Computer Communication Networks

Link Layer

Link layer

- Service provided by physical layer
 - bit delivery
 - hertz, baud, symbol-per-second, bit-per-second
- Service provided to network layer
 - frame delivery
 - error control (using checksum)
 - flow control
 - medium access (with shared medium)

Byte-oriented framing

- Character count
 - count error, and error propagation

Byte-oriented framing: more

Byte stuffing

4

Bit-oriented framing

- Flag: 01111110
 - data transparency: bit stuffing
 - sender: insert a 0 after 5 1's
 - receiver: remove a 0 after 5 1's
 - (a) 011011111111111111110010
 - (b) 01101111101111101010 Stuffed bits
 - (c) 011011111111111111110010

Error Control

- How to ensure the frames are delivered to the other end in order
 - Acknowledgement
- How about disappeared frame?
 - Timeout
- How to let the receiver know whether the received frames are correct or not?
 - Check bits

Error control

m bits data + r check bits => n bits codeword

- Hamming distance of codeword a and b
 - number of pairwisely different bits
 - number of bit flips needed to turn a to b
- Hamming distance of codeword set $\{a_i\}$
 - minimal distance btw a_i and a_j , when i != j
- A codeword set of Hamming distance d
 - detect up to *d*-1 bit error
 - correct up to floor((d-1)/2) bit error

Error correcting

• 2-d parity: Hamming distance 4, correct 1-bit error

Hamming code

• Minimum number of check bits for correcting 1-bit error, given m-bit data?

$$(n+1)2^m \le 2^n$$
, i.e., $m+r+1 \le 2^r$

• Hamming code:

to correct	1-bit error

Most efficient code

		\bigwedge
Н	1001000	00110010000
а	1100001	10111001001
m	1101101	11101010101
m	1101101	11101010101
i	1101001	01101011001
n	1101110	01101010110
g	1100111	01111001111
	0100000	10011000000
С	1100011	11111000011
0	1101111	10101011111
d	1100100	11111001100
е	1100101	00111000101

ASCII

Order of bit transmission

Check bits

Hamming Code

- Label the m+r bits position from 1 to m+r
- The r check bit positions with indices that are powers of 2: indices 1, 2, 4, 8, ...
- The m data bits go in the other positions
- Choose values for the check bit j: XOR of all k-th bits for which (j AND k) = j
- Sum up the location of check bits in errors to identify the error bit

Hamming code

How to deal with bursty errors?
Arrange data in an interleaving manner.
K column => correct bursty of k bits

Error detecting

- Retransmitting the packet may be more efficient than adding sufficient check-bits to correct single bit. E.g.,
 - 1000-bit data needs 10 check bits to correct single bit error, leads to utilization of 1000/1010;
 - Add one bit to detect error, assuming BER 10^-6, utilization (100000)/(100100+1001) ~1000/1002
- Parity

CRC

- no carry
- 2^rD+R divisible by G
- detect bit error not divisible by G
- encoder/decoder: using shift-register

CRC

Message polynomial:

$$D(x) = d_{m-1}x^{m-1} + d_{m-2}x^{m-2} + ... + d_1x + d_0$$
, where $d_j \in \{0, 1\}$ Generator polynomial (with degree $r, r+1$ bits) $G(x) = x^r + g_{r-1}x^{r-1} + ... + g_1x + 1$, where $g_i \in \{0, 1\}$ Codeword polynomial: $T(x) = x^r D(x) + R(x)$ $(R(x) \text{ is the remainder of } x^r D(x)/G(x) \text{ modulo 2})$ We have $T(x) = G(x)Q(x)$

Example:

Sender side:
$$101110:D(x) = x^5 + x^3 + X^2 + x$$

1001:
$$G(x) = x^3 + 1$$

We have
$$R(x) = x + 1$$

and
$$T(x) = x^8 + x^6 + x^5 + x^4 + x + 1 = G(x)Q(x)$$

Receiver side: $\hat{T}(x) = T(x) + E(x)$, where E(x) due to noise, interference, etc. Divide $\hat{T}(x)$ by G(x), we have

- If the remainder is non-zero, then $E(x) \neq 0$ i.e., transmission error is detected;
- if the remainder is zero. Then

$$-E(x)=0$$
, no error;

$$-E(x)=0$$
, but $G(x)|E(x)$, undetected error

Flow Control

- Sliding window
 - e.g., window size = 1, sequence space = 8
 - maximal window size <= 1/2 sequence space (order)

Flow Control

- Sliding window
 - e.g., window size = 1, sequence space = 8
 - maximal window size <= 1/2 sequence space (order)

Error recovery

- Positive acknowledgment
 - cumulative acknowledgment
 - acknowledge packet x: acknowledge packets 1..x
 - selective acknowledgment
 - acknowledge packet x: packet x is received OK
- Negative acknowledgment
 - report: x is corrupted or *missing*

Link layer retransmissions

- Automatic Repeat reQuest (ARQ)
 - Based on timers and acknowledgements
- Stop and wait
 - One bit sequence and ACK
- Go-back-N
 - Window size N, cumulative ACK
 - If one packet (seq. n) is lost, all packets from n will be retransmitted
 - Receiver buffer size: one frame

Link layer retransmissions

- Selective Repeat (SR) ARQ
 - Window size N
 - Selective ACK
 - Only retransmit the one being corrupted
 - Receiver buffer size: N frames

High-level data link control

Point-to-point protocol

PPP, PPPoE

22

Summary

- Link layer
 - framing
 - error control
 - error correcting, error detecting, error recovery
 - flow control
 - sliding window
 - HDLC, PPP

Next

• Medium access control