BE GRAPHES

Samuel LAGER & Jin Yu TUNG

Plan

Introduction
Test de validité
Test de performance
Problème ouvert

Dijkstra

AStar

Tests de validité

Le nombre de sommet visités par les deux algorithmes est différent

Tests de validité

Chemin inexistant

Départ

Destination

Chemin simple

Carte carré-dense

AStar est 2.8 fois plus rapide que Dijkstra.

Carte rhône-alpes

AStar est 1.7 fois plus rapide que Dijkstra.

Carte carré-dense

AStar est 2.4 fois plus rapide que Dijkstra.

Carte rhône-alpes

AStar est 3 fois plus rapide que Dijkstra.

Optimisation du tas binaire

	Tas binaire
insert()	O(log n)
remove()	O(log n)
findMin()	O(1)
indexOf()	O(n)

Optimisation du tas binaire

Optimisation du tas binaire

	Tas binaire	Arbre binaire de recherche
insert()	O(log n)	O(h _{max})
remove()	O(log n)	O(h _{max})
findMin()	O(1)	O(h _{max})
indexOf()	O(n)	O(h _{max})

Problème ouvert 3 binaire

Problème ouvert

Problème ouvert

BE GRAPHES

Samuel LAGER & Jin Yu TUNG

