Unidad 2: Lógica Álgebra y Geometría Analítica I (R-111) Licenciatura en Ciencias de la Computación

Iker M. Canut 2020

1. Definiciones

Las **proposiciones** son oraciones declarativas que tienen un valor de verdad (V o F). Los **conectores lógicos** son operadores que sirven para formar proposiciones nuevas, a partir de proposiciones dadas:

1. NEGACIÓN:

$\begin{array}{c|c} p & \neg p \\ \hline 0 & 1 \\ 1 & 0 \end{array}$

2. CONJUNCIÓN:

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

3. DISYUNCIÓN:

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

DISY. EXCLUSIVA:

p	q	$p\underline{\lor}q$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

4. IMPLICACIÓN:

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

5. BICONDICIONAL:

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

p implica q = si p entonces q = p es suficiente para q = p solo si q = q es necesario para p. p si y solo si q = p es necesario y suficiente para q.

Las **proposiciones primitivas** son proposiciones que no se pueden formar a partir de otras proposiciones (utilizando conectores lógicos).

Una proposición compuesta es una **tautología** (T_0) si es verdadera para todas las asignaciones de verdad de las proposiciones que la componen. Análogamente, se define la **contradicción** (F_0) , si es falsa para todas las asignaciones posibles.

Dos proposiciones S_1 y S_2 son **lógicamente equivalentes**, y notamos $S_1 \Leftrightarrow S_2$ si tienen las mismas tablas de verdad. Si $S_1 \Leftrightarrow S_2$, entonces $S_1 \leftrightarrow S_2$ es una tautología.

p	q	$p \rightarrow q$	$\neg p \vee q$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

p	q	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \land (q \to p)$	$p \leftrightarrow q$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	1	1	1	1

2. Leyes de la Lógica

Doble negación:	$\neg(\neg p) \Leftrightarrow p$	
De Morgan:	$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$
Conmutativa:	$p \lor q \Leftrightarrow q \lor p$	$p \wedge q \Leftrightarrow q \wedge p$
Asociativa:	$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$	$p \land (q \land r) \Leftrightarrow (p \land q) \land r$
Distributiva:	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
Idempotente:	$p \lor p \Leftrightarrow p$	$p \wedge p \Leftrightarrow p$
Inversa:	$p \lor \neg p \Leftrightarrow T_0$	$p \land \neg p \Leftrightarrow F_0$
Neutro:	$p \vee F_0 \Leftrightarrow p$	$p \wedge T_0 \Leftrightarrow p$
Dominación:	$p \vee T_0 \Leftrightarrow T_0$	$p \wedge F_0 \Leftrightarrow F_0$
Absorción:	$p \lor (p \land q) \Leftrightarrow p$	$p \land (p \lor q) \Leftrightarrow p$
	$p \vee (\neg p \wedge q) \Leftrightarrow p \vee q$	$p \land (\neg p \lor q) \Leftrightarrow p \land q$

- \bullet $S_1 \Leftrightarrow S_1$
- $S_1 \Leftrightarrow S_2$ si y solo si $S_2 \Leftrightarrow S_1$
- $S_1 \Leftrightarrow S_2$ y también $S_2 \Leftrightarrow S_3$, entonces $S_1 \Leftrightarrow S_3$

2.1. Reglas de Sustitución

Supongamos que una proposición compuesta P es una tautología y que p es una proposición primitiva que aparece en P. Si reempazamos cada ocurrencia de p por la proposición q, entonces la proposición resultante también es una tautología.

Sea P una proposición compuesta y p una proposición arbitraria que aparece en P. Sea q una proposición tal que $p \Leftrightarrow q$, supongamos que reemplazamos en P una o más ocurrencias de p por q, y llamamos P' a la proposición obtenida. Luego, $P \Leftrightarrow P'$.

2.2. Proposiciones Relacionadas con $p \rightarrow q$

• Recíproca: $q \rightarrow p$

■ Inversa: $\neg p \rightarrow \neg q$

■ Contrarrecíproca: $\neg q \rightarrow \neg p$

Sea S una proposición que no contiene conectivas lógicas distintas de \land y \lor , entonces el **dual** de S, notado S^d , es la proposición que se obtiene al reemplazar cada \land por \lor , cada T_0 por F_0 , y viceversa. Si $(S \Leftrightarrow T)$ entonces $(S^d \Leftrightarrow T^d)$

3. Cuantificadores

Una **proposición abierta** es una expresión que contiene variables, que al ser sustituidas por valores determinados, hace que la expresión se convierta en una proposición.

Cuantificador Existencial: $\exists x \ p(x)$, existe x tal que p(x) es V. Cuantificador Universal: $\forall x \ p(x)$, para todo x, p(x) es V.

Si p(x,y) es una proposición abierta en dos variables, $\forall x \forall y \ p(x,y) \Leftrightarrow \forall y \forall x \ p(x,y)$, con lo que se simplifica a $\forall x,y \ p(x,y)$.

3.1. Cuantificadores Implicitos

Sean p(x) y q(x) propositiones abiertas,

- p(x) es logicamente equivalente a q(x) cuando el bicondicional $p(a) \leftrightarrow q(a)$ es verdadero para cada a en el universo dado: $\forall x[p(x) \Leftrightarrow q(x)]$.
- p(x) implica logicamente q(x) si $p(a) \rightarrow q(a)$ es verdadera para cada a en el universo dado: $\forall x[p(x) \Rightarrow q(x)].$
- Dada la proposición $\forall x[p(x) \to q(x)]$ podemos definir la **contrapositiva** $\forall x[\neg q(x) \to \neg p(x)]$, la **recíproca** $\forall x[q(x) \to p(x)]$ y la **inversa** $\forall x[\neg p(x) \to \neg q(x)]$.

3.2. Equivalencias e Implicaciones Lógicas para Proposiciones Cuantificadas

$$\exists x [p(x) \land q(x)] \Rightarrow [\exists x \ p(x) \land \exists x \ q(x)]$$
$$\exists x [p(x) \lor q(x)] \Leftrightarrow [\exists x \ p(x) \lor \exists x \ q(x)]$$
$$\forall x [p(x) \land q(x)] \Leftrightarrow [\forall x \ p(x) \land \forall x \ q(x)]$$
$$\forall x [p(x) \lor q(x)] \Leftarrow [\forall x \ p(x) \lor \forall x \ q(x)]$$

3

3.3. Negación de Cuantificadores

$$\neg [\exists x \ p(x)] \Leftrightarrow \forall x \ \neg p(x) \qquad \qquad \neg [\forall x \ p(x)] \Leftrightarrow \exists x \ \neg p(x)$$