1 Евклидовы кольца, кольца главных идеалов, факториальные кольца

Определение 1.1 (Евклидово кольцо). R - ассоциативное, коммутативное кольцо с единицей, R - евклидово, если для каждого элемента a этого кольца существует его норма $\|a\|$.

Определение 1.2 (Евклидова норма). Это некоторая функция элемента кольца, такая что

- 1. $||a|| \in \omega$
- 2. если $a, b \neq 0$, то $||ab|| \geq \max(||a||, ||b||)$
- 3. если $a \neq 0$, то для любого b существуют d и r такие что b = da + r и $\|r\| < \|a\|$ или r = 0

Определение 1.3 (Кольцо главных идеалов). Кольцо главных идеалов - кольцо, в котором все идеалы главные

Теорема 1.4. Каждое евклидово кольцо - кольцо главных идеалов

Доказательство.

Теорема 1.5. B кольце главных идеалов R не существует бесконечно возрастающей цепи идеалов

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots$$

Доказательство. Пусть $I_0\subseteq I_1\subseteq I_2\subseteq\dots$ - возрастающая цепь идеалов и $I=\cup_{i=0}^\infty I_i$, докажем что I - идеал

- 1. докажем что I подкольцо по теореме ??
 - (a) I замкнут по сложению и умножению, покажем на элементах $a,b\in I$. В таком случае в цепи есть идеалы I_j и I_k , такие что $a\in I_j$ и $b\in I_k$. Если $m\geq \max(j,k)$ то оба элемента a и b принадлежат I_m , поэтому принадлежат и a+b и ab. Поэтому $a+b\in I$ и $ab\in I$
 - (b) $0 \in I$ потому что $0 \in I_i$ для всякого i
 - (c) Пусть $a\in I$. Тогда $a\in I_j$ Для какого-то j, в этом случае $-a\in I_j$, следовательно $-a\in I$

следовательно I - подкольцо

2. Пусть $a\in I$. Тогда $a\in I_j$ Для какого-то j. Пусть r - любой элемент R, тогда $ra\in I_j$, следовательно $ra\in I$. Следовательно $rI\subseteq I$

по определению ?? I - идеал.

Так как R - КГИ и I - идеал, то существует $a \in R$, такое что I = aR. Так как $a \in I$ существует n такой что $a \in I_n$. Следовательно $aR \subseteq I_n$. По определению I $I_n \subset I = aR$. I_n и I входят друг в друга следовательно $I = I_n$. Если брать любое $m \ge n$ то должно выполнятся условие $I \subseteq I_m$. Это возможно только если $I_m = I$.

Следовательно после некоторого конечного элемента n цепь идеалов перестаёт возрастать

Определение 1.6 (Простой элемент). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда a - простой, если из a=bc следует что b или c обратимы

Определение 1.7 (Факториальное кольцо). Пусть R - ассоциативное, коммутативное кольцо с единицей, тогда R - факториальное кольцо, если для каждого элемента $a \in R$

- 1. существует простые $b_1, ..., b_n$, такие что $a = b_1 ... b_n$
- 2. если $a=c_1...c_m$, где $c_1,...,c_m$ простые, то m=n, существует перестановка σ , Такая что $c_i=e_ib_{\sigma(i)}$ Для обратимого e_i

Теорема 1.8. Существует нефакториальное кольцо

Теорема 1.9. R - целостное кольцо и $a \neq 0$, Тогда следующие условия эквивалентны

- 1. а необратимый
- 2. $aR \neq R$
- 3. Для любого $b \neq 0$ $abr \neq bR$
- 4. для некоторого $b \neq 0$ $abr \neq bR$

Доказательство. $1 \Rightarrow 2$

 $ab \neq 1$ для любого b, соответствено $aR \not\ni 1$, следовательно $aR \neq R$ $2 \Rightarrow 3$

Пусть $b \neq 0$. Допустим $abR = br \ni b$. Пусть для некоторого $r \in R$ верно abr = b, следовательно

$$arb - b = 0 \Rightarrow (ar - 1)b = 0 \Rightarrow ar - 1 = 0 \Rightarrow ar = 1$$

то есть $1 \in aR$, следовательно aR = R, Противоречие.

 $3 \Rightarrow 4$

Если для любого $b \neq 0$ верно $abr \neq bR$, то верно и для некоторого

 $4 \Rightarrow 1$

Допустим a - обратимый, то есть существует $r \in R$, такой что ar = 1, получается

$$abR = baR \subseteq bR$$

И

$$bR = 1 \cdot bR = arbR = abrR \subseteq abR$$

следовательно bR = abR, что противоречит 4, следовательно a необратим

Теорема 1.10. Если R - $K\Gamma M$, то каждый необратимый элемент отличный от нуля раскладывается в конечное произведение простых элементов

Доказательство. Пусть $a \in R, a \neq 0$, и a - необратимый

1. Сначала покажем что a имеет в разложении простой множитель. Если a простой, то разложение завершено. Если нет, то $a=a_1b_1$, где ни a_1 ни b_1 необратимые. Тогда $a\in a_1R$ и $aR\subset a_1R$. Включение строгое, потому что если $aR=a_1R$, то для некоторого $r\in R$ было бы $a_1=ar$ и $a=arb_1$. Так как R - целостное и $rb_1=1$, то b_1 - обратимый, что противоречит разложению $a=a_1b_1$, где ни a_1 ни b_1 необратимые.

Если a_1 не простой, то можно сказать $a_1=a_2b_2$, где ни a_2 ни b_2 необратимые. Получается

$$aR \subset a_1R \subset a_2R$$

где каждое включение строгое. Если a_2 не простое то можно продолжить цепь, но по теореме 1.5 цепь нельзя продолжать бесконечно и после конечного числа шагов она закончится идеалом a_rR , где a_r - простое число. Следовательно в разложении a есть некоторый простой элемент a_r

2. Теперь покажем что a раскладывается в произведение простых элементов R. Если a не простое, то по пункту 1 можно сказать $a=p_1c_1$, где p_1 - простое число и c_1 необратимое. Поэтому aR строго вкладывается в c_1R . Если c_1 не простой, то $c_1=p_2c_2$ где p_2 - простое число и c_2 необратимое. Можно построить строго возрастающую цепь идеалов

$$aR \subset c_1R \subset c_2R$$

Эта цепь должна остановиться после конечного числа шагов на идеале $c_r R$, где c_r - простой. Тогда

$$a = p_1 p_2 ... p_r c_r$$

П

разложение на конечное число простых множителей

Лемма 1.11. Пусть I - идеал $K\Gamma M$ R. Тогда I является максимальным тогда и только тогда когда I=pR, где p - простой

Доказательство. Необходимость. Пусть I - максимальный идеал и I=pR для некоторого $p\in R$. Если p - не простой, тогда p=ab, где a,b - необратимые и $pR\subseteq aR$. Более того $pR\neq aR$, так как $a\in pR$ подразумевало бы a=pc и p=pcb, что означало бы что b - обратимый. Также $aR\neq R$ так как a необратим (1.9). Непростота p противоречит максимольности идеала I: нашёлся идеал I' такой что $I\subseteq I'$ и $I'\neq R$ (??).

Достаточность. Пусть p - простой элемент и I_1 - идеал в R, содержащий I=pR. Тогда $I_1=qR$ для некоторого $q\in R$ и $p\in I_1$ означает что p=rq для некоторого $r\in R$. Тогда или q или r обратим. В первом случае $I_1=qR=R$ а во втором случае $q=r^{-1}p$ и $q\in pR$, что подразумевает qR=pR и $I_1=I$. Поэтому I - максимальный идеал в R

Теорема 1.12. пусть R - целостное кольцо главных идеалов, тогда R - факториальное

Доказать что R - факториальное, надо показать что оно удовлетворяет условиям из 1.7:

- 1. по теореме 1.10
- 2. Надо показать что если $a=c_1...c_m=b_1,...,b_n$, где $c_1,...,c_m,b_1,...,b_n$ простые, то m=n, существует перестановка σ , Такая что $c_i=e_ib_{\sigma(i)}$ Для обратимого e_i

Предположим что $n \geq m$. Так как $c_1|a$, то $c_1|b_1,...,b_n$, то есть $c_1|b_j$ для какого-то j. Можно переставить местами так что $c_1|b_1$. Тогда $b_1=c_1e_1$ для какого-то обратимого $e_1\in R$. Следовательно

$$c_1c_2...c_m = e_1c_1b_2...b_n$$

И

$$c_2...c_m = e_1b_2...b_n$$

Продолжая процесс получается

$$1 = e_1 e_1 ... e_m b_{m+1} b_n$$

Так как ни один из b_i необратим, получается m=n и $c_i=e_ib_{\sigma(i)}$. Покажем что существует такая $\sigma:\{1,...,m\}\to\{1,...,m\}$ что σ биекция. Определим $\sigma(i)=$ минимальный j, такой что $b_j|c_i$ и $j\not\in\{\sigma(1),...,\sigma(i-1)\}$. Нужно доказать что такой j всегда найдётся, что σ инъективна и сюръективна.

П

5