

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΉΣ & ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΉΣ

Ηλεκτρονική III

Ακαδημαϊκό Έτος 2022-2023 2^η Σειρά Θεωρητικών Ασκήσεων

> Καθ. Παύλος-Πέτρος Σωτηριάδης Επικουρία: Νικόλαος Βουδούκης, ΕΔΙΠ Χρήστος Δήμας, Δρ.

Οδηγίες

- Οι ασκήσεις είναι αυστηρά ατομικές.
- Η παράδοση γίνεται στις εργασίες στο helios.
- Παραδοτέα: ένα αρχείο pdf με τις λύσεις των ασκήσεων.
- Αξιολογούνται η ορθότητα, η τεχνική και επιστημονική τεκμηρίωση, η ποιότητα και η πληρότητα των εργασιών.
- Προθεσμία παράδοσης μέχρι και Κυριακή 27 Νοεμβρίου 2022.
- Οι προθεσμίες παράδοσης είναι αυστηρές και δεν θα δοθούν παρατάσεις.
- Η βαθμολογία των θεωρητικών σειρών ασκήσεων συμμετέχει στο 20% του τελικού βαθμού, ανεξαρτήτως του αν θα επιλέξετε να ασχοληθείτε με τις εργαστηριακές ασκήσεις.

Ύλη προς μελέτη

• Για τα τρανζίστορ χρησιμοποιείστε τα ακόλουθα μοντέλα θορύβου.

Μοντέλο θορύβου ΒJΤ:

Μοντέλο θορύβου MOSFET:

Διαφάνειες	Θέμα	Κεφάλαιο(α)	Βιβλίο
PS_L4	Ανάλυση Θορύβου	1	Noise in High-Frequency Circuits and Oscillators,
	σε Γραμμικά		B. Schiek, HJ. Siweris, I. Rolfes
	Κυκλώματα		1st Edition (2006), JohnWiley& Sons
		11	Analysis and Design of Analog Integrated
			Circuits,
			P. Gray, P. Hurst, S. Lewis, R. Meyer
			5th Edition (2009), JohnWiley & Sons

Άσκηση 1

Δίνεται το παρακάτω ενεργό φίλτρο τύπου Sallen-Key, του οποίου ο τελεστικός ενισχυτής έχει θόρυβο αλλά κατά τα άλλα είναι ιδανικός. Οι ισοδύναμες πηγές θορύβου στην είσοδο του τελεστικού ενισχυτή έχουν φασματική πυκνότητα $I_{n+}{}^2 = I_{n-}2 = I_{n0}{}^2/Hz$ και $V_n{}^2 = V_{n0}{}^2/Hz$. Θεωρήστε για απλότητα ότι οι αντιστάσεις ΔΕΝ έχουν θόρυβο.

Σχήμα 1

- Α) Βρείτε τη φασματική πυκνότητα ισχύος θορύβου στην έξοδο σε V^2/Hz , λόγω των ισοδύναμων πηγών ρεύματος θορύβου στην είσοδο του τελεστικού, δηλ. των I_{n+} , I_{n-} .
- Β) Βρείτε τη φασματική πυκνότητα ισχύος θορύβου στην έξοδο σε V^2/Hz , λόγω της ισοδύναμης τάσης θορύβου στην είσοδο του τελεστικού, V_n .
- Γ) Βρείτε τη συνολική φασματική πυκνότητα ισχύος θορύβου στην έξοδο σε V^2/Hz .

Άσκηση 2

Δίνονται τα ακόλουθα δύο κυκλώματα, οι τελεστικοί ενισχυτές των οποίων είναι ιδανικοί αλλά έχουν θόρυβο τάσης εισόδου $(\mu \acute{o}vo)$. Η ισοδύναμη πηγή θορύβου τάσης στην είσοδο κάθε τελεστικού ενισχυτή έχει φασματική πυκνότητα ανεξάρτητη της συχνότητας $\overline{V_n^2}(V_{RMS}^2/Hz)$. Θεωρήστε ότι οι αντιστάσεις δεν έχουν θόρυβο.

- Α) Βρείτε τη φασματική πυκν/τα ισχύος θορύβου στην έξοδο του τελεστικού ενισχυτή 1 σε V^2/Hz .
- Β) Βρείτε τη φασματική πυκν/τα ισχύος θορύβου στην έξοδο του τελεστικού ενισχυτή 3 σε V^2/Hz .
- Γ) Βρείτε τη φασματική πυκυ/τα ισχύος θορύβου στην έξοδο του κυκλώματος 1 σε V^2/Hz .
- Δ) Βρείτε τη φασματική πυκν/τα ισχύος θορύβου στην έξοδο του κυκλώματος 2 σε V^2/Hz .
- Ε) Ποιο από τα δύο κυκλώματα θα προτιμούσατε όσον αφορά λειτουργία σε χαμηλές/υψηλές συχνότητες; Δικαιολογήστε την απάντηση σας.

Άσκηση 3

Στο Σχ 3 Ιπεικονίζεται ένα BiCMOS Darlington. Αγνοώντας συχνοτικά φαινόμενα, υπολογίστε τις ισοδύναμες πηγές τάσης θορύβου και ρεύματος θορύβου για το κύκλωμα θεωρώντας ότι η dc τιμή της V_i είναι ρυθμισμένη για $I_{C1}=1\,\mathrm{mA}$. Ακόμη, ισχύουν: $\mu_n C_{ox}=60\,\mathrm{pA/V^2},\,V_t=0.7\,\mathrm{V},\,\lambda=0,\,\gamma=0,\,W=100\,\mathrm{pm},\,L=1\,\mathrm{pm}$ για το MOSFET και $I_S=10^{-16}\,\mathrm{A},\,V_A=\infty,\,\beta=100,\,r_b=100\,\Omega$ για το BJT.

Άσκηση 4

Η άσκηση 11.4 του βιβλίου Analysis and Design of Analog Integrated Circuits, 5th Edition, (και το LT SPICE).

Άσκηση 5

Η άσκηση 1.8 του βιβλίου Noise in High-Frequency Circuits and Oscillators.

Υπόδειξη: Ζητείται η αυτοσυσχέτιση.