WHAT IS CLAIMED IS:

1	 A photoresist copolymer derived from a mixture of monomers
2	comprising:
3	(a) two or more alicyclic olefin derivatives of the formula:
4	<chemical 4="" formula=""></chemical>
	R ₆
5	$R_1 = \begin{pmatrix} 1 & R_4 \\ R_2 & R_3 \end{pmatrix}$
6	wherein
7	k and n is independently 1 or 2;
8	p is an integer from 0 to 5;
9	R ₅ and R ₆ are independently hydrogen or methyl; and
10	R ₁ , R ₂ , R ₃ , and R ₄ individually represent hydrogen, straight or branched
11	C_{1-10} alkyl, straight or branched C_{1-10} ester, straight or branched C_{1-10} ketone, straight or
12	branched C_{1-10} carboxylic acid, straight or branched C_{1-10} acetal, straight or branched C_{1-10}
13	alkyl including at least one hydroxyl group, straight or branched C ₁₋₁₀ ester including at
14	least one hydroxyl group, straight or branched C ₁₋₁₀ ketone including at least one hydroxyl
15	group, straight or branched C ₁₋₁₀ carboxylic acid including at least one hydroxyl group,
16	and straight or branched C_{1-10} acetal including at least one hydroxyl group,
17	wherein, at least one of R ₁ , R ₂ , R ₃ , and R ₄ represent straight or branched
18	C_{1-10} alkyl including at least one hydroxyl group, straight or branched C_{1-10} ester including
19	at least one hydroxyl group, straight or branched C_{1-10} ketone including at least one
20	hydroxyl group, straight or branched C ₁₋₁₀ carboxylic group including at least one
21	hydroxyl group, straight or branched C ₁₋₁₀ acetal including at least one hydroxyl group;
22	and
23	(b) a cross-linking monomer of the formula:
	R' CO O O O O O O O O O O O O O O O O O O
24	p•

25 wherein

- each of R' and R" is independently hydrogen or methyl;
- 27 m is an integer from 1 to 10; and
- 28 R is straight or branched C₁₋₁₀ alkyl, optionally comprising an ester, a
- 29 ketone, a carboxylic acid, an acetal, a hydroxyl group or a combination thereof.
 - 1 2. The photoresist copolymer according to claim 1, wherein said
 - 2 mixture of monomers further comprises maleic anhydride.
 - 1 3. The photoresist copolymer according to claim 1 of the formula:
 - 2 < Chemical Formula 5>

3

- 4 wherein
- 5 k, m, n, p, R, R₁, R₂, R₃, R₄, R₅, R₆, R', and R" are those defined in Claim 1; and the ratio
- 6 a:b:c is 1-50 mol%: 10-50 mol%: 0.1-20 mol%.
- 1 4. The photoresist polymer according to claim 3 comprising
- 2 poly(maleic anhydride / 2-hydroxyethyl 5-norbornene-2-carboxylate / tert-butyl 5-
- 3 norbornene-2-carboxylate / 5-norbornene-2-carboxylic acid / 1,3-butanediol diacrylate);
- 4 or poly(maleic anhydride / 2-hydroxyethyl 5-norbornene-2-carboxylate / tert-butyl 5-
- 5 norbornene-2-carboxylate / 5-norbornene-2-carboxylic acid / 1,4-butanediol diacrylate).
- 1 5. A process for preparing a photoresist copolymer comprising
- 2 admixing at least two alicyclic monomers, a cross-linking monomer and a polymerization
- 3 initiator under polymerization reaction conditions sufficient to produce the photoresist
- 4 copolymer, wherein the alicyclic monomer is of the formula:

5

wherein

6

16

17

18 19

20

2122

7 k and n is independently 1 or 2;

p is an integer from 0 to 5;

9 R₅ and R₆ are independently hydrogen or methyl; and

R₁, R₂, R₃, and R₄ individually represent hydrogen, straight or branched

C₁₋₁₀ alkyl, straight or branched C₁₋₁₀ ester, straight or branched C₁₋₁₀ ketone, straight or

branched C₁₋₁₀ carboxylic acid, straight or branched C₁₋₁₀ acetal, straight or branched C₁₋₁₀

alkyl including at least one hydroxyl group, straight or branched C₁₋₁₀ ester including at

least one hydroxyl group, straight or branched C₁₋₁₀ ketone including at least one hydroxyl

group, straight or branched C₁₋₁₀ carboxylic acid including at least one hydroxyl group,

and straight or branched C₁₋₁₀ acetal including at least one hydroxyl group,

wherein, at least one of R_1 , R_2 , R_3 , and R_4 represent straight or branched C_{1-10} alkyl including at least one hydroxyl group, straight or branched C_{1-10} ketone including at least one hydroxyl group, straight or branched C_{1-10} ketone including at least one hydroxyl group, straight or branched C_{1-10} carboxylic group including at least one hydroxyl group, straight or branched C_{1-10} acetal including at least one hydroxyl group; and the cross-linking monomer is of the formula:

2324

28

wherein

each of R' and R" is independently hydrogen or methyl;

26 m is an integer from 1 to 10; and

27 R is straight or branched C₁₋₁₀ alkyl, optionally comprising an ester, a

ketone, a carboxylic acid, an acetal, a hydroxyl group or a combination thereof.

1	6. The process for preparing a photoresist copolymer according to
2	claim 5, wherein the polymerization reaction is carried out under an atmosphere of
3	nitrogen or argon.
1	7. The process for preparing a photoresist copolymer according to
2	claim 5, wherein the polymerization reaction is carried out at a temperature between 60°C
3	and 130°C.
1	8. The process for preparing a photoresist copolymer according to
2	claim 5, wherein the polymerization reaction is carried out under the pressure between
3	0.0001 and 5 atm.
	9. The process for preparing a photoresist copolymer according to
1	
2	claim 5, wherein the admixture further comprises an organic solvent selected from the
3	group consisting of cyclohexanone, methyl ethyl ketone, benzene, toluene, dioxane,
4	tetrahydrofuran, propylene glycol methyl ether acetate, dimethylformamide, and a
5	mixture thereof.
1	10. The process for preparing a photoresist copolymer according to
2	claim 5, wherein the polymerization initiator is one or more compound(s) selected from
3	the group consisting of 2,2-azobisisobutyronitrile (AIBN), acetyl peroxide, lauryl
4	peroxide, tert-butyl peracetate, tert-butyl hydroperacetate and tert-butyl peroxide.
·	
1	11. The photoresist composition comprising (i) a photoresist
2	copolymer according to claim 1, and (ii) an organic solvent.
1	12. The photoresist composition according to claim 11, which further
2	comprises a photoacid generator.
2	comprises a photoacia generator.
1	13. The photoresist composition according to claim 12, wherein the
2	photoacid generator is one or more compound(s) selected from the group consisting of
3	diphenyl iodide hexafluorophosphate, diphenyl iodide hexafluoroarsenate, diphenyl
4	iodide hexafluoroantimonate, diphenyl p-methoxyphenyl triflate, diphenyl p-toluenyl
5	triflate, diphenyl p-isobutylphenyl triflate, diphenyl p-tert-butylphenyl triflate,
6	triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroarsenate,

8 dibutylnaphtylsulfonium triflate. 1 14. A process for forming a photoresist pattern, which comprises the steps of (a) coating a photoresist composition according to claim 11 on a wafer, (b) 2 3 exposing the wafer to patterned light by employing an exposer, and (c) developing the 4 exposed wafer. 1 15. The process for forming a photoresist pattern according to claim 2 14, wherein the step (b)is carried out by using a light source selected from the group 3 consisting of ArF, KrF, E-beam, X-ray, EUV (extremely ultraviolet) and DUV (deep 4 ultraviolet). 1 16. The process according to claim 15, which further comprises baking 2 step(s) before and/or after step (b). 1 17. The process according to claim 16, wherein the baking step(s) are 2 performed at a temperature of 50°C to 200°C. 1 18. The process according to claim 14, wherein the developing step (c) is carried out using an aqueous solution of TMAH (tetramethylamine hydroxide). 2 1

A semiconductor element manufactured by using a process

19.

according to claim 14.

triphenylsulfonium hexafluoroantimonate, triphenylsulfonium triflate, and

7

2