INTRODUCTION, BITCOIN

Blockchain technologies, lecture 1

Course overview

- Cryptocurrencies, history and motivation
- Blockchain characteristics and types of blockchains
- What is blockchain/how it works
- Bitcoin -- PoW
- Block difficulty
- Transactions, UTXO
- Applications of blockchain technologies

WHY BLOCKCHAIN

Cryptocurrencies, history and motivation

traditional payments

cryptographic hash functio

plain text is encrypted usin cipher to generate a hash value of fixed length

Bob check his balance ...

account balance

\$20,000,000

\$52,000,000

Alice

Bob

traditional payments

cryptographic hash function

plain text is encrypted usin cipher to generate a hash value of fixed length

traditional payments

account	balance
Alice	\$20,000,000
Bob	\$52,000,000

account	balance
Alice	\$20,000,000
Bob	\$52,000,000

traditional payments

- Single point of failure, not peer-to-peer.
- Delayed or refused transactions.
- Security and privacy issues.
- Digital payments easy to implement.

- Alice sends the bank a dollar and a blinded id, representing the digital coin she will be authorized to use in further transactions.
- envelope or carbon paper nested in an envelope with Alice's address on it.

Chaum e-cash (1983) Blind signatures

- Bank is not able to find the id, it can only register how many coins are signed and sign Alice's blinded id.
- Bank has no record of Alices balance or transactions.
- Alice can recognize/recover the id she generated.
- Alice can recognize the signature of the bank.

Chaum e-cash Blind signatures

 Alice sends the signed, not blinded digital coin to Bob.

- Bob receives from Alice the id signed by the bank.
- Bob recognize the signature of the bank.

claimedids

.

- Bobs claims 1\$ in return for his digital coin.
- Bank registers the id.
- Bank doesn't know that the id came from Alice and it has no information about the transaction.
- Bank is able to detect double spending.

- Peer-to-peer, but bank signs all digital coins.
- Privacy.
- Digital payments.
- Double spending detection.

Hashcash (1997) PoW and reusable PoW (2005)

• Initially used to prevent denial-of-service attacks and spam emails.

Ok, you must solve a puzzle to prove that your request/email is not spam

Hashcash (1997) PoW and reusable PoW (2005)

• Initially used to prevent denial-of-service attacks and spam emails.

header

timestamp data_string

• • • • •

• • • • •

• • • • •

counter

Hashcash (1997) PoW and reusable PoW (2005)

 Sender must fill a counter value, initialized to a random number.

SHA(header)= 000900300001000005004578.....5634 20 bits 160 bits

header

timestamp data_string

• • • •

• • • • •

• • • • •

counter

Hashcash (1997) PoW and reusable PoW (2005)

- Sender must fill a counter value, initialized to a random number.
- If SHA-1(header) has the first 20 bits set to 0, the header is valid
- If header is not valid (first 20 bits are not set to 0) increment counter.

SHA(header)= 000000000000000000004578.....5634 20 bits 160 bits

header

timestamp data_string

• • • • •

• • • • •

• • • • • •

counter+1

Hashcash (1997) PoW and reusable PoW (2005)

- Sender must fill a counter value, initialized to a random number.
- If SHA-1(header) has the first 20 bits set to 0, the header is valid
- If header is not valid (first 20 bits are not set to 0) increment counter.

BLOCKCHAIN CHARACTERISTICS

Blockchain characteristics

- Public ledger: A public database, all nodes share the same information about transaction and accounts (UTXO model or state-machine model).
- Records added in the ledger are immutable, only new transactions are continuously appended.
- All nodes must reach consensus, deciding the validity of transactions.
- Auditable: Transactions are timestamp and signed.

Blockchain characteristics

- Immutable: A public blockchain is a series of immutable record of data. Data is time-stamped
- Decentralized, peer-to-peer: Information is stored in a cluster of computers, there is no central authority. Everyone is accountable. Everyone keeps a copy of the database.
- **Transparent**: Everyone has access to all information.
- Secure: use asymmetric cryptography, data blocks are linked via hashes (block-chain) and protected via cryptographic functions.
- Anonymity (pseudonimity): each participant may store several pairs of public-private keys to sign transactions or to prove ownership of his assets (UTXOs, ETHs, NFTs etc.) Identity is not revealed.

Transactions are gathered in blocks.

Each block has a header and a body.

Block is identified by its hash value.

Block header contains the hash of the previous block.

HEADER BODY

- 4-byte version.
- 4-byte timestamp.
- 4-byte difficulty target.
- 4-byte nonce
- 32-byte previous block hash
- 32-byte merkle root

HEADER BODY

- 4-byte version.
- 4-byte timestamp.
- 4-byte difficulty target.
- 4-byte nonce
- 32-byte previous block hash
- 32-byte merkle root

PoW

HEADER BODY

- 4-byte version.
- 4-byte timestamp.
- 4-byte difficulty target.
- 4-byte nonce
- 32-byte previous block hash
- 32-byte merkle root transactions

- 4-byte block size.
- 1-9 bytes transaction count.
- variable transactions.

BITCOIN GENESIS BLOCK

- First block in the blockchain.
- Coinbase transactions without input
- Hidden message: The Times 03/Jan/2009 Chancellor on brink of second bailout for banks.
- Height 0.
- Reward 50BTC to Nakamoto, unusable.

WHAT IS BLOCKCHAIN

public key cryptography

cryptographic hash function

users encode/deocde transactions using a pair of keys: private key/public key.

signature sig=**sign**(private_key, message)

boolean ok=verify(public_key,
signature, message)

public key cryptography and cryptographic hash function

plain text is encrypted using a cipher to generate a hash value of fixed length.

hash(message)

preimage resistance, collision resistance

stored in hash-trees used as commit-reveal scheme

- Unspent transaction output
- Bitcoin Balance = sum of the unspent transaction outputs "owned"
 pay with previous unspent transaction outputs
 "change" is considered unspent transaction output locked to payer himself
- no double spending:

total input of a transaction = equal total output + fees

in a transaction coins are consumed and replaced with new ones.

new coins are also created by mining

transactions without input: Coinbase transaction -- miners reward!

Alice 10 UTXO 15 UTXO 7 UTXO Bob

sells product: price 27

multiple inputs coins have different values a coin may be spent only once

Bitcoin UTXO model

transaction ID=ac4be

value: scriptPubkey

value: 10 scriptPubkey

transaction ID=589e0

value:scriptPubkey

value: 15 scriptPubkey

transaction ID=14e9f

value: 7 scriptPubkey

transaction ID=c84be

TRANSACTION INPUTS

prev_txID: ac4be

Index: 2 scriptSig

prev_txID: 589e0

Index: 2 scriptSig

prev_txnID: 14e9f

Index: 1 scriptSig

lock_time

TRANSACTION OUTPUTS

value: 10 scriptPubkey

value: 15 scriptPubkey

value: 2 scriptPubkey

value: 3 scriptPubkey

Bitcoin UTXO model

- Unlocking Script: scriptSig
 - include receiver public key hash
 - instructions (op_codes) to verify public key

- Locking Script: scriptPubKey
 - Include signature and public key

 P2PKH pay to public key hash, example of simple smart contract, code that is executed on blockchain

ECDSA signature

Bitcoin UTXO model

P2PKH pay to public key hash

scriptPubKey public Key signature

scriptSig
OP_DUP
OP_HASH160
OP_EQUALVERIFY
OP_CHECKSIG

UTXO model

Complex

- Verify transactions in parallel,
 - a UTXO affected by only one transaction

Privacy (wallets)

Limited smart contract capabilities

P2P architecture

and cryptographic hash function.

Full nodes download and verify every block.

Newly joined nodes query **DNS** seeds to discover full nodes that accept connections.

Initial Block Download: Before a full node can validate transactions, it must download and validate all blocks from block 1.

Block Broadcasting when a miner discovers a new block, it broadcasts the new block to its peers

Consensus protocol

and cryptographic hash function.

agree on some value, leader election, agree on transactions order ...

Ensures all participants agree on a unified transaction ledger without a central authority.

Block generation -- PoW Consensus

Block generation -- PoW Consensus

Block generation -- PoW Consensus

hard to revert transactions, all hashes must be recalculated.

PoW keywords

- nonce: value which miners adjust so that the hash value of the block is less than target value.
- block time: expected/average time spent to mine a block.
- difficulty: measures how difficult it is to mine a block. (i.e find a nonce such that the block hash is valid)
- target: number of leading 0 in hash.

- If [average block time] > [expected block time] → reduce difficulty
- If [average block time] < [expected block time] → increase difficulty</p>

PoW keywords

- If [average block time] > [expected block time] → reduce difficulty
- If [average block time] < [expected block time] → increase difficulty

Bitcoin	Ethereum
new_target = old_target / new_diff	new_target = old_target / new_diff
<pre>new_diff = old_diff x 10 min / AGV_TIME(2016 blocks)</pre>	bl_time = crt_bl_timestamp - parent_bl_timestamp
	new_diff = parent_block_diff + (parent_block_diff // 2048) * max(1, bl_time // 10), 99) + int(2**((current_block_number // 100000) 2))
10 min	30sec

Block difficulty

https://www.blockchain.com/charts/difficulty https://etherscan.io/chart/difficulty

Bitcoin consensus protocol

- Block generation: PoW find nonce, hash satisfies a difficulty target
- Block propagation: gossiping any block (received or locally generated) should be advertised to peers and broadcast
- Block validation: check block header and transactions

- Longest-chain rule: Blocks should always extend the longest chain.
- Incentives/Rewards: coinbaise transactions.

Bitcoin consensus transaction rules

sum(inputs) >= sum(outputs)

[scriptSig scriptPubKey] true

output has not already been spent

lock_time minimal time before which the transaction cannot be accepted into block.

BLOCKCHAIN APPLICATIONS

Token Systems

- Company stock assets, coupons, incentives etc.
- Easy to implement, example of transaction: A sends x unit to B, provided that A has at least x unit in its balance before the transaction.
- Ethereum standards ERC-20, ERC-721 (NFTs)

Identity Systems

- DNS system, Namecoin, email authentication.
- Implement as a key(name)-value(data) database stored on blockchain network.
 Owner may change data associated with name or transfer ownership.
- Ethereum standard ERC-721 (NFTs)

Decentralized Autonomous Organizations

- Transparent rules, not influenced by a central authority
- Members have the right to spend funds.
- Members collectively decide to add or remove members.
- Controlled by smart contracts

Supply management

- Tracking environmental conditions
- Detect unethical suppliers and counterfeit products
- Endorsement of the Forestry Certification

https://fsc.org/en/innovation/blockchain "permissioned" private blockchain ledger platform designed to verify materials trade compliance across FSC supply chains.

Taxonomy

	Permissionless	Permissioned
anonymity	yes	no
number of nodes	large number of nodes	fewer nodes
security	high level of security	vulnerable
processing times	long	short

	PUBLIC	PRIVATE	CONSORTIUM
ownership	public	Controlled by a single organization	Group of organizations
centralization	decentralized	Partially decentralized	Partially decentralized
examples	Ethereum	Hyperledger	supply chain sector

Bibliography

- Ethereum yellow paper: https://ethereum.github.io/yellowpaper/paper.pdf
- Ethereum white paper: https://ethereum.org/en/whitepaper/
- Blind signatures for untraceable payments, David Chaum http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982.PDF
- Hashcash A denial of service counter measure, Adam Back http://www.hashcash.org/papers/hashcash.pdf
- Mastering Bitcoin, Andreas M. Antonopoulos, O'Reilly Media, Inc. https://www.oreilly.com/library/view/mastering-bitcoin/9781491902639/ch07.html

- https://commons.wikimedia.org/wiki/File:Bitcoin_Block_Data.png
- https://www.balloonhq.com/photos/ts2019/