

Applications of SSA: Growth Modeling

Ezgi Mercan Murat Maga Richard Hopper

Images

Landmarks (or semi-landmarks)

Mean shape, PCs, eigen values...

Now what?

Images + Variables

Landmarks (or semi-landmarks)

Mean shape, PCs, eigen values...

Now what? **Statistical Models**

Growth Modeling

- CT scans of pediatric human skull
- Variables: Age, Sex, Diagnosis
- Anatomical Landmarks
- Linear model: $landmark.position \sim age$

Growth Modeling

 Linear regression on age to predict coordinates of each landmark

$$LM1_x \sim a_{1x} \times age + b_{1x}$$

$$LM1_y \sim a_{1y} \times age + b_{1y}$$

$$LM1_z \sim a_{1z} \times age + b_{1z}$$

$$LM2_x \sim a_{2x} \times age + b_{2x}$$

$$LM2_y \sim a_{2y} \times age + b_{2y}$$

$$LM2_z \sim a_{2z} \times age + b_{2z}$$

Problems:

- Landmark positions are <u>not independent</u>
- Number of landmarksx 3 models

...

GPA + PCA

PC.scores~ age

- In our data, first 20 PCs explains 90% of the variation, i.e. just 20 models
 - Dimensionality reduction
 - Noise removal
- PCs are orthogonal
- Each PC is a linear combination of all landmarks.

Growth Modeling

- Using the PC loadings and new PC scores, you can create new landmark coordinates.
 - Then morph a mesh to these new landmark positions.
- Morphs are realistic as long as your new PC scores are within the population parameters.

Growth Modeling

Model each PC as a function of age

Inference

0-6m Normal Growth Model

 Thin Plate Splines to warp a reference mesh to inferred landmark positions

!! TPS is accurate at and around the landmark locations but interpolates other surfaces.

Population-level Growth Models

- Sagittal craniosynostosis
 (premature fusion of sagittal
 suture) occurs in
 approximately 1 in every
 5000 births.
- If not surgically corrected, it can cause increased intracranial pressure which can lead to developmental problems.

Population-level Growth Models

 Apply the same methodology to unoperated 0-6mo patients with sagittal craniosynostosis.

Normal Infant Model

Sagittal Craniosynostosis Model

Population-level Growth Models

 Semi-landmark the reference image and transfer them to all instances in the model

Growth at the Sutures

Suture Closure

Cranial Growth in Isolated Sagittal Craniosynostosis Compared with Normal Growth in the First 6 Months Of Age, **E. Mercan**, R.A. 15 Hopper, A.M. Maga, Journal of Anatomy, 2019.

Design Decisions

- Size
- Symmetry
- Landmark positions
- Statistical model

Allometry: Size + Shape

Scale in GPA

 Since we were interested in growth, we did not scale samples during Procrustes' alignment – which preserved size.

Dominant Shape Changes: PC1

First 5 PCs

Normal Infant Template

PC1

PC2

PC3

PC4

PC5

Sagittal CS Template

Symmetry

- We symmetrized landmarks by flipping around mid-sagittal plane
 - We lose normal asymmetry
 - A design decision to simplify the analysis

Growth at the Sutures

What are we measuring exactly?

Inference

- Landmark coordinates are predicted for ages from 0 to 6mo using the linear model + PCA.
- Population template (with semi-landmarks at the sutures) is warped to predicted landmark coordinates using Thin Plate Splines.

Growth at the Sutures

Growth at "Landmark-less" Areas

- frontal bossing,
- occipital protuberance and
- bitemporal protrusion.

Linear Regression

Leave-One-Out-Cross-Validation errors

	Control						Sagittal Craniosynostosis					
	LOESS	L1	L2	LOESS PC20	L1 PC20	L2 PC20	LOESS	L1	L2	LOESS PC20	L1 PC20	L2 PC20
euR	9.22	9.11	9.17	9.26	9.14	9.21	6.25	6.11	6.17	6.16	6.06	6.10
euL	8.96	8.94	8.99	8.97	8.94	9.00	5.74	5.70	5.72	5.74	5.70	5.72
g	4.42	4.45	4.48	4.38	4.41	4.45	4.70	4.79	4.81	4.71	4.80	4.81
v	NA	NA	NA	NA	NA	NA	10.92	10.81	10.94	10.94	10.83	10.95
ор	8.94	8.86	8.88	8.97	8.88	8.89	7.31	7.40	7.45	7.28	7.39	7.43
poR	3.10	3.08	3.11	3.09	3.09	3.10	2.86	2.88	2.91	2.85	2.89	2.91

i

 You want the model with the least complexity (number of parameters) and least error.

Linear Regression

Stability of the PCA depends on number of samples and landmarks. Curse of high-dimensionality

OTHER EXAMPLES

Cleft Lip Severity

 $landmark.positions \sim severity + age$

Feature Selection

$semilandmark.positions \sim sex$

Sex and Genomic Ancestry

В

normal

outward

Genomics: Candidate SNPs

increase decreased

convexity

max decrease 0

increased inward

convexity

"Integrating SlicerMorph with R" lab after break.

With Great Power, Comes Great Responsibility

- Both PCA and most statistical models are sensitive to data size / dimensionality.
 - Cross-validation to check stability and reproducibility.
- Your model is as good as <u>your data</u> and <u>your assumptions</u>
 - Garbage in > Garbage out
 - SlicerMorph and other simple quality checks
- Understand what your model does
 - All models are wrong... but some are useful