Raport 4

Erwin Jasic

11 stycznia 2021

Cel raportu:

Chcemy porównać skuteczność różnych przedziałów ufności dla róznicy średnich oraz ilorazu wariancji w modelu normalnym w zależności od rozkładu (normalny, logistyczny, Cauchy'ego) oraz wielkości próby (20, 50, 100). Dla każdej z metod użyjemy tego samego przedziału ufności na poziomie 95% oraz powtórztmu każde doświadczenie 10000 razy, aby wyniki były wiarygodne. Ponadto użyjemy tego samego ziarna dla każdego z podpunktów, żeby korzystać z tej samej próbki dla każdego zadania.

Zadanie 1

Przedział ufności z którego będziemy korzystać w zadaniu 2 na poziomie ufności $1-\alpha$, ma postać: $\bar{X}-\bar{Y}\pm z_{1-\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$, gdzie \bar{X} i \bar{Y} to średnie z próbek.

Zadanie 2

(a) Tabela dla rozkładu normalnego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n	1 = n_2 = 20\$ \$n_	1 = n_2 =50\$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.9505	0.9483	0.9540
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.9506	0.9496	0.9523
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.9559	0.9506	0.9500
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.9436	0.9525	0.9477

Widzmy, że niezależnie od parametrów oraz wielkości próby metoda jest skuteczna. Nieznaczne wahania występują przy zmianie rozmiaru próby, ale widzimy, że już dla próby n=20 mamy dobry wynik. Taka próba jest już wystarczająca do konstrukcji przedziału ufności, co było dość przewidywalne, ponieważ ten przedział był skonstruowany dla rozkładu normalnego.

(b) Tabela dla rozkładu logistycznego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n	$1 = n_2 = 20$ \$ \$n_	$1 = n_2 = 50 $ \$n_	$1 = n_2 = 100$ \$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.7256	0.7267	0.7197
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.7259	0.7210	0.7201
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.7250	0.7171	0.7189
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.7246	0.7147	0.7237

Dla rozkładu logistycznego skuteczność jest już sporo niższa, około 72%. Nie jest to dla nas naskoczenie, ponieważ model zakłada, że dane pochodzą z rozkładu normalnego. Wielkość próby nie ma znaczenia.

(c) Tabela dla rozkładu Cauchy'ego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n	$1 = n_2 = 20$ \$ \$n_	$1 = n_2 = 50$ $n_$	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.1955	0.1257	0.0846
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.1898	0.1194	0.0868
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.2010	0.1347	0.0916
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.2033	0.1239	0.0944

Bardzo niska skuteczność dla rozkładu Cauchy'ego nie powinna nas zaskakiwać. Tak jak w podpunkcie (b) dane nie pochodzą z rozkładu normalnego. Tutaj możemy zaobserwować, że mimo bardzo niskich wartości prawdopodobieństwa pokrycia, wraz ze wzrostem rozmiaru próby maleje skuteczność.

Zadanie 3

Przedział ufności z którego będziemy korzystać w zadaniu 4 na poziomie ufności $1-\alpha$, ma postać: $\bar{X}-\bar{Y}\pm t_{(1-\alpha/2,df=n_1+n_2-2)}\sqrt{\frac{\sum_{i=1}^{n_1}(X_i-\bar{X})^2+\sum_{i=1}^{n_2}(Y_i-\bar{Y})^2}{n_1+n_2-2}}*\frac{n_1+n_2}{n_1*n_2}}{n_1*n_2}$.

Zadanie 4

Przeprowadzamy eksperyment tylko dla konfiguracji z równymi wariancjami, ponieważ model tak właśnie zakłada.

(a) Tabela dla rozkładu normalnego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n_	1 = n_2 = 20\$ \$n_	1 = n_2 =50\$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.9498	0.9486	0.9469
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.9501	0.9494	0.9524

Podobnie jak w zadaniu 2, dla rozkładu normalnego otrzymujemy prawdopodobieństwo na poziomie 95%.

(b) Tabela dla rozkładu logistycznego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n_	$1 = n_2 = 20$ \$ \$n_	1 = n_2 =50\$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.9483	0.9487	0.9509
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.9560	0.9536	0.9475

Podobnie jak w podpunkcie (a) dostajemy prawdopodobieństwo pokrycia na poziomie 95%. Jest to na pierwszy rzut oka bardzo zaskakujące, bo przecież model zakłada rozkład normalny, ale w tym zadaniu nie znamy wariancji rozkładu, a estymujemy ją z próby.

(c) Tabela dla rozkładu Cauchy'ego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n_	$1 = n_2 = 20$ \$ \$n_	$1 = n_2 = 50$ $n_$	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.9789	0.9801	0.9786
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.9815	0.9786	0.9810

Podobnie jak wyżej dostajemy prawdopodobieństwo pokrycia na bardzo wysokim poziomie, około 98%. Powód tak wysokiego pokrycia jest dokładnie taki sam jak dla podpunktu (b).

Zadanie 5

Przedział ufności z którego będziemy korzystać w zadaniu 6 na poziomie ufności $1-\alpha$, ma postać: $\bar{X}-\bar{Y}\pm t_{(1-\alpha/2,\nu)}\sqrt{\frac{S_x^2+\frac{S_y^2}{n_1}}{n_1^2+\frac{S_y^2}{n_2}}}$, gdzie $\nu=\frac{\frac{S_x^2+\frac{S_y^2}{n_1}+\frac{S_y^2}{n_2}}{\frac{S_x^4}{n_1^2-n_1^2}+\frac{S_y^4}{n_2^2-n_2^2}}$ to liczba stopni swobody, a S_x i S_y to odchylenia standardowe z prób.

Zadanie 6

Przeprowadzamy eksperyment tylko dla konfiguracji z różnymi wariancjami, ponieważ model tak właśnie zakłada.

(a) Tabela dla rozkładu normalnego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n	$1 = n_2 = 20$ \$ \$n_	1 = n_2 =50\$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.9418	0.9461	0.9457
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.9425	0.9459	0.9498

(b) Tabela dla rozkładu logistycznego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n	$1 = n_2 = 20$ \$ \$n_	$1 = n_2 = 50$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.9488	0.9455	0.9478
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.9519	0.9482	0.9455

(c) Tabela dla rozkładu Cauchy'ego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n	$1 = n_2 = 20$ \$ \$n_	$1 = n_2 = 50$ \$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.9913	0.9896	0.9848
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.9921	0.9879	0.9864

Wnioski wyciągamy analogiczne jak dla zadania 4, czyli bardzo dobre przybliżenie bez względu na to z jakiego rozkładu pochodzą próby.

Zadanie 7

Przedział ufności z którego będziemy korzystać w zadaniu 8 na poziomie ufności $1-\alpha$ dla ilorazu wariancji, w którym znamy średnie ma postać: $\frac{\mu_y^2}{\mu_x^2}F_{n_1,n_2}(\alpha/2), \frac{\mu_y^2}{\mu_x^2}F_{n_1,n_2}(1-\alpha/2),$ gdzie $\mu_x^2=\frac{1}{n_1}\sum_{i=1}^{n_1}(X_i-\mu_1)^2, F_{n_1,n_2}(\alpha/2)$ jest kwantylem z rozkładu Fishera-Snedecora.

Zadanie 8

(a) Tabela dla rozkładu normalnego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

	$1 = n_2 = 20$ \$ \$n_	1 = n_2 =50\$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.9487	0.9512	0.9437
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.9525	0.9494	0.9482
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.9495	0.9506	0.9491
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.9493	0.9500	0.9502

Tak jak w poprzednich zadaniach, otrzymujemy pokrycie na poziomie około 95% dla rozkładu normalnego.

(b) Tabela dla rozkładu logistycznego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n_	$1 = n_2 = 20$ \$ \$n_	$1 = n_2 = 50$ \$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.8921	0.8873	0.8817
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.8950	0.8901	0.8821
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.8924	0.8915	0.8822
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.8999	0.8893	0.8826

Widzimy, że dla rozkładu logistycznego prawdopodobieństwo jest dosyć wysokie, bo na poziomie około 89%. Jest to bardzo dobry wynik, jeśli weżmiemy pod uwagę, że model zakłada pochodzenie próbki z rozkładu normalnego.

(c) Tabela dla rozkładu Cauchy'ego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n_	$1 = n_2 = 20$ \$ \$n_	1 = n_2 =50\$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.8921	0.8873	0.8817
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.8950	0.8901	0.8821
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.8924	0.8915	0.8822
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.8999	0.8893	0.8826

Podobnie jak w zadaniu 2 w podpunkcie (c), dla rozkładu Cauchy'ego prawdopodobieństwo pokrycia jest bardzo niskie. W tym zadaniu model zakłada, że znamy średnią z rozkładu. Podobnie jak w zadaniu 2, możemy zaobserwować, że wraz ze wzrostem próby maleje prawdopodobieństwo pokrycia.

Zadanie 9

Przedział ufności z którego będziemy korzystać w zadaniu 10 na poziomie ufności $1-\alpha$ dla ilorazu wariancji, w którym nie znamy średnich ma postać: $\frac{S_y}{S_x}F_{n_1-1,n_2-1}(\alpha/2), \frac{S_y}{S_x}F_{n_1-1,n_2-1}(1-\alpha/2),$ gdzie $S_x=\frac{1}{n_1}\sum_{i=1}^{n_1}(X_i-\bar{X})^2, F_{n_1-1,n_2-1}(\alpha/2)$ jest kwantylem z rozkładu Fishera-Snedecora o n_1-1 i n_2-1 stopniach swobody.

Zadanie 10

(a) Tabela dla rozkładu normalnego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n	$1 = n_2 = 20$ \$ \$n_	$1 = n_2 = 50$ $n_$	$1 = n_2 = 100$ \$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.9500	0.9510	0.9454
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.9534	0.9495	0.9483
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.9465	0.9501	0.9488
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.9508	0.9484	0.9510

(b) Tabela dla rozkładu logistycznego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

\$n	$1 = n_2 = 20$ \$ \$n_	1 = n_2 =50\$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.8961	0.8886	0.8827
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.8977	0.8914	0.8826
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.8953	0.8943	0.8827
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.9034	0.8894	0.8836

(c) Tabela dla rozkładu Cauchy'ego z parametrami przesunięcia μ_1 i μ_2 oraz skali odpowiednio σ_1 i σ_2 .

	$1 = n_2 = 20$ \$ \$n_	1 = n_2 =50\$ \$n_	1 = n_2 =100\$
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 1$	0.8961	0.8886	0.8827
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 1$	0.8977	0.8914	0.8826
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 0, \sigma_2 = 2$	0.8953	0.8943	0.8827
$\mu_1 = 0, \sigma_1 = 1, \mu_2 = 1, \sigma_2 = 2$	0.9034	0.8894	0.8836

Możemy zauważyć, że dla tego zadania wyniki są analogiczne jak w zadaniu 8, co oznacza, że wyestymowanie średnich nie poprawiło prawdopodobieństwa pokrycia (w przeciwieństwie do poprzednich zadań). To pokazuje, że w tym przypadku wyestymowanie średniej z próby nie poprawia wyniku.

Zadanie 11

To zadanie zostało zrealizowane przy każdym z poleceń.

Podsumowanie:

Poprzez przeprowadzone doświadczenia w zadaniach widzimy, że gdy założenia modelu są spełnione, zawsze otrzymujemy wynik bliski poziomowi ufności jaki zakłada model. Z drugiej strony, jeśli założenia nie są spełnione i dane pochodzą z innego rozkładu to zazwyczaj otrzymamy gorszy wynik (wyjątek: zadania 4 i 6 szczególnie dla rozkładu Cauchy'ego). Analizując tabele ze względu na rozmiary próby, możemy zauważyć, że już n=20 jest wystarczające do uzyskania poprawnego przedziału.