Halloween Mini-Project

Adithi Kumar (PID: A16653979)

Importing Candy Data

```
candy_file <- "https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power-r
candy = read.csv(candy_file, row.names = 1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511	46.11650	
Air Heads	0	0	C)	0.906	0	.511	52.34146	
Almond Joy	0	1	C)	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

There are 85 different types of candy in this dataset

Q2. How many fruity candy types are in the dataset?

```
sum(candy[,2])
```

[1] 38

There are 38 fruity candy types in the dataset.

What is your favorite candy?

```
candy["Twix", ]$winpercent
[1] 81.64291
```

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Fun Dip", ]$winpercent
```

[1] 39.1855

My favorite candy in the dataset is probably fun dip; it has a winpercent value of 39.1855%.

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
[1] 76.7686
```

Kit Kats have a winpercent value of 76.7686%.

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

candy["Tootsie Roll Snack Bars",]\$winpercent

[1] 49.6535

Tootsie Roll Snack Bars have a winpercent value of 49.6535.

```
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The winpercent variable looks like it's on a different scale to the majority of the other columns in the dataset.

Q7. What do you think a zero and one represent for the candy\$chocolate column?

A 0 means that particular candy is not contain chocolate while a 1 means that the candy DOES contain candy.

Q8. Plot a histogram of winpercent values

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Q9. Is the distribution of winpercent values symmetrical?

The distribution looks like it is slightly skewed right

Q10. Is the center of the distribution above or below 50%?

The center of distribution is below 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
# as.logical reurns the TRUE/FALSE values of a column #candy$winpercent will give us only
choc_winpercent <- candy$winpercent[as.logical(candy$chocolate)]
mean(choc_winpercent)

[1] 60.92153

fruity_winpercent <- candy$winpercent [as.logical(candy$fruity)]
mean(fruity_winpercent)</pre>
```

[1] 44.11974

On average, chocolate candy is higher ranked than fruity candy; chocolate candy has an average winpercent value of about 60.92 while fruity candy has an average winpercent value of about 44.12%.

Q12. Is this difference statistically significant?

```
t.test(choc_winpercent, fruity_winpercent)
```

Welch Two Sample t-test

```
data: choc_winpercent and fruity_winpercent
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563    22.15795
sample estimates:
mean of x mean of y
    60.92153    44.11974
```

Since the p-value of 2.871e-08 is less than 0.05, the difference between the average winpercent values between chocolate and fruity candy is statistically significant.

Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

```
# order will order dataset from least to most
head(candy[order(candy$winpercent),], n=5)
```

		chocolate	fruity	caran	nel p	peanutyalm	nondy r	nougat	
Nik L Nip		0	1		0		0	0	
Boston Baked	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedrio	ewafer	${\tt hard}$	bar	pluribus	sugarı	percent	pricepercent
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked	Beans		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	;						
Nik L Nip		22.44534	Ŀ						
Boston Baked	Beans	23.41782	2						
Chiclets		24.52499)						
Super Bubble		27.30386	5						
Jawbusters		28.12744	Ŀ						

The five least liked candy types are Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, and Jawbusters.

Q14. What are the top 5 all time favorite candy types out of this set?

```
tail(candy[order(candy$winpercent),], n=5)
```

	chocolate	fruity	caran	nel j	peanutyalr	nondy	nougat
Snickers	1	0		1	-	1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	hard	bar	pluribus	sugai	rpercent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
Reese's Miniatures		0	0	0	0		0.034
Reese's Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent wing	percer	nt			
Snickers	0.6	651 76	6.6737	78			
Kit Kat	0.5	511 76	3.7686	80			
Twix	0.9	906 83	1.6429	91			
Reese's Miniatures	0.2	279 83	1.8662	26			
Reese's Peanut Butter cup	0.6	551 84	1.1802	29			

The top five all time favorite candy tupes are Snickers, Kit Kat, Twix, Reese's Miniatures, Reese's Peanut Butter Cup.

Q15. Make a first barplot of candy ranking based on winpercent values.

Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

Q17. What is the worst ranked chocolate candy?

The worst ranked chocolate candy is Sixlets.

Q18. What is the best ranked fruity candy?

The worst ranked fruity candy is Nik L Nip.

Taking a look at pricepercent

```
library(ggrepel)
# plot of price vs. win percent
ggplot(candy) + aes (winpercent, pricepercent, label = rownames(candy)) +
   geom_point(col =my_cols) +
   geom_text_repel(col = my_cols, size =3.3, max.overlaps =53)
```


Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Based on the plot, the candy ranked highest in terms of winpercent for the least amount of money is Reeses Miniatures.

```
ord <- order(candy$pricepercent, decreasing =TRUE) head (candy [ord, c(11,12)], n=5)
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

```
tail (candy [ord, c(11,12)], n=5)
```

pricepercent winpercent Strawberry bon bons 0.058 34.57899

Dum Dums	0.034	39.46056
Fruit Chews	0.034	43.08892
Pixie Sticks	0.023	37.72234
Tootsie Roll Midgies	0.011	45.73675

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

The top 5 most expensive candy types in the dataset are Nik L Nip, Nestle Smarties, Ring pop, Hershey's Krackel, and Hershey's Milk Chocolate. The least popular of these are Nik L Nip with a winpercent of 22.44534%.

Exploring the Correlation Structure

```
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Corrplot looks at what variables are correlated and anti-correlated. Correlated means the two variables follow each other; when one goes up, the other will go up as well! Anti-correlated is a negative correlation where one goes up and the other goes down. Magnitude of correlation is represented by the radius of the circle: the larger the circle, the stronger the correlation.

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

The variables chocolate and fruit are anti-correlated.

Q23. Similarly, what two variables are most positively correlated?

The two variables that are most positively correlated are chocolate and winpercent.

Principal Component Analysis

```
pca <- prcomp(candy, scale =TRUE)
summary (pca)</pre>
```

Importance of components:

PC2 PC3 PC4 PC5 PC6 PC7 PC1 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530 Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539 Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369 PC8 PC9 PC10 PC11 PC12 Standard deviation $0.74530\ 0.67824\ 0.62349\ 0.43974\ 0.39760$ Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

```
plot(pca$x[,1:2])
```



```
plot(pca$x[,1:2], col=my_cols, pch=16)
```


Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

```
#use plotly for interactive labels :)
#library(plotly)
#ggplotly(p)

par(mar = c(8,4,2,2))
barplot(pca$rotation[,1], las =2, ylab = "PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

The original variables that are picked up strongly by PC1 in the positive direction are fruity, hard, and pluribus. Yes! Each variable influences the direction of each PC with different magnitudes. The variables fruity, hard, and pluribus have variables that they are anti-correlated with that are picked up strongly by PC1 in the negative direction (chocolate and bar). If the candy is a bar, it is less likely to be pluribus(come in a form of multiple candies) or fruity. If a candy is chocolate, it is less likely to be fruity. PC1 finds dimensions that maximizes variance so variables that are strongly anti-correlated would be on the ends of the data; they would be the extremes that need to be picked up by PC1 for PC1 to include the most variance of the data. Variables that are correlated end up facing the same direction (positive or negative) on the plot; chocolate and winpercent are strongly correlated and face the negative direction.