Radio transients (and radio variables (and the interstellar medium))

Keith Bannister (ATNF) ATNF Radio School 2017

Warning

There's a huge amount of different science on this topic.

This is just a flavour.

Transient parameter space (s)

Dispersion

Dispersion

$$\frac{\Delta t}{\text{ms}} = 4.15 \text{DM} \left(\left(\frac{\nu_1}{\text{GHz}} \right)^{-2} - \left(\frac{\nu_2}{\text{GHz}} \right)^{-2} \right)$$

$$DM = \int_0^{\text{source}} n_e dl$$

Fast Radio Bursts

After 10 years, we still don't know what they are

Fast Radio Bursts

$$\Delta t = 4.15 \text{DM}(\nu_1^{-2} - \nu_2^{-2}) \text{(ms)}$$

- Data recorded in 2001, but only discovered in 2007 (old data is useful!)
- Super bright: >> 30 Jy ms.
- Saturated 1 beam found in 2 others
- Dispersion Measure >> than expected from the Milky Way and SMC
- *was* being looked for, but they were lucky not to delete it by accident: be careful with your processing

Perytons

Katherine Capach

- Frequency-swept signal
- Found in all beams -> Terrestrial?
- Strong frequency structure
- What does this mean for the original FRB?

The d(r)ought breaks

- 4 more FRBs at Parkes
- Single beam
- Range of dispersion measures
- Good fit to cold plasma dispersion
- 5 more thereafter
- Why only Parkes?
- Are these just less weird Perytons?

Perytons resolved!

- RFI monitoring system installed (thanks Jamie! Work with site staff & engineers - they're handy!
- A bit of background knowledge on how microwave ovens work.
- Resolved thanks to careful RFI monitoring and a cold lunch - know your telescope and your environment.
- But is the Lorimer burst real?
- Why only Parkes?

"The Repeater"

- First discovered at Arecibo
- Discovered to repeat in follow-up observations
- Localised to << 1 arc second by the VLA
- Fringes on intercontinental baselines (VLBI)
- Located in a star-forming (Halpha bright) region in a dwarf galaxy at z=0.2 (1 Gpc!)
- Co-incident with a persistent, non-variable radio source
- Similar place to where we find long gamma ray bursts and super luminous supernovae - related?

Where are we now?

- 24 published bursts (Sep 2017)
- Largest DM = 2700 pc/cm3 (!)
- Ntheories > Nbursts
- Most localised to ~ 30 arcmin (Parkes)
- No afterglows discovered even with a *lot* of follow-up.
- 1 repeater. Localised to ~millarcseconds
- >10 telescopes around the world searching for FRBs
- We want: more FRBs with ~arcsecond positions to get:
 - Better understanding of the population
 - Measurement of DM vs z -> Baryon content of the universe

ASKAP will be...

- 36 antennas
- 36 beams = ~ 30 deg^2 per antenna
- 336 x 1 MHz channels (only 300 for interferometry)
- Tuning: 700-1800 MHz
- ~1ms time resolution

CRAFT - the next step

Innovation: Fly's-eye observing

ASKAP's first 3 FRBs

FRB 170107 DM: 609.5 pc cm⁻³

FRB 170416 DM: 523.2(2) pc cm⁻³

FRB 170428 DM: 991.7(8) pc cm⁻³

FRB170107

Spectral cutoff above 1.4 GHz DM=610 pc/cm3 Fluence=58 Jy.ms

Localised to 8x8 arcmin - thanks to fully-sampled focal plane!

Multi-wavelength follow-up

Optical image Keck (Caltech)

5.5 GHz image ATCA (CSIRO)

SN1987A - radio supernova

Gamma Ray Burst afterglows

50 × 20 cm * 13 cm 6 cm 0 3 cm Radio flux density (mJy 30 20 10 20 30 40 50 10 70 80 Days after burst

Frail+ 98
Damping of scintillations puts constraints on source size vs time
= relativistic

Kulkarni+ 98
Radio emission from a gamma ray burst,
First association with a supernova
ATCA's highest cited paper (472)

A zoo of transients

Hallinan+ 07
Periodic bursts from an ultra cool dwarf

Chomiuk+ 15
Radio emission from classical Nova

Zauderer+ 11
Tidal disruption event: i.e. a
Star falls into a supermassive black hole

Radio Bursts from the Sun

Solar Radio Burst Classifications

TYPE	CHARACTERISTICS	DURATION	FREQUENCY RANGE	ASSOCIATED PHENOMENA
1	Short, narrow-bandwidth bursts. Usually occur in large numbers with underlying continuum.	Single burst: ~ 1 second Storm: hours - days	80 – 200 MHz	Active regions, flares, eruptive prominences.
п	Slow frequency drift bursts. Usually accompanied by a (usually stronger intensity) second harmonic.	3- 30 minutes	Fundamental: 20 – 150 MHz	Flares, proton emission, magnetohydrodynamic shockwaves.
Ш	Fast frequency drift bursts. Can occur singularly, in groups, or storms (often with underlying continuum). Can be accompanied by a second harmonic	Single burst: 1 - 3 seconds Group: 1 -5 minutes Storm: minutes - hours	10 kHz – 1 GHz	Active regions, flares.
IV	Stationary Type IV: Broadband continuum with fine structure	Hours - days	20 MHz – 2 GHz	Flares, proton emission.
	Moving Type IV: Broadband, slow frequency drift, smooth continuum.	30 – 2 hours	20 – 400 MHz	Eruptive prominences, magnetohydrodynamic shockwaves.
	Flare Continua: Broadband, smooth continuum.	3 – 45 minutes	25 – 200 MHz	Flares, proton emission.
v	Smooth, short-lived continuum. Follows some type III bursts. Never occur in isolation.	1-3 minutes	10 - 200 MHz	Same as type III bursts.

NOTES: In nearly all cases, drifting bursts drift from high to low frequencies.

The Frequency Range is the typical range in which the bursts appear - not their bandwidth.

The sub-types of type IV are not universally agreed upon and are thus open to debate.

Solar burst types

http://sunbase.nict.go.jp/solar/denpa/hiras/types.html

Type I

Type II

Type III

Intrinsic AGN variability

Extrinsic = propagation = scintillation a.k.a scattering

Turbulent ionised plasma in the interstellar medium Often approximated as a thin 'screen' Diffraction and refraction happen here

Scintillation Regimes

Narayan 92

Refractive Scintillation Examples

Hunstead+ 72
Discovery in AGN
-> Must be propagation

Bignall+ 2003
Intraday variability with annual cycles

$$T_{\mathrm{B}} \geqslant \frac{\Delta S D^2}{2k_{\mathrm{B}}\nu^2\tau^2}$$

Diffractive scintillation

The original ESE: 0954+658

Fiedler+ 1987

The original ESE: 0954+658

Plasma Lenses

Size ~1AU

Clegg+98

Plasma lenses do different things to different colours

The ATESE Survey

- Cold plasma refractive index $\propto \lambda^2$
- Spectrum of an ESE inprogress should be highly structured

- Select 1200 AGN from AT20G
- Get 4-8 GHz spectra ~monthly
- Look for things with crazy spectra

Intraday Variability

Intraday Variable

Emission region is croissant-shaped

Tuntsov et al. 2017, Scintillation kinks, bumps and wiggles in the radio spectrum of the quasar PMN J1106-3647, MNRAS, 469, 5023

Black Hole event horizon?

Matches and alignments

-97° vs -92 °	Major axis direction (N→E)	127° vs 134°
19.7 vs 10.0	⊥ velocity, km/s	20.5 vs 22.4
11 vs 7.7	Screen distance, pc	14 vs 17.9
0.46	Distance from l.o.s., pc	1.75

Walker et al. 2017

Matches and alignments

Combined	6.8x10 ⁻⁸	
Product	2.4x10 ⁻⁵	1.7x10 ⁻⁴
⊥ Velocity	0.23	0.058
(along & across l.o.s. + PA)	1.0×10^{-4}	3.0x10 ⁻³
Position		
Prob. of chance coincidence	Vega (AO)	Alhakim (A

Manly Astrophysics

Walker et al. 2017

Cometary knots in the Helix nebula

≤0.4 pc from the central hot (but faint!) star

 $R \sim 10^2 AU$

~10⁵ per star

Radially elongated

(Photo?) Ionised skins

Dense, Molecular bulk

Earth-mass $\sim 10^{-5} M_{\odot}$

Assumed to form at late evolutionary stages

(Meixner et al. 2005)

Summary

- It's an exciting time in radio transients (and variables)
- Know your telescope and your data
- Follow crazy ideas
- Work with wacky people it's fun!
- The most useful equation in radio astronomy is $\theta = \frac{\lambda}{-}$

