UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: KJM 1110 – Organisk kjemi I

Eksamensdag: 12. juni 2015 Tid for eksamen: 9:00-13:00

Oppgavesettet er på 4 sider + 2 sider vedlegg

Vedlegg: 2 sider med spektroskopiske data og

periodesystemet (bakerst i oppgavesettet)

Tillatte hjelpemidler: Molekylbyggesett og enkel kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Alle 8 oppgaver teller likt.

Oppgave 1

a) En karbonylforbindelse **A** (molekylformel C₅H₈O₂) har ¹H NMR-spekteret som er vist nedenfor. Foreslå en struktur for forbindelsen **A** som er i overensstemmelse med NMR-spekteret. Redegjør for hvordan NMR-spekteret er i overensstemmelse med den foreslåtte strukturen.

b) Forbindelsen **A** fås som eneste organiske produkt ved ozonolyse av et hydrokarbon **B** (molekylformel $C_{10}H_{16}$). (En ozonolyse utføres ved reaksjon med overskudd O_3 , etterfulgt av reduksjon med Zn(s) i eddiksyre).

Foreslå en struktur for hydrokarbonet **B**.

Oppgave 2

a) Tegn den mest stabile konformasjonen av *cis*-1-etyl-4-isopropylsykloheksan. Vis ALLE bindinger fra ringen til H-atomer eller alkylgrupper, og merk disse bindingene som enten aksiale eller ekvatoriale.

b) Zaitsevs regel sier at eliminasjonsreaksjoner vanligvis gir det høyst substituerte alkenet som hovedprodukt. Det viser seg imidlertid at E2-eliminasjoner fra *trans*-1-brom-2-metylsykloheksan fører til det minst substituerte produktet, som vist under. Gi en forklaring på dette.

trans-1-brom-2-metylsykloheksan

Oppgave 3

- a) Hvilken stoffklasse tilhører forbindelsen **D** under?
- b) Syrekatalysert hydrolyse av forbindelsen **D** gir benzaldehyd som det ene av to organiske produkter. Vis struktur og navn på det andre produktet.
- c) Vis mekanismen for hydrolysereaksjonen til **D** ved bruk av elektronparforskyvningspiler. Pass på å vise syrekatalysatorens funksjon.

Oppgave 4

- a) Aspartam er et søtningsstoff som brukes i bl. a. NutraSweet®. Aspartam inneholder to nitrogenatomer. Ett av disse nitrogenatomene er mye sterkere base enn det andre.
 - i) Identifiser hvilket nitrogenatom som er mest basisk, og begrunn valget.
 - ii) Tegn strukturen til forbindelsen som dannes når aspartam protoneres med HCl.
 - iii) Hva blir dannet ved fullstendig hydrolyse av aspartam i sur vandig løsning?

- b) Når hept-2-en-4-on reagerer med butyllitium (som er en meget sterk base), fjernes et proton fra molekylet slik at et anion (den konjugerte basen av hept-2-en-4-on) dannes.
 - i) Vis strukturen til hept-2-en-4-on. Hvilket proton i hept-2-en-4-on er surest, og hvorfor?
 - ii) Tegn alle resonansstrukturer for anionet som dannes.

c) De fleste alkyl- og arylhalider er kovalent bundne forbindelser som er godt løselige i upolare løsningsmidler og lite løselige i vann. 7-bromsyklohepta-1,3,5-trien er et interessant unntak, for denne forbindelsen er uløselig i upolare løsningsmidler, men godt løselig i f. eks. vann. Gi en forklaring på dette.

Oppgave 5

a) Natriumvalproat brukes i behandlingen av epilepsi. Foreslå en syntese av natriumvalproat der heptan-4-on er utgangsstoff, og andre reaktanter kan velges fritt.

b) Foreslå en synteserute til denne forbindelsen, der benzen er utgangsstoff og andre reagenser kan velges fritt.

c) Vis tre metoder for å fremstille forbindelsen under. Alle organiske utgangsstoff må ha 7 eller færre C-atomer, mens andre reagenser kan velges fritt.

Oppgave 6

Angi hva som blir organiske hovedprodukter i hver av reaksjonssekvensene under.

Oppgave 7

a) Angi for hvert av de tre parene hvilken forbindelse som er mest reaktiv i elektrofil aromatisk substitusjon. Gi en kort forklaring.

i)
$$NO_2$$
 vs. CI ii) OCH_3 vs. CI

iii)
$$OCH_3$$
 vs. OCH_3

b) Angi hva som blir hovedproduktet i denne reaksjonen. Gi en kort forklaring.

$$H_3C$$
 OCH_3 OCH_3 OCH_3 OCH_3 OCH_3 OCH_3 OCH_3 OCH_3

- c) Av de tre isomerene av dimetylbenzen (orto-, meta- og para-xylen) er det én isomer som kloreres med Cl₂ i nærvær av FeCl₃ mye raskere enn de to andre isomerene.
 - i) Hvilken isomer er det som reagerer raskest, og hvorfor?
 - ii) Hva blir hovedproduktet fra reaksjonen mellom denne isomeren og Cl₂/FeCl₃? Gi en kort forklaring.

Oppgave 8

Gi entydige IUPAC-navn på forbindelsene A-E.

¹H NMR kjemiske skift av protoner i forskjellige omgivelser.
Dersom protonet er omgitt av flere funksjonelle grupper, vil effektene være omtrent additive (forsterkende).

Type proton		Kjemisk skift (δ)
Referanse	Si(CH ₃) ₄	0,0
Alkyl (primær)	—С н ₃	0,7-1,3
Alkyl (sekundær)	—с н ₂ —	1,2-1,6
Alkyl (tertiær)) сн—	1,4-1,8
Allylisk	c=c-c H	1,6-2,2
Metylketon	—с С н 3	2,0-2,4
Aromatisk metyl	Aryl—C H ₃	2,4-2,7
Alkynyl	—с≡с—н	2,5-3,0
Alkylhalid	C H —Halogen	2,5-4,0
Alkohol	COH	2,5-5,0
Alkohol, eter	>c<_H	3,3-4,5
Vinylisk	>c=c<	4,5-6,5
Aromatisk	Aryl—— H	6,5-8,0
Aldehyd	—c(h	9,7-10,0
Karboksylsyre	—c_о_н	11,0-12,0

hydrogen 1			Perio	desys	temet												helium 2
Н													He				
1.0079																	4.003
lithium	beryllium								elemen	t name		boron	carbon	nitrogen	oxygen	fluorine	neon
3	4									number		5	6	7	8	9	10
Li	Be									ıbol		В	С	N	0	F	Ne
6.941	9.0122	atomic weigh										10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												silicon 14	phosphorus 15	sulphur 16	chlorine 17	argon 18
Na	Mg												Si	Р	S	CI	Ar
22.990	24.305											26.982	28.086	30.974	32.065	35.453	39.984
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20	21	22	23	24	25	<u> 26</u>	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.939	55.845	58.933	58.693	63.546	65.409	69.723	72.64	74.922	78.96	79.904	83.798
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.23	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium	lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111	ununbium 112						
_		100 u				_			_								
Fr	Ra	LI	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub						
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]						

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]