CS/ECE 374 Spring 2017 Homework 2 Problem 1

Lanxiao Bai (lbai5) Renheng Ruan (rruan2)

- 1. Prove that the following languages are not regular by providing a fooling set. You need to prove an infinite fooling set and also prove that it is a valid fooling set.
 - (a) $L = \{0^k 1^k ww \mid 0 \le k \le 3, w \in \{0, 1\}^+\}.$
 - (b) Recall that a block in a string is a maximal non-empty substring of indentical symbols. Let L be the set of all strings in $\{0,1\}^*$ that contain two blocks of 0s of equal length. For example, L contains the strings 01101111 and 01001011100010 but does not contain the strings 000110011011 and 00000000111.
 - (c) $L = \{0^{n^3} \mid n \ge 0\}.$
- 2. Suppose L is not regular. Show that $L \cup L'$ is not regular for any finite language L'. Give a simple example to show that $L \cup L'$ is regular when L' is infinite.

Solution:

- 1. (a) Let x, y be arbitrary distinct strings in 011^* , then $x = 011^i$, $y = 011^j$, $i \neq j$. Then x, y are distinguishes by suffix 1^i because $xz = 011^i1^i \in L$ but $yz = 011^j1^i \notin L$. We conclude that 011^* is a fooling set for L. Since 011^* is infinite, L is not regular.
- (b) Let x, y be arbitrary distinct strings in 00^*10 , then $x = 00^i10$, $y = 00^j10$, $i \neq j$. Then x, y are distinguishes by suffix $z = 0^i$ because $xz \in L$ and $yz \notin L$. We conclude that 00^*10 is a fooling set of L. Since 00^*10 is infinite, L is not regular.
- (c) Let x, y be arbitrary distinct strings in $\{0^{n^3-n}: n \le 0\}$, then $x = \mathbf{0}^{i^3-i}, y = \mathbf{0}^{j^3-j}, i \ne j$. Then x, y are distinguishes by suffix 0^i because $xz = \mathbf{0}^{i^3} \in L$ and $yz = 0^{j^3-j+i} \notin L$. We conclude that $\{0^{n^3-n}: n \le 0\}$ is a fooling set for L. Since $\{0^{n^3-n}: n \le 0\}$ is infinite, L is not regular.
- 2. Since L is not regular, there is a infinite fooling set F that for all arbitrary $x, y \in F$ there is a z that make $xz \in L$ and $yz \notin L$. Then for a finite language L', if $L \cup L'$ is regular, for all $y \in F$, $yz \in L'$, which is impossible since F is infinite.

As a result, for all finite language L', $L \cup L'$ cannot be regular.

An example of infinite language L' can be constructed as $L' = \{yz : y \in F, z \in \{w : \forall x \in F, xw \in L\}\}.$