Number Theory

Lecture and Seminar Notes

Sarah Mantell

October 4, 2022

Algebraic Number Theory |1

1.1 Introduction

This section is a brief review of algebraic number theory, particularly the concepts that are relevant to Class Field Theory.

Definition 1.1.1 A number field K is a finite field extension of \mathbb{Q} .

Definition 1.1.2 *Let* K *be a number field. An algebraic number* $a \in K$ *is called integral or an algebraic integer if* a *is the root of some monic polynomial* $f(x) = x^n + c_{n-1}x + \cdots + c_1x + c_0$.

The set of algebraic integers over a number field K is denoted by \mathcal{O}_K .

Proposition 1.1.1 *Let K be a number field. Then,* \mathfrak{O}_K *is a ring and K = Frac*(\mathfrak{O}_K)

Proposition 1.1.2 *The ring* \mathfrak{G}_K *is Noetherian, integrally closed, and every nonzero prime ideal is maximal.*

The above proposition here is equivalent to stating that $\ensuremath{\mathfrak{O}}_K$ is a Dedekind domain.

Theorem 1.1.3 (Unique Factorization of Ideals) *Every nonzero ideal* $\mathfrak{a} \nsubseteq \mathfrak{G}_K$ *can be uniquely written in the form*

$$\mathfrak{a}=\mathfrak{p}_1^{r_1}\cdots\mathfrak{p}_m^{r_m}$$

where $m \ge 1$, each $r_i \in \mathbb{N}$, and $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ are distinct, nonzero prime ideals of \mathfrak{G}_K .

Here integrally closed means that for any $a \in \operatorname{Frac}(\mathfrak{G}_K)$ that is integral over \mathfrak{G}_K , it follows that $a \in \mathfrak{G}_K$.