Problemas Capítulo 3. Movimento no Plano e no Espaço: Forças e Vetores

Problemas Teóricos

- 1. Um vetor a 2 dimensões tem as coordenadas (3, 4).
- a) Qual o seu módulo ou comprimento?
- b) Qual o vetor unitário correspondente?
- c) Qual o vetor 2×(3, 4)? Qual o seu comprimento ou módulo?
- d) Qual o vetor -2×(3, 4)? Qual o seu comprimento ou módulo?
- 2. Dois vetores são (1, 2) e (-2, 3). Qual o seu produto escalar e qual o ângulo entre os dois vetores?
- 3. Considere o um espaço a duas dimensões e o vetor (3,4).
- a) Encontre um vetor perpendicular ao vetor (3, 4).
- b) Encontre os dois vetores unitários perpendiculares ao vetor (3,4)

Note que o produtor escalar de dois vetores perpendiculares é nulo.

- **4.** Duas forças aplicadas a um corpo de massa 2 kg, são (2,0; 1,2) N e (-3,0; 5,1) N. Calcule a força resultante. Qual a sua intensidade?
- **5.** Determine o produto escalar dos vetores (2,0; 3,2; -1,0) e (-1,0; 2,0; 4,6).
- **6.** Encontre o produto vetorial $(2,0; 3,0; -2) \times (-1,5; -1.0; 2,0)$. Calcule também o ângulo entre os dois vetores através do produto escalar.
- 7. Uma força de intensidade 6,0 N e de coordenada $F_x = 2,0$ N, qual a sua coordenada segundo OY?
- **8.** Uma força de intensidade $|\vec{F}| = 2.00$ N faz um ângulo θ com o eixo positivo OX. Quais as coordenadas (F_x, F_y) da força, quando o ângulo for:
- a) $\theta = \pi/2$

- b) $\theta = -\pi/6$
- c) $\theta = 60^{\circ}$
- d) $\theta = 120^{\circ}$
- e) $\theta = 240^{\circ}$
- **9.** A força resultante aplicada a um objeto de massa 100 g é (2,0; 4,0; 0,0) N. Qual a aceleração que provoca no objeto?
- **10.** Estão aplicadas duas forças a um objeto, (2.0, 1.0, 0) N e (3.0, 0.0, 1.0) N. Qual a aceleração que originam num objeto de massa 2.0 kg?
- 11. Um feixe de raios catódicos viaja num espaço onde existe um campo elétrico $\vec{E}=(0,1,0)$ N/C (unidades SI). A força aplicada a cada partícula do feixe (eletrão) é $\vec{F}=q$ \vec{E} , onde $q=-1,602176208\times 10^{-19}$ C é a carga elétrica do eletrão. Determine a aceleração que o eletrão sofre nesse campo elétrico, sabendo que a massa do eletrão é $m_e=9,10938356\times 10^{-31}$ kg?
- 12. A lei do movimento de um objeto de massa 1 kg é $\vec{r} = (2t, t, 0)$ m.
- a) Calcule a lei da velocidade.
- b) Calcule o momento angular definido por $\vec{L} = \vec{r} \times (m\vec{v})$.
- 13. A lei do movimento de um objeto de massa 0.1 kg é $\vec{r} = (\cos \omega t, \sin \omega t, 0)$ m.
- a) Calcule a lei da velocidade.
- b) Calcule o momento angular definido por $\vec{L}=\vec{r}\times(m\vec{v})$, sabendo que a a massa do objeto é $0.1~{\rm kg}~{\rm e}~\omega=1.0~{\rm rad/s}$
- 14. Um objeto tem aplicada a força $\vec{F}=(0,0,0.1)$ N no ponto de coordenadas $\vec{r}=(1,0,0)$ m. Calcule o momento da força (torque) definido por $\vec{\tau}=\vec{r}\times\vec{F}$.

- 15. Um semáforo de peso T_3 está suspenso no ponto de intersecção de duas barras inclinadas. A primeira barra faz um ângulo θ_1 com a horizontal e a segunda barra um ângulo θ_2 . Determine a força de tensão em cada barra.
- **16.** Um carro desce, sem fricção, uma colina inclinada de ângulo θ , com o motor desligado. Calcule a aceleração que adquire nessa descida.
- 17. Uma bola de futebol é pontapeada de modo que roda sobre si própria, o que resulta adicionar a força de Magnus às outras forças. A força de Magnus resulta de o escoamento do ar ser diferente nos dois lados opostos da bola. É definida por $\vec{F}_{Magnus} = \frac{1}{2} A \, \rho_{ar} \, r \, \vec{\omega} \times \vec{v}$, em que $A = \pi r^2$ é a área da secção de corte da bola, r o raio da bola e $\rho_{ar} = 1.225 \, \text{kg/m}^3$ a massa volúmica do ar. O raio da bola de futebol é 11 cm.

Se a rotação for descrita pelo vetor $\vec{\omega} = (0,0,10)$ rad/s e a velocidade for $\vec{v} = (0,1,0)$ m/s, qual a força de Magnus?

Soluções Problemas Teóricos

- 2.4, 60,3°
- 3. a) Família de vetores (a, -3/4 a), por exemplo o vetor (4, -3);
- b) os versores (4/5, -3/5) e (-4/5, 3/5)
- **4.** (-1,0; 6,6) N; 6,7 N
- 5.0,20
- **6.** [4., -1., 2.5]; 154.2°
- 7. +5,7 N ou -5,7 N
- **8.** a) (0.00,2.00)N; b) (1.73,-1.0)N; c) (1.00,1.73)N; d) (-1.00,1.73)N; e) (-1.00,-1.73)N
- 9. (20, 40, 0) m/s²
- **10.** (5/2, 1/2, 1/2) m/s²
- 11. $(0, -1.8, 0) \times 10^{12} \text{ m/s}^2$
- **12.** a) $\vec{v} = (2, 1, 0) \text{ m/s}$; b) $\vec{L} = 0$
- **13.** a) $\vec{v} = (-\omega \sin \omega t, \omega \cos \omega t, 0) \text{ m/s}; b) \vec{L} = (0, 0, 0.1) \text{ kg} \cdot \text{m}^2/\text{s}$
- **14.** $\vec{\tau} = (0, 0.1, 0) \text{ m} \cdot \text{N}$
- **15.** $T_1 = T_3 \cos \theta_1 / \sin(\theta_1 + \theta_2)$; $T_2 = T_3 \cos \theta_2 / \sin(\theta_1 + \theta_2)$; usando $\sin(\theta_1 + \theta_2) = \sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2$
- **16.** $g \sin \theta$
- 17. $\vec{F}_{Magnus} = (-0.026, 0, 0) \text{ N}$

Problemas Numéricos

- 1. Uma bola de futebol é chutada com velocidade de 100 km/h, a fazer um ângulo de 10° com o campo (horizontal).
- a) Encontre a lei do movimento usando métodos analíticos, se só considerar o peso da bola. Faça um gráfico da altura em função da distância percorrida na horizontal.
- b) Nas condições da alínea a), qual a altura máxima atingida pela bola e em que instante?
- c) Nas condições da alínea a), qual o alcance (distância entre a posição onde foi chutada e o ponto onde alcançou no campo) da trajetória da bola e quanto tempo demorou?
- d) Desenvolva um programa que obtenha a lei do movimento e a lei da velocidade em função do tempo, usando o método de Euler. Tem confiança que o seu programa está correto?
- e) Considere agora a resistência do ar. A força de resistência do ar ao movimento da bola é:

$$\begin{cases} F_x^{(res)} = -m \; D |\vec{v}| v_x \\ F_y^{(res)} = -m \; D |\vec{v}| v_y \end{cases}$$

em que $D = g/v_T^2$, e a velocidade terminal é $v_T = 100\,$ km/h. Atualize o seu programa de modo a considerar a força de resistência do ar. Faça o gráfico da altura em função da distância percorrida na horizontal.

- f) Nas condições da alínea e), determine qual a altura máxima atingida pela bola e em que instante? Tem confiança no seu resultado?
- g) Nas condições da alínea e), qual o alcance (distância entre a posição onde foi chutada e o ponto onde alcançou no campo) da trajetória da bola e quanto tempo demorou? Tem confiança no seu resultado?
- **2.** Um volante de badmington é batido à altura de 3 m (a partir do chão), com velocidade 200 km/h e a fazer um ângulo de 10° com a horizontal. Considerando que a velocidade terminal é 6.80 m/s,
- a) Faça o gráfico da trajetória (altura em função da distância percorrida na horizontal).
- b) Em ponto cai no chão e quanto demorou?
- 3. Um jogador de futebol executa um canto e chuta a bola de modo a ela entrar na baliza. Para conseguir uma trajetória que possibilite à bola entrar na baliza, pontapeia a bola com uma rotação lateral sobre si própria, o que resulta no aparecimento da força de Magnus, $\vec{F}_{Magnus} = \frac{1}{2} A \, \rho_{ar} \, r \, \vec{\omega} \times \vec{v}$, em que $A = \pi r^2$ é a área da secção de corte da bola, r o raio da bola e $\rho_{ar} = 1.225 \, \text{kg/m}^3$ a massa volúmica do ar. O raio da bola de futebol é 11 cm. Esta força de resulta de o escoamento do ar ser diferente nos dois lados opostos da bola. Se a bola for chutada com a rotação descrita pelo vetor $\vec{\omega} = (0,400,0) \, \text{rad/s}$ e a velocidade inicial for $\vec{v} = (25,5,-50) \, \text{m/s}$, e a posição inicial for o canto $(0,0,23.8) \, \text{m/s}$, a bola entra na baliza? A massa da bola de futebol é $0,45 \, \text{kg}$. O sistema de eixos considerado é: OX de baliza a baliza, OY o eixo vertical e OZ o eixo deste o poste da baliza e passa pela marca de canto. É golo quando: x < 0 e $0 < z < 7.3 \, \text{m}$ e $0 < y < 2.4 \, \text{m}$. A velocidade terminal é $v_T = 100 \, \text{km/h}$.

- **4.** Numa partida de ténis, muitas vezes a bola é batida de modo a adquirir rotação, num eixo horizontal e perpendicular à velocidade. Calcule a trajetória da bola, quando parte da posição inicial (-10,1,0) com a velocidade 130 km/h, a fazer um ângulo de 10° com a horizontal e no sentido positivo dum eixo horizontal OX, sendo OY eixo vertical. A bola de ténis tem a massa 57 g, o diâmetro 67 mm e no ar tem a velocidade terminal 100 km/h. Calcule a altura máxima e o alcance (quando bate em y=0) da trajetória da bola, quando
- a) A rotação é nula.
- b) A rotação é descrita por $\vec{\omega} = (0, 0, +100)$ rad/s
- c) A rotação é descrita por $\vec{\omega} = (0, 0, -100)$ rad/s
- **5**. Simule a órbita da Terra á volta do sol, usando o método de Euler sabendo que a força de atração da Terra exercida pelo Sol é

$$\vec{F}_{grav} = -G \frac{m M}{|\vec{r}|^2} \hat{r}$$

em que $\hat{r} = \frac{\vec{r}}{|\vec{r}|} e \vec{r}$ o vetor da posição da Terra relativamente ao Sol.

Como as quantidades envolvidas são enormes, trabalhe no sistema astronómico de unidades (ver apêndice) Considere a posição inicial da Terra (1,0) AU, e a velocidade inicial (0,2 π) AU/ano e o Sol como fixo na origem do sistema de eixos.

- a) A órbita da Terra à volta do sol é fechada? Consegue obter elipses?
- b) Implemente o método de Euler-Cromer. Este método a 1D integra as equações diferenciais

$$a_x(t) = \frac{dv_x}{dt}$$
 e $v_x(t) = \frac{dx}{dt}$

ao fazer as aproximações

$$v_x(t + \delta t) = v_x(t) + a_x(t) \times \delta t$$

$$x(t + \delta t) = x(t) + v_x(t + \delta t) \times \delta t$$

Consegue órbitas fechadas? São elipses? Concordam com as leis de Kepler?

- c) Encontre o erro de truncatura deste método de Euler-Cromer.
- **6.** Uma mola exerce uma força $F_x = -k x(t)$, em que k é a constante elástica da mola, num corpo de massa m. Considere k = 1 N/m e m = 1 kg.
- a) Mostre que a lei do movimento $x(t) = A\cos(\omega t + \phi)$, com $\omega = \sqrt{k/m}$, é solução da equação dinâmica de Newton do sistema mola-corpo. Qual a lei de velocidade do corpo ligado à mola, Qual a lei de velocidade do corpo ligado à mola, em que $A \in \phi$ são constantes?
- b) Calcule numericamente a lei da velocidade e compare com o resultado analítico. Qual o método numérico que escolhe? Considere nula a velocidade inicial e a posição inicial 4 m.
- c) Calcule numericamente a lei do movimento nas condições da alínea anterior e compare com o resultado analítico.

Apêndice - Sistema Astronómico de Unidades (AU)

Convém não lidar explicitamente no computador com potências de dez, como no caso do sistema Sol-Terra, em que a massa dos astros, o tempo das órbitas e as distâncias entre os astros são números enormes. Uma maneira de evitar com números muito grandes é construir um sistema de unidades adequado ao problema em estudo. Neste caso, vamos considerar a distância média da terra ao sol, R, a massa do sol, M, e o período de uma órbita da terra à volta do sol, T, as novas unidades de distância, massa e tempo.

Tabela 4A.1 Sistema Astronómico de unidades

Grandeza	Símbolo	Definição	Valor no SI	Conversão do SI
Massa	M	Massa do Sol	$1,989 \times 10^{30} \text{ kg}$	$1 \text{ kg} = 5,028 \times 10^{-31} \text{ M}$
Distância	AU	Distância média da Terra ao Sol	1,498 x 10 ¹¹ m	$1 \text{ m} = 6,676 \times 10^{-12} \text{ AU}$
Tempo	ano	Período da Terra em volta do Sol	$3,15 \times 10^7 \mathrm{s}$	$1 \text{ s} = 3,17 \times 10^{-8} \text{ ano}$

Neste sistema, a constante de gravitação é

$$G = 6.67 \times 10^{11} \frac{(6.676 \times 10^{-12} \text{ AU})^3}{(5.028 \times 10^{-31} M)(3.17 \times 10^{-8} \text{ ano})^2} = 4\pi^2 \text{ AU}^3/\text{M ano}^2,$$

a unidade de energia é $5.50 \times 10^{38} \,\mathrm{J}$ e a unidade de velocidade é $4718.48 \,\mathrm{m/s}$

Tabela 4A.2. Dados experimentais do sistema solar.

	Massa (kg)	Período sideral	Distância média ao Sol		Excentricidade	Inclinação
		(1 ano=365,24 dias)	(semi-eixo maior)			eclíptica (grau)
			(10^{11}m)	(AU)		
Mercúrio	$3,301 \times 10^{23}$	0,2408	0,5791	0,3871	0,2056	7,004
Vénus	4,669 ×10 ²⁴	0,6151	1,082	0,723	0,0068	3,394
Terra	5,978 ×10 ²⁴	1	1,496	1	0,0167	0
Marte	$6,420 \times 10^{23}$	1,881	2,279	1,523	0,0934	1,850
Júpiter	$1,899 \times 10^{27}$	11,86	7,783	5,203	0,0481	1,306
Saturno	5,685 ×10 ²⁶	29,46	14,27	9,54	0,0533	2,489
Urano	8,686×10 ²⁵	84,02	28,69	19,18	0,0507	0,773
Neptuno	$1,025 \times 10^{26}$	164,8	44,98	30,07	0,0040	1,773
Sol	$1,989 \times 10^{30}$					
Lua	$7,353 \times 10^{22}$		384 400km à Terra		0,055	5,144
Plutão	5×10^{23}	248	59,00	39,44	0,2533	17,142

Soluções Problemas Numéricos

1. a)
$$\begin{cases} v_x(t) = v_{0x} \\ v_y(t) = v_{0y} - gt \end{cases} \begin{cases} x(t) = x_0 + v_{0x} \ t \\ y(t) = y_0 + v_{0y} \ t - \frac{1}{2} g \ t^2 \end{cases}$$
 Trajetória de uma bola sem resistência do ar v0=100 km/h, theta=10°

- b) $y_m = 1.19 \text{ m e } t_m = 0.49 \text{ s; c}) x_{solo} = 26.9 \text{ m e } t_{solo} = 0.98 \text{ s;}$
- d) Um teste ao seu programa para ter confiança é reproduzir os resultados exatos obtidos nas alíneas anteriores.

δt (s)	Altura máxima (m)	Alcance (m)
0.1	1.440506	29.6646007221
0.01	1.2113	27.202581
0.001	1.18949136	26.95637
0.0001	1.18731954	26.931759207
0.00001	1.187102	26.9292971

A altura máxima é 1.187 m e o alcance é 26.9 m, o que reproduz os valores determinados pelo método exato.

e)

f) e g)

<u>, , , , , , , , , , , , , , , , , , , </u>		
δt (s)	Altura máxima (m)	Alcance (m)
0.1	1.3050	24.1821
0.01	1.09232639	22.311966
0.001	1.072268232	22.1245316
0.0001	1.0702742	22.1057830
0.00001	1.07007500	22.103908

A altura máxima é 1.070 m e o alcance é 22.10 m.

2.

b) 13.2 m e 1.46 s

3.

Entra.

4. a)

δt (s)	Altura máxima (m)	Alcance (m)
0.1	2.9868	29.16701087
0.01	2.7282197721	27.4047699
0.001	2.70360028	27.22868
0.0001	2.701150538	27.211076
0.00001	2.700905686	27.2093157962

altura máxima =2.70 m; alcance 27.21 m;

b)

~ /		
δt (s)	Altura máxima (m)	Alcance (m)
0.1	3.9019528	40.96493035
0.01	3.646755	39.4620245
0.001	3.622064	39.310731
0.0001	3.61960309	39.2955928
0.00001	3.61935707370	39.294078914

3.62 m; 39.29 m

c)

δt (s)	Altura máxima (m)	Alcance (m)
0.1	2.53547	21.74859
0.01	2.26736381	19.8336427
0.001	2.24225	19.6436191
0.0001	2.23976238	19.6246321
0.00001	2.239513193	19.6227335

2.24 m; 19.62 m;

5. a) Não; b) Sim.; são; Concordam com as leis de Kepler; c) erro linearmente proporcional a δt

6. a) $v_x(t) = -A \omega \sin(\omega t + \phi)$;

b) Método de Euler-Cromer;

c)

