LSTM原理

长短期记忆网络(Long Short Term Memory,简称LSTM)模型,本质上是一种特殊的循环神经网络(Recurrent Neural Network,简称RNN)。Istm模型在rnn模型的基础上通过增加门限(gate)来解决rnn短期记忆的问题,使得rnn能够有效利用长距离的序列信息。

lstm在rnn的基础上增加了三个逻辑控制单元

- 输入门限 (input gate)
- 输出门限 (output gate)
- 遗忘门限 (forget gate)

这三个逻辑控制单元各自连接到了一个乘法元件上(如下图所示),通过设定神经网络的记忆单元与其他部分的连接权重,从而控制数据流的输入、输出以及细胞单元(memory cell)的状态, 具体概念图 如下

上图中具体部件的描述如下:

- input gate: 控制信息是否流入,记为 i_t
- forget gate : 控制上一时刻的memory cell的信息是否积累到当前时刻的memory cell中, 记为 f_t
- output gate: 控制当前时刻的memory cell的信息是否流入当前的隐藏状态 h_t 中,记为 o_t
- cell:记忆单元,表示神经元状态的记忆,使得lstm单元具有保存、读取、重置和更新长距离历史信息的能力,记为 c_t

在t时刻, lstm模型的公式定义如下:

$$egin{aligned} f_t &= ext{sigmoid}(W_f \cdot [h_{t-1}, x_t] + b_f) \ i_t &= ext{sigmoid}(W_i \cdot [h_{t-1}, x_t] + b_i) \ o_t &= ext{sigmoid}(W_o \cdot [h_{t-1}, x_t] + b_o) \ ilde{c}_t &= ext{tanh}(W_c \cdot [h_{t-1}, x_t] + b_c) \ c_t &= f_t imes c_{t-1} + i_t * ilde{c}_t \ h_t &= o_t imes ext{tanh}(c_t) \end{aligned}$$

根据公式描述,Istm的细节图如下。在Istm神经网络的训练过程中,首先将t时刻的数据特征输入至输入层,经过激励函数输出结果;然后将输出结果、t-1时刻的隐藏层输出和t-1时刻cell单元存储的信息输入Istm结构的节点中,通过input gate、output gate、forget gate和cell单元的处理,输出数据到下一隐藏层或输出层,输出Istm结构节点的结果到输出层神经元,计算反向传播误差,并更新各个权值。

lstm细节图如下

数据处理及特征工程(以黄金为例)

1. 原始的数据表如下 (gold_select.csv) , 1826个样本, 16个列

去掉date之后如下(1826x15)其中USD(PM)为预测目标,剩下的14个作为特征

	USD (PM)	SMA20	MACDhist	EMA26	MOM	HT_DCPERIOD	HT_DCPHASE	SINE	LEADSINE	INPHASE	QUADRATURE	PPO	TRIX	profit	Volatility
0	1324.60	606.3935	3.334620	608.693333	-22.77	15.646696	205.946888	-0.437538	-0.945216	4.223394	0.904014	0.047648	0.336072	0.000000	0.007207
1	1324.60	606.3935	3.334620	608.693333	-22.77	15.646696	205.946888	-0.437538	-0.945216	4.223394	0.904014	0.047648	0.336072	-0.000717	0.007110
2	1323.65	606.3935	3.334620	608.693333	-22.77	15.646696	205.946888	-0.437538	-0.945216	4.223394	0.904014	0.047648	0.336072	-0.001435	0.007017
3	1321.75	606.3935	3.334620	608.693333	-22.77	15.646696	205.946888	-0.437538	-0.945216	4.223394	0.904014	0.047648	0.336072	-0.008284	0.006928
4	1310.80	606.3935	3.334620	608.693333	-22.77	15.646696	205.946888	-0.437538	-0.945216	4.223394	0.904014	0.047648	0.336072	-0.001869	0.006973
1821	1821.60	48394.7485	-48.314382	49145.729833	4806.26	18.557396	245.796542	-0.912095	-0.934847	-1167.524697	692.399758	2.058184	0.542504	-0.010677	0.006789
1822	1802.15	48796.1900	82.718963	49689.063705	3620.54	18.325259	112.064687	0.926760	0.389692	-53.250602	2888.988696	2.123373	0.547589	-0.008962	0.006930
1823	1786.00	48897.7555	-230.615795	49246.003135	-2088.48	18.137593	125.602108	0.813079	0.163290	1186.945742	2516.770176	1.902319	0.549024	0.001260	0.006992
1824	1788.25	48864.9420	-477.661305	48758.676499	-2728.40	18.054042	145.729270	0.563104	-0.186169	1893.287141	1481.972548	1.530244	0.546846	0.003551	0.006903
1825	1794.60	48716.9890	-603.954561	48390.986268	-706.08	18.051969	177.459144	0.044332	-0.675064	2041.319105	-332.983484	1.153146	0.541811	0.003551	0.006903
1026	1826 rows × 15 columns														
To 20 TOWS × 13 CORUMNS															

本次任务中, 我们利用Istm将**时间序列预测问题**转化为了**监督学习问题**

我们知道,时间序列预测的本质主要是根据前T个时刻的观测数据(特征)来预测处第T+1个时刻的时间序列的值,这就可以转化为机器学习中的监督学习问题了,即利用之前的样本训练出一个预测模型,对新的输入样本进行预测,具体原理如下

我们根据超参数 n_i n(滞后期数),截取前 n_i n 个时刻的**所有列(包括预测目标)**,作为第 t 个时刻的特征,比如本次任务,我们的 n_i n = 1,所以我们提取前 1个 时刻的特征,作为第 t 个时刻的特征,最后提取的数据表如下

如下图所示,第t个时刻的样本具有16列,其中最后一列 Y(t)为第t个时刻样本的**预测目标**, 前面15列为**前一个样本的所有列**

当然,我们的模型可以预测未来多个时刻的值,我们也能提取多个前面时刻的所有列作为特征,具体的公式如下

n_vars * n_in + n_out

加入我们要预测未来一步,且提取前一个时刻的所有列,且我们有(1个预测目标+14个特征 = 15)列的数据表

计算过程为 15x1+1 = 16

我们本次的数据为 1825x16, 要转换为(样本个数,滞后期数,特征个数)的维度来作为Istm的输入

于是数据表 (1825x16) 转化为 (1825, 1, 15) 的data

data再按照设定(前999天观望那个,第一千天投资)为训练集(999,1,15)和测试集(826,1,15)

ok, 最终的数据为:

- train X (999,1,15)
- test_X (826, 1, 15)

模型的结构

(还会更新)

本次的神经网络结构为 120个隐藏层节点的lstm层, 1个全连接层的神经网络

· -		
Layer (type)	Output Shape	Param #
1stm_6 (LSTM)	(None, 120)	65280
dense_6 (Dense)	(None, 1)	121
Total params: 65,401 Trainable params: 65,401 Non-trainable params: 0		

模型的超参数

n_in:滞后期数n_out:超前预测数

• n_vars:数据表的特征个数

• n_neuron: lstm的隐藏层神经元个数

• n_batch: 批次大小, 也就是一次训练选取的样本个数

• n_epoch:模型在整个训练数据集中的工作次数

• repeats:训练的模型个数(我们采取训练国歌模型取平均的方法,增加模型的稳定性)

```
n_in = 1 # 滞后期数
n_out = 1 # 超前预测数
n_vars = 15 # 特征个数
n_neuron = 120 # lstm的隐藏层神经元个数
n_batch = 72
n_epoch = 100
repeats = 5 # lstm重复训练的次数
```

模型的训练

采用 n_batch的批次大小,n_epoch的工作次数,训练 repeats个模型,模型之间求均值和std,下图为模型的loss值下降过程,虚色为置信区间,实线为下降趋势

拟合效果

下图为模型对测试集的拟合效果

