Задача 9-3

Ниже представлена упрощенная схема технологического процесса получения некоторого соединения из метана, воды и воздуха с указанием величин потоков газов. Все реакции, кроме протекающей в реакторе 5, идут с количественным выходом.

Схема (цифрами обозначены реакторы, в которых протекают реакции 1-5, буквами – магистрали, их соединяющие).

Метан и водяной пар смешивают и под давлением пропускают над катализатором, нагретым до $1100 \, ^{\circ}\text{C}$ (*p-ция* 1). В полученной смеси молекулы только одного из газов неполярные. После этого к смеси газов добавляют воздух (его состав $21\% \, \text{O}_2$, $78\% \, \text{N}_2$, $1\% \, \text{Ar}$ по объему), при этом протекает химическая реакция (*p-ция* 2). Затем смесь пропускают над катализатором при температуре $250 \, ^{\circ}\text{C}$ (*p-ция* 3, протекает без изменения общего объема при постоянной температуре). Полученную смесь охлаждают до $110 \, ^{\circ}\text{C}$ и пропускают под повышенным давлением через 25%-ный водный раствор $K_2\text{CO}_3$ (*p-ция* 4), затем охлаждают и осушают. Смесь трёх оставшихся газов под высоким давлением направляют в реактор 5, причем на выходе из реактора скорость потока газов составляет $103 \, \text{л/c}$ ($p = 1.8 \cdot 10^7 \, \text{Па}$, $T = 707 \, \text{K}$) (*p-ция* 5).

Вопросы:

- Запишите уравнения реакций (1-5).
- 2. Вычислите скорости потоков (в моль/с) каждого из компонентов газовых смесей в магистралях **а г.** Заполните таблицу:

Газ	a	б	В	Γ

- Определите мольные доли газов в смеси на выходе из реактора 5. Какой из этих газов имеет самую низкую, а какой – самую высокую температуру кипения? Объясните почему.
- 4. Как отделить целевой продукт на выходе из реактора 5? Оцените массу целевого продукта, производимого в сутки.

Решение задачи 9-3 (автор: Долженко В.Д.)

На входе в реактор **1** поток газа равен 80+240 моль/с, на выходе -480 моль/л, т.е. 480/(240+80) = 1.5), значит при нагревании смеси воды и метана число моль газа увеличивается в 1.5 раза.

- 1) а) $CH_4 + H_2O \rightarrow CO + 3H_2$ 2моль —> 4моль при этом 2 моль воды не участвуют в реакции, т.е. из 4 моль образуется 6 моль газов.
- б) $CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$ Змоль —> 5моль, а с учетом избытка 1 моль воды из 4 моль образуется 6 моль, т.е. по количествам вещества оба процесса удовлетворяют условию. Однако, молекулы H_2 и CO_2 неполярные, а по условию в смеси газов присутствует только один из них, значит протекает реакция **a**.

В реакторе 2 только кислород может вступать в реакцию:

2)
$$O_2 + 2 H_2 = 2H_2O$$

Еще одна реакция, которая требует катализатора и протекает без изменения количества вещества, это реакция угарного газа с водой:

3)
$$CO + H_2O = CO_2 + H_2$$

Водный раствор карбоната калия под высоким давлением поглощает углекислый газ:

4)
$$CO_2 + H_2O + K_2CO_3 = 2 \text{ KHCO}_3$$

При охлаждении газовой смеси вода конденсируется и остается только 3 компонента: азот (N_2) , водород (H_2) и аргон (Ar). Указанная смесь под большим давлением поступает в реактор, где протекает реакция:

5)
$$N_2 + 3 H_2 \Leftrightarrow 2 NH_3$$

Причем в реакторе в лучшем случае достигается равновесие, реакция протекает неполностью.

Вычислим потоки газов:

- а) При условии, что реакции протекают количественно, в первом реакторе вода находится в избытке, а количество угарного газа определяется потоком метана, поток СО равен потоку метана, т.е. 80 моль/с. На 1 моль метана образуется 3 моль водорода, т.е. поток водорода 240 моль/с.
- **б)** Воздух содержит 21 % кислорода, т.е. поток кислорода составляет $0.21 \cdot 115 = 24.15 \, {}^{\text{моль}}/_{\text{с}}$, аналогично потоки азота и аргона составляют: 89.7 ${}^{\text{моль}}/_{\text{с}}$ и $1.15 \, {}^{\text{моль}}/_{\text{с}}$, соответственно.

Водород с кислородом реагируют в соотношении 2:1, т.е. поток водорода спижается на $48.3 \, ^{\text{моль}/_{\text{с}}}$, поток воды возрастает на $48.3 \, ^{\text{моль}/_{\text{с}}}$, а поток кислорода падает до нуля.

- в) При реакции СО с водой поток воды уменьшается, а углекислого газа и водорода возрастает на $80 \, {}^{\text{моль}/_{\text{с}}}$.
- г) В реакторе 3 происходит поглощение CO₂, потоки других газов можно считать неизменными. При охлаждении большая часть воды конденсируется, а при осушении поток воды снижается до 0.

В таблице приведены потоки газов между «реакторами» в моль/с:

Газ	a	б	В	Г
CO	80	80		
H ₂ O	160	208.3	128.3	
H_2	240	191.7	271.7	271.7
N_2		89.7	89.7	89.7
Ar		1.15	1.15	1.15
CO_2			80	

На вход в реактор **5** в секунду поступает 271.7 + 89.7 + 1.15 = 362.55 моль газовой смеси, а на выходе $\frac{pV}{RT} = \frac{1.8 \cdot 10^7 \cdot 103 \cdot 10^{-3}}{8.314 \cdot 707} = 315.41$ моль.

Согласно уравнению *р-ции* **5** разность (362.55 – 315.41=47.14 моль) соответствует числу моль аммиака, выходящему из реактора в секунду.

Если поток аммиака составляет 47.14 моль/с, то азота $89.7-23.57\approx 66.13$ моль/с, а водорода 271.7-70.71=200.9 моль/с, поток аргона не изменяется.

Мольные доли газов в итоговой смеси могут вычислены как скорости потока газа, отнесенные к общей скорости:

Газ	Скорость моль/с	Мольная доля, %	Ткип, К
H_2	200.9	63.7	20.2
N_2	66.13	21.0	77.4
Ar	1.15	0.4	87.3
NH ₃	47.14	14.9	240

При атмосферном давлении температуры кипения приведены в таблице выше. Температуры кипения зависят от энергии межмолекулярных взаимодействий. В жидком аммиаке такое взаимодействие осуществляется за счет водородных связей, а в остальных случаях только за счет дисперсионных

взаимодействий*. Таким образом $T_{пл}(NH_3) >> \{T_{кип}(N_2), T_{кип}(H_2), T_{кип}(Ar)\}.$ Сила дисперсионного взаимодействия зависит от поляризуемости частицы † , которая в свою очередь зависит от размеров частицы (см. таблицу ниже). Самой маленькой частицей из рассматриваемых является молекула водорода, для водорода следует ожидать самой низкой температуры кипения.

 $T_{\text{кип}}(H_2) < T_{\text{кип}}(N_2) \approx T_{\text{кип}}(Ar) << T_{\text{пл}}(NH_3)$.

	Ковалентный радиус, пм	Поляризуемость, Å ³
Н	31	0.667
N	70	1.10
Ar	106	1.64

3) Из-за различий в температуре кипения аммиака и остальных компонентов смеси удобнее всего отделять его охлаждением смеси, при этом аммиак конденсируется.

В сутки образуется 47.14 $^{\text{моль}}/_{\text{с}} \cdot 17 \, ^{\text{г}}/_{\text{моль}} \cdot 60 \cdot 60 \cdot 24 \approx 69$ тонн.

Система оценивания:

1.	Уравнения реакций (1 – 5) по 2 балла	10 баллов	
2.	Скорости потоков газов по 1 баллу за «стрелку»	4 балла	
2.	Мольные доли газов в итоговой смеси, 4 газа по 0.25 балла	4 балла	
	Указание, что $T_{\text{кип}}(NH_3)$ больше остальных — 1 балл		
	Указание, что $T_{\text{кип}}(H_2)$ меньше остальных — 1 балл		
	Указание на водородные связи для аммиака и маленький		
	размер для водорода, как причину – по 0.5 балла		
3.	Охлаждение, как способ отделения – 1 балл	2 балла	
	Расчет массы аммиака в сутки – 1 балл		
	ИТОГО: 20 баллов		