Trabalho de Cálculo II

Orientadora: Adriana Padua Lovatte

Alunos: David de Moura Marques e Magno Macedo de Oliveira

Grupo V - Séries "a e II"

a)
$$\sum_{n=1}^{\infty} rac{n}{n^4+1}$$

II)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{10^n}$$

1 Verificar se as séries convergem:

1.1 (a)
$$\sum_{n=1}^{\infty} \frac{n}{n^4+1}$$

Seja f(x) =
$$\sum_{n=1}^{\infty} \frac{n}{n^4+1}$$
, h(x) = $\sum_{n=1}^{\infty} \frac{n}{n^4}$ e g(x) = $\sum_{n=1}^{\infty} \frac{1}{n^3}$, então f(x) <= h(x) < g(x)

E g(x) converge (P-Série, P=3) logo, pelo Teste da Comparação, F(x) converge.

1.2 (II)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{10^n}$$

Este é um exemplo de uma série alternada, para verificar sua convergência, faremos dois testes:

Se
$$b_{n+1} <= b_n$$

E se
$$\lim_{n o\infty}b_n=0$$

Dado que
$$b_n=rac{n}{10^n}$$
 então $b_{n+1}=rac{n+1}{10^{n+1}}$, logo $b_{n+1}<=b_n$

Calculemos agora $\lim_{n o \infty} b_n$

$$\lim_{n \to \infty} \frac{n}{10^n} = \lim_{n \to \infty} \frac{1}{10^n log(10)} = 0$$

Por tanto, a série converge

2 Calcular quantas operações são necessárias para determinar a soma de uma série infinita com uma precisão de 0,00000001 ('e' < 0,0000001)

Métodos a serem utilizados:

2.1 O erro 'e' será obtido, fazendo:

```
\operatorname{e} = S_n - S_{n-1} , onde:
```

 S_n : É a enésima soma;

 S_{n-1} : É a soma anterior a enésima soma;

2.2 O erro 'e' será obtido utilizando a estimativa do resto para integral ou utilizando o teorema de estimativa de séries alternadas, de acordo com a série.

2.2.1 A estimativa de resto para integral é dada por:

$$e = \int_{n+1}^{\infty} f(x) dx$$

2.2.2 O teorema de estimativa de séries alternadas:

```
Se S=(-1)^{n-1}b_n for a soma de uma série alternada que satisfaz: 0<=b_{n+1}<=b_n e \lim_{n\to\infty}b_n=0 então R_n<=b_{n+1}
```

In [24]:

```
import numpy as np
import pandas as pd
from scipy.integrate import quad
import texttable as tt
from sympy import Poly, Symbol, init_printing, latex
from sympy.solvers.inequalities import reduce_rational_inequalities
PRECISAO = 0.00000001
```

In [25]:

```
def serieA(n):
   serie = 0
    for i in range(1,n):
        serie += i/((i^{**4})+1)
    return serie
def mod(num):
    if num < 0:
        return num * -1
    return num
def calculaErroI(serie):
    erro = 1.0
    quantidadeIteracoes = 1
    sn_menos_um = 0.0
    sn = 0.0
    tabela = tt.Texttable()
    tabela.header(['Nro Op', 'Sn-1', 'Sn', 'erro'])
    tabela.set_cols_dtype(['i','f','f','f'])
    tabela.set_precision(9)
    while erro >= PRECISAO:
        sn_menos_um = mod(serie(quantidadeIteracoes))
        sn = mod(serie(quantidadeIteracoes+1))
        erro = mod(sn - sn_menos_um)
        tabela.add_row([quantidadeIteracoes,sn_menos_um,sn,erro])
        quantidadeIteracoes+=1
    return tabela.draw()
```

2.3 Série a: $\sum_{n=1}^{\infty} \frac{n}{n^4+1}$

2.3.1 Utilizando o método 2.1

In [26]:

```
tabela = calculaErroI(serieA)

# imprime as dez primeiras linhas
print(tabela[0:][0:1218])
print('\t\t\t...')
# imprime as dez ultimas linhas
print(tabela[0:][len(tabela)-1218:])
```

+ Nro Op	+ Sn-1	 Sn	++ erro	
+=======	+====== 0.000000000	+====== 0.500000000	+======+ 0.500000000	
2	+ 0.500000000	 0.617647059	0.117647059 .	
3	0.617647059	0.654232425	0.036585366	
4	0.654232425	0.669796627	0.015564202	
5	0.669796627 +	0.677783847	0.007987220	
6 	0.677783847 +	0.682409908	0.004626060	
7	0.682409908 +	0.685324146	0.002914238	
8	0.685324146 +	0.687276794	0.001952648	
9 +	0.687276794 +	0.688648327 	0.001371533 ++	
10	0.688648327 +	0.689648227	0.000999900 ++	
455 +	0.694170602 +	0.694170612	0.000000011 	
456	0.694170612 	0.694170623	0.000000011	
457	0.694170623 	0.694170633	0.000000010	
458 +	0.694170633 +	0.694170644	0.000000010	
459 +	0.694170644 +	0.694170654	0.000000010 	
460 +	0.694170654 +	0.694170664	•	
461 	0.694170664 +	0.694170675	0.000000010 +	
462 +	0.694170675 +	0.694170685	0.000000010 +	
463 	0.694170685 +	0.694170695	0.000000010 +	
464 +	0.694170695 +	0.694170705	0.000000010 +	
465 	0.694170705 +	•	0.000000010 +	

2.3.2 Utilizando o método 2.2.1

OBS: Para esta série deve-se utilizar o método 2.1 ao invés do 2.2 pois não se trata de uma série alternada

De acordo com 1.1, podemos escrever esta série como $\int_{n+1}^{\infty} rac{1}{x^3} dx$

Resolvendo esta integral teremos:

$$\int_{n+1}^{\infty} rac{1}{x^3} dx = \lim_{x o\infty} \int_{n+1}^{x} rac{1}{x^3} dx = \lim_{x o\infty} -rac{1}{2x^2}]_{n+1}^{\infty}$$

$$\lim_{x \to \infty} \left[-\frac{1}{2x^2} - \left(-\frac{1}{2(n+1)^2} \right) \right] = 0 + \frac{1}{2(n+1)^2} = \frac{1}{2(n+1)^2}$$

onde n será nosso erro.

Calculando n:

$$\frac{1}{2(1+1)^2} < 0,0000001$$

In [27]:

```
def solveIneq():
    n = Symbol('n', real=True)
    return reduce_rational_inequalities([[1/(2*(n+1)**2) < PRECISAO]], n)</pre>
```

In [28]:

```
print(solveIneq())
```

```
((-inf < n) & (n < -7072.06781186548)) | ((7070.06781186548 < n) & (n < inf))
```

Desconsideraremos a parte negativa visto o somatório dar-se para valores positivos. Por tanto o primeiro valor que satisfaz a equação é: **n = 7071**

2.4 Série II:
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{10^n}$$

2.4.1 Utilizando o método 2.1

In [29]:

```
def serieII(n):
    serie = 0
    for i in range(1,n):
        serie += ((-1**n)*n)/10**n
    return serie

tabela = calculaErroI(serieII)
print(tabela)
```

+	L		L
Nro Op	Sn-1	Sn	erro
1	0.000000000	0.020000000	0.020000000
2	0.020000000	0.006000000	0.014000000
3	0.006000000	0.001200000	0.004800000
4	0.001200000	0.000200000	0.001000000
5	0.000200000	0.000030000	0.000170000
6	0.000030000	0.000004200	0.000025800
7	0.000004200	0.000000560	0.000003640
8	0.000000560	0.000000072	0.000000488
9	0.000000072	0.000000009	0.000000063
10	0.000000009	0.000000001	0.000000008
T	r -		r

2.4.2 Utilizando o método 2.2.2

OBS Aqui utilizaremos o método 2.2.2 ao invés do 2.2.1 pois se trata de uma série alternada. Onde $arepsilon=b(n+1)=rac{n+1}{10^{n+1}}$

In [30]:

```
def serieIIErro(n):
    return (n+1)/((10)**(n+1))

def calculaErroAlternada(serieBnMaisUm):
    n = 1
    erro = 1
    while erro >= PRECISAO:
        erro = serieBnMaisUm(n)
        n += 1
    print("Precisão: %.7f" % erro)
    print("Resultado do somatório com %i termos: %.9f" %(n, mod(serieBnMaisUm(n))))
```

In [31]:

calculaErroAlternada(serieIIErro)

Precisão: 0.0000000

Resultado do somatório com 9 termos: 0.000000001

Referências

- https://pt.sharelatex.com/learn/Integrals, sums_and_limits#Integrals)
 (https://pt.sharelatex.com/learn/Integrals, sums_and_limits#Integrals)
- https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet#links (https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet#links)
- https://github.com/foutaise/texttable (https://github.com/foutaise/texttable)
- https://www.symbolab.com/ (https://www.symbolab.com/ (https://www.symbolab.com/)
- http://www.wolframalpha.com/ (http://www.wolframalpha.com/ (http://www.wolframalpha.com/)
- http://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Typesetting%20Equations.html)

 (http://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Typesetting%20Equations.html)
- STEWART, James. Cálculo, Vol. 2, 7a Ediçao. Thomson Learning.