Machine Learning Optimization of Photometric Redshift

Kate Sautel — Senior Talk 1

October 25, 2023

Overview

- ➤ Redshift
- ➤ Photometric redshift
- ➤ Machine learning
 - ➤ Neural networks
 - ➤ PyTorch
- ➤ My project

Redshift

MICROWAVE

RADIO

- Redshift/blueshift relevant in astrophysics and cosmology
- Describes relative motion of celestial objects

INFRARED

► Due to Doppler, wavelength of light emitted from moving object stretches (toward red side of electromagnetic spectrum)

VISIBLE

ULTRAVIOLET

X-RAY

GAMMA RAY

Cosmological Redshift

▶ Measure redshift ↔ distance from observer

$$\triangleright v = H_0 D$$

▶ Redshift definition:

► 1 +
$$Z = \frac{f_{emitted}}{f_{measured}} = \frac{\lambda_{measured}}{\lambda_{emitted}}$$
 $Z = redshift$

Photometric Redshift & Photometric Bands

- Photometry: measure intensity (flux) of light emitted by object viewed through different filters
 - ► Photometer converts light into electric current through photoelectric effect

Photometric vs. Spectroscopic Redshift

- ▶ Photometric: estimation, determined through ML
 - ▶ Use known redshifts of galaxies to train/predict unknown redshifts, given parameters
- ► Spectroscopic: actual measurement of redshift
 - ▶ Observe frequency/wavelength of spectral lines
- ► Large-sky surveys (LSST: 100,000,000 + galaxies surveyed, ~500 petabytes of data)
 - ▶ Study galaxies statistically instead of for individual properties
 - ► Photometric > spectroscopic

Accuracy of Photometric Redshifts

- Run tests with galaxies of known (spectroscopic) redshifts
- ► Classify estimations into 3 categories:
 - ► Non-outlier (NO)
 - ▶ Outlier
 - ▶ Catastrophic outlier (CO)
- ► NOT outliers in traditional/statistical sense
 - ► Specifically motivated by what would affect scientific analyses and conclusions

COs and NOs

▶ Outlier:

$$0: \frac{\left|Z_{phot} - Z_{spec}\right|}{1 + Z_{spec}} > 0.15$$

e.g. Hildebrandt, H. et al. 2010, A&A, 523, 832

▶ Catastrophic outlier:

$$O_c$$
: $|Z_{phot} - Z_{spec}| > 1.0$

Bernstein, G. & Huterer, D. 2010, MNRAS, 401, 1399

ACTUAL REDSHIFT

Intro to Machine Learning

- ▶ Use large quantities of data to train machine to make simple correlations
 - Avoid explicitly coding for individual circumstances
 - ▶ Handwriting
 - ▶ FaceID
- ► NNs are often backbone/structure
 - ▶ Most common

Input neurons: process/analyze/categorize input data and pass onto next layer

Hidden layer(s): further process input data or data from other hidden layers, weights attributed to neurons

Output layer: gives final "conclusion" of processing (0 or 1 or more complex)

Training

- ► Training involves updating the weights attributed with neurons in the hidden layers
- ▶ Weights updated iteratively
 - ▶ Updated automatically, given learning rate of model
 - ▶ Objective is to minimize loss function
 - ► Loss function: difference between expected output and actual output of model

Broad NN Categories

- ► Feedforward NN
 - ▶ Unidirectional
 - ► Neurons can only transmit info to neurons in next layer
- ▶ Recurrent NN
 - ▶ Bidirectional
 - ► Neurons can transmit info to other neurons in the same layer
 - ▶ Complicated

Data Dictionary

- Both publicly available
- Both 5-bandspectroscopic(actual)measurements
- ► HSC: 286,401
- ► COSMOS: 58,619

HSC Data

	Α	В	С	D	E	F
1	u_mag	g_mag	r_mag	i_mag	zed_mag	Z
2	25.426	25.567	25.2166	24.5832	24.0859	0.9966
3	26.0628	26.0293	25.419	25.1661	24.6804	1.8231
4	26.03	25.9201	24.8829	24.4989	24.438	0.5484
5	26.4852	26.0375	25.416	24.8233	24.2776	1.5998

COSMOS2015 Data

	Α	В	С	D	Е	F
1	g_cmodel_mag	r_cmodel_mag	i_cmodel_mag	z_cmodel_mag	y_cmodel_mag	specz_redshift
2	20.9795723	19.9471302	19.0677147	18.58988	18.398716	0.548910022
3	21.9359283	20.2798767	19.2970181	18.8702316	18.6586075	0.548210025
4	18.2886353	17.6349106	17.292387	17.095787	16.9314461	0.069250003
5	22.0716896	20.4420376	19.3423538	18.947113	18.7577057	0.565800011

Parameters & Hyperparameters

- ▶ Parameters: known inputs to input layers
 - ► Photo band magnitudes
- ▶ Hyperparameters: properties of the NN
 - ► Hidden layers
 - ► Neurons per layer
 - ► Loss metric:
 - **▶**SGD
 - **►** Adam
 - ► AdGrad
 - ► Parameters of training procedure:
 - **►** Momentum
 - ► Learning rate

PyTorch

- ► Torch library in Python
- ▶ ML framework
 - ▶ Computer vision, NLP, training NN
- Analogous to TensorFlow
 - ▶ PyTorch → academia
 - ▶ TensorFlow → industry

Scalar

My Project

- ▶ Build NN redshift estimator in Python using PyTorch
- ► Optimize hyperparameters with Optuna
 - ►Limit number of COs
 - ► Apply RMS as a metric of error

- ► Hyperparameters: properties of NN
 - ► Hidden layers
 - ► Neurons per layer
 - ▶ Training procedure/code framework
 - ► SGD
 - ► Adam
 - Adgrad
 - ▶ Parameters of training procedure:
 - ▶ Momentum
 - ► Learning rate

Optuna

- ► Hyperparameter optimization framework
- ► In PyTorch:
 - ▶ Wrap Optuna around model and let it learn
 - ► Will quickly and efficiently try new values of hyperparameters
 - ► Goal will be to find best combination of hyperparameters

Optuna

- ▶ Potential framework:
 - ▶ Use 50% of galaxies as training set
 - ▶ Use other 50% as testing set
- ▶ Unsure about metric of success...
 - ▶ Limit number of COs
 - ► Apply RMS:

RMS =
$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} (Z_{phot i})^2 - (Z_{spec i})^2$$

Sources

- https://en.wikipedia.org/wiki/Photometry_(astronomy)
- https://en.wikipedia.org/wiki/Photometric_redshift
- https://aws.amazon.com/what-is/neural-network/
- https://www.superannotate.com/blog/guide-to-gradient-descent-algorithms
- https://optuna.org
- https://www.coursera.org/articles/ai-vs-deep-learning-vs-machine-learningbeginners-guide
- https://www.youtube.com/watch?v=aircAruvnKk

Thank you,

Dr. Singal!

Questions?