Seoul Bike Dataset

Andrew Danda, 구민우, 방설화

2024-04-22

Question

Can we predict the number of riders using the Seoul Bike Sharing based on the date and the weather?

Methods

We plan on using Lasso, Ridge, Decision tree and random forest for this dataset.

The Dataset

This is a dataset containing Seoul Bike sharing ridership from December 1, 2017 to November 30, 2018.

-	
Dependent variable	
$Rented_Bike_Count$	The number of bikes rented
Independent variables	
1. Time Varibles	
\overline{Date}	The Date (dd/mm/yyyy)
Hour	The Hour (integer between 1 and 24)
Holiday	Dummy variable if the day is a holiday or not
Weekend	Dummy variable if the day is a weekend or not
Functional Day	Dummy variable if the bikes were functional or not
$Seasons_Spring$	Dummy variable if the season is Spring or not
$Seasons_Summer$	Dummy variable if the season is Summer or not
$Seasons_{A}utumn \\$	Dummy variable if the season is Autumn or not
$Seasons_Winter$	Dummy variable if the season is Winter or not
2. Weather varibles	
$\overline{Temperature}$	Temperature in Celsius
Humidity	Humidity (%)
$Wind_Speed$	Wind speed in meters per second
Visibility	Visibility in Kilometers
$Dew_Point_Temperature$	Dew Point Temperature in Celsius
$Solor_Radiation$	Solar Radiation in millijoules Per square meter
Rainfall	Rainfall in millimeters
Snow fall	Snowfall in centimeters

```
library(tidyverse)
library(dplyr)
library(fastDummies)
bikeData <- read.csv("SeoulBikeData.csv", stringsAsFactors=FALSE, fileEncoding="latin1
# Clean dataset
# rename columns
bikeData <- bikeData %>%
  rename ("Rented_Bike_Count" = "Rented.Bike.Count",
         "Temperature" = "Temperature..C.",
         "Humidity" = "Humidity...",
         "Wind_Speed"= "Wind.speed..m.s.",
         "Visibility" = "Visibility..10m.",
         "Dew_Point_Temperature" = "Dew.point.temperature..C.",
         "Solar_Radiation" = "Solar.Radiation..MJ.m2.",
         "Rainfall" = "Rainfall.mm.",
         "Snowfall" = "Snowfall..cm.",
         "Functioning_Day" = "Functioning.Day")
#divide the visibility by 100 to change it's units from 10s of meters to kilometers
bikeData$Visibility <- bikeData$Visibility / 100</pre>
#add weekend:
bikeData$Weekend <- ifelse(lubridate::wday(as.Date(bikeData$Date,format = "%d/%m/%Y"),
#lubridate::wday(as.Date("21/04/2024",format = "%d/%m/%Y"),label = TRUE, week_start =
# Dummy variables
bikeData$Holiday <- ifelse(bikeData$Holiday == "No Holiday", 0, 1)
bikeData$Functioning_Day <- ifelse(bikeData$Functioning_Day == "Yes", 1, 0)
#Holiday Dummies
bikeData <- bikeData %>% dummy_cols(select_columns = c("Seasons"))
#remove all data where functioning day is false
#We will only use data where the bikes are functioning.
bikeData <- bikeData %>% filter(Functioning_Day == 1)
summary(bikeData)
```

```
Rented_Bike_Count Hour
   Date
                                            Temperature
               Min. : 2.0 Min. : 0.00 Min. :-17.80
Length:8465
               1st Qu.: 214.0 1st Qu.: 6.00 1st Qu.: 3.00
Class :character
               Median: 542.0 Median: 12.00 Median: 13.50
Mode :character
               Mean : 729.2
                             Mean :11.51 Mean : 12.77
                3rd Qu.:1084.0 3rd Qu.:18.00 3rd Qu.: 22.70
               Max. :3556.0
                             Max. :23.00 Max. : 39.40
  Humidity
              Wind Speed
                         Visibility Dew Point Temperature
Min. : 0.00
             Min. :0.000 Min. : 0.27 Min. :-30.600
1st Qu.:42.00
            1st Qu.:0.900 1st Qu.: 9.35 1st Qu.: -5.100
Median: 57.00 Median: 1.500 Median: 16.90 Median: 4.700
Mean :58.15 Mean :1.726 Mean :14.34 Mean : 3.945
3rd Qu.:74.00
             3rd Qu.:2.300 3rd Qu.:20.00 3rd Qu.: 15.200
Max. :98.00
             Max. :7.400 Max. :20.00 Max. : 27.200
Solar_Radiation Rainfall
                              Snowfall
                                             Seasons
Min. :0.0000
             Min. : 0.0000 Min. :0.00000 Length:8465
1st Ou.:0.0000
             Median: 0.0000 Median: 0.00000 Mode: character
Median :0.0100
Mean :0.5679 Mean : 0.1491 Mean :0.07769
3rd Qu.:0.9300 3rd Qu.: 0.0000 3rd Qu.:0.00000
Max. :3.5200 Max. :35.0000 Max. :8.80000
  Holiday
             Functioning Day Weekend
                                        Seasons Autumn
Min. :0.0000
              Min. :1
                          Min. :0.0000 Min. :0.0000
1st Ou.:0.0000
             1st Qu.:1
                          1st Qu.:0.0000 1st Qu.:0.0000
Median :0.0000
             Median :1
                          Median :0.0000 Median :0.0000
Mean :0.0482
              Mean :1
                          Mean :0.2884 Mean :0.2288
3rd Ou.:0.0000
              3rd Ou.:1
                          3rd Ou.:1.0000 3rd Ou.:0.0000
Max. :1.0000
                          Max. :1.0000 Max. :1.0000
              Max. :1
Seasons_Spring
             Seasons_Summer Seasons_Winter
Min. :0.0000
             Min. :0.0000 Min. :0.0000
1st Qu.:0.0000
             1st Qu.:0.0000 1st Qu.:0.0000
             Median :0.0000
                            Median :0.0000
Median :0.0000
             Mean :0.2608 Mean :0.2552
Mean :0.2552
3rd Qu.:1.0000
              3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :1.0000
             Max. :1.0000
                            Max. :1.0000
```