

COMBINATIONS OF SPRINGS

SPECIAL CASE

CUTTING OF SPRINGS

$$k \propto \frac{1}{L}$$

$$k_1L_1=k_2L_2$$

L=L1+L2

$$k_1 = \frac{kL}{L_1}$$

$$k_2 = \frac{kL}{L_2}$$

$$\mathbf{k}_{1} = \frac{\mathbf{k}(\mathbf{L}_{1} + \mathbf{L}_{2})}{\mathbf{L}_{1}}$$

SIMPLE PENDULUM

- Second's pendulam
- T=2 second
- I=1 meter

Concept of geffective

 $T=2\pi\sqrt{\frac{1}{g_{eff}}}$

Pendulum in lift

Case 1-Moving up with constant acceleration 'a'

↑a g_{eff}=g+a

$$T=2\pi\sqrt{\frac{1}{g+a}}$$

↓a g_{eff}=g-a

$$T=2\pi\sqrt{\frac{l}{g-a}}$$

Case 3-Moving with constant velocity

↓a a=0

Case 4-Free fall

 g_{eff} =g-a=g-g=0 T $\rightarrow \infty$

Pendulum in a truck moving with constant acceleration

Pendulam in Water

σ=Density of Bob ρ=Density of liquid

 $g_{eff} = g\left(1 - \frac{\rho}{\sigma}\right)$

 $T=2\pi \sqrt{\frac{1}{g(1-\frac{\rho}{g})}}$

DIFFERENTIAL EQUATION OF S.H.M

ma = -kx

$$m \frac{d^2x}{dt^2} = -kx$$

$$\frac{d^2x}{dt^2} = \frac{-k}{m} x$$

$$\frac{d^2x}{dt^2} + \frac{k}{m} x = 0$$

$$\frac{d^2x}{dt^2} + \omega^2x = 0$$

$$\omega^2 = \frac{k}{m}$$
 $\omega = \sqrt{\frac{k}{m}}$

A=Amplitude of SHM O=Initial phase difference

$$4\frac{d^2x}{dt^2} + 320 \times = 0$$

$$\frac{d^2x}{dt^2} + 80 \times = 0$$

$$\omega^2=80$$
 $\omega=\sqrt{80}$

$$\frac{2\pi}{T} = \sqrt{80}$$

$$T = \frac{2\pi}{\sqrt{80}}$$

PHYSICS WALLAH

PROJECTION OF CIRCULAR MOTION

Projection/shadow of uniform circular motion in y axis is SHM

INITIAL PHASE FROM POSITION & DIRECTION

Eg: Particle lies at $x = \frac{A}{2}$ [t=0] and move towards A

1st Quadrant

Start from mean position $x=A\sin(\omega t+\Phi_0)$

1)
$$X = \frac{A}{2}$$
 $\frac{A}{2} = A \sin \Phi_0$
 $\Rightarrow \Phi_0 = 30^\circ = \frac{\pi}{6}$
 $\Rightarrow A \sin(\omega t + \frac{\pi}{6})$

2)
$$X = \frac{A}{\sqrt{2}}$$
 $\frac{A}{\sqrt{2}} = A \sin \Phi_0$
 $t = 0$ $\Phi_0 = 45^\circ = \frac{\pi}{4}$
 $x = A \sin(\omega t + \frac{\pi}{4})$

3)
$$X = \frac{\sqrt{3}A}{2}$$
 $\frac{\sqrt{3}A}{2} = A \sin \Phi_0$
 $t = 0$ $\Phi_0 = 60^\circ = \frac{\pi}{3}$
 $x = A \sin(\omega t + \frac{\pi}{3})$

2nd Quadrant

Start from extreme position $x = A cos(\omega t + \Phi_{\rm o})$

1)
$$X = \frac{A}{2}$$
 $\frac{A}{2} = A\cos \Phi_0$
 $t = 0$ $\Phi_0 = 60^\circ = \frac{\pi}{3}$
 $x = A\cos(\omega t + \frac{\pi}{3})$

2)
$$X = \frac{A}{\sqrt{2}}$$
 $\frac{A}{\sqrt{2}} = A\cos\Phi_0$
 $t=0$ $\Phi_0 = 45^\circ = \frac{\pi}{4}$
 $x = A\cos(\omega t + \frac{\pi}{4})$

OSCILLATIONS 02

Two particles executing SHM meet at $X = \frac{\sqrt{3}A}{2}$

for particle A

 $X = \frac{\sqrt{3}A}{2} \qquad \frac{\sqrt{3}A}{2} = A \sin \Phi_A$

†=0

 $\Phi_{A} = 60^{\circ} = \frac{\pi}{3}$

Phase difference \$\Phi = 30^\circ + 30^\circ = 60^\circ \text{ or } 300^\circ}\$

Graphical Representation of Displacement

Start from mean position $x=A\sin(\omega t+\Phi_0)$, $\Phi_0=0$

Start from extreme position $x=A\cos(\omega t + \Phi_0), \Phi_0 = 0$

Velocity of SHM

 $x = A \sin(\omega t + \Phi_0)$

 $v = A\omega\cos(\omega t + \Phi_0)$

$$v = \omega \sqrt{A^2 - x^2}$$

a) x=0 $v_{max}=A\omega$

b)
$$x = \frac{A}{2}$$
 $v = \frac{\sqrt{3}A}{2}\omega$

c) $x = \frac{A}{\sqrt{2}}$ $v = \frac{A\omega}{\sqrt{2}}$

d) x = A v = 0

Start from mean position $x=A\sin(\omega t+\Phi_0)$ $\Phi_0=0$

 $v=A\omega\cos(\omega t+\Phi_0)$

Start from extreme position $x=A\cos(\omega t+\Phi_o)$ $\Phi_o=0$

 $v = -A\omega \sin(\omega t + \Phi_0)$

Calculation of time $\frac{T}{T}$

PHYSICS WALLAH

Acceleration of SHM

Phase difference between x and v= $\frac{\pi}{2}$

Phase difference between v and $a = \frac{\pi}{2}$

Phase difference between x and $a = \pi$

Calculation of Time period and amplitude

$$v_{\text{max}} = A\omega$$

$$a_{\text{max}} = A\omega^2$$

$$\omega = \frac{\mathbf{a}_{\text{max}}}{\mathbf{v}_{\text{max}}}$$

$$A = \frac{v_{\text{max}}}{a_{\text{max}}}$$

$$\frac{2\pi}{T} = \frac{a_{\text{max}}}{v_{\text{max}}}$$

$$T = 2\pi \frac{v_{\text{max}}}{a_{\text{max}}}$$

Graphical Representation of Acceleration

Start from mean position $v=A\omega\cos(\omega t+\Phi_0)$, $\Phi_0=0$

$$a = -A\omega^2 \sin(\omega t + \Phi_0)$$

Start from extreme position $v=-A\omega\sin(\omega t+\Phi_0)$, $\Phi_0=0$

 $a = -A\omega^2\cos(\omega t + \Phi_0)$

SILLATIONS 03

Energy of SHM

K.E=
$$\frac{1}{2}$$
mv² = $\frac{1}{2}$ m $\omega^2(A^2-x^2)$

KE=0
$$KE_{max} = \frac{1}{2}m\omega^2 A^2$$

$$KE=0$$

$$x=-A$$

$$x=0$$

$$x=A$$

$$P.E = \frac{1}{2}m\omega^2x^2$$

$$PE_{max} = \frac{1}{2}m\omega^2 A^2 \qquad PE = 0 \qquad PE_{max} = \frac{1}{2}m\omega^2 A^2$$

$$\times = -A \qquad \times = 0 \qquad \times = A$$

Total mechanical energy = $\frac{1}{2}$ m $\omega^2 A^2$

1)
$$x = \frac{A}{\sqrt{2}}$$

 $K.E=P.E=\frac{E}{2}$

2)
$$x = \frac{A}{2}$$

 $K.E = \frac{3E}{4}$ $P.E = \frac{E}{4}$

Total mechanical energy(E) = $\frac{1}{2}$ m $\omega^2 A^2$

Note: In SHM, if particle oscilate with frequency $\omega,$ then the K.E & P.E oscilate with 2 ω