1

Assignment 11

Matish Singh Tanwar

Abstract—This document contains a solution for a problem related to linear transformation.

Download all latex-tikz codes from

https://github.com/Matish007/Matrix-Theory-EE5609-/tree/master/Assignment 11

1 Problem

Let V be a finite-dimensional vector space and let T be a linear operator on V. Suppose that rank (T^2) = rank (T). Prove that the range and null space of T are disjoint, i.e., have only the zero vector in common.

2 SOLUTION

Given	$T: V \rightarrow V$ be a linear operator.
	$Rank(T^2)=Rank(T)$
	rum(1)
Rank of T and T^2	Let (a, a, a) be a basis for T then $\operatorname{Donk}(T)$ is linearly independent years.
Rank of 1 and 1	Let $(e_1, e_2,, e_n)$ be a basis for T , then Rank (T) is linearly independent vectors
	in the set $(Te_1, Te_2,, Te_n)$
	$\operatorname{Let}, \operatorname{Rank}(T) = \operatorname{Rank}(T^2)$
Rank Nullity Theorem	If Rank (T) =r then $(Te_1, Te_2,, Te_r)$ is the basis of range T.
	Similarly for T^2 , $(T^2e_1, T^2e_2,, T^2e_r)$ is the basis of range T^2
$\mathbf{v} \in \text{range}(\mathbf{T})$	$ \mathbf{v}=c_1Te_1+c_2Te_2++c_rTe_r $
v∈ nullspace(T)	$T(\mathbf{v})=0$
	$T(c_1Te_1 + c_2Te_2 + + c_rTe_r) = 0$
	$c_1T^2e_1 + c_2T^2e_2 + \dots + c_rT^2e_r = 0$
	But, $(T^2e_1, T^2e_2,, T^2e_r)$ is the basis of range T^2
	$S_{0,c_{1}=c_{2}==c_{r}=0}$
	Substituting these in \mathbf{v} we get $\mathbf{v}=0$
Conclusion	Hence from above it can be seen that when v belongs
	to both range(T) and nullspace(T) then \mathbf{v} is a zero vector.
	Hence, $\operatorname{range}(T)$ and $\operatorname{nullspace}(T)$ are disjoint.