Course

Stanford/Coursera

3Blue1Brown

Deep Learning

Development Environment/Tools

Anaconda

Jupyter

TensorFlow

Keras

Local vs Cloud

Tips

Examples

Keras Startup Example

VGG Model

VGG16 Implementation

GAN

Pix2Pix

TL/Keras Official Examples

Unity

Course

Stanford/Coursera

- Machine Learning
- <u>Deep Learning Specialization</u>

3Blue1Brown

• Neural networks

Deep Learning

• Hung-yi Lee: Deep Learning

Development Environment/Tools

Anaconda

- Home Page
- General Package Management Environment. It is used to setup basic development environment with Python/TensorFlow version specified.
- Install Steps
 - 1. Download and Install Anaconda: Home Page
 - 2. Open Anaconda Command Line/GUI

3. Create New Env

conda create -n MyTensorflow python=3.7

4. Activate/Enter Env

```
conda activate MyTensorflow

//Quit Env
conda deactivate
```

Jupyter

- Interactive Python/Tensorflow Development "IDE"
- Web-based

Install

conda install jupyter

TensorFlow

Install Tensorflow

```
conda install tensorflow-gpu=2.1.0
```

- There are CPU(tensorflow) and GPU(tensorflow-gpu) verison of Tensorflow
- Tensorflow 1.x and 2.x are different
- Use conda search tensorflow or conda search tensorflow-gpu to list TF version

Keras

- Higher level API above Tensorflow
- Has more Deep Learning Model/Dataset prepared(i.e: VGG16)
- Tensorflow 2.x has interagted Keras, no need to install it seperately.
- Install(Optional)

```
conda install keras
```

Local vs Cloud

- Local: Anaconda + Jupyter + TensorFlow GPU/Keras
- Cloud: Google Colab

Tips

• Local GPU Memory is not enough

```
import os
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
```

• Convert to TFLite Error

Do not install keras, use ternsorflow's tensorflow.keras

Examples

Keras Startup Example

- 1. Activate Env: conda activate MyTensorflow
- 2. Startup Jupyter: jupyter notebook
- 3. Create new notebook

4. Coding

5. Import Tensorflow/Kares

6. New Code Block

7. Model Print/Save

```
from tensorflow.keras.utils import plot_model
model.summary()
plot_model(model, to_file='vgg16.png', show_shapes=True)
```


VGG Model

- Build-in Loss: https://keras.io/api/losses/
- Build-in Optimizers: https://keras.io/api/optimizers/
- Build-in Model: https://keras.io/api/applications/
- Build-in Dataset: https://keras.io/api/datasets/

VGG16 Implementation

- Sequential Mode: Input->Network->Output
- 画像分類(Classification)問題: Input(224x224 RGB 画像)->Network->Output(種類: Cat・Dog・Brid...)
- Implementation Details 実装の詳細
 - Code: DeepLearning/code/vgg/vgg16.ipynb
 - Convolution

Kernel Size: 3x3

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

1 _{×1}	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

- filter 2x2
- stride 2x2
- Max value in filter

Input

7	3	5	2		Out	put
8	7	1	6	maxpool	8	6
4	9	3	9		9	9
0	8	4	5			

o Code<->Graph

o Training:

- Keras has well-trained vgg mode
- If custom training data prepared.自分のDatasetがある場合は
- Dog/Cat Dataset as an example to explain training process
 - Download Dog/Cat Dataset: <u>Kaggle Cats and Dogs Dataset</u>
 - Pick some(most of) images as Training Data;
 - Pick rest of images as Testing Data;
 - Folder struct is as follow:

Loading data

```
size = (224,224)
traind =
ImageDataGenerator().flow_from_directory(directory="train",
target_size=size)
testd =
ImageDataGenerator().flow_from_directory(directory="test",
target_size=size)
```

Training

```
hist = model.fit_generator(
   steps_per_epoch=100,
   generator=traind,
   validation_data=testd,
   validation_steps=10,
   epochs=100)
```

■ To display Training graph

```
plt.plot(hist.history["accuracy"])
plt.plot(hist.history['val_accuracy'])
plt.plot(hist.history['loss'])
plt.plot(hist.history['val_loss'])
plt.title("model accuracy")
plt.ylabel("Accuracy")
plt.xlabel("Epoch")
plt.legend(["Accuracy","Validation Accuracy","loss","Validation
Loss"])
plt.show()
```


Save/Load Model

```
model.save('vgg16_trained.h5')

from keras.models import load_model
saved_model = load_model("vgg16_trained.h5")
```

Prediction

```
from keras.preprocessing import image
import numpy as np
img = image.load_img("test5.jpeg",target_size=(224,224))
img = np.asarray(img)
plt.imshow(img)
img = np.expand_dims(img, axis=0)
output = model.predict(img)
if output[0][0] > output[0][1]:
    print("cat")
else:
    print('dog')

print('{:.2}'.format(output[0][0]))
print('{:.2}'.format(output[0][1]))
```

cat 0. 78 0. 22

• Reference:

- https://www.cc.gatech.edu/~san37/post/dlhc-cnn/
- https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks?hl=id

GAN

Pix2Pix

TL/Keras Official Examples

Unity

- TLLite
- Unity Example