Correction de l'exercice

Dans cet exercice tous les équivalents sont au voisinage de $+\infty$.

1)

a) On pour tout
$$t > 0$$
, $a(t) = \sqrt{t} \left(\sqrt{1 + \frac{3}{t}} - \sqrt{1 + \frac{1}{t}} \right) = \sqrt{t} \left(1 + \frac{3}{2t} + o\left(\frac{1}{t}\right) - 1 - \frac{1}{2t} + o\left(\frac{1}{t}\right) \right)$.

$$\boxed{\text{Donc } a(t) \sim \sqrt{t} \cdot \frac{1}{t} \sim \frac{1}{\sqrt{t}}}.$$

b) Puisque
$$\lim_{t\to +\infty}\frac{1}{t^2+1}=0$$
, on a $e^{\frac{1}{t^2}+1}-1\sim \frac{1}{t^2+1}\sim \frac{1}{t^2}$. Donc par produit d'équivalents, $b(t)\sim \frac{1}{t}$.

c)
$$e^{-t} + 2 \sim 2$$
 et $\ln(e^t + 2) = t + \ln(1 + 2e^{-t})$. Or $\lim_{t \to +\infty} \ln(1 + 2e^{-t}) = 0$, donc $\ln(1 + 2e^{-t}) = o(t)$.

Donc
$$\ln(e^t + 2) \sim t$$
. Donc $c(t) \sim \frac{2}{\sqrt{t}}$.

d) Pour tout $t \in \mathbb{R}$:

$$d(t) = \exp\left(t\left(\ln(t+1) - \ln\left(\sqrt{t^2 + 1}\right)\right)\right) = \exp\left(t\left(\ln(t) + \ln\left(1 + \frac{1}{t}\right) - \ln(t) - \frac{1}{2}\ln\left(1 + \frac{1}{t^2}\right)\right)\right).$$

$$\operatorname{Or}, \left(\ln(t) + \ln\left(1 + \frac{1}{t}\right) - \ln(t) - \frac{1}{2}\ln\left(1 + \frac{1}{t^2}\right)\right) = \frac{1}{t} + o\left(\frac{1}{t}\right) - \frac{1}{2t^2} + o\left(\frac{1}{t^2}\right) = \sim \frac{1}{t}.$$

$$\operatorname{Donc} \lim_{t \to +\infty} t\left(\ln(t) + \ln\left(1 + \frac{1}{t}\right) - \ln(t) - \frac{1}{2}\ln\left(1 + \frac{1}{t^2}\right)\right) = 1.$$

Donc par continuité de l'exponentielle $\lim_{t\to +\infty} d(t) = e$. Donc $d(t) \sim e$.

e)
$$\ln(t^2+1) = 2\ln(t) + \ln\left(1 + \frac{1}{t^2}\right) \sim \ln(t).$$

$$t + \sqrt{t} + 1 \sim t. \quad \text{Donc } e(t) \sim \frac{2\ln(t)}{t}.$$

2) Soit $a \in \mathbb{R}$. Soient f et g deux fonctions continues sur $[a, +\infty[$ telles que $\lim_{x \to +\infty} \int_0^x f(t) dt = +\infty$ et $g(t) = \underset{+\infty}{o} (f(t))$. On suppose que f est positive.

Puisque g = o(f), il existe un réel $A \in \mathbb{R}_+$ tel que $\forall t \in [A, +\infty[, |g(t)| \le \frac{\varepsilon}{2}. |f(t)| = \frac{\varepsilon}{2}. f(t)$. Donc, par croissance de l'intégrale de A à x pour $x \ge A$:

$$\forall x \in [A, +\infty[, \int_A^x |g(t)| dt \le \frac{\varepsilon}{2} \int_A^x f(t) dt.$$

Par ailleurs, $\lim_{x \to +\infty} \int_a^x f(t) dt = +\infty$, donc <u>le réel A étant fixé</u>, $\lim_{x \to +\infty} \frac{\int_a^A |g(t)| dt}{\int_a^x f(t) dt} = 0$. Il existe donc un

rang $x_0 \in \mathbb{R}$, tel que :

$$\forall x \in [x_0, +\infty[, \frac{\int_a^A |g(t)| dt}{\int_a^x f(t) dt} \le \frac{\varepsilon}{2}.$$

Par inégalités triangulaires :

$$\forall x \in [\max(A, x_0), +\infty[, \left| \int_a^x g(t) \, \mathrm{d}t \right| \le \int_a^A |g(t)| \, \mathrm{d}t + \int_A^x |g(t)| \, \mathrm{d}t \le \frac{\varepsilon}{2} \int_a^x f(t) \, \mathrm{d}t + \frac{\varepsilon}{2} \int_A^x f(t) \, \mathrm{d}t.$$

puisque f est positive, $\int_A^x f(t) dt \le \int_a^x f(t) dt$, donc :

$$\forall x \in [\max(A, x_0), +\infty[, \left| \int_a^x g(t) dt \right| \le \varepsilon \int_a^x f(t) dt.$$

On a donc prouvé que :

$$\int_{a}^{x} g(t) dt = \underset{+\infty}{o} \left(\int_{a}^{x} f(t) dt \right).$$

3) Soient f et g deux fonctions continues sur \mathbb{R}_+ telles que $\lim_{x\to+\infty}\int_a^x f(t)\,\mathrm{d}t = +\infty$ et $g(t) \underset{+\infty}{\sim} f(t)$, et $\forall t\in[a,+\infty[,f(t)\geq0.$ On a donc g-f=o(f). Donc d'après le résultat précédent :

$$\int_{a}^{x} g(t) - f(t) dt = \underset{+\infty}{o} \left(\int_{a}^{x} f(t) dt \right).$$

D'où par linéarité de l'intégrale :

$$\int_{a}^{x} g(t) dt - \int_{a}^{x} f(t) dt = \underset{+\infty}{o} \left(\int_{a}^{x} f(t) dt \right).$$

Donc
$$\int_a^x g(t) dt \sim \int_a^x f(t) dt$$
.

4) On note pour f continue sur \mathbb{R}_+ , $I(f)(x) = \int_0^x f(t) dt$.

Pour tout $x \in \mathbb{R}_+$, $I(a)(x) = \int_0^1 a(t) dt + \int_1^x a(t) dt$, Par application du résultat précédent, et d'après la question 1), on a : $\int_1^x a(t) dt \sim \int_1^x \frac{1}{\sqrt{t}} dt = 2\sqrt{x}$. Donc $I(a)(x) \sim 2\sqrt{x}$.

$$\text{De même } \boxed{I(b)(x) \sim \ln(x)}, \boxed{I(c)(x) \sim 2\sqrt{x}}, \boxed{I(d)(x) \sim \text{e.}x}, \boxed{I(d)(x) \sim \frac{x^2}{2}}, \boxed{I(e)(x) = \ln^2(x)}.$$

Correction du problème

1

1) Soient F_1 et F_2 deux fermés de E. Montrons que $F_1 \cap F_2$ est un fermé de E. Soit $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de $F_1 \cap F_2$ qui converge vers x_∞ . Alors $\forall n \in \mathbb{N}, x_n \in F_1$ et F_1 est fermé donc $x_\infty \in F_1$. De même, $x_\infty \in F_2$. Donc $x_\infty \in F_1 \cap F_2$.

Donc
$$F_1 \cap F_2$$
 est fermé.

2) Soit $A \in \mathcal{P}(E)$ tel que $A \neq \emptyset$. Soit $x \in E$.

Alors $\{d(x,a) \mid a \in A\}$ est une partie non vide de A minorée par 0, donc elle admet une borne inférieure. Donc $d_A(x)$ est bien défini.

3) Soient A et B deux parties non vides de E telles que $A \subset B$. Soit $x \in E$. Alors $\left\{ d(x,a) \mid a \in A \right\} \subset \left\{ d(x,a) \mid a \in B \right\}$. Or on sait que $d_B(x)$ minore $\left\{ d(x,a) \mid a \in B \right\}$, donc il minore aussi $\left\{ d(x,a) \mid a \in A \right\}$. Donc $d_B(x)$ est plus petit que le plus grand des minorants de $\left\{ d(x,a) \mid a \in A \right\}$. C'est-à-dire : $d_B(x) \leq d_A(x)$.

Donc
$$A \subset B \Longrightarrow d_A \ge d_B$$
.

Donc $\forall x \in E, d_B(x) < d_A(x)$.

4) Soit $A \in \mathcal{P}(E)$ telle que $A \neq \emptyset$. Supposons que $d_A(x) = 0$.

Alors par caractérisation de la borne inférieure, il existe une suite $(a_n)_{n\in\mathbb{N}}\in A^n$ telle que $0=\lim_{n\to+\infty}d(x,a_n)$.

Donc $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ et $(a_n)_{n\in\mathbb{N}}$ converge vers x. Donc $x\in\overline{A}$. Donc $d_A(x)=0 \implies x\in\overline{A}$. Supposons que $x\in\overline{A}$.

Alors il existe une suite $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ qui converge vers x. Donc $\forall n\in\mathbb{N}, d(a_n,x)\geq d_A(x)\geq 0$. Donc, par passage à la limite $n\mapsto +\infty$, on en déduit que $d_A(x)=0$. Donc $x\in\overline{A}\Longrightarrow d_A(x)=0$.

- 5) Soit A une partie non vide de E.
 - a) Soit $(x,y) \in A^2$. On a d'après l'inégalité triangulaire :

$$\forall a \in A, d(a, x) \le d(a, y) + d(x, y).$$

Puisque $d_A(x)$ minore $\{d(a,x) \mid a \in A\}$, on en déduit que :

$$\forall a \in A, d_A(x) \le d(a, y) + d(x, y).$$

Donc $d_A(x) - d(x, y)$ est un minorant de l'ensemble $\left\{ d(a, y) \mid a \in A \right\}$, donc il est inférieur à la borne inférieure de cet ensemble. C'est-à-dire : $d_A(x) - d(x, y) \le d_A(y)$.

Donc
$$d_A(x) \le d(x,y) + d_A(y)$$
.

b) On a donc : $d_A(x) - d_A(y) \le d(x, y)$.

Par symétrie des rôles de x et $y: d_A(y) - d_A(x) \le d(x, y)$.

Donc
$$|d_A(x) - d_A(y)| \le d(x, y)$$
.

Cela étant valable pour tout $(x,y) \in E^2$, on en déduit que d_A est une application 1-lipschitzienne de E vers \mathbb{R} .

6) Soit A une partie non vide de E. On note \overline{A} son adhérence. On a de manière évidente $A \subset \overline{A}$ donc d'après la question **3)**, on en déduit que $d_{\overline{A}} \leq d_A$.

Montrons que $d_A \leq d_{\overline{A}}$.

Soit $x \in E$. Montrons que $d_A(x) \leq d_{\overline{A}}(x)$.

Soit $\varepsilon > 0$. D'après la caractérisation de l'inf, $d_{\overline{A}}(x) + \frac{\varepsilon}{2}$ n'est pas un minorant de $\left\{ d(b,x) \mid b \in \overline{A} \right\}$, il existe donc un élément $b \in \overline{A}$ tel que $d_{\overline{A}}(x) + \frac{\varepsilon}{2} > d(b,x)$. Puisque $b \in \overline{A}$, il existe une suite $(a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ telle que $\lim_{n \to +\infty} a_n = b$. Par définition de la limite, il existe donc un entier $n_0 \in \mathbb{N}$ tel que $d(a_{n_0}, b) \leq \frac{\varepsilon}{2}$. Donc par inégalité triangulaire,

$$d(a_{n_0}, x) \le d(b, x) + d(a_{n_0}, b) \le d_{\overline{A}}(x) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \le \varepsilon.$$

Donc $d(a_{n_0},x) \leq d_{\overline{A}}(x) + \varepsilon$. Donc $d_A(x) \leq d_{\overline{A}}(x) + \varepsilon$. Puisque cela est valable pour tout $\varepsilon > 0$, on en déduit que :

$$d_A(x) \leq d_{\overline{A}}(x)$$
.

Ainsi, par double inégalité :
$$d_A(x) = d_{\overline{A}}(x)$$
.

a) Donc si A et B sont des parties non vides de E, on a, en utilisant 7)a) puis 6):

$$d_A = d_B \Longleftrightarrow d_{\overline{A}} = d_{\overline{B}} \Longleftrightarrow \overline{A} = \overline{B}.$$

7) Soit A une partie fermée bornée non vide de E. Soit $x \in E$.

La fonction $a \mapsto d(x, a)$ est continue sur le fermé borné A, elle admet donc un minimum. Donc il existe un point a_{∞} pour lequel ce minimum est atteint.

8) Soit $E = \mathbb{R}^2$ et A une droite du plan et m un point du plan. Soit $m \in E$. On peut alors introduire H le projeté orthogonal du point m sur la droite A. D'après le théorème de Pythagore :

$$\forall a \in A, d(a, m)^2 = d(a, h)^2 + d(h, m)^2.$$

Or $d(h,a)^2 \ge 0$ avec égalité si et seulement si h=a. Donc $\left\{ \left. d(a,m) \, \middle| \, a \in A \right. \right\}$ atteint son minimum pour le seul point h=a. Donc il existe un unique point $a \in A$ tel que $d_A(x)=d(a,x)$.

- 9) Supposons que $E = \mathbb{R}$ et que $A \in \mathcal{P}(\mathbb{R})$ et $A \neq \emptyset$. On suppose que pour tout réel x, il existe un unique point $a \in A$ tel que $d_A(x) = |x a|$.
 - a) Montrons que A est fermé.

Soit $b \in \overline{A}$. Alors $d_{\overline{A}}(b) = 0$. Donc d'après la question **6**), $d_A(b) = 0$. Donc par supposition sur A, il existe $a \in A$, tel que $|b - a| = d_A(b) = 0$. Donc b = a, donc $b \in A$.

Donc $\overline{A} \subset A$.

Donc A est fermé.

b) Montrons que A est un intervalle. C'est-à-dire montrons que A est convexe.

Soient a_1 et a_2 deux éléments de A. Montrons que le segment $[a_1, a_2]$ est inclus dans A.

Par l'absurde, sinon il existe $x \in]a_1, a_2[\A.$

L'ensemble $[a_1, x] \cap A$ est non vide car il contient A, il admet donc une borne supérieure α . Comme A et $[a_1, x] \cap A$ sont deux fermés, on a $\alpha \in [a_1, x] \cap A$ et $\alpha = \max([a_1, x] \cap A)$. On a donc $\alpha \in A$ donc $\alpha < x$. On peut de même construire $\beta = \min([x, a_2] \cap A)$. Et l'on a $\alpha < x < \beta$. On a de plus $]\alpha, \beta [\in \mathbb{R} \setminus A]$.

Donc soit $m = \frac{\alpha + \beta}{2}$, le milieu de $[\alpha, \beta]$. Alors $d_A(m) = d(\alpha, m) = d(\beta, m)$. Cela contredit la définition de A. Donc l'hypothèse « il existe $x \in]a_1, a_2[\setminus A)$ est fausse.

Donc A est un intervalle.

2 Courbe à égale distance de deux droites

10) a) La fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R} comme quotient de telles fonctions. Sa dérivée est $f': x \mapsto \frac{2(e^x + 1 - xe^x)}{(e^x + 1)^2}$. Soit $u: x \mapsto e^x + 1 - xe^x$. La fonction u est de classe \mathcal{C}^{∞} sur \mathbb{R} et $\forall x \in \mathbb{R}, u'(x) = -xe^x$.

Donc u est continue et strictement décroissante sur \mathbb{R}_+ , et continue et strictement croissante sur \mathbb{R}_*^- . Elle réalise une bijection de \mathbb{R}_*^- vers]1,2] et ne s'annule pas sur \mathbb{R}_*^- . Elle réalise donc une bijection de \mathbb{R}_+ vers $]-\infty,2]$, elle s'annule donc en unique point $\alpha \in \mathbb{R}_+^+$.

On en déduit donc que f est strictement croissante sur $]-\infty, \alpha]$ et strictement décroissante sur $]\alpha, +\infty[$. Donc f admet un maximum uniquement atteint au point α . On a u(1) = 1 > 0 et $e^2 > e$ et $e^2 > 1$ donc $u(2) = -(2e^2 - e - 1) < 0$. Donc par décroissance de u sur \mathbb{R}^+_* , on a $\alpha \in]1,2[$.

b) La droite d'équation y=2x est asymptote oblique à Γ au voisinage de $--\infty$. L'axe des abscisses est asymptote horizontale à Γ au voisinage de $+\infty$. On obtient donc le graphe suivant :

11) a) Soient M_1 et M_2 deux points de Γ d'abscisses respectives x_1 et x_2 . Pour tout $(x,y) \in \mathbb{R}^2$, $d_{\Delta}((x,y)) = |y|$, d'après ce que l'on a vu au cours de la question 9).

Donc:
$$d_{\Delta}(M_1) = d_{\Delta}(M_2) \iff |f(x_1)| = |f(x_2)|$$
.

b) Soit M un point de Γ , d'abscisse $x \in]0, \alpha]$. On a alors $f(x) \in]0, f(\alpha)]$. Soit N un point de Γ d'abscisse $y \in [\alpha, +\infty[$.

On a:

$$d_{\Delta}(M) = d_{\Delta}(N) \iff |f(x)| = |f(y)|$$

 $\iff f(x) = f(y) \text{ car } f \text{ est positive sur } \mathbb{R}_+.$

La fonction f est strictement décroissante et continue sur $[\alpha, +\infty[$, elle réalise donc une bijection de $[\alpha, +\infty[$ vers $]0, f(\alpha)[$, d'après les calculs de limite précédents. Donc $\exists ! y \in [\alpha, +\infty[$, f(y) = f(x).

Donc il existe un unique point de Γ d'abscisse $y \in [\alpha, +\infty[$ tel que $d_{\Delta}(M) = d_{\Delta}(N)$.

- 12) a) On a déjà vu que ces fonctions f_1 et f_2 sont des bijections continues strictement croissante pour f_1 , strictement décroissante pour f_2 . On a $\varphi = f_2^{-1} \circ f_1$.
 - b) Par théorème de cours, f_2^{-1} est strictement croissante et continue, donc par composition φ est continue et strictement décroissante. De plus, par théorème de réciprocité des limites, $\lim_{x\to 0} f_2^{-1}(x) =$ $+\infty$, car $\lim_{x\to +\infty} f_2(x)=0$. De plus, $\lim_{x\to 0} f_1(x)=0$, on en déduit par composition des limites que $\lim_{x\to 0} \varphi(x)=+\infty$.

13)

a) Soient q et h deux fonctions strictement positives définies sur un même voisinage W de 0 telles que $g(x) \sim h(x)$ et $\lim_{x\to 0} g(x) = 0$. Montrons que $\ln(g(x)) \sim \ln(h(x))$. Puisque g et h sont strictement positives, on a $\forall x \in W$:

$$\ln h(x) = \ln(g(x)) + \ln\left(\frac{h(x)}{g(x)}\right).$$

Puisque $g \sim h$, on a $\lim_{x \to 0} \frac{h(x)}{g(x)} = 1$, donc $\lim_{x \to 0} \ln\left(\frac{h(x)}{g(x)}\right) = 0$, et $\lim_{x \to 0} g(x) = 0$, donc $\lim_{x \to 0} \ln(g(x)) = -\infty$. Donc $\ln\left(\frac{h(x)}{g(x)}\right) = o \ln(g(x)).$

Donc
$$\ln(h(x)) \sim \ln(g(x))$$
.

b)

Soit $x \in]0, \alpha]$.

On a $f(x)=f(\varphi(x))$, donc $\frac{2x}{\mathrm{e}^x+1}=\frac{2\varphi(x)}{\mathrm{e}^{\varphi(x)}+1}$. $\lim_{x\to 0}\mathrm{e}^x+1=2$. De plus $\lim_{x\to 0}\varphi(x)=++\infty$, donc : $\frac{2\varphi(x)}{e^{\varphi(x)}+1} \sim \frac{2\varphi(x)}{e^{\varphi(x)}}$. Donc:

$$x \sim \frac{\varphi(x)}{\mathrm{e}^{\varphi(x)}}.$$

On peut alors appliquer la question précédente

$$\ln(x) \sim \varphi(x) - \varphi(x).$$

Puisque $\lim_{x\to 0} \varphi(x) = +\infty$, on a $\ln \varphi(x) - \varphi(x) \simeq -\varphi(x)$.

Donc
$$\varphi(x) \sim -\ln(x)$$
.

14) Puisque f_2 est de classe \mathcal{C}^{∞} de dérivée non nulle en tout point de $]\alpha, +\infty[$, on en déduit, d'après le théorème de dérivation des fonctions réciproques, que f_2^{-1} est de classe \mathcal{C}^{∞} sur $]0, f(\alpha)[$, donc par composition φ est de classe \mathcal{C}^{∞} sur $]0, \alpha[$.

Courbe médiatrice de deux fermés de \mathbb{R}^2 . 3

Dans cette partie, on travaille dans \mathbb{R}^2 assimilé au plan euclidien \mathcal{P} muni de son repère canonique. On note:

$$\mathcal{P}^+ = \left\{ (x, y) \in \mathcal{P} \mid y > 0 \right\} \text{ et } \mathcal{P}^- = \left\{ (x, y) \in \mathcal{P} \mid y < 0 \right\}.$$

Jusqu'à la fin du problème, on note A et B deux fermés non vides tels que $A \subset \mathcal{P}^+$ et $B \subset \mathcal{P}^-$. On appelle courbe médiatrice de A et B l'ensemble :

$$\Gamma_{A,B} = \left\{ m \in \mathcal{P} \mid d_A(m) = d_B(m) \right\}.$$

15) a) Soit $a \in \mathcal{P}^+$ et $b \in \mathcal{P}^-$. $\Gamma_{\{a\},\{b\}}$ est la médiatrice du segment [a,b].

b) Soit $A = \{(a,b)\}$ un point de \mathcal{P}^+ et B une droite horizontale de \mathcal{P}^- . On a donc b > 0. Il existe donc une constante $\lambda <$ telle que B soit la droite d'équation $y = \lambda$. Pour $(x,y) \in \mathcal{P}, d_B((x,y)) = d((x,y),(x,\lambda)) = |y-\lambda|$.

$$d_A((x,y)) = d_A((x,y)) \iff \sqrt{(x-a)^2 + (y-b)^2} = |y-\lambda|$$

$$\iff (x-a)^2 + (y-b)^2 = (y-\lambda)^2$$

$$\iff x^2 - 2ax + a^2 + b^2 - 2yb = -2y\lambda + \lambda^2$$

$$\iff \frac{x^2 - 2ax + a^2 + b^2 - \lambda^2}{2(b-\lambda)} = y. \text{ (car } b \neq \lambda \text{)}$$

On reconnaît donc l'équation d'une parabole.

c) Si $A = \{(0,1)\}$ et $B = \{(-1,-1),(1,-1)\}$. Alors pour (x,y) tel que $x \le 0$, $d_B(x,y) = d((x,y),(-1,-1))$. Les points d'abscisse négative équidistants de A et B forment donc la demi-droite d'abscisse négative de la médiatrice du segment $[AB_1]$, où B_1 est le point de coordonnées (-1,-1). De même, Les points d'abscisse négative équidistants de A et B forment donc la demi-droite d'abscisse négative de la médiatrice du segment $[AB_2]$, où B_1 est le point de coordonnées (1,-1).

16) Soit $x_0 \in \mathbb{R}$, on définit la fonction :

$$\Phi_{x_0}: \mathbb{R} \longrightarrow \mathbb{R}, \ t \longmapsto d_A((x_0,t)) - d_B((x_0,t)).$$

a) Soit $a \in A$. Soit $t \in \mathbb{R}_+$. Puisque $B \subset \mathcal{P}^-$, la distance de (x_0, t) à l'axe des abscisses est inférieure à la distance de (x_0, t) à B. C'est-à-dire :

$$d_B((x_0,t)) \ge t$$
.

Donc
$$\Phi_{x_0}(t) \le d(a, (x_0, t)) - t$$
.

b) Notons (a_1, a_2) les coordonnées de a. On a alors :

$$\forall t \in \mathbb{R}_+, d((x_0, t), a)^2 - t^2 = (a_1 - x_0)^2 + (a_2 - t)^2 - t^2 = -2a_2t + (a_1 - x_0)^2 + a_2^2.$$

Puisque $a \in \mathcal{P}^+$, on a $a_2 > 0$. On peut donc poser :

$$\lambda = 2a_2$$
 et $\mu = -(a_1 - x_0)^2 - a_2^2$.

On a donc bien $\lambda \in \mathbb{R}^+_* \ \mu \in \mathbb{R}$ et :

$$\forall t \in \mathbb{R}_+, d((x_0, t), a)^2 - t^2 = -(\lambda t + \mu).$$

Donc
$$\forall t \in \mathbb{R}_*^+, d((x_0, t), a) - t = -\frac{\lambda t + \mu}{d((x_0, t), a) + t}.$$

D'après la question précédente, on a donc :

$$\forall t \in \mathbb{R}_*^+, \Phi_{x_0}(t) \le -\frac{\lambda t + \mu}{d((x_0, t), a) + t}.$$

Puisque $\lim_{t\to +\infty} -\frac{\lambda t + \mu}{d((x_0,t),a)+t} = -\lambda < 0$, on en déduit que l'on peut trouver $t_0 \in \mathbb{R}^+_*$, tel que $\Phi_{x_0}(t_0) < 0$.

- c) On fait la même chose, en inversant les rôles de A et B.
- d) On a déjà vu que la fonction d_A est 1-lipschitzienne, donc

$$\forall (t, t') \in \mathbb{R}^2, \left| d_A((x_0, t)) - d_A((x_0, t')) \right| \le d\left((x_0, t), (x_0, t') \right) \le \left| t - t' \right|.$$

Donc $t \mapsto d_A((x_0, t))$ est lipschitzienne donc continue. De même $t \mapsto d_A((x_0, t))$ est continue. On en déduit donc que Φ_{x_0} est continue, de plus elle change de signe d'après **c**) et **b**), donc d'après le théorème des valeurs intermédiaires, il existe un point $y_0 \in \mathbb{R}$ tel que $\Phi_{x_0}(y_0) = 0$.

Soit m_0 le point de coordonnées (x_0, y_0) et b un point de B réalisant la distance de m_0 à B, c'est-à-dire vérifiant $b \in B$ et $d_B(m_0) = d(m_0, b)$.

e) Soit $y \in \mathbb{R}$ tel que $y < y_0$ et m le point de coordonnées (x_0, y) .

Soit $a \in A$. Notons que puisque $a \in \mathcal{P}^+$ et $b \in \mathcal{P}^-$, la médiatrice du segment [a, b] n'est pas une droite horizontale.

On a $d(m_0, b) = d_B(m_0) = d_A(m_0) \le d(m_0, a)$. Donc $d(m_0, b) \le d(m_0, a)$. Donc m_0 est sous la médiatrice du segment [a, b]. Le point m est donc encore plus en dessous de cette médiatrice, donc d(m, b) < d(m, a).

Donc par définition de la borne inférieure :

$$\forall a \in A, d_B(m) \le d(m, b) < d(m, a).$$

On sait que A est fermé donc d'après la première partie il existe \bar{a} un point de A tel que $d(m,\bar{a})=d_A(m)$. On a donc $d_B(m)< d(m,\bar{a})=d_A(m)$. Donc $\Phi_{x_0}(y)>0$.

- 17) On montre de même que si $y > y_0$, $\Phi_{x_0}(y) < 0$. Donc y_0 est l'unique réel $y \in \mathbb{R}$, tel que $d_A((x_0, y)) = d_B((x_0, y))$. L'application $\varphi_{A,B}$ est donc l'application $x_0 \mapsto y_0$.
- 18) Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée dont σ est l'unique valeur d'adhérence. Montrons que $(u_n)_{n\in\mathbb{N}}$ converge vers σ . Par l'absurde, sinon il existe un réel $\eta > 0$ tel que :

$$\forall n \in \mathbb{N}, \exists p \in [n, +\infty[, |u_p - \sigma| \ge \eta.$$

On peut alors choisir construire par axiomatique de $\mathbb N$ une extraction φ en posant :

$$\varphi(0) = \min\left(\left\{k \in \mathbb{N} \mid |u_k - \sigma| \ge \eta\right\}\right).$$

Puis, pour tout $n \in \mathbb{N}$,

$$\varphi(n+1) = \min\left(\left\{ \left. k \in \llbracket \varphi(n) + 1, +\infty \llbracket \; \middle| \; |u_k - \sigma| \geq \eta \right. \right\} \right).$$

La suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ est alors extraite de $(u_n)_{n\in\mathbb{N}}$ elle donc bornée. On peut donc trouver une extraction $\psi:\mathbb{N}\longrightarrow\mathbb{N}$ telle que $(u_{\varphi\circ\psi(n)})_{n\in\mathbb{N}}$ converge vers un réel σ' . On a par construction de u:

$$\forall n \in \mathbb{N}, |u_{\varphi \circ \psi}(n) - \sigma| \ge \eta.$$

On en déduit par passage à la limite n tendant vers $+\infty$ et continuité de la valeur absolue que :

$$|\sigma' - \sigma| \ge \eta.$$

Donc $\sigma \neq \sigma'$. Ce qui exclus, car $(u_n)_{n \in \mathbb{N}}$ est supposée n'avoir qu'une seule valeur d'adhérence.

Donc
$$(u_n)_{n\in\mathbb{N}}$$
 converge.

- 19) Preuve de la continuité de $\varphi_{A,B}$.
 - a) Dans les conditions de **16**),b) (avec $(a_1, a_2) \in A$, on a vu que pour $t \in \mathbb{R}^+_*$, tel que $\lambda t + \mu > 0$, on a $\Phi_{x_0}(t) < 0$, on en déduit que $\varphi_{A,B}(x_0)$ est négatif ou bien vérifie $\lambda \varphi_{A,B}(x_0) + \mu \leq 0$. Donc $\varphi_{A,B}(x_0)$ est négatif ou vérifie : $\varphi_{A,B}(x_0) \leq \frac{-\mu}{\lambda} = \frac{(a_1 x_0)^2 + a_2^2}{2a_2}$. Dans tous les cas :

$$\varphi_{A,B}(x_0) \le \frac{(a_1 - x_0)^2 + a_2^2}{2a_2}.$$

De même, $\varphi_{A,B}(x_0) \ge \frac{(b_1-x_0)^2+b_2^2}{2b_2}$ lorsque (b_1,b_2) est un point de B.

On en déduit qu'en posant $P_1 = \frac{(b_1 - X)^2 + b_2^2}{2b_2}$ et $P_2 = \frac{(a_1 - X)^2 + a_2^2}{2a_2}$, les polynômes P_1 et P_2 sont de degré 2 et l'on a bien :

$$\forall x \in \mathbb{R}, P_1(x) \le \varphi_{A,B}(x) \le P_2(x).$$

Soit $x \in \mathbb{R}$.

b) Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels qui converge vers x. La suite $(P_2(x_n))_{n\in\mathbb{N}}$ converge vers $P_2(x_\infty)$ par continuité de l'application polynomiale associée à P_2 . Donc la suite $(P_2(x_n))_{n\in\mathbb{N}}$ est majorée par une constante M. De même, la suite $(P_1(x_n))_{n\in\mathbb{N}}$ est minorée par une constante m, donc d'après la question précédente,

la suite
$$(y_n)_{n\in\mathbb{N}} = (\varphi_{A,B}(x_n))_{n\in\mathbb{N}}$$
 est bornée.

c) Soit φ une extraction. Supposons que $(y_{\varphi(n)})_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$. On a $\forall n\in\mathbb{N}, y_{\varphi(n)}=\varphi_{A,B}\left(x_{\varphi(n)}\right)$. Donc :

$$\forall n \in \mathbb{N}, d_A\left(\left(x_{\varphi(n)}, y_{\varphi(n)}\right)\right) = d_B\left(\left(x_{\varphi(n)}, y_{\varphi(n)}\right)\right).$$

or, l'application d_A est une application continue de \mathbb{R}^2 vers \mathbb{R} , car elle est lipschitzienne, de même d_B est lipschitzienne, et $\lim_{n \to +\infty} (x_{\varphi(n)}, y_{\varphi(n)}) = (x_{\infty}, \ell)$. Donc en passant à la limite, on obtient :

$$d_A((x_\infty, \ell)) = d_B((x_\infty, \ell)).$$

Donc par définition de $\varphi_{A,B}$, on a $\ell = \varphi_{A,B}(x_{\infty})$.

Donc $(y_n)_{n\in\mathbb{N}}$ est une suite bornée qui n'admet que $\varphi_{A,B}(x_\infty)$ comme valeur d'adhérence.

- d) Donc $(y_n)_{n\in\mathbb{N}}$ converge vers $\varphi_{A,B}(x_\infty)$. Cela prouve d'après la caractérisation séquentielle de la continuité que $\varphi_{A,B}$ est continue en x.
- e) Donc $\varphi(A, B)$ est continue sur \mathbb{R} .
- **20)** L'exemple de la question **15)c)** prouve que $\varphi_{A,B}$ n'est pas nécessairement lipschitzienne sur \mathbb{R} : une fonction polynomiale de degré 2 n'est jamais lipschitzienne sur \mathbb{R} , en effet : si $a \in \mathbb{R}^*$ et $(b,c) \in \mathbb{R}^2$, alors en notant $p: x \mapsto ax^2 + bx + c$, $\lim_{x \to +\infty} \left| \frac{p(x) p(0)}{x 0} \right| = +\infty$. Il n'existe donc pas de constante $k \in \mathbb{R}$, telle que :

$$\forall (x,y) \in \mathbb{R}^2, |p(x) - p(y)| \le k |x - y|.$$

Soient α et β deux réels tels que $\alpha < \beta$. On note $I = [\alpha, \beta]$.

21) On note Γ' le graphe de la restriction de $\varphi_{A,B}$ à $[\alpha, \beta]$.

a)

méthode artisanale. Puisque $\varphi_{A,B}$ est un continue sur le segment $[\alpha, \beta]$ son image est un segment de \mathbb{R} , on peut donc définir le minimum μ et le maximum μ' de la restriction de $\varphi_{A,B}$ à I. Donc $\Gamma' \subset [\alpha, \beta] \times [\mu, \mu']$. Donc Γ' est borné.

Montrons que Γ' est fermé.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de Γ' qui converge un point $(x_1,x_2)\in\mathbb{R}^2$. Pour tout $n\in\mathbb{N}$, il existe un unique $\alpha_n\in[\alpha,\beta]$ tel que $u_n=(\alpha_n,\phi_{A,B}(\alpha_n))$, donc $\lim_{n\to+\infty}\alpha_n=x_1$ et puisque que $[\alpha,\beta]$ est fermé, $x_1\in[\alpha,\beta]$. Donc par continuité de $\varphi_{A,B}$, $\lim_{n\to+\infty}\varphi_{A,B}(x_n)=\varphi_{A,B}(x_1)$.

Donc
$$(x_1, x_2) = (x_1, \phi_{A,B}(x_1))$$
. Donc $(x_1, x_2) \in \Gamma'$. Donc Γ' est un fermé borné.

méthode adulte : Γ' est l'image du fermé borné par l'application continue $x \mapsto (x, \varphi_{A,B}(x))$ donc c'est un fermé borné.

b) méthode artisanale Il existe donc un réel K', tel que $\forall m \in \Gamma', d(0, m) \leq K'$. Notons $a \in A$ un point de A.

On a par inégalité triangulaire :

$$d_A(m) \le d(a,m) \le d(a,0) + d(0,m) \le d(a,0) + K'.$$

On en déduit donc, qu'en posant $R_0 = d(a,0) + K'$:

$$\forall m \in \Gamma', d_A(m) \leq R_0.$$

méthode adulte $d_A(\Gamma')$ est l'image d'un fermé borné (d'après la question précédente), par l'application d_A qui est continue car lipschitzienne, donc son image est un fermé borné, le résultat en découle.

c)

Soit $p \in \Gamma'$, soit s un point du disque de centre p et de rayon R_0 , on a alors, avec les notations précédentes :

$$d(s,0) \le d(s,p) + d(p,0) \le R_0 + K'.$$

En posant $R = R_0 + K'$, on vérifie bien que tout disque fermé de rayon R_0 centré sur un point de Γ' est inclus dans $\mathcal{D}(O, R)$.

- **22)** Notons $K_A = A \cap \mathcal{D}(O, R)$ et $K_B = B \cap \mathcal{D}(O, R)$.
 - a) K_A et K_B sont des fermés bornés comme intersection de fermés bornés. $K_A \subset A$ et $A \subset \mathcal{P}^+$ donc $A \subset \mathcal{P}^+$. De même, $K_B \subset \mathcal{P}^-$. Soit $m \in \Gamma'$. On sait qu'il existe $a \in A$, tel que $d_A(m) = d(a,m) \leq R_0$. Donc, par construction de R, $a \in K_A$. Donc $K_A \neq \emptyset$.

Par définition de Γ' , $d_A(m) = d_B(m)$, donc il existe aussi $b \in B$, tel que $d_A(m) = d_B(m) = d(b, m) \le R_0$. Donc $b \in K_B$. Donc $K_B \ne \emptyset$.

b) Soit $x \in I$. Montrons que $\varphi_{A,B}(x) = \varphi_{K_A,K_B}(x)$.

Soit $m_x = (x, \varphi_{A,B}(x))$. Alors $m_x \in \Gamma'$. On sait qu'il existe des points $a_x \in A$ et $b_x \in B$ tels que $d_A(m_x) = d(a_x, m_x)$ et $d_B(m_x) = d(m_x, b_x)$. De plus, par construction de K_A , $a_x \in K_A$, donc comme $K_A \subset A$, on a $d_A(m_x) = d(a_x, m_x) = d_{K_A}(m_x)$. De même, $d_{K_B}(m_x) = d_B(m_x) = d(b_x, m_x)$. Donc $d_{K_A}(m_x) = d_{K_B}(m_x)$.

Donc
$$\varphi_{K_A,K_B}(x) = \varphi_{A,B}(x)$$
.

23) On se place dans les conditions de l'énoncé.

Soit une droite \mathcal{D} (non verticale) dont la pente est égale à $\tan(r)$ dans le repère canonique \mathcal{R} . Alors sa pente dans de le repère \mathcal{R}_{θ} est (si la nouvelle droite n'est pas verticale), $\tan(r-\theta)$. S'il existe $\rho > 0$ tel que $\forall \theta \in \mathcal{R}_{\theta}$, cette droite n'est pas verticale, alors $\rho < \frac{\pi}{2}$ et $|r| < \frac{\pi}{2} - \rho$. En appliquant ce résultat, à droite reliant deux points distincts quelconques $(x, \psi(x))$ et $(y, \psi(y))$ du graphe de ψ , on en déduit que :

$$\forall (x,y) \in I^2, x \neq y, \left| \frac{f(x) - f(y)}{x - y} \right| \leq \tan\left(\frac{\pi}{2} - \rho\right).$$

Donc
$$\psi$$
 est $\tan\left(\frac{\pi}{2} - \rho\right)$ lipschitzienne.

24) On peut sans perte de généralité supposer que K_A et K_B sont inclus respectivement dans $(\mathbb{R}_*^+)^2$ et $\mathbb{R}_*^+ \times \mathbb{R}_*^-$. Comme il sont compacts, il existe deux rectangles pleins R_A et R_B tels que $K_A \subset R_A \subset (\mathbb{R}_*^+)^2$ et $K_B \subset R_B \subset \mathbb{R}_*^+ \times \mathbb{R}_*^-$. Si l'on note θ_A et θ_B les mesures principales des angles de droite définis comme dans la figure ci-dessous, alors tant que $\theta \in]-\min(\theta_A,\theta_B), \min(\theta_A,\theta_B)[$, dans le repère \mathcal{R}_θ , K_A est strictement au-dessus du nouvel axe des abscisses et K_B strictement en dessous, donc d'après notre travail dans le début de cette partie, on sait que vue dans ce nouveau repère la courbe médiatrice entre K_A et K_B est le graphe d'une certaine fonction. Par question précédente, on en déduit que $\varphi_{A,B}$ est lipschitzienne.

