Advanced Theoretical Developments in Non-Associative Zeta Functions and Complex Analysis

Pu Justin Scarfy Yang September 15, 2024

1 Expanded Theoretical Framework

1.1 Enhanced Notations

Definition 1.1. Let \mathbb{Y}_n be a non-associative number system. We extend the notations as follows:

- $\mathcal{M}_{\mathbb{Y}_n}(x)$: A non-associative multiplier function, which generalizes the multiplicative structure in \mathbb{Y}_n .
- $\varphi_{\mathbb{Y}_n}(s)$: The non-associative Euler product representation of $\zeta_{\mathbb{Y}_n}(s)$.
- $\mathcal{L}_{\mathbb{Y}_n}(s)$: A non-associative analog of the Laplace transform for functions over \mathbb{Y}_n .
- $\mathcal{R}_{\mathbb{Y}_n}(s)$: A generalized residue function associated with the poles of $\zeta_{\mathbb{Y}_n}(s)$.

1.2 New Formulas and Theoretical Extensions

Definition 1.2. The non-associative Euler product $\varphi_{\mathbb{Y}_n}(s)$ is defined as:

$$\varphi_{\mathbb{Y}_n}(s) = \prod_{p \ prime} \left(1 - \frac{1}{p_{\mathbb{Y}_n}^s}\right)^{-1}.$$

Definition 1.3. The non-associative Laplace transform $\mathcal{L}_{\mathbb{Y}_n}(s)$ is given by:

 $\mathcal{L}_{\mathbb{Y}_n}(f,s) = \int_0^\infty f(t)e^{-t\cdot_{\mathbb{Y}_n}s} dt,$

where $e^{-t \cdot \mathbb{Y}_n s}$ represents the exponential function adapted to the non-associative context.

Definition 1.4. The non-associative residue function $\mathcal{R}_{\mathbb{Y}_n}(s)$ is defined as:

$$\mathcal{R}_{\mathbb{Y}_n}(s) = Res_{s=s_0}\left(\frac{\zeta_{\mathbb{Y}_n}(s)}{s-s_0}\right),$$

where s_0 denotes the location of the pole in the complex plane.

1.3 Advanced Theorems and Proofs

Theorem 1.5. For a non-associative number system \mathbb{Y}_n , the **non-associative** Euler product converges if:

$$\prod_{p \ prime} \left(1 - \frac{1}{p_{\mathbb{Y}_n}^s}\right)^{-1}$$

converges for Re(s) > 1.

Proof. To establish convergence, examine:

$$\prod_{p \text{ prime}} \left(1 - \frac{1}{p_{\mathbb{Y}_n}^s}\right)^{-1}.$$

For Re(s) > 1, the product converges if each term in the product converges. Use non-associative generalizations of convergence criteria for series and products.

Theorem 1.6. The non-associative Laplace transform $\mathcal{L}_{\mathbb{Y}_n}(f,s)$ is valid and invertible if:

 $\mathcal{L}_{\mathbb{Y}_n}(f,s)$ exists and satisfies the condition $\mathcal{L}_{\mathbb{Y}_n}(f,s) \cdot_{\mathbb{Y}_n} f(t) = g(t)$.

Proof. For validity and invertibility, verify the existence of the integral:

$$\mathcal{L}_{\mathbb{Y}_n}(f,s) = \int_0^\infty f(t)e^{-t\cdot_{\mathbb{Y}_n}s} dt.$$

Ensure that the integral converges and that there exists an inverse transform such that:

$$f(t) = \mathcal{L}_{\mathbb{Y}_n}^{-1}(g, s).$$

Theorem 1.7. The non-associative residue function $\mathcal{R}_{\mathbb{Y}_n}(s)$ provides information about the poles of $\zeta_{\mathbb{Y}_n}(s)$ and is given by:

$$\mathcal{R}_{\mathbb{Y}_n}(s) = Res_{s=s_0}\left(\frac{\zeta_{\mathbb{Y}_n}(s)}{s-s_0}\right).$$

Proof. To compute residues, identify the poles s_0 of $\zeta_{\mathbb{Y}_n}(s)$ and evaluate:

$$\operatorname{Res}_{s=s_0}\left(\frac{\zeta_{\mathbb{Y}_n}(s)}{s-s_0}\right).$$

Use methods of residue calculus adapted to non-associative contexts. \Box

2 Further Research and Applications

2.1 Advanced Applications

- Study the implications of non-associative zeta functions in quantum mechanics and higher-dimensional physics.
- Develop algorithms for numerical evaluation of $\zeta_{\mathbb{Y}_n}(s)$ and related functions in non-associative systems.
- Explore connections between non-associative zeta functions and modern topics in algebraic geometry and arithmetic geometry.

2.2 Potential Extensions

- Investigate the impact of non-associative structures on the Riemann Hypothesis in various generalized contexts.
- Extend the theory to include non-associative analogs of other special functions and their applications.
- Explore the integration of non-associative number systems with computational algebra systems and their practical applications.

References

- [1] Author, "Title of Reference 1," Journal Name, Year.
- [2] Author, "Title of Reference 2," Journal Name, Year.
- [3] Author, "Title of Reference 3," Journal Name, Year.