Statistics of collocations

Serge Sharoff

Centre for Translation Studies University of Leeds

s.sharoff@leeds.ac.uk

Outline

- Collocations
 - Definitions
 - Methods for counting
- 2 Statistical measures
 - Notions of probability
 - Statistics of surprise
- Implications of collocations
 - Collocations in a window
 - Word sketches

• 'Collocations of a given word are statements of the habitual or customary places of that word' (Firth, 1957) 'you shall know a word by the company it keeps'

- 'Collocations of a given word are statements of the habitual or customary places of that word' (Firth, 1957)
 'you shall know a word by the company it keeps'
- collocations constructions; collocates words in collocations,

- 'Collocations of a given word are statements of the habitual or customary places of that word' (Firth, 1957)
 'you shall know a word by the company it keeps'
- collocations constructions; collocates words in collocations,
- Non-compositionality: strong vs. powerful: tea or car released from prison vs discharged from hospital full knee replacement vs total knee replacement

- 'Collocations of a given word are statements of the habitual or customary places of that word' (Firth, 1957)
 'you shall know a word by the company it keeps'
- collocations constructions; collocates words in collocations,
- Non-compositionality: strong vs. powerful: tea or car released from prison vs discharged from hospital full knee replacement vs total knee replacement

- 'Collocations of a given word are statements of the habitual or customary places of that word' (Firth, 1957)
 'you shall know a word by the company it keeps'
- collocations constructions; collocates words in collocations,
- Non-compositionality: strong vs. powerful: tea or car released from prison vs discharged from hospital full knee replacement vs total knee replacement

Examples of collocations

• Terms: stiff breeze, weapons of mass destruction

- 'Collocations of a given word are statements of the habitual or customary places of that word' (Firth, 1957)
 'you shall know a word by the company it keeps'
- collocations constructions; collocates words in collocations,
- Non-compositionality: strong vs. powerful: tea or car released from prison vs discharged from hospital full knee replacement vs total knee replacement

- Terms: stiff breeze, weapons of mass destruction
- Phrasal verbs: get off, tell off, look up, make up

- 'Collocations of a given word are statements of the habitual or customary places of that word' (Firth, 1957)
 'you shall know a word by the company it keeps'
- collocations constructions; collocates words in collocations,
- Non-compositionality: strong vs. powerful: tea or car released from prison vs discharged from hospital full knee replacement vs total knee replacement

- Terms: stiff breeze, weapons of mass destruction
- Phrasal verbs: get off, tell off, look up, make up
- Support verb constuctions: take a shower, make sense,

- 'Collocations of a given word are statements of the habitual or customary places of that word' (Firth, 1957)
 'you shall know a word by the company it keeps'
- collocations constructions; collocates words in collocations,
- Non-compositionality: strong vs. powerful: tea or car released from prison vs discharged from hospital full knee replacement vs total knee replacement

- Terms: stiff breeze, weapons of mass destruction
- Phrasal verbs: get off, tell off, look up, make up
- Support verb constuctions: take a shower, make sense,
- Stock phrases: the rich and powerful, by and large

Methods for counting

• N-grams: sequences of N words (bi-, trigram)

Methods for counting

- N-grams: sequences of N words (bi-, trigram)
- to be or not to be unigrams \rightarrow to, be (2), or, not (1) bigrams \rightarrow to be (2); be or (1); or not (1); not to (1) trigrams \rightarrow to be or (1); be or not (1); or not to (1)

Methods for counting

- N-grams: sequences of N words (bi-, trigram)
- to be or not to be unigrams \rightarrow to, be (2), or, not (1) bigrams \rightarrow to be (2); be or (1); or not (1); not to (1) trigrams \rightarrow to be or (1); be or not (1); or not to (1)
- Skip-grams: pairs in a window of N words:
 W2: to be (2); to or; be or; be not

Counting bigrams

Bigrams		Trigrams		
of the	7211.67	i do not	522.24	
in the	5167.19	there be a	401.55	
it be	4050.64	it be a	372.39	
to the	2617.17	one of the	356.03	
be a	2366.99	it be not	348.88	
do not	2230.41	there be no	292.65	
on the	2181.97	be able to	241.46	
have be	2151.05	do not know	232.90	
there be	2017.23	the end of	213.57	

Counting bigrams

Bigr	ams	Trigrams	
of the	7211.67	i do not	522.24
in the	5167.19	there be a	401.55
it be	4050.64	it be a	372.39
to the	2617.17	one of the	356.03
be a	2366.99	it be not	348.88
do not	2230.41	there be no	292.65
on the	2181.97	be able to	241.46
have be	2151.05	do not know	232.90
there be	2017.23	the end of	213.57

last year	107.22
prime minister	97.18
last night	84.95
first time	83.27
other hand	56.12
last week	51.27
other people	42.01
next year	40.35
soviet union	38.95
young man	38.29

- - Definitions
 - Methods for counting
- Statistical measures
 - Notions of probability
 - Statistics of surprise
- - Collocations in a window
 - Word sketches

Statistics of surprise

• Null hypothesis: words are distributed at random

Statistics of surprise

- Null hypothesis: words are distributed at random
- F_i number of occurrences of word_i

Statistics of surprise

- Null hypothesis: words are distributed at random
- F_i number of occurrences of word_i
- F_{ij} number of joint occurrences of the two words (i and j)

- Null hypothesis: words are distributed at random
- F_i number of occurrences of word_i
- \bullet F_{ij} number of joint occurrences of the two words (i and j)
- N corpus size

- Null hypothesis: words are distributed at random
- F_i number of occurrences of word_i
- F_{ij} number of joint occurrences of the two words (i and j)
- N corpus size
- ullet O_{ij} observed probability, E_{ij} expected probability,

- Null hypothesis: words are distributed at random
- F_i number of occurrences of word_i
- F_{ij} number of joint occurrences of the two words (i and j)
- N corpus size
- ullet O_{ij} observed probability, E_{ij} expected probability,
- $O_{ij} = \frac{F_{ij}}{N}$ observed probability,

- Null hypothesis: words are distributed at random
- F_i number of occurrences of word_i
- ullet F_{ij} number of joint occurrences of the two words (i and j)
- N corpus size
- ullet O_{ij} observed probability, E_{ij} expected probability,
- $O_{ij} = \frac{F_{ij}}{N}$ observed probability,
- $E_{ij} = \frac{F_i}{N} \times \frac{F_j}{N}$ expected probability,

- Null hypothesis: words are distributed at random
- F_i number of occurrences of word_i
- ullet F_{ij} number of joint occurrences of the two words (i and j)
- N corpus size
- ullet O_{ij} observed probability, E_{ij} expected probability,
- $O_{ij} = \frac{F_{ij}}{N}$ observed probability,
- $E_{ij} = \frac{F_i}{N} \times \frac{F_j}{N}$ expected probability,

	1	2	3	4	5	6
1			·	х	•	
2				•		
3				•		
4				•		
5				•		
6			٠	•	•	

The space of events (S) What is our event space?

- The space of events (S) What is our event space?
- p(x|partial knowledge)

tation for the probabilities

- The space of events (S) What is our event space?
- p(x|partial knowledge)
- Conditional independence:
 Knowing about X doesn't tell me about Y

- tation for the probabilities
 - The space of events (S) What is our event space?
 - p(x|partial knowledge)
 - Conditional independence:

Knowing about X doesn't tell me about Y

$$p(Y|X) = p(Y)$$

$$p(X|Y) = p(X)$$

Notation for the probabilities

- The space of events (S) What is our event space?
- p(x|partial knowledge)
- Conditional independence:

Knowing about X doesn't tell me about Y

$$p(Y|X) = p(Y)$$
$$p(X|Y) = p(X)$$

Conditional probability

$$p(X|Y) = \frac{p(X\&Y)}{p(Y)}$$

Notation for the probabilities

- The space of events (S) What is our event space?
- p(x|partial knowledge)
- Conditional independence:

Knowing about X doesn't tell me about Y

$$p(Y|X) = p(Y)$$
$$p(X|Y) = p(X)$$

Conditional probability

$$p(X|Y) = \frac{p(X\&Y)}{p(Y)}$$

... the house ... the blue house ... the flower ...

$$p(house|maison) = 0.476$$

 $p(home|maison) = 0.104$
 $p(parent|maison) = 0.077$

 $-(f_1, \dots, f_{l-1}, \dots) \qquad 0.020$

Measures of collocations

- ullet $O_{ij} = rac{F_{ij}}{N}$ observed probability,
- $E_{ij} = \frac{F_i}{N} \times \frac{F_j}{N}$ expected probability,
- $MI_{ij} = \log\left(rac{O_{ij}}{E_{ij}}
 ight)$ Mutual Information score,
- $Dice_{ij} = 2 \times \frac{O_{ij}}{E_i + E_j}$ Dice score,
- $T_{ij} = \frac{O_{ij} E_{ij}}{\sqrt{O_{ij}}}$ T-score
- Log-likelihood (LL) score from contingency table

	word2	\neg word2
word1	F_{ij}	$F_i - F_{ij}$
\neg word 1	$F_j - F_{ij}$	$N-F_{ij}$

$$loglike = 2(a \ln(\frac{F_i}{E_1}) + b \ln(\frac{F_j}{E_2})); E1 = c \frac{a+b}{c+d}; E2 = d \frac{a+b}{c+d}$$

Examples of predictions

- new company, $F_{ii} = 358, F_i = 105,645, F_i = 57,118, N = 100,000,000$
- private company, $F_{ij} = 423, F_i = 16,357, F_j = 57,118, N = 100,000,000$
- post office,

$$F_{ij} = 1,425, F_i = 10,871, F_j = 29,132, N = 100,000,000$$

•		,			
	MI score	Dice	T-score	LL-score	
new company	6.19	2.82	15.97	761.32	
private company	5.74	7.61	20.18	2,548.55	
post office	8.59	9.44	25.11	6,354.51	

Outline

- Collocations
 - Definitions
 - Methods for counting
- Statistical measures
 - Notions of probability
 - Statistics of surprise
- 3 Implications of collocations
 - Collocations in a window
 - Word sketches

Multiword terminology
 Multiterm Extract

- Multiword terminology
 Multiterm Extract
- One sense per collocation hypothesis take kindly

- Multiword terminology
 Multiterm Extract
- One sense per collocation hypothesis take kindly
- Queries for collocations: strong N.*

- Multiword terminology
 Multiterm Extract
- One sense per collocation hypothesis take kindly
- Queries for collocations: strong N.*

Right window of 3: to offer N.*

- Multiword terminology
 Multiterm Extract
- One sense per collocation hypothesis take kindly
- Queries for collocations: strong N.* Right window of 3: to offer N.*
- Collocations for other languages den Vorteil eines persönlichen Kontaktes über die Stimme bietet.
 - offer the advantage

- Word sketches in http://the.sketchengine.co.uk/
- Fixed set of queries for Intellitext:
 Modifiers: ADV .. V.*
 Objects: V.* .. N.* or N.* to be VVN
- Sketches for other languages bieten

- Collocations and collocates
- Statistics for measuring surprise
- Human judgment vs. computer model

For the seminar

Study collocation properties for words in your projects Use their immediate left/right contexts and spans; Try filtering collocates by their POS tags Use word sketches

For further classes

Please either install Python and Jupyter Lab on your own laptop: https://jupyter.org/install or make sure you have access to Google Drive and Google Colab: https://colab.research.google.com/

