ and } F \subset N \text{ for some } N \in \mathcal{N}\}$. Then, $\overline{\mathcal{M}}$ is a σ -algebra and there is a unique extension $\overline{\mu}$ of μ to a complete measure on $\overline{\mathcal{M}}$.

2.2. September 11 Group Assignment.

(1) If $\mu_1, \mu_2, \dots, \mu_n$ are measures on (X, \mathcal{M}) and $a_1, a_2, \dots, a_n \in [0, \infty)$, then

$$\sum_{i=1}^{n} a_i \mu_i \text{ is a measure on } (X, \mathcal{M}).$$

Proof. Since μ_i for $1 \leq i \leq n$ are measures, their range is $[0, \infty]$ so the sum of these measures will have range of $[0, \infty]$. Also, $(\sum_{i=1}^n a_i \mu_i)(\emptyset) = \sum_{i=1}^n a_i \mu_i(\emptyset) = \sum_{i=1}^n a_i \cdot 0 = 0$. Consider some disjoint collection of sets $\{A_j\}_{j=1}^{\infty}$. Then, by countable additivity of $\mu_i's$,

$$\left(\sum_{i=1}^n a_i \mu_i\right) \left(\bigcup_{j=1}^\infty A_j\right) = \sum_{i=1}^n a_i \left(\mu_i \left(\bigcup_{j=1}^\infty A_j\right)\right) = \sum_{i=1}^n a_i \sum_{j=1}^\infty \mu_i(A_j) = \sum_{j=1}^\infty \sum_{i=1}^n a_i \mu_i(A_j).$$

Hence, $\sum_{i=1}^{n} a_i \mu_i$ is countably additivity and so this is a measure on (X, \mathcal{M}) .

(2) If (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$, then $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$. Proof. Assume (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$. Notice $E = E \setminus F \cup (F \cap E)$ and $F = F \setminus E \cup (E \cap F)$. Then, $\mu(E) = \mu(E \setminus F \cup (F \cap E))$ and $\mu(F) = \mu(F \setminus E \cup (F \cap E))$. Also, $F \setminus E \cap (E \cap F) = \emptyset$ and $E \setminus F \cap (F \cap E) = \emptyset$. μ is finitely additive over disjoint sets, so $\mu(E) = \mu(E \setminus F) + \mu(F \cap E)$ and $\mu(F) = \mu(F \setminus E) + \mu(F \cap E)$. Thus,

$$\mu(E) + \mu(F) = \mu(E \backslash F) + \mu(F \cap E) + \mu(F \cap E) + \mu(F \cap E) = (\mu(E \backslash F) + \mu(F \cap E) + \mu(F \cap E)) + \mu(F \cap E) + \mu(F$$

Since $(E \backslash F) \cup (F \cap E) \cup (F \backslash E)$ is a disjoint union, $\mu((E \backslash F) \cup (F \cap E) \cup (F \backslash E)) = \mu(E \backslash F) + \mu(F \cap E) + \mu(F \backslash E)$. But, $(E \backslash F) \cup (F \cap E) \cup (F \backslash E) = E \cup F$. Hence, $\mu(E \cup F) = \mu(E \backslash F) + \mu(F \cap E) + \mu(F \backslash E)$ and so

$$\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F).$$

(3) If (X, \mathcal{M}, μ) is a measure space and $E \in \mathcal{M}$, define $\mu_E(A) = \mu(A \cap E)$ for any $A \in \mathcal{M}$. Prove that μ_E is a measure on \mathcal{M} .

Proof. Fix some $E \in \mathcal{M}$. Define $\mu_E(A) = \mu(A \cap E)$ for any $A \in \mathcal{M}$. Notice $\emptyset \in \mathcal{M}$, so $\mu_E(\emptyset) = \mu(\emptyset \cap E) = \mu(\emptyset) = 0$. Next consider a collection of disjoint sets, $\{A_i\}_{i=1}^{\infty} \subset \mathcal{M}$. Then $\{A_i \cap E\}_{i=1}^{\infty}$ is a collection of disjoint sets, so by countable additivity of μ , we have:

$$\mu_E\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{\infty} A_i \cap E\right) = \sum_{i=1}^{\infty} \mu(A_i \cap E) = \sum_{i=1}^{\infty} \mu_E(A_i).$$

Thus, μ_E is a mesure on \mathcal{M} .

- 2.3. September 14 Group Assignment. These solutions are from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=OCDIQFjADahUKEwiVu-_PtM_IAhVBFz4KHamFDmM&url=http%3A%2F%2Fwww.math.psu.edu%2Fballif%2Fassignments%2FMath%2520501%2520Analysis%2FMATH501_HW2.tex&usg=AFQjCNHXa01zt_Ejvp67o5jcfLLtqmuV8w&bvm=bv.105454873,d.cWw&cad=rja and http://www.math.tamu.edu/~thomas.schlumprecht/hw3_math607_13c_sol.pdf
 - (1) If (X, \mathcal{M}, μ) is a measure space and $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$, then $\mu(\liminf E_j) \leq \liminf \mu(E_j)$. Proof. Recall that $\liminf_{j \to \infty} x_j = \lim_{j \to \infty} \left(\inf_{k \geq j} x_k\right)$. First, notice for all $n \in \mathbb{N}$, $\bigcap_{j \geq n} E_j \subseteq E_j$ so by monotonicity of μ , $\mu\left(\bigcap_{j \geq n} E_j\right) \leq \mu(E_j)$ for all $j \geq n$. Therefore, $\mu\left(\bigcap_{j \geq n} E_j\right) \leq \inf_{j \geq n} \mu(E_j)$. Thus,

$$\mu\left(\liminf_{j\to\infty} E_j\right) = \mu\left(\bigcup_{n=1}^{\infty}\bigcap_{j\geq n} E_j\right) = \lim_{j\to\infty}\mu\left(\bigcap_{j\geq n} E_j\right) \leq \lim_{n\to\infty}\inf_{j\geq n}\mu(E_j) = \liminf_{j\to\infty}\mu(E_j).$$

(2) If (X, \mathcal{M}, μ) is a measure space and $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ with $\mu(E_j) < \infty$, then $\mu(\limsup E_j) \ge \limsup \mu(E_j)$

Proof. Recall that $\limsup_{j\to\infty} x_j = \lim_{j\to\infty} \left(\sup_{k\geq j} x_k \right)$. We will show $\mu\left(\bigcap_{j=1}^\infty \bigcup_{k=j}^\infty E_k\right) = \lim_{j\to\infty} \mu\left(\bigcup_{k=j}^\infty E_k\right)$.

15

Proof. Let $G_j = \bigcup_{k=j}^{\infty} E_k$. We have a decreasing chain of subsets $G_j \supset G_{j+1}$ for all j. Also, we know that $\mu(G_j) < \infty$. Hence, by continuity from above we know that $\mu(\bigcap_{j=1}^{\infty} G_j) = \lim_{j \to \infty} \mu(G_j)$.

For each k we know by monotonicity that $\mu(E_k) \leq \mu(\bigcup_{k=j}^{\infty} E_k)$. Hence, $\sup_{k>j} \mu(E_k) \leq \mu(\bigcup_{k=j}^{\infty} E_k)$. Now we take the limit as $j \to \infty$ to get

$$\lim_{j \to \infty} \mu \left(\bigcup_{k=j}^{\infty} E_k \right) = \mu \left(\bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} E_k \right) \le \lim_{j \to \infty} \left(\sup_{k \ge j} \mu(E_k) \right).$$

(3) A finitely additive measure μ on (X, \mathcal{M}) is a measure if and only if it is continuous from below.

Proof. (\Rightarrow) Theorem 1.8(c) implies a measure is continuous from below.

(\Leftarrow) Suppose μ is finitely additive and continuous from below. Consider $\{A_n\}_{n=1}^{\infty} \subset \mathcal{M}$ with $A_j \cap A_i = \emptyset$ for all $j \neq i$ and $A_j \subset A_i$ for all $j \leq i$. Then,

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{N \to \infty} \mu\left(\bigcup_{n=1}^{N} A_n\right) \quad \text{since } \mu \text{ is continous from below}$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \mu\left(A_n\right) \quad \mu \text{ is finitely additive}$$

$$= \sum_{n=1}^{\infty} \mu(A_n)$$

Thus μ is countably additive so μ is a measure.

(4) A finitely additive measure μ on (X, \mathcal{M}) with $\mu(X) < \infty$ is a measure if and only if it is continuous from above.

Proof. (\Rightarrow) Theorem 1.8(d) implies a measure is continuous from above.

(\Leftarrow) Suppose μ is finitely additive and continuous from above. If we show μ is continuous from below, (3) will imply μ is a measure. Let $\{A_j\}_{j=1}^{\infty} \subset \mathcal{M}$ such that $A_j \cap A_i = \emptyset$ for all $j \neq i$ and $A_j \subset A_i$ for all $j \leq i$. Note

$$\bigcap_{j=1}^{\infty} X \backslash A_j = \bigcap_{j=1}^{\infty} X \cap A_j^c = X \cap \bigcap_{j=1}^{\infty} A_j^c = X \cap \left(\bigcup_{j=1}^{\infty} A_j\right)^c = X \backslash \bigcup_{j=1}^{\infty} A_j$$

(1) Thus,
$$\bigcap_{j=1}^{\infty} X \setminus A_j = X \setminus \bigcup_{j=1}^{\infty} A_j$$
. Also, since $A_j \subset A_i$ for all $j \leq i$, $X \setminus A_j \supset X \setminus A_i$ for all $j \leq i$.

$$\mu\left(\bigcap_{j=1}^{\infty}X\backslash A_{j}\right) = \lim_{j\to\infty}\mu(X\backslash A_{j}) \qquad \text{since μ is continuous from below}$$

$$= \lim_{j\to\infty}(\mu(X)-\mu(A_{j})) \quad \mu \text{ is finitely additive}$$

$$= \mu(X)-\lim_{j\to\infty}\mu(A_{j})$$

From (1) we have

$$\mu(X) - \lim_{j \to \infty} \mu(A_j) = \mu\left(X \setminus \bigcup_{j=1}^{\infty} A_j\right) = \mu(X) - \mu\left(\bigcup_{j=1}^{\infty} A_j\right).$$

Because $\mu(X) < \infty$, we can subtract $\mu(X)$ from both sides of the previous equation to obtain

$$\lim_{j \to \infty} \mu(A_j) = \mu\left(\bigcup_{j=1}^{\infty} A_j\right).$$

Therefore, μ is continuous from above which by (3) implies μ is a measure.

2.4. September 16 Group Assignment.

(1) Let (X, \mathcal{M}, μ) be a finite measure space. Denote by $E \triangle F := (E \cap F^c) \cup (E^c \cap F)$.

(a) If $E, F \in M$ and $\mu(E \triangle F) = 0$ then $\mu(E) = \mu(F)$.

Proof. Let $E, F \in M$ and $\mu(E \triangle F) = 0$. Then $E \subseteq F \cup (E \triangle F)$. By monotonicity of μ , $\mu(E) \leq \mu(F \cup (E \triangle F))$. By subadditivity of μ , $\mu(F \cup (E \triangle F)) \leq \mu(F) + \mu(E \triangle F) = \mu(F)$. Thus, $\mu(E) \leq \mu(F)$.

Similarly, $F \subseteq E \cup (E \triangle F)$ which, by monotonicity and subadditivity of μ implies $\mu(F) \le \mu(E \cup (E \triangle F) \le \mu(E) + \mu(E \triangle F) = \mu(E)$. Thus, $\mu(F) \le \mu(E)$.

Since
$$\mu(F) \leq \mu(E)$$
 and $\mu(E) \leq \mu(F)$, $\mu(F) = \mu(E)$.

(b) Show that $E \sim F$ if $\mu(E \triangle F) = 0$ is an equivalence relation on \mathcal{M} .

Proof. (reflexive) For any set $E \in \mathcal{M}$, $\mu(E \triangle E) = \mu(\emptyset) = 0$, so $E \sim E$.

(symmetric) Let $E, F \in \mathcal{M}$ such that $E \sim F$. Then, $\mu(E \triangle F) = 0$. Since $E \triangle F = F \triangle E$,

 $\mu(E\triangle F) = \mu(F\triangle E)$ so $F \sim E$.

(transitive) Let $E, F, G \in \mathcal{M}$ such that $E \sim F$ and $F \sim G$. Then, $\mu(E \triangle F) = 0$ and $\mu(F \triangle G) = 0$. Notice $G \subseteq F \cup (G \backslash F)$ so $G \backslash E \subseteq (F \cup (G \backslash F)) \backslash E$. Also $(F \cup (G \backslash F)) \backslash E = (F \cup (G \backslash F)) \cap E^c = (F \cap E^c) \cup (G \backslash F) \cap E^c$. Since $(G \backslash F) \cap E^c \subseteq G \backslash F$, $(F \cap E^c) \cup (G \backslash F) \cap E^c \subseteq (F \cap E^c) \cup (G \backslash F) = (F \backslash E) \cup (F \backslash F)$. Thus, $G \backslash E \subseteq (G \backslash F) \cup (F \backslash E)$ and so $G \backslash E \cup (E \backslash G) \subseteq (G \backslash F) \cup (F \backslash E) \cup (E \backslash G)$. By Venn diagram, we can see $(G \backslash F) \cup (F \backslash E) \cup (E \backslash G) = (E \triangle F) \cup (F \triangle G)$. Hence, $(E \triangle G) \subseteq (E \triangle F) \cup (F \triangle G)$. By monotonicity and subadditivity, $\mu(E \triangle G) \subseteq \mu((E \triangle F) \cup (F \triangle G)) \subseteq \mu(E \triangle F) + \mu(F \triangle G) = 0$. Therefore, $\mu(E \triangle G) = 0$ so $E \sim G$.

(2) Prove that a σ -finite measure is semi-finite.

Proof. Let (X, \mathcal{M}, μ) be a measure space and μ be σ -finite. Then, $X = \bigcup_{j=1}^{\infty} X_j$ with $X_j \in \mathcal{M}$ and $\mu(X_j) < \infty$ for all j. If μ is finite, then μ is semi-finite, so suppose there exists some $E \in \mathcal{M}$ such that $\mu(E) = \infty$. Notice $E = E \cap X = E \cap \bigcup_{j=1}^{\infty} X_j = \bigcup_{j=1}^{\infty} (E \cap X_j)$ so by monotonicity and subadditivity of μ

$$\infty = \mu(E) \le \mu\left(\bigcup_{j=1}^{\infty} (E \cap X_j)\right) \le \sum_{j=1}^{\infty} \mu(E \cap X_j). \text{ Hence, } \sum_{j=1}^{\infty} \mu(E \cap X_j) = \infty.$$

Because $\sum_{j=1}^{\infty} \mu(E \cap X_j) = \infty$, there must exist some $k \in \mathbb{N}$ with $\mu(E \cap X_k) > 0$. Because μ is σ -finite, we know $\mu(X_k) < \infty$. Also, $E \cap X_k \subseteq X_k$, so

$$0 < \mu(E \cap X_k) < \mu(X_k) < \infty.$$

Thus, for any $E \in \mathcal{M}$ with $\mu(E) = \infty$, there exists $X_k \in \mathcal{M}$ such that $E \cap X_k \subset E$ and $0 < \mu(E \cap X_k) < \infty$; μ is semi-finite.

http://faculties.sbu.ac.ir/~shahrokhi/M-P.pdf

(3) If μ is a semi-finite measure and $\mu(E) = \infty$ prove that for any C > 0 there is $F \subseteq E$ with $C < \mu(F) < \infty$.

Proof. Assume μ is a semi-finite measure. Then, if $\mu(E) = \infty$, there exists $F \in \mathcal{M}$ such that $F \subset E$ and $0 < \mu(F) < \infty$. Let $\mathcal{C} = \{F \subset E : \mu(E) < \infty\}$. Since μ is semi-finite, $\mathcal{C} \neq \emptyset$. Thus, we can consider $\alpha = \sup\{\mu(F) : F \in \mathcal{C}\}$. Suppose $\alpha < \infty$. Then, for all $n \geq 1$, there exist sets $F_n \in \mathcal{C}$ such that $\alpha \geq \mu(F_n) \geq \alpha - \frac{1}{n}$; further, $\lim_{n \to \infty} \mu(F_n) = \alpha$. Let $F = \bigcup_{k=1}^n F_k$ such that $\mu(F) = \alpha$. If $\alpha < \infty$, $\mu(F) < \infty$. Since $\mu(E) = \infty$, $\mu(F) < \infty$ implies $\mu(E \setminus F) = \infty$. Because μ is semi-finite, $\mu(E \setminus F) = \infty$ implies there exists some $F' \subset E \setminus F$ such that $0 < \mu(F') < \infty$. Since $F \subset F \cup F'$, $\mu(F) \leq \mu(F \cup F')$ so $\alpha \leq \mu(F \cup F')$. But, $0 < \mu(F') < \infty$ and $0 < \mu(F) < \infty$ implies $0 < \mu(F \cup F') < \infty$. So, $F \cup F' \in \mathcal{C}$ with $\alpha \leq \mu(F \cup F')$ which contradicts α as the supremum. Thus, $\alpha = \infty$.

Since $\alpha = \infty$, for all C > 0, there exists a $F \in \mathcal{C}$ such that $\mu(F) > C$. Thus, for any C > 0, there is $F \subset E$ with $C < \mu(F) < \infty$.

3. Section 1.4 (Folland): Outer Measures

3.1. Section 1.4 Definitions and Theorems.

Remark 3. This section develops tools we will use to construct measures.

Definition 19. An outer measure on $X \neq \emptyset$ is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ that satisfies

$$\mu^*(\emptyset) = 0,$$

$$\mu^*(A) \le \mu^*(B) \text{ if } A \subset B,$$

$$\mu^*(\bigcup_{1}^{\infty} A_j) \le \sum_{1}^{\infty} \mu^*(A_j)$$

Proposition 6. Let $\mathcal{E} \subset \mathcal{P}(X)$ and define $\rho : \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}, X \in \mathcal{E}, \rho(\emptyset) = 0$. For any $A \subset X$, define

$$\mu^*(A) = \inf \left\{ \sum_{1}^{\infty} \rho(E_j) : E_j \in \mathcal{E}, A \subset \bigcup_{1}^{\infty} E_j \right\}$$

Then, μ^* is an outer measure.

Definition 20 (μ^* -measurable). A set $A \subset X$ is called μ^* -measurable if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$
 for all $E \subset X$.

Remark 4. Note $\mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap A^c)$ is true form any A, E.

Theorem 4 (Carathéodory's Theorem). If μ^* is an outer measure on X, the collection \mathcal{M} of μ^* -measurable sets is a σ -algebra and the restriction of μ^* to \mathcal{M} is a complete measure.

Definition 21 (premeasure). If $\mathcal{A} \subset \mathcal{P}(X)$ is an algebra, a function $\mu_0 : \mathcal{A} \to [0, \infty]$ will be called a premeasure if

- (1) $\mu_0(\emptyset) = 0$
- (2) if $\{A_j\}_1^{\infty}$ is a sequence of disjoint sets in \mathcal{A} such that $\bigcup_1^{\infty} A_j \in \mathcal{A}$, then $\mu_0(\bigcup_1^{\infty} A_j) = \sum_1^{\infty} \mu_0(A_j)$

Proposition 7. Let μ_0 be a premeasure on \mathcal{A} and

$$\mu^*(A) = \inf \left\{ \sum_{1}^{\infty} \mu_0(E_j) : E_j \in \mathcal{E}, A \subset \bigcup_{1}^{\infty} E_j \right\}, \text{ then}$$

- $(1) \mu^* | \mathcal{A} = \mu_0$
- (2) every set in \mathcal{A} is μ^* -measurable

3.2. September 18 Group Assignment.

(1) Prove that (a, ∞) is m^* -measurable for any a.

Proof. We will show for any set E, $m^*(E) = m^*(E \cap (a, \infty)) + m^*(E \cap (-\infty, a])$. If $m^*(E) = \infty$, since $m^*((a, \infty)) = m^*((-\infty, a]) = \infty$, the above equality will hold, so assume $m^*(E) < \infty$. Notice for any set E, $E = (E \cap (a, \infty)) \cup (E \cap (-\infty, a])$ so by subadditivity of m^* , we have

$$m^*(E) \le m * (E \cap (a, \infty)) + m^*(E \cap (-\infty, a]).$$

Thus, we must show $m^*(E) \ge m^*(E \cap (a, \infty)) + m^*(E \cap (-\infty, a])$:

Let $\varepsilon > 0$. By definition of m^* , there exists

$$\bigcup_{i=1}^{\infty} (a_i, b_i) \text{ with } E \subset \bigcup_{i=1}^{\infty} (a_i, b_i) \text{ and } \sum_{i=1}^{\infty} (b_i - a_i) \leq m^*(E) + \varepsilon.$$

Define $(a_i, b_i)' = (a, \infty) \cap (a_i, b_i)$ and $(a_i, b_i)'' = (-\infty, a] \cap (a_i, b_i)$. Notice $((a, \infty) \cap (a_i, b_i)) \cup ((-\infty, a] \cap (a_i, b_i)) = (a_i, b_i)$. Then, $m^*(a_i, b_i) = b_i - a_i = m^*((a_i, b_i)') + m^*((a_i, b_i)'')$. Since $E \subset (a_i, b_i)$ for any i and $E \cap (a, \infty) \subset (a_i, b_i) \cap (a, \infty) \subset \bigcup_{i=1}^{\infty} (a_i, b_i)'$. So, by monotonicity and subadditivity of m^* ,

$$m^*(E \cap (a, \infty)) \le m^* \left(\bigcup_{i=1}^{\infty} (a_i, b_i)' \right) \le \sum_{i=1}^{\infty} m^*((a_i, b_i)').$$

Similarly, since $E \subset (a_i, b_i)$ for any i and $E \cap (-\infty, a] \subset (a_i, b_i) \cap (-\infty, a] \subset \bigcup_{i=1}^{\infty} (a_i, b_i)''$. So, by monotonicity and subadditivity of m^* ,

$$m^{*}(E \cap (-\infty, a]) \leq m^{*}\left(\bigcup_{i=1}^{\infty} (a_{i}, b_{i})''\right) \leq \sum_{i=1}^{\infty} m^{*}((a_{i}, b_{i})''). \text{ Thus,}$$

$$m^{*}(E \cap (a, \infty)) + m^{*}(E \cap (-\infty, a]) \leq \sum_{i=1}^{\infty} m^{*}((a_{i}, b_{i})') + \sum_{i=1}^{\infty} m^{*}((a_{i}, b_{i})'') = \sum_{i=1}^{\infty} \left(m^{*}((a_{i}, b_{i})') + m^{*}((a_{i}, b_{i})'')\right)$$

$$= \sum_{i=1}^{\infty} (b_{i} - a_{i}) \leq m^{*}(E) + \varepsilon. \text{ Hence, } m^{*}(E) \geq m^{*}(E \cap (a, \infty)) + m^{*}(E \cap (-\infty, a]).$$

Thus, (a, ∞) is m^* -measurable.

- (2) Prove that any Borel set is m^* -measurable.
 - *Proof.* In (1) we showed that (a, ∞) is m^* -measurable. From exercise 1 on August 31, we know that $\mathcal{M}(\{(a, \infty) : a \in \mathbb{R}\}) = \mathcal{B}_{\mathbb{R}}$. Since the collection of m^* -measurable sets is a σ -algebra, any Borel set is m^* -measurable.
- (3) Prove that for any set E and any $\varepsilon > 0$ there is an open set A with $E \subseteq A$ such that $m^*(A) \leq m^*(E) + \varepsilon$.

Proof. Consider any set E. Then

$$m^*(E) = \inf \left\{ \sum_{i=1}^{\infty} (b_i - a_i) \colon E \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i) \right\}.$$

Then, for any $\varepsilon > 0$ there exists some $\{(a_i, b_i)\}_{i=1}^{\infty}$ such that $m^*(E) + \varepsilon \ge \sum_{i=1}^{\infty} (b_i - a_i)$ with $E \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i)$. Let $A = \bigcup_{i=1}^{\infty} (a_i, b_i)$. Note A is an open set. Then, $m^*(A) \le \sum_{i=1}^{\infty} (b_i - a_i)$. Hence, $m^*(E) + \varepsilon \ge m^*(A)$.

(4) Let E be a given set. Prove the following are equivalent. (a) E is m^* -measurable. (b) Given $\varepsilon > 0$ there is an open set $O \supset E$ such that $m^*(O \backslash E) < \varepsilon$. (c) Given $\varepsilon > 0$ there is an closed set $K \subset E$ such that $m^*(E \backslash K) < \varepsilon$. (d) There is a G_δ set G with $E \subseteq G$ and $m^*(G \backslash E) = 0$. (e) There is a F_σ set F with $F \subseteq E$ and $m^*(E \backslash F) = 0$.

 $(a \Rightarrow b)$. Assume E is m^* -measurable. Suppose $m^*(E) < \infty$. Then, since

 $m^*(E) = \inf \{ \sum_{i=1}^{\infty} (b_i - a_i) \colon E \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i) \}$, given $\varepsilon > 0$, there exists some cover of $E, \bigcup_{i=1}^{\infty} (a_i, b_i)$ such that $\sum_{i=1}^{\infty} (b_i - a_i) < m^*(E) + \varepsilon$. Let $O = \bigcup_{i=1}^{\infty} (a_i, b_i)$. Then, O is open and by subadditivity of m^* , $m^*(O) = m^*(\bigcup_{i=1}^{\infty} (a_i, b_i)) \le \sum_{i=1}^{\infty} (b_i - a_i)$. Thus, $m^*(O) < m^*(E) + \varepsilon$. Since $m^*(E) < \infty$, we can subtract $m^*(E)$ from both sides of the previous inequality to obtain, $m^*(O) - m^*(E) < \varepsilon$. Equivalently, $m^*(O \setminus E) < \varepsilon$.

Now, suppose $m^*(E) = \infty$. Then, $E = E \cap \mathbb{R}$ and $\mathbb{R} = \bigcup_{i=1}^{\infty} [-i, i]$ so $E = \bigcup_{i=1}^{\infty} [-i, i] \cap E$. For all i, let $E_i = [-i, i] \cap E$. Then, since $m^*([-i, i]) = 2i$, the measure of E_i must be finite. From the previous paragraph, if $E_i < \infty$ there exists some open set O_i with $O_i \supset E_i$ such that

$$m^*(O_i \backslash E_i) < \frac{\varepsilon}{2^i}.$$

Let $O = \bigcup_{i=1}^{\infty} (O_i)$. Then, O is open and since $O_i \supset E_i$, $\bigcup_{i=1}^{\infty} (O_i) \supset \bigcup_{i=1}^{\infty} (E_i)$. Therfore, $O \supset E$ and $O \setminus E = \bigcup_{i=1}^{\infty} (O_i \setminus E_i)$. (I think I need to prove the previous statement) Thus,

$$m^*(O \backslash E) = m^* \left(\bigcup_{i=1}^{\infty} (O_i \backslash E_i) \right) \le \sum_{i=1}^{\infty} m^*(O_i \backslash E_i) < \sum_{i=1}^{\infty} \frac{\varepsilon}{2^i} = \varepsilon.$$

 $(\boldsymbol{b}\Rightarrow\boldsymbol{c})$. Assume given $\varepsilon>0$ there is an open set $O\supset E$ such that $m^*(O\backslash E)<\varepsilon$. Then for E^c , given $\varepsilon>0$ there is an open set $O\supset E^c$ such that $m^*(O\backslash E^c)<\varepsilon$. Let $K=O^c$. Then, K is closed. If $O\supset E^c$, $O^c\subset E^{c^c}$ which implies $K\subset E$. Also $O\cap E^c=O\cap E=E\backslash O^c=E\backslash K$, so $m^*(O\backslash E^c)<\varepsilon$ implies $m^*(E\backslash K)<\varepsilon$.

 $(b\Rightarrow d)$. Assume given $\varepsilon>0$ there is an open set $O\supset E$ such that $m^*(O\backslash E)<\varepsilon$. Pick $\varepsilon=\frac{1}{i}$. Then, there must exist some open set O_i such that $m^*(O_i\backslash E)<\frac{1}{i}$ for any i. Let $G=\cap_{i=1}^\infty O_i$. Then, G is the countable intersection of open sets, so G is a G_δ set. $E\subset O_i$ for all i implies $E\subset \cap_{i=1}^\infty O_i$ so $E\subset G$. Also notice $G\backslash E=(\cap_{i=1}^\infty O_i)\backslash E=(\cap_{i=1}^\infty O_i)\cap E^c=\cap_{i=1}^\infty (O_i\cap E^c)=\cap_{i=1}^\infty (O_i\backslash E)$; thus $G\backslash E=\cap_{i=1}^\infty (O_i\backslash E)$. Since $\cap_{i=1}^\infty (O_i\backslash E)\subset O_i\backslash E$ for any i, monotonicity of m^* implies $m^*(\cap_{i=1}^\infty (O_i\backslash E))\leq m^*(O_i\backslash E)$. Hence $m^*(G\backslash E)=m^*(\cap_{i=1}^\infty (O_i\backslash E))\leq m^*(O_i\backslash E)\leq \frac{1}{i}$ for any $i\geq 1$. Thus, $m^*(G\backslash E)=0$.

 $(d \Rightarrow a)$. Let E be any subset of \mathbb{R} . Assume there is a G_{δ} set G with $E \subseteq G$ and $m^*(G\backslash E) = 0$. From exercise 2 on September 18, we know all Borel sets are m^* -measurable, so G is m^* -measurable. Also, since $m^*(G\backslash E) = 0$, by exercise 2 on September 21, we know $G\backslash E$ is m^* -measurable. Because the collection of m^* -measurable sets forms a σ -algebra we know if $G\backslash E$ is m^* -measurable then $(G\backslash E)^c$ is m^* -measurable and also $G\cap (G\backslash E)^c$ is m^* -measurable. Notice

$$G\cap (G\backslash E)^c=G\cap (G\cap E^c)^c=G\cap (G^c\cup E)=(G\cap G^c)\cup (G\cap E)=\varnothing\cup (G\cap E)=G\cap E.$$

Since $E \subseteq G$, $G \cap E = E$. Therefore, E is m^* -measurable.

 $(c \Rightarrow e)$. Assume given any $\varepsilon > 0$ there is an closed set $K \subset E$ such that $m^*(E \setminus K) < \varepsilon$. Pick $\varepsilon = \frac{1}{i}$. Then, there must exist some closed set K_i such that $m^*(E \setminus K_i) < \frac{1}{i}$ for any i. Let $F = \bigcup_{i=1}^{\infty} K_i$. Then, F is the countable union of closed sets, so F is a F_{σ} set. $K_i \subset E$ for all i implies $\bigcup_{i=1}^{\infty} K_i \subset E$ so $F \subset E$. Also notice $E \setminus F = E \setminus \bigcup_{i=1}^{\infty} K_i = E \cap (\bigcup_{i=1}^{\infty} K_i)^c = E \cap (\bigcap_{i=1}^{\infty} K_i^c) = \bigcap_{i=1}^{\infty} (E \cap K_i^c) = \bigcap_{i=1}^{\infty} (E \setminus K_i)$; thus $E \setminus F = \bigcap_{i=1}^{\infty} (E \setminus K_i)$. Since $\bigcap_{i=1}^{\infty} (E \setminus K_i) \subset E \setminus K_i$ for any i, monotonicity of m^* implies $m^*(\bigcap_{i=1}^{\infty} (E \setminus K_i)) \leq m^*(E \setminus K_i)$. Hence $m^*(E \setminus F) = m^*(\bigcap_{i=1}^{\infty} (E \setminus K_i)) \leq m^*(E \setminus K_i) \leq \frac{1}{i}$ for any $i \geq 1$. Thus, $m^*(E \setminus F) = 0$.

 $(e \Rightarrow a)$. Let E be any subset of \mathbb{R} . Assume there is a F_{σ} set F with $F \subseteq E$ and $m^*(E \backslash F) = 0$. From exercise 2 on September 18, we know all Borel sets are m^* -measurable, so F is m^* -measurable. Also, since $m^*(E \backslash F) = 0$, by exercise 2 on September 21, we know $E \backslash F$ is m^* -measurable. Because the collection of m^* -measurable sets forms a σ -algebra we know if $E \backslash F$ is m^* -measurable then $(E \backslash F)^c$ is m^* -measurable and also F^c is m^* -measurable. Notice

$$F^c \cap (E \backslash F)^c = F^c \cap (E^c \cup F) = (F^c \cap E^c) \cup (F^c \cap F) = (F^c \cap E^c) \cup \emptyset = F^c \cap E^c.$$

Since $F \subseteq E$, $F^c \cap E^c = E^c$. Therefore, E^c is m^* -measurable. Since the collection of m^* -measurable sets forms a σ -algebra, E is m^* -measurable.

- 3.3. September 21 Group Assignment. Let X = [0, 1) and m^* denote Lebesgue outer measure.
 - (1) Prove that $A \subseteq \mathbb{R}$ and $\lambda \in \mathbb{R}$ then $m^*(A) = m^*(A + \lambda)$.

Lemma: For any set $A, A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i)$ if and only if $A + \lambda \subseteq \bigcup_{i=1}^{\infty} (a_i + \lambda, b_i + \lambda)$. Proof. Assume $A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i)$. Then, let $a \in A + \lambda$. Then, $a - \lambda \in A$ implies there exists some i such that $a - \lambda \in (a_i, b_i)$. Equivalently, $a_i < a - \lambda < b_i$ and $a_i + \lambda < a < b_i + \lambda$. Thus, $a \in (a_i + \lambda, b_i + \lambda)$ for some i which implies $A + \lambda \subseteq \bigcup_{i=1}^{\infty} (a_i + \lambda, b_i + \lambda)$.

Assume $A + \lambda \subseteq \bigcup_{i=1}^{\infty} (a_i + \lambda, b_i + \lambda)$. Suppose $a \in A$. Then, $a + \lambda \in A + \lambda$ which implies there exists i such that $a + \lambda \in (a_i + \lambda, b_i + \lambda)$. Thus $a_i + \lambda \leq a + \lambda \leq b_i + \lambda$ and so $a_i \leq a \leq b_i$. Thus, $A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i)$.

Prove that $A \subseteq \mathbb{R}$ and $\lambda \in \mathbb{R}$ then $m^*(A) = m^*(A + \lambda)$.

Proof. Notice $m^*(A) = \inf \{ \sum_{i=1}^{\infty} (b_i - a_i) \colon A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i) \}$. From the previous lemma we know $A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i)$ implies $A + \lambda \subseteq \bigcup_{i=1}^{\infty} (a_i + \lambda, b_i + \lambda)$. Thus, we can write $m^*(A + \lambda) = \inf \{ \sum_{i=1}^{\infty} (b_i + \lambda - (a_i + \lambda)) \colon A + \lambda \subseteq \bigcup_{i=1}^{\infty} (a_i + \lambda, b_i + \lambda) \}$. Since $\sum_{i=1}^{\infty} (b_i + \lambda - (a_i + \lambda)) = \sum_{i=1}^{\infty} (b_i - a_i), m^*(A) = m^*(A + \lambda)$.

(2) Prove that if $m^*(A) = 0$, then A is m^* -measurable.

Proof. Assume $m^*(A) = 0$. Then, for any set $B \subset \mathbb{R}$, $B \cap A \subseteq A$ and $B \cap A^c \subseteq B$. By monotonicity of m^* , $m^*(B \cap A) \leq m^*(A)$ and $m^*(B \cap A^c) \leq m^*(B)$. Thus,

$$m^*(B \cap A) + m^*(B \cap A^c) \le m^*(A) + m^*(B) = 0 + m^*(B);$$

equivalently,
$$m^*(B \cap A) + m^*(B \cap A^c) \le m^*(B)$$
.

Notice $B = (B \cap A) \cup (B \cap A^c)$. Additionally, by subadditivity of m^* ,

 $m^*(B) = m^*((B \cap A) \cup (B \cap A^c)) \le m^*(B \cap A) + m^*(B \cap A^c)$ and so $m^*(B) \le m^*(B \cap A) + m^*(B \cap A^c)$.

Hence for any $B \subset \mathbb{R}$, $m^*(B) = m^*(B \cap A) + m^*(B \cap A^c)$ which implies A is m^* -measurable.

(3) Prove that if E is an m^* -measurable subset of X and $E \subseteq N$, where N is the non-measurable set in section 1.1, then $m^*(E) = 0$.

Proof. Assume E is an m^* -measurable subset of X and $E \subseteq N$, where N is described below. (construction of N from $\S1.1$) Define an equivalence relation on [0,1) by declaring that $x \sim y$ if and only if $x - y \in \mathbb{Q}$. By the axiom of choice, we can let N be a subset of [0,1) that contains exactly one member of each equivalence class. Consider $R=\mathbb{Q}\cap[0,1)$ and for each $r \in R$, let $N_r = \{x + r : x \in N \cap [0, 1 - r)\} \cup \{x + r - 1 : x \in N \cap [1 - r, 1)\}$ We showed in class that N_r is not measurable. By exercise 1 from September 21, m^* is translation invariant so N is not measurable. Next, consider $E \subseteq N$. Then, E contains one element or none from each of the equivalence classes defined above. Following the construction of N_r , let $E_r = \{x + r : x \in E \cap [0, 1 - r)\} \cup \{x + r - 1 : x \in E \cap [1 - r, 1)\}$. Thus, for every $r \in R$, $E_r \subseteq N_r$. E_r is just E translated r units and then translated back into [0,1) as needed, so from exercise 1, $m^*(E)=m^*(E_r)$. For any $r\in R, E_r\subset [0,1)$ so $\bigcup_{r\in R} E_r \subset [0,1)$. In class we showed for all $r,s\in R, r\neq s$ $N_r\cap N_s=\emptyset$, thus $\bigcup_{r\in R} E_r$ is a disjoint union. Therefore, $m^*(\bigcup_{r\in R} E_r) = \sum_{r\in R} m^*(E_r)$. Since $m^*(E_r) = m^*(E)$, $m^*(\bigcup_{r\in R} E_r) = \sum_{r\in R} m^*(E) = m^*(E) \sum_{r\in R} (1) = m^*(E) \cdot \infty$. By monotonicity of m^* , $m^*(\bigcup_{r \in R} E_r) \le m^*([0,1)) = 1$. Thus $m^*(\bigcup_{r \in R} E_r) \le 1$ and $m^*(\bigcup_{r \in R} E_r) = m^*(E) \cdot \infty$. If $m^*(E) > 0$, the previous equality would imply $m^*(\bigcup_{r \in R} E_r) = \infty$ which is false since $m^*(\bigcup_{r\in R} E_r) \le 1$; thus $m^*(E) = 0$.

(4) If E is measurable and $m^*(E) > 0$, then E contains a non-measurable subset. (this is exercise 29 on pg 39 in Rolland)

Proof. Assume E is measurable with $m^*(E) > 0$. Without loss of generality, assume $E \subset [0,1)$. Assume that all subsets of E are measurable. Then, using the construction of N_r from

§1.1, $E = \bigcup_{r \in R} (E \cap N_r)$. Then, from (3), $m^*(E \cap N_r) = 0$ implies $E \cap N_r \subset E$ are measurable for all $r \in R$. Since $E = \bigcup_{r \in R} (E \cap N_r)$, $m^*(E) = m^*(\bigcup_{r \in R} (E \cap N_r))$. Since $E \cap N_{r_1}$ and $E \cap N_{r_2}$ are disjoint for any $r_1, r_2 \in R$, $m^*(\bigcup_{r \in R} (E \cap N_r)) = \sum_{r \in R} m^*(E \cap N_r) = \sum_{r \in R} 0 = 0$. Thus, $m^*(E) = 0$. But, $m^*(E) > 0$ so there must be some r for which $E \cap N_r$ is not measurable. Thus, $E \cap N_r \subseteq E$, so E contains a non-measurable subset.

http://math.ucr.edu/~edwardb/Graduate%20Classes/Math%20209A/Homework%201.pdf
http://www.math.ttu.edu/~drager/Classes/01Fall/reals/ans2.pdf

3.4. September 28 Group Assignment.

(1) Let X be a set and A a proper subset of X. Let $\mathcal{E} = \{\emptyset, A\}$ and define $\mu : \mathcal{E} \to [0, \infty]$ by $\mu(\emptyset) = 0$ and $\mu(A) = 1$. (a) For any subset E of X prove that

$$\mu^*(E) = \begin{cases} 0 & E = \emptyset \\ 1 & \emptyset \neq E \subseteq A \\ \infty & \text{otherwise} \end{cases}$$

Proof. First, suppose $E = \emptyset$. Then,

$$\mu^*(E) = \mu^*(\emptyset) = \inf \left\{ \sum_{j=1}^{\infty} \mu(E_j) : E_j \in \mathcal{E} \text{ and } \emptyset \subset \bigcup_{j=1}^{\infty} E_j \right\}.$$

We can take $E_j = \emptyset$ for all j so that

$$\mu^*(\emptyset) = \inf \left\{ \sum_{j=1}^\infty \mu(\emptyset) : \emptyset \in \mathcal{E} \text{ and } \emptyset \subset \bigcup_{j=1}^\infty \emptyset \right\} = \inf \left\{ \sum_{j=1}^\infty 0 : \emptyset \in \mathcal{E} \text{ and } \emptyset \subset \bigcup_{j=1}^\infty \emptyset \right\} = 0.$$

Next, suppose $\emptyset \neq E \subseteq A$. Then,

$$\mu^*(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu(E_j) : E_j \in \mathcal{E} \text{ and } E \subset \bigcup_{j=1}^{\infty} E_j \right\}.$$

Since \mathcal{E} contains only \emptyset , A and $E \not\subset \emptyset$, we must let $E_j = A$ for all j

$$\mu^*(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu(A) : A \in \mathcal{E} \text{ and } E \subset \bigcup_{j=1}^{\infty} A \right\} = \mu(A) = 1.$$

Finally, suppose $E \not\subset A$. Then $E \not\subset \emptyset$ and $E \not\subset A$ so $\{E_j \in \mathcal{E} \text{ and } E \subset \bigcup_{j=1}^{\infty} E_j\} = \emptyset$. Thus, $\mu^*(E) = \inf \emptyset = \infty$.

(b) Prove that the σ -algebra of μ^* -measurable sets is $\{\emptyset, A, A^c, X\}$.

Proof. First, we will show $\{\emptyset, A, A^c, X\}$ are μ^* -measurable sets. Let M be the σ -algebra of μ^* -measurable sets.

(Claim: Ø is μ^* -measurable.) Consider any set $E \subset X$. Notice $\mu^*(E \cap \emptyset) + \mu^*(E \cap \emptyset^c) = \mu^*(\emptyset) + \mu^*(E \cap X) = 0 + \mu^*(E)$. Thus, $\mu^*(E) = \mu^*(E \cap \emptyset) + \mu^*(E \cap \emptyset^c)$ so Ø is μ^* -measurable. Since the set of μ^* -measurable sets is a σ -algebra, $\emptyset^c \in M$, so $X \in M$.

(Claim: A is μ^* -measurable.) Consider any set $E \subset X$. Then, either $E \subseteq A$ or $E \supset A$. Suppose $E \subseteq A$. Then, $\mu^*(E) = 1$. Since $E \subseteq A$, $E \cap A = E$ and $E \cap A^c = \emptyset$ so $\mu^*(E \cap A) = \mu^*(E)$ and $\mu^*(E \cap A^c) = \mu^*(\emptyset) = 0$. Thus, when $E \subseteq A$, $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$. Next, suppose $E \supset A$. Then, $\mu^*(E) = \infty$. Since $E \supset A$, $E \cap A = A$, $\mu^*(E \cap A) = \mu^*(A) = 1$. Also, and $E \cap A^c \not\subseteq A$ so $\mu^*(E \cap A^c) = \infty$. Thus, when $E \supset A$, $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$. Since the set of μ^* -measurable sets is a σ -algebra, if $A \in M$, $A^c \in M$. Now, suppose there exists $N \subset X$ such that $N \not\in \{\emptyset, A, A^c, X\}$ but N is μ^* -measurable. Since $N \neq \emptyset$, $\mu^*(N) \neq 0$, so either $\mu^*(N) = 1$ or $\mu^*(N) = \infty$.

Consider $\mu^*(N)=1$. Then, $N\subset A$. Since N is μ^* -measurable, for any set E in X, $\mu^*(E)=\mu^*(E\cap N)+\mu^*(E\cap N^c)$. This equality must hold if $E\subseteq A$ where $E\cap N\neq\emptyset$ and $E\neq N$. So, if $E\subseteq A$, $\mu^*(E)=1$. Since $E\cap N\subseteq E\subseteq A$ and $E\cap N\neq\emptyset$, $\mu^*(E\cap N)=1$. Similarly, $E\cap N^c\subseteq E\subseteq A$ and $E\cap N^c\neq\emptyset$, $\mu^*(E\cap N)=1$. But, if $\mu^*(E)=\mu^*(E\cap N)+\mu^*(E\cap N^c)$, we have 1=1+1 which is false. Thus, $\mu^*(N)\neq 1$.

Next, suppose $\mu^*(N) = \infty$. Thus, $N \nsubseteq A$. Suppose, however, that $N \cap A \neq \emptyset$. Since N is μ^* -measurable, for any set E in X, $\mu^*(E) = \mu^*(E \cap N) + \mu^*(E \cap N^c)$. This equality

must hold if $E \subset A$ where $E \cap N = A \cap N$, $E \neq N$ and $E \cap N \neq \emptyset$. Thus, $E \subset A$ implies $\mu^*(E) = 1$; $\emptyset \neq E \cap N \subset E \subset A$ implies $\mu^*(E \cap N) = 1$; and $\emptyset \neq E \cap N^c \subset E \subset A$ implies $\mu^*(E \cap N^c) = 1$. Thus, if $\mu^*(E) = \mu^*(E \cap N) + \mu^*(E \cap N^c)$, 1 = 1 + 1 which is false. Therefore, $\mu^*(N) \neq \infty$.

Thus, σ -algebra of μ^* -measurable sets is $\{\emptyset, A, A^c, X\}$.

(c) For any $\infty \ge a > 0$, define

$$\sigma(\emptyset) = 0$$

$$\sigma(A) = 1$$

$$\sigma(A^c) = a$$

$$\sigma(X) = 1 + a.$$

Prove σ is a measure extending μ .

Proof. First, we will show σ is a measure. Notice $\sigma(\emptyset) = 0$. So we need only check that σ is countably additive under disjoint unions. Notice σ is countably additive under disjoint unions:

$$\sigma(\emptyset \cup A) = \sigma(A) = 1 = \sigma(\emptyset) + \sigma(A)$$

$$\sigma(\emptyset \cup A^c) = \sigma(A^c) = a = \sigma(\emptyset) + \sigma(A^c)$$

$$\sigma(\emptyset \cup X) = \sigma(X) = 1 + a = \sigma(\emptyset) + \sigma(S)$$

$$\sigma(A \cup A^c) = \sigma(X) = 1 + c = \sigma(A) + \sigma(A^c).$$

Thus, σ is a measure. To show σ is a measure extending μ , we need only prove $\sigma = \mu$ when μ is defined. μ is defined only on A, \emptyset . So, we have:

$$\sigma(\emptyset) = 0 = \mu(\emptyset)$$

$$\sigma(A) = 1 = \mu(A).$$

Thus, σ is a measure extending μ .

- 3.5. September 30 Group Assignment. This is exercise 23 on page 32 of Rolland.
 - (1) Let A be the collection of finite unions of sets of the form $(a,b] \cap \mathbb{Q}$ where $-\infty \leq a < b \leq \infty$.

(a) Prove that A is an algebra on \mathbb{Q} .

Proof. Without loss of generality, assume $\left\{\bigcup_{i=1}^{n}(a_{i_j},b_{i_j}]\cap\mathbb{Q}\right\}_{j=1}^{N}$ is a collection of disjoint sets so that for all i,j we have $a_1< a_2< a_3< \cdots,\ b_1< b_2< b_3< \cdots$, and $b_1< a_2,\ b_2< a_3,\cdots$. Then,

$$\bigcup_{j=1}^{N} \left(\bigcup_{i=1}^{n} (a_{i_j}, b_{i_j}] \cap \mathbb{Q} \right) = \bigcup_{j=1}^{N} \bigcup_{i=1}^{n} \left((a_{i_j}, b_{i_j}] \cap \mathbb{Q} \right)$$

This is a finite union of sets in A, so A is closed under finite unions. Also,

$$\left(\bigcup_{i=1}^n (a_{i_j},b_{i_j}]\right)^c \cap \mathbb{Q} = \bigcap_{i=1}^n (a_{i_j},b_{i_j}]^c \cap \mathbb{Q} = \left(\bigcap_{i=1}^n (-\infty,a_{i_j}] \cup (b_{i_j},\infty)\right) \cap \mathbb{Q}.$$

Notice we can rewrite $\bigcap_{i=1}^{n} (-\infty, a_{i_j}] \cup (b_{i_j}, \infty) = (-\infty, a_1] \cup (b_1, a_2] \cup (b_2, a_3] \cup \cdots \cup (b_{n-1}, a_n] \cup (b_n, \infty).$

The sets $(-\infty, a_1], (b_1, a_2], (b_2, a_3], \dots, (b_{n-1}, a_n], (b_n, \infty)$ are in A. So by the previous rewrite and since A is closed under finite unions, A is closed under complements. \square

- (b) Prove that the σ -algebra generated by A is the power set of \mathbb{Q} .
- *Proof.* Consider any $q \in \mathbb{Q}$. Then, $q = \bigcap_{n=1}^{\infty} (q \frac{1}{n}, q]$. Any power set of \mathbb{Q} is a countable union of these sets. Thus, any power set of \mathbb{Q} is in A. Any set in A is a set of rational numbers so it must be contained in the power set of \mathbb{Q} .
- (c) Define μ_0 by $\mu_0(\emptyset) = 0$ and $\mu_0(E) = \infty$ if $E \neq \emptyset$. Prove μ_0 is a pre measure on A. Proof. Since $\mu_0(\emptyset) = 0$ we need only show that μ_0 is additive over finite, disjoint unions. Consider $\{E_i\}_{i=1}^n$ with $E_i \cap E_j = \emptyset$ for all $i \neq j$. Then, by definition of μ_0 , $\mu_0\left(\bigcup_{i=1}^n E_i\right)$ is either 0 or ∞ . Suppose $\mu_0\left(\bigcup_{i=1}^n E_i\right) = 0$. Then, $\bigcup_{i=1}^n E_i = \emptyset$ and so $E_i = \emptyset$ for all i. Thus, $\mu_0(E_i) = 0$ for all i and so $\sum_{i=1}^n \mu_0(E_i) = 0$. Hence, $\sum_{i=1}^n \mu_0(E_i) = \mu_0\left(\bigcup_{i=1}^n E_i\right)$. Suppose $\mu_0\left(\bigcup_{i=1}^n E_i\right) = \infty$. Then, $\bigcup_{i=1}^n E_i \neq \emptyset$ and so there must exist at least one $E_i \neq \emptyset$. Thus, $\mu_0(E_i) = \infty$ and so regardless of the other E_i 's $\sum_{i=1}^n \mu_0(E_i) = \infty$. Hence, $\sum_{i=1}^n \mu_0(E_i) = \mu_0\left(\bigcup_{i=1}^n E_i\right)$. Thus, μ_0 is a pre-measure.

- (d) Prove that there is more than one measure on $P(\mathbb{Q})$ whose restriction to A is μ_0 . Take μ_1 to be the measure induced by μ_0 . Then $\mu_1(A) = \infty$ unless $A = \emptyset$. Let μ_2 be the counting measure. Now $\mu_1(\{1\}) = \infty > 1 = \mu_2(\{1\})$. However, \mathcal{A}_0 consists of \emptyset and infinite sets. Therefore $\mu_1|_{\mathcal{A}_0} = \mu_2|_{\mathcal{A}_0}$.
- (e) Why does this not contradict Theorem 1.14? Because μ_0 is not σ -finite.
- 3.6. October 2 Group Assignment. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces and let

$$\mathcal{A} := \left\{ \bigcup_{i=1}^n A_i \times B_i \ : \ A_i \in \mathcal{M}, B_i \in \mathcal{N}, \text{ and } (A_i \times B_i) \cap (A_j \times B_j) = \emptyset \text{ if } i \neq j \right\}.$$

(1) Prove that \mathcal{A} is an algebra.

Proof. Consider $\{R_i\}_{i=1}^k \subset \mathcal{A}$. Then, for all $1 \leq i \leq k$, $R_i = \bigcup_{i=1}^n A_i \times B_i$: $A_i \in \mathcal{M}, B_i \in \mathcal{N}$, and $(A_i \times B_i) \cap (A_j \times B_j) = \emptyset$ if $i \neq j$. We will show $\bigcup_{i=1}^k R_i \in \mathcal{A}$ inductively. Notice

$$R_i \cup R_j = \bigcup_{i=1}^n A_i \times B_i \cup \bigcup_{j=1}^m C_j \times D_j = \bigcup_{i=1}^n \bigcup_{j=1}^m (A_i \times B_i \cup C_j \times D_j)$$

So, we will first consider the union of two rectangles, $A \times B$ and $C \times D$ and write $(A \times B) \cup (C \times D)$ as the union of disjoint rectangles:

.

Notice we can write $(A \times B) \cup (C \times D)$ as the union of the disjoint rectangles, labeled 1 to 7 in the figure above.

$$(A \times B) \cup (C \times D) = ((A \setminus C) \times (B \setminus D)) \cup ((A \setminus C^c) \times (B \setminus D)) \cup ((A \setminus C) \times (B \setminus D^c)) \cup ((A \setminus C^c) \times (B \setminus D^c)) \cup ((A \setminus C^c) \times (B \setminus D)) \cup ((A \setminus C^c) \times (B \setminus D^c)) \cup ((A \setminus C^c) \times (B \setminus D)) \cup ((A \setminus C) \times (B \setminus D^c)) \cup ((A \setminus C^c) \times (B \setminus D)) \cup ((A \setminus C) \times (B \setminus D^c)) \cup ((A \setminus C^c) \times ($$

From the figure, we can see that all these rectangles are disjoint; thus, $R_i \cup R_j \in \mathcal{A}$.

Assume that $\bigcup_{i=1}^n R_i \in \mathcal{A}$. Then, $\bigcup_{i=1}^n R_i \cup R_j = \bigcup_{i=1}^n (R_i \cup R_j)$. Our previous conclusion implies that $(R_i \cup R_j) \in \mathcal{A}$. So, since $\bigcup_{i=1}^n R_i \in \mathcal{A}$ and $(R_i \cup R_j) \in \mathcal{A}$, $\bigcup_{i=1}^{n+1} (R_i) \in \mathcal{A}$. Thus, $\bigcup_{i=1}^k R_i \in \mathcal{A}$.

Next, to show $R_i^c \in \mathcal{A}$ for any i, consider $(A \times B) \cap (C \times D)$ in the figure. Notice $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D) \in \mathcal{A}$. Thus, inductively, we can show $\bigcap_{i=1}^n R_i \in \mathcal{A}$. So, by inspection of figure, we can see

$$R_{i}^{c} = \left(\bigcup_{i=1}^{n} A_{i} \times B_{i}\right)^{c} = \bigcap_{i=1}^{n} (A_{i} \times B_{i})^{c} = \bigcap_{i=1}^{n} \left((A_{i}^{c} \times B_{i}^{c}) \cup (A_{i} \times B_{i}^{c}) \cup (A_{i}^{c} \times B_{i})\right).$$

Notice $(A_i^c \times B_i^c)$, $(A_i \times B_i^c)$, $(A_i^c \times B_i)$ are disjoint so $(A_i^c \times B_i^c) \cup (A_i \times B_i^c) \cup (A_i^c \times B_i) \in \mathcal{A}$. Thus, $\bigcap_{i=1}^n ((A_i^c \times B_i^c) \cup (A_i \times B_i^c) \cup (A_i^c \times B_i)) \in \mathcal{A}$, so $R_i^c \in \mathcal{A}$ for any i.

Hence,
$$A$$
 is an algebra.

(2) Prove that if μ and ν are σ -finite then so is $\mu \times \nu$.

Proof. Assume μ and ν are σ -finite. Then, $X = \bigcup_{j=1}^{\infty} A_j$ with $\mu(A_j) < \infty$ for all j and $Y = \bigcup_{i=1}^{\infty} B_i$ with $\nu(B_i) < \infty$ for all i. Then, $X \times Y = \bigcup_{j=1}^{\infty} A_j \times \bigcup_{i=1}^{\infty} B_i = \bigcup_{j=1}^{\infty} \bigcup_{i=1}^{\infty} A_j \times B_i$. Since $\mu(A_j) < \infty$ and $\nu(B_i) < \infty$ for all $i, j, \mu(A_j)\nu(B_i) < \infty$ for all i, j. Therefore, $\mu \times \nu$ is σ -finte.

- 4. Section 1.3 (Folland): Complete proof of Theorem 1.9
- 4.1. October 5 Group Assignment. Let (X, \mathcal{M}, μ) be a measure space.

(1) Let $N = \{S \in M : \mu(S) = 0\}$ and $\overline{M} = \{E \cup F : E \in M \text{ and there is } S \in N \text{ such that } F \subseteq S\}$. Prove that \overline{M} is a σ -algebra that contains M.

Proof. To show \overline{M} is closed under countable unions, we will start by showing N is closed under countable unions. Consider a disjoint collection of sets, $\{E_i\}_{i=1}^{\infty} \subset N$. Then, for all $i, E_i \in M$ and $\mu(E_i) = 0$. Also, because μ is sub-additive and $E_i \cap E_j = \emptyset$ for all $i \neq j$, $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i) = \sum_{i=1}^{\infty} 0 = 0$. Since $E_i \in M$ for all $i, \bigcup_{i=1}^{\infty} E_i \in M$. Thus, $\bigcup_{i=1}^{\infty} E_i \in N$ and so N is closed under countable unions. Notice \overline{M} is the union of sets from M and N. Thus, because M and N are closed under countable unions, \overline{M} is closed under countable unions.

Next, we will show \overline{M} is closed under complements. Consider $E \cup F \in \overline{M}$. Then, $E \in M$ and $F \in N$. Suppose $E \cap N = \emptyset$.

Lemma: $E \cup F = (E \cup N) \cap (N^c \cup F)$

Proof. First, we will show $E \cup F \subseteq (E \cup N) \cap (N^c \cup F)$. Let $x \in E \cup F$. Then, $x \in E$ or $x \in F$. Suppose $x \in E$. Then, $x \in E \cup N$. Also, since $E \cap N = \emptyset$, $x \in N^c$ so $x \in N^c \cup F$. Thus, $x \in (E \cup N) \cap (N^c \cup F)$. Suppose $x \in F$. Then, $x \in N^c \cup F$. Since $x \in F$ and $E \cup F \in \overline{M}$, $F \in N$ and there exists some $S \in N$ such that $F \subseteq S$. Thus, $x \in N$ and so $x \in E \cup N$. Therefore, $E \cup F \subseteq (E \cup N) \cap (N^c \cup F)$.

Next, we will show $E \cup F \supseteq (E \cup N) \cap (N^c \cup F)$. Let $x \in (E \cup N) \cap (N^c \cup F)$. Then, $x \in E \cup N$ and $x \in N^c \cup F$. If $x \in E$, then $x \in E \cup F$ and we have our desired relation. So, suppose $x \notin E$. Then, since $x \in E \cup N$, $x \in N$. Since $x \in N$, $x \notin N^c$. Since $x \in N^c \cup F$, this implies $x \in F$ so that $x \in E \cup F$. Thus, $E \cup F \supseteq (E \cup N) \cap (N^c \cup F)$. \square By the lemma above, we can write $(E \cup F)^c = ((E \cup N) \cap (N^c \cup F))^c = (E \cup N)^c \cup (N^c \cup F)^c = (E \cup N)^c \cup (N \setminus F)$. M is closed under complements and countable unions, so $E \in M$ and $N \subset M$ implies $E \cup N \in M$ and $E \cup N \in M$. Also, $E \cup F \cap K$. Thus, $E \cup F \cap K$ and $E \cup K \cap K$. Now, suppose $E \cap N \neq \emptyset$, and consider the following lemma:

Lemma: If $E \cap N \neq \emptyset$, $E \cup F = (E \cup N \setminus E) \cap ((N \setminus E)^c \cup F \setminus E)$

Proof. First, we will show $E \cup F \subseteq (E \cup N \setminus E) \cap ((N \setminus E)^c \cup F \setminus E)$. Let $x \in E \cup F$. Then, $x \in E$ or $x \in F$. Suppose $x \in E$. Then, $x \in E \cup N \setminus E$. Since $x \in E$, $x \in (N^c \cup E) = (N \setminus E)^c$. Thus, $x \in (E \cup N \setminus E) \cap ((N \setminus E)^c \cup F \setminus E)$. Suppose $x \in F$, but $x \notin E$. Then, $x \in F \setminus E$, so $x \in (N \setminus E)^c \cup F \setminus E$. Since $x \in F$ and $E \cup F \in \overline{M}$, there exists some $S \in N$ such that $F \subseteq S$. Thus, $x \in N$. Since $x \notin E$, $x \in N \setminus E$ so $x \in E \cup N \setminus E$. Therefore, $E \cup F \subseteq (E \cup N \setminus E) \cap ((N \setminus E)^c \cup F \setminus E)$.

Next, we will show $E \cup F \supseteq (E \cup N \setminus E) \cap ((N \setminus E)^c \cup F \setminus E)$. Let $x \in (E \cup N \setminus E) \cap ((N \setminus E)^c \cup F \setminus E)$. Then, $x \in (E \cup N \setminus E)$ and $x \in ((N \setminus E)^c \cup F \setminus E)$. If $x \in E$, then $x \in E \cup F$ and we have our desired relation. So, suppose $x \notin E$.

Then, since $x \in E \cup N \setminus E$, $x \in N \setminus E$ and so $x \in N$. Since $x \in N$, $x \notin N^c$ and so $x \notin (N \setminus E)^c$. Since $x \in (N \setminus E)^c \cup F \setminus E$, $x \in F \setminus E$ so that $x \in E$. Thus, $x \in E \cup F$.

Hence,
$$E \cup F \supseteq (E \cup N \setminus E) \cap ((N \setminus E)^c \cup F \setminus E)$$
.

By the lemma above, we can write $(E \cup F)^c = ((E \cup N \setminus E) \cap ((N \setminus E)^c \cup F \setminus E))^c = (E \cup N \setminus E)^c \cup ((N \setminus E)^c \cup F \setminus E)^c = (E \cup N \setminus E)^c \cup (N \cap (E \setminus F))$. M is closed under complements and countable unions and intersections, so $E \in M$ and $N \setminus E \subset M$ implies $E \cup N \setminus E \in M$ and $(E \cup N \setminus E)^c \in M$. Also, $N \cap (E \setminus F) \subset N$. Thus, $(E \cup F)^c \in \overline{M}$.

(2) If $E \cup F \in \overline{M}$ define $\overline{\mu}(E \cup F) = \mu(E)$. Prove that this function is well defined.

Proof. Assume $E' \cup F' = E'' \cup F''$ with $E' \cup F'$ and $E'' \cup F''$ in \overline{M} . Since $E' \subseteq E' \cup F'$, $E' \subseteq E'' \cup F''$. Also, since $E'' \cup F'' \in \overline{M}$, there exists $S'' \in N$ such that $F'' \subseteq S''$. Thus, $E' \subseteq E'' \cup F'' \subseteq E'' \cup S''$. By monotonicity of μ , $\mu(E') \le \mu(E'' \cup F'') \le \mu(E'' \cup S'')$. Also, by subadditivity of μ , $\mu(E'' \cup S'') \le \mu(E'') + \mu(S'')$. Since $S'' \in N$, $\mu(S'') = 0$. Thus, $\mu(E') \le \mu(E'')$.

Similarly, $E'' \subseteq E'' \cup F''$, so $E'' \subseteq E' \cup F'$. Also, since $E' \cup F' \in \overline{M}$, there exists $S' \in N$ such that $F' \subseteq S'$. Thus, $E'' \subseteq E' \cup F' \subseteq E' \cup S'$. By monotonicity of μ , $\mu(E'') \leq \mu(E' \cup F') \leq \mu(E' \cup S')$. Also, by subadditivity of μ , $\mu(E' \cup S') \leq \mu(E') + \mu(S')$. Since

 $S' \in N, \ \mu(S') = 0.$ Thus, $\mu(E'') \leq \mu(E').$ Hence $\mu(E') = \mu(E'')$ and by definition of $\overline{\mu}, \ \mu(E') = \overline{\mu}(E' \cup F')$ and $\mu(E'') = \overline{\mu}(E'' \cup F'')$ which implies $\overline{\mu}(E' \cup F') = \overline{\mu}(E'' \cup F'').$ Thus, $\overline{\mu}$ is well defined.

(3) Prove that $\overline{\mu}$ is a measure on \overline{M} and that the measure is complete.

Proof. We will prove $\overline{\mu}$ is a measure on \overline{M} . Note $\emptyset \in M$ and since $\mu(\emptyset) = 0$ $\emptyset \in N$. Thus, $\overline{\mu}(\emptyset \cup \emptyset) = \mu(\emptyset) = 0$. Now, we will show $\overline{\mu}$ is countably additive. Consider a disjoint collection of sets in \overline{M} , $\{A_i\}_{i=1}^{\infty}$. Then, for all i, $A_i = E_i \cup F_i$ for some $E_i \in M$ and where $F_i \subseteq S_i$ for some $S_i \in N$. Then,

$$\overline{\mu}\left(\bigcup_{i=1}^{\infty} A_i\right) = \overline{\mu}\left(\bigcup_{i=1}^{\infty} E_i \cup F_i\right) = \overline{\mu}\left(\bigcup_{i=1}^{\infty} E_i \cup \bigcup_{i=1}^{\infty} F_i\right)$$

M and N are closed under countable unions, so $\bigcup_{i=1}^{\infty} E_i \in M$ and $\bigcup_{i=1}^{\infty} F_i \subseteq \bigcup_{i=1}^{\infty} S_i \in N$. By definition of $\overline{\mu}$, because $E'_i s$ are disjoint and because μ is countably additive we can write

$$\overline{\mu}\left(\bigcup_{i=1}^{\infty} E_i \cup \bigcup_{i=1}^{\infty} F_i\right) = \mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i) = \sum_{i=1}^{\infty} \overline{\mu}(E_i \cup F_i) = \sum_{i=1}^{\infty} \overline{\mu}(A_i).$$

Thus, $\overline{\mu}$ is countably sub-additive.

Proof. Next, we will prove $\overline{\mu}$ is a complete measure on \overline{M} . To prove this we must show that the domain of $\overline{\mu}$ contains all subsets of null sets. Suppose $E \cup F$ is a $\overline{\mu}$ -null set. Since $E \cup F$ is a $\overline{\mu}$ -null set, $\overline{\mu}(E \cup F) = 0 = \mu(E)$. Thus, E is a μ -null set. Also, if $E \cup F \in \overline{M}$, then $F \subseteq S \in N$, so $0 \le \mu(E \cup S) \le \mu(E) + \mu(S) = 0$. Thus, $\mu(E \cup S) = 0$ so $E \cup S$ is a μ -null set. Consider any $A \subseteq E \cup F$. The subset relation is transitive, so $A \subseteq E \cup S$. Thus, A is a subset of some element in N, so since $\emptyset \in M$, $\emptyset \cup A \in N$, so we can write $\overline{\mu}(A) = \overline{\mu}(\emptyset \cup A) = \mu(\emptyset) = 0$. Thus, $A \in \overline{M}$.

**Sources used: http://www.math.ubc.ca/~marcus/Math507420/Math507420_HW2_solns_
2013.pdf and https://proofwiki.org/wiki/Completion_Theorem_(Measure_Spaces)

(4) Prove that if σ is a complete measure on \overline{M} such that $\sigma|_{M} = \mu$, then $\sigma = \overline{\mu}$.

Proof. Let σ be a complete measure on \overline{M} such that $\sigma|_{M} = \mu$. Consider any $E \cup F \in \overline{M}$. Then, $E \subset E \cup F \subset E \cup S$ for some $S \in N$. Thus, by monotonicity of σ , $\sigma(E) \leq \sigma(E \cup F) \leq \sigma(E \cup S)$. Since $E \in M$ and $S \in M$, $E \cup S \in M$ and we can write $\sigma(E \cup S) = \mu(E \cup S)$ and by subadditivity of μ , $\mu(E \cup S) \leq \mu(E) + \mu(S)$. $S \in N$, so $\mu(S) = 0$. Thus, $\sigma(E) \leq \sigma(E \cup F) \leq \sigma(E \cup S) = \mu(E \cup S) \leq \mu(E) = \sigma(E)$ since $E \in M$. Thus, $\sigma(E) \leq \sigma(E \cup F) \leq \sigma(E)$ so $\sigma(E \cup F) = \mu(E) = \overline{\mu}(E \cup F)$. Thus, $\sigma = \overline{\mu}$.

**Source used: http://faculties.sbu.ac.ir/~shahrokhi/M-P.pdf

5. Section 1.5 (Folland): Borel Measures on the Real Line

5.1. Section 1.5 Definitions and Theorems.

Definition 22. A Borel measure is any measure μ defined on the σ -algebra of Borel sets.

Theorem 5. If $F: \mathbb{R} \to \mathbb{R}$ is any increasing, right continuous function, there is a unique Borel measure μ_F on \mathbb{R} such that $\mu_F((a,b]) = F(b) - F(a)$ for all a,b.

If G is another such function, we have $\mu_F = \mu_G$ iff F - G is constant.

Conversely, if μ is a Borel measure on \mathbb{R} that is finite on all bounded Borel sets and we define

$$F(x) = \begin{cases} \mu((0,x]) & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -\mu((x,0]) & \text{if } x < 0 \end{cases}$$

then F is increasing and right continuous and $\mu = \mu_F$.

Definition 23 $(\mathcal{B}_{\mathbb{R}})$. Borel σ -algebra: generated by family of open sets in \mathbb{R} (or closed, half-open, open rays, closed rays

Definition 24 (Lebesgue-Stieltjes measure). For any $E \in \mathcal{M}_{\mu}$,

$$\mu(E) = \inf \left\{ \sum_{1}^{\infty} \mu((a_j, b_j)) : E \subset \bigcup_{1}^{\infty} (a_j, b_j) \right\}.$$

Theorem 6. If $E \in \mathcal{M}_{\mu}$, then

$$\mu(E) = \inf\{\mu(U): U \supset E, \ U \text{ open}\} = \sup\{\mu(K): K \subset E, \ K \text{ compact}\}$$

Theorem 7.

$$E \subset \mathbb{R}$$
. $E \in \mathcal{M}_{\mu} \iff E = V/N_1, \ V \text{ is } G_{\delta}, \mu(N_1) = 0 \iff E = H \cup N_2, \ H \text{ is } F_{\sigma}, \ \mu(N_2) = 0.$

Definition 25 (Lebesgue measure). Complete measure μ_F associated to the function F(x) = x for which the measure of an interval is simply its length. Denoted m.

Remark 5. m is invariant under translations, simple behavior under dilations: m(E+s) = m(E) and m(rE) = |r|m(E)

Remark 6. Every singleton set in \mathbb{R} has Lebesgue measure zero. Every countable set has Lebesgue measure zero.

5.2. October 9 Group Assignment.

(1) Let δ_i denote the Dirac measure concentrated on i, in other words:

$$\delta_i(E) = \begin{cases} 1 & i \in E \\ 0 & i \notin E \end{cases}$$

Find the distribution function for the measure $\sum_{i=1}^{10} i^2 \delta_i$.

First notice that

$$1^{2}\delta_{1}(\{1\}) = 1$$
$$2^{2}\delta_{2}(\{2\}) = 4$$
$$3^{2}\delta_{3}(\{3\}) = 9$$
$$\vdots$$
$$10^{2}\delta_{10}(\{10\}) = 100$$

Also,

$$F(1) = \sum_{i=1}^{10} i^2 \delta_i((0,1]) = 1$$

$$F(2) = \sum_{i=1}^{10} i^2 \delta_i((0,2]) = 1 + 4 = 5$$

$$F(3) = \sum_{i=1}^{10} i^2 \delta_i((0,3]) = 1 + 4 + 9 = 14$$

$$\vdots$$

$$F(10) = \sum_{i=1}^{10} i^2 \delta_i((0,10]) = 1 + 4 + 9 + \dots + 100$$

Thus,

$$F(E) = \begin{cases} \sum_{i=1}^{\lfloor x \rfloor} i^2 & x < 10\\ \\ \sum_{i=1}^{10} i^2 & x \ge 10 \end{cases}$$

(2) Let F be increasing and right continuous; let μ_F denote the associated measure.

$$\boxed{ \text{Prove } \mu_F(\{a\}) = F(a) - F(a-) }$$
 First, notice $\{a\} = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, a\right]$. So, $\mu_F(\{a\}) = \mu_F \left(\bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, a\right]\right)$.

Measures are continuous from above so, $\mu_F(\{a\}) = \mu_F\left(\bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, a\right]\right) = \lim_{n \to \infty} \mu_F\left(\left(a - \frac{1}{n}, a\right]\right)$

$$= \lim_{n \to \infty} F(a) - F\left(a - \frac{1}{n}\right) = F(a) - \lim_{n \to \infty} F\left(a - \frac{1}{n}\right) = F(a) - F(a).$$

Prove
$$\mu_F((a,b)) = F(b-) - F(a)$$

First, notice
$$(a,b) = \bigcup_{n=1}^{\infty} \left(a, b - \frac{1}{n} \right]$$
. So, $\mu_F((a,b)) = \mu_F \left(\bigcup_{n=1}^{\infty} \left(a, b - \frac{1}{n} \right) \right)$. Measures are continuous

from below so,
$$\mu_F((a,b)) = \mu_F\left(\bigcup_{n=1}^{\infty} \left(a,b-\frac{1}{n}\right)\right) = \lim_{n\to\infty} \mu_F\left(\left(a,b-\frac{1}{n}\right)\right)$$

$$= \lim_{n\to\infty} \left(F\left(b-\frac{1}{n}\right) - F\left(a\right)\right) = \lim_{n\to\infty} \left(F\left(b-\frac{1}{n}\right)\right) - F\left(a\right) = F(b-) - F(a).$$
Prove $\mu_F([a,b)) = F(b-) - F(a-)$

First, notice $[a,b)=\{a\}\cup(a,b)$ and $\{a\}\cap(a,b)=\emptyset$. μ_F is a pre-measure, so $\mu_F([a,b))=\mu_F(\{a\}\cup(a,b))$

 $=\mu_F(\{a\})+\mu_F((a,b))$. From the two previous conclusions, we have

$$\mu_F(\{a\}) + \mu_F((a,b)) = F(a) - F(a-) + F(b-) - F(a) = F(b-) - F(a-).$$

Prove
$$\mu_F([a,b]) = F(b) - F(a-)$$

First, notice $[a,b] = \{b\} \cup [a,b)$ and $\{b\} \cap [a,b) = \emptyset$. μ_F is a pre-measure, so $\mu_F([a,b]) = \mu_F(\{b\} \cup [a,b))$

 $=\mu_F(\{b\})+\mu_F([a,b)).$ From part 1 and 3 of this exercise, we have

$$\mu_F(\{b\}) + \mu_F([a,b)) = F(b) - F(b-) + F(b-) - F(a-) = F(b) - F(a-).$$

(3) Use the previous exercise to describe a Borel measure so that the four quantities given are different where a = 0 and b = 1.

Consider the function

$$F(x) = \begin{cases} 1 & -\infty \le x < 0 \\ 3 & 0 \le x < \frac{1}{2} \\ 9 & \frac{1}{2} \le x < 1 \\ 27 & 1 \le x < \infty \end{cases}$$

If F is as defined above with a = 0, b = 1, then,

$$F(a) - F(a-) = F(0) - F(0-) = 3 - 1 = 2$$

$$F(b-) - F(a) = F(1-) - F(0) = 9 - 3 = 6$$

$$F(b-) - F(a-) = F(1-) - F(0-) = 9 - 1 = 8$$

$$F(b) - F(a-) = F(1) - F(0-) = 27 - 1 = 26$$

- 5.3. October 12 Group Assignment. Exercise 32 from §1.5.
 - (1) Prove that

$$\prod_{j=1}^{\infty} (1 - a_j) > 0 \text{ if and only if } \sum_{j=1}^{\infty} a_j < \infty$$

Proof. To prove the desired statement, we will use the limit comparison test to show that $\sum_{j=1}^{\infty} a_j$ converges if and only if $\sum_{j=1}^{\infty} \log(1-a_j)$ converges.

(\Leftarrow) Suppose $\sum a_j$ converges. If we assume $a_j \to 0$,

$$\lim_{j \to \infty} \frac{a_j}{\log(1 - a_j)} = \lim_{x \to 0} \frac{x}{\log(1 - x)}.$$

Applying L'Hospital's Rule,
$$\lim_{x\to 0} \frac{x}{\log(1-x)} = \lim_{x\to 0} \frac{1}{\frac{-1}{1-x}} = -1$$
.

Thus, if $a_j \to 0$, $\lim_{j \to \infty} \frac{a_j}{\log(1 - a_j)} = -1$. By the limit comparison test,

$$\lim_{n\to\infty}\sum_{j=1}^n a_j$$
 converges if and only if $\lim_{n\to\infty}\sum_{j=1}^n \log(1-a_j)$ converges. Thus,

since
$$\log(1-a_j) < 0$$
 for all j . $\sum_{j=1}^{\infty} \log(1-a_j) > -\infty$ if and only if $\sum_{j=1}^{\infty} a_j < \infty$

Since $\sum_{j=1}^{\infty} \log(1 - a_j) > -\infty$, let $\sum_{j=1}^{\infty} \log(1 - a_j) = k$ for $-\infty < k < 0$. Equivalently,

$$10^{\sum_{j=1}^{\infty} \log(1-a_j)} = 10^k \text{ implies } \prod_{j=1}^{\infty} (1-a_j) = 10^k > 0.$$

 (\Rightarrow) Assume $\prod_{j=1}^{\infty} (1-a_j) > 0$. Then, let $\prod_{j=1}^{\infty} (1-a_j) = k$ for k > 0. Then,

$$\log\left(\prod_{j=1}^{\infty}(1-a_j)\right) = \sum_{j=1}^{\infty}\log(1-a_j) = \log(k) > -\infty \text{ implies } \lim_{n\to\infty}\sum_{j=1}^{n}\log(1-a_j) \text{ converges.}$$

Suppose $\lim_{j\to\infty}\log(1-a_j)=0$. Since log is a continuous function, we can write $\log(1-\lim_{j\to\infty}a_j)=0$ which implies $\lim_{j\to\infty}a_j=0$ Then, as shown above, the limit comparison test implies $\lim_{n\to\infty}\sum_{j=1}^n a_j$ converges so $\sum_{j=1}^\infty a_j<\infty$.

(2) Given $\beta \in (0, 1)$, exhibit a sequence $\{a_j\}$ such that $\prod (1 - a_j) = \beta$. If $\prod (1 - a_j) = \beta$, then $\ln (\prod (1 - a_j)) = \ln \beta$ and $\sum \ln (1 - a_j) = \ln \beta$. From part (1), we know that $\sum \ln (1 - a_j)$ converges implies $\sum a_j$ converges. Also, $\ln \beta = \sum \frac{\ln \beta}{2^j}$ so $\sum \ln (1 - a_j) = \sum \frac{\ln \beta}{2^j}$ implies

$$e^{\ln(1-a_j)} = e^{\frac{\ln \beta}{2^j}}$$
. Equivalently, $1 - a_j = e^{\ln \beta^{-2^j}} = \beta^{-2^j}$.

Thus, the sequence $a_j = 1 - \beta^{-2^j}$ satisfies $\prod (1 - a_j) = \beta$.

6. Section 2.1 (Folland): Measurable Functions

6.1. Section 2.1 Definitions and Theorems.

Remark 7. Any mapping $f: X \to Y$ between two sets induces a mapping $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$ defined by $f^{-1}(E) = \{x \in X : f(x) \in E\}$ which preserves unions, intersections, and complements. Thus, if \mathcal{N} is a σ -algebra on Y, then $\{f^{-1}(E) : E \in \mathcal{N}\}$ is a σ -algebra on X

Definition 26 (measurable functions). If (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces, a mapping $f: X \to Y$ is called $(\mathcal{M}, \mathcal{N})$ -measurable if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$.

Proposition 8. If \mathcal{N} is generated by \mathcal{E} , then f is $(\mathcal{M}, \mathcal{N})$ -measurable iff $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{E}$ **Corollary 1.** X, Y are topological spaces, every continuous $f: X \to Y$ is $(\mathcal{B}_x, \mathcal{B}_y)$ -measurable. **Proposition 9.** (X, \mathcal{M}) is a measure space and $f: X \to \mathbb{R}$, then

f is $\mathcal{M}-$ measurable $\iff f^{-1}((a,\infty))\in\mathcal{M}$ for for all $a\in\mathbb{R}\iff f^{-1}([a,\infty))\in\mathcal{M}$ for for all $a\in\mathbb{R}$

$$\iff f^{-1}((-\infty, a)) \in \mathcal{M} \text{ for for all } a \in \mathbb{R} \iff f^{-1}((-\infty, a]) \in \mathcal{M} \text{ for for all } a \in \mathbb{R}$$

Definition 27 (simple functions). A finite linear combination with complex coefficients of characteristic functions of sets in \mathcal{M} .

Definition 28 (standard representation of f).

$$f = \sum_{1}^{n} z_j \chi_{E_j}$$
, where $E_j = f^{-1}(\{z_j\})$ and range $(f) = \{z_1, \dots, z_n\}$.

6.2. October 14 Group Assignment.

(1) (exercise 8, §2.1): Prove that if $f: \mathbb{R} \to \mathbb{R}$ is monotone then it is measurable.

Proof. Let $f: \mathbb{R} \to \mathbb{R}$ be monotone. By Proposition 2.3 in Page 44, it suffices to show that for any $a \in \mathbb{R}$, we have $f^{-1}((a, \infty))$ is Borel measurable. WLOG, assume f is increasing. Let $x' = \inf\{x: f(x) > a\}$

Case 1: Suppose $f(x') \leq a$. We will show $f^{-1}((a, \infty)) = (x', \infty)$. First, show $f^{-1}((a, \infty)) \subseteq (x', \infty)$. Let $x \in f^{-1}((a, \infty))$. Then, f(x) > a. Since $x' = \inf\{x : f(x) > a\}, x' < x$. Thus, $x \in (x', \infty)$.

Next, show $f^{-1}((a,\infty)) \supseteq (x',\infty)$. Let $x \in (x',\infty)$. Then, x > x'. Since $x' = \inf\{x : f(x) > a\}$ and x > x', there exists some $x_0 \in \mathbb{R}$ such that $x > x_0 > x'$ and $f(x_0) > a$. f is monotone, so $f(x) > f(x_0)$. Thus, f(x) > a which implies $x \in f^{-1}((a,\infty))$.

Case 2: Suppose f(x') > a. We will show $f^{-1}((a, \infty)) = (x', \infty)$. First, show $f^{-1}((a, \infty)) \subseteq (x', \infty)$. Let $x \in f^{-1}((a, \infty))$. Then, f(x) > a. Since $x' = \inf\{x : f(x) > a\}, x' < x$. Thus, $x \in (x', \infty)$.

Next, show $f^{-1}((a, \infty)) \supseteq (x', \infty)$. Let $x \in (x', \infty)$. Then, x > x'. Since f is monotone, so f(x) > f(x') > a. Thus, f(x) > a which implies $x \in f^{-1}((a, \infty))$.

Case 3: Suppose $f(x') = \infty$. We will show $f^{-1}((a, \infty)) = \emptyset$. If $f(x') = \infty$, $f(\inf\{x : f(x) > a\}) = \infty$ which implies $\inf\{x : f(x) > a\} = \infty$ so $\{x : f(x) > a\} = \emptyset$. Thus, $f^{-1}((a, \infty)) = \emptyset$.

Case 4: Suppose $f(x') = -\infty$. We will show $f^{-1}((a, \infty)) = \mathbb{R}$. If $f(x') = -\infty$,

 $f(\inf\{x: f(x) > a\}) = -\infty$ which implies $\inf\{x: f(x) > a\} = -\infty$ so $\{x: f(x) > a\} = \mathbb{R}$. Thus, $f^{-1}((a,\infty)) = \mathbb{R}$.

Hence, for any $a \in \mathbb{R}$, we have $f^{-1}((a, \infty))$ is Borel measurable, so f is measurable.

(2) (exercise 5, §2.1): If $X = A \cup B$ with $A, B \in \mathcal{M}$, then a function f on X is measurable if and only if f is measurable on A and B.

Proof. Let $f:(X,\mathcal{M})\to (Y,\mathcal{N})$. First, assume f is measurable on $X=A\cup B\in \mathcal{M}$. Then, for all $N\in \mathcal{N},\ f^{-1}(N)\in \mathcal{M}$. Since $A,B\in \mathcal{M},\ f^{-1}(N)\cap A\in \mathcal{M}$ and $f^{-1}(N)\cap B\in \mathcal{M}$ for all $N\in \mathcal{N}$. Thus, f is measurable on A and f is measurable on B.

Next, assume f is measurable on A and f is measurable on B. Then, for all $N \in \mathcal{N}$, $f^{-1}(N) \cap A \in \mathcal{M}$ and $f^{-1}(N) \cap B \in \mathcal{M}$. This implies $(f^{-1}(N) \cap A) \cup (f^{-1}(N) \cap B) \in \mathcal{M}$. Since $(f^{-1}(N) \cap A) \cup (f^{-1}(N) \cap B) = f^{-1}(N) \cap (A \cup B)$, f is measurable on $A \cup B$.

http://www.math.brown.edu/~rkenyon/teaching/2009/2210/Set3.pdf

6.3. October 16 Group Assignment.

(1) (exercise 3, §2.1): If $\{f_n\}$ is a sequence of measurable functions then the set $\{x : \lim_{n\to\infty} f_n(x) \in \mathbb{R}\}$ is measurable.

Proof. Assume $\{f_n\}$ is a sequence of measurable functions. Consider $\{x : \lim_{n\to\infty} f_n(x) \in \mathbb{N}\}$ exists. If $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} f_n(x)$. Thus,

$$\{x: \lim_{n\to\infty} f_n(x) \text{ exists}\} = \{x: \limsup f_n(x) = \lim f_n(x)\}.$$

By, proposition 2.7, $g_3(x) = \limsup f_n(x)$ and $g_4(x) = \lim f_n(x)$ are measurable functions. Define $g = g_3 - g_4$. Then, g is a measurable function. If g(x) = 0, then $x \in \{x : \lim_{n \to \infty} f_n(x) \text{ exists}\}$. Since g is measurable, $g^{-1}(\{0\}) = \{x : \lim_{n \to \infty} f_n(x) \text{ exists}\}$ is measurable.

(2) (exercise 6, §2.1): Show by example that there is an uncountable set A and for each $a \in A$ a measurable function f_a , but $\sup\{f_\alpha : \alpha \in A\}$ is not measurable.

Consider the set N_r constructed in section 1.1. Then N_r is an uncountable set and therefore not measurable. However, for every $r \in \mathbb{Q} \cap [0,1)$ and $x \in N$ (where N was defined as the subset of [0,1) containing exactly one member of the equivalence classes defined by $x \sim y$ iff $x - y \in \mathbb{Q}$. Singletons are measurable, so, from page 46 of Folland, the indicator functions $\chi_{\{x+r\}}$ and $\chi_{\{x_r-1\}}$ are measurable for all $r \in \mathbb{Q} \cap [0,1)$ and $x \in N \cap [0,1-r)$ or $x \in N \cap [1-r,1)$. Notice $\sup\{\chi_{\{x+r\}},\chi_{\{x+r-1\}}: r \in \mathbb{Q} \cap [0,1) \text{ and } x \in N \cap [0,1-r) \text{ or } x \in N \cap [1-r,1)\} = \chi_{N_r}$ But, χ_{N_r} is not measurable because N_r is not measurable.

7. Section 2.2 (Folland): Integration of Non-Negative Functions

7.1. Section 2.2 Definitions and Theorems. Fix a measure space (X, \mathcal{M}, μ) .

Definition 29 (L^+) . The space of all measurable functions from X to $[0,\infty]$.

Definition 30. If ϕ is a simple function in L^+ with standard representation

$$\phi = \sum_{1}^{n} a_j \chi_{E_j}$$
, then, $\int \phi \ d\mu = \sum_{1}^{n} a_j \mu(E_j)$.

Remark 8.

$$\int_{A} \phi d\mu = \int_{A} \phi = \int_{A} \phi(x) d\mu(x) = \int \phi \chi_{A} d\mu$$

Proposition 10. Let ϕ be simple functions in L^+ , then $A \to \int_A \phi d\mu$ is a measure on \mathcal{M} .

Theorem 8 (monotone convergence theorem). If $\{f_n\}$ is a sequence in L^+ such that $f_j \leq f_{j+1}$ for all j, and $f = \lim_{n \to \infty} f_n$, then $\int f = \lim_{n \to \infty} \int f_n$

Theorem 9 (Fatou's Lemma). If $\{f_n\}$ is any sequence in L^+ , then

$$\int (\liminf f_n) \le \liminf \int f_n.$$

Corollary 2. If $\{f_n\} \subset L^+$, $f \in L^+$, and $f_n \to f$ a.e., then $\int f \leq \liminf \int f_n$.

Proposition 11. If $f \in L^+$ and $\int f < \infty$, then $\{x : f(x) = \infty\}$ is a null set and $\{x : f(x) > 0\}$ is σ -finte.

7.2. October 19 Group Assignment.

(1) Prove if φ and ψ are simple functions, then $\varphi + \psi$ and $\varphi \cdot \psi$ are simple functions. Proof. Assume φ and ψ are simple functions. Then, $\varphi = \sum_{j=1}^n z_j \chi_{E_j}$ and $\psi = \sum_{i=1}^m \alpha_i \chi_{A_i}$. Then, φ and ψ are measurable. The sum of measurable functions is a measurable function, so $\varphi + \psi$ is measurable. Since φ and ψ are simple, their range is finite. Let $\operatorname{ran}\psi = \{a_i\}_{i=1}^n$ and $\operatorname{ran}\varphi = \{b_j\}_{j=1}^m$ The range of $\varphi + \psi \subseteq \bigcup_{j=1}^m (\{a_i\}_{i=1}^n + b_j)$. Thus, $\psi + \varphi$ is simple. Similarly, if φ , ψ are measurable, then $\varphi \cdot \psi$ is measurable. Also, the range of $\varphi \cdot \psi \subseteq \bigcup_{j=1}^m (\{a_i\}_{i=1}^n \cdot b_j)$ which is finite. Thus, $\varphi \cdot \psi$ is simple.

http://math.sfsu.edu/schuster/Assignment_08_03.pdf

- (2) Assume that (X, \mathcal{M}, μ) is complete. (a) If f is \mathcal{M} -measurable functions and $f = g \mu$ almost everywhere, then g is \mathcal{M} -measurable.
 - Proof. Assume f is a \mathcal{M} -measurable function and f = g μ almost everywhere. Define $A = \{x : f(x) = g(x)\}$ and $B = \{x : f(x) \neq g(x)\}$. Because f is measurable $f^{-1}((a, \infty)) \cap A \in \mathcal{M}$. Also, f(x) = g(x) for all $x \in A$ so $f^{-1}((a, \infty)) \cap A = g^{-1}((a, \infty)) \cap A \in \mathcal{M}$. Since g = f μ almost everywhere, $\mu(B) = 0$. Additionally, μ is complete, so $\mu(g^{-1}((a, \infty)) \cap B) \leq \mu(B) = 0$. Thus, $\mu(g^{-1}((a, \infty)) \cap B) = 0$ implies $g^{-1}((a, \infty)) \cap B \in \mathcal{M}$. Notice $X = A \cup B$, so by exercise 5 in §2.1, g is measurable.
 - (b) If f_n is a sequence of \mathcal{M} -measurable functions such that $f_n \to f$ μ -almost everywhere, then f is \mathcal{M} -measurable.

Proof. Assume f_n is a sequence of \mathcal{M} -measurable functions such that $f_n \to f$ μ almost everywhere. Define $A = \{x : f_n(x) \to f(x)\}$ and $B = \{x : f_n(x) \not\to f(x)\}$. Because f_n are measurable $f_n^{-1}(N) \cap A \in \mathcal{M}$ for all $N \in \mathcal{B}_{\mathbb{R}}$. Also, $f_n(x) \to f(x)$ for all $x \in A$ so $\lim_{n \to \infty} f_n^{-1}(N) \cap A = f^{-1}(N) \cap A \in \mathcal{M}$. Since $f_n(x) \to f(x)$ μ almost everywhere, $\mu(B) = 0$. Additionally, μ is complete, so $\mu(f^{-1}(N) \cap B) \leq \mu(B) = 0$. Thus, $\mu(f^{-1}(N) \cap B) = 0$ implies $f^{-1}(N) \cap B \in \mathcal{M}$. Notice $X = A \cup B$, so by exercise 5 in §2.1, f is measurable. \square

7.3. October 21 Group Assignment.

(1) If $f \in L^+$, let $\lambda(E) = \int_E f d\mu$ for $E \in \mathcal{M}$. Then, λ is a measure on \mathcal{M} , and for any $g \in L^+$, $\int g \ d\lambda = \int f g \ d\mu.$

Proof. First, we will show that λ is a measure. Notice

$$\lambda(\emptyset) = \int_{\emptyset} f \ d\mu = \int f \chi_{\emptyset} \ d\mu = \int f \cdot 0 \ d\mu = 0.$$
 Thus, $\lambda(\emptyset) = 0$.

Next consider a disjoint collection of sets $\{E_j\}_{i=1}^{\infty} \subset \mathcal{M}$. Then,

$$\lambda\left(\bigcup_{j=1}^{\infty} E_i\right) = \int_{\bigcup_{j=1}^{\infty} E_i} f \ d\mu = \int f \chi_{\{\bigcup_{j=1}^{\infty} E_i\}} \ d\mu = \int f \sum_{i=1}^{\infty} \chi_{E_i} \ d\mu$$
$$= \sum_{i=1}^{\infty} \int f \chi_{E_i} d\mu = \sum_{i=1}^{\infty} \int_{E_i} f d\mu = \sum_{i=1}^{\infty} \lambda(E_i).$$

Therefore λ is countably sub-additive over disjoint unions; λ is a measure.

Next, by Theorem 2.10, $g \in L^+$ implies there is a sequence $\{g_j\}$ of simple functions such that $0 \le g_1 \le g_2 \le \cdots \le g$ such that $g_j \to g$ pointwise. Since g_j are simple functions, for all j we can write $g_j = \sum_{i=1}^n z_i \chi_{E_i}$ for $E_i = g_j^{-1}(\{z_i\})$ where range $(g_j) = \{z_1, z_2, \cdots, z_n\}$. Then, for all g_j we have

$$\int g_j \ d\lambda = \sum_{i=1}^n z_i \lambda(E_i) \qquad \text{definition of integral of simple functions on p. 49}$$

$$= \sum_{i=1}^n z_i \int_{E_i} f d\mu \qquad \text{definition of } \lambda$$

$$= \int_{E_i} \sum_{i=1}^n z_i f d\mu$$

$$= \int \sum_{i=1}^n z_i \chi_{E_i} f d\mu$$

$$= \int g_j f d\mu$$

Then, by the Monotone Convergence Theorem, since $g_j \to g$,

$$\int g \ d\lambda = \lim_{j \to \infty} \int g_j \ d\lambda = \lim_{j \to \infty} \int g_j f d\mu = \int \lim_{j \to \infty} g_j f d\mu = \int g f d\mu$$

(2) If $f \in L^+$ and $\int f < \infty$ for every $\epsilon > 0$ there exists $E \in \mathcal{M}$ such that $\mu(E) < \infty$ and $\int_E f > \left(\int f\right) - \epsilon$.

Proof. Assume $f \in L^+$ and $\int f < \infty$. Since f is measurable and $\int f < \infty$, f is integrable and defined as

$$\int f \ d\mu = \sup \left\{ \int \phi \ d\mu : 0 \le \phi \le f, \text{ where } \phi \text{ is simple} \right\}.$$

Thus, for any $\epsilon > 0$, there exists some simple function ϕ such that

$$\int f \ d\mu - \epsilon < \int \phi \ d\mu < \infty.$$

Because ϕ is a simple function we can write

$$\phi = \sum_{i=1}^{\infty} a_i \chi_{E_i}$$
 and so $\int \phi \ d\mu = \sum_{i=1}^{\infty} a_i \mu(E_i) < \infty$.

If $\mu(E_k) = \infty$ for some k, then since $\sum_{i=1}^{\infty} a_i \mu(E_i) < \infty$, $a_k = 0$. So, rewrite $\phi = \sum_{i=1}^{\infty} \alpha_i \mu(B_i)$ with $\alpha_i \neq 0$ and $\mu(B_i) < \infty$. Since $\mu(B_i) < \infty$, $\mu(\bigcup_{i=1}^{\infty} B_i) < \infty$. Now, let $E = \bigcup_{i=1}^{\infty} B_i$, so $\mu(E) < \infty$. Since the $\phi = 0$ everywhere outside of E and because $\phi \leq f$ we can write

$$\int\!\phi\ d\mu=\int_E\!\phi\ d\mu\leq\int_E\!f\ d\mu.$$
 Therefore,
$$\int\!f\ d\mu-\epsilon<\int\!\phi\ d\mu\leq\int_E\!f\ d\mu.$$

Thus, for every $\epsilon > 0$, there exists $E \in \mathcal{M}$ such that $\mu(E) < \infty$ and

$$\int_{E} f > \left(\int f \right) - \epsilon.$$

7.4. October 23 Group Assignment.

- (1) Suppose $\{f_n\}$ is a countable set of functions in L^+ . If $f_n \to f$ pointwise and $\int f = \lim \int_E f_n$ for any $E \in \mathcal{M}$.
- (2) Suppose $\{f_n\}$ is a countable set of functions in L^+ . If $f_n \geq f_{n+1}$ for all $n, f_n \to f$ and $\int f_1 < \infty$, then $\int f = \lim \int f_n$.

Proof. Define $g_n = f_1 - f_n$. Then since $f_n \ge f_{n+1}$ for all n, g_n is an increasing sequence of functions. Since $f_1 \in L^+$ and $f_n \in L^+$, $g \in L^+$. Also, $g_n \to f_1 - f$. By the Monotone Convergence Theorem, $\int (f_1 - f) = \lim_{n \to \infty} \int g_n = \lim_{n \to \infty} \int (f_1 - f_n)$. Thus,

$$\lim_{n \to \infty} \int (f_1 - f_n) = \int (f_1 - f)$$

$$\lim_{n \to \infty} \int f_1 - \lim_{n \to \infty} f_n = \int (f_1 - f)$$

$$\int f_1 - \lim_{n \to \infty} f_n = \int f_1 - \int f$$

$$-\lim_{n \to \infty} f_n = -\int f$$

$$\lim_{n \to \infty} f_n = \int f.$$

8. Section 2.3 (Folland): Integration of Complex Functions

8.1. Section 2.3 Definitions and Theorems.

Definition 31 (integrable).

$$\int f = \int f^+ - \int f^-$$
, If $\int f^+$ and $\int f^-$ are both finite, we say that f is integrable

$$|f| = f^+ + f^-$$
 so f is integrable iff $\int |f| < \infty$

Definition 32 (L^1) . Space of complex-valued integrable functions

Proposition 12. If $f \in L^1$, then $\{x : f(x) \neq 0\}$ is σ -finite.

Definition 33 (convergence in L^1). $f_n \to f$ iff $\int |f_n - f| \to 0$.

Theorem 10 (dominated convergence theorem). Let $\{f_n\}$ be a sequence in L^1 . If $f_n \to f$ a.e., and there exists a nonnegative $g \in L^1$ such that $|f_n| \leq g$ a.e. for all n, then

$$f \in L^1$$
 and $\int f = \lim_{n \to \infty} \int f_n$

Theorem 11. If $f \in L^1(\mu)$ and $\epsilon > 0$, there is an integrable simple function $\phi = \sum a_j \chi_{E_j}$ such that $\int |f - \phi| d\mu < \epsilon$.

8.2. October 26 Group Assignment.

(1) Suppose $\{f_n\}_{n=1}^{\infty}$ is a countable sequence of functions in $L^1(\mu)$ and that $f_n \to f$ uniformly. (a) If $\mu(X) < \infty$, prove that $f \in L^1(\mu)$ and $\int f_n \to \int f$.

Proof. Let $\epsilon > 0$ and $g = \max\{|f_1|, |f_2|, \dots, |f_N|\} + 2\epsilon$. We will show $|f_n| \leq g$ for any n. If $n \leq N$, then $|f_n| \leq \max\{|f_1|, |f_2|, \dots, |f_N|\} \leq g + 2\epsilon$ so suppose n > N. Since $f_n \to f$ uniformly, for any $\epsilon > 0$, there exists an $M \geq 0$ such that $|f_n(x) - f(x)| < \epsilon$ for all n > M and $x \in X$. Then, $|f_n| < |f| + \epsilon$. So, for n = N, we can write $|f| < |f_N| + \epsilon$. Thus,

$$|f_n| < |f| + \epsilon < |f_N| + \epsilon + \epsilon \le g.$$

Since $\int |f_i| d\mu < \infty$ for any i and $\mu(X) < \infty$, let $\int |f_i| d\mu = C$ and $\mu(X) = K$, then

$$\int gd\mu = \int |f_i|d\mu + \int 2\epsilon d\mu = C + 2\epsilon \mu(X) = C + 2\epsilon K < \infty.$$

Thus, $g \in L^1$. Hence, by the dominated convergence theorem, $f \in L^1(\mu)$ and $\int f_n \to \int f$.

(b) Find an example to prove that the previous can be false if $\mu(X) = \infty$.

Let
$$f_n = \frac{1}{2n} \chi_{[-n,n]}$$
. Then, $\mu([-n,n]) = \infty$. Note, $\int f_n = \frac{1}{2n} (2n) = 1$.

Also, $f_n \to 0$ and $\int 0 = 0$. However $\int f_n = 1$ but $\int f = 0$ so 1(a) does not apply if $\mu(X) = \infty$.

(2)

Let
$$f(x) = \begin{cases} x^{-\frac{1}{2}} & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$
.

If $\{r_n\}$ is an enumeration of the rationals, set

$$g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x - r_n)$$
. Prove that $g \in L^1(m)$ but g^2 is not.

Proof.

Notice
$$\int_{(r_j,1+r_j)} (x-r_1)^{-\frac{1}{2}} dm = \int (x-r_1)^{-\frac{1}{2}} \chi_{(r_j,1+r_j)} dm$$
$$= \int (x-r_1)^{-\frac{1}{2}} \lim_{n \to \infty} \chi_{(r_j+\frac{1}{n},1+r_j)} dm$$
$$= \lim_{n \to \infty} \int (x-r_1)^{-\frac{1}{2}} \chi_{(r_j+\frac{1}{n},1+r_j)} dm$$

Note that
$$f_j = f(x - r_j)\chi_{(\frac{1}{n} + r_j, 1 + r_j)} = \begin{cases} (x - r_j)^{-\frac{1}{2}} & \text{if } r_j + \frac{1}{n} < x < 1 + r_j \\ 0 & \text{otherwise} \end{cases}$$
.

Thus, $f_j < \sqrt{n}$. So, by theorem 2.28, f_j is Lebesgue measurable and the Riemann integral is equal to the Lebesgue integral on an interval. Thus,

$$\lim_{n \to \infty} \int (x - r_1)^{-\frac{1}{2}} \chi_{(r_j + \frac{1}{n}, 1 + r_j)} dm = \lim_{n \to \infty} \int_{(r_j + \frac{1}{n}, 1 + r_j)} (x - r_1)^{-\frac{1}{2}} dm$$

$$= \lim_{n \to \infty} \int_{1 + r_j} (x - r_1)^{-\frac{1}{2}} dx$$

$$= \int_{r_j} (x - r_1)^{-\frac{1}{2}} dx$$

$$= 2$$

Thus, $f_j \in L^1$ and $2^{-j} \in L^1$ and so by theorem 2.25, $g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x - r_n) = \sum_{n=1}^{\infty} 2^{-n} f_n \in L^1$. Also, by theorem 2.25,

$$\int g dm = \int_{(r_j, r_j + 1)} \sum_{j=1}^{\infty} 2^{-j} f_j dm = \sum_{j=1}^{\infty} 2^{-j} \int_{(r_j, r_j + 1)} f_j dm = \sum_{j=1}^{\infty} 2^{-j} 2 = 2. \text{ Thus, } g \in L^1.$$

Proof. Next, we will show $g^2 \not\in L^1$. First, notice

$$g^2 \ge \sum_{n=1}^{\infty} 2^{-2n} (f(x - r_n))^2$$
 and $(f(x - r_n))^2 = \begin{cases} \frac{1}{x - r_n} & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$.

On $(r_n, 1 + r_n)$, $\frac{1}{x - r_n} < 1$, so, by theorem 2.28,

$$\int_{(r_n, 1+r_n)} \frac{dm}{x - r_n} = \int_{r_n}^{1+r_n} \frac{dx}{x - r_n} = \int_{0}^{1} \frac{dx}{x} = \infty$$

Thus, $g^2 \notin L^1$.

8.3. October 28 Group Assignment.

(1) Let $f \in L^1(m)$ and $F(x) = \int_{[-\infty,x]} f(t) \ dm(t)$ then F is continuous on \mathbb{R} .

Proof. Note $F(t) = \int_{[-\infty,x]} f(t) dm(t) = \int f(t) \chi_{[-\infty,x]} dm(t)$. F is continuous if $\lim_{x_n \to x} F(x_n) = F(x)$ for any $x \in \mathbb{R}$. So, consider a sequence $\{x_n\}_{n=1}^{\infty} \to x$. Let $f_n = f\chi_{[-\infty,x_n]}$ so f_n converges pointwise to $f\chi_{[-\infty,x]}$ and $f_n \in L^1$. Because $|f_n| \leq |f|$ and $f \in L^1$, the dominated convergence theorem implies $\int f = \lim_{n \to \infty} \int f_n$. Thus,

$$\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} \int_{[-\infty, x_n]} f(t) \, dm(t)$$

$$= \lim_{n \to \infty} \int f(t) \chi_{[-\infty, x_n]} \, dm(t)$$

$$= \int f(t) \lim_{n \to \infty} \chi_{[-\infty, x_n]} \, dm(t)$$

$$= \int f(t) \chi_{[-\infty, x]} \, dm(t)$$

$$= \int_{[-\infty, x]} f(t) \, dm(t)$$

$$= F(x).$$

http://faculties.sbu.ac.ir/~shahrokhi/M-P.pdf

(2) Compute the following, justifying your calculations:

(a)
$$\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n}\right)^{-n} \sin\left(\frac{x}{n}\right) dx$$

Using the binomial theorem, we have

$$\left(1 + \frac{x}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{x}{n}\right)^k = 1 + x + \frac{(n-1)x^2}{2n} + \sum_{k=3}^n \binom{n}{k} \left(\frac{x}{n}\right)^k. \text{ Thus, } \left(1 + \frac{x}{n}\right)^n \ge 1 + x + \frac{(n-1)x^2}{2n}.$$

If
$$n \ge 2$$
, $\frac{(n-1)}{2n} \ge \frac{1}{4}$. So, if $n \ge 2$, $\left(1 + \frac{x}{n}\right)^n \ge 1 + x + \frac{x^2}{4}$. Equivalently, $\left(1 + \frac{x}{n}\right)^{-n} \le \frac{1}{1 + x + \frac{x^2}{4}}$.

Therefore,
$$\left| \frac{\sin\left(\frac{x}{n}\right)}{\left(1+\frac{x}{n}\right)^n} \right| \le \frac{1}{1+x+\frac{x^2}{4}}$$
. $g(x) = \frac{1}{1+x+\frac{x^2}{4}}$ is Riemann integrable, so $g \in L^1$.

Thus, by the dominated convergence theorem, we have

$$\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n} \right)^{-n} \sin\left(\frac{x}{n}\right) dx = \int_0^\infty \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{-n} \sin\left(\frac{x}{n}\right) dx = 0$$

(b)
$$\lim_{n \to \infty} \int_0^1 (1 + nx^2) (1 + x^2)^{-n} dx$$

Using the binomial theorem, we have

$$(1+x^2)^n = \sum_{k=0}^n \binom{n}{k} (x^2)^k = 1 + nx^2 + \sum_{k=2}^n \binom{n}{k} (x^2)^k$$
. Thus, $(1+x^2)^n \ge 1 + nx^2$

and so
$$(1+x^2)^{-n} \le \frac{1}{1+nx^2}$$
 implies $|(1+nx^2)(1+x^2)^{-n}| \le 1$. $g = 1 \in L^1$.

Thus, by the dominated convergence theorem, we have

$$\lim_{n \to \infty} \int_0^1 (1 + nx^2) (1 + x^2)^{-n} dx = \int_0^1 \lim_{n \to \infty} (1 + nx^2) (1 + x^2)^{-n} dx = 0$$

(c)
$$\lim_{n \to \infty} \int_0^\infty n \sin\left(\frac{x}{n}\right) \left(x(1+x^2)\right)^{-1} dx$$

Note $\sin\left(\frac{x}{n}\right) \le \frac{x}{n}$ on $[0, \infty)$ so

$$\left| n \sin\left(\frac{x}{n}\right) \left(x(1+x^2)\right)^{-1} \right| \le n \frac{x}{n} \left(x(1+x^2)\right)^{-1} = \left(1+x^2\right)^{-1}.$$

Since $g = \left(1 + x^2\right)^{-1}$ is Riemann integrable and bounded $g \in L^1$.

Thus, by the dominated convergence theorem, we have

$$\lim_{n \to \infty} \int_0^\infty n \sin\left(\frac{x}{n}\right) \left(x(1+x^2)\right)^{-1} \ dx = \int_0^\infty \lim_{n \to \infty} n \sin\left(\frac{x}{n}\right) \left(x(1+x^2)\right)^{-1} \ dx = \int_0^\infty \left(1+x^2\right)^{-1} \ dx = \frac{\pi}{2}.$$

8.4. November 2 Group Assignment.

(1) Let $f_n(x) = ae^{-nax} - be^{-nbx}$ where 0 < a < b. Verify the following:

(a)
$$\sum_{n=1}^{\infty} \int_{0}^{\infty} |f_n(x)| \ dx = \infty$$

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} |f_{n}(x)| \ dx \ge \sum_{n=1}^{\infty} \int_{\frac{1}{an}}^{\infty} |ae^{-nax} - be^{-nbx}| \ dx \ge \sum_{n=1}^{\infty} \left| \int_{\frac{1}{an}}^{\infty} ae^{-nax} - be^{-nbx} \right| \ dx.$$

Note,
$$\int_{\frac{1}{an}}^{\infty} ae^{-nax} - be^{-nbx} dx = \lim_{k \to \infty} \left(-\frac{1}{ne^{nak}} + \frac{1}{ne^{nbk}} \right) + \frac{1}{ne^{na}\frac{1}{an}} - \frac{1}{ne^{nb}\frac{1}{an}} = 0 + \frac{1}{ne} - \frac{1}{ne^{\frac{b}{a}}}$$

$$\text{Thus, } \sum_{n=1}^{\infty} \int_{0}^{\infty} |f_{n}(x)| dx \ge \sum_{n=1}^{\infty} \left| \frac{1}{ne} - \frac{1}{ne^{\frac{b}{a}}} \right| = \left(e - e^{\frac{b}{a}} \right) \sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

$$\text{(b) } \sum_{n=1}^{\infty} \int_{0}^{\infty} f_{n}(x) dx = 0$$

$$\text{Note, } \int_{\frac{1}{an}}^{\infty} ae^{-nax} - be^{-nbx} dx = \lim_{k \to \infty} \left(-\frac{1}{ne^{nak}} + \frac{1}{ne^{nbk}} \right) + \frac{1}{ne^{na\cdot 0}} - \frac{1}{ne^{nb\cdot 0}} = 0 + \frac{1}{n} - \frac{1}{n}.$$

$$\text{Thus, } \sum_{n=1}^{\infty} \int_{0}^{\infty} f_{n}(x) dx = 0.$$

$$\text{(c) } \sum_{n=1}^{\infty} f_{n}(x) \in L^{1}([0,\infty), m) \text{) and } \int_{0}^{\infty} \sum_{n=1}^{\infty} f_{n}(x) dx = \log \left(\frac{b}{a} \right)$$

$$\text{Notice } \sum_{n=1}^{\infty} f_{n}(x) = a \sum_{n=1}^{\infty} \left(\frac{1}{e^{ax}} \right)^{n} - b \sum_{n=1}^{\infty} \left(\frac{1}{e^{bx}} \right)^{n} = \frac{ae^{-ax}}{1 - e^{-ax}} - \frac{be^{-bx}}{1 - e^{-bx}}. \text{ Thus, }$$

$$\int_{0}^{\infty} \sum_{n=1}^{\infty} f_{n}(x) dx = \int_{0}^{\infty} \frac{ae^{-ax}}{1 - e^{-ax}} - \int_{0}^{\infty} \frac{be^{-bx}}{1 - e^{-bx}} = \left[\ln |1 - e^{-ax}| - \ln |1 - e^{-bx}| \right]_{0}^{\infty} = \left[\ln \left| \frac{1 - e^{-ax}}{1 - e^{-bx}} \right| \right]_{0}^{\infty}.$$

$$\text{Additionally, } \left[\ln \left| \frac{1 - e^{-ax}}{1 - e^{-bx}} \right| \right]_{0}^{\infty} . = -\lim_{s \to 0} \ln \left| \frac{1 - e^{-as}}{1 - e^{-bs}} \right| = -\ln \left| \lim_{s \to 0} \frac{1 - e^{-as}}{1 - e^{-bs}} \right|$$

Thus, $\int_0^\infty \sum_{n=1}^\infty f_n(x) \ dx < \infty$ so $\sum_{n=1}^\infty f_n(x)$ is measurable. Also, $\int_0^\infty |\sum_{n=1}^\infty f_n(x)| \ dx < \infty$. So, $\sum_{n=1}^\infty f_n(x) \in L^1$.

http://faculties.sbu.ac.ir/~shahrokhi/M-P.pdf

(b)

$$\sum \int_0^\infty f_n(x)dx = 0$$

 $= -\ln\left|\lim_{s\to 0} \frac{ae^{-as}}{be^{-bs}}\right| = -\ln\left|\frac{a}{b}\right| = \ln\left(\frac{a}{b}\right)^{-1} = \ln\left(\frac{b}{a}\right)$

Proof. For every $n \geq 1$,

$$\int_0^\infty f_n = \int_0^\infty \left(ae^{-nax} - be^{-nbx} \right) dx = \frac{-e^{-nax}}{n} + \frac{e^{-nbx}}{n} \Big|_0^\infty = 0.$$
Thus,
$$\sum \int_0^\infty f_n(x) dx = 0.$$

(3)

$$\sum f_n \in L^1([0,\infty))$$
 and $\int_0^\infty \sum f_n(x)dx = \log(b/a)$.

Proof. Notice that $f = \sum f_n$ is the difference of two geometric series:

$$\sum f_n = a \sum (e^{ax})^{-n} - b \sum (e^{bx})^{-n}.$$

Hence,
$$f_n(x) = \frac{ae^{-ax}}{1 - e^{-ax}} - \frac{be^{-bx}}{1 - e^{-bx}}$$
 because $0 < a < b$.

This is Riemann integrable as

$$\left[\ln\left|\frac{1-e^{-ax}}{1-e^{-bx}}\right|\right]_0^\infty = -\lim_{x\to 0}\left[\ln\left|\frac{1-e^{-ax}}{1-e^{-bx}}\right|\right] = -\left[\ln\left|\lim_{x\to 0}\frac{1-e^{-ax}}{1-e^{-bx}}\right|\right] = -\left[\ln\left|\lim_{x\to 0}\frac{ae^{-ax}}{be^{-bx}}\right|\right] = \ln\frac{b}{a}.$$

Because $-\infty < \int f < \infty$, we have $-\infty < \int f^+ - \int f^- < \infty$, so $\int |f| = \int f^+ + \int f^- < \infty$, and $f \in L^1([0,\infty))$.

9. Section 2.5 (Folland): Product Measures

9.1. Section 2.5 Definitions and Theorems. Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces.

Definition 34 (measurable rectangles). A subset $E \subseteq X \times Y$ is called a measurable rectangle if $E = A \times B$ for some $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Let \mathcal{R} denote the class of all measurable rectangles. \mathcal{R} is not, in general, a σ -algebra. It is a semi-algebra of subsets of $X \times Y$.

Remark 9.

$$(A \times B) \cap (E \times F) = (A \cap E) \times (B \cap F), \qquad (A \times B)^c = (X \times B^c) \cup (A^c \times B)$$

Thus, the collection \mathcal{A} of finite disjoint unions of rectangles is an algebra.

Definition 35. $\mathcal{M} \otimes \mathbb{N}$ is the smallest σ -algebra generated by rectangles, $A \times B, A \in \mathcal{M}, B \in \mathcal{N}$.

Definition 36.
$$\mu \times \nu : \mathcal{M} \otimes \mathcal{N} \to [0, \infty]. \ (\mu \times \nu)(A \times B) = \mu(A)\nu(B).$$

Remark 10. If μ and ν are σ -finite, say

Definition 37. $E \in \mathcal{M} \otimes \mathcal{N}$. Fix $x, E^x = \{y : (x,y) \in E\} \subseteq Y$. Fix $y, E_y = \{x : (x,y) \in E\} \subseteq X$.

Definition 38. $f: X \times Y \to \mathbb{R}$. $f^x: Y \to \mathbb{R}$, $f^x(y) = f(x, y)$. $f_y: X \to \mathbb{R}$, $f_y(x) = f(x, y)$

Theorem 12. If f is $\mathcal{M} \otimes \mathcal{N}$ measurable, then f^x is \mathcal{N} measurable and f_y is \mathcal{M} measurable.

Remark 11. $f \in L^+$ implies f measurable and non-negative

Theorem 13 (Tonelli (positive functions)). Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces. If $f \in L^+$, then $g(x) = \int f_x d\nu \in L^+(\nu)$ and $h(y) = \int f^y d\mu \in L^+(\mu)$. Key point:

$$\int f d(\mu \times \nu) = \int \left(\int f(x, y) d\mu \right) d\nu = \int \left(\int f(x, y) d\nu \right) d\mu. \text{ So, } \int h(y) d\nu = \int g(x) d\mu$$

Theorem 14 (Fubini (integrable functions)). Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces. If $f \in L^1(\mu \times \nu)$, then $f_x \in L^1(\nu)$ a.e. x and $f^y \in L^1(\mu)$ a.e. y, then

$$g(x) = \int f_x d\nu \in L^1(\mu)$$
$$h(y) = \int f^y d\mu \in L^1(\nu) \text{ and}$$
$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\mu \right] d\nu$$
$$= \int \left[\int f(x, y) d\nu \right] d\mu$$

9.2. November 4 Group Assignment.

(1) Let $X=Y=[0,1], \mathcal{M}=\mathbb{N}=B_{[0,1]}$, μ is Lebesgue measure, and ν is the counting measure. If $D=\{(x,x):x\in[0,1]\}$ then $\int\int\chi_Dd\mu d\nu$, $\int\int\chi_Dd\nu d\mu$, and $\int\chi_Dd(\mu\times\nu)$ are all unequal. Verify this and explain why this does not contradict the Fubini-Tonelli Theorem. Proof. First, calculate $\int\int\chi_Dd\mu d\nu$, $\int\int\chi_Dd\nu d\mu$:

$$\int \int \chi_D d\mu d\nu = \int \int (\chi_D)^y d\mu d\nu
= \int \mu(D^y) d\nu
= \int \mu(\{x\}) d\nu
= \int 0 d\nu
= 0
$$\int \int \chi_D d\nu d\mu = \int \int (\chi_D)_x d\nu d\mu
= \int \nu(D^y) d\mu
= \int \nu(\{x\}) d\mu
= \int 1 d\mu
= \int 1 \mu([0,1])
= 1.$$$$

Next, consider $\int \chi_D d(\mu \times \nu) = (\mu \times \nu)(D)$. By definition,

$$(\mu \times \nu)(D) = \inf \left\{ (\mu \times \nu) \left(\bigcup_{1}^{\infty} (A_i \times B_i) \right) : D \subseteq \bigcup_{1}^{\infty} (A_i \times B_i) \right\}.$$

Since $m([0,1]) = \infty$, $\mu \times \nu(D) \ge \infty$ because if it were less than ∞ we have some countable collection of rectangles $\{A_i \times B_i\}$ such that $D \subseteq \bigcup_{1}^{\infty} (A_i \times B_i)$ but $\cup B_i$ countable which contradicts [0,1] uncountable.

This doesn't contradict the Fubini-Tonelli theorem because the counting measure is not σ -finite.

(2) Let $X = Y = \mathbb{N}$, $\mathcal{M} = \mathcal{N} = \mathcal{P}(\mathbb{N})$ and $\mu = \nu = \text{counting measure}$. Define

$$f(m,n) = \begin{cases} 1 & \text{if } m = n \\ -1 & \text{if } m = n+1 \\ 0 & \text{otherwise} \end{cases}$$

Prove that $\int |f|d(\mu \times \nu) = \infty$ and that $\int \int f d\mu d\nu$, $\int \int f d\nu d\mu$ exist and are unequal.

Proof. Let
$$D_1 = \{(m, n) \in \mathbb{N}^2 : m = n\}, D_2 = \{(m, n) \in \mathbb{N}^2 : m = n + 1\}$$
 and $D = D_1 \cup D_2$.

Then,
$$f = \chi_{D_1} - \chi_{D_2}$$
, $|f| = \chi_D$. Notice $\int |f| d(\mu \times \nu) = \int \chi_D d(\mu \times \nu)$
 $\geq \int \chi_{D_1} d(\mu \times \nu)$
 $= (\mu \times \nu)(D_1)$
 $= (\mu \times \nu) \bigcup \{(m, n) \in \mathbb{N}^2 : m = n\}$
 $= \sum (\mu \times \nu) \{(m, n) \in \mathbb{N}^2 : m = n\}$
 $= \sum \mu(m)\nu(n)$
 $= \sum 1 = \infty$.

$$\int f d\mu d\nu = \int \chi_{D_1} - \chi_{D_2} d\mu d\nu$$

$$= \int \mu (\chi_{D_1} - \chi_{D_2})^n \chi_{\mathbb{N}} d\nu$$

$$= \int \chi_{\mathbb{N}} (\mu(D_1^n) - \mu(D_2^n)) d\nu$$

$$= \int \chi_{\mathbb{N}} (\mu(\{n\}) - \mu(\{n\})) d\nu$$

$$= \int \chi_{\mathbb{N}} (1 - 1) d\nu = 0$$

To calculate $\int f d\nu d\mu$, first note $D_{1_m}=\{m\}$ if m=n and \emptyset otherwise whereas $D_{2_m}=\{m\}$ if m=n+1 and \emptyset otherwise. Hence, if $(m,n)\in D_2,\ m\neq 0$. Thus,

$$\int f d\nu d\mu = \int \chi_{D_1} - \chi_{D_2} d\nu d\mu$$

$$= \int \mu (\chi_{D_1} - \chi_{D_2})^n \chi_{\mathbb{N}} d\nu$$

$$= \int \chi_{\mathbb{N}} \nu (D_{1m}) - \chi_{\mathbb{N}/\{0\}} \nu (D_{2m}) d\mu$$

$$= \int \chi_{\mathbb{N}} \nu (\{m\}) - \chi_{\mathbb{N}/\{0\}} \nu (\{m\}) d\mu$$

$$= \int \chi_{\mathbb{N}} - \chi_{\mathbb{N}/\{0\}} d\nu$$

$$= \int \chi_{\mathbb{N}/(\mathbb{N}/\{0\})} d\nu$$

$$= \int \chi_{\{0\}} d\nu = \nu (\{0\} = 1)$$

9.3. November 6 Group Assignment.

(1) Let f and g be integrable functions on (X, M, μ) and (Y, N, ν) respectively. If we definite $h: X \times Y \to \mathbb{R}$ by h(x, y) = f(x)g(y), prove that h is integrable and

$$\int hd(\mu \times \nu) = \int fd\mu \int gd\nu.$$

Proof. Suppose f, g are simple functions with h = fg and $f = \sum a_i \chi_{A_i}$ and $g = \sum b_j \chi_{B_j}$. Thus, $h = \sum \sum a_i b_j \chi_{A_i \cap B_j}$ and

$$\int hd(\mu \times \nu) = \int \sum \sum a_i b_j \chi_{A_i \cap B_j} d(\mu \times \nu) = \sum \sum a_i b_j \mu(A_i) \nu(B_j)$$
$$= \sum a_i \mu(A_i) \sum b_j \nu(B_j) = \int f d\mu \int g d\nu.$$

(2) Let $f(x,y) = ye^{-(1+x^2)y^2}$. Use

$$\int_{[0,\infty)} \left(\int_{[0,\infty)} f(x,y) dx \right) dy = \int_{[0,\infty)} \left(\int_{[0,\infty)} f(x,y) dy \right) dx \text{ to prove } \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

By Tonelli, since $f(x,y) = ye^{-(1+x^2)y^2} \in L^1$, the following equality holds:

$$\int_{[0,\infty)} \left(\int_{[0,\infty)} f(x,y) dx \right) dy = \int_{[0,\infty)} \left(\int_{[0,\infty)} f(x,y) dy \right) dx.$$

Also,
$$\int_{[0,\infty)} \left(\int_{[0,\infty)} y e^{-(1+x^2)y^2} dx \right) dy = \int_{[0,\infty)} y e^{-y^2} \left(\int_{[0,\infty)} e^{-x^2y^2} dx \right) dy$$
. Let $u = xy$, then $du = y dx$

$$= \int_{[0,\infty)} e^{-y^2} \left(\int_{[0,\infty)} e^{-u^2} du \right) dy$$

$$= \int_{[0,\infty)} e^{-y^2} dy \left(\int_{[0,\infty)} e^{-u^2} du \right)$$

$$= \left(\int_{[0,\infty)} e^{-x^2} dx \right)^2.$$

Let
$$u = y^2$$
 then $du = 2ydy$.
$$\int_{[0,\infty)} \left(\int_{[0,\infty)} ye^{-(1+x^2)y^2} dy \right) dx = \frac{1}{2} \int_{[0,\infty)} \left(\int_{[0,\infty)} e^{-(1+x^2)u} du \right) dx$$
$$= \frac{1}{2} \int_{[0,\infty)} \left(-\frac{1}{1+x^2} e^{-(1+x^2)u} \right)_0^\infty dx$$
$$= \frac{1}{2} \int_{[0,\infty)} -\frac{1}{1+x^2} \left(\lim_{u \to \infty} e^{-(1+x^2)u} - e^0 \right) dx$$
$$= \frac{1}{2} \int_{[0,\infty)} \frac{1}{1+x^2} dx$$
$$= \frac{1}{2} \tan^{-1} x \Big|_0^\infty$$
$$= \frac{1}{2} \left(\lim_{x \to \infty} \tan^{-1} x - \tan^{-1}(0) \right)$$
$$= \frac{1}{2} \frac{\pi}{2}$$

Thus,
$$\left(\int_{[0,\infty)} e^{-x^2} dx\right)^2 = \frac{\pi}{4}$$
 and so $\int_{[0,\infty)} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

10. Section 2.4 (Folland): Modes of Convergence

10.1. Section 2.4 Definitions and Theorems.

Definition 39 (Rectangle). Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces.

Definition 40 (1).

 $\{f_n\}_{n=1}^{\infty}.\ f_n \to f \text{ pointwise for } x \in X \text{ and } \varepsilon > 0 \text{ there is } N(\varepsilon,x) \ge 0. \text{ s.t. } |f_n(x) - f(x)| < \varepsilon \text{ when } n > N(\varepsilon,x) \ge 0.$

Definition 41 (2).

 $\{f_n\}_{n=1}^{\infty}$. $f_n \to f$ pointwise a.e. $x \in X$ and $\varepsilon > 0$ there is $N(\varepsilon, x) \ge 0$. s.t. $|f_n(x) - f(x)| < \varepsilon$ when n > N

Definition 42 (3).

 $\{f_n\}_{n=1}^{\infty}$. $f_n \to f$ uniformly for every $\varepsilon > 0$ there is $N(\varepsilon) \ge 0$. s.t. $|f_n(x) - f(x)| < \varepsilon$ when n > N

Definition 43 (4).

$$\{f_n\}_{n=1}^{\infty}$$
. $f_n \to f$ in L' , $\lim_{n \to \infty} \int |f_n - f| d\mu = 0$

Definition 44 (5).

$$f_n \to f$$
 in measure $\mu(\{x: |f_n(x) - f(x)| > \varepsilon\} \to 0$ for all $\varepsilon > 0$

Example.

$$f_x = \frac{\chi_{(0,n)}}{n}$$

converges uniformly, pointwise, pointwise a.e., in measure to 0. Not in L'.

Definition 45. We say that f_n converges to f uniformly if, for every $\epsilon > 0$, there exists N such that for every $n \geq N$, $|f_n(x) - f(x)| \leq \epsilon$ for every $x \in X$. The difference between uniform convergence and pointwise convergence is that with the former, the time N at which $f_n(x)$ must be permanently ϵ -close to f(x) is not permitted to depend on x, but must instead be chosen uniformly in x. Uniform convergence implies pointwise convergence, but not conversely.

Let $\varepsilon > 0$. Choose N such that $\frac{1}{N} < \varepsilon$.

$$|f_n(x) - 0| = \left| \frac{1}{n} \chi_{(0,n)} \right| = \begin{cases} \frac{1}{n} & x < n \\ 0 & x \ge 0 \end{cases} \le \frac{1}{n} < \varepsilon \text{ when } n > N$$
$$\int |f_n(x)| dm = \int \frac{1}{n} \chi_{(0,n)} dm = \frac{1}{n} n = 1$$

 $f_n \to f$ in measure

 $g_n = \chi_{(n,n+1)}$ converges pointwise to 0, pointwise a.e. to 0, but not uniformly - always equal to 1 w/e, not in L^1 not in measure

$$h_n = n\chi_{[0,\frac{1}{n}]}$$

converges pointwise a.e. to 0 and in measure to 0. but not pointwise, not uniform, not L^1 $3 \Rightarrow 1 \Rightarrow 2; 4 \Rightarrow 5$

- 10.2. November 9 Group Assignment. Let (X, \mathcal{M}, μ) be a measure space.
 - (1) Prove that $f_n \to f$ in measure iff for all $\varepsilon > 0$ there is N such that

$$\mu(\lbrace x: |f_n(x) - f(x)| \geq \varepsilon \rbrace) < \varepsilon \text{ for all } n \geq N.$$

Proof. The forward direction holds by definition of convergence in measure.

So, assume for all $\varepsilon > 0$ there is N such that

$$\mu(\lbrace x: |f_n(x)-f(x)| \geq \varepsilon \rbrace) < \varepsilon \text{ for all } n \geq N.$$

Then, for $\delta < \varepsilon, \{|f_n - f| \ge \varepsilon\} \subset \{|f_n - f| \ge \delta\}$. So, $\mu(\{|f_n - f| \ge \varepsilon\}) \le \mu(\{|f_n - f| \ge \delta\})$.

Also, by assumption, there exists $N(\delta)$ such that $\mu(\{|f_n - f| \ge \delta\}) \le \delta$ for all $n \ge N(\delta)$.

Thus, for all $0 < \delta < \varepsilon$ there exists $N(\delta)$ such that $\mu(\{|f_n - f| \ge \varepsilon\}) \le \delta$ for all $n \ge N(\delta)$.

Hence, f_n converges to f in measure.

http://math.stackexchange.com/questions/1426400/f-n-rightarrow-f-in-measure-iff-for-even

(2) Suppose $f_n \to f$ in measure and $g_n \to g$ in measure. Prove that $f_n + g_n \to f + g$ in measure, and if $\mu(X) < \infty$ then $f_n g_n \to f g$ in measure.

Proof. Assume $f_n \to f$ in measure and $g_n \to g$ in measure. Then, for all $\varepsilon > 0, \delta > 0$ there are N_1, N_2 such that

$$\mu\left(\left\{x:|f_n(x)-f(x)|\geq \frac{\varepsilon}{2}\right\}\right)<\frac{\delta}{2} \text{ for all } n\geq N_1 \text{ and } \mu\left(\left\{x:|g_n(x)-g(x)|\geq \frac{\varepsilon}{2}\right\}\right)<\frac{\delta}{2} \text{ for all } n\geq N_2.$$

Let $N = \max\{N_1, N_2\}$. Then, for all $n \geq N$, we have

$$\left\{x: \left| (f_n + g_n)(x) - (f + g)(x) \right| \ge \varepsilon\right\} \subset \left\{x: \left| f_n(x) - f(x) \right| \ge \frac{\varepsilon}{2}\right\} \cup \left\{x: \left| g_n(x) - g(x) \right| \ge \frac{\varepsilon}{2}\right\}$$

Thus,
$$\mu\left(\left\{|f_n+g_n-(f+g)|\geq\varepsilon\right\}\right)\leq\mu\left(\left\{|f_n-f|\geq\frac{\varepsilon}{2}\right\}\right)+\mu\left(\left\{|g_n-g|\geq\frac{\varepsilon}{2}\right\}\right)\leq\delta$$
.

Hence,
$$f_n + g_n \to f + g$$
 in measure.

Proof. Assume $f_n \to f$ in measure and $g_n \to g$ in measure. First, note

$$|f_n g_n - fg| = |f_n g_n - f_n g + f_n g - fg| \le |g||f_n - f| + |f_n||g_n - g|$$

Because f_n, g_n converge to $f, g, f \neq \pm \infty$ and $g \neq \pm \infty$. Notice

$$\{x: |f(x)| = \infty\} = \bigcap_{n \ge 1} \{x: |f(x)| \ge n\}. \text{ Thus, } \mu\left(\bigcap_{n \ge 1} \{x: |f(x)| \ge n\}\right) = 0 = \mu\left(\bigcap_{n \ge 1} \{x: |g(x)| \ge n\}\right)$$

Then, for all $\varepsilon > 0, \delta > 0$ there are N_1, N_2 such that

$$\mu\left(\left\{x:|f_n(x)-f(x)|\geq \frac{\varepsilon}{2}\right\}\right)<\frac{\delta}{2} \text{ for all } n\geq N_1 \text{ and } \mu\left(\left\{x:|g_n(x)-g(x)|\geq \frac{\varepsilon}{2}\right\}\right)<\frac{\delta}{2} \text{ for all } n\geq N_2.$$

http://www.math.ntnu.no/~eugenia/Teaching/TMA4225/h06/probl8_sol.pdf

https://www.math.brown.edu/~rkenyon/teaching/2009/2210/Set3.pdf

10.3. November 13 Group Assignment. Let $(X\mathcal{M}, \mu)$ be a measure space:

(1) If μ is σ -finite and $f_n \to f$ a.e. then there exists measurable sets $E_1, E_2, \ldots, \subseteq X$ such that $\mu((\cup E_i)^c) = 0$ and $f_n \to f$ on each E_j .

Proof. Assume μ is σ -finite and $f_n \to f$ a.e. Then, $X = \bigcup_{1}^{\infty} A_j$ where $\mu(A_j) < \infty$. Let $B_n = \bigcup_{j=1}^n A_j$. Since $\mu(A_j) < \infty$ for all j, $\mu(B_n) < \infty$ for any n. Also note that $\{B_n\}_{n=1}^{\infty}$ are nested sets. For every n, choose $E_n \subset B_n$ such that $\mu(E_n^c) < \frac{1}{n}$; note $f \to f$ a.e. on B_n and thus $f \to f$ a.e. on E_n . Thus, by Ergoroff's theorem, $f_n \to f$ uniformly on E_n . Also

$$\mu\left(\left(\bigcup E_j\right)^c\right) = \mu\left(\bigcap E_j^c\right) \le \mu(E_n^c) < \frac{1}{n}$$

(2) Let μ be counting measure on \mathbb{N} . Prove that f_n converges uniformly to f if and only if f_n converges to f in measure.

Proof. Assume f_n converges to f in measure. Then, for any $\varepsilon > 0$ define $E_{\varepsilon,n} = \{x : |f_n(x) - f(x)| \ge \varepsilon\}$. Since f_n converges to f in measure, $\mu(E_{\varepsilon,n}) \to 0$ as $n \to \infty$. Thus, $\mu(E_{\varepsilon,n}) = 0$ for all but finitely many n. Equivalently, $E_{\varepsilon,n} = \emptyset$ for all but finitely many n. Thus, there exists some N such that $\{x : |f_n(x) - f(x)| \ge \varepsilon\} = \emptyset$ for all n > N. Therefore f_n converges uniformly to f.

Assume f_n converges uniformly to f. Then, for any $\varepsilon > 0$, there exists some N such that for all $n \ge N$, $|f_n - f| < \varepsilon$. Equivalently, $\{x : |f_n(x) - f(x)| \ge \varepsilon\} = \emptyset$ for all n > N Thus, $\mu(\{x : |f_n(x) - f(x)| \ge \varepsilon\}) = 0$ and given $\delta > 0$ we can write $\mu(\{x : |f_n(x) - f(x)| \ge \varepsilon\}) < \delta$. And so f_n converges to f in measure.

11. Section 3.1 (Folland): Signed Measures

65

11.1. Section 3.1 Definitions and Theorems.

Definition 46 (signed measure). A signed measure on (X, \mathcal{M}) is a function $\nu : \mathcal{M} \to [-\infty, \infty]$ such that

- (1) $\nu(\emptyset) = 0$;
- (2) ν assumes at most one of the values of $\pm \infty$
- (3) if $\{E_j\}$ is a sequence of disjoint sets in \mathcal{M} , then $\nu(\cup_1^{\infty} E_j) = \sum_1^{\infty} \nu(E_j)$. $\sum_1^{\infty} \nu(E_j)$ converges absolutely if $\nu(\cup_1^{\infty} E_j)$ is finite.

Remark 12. Every measure is a signed measure. For emphasis, measures may be referred to as positive measures.

Example. If μ_1, μ_2 are measures on \mathcal{M} and at least on of them is finite, then $\nu = \mu_1 - \mu_2$ is a signed measure.

Example. If μ is a measure on \mathcal{M} and $f: X \to [-\infty, \infty]$ is a measurable function such that at least one of $\int f^+ d\mu$ and $\int f^- d\mu$ is finite, then $\nu(E) = \int_E f d\mu$ is a signed measure.

Proposition 13. Let ν be a signed measure on (X, \mathcal{M}) .

- (1) If $\{E_j\}$ is an increasing sequence in \mathcal{M} , then $\nu(\cup_1^{\infty} E_j) = \lim_{j \to \infty} \nu(E_j)$.
- (2) If $\{E_j\}$ is an decreasing sequence in \mathcal{M} and $\nu(E_1)$ is finite, then $\nu(\cap_1^\infty E_j) = \lim_{j \to \infty} \nu(E_j)$.

Lemma 2. Any measurable subset of a positive set is positive, and the union of any countable family of positive sets is positive.

Theorem 15 (The Hahn Decomposition Theorem). If ν is a signed measure on (X, \mathcal{M}) , there exist a positive set P and a negative set N for ν such that $P \cup N = X$ and $P \cap N = \emptyset$.

If P', N' is another such pair, then $P \triangle P' = N \triangle N'$ is null for ν .

Remark 13 (symmetric difference). Recall the symmetric difference of two sets is the set of elements which are in either of the sets and not in their intersection.

$$A\triangle B = (A \cup B) \backslash (A \cap B) = (A \backslash B) \cup (B \backslash A)$$

Definition 47 (Hahn decomposition). The decomposition $X = P \cup N$ of X as the disjoint union of a positive set and a negative se. Not unique - ν -null sets can be transferred from P to N or from N to P.

Definition 48 (mutually singular, ν is singular wrt μ , $\mu \perp \nu$). There exist $E, F \in \mathcal{M}$ such that $E \cap F = \emptyset$, $E \cup F = X$, E is null for μ and F is null for ν .

Remark 14. Informally, mutual singularity means μ, ν live on disjoint sets.

Theorem 16 (Jordan decomposition theorem). If ν is a signed measure, there exist positive measures ν^+, ν^- such that $\nu = \nu^+ - \nu^-$ and $\nu^+ \perp \nu^-$.

Definition 49 (ν^+, ν^-) . ν^+ is the positive variation of ν and ν^- is the negative variation of ν **Definition 50** (total variation). $|\nu| = \nu^+ + \nu^-$.

Definition 51 (integration wrt a signed measure).

$$L^1(\nu) = L^1(\nu^+) \cap L^1(\nu^-),$$

$$\int f d\nu = \int f d\nu^+ - \int f d\nu^-, \qquad f \in L^1(\nu)$$

11.2. November 16 Group Assignment.

(1) Let ν be a signed measure on (X, \mathcal{M}) . If $\{E_j\}$ is an increasing sequence in \mathcal{M} prove that $\nu(\cup E_i) = \lim \nu(E_i)$. Alternatively, if $\{F_j\}$ is a decreasing sequence in \mathcal{M} with $\nu(F_1)$ finite, then $\nu(\cap F_j) = \lim \nu(F_j)$.

Proof. By the Hahn Decomposition Theorem, we can decompose $X = P \cup N$ where P is positive and N is negative so that $\nu(P) \geq 0$ and $\nu(N) \leq 0$. Then, ν is a measure on P and

 $-\nu$ is a measure on N.

$$\nu(\cup E_{i}) = \nu\left(\bigcup(E_{i}\cap P)\cup\bigcup(E_{i}\cap N)\right)$$

$$= \nu\left(\bigcup(E_{i}\cap P)\right) + \nu\left(\bigcup(E_{i}\cap N)\right)$$

$$= \nu\left(\bigcup(E_{i}\cap P)\right) - (-\nu)\left(\bigcup(E_{i}\cap N)\right)$$

$$= \lim\nu\left(E_{i}\cap P\right) - \lim(-\nu)\left(E_{i}\cap N\right)$$

$$= \lim\left(\nu\left(E_{i}\cap P\right) - (-\nu)\left(E_{i}\cap N\right)\right)$$

$$= \lim\left(\nu\left(E_{i}\cap P\right) - (-\nu)\left(E_{i}\cap N\right)\right)$$

$$= \lim\left(\nu\left(E_{i}\cap P\right) - (-\nu)\left(E_{i}\cap N\right)\right)$$

$$= \lim\left(\nu\left(E_{i}\cap P\cup E_{i}\cap N\right)\right)$$

Next, suppose $\{F_i\}$ is a decreasing sequence in \mathcal{M} with $\nu(F_1)$ finite. Then,

$$\nu(\cap F_i) = \nu(\cap (F_i \cap P) \cup \cap (F_i \cap N))$$

$$= \nu(\cap (F_i \cap P)) + -\nu(\cap (F_i \cap N))$$

$$= \lim \nu(F_i \cap P) - \lim -\nu(F_i \cap N)$$

$$= \lim (\nu(F_i \cap P) + \nu(F_i \cap N))$$

$$= \lim \nu(F_i \cap P) \cup (F_i \cap N)$$

$$= \lim \nu(F_i \cap P) \cup (F_i \cap N)$$

(2) Let ν be a signed measure on (X, \mathcal{M}) .

Since ν is a signed measure, the Hahn Decomposition Theorem implies there exists a positive

set P and a negative set N with $X = P \cup N$.

(a)
$$L^1(\nu) = L^1(|\nu|)$$
.

Proof. Consider any $f \in L^1(\nu)$; so $\int |f| d\nu < \infty$. Then, since $\nu = \nu^+ - \nu^-$,

$$\int |f| d\nu = \int |f| d\nu^+ - \int |f| d\nu^- < \infty. \text{ Thus, } \int |f| d\nu^+ < \infty \text{ and } \int |f| d\nu^- < \infty.$$

Since
$$\int |f|d|\nu| = \int |f|d\nu^+ + \int |f|d\nu^-$$
, $\int |f|d|\nu| < \infty$. Hence, $f \in L^1(|\nu|)$.

(b) If $f \in L^1(\nu)$, then $|\int f d\nu| \le \int |f| d|\nu|$.

Proof. Consider any $f \in L^1(\nu)$; so $\int |f| d\nu < \infty$. Notice

$$\left| \int f d\nu \right| = \left| \int f d\nu^+ - \int f d\nu^- \right| \le \left| \int f d\nu^+ \right| + \left| \int f d\nu^- \right| \le \int |f| d\nu^+ + \int |f| d\nu^- = \int |f| d|\nu|.$$

(c) If $E \in \mathcal{M}$, then $|\nu|(E) = \sup\{|\int_E f d\nu| : |f| \le 1\}$.

Proof. By part b,

$$\left|\int_E f d\nu\right| \leq \int_E |f| d|\nu| \leq \int_E d|\nu| = |\nu|(E).$$

Let
$$f(x) = \begin{cases} 1 & x \in P \\ -1 & x \in N \end{cases}$$

Then,

$$\left| \int_{E} f d\nu \right| = \left| \int_{E} f d\nu^{+} - \int_{E} f d\nu^{-} \right|$$

$$= \left| \int_{E} f \chi_{E} d\nu^{+} - \int_{E} f \chi_{E} d\nu^{-} \right|$$

$$= \left| \nu^{+}(E) - \nu^{-}(E) \right|$$

$$= \left| \nu^{+}(E) + \nu^{-}(E) \right|$$

$$= \nu^{+}(E) + \nu^{-}(E)$$

$$= \left| \nu \right| (E), \text{ so for the chosen } f$$

(ii)
$$\left| \int_{E} f d\nu \right| = |\nu|(E)$$

Thus, by i, ii,

$$\sup\left\{\left|\int_{E} f d\nu\right| : |f| \le 1\right\} = |\nu|(E).$$

11.3. November 18 Group Assignment.

(1) If ν is a signed measure, E is ν -null if and only if $|\nu|(E) = 0$.

Proof. (\Rightarrow) Since ν is a signed measure, we can write $X=P\cup N$. Assume E is ν -null. Then, $\nu(E)=0$. Then, $\nu(E\cap P)=0$ and $\nu(E\cap N)=0$. Thus, $\nu^+(E)=0$ and $\nu^-(E)=0$ and so $|\nu|(E)=\nu^+(E)+\nu^-(E)=0$. Hence, $|\nu|(E)=0$.

(\Leftarrow) Assume $|\nu|(E)=0$. Then, $\nu^+(E)+\nu^-(E)=0$. Since ν^+,ν^- are positive, we have $\nu^+(E)=0$ and $\nu^-(E)=0$. Then, for any subset F in E so $F\cap P\subset E$ and $F\cap N\subset E$ so $\nu^+(F\cap P)=0$ and $\nu^-(F\cap N)=0$. Hence,

$$\nu(F) = \nu^{+}(F \cap P) - \nu^{-}(F \cap N) = 0 - 0 = 0.$$

(2) If ν and σ are signed measures then $\nu \perp \sigma$ if and only if $\nu \perp |\sigma|$ if and only if $\nu^+ \perp \sigma$ and $\nu^- \perp \sigma$.

Denote a: $\nu \perp \sigma$, **b:** $\nu \perp |\sigma|$, **c:** $\nu^+ \perp \sigma$, $\nu^- \perp \sigma$

(a \Rightarrow b) Assume $\nu \perp \sigma$. Then, there exist E, F such that $X = E \cup F$, E is σ -null, and F is ν -null. Then, since E is σ -null for any $A \subseteq E$, $\sigma(A) = \sigma^+(A) - \sigma^-(A) = 0$. Thus, $\sigma^+(A) = 0$ and $\sigma^-(A) = 0$. Hence for any $A \subseteq E$, $|\sigma|(A) = \sigma^+(A) + \sigma^-(A) = 0$. Thus, E is $|\sigma|$ -null. So there exist E, F such that $X = E \cup F$, E is $|\sigma|$ -null, and F is ν -null. Hence $\nu \perp |\sigma|$.

(a \Rightarrow c) Assume $\nu \perp \sigma$. Then, there exist E, F such that $X = E \cup F$, E is σ -null, and F is ν -null. Since F is ν -null, for any $A \subseteq F$, $\nu(A) = 0$. Let $F = P \cup N$ then $P \subseteq F, N \subseteq F$, so $\nu(P) = 0 = \nu(N)$. Hence, for any $A \subseteq F$,

$$\nu^+(A) = \nu(A \cap P) = 0$$
, and $\nu^-(A) = \nu(A \cap N) = 0$.

Thus, F is ν^+ -null and F is ν^- -null. So, E, F satisfy the conditions for $\nu^+ \perp \sigma$ and $\nu^- \perp \sigma$. ($\mathbf{b} \Rightarrow \mathbf{a}$) Assume $\nu \perp |\sigma|$. Then, there exist E, F such that $X = E \cup F$, E is ν -null, and F is $|\sigma|$ -null. The, since F is $|\sigma|$ -null, for any $A \subseteq F$, $|\sigma|(A) = 0$ and so $\sigma^+(A) + \sigma^-(A) = 0$. σ^+, σ^- are finite so $\sigma^+(A) + \sigma^-(A) = 0$ implies $\sigma^+(A) = 0 = \sigma^-(A)$. Thus, $\sigma(A) = \sigma^+(A) - \sigma^-(A) = 0$ so F is σ -null. Hence, $\nu \perp \sigma$. ($\mathbf{c} \Rightarrow \mathbf{a}$)

Assume $\nu^+ \perp \sigma$, $\nu^- \perp \sigma$. Then, there exist E_1, F_1 such that $X = E_1 \cup F_1$, E_1 is σ -null, and F_1 is ν^+ -null and there exists E_2, F_2 such that $X = E_2 \cup F_2$, E_2 is σ -null, and F_2 is ν^+ -null. First, we will show $E = E_1 \cup E_2$ is σ -null. Consider any $A \subseteq E_1 \cup E_2$. Then, $A = A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2)$. Since E_1, E_2 are σ -null, $\sigma(A) = \sigma(A \cap E_1) + \sigma(A \cap E_2) = 0$. Thus, $E_1 \cup E_2$ is σ -null. Next, we will show $F = F_1 \cap F_2$ is ν -null. Consider any $A \subseteq F_1 \cap F_2$.

Then, $A \subseteq F_1$ and $A \subseteq F_2$ so $\nu^+(A) = 0$ and $\nu^-(A) = 0$. Thus, $\nu(A) = \nu^+(A) - \nu^-(A) = 0$. So, F is ν -null. Finally, notice

$$(E_1 \cup E_2)^c = F_1 \cap F_2$$
. So, $(E_1 \cup E_2) \cup (F_1 \cap F_2) = X$ and $(E_1 \cup E_2) \cap (F_1 \cap F_2) = \emptyset$

Hence, $\nu \perp \sigma$.

(3) Suppose $\nu(E) = \int_E f d\mu$ where μ is a positive measure and f is a μ -integrable function (not necessarily positive). Describe the Hahn decompositions of ν and the positive, negative, and total variations of ν in terms of f and μ .

Let $P=\{x: f(x)>0\}$ and $N=\{x: f(x)\leq 0\}$. Note $P=f^{-1}(0,\infty)$ and $N=f^{-1}((-\infty,0])$. Since f is μ measurable, P and N are measurable. Also,

$$\nu^+(E) = \nu(E \cap P) = \int_{E \cap P} f d\mu \text{ and } \nu^-(E) = \nu(E \cap N) = -\int_{E \cap N} f d\mu.$$
 Hence,
$$|\nu|(E) = \int_{E \cap P} f d\mu - \int_{E \cap N} f d\mu.$$

12. Section 3.2 (Folland): The Lebesgue-Radon-Nikodym-Theorem

12.1. Section 3.2 Definitions and Theorems.

Definition 52 (absolutely continuous). ν is a signed measure and μ is a positive measure on (X, \mathcal{M}) . ν is absolutely continuous with respect to μ and write

$$\nu \ll \mu$$

Theorem 17 (Lebesgue-Radon-Nikodym Theorem). ν is σ -finite signed measure on (X, \mathcal{M}) μ is σ -finite measure on (X, \mathcal{M})

then there are unique σ -finite signed measures, λ, ρ on (X, \mathcal{M}) s.t.

- (1) $\lambda \perp \rho$
- (2) $\rho \ll \lambda$

(3)
$$\nu = \lambda + \rho$$

further there is $f \in L^1(\mu)$ s.t. $d\rho = f d\mu$ and f is unique μ -a.e.

sketch of LRN proof. Case 1: μ and ν are finite measures.

Step 1: Let $\mathcal{F} = \{f : X \to [0, \infty] : \int_E f d\mu \le \nu(E) \text{ for all } E \in \mathcal{M}\}.$

- (1) $0 \in \mathcal{F}$ implies $\mathcal{F} \neq \emptyset$
- (2) $f, g \in \mathcal{F}$ then $\max\{f, g\} \in \mathcal{F}$

Proof. .
$$A=\{x:f(x)>g(x)\}$$
. $\int_E \max\{f,g\}d\mu=\int_{E\cap A}fd\mu+\int_{E\backslash A}gd\mu\leq\nu(E\cap A)+\nu(E\backslash A)=\nu(E)$

Step 2: Let $a = \sup\{\int_X f d\mu : f \in \mathcal{F}\}$. Then,

- (1) $a \le \nu(X) < \infty$
- (2) There is $f \in \mathcal{F}$ such that $\int_X f d\mu = a$

proof of (2). Choose $f_n \in \mathcal{F}$ such that $\int_{n\to\infty} \int_X f_n d\mu = a$.

If $g_n = \max\{f_1, f_2, \dots, f_n\} \in \mathcal{F}$, then $f(x) = \lim_{n \to \infty} g_n(x)$.

 $g_{n+1} \ge g_n$ and g_n are always bounded.

$$\int_X g_n d\mu \ge \int_X f_n d\mu. \text{ By MCT } \forall n, \int_X f_n d\mu \le \int_X f d\mu = a$$

Since
$$g_n \in \mathcal{F}, \nu(E) \ge \lim \int_E g_n d\mu = \int_E f d\mu$$
. Thus $f \in \mathcal{F}$.

So,
$$\int_X f d\mu \le a$$
. $\int_X f_n d\mu \le \int_X g_n d\mu \le \int_X f d\mu \ \forall n$. Thus, $\int_X f d\mu = a$ and $f \in L^1(\mu)$.

What we know: $\rho(E) = \int_E f\mu$. Any measure defined in this will satisfy $\rho \ll \mu$.

Now, prove parts (1) and (3).

Let $\lambda(E) = \int_E d\nu - \int f d\mu = \nu(E) - \rho(E)$. Thus, λ is a signed measure. And since ν, ρ, λ are finite, we have $\nu = \lambda + \rho$.

73

Next, we need to check $\lambda \perp \mu$. Suppose $\mu(E) > 0$. Then,

$$\lambda(E) = \nu(E) - \rho(E) = \nu(E) - \int_{E} f d\mu$$

Suppose you have an E with $\lambda(E) > 0$. Then, $\nu(E) > \int_E f d\mu$. Define a new function that is a little bigger than f on E by lemma. But, that would contradict $a = \sup$.

We would need to deal with case 2, 3...

Remark 15. For this course, you should at least remember the following theorems: dominated convergence, Lebesgue-Radon-Nikodym, Fubini-Tonelli.

Remark 16 (notation). If ν is σ -finite and μ is σ -finite. Then, $\nu = \lambda + \rho$ with $\lambda \perp \mu$, $\rho \ll \mu$. This is the Lebesgue Radon Nikodym decomposition of ν wrt μ .

Definition 53 (LRN derivative of ν wrt μ).

$$d\nu = f d\mu$$
. $f = \frac{d\nu}{d\mu}$. Then, $\rho(E) = \int_E \frac{d\nu}{d\mu} d\mu = \int_E f d\mu$

Definition 54. ν_1, ν_2, μ are σ finite signed measures.

$$f_{\nu_1+\nu_2} = \frac{d(\nu_1+\nu_2)}{d\mu} = \frac{d\nu_1}{d\mu} + \frac{d\nu_2}{d\mu} = f_{\nu_1} + f_{\nu_2}$$

Theorem 18. If $\nu \ll \mu$, $\mu \ll \sigma$, then $\nu \ll \sigma$.

$$\frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\sigma} = \frac{d\nu}{d\sigma} \text{ and } \nu(E) = \int_{E} \frac{d\nu}{d\sigma} d\sigma = \int_{E} \frac{d\nu}{d\mu} \frac{d\mu}{d\sigma} d\sigma$$
$$\nu(E) = \int_{E} \frac{d\nu}{d\mu} d\mu, \qquad \mu(E) = \int_{E} \frac{d\mu}{d\sigma} d\sigma$$

Remark 17. If $\nu \ll \mu, \mu \ll \nu$, then

$$\frac{d\mu}{d\nu} \cdot \frac{d\nu}{d\mu} = 1$$
 a.e.

Theorem 19. Let ν be a finite signed measure and μ a positive measure on (X, \mathcal{M}) . Then, $\nu \ll \mu$ iff for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|\nu(E)| < \varepsilon$ whenever $\mu(E) < \delta$.

Corollary 3. If $f \in L^1(\mu)$, for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|\int_E f d\mu| < \varepsilon$ whenever $\mu(E) < \delta$. Denote

$$\nu(E) = \int_{E} f d\mu : d\nu = f d\mu.$$

12.2. November 20 Group Assignment.

- (1) Let ν be a signed measure and μ be a measure on (X, \mathcal{M}) . Prove the following are equivalent:
 - (a) $\nu \ll \mu$
 - (b) $|\nu| \ll \mu$
 - (c) $\nu^+ \ll \mu$ and $\nu^- \ll \mu$.

Proof. (a \Rightarrow b,c) Suppose $\nu \ll \mu$ and consider any $E \in \mathcal{M}$ with $\mu(E) = 0$. Then, $\nu(E) = 0$ by assumption. By Hahn Decomposition Theorem, we can write $E = P \cup N$. Since $P, N \subseteq E$ it must be the case that $\mu(P) = \mu(N) = 0$ and so by assumption $\nu(P) = \nu(N) = 0$. Then, $0 = \nu(P) = \nu(P \cap E) = \nu^+(E)$ and $0 = \nu(N) = \nu(N \cap E) = \nu^-(E)$. And so $\nu^+ \ll \mu$ and $\nu^- \ll \mu$. Also, $|\nu|(E) = \nu^+(E) + \nu^-(E) = 0$ which implies $|\nu| \ll \mu$.

(**b** \Rightarrow **a**) Suppose $|\nu| \ll \mu$ and consider any $E \in \mathcal{M}$ with $\mu(E) = 0$. Then, $|\nu|(E) = 0$ by assumption. So $|\nu|(E) = \nu^+(E) + \nu^-(E) = 0$. Since ν^+, ν^- are both finite and positive $\nu^+(E) + \nu^-(E) = 0$ implies $\nu^+(E) = \nu^-(E) = 0$. Thus, $\nu(E) = \nu^+(E) - \nu^-(E) = 0$ and $\nu \ll \mu$.

(c \Rightarrow b) Suppose $\nu^+ \ll \mu$ and $\nu^- \ll \mu$ and consider any $E \in \mathcal{M}$ with $\mu(E) = 0$. Then, $\nu^+(E) = 0$ and $\nu^-(E) = 0$ by assumption. Thus, $\nu(E) = \nu^+(E) - \nu^-(E) = 0$ so $\nu \ll \mu$.

(2) Suppose {v_j} is a sequence of positive measures and μ is a measure on (X, M). Prove
(a) If ν_j ⊥ μ for all j then ∑ν_j ⊥ μ.

Proof. Assume $\nu_j \perp \mu$ for all j. Then for each j there exists E_j, F_j such that $E_j \cup F_j = X$, $E_j \cap F_j = \emptyset$ with $E_j \nu_j$ -null and $F_j \mu$ -null. Notice $\cap E_i \subset E_j$ for any j, so $\nu_j(\cap E_i) = 0$. Also any subset A of $\cap E_i$ will be a subset of every E_j which implies $\nu_j(A) = 0$ for all j so

 $\cap E_i$ is $\sum \nu_j$ null. Now, consider any $A \subseteq \cup F_j$ and write

$$A = \bigcup_j A_j = \bigcup_j (A \cap F_j / \bigcup_{i>j} F_i)$$
 so that $A_j \subseteq F_j$.

Thus,
$$\mu(A) = \mu(\cup A_j) = \sum \mu(A_j) = \sum 0 = 0$$
 and so $\cup F_j$ is μ null. Since $E_j \cup F_j = X$, $E_j \cap F_j = \emptyset$, $\cap E_j \cup \cup F_j = X$ and $\cap E_j \cap \cup F_j = \emptyset$. Thus, $\sum \nu_j \perp \mu$. \Box
(b) If $\nu_j \ll \mu$ for all j then $\sum \nu_j \ll \mu$.

Proof. Assume $\nu_j \ll \mu$ for all j. Consider any $E \in \mathcal{M}$ with $\mu(E) = 0$. By assumption, $\nu_j(E) = 0$ for all j so $\sum \nu_j(E) = 0$. Thus, $\sum \nu_j \ll \mu$.

12.3. November 23 Group Assignment.

(1) Suppose that μ_1 and ν_1 are σ -finite measures on (X_1, \mathcal{M}_1) with $\nu_1 \ll \mu_1$. Similarly, assume that μ_2, ν_2 are σ -finite measures on (X_2, \mathcal{M}_2) with $\nu_2 \ll \mu_2$. Prove that $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$. Proof. Suppose that μ_1 and ν_1 are σ -finite measures on (X_1, \mathcal{M}_1) with $\nu_1 \ll \mu_1$. Similarly, assume that μ_2, ν_2 are σ -finite measures on (X_2, \mathcal{M}_2) with $\nu_2 \ll \mu_2$. Assume $\mu_1 \times \mu_2(E) = 0$.

Then,
$$0 = \mu_1 \times \mu_2(E) = \int \chi_E d(\mu_1 \times \mu_2)$$

$$= \int \int (\chi_E)_{x_2} d\mu_1 d\mu_2$$

$$= \int \mu_1 ((\chi_E)_{x_2}) d\mu_2$$

By Fubini, if $\int \mu_1((\chi_E)_{x_2}) d\mu_2 = 0$, $\int \mu_2((\chi_E)^{x_1}) d\mu_1 = 0$ which imply $\mu_1((\chi_E)_{x_2}) = 0$ and $\mu_2((\chi_E)^{x_1}) = 0$. Then, by assumption, $\nu_1((\chi_E)_{x_2}) = 0$ and $\nu_2((\chi_E)^{x_1}) = 0$. Thus,

$$\nu_1 \times \nu_2(E) = \int \chi_E d\nu_1 \times \nu_2$$

$$= \int \int (\chi_E)^{x_1} d\nu_2 d\nu_1$$

$$= \int \nu_2 ((\chi_E)^{x_1}) d\nu_1$$

$$= \int 0 d\nu_1$$

$$= 0$$

Thus, $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$.

Given the same conditions as in (1), prove that $\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)} = \frac{d\nu_1}{d\mu_1}$.

Proof. Suppose $E_1 \in \mathcal{M}_1$, $E_2 \in \mathcal{M}_2$, $x_1 \in X_1$, $x_2 \in X_2$. Then, we have

$$\frac{d\nu_1}{d\mu_1} = f_1(x_1), \nu_1(E_1) = \int_{E_1} f_1(x_1) d\mu_1 \quad \text{and} \quad \frac{d\nu_2}{d\mu_2} = f_2(x_2), \nu_2(E_2) = \int_{E_2} f_2(x_2) d\mu_2.$$

Then,
$$(\nu_1 \times \nu_2)(E_1 \times E_2) = \nu_1(E_1)\nu_2(E_2)$$

$$= \int_{E_1} f_1(x_1)d\mu_1 \int_{E_2} f_2(x_2)d\mu_2$$

$$= \int_{E_2} \int_{E_1} f_1(x_1)f_2(x_2)d\mu_1d\mu_2$$

$$= \int_{E_1 \times E_2} f_1f_2d(\mu_1 \times \mu_2)$$

Since $f_1 f_2$ must be unique and $(\nu_1 \times \nu_2)(E_1 \times E_2) = \int_{E_1 \times E_2} f_1 f_2 d(\mu_1 \times \mu_2)$,

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)} = f_1 f_2 = \frac{d\nu_1}{d\mu_1} \frac{d\nu_2}{d\mu_2}$$

(2) Let X = [0, 1], $\mathcal{M} = \mathcal{B}_{[0,1]}$, m = Lebesgue measure and $\mu =$ counting measure. Prove that $m \ll \mu$ but there is no f such that $dm = f d\mu$.

Proof. For $E \in \mathcal{M}$ suppose $\mu(E) = 0$. Then, $E = \emptyset$ and so m(E) = 0. Thus, $m \ll \mu$. Next, suppose there is an f such that $dm = fd\mu$. Let $a \in [0,1]$ and note $m(\{a\}) = 0$ and

$$m(\{a\}) = \int_{\{a\}} f d\mu = f(a)\mu(\{a\}) = f(a).$$
 Hence, $f(a) = 0 \quad \forall \ a \in [0, 1].$

Also, notice m([0,1]) = 1 but

$$m([0,1]) = \int_{[0,1]} f d\mu = \int 0 d\mu = 0\mu([0,1]) = 0.$$

Thus, there is no f such that $dm = fd\mu$.

12.4. November 25 Group Assignment. (1) Suppose that μ and ν are σ -finite measures on (X, \mathcal{M}) with $\nu \ll \mu$, and let $\lambda = \mu + \nu$. If $f = \frac{d\nu}{d\lambda}$ then prove that $0 \le f < 1$ μ -a.e. and $\frac{d\nu}{d\mu} = \frac{f}{1-f}$.

Proof. Suppose that μ and ν are σ -finite measures on (X, \mathcal{M}) with $\nu \ll \mu$, and let $\lambda = \mu + \nu$. First, we will show $\nu \ll \lambda, \mu \ll \lambda, \lambda \ll \mu$. Suppose $\lambda(E) = 0$. Then, $\lambda(E) = (\mu + \nu)(E) = \mu(E) + \nu(E) = 0$. Since μ, ν are positive, finite measures this implies $\mu(E) = \nu(E) = 0$. Thus, $\mu \ll \lambda$ and $\nu \ll \lambda$. Let

$$f = \frac{d\nu}{d\lambda}, \quad h = \frac{d\nu}{d\mu}, \quad j = \frac{d\lambda}{d\mu}, \quad g = \frac{d\mu}{d\lambda}.$$

Then,
$$1 = g + f$$
 and $1 = g + gh$

$$\frac{1}{g} = 1 + h$$

$$h = \frac{1}{g} - 1$$

$$h = \frac{1 - g}{g}$$

$$= \frac{f}{1 - g}$$

Hence,
$$\frac{d\nu}{d\mu} = \frac{f}{1-f}$$
.

To show $0 \le f < 1$ μ -a.e., first note that f + g = 1. Suppose $f \ge 1$ on some A such that $\nu(A) > 0$. Then, $\lambda(A) > 0$ and

$$\nu(A) = \int_A f d\lambda < \int_A 0 d\lambda = 0$$
, which is a contradiction.

Therefore, f > 0. Next, suppose f > 1 on some A such that $\mu(A) > 0$. Then, $\lambda(A) > 0$ and

$$\nu(A) = \int_A f d\lambda \ge \int_A 1 d\lambda = \lambda(A) = \mu(A) + \nu(A) > \nu(A)$$
 which is a contradiction.

Hence,
$$0 < f \le 1$$
.

13. Section 3.4 (Folland): Differentiation on Euclidean Space

13.1. Section 3.4 Definitions and Theorems.

Remark 18. From now on, we will focus on $(X, \mathcal{M}, \mu) = (\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n}, m)$.

Remark 19.
$$B(r,x) = \{y : ||x-y|| < r\}, \ m(B(r,x)) = k(n) \ \pi r^n.$$

Our goal: We want $\nu \ll m$ so the RN theorem gives us $fdm = d\nu$ and

$$f = \frac{d\nu}{dm}$$
 we will make this precise: $\lim \frac{\nu(...)}{m(...)}$

Lemma 3 (Vitali's Covering Lemma). \mathcal{C} is a collection of balls in \mathbb{R}^n and $\mathcal{U} = \bigcup_{B \in \mathcal{C}} B$. If $c < m(\mathcal{U})$ there are $B_1, B_2, \ldots, B_k \in \mathcal{C}$ disjoint such that

$$\sum_{i=1}^k m(B_i) > \frac{c}{3^n}.$$

How to think about Vitali's theorem: there is some \mathcal{U} and take a disjoint subset (maximized). However, you will miss stuff. The theorem says if you take all these subsets and blow them up by a factor of 3, then you are guaranteed to cover \mathcal{U} .

We need c because there may be unbounded stuff.

Remark 20. In other words, $C = \{B(r,x)\}_{\{r,x\} \subset r,x}$

Vitali's lemma proof. Step 1: Find a compact set $K \subseteq \mathcal{U}$ with m(K) > c.

Step 2: Because K is compact there is $A_1, A_2, \ldots, A_m \in \mathcal{C}$ with $K \subseteq \bigcup_{j=1}^m A_j$. In other words, there exists a finite subcovering. Definition of compact: every cover has a finite subcover.

Step 3: Now we have finite but not disjoint. So start with $\{A_1, A_2, \dots, A_m\}$ and choose the largest.

Call it B_1 . With what's left, chose the largest that doesn't hit B_1 (is disjoint from B_1) call B_2 . If there is a tie, just pick one. With what's left... call it B_3 ...

We will end with B_1, \ldots, B_n disjoint.

Step 4: Now we need to show

$$\sum_{i=1}^k m(B_i) > \frac{c}{3^n}.$$

Let $B_i = B(r_i, x_i)$. $A_j \subseteq B(3r_i, x_i)$ for some i. Assume $A_j \neq B_i$ for any i. Then $A_j \cap B_k \neq \emptyset$ for some k. Choose the smallest k for which $A_j \cap B_k \neq \emptyset$. See figure.

So $A_j \cap B_1 = \emptyset$, $A_j \cap B_2 = \emptyset$, ..., $A_j \cap B_{k_0-1} = \emptyset$ radius $A_j \leq \text{radius for } B_{k_0}$. $x \in A_j \cap B_{k_0}$, $d(x_{k_0}, y) < r_{k_0}$

 $d(y, x') < r_{k_0}$, and $d(x', z) < r_{k_0}$ for any $z \in A_j$. So $A_j \subseteq B(3r_i, x_i)$ for some i.

 $c < m(K) \le m(\bigcup_{k=1}^{n} (B(x_k, 3r_k)))$

$$K \subseteq \bigcup_{j=1}^{m} A_j \subseteq \bigcup_{k=1}^{n} B(x_k, 3r_k)$$

So, $m(\bigcup_{k=1}^{n} (B(x_k, 3r_k))) \le \sum_{k=1}^{n} m(B(x_k, 3r_k)) = 3^n \sum_{k=1}^{n} B(x_k, r_k).$

Definition 55. f is locally integrable if

$$\int_K |f| dm < \infty \text{ for any compact set } K \subseteq \mathbb{R}^n.$$

Let $L^1_{loc}(m)$. Let $f(x) \in L^1_{loc}$.

Example, average value function of f on B(r, x):

$$(A_r f)(x) = \frac{1}{m(B(r,x))} \int_{B(r,x)} f(y) dm(y)$$

Example, Hardy-Littlewood Maximal Function: Pick a function f and fix x

$$(Hf)(x) = \sup_{r>0} (A_r|f|)(x) = \sup_{r>0} \frac{1}{m(B(r,x))} \int_{B(r,x)} |f(y)| dm(y)$$

Facts: (use dominated convergence theorem to prove)

1.
$$\lim_{r \to r_0} (A_r f)(x) = (A_{r_0} f)(x);$$
 $\lim_{x \to x_0} (A_r f)(x) = (A_r f)(x_0)$

Notice
$$\int_{B(r,x)} f(y)dm(y) = \int_{\mathbb{R}^n} \chi_{B(r,x)} f(y)dm(y)$$

- 2. Hf(x) is measurable
- 3. There is c>0 such that for all $f\in L^1$ and $\alpha>0$

$$m(\{x: Hf(x) > \alpha\}) \le \frac{c}{\alpha} \int |f| dm$$

proof of 3. Let $E_{\alpha} = \{x : Hf(x) > \alpha\}$. Then, for all x, there is an $r_x > 0$ such that $(A_{r_x}|f|(x)) > \alpha$. Consider $\bigcup_{x \in E_{\alpha}} \supseteq E_{\alpha}$. Then, for any $c < m(E_{\alpha})$,

$$c < 3^n \sum_{j=1}^k m(B_j)$$
 for some finite B_1, \ldots, B_j . Then,

$$c < 3^{n} \sum_{j=1}^{k} m(B_{j})$$

$$\leq \frac{3^{n}}{\alpha} \sum_{j=1}^{n} j = 1^{k} \int_{B_{j}} |f| dm$$

$$\leq \frac{3^{n}}{\alpha} \int_{\mathbb{R}^{n}} |f| dm$$

Let $c \to m(E_{\alpha})$. Read proof of differentiation theorem. He will hand out problem for next time. \Box

Theorem 20.

$$f \in L^1_{loc} \Rightarrow \lim_{r \to 0} A_r f(x) = f(x)$$
 a. e.

Proof. 1. True if the function is cts.

$$\frac{1}{m(B(r,x))} \int_{B(r,x)} f dm$$

Let $\varepsilon > 0$ there exists δ s.t. $y \in B(\delta, x)$ implies $f(x) - \varepsilon < f(y) < f(x) + \varepsilon$

- 2. Approximate f by cts function g.
- 3. (key step)

$$\limsup_{r \to 0} |A_r f(x) - f(x)|$$

If this is 0, then this is a limit, get rid of ||.

Look at the set were $\limsup \neq 0$ and show this set has measure zero.

$$\limsup_{r \to 0} |A_r f(x) - f(x)| = \limsup_{r \to 0} |A_r (f - g)(x) + A_r g(x) - g(x) + g(x) - f(x)|$$

$$\leq |H(f - g)(x)| + |0| + |(g - f)(x)|$$

4. $E_{\alpha} = \{x : \limsup |A_r f(x) - f(x)| > \alpha \}.$

$$F_{\alpha} = \{x : |f - g| > \alpha\}.$$

$$E_{\alpha} \subseteq F_{\alpha/2} \cup \{x : H(f-g) > \frac{\alpha}{2}\}$$

$$m(E_{\alpha} \le m(F_{\alpha/2}) + m\left(\left\{x : H(f-g) > \frac{\alpha}{2}\right\}\right) \le \frac{\epsilon}{2} + \frac{c\epsilon}{\frac{\alpha}{2}}$$

Thus, $m(E_{\alpha}) = 0 \ \forall \ \alpha$.

Definition 56 (Lebesgue set).

$$L_f = \left\{ x : \lim_{r \to 0} \frac{1}{m(B(r,x))} \int_{B(r,x)} |f(y) - f(x)| dm(y) = 0 \right\}$$

Corollary 4.

$$m(L_f^c) = 0$$

Remark 21 (notation). $\{E_r\}_{r>0}$ is a collection of sets. Then, E_r shrinks nicely to x if

- 1. $E_r \subseteq B(r,x)$ for all r
- 2. There is a fixed α such that

$$m(E_r) > \alpha m(B(r,x))$$

Theorem 21 (Lebesgue Diffn Thm). If $f \in L^1_{loc}$ and E_r shrinks nicely to $x \in L_f$, then

$$\lim_{r \to 0} \frac{1}{m(E_r)} \int_{E_r} |f(y) - f(x)| dy = 0.$$

Definition 57. ν is a Borel measure on \mathbb{R}^n . ν is regular if

- i. $\nu(K) < \infty$ for any compact K
- ii. [follows from i.] $\nu(E) = \inf \{ \nu(U) : U \text{ open } E \subseteq U \}$ for any Borel set E.

If ν is signed it is regular if $|\nu|$ is regular.

Theorem 22. If ν is a regular signed measure with LRN representation $d\nu = d\lambda + fdm$ and

$$f(x) = \lim_{r \to 0} \frac{\nu(E_r)}{m(E_r)}$$
 if $\{E_r\}$ shrinks nicely to $\{x\}$.

13.2. **December 2, 4.**

(1) If $f \in L^1_{loc}$ and f is continuous at x, then x is in the Lebesgue set of f.

Proof. Assume $f \in L^1_{loc}$ and f is continuous at x. Then,

$$\lim_{r\to 0}\frac{1}{m(B(r,x))}\int_{B(r,x)}[f(y)-f(x)]dy=0 \text{ a.e. } x;\ L_f=\{x:\lim_{r\to 0}\frac{1}{m(B(x,r))}\int_{B(x,r)}|f(y)-f(x)|dm(y)=0\}.$$

Since f is continuous at x for all $\epsilon > 0$, there exists $\delta > 0$ such that if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$. Then, for all r > 0, $0 < r < \delta$ so

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| dm(y) < \lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} \epsilon dm(y) = \epsilon$$

Then, let
$$\epsilon \to 0$$
.

If E is a Borel set in \mathbb{R}^2 then the density of E at x is defined as

$$D_E(x) = \lim_{r \to 0} \frac{m(E \cap B(r, x))}{m(B(r, x))}.$$

- (2) Show that $D_E(x) = 1$ for almost every $x \in E$, and that $D_E(x) = 0$ for almost every $y \notin E$.
- (3) Show that $D_E(0) = \frac{1}{2}$ in the case that E = [0, 1]
- (4) If λ and μ are positive Borel measures with $\lambda \perp \mu$ and $\lambda + \mu$ is regular, then λ and μ are regular.

Proof. Suppose there exists $\epsilon > 0$ such that $\lambda(U) > \lambda(E) + \epsilon$ for all $U \supseteq E$ where U is open.

$$(\lambda + \mu)(U) = \lambda(U) + \mu(U)$$

$$> \lambda(E) + \epsilon + \mu(E)$$

$$= (\lambda + \mu)(E) + \epsilon.$$

This contradicts $(\lambda + \mu)(E) = \inf\{(\lambda + \mu)(U) : E \subseteq U\}.$

The proof of μ regular follows similarly.

14. Homework

14.1. Assignment 1 (page 1).

(1) Let \mathcal{A} be an algebra of sets that is closed under countable increasing unions. Show that \mathcal{A} is a σ -algebra.

Proof. Let \mathcal{A} be an algebra on some set X that is closed under countable increasing unions. Then, consider a countable collection of sets in \mathcal{A} , namely $\{E_i\}_{i=1}^{\infty}$. To show \mathcal{A} is a σ -algebra we must show $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$. Define $F_n = \bigcup_{j=1}^n E_j$. Since \mathcal{A} is an algebra, \mathcal{A} is closed under finite unions, so $F_n \in \mathcal{A}$ for all n. Further, $\{F_j\}_{j=1}^{\infty} \subset \mathcal{A}$. Additionally, notice $F_1 = E_1$, $F_2 = E_1 \cup E_2$, $F_3 = E_1 \cup E_2 \cup E_3$, \cdots so $F_1 \subseteq F_2 \subseteq F_3 \subseteq \cdots$. Thus, $\{F_j\}_{j=1}^{\infty}$ is an increasing collection of sets. Because \mathcal{A} is closed under countable increasing unions, $\bigcup_{j=1}^{\infty} F_j \in \mathcal{A}$. But $\bigcup_{j=1}^{\infty} F_j = \bigcup_{i=1}^{\infty} E_i$. Thus, $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$ so we have shown \mathcal{A} is a σ -algebra.

(2) Let $A \subset E \subset B$, where A, B are Lebesgue measurable sets of finite measure. Prove that if m(A) = m(B), then E is measurable.

Proof. Let $A \subset E \subset B$, where A, B are Lebesgue measurable sets of finite measure. Assume m(A) = m(B). Notice if $A \subset E \subset B$ set subtraction implies $\emptyset \subset E \setminus A \subset B \setminus A$. Since m(A) = m(B) and m(A), m(B) are finite we can write m(B) - m(A) = 0 which implies $m(B \setminus A) = 0$. Thus, $B \setminus A$ is a set of measure zero. Since Lebesgue measure is complete, if $E \setminus A$ is a subset of a set of measure zero, $E \setminus A$ must be measurable. $E = E \setminus A \cup A$, so $E \setminus A$ and A measurable imply E measurable since the collection of measurable sets is a σ -algebra.

(3) If $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of Lebesgue measurable real-valued functions, prove that $f=\liminf f_n$ is Lebesgue measurable.

Proof.

- (4) Let $f: \mathbb{R} \to [0, \infty)$ be Lebesgue measurable.
 - (a) Let $E_m = \{x \in \mathbb{R} : f(x) > 1/m\}$. Use the monotone convergence theorem to show

$$\lim_{m\to\infty}\int_{E_m}fdm=\int_{\mathbb{R}}fdm.$$

Proof.

(b) Prove that if $\int_{\mathbb{R}} f dm < \infty$, then for all $\varepsilon < \infty$, there exists $A \in \mathcal{B}_{\mathbb{R}}$ with $m(A) < \infty$ so that

$$\int_{\mathbb{R}} f dm < \int_{A} f dm + \varepsilon.$$

Proof. Assume $\int_{\mathbb{R}} f dm < \infty$. Then, $f \in L^+$ and

$$\int_{\mathbb{R}} f \ dm = \sup \left\{ \int_{\mathbb{R}} \phi \ dm : 0 \le \phi \le f, \ \phi \text{ simple} \right\}.$$

Thus, for any $\epsilon > 0$, we can find a simple function ϕ such that

$$\int_{\mathbb{R}} f \ dm < \int_{\mathbb{R}} \phi \ dm + \epsilon$$

Let

$$\phi = \sum_{1}^{n} a_j \chi_{E_j}$$
. Then, $\int \phi \ dm = \sum_{1}^{n} a_j m(E_j)$.

Since $\int f \, dm$ is the supremum of all such integrals and $\int f \, dm < \infty$, $\int \phi \, dm < \infty$. Thus, if there exists some E_j with $m(E_j) = \infty$, the corresponding $a_j = 0$. So, consider only E_j with $m(E_j) \neq \infty$. Thus, by exercise 4 from September 18, for every E_j with $m(E_j) < \infty$ there exists some G_δ set, A_j , where $m(E_j) = m(A_j)$. Since $m(E_j) < \infty$, $m(A_j) < \infty$. Next, let

$$A = \bigcup_{1}^{k} A_{j} \quad E = \bigcup_{1}^{k} E_{j}$$

so A_j G_δ implies $A \in \mathcal{B}_R$. Also, $m(A_j) < \infty$ for all j implies $m(\bigcup_{1}^k A_j) = m(A) < \infty$. Additionally, since $a_j = 0$ whenever $m(E_j) = \infty$, we can write

$$\int_{\mathbb{R}} \phi \ dm = \sum_{1}^{n} a_{j} m(E_{j}) = \sum_{1}^{k} a_{j} m(E_{j}) = \sum_{1}^{k} a_{j} m(A_{j}) = \int_{A} \phi \ dm.$$

Then, since $\int_A f \ dm = \sup\{\int_A \phi \ dm : 0 \le \phi \le f, \phi \text{ simple } \}$, we have $\int_A \phi \ dm \le \int_A f \ dm$. Hence,

$$\int_{\mathbb{R}} f \ dm < \int_{\mathbb{R}} \phi \ dm + \epsilon = \int_{A} \phi \ dm + \epsilon \leq \int_{A} f \ dm + \epsilon.$$

- (5) Let $\{f_n\}$ be a sequence of Lebesgue integrable functions that converge to f in L^1 .
 - (a) Prove that $\{f_n\}$ converges to f in measure. Proof. Assume $\{f_n\}$ is a sequence of Lebesgue integrable functions that converge to f in L^1 . Then, $\int |f_n - f| \to 0$. Let $E_{n,\epsilon} = \{x : |f_n(x) - f(x)| \ge \varepsilon\}$ **see page 61, prop 2.29**
 - (b) Give an example of a sequence $\{f_n\}$ and a function f such that $\{f_n\}$ converges to f in measure, but $\{f_n\}$ does not converge to f in L^1 .

$$f_n = n\chi_{[0,\frac{1}{n}]}$$

$$\{x: n\chi_{[0,\frac{1}{n}]} \ge \varepsilon\} \subset \{x: n\chi_{[0,\frac{1}{n}]} > 0\}$$

$$\mu({x: n\chi_{[0,\frac{1}{n}]} > 0}) = \frac{1}{n}$$

$$\int n\chi_{\left[0,\frac{1}{n}\right]} = n\mu\left(\left[0,\frac{1}{n}\right]\right) = 1$$

(6) Let f, g be Lebesgue integrable functions on \mathbb{R} . Prove that the function F(x, y) = f(y)g(x - y) is Lebesgue integrable in \mathbb{R}^2 .

Proof. Since f, g are Lebesgue integrable, fg is measurable. So, $\int |f| < \infty$ and $\int |g| < \infty$. Also, by Tonelli, $f(y)g(x-y) \in L^+$, and

$$\int |f(y)g(x-y)|d(m\times m)(x,y) = \int \int |f(y)g(x-y)|dm(x)dm(y).$$

Then, since f(y) does not depend on x we can write

$$\int \int |f(y)g(x-y)|dm(x)dm(y) = \int |f(y)| \int |g(x-y)|dm(x)dm(y).$$

Also, Lebesgue integration is translation invariant so $\int g(x-y)$ is the same as $\int g(x)$. Thus,

$$\int |f(y)| \int |g(x-y)| dm(x) dm(y) = \int |f(y)| dm(y) \int |g(x)| dm(x).$$

(7) Let μ_F be the Borel measure on \mathbb{R} with distribution function

$$F(x) = \begin{cases} \arctan(x) & \text{if } x < 0, \\ x^2 + 1 & \text{if } \ge 0 \end{cases}$$

- (a) Calculate $\mu_F([0,3))$ and $\mu_F((0,3))$. By exercises from October 9, we have $\mu_F([0,3)) = F(3-) - F(0-) = 3^2 + 1 - \arctan(0) = 10$. Also, $\mu_F((0,3)) = F(3-) - F(0) = 3^2 + 1 - (0^2 + 1) = 9$.
- (b) If $\mu(E) = 0$ for every $E \in \mathbb{R}$ with m(E) = 0, then we write $\mu \ll m$ and say μ is absolutely continuous with respect to Lebesgue measure.
- (c) Prove that μ_F is not absolutely continuous with respect to Lebesgue measure.

 Proof. Notice

$$\mu_F(\{0\}) = \mu_F([0,3)/(0,3)) = \mu_F([0,3)) - \mu_F((0,3)) = 10 - 9 = 1$$

but
$$m(\lbrace 0 \rbrace) = 0$$
. This, $\mu_F \not\ll m$.

(8) Construct a family of Lebesgue measurable functions $\chi_t \colon \mathbb{R} \to \mathbb{R}$, $t \in \mathbb{R}$, with the property that $\chi = \sup_{t \in \mathbb{R}} \chi_t$ is not a Lebesgue measurable function. (You may assume without the proof that non-measurable sets exist.

(exercise 6, §2.1): Show by example that there is an uncountable set A and for each $a \in A$ a measurable function f_a , but $\sup\{f_\alpha : \alpha \in A\}$ is not measurable.

Consider the set N_r constructed in section 1.1. Then N_r is an uncountable set and therefore not measurable. However, for every $r \in \mathbb{Q} \cap [0,1)$ and $x \in N$ (where N was defined as the subset of [0,1) containing exactly one member of the equivalence classes defined by $x \sim y$ iff

 $x-y \in \mathbb{Q}$. Singletons are measurable, so, from page 46 of Folland, the indicator functions $\chi_{\{x+r\}}$ and $\chi_{\{x_r-1\}}$ are measurable for all $r \in \mathbb{Q} \cap [0,1)$ and $x \in N \cap [0,1-r)$ or $x \in N \cap [1-r,1)$. Notice $\sup\{\chi_{\{x+r\}},\chi_{\{x+r-1\}}: r \in \mathbb{Q} \cap [0,1) \text{ and } x \in N \cap [0,1-r) \text{ or } x \in N \cap [1-r,1)\} = \chi_{N_r}$. But, χ_{N_r} is not measurable because N_r is not measurable.

- (9) Show by way of an example that an open, dense set in \mathbb{R} need not have infinite measure.
- (10) Let f be a continuous function of bounded variation. Prove that $f = f_1 f_2$ where both f_1, f_2 are monotonic and continuous.

14.2. Assignment 2 (page 2).

- (1) Let f be real-valued.
 - (a) Give the definition of a measurable function.

(p. 43, Folland) If (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces, a mapping $F : X \to Y$ is called $(\mathcal{M}, \mathcal{N})$ -measurable if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$. (b) If f is measurable, is f^2 measurable? Justify.

Yes. From group work, we know fg is measurable. So, ff is measurable.

(c) If f^2 is measurable, is f measurable. Justify.

use counterexample of $f = \chi_{N_r} - \chi_{N_r^c}$. Note f is not measurable but $f^2 = 1$ since $f = \pm 1$

- (2) Let X be a countable set and μ a measure on X. Assume that for any $F \subseteq X$ there is $G \subseteq F$, $G \neq \emptyset$, with $\mu(G) < \infty$. Prove the following:
 - (a) For any $x \in X$, $\mu(\{x\}) < \infty$.
 - (b) μ is σ -finite.

Proof. Note $X = \bigcup_{x \in X} \{x\}$. By part a $\mu(\{x\}) < \infty$. Thus, X can be written as a countable union sets where each set has finite measure. Therefore, μ is σ -finite.

(3) Let (X, \mathcal{M}, μ) be a measure space. Assume $\{f_n\}$ is a sequence in $L^1(X, \mu)$ so that $f_n \to f$ pointwise, and there exists M > 0 so that for all n and all $x \in X$ the inequality $|f_n(x)| \leq M$ holds.

(a) If $\mu(X) < \infty$, show that $f \in L^1(X, \mu)$ and $\int f_n \to \int f$.

M dominated convergence theorem -

- (b) Show by example that the above conclusion may fail if $\mu(X) = \infty$.
- (4) Let μ^* be an outer measure on a set X. If $E \subseteq X$ satisfies $\mu^*(E) = 0$ prove that E is μ^* -measurable.

Proof.

- (5) Let $f:[0,1] \to \mathbb{R}$ be a continuous function of bounded variation such that f(0) = 0.
 - (a) Give an example of such a function for with the identity

$$f(x) = \int_0^x f'(x)dx$$
 fails to hold for a.e. $x \in [0, 1]$.

- (b) For what type of functions f does the identity in (a) hold almost everywhere?
- (6) (a) State the Monotone Convergence Theorem.

If $\{f_n\}$ is a sequence in L^+ such that $f_j \leq f_{j+1}$ for all j, and $f = \lim_{j \to \infty} f_n$, then $\int f = \lim_{n \to \infty} \int f_n$.

(b) State Fatou's Lemma.

If $\{f_n\}$ is any sequence in L^+ , then

$$\int (\liminf f_n) \le \liminf \int f_n.$$

(c) Prove Fatou's Lemma using the Monotone Convergence Theorem.

Proof. (Proof from Folland, p. 52)

For each $k \ge 1$ we have $\inf_{n \ge k} f_n \le f_j$ for $j \ge k$. Hence $\int \inf_{n \ge k} f_n \le \int f_j$ for $j \ge k$. Therefore, $\int \inf_{n \ge k} f_n \le \inf_{j \ge k} \int f_j$. Let $k \to \infty$ and apply the monotone convergence theorem to obtain:

$$\int (\liminf f_n) = \lim_{k \to \infty} \int \inf_{n \ge k} f_n \le \liminf \int f_n.$$

(7) Define $F: \mathbb{R} \to \mathbb{R}$ by

$$F(x) = \begin{cases} 0 & \text{if } x < \frac{1}{4}, \\ x & \text{if } \frac{1}{4} \le x < 1, \\ x^2 + 1 & \text{if } x \ge 1, \end{cases}$$

Let μ_F be the Borel measure associated to F.

(a) Calculate $\mu_F((\frac{1}{4},1])$ and $\mu_F([\frac{1}{4},1])$.

By exercises from October 9, we know $\mu_F([a,b]) = F(b-) - F(a-) = \mu_F((a,b]) = F(b) - F(a)$. Thus,

$$\mu_F\left(\left(\frac{1}{4}, 1\right]\right) = F(1) - F\left(\frac{1}{4}\right) = 1^2 + 1 - \frac{1}{4} = \frac{7}{4}.$$

$$\mu_F\left(\left[\frac{1}{4}, 1\right]\right) = F(1-) - F\left(\frac{1}{4}-\right) = 1 - 0 = 1.$$

(b) Calculate the Lebesgue derivative of μ_F .

To calculate, recall the Lebesgue-Radon-Nikodym representation given in Theorem 3.22, $d\mu_F = d\lambda + f \ dm$ where f is the Lebesgue derivative and since we are working in \mathbb{R} we can write

$$f(x) = \lim_{r \to 0} \frac{\mu_F(B(r,x))}{m(B(r,x))} = \lim_{r \to 0} \frac{\mu_F((x-r,x+r))}{m((x-r,x+r))} = \lim_{r \to 0} \frac{F((x+r)-) - F(x-r)}{2r}.$$

Suppose $x < \frac{1}{4}$, then

$$\lim_{r \to 0} \frac{F((x+r)-) - F(x-r)}{2r} = \lim_{r \to 0} \frac{0-0}{2r} = 0.$$

Suppose $\frac{1}{4} < x < 1$, then

$$\lim_{r \to 0} \frac{F((x+r)-) - F(x-r)}{2r} = \lim_{r \to 0} \frac{x+r - (x-r)}{2r} = 1.$$

Suppose x > 1, then

$$\lim_{r \to 0} \frac{F((x+r)-) - F(x-r)}{2r} = \lim_{r \to 0} \frac{(x+r)^2 + 1 - ((x-r)^2 + 1)}{2r} = \lim_{r \to 0} \frac{4rx}{2r} = 2x.$$

Suppose $x = \frac{1}{4}$, then

$$\lim_{r \to 0} \frac{F\left(\left(\frac{1}{4} + r\right) - \right) - F\left(\frac{1}{4} - r\right)}{2r} = \lim_{r \to 0} \frac{\frac{1}{4} + r}{2r} = \infty \quad (r > 0)$$

Suppose x = 1, then

$$\lim_{r \to 0} \frac{F\left((1+r) - \right) - F\left(1-r\right)}{2r} = \lim_{r \to 0} \frac{(1+r)^2 + 1 - (1-r)}{2r} = \lim_{r \to 0} \frac{1 + 3r + r^2}{2r} = \infty \quad (r > 0)$$

- (c) Give the Lebesgue-Radon-Nikodym decomposition of μ_F with respect to m.
- (8) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measures spaces and assume that $E \in \mathcal{M} \times \mathcal{N}$. Show that if $\mu \times \nu(E) = 0$ then $\nu(E_x) = \mu(E^x)$ for a.e. x and y.

Proof.
$$\Box$$

14.3. Assignment 3 (page 3).

- (1) Show that if $E_1 \cup E_2$ is Lebesgue measurable and $m(E_2) = 0$, then E_1 is Lebesgue measurable. Proof. Suppose $E_1 \cup E_2$ is Lebesgue measurable and $m(E_2) = 0$. Since $m(E_2) = 0$, E_2 is Lebesgue measurable. Notice $(E_1 \cup E_2)/E_1 \subseteq E_2$. Since the subset of Lebesgue measurable sets are measurable, so $(E_1 \cup E_2)/E_1$ is measurable. Also, the complement and intersection of measurable sets is measurable, so $(E_1 \cup E_2) \cap ((E_1 \cup E_2)/E_1)^c$ is measurable. By inspection, we can see $E_1 = (E_1 \cup E_2) \cap ((E_1 \cup E_2)/E_1)^c$. Thus, E_1 is Lebesgue measurable.
- (2) Let μ_F be the Borel measure on \mathbb{R} with distribution function F:

$$F(x) = \begin{cases} \arctan(x) + 5 & \text{if } x \ge 2, \\ x^2 - 2 & \text{if } 0 \le x < 2, \\ e^x - 3 & \text{if } x < 0. \end{cases}$$

(a) Calculate $\mu_F(\mathbb{R}), \mu_F(\{2\}), \text{ and } \mu_F((-\infty, 0)).$

By continuity from below, we have $\mu_F(\mathbb{R}) = \mu_F\left(\bigcup_{x \in \mathbb{N}} (-x, x]\right) = \lim_{x \to \infty} \mu_F((-x, x])$ so

$$\mu_F(\mathbb{R}) = \lim_{x \to \infty} F(x) - F(-x) = \lim_{x \to \infty} (\arctan x + 5) - \lim_{x \to \infty} (e^{-x} - 3) = \frac{\pi}{2} + 8.$$

$$\mu_F(\{2\}) = F(2) - F(2-) = \arctan(2) + 5 - (2^2 - 2) = \arctan(2) + 3.$$

$$\mu_F((-\infty, 0)) = \mu_F \left(\bigcup_{x \in \mathbb{N}} \left(-x, -\frac{1}{x}\right]\right) = \lim_{x \to \infty} \mu_F \left(\left(-x, -\frac{1}{x}\right]\right) = \lim_{x \to \infty} F\left(-\frac{1}{x}\right) - \lim_{x \to \infty} F(-x)$$

$$= \lim_{x \to \infty} \left(e^{-\frac{1}{x}} - 3 - e^{-x} + 3\right) = 1.$$

(b) Calculate the Lebesgue derivative of μ_F .

To calculate, recall the Lebesgue-Radon-Nikodym representation given in Theorem 3.22, $d\mu_F = d\lambda + f \ dm$ where f is the Lebesgue derivative and since we are working in \mathbb{R} we can write

$$f(x) = \lim_{r \to 0} \frac{\mu_F(B(r,x))}{m(B(r,x))} = \lim_{r \to 0} \frac{\mu_F((x-r,x+r))}{m((x-r,x+r))} = \lim_{r \to 0} \frac{F((x+r)-) - F(x-r)}{2r}.$$

Suppose x < 0, then

$$\lim_{r \to 0} \frac{F((x+r)-) - F(x-r)}{2r} = \lim_{r \to 0} \frac{e^{x+r} - e^{x-r}}{2r} = e^x \lim_{r \to 0} \frac{e^r - e^{-r}}{2r} = e^x.$$

Suppose 0 < x < 2, then

$$\lim_{r \to 0} \frac{F((x+r)-) - F(x-r)}{2r} = \lim_{r \to 0} \frac{(x+r)^2 - 2 - (x-r)^2 + 2}{2r} = \lim_{r \to 0} \frac{4r}{2r} = 2.$$

Suppose x > 2, then

$$\lim_{r\to 0}\frac{F((x+r)-)-F(x-r)}{2r}=\lim_{r\to 0}\frac{\arctan(x+r)-\arctan(x-r)}{2r}=0.$$

(c) Is μ_F absolutely continuous with respect to Lebesgue measure?

No. Recall $m(\{2\}) = 0$ but, by (a), $\mu_F(\{2\}) = \arctan(2) + 3 \neq 0$.

(3) Let $f \in L^1(X, \mu)$. Show that $\{x \in X : f(x) \neq 0\}$ is σ -finite.

Proof. To show A is σ -finite, we will first show $\bigcup_{1}^{\infty} A_{n} = A$ where $A_{n} = \{x : |f(x)| > \frac{1}{n}, n \in \mathbb{N}\}$. Suppose $x \in A$. Then, $f(x) \neq 0$ so there must exist some $n \in \mathbb{N}$ such that $|f(x)| > \frac{1}{n}$. Thus, $\bigcup_{1}^{\infty} A_{n} \supset A$.

Suppose $x \in \bigcup_{1}^{\infty} A_n$. Then, there exists some $n \in \mathbb{N}$ such that $|f(x)| > \frac{1}{n}$. Thus, $f(x) \neq 0$ and

so $x \in A$ and $\bigcup_{1}^{\infty} A_n \subset A$.

Next, we will show $\mu(A_n) \neq \infty$ for any n. Suppose there exists some n with $\mu(A_n) = \infty$. Then,

$$\int |f| \ d\mu \ge \int_{A_n} |f| \ d\mu \ge \int_{A_n} \frac{1}{n} \ d\mu = \frac{1}{n} \mu(A_n) = \infty.$$

However, $f \in L^1$, so $\int |F| < \infty$. Thus, $A = \bigcup_{1}^{\infty} A_n$ with $\mu(A_n) < \infty$ for all n so $\{x \in X : f(x) \neq 0\}$ is σ -finite.

(4) Suppose $f \in L^1(\mathbb{R}, m)$. Show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x) \cos(nx) \ dx = 0.$$

Hint: show this first for the characteristic function of an interval.

(5) Assume that for every $\epsilon > 0$ there exists $E \subseteq X$ such that $\mu(E) < \epsilon$ and $f_n \to f$ uniformly on E^c . Show that $f_n \to f$ a.e.

Proof. Assume that for every $\epsilon > 0$ there exists $E \subseteq X$ such that $\mu(E) < \epsilon$ and $f_n \to f$ uniformly on E^c . Let $A = \{x : f_n(x) \to f(x)\}$. To show $f_n \to f$ a.e., it suffices to show $\mu(A^c) = 0$. Suppose $\mu(A^c) \neq 0$. Then, $\mu(A^c) = k$ for some k > 0. Choose $\epsilon < k$. Then, there exists $E \subseteq X$ such that $\mu(E) < \epsilon < k$ and $f_n \to f$ on E^c . Since $f_n \to f$ on E^c and $A = \{x : f_n(x) \to f(x)\}$, $E^c \subseteq A$ and so $A^c \subseteq E$. Thus, $\mu(A^c) \leq \mu(E)$ and so $\mu(E) \geq k$. This is a contradiction to our assumption that $\mu(A^c) = k$, $k \neq 0$. Thus, $\mu(A^c) = 0$ and $f_n \to f$ a.e. \square

(6) For each $E \subseteq \mathbb{R}$, let $\mu(E) = \#(E \cap \mathbb{Z})$. Calculate

$$\int \int_{[2,\infty)\times[2,\infty)} (y-1)x^{-y}d(m(x)\times\mu(y)).$$
 What theorem did you use?

We will use Fubini-Tonelli to write:

$$\begin{split} \int \int_{[2,\infty)\times[2,\infty)} (y-1)x^{-y} d(m(x)\times\mu(y)) &= \int_{[2,\infty)} \int_{[2,\infty)} (y-1)x^{-y} \ dm(x) \ d\mu(y) \\ &= \int_{[2,\infty)} \frac{y-1}{-y+1} x^{1-y} \Big|_2^{\infty} \ d\mu(y) \\ &= \int_{[2,\infty)} \left(\lim_{x\to\infty} (-x^{1-y}) + 2^{1-y} \right) \ d\mu(y) \\ &= \int_{[2,\infty)} 2^{1-y} \ d\mu(y) \\ &= \sum_{n=2}^{\infty} \int_{(n,n+1)} 2^{y-1} \ d\mu(y) + \sum_{n=2}^{\infty} \int_{\{n\}} 2^{y-1} \ d\mu(y) \\ &= \sum_{n=2}^{\infty} 2^{n-1} \cdot \mu((n,n+1)) + \sum_{n=2}^{\infty} \int_{\{n\}} 2^{y-1} \ d\mu(y) \\ &= \sum_{n=2}^{\infty} 2^{n-1} \cdot 0 + \sum_{n=2}^{\infty} \mu(\{n\}) 2^{n-1} \\ &= \sum_{n=2}^{\infty} 2^{n-1} \\ &= 1. \end{split}$$

(7) Let $F : \mathbb{R} \to \mathbb{R}$. Prove that there is a constant M such that $|F(x) - F(y)| \le M|x - y|$ for every $x, y \in \mathbb{R}$ if and only if F is absolutely continuous and $|F'| \le M$ a.e.

Proof. (\Rightarrow) Assume that there is a constant M such that $|F(x) - F(y)| \leq M|x - y|$ for every $x, y \in \mathbb{R}$. Let $\varepsilon > 0$. Choose $\delta = \frac{\varepsilon}{M}$. Then, for any collection $\{(x_1, y_1), \dots (x_N, y_N)\}$ of disjoint intervals with $\sum_{1}^{N} |x_j - y_j| < \delta$ we have

$$\sum_{1}^{N} |F(x_j) - F(y_j)| \le \sum_{1}^{N} M|x_j - y_j| = M \sum_{1}^{N} |x_j - y_j| < M\delta = \varepsilon.$$

Thus, F is absolutely continuous.

 (\Leftarrow) Suppose F is absolutely continuous and $|F'| \leq M$ a.e. Then, by the Fundamental Theorem

of Calculus for Lebesgue Integrals,

$$F(y) - F(x) = \int_{x}^{y} F'(t)dt$$

Thus,
$$F(y) - F(x) = \int_{x}^{y} F'(t)dt$$

$$\leq \int_{x}^{y} |F'(t)|dt$$

$$\leq \int_{x}^{y} Mdt$$

$$= M|x - y|.$$

(8) A set $E \subseteq [0,1]$ has the property that there exists 0 < d < 1 such that for every $(\alpha,\beta) \subset [0,1]$, $m(E \cap (\alpha,\beta)) > d(\beta - \alpha)$. Prove that m(E) = 1. Hint: Lebesgue's differentiation. Proof. Since $m(E \cap (\alpha,\beta)) > d(\beta - \alpha)$,

$$\frac{m(E \cap (\alpha, \beta))}{d(\beta - \alpha)} = \frac{m(E \cap (\alpha, \beta))}{dm((\alpha, \beta))} > 1.$$

Consider $B(r, x_0)$ with $x_0 \in (\alpha, \beta) \subseteq (0, 1)$, $x_0 = \frac{\alpha + \beta}{2}$ and $r = \frac{\beta - \alpha}{2}$. Then,

$$d < \frac{m(E \cap (\alpha, \beta))}{dm((\alpha, \beta))}$$

$$= \frac{m(E \cap B(r, x_0))}{m(B(r, x_0))}$$

$$= \frac{1}{m(B(r, x_0))} \int_{B(r, x_0)} \chi_E \ dm$$

Therefore, $\lim_{r\to 0} \frac{1}{m(B(r,x_0))} \int_{B(r,x_0)} \chi_E \ dm > \lim_{r\to 0} d$ and so $\chi_E(x_0) > d$ a.e.

Thus, $\chi_E(x_0) > 0$ a.e. which implies $x_0 \in E$ for almost every $x_0 \in (0,1)$ and so E = (0,1) a.e. Since m((0,1)) = 1 it must be the case that m(E) = 1.

14.4. Assignment 4 (page 4).

(1) Let (X, \mathcal{M}, μ) be a measure space and $f: X \to \mathbb{R}$ be a measurable function, finite at every $x \in X$. Let $G_f = \{(x,t) \in X \times \mathbb{R} : t = f(x)\}$ be the graph of f. If μ is σ -finite, prove that G_f has measure zero with the product measure $\mu \times m$. Hint: use Fubini.

Proof. We will show for $G_f = \{(x,t) \in X \times \mathbb{R} : t = f(x)\}, (\mu \times m)(G_f) = 0.$ Since μ is σ -finite we can use Fubini to rewrite $(\mu \times m)(G_f)$ as

$$(\mu\times m)(G_f)=\int_{X\times\mathbb{R}}\chi_{G_f}d(\mu\times m)=\int_X\int_{\mathbb{R}}\chi_{G_f}\ dm\ d\mu. \text{ Also, note}$$

$$(\chi_{G_f})_x=\left\{\begin{array}{ll} 1 & \text{if } f(x)=y\\ 0 & \text{if } y\neq f(x) \end{array}\right. \text{ (eq. 1), and }$$

$$(G_f)_x=\{y\} \text{ where } y=f(x), \text{ so } m((G_f)_x)=m(\{y\})=0. \text{ (eq. 2)}$$

Thus, by eq. 1 and 2, we have

$$(\mu \times m)(G_f) = \int_X \int_{\mathbb{R}} \chi_{G_f} dm d\mu$$

$$= \int_X \int_{\mathbb{R}} (\chi_{G_f})_x m(y) \mu(x)$$

$$= \int_X m(G_{f_x}) d\mu(x)$$

$$= \int_X 0 d\mu(x)$$

$$= 0.$$

(2) Let X = [0, 1], $\mathcal{M} = B_{[0,1]}$, m the Lebesgue measure on \mathcal{M} and μ the counting measure on \mathcal{M} . Show that $m \ll \mu$, but that there is no function f such that $dm = f d\mu$. Does this contradict the Radon-Nikodym theorem?

Proof. For $E \in \mathcal{M}$ suppose $\mu(E) = 0$. Then, since μ is the counting measure, E must not contain any elements and so $E=\emptyset.$ Hence, m(E)=0 and $m\ll\mu.$

Next, suppose there is an f such that $dm = fd\mu$. Let $a \in [0,1]$ and note $m(\{a\}) = 0$ and

$$m(\{a\}) = \int_{\{a\}} f d\mu = f(a) \mu(\{a\}) = f(a). \qquad \text{Hence, } f(a) = 0 \quad \forall \ a \in [0,1].$$

Also, notice m([0,1]) = 1 but

$$m([0,1]) = \int_{[0,1]} f d\mu = \int 0 d\mu = 0 \mu([0,1]) = 0.$$

Thus, there is no f such that $dm = fd\mu$.

This does not contradict the Radon-Nikodym theorem because the counting measure is not σ -finite.

(3) (a) Let $f_n: [1, \infty) \to \mathbb{R}$ be a function defined by $f_n(x) = \frac{1}{x}\chi_{[n,\infty)}(x)$. Show that the sequence $\{f_n\}$ converges to zero uniformly on $[1, \infty)$.

Proof. Let $f_n:[1,\infty)\to\mathbb{R}$ be a function defined by $f_n(x)=\frac{1}{x}\chi_{[n,\infty)}(x)$. Note

$$f_n(x) = \begin{cases} \frac{1}{x} & \text{if } x \ge n \\ 0 & \text{if } x < n \end{cases}.$$

Thus, when $f_n(x) = \frac{1}{x}$, $f_n(x) \leq \frac{1}{n}$. So, for any $\varepsilon > 0$ pick N such that $\varepsilon > \frac{1}{N}$. Then, for all $n \geq N$ and for all x, $|f_n(x)| \leq \frac{1}{n} \leq \frac{1}{N} < \varepsilon$. Hence, $\{f_n\}$ converges to zero uniformly on $[1, \infty)$.

(b) State Fatou's lemma.

If $\{f_n\}$ is any sequence in L^+ , then

$$\int (\liminf f_n) \le \liminf \int f_n.$$

(c) Apply Fatou's lemma to the sequence from part (a).

By corollary to Fatou's Lemma, since $f_n \to 0$

$$\int 0 = 0 \le \liminf \int \frac{1}{x} \chi_{[n,\infty)}(x) \ dm = \int_{[n,\infty)} \frac{1}{x} \ dm.$$

(4) Let $f_n: X \to \mathbb{R}$ be measurable, bounded functions such that for every $n \in \mathbb{R}$, $x \in X$, $f_n(x) \ge f_{n+1}(x)$ and there is a measurable function $f: X \to \mathbb{R}$ such that $\lim f_n(x) = f(x)$ pointwise. If $\int f_k d\mu < \infty$ for some $k \in \mathbb{N}$, prove that

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$$

(5) Prove the following: (a) If f is monotonic, then f is Lebesgue measurable.

Proof. Let $f: \mathbb{R} \to \mathbb{R}$ be monotone. By Proposition 2.3 in Page 44, it suffices to show that for any $a \in \mathbb{R}$, we have $f^{-1}((a, \infty))$ is Borel measurable. WLOG, assume f is increasing. Let $x' = \inf\{x: f(x) > a\}$

Case 1: Suppose $f(x') \leq a$. We will show $f^{-1}((a, \infty)) = (x', \infty)$. First, show $f^{-1}((a, \infty)) \subseteq (x', \infty)$. Let $x \in f^{-1}((a, \infty))$. Then, f(x) > a. Since $x' = \inf\{x : f(x) > a\}, x' < x$. Thus, $x \in (x', \infty)$.

Next, show $f^{-1}((a, \infty)) \supseteq (x', \infty)$. Let $x \in (x', \infty)$. Then, x > x'. Since $x' = \inf\{x : f(x) > a\}$ and x > x', there exists some $x_0 \in \mathbb{R}$ such that $x > x_0 > x'$ and $f(x_0) > a$. f is monotone, so $f(x) > f(x_0)$. Thus, f(x) > a which implies $x \in f^{-1}((a, \infty))$.

Case 2: Suppose f(x') > a. We will show $f^{-1}((a, \infty)) = (x', \infty)$. First, show $f^{-1}((a, \infty)) \subseteq (x', \infty)$. Let $x \in f^{-1}((a, \infty))$. Then, f(x) > a. Since $x' = \inf\{x : f(x) > a\}, x' < x$. Thus, $x \in (x', \infty)$.

Next, show $f^{-1}((a, \infty)) \supseteq (x', \infty)$. Let $x \in (x', \infty)$. Then, x > x'. Since f is monotone, so f(x) > f(x') > a. Thus, f(x) > a which implies $x \in f^{-1}((a, \infty))$.

Case 3: Suppose $f(x') = \infty$. We will show $f^{-1}((a, \infty)) = \emptyset$. If $f(x') = \infty$, $f(\inf\{x : f(x) > a\}) = \infty$ which implies $\inf\{x : f(x) > a\} = \infty$ so $\{x : f(x) > a\} = \emptyset$. Thus, $f^{-1}((a, \infty)) = \emptyset$.

Case 4: Suppose $f(x') = -\infty$. We will show $f^{-1}((a, \infty)) = \mathbb{R}$. If $f(x') = -\infty$, $f(\inf\{x : a \in A, x' \in A,$

f(x) > a) = $-\infty$ which implies $\inf\{x : f(x) > a\} = -\infty$ so $\{x : f(x) > a\} = \mathbb{R}$. Thus, $f^{-1}((a,\infty)) = \mathbb{R}$.

Hence, for any $a \in \mathbb{R}$, we have $f^{-1}((a, \infty))$ is Borel measurable, so f is measurable.

- (b) If f is continuous and g is Lebesgue measurable, then $f \circ g$ is Lebesgue measurable. Proof. Assume f is continuous and g is Lebesgue measurable. Note $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$ and $(g^{-1} \circ f^{-1})((a, \infty)) = g^{-1}(f^{-1}(a, \infty))$. Since f is continuous, $f^{-1}((a, \infty))$ must be an interval, so $f^{-1}((a, \infty)) \in \mathcal{B}_{\mathbb{R}}$. Then, since g is Lebesgue measurable, $g^{-1}(f^{-1}(a, \infty)) \in \mathcal{L}$. Hence, $f \circ g$ is Lebesgue measurable.
- (c) If f is continuous and g is Lebesgue measurable, is $g \circ f$ Lebesgue measurable? No. Consider the following counterexample:
- (6) Let $f(x) = \int_0^\infty e^{-xt} (t^{-3} \sin^3(t)) dt$. Show that (a) f(x) is well-defined for each $x \in [0, \infty)$. Proof. Consider any $x \in [0, \infty)$. Then,

$$|f(x)| \leq \int_0^\infty |e^{-xt}(t^{-3})\sin^3t|dt \leq \int_0^\infty t^{-3} < \infty. \text{ So, } f(x) \text{ exists for any } x \in [0,\infty).$$

Next, suppose $x_1, x_2 \in [0, \infty)$ such that $x_1 = x_2$. Then,

$$f(x_1) - f(x_2) = \int_0^\infty e^{-x_1 t} (t^{-3}) \sin^3 t \, dt - \int_0^\infty e^{-x_2 t} (t^{-3}) \sin^3 t \, dt$$

$$= \int_0^\infty (e^{-x_1 t} (t^{-3}) \sin^3 t - e^{-x_2 t} (t^{-3}) \sin^3 t) \, dt$$

$$= \int_0^\infty (e^{-x_1 t} - e^{-x_2 t}) (t^{-3}) \sin^3 t \, dt$$

$$= 0.$$

Hence, f is well-defined.

(b) f(x) is continuous on $[0, \infty)$.

Proof. Let $x_n \to x$. Then, from part a, we know $|e^{-x_n t}(t^{-3})| \le t^{-3}$, so by the dominated convergence theorem,

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \int_0^\infty e^{-x_n t} (t^{-3}) \sin^3 t dt$$

$$= \int_0^\infty \lim_{n \to \infty} e^{-x_n t} (t^{-3}) \sin^3 t dt$$

$$= \int_0^\infty e^{-xt} (t^{-3}) \sin^3 t dt$$

$$= f(x).$$

Thus, f(x) is continuous on $[0, \infty)$.

(7) Suppose that f is a continuous real-valued function of bounded variation on [0,1] and that for each $\epsilon \in (0,1)$, f is absolutely continuous on $[\epsilon,1]$. Must f necessarily be absolutely continuous on [0,1]?

(8) Suppose $f \in L^1[0,1]$ satisfies

$$\int_{E} |f| \le (m(E))^2 \text{ for every measurable set } E \subseteq [0,1].$$

Show that f is a.e. equal to zero. Use Lebesgue differentiation theorem.

- (9) Prove or give a counterexample: every dense open subset of (0,1) has Lebesgue measure 1.
- (10) Let $f \in L^1(\mathbb{R})$ such that f(x) = 0 for $|x| \ge 1$. Prove that f_n defined by $f_n(x) = f\left(x + \frac{1}{n}\right)$ converges to f in $L^1(\mathbb{R})$. Is the condition that $|x| \ge 1$ necessary?