200 billion sequences and counting: analysis, discovery and exploration of datasets with EBI Metagenomics

Alex Mitchell mitchell@ebi.ac.uk

Overview

- Challenges of metagenomic data analysis
- The EBI Metagenomics analysis pipeline & portal
- Recent & forthcoming developments

'Metagenomics': a broad range of

Different experimental design

Taxonomic analysis

Why is metagenomics challenging?

- Vast number of sequences
- Most are missing from the reference databases
- Short sequence fragments are hard to characterise
- Assembly can lead to chimeras
- Iddo Friedberg: 'Metagenomics is like a disaster in a jigsaw shop'

- Millions of different pieces
- Thousands of different puzzles
- All mixed together
- Most of the pieces are missing
- No box art to refer to

Analysis pitfalls

- Different analysis tools can give different results
- The same tools can give different results, depending on the version and underlying algorithm (e.g., HMMER2 vs HMMER3)
- The same version of the same tools can give different results depending on the reference database used

Reference databases

Standard Protein BLAST NCBI/ BLAST/ blastp suite blastp blastx tblastn tblastx blastn BLASTP programs search protein databases using a protein query. **Enter Query Sequence** Enter accession number(s), gi(s), or FASTA sequence(s) @ Query subrange (9) Clear >PLANT1 From MGERFFRNEMPEFVPEDLSGEEETVTECKDSLTKLLSLPYKSFSEKLHRYALSIKDKVVW ETWERSGKRVRDYNLYTGVLGTAYLLFKSYQVTRNEDDLKLCLENVEACDVASRDSERVT To FICGYAGVCALGAVAAKCLGDDQLYDRYLARFRGIRLPSDLPYELLYGRAGYLWACLFLN KHIGQESISSERMRSVVEEIFRAGRQLGNKGTCPLMYEWHGKRYWGAAHGLAGIMNVLMH Or, upload file 9 Choose File) no file selected Job Title PLANT1 Enter a descriptive title for your BLAST search @ Align two or more sequences Choose Search Set Database Non-redundant protein sequences (nr) Sequences producing significant alignments: Select: All None Selected:0 AT Alignments Download - GenPept Graphics Distance tree of results Multiple alignment Total Quer Ident Description Accession value score score COV G-protein coupled receptor 2 [Arabidopsis thaliana] 850 0.0 100% 175700.2 0.0 100% 3T33 A 849 849 100% 830 97% 0.0 100% AAG52264.1 putative G protein-coupled receptor; 80093-78432 [Arabidopsis thaliana] 100% 0.0 predicted protein [Arabidopsis lyrata subsp. lyrata] 778 92% XP 002894411.1

Reference databases

RecName: Full=LanC-like protein 2; AltName: Full=Testis-specific adriamycin sensitivity protein [Mus musculus]

Standard Protein BLAST NCBI/ BLAST/ blastp suite blastp blastx tblastn tblastx blastn BLASTP programs search protein databases using a protein query. Enter Query Sequence Enter accession number(s), gi(s), or FASTA sequence(s) @ Query subrange (9) Clear >PLANT1 From MGERFFRNEMPEFVPEDLSGEEETVTECKDSLTKLLSLPYKSFSEKLHRYALSIKDKVVW ETWERSGKRVRDYNLYTGVLGTAYLLFKSYOVTRNEDDLKLCLENVEACDVASRDSERVT To FICGYAGVCALGAVAAKCLGDDQLYDRYLARFRGIRLPSDLPYELLYGRAGYLWACLFLN KHIGQESISSERMRSVVEEIFRAGRQLGNKGTCPLMYEWHGKRYWGAAHGLAGIMNVLMH Or, upload file Choose File) no file selected Job Title PLANT1 Enter a descriptive title for your BLAST search (9) Align two or more sequences Choose Search Set Database 10 UniProtKB/Swiss-Prot(swissprot) Sequences producing significant alignments: Select: All None Selected:0 Alignments Download GenPept Graphics Distance tree of results Multiple alignment Total Query Description Ident ccession value score cove 850 0.0 100% 541 100% Q8VZQ6.1 330

39%

Q9JJK2.1

9e-84

269

Reference databases

Plant Physiology

HOME ABOUT SUBMIT SUBSCRIPTIONS ADVERTISE ARCHIVE

Institution: Wellcome Trust Genome Campus Sign In as Member / Inc

Copyright © 2013, American Society of Plant Biologists

EXPAN

"Round up the usual suspects" A Comment on Nonexistent Plant GPCRs

Daisuke Urano (urano@email.unc.edu) and Alan M. Jones 1

(alan_jones@unc.edu)

- + Author Affiliations
- "Corresponding author; email: alan_jones@unc.edu

Published online before print January 2013, doi: http://dx.doi.org/10.1104/pp. 112.212324

Plant Physiology January 2013 pp.112.212324

Data volumes

Data analysis speed

- The cost of sequencing has really gone down
- Now I can do metagenomics!
- Awesome!

- Amount of sequence generated has increased
 5,000-fold
- Computational speed has increased only 10-fold
- Time taken to analyse has increased 500-fold

\$@%*!!!

Data analysis cost

Longevity & usefulness of data

For data to have longevity and be useful to the scientific community, sequences need to be archived with contextual metadata

How was it sampled? How was it extracted?
 How was it stored? What sequencing platform was used?

 Where did it come from? What were the environmental conditions (lat/long, depth, pH, salinity, temperature...) or clinical observations?

Contextual data

If contextual data is adequately described, querying and interpretation across projects becomes possible

- Show the microbial species found in the North Pacific
 - ... at depths of 50 100 m
 - ... in samples taken May-June
 - ... compared to the Indian Ocean, under the same conditions

Why standardised vocabularies are important: how many ways to say "female"?

18-day pregnant females female (lactating) worker caste (female) individual female 2 vr old female female (pregnant) Igb*cc females sex: female 400 yr. old female female, other female (outbred) mare adult female female child female parent female (worker) asexual female female plant monosex female femal castrate female 3 female female with eggs ovigerous female cf.female female worker oviparous sexual females female (phenotype) cystocarpic female female, 6-8 weeks old worker bee female mice dikaryon female, spayed female, virgin female enriched dioecious female female, worker pseudohermaprhoditic female femlale diploid female female(gynoecious) remale metafemale sterile female femele semi-engorged female normal female famale female, pooled sexual oviparous female sterile female worker femail femalen female females strictly female vitellogenic replete female female - worker worker females only tetraploid female

hen probably female (based on morphology)

gynoecious

healthy female

female (alate sexual)

female (calf)

female (note: this sample was originally provided as a \"male\" sample to us and therefore labeled this way in the brawand et al. paper and original geo submission; however, detailed data analyses carried out in the meantime clearly show that this sample stems from a female individual)",

thelytoky

female (gynoecious)

hexaploid female

female (f-o)

Considerations: storing data

Where are you going to store this?

Locally : back-up ?

long term?

sharing?

access?

EBI Metagenomics

http://www.ebi.ac.uk/metagenomics

A *free* resource for the analysis, archiving & browsing of amplicon, metagenomic and metatranscriptomic data

Powerful analysis

Data archiving

EBI Metagenomics

The data submission process

- (1) Register for an account
- (2) Upload sequence data and metadata
- (3) Sequence data is archived in ENA and accessioned
- (4) Sequence data is analysed by the metagenomics pipeline
- (5) Projects, metadata and results are made available on the website for private or public browsing / download

Pairwise sequence analysis approaches?

BLAST, BLAT, etc?

- Scalability (BLAST of 150 million seqs vs UniProt requires
 ~15 billion pairwise comparisons)
 - Sensitivity (sequences not in reference databases)

BLAST for annotation transfer

BLAST of 2 proteins:

60S acidic ribosomal protein P0 from 2 closely-related species

8 7	QKKQMYIEKLSSLIQQYSKILIVHVDNVGSNQMASVRKSLRGKATILMGKNTRIRTALKKNLQAVPQIEK ++K ++IEK + L Y K+++ D VGS+Q+ +RKS+RG +LMGK T IR ++ + P+++ KRKNVFIEKATKLFTTYDKMIVAEADFVGSSQLQKIRKSIRGIGAVLMGKKTMIRKVIRDLADSKPELDA	77 76
78 77	LLPLVKLNMGFVFCKDDLSEIRNIILDNKSSSHPARLGVIAPIDVFIPPGPTGMDPSHTSFLESLGISTK L +K N +FCKD+++E++ +I + + PA+ GV AP DV IP GPTGM+P+ TSFL+ L I+TK LNTYLKQNTCIIFCKDNIAEVKRVINTQRVGA-PAKAGVFAPNDVIIPAGPTGMEPTQTSFLQDLKIATK	147 145
148 146	IVKGQIEIQEHVHLIKQGEKVTASSATLLRKFNMNP-SYGVDVRTVYDDGVIYDAKVLDITDEDILEKFS I +GQI+I VH+IK G+KV AS ATLL+K N+ P +YG++ + +YD G Y I++ED++ KF INRGQIDIVNEVHIIKTGQKVGASEATLLQKLNIKPFTYGLEPKIIYDAGACYSPSISEEDLINKFK	216 213
217 213	KGVSNVAALSRATGVITEASYPHVFVEAFKNIVALIIDSDYTFPLMKILKKWVENPEAFAAVAAPASAA- +G+ N+AA+S G T AS PH + AFKN++A+ ++ YTF + K AA AAP +AA QGIFNIAAISLEIGYPTVASIPHSVMNAFKNLLAISFETSYTFDAAEKFKSAAAAAPVAAAP	286 278
286 275	KADEPKKEEAKKVEEEEEEEDGFMGFGMFD 318 Q94660 A P K V EE++EE D MG G+FD SAAAPAAAAKKVVVEEKKEESDDDMGMGLFD 317 P22685	

60S acidic ribosomal protein P0: multiple sequence alignment

Protein signatures

Alternatively, model the pattern of conserved amino acids at specific positions within a multiple sequence alignment

- Patterns
- Profiles
- Profile HMMs

Use these models to infer relationships with the characterised sequences from which the alignment was constructed

Approach used by a variety of databases: Pfam, TIGRFAMs, PANTHER, Prosite, etc

Homology search sensitivity

InterPro - integrated classification of protein families

InterPro for functional annotation

Using InterPro for annotation

- Underlies the system that adds annotation to UniProtKB/TrEMBL
- Provides matches to ~50 million proteins (approx 80% of UniProtKB)
- Source of ~120 million GO terms for ~40 million distinct UniProtKB sequences

Annotation consistency:

Using InterPro and GO for annotation allows direct comparison proteins in UniProtKB

Annotation is kept up to date

- Protein matches to database entires are checked every release
- Entries are updated, errors are fixed in response to:
 - Underlying databases changes
 - Sequence data changes
 - Gene Ontology changes
 - Biological knowledge changes

GO annotation in InterPro: why stability does not indicate accuracy in a sea of changing annotations

Sangrador-Vegas et al., Database (2016)

doi: 10.1093/database/baw027

4037 metagenomics 389 metatranscriptomics 2945 amplicons 67 assemblies

5451 runs 4749 samples 132 projects

1987 runs 1926 samples 82 projects

Browse projects

Home Submit data Projects Samples Comparison tool About EBI Metagenomics Contact

Not logged in Login

EBI Metagenomics > Project: Metagenomes of hydrogen producing, xylan fed ter...

Project (FERP009615)

Metagenomes of hydrogen producing, xylan fed termites

Overview

Analysis summary

Last updated: 28-Aug-2015

Description

Metagenome study with samples from the guts of termites (Nasutitermes exitiosus sp). The termites had xylan as their only carbon source and were raised at temperatures of 33, 40 and 45 degrees respectively while producing highly concentrated hydrogen.

Classification: Host-associated > Arthropoda > Digestive system > Gut

Contact details

Institute: CSIRO

Name: Data Integration BRAEMBL Email: Datasubs@ebi.org.au

Associated runs

Sample Name	Sample ID	Run ID	Experiment type	Version	Analysis results
Nasutitermes exitiosus gut metagenome incubated at 33	ERS662122	ERR762516	Metagenomic	2.0	Taxonomy I Function I ±
Nasutitermes exitiosus gut metagenome incubated at 40	ERS662123	ERR762517	Metagenomic	2.0	Taxonomy I Function I ±
Nasutitermes exitiosus gut metagenome incubated at 45	ERS662124	ERR762518	Metagenomic	2.0	Taxonomy I Function I ±

Run (FERR762516)

Overview

Quality control

Taxonomic analysis

Functional analysis

Download

These are the results from the taxonomic analysis steps of our pipeline. You can switch between different views of the data using the menu of icons below (pie, bar, stacked and interactive krona charts). If you wish to download the full set of results, all files are listed under the "Download" tab.

Top taxonomy Hits

Run (*ERR762516)

Overview

Quality control

Taxonomic analysis

Functional analysis

Download

Functional analysis has 3 main outputs: a sequence features summary, showing the number of reads with predicted coding sequences (pCDS), the number of pCDS with InterPro matches, and so on; the matches of pCDS to the InterPro database and a chart of the GO terms that summarise the functional content of the sample's sequences. If you wish to download the full set of results, all files are listed under the "Download" tab.

GO Terms annotation

A summary of Gene Ontology (GO) terms derived from InterPro matches to your sample is provided in the charts below.

Functional annotation: The Gene Ontology

- Grew out of the model organism community
- Aims to unify the representation of gene and gene product attributes across species
- Allows cross-species and/or cross-database comparison

Inconsistency in naming of biological concepts

English is not a very precise language*

- Same name for different concepts
- Different names for the same concept

An example ...

Sensory perception of Quch; GO:0050975

The Gene Ontology

 A way to capture biological knowledge in a written and computable form

 A set of concepts and their relationships to each other arranged as a hierarchy

www.ebi.ac.uk/QuickGO

The Concepts in GO

1. Molecular Function

An elemental activity or task or job

- protein kinase activity
- insulin receptor activity

2. Biological Process

A commonly recognised series of events

cell division

3. Cellular Component

Where a gene product is located

- mitochondrion
- mitochondrial matrix
- mitochondrial inner membrane

Visualising the data: GO Slims

- GO slims are cut-down versions of the GO, containing a subset of terms
- Give a broad overview of the ontology content without the detail
 of the specific fine-grained terms

GO Slims

GO Slims

Slimmed term:

Visualising the data: GO slims

- For visualisation, EMG uses a GO slim, developed inhouse for metagenomic data sets
- Recently rebuilt for pipeline v3.0, based on annotation of
 20 billion predicted coding sequences

GO Terms annotation

A summary of Gene Ontology (GO) terms derived from InterPro matches to your sample is provided in the charts below.

Run (*ERR762516)

Overview

Quality control

Taxonomic analysis

Functional analysis

Download

Functional analysis has 3 main outputs: a sequence features summary, showing the number of reads with predicted coding sequences (pCDS), the number of pCDS with InterPro matches, and so on; the matches of pCDS to the InterPro database and a chart of the GO terms that summarise the functional content of the sample's sequences. If you wish to download the full set of results, all files are listed under the "Download" tab.

GO Terms annotation

A summary of Gene Ontology (GO) terms derived from InterPro matches to your sample is provided in the charts below.

Online comparison tool

EBI Metagenomics > Comparison tool

Comparison tool

The comparison is currently based on a summary of Gene Ontology (GO) terms derived from InterPro matches to the selected runs.

Project list

Long insert human faecal metagenomic library.

Making and breaking DMS by salt marsh microbes (Illumina HiSeq 100bp)

Meta-transcriptomic analysis of rumen microbiome of Mehsani buffalo

MetaSoil

Metagenome of a microbial consortium obtained from the Tuna oil field in the Gippsland ...

Metagenome of grass carp intestinal contents and mucosa

Metagenome sequencing of biogas plant operating wet fermentation

Metagenomes and metatranscriptomes from the diffuse hydrothermal vents of Axial Seamoun...

Metagenomes of hydrogen producing, xylan fed termites

Metagenomic Characterisation of Opaque Beer Industry Wastewater

Metagenomic Characterisation of Opaque Beer Industry Wastewater

Metagenomic analysis of Ruminal Microbes

Metagenomic analysis of sediments along a uranium gradient

More info about selected project

Run list (3 selected out of 3)

Nasutitermes exitiosus gut metagenome incubated at 33 - ERR762516 Nasutitermes exitiosus gut metagenome incubated at 40 - ERR762517 Nasutitermes exitiosus gut metagenome incubated at 45 - ERR762518

Select all I Unselect all

Advanced settings

Show / hide advanced settings

Compare | Clear all

Downstream analysis: download options

Overview

Quality control

Taxonomy analysis

Functional analysis

Download

You can download in this section the full set of analysis results files and the original raw sequence reads.

Sequence data

- Submitted nucleotide reads (ENA website)
- Processed nucleotide reads (FASTA) 2 MB
- Processed reads with pCDS (FASTA) 2 MB
- Processed reads with InterPro matches (FASTA) 1 MB
- Processed reads without InterPro match (FASTA) 835 KB
- Predicted CDS (FASTA) 710 KB
- Predicted CDS with InterPro matches (FASTA) 451 KB

Functional Analysis

- InterPro matches (TSV) 1 MB
- Complete GO annotation (CSV) 44 KB
- GO slim annotation (CSV) 7 KB

Taxonomic Analysis

- Reads encoding 5S rRNA (FASTA) 565 bytes
- Reads encoding 16S rRNA (FASTA) 21 KB
- → Reads encoding 23S rRNA (FASTA) 37 KB
- ◆ OTUs and taxonomic assignments (BIOM) ① 6 KB
- Phylogenetic tree (Newick format) ① 289 bytes
- OTUs and taxonomic assignments (TSV) 2 KB

relatively small result files: can be used for downstream analysis with other tools

Pipeline Developments

High throughput enables large-scale project analyses

Over 8,000 16S amplicon data sets, aiming to shed light on the connections between human microbiome and health

Tara Oceans

7K samples from 210 stations sampled from around the globe

EBI analysis of Global Ocean microbiome set: 135 samples/248 runs, size-fractionated for prokaryotes = 10TB sequence data

EMG Metagenomics - Large Volumes of Data

EMG Metagenomics - Large Volumes of Data

Number of different projects: 681

Number of different samples: 39,795

Number of runs: 56,883

Nucleotide sequence reads: 230 billion

Average length per sequence: 120 nt

Predicted rRNAs: 3.6 billion

Predicted CDS: 126 billion

Total InterProScan matches: 33 billion

amplicons assemblies metabarcoding metagenomes metatranscriptomes

56883 r 39795 s

runs samples projects Private

2605 2335 125

runs samples projects

Browse projects

Biome search

Project summary files

Project-level analyses (OSD data)

Courtesy of Bernardo Duarte, João Canning-Clôde, Catarina Magalhães, Luís Torgo, Isabel Caçador.
Manuscript in preparation.

Heatmap of significant Spearman correlations between protein families and environmental conditions across 150 sites

EBI-search underpins new search interface

 e.g. Give me all antibiotic biosynthesis monooxygenases in soil, where Actinobacteria are found, determined using metatranscriptomics

EBI-search underpins new search interface

e.g. Give me all antibiotic biosynthesis monooxygenases in soil, where Actinobacteria are found, determined using metatranscriptomics

EBI-search underpins new search interface

e.g. Give me all antibiotic biosynthesis monooxygenases in soil, where Actinobacteria are found, determined using metatranscriptomics

EBI-search underpins new search interface

e.g. Give me all antibiotic biosynthesis monooxygenases in soil, where Actinobacteria are found, determined using metatranscriptomics Organism IPR007138 Bacteria (30) Search Bacteroidetes (30) Proteobacteria (30) Firmicutes (30) Search EBI Metagenomics Actinobacteria (30) Acidobacteria (30) Projects (C) Bamples (C) Horse (M) Biome Showing 20 out of 30 results Hydrothermal vents (1 Pipeline Version Project Experiment Type ✓ Soil (30) SRR1664777 SRS753897 SRP050316 metatranscriptomic 2.0 Rumen (23) Sediment (17) **ERRSesses** ERB909900 ERP006378 metatranscriptomi III Bacteria (30) Bactemidetes (30) CHRISPONT ERRIGOSON ERP006376 metatranscriptomic 0.0 Experiment Type Proteobacteria (30) ER5500948 ERPOOST/II 1.0 Firmicutes (30) w Actinobacteria (30) BR811940272 SPECTORIO BRP049447 2.0 Metagenomic (449) Acidoloacteria (30) ERPODES78 metahanacriptomic 1.0 Ptanctomycetes (29) Metatranscriptomic (30) Assembly (16) Clear Selection

Assembly of metagenomics data?

Metagenomics: Not clear how you avoid assembling sequences from different species together: chimaera

Assembly is not part of standard analysis pipeline

We are still able to annotate metagenome data - re-analysis of rumen metagenomics by Hess et al, (2011)

Can we perform targeted assembly?

Stage 1 - Suffix Array Database Generation

Can we perform targeted assembly?

- Query Yeast Beta-galactosidase
- GRASP generated 79 contigs, 2 full length protein matches
- Contig_0 was 99.8% identical to the E. coli sequence N2H7R2_ECOLX

Can we perform targeted assembly?

- Query Yeast Beta-galactosidase
- GRASP generated 79 contigs, 2 full length protein matches
- Contig_0 was 99.8% identical to the E. coli sequence N2H7R2_ECOLX

Comparison of different 16S reference databases

Closed Reference OTU assignment using QIIME

GreenGenes, Silva, RDP

Comparison of different 16S reference databases

Japan tsunami-affected soil

GreenGenes

Silva

Moving beyond 16S rRNA

New analysis module to replace RNAselector

- Uses Rfam models for LSU, SSU and 5/5.8S
- Better discrimination of 16S/18S rRNAs
- Allows identification of 18S from WGS data sets

18S rRNA data: OSD Greenland Strait

Other portals

http://metagenomics.anl.gov/

http://img.jgi.doe.gov/

http://imicrobe.us

Simplified MG-RAST workflow

High level summary of the MG-RAST workflow

- High performance quality control tested with over 250,000 data sets
- Feature prediction
 - Intrinsic feature (gene) prediction for CDS sequencing error tolerant
 - Extrinsic feature prediction for rRNA
 - No other features
- Clustering
 - 90% identity for CDSs
 - 97% for rRNAs
- superBLAT similarity vs. M5NR meta-database
 - similarity based with protein and rRNA references
 - Controlled hierarchies: SEED, KEGG pathways, eggNOGs, COGs
 - SILVA, Greengenes, RDP
 - Lowest-common-ancestor, best-hit, representative hit strategies
 - NCBI taxonomy; (soon also SILVA taxonomy)
- Storing abundance profiles
- Query based on profiles
 - No decision on e-value, % Identity or alignment length before query time

Q Metagenome Search

Search page is a good entry point

Search for Metagenomes

john.spears@mines.edu| Search

Match[™] ☑ metadata / MG-RAST id ② function ② organisms

Find by metadata / mg-rast id	Find by function or functional category	Find by organism	
MG-RAST id, name, biome, project name	BatE, 3.4.11.9, RNA Metabolism	Firmicutes, Mobiliuncus curtisii	
Search	Search	Search	

Note: To create a collection, first select the metagenomes in the first column, then click "create collection".

create	collection								
-first -pre	nv.			Displaying 1-10 o	f 454 results				next+ last+
Select	Seq Type	Metagenome (ascending)	MG-RAST ID	Project	Blome	Feature	Material	Country ₍₎	Location (
n)	WGS	10K4-90	4517551.3	KAUST_SollColumnT	terrestrial biome	subterrestrial habitat	Soil	Saudi Arabia	KAUST
0	WGS	10K4-90	4518539.3	KAUST_SoilColumnT	terrestrial biome	subterrestrial habitat	Soil	Saudi Arabia	KAUST
0	WGS	10K5-120	4517552.3	KAUST_SoilColumnT	terrestrial biome	subterrestrial habitat	Soil	Saudi Arabia	KAUST
0	WGS	10K5-120	4518540.3	KAUST_SoilColumnT	terrestrial biome	subterrestrial habitat	Soil	Saudi Arabia	KAUST
a.	WGS	1K1-0	4517399.3	KAUST_SoilColumn	terrestrial	subterrestrial	Soil	Saudi	KAUST

Data is organised into studies

Unique IDs: e.g. mgp128

Study page

The oral metagenome in health and disease (mgp128)

principle investigator Alex Mira, CSISP

visibility public

static link http://metagenomics.anl.gov/linkin.cgi?project=mgp128

description

The oral cavity of humans is inhabited by hundreds of bacterial species and some of them have a key role in the development of oral diseases, mainly dental caries and periodontitis. We describe for the first time the metagenome of the human oral cavity under health and diseased conditions, with a focus on supragingival dental plaque and cavities. Direct pyrosequencing of eight samples with different oral-health status produced 1 Gbp of sequence without the biases imposed by PCR or cloning. These data show that cavities are not dominated by Streptococcus mutans (the species originally identified as the ethiological agent of dental caries) but are in fact a complex community formed by tens of bacterial species, in agreement with the view that caries is a polymicrobial disease. The analysis of the reads indicated that the oral cavity is functionally a different environment from the gut, with many functional categories enriched in one of the two environments and depleted in the other. Individuals who had never suffered from dental caries showed an over-representation of several functional categories, like genes for antimicrobial peptides and quorum sensing. In addition, they did not have mutans streptococci but displayed high recruitment of other species. Several isolates

belonging to these dominant bacteria in healthy individuals were cultured and shown to inhibit the growth of cariogenic bacteria, suggesting the use of these commensal bacterial strains as probiotics to promote oral health and prevent dental caries.

funding source

Spanish MICINN: SAF2009-13032-C02-02 from the I+D program, BIO2008-03419-E from the EXPLORA program and MICROGEN CSD2009-00006 from the Consolider-Ingenio program.

contact

Administrative

Alex Mira (mira_ale@gva.es) CSISP (http://www.csisp.gva.es/web/alex/home) Avda. Catalu f űa, 21. Valencia, Spain

1 Folker Meyer * ?

Overview

NOCA 01P

This shotgun metagenome is part of the study 'The oral metagenome in health and disease' by Alex Mira, CSISP - published in The ISME journal, 2012 Jan.

Visibility	public	NCBI Project ID	4
ID	mgm4447192.3	GOLD ID	
Static Link	http://metagenomics.anl.gov/linkin.cgi?metagenome=mgm4447192.3	PubMed ID	21716308
Sample	mgs25820	Library	mgl52920

The data set NOCA_01P was uploaded on 2010-03-25 at 13:52:44 and contains 204,218 sequences totaling 77,538,485 basepairs with an average length of 380 bps.

Of the sequences tested, 35,703 sequences (17.48%) failed to pass the QC pipeline. Of those, dereplication identified 19,171 sequences as artificial duplicate reads.

Of the sequences that passed QC, 2,973 sequences (2%) contain ribosomal RNA genes, 151,581 sequences (89.95%) contain predicted proteins with known functions, and 13,961 sequences (8.28%) contain predicted proteins with unknown function.

The data on this page represents the automated analysis generated by the MG-RAST automated processing pipeline. Details on processing this data set are here. Data shown here is displayed as a quick way to assess the quality and contents of the data set. We note that the submitting authors may have performed their own analysis. The analysis page provides the best way to perform in-depth analyses of this data set.

Sequence Breakdown

 Unique ID per data set

processing receipt

0 0-

E.g.mgm4447192.3

Overview page II: Nucleotide histogram

Amplicon datasets should show biased distributions of bases at each position

WGS datasets should have roughly equal proportions of basecalls

Overview page III: Piechart and flowchart

Sequence Breakdown

ANALYSIS FLOWCHART

48,220 sequences felled quality control. Of those, deregization tensified 24,870 sequences (8.4% of total) as artificial duplicate reads (ADRs). Of the 246,882 sequences (obtaining 116,177,839 bps) that assess quality control. 243,056 (88,5%) produced a total of 218,884 produced protoin coding regions. Of these 215,884 predicted protoin coding regions. Of these 215,884 predicted protoin coding regions. Of these 215,884 predicted protein features, 174,374 (88,8% of features) have been assigned an annotation using at least one of our protein databases (MSNRI) and 41,610 (19,2% of featured) have no significant similarities to the protein database (orfans), 140,383 features (80,5% of amentated features) were assigned to functional categories.

ANALYSIS STATISTICS

Upload: bp Count 12	29,851,692 bp
Upload: Sequences Count	295,072
Upload: Mean Sequence Length	440 ± 120 bp
Upload: Mean GC percent	46 ± 12 %
Artificial Duplicate Reads: Sequence Count	24,870
Post QC: bp Count 1	16,177,839 bp
Post QC: Sequences Count	246,852
Post QC: Mean Sequence Length	470 ± 69 bp
Post QC: Mean GC percent	45 ± 12 %
Processed: Predicted Protein Features	215,684
Processed: Predicted rRNA Features	22,055
Alignment: Identified Protein Features	174,374
Alignment: Identified rRNA Features	1,588
Annotation: Identified Functional Calegories	140,353

Note: Sequences containing multiple predicted features are only counted in one category. Currently downloading of sequences via chart slices is not enabeled.

Overview and Analysis page

- Overview page provides rough overview of taxa and functions
 - Allows initial glance
 - Uses bad parameters for your data set
- Use the Analysis page for
 - Comparison
 - Filtering
 - Subsetting
 - Data export
 - Parameter adjusting

Adjust parameters on the analysis page for your question

This is typically missed by benchmarking papers and reviews

Range of visualisations / comparisons

Heatmap comparisons

PCoA

Zoom to individual genus

Compare specific functions

Export results: images, data, sequence sets
Fully-featured API

Viral resources

VIROME: Viral Informatics Resource for Metagenome Exploration http://virome.dbi.udel.edu

METAVIR: Annotation and comparison of viral metagenomic sequences http://metavir-meb.univ-bpclermont.fr

[Source: http://www.weizmann.ac.il/Structural_Biology/research]

Gene/Genome Catalogues

MetaHit: Metagenomes of the human intestinal tract. 3.3 million genes. http://www.metahit.eu

HMP reference genomes: data from several 1,000 reference genomes isolated from human body sites.

http://hmpdacc.org/reference_genomes/reference_genomes.php

Ocean Microbial Reference Catalog: gene catalogues from Tara Oceans* GOS, and other publicly available reference sets.

http://ocean-microbiome.embl.de/companion.html#OM-RGC

*New Euk set: 117 million genes. BLAStx comparison against UniRef90 + MMETSP took ~ **9 million** cpu hours on HPC infrastructure (nodes with 2*8 cores SandyBridge@2.7GHz and 64 Gb of RAM)

EBI Metagenomics

- Analysing large amounts of data via a standardised pipeline
- Systematically indexing results and metadata to support data discovery
- Improvements underway: better taxonomic analyses, targeted assembly, API
- Many other tools and resources out there no 'perfect' tool covering all analyses

Acknowledgements

- Robert Finn
- Hubert Denise
- Maxim Scheremetjew
- Sebastien Pesseat
- Simon Potter
- Matloob Qureshi

- Guy Cochrane
- Petra Ten Hoopen

Folker Meyer

