欧式空间中的线性变换是正交的当且仅当它把一 组正交基变成一组正交基

叶卢庆*

2014年9月10日

下面的定理来自张禾瑞等人编的《高等代数》第5版,定理8.3.2.

定理. 设 V 是一个 n 维欧式空间. σ 是 V 的一个线性变换. 如果 σ 把 V 的一组标准正交基仍旧变成 V 的一组标准正交基, 那么 σ 是 V 的一个正交变换.

证明. 设 $\alpha = (v_1, v_2, \dots, v_n)$ 是 V 的一组有序标准正交基. 则 V 中的任意两个向量 w_1, w_2 在 α 下可以分别用坐标 $(k_1, k_2, \dots, k_n), (l_1, l_2, \dots, l_n)$ 表示. 现在我们来看

$$\langle w_1, w_2 \rangle = \langle k_1 v_1 + k_2 v_2 + \dots + k_n v_n, l_1 v_1 + l_2 v_2 + \dots + l_n v_n \rangle$$

= $k_1 l_1 + k_2 l_2 + \dots + k_n l_n$.

设 σ 把标准正交基 α 变成另一组标准正交基 $\beta = (e_1, e_2, \cdots, e_n)$, 则向量 w_1 在 σ 的作用下变成

$$w_1' = k_1 e_1 + k_2 e_2 + \dots + k_n e_n,$$

向量 w_2 在 σ 的作用下变成

$$w_2' = l_1 e_1 + l_2 e_2 + \cdots + l_n e_n$$

显然 $\langle w_1', w_2' \rangle$ 仍然等于 $k_1 l_1 + \cdots + k_n l_n$. 可见变换 σ 保内积, 于是 σ 是正交变换.

 $^{^*}$ 叶卢庆 (1992—),男,杭州师范大学理学院数学与应用数学专业本科在读,E-mail:yeluqingmathematics@gmail.com