2012 Putnam A3

Tristan Shin

11 Aug 2019

Let $f:[-1,1]\to\mathbb{R}$ be a continuous function such that

- (i) $f(x) = \frac{2-x^2}{2} f\left(\frac{x^2}{2-x^2}\right)$ for every $x \in [-1, 1]$,
- (ii) f(0) = 1, and
- (iii) $\lim_{x\to 1^-} \frac{f(x)}{\sqrt{1-x}}$ exists and is finite.

Prove that f is unique, and express f(x) in closed form.

The answer is $f(x) = \sqrt{1-x^2}$. This satisfies all conditions.

Define $g:[0,1]\to\mathbb{R}$ as

$$g(x) = \begin{cases} \frac{f(x)}{\sqrt{1-x^2}} & \text{if } x \in [0,1) \\ \frac{1}{\sqrt{2}} \lim_{x \to 1^-} \frac{f(x)}{\sqrt{1-x}} & \text{if } x = 1. \end{cases}$$

Then g is continuous because $\frac{1}{\sqrt{2}} = \lim_{x \to 1^-} \frac{1}{\sqrt{1+x}}$. Now use algebra to see that $g(x) = g\left(\frac{x^2}{2-x^2}\right)$ for every $x \in [0,1]$.

Let $x \in (0,1)$. Define a sequence as $a_0 = x$ and $a_n = \frac{a_{n-1}^2}{2-a_{n-1}^2}$ for $n \ge 1$. Then $g(a_n) = g(x)$ by induction. In addition,

$$a_n = \frac{a_{n-1}^2}{2 - a_{n-1}^2} = \frac{a_{n-1}^2}{(2 + a_{n-1})(1 - a_{n-1}) + a_{n-1}} < a_{n-1}$$

so $\{a_n\}$ is a decreasing sequence bounded below by 0, so it has a limit a_{∞} . Then

$$a_{\infty} - \frac{a_{\infty}^2}{2 - a_{\infty}^2} = \lim_{n \to \infty} a_n - \lim_{n \to \infty} \frac{a_{n-1}^2}{2 - a_{n-1}^2} = 0$$

so $a_{\infty} = 0$ (since $0 \le a_{\infty} < 1$). Then

$$g(x) = \lim_{n \to \infty} g(a_n) = g(0)$$

by continuity of g. But g(0) = f(0) = 1 and by continuity g(1) = 1 so g(x) = 1 for all $x \in [0,1]$. It follow that $f(x) = \sqrt{1-x^2}$ is the unique solution.

1