Homework-Numerical integration

PB18010496 杨乐园

2021年4月30日

1 Introduction

分别编写用复化3点的Gauss积分公式与复化梯形积分公式计算积分的通用程序,并用如上程序计算积分值

$$I_1(f) = \int_0^1 e^{-x^2} dx$$
 $I_2(f) = \int_0^4 \frac{1}{1+x^2} dx$ $I_3(f) = \int_0^{2\pi} \frac{1}{2+\cos x} dx$

取节点

$$x_i = a + ih, \quad h = \frac{b-a}{N}, \quad i = 0, 1, ..., N, \quad N = 2^k, \quad k = 1, ..., 7$$

并计算相应的误差收敛阶。

2 Method

通过Mathematica编程,首先构造相应结点列 x_i ,之后直接利用相应的数值积分公式直接计算即可,其中为了输出与运行方便,将程序写成对任意函数与任意k通用的程序,实现Module块化。 复化梯形积分公式为:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} [f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b)]$$

积分区间为[a,b]的复化3点的积分公式推导如下:由正交多项式定理,内积定义为

$$\langle f, g \rangle = \int_a^b f(x)g(x)dx$$

从而计算出3次正交多项式为:

$$q(x) = \left(x - \frac{a+b}{2}\right)^3 - \frac{3}{20}(b-a)^2\left(x - \frac{a+b}{2}\right)$$

故计算q(x)其根为:

$$x_1 = \frac{a+b}{2} - \frac{\sqrt{15}}{10} \frac{b-a}{2} \qquad x_2 = \frac{a+b}{2} \qquad x_3 = \frac{a+b}{2} + \frac{\sqrt{15}}{10} \frac{b-a}{2}$$

进一步利用待定系数法或者直接积分得出相应系数为:

$$A_1 = \frac{5}{18}(b-a)$$
 $A_2 = \frac{4}{9}(b-a)$ $A_3 = \frac{5}{18}(b-a)$

3 RESULTS 2

从而3点Gauss积分公式为:

$$\int_{a}^{b} f(x)dx = A_1 f(x_1) + A_2 f(x_2) + A_3 f(x_3)$$

故只需对每个小区间分别利用如上公式即可。

收敛阶计算公式为:

$$Ord = \frac{ln(Error_{old}/Error_{new})}{ln(N_{new}/N_{old})}$$

3 Results

输出结果如下:

积分11误差 积分I2误差 积分I3误差 0.0154538809838640 0.133005865743732 0.561191476317955 0.00384003501204582 2.00877782228399 0.00359410103784989 5.20971509510854 0.0375927007196564 3.89996862695299 0.000958517966731819 2.00224208543295 0.000564261170954359 2.67119598610245 0.000192788176920777 7.60729217596359 2.00056283293969 0.000144081935118689 1.96947361257350 5.12257677844805×10⁻⁹ 0.000239536024205476 15.19978734999909 30.39949803226649 60.7989960624957 $64 \quad | 0.0000149691745990878 \quad | 2.00003521927993 \quad | 9.01059198390982 \times 10^{-6} \quad | 1.99982459629193 \quad | 1.8030434582533 \times 10^{-36} \times 10^{-3$ 128 3.74227080914211×10⁻⁶ 2.00000880533893 2.25271649501967×10⁻⁶ 1.99995613086190 0.×10⁻⁵⁰

图 1: 复化梯形积分公式误差与收敛阶

图 2:	复化3点	Gauss积分么	く式误差り	5收敛阶
------	------	----------	-------	------

n	积分11误差	Order	积分12误差	Order	积分13误差	Order
2	3.61105588453694×10 ⁻⁸	-	0.000126759943722762	-	0.00611655512131353	-
4	4.02152449876063×10 ⁻¹⁰	6.48853442848194	0.000125930785952955	0.00946790645964	0.000738327573338012	3.05038640452974
8	5.74227026642664×10 ⁻¹²	6.12997746439743	2.45798953473697×10 ⁻⁷	9.00093652929549	4.32607467789073×10 ⁻⁶	7.41505865799778
16	$8.76856547022374 \times 10^{-14}$	6.03313658568156	$\textbf{2.07064277238533} \times \textbf{10}^{-12}$	16.85704056661598	$\textbf{1.15023363920413} \times \textbf{10}^{-10}$	15.19884401341018
32	1.36220306381126×10 ⁻¹⁵	6.00832715104946	$\textbf{4.59259605986225} \times \textbf{10}^{-14}$	5.49462497341191	8.12129546987244×10 ⁻²⁰	30.39949800720642
64	2.12536916189951×10 ⁻¹⁷	6.00208452276871	$\textbf{7.18250397302354} \times \textbf{10}^{-16}$	5.99867920140011	$4.04858992720 \times 10^{-38}$	60.79899606250
128	3.31968956450686 × 10 ⁻¹⁹	6.00052130237801	1.12252328704006 × 10 ⁻¹⁷	5.99966960631250	$0. \times 10^{-50}$	∞

4 Discussion

通过对数据的观察我们发现:

两种数值积分计算公式都较好的给出了积分的数值积分值,随着N的增大,两种积分计算公式的误差均显著下降。其中复化3点Gauss积分公式计算的积分值误差均远小于复化梯形积分误差,且收敛速度更快,可以看到其符合复化3点Gauss积分的6阶收敛阶,而复化梯形积分误差则是成2阶收敛。而对于第三个积分结果,由于计算的结果误差非常低,造成收敛速度较快,以至于后续计算收敛阶出现分母为零计算不出的结果。

5 Computer Code

代码部分请参见附件!(Homework8_0427.nb)。