	Almosto A SSI - ED	
	Abrantes Arayo Sil va Eillo	
	·	
	Disciplina: Cálculo III	
	brofessor: Kennedy	8
	Disciplina: Cálculo III Brofessor: Kennedy Ecraíno: Alividade Avaliativa	
	·	
N. A.		
	·	
	Agosto /2019	
	V	

(a)
$$\frac{\partial}{\partial x} = \frac{\beta}{\beta} + \frac{\beta}{\beta}$$

$$3a) \int (\alpha, y) = \frac{xy}{x-y}$$

Cálmlo de fx:

$$\frac{\partial}{\partial x}\left(\frac{xy}{x-y}\right) = \frac{(x-y)}{\partial x}\frac{\partial xy}{\partial x} - \frac{xy}{\partial x}\frac{\partial}{\partial x}(x-y)$$

 $\frac{(x-y)y \partial_x - xy \left(\partial_x - \partial_y \right)}{\partial x}$ $\left(x-y \right)^2$

=
$$y(x-y) - xy = xy-y^2 - xy = -y^2 = fx$$

 $(x-y)^2$ $(x-y)^2$ $(x-y)^2$

$$\frac{\partial}{\partial y} \left(\frac{xy}{x-y} \right) - \frac{(x-y)\partial xy}{\partial y} - \frac{xy}{\partial y} \frac{\partial}{\partial y} \left(\frac{x-y}{x-y} \right)$$

$$= (x-y) \times \frac{\partial}{\partial y} y - xy \left(\frac{\partial}{\partial y} x - \frac{\partial}{\partial y} y \right)$$

 $= x(x-y) - xy(-1) = x^2 - xy + xy = \frac{1}{x^2}$ $(x-y)^2 \qquad (x-y)^2 \qquad (x-y)^2$

6		
<u>(i)</u>	Cálculo de fax:	9
	$\frac{\partial}{\partial x} \left\{ -y^2 \right\} = \frac{\partial}{\partial y^2} (x - y)^{-2}$	
	100 ((2-g)) 82	
	$= (x-y)^{2} \partial (-y^{2}) + (-y^{2}) \partial (x-y)^{2}$ $\partial x \partial x$	
	$= -y^{2} \left[\frac{\partial}{\partial u} \frac{\partial^{2}}{\partial x} \frac{\partial}{\partial x} (x-y) \right] = -y^{2} \left[-\lambda \right] = \frac{2y^{2}}{u^{3}} = \int dx$	
	(y-x)	
	Cálculo de fyy:	
	$\frac{\partial \left\{ x^{2} \right\} = \partial x^{2} (x-y)^{-2}}{\partial y \left\{ (x-y)^{2} \right\}} \frac{\partial y}{\partial y}$	
	$= (x-y)^{2} \delta x^{2} + x^{2} \delta (x-y)^{-2}$ $= \partial y \qquad \partial y$	
	$= x^{2} \left[\frac{\partial}{\partial u} \frac{\partial}{\partial y} \left(\frac{x-y}{x} \right) \right] = x^{2} \left[\frac{-2(-1)}{2} \right] = \frac{2x^{2}}{2x^{2}} - \frac{2yy}{2y}$ $\left[\frac{\partial}{\partial u} \frac{\partial}{\partial y} \right] \left[\frac{\partial}{\partial u} \frac{\partial}{\partial y} \right] = x^{2} \left[\frac{-2(-1)}{2} \right] = \frac{2x^{2}}{2x^{2}} - \frac{2yy}{2y}$	5
	140 - x 5 px - 6212 x) =	
	Cólculo de fyz	
	$\frac{\partial}{\partial x} \left(\frac{x^2}{(x-y)^2} \right) = \frac{\partial}{\partial x} \frac{x^2 (x-y)^{-2}}{\partial x}$	
	$= (x-y)^{-2} \frac{\partial}{\partial x} x^{2} + x^{2} \frac{\partial}{\partial x} (x-y)^{-2}$ $= (x-y)^{-2} \frac{\partial}{\partial x} x^{2} + x^{2} \frac{\partial}{\partial x} (x-y)^{-2}$	
	$= 2 \times (x-y)^{2} + x^{2} \left[\frac{\partial}{\partial u} \frac{\partial}{\partial x} (x-y) \right]$	

