CCA exmaples

STAT 32950-24620

Spring 2023 (4/6)

1/40

Check data format

```
library(ade4); data(olympic); str(olympic)
```

```
## List of 2
## $ tab :'data.frame':
                           33 obs. of 10 variables:
     ..$ 100 : num [1:33] 11.2 10.9 11.2 10.6 11 ...
     ..$ long: num [1:33] 7.43 7.45 7.44 7.38 7.43 7.72 7.(
     ..$ poid: num [1:33] 15.5 15 14.2 15 12.9 ...
##
     ..$ haut: num [1:33] 2.27 1.97 1.97 2.03 1.97 2.12 2.0
     ..$ 400 : num [1:33] 48.9 47.7 48.3 49.1 47.4 ...
##
     ..$ 110 : num [1:33] 15.1 14.5 14.8 14.7 14.4 ...
##
     ..$ disg: num [1:33] 49.3 44.4 43.7 44.8 41.2 ...
     ..$ perc: num [1:33] 4.7 5.1 5.2 4.9 5.2 4.9 5.7 4.8 4
##
     ..$ jave: num [1:33] 61.3 61.8 64.2 64 57.5 ...
     ..$ 1500: num [1:33] 269 273 263 285 257 ...
   $ score: num [1:33] 8488 8399 8328 8306 8286 ...
```

Canonical Correlation Analysis

Example: Olympic records of 33 decathletes

Events:

```
100 meters (100), long jump (long), shotput (poid), high jump (haut), 400 meters (400), 110-meter hurdles (110), discus throw (disq), pole vault (perc), javelin (jave), 1500 meters (1500).
```

2 / 40

Check data observations

head(olympic\$tab,4)[,1:8]

```
## 100 long poid haut 400 110 disq perc

## 1 11.25 7.43 15.48 2.27 48.90 15.13 49.28 4.7

## 2 10.87 7.45 14.97 1.97 47.71 14.46 44.36 5.1

## 3 11.18 7.44 14.20 1.97 48.29 14.81 43.66 5.2

## 4 10.62 7.38 15.02 2.03 49.06 14.72 44.80 4.9

tail(olympic$tab,4)[,2:10]
```

```
## long poid haut 400 110 disq perc jave 1500

## 30 7.09 12.94 1.82 49.27 15.56 42.32 4.5 53.50 293.9

## 31 6.22 13.98 1.91 51.25 15.88 46.18 4.6 57.84 295.0

## 32 6.43 12.33 1.94 50.30 15.00 38.72 4.0 57.26 293.7

## 33 7.19 10.27 1.91 50.71 16.20 34.36 4.1 54.94 270.0
```

Partial data summary

```
colMeans(olympic$tab[,1:5]); colMeans(olympic$tab[,6:10])
```

```
400
           long
                 poid
                         haut
## 11.196 7.133 13.976 1.983 49.277
       110
              disq
                     perc
                              iave
                                      1500
   15.049 42.354
                    4.739
                           59.439 276.038
summary(olympic$tab[,1:3])
```

```
100
##
                         long
                                         poid
    Min.
           :10.6
                    Min.
                           :6.22
                                   Min.
                                           :10.3
    1st Qu.:11.0
                    1st Qu.:7.00
                                   1st Qu.:13.2
                   Median:7.09
    Median:11.2
                                   Median:14.1
           :11.2
                           :7.13
    Mean
                   Mean
                                   Mean
                                           :14.0
    3rd Qu.:11.4
                    3rd Qu.:7.37
                                    3rd Qu.:15.0
                           :7.72
                                           :16.6
           :11.6
    Max.
                    Max.
                                   Max.
```

5 / 40

Correlation among variables

```
round(cor(olympic$tab[,1:10]),1)
```

```
100 long poid haut 400 110 disq perc jave 1500
       1.0 -0.5 -0.2 -0.1 0.6 0.6 0.0 -0.4 -0.1 0.3
## 100
## long -0.5 1.0 0.1 0.3 -0.5 -0.5 0.0 0.3
## poid -0.2 0.1 1.0 0.1 0.1 -0.3 0.8 0.5
  haut -0.1 0.3 0.1 1.0 -0.1 -0.3 0.1 0.2
                                           0.1 - 0.1
           -0.5 0.1 -0.1 1.0 0.5 0.1 -0.3
        0.6 -0.5 -0.3 -0.3 0.5 1.0 -0.1 -0.5 -0.1 0.1
## disg 0.0 0.0 0.8 0.1 0.1 -0.1 1.0 0.3
## perc -0.4 0.3 0.5 0.2 -0.3 -0.5 0.3 1.0
## jave -0.1 0.2 0.6 0.1 0.1 -0.1 0.4 0.3
## 1500 0.3 -0.4 0.3 -0.1 0.6 0.1 0.4 0.0
```

6 / 40

Track event records

pairs(olympic\$tab[,c(1,5,6,10)],main="Track events")

Track events

Field event records

pairs(olympic\$tab[,-c(1,5,6,10)],main="Field events")

Field events

Objective: Relation of performance in the two event groups

We are interested in the relationship between

- Performance in track events
- Performance in field events

Group the variables into two vectors:

```
X = (X_1, X_2, X_3, X_4), a vector vector of track records Y = (Y_1, Y_2, Y_3, Y_4, Y_5, Y_6), a vector of field records \times (-1) X= olympic$tab[,c(1,5,6,10)] Yold= olympic$tab[,c(2,3,4,7,8,9)] Y = (-1) * Yold
```

9 / 40

Sample covariance of Y (field)

```
S_{22} = \hat{\Sigma}_{22}, a q \times q matrix, q = 6.
```

S22 = cov(Y)

```
round(S22,2)

## long poid haut disq perc jave

## long 0.09 0.06 0.01 0.05 0.04 0.30

## poid 0.06 1.77 0.02 3.99 0.21 4.38

## haut 0.01 0.02 0.01 0.05 0.01 0.06

## disq 0.05 3.99 0.05 13.83 0.43 9.05

## perc 0.04 0.21 0.01 0.43 0.11 0.50

## jave 0.30 4.38 0.06 9.05 0.50 30.21
```

Sample covariance of X (track)

$$S_{11} = \hat{\Sigma}_{11}$$
, a $p \times p$ matrix, $p = 4$.

100 0.06 0.16 0.08 0.87 ## 400 0.16 1.14 0.30 8.58 ## 110 0.08 0.30 0.26 0.99 ## 1500 0.87 8.58 0.99 186.52

10 / 40

Sample covariance matrix between \boldsymbol{X} and \boldsymbol{Y}

$$S_{12} = \hat{\Sigma}_{12}$$
 $(p \times q \; matrix)$

```
S12=cov(X,Y)
round(S12,2)
```

```
## long poid haut disq perc jave
## 100 0.04 0.07 0.00 0.04 0.03 0.09
## 400 0.17 -0.13 0.01 -0.57 0.11 -0.71
## 110 0.07 0.20 0.01 0.21 0.09 0.17
## 1500 1.64 -4.89 0.15 -20.43 0.14 -7.23
```

Sample covariance matrix between Y and X

$$S_{21} = \hat{\Sigma}_{21} = \hat{\Sigma}_{12}' = S_{12}'$$
 $(q \times p \; \textit{matrix})$

round(cov(Y,X),2)

100 400 110 1500 ## long 0.04 0.17 0.07 1.64 ## poid 0.07 -0.13 0.20 -4.89 ## haut 0.00 0.01 0.01 0.15 ## disq 0.04 -0.57 0.21 -20.43 ## perc 0.03 0.11 0.09 0.14 ## jave 0.09 -0.71 0.17 -7.23

13 / 40

Canonical Correlation Analysis (population CCA)

Find

$$U_1 = a_1' X, \quad V_1 = b_1' Y$$

such that for all vectors $a \in \mathbb{R}^4$ and vectors $b \in \mathbb{R}^6$,

$$Corr(U_1, V_1) = \max_{a,b} Corr(a'X, b'Y)$$

Note: Multiples of a or b do not change the correlation.

⇒ Imposing necessary constraints (normalizations)

$$Var(U_1) = a'_1 S_{11} a_1 = 1,$$
 $Var(V_1) = b'_1 S_{22} b_1 = 1.$

Overall sample covariance matrix and correlation matrix

$$\widehat{Cov} \left[\begin{array}{c} X \\ Y \end{array} \right] = \left[\begin{array}{cc} S_{11} & S_{12} \\ S_{21} & S_{22} \end{array} \right]$$

round(cor(cbind(X,Y)),1)

100 400 110 1500 long poid haut disq perc jave
100 1.0 0.6 0.6 0.3 0.5 0.2 0.1 0.0 0.4 0.1
400 0.6 1.0 0.5 0.6 0.5 -0.1 0.1 -0.1 0.3 -0.1
110 0.6 0.5 1.0 0.1 0.5 0.3 0.3 0.1 0.5 0.1
1500 0.3 0.6 0.1 1.0 0.4 -0.3 0.1 -0.4 0.0 -0.1
long 0.5 0.5 0.5 0.4 1.0 0.1 0.3 0.0 0.3 0.2
poid 0.2 -0.1 0.3 -0.3 0.1 1.0 0.1 0.8 0.5 0.6
haut 0.1 0.1 0.3 0.1 0.3 0.1 1.0 0.1 0.2 0.1
disq 0.0 -0.1 0.1 -0.4 0.0 0.8 0.1 1.0 0.3 0.4
perc 0.4 0.3 0.5 0.0 0.3 0.5 0.2 0.3 1.0 0.3
jave 0.1 -0.1 0.1 -0.1 0.2 0.6 0.1 0.4 0.3 1.0

14 / 40

Review population CCA derivation in class

 a_1 is an e-vector of matrix $\ A=\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ w.r.t. e-value $\
ho_1^{*2}.$

 b_1 is an e-vector of matrix $B = \sum_{22}^{-1} \sum_{11} \sum_{12}^{-1} \sum_{12}$ w.r.t. e-value ρ_1^{*2} .

$$Corr(U_1, V_1) = Corr(a'_1 X, b'_1 Y) = \rho_1^*$$

 \boldsymbol{A} and \boldsymbol{B} share the same non-zero eigenvalues,

because for $C = \Sigma_{11}^{1/2} \Sigma_{12} \Sigma_{22}^{-1/2}$,

 $A = \Sigma_{11}^{-1/2}(CC')\Sigma_{11}^{1/2} \implies A \text{ and } CC' \text{ share the same e-values.}$

 $B = \Sigma_{22}^{-1/2}(C'C)\Sigma_{22}^{1/2} \implies A \text{ and } CC' \text{ share the same e-values.}$

C'C and CC' share the same non-zero eigenvalues ordered as

$$\rho_1^{*2} \ge \rho_2^{*2} \ge \dots \ge \rho_r^{*2} \ge 0, \quad r = \min(p, q)$$

Properties of p-by-p matrix CC' and q-by-q matrix C'C

- Symmetric (CC')' = CC', (C'C)' = C'C
- Positive semi-definite: For any $v \in \mathbb{R}^p$, $w \in \mathbb{R}^q$,

$$v'CC'v = ||C'v||^2 \ge 0, \quad w'C'Cw = ||Cw||^2 \ge 0$$

• Share the same non-zero eigenvalues:

If
$$(CC')v = \lambda v \neq 0$$
, then $(C'C)w = \lambda w$ for $w = C'v \neq 0$
If $(C'C)w = \delta w \neq 0$ then $(CC')v = \delta v$ for $v = Cw \neq 0$

- Have the same rank $\leq r = \min(p, q)$
- Their common non-zero eigenvalues can be ordered as

$$\rho_1^{*2} \ge \rho_2^{*2} \ge \dots \ge \rho_r^{*2} \ge 0$$

 The above results are related to the Singular Value Decomposition of matrices.

17 / 40

19 / 40

Canonical correlation pairs (population CCA)

We may further derive more canonical variates

$$(U_i, V_i) = (a_i'X, b_i'Y)$$

with

$$Cor(U_i, V_i) = \rho_i^*$$

for $i = 1, \dots, r$, with the properties

- $Corr(U_i, U_i) = 0$,
- $Corr(V_i, V_i) = 0$
- $Corr(U_i, V_j) = 0$, if $i \neq j$.

Discussion: What should be the pattern of the covariance matrix of all canonical variates?

18 / 40

Verify eigenvalue-eigenvector structure of sample estimates

```
\hat{A} = S_{11}^{-1} S_{12} S_{22}^{-1} S_{21} and \hat{B} = S_{22}^{-1} S_{21} S_{11}^{-1} S_{12}

A=solve(S11)%*%S12%*%solve(S22)%*%t(S12)

eigen(A)
```

```
## eigen() decomposition
## $values
## [1] 0.54252 0.25775 0.18827 0.05094
##
## $vectors
## [,1] [,2] [,3] [,4]
## [1,] -0.72944 -0.26290 0.17699 -0.9549978
## [2,] 0.04499 0.33960 -0.83082 0.0676619
## [3,] -0.68235 -0.90274 0.52540 0.2887910
## [4,] -0.01695 0.02474 0.04868 0.0009303
```

What is the norm normalization of the eigenvectors?

Comparison: norm normalization use here vs CCA (later)

```
a1 = eigen(A)$vector[,1]
t(a1)%*%S11%*%a1
## [,1]
## [1,] 0.2881
t(a1)%*%a1 # = sum((a1^2) = 1
## [,1]
## [1,] 1
```

[1] 0.7369 0.5079 0.4336 0.2258

sqrt(round(eigen(A)\$value,3))

20 / 40

sqrt(lambda)=rho

Do A and B have common > 0 eigenvalues?

```
B=solve(S22)%*%t(S12)%*%solve(S11)%*%S12
eigen(B); sqrt(round(eigen(B)$value,3)) #sqrt(lambda)=rho
## eigen() decomposition
## $values
## [1] 5.425e-01 2.578e-01 1.883e-01 5.094e-02 1.556e-
##
## $vectors
##
            [,1]
                      [,2]
                               [,3]
                                          [,4]
                                                   [,5]
## [1,] 0.67083 0.453859 0.141926 0.2871489 -0.02480 (
## [2,] 0.14297 -0.227601 -0.131795 0.0620849 -0.40727 -(
## [3,] 0.64547 -0.852181 -0.937627 -0.9137452 0.78403 (
## [4,] -0.05468 -0.004922 0.056165 -0.0001737 0.06927 (
## [5,] 0.33119 -0.125720 0.283033 -0.2805955 0.45193 -(
## [6,] -0.01544 0.012930 -0.008962 0.0051759 0.09887 (
## [1] 0.7369 0.5079 0.4336 0.2258 0.0000 0.0000
                                                     21 / 40
```

CCA by R

```
attributes(cancor(X,Y))
## $names
## [1] "cor"
                           "vcoef"
                                    "xcenter" "ycenter"
                "xcoef"
#"cor" "xcoef" "ycoef" "xcenter" "ycenter"
cancor(X,Y)$cor # comp. w/ A, B root e-values
## [1] 0.7366 0.5077 0.4339 0.2257
```

22 / 40

The canonical correlations

$$\Rightarrow \rho_1^* = Corr(U_1, V_1) = 0.74,$$

$$\rho_2^* = Corr(U_2, V_2) = 0.51,$$

$$\rho_3^* = Corr(U_3, V_3) = 0.44,$$

$$\rho_4^* = Corr(U_4, V_4) = 0.23.$$

 ρ_i^{*2} are the eigenvalues of matrices $\hat{A} = S_{11}^{-1} S_{12} S_{22}^{-1} S_{21}$ and $\hat{B} = S_{22}^{-1} S_{21} S_{11}^{-1} S_{12}$

and CC' and C'C

[,1]

cancor(X,Y)\$ycoef

[,2] [,3]

Coefficient vectors b_i of the canonical variates

[,4]

[,5]

long -0.374504 -0.246936 -0.152525 0.3628867 -0.245003

poid -0.079817 0.123834 0.141638 0.0784603 0.045620

haut -0.360350 0.463656 1.007652 -1.1547527 -1.091883 ## disq 0.030528 0.002678 -0.060359 -0.0002195 -0.038856

perc -0.184896 0.068402 -0.304171 -0.3546048 0.357047 ## jave 0.008621 -0.007035 0.009631 0.0065411 0.008231

$$\Rightarrow b_1 = \begin{bmatrix} -0.374504 \\ -0.079817 \\ -0.360350 \\ 0.030528 \\ -0.184896 \end{bmatrix}, b_2 = \cdots, b_3 = \cdots, b_4 = \cdots$$

23 / 40

Coefficient vectors a_i of the canonical variates, their norm

cancor(X,Y)\$xcoef

```
## [,1] [,2] [,3] [,4]

## 100 -0.240222 0.075806 0.05036 0.9973029

## 400 0.014818 -0.097923 -0.23637 -0.0706592

## 110 -0.224716 0.260302 0.14948 -0.3015841

## 1500 -0.005583 -0.007135 0.01385 -0.0009715

a1 = cancor(X,Y)$xcoef[,1] # sum(a1^2) #.1085

round((t(a1)%*%cov(X)%*%a1)*length(X[,1]),1) #1.031
```

$$a_1 = \begin{bmatrix} -0.240222\\ 0.014818\\ -0.224716\\ -0.005583 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 0.075806\\ -0.097923\\ 0.260302\\ -0.007135 \end{bmatrix}, a_3 = \cdots, a_4 = \cdots$$

25 / 40

27 / 40

Pairs of canonical variables

$$U_1 = -0.240(100m) - 0.015(400m) - 0.225(110h) - 0.006(1500m)$$

$$V_1 = -0.375(long) - 0.080(poid) - 0.360(haut) + 0.031(disc)$$

$$-0.185(perc) + 0.009(jave)$$

$$U_2 = 0.076(100m) - 0.098(400m) - 0.260(110h) - 0.007(1500m)$$

 $V_2 = -0.247(long) + ...$

$$U_3 = ...$$

$$V_3 = ...$$

$$U_4 = \dots$$

$$V_4 = ...$$

Centering and correlation

```
cancor(X,Y)$xcenter

## 100 400 110 1500

## 11.20 49.28 15.05 276.04

cancor(X,Y)$ycenter

## long poid haut disq perc jave
## -7.133 -13.976 -1.983 -42.354 -4.739 -59.439
```

Discussion:

The role of center; the relation of correlation and centering.

26 / 40

Observations in canonical variate coordinates (U1,V1)

Plot observations in canonical variate coordinates (U1,V1)

Decathlon performance (obs) by canonical variates (U1,V1)

Observations in canonical variate coordinates (U2,V2)

```
plot(U[,2],V[,2],type="n",cex.lab=.8,cex.axis=.5)
text(U[,2],V[,2],labels=row.names(X),cex=.6)
text(U[,2],V[,2],labels=row.names(X),cex=.6,col=2:34)
title(,cex.main=.9, main=
"Decathlon performance (obs) by canonical variates (U2,V2)'
```

30 / 40

Plot observations in canonical variate coordinates (U2,V2)

Decathlon performance (obs) by canonical variates (U2,V2)

Original variables and cononical variates

What are the relative positions of the original variables under the (new) canonical variables?

In the (U_1, U_2) plane, the track variables

$$X_1(100m) = (-0.24, 0.076),$$

$$X_2(400m) = (-0.015, -0.098), \cdots$$

In the (V_1, V_2) plane, the field variables

$$Y_1(long) = (-0.375, -0.247),$$

٠٠٠,

29 / 40

31 / 40

$$Y_6(jave) = \cdots$$

Variables in canonical var coordinates

33 / 40

35 / 40

Correlation matrix of canonical variables

Plot variables in canonical var coordinates

34 / 40

Normalization in our CCA derivation

In our derivation of canonical correlation variable pairs

$$(U_i, V_i) = (a_i'X, b_i'Y),$$

we imposed the constraints

$$a_i'cov(X)a_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

$$b_i'cov(Y)b_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

R command eigen(A) normalization

The command eigen(A) normalize the eigenvectors \tilde{a}_i of A by

$$\tilde{a_i}'\tilde{a_i}=1$$

t(eigen(A)\$vector)%*%eigen(A)\$vector

37 / 40

39 / 40

R command cancor(X,Y) normalization

R command cancor (X,Y) normalized canonical variates a_i^* by

$$n(a_i^{*'}cov(X)a_j^*) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

(t(cancor(X,Y)\$xcoef)%*%cov(X)%*%
 cancor(X,Y)\$xcoef)*length(X[,1])

38 / 40

Univariate QQ plot normality check

qqnorm(olympic\$score); qqline(olympic\$score)

Multivariate χ^2 plot normality check

source("qqchi2.R"); qqchi2(olympic\$tab) #corr coeff=0.97

[1] "correlation coefficient:"

[1] 0.9727