Systemy Uczące Się Grupowanie/klasteryzacja

Michał Zając 203229

30 listopada 2016

Spis treści

1	Wstęp Algorytm K-means			
2				
3 Algorytm PAM			3	
4				
5				
6	K-n	neans	4	
	6.1	Iris	4	
		6.1.1 3-fold crossvalidation	4	
		6.1.2 5-fold crossvalidation	5	
		6.1.3 10-fold crossvalidation	5	
	6.2	Diabetes	6	
	٠.ــ	6.2.1 3-fold crossvalidation	6	
		6.2.2 5-fold crossvalidation	6	
		6.2.3 10-fold crossvalidation	7	
	6.3	Ionosphere	7	
	0.0	6.3.1 3-fold crossvalidation	7	
		6.3.2 5-fold crossvalidation	8	
		6.3.3 10-fold crossvalidation	8	
		0.5.5 10-10ld crossvandation	G	
7	PAI	${f M}$	9	
	7.1	Iris	9	
		7.1.1 3-fold crossvalidation	9	
		7.1.2 5-fold crossvalidation	9	
		7.1.3 10-fold crossvalidation	10	
	7.2	Diabetes	10	
		7.2.1 3-fold crossvalidation	10	
		7.2.2 5-fold crossyalidation	11	
		11212 0 1014 01 000 (animation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	
	7.3		12	
	,	7.3.1 3-fold crossvalidation	12	

8	Wnioski		13
	7.3.3	10-fold crossvalidation	13
	7.3.2	5-fold crossvalidation	12

1 Wstęp

Zapoznanie się z systemem R wspierającym statystyczne obliczenia i metody uczenia maszynowego, na przykładzie zagadnienia klasteryzacji (czasem zwaną grupowaniem) danych.

2 Algorytm K-means

Algorytm K-means jest heurystyczną metodą wyznaczania klastrów, do których przydzielane są wszystkie elementy zbioru. Przebieg algorytmu wygląda następująco:

- 1. Wybieramy k losowych punktów jako centroidy.
- 2. Każdy element zbioru obserwacji przypisujemy do najbliższego centroidu na podstawie odległości euklidesowej.
- 3. Obliczamy nowy centroid bazując na średniej wartości poszczególnych atrybutów w centroidzie.
- 4. Kroki 2-3 powtarzamy dopóki nie nastąpi modyfikacja pomiędzy krokami, lub nie zostanie spełniony inny warunek stopu.

3 Algorytm PAM

W algorytmie PAM zamiast centroidów środek klastra(zwanych tutaj medoidami) zawsze jest jednym z obiektów, który znajduje się w zbiorze. Właściwy algorytm prezentuje się następująco:

- 1. Wybieramy k losowych punktów jako medoidy.
- 2. Każdy element zbioru obserwacji przypisujemy do najbliższego centroidu na podstawie odległości euklidesowej.
- 3. Dopóki odległość między punktami zmniejsza się:
 - (a) Dla każdego medoida i każdego obiektu nie będącego medoidem zamień je funkcjami (uznaj medoid za zwykły obiekt a wybrany obiekt za medoid). Jeżeli odległość się zwiększy od poprzedniego kroku, cofnij zmianę.
 - (b) Każdy obiekt z klastra potraktuj jako medoid. Jeżeli odległośćmiędzy obiektami nie zmniejszy się w stosunku do poprzedniego kroku to cofnij zmianę.

4 Wybrane zbiory danych

Do ćwiczenia użyto następujących zbiorów danych:

Iris - zbiór danych o irysach. Występują w nim trzy możliwe klasyfikacje, w zależności od gatunku kwiatu. Liczba cech: 4. Liczbaność zbioru: 150

Pima Indians Diabetes - zbiór zawierający dane o osobach z USA, którzy chorują na cukrzycę. Występują w nim dwie możliwe klasyfikacje: osoba chora i osoba zdrowa. Liczba cech: 8. Liczebność zbioru: 768

Ionosphere - zbiór danych zawiera dane dotyczące jonosfery zebrane z 16 anten. Dwie klasy, liczba cech: 34, liczebność zbioru: 351.

5 Implementacja

Do wykonania zadania napisano skrypt w języku R wykonujący potrzebne obliczenia.

6 K-means

6.1 Iris

6.1.1 3-fold crossvalidation

6.1.2 5-fold crossvalidation

6.1.3 10-fold crossvalidation

6.2 Diabetes

6.2.1 3-fold crossvalidation

6.2.2 5-fold crossvalidation

6.2.3 10-fold crossvalidation

6.3 Ionosphere

6.3.1 3-fold crossvalidation

6.3.2 5-fold crossvalidation

6.3.3 10-fold crossvalidation

7 PAM

7.1 Iris

7.1.1 3-fold crossvalidation

7.1.2 5-fold crossvalidation

7.1.3 10-fold crossvalidation

7.2 Diabetes

7.2.1 3-fold crossvalidation

7.2.2 5-fold crossvalidation

7.2.3 10-fold crossvalidation

silhouette, davies_bouldin, acc, rec, prec...

7.3 Ionosphere

7.3.1 3-fold crossvalidation

7.3.2 5-fold crossvalidation

7.3.3 10-fold crossvalidation

8 Wnioski

- 1. Kroswalidacja w przypadku zadania klasteryzacji ma niewielki wpływ
- 2. Sam wskaźnik DBI nie jest najlepszym wyznacznikiem jakości klastra
- 3. R ląduje na drugim miejscu pod względem toporności wśród języków programowania