```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
dataset=pd.read csv(r"D:\DS NIT\Machine Learning\Classifications\Social Network Ads.csv")
x=dataset.iloc[:,[2,3]].values
y=dataset.iloc[:,-1].values
#Splitting the dataset into training and test set
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
#Feature scaling
from sklearn.preprocessing import MinMaxScaler
sc=MinMaxScaler()
#from sklearn.preprocessing import Normalizer
#sc=Normalizer()
x train=sc.fit transform(x train)
x_test=sc.transform(x_test)
#Training the naive bayes modele on the training set
from sklearn.naive bayes import MultinomialNB
classifier=MultinomialNB()
classifier.fit(x_train,y_train)
#predict the test set results
y pred=classifier.predict(x test)
#Making the confusion matrix
from sklearn.metrics import confusion_matrix
cm=confusion matrix(y test,y pred)
print(cm)
from sklearn.metrics import accuracy score
ac=accuracy_score(y_test,y_pred)
print(ac)
bias=classifier.score(x_train,y_train)
print(bias)
variance=classifier.score(x_test,y_test)
print(variance)
from sklearn.metrics import classification report
cr=classification_report(y_test,y_pred)
print(cr)
#bernoulli Naive Bayes
from sklearn.naive bayes import BernoulliNB
bernouli cl=BernoulliNB()
bernouli cl.fit(x train,y train)
bernouli ypred=bernouli cl.predict(x test)
#Confusion matrix
bern cm=confusion matrix(y test,bernouli ypred)
print(bern_cm)
#accuracy
bern_ac=accuracy_score(y_test,bernouli_ypred)
print(bern_ac)
```

```
#bias
bern bias=bernouli cl.score(x train,y train)
print(bern bias)
#variance
bern_var=bernouli cl.score(x test,y test)
print(bern_var)
from sklearn.metrics import classification report
bern_cr=classification_report(y_test,bernouli_ypred)
print(bern_cr)
from sklearn.naive_bayes import GaussianNB
gausian_cl=GaussianNB()
gausian_cl.fit(x_train,y_train)
gausian_ypred=gausian_cl.predict(x_test)
#accuracy
gausian_ac=accuracy_score(y_test,gausian_ypred)
print(gausian_ac)
#bias
gausian_bias=gausian_cl.score(x_train,y_train)
gausian_bias()
#variance
gausian_variance=gausian_cl.score(x_test,y_test)
print(gausian_variance)
#classification report
gausian_cr=classification_report(y_test,gausian_ypred)
print(gausian cr)
```

without scaling					
accuracy	bias	variance			
0.5625	0.67	0.56			
with scaling-Normalizer					
0.72	0.62	0.72			
with scaling-StandardScaler					
MultinomialNB does not work with negative values. Since StandardScaler can produce negative values					
with scaling-MinMaxScaler					
0.72	0.62	0.72			

Multinominal						
			f1-			
	precision	recall	score	support		
0	0.72	1	0.94	58		
1	0	0	0.83	22		
accuracy			0.72	80		
macro avg	0.36	0.5	0.42	80		
weighted_avg	0.53	0.72	0.61	80		

Bernouli					
			f1-		
	precision	recall	score	support	
0	0.72	1	0.84	58	
1	0	0	0.83	22	
accuracy			0.72	80	
macro avg	0.36	0.5	0.42	80	
weighted_avg	0.53	0.72	0.61	80	

Gaussian						
			f1-			
	precision	recall	score	support		
0	0.93	0.95	0.94	58		
1	0.86	0.82	0.84	22		
accuracy			0.91	80		
macro avg	0.89	0.88	0.89	80		
weighted_avg	0.91	0.91	0.91	80		