Extension: Two-Level Cache

Specifications

Extension Description (1/2)

- Main Goal
 - Add 2 separate L2 caches for I-cache and D-cache
 - Unified L2 cache (1 L2 cache for both L1 I-cache & L1 D-cache) will be considered as better design (but not required)
- Total size of respective L1 cache is suggested to be 32 words
 - 8 blocks & each 4 words
- Total size of L2 caches (I + D) are suggested to be 256 words
 - Block size and number of blocks are up to your considerations

Extension Description (2/2)

- System Clock Speed
 - L1 Caches, L2 Caches, Slow Memory :
 Same clock speed as MIPS
- I/O Specification
 - Refer to the same top module as baseline:
 add 'module L2_Cache'
- "Unified L2 cache" is better than "Separate L2 caches"

Test Program Generation

- Based on "hasHazard", but long version
 - Generate Fibonacci sequence with increment $(F_1, F_1+1, ..., F_1+N, F_2, F_2+1, ...)$
- In file "generate":
 - L2Cache_generate.py
 - Python (version = 3.x)
 - Modify the parameters in the code
 - I_mem_L2Cache_ref & TestBed_L2Cache_ref should be placed in the same folder
 - I_mem_L2Cache & TestBed_L2Cache will be generated
 - Provieded files nb20incre3
- +define+L2Cache in ncverilog simulation command

Comparison Metrics

- Base on the test program: "I_mem_L2Cache"
- Score 1 (L2C_S1): Avg. memory access time (ns)
 - $L2C_S1 = HT1 + MR1*(HT2+MR2*MP2)$
 - HT: hit time
 - MR: miss rate
 - MP: miss penalty
 - ~1: of level 1 cache
 - ~2: of level 2 cache
- Score 2 (L2C S2): Total execution time (ns)
 - L2C_S2 = total execution time of the test program
- Don't worry about the performance evaluation. It is just one of the criteria. Focus more on what you design to solve problems you face.

Some Possible Discussion

- Design methodology for good score (before/after)
- The size ratio of L2 Cache to L1 Cache
- Sequence length for demonstrating the effectiveness of L2 Cache