6.1																	
						-		7									
1.		(x)=	5					2									
		5=9					(a 1	a								
	y	= \x = 2	- (-1 Tx	(X)	(→ D	: >		0								
	AG	= 2; ()= 1; = 7	(3	(XV)		\	=	6									
		= 7	X														
	V=	50	7.	Д×													
		Jo .															
5.	ar.	Ala	- √2	- 1							Ь.	A(x)= c	า			S
		Alm				y						S=				1	5
		Alx) =	13 (255mm)	ι								-(25	DVK)			
		5	13	9 Siax			ro (1-6	1))(V3)			- 48				
				Sinx			-	2	1))(V= (7 4	finx	_ d×		
				3 Sin									- (0	5 x]	(4)		
				Sionx								1-(-() · ·	4 =	8		
		:	-(s x]	(13)												

14. In the picture, we know that the height of the solid is 12 since y=x, which means when x=12, then y=12. In the line y=x, at x=12 then y=6. From there! 6 Ir=3 from the graph, r=3, and height is 12. which means with the same A(x), and interval [0,12], which represents the height 12, we know that the V will be the sauze. 19-y=x2, y=0, x=2 $V = TU \int_{0}^{2} (x^{1})^{2} dx$ $= TU \int_{0}^{2} x^{1} dx$ = X5 | 7 11 -

7 4										TO 1.				
U	٠ U	= 30	C X		5=0	, ×	= 7	14,	X=	10/9				
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>(</u>										
	V =	(0		((1	*	dx							
			J_>	4										
				9	1111									
			L_		179		117							
			tou	1 X	124)	U							
						9								
	-	(1	ł	-17	P									
				')										
			27	U										
9	.,					21								
30.	X	- 90	OSLTO	14)	,- (-= \	ا ڪرا), X	=0					
	1,	11	, סו			,2								
	V =	1,1	<u> </u>	Tus	Laylo)	d	y						
			C											
	-	TO		Co	S TOY		d y							
			V-2		1									
		2	in T	29	S TUY 0 2	C								
			97	1-	2									
	7	tu	Siv	欠	,) t	,								
			47	fiv	1,									
		D	C.	71	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)								
			- 31°	n W										
	=	A 1-	7- 1 - 1	- L										
		UT	(-/											

30 $y = y - x^2$, y = 2 - x $y = y_2 = 70 \int_{-1}^{2} (f(x)^2 - g(x)^2) dx$ $= \pi \sqrt{(4-x^2)^2 - (2-x)^2} dx$ = TU 52 x4 8x2 +16- x2+4x-4 dx (X-2)(X+1) X=2 X=1 = $tv^{2}/x^{4}-9x^{2}+4x+12$ dx $= \frac{x^{5}}{5} - 3x^{3} + 2x^{2} + 12x \Big|_{-1}^{2} + \sqrt{12} +$ - 32 - 24 + 8 + 24 - (-1 + 3 + 2 - 12) / TU - 32 +8 + 5 -3 -2 +12 T = (32 +40+1-15-10+60) W = 10 PT

57.
$$x^{2} + y^{2} = 16^{2}$$
 $x^{2} = 16^{2} - y^{2}$
 $x^{2} = 16^{2} - y^{2}$
 $x^{2} = 16^{2} - y^{2}$
 $x^{3} = 16^{2}y - y^{3}$
 $x^{4} = 16^{2}y - y^{3}$
 $x^{5} = 16^{2}y - y$

6.2				
2. 5-	2 5 , x	=2, y=7	-	
V = (b 2 To (Shel	1) (sml)	J.	
= 211	x (2-	$-\frac{x^2}{4}$) d_7	ζ	
- 2	0 2x			
-	x2 -	×4/12	T	
		16 10		
	4-1)	20		
=6	TU			

6	$y = \frac{9x}{\sqrt{x^3+9}}$	
	1 x359	
	V= [2 Tu (Shult) (Shull heylat) dx	
	V Ja Cu (radius) (height) OX	
	- 13 , 9x , 1	
	$= 2a \int_0^3 \left(\frac{9x}{6^3 + 9} \right)^2 dx$	
	Let x3+9=0	
	$= 2\pi \int_0^3 \frac{9x^2}{u^2} dx$	
	$=2\pi\sqrt{\frac{3}{0}}$	
	- 2 tu jo 3x vi du	
	= 6 TU 53 U-2 du	
	$= 20^{\frac{1}{2}} \begin{vmatrix} 3 \\ 0 \end{vmatrix} = 2(x^{3} + 9)^{\frac{1}{2}} \begin{vmatrix} 3 \\ 0 \end{vmatrix} = 670$	
	-2(3) 1 ² 1 ³ (T)	
	- UX +9) 10 bi	
	=(12-6)60	
	= 36 0	

19	1 b		U =	ta	~2 X		X	T					
V	=	Ja	21	v (shell radiv	5)	Shall	ht)					
							_						
	- '	210	70	X	ton	Y) 0	dx					
		IV	(14	1	2,		0						
	-	tan	* -	*	19	21	U						
	-	210	- 20	4)									
	_	270 TO-	70										
	- '(_70 —	1/2										
	=	910	- TU	<u></u>									
	7	1.35											

3. x=(y3/3)+1 from y	- 1 to y=3
49	
dx ,2	
$\frac{dx}{dy} = y^2 - \frac{1}{4y^2}$	
$1 = \int_{1}^{1} \left(\frac{dx}{dy} \right)^{2} dy$	
$= \int_{1}^{3} \sqrt{1 + (y^{2} + y^{2})^{2}} dy$	$(7 \frac{27}{3} + \frac{1}{12} - (\frac{1}{3} + \frac{1}{1})$
	3 12 (5 11)
$= \int_{1}^{3} \sqrt{1 + (y^{4} - \frac{1}{2} + \frac{1}{14y})} dy$	$\frac{108+1}{12} - \frac{1}{3} - \frac{1}{9}$
$= \int_{1}^{3} \sqrt{y^{n}-\frac{1}{2}t} dy$	- 109-4-3 102 12 12
	12 = 12
$= \left(\frac{3}{3} \right)^{2}$	=81
), ((j = 4y²) 09	
= M ,2	
J J Jy	
- 43 13	
3 + 44	

- Cy					
\mathcal{I} $\times = \int_0^{9}$	Sec't-ldt	$- \pi /_{4}$	< y < 70/9		
J 0		/ 1			
1- (14					
L= Jay Section	y dy				
- Jay Seizy	dy				
9					
- tan h					
7 7					
= 1+1=2					
$23 \cdot y = \int_0^{\chi}$		[_		V=TU/	
23 y = 0	V cos It at) Trum	X=0 1	174	
oti					
1 (4					
L = \(\frac{t}{4} \)	1 + (os 2)	dx			
J , ~					
	1 th				
- 1/2	Sin X				
	b				
- 1/2	. 1				
= 15 8	m 9)				
= 1					

30	. a) m=	f 1(xk-1)				
		= Dx lc+BC2				
	AC ² =	$\int_{1}^{2}k+(\Delta$	xk tan A)			
	AC=	W(1)2 b)2 + (+16)	XIC-) (\(\) \(\)			
	b) AC=	((Axx)+ (-	C1 (*10-1) 1xx)2			
	Hxk	b-1 h				
	f'(x)	-() > f'(x)				
		+f'(x)2 1xk				
	= > ((+(f(x))2 b	- 9			
		1 t(F(x))				
	Va					

6.4			
12 1.53	5 / 1 / 2 /		
13 y=x3,	0 5 × 5 L,	X 9x15	
$\int_{0}^{\infty} (\chi) = \chi^{2}$			
S= 5 270.	((x) (1+ (f(x))	de	
= 1,270	$\left(\frac{x^3}{9}\right)\sqrt{1+\left(\frac{x^2}{3}\right)}$) dx	
= 2 to (x3)	0 1179	d×	3 12 7
$= 2 \pi \left(\frac{x^3}{2} \right)$	ST Dtx"		$9 - \frac{3}{3} U^{\frac{3}{2}} \Big _{0}^{2} \frac{\pi}{3}$ $-\frac{2}{3} (9 + x)^{\frac{3}{2}} \Big _{0}^{2} \frac{\pi}{3}$
		dx	$=\frac{2}{3}(9+x^9)^{\frac{1}{2}}\int_{0}^{1}$
$=\frac{2 \text{ to}}{3} \left(\frac{\chi^3}{9} \right)$	(1) Votx	dx	$=\frac{1250}{3} - \frac{54}{3}$
	0.0		= 1967
Let 9+x7:	- U		= 980
= 20 (3)) 6 02	du 48	
= 20 (2	Uz du.	4X	
= 2T 12 101 0 54			

 $W - X = (\frac{1}{3})y^{\frac{3}{4}} - y^{\frac{1}{2}}, | \le y \le 3; y - axis$ A= Ja x dy $= \int_{3}^{3} \left(\frac{y^{3_{1}}}{3} - y^{\frac{1}{2}} \right) dy$ $= \int_{3}^{3} \left(\frac{y^{3_{1}}}{3}$

n.	y= \frac{1}{3}(x^2+2)^{\frac{3}{2}}, 0 \lefta \times \lefta \lefta \tau
	$f'(x) = \frac{1}{2}(x^2+1)^{\frac{1}{2}} \cdot 2x$
	= X \(\tilde{\chi_1} \)
	1= So (t (xvxt)) dx
	$= \int_{D}^{2} \sqrt{1 + \chi^{2}(\chi^{2}+2)} dx$
	Jo (14 x (x 14) a x
	$= \int_{0}^{\sqrt{1+x^{4}+2x^{2}}} dx$
	$\int_{0}^{\sqrt{2}} \sqrt{(x^{2}+1)^{2}} dx$
	$\int_{0}^{2} x^{2} + 1 dx$
	$=\chi^3+\chi^{1/2}$
	3 1 1 0
	$=\frac{2\sqrt{2}}{3}+\sqrt{2}=\frac{5\sqrt{2}}{3}$
	3

26 y = (4) x ('(x)) + = 12 t S = 21						
$\begin{cases} (1/x)^2 + 1 \\ = 1^2 + 1 \\ = 1^2 + 1 \end{cases}$ $= 20 \int_0^1 \frac{1}{h^2} \int_0^1 \frac{1}{h^2} dx$ $= 20 \int_0^1 \frac{1}{h^2} \int_0^1 \frac{1}{h^2} dx$ $= 20 \int_0^1 \frac{1}{h^2} \int_0^1 \frac{1}{h^2} dx$ $= \frac{1}{h^2} \int_0^1 \frac{1}{h^2} \int_0^1 \frac{1}{h^2} dx$ $= \frac{1}{h^2} \int_0^1 \frac{1}{h^2} \int_0^1 \frac{1}{h^2} dx$	76-	10-10				
$\int_{0}^{1} \left(\frac{1}{x}\right)^{2} + 1$ $= \frac{1}{h^{2}} + 1$ $= \frac{1}{h^{2}$		9 (4) ×				
$\int_{0}^{1} \left(\frac{1}{x}\right)^{2} + 1$ $= \frac{1}{h^{2}} + 1$ $= \frac{1}{h^{2}$		(11.)				
$S = 2\pi \int_{0}^{h} \frac{1}{h^{2}} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{h} \frac{1}{h^{2}} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{2} \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{2} \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{2} \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$ $= \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$ $= \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$		(X)= 1				
$S = 2\pi \int_{0}^{h} \frac{1}{h^{2}} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{h} \frac{1}{h^{2}} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{2} \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{2} \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{2} \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$ $= \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$ $= \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$		10,1,2				
$S = 2\pi \int_{0}^{h} \frac{1}{h^{2}} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{r^{2}+h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$		(x) +1				
$S = 2\pi \int_{0}^{h} \frac{1}{h^{2}} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{r^{2}+h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$		71				
$S = 2\pi \int_{0}^{h} \frac{1}{h^{2}} \frac{1}{h^{2}} dx$ $= 2\pi \int_{0}^{r^{2}+h^{2}} \int_{0}^{h} \frac{1}{h^{2}} dx$		= 12 +1				
$= \frac{2\pi \sqrt{r^2 + h^2}}{h^2} \int_0^{\pi} \frac{dx}{dx}$						
$= \frac{2\pi \sqrt{r^2 + h^2}}{h^2} \int_0^{\pi} \frac{dx}{dx}$		ch !	2 , 2			
$= \frac{2\pi \sqrt{r^2 + h^2}}{h^2} \int_0^{\pi} \frac{dx}{dx}$	5 2	TA 1 + 1	rith	J.		
$= \frac{2\pi \sqrt{r^2 + h^2}}{h^2} \int_0^{\pi} \frac{dx}{dx}$		Jo h	h			
$= \frac{1}{2} \left(\frac{1}{2} \frac{1}{4} \frac{1}{2} \right) $ $= \frac{1}{2} \left(\frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{2} \right) $ $= \frac{1}{2} \left(\frac{1}{4} \frac{1}{2} \frac{1}{4} \frac$		- (21,12	('V)			
$= \frac{7 \sqrt{12 + 12}}{\sqrt{12}} \sqrt{12}$ $= \frac{12}{\sqrt{12}} \sqrt{12} \sqrt{12}$ $= \frac{12}{\sqrt{12}} \sqrt{12} \sqrt{12}$ $= \frac{12}{\sqrt{12}} \sqrt{12} \sqrt{12}$		10 1 40	LX	14		
= \frac{\frac{1}{2} \frac{1}{2} \frac\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac						
$= \frac{\chi^2}{2} \left \frac{h}{2\pi} \sqrt{r^2 + L^2} \right $ $= \frac{1}{2} \left(\frac{r \sqrt{r^2 + L^2}}{L^2} \right)$		210 1 112+12	M			
- (W) (the)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.10	d+		
The state of the s		716	24			
The state of the s	2	X Ztu	N Litts			
The state of the s		2 0	h 2			
		1 2 100 CH	12)			
= Tur Tratha		1 (-				
= Tor Vr2+h2						
	_	Tortratha				

28.	y = \(\frac{1}{1-\chi^2}\)
	$=((1-x)^{\frac{1}{2}}$
	$f'(x) = \frac{1}{7}(x^2 + x^2)^{\frac{1}{2}} - 2x$
	= 2x (1-1)2
	$(Y(X)) = \frac{1}{12}$
	rux
	Cath
2 =	2tu) 2-x2 (1+ x2 dx
=	2 To (ath (22)
	$\int_{q} \frac{1}{2} \frac{1}{2$
	2th Cath
	Ja
-	2Tur (a+h-a)
-	20,4

30	(a) $\chi^2 + \zeta^2 = 5^2 $				
20	J				
	X2-152-42				
	1 2				
	X = 115-y				
	dxy				
	Dy Wicza				
	1 113-9				
	dx 2 y 2				
	(dy) = 10002				
	15/9				
	((15				
		52-42	1 + 3		
	J-7.5		152-	r dy	
	= 27 (15	527 (152)			
	¥2.5 \=	2 2	Ny		
	(5)				
	- CW 22.5 15				
	$= 2\pi \int_{7.5}^{15} 15$ $= 30 \% (15 + 7.5)$ $= 675 \% m^{2}$				
	DU IN (13 1 4.5)				
	= 675 to m2				

6.5				
		- 0 N 1	(. \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
2. natural les) h = lo cm, 7	f = 1600 N, 87724Ch		
9) 7=Kx	t	o) 1x=(2-10 =2	C) F=	1600 N
100= k(0.	04)	W= K1×2	F=	EAX
k = 2000	o N/m	7 - 20000 - 2 ²	lhoo	= 2000 0 Ax
		7		
		= 90 000 Nm	20	0 7 X
			Cx.	= 0.08m
$lo. f(x) = \frac{k}{x^2}$				
W = 51 E	dx			
	T b			
<u>k</u>	+ =			
= -ka	1 t kb = le1	(-9+5)		

23. X= dx			
āt			
7=m (dv)			
= m v dv			
W= JV2 mv dv dx			
J VI MX			
ρν ₁ .			
= Sumu du			
$= \frac{1}{2} \left \frac{1}{2} \right _{V_{1}}$			
$=\frac{1}{2}mv^2-\frac{1}{2}mv^2$			
= 2m/2 - 2m/,			
29 - Av = To(r)2 (h)			
11.17.12	1 2		
$= \pi \left(\frac{9+36}{12} \right)^2$	14 cm		
f(y) = 9 Av		470 (18	(- 1 2 .
17 (4+2/	2	9.12	(314-43+2164
= 470 (4+36)	1 An cm3		(-514 ² -y ³ +2164 +27216) dy
		= 3073.5	
1w= (40) (4+3)	() () [-4]	7 7 9 7 3 . 3	
9 1-12			
18 (1.22)			
W= \\ \frac{4}{5}\tau \left(\frac{9+36}{12^2}\right)^2} =\int_0 \frac{9+36}{5-12}\left(\frac{9+36}{2}\right)^2	(21-4)		
0 17			
= (1/2) (7/36)	(21y) dy		
J D J-12			

$36 - x^{2} + y^{2} = $ $x = \sqrt{2}$ $x = \sqrt{2}$ $x = \sqrt{2}$ $x = \sqrt{2}$	5-y ²		5 \ \[\begin{align*} \begin{align*} \begin{align*} 2 & 3 & 1 & 5 \\ 2 & 3 & 1 & 5 \\ -1 & 3 & 1 & 1 \end{align*} \]	- <u> </u> - <u>Z</u>
= 19600	\(\int_{0} \left(2\sqrt{25yr} \right) \) \(\int_{0} \left(\sqrt{25-yr} - y \) \(\sqrt{crete} \)	25y2 dy	$= -1(\sqrt{3})^{\frac{1}{3}}$ $= -125$ $= -12$	3 25th - (25 125 125 125 125 125 125 125 1
So Visty d				

47. X2+52=1	
X = \(\sqrt{-y} \)	
F= 5000 S-1 (51-y2) (-24) d	9
upper limit = 1	
lower limit = 0	
Let Lyr = U	
$=9000 \int_{0}^{1} (\sqrt{U})(-25) \frac{dU}{-25}$	
= 9000 S (to do	
- 2 3 1 gloo	
= 90 m 2 3	
= 2178	
So, the tank will our flow since the workle	
and moves 2.18m before the take our flow	