Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Tutorial Sheet 4

- 1. Show that each of the following limits does not exist:
 - (a) $\lim_{x \to 0} \cos\left(\frac{1}{x}\right)$, (b) $\lim_{x \to 0} \frac{1}{x}$, (c) $\lim_{x \to a} \sin\left(\frac{1}{(x-a)^{1/k}}\right)$, $k \ge 1$.
- 2. Determine the points and nature of discontinuity of the following functions:
 - (a) $\frac{1}{x-2} 3x$, (b) $\frac{\cos x}{x \pi/2}$, (c) $\frac{\sqrt{x^4 + 1}}{1 + \sin^2 x}$.
- 3. Find the asymptotes of the graph of the following:
 - (a) $\frac{x^2-3}{2x-4}$, (b) $\frac{x^2-4}{x-1}$, (c) $\frac{x^3+1}{x}$.
- 4. Determine which of the following functions are uniformly continuous in the interval mentioned:
 - (a) $e^{x^2} \sin x^2$, (0,1), (b) $|\sin x|$, $[0,\infty)$, (c) $\sqrt{x} \sin x$, (0,1).
- 5. Determine if the following equations admits solutions in the interval mentioned.
 - $(a) \ x^5 3x^2 = -1, \ [0,1], \ \ (b) \ \sin^2 x 2\cos x = -1, \ \left[0, \frac{\pi}{2}\right], \ \ (c) \ \sin x = \frac{2x-1}{x+2}, \ [0,\pi].$
- 6. (a) Give an example of a function which is discontinuous at every point of \mathbb{R} .
 - (b) Give an example of a function which is continuous only at one point.
 - (c) Give an example of a function which is continuous only at the integers.
 - (d) Give an example of a function which is discontinuous at every rational point, but continuous at every irrational point.
 - (e) Give an example of a function which is continuous everywhere.