CLAIMS

1. A compound of formula (I):

$$R^{6}S(O)_{n}$$
 R^{4}
 N
 N
 R^{5}
 R^{5}
 R^{2}
 W
 R^{3}
 R^{3}

wherein:

5

10

 R^1 is CN, CSNH₂ or C(=N-Z)-S(O)_CQ;

 $Z \text{ is H, } (C_1-C_6)\text{-alkyl, } (C_1-C_6)\text{-haloalkyl, } (C_3-C_6)\text{-alkenyl, } (C_3-C_6)\text{-alkynyl, } -(CH_2)_qR^7,$

 COR^8 , CO_2 -(C_1 - C_6)-alkyl or $S(O)_pR^8$;

Q is (C₁-C₆)-alkyl or CH₂R⁷;

W is C-halogen, C-CH₃ or N;

R² is hydrogen, halogen or CH₃;

 R^3 is (C_1-C_3) -haloalkyl, (C_1-C_3) -haloalkoxy or SF_5 ;

R⁴ is hydrogen, (C₂-C₆)-alkenyl, (C₂-C₆)-haloalkenyl, (C₂-C₆)-alkynyl, (C₂-C₆)-haloalkynyl, (C₃-C₇)-cycloalkyl, (C₃-C₇)-cycloalkyl-(C₁-C₆)-alkyl, CO₂-(C₁-C₆)-alkyl, CO₂-(C₃-C₆)-alkenyl, CO₂-(C₃-C₆)-alkynyl, CO₂-(CH₂)_mR⁷ or SO₂R⁸; or (C₁-C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₆)-alkenyloxy,

(C₃-C₆)-haloalkenyloxy, (C₃-C₆)-alkynyloxy, (C₃-C₆)-haloalkynyloxy, (C₃-C₇)-cycloalkyl, S(O)_pR⁸, CN, NO₂, OH, COR⁹, NR⁹R¹⁰, S(O)_pR⁷, OR⁷ and CO₂R⁹;

A is (C_1-C_6) -alkylene or (C_1-C_6) -haloalkylene;

X is C(=O), C(=S) or SO_2 ;

Y is O, NR¹¹ or a covalent bond;

R⁵ is (C_3-C_6) -alkenyl, (C_3-C_6) -haloalkenyl, (C_3-C_6) -alkynyl, (C_3-C_6) -haloalkynyl, (C_3-C_6) -cycloalkyl, (C_3-C_7) -cycloalkyl- (C_1-C_6) -alkyl, (C_1-C_6) -alkyl

10

30

C₆)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, (C₃-C₆)-alkenyloxy, (C₃-C₆)-haloalkenyloxy, (C₃-C₆)-haloalkynyloxy, (C₃-C₇)-cycloalkyl, S(O)_pR⁸, CN, NO₂, OH, COR⁹, NR⁹R¹⁰, S(O)_pR⁷, OR⁷ and CO₂R⁹;

R⁶ is (C_1-C_6) -alkyl, (C_1-C_6) -haloalkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl or (C_2-C_6) -haloalkynyl;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸, COR¹⁰, COR¹³, CONR⁹R¹⁰, SO₂NR⁹R¹⁰, NR⁹R¹⁰ and OH;

 R^8 is (C_1-C_6) -alkyl or (C_1-C_6) -haloalkyl;

 R^9 and R^{10} are each independently H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-alkenyl, (C₃-C₆)-alkynyl, (C₃-C₆)-cycloalkyl or -(C₁-C₆)-alkyl-(C₃-C₆)-cycloalkyl, or

- 15 R⁹ and R¹⁰ together with the attached N atom form a five- or six-membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl and (C₁-C₆)-haloalkyl;
- R¹¹ is H, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₃-C₆)-alkenyl or (C₃-C₆)-alkynyl;
 R¹² is heterocyclyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₄)-alkyl, (C₁-C₄)-haloalkyl, (C₁-C₄)-alkoxy, (C₁-C₄)-haloalkoxy, NO₂, CN, CO₂(C₁-C₆)-alkyl, S(O)_pR⁸, OH and oxo;
 R¹³ is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)-alkyl, (C₁-C₆)-haloalkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-haloalkoxy, CN, NO₂, S(O)_pR⁸ and NR⁹R¹⁰;
 - n, p and r are each independently zero, one or two;
 - m and q are each independently zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S;

or a pesticidally acceptable salt thereof.

- 2. A compound or a salt thereof as claimed in claim 1 wherein R^1 is CN or $CSNH_2$.
- 5 3. A compound or a salt thereof as claimed in claim 1 or 2 wherein R⁶ is CF₃.
 - 4. A compound or a salt thereof as claimed in claim 1, 2 or 3 wherein R^1 is CN, $CSNH_2$ or C(=N-Z)-S-Q;

Z is H, (C_1-C_3) -alkyl, $-(CH_2)_qR^7$, COR^8 , $CO_2-(C_1-C_3)$ -alkyl or $S(O)_pR^8$;

10 Q is (C_1-C_3) -alkyl;

W is C-CI;

R² is CI:

R³ is CF₃;

 R^4 is hydrogen, (C₂-C₄)-alkenyl, (C₂-C₄)-alkynyl, (C₃-C₇)-cycloalkyl, CO₂-(C₁-

15 C₄)-alkyl, CO₂-(C₃-C₄)-alkenyl, CO₂-(C₃-C₄)-alkynyl, CO₂-(CH₂)_mR⁷ or SO₂R⁸; or (C₁-C₃)-alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkoxy, S(O)_pR⁸ and CO₂-(C₁-C₃)-alkyl);

A is $-CH_2CH_2$ — or $-CH_2CH_2CH_2$ —;

X is C(=O) or SO_2 ;

20 Y is O, NH or a covalent bond;

 R^5 is (C_3-C_4) -alkenyl, (C_3-C_4) -alkynyl, $-(CH_2)_qR^7$, (C_1-C_3) -alkyl or (C_1-C_3) -haloalkyl; R^6 is CF_3 ;

each R^7 is independently phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl, (C_1-C_3) -

- haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, CN, NO₂ and S(O)_pR⁸; and each R⁸ is independently (C₁-C₃)-alkyl or (C₁-C₃)-haloalkyl.
 - 5. A compound or a salt thereof as claimed in any one of claims 1 to 4 wherein R^1 is CN or CSNH₂;

30 W is C-CI;

R² is CI:

R³ is CF₃:

R4 is (C1-C3)-alkyl;

A is -CH₂CH₂- or -CH₂CH₂CH₂-;

X is C(=O):

20

25

Y is O, NH or a covalent bond;

 R^5 is (C_3-C_4) -alkenyl, (C_3-C_4) -alkynyl, $-(CH_2)_qR^7$, (C_1-C_3) -alkyl or (C_1-C_3) -haloalkyl; R^6 is CF_3 ;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₃)-alkyl, (C₁-C₃)-haloalkyl, (C₁-C₃)-alkoxy, (C₁-C₃)-haloalkoxy, CN, NO₂ and S(O)_pR⁸; and

10 R^8 is (C_1-C_3) -alkyl or (C_1-C_3) -haloalkyl.

- 6. A process for the preparation of a compound of formula (I) or a salt thereof as defined in any one of claims 1 to 5, which process comprises:
- a) where R², R³, R⁴, R⁵, R⁶, W, A and n are as defined in claim 1, R¹ is CN, and Y and X are as defined in claim 1 with the exclusion of compounds in which -Y-X- is -NH-CO- or -NH-CS-, acylating or sulfonylating a compound of formula (II):

$$R^6S(O)_n$$
 CN R^4 N N N R^2 W (II)

wherein R², R³, R⁴, R⁶, W, A and n are as defined in formula (I), with a compound of formula (III):

$$R^5$$
—Y—X—L (III)

wherein Y and X are as defined in formula (I) with the exclusion of compounds in which -Y-X- is -NH-CO- or -NH-CS-, and L is a leaving group; or

b) where R¹ is CN, and R², R³, R⁴, R⁵, R⁶, W, A and n are as defined in claim 1, reacting a compound of formula (II) wherein R¹, R², R³, R⁶, W, A and n are as defined in claim 1 and -Y-X- is -NH-CO- or -NH-CS-, with an isocyanate or isothiocyanate compound of formula (IV) or (V):

5

10

15

20

30

 $R^5-N=C=O$ (IV) $R^5-N=C=S$ (V)

wherein R⁵ is as defined in formula(I); or

- c) where R¹ is CN, n is 1 or 2, and R², R³, R⁴, R⁵, R⁶, W, A, X and Y are as defined in claim 1, oxidising a corresponding compound in which n is 0 or 1; or
- d) where R¹ is CSNH₂, and R², R³, R⁴, R⁵, R⁶, W, A, X, Y and n are as defined in claim 1, reacting the corresponding compound of formula (I) wherein R¹ is CN, with an alkali or alkaline earth metal hydrosulfide, or with the reagent Ph₂PS₂; or
- (e) where R¹ is CSNH₂, and R², R³, R⁴, R⁵, R⁶, W, A, X, Y and n are as defined in claim 1, reacting the corresponding compound of formula (I) wherein R¹ is CN, with a bis(trialkylsilyl)sulfide, in the presence of a base; or
 - (f) where R¹ is C(=N-H)-S-Q, and Q, R², R³, R⁴, R⁵, R⁶, W, A, X, Y and n are as defined in claim 1, reacting the corresponding compound of formula (I) wherein R¹ is CSNH₂ with an alkylating agent of formula (VI) or (VII):

 $Q-L^1$ (VI) Q_3O+BF_4 (VII)

wherein Q is as defined in formula (I) and L1 is a leaving group; or

(g) where R¹ is C(=N-Z)-S-Q, Z is as defined in claim 1 with the exclusion of H, and the other values are as defined in formula (I), alkylating, acylating or sulfonylating the corresponding compound of formula (I) wherein Z is H, with a compound of formula (VIII):

 $Z-L^2$ (VIII)

wherein Z is as defined in formula (I) with the exclusion of H, and L^2 is a leaving group; and

- 25 (h) if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof.
 - 7. A pesticidal composition comprising a compound of formula (I) or a pesticidally acceptable salt thereof as defined in any one of claims 1 to 5, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.

10

- 8. The use of a compound of formula (I) or a salt thereof according to any one of claims 1 to 5 or of a composition according to claim 7, for the preparation of a veterinary medicament.
- 5 9. The use of a compound of formula (I) or a salt thereof according to any one of claims 1 to 5 or of a composition according to claim 7, for the control of pests.
 - 10. A method for controlling pests at a locus which comprises applying thereto an effective amount of a compound of formula (I) or a salt thereof as claimed in any one of claims 1 to 5 or of a composition according to claim 7.