VISION WITH OF

Add Vision to your Apps

Hasan Ijaz October 31, 2015

TEMPLATE MATCHING

TEMPLATE MATCHING

Primary Components

· Source Image(I), Template Image(T), Metric

RESULT

CVMATCHTEMPLATE

cvMatchTemplate

- $\cdot \ \, \text{source Image}$
- · template Image
- · result Image
- Metric
 - · CV_TM_SQDIFF, CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED, CV_TM_CCOEFF and CV_TM_CCOEFF_NORMED

METRICS

CV_TM_SQDIFF

$$R(x,y) = \sum_{x',y'} (T(x',y') - I(x + x', y + y'))^{2}$$

CV_TM_SQDIFF_NORMED

$$R(x,y) = \frac{\sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

METRICS

CV_TM_CCORR

$$R(x,y) = \sum_{x',y'} (T(x',y') \cdot I(x + x',y + y'))$$

CV_TM_CCORR_NORMED

$$R(x,y) = \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

METRICS

CV_TM_CCOEFF

$$R(x,y) = \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))$$

where

$$\begin{array}{l} T'(x',y') = T(x',y') - 1/(w \cdot h) \cdot \sum_{x'',y''} T(x'',y'') \\ I'(x+x',y+y') = I(x+x',y+y') - 1/(w \cdot h) \cdot \sum_{x'',y''} I(x+x'',y+y'') \end{array}$$

CV_TM_CCOEFF_NORMED

$$R(x,y) = \frac{\sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'} T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}}$$

YOU CAN NOW PERFORM TEMPLATE MATCHING WITH

OPENFRAMEWORKS:)