

SIO Port

Deprecation of SIO Port

The SIO Port component and its associated data sheet have been deprecated and replaced by the Pins component and data sheet. This was due to the creation of the Pins component to provide a more flexible solution for pins and ports. The SIO Port component remains in the Component Catalog to support legacy designs; however, it will be hidden by default for new designs, and it has been moved to a "deprecated" folder.

You should update your designs that use the SIO Port component to use the Pins component. To replace the component:

- 1. Based on the direction of your SIO port, select the appropriate Pins component from the catalog (Digital Input, Digital Output, or Digital Bidirectional), from under the **Ports and Pins** section. **Note** There is no longer a specific SIO port/pins component. A pin will become SIO in the following cases:
 - If the pin uses an Input and Hotswap is set to true.
 - If the pin uses an Input and the Threshold is set to anything except CMOS or LVTTL.
 - If the pin uses an Output and the Drive Current is set to a 25mA sink.
 - If the pin uses an Output and the Drive Level is Vref.
- 2. To have the terminals drawn as a bus, as they did on the SIO Port, go to the **Mapping** tab and check the "Display as Bus" option.
- 3. Configure the Pins component to match the SIO Port settings using the following conversion table:

Port Parameter	Pins Component Equivalent Setting				
AccessMode – SW	The equivalent setting would be to make the pins component Contiguous from the Mapping tab and to uncheck HW Connection from the Pins/Type tab (this will remove the terminals so that no connection is required in the schematic).				
AccessMode - HW	The equivalent setting would be to make the pins component Non-Contiguous from the Mapping tab and to make sure HW Connection from the Pins/Type tab is checked so that terminals will be displayed on the schematic.				
Direction	Select the pin(s) you want to change the direction of in the tree on the left side of the Pins tab. From the Type subtab you can use the check boxes to set the "direction" of the pins.				
HiFreq	This is currently not settable in the new Pins component. It will always be set to High. It will be settable in a future release. If this needs to be set before then you will need to set the register directly.				

Port Parameter	Pins Component Equivalent Setting			
InputBuffer	This can be set from the Pins/Input tab (as long as the pin type has Input or Bidirectional used). It is set based on the Threshold. If CMOS or LVTTL is chosen it will be Single Ended. All other selections will be Differential. Note LVTTL is not a valid option for SIOs.			
OutputBuffer	This can be set from the Pins/Output tab (as long as the pin type has Output or Bidirectional used). It is set based on the Drive Level. Regulated = Vref Unregulated = Vddio			
PowerOnResetState	This can be set from the Reset tab. InDisabledOutHiZ = High-Z Analog InEnabledOut1 = Pulled Up InEnabledOut0 = Pulled Down InEnabledOutHiZ = No longer supported			
StandardLogic	This can be set from the Pins/Input tab (as long as the pin type has Input or Bidirectional used). It is now called Threshold. LVTTL is not a valid option for SIOs.			
UseInterrupts	This is no longer used. Just set the interrupt mode for the pin directly.			
VRefSelection/VTrip	These two options have now been combined into one. If the pin direction is an input this is set on the Pins/Input tab by the Threshold option. If the pin direction is an output this is set on the Pins/Output tab by the Drive Level option.			
Width	From the Pins tab there is a "Num Pins" text box on the toolbar in the upper left of the tab.			
Alias	From the Pins tab select a pin from the tree on the left side of the tab then either click the Rename button, press [F2], or double-click the pin in the tree. This will open a dialog where the alias can then be specified.			
Pin Mode	This is now set from the Pins/General tab from the Drive Mode drop down list. CMOS_Out = Strong Drive Hi_Z = High Impedance Digital ResPull_Up = Resistive Pull Up ResPull_Down = Resistive Pull Down ResPull_UpDown = Resistive Pull Up/Down OpenDrain_Lo = Open Drain, Drives Low OpenDrain_Hi = Open Drain Drives High			
Slew Rate	This can be set from the Pins/Output tab (as long as the pin type has Output or Bidirectional used).			
Hysteresis Enabled	This can be set from the Pins/Input tab (as long as the pin type has Input or Bidirectional used). It is controlled by a checkbox next to the Threshold.			
Interrupt Mode	This can be set from the Pins/Input tab (as long as the pin type has Input or Bidirectional used).			

- 4. Delete your SIO Port and move your new Pins component to its old location.
 - **Note** Once your pins are configured to be SIOs (they will get a pin outline in around the pin symbol in the tree) you will need to group them into a pair if your width was set to 2 before to get an equivalent functionality. To do this select your two adjacent SIO pins and click the Pair SIO button on the toolbar on the top of the **Pins** tab.
- 5. Right-click on your project in the Workspace Explorer and select **Update Components**; use the Component Update Tool to update the latest version of the cy boot component.

Features

- · Regulated output level
- Reference generator per pair
- Supports hot swap

General Description

An SIO port provides access to external data via an appropriately configured IO. Compared to GPIO's, SIO ports provide for regulated output levels, differential input levels, and hot swap capability. All ports allow for the creation of per-pin aliases which may be viewed in the PSoC Creator Pin Editor and used in the generated port APIs.

When to use a SIO Port

Use a port when a design needs to generate or access an off-device signal. (Use an appropriate port for the type of the signal being accessed.)

Input/Output Connections

This section describes the various input and output connections for the SIO port. An asterisk (*) in the list of I/O's states that the I/O may be hidden on the symbol under the conditions listed in the description of that I/O.

i – Input *

Provides access to the digital input signal. This connection is only visible if all of the following criteria are met:

- AccessMode is PortAccessMode HW
- Direction is PortDirection Input or PortDirection InOut

o - Output *

Allows PSoC to drive a digital signal off the device. This connection is only visible if all of the following criteria are met:

- AccessMode is PortAccessMode HW
- Direction is PortDirection Output or PortDirection InOut

oe - Input *

Output enable determines whether the signal connected to the "o" terminal is actually driven off the device. This connection is only visible if all of the following criteria are met:

- AccessMode is PortAccessMode HW
- Direction is PortDirection_Output or PortDirection_InOut

irq - Output *

The signal driven out of this connection is high when the conditions under which the port should generate an interrupt have been met. Connect this to an Interrupt component to define the interrupt handler. This terminal is shown when the UseInterrupt parameter is set to true.

vref - Analog InOut

One reference voltage will service two sio pins. The sio pair input buffer voltage levels are set by the VRefSelection and the VTrip selections.

Input buffer Reference Voltage Selection

VRefSelection	VTrip	Mode description
PortSIORefSel_VIO	PortSIOVTrip_Zero	0.5*VIO
PortSIORefSel_VIO	PortSIOVTrip_One	0.4*VIO
PortSIORefSel_VoHref	PortSIOVTrip_Zero	0.5*Vref
PortSIORefSel_VoHref	PortSIOVTrip_One	Vref

Input and Output Configuration

OutputBuffer	InputBuffer	Mode description
PortSIOOutput_Unregulated	PortSIOInput_SingleEnded	Single Ended Input buffer Non-regulated Output buffer
PortSIOOutput_Unregulated	PortSIOInput_Differential	Differential Input buffer with Non-regulated Output buffer
PortSIOOutput_Regulated	PortSIOInput_SingleEnded	Single Ended Input buffer Regulated Output buffer

DEPRECATED

Page 4 of 10 Document Number: 001-51244 Rev. *A

PortSIOOutput_Regulated PortSIOInput_Differential	Differential Input buffer with Regulated Output buffer	
---	--	--

Component Parameters

Drag an SIO port onto your design and double-click it to open the Configure dialog.

Figure 1 Configure SIO port Dialog - Basic Tab

Basic Options

The following are the basic SIO port options.

AccessMode

Determines how the port is accessible.

AccessMode Value	Description
PortAccessMode_SW	The port may only be accessed via firmware (default).

PortAccessMode_HW	The port may only be accessed via hardware. Hardware only ports do not have APIs callable from firmware.

Direction

Determines the direction of data flow.

Direction Value	Description
PortDirection_Input	Allow the design to access digital signals coming in to the device (default).
PortDirection_Output	Allow the design to drive digital signals off the device.
PortDirection_InOut	Allow the design to access or drive a signal off device.
PortDirection_Bidirectional	Allow the design to access as well as drive a signal .

HiFreq

Regulated pull-up driver DC current setting (0=low current ~33uA for 10MHz with Cl=25pF, 1=high current ~59uA for 33MHz, 3.3V with Cl=10pF).

InputBuffer

Allows the user to configure the input buffer of the SIO as single ended or differential. When single ended, the SIO acts like the GPIO with the reference as the VIO for the quadrant. When differential the reference voltage used is based on either the VIO for the quadrant or the routed vref to the SIO. The differential setting also allows for a multiplier to be applied to the reference voltage as well. Refer to the sio vtrip and sio refsel options for more details.

OutputBuffer

Allows the user to configure the output of the SIO as unregulated or regulated. When unregulated the SIO acts like a GPIO where the reference used is the VIO for the quadrant. When regulated the reference used is the vref routed to the SIO port.

PowerOnResetState

Specifies the power on reset state of the port. Legal values include:

- InDisabledOutHiZ (default)
- InEnabledOut1
- InEnabledOut0
- InEnabledOutHiZ.

StandardLogic

StandardLogic specifies the voltage level at which a device changes state.

Direction Value	Description		
PortStandardLogic_CMOS	The input buffer functions as a CMOS input buffer. This option is more power efficient than LVTTL. (default).		
PortStandardLogic_LVTTL	The input buffer functions as a LVTTL input buffer.		

UseInterrupt

If true, the port may generate an interrupt. The "irq" terminal will become visible, and must be connected to an Interrupt component. The conditions under which an interrupt will be generated may be specified on the "Pins" tab. If false (default), the port will not generate an interrupt.

VRefSelection

Select whether the voltage for the quadrant (VIO) (default) or the routed vref value (VoHref) are used as the reference for the input buffer when it is in differential mode.

VTrip

A value of 0 (PortSIOVTrip_Zero) will apply a 0.5 multiplier to the reference for the SIO when it is configured with a differential input. A value of 1 (PortSIOVTrip_One) will apply a 0.4 multiplier when the reference selected by sio_refsel is the VIO. If sio_refsel select VoHref then the multiplier is 1.

Direction Value	Description		
PortSIOVTrip_Zero	Applies a 0.5 multiplier to the reference for the SIO when it is configured with a differential input. (default).		
PortSIOVTrip_One	Applies a 0.4 multiplier when the reference selected by sio_refsel is the VIO. If sio_refsel select VoHref then the multiplier is 1.		

Width

Specifies the width in bits of the logical port (default is 2). Only 1 or 2 are valid.

Figure 2 Configure SIO port Dialog - Pins Tab

Pins Options

The following options are set on a per pin basis.

Alias

Allows an alias to be assigned to each pin in the port. The alias is presented in the Pin Editor and in the generated APIs for the port.

Pin Mode

Allows for the configuration of the pin mode to the following:

Table 1: Pin/ Drive Modes

Pin Mode	Description	High Output (Data = 1)	Low Output (Data = 0)	Input Buffer
CMOS_Out	Strong CMOS out	Strong 1	Strong 0	On
Hi_Z (default)	Hi – Z Digital – input buffer on	High-Z	High-Z	On
ResPull_Up	Resistive pull up	Res 1 (5k)	Strong 0	On
ResPull_Down	Resistive pull down	Strong 1	Res 0 (5k)	On
OpenDrain_Lo	Open Drain (drive lo)	High-Z	Strong 0	On
OpenDrain_Hi	Open Drain (drive hi)	Strong 1	High-Z	On
ResPull_UpDown	Resistive pull up/down	Res 1 (5k)	Res 0 (5k)	On

DEPRECATED

Page 8 of 10

Slew Rate

The slew rate of a device is the rate of change of its output. The options are fast (default) and slow.

Hysteresis Enabled

Enables the SIO differential hysteresis for the pin when set to true. The default is false.

Interrupt Mode

Indicates the conditions under which the pin will trigger the port interrupt. The interrupt mode can only be set if UseInterrupt is true. The available conditions are:

- None (default)
- Rising Edge
- Falling Edge
- On Change

Placement

There is no placement specific information.

Resources

All ports consume one physical pin, per bit of their width parameter.

Application Programming Interface

Not applicable.

Functional Description

Not applicable.

DC and AC Electrical Characteristics

The following values are indicative of expected performance and based on initial characterization data.

5.0V/3.3V DC and AC Electrical Characteristics

Parameter	Typical	Min	Max	Units	Conditions and Notes
Input					
Input Voltage Range			Vss to Vdd	V	
Input Capacitance				pF	
Input Impedance				Ω	
Maximum Clock Rate			67	MHz	

any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® Creator™, Programmable System-on-Chip™, and PSoC Express™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

CYPRESS