Problemas

Problema de la mochila

Busca

Seleccionar los objetos que vamos a llevar en la mochila

Sin exceder

La capacidad de la misma de modo que el beneficio que aportas estos objetos sea el mayor posible.

Variables

Peso de articulo

Valor de articulo

Capacidad de mochila

Valor activo (va en mochila o no) donde $x \in \{1,0\}$

Articulo	Descripcion	Peso	Value
x_1	PC	w_1	v_1
x_2	Cargador	w_2	v_2
x_3	Secadora	W_3	v_3
x_4	Cepillo	w_4	v_4
x_5	Lentes	w_5	v_5

Problema de la mochila

Busca

Sin exceder

Articulo	Descripcion	Peso	Value
x_1	PC	w_1	v_1
x_2	Cargador	w_2	v_2
x_3	Secadora	w_3	v_3
x_4	Cepillo	w_4	v_4
x_5	Lentes	w_5	v_5

Problema del agente viajero

Facil de entender, pero dificil de resolver.

Busca

Que un agente visite una sola vez cada una de las n ciudades y regresar a la ciudad de partida, sin repetir ciudad.

Debemos

Determinar el orden en que las ciudades deben ser visitadas, de manera que el costo total se minimice.

Restricciones

TA
$$\sum_{i=1}^n x_{ij}=1, i
eq j$$
 $\sum_{j=1}^n x_{ij}=1, j
eq i$
TB $\sum_{i\in S}\sum_{j\in S}x_{ij}\leq |S|-1$ $orall S\subset N$ $2\leq |S|\leq n-1$

Queremos evitar

En cada subtour establecer en cada conjunto de **nodos k** existen a lo mucho **k-1 arcos**

Es bueno notar

Minimizar

- 1 $x = \{1,0\}$, 1 si visito la ciudad j despues de i, y 0 si no.
 - Las restricciones crecen exponencialmente con el número de ciudades
- [1A,2A|Solo debe haber un camino elegido que llegue al nodo i, solo debe haber un camino que llegue al nodo j

Problema del agente viajero

Busca

Debemos

Queremos evitar

Es bueno notar

1 $x = \{1,0\}$, 1 si visito la ciudad j despues de i, y 0 si no.

Las restricciones crecen exponencialmente con el número de ciudades

[1A,2A]Solo debe haber un camino elegido que llegue al nodo i, solo debe haber un camino que llegue al nodo j