AP Calculus BC Practice Test | iLearnMath.net

NAME			

SCORE SHEET [20 PROBLEMS]

1		5	9	13	17	
2		6	10	14	18	
3		7	11	15	19	
4	4	8	12	16	20	

as taken from . Questions taken from 256 Problem Collection at ilearnmath.net

The third-degree Taylor polynomial about $x = 0 \text{ of } \ln(1 - x) \text{ is:}$

SHOW ANSWER

c.
$$x - \frac{x^2}{5} + \frac{x^3}{3}$$

D.
$$+1+x-\frac{x^2}{2}$$

E.
$$-x + \frac{x^2}{2} - \frac{x^3}{3}$$

SHOW ANSWER

A. -1

B. -0.5

C. 0.5

D. 1

E. divergent

Problem 2

$$\int_{0}^{\infty} e^{-2t} dt \text{ is}$$

- -1A.
- -0.5В.
- C. 0.5
- 1 D.
- divergent E.

The area of one loop of the graph of the polar equation $r = 2\sin(3\theta)$ is given by which of the following?

SHOW ANSWER C. $\sin^2(3\theta) d\theta$ D. E. $\sin(3\theta) d\theta$

$$\lim_{x \to 0} \frac{e^{3x} - 1}{\tan x} =$$

SHOW ANSWER

Problem 5

Identify the false statement.

- $\frac{d\sinh(x)}{dx} = \cosh(x)$ $\frac{d\cosh(x)}{dx} = \sinh(x)$ A.
- В.
- $\int_{a}^{t} \operatorname{sech}^{2}(x)dx = \tanh(t) \tanh(a)$ C.
- $\cosh^2(x) \sinh^2(x) = 1$ D.
- All four statements are true. E.

Evaluate
$$\int_0^6 \sqrt{6x - x^2} dx$$

SHOW ANSWER

D.
$$\frac{2}{9\pi}$$

Problem 7

$$\int \ln(x)x^4 dx =$$

A.
$$\frac{\pi}{8}$$
. $\frac{2\pi}{6}$. $\frac{5\pi}{2}$
D. $\frac{9\pi}{2}$
E. 3π

A. $\frac{x^5 \ln(x)}{5} + \frac{x^6}{30} + C$
B. $\frac{x^5 \ln(x)}{5} + \frac{x^5}{25} + C$
C. $\frac{x^5}{5} \frac{1}{x} + C$
D. $\frac{(\ln(x))^2 x^5}{7} + C$
E. $\frac{x^5 \ln(x)}{5} - \frac{x^5}{25} + C$

B.
$$\frac{x^5 \ln(x)}{5} + \frac{x^5}{25} + C$$

c.
$$\frac{x^5}{5} \frac{1}{x} + C$$

D.
$$\frac{(\ln(x))^2 x^5}{7} + C$$

E.
$$\frac{x^5 \ln(x)}{5} - \frac{x^5}{25} + C$$

W. W.

Problem 8

Find
$$\int e^{mx} \cos(nx) dx$$

SHOW ANSWER

$$e^{mx}\frac{m\cos(nx) - n\sin(nx)}{m^2 + n^2} + C$$

$$e^{mx} \frac{\cos(nx) - \sin(nx)}{m^2 + n^2} + C$$

c.
$$e^{mx} \frac{n\sin(nx) + m\cos(nx)}{m^2 + n^2} + C$$

D.
$$\frac{-e^{inx}\cos(nx)}{c} + C$$

Non of the above. E.

Problem 9

Find the arclength of the curve $y = \ln(\sin(x))$ on the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.

$$\ln(\frac{\sqrt{2}}{2}+1)$$

B.
$$\ln(1+\sqrt{2})$$

c.
$$\sqrt{2}$$

B.
$$\ln(1+\sqrt{2})$$

c. $\sqrt{2}$
D. $\ln(1+\sqrt{2})-1$

E.
$$1 - \ln(1 + \sqrt{2})$$

The area bounded by the lemniscate with polar equation $r^2 = 2\cos(2\theta)$ is equal to

SHOW ANSWER

None of the above

Problem 11

The graph of the polar equation \tilde{r}

- a circle Α.
- a line with slope 1 В.
- a line with slope 2 C.
- a parabola D.
- a semi-circle E.

The power series $x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n} + \dots$ converges if and only if:

SHOW ANSWER

A.
$$-1 < x < 1$$

B. $-1 \le x \le 1$
C. $-1 \le x < 1$

$$\mathbf{E}. \qquad \mathbf{x} = 0$$

Problem 13

The power series ..diverges:

- for no real x values Α.
- if $-2 < x \le 0$ В.
- if x < -2 or x > 0C.
- if $-2 \le x < 0$ D.
- if $x \neq -1$ E.

The series $\sum_{n=0}^{\infty} n!(x-3)^n$ converges if and only if

SHOW ANSWER

$$x = 0$$

B.
$$2 < x < 4$$

$$\mathbf{D.} \qquad 2 \le x \le 4$$

$$\mathbf{E}. \qquad x < 2 \text{ or } x > 4$$

Problem 15

The interval of convergence of the series obtained through

term by term differentiation of the series
$$(x-2)-\frac{(x-2)^2}{4}+\frac{(x-2)^3}{9}-\frac{(x-2)^4}{16}+\dots \text{ is:}$$
 SHOW ANSWER

A. $1\leq x\leq 3$
B. $1\leq x<3$
C. $1< x\leq 3$
D. $0\leq x\leq 4$
E. None of the above.

- $\begin{array}{l} 1 \leq x \leq 3 \\ 1 \leq x < 3 \end{array}$
- $1 < x \le 3$ C.
- $0 \le x \le 4$ D.
- None of the above. E.

Problem 16

The coefficient of x^4 in the Maclaurin series for $f(x) = e^{\frac{-x}{2}}$ is:

SHOW ANSWER

D.

E.

The Maclaurin polynomial of order 3 for $f(x) = \sqrt{1+x}$ is

A.
$$1 + \frac{x}{2} - \frac{x^2}{4} + \frac{3x^2}{8}$$
B.
$$1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16}$$
C.
$$1 - \frac{x}{2} + \frac{x^2}{8} - \frac{x^3}{16}$$
D.
$$1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{8}$$
E.
$$1 - \frac{x}{2} + \frac{x^2}{4} - \frac{3x^3}{8}$$

C.
$$\frac{2}{1-\frac{x}{2}+\frac{x^2}{8}-\frac{x^3}{16}}$$

D.
$$1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{8}$$

E.
$$1 - \frac{x}{2} + \frac{x^2}{4} = \frac{3x^3}{8}$$

The Taylor polynomial of order 3 at x=1 for e^x is:

A.
$$1 + (x - 1) + \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3}$$
B.
$$e[1 + (x - 1) + \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3}]$$
C.
$$e[1 + (x + 1) + \frac{(x + 1)^2!}{2} + \frac{(x - 1)^3!}{3!}]$$
D.
$$e[1 + (x - 1) + \frac{(x - 1)^2}{2!} + \frac{(x - 1)^3}{3!}]$$
E.
$$e[1 - (x - 1) + \frac{(x - 1)^2}{2!} - \frac{(x - 1)^3}{3!}]$$

c.
$$e[1+(x+1)+\frac{(x+1)^2!}{2}+\frac{(x-1)^3!}{3!}]$$

D.
$$e[1+(x-1)+\frac{(x-1)^2}{2!}+\frac{(x-1)^3}{3!}]$$

E.
$$e[1-(x-1)+\frac{(x-1)^2}{2!}-\frac{(x-1)^3}{3!}]$$

· ACX

Problem 19

The coefficient of $(x - \frac{\pi}{4})^3$ in the Taylor series

about $\frac{\pi}{4}$ of $f(x) = \cos x$ is

SHOW ANSWER

E.
$$\frac{-1}{3\sqrt{2}}$$

Problem 20

The radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{x^n * n^n}{2^n * n!}$$
 is:

- A.
- В.
- C.
- D.
- E.

ANSWER KEY

1 (60)	A	5 (157)	E	9 (190)	В	13 (242)	A	17 (246)	В
2 (70)	С	6 (180)	D	10 (239)	D	14 (243)	С	18 (247)	D
3 (76)	С	7 (181)	Е	11 (240)	С	15 (244)	С	19 (248)	D
4 (87)	D	8 (182)	С	12 (241)	С	16 (245)	E	20 (249)	С

