COM S 6810 Theory of Computing

February 19, 2009

Lecture 10: Randomness and Computation II

Instructor: Rafael Pass Scribe: Daniel Perelman

Review: Covered definitions of RP, coRP, ZPP, BPP last class.

From last class:

Definition 1 BPP is the class of languages \mathcal{L} such that $\exists PPT \mathcal{M}$ s.t.

•
$$x \in L \implies \Pr M(x) = 1 \ge \frac{2}{3} \ (or \ \frac{1}{2} + \frac{1}{p(n)} \ or \ 1 - \frac{1}{2^n})$$

•
$$x \notin L \implies \Pr M(x) = 0 \ge \frac{2}{3} (or \frac{1}{2} + \frac{1}{p(n)} or 1 - \frac{1}{2^n})$$

Theorem 1 BPP \subseteq P/poly [Adleman]

This implies that randomness does not provide much extra power, but we do not know if $BPP \subseteq NP$.

Proof. Consider $\mathcal{L} \in \mathsf{BPP}$. Let \mathcal{M} be a machine deciding \mathcal{L} . Assume WLOG that \mathcal{M} makes an error with probability $\leq \frac{1}{2^{2n}}$. For each x of length n, only 1 in 2^{2n} random tapes are bad. The total fraction of tapes that are "bad" for at least one x is $\leq 2^n \cdot 2^{2n} = 2^{-n}$. Therefore, there are a lot of strings which work for every x of a given length, so that string can be the advice for a $\mathsf{P/poly}$ machine.

Theorem 2 BPP $\subseteq \Sigma_2(\cap \Pi_2)$

Proof. Reminder: Σ_2 is the set of languages where $x \in \mathcal{L}$ iff $\exists y_1 \forall y_2 \quad R(x, y_1, y_2)$.

Consider $\mathcal{L} \in \mathsf{BPP}$ and let \mathcal{M} be a machine deciding \mathcal{L} that on input of length n uses m(n) random bits where m is a polynomial. Assume WLOG that \mathcal{M} makes an error with probability $<\frac{1}{m(n)}$. Note that we can get $<\frac{1}{2^n}$ error with polynomially many random bits so the probability bound is not a problem.

Idea: using different random bits, all of $x \in \mathcal{L}$ will get covered by some random bits for which $\mathcal{M}(x) = 1$, but not all of $x \notin \mathcal{L}$ will be covered by some random bits for which $\mathcal{M}(x) = 1$ because too few of them are erroneously marked as in \mathcal{L} by each selection of random bits.

Given input x, let S_x denote the set of all random tapes r for which $\mathcal{M}_r(x) = 1$.

• If $x \in \mathcal{L}$ $|S_x| \ge (1 - \frac{1}{m})2^m$.

• If
$$x \notin \mathcal{L}$$
 $|S_x| < \frac{1}{m} 2^m$.

Use xor (\oplus) for the permutation. Recall that $|S_x \oplus z| = |S_x|$ for any $z \in \{0,1\}^{m(n)}$.

Proposition 1 If
$$|S_x| < \frac{1}{m(n)} 2^{m(n)}, \forall z_1, \dots, z_{m(n)} \in \{0, 1\}^{m(n)}$$

$$\bigcup_{i=1}^{m(n)} S_x \oplus z_i \subsetneq \{0,1\}^{m(n)}$$

Proof.

$$\left| \bigcup_{i=1}^{m(n)} S_x \oplus z_i \right| \le \sum_{i=1}^{m(n)} |S_x \oplus z_i| \le \sum_{i=1}^{m(n)} |S_x| = m(n)|S_x| < m(n) \frac{1}{m(n)} 2^{m(n)} = 2^{m(n)}$$

Proposition 2 If $|S_x| \ge (1 - \frac{1}{m(n)})2^{m(n)}, \exists z_1, \dots, z_{m(n)} \in \{0, 1\}^{m(n)}$

$$\bigcup_{z_1, \dots, z_{m(n)}} S_x \oplus z_i = \{0, 1\}^{m(n)}$$

Proof. Consider $y \in \{0,1\}^{m(n)}$.

$$\Pr_{z_1,\dots,z_m}\left[y\notin\bigcup_{i=1}^{m(n)}S_x\oplus z_i\right]\leq \prod_{i=1}^{m(n)}\Pr_{z_i\leftarrow\{0,1\}^{m(n)}}\left[y\notin S\oplus z_i\right]=\prod_{i=1}^{m(n)}\Pr_{z_i\leftarrow\{0,1\}^{m(n)}}\left[z_i\notin S\oplus y\right]\\ <\left(\frac{1}{m(n)}\right)^{m(n)}$$

By the union bound, $\Pr_{z_1,\dots,z_m} \left[\exists y \notin \bigcup_{i=1}^{m(n)} S_x \oplus z_i \right] \leq 2^{m(n)} \cdot \frac{1}{m(n)^{m(n)}}$ because $y \in \{0,1\}^{m(n)}$.

Taking the complement gives $\Pr_{z_1,\dots,z_m}\left[\bigcup_{i=1}^{m(n)}S_x\oplus z_i=\{0,1\}^{m(n)}\right]\geq 1-\frac{2^{m(n)}}{m(n)^{m(n)}}>0$. The probability that such a set of permutations $z_1,\dots,z_{m(n)}$ exists is positive, so such a set exists.

Therefore, the problem can be written as a Σ_2 problem with the relation R being the BPP machine \mathcal{M} run with a specific random tape:

$$x \in \mathcal{L} \text{ iff } \exists z_1, \dots, z_m \bigcup_{i=1}^{m(n)} S_x \oplus z_i = \{0, 1\}^m \Longrightarrow x \in \mathcal{L} \text{ iff } \exists z_1, \dots, z_m \forall y \in \{0, 1\}^{m(n)} \bigvee_{i=1}^m M(x, z_i \oplus y)$$

Recall that BPP is closed under complement so it is also in Π_2 .

Open problem: $BPTIME(n^{10}) \stackrel{?}{\leq} BPTIME(n)$. No one knows if more polynomial time gives more power for BPP.

Definition 2 A promise problem is a pair of languages \mathcal{L}_{yes} , \mathcal{L}_{no} such that $\mathcal{L}_{yes} \cap \mathcal{L}_{no} = \emptyset$ and \mathcal{M} decides $(\mathcal{L}_{ues}, \mathcal{L}_{no})$ if when

- $x \in \mathcal{L}_{yes}$ $\mathcal{M}(x) = 1$
- $x \in \mathcal{L}_{no}$ $\mathcal{M}(x) = 0$

Open question: $NP \cap coNP = P \stackrel{?}{\Longrightarrow} NP = P$

The promise version:

Theorem 3 Promise $(NP \cap coNP) = P \implies NP = P$

Proof. There exists a complete promise problem:

$$\mathcal{L}_{\text{yes}} = \{f, g | f \in \mathsf{SAT}, g \notin \mathsf{SAT}\}, \, \mathcal{L}_{\text{no}} = \{f, g | f \notin \mathsf{SAT}, g \in \mathsf{SAT}\}$$

Assume \mathcal{M} decides $(\mathcal{L}_{yes}, \mathcal{L}_{no})$:

 $\mathcal{M}'(\Phi): \mathcal{M}(\Phi_{x_0=0}, \Phi_{x_0=1}) = 1$ then let $a_0 = 0$; otherwise $a_0 = 1$. Repeat for every variable. Finally output $\Phi(a_0, \ldots, a_n)$. This works because if both are satisfiable or both are not satisfiable, then the choice of the value of a_i does not matter so the fact that the return value of \mathcal{M} is not defined does not matter. If \mathcal{M} is defined, then the choice of value for a_0 is the one for which Φ is satisfiable. Therefore, $\mathcal{M}'(\Phi)$ solves SAT in polynomial time, so $\mathsf{NP} \subseteq \mathsf{P} \implies \mathsf{NP} = \mathsf{P}$.