

Clustering – Konsep Dasar & Penerapan Algoritma K Means

Data Minig

- Disebut juga klasterisasi (clustering) yang mampu mengelompokkan himpunan data secara otomatis.
- Jika pada supervised learning (Klasifikasi)
 membutuhkan label kelas maka pada
 Unsupervised learning tidak memerlukan label kelas.

Contoh

Basic Concept Clustering

Handphone	Baterai	Kamera	Harga	Layak direkomendasikan
H1	26	8	1,2	?
H2	27	13	15	?
H3	28	5	6	?
H4	25	2	5	?
H5	23	10	1	?

 Bagaimana cara mengelompokkan data tersebut ke dalam 2 klaster sehingga Anda bisa menjawab handphone mana yang layak dan mana yang tidak layak direkomendasikan?

Data disebuah perusahaan telekomunikasi

Panggilan	Blok	Layak Dapat Bonus
30	50	?
40	140	?
50	220	?
60	300	?

 Bagaimana cara mengelompokkan data tersebut ke dalam 2 klaster sehingga Anda bisa menjawab pelanggan mana yang layak dan mana yang tidak layak mendapatkan bonus? Catatan akademik pada sejumlah mahasiswa diketahui data jumlah sks dan nilai IPK mahasiswa.

Data Sebelum Pengelompokan 4 3,5 3 2,5 2 1,5 1 0,5 0 0 5 10 15 20 25 30 SKS

SETELAH PENGELOMPOKAN

Classification vs Clustering

Basic Concept Clustering

- 1. Classification bertujuan untuk memetakan satu titik data ke dalam satu kelas yang telah ditentukan sebelumnya
- 2. Classification dilakukan secara supervised, artinya algoritma pemelajaran untuk melakukan klasifikasi diberikan contoh titik data dan kelas apa seharusnya titik data tersebut dipetakan.
- 1. Clustering bertujuan untuk mengelompokan titik-titik data yang berdekatan dan mimisahkannya dengan kelompok-kelompok lain yang berjauhan dalam suatu ruang.
- Clustering dilakukan secara unsupervised, artinya tidak ada contoh bagaimana seharusnya mengelompokan titik-titik tersebut.

Clustering atau Klasterisasi adalah proses pengelompokan himpunan data ke dalam beberapa group atau klaster sedemikian hingga objek-objek yang ada di dalam kluster memiliki kemiripan yang tinggi,

namun sangat berbeda (memiliki ketidakmiripan yang tinggi) dengan objek –objek di klaster-klaster lainnya (J Han et Al, 2012)

- Riset pasar : segmentasi profiling pelanggan untuk merancang startegi produk, harga, tempat, promosi dll
- Recomender System: Jual beli online pendekatan collaborative filtering, business intelligence
- Pencarian Informasi: Mengelompokkan hasil halaman yang diberikan mesin pencari
- ...dll

- Partitioning methods (metode partisi)
- Hierarchical methods (metode hirarki)
- Density-based methods (metode kepadatan)
- Grid-based methods (metode berbasis kisi)

Partitioning methods (metode partisi)

Partitioning Methods

- Metode ini bekerja dengan cara membagi/mempartisi data kedalam sejumlah kelompok.
- Misalnya sejumlah himpunan data D berisi n objek.
 n objek dimasukkan kedalam k kluster C1,C2...Ck
 tanpa ada objek yang saling tumpah tindih sehingga
 C1 ∈ D dan Ci ∩ Cj = 0

Algoritma yang digunakan:

- 1. K-Means
- 2. K-Harmonic means
- 3. K-Modes
- 4. Fuzzy C-Means

- K-means merupakan algoritma klasterisasi yang paling tua dan paling banyak digunakan diberbagai aplikasi kecil dan menengah.
- Peneliti yang berpengaruh adalah Lloyd (1982),
 Friedman dan Rubin (1967). McQueen (1967)
- Ide dasar algoritma ini adalah meminimalkan Sum of Squared Error (SSE) antara objek-objek data dengan sejumlah k centroid.

Cara Kerja K-Means

K-means

- 1. Dari himpunan data yang akan diklaster, tentukan jumlah *k kluster* dan pilih secara acak sebagai centroid awal sejumlah *k kluster*
- 2. Setiap objek yang bukan centroid dimasukkan ke dalam kluster terdekat berdasarkan ukuran jarak tertentu.
- 3. Setiap centroid diperbarui berdasarkan ratarata dari objek yang ada didalam setiap kluster.
- 4. Langkah ke-2 dan ke-3 diulang-ulang sampai semua centroid stabil atau konvergen. Artinya semua centroid yang dihasilkan dalam iterasi saat ini sama dengan centroid sebelumnya

Algoritma 4.1 k-means clustering

k-means(D, k)

Pilih sejumlah k objek secara acak dari himpunan data D sebagai centroid awal Langkah 1

repeat

for semua objek di dalam D

Langkah 2

Masukkan setiap objek yang bukan centroid ke klaster yang paling dekat di antara k klaster yang ada

end Langkah 3

Perbarui setiap *centroid* dengan menghitung rata-rata dari semua objek yang berada di dalam klaster tersebut

until tidak ada perubahan centroid

x1

x2

Data

Menentukan Centroid awal secara acak k=2 yaitu :

C1 yang berada di objek o1

C₂ berada di objek o3

Misal k = 2. Pilih dua *centroid* secara acak dari 8 objek data (titik)

Langkah 2

K-means

 Menentukan anggota kluster dengan menghitung jarak objek ke posisi centroid terdekat

$$d(x_1, c_1) = \sqrt{\sum_{i=1}^{r} (x_{1i} - c_{1i})^2}$$

Data	Jarak ke	Cluster yang	
Data	C 1	C2	diikuti
o1	0	2	C1
o2	2	3	C1
03	3,6	0	C2
04	3	2	C2
05	7	5,8	C2
06	9	7,6	C2
о7	9,8	7	C2
08	7,6	5	C2

Contoh Perhitungan jarak dari Objek o2 ke centroid C1 dan C2

$$d(o_2, c_1) = \sqrt{(4-2)^2 + (5-5)^2} = 2$$

$$d(o_2, c_2) = \sqrt{(4-4)^2 + (5-2)^2} = 3$$

	Jarak ke	Cluster	
Data	C1	C2	yang diikuti
01	0	2	C1
o2	2	3	C1
о3	3,6	0	C2
04	3	2	C2
05	7	5,8	C2
06	9	7,6	C2
о7	9,8	7	C2
08	7,6	5	C2

Hitung rata-rata titik di setiap klaster untuk mendapatkan *centroid* baru

 Hitung rata – rata titik masing-masing anggota kluster untuk menentukan titik centroid baru

C1
$$(x1,x2) = (2+4)/2,(5+5)/2$$

= 3,5
C2 $(x1,x2) = (4+2+9+11+11+9)/6,$
 $(2+2+5+5+2+2)/6$
= 7.6, 3

Data	x1	x2	Centroid
o1	2	5	C1
o2	4	5	C1
03	4	2	C2
04	2	2	C2
05	9	5	C2
06	11	5	C2
о7	11	2	C2
08	9	2	C2

Centroid baru menjadi seperti ini:

 Fungsi objektif berdasarkan jarak dan nilai keanggotaan data dalam cluster

$$J = \sum_{i=1}^{N} \sum_{l=1}^{K} a_{ic} D(x_i, C_l)^2$$

- Dimana N adalah jumlah data, K adalah jumlah cluster, a_{il} adalah nilai keanggotaan titik data x_i ke pusat cluster C_l , C_l adalah pusat cluster ke-l, $D(x_i,C_l)$ adalah jarak titik x_i ke cluster C_l yang diikuti.
- Untuk a mempunyai nilai 0 atau 1. Apabila suatu data merupakan anggota suatu kelompok maka nilai $a_{il} = 1$, jika tidak, akan maka nilai $a_{il} = 0$

$$J = \sum_{i=1}^{N} \sum_{l=1}^{K} a_{ic} D(x_i, C_l)^2$$

Langkah 4

K-means

Apakah Centroid Konvergen
 ...? Hitung dengan fungsi
 Objektif (J)

Contoh Fungsi Objektif O1:

$$D(X_1,C_1)^2 = (2-3)^2 + (5-5)^2 = 1$$

Perubahan Fungsi Objektif

Perubahan masih di atas ambang batas threshold (T)>0,1, artinya pencarian centroid masih terus dilakukan

Data	x1	х2	C1	C2	Centroid
o1	2	5	1		C1
o2	4	5	1		C1
о3	4	2		13,96	C2
o4	2	2		32,36	C2
o5	9	5		10,76	C2
06	11	5		25,16	C2
о7	11	2		22,16	C2
08	9	2		7,76	C2
			2	112,16	
		Í	Fungs	i Objektif	114,16

Ulangi Langkah 2 dengan centroid baru

K-means

Perbarui ang	gota setiap klaster
dengan men	nilih <i>centroid</i> terdekat

Data		k ke troid	Cluster Lama	Cluster Baru
	C 1	C2		
o1	?	?	C1	C1
o2	?	?	C1	C1
03	3,16	3,6	C2	C1
o4	?	?	C2	C1
o5	?	?	C2	C2
06	?	?	C2	C2
o7	?	?	C2	C2
08	?	?	C2	C2

Anggota kluster yang baru (ke-2)

 Hitung rata – rata titik masing-masing anggota kluster untuk menentukan titik centroid baru

Data	x1	х2	Centroid baru
o1	2	5	C1
o2	4	5	C1
03	4	2	C1
04	2	2	C1
05	9	5	C2
06	11	5	C2
о7	11	2	C2
08	9	2	C2

Posisi Centroid Baru

Ulangi Langkah 4

K-means

Apakah Centroid Konvergen
 ...? Hitung dengan fungsi
 Objektif (J)

Perubahan Fungsi Objektif

= j baru- J lama

= |25,5-114,16 |

=88,66

Perubahan masih di atas ambang batas threshold (T)>0,1, artinya pencarian centroid masih terus dilakukan

	Data	x1	х2	C1	C2	Centroid
Ī	o1	2	5	1		C1
	o2	4	5	1		C1
	о3	4	2	3,25		C1
	04	2	2	3,25		C1
	o5	9	5		3,25	C2
	06	11	5		7,25	C2
	о7	11	2		3,25	C2
	08	9	2		3,25	C2
				8,5	17	
			1	-ungsi (Objektif	25,5

Ulangi langkah 2 dengan centroid baru

K-means

Tidak ada perubahan cluster lama dengan cluster baru, pencarian centroid berakhir

Data		k ke troid	Cluster Lama	Cluster Baru
Data	C 1	C2		
o1	1,80	8,13	C1	C1
o2	1,80	6,18	C1	C1
о3	1,80	6,18	C1	C1
o4	1,80	8,13	C1	C1
05	6,18	1,80	C2	C2
06	8,13	1,80	C2	C2
о7	8,13	1,80	C2	C2
08	6,18	1,80	C2	C2

Perbarui anggota setiap klaster

Ilustrasi *k-Means* dengan klaster berbentuk lingkaran

Misal k = 2. Pilih dua *centroid* secara acak dari 8 objek data (titik)

K-Means

- Ada 10 data pada data set.
- Dimensi data ada 2 fitur (agar mudah dalam visualisasi koordinat kartesius).
- Fitur yang digunakan dalam pengelompokan adalah x dan y
- Jarak yang digunakan adalah Euclidean distance.
- Jumlah cluster (K) adalah 3.
- Threshold (T) yang digunakan untuk perubahan fungsi objektif adalah 0.1.

Data ke-i	Fitur x	Fitur y
1	1	1
2	4	1
3	6	1
4	1	2
5	2	3
6	5	3
7	2	5
8	3	5
9	2	6
10	3	8

Misalnya: Centroid Awal

Cluster	Fitur x	Fitur y
1	1	1
2	3.4	3.8
3	2.75	3.75