Nanyang Polytechnic Post-Diploma Certificate in Applied Data Science ITD214 Applied Data Science Project Final Project Presentation 26 Feb 2025

Group 4
Hazizul Humayun S/O Rajaa Mohaamed (Admission No.1077787V)
Ong Teng Teng (Admission No. 6239822P)
Wong Shao Mun (Admission No. 1038987U)

#### Outline

- 1. Business Problem, Dataset and Data Cleaning (Group)
- Model Design (Individual)
- Model Assessment (Individual)
- 4. Evaluation and Recommendations (Group)

## Business Understanding (Group)

#### Scenario Background

- Hotels in the USA have collected quantitative data (reviews.rating) and qualitative data (reviews.text) over a period of 17 years
- Would like to see what actionable insights can be derived from the collected data

## Business Understanding (Group)

#### **Business Goal**

To help USA hotels to improve their service

#### **Business Objectives**

- Identify what key topics consumers typically reveal in their reviews (topic modelling by Hazizul)
- 2. Predict whether a review is a positive or negative sentiment (sentiment analysis by Teng Teng)
- Identify time period that drives positive or negative sentiment (time series analysis by Shao Mun)

## Data Understanding & Selection (Group)

- Data Collection Sources
- 2. Acquire/Select Data
- 3. Data Fields Description
- 4. Data Exploration
- 5. Data Quality

#### **Data Collection Sources**

Kaggle



#### Acquire/Select Data

1. Searched for reviews and found hotel reviews dataset at

https://www.kaggle.com/datasets/datafiniti/hotel-reviews

2. Three datasets after download, chose dataset where reviews.rating were

integers

| В                   | C                           | D E                                         | <b>√</b> F           | G H                                   | 1                       |
|---------------------|-----------------------------|---------------------------------------------|----------------------|---------------------------------------|-------------------------|
| Data title = 7282_1 | total row = 34 292          | Data title = Datafiniti_Hotel_Reviews_Jun19 | total row = 10 000   | Data title = Datafiniti_Hotel_Reviews | total row = 10 000      |
| Variables Variables | Findings                    | Variables                                   | Findings             | SourceURLs                            | Findings                |
| address             | No Null / Empty Data        | id                                          | No Null / Empty Data | id                                    | No Null / Empty Data    |
| categories          | No Null / Empty Data        | dateAdded                                   | No Null / Empty Data | dateAdded                             | No Null / Empty Data    |
| city                | No Null / Empty Data        | dateUpdated                                 | No Null / Empty Data | dateUpdated                           | No Null / Empty Data    |
| country             | No Null / Empty Data        | address                                     | No Null / Empty Data | address                               | No Null / Empty Data    |
| latitude            | Empty data = 86             | categories                                  | No Null / Empty Data | categories                            | No Null / Empty Data    |
| longitude           | Empty data = 86             | primaryCategories                           | No Null / Empty Data | primaryCategories                     | No Null / Empty Data    |
| name                | No Null / Empty Data        | city                                        | No Null / Empty Data | city                                  | Only US                 |
| postalCode          | Empty data = 55             | country                                     | Only US              | country                               | No Null / Empty Data    |
| province            | No Null / Empty Data        | keys                                        | No Null / Empty Data | keys                                  | No Null / Empty Data    |
| reviews.date        | Empty cell = 259            | latitude                                    | No Null / Empty Data | latitude                              | No Null / Empty Data    |
| reviews.dateAdded   | No Null / Empty Data        | longitude                                   | No Null / Empty Data | longitude                             | No Null / Empty Data    |
| reviews.doRecommend | Blank                       | name                                        | No Null / Empty Data | name                                  | No Null / Empty Data    |
| reviews.id          | Blank                       | postalCode                                  | No Null / Empty Data | postalCode                            | No Null / Empty Data    |
| 6 reviews.rating    | from 1 to 10 with decimal n | umbers province                             | No Null / Empty Data | province                              | No Null / Empty Data    |
| 7 reviews.text      | Empty data = 20             | reviews.date                                | No Null / Empty Data | reviews.date                          | No Null / Empty Data    |
| reviews.title       | Empty data = 1620           | reviews.dateAdded                           | Blank                | reviews.dateSeen                      | No Null / Empty Data    |
| reviews.userCity    | Blank                       | reviews.dateSeen                            | No Null / Empty Data | reviews.rating                        | 1 to 5 with decimals di |
| 0 reviews.username  | Empty data = 42             | reviews.rating                              | 1 to 5               | reviews.sourceURLs                    | No Null / Empty Data    |

# Acquire/Select Data

| Datafiniti_Hotel_Reviews_Jun19 | 3/2/2025 8:34 pm | Microsoft Excel Com | 121,536 KB |
|--------------------------------|------------------|---------------------|------------|
| Datafiniti_Hotel_Reviews       | 3/2/2025 8:33 pm | Microsoft Excel Com | 48,404 KB  |
| 7282_1                         | 3/2/2025 8:33 pm | Microsoft Excel Com | 16,161 KB  |
| Name                           | Date modified    | Туре                | Size       |

## Data Fields Description

- Shape (10000, 26)
- Number of rows: 10000
- Number of columns: 26

## Data Fields Description

| df.dtypes:        |         | reviews.date         | object  |
|-------------------|---------|----------------------|---------|
| id                | object  | reviews.dateAdded    | float64 |
| dateAdded         | object  | reviews.dateSeen     | object  |
| dateUpdated       | object  | reviews.rating       | int64   |
| address           | object  | reviews.sourceURLs   | object  |
| categories        | object  | reviews.text         | object  |
| primaryCategories | object  | reviews.title        | object  |
| city              | object  | reviews.userCity     | object  |
| country           | object  | reviews.userProvince | object  |
| keys              | object  | reviews.username     | object  |
| latitude          | float64 | sourceURLs           | object  |
| longitude         | float64 | websites             | object  |
| name              | object  | dtype: object        |         |
| postalCode        | object  |                      |         |
| province          | object  |                      |         |

#### **Data Fields Description**

 Three fields with lesser categories shortlisted to explore further for modelling: 'primaryCategories', 'province' and 'reviews.rating'

| Number of unique val | ues in columns of | reviews.date         | 3370 |
|----------------------|-------------------|----------------------|------|
| df:                  |                   | reviews.dateAdded    | 0    |
| id                   | 1433              | reviews.dateSeen     | 701  |
| dateAdded            | 1341              | reviews.rating       | 5    |
| dateUpdated          | 1397              | reviews.sourceURLs   | 8228 |
| address              | 1432              | reviews.text         | 9770 |
| categories           | 631               | reviews.title        | 8470 |
| primaryCategories    | 4                 | reviews.userCity     | 3101 |
| city                 | 842               | reviews.userProvince | 244  |
| country              | 1                 | reviews.username     | 9222 |
| keys                 | 1433              | sourceURLs           | 1433 |
| latitude             | 1430              | websites             | 1327 |
| longitude            | 1431              | dtype: int64         |      |
| name                 | 1311              |                      |      |
| postalCode           | 1149              |                      |      |
| province             | 46                |                      |      |

#### **Data Exploration**

```
# Print unique values in columns of df where unique values are <= 50
for col in df.columns:
 unique values = df[col].nunique()
  if unique values <= 50:
    print(f"Unique values in column ' {col}': {df[col].unique()}")
Unique values in column 'primaryCategories': ['Accommodation & Food
Services!
 'Accommodation & Food Services, Arts Entertainment & Recreation'
 'Accommodation & Food Services, Administrative & Support & Waste Management
& Remediation'
 'Accommodation & Food Services, Agriculture']
Unique values in column 'country': ['US']
```

## **Data Exploration**

- 1. 'reviews.rating' most promising categorical variable to use as five categories can be easily grouped
- 2. 'province' not attractive because need spend effort to group 46 categories further

```
Unique values in column 'country': ['US']
Unique values in column 'province': ['CA' 'KY' 'LA' 'CO' 'IL' 'IN' 'FL' 'AK'
'GA' 'AL' 'AZ' 'AR' 'OR' 'WA'
 'UT' 'TX' 'TN' 'SC' 'PA' 'OH' 'NY' 'NM' 'MD' 'MI' 'MS' 'MO' 'IA' 'VA'
 'WI' 'HI' 'ID' 'NV' 'WV' 'WY' 'KS' 'MN' 'NE' 'ND' 'DE' 'OK' 'NC' 'MT'
 'SD' 'RI' 'NJ' 'MA']
Unique values in column 'reviews.dateAdded': [nan]
Unique values in column 'reviews.rating': [3 4 5 2 1]
```

#### **Data Quality**

 Majority of fields have all rows filled, especially those with potential for modelling: 'reviews.date', 'reviews.rating' and 'reviews.text' (each with 10k rows)

| Count number of rows with non-empty |       | reviews.date         | 10000 |
|-------------------------------------|-------|----------------------|-------|
| values:                             | 1 1   | reviews.dateAdded    | 0     |
| id                                  | 10000 | reviews.dateSeen     | 10000 |
| dateAdded                           | 10000 | reviews.rating       | 10000 |
| dateUpdated                         | 10000 | reviews.sourceURLs   | 10000 |
| address                             | 10000 | reviews.text         | 10000 |
| categories                          | 10000 | reviews.title        | 9999  |
| primaryCategories                   | 10000 | reviews.userCity     | 10000 |
| city                                | 10000 | reviews.userProvince | 9998  |
| country                             | 10000 | reviews.username     | 10000 |
| keys                                | 10000 | sourceURLs           | 10000 |
| latitude                            | 10000 | websites             | 10000 |
| longitude                           | 10000 | dtype: int64         |       |
| name                                | 10000 |                      |       |
| postalCode                          | 10000 |                      |       |
| province                            | 10000 |                      |       |

## Model Design and Model Assessment (Individual)

Cutover to individual member's presentation slides:

- Identify what key topics consumers typically reveal in their reviews (topic modelling by Hazizul)
- 2. Predict whether a review is a positive or negative sentiment (sentiment analysis by Teng Teng)
- 3. Identify time period that drives positive or negative sentiment (time series analysis by Shao Mun)

Nanyang Polytechnic Post-Diploma Certificate in Applied Data Science ITD214 Applied Data Science Project Final Project Presentation 26 Feb 2025

Group 4
Individual Presentation
Hazizul Humayun S/O Rajaa Mohaamed (Admission No.1077787V)

#### Outline

- 1. Clean Data
- 2. Construct Data
- 3. Exploratory Data Analysis (EDA)

## Data Cleaning for text analysis

Data Cleaning Column to do the analysis on is reviews.text

1. Removed duplicate reviews to ensure unbiased analysis

```
Duplicates in 'reviews.text' column: 230
```

```
# 2. Data Cleaning

df.drop_duplicates(subset=['reviews.text'], keep='first', inplace=True) # Remove duplicate reviews
```

#### 2. Text Preprocessing

- Converted Text to Lowercase
- Removed punctuation
- Tokenization (splitting into words)
- Stopword removal (e.g., "the", "and")
- Lemmatization (converting words to base form)

#### Example:

- X "The rooms were amazing!!!"
- room amazing"

```
# 4. Text Preprocessing
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()

def preprocess_text(text):
    text = text.lower()  # Lowercasing
    text = re.sub(r'[^\w\s]', '', text)  # Remove punctuation
    tokens = word_tokenize(text)
    tokens = [lemmatizer.lemmatize(token) for token in tokens if token not in stop_words and len(token) > 2]
    return " ".join(tokens)

df['processed_review'] = df['reviews.text'].apply(preprocess_text)
```

## Construction of review length column

```
# 3. Review Length Distribution
df['review_length'] = df['reviews.text'].str.len() # Character count
plt.hist(df['review_length'], bins=30)
plt.title('Review Length Distribution')
plt.xlabel('Review Length')
plt.ylabel('Frequency')
plt.show()
```

 Counting characters of the review length and frequency of words



#### Purpose of studying the review lengths:

- Helps to Understand Review Lengths:
  - a. Helps analyse the distribution of short vs long reviews.
  - Identifies whether customers leave detailed feedback or just brief comments.
- 2. Detecting Fake or Spam Reviews:
  - a. Extremely short reviews (e.g., "Good" or "Bad") might indicate low-effort or spam content.
  - b. Very long reviews could be fake or overly promotional.
- 3. Assessing Sentiment vs. Length:
  - Comparing sentiment scores with character count can reveal if longer reviews tend to be more positive or negative.
- 4. Improving Text Processing:
  - a. Helps determine whether to filter out excessively short reviews for better text analysis (e.g., topic modeling).
- 5. Optimizing User Experience:
  - Businesses can encourage detailed feedback if most reviews are too short.

#### **Exploratory Data Analysis: Word Count Frequency**

#### Purpose:

- Identifies key themes in customer reviews.
- Highlights frequently mentioned topics (e.g., "room", "clean", "staff").
- Helps detect positive vs. negative sentiment trends.
- Aids in refining stopword lists for topic modeling.





## Exploratory Data Analysis: Bigram Analysis

# N-Gram (Bigram) Analysis

Identifies common word pairs (e.g., "great service")

Helps in understanding review themes and deepe 1000



## Exploratory Data Analysis: Sentiment Analysis

Sentiment Score by Rating

Higher Ratings → Higher Sentiment Scores

Ratings 4 & 5 have strong positive sentime

Low Ratings (1 & 2) Show High Variability

Ratings (1 & 2) Show High Variability

Wide sentiment range indicates mixed expe

Outliers in High Ratings

Some 4 & 5-star reviews contain neutral/ne feedback or sarcasm.



## Exploratory Data Analysis: Sentiment Analysis

# 2. Sentiment Score by Length of Review Most Reviews Are Short

 Majority fall below 2000 characters, with a few very long reviews (~14,000 characters)

#### **Positive Sentiment Dominates**

Many short reviews have high sentiment scores (~1.0).

#### **Negative Sentiment Appears in Short Reviews**

 Short reviews also show low sentiment (~-1.0), possibly indicating strong emotions (either praise or complaints).

#### **Long Reviews Show Mixed Sentiment**



#### Project Plan (Group)

- Hazizul: Actionable Insights for Hotel Management to look based on analysis
  - Identify top concerns (e.g., "bad WiFi", "dirty rooms").
  - Highlight strengths (e.g., "friendly staff", "good location").
  - Recommend areas for improvement (e.g., "upgrade breakfast options").

#### Topic Modelling with LDA

Topic Modelling was invoked with LDA vectorizer to deduce the topics and for a start 10 topics was set (set at 95%).

```
tfidf vectorizer = TfidfVectorizer(max df=0.95, min df=2, max features=1000)
lda model = LatentDirichletAllocation(n components=10, random state=42)
 Topic #1:
 stay hotel great staff thank time guest forward service hope
 Topic #2:
 room clean motel older bed old good spring hotel stayed
 Topic #3:
 room breakfast nice hotel clean bed great coffee comfortable area
 Topic #4:
 clean staff great hotel stay nice breakfast friendly recommend room
 Topic #5:
 french quarter orleans new bourbon street historic hotel market river
 Topic #6:
 room hotel stav desk night would front time one guest
 hotel room great good breakfast clean restaurant nice location staff
 Topic #8:
 room hotel bed floor night bathroom nice good stay one
 Topic #9:
 hotel great stay staff beach room time wonderful location enjoyed
 Topic #10:
 san western diego best stay thank hotel time hope staff
```

#### Visualising Topics with plyDavis



#### **Topic prevalence:**

Based on the circle sizes, Topics 1-3 are the most common topics consisting of positive reviews of the Hotel.

#### Topic #1:

stay hotel great staff thank time guest forward service hope Topic #2:

room clean motel older bed old good spring hotel stayed Topic #3:

room breakfast nice hotel clean bed great coffee comfortable area

#### **Topic Similarity:**

Majority of the topics were closely positioned which indicate a similar topic with the only exception of topics 7,9 & 10.

## Visualising Topics with plyDavis

```
Topic #7:
hotel room great good breakfast clean restaurant nice location staff
Topic #9:
hotel great stay staff beach room time wonderful location enjoyed
Topic #10:
san western diego best stay thank hotel time hope staff
```

Still Common topics describing hotel amenities and what customers enjoyed the most. No insightful information to gather for the business objective. This is evident in the Vader sentiment analyser done in the next step.

# Strategies done to Improve Analysis to meet the other 2 objectives

#### Adjusting TfidfVectorizer Parameters:

```
Topic #1:
hotel room breakfast good great clean restaurant nice location staff
Topic #2:
room motel dirty smell old carpet smelled bed door bathroom
Topic #3:
room hotel great nice view area staff clean stayed pool
Topic #4:
clean breakfast room nice staff great friendly bed hotel good
Topic #5:
stay hotel thank staff guest time experience great hope feedback
Topic #6:
french quarter hotel orleans new location great street room staff
Topic #7:
room hotel night stay would one time desk front get
Topic #8:
room clean hotel hampton stayed nice great breakfast good comfortable
Topic #9:
hotel stay great staff time room enjoyed thank wonderful review
Topic #10:
airport orlando hilton garden inn hampton shuttle philadelphia flight dallas
```

## Improving Analysis



Still derived at an overall positive sentiment with the exception of 5 and 6 which were neutral

Topic #5: stay hotel thank staff guest time experience great hope feedback Topic #6: french quarter hotel orleans new location great street room staff

## plyDavis post adjustment



## Post analysis Review

Dataset mainly consisted of general words describing of positive sentiment of the hotel and not much insight was gained.

#### Things done to further improve analysis:

- 1. Custom stop words to remove words like "hotel", "room" and etc
- 2. Segregating Topics based on sentiment to perform modelling

#### Topics post-adjustment

#### **Positive Topics:**

Topic 1: staff great clean hampton walking friendly helpful historic stayed French

Topic 1 (suggested): Exceptional Staff & Historic Charm at Hampton

Topic 2: clean motel price disneyland nice good breakfast great del friendly

Topic 2 (suggested): Affordable & Clean Stay Near Disneyland with Great Breakfast

Topic 3: great view nice pool room staff stayed clean location perfect

Topic 3 (suggested): Scenic Views, Pool, and Perfect Location for a Relaxing Stay

Topic 4: guest like staff experience desk service front good feedback nice

Topic 4 (suggested): Positive Guest Experience & Friendly Front Desk Service

Topic 5: staff clean check desk great front nice stayed always friendly

Topic 5 (suggested): Consistently Great Staff and Smooth Check-in Experience

Topic 6: hampton owner ritz motel philadelphia inn stayed friendly atlanta clean

Topic 6 (suggested): Comfortable Stay at Hampton and Ritz, with Friendly Hospitality

Topic 7: good great breakfast clean parking location restaurant nice staff free

Topic 7 (suggested): Great Value Stay with Free Parking, Breakfast & Restaurant Access

# Topics post-adjustment

#### **Negative Topics:**

Issues

twice

Topic 1: half returned fruit nicer saturday eating cozy restaurant meal lake

Topic 1 (suggested): Disappointing Dining Experience & Food Quality

Topic 2: per mind con relax entrance conveniently seaworld tip budget priced

Topic 2 (suggested): Budget Stay with Mixed Convenience &

Relaxation Factors Topic 3: month third unless compared visiting dog still decent pretty

Topic 4: dirty smell like bed floor loud water door old someone

Topic 3 (suggested): Inconsistent Experience Across Multiple Visits

Topic 5: hall spa one touch couch completely question bit mattress loud

Topic 5 (suggested): Room Comfort Issues: Noise, Mattress, and Spa Discomfort

Topic 6: decided shower luggage large picture fix airport

microwave dirty always Topic 6 (suggested): Maintenance Issues: Broken

Topic 7: ice machine del smoke personal weather deal

Showers & Dirty Appliances

general con wedding Topic 7 (suggested): Facility Problems: Ice Machine,

Topic 8: desk room bad didnt front bathroom stayed booked bed told

Topic 8 (suggested): Front Desk & Booking Problems Leading to Guest Dissatisfaction

Smoke Issues & Event Stays

Topic 4 (suggested): Cleanliness Concerns: Dirty Rooms & **Unpleasant Smells** 

## plyDavis visualisation (Positive Reviews)



## plyDavis visualisation (Negative Reviews)



## Evaluating the Topics (Positive Reviews)

Topic 1: Exceptional Staff & Historic Charm at Hampton

Topic 2: Affordable & Clean Stay Near Disneyland with Great Breakfast

Topic 3: Scenic Views, Pool, and Perfect Location for a Relaxing Stay

Topic 4: Positive Guest Experience & Friendly Front Desk Service

Topic 5: Consistently Great Staff and Smooth Check-in Experience

Topic 6: Comfortable Stay at Hampton and Ritz, with Friendly Hospitality

Topic 7: Great Value Stay with Free Parking, Breakfast & Restaurant Access

# Evaluating the Topics (Negative Reviews)

- Topic 1: Disappointing Dining Experience & Food Quality Issues
- Topic 2: Budget Stay with Mixed Convenience & Relaxation Factors
- Topic 3: Inconsistent Experience Across Multiple Visits
- Topic 4: Cleanliness Concerns: Dirty Rooms & Unpleasant Smells
- Topic 5: Room Comfort Issues: Noise, Mattress, and Spa Discomfort
- Topic 6: Maintenance Issues: Broken Showers & Dirty Appliances
- Topic 7: Facility Problems: Ice Machine, Smoke Issues & Event Stays
- Topic 8: Front Desk & Booking Problems Leading to Guest Dissatisfaction

#### Conclusion

To elevate the guest experience and foster greater satisfaction, the following key areas are recommended for enhancement:

- Cleanliness and Hygiene: Implement rigorous cleaning protocols, paying meticulous attention to guest rooms, bathrooms, and fitness facilities to ensure a spotless and hygienic environment.
- Maintenance and Upkeep: Address maintenance issues swiftly and efficiently, prioritizing prompt repairs for showers, microwaves, and other in-room amenities to guarantee a seamless and comfortable stay.
- **Front Desk Service:** Elevate front desk operations by providing comprehensive customer service training, empowering staff to deliver exceptional service, efficient communication, and a warm, welcoming atmosphere.
- **Breakfast Enhancement:** Expand and enrich breakfast offerings with a wider variety of choices and superior quality ingredients to cater to diverse preferences and elevate the dining experience.
- Marketing and Promotion: Capitalize on existing strengths by highlighting exceptional staff friendliness, prime locations, and complimentary amenities in marketing materials to attract and delight potential guests.

Nanyang Polytechnic Post-Diploma Certificate in Applied Data Science ITD214 Applied Data Science Project Final Project Presentation 26 Feb 2025

Group 4
Individual Presentation
Ong Teng Teng (Admission No. 6239822P)

#### Outline

- 1. Clean Data
- 2. Conduct preprocessing steps
- 3. Prepare word representation
- 4. Accuracy of review rating

# df.shape (10000, 26) and 2 variables to use to do prediction of the data = reviews.text and reviews.rating . df.shape (10000, 26)

| В                   | C                         | D E                                         | J F (                | Н                                     | 1                       |
|---------------------|---------------------------|---------------------------------------------|----------------------|---------------------------------------|-------------------------|
| Data title = 7282_1 | total row = 34 292        | Data title = Datafiniti_Hotel_Reviews_Jun19 | total row = 10 000   | Data title = Datafiniti_Hotel_Reviews | total row = 10 000      |
| Variables           | Findings                  | Variables                                   | Findings             | SourceURLs                            | Findings                |
| address             | No Null / Empty Data      | id                                          | No Null / Empty Data | id                                    | No Null / Empty Data    |
| categories          | No Null / Empty Data      | dateAdded                                   | No Null / Empty Data | dateAdded                             | No Null / Empty Data    |
| city                | No Null / Empty Data      | dateUpdated                                 | No Null / Empty Data | dateUpdated                           | No Null / Empty Data    |
| country             | No Null / Empty Data      | address                                     | No Null / Empty Data | address                               | No Null / Empty Data    |
| latitude            | Empty data = 86           | categories                                  | No Null / Empty Data | categories                            | No Null / Empty Data    |
| longitude           | Empty data = 86           | primaryCategories                           | No Null / Empty Data | primaryCategories                     | No Null / Empty Data    |
| name                | No Null / Empty Data      | city                                        | No Null / Empty Data | city                                  | Only US                 |
| postalCode          | Empty data = 55           | country                                     | Only US              | country                               | No Null / Empty Data    |
| province            | No Null / Empty Data      | keys                                        | No Null / Empty Data | keys                                  | No Null / Empty Data    |
| reviews.date        | Empty cell = 259          | latitude                                    | No Null / Empty Data | latitude                              | No Null / Empty Data    |
| reviews.dateAdded   | No Null / Empty Data      | longitude                                   | No Null / Empty Data | longitude                             | No Null / Empty Data    |
| reviews.doRecommend | Blank                     | name                                        | No Null / Empty Data | name                                  | No Null / Empty Data    |
| reviews.id          | Blank                     | postalCode                                  | No Null / Empty Data | postalCode                            | No Null / Empty Data    |
| reviews.rating      | from 1 to 10 with decimal | number: province                            | No Null / Empty Data | province                              | No Null / Empty Data    |
| reviews.text        | Empty data = 20           | reviews.date                                | No Null / Empty Data | reviews.date                          | No Null / Empty Data    |
| reviews.title       | Empty data = 1620         | reviews.dateAdded                           | Blank                | reviews.dateSeen                      | No Null / Empty Data    |
| reviews.userCity    | Blank                     | reviews.dateSeen                            | No Null / Empty Data | reviews.rating                        | 1 to 5 with decimals di |
| reviews.username    | Empty data = 42           | reviews.rating                              | 1 to 5               | reviews.sourceURLs                    | No Null / Empty Data    |

"reviews.text" consists of 10,000 rows with no null and "reviews rating" =<4, 5, our group have decide it will consider as positive reviews based on Exploratory Data Analysis: Sentiment Analysis. Sentiment Score by Rating, Higher Ratings → Higher Sentiment Scores. Results = Ratings 4 & 5 have strong positive sentimental

Tokenization is the first step in text analytics. The process of breaking down a text paragraph into smaller chunks such as words or sentence is called Tokenization. Token is a single entity that is building blocks for sentence or paragraph.

Sentence tokenizer breaks text paragraph into sentences. Tokenize the first review into sentence Word tokenizer breaks text paragraph into words

Results as below:

number of words:67

from nltk.tokenize import word tokenize

```
tokenized_words = word_tokenize(df['reviews.text'][1])

print(tokenized_words)

print('number of words:' + str(len(tokenized_words)))

['We stayed in the king suite with the separation between the bedroom and the living space.', "The sofa bed wasn't very good I had back discomfort by the day number of sentences:4

['We', 'stayed', 'in', 'the', 'king', 'suite', 'with', 'the', 'separation', 'between', 'the', 'bedroom', 'and', 'the', 'living', 'space', '.', 'The', 'sofa',
```

By preprocessing the data, we ensure that the sentiment analysis model receives clean, consistent, and meaningful input, which ultimately leads to more accurate and reliable results !!!

Next, we will loop through all the reviews and create a word list for visualisation. At the same time we will do case normalization to convert all the words/terms into lower case. Loop through all reviews and tokenize into wordsall\_words = [word.lower() for sent in df['Review'] for word in word\_tokenize(sent)]#print the first 20 words

print(all\_words[:20]) - it give us a broad pictures of how the data is on which topics and results shown keys words like "Hotel" / "train" / "near" / "by" and etc

```
#print the first 20 words
print(all_words[:20])
```



Frequency distribution will calculate the number of occurence of each word to view high and low frequent words in all the reviews list out 10 most frequent words and 10 least frequent in the entire list of words

```
# print 10 most frequently occurring words
print ("\nTop 10 most frequently occurring words")
print (all words frequency.most common(10))
# print 10 least frequently occurring words
print ("\nTop 10 least frequently occurring words")
print (all words frequency.most common()[-10:])
<FreqDist with 30038 samples and 1323309 outcomes>
Top 10 most frequently occurring words
[('the', 67110), ('.', 65010), ('and', 42655), (',', 41408), ('to', 36175), ('a', 29310), ('was', 23466), ('we', 21578), ('you', 18497), ('i', 17862)]
Top 10 least frequently occurring words
[('basslights', 1), ('langley/ft', 1), ('eutis', 1), ('williamsburg', 1), ('parmesan', 1), ('lottery', 1), ('arcade', 1), ('cure', 1), ('boredom', 1), ('doct
```

Create a function to plot the frequency, make it a function as we will be re-using it later.

def plot frequency freq

def plot\_frequency freq
plt figure figsize= 10 5
freq 50 cumulative=False
plt show

plot\_frequency all\_words\_frequency



From the above frequency distribution of words, we can see the most frequently occurring words are either punctuation marks or stopwords.

```
# Prepare the data for modelling using different text features
porter stemmer = PorterStemmer()
stopwords english = set(stopwords.words('english'))
common words =['hotel'] #add common words to stop words
stopwords english.update(common words)
def clean(doc):
    all words clean = []
   for word in doc:
        if word not in stopwords_english:
          # Using string.punctuation here
            punc free = ''.join([ch for ch in word if ch not in string.punctuation])
            if len(punc free)>=2 and not punc free.isdigit():
                all words clean.append(porter stemmer.stem(punc free))
    return all words clean
df2['reviews.text'] = df2['reviews.text'].apply(lambda x: word tokenize(x.lower()))
df2['reviews.text'] = df2['reviews.text'].apply(lambda x: clean(x))
df2['reviews.rating'] = np.where(df2['reviews.rating']>= 4, 'Good', 'Bad')
df2.head()
```

Data as shown below that after the text are cleaned with punctuation marks or stopwords and why this step is important? - Humans are able define which punctuation are meaningless but computers are unable to. It will be mislead thinking this words are very important if there are words in uppercase letter and exclamation

| mark.                |                |                                           |                                |               |                  |          |                  |      |        |   |
|----------------------|----------------|-------------------------------------------|--------------------------------|---------------|------------------|----------|------------------|------|--------|---|
| 1-                   |                |                                           |                                |               |                  |          | , ,              |      | _      | - |
| <br>reviews.dateSeen | reviews.rating | reviews.sourceURLs                        | reviews.text                   | reviews.title | reviews.userCity | reviews. | userProvince     | revi | ews.us | e |
| 2018-01-             | 2              | https://www.tripadvisor.com/Hotel_Review- | This hotel was nice and quiet. | Best Western  | Con Jose         |          | I Inite d'Ototon |      | tataur |   |

|     | 1,—                      |                |                                                    |                                                    |                            |                  |                      |               |
|-----|--------------------------|----------------|----------------------------------------------------|----------------------------------------------------|----------------------------|------------------|----------------------|---------------|
|     | reviews.dateSeen         | reviews.rating | reviews.sourceURLs                                 | reviews.text                                       | reviews.title              | reviews.userCity | reviews.userProvince | reviews.userr |
| *** | 2018-01-<br>03T00:00:00Z | 3              | https://www.tripadvisor.com/Hotel_Review-<br>q3243 | This hotel was<br>nice and quiet.<br>Did not know, | Best Western<br>Plus Hotel | San Jose         | UnitedStates         | tatsurok2     |

q3217...

q3217...

q3217...

https://www.tripadvisor.com/Hotel\_Review-

https://www.tripadvisor.com/Hotel\_Review-

https://www.tripadvisor.com/Hotel\_Review-

2016-10-

2016-10-

2016-10-

31T00:00:00Z

09T00:00:00Z

09T00:00:00Z

| 1-                           |                |                                                    |                                                    |                            | ,                |                      |             |
|------------------------------|----------------|----------------------------------------------------|----------------------------------------------------|----------------------------|------------------|----------------------|-------------|
| reviews.dateSeen             | reviews.rating | reviews.sourceURLs                                 | reviews.text                                       | reviews.title              | reviews.userCity | reviews.userProvince | reviews.use |
| <br>2018-01-<br>03T00:00:007 | 3              | https://www.tripadvisor.com/Hotel_Review-<br>g3243 | This hotel was<br>nice and quiet.<br>Did not know. | Best Western<br>Plus Hotel | San Jose         | UnitedStates         | tatsurc     |

We stayed in

the king suite

separatio ...

Parking was

somebody ran into my ren...

Not cheap but

location. Price

excellent

is som...

horrible,

with the

Clean rooms at

solid rates in

the heart of

Carmel

Business

Very good

San Francisco

Prescott Valley

Guaynabo

STEPHE

15Deb

Wilfred

CA

AZ

| mark.            | J              | , ,                |                |               |                  |          |             |   |       |      |
|------------------|----------------|--------------------|----------------|---------------|------------------|----------|-------------|---|-------|------|
| 1_               |                |                    |                |               |                  |          |             |   |       | _    |
| reviews.dateSeen | reviews.rating | reviews.sourceURLs | reviews.text   | reviews.title | reviews.userCity | reviews. | userProvinc | e | revie | ws.u |
|                  |                |                    | This hotel was |               |                  |          |             |   |       |      |

Removing of Stop words are those frequently words which do not carry any significant meaning in text analysis - For example, I, me, my, the, a, and, is, are, he, she, we, etc.

Using reviews username "STEPHEN N" as our checkpoint - review.text are left with important keys words in our results

| sour                            |
|---------------------------------|
| www.tripadvisor.com/Hotel_      |
| www.tripadvisor.com/Hotel_<br>g |
| www.tripadvisor.com/Hotel_<br>g |
| www.tripadvisor.com/Hotel_<br>g |
| 1                               |

By using the selected model to predict new review, we could test the accuracy of the text rating been provided earlier in the data we have chosen for this project

```
# Use the selected model to predict new review
data = {'custom review': ['I hated the room. The service is bad.',
                          'It was a wonderful stay. I loved it. Good room service.' |}
df test = pd.DataFrame (data, columns = ['custom review'])
df test['custom review'] = df test['custom review'].apply(lambda x: word tokenize(x.lower()))
df test['custom review'] = df test['custom review'].apply(lambda x: clean(x))
# Apply the same transformations used during training (including PCA)
test features tfidf = pd.DataFrame(get tfidf features(df test, 'custom review'),
                            columns=header.split(','), index = df test.index)
test features pca = pca.transform(test features tfidf) # Apply PCA transformation
# Create bow representation for the test data
test features bow = pd.DataFrame(get bow features(df test, 'custom review'),
                            columns=header.split(','), index = df test.index)
test bow pca = pca.transform(test features bow) # Apply PCA transformation to bow features
```

# Results shown for bow\_features vs tfidf\_features

This output shows the original class distribution in the training data for the TF-IDF model before SMOTE is applied. It reveals that the 'Good' reviews are the majority class (around 77%), while 'Bad' reviews are the minority (around 23%).



# What is the deciding facts to choose TF-IDF model over BoW model?

In summary, the results indicate that the TF-IDF model outperforms the BoW model in predicting hotel review sentiment. Its higher accuracy, precision, recall, and F1-scores suggest better performance. The predictions on new reviews further demonstrate the differences between the two models, and the feature importance analysis helps understand the factors driving the TF-IDF model's predictions.

```
Accuracy Score: 0.816
TF-IDF classifier prediction of test data
['Bad' 'Bad']
TF classifier prediction of test data
['Good' 'Good']
```

```
Top 10 Important Featoures of TF-IDF classifier
Variable: categori
                     Importance: 0.3733085519
Variable: pass
                     Importance: 0.0691510642
Variable: best
                     Importance: 0.0384961287
Variable: nice
                     Importance: 0.0346435611
Variable: left
                     Importance: 0.018177888
Variable: circul
                     Importance: 0.0162522587
Variable: chang
                     Importance: 0.0151940292
Variable: western
                     Importance: 0.0151002967
Variable: plu
                     Importance: 0.0148722641
Variable: item
                     Importance: 0.0142765293
```

### Project Plan (Group)

#### Teng Teng

- Improved Performance: Hyperparameter tuning helps find the optimal settings for the decision tree, potentially improving its accuracy and generalization ability. By exploring different hyperparameter combinations, discover a model that better captures the underlying patterns in the data.
- **Different Algorithms:** experiment with other classification algorithms like Random Forest, Support Vector Machines (SVM), Tensorflow to see if they yield better results.

Why we use Tensor flow and no others as our deep learning exercise? TensorFlow can handle both small and large-scale data, making it suitable for sentiment analysis tasks of any size.

tf.data.AUTOTUNE is a parameter in TensorFlow's tf.data API that automates the tuning of the dataset performance. When you set AUTOTUNE as the value for parameters like num\_parallel\_calls or prefetch, TensorFlow dynamically determines the optimal number of parallel calls and the prefetch buffer size, respectively, to improve the efficiency and performance of your data pipeline. This means you don't have to manually figure out the best settings, as TensorFlow does it for you!

We start by split the data into train and validation sets using tf.data.Dataset.take and tf.data.Dataset.skip

```
train_size = int(0.8 * len(train_ds))
val_size = int(0.2 * len(train_ds))

train_ds = train_ds.take(train_size) # This is your training dataset
val_ds = train_ds.skip(train_size).take(val_size) # This is your validation dataset

# Apply cache and prefetch
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
```

# Assuming you want 80% for training and 20% for validation

Each word in the vocabulary will be represented as a vector of 128 numbers. This allows the model to capture semantic relationships between words. This is the **embedding layer**. It's the heart of how the model understands words. It takes the numerical representations of words from the vectorize\_layer and transforms them into dense vectors of dimension. Bidirectional means the LSTM processes the text in both forward and backward directions, which helps it capture context more effectively uses a sigmoid activation function, which makes it suitable for binary classification problems (e.g., positive or negative sentiment). The output of this layer is a value between 0 and 1, representing the probability of the input text belonging to the positive class.

```
EMBEDDING DIM=128
model = tf.keras.Sequential([
   vectorize layer,
   tf.keras.layers.Embedding(input dim=VOCAB SIZE,
             output dim=EMBEDDING DIM,
             mask zero=True,
             name='embedding'),
   tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),
   tf.keras.layers.Dense(64),
    tf.keras.layers.Dense(1, activation='sigmoid')
```

#### Let start with 5 epo for our training set

Adam is a popular optimization algorithm that is generally efficient and effective for many types of neural networks.

- Loss Function: The loss function measures the difference between the model's predictions and the
  actual target values. The goal of training is to minimize this loss.
- This is a loss function specifically designed for **binary classification** problems (where the output is either 0 or 1). It calculates the cross-entropy between the predicted probabilities and the true labels.

```
Epoch 1/5
250/250 -
                            - 75s 283ms/step - accuracy: 0.7826 - loss: 0.4867
Epoch 2/5
/usr/local/lib/python3.11/dist-packages/keras/src/trainers/epoch iterator.py:151: UserWarning: Your input ra
  self. interrupted warning()
250/250 -
                             69s 276ms/step - accuracy: 0.9043 - loss: 0.2398
Epoch 3/5
                             69s 278ms/step - accuracy: 0.9455 - loss: 0.1422
250/250 -
Epoch 4/5
                            - 69s 275ms/step - accuracy: 0.9732 - loss: 0.0752
250/250
Epoch 5/5
250/250 -

    69s 278ms/step - accuracy: 0.9738 - loss: 0.0639

<keras.src.callbacks.history.History at 0x7d2904a60e10>
```

#### Let put 3 results together - Tensor flow results shown the data is overfitting!!!

**Final conclusion** - the results in TF-IDF model outperforms 2 others models in predicting hotel review sentiment. Its higher accuracy, precision, recall, and F1-scores suggest better performance.

| [21] | from sklearn.metrics import classification_report          |  |
|------|------------------------------------------------------------|--|
|      | <pre>print(classification_report(y_labels, y_preds))</pre> |  |

| ₹ |          |      | precision | recall | f1-score | support |
|---|----------|------|-----------|--------|----------|---------|
|   |          | 0.0  | 0.99      | 0.98   | 0.98     | 1847    |
|   |          | 1.0  | 0.99      | 1.00   | 0.99     | 6153    |
|   | accur    | racy |           |        | 0.99     | 8000    |
|   | macro    | avg  | 0.99      | 0.99   | 0.99     | 8000    |
|   | weighted | avg  | 0.99      | 0.99   | 0.99     | 8000    |

| F          | 0044       |          |          |            |           |
|------------|------------|----------|----------|------------|-----------|
| 5 rows x 2 | 2044 colun | nns      |          |            |           |
| reviews.r  | rating     |          |          |            |           |
| Bad 6      | 9.5        |          |          |            |           |
| Good 6     | 9.5        |          |          |            |           |
| Name: pro  | oportion,  | dtype:   | float64  |            |           |
| reviews.   | rating     |          |          |            |           |
| Good 6     | 768875     |          |          |            |           |
| Bad 6      | 3.231125   |          |          |            |           |
| Name: pro  | oportion,  | dtype:   | float64  |            |           |
| classific  | cation re  | port and | accuracy | for bow_fe | eatures:  |
|            |            | cision   |          | f1-score   |           |
|            | Bad        | 0.45     | 0.59     | 0.51       | 462       |
| (          | Good       | 0.87     | 0.79     | 0.82       | 1538      |
| accur      | racy       |          |          | 0.74       | 2000      |
| macro      | avg        | 0.66     | 0.69     | 0.67       | 2000      |
| weighted   | avg        | 0.77     | 0.74     | 0.75       | 2000      |
| Accuracy   | Score: 0   | .7415    |          |            |           |
| classific  | ation re   | port and | accuracy | for tfidf  | features: |
|            |            | cision   | recall   |            |           |
|            | Bad        | 0.59     | 0.67     | 0.63       | 462       |
| (          | Good       | 0.90     | 0.86     | 0.88       | 1538      |
| accur      | acy        |          |          | 0.82       | 2000      |
| macro      | avg        | 0.74     | 0.76     | 0.75       | 2000      |
| weighted   | avg        | 0.83     | 0.82     | 0.82       | 2000      |

Nanyang Polytechnic Post-Diploma Certificate in Applied Data Science ITD214 Applied Data Science Project Final Project Presentation 26 Feb 2025

Group 4
Individual Presentation
Wong Shao Mun (Admission No. 1038987U)

#### Outline

- 1. Business Problem, Dataset and Data Cleaning (Group)
- Model Design (Individual)
- Model Assessment (Individual)
- 4. Evaluation and Recommendations (Group)

#### Clean Data

- Shape (10000, 26)
- Number of rows: 10000
- Number of columns: 26

#### Clean Data

 Data rather clean, fields of interest need not be dropped or imputed: 'reviews.date', 'reviews.rating' and 'reviews.text' (each with 10k rows)

| Count number of rows | s with non-empty | reviews.date         | 10000 |
|----------------------|------------------|----------------------|-------|
| values:              |                  | reviews.dateAdded    | 0     |
| id                   | 10000            | reviews.dateSeen     | 10000 |
| dateAdded            | 10000            | reviews.rating       | 10000 |
| dateUpdated          | 10000            | reviews.sourceURLs   | 10000 |
| address              | 10000            | reviews.text         | 10000 |
| categories           | 10000            | reviews.title        | 9999  |
| primaryCategories    | 10000            | reviews.userCity     | 10000 |
| city                 | 10000            | reviews.userProvince | 9998  |
| country              | 10000            | reviews.username     | 10000 |
| keys                 | 10000            | sourceURLs           | 10000 |
| latitude             | 10000            | websites             | 10000 |
| longitude            | 10000            | dtype: int64         |       |
| name                 | 10000            |                      |       |
| postalCode           | 10000            |                      |       |
| province             | 10000            |                      |       |

- Extract year, month, day, weekofyear and day\_of\_week for time series analysis
- Apply one-hot encoding for day\_of\_week

```
# Extract year, month, day and weekofyear from 'reviews.date'.
df['year'] = df['reviews.date'].dt.year
df['month'] = df['reviews.date'].dt.month
df['day'] = df['reviews.date'].dt.day
df['weekofyear'] = df['reviews.date'].dt.isocalendar().week
# Extract day of the week (e.g., Mon, Tue, etc.)
df['day of week'] = df['reviews.date'].dt.strftime('%a') # Short format (Mon, Tue)
# Apply one-hot encoding for df['day of week'] column.
df = pd.get dummies(df, columns=['day of week'], dtype=int)
print(df.head())
```

```
keys latitude ... month \
0 us/ca/goleta/5620callereal/-1127060008 34.44178 ... 1
1 us/ca/carmelbythesea/5thandsancarlospobox3574/... 36.55722 ... 4
2 us/ca/carmelbythesea/5thandsancarlospobox3574/... 36.55722 ... 1
3 us/ca/carmelbythesea/5thandsancarlospobox3574/... 36.55722 ... 8
4 us/ca/carmelbythesea/5thandsancarlospobox3574/... 36.55722 ... 3
```

|   |   |     |            |                 |                 |                   | _ |
|---|---|-----|------------|-----------------|-----------------|-------------------|---|
|   |   | day | weekofyear | day_of_week_Fri | day_of_week_Mon | day_of_week_Sat \ |   |
| ١ | 0 | 1   | 1          | 0               | 1               | 0                 |   |
|   | 1 | 2   | 13         | 0               | 0               | 1                 |   |
|   | 2 | 6   | 1          | 0               | 0               | 0                 |   |
|   | 3 | 22  | 34         | 0               | 1               | 0                 |   |
|   | 4 | 21  | 12         | 0               | 1               | 0                 |   |
|   |   |     |            |                 |                 |                   |   |

```
        day_of_week_Sun
        day_of_week_Thu day_of_week_Tue day_of_week_Wed

        0
        0
        0
        0

        1
        0
        0
        0
        0

        2
        0
        0
        0
        1

        3
        0
        0
        0
        0

        4
        0
        0
        0
        0
```

- 'reviews.rating' = 1, 2, 3, 4 or 5
- Negative sentiment: 1 or 2 and positive sentiment: 4 or 5
- Need check 'reviews.rating' = 3 is whether negative or positive sentiment

```
# Filter for rows where 'reviews.rating' is equal to 3
filtered_df = df[df['reviews.rating'] == 3]

# Select the desired columns and print the first 20 rows
print(filtered df[['reviews.rating', 'reviews.text']].head(20))
```

Output shows 'reviews.rating' = 3 is for negative sentiment

| r   | eviews.rating | reviews.text                                   |
|-----|---------------|------------------------------------------------|
| 0   | 3             | This hotel was nice and quiet. Did not know, t |
| 2   | 3             | Parking was horrible, somebody ran into my ren |
| 11  | 3             | I stayed here for three nights while I explore |
| 13  | 3             | The water is very hot and there's no cold wate |
| 18  | 3             | The Whitney Hotel is ideally located to see mo |
| 45  | 3             | The bar closed at 10pm which was poorOnly 3 da |
| 86  | 3             | We stayed here after traveling through Rocky M |
| 89  | 3             | MoreMore                                       |
| 98  | 3             | The issues started the first night. Do Not sta |
| 105 | 3             | If you are driving then this is for you! A bit |
| 106 | 3             | First impression, I see vehicles parked tightl |
| 113 | 3             | The hotel staff was friendly and engaging. The |
| 115 | 3             | I had a friend in town, so was looking for a S |
| 128 | 3             | This hotel is in a great location and the room |
| 132 | 3             | super friendly staff, average breakfast, free  |
| 144 | 3             | Nice place, but21 to park!Wifi would           |
| 160 | 3             | Average place , over priced and they charge yo |
| 175 | 3             | I chose this hotel because it was close to the |
| 179 | 3             | Although the Best Western is aesthetically ple |
| 183 | 3             | we checked in around 8pm room air conditioner  |

 Therefore will map 'reviews.rating' = 1, 2 and 3 as negative sentiment and 'reviews.rating' = 4 and 5 as positive sentiment

```
# Add df['sentiment'] where df['sentiment']=1 where df['reviews.rating']==4,
5 and df['sentiment']=0 where df['reviews.rating']==1, 2, 3.
# Create the 'sentiment' column based on 'reviews.rating'
df.loc[df['reviews.rating'].isin([1, 2, 3]), 'sentiment'] = 0 # 0 for
negative sentiments.
df.loc[df['reviews.rating'].isin([4, 5]), 'sentiment'] = 1 # 1 for positive
sentiment.
# Convert to integer
df['sentiment'] = df['sentiment'].astype(int)
```

Negative sentiment is around 23% while positive sentiment is around 77%

|           |                | count |
|-----------|----------------|-------|
| sentiment | reviews.rating |       |
| 0         | 1              | 567   |
|           | 2              | 554   |
|           | 3              | 1190  |
| 1         | 4              | 2849  |
|           | 5              | 4840  |

|   | sentiment | count | percentage |
|---|-----------|-------|------------|
| 1 | 0         | 2311  | 23.11      |
| 0 | 1         | 7689  | 76.89      |

dtype: int64

# Construct Data (Before Merging Target Variable Categories)



# Construct Data (After Merging Target Variable Categories)



# Construct Data (Before Merging Target Variable Categories)



# Construct Data (After Merging Target Variable Categories)



# Integrate Data

Declare time-related variables as features and sentiment as target variable

```
# Declare features, X with columns: year, month, day, weekofyear,
day of week Mon, day of week Tue, day of week Wed, day of week Thu,
day of week Fri, day of week Sat, day of week Sun.
x = df[['year', 'month', 'day', 'weekofyear', 'day of week Mon',
'day of week Tue', 'day of week Wed',
        'day of week Thu', 'day of week Fri', 'day of week Sat',
'day of week Sun']]
# Declare target variable, Y with column: sentiment.
y = df['sentiment']
```

## **Format Data**

Convert 'reviews.date' to datetime data type

```
# Convert 'reviews.date' column to datetime objects, specifying the correct
format

df['reviews.date'] = pd.to_datetime(df['reviews.date'], format='ISO8601') #
alternative for ISO8601 format
```

## **Format Data**

Data type of 'reviews.date' changed from object to datetime

| df.dtypes:        |         | reviews.date datetime | 64[ns, UTC] |  |
|-------------------|---------|-----------------------|-------------|--|
| id                | object  | reviews.dateAdded     | float64     |  |
| dateAdded         | object  | reviews.dateSeen      | object      |  |
| dateUpdated       | object  | reviews.rating        | int64       |  |
| address           | object  | reviews.sourceURLs    | object      |  |
| categories        | object  | reviews.text          | object      |  |
| primaryCategories | object  | reviews.title         | object      |  |
| city              | object  | reviews.userCity      | object      |  |
| country           | object  | reviews.userProvince  | object      |  |
| keys              | object  | reviews.username      | object      |  |
| latitude          | float64 | sourceURLs            | object      |  |
| longitude         | float64 | websites              | object      |  |
| name              | object  | dtype: object         |             |  |
| postalCode        | object  |                       |             |  |
| province          | object  |                       |             |  |
|                   |         |                       |             |  |

# Project Plan (Group)

2015 and 2016 data seems out of place



# Project Plan (Group)

2015 and 2016 data seems out of place



# Project Plan (Group)

- Shao Mun
  - Fine-tune hyperparameters of models [KNN, SVM, logistic regression, decision tree, Gaussian Naive Bayes (NB), random forest and gradient boosting] used
  - Upon consultation with tutor, Ms Joanna Foo, do not drop years for time series analysis

- Feature Selection
  - Correlation analysis
    - Heatmap shows sentiment to be highly positively correlated to reviews.rating which is expected as sentiment is a derived variable of reviews.rating



dtype: int64

#### Feature Selection

- Any feature that does not require any further grouping
- Potential candidate: 'primaryCategories' (4 categories)
- Not selected because highly imbalanced data

# Accommodation & Food Services 9762 Accommodation & Food Services, Arts Entertainment & Recreation 7 Accommodation & Food Services, Administrative & Support & Waste Management & Remediation 1 Accommodation & Food Services, Agriculture 1

count

#### Feature Selection

- Features: Time-related variables
- Target variable: 'sentiment' where 0 is negative sentiment and 1 is positive sentiment

```
# Declare features, X with columns: year, month, day, weekofyear, day_of_week_Mon, day_of_week_Tue,
# day of week Wed, day of week Thu, day of week Fri, day of week Sat, day of week Sun.
x = df[['year', 'month', 'day', 'weekofyear', 'day of week Mon', 'day of week Tue', 'day of week Wed',
        'day of week Thu', 'day of week Fri', 'day of week Sat', 'day of week Sun']]
print("x.shape:", x.shape)
print("x:")
print(x)
print()
# Declare target variable, Y with column: sentiment.
y = df['sentiment']
print("y.shape:", y.shape)
print("y:")
print(y)
print()
```

#### Models Ran

- K-Nearest Neighbors: n\_neighbors tuned from 5 to 50 in stepsize of 5
- Support Vector Machine (SVM)
- Logistic Regression
- o Decision Trees: min samples split tuned as 2, 10, 20, 30
- Gaussian Naive Bayes
- Random Forest: n estimators tuned from 5 to 30 in stepsize of 5
- Gradient Boosting

#### Clarification for Ms Lim Ai Huey's question on Wed, 26 Feb 2025

- Joint examination by Ms Lim Ai Huey and Mr Kee Li-ren
- Ms Lim to Shao Mun: Model using linear regression, neural network or generalised linear model (GLM) as SVM not suitable
- Reply to Ms Lim: The target variable was coded categorical variable, 0 for negative sentiment and 1 for positive sentiment. That is why models like SVM were used

#### Performance

- Metrics: Mean CV Accuracy, Train Accuracy, Test Accuracy, Train Precision, Test Precision
- Highest accuracies came from KNC models
- But model cannot predict negative sentiment

|    | Model                            | Cross-Validation Accuracy Scores         | Mean CV Accuracy | Train Accuracy | Test Accuracy | Train Precision | Test Precision |
|----|----------------------------------|------------------------------------------|------------------|----------------|---------------|-----------------|----------------|
| 6  | KNC(n=35)                        | [0.7693, 0.7692, 0.7692, 0.7697, 0.7697] | 0.7694           | 0.7693         | 0.7697        | 0.5919          | 0.5924         |
| 7  | KNC(n=40)                        | [0.7693, 0.7692, 0.7692, 0.7697, 0.7697] | 0.7694           | 0.7693         | 0.7697        | 0.5919          | 0.5924         |
| 8  | KNC(n=45)                        | [0.7693, 0.7692, 0.7692, 0.7697, 0.7697] | 0.7694           | 0.7693         | 0.7697        | 0.5919          | 0.5924         |
| 9  | KNC(n=50)                        | [0.7693, 0.7692, 0.7692, 0.7697, 0.7697] | 0.7694           | 0.7693         | 0.7697        | 0.5919          | 0.5924         |
| 11 | LR                               | [0.7693, 0.7692, 0.7692, 0.7697, 0.7697] | 0.7694           | 0.7693         | 0.7697        | 0.5919          | 0.5924         |
| 5  | KNC(n=30)                        | [0.7693, 0.7677, 0.7692, 0.7697, 0.7692] | 0.7690           | 0.7696         | 0.7692        | 0.7459          | 0.6693         |
| 23 | GB                               | [0.7683, 0.7687, 0.7697, 0.7692, 0.7677] | 0.7687           | 0.7720         | 0.7677        | 0.8241          | 0.6307         |
| 10 | SVM                              | [0.7693, 0.7687, 0.7666, 0.7687, 0.7677] | 0.7682           | 0.7731         | 0.7677        | 0.8174          | 0.5921         |
| 4  | KNC(n=25)                        | [0.7688, 0.7682, 0.7692, 0.7692, 0.7671] | 0.7685           | 0.7699         | 0.7671        | 0.7462          | 0.6251         |
| 16 | GNB                              | [0.7708, 0.761, 0.7666, 0.7636, 0.7631]  | 0.7650           | 0.7660         | 0.7631        | 0.6793          | 0.6632         |
| 2  | KNC(n=15)                        | [0.7606, 0.761, 0.7584, 0.7646, 0.761]   | 0.7611           | 0.7723         | 0.7610        | 0.7400          | 0.6444         |
| 3  | KNC(n=20)                        | [0.7662, 0.762, 0.7651, 0.7656, 0.761]   | 0.7640           | 0.7701         | 0.7610        | 0.7176          | 0.6286         |
| 1  | KNC(n=10)                        | [0.7335, 0.7462, 0.7349, 0.739, 0.7303]  | 0.7368           | 0.7717         | 0.7303        | 0.7259          | 0.6373         |
| 15 | DT(min_samples_samples split=30) | [0.7212, 0.7124, 0.7134, 0.7323, 0.7149] | 0.7189           | 0.7812         | 0.7149        | 0.7473          | 0.6345         |
| 0  | KNC(n=5)                         | [0.7182, 0.7329, 0.7247, 0.718, 0.7134]  | 0.7214           | 0.7818         | 0.7134        | 0.7487          | 0.6383         |
| 19 | RF(n=15)                         | [0.7074, 0.7032, 0.7134, 0.6929, 0.7042] | 0.7042           | 0.8178         | 0.7042        | 0.8055          | 0.6402         |
| 21 | RF(n=25)                         | [0.7033, 0.7108, 0.7057, 0.7021, 0.7011] | 0.7046           | 0.8205         | 0.7011        | 0.8084          | 0.6407         |
| 14 | DT(min_samples_samples split=20) | [0.6997, 0.6965, 0.7032, 0.7011, 0.7006] | 0.7002           | 0.7899         | 0.7006        | 0.7628          | 0.6363         |
| 20 | RF(n=20)                         | [0.7084, 0.7088, 0.7073, 0.697, 0.6996]  | 0.7042           | 0.8203         | 0.6996        | 0.8082          | 0.6382         |
| 22 | RF(n=30)                         | [0.7049, 0.7062, 0.7062, 0.7042, 0.6981] | 0.7039           | 0.8208         | 0.6981        | 0.8094          | 0.6364         |
| 18 | RF(n=10)                         | [0.7049,0.7052,0.7057,0.6909,0.6899]     | 0.6993           | 0.8157         | 0.6899        | 0.8009          | 0.6357         |
| 17 | RF(n=5)                          | [0.7003, 0.7001, 0.6868, 0.6868, 0.6791] | 0.6906           | 0.8072         | 0.6791        | 0.7884          | 0.6315         |
| 13 | DT(min_samples_samples split=10) | [0.6706, 0.6694, 0.6847, 0.674, 0.6709]  | 0.6739           | 0.8052         | 0.6709        | 0.7858          | 0.6370         |
| 12 | DT(min_samples_split=2)          | [0.6645, 0.651, 0.6699, 0.6597, 0.6535]  | 0.6597           | 0.8214         | 0.6535        | 0.8076          | 0.6368         |



#### Models Ran

- Tried undersampling of the majority class (sentiment=1) in the training set
  - K-Nearest Neighbors: n\_neighbors tuned from 5 to 50 in stepsize of 5
  - Support Vector Machine (SVM)
  - Logistic Regression
  - Decision Trees: min\_samples\_split tuned as 2, 10, 20, 30
  - Gaussian Naive Bayes
  - Random Forest: n\_estimators tuned from 5 to 30 in stepsize of 5
  - Gradient Boosting

#### Performance

- Metrics: Mean CV Accuracy, Train Accuracy, Test Accuracy, Train Precision, Test Precision
- Highest accuracy came from GNB model
- Accuracies worsened from no sampling to undersampling of the majority class (sentiment=1) in the training set
- Model can predict negative sentiment but not very well

|    | Model                            | Cross-Validation Accuracy Scores         | Mean CV Accuracy | Train Accuracy | Test Accuracy | Train Precision | Test Precision |
|----|----------------------------------|------------------------------------------|------------------|----------------|---------------|-----------------|----------------|
| 16 | GNB                              | [0.5038, 0.4964, 0.5287, 0.5604, 0.5952] | 0.5369           | 0.5300         | 0.5952        | 0.5340          | 0.6554         |
| 11 | LR                               | [0.4987, 0.5113, 0.5031, 0.5353, 0.5921] | 0.5281           | 0.5158         | 0.5921        | 0.5178          | 0.6556         |
| 23 | GB                               | [0.5402, 0.5138, 0.5092, 0.5281, 0.5302] | 0.5243           | 0.6154         | 0.5302        | 0.6155          | 0.6748         |
| 10 | SVM                              | [0.4844, 0.5133, 0.5271, 0.5087, 0.5123] | 0.5092           | 0.6692         | 0.5123        | 0.6694          | 0.6489         |
| 6  | KNC(n=35)                        | [0.4844, 0.5184, 0.5092, 0.5123, 0.5046] | 0.5058           | 0.5799         | 0.5046        | 0.5799          | 0.6543         |
| 19 | RF(n=15)                         | [0.5079, 0.4995, 0.4964, 0.4933, 0.5041] | 0.5003           | 0.7879         | 0.5041        | 0.7881          | 0.6529         |
| 8  | KNC(n=45)                        | [0.4997, 0.5082, 0.5159, 0.5138, 0.5041] | 0.5083           | 0.5588         | 0.5041        | 0.5588          | 0.6569         |
| 4  | KNC(n=25)                        | [0.5013, 0.501, 0.4872, 0.5061, 0.5031]  | 0.4997           | 0.5874         | 0.5031        | 0.5874          | 0.6547         |
| 17 | RF(n=5)                          | [0.5095, 0.5087, 0.4826, 0.4882, 0.501]  | 0.4980           | 0.7673         | 0.5010        | 0.7674          | 0.6532         |
| 21 | RF(n=25)                         | [0.5028, 0.4939, 0.4923, 0.4949, 0.4995] | 0.4967           | 0.7915         | 0.4995        | 0.7916          | 0.6508         |
| 18 | RF(n=10)                         | [0.5095, 0.4908, 0.4765, 0.5005, 0.4995] | 0.4953           | 0.7823         | 0.4995        | 0.7824          | 0.6525         |
| 20 | RF(n=20)                         | [0.5054, 0.499, 0.4903, 0.4893, 0.4974]  | 0.4963           | 0.7901         | 0.4974        | 0.7902          | 0.6482         |
| 22 | RF(n=30)                         | [0.5084, 0.4995, 0.4898, 0.5015, 0.4949] | 0.4988           | 0.7920         | 0.4949        | 0.7921          | 0.6453         |
| 13 | DT(min_samples_samples split=10) | [0.4721, 0.4754, 0.4601, 0.4729, 0.4913] | 0.4744           | 0.7460         | 0.4913        | 0.7474          | 0.6545         |
| 2  | KNC(n=15)                        | [0.4813, 0.4903, 0.499, 0.5041, 0.4893]  | 0.4928           | 0.6129         | 0.4893        | 0.6133          | 0.6444         |
| 14 | DT(min_samples_samples split=20) | [0.5033, 0.4708, 0.498, 0.4887, 0.4841]  | 0.4890           | 0.7019         | 0.4841        | 0.7030          | 0.6500         |
| 9  | KNC(n=50)                        | [0.4701, 0.4821, 0.4882, 0.4877, 0.4836] | 0.4823           | 0.5696         | 0.4836        | 0.5708          | 0.6624         |
| 0  | KNC(n=5)                         | [0.4813,0.4785,0.477,0.4667,0.4688]      | 0.4745           | 0.6728         | 0.4688        | 0.6759          | 0.6478         |
| 12 | DT(min_samples_split=2)          | [0.4706, 0.4591, 0.4396, 0.4493, 0.4667] | 0.4571           | 0.7926         | 0.4667        | 0.7998          | 0.6523         |
| 7  | KNC(n=40)                        | [0.4757, 0.4693, 0.4857, 0.4944, 0.4632] | 0.4776           | 0.5666         | 0.4632        | 0.5685          | 0.6556         |
| 15 | DT(min_samples_samples split=30) | [0.4936, 0.4678, 0.4995, 0.4708, 0.4621] | 0.4788           | 0.6778         | 0.4621        | 0.6799          | 0.6392         |
| 5  | KNC(n=30)                        | [0.4476, 0.4754, 0.4458, 0.4662, 0.458]  | 0.4586           | 0.5793         | 0.4580        | 0.5832          | 0.6582         |
| 3  | KNC(n=20)                        | [0.4373, 0.4591, 0.4406, 0.4514, 0.4529] | 0.4483           | 0.5968         | 0.4529        | 0.6006          | 0.6491         |
| 1  | KNC(n=10)                        | [0.4143, 0.4324, 0.3951, 0.4335, 0.4268] | 0.4204           | 0.6278         | 0.4268        | 0.6434          | 0.6524         |



- Previous models ran could not predict negative sentiment well
- Proceed to try AutoRegressive Integrated Moving Average (ARIMA) time series forecasting model
  - o df3\_numeric =
     df3.select\_dtypes(include=['number']).groupby(df3['date\_yyyy\_mm\_dd']).mean()
  - sentiment values of 0 and 1 were grouped by time period (date/week/month) and mean taken for aggregated time period
  - Implication: Prediction from 0 to < 0.5: negative sentiment while prediction from 0.5 to 1: positive sentiment

- Need check whether time series data is stationary
- Check reveals time series data is stationary

```
[82] # Augmented Dickey-Fuller (ADF) test. The null hypothesis of the ADF test is that the series is non-stationary.
    from statsmodels.tsa.stattools import adfuller

# Perform ADF test on the 'sentiment' column (you can replace with your target variable)
    result = adfuller(df3['sentiment'])

# Print the results
    print("ADF Statistic:", result[0])
    print("p-value:", result[1])
    print("Critical Values:", result[4])

ADF Statistic: -12.111143448908674
    p-value: 1.9181150644839028e-22
    Critical Values: {'1%': -3.4310214251582605, '5%': -2.8618367291146485, '10%': -2.56692794378353}
```

#### Augmented Dickey-Fuller (ADF) Test Result Analysis

- 1. The null hypothesis of the ADF test is that the series is non-stationary.
- 2. Since the p-value is significantly less than 0.05 (in fact, it's very close to 0), you can reject the null hypothesis and conclude that the data is stationary.
- 3. The ADF Statistic (-12.11) is much smaller than the critical values at the 1%, 5%, and 10% levels (e.g., -3.43 at the 1% level). This further confirms that the data does not have a unit root and is indeed stationary.
- ARIMA modelling needs time series to be stationary. Since the ADF test shows that the series is stationary, therefore can proceed to do ARIMA modelling.

|         | model                                                                                                                                                      | mae      | mse      | rmse     |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|
| daily   | <statsmodels.tsa.arima.model.arimaresultswrapp< th=""><th>0.287963</th><th>0.119532</th><th>0.345734</th></statsmodels.tsa.arima.model.arimaresultswrapp<> | 0.287963 | 0.119532 | 0.345734 |
| weekly  | $<\!statsmodels.tsa.arima.model.ARIMAR esultsWrapp$                                                                                                        | 0.195103 | 0.073571 | 0.271240 |
| monthly | $<\!statsmodels.tsa.arima.model.ARIMAR esultsWrapp$                                                                                                        | 0.163335 | 0.064178 | 0.253334 |

#### Performance

- Metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)
- Results were close to one another
  - Monthly model most accurate
  - Daily model the worst
    - More sensitive to short-term variations so less stable and harder to use for long-term forecasting
- Rather say which model is the best, better to view each model serves its own purpose
  - Daily model helps with daily analysis of sentiment spike
  - Weekly model can help to smooth out the daily fluctuations
  - Monthly model gives a broader picture of sentiment trends which is useful for business or marketing strategies

Daily model shows 30-day forecast of sentiment = 0.8 (80% likely positive)





Weekly model shows 12-week forecast of sentiment = 0.8 (80% likely positive)





Monthly model shows 12-month forecast of sentiment = 0.8 (80% likely positive)





- All 3 models (daily, weekly, monthly) shows forecast of sentiment = 0.8 (80% likely positive)
- Means a likely 20% chance of getting negative sentiment
- Hotel can reschedule existing staff or hire more staff to have 20% more man hours to handle potential negative sentiment

#### **Business Proposal: Enhancing Guest Experience and Revenue**

#### **Executive Summary:**

This proposal outlines a data-driven strategy to enhance guest experiences and increase revenue for the hotel by leveraging insights gained from topic modeling, sentiment analysis, and time series analysis of hotel reviews and operational data. By understanding guest preferences, addressing concerns, and optimizing operations based on seasonal trends, we can achieve significant improvements in guest satisfaction and profitability.

#### 1. Understanding Guest Preferences through Topic Modeling:

• **Analysis:** We employed topic modeling to identify recurring themes and topics within guest reviews. This analysis revealed key areas of interest for our guests, including frequently mentioned topics, e.g. "room", "clean", "staff".

#### Recommendations:

- Targeted Marketing: Develop marketing campaigns that highlight the specific aspects of the hotel that resonate most with guests, such as hotel room cleanliness
- Service Enhancement: Focus on improving services and amenities that are frequently mentioned in positive reviews, such as hotel staff services
- Addressing Concerns: Identify and address negative topics or concerns raised by guests, such as parking spaces

#### 2. Enhancing Guest Satisfaction with Sentiment Analysis:

- **Analysis:** The TF-IDF model before SMOTE is applied. It reveals that the 'Good' reviews are the majority class (around 77%), while 'Bad' reviews are the minority (around 23%). This analysis helped us understand the positive and negative aspects of guest experiences.
- Recommendations:
  - Proactive Service Recovery: Implement a system to identify and address negative reviews in real-time, offering solutions and demonstrating a commitment to guest satisfaction.
  - Staff Training: Train staff to address common guest concerns example room cleanliness and hotel staff service. It provide exceptional service in areas identified as needing improvement.
  - Personalized Experiences: Leverage sentiment analysis to personalize guest interactions, offering tailored recommendations and amenities based on their preferences - Use a customer journey map template to help create each persona.

#### 3. Optimizing Operations with Time Series Analysis:

- Analysis: All 3 models (daily, weekly, monthly) shows forecast of sentiment =
   0.8 (80% likely positive)
- Means a likely 20% chance of getting negative sentiment
- Recommendation:
  - Staffing Optimization: Hotel can reschedule existing staff or hire more staff to have 20% more man hours to handle potential negative sentiment

#### Overall recommendations:

#### 1. From topic modelling

- a. Positive topics: Customer service, charm of location, affordability, cleanliness, smooth check-in, comfort, breakfast, parking
- b. Negative topics: Dining experience, cleanliness, mattress/bed, noise, microwave, smoke, front desk, room
- c. Focus on these **common aspects** can help drive positive sentiment up and reduce negative sentiment **at the same time**:
  - i. Customer service: Check-in, front desk experience
  - ii. Room: Bed, mattress, comfort
  - iii. Ambience: Cleanliness, smoke
  - iv. Food: Breakfast, dining experience

#### 4. Measuring Success:

- Key Performance Indicators (KPIs):
  - Guest Satisfaction Scores: Monitor online reviews and guest surveys to track improvements in overall satisfaction.
  - Revenue Growth: Measure the impact of implemented strategies on revenue generation and profitability.
  - Occupancy Rates: Track changes in occupancy rates to assess the effectiveness of pricing and marketing initiatives.
- Reporting and Monitoring: Regularly report on KPIs and adjust strategies as needed to ensure continuous improvement.

#### Conclusion:

By implementing the recommendations outlined in this proposal, the hotel can enhance guest experiences, optimize operations, and achieve significant improvements in overall performance and profitability. The data-driven insights gained from Python analysis provide a strong foundation for making informed decisions and driving positive change within the business.