Cloud Programming: Lecture7 – Query Processing on MapReduce

National Tsing-Hua University 2016, Spring Semester

Big Data Analysis

- Peta-scale datasets are everywhere:
 - Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
 - eBay has 6.5 PB of user data + 50 TB/day (5/2009)
 - · ...
- A lot of these datasets are (mostly) structured
 - Query logs
 - Point-of-sale records
 - User data (e.g., demographics)
 - · ...
- How do we perform data analysis at scale?
 - Relational databases and SQL
 - MapReduce (Hadoop)

Outline

- Role of relational databases in today's organizations
 - Where does MapReduce fit in?
- MapReduce algorithms for processing relational data
 - How do I perform a query operations?
- Evolving roles of relational databases and MapReduce
 - What's in store for the future?

Outline

- Role of relational databases in today's organizations
 - Where does MapReduce fit in?
- MapReduce algorithms for processing relational data
 - How do I perform a query operations?
- Evolving roles of relational databases and MapReduce
 - What's in store for the future?

Relational Databases vs. MapReduce

	Relational databases	MapReduce (Hadoop)
Workload		
Goal		
Data access		
Support		
Programmability		
Cost		
Performance		

Database Workloads

- OLTP (online transaction processing)
 - Typical applications: e-commerce, banking, airline reservations
 - User facing: real-time, low latency, highly-concurrent
 - Tasks: relatively small set of "standard" transactional queries
 - Data access pattern: random reads, updates, writes (involving relatively small amounts of data)
- OLAP (online analytical processing)
 - Typical applications: business intelligence, data mining
 - Back-end processing: batch workloads, less concurrency
 - Tasks: complex analytical queries, often ad hoc
 - Data access pattern: table scans, large amounts of data involved per query

One Database or Two?

- Advantage of one database/architecture
 - Only need to maintain and learn a single system & programing model
- Downsides of co-existing OLTP and OLAP workloads
 - Poor memory management
 - Conflicting data access patterns
 - Variable latency
- Solution: separate databases
 - User-facing OLTP database for high-volume transactions
 - Data warehouse for OLAP workloads

OLTP/OLAP Integration

ETL (Extract, Transform, and Load) **OLTP OLAP**

- OLTP database for user-facing transactions
 - Retain records of all activity
 - Periodic ETL (e.g., nightly)
- Extract-Transform-Load (ETL)
 - Extract records from source
 - Transform: clean data, check integrity, aggregate, etc.
 - Load into OLAP database
- OLAP database for data warehousing Big Data
 - Business intelligence:
 - Periodic reporting as well as ad hoc queries
 - Analysts, not programmers (importance of tools and dashboards)
 - Feedback to improve OLTP services

OLTP/OLAP/Hadoop Architecture

Why it make sense?

Outline

- Role of relational databases in today's organizations
 - Where does MapReduce fit in?
- MapReduce algorithms for processing relational data
 - How do I perform a join, etc.?
- Evolving roles of relational databases and MapReduce
 - What's in store for the future?

Relational Algebra

Primitives

- Projection (π)
- Selection (σ)
- Cartesian product (×)
- Set union (\cup)
- Set difference (–)
- Rename (ρ)

Other operations

- Join (⋈)
- Group by... aggregation
- · ...

Projection & Selection

Projection & Section in MapReduce

MapReduce Implementation

- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Columns-based? Row-based? Compression?

Group by... Aggregation

- Example: What is the average time spent per URL?
- In SQL:
 - SELECT url, AVG(time) FROM visits GROUP BY url
- In MapReduce:
 - Map over tuples, emit time, keyed by url
 - Framework automatically groups values by keys
 - Compute average in reducer
 - Optimize with combiners

Relational Joins

Types of Relationships

Why it is hard in MapReduce?

Join Algorithms in MapReduce

- Reduce-side join
- Map-side join
- In-memory join
 - Striped variant
 - Memcached variant

Reduce-side Join

- Basic idea: group by join key
 - Map over both sets of tuples
 - Emit tuple as value with join key as the intermediate key
 - Execution framework brings together tuples sharing the same key
 - Perform actual join in reducer
 - Similar to a "sort-merge join" in database terminology
- Two variants
 - 1-to-1 joins
 - 1-to-many and many-to-many joins

Reduce-side Join: 1-to-1

Map

Reduce

Note: no guarantee if R is going to come first or S

Reduce-side Join: 1-to-many

Map

Reduce

What if R1 is not the first record?

Reduce-side Join: V-to-K Conversion

In reducer...

How to make R1 to be first record?

Reduce-side Join: many-to-many

In reducer...

What are the two critical problems for reduce-side join?

Map-side Join: Parallel Scans

Assume two datasets are sorted by the join key:

A sequential scan through both datasets to join (called a "merge join" in database terminology)

Map-side Join: Parallel Scans

- MapReduce Implementation
 - Map over one dataset, read from the other corresponding partition
 - No reducers necessary (unless to repartition or resort)
- Limitation:

Map-side Join: In-Memory Join

Assume the smaller dataset can fit into memory

Store R in all mapper memory & build a hashmap with the join key, then sequential scan through S (called a "hash join" in database terminology)

Map-side Join: In-Memory Join

- MapReduce implementation
 - Distribute R to all nodes. How?
 - Map over S, each mapper loads R in memory, hashed by join key
 - For every tuple in S, look up join key in R
 - No reducers, unless for regrouping or resorting tuples
- Limitation:

In-Memory Join: Variants

Striped variant:

- R too big to fit into memory?
- **Divide R** into R_1 , R_2 , R_3 , ... s.t. each R_n fits into memory
- Perform in-memory join: $\forall n, R_n \bowtie S$
- Take the union of all join results
- Memcached join:
 - Memcached is a distributed memory cache system, such as REDIS
 - Load R into memcached
 - Replace in-memory hash lookup with memcached lookup

Which join to use?

• Performance?

- Limitations of each?
 - In-memory join:
 - Map-side join:
 - Reduce-side join:

Processing Relational Data: Summary

- MapReduce algorithms for processing relational data:
 - Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 - Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
 - Multiple strategies for relational joins
- Complex operations require multiple MapReduce jobs
 - Example: top ten URLs in terms of average time spent
 - Opportunities for automatic optimization

Outline

- Role of relational databases in today's organizations
 - Where does MapReduce fit in?
- MapReduce algorithms for processing relational data
 - How do I perform a join, etc.?
- Evolving roles of relational databases and MapReduce
 - What's in store for the future?

Need for High-Level Languages

- Hadoop is great for large-data processing!
 - But writing Java programs for everything is verbose and slow
 - Analysts don't want to (or can't) write Java
- Solution: develop higher-level data processing languages
 - Hive: HQL is like SQL
 - Pig: Pig Latin is a bit like Perl

Hive and Pig

- Hive: data warehousing application in Hadoop
 - Query language is HQL, variant of SQL
 - Tables stored on HDFS as flat files
 - Developed by Facebook, now open source
- Pig: large-scale data processing system
 - Scripts are written in Pig Latin, a dataflow language
 - Developed by Yahoo!, now open source
 - Roughly 1/3 of all Yahoo! internal jobs
 - Similar to the role of SCALE for Spark
- Common idea:
 - Provide higher-level language to facilitate large-data processing
 - Higher-level language "compiles down" to Hadoop jobs

Hive: Example

- Hive looks similar to an SQL database
- Relational join on two tables:
 - Table of word counts from Shakespeare collection
 - Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

the	25848	62394		
1	23031	8854		
and	19671	38985		
to	18038	13526		
of	16700	34654		
а	14170	8057		
you	12702	2720		
my	11297	4135		
in	10797	12445		
is	8882	6884		
Natorial duarres franco Olarralana tualisia a V/M				

Source: Material drawn from Cloudera training VM

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

(Abstract Syntax Tree)

 $(TOK_QUERY\ (TOK_FROM\ (TOK_JOIN\ (TOK_TABREF\ shakespeare\ s)\ (TOK_TABREF\ bible\ k)\ (=(.)\ (TOK_TABLE_OR_COL\ s)\ word)\ (.)\ (TOK_TABLE_OR_COL\ k)\ word))))\ (TOK_INSERT\ (TOK_DESTINATION\ (TOK_DIR\ TOK_TMP_FILE))\ (TOK_SELECT\ (TOK_SELEXPR\ (.\ (TOK_TABLE_OR_COL\ s)\ word)))\ (TOK_SELEXPR\ (.\ (TOK_TABLE_OR_COL\ k)\ freq))))\ (TOK_WHERE\ (AND\ (>=(.)\ (TOK_TABLE_OR_COL\ k)\ freq)\ (TOK_TABLE_OR_COL\ s)\ freq)\ (TOK_TABLE_OR_COL\ s)\ freq))))))$

(one or more of MapReduce jobs)

Pig: Example

Task: Find the top 10 most visited pages in each category

Visits

User	Url	Time
Amy	cnn.com	8:00
Amy	bbc.com	10:00
Amy	flickr.com	10:05
Fred	cnn.com	12:00

Url Info

Url	Category	PageRank
cnn.com	News	0.9
bbc.com	News	0.8
flickr.com	Photos	0.7
espn.com	Sports	0.9

Pig Script

```
visits = load '/data/visits' as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);
urlinfo = load '/data/urlinfo' as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;
gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts, 10);
store topUrls into '/data/topUrls';
```

Pig Query Plan

Pig Script in Hadoop

Dataflow Language vs SQL Language

Dataflow language

- Uses lazy evaluation
- Uses extract, transform, load (ETL)
- It is able to store data at any point during a pipeline
- Directed acyclic graph (DAG) rather than a pipeline
- Procedure programming instead of declarative programming
- More control over execution

Reference

- Slides provided from Jimmy Lin @ University of Maryland
- A. Thusoo *et al.*, "Hive a petabyte scale data warehouse using Hadoop," *2010 IEEE 26th International Conference on Data Engineering (ICDE 2010)*, Long Beach, CA, 2010, pp. 996-1005.
- Apache Hive: https://hive.apache.org/
- Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. 2008. Pig latin: a not-soforeign language for data processing. In *Proceedings of the* 2008 ACM SIGMOD international conference on Management of data (SIGMOD '08). ACM, New York, NY, USA, 1099-1110.
- Apache Pig: https://pig.apache.org/