MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik

Algebra HT20

Dag 7

(1) **Introduktion.** Skriv de komplexa talen $1+i, 2\sqrt{3}-2i$ och $-1+\sqrt{3}i$ på polär form.

Svar: $\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$, $4(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6}))$ och $2(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$.

(2) **Tolkning av multiplikation.** Beräkna talet nedan med hjälp av den polära formen.

 $\frac{(1+i)^2}{(2\sqrt{3}-2i)(-1+\sqrt{3}i)}.$

Svar: 1/4.

(3) de Moivres formel. Använd de Moivres formel för att härleda formlerna för trippla vinkeln, dvs uttryck $\sin 3\theta$ som en funktion av $\sin \theta$ och $\cos 3\theta$ som en funktion av $\cos \theta$.

Svar: $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$, $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$.

(4) Komplexa exponentialekvationen. Beräkna $(1+\sqrt{3}i)^{15}$.

Svar: $-2^{15} = -32768$.

(5) **Binomiska ekvationer.** Lös den binomiska ekvationen $z^8 = -64$.

Svar: $z = \pm \sqrt{\sqrt{2} + 1} \pm i \sqrt{\sqrt{2} - 1}, z = \pm \sqrt{\sqrt{2} - 1} \pm i \sqrt{\sqrt{2} + 1}.$

/Boris Shapiro, 210204/