TS226

_

Codes convolutifs et codes concaténés associés

Romain Tajan

24 octobre 2019

Plan

- Introduction
- 2 Code Convolutif
- ▶ Un premier exemple de code convolutif
- Définition des codes convolutifs Codes convolutifs récursifs Codes convolutifs systématiques
- Représentation octale
 Notation octale des codes non récursifs
 Notation octale des codes récursifs
- Code convolutif comme machine à états
 - Diagramme d'état des codes convolutifs

Plan

- Introduction
- 2 Code Convolutif

Plan

- Introduction
- 2 Code Convolutif
- Un premier exemple de code convolutif
- Définition des codes convolutifs
- Représentation octale
- Code convolutif comme machine à états

Un paradigme différent du codage en bloc : encodage "en ligne"

Message: $\mathbf{u} = \begin{bmatrix} 1 & 0 \end{bmatrix}$

Mot de code : c = [...

Un paradigme différent du codage en bloc : encodage "en ligne"

Message: $\mathbf{u} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ Mot de code : c = [...

Un paradigme différent du codage en bloc : encodage "en ligne"

Mot de code : $c = [c_0^{(1)} c_0^{(2)} \cdots]$

 $\label{eq:message} \mbox{Message}: \qquad \mbox{$u=[$ \ 1 \ \ 0 \ \]}$ Mot de code : $c = [c_0^{(1)} c_0^{(2)} \cdots]$

Message: $\mathbf{u} = [\ \ \, \mathbf{1} \ \ \, 0 \ \ \, 1 \ \ \, 0 \ \ \, 1 \ \ \, \dots \]$ Mot de code : $\mathbf{c} = [\ \ \, \mathbf{1} \ \ \, \mathbf{1} \ \ \, \dots \]$

Message: $\mathbf{u} = [\ 1 \ \ 0 \ \ 1 \ \ 0 \ \ 1 \ \ \dots \]$ Mot de code: $\mathbf{c} = [\ 1 \ \ 1 \ \ c_1^{(1)} \ c_1^{(2)} \ \dots \ \]$

Un paradigme différent du codage en bloc : encodage "en ligne"

Message :	u = [1		0		1		0		1]	
Mot de code :	c = [1	1	1	0	0	0	0	1	0	0]	

Quel est le prochain état?

- (a) [0, 1, 0, 1, 0, 1]
- **B** [1, 0, 1, 0, 1, 0]
- **(** [1, 0, 1, 1, 0, 0]
- Aucune des réponses A, B ou C.

#QDLE#Q#AB*CD#30#

Quel est la sortie?

- **(**0, 1)
- **(1**, 0)
- **(**0, 0]
- ① [1, 1]

#QDLE#Q#ABCD*#30#

Codes Convolutifs: retour sur l'exemple

Addition modulo 2 (XOR)

$$c_n^{(2)} =$$

Codes Convolutifs: retour sur l'exemple

$$c_n^{(2)} =$$

Codes Convolutifs : retour sur l'exemple

$$c_n^{(2)} = 1 \cdot u_n + 0 \cdot u_{n-1} + 1 \cdot u_{n-2} + 1 \cdot u_{n-3} + 0 \cdot u_{n-4} + 1 \cdot u_{n-5} + 1 \cdot u_{n-6}$$

Codes Convolutifs : retour sur l'exemple

$$c_n^{(2)} = 1 \cdot u_n + 0 \cdot u_{n-1} + 1 \cdot u_{n-2} + 1 \cdot u_{n-3} + 0 \cdot u_{n-4} + 1 \cdot u_{n-5} + 1 \cdot u_{n-6}$$

$$\underline{\mathbf{On remarque}}: c_n^{(i)} = \sum_{k=0}^m g_k^{(i)} u_{n-k}$$

En utilisant la TZ :
$$C^{(i)}(z) = U(z)G^{(i)}(z)$$

Code Convolutif: définition

Code convolutif

Code Convolutif (CC) : code tel que ses mots de codes sont obtenu par filtrages numériques linéaires à valeurs dans $\mathbb{F}_2 = \{0,1\}$ des messages binaires.

Message :
$$U(z) = \sum_{k=0}^{+\infty} u_i z^{-i}$$
 [transformée en Z de la séquence message $(u_k)_{k \in \mathbb{N}}$]

Mot de code :
$$\mathbf{C}(z) = [C^{(0)}(z), C^{(1)}(z), \cdots, C^{(n_s-1)}(z)]$$
 [$C^{(i)}(z)$ sortie du filtre i]

$$C^{(i)}(z) = U(z)G^{(i)}(z)$$

Attention: de façon générale $G^{(i)}(z)$ est défini comme suit :

$$G^{(i)}(z) = \frac{a_0^{(i)} + a_1^{(i)}z^{-1} + \dots + a_m^{(i)}z^{-m}}{1 + b_1^{(i)}z^{-1} + \dots + b_m^{(i)}z^{-m}}$$

Encodeur récursif / Non récursif

Un encodeur est dit **récursif** s'il existe une boucle de rétroaction de sa sortie sur son entrée (s'il existe i tel que $B^{(i)}(z) \neq 1$).

$$G^{(i)}(z) = \frac{a_0^{(i)} + a_1^{(i)}z^{-1} + \dots + a_m^{(i)}z^{-m}}{1 + b_1^{(i)}z^{-1} + \dots + b_m^{(i)}z^{-m}}$$

Encodeur systématique / Non systématique

Un encodeur est dit **systématique** s'il existe une sortie i telle que $C^{(i)}(z) = U(z)$.

 \Leftrightarrow S'il existe une sortie *i* telle que $G^{(i)}(z) = 1$.

Quizz Encodeur Récursif, Encodeur Systématique

Cet encodeur est:

- A Récursif et systématique,
- B Récursif et non systématique,
- Non Récursif et systématique,
- Non Récursif et non systématique,

#QDLE#Q#A*BCD#30#

Quizz Encodeur Récursif, Encodeur Systématique

Ces deux encodeurs produisent le même code?

- A Vrai
- B Faux

#QDLE#Q#A*B#30#

Exemple:
$$\mathbf{g}^{(1)} = [1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1]$$
 $\mathbf{g}^{(2)} = [1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1]$

TS226 CC et Turbo-Codes

Ce code est noté (171, 133)₈

Notation octale des codes convolutifs récursifs

Ce code est noté $(1, \frac{133}{171})_8$ ou $(100, \frac{133}{171})_8$.

TS226 CC et Turbo-Codes

$$u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 1$$

$$\overset{\mathbf{c}_n}{-} u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 1$$

$$u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 1$$

$$u_n = 0$$

$$\mathbf{c}_n$$
 $u_n = 0$

 $\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 1$

Dernier QCM

Comment avez-vous trouvé ce cours?

- Très difficile
- Oifficile
- Moyen
- Simple
- Très simple

#QDLE#S#ABCDE#30#