<u>United International University (UIU)</u>

Data Structures & Algorithms – 1 (DSA 1)

Topic: Asymptotic Notations

Previous Mid-Question Solve of UIU

Learn With Mahfuz

big-oh, big-omega, theta

Big-oh

$$f(n) \leq c \cdot g(n)$$

Theta

$$c_i g(n) \leq \xi(n) \leq c_2 \cdot g(n)$$

$$respective (1, C_1, C_2, N_6 \rightarrow + Ve)$$
 $respective (1, C_1, C_2, N_6 \rightarrow + Ve)$

Spring 2022 – Spring 2025

All Questions Solve of Asymptotic Notations

(f) If $f(n)=kn^2-3$, prove that $f(n)=O(n^2)$. Here, k=last digit of your student id+2.

V=3+2=5 UIU DSA-1 Mid Question: Spring-2022

For Big-Oh notation		3
	n	5 - nr
$z(u) \leq c \cdot z(u)$	1	124
5n²-3 ≤ e. n²	$\left(\begin{array}{c}2\\2\end{array}\right)$	9.25
$5 - \frac{3}{n^2} \le c$	9	4.66 4.81 4.88
:. c=5, no=1		
$5n^2-3 < 5 \cdot n^2$; $n > 1$		5
:. f(m) = 0 (n) Lea		Mahfuz Together

n	5-3 n2
12395	125 4.66 4.81 4.88
~	5 <

c) If f(n)=kn-5, prove that $f(n)=\Theta(n)$. Here, k=last digit of your student id+4.

UIU DSA-1 Mid Question: Summer-2022

For O-notation:

$$c_1:n \leq f(n) \leq c_2:n$$
 [: $f(n) = n$]

$$c_1 \cdot n \leq 5n - 5$$

$$c_1 \leq 5 - \frac{5}{n}$$

$$c_1 \leq 5 - \frac{5}{n}$$

$$c_1 \leq 5 - \frac{5}{n}$$

$$5n-5 \leq c_2 \cdot n$$

$$5-\frac{5}{n} \leq c_2$$

$$\vdots c_2 = 5$$

2.5 n
$$\leq$$
 5n - 5 \leq 5. \leq 5 \leq 10 \leq 5 False \leq 10 \leq 5 \leq 10 \leq 15 \leq 10 \leq

 $n \ge 2$

b) If $f(n)=kn^2-5$, prove that $f(n)=\Theta(n^2)$. Here, k=last digit of your student id+2.

$$c_1 \cdot n^2 \leq 3n^2 - 5 \leq c_2 \cdot n^2$$

$$c_{1} \cdot n \leq 3n^{2} - 5 \leq c_{2} \cdot n^{2}$$
 $c_{1} \leq 3 - \frac{5}{n^{2}} \qquad 3 - \frac{5}{n^{2}} \leq c_{2}$

$$C_1 \leq 3 - \frac{5}{n} \qquad \qquad 3 - \frac{5}{n} \leq c_2$$

$$1.75 \text{ n} \leq 3 \text{ n} \leq 3 \text{ n} ; \text{ n} \geq 2$$

Learn With Mahfuz in fm) = 8 (N) Learn With Mahfuz

UIU DSA-1 Mid Question: Fall-2022

UIU DSA-1 Mid Question: Spring-2023

$$C_1, \eta \leq \zeta \eta - \eta \leq C_2, \eta$$

$$c_{1} = c_{1} = c_{2} = c_{2$$

$$2n \le 6n - 9 \le 6n$$
 $n=1$ $2 \le 2 \le 6$

n = 2

$$2n \le 6n - 9 \le 6n$$
 $n \ge 1$
 $2 \le 2 \le 6$
 $n \ge 1$

$$f(n) = O(n)$$

<u> </u>	$6 - \frac{9}{10}$
1	$2 \longrightarrow c_1$
2 3	4.67
÷	
0	

UIU DSA-1 Mid Question: Summer-2023

b) Prove that running time of
$$f(n) = 3n^3 + 2n^2 + 5n + 1$$
 is $O(n^3)$

$$f(n) = 3n^3 + 2n^2 + 5n + 1$$
, $g(n) = n^3$

$$3 + \frac{2}{n} + \frac{5}{n^2} + \frac{1}{n^3} \le c$$

$$3n^3+2n^2+5n+1 \leq 11.n^3 \quad n \geq 1$$

$$\therefore S(n) = O(n^3)$$

b) If $f(n)=kn^2-3n+5$, prove that $f(n)=\Theta(n^2)$. Here, k=last digit of your student id+4.

UIU DSA-1 Mid Question: Fall-2023

$$C_1 \cdot n^2 \leq 5n^2 - 3n + 5 \leq C_2 \cdot n^2$$

$$c_1 \le 5 - \frac{3}{n} + \frac{5}{n}$$
 $c_2 = 7$

nel

ጥ = ኒ

$$15 - \frac{3}{n} + \frac{5}{n^2} \le e_2$$

$$n \ge 1$$

$$\frac{5 - \frac{3}{n} + \frac{5}{n^2}}{7}$$

$$4.75$$

b) Prove the running time of $f(n) = \frac{1}{2}n^3 - 2n^2$ is $\theta(n^3)$.

UIU DSA-1 Mid Question: Spring-2025

$$c_1 \cdot n^3 \le \frac{1}{3} n^3 - 2n^2 \le c_2 \cdot n^3$$

$$c_1 \leq \frac{1}{3} - \frac{2}{n} \left[\frac{r}{3} - \frac{2}{m} \leq c_2 \right]$$

$$0.04 \, \text{n}^3 \leq \frac{1}{3} \, \text{n}^3 - 2 \, \text{n}^2 \leq 0.34 \, \text{n}^3$$

Click here to go to the GitHub repository

Click here to see this video!

THANK YOU?

