6.02214×10^{23} $N_{\rm Av}$: mol^{-1} 1.6605×10^{-27} 1 amu: kg 1.38065×10^{-23} $\rm J~K^{-1}$ 8.61734×10^{-5} $eV K^{-1}$ $k_{\rm B}$: $J K^{-1} mol^{-1}$ 8.2057×10^{-2} l atm mol⁻¹ K⁻¹ R: 8.314472 ${
m J}~{
m s}^{-1}~{
m m}^{-2}~{
m K}^{-4}$ 5.6704×10^{-8} σ_{SB} : $\rm m\ s^{-1}$ 2.99792458×10^{8} c: 6.62607×10^{-34} J s 4.13566×10^{-15} eV s h: 1.05457×10^{-34} 6.58212×10^{-16} eV sJ s \hbar : hc: 1239.8 eV nm 1.60218×10^{-19} \mathbf{C} e: $9.10938215 \times 10^{-31}$ $MeV c^{-2}$ kg 1: 0.5109989 m_e : $C^2 J^{-1} m^{-1}$ $e^2 \text{ Å}^{-1} \text{ eV}^{-1}$ 8.85419×10^{-12} 5.52635×10^{-3} $e^2/4\pi\epsilon_0$: 2.30708×10^{-28} J m 14.39964 eV Å 0.529177×10^{-10} 0.529177Å \mathbf{m} a_0 : 27.212 E_{H} : Ha eV

Table 1: Key units in Physical Chemistry

1 The Classical Foundations

1.1 Lecture 0: Introduction

- 1. Burning lighter
- 2. Foundations of Physical Chemistry
 - (a) Quantum mechanics
 - (b) Statistical mechanics
 - (c) Thermodynamics, kinetics, spectroscopy
 - (d) Physical and chemical properties of matter

1.2 Lecture 1: Basic statistics

- 1. Discrete probability distributions—Coin flip
 - (a) Example of Bernoulli trial, 2^n possible outcomes from n flips
 - (b) Number of ways to get i heads in n flips, ${}_{n}C_{i} = n!/i!(n-i)!$
 - (c) Probability of *i* heads $P_i \propto {}_nC_i$
 - (d) Normalized probability, $\tilde{P}_i = P_i / \sum_i P_i = {}_n C_i / 2^n$
 - (e) Expectation value $\langle i \rangle = \sum_i i \tilde{P}_i$
- 2. Continuous distributions—temperature
 - (a) Probability density P(x) has units 1/x
 - (b) Normalized $\tilde{P}(x) = P(x) / \int P(x) dx$
 - (c) (Unitless) probability $a < x < b = \int_a^b \tilde{P}(x) dx$

- (d) Expectation value $\langle f(x) \rangle = \int f(x) \tilde{P}(x) dx$
- (e) Mean = $\langle x \rangle$
- (f) Mean squared = $\langle x^2 \rangle$
- (g) Variance $\sigma^2 = \langle x^2 \rangle \langle x \rangle^2$
- (h) Standard deviation $\Delta x = \sigma$

3. Boltzmann distribution

- (a) $P(E) \propto e^{-E/k_BT}$, in some sense the definition of temperature
- (b) Energy and its units
- (c) Absolute temperature and its units
- (d) k_BT as an energy scale, 0.026 eV at 298 K
- (e) Gravity example
 - i. E(h) = mgh, linear, continuous energy spectrum
 - ii. molecule vs car in a gravitational field (Table 2)
 - iii. Barometric law for gases, $P = P_0 e^{-mgh/k_BT}$
- (f) Kinetic energy in 1-D example

i.
$$KE = \frac{1}{2}mv_x^2$$

ii.
$$P_{1D}(v_x) = \left(\frac{m}{2\pi k_B T}\right)^{1/2} \exp\left(-\frac{m|v_x|^2}{2k_B T}\right)$$

iii. Gaussian distribution, mean μ , variance σ^2

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- iv. By inspection, $\mu = \langle v_x \rangle = 0$, $\sigma^2 = \langle v_x^2 \rangle = k_B T/m$
- v. Molecule vs car again
- (g) Equipartition energy freely exchanged between all degrees of freedom

Table 2: Car vs gas molecule at the earth's surface

	car	gas molecule
\overline{m}	$1000\mathrm{kg}$	$1 \times 10^{-26} \mathrm{kg}$
h	$1\mathrm{m}$	$1\mathrm{m}$
mgh	$9800\mathrm{J}$	$9.8 \times 10^{-26} \mathrm{J}$
	$6.1 \times 10^{22} \text{eV}$	$6.1 \times 10^{-7} \text{eV}$
T	$298\mathrm{K}$	$298\mathrm{K}$
k_BT	$0.026\mathrm{eV}$	$0.026\mathrm{eV}$
mgh/k_BT	2.4×10^{24}	2.3×10^{-5}
$P(1 {\rm m})/P(0)$	$e^{-2.4 \times 10^{-24}}$	0.99998
$\langle h \rangle$	$0\mathrm{m}$	$42\mathrm{km}$
$\langle v_x \rangle^{1/2}$	$2 \times 10^{-12} \mathrm{m/s}$	$640\mathrm{m/s}$

Table 3: Energy conversions and correspondences

	J	eV	Hartree	$kJ \text{ mol}^{-1}$	cm^{-1}
1 J =	1	6.2415×10^{18}	2.2937×10^{17}	6.0221×10^{20}	5.0340×10^{22}
1 eV =	1.6022×10^{-19}	1	0.036748	96.485	8065.5
1 Ha =	4.3598×10^{-18}	27.212	1	2625.6	219474.6
$1 \text{ kJ mol}^{-1} =$	1.6605×10^{-21}	0.010364	3.8087×10^{-4}	1	83.5935
$1 \text{ cm}^{-1} =$	1.986410^{-23}	1.23984×10^{-4}	4.55623×10^{-6}	0.011963	1

```
import numpy as np
1
2
    import matplotlib.pyplot as plt
3
    R0 = 8.31441
                   J/mol K
5
    mass = 28. /1000 kg/mol N2
6
    def Boltzmann(E,T):
        return np.exp(E/(RO*T))/(RO*T)
8
9
    def MB1D(v,T):
10
        return np.sqrt(mass/(2*np.pi*R0*T))*np.exp((mass*v*v)/(2*R0*T))
11
12
    def MB(c,T):
13
        K = 0.5 * mass * c *c
14
        degeneracy = 4 * np.pi * c * c
15
        normalization = (mass/(2*np.pi*R0*T))**1.5
16
17
        return normalization*degeneracy*Boltzmann(K,T)
18
    energy = np.linspace(0,3000,1500)
19
    velocity = np.linspace(1000,1000,1000)
20
    speed = np.linspace(0,1500,1000)
^{21}
^{22}
    plt.figure()
23
24
    for Temperature in [100,300,1000]:
       Probability = Boltzmann(energy, Temperature)
25
26
       plt.plot(Probability,energy,label=0 K.format(Temperature))
27
    legend = plt.legend()
28
^{29}
    plt.ylabel(Energy (J/mol))
30
    plt.xlabel(Probability (mol/J))
    plt.title(Boltzmann distribution at various temperatures)
32
    plt.savefig(./Images/Boltzmann.png)
33
34
    plt.figure()
35
    for Temperature in [100,200,300,400,500]:
36
        Probability = MB1D(velocity, Temperature)
37
38
        plt.plot(velocity,Probability,label= K.format(Temperature))
39
    legend=plt.legend()
40
41
    plt.xlabel(Velocity (m/s))
    plt.ylabel(Probability (1/(m/s)))
42
43
    plt.title(Boltzmann distribution at various temperatures)
    plt.savefig(./Images/MB1D.png)
44
45
46
    plt.figure()
    for Temperature in [100,200,300,400,500]:
47
        Probability = MB(speed, Temperature)
48
        plt.plot(speed,Probability,label= K.format(Temperature))
49
50
    legend=plt.legend()
51
    plt.xlabel(Speed (m/s))
52
    plt.ylabel(Probability (1/(m/s)))
```

plt.title(Boltzmann distribution at various temperatures)
plt.savefig(./Images/MB.png)

Figure 1: Boltzmann distribution at various temperatures

Figure 2: One-dimensional (Gaussian) velocities of N_2 gas

1.3 Lecture 2: Kinetic theory of gases

1. Postulates

- (a) Gas is composed of molecules in constant random, thermal motion
- (b) Molecules only interact by perfectly elastic collisions
- (c) Volume of molecules is << total volume

2. Maxwell-Boltzmann distribution of molecular speeds

(a) Speed
$$v = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Figure 3: Maxwell-Boltzmann speed distribution of N₂ gas

- (b) $P_{MB}(v)dv = P_{1D}(v_x)P_{1D}(v_y)P_{1D}(v_z) * degeneracy(v)dv$
- (c) mean speeds $\propto \sqrt{T}$
- (d) mean energy $U = \frac{3}{2}RT$ and heat capacity $C_v = \frac{3}{2}R$

3. Flux and pressure

- (a) Velocity flux $j(v_x)dv_x=v_x\frac{N}{V}P(v_x)dv_x,$ molecules /area /time / v_x
- (b) Wall collisions, J_w , total collisions /area /time
- (c) Momentum exchange, pressure, ideal gas law

4. Collisions and mean free path

- (a) Collision cross section $\sigma = \pi d^2$, size of molecule
- (b) Molecular collisions, z per molecule and z_{AA} per volume
- (c) Mean free path, λ , mean distance between collisions

Figure 4: Diffusional spreading, $\sqrt{\langle x^2 \rangle} = \sqrt{2Dt}$

Table 4: Kinetic theory of gases key equations

Boltzmann distribution $(g(E))$: degeneracy of E)	$P(E) = g(E)e^{-E/k_BT}$
Maxwell-Boltzmann distribution	$P_{\text{MB}}(v) = 4\pi v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{mv^2}{2k_B T}\right)$
Mean and RMS speeds	$\langle v \rangle = \left(\frac{8k_BT}{\pi m}\right)^{1/2} \qquad \langle v^2 \rangle^{1/2} = \left(\frac{3k_BT}{m}\right)^{1/2}$
Pressure	$\langle P \rangle = \frac{\Delta p}{\Delta t} = m \frac{N}{V} \frac{1}{3} \langle v^2 \rangle = \frac{N k_B T}{V} = \frac{nRT}{V}$
Wall collision frequency	$J_W = \frac{1}{4} \frac{N}{V} \langle v \rangle = \frac{P}{(2\pi m k_B T)^{1/2}}$
Molecular collision frequency	$z = \sqrt{2}\sigma \langle v \rangle \frac{N}{V} = \frac{4\sigma P}{(\pi m k_B T)^{1/2}}$
Total collisions	$z_{AA}=rac{1}{2}rac{N}{V}z$
Mean free path	$\lambda = \frac{\langle v \rangle}{z} = \frac{V}{\sqrt{2}\sigma N}$
Graham's effusion law	$\frac{dN}{dt} = \text{Area} \cdot J_w \propto 1/m^{1/2}$
Effusion from a vessel	$P = P_0 e^{-t/\tau}, \tau = \frac{V}{A} \left(\frac{2\pi m}{k_B T}\right)^{1/2}$
Self-diffusion constant	$D_{11} = \frac{1}{3} \langle v \rangle \lambda$
Diffusion rate	$\langle x^2 \rangle^{1/2} = \sqrt{2Dt} \langle r^2 \rangle^{1/2} = \sqrt{6Dt}$
Einstein-Smoluchowski equation	$D_{11} = \frac{\delta^2}{2\tau}$
Stokes-Einstein equation for liquids	$D_{11} = \frac{k_B T}{4\pi \eta r}$ "Slip" boundary
	$D_{\mathrm{Brownian}} = \frac{k_B T}{6\pi \eta r}$ "Stick" boundary

1.4 Lecture 3: Transport

- 1. Effusion and Graham's law, effusion rate $\propto MW^{-1/2}$
- 2. Fick's first law: net flux proportional to concentration gradient
 - (a) $j_x = -D\frac{dc}{dx}$
 - (b) Self-diffusion constant, $D = \frac{1}{3}\lambda \langle v \rangle$
- 3. Knudsen diffusion, $D = \frac{1}{3}l\langle v\rangle$
- 4. Fick's second law: time evolution of concentration gradient
 - (a) Continuity with no advection: $\frac{\partial c}{\partial t} = -\nabla \cdot \vec{j} + \text{gen}$
 - (b) One-dimension: $\frac{dc}{dt} = D \frac{d^2c}{dx^2}$
 - (c) Diffusion has Gaussian probability distribution: $c(x,t)/c_0 = [2\sqrt{\pi Dt}]^{-1} \exp(-x^2/4Dt)$
- 5. Seeing is believing—Brownian motion
 - (a) Seemingly random motion of large particles ("dust") due to "kicks" from invisible molecules
 - (b) Einstein receives Nobel Prize for showing:
 - i. Motion follows same Gaussian diffusion behavior
 - ii. From steady-state arguments in a field, diffusion constant is ratio of Boltzmann energy, k_BT , to mobility
 - iii. Mobility inversely related to viscosity
 - (c) Stokes-Einstein equation
 - (d) Allows measurement of Avogadro's number, final proof of kinetic theory
 - (e) Similar model for diffusion of liquid molecules, slip boundary
- 6. Random walk model of diffusion
 - (a) Binomial distribution
 - (b) Large N and Stirling approximation
 - (c) Einstein-Smoluchowski relation

2 Quantum Mechanics: Blurred Lines Between Particles and Waves

2.1 Lecture 4: Duality and demise of classical physics

2.1.1 Properties of waves

- 1. Traveling waves, standing waves
- 2. interference, diffraction
- 3. Expected energy of a classical oscillator, $\langle \epsilon \rangle_{\nu} = k_B T$ for all ν

Table 5: Classical waves

The wave equation	$\frac{\partial^2 \Psi(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \Psi(x,t)}{\partial t^2}$	
General solution	$\Psi(x,t) = A\sin(kx - \omega t)$	
Wavelength (distance)	$\lambda = 2\pi/k$	
Frequency (/time)	$ u = \omega/2\pi$	
Speed	$v = \lambda \nu$	
Amplitude (distance)	A	
Energy	$E \propto A^2$	
Standing wave	$\Psi(x,t) = A\sin(kx)\cos(\omega t), k = n\pi/a$	

2.1.2 Blackbody radiation

- 1. Hohlraum spectrum (like the sun) empirically observed to obey:
 - (a) Stefan-Boltzmann law, total irradiance
 - (b) Wien's displacement law
- 2. Rayleigh-Jeans predicts spectrum using classical physics
 - (a) standing waves + classical oscillators \rightarrow ultraviolet catastrophe
- 3. Planck model
 - (a) Energy spectrum of oscillators are quantized, $\epsilon_{\nu} = nh\nu$
 - (b) Expected energy of a quantized oscillator, $\langle \epsilon \rangle_{\nu} = h\nu / \left(e^{h\nu/k_BT} 1\right)$
 - (c) Correctly reproduces Stefan-Boltzmann and Wien Laws!

2.1.3 Heat capacities of solids

- 1. Law of DuLong and Pettite, $C_v = 3R$, fails at low T
- 2. Einstein model
 - (a) Atomic vibrations are quantized, $\epsilon_n = nh\nu$
 - (b) Heat capacity goes to zero at low T

2.1.4 Photoelectric effect

- 1. Stopping potential and work function, $E_{\text{kinetic}} = h\nu W$
- 2. Kinetic energy varies with light frequency, number of electrons varies with light intensity

2.1.5 Compton effect

- 1. light scattering of electrons changes λ
- 2. Photon properties, $\epsilon = h\nu, p = h/\lambda$

2.1.6 Wave-particle duality

2.1.7 Rutherford, planetary model of atom

1. Inconsistent with Maxwell's equations

2.1.8 Bohr model of H atom

- 1. Discrete H energy spectrum and Rydberg formala
- 2. Bohr model (the old quantum mechanics)
 - (a) Stable electron "orbits," quantized angular momentum
 - (b) Light emission corresponds to orbital jumps, $\nu = \Delta E/h$
 - (c) Bohr equations
 - (d) Comparison with Rydberg formula
 - (e) Failure for larger atoms

2.1.9 de Broglie relation

- 1. $\lambda = h/p$ universally
- 2. Relation to Bohr orbits
- 3. Davison and Germer experiment, e^- diffraction off Ni

```
import numpy as np
    import matplotlib.pyplot as plt
    hc = 1239.8
                      eV nm
4
    c = 2.9979e8 * 1.e9
    k = 8.61734e5 eV /K
6
    hck = hc/k
    def Irrad(wl,T):
9
          return (8. * np.pi * hc * c * wl**5) / (np.exp(hck/(wl*T))1)
10
    def PlanckEnergy(wl,T):
11
          return (hc/wl) / (np.exp(hck/(wl*T))1)
12
13
   plt.figure()
14
    wl=np.linspace(100,5000,1000)
15
    for T in [1000.,2000.,3000.,4000.,5000.]:
16
17
        Intensity = Irrad(wl,T)
        plt.plot(wl,Intensity,label= K.format(T))
18
19
20
   legend=plt.legend()
21
   plt.xlabel(Wavelength (nm))
    plt.ylabel(Irradiance (eV/nm3/s))
22
     plt.title(Boltzmann distribution at various temperatures)
23
   plt.savefig(./Images/BlackBody.png)
25
    plt.figure()
26
27
    color=[red,orange,green,blue,violet]
   wl=np.linspace(100,20000,1000)
28
    for T in [1000.,2000.,3000.,4000.,5000.]:
        Energy = PlanckEnergy(w1,T)
30
31
        plt.plot(wl,Energy,label= K.format(T),color=color[0])
        kT = k*T
32
        plt.plot([100,max(wl)],[kT,kT],ls=,color=color.pop(0))
33
```

```
legend=plt.legend()
plt.xlabel(Wavelength (nm))
plt.ylabel(Energy (eV))

plt.title(Boltzmann distribution at various temperatures)
plt.savefig(./Images/Planck.png)
```


Figure 5: Blackbody irradiance

Figure 6: Average energy of a Planck quantized oscillator

2.2 Lecture 5: Postulates of quantum mechanics

2.2.1 Schrödinger equation describes wave-like properties of matter

2.2.2 Born interpretation

- 1. wavefunction is a probability amplitude
- 2. wavefunction squared is probability density

Table 6: The new physics

Stefan-Boltzmann Law	$\int I(\lambda, T) d\lambda = \sigma_{\rm SB} T^4$
Wien's Law	$\lambda_{\rm max}T=2897768~{\rm nm~K}$
Rayleigh-Jeans eq	$I(\lambda, T) = \frac{8\pi}{\lambda^4} k_B T c$
Blackbody irradiance	$I(\lambda, T) = \frac{8\pi}{\lambda^5} \frac{hc^2}{e^{hc/\lambda k_B T} - 1}$
Einstein crystal	$C_v = 3R \left(\frac{h\nu}{k_B T}\right)^2 \frac{e^{h\nu/k_B T}}{\left(e^{h\nu/k_B T} - 1\right)^2}$
Photon energy	$\epsilon = h \nu = h c / \lambda$
Rydberg equation	$\nu = R_H c \left(1/n^2 - 1/k^2 \right)$
Bohr equations $n = 1, 2, \dots$	$l_n = n\hbar$ $r_n = n^2 \left(\frac{4\pi\epsilon_0 \hbar^2}{e^2 m_e}\right) = n^2 a_0$ $E_n = -\frac{m_e e^4}{8\epsilon_0^2 h^2} \frac{1}{n^2} = -\frac{E_H}{2} \frac{1}{n^2}$ $p_n = \frac{e^2}{4\pi\epsilon_0} \frac{m_e}{\hbar} \frac{1}{n} = p_0 \frac{1}{n}$
de Broglie equation	$\lambda = \frac{h}{p}$

2.2.3 Postulates

- 1. Wavefunction contains all information about a system
- 2. Operators used to extract that information
 - (a) QM operators are Hermitian
 - (b) Have eigenvectors and real eigenvalues, $\hat{O}\psi_i = o\psi_i$
 - (c) Are orthogonal, $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
 - (d) Always observe an eigenvalue when making an observation
- 3. Expectation values
- 4. Energy-invariant wavefunctions given by Schrödinger equation
- 5. Uncertainty principle

2.2.4 Particle in a box illustrations

- 2.3 Lecture 6: Particle in a box model
- 2.3.1 Particle between infinite walls, electron confined in a wire
- 2.3.2 Classical solution, either stationary or uniform bouncing back and forth

2.3.3 One-dimesional QM solutions

- 1. Schrödinder equation and boundary conditions
- 2. discrete, quantized solutions
- 3. standing waves, $\lambda = 2L/n$, n-1 nodes, non-uniform probability
- 4. Ho paper, STM of Pd wire
- 5. zero point energy and uncertainty
- 6. correspondence principle
- 7. superpositions

2.3.4 Finite walls and tunneling

- 1. Potential well of finite depth V_0
- 2. Finite number of bound states
- 3. Classical region, $\psi(x) e^{ikx} + e^{-ikx}, k = \sqrt{2mE}/\hbar$
- 4. "Forbidden" region, $\psi(x)$ $e^{\kappa x} + e^{-\kappa x}$, $\kappa = \sqrt{2m(V_0 E)}/\hbar$
- 5. Non-zero probability to "tunnel" into forbidden region
- 6. Tunneling between two adjacent wells: chemical bonding, STM, nanoelectronics
- 7. H atom tunneling: NH₃ inversion, H transfer, kinetic isotope effect

Table 7: Postulates of Non-relativistic Quantum Mechanics

Postulate 1: The physical state of a system is completely described by its wavefunction Ψ . In general, Ψ is a complex function of the spatial coordinates and time. Ψ is required to be:

- I. Single-valued
- II. continuous and twice differentiable
- III. square-integrable $(\int \Psi^* \Psi d\tau)$ is defined over all finite domains)
- IV. For bound systems, Ψ can always be normalized such that $\int \Psi^* \Psi d\tau = 1$

Postulate 2: To every physical observable quantity M there corresponds a Hermitian operator \hat{M} . The only observable values of M are the eignevalues of \hat{M} .

Physical quantity	Operator	Expression
Position x, y, z	\hat{x},\hat{y},\hat{z}	$x\cdot,y\cdot,z\cdot$
		a
Linear momentum p_x, \dots	\hat{p}_x, \dots	$-i\hbar \frac{\partial}{\partial x}, \dots$
Angular momentum l_x, \dots	\hat{p}_x,\dots	$-i\hbar \frac{\partial}{\partial x}, \dots$ $-i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right), \dots$
Angular momentum t_x, \dots	p_x, \dots	$-in\left(y\overline{\partial z}-z\overline{\partial y}\right),\cdots$
Kinetic energy T	\hat{T}	$-\frac{\hbar^2}{2m}\nabla^2$
Potential energy V	\hat{V}	1/ (r +)
Total energy E	\hat{H}	$-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r},t)$
rotal ellergy E	11	$-\frac{1}{2m}\mathbf{v}^{-}+\mathbf{v}^{-}(\mathbf{I},t)$

Postulate 3: If a particular observable M is measured many times on many identical systems is a state Ψ , the average resuts with be the expectation value of the operator \hat{M} :

$$\langle M \rangle = \int \Psi^*(\hat{M}\Psi) d\tau$$

Postulate 4: The energy-invariant states of a system are solutions of the equation

$$\hat{H}\Psi(\mathbf{r},t) = i\hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},t)$$

$$\hat{H} = \hat{T} + \hat{V}$$

The time-independent, stationary states of the system are solutions to the equation

$$\hat{H}\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

Postulate 5: (The uncertainty principle.) Operators that do not commute $(\hat{A}(\hat{B}\Psi) \neq \hat{B}(\hat{A}\Psi))$ are called *conjugate*. Conjugate observables cannot be determined simultaneously to arbitrary accuracy. For example, the standard deviation in the measured positions and momenta of particles all described by the same Ψ must satisfy $\Delta x \Delta p_x \geq \hbar/2$.

 $V(x) = \begin{cases} 0 & 0 < x < L \\ \infty & x \le 0 \text{ or } x \ge L \end{cases}$ $\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$ $E_n = \frac{n^2\pi^2\hbar^2}{2mL^2}, n = 1, 2, \dots$ Particle in a box solutions for an electron in a 1 nm box

Table 8: Particle-in-a-box model

2.3.5 Multiple dimensions

1. separation of variables, one quantum number for each dimension

2.3.6 Introduce Pauli principle for fermions?

2.4 Lecture 7: Harmonic oscillator

2.4.1 Classical harmonic oscillator

- 1. Hooke's law, $F = -k(x x_0)$, k spring constant
- 2. Continuous sinusoidal motion
- 3. $x(t) = A\sin(\frac{k}{\mu})^{1/2}t, \nu = \frac{1}{2\pi}(\frac{k}{\mu})^{1/2}, E = \frac{1}{2}kA^2$
- 4. Exchanging kinetic and potential energies

2.4.2 Quantum harmonic oscillator

- 1. Solutions like P-I-A-B, waves, nodes, even/odd symmetry
- 2. Zero-point energy

- 3. Expectation values: $\langle x \rangle = 0, \langle x^2 \rangle = \alpha^2(v+1/2), \langle V(x) \rangle = \frac{1}{2}h\nu(v+\frac{1}{2})$
- 4. Classical turning point and tunneling
- 5. Classical limiting behavior

2.4.3 HCl example

- 1. Reduced mass, $\frac{1}{\mu} = \frac{1}{m_A} + \frac{1}{m_B}$
- 2. ZPE, energy spacing in IR, Boltzmann probabilities

Table 9: Harmonic oscillator model

$$V(x) = \frac{1}{2}kx^2, -\infty < x < \infty$$

$$\psi_v(x) = N_v H_v(x/\alpha) e^{-x^2/2\alpha^2}, v = 0, 1, 2, \dots$$

$$\alpha = (\hbar^2/\mu k)^{1/4}, N_v = (2^v v! \alpha \sqrt{\pi})^{-1/2}$$

$$\frac{\text{Hermite polynomials}}{H_0(y) = 1}$$

$$H_1(y) = 2y$$

$$H_2(y) = 4y^2 - 2$$

$$H_{n+1}(y) = 2yH_n(y) - 2nH_{n-1}(y)$$

$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

$$E_v = (v + \frac{1}{2})h\nu, v = 0, 1, 2, \dots$$
Harmonic oscillator functions

Harmonic oscillator functions

Harmonic oscillator functions

2.5 Lecture 8: Rigid Rotor

2.5.1 Classical rigid rotor

- 1. Compare rotation about an axis vs linear motion
- 2. Moment of intertia $I = \mu r^2$
- 3. Angular momentum, $\mathbf{l} = I\omega = \mathbf{r} \times \mathbf{p}, T = l^2/2I$
 - (a) Angular momentum and energy continuous variables

2.5.2 Quantum rotor in a plane

- 1. Angular momentum and kinetic energy operators in polar coordinates, $\hat{l}_z = -i\hbar \frac{d}{d\phi}$
- 2. Eigenfunctions degenerate, cw and ccw rotation
- 3. No zero point energy
- 4. Angular momentum eignefunctions, $l_z = m_l \hbar$
- 5. Energy superpositions and localization

2.5.3 Quantum rotor in 3-D

- 1. Angular momentum and kinetic energy operators in spherical coordinates
- 2. Spherical harmonic solutions, Y_{lm_l}
- 3. Azimuthal QN $l = 0, 1, \dots$
- 4. Magnetic QN $m_l = -l, -l+1, ..., l$
- 5. Energy spectrum, 2l + 1 degeneracy
- 6. Vector model can only know total total |L| and L_z
- 7. Wavefunctions look like atomic orbitals, l nodes

2.5.4 Particle angular momentum

- 1. Fermions, mass, half-integer spin
 - (a) Electron, $s = 1/2, m_s = \pm 1/2$
- 2. Bosons, force-carrying, integer spin

2.6 Lecture 9: Spectroscopy

2.6.1 Spectroscopy is quantitative measurement of interaction of light with matter

- 1. Observed $I(\nu)/I(\nu_0)$
- 2. Bohr condition, $|E_f E_i|/h = \nu = c\tilde{\nu} = c/\lambda$
- 3. Intensities determined by state populations and transition probabilities

Table 10: 2-D rigid rotor model

$$V(\phi) = 0, 0 \le \phi \le 2\pi$$

$$\hat{H} = -\frac{\hbar^2}{2I} \frac{\partial^2}{\partial \phi^2}, \qquad I = \mu R^2$$

$$\psi_{m_l}(\phi) = \frac{1}{\sqrt{2\pi}} e^{-im_l \phi}, m_l = 0, \pm 1, \pm 2, \dots$$

$$E_{m_l} = \frac{\hbar^2}{2I} m_l^2$$

$$L_z = m_l \hbar$$

$$L_z = m_l \hbar$$

$$U_{210} = \frac{1}{120} \frac{1}{$$

2.6.2 Einstein coefficients

- 1. Stimulated absorption, $dn_1/dt = -n_1B\rho(\nu)$
- 2. Stimulated emission, $dn_2/dt = -n_2B\rho(\nu)$
- 3. Spontaneous emission, $dn_2/dt = -n_2A$, $A = \left(\frac{8\pi h\nu^3}{c^3}\right)B$
- 4. 1/A = lifetime

2.6.3 Transition probability

- 1. Einstein coefficient $B_{if} = \frac{|\mu_{if}|^2}{6\epsilon_0 \hbar^2}$
- 2. Classical electric dipole, $\overrightarrow{\mu}=q\cdot\overrightarrow{l}$, quantum dipole operator $\hat{\mu}=e\cdot\overrightarrow{r}$

Table 11: 3-D rigid rotor model

$$V(\theta,\phi) = 0, 0 \le \phi \le 2\pi, 0 \le \theta < \pi$$

$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) \right]$$

$$\hat{H}_{\text{rot}} = \frac{1}{2I} \hat{L}^2$$

$$Y_{lm_l}(\theta,\phi) = N_l^{|m|} P_l^{|m|} (\cos(\theta)) e^{im_l \phi}$$

$$l = 0, 1, 2, \dots, \qquad m_l = 0, \pm 1, \dots, \pm l$$

$$E_l = \frac{\hbar^2}{2I} l(l+1)$$

$$|L| = \hbar \sqrt{l(l+1)}, L_z = m_l \hbar$$

$$V_{00} + V_{00}$$

$$V_{11} + V_{14}$$

$$V_{11} + V_{14}$$

$$V_{11} + V_{14}$$

- 3. Transition dipole moment, $\mu_{if} = \left(\frac{d\mu}{dx}\right) \langle \psi_i | \hat{\mu} | \psi_f \rangle$
- 4. Selection rules—conditions that make μ_{if} non-zero, "allowed" vs "forbidden" transitions

2.7 Lecture 10: Vibrational and rotational spectroscopy

2.7.1 Diatomic rotational spectroscopy

- 1. Rotational constant $B = \hbar/4\pi Ic \text{ cm}^{-1}$, $I = \mu R^2$
- 2. Gross selection rule: dynamic dipole moment non-zero (heteronuclear, not homonuclear)
- 3. Specific selection rule: $\Delta l = \pm 1, \, \Delta m_l = 0, \pm 1$
- 4. $\Delta \tilde{E}_l = 2B(l+1) \text{ cm}^{-1}$
- 5. Rotational state populations

2.7.2 Diatomic vibrational transitions

- 1. Gross selection rule: dynamic dipole $d\mu/dx$ non-zero
- 2. Homo- vs. heteronuclear
- 3. Specific selection rule: dipole integral $\langle \psi_v | \hat{\mu} | \psi_{v'} \rangle = 0$ unless $\Delta v = \pm 1$
- 4. Allowed $\Delta E = h\nu$
- 5. Boltzmann distribution implies v=1 states dominate at normal T

2.7.3 Raman spectroscopy

- 1. Shine in light of arbitrary frequency $\tilde{\nu_0}$, mostly get out the same
- 2. Some light comes out at $\tilde{\nu_0} \tilde{\nu}$ (Stoke's line)
- 3. Some light comes out at $\tilde{\nu_0} + \tilde{\nu}$ (anti-Stoke's line)
- 4. Gross selection rule: dynamic polarizability non-zero (homonuclear, not heteronuclear)

2.7.4 Anharmonicity, Morse potential

2.7.5 Vibration-rotation spectroscopy

- 1. Harmonic oscillator + rigid rotor
- 2. Selection rules: $\Delta v = \pm 1, \Delta l = \pm 1$
- 3. R branch: $\Delta \tilde{E} = \tilde{\nu} + 2B(l+1), \Delta l = 1$
- 4. P branch: $\Delta \tilde{E} = \tilde{\nu} 2B(l), \Delta l = -1$

Figure 7: Rovibrational spectrum of carbon monoxide

2.7.6 Polyatomic vibrational spectroscopy

- 1. Polyatomics, 3n-6 (3n-5 for linear polyatomic) vibrational modes
- 2. Selection rules and degeneracies affect number of observed features
- 3. CO_2 example

2.7.7 Polyatomic rotational spectroscopy

- 1. Three distinct moments of intertia (I_x,I_y,I_z)
- 2. Spectra more complex

2.8 Lecture 11: Hydrogen atom

2.8.1 Schrödinger equation

- 1. Spherical coordinates and separation of variables
- 2. Coulomb potential $v_{\text{Coulomb}}(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$
- 3. Centripetal potential $v = \hbar^2 \frac{l(l+1)}{2\mu r^2}$

2.8.2 Solutions

- 1. $\psi(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta, \phi)$
- 2. Principle quantum number n = 1, 2, ...
 - (a) K, L, M, N, \ldots shells
 - (b) n-1 radial nodes
- 3. Azimuthal quantum number l = 0, 1, ..., n 1
 - (a) s, p, d, \ldots orbital sub-shells

- (b) l angular nodes
- 4. Magnetic quantum number $m_l = -l, -l+1, ..., l$
- 5. Spin quantum number $m_s = \pm 1/2$
- 6. Energy spectrum and populations
- 7. Electronic selection rules

(a)
$$\Delta l = \pm 1$$
 $\Delta m_s = 0$ $\Delta m_l = 0, \pm 1$

- 8. Wavefunctions = "orbitals"
- 9. Radial probability function $P_{nl}(r) = r^2 R_{nl}^2(r)$

(a)
$$\langle r \rangle = \int r P_{nl}(r) dr = \left(\frac{3}{2}n^2 - l(l+1)\right) a_0$$

2.8.3 Variational principle

- 1. Solutions of Schrödinger equation always form a complete set
- 2. True wavefunction energy is therefore lower bound on energy of any trial wavefunction

$$\langle \psi_{\text{trial}}^{\lambda} | \hat{H} | \psi_{\text{trial}}^{\lambda} \rangle = E_{\text{trial}}^{\lambda} \geq E_0$$

1. Optimize wavefunction with respect to variational parameter

$$\left(\frac{\partial \langle \psi_{\text{trial}}^{\lambda} | \hat{H} | \psi_{\text{trial}}^{\lambda} \rangle}{\partial \lambda}\right) = 0 \to \lambda_{\text{opt}}$$

2.9 Lecture 12: Many-electron atoms

2.9.1 Many-electron problem, Schrödinger equation not exactly solvable

- 1. $e^- e^-$ interaction terms prevent separation of variables
- 2. Independent electron model basis of all solutions, describes each electron by its own wavefunction, or "orbital"

2.9.2 Qualitative solutions

- 1. ψ_i look like H atom orbitals, labeled by same quantum numbers
- 2. Aufbau principle: "Build-up" electron configuration by adding electrons into H-atom-like orbitals, from bottom up
- 3. Pauli exclusion principle: Every electron in atom must have a unique set of quantum numbers, so only two per orbital (with opposite spin)
- 4. Pauli exclusion principle (formally): The wavefunction of a multi-particle system must be anti-symmetric to coordinate exchange if the particles are fermions, and symmetric to coordinate exchange if the particles are bosons
- 5. *Hund's rule*: Electrons in degenerate orbitals prefer to be spin-aligned. Configuration with highest *spin multiplicity* is the most preferred

Table 12: Hydrogen atom

$$V(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}, 0 < r < \infty$$

$$\hat{H} = -\frac{\hbar^2}{2m_e} \frac{1}{r^2} \left[\frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \hat{L}^2 \right] + V(r)$$

$$\psi(r, \theta, \phi) = R(r) Y_{l,m_l}(\theta, \phi)$$

$$\left\{ -\frac{\hbar^2}{2m_e} \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \right) + \frac{\hbar^2 l(l+1)}{2m_e r^2} - \frac{e^2}{4\pi\epsilon_0} \frac{1}{r} \right\} R(r) = ER(r)$$

$$R_{nl}(r) = N_{nl} e^{-x/2} x^l L_{nl}(x), \quad x = \frac{2r}{na_0}$$

$$P_{nl}(r) = r^2 R_{nl}^2$$

$$n = 1, 2, \dots, \quad l = 0, \dots, n-1 \quad m_l = 0, \pm 1, \dots, \pm l$$

$$N_{nl} = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-l-1)!}{2n(n+l)!}}$$

$$L_{10} = L_{21} = L_{32} = \dots = 1 \quad L_{20} = 2 - x \quad L_{31} = 4 - x$$

$$E_n = -\frac{1}{2} \frac{\hbar^2}{m_e a_0^2} \frac{1}{n^2} = -\frac{E_H}{2} \frac{1}{n^2}$$

$$|L| = \hbar \sqrt{l(l+1)}, L_z = m_l \hbar$$

2.9.3 Structure of the periodic table

- 1. Electrons in different subshells experience different effective nuclear charge $Z_{\rm eff}=Z-\sigma_{nl}$
- 2. Inner ("core") shells not shielded well at
- 3. Inner shell electrons "shield" outer electrons well
- 4. Within a shell, s shielded less than p less than d ..., causes degeneracy to break down
- 5. Electrons in same subshell shield each other poorly, causing ionization energy to increase across the subshell

2.9.4 Quantitative solutions

1. Schrödinger equation

$$\hat{H}\Psi(\mathbf{r}_1,\mathbf{r}_2,...) = E\Psi(\mathbf{r}_1,\mathbf{r}_2,...)$$

$$\hat{H} = \sum_{i} \hat{h}_{i} + \frac{e^{2}}{4\pi\epsilon_{0}} \sum_{i} \sum_{j>i} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$
$$\hat{h}_{i} = -\frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} - \frac{Ze^{2}}{4\pi\epsilon_{0}} \frac{1}{|\mathbf{r}_{i}|}$$

2. Construct candidate many-electron wavefunction Ψ from one electron wavefunctions (mathematical details vary with exact approach)

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, ...) \approx \psi_1(\mathbf{r}_1)\psi_2(\mathbf{r}_2)...\psi_n(\mathbf{r}_n)$$

3. Calculate expectation value of E of approximate model and apply variational principle to find equations that describe "best" (lowest total energy) set of ψ_i

$$\begin{split} \frac{\partial E}{\partial \psi_i} &= 0 \quad \forall i \\ \hat{f}\psi &= \left\{ \hat{h} + \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i] \right\} \psi = \epsilon \psi \\ E &= \sum_i \epsilon_i - \frac{1}{2} \langle \Psi | \hat{v}_{\text{Coul}}[\psi_i] + \hat{v}_{\text{ex}}[\psi_i] + \hat{v}_{\text{corr}}[\psi_i] | \Psi \rangle \end{split}$$

4. Motivate as equation for an electron moving in a "field" of other electrons, adding an electron to a known set of ψ_i

2.9.5 Electron-electron interactions

- 1. Coulomb (\hat{v}_{Coul}): classical repulsion between distinguishable electron "clouds"
- 2. Exchange (\hat{v}_{ex}) : accounts for electron indistinguishability (Pauli principle for fermions). Decreases Coulomb repulsion because electrons of like spin intrinsically avoid one another
- 3. Correlation (\hat{v}_{corr}): decrease in Coulomb repulsion due to dynamic ability of electrons to avoid one another; "fixes" orbital approximation
- 4. General form of exchange potential is expensive to calculate; general form of correlation potential is unknown

2.9.6 Popular models

- 1. Hartree model: Include only classical Coulomb repulsion \hat{v}_{Coul}
- 2. Hartree-Fock model: Include Coulomb and exchange
- 3. Density-functional theory (DFT): Include Coulomb and approximate expressions for exchange and correlation
- 4. All the potential terms \hat{v} depend on the solutions, so equations must be solved *iteratively* to self-consistency

2.9.7 DFT calculations on atoms

See http://www.chemsoft.ch/qc/fda.htm

Hydrogen (Z = 1) Helium (Z = 2) KE <1/r> 1.5175 1.7352 0.9133 0.60 total energy = -0.5002 virial ratio = -1.9996 total energy = -2.8527 virial ratio = -1.9399 0.20 0.10 Neon (Z = 10)Argon (Z = 18) total energy = -128.3615 virial ratio = -1.9561 total energy = -526.8275 virial ratio = -1.9719 2s 2s distance (bohr) distance (bohr) Krypton (Z = 18) ■ Experiment First ionization energy (eV) 20 15 10

 Table 13: Numerical DFT Solutions for Atoms

distance (bohr)

- 2.10 Lecture 13: Molecular orbital theory of molecules
- 2.11 Lecture 14: Computational chemistry
- 2.12 Lecture 15: Electronic spectroscopy
- 3 Statistical Mechanics: The Bridge from the Tiny to the Many