Engineering mathematics II Final exam., 6/16/2020

This is an open-book test. The total score is 110 points. Please show your computations.

1. Let us consider a linear operator T acting on $\mathcal{P}_1 = \{ax + b | a, b \in \mathcal{R}\}$. It is defined by

$$T(x) = 3x - 7$$
, and $T(1) = -2x + 1$.

- (a). (5%) T(ax + b) = ? $< \text{Hint:} > T(ax + b) = a \cdot T(x) + b \cdot T(1).$
- (b). (5%) Let the matrix of T with respect to the ordered basis $B = \{x, 1\}$ be denoted as $[T]_B$. Find $[T]_B$.
- (c). (5%) Find the eigenvalues of $[T]_B$.
- (d). (5%) Is $[T]_B$ orthogonally diagonalizable?
- (e). (5%) Let S denote the inverse transformation of T. For a given pair of real numbers α and β , then, $S(\alpha x + \beta) = ?$
- (f). (5%) Find the matrix of S with respect to B.
- 2.(10%) Assume that $\underline{\underline{A}}$ is an invertible matrix. Furthermore, assume that λ is an eigenvalue of $\underline{\underline{A}}$. Let $\underline{\underline{x}}$ be an eigenvector of $\underline{\underline{A}}$ corresponding to λ . Show that $\underline{\underline{x}}$ is also an eigenvector of $\underline{\underline{A}}^{-1}$, and the corresponding eigenvalue is $1/\lambda$. < Hint: > Start with $\underline{\underline{A}}\underline{\underline{x}} = \lambda\underline{\underline{x}}$.
- 3. Consider the inner-product space of functions defind over the interval between 0 and 1, with the inner product $\langle p(x), q(x) \rangle = \int_0^1 p(x) \, q(x) \, dx$. Let us consider two vectors: f(x) = x and $g(x) = e^{-x}$.
- (a). (5%) Find the norms of f(x) and g(x), respectively.
- (b). (5%) Find the angle between f(x) and g(x).
- (c). (5%) Find the distance between f(x) and g(x).
- (d). (10%) Let W denote the span of f(x) and g(x). Find an orthonormal basis for W.
- 4. Consider the matrix below:

$$\underline{\underline{A}} = \left[\begin{array}{cc} 1 & \sqrt{10} \\ \sqrt{10} & 4 \end{array} \right] .$$

(a). (10%) Find a matrix $\underline{\underline{P}}$ such that $\underline{\underline{P}}^{-1}\underline{\underline{A}}\,\underline{\underline{P}}=\underline{\underline{D}}$ is a diagonal matrix.

- (b). (5%) Continued from the preceding subproblem, $\underline{D} = ?$
- (c). (5%) Is it possible to find a matrix $\underline{\underline{Q}}$ such that $\underline{\underline{Q}}^T \underline{\underline{A}} \underline{\underline{Q}}$ is a diagonal matrix?

5.(10%) Consider the system of over-determined system of linear equations, wherein there are more equations than unknowns:

$$\begin{cases} 2x + y = 2 \\ x - 2y = 5 \\ 3x + y = -1 \\ x + 3y = -4 \\ 7x - y = 6 \end{cases}$$

Find the LSE (least square error) solution to this system of linear equations.

6. Consider the complex matrices below:

$$\underline{\underline{A}} = \left[\begin{array}{cc} 1+2i & 3 \\ 1 & 1+2i \end{array} \right] \; , \quad \underline{\underline{B}} = \left[\begin{array}{cc} 3 & 1+2i \\ 1-2i & 1 \end{array} \right] \; , \quad \underline{\underline{C}} = \left[\begin{array}{cc} 3 & 1+2i \\ 1+2i & 1 \end{array} \right] \; .$$

- (a). (5%) One of those matrices is an Hermitian matrix. Please identify it.
- (b). (5%) Continued from the preceeding subproblem, find the eigenvalues of this Hermitian matrix.
- (c). (5%) Continued from the preceeding subproblem, is this Hermitian matrix also a unitary matrix?