Elements of Signal Theory and Control

Bachelor in Data Science and Artificial Intelligence

Prof. Andrea Danani

IDSIA - Instituto Dalle Molle di Studi sull'Intelligenza Artificiale

AA 2024-25

Index

Vector Spaces

Norms and scalar products

Fourier Series

Fourier transform

DFT

Fast Fourier Transform

The Laplace Transform

Zeta Transform

Vector Spaces

Definition

- \blacktriangleright A vector space V is a set that is closed under finite vector addition and scalar multiplication. If scalars belong to a field \mathbb{K} , V is called a vector space over \mathbb{K} .
- ▶ V is a vector space if addition and scalar multiplication obey the following rules $(x,y,z \in V , a,b \in \mathbb{K})$:
 - 1. x + y = y + x (commutativity);
 - 2. x + (y + z) = (x + y) + z (associativity);
 - 3. there exists a null vector, $0 \in V$: 0 + x = x + 0;
 - 4. $\forall x \in V, \exists -x \in V : x + (-x) = 0$;
 - 5. a(x + y) = ax + ay;
 - 6. (a + b)x = ax + bx;
 - 7. a(b x)=(a b) x:
 - 8. $\forall x \in V$, 1x = x.

Examples

1. The set $\mathcal{P}_2 = \{a_0 + a_1x + a_2x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$ of quadratic polynomials is a vector space under the usual operations of polynomial addition

$$(a_0 + a_1x + a_2x^2) + (b_0 + b_1x + b_2x^2) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$

and scalar multiplication.

$$r \cdot (a_0 + a_1 x + a_2 x^2) = (ra_0) + (ra_1)x + (ra_2)x^2$$

2. The set of 3×3 matrices

$$\mathcal{M}_{3\times 3} = \{ \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \mid a_{i,j} \in \mathbb{R} \}$$

Examples

1. The set $\mathcal{P}_2 = \{a_0 + a_1x + a_2x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$ of quadratic polynomials is a vector space under the usual operations of polynomial addition

$$(a_0 + a_1x + a_2x^2) + (b_0 + b_1x + b_2x^2) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$

and scalar multiplication.

$$r \cdot (a_0 + a_1 x + a_2 x^2) = (ra_0) + (ra_1)x + (ra_2)x^2$$

2. The set of 3×3 matrices

$$\mathcal{M}_{3\times 3} = \{ \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \mid a_{i,j} \in \mathbb{R} \}$$

is a vector space under the usual matrix addition and scalar multiplication.

Subspace and Basis

- ▶ W is a *subspace* of V if $\{a, b \in \mathbb{K} \land x, y \in W\} \Rightarrow ax + by \in W$
- ▶ $\{\mathbf{v}_i, i = 1...n\} \in V$ are linearly independent if

$$\sum_{i=1}^{r} c_i \mathbf{v}_i = \mathbf{0} \quad \Longrightarrow \quad c_1 = c_2 = \dots = c_n = 0 \tag{1}$$

Otherwise, they are said to be *linearly dependent*.

- The set of vectors $B = \{\mathbf{v}_i \in V, i = 1...n\}$ is called a *basis* of V if the vectors are linearly independent and each vector $\mathbf{x} \in V$ can be uniquely expressed as a linear combination of the vectors in B, that is $\mathbf{x} = \sum_{i=1}^n c_i \mathbf{v}_i$. The coefficients c_i are called the *coordinates* of the vector \mathbf{x} relative to the basis B.
- ► The minimal number of vectors generating the vector space *V* is called the dimension of *V*.

Subspace

Example: In the vector space \mathbb{R}^2 , the line y = 2x

$$S = \left\{ \begin{pmatrix} a \\ 2a \end{pmatrix} \mid a \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} a \mid a \in \mathbb{R} \right\}$$

is a subspace. The operations, as required by the definition, are the ones from \mathbb{R}^2 . We can check all the conditions to show it is a vector space, but the next result gives an easier way.

Example: This subset of $\mathcal{M}_{2\times 2}$ is a subspace.

$$S = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} a + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} b \mid a, b \in \mathbb{R} \right\}$$

Subspace

Example: In the vector space \mathbb{R}^2 , the line y = 2x

$$S = \left\{ \begin{pmatrix} a \\ 2a \end{pmatrix} \mid a \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} a \mid a \in \mathbb{R} \right\}$$

is a subspace. The operations, as required by the definition, are the ones from \mathbb{R}^2 . We can check all the conditions to show it is a vector space, but the next result gives an easier way.

Example: This subset of $\mathcal{M}_{2\times 2}$ is a subspace.

$$S = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} a + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} b \mid a, b \in \mathbb{R} \right\}$$

Example: This is not a subspace of \mathbb{R}^3 .

$$T = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x + y + z = 1 \right\}$$

It is a subset of \mathbb{R}^3 but it is not a vector space. One condition that it violates is that it is not closed under vector addition: here are two elements of T that sum to a vector that is not an element of T.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

(Another reason that it is not a vector space is that it does not contain the zero vector.)

Example: The vector space of quadratic polynomials $\mathcal{P}_2 = \{a_0 + a_1x + a_2x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$ has a subspace comprised of the linear polynomials $L = \{b_0 + b_1x \mid b_0, b_1 \in \mathbb{R}\}$. To verify that, take scalars $r, s \in \mathbb{R}$ and consider a linear combination.

$$r(b_0 + b_1x) + s(c_0 + c_1x) = (rb_0 + sc_0) + (rb_1 + sc_1)x$$

The right side is a linear polynomial with real coefficients, and so is a member of L. Thus L is closed under linear combinations.

Example: Another subspace of \mathcal{P}_2 is the set of quadratic polynomials with all three coefficients equal.

$$M = \{a + ax + ax^2 \mid a \in \mathbb{R}\} = \{(1 + x + x^2)a \mid a \in \mathbb{R}\}\$$

Verify that it is a subspace by taking two scalars $r, s \in \mathbb{R}$ and considering a linear combination of polynomials with all three coefficients the same.

$$r(a + ax + ax^{2}) + s(b + bx + bx^{2}) = (ra + sb) + (ra + sb)x + (ra + sb)x^{2}$$

The result is a quadratic polynomial with all three coefficients the same, and so M is closed under linear combinations.

Example: The vector space of quadratic polynomials $\mathcal{P}_2 = \{a_0 + a_1x + a_2x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$ has a subspace comprised of the linear polynomials $L = \{b_0 + b_1x \mid b_0, b_1 \in \mathbb{R}\}$. To verify that, take scalars $r, s \in \mathbb{R}$ and consider a linear combination.

$$r(b_0 + b_1x) + s(c_0 + c_1x) = (rb_0 + sc_0) + (rb_1 + sc_1)x$$

The right side is a linear polynomial with real coefficients, and so is a member of L. Thus L is closed under linear combinations.

Example: Another subspace of \mathcal{P}_2 is the set of quadratic polynomials with all three coefficients equal.

$$M = \{a + ax + ax^2 \mid a \in \mathbb{R}\} = \{(1 + x + x^2)a \mid a \in \mathbb{R}\}$$

Verify that it is a subspace by taking two scalars $r, s \in \mathbb{R}$ and considering a linear combination of polynomials with all three coefficients the same.

$$r(a + ax + ax^2) + s(b + bx + bx^2) = (ra + sb) + (ra + sb)x + (ra + sb)x^2$$

The result is a quadratic polynomial with all three coefficients the same, and so M is closed under linear combinations.

Vector decomposition in a given basis

Let $\{\mathbf{v}_i, i=1...n\}$ be a basis of V. Then $\mathbf{x} \in V$ is given by

$$\mathsf{x} = \sum_{i=1}^n \alpha_i \mathsf{v}_i$$

To obtain the coordinates α_i of x, one has to solve the corresponding linear system

Example: Writing the vector $\mathbf{v} = (4, -3, 2)$ using the basis $v_1 = (1, 0, 0)$, $v_2 = (1, 1, 0)$ e $v_3 = (1, 1, 1)$, one obtains the following linear system:

$$\begin{cases} x + y + z = 4 & x = 2 \\ x + y = -3 & \Rightarrow y = -5 \\ x = 2 & z = 7 \end{cases}$$

Vector decomposition in a given basis

Let $\{\mathbf v_i, i=1...n\}$ be a basis of V. Then $\mathbf x\in V$ is given by

$$\mathbf{x} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i$$

To obtain the coordinates α_i of x, one has to solve the corresponding linear system

Example: Writing the vector $\mathbf{v} = (4, -3, 2)$ using the basis $v_1 = (1, 0, 0)$, $v_2 = (1, 1, 0)$ e $v_3 = (1, 1, 1)$, one obtains the following linear system:

$$\begin{cases} x + y + z = 4 & x = 2 \\ x + y = -3 & \Rightarrow y = -5 \\ x = 2 & z = 7 \end{cases}$$

Exercises

- 1. Write the vector $\mathbf{v}=(1,-2,5)$ as linear combination of the vectors $e_1=(1,1,1),\ e_2=(1,2,3)$ and $e_3=(2,-1,-1).$ Is $\{e_1,e_2,e_3\}$ a basis for \mathbb{R}^3 ?
- 2. For which value of k belongs the vector $\mathbf{v} = (1, -2, k)$ to the subspace of R^3 generated by the vectors $\mathbf{x} = (3, 0, -2)$ and $\mathbf{y} = (2, -1, -5)$?
- 3. Show that the vectors $e_1 = (1, -1, 0)$, $e_2 = (1, 3, -1)$ and $e_3 = (5, 3, -2)$ are not a basis of \mathbb{R}^3 .
- 4. Let W be the space generated by the following polynoms:

$$p_1 = t^3 - 2t^2 + 4t + 1$$
 , $p_2 = 2t^3 - 3t^2 + 9t - 1$
 $p_3 = t^3 + 6t - 5$, $p_4 = 2t^3 - 5t^2 + 7t + 5$

Determine the dimension of W and find a basis for this space.

Norms and scalar products

Norm and distance

- ► V is called a normed space, if to each vector there corresponds a certain non-negative real number called the norm of the vector, such that the following conditions are satisfied:
 - 1. $\|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$ (identity axiom);
 - 2. $\|\lambda x\| = |\lambda| \|x\|$ (homogeneity axiom);
 - 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality).
- ► The distance ρ between two vectors is defined by $\rho(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|$
- ▶ One defines in \mathbb{C}^n the *p*-norm of a vector $\mathbf{x} = [\xi_1, \dots, \xi_n]^T$ by the formulas

$$\|\mathbf{x}\|_{p} = (|\xi_{1}|^{p} + \dots + |\xi_{n}|^{p})^{\frac{1}{p}}, \quad \|\mathbf{x}\|_{\infty} = \max_{i} |\xi_{i}|$$

The same definitions hold for the distance between two vectors.

Scalar product

- ▶ A function < , >: $V \times V \rightarrow \mathbf{C}$ is called a *scalar product* on V, if the following properties are satisfied:
 - 1. $x \neq 0 \Rightarrow \langle x, x \rangle > 0$ (positive definite);
 - 2. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (hermitian);
 - 3. $\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$ (sesquilinear form);
- ► A scalar product induces a norm on V given by $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. These norms are called *hilbertian norms*.
- ▶ $|\langle x, y \rangle| \leq ||x|||y||$ (Cauchy-Schwarz inequality)
- \blacktriangleright Two vectors x and y are said to be *orthogonal* when their scalar product is zero.

Norm and scalar product: exercises

1. Show that the following is a scalar product in \mathbb{R}^2 :

$$< u, v > = x_1y_1 - x_1y_2 - x_2y_1 + 3x_2y_2,$$

with
$$u = (x_1, x_2)$$
 and $v = (y_1, y_2)$.

- 2. Let V be the vector space of the polynoms, where the scalar product is given by $\langle f,g \rangle = \int_0^1 f(t) \ g(t) \ dt$.
 - ► Show that <> defines a scalar product
 - ► f(t) = t + 2 and $g(t) = t^2 2t 3$, find (i)< f, g > and (ii)||f||

Orthonormal basis decomposition

If the basis $\{e_i, i = 1 \dots n\}$ is *orthonormal*, that is:

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij}$$

then, the vector $\mathbf{v} \in V$ can be written as:

$$\mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{e}_i$$

and the coordinates of \mathbf{v} in the orthonormal basis $\{\mathbf{e}_i\}$ are given by:

$$\langle \mathbf{v}, \mathbf{e}_j \rangle = \sum_{i=1}^n \alpha_i \langle \mathbf{e}_i, \mathbf{e}_j \rangle = \sum_{i=1}^n \alpha_i \delta_{ij} = \alpha_j$$

Exercises

► Show that

$$e_1 = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$$
 $e_2 = (-2/\sqrt{6}, 1/\sqrt{6}, 1/\sqrt{6})$
 $e_3 = (0, -1/\sqrt{2}, 1/\sqrt{2})$

is an orthonormal basis of \mathbb{R}^3 .

Find the coordinates of the vector $\mathbf{v} = (1, 0, 1)$ in the previous basis.

$$lpha_1=\langle \mathbf{v},\mathbf{e}_1
angle=2/\sqrt{3}$$
 $lpha_2=\langle \mathbf{v},\mathbf{e}_2
angle=-1/\sqrt{6}$ $lpha_3=\langle \mathbf{v},\mathbf{e}_3
angle=1/\sqrt{2}$

Orthogonal projection

▶ The orthogonal complement of the set $W \subset V$ is the set W^{\perp} defined by

$$W^{\perp} := \{ \mathbf{x} \in V : \langle \mathbf{x}, \mathbf{y} \rangle = 0, \forall \mathbf{y} \in W \}$$

 W^{\perp} is a subspace of V (even if W is not)

▶ $V_n \subset V$ generated by the set $\{x_1, \ldots, x_n\}$,

$$\forall \mathsf{x} \in V \; \exists \mathsf{y} \in V_n : \mathsf{x} = \mathsf{y} + \mathsf{z}, \; \text{with} \; \mathsf{z} \in V_n^{\perp}$$

y is the orthogonal projection of x on V_n and it holds

$$\|\mathbf{x} - \mathbf{y}\| \leqslant \|\mathbf{x} - \mathbf{y}'\|, \ \forall \mathbf{y}' \in V_n$$
.

If $\{x_i, i = 1...n\}$ is an orthogonal family, then y is given by

$$\mathbf{y} = \sum_{k=1}^{n} \frac{\langle \mathbf{x}, \mathbf{x}_{k} \rangle}{\|\mathbf{x}_{k}\|^{2}} \mathbf{x}_{k}$$

Orthogonal projection

Figura: The orthogonal projection y of x on V_2 is also the point of V_2 with the minimal distance to x

Orthogonal projection: exercises

- 1. Find the orthogonal projection of the vector $\mathbf{v}=(3,-2,5)$ in the subspace generated by the vectors $\mathbf{v}_1=(1,0,-1)$ and $\mathbf{v}_2=(-2,-1,4)$.
- 2. An important class of vector spaces with complex scalar product is that of Hilbert Spaces, which an example is given by $V = L^2[a, b]$, defined as follows:

$$V = L^{2}[a, b] = \{f : [a, b] \to \mathbf{C}, \int_{a}^{b} |f(x)|^{2} dx < \infty\}$$

$$\Rightarrow \langle f, g \rangle := \int_a^b f(x) \overline{g(x)} dx$$

Find in $L^2[0,1]$ the orthogonal projection of the function $f(t) = \sin(\pi t/2)$ in the subspace of dimension 2 generated by the function $x_1(t) = 1$ and $x_2(t) = t$.

