Package 'regsubseq'

October 14, 2022

Type Package

Title Detect and Test Regular Sequences and Subsequences
Version 0.12
Date 2014-03-06
Author Yanming Di
Maintainer Yanming Di <diy@stat.oregonstate.edu></diy@stat.oregonstate.edu>
Description For a sequence of event occurence times, we are interested in finding subsequences in it that are too ``regular". We define regular as being significantly different from a homogeneous Poisson process. The departure from the Poisson process is measured using a L1 distance. See Di and Perlman 2007 for more details.
License GPL-2
Depends R (>= 2.10)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-03-09 19:18:52
R topics documented:
qtables
Index

2 test.gaplin

qtables

Quantile Tables of the Linearity/Gap-Linearity Tests

Description

The data set provide quantile tables for the linearity/gap-linearity test statistics for N=2, ..., 50 and k=2, ..., N, for each N. These tables will be used to compute p-values corresponding to test statistics.

Usage

qtables

Format

R rda files. Within each quantile table, the first row indicates at which probability values the quantiles are computed.

test.gaplin

Detect and Test Almost Gap-Linear Subsequnces.

Description

test.gaplin.t find the most almost gap-linear length k+1 subsequence of a given sequence and compute the almost gap-linearity test statistic for this subsequence. test.gaplin.p compute the p-value corresponding to a computed test statistic. test.gaplin compute the test statistics and the p-values for subsequences of all lengths.

Usage

```
test.gaplin(Tn);
test.gaplin.t(Tn, k);
test.gaplin.p(t, n, k);
```

Arguments

Tn	A sequence of numbers. Currently, only support sequence of length less than 50.
k	The length of the subsequences for which we want to test for almost gap-linearity.
n	The length of the sequence for which we want to test for subsequence almost gap-linearity.
t	Test statistic computed for a length k+1 subsequence of a length n+1 sequence.

test.lin 3

Details

Almost gap-linear means the spacings of a subsequence are almost in proportion to the spacings of the corresponding indicies. For example, for Tn=c(11, 14, (.), 20), the subs sequence (11, 14, 20) is gap-linear, since the spacings (3, 6) is in proportion with the spacings of hte corresponding indicies (1, 2). Equivalently, almost gap-linearity can measured by the distance between the standardized spacings of the subsequence and the standardized spacings of the corresponding indicies. See Di and Perlman (2007) for more details.

Value

test.gaplin.t returns the most gap-linear length k+1 subsequence of the input sequence and corresponding almost gap-linearity test statistic. test.gaplin.p returns the p-value corresponding to the input test statistic t. test.lin has no return value, instead, a table containing the most almost gap-linear subsequences, corresponding test staistics and p-values will be outputed.

Author(s)

Yanming Di

References

Di and Perlman, 2007

See Also

```
test.lin.
```

Examples

```
## A sequence representing arrival times of events.
Tn = c(13, 21, 24, 33, 40, 55, 59, 63, 72, 85, 87);
## Test for almost linearity.
t = test.gaplin.t(Tn, 4);
print(t$sub);
p = test.gaplin.p(t$t, 10, 4);
print(p);
test.gaplin(Tn);
```

test.lin

Detect and Test Almost Linear Subsequences.

Description

test.lin.t find the most almost-linear length k+1 subsequence of a given sequence and compute the almost-linearity test statistic for this subsequence. test.lin.p compute the p-value corresponding to a computed test statistic. test.lin compute the test statistics and the p-values for subsequences of all lengths.

4 test.lin

Usage

```
test.lin(Tn);
test.lin.t(Tn, k);
test.lin.p(t, n, k);
```

Arguments

Tn	A sequence of numbers. Currently, only support sequences of length less than 50.
k	The length of the subsequences for which we want to test for almost-linearity.
n	The length of the sequence for which we want to test for subsequence almost-linearity.
t	Test statistic computed for a length k+1 subsequence of a length n+1 sequence.

Details

Almost-linear means the spacings of the sequence are almost equal, or the distance between the standardized spacings as a vector and (1/k, ..., 1/k) is too small. The p-value is computed by comparing the test statistic to a procomputed test statistic quantile table. See Di and Perlman (2007) for more details.

Value

test.lin.t returns the most linear length k+1 subsequence of the input sequence and corresponding almost-linearity test statistic. test.lin.p returns the p-value corresponding to the input test statistic t. test.lin has no return value, instead, a table containing the most almost linear subsequences, corresponding test statistics and p-values will be outputed.

Author(s)

Yanming Di

References

Di and Perlman, 2007

See Also

```
test.gaplin.
```

Examples

```
## A sequence representing arrival times of events.
Tn = c(13, 21, 24, 33, 40, 55, 59, 63, 72, 85, 87);
## Test for almost linearity.
t = test.lin.t(Tn, 4);
print(t$sub);
p = test.lin.p(t$t, 10, 4);
```

test.lin 5

```
print(p);
test.lin(Tn);
```

Index

```
* datasets
                                                q.testgaplin.n41 (qtables), 2
    qtables, 2
                                                q.testgaplin.n42(qtables), 2
* htest
                                                q.testgaplin.n43 (qtables), 2
    test.gaplin, 2
                                                q.testgaplin.n44 (qtables), 2
    test.lin, 3
                                                q.testgaplin.n45 (qtables), 2
                                                q.testgaplin.n46 (qtables), 2
q.testgaplin.n10 (qtables), 2
                                                q.testgaplin.n47 (qtables), 2
q.testgaplin.n11 (qtables), 2
                                                q.testgaplin.n48 (qtables), 2
q.testgaplin.n12(qtables), 2
                                                q.testgaplin.n49 (qtables), 2
q.testgaplin.n13 (qtables), 2
                                                q.testgaplin.n5(qtables), 2
q.testgaplin.n14(qtables), 2
                                                q.testgaplin.n50 (qtables), 2
q.testgaplin.n15(qtables), 2
                                                q.testgaplin.n6(qtables), 2
q.testgaplin.n16 (qtables), 2
                                                q.testgaplin.n7(qtables), 2
q.testgaplin.n17 (qtables), 2
                                                q.testgaplin.n8(qtables), 2
q.testgaplin.n18(qtables), 2
                                                q.testgaplin.n9(qtables), 2
q.testgaplin.n19(qtables), 2
                                                q.testlin.n10(qtables), 2
q.testgaplin.n2(qtables), 2
                                                q.testlin.n11 (qtables), 2
q.testgaplin.n20 (qtables), 2
                                                q.testlin.n12(qtables), 2
q.testgaplin.n21(qtables), 2
                                                q.testlin.n13(qtables), 2
q.testgaplin.n22(qtables), 2
                                                q.testlin.n14 (qtables), 2
q.testgaplin.n23(qtables), 2
                                                q.testlin.n15 (qtables), 2
q.testgaplin.n24(qtables), 2
                                                q.testlin.n16 (qtables), 2
q.testgaplin.n25(qtables), 2
                                                q.testlin.n17 (qtables), 2
q.testgaplin.n26 (qtables), 2
                                                q.testlin.n18(qtables), 2
q.testgaplin.n27 (qtables), 2
                                                q.testlin.n19 (qtables), 2
q.testgaplin.n28(qtables), 2
                                                q.testlin.n2(qtables), 2
q.testgaplin.n29(qtables), 2
                                                q.testlin.n20(qtables), 2
q.testgaplin.n3(qtables), 2
                                                q.testlin.n21 (qtables), 2
q.testgaplin.n30 (qtables), 2
                                                q.testlin.n22(qtables), 2
q.testgaplin.n31 (qtables), 2
                                                q.testlin.n23 (qtables), 2
q.testgaplin.n32(qtables), 2
                                                q.testlin.n24 (qtables), 2
q.testgaplin.n33(qtables), 2
                                                q.testlin.n25(qtables), 2
q.testgaplin.n34(qtables), 2
                                                q.testlin.n26 (qtables), 2
q.testgaplin.n35(qtables), 2
                                                q.testlin.n27 (qtables), 2
q.testgaplin.n36 (qtables), 2
                                                q.testlin.n28(qtables), 2
q.testgaplin.n37 (qtables), 2
                                                q.testlin.n29 (qtables), 2
q.testgaplin.n38 (qtables), 2
q.testgaplin.n39(qtables), 2
                                                q.testlin.n3(qtables), 2
q.testgaplin.n4(qtables), 2
                                                q.testlin.n30(qtables), 2
q.testgaplin.n40(qtables), 2
                                                q.testlin.n31 (qtables), 2
```

INDEX 7

```
q.testlin.n32(qtables), 2
q.testlin.n33(qtables), 2
q.testlin.n34(qtables), 2
q.testlin.n35(qtables), 2
q.testlin.n36(qtables), 2
q.testlin.n37(qtables), 2
q.testlin.n38(qtables), 2
q.testlin.n39(qtables), 2
q.testlin.n4(qtables), 2
q.testlin.n40(qtables), 2
q.testlin.n41(qtables), 2
q.testlin.n42(qtables), 2
q.testlin.n43(qtables), 2
q.testlin.n44 (qtables), 2
q.testlin.n45(qtables), 2
q.testlin.n46 (qtables), 2
q.testlin.n47(qtables), 2
q.testlin.n48(qtables), 2
q.testlin.n49(qtables), 2
q.testlin.n5(qtables), 2
q.testlin.n50(qtables), 2
q.testlin.n6(qtables), 2
q.testlin.n7(qtables), 2
q.testlin.n8(qtables), 2
q.testlin.n9(qtables), 2
qtables, 2
test.gaplin, 2, 4
test.lin, 3, 3
```