Wprowadzenie do programowania w języku C

grupa RKr, wtorek 16:15-18:00 lista nr 9 (na pracownię 10.12.2018) (wersja 1)

Zadanie 1. [15p na pracowni lub 10p po pracowni]

Wykorzystaj typ MemDescriptor z listy zadań 8. Napisz funkcję o sygnaturze "int indexerZTiled(int x, int y)", która utworzy 12-bitowy indeks przeplatając bity 6-bitowych współrzędnych x oraz y w następujący sposób: indexerZTiled(x, y) \Rightarrow y₅ x₅ y₄ x₄ y₃ x₃ y₂ x₂ y₁ x₁ y₀ x₀.

Przy pomocy __liftbit(x, a, b) zbuduj makro __chopbits(w), które pomiędzy każde dwa bity liczby w wstawi 0, __chopbits(w) = 0 w₅ 0 w₄ 0 w₃ 0 w₂ 0 w₁ 0 w₀ . To pozwoli zaimplementować indekser oraz funkcję "MemDescriptor layToZTiled(MemDescriptor m)" kopiującą pamięć z deskryptora m konwertując układ pamięci na ZTiled z dowolnego układu w deskryptorze m; asymptotyczny czas indeksera to O(#bits).

Tak jak na poprzedniej liście stwórz szachownicę rozmiaru 64x64 znaków posiadającą pola rozmiaru 8x8. Zastosuj do niej layToZTiled(.) zmieniając układ pamięci na rekurencyjnie/hierarchicznie Z-kafelkowany. W szachownicy nadpisz jedną wybraną 64-znakową linię (jest ich 64) ignorując jej szyk/indekser:

ABCDEFGHIJKLMNOP#######################abcdefghijklmnop

Po zapisaniu tej linii, stworzoną do tego celu funkcją "void overwriteLine(MemDescriptor m)", wypisz szachownicę na standardowym wyjściu używając szyku zgodnego w tej chwili z pamięciowym, czyli ZTiled.

Jeśli indeksy x oraz y składają się z liczby bitów, która jest potęgą dwójki, to można w elegancki sposób napisać funkcję, która wyliczy liniowy indeks w liczbie operacji proporcjonalnej do logarytmu z liczby bitów. W sprzęcie elektronicznym można zapleść ścieżki i taka operacja kosztuje jedną instrukcję niezależnie od liczby bitów, działając w asymptotycznym czasie O(1), nasza wersja będzie działała w czasie O(log₂(#bits)).

Załóż, że współrzędne mają 8 bitów i napisz funkcję o sygnaturze "short chopbits8(short x)" oraz funkcję o sygnaturze "short zipbitsZ8(short x, short y)", która podobnie jak indexerZTiled wyliczy:

```
zipbitsZ8(x, y) = y_7 x_7 y_6 x_6 y_5 x_5 y_4 x_4 y_3 x_3 y_2 x_2 y_1 x_1 y_0 x_0.
```

Budżet na każdą z operacji bitowych (<< & |) wynosi $log_2(8 bitów) = 3 sztuki$. Jeśli nie masz pomysłu na przebieg operacji bitowych, a brak satysfakcji Ci nie przeszkadza, zajrzyj do podpowiedzi na drugiej stronie :) Można zmienić układ Z na $\mathcal U$ (rosyjska litera 'i', zamiast niej do oznaczenia używa się czasem podobnego $\mathcal V$). Zastanów się, co trzeba zrobić z bitami aby uzyskać układ o kształcie $\mathcal V$?

Zadanie 2. [15p] Dostępne w serwisie SKOS.

post-overwrite 8x8 field:

bit-flow for chopbits8:

recursive/nested Z-Tiled pattern:

