Log

Contents

l. Env	. 2
2. examples/00_basic_gemm	. 2
2.1. Build	
3. examples/01_cutlass_utilities	
4. examples/02_dump_reg_shmem	
5. examples/05_batched_gemm	
5. examples/06_splitK_gemm 🛘	
7. examples/cute/tutorial/sgemm_1.cu	
3. media/docs/cute/01_layout.md	
- ·	

1. Env

- Commit: 5c447dd84f8ae0e1d48ff9a2eae26ce8c4958101
- Docker: docker.io/nvidia/cuda:12.0.1-devel-ubuntu22.04
 - ▶ install cmake, python and git manually
 - export CUDACXX=\$(which nvcc)

2. examples/00_basic_gemm

2.1. Build

The example is at examples/00 basic gemm.

```
# entry point is the root of the repository
mkdir build && cd build
# -DCUTLASS_LIBRARY_KERNELS=basic_gemm where `basic_gemm` is the name of the file (basic_gemm.cu)
cmake ... -DCUTLASS_NVCC_ARCHS=80 -DCUTLASS_LIBRARY_KERNELS=basic_gemm
cd examples/00_basic_gemm
# build the 00_basic_gemm excutable
make
```

2024-04-26

3. examples/01_cutlass_utilities

This example uses cut lass utils to create a random GPU GEMM operation and compare the results with the CPU reference implementation.

Several utils in this example

```
    cutlass::half_t
    cutlass::HostTensor<>/li>
    cutlass::reference::device::TensorFillRandomGaussian()
    cutlass::reference::host::Gemm<>
    cutlass::reference::host::TensorEquals()
```

2024-06-10

4. examples/02_dump_reg_shmem

• Dump a matrix

- ► Template cutlass::reference::host::BlockFillSequential is similar to np.arange(NUM_ELEMENTS) in Python.
- TODO: dump SMEM

5. examples/05 batched gemm

Batched GEMM between two column major matrices.

This example demonstrates how to use cutlass to compute a batched strided gemm in two different ways:

- 1. By specifying pointers to the first matrices of the batch and the stride between the consecutive matrices of the batch (this is called a strided batched gemm).
- 2. By copying pointers to all matrices of the batch to the device memory (this is called an array gemm).

```
In this example, both A and B matrix are non-transpose and column major matrix
batched_C = batched_A x batched_B

batched_A = [A_batch1 A_batch2]
batched_B = [[B_batch1], [B_batch2]]
batched_C = [C_batch1 C_batch2]
```

2024-06-10

6. examples/06_splitK_gemm ✓

This example is **well-documented**.

- Naming Convention of GEMM template types: D = alpha * A * B + beta * C
 - ▶ ElementComputeEpilogue : epilogue operations
 - ElementInputA: AElementInputB: BElementAccumulatorElementOutput: D
- MxNxK: numbers like 128x128x32 refer to the tile size (MxNxK) of threadblock, warp, or mma-op.
- Get and check device property: cudaGetDeviceProperties
- cutlass::gemm::device::GemmSplitKParallel

7. examples/cute/tutorial/sgemm_1.cu

- Prerequisite
 - ► go through ../media/docs/cute/01_layout.md (Section 8)

2024-04-26

8. media/docs/cute/01_layout.md

Keywords: layout, shape, stride, coordinate

- layout = (shape, stride)
- coordinate:
 - cute::idx2crd(idx, shape) maps index/input coordinate to natural coordinate via shape
 - cute::crd2idx(crd, shape, stride) maps input coordinate/natural coordinate (an IntTuple) to index (an integer)
 via shape and stride