Last name	
First name	

LARSON—MATH 310-CLASSROOM WORKSHEET 13 Vector Subspace, Homogeneous Linear System

Review: Chapter 3 of Klein's Coding the Matrix text

- 1. What are the 3 properties of a vector space \mathcal{V} ?
- 2. Why is \mathbb{R}^2 a vector space?
- 3. If \mathcal{V} is a vector space, and $\mathcal{W} \subseteq \mathcal{V}$, when is \mathcal{W} a subspace of \mathcal{V} ?
- 4. What are examples of subspaces?
- 5. Book problem:

Exercise 3.2.15: For each of the subproblems, you are to investigate whether the given vectors span \mathbb{R}^2 . If possible, write each of the standard generators for \mathbb{R}^2 as a linear combination of the given vectors. If doing this is impossible for one of the subproblems, you should first add one additional vector and then do it.

- 1. [1, 2], [3, 4]
- 2. [1, 1], [2, 2], [3, 3]
- 3. [1,1],[1,-1],[0,1]

New

1. For a field \mathbb{F} and finite set D why is the collection of functions \mathbb{F}^D a vector space?

2. If $\hat{v_1}, \hat{v_2}, \dots, \hat{v_n}$ are vectors in a vector space \mathcal{V} , why is $\mathrm{Span}(\{\hat{v_1}, \hat{v_2}, \dots, \hat{v_n}\})$ a vector space?

3.	What is a homogeneous linear system?
4.	Why are the solutions of a homogeneous linear system a vector space?
5.	Book problem:
	Vector spaces
	Problem 3.8.7: Prove or give a counterexample: " $\{[x,y,z]:x,y,z\in\mathbb{R},x+y+z=1\}$ is a vector space."
	Problem 3.8.8: Prove or give a counterexample: " $\{[x,y,z]: x,y,z\in\mathbb{R} \text{ and } x+y+z=0\}$ is a vector space."
	Problem 3.8.9: Prove or give a counterexample: " $\{[x_1, x_2, x_3, x_4, x_5] : x_1, x_2, x_3, x_4, x_5 \in \mathbb{R}, x_2 = 0 \text{ or } x_5 = 0\}$ is a vector space."