Серия 1.

В задачах 1.1 и 1.4 процесс S(t) —это геометрическое броуновское движение на отрезке [0,T] с параметрами $r>0,\sigma>0,S(0)=1$. В графиках задач 1.2 и 1.3 число $e^{-r(T-t)}K$ должно находиться около середины отрезка, из которого берется x. Функция c(t,x) (или c(t,S(t))) обозначает цену европейского колл опциона, посчитанного по формуле Блэка-Шоулза-Мертона.

Задача 1.1 Смоделировать процесс S(t). Проверить экспериментально формулу для математического ожидания MS(T). Увидеть зависимость скорости сходимости к математическому ожиданию от σ (т.е. зафиксировать число случайных траекторий N, увеличивать σ и следить за отклонением среднего от MS(T)).

Задача 1.2 Нарисовать графики c(t,x) как функции от x при t=0,0.5T,0.8T,0.99T.

Задача 1.3 Нарисовать графики греческих параметров $\delta, \gamma, \theta, \kappa, vega, \rho$ как функций от x.

Задача 1.4 Рассмотрите портфель

$$X(t) = c(t, S(t)) - c_x(t, S(t))S(t),$$

где $c_x(t,S(t))$ — частная производная по x. Разделите отрезок [0,T] точками $t_i=\frac{iT}{n}$, смоделируйте процесс S(t) и постройте график портфеля X(t) как функции от t в точках t_i . Постройте в том же окне график $e^{rt}X(0)$ как функции от t.