Exam questions for "Signal theory: Part 1"

Work alone. You can not use printed materials and electronic devices. Time allowed: 40 minutes.

1 Prediction using a model (4 points)

1.1 State space approach (2 points)

Given a state space representation of a discrete-time autonomous system $\mathcal{B}(A,C)$ of order n and a finite, $T \ge n$ samples long, trajectory

$$y_p := (y(1), \dots, y(T))$$

of that system, find the next T_f samples

$$y_{\rm f} := (y(T+1), \dots, y(T+T_{\rm f}))$$

of the given trajectory, *i.e.*, find $y(T+1), \dots, y(T+T_f)$ such that

$$y := (y(1), \dots, y(T), y(T+1), \dots, y(T+T_f))$$

is a trajectory of $\mathcal{B}(A,C)$.

SOLUTION

A trajectory y of an autonomous system $\mathcal{B}(A,C)$ is completely specified by an initial condition x(1), so the problem of predicting the future part y_f of the trajectory y from its given past y_p is equivalent to the problem of determining the initial condition x(1) of y from y_p .

From the general expression of a response of an autonomous system

$$y(t_1) = CA^{t_1-t_2}x(t_2)$$

we have a system of equations for the unknown initial condition x(1)

$$\underbrace{\begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(T) \end{bmatrix}}_{y_{p}} = \underbrace{\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{T-1} \end{bmatrix}}_{\mathcal{O}_{p}} x(1). \tag{1}$$

In order to be able to determine x(1) uniquely from y_p , the matrix \mathcal{O}_p should have full column rank. Note that \mathcal{O}_p is $Tp \times n$, where $p = \operatorname{rowdim}(C)$ is the number of outputs. Under the assumption $T \ge n$ (*i.e.*, "enough data is given") the matrix \mathcal{O}_p has the right dimension for being full column rank.

The condition $Tp \ge n$ is necessary but not sufficient for \mathcal{O}_p to be full column rank. The extended observability matrix \mathcal{O}_p depends on the system parameters A and C, so an extra condition is needed on the matrices A and C, i.e., on the state space representation of the system. This condition is so important that it is given the name *observability*.

Provided that we have enough data $T \ge n/p$ and the representation $\mathcal{B}(A,C)$ is observable, we can uniquely determine x(1) from y_f via

$$x(1) = (\mathscr{O}_{\mathbf{p}}^{\top} \mathscr{O}_{\mathbf{p}})^{-1} \mathscr{O}_{\mathbf{p}} y_{\mathbf{p}}.$$

Then we predict y_f using $y(t) = CA^{t-1}x(1)$:

$$\underbrace{\begin{bmatrix} y(T+1) \\ \vdots \\ y(T_{\rm f}) \end{bmatrix}}_{y_{\rm f}} = \underbrace{\begin{bmatrix} CA^T \\ \vdots \\ CA^{T+T_{\rm f}-1} \end{bmatrix}}_{\mathscr{C}_{\rm f}} x(1).$$

The final answer is

$$y_{\mathrm{f}} = \mathscr{O}_{\mathrm{f}} (\mathscr{O}_{\mathrm{p}}^{\top} \mathscr{O}_{\mathrm{p}})^{-1} \mathscr{O}_{\mathrm{p}} y_{\mathrm{p}} = \mathscr{O}_{\mathrm{f}} \left(\sum_{\tau=0}^{T-1} C A^{\tau} (A^{\tau})^{\top} C^{\top} \right)^{-1} \mathscr{O}_{\mathrm{p}} y_{\mathrm{p}}.$$

1.2 Polynomial approach (2 points)

Solve the problem of 1.1 using a polynomial representation of the system $\mathcal{B}(P) = \mathcal{B}(A,C)$. Assume that the highest power coefficient of P is I.

SOLUTION

In this case we consider the polynomial representation

$$P_0y(t) + P_1y(t+1) + \dots + P_{\ell-1}y(t+\ell-1) + y(t+\ell) = 0,$$
 for all $t \in \mathbb{Z}$.

Because of the assumption that the highest power coefficient P_{ℓ} is I, we can find for each t, y(t) as a linear combination of $y(t-1), \dots, y(t-\ell)$

$$y(t) = -(P_0 y(t - \ell) + P_1 y(t - \ell + 1) + \dots + P_{\ell-1} y(t - 1)).$$
(2)

Assuming that $T \ge \ell$, we can apply this formula recursively and "extend" y_p to y_f , *i.e.*, we simulate the response y_f corresponding to the initial conditions $y(T), y(T-1), \dots, y(T-\ell+1)$, which is the end part of y_f . For this to be possible, we need $T \ge \ell$. It can be shown that this condition follows from the assumption $T \ge n$.

2 Wiener-Khintchine theorem (3 points)

For a discrete-time signal y, let

- $\phi_{v} := |F(y)|^2$, where F(y) be a Fourier transform of y, and
- $r_y := \sum_{t=1}^T y(t)y(t-\tau)$.

Show that $\phi_{v} = F(r_{v})$.

SOLUTION

The proof

$$\phi_{v} = F(y)F^{*}(y) = F(y)F(\operatorname{rev}(y)) = F(y \star \operatorname{rev}(y)) = F(r_{v})$$

is based on the following properties of the Fourier transform

- $F(y \star y) = F(y)F(y)$,
- $F(\text{rev}(y)) = F^*(y)$,
- $y \star \text{rev}(y) = r_y$.

3 Weighted least-squares approximate solution (3 points)

For a given positive definite matrix $W \in \mathbb{R}^{m \times m}$, define the weighted 2-norm

$$||e||_W = e^{\top} W e.$$

The weighted least-squares approximation problem is

minimize over
$$\hat{x} \in \mathbb{R}^n$$
 $||A\hat{x} - b||_W$. (WLS)

When does a solution exist and when is it unique? Under the assumptions of existence and uniqueness, derive a closed form expression for the least squares approximate solution.

SOLUTION

Since W is a symmetric positive definite matrix, it has a factorization $W = CC^{\top}$, where C is an $m \times m$ full rank matrix. We can re-write the weighted least-squares approximation problem as an equivalent standard least-squares approximation problem for a system of linear equations A'x = b', where

$$A' = CA$$
 and $b' = Cb$.

At this point we can use existing results: 1) a solution always exists, 2) it is unique if and only if the matrix is full column rank (f.c.r.). Since C is full rank, A' is f.c.r. if and only if A is f.c.r. In this case the unique weighted least-squares approximate solution is

$$\widehat{x} = (A^{\top}WA)^{-1}A^{\top}Wb.$$