

#CROCOPY RESOLUTION TEST CHART
NATIONAL BURFAIL OF STANDARDS 1963-A

AD-A174

STATION LOADING ON THE DATSA (DEPOT

AUTOMATED TEST STATION FOR AVIONICS)

THESIS

Larry D. Bottomley Captain, USAF

AFIT/GLM/LSY/86S-7

DISTRIBUTION

Approved for public release Distribution United

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

86 12 02 126

DEC 3

5

STATION LOADING ON THE DATSA (DEPOT AUTOMATED TEST STATION FOR AVIONICS) THESIS

Larry D. Bottomley Captain, USAF

AFIT/GLM/LSY/86S-7

Approved for public release: distribution unlimited

The contents of the document are technically accurate, and no sensitive items, detrimental ideas, or deleterious information is contained therein. Furthermore, the views expressed in the document are those of the author and do not necessarily reflect the views of the School of Systems and Logistics, the Air University, the United States Air Force, or the Department of Defense.

STATION LOADING ON THE DATSA (DEPOT AUTOMATED TEST STATION FOR AVIONICS)

THESIS

Presented to the Faculty of the School of Systems and Logistics of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Logistics Management

Larry D. Bottomley, B.S. Captain, USAF

September 1986

Approved for public release; distribution unlimited

Preface

This research project only examines the depot level maintenance at one of four depots using the DATSA (Depot Automated Test Station for Avionics) for the B1-B. The model, developed to simulate the repair process, can be used for any depot merely by changing the appropriate variables after the computer program is started. The variables are easily changed because of a new simulation environment called SIMPLE 1. The simulation language, developed by Mr. Philip Cobbin, provided the needed flexibility to accomplish this type of model.

I would like to thank Mr. Cobbin for his help with the language and Lt. Col. Richard Peschke for introducing me to SIMPLE 1. I would also like to thank my thesis advisor, Maj. Hitzelberger, for his patience, trust, and editorial assistance during this research project. Finally, I need to express my thanks to my family for their moral support this past year.

Table of Contents

	P	age
Preface		ii
List of F	igures	V
List of T	ables	vi
Abstract		vii
I. The	Introduction	1
	General Issue	1 2 2 3
II. The	Background	7
	Organizational Maintenance	7 8 9
III. The	Methodology	11
	Model Building	11 11 12 14 15 15 17 18 19 21
IV. The	Warm Up Runs	22 23 26 28 31 31 32 35
		2.40

Section testific become stated testific testific testific testific testific testific testific testific testific testification te

V. The	Conclusion and Recommendations	42
(Summary Conclusion	42 43 45 45 46
Appendix A	: Source Code of Model	47
Appendix B	: Simple_1 Standard Report Output	57
Appendix C	: Warm Up Data	59
Appendix D	: Changing the Number of DATSAs Data	60
Appendix E	: Changing the Number of Workers Data	62
Appendix F	Changing the Flying Time Data	64
Bibliograp	hy	68
Vita		70

List of Figures

Figu	re	Page
1.	Logic Flow of Discrete Section	20
2.	Days in Depot vs Run Length	24
3.	Idle DATSAs vs Run Length	24
4.	Idle Workers vs Run Length	25
5.	SRUs Remaining vs Run Length	25
6.	10 vs 9 DATSAs	29
7.	9 vs 8 DATSAs	29
8.	50 vs 45 Workers	34
9.	45 vs 40 Workers	34
10.	+10% Fly Time With 8 DATSAS	37
11.	-10% Fly Time With 8 DATSAS	37
12.	+10% Fly Time With 9 DATSAS	40
13.	-10% Fly Time With 9 DATSAS	40

List of Tables

Table		Page
I.	Default Variable Values	16
II.	Input Variables	16
III.	Warmup Runs	23
IV.	Change DATSA Summary	27
٧.	Change Worker Summary	33
VI.	Change Flying Time Summary (8 DATSAs)	36
VII.	Change Flying Time Summary (9 DATSAs)	39
זוזע	Summary Chart of Changing DATSA Quantities	43

Abstract

This research investigates the repair process for Bi-B avionic Shop Replaceable Units (SRUs) at the depot level of maintenance. A Depot Automated Test Station for Avionics (DATSA) is used to test these SRUs for faults. A computer model provides the environment for the simulation and comparison of different amounts of DATSAs at the depot at Robbins AFB, Georgia.

SIMPLE 1 is the simulation language used by the model. It was chosen primarily because it can be used on any IBM or IBM compatible personal computer, and it does not require a simulation expert to run. The model's user-friendly input screens allow for changes to be made for future simulations as more data becomes available on the SRU repair process.

The simulations used a SRU arrival rate based on an aggregate Mean Time Between Demand for the SRUs. Simulations were conducted using various quantities of DATSAS.

The differences between key variables in the different systems were compared and confidence intervals were computed. Synchronized random number streams were used as a variance reduction technique to determine compact confidence intervals. Sensitivity analysis was also accomplished by

varying the quantities of workers available and the average daily flying time of the B1-B.

The results indicated a minimum of eight test stations would be able to accommodate the anticipated SRU load at the depot. However, the time the average SRU was delayed in the depot also increased as the number of DATSAs was decreased. With only eight DATSAs in operation, the cost of the added delay might exceed the cost of another DATSA. Also, as the flying time was increased, an infinite queue of faulty SRUs began to accumulate with only eight DATSAs in operation. Nine DATSAs were easily able to accommodate a 10 percent increase in average daily flying time.

STATION LOADING ON THE DATSA (DEPOT AUTOMATED TEST STATION FOR AVIONICS)

I. The Introduction

General Issue

The B1-B strategic bomber is a highly complex weapon system. It utilizes a modular component design to expedite and simplify maintenance. An avionics system failure on the aircraft is traced to a Line Replaceable Unit (LRU), or "black box." The LRU is removed from the aircraft and replaced with another LRU. The malfunctioning LRU is sent to the base avionics maintenance shop for repair. In the shop the LRU is checked with Automatic Test Equipment (ATE), and the faulty circuit board within the black box or Shop Replaceable Unit (SRU) is removed and replaced. The faulty SRU is sent to a depot for repair. At the depot the SRU is tested with the Depot Automated Test Station for Avionics (DATSA), and then it is repaired and returned to service. The quantity of test stations at the depot must be enough to insure a reasonable repair time at the depot, or the inventory of spare SRUs will be depleted before it can be replenished. The resulting shortage of spare SRUs could seriously affect our strategic bomber capability by grounding combat aircraft. However, an excessive number of

stations would add millions of dollars to the program's total cost.

Problem Statement

The B1-B System Program Office, SPO, has ordered 30 DATSAs from Emerson Corporation. The DATSAs are to be located at four different depots, and each depot will be responsible for different types of SRUs. Currently, a few of the DATSAs have been sent out to the depots. The remainder are scheduled for gradual implementation until June of 1988, when all stations should be in place as the last of the 100 new B1-B aircraft become operational (12).

The SPO is concerned that 30 test stations may not be enough to handle the depot maintenance of the SRUs.

Rockwell International Corporation projected a need for 46 stations. But the Technology Repair Centers (TRCs), a part of Air Force Logistics Command (AFLC) and responsible for maintenance and repair at the depots, projected a need for 30 stations (12). The SPO not only needs to know if 30 test stations are enough, but how many to place at each of the four depots to insure a minimal repair time without committing an excessive number of DATSAs.

Research Objectives and Scope

Complicated models capable of doing this simulation already exist, but because of their expense or complex nature, they are relatively inaccessible to smaller planning groups. The objective of this research was to develop a

model to assist the B1-B SPO with their decision on the quantities of DATSAs to place at each depot.

The nature of this research was to analyze failed avionic SRUs as they travel through depot repair, not to model each individual SRU in the entire system (see System Definition in Chapter 2). The planned 100 B1-B aircraft contain more than 400,000 avionic SRUs alone, not counting any SRUs held in inventory. A model of this complexity would not be adaptable or flexible enough to allow the many changes that occur in an evolving weapon system.

The objective was to provide the B1-B SPO a user-friendly computer model for use in determining the proper quantities of test stations at each depot. The model was built to examine the depot defensive avionic SRU repair at Robbins AFB, and analyze how many DATSAs are needed there. But the model is generic and user-friendly enough to allow even non-experts the opportunity of using the model as input data changes or for analyzing other depots or test stations.

Literature Review

State I statement statement which statement and statement

This research project builds on research conducted by Captain Lance M. Roark, a 1983 Air Force Institute of Technology (AFIT) graduate. His topic was the intermediate level of maintenance accomplished at the local base level. He designed a model to determine how many of the various types of Intermediate Automatic Test Equipment (IATE) would be required (14:3). At the time of its development, the

model provided very useful information to the B1-B SPO. However, most of his data (as well as most data used by this project) were estimates furnished by the contractors at Rockwell International. When more actual data began to be collected, he was not available to run simulations using new data on his model. Despite the fact he also included an operating manual for the model, it was too complex for the SPO personnel to use. They were unable to use it to adjust their estimates of IATE requirements. Thus this project will continue the analysis to depot level maintenance and carry along the lessons learned regarding simplicity.

To adequately understand and duplicate a system, a knowledge of the system boundaries is necessary. Mize and Cox provide excellent descriptions of many required terms. A simulation is

... the process of conducting experiments on a model of a system in lieu of either (1) direct experimentation with the system itself, or (2) direct analytical solution of some problem associated with the system. (11:1)

A system is "a set of objects united by some form of interaction or independence" (11:1). A model is a representation of all or part of the real system, and an experiment is the act of observing the performance of the model or system under various conditions.

The system in this model is depot level maintenance at Robbins AFB for B1-B avionic SRUs repairable on the DATSA.

The experiments change the number of test stations available to examine the number required. Also, a sensitivity

analysis of the output was accomplished by varying the average daily flying time to observe the results if the input data were to change. This sensitivity analysis also substantiates the model's face validity. A model's face validity is its ability to appear "reasonable on its face to model users and others who are knowledgeable about the real system being simulated (2:385).

Fishman lists several of the technical attractions of simulation (7:4-5). Simulations can compress time, control sources of variation, eliminate errors of measurement, and allow an experiment to be replicated. Also, simulations can stop, record, and review all relevant states during an experiment without hindering the process of the system. Unfortunately, they also can become so complex trying to account for every minute detail that they fail to provide useful solutions.

The depot level SRU repair can be thought of as a queueing system, or a "collection of demands that arise as time evolves and that request service from one or several of a collection of resources" (7:13). The number of DATSAs required corresponds to the number of servers in a queue. Waiting time for repair decreases as the number of servers increases, but after a point the idle time of the servers increases to the point where it is no longer efficient.

This illustrates the double-edged character of performance, and it is the balancing of these conflicting objectives that represents the essence of the study of a queueing system. (7:17)

DATSAs are expensive, but too few of them could leave the strategic forces in a decreased state of readiness.

The queue at the depot has the main attributes of any queueing system. The arrival rate of failed SRUs is given by their Mean Time Between Demand (MTBD). Their reliability is given by their Mean Time Between Failure (MTBF), but the depot is concerned with the actual demand rate on supply (12). The MTBD is a smaller number than the MTBF because it incorporates other types of failures besides those due solely to an inherent failure in the component itself. Other types of failures would include those due to neglect, maintenance malpractice, or components that retest okay.

Cooper provides excellent descriptions of the different types of arrival and service time distributions to use in various models. The poisson distribution is a favorite arrival distribution because of its memoryless property (5:45). Memoryless means the arrival of any entity (SRU) is completely independent of when the last arrival was. This same principle applies to using exponential service (repair) times (5:38). Uses of both distributions are well-discussed by Banks and Carson (2).

Banks and Carson also list the steps used to conduct a simulation. These will be covered in Chapter III of this thesis. Cobbin provides the inputs for the actual model building, also in Chapter III of this thesis. The methods of analysis described by all three authors will be used to assist in analyzing the results of the simulations.

II. The Background

Starting in mid-1985, the first B1-Bs began arriving at Dyess AFB, Texas. By the end of 1986, Dyess should have all of its scheduled 29 aircraft. The next 35 aircraft are planned to arrive at Ellsworth AFB, South Dakota, between November, 1986 and July, 1987. Grand Forks AFB, North Dakota should have its 17 aircraft by the end of 1987, and the last 17 go to McConnell AFB, Kansas by mid-1988 (10). To support aircraft depot maintenance, the DATSAs are also being implemented gradually to be fully operational by mid-1988 (12).

The B1-B utilizes three main levels of indenture for maintenance. The organizational and intermediate levels of maintenance occur at the local base level, and the depot level of maintenance occurs at a Technology Repair Center (TRC) usually co-located with an Air Logistics Center (ALC).

Organizational Maintenance

The organizational maintenance personnel (OMS) meet the aircraft after its mission to investigate any malfunctions reported by the flight crew at the maintenance debriefing. The bulk of the B1-B's avionics can be grouped into three categories -- offensive avionics, defensive avionics, and the Central Integrated Test System (CITS) (14:16). The CITS automatically accomplishes fault tests on the avionic equip-

ment during flight. This aids both the operations and maintenance crews in troubleshooting malfunctions. The malfunction can usually be isolated to one Line Replaceable Unit (LRU). A LRU is "any assembly which can be removed as a unit from the system at the operating location" (6:1-1). This malfunctioning LRU is removed and replaced with another LRU from base supply. The faulty LRU is then sent to a base level avionics repair facility (AMS) for test and repair.

Intermediate Maintenance

The B1-B's avionic systems have more than 424 LRUs of which 212 are repairable. One hundred and nine LRUs will be repaired at the base level on Automatic Test Equipment (ATE), 103 will be repaired at the depot level, and 212 will be discarded (14:16). A repairable LRU is connected to a computerized test station, and the station conducts a series of tests on the LRU to determine the malfunction. Usually the fault can be traced to a Shop Replaceable Unit (SRU).

A SRU is "a module for an LRU which can be removed from the LRU at an intermediate repair facility" (6:1-1). If a SRU is malfunctioning, it is removed and replaced with another SRU from supply. The repaired LRU returns to supply, and the bad SRU is sent to depot for repair. Base supply orders SRUs from the depot as its stock becomes depleted. Any LRU that is scheduled to be repaired at depot or that cannot be repaired is also sent to the depot for repair.

Base supply is responsible for maintaining the proper levels of stock in LRUs and SRUs. Some commonly used SRUs will be held as bench stock in the avionics shop, but the rest will be ordered from supply. Supply will order the LRUs and SRUs from the appropriate depot.

The test equipment used in the avionics shop is called IATE (Intermediate Automatic Test Equipment). LRUs are attached to the test station through a hardware interface. Electronic tests are performed through the use of computer software programs. The IATE also has many LRUs in its composition, so test station failures can be rapidly repaired. IATE LRUs can also be tested on the IATE and repaired at the base level by removing and replacing the faulty SRU. The test station SRUs are sent to depot at San Antonio ALC for testing and repair.

Depot Maintenance

Presently four depots have been named to test the avionics SRUs for the B1-B: Warner Robbins ALC, Oklahoma City ALC, San Antonio ALC, and Sacremento ALC. Each aircraft contains more than 1300 different types of SRUs, and they can be tested with a test station called DATSA, Depot Automated Test Station for Avionics (12). As mentioned before, San Antonio will handle all SRUs from IATE stations at each of the four bomber bases. Warner Robbins will be tasked with the ALQ-161 SRUs. The ALQ-161 is the defensive avionics package used for Electronic Warfare (EW).

It consists of 514 SRUs. Sacremento is getting one DATSA to use in its repair of SRUs from a specialized type of instrumentation. The rest of the SRUs will be repaired at Oklahoma City (12). Test Program Sets (TPSs), the computer software that drives the different SRU tests are currently being developed at the depots on the DATSA (12). Future weapon systems consisting of LRUs and SRUs can utilize this same DATSA by merely using different interfaces and TPSs.

AND STATES STATES STATES STATES

STATE OF STA

The data used in this model is from the B1-B SPO. They obtained the individual MTBD for each type of SRU from the contractors. The contractors based the estimates on reliability rates from similar components used on different systems and on the data they are beginning to acquire from the field from the B1-Bs that are flying (10). The Mean Time To Repair (MTTR) is also estimated the same way. The projected B1-B flying time is from Headquarters SAC (Strategic Air Command).

AFSC/AFLC Reg lation 800-23 sets the policy for the purchase and use of Modular Automated Test Equipment (MATE) to the maximum extent possible. It "requires all AFSC/AFLC organizations that acquire, modify, replace, and support AF systems that require ATE to follow this policy" (8). The DATSA, like the IATE, is composed of modular components that can be mixed and matched to a degree. The DATSA is composed of LRUs and SRUs which can be removed and replaced and sent to San Antonio ALC for testing and repair.

III. The Methodology

Banks and Carson present a useful list of steps to follow in a simulation study (2:11-15). These steps provide the framework for the discussion of the method used. The first two steps, problem formulation and setting of objectives, have already been accomplished. The report of results is contained in Chapter 4, and conclusions and recommendations are in Chapter 5.

Model Building

The discrete section of the model is made up of three main parts. The first part, the clock section, is the sequencer of daily activities. The second part, the failure section, is concerned with creating failed SRUs, assigning them a type and repair times, and shipping them to the depot. The last part, the repair section, models the repair process at the depot.

The Clock Section. The clock serves as the time keeper to sequence events properly in a normal work week. Each weekday it randomly assigns shipping times from the four B1-B bases, updates the display screen, and controls the work activity. Work starts at 0730 each weekday morning, and the lunch break is from 1130 to 1215. The workers repair SRUs for four more hours and leave work at 1615. Work starts again the next day at 0730. Work ending at 1615 on Friday waits until Monday morning to start again. The

clock provides preempts to interrupt work for lunch, evenings, and weekends. The shipping times, generated by the clock, are used in the next section.

The Failure Section. SRU arrival is simulated in the next section of the model. Rather than try to fly 100 aircraft (each with 1300 avionic SRUs), an aggregate arrival rate is calculated by summing the individual arrival rates. An individual arrival rate is given by the equation

$$Ra = (1/MTBD) \tag{1}$$

where Ra is the Rate of arrival and MTBD is the Mean Time Between Demand of the SRU. The reciprocal of the Rate of arrival yields the aggregate MTBD for all SRUs on the aircraft:

$$SRU_MTBD = (1/Ra)$$
 (2)

SRU_MTBD is the aggregate MTBD of all SRUs and Ra is the aggregate Rate of arrival determined in Eq (1). The SRU_MTBD is one of the key variables in the model since it determines the work load at the depot.

The expected number of SRU arrivals at depot per day can be determined by the equation

NO_FAILURES = FLY_TIME/SRU_MTBD (3) where FLY_TIME is the average flying time of all alreraft per day, and SRU_MTBD is computed from Eq (2). The NO_FAILURES is sampled daily from a poisson distribution with a mean calculated by Eq (3). FLY_TIME is computed by dividing the quarterly flying time by 65 flying days per quarter. Although SAC flys on weekends, the base and depot

level maintenance is usually accomplished on weekdays. So for this model, the flying time is divided by the 65 weekdays per quarter. The actual flying time will vary from day to day, but studies have shown that this variance has a negligible impact on failure arrival rates (9).

Another concern is shipping time from each of the four bases to Robbins AFB. The average shipping time from any base to the depot at Robbins AFB is five calender days with an exponential distribution (10). The clock simulates calender days and uses a 48 hour preempt on depot activities to stop work for the weekend. But transportation of shipments is not preempted and still occurs over weekends. The shipments leave the bases at 1600 on weekdays. actual shipping time may not be five days, but once the system is in steady state, the actual transportation time is important only because it provides an arrival pattern that can be spread out over many days. The exponential shipping times for arriving SRUs from each of the four bases provide this dispersion. They are computed each day for each base. The base of origin is determined on a percentage chance derived from each base's percentage of the total flying time. All of these figures are default variables and can easily be changed at the start of each simulation with a user-friendly input screen.

The avionics SRUs consist of four major types: digital, analog, radio frequency (RF), and microwave (15). Each type has a different average test time on the DATSA and a

different average labor time. The estimated percentage mix of the SRU types and the average times were all provided by the depot at Robbins AFB (15). These figures are also default variables in the model, and they can be easily changed as actual data replaces estimated data. Before being shipped in the simulation, each SRU is marked by type and repair and test times are assigned to it.

The Repair Section. The third part of the discrete section of the model simulates the maintenance repair process at the depot. Failed avionic SRUs arrive as inputs to the process. Each SRU is taken by a worker (if one is available) to an available DATSA, and an initial inspection is accomplished to determine the faulty component on the SRU. When the faulty component has been identified, the DATSA is free for other inspections or tests. The worker repairs the SRU, and then tests the SRU again on the DATSA to insure it is working properly. A small percentage of the SRUs will be found to have no faulty components and ReTest OKay (RETOK). Also, some SRUs will need additional repair after the second testing (RETEST). These percentages are default variables. After a part is repaired it is returned to supply for re-issue.

The marker of DATSAs and workers are input variables for the state of the quantity of each variable at the state of the control of the simulation. Another that DATSA DOWN_TIME. This is the number that the DATSA nonavailability because of the state of t

The default variables are default part variables. The default variables have see seeigned by the model, but these values can be reasent at run time with the use of an input

The default variable values are the containing each individual SRU MTBD can be computed.

が大きない。これには、「は、「は、これには、これでは、「は、これできないないないないない。」

TABLE I
Default Variable Values

RATES	TIMES			
RTOK RETEST PERCENT DYESS PERCENT ELSWORTH PERCENT GRAND FORKS PERCENT MCCONNEL PERCENT ANALOG PERCENT DIGITAL PERCENT RF PERCENT MICROWAVE	0.1000 0.1500 0.2929 0.3535 0.1768 0.1768 0.6000 0.3000 0.1000	AGG. SRU MTBD (HRS) DATSA MTBF (HRS) DATSA MTTR (HRS) ANALOG TEST (MIN) ANALOG LABOR (MIN) DIGITAL TEST (MIN) DIGITAL LABOR (MIN) RF TEST (MIN) RF LABOR (MIN) MICRO TEST (MIN) MICRO LABOR (MIN) QUARTERLY FLY TIME	5.734 167.5 1.5 69 660 39 420 180 900 7875	

TABLE II
Input Variables

NUMBER OF DATSAS
NUMBER OF WORKERS
WARM UP TIME (IN DAYS)
RUN TIME (IN DAYS)
NUMBER OF REPETITIONS
ADDITIONAL SRU LOAD (DAILY)
TOTAL DATSA DOWNTIME (HRS/DAY)

Input Variables. The input variables do not have default settings, so they must be input at run time. Table II lists the input variables. The number of DATSAs is the variable of major concern, and its value was varied to determine the results using different quantities of DATSAs. The number of workers is a value determined by the production labor specialist based on their estimate of the anticipated workload (15). The warm up time is the number of days the simulation is to run to achieve steady state conditions. A value three times the transportation time is usually sufficient for warm up and this value was tested and used in the simulations. The run time is the number of days the model is to simulate the process. For all simulations a run time of 90 days (one quarter) was used to insure a sufficiently large enough run time as discussed below.

The number of repetitions is the number of times the model is to repeat a simulation run with out resetting simulation variables or entities. This produces the effect of one long simulation run with data collected in intervals called "batches." The mean values in these repetitions or "batches" are not independent, but if the run time of the repetition is sufficiently large, then the means can be considered as independent because the bias in the variance estimator will be approximately one (2:440). Additional SRU load is the number of additional faulty SRUs created daily. It can be used for sensitivity analysis dealing with an increased SRU load on the depot. Total DATSA downtime is

the number of hours per day of total DATSA nonavailability for preventive maintenance, calibration, or other uses. All simulations used a DATSA downtime of 30 minutes per available DATSA per day.

Common Random Number Streams

Common random number streams were utilized to synchronize the simulations for comparison purposes. The resulting correlated sampling helped achieve variance reduction for smaller confidence intervals. "Correlated sampling means that, for each replication, the same random numbers are used to simulate both systems" (2:456). Since the number in the random stream when the next repetition begins is not the same as the one that started the preceding repetition, and the run length is sufficiently large (90 days), then the repetitions can be considered independent. Also, since the random numbers are synchronized in the model, the next repetition of each series of runs (or experiments) will be the same (2:456-457). Thus different test are correlated and variance reduction is achieved.

Ninety-five percent confidence intervals were used for all experiments. This means that, statistically speaking, 95 percent of all observations should occur within this measurement interval. In the case where one system is being compared to another, if the difference in mean values of the variables in question has a confidence interval which includes zero, then no statistical evidence exists for a

difference between the values (with a 95 percent confidence).

Coding

The simulation language is SIMPLE 1, and the simulation will run on any IBM or IBM compatible personal computer. Appendix A contains the documented source code for the model. The SIMPLE 1 simulation environment consists of five main sections: the declare, prerun, discrete, continuous, and postrun sections. User defined global variables, entities, screen layouts, and files are contained in the declare section. The user defined variables help to make the model easier to read and understand. The prerun is used in conjunction with the postrun section to initialize, clear, and reset variables. These two sections also combine to provide the powerful run control features which contribute to user-friendly control of the model (4:5.4). The continuous section is used for continuous simulation models and is not used in this model. The discrete section of the model consists of three main areas: a clock section to simulate a forty hour work week, a failure section to simulate SRUs arriving at depot, and a repair section to simulate the SRU repair process at the depot. Figure 1 shows the main logic flow in the discrete section of the model.

CLOCK

- 1. SET DAILY VARIABLES (SHIPPING TIME AND # OF FAILURES)
- DELAY FOUR HOURS
- 3. PREEMPT WORKERS FOR LUNCH (45 MINUTES)
- 4. DELAY FOUR HOURS
- 5. PREEMPT WORKERS FOR THE EVENING
- 6. DELAY 915 MINUTES (UNTIL 0730 THE NEXT DAY)
- 7. ACCOMPLISH #s 1-6 FIVE TIMES THEN DELAY 48 HOURS (WEEKEND DELAY)
- 8. START AT # 1 AGAIN (0730 MONDAY)

FAILURES (MON - FRI)

- 1. CREATE THE NUMBER OF SRU FAILURES FOR THE DAY
- 2. DETERMINE THE BASE OF ORIGIN
- 3. ASSIGN SHIPPING TIMES ASSOCIATED WITH THE BASE
- 4. DETERMINE THE TYPE OF SRU
- ASSIGN TEST AND REPAIR TIMES BASED ON TYPE
- 6. DELAY FOR DURATION OF SHIPMENT
- 7. ARRIVE AT DEPOT

REPAIR (MON - FRI)

- 1. WORKER DOES INITIAL INSPECTION OF SRU ON DATSA (IF DATSA FAILS WORKER FIXES DATSA)
- 2. DATSA RELEASED BACK TO SERVICE
- 3. WORKER REPAIRS SRU (RTOK SENT TO SUPPLY)
- 4. WORKER TESTS SRU AFTER REPAIR
 (SOME FAIL TEST AND NEED MORE REPAIR)
- 5. DATSA RELEASED; SRU SENT TO SUPPLY
- 6. WORKER GETS ANOTHER SRU OR WAITS FOR ONE
- 7. START AGAIN AT #1

Figure 1. Logic Flow of Discrete Section

Verification and Validation

Verification and validation are two very important checks that every model must use. Verification means that the computer program of the model is doing exactly what it is supposed to do. Validation means that the simulation model accurately represents the real world system it is simulating (2:14).

Verification was accomplished by building the model in modules, and checking each one against results expected by using equations and computing straight averages. Appendix B contains a standard report generated on one of the test runs of the model. It displays the activity of entities in each labelled node of the model. By comparing the number of entities that passed through each node, the model can be verified to be accomplishing the logic described in Figure 1. The program code is well-documented to assist in verification (2:381).

Model validity is more difficult to demonstrate since objective tests require actual data, and actual data does not exist (2:383). To demonstrate that the model is representitive of the real world system, subjective tests were used. Subjective tests are easier if the model is built with high face validity (2:384). Face validity was achieved through close working with the users (the SPO). Thorough discussion of the methods and assumptions in the model along with sensitivity analysis of output was maximized, and the final logic was validated with the B1-B SPO (1).

IV. The Analysis and Results

Warm Up Runs

The simulation models the SRU repair process in steady state, so a warm up period was utilized to avoid the low averages associated with the start up period where all processes start empty. Several runs were required to determine the warm up period for steady state operation.

A warm up period equal to three times the transportation delay time should be sufficient for this simulation (9). Since the simulation uses an average transportation delay of five days, the first test was to show there is no statistical difference between the variables of concern (DAYS IN DEPOT, IDLE DATSAS, IDLE WORKERS, and SRUS WAITING) with warm up periods of 15, 20, 25, and 30 days. Four runs were accomplished using each of the four different warm up periods. The lengths of the run after the warm up were 90, 85, 80, and 75 days respectively. This kept the total simulation time (warm up time plus run time) equal for each test. After all four runs were complete, a mean value and standard deviation were computed for each of the four variables of concern. The results of the experiment are contained in Table III.

The values appear to be similar by casual inspection, but to insure no statistical difference, a confidence

TABLE III
Warmup Runs

		AYS IN DEPOT	IDLE DATSAS	IDLE WORKERS	SRUS WAITING
15 20 25 30	90 85 80 75	3.472 3.282 3.402 3.482	2.2 2.3 2.1 2.1	13.9 14.1 13.2 12.6	22.3 19.6 19.7 20.7
MEAN STAND. UPPER 9 LOWER 9	5% CI	3.409 0.080 3.537 3.282	2.307	13.450 0.594 14.395 12.505	22.301

interval was computed for each of the four variables of concern. The mean values for each test of different warm up periods lies within the confidence interval for each variable. This indicates that there is no evidence of statistical difference between the four different tests. Figs 2,3,4, and 5 graphically show the results. Since no evidence of a difference existed, the smallest value, 15 days, was chosen for the production runs.

Production Runs

CASA STATES SALVERS

CONTRACTOR CONTRACTOR SECTION CONTRACTOR STATES

Once the warm up period to achieve steady state conditions had been determined, production runs were accomplished using different quantities of DATSAs. Four production runs were accomplished with the only difference being the number of DATSAs. Since the original plan called for 10 DATSAs to be used at the depot, the first test was

Figure 2. Days in Depot vs Run Length

Figure 3. Idle DATSAs vs Run Length

255555555

Figure 4. Idle Workers vs Run Length

Figure 5. SRUs Remaining vs Run Length

with 10 DATSAs. The results are summarized in Table IV. For all the experiments a warm up time of 15 days and a run time of 90 days was used. The number of available workers was held constant at 50 workers. Each experiment consisted of 5 runs or "batches," and the results were an average of the 5 runs.

tables expenses, elections establishes secretor victorists

30.22.23

Nine DATSAs versus Ten DATSAS. The next test was conducted using nine DATSAs, and the results are also in Table IV. The complete data from each repetition are in Appendix D. The results using 10 and nine DATSAs were compared. The average number of days each SRU spent in the depot increased by .288 days (about 7 hours) when nine DATSAs were used instead of 10. Since the confidence interval (C.I.) does not include zero then the evidence supports the fact that the difference in days in the depot between the two tests is not only attributed to random number possibilities in the simulations.

The average number of idle DATSAs decreased by 1.460 using nine DATSAs, and the C.I. for this number does not include zero. So, no statistical evidence exists to support the fact that the difference between the number of idle DATSAs is only attributed to random possiblilities in the simulations. The DATSA utilization is derived by dividing the average number of stations in use by the number available, or

UTIL = (NUMBER_OF_DATSAS-IDLE_DATSAS)/NUMBER_OF_DATSAS (4)

TABLE IV
Change DATSA Summary

		DAYS 1	N DEPOT		
50 WORKERS	10 DATSAS	9 DATSAS	8 DATSAS	9-10 DIFFER	8-9 DIFFER
MEAN STAND. DEV UPPER 95% LOWER 95%	0.145 3.294	0.233 3.692	0.553 5.453	0.185 0.518	0.468 1.946
		IDLE DAT	SAS		
50 WORKERS	10 DATSAS	9 DATSAS	8 DATSAS	9-10 DIFFER	8-9 DIFFER
MEAN STAND. DEV UPPER 95% LOWER 95%	3.880 0.337 4.298 3.462	2.420 0.685 3.271 1.569	0.860 0.372 1.322 0.398	-1.460 0.422 -0.936 -1.984	-1.560 0.571 -0.851 -2.269
		IDLE WOR			
50 WORKERS				9-10 DIFFER	8-9 DIFFER
WORKERS MEAN STAND. DEV UPPER 95% LOWER 95%	DATSAS 15.740 1.435 17.521 13.959	DATSAS 	DATSAS 13.320 0.863 14.392 12.248	DIFFER -0.540 1.080 0.801 -1.881	DIFFER1.880 1.670 0.194 -3.954
WORKERS MEAN STAND. DEV UPPER 95%	DATSAS 15.740 1.435 17.521 13.959 ======	DATSAS 	DATSAS 13.320 0.863 14.392 12.248	DIFFER -0.540 1.080 0.801 -1.881	DIFFER -1.880 1.670 0.194
WORKERS MEAN STAND. DEV UPPER 95% LOWER 95%	DATSAS 15.740 1.435 17.521 13.959 ======	DATSAS 	DATSAS 13.320 0.863 14.392 12.248 ====================================	DIFFER -0.540 1.080 0.801 -1.881	DIFFER1.880 1.670 0.194 -3.954 ========

deser esperado, estados estados estados estados bacados adades destados estados estado

The DATSA utilization, using Eq (4), with 10 stations is .612 or 61.2 percent and the utilization with nine stations is .7311 or 73.11 percent.

The average number of idle workers decreased by .540 using nine DATSAs, but the C.I. for this difference does include zero. So the evidence suggests there is no statistical difference between the number of idle workers using 10 or nine DATSAs. Figure 6 demonstates where the confidence intervals lie with respect to zero.

The average number of SRUs waiting for repair at depot increased by 4.2 or 27.13 percent. The C.I. indicates a statistical difference between the number of SRUs in both tests.

Eight versus Nine DATSAs. The next test was conducted by using all the same variables as before, except the number of DATSAs was lowered to eight. The results of the test are also contained in Appendix D, and summarized in Table IV. Figure 7 graphically displays the C.I.s and their relationship to zero.

The average number of days an SRU spends in depot increased by 1.364 days over the number with nine DATSAs. As depicted on the graph in Figure 7, the C.I. does not contain zero, so there is no evidence to support a similarity in the number of days. This increase was a 40 percent increase over the system with nine DATSAs.

Figure 6. 10 vs 9 DATSAs

Figure 7. 9 vs 8 DATSAs

The average number of idle DATSAs decreased by 1.56 from the amount using nine DATSAs, and the C.I. did not contain zero, demonstrating a statistical difference. As with the previous test between 10 and nine DATSAs, a number approximately equal to one is at least expected, because the quantity of available DATSAs was decreased by one. Using Eq (4), the DATSA utilization is 89.25 percent, which is close to the 92 percent utilization the SPO would like to achieve (1).

The average number of idle workers decreased by 1.88 after reducing the number of DATSAs from nine to eight. As in the previous test with nine and 10 stations, the C.I. for the number of idle workers contains zero. Therefore, statistical evidence demonstrates there is no difference between the number of idle workers in this test either. It appears that varying the number of DATSAs has little effect on the number of idle workers. The number of available workers was varied as part of a sensitivity analysis and is discussed under that subheading.

The average number of SRUs waiting for repair at the depot increased by 20.8 SRUs or 105.7 percent over the system with nine DATSAs. The C.I. for this difference does not include zero (see Figure 7), so statistical evidence supports the difference between the two quantities is not only caused by random number possibilities in the simulations. Even with a 105 percent increase in SRUs waiting for repair, the system was able to clear out the

STATES CHARLES STATES STATES STATES

excess and not continue to accumulate even large numbers of SRUs to repair. This is good evidence the system is still in steady state.

Seven versus Eight Datsas. Next, the same experiment was conducted but the number of DATSAs was reduced by one to seven. Since the number of idle DATSAs in the system with eight DATSAs was .86, the result was predictable -- steady state conditions were violated and an infinite queue of SRUs awaiting service resulted. Since steady state was violated, no comparisons were necessary with the other systems. However, this test added to the validity of the model by showing that if the number of DATSAs is decreased too far, an infinite queue of SRUs waiting repair will develop.

Sensitivity Analysis

Sensitivity analysis was conducted by changing variables such as the number of workers and the average daily flying time. If these variables are changed drastically to shock the system, and the system fully recovers then it can be considered a "stable" system in equilibrium (11:5). Many other variables could be changed for a sensitivity analysis, but the number of workers and average daily flying time were chosen because they are the variables whose values can be controlled in the "real world" system. Also, the three major inputs to the system are the number of DATSAs available, the number of workers available, and the number of SRUs arriving at the depot for repair.

The average daily flying time is only one of many variables controlling the number of SRUs arriving in the system, thus it is representative of all of these variables.

Number of Workers. A test of the sensitivity of varying the number of workers was conducted by holding all variables constant and changing only the number of available workers for each test. The data obtained from these tests are contained in Appendix E and are summarized in Table V. Since the earlier tests demonstrated that changing the number of DATSAs had a negligible effect on the number of idle workers, the number of DATSAs was held constant at eight for this set of tests.

The first test was to conduct a run with 50 workers and another one with 45 workers. Figure 8 shows that the C.I.s for all variables of concern contain zero, except the C.I. for the number of idle workers. This could be expected to decrease by approximately five workers (the actual number decreased), and it did decrease by 4.72 workers. So statistical evidence indicates no significant difference between the system with 50 workers and the system with 45 workers.

Next, a simulation run using 40 workers was accomplished. This time the number of idle DATSAs remained unchanged, but the number of days in the depot increased by 4.82 or 97.8 percent, and the number of SRUs remaining

TABLE V
Change Worker Summary

		DAYS I	N DEPOT				
8 DATSAS	50 WORKRS	45 WORKRS	40 WORKRS	50-45 DIFFER	45-40 DIFFER		
MEAN STAND. DEV UPPER 95% LOWER 95%		4.928 0.518 5.571 4.285	9.747 3.422 13.995 5.499	-0.161 0.546 0.516 -0.838	-4.820 3.611 -0.336 -9.303		
]	IDLE DAT	SAS				
8 DATSAS	50 WORKRS	45 WORKRS	40 WORKRS	50-45 DIFFER	45-40 DIFFER		
MEAN STAND. DEV UPPER 95% LOWER 95%	1.322	0.388 1.241	0.224	0.100 0.245 0.404 -0.204	0.316		
`]	IDLE WOR	KERS				
8 DATSAS	50 WORKRS	45 WORKRS	40 WORKRS	50-45 DIFFER	45-40 DIFFER		
MEAN STAND. DEV UPPER 95% LOWER 95%		8.600 0.876 9.688 7.512	3.360 0.484 3.961 2.759	4.720 1.420 6.483 2.957	5.240 0.575 5.954 4.526		
	SRUS WAITING						
8 DATSAS		45 WORKRS	40 WORKRS	50-45 DIFFER	45-40 DIFFER		
MEAN STAND. DEV UPPER 95% LOWER 95%	7 9.828 52.681 28.279	9.004 54.518	122.200 54.094 189.355 55.045	7.536 6.496	57.677 -7.256 -150.464		

STATES STATES STATES STATES STATES STATES

Figure 8. 50 vs 40 Workers

Figure 9. 45 vs 40 Workers

increased by 78.86 or 181 percent. At first, it appeared that steady state had been violated, but the average number of idle DATSAs stabilized at .6 (92.5 percent utilization). The number of SRUs waiting for repair indicated a steady rise (see Appendix E), but another run was accomplished with an additional repetition (6th), and it showed a lower number of SRUs remaining. So the system remained in steady state, but a very large backlog of SRUs accumulated which would probably take a long time to clear out. The evidence seems to indicate that the system with 40 workers is at the boundary line between steady state and infinite queues.

A third test with 35 workers confirmed this idea. Each succeeding repetition accumulated larger and larger numbers of SRUs waiting repair, and DATSA utilization was near 100 percent the entire time.

Flying Time. Another experiment was conducted to test the effect of an increased arrival rate of SRUs at the depot. This was accomplished by increasing and decreasing the average daily flying time by 10 percent. All other variables were held constant with eight DATSAs and 50 workers. The data is contained in Appendix F and summarized in Table VI. A casual look at Figure 10 shows that three of the C.I.s contain zero (or are very close), but the C.I. for SRUs waiting repair indicates a statistical difference between the normal flying time and the 10 percent increase. A closer inspection of SRUs Waiting in Appendix F indicates

TABLE VI
Change Flying Time Summary (8 DATSAs)

		DAYS	IN DEPOT		
8 DATSAS	NORM FLY	+10% FLY	-10% FLY	+10% DIFFER	
MEAN STAND. DEV UPPER 95% LOWER 95%	0.810 5.807	4.800 17.495 5.577	0.191 3.515 3.041	12.649 0.820	0.670
		IDLE DAT	SAS		
8 DATSAS	NORM FLY	+10% FLY	-10% FLY	+10% DIFFER	
MEAN STAND. DEV UPPER 95% LOWER 95%		0.117 0.325	0.479		0.397 2.073
		IDLE WOR	KERS	·	
8 DATSAS	NORM FLY	+10% FLY	-10% FLY	+10% DIFFER	-10% DIFFER
MEAN STAND. DEV UPPER 95% LOWER 95%	14 210	1.291	1.883 21.418 16.742	1.158 -4.758	1.073
		SRUS WAI			
8 DATSAS	NORM FLY			+10% DIFFER	-10% DIFFER
MEAN STAND. DEV UPPER 95% LOWER 95%	14.337 57.939	83.157 269.497	2.310 19.208	83.050 229.224 23.016	-8.341

Figure 10. +10% Fly Time With 8 DATSAs

Figure 11. -10% Fly Time With 8 DATSAs

kaaaaa saxaaaa buuunus buusees ka

an infinite queue building. This is further indicated by the near zero value of Idle DATSAs.

The test with flying time decreased by 10 percent resulted in all four C.I.s (see Figure 11) not including zero. Therefore, statistical evidence supports the difference between the normal flying time and the lower flying time. Days in depot decreased 1.5 days or 31.7 percent and the number of idle DATSAs increased 1.58 or 225.7 percent over their values with normal flying time.

The increased flying time led to a condition which violated steady state. Therefore, another experiment was conducted varying the flying time by 10 percent with nine DATSAs and 50 workers. The results are also in Appendix F and summarized in Table VII.

Figure 12 shows the C.I.s for days in depot and idle DATSAs contain zero (indicating no support for statistical difference) when the flying time is increased by 10 percent. The average number of idle workers decreased 4.4 workers (29.2 percent) and the average number of SRUs waiting repair increased 13.6 (28.4 percent).

The results of decreasing the flying time by 10 percent are graphically displayed in Figure 13. The results are similar (although opposite in direction) to the test with increased flying time, but the magnitude is not as great.

Days in depot only decreased 8.4 percent (versus a 20.9 percent gain with increased flying time), idle DATSAs

TABLE VII
Change Flying Time Summary (9 DATSAs)

		DAYS 1	N DEPOT		
9 DATSAS				+10% DIFFER	-10% DIFFER
MEAN STAND. DEV UPPER 95% LOWER 95%	0.233	0.515 4.754	0.184 3.347	1.226	0.330 0.125
		IDLE DA	ATSAS		
9 DATSAS	NORM FLY			+10% DIFFER	
MEAN STAND. DEV UPPER 95% LOWER 95%	0.685	0.668 2.249	0.462	0.597 -0.259 -1.741	1.978
=========		IDLE WO	orkers		
9 DATSAS		+10%		+10%	
DATSAS MEAN STAND. DEV UPPER 95% LOWER 95%	FLY 15.200 7 1.691 17.300 13.100	+10% FLY 10.760 2.111 13.380 8.140	-10% FLY 19.360 1.717 21.491 17.229	+10% DIFFER -4.440 1.838 -2.158 -6.722	-10% DIFFER
DATSAS MEAN STAND. DEV UPPER 95%	FLY 15.200 7 1.691 17.300 13.100	+10% FLY 10.760 2.111 13.380 8.140	-10% FLY 19.360 1.717 21.491 17.229	+10% DIFFER -4.440 1.838 -2.158 -6.722	-10% DIFFER 4.160 1.955 6.587
DATSAS MEAN STAND. DEV UPPER 95% LOWER 95%	FLY 15.200 7 1.691 17.300 13.100 ======	+10% FLY 10.760 2.111 13.380 8.140 ====================================	-10% FLY 19.360 1.717 21.491 17.229 =======	+10% DIFFER 	-10% DIFFER 4.160 1.955 6.587 1.733

Figure 12. +10% Fly Time With 9 DATSAs

Figure 13. -10% Fly Time With 9 DATSAs

increased 35.5 percent (versus a decrease of 41.3 percent), idle workers increased 27.4 percent (versus a decrease of 29.2 percent), and SRUs waiting repair decreased 28.4 percent (versus an increase of 69 percent). Therefore it appears that with 9 DATSAs steady state conditions can be maintained after varying the average daily flying time by 10 percent. The sensitivity analysis indicates the system seems more sensitive to increasing flying time as opposed to decreasing flying time.

tions mornious, parketers supposed processes mornious.

V. The Conclusion and Recommendations

Summary

The specific purpose of this research was to provide recommendations to the B1-B SPO concerning the quantity of computerized test stations (DATSAs) required at the Warner-Robbins Air Logistic Center depot for repair of B1-B avionic SRUs. First data was collected to determine the conditions the "real world" system would be operating under. Then a computer model was developed using the projected operating logic of the actual system. A simulation language, Simple_1, was chosen to provide the simulation environment for the model used in the experiments. Simple_1 was chosen because of its ease of use, flexibility, and availability on personal computers. Then tests were conducted using 10, nine, eight, and seven DATSAs. results of the four tests are summarized in Table VIII and discussed in the conclusion of this thesis. Next, a sensitivity analysis was conducted by changing the number of workers available and the average daily flying time to study the effects of these variables on the system. The variables when changed enough could cause the system to depart steady state conditions.

TABLE VIII

Summary Chart of Changing DATSA Quantities

Variable	10	vs 9	vs 8
Days (% increase)		9.28%	40.089
DATSA Utilization	61 20%	73.11%	89.25
Worker Utilization	68.52%	69.60%	73.369
SRUs Wait (% increase)		27.13%	105.69%

Conclusion

The tests conducted to compare different quantities of DATSAs indicate that the B1-B avionic SRU repair system can maintain steady state conditions with as little as eight DATSAs (see Table VIII). When seven DATSAs were tried, the system departed steady state conditions, and an infinite queue of SRUs waiting for repair developed. These results suggest that eight stations may be a viable solution. However, other considerations must be delt with. The number of days a SRU is in the depot only increased nine percent when the number of DATSAs was reduced from 10 to nine. Compare this to the additional 40 percent increase when the number of DATSAs was decreased from nine to eight.

The DATSA utilization when changing from 10 to nine stations increased almost 30 percent to 89.25 percent. This is close to the "perceived" goal of 92 percent by the SPO. But the tests show that in order to achieve this 92 percent utilization, a large number of SRU are kept waiting for repair at the depot. This also results in the 40 percent

increase in the amount of time an SRU spends at the depot. For every SRU waiting in the depot a spare is needed in the field, or the entire weapon system could be unreliable. The impact of a 40 percent increase in the number of days spent in depot could result in a far greater cost to the spares pipeline than the cost of another DATSA.

The sensitivity analysis suggested that eight DATSAs could not respond to a 10 percent increase in flying time and remain within steady state conditions. A similar test with nine DATSAs showed the system was able to absorb the increase and remain within steady state. This strongly suggests the SPO invest in nine DATSAs to (1) provide some flexibility in responding to changing flying times and (2) to minimize (or at least decrease) the dollar investment in spare SRUs.

The other sensitivity analysis tested changing the number of workers at the depot. The depot repair system was simulated with 50 workers for all test runs except during the runs testing the sensitivity of workers. Fifty workers were used to saturate the DATSAs so any delay in the depot would be caused by the lack of a DATSA not the lack of a worker. When the number of workers was decreased to 45, there seemed to be little if any significant difference. But when the number of workers was further decreased to 40, a large number of SRUs were waiting for repair and the system was close to departing steady state. This experiment

demonstrates the importance of the number of workers on the time a SRU spends in depot.

Recomendations

cour reserved activities evaluated

PARTITION CONTINUE PROCESS SERVICES PROLETA DISTRICT BARAKAS

No computer simulation can derive "the" best solution. The results of this research concluded that eight DATSAs could support the SRU repair process at the Warner-Robbins depot. However further analysis of the results indicated that in order to use the minimum number of DATSAs, a high price had to be paid. That price is the cost of delaying many more SRUs (40 percent) in the depot than with nine stations. This is a decision the SPO will have to weigh in making the determination of the number of DATSAs to use at the depot. The author recommends the SPO use this model to simulate the anticipated repair activities at the other depots. The number of DATSAs required elsewhere could also have an impact on this decision. Also, other weapon systems are considering using the same DATSA for some of their avionic SRUs. The model could be run again with increased numbers of SRUs at the depot.

Implementation. The objective of this research is to provide the SPO with the model and results. It will be up to them to see it is fully implemented. The simulation only helps provide the decision maker with several "what ifs?". The final decision is a result of all inputs to the decision maker, not just the results of a simulation.

Future Applications and Revisions. A useful by-product of this research is the computer model which can be run on any IBM or IBM compatible personal computer. The model could be further refined to incorporate the associated costs of DATSAs, workers, and the SRU pipeline. This would provide cost analysis data that would be helpful to the overall decision of the quantity of stations. As stated before, the model is extremely flexible and could be adapted to other similar problems.

Appendix A: Source Code of Model

(61-8 DATSA STATION LOADING MODEL (FINAL VERSION)) DECLARE: (DAY OF THE WEEK COUNTER) (FLAG: 1=WORK,0=NO #ORK) (# WORKERS AVAILABLE) GLOBALS: DAY: WCRK: NO WORKERS: (# DATSAS AVAILABLE) (RETEST OKAY RATE) (RATE FAILING 1ST REPAIR) (SHIPPING TIME FROM DYESS) RTCK: RETEST: DYESS TIME: ELS TIME: GRAND TIME: MCON TIME: ELSWORTH) GRAND FORKS)

(AVE # OF SRU FAILURES PER DAY)

(DURATION OF PREEMPTS)

(RELIABILITY OF DATSAS)

(MEAN TIME TO REPAIR FOR DATSAS)

(AVE # OF DAYS FROM BASE TO DEPOT)

(AGGREGATE MIBD FOR ALL SRUS)

(AVE DAILY FLYING HOURS)

(MENU SELECTOR)

(# OF DAYS OF SIMULATION)

(ANALOG FIST TIME IN MINUTES)

(DIGITAL TEST) GRAND FORKS) NO FAILURES OBSERVE_STATS: DELAY TIME:
PEL RATE:
DAT MITHE:
DAT MITH:
TRANS TIME: SRU MTBD: FLYTTIME: INDEX: FLY TIME: (AVE DAILY FLYING HOURS)
INDEX: (MENU SELECTOR)

NO DAYS: (# OF DAYS OF SIMULATION)
ANA TEST TIME: (ANALOG TEST TIME IN MINUTES)
ANATLABOR TIME: (DIGITAL TEST)
DIG LABOR TIME: (DIGITAL FIX)
RF TEST TIME: (DIGITAL FIX)
RF TEST TIME: (MICROWAVE TEST)
MICRO TEST TIME: (MAX # OF MORKERS NOT IN USE)

(# OF BATSAS AVAILABLE)
MAX DAYSAS: (MAX # OF MORKERS AVAILABLE)
MAX DAYSAS: (MAX # OF MORKERS AVAILABLE)
MAX # OF MORKERS AVAILABLE)

(MOMPUTED TEST TIME IN MINUTES)

(COMPUTED TEST TIME IN MINUTES)

(MOMPUTED TEST TIME IN MINUTES)

(MORE MAIT TIME: (MORE MATTINE)

(MORE DATSA REPAIR TIME)

(MORE DATSA REPAIR TIME)

(MORE DATSA REPAIR TIME)

(CURRENT REPTITIONS)

(CURRENT REPTITIONS)

(CURRENT REPTITIONS)

(CURRENT REPTITIONS)

(ACTUAL NUMBER OF REPITITIONS)

(CURRENT REPTITIONS) (DATSA GEPAIR TIME)
(MORE DATSA REPAIR TIME)
(WARM UP DURATION IN DAYS)
(CURRENT REPTITIONS)
(TOTAL NUMBER OF REPITITIONS) MEPS: NO REPS: DA7 TIME: DOWN DATSAS: DOWN TIME: DOWN MIN: (RUN TIME IN DAYS) (RUN TIME IN DAYS)
(DATSAS NOT AVAILABLE)
(TOTAL DATSA DOWNTIME IN HRS)
(DOWNTIME FOR EACH NONAVAIL DATSA)
(FLAG TO CHAIN)
(FOR INITIALIZING RANDOM SEEDS)
(% OF SRUS THAT ARE ANALOG)
(% OF SRUS THAT ARE DISTAL)
(% OF SRUS THAT ARE RF)
(REST ARE MICROWAVE)
(SRU MIBD INPUT READ VARIABLE) CHAIN: DUMMY: PER ANA: PER DIG: PER RF: (SRU MIBD INPUT READ VARIABLE) (# OF TIMES A MIBD IS ESED) VALUE: NG_TIMES:

same account mounts assisted appropriate sessions

ASSESSED PROPERTY BURGANIA SASSESSED

```
INVERSE:
SELECT:
                                                                                                            RECIPROCAL OF MTBD;
(VARIABLE TO INDICATE MENU SELECTIONS)
                               DEFARRA: (18);
                                                                                                            (DEFAULT INPUT VARIABLES STORAGE)
     ENTITIES: CONTROL(2):SRU(5):WORKER(1/:DATSA(1):
(TITLE SCREEN)
DEF_SCREEN: FITLE_SCREEN.20,3,40,15,YES;
                  DATSA STATION LOADING MODEL
  SRU ASGREGATE MIBD (IN HRS)=
       1. SK TO CONTINUE
2. CHANGE SRU MTBD
3. READ INPUT GRU MTBD FILE
4. QUIT
     CHCICE
                           (DEFAULT SCREEN)
        DEF_SCREEN: DEFAULT_SCREEN.1.1,60,24,YES;
DEFAULT CONSTANTS

1. AGGREGATE SRU MTBD.
2. AVE DAILY FLYING HRS OF ALL A/C.
3. AVE TRANSPORT DAYS FROM BASE TO DEPOT.
4. CATSA MTRF (HOURS)
5. DATGA MTTR (HOURS)
6. SRU RETEST OKAY RATE (RTOK)
7. RATE OF SRUS FAILING TEST AFTER REPAIR
8. PERCENT ANALOG SRUS
9. PERCENT DIGITAL SRUS
10. PERCENT RF SRUS (REMAINDER ARE MICRO)
11. AVE ANALOG TEST TIME (MINUTES)
12. AVE ANALOG LABOR TIME (MINUTES)
13. AVE DIGITAL TEST TIME (MINUTES)
14. AVE DIGITAL TEST TIME (MINUTES)
15. AVE RF LABOR TIME (MINUTES)
16. AVE RF LABOR TIME (MINUTES)
17. AVE MICROWAVE TEST TIME (MINUTES)
18. AVE MICROWAVE LABOR TIME (MINUTES)
19. AVE MICROWAVE LABOR TIME (MINUTES)
                                                       DEFAULT CONSTANTS
             ENTER 0 TO CONTINUE OR # TO CHANGE
```

DEF_SCREEN: BLANK_SCREEN,1,1,50,24,NO;

DISPLAY SCREEN) DEF BOREEN: ANDTORE, 15.0.51.09, 489; BOWN TIME= #DaTSAS= BAIBA BRU SEFAIR ter* #WORK 289= ADD.SRUS= RUN TIME= #SFUS TO REPAIR # OF RUNS= CURNT AVE MIN MAX พผ่⊼M uF≃ 0414 TOLE DATEAS IDLE WORKERS CUPNT AVE MIN MAX CUPAT AVE MIN MAX TIME IN DEPOT IN DAKE MIN MAX (INFUT VARIABLES SCREEN) DEF_SCREEN: MENU_SCREEN.1.4.30.18.YES: ---- SRU REPAIR PROBLEM -----INPUT PARAMETER VALUES TO MODEL: 1) NUMBER OF DATSAS 2) NUMBER OF HORYERS 3) WARM UP (DAYS) 4) PUN TIME (DAYS) 5) # OF REPS 6) ADD SRU LDAD (DAILY): 7) TOTAL DOWNTIME (HRS/DAY) 8/ 1 TO START OR 0 TO RE-ENTER : FILEB: INI.READ: OUT1.APPEND: Ei.J; FPERUN: SET MAX DATSAS :=100: (MAX DATSAS ALLOWED IN MODEL) SE) THA UHISHD .-100. MAX HORKERS:=400: BRANCH (INDEXKI).DO SET: (CHAIN(1).DE]NEXT: .DO]CHAIN; (MAX MORKERS ALLOWED IN MODE) (IF VARIABLES NOT INITIALIZED DO IT) (OTHERWISE SKIP INITIALIZATION) (SOTO HERE IF 1ST REP OF A CHAIN) DG SET SET SPU MT8D := 5.73369: TITLE SCREEN.TITLE SCREEN,1,1,1: SHOW, 31,5.580 MT8D.3,5: ACCEPT.15,12.EELECT,0.4: BRANCH SELECT=1,DEFAULTS: SELECT=2,MT_CHANGE: SELECT=3,READ_DATA: SELECT=4,FINISA; MT_GRANGE ACCEPT.70,5.580_MT8D.0; BRANCH.TITLE: (INITIALIZE SRU_MTBD) 119T SCREEN; (DISPLAY SRU_MTBD) (GET SELECTION)

المجاورة والمجاورة لافيجونها محدوده محدودي محدودي محدودي المجاودية المجاودية المحدودة المحدودة المحدودة

(SUB TO CHANGE SRU MTBD MANUALLY) (SACK TO IST SCREEN)

```
READ_DATA SET SRU_MTBD :=0;
OPEN.INI AS MTBD INF:
                                                                                                                                                                                                      (SUB TO READ SRU MIBDS & ABBREBATE)
                                                                                                                                                                                                       (USE MIBD. INP FILE)
                                                WHILE, ESF(IN: 421)
READ, IN! 421:
SET INVERSE:=ND TIMES:/;
SRU_MTSD:=SRU_MTSD+INVERSE:
END_WHILE.
                                                END WHILE:
CLOSE, IN1:
BRANCH, ILTLE:
 DEFAULTS SET DEFARRAY(1):=SRU_MTBD:
                                                                    DEFARRAY(2):=121.15:
DEFARRAY(3):=5:
DEFARRAY(4):=167.5:
DEFARRAY(5):=1.4:
                                                                                                                                                                                                      (FLYING TIME)
(TRANSPORTATION TIME)
                                                                                                                                                                                                      (DATSA MIBE)
                                                                                                                                                                                            (SRU RTOK)

(RATE OF FAILURE AFTER REPAIR)

( % ANALOG SRUS)

( % DIGITAL SRUS)

( % RESTURE MICROWAVE)

(ANALOG TEST TIME)

(ANALOG LABOR TIME)

(DIGITAL TEST TIME)

(DIGITAL LABOR TIME)

(RF TEST TIME)

(RF LABOR TIME)

(MICROWAVE LABOR TIME)

(MICROWAVE LABOR TIME)

(DISPLAYS DEFAULT VALUES)
                                                                     CEFARRAY(a):=.10:
                                                                                                                                                                                                      (SRU RTOK)
                                                                    DEFARRAY(7):=.15:
                                                                      DEFARRAY (B):=.5:
                                                                      JEFARRAY(9):=.5:
                                                                     DEFARRAY(10):=0:
                                                                     DEFARRAY(11):=59:
                                                                    DEFARRAY(12):=660:
DEFARRAY(13):=39:
                                                                     DEFARRAY(14):=420:
                                                                     DEFARRAY(15):=180:
                                                                    DEFARRAY(16):=900:
                                                                     SEFARRAY(17):=180:
SEFARRAY(17):=180: (MICROWAVE TES'

SEFARRAY(18):=900: (MICROWAVE LAB(
SHOW_DEF GCREEN.DEFAULT SCREEN.1,1,1; (DISPLAYS DEFAULT)

SET NO TIMES:=1;

WHILE.NO TIMES(19;

SHOW, 45, NO TIMES+2.DEFARRAY(NO_TIMES),4,2;

SET NO_TIMES:=NO_TIMES+1;

END_WHILE;

SHOK ACCEPT, 42,22, SELECT, 0,18; (GET # OF VARIANCH SELECT=0, ASSIGN: (IF O THEN NO (
                                                                                                                                                                                                     (GET # OF VARIABLE TO CHANGE)
(IF O THEN NO CHANGE)
(OTHERWISE CHANGE THAT VARIABLE)
                                                    CHANGE: (OTHERWIS
ACCEPT, 44. SELECT+2, DEFARRAY (SELECT), 0;
BRANCH, BACK;
 CHANGE
                                                      SET
 ASSIGN
                                                                                                                                                                                                      (ASSIGN DEFAULT VALUES TO VARIABLES)
                                                     SRU_MT9D:=DEFARRAY(1):
FLY_TIME:=DEFARRAY(2):
                                                      TRANS_TIME:=DEFARRAY(3):
DAT_MIBF:=DEFARRAY(4):
                                                    DAT INTER: = DEFARRAY(5):
RTG: = DEFARRAY(6):
RETEST: = DEFARRAY(7):
PER_ANA: = DEFARRAY(9):
PER_DIG: = DEFARRAY(9):
PER_RE: = DEFARRAY(10):
                                                    PER RF:=DEFARRAY(10):
ANA TEST TIME:=DEFARRAY(11):
ANA LABOR TIME:=DEFARRAY(12):
DIG TEST TIME:=DEFARRAY(13):
DIG LABOR TIME:=DEFARRAY(14):
PF TEST TIME:=DEFARRAY(16):
PF LABOR TIME:=DEFARRAY(16):
MICRO TEST TIME:=DEFARRAY(17):
MICRO TEST TIME:=DEFARRAY(18):
                                                   SCREEN, BLANK SCREEN, 0, 0, 1;
SCREEN, MENU SCREEN, 1, 15, 1;
ACCEPT, 51, 10, NO DATSAS, 1, MAX DATSAS;
ECT IDLE DATSAS: =NO DATSAS;
ACCEPT, 51, 11, NO MORRERS, 1, MAX MORKERS;
SET IDLE MORKERS; =NO MORYERS;
ACCEPT, 51, 12, WARM UP:
ACCEPT, 51, 12, WARM UP:
ACCEPT, 51, 14, NO PEPS, 1;
ACCEPT, 51, 14, NO PEPS, 1;
ACCEPT, 52, 16, DOWN TIME, 0;
ACCEPT, 52, 16, DOWN TIME, 0;
                                                                                                                                                                                                                                             (CLEAR SCREEN)
                                                                                                                                                                                                                                             (VARIABLE INPUT SCREEN)
 PLN MENU
                                                                                                                                                                                                                                           COHANGE DAYS TO MINUTES!
```

THE THIRD STATES

presection officials seconding

PARTICIPATION PROGRAM AND PROG

```
ACCEPT.62,17,INDEX;
BRANCH (INDEX:1),RUN_MENU:
                                                                                                                                                                                                                                                         (CHANGE INPUTS IF DESIRED)
(ELSE CONTINUE)
(TURN ON DISPLAY SCREEN)
(WRITE HEADER TO FILE)
                                                     BRANCH (INDEX-1), RÚN_MENU:

(CHANGE INPUTS IF

(NEXT SCRN;

SCRESN.PICTURE.1.1.1:

CPEN.CUTI AS DATSA OUT;

SET CHAIN:=0;

CLEAR;

SET STOR TIME:=STIME+WARM_UP+1400;

(IST RUN IS WARM L
MRITE.JUT1.

(WARM UP DAYS=':WARM UP.3.0:

(NUMBER OF DATSAS=':RO DATSAS,2,0:/:

NUMBER OF REPS=':NO REPS,2,0:'

(NUMBER OF WGRERS=':NO WGRERS,3,0:/:

(RUN LENGTH= DAY TIME,3,0:

(DATSA DOWNTIME (HRS/DĀY)=:DOWN_TIME,2,1:/;

CLOSE.GUT1;
MEXT_BORN
DG_CHAIN
                                                                                                                                                                                                                                                  (1ST RUN IS WARM UF)
                                                         CLOSE, GUT1:
                                                         SET REPS:= 0:
NO_DAYS:= -WARM_UP:
                                                                                                                                                                                                                                                     (1ST RUN IS WARM UP)
                                                          SHGW.47,9.WARM_UP.3.0:
                                           (INITIALIZE RANDOM SEED STREAMS)
                                                          GET DUMMY:=SEED(4652,1):
                                                                                                                                                                                                                   (INSP TIME)
                                                                             DUMMY:=SEED(6548,2):
DUMMY:=SEED(9471,3):
                                                                                                                                                                                                                   (LABOR TIME)
(TEST TIME)
                                                                             DUMMY:=SEED(2748.4):
DUMMY:=SEED(3294.5):
                                                                                                                                                                                                                   (DATSA MITTE)
(DYESS SHIPPING TIME)
(ELS SHIPPING TIME)
                                                                             DUMMY: =SEED(1473.6):
DUMMY: =SEED(6912.7):
DUMMY: =SEED(7831.8):
                                                                                                                                                                                                                   (GRAND SHIPPING TIME) (MCCONNEL SHIPPING TIME)
                                                                               DUMMY: = SEED (5129.9);
                                                                                                                                                                                                                    (NO FAILURES)
                                                                                                                                                                                                                   (SKIP NEXT BLOCK ON WARM UP RUN)
                                                         BRAMCH, CONT:
                                                        SET REPS:=REPS+1: (INUNEMENT REPS to the service of the service of
   00_NEXT
                                                         CLEAR:
SHOW.7,5.REPS.2.0;
SHOW.6,10.NO DAYS.3.0;
SHOW.47.7.DAY_TIME.3.0;
 CONT
 END:
  DISCRETE:
                                                                                                                   (CONTROL CLOCK)
                                                      CREATE,1,CONTROL,,,1;
SET DAY := 1;
                                                                                                                                                                                                          (START THE CLOCK)
                                                                                                                                                                                                         (MONDAY)
   #CN
                                                     SET DYESS TIME := EXPON(TRANS TIME,5)*1440: (SHIPPING TIME)
ELS TIME := EXPON(TRANS TIME,6)*1440: (SHIPPING TIME)
GRAND TIME := EXPON(TRANS TIME,7)*1440: (SHIPPING TIME)
#CON_TIME := EXPON(TRANS TIME,3)*1440: (SHIPPING TIME)
(COMPUTE THE DAILY NUMBER OF FAILURES)
NO FAILURES := ROUND(POISSON((FLY TIME,SRU_MTBD),9))*ADD_SRUS:
NORK := 1: (MORK FLAG ON)
   MJPN
                                                    ## WORK := 1; (WORK FLAG
SHC4,6,10,NO DAYS,3.0;
SHOW,47,3,DOWN TIME,2.1;
SHOW,47,4,NO_DATSAS,3.0;
SHOW,47,5,NO WORKERS,3.0;
SHOW,47,6,ADD SRUS,3.0;
SHOW,47,8,NO REPS,3.0;
SHOW,47,8,NO REPS,3.0;
SET JSAN DATSAS:=ROUND(DOWN TIME;8+.5);
DOWN MIN:=DOWN TIME;80/DOWN_DATSAS;
CLONE,DOWN DATSAS.DOWN_SHOP;
ACTIVITY 240; (0730-1130);
CLONE,1,DISPLAY; (UPDATE DIS
                                                                                                                                                                                                            (0730-1130)
                                                                                                                                                                                                           (UPDATE DISPLAY)
```

pood applicate divinity interior accepts animals distinct assume exercis interior and

```
CLONE, NO WORKERS, TIME OFF:
                                                                                  (MAKE PREEMPTERS FOR LUNCH)
                     SET DELAY TIME := 45:
WORK == 0;
                                                                                  (45 MINUTES FOR LUNCH)
(NO WORK DURING LUNCH)
                                                                                  (EAT LUNCH)
(BACK TO WORK)
(1215-1615)
                     ACTIVITY DELAY_TIME:
                     SET WORK := 1;
                    ACTIVITY 240;
CLONE,1,DISPLAY;
CLONE,NO_NORKERS,TIME_OFF;
                                                                                  (UPDATE DISPLAY)
                                                                                  (MAKE PREEMPTERS TO QUIT FOR THE DAY)
                     SET DELAY TIME := 915:
#ORK := 0:
                                                                                  (NIGHT TIME)
                                                                                  (NO WORKING AT NIGHT)
                     ACTIVITY DELAY TIME:
                                                                                  {1615-0730}
                                                                                  (NEXT DAY)
                     SET DAY:= DAY+[:
                             NO_DAYS:=NO DAYS+1:
                                                                                 (IF NOT WEEKEND, START NEXT WORK DAY)
(OTHERWISE, BREAK FOR THE WEEKEND)
(MAKE WEEKEND PREEMPTERS)
                     BRANCH DAYKS, MORN:
                                   1.0.WEND:
                     CLONE, NO_WORKERS, TIME_OFF;
WEND
                     SET DELAY_TIME := 2880:
                                                                                   (WEEKEND IN MINUTES)
                                                                                  (NO WORKING ON WEEKENDS)
                             #ORK := 0:
                    NO DAYS: =NO DAYS+2;
ACTIVITY DELAY_TIME;
                                                                                  (0730 SAT. - 0730 MON.)
                     BRANCH, MON;
                                                                                  {NEXT WEEK}
                   SHOW, 17, 10, SPUS MAITING, 3,0;
3HOW, 22,10, TIME_AVE(SRUS_MAITING), 3,1;
SHOW, 28,10, TIME_MIN(SRUS_WAITING), 3,0;
SHOW, 33,10, TIME_MAX(SRUS_WAITING), 3,0;
SHOW, 33,10, TIME_MAX(SRUS_WAITING), 3,0;
SHOW, 10,15, TIME_MAX(IDLE_DATSAS), 2,1;
EHOW, 10,15, TIME_MIN(IDLE_DATSAS), 2,0;
SHOW, 21,15, TIME_MAX(IDLE_DATSAS), 2,0;
SHOW, 29,16, IDLE_WORKERS, 3,0;
SHOW, 29,16, IDLE_WORKERS, 3,0;
SHOW, 34,16, TIME_MAX(IDLE_WORKERS), 3,0;
SHOW, 40,16, TIME_MAX(IDLE_WORKERS), 3,0;
SHOW, 45,16, TIME_MAX(IDLE_WORKERS), 3,0;
SHOW, 40,16, TIME_MAX(IDLE_WORKERS), 3,0;
SHOW, 40,19, DBSERVE_MIN(TIME_IN_DEPOT)/1440, 4,3;
SHOW, 30,19, OBSERVE_MAX(TIME_IN_DEPOT)/1440, 4,3;
SHOW, 40,19, OBSERVE_MAX(TIME_IN_DEPOT)/1440, 5,3;
KILL;
DISPLAY
SHOW DEP
                              (DECREASES # DATSAS AVAILABLE FOR DOWN TIME)
DOWN SHOP QUEUE, FIFO;
                             SCHOOLTIONS,
SHOP, NUMESHOP: MAX DATSAS-NO_DATSAS, DOWN_AST:
DOWN_ACT SET IDLE_DATSAS:=IDLE_DATSAS-1;
ACTIVITY_DOWN_MIN;
                     SPLIT, DATSA, I, EN SHOP;
                     KILL;
                                                    (PREEMPTS)
TIME_OFF BRANCH NUM(INSP)>0,INSP PRE: (PREEMPT INSPECTIONS)
NUM(FIX)>0,FIX PRE: (PREEMPT SRU REPAIRS)
NUM(TEXT)>0,TEST PRE: (PREEMPT DATSA REPAIR)
NUM(DATSA FIX)>0,TFIX PRE: (PREEMPT DATSA REPAIR)
NUM(TEST FIX)>0,TFIX PRE: (PREEMPT DATSA REPAIR)
1.0.NGNE;
1MSP_PRE PREEMPT, INSP.1.CONTROL(2);
ACTIVITY DELAY TIME;
SET_IMSP_TIME:=CONTROL(2);
                                                                                  (OTHER PREEMPTERS NOT NEEDED)
                                                                                  (PREEMPT & STORE REMAIN TIME)
(PREEMPT DURATION)
                                                                                  (RESET INSP TIME)
(SEPARATE PREEMPTER)
                     SPLIT, CONTROL, 1, NONE;
                     BRANCH. INSP:
                                                                                  (RETURN TO WORK)
```

```
FIX_FFE FREEMAT.FIX.1.CONTROL.CO;
HCTIVITY DELAY TIME;
FET FIX TIME:=CONTROL.CO;
FRLIT.CONTROL.1.WONE;
EXEMPLE FIX.
                                                                                             (PREEMPT & STORE REMAIN TIME)
                                                                                         FFEEMPT & STORE REMAIN TIME)
(PREEMPT DURATION)
(RESET FIX TIME)
(REPARATE PREEMPTER)
(RETORN TO WORK)
(PREEMPT & STORE REMAIN TIME)
(PREEMPT DURATION)
(RESET TEST TIME)
(RETURN TO WORK)
FELT, JUNIAUE, 1, YUNE;
SAHNOH, FIX;
TEST_PRE PREEMATT, TEST, 1, CONTROL 2/;
AUTIVITY DELAY TIME;
SET TEST_TIME; POONTROL 2 ;
BALLT, JONTROL 1, NONE;
SALIT, IONTFOL, I, NONE; (SEPARATE PREEMPTER)

95 ANCH, TEST; (RETURN TO WORK)

15 I C FREE PROMISSA FIX, I, CONTROL (1); (PREEMPT & STORE REMAIN TIME)

ACTIVITY JELAY TIME; (PREEMPT DURATION)

SET D FIX: CONTROL (2); (RESET TEST TIME)

SELIT, CONTROL, I, NONE; (SEPARATE PREEMPTER)

SENDEN, DATSA FIX; (RETURN TO WORK)

15 I: 19 EREMPT, TEST FIX, I, CONTROL (2); (PREEMPT & STORE REMAIN TIME)

ACTIVITY SELAY TIME; (PREEMPT & STORE REMAIN TIME)

SET I FIX: CONTROL (2); (RESET TEST TIME)

SPLIT, CONTROL (1), NONE; (RESET TEST TIME)

SPANCH, TEST FIX: (RETURN TO WORK)

NONE (11); (TERMINATE PREEMPTERS)
                                                                                           CAREERY: EURATIONS
(RESET TEST TIME)
(SEPARATE PREEMPTER)
(RETURN TO WORK)
(TERMINATE PREEMPTERS)
NONE
                                                           (SRU FAILURES)
                       CREATE,NO FAILURES,SRU,1440,S10; (SHIP FAILURES AT 1600 DAILY)
SPLIT: SRU,1,8ASE; (SEF4RATE GROUP)
SEP
                        BRANCH, SEP:
                       BFANCH DAYN5,TERM:
.2929,DyESS:
.3535,ELS:
                                                                                                        ING FAILURES ON MEEKENDS)
(DYESS FAILURES)
3646
                                                                                                       (ELSWORTH FAILURES)
                                        .1768, GRAND:
                                                                                                        (GRAND FORKS FAILURES)
                                        .1768,MCON:
                                                                                                       (MCCONNEL FAILURES)
TERM
                        KILL:
                                                                                                        (VOID WEEKEND FAILURES)
                        (STORE SHIPPING TIMES ON SRU ENTITY)
DYESS
                        SET SRU(2):=DYESS_TIME;
                        BRANCH, TYPE;
                        SET SRU(2):=ELS_TIME;
SRANCH, TYPE;
ELS
                       SET SEU(2):=GRAND_TIME;
SRANCH, TYPE;
GRAND
MODN
                        SET SRU(2): =MCON_TIME;
                        (DETERMINE SRU TYPES & ASSIGN REPAIR TIMES TO SRUS)
                       BRANCH PER_ANA, ANALOG:
PER_DIG, DIBITAL:
PER_RF, RF:
TYSE
                       , MICRO;
SET SRU(3) := EXPON(ANA TEST TIME,1):
SRU(4) := EXPON(ANA TEST TIME,2):
SRU(6) := EXPON(ANA TEST TIME,3);
ANALGG
                        BRANCH, ARRIVAL:
                       SET SRU(3) := EXPON(DIG TEST TIME.1):
SRU(4) := EXPON(DIG LABOR TIME.2):
SRU(5) := EXPON(DIG TEST TIME.3);
DIGITAL
                       BRANCH. ARRIVAL:
SET SRU(3) := EXPON(RF_TEST_TIME,1):
SRU(4) := EXPON(RF_LABOR_TIME,2):
BRU(5) := EXPON(RF_TEST_TIME,3):
35
                       MICRO
ARRITHL
                                                                                                       (SHIPPING TIME)
                                                                                                        (SET TO AFRIVAL TIME)
```

CONTRACTOR CONTRACTOR SERVICES CONTRACTOR

```
SET SRUS wAITING:=NUM(BIN)+1;
QUEUE,FIFG:
ENTER
                                                                                                       (COLLECT STATE ON BRUS WAITING)
                                                                                                       (WAIT FOR REPAIR HERE)
BIN
                                          (CREATE DATSAS)
                                                                                                      (CREATE # OF DATEAS AVAILABLE)
                       CREATE, 1, DATSA, 0, 0, MAX_DATSAS:
                       BRANCH,SHOP:
SET IDLE DATSAS:=NUM(SHOP)+NO_DATSAS-MAX_DATSAS+1:
QUEUE,FIFO; (WAIT_ONTIL_NEED
EN SHOP
SHOP
                                                                                                       (WAIT UNTIL NEEDED)
                                          (CREATE WORKERS)
CREATE 1 HORKER, 0,0, MAX_WORKERS; (CREATE # OF WORKERS 9RHNCH.LDUNGE;
EN LDUNGE SET IDLE WORKERS:=NUM(LDUNGE)+NO_WORKERS-MAX_WORKERS+1;
LDENGE QUEUE.FIFD; (MAIT_FOR_WORK)
                                                                                                             (CREATE # OF WORKERS)
                              CONDITIONS, NUM(TEST BIN) = 0 AND NUM(DOWN SHOP) = 0.

BIN, WORK=1, COL BIN:

COUNGE, NUM(LOUNGE) > MAX WORKERS - NO WORKERS, COL BIN:

SHOP, NUM(SHOP) > MAX DATSAS - NO DATSAS, COL BIN:
                                           (REPAIR SRUS)
                    SET BIN MAIT TIME:=STIME-SRU(1):
SRU(5):= BIN WAIT TIME:
SRU(1):= STIME:
                                                                                                              (GET TIME IN BIN)
COL 9IN
                                                                                                             (SECRETIAND IN BINA
(STORE TIME)
(RESET TIME TO START OF REPAIR)
(DEC TOLE MORKERS)
(DEC TOLE MORKERS)
(SET STATS ON MAITING SRUS)
                                 IDLE DATBAS:=IDLE DATBAS-1:
IDLE MGRKERS:=IDLE WGRKERS-1:
                                 SRUS WAITING: =NUM (BIN);
                       SET INSP TIME:= SRU(3): (SET SRU INSPECTION TIME)
04TSĀ(1):= DATSA(1)+INSP TIME: (ACCUMULATE DATSA USASE TIME)
REL RATE:= EXP(-1/DAT_MTBF:50*DATSA(1)); (PROB. OF RELIABLE DATSA)
BRANCH REL RATE, INSP: (IF RELIABLE THEN INSPECT SRU)
1-REL_RATE, D_TIME; (OTHERWISE, FIX DATSA)
I TIME
                                        (BROKEN DATSA)
                                                                                                             (PETURN GRU TO BIN)
(DETERMINE REFAIR TIME)
(FIX DATSA)
(RETURN WORKER TO LOUNSE)
(RESTART DATSA USAGE TIME)
(RETURN DATSA TO SHOP)
DITIME
                        SPLIT.SRU.I, ENTER:
SET D FIX:=EXPON(DAT_MTTR,4) *60;
DATSA_FIX ACTIVITY D FIX:
SPLIT, WORKER,1,EN_LOUNGE;
SET_DATSA(1):=0;
                        BRANCH.EN_SHOP;
                                      (INSPECT SRU)
                                                                                                              LUSE CATSA TO INSPECT SAU:
CRET COTAL TIME FOR INSPECTION:
CADD TO TOTAL DEFOT TIME:
CRESET TIME TO START OF REPAIR:
CIF TEST OR, THEN FINISHED.
COTHERWISE, FIX SAU:
                        ACTIVITY INSP_TIME;
SET INSP_#ALT_TIME:=STIME-SRU(1/:
SRU(5):=SRU(5)+INSP_#ALT_TIME:
 INSP
                                  SPUIL :=STIME;
                        BRANCH RTCK.SUPPLY:
1-RTCK.F_TIME;
                                         (FI: SRU)
                                                                                                              (SET TIME TO FIX SAW:
(FREE DATSA FOR OTHER MORY)
(FIX SRU)
(DETERMINE ACTUAL FIX TIME)
(ADD TIME TO TOTAL,
(RESET TIME TO START OF TEST)
(WAIT FOR DATSA TO TEST SAW.
                        SET FIX TIME:=SRU(4);
SFLIT,DATSA.I.EN SHOP:
ACTIVITY FIX TIME:
SET FIX WAIT TIME:=STIME-SRU(1):
SEUFIX:=SPU(5):+FIX_WAIT_TIME:
SEUFIX:-STIME:
 F_TIME
 I (
 TEST SIN GUERRAND SHOP: 1. TIME: TO START (WAIT FOR DATEA TO START CONDITIONS, NUM (DOWN SHOP) = 0.

TEST SIN #3PF = 1.T TIME: (GET WORKER AND SRU)

EMOPINUM(SHOP) #AR DATEAS.T TIME:
```

```
(TEST SEU AFTER REPAIR)
                                         SET IEST TIME:=SRU(5):

(SET SRU TEST TIME)

(ACCOMULATE DATSA USEAGE)

REL RATE:=E:F:-1. DAY MTBF:50*DATSA(1:): (DETERMINE RELIABILITY)

10:E DATSAS:=:0:E DATSAS-1;

3RANCH REL RATE, TEST:

1-REL_RATE, TF_TIME;

3ET T_FIX:=E:PON(EAT_MTR.4)+50;

ACTIV[1: T_FIX:

5ET DATSA(1:):=0:

(MET DATSA USE TIME)

(ACCOMULATE DATSA)

(BET SRU TEST TIME)

(CTHERWISE FIX DATSA)

(REPAIR BROKEN DATSA)

(RESTART DATSA) USE TIME)
T TIME
TE TIME
TEST_FIX
```

SET DATSA(1:=0:
 (DLE_DATSAS:=IDLE_DATSAS+1;
BRANCH.TTIME;
ACTIVITY_TEST_TIME;
SET_TEST_WAIT_TIME:=STIME-SRU(1):
 SRU(5):=SRU(5)+TEST_WAIT_TIME:
 SRU(1:=STIME;
BRANCH_RETEST_F_TIME:
 1-RETEST_SUPPLY: (TRY TEST AGAIN)
(TEST REPAIRED SRU)
(BETERMINE TOTAL TEST TIME)
(ADD TIME TO TOTAL DEPOT TIME)
(RESET TIME)
(IF TEST FAILED, THEN FIC AGAIN)
(OTHERWISE, SRU REPAIR IS DONE)

SET TIME IN DEPOT:=SRU(5): SPLIT.DATSALLEN SHOP: SPLIT.WORKER.LEN_LOUNGE: SUPPLY (COLLECT TOTAL DEPOT TIME) (RETURN DATER TO SHOP)

(RETURN WORKER) (SRU REPAIR COMPLETE) S.ILL:

EnD:

TEST

teres killing assesse sessions annually applications

```
CONTINUOUS; END;
```

FOSTPUN:

```
OPEN.GUT1 AS DATSA GUT; WRITE,GUT1,/:
                REP# 1:REPS,2,0:/:/:
```

0L05E,0071: SRANCA REPSONO_REPS,NOT_YET:

FINISH: (CHANGE LABEL TO 'LOOP' TO CHAIN)

LLABEL LOOP CAN BE USED TO CHANGE INPUT MARIABLES AND RUN AGAIN AUTOMATICALLY)

FESET: SET CHAIN:=1: NO DATSHS:=NO GATSHS-1: DOWN_TIME:=00WN_TIME-.5; _J0? (CLEAR OUT LEFTGVER ENTITIES)

```
SRANCH NG_DATSAS>7,NOT YET:
_LOOP1
_LOOP1
_SRANCH NO_MORKERS=40,FINISH:
__LOOP2;
_LOOP2
_SET NG_DATSAS:=9:
__NOTWORKERS:=40:
__DOWN_TIME:=4.5;
_BRANCH,NOT_YET;
__SENISH_LABEL_USED_TO_END_SIMULATION)

FINISH__SET_INDEX:=0;
_NOT_YET_END;
__NOT_YET_END;
__NOT_YET_
```

Appendix B: Simple 1 Standard Report Output SIMPLE !

SIERRA SIMULATIONS & SOFTWARE

(C) Copyright 1985 Philip Commin All Rights Reserved

SUMMARY REPORT FOR: AGG.MDL SENERATED ON: 7/11/96 5.12pm

SUMMARY REPORT: BLOCK STATISTICS

SIMULATED TIME: STIME = 2.80800000000E+05 STATISTICS CLEARED AT : 1.9440000000E+05

BLOCK LABEL	TYPE	AVERASE	STD DEV	MIN	MAX	CANT	CNT
START	5ET!	0.000	0.000;	Q i	9)		şį
DO_SET!	SET	0.0001	0.000}			i Çi	
PUN_MENU!	ACCEPT!	0.0001	0.0001	0 :	(i.)		∂ ;
NEXT_SORN: DO NEXT:	SCREEN! SET!	0.0001 0.0001	0.000: 0.000:	0; 0;	ŷ â	ı Vı ı 0i	
CONT	SHOW	0.0001	0.0001	01	1	0;	11
MONI	SET	0.000	0.0001	οï			
MORNI	SET!	0.0001	0.000	Ò¦			42;
#END:	CLONE:	0.0001	0.0001	0 (1 :	0.1	9;
TIME_OFF:	BKANCHI	0.0001	0.0001	01			3800;
INSPIPRE	PREEMPT	0.000;	0.0001	01		0 :	182
FIX_PRE	PREEMPT	0.000	0.0001	0;		. 0	24461
TEST PRE!	PREEMPT:	0.000; 0.000;	0.0001););		i Vi	279 18
DÉIX [™] PRE¦ TELX [™] PRE!	PREEMPT!	0.000;	0.0001 9.0007	0)		1 01	
NONE!	KILLI	0.000;	0.0001	01		. 3:	3765
SEP	SPLIT		0.0001	Ŏ,		0.	12501
BASEI	BRANCHI	0.0001	0.0001	01		, ji	12601
TERM!	KILLI		0.0001	01		(A !	7571
DYESS!	SET	0.0001	0.0001	01		0;	2621
ELS!	SETI	0.0001	0.0001	01		0	7.6227 7.6227 7.6277 7.68
GRAND:	SET	0.0001	0.000:			i ():	la
MCON!	SETI	0.0001	0.0001			. 0.	10/- - ana:
TYPE: ANALOGI	BRANCH: SET:	0.000: 0.000:	0.0001 0.000;			$\begin{pmatrix} 1 & 2 \\ 3 & 3 \end{pmatrix}$	411.
DIBITAL	SET	0.0001	0.000;	0:	:	i vi	430
RF:	SET	0.000	0.000;		i		
ARRIVÂLI	ACTIVITY:	74.974;	16.0711	45	117	44	908.
ENTERI	SETI	0.0001	0.0001	0.1		: 0:	939:
BINI	QUEUE;	13.0051	12.837	01		1 17	1010.
SHOP	QUEUE	44,995;	2.7701	40;	50	431	2023.
LOUNGE!	QUEUE!	120.153	9.735			: 115:	1020.
CGL_BIN: I TIME:	SET:	0.000; 0.000;	0.900. 0.000;			1 01	1015) 1015)
D-TIME!	SPLIT	0.000					71.
DĪTIMĒ! Datsā Fix:	ACTIVITY:	0.0091	0.305	6;		į ģ:	99
[Nafi	ACTIVITY	0.680	1.660;			(0)	1124;
F TIME:	SET!	0.000;	0.000:	ŷ;		i 9.	1005.
T FIX:	ACTIVITY	6.311:	11.7531 0.3471	0.		Û,	34211 1005
TEST_BINI	QUEUE	6.331: 0.0741 0.000;	0.3471	91		i û	1095
TIME	SET			ĝή Δ		راي ا	195
TFĪTĪMĒT TEST FIX:	SET; ACTIVITY;	0.0001 0.051	0.000; 0.233;	î.			
TEST:	ACTIVITY	0.715	1.550	91 (j.)	$\frac{2}{10}$. 4	1000 1000 1000 1000 1000 1000 1000 100
SUPPL/,	SET	0.000.	9.000	ý,		: :	44.
FINISH	CLOSE;	0.000}	0.000	ġ.	i		
40T_7ET1	END!	0.0001	0.000:		Ų	()	91
		+				*	++

SUMMARY REFORT: OBSERVATIONAL STATISTICS

SIMULATED TIME: STIME = 2.80800000000E+05 STATISTICS CLEARED AT : 1.9440000000E+05

	TYPE		STD DEV				NO.
DYESS TIME: DELAY TIME: ELS TIME: REL RATE: GRAND TIME: MCON TIME: NO FAILURES: SHIPPING TIME: INSP TIME: FIX TIME: TEST TIME: INSP WAIT TIME: BIN WAIT TIME:	SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR SCALAR	18018.846; 707.3686; 5670.554; 0.9379; 19112.663; 7093.8976; 21.190; 227358.110; 67.139; 685.819; 686.926; 3782.534; 156.588;	8997.448 819.978; 5176.951; 0.044; 7884.785; 7563.144; 4.457; 55111.589; 624.975; 624.975; 3328.699; 497.983; 1107.323;	91.8 45.0 45.1 0.8 446.0 314.9 10.0 91.8 0.1 0.0 10.7	34061.5; 2690.0; 18969.0; 18969.0; 36643.4; 33.0; 280217.8; 895.6; 4055.7; 763.7; 763.7; 32111.7; 35103.5;	5467.31 2880.01 1787.81 0.81 13896.71 4845.71 10.01 280217.81 38.51 9.01 8.81 8.81 8.81	421 951 421 20721 421 11951 11951 13421 11971 1015
FIXTWAITTIME: TEST_WAITTIME: D_FIX: T_FIX:	SCALAR SCALAR	2075.352 263.592 82.789 82.563	652.4811 78.6791	0.0% 0.0%	4609.71 347.11	88.41 209.11	1005 i 89 i

SUMMARY REPORT: TIME PERSISTANT STATISTICS SIMULATED TIME: STIME = 2.80800000000E+05 STATISTICS CLEARED AT : 1.9440000000E+05

MARIABLE LABEL		AVERAGE		MIN		CRNT
IDLE DATSAS! SCALAR IDLE WORKERS! SCALAR SRUS]WAITING: SCALAR	1	3.9161 9.6451	2.726	0.0; 0.0;	9.01 27.01	2.01 5.01

Appendix C: Warm Up Data

USING: 9 DATSAS 50 WORKERS 4.5 HOURS DATSA DOWN TIME

	UN NGTH	DAYS IN DEPOT	IDLE	IDLE WORKERS	SRUS WAITING
15	90	3.472	2.2	13.9	22.3
20	85	3.283	2.3	14.1	19.6
25	80	3.402	2.1	13.2	19.7
30	75	3.482	2.1	12.6	20.7
MEAN	% CI	3.410	2.175	13.450	20.575
STAND. D		0.079	0.083	0.594	1.085
t .025,3		3.182	3.182	3.182	3.182
UPPER 95		3.536	2.307	14.395	22.301
LOWER 95		3.283	2.043	12.505	18.849

Appendix D: Changing the Number of DATSAs Data

USING: 50 WORKERS

DAYS IN DEPOT

REP	10	9	9-10		10	9	9-10
#	DATSAS	DATSAS	DIFFER		DATSAS	DATSAS	DIFFER
1	3.043	3.472	0.429	MEAN	3.114	3.403	0.288
2	3.029	3.392	0.363	STAND. DEV	0.145	0.233	0.185
3	3.381	3.784	0.403	t .025,4	2.776	2.776	2.776
4	3.146	3.072	-0.074	UPPER 95%	3.294	3.692	0.518
5	2.972	3.293	0.321	LOWER 95%	2.935	3.113	0.059
REP	9	8	8-9		9	8	8-9
#	DATSAS	DATSAS	DIFFER		DATSAS	DATSAS	DIFFER
1	3.472	4.427	0.955	MEAN	3.403	4.767	1.364
2	3.392	4.105	0.713	STAND. DEV	0.233	0.553	0.468
3	3.784	5.753	1.969	t .025,4	2.776	2.776	2.776
4	3.072	4.799	1.727	UPPER 95%	3.692	5.453	1.946
5	3.293	4.749	1.456	LOWER 95%	3.113	4.080	0.782

REP	10	9	9-10		10	9	9-10
#	DATSAS	DATSAS	DIFFER		DATSAS	DATSAS	DIFFER
1	3.7	2.2	-1.5	MEAN	3.880	2.420	-1.460
2	4.2	2.7	-1.5	STAND. DEV	0.337	0.685	0.422
3	3.3	1.3	-2	t .025,4	2.776	2.776	2.776
4	4.1	3.4	-0.7	UPPER 95%	4.298	3.271	-0.936
5	4.1	2.5	-1.6	LOWER 95%	3.462	1.569	-1.984
REP	9 DATSAS	8 DATSAS	8-9 DIFFER		9 DATSAS	8 DATSAS	8-9 DIFFER
1 2 3 4 5	2.2 2.7 1.3 3.4	0.9 1.5 0.4 0.9	-1.3 -1.2 -0.9 -2.5	MEAN STAND. DEV t.025,4 UPPER 95% LOWER 95%	2.420 0.685 2.776 3.271 1.569	0.860 0.372 2.776 1.322 0.398	-1.560 0.571 2.776 -0.851 -2.269

REP	10	9	9-10	10 9 9-10
#	DATSAS	DATSAS	DIFFER	DATSAS DATSAS DIFFER
1	15.7	13.9	-1.8	MEAN 15.740 15.200 -0.540 STAND. DEV 1.435 1.691 1.080 t.025,4 2.776 2.776 2.776 UPPER 95% 17.521 17.300 0.801 LOWER 95% 13.959 13.100 -1.881
2	16.9	15.5	-1.4	
3	13.0	12.8	-0.2	
4	16.3	17.6	1.3	
5	16.8	16.2	-0.6	
REP	9	8	8-9	9 8 8-9
	DATSAS	DATSAS	DIFFER	DATSAS DATSAS DIFFER
1	13.9	13.3	-0.6	MEAN 15.200 13.320 -1.880
2	15.5	14.9	-0.6	STAND. DEV 1.691 0.863 1.670
3	12.8	12.4	-0.4	t.025,4 2.776 2.776 2.776
4	17.6	13.3	-4.3	UPPER 95% 17.300 14.392 0.194
5	16.2	12.7	-3.5	LOWER 95% 13.100 12.248 -3.954

SRUS WAITING

REP	10 DATSAS	9 DATSAS	9-10 DIFFER	10 9 9-10 DATSAS DATSAS DIFFER	
1 2 3 4 5	16.3 13.2 19.0 15.7 13.2	22.3 17.1 25.3 15.9 17.8	6.0 3.9 6.3 0.2 4.6	MEAN 15.480 19.680 4.200 STAND. DEV 2.168 3.548 2.186 t.025,4 2.776 2.776 2.776 UPPER 95% 18.172 24.084 6.914 LOWER 95% 12.788 15.276 1.486	=
REP #		8 DATSAS	8-9 DIFFER	9 8 8-9 DATSAS DATSAS DIFFER	
1 2 3 4 5	22.3 17.1 25.3 15.9 17.8	37.5 28.5 58.5 39.7 38.2	15.2 11.4 33.2 23.8 20.4	MEAN 19.680 40.480 20.800 STAND. DEV 3.548 9.828 7.519 t.025,4 2.776 2.776 2.776 UPPER 95% 24.084 52.681 30.134 LOWER 95% 15.276 28.279 11.466	

Appendix E: Changing the Number of Workers Data

USING: 8 DATSAS

DAYS IN DEPOT

REP 50 # WORKRS		50-45 DIFFER		50 WORKRS	45 WORKRS	50-45 DIFFER
1 4.427	4.594	-0.167	MEAN	4.767	4.928	-0.161
2 4.105	5.294	-1.189	STAND. DEV	0.553	0.518	0.546
3 5.753	5.758	-0.005	t .025,4	2.776	2.776	2.776
4 4.799	4.625	0.174	UPPER 95%	5.453	5.571	0.516
5 4.749	4.367	0.382	LOWER 95%	4.080	4.285	-0.838
REP 45	40	45-40		45	40	45-40
# WORKRS	WORKRS	DIFFER		WORKRS	WORKRS	DIFFER
	5.020 6.892 9.880 13.104	-0.426 -1.598 -4.122 -8.479 -9.473	MEAN STAND. DEV t .025,4 UPPER 95% LOWER 95%	4.928 0.518 2.776 5.571 4.285	9.747 3.422 2.776 13.995 5.499	-4.820 3.611 2.776 -0.336 -9.303

REF		45 WORKRS	50-45 DIFFER		50 WORKRS	45 WORKRS	50-45 DIFFER
1 2 3 4 5	0.9 1.5 0.4 0.9 0.6	1.2 1.1 0.3 0.9 0.3	-0.3 0.4 0.1 0	MEAN STAND. DEV t .025,4 UPPER 95% LOWER 95%	0.860 0.372 2.776 1.322 0.398	0.760 0.388 2.776 1.241 0.279	0.100 0.245 2.776 0.404 -0.204
REF		40 WORKRS			45 WORKRS	40 WORKRS	45-40 DIFFER
1 2 3 4 5	1.2 1.1 0.3 0.9 0.3	1.2 0.7 0.7 0.6 0.6	0 0.4 -0.4 0.3 -0.3	MEAN STAND. DEV t .025,4 UPPER 95% LOWER 95%	0.760 0.388 2.776 1.241 0.279	0.760 0.224 2.776 1.039 0.481	0.000 0.316 2.776 0.393 -0.393

REI #	-	45 WORKRS	50-45 DIFFER		0 45 KRS WORKRS	50-45 DIFFER
1 2 3 4 5	13.3 14.9 12.4 13.3 12.7	9.6 7.4 8.0 9.6 8.4	3.7 7.5 4.4 3.7 4.3	MEAN 13.3 STAND. DEV 0.8 t .025,4 2.7 UPPER 95% 14.3 LOWER 95% 12.2	0.876 0.76 2.776 0.92 9.688	4.720 1.420 2.776 6.483 2.957
REI		40 WORKRS	45-40 DIFFER		5 40 KRS WORKRS	45-40 DIFFER
1 2 3 4 5	9.6 7.4 8.0 9.6 8.4	4.0 2.6 3.1 3.4 3.7	5.6 4.8 4.9 6.2 4.7	MEAN 8.6 STAND. DEV 0.8 t.025,4 2.7 UPPER 95% 9.6 LOWER 95% 7.5	376 0.484 376 2.776 388 3.961	5.240 0.575 2.776 5.954 4.526

SRUS WAITING

REP 50	45	50-45	50 45 50-45
	RS WORKRS	DIFFER	WORKRS WORKRS DIFFER
1 37. 2 28. 3 58. 4 39. 5 38.	5 44.9 5 59.3 7 38.2	-4.4 -16.4 -0.8 1.5 5.8	MEAN 40.480 43.340 -2.860 STAND. DEV 9.828 9.004 7.536 t .025,4 2.776 2.776 2.776 UPPER 95% 52.681 54.518 6.496 LOWER 95% 28.279 32.162 -12.216
REP 45	40	45-40	45 40 45-40
	RS WORKRS	DIFFER	WORKRS WORKRS DIFFER
1 41. 2 44. 3 59. 4 38. 5 32.	9 71.9 3 130.4 2 174.6	-7.2 -27.0 -71.1 -136.4 -152.6	MEAN 43.340 122.200 -78.860 STAND. DEV 9.004 54.094 57.677 t.025,4 2.776 2.776 2.776 UPPER 95% 54.518 189.355 -7.256 LOWER 95% 32.162 55.045 -150.464

Appendix F: Changing the Flying Time Data

USING: 8 DATSAS 50 WORKERS

DAYS IN DEPOT

REP #	NORM FLY	+10% FLY	DIFFER	8 DATSAS	NORM FLY	+10% FLY	DIFFER
1 2 3 4 5	4.211 4.064 6.156 5.314 4.264	5.854 7.791 11.779 12.477 19.779	1.643 3.727 5.623 7.163 15.515	MEAN STAND. DEV t .025,4 UPPER 95% LOWER 95%	4.802 0.810 2.776 5.807 3.796	11.536 4.800 2.776 17.495 5.577	6.734 4.764 2.776 12.649 0.820
REP	NORM FLY	-10% FLY	DIFFER	8 DATSAS	NORM FLY	-10% FLY	DIFFER
1 2 3 4 5	4.211 4.064 6.156 5.314 4.264	2.939 3.530 3.338	-0.917 -1.125 -2.626 -1.976 -0.976	MEAN STAND. DEV t .025,4 UPPER 95% LOWER 95%	4.802 0.810 2.776 5.807 3.796	3.278 0.191 2.776 3.515 3.041	-1.524 0.670 2.776 -0.692 -2.356

REP #	NORM FLY	+10% FLY	DIFFER	8 DATSAS	NORM FLY	+10% FLY	DIFFER
1	1.3	0.4	-0.9	MEAN	0.700	0.180	-0.520
2	1.3	0.2	-1.1	STAND. DEV	0.502	0.117	0.412
3	0.1	0.1	0.0	t .025,4	2.776	2.776	2.776
4	0.4	0.1	-0.3	UPPER 95%	1.323	0.325	-0.009
5	0.4	0.1	-0.3	LOWER 95%	0.077	0.035	-1.031
REP #	NORM FLY	-10% FLY	DIFFER	8 DATSAS	NORM FLY	-10% FLY	DIFFER
1	1.3	2.2	0.9	MEAN	0.700	2.280	1.580
2	1.3	3.0	1.7	STAND. DEV	0.502	0.479	0.397
3	0.1	1.5	1.4	t .025,4	2.776	2.776	2.776
4	0.4	2.4	2.0	UPPER 95%	1.323	2.875	2.073
5	0.4	2.3	1.9	LOWER 95%	0.077	1.685	1.087

REP #	NORM FLY	+10% FLY	DIFFER	8 DATSAS FLY	+10% FLY	DIFFER
1	13.1	9.9	-3.2	MEAN 12.640	10.840	-1.800
2	14.5	8.8	-5.7	STAND. DEV 1.264	1.291	2.382
3	10.9	11.9	1.0	t .025,4 2.776	2.776	2.776
4	11.6	11.4	-0.2	UPPER 95% 14.210	12.443	1.158
5	13.1	12.2	-0.9	LOWER 95% 11.070	9.237	-4.758
REP #	NORM FLY	-10% FLY	DIFFER	NORM 8 DATSAS FLY	-10% FLY	DIFFER
1	13.1	18.6	5.5	MEAN 12.640	19.080	6.440
2	14.5	21.4	6.9	STAND. DEV 1.264	1.883	1.073
3	10.9	15.8	4.9	t.025,4 2.776	2.776	2.776
4	11.6	19.4	7.8	UPPER 95% 14.210	21.418	7.772
5	13.1	20.2	7.1	LOWER 95% 11.070	16.742	5.108

SRUS WAITING

REP #	NORM FLY	+10% FLY	DIFFER	NORM 8 DATSAS FLY	+10% FLY	DIFFER
1 2 3 4 5	33.7 25.9 65.1 46.7 29.3	68.0 95.0 178.2 184.7 305.4	34.3 69.1 113.1 138.0 276.1	MEAN 40.140 STAND. DEV14.337 t.025,4 2.776 UPPER 95% 57.939 LOWER 95% 22.341	2.776 269.497	2.776 229.224
REP #	NORM FLY	-10% FLY	DIFFER	NORM 8 DATSAS FLY	-10% FLY	DIFFER
1 2 3 4 5	33.7 25.9 65.1 46.7 29.3	17.1 12.4 19.5 16.9 15.8	-16.6 -13.5 -45.6 -29.8 -13.5	MEAN 40.140 STAND. DEV14.337 t.025,4 2.776 UPPER 95% 57.939 LOWER 95% 22.341	19.208	2.776

USING: 9 DATSAS 50 WORKERS

DAYS IN DEPOT

REP #	NORM FLY	+10% FLY	DIFFER	9 DATSAS	NORM FLY	+10% FLY	DIFFER
1	3.472	4.133	0.661	MEAN	3.403	4.115	0.712
2	3.392	3.359	-0.033	STAND. DEV	0.233	0.515	0.413
3	3.784	4.977	1.193	t .025,4	2.776	2.776	2.776
4	3.072	4.031	0.959	UPPER 95%	3.692	4.754	1.226
5	3.293	4.075	0.782	LOWER 95%	3.113	3.476	0.199
REP #	NORM FLY	-10% FLY	DIFFER	9 DATSAS	NORM FLY	-10% FLY	DIFFER
1	3.472	2.814 3.206	-0.387	MEAN	3.403	3.118	-0.284
2	3.392		-0.578	STAND. DEV	0.233	0.184	0.330
3	3.784		-0.578	t .025,4	2.776	2.776	2.776
4	3.072		0.308	UPPER 95%	3.692	3.347	0.125
5	3.293		-0.187	LOWER 95%	3.113	2.889	-0.694

REP #	NORM FLY	+10% FLY	DIFFER	9 DATSAS	NORM FLY	+10% FLY	DIFFER
1 2 3 4 5	2.2 2.7 1.3 3.4 2.5	1.5 2.5 0.4 1.4 1.3	-0.7 -0.2 -0.9 -2 -1.2	MEAN STAND. DEV t .025,4 UPPER 95% LOWER 95%	2.420 0.685 2.776 3.271 1.569	1.420 0.668 2.776 2.249 0.591	-1.000 0.597 2.776 -0.259 -1.741
REP #	NORM FLY	-10% FLY	DIFFER	9 DATSAS	NORM FLY	-10% FLY	DIFFER
1 2 3 4 5	2.2 2.7 1.3 3.4 2.5	3.5 4.0 3.1 2.6 3.2	1.3 1.3 1.8 -0.8	MEAN STAND. DEV t.025,4 UPPER 95% LOWER 95%	2.420 0.685 2.776 3.271 1.569	3.280 0.462 2.776 3.854 2.706	0.860 0.900 2.776 1.978 -0.258

REP #	NORM FLY	+10% FLY	DIFFER		NORM FLY	+10% FLY	DIFFER
1 2 3 4 5	13.9 15.5 12.8 17.6 16.2	9.6 14.4 8.0 11.0 10.8	-4.3 -1.1 -4.8 -6.6 -5.4	STAND. DEV 1 t .025,4 2	.776 .300	10.760 2.111 2.776 13.380 8.140	-4.440 1.838 2.776 -2.158 -6.722
REP #	NORM FLY	-10% FLY	DIFFER		NORM FLY	-10% FLY	DIFFER
1 2 3 4 5	13.9 15.5 12.8 17.6 16.2	18.8 22.4 17.3 18.5 19.8	4.9 6.9 4.5 0.9 3.6	STAND. DEV 1 t .025,4 2	.776 .300	19.360 1.717 2.776 21.491 17.229	4.160 1.955 2.776 6.587 1.733

SRUS WAITING

good control statistic statistics controls controls property to the statistics of th

REP #	NORM FLY	+10% FLY	DIFFER	9 DATSAS FLY	+10% FLY	DIFFER
1 2 3 4 5	22.3 17.1 25.3 15.9 17.8	36.0 20.3 48.3 31.7 30.0	13.7 3.2 23.0 15.8 12.2	MEAN 19.680 STAND. DEV 3.548 t .025,4 2.776 UPPER 95% 24.084 LOWER 95% 15.276	2.776 44.567	13.580 6.377 2.776 21.497 5.663
REP #	NORM FLY	-10% FLY	DIFFER	9 DATSAS FLY	-10% FLY	DIFFER
1 2 3 4 5	22.3 17.1 25.3 15.9 17.8	14.2 10.8 15.5 17.4 12.6	-8.1 -6.3 -9.8 1.5 -5.2	UPPER 95% 24.084	2.776 16.931	-5.580 3.872 2.776 -0.773 -10.387

Bibliography

- 1. Anderson, John, ATE Projects Branch, B1-B SPO.
 Personal Interviews. B1-B System Program Office,
 Wright-Patterson AFB OH, July through August 1986.
- 2. Banks, Jerry and John S. Carson, II. <u>Discrete-Event</u>
 <u>System Simulation</u>. Englewood Cliffs NJ: Prentice-Hall,
 Inc., 1984.
- 3. Blanchard, Benjamin S. <u>Logistics Engineering and Management</u> (Third Edition). Englewood Cliffs NJ: Prentice-Hall, Inc., 1986.
- 4. Cobbin, Philip. <u>Simple 1</u>: <u>Users Guide and Reference</u>
 <u>Manual</u> (Version 1.1). Campbell CA: Sierra Simulations & Software, 1985.
- 5. Cooper, Robert B. <u>Introduction to Queueing Theory</u>. New York: The Macmillan Company, 1972.
- 6. Department of the Air Force. Recoverable Inventory Control Using Mod-Metric. AFLCP 57-13. WPAFB: HQ AFLC, 28 February 1975.
- 7. Fishman George S. <u>Principles of Discrete Event Simulation</u>. New York: Wiley-Interscience, 1978.
- 8. Franke, David A., Deputy Director of Logistics, B1-B SPO, Wright Patterson AFB OH. "Depot ATE Acquisition Strategy." Briefing Notes. B1-B System Program Office, Wright-Patterson AFB OH, 12 April 1984.
- 9. Hitzelberger, W. Ron, Asst Prof of Systems Management. Personal Interviews. School of Systems and Logistics, Air Force Institute of Technology, Wright-Patterson AFB OH, September 1985 through August 1986.
- 10. Meitzler, Thomas, Technical Consultant, B1-B SPO.
 Personal Interview. B1-B Integrated Logistics Support,
 Wright-Patterson AFB OH, 24 January 1986.
- 11. Mize, Joe H. and J. Grady Cox. <u>Essentials of Simulation</u>. Englewood Cliffs NJ: Prentice-Hall, 1968.

- 12. Novelleno, Anthony, ATE Projects Branch, B1-B SPO. Personal Interviews. B1-B System Program Office, Wright-Patterson AFB OH, September 1985 through February 1986.
- 13. Pritsker, A. Alan B. <u>Introduction to Simulation and SLAM II</u> (Second Edition). West Lafayette IN: Systems Publishing Corporation, 1984.
- 14. Roark, Lance M. <u>B1-B Avionics/Automatic Test</u>
 <u>Equipment</u>: <u>Maintenance Queueing Analysis</u>. MS Thesis,
 MA/83D-6. School of Engineering, Air Force Institute
 of Technology (AU), Wright-Patterson AFB OH, December
 1983.
- 15. Tomlin, John, MAW, Warner-Robbins ALC. Telephone Interviews. Robbins AFB GA, April through July 1986.

CONCINI DOMANNI INDICADO DIFEREN TABLESCO FORESCOOL SERVICOS SERVICOS DESCOOL

Captain Larry D. Bottomley was born on 6 January 1953 in LaSalle, Illinois. He graduated from LaSalle-Peru Township High School in 1971. In June of 1975 he graduated from the United States Air Force Academy with a Bachelor of Science degree in Military Science. He completed Undergraduate Pilot Training at Williams AFB, Arizona in September of 1976. Captain Bottomley completed Combat Crew Training in the KC-135 Stratotanker, and served as a copilot at Rickenbacker AFB, Ohio until 1979. Then at Grissom AFB, Indiana he served as an aircraft commander and instructor pilot in the KC-135 until May of 1985, when he entered the School of Systems and Logistics at the Air Force Institute of Technology, Wright-Patterson AFB, Ohio.

Permanent Address: 443 Canal Street
Utica, Illinois 61373

	An-A	174591			
ECURITY CLASSIFICATION OF THIS PAGE		ENTATION PAGE			
1. REPORT SECURITY CLASSIFICATION	El Olli Bocolii	16. RESTRICTIVE MAI	RKINGS		
UNCLASSIFIED 2. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AV	A 11 A B 11 17 V A	E REPORT	
28 SECURITY CLASSIFICATION AUTHORITY		APPROVED FOR			
26. DECLASSIFICATION/DOWNGRADING SCHEDUL	E	DISTRIBUTION		•	
4. PERFORMING ORGANIZATION REPORT NUMBER	R(S)	5. MONITORING ORGA	ANIZATION R	EPORT NUMBER	S)
AFIT/GLM/LSY/86S-7					
64. NAME OF PERFORMING ORGANIZATION 66.	OFFICE SYMBOL (If applicable)	78. NAME OF MONITO	RING ORGAN	IZATION	
SCHOOL OF SYSTEMS & LOGISTICS A					
6c. ADDRESS (City, State and ZIP Code) AIR FORCE INSTITUTE OF TECHNOLOG	ייי	7b. ADDRESS (City, Sta	te and ZIP Cod	le)	
WRIGHT-PATTERSON AFB OH 45433-65					
84 NAME OF FUNDING/SPONSORING 86	. OFFICE SYMBOL	9. PROCUREMENT INS	TO LINGS OF TO	ENTIFICATION N	IIMRED
ORGANIZATION	(If applicable)	J. PROCUREMENT INS	I NOMENT ID	ENTIFICATION N	UMBER
Sc. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUND	ING NOS		
and the state of t		PROGRAM	PROJECT	TASK	WORK UN
		ELEMENT NO.	NO.	NO.	NO.
11. TITLE (Include Security Classification)		1			
SEE ITEM 19	· · · · · · · · · · · · · · · · · · ·	<u></u>			
12. PERSONAL AUTHOR(S) BOTTOMLEY, LARRY D. CAPT, USAF					
MS THESIS FROM		14. DATE OF REPORT		C -	
16. SUPPLEMENTARY NOTATION	то	1986 SEPTEMBER		82	
17. COSAT CODES 18	L SUBJECT TERMS (Continue on reverse if nece	ssary and identi	ify by block numbe	·r)
FIELD GROUP SUB. GR. D	EPOT LEVEL MA	INTENANCE COM	PUTERIZED	SIMULATION	
FIELD GROUP SUB. GR. D 14 02 D	DEPOT LEVEL MADEPOT MAINTENA	AINTENANCE COM ANCE SIMULATION	PUTERIZED DEPOT R	SIMULATION EPAIR	
FIELD GROUP SUB. GR. D 14 02 D	DEPOT LEVEL MADEPOT MAINTENANVIONIC TEST I	AINTENANCE COM ANCE SIMULATION INITS TEST	PUTERIZED	SIMULATION EPAIR	
FIELD GROUP SUB. GR. D. 14 02 D. A.	DEPOT LEVEL MADEPOT MAINTENANTENANTE TEST I	AINTENANCE COM ANCE SIMULATION INITS TEST	PUTERIZED DEPOT R EQUIPMEN	SIMULATION EPAIR	
FIELD GROUP SUB. GR. 14 02 E. 19. ABSTRACT (Continue on reverse if necessary and ide) 11. TITLE: STATION LOADING ON	DEPOT LEVEL MADEPOT MAINTENANTONIC TEST I settly by block number THE DATSA (DE	AINTENANCE COM ANCE SIMULATION INITS TEST	PUTERIZED DEPOT R EQUIPMEN	SIMULATION EPAIR	
FIELD GROUP SUB. GR. D. 14 02 D. A. 19. ABSTRACT (Continue on reverse if necessary and identification)	DEPOT LEVEL MADEPOT MAINTENANTONIC TEST I settly by block number THE DATSA (DE	AINTENANCE COM ANCE SIMULATION INITS TEST TO THE TEST	PUTERIZED DEPOT R FOULPMEN EST STATI	SIMULATION EPAIR IT ON FOR AVIO	NICS)
FIELD GROUP SUB. GR. 14 02 E. 19. ABSTRACT (Continue on reverse if necessary and ide) 11. TITLE: STATION LOADING ON	DEPOT LEVEL MADEPOT MAINTENANTONIC TEST I settly by block number THE DATSA (DE	AINTENANCE COM ANCE SIMULATION INITS TEST TO THE TEST	PUTERIZED DEPOT R FOULPMEN EST STATI	SIMULATION EPAIR	NICS)
FIELD GROUP SUB. GR. 14 02 E. 19. ABSTRACT (Continue on reverse if necessary and ide) 11. TITLE: STATION LOADING ON	DEPOT LEVEL MADEPOT MAINTENANTONIC TEST I settly by block number THE DATSA (DE	AINTENANCE COM ANCE SIMULATION INITS TEST TO THE TEST	PUTERIZED DEPOT R FOULPMEN EST STATI	SIMULATION REPAIR IT ON FOR AVIO	AFR 165-1/
FIELD GROUP SUB. GR. 14 02 E. 19. ABSTRACT (Continue on reverse if necessary and ide) 11. TITLE: STATION LOADING ON	DEPOT LEVEL MADEPOT MAINTENANTONIC TEST I settly by block number THE DATSA (DE	AINTENANCE COM ANCE SIMULATION INITS TEST TO THE TEST	PUTERIZED DEPOT R FOULPMEN EST STATI	SIMULATION EPAIR IT ON FOR AVIO	AFR 165-1/
FIELD GROUP SUB. GR. 14 02 E. 19. ABSTRACT (Continue on reverse if necessary and ide) 11. TITLE: STATION LOADING ON	DEPOT LEVEL MADEPOT MAINTENANTONIC TEST I settly by block number THE DATSA (DE	AINTENANCE COM ANCE SIMULATION INITS TEST TO THE TEST	PUTERIZED DEPOT R FOULPMEN EST STATI	ON FOR AVIO	AFR 165-1/
FIELD GROUP SUB. GR. 14 02 E. 19. ABSTRACT (Continue on reverse if necessary and ide) 11. TITLE: STATION LOADING ON	DEPOT LEVEL MADEPOT MAINTENANTONIC TEST I settly by block number THE DATSA (DE	AINTENANCE COM ANCE SIMULATION INITS TEST TO THE TEST	PUTERIZED DEPOT R FOULPMEN EST STATI	ON FOR AVIO	AFR 165-1/
FIELD GROUP SUB. GR. 14 02 E. 19. ABSTRACT (Continue on reverse if necessary and ide) 11. TITLE: STATION LOADING ON	DEPOT LEVEL MADEPOT MAINTENANTONIC TEST I settly by block number THE DATSA (DE	AINTENANCE COM ANCE SIMULATION INITS TEST TO THE TEST	PUTERIZED DEPOT R FOULPMEN EST STATI	ON FOR AVIO	AFR 165-1/
FIELD GROUP SUB. GR. 14 02 E. 19. ABSTRACT (Continue on reverse if necessary and ide) 11. TITLE: STATION LOADING ON	DEPOT LEVEL MADEPOT MAINTENANTONIC TEST I settly by block number THE DATSA (DE	AINTENANCE COM ANCE SIMULATION INITS TEST TO THE TEST	PUTERIZED DEPOT R FOULPMEN EST STATI	SIMULATION REPAIR IT ON FOR AVIO	AFR 165-1/
14 02 End of the subsection of	DEPOT LEVEL MADEPOT MAINTENAVIONIC TEST I sentify by block number THE DATSA (DESTEEDER	AINTENANCE COM ANCE SIMULATION INITS TEST TO THE TEST	PUTERIZED DEPOT R FOULDMEN EST STATI	SIMULATION REPAIR IT ON FOR AVIO	AFR 165-1/
14 02 DA 19. ABSTRACT (Continue on reverse if necessary and ide 11. TITLE: STATION LOADING ON THESIS CHAIRMAN: W. RON HI	DEPOT LEVEL MADEPOT MAINTENAVIONIC TEST I sentify by block number THE DATSA (DESTEEDER	INTENANCE COM INCE SIMULATION INITS TEST POT AUTOMATED T 21. ABSTRACT SECUR UNCLASSIFIED	PUTERIZED DEPOT R FOULDMEN EST STATI	SIMULATION REPAIR IT ON FOR AVIO	AFR 155-1/.
14 02 DA 19. ABSTRACT (Continue on reverse if necessary and ide 11. TITLE: STATION LOADING ON THESIS CHAIRMAN: W. RON HI 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT.	DEPOT LEVEL MADEPOT MAINTENANTENANTENANTENANTENANTENANTENANTE	INTENANCE COM INCE SIMULATION INITS TEST CPOT AUTOMATED T	PUTERIZED DEPOT R FOULDMEN EST STATI	SIMULATION REPAIR IT ON FOR AVIO	AFR 155-1/.

some election, selection reserves election analysis

CONTRACTOR OF THE PROPERTY OF

Abstract

This research investigates the repair process for B1-B avionic Shop Replaceable Units (SRUs) at the depot level of maintenance. A Depot Automated Test Station for Avionics (DATSA) is used to test these SRUs for faults. A computer model provides the environment for the simulation and comparison of different amounts of DATSAs at the depot at Robbins AFB, Georgia.

SIMPLE 1 is the simulation language used by the model. It was chosen primarily because it can be used on any IBM or IBM compatible personal computer, and it does not require a simulation expert to run. The model's user-friendly input screens allow for changes to be made for future simulations as more data becomes available on the SRU repair process.

The simulations used a SRU arrival rate based on an aggregate Mean Time Between Demand for the SRUs. Simulations were conducted using various quantities of DATSAS. The differences between key variables in the different systems were compared and confidence intervals were computed. Synchronized random number streams were used as a variance reduction technique to determine compact confidence intervals. Sensitivity analysis was also accomplished by varying the quantities of workers available and the average daily flying time of the B1-B.

The results indicated a minimum of eight test stations would be able to accommodate the anticipated SRU load at the depot. However, the time the average SRU was delayed in the depot also increased as the number of DATSAs was decreased. With only eight DATSAs in operation, the cost of the added delay might exceed the cost of another DATSA. Also, as the flying time was increased, an infinite queue of faulty SRUs began to accumulate with only eight DATSAs in operation. Nine DATSAs were easily able to accommodate a 10 percent increase in average daily flying time.

12-

07/