QUESTIONS FOR HUMAN RESOURCES DATABASE

1. Display the current and previous details of all employees.

```
SELECT employee_id, job_id
FROM employees
UNION
SELECT employee_id, job_id
FROM job_history
ORDER BY employee id;
```

2. Display the current and previous departments of all employees.

```
SELECT employee_id, job_id, department_id
FROM employees
UNION ALL
SELECT employee_id, job_id, department_id
FROM job_history
ORDER BY employee_id;
```

3. Display the employee IDs and job IDs of those employees who currently have a job title that is the same as their previous one (that is, they changed jobs but have now gone back to doing the same job they did previously)

```
SELECT employee_id, job_id
FROM employees
INTERSECT
SELECT employee_id, job_id
FROM job_history;
```

4. Display the employee IDs of those employees who have not changed their jobs even once.

```
SELECT employee_id
FROM employees
MINUS
SELECT employee_id
FROM job_history;
```

5. Using UNION operator, display the location Id, department name, and the state where it is located.

NOTE: You must match the data type(using the TO_CHAR function or any other conversion functions) when columns do not exists in one or the other table)

```
SELECT location_id, department_name "Department", TO_CHAR(NULL) "WAREHOUSE LOCATION"

FROM departments

UNION

SELECT location_id, TO_CHAR(NULL) "Department", state_province

FROM locations;
```

6. Using the UNION operator, display the employee ID, job ID, and salary of all employees.

```
SELECT employee_id, job_id, salary
```

FROM employees

UNION

SELECT employee_id, job_id, 0

FROM job_history;

7. Which employees have salaries greater than Abel's salary?

```
SELECT last_name, salary
FROM employees
WHERE salary > (SELECT salary
FROM employees
WHERE last_name = 'Abel');
```

8. Find the employees who have same job id but have greater salary than 'Taylor'.

9. Find the names, job IDs and salary of those employees whose salary is smaller than any one of the salaries of IT_Programmers.

```
SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ANY (SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')
AND job_id <> 'IT_PROG';
```

10. Find the names, job IDs and salary of those employees whose salary is smaller than ALL one of the salaries of IT_Programmers.

```
SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ALL (SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')
AND job_id <> 'IT_PROG';
```

11. Find the managers whose salary is less than any one of his/her employees.

```
SELECT employee_id, salary, last_name
FROM employees M
```

WHERE M. Salary < ANY (SELECT salary

FROM employees W

```
WHERE W.manager_id = M. Employee_id);
```

12. Find the names of managers who has the workers earning more then 10.000

SELECT employee_id, salary, last_name
FROM employees M
WHERE EXISTS (SELECT employee_id
FROM employees W
WHERE (W.manager_id = M. Employee_id) AND W.salary>10000);

13. Find the names of those departments where there is no employees working for them.

SELECT *
FROM departments
WHERE NOT EXISTS (SELECT *
FROM employees
WHERE employees.department_id =
departments.department_id);

14. Find the names of employees who are not manager. NOTE: What happens if sub query has at least one null value?)

SELECT emp.last_name
FROM employees emp
WHERE emp. Employee_id NOT IN (SELECT mgr.manager_id
FROM employees mgr
WHERE mgr.manager_id is NOT NULL);