# 2021 Spring MAS 365 Chapter 2: Solutions of Equations in One Variable

Donghwan Kim

**KAIST** 

Mar/4,9,11,16,18, 2021

# Motivation: Estimating the Growth of Population

- ullet N(t): the number of the population at time t
- $\lambda$ : the constant birth rate of the population
- v: the constant immigration rate
- Assume that the population satisfies the differential equation

$$\frac{dN(t)}{dt} = \lambda N(t) + v.$$

The solution is

$$N(t) = N_0 e^{\lambda t} + \frac{v}{\lambda} (e^{\lambda t} - 1),$$

where  $N_0$  denotes the initial population.

Chapter 2

# Motivation: Estimating the Growth of Population (cont'd)

- Let N(0) = 1000, N(1) = 1564, and v = 435.
- Determine the birth rate  $\lambda$  of this population, we need to solve

$$1,564 = 1000e^{\lambda} + \frac{435}{\lambda}(e^{\lambda} - 1).$$



- 1 2.1 The Bisection Method
- 2 2.2 Fixed-Point Iteration
- 3 2.3 Newton's Method and Its Extensions
- 4 2.4 Error Analysis for Iterative Methods
- 5 2.5 Accelerating Convergence
- 6 2.6 Zeros of Polynomials and Müller's Method

# Root-Finding Problem

• Find a **root** (zero or solution) of f(x) = 0.

Chapter 2 3 / 8

## The Bisection Method

• The **bisection** (or binary-search) method is based on IVT.

### **Theorem** 1 (Intermediate Value Theorem

If  $f \in C[a,b]$  and K is any number between f(a) and f(b), then there exists a number c in (a,b) for which f(c)=K.



Chapter 2 4 /

# The Bisection Method (cont'd)

- Let  $f \in C[a,b]$  with f(a) and f(b) of opposite sign.
- By IVT, a number p exists in (a, b) with f(p) = 0.
- ullet Repeatedly halve (or bisect) subintervals of [a,b] and, at each step, locate the half containing p.

Chapter 2 5 /

# The Bisection Method (cont'd)

### **Bisection Method**

Initialize  $a_1 = a$  and  $b_1 = b$  with  $f(a) \cdot f(b) < 0$ .

For n = 1, 2, ...

Let  $p_n$  be the midpoint of  $[a_n, b_n]$ ; that is

$$p_n = \frac{a_n + b_n}{2}$$

- If  $f(p_n) = 0$ , then  $p = p_n$ .
- If  $f(p_n) \neq 0$ , then
  - if  $f(a_n)$  and  $f(p_n)$  have the same sign,  $p \in (p_n, b_n)$ . Set  $a_{n+1} = p_n$  and  $b_{n+1} = b_n$ .
  - otherwise,  $p \in (a_n, p_n)$ . Set  $a_{n+1} = a_n$  and  $b_{n+1} = p_n$ .

Chapter 2 6 /

# The Bisection Method (cont'd)



Chapter 2 7 / 80

# Stopping Criteria

- Set maximum number of iterations.
- Set a tolerance  $\epsilon > 0$  and stop when one of the followings is met:
- 1.  $|p_N p_{N-1}| < \epsilon$
- 2.  $\frac{|p_N p_{N-1}|}{|p_N|} < \epsilon, \quad p_N \neq 0$
- 3.  $|f(p_N)| < \epsilon$
- Q. Which one should we use?

Chapter 2 8 /

## Initialization of Bisection Method

- An interval [a, b] must be found with  $f(a) \cdot f(b) < 0$ .
- ullet At each step the length of the interval known to contain a zero of f is reduced by a factor of 2; hence the smaller the better.

Ex. 
$$f(x)=2x^3-x^2+x-1$$
, we have 
$$f(-4)\cdot f(4)<0\quad \text{and}\quad f(0)\cdot f(1)<0.$$

• How fast can the bisection method find the solution?

Chapter 2 9

# Convergence Rate of Bisection Method

### Theorem 2

Suppose that  $f \in C[a,b]$  and  $f(a) \cdot f(b) < 0$ . The Bisection method generates a sequence  $\{p_n\}_{n=1}^{\infty}$  approximating a zero p of f with

$$|p_n - p| \le \frac{b - a}{2^n}$$
, when  $n \ge 1$ .

Chapter 2 10 / 80

# Convergence Rate of Bisection Method (cont'd)

Ex. Determine the number of iterations necessary to solve  $f(x) = x^3 + 4x^2 - 10 = 0$  with accuracy  $10^{-3}$  using  $a_1 = 1$  and  $b_1 = 2$ .

Chapter 2 11 / 8

## Numerical Issues in Bisection Method

- Round-off error
- Overflow or underflow

Chapter 2 12 / 80

- 1 2.1 The Bisection Method
- 2 2.2 Fixed-Point Iteration
- 3 2.3 Newton's Method and Its Extensions
- 4 2.4 Error Analysis for Iterative Methods
- 5 2.5 Accelerating Convergence
- 6 2.6 Zeros of Polynomials and Müller's Method

# Fixed-Point Finding Problem

### Definition '

The number p is a **fixed point** for a given function g if g(p) = p.

- Fixed point
- Root

Chapter 2 13 / 80

# Fixed-Point Finding and Root-Finding Problems

ullet If the function g has a fixed point at p, then the function defined by

$$f(x) = x - g(x)$$

has a zero at p.

• Given f(p) = 0, we can define functions g with a fixed point at p in a number of ways, for example as

• Fixed-point form is easier to analyze. Certain fixed-point choices lead to powerful root-finding techniques.

Chapter 2 14 /

# Fixed-Point Finding Problem (cont'd)

Ex. Determine any fixed points of the function  $g(x) = x^2 - 2$ .

Chapter 2 15 / 80

# Existence and Uniqueness of A Fixed Point

## Theorem 3



- least one fixed point in [a, b].
- (b) (Uniqueness) If, in addition, g'(x) exists on (a,b) and a positive constant k < 1 exists with

$$|g'(x)| \le k$$
, for all  $x \in (a,b)$ ,

then there is exactly one fixed point in [a, b].

If  $f \in C[a,b]$  and f is differentiable on (a,b), then a number c in (a,b) exists with

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Chapter 2

# Existence and Uniqueness of A Fixed Point (cont'd)

Ex. Show that Theorem 3 does not ensure a unique fixed point of  $g(x)=3^{-x}$  on the interval [0,1], even though a unique fixed point on this interval exists.

Chapter 2 17 / 8

# Existence and Uniqueness of A Fixed Point (cont'd)

• Difficult to explicitly determine the fixed point of  $g(x) = 3^{-x}$ .

Chapter 2 18 / 80

• To approximate the fixed point of a function g, choose an initial  $p_0$ , and generate the sequence  $\{p_n\}_{n=0}^{\infty}$  by

$$p_n = g(p_{n-1}), \quad \text{for } n \ge 1.$$

• If the sequence converges to p, and g is continuous, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p),$$

and a solution to x=g(x) is obtained. This is called **fixed-point iteration**.

Chapter 2 19 /

$$p_n = g(p_{n-1}), \quad \text{for } n \ge 1.$$





Chapter 2 20 / 80

Ex. The equation  $x^3 + 4x^2 - 10 = 0$  has a unique root in [1,2]. Transform the equation to the fixed-point form x = g(x).

Chapter 2 21 / 80

 How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem?

Chapter 2 22 / 80

## Fixed-Point Theorem

### **Theorem** 5 (Fixed-Point Theorem)

Let  $g \in C[a,b]$  be such that  $g(x) \in [a,b]$ , for all x in [a,b]. Suppose, in addition, the g' exists on (a,b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all  $x \in (a, b)$ .

Then for any number  $p_0$  in [a,b], the sequence defined by

$$p_n = g(p_{n-1}), \quad n \ge 1,$$

converges to the unique fixed point p in [a, b].

Proof. Theorem 3 implies that a unique point p exists in [a,b] with g(p)=p. Since g maps [a,b] into itself, the sequence  $\{p_n\}_{n=0}^{\infty}$  is defined for all  $n\geq 0$ , and  $p_n\in [a,b]$  for all n. Then,

Chapter 2 23 /

• Can we get rid of (unknown)  $|p_0 - p|$ ?

## Corollary 1

If g satisfies the hypotheses of Fixed-Point Theorem, then bounds for the error involved in using  $p_n$  to approximate p are given by

$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$$

and

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|, \quad \text{for all} \quad n \ge 1.$$

Chapter 2 24 /

Proof. For  $n \geq 1$ , we have

$$|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})| \le k|p_n - p_{n-1}| \le \dots \le k^n|p_1 - p_0|.$$

Thus for m > n > 1,

$$|p_m - p_n| = |p_m - p_{m-1} + p_{m-1} - \dots + p_{n+1} - p_n|$$

$$\leq |p_m - p_{m-1}| + \dots + |p_{n+1} - p_n|$$

$$\leq k^{m-1}|p_1 - p_0| + k^{m-2}|p_1 - p_0| + \dots + k^n|p_1 - p_0|$$

$$= k^n|p_1 - p_0|(1 + k + k^2 + \dots + k^{m-n-1}).$$

Then,

$$|p - p_n| = \lim_{m \to \infty} |p_m - p_n| \le \lim_{m \to \infty} k^n |p_1 - p_0| \sum_{i=0}^{m-n-1} k^i$$

$$= k^n |p_1 - p_0| \sum_{i=0}^{\infty} k^i = \frac{k^n}{1-k} |p_1 - p_0|.$$

Ex. The equation  $x^3+4x^2-10=0$  has a unique root in [1,2]. Apply the fixed-point theorem to the fixed-point problem

$$x = g(x) := \left(\frac{10}{4+x}\right)^{\frac{1}{2}}.$$

Chapter 2 26 / 80

• (Recall) How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem?

Chapter 2 27 / 80

- 1 2.1 The Bisection Method
- 2 2.2 Fixed-Point Iteration
- 3 2.3 Newton's Method and Its Extensions
- 4 2.4 Error Analysis for Iterative Methods
- 5 2.5 Accelerating Convergence
- 6 2.6 Zeros of Polynomials and Müller's Method

## Newton's Method

• Newton introduced a method for finding a root of the equation

$$y^3 - 2y - 5 = 0,$$

which generates a sequence of polynomials.

Chapter 2 28 / 8

# Newton's Method (cont'd)

- Newton's method is based on Taylor polynomials.
- Suppose that  $f \in C^2[a,b]$ . Let  $p_0 \in [a,b]$  be an approximation to p such that  $f'(p_0) \neq 0$  and  $|p-p_0|$  is "small."
- Consider the first Taylor polynomial for f(x) expanded about  $p_0$  and evaluated at x = p.

$$0 = f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p))$$

where  $\xi(p)$  lies between p and  $p_0$ .

Chapter 2 29 /

# Newton's Method (cont'd])

ullet With the assumption that  $|p-p_0|$  is small, the term involving  $(p-p_0)^2$  is much smaller, so

$$0 \approx f(p_0) + (p - p_0)f'(p_0).$$

Solving for p gives

$$p \approx$$

30 / 80

# Newton's Method (cont'd)

 $\bullet$  Starting with  $p_0,$  Newton's method generates the sequence  $\{p_n\}_{n=0}^{\infty}$  by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \text{ for } n \ge 1.$$



• Newton's method is a fixed-point iteration with  $p_n = g(p_{n-1})$ .

Chapter 2 31 / 80

# Newton's Method (cont'd)

Ex. Approximate a root of  $f(x) = \cos x - x = 0$  using (a) a fixed-point method, and (b) Newton's method.

(a) 
$$p_n = \cos(p_{n-1})$$

(b) 
$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} = p_{n-1} - \frac{\cos p_{n-1} - p_{n-1}}{-\sin p_{n-1} - 1}$$

| n | $p_n$        |   |                 |
|---|--------------|---|-----------------|
| 0 | 0.7853981635 |   | Newton's Method |
| 1 | 0.7071067810 | 1 | Newton's Method |
| 2 | 0.7602445972 | n | $p_n$           |
| 3 | 0.7246674808 | 0 | 0.7853981635    |
| 4 | 0.7487198858 | 1 | 0.7395361337    |
| 5 | 0.7325608446 | 2 | 0.7390851781    |
| 6 | 0.7434642113 | 3 | 0.7390851332    |
| 7 | 0.7361282565 | 4 | 0.7390851332    |

Q. Is Newton's method effective for all cases?

Chapter 2 32 / 80

# Convergence of Newton's Method

#### Theorem 6

Let  $f \in C^2[a,b]$ . If  $p \in (a,b)$  is such that f(p)=0 and  $f'(p) \neq 0$ , then there exists a  $\delta > 0$  such that Newton's method generates a sequence  $\{p_n\}_{n=1}^{\infty}$  converging to p for any initial approximation  $p_0 \in [p-\delta,p+\delta]$ .

Proof. Consider Newton's method as a fixed-point iteration  $p_n = g(p_{n-1})$ , with

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Using the Fixed-Point Theorem, it is enough to find an interval  $[p-\delta,p+\delta]$  that g maps into itself and for which  $|g'(x)| \leq k$ , for all  $x \in (p-\delta,p+\delta)$ , where  $k \in (0,1)$ . (Details omitted.)

- Q. How can we determine  $\delta$ ?
- Q. How about the rate of convergence?

Chapter 2 33

### The Secant Method

- Newton's method needs to know f' at each  $p_n$ .
- Q. Can we replace f' by some approximation?

Chapter 2 34 / 80

## The Secant Method (cont'd)

• Starting with two initial  $p_0$  and  $p_1$ , the secant method uses the approximation for  $f'(p_{n-1})$  as

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}.$$



Chapter 2 35 / 80

- 1 2.1 The Bisection Method
- 2 2.2 Fixed-Point Iteration
- 3 2.3 Newton's Method and Its Extensions
- 4 2.4 Error Analysis for Iterative Methods
- 5 2.5 Accelerating Convergence
- 6 2.6 Zeros of Polynomials and Müller's Method

### Order of Convergence

• Let's study a new way of measuring how rapidly a sequence converges.

#### **Definition** 2

Suppose  $\{p_n\}_{n=0}^{\infty}$  is a sequence that converges to p, with  $p_n \neq p$  for all n. If positive constants  $\lambda$  and  $\alpha$  exist with

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda$$

then  $\{p_n\}_{n=0}^{\infty}$  converges to p of order  $\alpha$ , with asymptotic error constant  $\lambda$ .

- If  $\alpha = 1$  (and  $\lambda < 1$ ), the sequence is **linearly convergent**.
- If  $\alpha = 2$ , the sequence is quadratically convergent.
- If  $\alpha = 1$  and  $\lambda = 0$ , the sequence is **superlinearly convergent**.

Chapter 2 36

# Order of Convergence (cont'd)

Ex. Suppose that  $\{p_n\}_{n=0}^{\infty}$  is linearly convergent to 0 with

$$\lim_{n \to \infty} \frac{|p_{n+1}|}{|p_n|} = 0.5$$

and that  $\{\tilde{p}_n\}_{n=0}^{\infty}$  is quadratically convergent to 0 with

$$\lim_{n \to \infty} \frac{|\tilde{p}_{n+1}|}{|\tilde{p}_n|^2} = 0.5.$$

ullet For simplicity, assume that for each n we have

$$\frac{|p_{n+1}|}{|p_n|}\approx 0.5 \quad \text{and} \quad \frac{|\tilde{p}_{n+1}|}{|\tilde{p}_n|^2}\approx 0.5.$$

Then, compare the relative speed of convergence of the sequences to 0.

Chapter 2 37 / 80

# Order of Convergence (cont'd)

The linearly convergent scheme satisfies

$$|p_n - 0| = |p_n| \approx 0.5 |p_{n-1}| \approx (0.5)^2 |p_{n-2}| \approx \dots \approx (0.5)^n |p_0|$$

whereas the quadratically convergent scheme has

$$|\tilde{p}_n - 0| =$$

Chapter 2 38 / 80

# Order of Convergence (cont'd)

• For  $|p_0| = |\tilde{p}_0| = 1$  (why?), compare the relative speed of convergence.

| n | Linear Convergence<br>Sequence $\{p_n\}_{n=0}^{\infty}$<br>$(0.5)^n$ | Quadratic Convergence<br>Sequence $\{\tilde{p}_n\}_{n=0}^{\infty}$<br>$(0.5)^{2^n-1}$ |
|---|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1 | $5.0000 \times 10^{-1}$                                              | $5.0000 \times 10^{-1}$                                                               |
| 2 | $2.5000 \times 10^{-1}$                                              | $1.2500 \times 10^{-1}$                                                               |
| 3 | $1.2500 \times 10^{-1}$                                              | $7.8125 \times 10^{-3}$                                                               |
| 4 | $6.2500 \times 10^{-2}$                                              | $3.0518 \times 10^{-5}$                                                               |
| 5 | $3.1250 \times 10^{-2}$                                              | $4.6566 \times 10^{-10}$                                                              |
| 6 | $1.5625 \times 10^{-2}$                                              | $1.0842 \times 10^{-19}$                                                              |
| 7 | $7.8125 \times 10^{-3}$                                              | $5.8775 \times 10^{-39}$                                                              |

Q. What is the rate of convergence of an arbitrary fixed-point iteration, under our setting? How about Newton's method?

Chapter 2 39 /

### Linear Convergence of Fixed-Point Iteration

#### **Theorem** 7

Let  $g \in C[a,b]$  be such that  $g(x) \in [a,b]$ , for all  $x \in [a,b]$ . Suppose, in addition, that g' is continuous on (a,b) and a positive constant k < 1 exists with

$$|g'(x)| \le k$$
, for all  $x \in (a, b)$ .

If  $g'(p) \neq 0$ , then for any number  $p_0 \neq p$  in [a,b], the sequence

$$p_n = g(p_{n-1}), \quad \text{for } n \ge 1,$$

converges only **linearly** to the unique fixed point p in [a,b].

Proof. By Fixed-Point Theorem, the sequence converges to p. And ?

Q. Are there fixed-point methods with faster convergence? If yes, when?

Chapter 2 40 /

### Quadratic Convergence of Fixed-Point Iteration

#### Theorem 8

Let p be a solution of the equation x = g(x). Suppose that g'(p) = 0 and g'' is continuous with |g''(x)| < M on an open interval I containing p.

Then there exists a  $\delta > 0$  such that, for  $p_0 \in [p - \delta, p + \delta]$ , the sequence defined by  $p_n = g(p_{n-1})$ , when  $n \ge 1$ , converges at least quadratically to p.

Moreover, for sufficiently large values of n,

$$|p_{n+1} - p| < \frac{M}{2}|p_n - p|^2.$$

Proof. Choose k in (0,1) and  $\delta>0$  such that on the interval  $(p-\delta,p+\delta)$ , contained in I, we have  $|g'(x)|\leq k$ . Then, g maps  $[p-\delta,p+\delta]$  into itself. Using the Fixed-Point Theorem,  $\{p_n\}_{n=0}^\infty$  converges to p.

Chapter 2 41 /

## Quadratic Convergence of Fixed-Point Iteration (cont'd)

Proof. Expanding g(x) in a linear Taylor polynomial for  $x \in [p - \delta, p + \delta]$  gives

$$g(x) = g(p) + g'(p)(x - p) + \frac{g''(\xi)}{2}(x - p)^2,$$

where  $\xi$  lies between x and p. We then have, for  $x=p_n$ ,

$$p_{n+1} = g(p_n) = p + \frac{g''(\xi_n)}{2}(p_n - p)^2,$$

with  $\xi_n$  between  $p_n$  and p.

 $\{p_n\}_{n=0}^{\infty}$  converges to p, and so is  $\{\xi_n\}_{n=0}^{\infty}$ , and

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \lim_{n \to \infty} \frac{|g''(\xi_n)|}{2} = \frac{|g''(p)|}{2}.$$

Q. How can we construct a fixed-point iteration with quadratic convergence?

Chapter 2 42 / 80

### Constructing Fixed-Point Iteration w/ Quadratic Conv.

ullet Consider the sequence  $p_n=g(p_{n-1})$  for g in the form

$$g(x) = x - \phi(x)f(x)$$

where  $\phi$  is a differentiable function.

Q. Which  $\phi$  should we choose?

Chapter 2 43 / 80

### Multiple Roots

- Newton's method converges at least quadratically when  $f'(p) \neq 0$ .
- Q. What should we do when f'(p) = 0?

Chapter 2 44 / 80

#### **Definition** 3

A solution p of f(x)=0 is a **zero of multiplicity** m of f if for  $x\neq p$ , we can write  $f(x)=(x-p)^mq(x)$ , where  $\lim_{x\to p}q(x)\neq 0$ .

- If m=1, we say that f has a **simple zero**.
- Q. Why do we care about simple zero?

Chapter 2 45 / 8

#### Theorem 9

The function  $f \in C^1[a,b]$  has a **simple zero** at p in (a,b) if and only if f(p) = 0, but  $f'(p) \neq 0$ .

Proof. " $\Rightarrow$ ": Assume that f has a simple zero at p, then f(p)=0 and f(x)=(x-p)q(x), where  $\lim_{x\to p}q(x)\neq 0$ . Since  $f\in C^1[a,b]$ ,

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = \lim_{x \to p} q(x) \neq 0.$$

2 46 / 80

#### Theorem 10

The function  $f \in C^m[a,b]$  has a zero of multiplicity m at p in (a,b) if and only if  $0 = f(p) = f'(p) = f''(p) = \cdots = f^{(m-1)}(p)$ , but  $f^{(m)}(p) \neq 0$ .

• Newton's method will have a problem when we have a zero of multiplicity higher than 1. Which problem?

Chapter 2 47 /

Ex. Let  $f(x) = e^x - x - 1$ .

- (a) Show that f has a zero of multiplicity 2 at x=0.
- (b) Show that Newton's method with  $p_0=1$  converges to this zero but not quadratically.



Chapter 2 48 / 80

### Modified Newton's Method for Handling Multiple Roots

ullet Let p be a zero of multiplicity of m of f with

$$f(x) = (x - p)^m q(x).$$

Q. How can we make Newton's method to rapidly find p for m>1 with a quadratic convergence?

Chapter 2 49 /

### Modified Newton's Method for Handling Multiple Roots

Consider

$$\mu(x) = \frac{f(x)}{f'(x)} = \frac{(x-p)^m q(x)}{m(x-p)^{m-1} q(x) + (x-p)^m q'(x)}.$$

This can be rewritten as

$$\mu(x) = (x-p)\frac{q(x)}{mq(x) + (x-p)q'(x)},$$

which has p as a simple zero.

• Apply Newton's method to  $\mu(x)$  as

$$g(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}.$$

Q. Any drawback?

Chapter 2 50 / 80

## Modified Newton's Method (cont'd)

- Ex. Recall  $f(x) = e^x x 1$  that has a zero of multiplicity 2 at x = 0.
  - Newton's method:

$$g(x) = x - \frac{f(x)}{f'(x)}$$
$$p_1 = p_0 - \frac{f(p_0)}{f'(p_0)} = 1 - \frac{e - 2}{e - 1} \approx 0.58$$

• Modified Newton's method:

$$g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

$$p_1 = p_0 - \frac{f(p_0)f'(p_0)}{f'(p_0)^2 - f(p_0)f''(p_0)} = 1 - \frac{(e-2)(e-1)}{(e-1)^2 - (e-2)e} \approx -0.23$$

Chapter 2 51 / 80

- 1 2.1 The Bisection Method
- 2 2.2 Fixed-Point Iteration
- 3 2.3 Newton's Method and Its Extensions
- 4 2.4 Error Analysis for Iterative Methods
- **5** 2.5 Accelerating Convergence
- 6 2.6 Zeros of Polynomials and Müller's Method

## Accelerating Convergence

- Quadratic convergence is not easy to achieve.
- Aitken's  $\Delta^2$  method
- Steffensen's method: Modified Aitken's  $\Delta^2$  method

Chapter 2 52 / 80

### Aitken's $\Delta^2$ Method

Q. Given a sequence  $\{p_n\}_{n=0}^\infty$  that linearly converges to p, can we construct a sequence with faster convergence?

Chapter 2 53 / 80

• Further assume that the signs of  $p_n - p$ ,  $p_{n+1} - p$ , and  $p_{n+2} - p$  agree and that n is sufficiently large that

$$\frac{p_{n+1} - p}{p_n - p} \approx \frac{p_{n+2} - p}{p_{n+1} - p}.$$

We then have

$$(p_{n+1}-p)^2 \approx (p_{n+2}-p)(p_n-p),$$

and this can be rewritten as

$$(p_{n+2} + p_n - 2p_{n+1})p \approx p_{n+2}p_n - p_{n+1}^2$$
.

• We can further reformulate it as

$$p \approx \frac{p_{n+2}p_n - p_{n+1}^2}{p_{n+2} - 2p_{n+1} + p_n} = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}.$$

Chapter 2 54 / 80

ullet Aitken's  $\Delta^2$  method is based on the assumption that the sequence  $\{\hat{p}_n\}_{n=0}^{\infty}$ , defined by

$$\hat{p}_n = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n},$$

converges more rapidly to p than does the original sequence  $\{p_n\}_{n=0}^{\infty}$ .

Ex. The sequence  $\{p_n\}_{n=1}^{\infty}$ , where  $p_n = \cos(1/n)$ , converges linearly(?) to p=1. (Note: this sequence converges sublinearly with a rate  $O(1/n^2)$ .) Determine the first five terms of the sequence given by Aitken's  $\Delta^2$ method.

55 / 80

| n | $p_n$   | $\hat{p}_n$ |
|---|---------|-------------|
| 1 | 0.54030 | 0.96178     |
| 2 | 0.87758 | 0.98213     |
| 3 | 0.94496 | 0.98979     |
| 4 | 0.96891 | 0.99342     |
| 5 | 0.98007 | 0.99541     |
| 6 | 0.98614 |             |
| 7 | 0.98981 |             |

Chapter 2 56 / 80

Q. Why do we call it  $\Delta^2$  method?

#### **Definition** 4

For a given sequence  $\{p_n\}_{n=0}^{\infty}$ , the forward difference  $\Delta p_n$  is defined by

$$\Delta p_n = p_{n+1} - p_n$$
, for  $n \ge 0$ .

Higher powers of the operator  $\Delta$  are defined recursively by

$$\Delta^k p_n = \Delta(\Delta^{k-1} p_n), \quad \text{for } k > 2.$$

• Aitken's  $\Delta^2$  method is equivalent to

$$\hat{p}_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}, \quad \text{for } n \ge 0.$$

Chapter 2 57 /

#### Theorem 10

Suppose  $\{p_n\}_{n=0}^{\infty}$  is a sequence that converges linearly to the limit p and that

$$\lim_{n \to \infty} \frac{p_{n+1} - p}{p_n - p} < 1.$$

Then the Aitken's  $\Delta^2$  sequence  $\{\hat{p}_n\}_{n=0}^{\infty}$  converges to p faster than  $\{p_n\}_{n=0}^{\infty}$  in the sense that

$$\lim_{n \to \infty} \frac{\hat{p}_n - p}{p_n - p} = 0.$$

Chapter 2 58 /

### Steffensen's Method

• Recall Aitken's  $\Delta^2$  method:

$$\hat{p}_n = \{\Delta^2\}(p_n) = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n} = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

| Fixed-point iteration | Aitken's $\Delta^2$ method      |  |
|-----------------------|---------------------------------|--|
| $p_0$                 |                                 |  |
| $p_1 = g(p_0)$        |                                 |  |
| $p_2 = g(p_1)$        | $\hat{p}_0 = \{\Delta^2\}(p_0)$ |  |
| $p_3 = g(p_2)$        | $\hat{p}_1 = \{\Delta^2\}(p_1)$ |  |
| :                     | :                               |  |
| •                     | •                               |  |

Q. Can we do better?

Chapter 2 59 / 80

## Steffensen's Method (cont'd)

• Apply fixed-point iteration to  $\hat{p}_0$  instead of  $p_2$ .

| Fixed-point    | Aitken's                        | Fixed-point       | Steffensen's                    |
|----------------|---------------------------------|-------------------|---------------------------------|
| $p_0$          |                                 | $p_0$             |                                 |
| $p_1 = g(p_0)$ |                                 | $p_1 = g(p_0)$    |                                 |
| $p_2 = g(p_1)$ | $\hat{p}_0 = \{\Delta^2\}(p_0)$ | $p_2 = g(p_1)$    | $\hat{p}_0 = \{\Delta^2\}(p_0)$ |
| $p_3 = g(p_2)$ | $\hat{p}_1 = \{\Delta^2\}(p_1)$ | $p_3 = \hat{p}_0$ |                                 |
|                |                                 | $p_4 = g(p_3)$    |                                 |
| :              | :                               | $p_5 = g(p_4)$    | $\hat{p}_1 = \{\Delta^2\}(p_3)$ |
|                |                                 | :                 | :                               |
|                |                                 |                   |                                 |

#### Theorem 11

Suppose that x=g(x) has the solution p with  $g'(p) \neq 1$ . If there exists a  $\delta>0$  such that  $g\in C^3[p-\delta,p+\delta]$ , then Steffensen's method gives quadratic convergence for any  $p_0\in [p-\delta,p+\delta]$ .

Chapter 2 60 /

# Steffensen's Method (cont'd)

Steffensen's method:

$$\hat{p}_n = \hat{p}_{n-1} - \frac{(g(\hat{p}_{n-1}) - \hat{p}_{n-1})^2}{g(g(\hat{p}_{n-1})) - 2g(\hat{p}_{n-1}) + \hat{p}_{n-1}}$$

can be interpretated as a fixed-point iteration similar to Newton's method.

Chapter 2 61 / 80

# Steffensen's Method (cont'd)

• Consider a problem f(x) = g(x) - x and its fixed-point iteration in a form, for some h, similar to Newton's method:

$$s(x) = x - \frac{f(x)}{\frac{f(x+h) - f(x)}{h}}.$$

• Let h = , then we have

$$s(x) =$$

Chapter 2 62 / 80

- 1 2.1 The Bisection Method
- 2 2.2 Fixed-Point Iteration
- 3 2.3 Newton's Method and Its Extensions
- 4 2.4 Error Analysis for Iterative Methods
- **5** 2.5 Accelerating Convergence
- 6 2.6 Zeros of Polynomials and Müller's Method

# Algebraic Polynomials

#### **Definition** 5

A polynomial of degree n has the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

where the  $a_i$ 's, called the **coefficients** of P, are constants and  $a_n \neq 0$ .

- Q. Why polynomials?
- Q. Is there any benefit working on polynomials?

Chapter 2 63 / 80

# Algebraic Polynomials (cont'd)

#### Theorem 12

If P(x) is a polynomial of degree  $n \ge 1$  with real or complex coefficients, then P(x) = 0 has at least one (possibly complex) root.

Chapter 2 64 / 80

# Algebraic Polynomials (cont'd)

### **Corollary** 2

If P(x) is a polynomial of degree  $n \geq 1$  with real or complex coefficients, then there exist unique constants  $x_1, x_2, \ldots, x_k$ , possibly complex, and unique positive integers  $m_1, m_2, \ldots, m_k$ , such that  $\sum_{i=1}^k m_i = n$  and

$$P(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_k)^{m_k}.$$

### **Corollary** 3

Let P(x) and Q(x) be polynomials of degree at most n. If  $x_1, x_2, \ldots, x_k$ , with k > n, are distinct numbers with  $P(x_i) = Q(x_i)$  for  $i = 1, 2, \ldots, k$ , then P(x) = Q(x) for all values of x.

• In other words, if two polynomials of degree n agree at least (n+1) distinct points, then they must be the same.

Chapter 2 65 / 80

#### Horner's Method

Q. How can we compute P(x) and P'(x) efficiently?

Chapter 2 66 / 80

### Horner's Method (cont'd)

#### **Theorem** 13 (Horner's Method or Synthetic Division)

Let  $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ . Define  $b_n = a_n$  and

$$b_k = a_k + b_{k+1}x_0$$
, for  $k = n - 1, n - 2, \dots, 1, 0$ .

Then  $b_0 = P(x_0)$ . Moreover, if

$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1.$$

then

$$P(x) = (x - x_0)Q(x) + b_0.$$

- Q. What is the number of arithmetic operations needed to compute  $P(x_0)$ ?
- Q. When does  $x_0$  becomes a root of P(x)?
- Q. What do we additionally have from using the Horner's method?

Chapter 2 67

## Horner's Method (cont'd)

• Since  $P(x) = (x - x_0)Q(x) + b_0$ , where

$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1,$$

differentiating with respect to x gives

$$P'(x) = Q(x) + (x - x_0)Q'(x)$$
 and  $P'(x_0) = Q(x_0)$ .

• Computing P(x) and P'(x) in this efficient way will be useful in Newton's method.

Chapter 2 68 / 80

#### Horner's Method (cont'd)

Ex. Use Horner's method to evaluate  $P(x) = 2x^4 - 3x^2 + 3x - 4$  at  $x_0 = -2$ .

Chapter 2 69 / 80

#### Newton's Method Using Horner's Method

Ex. Find an approximation to a zero of  $P(x) = 2x^4 - 3x^2 + 3x - 4$  using Newton's method with  $x_0 = -2$  and synthetic division to evaluate  $P(x_0)$  and  $P'(x_0)$ .

Chapter 2 70 / 8

### Deflation: Repeating Newton's Method

• The Nth iterate,  $x_N$ , of Newton's method is an approximate zero of P, so

$$P(x) = (x - x_N)Q(x) + b_0 = (x - x_N)Q(x) + P(x_N) \approx (x - x_N)Q(x).$$

• Let  $\hat{x}_1 = x_N$  and  $Q_1(x) \equiv Q(x)$ , i.e.

$$P(x) \approx (x - \hat{x}_1)Q_1(x).$$

• Apply Newton's method to  $Q_1(x)$ , and so on.

Chapter 2 71 / 80

### Deflation: Repeating Newton's Method (cont'd)

• Newton's method is used on the reduced polynomial  $Q_k(x)$ , where

$$P(x) \approx (x - \hat{x}_1)(x - \hat{x}_2) \cdots (x - \hat{x}_k)Q_k(x).$$

So, a zero of  $Q_k(x)$  may not generally approximate a zero of P(x) well, especially as k increases.

• One could improve the approximations by applying Newton's method to the original P(x), starting from  $\hat{x}_k$ .

Chapter 2 72 / 80

#### Complex Zeros

Ex. Consider the polynomial  $f(x) = x^4 - 3x^3 + x^2 + x + 1$ .



Q. How can we find complex zeros?

Chapter 2 73 / 80

## Complex Zeros (cont'd)

#### Theorem 14

If x=a+bi is a complex zero of multiplicity m of the polynomial P(x) with real coefficients, then  $\bar{z}=a-bi$  is also a zero of multiplicity m of the polynomial P(x), and  $(x^2-2ax+a^2+b^2)^m$  is a factor of P(x).

Chapter 2 74 / 80

#### Complex Zeros: Müller's Method

- Recall: Given  $p_0$  and  $p_1$ , Secant method determines  $p_2$  as the intersection of the x-axis with the line through  $(p_0, f(p_0))$  and  $(p_1, f(p_1))$ .
- Müller method: Given  $p_0$ ,  $p_1$  and  $p_2$ , determines  $p_3$  by considering the intersection of the x-axis with the parabola through  $(p_0, f(p_0))$ ,  $(p_1, f(p_1))$  and  $(p_2, f(p_2))$ .



Chapter 2 75 / 80

• In specific, consider the quadratic polynomial

$$P(x) = a(x - p_2)^2 + b(x - p_2) + c$$

that passes through  $(p_0, f(p_0))$ ,  $(p_1, f(p_1))$  and  $(p_2, f(p_2))$ , where the constants a, b and c by fitting

$$f(p_0) = a(p_0 - p_2)^2 + b(p_0 - p_2) + c,$$
  

$$f(p_1) = a(p_1 - p_2)^2 + b(p_1 - p_2) + c,$$
  

$$f(p_2) = c.$$

Chapter 2 76 / 80

• To determine  $p_3$ , we apply the quadratic formula to P(x) = 0, that is

$$p_3 - p_2 = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}},$$

instead of  $p_3 - p_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ .

Chapter 2 77 / 80

• Among two choices, Müller's method chooses the one closer to  $p_2$ :

$$p_3 = p_2 - \frac{2c}{b + \operatorname{sgn}(b)\sqrt{b^2 - 4ac}}.$$

• Since  $p_n$  can be complex, so is a, b and c. Therefore, the use of  $\mathrm{sgn}(b)$  in the textbook is incorrect, which does not consider the fact that b can be complex. Note that the signum function is defined as

$$\operatorname{sgn}(b) = \begin{cases} b/|b|, & b \neq 0, \\ 0, & b = 0. \end{cases}$$

Chapter 2 78 / 80

Ex. Consider the polynomial  $f(x) = x^4 - 3x^3 + x^2 + x + 1$ .



Chapter 2 79 / 8

| $p_0 = 0.5, p_1 = -0.5, p_2 = 0$ |                    |                       |          |                      |           |  |
|----------------------------------|--------------------|-----------------------|----------|----------------------|-----------|--|
| i                                |                    | $p_i$                 |          | $f(p_i)$             |           |  |
| 3                                | -0.1000            | 000 + 0.888819i       | -0.01120 | 0000 + 3.01          | 4875548i  |  |
| 4                                | -0.4921            | 46 + 0.447031i        | -0.169   | 1201 - 0.73          | 67331502i |  |
| 5                                | -0.3522            | 226 + 0.484132i       | -0.1786  | 6004 + 0.01          | 81872213i |  |
| 6                                | -0.3402            | 229 + 0.443036i       | 0.0119   | 7670 — 0.01          | 05562185i |  |
| 7                                | -0.3390            | 95 + 0.446656i        | -0.0010  | 0.000 + 0.000        | 0387261i  |  |
| 8                                | -0.3390            | 93 + 0.446630i        | 0.00     | 00.0 + 0.00          | 00000i    |  |
| 9                                | -0.3390            | -0.339093 + 0.446630i |          | 0.000000 + 0.000000i |           |  |
|                                  |                    |                       |          |                      |           |  |
| $p_0$ =                          | $= 0.5, p_1 = 1.0$ |                       | $p_0 =$  | 1.5, $p_1 = 2$ .     |           |  |
| i                                | $p_i$              | $f(p_i)$              | i        | $p_i$                | $f(p_i)$  |  |
| 3                                | 1.40637            | -0.04851              | 3        | 2.24733              | -0.24507  |  |
| 4                                | 1.38878            | 0.00174               | 4        | 2.28652              | -0.01446  |  |
| 5                                | 1.38939            | 0.00000               | 5        | 2.28878              | -0.00012  |  |
| 6                                | 1.38939            | 0.00000               | 6        | 2.28880              | 0.00000   |  |
|                                  |                    |                       | 7        | 2.28879              | 0.00000   |  |

Chapter 2 80 / 8