

2b. Grundlagen Konvexe Mengen

Optimierung SoSe 2020 Dr. Alexey Agaltsov

Plan

- Affine Mengen
- Konvexe Mengen
- Projektion

Geraden und Strecken

• Die Gerade durch die Punkte $x_1 \neq x_2$ aus \mathbb{R}^n enthält die Punkten

$$y = \alpha x_1 + (1 - \alpha)x_2, \quad \alpha \in \mathbb{R}$$

• Die Strecke zwischen x_1 und x_2 entspricht den Punkten mit $\alpha \in [0,1]$ $\alpha = 1$

Affine Mengen

• Eine Menge $K \subseteq \mathbb{R}^n$ heißt affin, falls die Gerade durch jede $x_1 \neq x_2$ in K liegt ebenfalls in K:

$$\alpha x_1 + (1 - \alpha)x_2 \in K \quad \forall (x_1, x_2 \in K, \alpha \in \mathbb{R})$$

• Als Affinkombination von $x_1, ..., x_k \in K$ bezeichnen wir einen Punkt:

$$y = \alpha_1 x_1 + \dots + \alpha_k x_k$$
$$\alpha_1 + \dots + \alpha_k = 1$$

• Mit einer Induktion kann man zeigen, dass K affin ist ist gdw. K alle affine Kombinationen seiner Punkte enthält

Beispiel: Lineare Gleichungssysteme

$$K = \{x : Ax = b\}$$
$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

Seien
$$x_1, x_2$$
 so, dass $Ax_1 = b$, $Ax_2 = b$

$$A(\alpha x_1 + (1 - \alpha)x_2) = \alpha \underline{Ax_1} + (1 - \alpha)\underline{Ax_2} = b$$

• Die Lösungsmenge eines Systems der Lineargleichungen ist affin

Affine Menge und lineare Unterräume

• Sei K eine affine Menge und $x_0 \in K$. Setze

$$V = K - x_0 \coloneqq \{x - x_0 \colon x \in K\}$$

V ist ein linearer Unterraum:

Seien
$$v_1, v_2 \in V$$
 und $\alpha, \beta \in \mathbb{R}$

$$\alpha v_1 + \beta v_2 + x_0 = \alpha (v_1 + x_0) + \beta (v_2 + x_0) + (1 - \alpha - \beta) x_0$$

$$\in K$$

$$\in K$$

$$\alpha v_1 + \beta v_2 + x_0 \in K$$

Also
$$\alpha v_1 + \beta v_2 \in K - x_0 = V$$

Affine Menge und lineare Unterräume

$$K$$
 ist affin \longleftrightarrow $K = V + x_0, \ x_0 \in K$

$$V \text{ linearer Unterraum (unabh. von } x_0)$$

- Als Dimension dim K von K bezeichnen wir die Dimension von V
- Affine Mengen entsprechen den Folgenden geometrischen Objekten:

 $\dim K = 0$: Punkt

 $\dim K = 1$: Gerade

 $\dim K = 2$: Ebene

 $\dim K \geq 3$: Hyperebene

Affine Hülle

• Als affine Hülle von $K \subseteq \mathbb{R}^n$ bezeichnen wir die Menge:

$$\mathbf{aff}(K) \coloneqq \{\alpha_1 x_1 + \dots + \alpha_N x_N \mid x_1, \dots, x_N \in K, \ \alpha_1 + \dots + \alpha_N = 1\}$$

$$aff(\cdot) = \cdot \qquad aff(\cdot) = \checkmark \qquad aff(\cdot) = \checkmark$$

• Äquivalent, $\mathbf{aff}(K)$ ist die minimale affine Menge die K enthält:

$$\forall (A \text{ affin}, K \subseteq A) \text{ aff}(K) \subseteq A$$

• Also ist K affin gdw. $K = \mathbf{aff}(K)$

Plan

- Affine Mengen
- Konvexe Mengen
- Projektionssatz

Konvexe Mengen

• Eine Menge $K \subseteq \mathbb{R}^n$ heißt konvex falls für alle $x_1 \neq x_2$ in K die Strecke zwischen x_1 und x_2 ebenfalls K gehört:

$$\alpha x_1 + (1 - \alpha)x_2 \in K \quad \forall x_1, x_2 \in K, \alpha \in [0,1]$$

Konvexkombinationen

• Als Konvexkombination von Punkten $x_1, ..., x_k$ bezeichnen wir jeden Punkt y mit Darstellung:

$$y = \alpha_1 x_1 + \dots + \alpha_k x_k$$

$$\alpha_1 + \dots + \alpha_k = 1, \qquad \alpha_i \ge 0, i = 1, \dots, k$$

• Mit einer Induktion kann man zeigen, dass eine Menge K konvex ist gdw. K alle Konvexkombinationen ihre Punkte enthält

Beispiel

$$y = \alpha_1 x_1 + \alpha_2 x_2 + (1 - \alpha_1 - \alpha_2) x_3$$

Affinkombinationen von x_1, x_2, x_3 entsprechen der Ebene durch x_1, x_2, x_3 Konvexkombinationen von x_1, x_2, x_3 liegen im Dreieck

Konvexe Hülle

• Als konvexe Hülle von $K \subseteq \mathbb{R}^n$ bezeichnen wir die Menge:

$$\mathbf{conv}(K) \coloneqq \{\alpha_1 x_1 + \dots + \alpha_k x_k | x_i \in K, \alpha_i \ge 0, i = 1, \dots, k, \alpha_1 + \dots + \alpha_k = 1\}$$

$$conv(\cdot) = \cdot conv(\cdot) = \ conv$$

- Äquivalent, $\mathbf{conv}(K)$ ist die minimale konvexe Menge, die K enthält $\forall (C \text{ konvex}, K \subseteq C)$ $\mathbf{conv}(K) \subseteq C$
- Also ist K konvex gdw. K = conv(K)

Beispiel: Konvexe Matrizenräume

$$\mathbb{S}^{n} \coloneqq \{X \in \mathbb{R}^{n \times n} : X^{T} = X\}$$

$$\mathbb{S}^{n}_{\geq} \coloneqq \{X \in \mathbb{R}^{n \times n} : X^{T} = X, X \geq 0\}$$

$$\mathbb{S}^{n}_{\geq} \coloneqq \{X \in \mathbb{R}^{n \times n} : X^{T} = X, X > 0\}$$

Wir werden zeigen, dass \mathbb{S}^n , \mathbb{S}^n_{\geq} , \mathbb{S}^n_{\geq} konvexe Mengen sind

Beweis

Behauptung: $\mathbb{S}^n \coloneqq \{X \in \mathbb{R}^{n \times n} : X^T = X\}$ ist konvex

Seien
$$A, B \in \mathbb{S}^n$$
, $\alpha \in (0,1)$

$$Z \coloneqq \alpha A + (1 - \alpha)B$$

$$Z^T = \alpha \underline{A}^T + (1 - \alpha)\underline{B}^T = Z$$

$$A \qquad B$$

$$Z \in \mathbb{S}^n$$

Beweis

Behauptung: $\mathbb{S}^n_{>} := \{X \in \mathbb{S}^n : X > 0\}$ ist konvex

Seien
$$A, B \in \mathbb{S}^n_>, \alpha \in (0,1)$$

$$Z = \alpha A + (1 - \alpha)B$$

$$\forall (x \in \mathbb{R}^n : x \neq 0)$$

$$x^T Z x = \alpha x^T A x + (1 - \alpha) x^T B x > 0$$

$$> 0 > 0$$

$$Z \in \mathbb{S}^n_{>}$$

Ähnlich für \mathbb{S}^n_{\geq}

Lemma 2.6. Durchschnitt konvexer Mengen

Seien K_i , $i \in I$ konvex

$$K \coloneqq \cap_{i \in I} K_i$$

Dann ist *K* konvex

Beweis

Seien
$$x_1, x_2 \in K, \alpha \in (0,1)$$

 $y = \alpha x_1 + (1 - \alpha)x_2$ $x_1, x_2 \in K_i \quad \forall i \in I$
 $y \in K_i \quad \forall i \in I$
 $x_1, x_2 \in K_i \quad \forall i \in I$
 $x_2 \in K_i \quad \forall i \in I$
 $x_3 \in K_i \quad \forall i \in I$

Plan

- Affine Mengen
- Konvexe Mengen
- Projektionssatz

Projektion auf eine Menge

- Sei $\langle \cdot, \cdot \rangle$ ein beliebiges Skalarprodukt auf \mathbb{R}^n und $\|\cdot\|$ die zugehörige Norm
- Als Abstand zwischen $K \subseteq \mathbb{R}^n$ und $y \in \mathbb{R}^n$ bezeichnen wir: $\operatorname{dist}(y, K) = \inf\{||x y|| : x \in K\}$
- Wir bezeichnen einen Punkt $x_* \in K$ als Projektion von y auf K falls:

$$\|y - x_*\| = \mathbf{dist}(y, K)$$

Eindeutige Projektion

$$||x|| = ||x||_2 := \sqrt{x_1^2 + x_2^2} \text{ für } x = (x_1, x_2) \in \mathbb{R}^2$$

$$K = \{ x \in \mathbb{R}^2 : ||x||_2 \le 1 \}$$

eindeutige Projektion
$$x_* = \frac{y}{\|y\|_2}$$

Keine Projektion

$$K = \{x \in \mathbb{R}^2 : ||x||_2 < 1\}$$
 keine Projektion

Mehrere Projektionen

$$K = \{x: ||x||_2 = 1\}$$

Jeder Punkt $x \in K$ ist eine Projektion

Lemma 2.7. Existenz der Projektion

- Sei $K \subseteq \mathbb{R}^n$ nichtleer und abgeschlossen und sei $y \in \mathbb{R}^n$
- Dann existiert zumindest eine Projektion $x_* \in K$ von y auf K

Beweis

Setze
$$f(x) = \begin{cases} ||y - x|| & x \in K \\ \infty & sonst \end{cases}$$

 $\operatorname{dom}(f) = K \text{ ist abgeschlossen und } f \in \mathcal{C}(K)$

f ist unterhalbstetig

Entweder ist K beschränkt oder $f(x) \to \infty$ für $||x|| \to \infty$

$$\exists x_* \in K: \underline{f(x_*)} = \min_{x \in K} f(x)$$
$$\|y - x_*\| \quad \mathbf{dist}(y, K)$$

Satz 2.5

Satz 2.8. Projektionssatz

- Sei $K \subseteq \mathbb{R}^n$ nichtleer, abgeschlossen und konvex und sei $y \in \mathbb{R}^n$
- Dann existiert eine eindeutige Projektion $x_* \in K$ von y auf K
- Außerdem ist $x_* \in K$ genau dann die Projektion von y, wenn:

$$\langle y - x_*, x - x_* \rangle \le 0 \quad \forall x \in K$$

Beweis: Charakterisierung

Lemma 2.7 ⇒ Existenz

Seien x_* ist eine Projektion von y auf K

$$||y - x_*||^2 \le ||y - (x_* + t(x - x_*))||^2$$

$$= ||y - x_*||^2 - 2t\langle y - x_*, x - x_* \rangle + t^2 ||x - x_*||^2$$

$$-2t\langle y - x_*, x - x_* \rangle + t^2 ||x - x_*||^2 \ge 0$$
dividiere durch t

$$\langle y - x_*, x - x_* \rangle \le 0$$

Beweis: Eindeutigkeit

Seien x_1^* , x_2^* zwei Projektionen von y auf K

$$\langle y - x_2^*, x_1^* - x_2^* \rangle \le 0$$

$$\langle y - x_1^*, x_2^* - x_1^* \rangle \le 0$$

$$\langle x_1^* - y, x_1^* - x_2^* \rangle$$

$$||x_2^* - x_1^*||^2 \le 0 \text{ also } x_1^* = x_2^*$$

Projektor

Sei $K \subseteq \mathbb{R}^n$ nichtleer und konvex, so definieren wir den Projektor auf K als:

$$P_K(y) = \operatorname{argmin}_{x \in K} ||y - x||$$

Satz 2.9. Projektor auf einen Unterraum

Sei $L \subseteq \mathbb{R}^n$ ein linearer Unterraum. Dann gilt:

- P_L ist eine lineare Abbildung $P_L(\alpha x + \beta y) = \alpha P_L(x) + \beta P_L(y)$
- P_L ist symmetrisch:

$$\langle x, P_L y \rangle = \langle P_L x, y \rangle \quad \forall (x, y \in L)$$

• Sei $x_* \in L$. Dann gilt $x_* = P_L y$ gdw.

$$\langle y - x_*, z \rangle = 0 \quad \forall z \in L$$

Beweis: Charakterisierung

Behauptung: Sei $x_* \in L$. Dann $x_* = P_L y$ gdw. $\langle y - x_*, z \rangle = 0 \ \forall z \in L$

$$\operatorname{Sei} x_* \in L \qquad \operatorname{Satz} 2.8$$

$$x_* = P_L y \quad \operatorname{gdw.} \langle y - x_*, \underline{x - x_*} \rangle \leq 0 \quad \forall x \in L \qquad \qquad x \in L \Leftrightarrow z \in L$$

$$\langle y - x_*, z \rangle \leq 0 \quad \forall z \in L \qquad \qquad z \mapsto -z$$

$$\langle y - x_*, z \rangle \geq 0 \quad \forall z \in L \qquad \qquad z \mapsto -z$$

$$\langle y - x_*, z \rangle = 0 \quad \forall z \in L$$

Beweis: Linearität

Seien
$$y_1, y_2 \in L$$
, $\alpha_1, \alpha_2 \in \mathbb{R}$
$$x_1^* = P_L y_1, x_2^* = P_L y_2$$

$$\langle y_1 - x_1^*, z \rangle = 0 \quad \forall z \in L$$

$$\langle y_2 - x_2^*, z \rangle = 0 \quad \forall z \in L$$

$$\langle y_\alpha - x_\alpha^*, z \rangle = 0 \quad \forall z \in L$$

$$(1) \times \alpha_1 + (2) \times \alpha_2$$

$$\langle y_\alpha - x_\alpha^*, z \rangle = 0 \quad \forall z \in L$$

$$x_\alpha^* = \alpha_1 x_1^* + \alpha_2 x_2^*$$

$$y_\alpha = \alpha_1 y_1 + \alpha_2 y_2$$
 Charakterisierung
$$x_\alpha^* = P_L y_\alpha$$

Beweis: Symmetrie

Beispiel 2.10

Minimiere $||x||_2$

u.d.N.
$$Ax = b$$
 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
rang $(A) = m \le n$ $(\ker A)^{-1}$

- Eine optimale Lösung x_* ist die Projektion von 0 auf $K = \{x \in \mathbb{R}^n : Ax = b\}$
- Da K abgeschlossen und konvex ist, ist x_* eindeutig bestimmt
- Aufgabe. Beweisen Sie die Formel $\{x_*\} = K \cap (\ker A)^{\perp}$

Zusammenfassung

- Affine Mengen
- Konvexe Mengen
- Projektionssatz

Nächstes Video

• 2c. Grundlagen: Konvexe Funktionen