НЕЧЕТКИЕ И ГИБРИДНЫЕ НЕЧЕТКИЕ КОГНИТИВНЫЕ МОДЕЛИ ДЛЯ АНАЛИЗА И МНОГОМЕРНОГО ПРОГНОЗИРОВАНИЯ СОСТОЯНИЯ СЛОЖНЫХ СИСТЕМ И ПРОБЛЕМНЫХ СИТУАЦИЙ

В.В. Борисов

vbor67@mail.ru

Проблемы исследования сложных систем и проблемных ситуаций

- разнородность объектов и компонентов, многообразие и разнотипность связей и взаимозависимостей между ними, которые не поддаются точному и детализированному описанию; невозможность формализованного представления и анализа системы/процессов в рамках единой модели;
- неясность выделения «границ» системы, ее состояний, проблемных ситуаций;
- получение приемлемой информации для построения «точных» моделей трудоемкая, дорогостоящая или нерешаемая задача;
- информации доступна либо в виде экспертных данных, либо в эвристическом виде, и ее недостаточно для задания аналитических зависимостей;
- оценка системных параметров выполняется с использованием различных измерительных и оценочных шкал;
- традиционные модели не позволяют учесть все типы неопределенности.

Классификация нечетких моделей

Основные классы моделей, основанные на методах теорий нечетких множеств, отношений, логики и вычислений:

- универсальные нечеткие модели:
 - о продукционные модели,
 - о реляционные модели,
 - о функциональные модели;
- проблемно-ориентированные нечеткие модели:
 - о функциональные и реляционные оценочные модели,
 - о модели событий (лингвистические лотереи, деревья событий, деревья отказов, байесовские сети, игровые модели),
 - о модели состояний и управления (модели «состояние—действие», ситуационные сети, *когнитивные карты/модели*, марковские и полумарковские модели, сети Петри, автоматы, деревья классификации).

Типовые задачи для нечетких когнитивных моделей

- анализ устойчивости системы, проблемных ситуаций;
- анализ непосредственного, агрегированного и опосредованного влияния системных факторов друг на друга;
- оценка системных показателей;
- анализ достижимости целевых ситуаций;
- сценарный анализ при различных воздействиях;
- прогноз изменения состояния системных факторов;
- моделирование динамики изменения состояния системных факторов.

Типы нечетких и нечетко-нейросетевых когнитивных моделей

- нечеткие когнитивные карты Б. Коско и их разновидности;
- нечеткие когнитивные карты В. Силова;
- нечеткие продукционные когнитивные карты;
- обобщенные продукционные нечеткие когнитивные модели;
- нечеткие реляционные когнитивные модели;
- «совместимые» нечеткие когнитивные модели;
- нечеткие когнитивно-игровые модели;
- нечеткие коалиционные когнитивные модели;
- нечеткие реляционные когнитивные темпоральные модели;
- нечетко-нейросетевые когнитивные темпоральные модели.

5

Особенности нечетких когнитивных моделей и методов

- формализация и анализ не только системы, но и «локализация» отдельных проблемных ситуаций с обеспечением требуемого уровня достоверности анализа моделирования;
- совместное использование разнородной информации, измеряемой и оцениваемой с использованием различных шкал;
- учет непосредственного, опосредованного и агрегированного взаимовлияния системных и внешних факторов; обеспечение эмерджентности моделируемой системы/процесса/проблемной ситуации;
- единство представления и анализа значений системных параметров, внешних факторов, целевых функций и ограничений за счет их нечеткой грануляции;
- представление взаимозависимостей между объектами и компонентами в виде нечетких отношений взаимовлияния обеспечивает единый подход к анализу системы с использованием методов *нечеткой каузальной алгебры*;
- наглядность и хорошие интерпретационные свойства процесса и промежуточных/итоговых результатов нечеткого когнитивного моделирования;
- адекватный учет различных типов неопределенности (стохастической, статистической, нестохастической) в рамках единой модели;
- используются, в основном, для предварительного анализа сложных систем и процессов (для формализации проблемных ситуаций, анализа взаимовлияния факторов, анализа устойчивости, прогнозной оценки состояния, моделирования системной динамики).

6

Подходы к использованию нечетких когнитивных моделей и методов для анализа сложных систем и проблемных ситуаций

- I. Предварительный анализ сложных систем и проблемных ситуаций, результаты которого относительно независимо используются для их последующего, более углубленного исследования.
- II. Гибридизация нечетких когнитивных моделей на основе *принципа «функционального замещения»*, состоящего в замене или усовершенствовании отдельных компонентов нечетких когнитивных моделей компонентами других моделей, позволяющих, таким образом, расширить возможности и улучшить свойства «базовых» моделей.
- III. Построение композиционных гибридных нечетких моделей на основе *принципа гибридизации «с взаимодействием»*, когда разные нечеткие модели используются относительно независимо и выполняют различные задачи по достижению общей цели.

Лето, 2022

Нечеткие когнитивные модели для предварительного анализа сложных систем с использованием результатов для последующего их исследования (примеры)

Пример 1. Оценка состояния городской энергосистемы

Рис. 1. Структура нечеткой когнитивной модели (НКМ) оценки состояния городской энергосистемы

Матрица взаимовлияний НКМ:
$$\mathbf{W} = \begin{vmatrix} w_{11} & \dots & w_{1N} \\ \dots & \dots & \dots \\ w_{N1} & \dots & w_{NN} \end{vmatrix}$$
,

Влияние на концепт K_j смежных концептов: $K_j = \sum_{i=1}^n (K_i T w_{ij})$, l-й путь между K_i и K_j :

$$K_i \xrightarrow{l} K_j : d_l = (K_i, K_{z_1^l}, ..., K_j), l = 1, ..., L, \qquad w_{ij} = \sum_{l=1}^L \left(\prod_{k \in d_l} w_{k,k+1} \right),$$

1) Преобразование матрицы **W** в матрицу $\mathbf{V} = \|v_{ij}\|_{2N \times 2N}$:

$$v_{2i-1,2j-1} = w_{ij}$$
 and $v_{2i,2j} = w_{ij}$, if $w_{ij} > 0$; $v_{2i-1,2j-1} = -w_{ij}$ and $v_{2i,2j} = -w_{ij}$, if $w_{ij} < 0$.

2) Транзитивное замыкание матрицы **V**:

$$\widehat{\mathbf{V}} = \mathbf{V} \vee \mathbf{V}^2 \vee \dots; \quad \mathbf{V}^m = \mathbf{V}^{m-1} \circ \mathbf{V}, \ v_{ik}^m = \max_{j} (v_{ik}^{m-1} \cdot v_{jk}).$$

3) Преобразование матрицы $\hat{\mathbf{V}}$ в матрицу $\hat{\mathbf{W}} = \|(w_{ij}, \overline{w}_{ij})\|_{N \times N}$: $w_{ij} = \max(v_{2i-1,2j-1}, v_{2i,2j}), \overline{w}_{ij} = \max(v_{2i-1,2j}, v_{2i,2j-1}).$

Нечеткие когнитивные модели для предварительного анализа сложных систем с использованием результатов для последующего их исследования (примеры)

Пример 1. Оценка состояния городской энергосистемы (продолжение)

Табл. 1. Основные системные показатели НКМ

Транзитивно замкнутая матрица $\hat{\mathbf{W}}$ взаимовлияний 1) Влияние концепта K_i на концепт K_j : $p_{ij} = \text{sign}(w_{ij} + \overline{w}_{ij}) \max(|w_{ij}|, |\overline{w}_{ij}|)$.

	T 7								
	K ₁	K_2	K_3	K_4	K_5	K_6	K_7	K_8	K_9
K_1 0	.48;	0.102;	0.64;	0.256;	0.256;	0.8;	0.205;	0.288;	0.115;
	-0.48	-0.096	-0.307	-0.24	-0.123	-0.384	-0.4	-0.6	-0.24
K_2 0	.48;	0.168;	0.8;	0.42;	0.4;	0.384;	0.7;	0.36;	0.144;
	-0.6	-0.061	-0.384	-0.154	-0.154	-0.48	-0.192	-0.288	-0.2
K_3 0	.6;	0.16;	0.384;	0.4;	0.4;	0.48;	0.32;	0.24;	0.096;
	-0.288	-0.058	-0.256	-0.144	-0.102	-0.32	-0.24	-0.36	-0.144
K_4 0	.288;	0.4;	0.32;	0.168;	0.16;	0.23;	0.28;	0.36;	0.144;
	-0.6	-0.102	-0.64	-0.256	-0.256	-0.8	-0.205	-0.173	-0.2
K_5 0	.48;	0.192;	0.8;	0.48;	0.32;	0.384;	0.8;	0.6;	0.24;
	-0.6	-0.102	-0.64	-0.256	-0.256	-0.8	-0.205	-0.288	-0.115
K_6 0	.6;	0.128;	0.8;	0.32;	0.32;	0.48;	0.256;	0.192;	0.077;
	-0.288	-0.058	-0.205	-0.144	-0.082	-0.256	-0.24	-0.36	-0.144
$K_7 = 0$.192;	0.24;	0.192;	0.6;	0.096;	0.154;	0.168;	0.24;	0.096;
	-0.4	-0.064	-0.4	-0.16	-0.16	-0.48	-0.128	-0.115	-0.12
					0.205;				
	-0.384	-0.08	-0.246	-0.2	-0.2	-0.307	-0.32	-0.48	-0.192
K_9 0	.8;	$0.14\overline{4};$	$0.5\overline{12}$;	0.36;	0.205;	0.64;	0.6;	0.23;	0.4;
	-0.384	-0.077	-0.246	-0.192	-0.098	-0.307	-0.32	-0.48	-0.192

- 2) Консонанс влияния концепта K_i на концепт K_j : $c_{ij} = \frac{\left| w_{ij} + \overline{w}_{ij} \right|}{\left| w_{ij} \right| + \left| \overline{w}_{ij} \right|}$.
- 3) Взаимный консонанс влияния концептов K_i и K_j : $\ddot{c}_{ij} = \frac{\left| (w_{ij} + w_{ji}) + (\overline{w}_{ij} + \overline{w}_{ji}) \right|}{\left| w_{ij} + w_{ji} \right| + \left| \overline{w}_{ij} + \overline{w}_{ji} \right|}.$
- 4) Влияние i-го концепта на систему: $\vec{P}_i = \frac{1}{n} \sum_{j=1}^n p_{ij}$.
- 5) Воздействие (влияние) системы на j-й концепт: $\bar{P}_j = \frac{1}{n} \sum_{i=1}^n d_{ij}$.
- 6) Консонанс влияния *i-го* концепта на систему: $\vec{C}_i = \frac{1}{n} \sum_{i=1}^n c_{ij}$.
- 7) Консонанс влияния системы на j-й концепт: $\bar{C}_j = \frac{1}{n} \sum_{i=1}^n c_{ij}$.

Некоторые выводы:

- на состояние энергосистемы города наибольшее положительное влияние оказывают (по степени этого влияния): мероприятия по повышению устойчивости городской энергосистемы (K_8); состояние инфраструктуры городской энергосистемы (K_9); качество экосистемы города (K_6); качество жизни населения (K_3). Наибольшее отрицательное влияние на энергосистему города оказывает промышленное потребление топливно-энергетических ресурсов (K_4);
- состояние энергосистемы города наибольшее положительное влияние оказывает на (по степени влияния): качество жизни населения (K_3) ; темпы развития города (K_7) ; промышленное потребление ТЭР (K_4) . В свою очередь, отрицательное влияние состояние энергосистемы города оказывает на состояние инфраструктуры городской энергосистемы (K_9) .

Нечеткие когнитивные модели для предварительного анализа сложных систем с использованием результатов для последующего их исследования (примеры)

<u>Пример 1. Моделирование динамики изменения состояния</u> городской энергосистемы (продолжение)

$$K_{j}(t+1) = \sum_{i=1}^{n} w_{ij} \ K_{i}(t), \quad \partial$$
ля НКК В. Силова: $K_{j}(t+1) = \sum_{i=1}^{n} \left(K_{i}(t) T w_{ij}\right),$
$$\Delta K_{j}(t+1) = \sum_{i=1}^{n} w_{ij} \ \Delta K_{i}(t),$$

$$\Delta K_{j}(t+1) = \sum_{i=1}^{n} w_{ij} \ K_{i}(t),$$

где n — число концептов, непосредственно влияющих на концепт j-й концепт; $K_i(t)$ и $\Delta K_i(t)$ — значение и приращение значения i-го концепта в момент времени t; $K_j(t+1)$ и $\Delta K_j(t+1)$ — значение и приращение значения j-го концепта в момент времени (t+1).

Для недопущения выхода значений концептов за границы заданного диапазона можно использовать нелинейную функцию f, ограничивающую значение концепта-приемника в [0, 1] или [-1, 1]:

$$K_j(t+1) = f\left(\sum_{i=1}^n w_{ij}K_i(t)\right),\,$$

где в качестве функции f может использоваться, например, сигмоидальная функция.

Принцип *гибридизации с «функциональным замещением»* для нечетких когнитивных моделей может быть реализован:

- в рамках одной нечеткой технологии,
- на основе сочетания различных интеллектуальных (нечеткой/нейросетевой/эволюционной) технологий.

Гибридизация нечетких когнитивных моделей может быть:

- параметрической,
- структурно-параметрической.

Эти признаки позволяют предложить и реализовать оригинальный подход к классификации и синтезу гибридных нечетких когнитивных моделей.

<u>Примечание</u>. В отличие от других гибридных моделей, признак — «нечеткие» — для когнитивных моделей является доминирующим, а признаки — «нейросетевые» и/или «эволюционные» — являются вспомогательными.

Гибридные нечеткие когнитивные модели с параметрической гибридизацией (в рамках одной – нечеткой – технологии)

1) Обобщенные продукционные нечеткие когнитивные модели (ОНПКМ)

Рис. 1. Структура обобщенной нечеткой продукционной когнитивной модели

GRBFCM = (K, W),

где $K = \{K_1, K_2, ..., K_p\}$ — множество концептов; K_i описывается лингвистической переменной $\langle \tilde{K}_i, T_i, D_i \rangle$, где $T_i = \left\{T_1^i, T_2^i, ..., T_{m_i}^i\right\}$ — ее терммножество; m_i — число типовых состояний концепта; D_i — базовое множество \tilde{K}_i ; T_z^i описывается нечетким множеством: $\tilde{C}_z^i = \left\{\left(\mu_{C^i}(d)/d\right)\right\}$, $d \in D_i$.

 $W = \{w_{ij}\}$ — множество связей между концептами; w_{ij} $(i,j \in I = \{1,...,p\})$ между типовыми состояниями каждой пары концептов задаются одним из значений терм-множества лингвистической переменной $\langle \tilde{W}_{ij}, T_{w_{ij}}, D_{w_{ij}} \rangle$, где $T_{w_{ij}} = \left\{T_{11}^{w_{ij}}, ..., T_{zl}^{w_{ij}}\right\}$ — ее терм-множество; $z \times l$ — число значений $T_{w_{ij}}$; $D_{w_{ij}}$ — базовое множество \tilde{W}_{ij} ; $T_{zl}^{w_{ij}}$ описывается нечетким множеством: $\tilde{H}_{zl}^{w_{ij}} = \left\{\left(\mu_{H_{zij}^{w_{ij}}}(d)/d\right)\right\}$, $d \in D_{w_{ij}}$.

Гибридные нечеткие когнитивные модели с параметрической гибридизацией (в рамках одной – нечеткой – технологии)
1) Обобщенные продукционные нечеткие когнитивные модели (продолжение)

Модель динамики ОНПКМ

$$\tilde{K}_{j}(t+1) = \tilde{K}_{j}(t) \oplus \left(\bigoplus_{i=1,2,\ldots,N} \tilde{f}_{ij} \left(\tilde{K}_{i}(t), \ \tilde{K}_{j}(t), \ \Delta \tilde{K}_{i}(t) \right) \right),$$

где \tilde{K}_{i} , $\Delta \tilde{K}_{ii}$ — нечеткие множества, представляющие значения i-го концепта и его приращения, смежного с выходным концептом $j;\ ilde{K}_{j}$, $\Delta ilde{K}_{j}$ — нечеткие множества, представляющие значения и приращения j-го концепта; \oplus — операция нечеткого алгебраического сложения; $ilde{f}_{ii}$ — нечеткий оператор, задающий нечеткое отображение типа «много входов — один выход».

Обобщенные нечеткие продукционные когнитивные карты, позволяют обеспечить:

- полностью нечеткий подход при построении и анализе модели, предполагающий нечеткость концептов, способа передачи влияния, аккумулирования влияния нескольких концептов на один концепт, обучения, моделирования динамики;
- при нечетком представлении концептов учитывается возможность их количественной интерпретации и сравнения; концепты могут быть представлены в виде нечетких множеств, четких значений, либо синглтонов;
- механизм нечеткого влияния между концептами имеет характер нечеткого отображения. При этом учитывается возможность использования для передачи влияния и четких отображений (функций);
- решена проблема учета отрицательных весов влияния между концептами и аккумулирования влияний разных знаков. Предложен механизм совместного учета как положительных, так и отрицательных влияний концептов друг на друга не только в виде в виде четких значений или синглтонов, но и в виде функций принадлежности;
- модель динамики учитывает существенную нелинейность поведения моделируемой системы (процессов) за счет совместного учета нечетких состояний и приращений при влиянии входных концептов на выходные;
- процедура аккумулирования влияний имеет аддитивный, накопительный характер, с возможностью учета вклада самых незначительных по значению влияний вне зависимости от порядка учета отдельных факторов (концептов);
- при аккумулировании влияний учитывается сдвиг функций принадлежности по координате базового множества.

Гибридные нечеткие когнитивные модели с параметрической гибридизацией (в рамках одной – нечеткой – технологии)

2) «Совместимые» нечеткие когнитивные модели (СНКМ)

Рис. 1. Пример структуры нечеткой «совместимой» когнитивной модели с учетом совместимости концептов:

 K_1 – «Качество управления»,

 K_2 – «Оперативность управления»,

 K_3 – «Надежность управления»,

 K_4 – «Эффективность управления»,

 K_5 – «Эффективность системы».

СНКМ позволяют учесть различную степень совместимости концептов при выборе операций для оценки непосредственного и опосредованного влияния концептов друг на друга.

$$CFCM = (K, W, C),$$

где $K = \{K_1, ..., K_N\}$ — концепты; $W = \{w_{ij}\}$ — веса влияния концептов друг на друга; $C = \{c_{ii}\}$ — степени совместимости пар концептов, i, j = 1, ..., N.

В качестве операций «взвешивания» нечетких влияний концептов (с учетом согласованности) используется параметризированное семейство операций, удовлетворяющее аксиомам нормировки, неубывания, непрерывности, бисимметричности:

$$K_j = \text{med}(K_i, w_{ij}; c_{ij}), i, j \in \{1, ..., n\}, c_{ij} \in [0, 1].$$

$$\Pi pumep: K_4 = \operatorname{med}\Big(\Big(\operatorname{med}(K_1, w_{14}; c_{14})\Big), \Big(\operatorname{med}(K_2, w_{2j}; c_{24})\Big); c_{14}\Big)\Big), \operatorname{med}(K_3, w_{34}; c_{34}); c_{24}\Big)$$

Предлагаемый подход позволяет учесть совместимость системных факторов для различных типов нечетких когнитивных моделей, повысить гибкость, а в ряде случаев и достоверность результатов нечеткого когнитивного анализа и моделирования.

Гибридные нечеткие когнитивные модели с параметрической гибридизацией (в рамках одной – нечеткой – технологии)

3) Нечеткие реляционные когнитивные модели (НРКМ)

Рис. 1. Пример структуры НРКК

Рис. 2. Вид нечеткого отношения \tilde{R}_{13}

В нечеткой реляционной когнитивной модели значения концептов $K_i, i=\overline{1,N}$ описываются нечеткими множествами $\tilde{K}_i, i=\overline{1,N}$, каждое из которых $\tilde{K}_i=\{(\mu_{K_i}^*(x_i),x_i)\}$ задано на X_i .

Нечеткие бинарные отношения \tilde{R}_{ij} между концептами K_i и K_j , $i=\overline{1,N},\,j=\overline{1,N}$ задаются в виде матрицы нечетких отношений:

где \tilde{R}_{ij} отображение между нечеткими множествами \tilde{K}_i и \tilde{K}_j , которое ставит в соответствие $(x_i,x_j)\in X_i\times X_j$ $\mu_{R_{ij}}(x_i,x_j)\in [0,1]$.

Модель системной динамики НРКМ

$$\tilde{K}_{j}(t+1) = \tilde{K}_{j}(t) \oplus \left(\bigoplus_{i=1}^{n} \left((\tilde{K}_{i}(t) - \tilde{K}_{i}(t-1)) \bullet \tilde{R}_{ij} \right) \right),$$

 $\tilde{K}_{j}(t+1)$, $\tilde{K}_{j}(t)$, $\tilde{K}_{i}(t)$, $\tilde{K}_{i}(t-1)$ — нечеткие значения концептов в соответствующие моменты времени, «•» — нечеткая композиция, « $\stackrel{N}{\oplus}$ » — агрегирование нечетких влияний, «—» — приращение нечетких значений концептов, « \oplus » — нечеткое агрегирование совокупных влияний и предыдущего значения выходного концепта.

Гибридные нечеткие когнитивные модели «с функциональным замещением» для анализа сложных систем и процессов (классификация) Гибридные нечеткие когнитивные модели с параметрической гибридизацией (в рамках одной – нечеткой – технологии)

3) Нечеткие реляционные когнитивные модели (особенности)

- Предложенные нечеткие реляционные когнитивные модели (и модели системной динамики на их основе) используют устойчивые к возрастанию неопределенности операции над нечеткими числами и отношениями. Это позволяет в процессе моделирования системной динамики решить задачи передачи нечетких влияний по модели и агрегирования нечетких значений концептов с учетом следующих особенностей:
 - о сохранение полностью нечеткого представления значений концептов на всех этапах моделирования системной динамики;
 - о обеспечение принадлежности результирующих значений и приращений концептов к семейству нечетких чисел;
 - о обеспечение невыхода нечетких значений концептов за их носители;
 - о обеспечение естественного характера агрегирования.
- Использование предлагаемых моделей системной динамики на основе нечетких реляционных когнитивных позволит повысить достоверность и качество анализа и моделирования проблем, слабоструктурированных систем и процессов в условиях неопределенности.

Лето, 2022 16

Гибридные нечеткие когнитивные модели с параметрической гибридизацией (в рамках одной – нечеткой – технологии)

4) Нечеткая когнитивно-игровая модель (НКИМ)

Рис. 1. Нечеткая когнитивно-игровая модель

В НКИМ каждому концепту (игроку) соответствует множество стратегий, выбор которых (и результат их применения) зависит от ресурсов, стратегий и предпочтений игроков.

$$FCGM = (K, \Delta K),$$

где $\pmb{K} = \{K_1, K_2, ..., K_p\}$ — множество концептов, каждому из которых соответствует множество стратегий $\pmb{S}_{K_i} = \left\{S_1^{K_i}, ..., S_{Z_i}^{K_i}\right\}$ (Z_i — число стратегий концепта K_i); $\pmb{\Delta}\pmb{K} = \{\Delta K_{ij}\}$ — множество связей между концептами; состояния концепта K_i ($i \in I = \{1, 2, ..., P\}$) описывается лингвистической переменной (K_i , $T_{\tilde{K}_i}$, $D_{\tilde{K}_i}$), $T_{\tilde{K}_i}$ = $\{T_1^{\tilde{K}_i}, T_2^{\tilde{K}_i}, ..., T_{m_i}^{\tilde{K}_i}\}$ — терм-множество лингвистической переменной; m_i — число типовых состояний данного концепта; $D_{\tilde{K}_i}$ — базовое множество K_i ; влияния ΔK_{ij} ($i,j \in I = \{1,2,...,P\}$) между типовыми состояниями пар концептов задаются значением терм-множества лингвистической переменной (ΔK_{ij} , $T_{\Delta \tilde{K}_{ij}}$, $D_{\Delta \tilde{K}_{ij}}$), где $T_{\Delta \tilde{K}_{ij}} = \{T_{11}^{\Delta \tilde{K}_{ij}}, ..., T_{2l}^{\Delta \tilde{K}_{ij}}\}$ — терм-множество ΔK_{ij} ; $z \times l$ — число значений $T_{\Delta \tilde{K}_{ij}}$; $D_{\Delta \tilde{K}_{ij}}$ — базовое множество ΔK_{ij} .

Модель системной динамики НКИМ

$$\tilde{K}_{i}(t+1) = \tilde{K}_{i}(t) \oplus \left(\bigoplus_{j=1,2,\dots,N} \Delta \tilde{K}(t)_{ij} \right), \quad \Delta \tilde{K}_{ij}(t) = \tilde{f}\left(S_{z}^{K_{i}}(t), S_{l}^{K_{j}}(t) \right),$$

где $\Delta \tilde{K}_{ij}(t)$ — нечеткое множество, представляющее текущее изменение значения концепта K_i в результате влияния K_j , N — число входных концептов для концепта K_i ; \oplus — операция нечеткого алгебраического сложения; $S_x^{K_i}(t)$, $S_y^{K_j}(t)$ — текущие стратегии игроков, представленных концептами K_i и K_j ; \tilde{f} — нечеткий оператор, задающий нечеткое отображение типа «много входов — один выход», и представляющий передачу влияния от концепта K_j к концепту K_i . Нечеткий оператор \tilde{f} в выражении может быть реализован в виде нечетких функций или нечетких продукций:

Если K_i придерживается стратегии $S_z^{K_i}(t)$ **И** K_j придерживается стратегии $S_l^{K_j}(t)$, **То** движение ресурсов $\Delta \tilde{K}_{ij}(t)$ от K_i κ K_j составит $T_{zl}^{\Delta \tilde{K}_{ij}}$.

Гибридные нечеткие когнитивные модели с параметрической гибридизацией (в рамках одной – нечеткой – технологии)

5) Нечеткая коалиционная когнитивная модель (НККМ)

Рис. 1. Нечеткая коалиционная когнитивная модель

НККМ позволяет анализировать различные типы взаимодействия (кооперации, компромисса, содействия и конкуренции) концептов (агентов). Результаты позволяют в динамике (на основе нечеткой игры для произвольного числа игроков) определять и прогнозировать степени принадлежности агентов к различным коалициям, а также их состояние.

 $FCCM = (K, C, G, \Delta C, \Delta V),$

где $K = \{K_1, K_2, ..., K_p\}$ – множество концептов.

Допустим, сформировано множество нечетких коалиций $C = \{C_1, \ldots, C_m, \ldots, C_M\}$. Тогда $G_m = \{G_{m1}, \ldots, G_{mn}, \ldots, G_{mP}\}$ — множество степеней принадлежности агентов к коалиции C_m .

Введение степеней принадлежности агентов к коалициям позволяет учесть то, что игрок может иметь разные цели и в различной степени участвовать в разных коалициях. Для каждой нечеткой коалиции C_m задается множество \mathbf{G}_m , элементы которого $G_{mn} \in [0,1]$ характеризуют степень принадлежности игроков к данной коалиции. Значение ΔV_{mn} характеризует выигрыш, который получает агент K_m от участия в коалиции C_m .

Значение ΔC_{ml} характеризует текущее влияние коалиции C_l на коалицию C_m и складывается из влияния участвующих в этих коалициях агентов с учетом степени их принадлежности к коалициям.

Для НККМ предложены коалиционные показатели, позволяющие осуществить анализ различных типов взаимодействия агентов в динамике:

- консонанс/диссонанс влияния агента (концепта) на коалицию;
- консонанс/диссонанс влияния коалиции на агента;
- воздействие (влияние) агента на коалицию;
- воздействие (влияние) коалиции на агента;
- взаимный консонанс/диссонанс влияния агента и коалиции.

Особенности задач анализа и многомерного прогнозирования состояния сложных систем и проблемных ситуаций

- отображение состояний разнокачественных подсистем сложной системы и процессов разнородными компонентами многомерных временных рядов (МВР), измеряемыми и оцениваемыми с использованием различных шкал;
- существенная взаимозависимость, нелинейный характер взаимовлияния компонентов МВР, их частичная несогласованность;
- сложность анализа непосредственного, опосредованного и агрегированного влияния компонентов МВР с учетом различных временных лагов (задержек) друг относительно друга;
- неполнота и противоречивость информации о компонентах МВР, а также об их влиянии друг на друга.
- ограниченный объем ретроспективных данных о компонентах МВР;
- методы анализа и прогнозирования MBP, основанные на теории случайных процессов, математической статистики, распознавания образов, как правило, базируются на подходах к прогнозированию одномерных временных рядов, не в полной мере учитывают нелинейный характер взаимовлияния компонентов MBP, разнокачественность, недостаточный объем и неполноту информации.

Лето, 2022

Особенности задач анализа и многомерного прогнозирования состояния сложных систем и проблемных ситуаций

- для решения указанных задач хорошо зарекомендовали себя нейросетевые и нечеткие методы, ограничениями которых является сложность учета опосредованного взаимовлияния компонентов МВР и их частичной согласованности;
- на решение задач анализа и прогнозирования MBP ориентированы нечеткие когнитивные карты и основанные на них методы прогнозирования. Вместе с тем, их использование ограничено недостаточными возможностями используемых моделей системной динамики и отсутствием учета различных временных задержек взаимозависимых компонентов MBP;
- многокритериальный характер анализа и прогнозирования МВР обуславливает необходимость минимизации ошибок прогнозирования одновременно для всех компонентов МВР. Однако этого, как правило, невозможно достичь в реальных условиях неопределенности, нелинейности взаимовлияния, частичной несогласованности и существенной взаимозависимости компонентов МВР.

Лето, 2022

Постановка задачи анализа и прогнозирования МВР

$$S = \left(S_{1}, S_{2}, ..., S_{N}\right),$$

$$\forall t \in \left\{1, ..., T, ...\right\} S_{t} = \begin{cases} s_{1}^{(t)} = F_{1}\left(\varphi_{1,1}\left(s_{1}^{(t-1)}, ..., s_{1}^{(t-L_{1}^{1})}\right), ..., \varphi_{1,N}\left(s_{N}^{(t-1)}, ..., s_{N}^{(t-L_{1}^{N})}\right)\right) \\ s_{2}^{(t)} = F_{2}\left(\varphi_{1,1}\left(s_{1}^{(t-1)}, ..., s_{1}^{(t-L_{2}^{1})}\right), ..., \varphi_{2,N}\left(s_{N}^{(t-1)}, ..., s_{N}^{(t-L_{2}^{N})}\right)\right) \\ ... \\ s_{N}^{(t)} = F_{N}\left(\varphi_{N,1}\left(s_{1}^{(t-1)}, ..., s_{1}^{(t-L_{N}^{1})}\right), ..., \varphi_{N,N}\left(s_{N}^{(t-1)}, ..., s_{N}^{(t-L_{N}^{N})}\right)\right) \end{cases}$$

где $S = \left(S_1, S_2, ..., S_N\right)$ — МВР, N — число компонентов МВР; $s_t = \left\{s_1^{(t)}, s_2^{(t)}, ..., s_N^{(t)}\right\}$ — временной «срез» МВР в t-й момент времени; $s_j^{(t)}$ — значение j-го компонента МВР в t-й момент времени; $s_j^{(t)}$ — максимальное учитываемое значение временного лага (задержки) j-го компонента МВР относительно i-го; $\varphi_{i,j}$ — оператор для учета влияния j-го компонента МВР и i-й; $s_j^{(t)}$ — преобразование для получения $s_i^{(t)}$, $s_j^{(t)}$ — $s_j^{(t)}$

$$\delta S = (\delta S_1, \delta S_2, ..., \delta S_N),$$

$$\delta S \to \min, \quad \forall i \in 1, ..., N \quad \delta S_i \to \min,$$

$$\delta S_i = \sqrt{\frac{1}{T} \sum_{t=1}^{T} \left(s_i^{(t)} - s_{i(cur)}^{(t)} \right)^2}, \quad i = 1, ..., N.$$

где δS — ошибка прогнозирования MBP в целом; δS_i — ошибка прогнозирования i-го компонента MBP; $s_i^{(t)}$ — эталонное значение i-го компонента MBP; $s_{i(cur)}^{(t)}$ — прогнозное значение i-го компонента MBP; T — число отсчетов MBP.

Гибридные нечеткие когнитивные модели с параметрической гибридизацией (в рамках одной – нечеткой – технологии)

6) Нечеткие реляционные когнитивные темпоральные модели

Нечеткие реляционные когнитивные темпоральные модели (НРКТМ)

$$\begin{split} FRCTM = & \left< C, R \right>, \quad C = \{c_i \mid i = 1...I\}, \quad R = \{R_i \mid i = 1...I\}, \\ & R_i = \left\{ \tilde{r}_{ij}(t-l) \mid l = 0...L_j^i, \ j = 1...J^i \right\}, \\ & c_i : \ \tilde{c}_i(t+1) = \tilde{f}_i \left(\tilde{c}_i(t), \left\{ \tilde{c}_j(t-l), \tilde{r}_{ij}(t-l) \mid l = 0...L_j^i, \ j = 1...J^i \right\} \right), \ i = 1...N, \end{split}$$

где C — множество концептов НРКТМ; I — число концептов НРКТМ; R — множество нечетких бинарных отношений влияния концептов друг на друга; R_i — подмножество нечетких бинарных отношений влияния концептов, непосредственно воздействующих на концепт c_i ; J^i — число концептов, непосредственно воздействующих на концепт c_i ; L^i_j — максимальное учитываемое значение временного лага (задержки) при влиянии концепта c_j на концепт c_i ; $\tilde{r}_i(t-l)$ — нечеткое бинарное отношение влияния концепта c_j на концепт c_i в момент времени (t-l); $\tilde{c}_i(t+1)$, $\tilde{c}_i(t)$, $\tilde{c}_j(t-l)$ — нечеткие переменные, характеризующие нечеткие значения концептов c_i и c_j в соответствующие моменты модельного времени, с функциями принадлежности $\mu_{\tilde{c}_i(t+1)}(x_i)$, $\mu_{\tilde{c}_i(t)}(x_i)$ и $\mu_{\tilde{c}_j(t-l)}(x_j)$, заданные на своих базовых множествах $(x_i \in X_i$ и $x_j \in X_i$).

Модели системной динамики НРКТМ:

$$\begin{split} \tilde{c}_i(t+1) &= \bigoplus_{j=1}^{J^i} \left(\bigoplus_{l=1}^{L^i_j} \left(\tilde{c}_j(t-l) \circ \tilde{r}_{ij}(t-l) \right) \right), \\ \tilde{c}_i(t+1) &= \tilde{c}_i(t) \oplus \left(\bigoplus_{j=1}^{J^i} \left(\bigoplus_{l=1}^{L^i_j} \left(\tilde{c}_j(t-l) \circ \tilde{r}_{ij}(t-l) \right) \right) \right), \\ \tilde{c}_i(t+1) &= \left(\bigoplus_{k=0}^{L^i_i} \left(\tilde{c}_i(t-k) \circ \tilde{r}_{ii}(t-k) \right) \right) \oplus \left(\bigoplus_{j=1}^{J^i} \left(\bigoplus_{l=1}^{L^i_j} \left(\Delta \tilde{c}_j(t-l) \circ \tilde{r}_{ij}(t-l) \right) \right) \right), \end{split}$$

Рис. 1. Структура нечеткой реляционной когнитивной темпоральной модели

где $\Delta \tilde{c}_j(t-l)$ — нечеткое приращение значения концепта в момент времени; \circ — нечеткая композиция; \oplus — операция нечеткого агрегирования.

Гибридные нечеткие когнитивные модели с параметрической гибридизацией (в рамках одной – нечеткой – технологии)

6) Нечеткие реляционные когнитивные темпоральные модели (пример)

0,09
0,08
0,07
0,06
0,05
0,04
0,03
0,02
0,01
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 t, Tbic. Час.

Рис. 1. Изменение собственных электрических проводимостей фаз при эксплуатации НЭМС:

 $ilde{c}_1(t)\,,\, ilde{c}_2(t)\,,\,\, ilde{c}_3(t)\,$ — реакции НЭМС на воздействия по трем симметричным осям рабочей области векторного пространства НЭМС

Рис. 2. Изменение взаимных электрических проводимостей ортогональных фаз при эксплуатации НЭМС:

 $ilde{c}_4(t), \ ilde{c}_5(t), \ ilde{c}_6(t)$ — реакции НЭМС на те же сигналы по оси ортогональной рабочей области НЭМС

Гибридные нечеткие когнитивные модели «с функциональным замещением» для анализа сложных систем и процессов (классификация) Гибридные нечеткие когнитивные модели с параметрической гибридизацией (в рамках одной – нечеткой – технологии)

- 6) Нечеткие реляционные когнитивные темпоральные модели (особенности)
- Нечеткие *реляционные когнитивные темпоральные модели* (HPKTM) сочетают достоинства различных типов нечетких когнитивных моделей и при этом нивелируют основные ограничения анализа и прогнозирования состояния сложных технических систем (СТС), присущие известным нечетким когнитивным моделям, а именно:
 - о учитывают взаимовлияние параметров с их различными временными лагами относительно друг друга;
 - о обеспечивают постоянную оперативную настройку и обучение компонентных моделей для всех параметров в процессе эксплуатации СТС.
- Развит подход и реализован метод вычисления нечетких зависимостей в векторноматричном виде, позволяющий решить проблемы увеличения неопределенности результатов и выхода нечетких значений концептов НРКТМ за диапазоны базовых множеств в результате моделирования системной динамики вследствие выполнения массовых итерационных вычислений.

24

сложных систем и процессов (классификация)

Гибридные нечетко-нейросетевые когнитивные модели
(первый упоминаемый признак — «нечеткие» — является доминирующим,
а второй — «нейросетевые» — вспомогательным)

- с представлением концептов в виде искусственных нейронных сетей;
- с параметрической оптимизацией на основе алгоритмов обучения (подобных алгоритмам обучения искусственных нейронных сетей) с использованием обучающих выборок;
- с формированием функций принадлежности нечетких множеств в виде компонентов искусственных нейронных сетей;
- с использованием компонентов искусственных нейронных сетей для фаззификации и дефаззификации переменных.

Гибридные нечетко-эволюционные когнитивные модели (первый упоминаемый признак — «нечеткие» — является доминирующим, а второй — «эволюционные/биоинспирированные» — вспомогательным)

• с реализацией нечетких отношений между концептами модели и их параметрической оптимизацией на основе эволюционных/биоинспирированных алгоритмов.

Тибридные нечеткие когнитивные модели «с функциональным замещением» для анализа сложных систем и процессов (классификация) Гибридные нечетко-нейросетевые когнитивные модели со структурно-параметрической гибридизацией (признак «нечеткие» — доминирующий, «нейросетевые» — вспомогательный)

Нечетко-нейросетевые когнитивные темпоральные модели (ННКТМ)

Представление многомерных временных рядов (МВР) с учетом взаимовлияния компонентов МВР:

$$S = (S_1, S_2, ..., S_N),$$

$$\forall t \in \{1,...,T,...\} \; S_{t} = \begin{cases} s_{1}^{(t)} = F_{1}\bigg(\varphi_{1,1}\bigg(s_{1}^{(t-1)},...,s_{1}^{\left(t-L_{1}^{1}\right)}\bigg),...,\varphi_{1,N}\bigg(s_{N}^{(t-1)},...,s_{N}^{\left(t-L_{1}^{N}\right)}\bigg)\bigg) \\ s_{2}^{(t)} = F_{2}\bigg(\varphi_{1,1}\bigg(s_{1}^{(t-1)},...,s_{1}^{\left(t-L_{2}^{1}\right)}\bigg),...,\varphi_{2,N}\bigg(s_{N}^{(t-1)},...,s_{N}^{\left(t-L_{N}^{N}\right)}\bigg)\bigg) \\ \vdots \\ s_{N}^{(t)} = F_{N}\bigg(\varphi_{N,1}\bigg(s_{1}^{(t-1)},...,s_{1}^{\left(t-L_{N}^{1}\right)}\bigg),...,\varphi_{N,N}\bigg(s_{N}^{(t-1)},...,s_{N}^{\left(t-L_{N}^{N}\right)}\bigg)\bigg)\right) \end{cases},$$

где $S = \left(S_1, S_2, ..., S_N\right)$ — МВР, N — число компонентов МВР; $s_t = \left\{s_1^{(t)}, s_2^{(t)}, ..., s_N^{(t)}\right\}$ — временной «срез» МВР в t-й момент времени; $s_j^{(t)}$ — значение j-го компонента МВР в t-й момент времени; $s_j^{(t)}$ — максимальное учитываемое значение временного лага (задержки) j-го компонента МВР относительно i-го; $\phi_{i,j}$ — оператор для учета влияния j-го компонента МВР и i-й; $s_j^{(t)}$ — преобразование для получения $s_i^{(t)}$, $s_j^{(t)}$ — $s_j^{(t)}$

26

Гибридные нечеткие когнитивные модели «с функциональным замещением» для анализа сложных систем и процессов (классификация) Гибридные нечетко-нейросетевые когнитивные модели со структурно-параметрической гибридизацией (признак «нечеткие» – доминирующий, «нейросетевые» – вспомогательный)

Нечетко-нейросетевые когнитивные темпоральные модели (ННКТМ)

Формализованная постановка задачи анализа и прогнозирования МВР предполагает возможность минимизации ошибок прогнозирования одновременно для всех компонентов МВР и представляется следующим образом:

$$\delta S = (\delta S_1, \delta S_2, ..., \delta S_N),$$

$$\delta S \to \min, \quad \forall i \in 1, ..., N \quad \delta S_i \to \min,$$

$$\delta S_i = \sqrt{\frac{1}{T} \sum_{t=1}^{T} \left(s_i^{(t)} - s_{i(cur)}^{(t)} \right)^2}, \quad i = 1, ..., N.$$

где δS — ошибка прогнозирования MBP в целом; δS_i — ошибка прогнозирования i-го компонента MBP; $s_i^{(t)}$ эталонное значение i-го компонента MBP; $s_{i(cur)}^{(t)}$ – прогнозное значение i-го компонента MBP; N – число отсчетов МВР.

В условиях нестохастической неопределенности, нелинейности взаимовлияния, частичной несогласованности и существенной взаимозависимости компонентов МВР применим подход к многокритериальному оцениванию точности прогнозирования МВР в целом, заключающийся в том, что невозможно максимально повысить точность прогнозирования какого-либо компонента МВР без ухудшения точности прогнозирования хотя бы одного из других компонентов МВР.

В данном исследовании в качестве ошибки прогнозирования MBP δS используется максимальная ошибка прогнозирования компонентов МВР:

$$\delta S = \max(\delta S_1, ..., \delta S_N)$$
.

Гибридные нечетко-нейросетевые когнитивные модели с параметрической гибридизацией (признак «нечеткие» является доминирующим, «нейросетевые» — вспомогательным)

Нечетко-нейросетевые когнитивные темпоральные модели (продолжение)

Рис. 1. Структура ННКТМ для многомерного прогнозирования состояния городской среды г. Москвы

ННКТМ обеспечивает многомерный анализ и учет непосредственного и опосредованного взаимовлияния всех компонентов МВР с их различными временными лагами друг относительно друга, а также их прогнозную оценку в условиях нестохастической неопределенности, нелинейности взаимовлияния, частичной несогласованности и существенной взаимозависимости компонентов МВР.

$$FNCTM = (C, W),$$

$$C = \{C_{i} \mid i \in 1, ..., N\}, N = |C|,$$

$$C_{i} : \tilde{s}_{i}^{(t)} = F_{i}(\{(\tilde{s}_{j}^{\prime(t-1)}, ..., \tilde{s}_{j}^{\prime(t-L_{i}^{j})}) \mid j \in 1, ..., N_{i}\}), i = 1, ..., N,$$

$$W = \{W_{ij} \mid i, j \in 1, ..., N\}, \quad W_{ij} = \{w_{ij}^{(t-l_{i}^{j})} \mid l_{i}^{j} = 0, ..., L_{i}^{j}\},$$

$$\tilde{s}_{j}^{\prime(t-l_{i}^{j})} = \varphi_{ij}(w_{ij}^{(t-l_{i}^{j})}, \tilde{s}_{j}^{(t-l_{i}^{j})}), l_{i}^{j} = 0, ..., L_{i}^{j},$$

где C — множество концептов ННКТМ, соответствующих компонентам MBP; \tilde{F}_i — нечеткое темпоральное преобразование, реализуемое концептом C_i с учетом нечетких тенденций компонента MBP; N — число концептов ННКТМ; $\tilde{s}_i^{(t)}$ — прогнозируемое нечеткое значение концепта C_i в t-й момент; $(s_j^{\prime(t-1)},...,s_j^{\prime(t-L_i^l)})$ — подмножество входных темпоральных нечетких переменных концепта C_i , связанных с выходными переменными концепта C_j ; N_i — число концептов ННКТМ, связанных с концептом C_i ; l_i^j — временной лаг для переменной $s_i^{\prime(t-l_i^j)}$ концепта C_i , l_i^j = 0, ..., l_i^j ;

 C_i ; l_i^j — временной лаг для переменной $s_j^{(i)}$ то концепта C_i , l_i^j = 0, ..., L_i^j ; W — множество отношений влияния между парами концептов ННКТМ; W_{ij} — подмножество нечетких значений, определяющее набор нечетких степеней влияния $w_{ij}^{\left(t-l_i^j\right)}$ концепта C_j на концепт C_i с учетом лага l_i^j ; φ_{ij} — нечеткий оператор для учета степени взаимовлияния выходной переменной концепта C_j на входную переменную концепта C_i .

Гибридные нечеткие когнитивные модели «с функциональным замещением» для анализа сложных систем и процессов (классификация) Гибридные нечетко-нейросетевые когнитивные модели со структурно-параметрической гибридизацией Нечетко-нейросетевые когнитивные темпоральные модели (продолжение)

Рекуррентные нейро-нечеткие модели (RecANFIS, Recurrent Adaptive Neuro-Fuzzy Inference System/Model):

- *формируют и сохраняют* прогнозируемые значения компонентов МВР в настраиваемых лаговых диапазонах «скользящего окна»;
- *выявляют* нечеткие тенденции в соответствии с результатами анализа значений компонентов МВР в диапазоне «скользящего окна»;
- *учитывают* выявленные нечеткие тенденции при прогнозировании компонентов MBP за счет соответствующих им нечетких отображений.

Пример правила РННМ

Если $\left(\tilde{s}_{1}^{(t-1)}\text{есть }\tilde{L}\right)$ **И** ... **И** $\psi_{i}^{(t-1)}\left(\left(\tilde{s}_{i}^{\prime(t-1)}\text{есть }\tilde{L}\right),\tilde{T}_{i}^{(t-1)}\right)$ **И** **И** $\psi_{i}^{(t-\tau)}\left(\left(\tilde{s}_{i}^{\prime(t-\tau)}\text{есть }\tilde{L}\right),\tilde{T}_{i}^{(t-\tau)}\right)$ **И** ... **И** $\psi_{N}^{(t-1)}\left(\left(\tilde{s}_{N}^{\prime(t-1)}\text{есть }\tilde{L}\right),\tilde{T}_{N}^{(t-1)}\right)$, $\tilde{d}_{N}^{(t-1)}$ **То** $\left(\tilde{s}_{i}^{(t)}\text{ есть }\tilde{L}\right)$, $\tilde{s}_{i}^{(t-\tau)}$, ..., $\tilde{s}_{i}^{(t-\tau)}$, ..., $\tilde{s}_{N}^{(t-\tau)}$ — входные переменные; $\tilde{s}_{i}^{(t)}$ — выходная переменная; \tilde{L} , \tilde{M} , \tilde{H} — нечеткие множества; $\tilde{T}_{i}^{(t)}$, ..., $\tilde{T}_{i}^{(t-\tau)}$ — нечеткие тенденции входных переменных, τ — диапазон «скользящего окна»; ψ_{i}^{θ} — оператор нечеткого отображения, задающий воздействие нечеткой тенденции $\tilde{T}_{i}^{(t-\theta)}$, θ = 1, ..., τ ; $\tilde{s}_{j}^{\prime(t-l_{i}^{j})}$ = $\left(\tilde{w}_{ij}^{(t-l_{i}^{j})}\text{ T }\tilde{s}_{j}^{(t-l_{i}^{j})}\right)$, l_{i}^{j} = 0, ..., L_{i}^{j} .

Тибридные нечеткие когнитивные модели «с функциональным замещением» для анализа сложных систем и процессов (классификация) Гибридные нечетко-нейросетевые когнитивные модели со структурно-параметрической гибридизацией Нечетко-нейросетевые когнитивные темпоральные модели (продолжение)

- 1) Непосредственное прогнозирование MBP для t-го момента времени, т.е. вычисление значений выходных переменных всех PHHM FS_i , i=1,...,N, по задаваемым соответствующим совокупностям значений входных переменных этих моделей;
- 2) Моделирование динамики изменения и прогнозная оценка МВР из некоторого состояния, заданного начальными значениями всех концептов ННКТМ, при отсутствии внешних воздействий на нее;
- 3) Моделирование динамики изменения и прогнозная оценка MBP из некоторого состояния, заданного начальными значениями всех концептов ННКТМ, при внешнем воздействии на значения концептов и/или на отношения взаимовлияния между концептами ННКТМ.

Рис. 1. Схема реализации метода прогнозирования МВР на основе ННКТМ

Гибридные нечеткие когнитивные модели «с функциональным

замещением» для анализа сложных систем и процессов (классификация) Гибридные нечетко-нейросетевые когнитивные модели со структурно-параметрической гибридизацией Нечетко-нейросетевые когнитивные темпоральные модели (продолжение)

Рис. 1. Иллюстрация результатов многомерного прогнозирования состояния городской среды г. Москвы на основе ННКТМ

Табл. 1 Сравнительная характеристика ошибок прогнозирования МВР между ИНС и ННКТМ

№	Компоненты МВР	Ошибка прогнозирования, <i>МАРЕ</i> , %			
		ИНС	ННКТМ		
1.	Экология городской среды	7,40	6,91		
2.	Мощность инфраструктуры городской среды	1,51	0,13		
3.	Уровень жизни населения	8,72	9,85		
4.	Промышленное потребление топливно-энергетических ресурсов	2,35	1,62		
5.	Качество жизни населения	2,12	0,55		
6.	Санитарно- эпидемиологическая обста- новка	5,35	5,31		

Лето, 2022

Метод создания композиционных гибридных нечетких моделей

- **Этап 1.** Декомпозиция комплексной задачи в виде совокупности частных задач (методами системного анализа, анализа сложных систем и процессов и др.).
- **Этап 2.** Классификация нечетких моделей на универсальные (продукционные, реляционные, функциональные) и проблемно-ориентированные (функциональные и реляционные оценочные модели; модели событий; модели состояний и управления), а также конкретизация их возможностей по соответствию к требованиям частных задач (в соответствии с: предметом анализа; типом динамики; типом неопределенности; методом получения данных).
- **Этап 3.** Определение требований к моделям для выполнения каждой из частных задач (каждой из частных задач может быть сопоставлено или несколько групп требований к нечетким моделям).
- **Этап 4.** Определение совокупностей нечетких моделей для выполнения частных задач (на основании сопоставления групп требований со стороны частных задач к нечетким моделям определяются совокупности моделей, образующие, «дерево покрытия» комплексной задачи).
- **Этип 5.** Выбор подмножества нечетких моделей, наиболее рационально реализующих комплексную задачу, т.е. обеспечивающих «покрытие» комплексной задачи в соответствии с возможными критериями рационального выбора, например, максимизацией степени пригодности модели, максимизацией минимальной пригодности, максимизации средней пригодности, минимизации мощности «покрытия».

Пример 1. Композиционная гибридная нечеткая модель для управления профессиональными рисками

Основой этой композиционной гибридной нечеткой модели является *нечеткая когнитивная модель*, предназначенная для оценки взаимовлияния системных факторов.

Для оценки профессиональных рисков служат *нечеткие продукционные модели*, а для согласования и выбора мероприятий по предотвращению/снижению рисков — *нечеткие байесовские модели*.

Рис. 1. Структура композиционной гибридной нечеткой модели для управления профессиональными рисками

Пример 2. Композиционная гибридная нечеткая модель для интеллектуального управления рисками в системах обработки информации на предприятиях нефтеперерабатывающей промышленности (СОИ ПНПП)

Для анализа рисков используются *нечеткие ко- гнитивные модели*, для выбора мероприятий по снижению рисков и для сопоставления рисков служат *нечеткие автоматы*.

Рис. 1. Структура композиционной гибридной нечеткой модели для управления рисками в СОИ ПНПП

Лето, 2022 34

<u>Пример 3.</u> Композиционная гибридная нечеткая модель для мониторинга и управления техногенными рисками на предприятиях электронной отрасли (ПЭО)

Рис. 1. Структура обобщенной нечеткой когнитивной модели для анализа проблемы мониторинга и управления техногенными рисками на ПЭО

Рис. 2. Структуры нечетких моделей для различных вариантов оценки влияния рисков техногенных нарушений и аварийных ситуаций на техногенный риск ПЭО

Композиционные гибридные нечеткие модели «с взаимодействием»

для комплексных задач анализа систем и процессов (примеры)
Пример 3. Композиционная гибридная нечеткая модель для мониторинга и управления техногенными рисками на предприятиях электронной отрасли (продолжение)

Рис. 1. Нечеткая когнитивная модель оценки техногенных рисков для процесса сварки изделий электронной промышленности

36 Лето, 2022

<u>Пример 4</u>. Композиционная гибридная нечеткая модель оценки энерго - и ресурсосбережения в социотехнических системах (СТС)

Рис. 1. Нечеткая когнитивная модель оценки воздействия мероприятий $a_{k_i}^{(s_1)} \in A_{s_1}$ на показатели $p_1(s_1)$ и $p_2(s_1)$ подсистемы s_1

E(S)Model of the generalized assessment of the effectiveness of energy and resource saving system S $e(s_2)$ $e(s_3)$ Model of the energy and Model of the energy and resource efficiency resource efficiency evaluation of subsystem evaluation of subsystem s_2 of heat supply s_3 of water supply $p_3(s_2)$ Fuzzy cognitive model Fuzzy cognitive model for estimating the for estimating the effects of actions on the effects of actions on the indicators $p_1(s_3)$ and indicators $p_1(s_2)$ and $p_2(s_3)$ of water supply $p_2(s_2)$ of the heat supply subsystem s₃ subsystem s2 $A_{s_3} = \{a_{k_i}^{(s_3)}\}$

Рис. 2. Структура композиционной гибридной нечеткой модели оценки энерго - и ресурсосбережения в (СТС)

Пример 5. Композиционная гибридная нечеткая модель для анализа взаимовлияния факторов и оценки готовности формирований МЧС

Рис. 1. Структура композиционной гибридной нечеткой модели для анализа взаимовлияния факторов и оценки готовности формирования МЧС

Рис. 2. Детализированный пример взаимовлияния внешних факторов и концептов нечеткой когнитивной модели FCM_{i-FYT}

Рис. 3. Моделирование динамики и выбор мероприятий по повышению готовности формирования МЧС

38

Заключение

Представлены подходы к использованию нечетких и гибридных нечетких когнитивных моделей для исследования сложных систем и проблемных ситуаций.

Первый подход заключается в использовании нечетких когнитивных моделей для предварительного анализа сложных систем и проблемных ситуаций, результаты которого относительно независимо используются для последующего, более углубленного исследования.

Второй подход заключается в замене или усовершенствовании отдельных компонентов нечетких когнитивных моделей компонентами других (нейросетевых, биоинспирированных) моделей, позволяющих, таким образом, расширить возможности и улучшить свойства базовых моделей.

Третий подход базируется на построении композиционных гибридных моделей, в которых компонентные нечеткие/нечетко-нейросетевые модели используются относительно независимо и выполняют различные задачи по достижению общей цели. Данный подход в наибольшей степени востребован для выполнения комплексных задач анализа систем и проблемных ситуаций, для которых возможна их декомпозиция на отдельные подзадачи, соответствующие подсистемам, объектам, стадиям процессов.

Приведены конструктивные примеры реализации рассмотренных подходов к использованию нечетких и гибридных нечетких когнитивных моделей для исследования сложных систем и проблемных ситуаций.