Curso: Métodos Numéricos II **Professor: Creto Augusto Vidal**

Semestre: 2020.1 Aula # 12

Objetivo: Deduzir as fórmulas de integração especiais de Gauss-Hermite, Gauss-Laguerre, e Gauss-Chebyshev (Чебышёв).

Problema: Desenvolver simultaneamente as fórmulas de Gauss para integrações especiais.

(1)
$$I = \int_{-\infty}^{+\infty} e^{-x^2} f(x) dx \approx \sum_{k=1}^{n} w_k f(x_k)$$
 - Gauss-Hermite

(1)
$$I = \int_{-\infty}^{+\infty} e^{-x^2} f(x) dx \approx \sum_{k=1}^n w_k f(x_k)$$
 - Gauss-Hermite
(2) $I = \int_0^{+\infty} e^{-x} f(x) dx \approx \sum_{k=1}^n w_k f(x_k)$ - Gauss-Laguerre

(3)
$$I = \int_{-1}^{+1} \frac{1}{\sqrt{1-x^2}} f(x) dx \approx \sum_{k=1}^{n} w_k f(x_k)$$
 - Gauss-Chebyshev

Obviamente, cada fórmula terá seus próprios pontos de interpolação x_k , com seus pesos ${f correspondentes}$. Você já deve esperar que estes pontos x_k serão, respectivamente, as raízes dos polinômios de Hermite, $H_n(x)$, de Laguerre, $L_n(x)$, e de Chebyshev, $T_n(x)$.

1. Observações preliminares.

Na solução dos problemas (1), (2) e (3) acima, é importante cuidar para não desrespeitar o que está indicado em cada uma delas, ou seja:

- 1) Os limites de integração têm de ser os que estão indicados;
- 2) As funções que multiplicam f(x) têm que ser exatamente as indicadas;
- 3) No lado direito, a função a ser usada é f(x) e não o integrando inteiro.

2. Observações gerais feitas para Gauss-Legendre que continuam válidas

Na aplicação das fórmulas de Gauss aos problemas (1), (2) e (3), o ideal seria:

- 1) Desenhar o gráfico da função f(x) entre os limites de integração.
- 2) Olhar para os pontos de inflexão do gráfico, e definir qual o grau adequado para o polinômio de aproximação.
- 3) Não podemos subdividir o problema pois isso desrespeitaria a observação 1.1 acima.

3. Desenvolvimento das fórmulas de integração de Gauss-{Hermite, Laguerre, Chebyshev}

Suponha que o grau do polinômio adequado seja G.

A proposta de Gauss é, com uma fórmula de n pontos, integrar exatamente as respectivas integrais (1), (2) e (3), considerando que f(x) seja substituída por um polinômio de grau G=2n-1, ou seja, a fórmula de Gauss seria exata se, ao invés de f(x), tivéssemos um polinômio p(x) de grau 2n - 1.

3.1 Preparação para o desenvolvimento das quadraturas de Gauss

Para o desenvolvimento dessas quadraturas, necessitaremos:

- 1) Os polinômios de Hermite, Laguerre e Chebyshev;
- 2) As raízes dos polinômios de Hermite, Laguerre e Chebyshev;
- 3) Os produtos internos nos espaços de funções polinomiais de grau n;
- 4) Bases de um espaço vetorial de polinômios de grau n;
- 5) Fórmula de divisão de polinômios.

3.1.1 Polinômios de Hermite, Laguerre e Chebyshev

As fórmulas que definem os polinômios de Hermite, Laguerre e Chebyshev de grau n são:

(4)
$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$
;

(5)
$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (e^{-x} x^n);$$

(6)
$$T_n(x) = \frac{(-2)^n n!}{(2n)!} \sqrt{1 - x^2} \frac{d^n}{dx^n} (1 - x^2)^{n - \frac{1}{2}}$$

Exemplos:

$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$	$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (e^{-x} x^n)$	$T_n(x) = \frac{(-2)^n n!}{(2n)!} \sqrt{1 - x^2} \frac{d^n}{dx^n} (1 - x^2)^{n - \frac{1}{2}}$
$H_0(x) = 1$	$L_0(x) = 1$	$T_0(x) = 1$
$H_1(x) = 2x$	$L_1(x) = -x + 1$	$T_1(x) = x$
$H_2(x) = 4x^2 - 2$	$L_2(x) = \frac{1}{2}(x^2 - 4x + 2)$	$T_2(x) = 2x^2 - 1$
$H_3(x) = 8x^3 - 12x$	$L_3(x) = \frac{1}{6}(-x^3 + 9x^2 - 18x + 6)$	$T_3(x) = 4x^3 - 3x$

3.1.2 Raízes dos Polinômios de Hermite, Laguerre e Chebyshev

O que é uma raiz de um polinômio p(x)? É o valor \bar{x} tal que $p(\bar{x}) = 0$.

Esses polinômios têm propriedades interessantes com relação às suas raízes:

- 1) Todas as raízes são distintas, isto é, a multiplicidade de cada raiz é 1;
- 2) As raízes dos polinômios de Hermite e de Chebyshev são simétricas (cada raiz \bar{x} tem sua correspondente simétrica $-\bar{x}$)
- 3) Todas as raízes do polinômio de Chebyshev estão no intervalo (-1, 1).

Assim,

um polinômio de grau n:

de Hemite tem n raízes distintas situadas, simetricamente, entre $-\infty$ e $+\infty$;

de Laguerre tem $m{n}$ raízes distintas positivas situadas entre $m{0}$ e $+\infty$; e

de Chebyshev tem n raízes distintas situadas, simetricamente, entre -1 e +1.

Exemplos de raízes:

$$H_{n}(x) = (-1)^{n}e^{x^{2}} \frac{d^{n}}{dx^{n}} e^{-x^{2}}$$

$$L_{n}(x) = \frac{e^{x}}{n!} \frac{d^{n}}{dx^{n}} (e^{-x}x^{n})$$

$$T_{n}(x) = \frac{(-2)^{n}n!}{(2n)!} \sqrt{1 - x^{2}} \frac{d^{n}}{dx^{n}} (1 - x^{2})^{n - \frac{1}{2}}$$

$$H_{1}(x) = 2x = 0 \rightarrow x_{1} = 0$$

$$L_{1}(x) = -x + 1 = 0 \rightarrow x_{1} = 1$$

$$L_{2}(x) = \frac{1}{2}(x^{2} - 4x + 2) = 0$$

$$A_{2}(x) = \frac{1}{2}(x^{2} - 4x + 2) = 0$$

$$A_{3}(x) = 4x^{2} - 2 = 0 \rightarrow \begin{cases} x_{1} = -\frac{1}{\sqrt{2}} \\ x_{2} = +\frac{1}{\sqrt{2}} \end{cases}$$

$$A_{3}(x) = \frac{1}{6}(-x^{3} + 9x^{2} - 18x + 6) = 0$$

$$A_{3}(x) = \frac{1}{6}(-x^{3} + 9x^{2} - 18x + 6) = 0$$

$$A_{3}(x) = \frac{1}{6}(-x^{3} + 9x^{2} - 18x + 6) = 0$$

$$A_{3}(x) = \frac{1}{6}(-x^{3} + 9x^{2} - 18x + 6) = 0$$

$$A_{3}(x) = \frac{1}{6}(-x^{3} + 9x^{2} - 18x + 6) = 0$$

$$A_{3}(x) = \frac{1}{6}(-x^{3} + 9x^{2} - 18x + 6) = 0$$

$$A_{3}(x) = 4x^{3} - 3x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{3}(x) = 4x^{3} - 3x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{3}(x) = 4x^{3} - 3x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{3}(x) = 4x^{3} - 3x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{3}(x) = 4x^{3} - 3x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{3}(x) = 4x^{3} - 3x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{3}(x) = 4x^{3} - 3x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{3}(x) = 4x^{3} - 3x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0 \rightarrow \begin{cases} x_{1} = -\frac{\sqrt{3}}{2} \\ x_{2} = 0 \end{cases}$$

$$A_{4}(x) = x^{3} - 12x = 0$$

Obs.: As raízes do polinômio de Chebyshev $T_n(x)$ podem ser encontradas facilmente com a fórmula: $x_k = \cos\left(\frac{2k-1}{2n}\pi\right)$. A ordenação em ordem crescente é sua responsabilidade.

Por exemplo, para n=3 e k=1,2,3

$$x_1 = \cos\left(\frac{2 \times 1 - 1}{2 \times 3}\pi\right) = 0.86602540,$$

$$x_2 = \cos\left(\frac{2\times 2-1}{2\times 3}\pi\right) = 0 \text{ e}$$

$$x_3 = \cos\left(\frac{2\times 3-1}{2\times 3}\pi\right) = -0.86602540$$

3.1.3 Ortogonalidade dos polinômios de de Hermite, Laguerre e Chebyshev

Aqui, o produto interno igual a zero continua definindo se dois polinômios são ortogonais. Porém, diferentemente dos polinômios de Legendre, os produtos internos para os polinômios de Hermite, Laguerre e Chebyshev têm uma função de ponderação.

Assim, os produtos internos de:

dois polinômios de Hermite $H_i(x)$ e $H_i(x)$,

dois polinômios de Laguerre $L_i(x)$ e $L_i(x)$ e

dois polinômios de Chebyshev $T_i(x)$ e $T_i(x)$

com i e j entre 0 e n, podem ser escritos, respectivamente, como

$$(7) < H_{i}(x), H_{j}(x) >= \int_{-\infty}^{\infty} e^{-x^{2}} H_{i}(x) H_{j}(x) dx = \begin{cases} 0, & \text{se } i \neq j; \\ \sqrt{\pi} \ 2^{i} \ i!, & \text{se } i = j. \end{cases}$$

$$(8) < L_{i}(x), L_{j}(x) >= \int_{0}^{\infty} e^{-x} L_{i}(x) L_{j}(x) dx = \begin{cases} 0, & \text{se } i \neq j; \\ 1, & \text{se } i = j. \end{cases}$$

$$(9) < T_{i}(x), T_{j}(x) >= \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} T_{i}(x) T_{j}(x) dx = \begin{cases} 0, & \text{se } i \neq j; \\ \pi/2, & \text{se } i = j \neq 0, \\ \pi, & \text{se } i = j = 0. \end{cases}$$

Essas equações (equações (7), (8) e (9)) indicam que os polinômios de graus diferentes são ortogonais entre si nos respectivos intervalos (indicados nos limites de integração).

3.1.4 Base ortogonal de um espaço vetorial de polinômios

Cada conjunto de polinômios (Hermite, Laguerre e Chebyshev) de graus 0 a n, são bases distintas do espaço vetorial de polinômios de grau n. Assim, qualquer polinômio de grau n pode ser escrito como uma combinação linear de n+1 polinômios linearmente independentes como os polinômios de Hermite, Laguerre e Chebyshev de graus de 0 a n.

3.1.5 Divisão de polinômios.

Analogamente ao que fizemos na Aula#10, suponha que queiramos dividir um polinômio p(x) de grau $\mathbf{G} = \mathbf{2n-1}$ pelo polinômio de Hermite, Laguerre ou Chebyshev de grau \mathbf{n} , ou seja p(x) é o dividendo e $H_n(x)$ ou $L_n(x)$ ou $T_n(x)$ é o divisor. Assim, existe um polinômio q(x) de grau $\mathbf{n-1}$ que é o quociente e um polinômio r(x) de grau $\mathbf{n-1}$ que é o resto da divisão.

Portanto,

(10)
$$p(x) = H_n(x)q(x) + r(x)$$
 ou

(11)
$$p(x) = L_n(x)q(x) + r(x)$$
 ou

(12)
$$p(x) = T_n(x)q(x) + r(x)$$
.

3.2 Desenvolvimento propriamente dito das quadraturas especiais de Gauss

De volta ao problema a ser resolvido de forma aproximada, isto é

(1)
$$I = \int_{-\infty}^{+\infty} e^{-x^2} f(x) dx \approx \sum_{k=1}^{n} w_k f(x_k)$$
 - Gauss-Hermite
(2) $I = \int_{0}^{+\infty} e^{-x} f(x) dx \approx \sum_{k=1}^{n} w_k f(x_k)$ - Gauss-Laguerre

(2)
$$I = \int_0^{+\infty} e^{-x} f(x) dx \approx \sum_{k=1}^n w_k f(x_k)$$
 - Gauss-Laguerre

(3)
$$I = \int_{-1}^{+1} \frac{1}{\sqrt{1-x^2}} f(x) dx \approx \sum_{k=1}^{n} w_k f(x_k)$$
 - Gauss-Chebyshev

vamos assumir que f(x) seja substituída por um polinômio p(x) de grau 2n-1 em x.

Se p(x) for considerado o Dividendo na divisão em que o Divisor é $H_n(x)$ ou $L_n(x)$ ou $T_n(x)$, então podemos escrever

(13)
$$p(x) = H_n(x)q(x) + r(x)$$
, ou

(14)
$$p(x) = L_n(x)q(x) + r(x)$$
, ou

(15)
$$p(x) = T_n(x)q(x) + r(x)$$
.

Vamos substituir (13) em (1), (14) em (2) e (15) em (3), para obter

(16)
$$I = \int_{-\infty}^{+\infty} e^{-x^2} p(x) dx = \int_{-\infty}^{+\infty} e^{-x^2} (H_n(x) q(x) + r(x)) dx.$$

(17)
$$I = \int_0^{+\infty} e^{-x} p(x) dx = \int_0^{+\infty} e^{-x} \left(L_n(x) q(x) + r(x) \right) dx.$$

(18)
$$I = \int_{-1}^{+1} \frac{1}{\sqrt{1-x^2}} p(x) dx = \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} (T_n(x)q(x) + r(x)) dx.$$

Sabendo que q(x) é um polinômio de grau n-1, ele pode ser escrito como uma combinação linear dos elementos da base polinomial formada pelos polinômios $H_n(x)$ ou $L_n(x)$ ou $T_n(x)$ de graus 0 a n-1, isto é

(19)
$$q(\alpha) = c_0 H_0(\alpha) + c_1 H_1(\alpha) + \dots + c_{n-1} H_{n-1}(\alpha) = \sum_{k=0}^{n-1} c_k H_k(\alpha)$$
, ou

(20)
$$q(\alpha) = c_0 L_0(\alpha) + c_1 L_1(\alpha) + \dots + c_{n-1} L_{n-1}(\alpha) = \sum_{k=0}^{n-1} c_k L_k(\alpha)$$
, ou

(21)
$$q(\alpha) = c_0 T_0(\alpha) + c_1 T_1(\alpha) + \dots + c_{n-1} T_{n-1}(\alpha) = \sum_{k=0}^{n-1} c_k T_k(\alpha)$$
.

Substituindo (19) em (16), (20) em (17), e (21) em (18), temos

(20)
$$I \approx \int_{-\infty}^{\infty} e^{-x^2} \left(H_n(x) \sum_{k=0}^{n-1} c_k H_k(x) + r(x) \right) dx$$
$$= \int_{-\infty}^{\infty} e^{-x^2} \left(\sum_{k=0}^{n-1} c_k H_n(x) H_k(x) + r(x) \right) dx$$

(21)
$$I \approx \int_0^\infty e^{-x} \left(L_n(x) \sum_{k=0}^{n-1} c_k L_k(x) + r(x) \right) dx \\ = \int_0^\infty e^{-x} \left(\sum_{k=0}^{n-1} c_k L_n(x) L_k(x) + r(x) \right) dx$$

(22)
$$I \approx \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left(T_n(x) \sum_{k=0}^{n-1} c_k T_k(x) + r(x) \right) dx$$
$$= \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left(\sum_{k=0}^{n-1} c_k T_n(x) T_k(x) + r(x) \right) dx$$

Mas a integral da soma é igual à soma das integrais. Assim, podemos reescrever (20), (21) e (22) como

(23)
$$I \approx \left[\sum_{k=0}^{n-1} \left(c_k \int_{-\infty}^{\infty} \left(e^{-x^2} H_n(x) H_k(x)\right) dx\right) + \int_{-\infty}^{\infty} e^{-x^2} r(x) dx\right],$$

(24)
$$I \approx \left[\sum_{k=0}^{n-1} (c_k \int_0^\infty (e^{-x} L_n(x) L_k(x)) dx) + \int_0^\infty e^{-x} r(x) dx\right], e^{-x}$$

(25)
$$I \approx \left[\sum_{k=0}^{n-1} \left(c_k \int_{-1}^1 \left(\frac{1}{\sqrt{1-x^2}} T_n(x) T_k(x)\right) dx\right) + \int_{-1}^1 \frac{1}{\sqrt{1-x^2}} r(x) dx\right].$$

Porém, como $n \neq k = 0, 1, ..., n - 1$, as integrais dentro dos somatórios são todas nulas por conta da ortogonalidade dos polinômios de Hermite, Laguerre e Chebyshev mostrada em (7), (8) e (9).

Assim, as equações (23), (24) e (25) são reduzidas a

(26)
$$I \approx \int_{-\infty}^{\infty} e^{-x^2} r(x) dx$$
,

(27)
$$I \approx \int_0^\infty e^{-x} r(x) dx$$
, e

(28)
$$I \approx \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} r(x) dx$$

Sabemos que r(x) são polinômios de grau n-1. Assim, se soubermos n pontos por onde esse polinômio passa, podemos reconstruir o polinômio, usando interpolação de Lagrange. De fato, o polinômio de interpolação de Lagrange passando por aqueles n pontos tem grau n-1 e é o próprio r(x) já que não existem polinômios diferentes de grau n que passem pelos mesmos n-1 pontos. Por exemplo, a reta que passa por dois pontos é única. Também, só existe uma parábola que passa por três pontos dados, e assim por diante.

Vamos fazer uma experiência com as n raízes dos polinômios $H_n(x)$, $L_n(x)$ e $T_n(x)$, substituindo cada uma delas nas equações (13), (14) e (15) respectivamente. Assim, para cada raiz x_i de $H_n(x)$, $L_n(x)$ e $T_n(x)$, as equações (13), (14) e (15) são escritas como

(29)
$$p(x_i) = H_n(x_i)q(x_i) + r(x_i)$$
.

(30)
$$p(x_i) = L_n(x_i)q(x_i) + r(x_i)$$
.

(31)
$$p(x_i) = T_n(x_i)q(x_i) + r(x_i)$$
.

Porém, como x_i são raízes, $H_n(x_i)=0$, $L_n(x_i)=0$, e $T_n(x_i)=0$, Portanto, em cada raiz x_i

(32)
$$p(x_i) = r(x_i)$$
, para as raízes, x_i , $i = 1, ..., n$, de $H_n(x)$.

(33)
$$p(x_i) = r(x_i)$$
, para as raízes, x_i , $i = 1, ..., n$, de $L_n(x)$.

(34)
$$p(x_i) = r(x_i)$$
, para as raízes, x_i , $i = 1, ..., n$, de $T_n(x)$.

Os n pontos que precisamos para construir os polinômios r(x) vêm dos próprios integrandos calculados em cada raiz dos polinômios $H_n(x)$, $L_n(x)$ e $T_n(x)$. Finalmente, como foi visto em Métodos Numéricos I, r(x) pode ser escrito como o polinômio de interpolação de Lagrange que passa por esses n pontos de interpolação. Assim

(35)
$$r(x) = f(x_1)L_{g_1}(\alpha) + f(x_2)L_{g_2}(\alpha) + \dots + f(x_n)L_{g_n}(\alpha) = \sum_{k=1}^n f(x_k)L_{g_k}(x).$$

Aqui, para não confundir com o polinômio de Laguerre, $L_k(x)$, chamamos os polinômios interpoladores de Lagrange de $L_{g_k}(x)$. Vamos substituir (35) em (26), (27) e (28) para

obtermos as Quadraturas especiais de Gauss-Hermite, Gauss-Laguerre e Gauss-Chebyshev, isto é

(36)
$$I \approx \int_{-\infty}^{\infty} e^{-x^2} r(x) dx = \int_{-\infty}^{\infty} e^{-x^2} \sum_{k=1}^{n} f(x_k) L_{g_k}(x) dx = \sum_{k=1}^{n} f(x_k) \int_{-\infty}^{\infty} e^{-x^2} L_{g_k}(x) dx.$$

(37)
$$I \approx \int_0^\infty e^{-x} r(x) dx = \int_0^\infty e^{-x} \sum_{k=1}^n f(x_k) L_{g_k}(x) dx = \sum_{k=1}^n f(x_k) \int_0^\infty e^{-x} L_{g_k}(x) dx.$$

(38)
$$I \approx \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} r(x) dx = \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \sum_{k=1}^{n} f(x_k) L_{g_k}(x) dx = \sum_{k=1}^{n} f(x_k) \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} L_{g_k}(x) dx$$

Finalmente, obtemos as

Quadraturas especiais de Gauss

(39)
$$I = \int_{-\infty}^{+\infty} e^{-x^2} f(x) dx \approx \sum_{k=1}^{n} w_k f(x_k)$$
 - Gauss-Hermite

(40)
$$I = \int_0^{+\infty} e^{-x} f(x) dx \approx \sum_{k=1}^n w_k f(x_k)$$
 - Gauss-Laguerre

(41)
$$I = \int_{-1}^{+1} \frac{1}{\sqrt{1-x^2}} f(x) dx \approx \sum_{k=1}^{n} w_k f(x_k)$$
 - Gauss-Chebyshev

onde

- i) x_k , k = 1, 2, ... n são as raízes dos polinômios, $H_n(x)$, $L_n(x)$ e $T_n(x)$ respectivamente nas fórmulas (39), (40) e (41);
- ii) w_k , k=1,2,...n são os pesos correspondentes dados, respectivamente, por

$$w_k = \int_{-\infty}^{\infty} e^{-x^2} L_{g_k}(x) dx$$
. (veja equação (36))

$$w_k = \int_0^\infty e^{-x} L_{g_k}(x) dx$$
 (veja equação (37))

$$w_k = \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} L_{g_k}(x) dx$$
 (veja equação (38))

Exemplos

	Exemples							
n	$H_n(x)$		$L_n(x)$		$T_n(x)$			
	x_k	$w_k = \frac{2^{n-1}n!\sqrt{\pi}}{n^2[H_{n-1}(x_i)]^2}$	x_k	$w_k = \frac{x_i}{(n+1)^2 [L_{n+1}(x_i)]^2}$	x_k	$w_k = \frac{\pi}{n}$		
2			$\begin{cases} x_1 = 2 - \sqrt{2} \\ x_2 = 2 + \sqrt{2} \end{cases}$	$\begin{cases} w_1 = \frac{1}{4}(2 + \sqrt{2}) \\ w_2 = \frac{1}{4}(2 - \sqrt{2}) \end{cases}$	$\begin{cases} x_1 = -\frac{1}{\sqrt{2}} \\ x_2 = +\frac{1}{\sqrt{2}} \end{cases}$	$w_1 = w_2 = \frac{\pi}{2}$		
3	$\begin{cases} x_1 = -\sqrt{\frac{3}{2}} \\ x_2 = 0 \\ x_3 = +\sqrt{\frac{3}{2}} \end{cases}$	$w_1 = w_3 = \frac{\sqrt{\pi}}{6}$ $w_2 = \frac{2\sqrt{\pi}}{3}$	$x_2 = 2.2942803603$	$\begin{cases} w_1 = 0.7110930099 \\ w_2 = 0.2785177336 \\ w_3 = 0.0103892565 \end{cases}$	$\begin{cases} x_1 = -\frac{\sqrt{3}}{2} \\ x_2 = 0 \\ x_3 = +\frac{\sqrt{3}}{2} \end{cases}$	$w_1 = w_2 = w_3 = \frac{\pi}{3}$		
4	$\begin{cases} x_1 = \\ x_2 = \\ x_3 = \\ x_4 = \end{cases}$	$w_1 = w_4 = $ $w_2 = w_3 = $	$ \begin{pmatrix} x_1 = \\ x_2 = \\ x_3 = \\ x_4 = \end{pmatrix} $	$\begin{cases} w_1 = \\ w_2 = \\ w_3 = \\ w_4 = \end{cases}$	$\begin{cases} x_1 = \\ x_2 = \\ x_3 = \\ x_4 = \end{cases}$	$w_1 = = w_4 =$		

Tarefa: Seguindo o desenvolvimento apresentado nesta aula, complete a linha n=4 da tabela. Em seguida, implemente as Quadraturas especiais para n=2, 3 e 4. Não há partição!!