Table I. Asymptotic estimate	ors for covariance between	Table I. Asymptotic estimators for covariance between various pairs of treatment effect estimates.	
Effect size for outcome 1	Effect size for outcome 2	Covariance formula	Equation
MD	MD	$\frac{n_{12c}}{n_{1c}n_{2c}}\rho s_{1c}s_{2c} + \frac{n_{12t}}{n_{1t}n_{2t}}\rho s_{1t}s_{2t}$	(1.1)
	SMD	$\frac{\rho}{s_{1p}} \left(J(v_{1}) \frac{n_{12c}}{n_{1c}n_{2c}} s_{1c}s_{2c} + J(v_{1}) \frac{n_{12t}}{n_{1t}n_{2t}} s_{1t}s_{2t} \right)$	(1.2)
	logOR	$\rho s_{1c} \frac{n_{12c} \sqrt{n_{2c}}}{n_{1c} n_{2c}} \sqrt{\frac{1}{S_{2c}} + \frac{1}{F_{2c}}} + \rho s_{1t} \frac{n_{12t} \sqrt{n_{2t}}}{n_{1t} n_{2t}} \sqrt{\frac{1}{S_{2t}} + \frac{1}{F_{2t}}}$	(1.3)
	logRR	$ ho_{S1c} \cdot \frac{n_{12c}}{n_{1c}n_{2c}} \cdot \sqrt{\frac{F_{2c}}{S_{2c}}} + ho_{S1t} \cdot \frac{n_{12t}}{n_{1t}n_{2t}} \cdot \sqrt{\frac{F_{2t}}{S_{2t}}}$	(1.4)
	RD	$\rho s_{1c} \cdot \frac{n_{12c}}{n_{1c}n_{2c}^2} \cdot \sqrt{S_{2c}F_{2c}} + \rho s_{1t} \cdot \frac{n_{12t}}{n_{1t}n_{2t}^2} \cdot \sqrt{S_{2t}F_{2t}}$	(1.5)
SMD	SMD	$\rho\left(\frac{n_{12c}}{n_{1c}n_{2c}} + \frac{n_{12t}}{n_{1t}n_{2t}}\right) + \frac{k_{12}}{\sqrt{k_1k_2}}\rho^2\delta_1\delta_2J(v_1)J(v_2)\sqrt{\left(\frac{v_1}{v_1-2} - \frac{1}{J(v_1)^2}\right)\left(\frac{v_2}{v_2-2} - \frac{1}{J(v_2)^2}\right)}$	(1.6)
	logOR	$J(v_1)\frac{1}{s_{1p}} \cdot \frac{n_{12c}\sqrt{n_{2c}}}{n_{1c}n_{2c}} \rho_{S1c}\sqrt{\frac{1}{S_{2c}} + \frac{1}{F_{2c}}} + J(v_1)\frac{1}{s_{1p}} \cdot \frac{n_{12t}\sqrt{n_{2t}}}{n_{1t}n_{2t}} \rho_{S1t}\sqrt{\frac{1}{S_{2t}} + \frac{1}{F_{2t}}}$	(1.7)
	logRR	$J(v_1) \frac{1}{s_1 p} \frac{n_{12c} \sqrt{n_{2c}}}{n_{1c} n_{2c}} \rho_{S1c} \sqrt{\frac{1}{S_2 c} + \frac{1}{F_{2c}}} + J(v_1) \frac{1}{s_1 p} \frac{n_{12t} \sqrt{n_{2t}}}{n_{1t} n_{2t}} \rho_{S1t} \sqrt{\frac{1}{S_{2t}} + \frac{1}{F_{2t}}}$	(1.8)
	RD	$J(v_1)\frac{\rho}{s_{1p}} \cdot \frac{n_{12c}}{n_{1c}n_{2c}^2} s_{1c} \sqrt{S_{2c}F_{2c}} + J(v_1)\frac{\rho}{s_{1p}} \cdot \frac{n_{12t}}{n_{1t}n_{2t}^2} s_{1t} \sqrt{S_{2t}F_{2t}}$	(1.9)

Table I. Continued.			
Effect size for outcome 1	Effect size for outcome 2	Covariance formula	Equation
logOR	logOR	$\frac{\rho n_{12c}}{\sqrt{n_{1c}n_{2c}}} \sqrt{\left(\frac{1}{S_{1c}} + \frac{1}{F_{1c}}\right) \left(\frac{1}{S_{2c}} + \frac{1}{F_{2c}}\right)} + \frac{\rho n_{12t}}{\sqrt{n_{1t}n_{2t}}} \sqrt{\left(\frac{1}{S_{1t}} + \frac{1}{F_{1t}}\right) \left(\frac{1}{S_{2t}} + \frac{1}{F_{2t}}\right)}$	(1.10)
	logRR	$\frac{\rho n_{12c}}{\sqrt{n_{1c}n_{2c}}} \sqrt{\left(\frac{1}{S_{1c}} + \frac{1}{F_{1c}}\right) \frac{F_{2c}}{S_{2c}} + \frac{\rho n_{12t}}{\sqrt{n_{1t}n_{2t}}} \sqrt{\left(\frac{1}{S_{1t}} + \frac{1}{F_{1t}}\right) \frac{F_{2t}}{S_{2t}}}$	(1.11)
	RD	$\rho \frac{n_{12c}}{n_{1c}n_{2c}} \sqrt{\frac{S_{2c}F_{2c}}{S_{1c}F_{1c}}} + \rho \frac{n_{12t}}{n_{1t}n_{2t}} \sqrt{\frac{S_{2t}F_{2t}}{S_{1t}F_{1t}}}$	(1.12)
logRR	logRR	$\rho \frac{n_{12c}}{n_{1c}n_{2c}} \sqrt{\frac{F_{1c}F_{2c}}{S_{1c}S_{2c}}} + \rho \frac{n_{12t}}{n_{1t}n_{2t}} \sqrt{\frac{F_{1t}F_{2t}}{S_{1t}S_{2t}}}$	(1.13)
	RD	$\rho \frac{n_{12c}}{n_{1c}n_{2c}^2} \sqrt{\frac{F_{1c}}{S_{1c}} S_{2c} F_{2c}} + \rho \frac{n_{12t}}{n_{1t}n_{2t}^2} \sqrt{\frac{F_{1t}}{S_{1t}} S_{2t} F_{2t}}$	(1.14)
RD	RD	$\rho \frac{n_{12}c}{n_{1c}^2n_{2c}^2} \sqrt{S_{1c}F_{1c}S_{2c}F_{2c}} + \rho \frac{n_{12t}}{n_{1t}^2n_{2t}^2} \sqrt{S_{1t}F_{1t}S_{2t}F_{2t}}$	(1.15)

number of participants reporting outcome 2 in treatment group; n_{12t}: number of participants reporting both outcome 1 and outcome 2 in treatment group; n_{1c}, n_{2c}, and n_{12c}: defined in the similar way for control group; s_{1t}^2 : sample variance for outcome 1 in treatment group; s_{2t}^2 : sample variance for outcome 2 in treatment group; s_{1c}^2 and s_{2c}^2 : defined in a similar way S_{1t} : number of participants with event for outcome 1 (dichotomous) in treatment group; F_{1t} : number of participants without event for outcome 1 (dichotomous) in treatment group; S_{1t} : number of participants without event for outcome 1 (dichotomous) in treatment group; S_{1c} and S_{1c} : S_{1c} and S_{1c} : defined in a similar way for control group; ρ : correlation between outcome measurements; $K_2 = \frac{2n_2r-2}{(n_2c+n_{2t}-2)^2} + \frac{2n_2c-2}{(n_2c+n_{2t}-2)^2}$; $K_1 = \frac{2n_1r-2}{(n_1c+n_{1t}-2)^2} + \frac{2n_1r-2}{(n_1c+n_{1t}-2)^2}$; MD: mean differences; SMD: standardized MD; logOR: log odds ratio; logRR: log risk ratio; RD: risk difference; n_1t : number of participants reporting outcome 1 in treatment group; n_2t . for control group; s_{jp} : pooled standard deviation for outcome j; J(v): a small-sample correction factor for SMD, J(v) = 1 - 3/(4v - 1); $v_1 = n_1c + n_1t - 2$; $v_2 = n_2c + n_2t - 2$; $k_{12} = \frac{2}{(n_{1\ell} + n_{1\ell} - 2)(n_{2\ell} + n_{2\ell} - 2)} \left(\frac{n_{1\ell} n_{2\ell}}{n_{1\ell} + n_{2\ell} - 1} + \frac{n_{1c} n_{2c}}{n_{1c} + n_{2c} - 1} - 2 \right)$