HMM

Problem

Continuously cast normal dice or fake dice a total of T times. HMM is used to predict which dice were used from the observed data. Let $Y \in \{1, ..., 6\}$ be an observation variable (a roll of the dice) and

$$X = \left\{ \begin{array}{ll} 1, & \text{if fake dice is used} \\ 0, & \text{if normal dice is used} \end{array} \right.$$

be a hidden variable.

The hidden variable transition model is

$P(X_{t+1} X_t)$	$X_{t+1} = 0$	$X_{t+1} = 1$
$X_t = 0$	0.9	0.1
$X_t = 1$	0.1	0.9

The observation process model is

$P(Y_t X_t)$	$Y_t = 1$	$Y_t = 2$	$Y_t = 3$	$Y_t = 4$	$Y_t = 5$	$Y_t = 6$
$X_t = 0$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
$X_t = 1$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{2}$

The observation data is

Algorithm

The posterior probability of hidden variables $\gamma(X_t)$ is calculated using the Forward-Backward algorithm. The Forward-Backward algorithm is

$$\alpha(X_t) \equiv P(Y_1, \dots, Y_t, X_t)$$
$$= P(Y_t | X_t) \sum_{t_{t-1}} \alpha(X_{t-1}) P(X_t | X_{t-1})$$

$$\beta(X_t) \equiv P(Y_{t+1}, \dots, Y_T | X_t)$$

$$= \sum_{X_{t+1}} \beta(X_{t+1}) P(Y_{t+1} | X_{t+1}) P(X_{t+1} | X_t)$$

$$\gamma(X_t) \equiv P(X_t | Y_1, \dots, Y_T) \propto \alpha(X_t) \beta(X_t)$$

The initial values are

$$\alpha (X_0 = 0) = P(Y_0 | X_0 = 0) = \frac{1}{6}$$

$$\alpha (X_0 = 1) = P(Y_0 | X_0 = 1) = 0.1$$

$$\beta (X_T = 0) = P(Y_T | X_T = 0) = \alpha (X_T = 0)$$

$$\beta (X_T = 1) = P(Y_T | X_T = 1) = \alpha (X_T = 1)$$

The posterior probability of fake dice is

$$\frac{\gamma \left(X_{t}=1\right) }{\gamma \left(X_{t}=0\right) +\gamma \left(X_{t}=1\right) }$$

Result

