### CS365: Deep Learning

#### **Neural Networks-II**



#### **Ariiit Mondal**

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Deep Learning

### **Machine Learning**

- A form of applied statistics with
  - Increased emphasis on the use of computers to statistically estimate complicated function
    - Decreased emphasis on proving confidence intervals around these functions
  - Two primary approaches
    - Frequentist estimators
    - Bayesian inference
- A ML/DL algorithm is an algorithm that is able to learn from data
- Mitchelle (1997)
  - A computer program is said to learn from experience E with respect to some class of task T and performance measure P, if its performance at task in T as measured by P, improves with experience E.

### Typical tasks

- Classification
  - ullet Need to predict which of the k categories some input belongs to
    - Need to have a function  $f: \mathbb{R}^n \to \{1, 2, \dots, k\}$
    - y = f(x) input x is assigned a category identified by y
    - Examples
      - Object identification
      - Face recognition
- Regression
  - Need to predict numeric value for some given input
  - Need to have a function  $f: \mathbb{R}^n \to \mathbb{R}$
  - Examples
    - Energy consumption
    - Amount of insurance claim

- Classification with missing inputs
  - Need to have a set of functions
  - Each function corresponds to classifying x with different subset of inputs missing
  - Examples
  - Medical diagnosis (expensive or invasive)

- Classification with missing inputs
  - Need to have a set of functions
  - Each function corresponds to classifying x with different subset of inputs missing
  - Examples
  - Medical diagnosis (expensive or invasive)
- Transcription
  - Need to convert relatively unstructured data into discrete, textual form
    - Optical character recognition
    - Speech recognition

- Classification with missing inputs
  - Need to have a set of functions
  - Each function corresponds to classifying x with different subset of inputs missing
  - Examples
  - Medical diagnosis (expensive or invasive)
- Transcription
  - Need to convert relatively unstructured data into discrete, textual form
    - Optical character recognition
    - Speech recognition
- Machine translation
- Conversion of sequence of symbols in one language to some other language
  - Natural language processing (English to Spanish conversion)

- Structured output
  - Output is a vector with important relationship between the different elements
    - Mapping natural language sentence into a tree that describes grammatical structure
    - Pixel based image segmentation (eg. identify roads)

- Structured output
  - Output is a vector with important relationship between the different elements
    - Mapping natural language sentence into a tree that describes grammatical structure
    - Pixel based image segmentation (eg. identify roads)
- Anomaly detection
  - Observes a set of events or objects and flags if some of them are unusual
    - Fraud detection in credit card

- Structured output
  - Output is a vector with important relationship between the different elements
    - Mapping natural language sentence into a tree that describes grammatical structure
    - Pixel based image segmentation (eg. identify roads)
- Anomaly detection
  - Observes a set of events or objects and flags if some of them are unusual
    - Fraud detection in credit card
- Synthesis and sampling
  - Generate new example similar to past examples
    - Useful for media application
    - Text to speech

- Accuracy is one of the key measures
  - The proportion of examples for which the model produces correct outputs
  - Similar to error rate
    - Error rate often referred as expected 0-1 loss
- Mostly interested how DL algorithm performs on unseen data
- Choice of performance measure may not be straight forward
  - Transcription
    - Accuracy of the system at transcribing entire sequence
    - Any partial credit for some elements of the sequence are correct

7



### Supervised learning

- Allowed to use labeled dataset
- Example Iris
  - Collection of measurements of different parts of Iris plant
  - Each plant means each example
  - Features
    - Sepal length/width, petal length/width
    - Also record which species the plant belong to

- $x_i$  are input variables
- y output variable
- Need to find a function  $f: X_1 \times X_2 \times ... X_n \to Y$
- Goal is to minimize error/loss function
- Godi is to minimize error/1033 function
- Like to minimize over all dataset
- We have limited dataset

### **Unsupervised learning**

- Learns useful properties of the structure of data set
- Unlabeled data
  - Tries to learn entire probability distribution that generated the dataset
  - Examples
    - Clustering, dimensionality reduction



### **Unsupervised learning**

- Learns useful properties of the structure of data set
- Unlabeled data
  - Tries to learn entire probability distribution that generated the dataset
  - Examples
    - Clustering, dimensionality reduction



## **Supervised vs Unsupervised learning** • Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)• Supervised tries to predict y from x ie. p(y|x)Deep Learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)
- Unsupervised learning can be decomposed as supervised learning

$$p(x) = \prod_{i=1}^{n} p(x_i|x_1, x_2, \dots, x_{i-1})$$

### **Supervised vs Unsupervised learning**

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)
- Unsupervised learning can be decomposed as supervised learning

$$p(x) = \prod_{i=1}^{n} p(x_i|x_1, x_2, \dots, x_{i-1})$$

• Solving supervised learning using traditional unsupervised learning

$$p(y|x) = \frac{p(x, y)}{\sum_{y'} p(x, y')}$$

Pre-activation in layer

$$k > 0 \ (h^{(0)}(x) = x)$$

$$a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}x$$

Hidden layer activation

$$\mathsf{h}^{(k)}(\mathsf{x}) = \mathsf{g}(\mathsf{a}^{(k)}(\mathsf{x}))$$

 $\mathbf{h}^{(k)}(\mathbf{x}) =$ • Output layer activation

$$\mathsf{h}^{(\mathit{L}+1)}(\mathsf{x}) = \mathit{o}(\mathsf{a}^{(\mathit{L}+1)}(\mathsf{x})) = \mathsf{f}(\mathsf{x})$$



### Multi layer neural network

- Design issues
  - Number of layers
  - Number of neurons in each layer
  - Activation function
  - Output function
  - Loss function
  - Optimizer



- Linear activation function
  - Not very interesting
    - No change in values
  - Huge range



## **Activation function** • Sigmoid function • Values lie between 0 and 1 • Strictly increasing function Bounded

- Sigmoid function
  - Values lie between 0 and 1
  - Strictly increasing function
  - Bounded



- Sigmoid function
  - Values lie between 0 and 1
  - Strictly increasing function
  - Bounded



- Hyperbolic Tangent (Tanh) function
  - Can be positive or negative
  - Values lie between -1 and 1
  - Challed the personal and for all a
  - Strictly increasing function
  - Bounded



# Deep Learning

- Hyperbolic Tangent (Tanh) function
  - Can be positive or negative
  - Values lie between -1 and 1
  - Ctuintly in averaging from the
  - Strictly increasing functionBounded



- ReLU is defined as  $g(z) = \max\{0, z\}$ 
  - Using non-zero slope,  $h_i = g(z, \alpha)_i = \max(0, z_i) + \alpha_i \min(0, z_i)$ 
    - ullet Absolute value rectification will make  $lpha_i = -1$  and g(z) = |z|
  - Leaky ReLU assumes very small values for  $\alpha_i$
  - Parametric ReLU tries to learn  $\alpha_i$  parameters
- Maxout unit  $g(z)_i = \max_{i \in \mathcal{D}(i)} z_i$ 
  - $j \in \mathbb{G}^{(i)}$
  - Suitable for learning piecewise linear function

used

### Logistic sigmoid & hyperbolic tangent

- Logistic sigmoid  $g(z) = \sigma(z)$ 
  - Hyperbolic tangent g(z) = tanh(z)
    - $tanh(z) = 2\sigma(2z) 1$
  - Widespread saturation of sigmoidal unit is an issue for gradient based learning
    - Usually discouraged to use as hidden units
  - Usually, hyperbolic tangent function performs better where sigmoidal function must be
    - Behaves linearly at 0

    - Sigmoidal activation function are more common in settings other than feedforward network

- Differentiable functions are usually preferred
- Activation function  $h = \cos(Wx + b)$  performs well for MNIST data set
- Sometimes no activation function helps in reducing the number of parameters
- Radial Basis Function  $\phi(x, c) = \phi(||x c||)$ 
  - Gaussian  $\exp(-(\varepsilon r)^2)$
  - Softplus  $g(x) = \zeta(x) = \log(1 + exp(x))$
- Hard tanh g(x) = max(-1, min(1, x))
- Hidden unit design is an active area of research

2

### **Hidden units**

- Active area of research and does not have good guiding theoretical principle
- Usually rectified linear unit (ReLU) is chosen in most of the cases
- Design process consists of trial and error, then the suitable one is chosen
- Some of the activation functions are not differentiable (eg. ReLU)
  - Still gradient descent performs well
  - Neural network does not converge to local minima but reduces the value of cost function to a very small value

### **Linear units**

- Suited for Gaussian output distribution
- Given features h. linear output unit produces  $\hat{\mathbf{v}} = \mathbf{W}^T \mathbf{h} + \mathbf{b}$
- This can be treated as conditional probability  $p(y|x) = \mathcal{N}(y; \hat{y}, I)$
- Maximizing log-likelihood is equivalent to minimizing mean square error

### Sigmoid unit

- Mostly suited for binary classification problem that is Bernoulli output distribution
- The neural networks need to predict p(y=1|x)
  - If linear unit has been chosen,  $p(y = 1|x) = \max\{0, \min\{1, W^T h + b\}\}$
  - Gradient?
- Model should have strong gradient whenever the answer is wrong
- Let us assume unnormalized log probability is linear with  $z = W^T h + b$ 
  - Therefore,  $\log \tilde{P}(y) = yz \Rightarrow \tilde{P}(y) = \exp(yz) \Rightarrow P(y) = \frac{\exp(yz)}{\sum_{y' \in \{0,1\}} \exp(y'z)}$ 
    - It can be written as  $P(y) = \sigma((2y-1)z)$
  - The loss function for maximum likelihood is  $J(\theta) = -\log P(y|\mathbf{x}) = -\log \sigma((2y-1)z) = \zeta((1-2y)z)$

- Similar to sigmoid. Mostly suited for multinoulli distribution
- We need to predict a vector  $\hat{y}$  such that  $\hat{y}_i = P(Y = i|x)$
- A linear layer predicts unnormalized probabilities  $z = W^T h + b$  that is  $z_i = \log \tilde{P}(y = i | x)$
- Formally, softmax(z)<sub>i</sub> =  $\frac{\exp z_i}{\sum_i \exp(z_i)}$
- Log in log-likelihood can undo exp  $\log \operatorname{softmax}(z)_i = z_i \log \sum_i \exp(z_j)$ 
  - Does it saturate?
  - What about incorrect prediction?
- Invariant to addition of some scalar to all input variables ie.  $\mathsf{softmax}(z) = \mathsf{softmax}(z+c)$

- Need to compare  $\hat{y} = f(x)$  with the true label y for an input x
- For a single input example loss will be measured as  $\mathcal{L}(y, f(x))$
- Average loss over a set of examples will be  $\frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(y_i, \hat{y}_i)$
- Target is to minimize the loss function
- Given the weights of the network W, the forward propagation yields  $\hat{y}_i = f(x, W)$
- Our goal is as follows: minimize  $\frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(y_i, f(x_i, W))$
- Generic loss function can have the following form  $|y-a|^p$
- Euclidean norm p=2



#### **Loss curve**



#### **Loss curve**



- Prediction of the value of a continuous variable
  - Example price of a house, solar power generation in photo-voltaic cell, etc.
- Takes a vector  $\mathbf{x} \in \mathbb{R}^n$  and predict scalar  $\mathbf{y} \in \mathbb{R}$ 
  - Predicted value will be represented as  $\hat{y} = \mathbf{w}^T \mathbf{x}$  where  $\mathbf{w}$  is a vector of parameters
    - $x_i$  receives positive weight Increasing the value of the feature will increase the value of y
    - $x_i$  receives negative weight Increasing the value of the feature will decrease the value of y
    - Weight value is very high/large Large effect on prediction

### **Linear regression using neural network**



- $\bullet$  Assume, we have m examples not used for training
  - This is known as test set
- Design matrix of inputs is X<sup>(test)</sup> and target output is a vector y<sup>(test)</sup>
  - Performance is measured by Mean Square Error (MSE)

$$\mathsf{MSE}_{(\mathsf{test})} = \frac{1}{m} \sum_{\cdot} \left( \hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})} \right)_{i}^{2} = \frac{1}{m} \| \hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})} \|_{2}^{2}$$

• Error increases when the Euclidean distance between target and prediction increases

- Assume, we have m examples not used for training
  - This is known as test set
- Design matrix of inputs is X<sup>(test)</sup> and target output is a vector y<sup>(test)</sup>
  - Performance is measured by Mean Square Error (MSE)

$$\mathsf{MSE}_{(\mathsf{test})} = \frac{1}{m} \sum_{i} \left( \hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})} \right)_{i}^{2} = \frac{1}{m} \|\hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})}\|_{2}^{2}$$

- Error increases when the Euclidean distance between target and prediction increases
- The learning algorithm is allowed to gain experience from training set  $(X^{(train)}, y^{(train)})$
- One of the common ideas is to minimize MSE<sub>(train)</sub> for training set





• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \nabla_{w} \frac{1}{2} \|\hat{\mathbf{y}}^{(\mathsf{train})} - \mathbf{y}^{(\mathsf{train})}\|_{2}$$

$$\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} \|\hat{\mathbf{y}}^{(\text{train})} - \mathbf{y}^{(\text{train})}\|_2^2 = 0$$

$$\Rightarrow \frac{1}{m} \nabla_{\mathbf{w}} \| \mathbf{X}^{(\text{train})} \mathbf{w} - \mathbf{y}^{(\text{train})} \|_2^2 = 0$$

$$\frac{1}{m} \nabla_{w} || \mathbf{A} \nabla_{w} - \mathbf{y} \nabla_{w} ||_{2} = 0$$

$$\nabla_{w} (\text{train}) \nabla_{w} (\text{train}) \nabla$$

$$\Rightarrow \nabla_{w}(X^{(train)}w - y^{(train)})^{T}(X^{(train)}w - y^{(train)}) = 0$$



$$\nabla_w \frac{1}{m} \|\hat{\mathbf{y}}^{(\mathsf{train})} - \mathbf{y}^{(\mathsf{train})} \|$$

$$\|\hat{\mathbf{v}}^{(\mathsf{train})} - \mathbf{v}^{(\mathsf{train})}\|$$

We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \nabla_{w} \frac{1}{m} \|\hat{\mathbf{y}}^{(\mathsf{train})} - \mathbf{y}^{(\mathsf{train})}\|_{2}^{2} = 0$$

$$\Rightarrow \frac{1}{m} \nabla_{\mathbf{w}} \| \mathbf{X}^{(\text{train})} \mathbf{w} - \mathbf{y}^{(\text{train})} \|_2^2 = 0$$

$$\nabla_{w}(X^{(\text{train})}w - y^{(\text{train})})^{T}(X^{(\text{train})})$$

$$\nabla_{w}(X^{(train)}w - y^{(train)})^{T}(X^{(train)})^{T}$$

$$\nabla_{w}(\mathbf{w}^{T}\mathbf{X}^{(\text{train})T}\mathbf{X}^{(\text{train})}\mathbf{w} - 2\mathbf{w}^{T}\mathbf{X}$$

$$\Rightarrow \nabla_{w}(X^{(train)}w - y^{(train)})^{T}(X^{(train)}w - y^{(train)}) = 0$$

$$\nabla_{w}(X^{(\text{train})}W - y^{(\text{train})}) \cdot (X^{(\text{train})}W$$

$$\Rightarrow \nabla_{w}(w^{T}X^{(\text{train})T}X^{(\text{train})}w - 2w^{T}X^{(\text{train})T}y^{(\text{train})} + y^{(\text{train})T}y^{(\text{train})}) = 0$$

$$\mathbf{v}^T \mathbf{X}^{(\text{train})T} \mathbf{X}^{(\text{train})} \mathbf{w} - 2 \mathbf{w}^T \mathbf{X}^{(\text{train})}$$

$$(com) \cdot X(com) W = 2W \cdot X(com)$$

• We have the following now 
$$\nabla_w \mathsf{MSE}_{(\mathsf{train})} = 0$$
 
$$\Rightarrow \quad \nabla_w \frac{1}{m} \| \hat{\mathsf{y}}^{(\mathsf{train})} - \mathsf{y}^{(\mathsf{train})} \|_2^2 = 0$$
 
$$\Rightarrow \quad \frac{1}{m} \nabla_w \| \mathsf{X}^{(\mathsf{train})} \mathsf{w} - \mathsf{y}^{(\mathsf{train})} \|_2^2 = 0$$
 
$$\Rightarrow \quad \nabla_w (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - \mathsf{y}^{(\mathsf{train})})^T (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - \mathsf{y}^{(\mathsf{train})}) = 0$$

$$\nabla_{w}(X^{(\text{train})}w - y^{(\text{train})})^{T}(X^{(\text{train})})^{T}$$

$$\nabla_{w}(\mathbf{x}^{T}\mathbf{X}^{(\text{train})T}\mathbf{X}^{(\text{train})}\mathbf{w} - 2\mathbf{w}^{T}\mathbf{X}$$

$$\Rightarrow \nabla_{w}(w^{T}X^{(train)T}X^{(train)}w - 2w^{T}X^{(train)T}y^{(train)} + y^{(train)T}y^{(train)}) = 0$$

$$\Rightarrow \nabla_{w}(w^{T}X^{(train)}X^{(train)}w - 2w^{T}X^{(train)}Y^{(train)}Y^{(train)}Y^{(train)}Y^{(train)}W - 2X^{(train)}Y^{(train)}Y^{(train)} = 0$$

$$^{\mathsf{n})}\mathsf{w} - 2\mathsf{w}^{\mathsf{T}}\mathsf{X}^{(\mathsf{train})}$$

$$y - 2w^T X^{(train)T} y^{(train)T}$$

We have the following now

the following how 
$$\nabla_w \mathsf{MSE}_{(\mathsf{train})} = 0$$
 
$$\Rightarrow \quad \nabla_w \frac{1}{m} \|\hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})}\|_2^2 = 0$$
 
$$\Rightarrow \quad \frac{1}{m} \nabla_w \|\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})}\|_2^2 = 0$$
 
$$\Rightarrow \quad \nabla_w (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})})^T (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})}) = 0$$
 
$$\Rightarrow \quad \nabla_w (\mathsf{w}^T \mathsf{X}^{(\mathsf{train})} \mathsf{X}^T \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2 \mathsf{w}^T \mathsf{X}^T \mathsf{X}^T \mathsf{v}^{(\mathsf{train})} + y^{(\mathsf{train})} \mathsf{v}^T \mathsf{y}^T \mathsf{v}^{(\mathsf{train})}) = 0$$

 $\Rightarrow$  w =  $(X^{(train)}TX^{(train)})^{-1}X^{(train)}T_{V}^{(train)}$ 

• We have the following now 
$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \nabla_{w} \frac{1}{m} \|\hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})}\|_{2}^{2} = 0$$

$$\Rightarrow \frac{1}{m} \nabla_{w} \| \mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \nabla_{w} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})})^{T} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \nabla_{w} (\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})} \mathsf{y}^{(\mathsf{train})} + y^{(\mathsf{train})} \mathsf{y}^{(\mathsf{train})}) = 0$$

$$\Rightarrow 2\mathsf{X}^{(\mathsf{train})} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{X}^{(\mathsf{train})} \mathsf{y}^{(\mathsf{train})} = 0$$

$$\Rightarrow \mathsf{w} = (\mathsf{X}^{(\mathsf{train})} \mathsf{X}^{(\mathsf{train})})^{-1} \mathsf{X}^{(\mathsf{train})} \mathsf{y}^{(\mathsf{train})}$$

• Linear regression with bias term  $\hat{y} = [\mathbf{w}^T \quad \mathbf{w}_0][\mathbf{x} \quad 1]^T$ 

### **Regression example**



#### **Regression example**



## **Example**



#### **Example: Variation of MSE wrt** w



## **Example: Best fit**



**Error** 

#### **Regression example**















# Underfitting & Overfitting

- Underfitting
- When the model is not able to obtain sufficiently low error value on the training set
- Overfitting
- When the gap between training set and test set error is too large

#### **Underfitting example**



### **Overfitting example**



#### **Better fit**



#### Capacity

- Ability to fit wide variety of functions
  - Low capacity will struggle to fit the training set
  - High capacity will can overfit by memorizing the training set
- Capacity can be controlled by choosing hypothesis space
  - A polynomial of degree 1 gives linear regression  $\hat{y} = b + wx$
  - By adding  $x^2$  term, it can learn quadratic curve  $\hat{y} = b + w_1 x + w_2 x^2$ 
    - Output is still a linear function of parameters
- Capacity is determined by the choice of model (Representational capacity)
- Finding best function is very difficult optimization problem
  - Learning algorithm does not find the best function but reduces the training error
  - Imperfection in optimization algorithm can further reduce the capacity of model (effective capacity)

## **Capacity (contd.)**

- Occam's razor
  - Among equally well hypotheses, choose the simplest one
- Vapnik-Chervonenski dimension Capacity for binary classifier
  - Largest possible value of m for which a training set of m different x points that the classifier can label arbitrarily
- Training and test error is bounded from above by a quantity that grows as model capacity grows but shrinks as the number of training example increases
  - Bounds are usually provided for ML algorithm and rarely provided for DL
  - Capacity of deep learning model is difficult as the effective capacity is limited by optimization algorithm
    - Little knowledge on non-convex optimization

#### **Error vs Capacity**



- Parametric model learns a function described by a parameter vector
  - Size of vector is finite and fixed
- Nearest neighbor regression
  - Finds out the nearest entry in training set and returns the associated value as the predicted one
  - Mathematically, for a given point x,  $\hat{y} = y_i$  where  $i = \arg\min ||X_{i,:} x||_2^2$
- Wrapping parametric algorithm inside another algorithm

#### Bayes error

- Ideal model is an oracle that knows the true probability distribution for data generation
- Such model can make error because of noise
  - Supervised learning
    - Mapping of x to y may be stochastic
    - y may be deterministic but x does not have all variables
- Error by an oracle in predicting from the true distribution is known as Bayes error

#### Note

- Training and generalization error varies as the size of training set varies
- Expected generalization error can never increase as the number of training example increases
- Any fixed parametric model with less than the optimal capacity will asymptote to an error value that exceeds the Bayes error
  - It is possible to have optimal capacity but have large gap between training and generalization error
  - Need more training examples