Упражнение

Имитационное моделирование

Александрова Ульяна Вадимовна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	27

Список иллюстраций

4.1	A=B=1, a=3, b=2, delta=pi/2. Фигура Лиссажу	8
4.2	delta = 0. Прямая	9
4.3	delta = pi/4. Эллиипс под углом 45 градусов	10
4.4	delta = pi/2. Эллипс	11
4.5	delta = 3pi/4. Эллипс под углом -45 градусов	12
4.6	delta = pi/4. Парабола	13
4.7	delta = pi/2. Лемниската Бернулли	14
4.8	delta = 3pi/4. Перевернутая парабола	15
4.9	delta = 3pi/4. Лемниската Бернулли	16
4.10) delta = pi/4. Кривая	17
4.11	. delta = 0. Синусоида	18
4.12	2 delta = pi/2. Прямая	19
4.13	3 delta = 3pi/4. Прямая	20
4.14	delta = pi. Синусоида	21
4.15	6 delta = pi/4	22
4.16	delta = 0	23
4.17	' delta = pi/2	24
4.18	3 delta = 3pi/4	25
4.19	delta = pi	26

Список таблиц

1 Цель работы

Целью работы является ознакомление с базовыми инструментами моделирования в sci-lab и xcos.

2 Задание

Постройте с помощью хсоз фигуры Лиссажу со следующими параметрами:

```
A) A=B=1, a=2, b=2, delta=0; pi/4; pi/2; 3 pi/4; pi;
```

- Б) A=B=1, a=2, b=4, delta=0; pi/4; pi/2; 3 pi/4; pi;
- B) A=B=1, a=2, b=6, delta=0; pi/4; pi/2; 3 pi/4; pi;
- Γ) A=B=1, a=2, b=3, delta=0; pi/4; pi/2; 3 pi/4; pi;

3 Теоретическое введение

Scilab — система компьютерной математики, предназначенная для решения вычислительных задач.

Программа хсоз является приложением к пакету Scilab. Для вызова окна хсоз необходимо в меню основного окна Scilab выбрать Инструменты, Визуальное моделирование хсоз.

При моделировании с использованием хсоз реализуется принцип визуального программирования, в соответствии с которым пользователь на экране из палитры блоков создаёт модель и осуществляет расчёты.

- CLOCK_c запуск часов модельного времени;
- GENSIN_f блок генератора синусоидального сигнала;
- CANIMXY анимированное регистрирующее устройство для построения графика типа y = f(x);
- $TEXT_f$ задаёт текст примечаний.

4 Выполнение лабораторной работы

График для примера (рис. 4.1):

Рис. 4.1: A=B=1, a=3, b=2, delta=pi/2. Фигура Лиссажу

Графики для пункта А (рис. 4.2) (рис. 4.3) (рис. 4.4) (рис. 4.5):

Рис. 4.2: delta = 0. Прямая

Рис. 4.3: delta = pi/4. Эллиипс под углом 45 градусов

Рис. 4.4: delta = pi/2. Эллипс

Рис. 4.5: delta = 3pi/4. Эллипс под углом -45 градусов

Графики для пункта Б (рис. 4.6) (рис. 4.7) (рис. 4.8) (рис. 4.9):

Рис. 4.6: delta = pi/4. Парабола

Рис. 4.7: delta = pi/2. Лемниската Бернулли

Рис. 4.8: delta = 3pi/4. Перевернутая парабола

Рис. 4.9: delta = 3pi/4. Лемниската Бернулли

Графики для пункта В (рис. 4.10) (рис. 4.11) (рис. 4.12) (рис. 4.13) (рис. 4.14):

Рис. 4.10: delta = pi/4. Кривая

Рис. 4.11: delta = 0. Синусоида

Рис. 4.12: delta = pi/2. Прямая

Рис. 4.13: delta = 3pi/4. Прямая

Рис. 4.14: delta = pi. Синусоида

Графики для пункта 7 (рис. 4.15) (рис. 4.16) (рис. 4.17) (рис. 4.18) (рис. 4.19):

Рис. 4.15: delta = pi/4

Рис. 4.16: delta = 0

Рис. 4.17: delta = pi/2

Рис. 4.18: delta = 3pi/4

Рис. 4.19: delta = pi

5 Выводы

Я научилась моделировать кривые Лиссажу с разными параметрами.