Gibbs Sampler

Gibbs sampler is a generalization of slice sampler. It isn't limited to the uniform distribution of subgraph.

Gibbs sampler uses the true conditional distributions, *full conditional distribution*, associated with the target distribution to generate from that distribution.

Slice Sampler v.s Gibbs Sampler

Similate an uniform distribution on the set:

$$\mathscr{S}(f) = \{(x, y, u) : 0 \le u \le f(x, y)\}$$

Algorithm for Slice Sampler

Move uniformly in one component at a time. Start at a point (x, y, u) in $\mathcal{S}(f)$, we generate

- 1. X along the x -axis from the uniform distribution on $\{x: u \leq f(x,y)\}$
- 2. Y along the y -axis from the uniform distribution on $\{y: u \leq f(x',y)\}$
- 3. *U* along the *u* -axis from the uniform distribution on [0, f(x', y')]

Algorithm for Two-Stage Gibbs Sampler

Take $X_0 = x_0$. For $t = 1, 2, \ldots$, generate

- 1. $Y_t \sim f_{Y|X}\left(\cdot \mid x_{t-1}\right)$
- 2. $X_t \sim f_{X|Y} \left(\cdot \mid y_t \right)$

Disccusion

- 1. For slice sampler, if we treat y as constant, then step 1. and step 3. is exactly step 1 in slice sampling, i.e. from $f(x|y) = f(x,y)/f(y) \propto f(x,y)$.
- 2. For slice sampler, the order x y u can be changed.
- 3. For two-stage Gibbs sampler, if f(x,y) satisfies the *positive condition* the stationary distribution for the chain X is f(x) and the transition density for it is

$$K\left(x,x^{st}
ight)=\int f_{Y\mid X}(y\mid x)f_{X\mid Y}\left(x^{st}\mid y
ight)dy$$

Consider a pair of random variables (x, z), where x is the observed part and z is the missing part.

Their joint distribution is $f(x,z|\theta)$ and $g(x|\theta)=\int f(x,z|\theta)dz$. Then, the complete-data and imcomplete-data likelehood are:

$$L^{c}(\theta \mid \mathbf{x}, \mathbf{z}) = f(\mathbf{x}, \mathbf{z} \mid \theta) \text{ and } L(\theta \mid \mathbf{x}) = g(\mathbf{x} \mid \theta)$$

The conditional density of missing part is:

$$k(\mathbf{z} \mid \mathbf{x}, heta) = rac{L^c(heta \mid \mathbf{x}, \mathbf{z})}{L(heta \mid \mathbf{x})}$$

Gibbs sampler

- 1. $\mathbf{z}|\theta \sim k(\mathbf{z} \mid \mathbf{x}, \theta)$
- 2. $\theta | \mathbf{z} \propto L^c(\theta \mid \mathbf{x}, \mathbf{z})$

EM Algorithm

1. E-step

$$h(heta) = \mathbb{E}_z \left[L^c(heta \mid x, z) \mid x, heta_t
ight] = \int L^c(heta \mid x, z) k\left(z \mid x, heta_t
ight) \mathrm{d}z$$

2. M-step

$$heta_{t+1} = rg \max h(heta)$$

Discussion

- 1. The step 1. of Gibbs sampler and EM algorithm is to deal with z.
 - a. EM algorithm integrals z;
 - b. Gibbs sampler samples z.

Actually, in EM algorithm, $h(\theta)$ can be viewed as taking average likelihood according to the samples from $z|\theta$.

- 2. The step 2. of Gibbs sampler and EM algorithm is to update θ .
 - a. EM algorithm find θ maximize the Q-function;
 - b. Gibbs sampler samples θ from the full conditional distribution.