Problem 1.

For any positive integer n, there are n possible modulo from 0 to n-1. Consider all numbers of the form $a_i = 7...7, 777, 77, 77, 77$, for i = 1, 2, ..., n + 1, and consider the value a_i modulo n. Since there are n + 1 different a_i but only n possible modulo, there must be at least two different a_i share a same remainder, say a_i and a_j . Then we take the value: $a_i - a_j = 0 \pmod{n}$, notice that $a_i - a_j$ contains only 7 and 0, so we have proved the statement.

Problem 2.

(1.) A pair of consecutive numbers

The set: $\{1, 2, ..., 2n\}$ can be transformed into the set: $\{(2i, 2i - 1) \mid \forall \ 1 \leq i \leq n\}$. There are n elements in the second set, and each element consists of two consecutive numbers. When we choose n+1 numbers from the second set, since there are only n elements, there are at least one element we have to choose both numbers from the pair, which guarantees that we will always choose a pair of consecutive number.

(2.) A pair whose sum is 2n + 1

The set: $\{1, 2, ..., 2n\}$ can be transformed into the set: $\{(i, 2n - i + 1) \mid \forall \ 1 \le i \le n\}$. There are n elements in the second set, and each element consists of a pair of numbers whose sum is 2n + 1. Applying the same argument (n + 1) numbers from n pairs as in (1.) and we are guaranteed to choose a pair of numbers whose sum is 2n + 1.

Problem 3.

If we color the vertices in some order $v_1, v_2, v_3, ..., v_n$. For each v_k , let N_k be the number of neighbors precedes it in the ordered sequence, we can color v_k with the color C_{N_k+1} . Since each v_k contains at most $\Delta(G)$ neighbors, the color used won't exceed $C_{\Delta(G)+1}$, which means we can color the graph with $\Delta(G) + 1$ colors.

Problem 4.

Note that an independent set in graph G is a clique in its complement \overline{G} .

By Turan's theorem, if G contains no (k+1)-cliques, where $k \geq 2$, then $|E| \leq (1-\frac{1}{k})\frac{n^2}{2}$.

For this particular G with $\frac{nk}{2}$ edges, we consider the complement \overline{G} :

$$\begin{split} \frac{n(n-1)}{2} - \frac{nk}{2} &\leq \left(1 - \frac{1}{\omega(\overline{G})}\right) \frac{n^2}{2} \\ \frac{n(n-1)}{2} - \frac{nk}{2} &\leq \left(1 - \frac{1}{\alpha(G)}\right) \frac{n^2}{2} \\ n - (k+1) &\leq \left(1 - \frac{1}{\alpha(G)}\right) n \\ \alpha(G) &\geq \frac{n}{k+1} \end{split}$$

Problem 5.

Prove by contradiction: If less than $(1 - \lambda)|Y|$ elements of Y are λ -large, then we have: $\sum_{B_i \text{ is not } \lambda\text{-large}} |B_i| > \lambda |Y|$.

Also from the definition of λ -large, we have: $\sum_{B_i \text{ is not } \lambda\text{-large}} |B_i| < \sum_{B_i \text{ is not } \lambda\text{-large}} \lambda \frac{|Y|}{|X|} |A_i|$ From this relation, we could derive: $\sum_{B_i \text{ is not } \lambda\text{-large}} \lambda \frac{|Y|}{|X|} |A_i| < \sum_i \lambda \frac{|Y|}{|X|} |A_i| = \lambda \frac{|Y|}{|X|} |X| = \lambda |Y|$ As a result, we get two contradictory relation: $\sum_{B_i \text{ is not } \lambda\text{-large}} |B_i| > \lambda |Y|$, and $\sum_{B_i \text{ is not } \lambda\text{-large}} |B_i| < \lambda |Y|$