

COMMUNICATING RESULTS

Mason Gallo

Data Scientist

COMMUNICATING RESULTS

LEARNING OBJECTIVES

- Explain the trade-offs between the precision and recall of a model while articulating the cost of false positives vs. false negatives
- Describe the difference between visualization for presentations vs. exploratory data analysis
- Identify the components of a concise, convincing report and how they relate to specific audiences/stakeholders

OPENING

CCMMUNICATING RESULTS

- We've built our model, but there is still a gap between your Notebook with plots/figures and a slideshow needed to present your results.
- Classes so far have focused on two core concepts:
 - developing consistent practices
 - interpreting metrics to evaluate and improve model performance
- But what does that mean to your audience?

- Imagine how a non-technical audience might respond to the following statements:
 - The predictive model I built has an accuracy of 80%.
 - Logistic regression was optimized with L2 regularization.
 - Gender was more important than age in the predictive model because it has a larger coefficient.

- Who is your audience? Are they technical? What are their concerns?
- Remember: in a business setting, you may be *the only person* who can interpret what you've built.
- Some people may be familiar with basic visualization, but you will likely have to do a lot of "hand holding".
- You need to be able to efficiently explain your results in a way that makes sense to **all** stakeholders (technical or not).

- Today, we'll focus on communicating results for "simpler" problems, but this applies to any type of model you may work with.
- First, let's talk classification metrics, review our knowledge, and talk about how we might communicate what we know.

REVIEW OR INTRODUCING

THE CONFUSION MATRIX

BACK TO THE CONFUSION MATRIX

- Confusion matrices allow for the interpretation of correct and incorrect predictions for *each class label*.
- It is the first step for the majority of classification metrics and goes deeper than just accuracy.

BACK TO THE CONFUSION MATRIX

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

- 1. What's the intuition and uses for the following?
 - a. Accuracy
 - b. True positive rate
 - c. False positive rate

DELIVERABLE

Answers to the above questions

INTRODUCTION

- Our previous metrics were primarily designed for less biased data problems: we could be interested in both outcomes, so it was important to generalize our approach.
- For example, we may be interested if a person will vote for a Republican or Democrat. This is a binary problem, but we're interested in both outcomes.

- Precision and recall, metrics built from the confusion matrix, focus on *information retrieval*, particularly when one class is more interesting than the other.
- For example, we may want to predict if a person will be a customer. We care much more about people who will be a customer of ours than people who won't.

- *Precision* aims to product a high amount of relevancy instead of irrelevancy.
- Precision asks, "Out of all of our positive predictions (both true positive and false positive), how many were correct?"
- *Recall* aims to see how well a model returns specific data (literally, checking whether the model can *recall* what a class label looked like).
- Recall asks, "Out of all of our positive class labels, how many were correct?"

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

1. If the goal of the "recall" metric is to identify specific values of a class correctly, what other metric performs a similar calculation?

DELIVERABLE

Answers to the above question

THE MATH FOR RECALL

- Recall is the count of predicted *true positives* over the total count of that class label.
- This is the same as True Positive Rate or *sensitivity*.

THE MATH FOR RECALL

- Imagine predicting the color of a marble as either red or green. There are 10 of each.
- If the model identifies 8 of the green marbles as green, the recall is 8 / 10 = 0.80.
- However, this says nothing of the number of *red* marbles that are also identified as green.

THE MATH FOR PRECISION

• Precision, or positive predicted value, is calculated as the count of predicted true positives over the count of all values predicted to be positive.

THE DIFFERENCE BETWEEN PRECISION AND RECALL

- The key difference between the two is the attribution and value of error.
- Should our model be more picky in avoiding false positives (precision)?
- Or should it be more picky in avoiding false negatives (recall)?
- The answer should be determined by the problem you're trying to solve.

GUIDED PRACTICE

COST BENEFIT ANALYSIS

ACTIVITY: COST BENEFIT ANALYSIS

One tool that complements the confusion matrix is cost-benefit analysis, where you attach a *value* to correctly and incorrectly predicted data.

Like the Precision-Recall trade off, there is a balancing point to the *probabilities* of a given position in the confusion matrix, and the *cost* or *benefit* to that position. This approach allows you to not only add a weighting system to your confusion matrix, but also to speak the language of your business stakeholders (i.e. communicate your values in dollars!).

ACTIVITY: COST BENEFIT ANALYSIS

EXERCISE

DIRECTIONS

Consider the following marketing problem:

As a data scientist working on marketing spend, you've build a model that reduces user churn--the number of users who decide to stop paying for a product--through a marketing campaign. Your model generates a confusion matrix with the following probabilities (these probabilities are calculated as the value in that position over the sum of the sample):

```
| TP: 0.2 | FP: 0.2 |
-----
| FN: 0.1 | TN: 0.5 |
```

ACTIVITY: COST BENEFIT ANALYSIS

In this case:

- The *benefit* of a true positive is the retention of a user (\$10 for the month)
- The *cost* of a false positive is the spend of the campaign per user (\$0.05)
- The *cost* of a false negative (someone who could have retained if sent the campaign) is, effectively, o (we didn't send it... but we certainly didn't benefit!)
- The *benefit* of a true negative is **o**: No spend on users who would have never retained.

To calculate Cost-Benefit, we'll use this following function:

$$(P(TP) * B(TP)) + (P(TN) * B(TN)) + (P(FP) * C(FP)) + (C(FN) * C(FN))$$

which for our marketing problem, comes out to this:

$$(.2 * 10) + (.5 * 0) - (.2 * .05) - (.1 * 0)$$

or \$1.99 per user targeted.

INTRODUCTION

SHOWING WORK

SHOWING WORK

- We've spent a lot of time exploring our data and building a reasonable model that performs well.
- However, if we look at our visuals, they are most likely:
 - Statistically heavy: Most people don't understand histograms.
 - Overly complicated: Scatter matrices produce too much information.
 - Poorly labeled: Code doesn't require adding labels, so you may not have added them.

SHOWING WORK

In order to convey important information to our audience, make sure our charts are:

- Simplified
- Easily interpretable
- Clearly labeled

SIMPLIFIED

- At most, you'll want to include figures that either explain a variable on its own or explain that variable's relationship with a target.
- If your model used a data transformation (like natural log), just visualize the original data.
- Try to remove any unnecessary complexity.

EASILY INTERPRETABLE

- Any stakeholder looking at a figure should be seeing the exact same thing you're seeing.
- A good test for this is to share the visual with others less familiar with the data and see if they come to the same conclusion.
- How long did it take them?

CLEARLY LABELED

- Take the time to clearly label your axis, title your plot, and double check your scales especially if the figures should be comparable.
- If you're showing two graphs side by side, they should follow the same Y axis.

QUESTION TO ASK

- When building visuals for another audience, ask yourself these questions:
 - Who: Who is my target audience for the visual?
 - **What**: What do they already know about this project? What do they need to know?
 - **How**: How does my project affect this audience? How might they interpret (or misinterpret) the data?

CONCLUSION

TOPIC REVIEW

REVIEW AND NEXT STEPS

- What do precision and recall mean? How are they similar and different to True Positive Rate and False Positive Rate?
- How does cost benefit analysis play a role in building models?
- What are at least two very important details to consider when creating visuals for a project's stakeholders?

COURSE

BEFORE NEXT CLASS

BEFORE NEXT CLASS

HOMEWORK

• Check the GitHub page for this class

LESSON

EXIT TICKET

DON'T FORGET TO FILL OUT YOUR EXIT TICKET