תרגול מס׳ 12 רגרסיה ליניארית מרובה

רגרסיה ליניארית פשוטה (רל"פ). במקום משתנה מסביר אחד בלבד, ברגרסיה מרובה יש מספר רב של משתנים מסבירים: $x_1,..x_2,...,x_k$ במקום משתנה מסביר אחד בלבד, ברגרסיה מרובה יש מספר רב של משתנים מסבירים: $x_1,..x_2,...,x_k$. למודל רגרסיה מרובה יישומים רבים כאשר מעוניינים להעריך את ההשפעה הסימולטנית של מספר גורמים על משתנה תגובה כלשהו (המשתנה המוסבר).

, $(y_1,x_{11},...,x_{1k}),(y_2,x_{21},...,x_{2k}),...,(y_n,x_{n1},...,x_{nk})$: נקבל אוסף של n של n הוא המשתנה התלוי.

i	x1	x2	х3	Yi
דירה	חדרים	שטח	קומה	מחיר ב-\$K
1	2	80	3	191
2	4	117	10	391
3	2	89	2	139
4	4	100	3	275
5	3.5	89	4	235
6	6	155	8	363
7	4.5	123	5	327
8	4.5	111	5	408
9	5	122	9	395
10	7.5	166	8	474

לדוגמה: רוצים לבחון את הפרמטרים המשפיעים על מחיר דירה.

המשתנה התלוי הוא מחיר הדירה.

המשתנים המסבירים הם מספר החדרים בדירה, שטחה, והקומה שהיא נמצאת בה.

מחיר הדירה מושפע מהקומבינציה של המשתנים המסבירים (שילוב של מספר חדרים, שטח וקומה).

מודל הרגרסיה הליניארית המרובה

הנחות מודל הרגרסיה הליניארית המרובה מהוות הכללה של ההנחות שראינו עבור רל״פ. בפרט:

של המשתנה המוסבר i-התצפית ה- y_i

i רעש אקראי. שימו לב שהשונויות רעש אקראי – $arepsilon_i \sim Nig(0,\sigma^2ig)$

$$y_{i} = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \dots + \beta_{k}x_{k} + \varepsilon_{i}$$

$$E(Y|X_{1} = x_{1}, X_{2} = x_{2}, \dots, X_{k} = x_{k}) = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} + \dots + \beta_{k}x_{k}$$

: הם מקדמי הרגרסיה, כאשר $eta_0,eta_1,eta_2,...,eta_k$

- הוא החותך התוחלת של Y כאשר כל המשתנים המסבירים שווים ל-0. eta_0
- כתוצאה Y כתוחלת השיפוע אל הוא השיפוע הרגרסיה בכיוון אל הא χ_i של מישור הרגרסיה ביחוץ אל מהגדלת מוחזקים קבועים אחת, כאשר אחת, כאשר המשתנים מוחזקים קבועים

כמו ברלייפ, גם כאן המקדמים eta_i אינם ידועים, ולכן מייצרים אומדי ריבועים פחותים (האומדים מסומנים כ- (b_i) . הפיתוח הוא די מייגע, ולכן לא נבצע אותו ידנית, אלא רק ניעזר בפלטים של כלים סטטיסטיים ממוחשבים.

בדיקת מובהקות מודל הרגרסיה השלם – מבחן F

.(y) משפיעים על המשתנה מסבירים ($x_1,...,x_k$) משפיעים אם המשתנה התלוי

מספיק קשר עם משתנה מסביר אחד (עם אחד מה – x – ים) כדי להגיד שקיימת השפעה כזו! פורמלית, מערכת ההשערות שלנו היא :

$$\begin{cases} H_o: \beta_i = 0 & \forall i = 1, ..., k \\ H_1: else \end{cases}$$

 $.F_0 = rac{\mathit{MSR}}{\mathit{MSE}}$ סטטיסטי המבחן, כמו ברלייפ, הוא

: מוגדרים באופן דומה לרלייפ, אבל מספר דרגות החופש שלהם שונה SST, SSE, SSR

Source of Variation	Sum of Squares	d.f.	Mean Square	F_0
Regression	$SSR \equiv \sum_{i=1}^{n} (\widehat{y}_i - \bar{y})^2$	k	$MSR = \frac{SSR}{k}$	$F_0 = \frac{MSR}{MSE}$
Error	$SSE \equiv \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2$	n-k-1	$MSE = \frac{SSE}{n - k - 1}$	
Total	$SST \equiv SS_y = \sum_{i=1}^n (y_i - \bar{y})^2$	n-1		

 $F_0 > F_{1-lpha}^{-(k,n-k-1)}$ לכן כלל ההכרעה בר"מ lpha: lpha

.(שונות הרעש) σ^2 -סמו ברלייפ, מהווה אומד מהרוה אומד מהריש.

בעיה לדוגמא – איי גלפגוס

מעוניינים למצוא את הגורמים המשפיעים על מספר זני בעלי החיים בכל אחד מהאיים בקבוצת איי גלפגוס. הגורמים שהוצעו הינם:

שטח האי (קמייר) – Area

(מטרים – Elevation – גובה הנקודה הגבוהה ביותר באי

שרחק האי הקרוב ביותר (קיימ) – Nearest

(קיימ) Santa Cruz המרחק מהאי – Scruz

שטח האי הקרוב ביותר (קמייר) – Adjacent

. מספר הזנים שניתן למצוא על האי. – Species

נאספו נתונים על 30 איים, מרוכזים בטבלה בעמוד הבא.

island	Species	Area	Elevation	Nearest	Scruz	Adjacent
i	Yi	X1	X2	Х3	X4	X5
Baltra	58	25.09	346	0.6	0.6	1.84
Bartolome	31	1.24	109	0.6	26.3	572.33
Caldwell	3	0.21	114	2.8	58.7	0.78
Champion	25	0.1	46	1.9	47.4	0.18
Coamano	2	0.05	77	1.9	1.9	903.82
Daphne.Major	18	0.34	119	8	8	1.84
Daphne.Minor	24	0.08	93	6	12	0.34
Darwin	10	2.33	168	34.1	290.2	2.85
Eden	8	0.03	71	0.4	0.4	17.95
Enderby	2	0.18	112	2.6	50.2	0.1
Espanola	97	58.27	198	1.1	88.3	0.57
Fernandina	93	634.49	1494	4.3	95.3	4669.32
Gardner1	58	0.57	49	1.1	93.1	58.27
Gardner2	5	0.78	227	4.6	62.2	0.21
Genovesa	40	17.35	76	47.4	92.2	129.49
Isabela	347	4669.32	1707	0.7	28.1	634.49
Marchena	51	129.49	343	29.1	85.9	59.56
Onslow	2	0.01	25	3.3	45.9	0.1
Pinta	104	59.56	777	29.1	119.6	129.49
Pinzon	108	17.95	458	10.7	10.7	0.03
Las.Plazas	12	0.23	94	0.5	0.6	25.09
Rabida	70	4.89	367	4.4	24.4	572.33
SanCristobal	280	551.62	716	45.2	66.6	0.57
SanSalvador	237	572.33	906	0.2	19.8	4.89
SantaCruz	444	903.82	864	0.6	0	0.52
SantaFe	62	24.08	259	16.5	16.5	0.52
SantaMaria	285	170.92	640	2.6	49.2	0.1
Seymour	44	1.84	147	0.6	9.6	25.09
Tortuga	16	1.24	186	6.8	50.9	17.95
Wolf	21	2.85	253	34.1	254.7	2.33

פלט הרגרסיה:

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.8751				
R Square	0.7658				
Adjusted R Square	0.7171				
Standard Error	60.9752				
Observ ations	30				

מבחו F לכל המודל

ANOVA					711/2	(1 /2/ I 1 /2/
	df		SS	MS	F	Significance F
Regression		5	291850.0003	58370.0001	15.6994	6.83789E-07
Residual		24	89231.3663	3717.9736		
Total		29	381081.3667			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	4 45 5 15	7.0682	19.1542	0.3690	0.7154	-32.4641	46.6005
Area	מבחן t	-0.0239	0.0224	-1.0676	0.2963	-0.0702	0.0223
Elevation	לכל	0.3195	0.0537	5.9532	0.0000	0.2087	0.4302
Nearest	מקדם בנפרד	0.0091	1.0541	0.0087	0.9932	-2.1665	2.1848
Scruz	בנפוי	-0.2405	0.2154	-1.1166	0.2752	-0.6851	0.2040
Adjacent		-0.0748	0.0177	-4.2262	0.0003	-0.1113	-0.0383

3

 H_0 את כלל הדחייה: $F_0=15.6994>F_{cr}=F_{0.95}^{(5,24)}=2.62$ ולכן נדחה את כלל מספר הזנים השונים על איי הגלפגוס ב ${f c}$ מושפע מלפחות אחד מהמשתנים שבדקנו. שיקול נוסף שאפשר להפעיל: PV של סטטיסטי המבחן נמוך מאוד (סדר גודל של 10^{-7}) ולכן לכל רמת מובהקות סבירה (למשל, 5%) נדחה את השערת האפס.

הסקה על מקדמי הרגרסיה

לאחר מבחן כולל למובהקות המודל הרב משתני, נרצה לבדוק השערות לגבי פרמטרים בודדים או \mathbf{F} קבוצות של פרמטרים: מבחן \mathbf{f} , ומבחן \mathbf{f} חלקי.

מבחן זהה למבחן המבוצע ברגרסיה פשוטה. מתבסס על ההתפלגות הנורמלית של אמדי הריבועים הפחותים ועל אמדי סטיות התקן המתקבלים בתהליך האמידה. מאפשר בחינה של כל פרמטר בנפרד.

.אם הפרמטר הj שווה ל-0, אין למשתנה הj השפעה ליניארית על המשתנה המוסבר

$$H_0: \beta_j = 0$$
$$H_1: \beta_i \neq 0$$

סטטיסטי המבחן הוא $s(b_j)$, כאשר כאשר איא המבחן הוא למקדם של המשתנה אומד ל $s(b_j)$, כאשר כאשר אומד למקדם של המשתנה המבחן הוא $s(b_j)$ כאשר הרגרסיה).

$$|t_0| > t_{1-rac{lpha}{2}}^{-(n-k-1)}$$
 כלל ההכרעה : דחה אם

 $eta_j \in [b_j \pm t_{1-rac{lpha}{2}}^{\quad (n-k-1)} \cdot S(b_j) \] : 1-lpha$ ברמת סמך eta_j ברמת דוייצ אופן דומה לתרגול 11 עמי הערה (2): ניתן לבצע מבחני השערות על כל שיפוע בנפרד (חייצ א דוייצ), באופן דומה לתרגול 11 עמי n-k-1 למעט העובדה שמספר דרגות החופש ברגרסיה ליניארית מרובה הוא n-k-1

(2) מבחן \mathbf{F} חלקי – בוחן את התרומה של קבוצת משתנים מסבירים להסבר שהרגרסיה מספקת (ניתן לבדוק פרמטר יחיד, או קבוצת פרמטרים בו"ז). משווים את SSR בלי קבוצת המשתנים, לעומת הערך של רגרסיה שכוללת אותם.

 X_1, X_2, X_3 - לצורך הדגמת הסימון שנשתמש בו, נניח שאנו בוחנים שלושה משתנים מסבירים - $SSR(X_1, X_2, X_3)$. השונות המוסברת עייי מודל רגרסיה הכולל את שלושת המשתנים - $SSR(X_2, X_3)$.

 \cdot איז מספקים איתוספת אז ניתן שהמשתנים ההסבריי ההסבריי שיתוספת אז ניתן לומר

$$SSR(X_1, X_2, X_3) - SSR(X_2)$$

נרצה לבדוק אם הערך הזה אכן מובהק בעזרת מבחן השערות.

באופן כללי, נגדיר:

המודל ״המלא״ – כולל קבוצת המשתנים שאנחנו בוחנים המודל המצומצם – ללא קבוצת המשתנים שאנחנו בוחנים

בכל מודל הוא בכל מדל בכל מודל, מספר בכל מודל מספר את SSR. מספר בכל מודל מספר בכל מודל הוא מספר המשתנים המסבירים הנכללים בו.

$$F_0 = rac{\left(SSR_{full} - SSR_{partial}
ight) / \left(df_{full} - df_{partial}
ight)}{\left.SSE_{full} / n - df_{full} - 1}$$
: סטטיסטי המבחן

 F_0 י את הביטוי החלופי הבא ל-SST, ולקבל את המינה גם את המונה וגם את המונה לב שניתן לחלק את המונה וגם את המונה וגם את המינה ב-

$$F_{0} = \frac{\left(R_{full}^{2} - R_{partial}^{2}\right) / \left(df_{full} - df_{partial}\right)}{\left(1 - R_{full}^{2}\right) / \left(n - df_{full} - 1\right)}$$

 $F_0>F_{1-lpha}^{\;\;(df_{full}-df_{partial}\,,\;\;n-df_{full}-1)}$ בלל ההכרעה בריימ ביימ $rac{1}{2}$ דחה את השערת האפס אם

למשל, בדוגמת גלפאגוס:

נבדוק אם למשתנה Nearest יש תרומה מובהקת למודל.

: Nearest פלט הרגרסיה ללא

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.8751					
R Square	0.7658					
Adjusted R Square	0.7284					
Standard Error	59.7433					
Observations	30.0000					

ANOVA

	df	SS	MS	F	Significance F
Regression	4	291849.7206	72962.43014	20.44186	1.38984E-07
Residual	25	89231.64609	3569.265844		
Total	29	381081.3667			

	Coefficients Sta	andard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	7.075377	18.7498	0.3774	0.7091	-31.5406	45.6914
Area	-0.02398	0.0215	-1.1148	0.2756	-0.0683	0.0203
Elev ation	0.319573	0.0511	6.2505	0.0000	0.2143	0.4249
Scruz	-0.23936	0.1646	-1.4538	0.1584	-0.5784	0.0997
Adjacent	-0.07485	0.0166	-4.5011	0.0001	-0.1091	-0.0406

$$df_{full}=5$$
 $SSR_{full}=291850$:(3) במודל המלא (עמי 3)

$$df_{partial}=4$$
 $ext{SSR}_{partial}=291849$ במודל החלקי (עמי 5):

$$F_0 = \frac{\frac{291850 - 291849}{5 - 4}}{\frac{89231.2663}{30 - 5 - 1}} = 0.00027 < 4.26 = F_{0.05}^{(1,24)} = F_{cr}$$

ולכן לא דוחים את אין השפעה ליניארית חלקי למשתנה אין חלקי למשתנה ליניארית מובהקת , H_0 אין השפעה ליניארית מובהקת (בריימ 2.0.5) על מספר הזנים באי.

$\frac{1}{2}$ נבדוק אם מגיעים לאותה מסקנה לפי מבחן t במודל הרגרסיה המלא (עמי 3)

לכן לא נדחה ,0.0087 = $|t_0| > t_{1-rac{lpha}{2}}^{-(n-k-1)} = t_{0.975}^{(24)} = 2.064$ כלל הדחייה של מבחן t : t דחה אם לכן לא נדחה כלל הדחייה של מבחן

. אין מספר הזנים מובהקת השפעה אורים אין אין למשתנה המסביר אין אין לפי מבחן אין לפי לפי את - H_0

ניתן להגיע למסקנה דומה גם בעזרת PV של המשתנה שהוא גבוה מאוד!

מקדם ההסבר ברגרסיה ליניארית מרובה

באופן כללי, ככל שמספר המשתנים המסבירים גדל, כך הרגרסיה יכולה להתאים משוואה טובה יותר לנתונים. לכן, מקדם ההסבר R^2 לעולם לא יירד כאשר נוסיף משתנים מסבירים למודל. לכאורה, סך השונות המוסברת גדל (וזה טוב), אולם הגידול הזה הינו טכני ומלאכותי, ולא נובע בהכרח מייהסבריי טוב יותר של המשתנים באופן מהותי.

. לכן, שימוש ב- R^2 כמדד ליכולת ההסבר של המודל הינו בעייתי במודל רגרסיה ליניארית מרובה

: מדד חלופי הינו R^2_{adj} , אשר כולל יימענישיי כנגד הכללת משתנים מסבירים רבים במודל

$$R_{adj.}^2 \equiv 1 - \frac{SSE/_{n-k-1}}{SST/_{n-1}}$$
מספר התצפיות במודל - n

ניתן להראות שבכל מודל רגרסיה מתקיים $R^2_{adj} \leq R^2$, כך שיש פחות תמריץ להוסיף הרבה משתנים למודל.

, גבוה יותר מאשר המודל המלא, אבוה חינו בעל R^2_{adj} . אבוה יותר מאשר המודל המלא, בדוגמת גלפגוס: ניתן לראות כי המודל ללא מודל משתנים נוספים במטרה למצוא מודל לכן נעדיף את המודל הזה. בשלב זה ניתן לנסות להוסיף/להוריד משתנים נוספים במטרה למצוא מודל טוב יותר.

: (על סמך הפלט שמופיע בעמי אווגמה R^2_{adj} , במודל ללא דוגמה לחישוב

$$R_{adj.}^2 = 1 - \frac{89231.646/25}{381081.3667/29} = 0.7284$$

מולטיקוליניאריות

מולטיקוליניאריות היא תופעה שבה קיים מתאם ליניארי חזק בין שני משתנים מסבירים (או יותר). במקרה כזה, המשתנים המסבירים מספקים מידע יתיר לגבי המשתנה המוסבר. מסתבר שלמולטיקוליניאריות יש השלכות בעייתיות על האמינות והיציבות של האומדנים שהרגרסיה מספקת.

השלכות אפשריות של מולטיקוליניאריות - אלו בד״כ סימנים מעידים לנוכחות של מולטיקוליניאריות בנתונים:

- האומדים לשונות של מקדמי הרגרסיה (s_{b_i}) "מתנפחים". דבר זה גורם לכך שהרב"סים למקדמים (1) האמיתיים (eta_i) הרבה יותר רחבים מכפי שהם אמורים להיות, ואז הרגרסיה פחות אמינה.
 - (2) תוצאות "מוזרות": סימני המקדמים הפוכים מהצפוי.
 - . מבחן \mathbf{t} אינו מובהק, בזמן שאף מבחן \mathbf{F} מעיד על מודל מובהק, בזמן שאף מבחן (3)

למה זה קורה: מבחן F בודק אם המשתנה המוסבר מוסבר בצורה מספקת V בודק אם המשתנה המסבירים. מבחן V לכל משתנה בנפרד בודק אם למשתנה זה יש תוספת הסבר מובהקת למשתנה המוסבר כאשר כלל המשתנים האחרים כלולים כבר במודל. כאשר המשתנים המסבירים מסבירים אחד את השני, ייתכן שהתרומה של כל אחד מהם בנפרד לא תהיה מובהקת, בעוד שבפועל הם אכן מסבירים בצורה טובה את המשתנה המוסבר.

מבחנים למולטיקוליניאריות

שאומד (12 בתרגול (בתרגול ביז ביזיקת המתאם בין כל זוג משתנים מסבירים בנתונים: ראינו (בתרגול (בתרגול $r_{xy}=\frac{SS_{xy}}{\sqrt{SS_x\cdot SS_y}}=\frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum_{i=1}^n(x_i-\bar{x})^2\cdot \sum_{i=1}^n(y_i-\bar{y})^2}}$ למתאם בין שני כל משתנים לפי מדגמים שלהם הוא

באופן דומה, ניתן לחשב אומד למתאם בין כל שני משתנים מסבירים:

$$r_{x_j,x_k} = \frac{SS_{x_j,x_k}}{\sqrt{SS_{x_j} \cdot SS_{x_k}}}$$

אם המתאם גבוה (קרוב ל-1 בערך מוחלט), כדאי לוותר על אחד מהמשתנים הללו.

ערך מדד x_j מעיד על בעיה של מולטיקוליניאריות (המשתנה מסביר עייי שאר $VIF_j \geq 5$ מוסבר עייי שאר משתנים מסבירים, כך שיש תיאום).

 x_j הערך של מדד VIF_j אומר פי כמה גדלה השונות של המקדם של בגלל התלות של המשתנה המסביר במשתנים המסבירים.

דוגמה

מעוניינים לבנות מודל רגרסיה ליניארית שבו מסבירים את גובהו של אדם (y) באמצעות שני משתנים מסבירים – גודל כף הרגל הימנית (x_1), וגודל כף הרגל השמאלית (x_2). קובץ הנתונים שישרת אותנו בבעיה (מופיע באתר הקורס) הוא בעל המבנה הבא:

#	Right Foot (Inch)	Left Foot (Inch)	Height (Inch)
(1)	14.43	14.49	77.31
(2)	11.21	11.23	67.58
(105)	12.02	12.10	69.57

Adjusted

נתחיל מניתוח תוצאות מודל רגרסיה מרובה שכולל את שני המשתנים: StErr of

Summary	R	K-3quare	R-Square	Estimate	
	0.9042	0.8176	0.8140	2.004141809	
	Degrees of	Sum of	Mean of	F-Ratio	p-Value
ANOVA Table	Freedom	Squares	Squares		
Explained	2	1836.384497	918.1922484	228.6003	< 0.0001
Unexplained	102	409.6916079	4.016584391		

R-Sauara

Multiple

	Coefficient	Standard	t-Value	p-Value	Confidence Interval 95%		
Regression Table	Occincient	Error	t-value	p-value	Lower	Upper	
Constant	31.76029318	1.959464212	16.2087	< 0.0001	27.8737052	35.64688115	
Right	6.822926303	3.428475129	1.9901	0.0493	0.02256214	13.62329047	
Left	-3.644781741	3.441067666	-1.0592	0.2920	-10.47012314	3.180559658	

והיא גם מובהקת לפי מבחן F. עם את הנתונים (לפי R^2 ו- והיא גם מובהקת לפי מבחן את, קיבלנו (לפי את הנתונים (לפי שתי תוצאות לא צפויות: המקדם של המשתנה x_2 שלילי (בניגוד לאינטואיציה שלנו), ומבחן t שלו אינו מובהק. זה צריך לעורר אצלנו נורה אדומה שישנה מולטיקוליניאריות בנתונים, לכן נבצע את הבדיקות המתאימות....

 x_i ו- x_i האומדן למתאם - בתא (i,j) מופיע ימבחן ראשון - מטריצת המתאם בין בתא (i,j) מופיע

	גובה	גודל כף רגל ימין	גודל כף רגל שמאל
גובה	1		
גודל כף רגל ימין	0.903	1	
גודל כף רגל שמאל	0.900	0.999	1

שני המשתנים המסבירים מתואמים באופן (כמעט) מושלם.

מבחן שני – נחשב את ה' על x_2 של x_2 : נבצע רגרסיה שבה המשתנה המוסבר הוא שני – מבחן שני הוא נוספת נוספת אדות אדות וויספת אווי . $VIF_2=rac{1}{1-0.9981}=525.19\gg 5$ ואז ווא $R^2=0.9981$ אווי ברגרסיה הזו ברגרסיה אווייספת אווייס של מולטיקוליניאריות בנתונים.

אז מה עושים?

הפתרון הפשוט ביותר הוא להשמיט את המשתנה המסביר שתלוי במשתנים האחרים. במקרה הזה שני המשתנים תלויים אחד בשני, ואכן בכל פעם שמשמיטים אחד מהם מקבלים רגרסיה מובהקת.

הגובה כפונקציה של גודל כף רגל ימין:

Summary	Multiple R	R-Square	Adjusted R-Square	StErr of Estimate		
	0.9031	0.8156	0.8138	2.005327453		
ANOVA Table	Degrees of Freedom	Sum of Squares	Mean of Squares	F-Ratio	p-Value	
Explained	1	1831.878271	1831.878271	455.5395	< 0.0001	
Unexplained	103	414.197834	4.021338194			
Regression Table	Coefficient	Standard Error	t-Value	p-Value	Confidence Lower	Interval 95% Upper
Constant	31.5457001	1.950115191	16.1763	< 0.0001	27.67810656	35.41329363
Right	3.194941505	0.149692453	21.3434	< 0.0001	2.898061831	3.49182118

הגובה כפונקציה של גודל כף רגל שמאל:

Summary	Multiple R 0.9003	R-Square 0.8105	Adjusted R-Square 0.8087	StErr of Estimate 2.032739063		
ANOVA Table	Degrees of Freedom	Sum of Squares	Mean of Squares	F-Ratio	p-Value	
Explained	1	1820.477211	1820.477211	440.5772	< 0.0001	•
Unexplained	103	425.5988941	4.132028098			
Regression Table	Coefficient	Standard Error	t-Value	p-Value	Confidence Lower	Interval 95% Upper
Constant Left	31.52588005 3.19668202	1.983829749 0.152295983	15.8914 20.9899	< 0.0001 < 0.0001	27.59142164 2.894638858	35.46033847 3.498725182

בשתי הרגרסיות מקדם ההסבר גבוה, המודל כולו מובהק וגם מבחני t עבור המקדמים מובהקים. ישנם גם פתרונות אפשריים נוספים למולטיקוליניאריות, אבל יריעתנו קצרה מלהכיל....

משתני דמי = משתנים קטגוריאליים

מודלי הרגרסיה שעסקנו בהם עד כה היו מבוססים על **משתנים כמותיים**, כלומר משתנים הנמדדים על ציר מספרי, לדוגמא: טמפרטורה, מרחק, גיל, עלות וכוי. לעיתים יש צורך בשילוב של משתנים איכותניים במודל הרגרסיה, לדוגמה שיוך לשכונה מסוימת.

כל ערך של משתנה כזה נקרא "רמה", והשיטה המקובלת להערכת ההשפעה של רמות שונות של משתנה m איכותני על משתנה תלוי היא **שימוש באינדיקטורים**. באופן כללי, מייצגים משתנה איכותני בעל m-1רמות על ידי m-1 אינדיקטורים המקבלים את הערכים m-1

לדוגמה: מעוניינים לבדוק את רמת ההשכלה כמשתנה מסביר עבור השכר של בוגרי תואר בהנדסת תעשייה. זהו משתנה מסביר קטגוריאלי עם שלוש רמות: בוגר תואר ראשון, בוגר תואר שני, בוגר תואר שלישי.

על מנת למדל משתנה קטגוריאלי עם 3 רמות, נשתמש בשני משתני דמי x_1 ו- x_2 , אותם נקודד באופן הבא:

	בוגר תואר ראשון	בוגר תואר שני	בוגר תואר שלישי
x_1	0	1	0
x_2	0	0	1

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ המודל לבחינת השפעת ההשכלה על השכרה

 $y_1 = \beta_0$: תוחלת השכר של בוגרי תואר השכר

 $y_2 = \beta_0 + \beta_1$:תוחלת השכר של בוגרי תואר שני

 $y_3 = \beta_0 + \beta_2$:תוחלת השכר של בוגרי תואר שלישי

המשתנה x_1 משמעו שצריך להוסיף *"קפיצה"* בגובה eta_1 בערך של y כאשר מדובר על שכר של בוגרי תואר שני ביחס לבוגר תואר ראשון.

המשתנה x_2 משמעו שצריך להוסיף *"קפיצה"* בגובה eta_2 בערך של y כאשר מדובר על שכר של בוגרי המשתנה מואר שלישי ביחס לבוגר תואר ראשון.

תרגיל

מהנדס מכונות מעוניין לחקור את הקשר שבין מהירות החיתוך (RPM) של מחרטה לבין טיב פני השטח (טפייש) של החלקים המיוצרים בה. הנתונים שנאספו מוצגים בטבלה בעמוד הבא.

- א. הציגו את הנתונים על פני גרף. האם מודל רגרסיה יכול להתאים לתיאור הנתונים!
 - ב. מצאו (בעזרת Excel) את משוואת הרגרסיה של המודל שהצעתם.
- ג. האם המודל מובהק? האם השפעת כל אחד מהמשתנים שהצעתם מובהקת? הניחו רמת מובהקות נדרשת של 0.01.
 - ד. מהי התחזית לטיב פני השטח של חלק שנחרט במהירות 270 במחרטה 416 ?

מספר תצפית	טיב פני השטח	RPM	סוג המחרטה	מספר תצפית	טיב פני השטח	RPM	סוג המחרטה
1	33.50	224	416	11	45.44	225	302
2	48.75	245	302	12	42.03	200	302
3	37.52	248	416	13	31.23	212	416
4	37.13	260	416	14	33.92	238	416
5	50.10	250	302	15	47.92	235	302
6	44.78	218	302	16	34.70	243	416
7	32.13	224	416	17	52.26	265	302
8	47.79	237	302	18	50.52	259	302
9	33.49	232	416	19	45.58	221	302
10	32.29	216	416	20	35.47	251	416

פתרון

- א. מהתבוננות בגרף, ניתן להבחין בשני דברים:
- (1) הנתונים מחולקים לשתי קבוצות הקבוצה העליונה כוללת את הנתונים על הטפייש במחרטה 302, והקבוצה התחתונה כוללת את הנתונים שקשורים לטפייש במחרטה 416.
 - .(2) בכל קבוצה כזו יש קשר שנראה (בעין) ליניארי, עם שיפוע זהה.

מודל רגרסיה אפשרי לתיאור הנתונים יכול להיות מודל הרגרסיה הליניארית המרובה הבא, אשר מנבא את טיב פני השטח כפונקציה של מהירות החותך ושל סוג המחרטה:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

: כאשר

טיב פני השטח *-y*

(משתנה רציף) מהירות החיתוך - x_1

סוג המחרטה (משתנה קטגוריאלי) סוג המחרטה
$$\left. \begin{array}{cc} 302 & ,0 \\ 416 & ,1 \end{array} \right\}$$
 - x_2

ב. כאמור, קשה למצוא מקדמים של מודל רגרסיה ליניארית מרובה באופן ידני, ולכן ניעזר באקסל. נייצר טבלה בסגנון הבא:

i	Y	X1	X2
מספר תצפית	טיב פני השטח	RPM	סוג המחרטה
1	45.44	225	0
11	33.50	224	1
12	12 31.23		1

: פלט הרגרסיה

Regression Statistics					
Multiple R	0.9962				
R Square	0.9924				
Adjusted R Square	0.9915				
Standard Error	0.6771				
Observations	20.0000				

ANOVA

	df	SS	MS	F	Significance F
Regression	2.0000	1012.0595	506.03	1103.69	1.0175E-18
Residual	17.0000	7.7943	0.45849		
Total	19.0000	1019.8538			

	Coefficients Star	ndard Erro -t Sta	t P-value	Low er 95%	Upper 95%
Intercept	14.2762	2.0912 6.826	75 2.9E-06	9.86411988	18.68827
RPM	0.1411	0.0088 15.97	94 1.1E-11	0.12251345	0.159786
Tool Type	-13.2802	0.3029 -43.8	47 6.2E-19	-13.9192137	-12.6412

מתוך פלט הרגרסיה נקבל את משוואת הרגרסיה:

$$\hat{y} = 14.2762 + 0.1411x_1 - 13.2802x_2$$

 $x_2=0$ בפרט, עבור מחרטה 302 (כאשר $x_2=0$ מתקיים הקשר הליניארי הבא

$$\hat{y} = 14.27 + 0.1411x_1$$

 \cdot ועבור מחרטה 416 (כאשר $x_2=1$), מתקיים הקשר הליניארי הבא

$$\hat{y} = 0.99 + 0.1411x_1$$

שימו לב! כאשר מדובר במחרטה 416 ישנה קפיצה כלפי מטה בגודל 13.28, אבל בשתי המחרטות, מהירות החיתוך משפיעה באותו **קצב** (עם אותו שיפוע) על טיב פני השטח המתקבל.

- ג. את מובהקות תוצאות הרגרסיה (כולו) ניתן לבדוק באמצעות הפלט של מבחן PV .F נמוך (מאוד), באופן שמצביע על מודל מובהק סטטיסטית (לכל רמת מובהקות סבירה). באופן דומה, את מובהקות המקדמים ניתן לבדוק באמצעות מבחן t מפלט הרגרסיה, וגם שם PV נמוך מאוד, באופן שמצביע על מקדמים מובהקים.
 - ד. התחזית לטיב פני השטח של חלק שנחרט במהירות 270 במחרטה 416 :

$$y(x_1 = 270, x_2 = 1) = 14.26762 + 0.1411 \cdot 270 - 13.2802 \cdot 1 = 39.093$$

אינטראקציות

אינטראקציה היא השפעה משולבת של מספר משתנים מסבירים. בכל המודלים שראינו עד עכשיו, הנחנו שגודל ההשפעה (=השיפוע) של כל משתנה מסביר אינו תלוי בערכים של המשתנים המסבירים האחרים. אבל לעתים מעניין לבדוק אם לשילוב של ערכים שונים של המשתנים המסבירים ישנה השפעה שונה, זוהי בדיקה של האינטראקציה בין המשתנים המסבירים.

נדגים באמצעות השאלה הקודמת (המקדחות):

ה. הציעו מודל שלוקח בחשבון השפעה משולבת של שני הגורמים, נוסף על ההשפעה של כל אחד מהגורמים בנפרד.

במודל שהוצג בסעיף ב', בדקנו האם לשתי המחרטות השפעה שונה על טיב פני השטח (נקודות חיתוך שונות עם הצירים), תוך הנחה כי למהירות החיתוך השפעה זהה בשתי המחרטות, כלומר לשני הישרים יש את אותו השיפוע.

כעת אנחנו מעוניינים לבדוק האם לשילוב של סוג המחרטה ומהירות החיתוך יש השפעה נוספת – אינטראקציה, כלומר לשני הישרים אין בהכרח את אותו השיפוע.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$
 משוואת המודל תהיה:

שימו לב! למרות שישנם משתנים מסבירים שמוכפלים אחד בשני, זהו מודל רגרסיה ליניארית, משום שהרגרסיה צריכה להיות ליניארית <u>במקדמים</u>!

למעשה, המשמעות של מודל כזה היא שמגדירים משתנה מסביר חדש אל מודל כזה מודל למעשה, ואז בוחנים את $y=\beta_0+\beta_1x_1+\beta_2x_2+\beta_3x_3+\varepsilon$ המודל

Regression Statistics						
Multiple R	0.9968					
R Square	0.9936					
Adjusted R Square	0.9924					
Standard Error	0.6371					
Observations	20					

ANOVA

	df	SS	MS	F	Significance F
Regression	:	3 1013.36	337.7866505	832.266	8.9953E-18
Residual	11	6.49382	0.405863971		
Total	1:	9 1019.85			

	Coefficients a	ndard Er.	t Stat	P-value	Lower 95%	Upper 95%
Intercept	11.5029	2.5043	4.5933	0.0003	6.1941	16.8118
RPM	0.1529	0.0106	14.4276	1.4E-10	0.1305	0.1754
Tool Type	-6.0942	4.0246	-1.5143	0.14946	-14.6259	2.4375
RPM*Tool Type	-0.0306	0.0171	-1.7900	0.09239	-0.0668	0.0056

מה המשמעות של ערכי המקדמים במקרה כזה?

$$\hat{y} = 11.5 + 0.1529x_1 - 6.09x_2 - 0.03x_1x_2$$
 משוואת המודל:

$$\hat{y} = 11.5029 + 0.1529 x_1$$
 : ($x_2 = 0$ נציב 302 (נציב 2 מחרטה שיוצרו במחרטה) אינור חלקים שיוצרו במחרטה

$$\hat{y} = 5.4087 + 0.1223 x_1$$
 נציב ($x_2 = 1$ נציב 416 (נציב 1 עבור חלקים שיוצרו במחרטה 416 (נציב 1

בשונה מסעיף בי, במודל הזה תחת כל מחרטה, מהירות החיתוך משפיעה באופן שונה על טיב פני השטח (השיפוע של x_1 שונה!).