REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION

EXAMEN DU BACCALAUREAT SESSION DE JUIN 2011

SESSION DE CONTRÔLE

SECTION: MATHEMATIQUES

EPREUVE: MATHEMATIQUES DUREE: 4 heures COEFFICIENT: 4

EXERCICE 1 (3 points)

Soit f la fonction définie sur $]0,+\infty[$ par $f(x) = \int_1^x \frac{\cos^2 t}{t} dt$.

Répondre par vrai ou faux à chacune des affirmations suivantes, en justifiant la réponse.

- 1) Pour tout x > 0, $f'(x) \ge 0$.
- 2) Pour tout x > 0, $f(x) \ge 0$.
- 3) $f(2) \le \ln 2$.

EXERCICE 2 (6 points)

Pour tout entier naturel p supérieur ou égal à 3, on désigne par f_p la fonction définie sur $]0, +\infty[$ par $f_p(x) = p (lnx) - x$, où ln désigne la fonction logarithme népérien. On note (C_p) la courbe représentative de f_p dans un repère orthogonal (O, \vec{i}, \vec{j}) .

A-1) Etudier les variations de la fonction f_3 : $x \mapsto 3\ln x - x$.

- 2) Montrer que l'équation $f_3(x)=0$ admet exactement deux solutions, notées u_3 et v_3 , appartenant respectivement aux intervalles]1, 3[et] 3, $+\infty$ [.
- 3) On donne ci-dessous, le tableau de variation de f_p pour $p \ge 3$.

- a) Montrer que , pour tout entier naturel $p \ge 3$, il existe un unique réel u_p appartenant à l'intervalle]1, p[tel que $f_p(u_p) = 0$.
- b) Montrer que, pour tout entier naturel $p \ge 3$, il existe un unique réel $v_p > p$ tel que $f_p(v_p) = 0$.

On définit ainsi, pour tout entier naturel $p \ge 3$, deux suites (u_p) et (v_p) .

- B- Dans cette partie on se propose d'étudier les deux suites (up) et (vp) définies précédemment.
 - 1) Déterminer la limite de la suite (v_p).
 - 2) On a représenté dans la **figure 1** de l'annexe ci jointe les courbes C₃ , C₄, C₅ et C₆ représentatives des fonctions f₃ , f₄ , f₅ et f₆.
 - a) Placer sur l'axe des abscisses les termes u_3 , u_4 , u_5 et u_6 de la suite (u_p) .
 - b) Représenter sur l'axe des ordonnées les réels $f_3(u_4)$, $f_4(u_5)$ et $f_5(u_6)$.
 - 3) a) Montrer que pour tout entier naturel $p \ge 3$, $f_p(u_{p+1}) < 0$.
 - b) En déduire que la suite (u_p) est décroissante et qu'elle est convergente.
 - c) Montrer que $\frac{\ln u_p}{u_p} = \frac{1}{p}$. En déduire la limite de la suite (u_p) .

EXERCICE 3 (5 points)

Dans l'espace rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les points A(1,3,2), B(1,-1,-2) et C(2,4,1).

- 1) a) Montrer que les points A, B et C ne sont pas alignés.
 - b) Montrer qu'une équation cartésienne du plan (ABC) est 2x y + z 1 = 0.
- 2) Soit S la sphère d'équation $x^2 + y^2 + z^2 6x 2z 4 = 0$.
 - a) Déterminer le centre I et le rayon r de la sphère S.
 - b) Montrer que la sphère S coupe le plan (ABC) suivant le cercle (Γ) de diamètre [AB].
 - c) Montrer que la droite (AC) est tangente au cercle (Γ).
- 3) Soit h l'homothétie de centre C et de rapport 3 et S' l'image de la sphère S par h.
 - a) Déterminer le rayon de la sphère S' et les coordonnées de son centre J.
 - b) Montrer que le plan (ABC) coupe la sphère S'suivant un cercle (Γ ').
 - c) Montrer que la droite (AC) est tangente au cercle (Γ ') en un point E que l'on précisera.

EXERCICE 4 (6 points)

Le plan est orienté.

Dans la figure 2 de l'annexe ci-jointe, le triangle OAB est rectangle isocèle en O et de sens direct.

H est le projeté orthogonal du point O sur la droite (AB), A' est le point du segment [OH] tel que $OA' = \frac{1}{2}OA$ et H' est le projeté orthogonal du point A' sur la droite (OB).

Soit f la similitude directe de centre O qui envoie A en A'.

- 1) Déterminer le rapport et l'angle de f.
- 2) On note B' l'image du point B par la similitude directe f.
 - a) Déterminer la nature du triangle OA'B'.
 - b) Construire le point B'.
 - c) Montrer que f(H) = H'.
- 3) Soit I le milieu du segment [A'B] et J le milieu du segment [AA'].
 - a) Montrer qu'il existe un unique déplacement R qui envoie J en O et I en H.
 - b) Montrer que R est une rotation dont on déterminera l'angle.
 - c) Soit K le milieu du segment [AB']. Montrer que JK = OH' et que $(\overrightarrow{JK}, \overrightarrow{OH'}) = -\frac{\pi}{2}[2\pi]$.
 - d) Déterminer alors R(K).
 - e) En déduire que IK = HH' et que (IK) et (HH') sont perpendiculaires.
- 4) Montrer que le quadrilatère IHK H' est un carré.

ANNEXE

EXERCICE 2 figure1

