性行為不正常。

另外當矽層厚度降低時,將使源/汲極阳值升高,這問題可以以提升源/ 汲極 (raised S&D) 或 fully S&D Silicidation 方式來改善。

儘管SOI有著諸多優點,在同一世代上提供較佳元件性能,亦不乏商業化 產品問世,但在 CMOS 微縮的過程中,元件微縮的元件性能的改善,遠超過 SOI 製程開發所產生的效應,致使 SOI 製程不斷遞延,但在 CMOS 製程接近物 理極限時,相信 SOI 製程在產品線上,將仍有一席之地。

應變的 Strain Si 8.3

8.3.1 應變矽特性

矽應變由於僅需改變矽基材,製程則與CMOS相容,是不用改變製程即可 大幅提升元件性能的方法,使各大半導體廠競相投入開發,目前對應變矽基礎 研究大致完成,而實用化的產品正逐漸在市場上出現。

全面性應變矽 (global strain) 8.3.2

應變矽發展初期,主要為全面性應變(global strain),在Si表面以磊晶方 式,成長不同比例的Sit-xGex晶格,並於磊晶成長的後期,再成長純Si原子, 由於晶格匹配的緣故,表面矽原子將受到底部較大 Ge 原子的拉伸,而形成拉 伸應變,實驗證明,在X、Y平面處於拉伸應力下,電子電洞載子移動率皆有 大幅提高。