

Ybigta Machine Learning Project

IEEE-CIS Fraud Detection

Powered by kaggle

Team 4

고예희 문승현 박현지 염정운

CONTENTS

- 1. Variables
- 2. Score
- 3. Modeling & Tuning

1. Variables

Variable selection, FE, Feedbacks etc...

TransactionDT

TransactionDT

Addr_2 & P_emaildomain

Addr 2: 국가 코드라 추측되는 이상치 값

P emaildomain: 확실한 국가코드

Name	TRUE	FALSE	Overall	Percent	Rank -	Service info	Region	-	Country_cod
aim.com	275	40	315	12.6984127	4	AOL	global		1
anonymous.com	36139	859	36998	2.32174712	20	익명	anonymous		9
aol.com	27672	617	28289	2.18105978	25	AOL	global		1
att.net	4003	30	4033	0.74386313	37	미국 동신사	usa		2
bellsouth.net	1856	53	1909	2.77632268	17	미국 동신사	usa		2
cableone.net	156	3	159	1.88679245	29	미국 통신사	usa		2
centurylink.net	205		205		43	미국 통신사	usa		2
cfl.rr.com	172	0	172		43	미국 동신사	usa		2
charter.net	791	25	816	3.06372549	15	미국 동신사	usa		2
comcast.net	7642	246	7888	3.11866126	14	미국 동신사	usa		2
cox.net	1364	29	1393	2.08183776	28	미국 동신사	usa		2
earthlink.net	503	11	514	2.14007782	26	미국 동신사	usa		2
embarqmail.com	251	9	260	3.46153846	11	미국 동신사	usa		2
frontier.com	272	8	280	2.85714286	16	미국 동신사	usa		2
frontiernet.net	190	5	195	2.56410256	19	미국 동신사	usa		2
gmail	485	11	496	2.21774194	23	구글	global		1
gmail.com	218412	9943	228355	4.35418537	9	구글	global		1
gmx.de	149		149	0	43	독일 메일회사	germany		4
hotmail.co.uk	112		112		43	마이크로소프트	uk		3
hotmail.com	42854	2396	45250	5.29502762	8	마이크로소프트	global		1
hotmail.de	43	0	43	0	43	마이크로소프트	germany		4
hotmail.es	285	20	305	6.55737705	6	마이크로소프트	spain		6
hotmail.fr	295	0	295		43	마이크로소프트	france		5
icloud.com	6070	197	6267	3.14344982	13	健發	global		1
juno.com	316	6	322	1.86335404	30	미국 동신사	usa		2
live.com	2957	84	3041	2.76224926	18	마이크로소프트	global		- 1
live.com.mx	708	41	749	5.47396529		마이크로소프트	mexico		7
live.fr	56	0	56	0	43	마이크로소프트	france		5
mac.com	422	14	436	3.21100917	12	애플	global		1
mail.com	453	106	559	18.9624329	2	독일 메일회사	germany		4
me.com	1495	27	1522	1.7739816	31	0番	global		1
msn.com	4002	90	4092	2.19941349	24	마이크로소프트	global		- 1
netzero.com	230	0	230	0	43	미국 동신사	usa		2
netzero.net	195		196	0.51020408	39	미국 동신사	usa		2
optonline.net	994	17	1011	1.68150346	32	미국 동신사	usa		2
outlook.com	4614	482	5096	9.45839874	5	마이크로소프트	global		- 1
outlook.es	381	57	438	13.0136986	3	스페인	spain		6
prodigy.net.mx	206		207	0.48309179	40	크라우드펀딩 회사	mexico		7

Addr_2 & P_emaildomain

Region from email	Code
Null	0
Global	1
USA	2
UK	3
Germany	4
France	5
Spain	6
Mexico	7
Japan	8
anonymous	9

DeviceInfo

Windows iOS Device MacOS Trident/7.0 rv:11.0 rv:57.0 SM-J700M Build/MMB29K SM-G610M Build/MMB29K SM-G531H Build/LMY48B rv:59.0 SM-G935F Build/NRD90M SM-G955U Build/NRD90M SM-G532M Build/MMB29T ALE-L23 Build/HuaweiALE-L23 SM-G950U Build/NRD90M SM-G930V Build/NRD90M rv:58.0 rv:52.0 SAMSUNG

SM-G950F Build/NRD90M

LG MacOS Moto SM Trident/7.0 Windows iOS Device others rv unknown

One hot encoding

1. Variables

train_transaction.csv

TransactionID TransactionDT

TransactionAmt ProductCD

card1 card2 card3 card4 card5 card6

Addr1 addr2 dist1 dist2

P_emaildomain R_emaildomain

C1-C14 D1-D15 M1-M19 Vxxx

이용변수

TransactionID isFraud **TransactionAmt card1** Card 2 card3 card5

TransactionDT DeviceInfo

새로운변수

Addr2 Region

One-hot Encoding

ProductCD card4 card6 DeviceType DeviceInfo

1. Resampling

-수많은 Resampling 종류

-패키지 사용의 문제점

2. CDMV···

-어떤 기법 적용

-NA 처리 기준

Imbalanced-learn 패키지

- 1. Under Sampling
- Random Under Sampler
- Tomek links method

- 2. Over Sampling
- Random Over Sampler
- Smote

Imbalanced-learn 패키지

NA값 처리 X

XGBoost

LightGBM

Imbalanced-learn 패키지

NA값 처리 X

1. Variables

(2) PCA

수많은 V들…. (1 ~ 339)

PCA

1. 변수들 간의 상관관계, 연관성

PCA

2. 선형결합 – 데이터의 변동성

3. 고차원 데이터의 패턴 찾기

 $d_{1}^{2} + d_{2}^{2} + d_{3}^{2} + d_{4}^{2} + d_{5}^{2} + d_{6}^{2} = \text{sum of squared distances} = SS(\text{distances})$

PCA?

예측성능 감소

데이터의 차원축소 외

컴퓨터 비전 분야 -> 얼굴인식

2. Score

Confusion Matrix, Recall, Precision, F1, ROC-AUC

Fraud detection

Fraud(1) / not Fraud(0)

TransactionDT TransactionAmt ProductCD card1 card2 card3 card4 card5 card6 addr2 C1 D1 D10 D15 V12 V53 V75 V95 V279 V281 exist dt_month dt_hour ProductCD_C ProductCD_H ProductCD_R ProductCD_S ProductCD_W card4_american express card4_discover card4_mastercard card4_visa card6_charge card card6_credit card6_debit card6_debit or credit id_01 id_02 DeviceType Device_info_clean Country_code

Fraud detection

Fraud(1) / not Fraud(0)

Classification

Regression

Fraud detection

Fraud(1) / not Fraud(0)

Regression

Fraud(1) / not Fraud(0)

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

Confusion Matrix (오차행렬)

Classification 결과(실제 값, 예측 값)를 행렬 형태로 나타냄.

Binary Classification의 경우 Class가 1, 0 두개이므로 2 x 2 형태로 표현

Fraud(1) / not Fraud(0)

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

Confusion Matrix (오차행렬)

True Positive

True Negative

False Positive

False Negative

올바른 예측

틀린 예측

Fraud(1) / not Fraud(0)

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

Confusion Matrix (오차행렬)

True Positive

True Negative

False Positive

False Negative

올바르게 예측하였고(True), 예측한 값이 1(Positive)이다

Fraud(1) / not Fraud(0)

실제값 예측값	Fraud(1)	Not Fraud(0)	
Fraud(1)	True Positive (TP)	False Positive (FP)	
Not Fraud(0)	False Negative (FN)	True Negative (TN)	

Confusion Matrix (오차행렬)

True Positive

True Negative

False Positive

False Negative

올바르게 예측하였고(True), 예측한 값이 O(Negative)이다

Fraud(1) / not Fraud(0)

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

Confusion Matrix (오차행렬)

True Positive

True Negative

False Positive

False Negative

틀리게 예측하였고(False), 예측한 값이 1(Positive)이다

Fraud(1) / not Fraud(0)

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

Confusion Matrix (오차행렬)

True Positive

True Negative

False Positive

False Negative

틀리게 예측하였고(False), 예측한 값이 O(Negative)이다

How well Classified?

얼마나 잘 분류했는지 평가하기 위한 지표

Accuracy / F1 / ROC_AUC...

1) Accuracy

How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

Ex) 100건의 거래 관측치

Total 100건

1) Accuracy: Balanced Data

How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)
	Fraud 50건	Not Fraud 50건

Ex) 100건의 거래 관측치

 $Accuracy = \frac{True\ Positive + True\ Negative}{OBS}$

총 관측치(100건) 중 올바르게 예측한 비율

Total 100건

1) Accuracy: Balanced Data

How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)	
Fraud(1)	47	4	
Not Fraud(0)	3	46	
	Fraud 50건	Not Fraud 50건	

Ex) 100건의 거래 관측치

 $Accuracy = \frac{True\ Positive + True\ Negative}{OBS}$

총 관측치(100건) 중 올바르게 예측한 비율

Total 100건

1) Accuracy: Balanced Data

How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	47	4
Not Fraud(0)	3	46
	Fraud 50건	Not Fraud 50건

Ex) 100건의 거래 관측치

$$Accuracy = \frac{True\ Positive + True\ Negative}{OBS}$$

총 관측치(100건) 중 올바르게 예측한 비율

$$\frac{47+46}{100}$$
 = 0.93 **93%** Accuracy

1) Accuracy: Imbalanced Data

How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)
	Fraud 3건	Not Fraud 97건

But... if?

Total 100건

1) Accuracy: Imbalanced Data

How well classified?

1) Accuracy: Imbalanced Data

How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)	Accurac
Fraud(1)	0	0	Fraud 0건
Not Fraud(0)	3	97	Not Fraud 100건

$$Accuracy = \frac{True\ Positive + True\ Negative}{OBS}$$

 $\frac{97+0}{100} = 0.97$

97% Accuracy

Fraud 3건 Not Fraud 97건

Total 100건

사기 거래는 하나도 못 잡았는데...?

2) F1, ROC_AUC - Recall, Precision, Specificity How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

$$\begin{aligned} & \text{Recall} = \frac{\textit{True Positive}}{\text{True Positive}} \\ & \text{Precision} = \frac{\textit{True Positive}}{\textit{True Positive}} \\ & \text{Precision} = \frac{\textit{True Positive}}{\textit{True Positive}} \\ & \text{Specificity} = \frac{\textit{True Negative}}{\textit{True Negative}} \end{aligned}$$

2) F1, ROC_AUC - Recall, Precision, Specificity How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

$$\begin{aligned} & \text{Recall} = \frac{\textit{True Positive}}{\textit{True Positive}} \\ & \text{Precision} = \frac{\textit{True Positive}}{\textit{True Positive}} \\ & \text{Precision} = \frac{\textit{True Positive}}{\textit{True Positive}} \\ & \text{Specificity} = \frac{\textit{True Negative}}{\textit{True Negative}} \end{aligned}$$

실제 Fraud 를 올바르게 가려낸 비율

2) F1, ROC_AUC - Recall, Precision, Specificity How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

$$\begin{aligned} & \text{Recall} = \frac{\textit{True Positive}}{\textit{True Positive}} \\ & \text{Precision} = \frac{\textit{True Positive}}{\textit{True Positive}} \\ & \text{Precision} = \frac{\textit{True Positive}}{\textit{True Positive}} \\ & \text{Specificity} = \frac{\textit{True Negative}}{\textit{True Negative}} \end{aligned}$$

실제 Not Fraud 를 올바르게 가려낸 비율

2) F1, ROC_AUC - Recall, Precision, Specificity How well classified?

실제값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

$$\begin{aligned} & \text{Recall} = \frac{\textit{True Positive}}{\text{True Positive}} \\ & \text{Precision} = \frac{\textit{True Positive}}{\textit{True Positive}} \\ & \text{Precision} = \frac{\textit{True Positive}}{\textit{True Positive}} \\ & \text{Specificity} = \frac{\textit{True Negative}}{\textit{True Negative}} \end{aligned}$$

예측 Fraud 중 실제 Fraud 를 올바르게 예측한 비율

2) F1, ROC_AUC - Recall, Precision, Specificity How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	0	0
Not Fraud(0)	3	97

Fraud 3건 Not Fraud 97거

$$Recall = \frac{TP}{TP + FN} = 0$$

$$Precision = \frac{TP}{TP + FP} = 0$$

Specificity =
$$\frac{TN}{TN+FP} = 0$$

3) F1

How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

$$Recall = \frac{True \ Positive}{True \ Positive + False \ Negative}$$

$$Precision = \frac{True \ Positive}{True \ Positive + False \ Positive}$$

Recall과 Precision은 **Trade-off** 이고, 분류 성능 평가에서 이 두 지표를 적절히 Balancing 해야 한다!

3) F1

How well classified?

실제값 예측값	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

$$Recall = \frac{True \ Positive}{True \ Positive + False \ Negative}$$

$$Precision = \frac{True \ Positive}{True \ Positive + False \ Positive}$$

$$F_1 \ score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$

[0,1] 값을 가지며, Recall과 Precision 모두를 고려한 지표 1에 가까울 수록 잘 분류되었다고 평가

How well classified?

$$Recall = \frac{True \ Positive}{True \ Positive + False \ Negative}$$

$$Specificity = \frac{True\ Negative}{True\ Negative + False\ Positive}$$

How well classified?

$$Recall = \frac{True \ Positive}{True \ Positive + False \ Negative}$$

$$Specificity = \frac{True\ Negative}{True\ Negative + False\ Positive}$$

ROC Graph

(1-Specificity, Recall) 값을 좌표평면에 도식하고 그래프 원점, 종점과 연결한 Graph ($0 \le x, y \le 1$)

How well classified?

$$Recall = \frac{True \ Positive}{True \ Positive \ + False \ Negative}$$

$$Specificity = \frac{True\ Negative}{True\ Negative + False\ Positive}$$

ROC_AUC

ROC Graph의 밑 면적 넓이

[0,1] 값을 가지며, Recall과 Specificity를 고려한 지표 1에 가까울 수록 잘 분류되었다고 평가

How well classified?

ROC Curve?

How well classified?

Recall, Precision, Specificity는 모두 Confusion Matrix를 통해 도출되는 값

isFraud (실제 값)	Predict Probability (예측 확률)
1	0.7
1	0.6
0	0.4
0	0.3

Prediction 1 (threshold = 0.5)	Prediction 2 (threshold = 0.2)	Prediction 3 (threshold = 0.8)
1	1	0
1	0	0
0	0	0
0	0	0

예측 확률을 도출하더라도, threshold 설정에 따라 하나의 모델에서 다수의 Confusion Matrix가 만들어진다

How well classified?

Threshold 선언 시 (1,0 binary 형태의 output)

Threshold 미 선언 시 (Probability 형태의 output)

How well classified?

Threshold 선언 시 (1,0 binary 형태의 output)

Threshold 미 선언 시 (Probability 형태의 output)

How well classified?

Threshold 선언 시 (1,0 binary 형태의 output)

Kaggle Score

Threshold 미 선언 시 (Probability 형태의 output)

3. Modeling & Tuning

Sampling, Classifier, Validation, Ensemble

1) Precautions: 완벽한 단일 평가 지표?

Submission and Description

Public Score

0.8859

prob.csv

2 days ago by HelloWorld

boom

1) Precautions: 완벽한 단일 평가 지표?

	Fraud(1)	Not Fraud(0)
Fraud(1)	True Positive (TP)	False Positive (FP)
Not Fraud(0)	False Negative (FN)	True Negative (TN)

Fraud(1)

Fraud(1)

Not Fraud(0)

Fraud(1)

True Positive (TP)

False Positive (FP)

Not Fraud(0)

False Negative (TN)

F1 score

ROC_AUC score

1) Precautions: 완벽한 단일 평가 지표?

Goal:

F1, ROC_AUC score 모두 균등하게 높은 Model

3. Model & Tuning

2) Modeling

Data Sampling	Classifier	Cross Validation	Ensemble
Under Sampling	Random Forest	K-Fold	Voting
Over Sampling	LightGBM	Hold-out	Balanced Bagging
	XGBoost	LOO	Stacking
	CatBoost		•••

...

2) Modeling

Final Model

Under Sampling	LightGBM	K-Fold	Soft Voting
Random Under Sampling Fraud = 20663 / Not Fraud = 20663 Number of Samples: 33	N estimators = 500 Learning rate = 0.15 Max depth = 9	K = 5 각 Fold별 Predict Probability의 Average	33개의 Sample에 대해 Soft Voting
Imbalanced Data의 효율적 학습	OHE 없이 Categorical Feature 처리 / NaN 처리	Sample 내에서의 Overfitting 방지	Data 전체 의견 수합

3) Output

1개 Sample에 대한 Validation Score

Precision:0.8825534820209376

Recall:0.8449707206117214

F1:0.8633485013354437

ROC_AUC:0.8665067995934763

33개 모든 Sample에 대해 Prediction Probability 출력, Soft Voting 진행

최종 AUC score 0.91

3. Model & Tuning

4) Limitations

- 1. Domain knowledge 활용 불가
- 2. Heuristic한 FE(결측치 처리 등)로 인해 성능 저하, 모델 적용이 제한 (Balanced Bagging Classifier 등)
- 3. Computing Power 문제로 최적의 Hyper Parameter Tuning, Sampling 제한

Special thanks to 백상현, 유건욱, 이용하

백상현, 유건욱, 이용하 Ybigta 15기