Wigner's Semicircular Theorems

October 16, 2024

1 Definitions

Assume we have two families of independent and identical real-valued random variables with zero-mean $\{Z_{i,j}\}_{1\leq i < j}$ and $\{Y_i\}_{1\leq i}$ such that $\mathbb{E}[Z_{1,2}^2] = 1 = \mathbb{V}$ ar $[Z_{1,2}]$ for all integers $k \geq 1$. We also have,

$$r_k := \max \left\{ \mathbb{E}[|Z_{1,2}^k|], \mathbb{E}[|Y_1^k|] \right\} < \infty$$

Then we define Wigner matrices as the symmetric $N \times N$ matrices X_N as

$$X_N(i,j) = X_N(j,i) = \begin{cases} \frac{Z_{i,j}}{\sqrt{N}} & \text{if } i < j, \\ \frac{Y_i}{\sqrt{N}} & \text{if } i = j. \end{cases}$$

Let λ_i^N be the real ordered eigenvalues of X_N and we define the empirical distribution of the eigenvalues as the probability measure on \mathbb{R} defined as

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i^N}$$

Denote the semicircle distribution as the probability distribution $\sigma(x)dx$ on $\mathbb R$ with density

$$\sigma(x) = \frac{1}{2\pi} \sqrt{4 - x^2} \mathbf{1}_{\{|x| \le 2\}}$$

2 Statement of Theorem

Wigner's Semicircle Theorem for Real Matrices:

For all Wigner matrices, the empirical measure \mathcal{L}_N converges in probability to the semicircle distribution

i.e. for all $f \in C_b(\mathbb{R})$ and for all $\epsilon > 0$

$$\lim_{N \to \infty} \mathbb{P}\left(\left|\left\langle L_N, f \right\rangle - \left\langle \sigma, f \right\rangle\right| > \epsilon\right)$$

Figure 1: Three realisations of the eigenvalue distribution for N = 20,200,3000

3 Helpful Lemmas

Lemma 1:

For all $k \in \mathbb{N}$,

$$\lim_{N\to\infty} \langle \overline{L}_N, x^k \rangle = \langle \sigma, x^k \rangle$$

We denote $m_k := \langle \sigma, x^k \rangle$ and $m_k^N = \langle \overline{L}_N, x^k \rangle$

Proof of Lemma 1:

We start with basic matrix algebra

$$\langle \overline{L}_{N}, x^{k} \rangle = \frac{1}{N} \mathbb{E}[\text{tr}(X_{N}^{k})]$$

$$= \frac{1}{N} \sum_{i_{1}, \dots, i_{k}=1}^{N} \mathbb{E}[X_{N}(i_{1}, i_{2})X_{N}(i_{2}, i_{3}) \cdots X_{N}(i_{k-1}, i_{k})X_{N}(i_{k}, i_{1})]$$

$$:= \frac{1}{N} \sum_{i_{1}, \dots, i_{k}=1}^{N} \mathbb{E}[T_{\mathbf{i}}^{N}] := \frac{1}{N} \sum_{i_{1}, \dots, i_{k}=1}^{N} \overline{T}_{\mathbf{i}}^{N} \quad \text{where } \mathbf{i} = (i_{1}, \dots, i_{k})$$
(3.1)

We now transfer to the language of combinatorics to complete this proof...

Given a set \mathcal{J} , a \mathcal{J} -letter is an element of \mathcal{J} , and a \mathcal{J} -word is a finite sequence of \mathcal{J} -letters, at least one letter long. A \mathcal{J} -word is closed if the first and last letters are the same, and two \mathcal{J} -words are equivalent, w_1 w_2 , if there exists a bijection

on \mathcal{J} mapping one to the other. If $\mathcal{J} = \{1, ..., N\}$, we call it an N-word. The length of a word w, l(w), is the number of letters in w, its weight, $\operatorname{wt}(w)$, is the number of distinct letters in the word, and the support of w, $\operatorname{supp}(w)$, is the set of letters in w.

We can then associate to each word $w = s_1, ..., s_k$ a graph $G_w = (V_w, E_w)$ where vertices $V_w = \operatorname{supp}(w)$, and edges $E_w = \{\{s_i, s_{i+1}\}; i=1, ..., k-1\}$. We call the set of self edges $E_w^s = \{e \in E_w : e = \{u, u\}, u \in V_w\}$, and the set of connecting edges $E_w^c = E_w \setminus E_w^s$. Note that G_w is connected as w defines a path connecting all the vertices, and defines a cycle if the word is closed. Denote N_e^w for $e \in E_w$ the number of times the path w traverses edge e.

Now note that any k-tuple of integers **i** defines a closed word $w_{\mathbf{i}} = i_1 i_2 i_k i_1$ with length k + 1. Then,

$$\overline{T}_{\mathbf{i}}^{N} = \frac{1}{N^{\frac{k}{2}}} \prod_{e \in E_{w_{\mathbf{i}}}^{c}} \mathbb{E}[Z_{1,2}^{N_{e}^{w_{\mathbf{i}}}}] \prod_{e \in E_{w_{\mathbf{i}}}^{s}} \mathbb{E}[Y_{1}^{N_{e}^{w_{\mathbf{i}}}}]$$
(3.2)

Hence we see that $\overline{T}_{\mathbf{i}}^N = 0$ unless $N_e^{w_{\mathbf{i}}} \geq 2$ for all $e \in E_{w_{\mathbf{i}}}$. Furthermore, $\operatorname{wt}(w_{\mathbf{i}}) \leq \frac{k}{2} + 1$

Note that if $N \geq t$, then there are $C_{N,t} = N(N-1)...(N-t+1)$ N-words equivalent to a given N-word with weight t.

We define $\mathcal{W}_{k,t}$ to be the set of representatives for equivalency classes of closed N-words w with length k+1, weight t, and with $N_e^w \geq 2$ for all $e \in E_w$. We then deduce from (3.1) and (3.2) that

$$\langle \overline{L}_N, x^k \rangle = \sum_{t=1}^{\lfloor \frac{k}{2} \rfloor + 1} \frac{C_{N,t}}{N^{\frac{k}{2} + 1}} \sum_{w \in \mathcal{W}_{k,t}} \prod_{e \in E_w^c} \mathbb{E}[Z_{1,2}^{N_e^w}] \prod_{e \in E_w^s} \mathbb{E}[Y_1^{N_e^w}]$$
(3.3)

The cardinality of $\mathcal{W}_{k,t}$ is bounded by the number of closed \mathcal{J} -words of length k+1 when the cardinality of \mathcal{J} is $t \leq k$

$$|\mathscr{W}_{k,t}| \le t^k \le k^k$$

Thus (3.3) and the finiteness of r_k imply

$$\lim_{N\to\infty}\langle \overline{L}_N,x^k\rangle = \begin{cases} 0 & \text{if kodd,} \\ \sum_{w\in\mathscr{W}_{k,\frac{k}{2}+1}}\prod_{e\in E_w^c}\mathbb{E}[Z_{1,2}^{N_e^w}]\prod_{e\in E_w^s}\mathbb{E}[Y_1^{N_e^w}] & \text{if keven.} \end{cases}$$

since

$$\lim_{N \to \infty} \sum_{t=1}^{\lfloor \frac{k}{2} \rfloor + 1} \frac{C_{N,t}}{N^{\frac{k}{2} + 1}} \approx \sum_{t=1}^{\lfloor \frac{k}{2} \rfloor + 1} N^{t - \frac{k}{2} - 1}$$

We define a closed word w of length $k+1 \ge 1$ is a Wigner word if k=0, or k even and w equivalent to an element of $\mathscr{W}_{k,\frac{k}{n}+1}$

Note that if $w \in \mathcal{W}_{k,\frac{k}{3}+1}$, then G_w is a tree, and also $E_w^s = \emptyset$. This implies that

$$\lim_{N\to\infty}\langle \overline{L}_N, x^k\rangle = |\mathscr{W}_{k,\frac{k}{2}+1}| \quad \text{for k even}$$

Now let k be even and choose $\mathscr{W}_{k,\frac{k}{2}+1}$ such that all words $w=v_1,...,v_{k+1}$ satisfies for i=1,...,k+1, that $\{v_1,...,v_i\}$ is an interval in the integers, beginning with 1. Note each element $w\in \mathscr{W}_{k,\frac{k}{2}+1}$ determines a path $v_1,v_2,...,v_k,v_{k+1}=v_1$ length k+1 on a tree G_w called the exploration process for w.

Let d(v, v') denote the distance between v, v' on a tree G_w which is the length of the shortest path between them. Then we set $x_i = d(v_{i+1}, v_1)$ and see that each word $w \in \mathscr{W}_{k, \frac{k}{2}+1}$ defines a Dyck path $D(w) = (x_1, x_2, ..., x_k)$ of length k.

Conversely, given a Dyck path $x = (x_1, ..., x_k)$ can construct a word $w = T(x) \in \mathcal{W}_{k, \frac{k}{2} + 1}$ by recursively constructing an increasing sequence $w_2, ..., w_k = w$ of words as follows:

- 1) $w_2 = (1,2)$
- 2) For i > 2, if $x_{i-1} = x_{i-2} + 1$, then w_i is obtained by adjoining on the right of w_{i-1} the smallest positive integer not in w_{i-1} . Otherwise w_i is obtained by adjoining on the right of w_{i-1} next to the last letter of w_{i-1}

Note that for all i, G_{w_i} is a tree since G_{w_2} is a tree and at stage i we either add a leaf, or a backtrack is added. Hence the distance in G_{w_i} between the first and last letter of w_i is x_{i-1} , and so $D(w) = (x_1, ..., x_k)$.

With our choice of representation, T(D(w)) = w as each 'up' in D(w) starting at location i-2 corresponds to the adjoinment on the right of w_{i-1} of a new letter, uniquely determined by $\operatorname{supp}(w_{i-1})$, but each 'down' at i-2 corresponds to the joining of penultimate letter in w_{i-1} . Hence there is a bijection between Dyck paths of length k and $\mathcal{W}_{k,\frac{n}{n}+1}$.

Now we will calculate how many unique Dyck paths of length 2k exist for each k. First let B_k be the number of Bernoulli walks S_n length 2k such that $S_{2k} = 0$, and let \overline{B}_k be the number of Bernoulli walks S_n length 2k such that $S_{2k} = 0$ and $S_t < 0$ for some t < 2k. Hence the number of Dyck paths is $B_k - \overline{B}_k$.

Now $B_k = \binom{2k}{k}$ as we must have k 'up' steps and k 'down' steps. Then $\overline{B}_k = \binom{2k}{k-1}$ as must have k+1 'down' steps and k-1 'up' steps after the first time going negative. Hence the number of Dyck paths is $\binom{2k}{k} - \binom{2k}{k-1} = C_k$

where C_k is the $k^{\rm th}$ Catalan number.

We finish by showing that $m_{2k} = C_k$ for all integers k. First note that $m_{2k+1} = 0$ by symmetry over the integral. Now,

$$m_{2k} = \int_{\mathbb{R}} x^{2k} \sigma(x) dx$$

$$= \frac{1}{2\pi} \int_{-2}^{2} x^{2k} \sqrt{4 - x^{2}} dx$$

$$= \frac{1}{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2\sin(\theta))^{2k} \sqrt{4 - 4\sin^{2}(\theta)} 2\cos(\theta) d\theta$$

$$= \frac{2^{k+1}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2k}(\theta) \cos^{2}(\theta) d\theta$$

$$= \frac{2^{k+1}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2k}(\theta) (1 - \sin^{2}(\theta)) d\theta$$

$$= \frac{2^{k+1}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2k}(\theta) d\theta - (2k+1)m_{2k} \quad \text{from integrating by parts}$$

Hence $m_{2k} = \frac{2^{k+1}}{\pi(2k+2)} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2k}(\theta) d\theta = \frac{\binom{2k}{k}}{k+1} = C_k$ if fully evaluated.

So to conclude, we have shown

$$\lim_{N \to \infty} \langle \overline{L}_N, x^k \rangle = |\mathscr{W}_{k, \frac{k}{2} + 1}| = C_{\frac{k}{2}} = m_k = \langle \sigma, x^k \rangle$$

and we are done. \square

Lemma 2:

For all $k \in \mathbb{N}$ and $\epsilon > 0$,

$$\lim_{N \to \infty} \mathbb{P}\left(\left| \langle L_N, x^k \rangle - \langle \overline{L}_N, x^k \rangle \right| > \epsilon\right) = 0$$

Proof of Lemma 2:

By Chebyshev's Inequality, we can equivalently prove

$$\lim_{N \to \infty} |\mathbb{E}[\langle L_N, x^k \rangle^2] - \langle \overline{L}_N, x^k \rangle^2| = 0$$

As similar to previous (3.1),

$$\mathbb{E}[\langle L_N, x^k \rangle^2] - \langle \overline{L}_N, x^k \rangle^2 = \frac{1}{N^2} \sum_{\substack{i_1, \dots, i_k = 1 \\ i'_1, \dots, i'_k = 1}}^N \overline{T}_{\mathbf{i}, \mathbf{i}}^N, \qquad (3.4)$$

where
$$\overline{T}_{\mathbf{i},\mathbf{i}}^N = \mathbb{E}[T_{\mathbf{i}}^N T_{\mathbf{i}}^N] - \mathbb{E}[T_{\mathbf{i}}^N] \mathbb{E}[T_{\mathbf{i}}^N]$$

Given a set \mathcal{J} , a \mathcal{J} -sentence is a finite sequence of \mathcal{J} -words at least one word long. Two sentences are equivalent, a_1 a_2 , if there is a bijection on \mathcal{J} mapping one to the other. For a sentence $a = (w_1, w_2, ..., w_n)$, the support supp $(a) = \bigcup_{i=1}^n \text{supp}(w_i)$, and the weight, wt(a), is the cardinality of supp(a).

We can assign graphs to sentences as previous. Given a sentence $a = (w_1, ..., w_k)w_i = s_1^i, s_2^i, ..., s_{l(w)}^i$ we set $G_a = (V_a, E_a)$ with vertices $V_a = \text{supp}(a)$ and edges $E_a = \left\{\left\{s_j^i, s_{j+1}^i\right\}; j=1, ..., l(w_i)-1, i=1, ..., k\right\}$. We define the set of self edges and connecting edges in the same way as before, but note the graphs may be disconnected this time and sentence a defines k paths G_a . Define N_e^a the number of times the union of the paths traverse edge e. Equivalent sentences generate the same graph and passage counts.

We recall closed words $w_{\mathbf{i}}, w_{\mathbf{i}'}$ of length k+1 and define the two word sentence $a_{\mathbf{i},\mathbf{i}'} = (w_{\mathbf{i}}, \mathbf{i}')$, then

$$\overline{T}_{\mathbf{i},\mathbf{i}'}^{N} = \frac{1}{N^{k}} \left(\prod_{e \in E_{a_{\mathbf{i},\mathbf{i}'}}^{c}} \mathbb{E}[Z_{1,2}^{N_{e^{\mathbf{i},\mathbf{i}'}}^{a_{\mathbf{i},\mathbf{i}'}}}] \prod_{e \in E_{a_{\mathbf{i},\mathbf{i}'}}^{s}} \mathbb{E}[Y_{1}^{N_{e^{\mathbf{i},\mathbf{i}'}}^{a_{\mathbf{i},\mathbf{i}'}}}] - \prod_{e \in E_{w_{\mathbf{i}}}^{s}} \mathbb{E}[Z_{1,2}^{N_{e^{\mathbf{i},\mathbf{i}'}}}] \prod_{e \in E_{w_{\mathbf{i}}}^{s}} \mathbb{E}[Y_{1}^{N_{e^{\mathbf{i},\mathbf{i}'}}}] \prod_{e \in E_{w_{\mathbf{i},\mathbf{i}'}}^{s}} \mathbb{E}[Z_{1,2}^{N_{e^{\mathbf{i},\mathbf{i}'}}}] \prod_{e \in E_{w_{\mathbf{i},\mathbf{i}'}}^{s}} \mathbb{E}[Y_{1}^{N_{e^{\mathbf{i},\mathbf{i}'}}}] \right)$$
(3.5)

Hence $\overline{T}_{\mathbf{i},\mathbf{i'}}^N=0$ unless $N_e^{a_{\mathbf{i},\mathbf{i'}}}\geq 2$ for all edges, and $E_{w_{\mathbf{i}}}\cap E_{w_{\mathbf{i'}}}\neq \emptyset$

Again if $N \geq t$, there are $C_{N,t}$ N-sentences equivalent to a given N-sentence weight t

Let $\mathscr{W}_{k,t}^{(2)}$ denote the set of representatives for equivalence classes of sentences a with weight t comprised of 2 closed t-words (w_1, w_2) each with length k+1 with $N_e^a \geq 2$ for all $e \in E_a$ and $E_{w_i} \cap E_{w_i} \neq \emptyset$. Then from (3.4) and (3.5),

$$\mathbb{E}[\langle L_N, x^k \rangle^2] - \langle \overline{L}_N, x^k \rangle^2 = \sum_{t=1}^{2k} \frac{C_{N,t}}{N^{k+2}} \sum_{a=(w_1, w_2) \in \mathcal{W}_{k,t}^{(2)}} (\prod_{e \in E_{a_i,i}^c} \mathbb{E}[Z_{1,2}^{N_e^{a_i,i'}}] \prod_{e \in E_{a_i,i}^s} \mathbb{E}[Y_1^{N_e^{a_i,i'}}] \\
- \prod_{e \in E_{w_i}^c} \mathbb{E}[Z_{1,2}^{N_e^{w_i}}] \prod_{e \in E_{w_i}^s} \mathbb{E}[Y_1^{N_e^{w_i}}] \prod_{e \in E_{w_i}^c} \mathbb{E}[Z_{1,2}^{N_e^{w_{i'}}}] \prod_{e \in E_{w_i}^s} \mathbb{E}[Y_1^{N_e^{w_{i'}}}] \tag{3.6}$$

In view of (3.6), it now suffices to show that $\mathcal{W}_{k,t}^{(2)}$ is empty for $t \geq k+2$ since N^{k+2} beats $C_{N,t} \approx N^t$ for $t \geq k+2$. We will show the stronger $t \geq k+1$. Note that if $a \in \mathcal{W}_{k,t}^{(2)}$, then G_a is a connected graph with t vertices, and at most k edges, which is impossible for t > k+1. Considering when t = k+1, G_a is a tree and each edge must be visited by a exactly twice. But since the path

from w_1 in tree G_a is closed, we must visit each edge an even number of times. Thus the set of edges from w_1 is disjoint to the set of edges from w_2 , creating a contradiction, and we are done.

4 Final Proof of Wigner's:

To conclude the proof of Wigner's Semicircular Theorem for real Wigner matrices, we must check that for bounded continuous functions f

$$\lim_{N\to\infty} \langle L_N, f \rangle = \langle \sigma, f \rangle \quad \text{in probability}$$

By Chebyshev's Inequality,

$$\mathbb{P}(\langle L_N, |x|^k \mathbf{1}_{\{|x|>B\}}\rangle > \epsilon) \leq \frac{1}{\epsilon} \mathbb{E}[\langle L_N, |x|^k \mathbf{1}_{\{|x|>B\}}\rangle]
= \frac{1}{\epsilon} \langle \overline{L}_N, |x|^k \mathbf{1}_{\{|x|>B\}}\rangle
\leq \frac{1}{\epsilon} \langle \overline{L}_N, \frac{x^{2k}}{B^k}\rangle
= \frac{\langle \overline{L}_N, x^{2k}\rangle}{\epsilon B^k}$$

Hence by Lemma 1 we have,

$$\begin{split} \limsup_{N \to \infty} \mathbb{P}(\langle L_N, |x|^k \mathbf{1}_{\{|x| > B\}} \rangle > \epsilon) &\leq \limsup_{N \to \infty} \frac{\langle \overline{L}_N, x^{2k} \rangle}{\epsilon B^k} \\ &\leq \frac{\langle \sigma, x^{2k} \rangle}{\epsilon B^k} = \frac{C_k}{\epsilon B^k} \leq \frac{4_k}{\epsilon B^k} \end{split}$$

Now we set B = 5 and note the LHS is increasing in k

$$0 \le \limsup_{N \to \infty} \mathbb{P}(\langle L_N, |x|^k \mathbf{1}_{\{|x| > B\}}) > \epsilon) \le \frac{1}{\epsilon} (\frac{4}{5})^k \xrightarrow{k \to \infty} 0$$

Hence
$$\limsup_{N\to\infty} \mathbb{P}(\langle L_N, |x|^k \mathbf{1}_{\{|x|>B\}}\rangle > \epsilon) = 0$$
 (4.1)

Fix an f with support [-5,5] and $\delta > 0$, then by the Weierstrass Approximation Theorem, we can find a polynomial $\mathcal{Q}_{\delta}(x) = \sum_{i=0}^{L} c_i x^i$ such that

$$\sup_{x:|x|\leq \delta} |\mathcal{Q}_{\delta}(x) - f(x)| \leq \frac{\delta}{8}$$

Then,

$$\mathbb{P}(|\langle L_N, f \rangle - \langle \sigma, f \rangle| > \delta) \leq \mathbb{P}(|\langle L_N, \mathcal{Q}_{\delta} \rangle - \langle \overline{L}_N, \mathcal{Q}_{\delta} \rangle| > \frac{\delta}{4})$$

$$+ \mathbb{P}(|\langle \overline{L}_N, \mathcal{Q}_{\delta} \rangle - \langle \sigma, \mathcal{Q}_{\delta} \rangle| > \frac{\delta}{4})$$

$$+ \mathbb{P}(|\langle L_N, \mathcal{Q}_{\delta} \mathbf{1}_{\{|x| > B\}} \rangle| > \frac{\delta}{4})$$

The first term tends to zero in N by Lemma 2, the second term tends to zero in N by Lemma 1, and the third term tends to 0 in N by (4.1). Hence this finishes the proof. \square