

CSEN 703/707 - Analysis and Design of Algorithms

Midterm Revision

Nourhan Ehab

nourhan.ehab@guc.edu.eg

Department of Computer Science and Engineering Faculty of Media Engineering and Technology

26 - 27 October 2022

Outline

1 Problem Selection

Recursion Tree Method

Exercise 4

Use the recursion tree method to get an upper bound for the following recurrence.

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + \Theta(n)$$

Master Method

Exercise 5

Consider the following recurrence.

$$\begin{array}{lcl} T(n) & = & T(n/2) + 5^{\lfloor \log_5 n \rfloor} \\ T(1) & = & \Theta(1) \end{array}$$

Can you solve it using the master method? If yes, solve it. If not, explain why.

Divide and Conquer Algorithms Design

Exercise 6

You are given an array of n points in a 2D plane. Design a divide and conquer algorithm to find out the closest pair of points in the array.

Closest Pair

Closest Pair

Closest Pair

