ΗΛΕΚΤΡΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ

Θέματα Προόδου Θεωρίας 9 Νοεμβρίου 2011

1. Υπολογίστε τη λύση του παρακάτω γραμμικού συστήματος με τη μέθοδο απαλοιφής του Gauss (ακολουθώντας τον απλό αλγόριθμο χωρίς μερική ή ολική οδήγηση)

$$2x - 4y + 3z = -1$$
$$x + 2y + z = 4$$
$$3x - 5y - 2z = 6$$

Εξηγήσετε αναλυτικά τα βήματα που ακολουθείτε. (3.5/10)

2. Να βρεθεί προσεγγιστικά το μέγιστο της συνάρτησης

$$q(x) = x^3 - 3x^2 + 2x$$

στο διάστημα $0 \le x \le 1$. Υπενθυμίζεται ότι η πρώτη παράγωγος f(x) = g'(x) μιας συνεχούς συνάρτησης μηδενίζεται σε τοπικό ακρότατο. Στους υπολογισμούς να χρησιμοποιηθούν 6 σημαντικά ψηφία. Η ακολουθία n προσεγγιστικών λύσεων να σταματάει όταν $|f(x_n)| \le 0.00001$ (3.5/10)

3. Η συνάρτηση f(x) είναι γνωστή σε τρία σημεία, όπως φαίνεται από τον παρακάτω πίνακα τιμών

$$\begin{array}{ccc}
x_i & f_i \\
-1 & 3 \\
1 & 1 \\
2 & 3
\end{array}$$

Να προσαρμοστεί πολυώνυμο παρεμβολής στις παραπάνω τιμές. Υπενθυμίζεται ότι το πολυώνυμο Lagrange δίνεται από τη σχέση

$$p(x) = \sum_{i=0}^{\nu} \ell_i(x) f(x_i) ,$$

όπου για $i = 0, 1, 2, \dots, \nu$,

$$\ell_i(x) = \prod_{j=0, j \neq i}^{\nu} \frac{x - x_j}{x_i - x_j} .$$

(3/10)

Καλή επιτυχία!

ΗΛΕΚΤΡΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ

Θέματα Προόδου Εργαστηρίου Νοέμβριος 2011

1. Μια άγνωστη συνάρτηση f(x) περνά από τα σημεία (x_i,y_i) που δίνονται παρακάτω

$$\begin{array}{c|cc} x_i & y_i \\ \hline 1.1 & 2.1 \\ 1.5 & 2.7 \\ 1.7 & 2.6 \\ 2.0 & 2.4 \\ \end{array}$$

Επιπλέου, η πρώτη παράγωγός της μηδενίζεται στο σημείο x=1.6. Βρείτε ένα προσεγγιστικό πολυώνυμο που να ικανοποιεί αυτές τις συνθήκες και, χρησιμοποιώντας το, δώστε μια εκτίμηση για την τιμή της f(x) στο x=1.9.

2. Μία σφαίρα αφήνεται να πέσει στη γη με μηδενική αρχική ταχύτητα. Οι μετρήσεις του ύψους της, h, σε διάφορες χρονικές στιγμές, t, δίνονται παρακάτω:

t(s)	h(m)	t(s)	h(m)
1.0	80.50	3.00	40.30
1.35	76.00	3.15	35.80
1.65	71.60	3.30	31.30
1.90	67.00	3.45	26.90
2.15	62.60	3.60	22.35
2.30	58.15	3.70	17.90
2.50	53.70	3.80	13.40
2.70	49.21	3.95	8.95
2.90	44.70	4.05	4.50

Βρείτε το αρχικό ύψος της σφαίρας και υπολογίστε την επιτάχυνση της βαρύτητας.

Υπενθύμιση: Ελεύθερο σώμα με αρχική θέση x_0 , αρχική ταχύτητα v_0 , σε βαρυτικό πεδίο με σταθερή επιτάχυνση g, έχει θέση x που δίνεται από τον τύπο

$$x = -\frac{1}{2}gt^2 + v_0t + x_0 \ .$$

Διάρκεια: 90 λεπτά Καλή επιτυχία!