CS208: Mathematical Foundations of CS

Fall 2018

Lecture 18: September 19

Lecturer: Samar Scribes: Deepshikha Rana,Navya Varakantham

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

18.1 Power sets are strictly bigger

Theorem 1 For any set A, the power set pow(A) is strictly larger than A

Proof: To show that A is strictly smaller than pow(A), we have to show that if g is a function from A to pow(A), then g is not a surjection.

A is strictly smaller than pow(A) iff NOT(A surjection pow(A)). This means if there is a relation g from A to pow(A), then g can't be surjective. So, g can be partial function or total function. Since any partial function with nonempty codomain can be extended to a total function with the same range, so let us assume that g is a total function.

To show that g is not a surjection, well simply find a subset $Ag \subseteq A$ that is not in the range of g. For any element $a \in A$, to look at the set $g(a) \subseteq A$ and ask whether or not a happens to be in g(a). First, define

$$Ag ::= \{ a \in A \mid a \notin g(a) \}$$

Ag is a subset of A, that means $Aq \in pow(A)$. But for every element $a \in A$, Ag differs from its image g(a).

To explain the above statement, suppose to the contrary that Ag is in the range of g, that means, there must be some element a_0 in A such that Ag = $g(a_0)$. Now by definition of Ag,

$$a \in g(a_0)$$
 iff $a \in Ag$ iff $a \notin g(a)$

for all a/inA. Let $a = a_0$ which yields the contradiction

$$a_0 \in g(a_0)$$
 iff $a_0 \notin g(a_0)$

So g is not a surjection, because there is an element in the power set of A, specifi- cally the set Ag, that is not in the range of g.

This concludes the proof.

Exercise:

Prove that there exists a bijection, $\mathbb{N} \longrightarrow \mathbb{N}^n$.

Hint: For any $a \in \mathbb{N}$ it can be uniquely decomposed into x and y as,

$$a = \frac{(x+y+1)\times(x+y)}{2} + y$$

18.1.1 Some Representations

Infinite bit sequences : $[0, 1]^w$

Countable bit sequences : $[0, 1]^*$

For a given set A,

All countable sequences : A^w

Infinite sequences : A^*

18.1.2 pow(\mathbb{N})s uncountable

Lemma 1 $pow(\mathbb{N})$ is uncountable.

 \mathbb{N} is strictly smaller than pow(\mathbb{N})

C is countable iff N surj C(proved already in previous lecture) If C is uncountable

NOT(\mathbb{N} surj C) iff \mathbb{N} strict C.

We know that \mathbb{N} strict pow(\mathbb{N}). Therefore,

 $pow(\mathbb{N})$ is uncountable.

This completes the proof.

The bijection between subsets of an n-element set and the length n bit-strings $[0,1]^n$ carries over to a bijection between subsets of a countably infinite set and the infinite bit-strings, $[0,1]^w$. That is, pow(N) bij $[0,1]^w$. This immediately implies

 $[0,1]^w$ is uncountable.

Corollary 1.1 (a) If U is an uncountable set and A surj U, then A is uncountable.

(b) If C is a countable set and C surj A, then A is countable.

Corollary 1.2 *The set* \mathbb{R} *of real numbers is uncountable.*

To prove this, think about the infinite decimal expansion of a real number:

$$\sqrt[3]{2} = 1.4142...,$$

 $6 = 6.000...,$
 $1/10 = 0.1000...,$
 $4\frac{1}{99} = 4.010101...,$

Lets map any real number r to the infinite bit string b(r) equal to the sequence of bits in the decimal expansion of r, starting at the decimal point. If the decimal expansion of r contains a digit other than 0 or 1, then leave b(r) as undefined.

For example,

$$b(\sqrt[2]{2})$$
 = undefined,
 $b(6) = 000...,$
 $b(1/10) = 1000...,$
 $b(4\frac{1}{99}) = 010101...$

Now b is a function from real numbers to infinite bit strings. It is not a total function, but it clearly is a surjection. This shows that

$$\mathbb{R}$$
 surj $[0,1]^w$

and the uncountability of the reals.

18.1.3 Larger Infinities

There are lots of different sizes of infinite sets. For example, starting with the infinite set N of non-negative integers, we can build the infinite sequence of sets

 $\mathbb N$ strict pow($\mathbb N)$ strict pow(pow($\mathbb N))$ strict pow(pow(pow($\mathbb N)))$ strict ...

Each of these sets is strictly bigger than all the pre- ceding ones. The union of all the sets in the sequence is strictly bigger than each set in the sequence.

$$\mathbf{U} = \bigcup pow^n(\mathbb{N})$$

There exists \mathbb{R} surj pow(U).

18.2 Diagonal Argument

Suppose there is a bijection between \mathbb{N} and $[0,1]^w$. If such a relation existed, we would be able to display it as a list of the infinite bit strings in some countable order or another. Once wed found a viable way to organize this list, any given string in $[0,1]^w$ would appear in a finite number of steps, just as any integer you can name will show up a finite number of steps from 0. This hypothetical list would look something like the one below, extending to infinity both vertically and horizontally.

$$A_0 = 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \dots$$
 $A_1 = 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \dots$
 $A_2 = 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ \dots$
 $A_3 = 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \dots$
 $A_4 = \dots \ 0 \dots \dots$
 $A_5 = \dots \ 1 \dots \dots$

we can form a sequence D consisting of the bits on the diagonal.

$$D = 1 1 1 0 0 1 \dots$$

Then, we can form another sequence by switching the 1s and 0s along the diagonal. Call this sequence C:

$$C = 0 \ 0 \ 1 \ 1 \ 0 \dots$$
 (complement of D)

Now if the nth term of A_n is 1 then the nth term of C is 0, and vice versa, which guarantees that C differs from A_n . In other words, C has at least one bit different from every sequence on our list. So C is an element of $[0,1]^w$ that does not appear in our listour list cant be complete!

This diagonal sequence C corresponds to the set $\{a \in A \mid a \notin g(a)\}$. Both are defined in terms of a countable subset of the uncountable infinity in a way that excludes them from that subset, thereby proving that no countable subset can be as big as the uncountable set.

References

[LLM13] E. LEHMAN, F. T. LEIGHTON ANDA. R. MEYER, Mathematics for Computer Science, 2013, pp.13, 16, 24.