

GENERAL INFORMATION:

- (i) APPLICANTS: Van der Bruggen, Pierre; Van den Eynde, Benoit; DeBacker, Olivier; Boon-Falleur, Thierry
- (ii) TITLE OF INVENTION: Isolated, Polypeptides Which Bind to HLA-A29 Molecules, Nucleic Acid, The Molecules Encoding These, and Uses Thereof
- (iii) NUMBER OF SEQUENCES: 31
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Fulbright & Jaworski L.L.P.
 - (B) STREET: 666 Fifth Avenue
 - (C) CITY: New York City
 - (D) STATE: New York
 - (E) COUNTRY: USA
 - (F) ZIP: 10103-3198
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.5 inch, 1.44 kb storage
 - (B) COMPUTER: IBM PS/2
 - (C) OPERATING SYSTEM: PC
 - (D) SOFTWARE: Wordperfect
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION: 435
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 09/012,818
 - (B) FILING DATE: 23-January-1998
 - (C) CLASSIFICATION: 435
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/531,662
 - (B) FILING DATE: 21-September-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/370,648
 - (B) FILING DATE: 10-January-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/250,162
 - (B) FILING DATE: 27-May-1994

	7
Ų.	1

ũ	
ħ	
1	
*	
Ü	
₽	
C	Ì
Ŭ	
ũ	
H	

Br

(vii)

PRIOR APPLICATION DATA:

(B) FILING DATE: 22-July-1993

(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Hanson, Norman D.

(A) APPLICATION NUMBER: 08/096,039

(B) REGISTRATION NUMBER: 30,946

(C) REFERENCE/DOCKET NUMBER: LUD 5531 PCT

	(TELECOMMUN (A) TELEPHON (B) TELEFAX:	E: (212) 318-31			
(2)	(i) S	MATION FOR SEQUENCE CH (A) LENGTH: 6 (B) TYPE: nucle (C) STRANDED (D) TOPOLOGY	ARACTERISTI 46 base pairs ic acid NESS: single	CS:		
	(xi)	SEQUENCE DE	SCRIPTION: SI	EQ ID NO:1:		
CTGC	CGTCCG	GACTCTTTTT	CCTCTACTGA	GATTCATCTG	TGTGAAATAT	50
GAGI	'TGGCGA	GGAAGATCGA	CCTATCGGCC	TAGACCAAGA	CGCTACGTAG	100
AGCC	TCCTGA	AATGATTGGG	CCTATGCGGC	CCGAGCAGTT	CAGTGATGAA	150
GTGG	AACCAG	CAACACCTGA	AGAAGGGGAA	CCAGCAACTC	AACGTCAGGA	200
TCCI	GCAGCT	GCTCAGGAGG	GAGAGGATGA	GGGAGCATCT	GCAGGTCAAG	250
GGCC	GAAGCC	TGAAGCTGAT	AGCCAGGAAC	AGGGTCACCC	ACAGACTGGG	300
TGTO	AGTGTG	AAGATGGTCC	TGATGGGCAG	GAGATGGACC	CGCCAAATCC	350
AGAG	GAGGTG	AAAACGCCTG	AAGAAGAGAT	GAGGTCTCAC	TATGTTGCCC	400
AGAC	TGGGAT	TCTCTGGCTT	TTAATGAACA	ATTGCTTCTT	AAATCTTTCC	450
CCAC	GGAAAC	CTTGAGTGAC	TGAAATATCA	AATGGCGAGA	GACCGTTTAG	500
TTCC	TATCAT	CTGTGGCATG	TGAAGGGCAA	TCACAGTGTT	AAAAGAAGAC	550
ATGO	TGAAAT	GTTGCAGGCT	GCTCCTATGT	TGGAAAATTC	TTCATTGAAG	600
TTCI	CCCAAT	AAAGCTTTAC	AGCCTTCTGC	AAAGAAAAAA	АААААА	646

Ũ
1,11
Ü
N
=
U
Ħ
U
Ф
شؤ

(2)

,,	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ	ID NO: 2:
AGA	CGCTA	ACG TAGAGCCT	18
(2)	INFO	RMATION FOR SEQ ID NO: 3:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ	ID NO: 3:
CCA'	TCAGO	GAC CATCTTCA	18
(2)	INFC (i)	PRMATION FOR SEQ ID NO: 4: SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(xi)	` '	ID NO: 4:
Tyr A	Arg Pro	Arg Pro Arg Arg Tyr 5	
(2)	INFO	ORMATION FOR SEQ ID NO: 5: SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (D) TOPOLOGY; linear	
Thr 1	(xi) Tyr Arg	SEQUENCE DESCRIPTION: SEQ Pro Arg Pro Arg Arg Tyr 5	ID NO: 5

INFORMATION FOR SEQ ID NO: 2:

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Tyr Arg Pro Arg Pro Arg Arg Tyr Val
1 5

01

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Thr Tyr Arg Pro Arg Pro Arg Arg Tyr Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Arg Pro Arg Pro Arg Arg Tyr Val Glu
1 5

- (2) INFORMATION FOR SEQ ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

GACCAAGACG CTACGTAG

18

1

OZBULARU CECEO

DV

(2)

INFORMATION FOR SEQ ID NO: 14:

(A) LENGTH: 538 base pairs

SEQUENCE CHARACTERISTICS:

200

250

TATGTACAGC CTCCTGAAGT GATTGGGCCT ATGCGGCCCG AGCAGTTCAG

TGATGAAGTG GAACCAGCAA CACCTGAAGA AGGGGAACCA GCAACTCAAC

GTCAGGATCC	TGCAGCTGCT	CAGGAGGGAG	AGGATGAGGG	AGCATCTGCA	300
GGTCAAGGGC	CGAAGCCTGA	AGCTGATAGC	CAGGAACAGG	GTCACCCACA	350
GACTGGGTGT	GAGTGTGAAG	ATGGTCCTGA	TGGGCAGGAG	ATGGACCCGC	400
CAAATCCAGA	GGAGGTGAAA	ACGCCTGAAG	AAGGTGAAAA	GCAATCACAG	450
TGTTAAAAGA	AGGCACGTTG	AAATGATGCA	GGCTGCTCCT	ATGTTGGAAA	500
TTTGTTCATT	AAAATTCTCC	CAATAAAGCT	TTACAGCCTT	CTGCAAAGAA	550
AAAAAAAA					560

(2) INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 540 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

CGCCAGGGAG	CTGTGAGGCA	GTGCTGTGTG	GTTCCTGCCG	TCCGGACTCT	50
TTTTCCTCTA	CTGAGATTCA	TCTGTGTGAA	ATATGAGTTG	GCGAGGAAGA	100
TCGACCTATT	ATTGGCCTAG	ACCAAGGCGC	TATGTACAGC	CTCCTGAAAT	150
GATTGGGCCT	ATGCGGCCCG	AGCAGTTCAG	TGATGAAGTG	GAACCAGCAA	200
CACCTGAAGA	AGGGGAACCA	GCAACTCAAC	GTCAGGATCC	TGCAGCTGCT	250
CAGGAGGGAG	AGGATGAGGG	AGCATCTGCA	GGTCAAGGGC	CGAAGCCTGA	300
AGCTGATAGC	CAGGAACAGG	GTCACCCACA	GACTGGGTGT	GAGTGTGAAG	350
ATGGTCCTGA	TGGGCAGGAG	ATGGACCCGC	CAAATCCAGA	GGAGGTGAAA	400
ACGCCTGAAG	AAGGTGAAAA	GCAATCACAG	TGTTAAAAGA	AGGCACGTTG	450
AAATGATGCA	GGCTGCTCCT	ATGTTGGAAA	TTTGTTCATT	AAAATTCTCC	500
CAATAAAGCT	TTACAGCCTT	CTGCAAAAAA	ААААААААА		540

(2)	(i) S	MATION FOR SEQUENCE CH A) LENGTH: 5 B) TYPE: nucle C) STRANDED D) TOPOLOGY SEQUENCE DE	ARACTERISTI 32 base pairs ic acid NESS: single 7: linear	CS:		
AGCT	GTGAGG	CAGTGCTGTG	TGGTTCCTGC	CGTCCGGACT	CTTTTTCCTC	50
TACTO	GAGATT	CATCTGTGTG	AAATATGAGT	TGGCGAGGAA	GATCGACCTA	100
TTAT	rggcct	AGACCAAGGC	GCTATGTACA	GCCTCCTGAA	GTGATTGGGC	150
CTATO	GCGGCC	CGAGCAGTTC	AGTGATGAAG	TGGAACCAGC	AACACCTGAA	200
GAAG	GGGAAC	CAGCAACTCA	ACGTCAGGAT	CCTGCAGCTG	CTCAGGAGGG	250
AGAG	GATGAG	GGAGCATCTG	CAGGTCAAGG	GCCGAAGCCT	GAAGCTGATA	300
GCCA	GGAACA	GGGTCACCCA	CAGACTGGGT	GTGAGTGTGA	AGATGGTCCT	350
GATG	GGCAGG	AGATGGACCC	GCCAAATCCA	GAGGAGGTGA	AAACGCCTGA	400
AGAAG	GGTGAA	AAGCAATCAC	AGTGTTAAAA	GAAGGCACGT	TGAAATGATG	450
CAGG	CTGCTC	CTATGTTGGA	AATTTGTTCA	TTAAAATTCT	CCCAATAAAG	500
CTTT	ACAGCC	TTCTGCAAAG	АААААААА	AA		532
(2)	(i) S	MATION FOR SEQUENCE CH A) LENGTH: 5 B) TYPE: nucle C) STRANDED D) TOPOLOGY QUENCE DESC	ARACTERISTI 39 base pairs ic acid NESS: single 7: linear	CS:		
GCCAC	GGAGC	TGTGAGGCAG	TGCTGTGTGG	TTCCTGCCGT	CCGGACTCTT	50
TTTC	CTCTAC	TGAGATTCAT	CTGTGTGAAA	TATGAGTTGG	CGAGGAAGAT	100
CGAC	CTATTA	TTGGCCTAGA	CCAAGGCGCT	ATGTACAGCC	TCCTGAAGTG	150

ATTGGGCCTA TGCGGCCCGA GCAGTTCAGT GATGAAGTGG AACCAGCAAC

ACCTGAAGAA GGGGAACCAG CAACTCAACG TCAGGATCCT GCAGCTGCTC

200

250

546121.1

AGGAG	GGAGA	GGATGAGGGA	GCATCTGCAG	GTCAAGGGCC	GAAGCCTGAA	300
GCTGA	TAGCC	AGGAACAGGG	TCACCCACAG	ACTGGGTGTG	AGTGTGAAGA	350
TGGTC	CTGAT	GGGCAGGAGG	TGGACCCGCC	AAATCCAGAG	GAGGTGAAAA	400
CGCCI	GAAGA	AGGTGAAAAG	CAATCACAGT	GTTAAAAGAA	GACACGTTGA	450
AATGA	TGCAG	GCTGCTCCTA	TGTTGGAAAT	TTGTTCATTA	AAATTCTCCC	500
AATAA	AGCTT	TACAGCCTTC	TGCAAAAAA	АААААААА		539
(2)	(i) S (i) (i) (ii) (iii)	MATION FOR SEQUENCE CH (A) LENGTH: 17 (B) TYPE: nuclei (C) STRANDED (D) TOPOLOGY SEQUENCE DE	ARACTERISTI 7 base pairs ic acid NESS: single 7: linear		· 17	
ACTO	CATGA	G GTATTTC			. 17	
				•		
(2)	(i)	MATION FOR S SEQUENCE CH (A) LENGTH: 1' (B) TYPE: nucle (C) STRANDED	ARACTERISTI 7 base pairs ic acid	CS:		

TTTCACCACA TGCGTGT

(xi)

17

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid

(D) TOPOLOGY: linear

- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

SEQUENCE DESCRIPTION: SEQ ID NO: 20:

Arg Ser Thr Tyr Tyr Trp Pro Arg Pro Arg Arg Tyr Val Gln
1 5 10

Bu

- (2) INFORMATION FOR SEQ ID NO: 22:

 (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 9 amino acids

 (B) TYPE: amino acid

 (D) TOPOLOGY: linear

 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:
- Tyr Tyr Trp Pro Arg Pro Arg Arg Tyr
 1 5
- (2) INFORMATION FOR SEQ ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (D) OTHER INFORMATION: Each Xaa may be any amino acid
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

Xaa Xaa Trp Pro Xaa Xaa Xaa Xaa Tyr 1 5

- (2) INFORMATION FOR SEQ ID NO: 24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (D) OTHER INFORMATION: Each Xaa may be any amino acid
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

Xaa Xaa Trp Xaa Arg Xaa Xaa Xaa Tyr 1 5

(2)

• •	(i) (ix) (xi)	(A) LEN (B) TYP (D) TOP FEATUR (D) OTH	GTH: 9 and E: amino and OLOGY: 1 RE: ER: INFOI		Each	Xaa may be): 25:
Xaa X	Kaa Tro	Xaa Xaa X	Kaa Xaa Ar	g Tvr		
1		5		<i>3 - 7-</i>		
(2)	INFO (i) (xi)	SEQUEN (A) LEN (B) TYP (C) STR (D) TOP	NCE CHAI GTH: 138 E: protein ANDEDNI OLOGY: I	Q ID NO: 26 RACTERIST Samino acids ESS: single inear CRIPTION: S	TICS:): 2 6:
Asp (Control of the Control of the C	Ser Trp Glu Pro Glu Val 35 Gln Asp 50 Gly Gln Gln Thr Pro Pro Lis Tyr 115	Arg Gly Ar 5 Pro Glu Mo 20 Glu Pro A Pro Ala A Gly Pro Ly 7 Gly Cys Gl 85 Asn Pro Gl	rg Ser Thr et Ile Gly F 2 la Thr Pro 40 la Ala Gln 55 vs Pro Glu 0 lu Cys Glu lu Glu Val 11 Thr Gly I 120	Tyr Arg Pro 10 Pro Met Arg 5 Glu Glu Gly Glu Ala Asp Ser 75 Asp Gly Pro 90 Lys Thr Pro 105 le Leu Trp L	Arg Pro Arg Pro Glu Glu Glu Pro A 45 Asp Glu C 60 Gln Glu G O Asp Gly C	rg Arg Tyr 15 n Phe Ser 0 la Thr Gln Gly Ala Ser ln Gly His 80 Gln Glu Met 95 lu Met Arg

INFORMATION FOR SEQ ID NO: 25:

any amino acid

(2)	INFO	RMATION FOR SE SEQUENCE CHA (A) LENGTH: 11 (B) TYPE: protein (C) STRANDEDN (D) TOPOLOGY:	ARACTERISTICS 6 amino acids I NESS: single	S:
	(xi)	SEQUENCE DES) ID NO: 27:
Met S	er Trp	Arg Gly Arg Ser Th	r Tyr Arg Pro Ar	g Pro Arg Arg Tyr
1		5	10	15
Val G		Pro Glu Met Ile Gly 20	Pro Met Arg Pro 25	Glu Gln Phe Ser 30
Asp C	Glu Val 35	Glu Pro Ala Thr Pro 40		u Pro Ala Thr Gln 45
	33 A17	Pro Ala Ala Ala Gl	n Glu Gly Glu A	· -
5	0	55	6	0
Ala C	ily Gln	Gly Pro Lys Pro Gl	u Ala His Ser Glr 75	n Glu Gln Gly His 80
Dro C	lln Thr		• -	sp Gly Gln Glu Met
PIO C	MII IIII	85	90	95
Asp I	Pro Pro	Asn Pro Glu Glu V	al Lys Thr Pro Gl 105	u Glu Gly Glu Lys 110
Cl. C		100 Cura	105	110
Gin S	Ser Gln	Cys		
	115			
(2)	INFO	ORMATION FOR S	EQ ID NO: 28:	
	(i)	SEQUENCE CH		CS:
		(A) LENGTH: 1	18 amino acids	
		(B) TYPE: protei		
		(C) STRANDED		
		(D) TOPOLOGY	: linear	
	(xi)	SEQUENCE DE	SCRIPTION: SE	Q ID NO: 28:
_	Asn Le	u Ser Arg Gly Lys S	Ser Thr Tyr Tyr T 10	rp Pro Arg Pro Arg 15
1	~ ¥7	5 1 Gl. Das Das Cla V		
		l Gln Pro Pro Glu V 20	25	30
Phe	Ser Asp	Glu Val Glu Pro A	la Thr Pro Glu G	lu Gly Glu Pro Ala
	3:		40	45
Thr	Gln Arg	g Gln Asp Pro Ala A 55	Ala Ala Gln Glu (Gly Glu Asp Glu Gly 60
A10	JU Çer A1a	Gly Gln Gly Pro L	vs Pro Glu Ala A	
65	DOI ATO	70	75	80
C1++	Hie Dra	Gln Thr Glv Cvs C		Gly Pro Asp Gly Gln
Giy	1112 1 10	85	90	95

Glu Met Asp Pro Pro Asn Pro Glu Glu Val Lys Thr Pro Glu Glu Gly
100 105 110
Glu Lys Gln Ser Gln Cys
115

- (2) INFORMATION FOR SEQ ID NO: 29:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: protein
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

Met Ser Trp Arg Gly Arg Ser Thr Tyr Trp Pro Arg Pro Arg Arg
1 5 10 15
Tyr Val Gln Pro Pro Glu Met Ile Gly Pro Met Arg Pro Glu Gln Phe

20 25 30

Ser Asp Glu Val Glu Pro Ala Thr Pro Glu Glu Glu Glu Pro Ala Thr
35 40 45

Gin Arg Gin Asp Pro Ala Ala Ala Gin Glu Gly Glu Asp Glu Gly Ala 50 55 60

Ser Ala Gly Gln Gly Pro Lys Pro Glu Ala Asp Ser Gln Glu Gln Gly
65 70 75 80

His Pro Gln Thr Gly Cys Glu Cys Glu Asp Gly Pro Asp Gly Gln Glu 85 90 95

Met Asp Pro Pro Asn Pro Glu Glu Val Lys Thr Pro Glu Glu Glu Glu Glu I00 105 110

Lys Gln Ser Gln Cys

115

- (2) INFORMATION FOR SEQ ID NO: 30:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: protein
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

Met Ser Trp Arg Gly Arg Ser Thr Tyr Trp Pro Arg Pro Arg Arg

1 10 15

Tyr Val Gln Pro Pro Glu Val Ile Gly Pro Met Arg Pro Glu Gln Phe 20 25 30

Ser Asp Glu Val Glu Pro Ala Thr Pro Glu Glu Glu Glu Pro Ala Thr 35 40 45

₫
, rz* [
Ш
ΠJ

درگ ایک
v
£

ļ...i.

Gln Arg Gln Asp Pro	Ala Ala Ala Glr	n Glu Gly Glu As	p Glu Gly Ala
50	55	60	
Ser Ala Gly Gln Gly	Pro Lys Pro Glu	Ala Asp Ser Gln	Glu Gln Gly
65	70	75	80
His Pro Gln Thr Gly	Cys Glu Cys Glu	ı Asp Gly Pro As	p Gly Gln Glu
85		90	95
Met Asp Pro Pro Asr	ı Pro Glu Glu Va	ll Lys Thr Pro Gli	ı Glu Gly Glu
100	10		110
Lys Gln Ser Gln Cys			
115			

(2)

INFORMATION FOR SEQ ID NO: 31:

- SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 117 amino acids
 - (B) TYPE: protein
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- SEQUENCE DESCRIPTION: SEQ ID NO: 31: (xi)

Met Ser Trp Arg Gly Arg Ser Thr Tyr Tyr Trp Pro Arg Pro Arg Arg

Tyr Val Gln Pro Pro Glu Val Ile Gly Pro Met Arg Pro Glu Gln Phe 20

Ser Asp Glu Val Glu Pro Ala Thr Pro Glu Glu Gly Glu Pro Ala Thr 40

Gln Arg Gln Asp Pro Ala Ala Gln Glu Gly Glu Asp Glu Gly Ala 55

Ser Ala Gly Gln Gly Pro Lys Pro Glu Ala Asp Ser Gln Glu Gln Gly 70

His Pro Gln Thr Gly Cys Glu Cys Glu Asp Gly Pro Asp Gly Gln Glu 90

Val Asp Pro Pro Asn Pro Glu Glu Val Lys Thr Pro Glu Glu Gly Glu 110 105 100

Lys Gln Ser Gln Cys

115