# Programación con Restricciones Constraint Programming [MII-771] Capítulo 2: Técnicas de resolución

#### Dr. Ricardo Soto

[ricardo.soto@ucv.cl]
[http://www.inf.ucv.cl/~rsoto]

Escuela de Ingeniería Informática Pontificia Universidad Católica de Valparaíso







#### 1. Introducción

Solving = Modeling + Search



#### **Problemas**

- Gran cantidad de instanciaciones que no conducen a una solución
- Las restricciones se evalúan con todas las variables instanciadas

#### Solución?

 Evaluar las restricciones apenas se instancien las variables involucradas.



## **Principal Problema**

 No se pueden detectar inconsistencias sin instanciar todas las variables involucradas en una restricción.

#### Solución?

 Eliminar valores temporalmente de los dominios utilizando técnicas de consistencia (arc-consistency).



#### Se puede mejorar?

 Verificar no sólo la consistencia entre la variable actual y las futuras, sino que también entre las futuras...

# Maintaining Arc Consistency (Full Look Ahead)



#### 3. Heurísticas

# Heurísticas de selección de variable y valor

#### Variable

- First-fail (dominio más pequeño)
- Most-constrained variable
- Reduce-first (dominio más grande)
- Round-robin (orden equitativo, por ej. de la 1era a la última)

#### Valor

- smallest
- median
- maximal



# 4. Búsqueda en dominios continuos

#### **Problemas continuos**

Gran dificultad:

La representación de números en máquina es finita

#### Solución?

 Uso de intervalos para garantizar la fiabilidad de los resultados

 $0.000039 \rightarrow [0.00003, 0.00004]$ 

#### 5. Optimización

#### Búsqueda

 Basta con extender el algoritmo de búsqueda para considerar la función objetivo

Algoritmo más utilizado para optimización en CP:

