



# Searching

• The algorithmic process of finding a particular item in a collection of items.

- Use-cases:
  - Membership test (is this item present?)
  - Return item/position if found
- We will focus on membership test
  - returning the item if found, is a small modification

## The Python way

- A lot algorithms we will (tediously) manually build from the ground up, are already available in the basic Python or in a Python library.
- E.g. (code visualization)

```
In [2]: 10 in [1, 2, 3, 4]
Out[2]: False
In [3]: 4 in [1,2,3,4]
Out[3]: True
```

- But using them defeats the purpose of the course.
  - So, we will skip the Tardis and take the long route...
  - We will build (and analyze) search functions from the ground up



### Search in singly linked lists



- Find the first element with key k in list L by a simple linear search
  - If found, return a pointer to this element
  - If no object with key k appears in the list, then return NIL
- Iterator <u>pattern</u>
- Complexity O(n)
- Example
- Find k=3 in the list below

```
SEARCH(L,k)
i := L.head
while i != NIL and i.key != k
i := i.next
return i
```



### Search in binary search trees

- Search for a node with a given key in a BST
  - Given a pointer to the root of the tree node and a key k, return a pointer to a node with key k if one exists; return NIL otherwise
- Recursive definition
  - Start with searching at the root node
  - If k is smaller than node.key, continue the search in the left subtree of node
  - The search continues in the right subtree otherwise



```
SEARCH(node, key)
  if node==NIL or k==node.key
    return node
  if k < node.key
    return SEARCH(node.left,key)
  else
    return SEARCH(node.right,key)</pre>
```

- A recursive algorithm works well here, because 'the data structure itself is recursive
  - Complexity: O(h); can be O(log n) if balanced

The correctness of the procedure follows from the binary-search-tree property

# The Sequential Search

An excuse for understanding the "incremental approach" to algorithm design

# The Sequential Search

An excuse for understanding "incremental approach" to algorithm design



This is the search you would do when looking for "name against number" in a telephone book.

Items in a sequence, no order to them.

You start at one end, go all the way to the other (or until you find the item)



Let's code!



Code visualization for self-study

# Sequential Search

- "Naïve" approach:
  - Keep searching "myopically"
  - Start from one end and go all the way to the other, until you find the item
  - No use of additional structural properties of the underlying data structure, like ordering

#### **Complexity**

If item Best case? Worst case? present: If item Best case? is not Worst case? present:

# Sequential Search

- "Naïve" approach:
  - Keep searching "myopically"
  - Start from one end and go all the way to the other, until you find the item
  - No use of additional structural properties of the underlying data structure, like ordering

#### **Complexity\***

If item is present:

Best case O(1)Worst case O(n)

If item is not present:

Best case O(n)Worst case O(n)

st Where n is the size of the array/data structure we are searching in



# Algorithmic design patterns: Incremental Approach

- We are going to use searching and sorting as a means to understanding some common algorithmic design patterns
- The one you just saw in the sequential search, is called the incremental approach to algorithm design.
- Basically: solution works: one element at a time
  - or, equivalently, one *element* each *step*
  - O(n) complexity algorithm

### What if?

The list was ordered?

We can stop searching when go past the value of interest?

• Let's code!

• Link to code visualization for self-review

# Have we really used the sorted list to our advantage?

- We are still at O(n) complexity
- You reduce the time/steps only for the case where the item is not in the list
  - In the worst case (item not present or is at the last location), we still have to iterate through the entire list
- How would you go about searching for a name in a sorted directory/dictionary?
  - Or a number in a sorted deck of numbered cards?



### The Binary Search

- We can take greater advantage of the ordered list if we be a bit clever
- E.g., looking for 100 in [1,2,3,4,15,17,19,20,21,25,28,100,120]



### The Binary Search Algorithm

- 1. Look at the middle value; then
- 2. if search item is **greater than** the value at the middle, it must be on its right. Discard middle item and left half. Repeat 1
- 3. if search item is less than the value at the middle, it must be on its left. Discard the middle item and right half. Repeat 1
- 4. If the middle item is the search item, or no more elements left, exit.



# The **Divide and Conquer** Algorithmic Pattern

- Binary search is a great example of this pattern
- In general: divide and conquer means we:
  - divide the problem into smaller pieces,
  - solve the smaller pieces, and then
  - (if applicable) reassemble the problem back up to get the result
- Very often you can program it using a recursive function

### Let's code this gremlin

- 1. Look at the middle value; then
- 2. if search item is **greater than** the value at the middle, it must be on its right. Discard middle item and left half. Repeat 1
- 3. if search item is less than the value at the middle, it must be on its left. Discard the middle item and right half. Repeat 1
- 4. If the middle item is the search item, or no more elements left, exit.



## Analysing Binary search

• When problem size is halved in every step, this is O(log n) complexity

• Or:

# Analysing Binary search

• When problem size is halved in every step, this is O(log n) complexity