Topic 15

The Binary Search Tree ADT

Binary Search Tree

- A binary search tree (BST) is a binary tree with an ordering property of its elements, such that the data in any internal node is
 - Greater than the data in any node in its left subtree
 - Less than the data in any node in its right subtree
- Note: this definition does not allow duplicates; some definitions do, in which case we could say "less than or equal to"

Examples: are these Binary Search Trees?

Discussion

- Observations:
 - What is in the leftmost node?
 - What is in the rightmost node?

BST Operations

- A binary search tree is a special case of a binary tree
 - So, it has all the operations of a binary tree
- It also has operations specific to a BST:
 - add an element (requires that the BST property be maintained)
 - remove an element (requires that the BST property be maintained)
 - remove the maximum element
 - remove the minimum element

Searching in a BST

- Why is it called a binary search tree?
 - Data is stored in such a way, that it can be more efficiently found than in an ordinary binary tree

Searching in a BST

- Algorithm to search for an item in a BST
 - Compare data item to the root of the (sub)tree
 - If data item = data at root, found
 - If data item < data at root, go to the left; if there is no left child, data item is not in tree
 - If data item > data at root, go to the right; if there is no right child, data item is not in tree

Search Operation – a Recursive Algorithm

To search for a value k; returns true if found or false if not found

If the tree is empty, return false.

If k == value at root

return true: we're done.

If k < value at root return result from search for k in the left subtree

Else

return result from search for k in the right subtree.

Search Operation

Search for 13: visited nodes are coloured yellow; return false when node containing 12 has no right child

Search for 22: return false when node containing 23 has no left child

BST Operations: add

- To add an item to a BST:
 - Follow the algorithm for searching, until there is no child
 - Insert at that point
- So, new node will be added as a leaf
- (We are assuming no duplicates allowed)

Add Operation

To insert 13:

Same nodes are visited as when *searching* for 13.

Instead of returning *false* when the node containing 12 has no right child, build the new node, attach it as the right child of the node containing 12, and return *true*.

Add Operation – an Algorithm

add new node as right child of root, return true

To insert a value k into a tree, returning true if successful and false if not Build a new node for k. If tree is empty add new node as root node, return true. If k == value at root return false (no duplicates allowed). If k < value at root If root has no left child add new node as left child of root, return true Else insert k into left subtree of root. If k > value at root If root has no right child

Else insert k into the right subtree of root.

Example: Adding Elements to a BST

BST Operations: Remove

- Case 1: value to be removed is in a leaf node
 - Node can be removed and the tree needs no further rearrangement
- Case 2: value to be removed is in an interior node
 - Why can't we just change the link from its parent node to a successor node?
 - We can replace the node with its inorder predecessor (or successor)
 - · Complex, and we will not implement this

Example: Removing BST Elements

BST Operations: Remove Minimum

- Recall that *leftmost node* contains the minimum element
- Three cases:
 - 1)root has no left child (so, root is minimum)
 - its right child becomes the root
 - 2) leftmost node is a leaf
 - set its parent's left child to null
 - 3) leftmost node is internal
 - the right child of the node to be removed becomes the parent's left child

Example: Removing Minimum BST Element

Binary Search Tree Traversals

- Consider the traversals of a binary search tree: preorder, inorder, postorder, levelorder
- Try the traversals on the example on the next page
 - Is there anything special about the order of the data in the BST, for each traversal?
- Question: what if we wanted to visit the nodes in descending order?

Binary Search Tree Traversals

Try these traversals:

- preorder
- inorder
- postorder
- level-order

Binary Search Tree ADT

- A BST is just a binary tree with the ordering property imposed on all nodes in the tree
- So, we can define the BinarySearchTreeADT interface as an extension of the BinaryTreeADT interface

```
public interface BinarySearchTreeADT<T> extends
                                  BinaryTreeADT<T> {
  public void addElement (T element);
   public T removeElement (T targetElement);
   public void removeAllOccurrences (T targetElement);
   public T removeMin( );
   public T removeMax( );
                         BinarySearchTreeADT
   public T findMin( );
                         interface
   public T findMax( );
```

UML Description of BinarySearchTreeADT

<<interface>> <<interface>> **BinarySearchTreeADT BinaryTreeADT** getRoot() addElement() removeElement() toString() removeAllOccurrences() isEmpty() removeMin() size() removeMax() contains() findMin() find() findMax() iteratorInOrder() iteratorPreOrder() iteratorPostOrder() iteratorLevelOrder()

Implementing BSTs using Links

- See LinkedBinarySearchTree.java
 - Constructors: use super()
 - addElement method
 - (does not implement our recursive algorithm of p.12; also, allows duplicates)
 - note the use of Comparable: so that we can use compareTo method to know where to add the new node
 - removeMin method
 - essentially implements our algorithm of p. 18

Implementing BSTs using Links

- The special thing about a Binary Search Tree is that finding a specific element is efficient!
 - So, LinkedBinarySearchTree has a find method that overrides the find method of the parent class LinkedBinaryTree
 - It only has to search the appropriate side of the tree
 - It uses a recursive helper method findAgain
 - Note that it does not have a contains method that overrides the contains of LinkedBinaryTree – why not?
 - It doesn't need to, because contains just calls find

Using Binary Search Trees: Implementing Ordered Lists

- A BST can be used to provide efficient implementations of other collections!
- We will examine an implementation of an Ordered List ADT as a binary search tree
- Our implementation is called
 BinarySearchTreeList.java
 (naming convention same as before: this is a BST implementation of a List)

Using BST to Implement Ordered List

- BinarySearchTreeList implements
 OrderedListADT
 - Which extends ListADT
 - So it also implements ListADT
 - So, what operations do we need to implement?
 - add
 - removeFirst, removeLast, remove, first, last, contains, isEmpty,size, iterator, toString
 - But, for which operations do we actually need to write code? ...

Using BST to Implement Ordered List

- BinarySearchTreeList extends our binary search tree class LinkedBinarySearchTree
 - Which extends LinkedBinaryTree
 - So, what operations have we inherited?
 - addElement, removeElement, removeMin, removeMax, findMin, findMax, find
 - getRoot, isEmpty, size, contains, find, toString, iteratorInOrder, iteratorPreOrder, iteratorPostOrder, iteratorLevelOrder

Discussion

- First, let's consider some of the methods of the List ADT that we do not need to write code for:
 - contains method: we can just use the one from the LinkedBinaryTree class
 - What about the methods
 - isEmpty
 - size
 - toString

Discussion

 To implement the following methods of the OrderedListADT, we can call the appropriate methods of the LinkedBinarySearchTree class (fill in the missing ones)

add call addElement

removeFirst removeMin

- removeLast
- remove
- first
- last
- iterator

Balanced Trees

- Our definition: a balanced tree has the property that, for any node in the tree, the height of its left and right subtrees can differ by at most 1
 - Note that conventionally the height of an empty subtree is -1

Balanced Trees

Which of these trees is a balanced tree?

Analysis of BST Implementation

- We will now compare the linked list implementation of an ordered list with its BST implementation, making the following important assumptions:
 - The BST is a balanced tree
 - The maximum level of any node is log₂(n), where n is the number of elements stored in the tree

Analysis of Ordered List Implementations: Linked List vs. Balanced BST

Operation	LinkedList	BinarySearchTreeList
removeFirst	O(1)	O(log ₂ n)
removeLast	O(n)	O(log ₂ n)
remove	O(n)	O(log ₂ n) *but may cause tree to become unbalanced
first	O(1)	O(log ₂ n)
last	O(n)	O(log ₂ n)
contains	O(n)	O(log ₂ n)
isEmpty	O(1)	O(1)
size	O(1)	O(1)
add	O(n)	O(log ₂ n) *

11-37

Discussion

- Why is our balance assumption so important?
 - Look at what happens if we insert the following numbers in this order without rebalancing the tree:

3 5 9 12 18 20

Degenerate Binary Trees

- The resulting tree is called a degenerate binary tree
 - Note that it looks more like a linked list than a tree!
 - But it is actually less efficient than a linked list (Why?)

Degenerate Binary Trees

- Degenerate BSTs are far less efficient than balanced BSTs
 - Consider the worst case time complexity for the add operation:
 - O(n) for degenerate tree
 - O(log₂n) for balanced tree

Balancing Binary Trees

- There are many approaches to balancing binary trees
 - But they will not be discussed in this course ...