Universidade Federal do Rio Grande do Norte

Programa de Pós-graduação em Engenharia Elétrica e de Computação EEC1515 - VISÃO COMPUTACIONAL

RELATÓRIO

IMPLEMENTAÇÃO DE UM DETECTOR DE QUADRADOS BASEADO NA TRANSFORMADA HOUGH

Autor: Luís Gabriel Pereira Condados

Professor orientador: Rafael Beserra Gomes

Universidade Federal do Rio Grande do Norte

Programa de Pós-graduação em Engenharia Elétrica e de Computação EEC1515 - VISÃO COMPUTACIONAL

RELATÓRIO

Relatório apresentado à disciplina de EEC1515- Visão Computacional, correspondente a 1º unidade do semestre 2020.2, sob orientação do **Prof. Rafael Beserra Gomes**.

Autor:Luís Gabriel Pereira Condados

Sumário

Sumário	
	Lista de ilustrações
1	INTRODUÇÃO
2	METODOLOGIA
3	RESULTADOS
4	CONCLUSÃO
	REFERÊNCIAS 3
5	ANEXO 1

Lista de ilustrações

Figura 1 –	Parametrização do quadrado em uma imagem $f(x,y)$	1
Figura 2 –	Operadores de Sobel	2
Figura 3 –	Cálculo do módulo do gradiente da imagem $f(x,y)$	2
Figura 4 –	Identificação dos parâmetros do candidato à quadrado	2

1 INTRODUÇÃO

A transformada de *Hough* é um método comum para detecção de formas que são facilmente parametrizáveis (formas comuns: linhas e círculos). Geralmente essa transformada é utilizada após a etapa de pré-processamento da imagem, principalmente após detecção de bordas.

O método consiste em mapear determinados pixeis da imagem numa determinada célula no espaço de parâmetros que definem a figura geométrica. Esse procedimento é repetido para toda a imagem e as células do espaço de parâmetros são incrementadas, servindo assim de indicadores da existência de uma determinada forma.

Neste trabalho será apresentado uma implementação da transformada Hough para a identificação de quadrados pretos em imagens com fundo branco baseado no gradiente. Para isso foi feito a parametrização de um quadrado com a informação do centro do quadrado, tamanho do lado e orientação com relação ao eixo horizontal (x_c, y_c, l, θ) , por isso o espaço de configuração terá dimensão 4. Para fazer o mapeamento entre o espaço de imagem e o de parâmetros foi utilizado a informação do gradiente da imagem e um ponto de borda, para com isso obter-se as normais do quadrado e com isso estimar os quatro parâmetros. Após o mapeamento/acumulo dos indicadores é feito uma etapa de filtragem dos quadrados, para melhorar a precisão da detecção.

2 METODOLOGIA

Para a transformada de Hough aplicada à quadrados será utilizado a parametrização do quadrado em: coordenadas centrais (x_c, y_c) ; orientação com relação ao eixo horizontal (θ) e o comprimento de seu lado (l) em pixel. A Figura 1 ilustra essa parametrização.

A proposta do trabalho é realizar o mapeamento do espaço de imagem para o espaço de parâmetros fazendo uso do gradiente da imagem.

Figura 1 – Parametrização do quadrado em uma imagem f(x, y).

(a) Operador de Sobel na direção x.

(b) Operador de Sobel na direção y.

Figura 2 – Operadores de Sobel.

Figura 3 – Cálculo do módulo do gradiente da imagem f(x, y).

Figura 4 – Identificação dos parâmetros do candidato à quadrado.

```
Algorithm 1 A Hough Transform for Squares Detection
```

```
1: initialize M with zero.
                                                                                       ▷ Voting matrix initialized with zero.
 2: for all (x', y') in f(x, y) do
           if |\nabla f(x', y')| \ge \text{edge threshold } then
                                                                                                                              \triangleright It's an edge.
 3:
                 p_0 \leftarrow (x', y')
 4:
                 \theta \leftarrow \angle \nabla f(x', y') \mod 90^{\circ}
                                                                                                                         ▷ Square's angle.
                 \vec{N}_0 \leftarrow \nabla f(x', y') / |\nabla f(x', y')|
                 \vec{N}_1 \leftarrow -\nabla f(x', y') / |\nabla f(x', y')|

\vec{N}_2 \leftarrow \text{rotate } \vec{N}_1 \text{ on } 90^\circ
 8:
 9:
                 Search for an edge point going in the direction of \vec{N}_1 from p_0. \triangleright That will be
10:
      the p_1 point.
11:
                 l \leftarrow |p_0 - p_1|
                                                                                                                             ⊳ Square's size.
12:
                 p_{middle} \leftarrow (p_1 + p_0)/2
13:
14:
                 Search for an edge point going in the direction of \vec{N}_2 from p_{middle}. \triangleright That will
15:
      be the p_2 point.
16:
                 \begin{aligned} p_{center} &\leftarrow p_2 - \vec{N_2} * l/2 \\ M[x_c][y_c][l][\theta] &\leftarrow M[x_c][y_c][l][\theta] + 1 \end{aligned}
                                                                                                                        \triangleright p_{center} = (x_c, y_c)
17:
18:
           end if
19:
20: end for
```

3 RESULTADOS

4 CONCLUSÃO

Referências

5 ANEXO 1

Código fonte: m1>