DKT03059 22

What is claimed is:

1 2	1. In a VCT system, a method for identifying a direction of cam torque, the method comprising the steps of:
3	providing a cam sensor wheel having a plurality of teeth including an index tooth formed upon the circumference of the cam sensor wheel;
5	providing a sequence of pulses corresponding to the plurality of teeth; and
6 7	using one tooth among the plurality of teeth for identifying the direction of cam torque.
1 2	2. The system of claim 1 further comprising the step of using the plurality of teeth to determine a dead time.
1 2 3 4	3. The system of claim 2 further comprising the step of pausing controller updating during dead time, thereby when there is no torque available to drive the VCT towards its commanded position, the controller stops accumulating unnecessary values.
1 2	4. The system of claim 1, wherein the plurality of teeth is symmetrically distributed upon the circumference of the cam sensor wheel.
1 2	5. The system of claim 1, wherein the plurality of teeth is asymmetrically distributed upon the circumference of the cam sensor wheel.
1	6. The system of claim 1, wherein the one tooth is the index tooth.
1	7. The system of claim 1, wherein the VCT system is a CTA VCT system.
1	8. The system of claim 1, wherein the VCT system is a TA VCT system.
1	9. The system of claim 1, wherein the VCT system is a OPA VCT system.
1	10. The system of claim 1, wherein the cam tooth wheel is asymmetric.
1	11. The system of claim 1, wherein the cam tooth wheel is symmetric.