## ALGORITMI GREEDY

- SI TRATTA DI ALGORITMI PER PROBLEMI DI
  OTTIMIZZAZIONE IN GRADO DI COSTRUIRE
  UNA SOLUZIONE OTTIMA ATTRAVERSO UNA
  SERUENZA "TOP-DOWN" M SCELTE LOCALMENTE
  OTTIME
- NON SEMPRE UNA STRATEGIA GREEDY POATA

  AD UNA SOLUZIONE OTTIMA

  (ES. PROBLEMA DELLO ZANNO 0-1)

#### UN PROBLEMA DI SELEZIONE DI ATTIVITA'

## SISTEMA DI ATTIVITA' (S, s, f)

- INSIEME DI ATTIVITÀ IN COMPETIZIONE DER L'USO ESCLUSIVO DI UNA RISGASA

- INTERVALLO TEMPORALE PER CUI L'ATTIVITÀ Q: RICHIEDE L'USD ESCLUSIVO DELLA RISDRSA

- DUE ATTIVITA' a: E aj sono COMPATIBILI SE  $[Si, filn [Sj, fjl = \emptyset], CHOE']$ 



- UN SOTTOINSIEME ASS E' UN INSIEME DI ATTIVITÀ'

MUTUATIENTE COMPATIBILI SE DANI COPPIA DI

ATTIVITÀ DISTINTE ai, aj IN A E' COSTITUITA

DA ATTIVITÀ COMPATIBILI

- DATO UN SISTEMA DI ATTIVITÀ (S,s,f),
IL PROBLEMA DELLA SELEZIONE DEUE ATTIVITÀ CONSISTE
NEL DETERMINARE UN SOTTOINSIEME DI CARDINALMA MASSIMA ACS DI ATTIVITÀ MUTUAMENTE
COMPATIBILI

## ES.

| i  | 4 | 2 | 3 | 4 | 5 | 6 | 7  | 8 | 9  | 10 | 1 " |
|----|---|---|---|---|---|---|----|---|----|----|-----|
| Si | 1 | 3 | 0 | 5 | 3 | 5 | 6  | 8 | 8  | 2  | 12  |
| fi | 4 | 5 | 6 | 7 | 8 | 9 | 10 | " | 12 | 13 | 14  |

- a, E az NON SONO COMPATIBILI
- { a3, a9, a 11 } E' UN INSIEME OF ATTIVITÀ HUTUAHENTE
  COMPATIBILI
- Sa, aa, aa, au, } SOND INSIGNI DI ATTIVITA'

  (a2, a4 ag a114) MUTUALMENTE COMPATIBILI

  X CARDINALITA' MASSIMA

## - SOLUZIONE MEDIANTE RICERCA ESAUSTIVA

- SI GENERINO TUTTI I POSSIBILI SOFTOINSIEMI  $A \subseteq S$   $\Omega(2^n)$
- . SI VERIFICHI PER CIASCUND DI ESSI SE SI TRATFA
  DI UN INSIEME DI ATTIVITA' MUTUAMENTE COMPATIBILI

  ()(n2)
- . SI DETERMINI IL SOTTOINSIEME ASS DI ATTIVITÀ MUTUAMENTE COMPATIBILI DI CARDINALITÀ MASSIMA

COMPLESSITA":  $\Omega(2^m)$ 

## STUDIO DI UNA SOLUZIANE OTTITA

- SIA A C S UNA SOLUZIONE OTTIMA
- SIA aie A (SPESSO SCRIVEREMO CEA)
- a; INDUCE I DUE SOTTOPROBLEMI

$$S_i^- = \{k \in S : f_k \leq S_i\}$$

- E' IMMEDIATO VERIFICARE CHE

#### STUDIO DELLO SPAZIO DEI SOTTOPROBLEMI

$$j \in S_{i}^{-}$$

$$(S_{i}^{-})_{j}^{-} = S_{j}^{-}$$

$$(S_{i}^{-})_{j}^{+} = S_{j}^{-} = \{keS: f_{i} \leq s_{i} \leq s_{i}\}$$

$$(S_{i}^{+})_{j}^{+} = S_{j}^{+}$$

$$(S_{i}^{+})_{j}^{+} = S_{i}^{+}$$

$$(S_{i}^{+})_{j}^{-} = S_{i}^{-} = \{keS: f_{i} \leq s_{i} \leq s_{i} \leq s_{i}\}$$

-INTRODUCENDO DUE NUOVE ATTIVITA' DI COMODO do, anti caratterizzate da  $f_0=0$  E  $S_{n+1}$  > max  $f_k$ , Possiamo scrivere:  $S_i^*=S_{0i}$ ,  $S_i^*=S_{i,n+1}$ 

- E' FACILE ALLORA VERIFICARE CHE LO SAAZIO DEI SOTTOPROBLEMI RILEVANTI PER IL PADBLEMA DELLE ATTIVITÀ E': { Sij : O \( \) i j \( \) n+1}
- INDICHIAMO CON CLIJJ LA CARDINALITA DI UNA SOLUZIONE OTTIMA AL PROBLEMA Sij, SI HA:

$$C[i,j] = \begin{cases} 0 & \text{SE} & S_{ij} = \emptyset \\ \text{Max} \left( \text{cti}_{i}k \right] + \text{clk}_{i}j \right) + 1 \end{cases} SE S_{ij} \neq \emptyset$$

$$k \in S_{ij}$$

(TALE RICORRENZA PUÒ ESSCRE UTILIZZATA BOTTOM-UP SEGUENDO L'ORDINAMENTO CRESCENTE DEVLE CARDINALITA' DEGLI INSIEMI Sij)

- -E' POSSIBILE SEMPLIFICARE IL CALCOLO DEGLI INSIEMI 5ij?
  - SUPPONIAMO CHE LE ATTIVITA' SIANO ORDINATE IN MODO TALE CHE:  $f_1 \le f_2 \le \ldots \le f_n$
- ALLORA:  $k \in Sij \longrightarrow i < k < j$ DA CUI:  $|Sij| \le max(j-i-1,0)$ IN PARTICOLARE,  $j \le i + i \longrightarrow Sij = \emptyset$

-NELL'HOTESI  $f_1 \le f_2 \le \ldots \le f_n$ , LE CARDINALITA' CCIJ]

POSSONO ESSERE CALCOLATE A PARTIRE DALLE COPPIE

(i,i+i) PROCEDENDO PER VACORI DI j-i NON DECRESCENTI

# COMPLESSITA', O(n3)

- SIN QUI NIENTE DI NUOVO!
- E' POSSIBILE CONVERTIRE LA PRECEDENTE SOLUZIONE IN UNA SOLUZIONE "GREEDY"?

- SI RICONSIDERI LA PRECEDENTE RICORRENZA:

$$CE(ij) = \begin{cases} 0 & \text{SE} & \text{Sij} = \emptyset \\ \text{Max} \left( \text{cE(ij)} + 1 \right) & \text{SE} & \text{Sij} \neq \emptyset \\ \text{ke Sij} & \text{ke Sij} \end{cases}$$

- PER APPLICARLA, AD OGNI PASSO OCCORRE "INDOVINARE" LA SCELTA GIUSTA DI & TRA AL PIÙ j-i-1 VALORI E QUINDI RISOLVERE DUE SOTTO PROBLEMI,
- E' POSSIBILE "INDOVINARE" & PIRETTAMENTE E RIDURRE I SOTTO PROBLEMI AD UNO SOLO ?

(SCELTA GREEDY)

- DATO Sij #\$, SI PONGA == min Sij
- CHIARAMENTE  $S_{i\bar{k}} = \emptyset$ , DA CUI  $C[i,\bar{k}] = 0$ CINFATTI, SE  $l \in S_{i\bar{k}} \longrightarrow f_i \leq s_i < f_i \leq s_j < f_i \leq s_j < f_i \leq s_j \in l < \bar{k}$ , ASSURDO)
- QUINDI IN CORRISPONDENZA DI 🖟 C'E' DA RISOLVERE
  UN SOLO SOTTOPROBLEMA.
- VME: CTUJ] = CTRJ]+1?

- SIA Aij UNA SOLUZIONE OTTIMA PER Sij,

  ALLORA A'ij=(Aij-Imin Aij)) > Ik) E' UNA

  SOLUZIONE OTTIMA RER Sij
- INFATTI, SE min Ay= E, ALLORA Ay= Ay E'
  OTTIMA
- SE min Aij > k, POICHE' | A'ij = | Aij |, E'

  SUFFICIENTE VERIFICARE CHE TUTTE LE ATTIVITA'

  IN Aij | min Aij | GONO COMPATIBILI CON k.

#### PERTANTO

- Aij (E) E' UNA SOLUZIONE OTTIMA PER SEj, QUINDI
  1Aij 1/E/1 = atk,j]
- POICHE' A'; E' UNA SOLUZIONE OTTIMA PER Sij SI

  HA |A';| = c[ij], DA CUI:

  c[ij] = c[kj]+1
- LA SCELTA R = unin Sij E' GAEEDY

  RELATIVAMENTE ALLA SEGUENTE INTUIZIONE I

  "SCECLIENDO TRA TUTTE LE ATTIVITA' COMPATIBILI

  QUELLA CHE TERMINA PRIMA, SI MASSIMIZZA LA

  DISPONIBILITA' DELLA RISORSA PER LE RIMANENTI ATTIVITA',

- SI OSSERVI CHE PER SELEZIONARE K = min Sij non  $E^1$  NECESSARIO AVERE RISOLTO PRECEDENTEMENTE IL PROBLEMA  $S_{E_1}$ .
- QUINDI UNA SOLUZIONE OTTIMA PUÒ ESSERE COSTRUITA IN MANIERA TOP-DONN

RECURSIVE\_ACTIVITY\_SELECTOR (s,f,i,j)

FOR k= i+1 To j-1 Do

IF fi < sic fi < si THEN

RETURN (k) U RECURSIVE\_ACTIVITY\_SELECTOR (s,f,k,j)

RETURN Ø

- POICHE' TUTTE LE CHIAMATE A R-A-S SONO DEL TIPO R-A-S(SSf, i, nH), ESSA PUD ESSERE SEMPLIFICATA COSÌ; RECURSIVE\_ACTIVITY\_SELECTOR (5,f,i) n := |S|FOR KI= 1+1 TO n DO IF fies THEN RETURN (k)U RECURSIVE\_ACTIVITY\_SELECTOR (s,f,k) RETURN &

- DGNI ATTIVITA' VIEWE CONSIDERATA ESATTAMENTE UNA VOLTA, QUINDI R-A-S E' LINEARE

-LA "QUASI" RICORSIONE DI CODA DI R-A-S PUO' ESSEAE FACILMENTE ELIMINATA, DANDO LUOGO AL SEGUENTE ALGORITMO ITERATIVO:

CREEDY. ACTIVITY - SELECTOR (S,f) n := [s] A := {1} 1:= 1 for m := 2 to u do if sm > fi then A:= Au (m)

return A

(A MENO DELL'ORDINAMENTO DI 5)

ES.

| i  | 4 | 2 | 3 | 4 | 5 | 6 | 7  | 8 | 9  | 10 | 1 114 |
|----|---|---|---|---|---|---|----|---|----|----|-------|
| 5; | 1 | 3 | 0 | 5 | 3 | 5 | 6  | 8 | 8  | 2  | 12    |
| fi | 4 | 5 | 6 | 7 | 8 | 9 | 10 | " | 12 | 13 | 14    |

## ESGRC121

- 1) CHE COSA SUCCEDE SE ANZICHE' SELEZIONARE L'ATTIVITÀ CHE CHE TERMINA PRIMA, SI SELEZIONA L'ATTIVITÀ CHE INIZIA PIÙ TARDI ?
- 2) VERIFICARE CHE LE SEGUENTI SCELTE "GREEDY" NON FUNZIONANO PER IL PROBLEMA DEULA SELEZIONE DEULE ATTIVITA':
  - "TRA TUTTE LE ATTIVITA" COMPATIBILI
    - a) SI SELEZIONI L'ATTIVITA' DI DURATA MINIMA
    - WINGER ON ATTIVITA' COMPATIBILI
    - C) SI SELEZIONI L'ATTIVITA' CHE INIZIA PRINA

- RIASSUMENDO, LA STRATEGIA GREEDY CONSISTE NEI SEQUENTI PASSI:
- 1. VERIFICARE LA PROPRIETA' DELLA SOTTOSTRUTTURA OTTIMA
- 2. VERIFICARE CHE ESISTE SEMPRE UNA SOLUZIONE OTTIMA CHE INCLUDE LA SCELTA GREEDY
- 3. VERIFICARE CHE DODO LA SCELTA GREEDY IL
  PROBLEMA INIZIALE E' RICONDOTTO AD UN SOTTO PROBLEMA
  DELLO STESSO TIPO LA CUI SOLUZIONE OTTIMA PUÒ
  ESSERE COMBINATA CON LA SCELTA CREEDY PER
  DARE LUOGO AD UNA SOLUZIONE OTTIMA DEL
  PROBLEMA INIZIALE

#### PROGRAMMAZIONE DINAMICA E STRATEGIA GREEDY

- TAI METODOLOGIE UTILIZZAND ENTRATIBE LA PROPRIETA DELLA SOTTOSTRUTTURA OTTIMA
- E' QUINDI POSSIBILE CHE:
  - SI UTILIZZI LA PROGRAMMAZIONE DINAMICA
    QUANDO E' SUPFICIENTE UNA PIÙ EFFICIENTE
    STRATEGIA GREEDY
  - PER ELRORE SI DIA UNA SOLUZIONE BASATA
    SULLA STRATEGIA GREEDY QUANDO INVECE
    E' NECESSARIO UTILIZZARE LA PROGRAMMAZIONE
    DINAMICA

# PROBLEMA DELLO ZAINO (VERSIONE NITERA) (KNAPSACK PROBLEM)

CAPIENZA DELLO ZAINO 
$$W(\in N)$$

OGGETTO PESO VALDAE  $A \subseteq \{1,2,...,n\}$ 
 $1$ 
 $w_{1}>0$ 
 $v_{2}$ 
 $w_{2}>0$ 
 $v_{3}>0$ 
 $v_{4}>0$ 
 $v_{5}>0$ 
 $v_{7}>0$ 
 $v_$ 

## PROBLEMA DELLO ZAINO (VERSIONE FRAZIONAZIA) (KNAPSACK PROBLEM)

- ENTRANTBI | PROBLETTI GODONO DELLA PROPRIETA' DELLA SOTTOSTRUTTURA OTTIMA
- NEL CASO FRAZIONARIO E' POSSIBILE UTILIZZARE
  LA SEGUENTE STRATEGIA GREEDY CONSISTENTE NEL
  SELEZIONARE LA MASSIMA QUANTITA' PEL MATERIALE
  AVENTE VALORE SPECIFICO MASSIMO,
  COMPATIBILMENTE CON LA CAPIENZA RESIDUA
  DELLO 2AINO
- TALE STRATEGIA NON FUNZIONA PERO PER LA VAPIANTE INTERA CHE DIMOSTRA UNA BEN MAGGIORE COMPLESSITA COMBINATORICA

| 0998770 | PESO | VALORE | VALORE / PESO |
|---------|------|--------|---------------|
| 1       | 10   | 60     | 6             |
| 2       | 20   | 100    | 5             |
| 3       | 30   | 125    | 4             |
| 111     | 1    |        | •             |

#### CASO FRAZIONARIO

$$A(1) = 1$$
 value  $(A) = 1.60 + 1.100 + \frac{2}{3}.120 = 240$   
 $A(2) = 1$ 

$$A(3) = \frac{2}{3}$$

## CASO INTERS

$$A = \{1, 2\}$$
 value  $(A) = 60 + 100 = 160$   
 $A' = \{2, 3\}$  value  $(A') = 100 + 120 = 220$