Concordia University Department of Computer Science COMP 238: Mathematics for Computer Science I

Sample Final Examination

1. (6%) Determine if each of the following propositions is a tautology, a contradiction, or a contingency.

(a)
$$r \land \neg q) \land (q \leftrightarrow p) \rightarrow \neg [(r \lor p) \rightarrow q)$$

(b)
$$(p \to q) \to (q \to p)$$

- 2. (8%) Let the universe of discourse be the set of relations on the set A. Write the following English sentences as a logical expression, using quantifers, logical expressions, and set notation.
 - (a) A symmetric relation on a set A is not necessarily reflexive.
 - (b) Every reflexive relation is anti-symmetric.
- 3. (8%) Let A, B, C, and D be subsets of a universal set U.
 - (a) Prove that if $A \subseteq B$, then $\overline{B} \subseteq \overline{A}$.
 - (b) Prove that

$$(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D).$$

(c) Let P(X) denote the power set of a set X. Prove or disprove:

$$P(A\cap B)=P(A)\cap P(B)$$

(d) Prove or disprove:

$$(A \times C) \cup (B \times D) \neq (A \cup B) \times (C \cup D).$$

4. (5%) Let $f: \mathbf{R} \to \mathbf{R}$ and $g: \mathbf{R} \to \mathbf{R}$ be defined as follows, where \mathbf{R} is the set of real numbers.

$$f(x) = x^2 + 2x + 1$$
 and $g(x) = x^3 - 5$.

- (a) Find f^{-1} if it exists, and if it doesn't, explain why not.
- (b) Find g^{-1} if it exists, and if it doesn't, explain why not.

- 5. (6%) Let $f: X \to Y$ and $g: Y \to Z$ be one-to-one correspondences.
 - (a) Prove that $g \circ f$ must be a one-to-one correspondence.
 - (b) Prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 6. (6%) Show that if a, b, c, and m are integers such that $m \ge 2$, c > 0, and $a \equiv b \pmod{m}$, then $ac \equiv bc \pmod{mc}$.
- 7. (8%) Prove by cases that $n^2 1$ is divisible by 3 when n is an integer not divisible by 3.
- 8. (6%) Prove that $\sqrt{5}$ is irrational.
- 9. (6%) Use a proof by contradiction to prove the following statement: If the integers 1, 2, 3, ..., 7, are placed around a circle, in any order, then there exist two adjacent integers that have a sum greater than or equal to 9.
- 10. (8%) Use mathematical induction to prove that $3^n + 7^n 2$ is divisible by 8 for every non-negative integer n.
- 11. (6%) The Fibonacci numbers are defined as follows: $f_0 = 0$, $f_1 = 1$, and for $n \ge 2$, $f_n = f_{n-1} + f_{n-2}$. Prove that for every positive integer n,

$$f_3 + f_6 + \dots + f_{3n} = \frac{1}{2}(f_{3n+2} - 1)$$

- 12. (6%) For each of the following relations on **Z**, the set of integers, say whether it is reflexive, symmetric, anti-symmetric, or transitive.
 - (a) $R = \{(a, b) \mid a^2 = b^2\}$
 - (b) $R = \{(a, b) \mid |a b| \le 1\}$
- 13. (6%) For the relation $R = \{(1,2), (1,4), (3,3), (4,1)\}$ find (i) R^2 (ii) R^3 and (iii) transitive closure of R.
- 14. (9%) Let R be the relation on the set of ordered pairs of positive integers such that $((a,b),(c,d)) \in R$ if and only if ad = bc.
 - (a) Show that R is an equivalence relation.
 - (b) What is the equivalence class of (1, 2) with respect to R?
- 15. (6%) For the poset given by $(\{\{2,3\},\{1,3\},\{2,3,5\},\{1,2,3\},\{5\},\{1,3,4,5\},\{1,2,3,5\}\},\subseteq)$:
 - (a) Draw a Hasse diagram.
 - (b) Find the maximal elements.
 - (c) Find the minimal elements.
 - (d) Find all upper bounds of $\{\{2,3\},\{5\}\}$.
 - (e) Find the least upper bound of $\{\{2,3\},\{5\}\}$ if it exists.