# $\begin{array}{c} \text{CS 188} \\ \text{Spring 2020} \end{array}$

## Section Handout 3

#### Q1. CSP: Air Traffic Control

We have five planes: A, B, C, D, and E and two runways: international and domestic. We would like to schedule a time slot and runway for each aircraft to **either** land or take off. We have four time slots:  $\{1, 2, 3, 4\}$  for each runway, during which we can schedule a landing or take off of a plane. We must find an assignment that meets the following constraints:

- Plane B has lost an engine and must land in time slot 1.
- Plane D can only arrive at the airport to land during or after time slot 3.
- Plane A is running low on fuel but can last until at most time slot 2.
- Plane D must land before plane C takes off, because some passengers must transfer from D to C.
- No two aircrafts can reserve the same time slot for the same runway.
- (a) Complete the formulation of this problem as a CSP in terms of variables, domains, and constraints (both unary and binary). Constraints should be expressed implicitly using mathematical or logical notation rather than with words.

Variables: A, B, C, D, E for each plane. Domains:

Constraints: (you do not have to use all lines)

- (b) For the following subparts, we add the following two constraints:
  - Planes A, B, and C cater to international flights and can only use the international runway.
  - Planes D and E cater to domestic flights and can only use the domestic runway.
  - (i) With the addition of the two constraints above, we completely reformulate the CSP. You are given the variables and domains of the new formulation. Complete the constraint graph for this problem given the original constraints and the two added ones.

Variables: A, B, C, D, E for each plane. Constraint Graph:

**Domains:**  $\{1, 2, 3, 4\}$ 



(ii) What are the domains of the variables after enforcing arc-consistency? Begin by enforcing unary constraints. (Cross out values that are no longer in the domain.)

В  $\mathbf{C}$ D E | 1

#### 2 Games

(a) Consider the zero-sum game tree shown below. Triangles that point up, such as at the top node (root), represent choices for the maximizing player; triangles that point down represent choices for the minimizing player. Assuming both players act optimally, fill in the minimax value of each node.



(b) Which nodes can be pruned from the game tree above through alpha-beta pruning? If no nodes can be pruned, explain why not. Assume the search goes from left to right; when choosing which child to visit first, choose the left-most unvisited child.

(c) (optional) Again, consider the same zero-sum game tree, except that now, instead of a minimizing player, we have a chance node that will select one of the three values uniformly at random. Fill in the expectimax value of each node. The game tree is redrawn below for your convenience.



(d) (optional) Which nodes can be pruned from the game tree above through alpha-beta pruning? If no nodes can be pruned, explain why not.

### 3 Nonzero-sum Games

1. Let's look at a non-zero-sum version of a game. In this formulation, player A's utility will be represented as the first of the two leaf numbers, and player B's utility will be represented as the second of the two leaf numbers. Fill in this non-zero game tree assuming each player is acting optimally.



2. Which nodes can be pruned from the game tree above through alpha-beta pruning? If no nodes can be pruned, explain why not.