FONCTIONNELLES

Exercice 1 : Utilisation de schémas de quantification logique.

- 1°) Ecrire une fonction tous-egaux qui a comme argument une liste $\mathbb L$ non vide, et qui retourne #t si tous les éléments de $\mathbb L$ sont égaux et #f sinon.
 - a) en utilisant un schéma universel.
 - b) en utilisant un schéma existentiel.
- 2°) Ecrire une fonction tous-diff qui a comme argument une liste L qui contient au moins deux éléments, et qui retourne #t si les éléments de L sont tous différents deux à deux et #f sinon.
 - a) en utilisant un schéma universel.
 - b) en utilisant un schéma existentiel.

Exercice 2 : Schémas de récurrence simple et double.

1°) Ecrire un schéma de récurrence simple permettant d'évaluer le n^{ième} terme d'une suite (u_n) définie par :

$$u_n = f(u_{n-1}, n)$$
 et $u_{n_0} = B$.

Appliquer ce schéma aux cas de la somme des n premiers entiers non nuls, de la somme des carrés des n premiers entiers non nuls, de la factorielle, de la suite de Fibonacci (en posant $U_n = (u_n, u_{n+1}), n_0 = 0$ et $U_0 = B = '(1 1)$).

2°) En déduire un schéma de récurrence double permettant d'évaluer le $n^{ième}$ terme d'une suite (u_n) définie par :

$$u_n = f(u_{n-1}, u_{n-2}, n), u_{n_0} = B_0, u_{n_0+1} = B_1.$$

Appliquer à la suite de Fibonacci.

Exercice 3 : Relation d'équivalence; Ensemble quotient.

On représente un ensemble fini E avec une liste E, et une relation R dans E par une fonction anonyme R à deux arguments formels x et y telle que l'évaluation de cette fonction anonyme pour deux arguments effectifs x1 et y1 retourne #t si x1 R y1 et retourne #t sinon.

Exemple:

```
(let ((E '(0 1 2 3 4 5 6)) (R (lambda (x y) (= (modulo (- x y) 3) 0))) )
```

- 1°) Ecrire la fonction reflexive qui a deux arguments R et E, et qui retourne t si R est réflexive et #f sinon.
- 2°) Ecrire a fonction symetrique qui a deux arguments R et E, et qui retourne t si R est symétrique et #f sinon.
- 3°) Ecrire la fonction transitive qui a deux arguments R et E, et qui retourne t si R est transitive et #f sinon.
- 4°) Ecrire la fonction quotient qui a deux arguments R et E, et qui, si R est une relation d'équivalence, retourne l'ensemble quotient de E par R sous forme d'une liste contenant les classes d'équivalence de R, chacune représentée par une sous-liste.

Exemple:

Avec l'exemple ci-dessus (quotient E R) retourne ((0 3 6) (1 4) (2 5)).

Exercice 4 : Produits cartésiens

Ecrire la fonction PC qui a deux arguments, l'ensemble E et un entier n et qui retourne une liste contenant, sous forme de sous-listes, l'ensemble des n-uplets de E.

Exemple:

```
(PC '(0 1) 3) retourne:
    ((0 0 0) (0 0 1) (0 1 0) (0 1 1) (1 0 0) (1 0 1) (1 1 0) (1 1 1)).
```

Exercice 5 : Chemins dans un graphe orienté

On représente un graphe orienté par une liste G de couples dont le premier élément est un sommet du graphe, et le second la liste des successeurs de ce sommet.

Exemple:

```
(let ((G '((D (A C)) (A (D C B)) (C (B)) (B ()))))
```

Dans l'exemple ci-dessus G représente le graphe orienté représenté ci-contre :

Ecrire la fonction chemins qui a trois paramètre, dep, but, et G et qui retourne la liste de tous les chemins de G (représentés par des sous listes) partant de dep et arrivant à but.

Exercice 6 : Algèbre linéaire

On représente une matrice carrée $n \times n$ par une liste de n sous-listes contenant chacune n valeurs numériques, chaque sous-liste représentant une ligne de la matrice.

On représente un vecteur colonne de taille n par une liste de n valeurs numériques.

- 1°) Ecrire une fonction trace ayant comme argument une matrice M et telle que l'évaluation de l'expression (trace M) retourne la trace de la matrice M, c'est-à-dire la somme de ses éléments diagonaux.
- 2°) Ecrire une fonction transp qui a comme argument une matrice M et qui retourne la matrice M transposée. Exemple :

```
(transp'((11 21 31) (12 22 32) (13 23 33))) retourne: ((11 12 13) (21 22 23) (31 32 33)).
```

- 3°) Ecrire une fonction MV qui a comme argument une matrice M et un vecteur V et qui retourne le vecteur produit de M par V.
- 4°) Ecrire une fonction AL qui a comme argument une matrice M et qui retourne l'application linéaire qui lui correspond.

Exercice 7 : Suite des itérés d'une fonction

- 1°) Expression Expression compose qui a comme arguments deux fonctions d'une seule variable, f et g, et qui retourne la fonction fog: $x \mapsto f(g(x))$.
- 2°) Ecrire une fonction trace qui a comme arguments une fonction d'une seule variable, f, et un entier n, et qui retourne la liste de fonctions (Id f f² ... fn), où Id désigne la fonction identité et fn désigne la composition de f (n-1) fois par elle-même.
- 3°) Ecrire une fonction applique qui a comme arguments une liste de fonctions d'une seule variable, Lf, et une variable x, et qui retourne la liste des applications des fonctions de Lf à la variable x.

Par exemple, l'évaluation de (applique (trace (lambda (x) (* \times x)) 3) 2) doit retourner la liste (2 4 16 256).

Exercice 8 : Ensemble des parties d'un ensemble

Ecrire une fonction $\mathbb P$ ayant comme argument une liste $\mathbb E$ représentant un ensemble E et telle que l'évaluation de l'expression ($\mathbb P$ $\mathbb E$) retourne une liste de sous-listes représentant l'ensemble des parties de E, chaque sous-liste représentant une partie de E.

```
Par exemple, l'évaluation de (P ' (1 2 3)) doit retourner (() (1) (2) (3) (1 2) (1 3) (2 3) (1 2 3))
```

ou toute autre liste contenant les mêmes éléments dans un ordre différent.

Exercice 9: Partition d'un ensemble en deux parties

Etant donné un ensemble E, on appelle partition de E tout ensemble P_E de parties de E tel que:

$$\forall A \in P_E, A \neq \emptyset,$$

$$\forall (A, B) \in (P_E)^2, A \cap B = \emptyset,$$

$$\bigcup_{A \in P_E} A = E.$$

On note P_E^2 l'ensemble des partitions de E en deux parties.

Cet ensemble est forcément vide si *E* est de cardinalité inférieure à 2.

```
 \begin{aligned} \text{Pour } E &= \{3,4\}, \text{ on a } P_E^2 &= & \{ \{3\}, \{4\}\} \}. \\ \text{Pour } E &= \{2,3,4\}, \text{ on a } P_E^2 &= & \{ \{2,3\}, \{4\}\}, \{\{3\}, \{2,4\}\}, \{\{2\}, \{3,4\}\} \}. \\ \text{Pour } E &= \{1,2,3,4\}, \text{ on a } P_E^2 &= & \{ \{1,2,3\}, \{4\}\}, \{\{1,3\}, \{2,4\}\}, \{\{1,2\}, \{3,4\}\}, \{\{2\}, \{1,3,4\}\}, \{\{1\}, \{2,3\}, \{4\}\} \}. \end{aligned}
```

Ecrire une fonction P2 qui a comme argument une liste E, représentant un ensemble E, et telle que l'évaluation de l'expression (P2 E) retourne la liste représentant l'ensemble des partitions en deux parties de l'ensemble E.

Exercice 10: Ensemble des fonctions stabilisant une partie d'un ensemble

1°) a) Ecrire une fonction fct ayant comme arguments deux listes d et a de même longueur, l, et telle que l'évaluation de l'expression (f d a) retourne une fonction qui appliquée à tout élément placé en $n^{\text{ième}}$ position dans d (avec $1 \le n \le l$) retourne l'élément placé en $n^{\text{ième}}$ position dans a.

Par exemple l'évaluation de ((fct '(a b c) '(x y z)) 'b) doit retourner y.

b) On suppose que l'on dispose d'une fonction PC ayant comme arguments une liste E représentant un ensemble, et un entier n, et telle que l'évaluation de l'expression (PC E n) retourne la liste de tous les n-uplets de l'ensemble E.

Ecrire, en utilisant les fonctions fct et PC, une fonction LF ayant comme argument deux listes non vides représentant deux ensembles non vides E et F, et telle que l'évaluation de l'expression (LF E F) retourne la liste de toutes les applications de E dans F (une application de E dans F pour laquelle chaque élément de E a une image).

<u>Indication</u>: si \mathbb{E} est un ensemble de cardinalité n, toute fonction de \mathbb{E} dans \mathbb{F} est caractérisée par un n-uplet d'éléments de \mathbb{F} , chaque terme en $k^{\text{ième}}$ position d'un tel n-uplet étant l'image du $k^{\text{ième}}$ élément de \mathbb{E} .

```
2°) a) Soit SR le schéma suivant :
```

En utilisant le schéma SR, écrire une fonction filtrer ayant comme arguments une liste E et un prédicat P, et telle que l'évaluation de l'expression (filtrer E P) retourne la liste des éléments de E satisfaisant P.

Par exemple, l'évaluation de (filtrer '(1 a 2 b) integer?) doit retourner la liste (1 2).

b) Soit qqs? le schéma suivant :

En utilisant le schéma qqs?, écrire un prédicat stabilise? ayant comme arguments une fonction f et une liste P représentant un ensemble, et telle que l'évaluation de l'expression (stabilise? f P) retourne une valeur logique vraie si f stabilise P (c'est-à-dire si l'image de tout élément de P par f appartient à P), et une valeur logique fausse sinon.

On pourra utiliser la fonction prédéfinie member? Ayant comme argument un élément x et une liste L et telle que l'évaluation de l'expression (member? X L) retourne une valeur logique vraie si x est élément de L, et une valeur logique fausse sinon.

c) Ecrire une fonction LFS ayant comme arguments une liste E représentant un ensemble, et une liste P représentant une partie de E, et telle que l'évaluation de l'expression (LFS E P) retourne la liste des fonctions de E dans E qui stabilisent P.

Exercice 11 : Définition des entiers naturels par la représentation de Church

Le principe de représentation d'un nombre entier dans la théorie du λ -calcul (représentation dite des *nombres de Church*) est le suivant : un entier n > 1 est représenté par une fonction qui, à toute fonction $f: x \mapsto f(x)$, associe la composition de f, n-1 fois par elle même, c'est-à-dire,

Par exemple l'entier 2 est représenté par la fonction $deux : f \mapsto deux (f) = f \circ f$. On a donc : $deux (f) : x \mapsto [deux (f)](x) = [f \circ f](x) = f[f(x)]$.

Par généralisation :

- l'entier 1 est représenté par la fonction : $f \mapsto f$;
- l'entier 0 est représenté par la fonction : $f \mapsto I$, où I représente la fonction identité.
- 1°) Ecrire les fonctions zero, un, et deux, représentant respectivement les entiers 0, 1 et 2.
- 2°) Ecrire la fonction trois, représentant l'entier 3, en utilisant la fonction deux.
- 3°) En déduire une fonction succ ayant comme argument la représentation de Church d'un entier n, rn, et telle que l'évaluation de (succ rn) retourne la représentation de Church de l'entier n + 1.
- 4°) Ecrire une fonction nom ayant comme argument la représentation de Church d'un entier n, rn, et une liste de symboles, listenoms (supposée de longueur au moins égale à n+1), telle que l'évaluation de l'expression (nom rn listenoms) retourne le $(n+1)^{\text{ème}}$ élément de listenoms.

Par exemple l'évaluation de (nom trois '(Z I II III IV V VI)) retourne III.

5°) Ecrire une fonction entier ayant comme argument un symbole, nom, et une liste de symboles, listenoms, et retournant la représentation de Church de l'entier n-1 si nom figure en $n^{\text{ième}}$ position dans listenoms, et #f sinon.

Par exemple l'évaluation de (entier 'III ' (Z I II III IV V VI)) retourne la fonction qui à toute fonction f associe $f \circ f \circ f$.

On pourra utiliser les fonctions zero et succ définies ci-dessus.

- 6°) a) Ecrire une fonction plus ayant comme arguments les représentations de Church de deux entiers n et m, respectivement rn et rm, et telle que l'évaluation de l'expression (plus rn rm) retourne la représentation de Church de l'entier n + m.
- b) Que fait la fonction suivante ? Justifiez votre réponse.