I. Einstieg

§ I.1. Kontext

Die Topologie ist eine mathematische Grundlagendisziplin die sich verstärkt seit dem Ende des 19. Jahrhunderts eigenständig entwickelt hat. Vorher waren einige topologische Ideen im Zusammenhang mit geometrischen und analytischen Fragestellungen entstanden. Um Topologie handelt es sich zunächst immer dann, wenn geometrische Objekte deformiert werden und solche Eigenschaften der Objekte in den Vordergrund treten die sich dabei nicht ändern.

Topologisch ist eine Kugel dasselbe wie ein Würfel - geometrisch zwar völlig unterschiedlich, aber doch gibt es einige Gemeinsamkeiten. Es wäre vielleicht einmal interessant zu verfolgen, ob der Kubismus am Ende des 19. Jhdts. und die topologische Frage nach "simplizialen Zerlegungen" geometrischer Objekte sich gegenseitig beeinflusst haben...

Der Begriff der Nähe spielt in der Topologie eine gewisse Rolle, mehr als der Begriff des Abstands, der für die Geometrie immerhin namensgebend war. Die topologischen Mechanismen, die so entwickelt wurden, wurden nach und nach von ihren geometrischen Eltern entfernt; dafür sind die Eltern ja da: sich überflüssig zu machen. Und so konnten topologische Ideen sich auch auf andere Bereiche der Mathematik ausdehnen und diese geometrisch durchdringen.

Auch außerhalb der Mathematik ist die Topologie längst keine unbekannte mehr. So gab es in der ersten Hälfte des 20. Jhdts. die topologische Psychologie von Kurt Lewin, die allerdings nur die Terminologie von der Topologie übernahm, und nicht etwa mithilfe topologischer Argumente neue Einsichten produzierte. Etwas anders sieht es natürlich mit den "richtigen"Naturwissenschaften aus. In der Physik taucht die Topologie zum Beispiel in der Form von Modulräumen in der Stringtheorie auf, und in der Molekularchemie kann man zum Beispiel Chiralität als topologisches Phänomen verstehen.

§ I.2. Beispiele – was macht die Topologie?

Beispiel I.2.1 Nullstellenfang mit dem Lasso

Es sei $f: \mathbb{C} \longrightarrow \mathbb{C}$ eine nichtkonstante Polynomabbildung, d.h. $f(z) = \sum_{i=0}^{d} a_i z^i$

mit d > 0 und $a_d \neq 0$.

Dann hat f eine Nullstelle in \mathbb{C} . Das kann man zum Beispiel so plausibel machen:

Wenn $a_0 = 0$ gilt, dann ist z = 0 eine Nullstelle. Wenn $a_0 \neq 0$, dann brauchen wir ein Argument. Wir betrachten den Kreis vom Radius R um den Nullpunkt: $RS^1 = \{z \in \mathbb{C} \mid |z| = R\}$. Aus der Gleichung

$$f(z) = a_d z^d \cdot \left(1 + \frac{a_{d-1}}{a_d z} + \dots + \frac{a_0}{a_d z^d}\right)$$

folgt, dass das Bild von RS^1 unter f jedenfalls für großes R im Wesentlichen der d-fach durchlaufene Kreis vom Radius $|a_d|R^d$ ist. Im Inneren dieser Schlaufe liegen für großes R sowohl die 0 als auch a_0 . Wenn man nun den Radius kleiner macht, so wird diese Schlaufe für $R \searrow 0$ zu einer Schlaufe um a_0 zusammengezogen – das ist die Stetigkeit von f. Für kleines R liegt insbesondere 0 nicht im Inneren der Schlaufe. Das aber heißt, dass beim Prozess des Zusammenziehens die Schlaufe irgendwann mindestens einmal die 0 trifft. Dann hat man eine Nullstelle von f gefunden.

Einen anders gelagerten und präzisen topologischen Beweis des Fundamentalsatzes werden wir in II.3.14 führen.

In diesem Argument – das man streng durchziehen kann – wird ein topologisches Phänomen benutzt, um den Fundamentalsatz der Algebra zu beweisen. Das Zusammenziehen der Kurve durch Variation des Parameters R werden wir später allgemeiner als Spezialfall einer Homotopie verstehen.

Beispiel I.2.2 Fahrradpanne

Es gibt keine stetige Bijektion von einem Torus T ("Fahrradschlauch") auf eine Kugeloberfläche S.

Denn: Auf dem Torus gibt es eine geschlossene Kurve γ , die ihn nicht in zwei Teile zerlegt. Ihr Bild unter einer stetigen Bijektion von T nach S würde dann S auch nicht in zwei Teile zerlegen, da das stetige Bild des Komplements $T \setminus \gamma$ gleich $S \setminus$ Bild von γ zusamenhängend sein müsste, aber das stimmt für keine geschlossene Kurve auf S.

Auch hier sieht man ein topologisches Prinzip am Werk. Es ist oft sehr schwer zu zeigen, dass es zwischen zwei topologischen Räumen (siehe später) keine stetige Bijektion gibt. Dass ich keine solche finde sagt ja noch nicht wirklich etwas aus...

In der linearen Algebra weiß man sehr genau, wann es zwischen zwei Vektorräumen einen Isomorphismus gibt, das hängt ja nur an der Dimension. Ähnlich versucht man in der Topologie, zu topologischen Räumen zugeordnete Strukturen zu finden, die nur vom Isomorphietyp abhängen, und deren Isomorphieklassen man besser versteht als die der topologischen Räume.

Beispiel I.2.3 Eulers ¹Polyederformel

Für die Anzahl E der Ecken, K der Kanten und F der Flächen eines (konvexen) Polyeders gilt die Beziehung E - K + F = 2.

Das kann man zum Beispiel einsehen, indem man das Polyeder zu einer Kugel aufbläst, auf der man dann einen Graphen aufgemalt hat (Ecken und Kanten des Polyeders), und dann für je zwei solche zusammenhängenden Graphen zeigt, dass sie eine gemeinsame Verfeinerung haben. Beim Verfeinern ändert sich aber E-K+F nicht, und so muss man nur noch für ein Polyeder die alternierende Summe auswerten, zum Beispiel für das Tetraeder, bei dem E=F=4, K=6 gilt.

Beispiel I.2.4 Reelle Divisionsalgebren

Eine reelle Divisionsalgebra ist ein \mathbb{R} -Vektorraum A mit einer bilinearen Multiplikation, für die es ein neutrales Element gibt und jedes $a \in A \setminus \{0\}$ invertierbar ist.

Beispiele hierür sind $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (Hamilton²-Quaternionen) und – wenn man die Assoziativität wirklich nicht haben will – \mathbb{O} (die Cayley³-Oktaven). Die Dimensionen dieser Vektorräume sind 1, 2, 4, 8. Tatsächlich ist es so, dass es keine weiteren endlichdimensionalen reellen Divisionsalgebren gibt. Dies hat letztlich einen topologischen Grund.

Zunächst überlegt man sich, dass die Struktur einer Divisionsalgebra auf \mathbb{R}^n auf der n-1-dimensionalen Sphäre eine Verknüpfung induziert, die fast eine Gruppenstruktur ist.

Dann kann man im wesentlichen topologisch zeigen, dass solch eine Struktur auf der Späre nur für $n \in \{1, 2, 4, 8\}$ existieren kann. Solch eine Gruppenstruktur stellt nämlich topologische Bedingungen, die für die anderen Sphären nicht erfüllt sind.

Eng damit zusammen hängt der

Beispiel I.2.5 Satz vom Igel⁴

Dieser Satz sagt, dass jeder stetig gekämmte Igel mindestens einen Glatzpunkt besitzt. Die Richtigkeit dieses Satzes gründet sich nicht darauf, dass es bisher noch niemanden gelingen ist, einen Igel zu kämmen. Sie hat handfeste mathematische Gründe, die in einer etwas präziseren Formulierung klarer werden:

Etwas weniger prosaisch besagt der Satz "eigentlich", dass ein stetiges Vektorfeld auf der zweidimensionalen Sphäre mindestens eine Nullstelle besitzt.

¹Leonhard Euler, 1707-1783

²William Hamilton, 1788-1856

³Arthur Cayley, 1821-1895

⁴Frans Ferdinand Igel, ???

Beispiel I.2.6 Brouwers⁵ Fixpunktsatz

Jede stetige Abbildung des n-dimensionalen Einheitswürfels $W = [0,1]^n$ in sich selbst hat einen Fixpunkt.

Für n=1 ist das im Wesentlichen der Zwischenwertsatz. Ist $f:[0,1] \longrightarrow [0,1]$ stetig, so ist auch $g(x) \coloneqq f(x) - x$ eine stetige Abbildung von [0,1] nach \mathbb{R} , und es gilt $g(0) \ge 0, g(1) \le 0$.

Also hat g auf jeden Fall eine Nullstelle x_0 , aber das heißt dann $f(x_0) = x_0$.

Für $n \ge 2$ ist der Beweis so einfach nicht möglich, wir werden ihm eventuell auch nur für n = 2 später noch begegnen.

§ I.3. Mengen, Abbildungen, usw.

Wir werden für eine Menge M mit $\mathcal{P}(M)$ immer die Potenzmenge bezeichnen:

$$\mathcal{P}(M) = \{A \mid A \subseteq M\}.$$

Für eine Abbildung $f: M \longrightarrow N$ nennen wir das Urbild $f^{-1}(n)$ eines Elements $n \in f(M) \subseteq N$ auch eine Faser von f.

Eine Abbildung ist also injektiv, wenn alle Fasern einelementig sind.

Ist f surjektiv, so gibt es eine Abbildung $s:N\longrightarrow M$ mit $f\circ s=\operatorname{Id}_N$ – die identische Abbildung auf N. Jede solche Abbildung s heißt ein Schnitt zu f. Er wählt zu jedem $n\in N$ ein $s(n)\in f^{-1}(n)$ aus. Wenn man also M als Vereinigung der Fasern von f über den Blumentopf N malt, so erhält der Name Schnitt eine gewisse Berechtigung.

Eine Partition von M ist eine Zerlegung von M in disjunkte, nichtleere Mengen $M_i, i \in I$, wobei I eine Indexmenge ist:

$$M = \bigcup_{i \in I} M_i, \quad \forall i \neq j : M_i \cap M_j = \emptyset, M_i \neq \emptyset.$$

Hand in Hand mit solchen Partitionen gehen Äquivalenzrelationen auf M. Die Relation zur Partition M_i , $i \in I$ wird gegeben durch

$$m \sim \tilde{m} \iff \exists i \in I : m, \tilde{m} \in M_i.$$

Umgekehrt sind die Äquivalenzklassen zu einer Äquivalenz
relation \sim eine Partition von M. Die Menge der Äquivalenzklassen nennen wir auch den
 Faktorraum $M/_{\sim}$:

$$M/\sim = \{M_i \mid i \in I\}.$$

⁵Luitzen Egbertus Jan Brouwer, 1881-1966

Die Abbildung $\pi_{\sim}: M \longrightarrow M/_{\sim}, \ \pi_{\sim}(m) \coloneqq [m] = \text{Äquivalenzklasse von } m$ heißt die kanonische Projektion von M auf $M/_{\sim}$.

Ist \sim eine Äquivalenzrelation auf M und $f: M \longrightarrow N$ eine Abbildung, so dass jede Äquivalenzklasse von \sim in einer Faser von f enthalten ist (d.h. f ist konstant auf den Klassen), so wird durch

$$\tilde{f}: M/\sim \longrightarrow N, \ \tilde{f}([m]) := f(m),$$

eine Abbildung definiert, für die $f = \tilde{f} \circ \pi_{\sim}$ gilt. Das ist die mengentheoretische Variante des Homomorphiesatzes.

Beispiel I.3.1 Gruppenaktionen

Ein auch in der Topologie wichtiges Beispiel, wie Äquivalenzrelationen bisweilen entstehen, ist das der Operation einer Gruppe G auf der Menge X.

Solch eine Gruppenaktion ist eine Abbildung

$$\bullet: G \times X \longrightarrow X$$
.

die die folgenden Bedingungen erfüllt:

$$\forall x \in X : e_G \bullet x = x$$
$$\forall g, h \in G, x \in X : g \bullet (h \bullet x) = (gh) \bullet x.$$

Hierbei ist e_G das neutrale Element von G und gh ist das Produkt von g und h in G.

Beispiel zum Beispiel: Für jede Menge X gibt es die symmetrische Gruppe $S_X := \operatorname{Sym}(X) := \{f : X \longrightarrow X \mid f \text{ bijektiv}\}$, als Verknüpfung benutzen wir die Hintereinanderausführung von Abbildungen. Das neutrale Element ist $\operatorname{Id}_X : X \longrightarrow X$, $\operatorname{Id}_X(x) = x$ für alle $x \in X$. Betrachte nun: $\bullet : \operatorname{Sym}(X) \times X \longrightarrow X$, $(f,x) \mapsto f(x)$. Dies ist eine Grupenoperation.

Für jedes $g \in G$ ist die Abbildung

$$\rho_q: X \longrightarrow X, \ \rho_q(x) := g \bullet x,$$

eine Bijektion von X nach X, die Inverse ist $\rho_{q^{-1}}$, und

$$g \mapsto \rho_q$$

ist ein Gruppenhomomorphismus von $\,G\,$ in die symmetrische Gruppe von $\,X\,.\,$

Die Bahn (oder der Orbit) von $x \in X$ unter der Operation von G ist

$$G \bullet x := \{g \bullet x \mid g \in G\}.$$

Man kann leicht verifizieren, dass die Bahnen einer Gruppenoperation eine Partition von X bilden. Mit $X/_G := \{G \bullet x \mid x \in X\}$ bezeichnen wir den Bahnenraum von X unter der Operation von G.

I. Einstieg

Weiteres Beispiel zum Beispiel: Betrachte $\bullet: \mathbb{Z}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $(k,v) \mapsto k+v$. Dann ist etwa der Orbit des Nullpunktes die Menge aller ganzzahligen Vektoren. Der Bahnenraum $\mathbb{R}^2/\mathbb{Z}^2 \cong [0,1)^2$ entspricht dann topologisch dem Torus.

Umgekehrt ist es so, dass jede Partition $(X_i)_{i\in I}$ von X von der natürlichen Aktion einer geeigneten Untergruppe G von $\mathrm{Sym}(X)$ herkommt. Hierzu wähle man einfach

$$G := \{ \sigma \in \operatorname{Sym}(X) \mid \forall i \in I : \sigma(X_i) = X_i \}$$

und verifiziere was zu verifizieren ist.

Ist $\bullet: G \times X \longrightarrow X$ eine Gruppenaktion, so heißt für $x \in X$ die Menge $\operatorname{Stab}_G(x) := \{g \in G \mid g \bullet x = x\}$ der *Stabilisator* oder "Fixgruppe" von x. $\operatorname{Stab}_G(x) \subseteq G$ ist eine Untergruppe.

Die Gruppenaktion heißt transitiv, wenn es nur eine Bahn gibt: $\exists x \in X : X = G \bullet x$.

Beispiel I.3.2 Der projektive Raum $\mathbb{P}^n K$

Es seien K ein Körper und n eine natürliche Zahl.

Problemstellung: In $\mathbb{A}^2(K)$, der affinen Ebene, gibt es Geraden. Zwei Geraden g, h in $\mathbb{A}^2(K)$ schneiden sich entweder in einem Punkt oder sie sind parallel. Das führt oft zu Fallunterscheidungen in Beweisen, was lästig ist. Wir vergrößern daher $\mathbb{A}^2(K)$ durch Hinzunahme von "unendlich fernen Punkten", wobei jeder Richtung von Geraden ein solcher Punkt entspricht: Zwei parallele Geraden schneiden sich dann in dem ihrer Richtung entsprechenden Punkt. Eine Konstruktion, die diesen Raum schön beschreibt, ist die folgende:

Auf $X := K^{n+1} \setminus \{0\}$ operiert die Gruppe K^{\times} durch die skalare Multiplikation

$$a \bullet v \coloneqq a \cdot v.$$

Die Bahn von $v \in X$ unter dieser Operation ist $Kv \setminus \{0\}$. Da die 0 ohnehin zu jeder Geraden durch den Ursprung gehört, kann man den Bahnenraum X/K^{\times} mit der Menge aller Geraden durch den Ursprung identifizieren. Dieser Raum heißt der n-dimensionale projektive Raum über K, in Zeichen $\mathbb{P}^n(K)$.

Speziell für n = 1 gilt:

$$\mathbb{P}^1(K) = \{ \begin{bmatrix} a \\ 1 \end{bmatrix} \mid a \in K \} \cup \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \}.$$

Oft identifiziert man den ersten großen Brocken hier mit K, den hinzukommenden Punkt nennt man suggestiver Weise ∞ , also $\mathbb{P}^1(K) = K \cup \{\infty\}$.

Genauso haben wir für beliebiges n eine Zerlegung

$$\mathbb{P}^n(K) = \{ [\binom{v}{1}] \mid v \in K^n \} \cup \{ [\binom{w}{0}] \mid w \in K^n, w \neq 0 \} = K^n \cup \mathbb{P}^{n-1}(K),$$

wobei die Auswahl des affinen Teils K^n durch die Bedingung, dass die letzte Koordinate nicht null ist, relativ willkürlich ist.

Was ist also $\mathbb{P}^2(\mathbb{R})$? Da jede Gerade durch 0 in \mathbb{R}^3 durch einen Vektor der Länge 1 erzeugt wird, gilt:

$$\mathbb{P}^2(\mathbb{R}) = \frac{S^2}{\{\pm 1\}}$$

wobei $S^2 := \{v \in \mathbb{R}^3 \mid |v| = 1\}$. Diesen Raum nennt man auch Kreuzhaube.

Definition I.3.3 Faserprodukte

Es seien A, B, S Mengen und $f_A : A \longrightarrow S$, $f_B : B \longrightarrow S$ zwei Abbildungen.

Weiter sei F eine Menge mit Abbildungen π_A, π_B von F nach A bzw. B, so dass $f_A \circ \pi_A = f_B \circ \pi_B$.

F heißt ein F aserprodukt von A und B über S, wenn für jede Menge M und jedes Paar von Abbildungen g_A, g_B von M nach A bzw. B mit $f_A \circ g_A = f_B \circ g_B$ genau eine Abbildung $h: M \longrightarrow F$ existiert, so dass

$$q_A = \pi_A \circ h, \quad q_B = \pi_B \circ h.$$

Insbesondere impliziert das, dass es zwischen zwei Faserprodukten von A und B über S genau einen sinnvollen Isomorphismus gibt. Denn nach Definition gibt es für ein zweites Faserprodukt $(\widetilde{F}, \widetilde{\pi_A}, \widetilde{\pi_B})$ genau eine Abbildung h von \widetilde{F} nach F mit

$$\widetilde{\pi_A} = \pi_A \circ h, \ \widetilde{\pi_B} = \pi_B \circ h$$

und auch genau eine Abbildung $\tilde{h}: F \longrightarrow \tilde{F}$ mit

$$\pi_A = \widetilde{\pi_A} \circ \widetilde{h}, \quad \pi_B = \widetilde{\pi_B} \circ \widetilde{h}.$$

Dann ist aber $h \circ \tilde{h}$ eine Abbildung von F nach F mit

$$\pi_A = pi_A \circ (h \circ \tilde{h}), \quad \pi_B = \pi_B \circ (h \circ \tilde{h}),$$

was wegen der Eindeutigkeit aus der Definition zwangsläufig

$$h \circ \tilde{h} = \mathrm{Id}_F$$

nach sich zieht. Analog gilt auch

$$\tilde{h} \circ h = \mathrm{Id}_{\tilde{F}}.$$

I. Einstieg

Schreibweise: Für das Faserprodukt schreibt man meistens $A \times_S B$, wobei in der Notation die Abbildungen f_A unf f_B unterdrückt werden.

Ein Faserprodukt existiert immer. Wir können nämlich

$$F := \{(a, b) \in A \times B \mid f_A(a) = f_B(b)\}\$$

wählen und für π_A, π_B die Projektion auf den ersten beziehungsweise zweiten Eintrag.

Die Abbildung h aus der Definition ist dann einfach $h(m) = (g_A(m), g_B(m))$.

Wir können F auch hinschreiben als

$$F = \bigcup_{s \in S} \left(f_A^{-1}(s) \times f_B^{-1}(s) \right),\,$$

also als Vereinigung der Produkte der Fasern von f_A und f_B über jeweils demselben Element von S. Das erklärt den Namen.

Beispiel I.3.4 Spezialfälle

- a) Wenn S nur aus einem Element s besteht, dann sind f_A und f_B konstant, und damit $A \times_S B = A \times B$ das mengentheoretische Produkt.
- b) Wenn A, B Teilmengen von S sind und die Abbildungen f_A, f_B einfach die Inklusionen, dann gilt

$$A \times_S B = \{(a, b) \in A \times B \mid a = b\} = \{(s, s) \mid s \in A \cap B\} \simeq A \cap B.$$

§ I.4. Metrische Räume

Definition I.4.1 Metrischer Raum

Ein metrischer Raum ist eine Menge X zusammen mit einer Abbildung

$$d: X \times X \longrightarrow \mathbb{R}_{>0},$$

so dass die folgenden Bedingungen erfüllt sind:

- $\forall x, y \in X : d(x, y) = d(y, x)$ (Symmetrie)
- $\forall x \in X : d(x, x) = 0.$
- $\forall x, y \in X : x \neq y \Rightarrow d(x, y) > 0$.
- $\forall x, y, z \in X : d(x, y) + d(y, z) \ge d(x, z)$. (Dreiecksungleichung)

Die Abbildung d heißt dabei die Metrik.

Penibler Weise sollte man einen metrischen Raum als Paar (X, d) schreiben. Meistens wird das micht gemacht, aber Sie kennen diese Art der Schlamperei ja schon zur Genüge...

Beispiel I.4.2 LA und Ana lassen grüßen

a) Ein reeller Vektorraum mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$ wird bekanntlich mit

$$d(v, w) := \sqrt{\langle v - w, v - w \rangle} = |v - w|$$

zu einem metrischen Raum. Im folgenden heißt \mathbb{R}^n als metrischen Raum immer: mit dem Standardskalarprodukt.

b) Jede Menge X wird notfalls durch

$$d(x,y) = \begin{cases} 1, & \text{falls } x \neq y, \\ 0, & \text{falls } x = y, \end{cases}$$

zu einem metrischen Raum. Diese Metrik heißt die diskrete Metrik auf X.

c) Es sei X eine Menge und $\mathcal{B}(X)$ der Vektorraum der beschränkten reellwertigen Funktionen auf X. Dann wird X vermöge

$$d(f,g) := \sup\{|f(x) - g(x)| \mid x \in X\}$$

zu einem metrischen Raum.

Diese Metrik ist stets endlich, denn f und g sind beschränkt, also gibt es ein R>0 so dass |f(x)|, |g(x)|< R für jedes $x\in X$, und damit |f(x)-g(x)|< 2R.

Allgemeiner sei für eine Menge X und einen metrischen Raum (Y,e) die Menge $\mathcal{B}(X,Y)$ definiert als die Menge aller beschränkten Abbildungen von X nach Y. Dabei heißt f beschränkt, wenn ein $g \in Y$ und ein $g \in \mathbb{R}$ gibt mit

$$\forall x \in X : e(f(x), y) < R.$$

Dann wird $\mathcal{B}(X,Y)$ zu einem metrischen Raum vermöge

$$d(f,g) \coloneqq \sup\{e(f(x),g(x)) \mid x \in X\}.$$

d) Auf den rationalen Zahlen lässt sich für eine Primzahl p auf folgende Art eine Metrik konstruieren:

Jede rationale Zahl $q \neq 0$ kann man schreiben als $p^{\mathbf{v}_p(q)} \cdot \frac{a}{b}$, wobei $a, b \in \mathbb{Z}$ keine Vielfachen von p sind. Dann ist $v_p(q)$ eindeutig bestimmt.

Wir setzen für zwei rationale Zahlen x, y

$$d_p(x,y) \coloneqq \begin{cases} 0, & \text{falls } x = y, \\ p^{-\mathbf{v}_p(x-y)}, & \text{sonst } . \end{cases}$$

Dies ist die sogenannte p-adische Metrik auf \mathbb{Q} .

Definition I.4.3 Folgen und Grenzwerte

Es sei (X, d) ein metrischer Raum.

a) Eine Folge $(x_n)_{n\in\mathbb{N}}$ in X heißt konvergent gegen den Grenzwert $y\in X$, falls

$$\forall \varepsilon > 0 : \exists k \in \mathbb{N} : \forall n \in \mathbb{N} : \geq k : d(x_n, y) < \varepsilon.$$

Natürlich ist y hierbei eindeutig bestimmt.

b) Eine Cauchyfolge⁶ in X ist eine Folge $(x_n)_{n\in\mathbb{N}}$ mit

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall m, n > N : d(x_m, x_n) < \varepsilon.$$

Jede konvergente Folge ist eine Cauchyfolge.

c) X heißt vollständig, wenn jede Cauchyfolge in X einen Grenzwert in X hat.

Beispiel I.4.4 Schatten der Vergangenheit

Für einen vollständigen metrischen Raum (Y, e) und jede Menge M ist auch $\mathcal{B}(M, Y)$: Ist $(f_i)_{i \in \mathbb{N}}$ eine Cauchy-Folge in $\mathcal{B}(M, Y)$, dann ist für jedes $m \in M$ auch $(f_i(m))_i$ eine Cauchy-Folge in Y. Da Y vollständig ist, gibt es eine Funktion $f: M \to Y$ so dass für jedes $m \in M$ gilt: $f_i(m) \to f(m)$ für $i \to \infty$.

f ist beschränkt, denn es gibt ein $\varepsilon>0$ und ein k>0 so dass für jedes $i,j\geq k$ gilt: $d(f_i,f_j)<\varepsilon$. Sei $m_0\in M$. Für $m\in M$ gilt dann:

$$e(f(m), f(m_0)) \le e(f(m), f_k(m_0)) + e(f_k(m_0), f(m_0))$$

$$\le e(f(m), f_k(m)) + e(f_k(m), f_k(m_0)) + e(f_k(m_0), f(m_0))$$

$$< \varepsilon + R + \varepsilon$$

Zur Übung: Der Rest.

Jeder endlichdimensionale euklidische Vektorraum ist vollständig.

 \mathbb{Q} mit der p-adischen Metrik ist nicht vollständig. Man kann einen Körper \mathbb{Q}_p konstruieren, der \mathbb{Q} enthält, auf dem eine Metrik definiert ist, die die p-adische fortsetzt, und in dem sich jedes Element durch eine p-adische Cauchyfolge in \mathbb{Q} approximieren lässt. Damit wird ein arithmetisch wichtiges Pendant zu den reellen Zahlen geschaffen, die sich ja auch konstruieren lassen als (archimedische) Cauchyfolgen in \mathbb{Q} modulo Nullfolgen.

Definition I.4.5 Isometrien

Es seien (X,d) und (Y,e) zwei metrische Räume. Eine abstandserhaltende Abbildung von X nach Y ist eine Abbildung $f:X\longrightarrow Y$, für die gilt:

$$\forall x_1, x_2 \in X : d(x_1, x_2) = e(f(x_1), f(x_2)).$$

⁶Augustin-Louis Cauchy, 1789-1857

Solche Abbildungen sind immer injektiv. Eine surjektive abstandserhaltende Abbildung heißt eine *Isometrie*. ⁷

Für eine Isometrie $f: X \to Y$ ist auch f^{-1} eine Isometrie. Die Menge der Isometrien von X nach X ist eine Untergruppe der symmetrischen Gruppe $\operatorname{Sym}(M)$ aller Bijektionen von X nach X.

Aber eigentlich ist das momentan kein Begriff, der unsere Aufmerksamkeit zu stark in Anspruch nehmen sollte.

Definition I.4.6 Kugeln

Es seien (X, d) ein metrischer Raum und $x \in X$ sowie r > 0 eine reelle Zahl. Dann heißt

$$B_r(x) := \{ y \in X \mid d(x, y) < r \}$$

die offene Kugel vom Radius r um den Mittelpunkt x.

Vorsicht: Weder x noch r müssen durch die Menge $B_r(x)$ eindeutig bestimmt sein. Wenn zum Beispiel X mit der diskreten Metrik ausgestattet ist, so ist $X = B_2(x) = B_3(y)$ für alle $x, y \in X$.

Definition I.4.7 Stetigkeit

Es seien (X,d) und (Y,e) zwei metrische Räume. Dann heißt eine Abbildung $f:X\longrightarrow Y$ stetig, falls für jedes $x\in X$ und jedes $\varepsilon>0$ ein $\delta>0$ existiert, so dass

$$f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x)).$$

In Worten: Jede offene Kugel um f(x) enthält das Bild einer offenen Kugel um x.

So ist zum Beispiel jede Abbildung von X nach Y stetig, wenn auf X die diskrete Metrik vorliegt. Denn dann ist ja $\{x\} = B_{\frac{1}{2}}(x)$ im Urbild jeder offenen Kugel um f(x) enthalten.

Definition I.4.8 Noch einmal die Analysis

Es seien X, Y metrische Räume. Dann bezeichnen wir mit $\mathcal{C}(X,Y)$ die Menge aller stetigen Abbildungen von X nach Y, und mit $\mathcal{C}_0(X,Y)$ die Menge aller beschränkten stetigen Abbildungen von X nach Y.

Wenn Y vollständig ist, dann ist auch $C_0(X,Y)$ (als Teilraum von $\mathcal{B}(X,Y)$) vollständig.

Im Fall $Y = \mathbb{R}$ lässt man das Y auch häufig weg und schreibt nur $\mathcal{C}(X)$ bzw. $\mathcal{C}_0(X)$.

⁷Das Erlanger Programm (Felix Klein, ewa 1871) ist der Versuch, interessante Klassen von geometrischen Objekten durch das Studium ihrer Isometriegruppen zu untersuchen.

Hilfssatz I.4.9 Normen

Es sei $V = \mathbb{R}^n$ mit dem Standardskalarprodukt versehen und N eine Norm auf $V, d.h. N: V \longrightarrow \mathbb{R}_{\geq 0}$ erfüllt

- $\forall v \in V : N(v) = 0 \iff v = 0 \ (Positivit \ddot{a}t),$
- $\forall a \in \mathbb{R}, v \in V : N(av) = |a|N(v)$ (Homogenität),
- $\forall v, w \in V : N(v+w) \leq N(v) + N(w)$ (Dreicksungleichung).

Dann ist N stetig bezüglich der Standardmetrik.

Beweis. Das Urbild von $(-\varepsilon, \varepsilon)$ unter N ist konvex, d.h.

$$\forall v, w \in V : [N(v), N(w) \le \varepsilon \Rightarrow \forall \lambda \in [0, 1] : N(\lambda v + (1 - \lambda)w) \le \varepsilon].$$

Das folgt sofort aus den drei aufgelisteten Eigenschaften der Normabbildung.

Wegen der Positivität und der Homogenität gibt es eine Konstante c > 0 (abhängig von ε), so dass die Vektoren $\pm ce_i$, $1 \le i \le n$, in $N^{-1}(-\varepsilon, \varepsilon)$ liegen. Dabei ist $\{e_1, \ldots, e_n\}$ die Standardbasis von \mathbb{R}^n .

Es sei $v \in B_{c/\sqrt{n}}(0) \subseteq V$, d.h. $v = \sum_{i=1}^n a_i c e_i$, $\sum_i a_i^2 < 1/n$. Dann ist aber die Summe $\sum_i |a_i| < 1$. Für $\alpha = \sum_i |a_i|$ ist also $v = \alpha \cdot \sum_i \frac{a_i}{\alpha} c e_i$ das α -fache einer Konvexkombination von $\pm c e_1$, $\cdots \pm c e_n$. Wegen $|\alpha| < 1$ liegt wegen der Homogenität von N auch v im Urbild von $(-\varepsilon, \varepsilon)$, und damit liegt die offene Kugel $B_{c\sqrt{n}}(0)$ im Urbild: N ist stetig im Ursprung.

Nun seien $x \in V$ beliebig und $\delta > 0$ vorgegeben. Dann gibt es nach dem eben gesehenen ein $\varepsilon > 0$ mit

$$\forall y \in B_{\varepsilon}(0) : |N(y)| < \delta.$$

Für $y \in B_{\varepsilon}(0)$ gilt demnach wegen $N(x) = N(x+y-y) \ge N(x+y) + N(y)$:

$$-N(y) \le N(x+y) - N(x) \le N(y),$$

und daher $N(B_{\varepsilon}(x)) \subseteq B_{\delta}(N(x))$.

Das zeigt die Stetigkeit von N.

Bemerkung: Es sei N eine Norm auf \mathbb{R}^n , dann kann dazu eine Metrik definiert werden: $d_N(x,y) := N(x-y)$. Der Hilfssatz zeigt, dass in jeder Kugel $B_{\varepsilon}(x)_{d_N}$ bezüglich d_N auch eine offene Kugel um x bezüglich der Standardmetrik liegt. Hier nicht gezeigt: Das gilt auch umgekehrt. Insbesondere liefert jede Norm auf \mathbb{R}^n den selben Konvergenzbegriff.

Definition I.4.10 Die Topologie eines metrischen Raums

Es sei (X, d) ein metrischer Raum. Eine Teilmenge $A \subseteq X$ heißt offen, falls für jedes $x \in A$ eine reelle Zahl r > 0 existiert, so dass $B_r(x) \subseteq A$ gilt.

Die Gesamtheit aller offenen Mengen in X heißt die Topologie von (X, d).

Beispiel: Für die diskrete Metrik d auf einer Menge X ist die Topologie gleich $\mathcal{P}(x)$: Für $M\subseteq X$, $m\in M$ gilt: $B_{\frac{1}{2}}(m)=\{m\}\subseteq M$.

Bemerkung I.4.11 Eigenschaften

Für einen metrischen Raum (X, d) mit Topologie \mathcal{T} gilt:

- Sowohl \emptyset als auch X sind offen.
- Beliebige Vereinigungen und endliche Durchschnitte von offenen Mengen sind wieder offen.
- Eine Abbildung $f: X \longrightarrow Y$ zwischen metrischen Räumen ist genau dann stetig, wenn für jede offene Teilmenge $U \subseteq Y$ das Urbild $f^{-1}(U)$ offen in X ist.

Es kann sehr viele verschiedene Metriken auf X geben, die zur selben Topologie führen. So stimmen zum Beispiel für zwei Normen auf \mathbb{R}^n die zugehörigen Topologien überein, was im Wesentlichen aus Hilfssatz I.4.9 folgt. Dieser Hilfssatz sagt nämlich, dass die Identität auf \mathbb{R}^n stetig ist, wenn wir auf Seiten des Definitionsbereichs die euklidische Standardlänge als Norm benutzen, und auf Bildseite die Norm N. Auch in der anderen Richtung ist die Identität stetig (das muss man noch beweisen!), und das impliziert die Gleichheit der zugehörigen Topologien.