1 a

Höhenanomalie

$$\zeta = h - H_N$$

wobei

 \bullet h: ellipsoidische Höhe

• H_N : Normalhöhe

Höhenanomalien von Punkten 1-20:

Pkt.Nr	Höhenanomalie [m]	Pkt.Nr	Höhenanomalie [m]
1	48,3548	11	48,3946
2	48,3928	12	48,4203
3	48,4118	13	48,4420
4	48,4159	14	48,4556
5	48,4290	15	48,4695
6	48,3750	16	48,4148
7	48,4098	17	48,4483
8	48,4290	18	48,4659
9	48,4360	19	48,4762
10	48,4487	20	48,4890

Standardabweichung:

$$\sigma_{\zeta} = \sqrt{\sigma_h^2 + \sigma_{H_N}^2} = 0,0051\,\mathrm{m}$$

Graphische Darstellung:

2 b

In dieser Aufgabe sind die Höhenanomalien ζ_i mit einem Flächenpolynom von Grad 2 zu approximieren.

$$\zeta_i = a_0 + a_1 y_i + a_2 x_i + a_3 y_i x_i + a_4 y_i^2 + a_5 x_i^2$$

Mit Gauß-Markov-Modell stellt man die folgenden Gleichungen.

$$\hat{x} = (A^{T}A)^{-1}A^{T}y = \begin{bmatrix} \zeta_{1} & y'_{1} & x'_{1} & y'_{1} \cdot x'_{1} & y'_{1}^{2} & x'_{1}^{2} \\ 1 & y'_{2} & x'_{2} & y'_{2} \cdot x'_{2} & y'_{2}^{2} & x'_{2}^{2} \\ \vdots & & & & \\ 1 & y'_{19} & x'_{19} & y'_{19} \cdot x'_{19} & y'_{19}^{2} & x'_{19}^{2} \\ 1 & y'_{20} & x'_{20} & y'_{20} \cdot x'_{20} & y'_{20}^{2} & x'_{20}^{2} \end{bmatrix} \cdot \underbrace{\begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \end{bmatrix}}_{x}$$

Schwerpunktkoordinaten:

$$x_s = \frac{1}{20} \sum_{i=1}^{20} x_i = 5375436,408 \,\mathrm{m}$$
 $y_s = \frac{1}{20} \sum_{i=1}^{20} y_i = 3523910,288 \,\mathrm{m}$