

Figure 50.18: Let $\Omega = \{[t,0,0] \mid 0 \le t \le 1\}$ and $M = \{[0,t,0] \mid 0 \le t \le 1\}$. In Figure (i.), $L(u,\lambda)$ is the blue slanted quadrilateral whose forward vertex is a saddle point. In Figure (ii.), $L(u,\lambda)$ is the planar green rectangle composed entirely of saddle points.

Pick any $w \in \Omega$ and any $\rho \in M$. By definition of inf (the greatest lower bound) and sup (the least upper bound), we have

$$\inf_{v \in \Omega} L(v, \rho) \le L(w, \rho) \le \sup_{\mu \in M} L(w, \mu).$$

The cases where $\inf_{v\in\Omega}L(v,\rho)=-\infty$ or where $\sup_{\mu\in M}L(w,\mu)=+\infty$ may arise, but this is not a problem. Since

$$\inf_{v\in\Omega}L(v,\rho)\leq \sup_{\mu\in M}L(w,\mu)$$

and the right-hand side is independent of ρ , it is an upper bound of the left-hand side for all ρ , so

$$\sup_{\mu \in M} \inf_{v \in \Omega} L(v,\mu) \leq \sup_{\mu \in M} L(w,\mu).$$