Question	. What is an exponent?	

Write down all of the rules for exponents that you know and prove them:

Simplify:

- $(1) (-1)^4$
- $(2) \ \frac{10^3}{10^{20}}$
- $(3) (-2ab^2)^3$
- $(4) (2a^2b^{-1})^4$

$$(5) \left(\frac{-5a^3}{a^2}\right)^4$$

Express the following in decimal form:

$$-10^4 + 10^5$$

$$3 \cdot 10^3 + 8 \cdot 10^2 + 2 \cdot 10^{-1}$$

Convert to Scientific Notation: 50 billion divided by 100 thousand

Question. What is a logarithm?

Write out all of the properties of logarithms that you know:

Simplify the following expressions by hand knowing that $\log(2) \approx 0.7$
(1) $\log \frac{20}{10}$
$(2) \log(8)$
$(3) \log(400)$
(4) $\log \frac{1}{40}$
Expand the following: $\log(\sqrt{xy})$ $\log\frac{x^2}{7}$
Question. What is the general form of an exponential function?
Question. What is the difference between an exponential growth function and an exponential decay function?
For the following situations create an appropriate exponential function:
We start with 100 bacteria cells in a dish. They triple every hour. How many do we have at the end of 24 hours?

the natural \log , $\ln x$.

In 1910 the U.S. population was 92,407,000. A	Assume that it increases on
average 1.5% a year. What is the doubling time of	the population. Using your
equation, how large should the population be in 2	2013. Does your prediction
match the actual current population? What can ye	ou infer by the difference if
any?	· ·

•	What is the general form of an equation that models the interest con year on a principal investment of P_0 dollars at an annual rate (APR)	
n umes a	gear on a principal investment of 10 abitars at an annual rate (A11t)	oj r :
•	. What is the equation that model continuous compounding of interest at P_0 principal	an APR

Designate $\log_e(x) = \ln x$. Verify that all of the usual logarithm rules apply to

Suppose that \$15,000 was invested on our behalf at a continuously compounded rate. At the end of 3 years we have \$19,020. What is the annual percentage rate on this investment? What is the effective annual rate (AYR)?