На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Известно, что дорога АБ длиннее дороги ЖИ. Определите длину дороги ВД.

1

	П1	П2	П3	П4	П5	П6	П7	П8
П1			8	11		20		
П2			19	28			29	15
П3	8	19		12				9
П4	11	28	12			26		
П5						18	16	14
П6	20			26	18		32	
Π7		29			16	32		17
П8		15	9		14		17	

Ответ:		
--------	--	--

2

Логическая функция F задаётся выражением:

$$((x \to y) \land (z \equiv \neg w)) \to (u \equiv (x \lor z))$$

Дан частично заполненный фрагмент, содержащий **неповторяющиеся** строки таблицы истинности функции F.

???	???	???	???	???	\boldsymbol{F}
0		0	0	0	0
0			0	0	0
	0	0	0		0
	0			0	0

Определите, какому столбцу таблицы истинности соответствует каждая из переменных u, w, x, y, z.

В ответе напишите буквы u, w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть заданы выражение $x \to y$, зависящее от двух переменных x и y, и фрагмент таблицы истинности.

Переменная 1	Переменная 2	Функция
???	???	$oldsymbol{F}$
0	1	0

Тогда первому столбцу соответствует переменная y, а второму столбцу – переменная x. В ответе нужно написать: yx.

Ответ:		
OIDCI.		

В файле приведён фрагмент базы данных «Продукты», содержащей информацию о поставках товаров и их продаже. База данных состоит из трёх таблиц.

Таблица «Торговля» содержит записи о поставках и продажах товаров в магазинах города в июне 2021 г. Таблица «Товар» содержит данные о товарах. Таблица «Магазин» содержит данные о магазинах.

На рисунке приведена схема базы данных, содержащая все поля каждой таблицы и связи между ними.

Используя информацию из приведённой базы данных, определите магазин, продавший за месяц наибольшее количество лапши гречневой. В ответе запишите ID магазина – так, как он указан в базе.

Ответ	•	
	•	

4 По каналу связи передаются сообщения, содержащие только буквы, входящие в слово ИНФОРМАТИКА. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано: никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Кодовые слова для некоторых букв известны: Ф – 010, Р – 011, М – 101, Т – 1101, К – 111.

Какое **наименьшее** число двоичных знаков может содержать код слова ИНФОРМАТИКА?

Ответ:		
OIDCI.		•

- 5
- Алгоритм получает на вход натуральное число N и строит по нему новое число R следующим образом.
- 1. Строится двоичная запись числа N.
- 2. В конец двоичной записи добавляется двоичный код остатка от деления числа N на 4.
- 3. Результатом работы алгоритма становится десятичная запись полученного числа R.

Пример 1. Дано число N = 13. Алгоритм работает следующим образом.

- 1. Строим двоичную запись: $13_{10} = 1101_2$.
- 2. Остаток от деления 13 на 4 равен 1, добавляем к двоичной записи цифру 1, получаем $11011_2 = 27_{10}$.
- 3. Результат работы алгоритма R = 27.

Пример 2. Дано число N = 14. Алгоритм работает следующим образом.

- 1. Строим двоичную запись: $14_{10} = 1110_2$.
- 2. Остаток от деления 14 на 4 равен 2, добавляем к двоичной записи цифры $10~(10_2=2_{10})$, получаем $111010_2=58_{10}$.
- 3. Результат работы алгоритма R = 58.

Назовем доступными числа, которые могут получиться в результате работы этого алгоритма. Например, числа 27 и 58 – доступные.

Какое **наибольшее** количество доступных чисел может быть на отрезке, содержащем 49 натуральных чисел?

Исполнитель Черепаха передвигается по плоскости и оставляет след в виде 6 линии. Черепаха может выполнять две команды: **Вперёд** n (n – число) и **Направо** m (m – число). По команде **Вперё**д n Черепаха перемещается вперёд на n единиц. По команде **Направо** m Черепаха поворачивается на месте на mградусов по часовой стрелке, при этом соответственно меняется направление дальнейшего движения.

В начальный момент Черепаха находится в начале координат и направлена вверх (вдоль положительного направления оси ординат).

Запись Повтори k [Команда1 Команда2 ... КомандаS] означает, что заданная последовательность из S команд повторится k раз.

Черепаха выполнила следующую программу:

Повтори 4 [Вперёд 14 Направо 90] Повтори 5 [Вперёд 5 Направо 45]

Ответ:

Определите, сколько различных точек с целочисленными координатами

	программы.
	Ответ:
7	Камера наблюдения каждые n секунд (n — целое число) делает фотографию с разрешением 1024×768 пикселей и палитрой 4096 цветов. Фотографии передаются по каналу с пропускной способностью 200 Кбайт/сек, при этом используются методы сжатия, позволяющие уменьшить размер изображения в среднем на 20 %. Определите минимально возможное значение n , при котором возможна передача в режиме реального времени.
	Ответ:
8	Сколько существует 11-значных девятеричных чисел, в записи которых не встречается цифра 0, любые две соседние цифры имеют разную чётность, и никакая цифра не повторяется больше 4 раз?

9 Откройте файл электронной таблицы, содержащей в каждой строке шесть натуральных чисел.

Определите количество строк таблицы, для чисел которых одновременно выполнены все следующие условия:

- в строке есть повторяющиеся числа;
- максимальное число в строке не повторяется;
- сумма всех повторяющихся чисел в строке больше максимального числа этой строки. При подсчёте суммы повторяющихся чисел каждое число учитывается столько раз, сколько оно встречается.

В ответе запишите число – количество строк, удовлетворяющих заданным условиям.

Ответ:	
OIBCI.	•

Задание выполняется с использованием прилагаемых файлов.

Повесть братьев Стругацких «Понедельник начинается в субботу» состоит из трёх историй. Определите, сколько раз во второй истории, включая заголовки, эпиграфы и сноски, встречаются слова из трёх букв, включая трёхбуквенные сокращения и аббревиатуры. В этом задании части слова, разделённые дефисом, рассматриваются как отдельные слова. Например, слово «кто-то» учитывается как два отдельных слова: трёхбуквенное и двухбуквенное.

Ответ:	 •

В информационной системе хранится информация об объектах определённой структуры. Каждый объект описывается как последовательность блоков. Для каждого блока указываются его код и тип. Код блока состоит из 15 символов, каждый из которых может быть заглавной латинской буквой или цифрой. Каждый символ кода кодируется минимально возможным количеством битов. Тип блока — это целое число от 1 до 2000, которое кодируется минимально возможным количеством битов. Блок в целом кодируется минимально возможным целым количеством байтов.

Для хранения информации о каждом объекте выделяется одинаковое для всех объектов минимальное количество байтов, достаточное для описания 40 блоков.

Определите объём памяти (в Кбайт), необходимый для хранения информации о 32768 объектах. В ответе запишите число – количество Кбайт.

Ответ:	
OIBCI.	•

12

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

A) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

заменить (111, 27)

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды **заменить** (v, w) не меняет эту строку.

Б) нашлось (у).

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

Дана программа для редактора:

НАЧАЛО

ПОКА НЕ нашлось (00) заменить (01, 220) заменить (02, 1013) заменить (03, 120) КОНЕЦ ПОКА

КОНЕЦ

Известно, что в исходной строке A было ровно два нуля — на первом и на последнем месте, а после выполнения данной программы получилась строка B, содержащая 13 единиц и 18 двоек.

Какое наибольшее количество цифр могло быть в строке А?

Ответ:	
--------	--

13	В терминологии сетей ТСР/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места — нули. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-адресу узла и маске. Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0. Узлы с IP-адресами 120.91.176.213 и 120.91.174.205 находятся в разных сетях. Укажите наименьшее возможное значение третьего слева байта маски этой сети. Ответ запишите в виде десятичного числа.
	Ответ:
14	В числе $57x692y19_{40}$ x и y обозначают некоторые цифры из алфавита системы счисления с основанием 40. Определите такие значения x и y , при которых приведённое число кратно 39, а число yx_{40} является полным квадратом. В ответе запишите значение числа yx_{40} в десятичной системе счисления.
	Ответ:
15	Обозначим через $m\&n$ поразрядную конъюнкцию неотрицательных целых чисел m и n . $Hanpumep$, $14\&5 = 1110_2\&0101_2 = 0100_2 = 4$. Для какого наименьшего неотрицательного целого числа A формула $((v\&57 > 0))/(v\&60 > 0))$, $(v\&4 > 0)$
	$((x\&57 > 0) \ \lor (x\&99 > 0)) \to (x\&A > 0)$
	тождественно истинна (т. е. принимает значение 1 при любом неотрицательном целом значении переменной x)?
	Ответ:
16	Обозначим через $a\%b$ остаток от деления натурального числа a на натуральное число b , а через $a//b$ — целую часть от деления a на b . Функция $F(n)$, где n — неотрицательное целое число, задана следующими соотношениями: $F(n) = 0, \text{ если } n = 0;$ $F(n) = F(n//10) + n\%10, \text{ если } n > 0 \text{ и } n \text{ чётно};$ $F(n) = F(n//10), \text{ если } n \text{ нечётно}.$ Определите количество таких целых k , что $10^9 \le k \le 2 \cdot 10^9$ и $F(k) = 0$.
	1
	Ответ:

- Файл содержит последовательность натуральных чисел, не превышающих 100 000. Назовём тройкой три идущих подряд элемента последовательности. Определите количество троек, для которых выполняются следующие условия:
 - хотя бы два числа в тройке пятизначные;
 - ровно одно число в тройке делится на 3;
 - сумма элементов тройки больше максимального элемента последовательности, запись которого заканчивается на 123. (Гарантируется, что в последовательности есть хотя бы один элемент, запись которого заканчивается на 123.)

В ответе запишите два числа: сначала количество найденных троек, затем максимальную величину суммы элементов этих троек.

Ответ:			
--------	--	--	--

18

Задание выполняется с использованием прилагаемых файлов.

Робот стоит в левом верхнем углу прямоугольного поля, в каждой клетке которого записано целое число. В некоторых клетках записано число -1, в эти клетки роботу заходить нельзя. Для вашего удобства такие клетки выделены тёмным фоном. В остальных клетках записаны положительные числа.

За один ход робот может переместиться на одну клетку вправо или на одну клетку вниз. Клетка, из которой робот не может сделать допустимого хода (справа и снизу находятся границы поля или запрещённые клетки), называется финальной. На поле может быть несколько финальных клеток.

В начальный момент робот обладает некоторым запасом энергии. Расход энергии на запуск робота равен числу, записанному в стартовой клетке. В дальнейшем расход энергии на шаг из одной клетки в другую равен абсолютной величине разности чисел, записанных в этих клетках.

Задание 1. Определите минимальный начальный запас энергии, который позволит роботу добраться до какой-нибудь финальной клетки.

Задание 2. Определите минимальный начальный запас энергии, который позволит роботу добраться до любой финальной клетки.

Исходные данные записаны в электронной таблице. В ответе запишите два числа: сначала ответ на задание 1, затем ответ на задание 2.

Ответ:		
--------	--	--

- Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. В игре разрешено делать следующие ходы:

 добавить в кучу один камень;

 если количество камней в куче чётно, добавить половину имеюшегося
 - если количество камней в куче чётно, добавить половину имеющегося количества;
 - если количество камней в куче кратно трём, добавить треть имеющегося количества;
 - если количество камней в куче не кратно ни двум, ни трём, удвоить кучу. *Например*, если в куче 5 камней, то за один ход можно получить 6 или 10 камней, а если в куче 6 камней, то за один ход можно получить 7, или 8, или 9 камней.

Игра завершается, когда количество камней в куче достигает 96. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 96 или больше камней.

В начале игры в куче было S камней, $1 \le S \le 95$.

Укажите **минимальное** значение S, при котором Петя не может выиграть первым ходом, но при любом первом ходе Пети Ваня может выиграть своим первым ходом.

	Ответ:			
20	Для игры, описанной в задании 19, найдите два наибольших значения S , при которых Петя не может выиграть первым ходом, но у Пети есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Вани. В ответе запишите найденные значения в порядке возрастания.			
	Ответ:			
21	Для игры, описанной в задании 19, найдите наибольшее значение <i>S</i> , котором у Вани есть стратегия, позволяющая ему выиграть первым вторым ходом при любой игре Пети, но у Вани нет стратегии, кото позволила бы ему гарантированно выиграть первым ходом.			
	Ответ:			

22	В компьютерной системе необходимо выполнить некоторое количество
	вычислительных процессов, которые могут выполняться параллельно или
	последовательно. Для запуска некоторых процессов необходимы данные,
	которые получаются как результаты выполнения одного или двух других
	процессов – поставщиков данных. Если зависимый процесс получает данные
	от одного или нескольких других процессов (поставщиков данных), то
	выполнение зависимого процесса не может начаться раньше завершения всех
	процессов-поставщиков. Количество одновременно выполняемых процессов
	может быть любым. Длительность процесса не зависит от других
	параллельно выполняемых процессов.

В таблице представлены идентификатор (ID) каждого процесса, его длительность, для зависимых процессов – ID поставщиков данных. Для независимых процессов в качестве ID поставщиков данных указан 0.

Определите максимальную длительность отрезка времени (в мс), в течение которого возможно одновременное выполнение четырёх процессов, при условии, что в эту четвёрку не входит процесс с ID = 2.

Ответ:	
Olbel.	•

23 Исполнитель преобразует число на экране.

У исполнителя есть три команды, которые обозначены буквами:

- А. Вычесть 1
- В. Умножить на 2
- С. Умножить на 3

Программа для исполнителя — это последовательность команд. *Например*, программа **BAC** при исходном числе 2 последовательно получит числа 4, 3, 9. Сколько существует программ, которые преобразуют исходное число 3 в число 20 и при этом не содержат двух команд **A** подряд?

Задание выполняется с использованием прилагаемых файлов.

24	Текстовый файл содержит только заглавные буквы латинского алфавита				
	(ABCZ). Определите максимальное количество идущих подряд символого среди которых каждая из букв A и B встречается не более двух раз.				
	Ответ:				

25

26

Маска числа — это последовательность цифр, в которой могут встречаться специальные символы «?» и «*». Символ «?» означает ровно одну произвольную цифру, символ «*» означает произвольную (в том числе пустую) последовательность цифр.

Например, маске 123*4?5 соответствуют числа 123405 и 12376415.

Найдите все натуральные числа, не превышающие 10^{10} , которые соответствуют маске 1*4302?1 и при этом без остатка делятся на 3147.

В ответе запишите все найденные числа в порядке возрастания.

Ответ:	

Задание выполняется с использованием прилагаемых файлов.

В отделении банка работают два окна для обслуживания клиентов. Некоторые услуги могут быть оказаны только при обращении в определённое окно, некоторые – при обращении в любое окно. Клиент входит в отделение и встаёт в очередь к тому окну, которое оказывает необходимую ему услугу. Если услуга может быть оказана в любом окне, клиент выбирает то, в очереди к которому в данный момент меньше людей. Если очереди в оба окна одинаковые, клиент выбирает окно с меньшим номером. При этом если в очереди к выбранному окну уже стоит 12 или более человек (включая человека, которого обслуживают в данный момент), пришедший клиент сразу уходит.

Если момент завершения обслуживания одного или нескольких клиентов совпадает с моментом прихода нового клиента, то можно считать, что новый клиент пришёл после того, как обслуживание ранее пришедшего клиента завершилось и очередь сократилась.

Входные данные

Первая строка входного файла содержит целое число N ($N \le 1000$) — общее количество клиентов, пришедших в отделение за один рабочий день. Каждая из следующих N строк описывает одного клиента и содержит 3 целых числа: время прихода клиента в отделение (количество минут с начала рабочего дня), время, необходимое для обслуживания данного клиента, и номер окна, в которое ему необходимо обратиться (0 означает, что клиент может обратиться в любое окно). Гарантируется, что никакие два клиента не приходят одновременно.

Определите, сколько клиентов будет обслужено в течение дня в окне номер 1 и сколько клиентов покинет отделение из-за слишком больших очередей. В ответе запишите два целых числа: сначала количество клиентов, обслуженных в окне номер 1, затем количество необслуженных клиентов. Ответ: Задание выполняется с использованием прилагаемых файлов. Дана последовательность целых чисел. Расстояние между элементами последовательности – это разность их порядковых номеров. Например, если два элемента стоят в последовательности рядом, расстояние между ними равно 1, если два элемента стоят через один – расстояние равно 2 и т. д. Необходимо выбрать из последовательности три числа так, чтобы расстояние между какими-то двумя из них было равно 3K, а сумма всех трёх чисел была максимально возможной. Запишите в ответе найденную сумму. Входные данные Первая строка входного файла содержит целое число K – параметр для определения расстояния, вторая строка содержит число N – общее количество чисел в наборе (1 < 3K < N). Каждая из следующих N строк содержит одно число, не превышающее по модулю 10 Вам даны два входных файла (А и В), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала требуемую сумму для

27

файла А, затем – для файла В.

Ответ