```
In [3]: %matplotlib inline import matplotlib.pyplot as plt import numpy as np
```

```
In [4]: #data
        Z = np.array([26, 42, 22, 40, 30, 47, 29, 28])
        Ea = np.array([6400, 17480, 4450, 15810, 8670, 21960, 8070, 7490])
        error Ea = np.array([160, 160, 170, 170, 160, 180, 160, 160])
        sq Ea = np.sqrt(Ea)
        error sq Ea = sq Ea/2*error Ea/Ea
        names = np.array(['Fe', 'Mo', 'Ti', 'Zr', 'Zn', 'Aq', 'Cu', 'Ni'])
        #Fit
        def fit func(z, s, Er):
            return np.sqrt(Er)*(z-s)*np.sqrt(3/4)
        from scipy.optimize import curve fit
        popt, pcov=curve fit(fit func, Z, sq Ea, p0=[1,13.6], sigma=error sq Ea)
        #Plot
        plt.title('Analyse der K$ \\alpha$-Energie')
        plt.xlabel('Kernladungszahl Z')
        plt.ylabel('Wurzel aus der Energie der K$ \\alpha$-Linie in $\\sqrt{\mathrm{eV}}$')
        #plt.ylim((0,430))
        plt.errorbar(Z, sq Ea, yerr=error sq Ea, linestyle='None', fmt='.')
        plt.plot(Z,fit func(Z,*popt))
        plt.savefig('figures/Kerladungszahlabhängigkeit alpha.pdf',format='pdf')
        #Print
        chi2 = np.sum((fit func(Z,*popt)-sq Ea)**2/error sq Ea**2)
        dof = 6 #degrees of freedom
        chi2 red=chi2 /dof
        print("chi2=",chi2 )
        print("chi2 red=",chi2 red)
```

chi2= 0.237121299586
chi2_red= 0.0395202165976
sigma= 1.40204983144 ,Standardfehler= 0.0756054756403
Er= 14.1172566624 ,Standardfehler= 0.0588265261434

Tabelle:

Elt.	z	Ea	dEa	sqrt(Ea)	d sqrt(Ea)
Fe	 26	6400	 160	80.000000	1.000000
Мо	42	17480	160	132.211951	0.605089
Ti	22	4450	170	66.708320	1.274204
Zr	40	15810	170	125.737822	0.676010
Zn	30	8670	160	93.112835	0.859173
Ag	47	21960	180	148.189068	0.607332
Cu	29	8070	160	89.833179	0.890540


```
In [5]:
        #data
        Z = np.array([26, 42, 22, 40, 30, 47, 29, 28])
        Eb = np.array([7050, 19600, 4890, 17700, 9620, 24580, 8950, 8290])
        error Eb = np.array([160, 150, 100, 180, 160, 160, 170, 170])
        sq Eb = np.sqrt(Eb)
        error sq Eb = sq Eb/2*error Eb/Eb
        #Fit
        def fit func(z, s, Er):
            return np.sqrt(Er)*(z-s)*np.sqrt(8/9)
        from scipy.optimize import curve fit
        popt, pcov=curve_fit(fit_func,Z,sq_Eb,p0=[1,13.6],sigma=error_sq_Eb)
        #Plot
        plt.title('Analyse der K$ \\beta$-Energie')
        plt.xlabel('Kernladungszahl Z')
        plt.ylabel('Wurzel aus der Energie der K$ \\beta$-Linie in $\\sqrt{\mathrm{eV}}}$')
```

```
#plt.ylim((0,430))
plt.errorbar(Z, sq Eb, yerr=error sq Eb, linestyle='None', fmt='.')
plt.plot(Z,fit func(Z,*popt))
plt.savefig('figures/Kerladungszahlabhängigkeit beta.pdf',format='pdf')
#Print
chi2 = np.sum((fit func(Z,*popt)-sq Eb)**2/error sq Eb**2)
dof = 6 #degrees of freedom
chi2 red=chi2 /dof
print("chi2=",chi2 )
print("chi2 red=",chi2 red)
print("sigma=",popt[0],",Standardfehler=",np.sqrt(pcov[0][0]))
print("Er=",popt[1],",Standardfehler=",np.sqrt(pcov[1][1]))
print(' ')
print('Tabelle:')
print(' ')
print('{0:4} {1:3} {2:4} {3:3} {4:7} {5:3} {6:7} {7:3} {8:12} {9:3} {10:10}'.format(\
'Elt.', ' | ', ' Z', ' | ', ' Eb', ' | ', ' dEb', ' | ', ' sqrt(Eb)', ' | ', 'd sqrt(Eb)'))
print('-----')
for x in range(0, 7):
    print('{0:4} {1:3} {2:4d} {3:3} {4:7d} {5:3} {6:7d} {7:3} {8:12f} {9:3} {10:10f}'.format(\
          names[x], ' | ', Z[x], ' | ', Eb[x], ' | ', error Eb[x], ' | ', sq Eb[x], ' | ', error sq Eb[x
]))
```

24/02/2017 17:09

chi2= 1.00359722688
chi2_red= 0.167266204481
sigma= 1.82624427841 ,Standardfehler= 0.116257700551
Er= 13.6080683942 ,Standardfehler= 0.0886199864392

Tabelle:

Elt.	z		Eb		dEb		sqrt(Eb)		d sqrt(Eb)
Fe	 2	 6	 7050	 	160	 	83.964278		0.952786
Mo	4	2	19600	ĺ	150	ĺ	140.000000	ĺ	0.535714
Ti	2	2	4890	ĺ	100	ĺ	69.928535	ĺ	0.715016
Zr	4	0	17700		180		133.041347		0.676481
Zn	3	0	9620	ĺ	160	ĺ	98.081599	ĺ	0.815647
Ag	4	7	24580	ĺ	160	ĺ	156.780101	ĺ	0.510269
Cu	2	9	8950	ĺ	170	ĺ	94.604440	Ì	0.898478

256 24/02/2017 17:09

|--|