Operational Amplifier (Op-Amp)

Circuit Diagram of an Op-Amp (IC 741)

Operational Amplifier (Op-Amp)

- An Op-Amp is a very high gain amplifier having a number of differential amplifier stages
- It has high input impedance (typically a few Megaohm)
- It has a low output impedance (less than 100Ω)

Op-Amp Model

In a good Op-Amp

$$A_{V} \rightarrow \infty$$

$$\mathsf{R}_{\mathsf{in}} o \infty$$

$$R_0 \rightarrow 0$$

If v_+ is even slightly higher than v_- , $v_o = +V_{cc}$ If v_+ is even slightly lower than v_- , $v_o = -V_{cc}$ Cannot be used as an amplifier by itself!

Consider the circuit shown below

$$v_{+} = 0 \quad v_{o} = -A_{v}v_{-}$$

$$\frac{v_{in} - v_{-}}{R_{1}} + \frac{v_{o} - v_{-}}{R_{2} + R_{o}} = \frac{v_{-}}{R_{in}}$$

$$v_{-} \left[\frac{1}{R_{2} + R_{o}} + \frac{1}{R_{1}} + \frac{1}{R_{in}} \right] - \frac{v_{o}}{R_{2} + R_{o}} = \frac{1}{R_{1}}v_{in}$$

$$- \frac{v_{o}}{A_{v}} \left[\frac{1}{R_{2} + R_{o}} + \frac{1}{R_{1}} + \frac{1}{R_{in}} \right] - \frac{v_{o}}{R_{2} + R_{o}} = \frac{1}{R_{1}}v_{in}$$

For
$$A_v \rightarrow \infty$$
, we get

$$\left|v_{o}\right| - \frac{1}{R_{2} + R_{O}} = \frac{v_{in}}{R_{1}}$$

$$\begin{bmatrix} v_0 \\ R_O + R_2 \end{bmatrix} R_2 = v_{out}$$

Gain
$$\frac{v_{out}}{v} = -\frac{R_2}{R_1}$$

For
$$A_{v} \rightarrow \infty$$
, we get $v_{o} \left[-\frac{1}{R_{2} + R_{o}} \right] = \frac{v_{in}}{R_{1}}$ and $v_{-} = -\frac{v_{o}}{A_{v}} \rightarrow 0$

 $\left| \frac{v_0}{R + R_1} \right| R_2 = v_{out}$ The (-) terminal is effectively at ground. This is referred to as "Virtual Ground"

Interesting Points

With
$$A_v \rightarrow \infty$$
,

Gain =
$$-R_2/R_1$$

(does not depend on A_v)

- (+) is at Ground
- (-) is at Virtual Ground

$$Z_{\text{in}} = R_1$$

 $Z_{\text{out}} = R_0 || R_2 \approx R_0$

Concept of Virtual Ground

- 1. V₋≈ 0 V (-) terminal is at ground potential
- 2. No Current Enters the (-) terminal of the Op-Amp Valid only when there is feedback connection between the output and the (-) terminal.

Characteristics of an ideal OP-Amp

- Input Resistance R_i = ∞
- Output Resistance R_o= 0
- Voltage Gain A_v = ∞
- Bandwidth = ∞ (i.e. can work over a wide range of frequencies)
- Perfect balance i.e $v_0 = 0$ when $v_1 = v_2$
- Characteristics do not drift with temperature

Ideal Op-Amp analysis

Voltage Gain $A_v = \infty$ or, $v_o/v_d = \infty$ or, $v_d = v_o/\infty = 0$ [since v_o is finite] Therefore, $v_1 - v_2 = 0$ or,

ii)
$$V_1 = V_2$$

Simple OP-AMP Circuits

1. Inverting Amplifier

Using KVL,

$$v_1 - i_1R_1 = 0$$

 $\Rightarrow i_1 = v_1/R_1$
&
 $0 - i_1R_f - v_o = 0$
or, $v_o = -i_1R_f = -v_1R_f/R_1$
 $v_0/v_1 = -R_f/R_1$

2. Non Inverting Amplifier

$$v_{-} = v_{+} = v_{1}$$

$$i = \frac{v_{1}}{R_{1}} = \frac{v_{o} - v_{1}}{R_{f}}$$

$$v_{o} = R_{f} \left[\frac{1}{R_{1}} + \frac{1}{R_{f}} \right] v_{1}$$

$$\frac{v_{o}}{v_{o}} = \left(1 + \frac{R_{f}}{R_{1}} \right)$$

3. Voltage Follower

4. Summing Amplifier

Use superposition (i.e. consider one source at a time and add their respective outputs)

Can also be done directly

$$v_o = -\left[\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right]$$

Difference Amplifier (or Voltage Subtractor)

Use Superposition

(can also be done directly) R₁

If
$$v_2=0$$
, $v_{o1}=-\frac{R_2}{R_1}v_1$

If
$$v_1=0$$
, $v_{o2} = v_2 \left[\frac{R_2}{R_1 + R_2} \right] \left[1 + \frac{R_2}{R_1} \right]$
$$= v_2 \frac{R_2}{R}$$

Therefore,
$$v_o = v_{o1} + v_{o2} = \frac{R_2}{R_1}(v_2 - v_1)$$

Difference Gain = R_2/R_1

Integrator

$$i = \frac{v_1}{R}$$
 $v_o = -\frac{1}{C} \int_0^t i dt$ with $v_o(0) = 0$ V_1

Therefore,

$$v_o = -\frac{1}{RC} \int_0^t v_1 dt$$
 with $v_o(0) = 0$

15

Differentiator

$$v_1 = \frac{1}{C} \int_0^t i dt \quad \text{with } v_1(0) = 0$$

$$v_0 = -iR$$

Therefore, $v_1 = -\frac{1}{RC} \int_0^t v_o dt$ or $v_o = -RC \frac{dv_1}{dt}$

Example

Find v_o in the given circuit.

$$v_{-} = v_{+} = 2 \times \frac{20}{30} = \frac{4}{3}$$

$$\frac{v_{o} - v_{-}}{20} = \frac{v_{-} - (-3)}{10}$$

$$\frac{v_{o}}{20} = v_{-} \left(\frac{1}{10} + \frac{1}{20}\right) + \frac{3}{10}$$

$$v_{0} = 3v_{-} + 6 = 10 \text{ V}$$

Example

Find the gain v_o/v_i in the given circuit.

$$v_{-} = v_{+} = 0$$
 Virtual Ground at (-)

$$\frac{v_i}{R_1} = -\frac{v}{R} \qquad \Rightarrow \quad v = -\frac{R}{R_1} v_i$$

$$\frac{v_o - v}{R_2} = \frac{v}{R} + \frac{v}{R} = \frac{2v}{R}$$

$$v_o = v \left[1 + \frac{2R_2}{R} \right]$$

$$= -\left[\frac{R}{R_1} \right] \left[1 + \frac{2R_2}{R} \right] v_i$$

$$= -\left(\frac{R + 2R_2}{R_1} \right) v_i$$

Gain
$$A_V = \frac{v_o}{v_i} = -\left(\frac{R + 2R_2}{R_1}\right)$$

Voltage Controlled Current Source

(with grounded load)

$$i_{1} = \frac{v - v_{IN}}{2R} = \frac{v_{O} - v}{2R} \implies 2v - v_{O} = v_{IN}$$

$$i_{2} = \frac{v}{2R} = \frac{v_{L} - v}{R} \implies v_{L} = \frac{3}{2}v$$

$$i_{L} = \frac{v_{O} - v_{L}}{R} - \frac{v_{L} - v}{R} = \frac{v_{O} - 3v + v}{R} = \frac{v_{O} - 2v}{R}$$

Therefore,
$$i_L = -\frac{v_{IN}}{R}$$

Note that i_L does not depend on R_L, implying that we have got a current source!

General Condition:

$$R_1 = R_2 \& R_3 = R_4 + R_5$$

Creating an effectively "Negative Resistance"

What is "Negative Resistance"?

Normal Resistance

$$\frac{v_i}{i_i} = R_i$$

Negative $\frac{v_i}{i} = -R_i$

$$\frac{v_i}{i_i} = -R_i$$

Creating an effectively "Negative Resistance"

Let $v_0 = \text{opamp output voltage}$ and $v_+=v_-=v_i$

$$\frac{v_i}{R_i} = \frac{v_O - v_i}{R} \implies v_O = v_i \left(1 + \frac{R}{R_i} \right)$$

$$i_i = \frac{v_i - v_O}{R} = -\frac{v_i}{R_i}$$

Therefore, $\frac{v_i}{i_i} = -R_i$

$$\frac{v_i}{i_i} = -R_i$$
 Negative Resistance

Using Capacitors to make Inductors

(practical to do only small values of inductances)

Using phasors, show that

$$\frac{v_i}{i_i} = \frac{R_L + j\varpi RCR_L}{(1 + j\varpi CR_L)} = R_L + j\varpi RCR_L$$

Precision Rectifier

The simple half-wave and full-wave rectifiers we saw earlier have one big drawback – They do not work for small voltages (say a few millivolts). The input voltage must cross the threshold which forward biases the diode for rectification to occur.

Using Op-Amps, we can design rectifiers which do not have this disadvantage.

Half-Wave Precision Rectifier

You will be making this circuit in EC102 Lab next semester

What happens when you reverse the diodes?

Build a full wave rectifier using these two half-wave rectifiers and a difference amplifier – needs three opamps!

Full-Wave Precision Rectifier

