Workshop on MATLAB Programming

Dr. Venkataramana Veeramsetty Assistant Professor Department of Electrical and Electronics Engineering

S R Engineering College Warangal

December 29, 2018

MATLAB Programming

2 SIMULINK

3 TUTORIALS

- MATLAB is widely used in all areas of applied mathematics, in education and research at universities, and in the industry.
- MATLAB stands for MATrix LABoratory and the software is built up around vectors and matrices.
- This makes the software particularly useful for linear algebra but MATLAB is also a great tool for solving algebraic and differential equations and for numerical integration.
- MATLAB has powerful graphic tools and can produce nice pictures in both 2D and 3D.
- It is also a programming language, and is one of the easiest programming languages for writing mathematical programs.
- MATLAB also has some tool boxes useful for signal processing, image processing, optimization, etc.

Windows on MATLAB SCREEN

- clc -used to clear command window screen
- clear all -used to clear variables in workspace window

Direct Assignment

- a=2; Variable not displayed on command window
- b=2 Variable displayed on command window
- disp(a) -To print variable in command window without removing semi colon(;)
- Assignment from command window
 - a=input('enter value of a');

sscanf command

- Read formatted data from string
- a='23 52 62'
 - b=sscanf(a,'%d');
 - c=sscanf(a,'%d', [2,2]);
 - d=sscanf(a,'%d', [1,3]);
 - [f, n]=sscanf(a,'%d');
- a='32.5 25.6 59.6'
 - b=sscanf(a,'%f');
 - c=sscanf(a,'%f', [2,2]);
 - d=sscanf(a,'%f', [1,3]);
 - [f, n]=sscanf(a,'%f');

Mathematical Operations

- a=input('enter value of a');
- b=input('enter value of b');
 - Addition: a+b
 - Subtraction: a-b
 - Multiplication: a*b
 - Division: a/b
 - Remainder: rem(a,b)

fprintf command

- a=30:
- b=2.6:
- fprintf('output a = %d',a) \Longrightarrow 30
- fprintf('output a = %0.2d',a) \Longrightarrow 30
- fprintf('output a = %0.3d',a) \Longrightarrow 030
- fprintf('output a = %f',a) \Longrightarrow 30.0000
- fprintf('output a = %0.2f',a) \Longrightarrow 30.00
- fprintf('output b = %d',b) \Longrightarrow 2.600000e+00
- fprintf('output b = %0.1d',b) \Longrightarrow 2.6e+00
- fprintf('output b = %0.2d',b) \Longrightarrow 2.60e+00
- fprintf('output b = %f',b) \Longrightarrow 2.600000
- fprintf('output b = %0.1f',b) \Longrightarrow 2.6
- fprintf('output b = %0.2f',b) $\Longrightarrow 2.60$

- value=0.6;
 - floor(value)=0;
 - ceil(value)=1;
 - round(value)=1;

Complex Numbers

- real=input('enter real part of complex numbers')
- imag=input('enter imaginary part of complex numbers')
 - X=complex(real,imag): X=real+imagi
 - Y = complex(2,3): Y = 2 + 3i
 - real part of complex number=real(Y)=2
 - imaginary part of complex number=imag(Y)=3
 - Magnitude=abs(Y)

 Magnitude=3.6056;
 - theta=angle(Y) ⇒ theta=0.9828;%Radians%
 - $Z=conj(Y) \Longrightarrow Z=2-3i$
 - Perform arithmetic operations on complex numbers as on real numbers

rand function

- 'rand' is a function which generated random value between 0 and 1
- rand \Longrightarrow 0.9058
- A = rand(2,2)
- B = rand(1,3)
- C = rand(2,1)

$$A = \begin{bmatrix} 0.2341 & 0.5622 \\ 0.2693 & 0.8424 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.3413 & 0.5822 & 0.5692 \end{bmatrix}$$

$$C = \begin{bmatrix} 0.3413 \\ 0.5822 \end{bmatrix}$$

Random Numbers generation between two numbers

- LowerLimit=input('enter lower limit')
- UpperLimit=input('enter upper limit')
- A = LowerLimit+rand(UpperLimit-LowerLimit)
- B = LowerLimit+rand(2,2)(UpperLimit-LowerLimit)
- C= LowerLimit+rand(1,2)(UpperLimit-LowerLimit)
- D= LowerLimit+rand(2,1)(UpperLimit-LowerLimit)

Matrix Representation

- Each row in a matrix separated by semicolon(;)
- Each column in a matrix separated by either space() or comma(,)
- All elements must be placed within square bracket

$$A = [1,2,3;4,5,6;7,8,9]$$

$$B = [8 5 6; 7 5 6; 1 3 7]$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$B = \begin{bmatrix} 8 & 5 & 6 \\ 7 & 5 & 6 \\ 1 & 3 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

a=A(r,c) r is row number and c is column number of the element need to access

$$a=A(3,2)\Longrightarrow a=8$$

 $b=A(2,1)\Longrightarrow b=4$
 $c=A(1,3)\Longrightarrow c=3$

Accessing Complete Row or Column or part of matrix

- A(:,n) % To access all rows in n^{th} column
- A(n,:) % To access all columns in n^{th} row
- A(a:b,:) % To access all columns from row a to b
- A(:,a:b) % To access all rows from column a to b

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$A1=A(:,2)$$

$$A1 = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$$

$$A2=A(3,:)$$

$$A2 = \begin{bmatrix} 7 & 8 & 9 \end{bmatrix}$$

$$A3=A(1:2,:)$$

$$A3 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$A4=A(:,2:3)$$

$$A4 = \begin{bmatrix} 2 & 3 \\ 5 & 6 \\ 8 & 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

- $S=size(A) \Longrightarrow [3,3]$
- Row=S(1,1)
- Col=S(1,2)

$$[Row,Col]$$
=size(A) \Longrightarrow Row=3 Col=3

$$Row=size(A,1) \Longrightarrow Row=3$$

$$Col = size(A,2) \Longrightarrow Col = 3$$

Total Number of elements=numel(A) \Longrightarrow 9

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 4 & 9 \\ 7 & 3 & 8 \\ 5 & 2 & 1 \end{bmatrix}$$

C=A+5 % Addition of a value to each element in matrix

$$C = \begin{bmatrix} 6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 13 & 14 \end{bmatrix}$$

D=A+B %Addition of two matrices

$$D = \begin{bmatrix} 4 & 6 & 12 \\ 11 & 8 & 14 \\ 12 & 10 & 10 \end{bmatrix}$$

Subtraction

E=A-1 % Subtraction of a value to each element in matrix

$$E = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix}$$

F=A-B %Subtraction of two matrices

$$F = \begin{bmatrix} -2 & -2 & -6 \\ -3 & 2 & -2 \\ 2 & 6 & 8 \end{bmatrix}$$

G=A*2 % Multiply each element in matrix by a value

$$G = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18 \end{bmatrix}$$

H=A*B %Multiplication of two matrices

$$H = \begin{vmatrix} 32 & 16 & 28 \\ 77 & 43 & 82 \\ 122 & 70 & 136 \end{vmatrix}$$

J=A.*B % Element by element multiplication of two matrices

$$J = \begin{bmatrix} 3 & 8 & 27 \\ 28 & 15 & 48 \\ 35 & 16 & 9 \end{bmatrix}$$

Let us consider matrix

$$K = \begin{bmatrix} 2 & 4 & 0 \\ 4 & 10 & -2 \\ 8 & 20 & -2 \end{bmatrix}$$

L=inv(K) % For matrix inversion

$$L = \begin{bmatrix} 2.5 & 1 & -1 \\ -1 & -0.5 & 0.5 \\ 0 & -1 & 0.5 \end{bmatrix}$$

Let us consider matrix

$$K = \begin{bmatrix} 2 & 4 & 0 \\ 4 & 10 & -2 \\ 8 & 20 & -2 \end{bmatrix}$$

M=transpose(K) % For transposing the matrix K

$$M = \begin{bmatrix} 2 & 4 & 8 \\ 4 & 10 & 20 \\ 0 & -2 & -2 \end{bmatrix}$$

M=K'

$$M = \begin{bmatrix} 2 & 4 & 8 \\ 4 & 10 & 20 \\ 0 & -2 & -2 \end{bmatrix}$$

Eigen Values of a matrix

Let us consider matrix

$$K = \begin{bmatrix} 2 & 4 & 0 \\ 4 & 10 & -2 \\ 8 & 20 & -2 \end{bmatrix}$$

N=eig(K) % For computing eigen values of matrix K

$$N = \begin{bmatrix} 7.4641 \\ 0.5359 \\ 2.0000 \end{bmatrix}$$

Let us consider matrix

$$K = \begin{bmatrix} 2 & 4 & 0 \\ 4 & 10 & -2 \\ 8 & 20 & -2 \end{bmatrix}$$

D=det(K) % For computing determinant of a matrix K D=8

Let us consider matrix K from previous slide Characteristic polynomial of matrix K is determinant of $[\lambda I-K]$ coefficients characteristic polynomial of a matrix K is obtained as

$$coff=poly(K)$$

$$coff = \begin{bmatrix} 1 & -10 & 20 & -8 \end{bmatrix}$$

Roots of characteristic polynomial of a matrix K (or) eigen values of matrix are obtained as below

$$r = \begin{bmatrix} 7.4641 \\ 0.5359 \\ 2.0000 \end{bmatrix}$$

Concatenate Matrices

Let us consider two matrices A and B as shown below

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 4 & 9 \\ 7 & 3 & 8 \\ 5 & 2 & 1 \end{bmatrix}$$

For this operation rows in matrices must be same

$$C=[A,B]$$
 (OR)
 $D=horzcat(A,B)$

$$C = D = \begin{bmatrix} 1 & 2 & 3 & 3 & 4 & 9 \\ 4 & 5 & 6 & 7 & 3 & 8 \\ 7 & 8 & 9 & 5 & 2 & 1 \end{bmatrix}$$

Vertical Concatenate

For this operation columns in matrices must be same

$$E=[A;B]$$
(OR)
$$F=vertcat(A,B)$$

$$E = F = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 3 & 4 & 9 \\ 7 & 3 & 8 \\ 5 & 2 & 1 \end{bmatrix}$$

Matrix with all elements are 0's

A=zeros(a,b)a represents number of rows b represents number columns

In case a=4 and b=3 then

B=ones(a,b)a represents number of rows

b represents number columns

In case a=2 and b=3 then

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$I=eye(a,b)$$

a represents number of rows b represents number of columns

In case a=3 and b=3 then

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Let us consider two matrices A and B to form multidimensional matrix X

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 4 & 5 \\ 7 & 3 & 8 \end{bmatrix}$$

Now Initialize multidimensional matrix X with elements as 0's

$$X=zeros(2,3,2)$$

Updating multidimensional matrix X

$$X(:,:,2)=B$$

Let us consider matrix A as below

$$A = \begin{bmatrix} 1 & 2 & 9 \\ 7 & 5 & 6 \\ 4 & 8 & 3 \end{bmatrix}$$

$$\max(A) \Longrightarrow [7 \ 8 \ 9]$$
$$\min(A) \Longrightarrow [1 \ 2 \ 3]$$

$$\max(\max(A)) \Longrightarrow 9$$

 $\min(\min(A)) \Longrightarrow 1$

Let us consider matrix A as below

$$A = \begin{bmatrix} 1 & 2 & 9 \\ 7 & 5 & 6 \\ 4 & 8 & 3 \end{bmatrix}$$

$$C=sort(A)$$

(OR) [C,e]= $sort(A)$

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$e = \begin{bmatrix} 1 & 1 & 3 \\ 3 & 2 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$

Sorting in descending Order

Let us consider matrix A as below

$$A = \begin{bmatrix} 1 & 2 & 9 \\ 7 & 5 & 6 \\ 4 & 8 & 3 \end{bmatrix}$$

D=sort(A,'descend') (OR) [D,e]=sort(A,'descend')

$$D = \begin{bmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

$$e = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 2 & 2 \\ 1 & 1 & 3 \end{bmatrix}$$

Cost(INR) Gen1(MW) Gen2(MW) 150000 40 60 135000 70 30 140000 50 50

[Cost,comb]=sort(Cost,'Ascend');

Solution=Gen(comb(1),:);
$$\Longrightarrow$$
 [70 30]

This function has been used to compute sum of all elements in a complete row or column matrix Let us consider a matrix 'A' as below

$$A = \begin{bmatrix} 7 & 8 & 9 \end{bmatrix}$$

Solving Linear equations

Let us consider below two equations to solve

$$2x + y = 12$$
$$-3x + y = 2$$

Form above equation in matrix form AX=B

$$A = \begin{bmatrix} 2 & 1 \\ -3 & 1 \end{bmatrix}$$
$$B = \begin{bmatrix} 12 \\ 2 \end{bmatrix}$$

Method 1: X=inv(A)*B

Method 2: $X=A \setminus B$

$$X = \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$

Solving Linear equations-Method 3 (linsolve function)

$$eq1 = 2 * x + y == 12;$$

$$eq2 = -3 * x + y == 2;$$

$$[A, B] = equationsToMatrix([eq1, eq2], [x, y]);$$

$$A = \begin{bmatrix} 2 & 1 \\ -3 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 12 \\ 2 \end{bmatrix}$$

X = linsolve(A,B)

$$X = \begin{bmatrix} 2 \\ 8 \end{bmatrix}$$

Solving Linear equations-Method 4 (solve function)

$$syms \ x \ y$$

 $eq1 = 2 * x + y == 12;$
 $eq2 = -3 * x + y == 2;$
 $Z=solve([eq1,eq2],[x,y]);$
 $x=Z.x$
 $y=Z.y$

Output:

$$eq1 = (x^2) + (4 * x) + 4 == 0;$$

$$X = solve([eq1], [x]);$$

$$X = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

Roots of non linear equation: roots function

$$(4x^3) + (5x) + 15 = 0;$$

 $coeff = [4 \ 0 \ 5 \ 15];$
 $X = roots(coeff)$

$$X = \begin{bmatrix} 0.6443 + 1.5796i \\ 0.6443 - 1.5796i \\ -1.2885 + 0.0000i \end{bmatrix}$$

Logical and Relational Operators

Symbol	Operator	
==	equal to	
$\sim =$	Not equal to	
<	Strictly smaller	
>	Strictly greater	
<=	Smaller than or equal to	
>=	Greater than or equal to	
&&	AND operator	
	OR operator	

Trigonometric Functions

Command	Operation
$\overline{\sin(\Theta)}$	sine of Θ , Θ in radians
$\cos(\Theta)$	cosine of Θ , Θ in radians
$tan(\Theta)$	tangent of Θ , Θ in radians
asin(x)	Inverse sine of x
acos(x)	Inverse sine of x
atan(x)	Inverse sine of x
$sinh(\Theta)$	Hyperbolic sine of Θ , Θ in radians
$cosh(\Theta)$	Hyperbolic cosine of Θ , Θ in radians
$tanh(\Theta)$	Hyperbolic tangent of Θ , Θ in radians
$sind(\Theta)$	sine of Θ , Θ in degrees
$cosd(\Theta)$	cosine of Θ , Θ in degrees
$tand(\Theta)$	tangent of Θ , Θ in degrees
deg2rad	Convert angle from degrees to radians
rad2deg	Convert angle from radians to degrees


```
for variable=start:stop
% perform required operation %
end
```

Example:

for i=1:3fprintf('value=%d\n',i) end

Output:

value=1 value=2 value=3


```
while(condition)
% perform required operation %
end
```

```
Example:
```

```
i=1;
while(i < 3)
fprintf('value=%d\n',i);
i=i+1;
end
```

Output:

value=1value=2

if functioning

if(condition) % perform required operation % end

Example: Print even numbers in matrix A

$$A = \begin{bmatrix} 2 & 3 & 13 & 21 & 10 \end{bmatrix}$$

for i=1:5if(rem(A(i),2)==0) $fprintf('even number=\%d\n',A(i));$ end

Output:

even number=2 even number=10

if - else functioning

if(condition)

% perform required operation %

else

% perform required operation % end

Example: Print even and odd numbers in matrix A

$$A = \begin{bmatrix} 2 & 3 & 13 & 21 & 10 \end{bmatrix}$$

for i=1:5if(rem(A(i),2)==0)fprintf('even number=%d\t',A(i)); else $fprintf('odd number=\%d\t',A(i));$ end

Output:even number=2 odd number=3 odd number=13 odd number=21 even number=10


```
if(condition 1)
% perform required operation %
else
    if(condition 2)
     % perform required operation %
    else
    % perform required operation %
    end
end
```


Score	Grade
≥9	Ex
$8 \le Marks < 9$	Α
$7 \le Marks < 8$	В
<7	F

Assign grade to obtain marks shown in matrix

$$Marks = \begin{bmatrix} 9 & 8 & 7 & 10 & 6 \end{bmatrix}$$

$$GRADE = \begin{bmatrix} E & A & B & E & F \end{bmatrix}$$

end

```
for i=1:5
if(Marks(i) \ge 9)
GRADE(i)='E'
else
 if(Marks(i) \ge 8 \&\& Marks(i) < 9)
 GRADE(i)='A'
 else
    if(Marks(i) \ge 7 \&\& Marks(i) < 8)
    GRADE(i)='B'
    else
    GRADE(i)='C'
    end
 end
```


switch statement

switch expression case expression1 % perform required operation % case expression2 % perform required operation % otherwise % Optional % % perform required operation % end


```
a=input('enter value of a');
b=input('enter value of b');
operation=input('enter value 0:ADD 1:SUB 2:MUL 3:DIV 4:REM');
```


Example Contd.

Input 1

enter value of a20

enter value of b30

enter value 0:ADD 1:SUB 2:MUL 3:DIV 4:REM5

Output 1

Invalid operation

Input 2

enter value of a30

enter value of b10

enter value 0:ADD 1:SUB 2:MUL 3:DIV 4:REM4

Output 2

REMAINDER =

create a excel sheet with data shown below and assign file name as test

Cost(INR)	Gen1(MW)	Gen2(MW)
150000	40	60
135000	70	30
140000	50	50

Now use 'xlsread' command as below to extract data from excel sheet and save as a matrix.

filename='test' num=xlsread(filename)

output

Creation of function

Creation of function to return only one output

function $[Out_{var}] = functionname(ip_{var1}, ip_{var2}, ...)$ % write the code to compute Out_{var} % end

Creation of function to return multiple outputs

function $[Out_{var1}, Out_{var1}, ...] = functionname(ip_{var1}, ip_{var2}, ...)$ % write the code to compute Out_{var1} , Out_{var1} .. % end

Note:

The matlab file which has code to create a function must be

save with functionname

Example: Single Return Value

Creation of function to return only one output

```
function [output]=sumofinputs(a,b)
output=a+b;
end
```

Calling of a function

```
a=input('enter value of a')
b=input('enter value of b')
c=sumofinputs(a,b)
```


Example:output

Output

enter value of a2 enter value of b3 c=5


```
Creation of function to return two outputs
```

```
function [output1,output2]=sumandprod(a,b)
output1=a+b;
```

output2=a*b; end

Calling of a function

a=input('enter value of a') b=input('enter value of b') [c,d]=sumandprod(a,b)

Output

enter value of a2 enter value of b3

c=5

d=6

To draw the bar graph use the following code

Step1 %Develop matrix containing x-axis elements(Xmatrix)%

Step2 %Develop matrix containing y-axis elements(Ymatrix)%

Step3 figure

Step4 bar(Xmatrix,Ymatrix,'colour','LineWidth',2);

Step5 title('% Note down title of figure %');

Step6 xlabel('% write x-axis label%')

Step7 ylabel('% write y-axis label%')


```
Step1 T=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
      23 24]:
```

Step2 P=[10 13 5 25 65 52 42 58 65 22 32 35 65 21 45 28 56 26 45 47 25 29 37 51]:

```
Step3 figure
```

Step4 bar(T,P,'g','LineWidth',2);

Step5 title('Hourly load on the system');

Step6 xlabel('Hour')

Step7 ylabel('Load (MW)')

Output(bar graph): Hour Vs Load

Figure: plot

To draw the plot graph use the following code

```
Step1 %Develop matrix containing x-axis elements(Xmatrix)%
```

Step2 %Develop matrix containing y-axis elements(Ymatrix)%

Step3 figure

Step4 plot(Xmatrix, Ymatrix, 'colour', 'LineWidth', 2);

Step5 title('% Note down title of figure %');

Step6 xlabel('% write x-axis label%')

Step7 ylabel('% write y-axis label%')

- Draw bar graph between hour of the day (T) and load (P)
- Step1 T=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]:
- Step2 P=[10 13 5 25 65 52 42 58 65 22 32 35 65 21 45 28 56 26 45 47 25 29 37 51]:
- Step3 figure
- Step4 plot(T,P,'g','LineWidth',2);
- Step5 title('Hourly load on the system');
- Step6 xlabel('Hour')
- Step7 ylabel('Load (MW)')

Output(plot graph): Hour Vs Load

Multiple Plots in same figure window

To draw the multiple plots use the following code

- Step1 %Develop matrix containing x-axis elements(Xmatrix)%
- Step2 %Develop matrix containing y-axis elements(Ymatrix(1)) of first plot%
- Step3 %Develop matrix containing y-axis elements(Ymatrix(2)) of second plot%
- Step4 figure
- Step5 plot(Xmatrix, Ymatrix(1), 'colour', 'LineWidth', 2);
- Step6 hold on;
- Step7 plot(Xmatrix,Ymatrix(2),'colour','LineWidth',2);
- Step8 title('% Note down title of figure %');
- Step9 xlabel('% write x-axis label%')
- Step10 ylabel('% write y-axis label%')

Multiple Plots in same figure window

 Draw bar graph between hour of the day (T) and load on first system (P1) and second system (P2)

```
Step1 T=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
      23 24];
```

```
Step2 P1=[10 13 5 25 65 52 42 58 65 22 32 35 65 21 45 28 56 26
      45 47 25 29 37 51];
```

```
Step3 P2=[20 26 50 52 56 62 48 52 85 88 62 53 56 69 54 82 65 62
      44 74 52 69 73 65];
```

```
Step4 figure
```

```
Step5 plot(T,P1,'g','LineWidth',2);
```

Step6 hold on;

Step7 plot(T,P2,'b','LineWidth',2);

Step8 title('Hourly load on the system');

Step9 xlabel('Hour')

Step10 ylabel('Load (MW)')

Output(Multiple plot graphs): Hour Vs Load

Plot graph

plot(x,y)

bar graph

bar(x,y)

 Plot the values of sin(x) and cos(x) as x varying from 0 to $\Pi * 100$

```
Use the below code
x=0:pi/100:pi*100;
val1=sin(x);
val2=cos(x);
figure
plot3(val1,val2,x)
title('3D plot')
xlabel('Sin Value')
ylabel('Cos Value')
zlabel('x Value')
```


Split Figure

```
x=0:pi/10:pi;
val1=sin(x);
val2=cos(x);
val3=tanh(x);
val4=sinh(x);
figure
subplot(2,1,1);
plot(x,val1,'*');
title('sin value');
subplot(2,1,2);
plot(x,val2,'o');
title('cos value');
```

0

3

1

```
figure
subplot(2,2,1);
plot(x,val1,'+');
title('sin');
subplot(2,2,2)
plot(x,val2,'-');
title('cos')
subplot(2,2,3);
plot(x,val3,'*');
title('tanh')
subplot(2,2,4);
plot(x,val4,'.')
title('sinh')
```


Output

Solve the differential equation $\frac{dx}{dt} = xt$

Follow the below steps to solve equation in MATLAB

- 1. syms x(t) % Define variable x %
- 2. eq=diff(x,t)-x*t==0 % Define differential equation%
- 3. xsol(t)=dsolve(eq) % Solve differential equation%

Output

$$xsol(t) = C2 * exp(t^2/2)$$

Solving Differential equations with initial conditions

Solve the differential equation $\frac{dx}{dt} = xt$ with initial condition $\times(0) = 10$

Follow the below steps to solve equation in MATLAB

- 1. syms x(t) % Define variable x %
- 2. eq=diff(x,t)-x*t==0 % Define differential equation%
- 3. cond=x(0)==10;% Define initial condition%
- 4. xsol(t)=dsolve(eq,cond) % Solve differential equation%

Output xsol(t) = $10 * exp(t^2/2)$

Solving higher order differential equations with initial conditions

Solve the differential equation $\frac{d^3x}{dt^3} = x$ with initial condition $x(0)=10 \ x'(0)=-10 \ x''(0)=\Pi$

Follow the below steps to solve equation in MATLAB

- 1. syms x(t) % Define variable x %
- 2. Dx=diff(x,t);
- 3. D2x=diff(x,t,2);
- 4. eq=diff(x,t,3)-x==0 % Define differential equation%
- 5. cond1=x(0)==10;
- 6. cond2=Dx(0)==-10;
- 7. cond3=D2x(0)==pi;
- 8. cond=[cond1 cond2 cond3];% Define initial condition%
- 9. xsol=dsolve(eg,cond) % Solve differential equation%

$$\begin{aligned} \mathsf{xSol} &= \\ (\mathit{pi} * \mathit{exp}(t))/3 - \mathit{exp}(-t/2) * \mathit{cos}((3^(1/2) * t)/2) * (\mathit{pi}/3 - \\ 10) - (3^(1/2) * \mathit{exp}(-t/2) * \mathit{sin}((3^(1/2) * t)/2) * (\mathit{pi} + 10))/3 \end{aligned}$$

Numerical Integration - int command

```
syms Variable
Write Function
Output=int(Function,LowerLimit,UpperLimit)
Example:
syms t (Represent Variable)
i=0.1*(exp(0.2.*t)-1) (Function)
q=int(i,0,10); (Integration Format)
```


First create a MATLAB function which return a function which needs to be integrate

function output=functionname(variable) output=Write function which needs to be integrate end

For integration use the following code q=quad('functionname',lowerlimit,upperlimit)

Example:

function i=current(t) i=0.1*(exp(0.2.*t)-1)

end

q=quad('current',0,10)

Numerical Integration - integral command

Define function as below

fun=@(variable)f(variable)

Calculate integral of function as below

sol=integral(fun,LowerLimit,UpperLimit)

Example:

fun=@(t)0.1*(exp(0.2.*t)-1)

q=integral(fun,0,10)

Find
$$\int_0^{\Pi/2} \sin(x) dx$$

Use the following code in MATLAB

- 1. fun=@(x) sin(x) % Create function %
- 2. sol=integral(fun,0,pi/2) % for solving %

Output sol =1.0000

Solving linear programming problem

In linear programming problem both objective function and constraints are linear in control variables Convert the linear programming problem in below format

$$min \ f^T V$$
 $CfM_{ieq} V \leq CoM_{ieq}$
 $CfM_{eq} V = CoM_{eq}$
 $Ib \leq V \leq ub$

Syntax [x,fval,exitflag] = $linprog(f, CfM_{iea}, CoM_{iea}, CfM_{ea}, CoM_{ea}, lb, ub, x0, options)$

x:optimal solution

fval:objective function value at optimal solution

x0:Starting point

options

'interior-point'

'dual-simplex'

'active-set'

'simplex'

exitflag

- 1 Function converged to a solution x.
- Number of iterations exceeded options. MaxIter.
- -2 No feasible point was found.
- -3 Problem is unbounded.
- -4 NaN value was encountered during execution of the algorithm
- -5 Both primal and dual problems are infeasible.
- -7 Search direction became too small. No further progress could be made.

min
$$2v_1 + 3v_2 + 4v_3$$

st.
 $3v_1 + 2v_2 - 1v_3 \le 20$
 $-1v_1 - 3v_2 - 5v_3 \le -40$
 $v_1 + v_2 + v_3 = 18$
 $v_1 > 0$ $v_2 > 0$ $v_3 > 0$

Develop matrices based on objective and constraints

$$f = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

$$CfM_{ieq} = \begin{bmatrix} 3 & 2 & -1 \\ -1 & -3 & -5 \end{bmatrix}$$

$$CoM_{ieq} = \begin{bmatrix} 20 \\ -40 \end{bmatrix}$$

$$CfM_{eq} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$CoM_{eq} = \begin{bmatrix} 18 \end{bmatrix}$$

$$Ib = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Find solution using linprog

use the below code to find optimal solution of a given problem

```
[x,fval,exitflag] =
linprog(f, CfM_{iea}, CoM_{iea}, CfM_{ea}, CoM_{ea}, lb, [], [], 'simplex')
```

Output

Optimization terminated.

```
x =
9.5000
0.0000
8.5000
fval =
53.0000
exitflag =
```


Read the data from matlab file

Open a new MATLAB editor file Write the data a below

Item	Price	
1	20	
2	25	
3	30	

Save the MATLAB file as readfile m. To call the data available in readfile muse below code ip=fopen('readfile.m','r++'); itemprice=fscanf(ip,'%d',[2,3]);

$$itemprice = \begin{bmatrix} 1 & 2 & 3 \\ 20 & 25 & 30 \end{bmatrix}$$

Open a new MATLAB editor file save that file as writefile m

```
% Read the input %
ip=fopen('readfile.m','r++');
itemprice=fscanf(ip,'%d',[2,3]);
n=size(itemprice,2);
item=input('enter item code');
quantity=input('enter quantity');
for i=1:n
if(i==item)
Amount=itemprice(2,i)*quantity;
break:
end
end
```



```
% print bill into writefile %
bill=fopen('writefile.m','w++');
fprintf(bill,'===========\n');
fprintf(bill,'HOTEL MEGHALAYA\n');
fprintf(bill,'=========\n');
fprintf(bill,'Amount=% d INR\n',Amount);
fprintf(bill,'==========\n');
Now open writefile, we can see output as below
HOTEL MEGHALAYA
Amount=75 INR
```


TUTORIALS

Write MATLAB code for the requirements of a person who sitting at the cash counter as shown below

- Read itemcode and corresponding price from a Mfile
- Read total number of items required
- Read item code and quantity
- Generate bill as shown below in a new Mfile

price
20
25
30
40

AIM: To understand Assignment, Reading data from Mfile, Writing data in to a Mfile, functioning of for and while loops, usage o'fprintf' and Matrix operation

HOTEL VAISHNAVI itemcode qunatity price amount 20 40 2 25 50 2 30 60 Total Amount=150 THANK YOU & VISIT AGAIN

Write the matlab code for following requirements

- 1. To generate 10 combinations of x, y and z values
- 2. To compute the value of $obj = \frac{2x+3y}{4z}$ for each combination
- 3. To identify combination of (x,y,z) which gave minimum value of obj and what is the value of minimum obj
- 4. To identify combination of (x,y,z) which gave maximum value of obj and what is the value of maximum obj

variable	Lower limit	Upper limit
Х	10	30
У	15	25
Z	20	40

Solve the below linear equations using methods 1, 2, 3, and 4

$$3x - y = 7 23 + 3y = 1$$
 (8)

Solution x=2 and y=-1

AIM: To understand matrix inversion operation, linsolve and solve functions

Solve the differential equation shown below

$$\frac{d^2y}{dx^2} = \cos(2x) - y \tag{9}$$

Initial Conditions

$$y(0)=1;$$

$$y'(0)=0;$$

Solution

$$1 - (8 * (sin(x/2))^4)/3$$

Find the integral of below equation

$$f(x) = \frac{1}{x^3 - 2x - 5}$$
$$\int_0^2 f(x)dx$$
 (10)

Solution -0.4605

- 1. Write a function which take angle(in radians) as input and returns sin,cos,tan,sinh and cosh of angle
- 2. Write a function which take angle(in degrees) as input and returns sin,cos,tan,sinh and cosh of angle
- Write a function which take matrices A and B as input and returns inverse, transpose, determinant and eigen values of those matrices and test all above functions

$$A = \frac{4}{2} \frac{7}{6}$$

$$1 \quad 2 \quad 3$$

$$B = 0 \quad 4 \quad 5$$

$$1 \quad 0 \quad 6$$

Tutorial-7

Α	В	С	D
1	18358	14960	
2	18012	14476	
3	17795	13979	
4	17559	13670	
5	17402	13567	
6	17520	13787	
7	17698	13944	
8	18103	14244	
9	18119	14363	
10	18827	14846	
11	18968	15331	
12	18813	15637	
13	19194	15840	
14	19344	15977	
15	19156	16030	
16	19182	16139	
17	19663	16682	
18	20678	18002	
19	20522	17664	
20	20237	17337	
21	19967	16961	
22	19343	16317	
23	18699	15504	
24	17941	14682	

Enter the data in excel as shown in previous slide and assign name as 'Tutorial7'

Extract the data from excel to a variable 'plottut' in matlab

Draw the plot between A and B

Draw the bar between A and C

Draw the 3D plot between A, B and c

AIM: To understand extract data from excel, drawing the plot graph, bar graph and 3D graph

Solve below linear programming problem using MATLAB

Maximize
$$Z = f(x, y) = 3x + 2y$$

 $2x + y \le 18$
 $-2x - 3y \ge -42$
 $-3x - y \ge -24$
 $x > 0, y > 0$ (11)

Solution x = 4.2857 11.1429

Develop simulink model to estimate the energy price due to any household appliance by considering follwing inputs

- household appliance code
- household appliance manufacturer code
- Number of items having that code
- Usage hours per day
- Number of days

Consider price per unit 1.50 INR if number of units less than 50 otherwise 2.50 INR

Tutorial-9 contd.

1 tube 2 cfl 3 fan 4 cooler (Appliance) 10 W 20 X 30 Y 40 Z (Manufacturer)

Table : Power Rating in Watts

	Manufacturer			
Appliance	10	20	30	40
1	40	35	30	45
2	25	20	35	30
3	50	65	75	70
4	100	90	95	80

AIM: Usage of lookup table

References:

MathWorks, I. (2005).

MATLAB: the language of technical computing. Desktop tools and development environment, version 7, volume 9.

MathWorks.

Patnaik, P. (2013).

Load frequency control in a single area power system.

PhD thesis.

Sandberg, K. (2000).

Introduction to image processing in matlab.

Department of Applied Mathematics, University of Colorado at Boulder, http://amath.colorado.edu/courses/4720/2000Spr/Labs/Worksheets/Matlab_tutorial/matlab.html.

