Arithmetic Coding and Adaptive Coding

Arithmetic coding

- Partitioning the unit segment.
- Identifying a part using a binary expansion.

How many bits?

- p the probability of the character
 the length of the segment
- There segment must contain a dyadic number with log (I/p) bits

Coding more than one char

- An input stream: X1, X2, X3, ...
- x₁ chooses a part [a₁,b₁) in partition of [0,1)
- x₂ chooses a part [a₂,b₂) in partition of [a₁,b₁)
- X3 chooses

$$Pr(x_t = 1) = \frac{2}{3}$$

$$\frac{1/3}{Pr(x_t = 0)} = \frac{1}{3}$$

Online arithmetic Coding

When can we send the next bit?

- As soon as we know whether the segment is on the left or on the right of a dyadic partition.
- Unbounded delay ...

Performance of arithmetic codes

The message: $x_1, x_2, x_3, ... x_n$

Generated IID according to distribution p

$$\ell = \left\lceil \log_2 \frac{1}{\prod_{i=1}^n p(x_i)} \right\rceil = \left\lceil \sum_{i=1}^n \log_2 \frac{1}{p(x_i)} \right\rceil < \sum_{i=1}^n \log_2 \frac{1}{p(x_i)} + 1$$

$$E(\ell) < n \sum_{x} p(x) \log_2 \frac{1}{p(x)} + 1 = nH(p) + 1$$

At most one bit more than the shannon lower bound for the whole message

Using the wrong distribution

 So far we assumed that we are coding using the correct distribution p. Suppose that we are coding according to a dist q≠p

$$E(\ell) < n \sum_{x} p(x) \log_2 \frac{1}{q(x)} + 1 =$$

$$= n \left(\sum_{x} p(x) \log_2 \frac{1}{p(x)} + \sum_{x} p(x) \log_2 \frac{p(x)}{q(x)} \right) + 1$$

$$= n \left(H(p) + D_{\mathrm{KL}}(p||q) \right) + 1$$
Entropy KL-divergence

Two part codes

- Receiver does not know distribution
- Sender sends two pieces:
 - I. Distribution parameters (Model)
 - 2. Message, coded using distribution (Data given model)

Non IID sources

$$p(x_1, x_2, ..., x_t) \neq \prod_{s=1}^t p(x_s)$$

$$p(x_t|x_{t-1},...,x_1) \neq p(x_t)$$

Arithmetic coding does not require characters to be IID

Adaptive Coding

performance of adaptive codes.

- Source is IID
- Predictor converges to correct distribution over time.
- Code length: $\ell = \left| \sum_{t=1}^n \log_2 \frac{1}{q_t(x_t)} \right|$

$$E(\ell) < \sum_{t=1}^{n} \sum_{x} p(x) \log_2 \frac{1}{q_t(x)} + 1$$

online prediction of probabilities

- A binary input stream: X1, X2, X3, ...
- Generated IID according to a fixed but unknown distribution (p, I-p).
- Task: map $x_1, x_2, x_3, ..., x_{t-1}$ to q_t so that $q_t \rightarrow p$ quickly so as to minimize

$$E_{x_1 \sim p, \dots x_t \sim p} \left(\sum_{t=1}^n \log_2 \frac{1}{q_t(x_t)} \right)$$