МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Направление подготовки: «Прикладная математика и информатика» Профиль подготовки: «Вычислительные методы и суперкомпьютерные технологии»

Отчет

по лабораторной работе на тему «Метод бисопряженных градиентов для решения СЛАУ с разреженной матрицей»

Выполнил:

студент группы 3823М1ПМвм Бекетов Е.В.

Проверил:

д.т.н., доц., зав.каф. МОСТ Баркалов К.А.

Оглавление

1	1 Введение				
2 Постановка задачи					
3	Теоретическая часть	5			
	3.1 Описание метода	5			
	3.2 Вычислительная трудоемкость	5			
4	Практическая часть	6			
	4.1 Эксперименты	6			
	4.2 Параллельный алгоритм	6			
5	Заключение	8			
6	3 Литература				
7	Приложение A – Код перевода матрицы в CRS формат	10			
8	Приложение Б – Код последовательного алгоритма	11			
9	Приложение В – Код параллельного алгоритма	14			

1. Введение

Решение систем линейных алгебраических уравнений (СЛАУ) является важной и популярной среди инженеров задачей. С решением СЛАУ связаны многие матричные операции: вычисление определителя, обращение матрицы, нахождение собственных чисел и собственных векторов, и др.

На текущий момент известно 2 подхода, каждый из которых имеет достаточное количество методом:

- 1. Прямой подход, который ищет точное решение системы, где наиболее известны методы Гаусса, LU-разложение и разложение Холецкого.
- 2. Итерационный подход, который ищет решение за счет приближения с каждой итерацией, где наиболее известны методы Гаусса-Зейделя, Якоби, сопряженных градиентов и бисопряженных градинетов.

В данной работе будет рассмотрено метод бисопряженных градиентов.

2. Постановка задачи

Условие:

Реализовать метод бисопряженных градиентов для решения СЛАУ с разреженной матрицей, используя технологию OpenMP:

Ax = b, где A – разреженная квадратная положительно определённая матрица, x, b – плотные векторы.

Требования:

```
Программа на языке C++ должна реализовывать функцию со следующим заголов-ком: SLE_Solver_CRS_BICG(CRSMatrix & A, double * b, double eps, int max_iter, double * x, int & count); struct CRSMatrix {
    int n; // Число строк в матрице
    int m; // Число столбцов в матрице
    int nz; // Число ненулевых элементов в разреженной матрице
    vector val; // Массив значений матрицы по строкам
    vector colIndex; // Массив номеров столбцов
    vector rowPtr; // Массив индексов начала строк
};
```

Формат входа:

Функция получает в аргументах следующие переменные:

A – указатель на структуру CRSMatrix, в которой хранится матрица A в CRS формате размера $n\times n$

b — указатель на массив, в котором по строкам хранится столбец b размера $n \times 1$ eps — критерий остановки: $||x_k - x_{k+1}||_2 < eps$ max_iter — критерий остановки: число итераций больше max_iter count — число выполненных итераций алгоритмом

Формат выхода:

x — указатель на массив, в который по строкам необходимо записать столбец x размера $n\times 1$

Ответ считается корректным, если

$$\frac{||Ax - b||_2}{||A||_2} < 10^{-7}$$

Ограничения на размер задачи:

Размерность матрицы $n \le 10000$, число ненулевых элементов $nz \le 10^7$.

3. Теоретическая часть

3.1. Описание метода

Метод бисопряженных градиентов является обобщением метода сопряженных градиентов в случае линейной системы Ax = b с произвольной квадратной невырожденной матрицей A. Известно, что матрица A^TA – симметрична и положительно определена, а система $A^TAx = A^Tb$ эквивалентная исходной. Для решения данной системы нельзя применять метод сопряженных градиентов, так как обусловленность A^TA много хуже обусловленности матрицы A, то есть $cond(A^TA) \approx cond(A)^2$.

Однако известно, что с помощью рекуррентного соотношения малого порядка невозможно добиться попарной ортогонализации невязок r_k для произвольной матрицы A. Но в методе реализована другая идея: последовательность ортогональных невязок r_k заменяется на две биортогональные последовательности r_k и $\widetilde{r_k}$, а последовательность сопряженных направлений заменена на две бисопряженные — p_k и $\widetilde{p_k}$.

Вектора $\{v_1, v_2, ..., v_m\}$ и $\{w_1, w_2, ..., w_m\}$ называются биортогональными, если выполняется следующее выражение $(v_i, w_i) = 0, i \neq j$.

Алгоритм будет выглядеть следующим образом:

1. Определение основных векторов:

- (a) Задаем вектор начального приближения x_0
- (b) Считаем начальную невязку $r_0 = Ax_0 b$
- (c) Присваиваем $p_0 = r_0$

2. Запускаем основной цикл по к:

- (a) Вычисляем $\alpha_k = \frac{(r_k, \widetilde{r_k})}{(Ap_k, \widetilde{p_k})}$
- (b) Находим следующее приближение $x_{k+1} = x_k + \alpha_k p_k$
- (c) Считаем невязку $r_{k+1} = r_k \alpha_k A p_k$
- (d) Считаем невязку $\widetilde{r}_{k+1} = \widetilde{r}_k \alpha_k A^T \widetilde{p}_k$
- (e) Вычисляем $\beta_k = \frac{(r_{k+1}, \tilde{r}_{k+1})}{(r_k, \tilde{r_k})}$
- (f) Если $||r_{k+1}|| < \varepsilon$ или $\beta_k = 0$, то завершаем цикл, иначе продолжаем
- (g) Вычисляем $p_{k+1} = r_{k+1} + \beta_k p_k$
- (h) Вычисляем $\widetilde{p}_{k+1} = \widetilde{r}_{k+1} + \beta_k \widetilde{p}_k$

3.2. Вычислительная трудоемкость

Подсчитаем общее число операций, которое потребуется для метода. На каждой итерации необходимо:

- 2 операции умножения матрицы на вектор $n^2 + n^2 = 2n^2$,
- 4 операции скалярного произведения -4n,
- 5 операций умножения матрицы на скаляр 5n,
- 6 операций сложения матриц/векторов $-6n\ K$ число итераций метода.

В конечном итоге: $T = K(2n^2 + 15n)$

4. Практическая часть

Для проведения дальнейших численных экспериментов были написаны 2 версии алгоритма: последовательный и параллельный. Код каждой приведен в конце отчета в приложениях.

Эксперименты проводились с использованием следующей конфигурации:

1 1 1	
Процессор	8 ядерный AMD Ryzen 7 5800HS (2.8 GHz)
Память, кэш	32 GB, L1 – 32 Kb, L2 – 512 Kb, L3 – 16 Mb
Операционная система	Windows 10 x64
Среда разработки	Visual Studio 2022
Библиотеки	OpenMP
Компилятор	Intel oneAPI DPC++/C++ Compiler (2024.0.2)

4.1. Эксперименты

Проведем серию экспериментов для выявления оптимального числа потоков для матриц размера 5000, 10000, 20000, 30000. Программно создается обыкновенная двумерная матрица и заполняется рандомными значениями, если значение попадает в отрезок [0,0.95] то на его месте ставится 0, иначе само значение. В итоге получается, что количество ненулевых элементов для каждой матрицы составляет порядка 5%. Точность $\varepsilon=0.00001$, число итераций 10000.

4.2. Параллельный алгоритм

Сделаем замеры алгоритма при разном числе потоков Рис. 1.

Параллельный алгоритм от числа потоков					
Число потоков	Размер матрицы				
	5000	10000	20000	30000	
1	2,519	89,953	375,16	973,118	
2	1,412	53,893	220,865	537,269	
3	0,93	36,192	216,798	435,527	
4	0,771	30,21	173,216	539,283	

Рис. 1: Время работы параллельного алгоритма в секундах.

Видно что увеличение числа потоков уменьшает время работы, однако в самой крупной задаче (30000), это наблюдение нарушается и для нее оптимальным будет 3 потока, в остальных 4.

Взглянем для наглядности на таблицу ускорения на Рис. 2.

Ускорение параллельного алгоритма от числа потоков					
Число потоков	Размер матрицы				
число потоков	5000	10000	20000	30000	
1	1	1	1	1	
2	1,783994	1,669104	1,698594	1,811231	
3	2,708602	2,485439	1,730459	2,234346	
4	3,267185	2,97759	2,165851	1,804466	

Рис. 2: Ускорение параллельного алгоритма.

На Рис. 1 и Рис. 2 видно, что параллельный алгоритм работает исправно, не наблюдается никаких аномалий, за исключением спада производительности для большой задачи, что не удивительно по причине слишком большого числа ненулевых элементов массива ≈ 45 млн. Так же в подтверждении моих слов видно, что с ростом размерности падает прирост на 4 потоках (от 3.27 до 1.8). Сверхлинейное расширение не наблюдается. Алгоритм работает правильно.

5. Заключение

В конечном итоге в данной лабораторной работе с помощью языка C++ и технологии OpenMP был реализован метод бисопряженных градиентов для решения СЛАУ с разреженной матрицей A и плотными векторами x и b.

Был изучен теоретический материал задачи, анализ трудоемкости вычислений. Был написан последовательный алгоритм, и в дальнейшем модифицирован до параллельного.

В результате произведенных экспериментов было выявлено, что при использовании параллельных вычислений, есть прирост производительности, однако с увеличением размера задачи он падает, что вполне логично. Однако в остальных случая получается выигрыш по времени работы алгоритма, что говорит об эффективности распараллеливания.

6. Литература

- 1. Баркалов К.А. Образовательный комплекс «Параллельные численные методы». Н.Новгород, Изд-во ННГУ 2011.
 - 2. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- 3. Белов С.А., Золотых Н.Ю. Численные методы линейной алгебры. Н.Новгород, Изд-во ННГУ, 2005.
 - 4. Писсанецки С. Технология разрежённых матриц. М.: Мир, 1988.
- 5. Джордж А., Лю Дж. Численное решение больших разрежённых систем уравнений. М.: Мир, 1984.

7. Приложение A - Kод перевода матрицы в CRS формат

```
void convertToCRS(const std::vector<std::vector<double>>& A,
    CRSMatrix& crsA) {
    crsA.rowPtr.push_back(0);

for (int i = 0; i < A.size(); ++i) {
    for (int j = 0; j < A[i].size(); ++j) {
        if (A[i][j] != 0.0) {
            crsA.val.push_back(A[i][j]);
            crsA.colIndex.push_back(j);
        }
    }
    crsA.rowPtr.push_back(crsA.val.size());
}</pre>
```

8. Приложение Б – Код последовательного алгоритма

```
double scalar_product(double* a, double* b, int n, int num_thread) {
    double result = 0;
    for (int i = 0; i < n; ++i) {
        result += a[i] * b[i];
    return result;
}
void matrix_multiplication(CRSMatrix& A, double* b, double* mul,
int num_thread) {
    for (int i = 0; i < A.n; ++i) {
        mul[i] = 0.0;
        for (int j = A.rowPtr[i]; j < A.rowPtr[i + 1]; ++j) {</pre>
            mul[i] += A.val[j] * b[A.colIndex[j]];
        }
    }
}
void SLE_Solver_CRS_BICG(CRSMatrix& A, double* b, double eps,
int max_iter, double* x, int & count, int num_thread) {
    int n_size = A.n;
    CRSMatrix AT;
    AT.n = A.m;
    AT.m = A.n;
    std::vector<std::vector<int>> index(AT.n);
    std::vector<std::vector<double>> value(AT.n);
    std::vector<int> size(AT.n);
    for (int i = 0; i < A.n; ++i) {
        for (int j = A.rowPtr[i]; j < A.rowPtr[i + 1]; ++j) {</pre>
            index[A.colIndex[j]].push_back(i);
            value[A.colIndex[j]].push_back(A.val[j]);
            size[A.colIndex[j]] += 1;
        }
    }
    AT.rowPtr.push_back(0);
    for (int i = 0; i < AT.n; ++i) {
        AT.rowPtr.push_back(AT.rowPtr[i] + size[i]);
        for (int j = 0; j < size[i]; ++j) {
            AT.val.push_back(value[i][j]);
            AT.colIndex.push_back(index[i][j]);
        }
    }
```

```
for (int i = 0; i < n_size; ++i) {
    x[i] = 1;
}
double* Ap = new double[n_size];
double* r = new double[n_size];
double* r_ = new double[n_size];
double* p = new double[n_size];
double* p_ = new double[n_size];
matrix_multiplication(A, x, Ap, num_thread);
for (int i = 0; i < n_size; ++i) {
    r[i] = b[i] - Ap[i];
    r_{i} = r[i];
    p[i] = r[i];
   p_{i}[i] = r_{i}[i];
}
double* Ap_ = new double[n_size];
double* r_next = new double[n_size];
double* r_next_ = new double[n_size];
double alpha = 1;
double betta = 1:
double norm = sqrt(scalar_product(b, b, n_size, num_thread));
while (true) {
    count++;
    if (sqrt(scalar_product(r, r, n_size, num_thread)) / norm < eps) {</pre>
        std::cout << "Scalar" << "\n";
        break;
    }
    if (count >= max_iter) {
        std::cout << "Iter" << "\n";
        break;
    }
    //if (abs(betta) < 1e-6) {
          std::cout << "Betta" << "\n";
    //
          break;
    //}
    matrix_multiplication(A, p, Ap, num_thread);
    matrix_multiplication(AT, p_, Ap_, num_thread);
    double scalar_tmp = scalar_product(r, r_, n_size, num_thread);
    alpha = scalar_tmp / scalar_product(Ap, p_, n_size, num_thread);
```

```
for (int i = 0; i < n_size; ++i) {
            x[i] += alpha * p[i];
            r_next[i] = r[i] - alpha * Ap[i];
            r_next_[i] = r_[i] - alpha * Ap_[i];
        }
        betta = scalar_product(r_next, r_next_, n_size,
        num_thread) / scalar_tmp;
        for (int i = 0; i < n_size; ++i) {</pre>
            p[i] = r_next[i] + betta * p[i];
            p_[i] = r_next_[i] + betta * p_[i];
            r[i] = r_next[i];
            r_[i] = r_next_[i];
        }
    }
    delete[] Ap;
    delete[] Ap_;
    delete[] r;
    delete[] r_;
    delete[] r_next;
    delete[] r_next_;
    delete[] p;
    delete[] p_;
}
```

9. Приложение В – Код параллельного алгоритма

```
double scalar_product(double* a, double* b, int n, int num_thread) {
    double result = 0;
#pragma omp parallel for num_threads(num_thread) reduction(+: result)
    for (int i = 0; i < n; ++i) {
        result += a[i] * b[i];
    }
    return result;
}
void matrix_multiplication(CRSMatrix& A, double* b, double* mul,
int num_thread) {
#pragma omp parallel for num_threads(num_thread)
    for (int i = 0; i < A.n; ++i) {
        mul[i] = 0.0;
        for (int j = A.rowPtr[i]; j < A.rowPtr[i + 1]; ++j) {</pre>
            mul[i] += A.val[j] * b[A.colIndex[j]];
        }
    }
}
void SLE_Solver_CRS_BICG(CRSMatrix& A, double* b, double eps,
int max_iter, double* x, int & count, int num_thread) {
    int n_size = A.n;
    CRSMatrix AT;
    AT.n = A.m;
    AT.m = A.n;
    std::vector<std::vector<int>> index(AT.n);
    std::vector<std::vector<double>> value(AT.n);
    std::vector<int> size(AT.n);
    for (int i = 0; i < A.n; ++i) {
        for (int j = A.rowPtr[i]; j < A.rowPtr[i + 1]; ++j) {</pre>
            index[A.colIndex[j]].push_back(i);
            value[A.colIndex[j]].push_back(A.val[j]);
            size[A.colIndex[j]] += 1;
        }
    }
    AT.rowPtr.push_back(0);
    for (int i = 0; i < AT.n; ++i) {
        AT.rowPtr.push_back(AT.rowPtr[i] + size[i]);
        for (int j = 0; j < size[i]; ++j) {
            AT.val.push_back(value[i][j]);
            AT.colIndex.push_back(index[i][j]);
```

```
}
    }
#pragma omp parallel for num_threads(num_thread)
    for (int i = 0; i < n_size; ++i) {
        x[i] = 1;
    }
    double* Ap = new double[n_size];
    double* r = new double[n_size];
    double* r_ = new double[n_size];
    double* p = new double[n_size];
    double* p_ = new double[n_size];
    matrix_multiplication(A, x, Ap, num_thread);
#pragma omp parallel for num_threads(num_thread)
    for (int i = 0; i < n_size; ++i) {
        r[i] = b[i] - Ap[i];
        r_{i} = r[i];
        p[i] = r[i];
        p_{i} = r_{i};
    }
    double* Ap_ = new double[n_size];
    double* r_next = new double[n_size];
    double* r_next_ = new double[n_size];
    double alpha = 1;
    double betta = 1;
    double norm = sqrt(scalar_product(b, b, n_size, num_thread));
    while (true) {
        count++;
        if (sqrt(scalar_product(r, r, n_size, num_thread)) / norm < eps) {</pre>
            std::cout << "Scalar" << "\n";
            break;
        }
        if (count >= max_iter) {
            std::cout << "Iter" << "\n";
            break;
        //if (abs(betta) < 1e-6) {
              std::cout << "Betta" << "\n";
        //
              break;
        //}
```

```
matrix_multiplication(A, p, Ap, num_thread);
        matrix_multiplication(AT, p_, Ap_, num_thread);
        double scalar_tmp = scalar_product(r, r_, n_size, num_thread);
        alpha = scalar_tmp / scalar_product(Ap, p_, n_size, num_thread);
#pragma omp parallel for num_threads(num_thread)
        for (int i = 0; i < n_size; ++i) {</pre>
            x[i] += alpha * p[i];
            r_next[i] = r[i] - alpha * Ap[i];
            r_next_[i] = r_[i] - alpha * Ap_[i];
        }
        betta = scalar_product(r_next, r_next_, n_size,
        num_thread) / scalar_tmp;
#pragma omp parallel for num_threads(num_thread)
        for (int i = 0; i < n_size; ++i) {
            p[i] = r_next[i] + betta * p[i];
            p_[i] = r_next_[i] + betta * p_[i];
            r[i] = r_next[i];
            r_[i] = r_next_[i];
        }
    }
    delete[] Ap;
    delete[] Ap_;
    delete[] r;
    delete[] r_;
    delete[] r_next;
    delete[] r_next_;
    delete[] p;
    delete[] p_;
}
```