Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z ćwiczenia laboratoryjnego nr 3,5

Radosław Pietkun, Jakub Gruszecki, Wojciech Rokicki

Spis treści

1.	\mathbf{Spra}	wdzenie możliwość sterowania i pomiaru oraz wyznaczenie punktu pracy
	1.1.	Przykładowe sterowanie wraz z odczytem pomiarów
		1.1.1. Implementacja
	1.2.	Punkt pracy
		1.2.1. Implementacja
2.	Wyz	znaczenie odpowiedzi skokowych oraz badanie właściwości obiektu
	2.1.	Odpowiedzi skokowe
	2.2.	Właściwości statyczne obiektu

1. Sprawdzenie możliwość sterowania i pomiaru oraz wyznaczenie punktu pracy

1.1. Przykładowe sterowanie wraz z odczytem pomiarów

Podczas testu będziemy zmieniać sygnały sterujące w następujący sposób:

$$G1 = 100 \land G2 = 0$$
, dla $k \in < 0, 10$)
 $G1 = 100 \land G2 = 100$, dla $k \in < 10, 50$)
 $G1 = 20 \land G2 = 20$, dla $k \in < 50, 100$)
 $G1 = 25 \land G2 = 15$, dla $k \geqslant 100$

Jak widzimy mamy możliwość sterowania i pomiaru w komunikacji ze stanowiskiem.

1.1.1. Implementacja

Do przetestowania możliwości sterowania i pomiaru w komunikacji ze stanowiskiem użyto skryptu zad1_1.m.

Rys. 1.1. Sprawdzenie możliwość sterowania i pomiaru w komunikacji ze stanowiskiem

1.2. Punkt pracy

Jako punkt pracy wybraliśmy: G1 = 18, G2 = 23. Dla powyższego punktu pracy pomiary z czujników wynoszą: T1 = 75,43, T3 = 84,64.

1.2.1. Implementacja

Do wyznaczenia wartości temperatury, odczytanej z czujnika, wykorzystano skrypt zad1_2.m.

Rys. 1.2. Punkt pracy

2. Wyznaczenie odpowiedzi skokowych oraz badanie właściwości obiektu

2.1. Odpowiedzi skokowe

W celu uzyskania odpowiedzi skokowych zostały przeprowadzone symulacje dla różnych skoków wartości sterowania G1 i G2 z punktu pracy. Wymagało to doprowadzenia obiektu do punktu pracy po czym zmiany wartości jedego z wejść.

Poniżej zostały przedstawione wykresy odpowiedzi skokowych dla różnych zmian, wartości sterowania G1 i G2.

2.2. Właściwości statyczne obiektu

Rys. 2.1. Skok sygnału sterowania G1z 18 na 8 z punktu pracy

Rys. 2.2. Skok sygnału sterowania G1z 18 na 28 z punktu pracy

Rys. 2.3. Skok sygnału sterowania G1z 18 na 38 z punktu pracy

Rys. 2.4. Skok sygnału sterowania G2 z 23 na 13 z punktu pracy

Rys. 2.5. Skok sygnału sterowania G2z 23 na 33 z punktu pracy

Rys. 2.6. Skok sygnału sterowania G2z 23 na 43 z punktu pracy

Rys. 2.7. Odpowiedź skokowa obiektu dla wyjścia $T1\,$

Rys. 2.8. Odpowiedź skokowa obiektu dla wyjścia T3