Algoritmos Genéticos

Carolina Ribeiro Xavier

Abril de 2025

Representação com Números Reais

- Representação e operadores genéticos diferentes dos tradicionais
- O fluxograma básico permanece válido

Questões de Projeto

- Função objetivo: sem necessidade de transformação
- Cruzamento
- Mutação

Função Objetivo

$$f(x) = -20e^{-0.2\sqrt{\frac{1}{n}\sum x_i^2}} - e^{\frac{1}{n}\sum\cos(2\pi x_i)} + 20 + \epsilon$$

Representação Real

- ▶ Vetor de números reais diretamente ligado à função objetivo
- Cada vetor é uma solução candidata

Seleção por Roleta

- Utiliza valores de fitness normalizados
- Probabilidade proporcional à aptidão

Etapas da Roleta

- 1. Inverter fitness se for minimização
- 2. Calcular soma total dos fitness
- 3. Normalizar e gerar vetor roleta
- 4. Para cada pai:
 - Sortear número $r \in [0, 1]$
 - Percorrer vetor acumulando até $\geq r$

Cruzamento BLX- α

- ► Selecione dois pais X e Y
- Para cada posição i:

 - ► Sorteie $u \in (\min -\alpha d, \max +\alpha d)$
 - ▶ Defina X'[i] = u, Y'[i] = u

 $\alpha = \text{0.5 sugerido}$

Cruzamento BLX- $\alpha\beta$

- Considerando que fitness de X é melhor que fitness de Y);
- Para cada i:
 - ▶ Se $X[i] \le Y[i]$, sorteie:

$$u \in (X[i] - \alpha d, Y[i] + \beta d)$$

Caso contrário:

$$u \in (Y[i] - \beta d, X[i] + \alpha d)$$

$$\alpha =$$
 0.75, $\beta =$ 0.25 sugeridos

Mutação e Elitismo

- ▶ Mutação: sorteia novo valor no intervalo original da variável
- Elitismo: preserva o melhor indivíduo para a próxima geração

Implementação

- ▶ Defina estrutura de dados para indivíduos e fitness
- Parâmetros:
 - População
 - Gerações
 - Seleção: Roleta
 - ightharpoonup Cruzamento: BLX- $\alpha\beta$
 - Mutação + Elitismo

Eficiência do AG

- Executar várias vezes (20 vezes)
- Armazenar:
 - Todos indivíduos e seus fitness
 - Melhor indivíduo por geração e seu fitness

Análise Estatística

- Média, desvio padrão, melhor/pior execução
- ▶ Plotar gráficos: evolução por geração

Calibragem de Parâmetros

Experimento fatorial:

Muţao: 1%, 5%, 10%

Cruzamento: 60%, 80%, 100%

População: 25, 50, 100

Gerações: 25, 50, 100

Cruzamento: ponto, média, BLX-αβ
 Mutação: perturbação, substituição

Elitismo: sim ou não

Elitishio. Silii ou hao										
Taxa de cruza-	Elitismo	Probabilidade de mutação	Crivariento	*Cretarios	População	Melhor aptidão		Aptidão média		
mento										
						μ	σ	μ	σ	
0.8	False	0.10	BLX - $\alpha\beta$	100	100	4.441e-16	0.000e+0	0.439	0.137	
0.8	False	0.10	BLX - α	100	100	4.441e-16	0.000e+0	0.424	0.123	
0.8	True	0.05	BLX - α	100	100	4.441e-16	0.000e+0	0.221	0.127	
0.8	True	0.10	BLX - $\alpha\beta$	100	50	4.441e-16	0.000e+0	0.450	0.223	
0.8	True	0.10	BLX - $\alpha\beta$	100	100	4.441e-16	0.000e+0	0.467	0.112	
1.0	False	0.01	BLX - $\alpha\beta$	50	100	4.441e-16	0.000e+0	0.065	0.036	
1.0	False	0.01	BLX - $\alpha\beta$	100	50	4.441e-16	0.000e+0	0.033	0.073	
1.0	False	0.01	BLX - $\alpha\beta$	100	100	4.441e-16	0.000e+0	0.030	0.044	
1.0	False	0.05	BLX - α	100	100	4.441e-16	0.000e+0	0.181	0.114	
1.0	False	0.05	BLX - $\alpha\beta$	100	100	4.441e-16	0.000e+0	0.139	0.057	
1.0	False	0.10	BLX - α	100	100	4.441e-16	0.000e+0	0.390	0.106	
1.0	False	0.10	$BLX-\alpha\beta$	100	100	4.441e-16	0.000e+0	0.364	0.097	
1.0	True	0.01	BLX - α	100	100	4.441e-16	0.000e+0	0.041	0.034	
1.0	True	0.01	BLX - $\alpha\beta$	100	100	4.441e-16	0.000e+0	0.033	0.037	
1.0	True	0.05	BLX - $\alpha\beta$	50	100	4.441e-16	0.000e+0	0.158	0.074	
1.0	True	0.05	BLX - $\alpha\beta$	100	25	4.441e-16	0.000e+0	0.189	0.179	
1.0	True	0.05	BLX - $\alpha\beta$	100	100	4.441e-16	0.000e+0	0.180	0.116	
1.0	True	0.10	BLX - $\alpha\beta$	50	100	4.441e-16	0.000e+0	0.392	0.091	
0.8	False	0.05	BLX - $\alpha\beta$	100	100	4.441e-16	0.000e+0	0.223	0.114	
0.6	False	0.10	BLX - $\alpha\beta$	100	100	4.441e-16	0.000e+0	0.632	0.176	
1.0	True	0.10	BLX - $\alpha\beta$	100	100	4.441e-16	0.000e+0	0.271	0.087	
0.6	False	0.01	BLX - $\alpha\beta$	100	100	4.441e-16	0.000e+0	0.068	0.052	
1.0	True	0.05	BLX - α	100	100	7.993e-16	1.123e-15	0.202	0.107	
0.6	True	0.01	BLX - $\alpha\beta$	100	100	7.993e-16	1.123e-15	0.035	0.034	
1.0	True	0.01	BLX - $\alpha\beta$	50	100	7.993e-16	1.123e-15	0.024	0.049	

Comparativo com Implementação 1

- ► Compare eficiência, convergência e estabilidade
- ► Analise curva de convergência