Aprendizado de Máquina e Redes Neurais para Reconhecimento de Entidades Nomeadas em Portarias Jurídicas via Processamento de Linguagem Natural

Davi Esmeraldo da Silva Albuquerque

Orientador: Eduardo Monteiro de Castro

24 de janeiro de 2025

Sumário

- Introdução
- Objetivo Geral
 - Objetivos Específicos
 - Impactos Esperados
- 3 Metodologia
 - Coleta de Dados
 - Word Embeddings
 - Word2Vec
 - Aprendizado Não Supervisionado
 - Reconhecimento de Entidades Nomeadas (REN)
 - Redes Neurais Recorrentes Bidirecionais (BiLSTM)
- 4 Cronograma
- 5 Referências

Definição

Processamento de Linguagem Natural (PLN) é uma área da Inteligência Artificial (IA) que busca desenvolver métodos e sistemas capazes de processar (interpretar, compreender e gerar) linguagem humana de forma computacional.(CASELI; NUNES, 2024)

Definição

Entidades Nomeadas são palavras ou frases que representam elementos específicos e bem definidos em um texto.

- Exemplos incluem:
 - Pessoas: Albert Einstein, Ada Lovelace
 - Locais: Brasília, Monte Everest
 - Organizações: ONU, Google
 - Datas e Horários: 22 de janeiro de 2025, 15h30

Definição

Reconhecimento de Entidades Nomeadas (NER - Named Entity Recognition) é uma tarefa de PLN que visa identificar e classificar automaticamente Entidades Nomeadas.

- Aplicações incluem:
 - Extração de informações de notícias e documentos.
 - Melhoria em sistemas de busca.
 - Mineração de opiniões.
 - Análise de currículos.

Instituições jurídicas geram uma quantidade significativa de documentos oficiais.

Quantidade de Portarias do GPR por Ano

Objetivo Geral

O objetivo deste trabalho é comparar modelos de aprendizado de máquina e redes neurais para realizar as tarefas de agrupamento (clusterização) e Reconhecimento de Entidades Nomeadas (REN) em portarias de 2024 do Gabinete da Presidência do Tribunal de Justiça do Distrito Federal e Territórios (TJDFT).

Objetivos Específicos

- Aplicar e estudar diferentes formas de representar dados textuais em formato vetorial numérico.
- Agrupar portarias jurídicas com base em temáticas similares de modo a organizá-las de forma lógica e eficiente.
- Extrair categorias-chave dos agrupamentos de portarias, como nomes, datas e legislações mencionadas e resolução.

Impactos Esperados

- Organizar e analisar portarias jurídicas com maior eficiência.
- Promover transparência do fluxo de trabalho realizado .
- Promover inovação, impulsionando o uso de IA no setor público.

Metodologia - Coleta de Dados

- Webscraping no website do TJDFT
 Raspagem de dados automatizada para extrair os conteúdos das portarias disponíveis no site do Tribunal de Justiça do Distrito Federal e Territórios.
- Expressões Regulares (Regex)
 Conjunto de padrões usados para localizar, extrair ou manipular a seleção de texto de forma eficiente

Metodologia - Pré-processamento

Importância

O pré-processamento de dados textuais é essencial para o sucesso de técnicas de inteligência artificial ao viabilizar a comunicação entre humano e máquina. (OLIVEIRA; NASCIMENTO, 2021).

- Objetivos do Pré-processamento
 - Transformar dados brutos em um formato limpo e estruturado.
 - Reduzir a dimensionalidade dos dados para otimizar o desempenho computacional.
 - Facilitar análises computacionais e estatísticas.

Metodologia - Word Embeddings

Definição

Representação de dados textuais em formas numéricas que algoritmos podem processar como vetores ou matrizes de números. (FREITAS, 2023)

Word Embeddings preservam relações semânticas e sintáticas entre palavras, capturando suas similaridades de maneira eficiente.

Metodologia - Word2Vec

Word2Vec, desenvolvido por (MIKOLOV et al., 2013), oferece duas arquiteturas principais para a modelagem de palavras: o **Continuous Bag of Words (CBOW)** e o **Skip-gram**.

O CBOW prevê uma palavra com base no contexto de palavras vizinhas, utilizando a seguinte fórmula:

$$P(w_t \mid w_{t-c}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+c})$$
 (1)

Por outro lado, o *Skip-gram* prevê o contexto de uma palavra dada a palavra central, representado pela equação:

$$P(w_{t-c},\ldots,w_{t+c}\mid w_t) \tag{2}$$

Metodologia - Word Embeddings

Metodologia - Aprendizado Não Supervisionado

Definição

O aprendizado de máquina não supervisionado é uma técnica em que o modelo trabalha com dados sem rótulos (labels), buscando identificar padrões ou estruturas ocultas. Os principais métodos incluem agrupamento e redução de dimensionalidade.

Metodologia - Aprendizado Não Supervisionado

- Kmeans Clusters definidos pelo centróide.
- **DBSCAN** Clusters definidos com base em densidade
- t-SNE: Técnica de redução de dimensionalidade para visualização de dados

Metodologia - Reconhecimento de Entidades Nomeadas

Metodologia - Reconhecimento de Entidades Nomeadas

Desafios:

- Heterogeneidade da linguagem jurídica
- A predominância de corpora voltados à língua inglesa

Metodologia - Redes Neurais Recorrentes Bidirecionais

Definição

As Redes Neurais Recorrentes Bidirecionais (*BiLSTM*) são projetadas para processar sequências de dados em ambas as direções, capturando informações contextuais tanto do passado quanto do futuro (COSTA, 2023).

- No BiLSTM, duas redes LSTM independentes são treinadas:
 - A LSTM direta $(\overrightarrow{h_t})$, que processa a sequência do início para o fim.
 - lacksquare A LSTM reversa $(\overline{h_t})$, que processa a sequência na direção oposta.
 - A saída do BiLSTM para cada posição *t* é dada pela concatenação dos estados ocultos das duas direções:

$$h_t = \overrightarrow{h_t} \oplus \overleftarrow{h_t}$$

Metodologia - Long Short Term Memory (LSTM)

- LSTM é capaz de reter informações úteis por períodos prolongados.
- Permite um controle preciso sobre quais dados são armazenados ou descartados pelas portas de entrada, saída e esquecimento.

Síntese Metodologia - Cronograma

Cronograma

As atividades a serem desenvolvidas durante o Trabalho de Conclusão de Curso são:

Tabela: Cronograma do TCC 1

Atividades	2/2024						
	Out	Nov	Dez	Jan	Fev		
Escolha do tema							
Levantamento de bibliografias relacionadas							
Desenvolvimento da proposta de projeto							
Entrega da proposta ao Orientador							
Revisão da proposta							
Coleta e Raspagem dos Dados							
Elaboração da apresentação da proposta							
Apresentação oral da proposta							
Pré-processamento Linguístico							
Representação Vetorial (Word Embeddings)							
Aplicação de Modelos para Agrupamento							

Cronograma

As atividades a serem desenvolvidas durante o Trabalho de Conclusão de Curso são:

Tabela: Cronograma do TCC 2

Atividades	1/2025						
	Mar	Abr	Mai	Jun	Jul		
Aplicação de Modelos REN							
Avaliação de Desempenho dos Modelos							
Elaboração do relatório final							
Entrega do relatório final ao Professor Orientador							
Revisão do relatório final							
Elaboração da apresentação da proposta							
Entrega do relatório final para a banca							
Apresentação oral da proposta							
Correção do relatório final							

Referências I

BARROS, F. M. d. C. et al. Processamento de linguagem natural como ferramenta de suporte em documentos jurídicos: uma revisão sistemática. Revista de Casos e Consultoria. v. 15, n. 1, p. e36701, ago. 2024. Disponível em: . CASELI, H. d. M.; NUNES, M. d. G. V. Processamento de Linguagem Natural: Conceitos, Técnicas e Aplicações em Português - 2ª Edição. [S.I.]: BPLN, São Carlos, 2024. Disponível em: https://brasileiraspln.com/livro-pln/2a-edicao/. ISBN 978-65-00-95750-1.

COSTA, R. P. Reconhecimento de entidades nomeadas em textos informais no domínio legislativo. Dissertação (Dissertação (Mestrado em Ciência da Computação)) — Universidade Federal de Goiás, Goiânia, 2023. 70 f.

Referências II

FREITAS, L. J. G. Clusterização de textos aplicada ao tratamento de dados jurídicos desbalanceados. Dissertação (Dissertação (Mestrado em Estatística)) — Universidade de Brasília, Departamento de Estatística, Brasília, 2023. Disponível em: http://repositorio.unb.br/handle/10482/48841.

GARCIA, G. C. Reconhecimento de Entidades Nomeadas na base de notificações de eventos adversos e queixas técnicas de dispositivos médicos no Brasil. Dissertação (Dissertação (Mestrado Profissional em Computação Aplicada)) — Universidade de Brasília, Brasília, ago 2021. Data de defesa: 31 de agosto de 2021. Disponível em: http://repositorio.unb.br/handle/10482/42718.

MIKOLOV, T. et al. Efficient Estimation of Word Representations in Vector Space. 2013. Disponível em: https://arxiv.org/abs/1301.3781.

Referências III

OLIVEIRA, R.; NASCIMENTO, E. G. S. Clustering by similarity of brazilian legal documents using natural language processing approaches. In: . [S.I.: s.n.], 2021. ISBN 978-1-83969-887-3.

(BARROS et al., 2024) (GARCIA, 2021)

