ANSWER 1 OF 1 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN L3 1991-015326 [03] AN WPIX Full-text DNC C1991-006646 Preparation of terminally unsatd. hydrocarbon(s) derivs. - by co-metathesis of TI long chain cpds. with ethylene in presence of catalyst to give medium chain length. DC D22 D25 E17 F06 J01 HAAGE, K; SELENT, D IN (DEAK) AKAD WISSENSCHAFTEN DDR PA CYC PΙ DD----281594 A 19900815 (199103)* ADT DD----281594 A 1988DD-0317686 19880707 PRAI 1988DD-0317686 19880707 B01J-031-34; C07C-006-04 IC AB. 281594 A UPAB: 19930928 Terminally unsatd. hydrocarbons of medium chain length are prepared by cometathesis of long-chain hydrocarbons with internal C=C bonds, with ethylene, at 90-150 deg.C, during up to 3 h, at an ethylene pressure of 4.5-20 MPa, in presence of a catalyst comprising (a) a W(VI) halide, (b) a tetraalkyl-Sn cpd., and (c) an organo-Al cpd. of the type of AlR3, XAlR2, X3Al2R3 or X2AlR. $X = \text{halogen}; R = 1-8C \text{ alkyl}. Pref., components of the catalyst are WC16,}$ (Me) 4Sn and (Et) 3Al or EtAlCl2, in molar ratio of 1:0.9-3.5:0.5-1.2. The ratio of catalyst:raw material is 1:25-50. Reaction time is 0.1-0.5h. USE/ADVANTAGE - The terminally unsatd. hydrocarbons are raw materials for synthesis of surfactants, e.g. for cleaning and disinfecting compsns. for aids in the textile industry, or in processing ores. Fatty acids with internal unsatn., and derivs., e.g. esters and nitriles, can be reacted, and carboxylic acid esters of medium chain length are also prepared Catalyst activity and

selectivity are high. The process is reproducible, can be used on the large scale, and may be continuous. Reaction times are short. No homo-metathesis

prods. are formed. 0/0 FS CPI

FA AB; DCN

MC CPI: D11-D01; E10-J02C2; F01-H06; F03-C; F03-C05; J03-B01; N03-C; N05-A

DEUTSCHE DEMOKRATISCHE REPUBLIK

(12) Ausschließungspatent

Erteilt gemäß § 17 Absatz I Patentgesetz

PATENTSCHRIFT

(19) DD (11) 281 594 A5

5(51) C 07 C 6/04 B 01 J 31/34 B 01 J 31/14

PATENTAMT der DDR

In der vom Anmelder eingereichten Fassung veröffentlicht

(21)	AP C 07 C / 317 686 8	(22)	07.07.88	(44)	15.08.90	
(71) (72)	Akademie der Wissenschaften der DDR, Otto-Nuschke-Straße 22/23, Berlin, 1080, DD Selent, Detlef, Dr. rer. nat.; Haage, Meus, Dr. sc. nat., DD					
(73)	siche (71) ————————————————————————————————————					
(54)	Verfahren zur Herstellung vo	n endständig	ungesättigten Koh	lenwesserstoffen	mittlerer Kettonlänge	

(55) Kometathese; Ethylen: Kohlenwasserstoffe, innenständig, ungesättigt; Wolfram(VI)-halogenid; Tetraalkylzinnverbindung. Alkylaluminiumverbindung; Tensidsynthese

(57) Die Erfindung betrifft die Horstellung von endständig ungesättigten Kohlenwasserstoffen mittlerer Kettenlange durch Kometathese langkettiger Kohlenwasserstoffe mit innenständiger Doppelbindung mit Ethylen, die als Ausgangsstoffe für die Tensidsynthese, zum Beispiel für Reinigungs- und Desinfektionsmittel, oder für Hilfsmittel in der Textilindustrie und der Erzaufbereitung Anwendung finden. Die / Ifgabe, die Kometathesereaktion mit einem einfach zugänglichen Katalysator so durchzuführen, daß eine technisch verwertbare Reaktionsgeschwindigkeit erreicht und eine hohe Selektivität garantiert ist, wird erfindungsgemäß dadurch gelöst, daß die Kometathesereaktion mit einem Katalysator, bestehend aus einem Wolfram(VI)-halogenid, einer Tetraalkylzinnverbindung und einer Alkylaluminiumverbindung des Typs AIR₁, X₃AI₂R₃, XAIR, oder X₂AIR, wobei X ein Halogenatom und R einen Alkylrest der Kettenlänge C₁ bis C₈ darstellt, bei einer Teraperatur von 90 bis 150 °C, einer Reaktionszeit von bis zu 3 Stunden und einem Ethylendruck von 4,5 bis 20 MPa durchgeführt wird.

ISSN 0433-6461

5 Seiten

Patentansprüche:

- 1. Verfahren zur Herstellung von endständig ungesättigten Kohlenwasserstoffen mittlerer Kettenlänge durch Kometathese langkettiger Kohlenwasserstoffe mit innenständiger Doppelbindung mit Ethylen in Gegenwart eines Katalysators, gekennzeichnet dadurch, daß die Kometathesereaktion mit einem Katalysator, bestehend aus einem Wolfram(VI)-halogenid, einer Tetraalkylzinnverbindung und einer organylsubstituierten Aluminiumverbindung des Typs AlR₃, XAIR₂, X₃Al₂R₃ oder X₂AlR, wobei X ein Halogen und R einen n-Alkylrest der Kettenlänge C₁ bis C₈ darstellt, bei Temperaturen von 90–150°C, einer Reaktionszeit von bis zu 3 Stunden und einem Ethylendruck von 4,5 bis 20 MPa durchgeführt wird.
- 2. Verfahren nach Anspruch 1, gekennzeichnet dadurch, das der Katalysator die Bestandteile Wolfram(VI)-halogenid, Tetraalkylzinn und Organo-Aluminiumverbindung in einem Molve hältnis 1:0,9 bis 3,5:0,5 bis 1,2 enthält.
- 3. Verfahren nach Anspruch 1 und 2, gekennzelchnet dadurch, daß der Katalysator vorzugsweis) als Wolfram(VI)-halogenid Wolfram(VI)-chlorid, als Tetraalkylzinnverbindung Tetramethylzinn und els Organo-Aluminiumverbindung Triethylaluminium oder Ethylaluminiumdichlorid enthält.
- 4. Verfahren nach Anspruch 1 bis 3, gekennzelchnet dadurch, daß das Verhältnis von Katalysator zu Ausgangsstoff vorzugsweise 1:25 bis 1:50 beträgt.
- 5. Verfahren nach Anspruch 1 bis 4, gekennzeichnet dadurch, daß die Reaktionszeit vorzugsweise 0,1 bis 0,5 Stunden beträgt.

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Herstellung von endständig ungesättigten Kohlenwasserstoffen mittlerer Kettenlänge durch Kometathese langkettiger Kohlenwasserstoffe mit innenständiger Doppelbindung mit Ethylen, die els Ausgangsstoffe für die Tensidsynthese – zum Beispiel für Reinigungs- und Desinfektionsmittel oder für Hilfsmittel in der Textilindustrie und der Erzaufbereitung – Anwendung finden.

Charakteristik des bekannten Standes der Technik

Erdständig ungesättigte funktionalisierte Kohlenwasserstoffellm mittleren Kettenlängenbereich sind durch Methoden zur Kettenlängenverkürzung von langkettigen olefinischen Kohlenwasserstoffen zugänglich. Ein bekanntes geeignetes Reaktionsprinzip dafür ist die Olefinmetathese. Sie beinhaltet die reversible Spaltung von C=C-Doppelbindungen in Alkylideneinheiten, die statistisch zu neuen Doppelbindungen kombiniert werden. Die Reaktion ist sowohl als Homometathese eines einzelnen Olefins als auch als Kometathese eines Olefingemisches (Reaktionsschema I) durchführbar.

A und B kennzeichnen die Produkte der Kometathese, die Produkte C mit ihren cis/trans-Isomeren entstammen der Homometathese von R₁R₂C – CR₂R₄. Einer Gleichgewichtsreaktion entsprechend, ist die Produktverteilung abhängig von den Ausgangskunzentrationen. Die reaktion muß katalysiert werden, dabei hängt die Wahl des Katalysators und der Reaktionsbedingungen von den Resten R₁... R₄ ab, die Wasserstoff oder Kohlenwasserstoffreste, die auch funktionelle Gruppen enthalten können, darstellen.

Eine ausführliche Beschreibung der Reaktion erfolgt in "Olefin Metathesis", Academic Press, London (1983) und Houben-Weyl, "Methoden der Organischen Chemie", Thieme-Verlag, Stuttgart-New York, Band E 18, Teil 2, S. 1163.

Ein Problem besteht jedoch darin, daß die bei der Metattiese funktionalisierter Olefine bisher erreichbaren Katalysatoraktivitäten um den Faktor 10² bis 10³ geringer sind als die bei der Reaktion von nichtfunktionalisierten Modellkohlenwasserstoffen realisierten und für eine technische Nutzung nicht ausreichen (J. Mol. Catal. 15 [1982] 35).

Für die erfindungsgemäß relevante Kometathese von ungesättigten Fettsäurederivaten mit Ethylen sind gegenwärtig drei Katalysatortypen, die jeweils aus einer übergangsmetallverbindung als Katalysatorvorstufe und einem Kokatalysator bestehen, bekannt. Katalysatortyp A enthalt als Übergangsmetallverbindung ein Wolfram(VI)-halogenid, der Katalysatortyp B trägerfixiertes Rhenium(VII)-oxid und der Katalysatortyp C eine Organylwolframverbindung. Die Katalysatoraktivitäten lassen sich anhand der Umsatzzahlen (UZ) vergleichen:

UZ = mol umgesetztes Fettsäurederivat mol Katalysator - Stunde Als Ausgangsstoff dienen bei den bekannten Verfahren Sojaöl, OleyInitril und vorzugsweise Ölsäuremethylester. Die Hauptparameter der wichtigsten bekannten Verfahren werden in der folgenden Tabelle zusammengefaßt dargestellt.

	C ₂ H ₄ -Druck	Reakttemp.	UZ	Selek- tivität
	(MPa)	(°C)		[%]
Katalysatortyp A				
1. WCl ₄ + Sn(CH ₂) ₄				
 J. Chem. Soc., Chem. Comm. (1981))		•	
1132	5	70	2,6	98
- J. Am. Oil Chem. Soc. 61 (1984) 425	0,2	70	5,7	60
- EPO 130039	2,3 bis 3,83	104	32,7	_
2. WCI ₆ + AI(C ₂ H ₆)CI ₂			•	
– JP 125 317 (1976)	2	60	2,16	_
3. WCI ₄ + AI(CH ₃) ₃ CI ₃			·	
- US-PS 3 9 7 4 1 9 6				
- GB-PS 1 485 197	5	25	0,07	_
Katalysatortyp B		***	····	
1. Re ₂ O ₃ /Al ₂ O ₃ + Sn(CH ₃) ₄				
- J. Am. Chem. Soc., Chem. Comm.				
(1981) 1132	5	25	3,64	98
- J. Am. Oil Chem. Soc. 61 (1984) 425			•,•	
2. Re ₂ O ₂ /Al ₂ O ₂ + Pb(CH ₂) ₄				
- FR 2 521 872	0,1		1,55	50
Katalysatortyp C				
Carbonyl-Carbon-W-Komplex +				
SnCl ₄ + SiCl ₄	0,2	55	0,2	_
- DE-OS 30 45 946	•	**	-,-	

Die Katalysatortypen sind folgendermaßen zu bewerten:

Katalysatortyp A ist billig, leicht formierbar und erreicht bei einer Reaktionstemperatur von 70°C zwar eine hohe Selektivität, zeigt – wie aus den Umsatzzahlen ersichtlich – aber nur geringe Aktivität.

Die Temperaturerhöhung auf 104°C ermöglicht bei Einholtung eines Ethylendruckes von 2–3 MPa eine erhebliche Aktivitätssteigerung, wobei jedoch gleichzeitig Nebenreaktionen wie

Doppelbindungsisomerisierung und die Metathese der Isomerisierungsprodukte katalysiert werden, so daß eine verstärkte Nebenproduktbildung und das Sinken der Ausbeute zu verzeichnen sind (J. Jap. Oil Chem. Soc. [Yukagaku] 25 [1976] 779).

Ein weiterer Nachteil dieses Katalysatortyps besteht darin, daß bei den angewendeten Ethylendrücken auch jeweils die unerwünschten Homometatheseprodukte gebildet werden. So entstehen bei einem Ethylendruck von 0,2 MPa 40% und bei 5 MPa 2% Homometatheseprodukt.

Beim Einsatz von Organylaluminiumhalogeniden anstelle der Tetraalkylzinnverhindungen als Kokatalysator liegen die maximale Produktausbeuten bei nur 5 bis 18% und die Umsatzzahlen sind ebenfalls gering.

Katalysatortyp B zeichnet sich zwar durch günstige Reaktionsbedingungen wie niedrige Temperatur und leichte Abtrerinbarkeit i aus und ist begrenzt regenerierbar. Die Aktivität ist jedoch nicht höher als beim Katalysatortyp A, so daß der hohe Katalysatorpreis als Nachteil gesehen werden muß.

Katalysatortyp C ist nur durch eine mehrstufige Synthese unter Luftausschluß zugänglich und zeigt außerdem eine sehr geringe Aktivität.

Ziel der Erfindung

Die Erfindung hat ein Verfahren zur Herstellung von endständig ungesättigten Kohlenwasserstoffen und Carbonsäureestern mittlerer Kettenlänge durch Kometathese von langkettigen natürlichen und synthetischen Kohlenwasserstoffen mit innenständiger Doppelbindung mit Ethylen zum Ziel, das eine wesentlich höhere Katalysatoraktivität aufweist und für die Anwendung im technischen Maßstab geeignet ist.

Darlegung des Wesens der Erfindung

Die Aufgabe der Erfindung besteht darin, die Kometathesereaktion mit einem einfach zugänglichen Katalysator so durchzuführen, daß eine technisch verwertbare Reaktionsgeschwindigkeit erreicht und eine hohe Selektivität garantiert wird. Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Kometathesereaktion mit einem Katalysator, bestehend aus einem Wolfram(VI)-halogenid, einer Tetraalkylzinriverbindung und einer Alkyaluminiumverbindung des Typs AIR₃, X₃Ai₃R₃, XAIR₃ oder X₂AIR, wobei X ein Halogenatom und R einen Alkylrest der Kettenlänge C₁ bis C₃ darstellt, bei einer Temperatur von 90 -150°C, einer Reaktionszeit von bis zu 3 Stunden und einem Ethylendruck von 4,5 bis 20 MPa durchgeführt wird.

Der erfindungsgemäße Katalysator enthält das Wolfram(VI)-halogenid, die Tetraalklyzinnverbindung und die Alkylaluminiumverbindung bevorzugt in einem Verhältnis von 1:0,9 bis 3,5:0,6 bis 1,2 und ist durch Mischen der in einem organischen Lösungsmittel gelösten Komponenten leicht formierbar. Ein geeignetes organisches Lösungsmittel ist beispi alsweise Chlorbenzen. Es können aber auch andere halogensubstituierte aromatische und aliphatische Kohlenwasserstoffe wie 1,2-Dichlorbenzen und CH₂Cl₂ oder gesättigte Aliphaten wie n-Hexan eingesetzt werden. Von den Wolfram(VI)-halogeniden eignet sic!, besonders das Wolfram(VI)-chlorid als Katalysatorbestandteil.

Geeignete Fetraalkylzinnverbindungen sind das Tetramethylzinn und das Tetra-n-butylzinn.

Als Alumir jumverbindungen werden Triethylaluminium und Ethylaluminiumchlorid bevorzugt.

Ausschlaggebond für die Erfüllung der Aufgabe ist die Anwendung einer geeigneten, im Vergleich zum Stand der Technik erhöhten Reaktionstemperatur, die eine hohe Katalysatoraktivität sichert.

Durch den Zusatz der Alkylaluminiumverbindung wird eine bei dieser Temperatur hohe Selektivität gesichert.

Die hohe Katalysatoraktivität, verbunden mit hoher Selektivität, macht die Anwendung sehr kurzer Reaktionszeiten möglich, was sich in den im Vergleich zur Literatur wesentlich erhöhten Umsatzzahlen ausdrückt.

Für das erfindungsgemäße Verfahren sind so wohl synthetische als auch natürliche langkettige Kohlenwasserstoffe mit innenständiger Doppelbindung, die auch funktionelle Gruppen enthalten können, als Ausgangsstoffe geeignet. Weiterhin sind die in Planzenölen vorkommenden innenständig einfach ungesättigten Fettsäuren und derivate – zum Beispiel ihre Ester und Nitrile –, aber auch mehrfach isoliert ungesättigte Fettsäurederivate wie Linolsäureester und Ester, die die Doppelbindung im Alkoholrest enthalten, wie das Oleylacetat, als Ausgangsstoffe einsetzbar. Auch aus den bedeutendsten der in den einheimischen Pflanzenölen enthaltenen Fettsäuren, der Öl- und der Linolsäure mit jeweils 18 und der Erucasäure mit 22 Kohlenstoffatomen in der Kette, sind nach dem erfindungsgemäßen Verfahren die endständig ungesättigten Kohlenwasserstoffe im mittleren Kettenlängenbereich von 10 bis 15 Kohlenstoffatomen, die ein Eigenschaftsoptimum für viele Tensidanwendungen aufweisen, mit hoher Ausbeute und Selektivität herstellbar.

Das erfindungsgemäße Verfahren zeichnet sich durch sehr kurze Reaktionszeiten aus.

Der Einstellung eines definierten Ethyklendruckes oberhalb von 4,5 MPa muß keine besondere Aufmerksamkeit gewidmet werden, wodurch sich die Reaktionsführung vereinfacht.

Im anzuwendenden Druckbereich treten keine Homometatheseprodukte auf.

Die wesentlich gegenüber den bekannten Verfahren gestelgerte Katalysatoraktivität und die gute Reproduzierbarkeit des erfindungsgemäßen Verfahrens ermöglichen eine kontinuierliche Reaktionsführung.

Ausführungsbeispiele

Bolspiol 1

Unter aneroben Bedingungen werden die folgenden Volumina von Lösungen der Katalysatorkomponenten in Chlorbenzen und das Substrat gemischt: Wolfram(VI)-chlorid, 1 ml 0,1 m Lösung = 0,1 mmol; Tetramethylzinn, 1 ml 0,1 m Lösung = 0,1 mmol; Triethylaluminium, 1 ml 0,1 m Lösung = 0,1 mmol; Erucasäuremethylester, 2,14 ml = 5,2 mmol.

Diese Mengen entsprechen einem Katalysator/Esterverhältnis von 1:52.

Abschließend erfolgt die Zugabe von 0,5 ml = 0,379 g n-Hexadecan als Standard für die gaschromatographische Analyse. Die Reaktionslösung wird in einem Autoklaven eingebracht, Ethylen aufgepreßt, auf 140°C geheizt und 3 Stunden bei dieser Temperatur gehalten. Bei einem Anfangsdruck von 7,0 MPa Ethylen stellt sich bei Reaktionstemperatur ein Druck von etwa 14 MPa ein.

Nach Entnahme aus dem Autoklaven wird das Reaktionsgemisch sofort mit 1 ml konzentrierter wäßriger Ammoniaklösung versetzt und 10 min stark geschüttelt. Die organische Phase wird abgetrennt, mit Magnesiumsulfat getrocknet und gaschromatographisch analysiert.

Die Berechnung des Gehaltes an gebildetem Dec-1-en und an nicht reagiertem Erucasäuremethylester erfolgt unter Zuhilfenahnse von Korrekturfaktoren, die mit Testgemischen ermittelt wurden.

Die Tabelle zeigt den Vergleich zwischen dem erfindungsgemäßen Katalysator und dem bekannten Wolfram/Zinn-Katalysator ohne Triethylaluminiumzusatz.

	erfindungsgemäßer Katalysator	bekannter Katalysator
	WCI ₆ + 1,7 Sn(CH ₃), + Al(C ₂ H ₅),	WCI ₆ + 1,7 Sn(CH ₃) ₄
Ausbeute	36°•	25 ³%
Selektivitat	75°•	50%

BEST AVAILABLE COPY

Beispiel 2

Die Versuche wurden durchgeführt mit den doppelten Volumina der Katalysatorkomponenten, entsprechend einem Verhältnis Katalysator/Ester = 1:28 und ansonsten im Vergleich zum Beispiel 1 identischen Bedingungen.

	erfindungsgemäßer Katalysator	bekannter Ketalysator
Ausbaute	47 %	40%
Selektivität	67 %	54%

Beispiel 3

Die Versuche wurden durchgeführt wie im Beispiel 2. Sie zeigten die Eignung und den Vorteil des erfindungsgemäßen Katalysatorsystems bei Anwendung verkürzter Reaktionszeiten, wodurch hohe Umsatzzahlen erreicht werden und im Vergleich zu Rt = 3h ein weiterer Selektivitätsanstieg zu verzeichnen ist.

		44 . 4		ekannter Katalysator	
Zeit (min)	30	15	5	30	
Ausbeute (%)	70	70	68	45	
Selektivität (%)	86	86	83	60	
UΖ	40,7	81,4	238	37.5*	

^{*}Die Angabe einer Umsatzzahl ist nur bei einer selektiven Reaktion einnvoll.

Beispiel 4

Die Versuche wurden durchgeführt wie im Beispiel 2 unter Variation des Ethylendruckes.

рс _{эн} (MPa)	Ausbeute (%)	Selektivität (%)
5	72	86
10,2	70	83
19	70	86

Beispiel 5

Die Versuche wurden durchgeführt wie im Beispiel 2 bei Variation der Reaktionstemperatur.

T (°C)	Ausbeute (%)	Selektivität (%)
100	65	69
120	64	83
150	71	82

Beispiel 6

Die Versuche werden durchgeführt wie im Beispiel 2. Als Organoaluminiumverbindung wird Ethylaluminiumdichlorid eingesetzt. Es wird eine Ausbeute von 85% und eine Selektivität von 90% ermittelt.

BEST AVAILABLE COPY