Equações Diferenciais Ordinárias: Lista de Modelagem com Equações de Primeira Ordem

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

Observação: Você precisará usar uma calculadora na **última** etapa dos exercícios, para efetuar o cálculo da exponencial e encontrar a resposta final. Por exemplo, se você encontrar a resposta " $x = 10e^{-1}$ ", sua calculadora lhe dará a resposta final "3, 7" (considerando precisão de uma casa decimal). Você deve usar as propriedades necessárias das exponenciais e logaritmos para encontrar a resposta antes de usar a calculadora.

Na prova, você não precisará fazer este tipo de cálculo de precisão, portanto não será necessário (nem permitido) o uso de calculadora.

1 Velocidade final

- 1. Kenny® está dirigindo de madrugada em um bairro perigoso que não conhece direito. Ao ver o sinal se abrir Kenny começa a acelerar sua Ferrari® para percorrer a maior distância possível no menor tempo. O carro derrapa um pouco na arrancada (acordando assim alguns moradores da rua), mas após atingir a velocidade $v_0 = 1 \frac{m}{s}$ este passa a se movimentar para a frente. De olho no velocímetro, ele aumenta a força no acelerador de modo que a aceleração aumente proporcionalmente à velocidade em cada instante a uma taxa de $\lambda = 0, 3$. Após acelerar dessa forma durante t = 15s pela rua (que para seu azar é mal sinalizada e mal iluminada), esta faz uma curva brusca, e ele atinge o muro de uma casa (acordando assim todos os moradores da rua). Assuma, por simplicidade, que a massa do carro é desprezível, e que a velocidade do mesmo aumenta apenas em função da aceleração.
 - (a) Qual é a equação que descreve a variação da velocidade v da Ferrari de Kenny em função do tempo t?
 - (b) Qual é a velocidade terminal (em $\frac{m}{s}$, com precisão de uma casa decimal) de Kenny ao encontrar sua morte?
 - (c) (perspectiva) Converta a velocidade acima para $\frac{km}{h}$ e entenda porque Kenny terá um enterro com caixão fechado.
- 2. Em suas férias de 2013 Kenny® fez um salto de pára-quedas a uma baixa altitude. No exato instante em que ele salta do avião, ele abre seu pára-quedas e um abutre passa e fura o equipamento. Com o pára-quedas danificado, a constante da resistência do ar é de apenas $\lambda=10$, e a gravidade $g=10\frac{m}{s^2}$ acelera seu corpo com massa m=50kg até que ele atinja o chão. Considerando a resistência do ar, e que ele levou t=10s tensos até encontrar sua morte, determine a velocidade com que Kenny se estatelou no chão.
 - (a) Qual é a equação que descreve a variação da velocidade de queda v de Kenny, considerando a resistência do ar λ , a gravidade g e a massa m de Kenny [1].
 - (b) Qual é a velocidade terminal de Kenny (em $\frac{m}{s}$, com precisão de uma casa decimal) ao se estatelar no chão?
 - (c) (perspectiva) Converta a velocidade acima para $\frac{km}{h}$ e entenda porque Kenny terá um enterro com caixão fechado.

2 Juros compostos

- 3. Você fez um investimento I em uma poupança que rende 4% ao ano em juros compostos. Seu depósito inicial foi de R\$10.000.
 - (a) Qual é a equação que descreve o aumento do seu investimento I (em R\$) no tempo (t em anos)?
 - (b) Qual é o saldo de sua conta após 5 anos?

3 Pressão atmosférica

- 4. Ao atingir a altitude de h=10km, o cosmonauta russo Iuri Gagarin em 1961 percebeu que sentia uma grande diferença na pressão atmosférica a bordo da nave (fnv: fato não-verídico). Ele não sabia qual era a densidade do ar naquela altitude, mas era muito bom em resolver equações diferenciais (fnv). Naquele instante ele se lembrou que (a) a pressão atmosférica P na superfície era de 1 atmosfera ou, aproximadamente 100kPa (quilo pascals), e (b) a altitudes de até 11km a pressão atmosférica cai proporcionalmente com a altitude a uma taxa aproximada de 1,328kPa a cada 100m.
 - (a) Qual é a constante λ de proporcionalidade do decaimento da pressão atmosférica P com as unidades ajustadas (altitude em km e pressão em kPa)?
 - (b) Qual foi a equação que Gagarin utilizou para estimar a pressão atmosférica P (em kPa) em função da altitude h (em km).
 - (c) Qual foi a estimativa da pressão atmosférica P obtida por Iuri à altitude h = 10km antes de olhar pela janela e descobrir que "a Terra é azul"? Considere precisão de uma casa decimal.
- 5. (pressão de uma coluna em líquido) Em breve . . .

4 Diluição de uma concentração

6. Em breve ...

5 Circuitos elétricos

- 7. (Circuito RL) Uma bateria de 12v é conectada a um circuito em série RL com uma indutância de L=1 e uma resistência de R=2. Qual é a equação que descreve a variação da corrente I no tempo, considerando que a corrente inicial era $I_0=0$?
- 8. (Circuito RC) Um circuito em série RC é conectado a uma fonte de 100v com um capacitor de $C=10^{-2}$ e uma resistência de R=10. Qual é a equação que descreve a variação da quantidade de carga Q no capacitor, considerando que a quantidade inicial era $Q_0=0$?

6 Perda de temperatura para o meio

9. (Café frio) Você prepara seu café, que ao ficar pronto está com temperatura $T=95^{\circ}\mathrm{C}$. Como você está concentrado nos seus exercícios de EDO, o café fica esquecido por t=15 minutos sobre a mesa, exposto à temperatura ambiente. A Lei de Newton do Resfriamento [2] diz que o café perderá calor para o meio a uma taxa proporcional à diferença entre sua própria temperatura e a temperatura do meio, tendendo a se igualar à temperatura do ambiente. Nesta sala, a constante de proporcionalidade de perda de temperatura é $\lambda=0,1343$ e a temperatura ambiente é $T_a=20^{\circ}\mathrm{C}$.

- (a) Qual é a equação que relaciona a temperatura do café (em $^{\rm o}$ C) em função do tempo t (em minutos), considerando a temperatura do ambiente T_a e a constante de proporcionalidade λ ?
- (b) Quando você percebe que esqueceu de seu café (depois de t=15min), qual é a temperatura final dele (em °C) com precisão de uma casa decimal?
- 10. (CSI) Kenny®foi assassinado em um escritório, onde um condicionador de ar mantém a temperatura constante. Você é um perito criminal e chega na cena de um assasinato para estimar a hora da morte. Você chega na cena do crime à meia noite e introduz um termômetro no fígado do corpo, observando que sua temperatura naquele momento é $T=27^{\circ}$ C. Duas horas depois, você mede a temperatura novamente obtendo o valor $T=25^{\circ}$ C. A temperatura da sala é regulada pelo ar condicionado e mantida em $T_a=19^{\circ}$ C. [3]
 - (a) Considerando a Lei de Newton do Resfriamento, qual é a equação diferencial que relaciona a temperatura T do corpo em função do tempo t, considerando a temperatura do meio T_a constante entre o óbito e a constante de proporcionalidade λ ?
 - (b) Qual é a constante de proporcionalidade λ de troca de temperatura neste ambiente?
 - (c) Qual é o tempo aproximado desde o óbito até a primeira medição de temperatura? Assuma tempo t em horas, temperatura T em $^{\circ}$ C, e use precisão de uma casa decimal. Assuma que a temperatura do corpo (vivo!) é $T=37^{\circ}$ C.
 - (d) (perspectiva) Qual é a hora aproximada da morte?

7 Decaimento radioativo

- 11. (Meia vida) A meia vida t_m de um isótopo radioativo é o tempo necessário para que sua massa original seja reduzida à metade, assumindo decaimento proporcional à quantidade Q existente em cada instante t. A meia vida do C^{14} (Carbono–14) é aproximadamente 5730 anos. Qual é a constante de proporcionalidade do decaimento λ do C^{14} ?
- 12. A usina nuclear de Chernobyl sofreu em 1986 um grave acidente, culminando na explosão do reator 4 ([4, 5]). Após a explosão do reator o $\mathrm{Cs^{137}}$ (Césio–137) lá utilizado foi liberado e transportado pelo vento, contaminando a região do entorno da usina. Assuma que uma quantidade Q=27kg de $\mathrm{Cs^{137}}$ foi distribuída de forma homogênea na região da usina, e sabendo que a meia vida do $\mathrm{Cs^{137}}$ é de $t_m=30$ anos determine:
 - (a) Qual é a equação que descreve o decaimento da quantidade Q do material radioativo?
 - (b) De acordo com o modelo acima, qual é a quantidade esperada de Cs^{137} em 2016 (em kq)?
 - (c) Kenny® foi passear em Chernobyl em suas férias de 2016, e morreu lenta e dolorosamente de câncer de tireóide por conta da radiação liberada pela quantidade de Cs^{137} estimada acima. Em que ano ele deveria ter feito esse passeio para ser exposto a uma quantidade de (apenas) 1kg?
- 13. Um colecionador milionário está interessado em comprar uma pintura do Rembrandt (1606–1669), e contratou você como consultor(a) para averiguar a autenticidade da obra. Pela análise de datação de carbono (feita em 2014), você aferiu que a pintura em questão contém 99,879% do C¹⁴ original.
 - (a) Determine a idade (em anos, com precisão de duas casas decimais) da pintura em questão, e conclua se é ou não uma falsificação.
 - (b) Determine aproximadamente (com uma casa decimal de precisão) qual o percentual máximo do C¹⁴ original que uma obra autêntica de Rembrandt poderia ter (sugestão: por simplificação, considere como cota superior o ano de morte de Rembrandt).

Referências

- [1] Esta modelagem pode ser encontrada na explicação do livro texto (PLT) da disciplina.
- [2] http://www2.pelotas.ifsul.edu.br/denise/caloretemperatura/resfriamento.pdf (Acessado em 30 de Agosto de 2014)
- [3] https://www.academia.edu/3467740/Forensic_Estimation_of_Time_of_Death_A_Mathematical_Model (Acessado em 1 de Setembro de 2014)
- [4] http://chernobyl.undp.org/english/ (Acessado em 31 de Agosto de 2014)
- [5] http://www.world-nuclear.org/info/safety-and-security/safety-of-plants/chernobyl-accident/ (Acessado em 31 de Agosto de 2014)