Complete Dictionary Learning via lp-norm Maximization

Ye XUE

Yifei Shen HKUST

Jun Zhang PolyU HK

Khaled B. Letaief HKUST

Vincent Lau
HKUST

Representation of Data

- Finding a good representation of data is what we pursuit for centuries
 - Fourier Transform (Fourier ~1800)
 - Wavelet Transform (Haar ~1900)
 - Deep Learning (Now)

What representation should we use?

"It is human nature to prefer simplicity"

Dictionary Learning – Finding the most sparse representation

$$\underbrace{\boldsymbol{Y}}_{ ext{Known Data}} = \underbrace{\boldsymbol{D}}_{ ext{Unknown Transform Unknown Sparse Representation}}$$

$$egin{array}{ll} ext{minimize} & \|oldsymbol{X}\|_0 \ ext{subject to} & oldsymbol{Y} = oldsymbol{D}oldsymbol{X} \end{array}$$

Dictionary Learning Challenges

- Computational challenges
 - The signals are usually high dimension
 - NP-hard in general due to non-convexity
- Sample complexity challenges
 - We would like to learn from as few as possible samples
- Goal: Design an efficient algorithm to learn the optimal dictionary with tractable sample complexity

Preliminary

 Complete dictionary learning can be converted to an orthogonal dictionary learning through preconditioning [SQW15]

$$ar{m{Y}} = \left(rac{1}{p heta}m{Y}m{Y}^*
ight)^{-rac{1}{2}}m{Y}^*$$

- We assume a random model for tractable analysis
 - [SWW12] assumes the data $m{Y}$ is generated by an orthogonal dictionary $m{D}_0$ and sparse coefficients $m{X}_0$ with $m{Y}=m{D}_0m{X}_0$
 - $oldsymbol{D} oldsymbol{D} oldsymbol{D}_0 \in O(n)$, i.e., $oldsymbol{D}_0^* oldsymbol{D}_0 = oldsymbol{D}_0 oldsymbol{D}^* = oldsymbol{I}$

Existing Works - {I-norm Minimization

- Pros: Can achieve optimal solution [SQW15]
- Cons: Algorithmic challenges
 - Slow convergence due to non-smoothness
 - Difficult to tune parameters
- Question: Can we use other norm for relaxation?

lp-norm Maximization - Observations

- Observation I: Over an \(\bar{2}\)-norm constraint, minimizing any \(\bar{q}\)-norm (0<=q<2) or maximizing any \(\bar{p}\)-norm (p>2) are equivalent
 - Maximizing ℓp -norm (p>2) induces sparsity

lp-norm Maximization - Observations

- Observation II: \(\(\p\)-norms (p>2) is smooth and majorized by linear functions
 - {I-norm: non-smooth, hard to optimize over a non-convex constraint
 - \(\p\rightarrow\r

lp-based Formulation

• Instead of minimizing ℓI , we maximize ℓp (p>2)

minimize
$$\|D^*Y\|_1$$
 maximize $\|D^*Y\|_p$ subject to $D \in O(n)$

An Efficient Parameter-free Algorithm

Maximize a linear lower bound at each time

$$f(\mathbf{A}) = \|\mathbf{A}^* \mathbf{Y}\|_p^p$$
$$\mathbf{A}^{(t+1)} = \underset{\mathbf{s} \in O(n)}{\operatorname{argmax}} \langle \mathbf{s}, f'(\mathbf{A}^{(t)}) \rangle$$

Algorithm 2 The GPM algorithm for ℓ_p -based dictionary learning

- 1: Initialize $A^{(0)*} \in St(n,m)$.
- 2: **for** t = 0...T **do**
- 3: $\nabla f(\mathbf{A}^{(t)}) = \left(|(\mathbf{A}^{(t)}\mathbf{Y})^{\circ(p-1)}| \circ \operatorname{sign}(\mathbf{A}^{(t)}\mathbf{Y}) \right) \mathbf{Y}^*$
- 4: $\mathbf{A}^{(t+1)} = \operatorname{Polar}(\nabla^* f(\mathbf{A}^{(t)}))^*$
- 5: end for

lp-norm Minimization

- Can lp formulations provably recover the true dictionary?
 - $X_0 \sim \Omega \cdot G, \Omega_{i,j} \sim \text{Ber}(\theta), G_{i,j} \sim \mathcal{N}(0,1)$
 - All $\ell p(p>2)$ can recover the dictionary when the sample size is large and $\ell 3$ achieves the best sample complexity

Theorem 2.1. Let $X \in \mathbb{R}^{n \times r}$, $x_{i,j} \sim \mathcal{BG}(\theta)$ with $\theta \in (0,1)$, $D_0 \in \mathbb{O}(n)$ be an orthogonal dictionary, and $Y = D_0 X$. Suppose \hat{A} is a global maximizer to

Provided that the sample size $r=\Omega\left(\delta^{-2}n\log(n/\delta)(\theta n\log^2 n)^{\frac{p}{2}}\right)$, then for $\delta>0$, there exists a signed permutation Π , such that

$$\frac{1}{n} \left\| \hat{\boldsymbol{A}}^* - \boldsymbol{D}_0 \boldsymbol{\Pi} \right\|_F^2 \le C_{\theta} \delta$$

with probability at least $1 - r^{-1}$ and C_{θ} is a constant that depends on θ .

Experiments - Scalability

Benchmarks

K-SVD [AEB06]: A classic algorithm for dictionary learning

Table 1: The performance of different algorithms for noiseless objectives. Since the dictionary recovery is up to some signed permutations, we adopt the error metric $1 - \|\mathbf{A}\mathbf{D}_0\|_4^4/n$ in [26], which gives 0% error for a perfect recovery.

Settings			ℓ_3 -based		ℓ_4 -based [26]		ℓ_5 -based		K-SVD [18]	
n	θ	$p(\times 10^4)$	Time	Error	Time	Error	Time	Error	Time	Error
100	0.1	4	0.8s	0.056%	1.8s	0.21%	1.7s	0.50%	61s	1.45%
200	0.1	8	4.1s	0.056%	9.3s	0.21%	8.0s	0.51%	131s	3.03%
400	0.1	16	35s	0.056%	50s	0.21%	41s	0.50%	315s	6.45%
100	0.3	4	1.2s	0.094%	3.4s	0.34%	3.1s	0.84%	98s	2.60%
200	0.3	8	10s	0.094%	18s	0.35%	15s	0.85%	215s	6.41%
400	0.3	16	91s	0.096%	122s	0.35%	146s	1.00%	589s	8.25%

Smaller p: faster, more accurate!

Experiments - Robustness

Benchmarks

- K-SVD [AEB06]: A classic algorithm for dictionary learning
- RTR [SQW15]: l-based formulation and Riemannian Trust Region
- {4 [ZMLZM19]: {4-based formulation and specialized matching, stretching, pursuit algorithm

Table 2: The performance of different algorithms under Gaussian noise. We set sparsity level $\theta = 0.3$.

Settings			ℓ_3 -based		ℓ_4 -based [26]		RTR [21]		K-SVD [18]		
n	$p(\times 10^4)$	σ	Time	Error	Time	Error	Time	Error	Time	Error	
32	1	0	0.05s	0.10%	0.24s	0.4%	100s	0.05%	25s	0.2%	
32	1	0.2	0.05s	0.27%	0.24s	0.6%	250s	0.5%	25s	0.37%	
32	1	0.4	0.1s	0.79%	0.36s	1.2%	577s	4.27%	25s	2.0%	
32	1	0.6	0.2s	2.3%	0.7s	3.4%	823s	57.4%	25s	57.4%	
100	4	0	1.2s	0.1%	3.4s	0.35%	863s	0.05%	98s	2.60%	
100	4	0.2	2.2s	0.2%	4.2s	0.5%	1643s	0.3%	104s	3.46%	
100	4	0.4	3.5s	0.6%	6.1s	1.1%	3796s	5.26%	105s	3.56%	
100	4	0.6	8.4s	1.95%	13.5s	2.63%	5412s	50.5%	104s	51.26%	

Conclusion

• lp norm maximization enables efficient and robust solution for complete dictionary learning.

- Simple parameter-free algorithm can be used to solve \(\rho \) norm maximization, which is tractable and optimal-achievable.
- Among all the choices of p (p>2), ℓ 3 is the best.

References

- [SWW12] Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries. In Conference on Learning Theory, pages 1–37,2012.
- [SQW15] Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere I: Overview and the geometric picture. IEEE Transactions on Information Theory, 63(2):853–884, 2017.
- [AEB06] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322, 2006.
- [ZMLZM19] Yuexiang Zhai, Zitong Yang, Zhenyu Liao, John Wright, and Yi Ma. Complete dictionary learning via \(\begin{align*} 4-norm maximization over the orthogonal group. arXiv preprint arXiv:1906.02435, 2019.