2021 级硕士研究生矩阵分析期末试题

座号_	学院学院				学号_	姓名			
(试卷	共7页,八	道大题. 新	答题必须在	了解题过程	1. 试卷后面	空白页撕	下做稿纸。	试卷不得	拆散)
題号	-	=	Ξ	pц	Тi	*	七	八	总分
得分									
签名									
1、设.	L	0 $\lambda^2 - 1$ 0	0 0 1+2],贝	l A(λ) 的			d; (A)=1.	d2(()+1)()-1)()
A	(え)的初等	医子为_	71	1, 7	1-1,	71+2			
2、设/	$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$	0 0 -1	则 A ²⁰²² — A	A ² =	000]			
3、设 <i>a</i>	,为三维列	则向量, <i>d</i>	r ^T 是α的	转置,老	$\dot{\Xi} \alpha \alpha^T =$	$\begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	则 α ^τ α =	3
4、己知 <i>A</i> ₁	n矩阵 A: = <u>6+/</u> 3	= \begin{array}{cccc} 1 & 0 \\ 0 & 6 \\ 0 & 2 + \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	0 2-i i 2 数e ^u 的1	则矩阵 5列式值	E A 的谱 : e ^M = <u>-</u> €	范数 <i>A</i> , 9k , 这	,= <u>7</u> 里 <i>i</i> 为虚	_ ,矩 。 数单位,	并 A 的列和范数 i² = −1.
6、己	知函	数 矩	阵 A(x)	$= \begin{bmatrix} \sin x \\ e^{2x} \end{bmatrix}$	$\begin{bmatrix} -e^{2x} \\ \cos x \end{bmatrix}$	L 5 6 3 ,则 2)(³ -	$\frac{d^2A(x)}{dx^2}$	=_	位,i ² =-1. -SinX -4e ² -Cosy
$\frac{d}{dx}$	$\int_0^{x^t} A(t)dt$)=	200	2X2	2X (ر ۲۵ دس			

二、(12 分) 已知矩阵
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- (1) 求矩阵 A 的最小多项式。
- (2) 求矩阵函数 $\cos \frac{\pi}{2} A \Re e^{2A}$.

ma(n) 最小的次式为 アン(スー)2 ~~~ ソ分 f(x)为任意品数

$$f(A) = \begin{bmatrix} f(1) & 0 & 0 & 0 \\ f'(1) & f(1) & 0 & 0 \\ 0 & 0 & f(0) & f(0) \end{bmatrix} \xrightarrow{\text{N}} 8/7$$

$$f(A) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \frac{R}{2} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Cos \frac{T}{2}A$$

2(共7页)

$$f(A) = e^{2A} = \begin{bmatrix} e^2 & 0 & 0 & 0 \\ 2e^2 & e^2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$

三、(12分)已知 $A = \begin{bmatrix} 2 & 0 \\ 0 & i \\ 0 & 0 \end{bmatrix}$, 求矩阵A的奇异值分解表达式, 这里i为虚数单位, $i^2 = -1$.

$$\Delta = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$N_1=4 \rightarrow L_1=[1, 0, 0]^T$$

$$\lambda_{2}=1 \rightarrow \lambda_{2}=[0,1,0]^{T} \quad V=\begin{bmatrix}0&0\\0&0\end{bmatrix}$$

$$\lambda_3 = 0 \rightarrow d_3 = [0, 0.1]^T$$

$$V_1 = A^H U_1 \Delta^{++} = \begin{bmatrix} 1 & 0 \\ 0 & -\hat{t} \end{bmatrix}$$
 $V = [V_1, V_2] = \begin{bmatrix} 1 & 0 \\ 0 & -\hat{t} \end{bmatrix}$

四、(10分)已知可对角化矩阵

$$A = \begin{bmatrix} -3 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -3 \end{bmatrix}.$$

求矩阵A的谱分解.

 $f(X) = X^{H}AX$, $ix = [x_1, x_2, x_3]^{T}$.

- (1) 用酉变换将 Hermitian 二次型 $f(X) = X^{"}AX$ 化成标准形,并写出所做的酉变换.
- (2) 判断 $f(X) = X^H AX$ 的定性 (正定、负定, 半正定, 半负定, 不定).

X=UY 成为 f(x)=XHAX.可得
f(x)=YHUHAUY= 另为+乳丸++另为,~~>1吟
由于Hermitian 知识A 你 分字 對何 (直表)大于
围、因此断定 f(x)=XHAX为正定=次型 ~~>12分

六、 (9 分) 已知 $A = \begin{bmatrix} 4 & 0 & -2 \\ 0 & 6 & 0 \\ -1 & 0 & 5 \end{bmatrix}$, 求 $\lim_{k \to \infty} \left(\frac{1}{\rho(A)} A \right)^k$, 这里 $\rho(A)$ 表示矩阵 A 的谱半径.

$$f(N) = | \lambda I - A | = (\lambda - 3) (\lambda - 6)^{2} \qquad \ell(A) = 6 \longrightarrow 25$$

$$\lambda_{1} = 3 \qquad \lambda_{2} = \lambda_{3} = 6 \longrightarrow 45$$

$$\lambda_{1} = [2, 0, 1]^{T} \qquad \lambda_{2} = [0, 1, 0]^{T}$$

$$\lambda_{3} = [-1, 0, 1]^{T}$$

$$P = [-1, 1, 2] = \begin{bmatrix} 2 & 5(+7) \\ 0 & 1 \end{bmatrix} \qquad P^{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P = [-1, 1, 2] = \begin{bmatrix} 2 & 5(+7) \\ 0 & 1 \end{bmatrix} \qquad P^{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P^{+}AP = \begin{bmatrix} \frac{3}{6} & \frac{1}{6} \end{bmatrix} \quad \ell(A) = 6$$

$$\lim_{k \to \infty} \left(\frac{|k|}{|k|} \right) \cdot A = \lim_{k \to \infty} \left(\frac{|k|}{|k|} \right) \cdot A = \lim_{k \to \infty} \left(\frac{|k|}{|k|} \right) \cdot A = \lim_{k \to \infty} \left(\frac{|k|}{|k|} \right) \cdot A = \lim_{k \to \infty} \left(\frac{|k|}{|k|} \right) \cdot A = \lim_{k \to \infty} \left(\frac{|k|}{|k|} \right) \cdot A = \lim_{k \to \infty} \left(\frac{|k|}{|k|} \right) \cdot A = \lim_{k \to \infty} \left(\frac{|k|}{|k|} \right) \cdot A + \lim_{k \to \infty} \left(\frac{|k|}{|k|} \right)$$

八、 $(5\, eta)$ 设 $M_{3\times3}(R)$ 为实数域R上所有三阶矩阵构成的线性空间, $W = \{A \in M_{3\times3}(R) | Tr(A) = 0\}$,这里Tr(A)表示矩阵A的迹。求W的维数,并写出W的一组基。

$$\frac{drm W=8}{-T \frac{1}{2} \frac{1}{3}}$$

$$\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\sim 7 3 \frac{1}{7}$$