

Functional Analysis I

Homework Assignment 10

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: 6 Points

Let \mathcal{H} be a Hilbert space with scalar product $\langle \cdot, \cdot \rangle$ and corresponding norm $\| \cdot \|$. Let $(f_k)_{k \in \mathbb{N}}$ be a sequence in \mathcal{H} . Show that the following statements are equivalent:

- (a) There exists some constant B>0 such that $\sum_{k\in\mathbb{N}}|\langle f,f_k\rangle|^2\leq B\|f\|^2$ for all $f\in\mathcal{H}.$
- (b) The operator $T: \ell_2(\mathbb{N}) \to \mathcal{H}$ given by $T((c_k)_{k \in \mathbb{N}}) := \sum_{k \in \mathbb{N}} c_k f_k$ is well-defined and bounded from $\ell_2(\mathbb{N})$ into \mathcal{H} and $||T|| \leq \sqrt{B}$.

Exercise 2: 4 Points

Construct a functional f on some non-complete inner product space \mathcal{H} such that f is not in the image of the Riesz map.

Exercise 3: 4 Points

Let \mathcal{M} be a closed subspace of a Hilbert space \mathcal{H} . Then for each $x \in \mathcal{H}$ there exist uniquely determined $u \in \mathcal{M}, v \in \mathcal{M}^{\perp}$ with x = u + v. We set $\mathcal{P}_{\mathcal{M}}x := u$. Then $\mathcal{P}_{\mathcal{M}}$ is the orthogonal projection onto \mathcal{M} . Let \mathcal{N} be another closed subspace of \mathcal{H} . Show that

$$\mathcal{M} \subset \mathcal{N} \iff \mathcal{P}_{\mathcal{M}} = \mathcal{P}_{\mathcal{N}} \mathcal{P}_{\mathcal{M}} = \mathcal{P}_{\mathcal{M}} \mathcal{P}_{\mathcal{N}}$$

Exercise 4: 6 Points

In this exercise we prove that the Fourier transform can be seen as an isometry in $L_2(\mathbb{R})$. We use the following definition of the Fourier transform $\mathcal{F}f$ of a function $f \in L_1(\mathbb{R})$:

$$(\mathcal{F}f)(y) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x)e^{-ixy} dx, \quad y \in \mathbb{R}.$$

Everything you need to know for our aim is the following:

- (i) For $y \in \mathbb{R}$ define the function $e_y : (-\pi, \pi) \to \mathbb{C}$, $e_y(x) := \frac{1}{\sqrt{2\pi}} e^{ixy}$. Then $\{e_k : k \in \mathbb{Z}\}$ is a complete orthonormal system in $L_2(-\pi, \pi)$.
- (ii) Define the functions $s_k : \mathbb{R} \to \mathbb{R}$, $s_k(x) := \frac{\sin((k-x)\pi)}{(k-x)\pi}$. Then $\{s_k : k \in \mathbb{Z}\}$ is an orthonormal system in $L_2(\mathbb{R})$.

You do not need to prove (i) or (ii)! You can now proceed as follows:

(a) Consider the space $L_2(-\pi,\pi)$ as a closed subspace of $L_2(\mathbb{R})$ (by setting $f \in L_2(\mathbb{R})$ to zero on $\mathbb{R}\setminus (-\pi,\pi)$) and prove $\|\mathcal{F}f\|_2 = \|f\|_2$ for all $f \in L_2(-\pi,\pi)$. For this, first show for $f \in L_2(-\pi,\pi)$ that

$$\|\mathcal{F}f\|_2^2 = \int_{\mathbb{R}} |\langle f, e_y \rangle|^2 \, dy \,,$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar product on $L_2(-\pi, \pi)$. Now, use (i) in order to decompose f with respect to the e_k 's, $k \in \mathbb{Z}$. Prove that $\langle e_k, e_y \rangle = s_k(y)$. Next, make use of (ii) and (i) again to see that indeed $\|\mathcal{F}f\|_2^2 = \|f\|_2^2$ holds.

- (b) For each $n \in \mathbb{N}$ consider $L_2(-n\pi, n\pi)$ as a closed subspace of $L_2(\mathbb{R})$ and prove that $\|\mathcal{F}f\|_2 = \|f\|_2$ for all $f \in L_2(-n\pi, n\pi)$.
- (c) Prove that $\bigcup_{n\in\mathbb{N}} L_2(-n\pi, n\pi)$ is dense in $L_2(\mathbb{R})$ and use this to extend \mathcal{F} by continuity to an isometric operator on $L_2(\mathbb{R})$.

The following bonus exercise introduces you to frames. Frame theory is nowadays a fundamental research area in (applied) functional analysis with links to other areas in both pure and applied mathematics as well as to computer science and engineering. Frames are a means to provide redundant, yet stable decompositions of functions/signals and are a generalization of orthonormal bases (to be more precise, a generalization of the Parseval identity is assumed to hold).

Bonus Exercise* +5 points

Let \mathcal{H} be a separable Hilbert space, and let $J \subset \mathbb{N}$ be an index set. A system $(\phi_j)_{j \in J} \subset \mathcal{H}$ is called a *frame* for \mathcal{H} if there exist A, B > 0 such that for all $x \in \mathcal{H}$

$$A||x||^2 \le \sum_{j \in J} |\langle x, \phi_j \rangle|^2 \le B||x||^2.$$

Let $\Phi:=(\phi_j)_{j\in J}$ be a frame for \mathcal{H} . The associated analysis operator $T_\Phi:\mathcal{H}\to\ell_2(J)$ is defined by $T_{\Phi}x:=(\langle x,\phi_j\rangle)_{j\in J},\,x\in\mathcal{H}$. Prove that T_Φ is well-defined, bounded, injective, and that its range is closed. The synthesis operator of Φ is defined as the Hilbert space adjoint T_Φ^* of T_Φ , i.e., the unique linear map $T_\Phi^*:\ell_2(J)\to\mathcal{H}$ which satisfies $\langle x,T_\Phi y\rangle_{\ell_2(J)}=\langle T_\Phi^*x,y\rangle_{\mathcal{H}}$ for all $x\in\ell_2(J)$ and $y\in\mathcal{H}$. Confirm that T_Φ^* indeed exists, is well-defined and uniquely determined. Further, show that T_Φ^* is bounded, surjective, and that it has the form

$$T_{\Phi}^*((c_j)_{j \in J}) = \sum_{j \in J} c_j \phi_j, \quad (c_j)_{j \in J} \in \ell_2(J).$$

Please submit your homework in the BEGINNING of the big exercise on Monday, June 24.