Concours Marocain: Corrigé 2005 Maths 1, MP

Maths-MPSI

Mr Mamouni: myismail@altern.org

Source disponible sur:

Chttp://www.chez.com/myis

I. Résultats préliminaires.

A- Un résultat de dérivation.

1) La formule de Taylor-Young à l'ordre 2, s'écrit : $f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + o(h^2)$ $f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) + o(h^2)$

(2)

- 2) En faisant (1)+(2), on obtient: $\frac{f(x_0+h)+f(x_0-h)-2f(x_0)}{h^2} = f''(x_0) + o(1) \longrightarrow f''(x_0), \text{ quand}$
- 3) Si f'' = 0, on peut affirmer que f est affine.

A- Un résultat de convergence.

1) a) ?

$$ds \int_0^{2\pi} b_n^2 \sin^2(nx) dx = \frac{b_n^2}{2} \int_0^{2\pi} (1 - \cos(2nx)) dx$$

$$= \frac{b_n^2}{2} \left[x - \frac{\sin(2nx)}{2n} \right]_{x=0}^{x=2\pi} .$$

$$= \pi b_n^2$$

Ainsi $b_n^2 = \frac{1}{\pi} \int_0^{2\pi} v_n^2(x) dx \longrightarrow 0$, quand $n \longrightarrow +\infty$.

a) $c_n = \min(1, |b_n|)$, d'où $0 \le c_n \le 1$, donc (c_n) est bornée. D'autre part $|w_n(x)| \le |v_n(x)|$, et $(v_n)_{n\ge 1}$ converge simplement vers 0, donc $(w_n)_{n\geq 1}$ aussi.

Ainsi $(c_n)_{n\geq 1}$ est bornée et $(w_n)_{n\geq 1}$ converge simplement ven faisant jouer à c_n le rôle joué par b_n dans la question précéde déduit que $\lim +\infty c_n = 0$, donc à partir d'un certain rang pour cela utilier la définition de la limite pour c_n avec $\varepsilon = 1$, $c_n = |b_n|$ à partir d'un certain rang, donc $\lim +\infty b_n| = 0$ et pa $\lim +\infty b_n = 0.$

II. Série trigonométrique dont la somme est contin

- a) Pour tout réel, x, la série numérique $\sum_{n} u_n(x)$ est convergen son terme génbéral $u_n(x)$ converge vers 0.
 - b) En particulier $u_n(0) = a_n$ converge vers 0.

somme est aussi continue.

- c) $0 \le |v_n(x)| = |u_n(x) a_n \cos(nx)| \le |u_n(x)| + |a_n| \longrightarrow 0,$ $n \longrightarrow +\infty$, donc $\lim_{x \to \infty} +\infty v_n(x) = 0$, pour tout réel, x (v_n) converge simplement vers 0, et d'aprés la partie **I.B**, c conclure que $\lim_{n} +\infty b_n = 0$.
- a) $|u_n(x)| = |a_n \cos(nx) + b_n \sin(nx)| \le |a_n| + |b_n| \le M$, car $(|a_n| + |b_n|) \le M$ est bornée, puisqu'elle converge vers 0, ainsi $\left|\frac{u_n(x)}{n^2}\right| \leq \frac{M}{n^2}$ et part $\sum \frac{1}{n^2}$ est une série de Riemann convergente, donc \sum converge normalement, dont le terme général est continue of

b) Pour tout réel, x et tout entier, N, on a $\sum_{n=1}^{N} \frac{u_n(x+2\pi)}{n^2} = \sum_{n=1}^{N} \frac{u_n(x)}{n^2}$, quand on fait tendre N vers $+\infty$, on obtient $F(x+2\pi) = F(x)$, donc F est 2π -périodique.

Calculons les coéfficients de Fourrier de F

$$a_n(F) = -\frac{1}{\pi} \int_{-\pi}^{\pi} \sum_{p \ge 1} \frac{u_p(x)}{p^2} \cos(nx) dx$$
$$= -\frac{1}{\pi} \sum_{p \ge 1} \frac{1}{p^2} \int_{-\pi}^{\pi} u_p(x) \cos(nx) dx$$

On peut permuter signes somme et intégrale vu qu'il y a convergence normale sur $[-\pi, \pi]$.

D'autre part :

$$\int_{-\pi}^{\pi} u_p(x) \cos(nx) dx = a_p \int_{-\pi}^{\pi} \cos(px) \cos(nx) dx + b_p \int_{-\pi}^{\pi} \sin(px) \cos(nx) dx$$

Et on sait que : $\cos a \cos b = \frac{1}{2} (\cos(a+b) + \cos(a-b))$, donc

$$\int_{-\pi}^{\pi} \cos(px) \cos(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} (\cos(n+p)x + \cos(n-p)x) dx = \frac{1}{2} \left[\frac{\sin(n+p)x}{n+p} + \frac{\sin(n-p)x}{n-p} \right]_{x=\pi}^{x=\pi} = 0 \text{ si } n \neq p$$

Si
$$n = p$$
, alors $\int_{-\pi}^{\pi} \cos(px) \cos(nx) dx = \int_{x=-\pi}^{\pi} \cos^2(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} (\cos(n+p)x+1) dx = \frac{1}{2} \left[\frac{\sin(n+p)x}{n+p} + x \right]_{x=-\pi}^{\pi} = \pi.$

$$\int_{-\pi}^{\pi} \sin(px) \cos(nx) dx = 0 \text{ car il s'agit d'intégrer sur } [-\pi, \pi] \text{ une}$$

 $J_{-\pi}$ fonction impaire.

Conclusion : $a_n(F) = -\frac{1}{n^2}$. Et pareil pour le calcul de $b_n(F)$.

- 3) a) On a φ est continue sur \mathbb{R} et de classe \mathcal{C}^1 sur \mathbb{R}^* , avec $\varphi'(t) = \frac{2\sin t(t\cos t \sin t)}{t^3} \sim_0 -\frac{t}{3} \longrightarrow 0$ quand $t \longrightarrow 0$, donc φ est de classe \mathcal{C}^1 sur \mathbb{R}
 - b) $|\varphi'(t)| = \left|\frac{2\sin t(t\cos t \sin t)}{t^3}\right| \le \frac{2t+1}{t^3} \sim_{+\infty} \frac{2}{t^2}$, intégrable au

voisinage de $+\infty$, donc φ' aussi.

4) a)
$$\frac{F(x+2h)+F(x-2h)-2F(x)}{4h^2}$$

On peut se permettre de regrouper les sommes vu qu'il y a convergence simple

$$= -\frac{1}{4(nh)^2} \sum_{n=1}^{+\infty} a_n (\cos(nx+2nh) + \cos(nx-2nh) - 2\cos(nx+2nh) + \cos(nx-2nh) - 2\cos(nx+2nh) + \sin(nx-2nh) - 2\sin(nx+2nh) + \sin(nx-2nh) - 2\sin(nx+2nh) + \sin(nx-2nh) + \sin(nx-2nh) + \cos(nx+2nh) + \cos(nx-2nh) + \cos(nx+2nh) + \cos$$

Utiliser les formules :

$$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right), \sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)$$
$$= -\frac{1}{4(nh)^2} \sum_{n=0}^{+\infty} 2(a_n\cos(nx) + b_n\sin(nx))(\cos(2nh) - 1)$$

Utiliser la formule : $\cos(2\theta) - 1 = -2\sin^2(\theta)$

$$= \sum_{n=1}^{+\infty} (a_n \cos(nx) + b_n \sin(nx)) \varphi(nh)$$

b) Commençons par le 2 ème membre de l'égalité :

$$\sum_{n=0}^{+\infty} \left(S_n(x) - f(x) \right) \left(\varphi(nh) - \varphi((n+1)h) \right)$$

On peut se permettre de séparer les sommes vu qu'il y a convergence simple

$$= \sum_{n=0}^{+\infty} S_n(x)\varphi(nh) - \sum_{n=0}^{+\infty} S_n(x)\varphi((n+1)h)$$

$$-f(x)\sum_{n=0}^{\infty} \left(\varphi(nh) - \varphi((n+1)h)\right)$$

On remplace n+1 par n dans la 2 ème somme et on remarque que la 3 ème est telescopique, et que $\varphi(0) = 1, \lim_{n \to \infty} \varphi(nh) = 0$

$$= \sum_{n=0}^{+\infty} S_n(x)\varphi(nh) - \sum_{n=1}^{+\infty} S_{n-1}(x)\varphi(nh) - f(x)$$

On peut se permettre de regrouper les sommes vu qu'il y a convergence simple

$$= S_0(x)\varphi(0) + \sum_{n=1}^{+\infty} (S_n(x) - S_{n-1}(x))\varphi(nh) - f(x)$$

On remarque que : $S_0(x) = 0$, $S_n(x) - S_{n-1}(x) = u_n(x)$

$$= \sum_{n=1}^{+\infty} u_n(x)\varphi(nh) - f(x)$$

On utilise la question précédente et le fait que :

$$u_n(x) = a_n \cos(nx) + b_n \sin(nx)$$

= $\frac{F(x+2h) + F(x-2h) - 2F(x)}{4h^2} - f(x)$

c) i. Découle de la définition de la limite : $\lim_{n} +\infty S_n(x) = f(x)$ pour x, fixé.

ii. On a :
$$\varphi(nh) - \varphi((n+1)h) = \int_{nh}^{(n+1)h} \varphi'(t)dt$$
, donc

$$\left| \sum_{n=N}^{+\infty} (S_n(x) - f(x)) \left(\varphi(nh) - \varphi((n+1)h) \right) \right|$$

$$\leq \sum_{n=N}^{+\infty} \left| (S_n(x) - f(x)) \right| \left| (\varphi(nh) - \varphi((n+1)h)) \right|$$

$$\leq \frac{\varepsilon}{2A} \sum_{n=N}^{+\infty} \left| \int_{nh}^{(n+1)h} \varphi'(t) dt \right|$$

$$\leq \frac{\varepsilon}{2A} \sum_{n=N}^{+\infty} \int_{nh}^{(n+1)h} |\varphi'(t)| dt$$

$$= \frac{\varepsilon}{2A} \int_{Nh}^{+\infty} |\varphi'(t)| dt$$

$$\leq \frac{\varepsilon}{2A} \int_{0}^{+\infty} |\varphi'(t)| dt$$

$$= \frac{\varepsilon}{2} \operatorname{car} \int_{0}^{+\infty} |\varphi'(t)| dt = A$$

- iii. D'aprés la question précédente, on peut conclur $\lim_{h} 0^{+} \sum_{n=N}^{+\infty} (S_{n}(x) f(x)) (\varphi(nh) \varphi((n+1)h)) = 0,$ part $\lim_{h} 0^{+} \varphi(nh) \varphi((n+1)h) = 0 \text{ pour tout } 0 \leq N-1, \text{ donc } \lim_{h} 0^{+} \sum_{n=0}^{N-1} (S_{n}(x) f(x)) (\varphi(nh) \varphi((n+1)h)) = 0,$ 0, puisqu'il s'agit d'une somme finie, et par $\lim_{h} 0^{+} \sum_{n=0}^{+\infty} (S_{n}(x) f(x)) (\varphi(nh) \varphi((n+1)h)) = 0$ tenant comte de la question **4.2**, on peut conclu $\lim_{h} 0^{+} \frac{F(x+2h) + F(x-2h) 2F(x)}{4h^{2}} = f(x)$
- 5) a) Dans cette question il semble y avoir une erreur d'énoncé, i plutôt montrer que $\frac{F}{4} F_1$ est affine au lieu de $F F_1$ Posons $G(x) = \int_0^x f(t)dt$, et utilisons une intégration

partie dans F_1 où u'(t) = f(t) u = G(t), alors $F_1(x) = v(t) = x - t$ v'(t) = -1 $[(x - t)G(t)]_{t=0}^{t=x} + G(t) = \int_0^x G(t)dt \text{ est de classe } \mathcal{C}^2 \text{ car } G \text{ est de classe } \mathcal{C}^1 \text{ l'est en tant que primitive d'une fonction continue, avec} F'_1 = G \text{ et } F_1 \text{ "} = G' = f.$

- b) D'aprés le préliminaire $\lim_h 0^+ \frac{F_1(x+2h) + F_1(x-2h) 2F_1(x)}{h^2} = F_1"(x) = f(x)$, on pose $F_2 = \frac{F}{4} F_1$, alors : $\lim_h 0^+ \frac{F_2(x+2h) + F_2(x-2h) 2F_2(x)}{h^2} = \lim_h 0^+ \frac{F(x+2h) + F(x-2h) 2F(x)}{4h^2} \lim_h 0^+ \frac{F_1(x+2h) + F_1(x-2h) 2F_1(x)}{h^2} + \frac$
- c) f est 2π -périodique en tant que limite simple de fonctions 2π -périodique.

Calculons les coéfficients de Fourier associés à f.

$$a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$

= $\frac{1}{\pi} \int_{-\pi}^{\pi} \sum_{p=0}^{+\infty} (a_p \cos(pt) + b_p \sin(pt)) \cos(nt) dt$

Aprés avoir justifié la permutation des signes somme et intégrale

$$= \frac{1}{\pi} \left(\sum_{p=0}^{+\infty} a_p \int_{-\pi}^{\pi} \cos(pt) \cos(nt) dt + b_p \int_{-\pi}^{\pi} \sin(pt) \cos(nt) dt \right)$$

Or $\cos(pt)\cos(nt) = \frac{1}{2}(\cos(p+n)t + \cos(p-n)t)$, donc:

$$\int_{-\pi}^{\pi} \cos(pt) \cos(nt) dt = \pi \text{ si } n = p$$

$$0 \text{ si } n \neq p$$

et $\int_{-\pi}^{\pi} \sin(pt) \cos(nt) dt = 0$, comme integrale sur $[-\pi, \pi]$ d'un tion impaire.

Donc $a_n(f) = a_n$ et de même on montre que $b_n(f) = b_n$.

III. Séries trigonométriques impaires.

A- Une application à l'étude précédente.

- 1) Pour tout réel, x fixé on a $\lim_{n} +\infty v_n(x) = 0$, en tant que terme d'une série numérique convergente, et d'aprés la partie **I.B** on peu mer que $\lim_{n} +\infty b_n = 0$.
- 2) La suite (b_n) est bornée par un réel M, car convergente, donc $\left|\frac{v_n(x)}{n^2(n^2+1)}\right| = \left|\frac{b_n \sin(nx)}{n^2(n^2+1)}\right| \text{ et } \frac{1}{n^4} \text{ est le terme général d'une s}$ $\leq \frac{M}{n^4}$ $\leq \frac{M}{n^4}$

Rieman convergente, donc $\sum_{n\geq 1} \frac{v_n(x)}{n^2(n^2+1)}$ converge normalement

D'autre part : $\left|\frac{v'_n(x)}{n^2(n^2+1)}\right| = \left|\frac{nb_n\cos(nx)}{n^2(n^2+1)}\right| \text{ et } \frac{1}{n^3} \text{ est le terme général d'une s}$ $\leq \frac{M}{n(n^2+1)}$ $\leq \frac{M}{n^3}$

Rieman convergente, donc $\sum_{n\geq 1} \frac{v_n'(x)}{n^2(n^2+1)}$ converge normalement

et enfin
$$\left|\frac{v"_n(x)}{n^2(n^2+1)}\right| = \left|-\frac{n^2b_n\sin(nx)}{n^2(n^2+1)}\right| \text{ et } \frac{1}{n^2} \text{ est le terme général d'un}$$

$$\leq \frac{M}{(n^2+1)}$$

$$\leq \frac{M}{n^2}$$

de Rieman convergente, donc $\sum_{n\geq 1} \frac{v"_n(x)}{n^2(n^2+1)}$ converge normalement sur

 \mathbb{R} . Et ainsi on peut dériver sous le signe somme, d'où ψ est de classe \mathcal{C}^2 , avec : ψ " $(x) = \sum_{n=1}^{+\infty} \frac{v_n''(x)}{n^2(n^2+1)} = -\sum_{n=1}^{+\infty} \frac{b_n \sin(nx)}{n^2+1}$.

3) g est bien définie car elle converge normalement d'aprés la question précédente, d'autre part $\sum_{n=1}^{+\infty} \frac{b_n \sin "(nx)}{n^2} = -f(x)$ converge simplement et continue, donc $\sum_{n=1}^{+\infty} \frac{b_n \sin(nx)}{n^2}$ est de classe \mathcal{C}^2 , et aussi $\sum_{n=1}^{+\infty} \frac{b_n \sin(nx)}{n^2(n^2+1)} = \psi(x)$, avec la possibilité de dériver sous le signe somme, donc g est de classe \mathcal{C}^2 , avec :

$$g''(x) = \sum_{n=1}^{+\infty} \frac{b_n \sin''(nx)}{n^2} - \sum_{n=1}^{+\infty} \frac{b_n \sin''(nx)}{n^2(n^2+1)}$$
$$= -\sum_{n=1}^{+\infty} b_n \sin(nx) + \sum_{n=1}^{+\infty} \frac{b_n \sin(nx)}{n^2+1}$$
$$-f(x) + g(x)$$
et donc $-g'' + g = f$.

4) La solution générale est de la forme $y = y_H + y_0$ où y_H solution générale de l'équation sans second membre -y "+y = 0, alors $y_H(x) = Ae^x + Be^{-x}$ et y_0 solution particulière avec second membre -y "+y = f, d'aprés la question précédente g en est une, donc on peut prendre $y_0 = g$, d'où $y(x) = Ae^x + Be^{-x} + g(x)$, or $y(0) = y(\pi) = 0$ et $y(0) = y(\pi) = 0$, d'où y = g.

B- Cas où la suite $(b_n)_{n\geq 1}$ des coéfficients est décroissante.

1) a)
$$A_n(x) + iB_n(x) = \sum_{k=1}^n \cos(kx) + i\sin(kx)$$
$$= \sum_{k=1}^n e^{ikx}$$
$$= \sum_n \left(e^{ix}\right)^k$$

Somme d'une suite géometrique de raison e^{ix} $= \frac{1 - e^{inx}}{1 - e^{ix}} e^{ix}$

D'autre part en utilisant la relation $1 - e^{i\theta} = -2i\sin\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$

$$A_n(x) + iB_n(x) = \frac{1 - e^{inx}}{1 - e^{ix}} e^{ix}$$

$$= \frac{-2i\sin\left(\frac{nx}{2}\right) e^{i\frac{nx}{2}}}{-2i\sin\left(\frac{x}{2}\right) e^{i\frac{x}{2}}} e^{ix}$$

$$= \frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)} e^{i(n+1)\frac{x}{2}}$$

$$= \frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)} \left(\cos\left((n+1)\frac{x}{2}\right) + i\sin\left((n+1)\frac{x}{2}\right)\right)$$

D'où
$$B_n(x) = \frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)} \sin\left((n+1)\frac{x}{2}\right)$$
,

$$A_n(x) = \frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)} \cos\left((n+1)\frac{x}{2}\right)$$

donc
$$\frac{1}{2} + A_n(x) = \frac{2\sin\left(\frac{nx}{2}\right)\cos\left((n+1)\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)}$$
$$= \frac{\sin\left((n+\frac{1}{2})x\right)}{2\sin\left(\frac{x}{2}\right)}$$

En utilisant la formule $2 \sin a \cos b = \sin(a+b) - \sin(a-b)$

b) Il faut ajouter dans la question ceci : $x \notin 2\pi \mathbb{Z}$, dans $|B_n(x)| \leq \frac{1}{|\sin(\frac{x}{2})|}$ nombre réel qui ne dépond pas de n.

2) a)
$$\sum_{k=1}^{n} b_k \sin(kx) = \sum_{k=1}^{n} b_k (B_k(x) - B_{k-1}(x))$$
$$= \sum_{k=1}^{n} b_k B_k(x) - \sum_{k=1}^{n} b_k B_{k-1}(x)$$

On remplace k-1 par k dans la 2ème somme

$$= \sum_{k=1}^{n} b_k B_k(x) - \sum_{k=0}^{n-1} b_{k+1} B_k(x)$$

$$= \sum_{k=1}^{n-1} (b_k - b_{k+1}) B_k(x) + b_n B_n(x) \qquad \text{car } B_0 = 0$$

b)
$$\sum_{p=1}^{n-1} |(b_p - b_{p+1})B_p(x)| \leq \frac{1}{|\sin(\frac{x}{2})|} \sum_{p=1}^{n-1} |b_p - b_{p+1}|$$

Et comme la suite $(b_p)_{p>1}$ est décroissante vers 0.

$$= \frac{1}{\left|\sin\left(\frac{x}{2}\right)\right|} \sum_{p=1}^{n-1} b_p - b_{p+1}$$

On se retrouve devant une somme télescopique.

$$= \frac{1}{\left|\sin\left(\frac{x}{2}\right)\right|} b_0 - b_n$$

$$\leq \frac{1}{\left|\sin\left(\frac{x}{2}\right)\right|} b_0$$

D'où la convergence absolue.

c) D'aprés **2.1**
$$\sum_{k=1}^{n} v_k(x) = \sum_{k=1}^{n-1} (b_k - b_{k+1}) B_k(x) + b_n B_n(x)$$
, avec $\sum_{k=1}^{n-1} (b_k - b_{k+1}) B_k(x)$ avec $\sum_{k=1}^{n-1} (b_k - b_{k+1}) B_k(x)$

 $\sum_{k=1}^{n} (b_k - b_{k+1}) B_k(x) \text{ qui converge absolument, } (B_n(x))_{n \ge 1} \text{ qui est}$

bornée et $\lim_{n} +\infty b_n = 0$, d'où $\sum_{k=1}^{n} v_k(x)$ converge simplement dont la somme est impaire et 2π -périodique, en tant que limite simple de fonctions impaires et 2π -périodiques.

3) Un exemple.

a) D'aprés la question III.B.1.1 on a :

$$\sum_{k=1}^{n} \cos(kt) = -\frac{1}{2} + \frac{\sin\left((n + \frac{1}{2})t\right)}{2\sin\left(\frac{t}{2}\right)}, \text{ on integre cette inégalité}$$
 et π et on obtient :
$$\sum_{k=1}^{n} \frac{\sin(kx)}{k} = \frac{\pi - x}{2} - \frac{1}{2} \int_{x}^{\pi} \frac{\sin\left((n + \frac{1}{2})t\right)}{2\sin\left(\frac{t}{2}\right)}$$

- b) Ca découle d'un résultat classique dont l'énoncé est le suivation $Si \varphi$ est de classe C^1 sur [a,b], alors $\lim_{\lambda} + \infty \int_a^b \varphi(t) \sin(\lambda t) dt$ En effet, en posant $u' = \sin(\lambda t) dt$ $u = -\frac{\cos(\lambda t)}{\lambda}$, $v = \varphi(t)$ $v' = \varphi'(t)$ $M_0(\varphi) = \sup_{[a,b]} |\varphi(t)|$ et $M_1(\varphi) = \sup_{[a,b]} |\varphi'(t)|$ On $\left| \int_a^b \varphi(t) \sin(\lambda t) dt \right| = \left| \left[-\frac{\cos(\lambda t)}{\lambda} \varphi(t) \right]_{t=a}^{t=b} + \int_a^b \frac{\cos(\lambda t)}{\lambda} \varphi'(t) dt \right|$ $\leq \frac{2M_0}{\lambda} + \frac{M_1(b-a)}{\lambda} \longrightarrow 0$ $\text{quand } \lambda \longrightarrow +\infty$ Et donc $S(x) = \sum_{t=a}^{+\infty} \frac{\sin(kx)}{k} = \frac{\pi x}{2}$.
- c) $S(0) = \frac{\pi}{2}$, ainsi S est discontinue en 0, car $\sum_{k=1}^{+\infty} \frac{\sin(k0)}{k} = 0$.
- 4) Une condition nécessaire de continuité.

a)
$$G(-\theta) = \int_0^{-\theta} f(t)dt$$
 .
$$= -\int_0^{\theta} f(-u)du \text{ On pose } u = -t$$

$$= \int_0^{\theta} f(u)du \text{ } f \text{ est impaire.}$$

$$= G(\theta)$$

D'autre part :

$$G(\theta + 2\pi) = \int_0^{\theta + 2\pi} f(t)dt$$

$$= \int_0^{2\pi} f(t)dt + \int_{2\pi}^{\theta + 2\pi} f(t)dt \quad \text{Relation de Chasles.}$$

$$= \int_0^{2\pi} f(u)du + G(\theta) \qquad u = t - 2\pi,$$

$$f(2\pi) = \int_0^{2\pi} \sum_{n=1}^{+\infty} b_n \sin(nu)du + G(\theta)$$

$$= \sum_{n=1}^{+\infty} b_n \int_0^{2\pi} \sin(nu)du + G(\theta)$$

- b) Dans cette question il s'agit d'un développement limité à l'ordre 1 au voisinage de 0, comme G est de classe C^1 , en tant que primitive d'une fonction continue, alors ce développement est $G(\theta) = G(0) + \theta G'(0) + o(\theta)$, or G(0) = 0 et G'(0) = f(0) = 0 car f impaire. donc $G(\theta) = o(\theta)$.
- c) $a_n(G) = \frac{1}{\pi} \int_{-\pi}^{\pi} G(t) \cos(nt) dt$ $= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\int_{0}^{t} f(u) du \right) \cos(nt) dt$ On utuilise Fubini pour permuter les deux intégrales avec $-\pi \le u \le t \le \pi$ $= \frac{1}{\pi} \int_{0}^{\pi} f(u) \left(\int_{0}^{\pi} \cos(nt) dt \right) du$

 $= \frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \left(\int_{u}^{\pi} \cos(nt) dt \right) du$ $= -\frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \sin(nt) du$ $= -\frac{b_n}{n}$

D'autre part $b_n(G) = \frac{1}{\pi} \int_{-\pi}^{\pi} G(t) \sin(nt) dt = 0$ car $t \mapsto G(t) \sin(nt)$ est impaire puisque G paire.

d) Ainsi la série de Fourier associée à G est $\left(-\sum_{n>1} \frac{b_n}{n} \cos(nx)\right)$, elle

converge simplement vers $G(x) - \frac{a_0(G)}{2}$, puisque G est de clair ici il faut faire attention le $a_0(G)$ définie dans l'énoncé n'est coéfficient de Fourier pour n=0 car ce dernier est donné par mule $\frac{1}{2\pi} \int_0^{2\pi} G(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(t) dt = \frac{a_0(G)}{2}$, puisque G est Pour x=0 la série $\left(\sum_{n\geq 1} \frac{b_n}{n}\right)$ est convergente dont la some $\frac{a_0(G)}{2}$.

e) i. On a: $E\left(\frac{k}{2}\right) = \frac{k}{2}$ si k pair . $=\frac{k-1}{2}$ si k impair Dans tous les cas : $E\left(\frac{k}{2}\right) \ge \frac{k-1}{2}$, si $E\left(\frac{k}{2}\right) + 1 \le$ alors $\frac{k+1}{2} \le n \le k$, donc $\frac{\pi}{2} + \frac{\pi}{2k} \le \frac{n\pi}{k} \le \pi$, ϵ $\frac{\pi}{2} \leq \frac{n\pi}{k} \leq \pi$, donc $\cos\left(\frac{n\pi}{k}\right) \leq 0$. Et donc $1 - \cos\left(\frac{n\pi}{k}\right)$ d'où $\frac{b_n}{n} \left(1 - \cos \left(\frac{n\pi}{k} \right) \right) \ge \frac{b_n}{n}$, or $E\left(\frac{k}{2} \right) + 1 \le n \le k$ $\frac{1}{n} \geq \frac{1}{k}$ et (b_n) est décroissante, donc $b_n \geq b_k$, d'où $\sum_{n=E\left(\frac{k}{2}\right)+1}^{\kappa} \frac{b_n}{n} \left(1 - \cos\left(\frac{n\pi}{k}\right)\right) \ge \sum_{n=E\left(\frac{k}{2}\right)+1}^{\kappa} \frac{b_k}{k}$ $\geq \left(k - E\left(\frac{k}{2}\right)\right) \frac{b_k}{k}$ $\geq \frac{b_k}{2}$ $\operatorname{car} E\left(\frac{k}{2}\right) \leq \frac{k}{2}, \ \operatorname{donc} k - E\left(\frac{k}{2}\right) \geq \frac{k}{2}$

ii.
$$G\left(\frac{\pi}{k}\right) = \frac{a_0(G)}{2} + \sum_{n=1}^{+\infty} a_n(G)\cos\left(\frac{n\pi}{k}\right)$$

$$= \sum_{n=1}^{+\infty} \frac{b_n}{n} - \sum_{n=1}^{+\infty} \frac{b_n}{n}\cos\left(\frac{n\pi}{k}\right)$$

$$= \sum_{n=1}^{+\infty} \frac{b_n}{n} \left(1 - \cos\left(\frac{n\pi}{k}\right)\right)$$
Ainsi
$$G\left(\frac{\pi}{k}\right) = \sum_{n=1}^{+\infty} \frac{b_n}{n} \left(1 - \cos\left(\frac{n\pi}{k}\right)\right)$$

$$\geq \sum_{n=E\left(\frac{k}{2}\right)+1}^{k} \frac{b_n}{n} \left(1 - \cos\left(\frac{n\pi}{k}\right)\right)$$

$$\geq \frac{b_k}{2}$$

Et donc
$$0 \le \frac{b_k}{2} \le G\left(\frac{\pi}{k}\right) = o\left(\frac{\pi}{k}\right)$$
, d'où $0 \le nb_n \le 2$ $o(1)$, donc $\lim_{n} +\infty nb_n = 0$.

Fin du corrigé.