Student Information

Full Name : Gökcan Demiralp

 $Id\ Number:\ 2380269$

Answer 1

•	

i) It is a topology since it meets all 3 of the conditions.

ii) It is not a topology since union of the subsets $\{a\} \cup \{b\}$ which is $\{a, b\}$ is not in the set T_2 . It contradicts with the 2nd condition.

iii) It is a topology since it meets all 3 of the conditions.

iv) It is not a topology since union of the subsets $\{a, c\} \cup \{b, c\}$ which is $\{a, b, c\}$ is not in the set T_4 . It contradicts with the 2nd condition.

b.

- i)
- ii)
- iii)

a. For f(a,b) to be injective the condition $f(a_1,b_1)=f(a_2,b_2)\longrightarrow (a_1=a_2\wedge b_1=b_2)$ must be met.

We write that as $a_1 + b_1 = a_2 + b_2$

The left side of the equation $a_1 - a_2 = b_2 - b_1$ is a natural number and the right side of the equation must be between (-1,1) The only natural number in this interval is 0.

Thus $a_1 - a_2 = 0$ and $a_1 = a_2$ similarly $b_2 - b_1 = 0$ and $b_1 = b_2$. The function is injective.

b. For f(a,b) to be surjective the condition $\forall y \in [0,\infty), \exists x \in A$, such that f(x)=y

So for y=5 there must be an x such that f(x)=y but there is no x is that is mapped to 5. Thus it is not surjective. (Proof by contradiction)

c. We are being given that g(x,y) is injective from $[0,\infty) \longrightarrow A \times (0,1)$. As prooven in part **a.** f(x,y) is injective from $A \times (0,1) \longrightarrow [0,\infty)$ Thus by Schroeder–Bernstein theorem their cardinality must be the same.

- **a.** Set A, will be equal to the Cartesian product of two element copies of \mathbb{Z}^+ . It is because both elements of the set will be mapped $\mathbb{Z}^+ \times \mathbb{Z}^+$ times. Then A will be equal to $\mathbb{Z}^+ \times \mathbb{Z}^+$. Cartesian product of two infinite sets that are countable is also countable.
- **b.** In this situation the set B of all functions, will be equal to the Cartesian product of n element copies of \mathbb{Z}^+ . From the part (a.) we now that Cartesian product of two infinitely countable sets is countable. Then taking Cartesian product of the obtained set n more times wont change the countability. $(\mathbb{Z}^+)^n$ will also be countable.
- **c.** The set C of all functions $f: \mathbb{Z}^+ \longrightarrow \mathbb{Z}^+$ contains the set of all functions from \mathbb{Z}^+ to Z^+ We know that since D is uncountable and $D \subseteq C$, we can deduce that C is uncountable. Cantor's second diagonal argument shows that C is uncountable.
- **d.** The set D is the set of all possible binary sequences. D is the set of all functions $f: \mathbb{Z}^+$ to $\{0,1\}$ Cantor's second diagonal argument shows that this set is uncountable.

e.

a.

By Stirling approximation we say n! $\approx \sqrt{2\pi n} * \frac{n^n}{e^n}$

For function n! to be $\Theta(n^n)$, condition $c_1 n^n < n! < c_2 n^n$, $c_1, c_2 \in \mathbb{R}^+$ must be met.

We apply Stirling approximation $c_1 n^n < \sqrt{2\pi n} * \frac{n^n}{e^n} < c_2 n^n$

 $\sqrt{2\pi n} * \frac{n^n}{e^n} < c_2 n^n$ is true for all n and all positive integers $c_2 \ge 3$.

 $c_1 n^n < \sqrt{2\pi n} * \frac{n^n}{e^n}$ is false for any n that is sufficiently big

Therefore n! is not $\Theta(n^n)$.

b.

For function $(n+a)^b$ to be $\Theta(n^b)$, condition $c_1 n^b < (n+a)^b < c_2 n^b$, $c_1, c_2 \in \mathbb{R}^+$ must be met.

We know that $n^b > 0$ so we can divide all sides by n^b it becomes $c_1 < \frac{(n+a)^b}{n^b} < c_2$

 $c_1 < \left(1 + \frac{a}{n}\right)^b < c_2$ can be written as $c_1 < (1^+)^b < c_2$ for sufficiently big **n**.

Since $b \in \mathbb{Z}$, for any value of b, $c_1 < (1^+)^b < c_2$ can be simplified as $c_1 < 1^+ < c_2$

Therefore there exists valid c_1 and c_2 such that $(n+a)^b$ is $\Theta(n^b)$

a.

• If x < y, we can say that $(2^x - 1) \mod (2^y - 1) = (2^x - 1)$.

Similarly $(2^{x \mod y} - 1) = (2^x - 1)$.

We can conclude that $(2^x - 1) \mod (2^y - 1) = (2^x \mod y - 1)$ since $(2^x - 1) = (2^x - 1)$ if x < y

• If $x \ge y$, we can subtract $(2^y - 1)$ from the $(2^x - 1)$ mod $(2^y - 1)$ without changing the result.

After subtracting we get $(2^x - 2^y) \mod (2^y - 1) = (2^{x \mod y} - 1)$. Since $x \ge y$ we can write the left side as $2^y(2^{x-y} - 1) \mod (2^y - 1)$

The 2^y 's remainder will be 1 when divided by $(2^y - 1)$ so we can omit that part and write it as $(2^{x-y} - 1) \mod(2^y - 1) = (2^{x \mod y} - 1)$

We repeat steps above k times and the equality becomes $(2^{x-ky} - 1) \mod (2^y - 1) = (2^{x \mod y} - 1)$.

We repeat the steps until $(2^{x-ky}-1) < (2^y-1)$ condition is met.

As I proved before if $(2^{x-ky}-1) < (2^y-1)$ then $(2^{x-ky}-1) \mod (2^y-1) = (2^{x-ky}-1)$

And finally since $(2^{x-ky}-1)=(2^{x\bmod y}-1)$ we can conclude that $(2^x-1)\bmod (2^y-1)=(2^{x\bmod y}-1)$ for $x,y\in\mathbb{Z}^+$

b.