Lecture 6

Descriptive Statistics IV

Text: Chapter III

STAT 8010 Statistical Methods I September 2, 2019

> Whitney Huang Clemson University

Notes

Agenda

- Percentiles and Quartiles
- 2 Boxplots
- 3 Z-scores & Empirical Rule
- Visualizing Time Series, Cross-Sectional, and Spatio-Temporal Data sets

Percentiles

- The $p_{\rm th}$ percentile is a value such that at least p% of the data set is less than or equal to this value
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - ② For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where n is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and $(i+1)_{th}$ value, otherwise take the $(i+1)_{th}$ value
- Quartiles:
 - Q1: first quartile
 - 2 M (Q2): median (second quartile)
 - Q3: third quartile
 - Interquartile range or IQR: Q3 Q1

Statistics IV
CLEMSON
Percentiles and Quartiles

Notes			

Example

Find Q_1 , M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- Find the sample size n and compute the indices for p = 25, 50, 75
- ① $n = 9 \Rightarrow$ the indices are 3, 5, 7 \Rightarrow $Q_1 = 13$, M = 14, $Q_3 = 16$

Steps to Making a Boxplot

- Find Q₁, M, Q₃ and draw a box from Q₁ to Q₃. Add a vertical line inside the box at M
- ② Compute the value of Lower Fence (LF) = Q1 1.5IQR and the Upper Fence (UF) = Q3 + 1.5IQR. Find the largest value ≤ UF and the smallest value ≥ LF. Draw whiskers go from Q_1 , Q_3 to these two values
- Plot the individual outlier(s) (i.e., the values either > UF or < LF)</p>

Notes

Bopxplot

- Ordered data values: 13, 13, 13, 13, 14, 14, 16, 18, 21
- IQR $16-13=3\Rightarrow$ LF = $13-1.5\times3=8.5;$ UF = $16+1.5\times3=20.5$

Descriptive Statistics IV								
Cl		E	λ	1	S	í	1	V
, N		٧	Ε	R	S			

Percentiles and Quartiles

Z-scores &
Empirical Rule
Visualizing Time
Series,
Cross-Sectional,
and

ı	Notes				
-					
-					

Example

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

- Find the 35th percentile
 - Sort the data:
 - 6.9, 13, 13, 13, 13, 14, 14, 16, 18, 18, 20, 21, 25, 27 ② Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13
- Find the 65th percentile
 - Sort the data:

6,9,13,13,13,13,14,14,16,18,18,20,21,25,27 Compute the index value $i = \frac{65 \times 15}{100} = 9.75 \Rightarrow$ the 65th percentile is 18

Notes

Z-scores & Empirical Rule

Z-score:

$$z=\frac{x-\bar{x}}{2}$$

when x is the value of an individual observation, \bar{x} sample mean, and \boldsymbol{s} sample standard deviation

- Measuring "how far" (in terms of standard deviations) an observation is from its mean (e.g., 3 standard deviations above the mean value)
- Empirical Rule: If a data set can be well approximated by a normal curve (bell-shaped with light tails), then approximately 68%, 95%, and 99.7% of the observations are within 1, 2, and 3 standard deviations of the mean

Notes

Norm (Bell-Shaped) Curve

Notes			

Visualizing Time Series Data

Notes			

Visualizing Cross-Sectional Data

Notes			
-			

Visualizing Spatio-Temporal Data

Notes			

Summary

In this lecture, we learned

- Percentiles and Quartiles
- How to construct a Boxplot
- Z-scores & Empirical Rule
- How to visualize time series, cross-sectional, spatio-temporal data sets

We will talk about Probability in next three weeks

Notes			
Notes			
Notes			
Notes			