COMPAQ.

The Alpha 21264 Microprocessor: Out-of-Order Execution at 600 MHz

R. E. Kessler Compaq Computer Corporation Shrewsbury, MA

REK August 1998

1

Some Highlights

• Continued Alpha performance leadership

600 MHz operation in 0.35u CMOS6, 6 metal layers, 2.2V

15 Million transistors, 3.1 cm², 587 pin PGA

Specint95 of 30+ and Specfp95 of 50+

Out-of-order and speculative execution

4-way integer issue

2-way floating-point issue

Sophisticated tournament branch prediction

High-bandwidth memory system (1+ GB/sec)

Alpha 21264: Block Diagram

Alpha 21264: Block Diagram

Page 2

21264 Instruction Fetch Bandwidth Enablers

- The 64 KB two-way associative instruction cache supplies four instructions every cycle
- The next-fetch and set predictors provide the fast cache access times of a direct-mapped cache and eliminate bubbles in nonsequential control flows
- The instruction fetcher speculates through up to 20 branch predictions to supply a continuous stream of instructions
- The tournament branch predictor dynamically selects between *Local* and *Global* history to minimize mispredicts

REK August 1998

Instruction Stream Improvements

Page 3

Fetch Stage: Branch Prediction

- Some branch directions can be predicted based on their past behavior: Local
 - **Correlation**

Others can be predicted based on how the program arrived at the branch: **Global Correlation**

REK August 1998

Tournament Branch Prediction

Alpha 21264: Block Diagram

REK August 1998

Mapper and Queue Stages

Mapper:

Rename 4 instructions per cycle (8 source / 4 dest) 80 integer + 72 floating-point physical registers

• Queue Stage:

Integer: 20 entries / Quad-Issue
Floating Point: 15 entries / Dual-Issue
Instructions issued out-of-order when data ready
Prioritized from oldest to youngest each cycle
Instructions leave the queues after they issue
The queue collapses every cycle as needed

Map and Queue Stages

Alpha 21264: Block Diagram

Register and Execute Stages

Integer Cross-Cluster Instruction Scheduling and Execution

- Instructions are statically pre-slotted to the upper or lower execution pipes
- The issue queue dynamically selects between the left and right clusters
- This has most of the performance of 4-way with the simplicity of 2-way issue

Alpha 21264: Block Diagram

21264 On-Chip Memory System Features

• Two loads/stores per cycle

Any combination

• 64 KB two-way associative L1 data cache (9.6 GB/sec)

Phase-pipelined at > 1 GHz (no bank conflicts!)
3 cycle latency (issue to issue of consumer) with hit prediction

Out-of-order and speculative execution

Minimizes effective memory latency

• 32 outstanding loads and 32 outstanding stores

Maximizes memory system parallelism

• Speculative stores forward data to subsequent loads

Memory System (Continued)

Address Path

- New references check addresses against existing references
- Speculative store data that address matches bypasses to loads
- Multiple misses to the same cache block merge
- Hazard detection logic manages out-of-order references

Low-latency Speculative Issue of Integer Load Data Consumers (Predict Hit)

LDQ R0, 0(R0) ADDQ R0, R0, R1 OP R2, R2, R3

When predicting a load hit:

The ADDQ issues (speculatively) after 3 cycles
Best performance if the load actually hits (matching the prediction)
The ADDQ issues before the load hit/miss calculation is known

• If the LDQ misses when predicted to hit:

Squash two cycles (replay the ADDQ and its consumers) Force a "mini-replay" (direct from the issue queue)

Low-latency Speculative Issue of Integer Load Data Consumers (Predict Miss)

LDQ R0, 0(R0)
OP1 R2, R2, R3
OP2 R4, R4, R5
ADDQ R0, R0, R1

LDQ Cache Lookup Cycle

Q R E D

Q R E D

Q R E D

Q R E D

Q R E D

ADDQ can issue

5 Cycle Latency (Min)

Earliest ADDQ Issue

• When predicting a load miss:

The minimum load latency is 5 cycles (more on a miss) There are no squashes

Best performance if the load actually misses (as predicted)

• The hit/miss predictor:

MSB of 4-bit counter (hits increment by 1, misses decrement by 2)

REK August 1998

Dynamic Hazard Avoidance (Before Marking)

Dynamic Hazard Avoidance (After Marking/Training)

REK August 1998

New Memory Prefetches

Software-directed prefetches

Prefetch

Prefetch w/ modify intent

Prefetch, evict it next

Evict Block (eject data from the cache)

Write hint

allocate block with no data read useful for full cache block writes

21264 Off-Chip Memory System Features

- 8 outstanding block fills + 8 victims
- Split L2 cache and system busses (back-side cache)
- High-speed (bandwidth) point-to-point channels clock-forwarding technology, low pin counts
- L2 hit load latency (load issue to consumer issue) = 6
 cycles + SRAM latency
- Max L2 cache bandwidth of 16 bytes per 1.5 cycles 6.4 GB/sec with a 400Mhz transfer rate
- L2 miss load latency can be 160ns (60 ns DRAM)
- Max system bandwidth of 8 bytes per 1.5 cycles

3.2 GB/sec with a 400Mhz transfer rate

REK August 1998

21264 Pin Bus

Compaq Alpha / AMD Shared System Pin Bus (External Interface)

- High-performance system pin bus
- Shared system chipset designs
- This is a win-win!

REK August 1998

Dual 21264 System Example

Page 13

Measured Performance: SPEC95

REK August 1998

Measured Performance: STREAMS

Alpha 21264

REK August 1998

29

Summary

- The 21264 will maintain Alpha's performance lead
 - 30+ Specint95 and 50+ Specfp95
 - 1+ GB/sec memory bandwidth
- The 21264 proves that both high frequency and sophisticated architectural features can coexist

high-bandwidth speculative instruction fetch

out-of-order execution

6-way instruction issue

highly parallel out-of-order memory system