МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра програмних систем і технологій

Дисципліна «**Ймовірнісні основи програмної інженерії»**

Лабораторна робота № 1

Виконав:	Якубець М. В.	Перевірила:	Вечерковська А. С.
Група	ІПЗ-22	Дата перевірки	
Форма навчання	денна	Оцінка	
Спеціальність	121		

2022

Назва: Центральні тенденції та міра дисперсії.

Мета: Навчитись використовувати на практиці набуті знання про центральні тенденції та міри.

Постановка задачі:

- 1. Побудувати таблицю частот та сукупних частот для переглянутих фільмів. Визначити фільм, який був переглянутий частіше за інші.
- 2. Знайти Моду та Медіану даної вибірки.
- 3. Порахувати Дисперсію та Середнє квадратичне відхилення розподілу.
- 4. Побудувати гістограму частот для даного розподілу.
- 5. Зробити висновок з вигляду гістограми, про закон розподілу.

Математична модель:

Mean Median Mode Formula

Sum of Observations

Mean =

Total Number of Observations

If 'n' is odd: Median =
$$\left(\frac{n+1}{2}\right)^{th}$$
 term

If 'n' is even: Median =
$$\frac{\left(\frac{n}{2}\right)^{tn} term + \left(\frac{n}{2} + 1\right)^{tn} term}{2}$$

Mode = L + h
$$\frac{(f_m - f_1)}{(f_m - f_1) + (f_m - f_2)}$$

$$D = \frac{\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2}{n-1}$$

Дисперсію =

$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}.$

Середнє квадратичне відхилення розподілу = Псевдокод алгоритму:

```
from functools import reduce
from math import sqrt
from typing import TextIO
from matplotlib import pyplot as plt
    row_format = "{:>3} {:>10}"
   file.write("Фільм Перегляди\n")
        file.write(f"{row_format.format(index, movie_views)}\n")
    file.write("-----\n")
    checked_movies = []
   file.write("Таблиця сукупних частот:\n")
   file.write("Частота Перегляди\n")
   for movie_views in movies_views:
       if movie_views in checked_movies:
       frequency = movies_views.count(movie_views)
       checked_movies.append(movie_views)
        file.write(f"{row_format.format(frequency, movie_views)}\n")
```

```
file.write("-----\n")

max_views = max(movies_views)

for index, movie_views in enumerate(movies_views, 1):

if max_views == movie_views:

file.write(f"Φinьμ, nepernянутий найчастіше: {index} -- {max_views}\n")

def task2(movies_views: list[int], file: TextIO) -> None:

file.write(f"Mona: {max(movies_views)}\n")

movies_views = sorted(movies_views)

hatf_length = len(movies_views) / 2

file.write(f"Meniaha: {(movies_views) int(half_length - 0.5)] + movies_views[int(half_length)]) / 2}\n")

def task3(movies_views: list[int], file: TextIO) -> None:

movies_views_length = ten(movies_views)

mean = reduce(lombda x, y: x + y, movies_views) / movies_views_length

result = 0

for movie_views in movies_views:

result += (movie_views - mean) ** 2

file.write(f"Aucnepcis: {result / (movies_views_length - 1)}\n")
```

```
file.write("Завдання №2:\n")
task2(movies_views, file)

file.write("Завдання №3:\n")
task3(movies_views, file)

task4(movies_views)

if __name__ == "__main__":
main()
```

Випробування алгоритму:

Завдання №1:

Таблиця частот:

Фільм	Перегляди
1	1
2	66
3	75
4	1
5	1
6	12
7	10
8	97
9	12
10	66

Таблиця сукупних частот:

Частота Перегляди

3	1
2	66
1	75
2	12
1	10
1	97

Фільм, переглянутий найчастіше: 8 -- 97

Завдання №2:

Мода: 97

Медіана: 12.0 Завдання №3:

Дисперсія: 1389.8777777778

Середнє квадратичне відхилення розподілу: 35.3679233204326

Завдання №4:

Дисперсия (s^2)

1389.88

Стандартное отклонение (s)	37.2811
Считать (n)	10
Сумма (Σх)	341
Иметь в виду (x̄)	34.1
Коэффициент дисперсии	1.0933
Сумма площадей (SS)	12508.9

Дисперсія =

Середнє квадратичне відхилення розподілу =

Standard Deviation Calculator

Result

Standard Deviation, σ: 35.367923320433

Count, N: 10 Sum, Σx : 341 Mean, μ : 34.1 Variance, σ^2 : 1250.89

Steps

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}.$$

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

$$= \frac{(1 - 34.1)^2 + \dots + (66 - 34.1)^2}{10}$$

$$= \frac{12508.9}{10}$$

$$= 1250.89$$

$$\sigma = \sqrt{1250.89}$$

$$= 35.367923320433$$

Висновок: Навчився використовувати на практиці набуті знання про центральні тенденції та міри. Побачив та довів зв'язок моди, медіани, дисперсії та середньоквадратичного відхилення розподілу з початковими даними. Отримав досвід роботи з гістограмою.

6