Clustering

André E. Lazzaretti UTFPR/CPGEI

Objetivos

Clustering:

Supervised Learning

Unsupervised Learning

Supervised x Unsupervised:

Definição

 Agrupamento de um conjunto de indivíduos em uma população para representar uma certa estrutura nos dados. Agrupamento de Localização, Forma e Densidade.

Métodos

- Hierarchical methods: Matriz de dissimilaridade (similaridade);
- Mixture models: função densidade de probabilidade;
- Sum-of-squares methods: minimização do erro quadrático médio;
- Spectral clustering: grafos, mapeamento, similaridade;
- Cluster validity: seleção dos modelos.

Hierárquicos

 Definir uma medida de distância (dissimilaridade) entre os clusters

- Inicialização: todo exemplo é um cluster
- Processo Iterativo:
 - Calcula a distância entre todos os clusters
 - Combina os clusters mais próximos

Dendrograma

	1	2	3	4	5	6
1 2 3	0	4	13	24	12	8
2		0	10	22	11	10
3			0	7	3	9
4				0	6	18
4 5 6					0	8.5
6						0

At each stage of the algorithm, the closest two groups are fused to form a new group where the distance between two groups, *A* and *B*, is the distance between their closest members:

$$d_{AB} = \min_{i \in A, j \in B} d_{ij}$$

$$d_{1, (3, 5)} = \min\{d_{13}, d_{15}\} = 12$$

 $d_{2, (3, 5)} = \min\{d_{23}, d_{25}\} = 10$
 $d_{4, (3, 5)} = 6, d_{6, (3, 5)} = 8.5$

	(1, 2)	(3, 5)		6
(1, 2) (3, 5)	0	10	22	8
(3, 5)		0	6	8.5
4			0	18
6				0

	(1, 2)	(3, 4, 5)	6
(1, 2)	0	10	8
(1, 2) $(3, 4, 5)$		0	8.5
6	_	_	0
	•		

$$\begin{array}{c|ccc}
 & (1,2,6) & (3,4,5) \\
\hline
 & (1,2,6) & 0 & 8.5 \\
 & (3,4,5) & 0 & 0
\end{array}$$

$$d_{(1, 2)(3, 5)} = \min\{d_{13}, d_{23}, d_{15}, d_{25}\} = 10$$

$$d_{(1, 2)4} = \min\{d_{14}, d_{24}\} = 22$$

$$d_{(1, 2)6} = \min\{d_{16}, d_{26}\} = 8$$

•

•

•

Dendograma:

	1	2	3	4	5	6
1	0	4	13	24	12	8
1 2 3		0	10	22	11	10
3			0	7	3	9
4				0	6	18
5					0	8.5
6						0

	1	2	(3, 5)	4	6
1	0	4	12	24	8
2		0	10	22	10
(3, 5)			0	6	8.5
4				0	18
6	İ				0

$$\begin{array}{c|cccc} & (1,2) & (3,4,5) & 6 \\ \hline (1,2) & 0 & 10 & 8 \\ (3,4,5) & & 0 & 8.5 \\ 6 & & & 0 \\ \end{array}$$

$$\begin{array}{c|cccc}
 & (1,2,6) & (3,4,5) \\
\hline
 & (1,2,6) & 0 & 8.5 \\
 & (3,4,5) & 0 & 0
\end{array}$$

Hierárquico – Complete-Link

Dendograma:

Diferença em relação ao single-link:

	1	2	3	4	5	6
1	0	4	13	24	12	8
2 3		0	10	22	11	10
3			0	7	3	9
4				0	6	18
4 5					0	8.5
6						0

	1	2	(3, 5)	4	6
1	0		13	24	8
2		0	11	22	10
(3, 5)			0	7	9
4				0	18
6					0

Hierárquico – Complete x Single

Sum-of-Squares: K-Means

Sum-of-Squares: K-Means

Objetivo:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 \longrightarrow J(r_{nk}, \boldsymbol{\mu}_k)$$

Alterna duas etapas (EM):

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 & ext{Cluster mais próximo} \\ 0 & ext{otherwise}. & ext{(fixa } \boldsymbol{\mu}_{\mathbf{k}}) \end{cases}$$

$$2\sum_{n=1}^N r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0 \quad \Longrightarrow \quad \boldsymbol{\mu}_k = \frac{\sum_n r_{nk}\mathbf{x}_n}{\sum_n r_{nk}} \quad \begin{array}{c} \text{Atualiza o} \\ \text{Centr\'oide} \\ \text{(fixa r}_{nk}) \end{array}$$

Fuzzy c-Means

Objetivo:

$$J_r = \sum_{i=1}^n \sum_{j=1}^g y_{ji}^r \| \mathbf{x}_i - \mathbf{m}_j \|^2$$
 s.t. $\sum_{j=1}^g y_{ij} = 1$ e $y_{ji} \ge 0$

Alterna duas etapas (EM):

$$y_{ji} = rac{1}{\sum_{k=1}^g \left(rac{d_{ij}}{d_{ik}}
ight)^{rac{2}{r-1}}}$$
 Atualizar graus de pertinência

$$m_j = rac{\sum_{i=1}^n y_{ji}^r x_i}{\sum_{i=1}^n y_{ji}^r}$$
 Atualiza o Centróide

Fuzzy c-Means

K-Means x C-Means:

Mixture of Densities: Maximização da Expectativa (EM)

E-Step:
$$\frac{\displaystyle \qquad \qquad }{\displaystyle \qquad } \frac{\displaystyle \qquad \gamma(z_{nk}) = \frac{\displaystyle \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\displaystyle \sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}}$$

$$\mathbf{M-Step:} \begin{array}{cccc} \boldsymbol{\mu}_k^{\mathrm{new}} & = & \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \\ \boldsymbol{\Sigma}_k^{\mathrm{new}} & = & \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \left(\mathbf{x}_n - \boldsymbol{\mu}_k^{\mathrm{new}}\right) \left(\mathbf{x}_n - \boldsymbol{\mu}_k^{\mathrm{new}}\right)^{\mathrm{T}} \\ \boldsymbol{\pi}_k^{\mathrm{new}} & = & \frac{N_k}{N} \\ N_k & = \sum_{n=1}^N \gamma(z_{nk}) \end{array}$$

Maximização da Expectativa (EM)

- Os modelos vistos até aqui assumem uma estrutura pré-definida para os grupos:
 - K-Means: esférico (distância Euclidiana)
 - Hierárquico: esférico (distância Euclidiana)
 - MoG: esférico ou elíptico (matriz de covariância)
- E nos casos a seguir?

Spectral Clustering!

- Constrói um grafo baseado na similaridade (vizinhança) dos pontos.
- Realiza mapeamento dos pontos para um espaço onde a representação dos grupos fica evidenciada (spectral embedding).
- 3) Realiza o agrupamento neste novo espaço (p.ex. *k-means*).

Teoria de Grafos:

Matriz de Adjacência (forma mais simples):

 $A_{ij} = 1$ if node i and node j are connected

 $A_{ij} = 0$ if node i and node j are not connected

	1	2	3	4	5
1	0	1	1	0	0
2	1	0	1	1	0
3	1	1	0	1	1
4	0	1	1	0	0
5	0	1 0 1 1 0	1	0	0

A **teoria dos grafos** é um ramo da matemática que estuda as relações entre os objetos de um determinado conjunto.

- A matriz de adjacência possui relação com outras duas matrizes: L = D - A.
- Sendo D, uma diagonal cuja diagonal corresponde a (na sua forma mais simples):

$$d_{i,j} := \left\{ egin{array}{ll} \deg(v_i) & ext{ if } i=j \ 0 & ext{ otherwise} \end{array}
ight.$$

deg(v_i) corresponde a um grau (número) de conexões de um determinado vértice.

Vertex labeled graph	Degree matrix
3 4 6	$\begin{pmatrix} 4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

• E L a matriz Laplaciana.

• A matriz **L** possui propriedades que facilitam o processo de agrupamento: decomposição em autovalores e autovetores $(\mathbf{L}\boldsymbol{\vartheta} = \lambda\boldsymbol{\vartheta})$ - spectrum of a graph.

the eigenvalue $\lambda = 0$				
	v_1	v_2	v_3	
1	0	0	1	
2	0	0	1	
3	0	0	1	
4	0	0	1	
5	0	0	1	
6	0	1	0	
7	0	1	0	
8	0	1	0	
9	1	0	0	
10	1	0	0	
11	1	0	0	
12	1	0	0	
13	1	0	0	

Eigenvectors v_1, v_2, v_3 corresponding to

A multiplicidade do autovalor com valor 0 é igual ao número de componentes conectados no grafo. Os autovetores correspondentes fornecem indicadores para mostrar a qual componente pertence um determinado nó.

 Na prática, ainda é necessário especificar a matriz de adjacência para representar a conectividade:

- Como definir a matriz de adjacência?
- Medida de similaridade: $A_{ij} = s(x_i, x_j)$
- Conexão:

Fully connected graph

$$s(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right)$$

ε-neighbourhood

$$s(x, y) = \begin{cases} 1 & \|x - y\| < \epsilon \\ 0 & \|x - y\| \ge \epsilon \end{cases}$$

Matriz Laplaciana (L) e a Matriz de Adjacência:
 L = D - A, sendo D (definição mais geral):

$$d_i = \sum_{j=1}^n A_{ij}$$

 Na prática, nem todos os autovalores serão nulos, porém, caso a matriz de adjacência represente a estrutura do cluster, pode-se analisar os autovalores de magnitudes mais próximas de zero:

Fonte: Prof. Omar Sobh

• Se for um problema de dois clusters, pode-se usar o autovetor \mathbf{v}_2 , correspondente à λ_2 :

Autovetor \mathbf{v}_2 , fornece um indicativo mais claro do agrupamento. Está associado ao segundo menor autovalor.

- L deve ser semi-positiva definida.
- Para tanto, é necessária a seguinte normalização:

•
$$\tilde{\mathbf{L}} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$$

Fonte: Prof. Omar Sobh

Given a set of points $S = \{s_1, \ldots, s_n\}$ in \mathbb{R}^l that we want to cluster into k subsets:

- 1. Form the affinity matrix $A \in \mathbb{R}^{n \times n}$ defined by $A_{ij} = \exp(-||s_i s_j||^2/2\sigma^2)$ if $i \neq j$, and $A_{ii} = 0$.
- 2. Define D to be the diagonal matrix whose (i,i)-element is the sum of A's i-th row, and construct the matrix $L = D^{-1/2}AD^{-1/2}$.

 Descartando autovalor nulo
- 3. Find x_1, x_2, \ldots, x_k , the k largest eigenvectors of L (chosen to be orthogonal to each other in the case of repeated eigenvalues), and form the matrix $X = [x_1 x_2 \ldots x_k] \in \mathbb{R}^{n \times k}$ by stacking the eigenvectors in columns.
- 4. Form the matrix Y from X by renormalizing each of X's rows to have unit length (i.e. $Y_{ij} = X_{ij}/(\sum_j X_{ij}^2)^{1/2}$).
- 5. Treating each row of Y as a point in \mathbb{R}^k , cluster them into k clusters via K-means or any other algorithm (that attempts to minimize distortion).
- 6. Finally, assign the original point s_i to cluster j if and only if row i of the matrix Y was assigned to cluster j.

Para mais clusters (Ng, Jordan, Weiss):

Exemplos Matlab!

5 3 6 -0.5 1.0 -0.4-0.1 0 0 -0.51.0 -0.50 -0.5 -0.41.0 -0.1 -0.10 1.0 -0.4-0.50 -0.41.0 -0.5 -0.5 -0.11.0

Feature vector

	V ₁	V ₂	V ₃
-1->	v ₁ (1)	V ₂ (1)	V ₃ (1)
2	v ₁ (2)	v ₂ (2)	v ₃ (2)
3	v ₁ (3)	v ₂ (3)	v ₃ (3)
4	v ₁ (4)	v ₂ (4)	v ₃ (4)
5	v ₁ (5)	v ₂ (5)	v ₃ (5)
6	v ₁ (6)	v ₂ (6)	v ₃ (6)

 $L_{norm}(G)$

U for k = 3

Fonte: Prof. Omar Sobh

Métricas de Desempenho

- Ideia geral: como definir uma métrica de comparação de desempenho de diferentes resultados de agrupamento (assumindo que os dados possam ser agrupados)?
- Métricas de Avaliação:
 - Critério Externo correspondência em relação a uma estrutura pré-definida (p.ex. *labels* de classes);
 - Critério Interno compactação e separação de grupos.

Validação Externa

- Supondo uma distribuição de clusters e uma distribuição pré-especificada: $C=\{C_1,...,C_m\}$ e $P=\{P_1,...,P_s\}$
- Para um dado par de vetores $(\mathbf{x}_{v}, \mathbf{x}_{u})$:
 - SS: ambos os exemplos pertencem ao mesmo grupo P e cluster C - definido como a
 - SD: ambos os exemplos pertencem ao mesmo cluster C e diferentes grupos P - definido como b
 - DS: ambos os exemplos pertencem ao mesmo grupo P e diferentes cluster C - definido como c
 - DD: ambos os exemplos pertencem a diferentes grupos P e cluster C – definido como d
- M é definido como número total de exemplos na base.

Validação Externa

Exemplo:

$$X = \{x_{i}, i = 1, ..., 6\}$$
 $C = \{\{x_{1}, x_{2}, x_{3}\}, \{x_{4}, x_{5}\}, \{x_{6}\}\}$
 $P = \{\{x_{1}, x_{2}, x_{3}\}, \{x_{4}, x_{5}, x_{6}\}\}$
 $\begin{cases} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\ x_{1} & SS & SS & DD & DD & DD \\ x_{2} & SS & DD & DD & DD \\ x_{3} & DD & DD & DD \\ x_{4} & SS & DS \\ x_{5} & DS \\ x_{6} & DS \end{cases}$

$$a = 4$$
, $b = 0$, $c = 2$, and $d = 9$.

- SS: ambos os exemplos pertencem ao mesmo grupo P e cluster C
- SD: ambos os exemplos pertencem ao mesmo cluster C e diferentes grupos P
- DS: ambos os exemplos pertencem ao mesmo grupo P e diferentes cluster C
- DD: ambos os exemplos pertencem a diferentes grupos
 P e cluster C

Validação Externa

• Rand: R = (a + d)/M

• Jaccard: J = a/(a+b+c)

• Fowlkes e Mallows:

$$FM = a/\sqrt{m_1 m_2} = \sqrt{\frac{a}{a+b} \frac{a}{a+c}}$$

$$m_1 = a + b$$

$$m_2 = a + c$$

Validação Interna

- Coesão: relação entre os exemplos em um mesmo cluster. Pode ser medida pela distância entre os exemplos e o centro do cluster ou entre os exemplos de um mesmo cluster.
- **Separabilidade**: Mede a separação entre os diversos clusters de um agrupamento. Pode ser medida pela distância entre os centros dos clusters. Ou entre os pares de exemplos de diferentes clusters.

Coeficiente de Silhueta

- Combina ideias de coesão e separabilidade
- Para um exemplo i
 - Calcula a = distância média entre i e os demais exemplos do mesmo cluster
 - Calcula b = min (distância média entre i e os demais exemplos dos demais clusters)
 - Calcula o índice: s = 1 a/b
 - Tipicamente entre 0 e 1.
 - Quanto mais próximo de 1, melhor.

Referências

- Livro Andrew Webb (Statistical Pattern Recognition) – Capítulo 10
- Artigo Ben Hur Support Vector Clustering
- Aula de Clustering do Prof. Omar Sobh (Univ. Illinois) – disponíveis no Youtube.