I Présentation
II Installation de bind9
III Configuration de la zone
IV Création des bases de données

Par le temps ? Utilise mon rôle Ansible bind9 😄

Debian 11

git clone https://github.com/leghort/role-ansible.git

I Présentation

Qu'est-ce que le DNS?

Le DNS à pour but de traduire les noms de domaines en <u>adresses IP</u>. Chaque appareil connecté à un réseau, dispose d'une adresse IP unique. Grâce aux serveurs DNS, une adresse IP (par exemple, 172.217.19.238 en IPv4) devient <u>www.google.com</u> c'est tout de même plus simple à mémoriser pour nous autres humain. Pour mettre en place un tel service, je vais créer un serveur DNS sous debian11 avec l'outil Bind9.

II Installation de bind9

Prérequis

Je commence par installer les paquets dnsutils et bind9

```
sudo apt-get install dnsutils bind9 -y
```

Maintenant je crée une zone par exemple cossu.tech

i Uniquement les machines qui ont pour DNS principal le serveur bind 9 utiliseront notre zone.

Déjà il est préférable que le nom du serveur porte le même nom que la zone qu'il diffusera dans mon cas cossu. tech

```
sudo hostnamectl set-hostname cossu.tech
```

Puis changer la résolution de nom local pour cela il va falloir connaitre l'adresse IP du serveur. J'utilise la commande

ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 08:00:27:6d:df:9d brd ff:ff:ff:fff inet 192.168.1.24/24 brd 192.168.1.255 scope global dynamic enp0s3 valid_lft 84835sec preferred_lft 84835sec

192.168.1.24 est donc l'adresse ip du serveur, il me reste à la renseigné dans le fichier.

sudo nano /etc/hosts

127.0.0.1 localhost 127.0.1.1 cossu.tech 192.168.1.24 cossu.tech

Pour effectuer des test j'indique au serveur de faire appel à lui même "192.168.1.24".

sudo nano /etc/resolv.conf

i Cette modification disparaîtra après le redémarrage du serveur.

domain cossu.tech search cossu.tech nameserver 192.168.1.25

Je redémarre le service resolved pour appliquer les modifications.

sudo systemctl restart systemd-resolved
sudo systemctl enable systemd-resolved

Vérification du bon fonctionnement du service resolved

systemd-resolve --status

Global

Protocols: +LLMNR +mDNS -DNSOverTLS DNSSEC=no/unsupported

resolv.conf mode: foreign

Current DNS Server: 192.168.1.24

DNS Servers: 192.168.1.24 DNS Domain: cossu.tech

Visiblement tout va bien.

III Configuration de la zone

Je vais modifier la configuration de bind 9 pour lui indiquer que tous les noms qu'il ne connait pas seront à transférer à un autre serveur DNS par exemple 8.8.8.8 (le DNS de google).

sudo nano /etc/bind/named.conf.options

Ce fichier contient les options de configuration du serveur DNS.

```
options {
    directory "/var/cache/bind";
    forwarders {
        8.8.8.8;
    };
    dnssec-validation auto;
    listen-on-v6 { any; };
};
```

Dans un autre fichier, je déclare les noms de domaines et le chemin vers un fichier qui servira de "base de données".

i Les infos in-addr.arpa sont à modifier en fonction du réseau, étant dans le réseau 192.168.1.0/24

sudo nano /etc/bind/named.conf.local

```
zone "cossu.tech" {
  type master;
  file "/etc/bind/db.cossu.tech";
};
zone "1.168.192.in-addr.arpa" {
  type master;
  file "/etc/bind/db.1.168.192.in-addr.arpa";
};
```

IV Création des bases de données

Allez c'est parti pour créer un fichier "base de données" qui référence les associations ip / nom.

```
sudo nano /etc/bind/db.cossu.tech
```

```
TTL604800ORIGIN cossu.tech.
   IN SOA dns.cossu.tech.admin.cossu.tech (
       20221703 ; Numero de serie AnneMoisJour
      604800 ; Temps de rafraichissement
      86400 ; Temps entre les essais
      2419200 ; Temps expiration
      604800); Valeur TTL minimum
   IN NS dns.cossu.tech.
DNS
             IN A 192.168.1.24
linux
             IN A 192.168.1.14
linuxPortable
               IN A 192.168.1.18
win10
             IN A 192.168.1.45
```

Maintenant, il faut s'assurer qu'il n'y a pas d'erreurs dans les fichiers db.cossu.tech

```
sudo named-checkzone cossu.tech /etc/bind/db.cossu.tech
```

zone cossu.dev/IN: loaded serial 20221703 OK

C'est OK donc je passe à la configuration de la zone inverse qui permet d'obtenir un nom à partir d'une adresse ip.

sudo nano /etc/bind/db.1.168.192.in-addr.arpa

```
$TTL 604800
@ IN SOA dns.cossu.tech. admin.cossu.tech (
        20221703 ; Numero de serie AnneMoisJour
        604800 ; Temps de rafraichissement
        86400 ; Temps entre les essais
        2419200 ; Temps expiration
        604800); Valeur TTL minimum
        NS dns.cossu.tech.
(a)
    IN
24
   IN PTR dns.cossu.tech.
14
    IN PTR linux.cossu.tech.
    IN PTR linuxPortable.cossu.tech.
18
45
    IN PTR win10.cossu.tech.
```

Je vérifi la syntaxe du fichier db.1.168.192.in-addr.arpa

```
sudo named-checkzone 1.168.192.in-addr.arpa /etc/bind/db.1.168.192.in-addr.arpa
```

```
zone 1.168.192.in-addr.arpa/IN: loaded serial 20221703
OK
```

Tout va bien, il est temps de redémarrer le service bind9

```
sudo systemctl restart bind9
```

Le moment fatidique est arrivé, voir si la résolution de nom fonctionne. Pour cela, la commande *nslookup* est une alliée de choix.

```
nslookup linux.cossu.tech
```

Server: 192.168.1.24 Address: 192.168.1.24#53

Name: linux.cossu.tech Address: 192.168.1.14

Le serveur DNS 192.168.1.24 dit que le nom [linux.cossu.tech] est égal à l'adresse 192.168.1.14, ça fonctionne! Allé maintenant il faut tester la zone inverse.

```
nslookup 192.168.1.14
```

14.1.168.192.in-addr.arpa name = linux.cossu.tech.

Nslookup dit que 192.168.1.14 c'est le nom linux.cossu.dev! Le serveur change les noms en ip et inversement.

- https://www.cloudflare.com/fr-fr/learning/dns/what-is-dns/
- https://wiki.csnu.org/index.php/Installation et configuration de bind9
- https://www.isc.org/bind/
- https://wiki.debian.org/fr/Bind9