

Noject INTRODUCTION

This project predicts employee salaries using advanced regression techniques and thorough data preprocessing. We compare multiple machine learning models to select the best-performing one, which is then integrated into a pipeline. This pipeline includes all necessary preprocessing steps, ensuring accurate predictions and easy deployment.

Object OBJECTIVES

01	EXPLORATORY DATA ANALYSIS
02	DATA PREPROCESSING
03	FEATURE ENGINEERING
04	FEATURE SELECTION
05	MODEL TRAINING AND EVALUATION
06	MODEL COMPARISON AND SELECTION
07	HYPERPARAMETER TUNING
80	PIPELINE BUILDING
na	DEPLOYMENT

Explorations DATA ANALYSIS

- **Gender Distribution**: More females than males.
- Unit Distribution: Most employees are in the IT department.
- **Designation Distribution**: A significantly large population of analysts.
- Age Trend: Older employees tend to have higher salaries.
- **Experience Trend**: Higher experience correlates with higher salaries.

Lon to PREPROCESSING

- **Dropped** duplicates.
- Checked for null values.
- Imputed DOJ, AGE, and RATINGS columns with mode.
- Imputed LEAVES USED, LEAVES
 REMAINING columns with median.
- Dropped FIRST NAME, LAST NAME columns.

Feature ENGINEERING

- Converted DOJ and CURRENT DATE columns to datetime datatype.
- Created a new feature: years_experience.
- **Dropped** date columns.

Feature SELECTION

- Used SelectKBest to select best features.
- Extracted selected feature names: SEX,
 DESIGNATION, AGE, UNIT, PAST EXP,
 years_experience.
- Reassigned selected features to training and test datasets.
- **Conducted** correlation study and dropped columns with correlation exceeding [-0.8, 0.8].

TRAINING and EVALUATION

- **Developed** helper functions for calculating and storing regression metrics.
- Implemented functions to train models and generate predictions.
- Evaluated model performance by comparing training and test metrics.

Model COMPARISON and SELECTION

- Compared multiple regression models, including Lasso Regression, Random Forest Regression, Gradient Boosting Regression, XGBoost, and Support Vector Regression.
- Evaluated each model using Mean Absolute
 Error, Mean Squared Error, Root Mean Squared
 Error, and R2 score.
- Selected Gradient Boosting Regression as the best-performing model with an R2 score of 0.9495 for final pipeline integration.

Hyperparameter TUNING

- Created a pipeline that included data preprocessing steps, feature selection with SelectKBest, and the Gradient Boosting Regressor model.
- Conducted hyperparameter tuning using
 RandomizedSearchCV to optimize the Gradient
 Boosting Regressor.
- Tuned hyperparameters such as `n_estimators`,
 `learning_rate`, `max_depth`, `min_samples_split`,
 `min_samples_leaf`, and `subsample`.
- Achieved improved model performance by identifying the best combination of hyperparameters for the Gradient Boosting Regressor.

Pipeline BUILDING

- Built a preprocessing pipeline using
 ColumnTransformer to handle different types of categorical encoding (ordinal and nominal).
- Integrated SelectKBest for feature selection within the pipeline to automatically choose the most relevant features.
- Incorporated the best-performing model, Gradient Boosting Regressor, into the pipeline.
- Configured the final pipeline to include all preprocessing steps, feature selection, and the regression model for seamless integration and deployment.
- Ensured that the entire pipeline, including preprocessing and model training, could be saved and reused efficiently.

Web App DEPLOYMENT

- **Developed** a web application using Streamlit for easy and interactive salary prediction.
- Created a user-friendly interface for inputting employee information and obtaining salary predictions.
- **Deployed** the application using Streamlit's built-in sharing platform.
- Included a `requirements.txt` file to ensure easy replication of the development environment for deployment.
- Check it out <u>here</u>.

