θεμα 1ο

α)Σε περίπτωση που μια αεροπορική εταιρία πουλά 75 εισιτήρια για όλες τις πτήσεις της που γίνονται με αεροσκάφη 70 θέσεων (επειδή διαπίστωσε ότι κατά μέσο όρο το 5% των επιβατών με κρατημένες θέσεις δεν εμφανίζονται κατά την αναχώρηση του αεροπλάνου), τότε ο αριθμός των επιβατών που δεν προσέρχονται σε μία πτήση ακολουθεί διωνυμική κατανομή με παραμέτρους p=0.05 και n=70

Απάντηση

Ο αριθμός των επιβατών που δεν προσέρχονται σε μία πτήση ακολουθεί διωνυμική κατανομή με παραμέτρους p=0.05 και n=75, όχι n=70. Αυτό συμβαίνει επειδή η εταιρία πουλάει 75 εισιτήρια, επομένως το συνολικό δείγμα των επιβατών είναι 75, και η πιθανότητα ένας επιβάτης να μην εμφανιστεί είναι 5% (p=0.05). Έτσι, ο αριθμός των επιβατών που δεν προσέρχονται σε μία πτήση ακολουθεί διωνυμική κατανομή με παραμέτρους n=75 και p=0.05. αρα λάθος

β)Όταν η αντίσταση R μιας μεταλλικής ράβδου δίνεται από την ακόλουθη συνάρτηση πυκνότητας πιθανότητας: f(x)2x για 0<=x<=1, τότε η πιθανότητα P (x>=0,5) ισούται με 0,5. Απάντηση

1.Η πιθανότητα Ρ(Χ≥0.5) μπορεί να υπολογιστεί ως εξής:

 $P(X \ge 0.5) = \int 0.51 f(x) dx$

Αντικαθιστούμε τη συνάρτηση πυκνότητας πιθανότητας f(x):

 $P(X \ge 0.5) = \int 0.5^1 2x \, dx$

Υπολογίζουμε το ολοκλήρωμα:

 $\int 0.512x \, dx = 2 \int 0.51x \, dx$

Το ολοκλήρωμα της συνάρτησης x είναι: ∫x dx=x22

Επομένως,

 $2\sqrt{0.51}x dx = 2[x^2/2]0.5^1 = [x^2]0.5^1$

Υπολογίζουμε τις τιμές στα όρια ολοκλήρωσης:

[x2]0.51=12-(0.5)2=1-0.25=0.75

Άρα, P(X≥0.5)=0.75

Επομένως, η πιθανότητα P(X≥0.5) δεν ισούται με 0.5 αλλά με 0.75. Άρα η δήλωση είναι: **Λάθος.**

γ)Εάν το ιστόγραμμα μιας σειράς δεδομένων είναι λοξό προς τα δεξιά, τότε η μεσαία τιμή τους είναι μεγαλύτερη από τη μέση τιμή τους (δείξτε με κατάλληλο σχήμα) Απάντηση

 Η διάμεσος είναι το μέσο σημείο του συνόλου των δεδομένων (η τιμή κάτω από την οποία βρίσκεται το 50% των δεδομένων). • Ο μέσος είναι η αριθμητική μέση όλων των τιμών.

Λόγω της λοξότητας προς τα δεξιά, η μέση τιμή θα είναι υψηλότερη από τη διάμεσο. Μπορούμε να δείξουμε αυτή τη σχέση με ένα απλό σχήμα.

Σχήμα

Κατανομή λοξή προς τα δεξιά

- Η διάμεσος βρίσκεται περίπου στο κέντρο του κύριου όγκου των δεδομένων.
- Ο μέσος είναι επηρεασμένος από την ουρά στα δεξιά και βρίσκεται πιο δεξιά από τη διάμεσο.

Συμπέρασμα

Σε ένα σύνολο δεδομένων που είναι λοξό προς τα δεξιά, η μέση τιμή είναι μεγαλύτερη από τη μεσαία τιμή. Άρα η δήλωση "εάν το ιστόγραμμα μιας σειράς δεδομένων είναι λοξό προς τα δεξιά, τότε η μεσαία τιμή τους είναι μεγαλύτερη από τη μέση τιμή τους" είναι: Λάθος.

Θέμα 2ο

α)Σε μια αποθήκη είναι αποθηκευμένα εξαρτήματα ίδιου τύπου που προέρχονται από τους προμηθευτές Γιάννη, Γιώργο, Κώστα, σε ποσοστά 50%, 40% και 10% αντίστοιχα. Από ιστορικά στοιχεία είναι γνωστό ότι οι 3 αυτοί προμηθευτές παράγουν ελαττωματικά σε ποσοστά 6%, 10% και 15% αντίστοιχα. Μια μέρα ο γενικός διευθυντής κατεβηκε στην αποθήκη, πήρε ένα εξάρτημα στα χέρια του και άρχισε να το επεξεργάζεται. Ποιά είναι η πιθανότητα το εξάρτημα αυτό να είναι ελαττωματικό;

Απάντηση

Ο νόμος των ολικών πιθανοτήτων για την πιθανότητα ενός εξαρτήματος να είναι ελαττωματικό είναι:

Ας υπολογίσουμε τις πιθανότητες:

P(Γιάννης)=0.50->P(A)

- P(Γιώργος)=0.40->P(B)
- P(Κώστας)=0.10->P(Γ)
- P(E | A)=0.06
- P(E|B)=0.10
- P(E | Γ)=0.15

Επομένως:

P(E)=0.06 · 0.50+0.10 · 0.40+0.15 · 0.10=0.03+0.04+0.015=0.085

Άρα η πιθανότητα το εξάρτημα που επέλεξε ο διευθυντής να είναι ελαττωματικό είναι 0.085 ή 8.5%.

β) Έστω ότι το εξάρτημα αυτό βρέθηκε ελαττωματικό. Ποια είναι η πιθανότητα να προέρχεται από τον προμηθευτή Κώστα (όπως άρχισε να ουρλιάζει ο γενικός διευθυντής, που τα "είχε" τελευταία με τον Κώστα);

Απάντηση

Για να βρούμε την πιθανότητα το ελαττωματικό εξάρτημα να προέρχεται από τον προμηθευτή Κώστα, χρησιμοποιούμε τον νόμο του Bayes.

Ο νόμος του Bayes δίνει την πιθανότητα ενός γεγονότος ΑΑΑ δεδομένου ότι έχει συμβεί ένα άλλο γεγονός Β:

Στην περίπτωσή μας:

Έχουμε ήδη υπολογίσει:

- P(E)=0.085
- $P(E|\Gamma) = 0.15$

Οι πιθανότητες που χρειαζόμαστε είναι:

- P(Γ)==0.10P
- P(E | Γ)=0.15P

Άρα, η πιθανότητα το ελαττωματικό εξάρτημα να προέρχεται από τον Κώστα είναι:

$$P(\Gamma | E) = (P(E | \Gamma) \cdot P(\Gamma))/P(E)$$

Αντικαθιστούμε τις τιμές:

$$P(\Gamma|E)=((0,15)\cdot(0,10))/(0,085)=0,1765$$

Άρα, η πιθανότητα το ελαττωματικό εξάρτημα να προέρχεται από τον Κώστα είναι περίπου 17.65%.

Θέμα 3ο

η ετήσια βροχόπτωση(Χ)σε μία περιοχή ακολουθεί την κανονική κατανομή με μέση τιμή 70 cm και τυπική απόκλιση 12 cm

α) Ποια είναι η πιθανότητα να ξεπεράσει τα 92 cm η ετήσια βροχόπτωση;

Απάντηση

Η πιθανότητα αυτή δίνεται από το P(X>92)\mathbb{P}(X > 92)P(X>92). Για να βρούμε αυτήν την πιθανότητα, πρώτα μετατρέπουμε την κατανομή σε τυπική κανονική κατανομή χρησιμοποιώντας τον τυπικό μετασχηματισμό ZZZ:

$$Z=(X-\mu)/\sigma=(X-70)/12$$

Για X=92

$$Z=(92-70)/12=22/12=1.83$$

Τώρα, πρέπει να βρούμε την πιθανότητα P(Z>1.83). Χρησιμοποιούμε πίνακες της τυπικής κανονικής κατανομής ή έναν υπολογιστή για να βρούμε την τιμή αυτή. Οι πίνακες της τυπικής κανονικής κατανομής μας δίνουν την πιθανότητα P(Z≤1.83):

Ρ(Ζ≤1.83)≈0.9664 Συνεπώς,

$$P(Z>1.83)=1-P(Z\le1.83)=1-0.9664=0.0336$$

Άρα, η πιθανότητα η ετήσια βροχόπτωση να ξεπεράσει τα 92 cm είναι περίπου **0.0336 ή 3.36%.**

β) Να βρεθεί η τιμή χο της μεταβλητής Χ, για την οποία ισχύει ότι το 30.5% των τιμών της Χ είναι μικρότερο από αυτήν.

<u>Απάντηση</u>

Για να βρούμε αυτήν την τιμή, πρέπει να βρούμε το αντίστροφο της τυπικής κανονικής κατανομής για την πιθανότητα 0.305. Ας βρούμε την αντίστοιχη τιμή Ζ χρησιμοποιώντας πίνακες.

Από τους πίνακες της τυπικής κανονικής κατανομής, η τιμή Ζ που αντιστοιχεί σε πιθανότητα 0.305 είναι περίπου -0.51 (αυτό το βρήκαμε αντιστοιχώντας τη σωστή περιοχή στην τυπική κανονική κατανομή).

Τώρα, επαναφέρουμε τη τιμή Ζ στην αρχική κλίμακα της Χ:

$$x0=\mu+Z\cdot\sigma$$

$$x0=70+(-0.51)\cdot 12$$

x0=70-6.12

x0≈63.88

Άρα, η τιμή x0 για την οποία το 30.5% των τιμών της X είναι μικρότερο από αυτήν είναι περίπου 63.88 cm.

Θεμα 4ο

Τον έλεγχο ποιότητας των εξαρτημάτων μιας μεγάλης αποστολής, 12 από τα 60 εξαρτήματα που ελέγχθηκαν βρέθηκαν ελαττωματικά

α) Να βρεθεί και να ερμηνευθεί το 98% διάστημα εμπιστοσύνης για την αναλογία των ελαττωματικών εξαρτημάτων στην αποστολή.

<u>Απάντηση</u>

Αρχικά, θα υπολογίσουμε την αναλογία των ελαττωματικών εξαρτημάτων στο δείγμα μας:

p^=12/60=0.20

Το διάστημα εμπιστοσύνης για την αναλογία ppp μπορεί να υπολογιστεί με τον τύπο:

 $p^{\pm}Z\alpha/2 \cdot (p^{(1-p^{)}/n})$

Όπου:

- p^Λ είναι η εκτιμώμενη αναλογία των ελαττωματικών εξαρτημάτων,
- Ζα/2 είναι η τιμή του κανονικού καταμερισμού που αντιστοιχεί στο επίπεδο εμπιστοσύνης (για 98%, α=0.02, και Ζα/2≈2.33),
- n είναι το μέγεθος του δείγματος.

Υπολογίζουμε το διάστημα εμπιστοσύνης:

0.20±2.33 · 0.20 · RIZA(1-0.20)60

Υπολογίζουμε το εσωτερικό του τετραγωνικής ρίζας:

RIZA 0.20 · 0.80/60=RIZA 0.16/60=RIZA 0.0026667~0.0516

Τώρα, υπολογίζουμε το διάστημα εμπιστοσύνης:

0.20±2.33 · 0.0516

0.20±0.1202

Το διάστημα εμπιστοσύνης είναι:

(0.0798, 0.3202)

Ερμηνεία: Με επίπεδο εμπιστοσύνης 98%, το ποσοστό των ελαττωματικών εξαρτημάτων στην αποστολή βρίσκεται μεταξύ 7.98% και 32.02%.

β) Αντίκειται η όχι το εύρημα του ελέγχου ποιότητας στην άποψη του υπεύθυνου ποιότητας ότι το ποσοστό ελαττωματικών είναι 15& σε επίπεδο σημαντικότητας 5%;

Απάντηση

Υποθέσεις:

- H0:p=0.15 (η αναλογία των ελαττωματικών είναι 15%)
- Ha:p≠0.15 (η αναλογία των ελαττωματικών δεν είναι 15%)

Χρησιμοποιούμε το z-test για αναλογίες:

```
Z=p^-p0/[sqr(p0(1-p0)/n)]
```

Όπου:

- ρ^=0.20(η εκτιμώμενη αναλογία από το δείγμα),
- p0=0.15 (η αναλογία υπό την μηδενική υπόθεση),
- n=60 (το μέγεθος του δείγματος).

Υπολογίζουμε το z-value:

 $Z=0.20-0.15/[sqr(0.15 \cdot 0.85/60)]$

Z=0.05/[sqr(0.1275/60)]

Z=0.05/[sqr0.002125]

Z=0.05/0.0461

Z≈1.08

Τώρα, θα βρούμε την κρίσιμη τιμή για επίπεδο σημαντικότητας 5% (για δύο πλευρές, α/2=0.025 σε κάθε πλευρά):

Za/2≈1.96

Επειδή |Z|=1.08<1.96, δεν απορρίπτουμε την μηδενική υπόθεση Η0.