Chem 1141 Fall 2014 Exam 2A

	-	MAGNET MIN
Name:	KEY	
		
Section #:	□ 1. (Tuesday Lab, 4 -	- 6:50 pm)
	☐ 2. (Thursday Lab, 4	
	☐ 3. (Monday Lab, 11	– 1:50 pm)
	🗖 4. (Wednesday Lab	11 – 1:50 pm)
	☐ 5. (Wednesday Lab,	2 – 4:50 pm)
	Please ☑ check the box	next to your correct section number.
Please write you	r full name, and which o	exam version (2A) you have on the scantron sheet.
	Multiple Choice:	/30
	Q11:	/10
	Q12:	/10
	Q13:	/10
	Q14:	/10
	Q15:	/10
	Q16:	/10
	Q17:	/10
	BONUS:	/3

pressure remains unchanged. The temperature is:
a) 1200 K
b) 600 K
c) 300 K
d) 150 K
e) 75 K $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ if V_2 is $V_1 \times \frac{1}{2}$

The conditions corresponding to STP are:

d) o K and 1 atm

Q9.

a) 1 °C and o atm

e) 1 K and o atm

TP are:
b) 760 mmHg and 25 °C c) 0°C and 1 atm

Q10. Which law states that pressure is inversely proportional to the volume at constant temperature for a fixed amount of gas?

> a) Charles's (b) Boyle's e) Avogadro's c) Gay-Lussac's d) Dalton's

Short Response.

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q11. [10 pts.] A compound was found to contain 58.07 % carbon, 3.249 % hydrogen, and 38.68 % oxygen by mass. Determine its empirical formula.

Q12. [10 pts.] Complete and balance the following chemical equations. Be sure to include charges and state symbols wherever necessary.

Molecular:
$$2 \text{Li}_3 PO_4(aq) + 3 \text{Ca}(NO_3)_2(aq) \longrightarrow Ca_3(PO_4)_2(s) + 6 \text{Li}_NO_3(aq)$$

$$Ca_3(PO_4)_2(s) + 6 \text{Li}_NO_3(aq)$$

$$Ca_3(PO_4)_2(s) + 6 \text{Li}_NO_3(aq)$$

Net Ionic:
$$3C_{a}^{2+}(ag) + 2PO_{4}^{3-}(ag) \longrightarrow (a_{3}(PO_{4})_{2}(s)$$

Q13. [10 pts.] One commercial method used to peel potatoes is to soak them in a solution of NaOH for a short period of time, remove them and spray off the peel. The concentration of NaOH is normally in the range of 2 to 6 M. The NaOH is analyzed periodically. In one such analysis, 45.7 mL of 0.500 M H₂SO₄ is required to neutralize a 20.0 mL sample of NaOH solution. What is the concentration of the NaOH solution?

titration H2SO4(ag) + 2NaOH(ag) -> Na2SO4(ag) + 2H2O(D).
[NaOH]=#mol NaOH
#L NaOH

0.0200L (20.0ml)

45.7mL 1L | 0.500mal H2SQ4 2mol NaOH = 0.0457mol NaOH

=> [NaOH] = 0.0457mol = 2.285M

Q14. [10 pts.] Assign oxidation numbers to every atom in the following chemical equation.

(o) (+2)(+6)(-2) (b) (+2)(+6)(-2)Fe + CuSO₄ \longrightarrow Cu + FeSO₄

Which substance was oxidized? Fe (contained an atom whose ox # 1)

Which substance was reduced? CuSO₄ (contained an atom whose ox #1)

- Q15. [10 pts.] A student reacts benzene (C_6H_6) with bromine (Br_2) to yield bromobenzene (C_6H_5Br) and hydrogen bromide (HBr).
 - i) What is the theoretical yield of bromobenzene in this reaction if 30.0 g of benzene reacts with 65.0 g of bromine?
 - ii) What is the percent yield if the actual recovery of bromobenzene was 56.7 g?

Q16. [10 pts.] Hydrogen gas is collected into a 50 mL container at 32 °C by the following reaction of zinc metal with 60.0 mL of 0.100 M HCl? What is the pressure of the gas in the container?

$$PV = nRT$$

$$\Rightarrow \rho = \frac{nRT}{V}$$

$$1 = \frac{60.0 \text{mL}}{V}$$

$$1 = \frac{1.5 \text{ afm}}{V}$$

$$P = \frac{1.5 \text{ afm}}{V}$$

$$PV = nRT$$

$$\Rightarrow \rho = \frac{nRT}{V}$$

$$1 = \frac{60.0 \text{mL}}{V}$$

$$1 = \frac{1.5 \text{ afm}}{V}$$

$$1 = \frac{1.5 \text{ afm}}{V}$$

$$1 = \frac{1.5 \text{ afm}}{V}$$

$$2 = \frac{1.5 \text{ afm}}{V}$$

Q17. [10 pts.] A small bubble rises from the bottom of a lake, where the temperature and pressure are -4 $^{\circ}\text{C}$ and 3.0 atm, to the water's surface, where the temperature is 25 $^{\circ}\text{C}$ and the pressure is 0.95 atm. Calculate the final volume of the bubble if its initial volume was 2.1 mL.

$$\Rightarrow V_2 = \frac{\rho_1 V_1}{T_1} \times \frac{T_2}{\rho_2}$$

BONUS: [3 pts.]

1.325 g sample of an unknown vapor occupies 368 mL at 114 °C and 946 mmHg. The empirical formula of the compound is NO₂. Determine the molecular formula of the

$$d = \frac{1.3255}{0.368L} = 3.609/L$$

empirical formula of the compound is NO₂. Determine the compound.

$$PV = nRT$$

$$N = m$$

$$N = mass (g)$$

$$M = molar mas (g/mai)$$

$$N = molar mas (g/mai)$$

$$M = molar mos (9/mol)$$

$$\Rightarrow \rho V = \frac{mRT}{M}$$

$$\Rightarrow \rho M = \frac{m}{V} \cdot RT$$

$$\Rightarrow PM = \frac{m}{V} \cdot RT$$

then molecular formula

Useful Information:

PV = nRT

 $R = 0.0821 \frac{L \ atm}{mol \ K} \qquad \qquad P_1 = X_1 P_T$

 $P_1V_1/T_1 = P_2V_2/T_2$ $P_1V_1 = P_2V_2$ $P_1/T_1 = P_2/T_2$

 $V_{\scriptscriptstyle \rm I}/T_{\scriptscriptstyle \rm I}=V_{\scriptscriptstyle \rm Z}/T_{\scriptscriptstyle \rm Z}$

 $N_A = 6.022 \text{ x } 10^{23}$ $V_1/n_1 = V_2/n_2$

Table 4.2 Solubility Rules	for Common Ionic Compounds in Water at 25°C
Soluble Compounds	Insoluble Exceptions
Halides (Cl ⁻ , Br ⁻ , I ⁻) Sulfates (SO ₄ ²⁻)	Halides of Ag ⁺ , Hg ₂ ⁺ , and Pb ²⁺ Sulfates of Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺
Insoluble Compounds	Soluble Exceptions
Carbonates (CO_3^{2-}), phosphates (PO_4^{3-}), chromates (CrO_4^{2-}), and sulfides (S^{2-})	Compounds containing alkali metal ions and the ammonium ion
Hydroxides (OH ⁻)	Compounds containing alkali metal ions and the Ba ²⁺ ion

Periodic Table

1																	18 VIIIA
IA	i															1	2
1 7	2											13	14	15	16	17	He
H 1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
3	4	i										5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12										1	13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		1B	IIB	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.08	44.96	47.88	50.94	52,00	54.94	55.85	58.93	58.69	63.55	65.39	69,72	72,61	74.92	78.96	79.90 53	83.80 54
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51 CIL	52 TCh	33 ¥	Xe
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te 127.6	126.9	131.29
85.47	87.62	16.88	91.22	92.91	95.94	(98)	101.07	102,91	106.42	107.87	112.41	114.82 81	118.71	121,76 83	84	85	86
55	56	57	72	73	74	75	76	71	78	79	80	Tl	Pb	Bi	Po	At	Rn
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg		207.2	209	(209)	(210)	(222)
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200,6	204.4	207.2	203	(207)	(210)	(ARA)
87	88	89	104	105	106	107	108	109	110	111 De							
Fr	Ra	A¢^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)							

ا	58	59 10 m	60 N.d.	61 D	62 Sm	63 Eu	Gd	65 Th	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Î	Ce 140.1	140.9	144.2	Pm (145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0 102	175.0 103
٨	90 Th	91 Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Chem 1141 Fall 2014 Exam 2B

Name:	KEY										
Castian #											
Section #:	☐ 1. (Tuesday Lab, 4 – 6:50 pm)										
	☐ 2. (Thursday Lab, 4 – 6:50 pm)										
	□ 3. (Monday Lab, 11 – 1:50 pm)										
	☐ 4. (Wednesday Lab,	11 – 1:50 pm)									
	☐ 5. (Wednesday Lab,	2 – 4:50 pm)									
	Please ☑ check the box	next to your correct sect	ion number.								
Please write your	full name, and which e	exam version (2B) you	ı have on the scantron sheet								
	Multiple Choice:		/30								
	Q11:		_/10								
	Q12:		/10								
	Q13:		_/10								
	Q14:		/10								
	Q15:		/10								
	Q16:		/10								
	O17:		/10								

BONUS:

TOTAL:

/100

See Exam 2A Key for details

Multiple Choice. [3 points each.] Record your answers to the multiple choice questions on the scantron sheet. Choose the *best* response.

			r			
Q1. coeff	When the follow ficient for O₂?	ving equation is	balanced, usir	ng the lowest so	et of whole number	rs, what is the
	4	$C_2H_6O(1) + 3C$	$O_2(g) \longrightarrow \underline{2}C(g)$	$O_2(g) + 3H_2O$	(1)	
	a) 4	b) 5	c) 7	d)3	e) 6	
Q2.	Which of the fol a) (NH ₄) d) Li ₃ PO	SO ₄	nds will not d b) CaSO ₄ e) Na ₂ CO ₃		er? c) NH ₄ NO ₃	
Q3.	Calculate the nu	mber of hydrog	en atom in 7.4	5 grams of glud	cose, $C_6H_{12}O_6$?	
	(a) 2.99 x d) 2.68 x	10 ²³ 10 ⁻²⁰	b) 4.49 x 10 e) 0.496	24	c) 2.51 x 10 ²²	
Q4. a fixe	Which law state d amount of gas?	s that pressure i	s inversely pro	portional to th	e volume at consta	nt temperature for
	a) Charle	s's b) G	ay-Lussac's	c) Dalton's	d) Avogadro's	e) Boyle's
	_	_			copes: oxygen-16, or nplied about the re	
	b) almost c) the abu d) the iso	all O-atoms are all O-atoms are indance of oxygotopes all have all han 50% of all C	e oxygen-18 en-17 and oxyg pout the same o	abundance	small	
Q6. numb	Phosphorus form per for phosphorus		ls. Indicate the	e compound w	hich has the lowes	t oxidation
	a) H ₃ PO ₄	b) HPO ₃	c) H ₅ P ₃ O ₁₀	d) H ₄ P ₂ O ₇	e) H ₃ PO ₃	VXT
Q7. pressu	A gas at 600 K an are remains uncha a) 600 K			a flexible vesse d) 600 K	el. Its volume is hal	
Q8.	a) 0.0111 m d) 0.0049		n 23.4 mL of a o b) 7.49 mole e) 0.0203 m	es	I solution? c) 11.1 moles	
Q9.	15.0 mL of water a) 20.0 M				is the final concer e) 4.50 M	tration of HCl?
Q10.	The conditions co a) 760 mm d) o °C an	nHg and 25 °C	STP are: b) 1 °C and o e) 1 K and o		c) o K and 1 atm	

Short Response.

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

- Q11. [10 pts.] A student reacts benzene (C₆H₆) with bromine (Br₂) to yield bromobenzene (C₆H₅Br) and hydrogen bromide (HBr).
 - What is the theoretical yield of bromobenzene in this reaction if 45.5 g of benzene reacts with 40.3 g of bromine?

Q12. [10 pts.] Tums * is an antacid made of mostly CaCO₃ (calcium carbonate) and is taken to neutralize stomach acid, HCl (hydrochloric acid). An average person has roughly 60.0 mL of 0.10 M HCl in their stomachs. If this average person takes enough antacid to completely neutralize all the acid within their stomach, what volume of CO₂ (g) will be produced? Assume 760 torr and body temperature of 37 °C.

$$CaCO_3 (aq) + 2 HCl (aq) \longrightarrow CaCl_2 (aq) + CO_2 (g) + H_2O (l)$$

$$PV = nRT$$
 CO_2 $p = 760 \text{ for } = 1.0 \text{ alm}$ $V = nRT$ $f = 37 + 273.15 = 310. \text{ K}$

Q13. [10 pts.] Ibuprofen has the following composition: 75.69% C, 8.80% H, and 15.51% O by mass. Determine its empirical formula.

Q14. [10 pts.] Complete and balance the following chemical equations. Be sure to include charges and state symbols wherever necessary.

Full Ionic: 2 6NH+ (ag) + 2P0+ (ag) + 3(a2+(ag) + 6(e (ag)) - Ca, (P0+)2(1) + 6NH+ (ag) + 6Ce (ag)

Spectrator ion

Net Ionic: 3Ca2+(ag) + 2Po4-(ag) - Ca3(Po4)2(5)

- Q15. [10 pts.] A small bubble rises from the bottom of the ocean, where the temperature and pressure are -2 °C and 4.5 atm, to the water's surface, where the temperature is 32 °C and the pressure is 0.97 atm. Calculate the final volume of the bubble if its initial volume was 3.3 mL.
- 0.97ahm (P2)
- 2°C (T1) 0 (- 4.5atm (P1) 2.8mc (U)
- T, = -2+273.15 = 271K T2 = 32 + 273-15 = 305K
- $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ $\Rightarrow V_2 = \frac{P_1 V_1}{T} \times \frac{T_2}{P_2}$ = 4.5am × 3.3mL × 305K = | 17mL
- Q16. [10 pts.] One commercial method used to peel potatoes is to soak them in a solution of NaOH for a short period of time, remove them and spray off the peel. The concentration of NaOH is normally in the range of 2 to 6 M. The NaOH is analyzed periodically. In one such analysis, 43.8 mL of 0.750 M H₂SO₄ is required to neutralize a 18.0 mL sample of NaOH solution. What is the concentration of the NaOH solution?

titration! chem ea:

[NOOH] = #mol NooH # (NOOH

H2SO4(ag) + 2NaOH(ag) -> Na2SO4(ag) + 2H2O

43.8mL | 1 | 0.750mol Hesay 2mol NaOH | = 0.0657mol NaOH | = 0.0657mol NaOH

Q17. [10 pts.] Assign oxidation numbers to every atom in the following chemical equation.

BONUS: [3 pts.]

1.325 g sample of an unknown vapor occupies 368 mL at 114 $^{\circ}$ C and 946 mmHg. The empirical formula of the compound is NO₂. Determine the molecular formula of the compound.

See exam 2A.

Useful Information:

PV = nRT

 $R=0.0821 \frac{L atm}{mol K}$

 $P_1 = X_1 P_T$

 $P_1V_1/T_1 = P_2V_2/T_2$ $P_1V_1 = P_2V_2$

 $P_1/T_1 = P_2/T_2$

 $V_1/T_1 = V_2/T_2$

 $N_A = 6.022 \times 10^{23}$ $V_1/n_1 = V_2/n_2$

Table 4.2 Solubility Rules	for Common Ionic Compounds in Water at 25°C
Soluble Compounds	Insoluble Exceptions
Halides (Cl ⁻ , Br ⁻ , I ⁻) Sulfates (SO ₄ ²⁻)	Halides of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Sulfates of Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺
Insoluble Compounds	Soluble Exceptions
Carbonates (CO_3^{2-}) , phosphates (PO_4^{3-}) , chromates (CrO_4^{2-}) , and sulfides (S^{2-})	Compounds containing alkali metal ions and the ammonium ion
Hydroxides (OH ⁻)	Compounds containing alkali metal ions and the Ba ²⁺ ion

Periodic Table

1																	18 VIIIA
IA I	1																2
H	2											13	14	15	16	17	He
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.94	9.01											10,81	12.01	14.01	16.00	19.00	20.18
11	12							_				13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Сп	Zn	Ga	Ge	As	Se	Br	Kr
39.L	40.08	44.96	47.88	50,94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Те	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88,91	91,22	92.91	95,94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)							
																	F-1

w	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dv	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
- 1	90	91	92	93	94	95	96	97	98	99	100	101	102	103
^	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)