titanic_eda_visualizations

October 3, 2024

1 Titanic Dataset - Exploratory Data Analysis (EDA) - Visualizations

```
[28]: # Required Libraries
import warnings
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# # Suppress FutureWarnings
warnings.simplefilter(action='ignore', category=FutureWarning)

# Load the dataset (assuming it's stored locally as 'titanic.csv')
df = pd.read_csv('data/titanic.csv',index_col='PassengerId')

# Display first few rows to verify data
df.head()
```

[28]:		Survived	Pclass	\
	PassengerId			
	1	0	3	
	2	1	1	
	3	1	3	
	4	1	1	
	5	0	3	

			Name	Sex	Age	\
PassengerId						
1		Braund, M	r. Owen Harris	male	22.0	
2	Cumings, Mrs. John Br	adley (Florenc	e Briggs Th	female 3	8.0	
3		Heikkine	n, Miss. Laina	female	26.0	
4	Futrelle, Mrs. J	acques Heath (Lily May Peel)	female	35.0	
5		Allen, Mr.	William Henry	male	35.0	
	Sibling_Spouse Paren	ts_Child	Ticket	Fare_Np	r \	
PassengerId						
1	1	0	A/5 21171	1290.500	0	

2	1	0	PC 17599	12688.4274
3	0	0	STON/02. 3101282	1410.6500
4	1	0	113803	9451.8000
5	0	0	373450	1432.9000

Port Age_Category

Passenger	·Id	
1	Southampton	Adult
2	Cherbourg	Adult
3	Southampton	Adult
4	Southampton	Adult
5	Southampton	Adult

1.1 1. Bar Plot for Survival Count

Count of Survived vs Not Survived

1.2 2. Pie Chart for Passenger Class Distribution

Passenger Class Distribution


```
[46]: df['Pclass'].value_counts()
```

[46]: Pclass 3 491 1 214

```
2 184
Name: count, dtype: int64
```

1.3 3. Histogram for Age Distribution

```
[31]: # Histogram for Age
plt.figure(figsize=(8,5))
sns.histplot(df['Age'].dropna(), bins=20, kde=True, color='purple')
```

[31]: <Axes: xlabel='Age', ylabel='Count'>

1.4 4. Box Plot for Fare Distribution by Passenger Class

```
[32]: # Box plot for Fare by Pclass

plt.figure(figsize=(8,6))

sns.boxplot(x='Pclass', y='Fare_Npr', data=df, hue='Pclass',

palette='coolwarm', legend=False)

plt.title('Fare Distribution by Passenger Class')

plt.xlabel('Passenger Class')

plt.ylabel('Fare (NPR)')

plt.grid(True)

plt.show()
```


1.5 5. Violin Plot for Age Distribution by Survival Status

```
[33]: # Violin plot for Age distribution by Survival
plt.figure(figsize=(8,5))
sns.violinplot(x='Survived', y='Age', data=df,hue='Survived',
palette='muted',legend=False)
plt.title('Age Distribution by Survival Status')
plt.xlabel('Survived')
plt.ylabel('Age')
plt.grid(True)
plt.show()
```


1.6 6. Swarm Plot for Fare by Survival Status and Gender

```
[58]: # Swarm plot for Fare by Survived and Sex
plt.figure(figsize=(10,6))
sns.stripplot(x='Survived', y='Fare_Npr', hue='Sex', data=df, palette='bright')
plt.title('Fare Distribution by Survival and Gender')
plt.xlabel('Survived')
plt.ylabel('Fare (NPR)')
plt.legend(title='Sex')
plt.grid(True)
plt.show()
```


1.7 7. Heatmap for Correlation Matrix

1.8 8. Pairplot for Visualizing Relationships

```
[23]: # Pairplot for numerical columns
sns.pairplot(df[['Survived', 'Age', 'Fare_Npr', 'Pclass']], hue='Survived',

→palette='Set2')
plt.suptitle('Pairplot for Numerical Features', y=1.02)
plt.show()
```


1.9 9. Bar Plot for Sibling/Spouse Count Distribution

```
[24]: # Bar plot for Sibling_Spouse
plt.figure(figsize=(8,4))
sns.countplot(x='Sibling_Spouse', data=df, palette='Dark2')
plt.title('Distribution of Sibling/Spouse Count')
plt.xlabel('Sibling/Spouse Count')
plt.ylabel('Passenger Count')
plt.grid(True)
plt.show()
```


1.10 10. Scatter Plot for Fare vs Age Colored by Class

```
[25]: # Scatter plot for Fare vs Age
plt.figure(figsize=(10,6))
sns.scatterplot(x='Age', y='Fare_Npr', hue='Pclass', data=df, palette='deep')
plt.title('Fare vs Age Scatter Plot by Passenger Class')
plt.xlabel('Age')
plt.ylabel('Fare (NPR)')
plt.grid(True)
plt.show()
```

