Evolution & Learning in Games Econ 243B

Jean-Paul Carvalho

Lecture 7: Evolutionary Stability

Evolutionary Stable States (ESS)

Maynard Smith and Price (1973) defined the notion of an *evolutionary* stable strategy as immune to invasion by mutants:

- ► Their focus was on monomorphic populations: every member plays the same strategy, which can be a mixed strategy.
- We are concerned with a polymorphic population of agents each programmed with a pure strategy.
- ► We have seen the equivalence of these two problems.

Hence we can adapt the concept of an evolutionary stable strategy to a population setting:

► The term we shall use is **evolutionary stable state** (ESS).

Invasion

Let the state be
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$
.

Consider a game
$$F$$
, where $F(x) = \begin{pmatrix} F_1(x) \\ F_2(x) \\ \dots \\ F_n(x) \end{pmatrix}$.

Consider an invasion of mutants who make up a fraction ε of the post-entry population.

The shares of each strategy in the mutant population are

represented by
$$y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$
.

Invasion

Therefore, the post-entry population state is:

$$x_{\varepsilon} = (1 - \varepsilon)x + \varepsilon y = \begin{pmatrix} (1 - \varepsilon)x_1 + \varepsilon y_1 \\ (1 - \varepsilon)x_2 + \varepsilon y_2 \\ \dots \\ (1 - \varepsilon)x_n + \varepsilon y_n \end{pmatrix}.$$

The average payoff in the incumbent population in the post-entry state is $x'F((1-\varepsilon)x + \varepsilon y)$.

The average payoff in the mutant population in the post-entry state is $y'F((1-\varepsilon)x + \varepsilon y)$.

Uniform Invasion Barrier

The average payoff in the incumbent population is higher if:

$$(y-x)'F((1-\varepsilon)x+\varepsilon y)<0. (1)$$

State x is said to admit a **uniform invasion barrier** if there exists an $\bar{\varepsilon} > 0$ such that (1) holds for all $y \in X - \{x\}$ and $\varepsilon \in (0, \bar{\varepsilon})$.

That is, for all possible mutations y, as long as the mutant population is less than fraction $\bar{\epsilon}$ of the postentry population, the incumbent population receives a higher average payoff.

ESS

DEFINITION. State $x \in X$ is an **evolutionary stable state** (ESS) of F if there exists a neighborhood O of x such that:

$$(y-x)'F(y) < 0 \text{ for all } y \in O - \{x\}.$$
 (2)

In other words, if x is an ESS, then for any state y sufficiently close to x, a population playing x will receive a larger average payoff in state y than a population playing y (i.e. x is a better reply to y than y is to itself).

Note that this considers invasions of other states *y* by *x* rather than invasions of *x* by other states. Hence it is not clear, at present, why this should be a stability condition.

ESS and Invasion Barriers

Theorem 7.1. State $x \in X$ is an **evolutionary stable state** (ESS) if and only if it admits a uniform invasion barrier.

Thus if *x* is stable in the face of an arbitrarily large population of entrants who mutate to a nearby state, then it is stable in the face of a sufficiently small population of entrants who mutate to an arbitrary state.

ESS and NE

What is the relationship between ESS and NE?

DEFINITION. Suppose that $x \in X$ is a NE. Then $(y - x)'F(x) \le 0$ for all $y \in X$.

In addition, suppose there exists a neighborhood of *x* that does not contain any other NE.

Then *x* is an **isolated NE**.

Proposition 7.2. Every ESS is an isolated NE.

Proof

Let x be an ESS of F, O be the nhd posited in (2) and $y \in X - \{x\}$ (not necessarily in O).

Then for all $\varepsilon > 0$ sufficiently small, the postentry state $x_{\varepsilon} = \varepsilon y + (1 - \varepsilon)x$ is in O.

Given *x* is an ESS, this implies that:

$$(x_{\varepsilon} - x)' F(x_{\varepsilon}) < 0$$

$$(\varepsilon y + (1 - \varepsilon)x - x)' F(x_{\varepsilon}) < 0$$

$$\varepsilon (y - x)' F(x_{\varepsilon}) < 0$$

$$(y - x)' F(x_{\varepsilon}) < 0.$$

(3)

Proof

Taking $\varepsilon \to 0$ yields:

$$(y-x)'F(x) \le 0,$$

by the continuity of *F*. That is, *x* is a NE.

To establish that x is isolated, note that if $w \in O - \{x\}$ were a NE then $(w - x)'F(w) \ge 0$, contradicting the supposition that x is an ESS [by (2)]. \square

The converse of Proposition 7.2 is not true.

► The mixed equilibrium of a two-strategy coordination game is a counterexample.

More on ESS and Nash

Therefore, ESS is stronger than NE.

In particular, an ESS satisfies the additional property:

Suppose there exists a state y which is an alternative best reply to x, i.e. (y - x)'F(x) = 0.

—Then (y - x)'F(y) < 0, i.e. x is a better reply to y than y is to itself.

Therefore:

- ► A strict NE is an ESS.
- ► A polymorphic population state (equivalent to a mixed NE) cannot be strict and hence must satisfy the additional property.

More on ESS and Nash

In the case in which agents are matched uniformly at random to play a normal form game (the case we have been focusing on), then it is easy to see why the additional property is required.

Suppose (y - x)'F(x) = 0, i.e. y is an alternative best reply to x.

Then:

$$(y-x)'F(\varepsilon y + (1-\varepsilon)x) = \varepsilon (y-x)'F(y) + (1-\varepsilon)\underbrace{(y-x)'F(x)}_{=0}$$
$$= \varepsilon (y-x)'F(y). \tag{4}$$

Therefore, (y - x)'F(y) must be negative for (1) to hold and hence, by Theorem 7.1, for x to be an ESS.

Example: Hawk Dove

	Нач	wk	L	Dove
Hawk		-2		0
	-2		4	
Dove		4		0
	0		0	

ESS: $x = (\frac{2}{3}, \frac{1}{3})$. **ESS payoff** = 0.

Example: Hawk Dove

- ► Consider a mutation *y* such that $y_1 > x_1 = \frac{2}{3}$.
- Check that $(y-x)'F((1-\varepsilon)x+\varepsilon y)<0$ for all such y:

$$(y_1 - x_1)[-2((1-\varepsilon)x_1 + \varepsilon y_1) + 4((1-\varepsilon)(1-x_1) + \varepsilon(1-y_1))].$$

► This equals:

$$(y_1-x_1)\varepsilon[-2y_1+4(1-y_1)]$$

because $-2 \times \frac{2}{3} + 4 \times (1 - \frac{2}{3}) = 0$. This in turn equals:

$$(y_1 - x_1)\varepsilon[4 - 6y_1]$$

which is negative because $y_1 > \frac{2}{3}$ by hypothesis.

A similar argument can be applied to the case $y_1 < x_1$. Hence x is an ESS.

The Prisoners' Dilemma

		C			D	
C			3			5
	3			0		
D			0			1
	5			1		

NE/ESS: x = (0, 1).

Therefore, an ESS is not necessarily efficient.

Not Every Game has an ESS

		A		B	С	
A		1		0		2
	1		2		0	
В		2		1		0
	0		1		2	
C		0		2		1
	2		0		1	

 $x = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is the unique NE and therefore the only possible ESS.

Not Every Game has an ESS

Note that *x* is a polymorphic population state (equivalent to a mixed strategy), so any basis vector (pure strategy) is an alternative best reply to *x*.

Check that the additional property holds: $(e_1 - x)'F(e_1) < 0$, where $e_1 = (1, 0, 0)$, i.e. the pure-strategy A.

This is not the case: $x'F(e_1) = e_1'F(e_1) = 1$.

The Iterated Prisoners' Dilemma

- ► Two players engage in a series of PD games.
- ► The engagement ends after the current round with probability $\delta < \frac{1}{2}$. We call this the *stopping probability*.
- Consider a population in which three strategies are present:
 - ► *C*—always cooperate,
 - ► *D*—always defect,
 - ► T—tit-for-tat, i.e. start by cooperating, thenceforth cooperate in period t if partner cooperated in t-1.

Expected Payoffs

Within each pairing:

C

D

С	D	T
$\frac{3}{\delta}$	0	$\frac{3}{\delta}$
<u>5</u> δ	$\frac{1}{\delta}$	$4+rac{1}{\delta}$
$\frac{3}{\delta}$	$\frac{1}{\delta}-1$	$\frac{3}{\delta}$

Over all pairings:

$$F_{C}(x) = (x_{C} + x_{T}) \frac{3}{\delta}$$

$$F_{D}(x) = x_{C} \frac{5}{\delta} + x_{D} \frac{1}{\delta} + x_{T} \left(4 + \frac{1}{\delta} \right)$$

$$F_{T}(x) = (x_{C} + x_{T}) \frac{3}{\delta} + x_{D} \left(\frac{1}{\delta} - 1 \right)$$

All-T is not an ESS

Let $x = (x_D, x_C, x_T) = (0, 0, 1)$.

Consider any alternative state y such that $y_D = 0$.

This violates (2). Hence all-*T* is not an ESS.

This is a case of evolutionary drift.

Vector Field

