

Prática VI

Processos térmicos em gases

Jefter Santiago Mares n°:12559016

13 de dezembro de 2021

Conteúdo

1	Resumo Introdução teórica			
2				
	2.1 Coeficiente de expansão adiabática do ar	2		
	2.2 Temperatura Zero	3		
3	Método experimental	4		
	3.1 Método de Clément - Desormes	4		
	3.2 Método de Ruchardt	5		
	3.3 Zero absoluto	5		
4	Resultados e discussão	7		
	4.1 Método de Clément-Desormes	7		
	4.2 Método de Ruchardt	7		
	4.3 Zero absoluto			
5	onclusão 9			
6	8 Referências			

1 Resumo

Nessa prática foi inicialmente calculado o coeficiente de expansão adiabática de um gás usando dois métodos diferentes, o valor encontrado utilizando o método de Clément-Desormes foi de $\gamma=(1,40\pm0,06)$ e pelo método de Ruchardt foi $\gamma=(1,3\pm0,3)$. O segundo experimento consiste em uma tentativa de estimar a temperatura de zero absoluto e o coeficiente de dilatação β , foi então estimado que $\beta=(0,00359\pm0,00012)^{\circ}C^{-1}$ e a temperatura de zero absoluto em torno de $T_0=(-278\pm9)^{\circ}C$ que pode ser considerada uma boa aproximação.

2 Introdução teórica

2.1 Coeficiente de expansão adiabática do ar

2.1.1 Método de Clément

O método de Clément para determinação do coeficiente de expansão adiabática de um gás é utilizar um sistema que sofre processos adiabáticos e por meio da equação

$$P \cdot V^{\gamma} = \text{constante}$$

relacionar estados iniciais e finais, para a partir disso chegar ao fator que buscamos. Então temos

$$P_1 \cdot V_1^{\gamma} = P_2 \cdot V_2^{\gamma} \tag{1}$$

e a partir dessa relação temos γ como

$$\gamma = \frac{\ln\left(\frac{P_2}{P_1}\right)}{\ln\left(\frac{V_1}{V_2}\right)} \tag{2}$$

Figura 1: Gráfico das isotermas no método de Clément. Fonte: Elaborado pelo autor.

2.1.2 Método de Ruchardt

Esse método também utiliza as transformações adiabáticas para estimar o fator γ , como o método de Clément. Porém, aqui usamos a noção de que podemos descrever a força restauradora de um gás ao sofrer um processo adiabático da mesma forma que um sistema massa-mola, onde o gás age coomo a mola. No sistema temos uma colocada no topo de um tubo como êmbolo, com isso, podemos dizer que a pressão, na condição de equilíbrio, exercida pela esfera é

$$P = P_{atm} + \frac{m \cdot g}{A} \tag{3}$$

Onde A é a seção transversal do tubo. Sabemos que a relação $PV^{\gamma}=constante$, pois nesse tipo de transformação não há variação de calor, então podemos dizer que a força restauradora obedece à lei:

$$F = -\frac{\gamma \cdot P \cdot A^2}{V} \cdot y$$

a partir dessa equação de movimento oscilatório podemos escrever a equação do período

$$T = 2 \cdot \pi \cdot \sqrt{\frac{m}{\left(\frac{\gamma \cdot P \cdot A^2}{V}\right)}}$$
 (4)

2.2 Temperatura Zero

Em um recipiente que contém um gás, podemos descrever a variação de volume a partir da equação

$$V(T) = V_0 \cdot (\beta T + 1)$$

onde β é o coeficiente de dilatação do gás à pressão constante. O valor tabelado para este é em torno de $\beta \approx 0,003660^{\circ}C^{-1} \approx \frac{1}{273}^{\circ}C^{-1}$ [1] e para gases ideias esse coeficiente é o mesmo para o volume constante. Sabendo disso podemos então descrever a variação de pressão a partir da equação

$$P(T) = P_0 \cdot \beta T + P_0 \tag{5}$$

disso podemos tirar duas conclusões diretas:

- Se $T = -273^{\circ}C$ então a pressão é zero.
- A equação é linear.

Podemos fazer uso desses dois fatos para tentar extrapolar o comportamento da reta definida pela equação.

3 Método experimental

3.1 Método de Clément - Desormes

Figura 2: Montagem experimental do método de Clément-Desormes.

Fonte: [1]

A partir da equação (2) podemos escrever o fator γ das diferenlas de alturas que o líquido atinge ao se aumentar a pressão dentro do tubo e ao fim do processo térmico. Para tal, consideremos o gráfico das isotermas da figura (1)

Sabemos que os processos (3) e (1) acontecem em uma mesma isoterma e então podemos escrever o volume em (1) a partir da pressão em (3) e uma relação semelhante pode ser feita também para o volume em (2) que escrevemos à partir da pressão em (1). Fazemos isso pois é mais simples, experimentalmente, lidar com as pressões, que com os volumes. Portanto, podemos escrever

$$\gamma = \frac{\ln\left(\frac{P_2}{P_1}\right)}{\ln\left(\frac{P_3}{P_1}\right)} \Rightarrow \begin{cases} P_1 = P_{atm} + \rho g h_1 \\ P_2 = P_{atm} \\ P_3 = P_{atm} + \rho g h_3 \end{cases} \Rightarrow \begin{cases} P_1 = P_{atm} \cdot \left(1 + \frac{\rho g h_1}{P_{atm}}\right) \\ P_3 = P_{atm} \cdot \left(1 + \frac{\rho g h_3}{P_{atm}}\right) \end{cases}$$

Usando a função logaritmica $ln(1+x) \approx x$ podemos escrever $ln\left(1+\frac{\rho gh}{P_{atm}}\right) \approx \frac{\rho gh}{P_{atm}}$, então

$$\gamma = \frac{ln\left[\frac{P_{atm}}{P_{atm}\cdot\left(1 + \frac{\rho g h_1}{P_{atm}}\right)}\right]}{ln\left[\frac{(1 + \frac{\rho g h_3}{P_{atm}})}{(1 + \frac{\rho g h_1}{P_{atm}})}\right]} \Rightarrow \frac{\rho g}{P_{atm}} \cdot (h_1 - h_3)$$

$$\boxed{\gamma = \frac{h_1}{h_1 - h_3}}$$
(6)

Nesse sistema, aumenta-se a pressão utilizando uma bomba manual e, ao fazer isto, a coluna de com água tem sua altura alterada, assim medimos primeiro o h_1 e após parar de pressurizar o sistema e este entrar em equilíbrio, medimos h_3 , que é o estado final, assim podemos estimar o valor de γ .

3.2 Método de Ruchardt

É aplicado pressão ao recipiente preenchido por ar e com a esfera no tubo, agindo como êmbolo, após pressurizar abre-se o sistema rapidamente para deixar o processo adiabático acontecer, com isso ocorre uma variação da posição da bolinha, que passa a oscilar no tubo em um movimento harmônico simples. Tendo observado isso, podemos equacionar o sistema para buscar uma forma de cálcular o fator γ . A variação de volume

$$\Delta V = A \cdot y \text{ e } F = A \cdot P\Delta$$

$$PV^{\gamma} = \text{ constante } \longrightarrow V^{\gamma} \cdot dP + \gamma \cdot PV^{\gamma - 1} \cdot dV = 0$$

$$F = -\gamma \frac{PA^2}{V} \cdot y = ma$$

$$-\gamma \frac{PA^2}{V} \cdot y = m \frac{dy}{dt} \longrightarrow \underbrace{\frac{dy}{dt} + \frac{\gamma PA^2}{mV} \cdot y}_{\text{MHS}} = 0$$

$$w_0 = \sqrt{\frac{\gamma PA^2}{mV}}$$

A partir da equação da frequência angular podemos chegar na equação (4), e com isso podemos isolar o γ , que é o que queremos calcular, então temos

$$\gamma = 4\pi^2 \frac{mV}{PA^2T^2} \tag{7}$$

Figura 3: Montagem experimental do método de Ruchardt. Fonte: [1]

3.3 Zero absoluto

No sistema ilustrado na figura 4 o gás está à volume e pressão constante, então, ao entrar em contato com uma fonte de calor, nesse caso, um béquer contendo álguma substância à diferentes

temperaturas, com isso a pressão dentro da coluna de mercúrio dentro do barômetro sofre alteração. Essa pressão pode ser cálculada diretamente pela diferença de alturas, pois a pressão em um dos lados do tubo é nula.

Portanto, mantendo o volume constante, a pressão deve variar linearmente com a temperatura, de acordo com a (5), com isso podemos definir uma reta e a partir das propriedades dela estimar o coeficiente de dilatação β do gás.

Pelo método dos mínimos quadrados, podemos calcular o coeficiente angular da reta de tendência formada pelos dados coletados no experimento, com isso podemos montar a equação da reta e encontrar o valor de β .

Então temos P_0 como coeficiente linear e então, para o caso de temperatura zero, temos que

$$\beta = \frac{\alpha}{P_0} \tag{8}$$

Figura 4: Montagem do experimento do zero absoluto. Fonte: [1]

4 Resultados e discussão

4.1 Método de Clément-Desormes

Tabela 1: Medidas das alturas iniciais e finais h_1 e h_3 em cm.

Medida $\pm 0, 1(cm)$	1°	2°	3°
h_1	18, 1	16, 0	17, 6
h_3	5, 7	4	5,1

A partir desses valores medidos e aplicando o desvio padrão obtemos o coeficiente de expansão adiabática em torno de

$$\gamma=1,40\pm0,06$$

o resultado encontrado corresponde ao esperado para o fator γ do ar, um valor em torno de $\gamma \approx 1,40$. Todo o gás interno participa do processo completo, pois este obedece à lei (1) e então não há perda ou acréscimo no sistema. Para estimar o numero de mols que participam do processo, poderiámos usar a relação PV = nRT = NKT escrevendo em função de n

$$n = \frac{PV}{RT} = \frac{NK}{RT}$$

no entando, faltam informações para realizar esse cálculo, como as temperaturas que o sistema atinge, volume do recipiente ou mesmo número de moléculas.

4.2 Método de Ruchardt

No experimento temos um tubo (onde a esfera é colocada) de diametro d=16,0(mm) com isso podemos calcular a seção transversal do tubo, a pressão é de P=691(mmHg), a massa da esfera é de m=16,72(g) e o volume do recipiente é de V=10,400(mL). Após a montagem do sistema foi medido um período de oscilação de $T=(1,2\pm0.01)s$ Com esses valores em mãos somos capazes de usar a (7), e o resultado é

$$\gamma = 1, 3 \pm 0, 3$$

Podemos, então, comparar esse resultado com o obtido a partir do método de Clément-Desormes, fazemos

$$|1, 4 - 1, 3| < 2 \cdot (0, 3 + 0, 06)$$

e constatamos que as medidas são equivalentes.

O método de Clément-Desormes oferece maior confiabilidade que o de Ruchardt, pois neste, a ação humana no desenvolvimento do experimento se dá apenas na pressurização do recipiente, ao contrário do outro método, o qual a medição do período de oscilação é feito visualmente e portanto, pode ocasionar em erros.

Por fim, podemos verificar que o γ cálculado pelo método de Clément-Desormes se aproxima muito do valor esperado para um gás diâtomico, valor fornecidos na apostila [1]

4.3 Zero absoluto

Foi medida a pressão do gás em diferentes cenários, primeiro com o frasco mergulhado em água à temperatura ambiente, depois em gelo em fusão, após isso em nitrogênio líquido e por último em água em ebulição. As medidas disso estão na tabela 2.

Tabela 2: Medidas de temperatura e pressão coletadas no experimento.

Medida	Temperatura $\pm 0, 1(^{\circ}C)$	Pressão $\pm 0, 1(cmHg)$
1	24.7	69,2
2	1,0	62,8
3	-196.0	17,7
4	97,0	82,3

Figura 5: Gráfico de pressão em função da temperatura com linha de tendência.

Pelo método dos mínimos quadrados temos que o coeficiente angular deve ser de

$$\alpha = 0,223 \pm 0,007$$

e o linear é

$$P_0 = 62, 1 \pm 0, 8(cmHq)$$

portanto, com essas informações podemos cálcular o coeficiente de dilatação pela (8)

$$\beta = \frac{0,233}{62.1} = (0,00359 \pm 0,00012)^{\circ} C^{-1}$$

Esse resultado é próximo do valor esperado, citado na seção (2.2) e portanto pode ser considerada uma medida válida e o gás utilizado se comporta como um gás ideal. Além disso, também é então possível extrapolar o valor da temperatura a partir dessa relação linear da reta, escrevendo a função (5) considerando que à temperatura nula, a pressão também deverá ser zero, portanto

$$P(T) = 0 \Rightarrow P_0 \cdot \beta \cdot T_0 + P_0 = 0 \Rightarrow \boxed{T_0 = \frac{-1}{\beta}}$$

$$T_0 \approx (-278 \pm 9)^{\circ} C$$

Essa estimativa de temperatura do zero absoluto difere um pouco da medida esperada, de $\approx 273,15K$, no entando, ao levar em consideração o erro associado à essa grandeza, podemos aceita-la como uma boa aproximação.

5 Conclusão

Na primeira parte da prática foi calculado o fator γ dos gases usando os dois métodos, de Clément-Desormes e Ruchardt. Pelo primeiro foi entendido que todo o volume do gás participa do processo e comparando o valor encontrado com o tabelado [1], deve se tratar de um gás diatômico. Já na segunda parte, para estimar o zero absoluto foi criado um sistema que permitisse relacionar as grandezas presentes utilizando a (5) e utilizando o método dos mínimos quadrados em conjunto, para traçar a reta encontramos $\beta = (0,00359 \pm 0,00012)^{\circ}C^{-1}$ e $P_0 = (62,1\pm0,8)cmHg$, a partir disso conseguimos fazer o cálculo da temperatura $T_0 = (-278 \pm 9)^{\circ}C$ que é condizente com o esperado, algo próximo do 0K ou $-273,15^{\circ}C$.

6 Referências

- [1] J. Fabian Schneider, E. Ribeiro de Azevedo, *Laboratório de Física II: livro de práticas*, Instituto de Física de São Carlos, **2016**.
- [2] E. Riberido de Azevedo em Vídeo "Temperatura de Zero Absoluto", Complementos de Física, 2020.
- [3] E. Riberido de Azevedo em Vídeo "Determinação do coeficiente gamma = CP/CV do ar", Complementos de Física, **2020**.