# CS/ECE/ME 532 Matrix Methods in Machine Learning



Welcome!

# Activity 14



# Eigendecomposition

$$oldsymbol{Be}_i = egin{array}{c} \lambda_i oldsymbol{e}_i \ & oldsymbol{\bullet} \ & olds$$

 $\boldsymbol{B}$  (square) symmetric matrix:

$$oldsymbol{B} = oldsymbol{E} oldsymbol{\Lambda} oldsymbol{E}^T$$
 orthonormal rows, cols

### Connection with SVD:

$$A = U \Sigma V^T$$

abuse of notation 
$$m{A}m{A}^T = m{U}m{\Sigma}m{V}^Tm{V}m{\Sigma}^Tm{U}^T = m{U}m{\Sigma}^2m{U}^T$$

 $\longrightarrow$  Eigenvectors of  $\mathbf{A}\mathbf{A}^T$  are left singular vectors of  $\mathbf{A}$ 

$$oldsymbol{A}^T oldsymbol{A} = oldsymbol{V} oldsymbol{\Sigma}^T oldsymbol{U}^T oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^T = oldsymbol{V} oldsymbol{\Sigma}^2 oldsymbol{V}^T$$

 $\longrightarrow$  Eigenvectors of  $\mathbf{A}^T \mathbf{A}$  are right singular vectors of  $\mathbf{A}$ 

Eigenvalues:  $\lambda_i = \sigma_i^2$ 

# Power iteration (main idea)

$$(oldsymbol{A}oldsymbol{A}^T)^k = oldsymbol{U}\Sigma^2oldsymbol{U}^Toldsymbol{U}\Sigma^2oldsymbol{U}^T\dotsoldsymbol{U}\Sigma^2oldsymbol{U}^T \ = oldsymbol{U}\Sigma^{2k}oldsymbol{U}^T \ oldsymbol{oldsymbol{U}} oldsymbol{U} oldsymbol{$$

## Adjacency matrix and PageRank

- Graph: nodes with edges between them
- Adjacency matrix: non-zero entry  $\tilde{A}_{ij}$  if edge from j to i
- Transition probability matrix: normalize columns of  $ilde{A}$  to 1

$$||Q_{:,j}||_1 = 1$$

$$\lambda_1 = 1$$

$$\lambda_1$$

 $Q^k b \to \text{direction of first eigenvector of } Q.$ 

The first eigenvector is the steady-state probability distribution