

Rozdział 9: Podział sieci IP na podsieci

Wprowadzenie do sieci

Cisco Networking Academy® Mind Wide Open®

- 9.0 Wprowadzenie.
- 9.1 Podział sieci IPv4 na podsieci.
- 9.2 Schematy adresowania.
- 9.3 Rozważania projektowe dla IPv6.
- 9.4 Podsumowanie.

Rozdział 9: Cele

Po zakończeniu tego rozdziału będziesz potrafił:

- Wyjaśnić, dlaczego routing jest niezbędny, aby zapewnić możliwość komunikacji hostom, znajdującym się w różnych sieciach.
- Opisać IP jako protokół komunikacyjny wykorzystywany do identyfikacji pojedynczych urządzeń w sieci.
- Na podstawie podanego adresu sieci oraz maski, obliczyć ilość adresów dostępnych dla hostów.
- Obliczyć niezbędną maskę podsieci, w celu dostosowania się do wymogów sieci.
- Opisać zalety zmiennej długości maski podsieci (ang. Variable Length Subnet Masking - VLSM).
- Wyjaśnić, jak zaimplementowane są mechanizmy przydzielania adresów IPv6 w sieciach biznesowych.

9.1 Podział sieci IPv6 na podsieci

Cisco Networking Academy® Mind Wide Open®

Przyczyny segmentacji sieci na podsieci

Podział na podsieci to proces segmentacji sieci na kilka mniejszych jednostek zwanych podsieciami.

- Duże sieci muszą być podzielone na mniejsze podsieci, tworząc mniejsze grupy urządzeń i usług w celu:
 - Kontroli ruchu poprzez ograniczanie ruchu rozgłoszeniowego wewnątrz każdej podsieci.
 - Zmniejszenia ogólnego ruchu w sieci i poprawy wydajności sieci

Komunikacja pomiędzy podsieciami

- Router jest wymagany dla komunikacji urządzeń znajdujących się w różnych sieciach i podsieciach.
- Każdy interfejs routera musi mieć adres IPv4 hosta, należący do sieci lub podsieci, do której podłączony jest interfejs routera.
- Urządzenia w sieci i podsieci wykorzystują interfejs routera, do którego są podłączone, jako bramę domyślną.

Planowanie sieci

Planowanie wymaga podejmowania decyzji dotyczących poszczególnych podsieci w kontekście ich rozmiaru, ilości hostów przypadających na każdą podsieć oraz decyzji jak przydzielane będą adresy do poszczególnych hostów.

Podstawowy podział

- Pożyczenie bitów aby stworzyć podsieci.
- Pożyczamy 1 bit 2¹ = 2 podsieci.

Oryginalna	192.	168.	1.	0	000	0000	Sieć: 192.168.1.0/24
Maska	255.	255.	255.	0	000	0000	Maska: 255.255.255.0

Pożyczając 1 bit mamy możliwość stworzenia 2 podsieci z takimi samymi maskami.

				\			
Sieć 0	192.	168.	1.	0	000	0000	Sieć: 192.168.1. <mark>0/25</mark>
Maska	255.	255.	255.	1	000	0000	Maska: 255.255.255. 128
Sieć 1	192.	168.	1.	1	000	0000	Sieć: 192.168.1.128/25
Maska	255.	255.	255.	1	000	0000	Maska: 255.255.255. 128

Tworzenie podsieci w sieciach IPv4

Podsieci w użyciu

Wykorzystanie podsieci.

Podsieć 0

Sieć 192.168.1.0-127/25

Podsieć 1

Sieć: 192.168.1.128-255/25

Zakres adresów dla podsieci 192.168.1.0/25

Adres sieci

Pierwszy adres hosta

192.	168.	1.	0	000	0001	=	192.168.1.1

Ostatni adres hosta

Adres rozgłoszeniowy

192.	168.	1.	0	111	1111	= 192.168.1.127
------	------	----	---	-----	------	-----------------

Zakres adresów dla podsieci 192.168.1.128/25

Adres sieci

192.	168.	1.	1	000	0000	= 192.168.1.128

Pierwszy adres hosta

192. 168. 1.	1	000 0001	= 192.168.1.129
--------------	---	----------	-----------------

Ostatni adres hosta

192.	168.	1.	1	111	1110	=	192.168.1.254
------	------	----	---	-----	------	---	---------------

Adres rozgłoszeniowy

192. 168.	1. 1	111 1111	= 192.168.1.255
-----------	-------------	----------	-----------------

Tworzenie podsieci w sieciach IPv4

Obliczenia podsieci

Oblicz liczbę podsieci.

Ilość podsieci=2ⁿ (gdzie n = ilość bitów pożyczonych)

Oblicz liczbę hostów.

Ilość hostów = 2ⁿ (gdzie n to liczba bitów, które zostały dla hosta)

2⁷ = 128 hostów w podsieci,

2⁷ - 2 = 126 możliwych do zaadresowania hostów w podsieci

Tworzenie 4 podsieci

Pożyczenie 2 bitów pozwala stworzyć 4 podsieci. **2**² = **4 podsieci.** Tworzenie 4 podsieci.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Tworzenie 8 podsieci

Pożyczamy 3 bity aby **stworzyć 8 podsieci 2**³ **= 8 podsieci.**

Sieć	192.	168.	1.	000	0	0000	192.168.1.0
Pierwszy	192.	168.	1.	000	0	0001	192.168.1.1
Sieć 0 Ostatni	192.	168.	1.	000	1	1110	192.168.1.30
Rozgłoszenio wy	192.	168.	1.	000	1	1111	192.168.1.31
Sieć	192.	168.	1.	001	0	0000	192.168.1.32
Pierwszy Sieć 1	192.	168.	1.	001	0	0001	192.168.1.33
Ostatni	192.	168.	1.	001	1	1110	192.168.1.62
Rozgłoszenio wy	192.	168.	1.	001	1	1111	192.168.1.63
Sieć	192.	168.	1.	010	0	0000	192.168.1.64
Pierwszy Sieć 2	192.	168.	1.	010	0	0001	192.168.1.65
Ostatni	192.	168.	1.	010	1	1110	192.168.1.94
Rozgłoszenio wy	192.	168.	1.	010	1	1111	192.168.1.95
Sieć	192.	168.	1.	011	0	0000	192.168.1.96
Pierwszy Sieć 3	192.	168.	1.	011	0	0001	192.168.1.97
Ostatni	192.	168.	1.	011	1	1110	192.168.1.126
Rozgłoszenio wy	192.	168.	1.	011	1	1111	192.168.1.127

Tworzenie 8 podsieci (cd.)

Sieć	192.	168.	1.	100	0	0000	192.168.1.128
Pierwszy	192.	168.	1.	100	0	0001	192.168.1.129
Sieć 4 Ostatni	192.	168.	1.	100	1	1110	192.168.1.158
Rozgłoszeni owy	192.	168.	1.	100	1	1111	192.168.1.159
Sieć	192.	168.	1.	101	0	0000	192.168.1.160
Pierwszy Sieć 5	192.	168.	1.	101	0	0001	192.168.1.161
Ostatni	192.	168.	1.	101	1	1110	192.168.1.190
Rozgłoszeni owy	192.	168.	1.	101	1	1111	192.168.1.191
Sieć	192.	168.	1.	110	0	0000	192.168.1.192
Pierwszy Sieć 6	192.	168.	1.	110	0	0001	192.168.1.193
Ostatni	192.	168.	1.	110	1	1110	192.168.1.222
Rozgłoszeni owy	192.	168.	1.	110	1	1111	192.168.1.223
Sieć	192.	168.	1.	111	0	0000	192.168.1.224
Pierwszy Sieć 7	192.	168.	1.	111	0	0001	192.168.1.225
Ostatni	192.	168.	1.	111	1	1110	192.168.1.254
Rozgłoszeni owy	192.	168.	1.	111	1	1111	192.168.1.255

Podział sieci IPv4 na podsieci

Tworzenie 8 podsieci (cd.)

Wydzielenie podsieci

Maska podsieci w oparciu o wymagania Hosta

Dwa zagadnienia istotne podczas planowania podsieci:

- Wymagana liczba podsieci.
- Liczba wymaganych adresów hostów.

Wzór do określenia liczby hostów użytkowych 2^n-2:

- 2ⁿ (gdzie n jest liczbą pozostałych bitów w części hosta) jest używany do obliczania liczby hostów.
- -2 (Id podsieci i adres rozgłoszeniowy, które nie mogą być wykorzystane w każdej podsieci).

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Ustalenie maski podsieci

Maska podsieci w oparciu o wymagania Hosta

Oblicz liczbę podsieci:

- 2ⁿ (gdzie n = liczbie pożyczonych bitów).
- Podsieci potrzebne dla każdego działu.

Podsieci dostosowane do struktury organizacyjnej

Ustalenie podsieci

Maska podsieci spełniająca wymagania sieciowe

- Równowaga wymaganej liczby podsieci i hostów dla dużych podsieci.
- Zaprojektowanie schematu adresowania, aby umieścić maksymalną liczbę hostów w każdej podsieci.
- Pozwala na wzrost w każdej podsieci.

Maska podsieci spełniająca wymagania sieciowe

Schemat podsieci

Sieci od 7 do 13 nie są pokazane

```
14 10101100.00010000.000000 11.10 000000 172.16.3.128/26
15 10101100.00010000.000000 11.11 000000 172.16.3.192/26
```

4 bity pożyczone z części hosta w celu stworzenia podsieci

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Korzyści z podsieci o zmiennej długości maski podsieci Tradycyjny podział na podsieci marnował adresy

Tradycyjny podział na podsieci tworzy podsieci o jednakowej ilości hostów

- Tradycyjny podział na podsieci - wykorzystuje taką samą liczbę adresów w każdej podsieci.
- Podsieci, które potrzebują mniej adresów, mają niewykorzystane (zmarnowane) adresy, na przykład łącze WAN wymaga tylko 2 adresów.

Korzyści ze zmiennej długości maski podsieci

Zmienna długość maski podsieci (VLSM)

- Zmienna długość maski podsieci lub dzielenie na podsieci zapewnia większą efektywność w wykorzystaniu adresów.
- VLSM pozwala na podział zakresu sieci na nierówne części.
- Wielkość maski podsieci zależy od liczby bitów pożyczonych dla określonej podsieci.
- Sieć jest najpierw dzielona na podsieci, a następnie te podsieci są dalej dzielone na podsieci.

Podsieci o różnej ilości hostów

Jedna z podsieci została dalej podzielona na 8 mniejszych podsieci z 4 adresami w każdej.

Podstawy podziału na podsieci

```
11000000.10101000.00010100.00000000 192.168.20.0/24
  11000000.10101000.00010100.0000000 192.168.20.0/27
  11000000.10101000.00010100.00100000
                                        192.168.20.32/27
                                                            Sieci
  11000000.10101000.00010100.01000000
                                        192.168.20.64/27
                                                            A, B, C, D
  11000000.10101000.00010100.01100000
                                        192.168.20.96/27
  11000000.10101000.00010100.10000000
                                        192.168.20.128/27
                                                            Nieużywane/D
  11000000.10101000.00010100.10100000
                                        192.168.20.160/27
                                                            ostepne
  11000000.10101000.00010100.11000000
                                         192.168.20.192/27
7 11000000.10101000.00010100.11100000
                                        192.168.20.224/27
    3 bity więcej pożyczone w podsieci 7:
    11000000.10101000.00010100.11100000 192.168.20.224/30
7:1 11000000.10101000.00010100.11100100 192.168.20.228/30
                                                           Sieci WAN
7:2 11000000.10101000.00010100.11101000 192.168.20.232/30
7:3 11000000.10101000.00010100.11101100 192.168.20.236/30
7:4 11000000.10101000.00010100.11110000 192.168.20.240/30
                                                            Nieużywane/D
7:5 11000000.10101000.00010100.11110100 192.168.20.244/30
                                                            ostępne
7:6 11000000.10101000.00010100.11111000 192.168.20.248/30
7:7 11000000.10101000.00010100.111111100 192.168.20.252/30
```

Podział podsieci na podsieci

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 20

Korzyści ze zmiennej długości maski podsieci VLSM w praktyce

- Wykorzystując podsieci z VLSM, segmenty LAN i WAN z poniższego przykładu mogą być zaadresowane z minimalną ilością strat.
- Każdej z sieci LAN zostanie przypisana podsieć z maską /27.
- Każde łącze WAN będzie miało przypisaną podsieć z maską /30.

Topologia sieci: Podsieci o zmiennej długości maski (VLSM)

Korzyści ze zmiennej długości maski podsieci Wykres VLSM

	Sieć /27	Hosty		
Budynek A	.0	.0 .130		
Budynek B	.32	.3362		
Budynek C	.64	.6594		
Budynek D	.96	.97126		
Nieużywane	.128	.129158		
Nieużywane	.160	.161190		
Nieużywane	.192	.193222		
	.224	.225254		
↓		<u> </u>		
	Sieć /30	Hosty		
WAN R1-R2	.224	.225226		
WAN R2-R3	.228	.229230		
WAN DO DA	000	000 004		

	Sieć /30	Hosty
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Nieużywane	.236	.237238
Nieużywane	.240	.241242
Nieużywane	.244	.245246
Nieużywane	.248	.249250
Unused	.252	.253254

9.2 Schematy adresowania

Cisco Networking Academy® Mind Wide Open®

Projekt struktury

Planowanie zaadresowania sieci

Rozmieszczenie adresów w sieci powinno być zaplanowane i udokumentowane na potrzeby:

- zabezpieczenia przed duplikacją adresów,
- udostępniania usług oraz sprawowania nad nimi kontroli dostępu,
- monitorowania bezpieczeństwa oraz wydajności.

Adresy klientów - zazwyczaj przypisywane dynamicznie za pomocą Dynamic Host Configuration Protocol (DHCP).

Przykładowy plan zaadresowania sieci

Sieć: 192.168.1.0/24				
Użycie	Pierwszy	Ostatni		
Hosty	.1	.229		
Serwery	.230	.239		
Drukarki	.240	.249		
Urządzenia pośredniczące	.250	.253		
Brama (interfejs LAN routera)	.254			

9.3 Rozważania projektowe dla IPv6

Cisco Networking Academy® Mind Wide Open™

Podział na podsieci dla IPv6 Podział z wykorzystaniem identyfikatora podsieci

Podział przestrzeni sieci IPv6 na podsieci jest realizowany w celu wsparcia dla hierarchiczności oraz logicznego projektu sieci.

Podział na podsieci dla IPv6 Alokacja podsieci IPv6

Podział na podsieci sieci IPv6

Blok adresowy: 2001:0DB8:ACAD::/48

Wydzielone 5 podsieci z 65536 możliwych podsieci 2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0008::/64

Wydzielenie podsieci IPv6

Podział na podsieci dla IPv6 Podział interfejsu

Bity IPv6 mogą być pożyczone z ID interfejsu, aby stworzyć dodatkowe podsieci IPv6.

Podział na podsieci w granicach 4 bitowych (w granicach jednego nibbla)

9.3 Podsumowanie

Cisco Networking Academy® Mind Wide Open™

Rodzdział 9: Podsumowanie

W tym rozdziale nauczyłeś się, że:

- Podział na podsieci jest procesem segmentacji sieci, polegającym na podziale na mniejsze jednostki.
- Podział podsieci na podsieci lub wykorzystanie VLSM było zaprojektowane, aby nie marnować adresów.
- Podział przestrzeni sieci IPv6 na podsieci jest realizowany w celu wsparcia dla hierarchiczności oraz logicznego projektu sieci.
- Parametrami branymi pod uwagę podczas planowania adresacji są wymagania związane z wielkością, lokalizacją, wykorzystaniem sieci oraz dostępem do usług sieciowych.
- Sieci IP muszą być przetestowane w celu sprawdzenia połączeń i wydajności operacyjnej.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Cisco | Networking Academy[®] | Mind Wide Open™