Desarrollo de algoritmos de teselación adaptativa en GPU Proyecto Final de Carrera

Alumno: Fernando Nellmeldin Director: Dr. Néstor Calvo

Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

12 de Septiembre de 2014

Índice

- 1 Introducción
- 2 Teselación
- 3 Métricas
- 4 Implementación
- 5 Comentarios finales

Representación de objetos 3d en computadoras

Modelo de personaje utilizado en videojuegos. Fuente: Capcom Europe

Teselación

- ¿Qué es?
- ¿Para qué sirve?

Adaptatividad

- ¿Para qué?
- ¿Cómo se logra?

(a) Sin adaptatividad (6.7 ms).

(b) Con adaptatividad (2.0 ms).

Pipeline gráfico

Pipeline DirectX 10 (2007)

Pipeline DirectX 11 (2009)

Cambios en el pipeline gráfiço,

Ventajas y desventajas de teselación en GPU

- ② Paralelismo
- ^② Menor uso de memoria principal
- © Menor transferencia de datos
- Simplicidad
- ③ Menor control
- Sólo en hardware y software moderno

Objetivos

- Investigar la tecnología de teselación en GPU.
- Diseñar métricas.
- Implementar modelos-ejemplo.
- Controlar el nivel de detalle dinámicamente en GPU.

Patch

Definición

Conjunto ordenado de vértices y atributos (posición, normal, coordenadas de textura, etc.).

Tipos de subdivisión

(b) Triángulos.

(c) Espacio cuadrado.

(d) Cuadriláteros.

(e) Espacio cuadrado.

(f) Poligonales.

Niveles de teselación

Teselación ejemplo de un patch de 3 vértices

Espacio paramétrico (generación de coordenadas u, v, w):

(a) Dominio inicial.

(b) Dominio subdividido.

Teselación ejemplo de un patch de 3 vértices (cont.)

Espacio del modelo (interpolación utilizando las coordenadas u, v, w):

(c) Patch teselado.

Pipeline en OpenGL y responsabilidades

Responsabilidades de cada etapa del pipeline gráfico.

Métricas

Definición

Medida obtenida a partir de la información del patch y el contexto, que permite determinar los niveles de teselación a aplicar al patch.

Clasificación

- Intrínsecas
- Extrínsecas

Métricas (cont.)

Características

- Simplicidad
- Poca información
- Adaptatividad
- Libre de grietas (uniones en T)

(a) Ejemplo de unión en T.

(b) Eliminación de la unión en T.

Métricas (cont.)

Métricas implementadas

- Distancia a la cámara (extrínseca)
- Curvatura (intrínseca)
- Longitud de arista (extrínseca)
- Posición en silueta (extrínseca)

Métrica de distancia

Distancias calculadas

- Por cada arista
 - Distancia a cada vértice.
 - Distancia al punto medio de la arista.
- Distancia al centroide del patch.

(a) Cálculo de las distintas distancias.

(b) Mapeo de distancia a nivel de teselación.

Métrica de curvatura

Noción de curvatura

Desviación respecto a un plano.

Distintos grados de curvatura.

Aproximación de curvatura

Indicador de curvatura

$$\kappa = \frac{\|p_i - p_m\|}{\|p_{i-1} - p_{i+1}\|}$$

Variación de la curvatura al mover un único punto de control.

Cálculo del nivel de teselación

Curvas con distinta curvatura ⇒ Distintos niveles de teselación.

Extensión a superficies

(b) Malla de control.

(c) Cálculo de curvaturas diagonales.

Métrica de longitud de arista

Opciones al calcular la proyección de una arista

- Proyección directa.
- Proyección del diámetro de la esfera que la contiene.

Proyección de una arista como diámetro de la esfera que la contiene.

Métrica de silueta

(a) Silueta recta. (b) Silueta curva.

Ilustración de los problemas de sombreado en la silueta.

Métrica de silueta (cont.)

Definición de arista silueta

Las normales de los dos triángulos de los que es frontera tienen orientaciones distintas.

Ejemplo de arista silueta.

Niveles de teselación

Niveles externos

$$u_j = (v \cdot n_{ec})(v \cdot n_{vj})$$

$$t_j = \begin{cases} t_{tessmax}, & u_j < 0 \\ 1, & u_i \ge 0 \end{cases}$$

Niveles de teselación (cont.)

Nivel interno de teselación

$$t_{inner} = \begin{cases} -\frac{t_{tessmax} - 1}{\beta} |\hat{u}_j| + t_{tessmax} & u_j < 0, \ |\hat{u}_j| \le \beta, \ 0 < \beta \le 1 \\ 1, & \text{en otro caso} \end{cases}$$

Función de mapeo de \hat{u}_i al nivel de teselación interno.

Software desarrollado

Tecnologías y bibliotecas utilizadas

- OpenGL 4.2 (2011).
- GLUT.
- Assimp.

- GLM.
- DevIL.
- FreeType.

Características del software

- Selección de ejemplos.
- Diseño modular.
- Control de parámetros de teselación.
- Distintos modos de visualización (iluminación, wireframe, colores de teselación).

Modelos utilizados

Demostración del software

- TessDemo.
- Superficies con métrica de distancia.
- Curva con métrica de curvatura.
- Superficies con métrica de curvatura.
- Terreno con métrica de longitud de arista.
- Phong Tessellation.
- Personaje con métrica de silueta y *Phong Tessellation*.
- Terreno con métrica de distancia.
- Ventajas de la corrección diádica.

Comentarios finales

Conclusiones

- Conocimiento completo de la tecnología.
- Tecnología sencilla de utilizar.
- Teselación sin grietas (uniones en T).
- Necesidad de definir un límite en los niveles de teselación.
- Elección de métricas según modelo.

Trabajo futuro

- Teselación en superficies de subdivisión.
- Teselación en problemas de ingeniería (Método de Elementos Finitos).

Fin

