

Computer Vision

Local interest points

Hansung Kim h.kim@soton.ac.uk

- Finding stable (repeatable) interest points is a key problem in modern computer vision
 - * Applications in areas such as tracking, matching, image alignment, making robust features for classification and search, robot navigation, 3D reconstruction, ...
 - We'll look at some of these in more detail in future lectures

What makes a good interest point?

- Invariance to brightness change (local changes as well as global ones)
- Sufficient texture variation in the local neighbourhood
 - But not too much!
- Invariance to changes between the angle/position of the scene to the camera

Stable local interest points

So, how do we find them?

- * Lots of different types of interest point types to choose from.
 - * We'll focus on two specific types and look in detail at common detection algorithms:
 - * Corner detection Harris and Stephens
 - Blob Detection Difference-of-Gaussian Extrema

A blob is a region of an image in which some properties are constant or approximately constant -Wikipedia

The Harris and Stephens corner detector

Basic Idea

- * Search for corners by looking through a small window.
- * Shifting that window by a small amount in any direction should give a *large change* in intensity

Basic Idea

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner":
significant change
in all directions

Harris & Stephens: Mathematics

Weighted average change in intensity between a window and a shifted version [by $(\Delta x, \Delta y)$] of that window:

Harris & Stephens: Mathematics

- * The Taylor expansion allows us to approximate the shifted intensity.
- * Taking the first order terms we get this:

$$I(x_i + \Delta x, y_i + \Delta y) \approx I(x_i, y_i) + [I_x(x_i, y_i) \quad I_y(x_i, y_i)] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

(partial derivatives of the image)

Harris & Stephens: Mathematics

Substituting and simplifying gives:

$$\begin{split} E(x,y) &= \sum_{W} [I(x_i,y_i) - I(x_i + \Delta x, y_i + \Delta y)]^2 \\ &= \sum_{W} \left(I(x_i,y_i) - I(x_i,y_i) - [I_x(x_i,y_i) \quad I_y(x_i,y_i)] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \right)^2 \\ &= \sum_{W} \left(-[I_x(x_i,y_i) \quad I_y(x_i,y_i)] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \right)^2 \\ &= \sum_{W} \left([I_x(x_i,y_i) \quad I_y(x_i,y_i)] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \right)^2 \\ &= [\Delta x \quad \Delta y] \begin{bmatrix} \sum_{W} (I_x(x_i,y_i))^2 & \sum_{W} I_x(x_i,y_i)I_y(x_i,y_i) \\ \sum_{W} I_x(x_i,y_i)I_y(x_i,y_i) & \sum_{W} (I_y(x_i,y_i))^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \\ &= [\Delta x \quad \Delta y] \mathbf{M} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \end{split}$$

Structure Tensor

The **square symmetric** matrix **M** is called the *Structure Tensor* or the *Second Moment matrix*

$$\mathbf{M} = \begin{bmatrix} \sum_{w} (I_{x}(x_{i}, y_{i}))^{2} & \sum_{w} I_{x}(x_{i}, y_{i})I_{y}(x_{i}, y_{i}) \\ \sum_{w} I_{x}(x_{i}, y_{i})I_{y}(x_{i}, y_{i}) & \sum_{w} (I_{y}(x_{i}, y_{i}))^{2} \end{bmatrix}$$

It concisely encodes the how the local shape intensity function of the window changes with small shifts

- * Think back to Lecture 12 where we looked at covariance matrices...
 - The eigenvalues and vectors tell us the rates of change and their respective directions

Harris & Stephens Response Function

* Rather than compute the eigenvalues directly, Harris and Stephens defined a corner response function in terms of the determinant and trace of **M**:

$$\det(\mathbf{M}) = M_{00}M_{11} - M_{01}M_{10} = M_{00}M_{11} - M_{10}^2 = \lambda_1\lambda_2$$

$$\operatorname{trace}(\mathbf{M}) = M_{00} + M_{11} = \lambda_1 + \lambda_2$$

$$R = \det(\mathbf{M}) - k \operatorname{trace}(\mathbf{M})^2$$

k is a small empirically set constant (usually 0.04 - 0.06)

Harris & Stephens Response Function

Harris & Stephens Detector

- * Simple algorithm:
 - Take all points with the response value above a threshold
 - * Then keep only the points that are local maxima (i.e. where the current response is bigger than the 8 neighbouring pixels)

Harris & Stephens Detector

Scale in Computer Vision

The problem of scale

- * As an object moves closer to the camera it get larger with more detail... as it moves further away it gets smaller and loses detail...
- If you're using a technique that uses a fixed size processing window (e.g. Harris corners, or indeed anything that involves a fixed kernel) then this is a bit of a problem!

Scale space theory

- * Scale space theory is a formal framework for handling the scale problem.
 - * Represents the image by a series of increasingly smoothed/blurred images parameterised by a scale parameter *t*.
 - * t represents the amount of smoothing.
 - * **Key notion:** Image structures smaller than sqrt(t) have been smoothed away at scale t.

The Gaussian Scale Space

- Many types of scale space are possible (depending on the smoothing function), but only the Gaussian function has the desired properties for image representation.
 - * These provable properties are called the "scale space axioms".

Gaussian Scale Space

Formally, Gaussian scale space defined as:

$$L(\cdot,\cdot;t) = g(\cdot,\cdot;t) * f(\cdot,\cdot)$$

Note: convolution is over *x*, *y* for fixed *t*

where $t \ge 0$ and,

$$g(x, y; t) = \frac{1}{2\pi t} e^{-(x^2+y^2)/2t}$$

Note: $t = \sigma^2$ = variance of the Gaussian

Gaussian Scale Space

Normally, only a fixed set of values of t are used - it's common to use integer powers of 2 or $\sqrt{2}$

t=1

t=2

t=4

t=16

t = 32

Nyquist-Shannon Sampling theorem

If a function x(t) contains no frequencies higher than B hertz, it is completely determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart.

...so, if you filter the signal with a low-pass filter that halves the frequency content, you can also half the sampling rate without loss of information...

Gaussian Pyramid

- * Every time you double *t* in scale space, you can half the image size without loss of information!
 - Leads to a much more efficient representation
 - faster processing
 - less memory

Multi-scale Harris & Stephens

- * Extending the Harris and Stephens detector to work across scales is easy...
 - * We define a Gaussian scale space with a fixed set of scales and compute the corner response function at every pixel of each scale and keep only those with a response above a certain threshold.

Multi-scale Harris & Stephens Corner Detector

Blob Detection

Recap: Laplacian of Gaussian

- Recall that the LoG is the second derivative of a Gaussian
 - Used in the Marr-Hildreth edge detector
 - Zero crossings of LoG convolution

Laplacian of Gaussian

Instead of finding zero crossings, find local minima or maxima => blob detector!

Scale space LoG

 Normalised scale space LoG defined as:

$$\nabla_{norm}^2 L(x, y; t) = t(L_{xx} + L_{yy})$$

- By finding extrema of this function in scale space, you can find *blobs* at their representative scale (~sqrt(2t))
 - Just need to look at the neighbouring pixels!

Scale space DoG

- * In practice it's computationally expensive to build a LoG scale space.
- * But, the following approximation can be made:

$$\nabla_{norm}^2 L(x, y; t) \approx \frac{t}{\Delta t} (L(x, y; t + \Delta t) - L(x, y; t - \Delta t))$$

- * This is called a Difference-of-Gaussians (DoG)
 - * Implies that the LoG scale space can be built from subtracting adjacent scales of a Gaussian scale space

Difference of Gaussian Response

Very useful property: if a blob is detected at $(x_0, y_0; t_0)$ in an image, then under a scaling of that image by a factor s, the same blob would be detected at $(sx_0, sy_0; s^2t_0)$ in the scaled image.

DoG Pyramid

- * Of course, for efficiency you can also build a DoG pyramid
 - * an *oversampled* pyramid as there are multiple images between a doubling of scale.
 - * Images between a doubling of scale are an *octave*.

Multi-scale Difference of Gaussian Blob detector

Summary

- Interest points have loads of applications in computer vision.
 - They need to be robustly detected, and invariant to rotation, lighting change, etc.
- * We've looked at two types: corners and blobs
 - * Harris & Stephens is a common corner detector
 - Finding extrema in a multi scale DoG pyramid provides a robust blob detector
- * Scale space theory allows us to find features (corners and blobs) of different sizes

Further reading

- Harris & Stephens
 - * Original paper by C. Harris and M. Stephens (1988) http://www.bmva.org/bmvc/1988/avc-88-023.pdf
 - * Material also partially covered in Mark's book pp. 159-165
- Scale space http://en.wikipedia.org/wiki/Scale space representation
- Blob detection
 - Wikipedia
 http://en.wikipedia.org/wiki/Blob detection#The Laplacian of Gaussian
 - https://medium.com/@vad710/cv-for-busy-devs-improving-features-df20c3aa5887# =
 - Lowe's seminal SIFT paper also has a good description of finding blobs using the DoG in section 3: http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Exercises

* Practical exercises

- * Harris Corner Detection:
 - org.openimaj.image.feature.local.interest.HarrisIPD class in **OpenIMAJ**
 - https://opencv24-pythontutorials.readthedocs.io/en/latest/py tutorials/py feature2d/py f eatures harris/py features harris.html
- * DoG
 - Dog is a part of SIFT in OpenCV https://opencv24-pythontutorials.readthedocs.io/en/latest/py tutorials/py feature2d/py sift <u>intro/py sift intro.html</u>
 - Chapter 5 of the OpenIMAJ tutorial covers finding DoG blobs