

planetmath.org

Math for the people, by the people.

an injection between two finite sets of the same cardinality is bijective

 ${\bf Canonical\ name} \quad {\bf An Injection Between Two Finite Sets Of The Same Cardinality Is Bijective}$

Date of creation 2013-03-22 15:10:20 Last modified on 2013-03-22 15:10:20

Owner alozano (2414) Last modified by alozano (2414)

Numerical id 6

Author alozano (2414)

Entry type Theorem Classification msc 03-00

Related topic SchroederBernsteinTheorem

Related topic ProofOfSchroederBernsteinTheorem Related topic OneToOneFunctionFromOntoFunction

Lemma. Let A, B be two finite sets of the same cardinality. If $f: A \to B$ is an injective function then f is bijective.

Proof. In order to prove the lemma, it suffices to show that if f is an injection then the cardinality of f(A) and A are equal. We prove this by induction on $n = \operatorname{card}(A)$. The case n = 1 is trivial. Assume that the lemma is true for sets of cardinality n and let A be a set of cardinality n + 1. Let $a \in A$ so that $A_1 = A - \{a\}$ has cardinality n. Thus, $f(A_1)$ has cardinality n by the induction hypothesis. Moreover, $f(a) \notin f(A_1)$ because $a \notin A_1$ and f is injective. Therefore:

$$f(A) = f(\{a\} \cup A_1) = \{f(a)\} \cup f(A_1)$$

and the set $\{f(a)\} \cup f(A_1)$ has cardinality 1 + n, as desired.