Rozpoznávanie obrazcov - 10. cvičenie Rozhodovacie stromy

Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

27.4.2020

Vyhodnocovanie

Viacero tried

Doteraz sme väčšinou riešili klasifikačné úlohy, v ktorých sme mali zväčša len dve triedy. Niektoré klasifikátory (NB, kNN), ktoré sme skúšali však dokážu klasifikovať do viacero tried. Pre tie ktoré sú z princípu len binárne je možné nakombinovať viacero binárnych klasifikátorov aby sme získali viactriedny klasifikátor.

fitceocc

Mdl = fitcecoc(X, y) - vráti multitriednu verziu SVM klasifikátora

Presnosť

Stačí presnosť?

Presnosť (accuracy) definujeme ako podiel počtu správne klasifikovaných príkladov s celkovým počtom príkladov. Takáto metrika na klasifikátor však môže zlyhať. Napríklad ak máme v v príkladoch iba 10 % jednej triedy a 90 % druhej, tak klasifikátor, ktorý vždy vráti druhú triedu bude mať 90 % presnosť, ale ja nám jasné, že to nieje dobrý klasifikátor.

Matica zámen

Matica zámen

Jeden zo spôsobov ako vyhodnocovať klasifikátor je tzv. matica zámen. Matica má v i-tom riadku a j-tom stĺpci počeť objektov, ktorých sú z triedy i a sú klasifikované ako trieda j.

confusionmat

C = confusionmat(g1,g2) - vráti maticu zámen pre pravé triedy g1 a predikované triedy g2.

confusionchart

cm = confusionchart(g1,g2) - rovno nakreslí maticu zámen

True/False Positive/Negative

Budeme teraz operovať s pojmamy vždy pre jednu triedu:

- True Positive TP klasifikátor určil, že príklad je z triedy a je to pravda
- False Positive FP
 klasifikátor určil, že príklad je z triedy ale nieje to pravda
- True Negative TN klasifikátor určil, že príklad nieje z triedy a je to pravda
- False Negative FN klasifikátor určil, že príklad nieje z triedy ale nieje to pravda

Precision a Recall

Precision

Presnosť (precision) sme používali doteraz definujeme ako $\frac{TP}{TP+FP}$. Rozdiel medzi precision a accuracy bežne spočíva v tom, že accuracy počítame ako priemer precision zo všetkých tried. Ak teda hovoríme o precision, tak počítame väčšinou túto hodnotu pre každú triedu samostatne.

Recall

Citlivosť (recall) počítame ako $\frac{TP}{TP+FN}$, teda podiel koľko príkladov klasifikátor určil správne zo všetkých ktoré mal určiť.

Úloha

Pre dataset fisheriris vytvorte klasifikátor a spočítajte maticu zámen. Spočítajte aj presnosť a citlivosť pre všetky triedy.

Rozhodovacie stromy

Rozhodovacie stromy

Konštrukcia rozhodovacích stromov

Rozdelujúce kritérium

Strom konštruujeme, tak že vyberáme príznak a jeho hodnotu na základe ktorého rozdelíme množinu prvkov na dve časti. Tento postup opakujeme s oboma podmnožinami až kým nieje splnené ukončujúce kritérium.

Ukončujúce kritérium

Môže to byť napríklad: podmnožiny obsahujú iba po jednej triede, strom dosiahol nastavenú hĺbku, menší ako prahový počet zle klasifikovaných prvkov v nejakom uzle, ohodnotenie najlepšieho príznaku je menšie ako prah.

Rozhodovacie kritériá

ID3

Vyberáme príznak pre ktorý bude entrópia minimálna, teda taký pre ktorý je informačný prínos najväčší (vzájomná informácia s triedami je najväčšia).

C4.5

Obdobne ako pri ID3, ale tentokrát maximaluzujeme normalizovaný informačný prínos. C4.5 navyše dokáže pracovať s numerickými dátami.

Rozhodovacie kritériá - teória zo 4. cvičenia

Entrópia

$$H(Y) = \sum_{y \in \omega} -P(Y = y) \cdot log_2(P(Y = y))$$

Špecifická podmienená entrópia

$$H(Y|X = v) = H(Y)$$
, len pre hodnoty Y, kde $X = x$

Rozhodovacie kritériá - teória zo 4. cvičenia

Vzájomná informácia, informačný prínos

$$I(Y;X) = H(Y) - H(Y|X) = H(Y) - \sum_{x \in \omega} P(X = x) \cdot H(Y|X = x)$$

Normalizovaný informačný prínos

$$nI(Y;X) = \frac{I(Y;X)}{H(X)}$$

Príklady

ID3

```
https://sefiks.com/2017/11/20/a-step-by-step-id3-decision-tree-example/
```

C4.5

```
https://sefiks.com/2018/05/13/
a-step-by-step-c4-5-decision-tree-example/
```

Matlab

fitctree

Mdl = fitctree(X,y) - vráti klasifikačný model rozhodovacieho stromu.

fitctree

Mdl = fitctree(T,property) - vráti klasifikačný model rozhodovacieho stromu podľa tabulky T pre klasifikačný ciel v stĺpci property.

CART

MATLAB používa metódu CART, ktorá je podobná metóde ID3, ale je mierne iná. Keďže na prednáške nieje, tak ju nebudeme rozoberať.

Matlab

predict

Mdl.predict(x) - vráti predpoveď modelu pre daný príznakový vektor.

view

Mdl.view('Mode', 'graph') - zobrazí strom

Úloha

Vytvorte a zobrazte si strom pre databázu fisheriris a census1994. Pre census1994 zistite presnosť.

Orezávanie stromov

Orezávanie

Strom môže byť zbytočne komplikovaný. To vedie na overfitting. Strom je možné orezať tak, že podstromy, ktoré prinášajú zanedbateľné zlepšenie presnosti klasifikácie nahradíme listom.

prune

MdIP = prune(MdI,'Property', value) - vráti orezaný strom podľa toho ako je nastavená property

Úloha

Orežte strom pre dáta fisheriris a census1994. Otestujte rôzne properties (Level, Alpha, Nodes) a otestujte zlepšenie presnosti na testovacej množine pre census1994.