Nonlinear models

Bayesian statistics 8 - dynamic and nonlinear model fitting

Frédéric Barraquand (CNRS, IMB)

07/12/2021

Things that we learned the last time

• logistic regression with $y_i \sim \mathcal{B}(n, p_i)$ with $\log \operatorname{id}(p_i) = \log(\frac{p_i}{1-p_i}) = a + bx_i$ or $\gamma(x_i - \mu_x)$ which is equivalent to $p_i = \operatorname{logistic}(a + bx_i) = \frac{\exp(a + bx_i)}{1 + \exp(a + bx_i)} = \frac{1}{1 + \exp(-(a + bx_i))}$

Things that we learned the last time

- logistic regression with $y_i \sim \mathcal{B}(n, p_i)$ with $\log \operatorname{ic}(p_i) = \log(\frac{p_i}{1-p_i}) = a + bx_i$ or $\gamma(x_i \mu_x)$ which is equivalent to $p_i = \operatorname{logistic}(a + bx_i) = \frac{\exp(a + bx_i)}{1 + \exp(a + bx_i)} = \frac{1}{1 + \exp(-(a + bx_i))}$
- "logistic ANOVA" $p_i = \text{logistic}(\alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i})$. Here the logistic function maps $(-\infty, +\infty) \rightarrow [0, 1]$.

Things that we learned the last time

- logistic regression with $y_i \sim \mathcal{B}(n, p_i)$ with $\log \operatorname{ic}(p_i) = \log(\frac{p_i}{1-p_i}) = a + bx_i$ or $\gamma(x_i \mu_x)$ which is equivalent to $p_i = \operatorname{logistic}(a + bx_i) = \frac{\exp(a + bx_i)}{1 + \exp(a + bx_i)} = \frac{1}{1 + \exp(-(a + bx_i))}$
- "logistic ANOVA" $p_i = \text{logistic}(\alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i})$. Here the logistic function maps $(-\infty, +\infty) \rightarrow [0, 1]$.
- We can also want to use the logistic function to model a known curve, $y_i = f(x_i) + \epsilon_i$ or $y_i = f(t_i) + \epsilon_i$

Organism growth basics: von Bertalanffy

Figure 1: Von Bertalanffy growth curve fit to Girella nigricans

$$L(t) = L_{\infty}(1 - \exp(-k(t_i - t_0))) + \epsilon_i$$

Connection to dynamics

$$\frac{dL}{dt} = k(L_{\infty} - L)$$

Connection to dynamics

$$\frac{dL}{dt} = k(L_{\infty} - L)$$

We'll do for practical another example of organismal growth, Gompertz growth (Winsor PNAS 1932).

Dynamics

$$\frac{d\ln(L)}{dt} = k(\ln(L_{\infty}) - \ln(L))$$

Solution

$$L(t) = ae^{-e^{b-ct}}$$

where $a = L_{\infty}e^1$, $b = kt_0$ and c = k.

Trick: note I = ln(L), solve von Bertalanffy for I, transform back.

The Gompertz growth curve is more logistic-like

Mathematical cousins of von Bertalanffy: modelling saturation

Monod function (microbiology) aka Michalis-Menten (chemistry) aka Holling type II (ecology) aka . . .

$$f(x) = \frac{ax}{b+x}$$

Another example of connection to dynamics: logistic population growth

N = population size (microbes, humans, wild boars, plants,...)

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

And the solution is. . .

Another example of connection to dynamics: logistic population growth

N = population size (microbes, humans, wild boars, plants,...)

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

And the solution is. . .

$$N(t) = \frac{N_0 e^{rt}}{1 + N_0 (e^{rt} - 1)/K}$$

If we use t = 1, 2, 3, ...

$$\textit{N}_1 = \frac{\textit{N}_0 e^r}{1 + \textit{N}_0 (e^r - 1) / \textit{K}}, \textit{N}_2 = \frac{\textit{N}_1 e^r}{1 + \textit{N}_1 (e^r - 1) / \textit{K}}, ...$$

aka Beverton-Holt model.

Observational noise

$$y_{t+1} = N_{t+1} + \epsilon_t, \; N_t = rac{N_t e^r}{1 + N_t (e^r - 1)/K} \; \epsilon_t \sim \mathcal{N}(0, \sigma^2) \; \text{i.i.d}$$

• The effect of ϵ_t does not accumulate. ϵ_1 does not affect N_8 .

Observational noise

$$y_{t+1} = N_{t+1} + \epsilon_t, \; N_t = rac{N_t e^r}{1 + N_t (e^r - 1)/K} \; \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$
 i.i.d

• The effect of ϵ_t does not accumulate. ϵ_1 does not affect N_8 .

Process noise

$$N_{t+1} = rac{N_t e^{r+\epsilon_t}}{1+N_t(e^r-1)/K}, \; \epsilon_t \sim \mathcal{N}(0,\sigma^2)$$
 i.i.d

• The effect of ϵ_t does accumulate. ϵ_1 does affect N_8 .

Observational noise

$$y_{t+1} = N_{t+1} + \epsilon_t, \; N_t = rac{N_t e^r}{1 + N_t (e^r - 1)/K} \; \epsilon_t \sim \mathcal{N}(0, \sigma^2) \; \text{i.i.d}$$

• The effect of ϵ_t does not accumulate. ϵ_1 does not affect N_8 .

Process noise

$$N_{t+1} = rac{N_t e^{r+\epsilon_t}}{1+N_t(e^r-1)/K}, \; \epsilon_t \sim \mathcal{N}(0,\sigma^2)$$
 i.i.d

- The effect of ϵ_t does accumulate. ϵ_1 does affect N_8 .
- ullet autocorrelation between N_t values. This is a time series model

Observational noise

$$y_{t+1} = N_{t+1} + \epsilon_t, \; N_t = rac{N_t e^r}{1 + N_t (e^r - 1)/K} \; \epsilon_t \sim \mathcal{N}(0, \sigma^2) \; \text{i.i.d}$$

• The effect of ϵ_t does not accumulate. ϵ_1 does not affect N_8 .

Process noise

$$N_{t+1} = rac{N_t e^{r+\epsilon_t}}{1+N_t(e^r-1)/K}, \; \epsilon_t \sim \mathcal{N}(0,\sigma^2)$$
 i.i.d

- The effect of ϵ_t does accumulate. ϵ_1 does affect N_8 .
- ullet autocorrelation between N_t values. This is a time series model
- Of course in real life you can have both (and sometimes it is hard to distinguish between the two)

Transforming this into a model we can fit

We need to have $y_t \sim \mathcal{D}([\text{something}])$ to be able to fit a model in jags – the data must be observed. Let's take $y_t = \ln(N_t)$. Then the previous model writes

$$y_{t+1}=y_t+r+\epsilon_t-\ln(1+\alpha N_t),\;\epsilon_t\sim \mathcal{N}(0,\sigma^2)\;\text{i.i.d}$$
 with $\alpha=(e^r-1)/K$.

Transforming this into a model we can fit

We need to have $y_t \sim \mathcal{D}([\text{something}])$ to be able to fit a model in jags – the data must be observed. Let's take $y_t = \ln(N_t)$. Then the previous model writes

$$y_{t+1}=y_t+r+\epsilon_t-\ln(1+\alpha N_t), \ \epsilon_t\sim \mathcal{N}(0,\sigma^2) \ \text{i.i.d}$$
 with $\alpha=(e^r-1)/K$.

Or again

$$y_{t+1} = y_t + r + \epsilon_t - \ln(1 + \alpha e^{y_t}), \ \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$
 i.i.d

Transforming this into a model we can fit

We need to have $y_t \sim \mathcal{D}([\text{something}])$ to be able to fit a model in jags – the data must be observed. Let's take $y_t = \ln(N_t)$. Then the previous model writes

$$y_{t+1}=y_t+r+\epsilon_t-\ln(1+\alpha N_t),\;\epsilon_t\sim\mathcal{N}(0,\sigma^2)\;\text{i.i.d}$$
 with $\alpha=(e^r-1)/K$.

Or again

$$y_{t+1} = y_t + r + \epsilon_t - \ln(1 + \alpha e^{y_t}), \ \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$
 i.i.d

This equivalent to

$$y_{t+1} = f(y_t) + \epsilon_t \ \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$
 i.i.d

or again $y_{t+1}|y_t \sim \mathcal{N}(f(y_t), \sigma^2)$. We have our distribution!

Fitting the logistic model in discrete-time with process noise I

(you can fit the observational noise model with the solution N(t) – you can't fit the process noise model solution, you have to fit the *dynamics*)

```
r=0.5
alpha=0.02
tmax=25
R=exp(r)
K=(\exp(r)-1)/alpha
N_BH=N_BH1=rep(NA,tmax)
N_BH[1] = N_BH1[1] = 1
for (t in 1:(tmax-1)){N BH[t+1]} =
  (exp(r+rnorm(1,0,sqrt(0.05))))*N_BH[t]/(1+alpha*N_BH[t])
for (t in 1:(tmax-1)){N BH1[t+1]} =
  (\exp(r+r_{0.1}))*N_BH1[t]/(1+alpha*N_BH1[t])
###
par(pch=20,cex=1.5)
plot(1:tmax,N_BH,type="o",ylim=range(c(N_BH,N_BH1)),xlab="Time",ylab="N")
lines(1:tmax, N_BH1, type="o", col="blue")
legend("topleft",c(expression(paste(sigma^"2","=0.05",sep="")),
                   expression(paste(sigma^"2", "=0.1", sep=""))),
       col=c("black","blue"),lty=1,pch=16,bty="n")
```

Fitting the logistic model in discrete-time with process noise II

Let's fit the model

```
logistic.data <- list(logN = log(N_BH), tmax=tmax)</pre>
cat(file="logistic.growth.txt","
model {
  r \sim dnorm(2, 0.01) ## prior on r
  alpha ~ dlnorm(1, 0.01) ## prior on alpha
  K < -(exp(r)-1)/alpha
  sigma ~ dunif(0.01,2)
  tau<-pow(sigma,-2)
  logN[1] \sim dnorm(0,1)
  N[1] < -exp(logN[1])
  #Likelihood
  for (t in 1:(tmax-1)){
  logNpred[t] <- logN[t]+ r - log(1 + alpha*N[t])</pre>
  logN[t+1] ~ dnorm(logNpred[t],tau)
  N[t+1] \leftarrow exp(logN[t+1])
```

Running the model I

```
# Inits function
inits \leftarrow function(){list(r = rnorm(1, 0, 1),
                         alpha = rlnorm(1,0,1))
# Parameters to estimate
params <- c("r","alpha","K","sigma")</pre>
# MCMC settings
nc <- 3 ; ni <- 2000 ; nb <- 1000 ; nt <- 2
# Call JAGS, check convergence and summarize posteriors
out <- jags(logistic.data, inits, params, "logistic.growth.txt", n.thin = nt,
            n.chains = nc. n.burnin = nb. n.iter = ni)
## Compiling model graph
##
      Resolving undeclared variables
      Allocating nodes
##
## Graph information:
##
      Observed stochastic nodes: 25
     Unobserved stochastic nodes: 3
##
##
      Total graph size: 183
##
## Initializing model
```

Running the model II

```
print(out, dig = 3)  # Bayesian analysis
## Inference for Bugs model at "logistic.growth.txt", fit using jags,
   3 chains, each with 2000 iterations (first 1000 discarded), n.thin = 2
## n.sims = 1500 iterations saved
           mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
##
## K
          33.809 4.219 26.953 31.097 33.447 35.893 43.524 1.001 1500
## alpha 0.027 0.008 0.013 0.021 0.026 0.032 0.044 1.006 1100
## r
         0.627 0.114 0.405 0.557 0.625 0.696 0.861 1.006
                                                                   1500
## sigma 0.201 0.035 0.149 0.177 0.196 0.218 0.294 1.008 440
## deviance -8.697 3.212 -12.127 -10.950 -9.610 -7.500 0.281 1.015
                                                                   210
##
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 5.1 and DIC = -3.6
## DIC is an estimate of expected predictive error (lower deviance is better).
```

Showing traceplots

```
S<-ggs(as.mcmc(out)) #R2jags
S<-filter(S,Parameter != "deviance")
ggs_traceplot(S)</pre>
```


Showing correlations (r,K) and (r, α)

ggs_pairs(S)

Makes some parameters difficult to interpret independently

- Makes some parameters difficult to interpret independently
- Here r is correlated to α but not really to K despite the fact that the formula K includes r in our JAGS code

- Makes some parameters difficult to interpret independently
- Here r is correlated to α but not really to K despite the fact that the formula K includes r in our JAGS code
- To maintain a nice curve that goes through the point cloud, r must be correlated with α .

- Makes some parameters difficult to interpret independently
- Here r is correlated to α but not really to K despite the fact that the formula K includes r in our JAGS code
- ullet To maintain a nice curve that goes through the point cloud, r must be correlated with lpha.
- We'll see another example of this in the practical