Algoritmizace

Cvičení

2025

Obsah

1	Posloupnosti	5
	1.1 Způsoby zadávání posloupností	5
	1.1.1 Prvních x členů	
	1.1.2 Vzorec pro n-tý člen	5
	1.1.3 Rekurentně	5
	1.2 Úkoly	6
2	Vlastnosti posloupností	7
3	Elementární funkce	9
4	Pseudokód	11
5	O-notace	13
6	Třídění	15

Kapitola 1

Posloupnosti

Definice

Posloupnost je zobrazení z množiny přirozených čísel do libovolné množiny. Zápis: (a_n) – posloupnost, a_n – n-tý prvek.

1.1 Způsoby zadávání posloupností

1.1.1 Prvních x členů

Musí být jasné pravidlo, jak vyjádřit další členy posloupnosti.

Příklad

- triviální příklad 1,2,3,4...
- fibbonacci 0, 1, 1, 2, 3, 5, 8...
- alternující 1, –1, 1, –1...
- konečná 2, 4, 6, ..., 20

1.1.2 Vzorec pro n-tý člen

Vyjádříme obecný vzorec pro n-tý prvek na základě indexu.

Příklad

- $\left(\frac{n}{n+1}\right)$
- $((-1)^n n)$
- $(1+\frac{1}{n})^n$)

1.1.3 Rekurentně

Rekurentní zadání obsahuje zpravidla 1. člen (nebo několik prvních členů) a pravidlo, jak vytvořit další člen ze členů předcházejících.

Příklad

- $\left(\frac{n}{n+1}\right)$
- $((-1)^n n)$
- $(1+\frac{1}{n})^n$)

Speciálním případem rekurentního zadání jsou aritmetická a geometrická posloupnost.

Definice

aritmetická posloupnost je zadána $a_1 = a$ a $a_{n+1} = a_n + d$. Podobně geometrická posloupnost je definována $a_1 = a$ a $a_{n+1} = a_n \cdot q$

1.2 Úkoly

- 1. Určete vzorec pro n-tý člen následujících posloupností:
 - 3,7,11,15,19...
 - 2, 6, 18, 54, 162, 486...
 - 2,6,12,20,30...
 - 1, -2, 3, -4, 5, -6...
 - $\frac{1}{1\cdot 4}$, $\frac{3}{4\cdot 7}$, $\frac{5}{7\cdot 10}$, $\frac{7}{10\cdot 13}$, ...
- 2. Vypočítejte prvních 5 prvků posloupností daných vzorcem:
 - $a_n = 5 + 3(n-1)$
 - $a_n = 2 \cdot 4^{n-1}$
 - $\bullet \ a_n = n^2 + 2n + 1$
 - $a_n = (-2)^n \cdot n$
 - $a_n = \frac{n^2 + n}{2}$

Kapitola 2 Vlastnosti posloupností

Kapitola 3 Elementární funkce

Kapitola 4

Pseudokód

Kapitola 5

O-notace

Kapitola 6 Třídění