

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 April 2003 (17.04.2003)

PCT

(10) International Publication Number
WO 03/031622 A1

(51) International Patent Classification⁷: C12N 15/29,
15/52, 15/53, 15/55, 15/60, 15/61, A01H 5/00

(74) Agent: FREEHILLS CARTER SMITH BEADLE;
Level 43, 101 Collins Street, Melbourne, Victoria 3000
(AU).

(21) International Application Number: PCT/AU02/01345

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 4 October 2002 (04.10.2002)

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
PR 8113 5 October 2001 (05.10.2001) AU

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/031622 A1

(54) Title: MANIPULATION OF FLAVONOID BIOSYNTHESIS IN PLANTS

(57) Abstract: The present invention relates to nucleic acids and nucleic acid fragments encoding amino acid sequences for flavonoid biosynthetic enzymes in plants, and the use thereof for the modification of flavonoid biosynthesis in plants. More particularly, the flavonoid biosynthetic enzyme is selected from the group consisting of chalcone isomerase (CHI), chalcone synthase (CHS), chalcone reductase (CHR), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductase (LCR), flavonoid 3', 5' hydrolase (F3'5'H), flavonone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), phenylalanine ammonia-lyase (PAL) and vestitone reductase (VR), and functionally active fragments and variants thereof.

MANIPULATION OF FLAVONOID BIOSYNTHESIS IN PLANTS

The present invention relates to nucleic acids and nucleic acid fragments encoding amino acid sequences for flavonoid biosynthetic enzymes in plants, and the use thereof for the modification of flavonoid biosynthesis in plants.

5 Flavonoids constitute a relatively diverse family of aromatic molecules that are derived from phenylalanine and malonyl-coenzyme A (CoA, via the fatty acid pathway). These compounds include six major subgroups that are found in most higher plants: the chalcones, flavones, flavonols, flavandiols, anthocyanins and condensed tannins (or proanthocyanidins). A seventh group, the aurones, is
10 widespread, but not ubiquitous.

Some plant species also synthesize specialised forms of flavonoids, such as the isoflavonoids that are found in legumes and a small number of non-legume plants. Similarly, sorghum, maize and gloxinia are among the few species known to synthesize 3-deoxyanthocyanins (or phlobaphenes in the polymerised form).
15 The stilbenes which are closely related to flavonoids, are synthesised by another group of unrelated species that includes grape, peanut and pine.

Besides providing pigmentation to flowers, fruits, seeds, and leaves, flavonoids also have key roles in signalling between plants and microbes, in male fertility of some species, in defense as antimicrobial agents and feeding
20 deterents, and in UV protection.

Flavonoids also have significant activities when ingested by animals, and there is great interest in their potential health benefits, particularly for compounds such as isoflavonoids, which have been linked to anticancer benefits, and stilbenes that are believed to contribute to reduced heart disease.

25 The major branch pathways of flavonoid biosynthesis start with general phenylpropanoid metabolism and lead to the nine major subgroups: the colorless chalcones, aurones, isoflavonoids, flavones, flavonols, flavandiols, anthocyanins, condensed tannins, and phlobaphene pigments. The enzyme phenylalanine

ammonia-lyase (PAL) of the general phenylpropanoid pathway will lead to the production of cinnamic acid. Cinnamate-4-hydroxylase (C4H) will produce p-coumaric acid which will be converted through the action of 4-coumaroyl:CoA-ligase (4CL) to the production of 4-coumaroyl-CoA and malonyl-CoA. The first committed step in flavonoid biosynthesis is catalyzed by chalcone synthase (CHS), which uses malonyl CoA and 4-coumaryl CoA as substrates. Chalcone reductase (CHR) balances the production of 5-hydroxy- or 5-deoxyflavonoids. The next enzyme, chalcone isomerase (CHI) catalyses ring closure to form a flavanone, but the reaction can also occur spontaneously. Other enzymes in the pathway are: flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), flavonoid 3'-hydroxylase (F3'H) and flavonoid 3', 5' hydroxylase (F3'5'H).

The *Arabidopsis BANYULS* gene encodes a DFR-like protein that may be a leucoanthocyanidin reductase (LCR) that catalyzes an early step in condensed tannin biosynthesis. Condensed tannins are plant polyphenols with protein-precipitating and antioxidant properties, synthesized by the flavonoid pathway. Their chemical properties include protein binding, metal chelation, anti-oxidation, and UV-light absorption. As a result condensed tannins inhibit viruses, micro-organisms, insects, fungal pathogens, and monogastric digestion. Moderate amounts of tannins improve forage quality by disrupting protein foam and conferring protection from rumen pasture bloat. Bloat is a digestive disorder that occurs on some highly nutritious forage legumes such as alfalfa (*Medicago sativa*) and white clover (*Trifolium repens*). Moderate amounts of tannin can also reduce digestion rates in the rumen and can reduce parasitic load sufficiently to increase the titre of amino acids and small peptides in the small intestine without compromising total digestion.

Vestitone reductase (VR) is the penultimate enzyme in medicarpin biosynthesis. Medicarpin, a phytoalexin, has been associated with plant resistance to fungal pathogens.

While nucleic acid sequences encoding some flavonoid biosynthetic enzymes CHI, CHS, CHR, DFR, LCR, F3'5'H, F3H, F3'H, PAL and VR have been isolated for certain species of plants, there remains a need for materials useful in

modifying flavonoid biosynthesis; in modifying protein binding, metal chelation, anti-oxidation, and UV-light absorption; in modifying plant pigment production; in modifying plant defense to biotic stresses such as viruses, micro-organisms, insects or fungal pathogens; in modifying forage quality, for example by disrupting 5 protein foam and/or conferring protection from rumen pasture bloat, particularly in forage legumes and grasses, including alfalfa, medics, clovers, ryegrasses and fescues, and for methods for their use.

It is an object of the present invention to overcome, or at least alleviate, one or more of the difficulties or deficiencies associated with the prior art.

10 In one aspect, the present invention provides substantially purified or isolated nucleic acids or nucleic acid fragments encoding the flavonoid biosynthetic enzymes CHI, CHS, CHR, DFR, LCR, F3'5'H, F3H, F3'H, PAL and VR from a clover (*Trifolium*), medic (*Medicago*), ryegrass (*Lolium*) or fescue (*Festuca*) species and functionally active fragments and variants thereof.

15 The present invention also provides substantially purified or isolated nucleic acids or nucleic acid fragments encoding amino acid sequences for a class of proteins which are related to CHI, CHS, CHR, DFR, LCR, F3'5'H, F3H, F3'H, PAL and VR and functionally active fragments and variants thereof. Such proteins are referred to herein as CHI-like, CHS-like, CHR-like, DFR-like, LCR-like, F3'5'H-like, 20 F3H-like, F3'H-like, PAL-like and VR-like, respectively.

The individual or simultaneous enhancement or otherwise manipulation of CHI, CHS, CHR, DFR, LCR, F3'5'H, F3H, F3'H, PAL and/or VR or like gene activities in plants may enhance or otherwise alter flavonoid biosynthesis; may enhance or otherwise alter the plant capacity for protein binding, metal chelation, 25 anti-oxidation or UV-light absorption; may enhance or reduce or otherwise alter plant pigment production; may modify plant defense to biotic stresses such as viruses, micro-organisms, insects or fungal pathogens; and/or may modify forage quality, for example by disrupting protein foam and/or conferring protection from rumen pasture bloat.

The individual or simultaneous enhancement or otherwise manipulation of CHI, CHS, CHR, DFR, LCR, F3'5'H, F3H, F3'H, PAL and/or VR or like gene activities in plants has significant consequences for a range of applications in, for example, plant production and plant protection. For example, it has applications in

5 increasing plant tolerance and plant defense to biotic stresses such as viruses, micro-organisms, insects and fungal pathogens; in improving plant forage quality, for example by disrupting protein foam and in conferring protection from rumen pasture bloat; in reducing digestion rates in the rumen and reducing parasitic load;

10 in the production of plant compounds leading to health benefits, such as isoflavonoids, which have been linked to anticancer benefits, and stilbenes that are believed to contribute to reduced heart disease.

Methods for the manipulation of CHI, CHS, CHR, DFR, LCR, F3'5'H, F3H, F3'H, PAL and/or VR or like gene activities in plants, including legumes such as clovers (*Trifolium* species), lucerne (*Medicago sativa*) and grass species such as

15 ryegrasses (*Lolium* species) and fescues (*Festuca* species) may facilitate the production of, for example, forage legumes and forage grasses and other crops with enhanced tolerance to biotic stresses such as viruses, micro-organisms, insects and fungal pathogens; altered pigmentation in flowers; forage legumes with enhanced herbage quality and bloat-safety; crops with enhanced isoflavonoid

20 content leading to health benefits.

The clover (*Trifolium*), medic (*Medicago*), ryegrass (*Lolium*) or fescue (*Festuca*) species may be of any suitable type, including white clover (*Trifolium repens*), red clover (*Trifolium pratense*), subterranean clover (*Trifolium subterraneum*), alfalfa (*Medicago sativa*), Italian or annual ryegrass (*Lolium multiflorum*), perennial ryegrass (*Lolium perenne*), tall fescue (*Festuca arundinacea*), meadow fescue (*Festuca pratensis*) and red fescue (*Festuca rubra*). Preferably the species is a clover or a ryegrass, more preferably white clover (*T. repens*) or perennial ryegrass (*L. perenne*). White clover (*Trifolium repens* L.) and perennial ryegrass (*Lolium perenne* L.) are key pasture legumes and grasses,

25 respectively, in temperate climates throughout the world. Perennial ryegrass is also an important turf grass.

The nucleic acid or nucleic acid fragment may be of any suitable type and includes DNA (such as cDNA or genomic DNA) and RNA (such as mRNA) that is single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases, and combinations thereof.

5 The term “isolated” means that the material is removed from its original environment (eg. the natural environment if it is naturally occurring). For example, a naturally occurring nucleic acid present in a living plant is not isolated, but the same nucleic acid separated from some or all of the coexisting materials in the natural system, is isolated. Such nucleic acids could be part of a vector and/or
10 such nucleic acids could be part of a composition, and still be isolated in that such a vector or composition is not part of its natural environment.

Such nucleic acids or nucleic acid fragments could be assembled to form a consensus contig. As used herein, the term “consensus contig” refers to a nucleotide sequence that is assembled from two or more constituent nucleotide
15 sequences that share common or overlapping regions of sequence homology. For example, the nucleotide sequence of two or more nucleic acids or nucleic acid fragments can be compared and aligned in order to identify common or overlapping sequences. Where common or overlapping sequences exist between two or more nucleic acids or nucleic acid fragments, the sequences (and thus their
20 corresponding nucleic acids or nucleic acid fragments) can be assembled into a single contiguous nucleotide sequence.

In a preferred embodiment of this aspect of the invention, the substantially purified or isolated nucleic acid or nucleic acid fragment encoding a CHI or CHI-like protein includes a nucleotide sequence selected from the group consisting of
25 (a) sequences shown in Figures 1, 3, 4, 6, 7, 9, 10, 12, 122 and 127 hereto (Sequence ID Nos: 1, 3 to 7, 8, 10 to 12, 13, 15 and 16, 17, 19 to 22, 307, and 309, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

In a further preferred embodiment of this aspect of the invention, the substantially purified or isolated nucleic acid or nucleic acid fragment encoding a CHS or CHS-like protein includes a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 13, 15, 16, 18, 19, 21, 22, 24, 25, 5 27, 28, 30, 31, 33, 34, 137, 142, 147, 152, 157 and 162 hereto (Sequence ID Nos: 23, 25 to 63, 64, 66 to 68, 69, 71 to 77, 78, 80 to 90, 91, 93 and 94, 95, 97 to 100, 101, 103 to 105, 106, 313, 315, 317, 319, 321, and 323, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants 10 of the sequences recited in (a), (b) and (c).

In a further preferred embodiment of this aspect of the invention, the substantially purified or isolated nucleic acid or nucleic acid fragment encoding a CHR or CHR-like protein includes a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 36, 38, 40, 41, 43 and 132 hereto 15 (Sequence ID Nos: 108, 110, 112 to 116, 117, 119 to 134, and 311, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

In a further preferred embodiment of this aspect of the invention, the 20 substantially purified or isolated nucleic acid or nucleic acid fragment encoding a DFR or DFR-like protein includes a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 44, 46, 47, 49, 50, 52, 54, 55, 57, 59, 61, 62, 64, 101, 103, 104, 106, 117 and 167 hereto (Sequence ID Nos: 135, 137 to 146, 147, 149 to 152, 153, 155, 157 and 158, 159, 161, 163, 165 to 167, 25 168, 170 to 184, 286, 288 to 292, 293, 295 to 297, 305, and 325, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

In a further preferred embodiment of this aspect of the invention, the 30 substantially purified or isolated nucleic acid or nucleic acid fragment encoding an LCR or LCR-like protein includes a nucleotide sequence selected from the group

consisting of (a) sequences shown in Figures 65 and 67 hereto (Sequence ID Nos: 185 and 187 to 193, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and 5 (c).

In a still further preferred embodiment of this aspect of the invention, the substantially purified or isolated nucleic acid or nucleic acid fragment encoding an F3'5'H or F3'5'H-like protein includes a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 68, 70 and 72 hereto 10 (Sequence ID Nos: 194, 196, and 198 to 201, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

In a further preferred embodiment of this aspect of the invention, the 15 substantially purified or isolated nucleic acid or nucleic acid fragment encoding an F3H or F3H-like protein includes a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 73, 75, 76, 78, 107, 109, 111 and 172 hereto (Sequence ID Nos: 202, 204 to 244, 245, 247, 298, 300 to 302, 303, and 327, respectively); (b) complements of the sequences recited in (a); (c) 20 sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

In a still further preferred embodiment of this aspect of the invention, the substantially purified or isolated nucleic acid or nucleic acid fragment encoding an F3'H or F3'H-like protein includes a nucleotide sequence selected from the group 25 consisting of (a) sequences shown in Figures 80 and 82 hereto (Sequence ID Nos: 249, and 251 and 252, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

In a further preferred embodiment of this aspect of the invention, the substantially purified or isolated nucleic acid or nucleic acid fragment encoding an PAL or PAL-like protein includes a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 83, 85, 86, 88, 89, 91, 93, 95, 97,
5 177, 182 and 187 hereto (Sequence ID Nos: 253, 255 to 257, 258, 260 to 267, 268, 270, 272, 274, 276 and 277, 329, 331, and 333, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

10 In a still further preferred embodiment of this aspect of the invention, the substantially purified or isolated nucleic acid or nucleic acid fragment encoding an VR or VR-like protein includes a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 98, 100 and 192 hereto (Sequence ID Nos: 278, 280 to 285, and 335, respectively); (b) complements of the
15 sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

By "functionally active" in relation to nucleic acids it is meant that the fragment or variant (such as an analogue, derivative or mutant) encodes a
20 polypeptide which is capable of modifying flavonoid biosynthesis in a plant. Such variants include naturally occurring allelic variants and non-naturally occurring variants. Additions, deletions, substitutions and derivatizations of one or more of the nucleotides are contemplated so long as the modifications do not result in loss of functional activity of the fragment or variant. Preferably the functionally active
25 fragment or variant has at least approximately 80% identity to the relevant part of the above mentioned nucleotide sequence, more preferably at least approximately 90% identity, even more preferably at least approximately 95% identity, most preferably at least approximately 98% homology. Such functionally active variants and fragments include, for example, those having nucleic acid changes which
30 result in conservative amino acid substitutions of one or more residues in the corresponding amino acid sequence. Preferably the fragment has a size of at least

10 nucleotides, more preferably at least 15 nucleotides, most preferably at least 20 nucleotides.

Nucleic acids or nucleic acid fragments encoding at least a portion of several CHI, CHS, CHR, DFR, LCR, F3'5'H, F3H, F3'H, PAL and VR have been
5 isolated and identified. The nucleic acids or nucleic acid fragments of the present invention may be used to isolate cDNAs and genes encoding homologous proteins from the same or other plant species. Isolation of homologous genes using sequence-dependent protocols, such as methods of nucleic acid hybridisation, and methods of DNA and RNA amplification as exemplified by various uses of nucleic
10 acid amplification technologies (e.g. polymerase chain reaction, ligase chain reaction), is well known in the art.

For example, genes encoding other CHI or CHI-like, CHS or CHS-like, CHR or CHR-like, DFR or DFR-like, LCR or LCR-like, F3'5'H or F3'5'H-like, F3H or F3H-like, F3'H or F3'H-like, PAL or PAL-like and VR or VR-like proteins, either as
15 cDNAs or genomic DNAs, may be isolated directly by using all or a portion of the nucleic acids or nucleic acid fragments of the present invention as hybridisation probes to screen libraries from the desired plant employing the methodology well known to those skilled in the art. Specific oligonucleotide probes based upon the nucleic acid sequences of the present invention may be designed and synthesized
20 by methods known in the art. Moreover, the entire sequences may be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primer DNA labelling, nick translation, or end-labelling techniques, or RNA probes using available *in vitro* transcription systems. In addition, specific primers may be designed and used to amplify a part or all of the sequences of the present
25 invention. The resulting amplification products may be labelled directly during amplification reactions or labelled after amplification reactions, and used as probes to isolate full-length cDNA or genomic fragments under conditions of appropriate stringency.

In addition, short segments of the nucleic acids or nucleic acid fragments of
30 the present invention may be used in amplification protocols to amplify longer nucleic acids or nucleic acid fragments encoding homologous genes from DNA or

RNA. For example, polymerase chain reaction may be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the nucleic acid sequences of the present invention, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' 5 end of the mRNA precursor encoding plant genes. Alternatively, the second primer sequence may be based upon sequences derived from the cloning vector. For example, those skilled in the art can follow the RACE protocol [Frohman *et al.* (1988) *Proc. Natl. Acad. Sci. USA* 85:8998, the entire disclosure of which is incorporated herein by reference] to generate cDNAs by using PCR to amplify 10 copies of the region between a single point in the transcript and the 3' or 5' end. Using commercially available 3' RACE and 5' RACE systems (BRL), specific 3' or 5' cDNA fragments may be isolated [Ohara *et al.* (1989) *Proc. Natl. Acad. Sci USA* 86:5673; Loh *et al.* (1989) *Science* 243:217, the entire disclosures of which are incorporated herein by reference]. Products generated by the 3' and 5' RACE 15 procedures may be combined to generate full-length cDNAs.

In a second aspect of the present invention there is provided a substantially purified or isolated polypeptide from a clover (*Trifolium*), medic (*Medicago*), ryegrass (*Lolium*) or fescue (*Festuca*) species, selected from the group consisting of CHI and CHI-like, CHS and CHS-like, CHR and CHR-like, DFR and DFR-like, 20 LCR and LCR-like, F3'5'H and F3'5'H-like, F3H and F3H-like, F3'H and F3'H-like, PAL and PAL-like, VR and VR-like; and functionally active fragments and variants thereof.

The clover (*Trifolium*), medic (*Medicago*), ryegrass (*Lolium*) or fescue (*Festuca*) species may be of any suitable type, including white clover (*Trifolium repens*), red clover (*Trifolium pratense*), subterranean clover (*Trifolium subterraneum*), alfalfa (*Medicago sativa*), Italian or annual ryegrass (*Lolium multiflorum*), perennial ryegrass (*Lolium perenne*), tall fescue (*Festuca arundinacea*), meadow fescue (*Festuca pratensis*) and red fescue (*Festuca rubra*). Preferably the species is a clover or a ryegrass, more preferably white clover (*T. 30 repens*) or perennial ryegrass (*L. perenne*).

In a preferred embodiment of this aspect of the invention, the substantially purified or isolated CHI or CHI-like polypeptide includes an amino acid sequence selected from the group consisting of the sequences shown in Figures 2, 5, 8, 11, 123 and 128 hereto (Sequence ID Nos: 2, 9, 14, 18, 308, and 310, respectively),
5 and functionally active fragments and variants thereof.

In a further preferred embodiment of this aspect of the invention, the substantially purified or isolated CHS or CHS-like polypeptide includes an amino acid sequence selected from the group consisting of the sequences shown in Figures 14, 17, 20, 23, 26, 29, 32, 35, 138, 143, 148, 153, 158 and 163 hereto
10 (Sequence ID Nos: 24, 65, 70, 79, 92, 96, 102, 107, 314, 316, 318, 320, 322, and 324, respectively), and functionally active fragments and variants thereof.

In a further preferred embodiment of this aspect of the invention, the substantially purified or isolated CHR or CHR-like polypeptide includes an amino acid sequence selected from the group consisting of the sequences shown in
15 Figures 37, 39, 42 and 133 hereto (Sequence ID Nos: 109, 111, 118, and 312, respectively), and functionally active fragments and variants thereof.

In a still further preferred embodiment of this aspect of the invention, the substantially purified or isolated DFR or DFR-like polypeptide includes an amino acid sequence selected from the group consisting of the sequences shown in
20 Figures 45, 48, 51, 53, 56, 58, 60, 63, 102, 105, 118 and 168 hereto (Sequence ID Nos: 136, 148, 54, 156, 160, 162, 164, 169, 287, 294, 306, and 326, respectively), and functionally active fragments and variants thereof.

In a still further preferred embodiment of this aspect of the invention, the substantially purified or isolated LCR or LCR-like polypeptide includes an amino acid sequence shown in Figure 66 hereto (Sequence ID No: 186), and functionally active fragments and variants thereof.
25

In a still further preferred embodiment of this aspect of the invention, the substantially purified or isolated F3'5'H or F3'5'H-like polypeptide includes an amino acid sequence selected from the group consisting of the sequences shown

in Figures 69 and 71 hereto (Sequence ID Nos: 195 and 197, respectively), and functionally active fragments and variants thereof.

In a still further preferred embodiment of this aspect of the invention, the substantially purified or isolated F3H or F3H-like polypeptide includes an amino acid sequence selected from the group consisting of the sequences shown in Figures 74, 77, 79, 108, 112 and 173 hereto (Sequence ID Nos: 203, 246, 248, 299, 304, and 328, respectively), and functionally active fragments and variants thereof.

In a still further preferred embodiment of this aspect of the invention, the substantially purified or isolated F3'H or F3'H-like polypeptide includes an amino acid sequence shown in Figure 81 hereto (Sequence ID No: 250), and functionally active fragments and variants thereof.

In a still further preferred embodiment of this aspect of the invention, the substantially purified or isolated PAL or PAL-like polypeptide includes an amino acid sequence selected from the group consisting of the sequences shown in Figures 84, 87, 90, 92, 94, 96, 178, 183 and 188 hereto (Sequence ID Nos: 254, 259, 269, 271, 273, 275, 330, 332, and 334, respectively), and functionally active fragments and variants thereof.

In a still further preferred embodiment of this aspect of the invention, the substantially purified or isolated VR or VR-like polypeptide includes an amino acid sequence shown in Figures 99 and 193 hereto (Sequence ID Nos: 279 and 336, respectively), and functionally active fragments and variants thereof.

By "functionally active" in relation to polypeptides it is meant that the fragment or variant has one or more of the biological properties of the proteins CHI, CHI-like, CHS, CHS-like, CHR, CHR-like, DFR, DFR-like, LCR, LCR-like, F3'5'H, F3'5'H-like, F3H, F3H-like, F3'H, F3'H-like, PAL, PAL-like, VR and VR-like, respectively. Additions, deletions, substitutions and derivatizations of one or more of the amino acids are contemplated so long as the modifications do not result in loss of functional activity of the fragment or variant. Preferably the functionally

active fragment or variant has at least approximately 60% identity to the relevant part of the above mentioned amino acid sequence, more preferably at least approximately 80% identity, even more preferably at least approximately 90% identity most preferably at least approximately 95% homology. Such functionally active variants and fragments include, for example, those having conservative amino acid substitutions of one or more residues in the corresponding amino acid sequence. Preferably the fragment has a size of at least 10 amino acids, more preferably at least 15 amino acids, most preferably at least 20 amino acids.

In a further embodiment of this aspect of the invention, there is provided a polypeptide recombinantly produced from a nucleic acid or nucleic acid fragment according to the present invention. Techniques for recombinantly producing polypeptides are well known to those skilled in the art.

Availability of the nucleotide sequences of the present invention and deduced amino acid sequences facilitates immunological screening of cDNA expression libraries. Synthetic peptides representing portions of the instant amino acid sequences may be synthesized. These peptides may be used to immunise animals to produce polyclonal or monoclonal antibodies with specificity for peptides and/or proteins including the amino acid sequences. These antibodies may be then used to screen cDNA expression libraries to isolate full-length cDNA clones of interest.

A genotype is the genetic constitution of an individual or group. Variations in genotype are important in commercial breeding programs, in determining parentage, in diagnostics and fingerprinting, and the like. Genotypes can be readily described in terms of genetic markers. A genetic marker identifies a specific region or locus in the genome. The more genetic markers, the finer defined is the genotype. A genetic marker becomes particularly useful when it is allelic between organisms because it then may serve to unambiguously identify an individual. Furthermore, a genetic marker becomes particularly useful when it is based on nucleic acid sequence information that can unambiguously establish a genotype of an individual and when the function encoded by such nucleic acid is known and is associated with a specific trait. Such nucleic acids and/or nucleotide

sequence information including single nucleotide polymorphisms (SNPs), variations in single nucleotides between allelic forms of such nucleotide sequence, may be used as perfect markers or candidate genes for the given trait.

Applicants have identified a number of SNPs of the nucleic acids or nucleic acid fragments of the present invention. These are indicated (marked with grey on the black background) in the figures that show multiple alignments of nucleotide sequences of nucleic acid fragments contributing to consensus contig sequences. See for example, Figures 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 40, 43, 46, 49, 54, 61, 64, 67, 72, 75, 82, 85, 88, 97, 100, 103, 106 and 109 hereto (Sequence ID Nos: 3 to 7, 10 to 12, 15 and 16, 19 to 22, 25 to 63, 66 to 68, 71 to 77, 80 to 90, 93 and 94, 97 to 100, 103 to 105, 112 to 116, 119 to 134, 137 to 146, 149 to 152, 157 and 158, 165 to 167, 170 to 184, 187 to 193, 198 to 201, 204 to 244, 251 and 252, 255 to 257, 260 to 267, 276 and 277, 280 to 285, 288 to 292, 295 to 297, and 300 to 302, respectively).

Accordingly, in a further aspect of the present invention, there is provided a substantially purified or isolated nucleic acid or nucleic acid fragment including a single nucleotide polymorphism (SNP) from a nucleic acid or nucleic acid fragment according to the present invention or complements or sequences antisense thereto, and functionally active fragments and variants thereof.

In a still further aspect of the present invention there is provided a method of isolating a nucleic acid or nucleic acid fragment of the present invention including a SNP, said method including sequencing nucleic acid fragments from a nucleic acid library.

The nucleic acid library may be of any suitable type and is preferably a cDNA library.

The nucleic acid or nucleic acid fragments may be isolated from a recombinant plasmid or may be amplified, for example using polymerase chain reaction.

The sequencing may be performed by techniques known to those skilled in the art.

In a still further aspect of the present invention, there is provided use of the nucleic acids or nucleic acid fragments of the present invention including SNPs, 5 and/or nucleotide sequence information thereof, as molecular genetic markers.

In a still further aspect of the present invention there is provided use of a nucleic acid or nucleic acid fragment of the present invention, and/or nucleotide sequence information thereof, as a molecular genetic marker.

More particularly, nucleic acids or nucleic acid fragments according to the 10 present invention and/or nucleotide sequence information thereof may be used as a molecular genetic marker for quantitative trait loci (QTL) tagging, QTL mapping, DNA fingerprinting and in marker assisted selection, particularly in clovers, alfalfa, ryegrasses and fescues. Even more particularly, nucleic acids or nucleic acid fragments according to the present invention and/or nucleotide sequence 15 information thereof may be used as molecular genetic markers in plant improvement in relation to plant tolerance to biotic stresses such as viruses, micro-organisms, insects, fungal pathogens; in relation to forage quality; in relation to bloat safety; in relation to condensed tannin content; in relation to plant pigmentation. Even more particularly, sequence information revealing SNPs in 20 allelic variants of the nucleic acids or nucleic acid fragments of the present invention and/or nucleotide sequence information thereof may be used as molecular genetic markers for QTL tagging and mapping and in marker assisted selection, particularly in clovers, alfalfa, ryegrasses and fescues.

In a still further aspect of the present invention there is provided a construct 25 including a nucleic acid or nucleic acid fragment according to the present invention.

The term "construct" as used herein refers to an artificially assembled or isolated nucleic acid molecule which includes the gene of interest. In general a construct may include the gene or genes of interest, a marker gene which in some

cases can also be the gene of interest and appropriate regulatory sequences. It should be appreciated that the inclusion of regulatory sequences in a construct is optional, for example, such sequences may not be required in situations where the regulatory sequences of a host cell are to be used. The term construct includes
5 vectors but should not be seen as being limited thereto.

In a still further aspect of the present invention there is provided a vector including a nucleic acid or nucleic acid fragment according to the present invention.

The term "vector" as used herein encompasses both cloning and
10 expression vectors. Vectors are often recombinant molecules containing nucleic acid molecules from several sources.

In a preferred embodiment of this aspect of the invention, the vector may include a regulatory element such as a promoter, a nucleic acid or nucleic acid fragment according to the present invention and a terminator; said regulatory
15 element, nucleic acid or nucleic acid fragment and terminator being operatively linked.

By "operatively linked" is meant that said regulatory element is capable of causing expression of said nucleic acid or nucleic acid fragment in a plant cell and said terminator is capable of terminating expression of said nucleic acid or nucleic
20 acid fragment in a plant cell. Preferably, said regulatory element is upstream of said nucleic acid or nucleic acid fragment and said terminator is downstream of said nucleic acid or nucleic acid fragment.

The vector may be of any suitable type and may be viral or non-viral. The vector may be an expression vector. Such vectors include chromosomal, non-
25 chromosomal and synthetic nucleic acid sequences, eg. derivatives of plant viruses; bacterial plasmids; derivatives of the Ti plasmid from *Agrobacterium tumefaciens*, derivatives of the Ri plasmid from *Agrobacterium rhizogenes*; phage DNA; yeast artificial chromosomes; bacterial artificial chromosomes; binary bacterial artificial chromosomes; vectors derived from combinations of plasmids

and phage DNA. However, any other vector may be used as long as it is replicable, integrative or viable in the plant cell.

The regulatory element and terminator may be of any suitable type and may be endogenous to the target plant cell or may be exogenous, provided that they
5 are functional in the target plant cell.

Preferably the regulatory element is a promoter. A variety of promoters which may be employed in the vectors of the present invention are well known to those skilled in the art. Factors influencing the choice of promoter include the desired tissue specificity of the vector, and whether constitutive or inducible
10 expression is desired and the nature of the plant cell to be transformed (eg. monocotyledon or dicotyledon). Particularly suitable constitutive promoters include the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter and derivatives thereof, the maize Ubiquitin promoter, and the rice Actin promoter.

A variety of terminators which may be employed in the vectors of the
15 present invention are also well known to those skilled in the art. The terminator may be from the same gene as the promoter sequence or a different gene. Particularly suitable terminators are polyadenylation signals, such as the CaMV 35S polyA and other terminators from the nopaline synthase (*nos*), the octopine synthase (*ocs*) and the *rbcS* genes.

20 The vector, in addition to the regulatory element, the nucleic acid or nucleic acid fragment of the present invention and the terminator, may include further elements necessary for expression of the nucleic acid or nucleic acid fragment, in different combinations, for example vector backbone, origin of replication (ori), multiple cloning sites, spacer sequences, enhancers, introns (such as the maize
25 Ubiquitin *Ubi* intron), antibiotic resistance genes and other selectable marker genes [such as the neomycin phosphotransferase (*npt2*) gene, the hygromycin phosphotransferase (*hph*) gene, the phosphinothricin acetyltransferase (*bar* or *pat*) gene and the gentamycin acetyl transferase (*aacC1*) gene], and reporter genes [such as beta-glucuronidase (GUS) gene (*gusA*) and green fluorescent protein

(gfp)]. The vector may also contain a ribosome binding site for translation initiation. The vector may also include appropriate sequences for amplifying expression.

As an alternative to use of a selectable marker gene to provide a phenotypic trait for selection of transformed host cells, the presence of the vector 5 in transformed cells may be determined by other techniques well known in the art, such as PCR (polymerase chain reaction), Southern blot hybridisation analysis, histochemical GUS assays, northern and Western blot hybridisation analyses.

Those skilled in the art will appreciate that the various components of the vector are operatively linked, so as to result in expression of said nucleic acid or 10 nucleic acid fragment. Techniques for operatively linking the components of the vector of the present invention are well known to those skilled in the art. Such techniques include the use of linkers, such as synthetic linkers, for example including one or more restriction enzyme sites.

The constructs and vectors of the present invention may be incorporated 15 into a variety of plants, including monocotyledons (such as grasses from the genera *Lolium*, *Festuca*, *Paspalum*, *Pennisetum*, *Panicum* and other forage and turfgrasses, corn, oat, sugarcane, wheat and barley), dicotyledons (such as *Arabidopsis*, tobacco, clovers, medics, eucalyptus, potato, sugarbeet, canola, soybean, chickpea) and gymnosperms. In a preferred embodiment, the constructs 20 and vectors may be used to transform monocotyledons, preferably grass species such as ryegrasses (*Lolium* species) and fescues (*Festuca* species), more preferably perennial ryegrass, including forage- and turf-type cultivars. In an alternate preferred embodiment, the constructs and vectors may be used to transform dicotyledons, preferably forage legume species such as clovers 25 (*Trifolium* species) and medics (*Medicago* species), more preferably white clover (*Trifolium repens*), red clover (*Trifolium pratense*), subterranean clover (*Trifolium subterraneum*) and alfalfa (*Medicago sativa*). Clovers, alfalfa and medics are key pasture legumes in temperate climates throughout the world.

Techniques for incorporating the constructs and vectors of the present 30 invention into plant cells (for example by transduction, transfection or

transformation) are well known to those skilled in the art. Such techniques include *Agrobacterium* mediated introduction, electroporation to tissues, cells and protoplasts, protoplast fusion, injection into reproductive organs, injection into immature embryos and high velocity projectile introduction to cells, tissues, calli, 5 immature and mature embryos. The choice of technique will depend largely on the type of plant to be transformed.

Cells incorporating the constructs and vectors of the present invention may be selected, as described above, and then cultured in an appropriate medium to regenerate transformed plants, using techniques well known in the art. The culture 10 conditions, such as temperature, pH and the like, will be apparent to the person skilled in the art. The resulting plants may be reproduced, either sexually or asexually, using methods well known in the art, to produce successive generations of transformed plants.

In a further aspect of the present invention there is provided a plant cell, 15 plant, plant seed or other plant part, including, e.g. transformed with, a construct, vector, nucleic acid or nucleic acid fragment of the present invention.

The plant cell, plant, plant seed or other plant part may be from any suitable species, including monocotyledons, dicotyledons and gymnosperms. In a preferred embodiment the plant cell, plant, plant seed or other plant part may be 20 from a monocotyledon, preferably a grass species, more preferably a ryegrass (*Lolium* species) or fescue (*Festuca* species), even more preferably perennial ryegrass, including both forage- and turf-type cultivars. In an alternate preferred embodiment the plant cell, plant, plant seed or other plant part may be from a dicotyledon, preferably forage legume species such as clovers (*Trifolium* species) 25 and medics (*Medicago* species), more preferably white clover (*Trifolium repens*), red clover (*Trifolium pratense*), subterranean clover (*Trifolium subterraneum*) and alfalfa (*Medicago sativa*).

The present invention also provides a plant, plant seed or other plant part, or a plant extract derived from a plant cell of the present invention.

The present invention also provides a plant, plant seed or other plant part, or a plant extract derived from a plant of the present invention.

In a further aspect of the present invention there is provided a method of modifying flavonoid biosynthesis in a plant; said method including introducing 5 into said plant an effective amount of a nucleic acid or nucleic acid fragment, construct and/or a vector according to the present invention.

In a further aspect of the present invention there is provided a method of modifying protein binding, metal chelation, anti-oxidation, and/or UV-light absorption in a plant, said method including introducing into said plant an effective 10 amount of a nucleic acid or nucleic acid fragment, construct and/or a vector according to the present invention.

In a further aspect of the present invention there is provided a method of modifying pigment production in a plant, said method including introducing into said plant an effective amount of a nucleic acid or nucleic acid fragment, construct 15 and/or a vector according to the present invention.

In a further aspect of the present invention there is provided a method of modifying plant defense to biotic stresses such as viruses, micro-organisms, insects and fungal pathogens, said method including introducing into said plant an effective amount of a nucleic acid or nucleic acid fragment, construct and/or a 20 vector according to the present invention.

In a further aspect of the present invention there is provided a method of modifying forage quality of a plant by disrupting protein foam and/or conferring protection from rumen pasture bloat, said method including introducing into said plant an effective amount of a nucleic acid or nucleic acid fragment, construct 25 and/or a vector according to the present invention.

By "an effective amount" it is meant an amount sufficient to result in an identifiable phenotypic trait in said plant, or a plant, plant seed or other plant part derived therefrom. Such amounts can be readily determined by an appropriately

skilled person, taking into account the type of plant, the route of administration and other relevant factors. Such a person will readily be able to determine a suitable amount and method of administration. See, for example, Maniatis et al, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring
5 Harbor, the entire disclosure of which is incorporated herein by reference.

Using the methods and materials of the present invention, flavonoid biosynthesis, protein binding, metal chelation, anti-oxidation, UV-light absorption, tolerance to biotic stresses such as viruses, micro-organisms, insects and fungal pathogens; pigmentation in for example flowers and leaves; herbage quality and
10 bloat-safety; and/or isoflavonoid content leading to health benefits, may be increased or otherwise modified, for example by incorporating additional copies of a sense nucleic acid or nucleic acid fragment of the present invention. They may be decreased or otherwise modified, for example by incorporating an antisense nucleic acid or nucleic acid fragment of the present invention.

15 The present invention will now be more fully described with reference to the accompanying Examples and drawings. It should be understood, however, that the description following is illustrative only and should not be taken in any way as a restriction on the generality of the invention described above.

In the Figures

20 Figure 1 shows the consensus contig nucleotide sequence of TrCHIa (Sequence ID No: 1).

Figure 2 shows the deduced amino acid sequence of TrCHIa (Sequence ID No: 2).

Figure 3 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHIa (Sequence ID Nos: 3 to 7).

25 Figure 4 shows the consensus contig nucleotide sequence of TrCHIb (Sequence ID No: 8).

Figure 5 shows the deduced amino acid sequence of TrCHIb (Sequence ID No: 9).

Figure 6 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHIb (Sequence ID Nos: 10 to 12).

Figure 7 shows the consensus contig nucleotide sequence of TrCHIc (Sequence ID No: 13).

Figure 8 shows the deduced amino acid sequence of TrCHIc (Sequence ID No: 14).

Figure 9 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHIc (Sequence ID Nos: 15 and 16).

Figure 10 shows the consensus contig nucleotide sequence of TrCHId (Sequence ID No: 17).

Figure 11 shows the deduced amino acid sequence of TrCHId (Sequence ID No: 18).

Figure 12 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHId (Sequence ID Nos: 19 to 22).

Figure 13 shows the consensus contig nucleotide sequence of TrCHSa (Sequence ID No: 23).

Figure 14 shows the deduced amino acid sequence of TrCHSa (Sequence ID No: 24).

Figure 15 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHSa (Sequence ID Nos: 25 to 63).

Figure 16 shows the consensus contig nucleotide sequence of TrCHSb (Sequence ID No: 64).

Figure 17 shows the deduced amino acid sequence of TrCHSb (Sequence ID No: 65).

5 Figure 18 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHSb (Sequence ID Nos: 66 to 68).

Figure 19 shows the consensus contig nucleotide sequence of TrCHSc (Sequence ID No: 69).

10 Figure 20 shows the deduced amino acid sequence of TrCHSc (Sequence ID No: 70).

Figure 21 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHSc (Sequence ID Nos: 71 to 77).

15 Figure 22 shows the consensus contig nucleotide sequence of TrCHSd (Sequence ID No: 78).

Figure 23 shows the deduced amino acid sequence of TrCHSd (Sequence ID No: 79).

20 Figure 24 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHSd (Sequence ID Nos: 80 to 90).

Figure 25 shows the consensus contig nucleotide sequence of TrCHSe (Sequence ID No: 91).

25 Figure 26 shows the deduced amino acid sequence of TrCHSe (Sequence ID No: 92).

Figure 27 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHSe (Sequence ID Nos: 93 and 94).

Figure 28 shows the consensus contig nucleotide sequence of TrCHSf (Sequence ID No: 95).

Figure 29 shows the deduced amino acid sequence of TrCHSf (Sequence ID No: 96).

Figure 30 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHSf (Sequence ID Nos: 97 to 100).

Figure 31 shows the consensus contig nucleotide sequence of TrCHSg (Sequence ID No: 101).

Figure 32 shows the deduced amino acid sequence of TrCHSg (Sequence ID No: 102).

Figure 33 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHSg (Sequence ID Nos: 103 to 105).

Figure 34 shows the consensus contig nucleotide sequence of TrCHSh (Sequence ID No: 106).

Figure 35 shows the deduced amino acid sequence of TrCHSh (Sequence ID No: 107).

Figure 36 shows the nucleotide sequence of TrCHRa (Sequence ID No: 108).

Figure 37 shows the deduced amino acid sequence of TrCHRa (Sequence ID No: 109).

Figure 38 shows the consensus contig nucleotide sequence of TrCHRb (Sequence ID No: 110).

Figure 39 shows the deduced amino acid sequence of TrCHRb (Sequence ID No: 111).

5 Figure 40 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHRb (Sequence ID Nos: 112 to 116).

Figure 41 shows the consensus contig nucleotide sequence of TrCHRc (Sequence ID No: 117).

10 Figure 42 shows the deduced amino acid sequence of TrCHRc (Sequence ID No: 118).

Figure 43 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrCHRc (Sequence ID Nos: 119 to 134).

15 Figure 44 shows the consensus contig nucleotide sequence of TrDFRa (Sequence ID No: 135).

Figure 45 shows the deduced amino acid sequence of TrDFRa (Sequence ID No: 136).

20 Figure 46 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrDFRa (Sequence ID Nos: 137 to 146).

Figure 47 shows the consensus contig nucleotide sequence of TrDFRb (Sequence ID No: 147).

25 Figure 48 shows the deduced amino acid sequence of TrDFRb (Sequence ID No: 148).

Figure 49 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrDFRb (Sequence ID Nos: 149 to 152).

Figure 50 shows the nucleotide sequence of TrDFRc (Sequence ID No: 153).

5 Figure 51 shows the deduced amino acid sequence of TrDFRc (Sequence ID No: 154).

Figure 52 shows the consensus contig nucleotide sequence of TrDFRd (Sequence ID No: 155).

10 Figure 53 shows the deduced amino acid sequence of TrDFRd (Sequence ID No: 156).

Figure 54 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrDFRd (Sequence ID Nos: 157 and 158).

Figure 55 shows the nucleotide sequence of TrDFRe (Sequence ID No: 159).

15 Figure 56 shows the deduced amino acid sequence of TrDFRe (Sequence ID No: 160).

Figure 57 shows the nucleotide sequence of TrDFRf (Sequence ID No: 161).

Figure 58 shows the deduced amino acid sequence of TrDFRf (Sequence ID No: 162).

20 Figure 59 shows the consensus contig nucleotide sequence of TrDFRg (Sequence ID No: 163).

Figure 60 shows the deduced amino acid sequence of TrDFRg (Sequence ID No: 164).

Figure 61 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrDFRg (Sequence ID Nos: 165 to 167).

5 Figure 62 shows the consensus contig nucleotide sequence of TrDFRh (Sequence ID No: 168).

Figure 63 shows the deduced amino acid sequence of TrDFRh (Sequence ID No: 169).

10 Figure 64 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrDFRh (Sequence ID Nos: 170 to 184).

Figure 65 shows the consensus contig nucleotide sequence of TrLCRa (Sequence ID No: 185).

Figure 66 shows the deduced amino acid sequence of TrLCRa (Sequence ID No: 186).

15 Figure 67 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrLCRa (Sequence ID Nos: 187 to 193).

Figure 68 shows the nucleotide sequence of TrF3'5'Ha (Sequence ID No: 194).

20 Figure 69 shows the deduced amino acid sequence of TrF3'5'Ha (Sequence ID No: 195).

Figure 70 shows the consensus contig nucleotide sequence of TrF3'5'Hb (Sequence ID No: 196).

Figure 71 shows the deduced amino acid sequence of TrF3'5'Hb (Sequence ID No: 197).

Figure 72 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrF3'5'Hb (Sequence ID Nos: 198 to 201).

Figure 73 shows the consensus contig nucleotide sequence of TrF3Ha (Sequence ID No: 202).

Figure 74 shows the deduced amino acid sequence of TrF3Ha (Sequence ID No: 203).

Figure 75 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrF3Ha (Sequence ID Nos: 204 to 244).

Figure 76 shows the nucleotide sequence of TrF3Hb (Sequence ID No: 245).

Figure 77 shows the deduced amino acid sequence of TrF3Hb (Sequence ID No: 246).

Figure 78 shows the nucleotide sequence of TrF3Hc (Sequence ID No: 247).

Figure 79 shows the deduced amino acid sequence of TrF3Hc (Sequence ID No: 248).

Figure 80 shows the consensus contig nucleotide sequence of TrF3'Ha (Sequence ID No: 249).

Figure 81 shows the deduced amino acid sequence of TrF3'Ha (Sequence ID No: 250).

Figure 82 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrF3'Ha (Sequence ID Nos: 251 and 252).

Figure 83 shows the consensus contig nucleotide sequence of TrPALa (Sequence ID No: 253).

Figure 84 shows the deduced amino acid sequence of TrPALa (Sequence ID No: 254).

5 Figure 85 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrPALa (Sequence ID Nos: 255 to 257).

Figure 86 shows the consensus contig nucleotide sequence of TrPALb (Sequence ID No: 258).

10 Figure 87 shows the deduced amino acid sequence of TrPALb (Sequence ID No: 259).

Figure 88 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrPALb (Sequence ID Nos: 260 to 267).

15 Figure 89 shows the nucleotide sequence of TrPALc (Sequence ID No: 268).

Figure 90 shows the deduced amino acid sequence of TrPALc (Sequence ID No: 269).

Figure 91 shows the nucleotide sequence of TrPALd (Sequence ID No: 270).

20 Figure 92 shows the deduced amino acid sequence of TrPALd (Sequence ID No: 271).

Figure 93 shows the nucleotide sequence of TrPALE (Sequence ID No: 272).

Figure 94 shows the deduced amino acid sequence of TrPALE (Sequence ID No: 273).

Figure 95 shows the consensus contig nucleotide sequence of TrPALf (Sequence ID No: 274).

Figure 96 shows the deduced amino acid sequence of TrPALf (Sequence ID No: 275).

5 Figure 97 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrPALf (Sequence ID Nos: 276 and 277).

Figure 98 shows the consensus contig nucleotide sequence of TrVRa (Sequence ID No: 278).

10 Figure 99 shows the deduced amino acid sequence of TrVRa (Sequence ID No: 279).

Figure 100 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence TrVRa (Sequence ID Nos: 280 to 285).

15 Figure 101 shows the consensus contig nucleotide sequence of LpDFRa (Sequence ID No: 286).

Figure 102 shows the deduced amino acid sequence of LpDFRa (Sequence ID No: 287).

20 Figure 103 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence LpDFRa (Sequence ID Nos: 288 to 292).

Figure 104 shows the consensus contig nucleotide sequence of LpDFRb (Sequence ID No: 293).

25 Figure 105 shows the deduced amino acid sequence of LpDFRb (Sequence ID No: 294).

Figure 106 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence LpDFRb (Sequence ID Nos: 295 to 297).

Figure 107 shows the consensus contig nucleotide sequence of LpF3Ha
5 (Sequence ID No: 298).

Figure 108 shows the deduced amino acid sequence of LpF3Ha (Sequence ID No: 299).

Figure 109 shows the nucleotide sequences of the nucleic acid fragments contributing to the consensus contig sequence LpF3Ha (Sequence ID Nos: 300 to
10 302).

Figure 110 shows a plasmid map of the cDNA encoding perennial ryegrass F3OH.

Figure 111 shows the full nucleotide sequence of perennial ryegrass F3OH cDNA (Sequence ID No: 303).

Figure 112 shows the deduced amino acid sequence of perennial ryegrass F3OH
15 cDNA (Sequence ID No: 304).

Figure 113 shows plasmid maps of sense and antisense constructs of LpF3OH in pDH51 transformation vector.

Figure 114 shows plasmid maps of sense and antisense constructs of LpF3OH in pPZP221:35S² binary transformation vector.

20 Figure 115 shows screening by Southern hybridisation for RFLPs using LpF3OH as a probe.

Figure 116 shows a plasmid map of the cDNA encoding white clover BANa.

Figure 117 shows the full nucleotide sequence of white clover BANa cDNA (Sequence ID No: 305).

Figure 118 shows the deduced amino acid sequence of white clover BANa cDNA (Sequence ID No: 306).

Figure 119 shows plasmid maps of sense and antisense constructs of TrBANa in pDH51 transformation vector.

- 5 Figure 120 shows plasmid maps of sense and antisense constructs of TrBANa in pPZP221:35S² binary transformation vector.

Figure 121 shows a plasmid map of the cDNA encoding white clover CHIa.

Figure 122 shows the full nucleotide sequence of white clover CHIa cDNA (Sequence ID No: 307).

- 10 Figure 123 shows the deduced amino acid sequence of white clover CHIa cDNA (Sequence ID No: 308).

Figure 124 shows plasmid maps of sense and antisense constructs of TrCHIa in pDH51 transformation vector.

- 15 Figure 125 shows plasmid maps of sense and antisense constructs of TrCHIa in pPZP221:35S² binary transformation vector.

Figure 126 shows a plasmid map of the cDNA encoding white clover CHId.

Figure 127 shows the full nucleotide sequence of white clover CHId cDNA (Sequence ID No: 309).

- 20 Figure 128 shows the deduced amino acid sequence of white clover CHId cDNA (Sequence ID No: 310).

Figure 129 shows plasmid maps of sense and antisense constructs of TrCHId in pDH51 transformation vector.

Figure 130 shows plasmid maps of sense and antisense constructs of TrCHId in pPZP221:35S² binary transformation vector.

Figure 131 shows a plasmid map of the cDNA encoding white clover CHRc.

Figure 132 shows the full nucleotide sequence of white clover CHRc cDNA
5 (Sequence ID No: 311).

Figure 133 shows the deduced amino acid sequence of white clover CHRc cDNA
(Sequence ID No: 312).

Figure 134 shows plasmid maps of sense and antisense constructs of TrCHRc in
pDH51 transformation vector.

10 Figure 135 shows plasmid maps of sense and antisense constructs of TrCHRc in
pPZP221:35S² binary transformation vector.

Figure 136 shows a plasmid map of the cDNA encoding white clover CHSa1.

Figure 137 shows the full nucleotide sequence of white clover CHSa1 cDNA
(Sequence ID No: 313).

15 Figure 138 shows the deduced amino acid sequence of white clover CHSa1 cDNA
(Sequence ID No: 314).

Figure 139 shows plasmid maps of sense and antisense constructs of TrCHSa1 in
pDH51 transformation vector.

20 Figure 140 shows plasmid maps of sense and antisense constructs of TrCHSa1 in
pPZP221:35S² binary transformation vector.

Figure 141 shows a plasmid map of the cDNA encoding white clover CHSa3.

Figure 142 shows the full nucleotide sequence of white clover CHSa3 cDNA
(Sequence ID No: 315).

Figure 143 shows the deduced amino acid sequence of white clover CHSa3 cDNA (Sequence ID No: 316).

Figure 144 shows plasmid maps of sense and antisense constructs of TrCHSa3 in pDH51 transformation vector.

5 Figure 145 shows plasmid maps of sense and antisense constructs of TrCHSa3 in pPZP221:35S² binary transformation vector.

Figure 146 shows a plasmid map of the cDNA encoding white clover CHSc.

Figure 147 shows the full nucleotide sequence of white clover CHSc cDNA (Sequence ID No: 317).

10 Figure 148 shows the deduced amino acid sequence of white clover CHSc cDNA (Sequence ID No: 318).

Figure 149 shows plasmid maps of sense and antisense constructs of TrCHSc in pDH51 transformation vector.

15 Figure 150 shows plasmid maps of sense and antisense constructs of TrCHSc in pPZP221:35S² binary transformation vector.

Figure 151 shows a plasmid map of the cDNA encoding white clover CHSd2.

Figure 152 shows the full nucleotide sequence of white clover CHSd2 cDNA (Sequence ID No: 319).

20 Figure 153 shows the deduced amino acid sequence of white clover CHSd2 cDNA (Sequence ID No: 320).

Figure 154 shows plasmid maps of sense and antisense constructs of TrCHSd2 in pDH51 transformation vector.

Figure 155 shows plasmid maps of sense and antisense constructs of TrCHSd2 in pPZP221:35S² binary transformation vector.

Figure 156 shows a plasmid map of the cDNA encoding white clover CHSf.

Figure 157 shows the full nucleotide sequence of white clover CHSf cDNA
5 (Sequence ID No: 321).

Figure 158 shows the deduced amino acid sequence of white clover CHSf cDNA (Sequence ID No: 322).

Figure 159 shows plasmid maps of sense and antisense constructs of TrCHSf in pDH51 transformation vector.

10 Figure 160 shows plasmid maps of sense and antisense constructs of TrCHSf in pPZP221:35S² binary transformation vector.

Figure 161 shows a plasmid map of the cDNA encoding white clover CHSh.

Figure 162 shows the full nucleotide sequence of white clover CHSh cDNA (Sequence ID No: 323).

15 Figure 163 shows the deduced amino acid sequence of white clover CHSh cDNA (Sequence ID No: 324).

Figure 164 shows plasmid maps of sense and antisense constructs of TrCHSh in pDH51 transformation vector.

20 Figure 165 shows plasmid maps of sense and antisense constructs of TrCHSh in pPZP221:35S² binary transformation vector.

Figure 166 shows a plasmid map of the cDNA encoding white clover DFRd.

Figure 167 shows the full nucleotide sequence of white clover DFRd cDNA (Sequence ID No: 325).

Figure 168 shows the deduced amino acid sequence of white clover DFRd cDNA (Sequence ID No: 326).

Figure 169 shows plasmid maps of sense and antisense constructs of TrDFRd in pDH51 transformation vector.

- 5 Figure 170 shows plasmid maps of sense and antisense constructs of TrDFRd in pPZP221:35S² binary transformation vector.

Figure 171 shows a plasmid map of the cDNA encoding white clover F3Ha.

Figure 172 shows the full nucleotide sequence of white clover F3Ha cDNA (Sequence ID No: 327).

- 10 Figure 173 shows the deduced amino acid sequence of white clover F3Ha cDNA (Sequence ID No: 328).

Figure 174 shows plasmid maps of sense and antisense constructs of TrF3Ha in pDH51 transformation vector.

- 15 Figure 175 shows plasmid maps of sense and antisense constructs of TrF3Ha in pPZP221:35S² binary transformation vector.

Figure 176 shows a plasmid map of the cDNA encoding white clover PALa.

Figure 177 shows the full nucleotide sequence of white clover PALa cDNA (Sequence ID No: 329).

- 20 Figure 178 shows the deduced amino acid sequence of white clover PALa cDNA (Sequence ID No: 330).

Figure 179 shows plasmid maps of sense and antisense constructs of TrPALa in pDH51 transformation vector.

Figure 180 shows plasmid maps of sense and antisense constructs of TrPALa in pPZP221:35S² binary transformation vector.

Figure 181 shows a plasmid map of the cDNA encoding white clover PALb.

Figure 182 shows the full nucleotide sequence of white clover PALb cDNA
5 (Sequence ID No: 331).

Figure 183 shows the deduced amino acid sequence of white clover PALb cDNA
(Sequence ID No: 332).

Figure 184 shows plasmid maps of sense and antisense constructs of TrPALb in pDH51 transformation vector.

10 Figure 185 shows plasmid maps of sense and antisense constructs of TrPALb in pPZP221:35S² binary transformation vector.

Figure 186 shows a plasmid map of the cDNA encoding white clover PALf.

Figure 187 shows the full nucleotide sequence of white clover PALf cDNA
(Sequence ID No: 333).

15 Figure 188 shows the deduced amino acid sequence of white clover PALf cDNA
(Sequence ID No: 334).

Figure 189 shows plasmid maps of sense and antisense constructs of TrPALf in pDH51 transformation vector.

20 Figure 190 shows plasmid maps of sense and antisense constructs of TrPALf in pPZP221:35S² binary transformation vector.

Figure 191 shows a plasmid map of the cDNA encoding white clover VRa.

Figure 192 shows the full nucleotide sequence of white clover VRa cDNA
(Sequence ID No: 335).

Figure 193 shows the deduced amino acid sequence of white clover VRa cDNA (Sequence ID No: 336).

Figure 194 shows plasmid maps of sense and antisense constructs of TrVRa in pDH51 transformation vector.

5 Figure 195 shows plasmid maps of sense and antisense constructs of TrVRa in pPZP221:35S² binary transformation vector.

Figure 196 shows A, infiltration of Arabidopsis plants; B, selection of transgenic Arabidopsis plants on medium containing 75 µg/ml gentamycin; C, young transgenic Arabidopsis plants; D, E, two representative results of real-time PCR analysis of Arabidopsis transformed with chimeric genes involved in flavonoid biosynthesis.

Figure 197 shows the genetic map detailing the relation of perennial ryegrass genes involved in flavonoid biosynthesis.

EXAMPLE 1

15 **Preparation of cDNA libraries, isolation and sequencing of cDNAs coding for CHI, CHI-like, CHS, CHS-like, CHR, CHR-like, DFR, DFR-like, LCR, LCR-like, F3'5'H, F3'5'H-like, F3H, F3H-like, F3'H, F3'H-like, PAL, PAL-like, VR and VR-like proteins from white clover (*Trifolium repens*) and perennial ryegrass (*Lolium perenne*)**

20

cDNA libraries representing mRNAs from various organs and tissues of white clover (*Trifolium repens*) and perennial ryegrass (*Lolium perenne*) were prepared. The characteristics of the white clover and perennial ryegrass libraries, respectively, are described below (Tables 1 and 2).

TABLE 1**cDNA libraries from white clover (*Trifolium repens*)**

Library	Organ/Tissue
01wc	Whole seedling, light grown
02wc	Nodulated root 3, 5, 10, 14, 21 &28 day old seedling
03wc	Nodules pinched off roots of 42 day old rhizobium inoculated plants
04wc	Cut leaf and stem collected after 0, 1, 4, 6 &14 h after cutting
05wc	Inflorescences: <50% open, not fully open and fully open
06wc	Dark grown etiolated
07wc	Inflorescence – very early stages, stem elongation, < 15 petals, 15-20 petals
08wc	seed frozen at -80°C, imbibed in dark overnight at 10°C
09wc	Drought stressed plants
10wc	AMV infected leaf
11wc	WCMV infected leaf
12wc	Phosphorus starved plants
13wc	Vegetative stolon tip
14wc	stolon root initials
15wc	Senescing stolon
16wc	Senescing leaf

TABLE 2

5

cDNA libraries from perennial ryegrass (*Lolium perenne*)

Library	Organ/Tissue
01rg	Roots from 3-4 day old light-grown seedlings
02rg	Leaves from 3-4 day old light-grown seedlings
03rg	Etiolated 3-4 day old dark-grown seedlings
04rg	Whole etiolated seedlings (1-5 day old and 17 days old)
05rg	Senescing leaves from mature plants

Library	Organ/Tissue
06rg	Whole etiolated seedlings (1-5 day old and 17 days old)
07rg	Roots from mature plants grown in hydroponic culture
08rg	Senescent leaf tissue
09rg	Whole tillers and sliced leaves (0, 1, 3, 6, 12 and 24 h after harvesting)
10rg	Embryogenic suspension-cultured cells
11rg	Non-embryogenic suspension-cultured cells
12rg	Whole tillers and sliced leaves (0, 1, 3, 6, 12 and 24 h after harvesting)
13rg	Shoot apices including vegetative apical meristems
14rg	Immature inflorescences including different stages of inflorescence meristem and inflorescence development
15rg	Defatted pollen
16rg	Leaf blades and leaf sheaths (<i>rbcL</i> , <i>rbcS</i> , <i>cab</i> , <i>wir2A</i> subtracted)
17rg	Senescing leaves and tillers
18rg	Drought-stressed tillers (pseudostems from plants subjected to PEG-simulated drought stress)
19rg	Non-embryogenic suspension-cultured cells subjected to osmotic stress (grown in media with half-strength salts) (1, 2, 3, 4, 5, 6, 24 and 48 h after transfer)
20rg	Non-embryogenic suspension-cultured cells subjected to osmotic stress (grown in media with double-strength salts) (1, 2, 3, 4, 5, 6, 24 and 48 h after transfer)
21rg	Drought-stressed tillers (pseudostems from plants subjected to PEG-simulated drought stress)
22rg	Spikelets with open and maturing florets
23rg	Mature roots (specific subtraction with leaf tissue)

The cDNA libraries may be prepared by any of many methods available. For example, total RNA may be isolated using the Trizol method (Gibco-BRL, USA) or the RNeasy Plant Mini kit (Qiagen, Germany), following the manufacturers' instructions. cDNAs may be generated using the SMART PCR

cDNA synthesis kit (Clontech, USA), cDNAs may be amplified by long distance polymerase chain reaction using the Advantage 2 PCR Enzyme system (Clontech, USA), cDNAs may be cleaned using the GeneClean spin column (Bio 101, USA), tailed and size fractionated, according to the protocol provided by Clontech. The 5 cDNAs may be introduced into the pGEM-T Easy Vector system 1 (Promega, USA) according to the protocol provided by Promega. The cDNAs in the pGEM-T Easy plasmid vector are transfected into *Escherichia coli* Epicurian coli XL10-Gold ultra competent cells (Stratagene, USA) according to the protocol provided by Stratagene.

10 Alternatively, the cDNAs may be introduced into plasmid vectors for first preparing the cDNA libraries in Uni-ZAP XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, CA, USA). The Uni-ZAP XR libraries are converted into plasmid libraries according to the protocol provided by Stratagene. Upon conversion, cDNA inserts will be contained in the 15 plasmid vector pBluescript. In addition, the cDNAs may be introduced directly into precut pBluescript II SK(+) vectors (Stratagene) using T4 DNA ligase (New England Biolabs), followed by transfection into *E. coli* DH10B cells according to the manufacturer's protocol (GIBCO BRL Products).

Once the cDNA inserts are in plasmid vectors, plasmid DNAs are prepared 20 from randomly picked bacterial colonies containing recombinant plasmids, or the insert cDNA sequences are amplified via polymerase chain reaction using primers specific for vector sequences flanking the inserted cDNA sequences. Plasmid DNA preparation may be performed robotically using the Qiagen QiaPrep Turbo kit (Qiagen, Germany) according to the protocol provided by Qiagen. Amplified insert 25 DNAs are sequenced in dye-terminator sequencing reactions to generate partial cDNA sequences (expressed sequence tags or "ESTs"). The resulting ESTs are analyzed using an Applied Biosystems ABI 3700 sequence analyser.

EXAMPLE 2**DNA sequence analyses**

The cDNA clones encoding CHI, CHI-like, CHS, CHS-like, CHR, CHR-like, DFR, DFR-like, LCR, LCR-like, F3'5'H, F3'5'H-like, F3H, F3H-like, F3'H, F3'H-like, 5 PAL, PAL-like, VR and VR-like proteins were identified by conducting BLAST (Basic Local Alignment Search Tool; Altschul *et al.* (1993) *J. Mol. Biol.* 215:403-410) searches. The cDNA sequences obtained were analysed for similarity to all publicly available DNA sequences contained in the eBioinformatics nucleotide database using the BLASTN algorithm provided by the National Center for 10 Biotechnology Information (NCBI). The DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the SWISS-PROT protein sequence database using BLASTx algorithm (v 2.0.1) (Gish and States (1993) *Nature Genetics* 3:266-272) provided by the NCBI.

15 The cDNA sequences obtained and identified were then used to identify additional identical and/or overlapping cDNA sequences generated using the BLASTN algorithm. The identical and/or overlapping sequences were subjected to a multiple alignment using the CLUSTALw algorithm, and to generate a consensus contig sequence derived from this multiple sequence alignment. The consensus 20 contig sequence was then used as a query for a search against the SWISS-PROT protein sequence database using the BLASTx algorithm to confirm the initial identification.

EXAMPLE 3

Identification and full-length sequencing of cDNAs encoding perennial ryegrass F3OH and white clover BANa, CHIa, CHId, CHRc, CHSa1, CHSa3, 25 CHSc, CHSd2, CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa proteins

To fully characterise for the purposes of the generation of probes for hybridisation experiments and the generation of transformation vectors, a set of

cDNAs encoding perennial ryegrass F3OH and white clover BANa, CHIa, CHId, CHRc, CHSa1, CHSa3, CHSc, CHSd2, CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa proteins was identified and fully sequenced.

Full-length cDNAs were identified from our EST sequence database using
5 relevant published sequences (NCBI databank) as queries for BLAST searches.
Full-length cDNAs were identified by alignment of the query and hit sequences
using Sequencher (Gene Codes Corp., Ann Arbor, MI 48108, USA). The original
plasmid was then used to transform chemically competent XL-1 cells (prepared in-
house, CaCl₂ protocol). After colony PCR (using HotStarTaq, Qiagen) a minimum
10 of three PCR-positive colonies per transformation were picked for initial
sequencing with M13F and M13R primers. The resulting sequences were aligned
with the original EST sequence using Sequencher to confirm identity and one of
the three clones was picked for full-length sequencing, usually the one with the
best initial sequencing result.

15 Sequencing was completed by primer walking, i.e. oligonucleotide primers
were designed to the initial sequence and used for further sequencing. In most
cases the sequencing could be done from both 5' and 3' end. The sequences of
the oligonucleotide primers are shown in Table 2. In some instances, however, an
extended poly-A tail necessitated the sequencing of the cDNA to be completed
20 from the 5' end.

Contigs were then assembled in Sequencher. The contigs include the
sequences of the SMART primers used to generate the initial cDNA library as well
as pGEM-T Easy vector sequence up to the EcoRI cut site both at the 5' and 3'
end.

25 Plasmid maps and the full cDNA sequences of perennial ryegrass F3OH
and white clover BANa, CHIa, CHId, CHRc, CHSa1, CHSa3, CHSc, CHSd2,
CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa proteins were obtained
(Figures 110, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176,
181, 186 and 191).

TABLE 2

List of primers used for sequencing of the full-length cDNAs

gene name	clone ID	sequencing primer	primer sequence (5'>3')
LpF3OH	08rg1YsF07	08rg1YsF07.f1	TTGAGAGCTTCGTCGACC
		08rg1YsF07.r1	AACTCCTCGTAGTACTCC
TrCHRc	11wc1lsD03	11wc1lsD03.f1	TTCAATTGGAGTACTTGG
		11wc1lsD03.r1	ACTCCTTGTTCATATAACC
TrCHSa1	02wc2FsD07	02wc2FsD07.f1	ACATGGTGGTGGTTGAGG
		02wc2FsD07.f2	TGCTGCACTCATTGTTGG
		02wc2FsD07.f3	ACATTGATAAGGCATTGG
TrCHSa3	05wc1RsB06	05wc1RsB06.f1	AGGAGGGCTGCAGTCAAGG
		05wc1RsB06.f2	TGCCTGAAATTGAGAAACC
		05wc1RsB06.f3	AAAGCTAGCCTTGAAGCC
TrCHSc	07wc1TsE12	07wc1TsE12.f1	TCGGACATAACTCATGTGG
		07wc1TsE12.f2	TTGGGTTGGAGAATAAGG
		07wc1TsE12.r1	TGGACATTATTGGTTGC
		07wc1TsE12.r2	TATCATGTCTGGAAATGC
TrCHSd2	07wc1XsD03	07wc1XsD03.f1	TTTATGTGAGTACATGGC
		07wc1XsD03.f2	AGCAGCTGTGATTGTAGG
		07wc1XsD03.f3	TGAGAAAGCTCTGTTGAGG
TrCHSf	07wc1UsD07	07wc1UsD07.f1	AGATTGCATCAAAGAATGG
		07wc1UsD07.r1	GGTCCAAAAGCCAATCC
TrCHSh	13wc2lsG04	13wc2lsG04.f1	TAAGACGAGACATAGTGG
		13wc2lsG04.r1	TATTCACTAACGACATGC
TrDFRd	12wc1CsE09	12wc1CsE09.f1	TTACCTCGTCTGTCTCG
		12wc1CsE09.r1	AACACACACATGTCTACC
TrF3Ha	07wc1LsG03	07wc1LsG03.f1	TGAAGGATTGGAGAGAGC
		07wc1LsG03.r1	TACACAGTTGCATCTGG
TrPALa	04wc1UsB03	04wc1UsB03.f1	ATCGGAATCTGCTAGAGC
		04wc1UsB03.f2	TGTTGGTTCTGGTTAGC
		04wc1UsB03.r1	TTCATATGCAATCCTTGC
		04wc1UsB03.r2	TCTTGGTTGTGTTGTTCC

TrPALb	05wc1PsH02	05wc1PsH02.f1	TGGGACTGATAGTTATGG
		05wc1PsH02.f2	TCTTGCTCTTGTAAATGG
		05wc1PsH02.r1	AGCACCAATTCCACTCTCC
		05wc1PsH02.r2	TTCTCTTCGCTACTTGGC
TrPALf	13wc2AsD12	13wc2AsD12.f1	ATAGTGGTGTGAGGGTGG
		13wc2AsD12.f2	TCTTGTAAATGGTACTGC
		13wc2AsD12.r1	ATTTATCGCACTCTTCGC
		13wc2AsD12.r2	AAAGTGGAAGACATGAGC
TrVRa	11wc1NsA07	11wc1NsA07.f1	AAGAACAGTGGATGGAGC
		11wc1NsA07.r1	TCAACTCATCTACTGATAG

EXAMPLE 4

Development of transformation vectors containing chimeric genes with cDNA sequences from perennial ryegrass F3OH and white clover BANA,

5 **CHIa, CHId, CHRc, CHSa1, CHSa3, CHSc, CHSd2, CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa**

To alter the expression of the proteins involved in flavonoid biosynthesis, protein binding, metal chelation, anti-oxidation, UV-light absorption, tolerance to biotic stresses such as viruses, micro-organisms, insects and fungal pathogens; 10 pigmentation in for example flowers and leaves; herbage quality and bloat-safety and isoflavonoid content leading to health benefits, perennial ryegrass F3OH and white clover BANA, CHIa, CHId, CHRc, CHSa1, CHSa3, CHSc, CHSd2, CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa, through antisense and/or sense suppression technology and for over-expression of these key enzymes in 15 transgenic plants, a set of sense and antisense transformation vectors was produced.

cDNA fragments were generated by high fidelity PCR using the original pGEM-T Easy plasmid cDNA as a template. The primers used (Table 3) contained recognition sites for appropriate restriction enzymes, for example EcoRI and XbaI, 20 for directional and non-directional cloning into the target vector. After PCR amplification and restriction digest with the appropriate restriction enzyme (usually

XbaI), the cDNA fragments were cloned into the corresponding site in pDH51, a pUC18-based transformation vector containing a CaMV 35S expression cassette. The orientation of the constructs (sense or antisense) was checked by DNA sequencing through the multi-cloning site of the vector. Transformation vectors 5 containing chimeric genes using full-length open reading frame cDNAs encoding perennial ryegrass F3OH and white clover BANa, CHIa, CHId, CHRc, CHSa1, CHSa3, CHSc, CHSd2, CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa proteins in sense and antisense orientations under the control of the CaMV 35S promoter were generated (Figures 113, 119, 124, 129, 134, 139, 144, 149, 154, 10 159, 164, 169, 174, 179, 184, 189 and 194).

TABLE 3**List of primers used to PCR-amplify the open reading frames**

gene name	clone ID	primer	primer sequence (5'->3')
LpF3OH	08rg1YsF07	08rg1YsF07f	GAATTCTAGAAGCAGAAAGTACGGACATCAGC
		08rg1YsF07r	GAATTCTAGAACCATATGGCGACACATCG
TrBANa	05wc2XsG02	05wc2XsG02f	GGATCCTCTAGAGCACTAGTGTGTATAAGTTCTT GG
		05wc2XsG02r	GGATCCTCTAGACCCCCCTAGTCTTAAAATACTCG
TrCHIa	06wc2AsF12	06wc2AsF12f	GAATTCTAGAGATCTGAAACAACATAGTCACC
		06wc2AsF12r	GAATTCTAGATCAATCTTGTGCTGCAATGC
TrCHId	12wc1FsG04	12wc1FsG04f	GAATTCTAGAAAGTTCAACGAGATCAATGG
		12wc1FsG04r	GAATTCTAGATTCCGCTTGGTCTTTATTGC
TrCHRc	11wc1lsD03	11wc1lsD03f	GAATTCTAGAACATGGTAGTGTGAAATTCC
		11wc1lsD03r	GAATTCTAGAAGATATTGAGTGAGCTTAAGG
TrCHSa1	02wc2FsD07	02wc2FsD07f	GACGTCGACATTACATACATAGCAGGAAC
		02wc2FsD07r	GACGTCGACAGTCTCTCATTCTCATATAGC
TrCHSa3	05wc1RsB06	05wc1RsB06f	GAATTCTAGAAGATATGGTAGTGTAGCTG
		05wc1RsB06r	GAATTCTAGAATCACACATCTTATATAGCC
TrCHSc	07wc1TsE12	07wc1TsE12f	GAATTCTAGAAGAAGAAATATGGGAGACGAAGG
		07wc1TsE12r	GAATTCTAGAAAGACTTCATGCACACAAGTTCC
TrCHSd2	07wc1XsD03	07wc1XsD03f	GAATTCTAGAATAACCTATCAGTACTCACC
		07wc1XsD03r	GAATTCTAGAATCTAGGCAATTAAAGTGGC

TrCHSf	07wc1UsD07	07wc1UsD07f	GAATTCTAGATGATTCATGGTTGTTCCATAAC
		07wc1UsD07r	GAATTCTAGAACATATTCATCTCCTATCAC
TrCHSh	13wc2IsG04	13wc2IsG04f	GAATTCTAGATCCAAATTCTCGTACCTCACC
		13wc2IsG04r	GAATTCTAGATAGTTCACATCTCTCGGCAGG
TrDFRd	12wc1CsE09	12wc1CsE09f	GACGTCGACACAACAGTCTTCACTTGAGC
		12wc1CsE09r	GACGTCGACTCTATACTCTGGTAACATAGG
TrF3Ha	07wc1LsG03	07wc1LsG03f	GAATTCTAGAACACACACACACAAACACC
		07wc1LsG03r	GAATTCTAGAACCAAGCAGCTTAATACACG
TrPALa	04wc1UsB03	04wc1UsB03f	AGTACTGCAGAGATATGGAAAGTAGCAGCAGC
		04wc1UsB03r	AGTACTGCAGTAGCAAACCAGTCCCCACTCC
TrPALb	05wc1PsH02	05wc1PsH02f	AGTACTGCAGATAATGGAGGGATTACCAATGG
		05wc1PsH02r	AGTACTGCAGTGCTAATTACATATTGGTAGAGG
TrPALf	13wc2AsD12	13wc2AsD12f	AGTACTGCAGATAATGGAGGGATTACCAATGG
		13wc2AsD12r	AGTACTGCAGTGCTAATTACATATTGGTAGAGG
TrVRa	11wc1NsA07	11wc1NsA07f	AGTACTGCAGATAAAGAGAGTCAAAATGCC
		11wc1NsA07r	AGTACTGCAGAACACACACTTAGAGATAGCC

EXAMPLE 5

Development of binary transformation vectors containing chimeric genes with cDNA sequences from perennial ryegrass F3OH and white clover BANa,

5 **CHIa, CHId, CHRc, CHSa1, CHSa3, CHSc, CHSd2, CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa**

To alter the expression of the proteins involved in flavonoid biosynthesis, protein binding, metal chelation, anti-oxidation, UV-light absorption, tolerance to biotic stresses such as viruses, micro-organisms, insects and fungal pathogens; 10 pigmentation in for example flowers and leaves; herbage quality and bloat-safety and isoflavanoid content leading to health benefits, perennial ryegrass F3OH and white clover BANa, CHIa, CHId, CHRc, CHSa1, CHSa3, CHSc, CHSd2, CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa, through antisense and/or sense suppression technology and for over-expression of these key proteins in 15 transgenic plants, a set of sense and antisense binary transformation vectors was produced.

cDNA fragments were generated by high fidelity PCR using the original pGEM-T Easy plasmid cDNA as a template. The primers used (Table 3) contained recognition sites for appropriate restriction enzymes, for example EcoRI and XbaI, for directional and non-directional cloning into the target vector. After PCR amplification and restriction digest with the appropriate restriction enzyme (usually XbaI), the cDNA fragments were cloned into the corresponding site in a modified pPZP binary vector (Hajdukiewicz *et al.*, 1994). The pPZP221 vector was modified to contain the 35S² cassette from pKYLX71:35S² as follows. pKYLX71:35S² was cut with Clal. The 5' overhang was filled in using Klenow and the blunt end was A-tailed with Taq polymerase. After cutting with EcoRI, the 2kb fragment with an EcoRI-compatible and a 3'-A tail was gel-purified. pPZP221 was cut with HindIII and the resulting 5' overhang filled in and T-tailed with Taq polymerase. The remainder of the original pPZP221 multi-cloning site was removed by digestion with EcoRI, and the expression cassette cloned into the EcoRI site and the 3' T overhang restoring the HindIII site. This binary vector contains between the left and right border the plant selectable marker gene aaaC1 under the control of the 35S promoter and 35S terminator and the pKYLX71:35S²-derived expression cassette with a CaMV 35S promoter with a duplicated enhancer region and an rbcS terminator.

The orientation of the constructs (sense or antisense) was checked by restriction enzyme digest. Transformation vectors containing chimeric genes using full-length open reading frame cDNAs encoding perennial ryegrass F3OH and white clover BANa, CHIa, CHId, CHRc, CHSa1, CHSa3, CHSc, CHSd2, CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa proteins in sense and antisense orientations under the control of the CaMV 35S² promoter were generated (Figures 114, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190 and 195).

EXAMPLE 6

Production and analysis of transgenic Arabidopsis plants carrying chimeric perennial ryegrass F3OH and white clover BANa, CHIa, CHId, CHRc, CHSa1, CHSa3, CHSc, CHSd2, CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa genes involved in flavonoid biosynthesis

A set of transgenic Arabidopsis plants carrying chimeric perennial ryegrass and white clover genes involved in flavonoid biosynthesis, protein binding, metal chelation, anti-oxidation, UV-light absorption, tolerance to biotic stresses such as viruses, micro-organisms, insects and fungal pathogens; pigmentation in for example flowers and leaves; herbage quality and bloat-safety and isoflavonoid content leading to health benefits, were produced.

pPZP221-based transformation vectors with *LpF3OH* and *TrBANa*, *TrCHIa*, *TrCHId*, *TrCHRc*, *TrCHSa1*, *TrCHSa3*, *TrCHSc*, *TrCHSd2*, *TrCHSf*, *TrCHSh*, *TrDFRd*, *TrF3Ha*, *TrPALa*, *TrPALb*, *TrPALf* and *TrVRa* cDNAs comprising the full open reading frame sequences in sense and antisense orientations under the control of the CaMV 35S promoter with duplicated enhancer region (35S²) were generated as detailed in Example 6.

Agrobacterium-mediated gene transfer experiments were performed using these transformation vectors.

The production of transgenic Arabidopsis plants carrying the perennial ryegrass F3OH and white clover BANa, CHIa, CHId, CHRc, CHSa1, CHSa3, CHSc, CHSd2, CHSf, CHSh, DFRd, F3Ha, PALa, PALb, PALf and VRa cDNAs under the control of the CaMV 35S promoter with duplicated enhancer region (35S²) is described here in detail.

25 Preparation of Arabidopsis plants

Seedling punnets were filled with Debco seed raising mixture (Debco Pty. Ltd.) to form a mound. The mound was covered with two layers of anti-bird netting secured with rubber bands on each side. The soil was saturated with water and

enough seeds (*Arabidopsis thaliana* ecotype Columbia, Lehle Seeds #WT-02) sown to obtain approximately 15 plants per punnet. The seeds were then vernalised by placing the punnets at 4 °C. After 48 hours the punnets were transferred to a growth room at 22 °C under fluorescent light (constant illumination, 5 $55 \mu\text{mol m}^{-2}\text{s}^{-1}$) and fed with Miracle-Gro (Scotts Australia Pty. Ltd.) once a week. Primary bolts were removed as soon as they appeared. After 4 – 6 days the secondary bolts were approximately 6 cm tall, and the plants were ready for vacuum infiltration.

Preparation of *Agrobacterium*

10 *Agrobacterium tumefaciens* strain AGL-1 were streaked on LB medium containing 50 µg/ml rifampicin and 50 µg/ml kanamycin and grown at 27 °C for 48 hours. A single colony was used to inoculate 5 ml of LB medium containing 50 µg/ml rifampicin and 50 µg/ml kanamycin and grown over night at 27 °C and 250 rpm on an orbital shaker. The overnight culture was used as an inoculum for 500 15 ml of LB medium containing 50 µg/ml kanamycin only. Incubation was over night at 27 °C and 250 rpm on an orbital shaker in a 2 l Erlenmeyer flask.

The overnight cultures were centrifuged for 15 min at 5500 xg and the supernatant discarded. The cells were resuspended in 1 l of infiltration medium [5% (w/v) sucrose, 0.03% (v/v) Silwet-L77 (Vac-In-Stuff, Lehle Seeds #VIS-01)] 20 and immediately used for infiltration.

Vacuum infiltration

The *Agrobacterium* suspension was poured into a container (Décor Tellfresh storer, #024) and the container placed inside the vacuum desiccator (Bel Art, #42020-0000). A punnet with *Arabidopsis* plants was inverted and dipped into 25 the *Agrobacterium* suspension and a gentle vacuum (250 mm Hg) was applied for 2 min. After infiltration, the plants were returned to the growth room where they were kept away from direct light overnight. The next day the plants were returned to full direct light and allowed to grow until the siliques were fully developed. The plants were then allowed to dry out, the seed collected from the siliques and either

stored at room temperature in a dry container or used for selection of transformants.

Selection of transformants

Prior to plating the seeds were sterilised as follows. Sufficient seeds for one 5 150 mm petri dish (approximately 40 mg or 2000 seeds) were placed in a 1.5 ml microfuge tube. 500 µl 70% ethanol were added for 2 min and replaced by 500 µl sterilisation solution (H₂O:4% chlorine:5% SDS, 15:8:1). After vigorous shaking, the tube was left for 10 min after which time the sterilisation solution was replaced with 500 µl sterile water. The tube was shaken and spun for 5 sec to sediment the 10 seeds. The washing step was repeated 3 times and the seeds were left covered with approximately 200 µl sterile water.

The seeds were then evenly spread on 150 mm petri dishes containing germination medium (4.61 g Murashige & Skoog salts, 10 g sucrose, 1 ml 1 M KOH, 2 g Phytagel, 0.5 g MES and 1 ml 1000x Gamborg's B-5 vitamins per litre) 15 supplemented with 250 µg/ml timetin and 75 µg/ml gentamycin. After vernalisation for 48 hours at 4 °C the plants were grown under continuous fluorescent light (55 µmol m⁻²s⁻¹) at 22 °C to the 6 – 8 leaf stage and transferred to soil.

Preparation of genomic DNA

3 – 4 leaves of *Arabidopsis* plants regenerated on selective medium were 20 harvested and freeze-dried. The tissue was homogenised on a Retsch MM300 mixer mill, then centrifuged for 10 min at 1700xg to collect cell debris. Genomic DNA was isolated from the supernatant using Wizard Magnetic 96 DNA Plant System kits (Promega) on a Biomek FX (Beckman Coulter). 5 µl of the sample (50 µl) were then analysed on an agarose gel to check the yield and the quality of the 25 genomic DNA.

Analysis of DNA using real-time PCR

Genomic DNA was analysed for the presence of the transgene by real-time PCR using SYBR Green chemistry. PCR primer pairs (Table 4) were designed

using MacVector (Accelrys). The forward primer was located within the 35S² promoter region and the reverse primer within the transgene to amplify products of approximately 150 - 250 bp as recommended. The positioning of the forward primer within the 35S² promoter region guaranteed that homologous genes in 5 *Arabidopsis* were not detected.

5 µl of each genomic DNA sample was run in a 50 µl PCR reaction including SYBR Green on an ABI (Applied Biosystems) together with samples containing DNA isolated from wild type *Arabidopsis* plants (negative control), samples containing buffer instead of DNA (buffer control) and samples containing 10 the plasmid used for transformation (positive plasmid control).

Plants were obtained after transformation with all chimeric constructs and selection on medium containing gentamycin. The selection process and two representative real-time PCR analyses are shown in Figure xx.

TABLE 4

15 **List of primers used for Real-time PCR analysis of *Arabidopsis* plants
transformed with chimeric perennial ryegrass genes involved in flavonoid
biosynthesis**

construct	primer 1 (forward)	primer 2 (reverse)
pPZP221LpF3OHsense	TTGGAGAGGACACGCTGAAATC	AGGAGAGGGTTGGACATCGC
pPZP221LpF3OHanti	CATTCATTGGAGAGGACACGC	ACGAGGAGTTCTGGAAGATGGG
pPZP221TrBANAsense	TTGGAGAGGACACGCTGAAATC	GCAACAAAACCAGTGCCACC
pPZP221TrBANAanti	TCATTGGAGAGGACACGCTG	GATGATTGCCAGCAAGG
pPZP221TrCHIasense	CATTCATTGGAGAGGACACGC	CAAGGTTCTGACTTGGATTGC
pPZP221TrCHIaanti	TCATTGGAGAGGACACGCTG	AGATTACCTGCCCTTGTGAACGAG
pPZP221TrCHIdsense	TCATTGGAGAGGACACGCTG	GACGGTAGGAGGGAATAGATTGTT
pPZP221TrCHIdanti	TCATTGGAGAGGACACGCTG	CCAGGTTATCCGAGTTATTCAACG
pPZP221TrCHRcsense	CCACTATCCTTCGCAAGACCC	TCCCATTCCAACCACAGGC
pPZP221TrCHRcanti	TCATTGGAGAGGACACGCTG	CAAGCCAGGACTCAGTGACCTATG
pPZP221TrCHSa1sense	TCATTGGAGAGGACACGCTG	CTGGTCAACACGATTGCTGG
pPZP221TrCHSa1anti	TCATTGGAGAGGACACGCTG	AACCACAGGAGAAGGACTTGACTG

pPZP221TrCHSa3sense	CATTTCATTTGGAGAGGGACACGC	AACACGGTTGGTGGATTGCG
pPZP221TrCHSa3anti	TCATTTGGAGAGGGACACGCTG	ACAACGGAGAAGGACTTGATTGG
pPZP221TrCHScsense	TTGGAGAGGGACACGCTGAAATC	ACAAGTTGGTGGAGGGAAATGCC
pPZP221TrCHScanti	TCATTTGGAGAGGGACACGCTG	GGGATTGATACTTGCTTTGGACC
pPZP221TrCHSd2sense	CCCACTATCCTTCGCAAGACC	AGTTGCAGTGCCGATTGCC
pPZP221TrCHSd2anti	CATTTCATTTGGAGAGGGACACGC	AAGATGGACTTGCCACAACAGG
pPZP221TrCHSfsense	CATTTCATTTGGAGAGGGACACGC	TCGTTGCCTTCCCTGAGTAGGG
pPZP221TrCHSfanti	TCATTTGGAGAGGGACACGCTG	GATTGGCTTTGGACCAAGGG
pPZP221TrCHShsense	TCATTTGGAGAGGGACACGCTG	CGGTCAACCATTGTTGGAGG
pPZP221TrCHShanti	TCATTTGGAGAGGGACACGCTG	TGTTGTTGGGTTGGACCG
pPZP221TrDFRdsense	CATTTCATTTGGAGAGGGACACGC	ATTGAGATTGGACGGTGGC
pPZP221TrDFRdanti	CATTTCATTTGGAGAGGGACACGC	CGAACCTGGATTGTTGAGAGC
pPZP221TrF3Hasense	TCATTTGGAGAGGGACACGCTG	TCTTCCCTAACGAAACTGACTCG
pPZP221TrF3Haanti	TCATTTGGAGAGGGACACGCTG	GAACAACAACCTAGGGACTTGAGG
pPZP221TrPALasense	ATGACGCACAATCCCACATCC	TTGCCTCAGCAGCCACACC
pPZP221TrPALaanti	GGAGAGGGACACGCTGAAATCAC	TGCCAAAAGAGGTTGAAAGTGC
pPZP221TrPALbsense	ATCCCCACTATCCTTCGCAAGACCC	AATGACTCCCCATCAACGACTCCG
pPZP221TrPALbanti	TTGGAGAGGGACACGCTGAAATC	GACAAATTGTTCACAGCTATGCC
pPZP221TrPALfsense	ATCCCCACTATCCTTCGCAAGACCC	CACCATACGCTTCACCTCATCC
pPZP221TrPALfanti	TCATTTGGAGAGGGACACGCTG	TTGTTAGAGAGGGAGTTAGGAACCGC
pPZP221TrVRasense	CCACTATCCTTCGCAAGACCC	GCTTACATCCCTCTACGTTCTGG
pPZP221TrVRaanti	CCACTATCCTTCGCAAGACCC	AAAAGCTCGTGGACGCTGG

EXAMPLE 7

Genetic mapping of perennial ryegrass genes involved in flavonoid biosynthesis, protein binding, metal chelation, anti-oxidation, UV-light

5 **absorption, tolerance to biotic stresses such as viruses, micro-organisms, insects and fungal pathogens; pigmentation in for example flowers and leaves; herbage quality and bloat-safety and isoflavonoid content leading to health benefits**

The cDNAs representing genes involved in flavonoid biosynthesis, protein binding, metal chelation, anti-oxidation, UV-light absorption, tolerance to biotic stresses such as viruses, micro-organisms, insects and fungal pathogens;

pigmentation in for example flowers and leaves; herbage quality and bloat-safety and isoflavonoid content leading to health benefits, were amplified by PCR from their respective plasmids, gel-purified and radio-labelled for use as probes to detect restriction fragment length polymorphisms (RFLPs). RFLPs were mapped in
5 the F₁ (first generation) population, NA₆ x AU₆. This population was made by crossing an individual (NA₆) from a North African ecotype with an individual (AU₆) from the cultivar Aurora, which is derived from a Swiss ecotype. Genomic DNA of the 2 parents and 114 progeny was extracted using the 1 x CTAB method of Fulton et al. (1995).

10 Probes were screened for their ability to detect polymorphism using the DNA (10 µg) of both parents and 5 F₁ progeny restricted with the enzymes DraI, EcoRI, EcoRV or HindIII. Hybridisations were carried out using the method of Sharp et al. (1988). Polymorphic probes were screened on a progeny set of 114 individuals restricted with the appropriate enzyme (Figure 115).

15 RFLP bands segregating within the population were scored and the data was entered into an Excel spreadsheet. Alleles showing the expected 1:1 ratio were mapped using MAPMAKER 3.0 (Lander et al. 1987). Alleles segregating from, and unique to, each parent, were mapped separately to give two different linkage maps. Markers were grouped into linkage groups at a LOD of 5.0 and
20 ordered within each linkage group using a LOD threshold of 2.0.

Loci representing genes involved in flavonoid biosynthesis mapped to the linkage groups as indicated in Table 5 and in Figure 197. These gene locations can now be used as candidate genes for quantitative trait loci associated with flavonoid biosynthesis, protein binding, metal chelation, anti-oxidation, UV-light
25 absorption, tolerance to biotic stresses such as viruses, micro-organisms, insects and fungal pathogens; pigmentation in for example flowers and leaves; herbage quality and bloat-safety and isoflavonoid content leading to health benefits.

TABLE 5

**Map locations of ryegrass genes involved in flavonoid biosynthesis across
two genetic linkage maps of perennial ryegrass**

Probe	Polymorphic	Mapped with	Locus	Linkage group	
				NA ₆	AU ₆
LpDFRb	Y	Hind III	LpDFRb	6	6

5

REFERENCES

An, G., Watson, B.D., Stachel, S., Gordon, M.P., Nester, E.W. (1985) New cloning vehicles for transformation of higher plants. *The EMBO Journal* **4**, 227-284

Feinberg, A.P., Vogelstein, B. (1984). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. *Anal. Biochem.* **132**: 6-13.

Frohman *et al.* (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. *Proc. Natl. Acad. Sci. USA* **85**:8998

Gish and States (1993) Identification of protein coding regions by database similarity search. *Nature Genetics* **3**:266-272

Lander, E.S., Green P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L. (1987). MAPMAKER: an interactive computer package for constructing primary linkage maps of experimental and natural populations. *Genomics* **1**: 174-181.

Loh, E.Y., Elliott, J.F., Cwirla, S., Lanier, L.L., Davis, M.M. (1989). Polymerase chain reaction with single-sided specificity: Analysis of T-cell receptor delta

chain. *Science* **243**:217-220

Ohara, O., Dorit, R.L., Gilbert, W. (1989). One-sided polymerase chain reaction: The amplification of cDNA. *Proc. Natl. Acad Sci USA* **86**:5673-5677

5 Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning. A Laboratory Manual. Cold Spring Harbour Laboratory Press

Schardl, C.L., Byrd, A.D., Benzion, G., Altschuler, M.A., Hildebrand, D.F., Hunt, A.G. (1987) Design and construction of a versatile system for the expression of foreign genes in plants. *Gene* **61**, 1-11

10 Sharp, P.J., Kreis, M., Shewry, P.R., Gale, M.D. (1988). Location of α -amylase sequences in wheat and its relatives. *Theor. Appl. Genet.* **75**:286-290.

Finally, it is to be understood that various alterations, modifications and/or additions may be made without departing from the spirit of the present invention as outlined herein.

15 It will also be understood that the term "comprises" (or its grammatical variants) as used in this specification is equivalent to the term "includes" and should not be taken as excluding the presence of other elements or features.

Documents cited in this specification are for reference purposes only and their inclusion is not acknowledgment that they form part of the common general knowledge in the relevant art.

CLAIMS

1. A substantially purified or isolated nucleic acid or nucleic acid fragment encoding a flavonoid biosynthetic enzyme selected from the group consisting of chalcone isomerase (CHI), chalcone synthase (CHS), chalcone 5 reductase (CHR), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductase (LCR), flavonoid 3', 5' hydrolase (F3'5'H), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), phenylalanine ammonia-lyase (PAL) and vestitone reductase (VR) from a clover (*Trifolium*), medic (*Medicago*), ryegrass (*Lolium*) or fescue (*Festuca*) species, or a functionally active fragment or variant 10 thereof.

2. A nucleic acid or nucleic acid fragment according to Claim 1, wherein said clover species is white clover (*Trifolium repens*) and said ryegrass species is perennial ryegrass (*Lolium perenne*).

3. A nucleic acid or nucleic acid fragment according to Claim 1, 15 encoding a CHI or CHI-like protein and including a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 1, 3, 4, 6, 7, 9, 10, 12, 122 and 127 hereto (Sequence ID Nos: 1, 3 to 7, 8, 10 to 12, 13, 15 and 16, 17, 19 to 22, 307, and 309, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and 20 (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

4. A nucleic acid or nucleic acid fragment according to Claim 1, encoding a CHS or CHS-like protein and including a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 13, 15, 16, 18, 19, 25 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 137, 142, 147, 152, 157 and 162 hereto (Sequence ID Nos: 23, 25 to 63, 64, 66 to 68, 69, 71 to 77, 78, 80 to 90, 91, 93 and 94, 95, 97 to 100, 101, 103 to 105, 106, 313, 315, 317, 319, 321, and 323, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active 30 fragments and variants of the sequences recited in (a), (b) and (c).

5. A nucleic acid or nucleic acid fragment according to Claim 1, encoding a CHR or CHR-like protein and including nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 36, 38, 40, 41, 43 and 132 hereto (Sequence ID Nos: 108, 110, 112 to 116, 117, 119 to 134, and 5 311, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

6. A nucleic acid or nucleic acid fragment according to Claim 1, encoding a DFR or DFR-like protein and including a nucleotide sequence selected 10 from the group consisting of (a) sequences shown in Figures 44, 46, 47, 49, 50, 52, 54, 55, 57, 59, 61, 62, 64, 101, 103, 104, 106, 117 and 167 hereto (Sequence ID Nos: 135, 137 to 146, 147, 149 to 152, 153, 155, 157 and 158, 159, 161, 163, 165 to 167, 168, 170 to 184, 286, 288 to 292, 293, 295 to 297, 305, and 325, respectively); (b) complements of the sequences recited in (a); (c) sequences 15 antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

7. A nucleic acid or nucleic acid fragment according to Claim 1, encoding an LCR or LCR-like protein and including a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 65 and 67 20 hereto (Sequence ID Nos: 185 and 187 to 193, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

8. A nucleic acid or nucleic acid fragment according to Claim 1, 25 encoding a F3'5'H or F3'5'H-like protein and including a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 68, 70 and 72 hereto (Sequence ID Nos: 194, 196, and 198 to 201, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the 30 sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

9. A nucleic acid or nucleic acid fragment according to Claim 1, encoding a F3H or F3H-like protein and including a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 73, 75, 76, 78, 107, 109, 111 and 172 hereto (Sequence ID Nos: 202, 204 to 244, 245, 247, 298, 300 to 302, 303, and 327, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

10. A nucleic acid or nucleic acid fragment according to Claim 1, encoding a F3'H or F3'H-like protein and including a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 80 and 82 hereto (Sequence ID Nos: 249, and 251 and 252, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

11. A nucleic acid or nucleic acid fragment according to Claim 1, encoding a PAL or PAL-like protein and including a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 83, 85, 86, 88, 89, 91, 93, 95, 97, 177, 182 and 187 hereto (Sequence ID Nos: 253, 255 to 257, 258, 260 to 267, 268, 270, 272, 274, 276 and 277, 329, 331, and 333, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

12. A nucleic acid or nucleic acid fragment according to Claim 1, encoding a VR or VR-like protein and including a nucleotide sequence selected from the group consisting of (a) sequences shown in Figures 98, 100 and 192 hereto (Sequence ID Nos: 278, 280 to 285, and 335, respectively); (b) complements of the sequences recited in (a); (c) sequences antisense to the sequences recited in (a) and (b); and (d) functionally active fragments and variants of the sequences recited in (a), (b) and (c).

13. A construct including a nucleic acid or nucleic acid fragment according to Claim 1.

14. A vector including a nucleic acid or nucleic acid fragment according to Claim 1.

5 15. A vector according to Claim 14, further including a promoter and a terminator, said promoter, nucleic acid or nucleic acid fragment and terminator being operatively linked.

16. A plant cell, plant, plant seed or other plant part, including a construct according to claim 13 or a vector according to Claim 14.

10 17. A plant, plant seed or other plant part derived from a plant cell or plant according to Claim 16.

15 18. A method of modifying flavonoid biosynthesis in a plant, said method including introducing into said plant an effective amount of a nucleic acid or nucleic acid fragment according to Claim 1, a construct according to claim 13 and/or a vector according to Claim 14.

19. A method of modifying protein binding, metal chelation, anti-oxidation, and/or UV-light absorption in a plant, said method including introducing into said plant an effective amount of a nucleic acid or nucleic acid fragment according to Claim 1, a construct according to claim 13 and/or a vector according to Claim 14.

20. A method of modifying pigment production in a plant, said method including introducing into said plant an effective amount of a nucleic acid or nucleic acid fragment according to Claim 1, a construct according to claim 13 and/or a vector according to Claim 14.

25 21. A method of modifying plant defense to a biotic stress, said method including introducing into said plant an effective amount of a nucleic acid or nucleic

acid fragment according to Claim 1, a construct according to claim 13 and/or a vector according to Claim 14.

22. A method according to claim 21 wherein said biotic stress is selected from the group consisting of viruses, microorganisms, insects and fungal
5 pathogens.

23. A method of modifying forage quality of a plant by disrupting protein foam and/or conferring protection from rumen pasture bloat, said method including introducing into said plant an effective amount of a nucleic acid or nucleic acid fragment according to Claim 1, a construct according to claim 13 and/or a vector
10 according to Claim 14.

24. Use of a nucleic acid or nucleic acid fragment according to Claim 1, and/or nucleotide sequence information thereof, and/or single nucleotide polymorphisms thereof as a molecular genetic marker.

25. A substantially purified or isolated polypeptide from a clover
15 (*Trifolium*), medic (*Medicago*), ryegrass (*Lolium*) or fescue (*Festuca*) species, selected from the group consisting of ASR and ASR-like, A22 and A22-like, CYS and CYS-like, LEA and LEA-like, DHN and DHN-like and PKABA and PKABA-like; and functionally active fragments and variants thereof.

26. A polypeptide according to Claim 25, wherein said clover species is
20 white clover (*Trifolium repens*) and said ryegrass species is perennial ryegrass (*Lolium perenne*).

27. A polypeptide according to Claim 25, wherein said polypeptide is CHI or CHI-like and includes an amino acid sequence selected from the group consisting of sequences shown in Figures 2, 5, 8, 11, 123 and 128 hereto
25 (Sequence ID Nos: 2, 9, 14, 18, 308, and 310, respectively); and functionally active fragments and variants thereof.

28. A polypeptide according to Claim 25, wherein said polypeptide is CHS or CHS-like and includes an amino acid sequence selected from the group

consisting of sequences shown in Figures 14, 17, 20, 23, 26, 29, 32, 35, 138, 143, 148, 153, 158 and 163 hereto (Sequence ID Nos: 24, 65, 70, 79, 92, 96, 102, 107, 314, 316, 318, 320, 322, and 324, respectively); and functionally active fragments and variants thereof.

5 29. A polypeptide according to Claim 25, wherein said polypeptide is CHR or CHR-like and includes an amino acid sequence selected from the group consisting of sequences shown in Figures 37, 39, 42 and 133 hereto (Sequence ID Nos: 109, 111, 118, and 312, respectively); and functionally active fragments and variants thereof.

10 30. A polypeptide according to Claim 25, wherein said polypeptide is DFR or DFR-like and includes an amino acid sequence selected from the group consisting of sequences shown in Figures 45, 48, 51, 53, 56, 58, 60, 63, 102, 105, 118 and 168 hereto (Sequence ID Nos: 136, 148, 54, 156, 160, 162, 164, 169, 287, 294, 306, and 326, respectively); and functionally active fragments and 15 variants thereof.

31. A polypeptide according to Claim 25, wherein said polypeptide is LCR or LCR-like and includes an amino acid sequence shown in Figure 66 hereto (Sequence ID No: 186); and functionally active fragments and variants thereof.

20 32. A polypeptide according to Claim 25, wherein said polypeptide is F3'5'H or F3'5'H-like and includes an amino acid sequence selected from the group consisting of sequences shown in Figures 69 and 71 hereto (Sequence ID Nos: 195 and 197, respectively); and functionally active fragments and variants thereof.

25 33. A polypeptide according to Claim 25, wherein said polypeptide is F3H or F3H-like and includes an amino acid sequence selected from the group consisting of sequences shown in Figures 74, 77, 79, 108, 112 and 173 hereto (Sequence ID Nos: 203, 246, 248, 299, 304, and 328, respectively); and functionally active fragments and variants thereof.

34. A polypeptide according to Claim 25, wherein said polypeptide is F3'H or F3'H-like and includes an amino acid sequence selected from the group consisting of sequences shown in Figure 81 hereto (Sequence ID No: 250); and functionally active fragments and variants thereof.

5 35. A polypeptide according to Claim 25, wherein said polypeptide is PAL or PAL-like and includes an amino acid sequence selected from the group consisting of sequences shown in Figures 84, 87, 90, 92, 94, 96, 178, 183 and 188 hereto (Sequence ID Nos: 254, 259, 269, 271, 273, 275, 330, 332, and 334, respectively); and functionally active fragments and variants thereof.

10 36. A polypeptide according to Claim 25, wherein said polypeptide is VR or VR-like and includes an amino acid sequence selected from the group consisting of sequences shown in Figures 99 and 193 hereto (Sequence ID Nos: 279 and 336, respectively); and functionally active fragments and variants thereof.

1/271

* 20 * 40 * 60
 TrCHIa : GCATTAAACANTGAAANTTGACCAGTCCCAACAAAGATCTGAAACACATAGCTCCCCATT : 60

* 80 * 100 * 120
 TrCHIa : TTTAACATTAAACTAAAAATATGTCGGCCATCACCGCAATCCAAGTCGAGAACCTTGAA : 120

* 140 * 160 * 180
 TrCHIa : TTTCCGGCTGTGATTACTCTCCGGCCACCGGTAAGTCATATTTCTGGTGGTGCAGGG : 180

* 200 * 220 * 240
 TrCHIa : GAGAGAGGTTGACTATTGAAGGAAACTTCATCAAGTTCACTGCCATAGGAGTATTTG : 240

* 260 * 280 * 300
 TrCHIa : GAAGATGTAGCAGTGGCTTCACTTGCCACTAAATGGAAGGGCAAATCCTCTGAAGAGTTG : 300

* 320 * 340 * 360
 TrCHIa : CTTGAGACCCTTGACTTCTACAGAGATATCATTTCAGGACCATTGAGAAGTTGATTGCA : 360

* 380 * 400 * 420
 TrCHIa : GGATCGAAGAGATTAGGAATTGAGTGGCTTGAGTACTCAAGGAAGGTTAATGAAAAGTGT : 420

* 440 * 460 * 480
 TrCHIa : GTGGCACACTAAAATCTGTTGGACTTATGGAGATGCAGAAGTTGAAGCTATGCAAAAA : 480

* 500 * 520 * 540
 TrCHIa : TTTGTTGAAGCCTTCAAGCCTATTAATTTCACCTGGTGCCTCTGTTTTACAGGCAA : 540

* 560 * 580 * 600
 TrCHIa : TCACCTGATGGAATTAGGGCTTAGTTCTCAAGATGCAAGTATACCAGAAAAGGAA : 600

* 620 *
 TrCHIa : GCTGCAGTAATAGAGAACAGGGAGCTCATCGGCG : 636

FIGURE 1

2/271

* 20 * 40 * 60
TrCHIa : MSAITAIQVENLEFPAVITSPATGKSYFLGGAGERGLTIEGNFIKFTAIGVYLEDVAVAS : 60

* 80 * 100 * 120
TrCHIa : LATKWKGKSSEELLETLDFYRDIISGPFEKLIRGSKIRELSGPEYSRKVNENCVAHLKSV : 120

* 140 * 160 * 180
TrCHIa : GTYGDAEVEAMQKFVEAFKPINFPPGASVFYRQSPDGILGLSFSQDASIKEKEAAVIENK : 180

TrCHIa : GASSA : 185

FIGURE 2

3/271

	*	20	*	40	*	60		
TrCHIa1:	GCATTAACAA	CTGATA-NAGC-CCNAAT	AAAAAAGATCTGAAACACATAG	INCCCCATT			: 57	
TrCHIa2:	-----	GNTTGC	CCCCTGCCAACAAAGATCTGAAACACATAG	CCCCCATT			: 45	
TrCHIa3:	-----	-----	GGATCTGAAACACATAG	TNCCCC			: 23	
TrCHIa4:	-----	-----	GNGATCTGAAA	ACNTAG-TACCCA			: 24	
TrCHIa5:	-----	CNTTAAANTTGACCAGTCC	NAACAAAGATCTGAAACACATAG	CCCCCATT			: 51	
	*	80	*	100	*	120		
TrCHIa1:	TTTTAACATTAAACTAAAAA	ATATGTCGGCCATCACCGCAATCCAAGTCGAGAACCTTGAA					: 117	
TrCHIa2:	TTTTAACATTAAACTAAAAA	ATATGTCGCCATCACCGCAATCCAAGTCGAGAACCTTGAA					: 105	
TrCHIa3:	TTTTAACATTAAACTAAAAA	ATATGTCGGCCATCACCGCAATCCAAGTCGAGAACCTTGAA					: 83	
TrCHIa4:	TTTTAA	NATTAAACTAAAAA	ATATGTCGGCNATCACCGCAATCCAAGTCGAGAACCTTGAA				: 84	
TrCHIa5:	TTTTAACATTAAACTAAAAA	ATATGTCGCCATCACCGCAATCCAAGTCGAGAACCTTGAC					: 111	
	*	140	*	160	*	180		
TrCHIa1:	TTTCCGGCTGTG	TTTACTTCTCCGGCCACCGGTAAGTCATATTTCTGGTGGTGCAGGG					: 177	
TrCHIa2:	TT	CCGGC	G	TGATTACTTCTCCGG	CA	CGGTAAGTCATATTTCTGGTGGTGCAGGG		: 165
TrCHIa3:	TTTCC	G	CTGTGATTACTTCTCCGGCCACCGGTAAGTCATATTTCTGGTGGTGCAGGG				: 143	
TrCHIa4:	TTTCC	G	CTGTGATTACTTCTCCGGCCACCGGTAAGTCATATTTCTGGTGGTGCAGGG				: 144	
TrCHIa5:	TT	CCGGC	G	TGATTACTTCTCCGG	CA	CGGTAAGTCATATTTCTGGTGGTGCAGGG		: 171
	*	200	*	220	*	240		
TrCHIa1:	GAGAGAGGTTGACTATTGAAGGAAACTT	TTCAANCCGCTGGNATAAGACCGTN	TTG				: 237	
TrCHIa2:	GAGAGAGGTTGACTATTGAAGGAAACTT	CATCAAGTTCACTGCCATAGGAGTATATTG					: 225	
TrCHIa3:	GAGAGAGGTTGACTATTGAAGGAAACTT	CATCAAGTTCACTGCCATAGGAGTATATTG					: 203	
TrCHIa4:	GAGAGAGGTTGACTATTGAAGGAAACTT	CATCAAGTTCACTGCCATAGGAGTATATTG					: 204	
TrCHIa5:	GAGAGAGGTTGACTATTGAAGGAAACTT	CATCAAGTTCACTGCCATAGGAGTATATTG					: 231	
	*	260	*	280	*	300		
TrCHIa1:	NA	NA	NA				: 244	
TrCHIa2:	GAAGATGTAGCAGTGGCTTCACTGCCACTAAATGGAAGGGCAAATCCTCTGAAAGAGTTG						: 285	
TrCHIa3:	GAAGATGTAGCAGTGGCTTCACTGCCACTAAATGGAAGGG	AAATCCTCTGAAAGAGTTG					: 263	
TrCHIa4:	GAAGATG	NA	NA	GGG	NT	NA		: 228
TrCHIa5:	GAAGATGTAGCAGTGGCTTCACTGCCACTAAATGGAAGGGCAAATCCTCTGAAAGAGTTG						: 291	
	*	320	*	340	*	360		
TrCHIa1:	-----						: -	
TrCHIa2:	CTTGAGACCCTTGACTTCTACAGAGATATCATTTCAAGGACCATTGAGAAGTTGATTG						: 345	
TrCHIa3:	CTTGAGAC	CTTGACTTCTA	AGAGA	CATCATTCAAGGACC	TTGAAAGTTGATTG		: 323	
TrCHIa4:	CTT	AGACCCTTGACTTCTACAGAGATATCATTTCAAGGACCATTGAGAAGTTGATTG					: -	
TrCHIa5:	CTT	AGACCCTTGACTTCTACAGAGATATCATTTCAAGGACCATTGAGAAGTTGATTG					: 351	
	*	380	*	400	*	420		
TrCHIa1:	-----						: -	
TrCHIa2:	GGATCGAAGATTAGGAAATTGAGTGGCCTGAGTACTCAAGGAAGGTTAATGAAA	ACTG					: 405	
TrCHIa3:	GGATCGAAGATTAGGAAATTGAGTGGCCTGAGTACTCAAGGAAGGTTAATGAAA	ACTGC					: 383	
TrCHIa4:	-----						: -	
TrCHIa5:	GGATC	AAAGATTAGGAAATTGAGTGGCCTGAGTACTCAAGGAAGGTTAATGAAA	ACTG				: 411	

FIGURE 3

4/271

TrCHIa1:	* 440	* 460	* 480	
TrCHIa2:	GTGGCACACTTAAATCTGTTGGACTTACGGAGATGCAGAAGTTGAAGCTATGCAAAA			: -
TrCHIa3:	GTGGCACACTTAAATCTGTTGGACTTATGGAGATGCTGAAGCTGAAGCTATGCAAAA			: 465
TrCHIa4:				: 443
TrCHIa5:	GTGGCACACTTAAATCTGTTGGACTTATGGAGATGCAGAAGTTGAAGCTATGCAAAA			: -
TrCHIa1:	* 500	* 520	* 540	
TrCHIa2:	TTTGTGAAGCCTTCAAGCCTATTAAATTTCACCTGGTGCCCTGTCCCCACAGGCAA			: -
TrCHIa3:	TTTGTGAAGCCTTCAAGCCTATTAAATTTCACCTGGTGCCCTGTCCCCACAGGCAA			: 525
TrCHIa4:				: -
TrCHIa5:	TTTGTGAAGCCTTCAAGCCTATTAAATTTCACCTGGTGCCCTGTCCCCACAGGCAA			: 503
TrCHIa1:	* 560	* 580	* 600	
TrCHIa2:	TCACCTGATGGAATTAGGGCTTAGTTCTCTCAAGATGCAAGTATACCAGAAAAGGAA			: -
TrCHIa3:	TCACCTGATGGAATTAGGGCTTAGTTCTCTCAAGATGCAAGTATACCAGAAAAGGAA			: 585
TrCHIa4:				: -
TrCHIa5:	TCACCTGATGGAATTAGGGCTTAGTTCTCTCAAGATGCAAGTATACCAGAAAAGGAA			: 563
TrCHIa1:	* 620	*		
TrCHIa2:	GCTGCAGTAATAGAGAACANN			: -
TrCHIa3:	GCTGCAGTAATAGAGAACAGGGAGCTTCATCGGCG			: 599
TrCHIa4:				: -
TrCHIa5:				: -

FIGURE 3 (cont)

5/271

TrCHIb : TTAAAATTGACACAGTCCAACCTTAAANTGACCNGGTCCAAACAAAGATCTGAAACA : 60
 * 20 * 40 * 60
TrCHIb : ACATAGCCCCCATTTTAACATTAAACTAAAAATATGTCCTGCCATACCGCAATCAA : 120
 * 80 * 100 * 120
TrCHIb : GTCGAGAACCTTGAATTCCCGCGGTGATTACTCTCCGGTCAACGGTAAGTCATATT : 180
 * 140 * 160 * 180
TrCHIb : CTTGGTGGTGCAGGGGAGAGAGGTTNGACTATTGAAGGAAACTCATCAAGTTCACTGCC : 240
 * 200 * 220 * 240
TrCHIb : ATAGGAGTATATTGGAAGATGTAGCAGGGCTCACTGCCACTAAATGGAAGGGCAGA : 300
 * 260 * 280 * 300
TrCHIb : TCCTCTGAAGAGNGCTTGAGACCCTNGACTNC : 332
 * 320 *

FIGURE 4

6/271

* 20 * 40 * 60
TrCHIb : MSAITAIQVENLEFP AVITS PVNGKSYFLGGAGERGXTIEGNFIKFTAIGVYLEDVAGAS : 60

*
TrCHIb : LATKWKGRSSEEXLRPXT : 78

FIGURE 5

7/271

TrCHIb1 :	TTAAAAATTGACCONAGTCCNAACCTTAAANTTGACCNGGTCCAAACAAAGATCTGAAACA	* 20 * 40 * 60	:	60
TrCHIb2 :	-TTAANNTTGACACAGTCCCACCTTAAANTTGACCNGGTCCAAACAAAGATCTGAAACA		:	59
TrCHIb3 :	-----GGTTAAANTTGACCCAGT-CCNAACAAAGATCTGAAAC-		:	38
TrCHIb1 :	ACATAGCCCCCCCATTTTTAACATTAAACTAAAAATATGCTCTGCCATACCGCAATCCAA	* 80 * 100 * 120	:	120
TrCHIb2 :	ACATAGCCCCCCCATTTTTAACATTAAACTAAAAATATGCTCTGCCATACCGCAATCCAA		:	119
TrCHIb3 :	ACATAGCCCCCCCATTTTTAACATTAAACTAAAAATATGCTCTGCCATACCGCAATCCAA		:	98
TrCHIb1 :	GTCGAGAACCTTGAATTCCCGGGCGGTGATTACTTCTCCGGTCAACGGTAAGTCATATT	* 140 * 160 * 180	:	180
TrCHIb2 :	GTCGAGAACCTTGAATTCCCGGGCGGTGATTACTTCTCCGGTCAACGGTAAGTCATATT		:	179
TrCHIb3 :	GTCGAGAACCTTGAATTCCCGGGCGGTGATTACTTCTNCGGGAANGGAAGGGATATT		:	158
TrCHIb1 :	CTTGGTGGTGCAGGGGAGAGAGGTTGACTATTGAAGGAAACTTCATCAAGTTCACTGCC	* 200 * 220 * 240	:	240
TrCHIb2 :	CTTGGTGGTGCAGGGGAGAGAGGTTNGACTATTGAAGGAAACTTCATCAAGTTCACTGCC		:	239
TrCHIb3 :	CTTGGTGGTGCAGGGNAGANNGNNNTNGN-----		:	186
TrCHIb1 :	ATAGGAGTATATTGGAAGATGTAGCAGGGGCTCACTTGCACAAATGGAAGGGNAGA	* 260 * 280 * 300	:	300
TrCHIb2 :	ATAGGAGTATATTGGAAGATGTAGCAGGGGCTCACTTGCACAAATGGAAGGGCANA		:	299
TrCHIb3 :	-----		:	-
TrCHIb1 :	TCCTCTGAANAGNCNTTGANACCNNGACTNN	* 320	:	332
TrCHIb2 :	TCTCTGAAGAGGGCTTGAGACCTTGACTTC		:	331
TrCHIb3 :	-----		:	-

FIGURE 6

8/271

* 20 * 40 * 60
TrCHIC : GTTAGNAGNAGNATNTCNGGCACCCTTGAAAAGTTGATTGAGGATCGAAGATTAGGGA : 60

* 80 * 100 * 120
TrCHIC : ATTGAGTGGTCCTGAGTACTCAAGGAAGGTTAATGAAAACGTGCGTGGCACACTAAATC : 120

* 140 * 160 * 180
TrCHIC : TGTTGGGACTTATGGAGATGCAGAAGCTGAAGCTATGCAAAAATTGTTGAAGCCTCAA : 180

* 200 * 220 * 240
TrCHIC : GCCTATTAATTTCCACCTGGTGCCTCTGTTTTACAGGCAATCACCTGATGGAATATT : 240

* 260 *
TrCHIC : AGGGGTTAGTATTGCCAATTCACTTTTTAACT : 274

FIGURE 7

9/271

* 20 * 40 * 60
TrCHIC : APFEKLIRGSKIRELSGPEYSRKVNENCVAHLKSVGTYGDAEAEAMQKFVEAFKPINFPP : 60

* 80 *
TrCHIC : GASVFYRQSPDGILGVSIANSFFLTILIRVRFDC : 94

FIGURE 8

10/271

	*	20	*	40	*	60	
TrCHIC1:	GTTAGNAGNA	NNNNTC TCNGGCACCC	TTGAAAAGTTGATTGAGGATCGAAGATTAGGGA				: 60
TrCHIC2:	-----	NNNN	GNATNTTNG ACCC	TTGAAAAGTTGATTGAGGATCGAAGATTAGGGA			: 50
	*	80	*	100	*	120	
TrCHIC1:	ATTGAGTGGTCCTGAGTACTCAAGGAAGGTTAATGAAA	ACTGCGTGGCACACTTAA	AAATC				: 120
TrCHIC2:	ATTGAGTGGTCCTGAGTACTCAAGGAAGGTTAATGAAA	ACTGCGTGGCACACTTAA	AAATC				: 110
	*	140	*	160	*	180	
TrCHIC1:	TGTTGGGACTTATGGAGATGCAGAACGCTATGCAAA	AAATTTGTTGAAGCCTCAA					: 180
TrCHIC2:	TGTTGGGACTTATGGAGATGCAGAACGCTATGCAAA	AAATTTGTTGAAGCCTCAA					: 170
	*	200	*	220	*	240	
TrCHIC1:	GCCTATTAAATTTCACCTGGTGCCTCTGTTTTACAGG	CAATCACCTGATGGAATATT					: 240
TrCHIC2:	GCCTATTAAATTTCACCTGGTGCCTCTGTTTTACAGG	CAATCACCTGATGGAATATT					: 230
	*	260	*				
TrCHIC1:	AGGGGTAGTATTGCCAATTCA	TTTTTTTA	ACT				: 274
TrCHIC2:	AGGGGTAGTATTGCCAATTCA	TTTTTTTA	ACT				: 264

FIGURE 9

11/271

* 20 * 40 * 60
TrCHId : TTNANTNNNNTTNCGGCAATTACAACACTACACAACACCTCTCCATTACCATCTATCTT : 60

* 80 * 100 * 120
TrCHId : CTACTAAGTTCAACGAGATCAATGGCACTTCCTCTGTCACCGCTTGAAATATCGAGAAC : 120

* 140 * 160 * 180
TrCHId : AATCTATTCCCTCCTACCGTCACACCACCGGATCCACCAACAATTCTCCTCGGCGGT : 180

* 200 * 220 * 240
TrCHId : GCAGGAGAGCGGGGTCTCAAATTCAAGACAAATTGTCAAATTCACCGCTATTGGTGT : 240

* 260 * 280 * 300
TrCHId : TATCTACAGGACATTGCTGTTCTTACCTCGCCACTAAATGGAAGGGTAAGACTGCTCAA : 300

* 320 * 340 * 360
TrCHId : GAGCTAACGGAAACTGTTCTTCTTCAGGGACATCGTTACAGGTCCATTGAGAAATT : 360

* 380 * 400 * 420
TrCHId : ATGCAGGTGACAATGATCTGCCATTGACTGGCAACAATACTCAGAGAAAGTGTAGAA : 420

* 440 * 460 * 480
TrCHId : AATTGTGTAGCTATTGGAAGTCTCTGGGATTATACCGACGAAGAAGCCAAGCAATT : 480

* 500 * 520 * 540
TrCHId : GAGAAGNNTTTCTGTCTCAAAGANGAACATTCCCACCAGGCTCCTATCCTTTTC : 540

* 560 * 580 * 600
TrCHId : ACAGNATTACCCAAAGGATTAGGATCACTAACGATAAGNTCTCTAAAGATGGATCCATT : 600

* 620 * 640 * 660
TrCHId : CCAGAGACCGAGTCTGCAGTTATAGAGAATAAGCTACTCTCACAGCTGTGCTNGAGTCG : 660

* 680 * 700 * 720
TrCHId : ATGATAGGGCACACGGTGTCTCCCCGTGAGCAAAACAGAGTTGGCCACCAGGNTANC : 720

* 740 * 760 * 780
TrCHId : CGAGNTATTCAACGAGGNTGGCTGATGCCTAGCAACTTGATNATATCAACAAAACGAAAA : 780

* 800 * 820
TrCHId : TGAAAGNCCTTTCTGCAATAAGAACAGCGGAAATTATT : 825

FIGURE 10

12/271

* 20 * 40 * 60
TrCH1d : MALPSVTALNIENNLFPPPTVTPPGSTNNFFLGGAGERGLQIQDKFVKFTAIGVYLQDIAV : 60

* 80 * 100 * 120
TrCH1d : PYLATKWKGKTAQELTETVPFFRDIVTGPFEKFMQVTMILPLTGQQYSEKVSENCVAIWK : 120

* 140 * 160 * 180
TrCH1d : SLGIYTDEEAKAIEKVSVFKETFPPGSSILFTLPKGLGSLTIXFSKDGSIPETESAVIEN : 180

* 200 * 220 *
TrCH1d : KLLSQAVXESMIGAHGVSPAACKQSFGHQXXRXIQRXWLMPSNLXISTKRK : 230

FIGURE 11

13/271

	*	20	*	40	*	60	
TrCHId1 :	TTNANTNNNTNNCGG	TTT	NNAAACTACACAACACCTCT	-TTTTCCATTATCTT			: 59
TrCHId2 :	-----	GCAATTACAACCT	NNAACACACCTCTCC	TTA-CNTCTATCTT			: 41
TrCHId3 :	-----	TTAC-ACT	CACAAACACCTCTCCATTACCATCTATCTT				: 37
TrCHId4 :	-----	TGACATTATTAACAATTACAACCTAACAT					: 28
	*	80	*	100	*	120	
TrCHId1 :	CTACTAAGTTCAACGAGATCAATGGCACTTCCTCTGTGTC	N	CCGCTTTGAATATCGAGAAC				: 119
TrCHId2 :	CTACTAAGTT	NAACGAGATCAATGGCACTTCCTCTGTG	T	ACCGCTTTGAATATCGAGAAC			: 101
TrCHId3 :	CTACTAAGTTCAACGAGATCAATGGCACTTCCTCTGTG	C	ACCGCTTTGAATATCGAGAAC				: 97
TrCHId4 :	TNACT-CGT	AAAAAGAGAT	NAATGGCACTTCCTCTGTG	CACCGCTTTGG	ATATCGAGAAC		: 87
	*	140	*	160	*	180	
TrCHId1 :	AATCTATTCCCTCCTACCGTCACACC	A	CGGGATCCACCAACAATTCTTCCTCGGC	GGT			: 179
TrCHId2 :	AATCTATTCCCTCCTACCGTCACACC	CGGGATCCACCAACAATTCTTCCTCGGC	GGT				: 161
TrCHId3 :	AATCTATTCCCTCCTACCGTCACACC	ACCGGGATCCACCAACAATTCTTCCTCGGC	GGT				: 157
TrCHId4 :	AATCTATTCCCTCCTACCGTCACACC	ACCGGGATCCACCAACAATTCTTCCTCGGC	GGT				: 147
	*	200	*	220	*	240	
TrCHId1 :	GCAGGGAGAGCGGGGTCTCAAATTCAAGACAAATTGT	CAAATTCAACCG	GT	TATTGGTGTT			: 239
TrCHId2 :	GCAGGGAGAGCGGGGTCTCAAATTCAAGACAAATTGT	NAATT	GT	TATTGGTGTT			: 221
TrCHId3 :	GCAGGGAGAGCGGGGTCTCAAATTCAAGACAAATTGT	CAAATTCAACCG	GT	TATTGGTGTT			: 217
TrCHId4 :	GCAGGGAGAGCGGGGTCTCAAATTCAAGACAAATTGT	CAAATTCAACCG	GT	TATTGGTGTT			: 207
	*	260	*	280	*	300	
TrCHId1 :	TATCTACAGGACATTGCTGTTCCCTAACCTCGCC	ACTAAATGGAAGGGT	NAGACTGCTCAA				: 299
TrCHId2 :	TATCTACAGGACATTGCTGTTCCCTAACCTCGCC	ACTAAATGGAAGGGT	AAGACTGCTCAA				: 266
TrCHId3 :	TATCTACAGGACATTGCTGTTCCCTAACCTCGCC	ACTAAATGGAAGGGT	AAGACTGCTCAA				: 277
TrCHId4 :	TATCTACAGGACATTGCTGTTCCCTAACCTCGCC	ACTAAATGGAAGGGT	AAGACTGCTCAA				: 267
	*	320	*	340	*	360	
TrCHId1 :	GAGCTAACGGAAACTG	N	CCTTCTTCAGGGACAT	GNNAACAGGTCCATTGAGAAATT			: 359
TrCHId2 :	-----						: -
TrCHId3 :	GAGCTAACGGAAACTG	TTCAGGGACATCGTTACAGGTCCATTGAGAAATT					: 337
TrCHId4 :	GAGCTAACG	AAACTGTTCTTCAGGGACATCGTTACAGGTCCATTGAGAAATT					: 327
	*	380	*	400	*	420	
TrCHId1 :	ATGCAGGTGACAATGATCTGCCATTGACTGGG	CAACAATACTCAGAGAAAGTGT	CANAA				: 419
TrCHId2 :	-----						: -
TrCHId3 :	ATGCAGGTGACAATGATCTGCCATTGACTGGG	CAACAATACTCAGAGAAAGTGT	CAGAA				: 397
TrCHId4 :	ATGCAGGTGACAATGATCTGCCATTGACTGGG	CAACAATACTCAGAGAAAGTGT	CAGAA				: 387
	*	440	*	460	*	480	
TrCHId1 :	AATTGTGTAGCTAT	NTGNAAGTCTTCGGATT	TACCGACCAAGAACGCAATT				: 479
TrCHId2 :	-----						: -
TrCHId3 :	AATTGTGTAGCTATTGGAAGTCTTCGGATT	TACCGACGAAGAACGCAATT					: 457
TrCHId4 :	AATTGTGTAGCTATTGGAAGTCTTCGGATT	TACCGACGAACAA	NCAAA	CAATT			: 447

FIGURE 12

14/271

	* 500 * 520 * 540	
TrCHId1 :	GAGAAGNNNTGTTCTGTCTTCAAAGANGAACATTCCCAC CAGGCTCCTCTATCCTTTTC	: 539
TrCHId2 :	-	: -
TrCHId3 :	GAGAACTTGTGTTCTGTCTTCAAAGATGAAACATTCCCAC CAGGCTCCTCTATCCTTTTC	: 517
TrCHId4 :	GANAANNNNTGNTCTGNTTNN -	: 468
	* 560 * 580 * 600	
TrCHId1 :	ACAGNATTACCCAAAGGATTANGATCACTAACGATAAGNTCTCTAAAGATGGATCCATT	: 599
TrCHId2 :	-	: -
TrCHId3 :	ACAGNATTACCCAAAGGATTAGGATCACTAACGATAAGNTCTCTAAAGATGGATCCATT	: 577
TrCHId4 :	-	: -
	* 620 * 640 * 660	
TrCHId1 :	CCAGAGACCGAGTCTGCAGTTATAGN GAATAAGCTACTCTCACAAAGCTGTGCTNGAGTCG	: 659
TrCHId2 :	-	: -
TrCHId3 :	CCAGAGACCGAGTCTGCAGTTATAGAGAATAAGCTACTCTCACAAAGCTGTGCTNGAGTCG	: 637
TrCHId4 :	-	: -
	* 680 * 700 * 720	
TrCHId1 :	ATGATAGGGGCAN CGGTGTCTNNCN TGCA AAANCA TAG TTTGNN TGCA ACCAGGNTANC	: 719
TrCHId2 :	-	: -
TrCHId3 :	ATGATAGGGGCACGGTGTCTCCCTGCA GGAAAACAGAG-TTTGCCACCAAGGTTATC	: 696
TrCHId4 :	-	: -
	* 740 * 760 * 780	
TrCHId1 :	CGAGNTATTCAACGAGGNTGGCTGATGCCTAGC ANCTTGATNNNN TGCA ACAAAACAAAAA	: 779
TrCHId2 :	-	: -
TrCHId3 :	CGAGNTATTCAACGAGGNTGG-TGATG-CTAGAAC-TGATT ATATCAACAAAACGAAAA	: 753
TrCHId4 :	-	: -
	* 800 * 820	
TrCHId1 :	TGNANGNCCTTCTGCA TTAAAGAAC-	: 807
TrCHId2 :	-	: -
TrCHId3 :	TGAAAGTCC-TTTCTGCAATAAGAC CAAGCGGAAATTATTATT	: 797
TrCHId4 :	-	: -

FIGURE 12 (cont)

15/271

	*	20	*	40	*	60		
TrCHSa:	TATTNTNNGAAACCACCTTGTGTTGAAGNCGTGAACCTNGCTACCCTCCATATNATACTAT						:	60
	*	80	*	100	*	120		
TrCHSa:	NACCTCTTCTGAGACCCTTCATCATAGAAAACAACACACNTCAGCNCTTGCTNTTCT						:	120
	*	140	*	160	*	180		
TrCHSa:	ACAACAAACCTATAACTANACATATTATTTATNTATTAGTATATAATTGAAATAACT						:	180
	*	200	*	220	*	240		
TrCHSa:	GCTAAAGATANTTATTAAGATATGGTAGTGTAGCTGAAATCGCAAGGCTCAGAGGGCT						:	240
	*	260	*	280	*	300		
TrCHSa:	GAAGGCCCTGCAACCATTGGCCATTGGCACTGCAAATCCAGCAAACCGTGTGAGCAG						:	300
	*	320	*	340	*	360		
TrCHSa:	AGCACATATCCTGATTCTACTTCAAAATCACAAACAGTGAGCACAAGACTGAGCTAAA						:	360
	*	380	*	400	*	420		
TrCHSa:	GAGAAATTCCAGCGCATGTGTGACAAATCTATGATCAAGAGCAGATACTGTATCTAAC						:	420
	*	440	*	460	*	480		
TrCHSa:	GAAGAGATTTGAAAGAAAATCCTAGTCTTGTGAATACATGGCACCTTCATTGGATGCT						:	480
	*	500	*	520	*	540		
TrCHSa:	AGGCAAGACATGGTGGTGAGGTACCTAGACTGGGAAGGAGGCTGCAGTGAAAGGCT						:	540
	*	560	*	580	*	600		
TrCHSa:	ATTAAAGAATGGGTCAACCAAAGTCAAAGATTACTCACTTAATCTTGCACCACAAGT						:	600
	*	620	*	640	*	660		
TrCHSa:	GGTAGACATGCCTGGTGTGATTACCAACTCACAAACTCTTAGGTCTCGCCCATAT						:	660
	*	680	*	700	*	720		
TrCHSa:	GTGAAGAGGTACATGATGTACCAACAAGGGTGTGTTGCAGGTGGACGGTGCTCGTTG						:	720
	*	740	*	760	*	780		
TrCHSa:	GCAAAAGATTTGGCCGAGAACAAACAAAGGTGCTCGTGTGGTTGTTGTTCTGAAGTA						:	780
	*	800	*	820	*	840		
TrCHSa:	ACCGCAGTCACATTCCCGGGCCCCAGTGACACTCACTTGGACAGTCTTGGACAAGCA						:	840
	*	860	*	880	*	900		
TrCHSa:	CTATTTGGAGATGGAGCTGCTGCACTCATTGTTGGCTCAGACCCAGTACCAAGAAATTGAG						:	900
	*	920	*	940	*	960		
TrCHSa:	AAACCAATATTGAGATGGTATGGACCGCACAGACAATTGCTCCAGACAGTGAAGGTGCC						:	960
	*	980	*	1000	*	1020		
TrCHSa:	ATTGATGGTCACCTCGTGAAGCTGGACTAACATTTCATCTTAAAGATGTTCCCTGGG						:	1020
	*	1040	*	1060	*	1080		
TrCHSa:	ATTGTATCAAAGAACATTAATAAAGCATTGGTCGAGGCTTCCAACCATTAGGAATTCT						:	1080
	*	1100	*	1120	*			
TrCHSa:	GATTACAACACTCAATCTTGGATTGCACACCCGGGTGGACCTGCAATTCT	:	1130					

FIGURE 13

16/271

* 20 * 40 * 60
TrCHSa : MVSVAEIRKAQRAEGPATILAIGTANPANRVEQSTYPDFYFKITNSEHKTELKEKFQRMC : 60

* 80 * 100 * 120
TrCHSa : DKSMIKSRYMYLTEEILKENPSLCEYMAPSLDARQDMVVVEVPRLGKEAAVKAIKEWGQP : 120

* 140 * 160 * 180
TrCHSa : KSKITHLIFCTTSGVDMPGADYQL/TKLLGLRPYVKRYMMYQQGCFAGGTVLRLAKDIAEN : 180

* 200 * 220 * 240
TrCHSa : NKGARVLVCSEVTAVTFRGPSDTLDSLVGQALFGDGAAALIVGSDPVPEIEKPIFEMV : 240

* 260 * 280 * 300
TrCHSa : WTAQTIAPDSEGAIDGHLREAGLTfhLLKDVPGIVSKNINKALVEAFQPLGISDYNsIFW : 300

TrCHSa : IAHPGGPAI : 309

FIGURE 14

17/271

	*	20	*	40	*	60	:	60
TrCHSa1 :	TATTNTNNGAAACCAC	TTGTGTTGAAGNC	GTGAAC	TNGCTACCCTCC	CATATNATACTAT		:	60
TrCHSa2 :	-	-	-	-	-	-	:	-
TrCHSa3 :	-	-	-	-	-	-	:	-
TrCHSa4 :	-	-	-	-	-	-	:	-
TrCHSa5 :	-	-	-	-	-	-	:	-
TrCHSa6 :	-	-	-	-	-	-	:	-
TrCHSa7 :	-	-	-	-	-	-	:	-
TrCHSa8 :	-	-	-	-	-	-	:	-
TrCHSa9 :	-	-	-	-	-	-	:	-
TrCHSa10 :	-	-	-	-	-	-	:	-
TrCHSa11 :	-	-	-	-	-	-	:	-
TrCHSa12 :	-	-	-	-	-	-	:	-
TrCHSa13 :	-	-	-	-	-	-	:	-
TrCHSa14 :	-	-	-	-	-	-	:	-
TrCHSa15 :	-	-	-	-	-	-	:	-
TrCHSa16 :	-	-	-	-	-	-	:	-
TrCHSa17 :	-	-	-	-	-	-	:	-
TrCHSa18 :	-	-	-	-	-	-	:	-
TrCHSa19 :	-	-	-	-	-	-	:	-
TrCHSa20 :	-	-	-	-	-	-	:	-
TrCHSa21 :	-	-	-	-	-	-	:	-
TrCHSa22 :	-	-	-	-	-	-	:	-
TrCHSa23 :	-	-	-	-	-	-	:	-
TrCHSa24 :	-	-	-	-	-	-	:	-
TrCHSa25 :	-	-	-	-	-	-	:	-
TrCHSa26 :	-	-	-	-	-	-	:	-
TrCHSa27 :	-	-	-	-	-	-	:	-
TrCHSa28 :	-	-	-	-	-	-	:	-
TrCHSa29 :	-	-	-	-	-	-	:	-
TrCHSa30 :	-	-	-	-	-	-	:	-
TrCHSa31 :	-	-	-	-	-	-	:	-
TrCHSa32 :	-	-	-	-	-	-	:	-
TrCHSa33 :	-	-	-	-	-	-	:	-
TrCHSa34 :	-	-	-	-	-	-	:	-
TrCHSa35 :	-	-	-	-	-	-	:	-
TrCHSa36 :	-	-	-	-	-	-	:	-
TrCHSa37 :	-	-	-	-	-	-	:	-
TrCHSa38 :	-	-	-	-	-	-	:	-
TrCHSa39 :	-	-	-	-	-	-	:	-

FIGURE 15

18/271

	*	80	*	100	*	120	
TrCHSa1 :	N	A	C	T	C	T	120
TrCHSa2 :	-	-	-	G	A	N	: 32
TrCHSa3 :	-	-	-	A	C	A	: 23
TrCHSa4 :	-	-	-	C	A	C	: 21
TrCHSa5 :	-	-	-	C	A	N	: 9
TrCHSa6 :	-	-	-	-	-	A	: 3
TrCHSa7 :	-	-	-	-	-	C	: 2
TrCHSa8 :	-	-	-	-	-	G	: 2
TrCHSa9 :	-	-	-	-	-	G	: 2
TrCHSa10:	-	-	-	-	-	-	:
TrCHSa11:	-	-	-	-	-	-	:
TrCHSa12:	-	-	-	-	-	-	:
TrCHSa13:	-	-	-	-	-	-	:
TrCHSa14:	-	-	-	-	-	-	:
TrCHSa15:	-	-	-	-	-	-	:
TrCHSa16:	-	-	-	-	-	-	:
TrCHSa17:	-	-	-	-	-	-	:
TrCHSa18:	-	-	-	-	-	-	:
TrCHSa19:	-	-	-	-	-	-	:
TrCHSa20:	-	-	-	-	-	-	:
TrCHSa21:	-	-	-	-	-	-	:
TrCHSa22:	-	-	-	-	-	-	:
TrCHSa23:	-	-	-	-	-	-	:
TrCHSa24:	-	-	-	-	-	-	:
TrCHSa25:	-	-	-	-	-	-	:
TrCHSa26:	-	-	-	-	-	-	:
TrCHSa27:	-	-	-	-	-	-	:
TrCHSa28:	-	-	-	-	-	-	:
TrCHSa29:	-	-	-	-	-	-	:
TrCHSa30:	-	-	-	-	-	-	:
TrCHSa31:	-	-	-	-	-	-	:
TrCHSa32:	-	-	-	-	-	-	:
TrCHSa33:	-	-	-	-	-	-	:
TrCHSa34:	-	-	-	-	-	-	:
TrCHSa35:	-	-	-	-	-	-	:
TrCHSa36:	-	-	-	-	-	-	:
TrCHSa37:	-	-	-	-	-	-	:
TrCHSa38:	-	-	-	-	-	-	:
TrCHSa39:	-	-	-	-	-	-	:

FIGURE 15 (cont)

19/271

	*	140	*	160	*	180		
TrCHSa1 :	ACAACAA	CTATAACTTNNCGTGT	TNTANACCAATTGAGT	TNTCAAA	TNACATA	CATA	: 180	
TrCHSa2 :	ACAACAA	CTTCTAATNTAAAC	TTTTTTAGT-TNA-	-AACTTAC	AAGTG-	-CTA--AA	: 85	
TrCHSa3 :	ACNAC	NCTCTGTCTAAAC	TTTTTGAGT	TNTGAGT	NTNACTTG	CATA	: 83	
TrCHSa4 :	AC-AC-	TCTTGTGTCTAAAC	NTTTTGAGT	-TNACTTG	CATA	AGAAA--CTA	: 74	
TrCHSa5 :	CTATC	CCCTTCTTCTTC	TCNTAAANNTACAGT	ACTNGCA	ATAAAACN	AGTGAATT	: 69	
TrCHSa6 :	AAAACAAC	-TACGGCATAT	-ATATATAT	-T-TACTCTATA	-ATTCGA	AGAAA--CT	: 57	
TrCHSa7 :	ANGGAA	AAACCTCGNCATANT	NTTATATATAT	ATATATAT	ATATAT	ATGAAAGAAA	: 62	
TrCHSa8 :	ACAA	AAACACTCCCATAT	NCATATAT	TC-TCTN	CTATA	-ATTCGAAG-AAA--CT	: 57	
TrCHSa9 :	ACAAA	AAACACTTCNCGCTA	NNTATATAT	ATATNTAT	ATATATA	ATTAATTGAAAGAAA	: 62	
TrCHSa10 :	GCNAC	AAANCTNTAACTTNN	CGTGT	TNTANACNN	ATTGAGT	TNTNAATT	NACATA	: 60
TrCHSa11 :	AAAACAAC	-CGCCCATAT	-ATATATAT	TA-NCT	CTATA	-ATTCGAAG-AAA--CT	: 52	
TrCHSa12 :	-CAACAA	CCN-TAACTT	--CGTGT	TA-ACC	-ATTGAGT	-T-NAATT	-ACATA	: 50
TrCHSa13 :	-CAACAA	CCCTNTAACTTNN	CGTGT	TNTNNACN	ATTGAGT	TNTNNAA	TTNAATT	: 59
TrCHSa14 :	-GAAA	AAACATOCGC	-AAATATAT	TTATNTNT	ATAGT	TATAATTGAA	AAA	: 58
TrCHSa15 :	--AAC	AAACCNATAACTT	-CGTGT	TA-AUC	-ATTGAGT	-T-NAATT	: AATAACATA	: 50
TrCHSa16 :	--AAA	AAACACGCGAT	TCGNCATATT	TTATAT	ATAT	ATAT	ATGAAAGAAA	: 58
TrCHSa17 :	--	NNAAACCTATAACT	TNNCGT	TNTTATNT	NAINCATTGAGT	TNTNAATT	NAATA	: 57
TrCHSa18 :	--	GGNT	AAACGNNAAAGT	INGTTTAT	ATNNNA	ATATNNAA	ATATA	: 56
TrCHSa19 :	--	AAAC	AAACACNCCG	NATATNT	TATNA	TNTTGT	TATAATTGAA	: 55
TrCHSa20 :	--	AAAC	TNCGNAAAT	ATATAT	TAT	TNTTGT	TATAATTGAA	: 53
TrCHSa21 :	--	AAAC	TCGGAATATNT	TANN	NTT	TNGT	ATAATTGAA	: 52
TrCHSa22 :	--	AAAC	NONICGG	NTATNN	NTTNT	NTG	TATAATTGAA	: 49
TrCHSa23 :	--	CCNA	AN-ACGTT	CTTAT	NTTAC	TACAG	ATAG-CA	: 45
TrCHSa24 :	--	ACG	NA	NTACNTA	TTTAT	NTTAC	TACAG	: 47
TrCHSa25 :	--	AC	NONICGG	ATNT	TTTAT	NTAT	NTAGT	: 47
TrCHSa26 :	--	AC	-TAA	NAC-TAT	TTT	-T-A	TTAC	: 40
TrCHSa27 :	--	AC	AA	ACCTTC	TTTT	-N-A	ATT-CATA	: 37
TrCHSa28 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: 42
TrCHSa29 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: 21
TrCHSa30 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: GN : 2
TrCHSa31 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: GT : 2
TrCHSa32 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: -
TrCHSa33 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: -
TrCHSa34 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: -
TrCHSa35 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: AAG : 3
TrCHSa36 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: G : 1
TrCHSa37 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: -
TrCHSa38 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: -
TrCHSa39 :	--	AC	NA	ACTTC	GT	TTTAT	CACTNC	: -

FIGURE 15 (cont)

20/271

	* 200 *	* 220 *	* 240	
TrCHSa1 :	GCGGAACATACTTAATACAAGATGGTTAGTGTTCCTGAAATTGCAAGGCTCAAAGGGCT			: 240
TrCHSa2 :	G---ATATA---TATCAAC---ATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 137
TrCHSa3 :	GCTAAAGANNNNTATCAAGNNATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 143
TrCHSa4 :	GCTAAAGA---TATCAAG---ATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 128
TrCHSa5 :	TAAAATCTTACTATTAAGATATGGTGAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 129
TrCHSa6 :	GCTAAAGATA-TTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 116
TrCHSa7 :	ACTAAAGATANTTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 122
TrCHSa8 :	GCTAAAGATA-TTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 116
TrCHSa9 :	ACTAAAGATANTTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 122
TrCHSa10 :	GCTAAAGATACTTAATACAAGATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 120
TrCHSa11 :	GCTAAAGATA-TTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 111
TrCHSa12 :	GCTAAAGATACTTAATACAAGATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 110
TrCHSa13 :	GCTAAAGATACTTAATACAAGATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 119
TrCHSa14 :	GCTAAAGATA-TTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 117
TrCHSa15 :	GCTAAAGATACTTAATACAAGATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 110
TrCHSa16 :	ACTAAAGATANTTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 118
TrCHSa17 :	GCTAAAGATACTTAATACAAGATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 117
TrCHSa18 :	GCNAAAATAGTATTAAGATATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 116
TrCHSa19 :	GCTAAAGATANTTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 115
TrCHSa20 :	GCTAAAGATANTTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 113
TrCHSa21 :	GCTAAAGATANTTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 112
TrCHSa22 :	NCTAAAGATANTTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 109
TrCHSa23 :	G---GAAAGATACTTAATATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 103
TrCHSa24 :	GCNAAAATCAAGTATTAATATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 107
TrCHSa25 :	GCTAAAGATANTTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 107
TrCHSa26 :	GCAAG-TATNAGTAT-AAATATATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 98
TrCHSa27 :	GC---AAAATAGTAT-AAATATATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 95
TrCHSa28 :	GCNAAAATAGTATTAATATGGTTAGTGTCTGAAATTGCAAGGCTCAAAGGGCT			: 102
TrCHSa29 :	GCTA---AGA-TTTTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 77
TrCHSa30 :	GCTAAAGATA-TTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 61
TrCHSa31 :	NCTAAA-NNN-TTNTTAAGNAATGGTGAGTGTAGCTG-AATTGCG-AAGGCTCAGAGGGCT			: 58
TrCHSa32 :	GTA---AGATA-TTATTAAGATATGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 58
TrCHSa33 :	--TNAAGATANNNTNAGAN-TGGTGAGTGTAGCTGAAATTGCAAGGCTCAGAGGGCT			: 58
TrCHSa34 :	GGNTCANA-----GGGCT			: 13
TrCHSa35 :	GCCCAGA-----			: 11
TrCHSa36 :	GCCCAGA-----			: 9
TrCHSa37 :	--AUAG-----			: 5
TrCHSa38 :	--ATCA-----			: 4
TrCHSa39 :	--GCT-----			: 4

FIGURE 15 (cont)

21/271

	*	260	*	280	*	300	
TrCHSa1 :	GAAGGCCCTGCAACTTTGGCATTGGTACTGCAAATCCAGCAAATCGTGTGACCAG						: 300
TrCHSa2 :	GAAGGCCCTGCAACTTTGGCATTGGCACTGCAAATCCAGCAAACCGTGTGATCAG						: 197
TrCHSa3 :	GAAGGCCCTGCAACAAATCTGGCATTGGCACTGCAAATCCAGCAAACCGTGTGATCAG						: 203
TrCHSa4 :	GAAGGCCCTGCAACAAATCTGGCATTGGCACTGCAAATCCAGCAAACCGTGTGATCAG						: 188
TrCHSa5 :	GAAGGCCCTGCAACCATTAGCCATTGGTACTGCAAATCCAGCAAACCGTGTAGACCAG						: 189
TrCHSa6 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCAGCAAACCGTGTGAGCAG						: 176
TrCHSa7 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 182
TrCHSa8 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 176
TrCHSa9 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 182
TrCHSa10 :	GAAGGCCCTGCAACTTTGGCATTGGCACTGCAAATCCAGCAAACCGTGTGAGCAG						: 180
TrCHSa11 :	GAAGGCCCTGCAACCATTGGCATTGGTACTGCAAATCCACCAAACCGTGTGAGCAG						: 171
TrCHSa12 :	GAAGGCCCTGCAACTTTGGCATTGGTACTGCAAATCCAGCAAATCGTGTGACCAG						: 170
TrCHSa13 :	GAAGGCCCTGCAACTTTGGCATTGGTACTGCAAATCCAGCAAATCGTGTGACCAG						: 179
TrCHSa14 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 177
TrCHSa15 :	GAAGGCCCTGCAACTTTGGCATTGGTACTGCAAATCCAGCAAATCGTGTGACCAG						: 170
TrCHSa16 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 178
TrCHSa17 :	GAAGGCCCTGCAACCATTGGCATTGGTACTGCAAATCCAGCAAATCGTGTGACCAG						: 177
TrCHSa18 :	GAAGGCCCTGCAACTTTGGCATTGGTACTGCAAATCCAGCAAACCGTGTGAGCAG						: 176
TrCHSa19 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 175
TrCHSa20 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 173
TrCHSa21 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 172
TrCHSa22 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 169
TrCHSa23 :	GAAGGCCCTGCAACCATTGGCATTGGTACTGCAAATCCAGCAAACCGTGTGAGCAG						: 163
TrCHSa24 :	GAAGGCCCTGCAACCATTGGCATTGGTACTGCAAATCCAGCAAACCGTGTGAGCAG						: 167
TrCHSa25 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 167
TrCHSa26 :	GAAGGCCCTGCAACCATTGGCATTGGTACTGCAAATCCAGCAAACCGTGTGAGCAG						: 158
TrCHSa27 :	GAAGGCCCTGCAACTTTGGCATTGGTACTGCAAATCCAGCAAACCGTGTGAGCAG						: 155
TrCHSa28 :	GAAGGCCCTGCAACTTTGGCATTGGTACTGCAAATCCAGCAAACCGTGTGAGCAG						: 162
TrCHSa29 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 137
TrCHSa30 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 121
TrCHSa31 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 118
TrCHSa32 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 118
TrCHSa33 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 118
TrCHSa34 :	GAAGGCCCTGCAACCATTGGCATTGGCACTGCAAATCCACCAAACCGTGTGAGCAG						: 71
TrCHSa35 :	-----ACNTTTTGECCTTGGTACTGCAAATCCNGCAAATCGTGTGACCNG						: 59
TrCHSa36 :	-----ACCNNTTGGECCTTGGTACTGCAAATCCNGCAAATCGTGTGACCAG						: 57
TrCHSa37 :	-----						: -
TrCHSa38 :	-----						: -
TrCHSa39 :	-----						: -

FIGURE 15 (cont)

22/271

	*	320	*	340	*	360
TrCHS _{a1}	:	AGTACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 360
TrCHS _{a2}	:	AGTACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 257
TrCHS _{a3}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 263
TrCHS _{a4}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 248
TrCHS _{a5}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 249
TrCHS _{a6}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 236
TrCHS _{a7}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 242
TrCHS _{a8}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 236
TrCHS _{a9}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 242
TrCHS _{a10}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 240
TrCHS _{a11}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 231
TrCHS _{a12}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 230
TrCHS _{a13}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 239
TrCHS _{a14}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 237
TrCHS _{a15}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 230
TrCHS _{a16}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 238
TrCHS _{a17}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 237
TrCHS _{a18}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 236
TrCHS _{a19}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 235
TrCHS _{a20}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 233
TrCHS _{a21}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 232
TrCHS _{a22}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 229
TrCHS _{a23}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 223
TrCHS _{a24}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTCAA				: 227
TrCHS _{a25}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 227
TrCHS _{a26}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 218
TrCHS _{a27}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 215
TrCHS _{a28}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 222
TrCHS _{a29}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 197
TrCHS _{a30}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 181
TrCHS _{a31}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 178
TrCHS _{a32}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 178
TrCHS _{a33}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 178
TrCHS _{a34}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGACTGAGCTAAA				: 131
TrCHS _{a35}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 119
TrCHS _{a36}	:	AGCACATATCCTGATTCTACTTC AAAATCACTAACAGTGAGCAT AAAGTTGAGCTAAA				: 117
TrCHS _{a37}	-	-	-	-	CCTGAGCTAAA	: 17
TrCHS _{a38}	-	-	-	-	-	-
TrCHS _{a39}	-	-	-	-	-	-

FIGURE 15 (cont)

23/271

	*	380	*	400	*	420	:
TrCHSa1 :	GAGAAATTTCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						420
TrCHSa2 :	GAGAAATTCCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						317
TrCHSa3 :	GAGAAATTCCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						323
TrCHSa4 :	GAGAAATTCCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						308
TrCHSa5 :	GAGAAATTCCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						309
TrCHSa6 :	GAGAAGTTCCACCGCATGTGTGACAAATCCATGATCAAGAGCAGATACATGTATCTAAC						296
TrCHSa7 :	GAGAAGTTCCAACGCATGTGTGACAAATCCATGATCAAGAGCAGATACATGTATCTAAC						302
TrCHSa8 :	GAGAAGTTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						296
TrCHSa9 :	GAGAAGTTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						302
TrCHSa10 :	GAGAAATTTCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						300
TrCHSa11 :	GAGAAGTTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						291
TrCHSa12 :	GAGAAATTTCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						290
TrCHSa13 :	GAGAAATTTCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						299
TrCHSa14 :	GAGAAGTTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						297
TrCHSa15 :	GAGAAATTTCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						290
TrCHSa16 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						298
TrCHSa17 :	GAGAAATTTCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						297
TrCHSa18 :	GAGAAATTCCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						296
TrCHSa19 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						295
TrCHSa20 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						293
TrCHSa21 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						292
TrCHSa22 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						289
TrCHSa23 :	GAGAAATTCCAGCGCATGTGTGACAAATCTATGATCAAGAGCAGATACATGTATCTAAC						283
TrCHSa24 :	GAGAAATTCCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						287
TrCHSa25 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						287
TrCHSa26 :	GAGAAATTCCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						278
TrCHSa27 :	GAGAAATTCCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						275
TrCHSa28 :	GAGAAATTCCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						282
TrCHSa29 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						257
TrCHSa30 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						241
TrCHSa31 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						238
TrCHSa32 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						238
TrCHSa33 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						238
TrCHSa34 :	GAGAAATTCCAACGCATGTGTGACAAATCAGATCAAGAGCAGATACATGTATCTAAC						191
TrCHSa35 :	GAGAAATTTCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						179
TrCHSa36 :	GAGAAATTTCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						177
TrCHSa37 :	GAGAAATTTCAGCGCATGTGTGATAAAATCTATGATCAAGAGCAGATACATGTATCTAAC						77
TrCHSa38 :	-----				AGAGCAGATACATGTATCTAAC		27
TrCHSa39 :	-----						-

FIGURE 15 (cont)

24/271

	*	440	*	460	*	480	:
TrCHSa1 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGTAATAACATGGCACCTTCATTGGATGCT					480
TrCHSa2 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGTAATAACATGGCACCTTCATTGGATGCT					377
TrCHSa3 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					383
TrCHSa4 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					368
TrCHSa5 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					369
TrCHSa6 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					356
TrCHSa7 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					362
TrCHSa8 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					356
TrCHSa9 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					362
TrCHSa10 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					360
TrCHSa11 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					351
TrCHSa12 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					350
TrCHSa13 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					359
TrCHSa14 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					357
TrCHSa15 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					350
TrCHSa16 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					358
TrCHSa17 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					357
TrCHSa18 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					356
TrCHSa19 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					355
TrCHSa20 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					353
TrCHSa21 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					352
TrCHSa22 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					349
TrCHSa23 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					343
TrCHSa24 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					347
TrCHSa25 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					347
TrCHSa26 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					338
TrCHSa27 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					335
TrCHSa28 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					342
TrCHSa29 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					317
TrCHSa30 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					301
TrCHSa31 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					298
TrCHSa32 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					298
TrCHSa33 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					298
TrCHSa34 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					251
TrCHSa35 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					239
TrCHSa36 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					237
TrCHSa37 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					137
TrCHSa38 :		GAAGAGATTTGAAAGAAAATCCTAGTCTTGAGCACATGGCACCTTCATTGGATGCT					87
TrCHSa39 :		-----					:

FIGURE 15 (cont)

25/271

	*	500	*	520	*	540	
TrCHSa1	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 540
TrCHSa2	:	AGGCAAGAATGGTGGTGGTTGAGGTACCTAGACTTGGAAAGGAGGCTGCAGTGAAAGCT					: 437
TrCHSa3	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 443
TrCHSa4	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 428
TrCHSa5	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTAGGAAAGGAGGCTGCAGTCAGGCC					: 429
TrCHSa6	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 416
TrCHSa7	:	AGNCAAGACATGGTGCNNCCNNNNCCACCTCAGCTCGCCNCGNN-----					: 407
TrCHSa8	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTANACTTGGGAAGGGAGGCTGCAGNNCAAGGCC					: 416
TrCHSa9	:	AGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 422
TrCHSa10	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 420
TrCHSa11	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 411
TrCHSa12	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 410
TrCHSa13	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 419
TrCHSa14	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 417
TrCHSa15	:	AGNCAAGACATGGTGCNNAGGNNACCTAGACTTGCNN-----					: 390
TrCHSa16	:	AGNCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 418
TrCHSa17	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 417
TrCHSa18	:	AGGCAAGAATGGTGGNUGTTGAGGTACCTANACTTGNNAAGGAGGCTGCNNNTGAAGGCC					: 416
TrCHSa19	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 415
TrCHSa20	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 413
TrCHSa21	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 412
TrCHSa22	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGAAAGCTGCAGTCAGGCC					: 409
TrCHSa23	:	AGGCAAGAATGGTGGTGGTTGAGGTACCTAGACTGGAAAGGAAAGCTGCAGTCAGGCC					: 403
TrCHSa24	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTGGAAAGGAGGCTGCAGTCAGGCC					: 407
TrCHSa25	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 407
TrCHSa26	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGAAAGGAGGCTGCAGTCAGGCC					: 398
TrCHSa27	:	AGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGAAAGGAGGCTGCAGTGAAAGGCC					: 395
TrCHSa28	:	AGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGAAAGGAGGCTGCAGTGAAAGGCC					: 402
TrCHSa29	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 377
TrCHSa30	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 361
TrCHSa31	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 358
TrCHSa32	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 358
TrCHSa33	:	AGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 358
TrCHSa34	:	AGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTCAGGCC					: 311
TrCHSa35	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 299
TrCHSa36	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 297
TrCHSa37	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGGAAGGGAGGCTGCAGTGAAAGCT					: 197
TrCHSa38	:	AGGCAAGACATGGTGGTGGTTGAGGTACCTAGACTTGGAAAGGAGGCTGCAGTCAGGCC					: 147
TrCHSa39	:	-----					: -

FIGURE 15 (cont)

26/271

	*	560	*	580	*	600	:
TrCHSa1	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 600
TrCHSa2	:	AT AA AGAATGGGTCAACCAA A TCTAAGATTAC AC ATTGATCTTTGCACCACAAGT					: 497
TrCHSa3	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 503
TrCHSa4	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 488
TrCHSa5	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 489
TrCHSa6	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 476
TrCHSa7	:	-----					
TrCHSa8	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACT N ACTTAATCTTTGCACCACAAGT					: -
TrCHSa9	:	AT CA AAAGAATGGGTCAACCAA A TCTAAGATTAC AC ATTGATCTTTGCACCACAAGT					: 476
TrCHSa10	:	AT CA AAAGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 482
TrCHSa11	:	AT CA AAAGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 480
TrCHSa12	:	AT CA AAAGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 471
TrCHSa13	:	AT CA AAAGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 470
TrCHSa14	:	AT CA AAAGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 479
TrCHSa15	:	-----					
TrCHSa16	:	AT CA AAAGAATGGGTCAACCAA A TCTAAGATTAC AC ATTGATCTTTGCACCACAAGT					: 478
TrCHSa17	:	AT CA AAAGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 477
TrCHSa18	:	AT AA AGAATGGGGC AN C-----					: 437
TrCHSa19	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 475
TrCHSa20	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 473
TrCHSa21	:	AT AA AGAATGGGTCAACCAA A TCTAAGATTAC AC ATTGATCTTTGCACCACAAGT					: 472
TrCHSa22	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 469
TrCHSa23	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCAC AA AGT					: 463
TrCHSa24	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 467
TrCHSa25	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 467
TrCHSa26	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 458
TrCHSa27	:	AT AA AGAATGGGTCAACCAA A TCTAAGATTAC AC ATTGATCTTTGCACCACAAGT					: 455
TrCHSa28	:	AT AA AGAATGGGTCAACCAA A TCTAAGATTAC AC ATTGATCTTTGCACCACAAGT					: 462
TrCHSa29	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 437
TrCHSa30	:	AT AA AAATGGGC NC ACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 421
TrCHSa31	:	AT AA AGAATGGGT NA ACCAAAGTC AA AGATTACT N ACTTAATCTTTGCACCACAAGT					: 418
TrCHSa32	:	AT AA AGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 418
TrCHSa33	:	AT CA AAAGAATGGGTCAACCAA A TCTAAGATTAC AC ATTGATCTTTGCACCACAAGT					: 418
TrCHSa34	:	AT CA AAAGAATGGGTCAACCAA A TCTAAGATTAC AC ATTGATCTTTGCACCACAAGT					: 371
TrCHSa35	:	AT CA AAAGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 359
TrCHSa36	:	AT CA AAAGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 357
TrCHSa37	:	AT CA AAAGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 257
TrCHSa38	:	AT CA AAAGAATGGGTCAACCAAAGTC AA AGATTACTCACTTAATCTTTGCACCACAAGT					: 207
TrCHSa39	:	--- AA AGAATGGGC NC ACCAA A TCTAAGANT NC AC AA TGATCTTTGCACCACAAGT					: 61

FIGURE 15 (cont)

27/271

	*	620	*	640	*	660	
TrCHSa1 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	660			
TrCHSa2 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	557			
TrCHSa3 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	563			
TrCHSa4 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	548			
TrCHSa5 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	549			
TrCHSa6 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	536			
TrCHSa7 :						:	-
TrCHSa8 :	GGNGCCN					:	483
TrCHSa9 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	542			
TrCHSa10 :	GGTGTAGACATGCCCTGGAGCTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	540			
TrCHSa11 :	GGTGTAGACATGCCCTGGAGCTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	531			
TrCHSa12 :	GGTGTGACATGCCCTGGAGCTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	530			
TrCHSa13 :	GGTGTAGACATGCCCTGGAGCTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	539			
TrCHSa14 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	537			
TrCHSa15 :						:	-
TrCHSa16 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	538			
TrCHSa17 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	537			
TrCHSa18 :						:	-
TrCHSa19 :	GGTGTAGACATGCCCTGGAGCTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	535			
TrCHSa20 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	533			
TrCHSa21 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	532			
TrCHSa22 :	GGTGTGACATGCCCTGGAGCTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	529			
TrCHSa23 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	523			
TrCHSa24 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	527			
TrCHSa25 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	527			
TrCHSa26 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	518			
TrCHSa27 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	515			
TrCHSa28 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	522			
TrCHSa29 :	GGTGTAGACATGCCCTGGAGCTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	497			
TrCHSa30 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	481			
TrCHSa31 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	478			
TrCHSa32 :	GGTGTAGACATGCCCTGGAGCTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	478			
TrCHSa33 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	478			
TrCHSa34 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	431			
TrCHSa35 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	419			
TrCHSa36 :	GGTGTGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	417			
TrCHSa37 :	GGTGTAGACATGCCCTGGAGCTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	317			
TrCHSa38 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	267			
TrCHSa39 :	GGTGTAGACATGCCCTGGTGTGATTACCAACTCACAAA	ACTCTTAGGTCTTCGCCCATAT	:	121			

FIGURE 15 (cont)

28/271

	* 680	* 700	* 720	
TrCHSa1 :	GTG-----	-----	-----	: 663
TrCHSa2 :	GTGAAGAGGTACATGATG-----	-----	-----	: 575
TrCHSa3 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGG-----	-----	-----	: 607
TrCHSa4 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTCTTCGTT-----	-----	-----	: 606
TrCHSa5 :	GTGAAGAGGTACATGATGTACCAACAAGGGTTGTTGCAGGAGG-----	-----	-----	: 594
TrCHSa6 :	GTGAAGAGGTACATGATGTACCAACAAGGGTTGTTGCAGGAGGACGGTGCTCGTT-----	-----	-----	: 596
TrCHSa7 :	-----	-----	-----	: -
TrCHSa8 :	-----	-----	-----	: -
TrCHSa9 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGG-----	-----	-----	: 586
TrCHSa10 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCT-----	-----	-----	: 574
TrCHSa11 :	GTGAAGAGGTACATGATGTACCAACAAGGGTTGTTGCAGGAGGACGGTGCTTCGTT-----	-----	-----	: 591
TrCHSa12 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAG-----	-----	-----	: 570
TrCHSa13 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTCTTCGTT-----	-----	-----	: 598
TrCHSa14 :	GTGAAGAGGTACATGATGTACCAACAAGGGTTGTTGCAGGAGGACGGTGCTTCGTT-----	-----	-----	: 597
TrCHSa15 :	-----	-----	-----	: -
TrCHSa16 :	GTGANAGGGCGCTGNTGNNNCN-----	-----	-----	: 561
TrCHSa17 :	GTGAAG-----	-----	-----	: 543
TrCHSa18 :	-----	-----	-----	: -
TrCHSa19 :	GTGAAGAGGTACATGATGTACCAACAAGGGTTGTTGCAGGAGGACGGTGCTTCGTT-----	-----	-----	: 595
TrCHSa20 :	GTGAAGAGGTACATGATGTACCAACAAGGGTTGTTGCAGGAGGACGG-----	-----	-----	: 581
TrCHSa21 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTGCTTCG-----	-----	-----	: 588
TrCHSa22 :	GTGAAGAGGTACATGATGTACCAACAAGGGTTGTTGCAGGAGGACGGTGCTTCGTT-----	-----	-----	: 589
TrCHSa23 :	GTGAAGAGGTACATGATGTACAT-----	-----	-----	: 544
TrCHSa24 :	GTGAAGAGGTACATGATGTACCAACAAG-----	-----	-----	: 555
TrCHSa25 :	GTGAAGAGGTACATGATGTACCAACAAGGGTTGTTGCAGGAG-----	-----	-----	: 570
TrCHSa26 :	GTGAAGAGGTACATGATGTACCAACAAG-----	-----	-----	: 546
TrCHSa27 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTGCTTCGTT-----	-----	-----	: 575
TrCHSa28 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTGCTTCGTT-----	-----	-----	: 582
TrCHSa29 :	GTGAAGAGGTACATGATGTACCAA-----	-----	-----	: 521
TrCHSa30 :	GTNAAGAGGTACATGATGTACCAAC-----	-----	-----	: 506
TrCHSa31 :	GTGAAGAGGTACATGATGTACCAACN-----	-----	-----	: 504
TrCHSa32 :	GTGAAGAGGTACATGATGTACCAACAAGGGTTGTTGCAGGAGGACGGTGCTTCGTT-----	-----	-----	: 538
TrCHSa33 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTGCTTCGTT-----	-----	-----	: 538
TrCHSa34 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTGCTTCGTT-----	-----	-----	: 491
TrCHSa35 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTGCTTCGTT-----	-----	-----	: 479
TrCHSa36 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTGCTTCGTT-----	-----	-----	: 477
TrCHSa37 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTGCTTCGTT-----	-----	-----	: 377
TrCHSa38 :	GTGAAGAGGTACATGATGTACCAACAAGGGTGCTTGCAGGTGGGACGGTGCTTCGTT-----	-----	-----	: 327
TrCHSa39 :	GTGAAGAGGTACATGATGTACCAACAAGGGTTGCTTGCAGGAGGACGGTGCTTCGTT-----	-----	-----	: 181

FIGURE 15 (cont)

29/271

	*	740	*	760	*	780	
TrCHSa1 :	-						:
TrCHSa2 :	-						:
TrCHSa3 :	-						:
TrCHSa4 :	-						:
TrCHSa5 :	-						:
TrCHSa6 :	GCAAAAGATTGGCCGAGAACAAACAAAGGTGCTCGTGTGCTAGTTGTTGTTCTGAAGTC						: 656
TrCHSa7 :	-						:
TrCHSa8 :	-						:
TrCHSa9 :	-						:
TrCHSa10 :	-						:
TrCHSa11 :	GCAAAAGATTG						: 604
TrCHSa12 :	-						:
TrCHSa13 :	-						:
TrCHSa14 :	GCAAAAGATTG						: 609
TrCHSa15 :	-						:
TrCHSa16 :	-						:
TrCHSa17 :	-						:
TrCHSa18 :	-						:
TrCHSa19 :	GCAAAAGATTG						: 607
TrCHSa20 :	-						:
TrCHSa21 :	-						:
TrCHSa22 :	GCAAAAGATTGGCCGAGAACAAAC-						: 613
TrCHSa23 :	-						:
TrCHSa24 :	-						:
TrCHSa25 :	-						:
TrCHSa26 :	-						:
TrCHSa27 :	GCAAGG						: 582
TrCHSa28 :	GCAANGATTGGCCGAAACAAACAAANGNGCTCGNGNGTTGGNTGGTGTCTGAANTC						: 642
TrCHSa29 :	-						:
TrCHSa30 :	-						:
TrCHSa31 :	-						:
TrCHSa32 :	GCAAAAGATTGGCCGAGAACAAACAAAGGTGCTCGTGTGTTGGTTGTTCTGAAGTC						: 598
TrCHSa33 :	GCTAAAGATTGGCCGAGAACAAACAAAGGTGCTCGTGTGTTGGTTGTTCTGAAGT-						: 597
TrCHSa34 :	GCTAAAGATTGGCCGAGAACAAACAAAGGTGCTCGTGTGTTGGTTGTTCTGAAGTA						: 551
TrCHSa35 :	GCTAAAGGATTGGCCGAGAACAAACAAAGGTGCTCGTGTGTTGGTTGTTCTGAAGTA						: 539
TrCHSa36 :	GCTAAAGATTGGCCGAGAACAAACAAAGGTGCTCGTGTGTTGGTTGTTCTGAAGTA						: 537
TrCHSa37 :	GCTAAACGATTGGCCGAGAACAAACAAAGGTGCTCGTGTGTTGGTTGTTCTGAAGTA						: 437
TrCHSa38 :	GCTAAAGGATTGGCCGAGAACAAACAAAGGTGCTCGTGTGTTGGTTGTTCTGAAGTC						: 387
TrCHSa39 :	GCTAAAGATTGGCCGAGAACAAACAAAGGTGCTCGTGTGTTGTTCTGAAGTA						: 241

FIGURE 15 (cont)

30/271

	*	800	*	820	*	840	
TrCHSa1 :	-	-	-	-	-	-	-
TrCHSa2 :	-	-	-	-	-	-	-
TrCHSa3 :	-	-	-	-	-	-	-
TrCHSa4 :	-	-	-	-	-	-	-
TrCHSa5 :	-	-	-	-	-	-	-
TrCHSa6 :	ACCGCAGTCACATTGCGGGCCCCAGTGACACTCACTTGGACAGTCTTGTTGGACAGCA						708
TrCHSa7 :	-	-	-	-	-	-	-
TrCHSa8 :	-	-	-	-	-	-	-
TrCHSa9 :	-	-	-	-	-	-	-
TrCHSa10 :	-	-	-	-	-	-	-
TrCHSa11 :	-	-	-	-	-	-	-
TrCHSa12 :	-	-	-	-	-	-	-
TrCHSa13 :	-	-	-	-	-	-	-
TrCHSa14 :	-	-	-	-	-	-	-
TrCHSa15 :	-	-	-	-	-	-	-
TrCHSa16 :	-	-	-	-	-	-	-
TrCHSa17 :	-	-	-	-	-	-	-
TrCHSa18 :	-	-	-	-	-	-	-
TrCHSa19 :	-	-	-	-	-	-	-
TrCHSa20 :	-	-	-	-	-	-	-
TrCHSa21 :	-	-	-	-	-	-	-
TrCHSa22 :	-	-	-	-	-	-	-
TrCHSa23 :	-	-	-	-	-	-	-
TrCHSa24 :	-	-	-	-	-	-	-
TrCHSa25 :	-	-	-	-	-	-	-
TrCHSa26 :	-	-	-	-	-	-	-
TrCHSa27 :	-	-	-	-	-	-	-
TrCHSa28 :	ACCGCAN-						649
TrCHSa29 :	-	-	-	-	-	-	-
TrCHSa30 :	-	-	-	-	-	-	-
TrCHSa31 :	-	-	-	-	-	-	-
TrCHSa32 :	ACCGCAGTCACATTCCGTGGCCCCAGTGACACTCACTTGGACAGTCTTGTTGGACAAGCA						658
TrCHSa33 :	-	-	-	-	-	-	-
TrCHSa34 :	ACCGCAGTCACATTCCGTGGCCCCAGTGACACTCACTTGG-						590
TrCHSa35 :	ACCGCAGTCACATTCCGTGGCCCCAGTGACACTCAATTGGACAGCCTTGGTTGGACAAGCA						599
TrCHSa36 :	ACCGCAGTCACATTCCGTGGCCCCAGTGACACTCAATTGGACAGCCTTGGTTGGACAAGCA						597
TrCHSa37 :	ACCGCAGTCACATTCCGTGGCCCCAGTGACACTCAATTGGACAGTCTTGTTGGACAAGCA						497
TrCHSa38 :	ACCGCAGTCACATTCCGTGGCCCCAGTGACACTCAATTGGACAGTCTTGTTGGACAAGCA						447
TrCHSa39 :	ACAGCGAGTCACATTCCGTGGCCCCAGTGACACTCACTTGGACAGTCTTGTTGGACAAGCA						301

FIGURE 15 (cont)

31/271

	*	860	*	880	*	900	
TrCHSa1 :	-	-	-	-	-	-	:
TrCHSa2 :	-	-	-	-	-	-	:
TrCHSa3 :	-	-	-	-	-	-	:
TrCHSa4 :	-	-	-	-	-	-	:
TrCHSa5 :	-	-	-	-	-	-	:
TrCHSa6 :	-	-	-	-	-	-	:
TrCHSa7 :	-	-	-	-	-	-	:
TrCHSa8 :	-	-	-	-	-	-	:
TrCHSa9 :	-	-	-	-	-	-	:
TrCHSa10 :	-	-	-	-	-	-	:
TrCHSa11 :	-	-	-	-	-	-	:
TrCHSa12 :	-	-	-	-	-	-	:
TrCHSa13 :	-	-	-	-	-	-	:
TrCHSa14 :	-	-	-	-	-	-	:
TrCHSa15 :	-	-	-	-	-	-	:
TrCHSa16 :	-	-	-	-	-	-	:
TrCHSa17 :	-	-	-	-	-	-	:
TrCHSa18 :	-	-	-	-	-	-	:
TrCHSa19 :	-	-	-	-	-	-	:
TrCHSa20 :	-	-	-	-	-	-	:
TrCHSa21 :	-	-	-	-	-	-	:
TrCHSa22 :	-	-	-	-	-	-	:
TrCHSa23 :	-	-	-	-	-	-	:
TrCHSa24 :	-	-	-	-	-	-	:
TrCHSa25 :	-	-	-	-	-	-	:
TrCHSa26 :	-	-	-	-	-	-	:
TrCHSa27 :	-	-	-	-	-	-	:
TrCHSa28 :	-	-	-	-	-	-	:
TrCHSa29 :	-	-	-	-	-	-	:
TrCHSa30 :	-	-	-	-	-	-	:
TrCHSa31 :	-	-	-	-	-	-	:
TrCHSa32 :	ATGTTGGAGATGGAGCTGCTGACTTATCGTTGGCTCTGAACCCAGTGCAGAAATTGAG						: 718
TrCHSa33 :	-	-	-	-	-	-	:
TrCHSa34 :	-	-	-	-	-	-	:
TrCHSa35 :	CTATTTGGAGATGGAGCTG						: 618
TrCHSa36 :	CTATTTGGAGATGGAGCTGCTG						: 619
TrCHSa37 :	CTATTGGAGATGGAGCTGCTGCACTCATTGTTGGCTCAGACCCAGTACCAAGAAATTGAG						: 557
TrCHSa38 :	CTATTTGGAGATGGAGCTGCTGCTCATTGTTGGCTCAGACCCAGTACCAAGAAATTGAG						: 507
TrCHSa39 :	CTATTGGAGATGGAGCTGCTGCTCATTGTTGGCTCAGACCCAGTACCAAGAAATTGAG						: 361

FIGURE 15 (cont)

32/271

	*	920	*	940	*	960	
TrCHSa1 :	-	-	-	-	-	-	:
TrCHSa2 :	-	-	-	-	-	-	:
TrCHSa3 :	-	-	-	-	-	-	:
TrCHSa4 :	-	-	-	-	-	-	:
TrCHSa5 :	-	-	-	-	-	-	:
TrCHSa6 :	-	-	-	-	-	-	:
TrCHSa7 :	-	-	-	-	-	-	:
TrCHSa8 :	-	-	-	-	-	-	:
TrCHSa9 :	-	-	-	-	-	-	:
TrCHSa10 :	-	-	-	-	-	-	:
TrCHSa11 :	-	-	-	-	-	-	:
TrCHSa12 :	-	-	-	-	-	-	:
TrCHSa13 :	-	-	-	-	-	-	:
TrCHSa14 :	-	-	-	-	-	-	:
TrCHSa15 :	-	-	-	-	-	-	:
TrCHSa16 :	-	-	-	-	-	-	:
TrCHSa17 :	-	-	-	-	-	-	:
TrCHSa18 :	-	-	-	-	-	-	:
TrCHSa19 :	-	-	-	-	-	-	:
TrCHSa20 :	-	-	-	-	-	-	:
TrCHSa21 :	-	-	-	-	-	-	:
TrCHSa22 :	-	-	-	-	-	-	:
TrCHSa23 :	-	-	-	-	-	-	:
TrCHSa24 :	-	-	-	-	-	-	:
TrCHSa25 :	-	-	-	-	-	-	:
TrCHSa26 :	-	-	-	-	-	-	:
TrCHSa27 :	-	-	-	-	-	-	:
TrCHSa28 :	-	-	-	-	-	-	:
TrCHSa29 :	-	-	-	-	-	-	:
TrCHSa30 :	-	-	-	-	-	-	:
TrCHSa31 :	-	-	-	-	-	-	:
TrCHSa32 :	AAACCAATATTGAGATGGTATGGACCGCACAGACAATTGCTCCAGACAGTGAAGGTGCC						: 778
TrCHSa33 :	-	-	-	-	-	-	:
TrCHSa34 :	-	-	-	-	-	-	:
TrCHSa35 :	-	-	-	-	-	-	:
TrCHSa36 :	-	-	-	-	-	-	:
TrCHSa37 :	AN-						: 559
TrCHSa38 :	AAGCCAATATTGAGATGGTATGGACCGCACAGACAATTGCTCCAG						: 553
TrCHSa39 :	AAACCAATATTGAGATGGTATGGACCGCACAGACAATTGCTCCAGACAGTGAAGGTGCC						: 421

FIGURE 15 (cont)

33/271

	*	980	*	1000	*	1020	:	-
TrCHSa1 :	-	-	-	-	-	-	:	-
TrCHSa2 :	-	-	-	-	-	-	:	-
TrCHSa3 :	-	-	-	-	-	-	:	-
TrCHSa4 :	-	-	-	-	-	-	:	-
TrCHSa5 :	-	-	-	-	-	-	:	-
TrCHSa6 :	-	-	-	-	-	-	:	-
TrCHSa7 :	-	-	-	-	-	-	:	-
TrCHSa8 :	-	-	-	-	-	-	:	-
TrCHSa9 :	-	-	-	-	-	-	:	-
TrCHSa10 :	-	-	-	-	-	-	:	-
TrCHSa11 :	-	-	-	-	-	-	:	-
TrCHSa12 :	-	-	-	-	-	-	:	-
TrCHSa13 :	-	-	-	-	-	-	:	-
TrCHSa14 :	-	-	-	-	-	-	:	-
TrCHSa15 :	-	-	-	-	-	-	:	-
TrCHSa16 :	-	-	-	-	-	-	:	-
TrCHSa17 :	-	-	-	-	-	-	:	-
TrCHSa18 :	-	-	-	-	-	-	:	-
TrCHSa19 :	-	-	-	-	-	-	:	-
TrCHSa20 :	-	-	-	-	-	-	:	-
TrCHSa21 :	-	-	-	-	-	-	:	-
TrCHSa22 :	-	-	-	-	-	-	:	-
TrCHSa23 :	-	-	-	-	-	-	:	-
TrCHSa24 :	-	-	-	-	-	-	:	-
TrCHSa25 :	-	-	-	-	-	-	:	-
TrCHSa26 :	-	-	-	-	-	-	:	-
TrCHSa27 :	-	-	-	-	-	-	:	-
TrCHSa28 :	-	-	-	-	-	-	:	-
TrCHSa29 :	-	-	-	-	-	-	:	-
TrCHSa30 :	-	-	-	-	-	-	:	-
TrCHSa31 :	-	-	-	-	-	-	:	-
TrCHSa32 :	ATTG-	-	-	-	-	-	:	782
TrCHSa33 :	-	-	-	-	-	-	:	-
TrCHSa34 :	-	-	-	-	-	-	:	-
TrCHSa35 :	-	-	-	-	-	-	:	-
TrCHSa36 :	-	-	-	-	-	-	:	-
TrCHSa37 :	-	-	-	-	-	-	:	-
TrCHSa38 :	-	-	-	-	-	-	:	-
TrCHSa39 :	ATTGATGGTCACCTTCGTGAAGCTGGACTAACATTTCATCTTCTTAAAGATGTTCCCTGGG	-	-	-	-	-	:	481

FIGURE 15 (cont)

34/271

	*	1040	*	1060	*	1080	
TrCHSa1 :	-	-	-	-	-	-	-
TrCHSa2 :	-	-	-	-	-	-	-
TrCHSa3 :	-	-	-	-	-	-	-
TrCHSa4 :	-	-	-	-	-	-	-
TrCHSa5 :	-	-	-	-	-	-	-
TrCHSa6 :	-	-	-	-	-	-	-
TrCHSa7 :	-	-	-	-	-	-	-
TrCHSa8 :	-	-	-	-	-	-	-
TrCHSa9 :	-	-	-	-	-	-	-
TrCHSa10 :	-	-	-	-	-	-	-
TrCHSa11 :	-	-	-	-	-	-	-
TrCHSa12 :	-	-	-	-	-	-	-
TrCHSa13 :	-	-	-	-	-	-	-
TrCHSa14 :	-	-	-	-	-	-	-
TrCHSa15 :	-	-	-	-	-	-	-
TrCHSa16 :	-	-	-	-	-	-	-
TrCHSa17 :	-	-	-	-	-	-	-
TrCHSa18 :	-	-	-	-	-	-	-
TrCHSa19 :	-	-	-	-	-	-	-
TrCHSa20 :	-	-	-	-	-	-	-
TrCHSa21 :	-	-	-	-	-	-	-
TrCHSa22 :	-	-	-	-	-	-	-
TrCHSa23 :	-	-	-	-	-	-	-
TrCHSa24 :	-	-	-	-	-	-	-
TrCHSa25 :	-	-	-	-	-	-	-
TrCHSa26 :	-	-	-	-	-	-	-
TrCHSa27 :	-	-	-	-	-	-	-
TrCHSa28 :	-	-	-	-	-	-	-
TrCHSa29 :	-	-	-	-	-	-	-
TrCHSa30 :	-	-	-	-	-	-	-
TrCHSa31 :	-	-	-	-	-	-	-
TrCHSa32 :	-	-	-	-	-	-	-
TrCHSa33 :	-	-	-	-	-	-	-
TrCHSa34 :	-	-	-	-	-	-	-
TrCHSa35 :	-	-	-	-	-	-	-
TrCHSa36 :	-	-	-	-	-	-	-
TrCHSa37 :	-	-	-	-	-	-	-
TrCHSa38 :	-	-	-	-	-	-	-
TrCHSa39 :	ATTGTATCAAAGAACATTAATAAAGCATTGGTCGAGGCTTCCAACCATTAGGAATTCT						: 541

FIGURE 15 (cont)

35/271

	*	1100	*	1120	*
TrCHSa1	:	- - - - -		- - - - -	:
TrCHSa2	:	- - - - -		- - - - -	:
TrCHSa3	:	- - - - -		- - - - -	:
TrCHSa4	:	- - - - -		- - - - -	:
TrCHSa5	:	- - - - -		- - - - -	:
TrCHSa6	:	- - - - -		- - - - -	:
TrCHSa7	:	- - - - -		- - - - -	:
TrCHSa8	:	- - - - -		- - - - -	:
TrCHSa9	:	- - - - -		- - - - -	:
TrCHSa10	:	- - - - -		- - - - -	:
TrCHSa11	:	- - - - -		- - - - -	:
TrCHSa12	:	- - - - -		- - - - -	:
TrCHSa13	:	- - - - -		- - - - -	:
TrCHSa14	:	- - - - -		- - - - -	:
TrCHSa15	:	- - - - -		- - - - -	:
TrCHSa16	:	- - - - -		- - - - -	:
TrCHSa17	:	- - - - -		- - - - -	:
TrCHSa18	:	- - - - -		- - - - -	:
TrCHSa19	:	- - - - -		- - - - -	:
TrCHSa20	:	- - - - -		- - - - -	:
TrCHSa21	:	- - - - -		- - - - -	:
TrCHSa22	:	- - - - -		- - - - -	:
TrCHSa23	:	- - - - -		- - - - -	:
TrCHSa24	:	- - - - -		- - - - -	:
TrCHSa25	:	- - - - -		- - - - -	:
TrCHSa26	:	- - - - -		- - - - -	:
TrCHSa27	:	- - - - -		- - - - -	:
TrCHSa28	:	- - - - -		- - - - -	:
TrCHSa29	:	- - - - -		- - - - -	:
TrCHSa30	:	- - - - -		- - - - -	:
TrCHSa31	:	- - - - -		- - - - -	:
TrCHSa32	:	- - - - -		- - - - -	:
TrCHSa33	:	- - - - -		- - - - -	:
TrCHSa34	:	- - - - -		- - - - -	:
TrCHSa35	:	- - - - -		- - - - -	:
TrCHSa36	:	- - - - -		- - - - -	:
TrCHSa37	:	- - - - -		- - - - -	:
TrCHSa38	:	- - - - -		- - - - -	:
TrCHSa39	:	GATTACAACTCAATCTTTGGATTGCACACCCGGGTGGACCTGCAATTCT			: 591

FIGURE 15 (cont)

36/271

```

*      20      *      40      *      60
TrCHSb : TCTTCGNAGCTGGACNAACATTNTGCTTCTAAAGATGTTCTGAGATTGTCTAAA : 60

*      80      *      100     *      120
TrCHSb : GAACATTGATAAGGCATTGGTGAGGCATTCAAACCATTAAACATCTCTGATTACAATTC : 120

*      140     *      160     *      180
TrCHSb : AATCTTTGGATTGCTCATCCAGGTGGCCTGCAATTCTAGACCAAGTTGAGATAAAGTT : 180

*      200     *      220     *      240
TrCHSb : GGGCTTAAACCTGAAAAAATGAAGGCCACCAGAGATGTACTTAGTGAATATGGTAACAT : 240

*      260     *      280     *      300
TrCHSb : GTCAAGTGCATGTATTGTCATCTTAGATGAGATGCAAAAGAAATCGGCTGAAAATGG : 300

*      320     *      340     *      360
TrCHSb : ACTGAAAACCACAGGAGAAGGACTTGACTGGGTGTGTTGGATTGGACCAGGACT : 360

*      380     *      400     *      420
TrCHSb : TACCATTGAAACTGTTGTTCTACATAGTGTGGCTATATGAGAATGCGAGACTTGATTGTT : 420

*      440     *      460     *      480
TrCHSb : TTGTATTGTATTGTATTGTATTACTTTAACATTGCTTGAATTCCATTAAACAA : 480

*      500     *      520     *      540
TrCHSb : TAAATATGGAGTTCAATAAGTACCATCAGTGTAAAATAATATCGTTAATAGCTATTA : 540

*      560     *      580     *      600
TrCHSb : TTTTAGTGTCTGTTCTTTACTAAACTATTTATTAGTATTGCTATTGATTG : 600

*      620     *
TrCHSb : AAATAAAATATTGTCCTCTTAACTGAAAAAAAAAA : 634

```

FIGURE 16

37/271

* 20 * 40 * 60
TrCHSb : LRXAGXTFXLLKDVPEIVSKNIDKALVEAFQPLNISDYN SIFWIAHPGGPAILDQVEIKL : 60

* 80 * 100 * 120
TrCHSb : GLKPEKMKATRDVLSEYGNMSSACVLFILDEMOKKSAENGLKTTGEGLDWGVLF GFGPGL : 120

*
TrCHSb : TIETVVLHSVAI : 132

FIGURE 17

38/271

	* 20 * 40 * 60	
TrCHSb1 :	TCTTCGNCNAGCTGGACNAACATTNTGTTCTAAAGATGTCCTGAGATTGTCTCAAA	: 60
TrCHSb2 :	-	: -
TrCHSb3 :	-	: -
	* 80 * 100 * 120	
TrCHSb1 :	GAACATTGATAAGGCATTGGTTGAGGCATTCCAACCATTAAACATCTTGATTACAATTC	: 120
TrCHSb2 :	-	: -
TrCHSb3 :	-	: -
	* 140 * 160 * 180	
TrCHSb1 :	AATCTTTGGATTGCTCATCCAGGTGGCCTGCAATTCTAGACCAAGTTGAGATAAAGTT	: 180
TrCHSb2 :	-	: -
TrCHSb3 :	-	: -
	* 200 * 220 * 240	
TrCHSb1 :	GGGCTTAAAACCTGAAAAAAATGAAGGCCACCAGAGATGTACTTAGTGAATATGGTAACAT	: 240
TrCHSb2 :	-	: -
TrCHSb3 :	-	: -
	* 260 * 280 * 300	
TrCHSb1 :	GTCAAGTGCATGTATTGTTCATCTTAGATGAGATGAAAGAAATCGGCTGAAAATGG	: 300
TrCHSb2 :	-	: 29
TrCHSb3 :	-	: 29
	* 320 * 340 * 360	
TrCHSb1 :	ACTAAAACCACAGGAGAAGGACTTGACTGGGGTGTGTTGGATTGCGCGGACT	: 360
TrCHSb2 :	ACTGAAAACCACAGGAGAAGGACTTGACTGGGGTGTGTTGGATTGCGACAGGACT	: 89
TrCHSb3 :	ACTGAAAACCACAGGAGAAGGACTTGACTGGGGTGTGTTGGATTGCGACAGGACT	: 89
	* 380 * 400 * 420	
TrCHSb1 :	TACCATTGAAACTGTTCTACATAGTGTGGCTATATGAGAATGAGACTTGATTGTT	: 420
TrCHSb2 :	TACCATTGAAACTGTTCTACATAGTGTGGCTATATGAGAATGCGAGACTTGATTGTT	: 149
TrCHSb3 :	TACCATTGAAACTGTTCTACATAGTGTGGCTATATGAGAATGCGAGACTTGATTGTT	: 149
	* 440 * 460 * 480	
TrCHSb1 :	T---T---T---T---ATTGATTGTATTACTTTAAATCTTGTGAAATTCCATTAAANAA	: 470
TrCHSb2 :	TTGTATTGTATTGTATTGTATTGTATTACTTTAAATCTTGTGAAATTCCATTAAACAA	: 209
TrCHSb3 :	TTGTATTGTATTGTATTGTATTGTATTACTTTAAATCTTGTGAAATTCCATTAAACAA	: 209
	* 500 * 520 * 540	
TrCHSb1 :	TAAATATGGAGTTCAATAAGTACCATCAGTGTAAAATAATATCGTTAACAGCTATTA	: 491
TrCHSb2 :	TAAATATGGAGTTCAATAAGTACCATCAGTGTAAAATAATATCGTTAACAGCTATTA	: 269
TrCHSb3 :	TAAATATGGAGTTCAATAAGTACCATCAGTGTAAAATAATATCGTTAACAGCTATTA	: 269
	* 560 * 580 * 600	
TrCHSb1 :	-	: -
TrCHSb2 :	TTTTAGTGTCTGTTCTTTTACTAAACTATATTTATTTAGTATTGCTATTGATTG	: 329
TrCHSb3 :	TTTTAGTGTCTGTTCTTTTACTAAACTATATTTATTTAGTATTGCTATTGATTG	: 329
	* 620 *	
TrCHSb1 :	-	: -
TrCHSb2 :	AAATAAAATATTGTCCTCTTAACTGAAAAAAAAAAA	: 363
TrCHSb3 :	AAATAAAATATTGTCCTCTTAACTGAAAAAAAAAAA	: 363

FIGURE 18

39/271

* 20 * 40 * 60
 TrCHSc : GNTTCAATCTGTTGTGCATAAAATTNCTTCNATAGAAAACCATAACACATTGATCTTG : 60

* 80 * 100 * 120
 TrCHSc : CAAAGAAGAAATATGGGAGACGAAGGTATAGTGAGAGGTGTCACAAAGCAGACAACCCCT : 120

* 140 * 160 * 180
 TrCHSc : GGGAAAGGCTACTATATTGGCTCTTGGCAAGGCATTCCCTACCAACTTGTGATGCAAGAG : 180

* 200 * 220 * 240
 TrCHSc : TATTTAGTTGATGGTTATTTAGGGACACTAATTGTGACAATCCTGAECTTAAGCAGAAA : 240

* 260 * 280 * 300
 TrCHSc : CTTGCTAGACTTGTAAAGACAACCACGGTAAAAACAAGGTATGTTGTATGAATGAGGAG : 300

* 320 * 340 * 360
 TrCHSc : ATACTAAAGAAATATCCAGAACCTGTTGTCGAAGGCGCCTCAACTGTAAAACAACGTTA : 360

* 380 * 400 * 420
 TrCHSc : GAGATATGTAATGAGGCAGTAACACAAATGGCAATTGAAAGCTTCCAAGTTGCTAAAG : 420

* 440 * 460 * 480
 TrCHSc : AATTGGGGTAGATCCTTATCGGACATAACTCATGTGGTTATGTTCATCTAGTGAAGCT : 480

* 500 * 520 * 540
 TrCHSc : AGATTACCCGGTGGTGACCTATACTTGTCAAAAGGACTAGGACTAAACCCCTAAAATTCAA : 540

* 560 * 580 * 600
 TrCHSc : AGAACCATGCTCTATTCTCTGGATGCTCGGGAGGCCTAGCCGGCTTCGCGTTGCGAAA : 600

* 620 * 640 * 660
 TrCHSc : GACATAGCTGAGAACAAACCTGGAAGTAGAGTTTGCTTGTACTTCTGAAACTACAATT : 660

* 680 * 700 * 720
 TrCHSc : ATTGGATTCAAGCCACCAAGTGTGATAGACCTTATGATCTTGTGGTGTGGCACTCTT : 720

* 740 * 760 * 780
 TrCHSc : GGAGATGGTGCTGGTGTATGATAATTGGCTCAGACCCAATACTTGAAACTGAGACTCCA : 780

* 800 * 820 * 840
 TrCHSc : TTGTTGAGCTTCATACTTCAGCTCAGGAGTTATACCAAGACACAGAGAAGAAAATAGAT : 840

* 860 * 880 *
 TrCHSc : GGGCGGCTGACGGAGGAGGGCATAAGTTCACGCTAGCGAGGGAACTGCCGCAGATA : 897

FIGURE 19

40/271

* 20 * 40 * 60
TrCHSc : MGDEGIVRGVTKQTTPGKATILALGKAFPHQLVMQEYLVGYFRDTNCDNPELKQKLARL : 60

* 80 * 100 * 120
TrCHSc : CKTTTVKTRYVVMNEEILKKYPELVVEGASTVKQRLEICNEAVTQMAIEASQVCLKNWGR : 120

* 140 * 160 * 180
TrCHSc : SLSDITHVVYVSSSEARLPGGDLYLSKGLGLNPKIQRTMLYFSGCSGGVAGLRVAKDIAE : 180

* 200 * 220 * 240
TrCHSc : NNPGSRVLLATSETTIIGFKPPSVDRPYDLVGVALFGDGAGAMIIGSDPILETEPLFEL : 240

* 260 *
TrCHSc : HTSAQEFIPDTEKKIDGRLTEEGISFTLARELPQI : 275

FIGURE 20

41/271

	*	20	*	40	*	60	
TrCHSc1 :	G	N	T	T	C	A	A
TrCHSc2 :	-	-	T	C	A	A	-
TrCHSc3 :	-	-	T	C	T	A	-
TrCHSc4 :	-	-	T	C	T	A	-
TrCHSc5 :	-	-	-	-	T	A	-
TrCHSc6 :	-	-	-	-	G	C	-
TrCHSc7 :	-	-	-	-	A	N	-
	*	80	*	100	*	120	
TrCHSc1 :	C	A	A	G	A	A	-
TrCHSc2 :	C	T	A	G	A	A	-
TrCHSc3 :	C	A	A	G	A	A	-
TrCHSc4 :	C	A	A	G	A	A	-
TrCHSc5 :	C	A	A	G	A	A	-
TrCHSc6 :	C	A	A	G	A	A	-
TrCHSc7 :	-	-	-	-	-	-	-
	*	140	*	160	*	180	
TrCHSc1 :	G	G	A	G	C	T	-
TrCHSc2 :	G	G	A	G	C	T	-
TrCHSc3 :	G	G	A	G	C	T	-
TrCHSc4 :	G	G	A	G	C	T	-
TrCHSc5 :	G	G	A	G	C	T	-
TrCHSc6 :	G	G	A	G	C	T	-
TrCHSc7 :	-	-	-	-	-	-	-
	*	200	*	220	*	240	
TrCHSc1 :	T	T	T	A	G	A	-
TrCHSc2 :	T	T	T	A	G	A	-
TrCHSc3 :	T	T	T	A	G	A	-
TrCHSc4 :	T	T	T	A	G	A	-
TrCHSc5 :	T	T	T	A	G	A	-
TrCHSc6 :	T	T	T	A	G	A	-
TrCHSc7 :	-	-	-	-	-	-	-
	*	260	*	280	*	300	
TrCHSc1 :	C	T	G	C	A	T	-
TrCHSc2 :	C	T	G	C	A	T	-
TrCHSc3 :	C	T	G	C	A	T	-
TrCHSc4 :	C	T	G	C	A	T	-
TrCHSc5 :	C	T	G	C	A	T	-
TrCHSc6 :	C	T	G	C	A	T	-
TrCHSc7 :	-	-	-	-	-	-	-
	*	320	*	340	*	360	
TrCHSc1 :	A	T	A	A	A	A	-
TrCHSc2 :	A	T	A	A	A	A	-
TrCHSc3 :	A	T	A	A	A	A	-
TrCHSc4 :	A	T	A	A	A	A	-
TrCHSc5 :	A	T	A	A	A	A	-
TrCHSc6 :	A	T	A	A	A	A	-
TrCHSc7 :	-	-	-	-	-	-	-

FIGURE 21

42/271

	*	380	*	400	*	420	
TrCHSc1 :	GAGATATGTAATGAGGCAGTAACACAAATGGCAATTGAAGCTCCCAAGTTGCCTAAAG						: 420
TrCHSc2 :	GAGATATGTAATGAGGCAGTAACACAAATGGCAATTGAAGCTCCCAAGTTGCCTAAAG						: 417
TrCHSc3 :	GAGATATGTAATGAGGCAGTAACACAAATGGCAATTGAAGCTCCCAAGTTGCCTAAAG						: 413
TrCHSc4 :	GAGATATGTAATGAGGCAGTAACACAAATGGCAATTGAAGCTCCCAAGTTGCCTAAAG						: 413
TrCHSc5 :	GAGATATGTAATGAGGCAGTAACACAAATGGCAATTGAAGCTCCCAAGTTGCCTAAAG						: 400
TrCHSc6 :	GAGATATGTAATGAGGCAGTAACACAAATGGCAATTGAAGCTCCCAAGTTGCCTAAAG						: 390
TrCHSc7 :	GAGATATGTAATGAGGCAGTAACACAAATGGCAATTGAAGCTCCCAAGTTGCCTAAAG						: 107
	*	440	*	460	*	480	
TrCHSc1 :	AATTGGGGTAGATCCTTATCGGACATAACTCATGTGGTTATGTTCATCTAGTGAAGCT						: 480
TrCHSc2 :	AATTGGGGTAGATCCTTATCGGACATAACTCATGTGGTTATGTTCATCTAGTGAAGCT						: 477
TrCHSc3 :	AATTGGGGTAGATCCTTATCGGACATAACTCATGTGGTTATGTTCATCTAGTGAAGCT						: 473
TrCHSc4 :	AATTGGGGTAGATCCTTATCGGACATAACTCATGTGGTTATGTTCATCTAGTGAAGCT						: 473
TrCHSc5 :	AATTGGGGTAGACCAATATCAGACATAACTCATGTGGTTATGTTCATCTAGTGAAGCT						: 460
TrCHSc6 :	AATTGGGGTAGATCCTTATCGGACATAACTCATGTGGTTATGTTCATCTAGTGAAGCT						: 450
TrCHSc7 :	AATTGGGGTAGACCAATATCAGACATAACTCATGTGGTTATGTTCATCTAGTGAAGCT						: 167
	*	500	*	520	*	540	
TrCHSc1 :	AGATTACCCGGTGGTGACCTATACTTGTCAAAAGGACTAGGACTAAACCCCTAAAATTCAA						: 540
TrCHSc2 :	AGATTACCCGGTGGTGACCTATACTTGTCAAAAGGACTAGGACTAAACCCCTAAAATTCAA						: 537
TrCHSc3 :	AGATTACCCGGTGGTGACCTATACTTGTCAAAAGGACTAGGACTAAACCCCTAAAATTCAA						: 533
TrCHSc4 :	AGATTACCCGGTGGTGACCTATACTTGTCAAAAGGACTAGGACTAAACCCCTAAAATTCAA						: 533
TrCHSc5 :	AGATTACCGGTGGTGACCTATACTTGTCAAAAGGACTAGGACTAAACCCCTAAAATTCAA						: 520
TrCHSc6 :	AGATTACCCGGTGGTGACCTATACTTGTCAAAAGGACTAGGACTAAACCCCTAAAATTCAA						: 510
TrCHSc7 :	AGATTACCCGGTGGTGACCTATACTTGTCAAAAGGACTAGGACTAAACCCCTAAAATTCAA						: 227
	*	560	*	580	*	600	
TrCHSc1 :	AGAACCATGCTCTATTTCCTGGATGCTCGGGAGGCCG-----						: 577
TrCHSc2 :	AGAACCATGCTCTATTTCCTGGATGCTCGGGAGGCCGTAGCCGGCCTCGCGTTGCGAAA						: 597
TrCHSc3 :	AGAACCATGCTCTATTTCCTGGATGCTCGGGAGGCCGTAGCCGGCCTCGCGTTGCGAAA						: 581
TrCHSc4 :	AGAACCATGCTCTATTTCCTGGATGCTCGGGAGGCCGTAGCCGGCCTCGCGTTGCG-----						: 588
TrCHSc5 :	AGAACCATGCTCTATTTCCTGGATGCTCGGGAGGCCGTAGCCGGCCTCGCGTTGCG-----						: 563
TrCHSc6 :	AGAACCATGCTCTATTTCCTGGATGCTCGGGAGGCCGTAGCCGGCCTCGCGTTGCGAAA						: 570
TrCHSc7 :	AGAACCATGCTCTATTTCCTGGATGCTCGGGAGGCCGTAGCCGGCCTCGCGTTGCGAAA						: 287
	*	620	*	640	*	660	
TrCHSc1 :	-----						: -
TrCHSc2 :	GA-----						: 599
TrCHSc3 :	-----						: -
TrCHSc4 :	-----						: -
TrCHSc5 :	-----						: -
TrCHSc6 :	GACATAGCTGAGAACACCCCTGGAAGTAGAGTT-----						: 603
TrCHSc7 :	GACATAGCTGAGAACACCCCTGGAAGTAGAGTTTGCTACTTCTGAAACTACAATT						: 347
	*	680	*	700	*	720	
TrCHSc1 :	-----						: -
TrCHSc2 :	-----						: -
TrCHSc3 :	-----						: -
TrCHSc4 :	-----						: -
TrCHSc5 :	-----						: -
TrCHSc6 :	-----						: -
TrCHSc7 :	ATTGGATTCAAGCACCAAGTGTGATAGACCTTATGATCTTGTGGTGTGGCACTCTT						: 407

FIGURE 21 (cont)

43/271

TrCHSc1:	* 740	* 760	* 780	
TrCHSc2:	-----	-----	-----	:
TrCHSc3:	-----	-----	-----	:
TrCHSc4:	-----	-----	-----	:
TrCHSc5:	-----	-----	-----	:
TrCHSc6:	-----	-----	-----	:
TrCHSc7 :	GGAGATGGTGCTGGTGCTATGATAATTGGCTCAGACCCAATACTTGAAACTGAGACTCCA			: 467
TrCHSc1:	* 800	* 820	* 840	
TrCHSc2:	-----	-----	-----	:
TrCHSc3:	-----	-----	-----	:
TrCHSc4:	-----	-----	-----	:
TrCHSc5:	-----	-----	-----	:
TrCHSc6:	-----	-----	-----	:
TrCHSc7 :	TTGTTTGAGCTTCATACTTCAGCTCAGGAGTTATACCAGACACAGAGAAGAAAATAGAT			: 527
TrCHSc1:	* 860	* 880	*	
TrCHSc2:	-----	-----	-----	:
TrCHSc3:	-----	-----	-----	:
TrCHSc4:	-----	-----	-----	:
TrCHSc5:	-----	-----	-----	:
TrCHSc6:	-----	-----	-----	:
TrCHSc7 :	GGGCGGCTGACGGAGGAGGGCATAAGTTCACGCTAGCGAGGGAACTGCCGCAGATA			: 584

FIGURE 21 (cont)

44/271

TrCHSd : GTAGCAACACACACTTGATTCTTTGAGTCCTTGCTACGTGGCNTTACCAAAAAACG : 60
 * 20 * 40 * 60

 TrCHSd : TTGCTAAGTCATCAACCATTCCAATTCTTAATATAACCTATCAGTACTCACCATCTTT : 120
 * 80 * 100 * 120

 TrCHSd : CTTCCCTCCCTGCTAACCTTAACTTAGAGAAGATGGTGAAGTTAATGAGATCCGCCAGG : 180
 * 140 * 160 * 180

 TrCHSd : CACAGAGAGCTGAAGGCCCTGCCACTGTGTTGGCAATGGCACTGCAACTCCTCCAACT : 240
 * 200 * 220 * 240

 TrCHSd : GTGTTGATCAGAGTACATACCCGACTACTACTTCCGCATCACAAACAGTGAGCACAAGA : 300
 * 260 * 280 * 300

 TrCHSd : CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATA : 360
 * 320 * 340 * 360

 TrCHSd : TGCATTTGACAGAAGAGATTGAGGAGAATCCAAGTTATGTGAGTACATGGCACCTT : 420
 * 380 * 400 * 420

 TrCHSd : CATTGGATGCAAGACAAGACATGGTGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG : 480
 * 440 * 460 * 480

 TrCHSd : CAACAAAGGCAATCAAGGAATGGGTCAACCTAACGATTACCCACCTCATCTTT : 540
 * 500 * 520 * 540

 TrCHSd : GCACCACAAAGTGGTGGACATGCCCGGTGCCACTATCAGCTTACAAAGCTTTAGGCC : 600
 * 560 * 580 * 600

 TrCHSd : TTCGTCCGCATGTGAAGCGTTACATGATGTACCAACAAGGTTGTTTGCTGGCAGGG : 660
 * 620 * 640 * 660

 TrCHSd : TGCTTCGTTGGCTAAAGACTTGGCTGAAAACAACAAAGGTGCCGTGTATTGGTGGTTT : 720
 * 680 * 700 * 720

 TrCHSd : GTTCAGAGATAACTG : 735
 *

FIGURE 22

45/271

* 20 * 40 * 60
TrCHSd : MVKVNEIRQAQRAEGPATVLAIGTATPPNCVDQSTYPDYYFRITNSEHKTELKEKFQRMC : 60

* 80 * 100 * 120
TrCHSd : DKSMIKKRYMHLTEEILKENPSLCEYMAPSLDARQDMVVVEVPRLGKEAATKAIKEWGQP : 120

* 140 * 160 * 180
TrCHSd : KSKITHLIFCTTSGVDMPGADYQLTKLLGLRPHVKRYMMYQQGCFAGGTVLRLAKDLAEN : 180

*
TrCHSd : NKGARVLVVCSEIT : 194

FIGURE 23

46/271

	*	20	*	40	*	60		
TrCHSd1	:	GTAGCAACACACACTTGTATTCTTTGAGTCCTGCTACGTGGC NTT ACCAAAAAACG					: 60	
TrCHSd2	:	GTAGCAACACACACTTGTATTCTTTGAGTCCTGCTACGTGGC TT ACCAAAAAACG					: 60	
TrCHSd3	:	GTAGCAACACACACTTGTATTCTTTGAGTCCTGCTACGTGGC TT ACCAAAAAACG					: 60	
TrCHSd4	:	-----NNNACNACACACTTTTG NATCC TGCTACGTGGC NTT ACCAAAAAACG					: 50	
TrCHSd5	:	-----					:	-
TrCHSd6	:	-----					:	-
TrCHSd7	:	-----					:	-
TrCHSd8	:	-----					:	-
TrCHSd9	:	-----					:	-
TrCHSd10	:	-----					:	-
TrCHSd11	:	-----					:	-

	*	80	*	100	*	120		
TrCHSd1	:	TTGCT A TCATCAACCATTCCAATCCTTAATATAACCTATCAGTACT T ACCATCTTTT					: 120	
TrCHSd2	:	TTGCTAAGTCATCAACCATTCCAATCCTTAATATAACCTATCAGTACTCACCATCTTTT					: 120	
TrCHSd3	:	TTGCTAAGT N ATCAACCATTCCAATCCTTAATATAACCTATCAGTACTCACCATCTTTT					: 120	
TrCHSd4	:	TTGCTAAGTC N ATCAACCATTCCAATCCTTAATATAACCTATCAGTACTCACCATCTTTT					: 110	
TrCHSd5	:	-----					ATC CT	: 10
TrCHSd6	:	-----					ATC GN	: 10
TrCHSd7	:	-----					-TC N AT	: 6
TrCHSd8	:	-----						-
TrCHSd9	:	-----						-
TrCHSd10	:	-----						-
TrCHSd11	:	-----						-

	*	140	*	160	*	180		
TrCHSd1	:	CTTCCTCCCTGCTAACCTTA G AT G AGAGAAGATGGTGA A GTAA T GAGATCCGCCAGG					: 180	
TrCHSd2	:	CTTCCTCCCTGCTAACCTTA G ACT G AGAGAAGATGGTGA A GTAA T GAGATCCGCCAGG					: 180	
TrCHSd3	:	CTTCCTCCCTGCTAACCTTA G ACT G AGAGAAGATGGTGA A GTAA T GAGATCCGCCAGG					: 180	
TrCHSd4	:	CTTCCTCCCTGCTAACCTTA G ACT G AGAGAAGATGGTGA A GTAA T GAGATCCGCCAGG					: 170	
TrCHSd5	:	----- T ACT T AGAA T GGT A AGTAA T GAGATCCGCCAGG					: 70	
TrCHSd6	:	----- T ACT T AGAA T GGT A AGTAA T GAGATCCGCCAGG					: 70	
TrCHSd7	:	----- T ACT T AGAA T GGT A AGTAA T GAGATCCGCCAGG					: 66	
TrCHSd8	:	----- G C A AGAA T GGT A AGTAA T GAGATCCGCCAGG					: 53	
TrCHSd9	:	----- T NN T AGAA T GGT A AGTAA T GAGATCCGCCAGG					: 48	
TrCHSd10	:	----- T TT T AGAA T GGT A AGTAA T GAGATCCGCCAGG					: 45	
TrCHSd11	:	-----						-

	*	200	*	220	*	240	
TrCHSd1	:	CACAGAGAGCTGAAGGCC C TGCCACTGTGTTGCC A ATCGC A CTGCC A CTCCTCCAAACT					: 240
TrCHSd2	:	CACAGAGAGCTGAAGGCC C TGCCAC G TGTTGCC A ATCGC A CTGCC A CTCCTCCAAACT					: 240
TrCHSd3	:	CACAGAGAGCTGAAGGCC C TGCCAC G TGTTGCC A ATCGC A CTGCC A CTCCTCCAAACT					: 240
TrCHSd4	:	CACAGAGAGCTGAAGGCC C TGCCAC G TGTTGCC A ATCGC A CTGCC A CTCCTCCAAACT					: 230
TrCHSd5	:	CACAGAGAGCTGAAGGCC C TGCCAC G TGTTGCC A ATCGC A CTGCC A CTCCTCCAAACT					: 130
TrCHSd6	:	CACAGAGAGCTGAAGGCC C TGCCAC G TGTTGCC A ATCGC A CTGCC A CTCCTCCAAACT					: 130
TrCHSd7	:	CACAGAGAGCTGAAGGCC C TGCCAC G TGTTGCC A ATCGC A CTGCC A CTCCTCCAAACT					: 126
TrCHSd8	:	CACAGAGAGCTGAAGGCC C TGCCAC G TGTTGCC A ATCGC A CTGCC A CTCCTCCAAACT					: 113
TrCHSd9	:	CACAGAGAGCTGAAGGCC C TGCCAC G TGTTGCC A ATCGC A CTGCC A CTCCTCCAAACT					: 108
TrCHSd10	:	CACAGAGAGCTGAAGGCC C TGCCAC G TGTTGCC A ATCGC A CTGCC A CTCCTCCAAACT					: 105
TrCHSd11	:	----- T AAA A CT					: 7

FIGURE 24

47/271

	*	260	*	280	*	300	
TrCHSd1 :	G	TGTCGATCAGAGTACATACCCGACTACTACTTCCGCATCACAAACAGTGAGCACAAGA	:	300			
TrCHSd2 :	G	TGTCGATCAGAGTACATACCCGAGACTACTACTTCCGCATCACAAACAGTGAGCACAAGA	:	300			
TrCHSd3 :	G	TGTCGATCAGAGTACATACCCGAGACTACTACTTCCGCATCACAAACAGTGAGCACAAGA	:	300			
TrCHSd4 :	G	TGTTGATCAGAGTACATACCCGAGACTACTACTTCCGCATCACAAACAGTGAGCACAAGA	:	290			
TrCHSd5 :	G	TGTTGATCAGAGTACATTACCCCGACTACTATTCCGAATCACAAACAGCGAACACAAGA	:	190			
TrCHSd6 :	G	TGTTGATCAGAGTACATTACCCCGACTACTATTCCGAATCACAAACAGCGAACACAAGA	:	190			
TrCHSd7 :	G	TGTTGATCAGAGTACATTACCCCGACTACTATTCCGAATCACAAACAGCGAACACAAGA	:	186			
TrCHSd8 :	G	TGTTGATCAGAGTACATACCCGAGACTACTACTTCCGCATCACAAACAGTGAGCACAAGA	:	173			
TrCHSd9 :	G	TGTTGATCAGAGTACATACCCGAGACTACTACTTCCGCATCACAAACAGCGAACACAAGA	:	168			
TrCHSd10 :	G	TGTTGATCAGAGTACATTACCCCGACTACTATTCCGAATCACAAACAGCGAACACAAGA	:	165			
TrCHSd11 :	G	TGTTGATCAGAGTACATTACCCCGACTATTCCGAATNNCAACAGCGAACACAAGA	:	67			
	*	320	*	340	*	360	
TrCHSd1 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	360				
TrCHSd2 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	360				
TrCHSd3 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	360				
TrCHSd4 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	350				
TrCHSd5 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	250				
TrCHSd6 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	250				
TrCHSd7 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	246				
TrCHSd8 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	233				
TrCHSd9 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	228				
TrCHSd10 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	225				
TrCHSd11 :	CAGAGCTCAAAGAAAAATTCCAGCGCATGTGTGACAAATCTATGATTAAGAAGAGATACA	:	127				
	*	380	*	400	*	420	
TrCHSd1 :	TGCATTTGACAGAAGAGATTTGAAGGGAGAATCCAAGTTATGTGAGTACATGGCACCTT	:	420				
TrCHSd2 :	TGCATTTGACAGAAGAGATTTGAAGGGAGAATCCAAGTTATGTGAGTACATGGCACCTT	:	420				
TrCHSd3 :	TGCATTTGACAGAAGAGATTTGAAGGGAGAATCCAAGTTATGTGAGTACATGGCACCTT	:	420				
TrCHSd4 :	TGCATTTGACAGAAGAGATTTGAAGGGAGAATCCAAGTTATGTGAGTACATGGCACCTT	:	410				
TrCHSd5 :	TGCATTTGACAGAAGAGATTTGAAGGGAGAATCCAAGTTATGTGAGTACATGGCACCTT	:	310				
TrCHSd6 :	TGCATTTGACAGAAGAGATTTGAAGGGAGAATCCAAGTTATGTGAGTACATGGCACCTT	:	306				
TrCHSd7 :	TGCATTTGACAGAAGAGATTTGAAGGGAGAATCCAAGTTATGTGAGTACATGGCACCTT	:	293				
TrCHSd8 :	TGCATTTGACAGAAGAGATTTGAAGGGAGAATCCAAGTTATGTGAGTACATGGCACCTT	:	288				
TrCHSd9 :	TGCATTTGACAGAAGAGATTTGAAGGGAGAATCCAAGTTATGTGAGTACATGGCACCTT	:	285				
TrCHSd11 :	TGCATTTGACAGAAGAGATTTGAAGGGAGAATCCAAGTTATGTGAGTACATGGCACCTT	:	187				
	*	440	*	460	*	480	
TrCHSd1 :	CATTGGATGCAAGACAAGACATGGGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG	:	480				
TrCHSd2 :	CATTGGATGCAAGACAAGACATGGGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG	:	480				
TrCHSd3 :	CATTGGATGCAAGACAAGACATGGGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG	:	480				
TrCHSd4 :	CATTGGATGCAAGACAAGACATGGGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG	:	470				
TrCHSd5 :	CATTGGATGCAAGACAAGACATGGGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG	:	370				
TrCHSd6 :	CATTGGATGCAAGACAAGACATGGGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG	:	370				
TrCHSd7 :	CATTGGATGCAAGACAAGACATGGGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG	:	366				
TrCHSd8 :	CATTGGATGCAAGACAAGACATGGGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG	:	353				
TrCHSd9 :	CATTGGATGCAAGACAAGACATGGGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG	:	348				
TrCHSd10 :	CATTGGATGCAAGACAAGACATGGGGTTGTGGAAGTACCAAGGCTAGGAAAAGAGGCAG	:	345				
TrCHSd11 :	CATTGGATGCAAGACAAGACATGGGGCCACCNNCCNTCCNCNCACCNCACCCN	:	247				

FIGURE 24 (cont)

48/271

	*	500	*	520	*	540	
TrCHSd1	:	CAACAAAGGCAATTAAGGAATGGGGTCAACCTAACGATTACCCACCTCATCTTTT					: 540
TrCHSd2	:	CAACAAAGGCTATCAAGGAATGGGGTCAACCTAACGATTACTCACCTCATCTTTT					: 540
TrCHSd3	:	CAACAAAGGCTATCAAGGAATGGGGTCAACCTAACGATTACTCACCTCATCTTTT					: 540
TrCHSd4	:	TAACAAAGGCAATTAGGAATGGGGTCAACCTAACGATTACCAAGATTACCCACCTCATCTTTT					: 530
TrCHSd5	:	CAACAAAGGCTATCAAGGAATGGGGTCAACCTAACGATTACTCACCTCATCTTTT					: 430
TrCHSd6	:	CAACAAAGGCTATCAAGGAATGGGGTCAACCTAACGATTACTCACCTCATCTTTT					: 430
TrCHSd7	:	CAACAAAGGCTATCAAGGAATGGGGTCAACCTAACGATTACCAAGATTACCCACCTCATCTTTT					: 426
TrCHSd8	:	CAACAAAGGCAATTAGGAATGGGGCAACCTAACGATTACCAAGATTACCCACCTCATCTTTT					: 413
TrCHSd9	:	CAACAAAGGCAATTAGGAATGGGGCAACCTAACGATTACCAAGATTACCCACCTCATCTTTT					: 408
TrCHSd10	:	CAACAAAGGCAATTAGGAATGGGGCAACCTAACGATTACCAAGATTACCCACCTCATCTTTT					: 405
TrCHSd11	:	CCN-----					: 250
	*	560	*	580	*	600	
TrCHSd1	:	GCACCACAGTGGTGTGACATGCCCGTGCGC-----					: 574
TrCHSd2	:	GCACCACAAAGTGGTGTGGACATGCCGGCGCAGTATCAGCTTACAAAGCTTTAG-----					: 597
TrCHSd3	:	GCACCACAAAGTGGTGTGGACATGCCGGCGCAGTATCAGCTTACAAAGCTTTAGGCC					: 600
TrCHSd4	:	GCACCACAGTGGTGTGGACATGCCGGCGCAGTATCAGCTTACAAAGCTTTAGGCC					: 585
TrCHSd5	:	GCACCACAAAGTGGTGTGGACATGCCGGCGCAGTATCAGCTTACAAAGCTTTAGGCC					: 490
TrCHSd6	:	GCACCACAAAGTGGTGTGGACATGCCGGCGCAGTATCAGCTTACAAAGCTTTAGGCC					: 490
TrCHSd7	:	GCACCACAAAGTGGTGTGGACATGCCGGCGCAGTATCAGCTTACAAAGCTTTAGGCC					: 486
TrCHSd8	:	GCACCACAGTGGTGTGACATGCCCGTGCGCAGTATCAGCTTACAAAGCTTTAGGCC					: 473
TrCHSd9	:	GCACCACAGTGGTGTGACATGCCCGTGCGCAGTATCAGCTTACAAAGCTTTAGGCC					: 468
TrCHSd10	:	GCACCACAGTGGTGTGGACATGCCCGTGCGCAGTATCAGCTTACAAAGCTTTAGGCC					: 465
TrCHSd11	:	-----					: -
	*	620	*	640	*	660	
TrCHSd1	:	-----					: -
TrCHSd2	:	-----					: -
TrCHSd3	:	TTCGTCGCATGTGAN-----					: 616
TrCHSd4	:	-----					: -
TrCHSd5	:	TTCGTCGCATGTGAAGCGTTAATGATGTACCAACAAGGTTGTTTGCTGGTGGCACGG					: 550
TrCHSd6	:	TTCGTCGCATGTGAAGCGTTAATGATGTACCAACAAGGTTGTTTGCTGGTGGCACGG					: 550
TrCHSd7	:	TTCGTCGCATGTGAAGCGTTAATGATGTACCAACAAGGTTGTTTGCTGGTGGCACGG					: 546
TrCHSd8	:	TTCGTCGCATATGTGAAGCGTTACATGATGTACCAACAAGGTTGTTTGCTGGTGGCACGG					: 533
TrCHSd9	:	TTCGTCGCATATGTGAAGCGTTACATGATGTACCAACAAGGTTGTTTGCTGGTGGCACGG					: 528
TrCHSd10	:	TTCGTCGCATATGTGAAGCGTTACATGATGTACCAACAAGGTTGTTTGCTGGTGGCACGG					: 525
TrCHSd11	:	-----					: -
	*	680	*	700	*	720	
TrCHSd1	:	-----					: -
TrCHSd2	:	-----					: -
TrCHSd3	:	-----					: -
TrCHSd4	:	-----					: -
TrCHSd5	:	TGCTTCGTTGGCTAAAGACTTGGCTGAAAACAACAAAGGTGCCCG-----					: 596
TrCHSd6	:	TGCTTCGTTGGCTAAAGACTTGGCTGAAAACAACAAAGGTGCCCGTGTATTGGTGGTTT					: 610
TrCHSd7	:	TGCTTCGTTGGCTAAAGACTTGGCTGAAAACAACAAAGGTGCCCGTGTATTGGTGGTTT					: 606
TrCHSd8	:	TGCTTCGTTGGCTAAAGACTTGGCTGAAAACAACAA-----					: 571
TrCHSd9	:	TGCTTCGTTGGCTAAAGACTTGGCTGAAAACAACAAAGGTGCCCGTGTATTGGTGGTTT					: 588
TrCHSd10	:	TACTTCGTTGGCTAAAGACTTGGCTGAAAACAACAAAGGTGCCCGTGTATTGGTGGTTT					: 585
TrCHSd11	:	-----					: -

FIGURE 24 (cont)

49/271

	*	
TrCHSd1	:	-
TrCHSd2	:	-
TrCHSd3	:	-
TrCHSd4	:	-
TrCHSd5	:	-
TrCHSd6	: GTTCAGAG -----	: 618
TrCHSd7	: GTT -----	: 609
TrCHSd8	:	-
TrCHSd9	: GTTCANAGATAACTG :	603
TrCHSd10	: GTT -----	: 588
TrCHSd11	:	-

FIGURE 24 (cont)

50/271

```

*      20      *      40      *      60
TrCHSe : GNAGCAACACACACTTGATTCTTTTGAATCCCTGCTACGTGGCNCACCAAAAACGT : 60

*      80      *      100      *      120
TrCHSe : TGCTAAGTCATCAACCATTCCAATTCCCTTAATATAACCTATCAGTACTCACCATCTTTTC : 120

*      140      *      160      *      180
TrCHSe : TTCCTCCCTGCTAACCTTAGACTCAGTAGAAGATGGTGAATGTTAATGAGATCCGCCAGG : 180

*      200      *      220      *      240
TrCHSe : CACAGAGAGCTGAAGGCCCTGCCACCGTGGCAATCGGCAGTGCAACTCCTCCAAACT : 240

*      260      *      280      *      300
TrCHSe : GTGTTGATCAGAGTACATACCCGGACTACTACTTCCGCATCACAAACAGTGAGGCACAAGA : 300

*      320      *      340      *      360
TrCHSe : CAGAGCTCAAAGAAAAATTCCAGCGCACGTGTAAGATATTATCTTACTCCATGCATG : 360

*      380      *      400      *      420
TrCHSe : TCTTTTCTGCTGACTGCCGTGTTATATATTGTTTGTGTTCTTAAATTGTTAT : 420

*      440      *      460      *      480
TrCHSe : GTCACTCTCACATGTACAAACACTTAAGACTAACTGCATATCATTTCAGGGACA : 480

*      500      *      520      *      540
TrCHSe : AATCTATGATTAAGAAGAGATACATGCATTTGACAGAAGAGATTTGAAGGAGAACCAA : 540

*      560      *      580
TrCHSe : GTTTATGTGAGNACATGGCACCTTCTGGGATGCAAGACAAGT : 583

```

FIGURE 25

51/271

TrCHSe : MVNVNEIRQAQRAEGPATVLAIGTATPPNCVDQSTYPDYYFRITNSEHKTELKEKFQRTR : 60
* 20 * 40 * 60

TrCHSe : DKSMIKKRYMHLTEEILKENPSLCEXMAPSWDARQ : 95
* 80 *

FIGURE 26

52/271

TrCHSe1:	GNAGCAACACACACTTGTATTCTTTGAATCCCTGCTACGTGGCTTACCAAAAAACGT	:	60
TrCHSe2:	----- GTCCTGCTCGTGGNCACC AAAAACGT	:	29
TrCHSe1:	TGCTAAGTCATCAACCATTCCAATTCCCTTAATATAACCTATCAGTACTCACCATTTTTC	:	120
TrCHSe2:	TGCTNAGT -NTGAACC-TTCC-ATTCCCTTAATATAACCTATCAGTACTCACCATTTTTC	:	86
TrCHSe1:	TTCCTCCCTGCTAACCTTAGACTCAG -AGAAGATGGTGAATGTTAACGAGATCCGCCAGG	:	180
TrCHSe2:	TTCCTCCCTGCTAACCTTAGACTCAG AGAAGATGGTGAATGTTAACGAGATCCGCCAGG	:	146
TrCHSe1:	CACAGAGAGCTGAAGGCCCTGCCACCGTGTGGCAATCGGCACTGCAACTCCTCCAAACT	:	240
TrCHSe2:	CACAGAGAGCTGAAGGCCCTG -----	:	167
TrCHSe1:	GTGTTGATCAGAGTACATAACCGGACTACTACTTCCGCATCACAAACAGTGAGGACAAGA	:	260
TrCHSe2:	-----	:	299
TrCHSe1:	CAGAGCTAAAGAAAAATTCCAGCGCACGTGTAAGATATTATCTTACTCCATGCATG	:	320
TrCHSe2:	-----	:	359
TrCHSe1:	TCTTTTCTGCTGACTGCCGTGTTATATATTGTTTGTGTTGTCCTTAAATTGTTAT	:	340
TrCHSe2:	-----	:	419
TrCHSe1:	GTCACTCTCACATGTACAAACACTTAAGACTAAACTGCATATCATTTCAGGGACA	:	380
TrCHSe2:	-----	:	479
TrCHSe1:	AATCTATGATTAAGAAGAGATAACATGCATTTGACAGAAGAGATTTGAAGGAGAACCAA	:	400
TrCHSe2:	-----	:	539
TrCHSe1 :	GTTTATGTGAGNACATGGCACCTTCTGGGATGCAAGACAAGT	:	460
TrCHSe2 :	-----	:	582
TrCHSe1 :	500	*	520
TrCHSe2 :	-----	*	540
TrCHSe1 :	560	*	580
TrCHSe2 :	-----	:	-

FIGURE 27

53/271

```

*      20      *      40      *      60
TrCHSf : GCNTAACGCCTGATTNTGTTGTTCTAACACAAGAACTAGTGTTGCTGAATCTTA : 60

*      80      *      100     *      120
TrCHSf : AGAAAAAAATGCCTCAAGGTGATTGAATGGAAGTTCCTCGGTGAATGGAGCACGTGCTAG : 120

*      140     *      160     *      180
TrCHSf : ACGTGCTCCTACTCAGGGAAAGGCAACGATACTGCATTAGGAAAGGCTTCCCCGCCA : 180

*      200     *      220     *      240
TrCHSf : AGTCCTCCCTCAAGAGTGCTTGGTGGAAAGGATTCAATTGCGACACTAAGTGTGACGATAC : 240

*      260     *      280     *      300
TrCHSf : TTATATTAAGGAGAAATTGGAGCGTCTTGCAAAAACACAACGTAAAAACAAGATACAC : 300

*      320     *      340     *      360
TrCHSf : AGTAATGTCAAAGGAGATCTTAGACAACATCCAGAGCTAGCCATAGATGGAACACCAAC : 360

*      380     *      400     *      420
TrCHSf : AATAAGGCAAAGCTTGAATAGCAAATCCAGCAGTAGTTGAAATGGCAACAAGAGCAAG : 420

*      *      440     *      460     *      480
TrCHSf : CAAAGATTGCATCAAAGAATGGGAAGGTACCTCAAGATATCACACACATAGTCTATGT : 480

*      500     *      520     *      540
TrCHSf : TTCCTCGAGCGAAATCGTCTACCCGGTGGTGACCTTATCTTGCAAATGAACTCGGCTT : 540

*      560     *      580     *      600
TrCHSf : AACACAGCGATGTTAACCGCGTAATGCTCTATTTCCTCGGTTGCTACGGCGGTGTCAGTGG : 600

* 
TrCHSf : CTTACCGTGTGCGCC : 613

```

FIGURE 28

54/271

* 20 * 40 * 60
TrCHSf : MPQGDLNGSSSVNGARARRAPTQGKATILALGKAFPAQVLPQECLVEGFIRDTKCDDTYI : 60

* 80 * 100 * 120
TrCHSf : KEKLERLCKNTTVKTRYTVMMSKEILDNYPELAIDGPTIRQKLEIANPAVEMATRASKD : 120

* 140 * 160 * 180
TrCHSf : CIKEWGRSPQDITHIVYVSSSEIRLPGGDLYLANELGLNSDVNRVMLYFLGCYGGVTGLR : 180

TrCHSf : VA : 182

FIGURE 29

55/271

	*	20	*	40	*	60	
TrCHSf1:	GCNTAAGCCTGATTNTGTTGTTCTAACACACAAGAACTAGTGTGCTTGAATCTTA						: 60
TrCHSf2:	---TAAGCCTGATTNTGTTGTTCTAACACACAAGAACTAGTGTGCTTGAATCTTA						: 57
TrCHSf3:	-----TTGATT-----TTGTTGTTCTAACACACAAGAACTAGTGTGCTTGAATCTTA						: 51
TrCHSf4:	-----GTTTGTGTTCTAACACACAAGAACTAGTGTGCTTGAATCTTA						: 42
	*	80	*	100	*	120	
TrCHSf1:	AGAAAAAAATGCCTCAAGGTATTGAATGGAAGTTCCTCGGTGAATGGAGCACGTGCTAG						: 120
TrCHSf2:	AGAAAAAAATGCCTCAAGGTATTGAATGGAAGTTCCTCGGTGAATGGAGCACGTGCTAG						: 117
TrCHSf3:	AGAAAAAAATGCCTCAAGGTATTGAATGGAAGTTCCTCGGTGAATGGAGCACGTGCTAG						: 111
TrCHSf4:	AGAAAAAAATGCCTCAAGGTATTGAATGGAAGTTCCTCGGTGAATGGAGCACGTGCTAG						: 102
	*	140	*	160	*	180	
TrCHSf1:	ACGTGCTCCTACTCAGGGAAAGGCAACGATACTGCAATTAGGAAAGGCTTCCCCGCCA						: 180
TrCHSf2:	ACGTGCTCCTACTCAGGGAAAGGCAACGATACTGCAATTAGGAAAGGCTTCCCCGCCA						: 177
TrCHSf3:	ACGTGCTCCTACTCAGGGAAAGGCAACGATACTGCAATTAGGAAAGGCTTCCCCGCCA						: 171
TrCHSf4:	ACGTGCTCCTACTCAGGGAAAGGCAACGATACTGCAATTAGGAAAGGCTTCCCCGCCA						: 162
	*	200	*	220	*	240	
TrCHSf1:	AGTCCTCCCTCAAGAGTGCTTGGTGGAAAGGATTCAATTGCGGACACTAAGTGTGACGATAC						: 240
TrCHSf2:	AGTCCTCCCTCAAGAGTGCTTGGTGGAAAGGATTCAATTGCGGACACTAAGTGTGACGATAC						: 237
TrCHSf3:	AGTCCTCCCTCAAGAGTGCTTGGTGGAAAGGATTCAATTGCGGACACTAAGTGTGACGATAC						: 231
TrCHSf4:	AGTCCTCCCTCAAGAGTGCTTGGTGGAAAGGATTCAATTGCGGACACTAAGTGTGACGATAC						: 222
	*	260	*	280	*	300	
TrCHSf1:	TTATATTAAGGAGAAATTGGAGCGTCTTGCAAAAACACAACGTGAAAAACAAAGATACAC						: 300
TrCHSf2:	TTATATTAAGGAGAAATTGGAGCGTCTTGCAAAAACACAACGTGAAAAACAAAGATACAC						: 297
TrCHSf3:	TTATATTAAGGAGAAATTGGAGCGTCTTGCAAAAACACAACGTGAAAAACAAAGATACAC						: 291
TrCHSf4:	TTATATTAAGGAGAAATTGGAGCGTCTTGCAAAAACACAACGTGAAAAACAAAGATACAC						: 282
	*	320	*	340	*	360	
TrCHSf1:	AGTAATGTCAAAGGAGATCTTAGACAACATATCCAGAGCTAGCCATAGATGGAACACCAAC						: 360
TrCHSf2:	AGTAATGTCAAAGGAGATCTTAGACAACATATCCAGAGCTAGCCATAGATGGAACACCAAC						: 357
TrCHSf3:	AGTAATGTCAAAGGAGATCTTAGACAACATATCCAGAGCTAGCCATAGATGGAACACCAAC						: 351
TrCHSf4:	AGTAATGTCAAAGGAGATCTTAGACAACATATCCAGAGCTAGCCATAGATGGAACACCAAC						: 342
	*	380	*	400	*	420	
TrCHSf1:	AATAAGGCAAAGCTTGAATAGCAAATCCAGCAGTAGTTGAAATGGCAACAAGAGCAAG						: 420
TrCHSf2:	AATAAGGCAAAGCTTGAATAGCAAATCCAGCAGTAGTTGAAATGGCAACAAGAGCAAG						: 417
TrCHSf3:	AATAAGGCAAAGCTTGAATAGCAAATCCAGCAGTAGTTGAAATGGCAACAAGAGCAAG						: 411
TrCHSf4:	AATAAGGCAAAGCTTGAATAGCAAATCCAGCAGTAGTTGAAATGGCAACAAGAGCAAG						: 402
	*	440	*	460	*	480	
TrCHSf1:	CAAAGATTGCATCAAAGAATGGGGAAAGGTCAACCTCAAGATATCACACACATAGTCTATGT						: 480
TrCHSf2:	CAAAGATTGCATCAAAGAATGGGGAAAGGTCAACCTCAAGATATCACACACATAGTCTATGT						: 477
TrCHSf3:	CAAAGATTGCATCAAAGAATGGGGAAAGGTCAACCTCAAGATATCACACACATAGTCTATGT						: 471
TrCHSf4:	CAAAGATTGCATCAAAGAATGGGGAAAGGTCAACCTCAAGATATCACACACATAGTCTATGT						: 462

FIGURE 30

56/271

	*	500		*	520		*	540	
TrCHSf1 :	TTCCTCGAGCGAAATTCTGCTACCCGGTGGTGACCTTATCTTGCAAATGAACTCGGCCTT								: 540
TrCHSf2 :	TTCCTCGAGCGAAATTCTGCTACCCGGTGGTGACCTTATCTTGCAAATGAACTCGGCCTT								: 537
TrCHSf3 :	TTCCTCGAGCGAAATTCTGCTACCCGGTGGTGACCTTATCTTGCAAATGAACTCGGCCTT								: 531
TrCHSf4 :	TTCCTCGAGCGAAATTCTGCTACCCGGTGGTGACCTTATCTTGCAAATGAACTCGGCCTT								: 522

	*	560		*	580		*	600	
TrCHSf1 :	AAACAGCGATGTTAATCGCGTAATGCTCTATTTCCTCGGTTGCTACGGCGGTGTCACTGG								: 600
TrCHSf2 :	AAACAGCGATGTTAATCGCGTAATGCTCTATTTCCTCGGTTGCT-----								: 570
TrCHSf3 :	AAACAGCGATGTTAATCGCGTAATGCTCTATTTCCTCGGTTGCT-----								: 575
TrCHSf4 :	AAACAGCGATGTTAATCGCGTAATGCTCTATTTCCTCGGTTGCTACGGCGG-----								: 573

	*								
TrCHSf1 :	CTTACGTGTCGCC	:	613						
TrCHSf2 :	-----	:	-						
TrCHSf3 :	-----	:	-						
TrCHSf4 :	-----	:	-						

FIGURE 30 (cont)

57/271

TrCHSg : GTATACCAAGGTTGTTTGCTGGTGGCACGGTACTTCGTTGGCTAAAGACTTGGCTGAA : 60
 * 20 * 40 * 60
 TrCHSg : AACAAACAAAGGTGCCGTGTGGTGGTTGTTAGAGATAACTGCAGTTACTTCCGT : 120
 * 80 * 100 * 120
 TrCHSg : GGACCCAGTGACACTCACCTTGATAGCCTTGTGGGGCAAGCATTGTTGGAGATGGTGCA : 180
 * 140 * 160 * 180
 TrCHSg : GCAGCTGTGATTGTTGGTCAGACCCTTGCCAGAAGTTGAGAAGCCTTGTGAATTG : 240
 * 200 * 220 * 240
 TrCHSg : GTATGGACCGCACAAACAATCGCTCCAGATAGTGAAGGAGCCATTGATGGTCACCTTCGC : 300
 * 260 * 280 * 300
 TrCHSg : GAAGCAGGGCTGACATTCCATCTCCTCAAGGATGTTCCCTAGCCTGTCTCAAATAACATT : 360
 * 320 * 340 * 360
 TrCHSg : GAGAAAGCGTTGTTGATGCCTTCAACCTTGAAATATTCTGACTACAATTCCATCTT : 420
 * 380 * 400 * 420
 TrCHSg : TGGATTGCACACCCAGGCAGGCAATTCTGACCAAGTTGAAGCTAACATTAGGCTTA : 480
 * 440 * 460 * 480
 TrCHSg : AAGCCAGAGAAAATGCAAGCCACTCGACATGTACTTAGCGAATATGGTAACATGTCAAGT : 540
 * 500 * 520 * 540
 TrCHSg : GCGTGTGTGTTATTATCTGGATGAGATGAGGAGGAAGTCAAAAGAAGACGGACTTGCC : 600
 * 560 * 580 * 600
 TrCHSg : ACAACAG : 607

FIGURE 31

58/271

* 20 * 40 * 60
TrCHSg : VYQGCFAGGTVLRLAKDLAENNK GARV LVCSEITAVTFRG PSDTHLDSL VGQAL FGDGA : 60

* 80 * 100 * 120
TrCHSg : AAVIVGSDPLPEVEKPLFELVWTAQTIAPDSEGAI DGH LREAGLT FHLLKDVP SLVSNNI : 120

* 140 * 160 * 180
TrCHSg : EKALVDAF QPLNIS DYNSIF WIAHPGGPAILDQVEAKLGLKPEKM QATRHVLSEYGNMSS : 180

* 200
TrCHSg : ACVLFILDEMRRKS KEDGLATT : 202

FIGURE 32

59/271

	* 20 *	* 40 *	* 60	
TrCHSg1 :	GTATAACCAAGGNTGTTTGCTGGTGGCACGGTACTTCGTTGGCTAAAGACTTGGCTGAA			: 60
TrCHSg2 :	-----CCAAGGTTGTTTGCTGGTGGCACGGTACTTCGTTGGCTAAAGACTTGGCTGAA			: 55
TrCHSg3 :	-----GGTTGTTTGCTGGTGGCACGGTACTTCGTTGGCTAAAGACTTGGCTGAA			: 51
	* 80 *	* 100 *	* 120	
TrCHSg1 :	AACAACAAAGGTGCCCGTGTGTTGGGGTTCAGAGATAACTGCAGTTACTTCCGT			: 120
TrCHSg2 :	AACAACAAAGGTGCCCGTGTGTTGGGGTTCAGAGATAACTGCAGTTACTTCCGT			: 115
TrCHSg3 :	AACNACAAAGGTGCCCGTGTGTTGGGGTTCAGAGATAACTGCAGTTACTTCCGT			: 111
	* 140 *	* 160 *	* 180	
TrCHSg1 :	GGACCCAGTGACACTCAGCTTGTGATAGCCTTGTGGGGCAAGCATTGTTGGAGATGGTGCA			: 180
TrCHSg2 :	GGACCCAGTGACACTCACCTTGTGATAGCCTTGTGGGGCAAGCATTGTTGGAGATGGTGCA			: 175
TrCHSg3 :	GGACCCAGTGACACTCACCTGATAGCCTTGTGGGGCAAGCATTGTTGGAGATGGTGCA			: 171
	* 200 *	* 220 *	* 240	
TrCHSg1 :	GCAGCTGTGATTGTTGGTTCAAGACCCCTTGCCAGAAGTTGAGAAGCCTTGTGAATTG			: 240
TrCHSg2 :	GCAGCTGTGATTGTTGGTTCAAGACCCCTTGCCAGAAGTTGAGAAGCCTTGTGAATTG			: 235
TrCHSg3 :	GCAGCTGTGATTGTTGGTTCAAGACCCCTTGCCAGAAGTTGAGAAGCCTTGTGAATTG			: 231
	* 260 *	* 280 *	* 300	
TrCHSg1 :	GTATGGACCGCACAAACAATCGCTCCAGATAGTGAAGGAGCCATTGATGGTCACCTTCGC			: 300
TrCHSg2 :	GTATGGACCGCACAAACAATCGCTCCAGATAGTGAAGGAGCCATTGATGGTCACCTTCGC			: 295
TrCHSg3 :	GTATGGACCGCACAAACAATCGCTCCAGATAGTGAAGGAGCCATTGATGGTCACCTTCGC			: 291
	* 320 *	* 340 *	* 360	
TrCHSg1 :	GAAGCAGGGCTGACATTCCATCTCCTCAAGGATGTTCTAGCCTTGTCTCAAATAACATT			: 360
TrCHSg2 :	GAAGCAGGGCTGACATTCCATCTCCTCAAGGATGTTCTAGCCTTGTCTCAAATAACATT			: 355
TrCHSg3 :	GAAGCAGGGCTGACATTCCATCTCCTCAAGGATGTTCTAGCCTTGTCTCAAATAACATT			: 351
	* 380 *	* 400 *	* 420	
TrCHSg1 :	GAGAAAGCCTGTTGATGCCCTTCAACCTTGAAATATCTGACTACAATTCCATCTTT			: 420
TrCHSg2 :	GAGAAAGCCTGTTGATGCCCTTCAACCTTGAAATATTCTGACTACAATTCCATCTTT			: 415
TrCHSg3 :	GAGAAAGCCTGTTGATGCCCTTCAACCTTGAAATATTCTGACTACAATTCCATCTTT			: 411
	* 440 *	* 460 *	* 480	
TrCHSg1 :	TGGATTGCACACCCCAGGCGGACCAGCAATTCTGACCAAGTTGAAGCTAACGTTAGGCTTA			: 480
TrCHSg2 :	TGGATTGCACACCCCAGGCGGACCAGCAATTCTGACCAAGTTGAAGCTAACGTTAGGCTTA			: 475
TrCHSg3 :	TGGATTGCACACCCCAGGCGGACCAGCAATTCTGACCAAGTTGAAGCTAACGTTAGGCTTA			: 471
	* 500 *	* 520 *	* 540	
TrCHSg1 :	AAGCCAGAGAAAATGCAAATCCACTCGACATGTACTTAGCGAATATGGTAACATGTCQAGT			: 540
TrCHSg2 :	AAGCCAGAGAAAATGCAAGCCACTCGACATGTACTTAGCGAATATGGTAACATGTCAGT			: 535
TrCHSg3 :	AAGCCAGAGAAAATGCAAGCCACTCGACATGTACTTAGCGAATATGGTAACATGTCAGT			: 531

FIGURE 33

60/271

	*	560	*	580	*	600	
TrCHSg1 :	GC	GTGTGTGTTATTTATCTTGGATGAGATGAGGAGGAAGTC	AAAAGAAGACGGACTTGCC				: 600
TrCHSg2 :	GC	GTGTGTGTTATTTATCTTGGATG	AGATGAGGAGGAAGTC	AAAAGAAGAC	N	G	: 591
TrCHSg3 :	GC	GTGTGTGTTATTTATCTTGGATGAGATGAGGAGGAAGTC	AAAAGAAGACGGACTTGCG				: 590

TrCHSg1 :	ACAACAG	:	607
TrCHSg2 :	-----	:	-
TrCHSg3 :	-----	:	-

FIGURE 33 (cont)

61/271

TrCHSh : AATNACACCNTNANACCTCCAATTCTCGTACCTCACCAATCTCATTAAATTATATAC : 60
 * 20 * 40 * 60
 TrCHSh : TTGGTACATTTGTTACCTCCAACAAAAAATGGTGACCGTAGAAGAGATTCTGAACG : 120
 * 80 * 100 * 120
 TrCHSh : CCCAACGTTCAAATGCCCTGCCACTATCTTAGCTTTGGCACAGCCACTCCTCTAACT : 180
 * 140 * 160 * 180
 TrCHSh : GTGTCACTCAAGCTGATTATCCTGATTACTACTTTCTGATCACCAACAGCGAACATATGA : 240
 * 200 * 220 * 240
 TrCHSh : CTGATCTTAAGGAAAATTCAAGCGGATGTGTGATAGATCAATGATAAAGAACGTTACA : 300
 * 260 * 280 * 300
 TrCHSh : TGCACCTAACAGAAGACTTCTGAAGGAGAATCCAAATATGTGTGAATACATGGCACCAT : 360
 * 320 * 340 * 360
 TrCHSh : CACTAGATGTAAGACGAGACATAGTGGTTGTTGAAGNACCAAAGCTAGGTAAAGAACAC : 420
 * 380 * 400 * 420
 TrCHSh : CAAAAAAAGCCATATGNGAATGGGGACAACCAAAATCNAAAATCACACATGCTGGTTTC : 480
 * 440 * 460 * 480
 TrCHSh : TGACCACTCCGGTGNTGACATGCCCGGG : 510
 * 500 *

FIGURE 34

62/271

* 20 * 40 * 60
TrCHSh : MVTVEEIRNAQRSGPATILAFGTATPSNCVTQADYPDYYFRITNSEHMTDLKEKFKRCM : 60

* 80 * 100 * 120
TrCHSh : DRSMIKKRYMHLTEDFLKENPNMCEYMAPSLDVRRDIVVVEXPKLGKEPKKAIXEWGQPK : 120

*
TrCHSh : XKITHAWFLTTSGDMPG : 137

FIGURE 35

63/271

* 20 * 40 * 60
TrCHRa : GACAAATGCNTGTGGTTGGAATGGGATCCGCACCTGATTTCACATGTAAGAAAGACACAA : 60

* 80 * 100 * 120
TrCHRa : AAGATGCAATCGTTGAAGCCATCAAACAAGGTTATAGACACTTGATACTGCTGCTGCTT : 120

* 140 * 160 * 180
TrCHRa : ATGGCTCANAACAAGCTCTGGTGAAGGTTGAAAGAAGCANTTGAACTTGGTCTTGTCA : 180

* 200 * 220 * 240
TrCHRa : CTANAGAAGAGCTNTTGTACTTCTAAACTTGGNNACTGAAAATCATNCTAACCTG : 240

FIGURE 36

64/271

* 20 * 40 * 60
TrCHR_a : QMXVVGMGSAPDFTCKKDTKDAIVEAIKQGYRHFDTAAAYGSXQALGEGLKEAXELGLVT : 60

*
TrCHR_a : XEEXFVTSKLWXTENHXNL : 79

FIGURE 37

65/271

TrCHRb : GTGTAGCAGAGTNAGAAAAAGAGAGAAAAACATGGCAGGAAAGAAAATCCCAGAAG : 60
 * 20 * 40 * 60
 TrCHRb : TGTTATTGAATTCAAGGACACAAAATGCCAGTCATAGGAATGGAACATCAGTAGACAATC : 120
 * 80 * 100 * 120
 TrCHRb : GTCCATCAAATGATGTTCTGCTTCAATCTTGATGCAATTGAAGTTGGTTATCGCC : 180
 * 140 * 160 * 180
 TrCHRb : ATTCGATTCTGTTCTGTGTATGGAACAGAGGAAGCCATAGGAATTGCTTAGCAAAAG : 240
 * 200 * 220 * 240
 TrCHRb : CTTTAGAAAAAGGGCTTATTAAGAGTAGAGATGAAGTTTCATCACTCAAAGCCATGGA : 300
 * 260 * 280 * 300
 TrCHRb : ATACTGATGCAGATTATGAACTTATTGTTCCAGCTCTCAAGACCACATTGAAAAAGCTGG : 360
 * 320 * 340 * 360
 TrCHRb : GGACGGAGTATGGATCTTATCTGATCCATTGGCAGTGAGACTTAGACATGATCTG : 420
 * 380 * 400 * 420
 TrCHRb : AAAACCTGTTGTTTACCAAAGAAGATTACTCCCTTGATATAGAAGGGACATGGA : 480
 * 440 * 460 * 480
 TrCHRb : AAGCTATGGAAGAATGTTATAAGTTAGGCTTAGCAAAGTCTATTGGTATATGCAATTATG : 540
 * 500 * 520 * 540
 TrCHRb : GTACCAAAAAACTCACCAAACCTTGAAACAGCCACCATACCCCTGCAGTCAATCAGG : 600
 * 560 * 580 * 600
 TrCHRb : TGGA : 604

FIGURE 38

66/271

TrCHRb : MAGKKIPEVLLNSGHKMPVIGMGTSDNRPSNDVLASIFVDAIEVGYRHFDSASVYGT
* 20 * 40 * 60 : 60

TrCHRb : AIGIALAKALEKGGLIKSRDEVFITSKPWNTDADYELIVPALKTTLKLGTEYVDLYLIHW
* 80 * 100 * 120 : 120

TrCHRb : PVRLRHDLLENPVVFITKEDLLPFDIEGTWKAMEECYKLGLAKSIGICNYGTTKLTKLLETA
* 140 * 160 * 180 : 180

TrCHRb : TITPAVNQV : 189

FIGURE 39

67/271

	*	20	*	40	*	60		
TrCHRb1 :	GTGTAGCAGNATAGANAAANATAA	A	AAACATGGCAGGAAAGAAAATCCCAGAAG				:	60
TrCHRb2 :	--GTAGCAGN	TAGANAAAG	NN	AAACATGGCAGGAAAGAAAATCCCAGAAG			:	58
TrCHRb3 :	-----	AGTNNGAAAAGAGAGAAAAAAAC	N	NTGGCAGGAAAGAAAATCCCAGAAG			:	51
TrCHRb4 :	-----	AGTNNGAAAAGAGAGAAAAAAAC	N	NTGGCAGGAAAGAAAATCCCAGAAG			:	51
TrCHRb5 :	-----	-----	ACATGGCAGGAAAGAAAATCCCAGAAG				:	27
	*	80	*	100	*	120		
TrCHRb1 :	TGTTATTGAATTCA	GAGCACAAAATGCCAGTC	CATAGGAATGGGACATCAGTAGACAATC				:	120
TrCHRb2 :	TGTTATTGAATTCA	GAGCACAAAATGCCAGTC	CATAGGAATGGGACATCAGTAGACAATC				:	118
TrCHRb3 :	TGTTATTGAATTCA	GAGCACAAAATGCCAGTC	CATAGGAATGGGACATCAGTAGACAATC				:	111
TrCHRb4 :	TGTTATTGAATTCA	GAGCACAAAATGCCAGTC	CATAGGAATGGGACATCAGTAGACAATC				:	111
TrCHRb5 :	TGTTATTGAATTCA	GAGCACAAAATGCCAGTC	CATAGGAATGGGACATCAGTAGACAATC				:	87
	*	140	*	160	*	180		
TrCHRb1 :	GTCCCATCAAATGATGTTCTGCTTCAATCTTGTGATGCAATTGAAGTTGGTTATGCC						:	180
TrCHRb2 :	GTCCCATCAAATGATGTTCTGCTTCAATCTTGTGATGCAATTGAAGTTGGTTATGCC						:	178
TrCHRb3 :	GTCCCATCAAATGATGTTCTGCTTCAATCTTGTGATGCAATTGAAGTTGGTTATGCC						:	171
TrCHRb4 :	GTCCCATCAAATGATGTTCTGCTTCAATCTTGTGATGCAATTGAAGTTGGTTATGCC						:	171
TrCHRb5 :	GTCCCATCAAATGATGTTCTGCTTCAATCTTGTGATGCAATTGAAGTTGGTTATGCC						:	147
	*	200	*	220	*	240		
TrCHRb1 :	ATTCGATTCTGCTTCTGTTATGGAACAGAGGAAGGCCATAGGAATTGCTTTAGCAAAAG						:	240
TrCHRb2 :	ATTCGATTCTGCTTCTGTTATGGAACAGAGGAAGGCCATAGGAATTGCTTTAGCAAAAG						:	238
TrCHRb3 :	ATTCGATTCTGCTTCTGTTATGGAACAGAGGAAGGCCATAGGAATTGCTTTAGCAAAAG						:	231
TrCHRb4 :	ATTCGATTCTGCTTCTGTTATGGAACAGAGGAAGGCCATAGGAATTGCTTTAGCAAAAG						:	231
TrCHRb5 :	ATTCGATTCTGCTTCTGTTATGGAACAGAGGAAGGCCATAGGAATTGCTTTAGCAAAAG						:	207
	*	260	*	280	*	300		
TrCHRb1 :	CTTTA	AAAAGGGCTTATTAAAGAGTA	AGATGAAGNN	TCATTC	GAAGNCATGGA		:	300
TrCHRb2 :	CTTTAGAAAAGGGCTTATTAAAGAGTA	AGATGAAGNN	TCATTC	CAAGGCCATGGA			:	298
TrCHRb3 :	CTTTAGAAAAGGGCTTATTAAAGAGTA	AGATGAAGNN	TCATTC	CAAGGCCATGGA			:	291
TrCHRb4 :	CTTTAGAAAAGGGCTTATTAAAGAGTA	AGATGAAGNN	TCATTC	CAAGGCCATGGA			:	291
TrCHRb5 :	CTTTAGAAAAGGGCTTATTAAAGAGTA	AGATGAAGNN	TCATTC	CAAGGCCATGGA			:	267
	*	320	*	340	*	360		
TrCHRb1 :	ATACTGATGCAGATTATGA	ACTTATTG	NTCAAN	-----	-----		:	334
TrCHRb2 :	ATACTGATGCAGATTATGA	ACTTATTG	TTCCAGCTCTCAAGACCACATTG	AAAAAGCTGG			:	358
TrCHRb3 :	ATACTGATGCAGATTATGA	ACTTATTG	TTCCAGCTCTCAAGACCACATTG	AAAAAGCTGG			:	351
TrCHRb4 :	ATACTGATGCAGATTATGA	ACTTATTG	TTCCAGCTCTCAAGACCACATTG	AAAAAGCTGG			:	351
TrCHRb5 :	ATACTGATGCAGATTATGA	ACTTATTG	NTCCAGCTCTCAAGACCACATTG	AAAAAGCTGG			:	327
	*	380	*	400	*	420		
TrCHRb1 :	-----						:	-
TrCHRb2 :	GGACGGAGTATGTGGATCTTATCTGATCCATTGGCCAGTGAGACTTAGACATGATCTTG						:	418
TrCHRb3 :	GGACGGAGTATGTGGATCTTATCTGATCCATTGGCCAGTGAGACTTAGACATGATCTTG						:	411
TrCHRb4 :	GGACGGAGTATGTGGATCTTATCTGATCCATTGGCCAGTGAGACTTAGACATGATCTTG						:	411
TrCHRb5 :	GGAC	AGA	-----	-----	-----		:	334

FIGURE 40

68/271

	* 440 *	* 460 *	* 480		
TrCHRb1 :	-----	-----	-----	:	-
TrCHRb2 :	AAAACCTGTTGTTTCACCAAAGAAGATTACTCCCTTGATATAGAAGGGACATGGA			:	478
TrCHRb3 :	AAAACCTGTTGTTTCACCAAAGAAGATTACTCCCTTGATATAGAAGGGACATGGA			:	471
TrCHRb4 :	AAAACCTGTTGTTTCACCAAAGAAGATTACTCCCTTGATATAGAAGGGACATGGA			:	471
TrCHRb5 :	-----	-----	-----	:	-
	* 500 *	* 520 *	* 540		
TrCHRb1 :	-----	-----	-----	:	-
TrCHRb2 :	AAGCTATGGAAGAATGTTATAAGTTAGGCTTAGCAAAGTCATTGGTATATGCAATTATG			:	538
TrCHRb3 :	AAGCTATGGAAGAATGTTATAAGTTAGGCTTAGCAAAGTCATTGGIATATGCAATTATG			:	531
TrCHRb4 :	AAGCTATGGAAGAATGTTATAAGTTAGGCTTAGCAAAGTCATTGGTATATGCAATTATG			:	531
TrCHRb5 :	-----	-----	-----	:	-
	* 560 *	* 580 *	* 600		
TrCHRb1 :	-----	-----	-----	:	-
TrCHRb2 :	GTACCAAAAAACTCACCAACTCTTGAAACAGCCACCATACCCCTGCAGTCATCAGG			:	598
TrCHRb3 :	GTACCAAAAAACTCACCAACTCTTGAAACAGCCACCATACCCCTGCAGTC-----			:	584
TrCHRb4 :	GTACCAAAAAACTCAC-----			:	547
TrCHRb5 :	-----	-----	-----	:	-
TrCHRb1 :	----- : -				
TrCHRb2 :	TGGA : 602				
TrCHRb3 :	----- : -				
TrCHRb4 :	----- : -				
TrCHRb5 :	----- : -				

FIGURE 40 (cont)

69/271

```

          *      20      *      40      *      60
TrCHrc : TAAGAATGAANCAATTATCTNANAAAAGGNNCANGCAAGTNAGTTNNATTCAAACATA : 60

          *      80      *      100     *      120
TrCHrc : GNCTTAAAGTGTGTAACATATTCTTAACCTAAANNNTTNACCNACAAAAAAACAA : 120

          *      140     *      160     *      180
TrCHrc : AGACAATAACATGGTAGTGTTGAAATTCCAACAAAGGTTCTTACTAACACTCTAGTCA : 180

          *      200     *      220     *      240
TrCHrc : AGTAAAAATGCCTGTGGTGGAAATGGGATCAGCTCCTGATTCACATGTAAGAAAGATAC : 240

          *      260     *      280     *      300
TrCHrc : AAAAGATGCAATCATTGAAGCCATCAAACAAGGTTATAGACACTTGATACTGCTGCTGC : 300

          *      320     *      340     *      360
TrCHrc : TTATGGCTCAGAACAAAGCTCTTGGTGAAGGTTGAAAGAAGCAATTGAAACTTGGCCTTGT : 360

          *      380     *      400     *      420
TrCHrc : CACTAGAGAAGAGCTTTGTTACTTCTAAACTTGGGTCACTGAAAATCATCCTCACCT : 420

          *      440     *      460     *      480
TrCHrc : TGTTGTTCCCTGCTCTCAAAAATCTCTCAAGACTCTCAATTGGAGTACTGGACTTGT : 480

          *      500     *      520     *      540
TrCHrc : TTTGATCCATTGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGATGTGGC : 540

          *      560     *      580     *      600
TrCHrc : AGATCTCTTGCCATTGATGTGAAGGGTGTGGAATCCATGGAAGAAGGCTTGAAACT : 600

          *      620     *      640     *      660
TrCHrc : TGGACTCACTAAAGCTATTGGTGTTAGTAACTTCTCTGTCAAGAAACTTCAAATCTTGT : 660

          *      680     *
TrCHrc : CTCAGTTGCCACCGTTCTCCTGCGGTCAATCAG : 694

```

FIGURE 41

70/271

* 20 * 40 * 60
TrCHrc : MGSVEIPTKVLNTNTSSQVKMPVVGMSAPDFTCKKDTKDAIEAIKGQGYRHFDTAAAYGS : 60

* 80 * 100 * 120
TrCHrc : EQALGEGLKEAIELGLVTREELFVTSKLWVTEHPHLVVPALQKSLKTLQLEYLDLYLIH : 120

* 140 * 160 * 180
TrCHrc : WPLSSQPGKFSFPIDVADLLPDFDVKGWESMEEGLKLGLTKAIGVSNFSVKLQNLVSVA : 180

TrCHrc : TVLPAVNQ : 188

FIGURE 42

71/271

	*	20	*	40	*	60	
TrCHRc1 :	TAAGAATGAANCAATTATC	TAAAGG	INCANGCAAGT	AGTNCTATTAAACATA			60
TrCHRc2 :	-	TCTNNAAAAGGN	NCANGCAAGTNAGTTNNNTANTTNAACTA	-			41
TrCHRc3 :	-	-	-	-	GNATTCAAACATA		13
TrCHRc4 :	-	-	-	-	ATTCAAACATA		11
TrCHRc5 :	-	-	-	-	TTCAAACATA		10
TrCHRc6 :	-	-	-	-	TTCNAAACATA		10
TrCHRc7 :	-	-	-	-	AACATA		6
TrCHRc8 :	-	-	-	-	ACA		3
TrCHRc9 :	-	-	-	-	CA		2
TrCHRc10 :	-	-	-	-	CA		2
TrCHRc11 :	-	-	-	-	CA		2
TrCHRc12 :	-	-	-	-	CA		2
TrCHRc13 :	-	-	-	-	-		-
TrCHRc14 :	-	-	-	-	-		-
TrCHRc15 :	-	-	-	-	-		-
TrCHRc16 :	-	-	-	-	-		-
	*	80	*	100	*	120	
TrCHRc1 :	GNCTAAAGTGTGTAACATATTCTAAC	TTAACN	TTTGACCC	ACAAAAAAACAA			120
TrCHRc2 :	GNCTAAAGTGTGAAACATATTCTAAC	TTAACN	TTTGACCC	ACAAAAAAACAA			101
TrCHRc3 :	GNCTAAAGTGTGTAACATATTCTAAC	TTAACN	TTTNACCC	ACAAAAAAACAA			73
TrCHRc4 :	GNCTAAAGTGTGTAACATATTCTAAC	TTAACN	TTTNACCC	ACAAAAAAACAA			71
TrCHRc5 :	GCCTCCAGTGTGTAACATATTCTAAC	TTAACN	TTTNACCC	ACAAAAAAACAA			70
TrCHRc6 :	GNCTCAAAGTGTGTAACATATTCTAAC	TTAACN	TTTGACCC	ACAAAAAAACAA			70
TrCHRc7 :	GNCTAAAGTGTGTAACATATTCTAAC	TTAACN	NNNTTTTGACCC	ACAAAAAAACAA			66
TrCHRc8 :	NNNTTAAGTGTGAAACATTCTAAC	TTAACN	TTTNACCC	ACAAAAAAACAA			63
TrCHRc9 :	NNNTTAAGTGTGAAACATTCTAAC	TTAACN	AAANNNTTTTNACCC	ACAAAAAAACAA			62
TrCHRc10 :	NNNTAAAGTGTGAAACATTCTAAC	TTAACN	AAANNNTTTTNACCC	ACAAAAAAACAA			62
TrCHRc11 :	NNNTTAAGTGTGAAACATTCTAAC	TTAACN	AAANNNTTTTNACCC	ACAAAAAAACAA			62
TrCHRc12 :	NNNTTAAGTGTGAAACATTCTAAC	TTAACN	AAANNNTTTTNACCC	ACAAAAAAACAA			62
TrCHRc13 :	-	GNGTGTAAACATATTCTAAC	TTAACN	NNNTTTTNACCC	ACAAAAAAACAA		52
TrCHRc14 :	-	GNGTGTAAACATATTCTAAC	TTAACN	NNNTTTTNACCC	ACAAAAAAACAA		52
TrCHRc15 :	-	GNGTGTAAACATATTCTAAC	TTAACN	NNNTTTTNACCC	ACAAAAAAATNAANG		52
TrCHRc16 :	-	-	NTTGTACAA	NNNTTTTNACCC	NACAAAAAAACAA		38
	*	140	*	160	*	180	
TrCHRc1 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						180
TrCHRc2 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						161
TrCHRc3 :	AGACAAACAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						133
TrCHRc4 :	AGACAAACAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						131
TrCHRc5 :	AGACAAACAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						130
TrCHRc6 :	AGACAAACAACATGGGNAGCGTTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						130
TrCHRc7 :	AGACAAACAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						126
TrCHRc8 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						123
TrCHRc9 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						123
TrCHRc10 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						122
TrCHRc11 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						122
TrCHRc12 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						122
TrCHRc13 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						112
TrCHRc14 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						112
TrCHRc15 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						112
TrCHRc16 :	AGACAAATAACATGGGTAGTGTGAAATTCCAACAAAGGTCTTACTAACACTTCTAGTC						98

FIGURE 43

72/271

	* 200 *	220 *	* 240
TrCHrc1 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGATA C		: 240
TrCHrc2 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGATA C		: 221
TrCHrc3 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGATA C		: 193
TrCHrc4 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGATA C		: 191
TrCHrc5 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGACA C		: 190
TrCHrc6 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGACA C		: 190
TrCHrc7 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGACA C		: 186
TrCHrc8 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGATA C		: 183
TrCHrc9 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGACA C		: 182
TrCHrc10 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGACA C		: 182
TrCHrc11 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGACA C		: 182
TrCHrc12 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGATA C		: 182
TrCHrc13 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGATA C		: 172
TrCHrc14 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGACA C		: 172
TrCHrc15 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGACA C		: 172
TrCHrc16 :	AGTGA AAAATGC CCTGTGG TTGGAATGG GATCAGC TCCTGATT CACATGTA AGAAAGATA C		: 158
	* 260 *	280 *	* 300
TrCHrc1 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 300
TrCHrc2 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 281
TrCHrc3 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 253
TrCHrc4 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 251
TrCHrc5 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 250
TrCHrc6 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 250
TrCHrc7 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 246
TrCHrc8 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 243
TrCHrc9 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 242
TrCHrc10 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 242
TrCHrc11 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 242
TrCHrc12 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 242
TrCHrc13 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 232
TrCHrc14 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 232
TrCHrc15 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 232
TrCHrc16 :	AAAAGATG CAATCATTG AAGCCATCAA ACAAGGTTA TAGACACTT TGATACTG CTGCTGC		: 218
	* 320 *	340 *	* 360
TrCHrc1 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 360
TrCHrc2 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 341
TrCHrc3 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 313
TrCHrc4 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 311
TrCHrc5 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 293
TrCHrc6 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 310
TrCHrc7 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 306
TrCHrc8 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 303
TrCHrc9 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 302
TrCHrc10 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 302
TrCHrc11 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 302
TrCHrc12 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 302
TrCHrc13 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 292
TrCHrc14 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 292
TrCHrc15 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 292
TrCHrc16 :	TTATGGCT CAGAAC AGCTCT TGGTGAAG GTTGAAAG AAGCAATT GAACCTGG CTTGT		: 278

FIGURE 43 (cont)

73/271

	*	380	*	400	*	420	
TrCHrc1	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCATCT					: 420
TrCHrc2	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCATCT					: 401
TrCHrc3	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 373
TrCHrc4	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 371
TrCHrc5	:	-----					: -
TrCHrc6	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 370
TrCHrc7	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 366
TrCHrc8	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCATCT					: 363
TrCHrc9	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 362
TrCHrc10	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 362
TrCHrc11	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCATCT					: 362
TrCHrc12	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 362
TrCHrc13	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 352
TrCHrc14	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 352
TrCHrc15	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 352
TrCHrc16	:	CACTAGAGAAGAGCTTTGTTACTCTAAACCTTGGTCACTGAAAATCATCCTCACCT					: 338
	*	440	*	460	*	480	
TrCHrc1	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 480
TrCHrc2	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 461
TrCHrc3	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 433
TrCHrc4	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 431
TrCHrc5	:	-----					: -
TrCHrc6	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 430
TrCHrc7	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 426
TrCHrc8	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 423
TrCHrc9	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 422
TrCHrc10	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 422
TrCHrc11	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 422
TrCHrc12	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 422
TrCHrc13	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 412
TrCHrc14	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 412
TrCHrc15	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 412
TrCHrc16	:	TGTTGTTCCCTGCTCTCAAAAATCTCAAGACTCTCAATTGGAGTACTTGACTTGTA					: 398
	*	500	*	520	*	540	
TrCHrc1	:	TTTGATCCACTGGCCACTTAGTTCTCAGCCGGAAAGTTTCATTCCAATTGAGGTGGC					: 540
TrCHrc2	:	TTTGATCCACTGGCCACTTAGTTCTCAGCCGGAAAGTTTCATTCCAATTGAGGTGGC					: 521
TrCHrc3	:	TTTGATCCACTGGCCACTTAGTTCTCAGCCGGAAAGTTTCATTCCAATTGAGGTGGC					: 493
TrCHrc4	:	TTTGATCCACTGGCCACTTAGTTCTCAGCCGGAAAGTTTCATTCCAATTGAGGTGGC					: 491
TrCHrc5	:	-----					: -
TrCHrc6	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 490
TrCHrc7	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 486
TrCHrc8	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 483
TrCHrc9	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 482
TrCHrc10	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 482
TrCHrc11	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 482
TrCHrc12	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 482
TrCHrc13	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 472
TrCHrc14	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 472
TrCHrc15	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 472
TrCHrc16	:	TTTGATCCATTGGCCACTTAGTTCTCAGCCTGGAAAGTTTCATTCCAATTGAGGTGGC					: 458

FIGURE 43 (cont)

74/271

	*	560	*	580	*	600	
TrCHrc1	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGGG-----					: 576
TrCHrc2	:	AGN-----					: 524
TrCHrc3	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGCAATCCATGGAAGAAGGCTTGAAACT					: 553
TrCHrc4	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGCAATCCATGGAAGAAGGCTTGAAACT					: 551
TrCHrc5	:	-----					: -
TrCHrc6	:	AAATCTCTGCCATTNTATGTGAANGGTGTGGGAATCCATGGAAGAAGGCTTGAAACT					: 550
TrCHrc7	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGCAATCCATGGAAGAAGGCTTGAAACT					: 546
TrCHrc8	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGGAATCCATGGAAGAAGGCTTGAAACT					: 543
TrCHrc9	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGGAATCCATGGAAGAAGGCTTGAAACT					: 542
TrCHrc10	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGGAATCCATGGAAGAAGGCTTGAAACT					: 542
TrCHrc11	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGGAATCCATGGAAGAAGGCTTGAAACT					: 542
TrCHrc12	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGGAATCCATGGAAGAAGGCTTGAAACT					: 542
TrCHrc13	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGGAATCCATGGAAGAAGGCTTGAAACT					: 532
TrCHrc14	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGGAATCCATGGAAGAAGGCTTGAAACT					: 532
TrCHrc15	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGGAATCCATGGAAGAAGGCTTGAAACT					: 532
TrCHrc16	:	AGATCTCTGCCATTGATGTGAAGGGTGTGGGAATCCATGGAAGAAGGCTTGAAACT					: 518
	*	620	*	640	*	660	
TrCHrc1	:	-----					: -
TrCHrc2	:	-----					: -
TrCHrc3	:	TGGACTCACTAAAGCTATTGGTGT-----					: 577
TrCHrc4	:	TGGACTCACTAAAGCTATTGGTGTAGTAACCTCTCTGTCAAGAAAN-----					: 597
TrCHrc5	:	-----					: -
TrCHrc6	:	TGGACTCACTAAAGCTATTGGTGNCAANAACTTCTCTNCAANAAACTTCAAAATCTTN-----					: 610
TrCHrc7	:	TGGACTCACTAAAGCTATTGGTGT-----					: 570
TrCHrc8	:	TGGACTCACTAAAGCTATTGGTGTAGTAACCTCTCTGTCAAGAAACTTCAAAATCTTGT-----					: 603
TrCHrc9	:	TGGACTCACTAAAGCTATTGGTGTAGTAAN-----					: 573
TrCHrc10	:	TGGACTCACTAAAGCTATTGGTGTAGTAACCTCTCTGTCAAGAAACTTCAAAATCTGT-----					: 583
TrCHrc11	:	TGGACTCACTAAAGCTATTGGTGTAGTAACCTCTCTGTCAAGAAACTTCAAAAT-----					: 597
TrCHrc12	:	TGGACTCACTAAAGCTATTGGTGTAGTAACCTCTCTGTCAAGAAACTTCAAAAT-----					: 597
TrCHrc13	:	TGGACTCNCATAAGCTATTGGTGTANNNACTCTCTGTGTAN-----					: 574
TrCHrc14	:	TGGACTCACTAAAGCTATTGGTGTAGTAACCTCTCTGTCAAGAAAN-----					: 578
TrCHrc15	:	TGGACTCACTAAAGCTATTGGTGTAGTAACCTCTCTGTCAAGAAACTTCAAAATCTTGT-----					: 592
TrCHrc16	:	TGGACTCACTAAAGCTATTGGTGTAGTAACCTCTCTGTCAAGAAACTTCAAAATCTTGT-----					: 578
	*	680	*				
TrCHrc1	:	-----			:	-	
TrCHrc2	:	-----			:	-	
TrCHrc3	:	-----			:	-	
TrCHrc4	:	-----			:	-	
TrCHrc5	:	-----			:	-	
TrCHrc6	:	CTCAATTGCCACCGTTCTTNTCTGGG-----			: 636		
TrCHrc7	:	-----			:	-	
TrCHrc8	:	CTCAGTTGCCACCGTTCT-----			: 621		
TrCHrc9	:	-----			:	-	
TrCHrc10	:	-----			:	-	
TrCHrc11	:	-----			:	-	
TrCHrc12	:	-----			:	-	
TrCHrc13	:	-----			:	-	
TrCHrc14	:	-----			:	-	
TrCHrc15	:	CTCAGTTG-----			: 600		
TrCHrc16	:	CTCAGTTGCCACCGTTCTCCTGCGGTCAATCAG-----			: 612		

FIGURE 43 (cont)

75/271

```

*      20      *      40      *      60
TrDFRa : GCACACNTTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGACAGT : 60

*      80      *      100      *      120
TrDFRa : TTGTGTNACCGGAGCCAGCGGAGGCCATCGGTTCATGGGTGGTCGCCTCCTCGAACG : 120

*      140      *      160      *      180
TrDFRa : CGGCTACATTGTCCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT : 180

*      200      *      220      *      240
TrDFRa : GGAAGCAATGGAAGGAGCAAAGGGTCATCTCAAATTTCGAAATGGATCTTCTAACAG : 240

*      260      *      280      *      300
TrDFRa : CGACTCTATTGCGGCCGCCGTGAAAGGTTGTGCCGGAGTTACATCTTGCATGTCCTAA : 300

*      320      *      340      *      360
TrDFRa : CATCATTGGTGAAGTCAAAGACCCCGAGAAGCAAATTGGAACCGGCAATTCAAGGAAC : 360

*      380      *      400      *      420
TrDFRa : GGTAAATGTGTTGAAGGTGGCAAAGGAAGCAGGGGTGGAGCGTGTGGTGGCGACATCGTC : 420

*      440      *      460      *      480
TrDFRa : GATCTCCGCCATCATACCGAGTCCTAATTGCCAGCTGATAAGATTAAGGGAGAAGATTG : 480

*      500      *      520      *      540
TrDFRa : TTGGACAGACCTTGATTATTGCAAGGAAAAGAAGTTACACTACCCATTGCAAAGACACT : 540

*      560      *      580      *      600
TrDFRa : AGCAGAAAAAGCTGGTTGGGAATTGCTAAAGAGACCGGTTTGATGTTGTTATGATTAA : 600

*      610
TrDFRa : CCCTGGTACT : 610

```

FIGURE 44

76/271

* 20 * 40 * 60
TrDFRa : MSKTV CXTGASGAIGSWVVRLLLERGYIVHATIQDLEDENETKHLEAMEGAKGHLKFEM : 60

* 80 * 100 * 120
TrDFRa : DLLNSDSIAAVKG CAGVIHLACPNIIGEVKDPEKQILEPAIQGTVNVLKVAKEAGVERV : 120

* 140 * 160 * 180
TrDFRa : VATSSISAIIPSPNWPADKIKGEDCWTDL DYCKEKKLYYPIAKTLAEKAGWEFAKGFD : 180

TrDFRa : VVMINPGT : 188

FIGURE 45

77/271

	*	20	*	40	*	60	:
TrDFRa1	:	GCACACNTTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGACAGT					60
TrDFRa2	:	GC N ACACNTTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGACAGT					60
TrDFRa3	:	GCACACACNTTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGGCAGT					60
TrDFRa4	:	GCACACACNTTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGACAGT					60
TrDFRa5	:	--GC CNG TTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGACAGT					58
TrDFRa6	:	--GCT T TTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGACAGT					58
TrDFRa7	:	--C T TTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGGCAGT					55
TrDFRa8	:	--C T TTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGACAGT					55
TrDFRa9	:	--C T TTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGACAGT					54
TrDFRa10	:	--C T TTCTTGACTTACCAATTGTAATNCATAATAATTNTAAACATGTCAAAGACAGT				NGNGT	5
	*	80	*	100	*	120	:
TrDFRa1	:	TTGTGTNACCGGAGGCCAGCGGGAGCCATCGGTTCATGGGTGGTTCGCCTCCCTCGAACG					120
TrDFRa2	:	TTGTGTNACCGGAGGCCAGCGGGAGCCATCGGTTCATGGGTGGTTCGCCTCCCTCGAACG					120
TrDFRa3	:	TTGTGT A CCGGAGGCCAGCGGGAGCCATCGGTTCATGGGTGGTTCGCCTCCCTCGAACG					120
TrDFRa4	:	TTGTGT A CCGGAGGCCAGCGGGAGCCATCGGTTCATGGGTGGTTCGCCTCCCTCGAACG					120
TrDFRa5	:	TTGTGT A CCGGAGGCCAGCGGGAGCCATCGGTTCATGGGTGGTTCGCCTCCCTCGAACG					118
TrDFRa6	:	TTGTGTNACCGGAGGCCAGCGGGAGCCATCGGTTCATGGGTGGTTCGCCTCCCTCGAACG					118
TrDFRa7	:	TTGTGT N CCGGAGGCCAGCGGGAGCCATCGGTTCATGGGTGGTTCGCCTCCCTCGAACG					115
TrDFRa8	:	TTGTGT A CCGGAGGCCAGCGGGAGCCATCGGTTCATGGGTGGTTCGCCTCCCTCGAACG					115
TrDFRa9	:	TTGTGTNACCGGAGGCCAGCGGGAGCCATCGGTTCATGGGTGGTTCGCCTCCCTCGAACG					114
TrDFRa10	:	TTGTGTNANC G AGC N CCGGAGCCATCGGTTANTGGGTGGTTCGCCTCCCTCGAACG					65
	*	140	*	160	*	180	:
TrDFRa1	:	CGGCTACATTGTCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT					180
TrDFRa2	:	CGGCTACAT G TCCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT					180
TrDFRa3	:	CGGCTACATTGTCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT					180
TrDFRa4	:	CGGCTACATTGTCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT					180
TrDFRa5	:	CGGCTACATTGTCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT					178
TrDFRa6	:	CGGCTACATTGTCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT					178
TrDFRa7	:	CGGCTACATTGTCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT					175
TrDFRa8	:	CGGCTACAT G TCCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT					175
TrDFRa9	:	CGGCTACATTGTCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT					174
TrDFRa10	:	CGG N TACATTGTCACGCCACCATCCAAGATCTCGAGGATGAGAACGAGACAAAACATT					125
	*	200	*	220	*	240	:
TrDFRa1	:	GGAAGCAATGGAAGGAGCAAAGGGTCATCTCAAATTTCGAAATGGATCTCTTAACAG					240
TrDFRa2	:	GGAAGCAATGGAAGG G GCAAAGGGTCATCT A AAATTTCGAAATGGATCTCTTAACAG					240
TrDFRa3	:	GGAAGCAATGGAAGGAGCAAAGGGTCATCTCAAATTTCGAAATGGATCTCTTAACAG					240
TrDFRa4	:	GGAAGCAATGGAAGGAGCAAAGGGTCATCTCAAATTTCGAAATGGATCTCT G AACAG					240
TrDFRa5	:	GGAAGCAATGGAAGGAGCAAAGGGTCATCTCAAATTTCGAAATGGATCTCTTAACAG					238
TrDFRa6	:	GGAAGCAATGGAAGGAGCAAAGGGTCATCTCAAATTTCGAAATGGATCTCT G AACAG					238
TrDFRa7	:	GGAAGCAATGGAAGGAGCAAAGGGTCATCTCAAATTTCGAAATGGATCTCTTAACAG					235
TrDFRa8	:	GGAAGCAATGGAAGG G GCAAAGGGTCATCT A AAATTTCGAAATGGATCTCTTAACAG					235
TrDFRa9	:	GGAAGCAATGGAAGGAGCAAAGGGTCATCT N AAATTTCGAAATGGATCTCTTAACAG					234
TrDFRa10	:	GGAAGCAATGGAAGGAGCAAAGGGTCATCT N AAATTTCGAAATGGATCTCT N TAACAG					185

FIGURE 46

78/271

	*	260	*	280	*	300	
TrDFRa1 :	CGACTCTATTGCGGNCGCCGTGAAAGGTTGNGCCGGAGTTACATNTTGNCCTGTCCTAC						: 300
TrDFRa2 :	TGACTCTATTGCGGCCGCCGTGAAAGGTTGTCGGAGTTACATNTGCATGTGCTAA						: 300
TrDFRa3 :	CGACTCTATTGCGGCCGCCGTGAAAGGTTGTCGGAGTTACATNTGCATGTGCTAA						: 300
TrDFRa4 :	CGACTCTATTGCGGCCGCCGTGAAAGGTTGTCGGAGTTACATNTGCATGTGCTAG						: 300
TrDFRa5 :	CGACTCTATTGCGGCCGCCGTGAAAGGTTGTCGGAGTTACATNTGCATGTGCTAA						: 298
TrDFRa6 :	CGACTCTATTGCGGCCGCCGTGAAAGGTTGTCGGAGTTACATNTGCATGTGCTAG						: 298
TrDFRa7 :	CGACTCTATTGCGGCCGCCGTGAAAGGTTGTCGGAGTTACATNTGCATGTGCTAA						: 295
TrDFRa8 :	TGACTCTATTGCGGCCGCCGTGAAAGGTTGTCGGAGTTACATNTGCATGTGCTAA						: 295
TrDFRa9 :	CGACTCTATTGCGGNCGCCGTGAAAGGTTGTCGGAGTTACATNTGCATGNGCTAA						: 294
TrDFRa10:	NGACTCTATTGCGGCCGCCGTGAAAGGTTGTCGGAGTTACATN-----						: 232
	*	320	*	340	*	360	
TrDFRa1 :	CGCCCTTGGGGANGAGNNNNCACCCNN-----						: 327
TrDFRa2 :	CATCATTGQTGAANGAAAANACCNCGANAAACGNGATTTTGNAACCNGNN-----						: 349
TrDFRa3 :	CATCATTGGTGAAGTCAAAGACCCCAGAAGCAAATTGGAACCGCAATTCAAGGAAC						: 360
TrDFRa4 :	CATCATTGGTGAAGTCAAAGACCCCAGAAGCAAATTGGAACCGCAATTCAAGGAAC						: 360
TrDFRa5 :	CATCATTGGTGAAGTCAAAGACCCCAGAAGCAAATTGGAACCGCAATTCAAGGAAC						: 358
TrDFRa6 :	CATCATTGGTGAAGTCAAAGACCCCAGAAGCAAATTGGAACCGCAATTCAAGGAAC						: 358
TrDFRa7 :	CATCATTGGTGAAGTCAAAGACCCCAGAAGCAAATTGGAACCGCAATTCAAGGAAC						: 355
TrDFRa8 :	CATCATTGGTGAAGTCAAAGACCCCAGAAGCAAATTGGAACCGCAATTCAAGGAAC						: 355
TrDFRa9 :	CATCATTGGTGAAGCNAAGNACNATAAGN-----						: 328
TrDFRa10:	-----						:
	*	380	*	400	*	420	
TrDFRa1 :	-----						:
TrDFRa2 :	-----						:
TrDFRa3 :	GGTTAATGTGTTGAAGGTGGCAAAGGAAGCAGGGGTGGAGCGTGTGGCGACATCGTC						: 420
TrDFRa4 :	GGTTAATGTGTTGAAGGTGGCAAAGGAAGCAGGGGTGGAGCGTGTGGCGACATCGTC						: 420
TrDFRa5 :	GGTTAATGTGTTGAAGGTGGCAAAGGAAGCAGGGGTGGAGCGTGTGGCGACATCGTC						: 418
TrDFRa6 :	GGTTAATGTGTTGAAGGTGGCAAAGGAAGCAGGGGTGGAGCGTGTGGCGACATCGTC						: 418
TrDFRa7 :	GGTTAATGTGTTGAAGGTGGCAAAGGAAGCAGGGGTGGAGCGTGTGGCGACATCGTC						: 415
TrDFRa8 :	GGTTAATGTGTTGAAGGTGGCAAAGGAAGCAGGGGTGGAGCGTGTGGCGACATCGTC						: 415
TrDFRa9 :	-----						:
TrDFRa10:	-----						:
	*	440	*	460	*	480	
TrDFRa1 :	-----						:
TrDFRa2 :	-----						:
TrDFRa3 :	GATCTCCGCCATCATACCGAGTCCTAATTGGCCAGCTGATAAGATTAAGGGAGAAGATTG						: 480
TrDFRa4 :	GATCTCCGCCATCATACCGAGTCCTAATTGGCCAGCTGATAAGATTAAGGGAGAAGATTG						: 480
TrDFRa5 :	GATCTCCGCCATCATACCGAGTCCTAATTGGCCAGCTGATAAGATTAAGGGAGAAGATTG						: 478
TrDFRa6 :	GATCTCCGCCATCATACCGAGTCCTAATTGGCCAGCTGATAAGATTAAGGGAGAAGATTG						: 478
TrDFRa7 :	GATCTCCGCCATCATACCGAGTCCTAATTGGCCAGCTGATAAGATTAAGGGAGAAGATTG						: 475
TrDFRa8 :	GATCTCCGCCATCATACCGAGTCCTAATTGGCCAGCTGATAAGATTAAGGGAGAAGATTG						: 475
TrDFRa9 :	-----						:
TrDFRa10:	-----						:

FIGURE 46 (cont)

79/271

	*	500		*	520		*	540	
TrDFRa1 :	-	-	-	-	-	-	-	-	-
TrDFRa2 :	-	-	-	-	-	-	-	-	-
TrDFRa3 :	NTGGACAGACCTTGATTATTGCAANGAAAAGAAGTTATACTACCCCATTGCAAAGACATT	-	-	-	-	-	-	-	: 540
TrDFRa4 :	TTGGACAGACCTTGATTATTGCAAGGAAAAGAAGTTATACTACCCCATTGCAAAGACACT	-	-	-	-	-	-	-	: 540
TrDFRa5 :	TTGGACAGACCTTGATTATTGCAAGGAAAAGAAGTTATACTACCCCATTGCAAAGACACT	-	-	-	-	-	-	-	: 538
TrDFRa6 :	TTGGACAGACCTTGATTATTGCAAGGAAAAGAAGTTATACTACCCCATTGCAAAGACACT	-	-	-	-	-	-	-	: 538
TrDFRa7 :	TTGGACAGACCTTGATTATTGCAAGGAAAAGAAGTTATACTACCCCATTGCAAAGACATT	-	-	-	-	-	-	-	: 535
TrDFRa8 :	TTGGACGGACCTTGATTATTGCAAGGAAAAGAAGTTACA CTACCCCATTGCAAAGACACT	-	-	-	-	-	-	-	: 535
TrDFRa9 :	-	-	-	-	-	-	-	-	-
TrDFRa10:	-	-	-	-	-	-	-	-	-

	*	560		*	580		*	600	
TrDFRa1 :	-	-	-	-	-	-	-	-	-
TrDFRa2 :	-	-	-	-	-	-	-	-	-
TrDFRa3 :	A NCAGAAAAAGCTGGTTGGGAATTGCTAAAGAGACC GGTTTGATGTTGTT	-	-	-	-	-	-	-	: 592
TrDFRa4 :	AGCAGAAAAAGCTGGTTGGGAATTGCTAAAGAGACC GGTTTGATGTTGTTAT	-	-	-	-	-	-	-	: 594
TrDFRa5 :	AGCAGAAAAAGCTGGTTGGGAATTGCTAAAGAGACC GGTTTGATGTTGTTG	-	-	-	-	-	-	-	: 583
TrDFRa6 :	AGCAGAAAAAGCTGGTTGGGAATTGCTAAAGAGACC GGTTTGATGTTGTTATGATTAA	-	-	-	-	-	-	-	: 598
TrDFRa7 :	A NCAGAAAAAGCTGGTTGGGAATTGCTAAAGAGAC	-	-	-	-	-	-	-	: 571
TrDFRa8 :	AGCAGAAAAAGCTGGTTGGGAATTGCTAAAGAGACC GGTTTGATGTTGT	-	-	-	-	-	-	-	: 586
TrDFRa9 :	-	-	-	-	-	-	-	-	-
TrDFRa10:	-	-	-	-	-	-	-	-	-

	*								
TrDFRa1 :	-	-	-	-	-	-	-	-	-
TrDFRa2 :	-	-	-	-	-	-	-	-	-
TrDFRa3 :	-	-	-	-	-	-	-	-	-
TrDFRa4 :	-	-	-	-	-	-	-	-	-
TrDFRa5 :	-	-	-	-	-	-	-	-	-
TrDFRa6 :	CCCTGGTACT	608	-	-	-	-	-	-	-
TrDFRa7 :	-	-	-	-	-	-	-	-	-
TrDFRa8 :	-	-	-	-	-	-	-	-	-
TrDFRa9 :	-	-	-	-	-	-	-	-	-
TrDFRa10:	-	-	-	-	-	-	-	-	-

FIGURE 46 (cont)

80/271

* 20 * 40 * 60
 TrDFRb : ATAAAACCAANCTNAAAACTGATTGGAACTCAGAAAAATAGAAGAAAAGAGATGCCTGA : 60

* 80 * 100 * 120
 TrDFRb : GTTTTGTGTTACAGGGGGCACTGGCTTCATAGCAGCCTACCTAGTGAAAGCCTATTAGA : 120

* 140 * 160 * 180
 TrDFRb : AAAGGGTCACACAGTAAGGACTACTGTAAGAAACCCAGATGATTGGAGAAGGTTGGTTA : 180

* 200 * 220 * 240
 TrDFRb : TCTAACTGAACTAAGTGAAGACAAAGAGAGATTGAAGATTAAAAGCAGATCTATTGGT : 240

* 260 * 280 * 300
 TrDFRb : GGAAGGGAGTTTGATGAGGCAGTGAGTGTTGATGGTGTGTTCATACAGCTTCCCC : 300

* 320 * 340 * 360
 TrDFRb : TGTTCTGTTCCACATGATGACAACATTCAAGTTACTTGATTGATCCATGTATAAAAGG : 360

* 380 * 400 * 420
 TrDFRb : AACACAAAATGTGCTTAACTCATGCATCAAAGCAAAGGTGAAACGTGTGGTGTAAACATC : 420

* 440 * 460 * 480
 TrDFRb : TTCATGCTTCCATAAGATAACCGTGACGATGTGCAACAAATTCTCCTCTTAATGAATC : 480

* 500 * 520 * 540
 TrDFRb : TCATTGGAGTGATTCTGAATACTGCAAACGCTATAACCTGTGGTATGCATATGCAAAGAC : 540

* 560 * 580 * 600
 TrDFRb : TTTAGGAGAAAAAGAACATGGAGGATTGCAAAGGAAAGTGGATTGATCTAGTTGTAGT : 600

* 620
 TrDFRb : TAACCCCTTTTGTGGTGGTC : 623

FIGURE 47

81/271

* 20 * 40 * 60
TrDFRb : MPEFCVTGGTGFIAAYLVKALLEKGHTVRRTVRNPDDLEKVGYLTELSEDKERLKILKAD : 60

* 80 * 100 * 120
TrDFRb : LLVEGSFDEAVSGVDGVFHTASPVLVPHDDNIQVTLIDPCIKGTQNVLNSCIKAKVKRVV : 120

* 140 * 160 * 180
TrDFRb : LTSSCSSIRYRDDVQQTISPLNESHWSDSEYCKRYNLWYAYAKTLGEKEAWRIAKESGIDL : 180

*
TrDFRb : VVVNPSFVGG : 190

FIGURE 48

82/271

	*	20	*	40	*	60			
TrDFRb1 :	ATAAAACCAANCTNAAA	ACTGATTGGA	ACT	NAGAAAAA	ATAGAAGAAA	AGAGATGCCTGA	:	60	
TrDFRb2 :	-	-	-	GNAC	CTNAAA	ATAGAAGAAA	AGAGATGCCTGA	:	35
TrDFRb3 :	-	-	-	-	-	GAAAGAGATGCCTGA	:	16	
TrDFRb4 :	-	-	-	-	-	GAGATGCCTGA	:	11	
	*	80	*	100	*	120			
TrDFRb1 :	GTTTTGTGTTACAGGGGG	CACTGGG	ITC	CATAGCAGC	TACCTAGTGA	AAGCCTTATTAGA	:	120	
TrDFRb2 :	GTTTTGTGTTACAGGGGG	CACTGGG	ITC	CATAGCAGC	TACCTAGTGA	AAGCCTTATTAGA	:	95	
TrDFRb3 :	GTTTTGTGTTACAGGGGG	CACTGGC	ITC	CATAGCAGC	TACCTAGTGA	AAGCCTTATTAGA	:	76	
TrDFRb4 :	GTTTTGTGTTACAGGGGG	CACTGGC	ITC	NAGCAGC	TACCTAGTGA	AAGCCTTATTAGA	:	71	
	*	140	*	160	*	180			
TrDFRb1 :	AAAGGGTCACACAGTAAGG	ACTACTGT	AAGAAACCC	CAGATGATT	GGAGAAGGTTGGTTA	:	180		
TrDFRb2 :	AAAGGGTCACACAGTAAGG	ACTACTGT	AAGAAACCC	CAGATGATT	GGAGAAGGTTGGTTA	:	155		
TrDFRb3 :	AAAGGGTCACACAGTAAGG	ACTACTGT	AAGAAACCC	CAGATGATT	GGAGAAGGTTGGTTA	:	136		
TrDFRb4 :	AAAGGGTCACACAGTAAGG	ACTACTGT	AAGAAACCC	CAGATG	TTGGAGAAGGTTGGTTA	:	131		
	*	200	*	220	*	240			
TrDFRb1 :	TCTAACTGAAACTAAGTGA	AGACAAAGAGAGATTG	AAGATT	TTAAAAGCAGATCTATTGGT	:	240			
TrDFRb2 :	TCTAACTGAAACTAAGTGA	AGACAAAGAGAGATTG	AAGATT	TTAAAAGCAGATCTATTGGT	:	215			
TrDFRb3 :	TCTAACTGAAACTAAGTGA	AGACAAAGAGAGATTG	AAGATT	TTAAAAGCAGATCTATTGGT	:	196			
TrDFRb4 :	TCTAACTGAAACTAAGTGA	AGACAAAGAGAGATTG	AAGATT	TTAAAAGCAGATCTATTGGT	:	191			
	*	260	*	280	*	300			
TrDFRb1 :	GGAAGGGAGTTTGATGAGG	CAGTGAGTGGT	GTTGATGGTGTGTT	CATACAGCTTCCCC	:	300			
TrDFRb2 :	GGAAGGGAGTTTGATGAGG	CAGTGAGTGGT	GTTGATGGTGTGTT	CATACAGCTTCCCC	:	275			
TrDFRb3 :	GGAAGGGAGTTTGATGAGG	CAGTGAGTGGT	GTTGATGGTGTGTT	CATACAGCTTCCCC	:	256			
TrDFRb4 :	GGAAGGGAGTTTGATGAGG	CAGTGAGTGGT	GTTGATGGTGTGTT	CATACAGCTTCCCC	:	251			
	*	320	*	340	*	360			
TrDFRb1 :	TGTTCTTGTCCACATGATGACA	AAATTCA	GAGTTACTTGATTGATCC	CATGTATAAAAGG	:	360			
TrDFRb2 :	TGTTCTTGTCCACATGATGACA	AAATTCA	GAGTTACTTGATTGATCC	CATGTATAAAAGG	:	335			
TrDFRb3 :	TGTTCTTGTCCACATGATGACA	AAATTCA	GAGTTACTTGATTGATCC	CATGTATAAAAGG	:	316			
TrDFRb4 :	TGTTCTTGTCCACATGATGACA	AAATTCA	GAGTTACTTGATTGATCC	CATGTATAAAAGG	:	311			
	*	380	*	400	*	420			
TrDFRb1 :	AACACAAAATGTGCTTAC	CTCATGCATCAAAGC	AAAGGTGAAACGTG	TGTGGTGTAAACATC	:	420			
TrDFRb2 :	AACACAA	GAATGTGCTTAACTC	ATGCATCAAAGC	AAAGGTGAAACGTG	TGTGGTGTAAACATC	:	395		
TrDFRb3 :	AACACAAAATGTGCTTAC	CTCATGCATCAAAGC	AAAGGTGAAACGTG	TGTGGTGTAAACATC	:	376			
TrDFRb4 :	AACACAAAATGTGCTTAC	CTCATGCATCAAAGC	AAAGGTGAAACGTG	TGTGGTGTAAACATC	:	371			
	*	440	*	460	*	480			
TrDFRb1 :	TTCATGCTCTTC	CATAAGATACCGT	GACGTGTG	CAACAAATTCA	ACCAACTTAATGAATC	:	480		
TrDFRb2 :	TTCATGCTCTTC	CATAAGATACCGT	GACGTGTG	CAACAAATTCTC	CTCTTAATGAATC	:	455		
TrDFRb3 :	TTCATGCTCTTC	CATAAGATACCGT	GACGTGTG	CAACAAATTCTC	CTCTTAATGAATC	:	436		
TrDFRb4 :	TTCATGCTCTTC	CATAAGATACCGT	GACGTGTG	CAACAAATTCTC	CTCTTAATGAATC	:	431		

FIGURE 49

83/271

	* 500 *	520	*	540	
TrDFRb1 :	TCATTGGAGTGATTCTGAATACTGCAAACGCTATAACCTGTGGTATGCATATGCAAAGAC				: 540
TrDFRb2 :	TCATTGGAGTGATTCTGAATACTGCAAACGCTATAACCTGTGGTATGCATATGCAAAGAC				: 515
TrDFRb3 :	TCATTGGAGTGATTCTGAATACTGCAAACGCTATAACCTGTGGTATGCATATGCAAAGAC				: 496
TrDFRb4 :	TCATTGGAGTGATTCTGAATACTGCAAACGCTATAACCTGTGGTATGCATATGCAAAGAC				: 491

	* 560 *	580	*	600	
TrDFRb1 :	<u>ATTAGGAGAAAAAGAACATGGAGGATTGC-----</u>				: 570
TrDFRb2 :	<u>TTTAGGAGAAAAAGAACATGGAGGATTGCAAAGGAAAGTGGGATTAAATCTAGTTGT-----</u>				: 572
TrDFRb3 :	<u>TTTAGGAGAAAAAGAACATGGAGGATTGCAAAGGAAAGTCCAATTGATCTAGTTGTAGT</u>				: 556
TrDFRb4 :	<u>TTTAGGAGAAAAAGAACATGGAGGATTGCAAAGGAAAGTCCAATTGATCTAGTTGTAGT</u>				: 551

	* 620				
TrDFRb1 :	-----	:	-		
TrDFRb2 :	-----	:	-		
TrDFRb3 :	<u>TAACCCCTCTTTGTT-----</u>	:	572		
TrDFRb4 :	<u>TAACCCCTCTTTGTTGGTC</u>	:	574		

FIGURE 49 (cont)

84/271

```

*      20      *      40      *      60
TrDFRc : GNGAAGANCTAGTTGCGTAACCCGGANCAACGGTTCATCGAACATGGCTAGTTAAAA : 60

*      80      *      100      *      120
TrDFRc : CCCTACTCCAAAACACTACAAAATTACGCCACAATCTCCCCAATTCCAACGCATCTC : 120

*      140      *      160      *      180
TrDFRc : ATCTCTTCACACTCCACCCGGAAGCTCAATCCGGATCACAAATTTC CCTGTCGATATCC : 180

*      200      *      220      *      240
TrDFRc : TCGACTCCACC GCCGTCTCTCCGCTATCAATACTGCTCAGGTGTCTTCATGCCGCTT : 240

*      260      *      280      *      300
TrDFRc : CTCCATGTACCCTCGAAGATCCA ACTGATCCGCAAAAGAGCTTCTAGAACCTGCTGTAC : 300

*      320      *      340      *      360
TrDFRc : AAGGAACCCCTAAATGTTCTAGAACGCATCCAGCGCGCAGGTACCAAACCTAATTGGCCGG : 360

*      380      *      400      *      420
TrDFRc : AGAAAAAGGCGATCGATGAGGCGTCGTGGACGGATGTTGAGTACTGTAAATTGAGAGGGA : 420

*      440      *      460      *      480
TrDFRc : AGTGGTATCTGGTGTGAAAACGGAGGC GGAGAAGGCGGCTTGGGATTTCGAGAGAAAA : 480

*      500      *      520      *      540
TrDFRc : ATGGTGGTGTGATGTGGGGCGGNTCATCCGGGACTTGGGAGAGTTGATAACAGA : 540

*      560      *      580      *      600
TrDFRc : AGGAGTTGAATGCGAGTT CAGCGGNTTACAGAGGTTGATGATGGGAGTGAGGATACTC : 600

*      620      *      640
TrDFRc : AAGAGTGN TATTGGNNGGGGCTGNNNATGNTAAAGATGN : 641

```

FIGURE 50

85/271

* 20 * 40 * 60
TrDFRc : EXLVCVTRXNGFIGTWLVKTLLQKHYKIHATIFPNSNASHLFTLHPEAQSRITIFPVDIL : 60

* 80 * 100 * 120
TrDFRc : DSTAVFSAINNCGVFHAASPCTLEDPTDPQKELLEPAVQGTLNVLEASSAQVPNPNWPE : 120

* 140 * 160 * 180
TrDFRc : KKAIDEASWTDVEYCKLRGKWYLVSKTEAEKAAWDFREKNNGVDVGAXHPGTCLGELIQK : 180

* 200
TrDFRc : ELNASSALQRLMMGSEDTQEXYWXGG : 206

FIGURE 51

86/271

```

*      20      *      40      *      60
TrDFRd : GCNTTGATCAGCGTATNAACACACACANGTCTTCCCTTGAGCTCTGTTCTCCACATGTCGA : 60

*      80      *      100      *      120
TrDFRd : AGCTAGTTGCGTCACGGCGGCAGCGGATGCATCGGTTCATGGCTAGTCCATCTCCTTC : 120

*      140      *      160      *      180
TrDFRd : TCCTCCGCGGCTACACTGTTCACGCCACCGTCCAAAATCTCAATGATGAGAACGAAACGA : 180

*      200      *      220      *      240
TrDFRd : AGCATCTAGAAGCTCTCGAAGGAGCACAAACTAATCTCCGTCTTCCAGATCGATCTCC : 240

*      260      *      280      *      300
TrDFRd : TTAACTACGACACAATCCTCGCTGCTGTCCGGTTGCGTCGGAATTTCACCTCGCTT : 300

*      320      *      340      *      360
TrDFRd : CACCTTGCACTGTAGACAAAGTTCATGATCCTCAGAAGGAGCTTTGGATCCTGCAATT : 360

*      380      *      400      *      420
TrDFRd : AAGGGACTTTGAATGTGCTACTGCAGCTAAGGAAGTAGGGGTGAAGCGTGTGGTTGTTA : 420

*      440      *      460      *      480
TrDFRd : CCTCGTCTGTCTCGCGATTACTCCTAGTCCTGATTGGCCTCTGATGTTGTTAAAGAG : 480

*      500      *      520      *      540
TrDFRd : AGGATTGTTGGACTGATGTTGAATATTGCAAGAAAAAGAGTTGGGTATCCGTTGTC : 540

*      560      *      580      *      600
TrDFRd : AAACATTGGCTGAAAAAGCTGCGTGGGATTNTNCAAAGAAAATGGTTGGATGTTGTTG : 600

*      620      *      640      *      660
TrDFRd : NGGTGAATCCCGGNACTGNGATGGGTCTGTTTCCACCACGGCATAATGCAAGCATGC : 660

*      680      *      700      *      720
TrDFRd : TCATGCCTTGGGAAACTTTTGAAGGCTGGNNCTGAAACATTGAAGACTATTTATGG : 720

*      740      *      760      *      780
TrDFRd : GATTGGCCNNCTTAAAGATGTNGCATTGGCNCATNNTTGGGTATGAGAACAAANANN : 780

*      800      *      820
TrDFRd : CTTTGGGANACATNGGNGGGTTGAAACTATCNNTCCTTACGG : 822

```

FIGURE 52

87/271

* 20 * 40 * 60
TrDFRd : MSKLVCVTGGSGCIGSWLVHLLLRLGYTVHATVQNLNDENETKHLEALEGAQTNLRLFQI : 60

* 80 * 100 * 120
TrDFRd : DLLNYDTILAAVRGCVGIFHLASPCTVDKVHDPQKELLDPAIKGTLNVLTAAKEVGVKRV : 120

* 140 * 160 * 180
TrDFRd : VVTSSVSAITPSPDWPSDVVKREDCWTDVEYCKKELGYPLSKTLAEKAAWDFXKENGLD : 180

* 200 * 220 * 240
TrDFRd : VVXVNPNXTXMGPVFPPRHNASMLMPWETFLKAXXETFEDYFMGLAXFKDXALXHXLGYEN : 240

*

TrDFRd : KXXLGXXXGLKLXXLT : 256

FIGURE 53

88/271

	* 20 * 40 * 60	
TrDFRd1 :	GCNTTGATCAGCGTATNAACACACACANGTCTTCCTTGAGCTCTGTTCTCCN CATGTCGA	: 60
TrDFRd2 :	----- NACANATCTTCCTTGAGCTCTGTTCTCCACATGTCGA	: 39
	* 80 * 100 * 120	
TrDFRd1 :	AGCTAGTTGCGTCACCGGCCAGCGGATGCATCGGTTATGGCTAGTCCATCTCCTTC	: 120
TrDFRd2 :	AGCTAGTTGCGTCACCGGCCAGCGGATGCATCGGTTATGGCTAGTCCATCTCCTTC	: 99
	* 140 * 160 * 180	
TrDFRd1 :	TCCTCCGGCTACACTGTCACGCCACCGTCAAATCTCAATGATGAGAACGAAACGA	: 180
TrDFRd2 :	TCCTCCGGCTACACTGTCACGCCACCGTCAAATCTCAATGATGAGAACGAAACGA	: 159
	* 200 * 220 * 240	
TrDFRd1 :	AGCATCTAGAAGCTCTCGAAGGAGCACAAACTAATCTCCGTCTCTCCAGATCGATCTCC	: 240
TrDFRd2 :	AGCATCTAGAAGCTCTCGAAGGAGCACAAACTAATCTCCGTCTCTCCAGATCGATCTCC	: 219
	* 260 * 280 * 300	
TrDFRd1 :	TTAACTACGACACAATCCTCGCTGCTGTCGCGGGTTGCGTCGGAATTTCACCTCGCTT	: 300
TrDFRd2 :	TTAACTACGACACAATCCTCGCTGCTGTCGCGGGTTGCGTCGGAATTTCACCTCGCTT	: 279
	* 320 * 340 * 360	
TrDFRd1 :	CACCTTGCACTGTAGACAAAGTTCATGATCCTCAGAAGGAGCTTTGGATCCTGCAATTAA	: 360
TrDFRd2 :	CACCTTGCACTGTAGACAAAGTTCATGATCCTCAGAAGGAGCTTTGGATCCTGCAATTAA	: 339
	* 380 * 400 * 420	
TrDFRd1 :	AAGGGACTTTGAATGTGCTTACTGCAGCTAAGGAAGTAGGGGTGAAGCGTGTGGTTGTTA	: 420
TrDFRd2 :	AAGGGACTTTGAATGTGCTTACTGCAGCTAAGGAAGTAGGGGTGAAGCGTGTGGTTGTTA	: 399
	* 440 * 460 * 480	
TrDFRd1 :	CCTCGTCTGTCTCGCGATTACTCCTAGTCCTGATTGGCCTCTGATGTTGTTAAAAGAG	: 480
TrDFRd2 :	CCTCGTCTGTCTCGCGATTACTCCTAGTCCTGATTGGCCTCTGATGTTGTTAAAAGAG	: 459
	* 500 * 520 * 540	
TrDFRd1 :	AGGATTGTTGGACTGATGTTGAATTGCAAGAAAAAGAGTTGTTGGTATCCGTT-----	: 535
TrDFRd2 :	AGGATTGTTGGACTGATGTTGAATTGCAAGAAAAAGAGTTGGGTATCCGTTGTCCA	: 519
	* 560 * 580 * 600	
TrDFRd1 :	-----	: -
TrDFRd2 :	AAACATTGGCTAAAAAGCTGCGTGGGATTTNCAAAGAAAATGGTTGGATGTTGTTG	: 579
	* 620 * 640 * 660	
TrDFRd1 :	-----	: -
TrDFRd2 :	NGGTGAATCCCGGNACTGNGATGGTCCTGTTTCCACCACGGCATAATGCAAGCATGC	: 639

FIGURE 54

89/271

TrDFRd1 : ----- * 680 * 700 * 720 : -
TrDFRd2 : TCATGCCTGGGAAACTTTTGAAGGCTGGNNCTGAAACATTGAAGACTATTTATGG : 699

TrDFRd1 : ----- * 740 * 760 * 780 : -
TrDFRd2 : GATTGGCCNNCTTAAAGATGTNGCATTGGCNCATNNTTGGGTATGAGAACAAANANN : 759

TrDFRd1 : ----- * 800 * 820 : -
TrDFRd2 : CTTTGGGANACATNGGNGGGTTGAAACTATCNNTCCTTACGG : 801

FIGURE 54 (cont)

90/271

TrDFRe : GTCACTTATGAAATGGAACACAAAGGTGGAGACAAAGTATGTGTGACAGGGGCATCAGGC : 60
 * 20 * 40 * 60

 TrDFRe : TTTTAGCATCTGGCTTATTAAGAAACTCTTTGTCTGGCTATCAAGTCATTGGAACA : 120
 * 80 * 100 * 120

 TrDFRe : GTTAGAGATTTAGGGAAGAAGAAGAAAGTTAACATTTATGGAAATTGGAAGGAGCAACA : 180
 * 140 * 160 * 180

 TrDFRe : GAAAGACTAGAACTAATCCAAGCTGATTTAATGGAAGAAAATAGTTCGACAAAGCGATC : 240
 * 200 * 220 * 240

 TrDFRe : ATGGGATGCAAAGGTGTCTCCACATTGCCTCTCCAGTACTCAATCATATATCAGATAAT : 300
 * 260 * 280 * 300

 TrDFRe : CCTAAGGCGGAAATCTTGGAACCGGCAGTCCAAGGTACGCTAAATGTGTTGCCCTTGT : 360
 * 320 * 340 * 360

 TrDFRe : AAGAGGAACCCCGATCTGTTCGAGTGGTGCTAGCCTCATCATCTTCGGCTGTTAGAGTA : 420
 * 380 * 400 * 420

 TrDFRe : AGAGCTGATTTGATCCAAGCATAACCAATTGATGAATCATCTGGAGCTCCTTCCAATTG : 480
 * 440 * 460 * 480

 TrDFRe : TGCGAGAAACTCAAGGCATGGTACCCAATGTCAAAGACAATGGCAGAAAAGCAGCTTGG : 540
 * 500 * 520 * 540

 TrDFRe : GAATATAGCAAAGAGAATGGAATAGACTTAGTGAATTTTC : 582
 * 560 * 580

FIGURE 55

91/271

* 20 * 40 * 60
TrDFRe : MEHKGGDKVCVTGASGFLASWLIKLLSGYQVIGTVRDLGKKKKVEHLWKLEGATERLE : 60

* 80 * 100 * 120
TrDFRe : LIQADLMEENSFDKAIMGCKGVFHIASPVLNHISDNPKAEILEPAVQGTLNVLRSCKRNP : 120

* 140 * 160 * 180
TrDFRe : DLVRVVVLASSSSAVRVRADFDPSIPIDESWSSELCEKLKAWYPMSKTMAEKAWEYSK : 180

*
TrDFRe : ENGIDLVTIF : 190

FIGURE 56

92/271

* 20 * 40 * 60
 TrDFRf : TNCNNNGCTNCNTNCGGGCAGAGANTTCCCTGACCTATNTGTTACTNAAGAATATTCTA : 60

* 80 * 100 * 120
 TrDFRf : TATATATATTTGTGTTCAAGAACCCAAAAATAGAATAGTGATGGAAAGGAGTTGCAAG : 120

* 140 * 160 * 180
 TrDFRf : GTTTGTGTCACCGGTGGTGTGGTTATATTGGTTCTCTTTAGTCAGGCTTTGGAA : 180

* 200 * 220 * 240
 TrDFRf : AAGGGTTACACCGTTCATGCTACTCTTAGAAACTTGAAGGACGAATCCAAAGTAGATT : 240

* 260 * 280 * 300
 TrDFRf : TTGAGAGGCTTCCACATGCAGATACTAGACTTATGTTATTGAAGCTGATATACAAA : 300

* 320 * 340 * 360
 TrDFRf : TCAGATGAATTGGCCCGCAATTCAAGGTTGTGAGTTGTTTACCTTGCTACTCCT : 360

* 380 * 400 * 420
 TrDFRf : TTTCAACATCAAACACTGATTCTCAGTTAACAGAGCATAGAGGAAGCTGCAATAGCAGGGTA : 420

* 440 * 460 * 480
 TrDFRf : AAAAGCATAGCTGAAAATTGCATAAAATCAGGAACAGTGAGAAAATTGATATACACTGGA : 480

* 500 * 520 * 540
 TrDFRf : ACTGTAATTGCTTCTTCTCTGAAAGATGATGGAAGTGGCTACAAAGACTTCATTGAT : 540

* 560 *
 TrDFRf : GAAACTTGTTGGACACCTCTCCATCTTCT : 572

FIGURE 57

93/271

* 20 * 40 * 60
TrDFRf : MERSCKVCVTGGAGYIGSLLVKLLEKGYTVHATLRNLKDESKVDFLRGFPHADTRLMLF : 60

* 80 * 100 * 120
TrDFRf : EADIYKSDEFWPAIQGCEFVFHLATPFQHQQTDSQFKSIEAAIAGVKSIAENCIKSGTVR : 120

* 140 *
TrDFRf : KLIYTGTVIASSSLKDDGSGYKDFIDETCWTPLHLP : 156

FIGURE 58

94/271

TrDFRg : GCCNTTGCCTACTACTAAACTATATATTATTATTATGATGATACTAGTGACA : 60
 * 20 * 40 * 60
 TTAATAATTGGAAGGGAGAATAAAATAGTTGAAAAACACACAGTTGGAGTGTGTTGTTG : 120
 * 80 * 100 * 120
 TrDFRg : TAAAGAACGCTNGAAAATGGAGGAAGCNACAAAGATGGTAAAAAGAGTGGACAAATTGTT : 180
 * 140 * 160 * 180
 TrDFRg : CCTACTGCCAAATACTGTGTTACAGGAGCAACAGGCTATATTGGTTCATGGCTTGTTGAA : 240
 * 200 * 220 * 240
 TrDFRg : GCTCTCTTCAAAGAGGTTGCCTGACTGTCATGCTACTGTTAGAGATCCTGAAAATCGTTA : 300
 * 260 * 280 * 300
 TrDFRg : CACCTCCTGTCGTTGGAAAGGTAGTGACCAATTGAGAATTTCGTCGGATTGCAA : 360
 * 320 * 340 * 360
 TrDFRg : GAAGAACGAAAGTTCGATGCCGTAAAGGATGTATTGGTGTGTTCCATGTTGCAGCT : 420
 * 380 * 400 * 420
 TrDFRg : TCAATGCAATTCAATATTAGTGACAAAGAAAACACTGAGGACTTGTTGAAGCAAATATA : 480
 * 440 * 460 * 480
 TrDFRg : ATTGACCCCTGCAATCAAAGGAACCATAATCTTCTCAAATCATGCTTGAAATCAAATTCA : 540
 * 500 * 520 * 540
 TrDFRg : GTGAAAAGGGTTTTCACATCTTCCATAAGTACTATTACTGCTAAAGACAACGACGGA : 600
 * 560 * 580 * 600
 TrDFRg : AAATGGAAACCTATTGTTGATGAATCTGCCAAACAAAACGTGAGATTCTGTGGAATACA : 660
 * 620 * 640 * 660
 TrDFRg : CAACCAAGTGGATGGGTTATGCACTTCAAAGCTTCATGCAGAAGAAGCGGGCT : 714

FIGURE 59

95/271

* 20 * 40 * 60
TrDFRg : MVKKSGQIVPTAKYCVTGATGYIGSWLVEALLQRGCTVHATVRDPEKSLHLLSLWKGSDQ : 60

* 80 * 100 * 120
TrDFRg : LRIFRADLQEEGSFDDAVKGCGIVFHVAASMQFNI SDKENTEDFVEANIIDPAIKGTINL : 120

* 140 * 160 * 180
TrDFRg : LKSCLKSNSVKRVVFSSISTITAKDNDGKWKPIVDESCQTKTEILWNTQPSGWVYALSK : 180

TrDFRg : LHAEAA : 187

FIGURE 60

96/271

	* 20 * 40 * 60	
TrDFRg1 :	GCCNTTGCCTACTACTAAACTATATAATTATTATATTATGATGATACTAGTGACA	: 60
TrDFRg2 :	-----	:
TrDFRg3 :	-----	:
	* 80 * 100 * 120	
TrDFRg1 :	TTAATAATTGGAAAGGGAGAATAAAATAGTTGAAAAACACACAGTTGGAGTGT TTTGTGT : 120	
TrDFRg2 :	-----	:
TrDFRg3 :	-----	:
	* 140 * 160 * 180	
TrDFRg1 :	TAAAGAAGCT AAAATGGAGGAA AC AACAAAGATGGTAAAAA AGTGGACAAATTGTT	: 180
TrDFRg2 :	--- AGAAGCTNGAAAATGGAGGAG NACAAAGATGGTAAAAAGAGTGGACAAATTGTT	: 57
TrDFRg3 :	----- CTNGAAAATGGAGGAGCNACAAAGATGGTAAAAAGAGTGGACAAATTGTT	: 52
	* 200 * 220 * 240	
TrDFRg1 :	CCTA GGCAAATACTGTGT ACAGGAGC ACAGGCTATATTGGTTCATGGCTTGTGAA	: 240
TrDFRg2 :	CCTACTGCCAAATACTGTGT ACAGGAGCAACAGGCT TATATTGGTTCATGGCTTGTGAA	: 117
TrDFRg3 :	CCTACTGCCAAATACTGTGT ACAGGAGCAACAGGCT TATATTGGTTCATGGCTTGTGAA	: 112
	* 260 * 280 * 300	
TrDFRg1 :	GCTCTCTTCAAAAGAGGTTGCACTGTTCATGCTACTGTTAGAGATCCTG -----	: 289
TrDFRg2 :	GCTCTCTTCAAAAGAGGTTGCACTGTTCATGCTACTGTTAGAGATCCTGAAAAATCGTTA	: 177
TrDFRg3 :	GCTCTCTTCAAAAGAGGTTGCACTGTTCATGCTACTGTTAGAGATCCTGAAAAATCGTTA	: 172
	* 320 * 340 * 360	
TrDFRg1 :	-----	:
TrDFRg2 :	CACCTCCTGTCGTGTGAAAGGTAGTGACCAATTGAGAATTTCGTCGGATTGCAA	: 237
TrDFRg3 :	CACCTCCTGTCGTGTGAAAGGTAGTGACCAATTGAGAATTTCGTCGGATTGCAA	: 232
	* 380 * 400 * 420	
TrDFRg1 :	-----	:
TrDFRg2 :	GAAGAAGGAAGTTTCGATGATGCCGTAAAGGATGTATTGGTGTGTTCCATGTTGCAGCT	: 297
TrDFRg3 :	GAAGAAGGAAGTTTCGATGATGCCGTAAAGGATGTATTGGTGTGTTCCATGTTGCAGCT	: 292
	* 440 * 460 * 480	
TrDFRg1 :	-----	:
TrDFRg2 :	TCAATGCAATTCAATATTAGTGACAAAGAAAACACTGAGGACTTTGTTGAAGCAAATATA	: 357
TrDFRg3 :	TCAATGCAATTCAATATTAGTGACAAAGAAAACACTGAGGACTTTGTTGAAGCAAATATA	: 352
	* 500 * 520 * 540	
TrDFRg1 :	-----	:
TrDFRg2 :	ATTGACCCTGCAATCAAAGGAACCATAAAATCTCTCAAATCATGCTTGAAATCAAATTCA	: 417
TrDFRg3 :	ATTGACCCTGCAATCAAAGGAACCATAAAATCTCTCAAATCATGCTTGAAATCAAATTCA	: 412

FIGURE 61

97/271

TrDFRg1:	* 560	* 580	* 600	
TrDFRg2:	GTGAAAAGGGTTTTCACATCTTCCATAAGTACTATTACTGCTAAAGACAAACGACGGA			: 477
TrDFRg3:	GTGAAAAGGGTTTTCACATCTTCCATAAGTACTATTACTGCTAAAGACAAACGACGGA			: 472
TrDFRg1:	* 620	* 640	* 660	
TrDFRg2:	AAATGGAAACCTATTGTTGATGAATCTGCCAACAAAAACTGAGATTCTGTGGAATACA			: 537
TrDFRg3:	AAATGGAAACCTATTGTTGATGAATCTGCCAACAAAAACTGAGATTCTGTGGAATACA			: 532
TrDFRg1 :	* 680	* 700	*	
TrDFRg2 :	CAACCAAGTGGATGGGTTATGCACTTCAAAGCTTCATGCAGAAGAAGCGGCT			: 591
TrDFRg3 :	CAACCAAGTGGATGGGTTATGCACTTCAAAGCTTCATG-----			: 572

FIGURE 61 (cont)

98/271

* 20 * 40 * 60
 TrDFRh : GNNGNGTCTCCGTTNAATTNAGNCTATATTGAAAAGGAAAAAAGAGTAGAGAAAGTGA : 60

* 80 * 100 * 120
 TrDFRh : AGTGAAGTGAAAACATAACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTC : 120

* 140 * 160 * 180
 TrDFRh : GGTTTCATCGGATCGTGGCTTGTATGAGACTTATAGAGCGTGGCTACACGGTCGAGCC : 180

* 200 * 220 * 240
 TrDFRh : ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA : 240

* 260 * 280 * 300
 TrDFRh : AAAAGCAAATTGTCTCTTGGAAAGGCTGATCTGATAAAGAGGGGAGTTTGATGAAGCA : 300

* 320 * 340 * 360
 TrDFRh : ATTAAAGGGTGCACAGGAGTTTCATGTTGCTACACCAATGGATTTGAATCCAAGGAC : 360

* 380 * 400 * 420
 TrDFRh : CCTGAGAATGAAGTGATAAACGCCTACAATAATGGATTAATAGACATACTGAAAGCATGC : 420

* 440 * 460 * 480
 TrDFRh : GAAAAGGCAAAACAGTTAGAAAATTGGTTTCACATCATCGGCTGGAACTGTGGACGTT : 480

* 500 * 520 * 540
 TrDFRh : ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT : 540

* 560 * 580 * 600
 TrDFRh : AGAGTCAAGATGACCGGTTGGATGTATTTGTTCAAAGACCCTAGCAGAGCAAGAAGCT : 600

* 620 * 640 * 660
 TrDFRh : TGGAAAGTATTCGAAAGAGCACACATAGACTTGTCTCCATCATTCCACCTCTGTTGTT : 660

* 680 * 700 * 720
 TrDFRh : GGCCCCTTCTTATGGCCTCAATGCCACCTAGTCTAATCACTGCTCTCTTATCACA : 720

* 740 * 760 * 780
 TrDFRh : GGAAATGAGGCCATTACTCAATCATAAGCAAGGGCAATACGTCCATTAGATGACCTT : 780

* 800 * 820 * 840
 TrDFRh : TGTCTGCTCATATATTCTGTATGAGAATCCAAAAGCTCAAGGGAGATACTTGCTGT : 840

FIGURE 62

99/271

* 860 * 880 * 900
TrDFRh : TCACATGAAGCAACCATTCAAGTTGCAAAACTTATTAAAGAAAAATACCCAGAGTTC : 900

* 920 * 940 * 960
TrDFRh : AATGTCCCAACAAAATTCAATGATATCCCAGATGAATTGGAAATTATTAAATTCTAAA : 960

*
TrDFRh : AAGAAGATCACAGACT : 976

FIGURE 62 (cont)

100/271

* 20 * 40 * 60
TrDFRh : MGSESEIVCVTGASGFIGSWLVMRLIERGYTVRATVRDPDNMKVKHLVELPGAKSKLSL : 60

* 80 * 100 * 120
TrDFRh : WKADLDKEGSFDEAIKGCTGVFHVATPMDFESKDPENEVIKPTINGLIDILKACEKAKTV : 120

* 140 * 160 * 180
TrDFRh : RKLVFTSSAGTVDVTEHPKSIIDETCWSDVDFCRRVKMTGWMYFVSKTLAEQEAWKYSKE : 180

* 200 * 220 * 240
TrDFRh : HNIDFVSIIPPLVVGPFLMASMPPSLITALSLITGNEAHYSIIKQGQYVHLDLCLAHIF : 240

* 260 * 280 *
TrDFRh : LYENPKAQGRYICCSHEATIHQVAKLIKEKYPEFNVPTKFNDIPDELEIIFSKKKITD : 299

FIGURE 63

101/271

	*	20	*	40	*	60		
TrDFRh1 :	GNN	TGTCTCCGTTNAATTNAGNCATAATTGAAAAAGAAAAAAAGAGTAGNNNNANGA					:	60
TrDFRh2 :	-	TTTGTCTTAATCAGAATTTCAGNCATAATTGAAAAGAAAAAGAGGAGAGAAGTC	A				:	59
TrDFRh3 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGNNNNANGA					:	57
TrDFRh4 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGAGAANNNG	N				:	57
TrDFRh5 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGNNNNANGA					:	57
TrDFRh6 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGNNNNANGA					:	57
TrDFRh7 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGAGAAGTGA					:	57
TrDFRh8 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGGAGAGAAGTGA					:	56
TrDFRh9 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGAGAAGTGA					:	56
TrDFRh10 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGAGAAGTGA					:	56
TrDFRh11 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGAGAAGTGA					:	55
TrDFRh12 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGAGAAGTGA					:	55
TrDFRh13 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGAGAAGTGA					:	52
TrDFRh14 :	-	---GNGTCTCCGTTNAATTNAGNCATAATTGAAAAGAAAAAGAGTAGAGAAGTGA					:	12
TrDFRh15 :	-	---					:	-

	*	80	*	100	*	120		
TrDFRh1 :	AGTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	120
TrDFRh2 :	A T GTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	119
TrDFRh3 :	AGTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	117
TrDFRh4 :	A NTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	117
TrDFRh5 :	AGTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	117
TrDFRh6 :	AGTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	117
TrDFRh7 :	AGTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	117
TrDFRh8 :	A T GTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	116
TrDFRh9 :	AGTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	116
TrDFRh10 :	AGTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	116
TrDFRh11 :	A T GTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	115
TrDFRh12 :	A NTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	115
TrDFRh13 :	A T GTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	112
TrDFRh14 :	C T GTGAAGTGAAAACATACATGGGTTCCGAATCAGAAATAGTTGTGTTACCGGAGCTTCA						:	72
TrDFRh15 :	---						:	-

	*	140	*	160	*	180		
TrDFRh1 :	G TTTCATCGGATCGTGGCTTGTATGAGACTTATAGAGCGTGGCTACACGGTTCGAGCC						:	180
TrDFRh2 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATGGAGCTTGGCTACACTGTTCGAGCC						:	179
TrDFRh3 :	G TTTCATCGGATCGTGGCTTGTATGAGACTTATAGAGCGTGGCTACACGGTTCGAGCC						:	177
TrDFRh4 :	G TTTCATCGGATCGTGGCTTGTATGAGACTTATAGAGCGTGGCTACACGGTTCGAGCC						:	177
TrDFRh5 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATAGAGCGTGGCTACACGGTTCGAGCC						:	177
TrDFRh6 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATAGAGCGTGGCTACACGGTTCGAGCC						:	177
TrDFRh7 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATAGAGCGTGGCTACACGGTTCGAGCC						:	177
TrDFRh8 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATGGAGCGTGGCTACACGGTTCGAGCC						:	176
TrDFRh9 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATAGAGCGTGGCTACACGGTTCGAGCC						:	176
TrDFRh10 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATAGAGCGTGGCTACACGGTTCGAGCC						:	176
TrDFRh11 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATGGAGCGTGGCTACACGGTTCGAGCC						:	175
TrDFRh12 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATAGAGCGTGGCTACACGGTTCGAGCC						:	175
TrDFRh13 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATGGAGCGTGGCTACACGGTTCGAGCC						:	172
TrDFRh14 :	GGTTTCATCGGATCGTGGCTTGTATGAGACTTATGGAGCGTGGCTACACTGTTCGAGCC						:	132
TrDFRh15 :	---						:	-

FIGURE 64

102/271

	* 200 *	220 *	* 240	
TrDFRh1 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 240
TrDFRh2 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 239
TrDFRh3 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 237
TrDFRh4 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 237
TrDFRh5 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 237
TrDFRh6 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 237
TrDFRh7 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 237
TrDFRh8 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 236
TrDFRh9 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 236
TrDFRh10 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 236
TrDFRh11 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 235
TrDFRh12 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 235
TrDFRh13 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 232
TrDFRh14 :	ACCGTTCGCGACCCAGATAACATGAAGAAGGTGAAGCATTGGTGGAACTGCCGGGTGCA			: 192
TrDFRh15 :	-----			:
	* 260 *	280 *	* 300	
TrDFRh1 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 300
TrDFRh2 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 299
TrDFRh3 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 297
TrDFRh4 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 297
TrDFRh5 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 297
TrDFRh6 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 297
TrDFRh7 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 297
TrDFRh8 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 296
TrDFRh9 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 296
TrDFRh10 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 296
TrDFRh11 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 295
TrDFRh12 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 295
TrDFRh13 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 292
TrDFRh14 :	AAAAGCAAATTGTCCTTTGAAAGGCTGATCTGATAAAAGAGGGGAGTTTGATGAAGCA			: 252
TrDFRh15 :	-----			:
	* 320 *	340 *	* 360	
TrDFRh1 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 360
TrDFRh2 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 359
TrDFRh3 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 357
TrDFRh4 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 357
TrDFRh5 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 357
TrDFRh6 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 357
TrDFRh7 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 357
TrDFRh8 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 356
TrDFRh9 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 356
TrDFRh10 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 356
TrDFRh11 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 355
TrDFRh12 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 355
TrDFRh13 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 352
TrDFRh14 :	ATTAAGGGTGACAGGAGTTTTCATGTTGCTACACCAATGGATTGGATTTGAATCCAAGGAC			: 312
TrDFRh15 :	-----			:

FIGURE 64 (cont)

103/271

	* 380 *	400	*	420
TrDFRh1 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 420
TrDFRh2 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAACGGATTAAAGACATACTGAAAGCATGC			: 419
TrDFRh3 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 417
TrDFRh4 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 417
TrDFRh5 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 417
TrDFRh6 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 417
TrDFRh7 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 417
TrDFRh8 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 416
TrDFRh9 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 416
TrDFRh10 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 416
TrDFRh11 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 415
TrDFRh12 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAATGGATTAAAGACATACTGAAAGCATGC			: 415
TrDFRh13 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAACGGATTAAAGACATACTGAAAGCATGC			: 412
TrDFRh14 :	CCTGAGAATGAAGTGATAAAAGCCTACAATAAACGGATTAAAGACATACTGAAAGCATGC			: 372
TrDFRh15 :	-----TACTGAAAGNTGC			: 14

	* 440 *	460	*	480
TrDFRh1 :	GAAAAGGCAAAACAGTTA-----TGGTTTCACATCATCGGCTGGAACGTGACGTT			: 480
TrDFRh2 :	GAAAAGGCAAAACAGTTAGAAAATGGTTTCACATCATCGGCTGGAACGTGACGTT			: 479
TrDFRh3 :	GAAAAGGCAAAACAGTTA-----TGGTTTCACATCATCGGCTGGAACGTGACGTT			: 477
TrDFRh4 :	GAAAAGGCAAAACAGTTA-----TGGTTTCACATCATCGGCTGGAACGTGACGTT			: 477
TrDFRh5 :	GAAAAGGCAAAACAGTTAGAAAATGGTTTCACATCATCGGCTGGAACGTGACGTT			: 477
TrDFRh6 :	GAAAAGGCAAAACAGTTAGAAAATGGTTTCACATCATCGGCTGGAACGTGACGTT			: 477
TrDFRh7 :	GAAAAGGCAAAACAGTTA-----TGGTTTCACATCATCGGCTGGAACGTGACGTT			: 477
TrDFRh8 :	GAAAAGGCAAAACAGTTAGAAAATGGTTTCACATCATCGGCTGGAACGTGACGTT			: 476
TrDFRh9 :	GAAAAGGCAAAACAGTTA-----TGGTTTCACATCATCGGCTGGAACGTGACGTT			: 476
TrDFRh10 :	GAAAAGGCAAAACAGTTA-----TGGTTTCACATCATCGGCTGGAACGTGACGTT			: 476
TrDFRh11 :	GAAAAGGCAAAACAGTTAGAAAATGGTTTCACATCATCGGCTGGAACGTGACGTT			: 475
TrDFRh12 :	GAAAAGGCAAAACAGTTAGAAAATGGTTTCACATCATCGGCTGGAACGTGACGTT			: 475
TrDFRh13 :	GAAAAGGCAAAACAGTTAGAAAATGGTTTCACATCATCGGCTGGAACGTGACGTT			: 472
TrDFRh14 :	GAAAAGGCAAAACAGTTAGAAAATGGTTTCACATCATCGGCTGGAACGTGACGTT			: 432
TrDFRh15 :	GAAAAGGCAAAACAGTTAGAAAATGGTTTCACATCATCGGCTGGAACGTGACGTT			: 74

	* 500 *	520	*	540
TrDFRh1 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 540
TrDFRh2 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 539
TrDFRh3 :	ACTGAACATCCAAAGN-----			: 493
TrDFRh4 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 537
TrDFRh5 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 537
TrDFRh6 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 537
TrDFRh7 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 537
TrDFRh8 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 536
TrDFRh9 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 536
TrDFRh10 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 536
TrDFRh11 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 535
TrDFRh12 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 535
TrDFRh13 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 532
TrDFRh14 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 492
TrDFRh15 :	ACTGAACATCCAAAGTCTATTATTGATGAAACATGCTGGAGTGACGTTGACTTTGCCGT			: 134

FIGURE 64 (cont)

104/271

	*	560	*	580	*	600	
TrDFRh1 :		AGAGTCAAGATGACCGGGTGGATGTATTTGTTCAAAGACCCTAG-----					: 586
TrDFRh2 :		AGAGTCAAAATGACCGGGTGGATGTATTT-----					: 569
TrDFRh3 :		-----					: -
TrDFRh4 :		ANAGTCAAAATGACCGGGTGGATGTATTTGTTCAAANACCC-----					: 580
TrDFRh5 :		AGAGTCAAGATGACCGGGTGGATGTATTTGTTCAAAGACCCT-----					: 581
TrDFRh6 :		AGAGTCAAGATGACCGGGTGGATGTATTTGTTCAAAGACCCTAGCAGAGCAAG-----					: 592
TrDFRh7 :		AGAGTCAAGATGACCGGGTGGATGTATTTGTTCAAAGACCCTAGCAGAGCAAGAAGCT-----					: 597
TrDFRh8 :		AGAGTCAAAATGACCGGGTGGATGTATTTGTTCAAAGA-----					: 576
TrDFRh9 :		AGAGTCAAGATGACCGGGTGGATGTATTTGTTCAAAGACCCTAGCAGAG-----					: 587
TrDFRh10 :		AGAGTCAAGATGACCGGGTGGATGTATTTGTTCAAAGACCCTAGCAGAGCAAGAAGCT-----					: 596
TrDFRh11 :		AGAGTCAAAATGACCGGGTGGATGTATTTGTTCAAAGACCCT-----					: 579
TrDFRh12 :		AGAGTCAAGATGACCGGGTGGATGTATTTGTTCAAAGACCCTAGCAGAGCAAGAAGCT-----					: 595
TrDFRh13 :		AGAGTCAAAATGACCGGGTGGATGTATTTGTTCAAAGACCCTAGCAGAGCAAG-----					: 586
TrDFRh14 :		AGAGTCAAAATGACCGGGTGGATGTATTTGTTCAAAGACCCTAGCAGAGCAAGAAGCT-----					: 552
TrDFRh15 :		AGAGTCAAAATGACCGGGTGGATGTATTTGTTCAAAGACCCTAGCAGAGCAAGAAGCT-----					: 194
	*	620	*	640	*	660	
TrDFRh1 :		-----					: -
TrDFRh2 :		-----					: -
TrDFRh3 :		-----					: -
TrDFRh4 :		-----					: -
TrDFRh5 :		-----					: -
TrDFRh6 :		-----					: -
TrDFRh7 :	T	-----					: 598
TrDFRh8 :		-----					: -
TrDFRh9 :		-----					: -
TrDFRh10 :		TGGAAGTATTCAAAAGAGCACACATAGACTTTG-----					: 630
TrDFRh11 :		-----					: -
TrDFRh12 :	TGGAAGTAT-----						: 604
TrDFRh13 :		-----					: -
TrDFRh14 :		TGGAAGTATTGAAAGAGCACACATAGACTTTG-----					: 586
TrDFRh15 :		TGGAAGTATTGAAAGAGCACACATAGACTTTGTCTCCATTCACCTCTGTTGTT-----					: 254
	*	680	*	700	*	720	
TrDFRh1 :		-----					: -
TrDFRh2 :		-----					: -
TrDFRh3 :		-----					: -
TrDFRh4 :		-----					: -
TrDFRh5 :		-----					: -
TrDFRh6 :		-----					: -
TrDFRh7 :		-----					: -
TrDFRh8 :		-----					: -
TrDFRh9 :		-----					: -
TrDFRh10 :		-----					: -
TrDFRh11 :		-----					: -
TrDFRh12 :		-----					: -
TrDFRh13 :		-----					: -
TrDFRh14 :		-----					: -
TrDFRh15 :		GGCCCCCTTCTTATGGCCTCAATGCCACCTAGTCTAACACTGCTCTCTCTATCACA-----					: 314

FIGURE 64 (cont)

105/271

	*	740	*	760	*	780	
TrDFRh1 :	-	-	-	-	-	-	:
TrDFRh2 :	-	-	-	-	-	-	:
TrDFRh3 :	-	-	-	-	-	-	:
TrDFRh4 :	-	-	-	-	-	-	:
TrDFRh5 :	-	-	-	-	-	-	:
TrDFRh6 :	-	-	-	-	-	-	:
TrDFRh7 :	-	-	-	-	-	-	:
TrDFRh8 :	-	-	-	-	-	-	:
TrDFRh9 :	-	-	-	-	-	-	:
TrDFRh10 :	-	-	-	-	-	-	:
TrDFRh11 :	-	-	-	-	-	-	:
TrDFRh12 :	-	-	-	-	-	-	:
TrDFRh13 :	-	-	-	-	-	-	:
TrDFRh14 :	-	-	-	-	-	-	:
TrDFRh15 :	GGAAATGAGGCCCATTA	CTCAATCATAAAGCAAGGGCAATACGTCCATTAGATGACCTT					: 374

	*	800	*	820	*	840	
TrDFRh1 :	-	-	-	-	-	-	:
TrDFRh2 :	-	-	-	-	-	-	:
TrDFRh3 :	-	-	-	-	-	-	:
TrDFRh4 :	-	-	-	-	-	-	:
TrDFRh5 :	-	-	-	-	-	-	:
TrDFRh6 :	-	-	-	-	-	-	:
TrDFRh7 :	-	-	-	-	-	-	:
TrDFRh8 :	-	-	-	-	-	-	:
TrDFRh9 :	-	-	-	-	-	-	:
TrDFRh10 :	-	-	-	-	-	-	:
TrDFRh11 :	-	-	-	-	-	-	:
TrDFRh12 :	-	-	-	-	-	-	:
TrDFRh13 :	-	-	-	-	-	-	:
TrDFRh14 :	-	-	-	-	-	-	:
TrDFRh15 :	TGTCTTGCTCATATATTCTGTATGAGAATCCAAAAGCTCAAGGGAGATA	CTTTGCTGT					: 434

	*	860	*	880	*	900	
TrDFRh1 :	-	-	-	-	-	-	:
TrDFRh2 :	-	-	-	-	-	-	:
TrDFRh3 :	-	-	-	-	-	-	:
TrDFRh4 :	-	-	-	-	-	-	:
TrDFRh5 :	-	-	-	-	-	-	:
TrDFRh6 :	-	-	-	-	-	-	:
TrDFRh7 :	-	-	-	-	-	-	:
TrDFRh8 :	-	-	-	-	-	-	:
TrDFRh9 :	-	-	-	-	-	-	:
TrDFRh10 :	-	-	-	-	-	-	:
TrDFRh11 :	-	-	-	-	-	-	:
TrDFRh12 :	-	-	-	-	-	-	:
TrDFRh13 :	-	-	-	-	-	-	:
TrDFRh14 :	-	-	-	-	-	-	:
TrDFRh15 :	TCACATGAAGCAACCATT	CATCAAGTTGCAAAACTTATTAAAGAAAAATACCCAGAGTTC					: 494

FIGURE 64 (cont)

106/271

	*	920	*	940	*	960	
TrDFRh1 :	-	-	-	-	-	-	:
TrDFRh2 :	-	-	-	-	-	-	:
TrDFRh3 :	-	-	-	-	-	-	:
TrDFRh4 :	-	-	-	-	-	-	:
TrDFRh5 :	-	-	-	-	-	-	:
TrDFRh6 :	-	-	-	-	-	-	:
TrDFRh7 :	-	-	-	-	-	-	:
TrDFRh8 :	-	-	-	-	-	-	:
TrDFRh9 :	-	-	-	-	-	-	:
TrDFRh10 :	-	-	-	-	-	-	:
TrDFRh11 :	-	-	-	-	-	-	:
TrDFRh12 :	-	-	-	-	-	-	:
TrDFRh13 :	-	-	-	-	-	-	:
TrDFRh14 :	-	-	-	-	-	-	:
TrDFRh15 :	AATGTCCCAACAAAATTCAATGATATCCCAGATGAATTGGAAATTATTAAATTTCTAAA						: 554

	*	
TrDFRh1 :	-	:
TrDFRh2 :	-	-
TrDFRh3 :	-	-
TrDFRh4 :	-	-
TrDFRh5 :	-	-
TrDFRh6 :	-	-
TrDFRh7 :	-	-
TrDFRh8 :	-	-
TrDFRh9 :	-	-
TrDFRh10 :	-	-
TrDFRh11 :	-	-
TrDFRh12 :	-	-
TrDFRh13 :	-	-
TrDFRh14 :	-	-
TrDFRh15 :	AAGAAGATCACAGACT	: 570

FIGURE 64 (cont)

107/271

* 20 * 40 * 60
TrLCRa : GGNCATAAAAAGTGCAGTAGTGTGTATAAGTTNTTAGTGAAAAAAGAGTGTGTAAATTA : 60

* 80 * 100 * 120
TrLCRa : ACATCATGGCTAGTATCAAACAAATTGGAAACAAGAAAGCATGTGTGATTGGTGGCACTG : 120

* 140 * 160 * 180
TrLCRa : GTTTTGTGCATCTATGTTGATCAAACAGTTACTTGAAAAGGGTTATGCTGTTAACTA : 180

* 200 * 220 * 240
TrLCRa : CTGTTAGAGACCCAGATAGTCCTAAGAAAATATCTCACCTAGTGGCACTGCAAAGTTGG : 240

* 260 * 280 * 300
TrLCRa : GGGAACTGAATCTATTTAGAGCAGACTAACAGTTAACAGTTGAAGAAGATTTGATGCTCCTATAG : 300

* 320 * 340 * 360
TrLCRa : CAGGATGTGAGCTGTTTTCAACTTGCTACACCTGTGAACCTTGCTCTCAAGATCCTG : 360

* 380 * 400 * 420
TrLCRa : AGAATGACATGATAAAGCCAGCAATCAAAGGTGTGTTGAATGTGTTGAAAGCAAGTGCAA : 420

* 440 * 460 * 480
TrLCRa : GAGCAAAAGAAGTCAAAAGAGTTATCTAACATCTCGGCAGCCGCGGTGACTATAATG : 480

* 500 * 520 * 540
TrLCRa : AACTCAAAGGGACAGGTCATGTTATGGATGAAACCAACTGGTCAGATGTTGAATTCTGA : 540

* 560 * 580 * 600
TrLCRa : ACAC TGCAAAGCCACCCACTGGGTTATCCTGCTCAAAAATGCTAGCTGAAAAGGCTG : 600

* 620 * 640 * 660
TrLCRa : CATGGAAATTGCTGAAGAAAATGACATTGATCTAACACTGTGATAACCTAGTTAACAA : 660

* 680 * 700 * 720
TrLCRa : CTGGTCCTCTCTCACACCAGATATCCCCTAGTGTTGGCTGGCAATGTCTCTAACAA : 720

* 740 * 760 * 780
TrLCRa : CAGGCAATGATTCCCTCATAAATGCTCTGAAAGGAATGCAATTCTGTCGGGTTGTTAT : 780

* 800 * 820 *
TrLCRa : CCATCACTCATGTTGAGGATATTGCCGAGCTCATATATTCTGGCAGAGAAG : 833

FIGURE 65

108/271

* 20 * 40 * 60
TrLCRa : MASIKQIGNKKACVIGGTGFVASMLIKQLLEKGYAVNTTVRDPDSPKKISHLVALQSLGE : 60

* 80 * 100 * 120
TrLCRa : LNLFRADLTVEEDFDAPTAGCELVFQLATPVNFASQDPENDMIKPAIKGVLNVLKASARA : 120

* 140 * 160 * 180
TrLCRa : KEVKRVILTSSAAVTINELKGTGHVMDETNWSDVEFLNTAKPPTWGYPASKMLAEKAAW : 180

* 200 * 220 * 240
TrLCRa : KFAEENDIDLITVIPSLTTGPSLTPDIPSSVGLAMSLITGNDFLINALKGMQFLSGSLSI : 240

*
TrLCRa : THVEDICRAHIFLAEK : 256

FIGURE 66

109/271

	*	20	*	40	*	60	
TrLCRa1:	GGNCATAAAA	ACTGCAC	TAGTGTG	TATAAGTTN	AAGTGA	AAAAAGAGTGTG	TAAATT
TrLCRa2:	GGNC	NTAAA	ACTGCAC	TAGTGTG	TATAAGTTN	AAGTGA	AAAAAGAGTGTG
TrLCRa3:	-----	TAAA	ACTG	TACTNG	TGTG	TATAAGTTN	N
TrLCRa4:	-----	TAAA	ACTG	CAC	TAGTGTG	TATAAGTT	TGTG
TrLCRa5:	-----	-----	GACCT	CGTGTG	N	AGTTTC	TGTG
TrLCRa6:	-----	-----	-----	-----	-----	-----	-----
TrLCRa7:	-----	-----	-----	-----	-----	-----	-----
	*	80	*	100	*	120	
TrLCRa1:	ACATCATGGC	TAGTATCAA	ACAAATTGG	AAACAAGA	AGCATGTG	TATTGGTGG	GCAC
TrLCRa2:	ACATCATGGC	TAGTATCAA	ACAAATTGG	AAACAAGA	AGCATGTG	TATTGGTGG	GCAC
TrLCRa3:	ACATCATGGC	TAGTATCAA	ACAAATTGG	AAACAAGA	AGCATGTG	TATTGGTGG	GCAC
TrLCRa4:	ACATCATGGC	TAGTATCAA	ACAAATTGG	AAACAAGA	AGCATGTG	TATTGGTGG	GCAC
TrLCRa5:	ACATCN	TGGCT	NTG	TATCAA	ACAAATTGG	AAACAAGA	AGCATGTG
TrLCRa6:	-----	-----	-----	-----	-----	-----	-----
TrLCRa7:	-----	-----	-----	-----	-----	-----	-----
	*	140	*	160	*	180	
TrLCRa1:	GTTTTGTTG	CATCTATG	TGATCAA	ACAGTTAC	TGAAAAGGG	TTATG	GCTGTTAAT
TrLCRa2:	GTTTTGTTG	CATCTATG	TGATCAA	ACAGTTAC	TGAAAAGGG	TTATG	GCTGTTAAT
TrLCRa3:	GTTTTGTTG	CATCTATG	TGATCAA	ACAGTTAC	TGAAAAGGG	TTATG	GCTGTTAAT
TrLCRa4:	GTTTTGTTG	CATCTATG	TGATCAA	ACAGTTAC	TGAAAAGGG	TTATG	GCTGTTAAT
TrLCRa5:	GTTTTGTTG	CATCTATG	TGATCAA	ACAGTTAC	TGAAAAGGG	TTATG	GCTGTTAAT
TrLCRa6:	-----	-----	-----	-----	-----	-----	-----
TrLCRa7:	-----	-----	-----	-----	-----	-----	-----
	*	200	*	220	*	240	
TrLCRa1:	CTGTTAGAGACC	CAGATAGT	CCTAAGAAA	ATATCTCAC	CTAGTGG	CACTGCAA	AGTTTG
TrLCRa2:	CTGTTAGAGACC	CAGATAGT	CCTAAGAAA	ATATCTCAC	CTAGTGG	CACTGCAA	AGTTTG
TrLCRa3:	CTGTTAGAGACC	CAGATAGT	CCTAAGAAA	ATATCTCAC	CTAGTGG	CACTGCAA	AGTTTG
TrLCRa4:	CTGTTAGAGACC	CAGATAGT	CCTAAGAAA	ATATCTCAC	CTAGTGG	CACTGCAA	AGTTTG
TrLCRa5:	CTGTTAGAGACC	CAGATAGT	CCTAAGAAA	ATATCTCAC	CTAGTGG	CACTGCAA	AGTTTG
TrLCRa6:	-----	-----	-----	-----	-----	G	1
TrLCRa7:	-----	-----	-----	-----	-----	-----	-----
	*	260	*	280	*	300	
TrLCRa1:	GGGA	ACTGAA	TCTATT	TAGAGC	CAGACTTA	ACAGTTG	AAAGAGATTTG
TrLCRa2:	GGGA	ACTGAA	TCTATT	TAGAGC	CAGACTTA	ACAGTTG	AAAGAGATTTG
TrLCRa3:	GGGA	ACTGAA	TCTATT	TAGAGC	CAGACTTA	ACAGTTG	AAAGAGATTTG
TrLCRa4:	GGGA	ACTGAA	TCTATT	TAGAGC	CAGACTTA	ACAGTTG	AAAGAGATTTG
TrLCRa5:	GGGA	ACTGAA	TCTATT	TAGAGC	CAGACTTA	ACAGTTG	AAAGAGATTTG
TrLCRa6:	NGNA	CTGAA	TCTATT	TAGAGN	AGACTTA	ACAGTTG	AAAGAGATTTG
TrLCRa7:	-----	-----	-----	-----	TTAACAGTTG	AAAGAGATTTG	ATGCTCCTATAG
	*	320	*	340	*	360	
TrLCRa1:	CAGGATGTG	AGCCTG	TTCTCA	ACTTG	CTACAC	CTGTG	AAAGATCCTG
TrLCRa2:	CAGGATGTG	AGCCTG	TTCTCA	ACTTG	CTACAC	CTGTG	AAAGATCCTG
TrLCRa3:	CAGGATGTG	AGCCTG	TTCTCA	ACTTG	CTACAC	CTGTG	AAAGATCCTG
TrLCRa4:	CAGGATGTG	AGCCTG	TTCTCA	ACTTG	CTACAC	CTGTG	AAAGATCCTG
TrLCRa5:	CAGGATGTG	AGCCTG	TTCTCA	ACTTG	CTACAC	CTGTG	AAAGATCCTG
TrLCRa6:	CAGGATGTG	AGCCTG	TTCTCA	ACTTG	CTACAC	CTGTG	AAAGATCCTG
TrLCRa7:	CAGGATGTG	AGCCTG	TTCTCA	ACTTG	CTACAC	CTGTG	AAAGATCCTG

FIGURE 67

110/271

	*	380	*	400	*	420	
TrLCRa1:	AGAATGACATGATAAAAGCCAGCAATCAAAGGTGTGTGAATGTGTGAAAGCAAGTGC	AA	:	420			
TrLCRa2:	AGAATGACATGATAAAAGCCAGCAATCAAAGGTGTGTGAATGTGTGAAAGCAAGTGC	AA	:	420			
TrLCRa3:	AGAATGACATGATAAAAGCCAGCAATCAAAGGTGTGTGAATGTGTGAAAGCAAGTGC	AA	:	415			
TrLCRa4:	AGAATGACATGATAAAAGCCAGCAATCAAAGGTGTGTGAATGTGTGAAAGCAAGTGC	AA	:	415			
TrLCRa5:	AGAATGACATGATAAAAGCCAGCAATCAAAGGTGTGTGAATGTGTGAAAGCAAGTGC	AA	:	407			
TrLCRa6:	AGAATGACATGATAAAAGCCAGCAATCAAAGGTGTGTGAATGTGTGAAAGCAAGTGC	AA	:	181			
TrLCRa7:	AGAATGACATGATAAAAGCCAGCAATCAAAGGTGTGTGAATGTGTGAAAGCAAGTGC	AA	:	154			
	*	440	*	460	*	480	
TrLCRa1:	GAGCAAAAGAAGTCAAAAGAGTTATCTTAACATCTCGGCAGCCGCCGGTACTATAAATG	:	480				
TrLCRa2:	GAGCAAAAGAAGTCAAAAGAGTTATCTTAACATCTCGGCAGCCGCCGGTACTATAAATG	:	480				
TrLCRa3:	GAGCAAAAGAAGTCAAAAGAGTTATCTTAACATCTCGGCAGCCGCCGGTACTATAAATG	:	475				
TrLCRa4:	GAGCAAAAGAAGTTAAAAGAGTTATCTTAACATCTCGGCAGCCGCCGGTACTATAAATG	:	475				
TrLCRa5:	GAGCAAAAGAAGTTAAAAGAGTTATCTTAACATCTCGGCAGCCGCCGGTACTATAAATG	:	467				
TrLCRa6:	GAGCAAAAGAAGTCAAAAGAGTTATCTTAACATCTCGGCAGCCGCCGGTACTATAAATG	:	241				
TrLCRa7:	GAGCAAAAGAAGTCAAAAGAGTTATCTTAACATCTCGGCAGCCGCCGGTACTATAAATG	:	214				
	*	500	*	520	*	540	
TrLCRa1:	AACTCAAAGGGACAGGTTCATGTTATGGATGAAACCAACTGGTCAGATGTTGAATTCTGA	:	540				
TrLCRa2:	AACTCAAAGGGACAGGTTCATGTTATGGATGAAACCAACTGGTCAGATGTTGAATTCTGA	:	540				
TrLCRa3:	AACTCAAAGGGACAGGTTCATGTTATGGATGAAACCAACTGGTCAGATGTTGAATTCTGA	:	535				
TrLCRa4:	AACTCAAAGGGACAGGTTCATGTTATGGATGAAACCAACTGGTCAGATGTTGAATTCTGA	:	535				
TrLCRa5:	AACTCAAAGGGACAGGTTCATGTTATGGATGAAACCAACTGGTCAGATGTTGAATTCTGA	:	527				
TrLCRa6:	AACTCAAAGGGACAGGTTCATGTTATGGATGAAACCAACTGGTCAGATGTTGAATTCTGA	:	301				
TrLCRa7:	AACTCAAAGGGACAGGTTCATGTTATGGATGAAACCAACTGGTCAGATGTTGAATTCTGA	:	274				
	*	560	*	580	*	600	
TrLCRa1:	ACACTGCAAAGCCACCCACTTGGGTTATCCTGCTT-----						576
TrLCRa2:	ACACTGCAAAGCCACCCACTTGGGTTATCCTGCTTCAAN-----						580
TrLCRa3:	ACACTGCAAAGCCACCCACTTGGGTTATCCTGCTTCAAAAAT-----						578
TrLCRa4:	ACACTGCAAAGCCACCCACTTGGGTTATCCTGCTTCAAAAATGCTAGCTGAAAAGGCTG						595
TrLCRa5:	ACACTGCAAAGCCACCCACTTGGGTTATCCTGCTTCAAAAATGCTAGCTGAAAAGGCTG						587
TrLCRa6:	ACACTGCAAAGCCACCCACTTGGGTTATCCTGCTTCAAAAATGCTAGCTGAAAAGGCTG						361
TrLCRa7:	ACACTGCAAAGCCACCCACTTGGGTTATCCTGCTTCAAAAATGCTAGCTGAAAAGGCTG						334
	*	620	*	640	*	660	
TrLCRa1:	-----						-
TrLCRa2:	-----						-
TrLCRa3:	-----						-
TrLCRa4:	CATGGAAATTGCTGAAGAAAATG-----						619
TrLCRa5:	CATGGAAATTGCTGAAGAAAATGACATTGATCTAACACTGTGATAACCTAGTTAACAA						619
TrLCRa6:	CATGGAAATTGCTGAAGAAAATGACATTGATCTAACACTGTGATAACCTAGTTAACAA						421
TrLCRa7:	CATGGAAATTGCTGAAGAAAATGACATTGATCTAACACTGTGATAACCTAGTTAACAA						394
	*	680	*	700	*	720	
TrLCRa1:	-----						-
TrLCRa2:	-----						-
TrLCRa3:	-----						-
TrLCRa4:	-----						-
TrLCRa5:	-----						-
TrLCRa6:	CTGGTCCTTCTCTCACACCAAGATATCCCACATCTAGTGTGGCTTGGCAATGTCTCTAAATAA						481
TrLCRa7:	CTGGTCCTTCTCTCACACCAAGATATCCCACATCTAGTGTGGCTTGGCAATGTCTCTAAATAA						454

FIGURE 67 (cont)

111/271

	*	740		*	760		*	780	
TrLCRa1:	-			-			-	-	:
TrLCRa2:	-			-			-	-	:
TrLCRa3:	-			-			-	-	:
TrLCRa4:	-			-			-	-	:
TrLCRa5:	-			-			-	-	:
TrLCRa6:	CAGGCAATGATTTCCTCATAAATGCTCTGAAAGGAATGCAATTCTGTGCGGGTTCGTTAT								:
TrLCRa7:	CAGGCAATGATTTCCTCATAAATGCTCTGAAAGGAATGCAATTCTGTGCGGGTTCGTTAT								:
									541
									514
	*	800		*	820		*		
TrLCRa1:	-			-			-	-	:
TrLCRa2:	-			-			-	-	:
TrLCRa3:	-			-			-	-	:
TrLCRa4:	-			-			-	-	:
TrLCRa5:	-			-			-	-	:
TrLCRa6:	CCATCACTCATGTTGAGGATATTGCCGAGCTCATATATTCTGG-----								:
TrLCRa7:	CCATCACTCATGTTGAGGATATTGCCGAGCTCATATATTCTGGCAGAGAAG								:
									586
									567

FIGURE 67 (cont)

112/271

* 20 * 40 * 60
 TrF3'5'Ha: GGAACCAATTGTCGGACTTTCCCGGGTGGCCCGATTGAGTTGCAGGGTGTGGTG : 60

* 80 * 100 * 120
 TrF3'5'Ha: AAAGAGATGGATGTCTGGTCCACGTTGATAGCATATTGAAAAAATGATTGGTGAA : 120

* 140 * 160 * 180
 TrF3'5'Ha: CGTAAGAAGAAGGAAGTGGAGGGAAAGAAAATGAAAGTAAGGATTTCTGCAGTTTG : 180

* 200 * 220 * 240
 TrF3'5'Ha: TTGAATTGAGGATGAGGGTGATTCTAACAGACTCCATTACAATTACCCATGTTAAGGCT : 240

* 260 * 280 * 300
 TrF3'5'Ha: CTACTCATGGACATGGTGTGGGTGGATCAGACACATCCTCCAACACAATTGAGTTGCA : 300

* 320 * 340 * 360
 TrF3'5'Ha: TTGGCAGAAATGATGAACAACCCAGAAGTAATGAGGAAGGTTCAAGAGGAATTAGAAGAT : 360

* 380 * 400 * 420
 TrF3'5'Ha: GTAGTTGGGAAAGATAACTTAGTAGAAGAGTCTCACATCATAAGCTACCCTACTTGCAT : 420

* 440 * 460 * 480
 TrF3'5'Ha: GCAGTGATGAAAGAACACTTCGTTACACCCAGCACTCCACTTTAGTCCCTCACTGT : 480

* 500 * 520 * 540
 TrF3'5'Ha: CCAAGTGAAACCACCAATGTTGGAGGCTACACAATTCAAAGGGATCTCGTGTGTTGTG : 540

* 560 * 580 *
 TrF3'5'Ha: AACGTTGGGCTATTCATAGAGACCCTTCCATTGGGAGAAACCAGTAAATTGAT : 597

FIGURE 68

113/271

TrF3'5'Ha: GTNLSDFFPGLARFDLQGVVKEMDVLVPRFDSIFEKMIGERKKVEGKENESKDFLQFL : 60
* 20 * 40 * 60

TrF3'5'Ha: LNLKDEGDSKTPFTITHVKALLMDMVGGSDTSSNTIEFALAEMMNPEVMRKVQEELED : 120
* 80 * 100 * 120

TrF3'5'Ha: VVGKDNLVEESHIIHKLPYLHAVMKETLRLHPALPLLVPHCSETTNVGGYTIPKGSRVFV : 180
* 140 * 160 * 180

TrF3'5'Ha: NVWAIHRDPSIWEKPLEFD : 199
*

FIGURE 69

114/271

* 20 * 40 * 60
TrF3 '5' Hb: GNAATCCACNAATCTCTTGAANTAAATACCATTCTTTACAAGAACTTAACCATGGTGATG : 60

* 80 * 100 * 120
TrF3 '5' Hb: ATCACTCAATACCAAACCTTCCTTACAAAGAACCTTCTATATCCTTTTCATTTCTTG : 120

* 140 * 160 * 180
TrF3 '5' Hb: ATAACCCATTTCATCATAAGTTCTCTTCAAAAAAAATCTCAAAAAACTTCCACCAGGC : 180

* 200 * 220 * 240
TrF3 '5' Hb: CCAAAAGGTTTCCAGTTGTTGGTGCACTCCACTAATGGGATCCATGCCTCATGTTACC : 240

* 260 * 280 * 300
TrF3 '5' Hb: CTATTCAAAATGTCACAAAATATGGTCCCATAATGTACCTAAAAATGGGATCAAATAAC : 300

* 320 * 340 * 360
TrF3 '5' Hb: ATGGTTGTAGCATCAACTCCTTCTTCAGCCAAAGCATTCTCAAAACACTTGACCTAAAT : 360

* 380 * 400 * 420
TrF3 '5' Hb: TTCTCCAATAGACCGCCGAACGCTGGCGCAACTCACCTAGCTTATGATTACAAGACTTG : 420

* 440 * 460 * 480
TrF3 '5' Hb: GTTTTCGCCGACTATGGATCTAGGTGGAAATTACTTAGGAAACTAAGTAACTTGCACATG : 480

* 500 * 520 * 540
TrF3 '5' Hb: CTCGGCGGAAAAGCCCTCGAAAATTGGTCGAAAGTCGTGAGATTGAAATGGGTACATG : 540

* 560 * 580 * 600
TrF3 '5' Hb: ATT CGTACAATGTACGATGTAGCAAGAAAGACGAATCCGTTGTTGGCCGAAATGTTG : 600

* 620 * 640 * 660
TrF3 '5' Hb: ACATATGCTATGCCAATATGATAGGTCAAGTTATATTGAGTCGTCGCGTGTGAGACA : 660

* 680 * 700
TrF3 '5' Hb: AAAGGTAGTGACTCAAATGAATTAAAGGATATGGTTGNTG : 700

FIGURE 70

115/271

* 20 * 40 * 60
TrF3'5'Hb: MVMITQYQTFLYKELSISSFFIFLITHFIISFLFKKNLKKLPPGPKGFPVVGALPLMGSMP : 60

* 80 * 100 * 120
TrF3'5'Hb: HVTLFKMSQKYGPIMYLKMGSNNMVVASTPSSAKAFLKTLDLNFSNRPPNAGATHLAYDS : 120

* 140 * 160 * 180
TrF3'5'Hb: QDLVFADYGSRWKLLRKLSNLHMLGGKALENWSKVREIEMGHMIRTMYDCSKKDESVVVA : 180

* 200 *
TrF3'5'Hb: EMLTYAMANMIGQVILSRRVFETKGSDSNEFKDMVX : 216

FIGURE 71

116/271

TrF3' 5' Hb1:	GNAATCCACNAATCTCTTGA	*	20	*	40	*	60	:	60			
TrF3' 5' Hb2:	-----	GNC	AATCTCTTG	CANTAA	NNCC	ATTC	TACAAGAAC	TTAACCATGGTGATG	:	54		
TrF3' 5' Hb3:	-----	CNA	AATCTCTTG	GAANTN	NATACC	ATTCTT	TACAAGAAC	TTAACCN	GGTGATG	:	52	
TrF3' 5' Hb4:	-----	TCTCTTG	NAATN	NATACC	ATTCTT	TACAAGAAC	TTAACCN	GGTGATG	:	48		
* 80 * 100 * 120												
TrF3' 5' Hb1:	ATCACTCAATAACCAAAACCTTCCTT	CAAAGAAC	TTCTAT	GT	CTCTTTTC	CAT	TTTC	TTG	:	120		
TrF3' 5' Hb2:	ATCACTCAAA	ACCAAAACCTTCCTT	A	CAAAGAAC	TTCTAT	ATC	CTTTTC	CAT	TTTC	:	114	
TrF3' 5' Hb3:	AT	NC	CTCAATAACCAAAACCTTCCTT	CAAAGAAC	TTCTAT	GT	CTCTTTTC	CAT	TTTC	:	112	
TrF3' 5' Hb4:	AT	NC	CTCAATAACCAAAACCTTCCTT	A	CAAAGAAC	TTCTAT	ATC	CTTTTC	CAT	TTTC	:	108
* 140 * 160 * 180												
TrF3' 5' Hb1:	ATAACCC	TTTC	CATCATAAGTTTCTCTTC	AAAAAA	ATCT	AAAAAA	ACTTCC	ACCAGGC	:	180		
TrF3' 5' Hb2:	ATAACCC	ATTTC	CATCATAGTTTCTCTTC	AAAAAA	ATCT	AAAAAA	ACTTCC	ACCAGGC	:	174		
TrF3' 5' Hb3:	ATAACCC	TTTC	CATCATAAGT	TTCTCTTC	AAAAAA	ATCT	AAAAAA	ACTTCC	ACCAGGC	:	172	
TrF3' 5' Hb4:	ATAACCC	ATTTC	CATCATAGTTTCTCTTC	AAAAAA	ATCT	AAAAAA	ACTTCC	ACCAGGC	:	168		
* 200 * 220 * 240												
TrF3' 5' Hb1:	CCAAA	GGTTTCC	CAGTTGTTGG	GC	ACTCCC	ACTAAT	GGGATCC	CATGCCTCATGTTACC	:	240		
TrF3' 5' Hb2:	CCAAA	AGGTTTCC	CAGTTGTTGG	GC	ACTCCC	ACTAAT	GGGATCC	CATGCCTCATGTTACC	:	234		
TrF3' 5' Hb3:	CCAAA	GGTTTCC	CAGTTGTTGG	GC	ACTCCC	ACTAAT	GGGATCC	CATGCCTCATGTTACC	:	232		
TrF3' 5' Hb4:	CCAAA	AGGTTTCC	CAGTTGTTGG	GC	ACTCCC	ACTAAT	GGGATCC	CATGCCTCATGTTACC	:	228		
* 260 * 280 * 300												
TrF3' 5' Hb1:	CTATTCAAA	ATGTC	CACAAAAA	ATATGGTCCC	CATAATGTA	CCTAA	GGGATCAA	ATAGC	:	300		
TrF3' 5' Hb2:	CTATTCAAA	ATGTC	CACAAAAA	ATATGGTCC	CATAATGTA	CCTAA	GGGATCAA	ATAC	:	294		
TrF3' 5' Hb3:	CTATTCAAA	ATGTC	CACAAAAA	ATATGGTCCC	CATAATGTA	CCTAA	GGGATCAA	ATAAC	:	292		
TrF3' 5' Hb4:	CTATTCAAA	ATGTC	CACAAAAA	ATATGGTCC	CATAATGTA	CCTAA	GGGATCAA	ATAAC	:	288		
* 320 * 340 * 360												
TrF3' 5' Hb1:	ATGGTTG	TAGCAT	CAACTCCTT	CTTC	CAGCC	AAAGC	ATTCT	C	GTACCTAAAT	:	360	
TrF3' 5' Hb2:	ATGGTTG	TAGCAT	CAACTCCTT	CTTC	CAGCC	AAAGC	ATTCT	C	GTACCTAAAT	:	354	
TrF3' 5' Hb3:	ATGGTTG	TAGCAT	CAACTCCTT	CTTC	CAGCC	AAAGC	ATTCT	C	GTACCTAAAT	:	352	
TrF3' 5' Hb4:	ATGGTTG	TAGCAT	CAACTCCTT	CTTC	CAGCC	AAAGC	ATTCT	C	GTACCTAAAT	:	348	
* 380 * 400 * 420												
TrF3' 5' Hb1:	TTCTCCA	ATAGACC	GGCGAACG	CTGGCG	CG	ACTCAC	CTAGCTT	TATGATT	CACAAGACTTG	:	420	
TrF3' 5' Hb2:	TTCTCCA	ATAG	GGCG	CGAACG	CTGGCG	CAACTC	ACCTAGCTT	TATGAT	CACAAGACTTG	:	414	
TrF3' 5' Hb3:	TTCTCCA	ATAGACC	GGCGAACG	CTGGCG	CG	ACTCAC	CTAGCTT	TATGATT	CACAAGACTTG	:	412	
TrF3' 5' Hb4:	TTCTCCA	ATAG	GGCG	CGAACG	CTGGCG	CAACTC	ACCTAGCTT	TATGATT	CACAAGACTTG	:	408	
* 440 * 460 * 480												
TrF3' 5' Hb1:	GTTTTCGCC	GACTATGG	GTCTAGG	GGAAATT	ACTT	AGGAA	ACTAAGT	AACTTGCACATG	:	480		
TrF3' 5' Hb2:	GTTTTCGCC	GACTATGG	GTCTAGG	GGAAATT	ACTT	AGGAA	ACTAAGT	AACTTGCACATG	:	474		
TrF3' 5' Hb3:	GTTTTCGCC	GACTATGG	GTCTAGG	GGAAATT	G	CTTAGGAA	ACTAAGT	AACTTGCACATG	:	472		
TrF3' 5' Hb4:	GTTTTCGCC	GACTATGG	GTCTAGG	GGAAATT	ACTT	AGGAA	ACTAAGT	AACTTGCACATG	:	468		
* 500 * 520 * 540												
TrF3' 5' Hb1:	CTCGGCGG	AAAAGCC	CTCGAA	ATTGGT	CGAAAG	TTCGT	GAGATTG	AAATGGGT	CACATG	:	540	
TrF3' 5' Hb2:	CTCGGCGG	AAAAGCC	CTCGAA	ATTGGT	CGAAAG	TTCGT	GAGATTG	AAATGGGT	CACATG	:	534	
TrF3' 5' Hb3:	CTCGGCGG	AAAAGCC	CTCGAA	ATTGGT	CGAAAG	TTCGT	GAGATTG	AAATGGGT	CACATG	:	532	
TrF3' 5' Hb4:	CTCGGCGG	AAAAGCC	CTCGAA	ATTGGT	CGAAAG	TTCGT	GAGATTG	AAATGGGT	CACATG	:	528	

FIGURE 72

117/271

	*	560	*	580	*	600	
TrF3'5'Hb1:	ATTCGTACAATGTA	GATTGTAGCAAGAAAGACGAATCCGTTGT-----					: 584
TrF3'5'Hb2:	ATTCGTACAATGTACGATTGTAGCAAGAAAGACGAATCCGTTGTGTTGGCCGAAATGTTG-----						: 594
TrF3'5'Hb3:	ATTCGTACAATGTACGATTGTAGCAAGAAAGACGAATATCTTGTGTG-----						: 580
TrF3'5'Hb4:	ATTCGTACAATGTACGATTGTAGCAAGAAAGACGAATCCGNTGNTG-----						: 74

	*	620	*	640	*	660	
TrF3'5'Hb1:	-----						: -
TrF3'5'Hb2:	ACATATGCTATGGCCAATATGATAGGTCAAGTTATATTGAGTCGTCGCGTGTTGAGACA-----						: 654
TrF3'5'Hb3:	-----						: -
TrF3'5'Hb4:	-----						: -

	*	680	*	700			
TrF3'5'Hb1:	-----						: -
TrF3'5'Hb2:	AAAGGTAGTAGCTCAAATGAATTAAAGGATATGGTTGNTG-----						: 694
TrF3'5'Hb3:	-----						: -
TrF3'5'Hb4:	-----						: -

FIGURE 72 (cont)

118/271

TrF3Ha : GCACACNTCTATTATTTACTTAAACCTNACAAAAATAANACCCACAAAACACAAAC : 60
 * 20 * 40 * 60

 TrF3Ha : ACCACAAACACCAAAACCGAGTCCGTTCTNNTCNAACATGGCACCAAGCAAAC : 120
 * 80 * 100 * 120

 TrF3Ha : AGTTATCTCTACAACAAAACACTCTTGAGTCAAGTTCTGTTAGGAAAGAAGATGAGCGT : 180
 * 140 * 160 * 180

 TrF3Ha : CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT : 240
 * 200 * 220 * 240

 TrF3Ha : GATGAGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT : 300
 * 260 * 280 * 300

 TrF3Ha : TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATAACAAACTTGTGAGATGACC : 360
 * 320 * 340 * 360

 TrF3Ha : CGTTTGCTAGAGAGTTTTGCTTGCCACCGGAAGAGAAGCTCCGGTTGACATGTCC : 420
 * 380 * 400 * 420

 TrF3Ha : GGTGGTAAAAGGGTGGTTCATGGTCTCTAGTCATCTCCAAGGAGAAGCAGTGAAGGAT : 480
 * 440 * 460 * 480

 TrF3Ha : TGGAGAGAGCTAGTGACATATTTCATACCCATTAAACAAAGAGATTATTCAAGGTGG : 540
 * 500 * 520 * 540

 TrF3Ha : CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACAGTGAAAACCTAATGAAT : 600
 * 560 * 580 * 600

 TrF3Ha : TTAGCTTGCAAACATGGAAAGTTTATCAGAAGCAATGGTTAGAAAAAGAAGCTCTA : 660
 * 620 * 640 * 660

 TrF3Ha : ACAAAAGCATGTGTTGATATGGATCAAAAGTTGTTATAAATTATTACCCAAAATGCCCT : 720
 * 680 * 700 * 720

 TrF3Ha : GAACCTGACCTCACACTGGCCTAAACGTCACACTGACCCTGGCACAATTACTCTTTG : 780
 * 740 * 760 * 780

FIGURE 73

119/271

```

          *      800      *      820      *      840
TrF3Ha : CTTCAAGATCAAGTTGGTGCCTCAAGCTACCAAAGATAATGGTAAGACGTGGATTACA : 840

          *      860      *      880      *      900
TrF3Ha : GTTCAACCAGTTGAAGGTGCTTTGTTAATCTTGGAGACCATGGTCACTATCTAAGT : 900

          *      920      *      940      *      960
TrF3Ha : AATGGACGGTTCAAAATGCTGACCACCAAGCAGTGGTGAATTGAACTACAGCCGNTTA : 960

          *      980      *      1000     *      1020
TrF3Ha : TCAATAGCAACATTCAAAATCCAGCTCCCGATGCAACTGTATACCCTTGAAAGATTAGA : 1020

          *      1040     *      1060     *      1080
TrF3Ha : GAGGGTGAAAATCTGTGTTGGAAGAACCAATCACTTTGCTGAAATGTATAGAAGGAAG : 1080

          *      1100     *      1120     *      1140
TrF3Ha : ATGACCAAAAGACCTTGAAATTGCTAGGATGAAGAAGTTGGCTAAGGAACAACAACCTAGG : 1140

          *      1160     *      1180     *      1200
TrF3Ha : GACTTGGAGGAGAACAGACTAAATATGAGGCCAACCTTGAAATGAGATCTTGCTTAA : 1200

          *      1220     *      1240     *      1260
TrF3Ha : TTAATTAGTCTTAATTAAATAATTAATAAATTAGACTTAATTACATATAATAATT : 1260

TrF3Ha : T : 1261

```

FIGURE 73 (cont)

120/271

* 20 * 40 * 6
TrF3Ha : MAPSQLSYLSQQNTLESSFVREEDERPKVAYNNFSNEIPIISLAGIDEVDGRRTEICNK : 59

* 80 * 100 * 120
TrF3Ha : IVEACENWGFQVVDHGVDTKLVSEMTRFAREFPALPPEEKLRFDMSGKKGGFIVSSHL : 120

* 140 * 160 * 180
TrF3Ha : QGEAVKDWRELVTYFSYPIKQRDYSRWPDKPEGWKEVTEKYSENLMNLACKLLEVLSAAM : 180

* 200 * 220 * 240
TrF3Ha : GLEKEALTAKACVDMQKVVINYYPKCPEPDLTGLKRHTDPGTITLLQDQVGGLQATKD : 240

* 260 * 280 * 300
TrF3Ha : NGKTWITVQPVEGAFVVNLGDHGHYLSNGRFKNADHQAVVNSNSXLSIATFQNAPDAT : 300

* 320 * 340 * 360
TrF3Ha : VYPLKIREGEKSLEEPITFAEMYRRKMTKDLEIARMKKLAKEQQLRDLEENKTKYEAKP : 360

TrF3Ha : LNEIF : 366

FIGURE 74

121/271

	* 20 *	40 *	60	
TrF3Ha1	: GCACACNTCTATTTATTCTACTTAAACCTCACAAAAATAA	: ACCCACAACACACAAAC	: 59	
TrF3Ha2	: GCACNGNTCTATTTATTCTACTTAAACCT---NAAAATAA	: ACCCACAAC-CAC-AA-	: 52	
TrF3Ha3	: -CACACNTCTATTTATTCTACTTAAACCTNACAAAAATAANACC	: CACAACACACAAAC	: 59	
TrF3Ha4	: --TCCCUTCTANTTATTCTNCTTAAACCTNCAAAAATNANN	: ACCCACAACACACNAAN	: 58	
TrF3Ha5	: -----	: GTTAACACAC-NCAACACAAAC	: 22	
TrF3Ha6	: -----	: GNA-ACCCACAAACACAAAC	: 20	
TrF3Ha7	: -----	: CACACNAACNCAAAC	: 16	
TrF3Ha8	: -----	: CACNAACACACAAAC	: 16	
TrF3Ha9	: -----	: CCACANGACAC-AA-	: 13	
TrF3Ha10	: -----	: GANAGCACNAAC	: 13	
TrF3Ha11	: -----	: GNACGACACAAAC	: 13	
TrF3Ha12	: -----	: GGGAA-CAC-AA-	: 9	
TrF3Ha13	: -----	: TTAACACAAAC	: 12	
TrF3Ha14	: -----	: CNCAACACAAAC	: 12	
TrF3Ha15	: -----	: GNNAATCAGAA	: 11	
TrF3Ha16	: -----	: GAAC-CAGA	: 10	
TrF3Ha17	: -----	: AACGCCAAG	: 9	
TrF3Ha18	: -----	: GCACNAAC	: 8	
TrF3Ha19	: -----	: AC-ANC	: 5	
TrF3Ha20	: -----	: GCNNGA	: 6	
TrF3Ha21	: -----	: GNACCC	: 6	
TrF3Ha22	: -----	: CAGAA	: 5	
TrF3Ha23	: -----	: GAGA	: 4	
TrF3Ha24	: -----	: AAT	: 3	
TrF3Ha25	: -----	: GAA	: 3	
TrF3Ha26	: -----	: GC	: 2	
TrF3Ha27	: -----	: T	: 2	
TrF3Ha28	: -----	: GC	: 2	
TrF3Ha29	: -----	: A	: 1	
TrF3Ha30	: -----	: -	: -	
TrF3Ha31	: -----	: -	: -	
TrF3Ha32	: -----	: -	: -	
TrF3Ha33	: -----	: -	: -	
TrF3Ha34	: -----	: -	: -	
TrF3Ha35	: -----	: -	: -	
TrF3Ha36	: -----	: -	: -	
TrF3Ha37	: -----	: -	: -	
TrF3Ha38	: -----	: -	: -	
TrF3Ha39	: -----	: -	: -	
TrF3Ha40	: -----	: -	: -	
TrF3Ha41	: -----	: -	: -	

FIGURE 75

122/271

	*	80	*	100	*	120	
TrF3Ha1	:	ACCAAAAACAG-AGGACCGTTCCATCATC---A--AACATGGCACCAAGCCAAACTCTA					: 113
TrF3Ha2	:	ACCAAAAACAG-AGGACCGTTCCATCATC---A--AACATGGCACCAAGCCAAACCTTA					: 106
TrF3Ha3	:	ACCAAAAACAGNAGGACCGTTCCATCATC---A--AACATGGCACCAAGCCAAACTCTA					: 119
TrF3Ha4	:	ANCAACAAANACAGNAGTACCGTTCCATCATC---A--AACATGGCACCAAGCCAAACTCTA					: 118
TrF3Ha5	:	ACCAAAAACAGNAGACCCTTC-C-A-TNCA-T:CAAACATGGCACCAAGCCAAACTCTA					: 78
TrF3Ha6	:	A-CACAAAACAG-AG-NCCGTTTCN-TNATC---A--AACATGGCACCAAGCCAAACTCTA					: 71
TrF3Ha7	:	ACCAAAAACAGNAGACCCTTC-C-A-TNCA-TNCAACATGGCACCAAGCCAAACTCTA					: 73
TrF3Ha8	:	ACCAAAAACAGNAGACCCTTC-C-A-TNCA-T:CAAACATGGCACCAAGCCAAACTCTA					: 72
TrF3Ha9	:	A-CACAAA-A-A-CAGAGCAGCTTCCATCATC---AACATGGCACCAAGCCAAACTCTA					: 70
TrF3Ha10	:	ANCAAGACNCAAAAAAGAGACCGTTCCCTNNNAACATGGCACCAAGCCAAACTCTA					: 73
TrF3Ha11	:	ACCAAAAACAG-AGGACCGTTCC-TNATC---A--AACATGGCACCAAGCCAAACTCTA					: 66
TrF3Ha12	:	ACCAAAAAC-G-AGG-CCGTTCC-T-NT---N--AACATGGCACCAAGCCAAACTCTA					: 57
TrF3Ha13	:	ACCAAAAACAG-AGNACCGTTCC-TNTCC---A--AACATGGCACCAAGCCAAACTCTA					: 64
TrF3Ha14	:	ACCAAAAACAGNAGACCCTTC-C-A-TNCA-TNCAACATGGCACCAAGCCAAACTCTA					: 69
TrF3Ha15	:	AC-TNCAACNCANAACGAGCGCTTCCTNCTNAACATGGCACCAAGCCAAACTCTA					: 71
TrF3Ha16	:	AC-TCCAACCCAA-AGGAGNCCGTTTCCT-NTC-AACATGGCACCAAGCCAAACTCTA					: 67
TrF3Ha17	:	AC-TCANACCCA-AA-CGAGCGAGCCGTTTCCTNNTCNAACATGGCACCAAGCCAAACTCTA					: 69
TrF3Ha18	:	ANCAACAAACNCAAAAGAGACCGTTCCCTNTNAACATGGCACCAAGCCAAACTCTA					: 68
TrF3Ha19	:	A-CUNAGN-C-GAAAACGAGTCCGTTCCCT-NT-NAACATGGCACCAAGCCAAACTCTA					: 60
TrF3Ha20	:	ANCAACAAACNCAAAAGAGCGACCGTTCCCTANTNAACATGGCACCAAGCCAAACTCTA					: 66
TrF3Ha21	:	AC-TNCAACNCANAACGAGCGCTTCCTNNAACATGGCACCAAGCCAAACTCTA					: 66
TrF3Ha22	:	AC-TNNAACNCNA-AGGAGNCCGTTTCCT-CTC-AACATGGCACCAAGCCAAACTCTA					: 62
TrF3Ha23	:	AC-TCAACNCNA-AA-CGAGCGAGCCGTTTCCT-CTN-AACATGGCACCAAGCCAAACTCTA					: 60
TrF3Ha24	:	AC-TCAAAC-CCA-AA-CGAGCGAGCCGTTTCCT-NTC-AACATGGCACCAAGCCAAACTCTA					: 58
TrF3Ha25	:	AC-TCAAACACCA-AA-CGAGCGAGCCGTTTCCT-NTC-AACATGGCACCAAGCCAAACTCTA					: 59
TrF3Ha26	:	AC-TCAAAACACCAAAA-CGAGCGAGCCGTTTCCT-TATCAACATGGCACCAAGCCAAACTCTA					: 59
TrF3Ha27	:	AC-TNCAACNCANAACGAGCGAGCCGTTTCCTNCTNAACATGGCACCAAGCCAAACTCTA					: 62
TrF3Ha28	:	AC-TNCAACACCAAAA-CGAGCGAGCCGTTTCCTNNTCNAACATGGCACCAAGCCAAACTCTA					: 62
TrF3Ha29	:	ACCAAAAAC-AGNACCGTTCN-TNNNTN---A--AACATGGCACCAAGCCAAACTCTA					: 51
TrF3Ha30	:	A-CGCCAC-T-NAAACCGAGACCGTTNCCT-NT-NAACATGGCACCAAGCCAAACTCTA					: 55
TrF3Ha31	:	-GCNNAAACACCAAAA-CGAGCGAGCCGTTTCCTNNTCGAACATGGCACCAAGCCAAACTCTA					: 59
TrF3Ha32	:	-CAACAC-CCA-AA-CGAGCGAGCCGTTTCCT-NTC-AACATGGCACCAAGCCAAACTCTA					: 56
TrF3Ha33	:	--CAAAC-C-AAAACNGAGNCCGTTCTA-TN-AACATGGCACCAAGCCAAACTCTA					: 52
TrF3Ha34	:	--NAAC-C-AAAACG-AGNCCGTTCTNCTC-AACATGGCGCTTAGCCAAACTCTA					: 51
TrF3Ha35	:	--GAAACAAAACNGAGCGAGCCGTTNTCTNNNTNAACATGGCGCCAGCCAAACTCTA					: 54
TrF3Ha36	:	--A-CACGACCGAGNCCGTTTCCTNNTNAACATGGCNCCAGCCAAACTCTA					: 53
TrF3Ha37	:	--GACCAAAACCGAGNCCGTTCCNNNTNAACATGGCNCCAAGCCAAACTCTA					: 52
TrF3Ha38	:	--GACCAAAACGAGNCCGTTNTCTNNNAACATGGCNCCAAGCCAAACTCTA					: 52
TrF3Ha39	:	-----					: 1
TrF3Ha40	:	-----					:-
TrF3Ha41	:	-----					:-

FIGURE 75 (cont)

123/271

	*	140	*	160	*	180	
TrF3Ha1	:	AGTTATCTCTACAACAAAACACTCTCGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 173
TrF3Ha2	:	AGTTATCTCTACAACAAAAGACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 166
TrF3Ha3	:	AGTTATCTCTACAACAAAACACTCTCGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 179
TrF3Ha4	:	AGTTATCTCTACAACAAAACACTCTCGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 178
TrF3Ha5	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 138
TrF3Ha6	:	AGTTATCTCTACAACAAAACACTCTCGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 131
TrF3Ha7	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 133
TrF3Ha8	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 132
TrF3Ha9	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 130
TrF3Ha10	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 133
TrF3Ha11	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 126
TrF3Ha12	:	AGTTATCTCTCAACAAAAGACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 116
TrF3Ha13	:	AGTTATCTCTCACAAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 124
TrF3Ha14	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 129
TrF3Ha15	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 131
TrF3Ha16	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 127
TrF3Ha17	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 129
TrF3Ha18	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 128
TrF3Ha19	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 120
TrF3Ha20	:	AGTTATCTCTACAACAAAAGACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 126
TrF3Ha21	:	AGTTATCTCTCAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 126
TrF3Ha22	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 122
TrF3Ha23	:	AGTTATCTCTCAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 119
TrF3Ha24	:	AGTTATCTCTCAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 117
TrF3Ha25	:	AGTTATCTCTCAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 118
TrF3Ha26	:	AGTTATCTCTACAACAAAAGACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 119
TrF3Ha27	:	AGTTATCTCTCAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 122
TrF3Ha28	:	AGTTATCTCTCAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 122
TrF3Ha29	:	AGTTATCTCTCAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 110
TrF3Ha30	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 115
TrF3Ha31	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 119
TrF3Ha32	:	AGTTATCTCTACAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 116
TrF3Ha33	:	AGTTATCTCTACAACAAAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 112
TrF3Ha34	:	AGTTATCTCTCAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 109
TrF3Ha35	:	AGTTATCTCTACAACAAAAGACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 114
TrF3Ha36	:	AGTTATCTCTCAACAAAACACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 113
TrF3Ha37	:	AGTTATCTCTACAACAAAAGACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 112
TrF3Ha38	:	AGTTATCTCTACAACAAAAGACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 112
TrF3Ha39	:	AGTTATCTCTCAACAAAAGACTCTTGAGTCAGTTCGTTAGGGAAGAAGATGAGCGT					: 61
TrF3Ha40	:	-----					: -
TrF3Ha41	:	-----					: -

FIGURE 75 (cont)

124/271

	*	200	*	220	*	240	
TrF3Ha1	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 233
TrF3Ha2	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 226
TrF3Ha3	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 239
TrF3Ha4	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 238
TrF3Ha5	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 198
TrF3Ha6	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 191
TrF3Ha7	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 193
TrF3Ha8	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 192
TrF3Ha9	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 190
TrF3Ha10	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 193
TrF3Ha11	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 186
TrF3Ha12	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 176
TrF3Ha13	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 184
TrF3Ha14	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 189
TrF3Ha15	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 191
TrF3Ha16	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 187
TrF3Ha17	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 189
TrF3Ha18	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 188
TrF3Ha19	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 180
TrF3Ha20	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 186
TrF3Ha21	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 186
TrF3Ha22	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 182
TrF3Ha23	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 179
TrF3Ha24	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 177
TrF3Ha25	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 178
TrF3Ha26	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 179
TrF3Ha27	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 182
TrF3Ha28	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 182
TrF3Ha29	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 170
TrF3Ha30	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 175
TrF3Ha31	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 179
TrF3Ha32	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 176
TrF3Ha33	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 172
TrF3Ha34	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 169
TrF3Ha35	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 174
TrF3Ha36	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 173
TrF3Ha37	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 172
TrF3Ha38	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 172
TrF3Ha39	:	CCAAAAGTTGCCTACAATAACTTCAGCAACGAGATTCCAATCATTCTCTTGCTGGAATT					: 121
TrF3Ha40	:	-----					: -
TrF3Ha41	:	-----					: -

FIGURE 75 (cont)

125/271

	*	260	*	280	*	300	
TrF3Ha1 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 293
TrF3Ha2 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 286
TrF3Ha3 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 299
TrF3Ha4 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 298
TrF3Ha5 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 258
TrF3Ha6 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 251
TrF3Ha7 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 253
TrF3Ha8 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 252
TrF3Ha9 :	GATGAGGGTTGATGGCGAAACANAAATNTTACCAAGATTGGNGGGGCTTGTNAAAAT						: 250
TrF3Ha10 :	GATGAGGGTTGATGGCGAAACANAAACACATGTTGNGCANNNTGCTAACCTINGCGANAGN						: 253
TrF3Ha11 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 246
TrF3Ha12 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 236
TrF3Ha13 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 244
TrF3Ha14 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 249
TrF3Ha15 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 251
TrF3Ha16 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 247
TrF3Ha17 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 249
TrF3Ha18 :	GATGAGGGTTGATGGCGNN						: 236
TrF3Ha19 :	GATGAGGGTTGATGGTCGTAGAACANAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 240
TrF3Ha20 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 246
TrF3Ha21 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 246
TrF3Ha22 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 242
TrF3Ha23 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 239
TrF3Ha24 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 237
TrF3Ha25 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 238
TrF3Ha26 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 239
TrF3Ha27 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 242
TrF3Ha28 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 242
TrF3Ha29 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 230
TrF3Ha30 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 235
TrF3Ha31 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 239
TrF3Ha32 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 236
TrF3Ha33 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 232
TrF3Ha34 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 229
TrF3Ha35 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 234
TrF3Ha36 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 233
TrF3Ha37 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 232
TrF3Ha38 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 232
TrF3Ha39 :	GATGAGGGTTGATGGTCGTAGAACAGAGATATGTAACAAGATTGTTGAAGCTTGTGAGAAT						: 181
TrF3Ha40 :	-----GTNACGACNNTGTTG-ANCTTGTGAGNAT						: 28
TrF3Ha41 :	-----						:

FIGURE 75 (cont)

126/271

	*	320	*	340	*	360	
TrF3Ha1	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 353
TrF3Ha2	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAAGCTGTTCTGAGATGACT					: 346
TrF3Ha3	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 359
TrF3Ha4	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 358
TrF3Ha5	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 318
TrF3Ha6	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 311
TrF3Ha7	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 313
TrF3Ha8	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 312
TrF3Ha9	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 309
TrF3Ha10	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 267
TrF3Ha11	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 306
TrF3Ha12	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAAGCTGTTCTGAGATGACT					: 296
TrF3Ha13	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 304
TrF3Ha14	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 309
TrF3Ha15	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 311
TrF3Ha16	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 307
TrF3Ha17	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 309
TrF3Ha18	:	-----					: -
TrF3Ha19	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 273
TrF3Ha20	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAAGCTGTTCTGAGATGACT					: 306
TrF3Ha21	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 306
TrF3Ha22	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 302
TrF3Ha23	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 299
TrF3Ha24	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 297
TrF3Ha25	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 298
TrF3Ha26	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAAGCTGTTCTGAGATGACT					: 299
TrF3Ha27	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 302
TrF3Ha28	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 302
TrF3Ha29	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 290
TrF3Ha30	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 295
TrF3Ha31	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 299
TrF3Ha32	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 296
TrF3Ha33	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACT					: 292
TrF3Ha34	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 289
TrF3Ha35	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAAGCTGTTCTGAGATGACT					: 294
TrF3Ha36	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 293
TrF3Ha37	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACT					: 292
TrF3Ha38	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACT					: 292
TrF3Ha39	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACT					: 241
TrF3Ha40	:	TGGGGTATTTTCAGGTTGTTGATCATGGTGTGATA CAGAAACTGTTCTGAGATGACC					: 88
TrF3Ha41	:	-----					: -

FIGURE 75 (cont)

127/271

		*	380	*	400	*	420	
TrF3Ha1	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 413
TrF3Ha2	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 406
TrF3Ha3	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 419
TrF3Ha4	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 418
TrF3Ha5	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 378
TrF3Ha6	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 371
TrF3Ha7	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 373
TrF3Ha8	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 372
TrF3Ha9	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAANAAACTCCGGTTNACTTNNCC						: 369
TrF3Ha10	:	-----						: -
TrF3Ha11	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 366
TrF3Ha12	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 356
TrF3Ha13	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 364
TrF3Ha14	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 369
TrF3Ha15	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 371
TrF3Ha16	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 367
TrF3Ha17	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 369
TrF3Ha18	:	-----						: -
TrF3Ha19	:	-----						: -
TrF3Ha20	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 366
TrF3Ha21	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 366
TrF3Ha22	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 362
TrF3Ha23	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 359
TrF3Ha24	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 357
TrF3Ha25	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 358
TrF3Ha26	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 359
TrF3Ha27	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 362
TrF3Ha28	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 362
TrF3Ha29	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 350
TrF3Ha30	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 355
TrF3Ha31	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 359
TrF3Ha32	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 356
TrF3Ha33	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 352
TrF3Ha34	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 349
TrF3Ha35	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 354
TrF3Ha36	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 353
TrF3Ha37	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 352
TrF3Ha38	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 352
TrF3Ha39	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 301
TrF3Ha40	:	CGTTTGCTAGAGAGTTTTGCTTGCACCGGAAGAGAAGCTCCGGTTGACATGTCC						: 148
TrF3Ha41	:	-----						: -

FIGURE 75 (cont)

128/271

		*	440	*	460	*	480	
TrF3Ha1	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 473
TrF3Ha2	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 466
TrF3Ha3	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 479
TrF3Ha4	:	GGTGGTAAAAAGGGTGGTTNATTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 478
TrF3Ha5	:	GGTGGTAAAAAGGGTGGTTNATTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 438
TrF3Ha6	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 431
TrF3Ha7	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 433
TrF3Ha8	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 432
TrF3Ha9	:	GGGGGNAAAAAAAGGGGGGGCTTNTATTNGNCNTTAAGNCCCNCACAA-GGGANAAANC						: 428
TrF3Ha10	:	-----						:
TrF3Ha11	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 426
TrF3Ha12	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 416
TrF3Ha13	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 424
TrF3Ha14	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 429
TrF3Ha15	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 431
TrF3Ha16	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 427
TrF3Ha17	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 429
TrF3Ha18	:	-----						:
TrF3Ha19	:	-----						:
TrF3Ha20	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 426
TrF3Ha21	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 426
TrF3Ha22	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 422
TrF3Ha23	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 419
TrF3Ha24	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 417
TrF3Ha25	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 418
TrF3Ha26	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 419
TrF3Ha27	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 422
TrF3Ha28	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 422
TrF3Ha29	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 410
TrF3Ha30	:	GGTGGTAAAAAGGGTGGCTCATCTCAAGGAGAAGCAGTGAAGGAT						: 415
TrF3Ha31	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 419
TrF3Ha32	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 416
TrF3Ha33	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 412
TrF3Ha34	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 409
TrF3Ha35	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 414
TrF3Ha36	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 413
TrF3Ha37	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 412
TrF3Ha38	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 412
TrF3Ha39	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 361
TrF3Ha40	:	GGTGGTAAAAAGGGTGGTTCATTTGTCTCTAGTCATCTCAAGGAGAAGCAGTGAAGGAT						: 208
TrF3Ha41	:	-----						:

FIGURE 75 (cont)

129/271

	* 500 *	520	* 540	
TrF3Ha1 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 533
TrF3Ha2 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 526
TrF3Ha3 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 539
TrF3Ha4 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 492
TrF3Ha5 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 498
TrF3Ha6 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 491
TrF3Ha7 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 493
TrF3Ha8 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 492
TrF3Ha9 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 453
TrF3Ha10 :	ANNNAAAG-GNT-TTGGAAANANNNNNN			
TrF3Ha11 :				: -
TrF3Ha12 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 486
TrF3Ha13 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 476
TrF3Ha14 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 450
TrF3Ha15 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 489
TrF3Ha16 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 491
TrF3Ha17 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 487
TrF3Ha18 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 489
TrF3Ha19 :				: -
TrF3Ha20 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 486
TrF3Ha21 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 486
TrF3Ha22 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 482
TrF3Ha23 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 479
TrF3Ha24 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 477
TrF3Ha25 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 478
TrF3Ha26 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 479
TrF3Ha27 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 482
TrF3Ha28 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 482
TrF3Ha29 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 470
TrF3Ha30 :	TGAA			: 418
TrF3Ha31 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 479
TrF3Ha32 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 476
TrF3Ha33 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 472
TrF3Ha34 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 469
TrF3Ha35 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 474
TrF3Ha36 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 473
TrF3Ha37 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 472
TrF3Ha38 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 472
TrF3Ha39 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 421
TrF3Ha40 :	TGGAGAGAGCTAGTGACATATTTTCATACCAATTAAACAAAGAGATTATTCAAGGTGG			: 268
TrF3Ha41 :				: -

FIGURE 75 (cont)

130/271

	*	560	*	580	*	600	
TrF3Ha1	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCT-----					: 586
TrF3Ha2	:	CCAGACAAGCCAGAAGAATGGAAAGAATGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 586
TrF3Ha3	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 599
TrF3Ha4	:	-----					: -
TrF3Ha5	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 558
TrF3Ha6	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 551
TrF3Ha7	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 553
TrF3Ha8	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 552
TrF3Ha9	:	-----					: -
TrF3Ha10	:	-----					: -
TrF3Ha11	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 546
TrF3Ha12	:	CCAGACAAGCCAGAAGGATGGAAAGAATGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 536
TrF3Ha13	:	-----					: -
TrF3Ha14	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 549
TrF3Ha15	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 551
TrF3Ha17	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 547
TrF3Ha18	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 549
TrF3Ha19	:	-----					: -
TrF3Ha20	:	CCAGACAAGCCAGAAGGATGGAAAGAATGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 546
TrF3Ha21	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 546
TrF3Ha22	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 542
TrF3Ha23	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 539
TrF3Ha24	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 535
TrF3Ha25	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 538
TrF3Ha26	:	CCAGACAAGCCAGAAGGATGGAAAGAATGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 539
TrF3Ha27	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 542
TrF3Ha28	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 542
TrF3Ha29	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 530
TrF3Ha30	:	-----					: -
TrF3Ha31	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 539
TrF3Ha32	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 536
TrF3Ha33	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 532
TrF3Ha34	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 529
TrF3Ha35	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 534
TrF3Ha36	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 533
TrF3Ha37	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 532
TrF3Ha38	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 532
TrF3Ha39	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 481
TrF3Ha40	:	CCAGACAAGCCAGAAGGATGGAAAGAGGTAACAGAAAAATACTAGTGAACACCTAATGAAT					: 328
TrF3Ha41	:	-----					: -

FIGURE 75 (cont)

131/271

	*	620	*	640	*	660	
TrF3Ha1	:	-----					-
TrF3Ha2	:	TTAGCTTGCAG-----					597
TrF3Ha3	:	TTAGCT-----					605
TrF3Ha4	:	-----					-
TrF3Ha5	:	TTAGCTTGCAAACTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAAAGAAGCTCTA					618
TrF3Ha6	:	TTAGCTTGCAGCTATTGGAAG-----					573
TrF3Ha7	:	TTAGCTTGCAAACTATTGGAAGNTTTATCAGAAGCAATGGGTTAGAAAAAGAAGCTCTA					613
TrF3Ha8	:	TTAGCTTGCAAACTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAAAGAAGCTCTA					612
TrF3Ha9	:	-----					-
TrF3Ha10	:	-----					-
TrF3Ha11	:	TTAGCTTGCAGCTATTGGAAGTTTATCAGAAG-----					580
TrF3Ha12	:	TTAGCTTGCAGCTATTGGAAGTTTATCAGAAGCAATGGGATTAGAAAAN-----					586
TrF3Ha13	:	-----					-
TrF3Ha14	:	TTAGCTTGCAAACTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAAAGAAGCTCTA					609
TrF3Ha15	:	TTAGCTTGCAAACTATTGGAAGTTTATCAG-----					582
TrF3Ha16	:	TTAGCTTGCAGCTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAAAGAAGCTCTA					607
TrF3Ha17	:	TTAGCTTGCAGCTATTGGAAGTTTATCAGAAGCAATGGGTT-----					593
TrF3Ha18	:	-----					-
TrF3Ha19	:	-----					-
TrF3Ha20	:	TTAGCTTGCAGCTATTGGAAGTTT-----					572
TrF3Ha21	:	TTAGCTTGCAAACTATTGGAAGTTTATC-----					575
TrF3Ha22	:	TTAGCTTGCAAACTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAAAGAAG-----					596
TrF3Ha23	:	TTAGCTTGCAAACTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAAAGAAGCTCTA					599
TrF3Ha24	:	-----					-
TrF3Ha25	:	TTAGCTTGCAAACTATTGGAN-----					559
TrF3Ha26	:	TTAGCTTGCAGCTATTGGAAGTTT-----					565
TrF3Ha27	:	TTAGCTTGCAAACTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAN-----					591
TrF3Ha28	:	TTAGCTTGCAGCTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAAAGAAGCTCTA					602
TrF3Ha29	:	TTAGCTTGCAGCTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAAAGAAGCTCTA					590
TrF3Ha30	:	-----					-
TrF3Ha31	:	TTAGCTTGCAAACTATTGGAAGTTTATCAG-----					570
TrF3Ha32	:	TTAGCTTGCAAACTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAAAGAAGCTCTA					596
TrF3Ha33	:	TTACCTTGCAGCTATTGGAAGTTTATCACAGCAATGGGATTACAAAAAGAAGCTGT					592
TrF3Ha34	:	TTACCT-----					536
TrF3Ha35	:	TTAGCTTGCAGCTATTGGAAGTTTATCAGAAGCAAT-----					572
TrF3Ha36	:	TTAGCTTGCAAACTATTGGAAGTTTATCAGAAGCAATGG-----					573
TrF3Ha37	:	TTAGCTTGCAGCTATTGGAAGTTTATCAGAAGCAATGGG-----					573
TrF3Ha38	:	TTAGCTTGCAGCTATTGGAAGTTTATCAGAAGCAATGGGATTAGAAAAAG-----					584
TrF3Ha39	:	TTACCTTGCAGCTATTGGAAGTTTATCAACAGCAATGGGATTAAAGA-----					529
TrF3Ha40	:	TTAGCTTGCAAACTATTGGAAGTTTATCAGAAGCAATGGGTTAGAAAAAGAAGCTCTA					388
TrF3Ha41	:	-----					-

FIGURE 75 (cont)

132/271

	*	680	*	700	*	720	
TrF3Ha1	:	-----					:
TrF3Ha2	:	-----					:
TrF3Ha3	:	-----					:
TrF3Ha4	:	-----					:
TrF3Ha5	:	ACAAAAGCATGTGTTGATATGGATCAAAAGTTGTTATAAATTATTACCCAAAATGCCCT					: 678
TrF3Ha6	:	ACAAAANGCATGTGTTGATATGGATCAAAAGTTGTTATAAATTATTACCCAAAATGCCCT					: 673
TrF3Ha7	:	ACAAAAGCATGTGTTGATATGGATCAAAAGTTGTTATAAATTATTACCCAAAATGCCCT					: 672
TrF3Ha8	:	ACAAAAGCATGTGTTGATATGGATCAAAAGTTGTTATAAATTATTACCCAAAATGCCCT					: 672
TrF3Ha9	:	-----					:
TrF3Ha10	:	-----					:
TrF3Ha11	:	-----					:
TrF3Ha12	:	-----					:
TrF3Ha13	:	-----					:
TrF3Ha14	:	ACAAAAGCATGTGTTGATATGGATCAAAAGTTGNTATAAATTATTACCCAAAATGCCCT					: 669
TrF3Ha15	:	-----					:
TrF3Ha16	:	ACA					: 610
TrF3Ha17	:	-----					:
TrF3Ha18	:	-----					:
TrF3Ha19	:	-----					:
TrF3Ha20	:	-----					:
TrF3Ha21	:	-----					:
TrF3Ha22	:	-----					:
TrF3Ha23	:	ACAAAAGCATGTG-					: 612
TrF3Ha24	:	-----					:
TrF3Ha25	:	-----					:
TrF3Ha26	:	-----					:
TrF3Ha27	:	-----					:
TrF3Ha28	:	ACAAAAG-					: 609
TrF3Ha29	:	ACAAAAG					: 597
TrF3Ha30	:	-----					:
TrF3Ha31	:	-----					:
TrF3Ha32	:	ACAAAAGCATGT-					: 608
TrF3Ha33	:	ACAAANANCNT					: 602
TrF3Ha34	:	-----					:
TrF3Ha35	:	-----					:
TrF3Ha36	:	-----					:
TrF3Ha37	:	-----					:
TrF3Ha38	:	-----					:
TrF3Ha39	:	-----					:
TrF3Ha40	:	ACAAAAGCATGTGTTGATATGGATCAAAAGTTGTTATAAATTATTACCCAAAATGCCCT					: 448
TrF3Ha41	:	-----	ATC	AAAAGTTGT	GATAAAANTATTACCCNAAATGCCCT		: 38

FIGURE 75 (cont)

133/271

	*	740	*	760	*	780	
TrF3Ha1	:	-----		-----		-----	
TrF3Ha2	:	-----		-----		-----	
TrF3Ha3	:	-----		-----		-----	
TrF3Ha4	:	-----		-----		-----	
TrF3Ha5	:	GAACCTGACCTT		-----		-----	: 690
TrF3Ha6	:	-----		-----		-----	
TrF3Ha7	:	GAACCTGACCTCGCACTT-GCCGTAAACGNACACTGACCCNGA		-----		-----	: 716
TrF3Ha8	:	GAACCTGACCTCACACTTGGCCTTAAACGTCACACTGACCCTGGCACAN		-----		-----	: 721
TrF3Ha9	:	-----		-----		-----	
TrF3Ha10	:	-----		-----		-----	
TrF3Ha11	:	-----		-----		-----	
TrF3Ha12	:	-----		-----		-----	
TrF3Ha13	:	-----		-----		-----	
TrF3Ha14	:	GAACCTGACCTC		-----		-----	: 681
TrF3Ha15	:	-----		-----		-----	
TrF3Ha16	:	-----		-----		-----	
TrF3Ha17	:	-----		-----		-----	
TrF3Ha18	:	-----		-----		-----	
TrF3Ha19	:	-----		-----		-----	
TrF3Ha20	:	-----		-----		-----	
TrF3Ha21	:	-----		-----		-----	
TrF3Ha22	:	-----		-----		-----	
TrF3Ha23	:	-----		-----		-----	
TrF3Ha24	:	-----		-----		-----	
TrF3Ha25	:	-----		-----		-----	
TrF3Ha26	:	-----		-----		-----	
TrF3Ha27	:	-----		-----		-----	
TrF3Ha28	:	-----		-----		-----	
TrF3Ha29	:	-----		-----		-----	
TrF3Ha30	:	-----		-----		-----	
TrF3Ha31	:	-----		-----		-----	
TrF3Ha32	:	-----		-----		-----	
TrF3Ha33	:	-----		-----		-----	
TrF3Ha34	:	-----		-----		-----	
TrF3Ha35	:	-----		-----		-----	
TrF3Ha36	:	-----		-----		-----	
TrF3Ha37	:	-----		-----		-----	
TrF3Ha38	:	-----		-----		-----	
TrF3Ha39	:	-----		-----		-----	
TrF3Ha40	:	GAACCTGACCTCACACTTGGCCTTAAACGTCACACTGACCCTGGCACATTACTCTTTTG		-----		-----	: 508
TrF3Ha41	:	GAACCTGACCTCACACTTGGCCTTAAACGCCACACTGACCCTGGNACAATTACTCTTTTG		-----		-----	: 98

FIGURE 75 (cont)

134/271

	*	800	*	820	*	840
TrF3Ha1	:	-----		-----		-----
TrF3Ha2	:	-----		-----		-----
TrF3Ha3	:	-----		-----		-----
TrF3Ha4	:	-----		-----		-----
TrF3Ha5	:	-----		-----		-----
TrF3Ha6	:	-----		-----		-----
TrF3Ha7	:	-----		-----		-----
TrF3Ha8	:	-----		-----		-----
TrF3Ha9	:	-----		-----		-----
TrF3Ha10	:	-----		-----		-----
TrF3Ha11	:	-----		-----		-----
TrF3Ha12	:	-----		-----		-----
TrF3Ha13	:	-----		-----		-----
TrF3Ha14	:	-----		-----		-----
TrF3Ha15	:	-----		-----		-----
TrF3Ha16	:	-----		-----		-----
TrF3Ha17	:	-----		-----		-----
TrF3Ha18	:	-----		-----		-----
TrF3Ha19	:	-----		-----		-----
TrF3Ha20	:	-----		-----		-----
TrF3Ha21	:	-----		-----		-----
TrF3Ha22	:	-----		-----		-----
TrF3Ha23	:	-----		-----		-----
TrF3Ha24	:	-----		-----		-----
TrF3Ha25	:	-----		-----		-----
TrF3Ha26	:	-----		-----		-----
TrF3Ha27	:	-----		-----		-----
TrF3Ha28	:	-----		-----		-----
TrF3Ha29	:	-----		-----		-----
TrF3Ha30	:	-----		-----		-----
TrF3Ha31	:	-----		-----		-----
TrF3Ha32	:	-----		-----		-----
TrF3Ha33	:	-----		-----		-----
TrF3Ha34	:	-----		-----		-----
TrF3Ha35	:	-----		-----		-----
TrF3Ha36	:	-----		-----		-----
TrF3Ha37	:	-----		-----		-----
TrF3Ha38	:	-----		-----		-----
TrF3Ha39	:	-----		-----		-----
TrF3Ha40	:	-----	CTTCAAGATCAAGTTGGTGGCTTCAGCTACCAAAGATAATGGTAAGACGTGGATTACA	-----	: 568	
TrF3Ha41	:	-----	CTTCAAGATCAAGTTGGTGGCCTTCAGCTACCAAAGATAATGGTAAGACGTGGATTACA	-----	: 158	

FIGURE 75 (cont)

135/271

	*	860	*	880	*	900	
TrF3Ha1	:	-----					
TrF3Ha2	:	-----					
TrF3Ha3	:	-----					
TrF3Ha4	:	-----					
TrF3Ha5	:	-----					
TrF3Ha6	:	-----					
TrF3Ha7	:	-----					
TrF3Ha8	:	-----					
TrF3Ha9	:	-----					
TrF3Ha10	:	-----					
TrF3Ha11	:	-----					
TrF3Ha12	:	-----					
TrF3Ha13	:	-----					
TrF3Ha14	:	-----					
TrF3Ha15	:	-----					
TrF3Ha16	:	-----					
TrF3Ha17	:	-----					
TrF3Ha18	:	-----					
TrF3Ha19	:	-----					
TrF3Ha20	:	-----					
TrF3Ha21	:	-----					
TrF3Ha22	:	-----					
TrF3Ha23	:	-----					
TrF3Ha24	:	-----					
TrF3Ha25	:	-----					
TrF3Ha26	:	-----					
TrF3Ha27	:	-----					
TrF3Ha28	:	-----					
TrF3Ha29	:	-----					
TrF3Ha30	:	-----					
TrF3Ha31	:	-----					
TrF3Ha32	:	-----					
TrF3Ha33	:	-----					
TrF3Ha34	:	-----					
TrF3Ha35	:	-----					
TrF3Ha36	:	-----					
TrF3Ha37	:	-----					
TrF3Ha38	:	-----					
TrF3Ha39	:	-----					
TrF3Ha40	:	GTTCAACCAGTTGAAGGTGCTTGTGTTAATCTTGAGACCATGGTCACATCTAAGT					: 628
TrF3Ha41	:	GTTCAACCAGTTGAAGGTGCTTGTGTTAATCTTGAGACCATGGTCATCTAAGT					: 218

FIGURE 75 (cont)

136/271

	*	920	*	940	*	960	
TrF3Ha1	:	- - - - -					:
TrF3Ha2	:	- - - - -					:
TrF3Ha3	:	- - - - -					:
TrF3Ha4	:	- - - - -					:
TrF3Ha5	:	- - - - -					:
TrF3Ha6	:	- - - - -					:
TrF3Ha7	:	- - - - -					:
TrF3Ha8	:	- - - - -					:
TrF3Ha9	:	- - - - -					:
TrF3Ha10	:	- - - - -					:
TrF3Ha11	:	- - - - -					:
TrF3Ha12	:	- - - - -					:
TrF3Ha13	:	- - - - -					:
TrF3Ha14	:	- - - - -					:
TrF3Ha15	:	- - - - -					:
TrF3Ha16	:	- - - - -					:
TrF3Ha17	:	- - - - -					:
TrF3Ha18	:	- - - - -					:
TrF3Ha19	:	- - - - -					:
TrF3Ha20	:	- - - - -					:
TrF3Ha21	:	- - - - -					:
TrF3Ha22	:	- - - - -					:
TrF3Ha23	:	- - - - -					:
TrF3Ha24	:	- - - - -					:
TrF3Ha25	:	- - - - -					:
TrF3Ha26	:	- - - - -					:
TrF3Ha27	:	- - - - -					:
TrF3Ha28	:	- - - - -					:
TrF3Ha29	:	- - - - -					:
TrF3Ha30	:	- - - - -					:
TrF3Ha31	:	- - - - -					:
TrF3Ha32	:	- - - - -					:
TrF3Ha33	:	- - - - -					:
TrF3Ha34	:	- - - - -					:
TrF3Ha35	:	- - - - -					:
TrF3Ha36	:	- - - - -					:
TrF3Ha37	:	- - - - -					:
TrF3Ha38	:	- - - - -					:
TrF3Ha39	:	- - - - -					:
TrF3Ha40	:	AATGGACGGTTCAAAAATGCTGACCACATCAAGCAGTGGTGAATTCGAACTACAGCCGNTTA					: 688
TrF3Ha41	:	AATGGACGGTTCAAAAATGCTGACCACCAAGCAGTGGTGAATTCGAACTACAGCCGTTA					: 278

FIGURE 75 (cont)

137/271

	*	980	*	1000	*	1020	
TrF3Ha1	:	-----					:
TrF3Ha2	:	-----					:
TrF3Ha3	:	-----					:
TrF3Ha4	:	-----					:
TrF3Ha5	:	-----					:
TrF3Ha6	:	-----					:
TrF3Ha7	:	-----					:
TrF3Ha8	:	-----					:
TrF3Ha9	:	-----					:
TrF3Ha10	:	-----					:
TrF3Ha11	:	-----					:
TrF3Ha12	:	-----					:
TrF3Ha13	:	-----					:
TrF3Ha14	:	-----					:
TrF3Ha15	:	-----					:
TrF3Ha16	:	-----					:
TrF3Ha17	:	-----					:
TrF3Ha18	:	-----					:
TrF3Ha19	:	-----					:
TrF3Ha20	:	-----					:
TrF3Ha21	:	-----					:
TrF3Ha22	:	-----					:
TrF3Ha23	:	-----					:
TrF3Ha24	:	-----					:
TrF3Ha25	:	-----					:
TrF3Ha26	:	-----					:
TrF3Ha27	:	-----					:
TrF3Ha28	:	-----					:
TrF3Ha29	:	-----					:
TrF3Ha30	:	-----					:
TrF3Ha31	:	-----					:
TrF3Ha32	:	-----					:
TrF3Ha33	:	-----					:
TrF3Ha34	:	-----					:
TrF3Ha35	:	-----					:
TrF3Ha36	:	-----					:
TrF3Ha37	:	-----					:
TrF3Ha38	:	-----					:
TrF3Ha39	:	-----					:
TrF3Ha40	:	TCAATAGCAA					: 698
TrF3Ha41	:	TCAATAGCAACATTCAAAATCCAGCTCCGATGCAACTGTATAACCCTTGAAGATTAGA					: 338

FIGURE 75 (cont)

138/271

	*	1040	*	1060	*	1080	
TrF3Ha1	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha2	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha3	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha4	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha5	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha6	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha7	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha8	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha9	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha10	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha11	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha12	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha13	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha14	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha15	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha16	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha17	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha18	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha19	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha20	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha21	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha22	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha23	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha24	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha25	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha26	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha27	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha28	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha29	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha30	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha31	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha32	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha33	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha34	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha35	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha36	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha37	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha38	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha39	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha40	:	- - - - -		- - - - -		- - - - -	:
TrF3Ha41	:	GAGGGTGAAAAATCTGTGTTGGAAGAACCAATCACTTTGCTGAAATGTATAAGAAGGAAG					: 398

FIGURE 75 (cont)

139/271

	*	1100	*	1120	*	1140	
TrF3Ha1	:	- - -					- - -
TrF3Ha2	:	- - -					- - -
TrF3Ha3	:	- - -					- - -
TrF3Ha4	:	- - -					- - -
TrF3Ha5	:	- - -					- - -
TrF3Ha6	:	- - -					- - -
TrF3Ha7	:	- - -					- - -
TrF3Ha8	:	- - -					- - -
TrF3Ha9	:	- - -					- - -
TrF3Ha10	:	- - -					- - -
TrF3Ha11	:	- - -					- - -
TrF3Ha12	:	- - -					- - -
TrF3Ha13	:	- - -					- - -
TrF3Ha14	:	- - -					- - -
TrF3Ha15	:	- - -					- - -
TrF3Ha16	:	- - -					- - -
TrF3Ha17	:	- - -					- - -
TrF3Ha18	:	- - -					- - -
TrF3Ha19	:	- - -					- - -
TrF3Ha20	:	- - -					- - -
TrF3Ha21	:	- - -					- - -
TrF3Ha22	:	- - -					- - -
TrF3Ha23	:	- - -					- - -
TrF3Ha24	:	- - -					- - -
TrF3Ha25	:	- - -					- - -
TrF3Ha26	:	- - -					- - -
TrF3Ha27	:	- - -					- - -
TrF3Ha28	:	- - -					- - -
TrF3Ha29	:	- - -					- - -
TrF3Ha30	:	- - -					- - -
TrF3Ha31	:	- - -					- - -
TrF3Ha32	:	- - -					- - -
TrF3Ha33	:	- - -					- - -
TrF3Ha34	:	- - -					- - -
TrF3Ha35	:	- - -					- - -
TrF3Ha36	:	- - -					- - -
TrF3Ha37	:	- - -					- - -
TrF3Ha38	:	- - -					- - -
TrF3Ha39	:	- - -					- - -
TrF3Ha40	:	- - -					- - -
TrF3Ha41	:	ATGACCAAAGACCTTGAAATTGCTAGGATGAAGAAGTTGGCTAAGGAACAACAACCTT					: 458

FIGURE 75 (cont)

140/271

	*	1160	*	1180	*	1200
TrF3Ha1	:	- - - - -		- - - - -		- - - - -
TrF3Ha2	:	- - - - -		- - - - -		- - - - -
TrF3Ha3	:	- - - - -		- - - - -		- - - - -
TrF3Ha4	:	- - - - -		- - - - -		- - - - -
TrF3Ha5	:	- - - - -		- - - - -		- - - - -
TrF3Ha6	:	- - - - -		- - - - -		- - - - -
TrF3Ha7	:	- - - - -		- - - - -		- - - - -
TrF3Ha8	:	- - - - -		- - - - -		- - - - -
TrF3Ha9	:	- - - - -		- - - - -		- - - - -
TrF3Ha10	:	- - - - -		- - - - -		- - - - -
TrF3Ha11	:	- - - - -		- - - - -		- - - - -
TrF3Ha12	:	- - - - -		- - - - -		- - - - -
TrF3Ha13	:	- - - - -		- - - - -		- - - - -
TrF3Ha14	:	- - - - -		- - - - -		- - - - -
TrF3Ha15	:	- - - - -		- - - - -		- - - - -
TrF3Ha16	:	- - - - -		- - - - -		- - - - -
TrF3Ha17	:	- - - - -		- - - - -		- - - - -
TrF3Ha18	:	- - - - -		- - - - -		- - - - -
TrF3Ha19	:	- - - - -		- - - - -		- - - - -
TrF3Ha20	:	- - - - -		- - - - -		- - - - -
TrF3Ha21	:	- - - - -		- - - - -		- - - - -
TrF3Ha22	:	- - - - -		- - - - -		- - - - -
TrF3Ha23	:	- - - - -		- - - - -		- - - - -
TrF3Ha24	:	- - - - -		- - - - -		- - - - -
TrF3Ha25	:	- - - - -		- - - - -		- - - - -
TrF3Ha26	:	- - - - -		- - - - -		- - - - -
TrF3Ha27	:	- - - - -		- - - - -		- - - - -
TrF3Ha28	:	- - - - -		- - - - -		- - - - -
TrF3Ha29	:	- - - - -		- - - - -		- - - - -
TrF3Ha30	:	- - - - -		- - - - -		- - - - -
TrF3Ha31	:	- - - - -		- - - - -		- - - - -
TrF3Ha32	:	- - - - -		- - - - -		- - - - -
TrF3Ha33	:	- - - - -		- - - - -		- - - - -
TrF3Ha34	:	- - - - -		- - - - -		- - - - -
TrF3Ha35	:	- - - - -		- - - - -		- - - - -
TrF3Ha36	:	- - - - -		- - - - -		- - - - -
TrF3Ha37	:	- - - - -		- - - - -		- - - - -
TrF3Ha38	:	- - - - -		- - - - -		- - - - -
TrF3Ha39	:	- - - - -		- - - - -		- - - - -
TrF3Ha40	:	- - - - -		- - - - -		- - - - -
TrF3Ha41	:	GACTTGGAGGAGAACAAAGACTAAATATGAGGCCAACCTTGAGATCTTGCTTAA				
						: 518

FIGURE 75 (cont)

141/271

	*	1220	*	1240	*	1260
TrF3Ha1	:	- - - - -		- - - - -		- - - - -
TrF3Ha2	:	- - - - -		- - - - -		- - - - -
TrF3Ha3	:	- - - - -		- - - - -		- - - - -
TrF3Ha4	:	- - - - -		- - - - -		- - - - -
TrF3Ha5	:	- - - - -		- - - - -		- - - - -
TrF3Ha6	:	- - - - -		- - - - -		- - - - -
TrF3Ha7	:	- - - - -		- - - - -		- - - - -
TrF3Ha8	:	- - - - -		- - - - -		- - - - -
TrF3Ha9	:	- - - - -		- - - - -		- - - - -
TrF3Ha10	:	- - - - -		- - - - -		- - - - -
TrF3Ha11	:	- - - - -		- - - - -		- - - - -
TrF3Ha12	:	- - - - -		- - - - -		- - - - -
TrF3Ha13	:	- - - - -		- - - - -		- - - - -
TrF3Ha14	:	- - - - -		- - - - -		- - - - -
TrF3Ha15	:	- - - - -		- - - - -		- - - - -
TrF3Ha16	:	- - - - -		- - - - -		- - - - -
TrF3Ha17	:	- - - - -		- - - - -		- - - - -
TrF3Ha18	:	- - - - -		- - - - -		- - - - -
TrF3Ha19	:	- - - - -		- - - - -		- - - - -
TrF3Ha20	:	- - - - -		- - - - -		- - - - -
TrF3Ha21	:	- - - - -		- - - - -		- - - - -
TrF3Ha22	:	- - - - -		- - - - -		- - - - -
TrF3Ha23	:	- - - - -		- - - - -		- - - - -
TrF3Ha24	:	- - - - -		- - - - -		- - - - -
TrF3Ha25	:	- - - - -		- - - - -		- - - - -
TrF3Ha26	:	- - - - -		- - - - -		- - - - -
TrF3Ha27	:	- - - - -		- - - - -		- - - - -
TrF3Ha28	:	- - - - -		- - - - -		- - - - -
TrF3Ha29	:	- - - - -		- - - - -		- - - - -
TrF3Ha30	:	- - - - -		- - - - -		- - - - -
TrF3Ha31	:	- - - - -		- - - - -		- - - - -
TrF3Ha32	:	- - - - -		- - - - -		- - - - -
TrF3Ha33	:	- - - - -		- - - - -		- - - - -
TrF3Ha34	:	- - - - -		- - - - -		- - - - -
TrF3Ha35	:	- - - - -		- - - - -		- - - - -
TrF3Ha36	:	- - - - -		- - - - -		- - - - -
TrF3Ha37	:	- - - - -		- - - - -		- - - - -
TrF3Ha38	:	- - - - -		- - - - -		- - - - -
TrF3Ha39	:	- - - - -		- - - - -		- - - - -
TrF3Ha40	:	- - - - -		- - - - -		- - - - -
TrF3Ha41	:	TTAATTAGTCTTAATTAAATAATTAATAAAATTAGACTTAATTACATATAATAATT				: 578

FIGURE 75 (cont)

142/271

TrF3Ha1	:	-	:	-
TrF3Ha2	:	-	:	-
TrF3Ha3	:	-	:	-
TrF3Ha4	:	-	:	-
TrF3Ha5	:	-	:	-
TrF3Ha6	:	-	:	-
TrF3Ha7	:	-	:	-
TrF3Ha8	:	-	:	-
TrF3Ha9	:	-	:	-
TrF3Ha10	:	-	:	-
TrF3Ha11	:	-	:	-
TrF3Ha12	:	-	:	-
TrF3Ha13	:	-	:	-
TrF3Ha14	:	-	:	-
TrF3Ha15	:	-	:	-
TrF3Ha16	:	-	:	-
TrF3Ha17	:	-	:	-
TrF3Ha18	:	-	:	-
TrF3Ha19	:	-	:	-
TrF3Ha20	:	-	:	-
TrF3Ha21	:	-	:	-
TrF3Ha22	:	-	:	-
TrF3Ha23	:	-	:	-
TrF3Ha24	:	-	:	-
TrF3Ha25	:	-	:	-
TrF3Ha26	:	-	:	-
TrF3Ha27	:	-	:	-
TrF3Ha28	:	-	:	-
TrF3Ha29	:	-	:	-
TrF3Ha30	:	-	:	-
TrF3Ha31	:	-	:	-
TrF3Ha32	:	-	:	-
TrF3Ha33	:	-	:	-
TrF3Ha34	:	-	:	-
TrF3Ha35	:	-	:	-
TrF3Ha36	:	-	:	-
TrF3Ha37	:	-	:	-
TrF3Ha38	:	-	:	-
TrF3Ha39	:	-	:	-
TrF3Ha40	:	-	:	-
TrF3Ha41	:	T	:	579

FIGURE 75 (cont)

143/271

```

*      20      *      40      *      60
TrF3Hb : GNAGCATAACATAAAACCCTGTNCCGATTNATGTAACACAATCTCCCTTTCTTATTAC : 60

*      80      *      100      *      120
TrF3Hb : AAGTAAAATACCATAACACAATAATGAATACCATAATCTTGAATCATACAAACAAACCT : 120

*      140      *      160      *      180
TrF3Hb : TGGATCAAACAAAAACAACACCAGGTTGATCTAGAACAGAACCAAGTTCACCATTAT : 180

*      200      *      220      *      240
TrF3Hb : TCAATCCCCAGAACACAGACCAAAATCCTCAATAATCATTGCTGAAGGTATCCCTCTAAT : 240

*      260      *      280      *      300
TrF3Hb : TGATCTCACTCCTATAAAACTACAAAGATGAAATCATCACCAACCCACTTCCATTGAAGA : 300

*      320      *      340      *      360
TrF3Hb : CTTAGTCAAAGAAATAGGCAGAACGTGAAAGGATTGAAGAATGGGGTTCTTCAGTGATTAATCA : 360

*      380      *      400      *      420
TrF3Hb : CAAAGTTCCCTTGGATAAACGTGAAAGGATTGAAGAATCTCAAAGAAGTTTTGAACT : 420

*      440      *      460      *      480
TrF3Hb : TAGTTGGAGGAAAAACTTAAGGTGAGAAGAGATGAAGTTAATTGCTTGGTTATTTGA : 480

*      500      *      520      *      540
TrF3Hb : AGCTGAGCATACAAAAATGTTAGGGACTGGAAGGAAATTATGATTAAATGTGCAACA : 540

*      560      *      580      *      600
TrF3Hb : ACCAACTTTATACCACCTCGGATGACCAAGTTTCAGTTCAATGGGAAAATCGATG : 600

TrF3Hb : G : 601

```

FIGURE 76

144/271

* 20 * 40 * 60
TrF3Hb : MNTIIINHTNNLGSNKTTTMDLETEPSSPFIQSPEHRPKSSIIIAEGIPLIDLTINYK : 60

* 80 * 100 * 120
TrF3Hb : DEIITNPLSIEDLVKEIGKACKEWGFFQVINHKVPLDKRERIEESSKKFFELSLEEKLKV : 120

* 140 * 160 *
TrF3Hb : RRDEVNLLGYFEAEHTKNVRDWKEIYDFNVQQPTFIPPSDDQSFQFWENRW : 172

FIGURE 77

145/271

```

          *      20      *      40      *      60
TrF3Hc : TTACCCAACAATNATGTGTGACTGATGTTAGTGTACCAGGAAAGATGGGAGAGGTGGATC : 60

          *      80      *      100     *      120
TrF3Hc : CAGCTTCTCAAATCCAGAAAATAGGCCAAAACCTTCCATAATCCAAGCTGAAGGAATT : 120

          *      140     *      160     *      180
TrF3Hc : CCTGTAATCAATCTCTCCCCATTAATTCAACCACAGTTCAAGACTCCTCTGCCATTGAA : 180

          *      200     *      220     *      240
TrF3Hc : AGCTTAGTCAAAGAAAATAGGAAATGCTTGCAAGGAATGGGGTTCTTCCAAGTAACAAAC : 240

          *      260     *      280     *      300
TrF3Hc : CATGGTGTCCCTCTAAATCTAAGGCTCAGACTCGAGGAAGCTACCAAAGTTTCTTGCA : 300

          *      320     *      340     *      360
TrF3Hc : CAGAGTTGGAGGAGAACAGGAAGCTTACCGTAGATGATAACAGTTGCCTGGTTATCAT : 360

          *      380     *      400     *      420
TrF3Hc : GATACAGAGCACACCAAGAACATGTCAGAGACTGGAAAGAAGTGTGATTTTATCCAAA : 420

          *      440     *      460     *      480
TrF3Hc : GACCCCACTTGATTCTCTGAATTCTGATGAACATGATGATCGAGTCACTCAATGGACT : 480

          *      500     *      520     *      540
TrF3Hc : AATCCATCCCCTCAATATCCTCCAAACTCAAAGTTATTTGGAAGAGTATATAAAGAG : 540

          *      560     *      580
TrF3Hc : ATGGAAAAGCTAGGCTTTAAGTTGCTAGAGCTATAGCTTGAGC : 585

```

FIGURE 78

146/271

TrF3Hc : MLVYQERWERWIQLSSNPENRPKLSITIQAEGIPVINLSPLIHHTVQDSSAIESLVKEIGN : 60
* 20 * 40 * 60
TrF3Hc : ACKEWGFFQVTNHGVPLNLRRLLEEATKVFFAQSLEEKRKLTVDNSLPGYHDTEHTKNV : 120
* 80 * 100 * 120
TrF3Hc : RDWKEVFDFLSKDPTLIPLNSDEHDDRVTQWTNPSPQYPFNFKVILEEYIKEMEKGFL : 180
* 140 * 160 * 180
TrF3Hc : LELIALS : 187

FIGURE 79

147/271

TrF3'Ha : GGGATGGTGGAGGCGAATGTGACCCCTAGGGCTGATGAATTAGTAATGGTAGTTGAGCTT : 60
 * 20 * 40 * 60
 TrF3'Ha : ATGGCGTTAGCTGGAGTTCAATATTGGTGATTTGTCCTGCTTGGAAATGGTTAGAT : 120
 * 80 * 100 * 120
 TrF3'Ha : ATTCAAGGTGTACAAGGAAAAATGAAGAAATTACATAAAAGATTGATGCATTTAACT : 180
 * 140 * 160 * 180
 TrF3'Ha : AGCATTATTGAAGATCACATGATTCCAAGAGTGAGAACATAATGACTTATTGAGTACG : 240
 * 200 * 220 * 240
 TrF3'Ha : TTGTTATCACTAAAAGAAAAAGTTGATGAGGATGGTGACAAACTTAATGATACTGAGATC : 300
 * 260 * 280 * 300
 TrF3'Ha : AAAGCATTACTCTTGAACATGTTCACAGCTGGAACAGACACATCATCAAGCACACAGAG : 360
 * 320 * 340 * 360
 TrF3'Ha : TGGGCTATTGCTGAACTAATAAAAATCCAAAACATAATGATTGTTCAAAATGAGTTG : 420
 * 380 * 400 * 420
 TrF3'Ha : GACACTGTTGGGCCGAGACAGCTTGTAACTGAACAAGACTTGGCCCATCTCCTTAC : 480
 * 440 * 460 * 480
 TrF3'Ha : TTAGAGGCTGTAATAAGGAGACATTCGTCTCCATCCATCAACCCCTCTCTCCCCA : 540
 * 500 * 520 * 540
 TrF3'Ha : CGTGGCAACAAATAGTTGTGAAATCCTCGACTATCACATTCCAAAGGTGCAACTCTC : 600
 * 560 * 580 * 600
 TrF3'Ha : TTGG : 604

FIGURE 80

148/271

* 20 * 40 * 60
TrF3'Ha : GNGGECDPRADELVMVVELMALAGVFNIQDFVPALEWLDIRGVQGKMKLHKRFDAL : 60

* 80 * 100 * 120
TrF3'Ha : SIIEDHMKSEKHNDLLSTLLSLKEKVDEDGDKLNDTEIKALLNMFTAGTDTSSTTE : 120

* 140 * 160 * 180
TrF3'Ha : WAIAELIKNPKLMIRVQNELDTVVGRDKLVTEQDLAHLPLYLEAVIKETFRLHPSTPLSLP : 180

* 200
TrF3'Ha : RVATNSCEILDYHIPKGATLL : 201

FIGURE 81

149/271

	*	20	*	40	*	60	
TrF3 'Ha1 :	GGGAATGGTGGAGGCGAATGTGACCCCTAGGGCTGATGAATTAAAGTAATGGTAGTTGAGC						: 60
TrF3 'Ha2 :	---ATGGTGGAGGTGAATGTGACCCCTAGGGCTGATGAATTAAAGTNATGGTAGTTGAGC						: 57
	*	80	*	100	*	120	
TrF3 'Ha1 :	TTATGGCGTTAGCTGGAGTTTCATAATTGGTGATTTGTTCTGCTTGGAAATGGTTAG						: 120
TrF3 'Ha2 :	TTATGGCGTTAGCTGGAGTTTCATAATTGGTGATTTGTTCTGCTTGGAAATGGTTAG						: 117
	*	140	*	160	*	180	
TrF3 'Ha1 :	ATATTCAAGGTGTACAAGGAAAAATGAAGAAATTACATAAAAGATTGATGCATTAA						: 180
TrF3 'Ha2 :	ATATTCAAGGTGTACAAGGAAAAATGAAGAAATTACATAAAAGATTGATGCATTAA						: 177
	*	200	*	220	*	240	
TrF3 'Ha1 :	CTAGCATTATTGAAGATCACATGATTCCAAGAGTGAGAACGATAATGACTTATTGAGTA						: 240
TrF3 'Ha2 :	CTAGCATTATTGAAGATCACATGATTCCAAGAGTGAGAACGATAATGACTTATTGAGTA						: 237
	*	260	*	280	*	300	
TrF3 'Ha1 :	CGTTGTTTACTAAAGAAAAAGTTGATGAGGATGGTGACAAACTTAATGATACTGAGA						: 300
TrF3 'Ha2 :	CGTTGTTTACTAAAGAAAAAGTTGATGAGGATGGTGACAAACTTAATGATACTGAGA						: 297
	*	320	*	340	*	360	
TrF3 'Ha1 :	TCAAAGCATTACTCTTGAACATGTTCACAGCTGGAACAGACACATCATCAAGCACAACAG						: 360
TrF3 'Ha2 :	TCAAAGCATTACTCTTGAACATGTTCACAGCTGGAACAGACACATCATCAAGCACAACAG						: 357
	*	380	*	400	*	420	
TrF3 'Ha1 :	AGTGGGCTATTGCTGAACTAATAAAAATCCAAAACTAATGATTGTTCAAAATGAGT						: 420
TrF3 'Ha2 :	AGTGGGCTATTGCTGAACTAATAAAAATCCAAAACTAATGATTGTTCAAAATGAGT						: 417
	*	440	*	460	*	480	
TrF3 'Ha1 :	TGGACACTGTTGTGGGCCGAGACAAGCTTGTAACTGAACAAGACTTGGCCATCTCCTT						: 480
TrF3 'Ha2 :	TGGACACTGTTGTGGGCCGAGACAAGCTTGTAACTGAACAAGACTTGGCCATCTCCTT						: 477
	*	500	*	520	*	540	
TrF3 'Ha1 :	ACTTAGAGGCTGTAATAAGGAGACATTCGTCCTCCATCCATCAACCCCTCTTCTCTCC						: 540
TrF3 'Ha2 :	ACTTAGAGGCTGTAATAAGGAGACATTCGTCCTCCATCCATCAACCCCTCTTCTCTCC						: 537
	*	560	*	580	*	600	
TrF3 'Ha1 :	CACGTGTTGCAACAAATAGTTGTGAAATCCTCGACTATCAC-----						: 581
TrF3 'Ha2 :	CACGTGTTGCAACAAATAGTTGTGAAATCCTCGACTATCACATTCCAAAGGTGCAACTC						: 597
TrF3 'Ha1 :	----- : -						
TrF3 'Ha2 :	TCTTGG : 603						

FIGURE 82

150/271

TrPAla : GNAGGAAATTCAACTAAATATTGCCTTAATTCTTNTNATANATNTTGAAATTTCNTT : 60
 * 20 * 40 * 60
 TrPAla : CTCCCTAAAAATTCTATAGCTACCACATCANCACAACATAAACANNAATTAAGAAATATTN : 120
 * 80 * 100 * 120
 TrPAla : TATNTACTATTTAAGATATGGAAGTAGTAGCAGCAGCAATCACAAAAACAATGGCAAG : 180
 * 140 * 160 * 180
 TrPAla : ATTGATTCATTTGCTTGAATCATGCTAATGCTAATAACATGAAAGTGAATGGTGCTGAT : 240
 * 200 * 220 * 240
 TrPAla : CCTTTGAATTGGGGTGTGGCTGCTGAGGCAATGAAGGAAAGTCACTGGATGAGGTGAAG : 300
 * 260 * 280 * 300
 TrPAla : CGTATGGTGGAGGAATACCGGAAACCGGTTGTCCGTCTGGTGGCGAGACACTGACGATT : 360
 * 320 * 340 * 360
 TrPAla : TCTCAGGTGGCTGCCATTGCTGCACACGATGGTGCAACGGTGGAGCTATCGGAATCTGCT : 420
 * 380 * 400 * 420
 TrPAla : AGAGCCGGCGTTAAGGCGAGCAGTGACTGGTTATGGAGAGTATGAACAAAGGTACAGAC : 480
 * 440 * 460 * 480
 TrPAla : AGTTATGGTGTCACTACAGGGTTCGGCGTACCTCGCACCGCCGAACCAAACAAGGTGGT : 540
 * 500 * 520 * 540
 TrPAla : GCTTTGCAGAAAGAGCTCATAGGTNTTTGAATGCAGGAATATTGGAAATGGAACNTG : 600
 * 560 * 580 * 600
 TrPAla : AGACAAAGCCACACACTACCC : 621
 * 620

FIGURE 83

151/271

* 20 * 40 * 60
TrPALa : MEVVAAAITKNNGKIDSFCLNHANANNMKVNGADPLNWGVAAEAMKGSHLDEVKRMVEY : 60

* 80 * 100 * 120
TrPALa : RKPVVRLGGETLTISQVAAIAAHGATVELSESARAGVKASSDWVMESMNKGTD SYGVTT : 120

* 140 *
TrPALa : GFGATSHRRRTKQGGALQKELIRFECRNIWKWNRQSHTLP : 159

FIGURE 84

152/271

	* 20 * 40 * 60				
TrPALa1 :	GN GG AAATT N CAACTAAATATTGCC TT AA T CTTNTNATANATNTTG A TTTC GT				: 60
TrPALa2 :	GNAGGAAATT A CAACTAAATATTNC CT TTA A TTCTT A TNATANATNTTG A TTTC NT				: 60
TrPALa3 :	----- TCAAGAAA T ACAC I CTTT NN TTCTTTNT A ATNT T GTTTN A TTTC NT				: 50
	* 80 * 100 * 120				
TrPALa1 :	CTCCCTAAAAATTCTATAGCTACCACATCANCACAA C ATAACANNAATTAAAGAAATATTN				: 120
TrPALa2 :	CTCCCTAAAAATTCTATAGCTACCACATCANCACAA C ATAACANNAATTAAAGAAATATTN				: 120
TrPALa3 :	CTC C T NG AA A AT T CTATAGCTACCACATACAAAGTAACACT I ATTACTAGCTATTA				: 110
	* 140 * 160 * 180				
TrPALa1 :	TATNTACTATT T TAAGATATGGAA G AGTAGTAGC AN CGCAATC CAC AAAAAAC A ATGGCAAG				: 180
TrPALa2 :	TATNTACTATT T TAAGATATGGAA G AGTAGTAGC AG CGCAATC CAC AAAAAAC A ATGGCAAG				: 180
TrPALa3 :	T T T T TA E GA T TTAAG NN ATGGAA G AGTAGTAGC AG CGCAATC CAC AAAAAAC A ACGG A AG				: 170
	* 200 * 220 * 240				
TrPALa1 :	ATTGATTCA TTT GCTTGAATCATGCTAATGCTAATAACATGAA A GTGAATGGTGCTGAT				: 240
TrPALa2 :	ATTGATTCA TTT GCTTGAATCATGCTAATGCTAATAACATGAA A GTGAATGGTGCTGAT				: 240
TrPALa3 :	ATTGATTCA TTT GCTTGAATCATGCTAATGCTAATAACATGAA A GTGAATGGTGCTGAT				: 230
	* 260 * 280 * 300				
TrPALa1 :	CCTTGAA TT GGGGTGTGGCTGCTGAGGCAATGAAGGGAA G TC AC TTGGATGAGGTGAAG				: 300
TrPALa2 :	CCTTGAA TT GGGGTGTGGCTGCTGAGGCAATGAAGGGAA G TC AC TTGGATGAGGTGAAG				: 300
TrPALa3 :	CCTTGAA TT GGGGTGTGGCTGCTGAGGCAATGAAG G TC AC TTGGATGAGGTGAAG				: 290
	* 320 * 340 * 360				
TrPALa1 :	CGTATGGTGGAGGA A TACCGGAA AC CGGT T GTC CT GGTGGCGAGAC G CTGACGATT				: 360
TrPALa2 :	CGTATGGTGGAGGA A TACCGGAA AC CGGT T GTC CT GGTGGCGAGACACT A CCATT				: 360
TrPALa3 :	CGTATGGTGGAGGA A TACCGGAA AC CGGT T GTC CT GGTGGCGAGACACTGACGATT				: 350
	* 380 * 400 * 420				
TrPALa1 :	TCTCAGGTGGCTGCCATTGCTGCACACGATGGTGAAC CG GTGG A CTATCGGAATCTGCT				: 420
TrPALa2 :	TCTCAGGTGGCTGCCATTGCTGCACACGATGGTGAAC CG GTGG A CTATCGGAATCTGCT				: 420
TrPALa3 :	TCTCA T GGTGGCTGCCATTGCTGCACACGATGGTGAAC CG GTGG A CTATCGGAATCTGCT				: 410
	* 440 * 460 * 480				
TrPALa1 :	AGAGCCGGCG T TAAGGC G AGCAGTGACTGGTTATGGAGAC G ATGAACAAAGGTACAGAC				: 480
TrPALa2 :	AGAGCCGGCG T TAAGGC G AGCAGTGACTGGTTATGGAGAC G ATGAACAAAGGTAC G AC				: 480
TrPALa3 :	AGAGCCGGCG T TAAGGC G AGCAGTGACTGGTTATGGAGAC G ATGAACAAAGGTAC G AC				: 470
	* 500 * 520 * 540				
TrPALa1 :	AGTTATGGTGTCA T AC G GGGTT C GGCGCTACCTC N ACCGCCGAACCAAACAAGGTGGT				: 540
TrPALa2 :	AG T TA G GGTGT C AC G AGGGTT C GGCGCTACCTCGCACCGCCGAACCAAACAAGGTGGT				: 540
TrPALa3 :	AGTTATGGTGTCA T AC G GGGTT C GGCGCTACCTCGCACCGCCGAACCAAACAAGGTGGT				: 530
	* 560 * 580 * 600				
TrPALa1 :	GCTTTGC AN AAAGAGCTCAT A AG T ATT T GCTTGTGT CA AT -				: 582
TrPALa2 :	GCTTTGCAGAAAGAGCTCAT A AGGTNTTTGAATGCT T GAATATT T GGAA A TGGAACNTG				: 600
TrPALa3 :	GCTTTGCAGAAAGAGCTCAT A AGGTNTTTGAATGCA G AGGAATATT T GGAA A TGGAAC T G				: 590
	* 620				
TrPALa1 :	----- : -				
TrPALa2 :	AG T CAAGCCACACACTACCC : 621				
TrPALa3 :	ANACAA A TCC - : 600				

FIGURE 85

153/271

```

*      20      *      40      *      60
TrPALb : GNAGGAAANAATTNTATTGTTATTATTCCCCCACACAACGGAAANAATTNTATTGTTN : 60

*      80      *      100      *      120
TrPALb : CTTATTTCCCCCACACAACATAACNAATACATTNTCCTCTCCTCATCACAATTATTA : 120

*      140      *      160      *      180
TrPALb : CTTTCTACACACCCCCCTCTCAACTATTAACTAACATAATGGAGGGAATTACCAATG : 180

*      200      *      220      *      240
TrPALb : GCCATGCTGAAGCAACTTTGCGTGACCAAAAGTGTGGTGATCCACTCAACTGGGTG : 240

*      260      *      280      *      300
TrPALb : CAGCCGCGGAGTCGTTGATGGGAGTCATTTGGATGAGGTGAAGCGTATGGTGGAGGAAT : 300

*      320      *      340      *      360
TrPALb : ACCGTAATCCATTGGTTAAAATTGGCGCGAGACGCTTACCATTGCTCAGGTGGCTGGAA : 360

*      380      *      400      *      420
TrPALb : TTGCTTCTCATGATAGTGGTGTGAGGGTGGAGCTGTCTGAGTCCGCCAGGGCCGGCGTTA : 420

*      440      *      460      *      480
TrPALb : AGGCGAGTAGTGATTGGGTGATGGACAGCATGAACAATGGGACTGATAGTTATGGTGTAA : 480

*      500      *      520      *      540
TrPALb : CCACCGGTTTCGGCGCCACCTCTCACCGAGAACCAAGCAGGGTGGTGCCTTGCAGAAGG : 540

*      560      *      580      *      600
TrPALb : AGCTAATTAGGTTTGAAATGCTGGAATATTGGCAATGGTACAGAACTAACTGTACAC : 600

*      620      *      640      *      660
TrPALb : TACCACACACAGCAACCAGAGCTGCAATGCTTGAGAACATCAACACTCTTCAAGAGG : 660

*      680      *
TrPALb : AATATTCTTGAATGGCCTTGTAAATTGGT : 693

```

FIGURE 86

154/271

* 20 * 40 * 60
TrPALb : MEGITNGHAEATFCVTKSVGDPPLNWGAAAESLMGSHLDEVKRMVEEYRNPLVKIGGETLT : 60

* 80 * 100 * 120
TrPALb : IAQVAGIASHDGVVELSESARAGVKASSDWVMDSMNNGTDSYGVTGFGATSHRRTKQ : 120

* 140 * 160 *
TrPALb : GGALQKELIRFLNAGIFGNNGTESNCTLPHHTATRAAMLVRINTLLQEEYFLNGLCKFL : 177

FIGURE 87

155/271

FIGURE 88

156/271

	*	380	*	400	*	420	
TrPALb1	:	TTGCTTCTCATGATAGTGGTGTGAGGGTGGAGCTGTCCGAGTCCGC AAGGGCCGGCGTTA					: 420
TrPALb2	:	TTGCTTCTCATGATAGTGTGTGAGGGTGGAGCTGTCTGAGTCCGC GAGGGCCGGCGTTA					: 381
TrPALb3	:	TTGCTTCTCATGATAG N NTGTGAGGGTGGAGCTGTCTGAGT N CCCAGGGCCGGCGTTA					: 381
TrPALb4	:	TTGCTTCTCATGATAGTGGTGTGAGGGTGGAGCTGTCTGAGTCCGC CAGGGCCGGCGTTA					: 379
TrPALb5	:	TTGCTTCTCATGATAGTGTGTGAGGGTGGAGCTGTCTGAGTCCGC CAGGGCCGGCGTTA					: 379
TrPALb6	:	TTGCTTCTCATGATAGTGTGTGAGGGTGGAGCTGTCTGAGTCCGC CAGGGCCGGCGTTA					: 378
TrPALb7	:	TTGCTTCTCATGATAGTGTGTGAGGGTGGAGCTGTCTGAGTCCGC CAGGGCCGGCGTTA					: 378
TrPALb8	:	TTGCTTCTCATGATAGTGTGTGAGGGTGGAGCTGTCCGAGTCCGC AAGGGCCGGCGTTA					: 342
	*	440	*	460	*	480	
TrPALb1	:	AGGCCAGTACTGATTGGGTGATGGAA AGCATGAACAATGGGACTGATAGTTACGGTGTTA					: 480
TrPALb2	:	AGGCCAGTACTGATTGGGTGATGGACAGCATGAACAATGGGACTGATAGTTATGGTGTTA					: 441
TrPALb3	:	ANG CCAGTACTGATTGGGTGATGGACAG N ATGAACAATGGGACTGATAGTTATGG N GTAA					: 441
TrPALb4	:	AGGCCAGTACTGATTGGGTGATGGACAGCATGAACAATGGGACTGATAGTTATGGTGTTA					: 439
TrPALb5	:	AGGCCAGTACTGATTGGGTGATGGACAGCATGAACAATGGGACTGATAGTTATGGTGTTA					: 439
TrPALb6	:	AGGCCAGTACTGATTGGGTGATGGACAGCATGAACAATGGGACTGATAGTTATGGTGTTA					: 438
TrPALb7	:	AGGCCAGTACTGATTGGGTGATGGACAGCATGAACAATGGGACTGATAGTTATGGTGTTA					: 438
TrPALb8	:	AGGCCAGTACTGATTGGGTGATGGAA AGCATGAACAATGGGACTGATAGTTACGGTGTTA					: 402
	*	500	*	520	*	540	
TrPALb1	:	CCACCGGTT T GGGCCACCTCTCACCGGAGAACCAAGCAGGGTGGTGCCTTGCA GAG					: 540
TrPALb2	:	CCACCGGTTTCGGGCCACCTCTCACCGGAGAACCAAGCAGGGTGGTGCCTTGCA GAG					: 501
TrPALb3	:	CCACCGGTTTCGGGCCACCTCTCACCGGAGAACCAAGCAGGGTGGTGCCTTGCA AAGG					: 501
TrPALb4	:	CCACCGGTTTCGGGCCACCTCTCACCGGAGAACCAAGCAGGGTGGTGCCTTGCA AAGG					: 499
TrPALb5	:	CCAC T GGTTTCGGGCCACCTCTCACCGGAGAACCAAGCAGGGTGGTGCCTTGCA GAGG					: 499
TrPALb6	:	CCAC T GGTTTCGGGCCACCTCTCACCGGAGAACCAAGCAGGGTGGTGCCTTGCA GAGG					: 441
TrPALb7	:	CCAC T GGTTTCGGGCCACCTCTCACCGGAGAACCAAGCAGGGTGGTGCCTTGCA GAGG					: 498
TrPALb8	:	CCACCGGTT T GGGCCACCTCTCACCGGAGAACCAAGCAGGGTGGTGCCTTGCA GAGG					: 462
	*	560	*	580	*	600	
TrPALb1	:	AGCTAATTAGGTTTTGAATGCT GAATATTGGCAATGGTACAGAATCTA					: 592
TrPALb2	:	AGCTAATTAGGTTTTGAATGCT GAATATTGGCAATGGTACAGAATCTA					: 561
TrPALb3	:	AGCTAATT A GGTTTTGAATGCT GAATATTGGCAATGGTACAGAATCTA					: 561
TrPALb4	:	AGCTAATTAGGTTTTGAATGCT GAATATTGGCAATGGTACAGAATCTA					: 559
TrPALb5	:	AGCTAATTAGGTTTTGAATG CGGAATATTGGCAATGGTACAGAATCTA					: 559
TrPALb6	:	- - - - -					: -
TrPALb7	:	AGCTAATTAGGTTTTGAATG CGGAATATTGGCAATGGTACAGAATCTA					: 558
TrPALb8	:	AGCTAATTAGGTTTTGAATGCT GAATATTGGCAATGGTACAGAATCTA					: 522
	*	620	*	640	*	660	
TrPALb1	:	- - - - -					: -
TrPALb2	:	TACCA CACACAGCAACCAGAGCTGCAATGCTTGTGAGAATCAACACTCTTCTCAAG					: 618
TrPALb3	:	T ACCA CACACAGCAACCAGAGCTGCAATGCTTGTGAGAATCAACACTCTTCTCAAG					: 621
TrPALb4	:	TACCA CACACAGCAACCAGAGCTGCAATGCTTGTGAGAATCAACACTCTTCTCAAG					: 590
TrPALb5	:	TACCA CACACAGCAACCAGAGCTGCAATGCTTGTGAGAATCAACACTCTTCTCAAG					: 616
TrPALb6	:	- - - - -					: -
TrPALb7	:	TACCA CACACAGCAACCAGAGCTGCAATGCTTGTGAGAATCAACACTCTTCTCAAG					: 567
TrPALb8	:	TACCA CACACAGCAACCAGAGCTGCAATGCTTGTGAGAATCAACACTCTTCTCAAG					: 532
	*	680	*				
TrPALb1	:	- - - - -					: -
TrPALb2	:	- - - - -					: -
TrPALb3	:	AATATTCTTGAATGGCCTTGTAAATTGG					: 654
TrPALb4	:	- - - - -					: -
TrPALb5	:	- - - - -					: -
TrPALb6	:	- - - - -					: -
TrPALb7	:	- - - - -					: -
TrPALb8	:	- - - - -					: -

FIGURE 88 (cont)

157/271

```

          *      20      *      40      *      60
TrPALc : AACAAAGATCGTTATGCCTTAGAACCTCACCTCAATGGCTGGTCCTTGATTGAAGTGAT : 60

          *      80      *      100     *      120
TrPALc : AAGATTTCAACCAAATCAATTGAAAGAGAAATTAACACTCGGTCAACGACAACCCTTGAT : 120

          *      140     *      160     *      180
TrPALc : CGATGTTCAAGGAACAAAGGCCATTCATGGTGGTAACCTTCAGGAACACCTATTGGAGT : 180

          *      200     *      220     *      240
TrPALc : TTCAATGGATAACACACGTTAGCTCTGCTTCAATTGGTAAACTCATGTTGCTCAATT : 240

          *      260     *      280     *      300
TrPALc : CTCTGAACCTGTTAATGATTITACAAACAACGGGTTGCCTCGAATCTTACTGCTAGTAG : 300

          *      320     *      340     *      360
TrPALc : GAACCCGAGCTGGACTATGGTTCAAGGGATCGGAAATTGCCATGGCTTCGTATTGTT : 360

          *      380     *      400     *      420
TrPALc : CGAGTTACAATATCTTGCTAACCTCCTGTCACCACCCATGTCAAAGTGCCGAGCAACACAA : 420

          *      440     *      460     *      480
TrPALc : CCAAGATGTTAACTCTTGGTTGATTTCATCTAGAAAAACAAATGAAGCTATTGAGAT : 480

          *      500     *      520     *      540
TrPALc : TCTCAAGCTCATGTCTTCCACTTTCTGATTGCATTATGTCAAGCAATCGACTTAAGGCA : 540

          *      560     *
TrPALc : CTTGGAGGAAAATCTCAGGAACACCGTCAAGAACACGGT : 579

```

FIGURE 89

158/271

* 20 * 40 * 60
TrPALc : TRSLCLRTSPQWLGPLIEVIRFSTKSIEREINSVNDNPLIDVSRNKAIHGGNFQGTPIGV : 60

* 80 * 100 * 120
TrPALc : SMDNTRLALASIGKLMFAQFSELVNDFYNNGLPSNLTASRNPSDLYGFKGSEIAMASYCS : 120

* 140 * 160 * 180
TrPALc : ELQYLANPVTHVQSAEQHNQDVNSLGLISSRKTNEAIEILKLMSSFLIALCQAIDLH : 180

*

TrPALc : LEENLRNTVKNT : 192

FIGURE 90

159/271

```

          *      20      *      40      *      60
TrPALd : GGTCAATNCAGCTTNGGAGATCTAGTCCCCCTTCTACTNTGCTGGTTACTAACTGGA : 60

          *      80      *      100     *      120
TrPALd : AGACCNAATTCTAAAGCTCATGGGCCTACAGGAGAAGTACTTAATGCAAAAGAACGCTTT : 120

          *      140     *      160     *      180
TrPALd : CAATTGGCTGGAATCAATAACCGAGTTCTTGAAATTACAACCAAAAGAACGGTCTGCACCTT : 180

          *      200     *      220     *      240
TrPALd : GTTAATGGAACTGCTGTTGGTTCTGGTTAGCTTCTATTGTTCTTTGAGGCTAACATA : 240

          *      260     *      280     *      300
TrPALd : TTGGCGGTGTTGTCGAAGTTCTATCGGCAATTTCGCTGAAGTTATGCAAGGGAAAGCCC : 300

          *      320     *      340     *      360
TrPALd : GAATTACTGATCATTGACACATAAGTTGAAGCACCACCCCTGGTCAAATTGAGGCTGCT : 360

          *      380     *      400     *      420
TrPALd : GCTATTATGGAACACATTTGGATGGGAGTGCTTATGTTAAAGACGCGAAGAACGTTGCAT : 420

          *      440     *      460     *      480
TrPALd : GAGATGGACCCCTTACAGAACGCCAAGCAAGATAGATATGCACCTAGAACCTCACCAA : 480

          *      500     *      520     *      540
TrPALd : TGGCTTGGTCCTTGATTGAAGTGATTAGATTTCAACCAAGTCAATTGAGAGAGATC : 540

          *      560     *      580     *
TrPALd : AACTCTGTCAATGACAACCCCTTGATTGATGTTCGAGAAACAAGGCTTG : 591

```

FIGURE 91

160/271

* 20 * 40 * 60
TrPALd : GQXSXGDLVPLSYXAGLLTGRXNSKAHGPTGEVLNAKEAFQLAGINTEFFELQPKEGLAL : 60

* 80 * 100 * 120
TrPALd : VNGTAVGSGLASIVLFEANILAVLSEVLSAIFAEVMQGKPEFTDHLTHKLKHHPGQIEAA : 120

* 140 * 160 * 180
TrPALd : AIMEHILDGSAYVKDAKKLHEMDPLQKPKQDRYALRTSPQWLGPLIEVIRFSTKSIEREI : 180

*
TrPALd : NSVNDNPLIDVSRNKAL : 197

FIGURE 92

161/271

```

          *      20      *      40      *      60
TrPAle : GNNGGAAATTNCAACTCNATTNTTCTTNTATAATNTTGAAATTCCCTCTCTCTCAAA : 60

          *      80      *      100     *      120
TrPAle : TTCTATAGCTACTCTACCACATCACACAACATAACAAATTAAAGAAATATTCACTACTATA : 120

          *      140     *      160     *      180
TrPAle : CTATTAAGATATGGAAGTAGTAGCAGCAGCAATCACAAAAACAAACGGCAAGATTGATTC : 180

          *      200     *      220     *      240
TrPAle : ATTTTGCTTGAATCATGCTAATGCTAATAAACATGAAAGTGAATGATGCTGATCCTTGAA : 240

          *      260     *      280     *      300
TrPAle : TTGGGGTGTGGCTGCTGAGGCAATGAAGGGAAAGTCACTTGGATGAGGTGAAACGTATGGT : 300

          *      320     *      340     *      360
TrPAle : GGAGGAGTACCGGAAGCCGATTGTCCGTCTGGTGGCGAGACGCTGACGATTCTCAGGT : 360

          *      380     *      400     *      420
TrPAle : GGCTGCCATTGCTGCACACGATGGTGCATGGTTGAGCTGTCGGAATCTGCTAGAGCCGG : 420

          *      440     *      460     *      480
TrPAle : CGTTAAGGCAAGCAGTGATTGGTTATGGAGAGTATGAACAAAGGTACTGACAGTTATGG : 480

          *      500     *      520     *      540
TrPAle : TGTCACCACAGGGTTCGCGCTACCTCNCACCGCCGAACCAAACAAAGGTGGCTTACA : 540

          *      560     *      580     *
TrPAle : GAAAGGGCTCATAGGTTTGAAATGCTGGAATATTGNAAATGNAACTGAN : 592

```

FIGURE 93

162/271

TrPAle : MEVVAAAITKNNGKIDSFCLNHANANNMKVNDA PLN WGVAAEAMKGSHLDEVKRMVEY : 60
* 20 * 40 * 60
TrPAle : RKPIVRLGGETLTISQVAAIAAHGAMVELSESARAGVKASSDWVMESMNKGTD SYGVTT : 120
* 80 * 100 * 120
TrPAle : GFGATXHRRTKQGGALQKGLIRFLNAGIFXNXTX : 154
* 140 *

FIGURE 94

163/271

```

*      20      *      40      *      60
TrPAlf : CNATTGTTAGTNGTTCCNCCCACCCACATAACAAATACATAATTCTCTCCTCTGATCAC : 60

*      80      *      100     *      120
TrPAlf : AATTATTACTTTACTACACCCCTCCTCTCAACTATTATTAACTAGCATAATGGAGGGAATT : 120

*      140     *      160     *      180
TrPAlf : ACCAATGGCCATGCTGAAACAACTTTAGCGTGACCAAAAGTGNNGNGATCCACTCAAC : 180

*      200     *      220     *      240
TrPAlf : TGGCGNGCAGCCCGGGAGTCGTCGACGGGGAGTCATTGGATGAGGTGAAGCGTATGGNG : 240

*      260     *      280     *      300
TrPAlf : GAGGAGTACCGTAATCCGNTGGTTAAAATTGGCGGCGAGACGCTTACCATTGCTNNGGT : 300

*      320     *      340     *      360
TrPAlf : NCTGGAATTGCTCTCATGATAGTGGAGTGAGGGTGGAGCTGTCCGAGTTCGCAAGGGCC : 360

*      380     *      400     *      420
TrPAlf : GGCGTTAAGGCGAGTAGTGATTGNGTGATGGATAGCATGAACAATGGACTGATAGTTAC : 420

*      440     *      460     *      480
TrPAlf : GGTGTTACCACCGCNTTGCGGCCACCTGTCACCGGAGAACCAAGCCANGGTGGTGCCTT : 480

*      500     *      520     *      540
TrPAlf : GCAGAAGGAGCTAAATTNNNGGTGTTTGAAANGCTGGNAATANTTGGCNNTGGTTCAGAA : 540

*      560
TrPAlf : ATCTNAACTTGTNCACTTACCAACACC : 566

```

FIGURE 95

164/271

* 20 * 40 * 60
TrPALf : MEGITNGHAETTFSVTKSXXDPLNWAAAESSTGSHLDEVKRMXEEYRNPXVKIGGETLT : 60

* 80 * 100 * 120
TrPALf : IAXVXGIASHDSGVVELSEFARAGVKASSDXVMDSMNNGTDSYGVTXFGATCHRRTKP : 120

* 140 *
TrPALf : XWCLAEGAKXXCFEXWXXFGXGSEIXTCXLTT : 152

FIGURE 96

165/271

	* 20 * 40 * 60	
TrPAlf1 :	CNATTGTTAGTNGTTCCNCCCACCNACATAACNAATACTANTTCTCTCCTCTGATCAC	: 60
TrPAlf2 :	-----CCCATACAAATACATTATTCTCTCCTCTGATCAC	: 35
	* 80 * 100 * 120	
TrPAlf1 :	AATTATTACTTTACTACACCCTCCTCTCAACTATTATAACTAGCATAATGGAGGGAATT	: 120
TrPAlf2 :	AATTATTACTTTACTACACCCTCCTCTCAACTATTATAACTAGCATAATGGAGGGAATT	: 95
	* 140 * 160 * 180	
TrPAlf1 :	ACCAATGCCATGCTGAAACAACCTTTACGTGACCAAAGTGNNGNGATNNANTGNNC	: 180
TrPAlf2 :	ACCAATGCCATGCTGAAACAACCTTTACGTGACCAAAGTGNNGNGATCCACTAAC	: 155
	* 200 * 220 * 240	
TrPAlf1 :	TGCGNG-----	: 188
TrPAlf2 :	TGGGGTGAGCCGGAGTCGTCGACGGGGAGTCATTGGATGAGGTGAAGCGTATGGNG	: 215
	* 260 * 280 * 300	
TrPAlf1 :	-----	: -
TrPAlf2 :	GAGGAGTACCGTAATCCGNTGGTTAAAATTGGCGGCGAGACGCTTACATTGCTNNGGTA	: 275
	* 320 * 340 * 360	
TrPAlf1 :	-----	: -
TrPAlf2 :	NCTGGAATTGCTTCTCATGATAGTGGAGTGAGGGTGGAGCTGTCCGAGTTCGCAAGGGCC	: 335
	* 380 * 400 * 420	
TrPAlf1 :	-----	: -
TrPAlf2 :	GGCGTTAAGGCAGTAGTGATTGNGTGATGGATAGCATGAACAATGGGACTGATAGTTAC	: 395
	* 440 * 460 * 480	
TrPAlf1 :	-----	: -
TrPAlf2 :	GGTGTACCACCGCNTTGGTGCCACCTGTCACCGGAGAACCAAGCCANGGTGGTGCCTT	: 455
	* 500 * 520 * 540	
TrPAlf1 :	-----	: -
TrPAlf2 :	GCAGAAGGAGCTAAATTNNGGTGTTGAANGCTGGNAATANTTGGCNNTGGTCAGAA	: 515
	* 560	
TrPAlf1 :	-----	: -
TrPAlf2 :	ATCTNAACTTGTNCACCTACCACACC	: 541

FIGURE 97

166/271

TrVRa :	GTAAGAGTTGAGAAAAAANACCAATAAAGTAAACNCTATNTAGAAAGAGAGTCAAAATG	:	60			
	*	20	*	40	*	60
TrVRa :	GCTGAAGGAAAAGGAAGGGTTGTGTTACTGGAGGAACAGGTTTCTGGTTCATGGATC	:	120			
	*	80	*	100	*	120
TrVRa :	ATCAAGAGTCTTCTGAAAATGGATACTCTGTTAACCACTATTAGAGCTGATCCAGAA	:	180			
	*	140	*	160	*	180
TrVRa :	CGTAAGAGGGATGTAAGCTCCTAACAAATCTACCCGGCGATCCGAAAGGCTACATTTC	:	240			
	*	200	*	220	*	240
TrVRa :	TTCAACGCCGATCTAGACGACCCAGAGAGTTCAACGAAGCAATTGAAGGTTGTGTCGGG	:	300			
	*	260	*	280	*	300
TrVRa :	ATATTCCACACCGCTTCACCAATCGATTGCGCGTGAGTGAGCCAGAAGAAATAGTGACA	:	360			
	*	320	*	340	*	360
TrVRa :	AAAAGAACAGTGGATGGAGCATTAGGAATTAAAAGCATGTGTGAATTCAAAGACAGTG	:	420			
	*	380	*	400	*	420
TrVRa :	AAGAGATTATTACACTTCAAGNGGTTCTGCTGTTATTCAATGGAAAAAACAAAGAT	:	480			
	*	440	*	460	*	480
TrVRa :	GNNTNGGATGAGAGTGATTGGAGTGATGTTGATTGCTTAGAAGTGTAAACCATTGGT	:	540			
	*	500	*	520	*	540
TrVRa :	TGGAGTTATGGNGTGTCAAGACTTTGGCTGAGAAAGCAGTGCTGAATTGGTCNACAA	:	600			
	*	560	*	580	*	600
TrVRa :	AATGGGATTGATGTTGTTACTTGATTCTCCTTTATTGTTGGAGGTTTGTGTCCCC	:	660			
	*	620	*	640	*	660
TrVRa :	AAGCTTCCTGATTCTGTTGAGAAAGCTCTGTTGGTACTAGGCACAAAGGAACAAATT	:	720			
	*	680	*	700	*	720
TrVRa :	GGTATTATAAGTTCCACATGGTACATGTAGATGATGTGGCTAGAGCACATATCTATCTA	:	780			
	*	740	*	760	*	780
TrVRa :	CTTGAGAATCCTGTTCCAGGAGGTAGATATAATTGTTCACCAATTCTTGTATCTATTGAA	:	840			
	*	800	*	820	*	840
TrVRa :	GAAATGTCACAGCTCTCAGCAAATATCCAGAAATATCAAATACTATCAGTAGATGAG	:	900			
	*	860	*	880	*	900
TrVRa :	TTGAAGGAAATTAAAGGGCAAGATTGCCAGATTGAACTCGAAGAAGCTCGTGACGCT	:	960			
	*	920	*	940	*	960
TrVRa :	GGTTTGAGTTAAGTATAGTGTGATGATGTTGCGATGCGATTCAATGCTGCAAG	:	1020			
	*	980	*	1000	*	1020
TrVRa :	GAAAAAGGCTATCTAAGCATGTATTGAAAATTCCATGAAGTTGAGAAAACAATAATG	:	1080			
	*	1040	*	1060	*	1080
TrVRa :	TCGCCTAAATCAATGATGGCTAATGAGATGTACAAGTTATGCATTAAGTTATTGAT	:	1140			
	*	1100	*	1120	*	1140
TrVRa :	CAATCAAATAATGAAATAATCTGTTCATTTTCCGAAAAAAAAAA	:	1185			
	*	1160	*	1180		

FIGURE 98

167/271

* 20 * 40 * 60
TrVRa : MAEGKGRVCVTGGTGFLGSWIIKSLLENGYSVNTTIRADPERKRDVSFLTNPAGSERLH : 60

* 80 * 100 * 120
TrVRa : FFNADLDDPESFNEAIEGCVGIFHTASPIDFAVSEPEEIVTKRTVDGALGILKACVNSKT : 120

* 140 * 160 * 180
TrVRa : VKRFIYTSXGSAVFNGKNKDXXDESDWSDV DLLRSVKPFGWSYXFKTLAEKAVLEFGX : 180

* 200 * 220 * 240
TrVRa : QNGIDVVTLILPFTIVGGFVCPKLPDSVEKALVLVLGKKEQIGIIISFHMVHVDDVARAHY : 240

* 260 * 280 * 300
TrVRa : LLENPVPGGRYNCSPLLSPFFVSIEEMSQQLSAKYPEYQILSVDELKEIKGARLPDLNSKKLVD : 300

* 320
TrVRa : AGFEFKYSVDDMDDAIQCCKEKGYL : 326

FIGURE 99

168/271

	* 20 * 40 * 60		
TrVRa1 :	GTAGTTGAGAAAAAA NACNAATAAAGTAAACNCNTATNTAGAAAGAGAGTCAAAATG	:	60
TrVRa2 :	--- AGAGTTGAGAAAAAA NNCCAATAAAGTAAACNCNTATNTAGAAAGAGAGTNAAAATG	:	57
TrVRa3 :	-----	:	-
TrVRa4 :	-----	:	-
TrVRa5 :	-----	:	-
TrVRa6 :	-----	:	-
	* 80 * 100 * 120		
TrVRa1 :	GCTGAAGGAAAAGGAAGGGTTGTGTTACTGGAGGAACAGGTTTCTTGGTTCATGGATC	:	120
TrVRa2 :	GCTGAAGGAAAAGGAAGGGTTGTGTTACTGGAGGAACAGGTTTCTTGGTTCATGGATC	:	117
TrVRa3 :	-----	:	-
TrVRa4 :	-----	:	-
TrVRa5 :	-----	:	-
TrVRa6 :	-----	:	-
	* 140 * 160 * 180		
TrVRa1 :	ATCAAGAGTCTTCTGAAAATGGATACTCTGTTAATACCACTATTAGAGCTGATCCAGAA	:	180
TrVRa2 :	ATCAAGAGTCTTCTGAAAATGGATACTCTGTTAATACCACTATTAGAGCTGATCCAGAA	:	177
TrVRa3 :	-----	:	-
TrVRa4 :	-----	:	-
TrVRa5 :	-----	:	-
TrVRa6 :	-----	:	-
	* 200 * 220 * 240		
TrVRa1 :	CGTAAGAGGGATGTAAGCTCCTAACAAATCTACCCGGCGCATCCGAAAGGCTACATTTC	:	240
TrVRa2 :	CGTAAGAGGGATGTAAGCTCCTAACAAATCTACCCGGCGCATCCGAAAGGCTACATTTC	:	237
TrVRa3 :	-----	:	-
TrVRa4 :	-----	:	-
TrVRa5 :	-----	:	-
TrVRa6 :	-----	:	-
	* 260 * 280 * 300		
TrVRa1 :	TTCAACGCCGATCTAGACGACCCAGAGAGTTCAACGAAGCAATTGAAGGTTGTGTCGGG	:	300
TrVRa2 :	TTCAACGCCGATCTAGACGACCCAGAGAGTTCAACGAAGCAATTGAAGGTTGTGTCGGG	:	297
TrVRa3 :	-----	:	-
TrVRa4 :	-----	:	-
TrVRa5 :	-----	:	-
TrVRa6 :	-----	:	-
	* 320 * 340 * 360		
TrVRa1 :	ATATTCCACACCGCTTCACCAATCGATTTCGCCGTGAGTGAGGCCAGAAGAAAATAGTGACA	:	360
TrVRa2 :	ATATTCCACACCGCTTCACCAATCGATTTCGCCGTGAGTGAGGCCAGAAGAAAATAGTGACA	:	357
TrVRa3 :	-----	:	-
TrVRa4 :	-----	:	-
TrVRa5 :	-----	:	-
TrVRa6 :	-----	:	-
	* 380 * 400 * 420		
TrVRa1 :	AAAAGAACAGTGGATGGAGCATTAGGAATTAAAAGCATGTGTGAATTCAAAGACAGTG	:	420
TrVRa2 :	AAAAGAACAGTGGATGGAGCATTAGGAATTAAAAGCATGTGTGAATTCAAAGACAGTG	:	417
TrVRa3 :	-----	:	-
TrVRa4 :	-----	:	-
TrVRa5 :	-----	:	-
TrVRa6 :	-----	:	-

FIGURE 100

169/271

	* 440 *	460	*	480	
TrVRa1 :	AAGAGATTATTTACACTCAAGNGGTTCTGCTGTTCAATTCAATG	NAAAANCAAAGAT			: 480
TrVRa2 :	AAGAGATTATTTACACTCAAGTG	GGTTCTGCTGTTCAATTCAATG	AAAAACAAAGAT		: 477
TrVRa3 :	-----				: -
TrVRa4 :	-----				: -
TrVRa5 :	-----				: -
TrVRa6 :	-----				: -
	* 500 *	520	*	540	
TrVRa1 :	GNNTNNNATGANA				: 493
TrVRa2 :	GTTTGGATGAGAGTGATTGGAGTGATGTTGCTTAGAAGTGTAAACCATTGGT				: 537
TrVRa3 :	-----				: -
TrVRa4 :	-----				: -
TrVRa5 :	-----				: -
TrVRa6 :	-----				: -
	* 560 *	580	*	600	
TrVRa1 :	-----				: -
TrVRa2 :	TGGAGTTATGGT	TTCAAGACTTGGCTGAGAAAGCAGTGCTGAATTGGTC	NACAA		: 597
TrVRa3 :	-----	GNGTGT	AGACTTTGCTGAGAAAGCAGTGCTGAATTGGTC	NACAA	: 50
TrVRa4 :	-----	AGAC	TTNGCTGAGAAAGC	GTGCTTGAAATTGGTCNACAA	: 41
TrVRa5 :	-----	TTGAATTGGT	NACAA		: 19
TrVRa6 :	-----	TTGAATTGGT	NACAA		: 19
	* 620 *	640	*	660	
TrVRa1 :	-----				: -
TrVRa2 :	AATG				: 601
TrVRa3 :	AATGGGATTGATGTTGTTACTTGTGATTCTCCTTTATTGTTGGAGGTTTGTTGTCCC				: 110
TrVRa4 :	AATGGGATTGATGTTGTTACTTGTGATTCTCCTTTATTGTTGGAGGTTTGTTGTCCC				: 101
TrVRa5 :	AATGGGATTGATGTTGTTACTTGTGATTCTCCTTTATTGTTGGAGGTTTGTTGTCCC				: 79
TrVRa6 :	AATGGGATTGATGTTGTTACTTGTGATTCTCCTTTATTGTTGGAGGTTTGTTGTCCC				: 79
	* 680 *	700	*	720	
TrVRa1 :	-----				: -
TrVRa2 :	-----				: -
TrVRa3 :	AAGCTCCTGATTCTGTTGAGAAAGCTTGTGTTGGTACTAGGAAAAGAACAAATT				: 170
TrVRa4 :	AAGCTCCTGATTCTGTTGAGAAAGCTTGTGTTGGTACTAGGAAAAGAACAAATT				: 161
TrVRa5 :	AAGCTCCTGATTCTGTTGAGAAAGCTTGTGTTGGTACTAGGAAAAGAACAAATT				: 139
TrVRa6 :	AAGCTCCTGATTCTGTTGAGAAAGCTTGTGTTGGTACTAGGAAAAGAACAAATT				: 139
	* 740 *	760	*	780	
TrVRa1 :	-----				: -
TrVRa2 :	-----				: -
TrVRa3 :	GGTATTATAAGTTCCACATGGTACATGTGGATGATGTGGCTAGAGCACATATCTATCTA				: 230
TrVRa4 :	GGTATTATAAGTTCCACATGGTACATGTGGATGATGTGGCTAGAGCACATATCTATCTA				: 221
TrVRa5 :	GGTATTATAAGTTCCACATGGTACATGTAGATGATGTGGCTAGAGCACATATCTATCTA				: 199
TrVRa6 :	GGTATTATAAGTTCCACATGGTACATGTAGATGATGTGGCTAGAGCACATATCTATCTA				: 199
	* 800 *	820	*	840	
TrVRa1 :	-----				: -
TrVRa2 :	-----				: -
TrVRa3 :	CTTGAGAATCCTGTTCCAGGGAGGTAGATATAATTGTTACCCATTCTTGTATCTATTGAA				: 290
TrVRa4 :	CTTGAGAATCCTGTTCCAGGGAGGTAGATATAATTGTTACCCATTCTTGTATCTATTGAA				: 281
TrVRa5 :	CTTGAGAATCCTGTTCCAGGGAGGTAGATATAATTGTTACCCATTCTTGTATCTATTGAA				: 259
TrVRa6 :	CTTGAGAATCCTGTTCCAGGGAGGTAGATATAATTGTTACCCATTCTTGTATCTATTGAA				: 259

FIGURE 100 (cont)

170/271

	* 860 *	* 880 *	* 900 *	
TrVRa1 :	-----			:
TrVRa2 :	-----			-
TrVRa3 :	GAAATGTCACAGCTTCTCTCAGCCAAATATCCAGAATATCAAATACTATCTGTAGATGAG			:
TrVRa4 :	GAAATGTCACAGCTTCTCTCAGCCAAATATCCAGAATATCAAATACTATCTGTAGATGAG			: 350
TrVRa5 :	GAAATGTCACAGCTTCTCTCAGCCAAATATCCAGAATATCAAATACTATCACTAGTAGATGAG			: 341
TrVRa6 :	GAAATGTCACAGCTTCTCTCAGCCAAATATCCAGAATATCAAATACTATCACTAGTAGATGAG			: 319
	* 920 *	* 940 *	* 960 *	
TrVRa1 :	-----			:
TrVRa2 :	-----			-
TrVRa3 :	TTGAAGGAAATTAAAGGGGCAAGTTGCCAGATTGAACTCGAAGAAAGCTCGTGGACGCT			:
TrVRa4 :	TTGAAGGAAATTAAAGGGGCAAGTTGCCAGATTGAACTCGAAGAAAGCTCGTGGACGCT			: 410
TrVRa5 :	TTGAAGGAAATTAAAGGGCAAGATTGCCAGATTGAACTCGAAGAAAGCTCGTGGACGCT			: 401
TrVRa6 :	TTGAAGGAAATTAAAGGGCAAGATTGCCAGATTGAACTCGAAGAAAGCTCGTGGACGCT			: 379
	* 980 *	* 1000 *	* 1020 *	
TrVRa1 :	-----			:
TrVRa2 :	-----			-
TrVRa3 :	GGTTTGAGTTTAAGTATACTGTCGATGATATGTCGATGATGCGATTCAATGCTGCAAG			:
TrVRa4 :	GGTTTGAGTTTAAGTATACTGTCGATGATATGTCGATGATGCGATTCAATGCTGCAAG			: 470
TrVRa5 :	GGTTTGAGTTTAAGTATACTGTCGATGATATGTCGATGATGCGATTCAATGCTGCAAG			: 461
TrVRa6 :	GGTTTGAGTTTAAGTATACTGTCGATGATATGTCGATGATGCGATTCAATGCTGCAAG			: 439
	* 1040 *	* 1060 *	* 1080 *	
TrVRa1 :	-----			:
TrVRa2 :	-----			-
TrVRa3 :	GAAAAAGGCTATCTCTAACGATGTTGAAAATTCCATGAAGTTGAGAAAACAATAATG			:
TrVRa4 :	GAAAAAGGCTATCTCTAACGATGTTGAAAATTCCATGAAGTTGAGAAAACAATAATG			: 530
TrVRa5 :	GAAAAAGGCTATCTCTAACGATGTTGAAAATTCCATGAAGTTGAGAAAACAATAATG			: 521
TrVRa6 :	GAAAAAGGCTATCTCTAACGATGTTGAAAATTCCATGAAGTTGAGAAAACAATAATG			: 499
	* 1100 *	* 1120 *	* 1140 *	
TrVRa1 :	-----			:
TrVRa2 :	-----			-
TrVRa3 :	TGCCTAAAATCAATGATGGCTAATGAGATGTACAAGTTATGCATTAAGTTATTGTGAT			:
TrVRa4 :	TGCCTAAAATCAATGATGGCTAATGAGATGTACAAGTTATGCATTAAGTTATTGTGAT			: 590
TrVRa5 :	TGCCTAAAATCAATGATGGCTAATGAGATGTACAAGTTATGCATTAAGTTATTGTGAT			: 581
TrVRa6 :	TGCCTAAAATCAATGATGGCTAATGAGATGTACAAGTTATGCATTAAGTTATTGTGAT			: 559
	* 1160 *	* 1180 *		
TrVRa1 :	-----			-
TrVRa2 :	-----			-
TrVRa3 :	CAATCAAATAATGAAATAATCTG			:
TrVRa4 :	CAATCAAATAATGAAATAATC			: 613
TrVRa5 :	CAATCAAATAATGAAN			: 602
TrVRa6 :	CAATCAAATAATGAAATAATCTGTTCATTTTCCGAAAAAAAAAA			: 575
				: 604

FIGURE 100 (cont)

171/271

```

*      20      *      40      *      60
LpDFRa : GTSYWTTCGAGTTGAGAGAATGGCTTCCAGGGCAAGGTGTGTTACTGGGGCCTCTGG : 60

*      80      *      100      *      120
LpDFRa : CTTTGTGCTTCTGGCTTGTCAAAAGACTACTCGAGTCGGTTATAATGTTCTAGGGAC : 120

*      140      *      160      *      180
LpDFRa : AGTCAGAGACCCAGGCAATCAGAAGAAGGTAGCACACCTCTGGAACCTAGCAGGGCCAA : 180

*      200      *      220      *      240
LpDFRa : GGAAAGGTTGGAGCTTGTCAAAGCTGACCTCTGGAAGAAGGGAGCTTCGATGATGCTGT : 240

*      260      *      280      *      300
LpDFRa : GATGGCCTGTGAGGGTGTCTCCACACTGCATCACCTATCATCACCAAATCTGATAACCAA : 300

*      320      *      340      *      360
LpDFRa : GGAAGAAAATGCTGATTCTGCAATTAACGGCACTCTAACACGTGCTGAGATCGTGCAAGAA : 360

*      380      *      400      *      420
LpDFRa : GAATCCTTTCTCAAAAGGGTTGTTCTCACGTCATCATCGTCAACCGTGAGGCTGAGGGAA : 420

*      440      *      460      *      480
LpDFRa : TGAAGCTGAATTCCCACCCAACGTGTTGCTGGATGAAACATCATGGAGCTCCGTGGAGTT : 480

*      500      *      520      *      540
LpDFRa : CTGTGAAAGTATCCAGGTATGGTATGGTATGGTGTGCGGAAGATCCTTGCTGAGAAATCAGCTTG : 540

*      560      *      580      *      600
LpDFRa : GGAGTCGCCAAGGAGAACACATCGACCTAGTGGCTGTTCTCCAACGTTCGTATTGG : 600

*      620      *      640      *      660
LpDFRa : ACCTAATCTCTCGTCTGAATTAGGACCCACTGTTTAGATGTCCTGGTTATTAAAGG : 660

*      680      *
LpDFRa : AGAGACAGAGAAGTCACCAGTTKGGAGGATG : 695

```

FIGURE 101

172/271

* 20 * 40 * 60
LpDFRa : VFSSLREWLPQCVTGASGFVASWLVKRLLESGYNVLGTVRDPGNQKKVAHLWNLAGAK : 60

* 80 * 100 * 120
LpDFRa : ERLELVKADLLEEGSFDDAVMACEGVFHTASPIITKSDTKEEMLDSAINGTLNVLRSCKK : 120

* 140 * 160 * 180
LpDFRa : NPFLKRVVLTSSSSTVRLRDEAEFPNVLLDETWSSSVEFCESIQVWYGVAKILAEKSAW : 180

* 200 * 220 *
LpDFRa : EFAKENNIDLVAVLPTFVIGPNLSSELGPTVLDVLGLFKGETEKFTMFGKD : 231

FIGURE 102

173/271

	*	20	*	40	*	60	
LpDFRa1 :	-----	GTTT GAGAGA ATGG CTT CNAG GG CAGG TG GT TT ACTGG GGC CT CTGG C					: 50
LpDFRa2 :	-----	TCGAG TTT GAGAGA ATGG CTT CNAG GG CAGG TG GT TT ACTGG GGC CT CTGG C					: 54
LpDFRa3 :	-----	GTTT GAGAGA ATGG CTT CNAG GG CAGG TG GT TT ACTGG GGC CT CTGG C					: 41
LpDFRa4 :	--	GCAT TCGAG TTT GAGAGA ATGG CTT CNAG GG CAGG TG GT TT ACTGG GGC CT CTGG C					: 58
LpDFRa5 :	GTCTT	CGAG TTT GAGAGA ATGG CTT CNAG GG CAGG TG GT TT ACTGG GGC CT CTGG C					: 60
	*	80	*	100	*	120	
LpDFRa1 :	TTT GTT GCT CTT GGCT TG CAAA AGACTACTCGAGTCCGGTTATAATGTTCTAGGGACA						: 110
LpDFRa2 :	TTT GTT GCT CTT GGCT TG CAAA AGACTACTCGAGTCCGGTTATAATGTTCTAGGGACA						: 114
LpDFRa3 :	TTT GTT GCT CTT GGCT TG CAAA AGACTACTCGAGTCCGGTTATAATGTTCTAGGGACA						: 100
LpDFRa4 :	TTT GTT GCT CTT GGCT TG CAAA AGACTACTCGAGTCCGGTTATAATGTTCTAGGGACA						: 118
LpDFRa5 :	TTT GTT GCT CTT GGCT TG CAAA AGACTACTCGAGTCCGGTTATAATGTTCTAGGGACA						: 120
	*	140	*	160	*	180	
LpDFRa1 :	GTCAGAGACCCAGGCAATCAGAAGAAGGTAGCACACCTCTGGAACTTAGCAGGGGCCAAG						: 170
LpDFRa2 :	GTCAGAGACCCAGGCAATCAGAAGAAGGTAGCACACCTCTGGAACTTAGCAGGGGCCAAG						: 174
LpDFRa3 :	GTCAGAGACCCAGGCAATCAGAAGAAGGTAGCACACCTCTGGAACTTAGCAGGGGCCAAG						: 160
LpDFRa4 :	GTCAGAGACCCAGGCAATCAGAAGAAGGTAGCACACCTCTGGAACTTAGCAGGGGCCAAG						: 178
LpDFRa5 :	GTCAGAGACCCAGGCAATCAGAAGAAGGTAGCACACCTCTGGAACTTAGCAGGGGCCAAG						: 180
	*	200	*	220	*	240	
LpDFRa1 :	GAAAGGTTGGAGCTTGTCAAAGCTGACCTCTGGAAAGAAGGGAGCTCGATGATGCTGTG						: 230
LpDFRa2 :	GAAAGGTTGGAGCTTGTCAAAGCTGACCTCTGGAAAGAAGGGAGCTCGATGATGCTGTG						: 234
LpDFRa3 :	GAAAGGTTGGAGCTTGTCAAAGCTGACCTCTGGAAAGAAGGGAGCTCGATGATGCTGTG						: 220
LpDFRa4 :	GAAAGGTTGGAGCTTGTCAGCTGACCTCTGGAAAGAAGGGAGCTCGATGATGCTGTG						: 238
LpDFRa5 :	GAAAGGTTGGAGCTTGTCAGCTGACCTCTGGAAAGAAGGGAGCTCGATGATGCTGTG						: 240
	*	260	*	280	*	300	
LpDFRa1 :	ATGGCCTGTGAGGGTGTCTCCACACTGCATCACCTATCATCACC AAATCTGATACCAAG						: 290
LpDFRa2 :	ATGGCCTGTGAGGGTGTCTCCACACTGCATCACCTATCATCACC AAATCTGATACCAAG						: 294
LpDFRa3 :	ATGGCCTGTGAGGGTGTCTCCACACTGCATCACCTATCATCACC AAATCTGATACCAAG						: 280
LpDFRa4 :	ATGGCCTGTGAGGGTGTCTCCACACTGCATCACCTATCATCACC AAATCTGATACCAAG						: 298
LpDFRa5 :	ATGGCCTGTGAGGGTGTCTCCACACTGCATCACCTATCATCACC AAATCTGATACCAAG						: 300
	*	320	*	340	*	360	
LpDFRa1 :	GAAGAAATGCTTGATTCTGCAATTAAACGGC ACTCTAACAGTGCTGAGATCGTCAAGAAG						: 350
LpDFRa2 :	GAAGAAATGCTTGATTCTGCAATTAAACGGC ACTCTAACAGTGCTGAGATCGTCAAGAAG						: 354
LpDFRa3 :	GAAGAAATGCTTGATTCTGCAATTAAACGGC ACTCTAACAGNGCTGAGATCGNGCAAGAAG						: 340
LpDFRa4 :	GAAGAAATGCTTGATTCTGCAATTAAACGGC ACTCTAACAGTGCTGAGATCGTCAAGAAG						: 358
LpDFRa5 :	GAAGAAATGCTTGATTCTGCAATTAAACGGC NCTCTAACAGTGCTGNNA TCGGGTAAAGAAG						: 360
	*	380	*	400	*	420	
LpDFRa1 :	AATCCTTTCTCAAAAGGGTGTCTCACGT CATCATCGTCAACCGTGAGGTGAGGGAT						: 410
LpDFRa2 :	AATCCTTTCTCAAAAGGGTGTCTCACGT CATCATCGTCAACCGTGAGGTGAGGGAT						: 414
LpDFRa3 :	AATNCTTTCTNAAAAGGGNTGNTCTCACGT CATCATCGTCAACCGTGAGGTGAGGGAT						: 400
LpDFRa4 :	AATCCTTTCTCAAAAGGGTGTCTCACGT CATCATCGTCAACCGTGAGGTGAGGGAT						: 418
LpDFRa5 :	AAAAA-----						: 365
	*	440	*	460	*	480	
LpDFRa1 :	GAAGCTGAATTCCCACCAACGTGTTGCTGGATGAAACATCATGGAGCTCCGTGGAGTT						: 470
LpDFRa2 :	GAAGCTGAATTCCCACCAACGTGTTGCTGGATGAAACATCATGGAGCTCCGTGGAGTT						: 474
LpDFRa3 :	GAANCTGANTCCCACCAACGNM-----						: 425
LpDFRa4 :	GAAGCTGAATTCCCACCAACGTGTTGCTGGATGAAACATCATGGAGCTCCGTGGAGTT						: 478
LpDFRa5 :	-----						: -

FIGURE 103

174/271

	* 500	* 520	* 540	
LpDFRa1 :	TGTGAAAGTATCCAGGTATGGTATGGTGTGCGAAGATCCTTGCTGAGAAATCAGCTTGG			: 530
LpDFRa2 :	TGTGAAAGTATCCAGGTATGGTATGGTGTGCGAAGATCCTTGCTGAGAAATCAGCTTGG			: 534
LpDFRa3 :	-----			: -
LpDFRa4 :	TGTGAAAGTATCCAGGTATGGTACGGTGTGCGAAAGATCCTTGCCGAGAAATCAGCCTGG			: 538
LpDFRa5 :	-----			: -
	* 560	* 580	* 600	
LpDFRa1 :	GAGTTGCCAAGGAGAACACATCGACCTAGTGGCTGTTCTCAACGTTCGTGATTGGA			: 590
LpDFRa2 :	GAGTTGCCAAGGAGAACACATCGACCTAGTGGCTGTTCTCAACGTTCGTGATTGGA			: 594
LpDFRa3 :	-----			: -
LpDFRa4 :	GAGTTGCCAAGGAGAACACATCGACCTAGTGGCTGTTCTCAACGTTCGTGATTGGA			: 598
LpDFRa5 :	-----			: -
	* 620	* 640	* 660	
LpDFRa1 :	CCTAATCTCTCGTCTGAATTAGGACCCACTGTTTAGATGTCCTTGCGTTATTAAAGGA			: 650
LpDFRa2 :	CCTAATCTCTCGTCTGAATTAGGACCCACTGTTTAGATGTCCTTGCGTTATTAAANGGA			: 654
LpDFRa3 :	-----			: -
LpDFRa4 :	CCTAATCTCTCGTCTGAATTAGGACCCACTGTTTAGATGTCCTTGCGTTATTAAAGGA			: 658
LpDFRa5 :	-----			: -
	* 680	*		
LpDFRa1 :	GAGACAGAGAACGTTCAC-----			: 667
LpDFRa2 :	GAGACAGAGAACGTTCACCATGTTGGAAAGGATG			: 688
LpDFRa3 :	-----			: -
LpDFRa4 :	GAGACAGAGAACGTTCACCATGTTGGGAAGGAN-			: 691
LpDFRa5 :	-----			: -

FIGURE 103 (cont)

175/271

```

*      20      *      40      *      60
LpDFRb : GTCCTCGCCTACGAGCGCCCCGACGCCGCGGCGCTACCTCTGCATGGGGCCGTGCTG : 60

*      80      *      100     *      120
LpDFRb : CACCGCGCGCACTCCTAAAGCTTCTAAGGACCTTCCCGCAGTACTCCTCACCGCC : 120

*      140     *      160     *      180
LpDFRb : AAGTGCGAAGACGACGGCAAGCCCATGGCGAAGCCGTACAAGTTCTCCNACCAGAGGCTC : 180

*      200     *      220     *      240
LpDFRb : AGGGACCTGGGATTAAAATTCACTCCGCTGGCGAAAGTTGTACGAGACCGTGACGTGC : 240

*      260     *      280     *      300
LpDFRb : CTGCAAAAAATGGCACCTGCCTCTGCCCGCTCCCATGGCGCCAAGCGTGCATACTA : 300

*      320     *      340     *      360
LpDFRb : TAATACTACAAAGACACGGCCGGATCGACAAGCCAAGAACAGAGGATTCTCCCGAGGT : 360

*      380     *      400     *      420
LpDFRb : TCACCATGGAATTGTGTATTCACAAAGTTGAATTCTTATTTTTATTATGAAGAAA : 420

*      440     *      460     *      480
LpDFRb : TACGGAAAACCAACTGTATACCAGAGGCAAGTGTAAACATGTAAATAGTCGTGTAAAT : 480

*      500     *      520
LpDFRb : CTTGTTCAAGAATGAATGATAAAGTATTTTGCAAAAAAAAAA : 524

```

FIGURE 104

176/271

* 20 * 40 * 60
LpDFRb : VLAYERPDARGRYLCIGAVLHRAHFLKLLKDLFPQYSFTA
KCEDDGKPMAKPYKFSXQRL : 60

* 80 * 100
LpDFRb : RDLGLKFTPLAESLYETVTCLQKNGHLPLPAPMAPKRAYL : 100

FIGURE 105

177/271

	* 20 * 40 * 60	
LpDFRb1 :	GTCCTCGCCTACGAGCGCCCGACGCCCGGCCGCTACCTCTGCATGGGGCCGTGCTG	: 60
LpDFRb2 :	-----	:
LpDFRb3 :	-----	:
	* 80 * 100 * 120	
LpDFRb1 :	CACCGCGCGCACTTCTAAAGCTTCTCAAGGACCTTCCCAGTACTCCTTCACCGCC	: 120
LpDFRb2 :	-----	:
LpDFRb3 :	-----	:
	* 140 * 160 * 180	
LpDFRb1 :	AAGTGCAGAACGACGGCAAGCCCATGGCGAAGCCGTACAAGTTCTCC	: 180
LpDFRb2 :	-----	:
LpDFRb3 :	-----	:
	* 200 * 220 * 240	
LpDFRb1 :	AGGGACCTGGGATTAAAAATTCACTCCGCTGGCGGAAAGTTGTACGAGACCGTGACGTG	: 240
LpDFRb2 :	AGGGACCTGGGATTAAAAATTCACTCCGCTGGCGGAAAGTTGTACGAGACCGTGACGTG	: 90
LpDFRb3 :	AGGGACCTGGGATTAAAAATTCACTCCGCTGGCGGAAAGTTGTACGAGACCGTGACGTG	: 79
	* 260 * 280 * 300	
LpDFRb1 :	CTGCAAAAAAATGGCCACCTGCCTCTGCCGCTCCC	: 300
LpDFRb2 :	CTGCAAAAAAATGGCCACCTGCCTCTGCCGCTCCC	: 150
LpDFRb3 :	CTGCAAAAAAATGGCCACCTGCCTCTGCCGCTCCC	: 139
	* 320 * 340 * 360	
LpDFRb1 :	TAATACTACAAAGACACGCCGGGATCGACAAGCCAAGAACAGAGGATTCTCCGAGGT	: 360
LpDFRb2 :	TAATACTACAAAGACACGCCGGGATCGACAAGCCAAGAACAGAGGATTCTCCGAGGT	: 210
LpDFRb3 :	TAATACTACAAAGACACGCCGGGATCGACAAGCCAAGAACAGAGGATTCTCCGAGGT	: 199
	* 380 * 400 * 420	
LpDFRb1 :	TCACCATGGAATTGTGTATTTCA	: 420
LpDFRb2 :	TCACCATGGAATTGTGTATTTCA	: 270
LpDFRb3 :	TCACCATGGAATTGTGTATTTCA	: 259
	* 440 * 460 * 480	
LpDFRb1 :	TACGGAAACCAAATCTGTATACCAAGAGGCAAGTGTAAACATGTAAATAGTCGTGTAAAT	: 480
LpDFRb2 :	TACGGAAACCAAATCTGTATACCAAGAGGCAAGTGTAAACATGTAAATAGTCGTGTAAAT	: 330
LpDFRb3 :	TACGGAAACCAAATCTGTATACCAAGAGGCAAGTGTAAACATGTAAATAGTCGTGTAAAT	: 319
	* 500 * 520	
LpDFRb1 :	CTTGTCAAGAATGAAATGATAAAGTATTTTTGCAAAA	: 524
LpDFRb2 :	CTTGTCAAGAATGAAATGATAAAGTATTTTTGCAAAAAA	: 374
LpDFRb3 :	CTTGTCAAGAATGAAATGATAAAGTATTTTTGCAAAAAA	: 363

FIGURE 106

178/271

LpF3Ha : TCTCNAGACACACTGTGTAACCACGGTAGCGAGTGGCAAGACTAGCAGAAAGTACGGACA : 60
 * 20 * 40 * 60
 LpF3Ha : TCAGCTAACCATTCCTCAACTAGAATAAGCATGGCTCCGGCGATGTCCAACCCTCTCCTC : 120
 * 80 * 100 * 120
 LpF3Ha : AGTGATCGGGTGGCACGCTCCAAGAAAGTCCCCTAGGCCACGTTAGAGCGGTGGAGAC : 180
 * 140 * 160 * 180
 LpF3Ha : CGCCCAGACCTCGCCAATGTCGACCACGAGTCCGGCGCGGGCATTCGCTCATGACCTG : 240
 * 200 * 220 * 240
 LpF3Ha : AAGCAGCTCGAAGGTCCAGGGCGCCGCAGGGTCGAGGCCATCGCTCCGCGTGCAG : 300
 * 260 * 280 * 300
 LpF3Ha : AACGATGGGTTTTCATGGTGACGAATCATGGCATCCCAGAGGCCATGGCTCCGCGTGCAG : 360
 * 320 * 340 * 360
 LpF3Ha : CTGAGCGTGGCGAGGGAGTTCTTCCACCTGCCGGAGTCGGAGCGGCTCAAGTGCTACTCC : 420
 * 380 * 400 * 420
 LpF3Ha : GACGACCCCAAGAAGGCGGTCCGGCTGTCGACGAGCTCAACGTGCGCACGGAGAAGGTG : 480
 * 440 * 460 * 480
 LpF3Ha : AGCAACTGGCGCGACTTCCTCCGGCTGCATTGCTACCCCTTTGAGAGCTTCGTCGACCAG : 540
 * 500 * 520 * 540
 LpF3Ha : TGGCCGTCGAACCCGCCCTTCAGGCAAGTCGTCGGCACCTACTGACGGAAGCGAGA : 600
 * 560 * 580 * 600
 LpF3Ha : GCGCTGGCGCTGAGGCTCTGGAGGCCATCGGAGAGCTAGGGCTGGAGAGAGGCCAC : 660
 * 620 * 640 * 660
 LpF3Ha : ATGGTGAAGGCCATGGGGCGGCACGCGCAGCACATGGCGGTGAACCTACTACCCGCCGTG : 720
 * 680 * 700 * 720
 LpF3Ha : CCGCAGCCGGAGCTCACCTACGGTCTGCCAGGGCACACGGACCCCAACGCCCTACCATC : 780
 * 740 * 760 * 780
 LpF3Ha : CTCCTCATGGATCCCCACGTCTCCGGCTCCAGGTCTCAGGGACGGCGCCAAAGTGGATC : 840
 * 800 * 820 * 840
 LpF3Ha : GCCGTCCACCCACGCCCTGGTCATCAACCTAGGCGACCAGCTACAGGCGCTG : 900
 * 860 * 880 * 900
 LpF3Ha : AGCAACGGCGCGTACAAGAGCGTGTGGCACCGGGCAGTGGTAACGCGGAGCAGGAGCGT : 960
 * 920 * 940 * 960
 LpF3Ha : CTGTCGGTGGCATTTCTGTGCCCGTGCACAGCGCGGTTATCTGCCCGCGCCGAGG : 1020
 * 980 * 1000 * 1020
 LpF3Ha : CTCGTCGGCGACGGGGAGGACCCCGTCTACCGGAGCTACACCTACGACGAGTACTACAAG : 1080
 * 1040 * 1060 * 1080
 LpF3Ha : AGGTTTGGAGCAGGAACCTGGATCAGGAGCACTGCCTCGAGCTTCAGGAGTCAGCAC : 1140
 * 1100 * 1120 * 1140

FIGURE 107

179/271

LpF3Ha : TGATGCTTGAACCTTGAGTTACTAGCTAGCTCTCCTAACAGTGCAAATCCATGGCCCAA :1200
* 1160 * 1180 * 1200
LpF3Ha : GAGGGCCCCGATTGCATGGTTACTTATGTTGTTGAACTGGTATTGCTTAAGTGCCTAAT :1260
* 1220 * 1240 * 1260
LpF3Ha : AACATTGCTACATTCTACTNCTATCTGTCCGTTAAAATTATAAGATGGCCTAACCTT :1320
* 1280 * 1300 * 1320
LpF3Ha : TTCTTAATTGTATGCATNCTGAACATATTTAAGTGTGTGTTCAGACAGTTAGTCTGC :1380
* 1340 * 1360 * 1380
LpF3Ha : A :1381

FIGURE 107 (cont)

180/271

LpF3Ha : MSNPLLSDRVARSKKVPSSHVRAVGDRPDLANVDHESGAGIPLIDLKQLEGPGRVVVEA : 60
* 20 * 40 * 60
LpF3Ha : IGSACENDGFFMVTNHGIPEAVVEGMLSVAREFFHLPESERLKCYSDDPKKAVRLSTSFN : 120
* 80 * 100 * 120
LpF3Ha : VRTEKVSNWRDFLRLHCYPLESFVDQWPSNPPAFRQVVGTYSTEARALALRLAEISESL : 180
* 140 * 160 * 180
LpF3Ha : GLERGHMVKAMGRHAQHMAVNYYPPCPQPELTYGLPGHTDPNALTILLMDPHVSGLQVLR : 240
* 200 * 220 * 240
LpF3Ha : DGAKWIAVHPRPNALVINLGQLQALSNGAYKSVWHRAVVAEQLSVASFLCPCNSAV : 300
* 260 * 280 * 300
LpF3Ha : ICPAPRLVGDGEDPVYRSYTDEYYKRFWSRNLDQEHCLELFRSQH : 346
* 320 * 340

FIGURE 108

181/271

LpF3Ha1	:	TCTCNAGACACACTGTGTAACCACGGTAGCGAGTGGCAAGACTAGCAGAAAGTACGGACA	*	20	*	40	*	60	:	60
LpF3Ha2	:	--TCAGACACACTGTGTAACCONCGTAGCGAGTGGCAAGACTAGCAGAAAGTACGGACA							:	58
LpF3Ha3	:	-----							:	-
LpF3Ha1	:	TCAGCTAACCATTCCTCAACTAGAATAAGCATGGCTCCGGCGATGTCCAACCCCTCTCCTC	*	80	*	100	*	120	:	120
LpF3Ha2	:	TCAGCTAACCATTCCTCAACTAGAATAAGCATGGCTCCGGCGATGTCCAACCCCTCTCCTC							:	118
LpF3Ha3	:	-----							:	-
LpF3Ha1	:	AGTGATCGGGTGGCACGCTCCAAGAAAGTCCCCTAGCCACGTTAGAGCGGTGGGAGAC	*	140	*	160	*	180	:	180
LpF3Ha2	:	AGTGATCGGGTGGCACGCTCCAAGAAAGTCCCCTAGCCACGTTAGAGCGGTGGGAGAC							:	178
LpF3Ha3	:	-----							:	-
LpF3Ha1	:	CGCCCAGACCTCGCCAATGTCGACCACGAGTCGCCGCAGGGCATTCCGCTCATGACCTG	*	200	*	220	*	240	:	240
LpF3Ha2	:	CGCCCAGACCTCGCCAATGTCGACCACGAGTCGCCGCAGGGCATTCCGCTCATGACCTG							:	238
LpF3Ha3	:	-----							:	-
LpF3Ha1	:	AAGCAGCTGAAGGTCCAGGGCGCCGCAGGGTCGAGGCCATCGGCTCCCGTGTGCGAG	*	260	*	280	*	300	:	300
LpF3Ha2	:	AAGCAGCTGAAGGTCCAGGGCGCCGCAGGGTCGAGGCCATCGGCTCCCGTGTGCGAG							:	298
LpF3Ha3	:	-----							:	-
LpF3Ha1	:	AACGATGGGTTTTCATGGTGACGAATCATGGCATCCCCAGAGGCGGTGCTGGAGGGGATG	*	320	*	340	*	360	:	360
LpF3Ha2	:	AACGATGGGTTTTCATGGTGACGAATCATGGCATCCCCAGAGGCGGTGCTGGAGGGGATG							:	358
LpF3Ha3	:	-----							:	-
LpF3Ha1	:	CTGAGCGTGGCAGGGAGTTCTCCACCTGCCGGAGTCGGAGCGGGCTCAAGTGCTACTCC	*	380	*	400	*	420	:	420
LpF3Ha2	:	CTGAGCGTGGCAGGGAGTTCTCCACCTGCCGGAGTCGGAGCGGGCTCAAGTGCTACTCC							:	418
LpF3Ha3	:	-----							:	-
LpF3Ha1	:	GACGACCCCCAAGAAGGCAGGTCCGGCTGTCGAGGAGCTTCAACGTGCCACGGAGAAAGGTG	*	440	*	460	*	480	:	480
LpF3Ha2	:	GACGACCCCCAAGAAGGCAGGTCCGGCTGTCGAGGAGCTTCAACGTGCCACGGAGAAAGGTG							:	478
LpF3Ha3	:	-----							:	-
LpF3Ha1	:	AGCAACTGGCGGACTTCCTCCGGCTGCAATTGCTACCCCTTGTGAGAGCTTCGTCACCAAG	*	500	*	520	*	540	:	540
LpF3Ha2	:	AGCAACTGGCGGACTTCCTCCGGCTGCAATTGCTACCCCTTGTGAGAGCTTCGTCACCAAG							:	538
LpF3Ha3	:	-----							:	-
LpF3Ha1	:	TGGCCGTCGAACCCGCCCTTCAGGCAAGTCGTCGGCACCTACTCGACGGAAGCGAGA	*	560	*	580	*	600	:	600
LpF3Ha2	:	TGGCCGTCGAACCCGCCCTTCAGGCAAGTCGTCGGCACCTACTCGACGGAAGCGAGA							:	598
LpF3Ha3	:	-----							:	12
LpF3Ha1	:	GCGCTGGCGCTGAGGCTCTGGAGGCATATCGGAGAGCCTAGGGCTGGAGAGAGGCCAC	*	620	*	640	*	660	:	660
LpF3Ha2	:	GCGCTGGCGCTGAGGCTCTGGAGGCATATCGGAGAGCCTAGGGCTGGAGAGAGGCCAC							:	658
LpF3Ha3	:	CTGCTGGCGCTGGCTCTGGCTCTGGCGATCTGGCTGGCGTGGGGCTGGAGNGAGGTAT							:	72
LpF3Ha1	:	ATGGTGAAGGCCATGGGGCGGCACGCCAGCACATGGCGGTGAACACTACTACCCGCCGTGC	*	680	*	700	*	720	:	720
LpF3Ha2	:	ATGGTGAAGGCCATGGGGCGGCACGCCAGCACATGGCGGTGAACACTACTACCCGCCGTGC							:	718
LpF3Ha3	:	GTGGAGAAGGCTGGCGACAGCAGGCCAGCACATGGCGGTGAACACTACTACCCGCCGTGC							:	132

FIGURE 109

182/271

	* 740 * 760 * 780	
LpF3Ha1 :	CCGCAGCGGAGCTCACCTACGGTCTGCCAGGGCA	: 755
LpF3Ha2 :	CCGCAGCGGAGCTCACCTACGGTCTGCCAGGGCACACGGACCCAAATGCCCTCACCATN	: 778
LpF3Ha3 :	CCCGAGCGGA CTCACCTACGGTCTGCCAAGCACACGGACCCAAACGCCCTCACCATC	: 192
	* 800 * 820 * 840	
LpF3Ha1 :	- - - - -	: -
LpF3Ha2 :	CT - - - - -	: 780
LpF3Ha3 :	CTCCTCATGGATCCCCACGTCTCCGGCCTCCAGGTCCCTCAGGGACGGCGCAAGTGGATC	: 252
	* 860 * 880 * 900	
LpF3Ha1 :	- - - - -	: -
LpF3Ha2 :	- - - - -	: -
LpF3Ha3 :	GCCGTCCACCCACGCCCTGGTCATCAACCTAGGGCACCAGCTACAGGCGCTG	: 312
	* 920 * 940 * 960	
LpF3Ha1 :	- - - - -	: -
LpF3Ha2 :	- - - - -	: -
LpF3Ha3 :	AGCAACGGCGCGTACAAGAGCGTGTGGCACCGGGCAGTGGTAACCGGAGCAGCTACAGGAGCGT	: 372
	* 980 * 1000 * 1030	
LpF3Ha1 :	- - - - -	: -
LpF3Ha2 :	- - - - -	: -
LpF3Ha3 :	CTGTCGGTGGCATTTCTGTGCCCGTGCAACAGCGCGTTATCTGCCCGCGCCGAGG	: 432
	* 1040 * 1060 * 1080	
LpF3Ha1 :	- - - - -	: -
LpF3Ha2 :	- - - - -	: -
LpF3Ha3 :	CTCGTCGGCGACGGGGAGGACCCCGTCTACCGGAGCTACACCTACGACGAGTACTACAAG	: 492
	* 1100 * 1120 * 1140	
LpF3Ha1 :	- - - - -	: -
LpF3Ha2 :	- - - - -	: -
LpF3Ha3 :	AGGTTTGGAGCAGGAACCTGGATCAGGAGCACTGCCTCGAGCTTCAGGAGTCAGCAC	: 552
	* 1160 * 1180 * 1200	
LpF3Ha1 :	- - - - -	: -
LpF3Ha2 :	- - - - -	: -
LpF3Ha3 :	TGATGCTTGAACCTTGAGTTACTAGCTCTCCTAACAGTGCAAATCCATGGCCCAA	: 612
	* 1220 * 1240 * 1260	
LpF3Ha1 :	- - - - -	: -
LpF3Ha2 :	- - - - -	: -
LpF3Ha3 :	GAGGGCCCCGATTGCATGGTTACTTATGTTGAACGGTATTGCTTAAGTGCCTAACCTT	: 672
	* 1280 * 1300 * 1320	
LpF3Ha1 :	- - - - -	: -
LpF3Ha2 :	- - - - -	: -
LpF3Ha3 :	AACATTGCTACATTCTACTNCTATCTGTCCGTTAAAATTATAAGATGGCTAACCTT	: 732
	* 1340 * 1360 * 1380	
LpF3Ha1 :	- - - - -	: -
LpF3Ha2 :	- - - - -	: -
LpF3Ha3 :	TTCTTAATTGTATGCATNCTGAACATATTAAAGTGTGTGTTAGACAGTTAGTCTGC	: 792
LpF3Ha1 :	- : -	
LpF3Ha2 :	- : -	
LpF3Ha3 :	A : 793	

FIGURE 109 (cont)

183/271**FIGURE 110**

184/271

1	GAATTC	GATT	AAGCAGTGGT	AACAACGCAG	AGTACGCGGG	GACTCTCAGA
51	ACACACTGTG	TAACCACGGT	AGCGAGTGGC	AAGACTAGCA	GAAAGTACGG	
101	ACATCAGCTA	ACCATTCCCTC	AACTAGAATA	AGCATGGCTC	CGGCGATGTC	
151	CAACCCTCTC	CTCAGTGATC	GGGTGGCACG	CTCCAAGAAA	GTCCCATCTA	
201	GCCACGTTAG	AGCGGGTGGGA	GACCGCCCAG	ACCTCGCCAA	TGTCGACCAC	
251	GAGTCCGGCG	CGGGCATTCC	GCTCATCGAC	CTGAAGCAGC	TCGAAGGTCC	
301	AGGGCGCCGC	AGGGTCGTG	AGGCCATCGG	CTCCGGTGTG	GAGAACGATG	
351	GGTTTTTCAT	GGTGACGAAT	CATGGCATCC	CAGAGGGGGT	CGTGGAGGGG	
401	ATGCTGAGCG	TGGCGAGGG	GTTCTTCCAC	CTGCCGGAGT	CGGAGCGGCT	
451	CAAGTGCTAC	TCCGACGACC	CCAAGAAGGC	GGTCCGGCTG	TCGACGAGCT	
501	TCAACGTGCG	CACGGAGAAG	GTGAGCAACT	GGCGCGACTT	CCTCCGGCTG	
551	CATTGCTACC	CTCTTGAGAG	CTTCGTCGAC	CAGTGGCCGT	CGAACCCGCC	
601	CGCCTTCAGG	CAAGTCGTG	GCACCTACTC	GACGGAAGCG	AGAGCGCTGG	
651	CGCTGAGGCT	CCTGGAGGCG	ATATCGGAGA	GCCTAGGGCT	GGAGAGAGGC	
701	CACATGGTGA	AGGCCATGGG	GCGGCACGCG	CAGCACATGG	CGGTGAACTA	
751	CTACCCGCCG	TGCCCGCAGC	CGGAGCTCAC	CTACGGTCTG	CCAGGGCACA	
801	AGGACCCCAA	TGCCATCACG	CTCCTCCTGC	AGGACGGCGT	CTCCGGCCTG	
851	CAGGTC CAGC	GCGACGGCCG	GTGGGTGGCC	GTCAACCCGG	TGCCCAACGC	
901	CCTCGTCATC	AACATCGGCG	ATCAGTTACA	GGCGCTGAGC	AACGACCGAT	
951	ACAAGAGCGT	GAACCACAGA	GTGATCGTCA	ACAGCGCGAG	CGAGAGGATT	
1001	TCGGTGC CGA	CGTTCTACTG	CCC GTCGCCG	GACACGGTGG	TCGCGCCGGC	
1051	CGACCGCGCTG	GTGGACGACG	CCC ACCCTCG	GGCCTACCAAG	CCCTTCACGT	
1101	ACCAGGAGTA	CTACGAGGAG	TTCTGGAAGA	TGGGCCTTCA	GTCAGCAAGT	
1151	TGCCTCGACA	GGTTCCGACG	GATCGAGTGA	TGGACAAGAC	GTGGGCCGTT	
1201	GTTATCTCCT	GGGCCATGAG	CGTTGCCGCA	GCCGATGTGT	CGCCATATGG	
1251	TGGAGACGTT	TCCTCCCTCC	GGAAAAGAAA	AATAAAACAG	AGTGGAGACC	
1301	ACTAGAACCG	TCAGATAGCA	TCCCCAAAAAA	AAAAAAAAAA	AAAAAAAAAA	
1351	AAAAGTACTC	TGCGTTGTTA	CCACTGCTTA	ATCACTAGT G	AATTC	

FIGURE 111

185/271

1 MAPAMSNPLL SDRVARSKKV PSSHVRAGD RPDLANVDHE SGAGIPLIDL
51 KQLEGPGRRR VVEAIGSACE NDGFFMVTNH GIPEAVVEGM LSVAREFFHL
101 PESERLKCYC DDPKKAVRLS TSFNRTEKV SNWRDFLRLH CYPLESFVDQ
151 WPSNPPAFRQ VVGTYSTEAR ALALRLLEAI SESLGLERGH MVKAMGRHAQ
201 HMAVNYYPPC PQPELTYGLP GHKDPMAITL LLQDGVSGLQ VQRDGRWVAV
251 NPVPNALVIN IGDQLQALSN DRYKSVNHRV IVNSASERIS VPTFYCPSPD
301 TVVAPADALV DDAHPRAYQP FTYQEYYEEF WKMGLOQSASC LDRFRRIE

FIGURE 112

186/271

pDH51LpF3OH sense

pDH51LpF3OH anti

FIGURE 113

187/271

FIGURE 114

188/271

FIGURE 115

189/271**TrBANa****FIGURE 116**

190/271

1 **GAATT**C GATT AAGCAGTG GTT AACAA CGC AG AGTAC GCG GGG AT AAAA ACTG
51 CACTAGTGTG TATAAGTTTC TTGGTGA AAAA AAGAGTTGT AAATTAACAT
101 CATGGCTAGT ATCAAACAAA TTGGAAACAA GAAAGCATGT GTGATTGGTG
151 GCACTGGTT TGTTGCATCT ATGTTGATCA AGCAGTTACT TGAAAAGGGT
201 TATGCTGTTA ATACTACC GT TAGAGACCCA GATAGCCCTA AGAAAATATC
251 TCACCTAGTG GCACTGCAA GTTTGGGGGA ACTGAATCTA TTTAGAGCAG
301 ACTTAACAGT TGAAGAAGAT TTTGATGCTC CTATAGCAGG ATGTGAACCT
351 GTTTTCAAC TTGCTACACC TGTGAACCTT GCTTCTCAAG ATCCTGAGAA
401 TGACATGATA AAGCCAGCAA TCAAAGGTGT GTTGAATGTG TTGAAAGCAA
451 TTGCAAGAGC AAAAGAAGTT AAAAGAGTTA TCTTAACATC TTCGGCAGCC
501 GCGGTGACTA TAAATGAAC TAAAGGGACA GGTCA GTTAA GGGATGAAAC
551 CAACTGGTCT GATGTTGAAT TTCTCAACAC TGCAAAACCA CCCACTTGGG
601 GTTATCCTGC CTCAAAATG CTAGCTGAAA AGGCTGCATG GAAATTGCT
651 GAAGAAAATG ACATTGATCT AATCACTGTG ATACCTAGTT TAACAAC TGG
701 TCCTTCTCTC ACACCAGATA TCCCACATCTAG TGTTGGCTTG GCAATGTCTC
751 TAATAACAGG CAATGATTT CTCATAAATG CTTTGAAAGG AATGCAGTTT
801 CTGTCGGGTT CGTTATCCAT CACTCATGTT GAGGATATTT GCCGAGCTCA
851 TATATTCTT GCAGAGAAAG AATCAGCTTC TG GTAGATAC ATTTGCTGTG
901 CTCACAATAC TAGTGTCCC GAGCTTGCAA AGTTTCTCAA CAAACGATAT
951 CCTCAGTATA AAGTTCCAAC TGAATTGAT GATTGCCCA GCAAGGCAA
1001 GTTGATAATC TCTTCTGAAA AGCTTATCAA AGAAGGGTTC AGTTTCAAGC
1051 ATGGTATTGC CGAAACATTG GACCAGACTG TCGAGTATTT TAAGACTAAG
1101 GGGGCACTGA AGAATTAGAT TTTGATATTT CTAATTCAAT AGCAAAC TCT
1151 AAGCTTGTG TGTTGTTGTG AAGTTCAAG TGAAATATCA AATGAATAAG
1201 TGGAGAGAGC ACAATAAGAG GAGAGCACAA TAATTTGGA AAAAAAAA
1251 AAAAAAAAAA AAAAAAAAGT ACTCTGCGTT GTTACCACTG CTTAAC TACT
1301 AGT**GAATT**C

FIGURE 117

191/271

1 MASIKQIGNK KACVIGGTGF VASMLIKQLL EKGYAVNTTV RDPDSPKKIS
51 HLVALQSLGE LNLFRADLTW EEDFDAPIAG CELVFQLATP VNFASQDPEN
101 DMIKPAIKGV LNVLKAIARA KEVKRVIILTS SAAAVTINEL KGTGHVMDET
151 NWSDVEFLNT AKPPTWGYP A SKMLAEKA AW KFAEENDIDL ITVIPS LTTG
201 PSLTPDIPSS VGLAMSLITG NDFLINALKG MQFLSGSLSI THVEDICRAH
251 IFLAEKESAS GRYICCAHNT SVPELA KFLN KRYPQYKVPT EFDDCPSKAK
301 LIISSEKLIK EGFSFKHGIA ETFDQTVEYF KTKGALKN

FIGURE 118

192/271

pDH51TrBANa sense

pDH51TrBANa anti

FIGURE 119

193/271

pPZP221:35S²TrBANa sense

pPZP221:35S²TrBANa anti

FIGURE 120

194/271**TrCHla****FIGURE 121**

195/271

1 **GAATTC**GATT AAGCAGTGGT AACAAACGCAG AGTACGCGGG GACTTAAACA
51 TTGACACAAG TCCCCAAATAA AAAAGATCTG AAACAACATA GTCACCCCAT
101 TTTTTAACAT TAAACTAAAA ATATGTCGGC CATCACCGCA ATCCAAGTCG
151 AGAACCTTGA ATTTCGGCT GTGGTTACTT CTCCGGCCAC CGGTAAGTCA
201 TATTTCTTG GTGGTGCAGG GGAGAGAGGT TTGACTATTG AAGGAAACTT
251 CATCAAGTTC ACTGCCATAG GAGTATATTG GGAAGATGTA GCAGTGGCTT
301 CACTGCCAC TAAATGGAAG GGTAAATCCT CTGAGGAGTT GCTTGAGACT
351 CTTGACTTCT ATAGAGACAT CATTTCAGGA CCCTTGAAA AGTTGATTG
401 AGGATCGAAG ATTAGGGAAT TGAGTGGTCC TGAGTACTCA AGGAAGGTTA
451 ATGAAAATG CGTGGCACAC TTAAAATCTG TTGGGACTTA TGGAGATGCT
501 GAAGCTGAAG CTATGCCAAA ATTGTGAA GCCTTCAGC CTATTAATT
551 TCCACCTGGT GCCTCTGTT TTTACAGGCA ATCACCTGAT GGAATATTAG
601 GGCTTAGTTT CTCTCAAGAT GCAAGTATAC CAGAAAAGGA GGCTGCAGTA
651 ATAGAGAACAGGAGCTTC ATCGGCAGTG TTAGAAACTA TGATTGGTGA
701 ACATGCTGTT TCTCCTGATT TAAAGCGTTG TTTGGCTGCA AGATTACCTG
751 CCTTGTGAA CGAGGGTACT TTCAAGATTG AATGAAAATC GATTATTATT
801 ATCTCCAAAAGCATTGCAGC ACAAGATTGA GTCATTATG AGCATGGACA
851 TTTTATGTC CACACATGTT TAACTTTGT ATCTCTCTTT AGATTCTCAT
901 CAATATCAAT AATACTAATA TGAAACGAAG TCAAAAAAAA AAAAAAAA
951 AAAAAAAA AAAAGTACTC TGCGTTGTTA CCACTGCTTA ATCACTAGTG
1001 **AATTC**

FIGURE 122

196/271

1 MSAITAIQVE NLEFPVVTS PATGKSYFLG GAGERGLTIE GNFIKFTAIG
51 VYLEDVAVAS LATWKKGKSS EELLETLDFY RDIISGPFEK LIRGSKIREL
101 SGPEYSRKVN ENCV AHLKSV GTYGDAEAEA MQKFVEAFKP INFPPGASVF
151 YRQSPDGILG LSFSQDASIP EKEAAVIENK AASSAVLETM IGEHAVSPDL
201 KRCLAA RLPA LLNEGTFKIE

FIGURE 123

197/271

pDH51TrCHIa sense

pDH51TrCHIa anti

FIGURE 124

198/271

FIGURE 125

199/271**FIGURE 126**

200/271

1 **GAATTC**ACTA GTGATTAAGC AGTGGTAACA ACGCAGAGTA CGCGGGGACA
51 TTACAACCTCA CAACACCTTC TCCATTACCA TCTATCTTCT ACTAAGTTCA
101 ACGAGATCAA TGGCACTTCC TTCTGTCAACC GCTTTGAATA TCGAGAACAA
151 TCTATTCCCT CCTACCCTCA CACCACCGGG ATCCACCAAC AATTCTTCC
201 TCGGCCTGTGC AGGAGAGCGG GGTCTCAAA TTCAAGACAA ATTTGTCAAA
251 TTCACCGCTA TTGGTGTTA TCTACAGGAC ATTGCTGTT CTTACCTCGC
301 CACTAAATGG AAGGGTAAGA CTGCTCAAGA GCTAACGGAA ACTGTTCCCT
351 TCTTCAGGGA CATCGTTACA GGTCCATTG AGAAATTAT GCAGGTGACA
401 ATGATCTTGC CATTGACTGG GCAACAATAC TCAGAGAAAG TGTCAAAAAA
451 TTGTGTAGCT ATTTGGAAGT CTCTTGGGAT TTATACCGAC GAAGAAGCCA
501 AAGCAATTGA GAAGTTGTT TCTGTCTTCA AAGATGAAAC ATTCCCACCA
551 GGCTCCTCTA TCCTTTTCAC AGTATTACCC AAAGGATTAG GATCACTAAC
601 GATAAGTTTC TCTAAAGATG GATCCATTCC AGAGACCGAG TCTGCAGTTA
651 TAGAGAATAA GCTACTCTCA CAAGCTGTGC TTGAGTCGAT GATAGGGCG
701 CACGGTGTCT CCCCTGCAGC AAAACAGAGT TTGGCCACCA GGTTATCCGA
751 GTTATTCAAC GAGGTTGGTG ATGCTAGCAA CTGATTATAT CAACAAAACG
801 AAAATGAAAG TCCTTTCTGC AATAAAGACC AAGCGGAAAT TTTATTTAG
851 GTGCACTTG AAATGACCTC TTTGGCGACT TTTTCTTGT A CTAATAATAA
901 AGAGTGTGTT TGTATCATGT TGTAATTTA TTTTAGAAAA AGTGAGGTAA
951 GAAAGGAGTC CTTATGTTA TTTCAATTAT TGAAAAATTA TTTGCATGTA
1001 TAATTGATT CAACTGATGT TATTTAATCA CGTTTTTCT AAAAAAAA
1051 AAAAAAAA AAAAAAAA GTACTCTGCG TTGTTACAC TGCTTAATCG
1101 **AATTC**

FIGURE 127

201/271

1 MALPSVTALN IENNLFPPPTV TPPGSTNNFF LGGAGERGLQ IQDKFVKFTA
51 IGVYLQDIAV PYLATWKKGK TAQELTETVP FFRDIVTGPF EKFMQVTMIL
101 PLTGQQYSEK VSENCVAIWK SLGIYTDEEA KAIEKFVSVF KDETFPNGSS
151 ILFTVLPKGL GSLTISFSKD GSIPETESAV IENKLLSQAV LESMIGAHGV
201 SPAAKQSLAT RLSELFNEVG DASN

FIGURE 128

202/271

pDH51TrCHId sense

pDH51TrCHId anti

FIGURE 129

203/271

pPZP221:35S²TrCHId sense

pPZP221:35S²TrCHId anti

FIGURE 130

204/271**FIGURE 131**

205/271

1 **GAATTC**GATT AAGCAGTGGT AACAAACGCAG AGTACGCGGG GATTCAAACA
51 TAGCTCAAAG TGTGTAACAA ATTTCTTAAC TTAAAACATT TTCAACCCAA
101 CAAAAAAA CAAAGACAAA AACATGGGTA GTGTTGAAAT TCCAACAAAG
151 GTTCTTACTA ACAGTTCTAG TCAAGTGAAA ATGCCTGTGG TTGGAATGGG
201 ATCAGCACCT GATTTCACAT GTAAGAAAGA CACAAAAGAT GCAATCATCG
251 AAGCCATCAA ACAGGGTTAT AGACACTTTG ATACTGCTGC TGCTTATGGC
301 TCAGAACAAAG CTCTTGGTGA AGGTTGAAA GAAGCAATTG AACTTGGTCT
351 TGTCACTAGA GAAGACCTT TTGTTACTTC TAAACTTGG GTCACTGAAA
401 ATCATCCTCA TCTTGGTGTG CCTGCTCTTC AAAATCTCT CAAGACTCTT
451 CAATTGGAGT ACTTGGACTT GTATTGATC CATTGGCCAC TTAGTTCTCA
501 GCCTGGAAAG TTTTCATTTCA CAATTGATGT GGCAGATCTC TTGCCATTG
551 ATGTGAAGGG TGTTGGGAA TCCATGGAAG AAGGCTGAA ACTTGGACTC
601 ACTAAAGCTA TTGGTGTGTTAG TAACTTCTCT GTCAAGAAAC TTCAAAATCT
651 TGTCTCAGTT GCCACTGTTTC TTCCCTGCTGT CAATCAAGTG GAGATGAACC
701 TTGCATGGCA ACAAAAGAAG CTTAGAGAAT TTGCAATGC AAATGGAATA
751 GTGTTAACTG CATTTCACC ATTGAGAAAA GGTGCAAGCA GGGGACCAAA
801 TGAAGTTATG GAAAATGATA TGCTTAAAGA GATTGCAGAT GCTCATGGAA
851 AGTCTGTTGC ACAAATTCA TTGAGATGGT TATATGAACA AGGAGTCACT
901 TTTGTTCCCA AGAGCTATGA TAAGGAAAGA ATGGGTCAAA ATTTGGCTAT
951 CTTTGATTGG ACATTGGCAA AAGAAGATCA TGAGAAAATT GATCAAATT
1001 AGCAGAACCG TTTGATCCCT GGACCAACCA AGCCAGGACT CAGTGACCTA
1051 TGGGATGATG AAATATAAAG TGGAAAGATGT TAAAGTCCC TTAAGCTCAC
1101 TCAATATCTA TCTATTGTGT ACTTTTGCA TTTGGGGTTT GAAATTGAGT
1151 CACCCTTGTT TCTGTATCGA TTTAAAATT AAATAATCAA TTTTCATTA
1201 CAAAAAAA AAAA AAAAAAAA AGTACTCTGC GTTGTACCA
1251 CTGCTTAATC ACTAGT**GAAT TC**

FIGURE 132

206/271

1 MGSVEIPTKV LTNSSSQVKM PVVGMGSAPD FTCKKDTKDA IIEAIKQGYR
51 HFDTAAAYGS EQALGEGLKE AIELGLVTRE DLFVTSKLWV TENHPHLVVP
101 ALQKSLKTLQ LEYLDLYLIH WPLSSQPGKF SFPIDVADLL PFDVKGVWES
151 MEEGLKLGLT KAIGVSNFSV KKLQNLVSVA TVLPAVNQVE MNLAWQQKKL
201 REFCNANGIV LTAFSPLRKKG ASRGPNEME NDMLKEIADA HGKSVAQISL
251 RWLYEQGVTF VPKSYDKERM GQNLAIFDWT LAKEDHEKID QIKQNRLIPG
301 PTKPGLSDLW DDEI

FIGURE 133

207/271

pDH51TrCHRc sense

pDH51TrCHRc anti

FIGURE 134

208/271

pPZP221:35S²TrCHRc sense

pPZP221:35S²TrCHRc anti

FIGURE 135

209/271**TrCHSa1****FIGURE 136**

210/271

1	GAATTC GATT	AAGCAGTGGT	ATCAACGCAG	AGTACGCGGG	GACAACA	ACT
51	ATAACTTCCT	GTTATTAACC	AATTGAGTTC	AAATTACATA	CATAGCAGGA	
101	ACTATACTAA	AGATATCAC	ATGGTTAGTG	TTTCTGAAAT	TCGCAAGGCT	
151	CAAAGGGCTG	AAGGCCCTGC	AACTATTG	GCCATTGGTA	CTGCAAATCC	
201	AGCAAATCGT	GTTGACCAGA	GTACATATCC	TGATTCTAC	TTCAAAATCA	
251	CTAACAGTGA	GCATAAGGTT	GAGCTTAAAG	AGAAATTCA	GCGCATGTGT	
301	GATAAATCTA	TGATCAAGAG	CAGATACATG	TATCTAACAG	AAGAGATTTT	
351	GAAAGAAAAT	CCTAGTCTTT	GTGAATACAT	GGCACCTCA	TTGGATGCTA	
401	GGCAAGACAT	GGTGGTGGTT	GAGGTACCTA	GACTTGGGAA	GGAGGCTGCA	
451	GTGAAAGCTA	TCAAAGAATG	GGGTCAACCA	AAGTCAAAGA	TTACTCACTT	
501	AATCTTTGC	ACCACAAGTG	GTGTTGACAT	GCCTGGTGCC	GATTACCAAC	
551	TCACAAAACT	CTTAGGTCTT	CGCCCATATG	TGAAGAGGTA	CATGATGTAC	
601	CAACAAGGGT	GCTTGCAGG	TGGGACGGTT	CTTCGTTGG	CCAAGGATT	
651	GGCCGAGAAC	AACAAAGGTG	CTCGTGTGTT	GGTTGTTGC	TCTGAAGTAA	
701	CCGCAGTCAC	ATTCCCGGGC	CCCAGTGACA	CTCATTGGA	CAGTCTTGTT	
751	GGACAAGCAC	TATTCGGAGA	TGGAGCTGCT	GCACTCATTG	TTGGCTCAGA	
801	CCCAGTACCA	GAAATTGAGA	AGCCAATATT	TGAGATGGTT	TGGACCGCAC	
851	AGACAATTGC	TCCAGATAGT	GAAGGTGCCA	TTGATGGTCA	TCTTCGTGAA	
901	GCTGGACTAA	CATTTCATCT	TCTTAAAGAT	GTTCCTGGGA	TTGTCTCAAA	
951	GAACATTGAT	AAGGCATTGG	TTGAGGCATT	CCAACCATTA	AACATCTCTG	
1001	ATTACAATT	AATCTTTGG	ATTGCTCATC	CAGGTGGTCC	TGCAATTCTA	
1051	GACCAAGTTG	AGATAAAGTT	GGGCTTAAAA	CCTGAAAAAA	TGAAGGCCAC	
1101	CAGAGATGTA	CTTAGTGAAT	ATGGTAACAT	GTCAAGTGCA	TGTGTATTGT	
1151	TCATCTTAGA	TGAGATGAGA	AAGAAATCGG	CTGAAAATGG	ACTAAAACC	
1201	ACAGGAGAAC	GAATTGACTG	GGGTGTGTTG	TTTGGATTTG	GGCCCGGACT	
1251	TACCATTGAA	ACTGTTGTT	TACATAGTGT	GGCTATATGA	GAATGAGAGA	
1301	CTTGATTGTT	TTTTATTGTA	TTGTATTGTA	TTACTTAAA	TCTGGTTGA	
1351	ACCTCCATT	TAAGAATAAA	TATGGAGTTC	AATATGGACC	ATCCTGTTAA	
1401	AATAATATAT	CGTTAATAGC	TATTATTTA	GTGTCTGTT	CTTTTACTA	
1451	AACTATTAA	TTTTAGTATT	TGTTTTGAC	CAAAAAAAA	AAAAAAA	
1501	AAAAAAAGTA	CTCTGCGTTG	TTACCACTGC	TTAACACTA	GTGAATTC	

FIGURE 137

211/271

1 MVSVSEIRKA QRAEGPATIL AIGTANPANR VDQSTYPDFY FKITNSEHKV
51 ELKEKFQRMC DKSMIKSRYM YLTEEILKEN PSLCEYMAPS LDARQDMVVV
101 EVPRLGKEAA VKAIKEWGQP KSKITHLIFC TTSGVDMMPGA DYQLTKLLGL
151 RPYVKRYMMY QQGCFAGGTW LRLAKDLAEN NKGARVLVVC SEVTAVTFRG
201 PSDTHLDLSLV GQALFGDGAA ALIVGSDPVP EIEKPIFEMV WTAQTIAPDS
251 EGAIDGHLRE AGLTFHLLKD VPGIVSKNID KALVEAFQPL NISDYN SIFW
301 IAHPGGPAIL DQVEIKLGLK PEKMKATRDV LSEYGNMSSA CVLFILDEMR
351 KKSAENGLKT TGEGLDWGVL FGFGPGLTIE TVVLHSVAI

FIGURE 138

212/271

pDH51TrCHSa1 sense

pDH51TrCHSa1 anti

FIGURE 139

213/271

FIGURE 140

214/271**TrCHSa3****FIGURE 141**

215/271

1 **GAATTC**ACTA GTGATTAAGC AGTGGTAACA ACGCAGAGTA CGCGGGGAAC
 51 AAAAACAACT ACGCATATTA TATATATATA TATATAGTCT ATAATTGAAA
 101 GAAACTGCTA AAGATATTAT TAAGATATGG TGAGTGTAGC TGAAATTGCG
 151 AAGGCTCAGA GGGCTGAAGG CCCTGCAACC ATTTTGGCCA TTGGCACTGC
 201 AAATCCACCA AACCGTGTG AGCAGAGCAC ATATCCTGAT TTCTACTTCA
 251 AAATTACAAA CAGTGAGCAC AAGACTGAGC TCAAAGAGAA GTTCCAACGC
 301 ATGTGTGACA AATCCATGAT CAAGAGCAGA TACATGTATC TAACAGAAGA
 351 GATTTGAAA GAAAATCCTA GTCTTGTGA ATACATGGCA CCTTCATTGG
 401 ATGCTAGGCA AGACATGGTG GTGGTTGAGG TACCTAGACT TGGGAAGGAG
 451 GCTGCAGTCA AGGCCATTAA AGAATGGGGT CAACCAAAGT CAAAGATTAC
 501 TCACCTAACATC TTTTGCACCA CAAGTGGTGT TGACATGCCT GGTGCTGATT
 551 ACCAACTCAC AAAACTCTTA GGTCTTCGCC CATATGTGAA AAGGTATATG
 601 ATGTACCAAC AAGGTTGTTT TGCAGGAGGC ACGGTGCTTC GTTGGCAAA
 651 AGATTGGCC GAGAACAAACA AAGGTGCTCG TGTGCTAGTT GTTGGTTCTG
 701 AAGTCACCGC AGTCACATTT CGCGGCCCA GTGATACTCA CTTGGACAGT
 751 CTTGTTGGAC AAGCATTGTT TGGAGATGGA GCCGCTGCAC TAATTGTTGG
 801 TTCTGATCCA GTGCCTGAAA TTGAGAAACC AATATTGAG ATGGTTGGA
 851 CTGCACAAAC AATTGCTCCA GACAGTGAAG GTGCCATTGA TGGTCATCTT
 901 CGTGAAGCTG GGCTAACATT TCATCTCTT AAAGATGTTT CTGGGATTGT
 951 ATCAAAGAAC ATTAATAAAG CATTGGTTGA GGCTTCCAA CCATTAGGAA
 1001 TTTCTGACTA CAACTCAATC TTTTGGATTG CACACCCGGG TGGACCTGCA
 1051 ATTCTTGATC AAGTAGAACAA AAAGCTAGCC TTGAAGCCCC AAAAGATGAG
 1101 GGCCACGAGG GAAGTTCTAA GTGAATATGG AAACATGTCA AGCGCATGTG
 1151 TATTGTTCAT CTTAGATGAG ATGCGGAAGA AATCGGCTCA AAATGGACTT
 1201 AAGACAACTG GAGAAGGACT TGATTGGGGT GTGTTGTTCG GCTTCGGACC
 1251 AGGACTTACC ATTGAAACCG TTGTTCTTCG TAGCGTGGCT ATATAAGATG
 1301 TGTGATTGTT TTTATTTAA TGTATTACTT TTAATCTTC TGCCTTGAAT
 1351 TTCGATTAA GAATAAATAA ATATATCTTT TGATAAAAAA AAAAAAAA
 1401 AAAAAAAA AAGTACTCTG CGTTGTTACC ACTGCTTAAT **CGAATT**C

FIGURE 142

216/271

1 MVSVAEIRKA QRAEGPATIL AIGTANPPNR VEQSTYPDFY FKITNSEHKT
51 ELKEKFQRCMC DKSMIKSRYM YLTEEILKEN PSLCEYMAPS LDARQDMVVV
101 EVPRLGKEAA VKAIKEWGQP KSKITHLIFC TTSGVDMMPGA DYQLTKLLGL
151 RPYVKRYMMY QQGCFAGGTV LRLAKDLAEN NKGARVLVVC SEVTAVTFRG
201 PSDTHLDLSLV GQALFGDGAA ALIVGSDPVP EIEKPIFEMV WTAQTIAPDS
251 EGAIDGHLRE AGLTFHLLKD VPGIVSKNIN KALVEAFQPL GISDYNSSIFW
301 IAHPGGPAIL DQVEQKLALK PEKMRATREV LSEYGNMSSA CVLFILDEMR
351 KKSAQNGLKT TGEGLDWGVL FGFGPGLTIE TVVLRSAI

FIGURE 143

217/271

pDH51TrCHSa3 sense

pDH51TrCHSa3 anti

FIGURE 144

218/271

FIGURE 145

219/271**TrCHSc****FIGURE 146**

220/271

1	GAATTC GATT	AAGCAGTGGT	AACAACGCAG	AGTACGCGGG	GATTCAATCT
51	GTTGTGCATA	AAATTCACTC	ATTGCATAGA	AAACCATACA	CATTTGATCT
101	TGCAAAGAAG	AAATATGGGA	GACGAAGGTA	TAGTGAGAGG	TGTCACAAAG
151	CAGACAACCC	CTGGGAAGGC	TACTATATTG	GCTCTGGCA	AGGCATTCCC
201	TCACCAACTT	GTGATGCAAG	AGTGTTCAGT	TGATGGTTAT	TTTAGGGACA
251	CTAATTGTGA	CAATCCTGAA	CTTAAGCAGA	AACTTGCTAG	ACTTTGTAAG
301	ACAACCACGG	TAAAAAACAAAG	GTATGTTGTT	ATGAATGAGG	AGATACTAAA
351	GAAATATCCA	GAACATTGTTG	TCGAAGGCCG	CTCAACTGTA	AAACAACGTT
401	TAGAGATATG	TAATGAGGCA	GTAACACAAA	TGGCAATTGA	AGCTTCCCAA
451	GTTTGCTAA	AGAATTGGGG	TAGATCCTTA	TCGGACATAA	CTCATGTGGT
501	TTATGTTCA	TCTAGTGAAG	CTAGATTACC	CGGTGGTGAC	CTATACTTGT
551	CAAAAGGACT	AGGACTAAAC	CCTAAAATTG	AAAGAACCAT	GCTCTATTTC
601	TCTGGATGCT	CGGGAGGC GT	AGCCGGCCTT	CGCGTTGCGA	AAGACGTAGC
651	TGAGAACAAAC	CCTGGAAGTA	GAGTTTGCT	TGCTACTTCG	GAAACTACAA
701	TTATTGGATT	CAAGCCACCA	AGTGTGATA	GACCTTATGA	TCTTGTGGT
751	GTGGCACTCT	TTGGAGATGG	TGCTGGTGCA	ATGATAATTG	GCTCAGACCC
801	GGTATTGAA	ACTGAGACAC	CATTGTTGA	GCTGCATACT	TCAGCTCAGG
851	AGTTTATACC	AGACACCGAG	AAGAAAATTG	ATGGGGCGCT	GACGGAGGAG
901	GGCATAAGTT	TCACACTAGC	AAGGGAACCT	CCGCAGATAA	TCGAAGACAA
951	TGTTGAGGGA	TTCTGTAATA	AACTAATTGA	TGTTGTGGG	TTGGAGAATA
1001	AGGAGTACAA	TAAGTTGTTT	TGGGCTGTG	ATCCAGGTGG	GCCTGCGATA
1051	TTGAATCGCG	TGGAGAAGCG	GCTTGAGTTG	TCGCCGCAGA	AGCTGAATGC
1101	TAGTAGAAAA	GCTCTAATGG	ATTATGGAAA	TGCTAGCAGC	AATACTATTG
1151	TTTATGTGCT	GGAAATATATG	CTAGAAGAGG	AAAAGAAAGAT	TAAAAAGGCG
1201	GGTGGAGGAG	ATTCTGAATG	GGGATTGATA	CTTGCTTTG	GACCTGGAAT
1251	TACTTTGAG	GGGATTCTAG	CAAGGAACCT	GTGTGCATGA	AGTCTTATAC
1301	AATTGTGATG	CATGACTTAT	ACTCTTATT	CTACTAATT	TTATATTAAAG
1351	CAAATTTCAGA	ACTTTTAAGT	AATGATTAA	TGAAGAACAC	TTATAGTATA
1401	TTGACTTTAT	TCACTTTCAA	AGCAAGTTA	TGATCCTAAG	ACATGGTAGA
1451	ACTTGAGCAT	GTGGAATAGT	TGTAACAAAA	ACTCTAAC	AATAGAGACT
1501	TTATGTAGTA	TAAAGCATT	CCAGACATGA	TAAATAATGG	TACCTCAGAA
1551	CATAAAATAT	ATTAGCTAT	CTTTCATCCC	CAACTTTACA	CATCCACCAA
1601	GGTACAGAAAT	AAGCATATGT	CAACACAAAA	TGTACTCTAA	GTCTAACATG
1651	AGTAACCAAA	CATGATGCCT	GATTAAGTTA	AAAGAAAAGA	AAATCTGAGG
1701	GCATAGATCT	TCAATCACAC	CACTCCAGAG	GGAAAGCGTA	GAACAAGCTG
1751	TCCGCCGAAA	ACACTGCAAT	TCAATAAATA	TCATTAGGAC	AACAGTGCAG
1801	AGTCATGCGG	GAAATGTCTT	AAGTCACTGT	ACTAAAAATA	TAGGATTATA
1851	TTATGAACTA	TACTAACCTT	TTCACATAAT	AGTAACAGAA	ATCAGCTAAG
1901	ATGAATGTCT	GGACAATTTC	TGAGATAAGA	ACCATGACGG	CCATAAGCCA
1951	TACCCCAAGG	CAACCAATAA	ATGTCCACGG	GTATCTAAC	CCTGTTGCAA
2001	GAAATAGTAA	GTTATTAGGA	GATGTGCGGT	TACGAAATT	AAGCTACACA
2051	ACAAAAGGAG	GCCAGAACAA	CAGCAATCTT	GTAACCAGAT	GACAACAAATA
2101	AAATGTAAAC	TTAAAGAGAC	CGAACACACA	AACATTGCAA	CTCAGATGGA
2151	ATTGCTGCCA	TGTAACTAGT	AGGAGATTG	GGACGTCAA	TCAGTATATT
2201	ATGCAAATAC	AAGGTATGAC	CGCCTTGTCT	ATTGTAGCAT	ACAACAAACG
2251	TACAGTGGGT	TTGTCCCTCT	CAAAATGGCA	GGATCTTAC	AGCACAATAT
2301	TTGGTTTTGT	CATACTTATA	CCATAAAAAAA	AAAAAAAAAA	AAAAAAAAAA
2351	AAAGTACTCT	GC GTTGTAC	CACTGCTTAA	TCACTAGTGA	ATTC

FIGURE 147

221/271

1 MGDEGIVRGV TKQTTPGKAT ILALGKAFPH QLVMQECLVD GYFRDTNCDN
51 PELKQKLARL CKTTTVKTRY VVMNEEILKK YPELVVEGAS TVKQRLEICN
101 EAVTQMAIEA SQVCLKNWGR SLSDITHVVY VSSSEARLPG GDLYLSKGLG
151 LNPKIQRTML YFSGCSGGVA GLRVAKDVAE NNPGSRVLLA TSETTIIGFK
201 PPSVDRPYDL VGVALFGDGA GAMIIIGSDPV FETETPLFEL HTSAQEFIPD
251 TEKKIDGRLT EEGISFTLAR ELPQIIEDNV EGFCNKLIDV VGLENKEYNK
301 LFWAVHPGGP AILNRVEKRL ELSPQKLNAS RKALMDYGNNA SSNTIVYVLE
351 YMЛЕЕKKIK KAGGGDSEWG LILAFGPGIT FEGILARNLC A

FIGURE 148

222/271

pDH51TrCHSc sense

pDH51TrCHSc anti

FIGURE 149

223/271

pPZP221:35S²TrCHSc sense

pPZP221:35S²TrCHSc anti

FIGURE 150

224/271**FIGURE 151**

225/271

1 **GAATT**CATT AAGCAGTGGT AACAAACGCAG AGTACGCGGG GATAGCAACA
 51 CACACTTTGA TTTCTTTTG AGTCCTTGCT ACGTGGCTTT ACCAAAAAAC
 101 GTTGCTAAGT CATCAACCCT TCCAATTCCCT TAATATAACC TATCAGTACT
 151 CACCATCTTT TCTTCCTCCC TGCTAACTTT AGACTCAGAG AAGATGGTGA
 201 ATGTTAATGA GATCCGCCAG GCACAGAGAG CTGAAGGCCCG TGCCACCGTG
 251 TTGGCAATCG GCACTGCAAC TCCTCCAAAC TGTGTCGATC AGAGTACATA
 301 CCCAGACTAC TACTTCCGCA TCACAAACAG TGAGCACAAG ACAGAGCTCA
 351 AAGAAAAATT CCAGCGCATG TGTGACAAAT CTATGATTAA GAAGAGATAC
 401 ATGCATTGGA CAGAAGAGAT TTTGAAGGAG AATCCAAGTT TATGTGAGTA
 451 CATGGCACCT TCATTGGATG CAAGACAAAGA CATGGTGGTT GTGGAAGTAC
 501 CAAGGCTAGG AAAAGAGGCT GCAACAAAGG CTATCAAGGA ATGGGGTCAA
 551 CCTAAGTCCA AGATTACTCA CCTCATCTTT TGCCACACAA GTGGTGTGGA
 601 CATGCCTGGC GCCGACTATC AGCTTACAAA GCTTTTAGGC CTTCGTCCGC
 651 ATGTGAAGCG TTATATGATG TACCAACAAG GTTGTTCGC TGGTGGTACG
 701 GTGCTTCGTT TGGCTAAAGA CTTGGCTGAA AACAAACAAAG GTGCCCGTGT
 751 GTTGGTGGTT TGTTCAAGAGA TCACTGCGGT TACTTTCCGT GGACCCAGTG
 801 ACACTCATCT TGATAGCCTT GTGGGGCAAG CATTGTTGG AGATGGTGCA
 851 GCAGCTGTGA TTGTAGGTT AGACCCATTA CCACAAGTT AGAAGCCCTT
 901 GTTTGAATTG GTATGGACTG CTCAAACAAT CCTTCCAGAC AGTGAAGGAG
 951 CCATTGATGG GCACCTTCGT GAAGTCGGGC TGACATTCCA TCTCCTCAAG
 1001 GATGTTCTG GACTCATCTC AAAGAACATT GAGAAAGCTC TTGTTGAGGC
 1051 CTTTCAACCT TTAGGTATCT CTGATTACAA TTCTATATTT TGGATCGCAC
 1101 ATCCTGGTGG ACCTGCAATT CTGGACCAAG TGGAAAGCCAA ATTAAGCTTA
 1151 AAGCCAGAGA AAATGCAAGC CACCCGGCAT GTGCTTAGCG AGTATGGTAA
 1201 CATGTCAGT GCATGTGTGT TATTATCTT GGATGAGATG AGGAGGAAGT
 1251 CAAAAGAAGA TGGACTTGCC ACAACAGGCG AGGGGCTGGA ATGGGGTGT
 1301 CTATTGGTT TTGGACCCGG ACTCACTGTT GAGACTGTAT TGCTCCATAG
 1351 TGTTGCCACT TAAATTGCCT AGATATGCTA TAACTATATG CTTATTAAAT
 1401 TCTTTGTTTC TGGGGGATT TATCTTCACT TACTTCACTG AGCATTGAA
 1451 TAAAGTTGT TTTAATTATT CATAATGTAA TATGGTGTG CTTAATGTAC
 1501 CCATCCATAT AATATTGTA ATACATATAT TAATCAACTT GCAATTTCAT
 1551 GAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAGGAAAAAA
 1601 AAAAAAAAAA AAAAAAAAAA AAGTACTCTG CGTTGTTACC ACTGCTTAAT
 1651 CACTAGT**GAA** **TTC**

FIGURE 152

226/271

1 MVNVNEIRQA QRAEGPATVL AIGTATPPNC VDQSTYPDYY FRITNSEHKT
51 ELKEKFQRMC DKSMIKKRYM HLTEEILKEN PSLCEYMAPS LDARQDMVVV
101 EVPRLGKEAA TKAIKEWGQP KSKITHLIFC TTSGVDMMPGA DYQLTKLLGL
151 RPHVKRYMMY QQGCFAGGTW LRLAKDLAEN NKGARVLVVC SEITAVTFRG
201 PSDTHLDLSLV GQALFGDGAA AVIVGSDPLP QVEKPLFELV WTAQTLIPDS
251 EGAIDGHLRE VGLTFHLLKD VPGLISKNIE KALVEAFQPL GISDYNNSIFW
301 IAHPGGPAIL DQVEAKLSLK PEKMQATRHV LSEYGNMSSA CVLFILDEMR
351 RKSKEGLAT TGEGLEWGVL FGFGPGLTVE TVLLHSVAT

FIGURE 153

227/271

pDH51TrCHSd2 sense

pDH51TrCHSd2 anti

FIGURE 154

228/271

FIGURE 155

229/271**FIGURE 156**

230/271

1 **GAATT**CATT AAGCAGTGGT AACAAACGCAG AGTACGCGGG ACTAACGCCTT
 51 GATTCAATTGT TTGTTCCAT AACACAAGAA CTAGTGTTC CTTGAATCTT
 101 AAGAAAAAAT GCCTCAAGGT GATTGAAATG GAAGTTCCTC GGTGAATGGA
 151 GCACGTGCTA GACGTGCTCC TACTCAGGG AAGGCAACGA TACTTGCATT
 201 AGGAAAGGCT TTCCCCGCC AGGTCCCTCC TCAAGAGTGC TTGGTGGAAAG
 251 GATTCAATTG CGACACTAAG TGTGACGATA CTTATATTAA GGAGAAATTG
 301 GAGCGTCTTT GCAAAAACAC AACTGTGAAA ACAAGATACA CAGTAATGTC
 351 AAAGGAGATC TTAGACAAC ATCCAGAGCT AGCCATAGAT GGAACACCAA
 401 CAATAAGGCA AAAGCTGAA ATAGCAAATC CAGCAGTAGT TGAAATGGCA
 451 ACAAGAGCAA GCAAAGATTG CATCAAAGAA TGGGGAAGGT CACCTCAAGA
 501 TATCACACAC ATAGTCTATG TTTCCTCGAG CGAAATTCTGT CTACCCGGTG
 551 GTGACCTTTA TCTTGCRAAT GAACTCGGCT TAAACAGCGA TGTAAATCGC
 601 GTAATGCTCT ATTTCCTCGG TTGCTACGGC GGTGTCACTG GCTTACGTGT
 651 CGCCAAAGAC ATCGCCGAAA ATAACCCTGG TAGTAGGGTG TTACTCACAA
 701 CATCCGAGAC CACTATTCTC GGTTTTCGAC CACCGAGTAA AGCTAGACCT
 751 TATGACCTCG TTGGCGCTGC ACTTTTCGGT GATGGCGCCG CTGCTGCAAT
 801 AATTGGAACA GACCCTATAT TGAATCAAGA ATCACCTTTC ATGGAATTGA
 851 ACCATGCAGT CCAAAAATTC TTGCCTGATA CACAAAATGT GATTGATGGT
 901 AGAATCACTG AAGAGGGTAT TAATTAAAG CTTGGAAGAG ACCTTCCTCA
 951 AAAAATTGAA GACAATATTG AAGAATTTC CAAGAAAATT ATGGCTAAAA
 1001 GTGATGTTAA GGAATTAAAT GACTTATTTT GGGCTGTTCA TCCTGGTGGG
 1051 CCAGCTATAC TCAATAAGCT AGAAAATATA CTCAAATTGA AAAGTGATAA
 1101 ATTGGATTGT AGTAGGAAGG CATTAAATGGA TTATGGAAT GTTAGTAGCA
 1151 ATACTATATT CTATGTGATG GAGTATATGA GAGATTATT GAAGGAAGAT
 1201 GGAAGTGAAG AATGGGGATT AGGATTGGCT TTTGGACCAG GGATTACTTT
 1251 TGAAGGGTT CTCCTCCGTA GCCTTTAATC TTGAAATAAT AATTCAATG
 1301 AAATTACTTG TCTTAAGATT GTGATAGGAA GATGAATATG TATTGGATTA
 1351 ATATTGATAT GGTGTTATT TAAAGTTGATT TTAAAAAAAG TTTATTAATA
 1401 AAGTATGATG TAACAATTGT TGTTGAAATG TTAAAAGGGA AGTATACTAT
 1451 TTTAAGTTCT TGACCATACT GATTTTTCT TTACACATT TCATATCTAA
 1501 AATTGTTCTA TGATATCTC ATTGTTGATA CTGTAATAAT ATAATATCTA
 1551 ATTTGGCTGG CAAAATGAAA GATTTTCAC CGAAAAAAA AAAAAAAA
 1601 AAAAAAAAAA AAGTACTCTG CGTTGTTACC ACTGCTTAAT CACTAGT**GAA**
 1651 **TTC**

FIGURE 157

231/271

1 MPQGDLNGSS SVNGARARRA PTQGKATILA LGKAFPAQVL PQECLVEGFI
51 RDTKCDDTYI KEKLERLCKN TTVKTRYTVM SKEILDNYPE LAIDGTPTIR
101 QKLEIANPAV VEMATRASKD CIKEWGRSPQ DITHIVYVSS SEIRLPGGDL
151 YLANELGLNS DVNRVMLYFL GCYGGVTGLR VAKDIAENN P GSRVLLTTSE
201 TTILGFRPPS KARPYDLVGA ALFGDGAAAA IIIGTDPILNQ ESPFMELNHA
251 VQKFLPD TQN VIDGRITEEG INFKLGRDLP QKIEDNIEEF CKKIMAKSDV
301 KEFNDLFWAV HPGGPAILNK LENILKLKSD KLDCSRKALM DYGNVSSNTI
351 FYVMEYMRDY LKEDGSEEWG LGLAFGPGIT FEGVLLRSL

FIGURE 158

232/271

pDH51TrCHSf sense

pDH51TrCHSf anti

FIGURE 159

233/271

pPZP221:35S²TrCHSf sense

pPZP221:35S²TrCHSf anti

FIGURE 160

234/271**FIGURE 161**

235/271

1	GAATTC	ACTA	GTGATTAAGC	AGTGGTAACA	ACGCAGAGTA	CGCGGGGGAA
51	TCCACCAAAT	CAACACCATT	AATAACCTTC	CAAATTCTCG	TTACCTCAC	C
101	AAATCTCATT	TTTCATTATA	TATCTTGGGT	ACATCTTTG	TTACCTCCAA	
151	CAAAAAAATG	GTGACCGTAG	AAGAGATTG	TAACGCCAA	CGTTCAAATG	
201	GCCCTGCCAC	TATCTTAGCT	TTTGGCACAG	CCACTCCTTC	TAACTGTGTC	
251	ACTCAAAGCTG	ATTATCCTGA	TTACTACTTT	CGTATCACCA	ACAGCGAAC	
301	TATGACTGAT	CTTAAGGAAA	AATTCAAGCG	GATGTGTGAT	AGATCAATGA	
351	TAAAGAAACG	TTACATGCAC	CTAACAGAAG	ACTTTCTGAA	GGAGAATCCA	
401	AATATGTGTG	AATACATGGC	ACCATCACTA	GATGTAAGAC	GAGACATAGT	
451	GGTTGTTGAA	GTACCAAAGC	TAGGTAAAGA	AGCAGCAAA	AAAGCCATAT	
501	GTGAATGGGG	ACAACCAAAA	TCCAAAATCA	CACATCTTGT	TTTCTGCACC	
551	ACTTCGGTG	TTGACATGCC	GGGAGCCGAT	TACCAACTCA	CCAAACTTT	
601	AGGCTTAAAA	CCTTCTGTCA	AGCGTCTCAT	GATGTATCAA	CAAGGTTGTT	
651	TCGCTGGCGG	CACAGTTCTC	CGCTTAGCAA	AAGACCTTGT	TGAGAATAAC	
701	AAAAATGCAA	GAGTTCTTGT	TGTTTGTCT	GAAATTACTG	CGGTTACTTT	
751	TCGTGGACCA	TCGGATACTC	ATCTTGATT	GCTCGTGGGA	CAGGCGCTTT	
801	TTGGTGATGG	AGCCGCAGCA	ATGATTATTG	GTGCGGATCC	TGATTAAACC	
851	GTGGAGCGTC	CGATTTCGA	GATTGTTTCG	GCTGCTCAGA	CTATTCTTCC	
901	TGATTCTGAT	GGCGCAATTG	ATGGACATCT	TCGTGAAGTG	GGGCTCACTT	
951	TTCATTTATT	GAAAGATGTT	CCGGGGATT	TTTCAAAGAA	CATTGAAAAA	
1001	AGTTTAGTTG	AAGCTTTGC	GCCTATTGGG	ATTAATGATT	GGAACCTCAAT	
1051	ATTTGGGTT	GCACATCCAG	GTGGACCGGC	TATTTTAGAC	CAGGTTGAAG	
1101	AGAAACTCCA	TCTTAAAGAG	GAGAAACTCC	GGTCCACCCG	GCATGTGCTT	
1151	AGTGAATATG	GAAATATGTC	AAGTGCATGT	GTTTATT	TTTGGATGA	
1201	AATGAGAAAG	AGGTCTAAAG	AGGAAGGGAT	GATTACAAC	GGTGAAGGGT	
1251	TGGAATGGGG	TGTGTTGTT	GGGTTGGAC	CGGGTTAAC	TGTTGAAACC	
1301	GTTGTGCTTC	ATAGTGTCC	GGTTCAGGGT	TGAATT	ATACATAGAT	
1351	TGGAAAATAA	AATTTGCCTG	CCGAGAGATG	TGAAC	TTGTAGGCAA	
1401	GCTCAAATTA	AAGTTGAGA	TAATATTGTG	CTTTAGTT	TATGGTATGT	
1451	AATGTAATGT	TTTACTTT	TTCGAAATTC	ATGTAATTG	ATATGAAAG	
1501	TAATATGTTT	GGGTTGGAAT	ATAATT	GTAACTAAA	AAAAAAAAAA	
1551	AAAAA	AAAAAGTACT	CTGCCTGTT	ACCACTGCTT	AATC GAATT C	

FIGURE 162

236/271

1 MVTVEEIRNA QRSNGPATIL AFGTATPSNC VTQADYPDYY FRITNSEHMT
51 DLKEKFKRCMC DRSMIKKRYM HLTEDFLKEN PNMCEYMAPS LDVRRDIVVV
101 EVPKLGKEAA KKAICEWGQP KSKITHLVFC TTSGVDMMPGA DYQLTKLLGL
151 KPSVKRLMMY QQGCFAGGTV LRLAKDLVEN NKNARVLVVC SEITAVTFRG
201 PSDTHLDSLV GQALFGDGAA AMIIGADPDL TVERPIFEIV SAAQTILPDS
251 DGAIDGHLRE VGLTFHLLKD VPGIISKNIE KSLVEAFAPI GINDWNSIFW
301 VAHPGGPAIL DQVEEKLHLK EEKLRSTRHV LSEYGNMSSA CVLFILDEMR
351 KRSKEEGMIT TGEGLEWGVL FGFGPGLTVE TVVLHSVPVQ G

FIGURE 163

237/271

pDH51TrCHSh sense

pDH51TrCHSh anti

FIGURE 164

238/271

FIGURE 165

239/271

FIGURE 166

240/271

1	GAATTC	ACTA	GTGATTAAAGC	AGTGGTAACA	ACGCAGAGTA	CGCGGGGGTG
51	ACTTGAT	CTA	GCAGTTATCA	AACACAACAG	TCTTCCACTT	GAGCTCTGTT
101	TCTCCAC	CATG	TCGAAGCTAG	TTTGCCTCAC	CGGCGGCAGC	GGATGCATCG
151	GTTCA	TGGCT	AGTCCATCTC	CTTCTCCTCC	CGGGCTACAC	TGTTCACGCC
201	ACCGT	CCAAA	ATCTCAATGA	TGAGAACGAA	ACGAAGCATC	TAGAACGCTCT
251	CGAAG	GAGCA	CAAACATAATC	TCCGTCTCTT	CCAGATCGAT	CTCCTTAAC
301	ACGAC	ACAAT	CCTCGCTGCT	GTCCGCGGTT	GCGTCGGAAT	TTTCCACCTC
351	GCTTC	CACCTT	GCACGTAGA	CAAAGTTCAT	GATCCTCAGA	AGGAGCTTTT
401	GGATC	CCTGCA	ATTAAAGGGA	CTTTGAATGT	GCTTACTGCA	GCTAAGGAAG
451	TAGGG	GTGAA	GCGTGTGGTT	GTTACCTCGT	CTGTCTCGGC	GATTACTCCT
501	AGTCC	TGATT	GGCCTTCTGA	TGTTGTTAAA	AGAGAGGATT	GTTGGACTGA
551	TGTTG	AAATAT	TGCAAGAAAA	AAGAGTTGTG	GTATCCGTTG	TCCAAAACAT
601	TGGCT	GAGAA	AGCTGCGTGG	GATTTTCCA	AAGAAAATGG	TTTGGATGTT
651	GTTGT	GGGTGA	ATCCCCGTAC	TGTGATGGGT	CCTGTTATTC	CACCACGGCA
701	TAATG	CAAGC	ATGCTCATGC	TTGTGAGACT	TCTTGAAGGC	TGCGCTGAAA
751	CATTG	GAAGA	CTATTTATG	GGATTGGTCC	ACTTCAAAGA	TGTAGCATTG
801	GCGCA	TATTT	TGGTGTATGA	GAACAAAGAA	GCATCTGGTA	GACATGTGTG
851	TGTTG	AAACT	ATCTCTCACT	ACGGTGATT	TGTGGCAAAA	GTTGCTGAAC
901	TTTAT	CCAGA	ATATAGTGT	CCTAGGATGC	AGCGAGATAC	GCAACCTGGA
951	TTGTT	GAGAG	CGAATGATGG	ATCAAAGAAG	CTCATAGATT	TGGGTTTGGGA
1001	ATTCA	TTCCA	ATGGAGCAAA	TTATCAAGGA	TGCTGTAGAG	AGTTTGAAGA
1051	ACAAAGG	GATT	CATTTCTTGA	ATGATGTTAC	TGTTCTTGG	AGAACCCCTAT
1101	AGTTACC	CAGA	GTATAGACTA	AATAATATAT	AGGTGATGGG	TCAGAGAATG
1151	AGTAC	TTATG	TCATGAGTTG	TGTCTGTATA	ATATGTTTC	TCAATTCTTA
1201	TATGT	AAAT	TGCTAATGTT	AACTTCATA	TTTATCAGCC	AGTATTGTTT
1251	TTTTA	ATAAA	ATATTGAAGC	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAGT
1301	ACTCT	CGTT	GTTACCACTG	CTTAATC GAA	TTC	

FIGURE 167

241/271

1 MSKLVCVTGG SGCIGSWLVH LLLLRGYTVH ATVQNLNDEN ETKHLEALEG
51 AQTNLRLFQI DLLNYDTILA AVRGCVGIFH LASPCTVDKV HDpqKELLDP
101 AIKGTLNVLT AAKEVGVKRV VVTSSVSAIT PSPDWPSDVV KREDCWTDVE
151 YCKKKELWYP LSktLAEKAA WDFSKENGLD VVVVNPGTVM GPViPPRHNA
201 SMLMLVRILLE GCAETFEDYF MGLVHFKDVA LAHILVYENK EASGRHVCVE
251 TISHYGDFVA KVAELYPEYS VPRMQRDTQP GLLRANdGSK KLIDLGLEFI
301 PMEQIIKDAV ESLKNKGFI

FIGURE 168

242/271

pDH51TrDFRd sense

pDH51TrDFRd anti

FIGURE 169

243/271

pPZP221:35S²TrDFRd sense

pPZP221:35S²TrDFRd anti

FIGURE 170

244/271**TrF3Ha****FIGURE 171**

245/271

1	GAATTC GATT	AAGCAGTGGT	AACAACGCAG	AGTACGCCGG	GACCACTCTA
51	TTTATTCTA	CTTAAACCTC	ACAAAAAATA	AACCACACAA	CACACAAACA
101	CCAAAAACAG	AGCACCGTTT	CCATCATCAA	ACAATGGCAC	CAGCCAAAAC
151	TCTAAGTTAT	CTCTCACAAAC	AAAACACTCT	CGAGTCAAGT	TTCGTTAGGG
201	AAGAAGATGA	GCGTCCAAAA	GTTGCCTACA	ATAACTTCAG	CAACGAGATT
251	CCAATCATTT	CTCTTGCTGG	AATTGATGAG	GTTGATGGTC	GTAGAACAGA
301	GATATGTAAC	AAGATTGTTG	AAGCTTGTGA	GAATTGGGGT	ATTTTTCAGG
351	TTGTTGATCA	TGGTGGTGT	ACAAAAACTG	TTTCTGAGAT	GACCCGTTTT
401	GCTAGAGAGT	TTTTGCTTT	GCCACCGGAA	GAGAACGCTCC	GGTTTGACAT
451	GTCCGGTGGT	AAAAAGGGTG	GTTTCATTGT	CTCTAGTCAT	CTTCAAGGAG
501	AAGCAGTGAA	GGATTGGAGA	GAGCTAGTGA	CATATTTC	ATACCCAATT
551	AAACAAAGAG	ATTATTCAAG	GTGGCCAGAC	AAGCCAGAAG	GATGGAAAGA
601	GGTAACAGAA	AAATACAGTG	AAAACCTAAT	GAATTAGCT	TGCAAGCTAT
651	TGGAAGTTTT	ATCAGAACGA	ATGGGTTTAG	AAAAAGAACG	TCTAACAAAA
701	GCATGTGTTG	ATATGGATCA	AAAAGTTGTT	ATAAATTATT	ACCCAAAATG
751	CCCTGAACCT	GACCTCACAC	TTGGCCTTAA	ACGTCACACT	GACCCCTGGCA
801	CAATTACTCT	TTTGCTTCAA	GATCAAGTTG	GTGGTCTTCA	AGCTACCAAA
851	GATAATGGTA	AGACGTGGAT	TACAGTTCAA	CCAGTTGAAG	GTGCTTTTGT
901	TGTTAATCTT	GGAGACCATG	GTCACTATCT	AAGTAATGGA	CGGTTCAAAA
951	ATGCTGACCA	TCAAGCAGTG	GTGAATTCGA	ACTACAGCCG	TTTATCAATA
1001	GCAACATTTC	AAAATCCAGC	TCCAGATGCA	ACTGTGTACC	CTTTGAAGAT
1051	TAGAGATGGT	GAAAAATCTG	TGTTGGAAGA	ACCAATCACT	TTTGCTGAAA
1101	TGTATAGAAG	GAAGATGACC	AAAGACCTG	AAATTGCTAG	GATGAAGAAG
1151	TTGGCTAAGG	AACAACAAC	TAGGGACTTG	GAGGAGAAC	AGACTAAATA
1201	TGAGGCCAAA	CCTTGAAATG	AGATCTTGC	TTAATTAAATT	AGTCTTAATT
1251	TAAATAATAA	ATTTTAGACT	TAATTACAT	ATAATAATT	TAATTTTTG
1301	TTCAATTAAAT	CTATGTTAA	TTTGTGCTTA	TTGTCCACGT	GTATTAAGCT
1351	GCTTGGTTGT	GTGTGCCCTG	GAGAATAATC	AATAATATTA	CATCTATGTT
1401	TAATTATAAA	AAAAAAAAAA	AAAAAAAAAA	GTATCTGCGT	TGTTACCACT
1451	GCTTAATCAC	TAGT GAATTC			

FIGURE 172

246/271

1 MAPAKTLSYL SQQNTLESSF VREEDERPKV AYNNFSNEIP IISLAGIDEV
51 DGRRTEICNK IVEACENWGI FQVVDHGVDT KLVSEMTRFA REFFALPPEE
101 KLRFDMSSGGK KGGFIVSSHQ QGEAVKDWR E LVTYFSYPIK QRDYSRWPDK
151 PEGWKEVTEK YSENLMNLAC KLLEVLSSEAM GLEKEALTKA CVDMQKVVI
201 NYYPKCPEPD LTGLKRHTD PGTITLLLQD QVGGLQATKD NGKTWITVQP
251 VEGAFVVNLG DHGHYLSNGR FKNADHQAVV NSNYSRLSIA TFQNPAPDAT
301 VYPLKIRDGE KSVLEEPITF AEMYRRKMTK DLEIARMKKL AKEQQLRDLE
351 ENKTKYEAKP LNEIFA

FIGURE 173

247/271

pDH51TrF3Ha sense

pDH51TrF3Ha anti

FIGURE 174

248/271

pPZP221:35S²TrF3Ha sense

pPZP221:35S²TrF3Ha anti

FIGURE 175

249/271**TrPALa****FIGURE 176**

250/271

1 **GAATTCGATT** AAGCAGTGGT AACAAACGCAG AGTACGCGGG GAGGAAATT
 51 ACAACTCAAA TATTCCCTTA ATTCTTCAT ATAATCATTT GAATTCCAT
 101 TCTCCCTAAA AATTCTATAG CTACCACATC ACACAAACATA ACAAAATTAAG
 151 AAATATTTAT TACTATATTA AGATATGGAA GTAGTAGCAG CAGCAATCAC
 201 AAAAACAAAT GGCAAGATTG ATTCAATTG CTTGAATCAT GCTAATGCTA
 251 ATAACATGAA AGTGAATGGT GCTGATCCTT TGAATTGGGG TGTGGCTGCT
 301 GAGGCAATGA AGGGAAAGTCA CTTGGATGAG GTGAAGCGTA TGGTGGAGGA
 351 ATACCGGAAA CCGGTTGTCC GTCTTGGTGG CGAGACACTA ACCATTTCTC
 401 AGGTGGCTGC CATTGCTGCA CACGATGGTG CAACGGTGGA GCTATCGGAA
 451 TCTGCTAGAG CCGGCCGTTAA GGCAAGCAGT GACTGGGTTA TGGAGAGTAT
 501 GAACAAAGGT ACCGACAGCT ACGGTGTCCC AACAGGGTTC GGCGCTACCT
 551 CGCACCGCCG AACCAAACAA GGTGGTGTCT TGCAGAAAGA GCTCATAAGG
 601 TTTTGAATG CTGGAATATT TGGAATGGA ACTGAGTCAA GCCACACACT
 651 ACCACACACA GCCACAAGAG CTGCCATGCT AGTGAGAAC AACACACTTC
 701 TCCAAGGCTA TTCAGGAATT AGATTGAAA TCTTAGAAC TATCACCAAG
 751 CTTCTTAACA ACAATGTCAC CCCATGTTA CCGCTTCGCG GTACAATCAC
 801 AGCTTCAGGA GATTTAGTCC CTCTTCTTA CATTGCTGGT TTACTAACCG
 851 GACGACCAAA TTCCAAGGCT CATGGACCTT CTGGAGAAAGT ACTTAATGCA
 901 AAACAAGCTT TTCAATCAGC TGGAAATCGAT GCCGAGTTCT TTGAATTACA
 951 ACCAAAAGAA GGCCTTGCCC TTGTTAACGG AACCGCTGTT GGTTCTGGTT
 1001 TAGCTTCTAT TGTTCTTTTG GAGGCTAATA TATTGGCGGT GTTGTCTGAA
 1051 GTTCTATCTG CAATTTCGCA TGAAGTTATG CAAGGGAAAGC CCGAATTAC
 1101 CGATCATTG ACACATAAGT TGAAACATCA CCCTGGTCAA ATTGAGGCTG
 1151 CTGCTATTAT GGAACACATT TTGGATGGGA GTGCTTATGT TAAAGACGCT
 1201 AAGAAGTTGC ATGAGATGGA TCCTTACAG AAGCCAAAAC AAGATAGATA
 1251 TGCACCTAGG ACTTCGCCAC AATGGCTTGG TCCCTTGATT GAAGTGATTA
 1301 GATTCTCTAC CAAGTCATT GAGAGAGAGA TCAACTCTGT CAATGACAAT
 1351 CCTTGATTG ATGTTCAAG GAACAAGGCT TTGCATGGTG GAAATTTC
 1401 AGGAACACCT ATCGGAGTAT CCATGGATAA TACACGTTG GCTCTTG
 1451 CAATTGGCAA ACTTATGTT GCTCAATTCT CTGAGCTTGT CAATGATTT
 1501 TACAACAATG GATTGCCATC AAATCTCTCT GCTAGTAGAA ATCCGAGCTT
 1551 GGATTATGGG TTCAAGGGAT CCGAAATTGC CATGGCTTCT TATTGTTCCG
 1601 AGTTGCAATA TCTTGCAAAT CCGGTTACAA CTCATGTCCA AAGTGC
 1651 CAACACAACC AAGATGTCAA CTCTTGGGT TTGATTCTT CTAGAAA
 1701 TTATGAAGCA ATTGAGATCC TTCAATTGAT GTCTTCCACA TTCTTGATTG
 1751 CACTTGTCA AGCAATTGAT TTAAGACATT TGGAGGAGAA TTTGAAA
 1801 TCGGTCAAAA ATACCGTAAG CCAAGTGGCC AAAAAGACAC TAACCATAGG
 1851 TGTCAATGGA GAACTTCATC CTTCAAGATT TTGTGAAAAA GACTTATTGA
 1901 AAGTGGTTGA TAGGAAACAT GTCTTGCCT ACATTGATGA TCCTTGTAGT
 1951 GCTACATACC CATTGATGCA AAAACTCAGG CAAGTACTAG TGGATCATGC
 2001 ATTGTTAAT GGAGAAAGTG AGAAGAATTG GAACACATCA ATCTTCCAAA
 2051 AGATTGCAAC TTTTGAGGAA GAGTTGAAAAA ACCTTGCCTA AAAGAGGTTG
 2101 AAAGTCAAG GATTGCATAT GAAAGTGGAA ATTCAACAAT TCCAAACAAG
 2151 ATCAATGGAT GCAGATCTTA TCCACTCTAC AATTTGTGA GAAAGGAGTT
 2201 GGGAACTGGT TTGCTAACTG GAGAAAATGT CATTTCACCG GGTGAAGAGT
 2251 GTGACAAACT ATTCACAGCT ATGTGTCAAG GAAAATCAT TGATCCTCTT
 2301 CTTGAATGCT TGGGAGAGTG GAACGGTGCT CCTCTTCCAA TTTGTTAACT
 2351 TTGATTGTTA GTTCATAAAA TGTTTATTT GTATTATCA TTTGTTATT
 2401 TGCAGTGTGTA GTAATAATGA TTAGGTGTTT TGTGCCTTAA ATGAAAAAAA
 2451 AAAAAAAAAA AAAAAAAA AAAAGTACTC TGCAGTGTGTTA CCACTGCTTA
 2501 ATCACTAGTG **AATTC**

FIGURE 177

251/271

1 MEVVAAAITK NNGKIDSFCL NHANANNMKV NGADPLNWGV AAEAMKGSHL
51 DEVKRMVEEY RKPVVRGLGGE TLTISQVAII AAHDGATVEL SESARAGVKA
101 SSDWVMESMN KGTDSYGVPT GFGATSHRRT KQGGALQKEL IRFLNAGIFG
151 NGTESSHTLP HTATRAAMLV RINTLLQGYS GIRFEILEAI TKLLNNNVTP
201 CLPLRGTTIA SGDLVPLSYI AGLLTGRPNS KAHGPSGEVL NAKQAFQSAG
251 IDAEFFELQP KEGLALVNGT AVGSGLASIV LFEANILAVL SEVLSAIFAE
301 VMQGKPEFTD HLTHKLKHHP GQIEAAAIME HILDGSAYVK DAKKLHEMDP
351 LQKPKQDRYA LRTSPQWLGP LIEVIRFSTK SIEREINSVN DNPLIDVSRN
401 KALHGGNFQG TPIGVSMDNT RLALASIGKL MFAQFSELVN DFYNNGLPSN
451 LSASRNPSLD YGFKGSEIAM ASYCSELQYL ANPVTTHVQS AEQHNQDVNS
501 LGЛИSSRKTY EAIEILQLMS STFLIALCQA IDLRHLEENL KNSVKNTVSQ
551 VAKKTLTIGV NGELHPSRFC EKDLLKVVDR EHVFAYIDDP CSATYPLMQK
601 LRQVLVDHAL VNGESEKNLN TSIFQKIATF EEELKNLCQK RLKVQGLHMK
651 VEIQQQTRS MDADLIHSTI L

FIGURE 178

252/271

pDH51TrPALa sense

pDH51TrPALa anti

FIGURE 179

253/271

pPZP221:35S²TrPAla sense

pPZP221:35S²TrPAla anti

FIGURE 180

254/271**FIGURE 181**

255/271

1	GAATTTCGATT	AAGCAGTGGT	AACAACGCAG	AGTACGCGGG	AGGAAATAAA
51	TTCATCATTG	TTCCTTATT	CCACCCAAC	ACAACATAAC	AAATACATT
101	CCTCTCCTCT	CATCACAAATT	ATTACTTTCT	ACACCCCCC	CTCTCAACTA
151	TTATTAACTA	ACATAATGGA	GGGAATTACC	AATGCCATG	CTGAAGCAAC
201	TTTTTGCCTG	ACCAAAAGTG	TTGGTGATCC	ACTCAACTGG	GGTGCAGCCG
251	CGGAGTCGTT	GATGGGGAGT	CATTGGATG	AGGTGAAGCG	TATGGTGGAG
301	GAATACCGTA	ATCCATTGGT	TAAAATTGGC	GGCGAGACGC	TTACCAATTGC
351	TCAGGTGGCT	GBAATTGCTT	CTCATGATAG	TGGTGTGAGG	GTGGAGCTGT
401	CTGAGTCCGC	CAGGGCCGGC	GTAAAGCGA	GTAGTGGTTG	GGTGATGGAC
451	AGCATGAACA	ATGGGACTGA	TAGTTATGGT	GTTACCACTG	GTTTCCGGCGC
501	CACCTCTCAC	CGGAGAACCA	AGCAGGGTGG	TGCCTTGCAG	AAGGAGCTAA
551	TTAGGTTTTT	GAATGCCGGA	ATATTGGCA	ATGGTACAGA	ATCTAACTGT
601	ACACTACCAC	ACACAGCAAC	CAGAGCTGCA	ATGCTTGTGA	GAATCAACAC
651	TCTTCTCAA	GGATATTCTG	GAATTAGATT	TGAAATTTC	GAAGCTATCA
701	CAAAGCTTCT	AAACAACAAAC	ATTACCCAT	GTTTACCACT	TCGTGGTACA
751	ATCACGGCTT	CCGGTGATCT	CGTTCCGCTT	TCCTACATTG	CCGGTTGTT
801	AACCGGTAGA	CCGAACCTCA	AAGCCGTTGG	ACCCTCCGGA	GAAATTCTCA
851	ATGCAAAAGA	AGCTTTCAA	CTTGCCGGCA	TTGGTTCTGA	GTTTTTGAA
901	TTGCAGCCAA	AAGAAGGTCT	TGCTCTGTT	AATGGTACTG	CTGTTGGTTC
951	TGGTTTAGCT	TCTATTGTT	TGTTTGAAGC	AAATGTACTA	GCTGTTTGT
1001	CTGAAGTTAT	GTCGGCGATT	TTCGCTGAAG	TTATGCAAGG	GAAACCAGAA
1051	TTCACTGATC	ATTGACTCA	TAAGTTGAA	CATCACCCCTG	GTCAAATTGA
1101	AGCTGCTGCA	ATTATGGAAC	ATATTGGA	TGGAAGTGCT	TATGTTAAAG
1151	CAGCTAAGAA	ATTACACGAA	ACCGATCCTT	TACAAAAGCC	GAAACAAGAT
1201	CGTTATGCAC	TTAGAACTTC	ACCTCAATGG	CTTGGTCCTT	TGATTGAAGT
1251	GATAAGATT	TCAACTAAGT	CAATTGAGAG	AGAAATTAAAC	TCTGTCAATG
1301	ATAACCTTT	GATTGATGTT	TCAAGGAACA	AGGCCATTCA	CGGTGGTAAT
1351	TTTCAAGGAA	CACCTATTGG	AGTTTCAATG	GATAACACAC	GTTTAGCTCT
1401	TGCTTCAATT	GGTAAACTCA	TGTTTGCTCA	ATTCTCTGAA	CTTGTAAATG
1451	ATTTTACAA	CAACGGGTTA	CCTCGAATC	TTACTGCTAG	TAGGAACCCA
1501	AGCTTGGATT	ACGGTTCAA	GGGATCGGAA	ATTGCCATGG	CTTCTTATTG
1551	TTCTGAGTTA	CAATATCTG	CTAATCCTGT	CACCACCCAT	GTCCAAAGTG
1601	CGGAGCAACA	CAATCAAGAT	GTAACTCTT	TGGGTTTGAT	TTCTTCAGA
1651	AAAACAAATG	AAGCTATTGA	GATCCTAAAG	CTCATGTCTT	CGACATTCT
1701	GATTGCACTT	TGTCAAGCAA	TTGATTTAAG	GCATTTGGAG	GAAAATCTGA
1751	GGAACACTGT	CAAGAACACG	GTAAGCCAAG	TAGCGAAGAG	AAACACTCACC
1801	ACCGGTGTTA	ATGGGAGACT	TCATCCTTCT	AGATTTGTG	AGAAAGATTT
1851	GCTCAAAGTT	GTTGATAGGG	AGTATGTATT	TGCCTATGTC	GACGATCCTT
1901	GTCTAGCTAC	ATACCCTTG	ATGCAAAAGT	TGAGACAAAGT	GCTTGTGGAT
1951	CATGCATTGG	TAATATGTA	TGGAGAGAAG	AATTGAAACA	CATCAATCTT
2001	TCAAAAGATT	GCAACTTTG	AGGATGAATT	GAAAGCTATC	TTGCCAAAGG
2051	AAGTTGAAAG	TACAAGAACT	GCATATGAA	ATGGACAATG	TGGAATTCA
2101	AACAAAGATTA	AGGAATGCAG	GTCTTATCCA	TTGTACAAGT	TTGTTAGAGA
2151	GGAGTTAGGA	ACCGCGTTGC	TAACCGGAGA	AAAAACGATA	TCGCTGGGCG
2201	AAGAGTGTGA	CAAATTGTT	ACAGTATGT	GCCAAGGTAA	AATTGTTGAT
2251	CCTCTTTGG	AATGCCCTGG	AGAGTGGAA	GGTGCTCTC	TACCAATATG
2301	TTAATTAGCA	GAATTAATAT	TTTCTTGT	GAAGTGATTT	CTTTATATAT
2351	TTGTAGTATA	CTATAGTAGT	TGCAATTGAGA	AGCAATTGGT	TTGTCTATAA
2401	GCCTATGGAA	AATGGCAAAA	CAATTTCCTG	CTCAAAGCAT	CGTTTATTAA
2451	GTTTCTTAA	AGTGTAAAG	GAACCTTTAA	TTGTTTTGT	AATAGAATT
2501	CATTTGTTG	CCACAACTT	GGGTGCAAAT	ATCACGTGAT	ACATGTGGTG
2551	TTTGATGTAA	ATGGTGTGTT	CTCAATTAA	AAATAGTGT	TCAGCCATGA
2601	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAGTAC	TCTGCGTTGT	TACCACTGCT
2651	TAATCACTAG	TGAATTTC			

FIGURE 182

256/271

1 MEGITNGHAE ATFCVTKSVG DPLNWGAAAE SLMGSHLDEV KRMVEEYRNP
51 LVKIGGETLT IAQVAGIASH DSGVRVELSE SARAGVKASS GWVMDSMNNG
101 TDSYGVTTGF GATSHRRTKQ GGALQKELIR FLNAGIFGNG TESNCTLPH
151 ATRAAMLVRI NTLLQGYSGI RFEILEAITK LLNNNITPCL PLRGTTIASG
201 DLVPLSYIAG LLTGRPNSKA VGPSGEILNA KEAFQLAGIG SEFFELQPKE
251 GLALVNGTAV GSGLASIVLF EANVLAVLSE VMSAIFAEVM QGKPEFTDHL
301 THKLKHHPGQ IEAAAIMEHI LDGSAYVKAA KKLHETDPLQ KPKQDRYALR
351 TSPQWLGPLI EVIRFSTKSI EREINSVNDN PLIDVSRNKA IHGGNFQGTP
401 IGVSMNDTRL ALASIGKLMF AQFSELVNDF YNNGLPSNLT ASRNPSLDYG
451 FKGSEIAMAS YCSELQYLAN PVTTHVQSAE QHNQDVNSLG LISSRKTNEA
501 IEILKLMSSST FLIALCQAID LRHLEENLRN TVKNTVSQVA KRTLTTGVNG
551 ELHPSRFCEK DLLKVVDREY VFAYVDDPCL ATYPLMQKLR QVLVDHALVN
601 ADGEKNLNNTS IFQKIAVFED ELKAILPKEV ESTRTAYENG QCGISNKIKE
651 CRSYPLYKFV REELGTALLT GEKTISLGEE CDKLFTAMCQ GKIVDPLLEC
701 LGEWNGAPLP IC

FIGURE 183

257/271

pDH51TrPALb sense

pDH51TrPALb anti

FIGURE 184

258/271

FIGURE 185

259/271**FIGURE 186**

260/271

1 **GAATTC**ACTA GTGATTAAGC AGTGGTAACA ACGCAGAGTA CGCGGGGAGG
 51 AAATAAATTTC ATCATTTGTC ATTATTTCCC ACCCAACACA ACATAACAAA
 101 TACATTATTTC TCTCCTCTGA TCACAATTAT TACTTTCTAC ACCCTCCCTCT
 151 CAACTATTAT TAACTAGCAT AATGGAGGGA ATTACCAATG GCCATGCTGA
 201 AACAACTTTTG TGCCTGACCA AAAGTGTGTT TGATCCACTC AACTGGGTG
 251 CAGCCGCGGA GTCGTTGACG GGGAGTCATT TGGATGAGGT GAAGCGTATG
 301 GTGGAGGAGT ACCGTAATCC GTTGGCTAAA ATTGGCGGCG AGACGCTTAC
 351 CATTGCTCAG GTGGCTGGAA TTGCTTCTCA TGATAGTGGT GTGAGGGTGG
 401 AGCTGTCCGA GTCCGCAAGG GCCGGCGTTA AGGCGAGTAG TGATTGGGTG
 451 ATGGATAGCA TGAACAAATGG GACTGTAGT TACGGTGTG CCACCGGTTT
 501 TGGTGCACC TCTCACCGGA GAACCAAGCA GGGTGGTGT TTGCAGAAGG
 551 AGCTAATTAG GTTTTGAAAT GCTGGAATAT TTGCGAATGG TACAGAATCT
 601 AACTGTACAC TACCAACACAGCAACTAGA GCTGCAATGC TTGTGAGAAT
 651 CAACACTCTT CTTCAAGGGT ACTCTGGTAT TAGATTGAA ATTTTGGAAAG
 701 CTATCACAAA GCTTCCAAAC AACAAACATTA CCCCATGTT ACCACCTCGT
 751 GGTACAATCA CGGCTTCGG TGATCTGTT CCGCTTCCCT ACATTGCCGG
 801 TTTGTTAACCGA GGAAGACCCA ACTCCAAAGC AGTTGGACCT TCCGGAGAAA
 851 TTTTGAGTGC TAAAGAAGCT TTTCAACTCG CCGGCATTGG TTCTGAGTTT
 901 TTTGAATTGC ACCAAAAAGA AGGTCTTGCT CTTGTTAATG GTACTGCTGT
 951 TGGCTCTGGT TTAGCTCTA TTGTTCTGTT TGAAGCAAAT GTACTAGCTG
 1001 TTTTATCCGA AGTTATGTCG GCGATTTTCG CTGAAGTTAT GCAAGGGAAA
 1051 CCGGAATTAA CCGATCATT GACTCATAAG TTGAAACATC ACCCTGGTCA
 1101 AATTGAAGCT GCTGCAATT TGGAACATAT TTTGGATGGA AGTGTCTATG
 1151 TTAAAGCAGC TAAGAAGTTA CACGAAACCG ATCCTTACA AAAACCGAAA
 1201 CAAGATCGTT ATGCACTTAG AACTTCACCT CAATGGCTTG GTCCTTGAT
 1251 TGAAGTGATA AGATTTCAA CCAAATCGAT TGAAAGAGAA ATTAACTCGG
 1301 TCAACGACAA CCCTTGATC GATGTTCAA GGAACAAAGGC CATTCATGGT
 1351 GGTAACCTTC AAGGAACACC TATTGGAGTT TCAATGGATA ACACACGTTT
 1401 AGCTCTGCT TCAATTGGTA AACTCATGTT TGCTCAATTG TCTGAACCTG
 1451 TTAATGATT T TACAACAAAC GGGTTGCCTT CGTATCTTAC TGCTAGTAGG
 1501 AACCCGAGCT TGGACTATGG TTTCAGGGG TCGGAAATTG CCATGGCTTC
 1551 GTATTGTTCC GAGTTACAAT ATCTTGCTAA TCCTGTCACC ACCCATGTCC
 1601 AAAGTGCCGA GCAACACAAAC CAAGATGTTA ACTCTTGGG TTTGATTCT
 1651 TCTAGAAAAAA CAAATGAAGC TATTGAGATT CTCAAGCTCA TGTCTTCCAC
 1701 TTTCTTGATT GCATTATGTC AAGCAATCGA CTTAAGGCAC TTGGAGGAAA
 1751 ATCTCAGGAA CACCGTCAAG AACACGGTAA GCCAAGTAGC GAAGAGAAC
 1801 CTCACCACCG GCGTCAACCG AGAACTTCAT TCTTCTAGAT TTTGTGAGAA
 1851 AGATTTGCTT AAAGTTGTTG ATAGGGAGTA TGTATTGCC TATGCCGACG
 1901 ATCCTTGCT AGCTACATAC CCTTTGATGC AAAAGTTGAG ACAAGTGCTT
 1951 GTGGATCATG CATTGGTAAA TGTGTGATGGA GAGAAGAATT TGAACACATC
 2001 AATCTTCAA AAGATTGCAA CTTTGAGGA TGAGTTGAAA GCTATTGTC
 2051 CAAAGGAGGT TGAAAGTACA AGAACTGCAT ATGAAAATGG ACAATGTGGA
 2101 ATTTCAAACA AGATTAAGGA ATGCAGGGTCT TATCCATTGT ACAAGTTGT
 2151 TAGAGAGGAG TTAGGAACCG CGTTGCTAAC CGGAGAAAA ACTATATCGC
 2201 CGGGCGAAGA GTGCGATAAA TTGTTCACAG CTATGTGCCA AGGTAAAATT
 2251 GTTGATCCTC TTATGGAATG CCTCGGAGAG TGGATGGTG CTCCTCTACC
 2301 AATATGTTAA TTAGCATAAT ATGTTTCTT TGAGAAGTGA TTACTTTATA
 2351 TATTTGTAGT ATACTATAGT AGTTCGATTG AGAAGAAATT GGTTTGTGTTA
 2401 TAAGCCTATG GAAAATGGCA AATCAATTTC CTGCTCAAAG CATCGTTAT
 2451 TAAGTTTCC TTAAAGTGGT AAGGAACCTT TAATTGTTT TGTAATAGAA
 2501 TTTCATTGTT TTGCCACAAAC TTTGGGTGCA AATATCACAT GATACATGTG
 2551 GTGTTTGATG TAAATGGTGT TTTTCAATA AATAAATAGT GTTCAACTA
 2601 AAAAAAAAAA AAAAAAAAAA AAAAAAAAG TACTCTGCGT TGTTACCACT
 2651 GCTTAATCGA ATTC

FIGURE 187

261/271

1 MEGITNGHAE TTFCVTKSVG DPLNWGAAAE SLTGSHLDEV KRMVEEYRNP
51 LAKIGGETLT IAQVAGIASH DSGVRVELSE SARAGVKASS DWVMDSMNNG
101 TDSYGVTTGF GATSHRRTKQ GGALQKELIR FLNAGIFGNG TESNCTLPH
151 ATRAAMLVRI NTLLQGYSGI RFEILEAITK LPNNNITPCL PLRGTTIASG
201 DLVPLSYIAG LLTGRPNNSKA VGPSGEILSA KEAFQLAGIG SEFFELQPKE
251 GLALVNGTAV GSGLASIVLF EANVLAVLSE VMSAIFAEVM QGKPEFTDHL
301 THKLKHHPGQ IEAAAIMEHI LDGSAYVCAA KKLHETDPLQ KPKQDRYALR
351 TSPQWLGPLI EVIRFSTKSI EREINSVNDN PLIDVSRNKA IHGGNFQGTP
401 IGVSMNDNTRL ALASIGKLMF AQFSELVNDF YNNGLPSYLT ASRNPSLDYG
451 FKGSEIAMAS YCSELQYLAN PVTTHVQSAE QHNQDVNSLG LISSRKTN
501 IEILKLMSSFLIALCQAID LRHLEENLRN TVKNTVSQVA KRTLTTGVNG
551 ELHSSRFCEK DLLKVVDREY VFAYADDPCL ATYPLMQKLR QVLVDHALVN
601 VDGEKNLNTS IFQKIATFED ELKAILPKEV ESTRTAYENG QCGISN
651 CRSYPLYKFV REELGTALLT GEKTISPGE CDKLFTAMCQ GKIVDPLMEC
701 LGEWNGAPLP IC

FIGURE 188

262/271

pDH51TrPALf sense

pDH51TrPALf anti

FIGURE 189

263/271

pPZP221:35S²TrPALf sense

pPZP221:35S²TrPALf anti

FIGURE 190

264/271**FIGURE 191**

265/271

1 **GAATTC**GATT AAGCAGTGGT AACAAACGCAG AGTACCGCGG ATAGTAGTAG
51 TTGAGAAAAA ATACACAAAT AAAGTAAACA CTATCATAGA AAGAGAGTCA
101 AAAATGGCTG AAGGAAAAGG AAGGGTTTGT GTTACTGGAG GAACAGGTTT
151 TCTTGGTTCA TGGATCATCA AGAGTCTTCT TGAAAATGGA TACTCTGTTA
201 ATACCACCTAT TAGAGCTGAT CCAGAACGTA AGAGGGATGT AAGCTTCCTA
251 ACAAAATCTAC CCGGCGCATC CGAAAGGCTA CATTTCCTCA ACGCCGATCT
301 AGACGACCCA GAGAGTTTCA ACGAAGCAAT TGAAGGTTGT GTCGGGATAT
351 TCCACACCGC TTCACCAATC GATTCGCCG TGAGTGAGCC AGAAGAAATA
401 GTGACAAAAA GAACAGTGGA TGGAGCATTG GGAATTAA AAGCATGTGT
451 GAATTCAAAG ACAGTGAAGA GATTTATTAA CACTTCAAGT GGTTCTGCTG
501 TTTCATTCAA TGGAAAAAAC AAAGATGTTT TGGATGAGAG TGATTGGAGT
551 GATGTTGATT TGCTTAGAAG TGTTAAACCA TTTGGTTGGA GTTATGGTGT
601 TTCAAAGACT TTGGCTGAGA AAGCAGTGCT TGAATTGGT CAACAAAATG
651 GGATTGATGT TGTTACTTTG ATTCTTCCTT TTATTGTTGG AAGTTTTGTT
701 TGTCTTAAGC TTCCTGATTG TGTTGAGAAA GCTCTTGTG TGGTACTAGG
751 CAAAAAGGAA CAAATTGGTA TTATAAGTTT CCACATGGTA CATGTGGATG
801 ATGTGGCTAG AGCACATATT TATCTACTTG AGAACCTCTGT TCCAGGAGGT
851 AGATATAATT GTTCACCATT CTTTGTATCT ATTGAAGAAA TGTCACAAC
901 TCTTCAGCC AAATATCCAG AATATCAAAT ACTATCAGTA GATGAGTTGA
951 AGGAAATCAA AGGTGCAAGG TTGCCAGATT TGAACTCGAA AAAGCTCGTG
1001 GACGCTGGTT TTGAGTTAA GTATAGTGTGTC GGTGATATGT TCGATGATGC
1051 GATTCAATGC TGCAAGGAAA AAGGCTATCT CTAAGTATGT GTTGAAAAA
1101 AATTCCATGA AGCTGAGAAA ACAATAATAT GCCTAAAATC AATGATGGCT
1151 AATGAAATGT ACAAGTTTAT GCATAAAGTT ATTTGTGATG AATCAAATAA
1201 TGAAATAATC GGTTCATTT TCCGAAAAAA AAAAAAAAAA AAAAAAAAAA
1251 AAAAGTACT CTGCGTTGTT ACCACTGCTT AATCACTAGT **GAATTC**

FIGURE 192

266/271

1 MAEGKGRVCV TGGTGFLGSW IIKSLLENGY SVNTTIRADP ERKRDVSFLT
51 NLPGASERLH FFNADLDDPE SFNEAIEGCV GIFHTASPID FAVSEPEEIV
101 TKRTVDGALG ILKACVNSKT VKRFIYTSSG SAVSFNGKNK DVLDESDWSD
151 VDLLRSVKPF GWSYGVSKTL AEKAVLEFGQ QNGIDVVTLI LPFIVGSFVC
201 PKLPDSVEKA LVLVLGKKEQ IGIISFHMVH VDDVARAHYV LLENPVPGGR
251 YNCSPFFVSI EEMSQLLSAK YPEYQILSVD ELKEIKGARL PDLNSKKLVD
301 AGFEFKYSVG DMFDDAIQCC KEKGYL

FIGURE 193

267/271

pDH51TrVRa sense

pDH51TrVRa anti

FIGURE 194

268/271

pPZP221:35S²TrVRa sense

pPZP221:35S²TrVRa anti

FIGURE 195

269/271

FIGURE 196

270/271

D

E

FIGURE 196 (cont)

271/271

FIGURE 197

SEQUENCE LISTING

<110> Agriculture Victoria Services Pty Ltd
AgResearch Limited

<120> Manipulation of flavonoid biosynthesis in plants

<130> M80393510

<150> PR8113

<151> 2001-10-05

<160> 336

<170> PatentIn version 3.1

<210> 1

<211> 636

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (11)..(11)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (17)..(17)

<223> Any nucleotide

<400> 1
gcttaaaaca ntgaaanttg accagtccca acaaagatct gaaacacata gctccccatt
60
ttttaacatt aaactaaaaa tatgtcggcc atcacccgcaa tccaaagtgcga gaacccttgaa
120
tttccggctg tgattacttc tccggccacc ggtaagtcat attttcttgg tggtgtcaggg
180
gagagaggtt tgactattga agggaaacttc atcaagttca ctgccatagg agtatatttg
240
gaagatgttag cagtggcttc acttgccact aaatggaagg gcaaattcctc tgaagagttg
300
360
cttgagaccc ttgacttcta cagagatatc atttcaggac catttgagaa gttgattcga
ggatcgaaga ttaggaaatt gagtggtcct gagtactcaa ggaaggtaa tgaaaactgt
420
480
gtggcacact taaaatctgt tgggacttat ggagatgcag aagttgaagc tatgcaaaaaa
tttggtaag cttcaagcc tattaatttt ccacctggtg cctctgtttt ttacaggcaa
540
tcacctgatg gaatattagg gcttagttc tctcaagatg caagtataacc agaaaaggaa
600
gctgcagtaa tagagaacaa gggagcttca tcggcg
636

<210> 2
<211> 185
<212> PRT
<213> Trifolium repens

<400> 2

Met Ser Ala Ile Thr Ala Ile Gln Val Glu Asn Leu Glu Phe Pro Ala
1 5 10 15

Val Ile Thr Ser Pro Ala Thr Gly Lys Ser Tyr Phe Leu Gly Gly Ala
20 25 30

Gly Glu Arg Gly Leu Thr Ile Glu Gly Asn Phe Ile Lys Phe Thr Ala
35 40 45

Ile Gly Val Tyr Leu Glu Asp Val Ala Val Ala Ser Leu Ala Thr Lys
50 55 60

Trp Lys Gly Lys Ser Ser Glu Glu Leu Leu Glu Thr Leu Asp Phe Tyr
65 70 75 80

Arg Asp Ile Ile Ser Gly Pro Phe Glu Lys Leu Ile Arg Gly Ser Lys
85 90 95

Ile Arg Glu Leu Ser Gly Pro Glu Tyr Ser Arg Lys Val Asn Glu Asn
100 105 110

Cys Val Ala His Leu Lys Ser Val Gly Thr Tyr Gly Asp Ala Glu Val
115 120 125

Glu Ala Met Gln Lys Phe Val Glu Ala Phe Lys Pro Ile Asn Phe Pro
130 135 140

Pro Gly Ala Ser Val Phe Tyr Arg Gln Ser Pro Asp Gly Ile Leu Gly
145 150 155 160

Leu Ser Phe Ser Gln Asp Ala Ser Ile Pro Glu Lys Glu Ala Ala Val
165 170 175

Ile Glu Asn Lys Gly Ala Ser Ser Ala
180 185

<210> 3
<211> 244
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (50)..(50)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (207)..(208)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (213)..(213)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (222)..(222)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (233)..(233)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (236)..(236)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (238)..(238)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (241)..(241)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (244)..(244)
<223> Any nucleotide

<400> 3
gcattaaaca ttgacanagt ccnaataaaaa aagatctgaa acacatagtn ccccatttt
60

4/390

taacattaaa ctaaaaatat gtcggccatc accgcaatcc aagtcgagaa ccttgaattt
120

ccggctgtgg ttacttctcc gcccacccgt aagtcatatt ttcttggtgg tgcaggggag
180

agaggtttga ctattgaagg aaacttnntc aanggcgctg gnatacgacc ctnnngnag
240

nagn

244

<210> 4
<211> 606
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (605)..(606)
<223> Any nucleotides

<400> 4
gnttgcgg tcccaacaaa gatctgaaac acatagcccc ccattttta acattaaact
60

aaaaatatgt ctgccatcac cgcaatccaa gtcgagaacc ttgaattccc ggccgtgatt
120

acttctccgg tcaacggtaa gtcatatttt cttgggtggtg caggggagag aggtttgact
180

attgaaggaa acttcatcaa gttcactgcc ataggagtat atttggaaaga tgttagcagtg
240

gcttcacttg ccactaaatg gaagggcaaa tcctctgaag agttgcttga gacccttgac
300

ttctacagag atatcatttc aggaccattt gagaagttga ttcgaggatc gaagattagg
360

gaatttgagtg gtcctgagta ctcaaggaag gttaatgaaa actgtgtggc acacttaaaa
420

tctgttggga cttacggaga tgcagaagtt gaagctatgc aaaaatttgt tgaagccttc
480

aagccttatta attttccacc tggtgccctt gtttttaca ggcaatcacc tcatggaaata
540

ttaggccta gtttctctca agatgcaagt ataccagaaa aggaagctgc agtaatagag
600

aacann

606

<210> 5

<211> 599
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<400> 5
ggatctgaaa cacatagtncc ccccttttaac attaaactaa aaatatgtcg gccatcacgg
60

caatccaagt cgagaacctt gaatttccag ctgtgattac ttctccggcc accggtaagt
120

catatttct tggtggtgca ggggagagag gtttgactat tgaaggaaac ttcataaagt
180

tcactgccat aggagtataat ttggaagatg tagcagtggc ttcacttgcc actaaatgga
240

agggtaaatc ctctgaggag ttgcttgaga ctcttgactt ctatagagac atcatttcag
300

gaccctttga aaagttgatt cgaggatcga agattaggaa attgagtggc cctgagtact
360

caaggaaggt taatgaaaac tgcggtggccc acttaaaatc tggtggact tatggagatg
420

ctgaagctga agctatgcaa aaatttggat aagccttcaa gcctattaat ttccacactg
480

gtgcctctgt tttttacagg caatcacctg atgaaatatt agggcttagt ttctctcaag
540

atgcaagttt accagaaaaag gaggctgcag taatagagaa caagggagct tcatacgccg
599

<210> 6
<211> 228
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>

```
<221> misc_feature
<222> (54)..(54)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (212)..(212)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (214)..(215)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (217)..(217)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (221)..(221)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (223)..(223)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (225)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (225)..(226)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (228)..(228)
<223> Any nucleotide

<400> 6
gngatctgaa aaacntagta cccattttaa nattaaacta aaaatatgtc ggcnatcacc
60

gcaatccaag tcgagaacct tgaatttcca gctgtgatta cttctccggc caccggtaag
120

tcatattttc ttgggtggtgc aggggagaga ggttgacta ttgaaggaaa cttcatcaag
180

ttcactgcc a taggagtata tttggaaagat gnannanggg ntncnnntn
228
```

<210> 7
<211> 589
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (589)..(589)
<223> Any nucleotide

<400> 7
cntttaantt gaccagtccn aacaaagatc tgaaacacat agcccccat ttttaacat
60
taaactaaaa atatgtctgc catcacggca atccaagtgc agaacacctga cttcccgccg
120
gtgattactt ctccggtaa cggttaagtca tattttcttg gtgggtgcagg ggagagaggt
180
ttgactattt aaggaaaactt catcaagttc actgccatag gagtataattt ggaagatgtt
240
gcagtggctt cacttgcac taaatggaag ggcaaattcct ctgaagagtt gcttcagacc
300
cttgacttct acagagatat catttcagga ccatttgaga agttgattcg aggatccaag
360
attaggaaat tgagtggtcc tgagtactca aggaaggta atgaaaactg tgtggcacac
420
ttaaaaatctg ttgggactta tggagatgca gaagttgaag ctatgcaaaa atttgttcaa
480
gccttcaagc ctattaattt tccacctggc gcctctgttt tttacaggca atcacctgat
540
ggaatattag ggcttagttt ctctcaagat gcaagtatac cagaaaagn
589

<210> 8
<211> 332
<212> DNA
<213> Trifolium repens

```
<220>
<221> misc_feature
<222> (29)..(29)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (206)..(206)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (313)..(313)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (326)..(326)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (331)..(331)
<223> Any nucleotide

<400> 8
ttaaaattga cacagtccca accttaaant tgaccnggtc ccaaacaaaag atctgaaaca
60
acatagcccc ccattttta acattaaact aaaaatatgt ctgccatcac cgcaatccaa
120
gtcgagaacc ttgaattccc ggcggtgatt acttcctccgg tcaacggtaa gtcataaaaa
180
cttgggtggtg caggggagag aggttngact attgaaggaa acttcatcaa gttcactgcc
240
ataggagtat atttggaaga tgttagcaggg gtttcacttg ccactaaatg gaagggcaga
300
tcctctgaag agngcttgag accctngact nc
332

<210> 9
<211> 78
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (37)..(37)
<223> Any amino acid
```

<220>
<221> MISC_FEATURE
<222> (73)..(73)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (77)..(77)
<223> Any amino acid

<400> 9

Met Ser Ala Ile Thr Ala Ile Gln Val Glu Asn Leu Glu Phe Pro Ala
1 5 10 15

Val Ile Thr Ser Pro Val Asn Gly Lys Ser Tyr Phe Leu Gly Gly Ala
20 25 30

Gly Glu Arg Gly Xaa Thr Ile Glu Gly Asn Phe Ile Lys Phe Thr Ala
35 40 45

Ile Gly Val Tyr Leu Glu Asp Val Ala Gly Ala Ser Leu Ala Thr Lys
50 55 60

Trp Lys Gly Arg Ser Ser Glu Glu Xaa Leu Arg Pro Xaa Thr
65 70 75

<210> 10
<211> 332
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (29)..(29)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>

```
<221> misc_feature
<222> (297)..(297)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (310)..(310)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (313)..(313)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (315)..(315)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (320)..(320)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (324)..(324)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (326)..(326)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (331)..(332)
<223> Any nucleotides

<400> 10
ttaaaaattga ccnagtcna accttaaant tgacccnggtc ccaaacaaga atctgaaaca
60

acatagcccc ccattttta acattaaact aaaaatatgt ctgccatcac cgcaatccaa
120

gtcgagaacc ttgaattccc ggccggtgatt acttctccgg tcaacggtaa gtcataattt
180

cttgggttgt caggggagag aggtttgact attgaaggaa acttcatcaa gttcactgcc
240

ataggagtat atttggaaaga tgttagcaggg gtttcacttg ccactaaatg gaagggnaga
300

tcctctgaan agngnttgan accnntngact nn
332
```

```
<210> 11
<211> 331
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (35)..(35)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (205)..(205)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (298)..(298)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (301)..(301)
<223> Any nucleotide

<400> 11
ttaanttgac acagtcccaa ccttaaantt gaccnggtcc caaacaaaga tctgaaacaa
60

catagcccc catttttaa cattaaacta aaaatatgtc tgccatcacc gcaatccaag
120

tcgagaacct tgaattcccg gcggtgatta cttctccggt caacggtaag tcataatttc
180

ttgggtggtgc aggggagaga ggttngacta ttgaaggaaa cttcatcaag ttcactgcca
240

taggagtata tttggaagat gtgcagggg cttcacttgc cactaaatgg aaggccanat
300

nctctgaaga gtgcttgaga cccttgactt c
331

<210> 12
<211> 186
<212> DNA
<213> Trifolium repens
```

```
<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (135)..(135)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (143)..(143)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (157)..(157)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (167)..(167)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (173)..(174)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (178)..(179)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (181)..(182)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (184)..(184)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (186)..(186)
<223> Any nucleotide

<400> 12
gcgttaaaat tgacccagtc cnaacaaaga tctgaaacac atagcccccc atttttaac
60

attaaactaa aaatatgtct gccatcacccg caatccaagt cgagaacctt gacttcccg
```

120

cggagattac ttctncgggg aangggaaagg gatattntct tggtggnngga ggnnaganng
180

nntngn
186

<210> 13
<211> 274
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<400> 13
gttagnagna gnatntcngg caccctttga aaagttgatt cgaggatcga agattaggga
60

attgagtggcact cctgagttact caaggaaggt taatgaaaac tgcggtggcac acttaaaatc
120

tgttgggact tatggagatg cagaagctga agctatgcaa aaatttggtg aagccttcaa
180

gcctattaat tttccacactg gtgcctctgt tttttacagg caatcacctg atggaatatt
240

aggggttagt attgccaatt cattttttt aact
274

<210> 14
<211> 94
<212> PRT
<213> Trifolium repens

<400> 14

Ala Pro Phe Glu Lys Leu Ile Arg Gly Ser Lys Ile Arg Glu Leu Ser
1 5 10 15

Gly Pro Glu Tyr Ser Arg Lys Val Asn Glu Asn Cys Val Ala His Leu
20 25 30

Lys Ser Val Gly Thr Tyr Gly Asp Ala Glu Ala Glu Ala Met Gln Lys
35 40 45

Phe Val Glu Ala Phe Lys Pro Ile Asn Phe Pro Pro Gly Ala Ser Val
50 55 60

Phe Tyr Arg Gln Ser Pro Asp Gly Ile Leu Gly Val Ser Ile Ala Asn
65 70 75 80

Ser Phe Phe Leu Thr Ile Leu Ile Arg Val Arg Phe Asp Cys
85 90

<210> 15

<211> 274

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (6)..(6)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (9)..(9)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (12)..(13)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (18)..(18)

<223> Any nucleotide

<400> 15

gttagnagna tnnttcngg caccctttga aaagttgatt cgaggatcga agatttaggga
60

attgagtggt cctgagtact caaggaaggt taatgaaaac tgcgtggcac acttaaaatc
120

tgttggact tatggagatg cagaagctga agctatgcaa aaatttggta aagccttcaa
180

gccttattaat tttccacctg gtgcctctgt ttttacagg caatcacctg atgaaatatt

240

aggggttagt attgccaatt cattttttt aact
274

<210> 16
<211> 264
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<400> 16
gnatnnttng gacccttga aaagttgatt cgaggatcga agattaggga attgagtgg
60

cctgagtaact caaggaaggt taatgaaaac tgcgtggcac acttaaaatc tgttggact
120

tatggagatg cagaagctga agctatgcaa aaatttggta aagccttcaa gcctattaat
180

tttccacctg gtgcctctgt ttttacagg caatcacctg atggaatatt aggggttagt
240

attgccaatt cattttttt aact
264

<210> 17
<211> 825
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (7)..(10)

<223> Any nucleotides

<220>
<221> misc_feature
<222> (13)..(14)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (487)..(488)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (507)..(507)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (545)..(545)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (579)..(579)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (654)..(654)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (716)..(716)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (719)..(719)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (725)..(725)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (738)..(738)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (762)..(762)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (787)..(787)
<223> Any nucleotide

<400> 17
ttnantnnnn ttnncgggca attacaacta cacaacacacct tctccattac catctatctt
60

ctactaagtt caacgagatc aatggcactt ctttcgtca ccgcgttgaa tatcgagaac
120

aatctattcc ctcttaccgt cacaccacccg ggatccacca acaatttctt ctcggcggt
180

gcaggagagc ggggtcttca aattcaagac aaatttgtca aattcaccgc tattgggttt
240

tatctacagg acattgctgt tccttacctc gccactaaat ggaagggtaa gactgctcaa
300

gagctaacgg aaactgttcc ttcttcagg gacatcgta caggtccatt tgagaaattt
360

atgcaggtga caatgatctt gccattgact gggcaacaat actcagagaa agtgtcagaa
420

aatttgttag ctatttgaa gtctttggg atttataccg acgaagaagc caaagcaatt
480

gagaagnntg ttctgtctt caaagangaa acattccac caggctcctc tatcctttc
540

acagnattac ccaaaggatt aggatcacta acgataagnt tctctaaaga tggatccatt
600

ccagagaccg agtctgcagt tatagagaat aagctactct cacaagctgt gctngagtcg
660

atgatagggg cacacgggtt ctcccctgca gcaaaacaga gttttggcca ccaggnanc
720

cgagnatttc aacgaggntg gctgatgcct agcaacttga tnatatcaac aaaacgaaaa
780

tgaaaagnct ttcttgcaat aaagaacaag cgaaaatttt atttt
825

<210> 18
<211> 230
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (163)..(163)
<223> Any amino acid

<220>
<221> MISC_FEATURE

<222> (188)..(188)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (209)..(210)
<223> Any amino acids

<220>
<221> MISC_FEATURE
<222> (212)..(212)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (216)..(216)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (224)..(224)
<223> Any amino acid

<400> 18

Met Ala Leu Pro Ser Val Thr Ala Leu Asn Ile Glu Asn Asn Leu Phe
1 5 10 15

Pro Pro Thr Val Thr Pro Pro Gly Ser Thr Asn Asn Phe Phe Leu Gly
20 25 30

Gly Ala Gly Glu Arg Gly Leu Gln Ile Gln Asp Lys Phe Val Lys Phe
35 40 45

Thr Ala Ile Gly Val Tyr Leu Gln Asp Ile Ala Val Pro Tyr Leu Ala
50 55 60

Thr Lys Trp Lys Gly Lys Thr Ala Gln Glu Leu Thr Glu Thr Val Pro
65 70 75 80

Phe Phe Arg Asp Ile Val Thr Gly Pro Phe Glu Lys Phe Met Gln Val
85 90 95

Thr Met Ile Leu Pro Leu Thr Gly Gln Gln Tyr Ser Glu Lys Val Ser
100 105 110

Glu Asn Cys Val Ala Ile Trp Lys Ser Leu Gly Ile Tyr Thr Asp Glu
115 120 125

Glu Ala Lys Ala Ile Glu Lys Val Ser Val Phe Lys Glu Thr Phe Pro
130 135 140

19/390

Pro Gly Ser Ser Ile Leu Phe Thr Leu Pro Lys Gly Leu Gly Ser Leu
145 150 155 160

Thr Ile Xaa Phe Ser Lys Asp Gly Ser Ile Pro Glu Thr Glu Ser Ala
165 170 175

Val Ile Glu Asn Lys Leu Leu Ser Gln Ala Val Xaa Glu Ser Met Ile
180 185 190

Gly Ala His Gly Val Ser Pro Ala Ala Lys Gln Ser Phe Gly His Gln
195 200 205

Xaa Xaa Arg Xaa Ile Gln Arg Xaa Trp Leu Met Pro Ser Asn Leu Xaa
210 215 220

Ile Ser Thr Lys Arg Lys
225 230

<210> 19
<211> 807
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (7)..(10)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (13)..(14)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (21)..(21)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<220>

<221> misc_feature
<222> (25)..(25)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (99)..(99)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (147)..(147)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (229)..(229)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (288)..(288)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (316)..(316)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (335)..(335)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (337)..(338)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (417)..(417)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (434)..(434)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (437)..(437)
<223> Any nucleotide

<220>

<221> misc_feature
<222> (486)..(487)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (506)..(506)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (544)..(544)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (561)..(561)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (578)..(578)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (625)..(625)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (653)..(653)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (672)..(673)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (682)..(683)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (685)..(685)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (690)..(690)
<223> Any nucleotide

<220>

<221> misc_feature
<222> (695)..(695)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (706)..(707)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (715)..(715)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (718)..(718)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (721)..(721)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (724)..(724)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (737)..(737)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (754)..(754)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (761)..(762)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (764)..(764)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (766)..(766)
<223> Any nucleotide

<220>

```
<221> misc_feature
<222> (775)..(775)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (782)..(782)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (784)..(784)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (786)..(786)
<223> Any nucleotide

<400> 19
ttnantnnnn ttnncggttt ntnanaacta cacaacacacct tctttttcc atttatcttc
60

tactaagttc aacgagatca atggcacttc cttctgtcnc cgctttgaat atcgagaaca
120

atctattccc tcctaccgtc acaccancgg gatccaccaa caatttcttc ctccggcggtg
180

caggagagcg gggtcttcaa attcaagaca aatttgtcaa attcaccgnt attgggtgtt
240

atctacagga cattgctgtt ctttacctcg ccactaaatg gaagggttag actgctcaag
300

agctaacgga aactgnccct ttcttcaggg acatngnnac aggtccattt gagaaattta
360

tgcaggtgac aatgatcttgc cattgactg ggcaacaata ctcagagaaa gtgtcanaaa
420

atttgttacc tatntgnaag tctttcgga tttataccga ccaagaagcc aaagcaattt
480

agaagnntgt ttctgtcttc aaagangaaa cattcccacc aggctcctct atcctttca
540

cagnattacc caaaggattt ngatcactaa cgataagntt ctctaaagat ggatccattc
600

cagagaccga gtctgcagtt atagngaata agctactctc acaagctgtg ctngagtcga
660

tgatagggc annccgggtgc tnnncntgcan caaancatag ttttgnncac caggntancc
720

nagntattca acgaggntgg ctgatgccta gcancttcat nntntnaaca aaacnaaaat
780

gnangncctt ttctgcattt aagaaca
807
```

<210> 20
<211> 266
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (14)..(15)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (52)..(52)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (200)..(200)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (211)..(211)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (229)..(229)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (241)..(242)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (244)..(244)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (247)..(247)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (254)..(254)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (256)..(256)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (266)..(266)
<223> Any nucleotide

<400> 20
gcaattacaa cctnncaaca ctttctcctt acntctatct tctactaagt tnaacgagat
60

caatggcaact tccttctgtg accgcttga atatcgagaa caatctattc ctcctaccg
120

tcacaccacc gggatccacc aacaatttct tcctcggcgg tgcaggagag cggggcttc
180

aaattcaaga caaatggtn aaattgaccg ntattggtgt ttatgtacng gacgttggtg
240

nngntncgt gggngntggc tggatn
266

<210> 21
<211> 797
<212> DNA
<213> Trifolium repens

<400> 21
ttacactcac aacaccttct ccattaccat ctatcttcta ctaagttcaa cgagatcaat
60

ggcacttcct tctgtcacccg cttgaatat cgagaacaat ctatcccctc ctaccgtcac
120

accaccggga tccaccaaca atttcttcct cggcggtgca ggagagcggg gtcttcaaat
180

tcaagacaaa tttgtcaaat tcaccgctat tggtgtttat ctacaggaca ttgctgtcc
240

ttacctcgcc actaaatgga agggtaagac tgctcaagag ctaacggaaa ctgttcctt
300

cttcagggac atcgttacag gtccatttga gaaatttatg caggtgacaa tgatctgcc
360

attgactggg caacaatact cagagaaagt gtcagaaaat tgtgttagcta tttggaagtc
420

tcttggatt tataccgacg aagaagccaa agcaatttag aagtttggtt ctgtcttcaa
480

agatgaaaca ttcccaccag gtcctctat ctttcaca gtattaccca aaggattagg
540

atcactaacg ataagttct ctaaagatgg atccattcca gagaccgagt ctgcagttat
600

agagaataag ctactctcac aagctgtgct tgagtcgatg ataggggcgc acggtgtctc

660

ccctgcagca aaacagagtt tggccaccag gttatccgag ttattcaacg aggttggtga
720

tgcttagcaac tgattatac aacaaaacga aaatgaaagt cctttctgca ataaagacca
780

agcgaaaaatt ttatTTT
797

<210> 22
<211> 468
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (436)..(436)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (442)..(442)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (450)..(450)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (453)..(455)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (458)..(458)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (464)..(464)
<223> Any nucleotide

<220>

```
<221> misc_feature
<222> (467)..(468)
<223> Any nucleotides

<400> 22
tcacattatt acaattacaa cttaacattn actcgtaaaa agagatnaat ggcacttcct
60
tctgtcaccg ctttgatat cgagaacaat ctattccctc ccaccgtcac accaccggga
120
tccactgaca acttcttcct cggcggtgca ggagagaggg gtcttcaaata ccaagacaaa
180
ttcgtcaaata tcaccgctat tggtgtttat ctgcaggaca ttgctgttcc ttacctcgca
240
gctaaatgga agggttaagac tgctcaagag ctaactcaaa ctgttcctt cttcagggac
300
atcgttacag gtccatttga gaaattttag caggtgacaa tgatcttgcc attgactggg
360
caacaatact cagagaaagt gtcagaaaaat tgtgttagcta tttggaagtc tcttggata
420
tatacggacg aacaanccaa ancaattgan aannntgnnt ctgnntnn
468

<210> 23
<211> 1130
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (7)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (53)..(53)
<223> Any nucleotide
```

```
<220>
<221> misc_feature
<222> (61)..(61)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (91)..(91)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (101)..(101)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (107)..(107)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (115)..(115)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (138)..(138)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (154)..(154)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (191)..(191)
<223> Any nucleotide

<400> 23
tattntnnga aaccacttgt gttgaagnncg tgaacttngc taccctccat atnatactat
60
nacctcttct gagacccttc atcatagaaa nacaacacac ntcagcnctt tgctntttct
120
acaacaacct ataactanac atattattt tatntattta gtatataatt gaaataaaact
180
gctaaagata nttattaaga tatggtgagt gtagctgaaa ttgcgaaggc tcagagggct
240
gaaggccctg caaccattt ggccattggc actgcaaatc cagcaaaccg tggtagcag
300
agcacatatc ctgatttcta cttcaaaaatc acaaacagtg agcacaagac tgagctcaaa
360
```

gagaaaattcc agcgcatgtg tgacaaatct atgatcaaga gcagatacat gtatctaaca
 420
 gaagagattt tgaaagaaaa tcctagtctt tgtgaataaca tggcaccctc attggatgct
 480
 aggcaagaca tggtggtggc tgaggtaccc agacttggga aggaggctgc agtgaaggct
 540
 attaaagaat ggggtcaacc aaagtcaaag attactcact taatctttg caccacaagt
 600
 ggttagaca tgcctggtgc tgattaccaa ctcacaaaac tcttaggitct tcgcccataat
 660
 gtgaagaggt acatgatgta ccaacaaggg tgcttgcag gtgggacggc gcttcgtttg
 720
 gcaaaagatt tggccgagaa caacaaaggt gctcgtgtgt tggttgtttg ttctgaagta
 780
 accgcagtca cattccgcgg ccccagtgac actcaattgg acagtcttgc tggacaagca
 840
 ctatttggag atggagctgc tgcaactcatt gttggctcag acccagtacc agaaattttag
 900
 aaaccaatat ttgagatggc atggaccgca cagacaatttgc ctccagacag tgaaggtgcc
 960
 attgatggtc accttcgtga agctggacta acatttcattc ttcttaaaga tgttcctggg
 1020
 attgtatcaa agaacattaa taaagcatttgc gtcgaggcatttccaaaccatttgc
 1080
 gattacaact caatcttttgc gattgcacac ccgggtggac ctgcaatttgc
 1130

<210> 24
 <211> 309
 <212> PRT
 <213> Trifolium repens
 <400> 24

Met Val Ser Val Ala Glu Ile Arg Lys Ala Gln Arg Ala Glu Gly Pro
 1 5 10 15

Ala Thr Ile Leu Ala Ile Gly Thr Ala Asn Pro Ala Asn Arg Val Glu
 20 25 30

Gln Ser Thr Tyr Pro Asp Phe Tyr Phe Lys Ile Thr Asn Ser Glu His
 35 40 45

Lys Thr Glu Leu Lys Glu Lys Phe Gln Arg Met Cys Asp Lys Ser Met
 50 55 60

Ile Lys Ser Arg Tyr Met Tyr Leu Thr Glu Glu Ile Leu Lys Glu Asn
 65 70 75 80

Pro Ser Leu Cys Glu Tyr Met Ala Pro Ser Leu Asp Ala Arg Gln Asp
85 90 95

Met Val Val Val Glu Val Pro Arg Leu Gly Lys Glu Ala Ala Val Lys
100 105 110

Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile Thr His Leu Ile
115 120 125

Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp Tyr Gln Leu
130 135 140

Thr Lys Leu Leu Gly Leu Arg Pro Tyr Val Lys Arg Tyr Met Met Tyr
145 150 155 160

Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys Asp
165 170 175

Leu Ala Glu Asn Asn Lys Gly Ala Arg Val Leu Val Val Cys Ser Glu
180 185 190

Val Thr Ala Val Thr Phe Arg Gly Pro Ser Asp Thr His Leu Asp Ser
195 200 205

Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala Leu Ile Val
210 215 220

Gly Ser Asp Pro Val Pro Glu Ile Glu Lys Pro Ile Phe Glu Met Val
225 230 235 240

Trp Thr Ala Gln Thr Ile Ala Pro Asp Ser Glu Gly Ala Ile Asp Gly
245 250 255

His Leu Arg Glu Ala Gly Leu Thr Phe His Leu Leu Lys Asp Val Pro
260 265 270

Gly Ile Val Ser Lys Asn Ile Asn Lys Ala Leu Val Glu Ala Phe Gln
275 280 285

Pro Leu Gly Ile Ser Asp Tyr Asn Ser Ile Phe Trp Ile Ala His Pro
290 295 300

Gly Gly Pro Ala Ile
305

<210> 25
<211> 663
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (7)..(8)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (53)..(53)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (61)..(61)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (97)..(97)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (128)..(128)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (138)..(139)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (148)..(148)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (151)..(151)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (163)..(163)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (171)..(171)
<223> Any nucleotide

<400> 25
tattnntnnga aaccacttgt gttgaagnncg tgaacttngc taccctccat atnatactat
60

nacctcttc gagacccttc atcatatatata tataacncat ctcacctcat acatatttcc
120

acaacaanct ataacttnnc ctgttatnta naccaattga gtntcaaatt nacatacata
180

gcgaaacata ctaaatacaa catggtagt gtttctgaaa ttgcagggc tcaaagggt
240

gaaggccctg caactatccc ggccattggc actgcaaattc cagcaaattcg tgttgaccag
300

agtacatatc ctgatttcta cttcaaaatc actaacatgt agcataagggt tgagcttaaa
360

gagaaatttc agcgcatgtg tgataaatct atgatcaaga gcagatacat gtatctaaca
420

gaagagattt tgaaagaaaa tcctagtctt tgtgaataaca tggcaccttc attggatgct
480

aggcaagaca tggtggtggc tgaggtaccc agacttggga aggaggctgc agtgaaagct
540

atcaaagaat ggggtcaacc aaagtcaaag attactcaact taatcttttgc caccacaagt
600

ggtgttgaca tgcctggc tgattaccaaa ctcacaaaac tcttaggtct tcggccatata
660

gtg
663

<210> 26
<211> 575
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (4)..(5)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (65)..(65)
<223> Any nucleotide

<400> 26
gnannacaac acacttcnac ctttgctttt ctacaacaac ttctatntaa acctttttt
60

agttnaaact tacactactg ctaaagatat atatcaacat ggttagtgtg tctgaaattc
120

gcaaggctca aagggctgaa ggccctgcaa ctatttggc cattggcact gcaaatccag
180

caaaccgtgt tgatcagagt acatatcctg atttctactt caaaatcaact aacagtgagc
240

ataaagttga gctcaaagag aaattccagc gcatgtgtga taaatctatg atcaagagca
300

gatacatgtc tctaacadaga gagattttga aagaaaatcc tagtctttgt gaatacatgg
360

cacccatttggatgctagg caagatatgg tggtggttga ggtacctaga cttggaaagg
420

aggctgcagt gaaggctatt aaagaatggg gtcaacccaa atctaagatt acacatttga
480

tctttgcac cacaagtggt gtagacatgc ctggtgctga ttaccagccc acaaaacttt
540

taggacttcg tccatatgtg aagaggtaca tgatg
575

<210> 27
<211> 607
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (10)..(10)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (29)..(30)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (55)..(55)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (57)..(57)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (75)..(76)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (80)..(81)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (92)..(95)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (103)..(104)
<223> Any nucleotides

<400> 27
cacnttagcn ctttgctntt tctacnacnn cttctgtcta aaccttttt gagtntnact
60

tgcatacata gaaannctan nctgctaaag annnntatca agnnatgggtt agtgtgtctg
120

aaattcgcaa ggctcaaagg gcagaaggcc ctgcaacaat cttggccatt ggcactgcaa
180

atccagcaaa ccgtgttgcat cagagcacat atcctgattt ctacttcaaa atcactaaca
240

gtgaacataa agttgagctc aaagagaaaat tccagcgcat gtgtgataaaa tctatgatca
300

agagcagata catgtatcta acagaagaga ttttgaaga aaatcctagt ctttgtgagc
360

acatggcacc ttcattggat gctaggcaag acatgggtt gggtgaggta cctagacttg
420

ggaaggaggc tgcagtgaaa gctataaaag aatgggtca accaaagtca aagattactc
480

acttaatctt ttgcaccaca agtgggtttt acatgcctgg tgctgattac caactcacaa
540

aactcttagg tcttcgccc tatgtgaaga ggtacatgat gtaccaacaa gggtgctttg
600

caggtgg
607

<210> 28

<211> 606

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (4)..(4)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (40)..(40)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (52)..(52)

<223> Any nucleotide

<400> 28

cacnttagcc tttgctttc tacactcttc tgtctaaacn tttttgagt tnacttgcat
60

acatagaaaac tactgctaaa gataatcaaga tggttagtgt gtctgaaatt cgcaaggctc
120

aaaggcaga aggccctgca acaatcttgg ccattggcac tgcaaattcca gcaaaccgtg
180

ttgatcagag cacatatcct gatttctact tcaaaatcac taacagtcaa cataaaagttg
240

agctcaaaga gaaattccag cgcatgtgtg ataaatctat gatcaagagc agatacatgt
300

atctaacaga agagatttg aaagaaaatc ctagtcttg tgagcacatg gcacccat

360

tggatgctag gcaagacatg gtggtggttg aggtacctag acttgggaag gaggctgcag
420

tgaaagctat aaaagaatgg ggtcaaccaa agtcaaagat tactcactta atctttgca
480

ccacaagtgg tggcacatg cctggtgctg attaccaact cacaactc ttaggtcttc
540

gcccatatgt gaagaggtaatgtatgtacc aacaagggtg ctgcaggt gggacggttc
600

ttcgtt
606

<210> 29
<211> 594
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (32)..(33)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (53)..(53)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (62)..(62)
<223> Any nucleotide

<400> 29
gcanacactc tatcccttcc tttcntata anntacagta ctngcaataa acnactgaat
60

tnaattacat aaaaatctta ctattaagat atggtgagtg tatctgaaat tcgtaaggct
120

caaaggccag aaggccctgc aaccatttta gccattggta ctgcaaatcc agcaaaccgt
180

gttagaccaga gcacatatcc tgatttctac ttcaaaatca ctaacagtga gcataaggtt
240

gagcttaaag agaaattcca ggcgcattgtgt gataaatcta tgatcaagag cagatacatg
300

tatctaacag aagagatttt gaaagaaaaat cctagtcttt gtgaatacat ggcacccatca
360

ttggatgcta ggcaagacat ggtggtggtt gaggtaccta gactaggaaa ggaggctgca
420

gtcaaggcca ttaaagaatg gggtaacca aagtcaaaga ttactcactt aatctttgca
480

accacaagtg gtgttagacat gcctggtgct gattaccaac tcacaaaact cttgggactt
540

cgtccatatg tgaagagggtt catgtatgtac caacaagggtt gttttgcagg aggc
594

<210> 30
<211> 708
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (52)..(52)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (706)..(706)
<223> Any nucleotide

<400> 30
acnaaaaacaa ctacgcata tataatata tatatagtct ataattgaaa gnaaaactgct
60

aaagatatta ttaagatatg gtgagtgttag ctgaaattcg caaggctcag agggctgaag
120

gccctgcaac cattttggcc attggcactg caaatccacc aaaccgtgtt gagcagagca
180

catatcctga tttctacttc aaaattacaa acagtgagca caagactgag ctcaaagaga
240

agttccaacg catgtgtgac aaatccatga tcaagagcag atacatgtat ctaacagaag
300

agattttgaa agaaaatcc agtctttgtg aatacatggc accttcattg gatgcttaggc
360

aagacatggt ggtggtttagt gtacctagac ttggaaagga ggctgcagtc aaggcatta
420

aagaatgggg tcaaccaaag tcaaagatta ctcacttaat ctttgccacc acaagtggtg
480

ttgacatgcc tggtgctgat taccaactca caaaactctt aggtcttcgc ccatatgtga
540

aaaggatat gatgtaccaa caaggttgtt ttgcaggagg cacggtgctt cgtttggcaa
600

aagattggc cgagaacaac aaagggtgctc gtgtgctagt tgtttgttct gaagtcacccg
660

cagtcacatt tcgcggcccc agtgatactc acttggacag tcttgntg
708

<210> 31
<211> 407
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(42)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (73)..(73)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (329)..(329)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (345)..(345)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (365)..(365)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (378)..(378)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (383)..(384)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (386)..(389)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (402)..(402)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (407)..(407)
<223> Any nucleotide

<400> 31
ccangggaaa caacacctcggn gcatantnta tatatatata nngtctataa ttgaaagaaa
60

ctactaaaga tanttattaa gatatggtga gtgttagctga aattcgcaag gtcagaggg
120

ctgaaggccc tgcaaccatt ttggccattg gcactgcaaa tccaccaaac cgtgttgagc
180

agagcacata tcctgatttc tacttcaaaa ttacaaacag tgagcacaag actgagctca
240

aagagaagtt ccaacgcatttgtgacaaat ccatgatcaa gagcagatac atgtatctaa
300

cagaagagat tttgaaagaa aatcctagnc tttgtgaata catgnacact tcattggatg
360

ctagncaaga catggtgncg cconnannnncc ccaccctccc cnccgcnn
407

<210> 32
<211> 483
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (21)..(21)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(37)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (388)..(388)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (408)..(409)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (444)..(444)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (449)..(449)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (453)..(453)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (476)..(476)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (479)..(479)
<223> Any nucleotide

<220>

<221> misc_feature
<222> (483)..(483)
<223> Any nucleotide

<400> 32
gnacaaaaaac actcgcatat ncatatatct ctctctngtc tataattgaa agaaactgct
60

aaagatatta ttaagatatg gtgagtgttag ctgaaattcg caaggctcag agggctgaag
120

gccctgcaac cattttggcc attggcactg caaatccacc aaaccgtgtt gagcagagca
180

catatcctga tttctacttc aaaattacaa acagtgagca caagactgag ctcaaagaga
240

agttccaacg catgtgtgac aaatccatga tcaagagcag atacatgtat ctaacagaag
300

agattttgaa agaaaatcct agtctttgtg aatacatggc accttcattt gatgctaggc
360

aagacatggg ggtggtttag gtacctanac ttgggaagga ggctgcannnc aaggccatta
420

aagaatgggg tcaaccaaag tcanagatna ctnacttaat cttttgcacc acaagnggng
480

ccn
483

<210> 33
<211> 586
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (42)..(42)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (73)..(73)
<223> Any nucleotide

<400> 33
gcacaaaaaac actncgctan ttatantata tataatntata tnatatatataa ttgaaagaaa
60

ctactaaaga tanttattaa gatatggtga gtgttagcaga aattcgcaag gctcagaggg
120

ctgaaggccc tgcaaccatt ttggccattg gcactgcaaa tccaccaaac cgtgttgagc
180

agagcacata tcctgatttc tacttcaaaa ttacaaacag tgagcacaag actgagctca
240

aagagaagtt ccaacgcattg tgtgacaaat ccatgatcaa gagcagatac atgtatctaa
300

cagaagagat tttgaaagaa aatcctagtc tttgtgaata catggcacct tcattggatg
360

ctagacaaga catgggtggtg gttgaggtac ctagacttgg gaaggaggct gcagtcaagg
420

ctatcaaaga atggggtcaa ccaaaatcta agattacaca tttgatcttt tgcaccacaa
480

gtgggtgtaga catgcctggt gctgattacc aactcacaaa actcttagga ctgcgtccat
540

atgtgaagag gtacatgatg taccaacaag ggtgctttgc aggtgg
586

<210> 34
<211> 574
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (18)..(19)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(31)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (34)..(35)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (45)..(46)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (51)..(51)
<223> Any nucleotide

<400> 34
gcnacaanct ntaacttnnc ctgttatntn nacnnattga gtntnnaatt nacatacata
60

gcggaacata ctaaatacaa catggtagt gtttctgaaa ttgcgaaggc tcaaaggc
120

gaaggccctg caactatccc ggcattggc actgcaaatc cagcaaaccg tggatc
180

agcacatatac ctgattttta cttcaaaatc actaacatgt agcataagg
240

gagaaatttc agcgcatgtg tgataaatct atgatcaaga gcagatacat
300

gaagagattt tgaaagaaaa tcctagtctt tgtgaataaca tggcaccc
360

aggcaagaca tggtggttgt tgaggtacct agacttggga aggaggctgc
420

atcaaagaat ggggtcaacc aaagtcaaag attactca
480

ggtagaca tgcctggagc tgattaccaa ctcacaaaac tcttaggtct
480

540

gtgaagaggt acatgatgta ccaacaagg tgct
574

<210> 35
<211> 604
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (32)..(32)
<223> Any nucleotide

<400> 35
aaaacaaccc cgcatattat atatatata angtctataa ttgaaagaaa ctgctaaaga
60

tattattaag atatggtgag tgtagctgaa attcgcaagg ctcagagggc tgaaggccct
120

gcaaccatTT tggccattgg tactgcaaAT ccaccaaACC gtgttgagCG gagcacatAT
180

cctgatttct acttcaAAAT tacAAACAGT gagcacaAGA ctgagctCAA agagaAGTC
240

caacgcATGT gtgacAAATC catgatCAAG agcagataCA tgtatctaAC agaAGAGATT
300

ttgaaagaaa atcctagtct ttgtgaatac atggcacctt cattggatgc taggcaagac
360

atgggtggTgg ttgaggtacc tagacttggg aaggaggctg cagtgaaAGC tatcaaAGAA
420

tggggtcaac caaAGTcaAA gattactCAC ttaatcttt gcaccacaAG tgggttagAC
480

atgcctggag ctgattacCA actcacAAA ctcttaggtc ttgcCCATA tgtgAAAAGG
540

tatATGATGT accaacaAGG ttgtttgca ggaggcacGG tgcttcgttt ggcaAAAGAT
600

ttgg
604

<210> 36
<211> 570
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(37)

<223> Any nucleotide

<400> 36
caacaaccnt aacttcctgt tattaaccat tgagttnaat tacatacata gcggaacata
60

ctaaatacaa catggtagt gttctgaaa ttgcgaaggc tcaaaggct gaaggccctg
120

caactatccc ggccatttgtt actgcaaatac cagcaaatacg tgttgaccag agtacatatac
180

ctgatttcta cttcaaaaatac actaacatgt agcataaggt tgagcttaaa gagaaatttc
240

agcgcatgtg tgataaaatct atgatcaaga gcagatacat gtatctaaca gaagagattt
300

tgaaagaaaa tcctagtcct tgtgaataca tggcaccttc attggatgct aggcaagaca
360

tgggtgttgt tgaggtacct agacttggga aggaggctgc agtgaaagct atcaaagaat
420

ggggtcaacc aaagtcaaag attactcaat taatctttt caccacaagt ggtgttgaca
480

tgcctggtgc cgattaccaa ctcacaaaac tcttaggtct tcgccccatat gtgaagaggt
540

acatgatgtc ccaacaaggg tgctttgcag
570

<210> 37

<211> 598

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (10)..(10)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (17)..(18)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (26)..(27)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (29)..(30)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (34)..(34)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (42)..(42)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (44)..(45)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (50)..(50)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (67)..(67)
<223> Any nucleotide

<400> 37
caacaacctn taacttnncc tgtnanntnn accnatttag tntnnaattn acatacatag
60

cggaacntac taaataacaac atggtagtg tttctgaaat tcgcaaggct caaaggcgt
120

aaggccctgc aactattttg gccattggta ctgcaaatcc agcaaatcgt gttgaccaga
180

gtacatatcc tgatttctac ttcaaaatca ctaacagtga gcataagggt gagcttaaag
240

agaaaattca ggcgtatgtgt gataaatcta tgatcaagag cagatacatg tatctaacag
300

aagagatttt gaaagaaaaat cctagtcattt gtgaatacat ggcacccatca ttggatgcta
360

ggcaagacat ggtgggtggtt gaggtaccta gacttggaa ggaggctgca gtgaaagcta
420

tcaaagaatg gggtaaccca aagtcaaaga ttactcactt aatctttgc accacaagtg
480

gtgttagacat gcctggagct gattaccaac tcacaaaact cttaggtctt cgcccatatg
540

tgaagaggtt catgatgtac caacaagggt gctttgcagg tgggacggtt cttcgaaa
598

<210> 38
<211> 609
<212> DNA
<213> Trifolium repens

<220>

```
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (32)..(32)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (34)..(34)
<223> Any nucleotide

<400> 38
ganaaaaaaca ctccgcata tataatata tntntatagt ctataattga aagaaaactgc
60

taaagatatt attaagatat ggtgagtgt a gctgaaattc gcaaggctca gagggctgaa
120

ggccctgcaa ccattttggc cattggcact gcaa atccac caaaccgtgt tgagcagagc
180

acatatcctg atttctactt caaaattaca aacagtgagc acaagactga gctcaaagag
240

aagtccaaac gcatgtgtga caaatccatg atcaagagca gatacatgt a tctaaca
300

gagattttga aagaaaatcc tagtcttgc gatacatgg cacccattt ggatgctagg
360

caagacatgg tggtggttga ggtacctaga cttggaaagg aggctgcagt caaggccatt
420

aaagaatggg gtcaacccaaa gtcaaagatt actcaactt a tctttgcac cacaagtgg
480

gttgacatgc ctgggtgtga ttaccaactc acaaaactct taggtcttcg cccatatgt
540

aaaaggtata tcatgtacca acaagggtgt tttgcaggag gcacggtgct tcgtttggca
600

aaagatttg
609

<210> 39
<211> 390
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(37)
```

<223> Any nucleotide

<220>
<221> misc_feature
<222> (97)..(97)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (334)..(334)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (345)..(345)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (349)..(349)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (353)..(353)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (363)..(363)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (366)..(366)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (369)..(369)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (371)..(371)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (376)..(376)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (380)..(380)

<223> Any nucleotide

<220>

<221> misc_feature
<222> (390)..(390)

<223> Any nucleotide

<400> 39

aacaaccnat aacttcctgt tattaaccat tgagttnaat tacatacata gcggaacata
60

ctaaatacaa catggtagt gtttctgaaa ttgcgcangc tcaaaggct gaaggccctg
120

caactatattt ggccatttgtt actgcaaatc cagcaaatcg tgttgaccag agtacatatc
180

ctgatttcta cttcaaaatc actaacagtg agcataaggt tgagcttaaa gagaatttc
240

agcgcatgtg tgataaatct atgatcaaga gcagatacat gtatctaaca gaagagattt
300

tgaaagaaaa tcctagtctt tgtgaataca tggcacccat attgnatgnt agncaagaca
360

tgntgntgnc ngaggnaccn agacttgccn
390

<210> 40

<211> 561

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature
<222> (15)..(16)

<223> Any nucleotide

<220>

<221> misc_feature
<222> (37)..(38)

<223> Any nucleotides

<220>

<221> misc_feature
<222> (69)..(69)

<223> Any nucleotide

<220>

<221> misc_feature
<222> (485)..(485)

<223> Any nucleotide

<220>

<221> misc_feature
<222> (507)..(507)

<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (511)..(511)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (520)..(520)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (530)..(530)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (543)..(543)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (554)..(554)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (557)..(558)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (561)..(561)
<223> Any nucleotide

<400> 40
aaaaaacaac ctacnngcat attatatata tatatanngt ctataattga aagaaaactac
60

taaagatant tattaagata tggtgagtgt agctgaaatt cgcaaggctc agagggctga
120

aggccctgca accattttgg ccattggcac tgcaaatcca ccaaaccgtg ttgagcagag
180

cacatatcct gatttctact tcaaaattac aaacagttag cacaagactg agctcaaaga
240

gaagattccaa cgcatgtgtg acaaattccat gatcaagagc agatacatgt atctaacaga
300

agagattttg aaagaaaatc ctagtctttg tgaatacatg gcaccttcatttggatgctag
360

acaagacatg gtggtggttg aggtacctag acttggaaag gaggctgcag tcaaggctat
420

caaagaatgg ggtcaaccaa aatctaagat tacacatttg atcttttgcacccaaatgg
```

480

tgtanacatg cctggtgctg attaccnact ngcaaaaactn ttaggacttn gcccataatgt
540

gangaggcgc gtgntgncc n
561

<210> 41
<211> 543
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (1)..(2)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (14)..(15)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (31)..(31)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (42)..(42)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (48)..(48)
<223> Any nucleotide

<400> 41
nnaacctata actnnccctn ttatntanac ncattgagtn tnaaattnac atacatagcg
60

gaacatacta aataacaacat ggttagtggt tctgaaattc gcaaggctca aagggctgaa
120

ggccctgcaa ctatttggc cattggtaact gcaaatccag caaatcgtgt tgaccagagt
180

acatatcctg atttctactt caaaatcact aacagtgagc ataagggttga gcttaaagag
240

aaatttcagc gcatgtgtga taaatctatg atcaagagca gatacatgtt tctaacaagaa
300

gagatttga aagaaaatcc tagtctttgt gaatacatgg cactttcatt ggatgctagg
360

caagacatgg tggtggttga ggtacctaga cttgggaagg aggctgcagt gaaagctatc
420

aaagaatggg gtcaacccaa gtcaaagatt actcacttaa tctttgcac cacaagtgg
480

gttgacatgc ctggtgctga ttaccaactc acaaaaactct taggtcttcg cccatatgtg
540

aag
543

<210> 42
<211> 437
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (21)..(21)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(31)

<223> Any nucleotides

<220>
<221> misc_feature
<222> (35)..(36)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(42)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (54)..(54)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (59)..(59)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (373)..(373)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (388)..(388)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (394)..(394)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (407)..(408)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (434)..(434)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (437)..(437)

<223> Any nucleotide

<400> 42

ggntaaccaa ccntanactt ncctgttatn nctnnanat nntacataca tagncagcna
60

aacaaagata tcaacatatg gtttgtttt ctgaaattcg taaggctcaa agggcagaag
120

gccctgcaac tattttggcc attggtaactg caaatccagc aaaccgtgtt gatcagagta
180

catatcctga tttctacttc aaaatcacta acagttagca taaagtttag ctcaaagaga
240

aattccagcg catgtgtgat aaatctatga tcaagagcag atacatgtat ctaacagaag
300

agatttgaa agaaaatcct agtctttgtg aatacatggc accttcattt gatgttaggc
360

aagatatatggt ggncgttgag gtacctanac ttgnaaagga ggctgcnnntg aaggctatta
420

aagaatgggg ccancn
437

<210> 43

<211> 607

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (13)..(13)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (18)..(18)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (23)..(23)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (29)..(29)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (32)..(32)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (35)..(35)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (66)..(66)
<223> Any nucleotide

<400> 43
caacaaaaac acntcgcnat atntatatna tnttngtcta taattgaaag aaactgctaa
60

agatanttat taagatatgg tgagtgttagc tgaaattcgc aaggctcaga gggctgaagg
120

ccctgcaacc attttggcca ttggcactgc aaatccacca aaccgtgttg agcagagcac
180

atatcctgat ttctacttca aaattacaaa cagtgagcac aagactgagc tcaaagagaa
240

gttccaacgc atgtgtgaca aatccatgat caagagcaga tacatgtatc taacagaaga
300

gattttgaaa gaaaatccta gtctttgtga atacatggca ctttcattgg atgctaggca
360

agacatggtg gtgggtgagg tacctagact tgggaaggag gctgcagtga aagctatcaa
420

agaatggggt caaccaaagt caaagattac tcacttaatc ttttgcacca caagtggtgt
480

agacatgcct ggagctgatt accaactcac aaaactctta ggtcttcgcc catatgtgaa
540

aaggatataatg atgtaccaac aaggttgttt tgcaggaggc acggtgcttc gtttggcaaa
600

agatttg
607

<210> 44
<211> 581
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (29)..(29)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (64)..(64)
<223> Any nucleotide

<400> 44
aacactncgc natattntat atatatatnt atngtctata attgaaagaa actgctaaag
60

atanttatta agatatggtg agtgttagctg aaattcgcaa ggctcagagg gctgaaggcc
120

ctgcaaccat tttggccatt ggcactgcaa atccacccaaa ccgtgtttag cagagcacat
180

atcctgattt ctacttcaaaa attacaaaca gtgagcacaa gactgagctc aaagagaagt
240

tccaaacgcat gtgtgacaaa tccatgatca agagcagata catgtatcta acagaagaga
300

tttgaaaga aaatcctagt ctttgtaat acatggcacc ttcattggat gctaggcaag
360

acatggtggt ggttgaggtt cctagacttg ggaaggaggc tgcagtcaag gccattaaag
420

aatgggtca accaaagtca aagattactc acttaatctt ttgcaccaca agtggtgttg
480

acatgcctgg tgctgattac caactcacaa aactcttagg tcttcgcccc tatgtaaaaa
540

ggtatatgat gtaccaacaa ggttgtttt caggaggcac g
581

<210> 45
<211> 588
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (9)..(10)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (16)..(16)
```

<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(28)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (32)..(33)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (63)..(63)
<223> Any nucleotide

<400> 45
aaacaaccnn ccgcantatn tatannnnta tnngtcataa ttgaaaagaaa ctgctaaaga
60

tanttattaa gatatggtga gtgttagctga aattcgcaag gctcagaggg ctgaaggccc
120

tgcaaccatt ttggccatttgc gcactgcaaa tccaccaaac cgcggttgc agagcacata
180

tcctgatttc tacttcaaaa ttacaaacag tgagcacaag actgagctca aagagaagtt
240

ccaacgcatttgtgacaaat ccatgatcaa gagcagatac atgtatctaa cagaagagat
300

tttggaaagaa aatcctagtc tttgtgaata catggcacct tcattggatg cttaggcaaga
360

catgggtggt gttgaggtac ctagacttgg gaaggaggct gcagtcaagg ctatcaaaga
420

atggggtaa ccaaaatcta agattacaca tttgatcttt tgcaccacaa gtgggttaga
480

catgcctggt gctgattacc aactcacaaa actcttggga cttcgatccat atgtgaagag
540

attcatgatg taccaacaag gctgctttgc aggtgggacg gttcttcg
588

<210> 46
<211> 613
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature

<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(13)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (17)..(18)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (20)..(22)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (24)..(24)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(27)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (29)..(29)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (50)..(50)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (60)..(60)
<223> Any nucleotide

<400> 46
caacncntcg cnntatnnntn nntntnnntng tctataattg aaagaaaactn ctaaaagatan
60

ttattaagat atgggtgagtg tagctgaaat tcgcaaggct cagagggctg aaggccctgc
120

aaccattttg gccattggca ctgcaaatcc accaaaccgt gttgagcaga gcacatatcc

180

tgatttctac ttcaaaatta caaacagtga gcacaagact gagctcaaag agaagttcca
240

acgcatgtgt gacaaatcca tcatcaagag cagatacatg tatctaacag aagagatttt
300

gaaaagaaaat cctagtcattt gtgaatacat ggcacccatca ttggatgcta ggcaagacat
360

ggtgtgggtt gaggtaccta gacttggaa ggaagctgca gtcaaggcca taaaagaatg
420

gggtcagcca aagtcaaaga ttactcaattt aatctttgc accacaagtg gtgttgacat
480

gcctggagct gattaccaac tcacaaaact cttaggtctt cgcccatatg tgaaaaggta
540

tatgatgtac caacaagggtt gtttgcagg aggcacggtg cttcgtttgg caaaagattt
600

ggccgagaac aac
613

<210> 47
<211> 544
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(21)
<223> Any nucleotides

<400> 47
ccnatnacct tcctgttatn ncttacatat actacataca tagcaggagc aaagatatca
60

acatatggtt actgtttctg aaattcgcaa ggctcaaagg gctgaaggcc ctgcaaccat
120

tttggccatt ggtactgcaa atccagcaaa ccgtgttgat cagagtacat atcctgattt
180

ctactcaaa atcactaaca gtgagcataa ggttgagctc aaggagaaat tccagcgcatt
240

gtgtgacaaa tctatgatca agagcagata catgtatcta acagaagaga ttttggaaaga
300

aaatccctagt ctttgtgaat acatggcacc ttcattggat gctaggcaag atatggtggt
360

cgtttaggta cctagactgg gaaaggaagc tgcagtgaag gctattaaag aatgggtca
420

accaaagtca aagattactc acttaatctt ttgcactaca agtgggttag acatgcctgg
480

tgctgattac cagctcacaa aactcttagg tcttcgccc tatgtgaaga ggtatatgtat
540

gtat
544

<210> 48
<211> 555
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(5)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (21)..(22)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (513)..(513)
<223> Any nucleotide

<400> 48
accnnatnac ntactgttat nncttacata tactacatag caggactgca aaattcaagt
60

atcaacatat ggttactgtt tctgaaattc gcaaggctca aagggtctgaa ggccctgcaa
120

ccatTTTggc cattggtaCT gcaaATCCAG caAAACCGTGT tgATCAGAGT acATATCCTG
180

atTTCTACTT caAAATCACT AACAGTgAGC ATAAGGTTGA GCTCAAGGAG AAATTCCAGC
240

gcATGTGTGA TAAATCTATG ATCAAGAGCA GATACATGTA TCTAACAGAA GAGATTTGA
300

aagaaaatcc tagtctgtgt gagtacatgg cacccattt ggtatgctagg caagacatgg
360

tttgtggttga ggtacctaga cttggaaagg aggctgcagt caaggccatt aaagaatggg
420

gtcaacccaa gtcaaagatt actcacttaa tctttgcac cacaagtggt gtagacatgc
480

ctggtgctga ttaccaactc acaaaactct tangtcttcg tccatacgtg aagagggaca
540

tgatgtacca acaag
555

<210> 49
<211> 570
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (58)..(58)
<223> Any nucleotide

<400> 49
acncntcgct atntatttat atatntagtc tataattgaa agaaaactgct aaagatantt
60

attaagatat ggtgagtgtat gctgaaattt gcaaggctca gagggctgaa ggccctgcaa
130

ccatttggc cattggcact gcaaattccac caaacccgtgt tgagcagagc acatatcctg
180

atttctactt caaaattaca aacagtgagc acaagactga gctcaaagag aagttccaac
240

gcatgtgtga caaatccatg atcaagagca gatacatgtat tctaaccagaa gagattttga

300

aagaaaaatcc tagtctttgt gaatacatgg caccttcatt ggatgctagg caagacatgg
360

tggtggttga ggtacctaga cttgggaagg aggctgcagt caaggccatt aaagaatggg
420

gtcaacccaaa gtcaaagatt actcaactaa tctttgcac cacaagtggt gttgacatgc
480

ctggtgctga ttaccaactc acaaaaactct taggtcttcg cccatatgtg aaaaggtata
540

tgatgtacca acaagggttgt tttgcaggag
570

<210> 50
<211> 546
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (35)..(35)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (49)..(49)
<223> Any nucleotide

<400> 50
actatnacta ctgtttactt acatntactc atagnnggact gcaagtatna gtataacata
60

tggttactgt ttctgaaatt cgcaaggctc aaagggtctga aggccctgca accattttgg
120

ccattggta c tgcaa atcca gcaa accgtg ttgatcagag tacatatcct gatttctact
180

tcaaaaatcac taacagttaga cataagggttg agctcaagga gaaattccag cgcatgtgtg
240

ataaaatctat gatcaagagc agatacatgt atcta acaga agagat ttttg aaagaaaaatc
300

c tagtctgtg tgagtacatg gcacccat tggatgcttag gcaagacatg gttgtgggttg
360

aggtaacctag acttggaaag gaggctgcag tcaaggccat taaagaatgg ggtcaaccaa
420

agtcaaagat tactcactta atctttgca ccacaagtgg tgttagacatg cctggtgctg
480

attaccaact cacaaaactc ttaggtcttc gtccatacgt gaagaggtac atgatgtacc
540

aacaag
546

<210> 51
<211> 582
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (34)..(34)
<223> Any nucleotide

<400> 51
acctacccitc ctgttatnct tnaattcata catngcagca aacaaagata taacatatgg
60

ttagtgtatc tgaaattcgc aaggctcaaa gggcagaagg ccctgcaact attttggcca
120

tttgtactgc aaatccagca aaccgtgtt atcaaagtac atatcctgat ttctacttca
180

aaatcactaa cagtgagcat aaggttgagc tcaaagagaa attccagcgc atgtgtgata
240

aatctatgat caagagcaga tacatgtatc caacagaaga gatTTTgaaa gaaaatccta
300

gtctttgtga atacatggca ctttcattgg atgctagaca agacatggtg gtgggtgagg
360

tacctagact tggaaaggag gctgcagtga aggccattaa agaatgggt caacaaaaat
420

ctaagattac acatTTgatc ttttgcacca caagtgggt agacatgcct ggtgctgatt
480

accagctcac aaaactctta ggtcttcgtc catatgtcaa aaggttatatg atgtaccaac
540

aagggtgctt tgcaggtggg acgggtcttc gtttggccaa gg
582

<210> 52
<211> 649
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (21)..(21)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (24)..(24)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (45)..(45)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (80)..(81)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (238)..(239)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (469)..(469)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (578)..(578)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (588)..(588)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (600)..(600)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (610)..(610)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (612)..(612)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (618)..(618)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (620)..(620)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (626)..(626)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (637)..(637)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (640)..(640)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (649)..(649)
<223> Any nucleotide

<400> 52
acnacttcctt gttatcactt nccanannatta catacatagn cagcnnaaaca aagatatcaa
60

catatggtta gtgttatctgn nattcgcaag gctcaaagggg cagaaggccc tgcaactatt
```

120

66/390

ttggccattg gtactgcaaa tccagcaaac cgtgttgate aaagtacata tcctgatttc
180

tacttcaaaa tcactaacag tgagcataag gttgagctca aagagaaatt ccagcgcnng
240

tgtgataaaat ctatgatcaa gagcagatac atgtatctaa cagaagagat tttgaaagaa
300

aatccctagtc tttgtgaata catggcacct tcattggatg ctagacaaga catggtggtg
360

gttgaggta ctagacttgg aaaggaggct gcagtgaagg ccattaaaga atgggtcaa
420

ccaaaatcta agattacaca tttgatctt tgcaccacaa gtggtgtana catgactggt
480

gctgattacc agctcacaaa actcttaggt cttcgccat atgtgaaaag ggatatgatg
540

taccaacaag ggtgctttgc aggtgggacc gtgcttcntt tggccaanga tttggccan
600

aacaacaaan gngctcgngn gttggntggt tggctnaan tcaccgcan
649

<210> 53
<211> 521
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<400> 53
tnntngtcnta ttgaagaaac tgctaagatt tttaagatat ggtgagtgt a gctgaaattc
60

gcaaggctca gagggctgaa ggccctgcaa ccattttggc cattggcact gcaaattccac
120

caaaccgtgt tgagcagagc acatatcctg atttctactt caaaattaca aacagtgagc
180

acaagactga gctcaaagag aagttccaac gcatgtgtga caaatccatg atcaagagca
240

67/390

gatacatgt a tctaacagaa gagat tttga aaga aatcc tagt ctttgt gaata catgg
300

cac tt catt ggat gctagg caag acatgg tgg tgg tga ggtac ct taga ctt ggg aagg
360

agg ctgc agt gaa agct atc aa aga atgg gtca accaaa gtca a agt act cacttaa
420

tctttgcac caca agt ggt gtag acatgc ctgg agctga tt acca actc acaa aactct
480

taggtcttcg cccat atgtg aaa aggtata tgatgtacca a
521

<210> 54
<211> 506
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (354)..(354)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (356)..(356)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (368)..(368)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (376)..(376)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (378)..(378)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (386)..(386)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (434)..(434)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (469)..(469)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (484)..(484)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (491)..(491)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (503)..(503)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (506)..(506)
<223> Any nucleotide

<400> 54
gngctaaaga tattattaag atatggtgag tgttagctgaa attcgcaagg ctcagagggc
60

tgaaggccct gcaaccattt tggccattgg cactgcaa at ccaccaaacc gtgttgagca
120

gagcacatat cctgatttct acttcaaa at tacaaacagt gagcacaaga ctgagctcaa
180

agagaagttc caacgcattgt gtgacaaatc catgatcaag agcagataca tgtatctaac
240

agaagagatt ttgaaagaaa atcctagtct ttgtgaatac atggcacctt cattggatgc
300

taggcaagac atgggtggtgg ttgaggtacc tagacttggg aaggaggctg cagnnaggc
360

cattaaanaa tgggnncnac caaagncaa gattactcac ttaatcttt gcaccacaag
420

tggtgctgac atgnctggtg ctgattacca actcacaaaa ctcttaggnc ttccccata
480

tgtaaaaagg natatgatgc ccncan
506

<210> 55
<211> 504
<212> DNA
<213> Trifolium repens

```
<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(11)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (53)..(53)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (374)..(374)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (395)..(395)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (431)..(431)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (466)..(467)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (473)..(473)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (504)..(504)
<223> Any nucleotide
```

<400> 55
gtncataann ntnttaagn aatggtgagt gtagctgaat tcgcaggctc agnaggctga
60
aggccctgca accatttgg ccattggcac tgcaaatcca ccaaaccgtg ttgagcagag
120
cacatatcct gatttctact tcaaaattac aaacagttag cacaagactg agctcaaaga
180
gaagttccaa cgcatgtgtg acaaatccat gatcaagagc agatacatgt atctaacaga
240
agagattttg aaagaaaatc cttagtctttg tgaatacatg gcacccat tggatgctag
300
gcaagacatg gtgggtggttg aggtacctag acttgggaag gaggctgcag tcaaggccat
360
taaagaatgg ggttaaccaa agtggaaagat tactnactta atctttgca ccacaagtgg
420
tgttgacatg nctggtgctg attaccaact cacaactc ttaggnnttg gcncatatgt
480
gaaaaggct atgatgcacc aacn
504

<210> 56
<211> 782
<212> DNA
<213> Trifolium repens

<400> 56
gataagatata tattaagata tggtgagtgt agctggaaatt cgcaaggctc agagggctga
60
aggccctgca accatttgg ccattggcac tgcaaatcca ccaaaccgtg ttgagcagag
120
cacatatcct gatttctact tcaaaattac aaacagttag cacaagactg agctcaaaga
180
gaagttccaa cgcatgtgtg acaaatccat gatcaagagc agatacatgt atctaacaga
240
agagattttg aaagaaaatc cttagtctttg tgaatacatg gcacccat tggatgctag
300
gcaagacatg gtgggtggttg aggtacctag acttgggaag gaggctgcag tgaaagctat
360
caaagaatgg ggtcaaccaa agtcaaagat tactnactta atctttgca ccacaagtgg
420
tgttagacatg cctggagctg attaccaact cacaactc ttaggtcttc gcccataatgt

gaaaaggatata atgatgtacc aacaagggttg ttttgcagga ggcacgggtgc ttcgtttggc
480
aaaagatttg gccgagaaca acaaagggtgc tcgtgtgtt gttgtttgtt ctgaagtac
540
aaaagatttg gccgagaaca acaaagggtgc tcgtgtgtt gttgtttgtt ctgaagtac
600

71/390

tgcagttaca ttccgtggcc cgagtgacac tcacttggac agtcttggta gacaaggcatt
660

gtttggagat ggagcagctg cacttatcgt tggttctgat ccagtgccag aaattgagaa
720

accaaatatTTT gagatggTTT ggactgcaca aacaattgct ccagacagtG aaggtgccat
780

tg
782

<210> 57
<211> 597
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(10)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (12)..(13)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(20)
<223> Any nucleotides

<400> 57
tnaagatann tnntnagann tggtagtgtt agcagaaatt cgcaaggctc agagggctga
60

aggcccctgca accatTTTgg ccattggcac tgcaaatcca ccaaaccgtg ttgagcagag
120

cacatatcct gatttctact tcaaaattac aaacagttag cacaagactg agctcaaaga
180

gaagttccaa cgcatgtgtg acaaattccat gatcaagagc agatacatgt atctaacaga
240

agagattttg aaagaaaatc ctgtctttg tgaatacatg gcacccat tggatgttag
300

acaagacatg gtgggtggttg aggtacctag acttgggaag gaggctgcag tcaaggctat
360

caaagaatgg ggtcaaccaa aatctaagat tacacatttg atcttttgc ccacaagtgg
420

tgttagacatg cctggtgctg attaccaact cacaaaaactc ttaggacttc gtccatatgt
480

gaagaggtac atgatgtacc aacaagggtg ctttgcaggt ggggcggggtc ttcgtttggc
540

taaagatttg gccgagaaca acaaagggtgc tcgtgtgtt gttgtttgtt ctgaagt
597

<210> 58
<211> 590
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<400> 58
ggntcanagg gctgaaggcc ctgcaacctt ttggccgttg gcactgcaaa tccgcaaacc
60

gtgtttagca gagcacatat cctgatttct acttcaaaat tacaacagt gagcacaaga
120

ctgagctcaa agagaagttc caacgcgtgt gtgacaaatc catgatcaag agcagataca
180

tgtatctaac agaagagatt ttgaaagaaa atcctagtct ttgtgaatac atggcacctt
240

cattggatgc tagacaagac atgggttgtt ttgaggtacc tagacttggg aaggaggccg
300

cagtcaaggc tatcaaagaa tggggtcaac caaatctaa gattacacat ttgatcttt
360

gcaccacaag tgggttagac atgcctggtg ctgattacca actcacaaaa ctcttaggac
420

ttcgccata tgtgaagagg tacatgatgt accaacaagg gtgctttgca ggtggacgg
480

ttcttcgttt ggctaaagat ttggccgaga acaacaaagg tgctcgtgtg ttgggttgg
540

gttctgaagt aactgcagtc acattccgtg gcccgagtga cactcacttg
590

<210> 59
<211> 618
<212> DNA

73/390

<213> Trifolium repens

<220>

<221> misc_feature

<222> (13)..(13)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (15)..(15)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (41)..(41)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (58)..(58)

<223> Any nucleotide

<400> 59

aaggccctgc aancntttt ggccttggta ctgcaaatcc ngcaaatcgt gttgaccnga
60gtacatatcc tgatttctac ttcaaaatca ctaacagtga gcataagatt gagcttaaag
120agaaatttca gcgcatgtgt gataaatcta tgcataagag cagatacatg tatctaacag
180aagagatttt gaaagaaaat cctagtctt gtgaatacat ggcacccatca ttggatgcta
240ggcaagacat ggtggtggtt gaggtaccta gacttggaa ggaggctgca gtgaaagcta
300tcaaagaatg gggtaaacca aagtcaaaga ttactcactt aatctttgc accacaagtg
360gtgttgacat gcctggtgct gattaccaac tcacaaaact ctttaggtctt cgcccatatg
420tgaagaggtt catgatgtac caacaagggt gctttgcagg tgggacggtt cttcggttgg
480ccaaggattt ggccgagaac aacaaaggtg ctcgtgtgtt ggttgtttgc tctgaagtaa
540ccgcagtcac attccgcggc cccagtgaca ctcatttggc cagccttggc ggacaagcac
600tatggaga tggagctg
618

<210> 60

<211> 619

<212> DNA

<213> Trifolium repens

<220>
<221> misc_feature
<222> (13)..(14)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (39)..(39)
<223> Any nucleotide

<400> 60
ggccctgcaa ccnnntttgg ccttggtaact gcaaatccng caaatcgtgt tgaccagagt
60

acataatcctg atttctactt caaaatcact aacagtgagc ataagggtga gcttaaagag
120

aaatttcagc gcatgtgtga taaatctatg atcaagagca gatacatgttga tctaacaagaa
180

gagattttga aagaaaaatcc tagtctttgt gaatacatgg caccttcatt ggatgctagg
240

caagacatgg tggtggttga ggtacctaga cttgggaagg aggctgcagt gaaagctatc
300

aaagaatggg gtcaacccaa gtcaaagatt actcacttaa tctttgcac cacaagtgg
360

gttgacatgc ctggtgctga ttaccaactc acaaaaactct taggtcttcg cccatatgtg
420

aagaggtaca ttagtgtacca acaagggtgc tttgcaggtg ggacggttct tcgtttggcc
480

aaggatttgg ccgagaacaa caaaggtgct cgtgtgttgg ttgtttgttc tgaagtaacc
540

gcagtcacat tccgcggccc cagtgacact catttggaca gccttgggttgg acaaggacta
600

tttggagatg gagctgctg
619

<210> 61
<211> 559
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (27)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (559)..(559)
<223> Any nucleotide

<400> 61
ataaggctga gcttaaagag aaatttnngc gcatgtgtga taaatctatg atcaagagca

60

gatacatgt a tctaacagaa gagatttga aagaaaatcc tagtctttgt gaatacatgg
120

cacccatttggatgctagg caagacatgg tggtggttga ggtacctaga cttgggaagg
180

aggctgcagt gaaagctatc aaagaatggg gtcaacccaa gtcaaagatt actcacttaa
240

tctttgcac cacaagtggt gtagacatgc ctggagctga ttaccaactc acaaaaactct
300

taggtcttcg cccatatgtg aagaggtaca tgatgtacca acaagggtgc tttcaggtg
360

ggacgggtct tcgtttggcc aaggatttgg ccgagaacaa caaaggtgct cgtgtgttgg
420

ttgttgttgc tgaagtaacc gcagtcacat tccgcggccc cagtgacact cattggaca
480

gtcttgttgg acaagcacta ttccggagatg gagctgctgc actcattgtt ggctcagacc
540

cagtaccaga aattgagan
559

<210> 62

<211> 553

<212> DNA

<213> Trifolium repens

<400> 62

atcaagagca gatacatgt a tctaacagaa gagatttga aagaaaatcc tagtctgtgt
60

gagttacatgg cacccatttggatgctagg caagacatgg tggtggttga ggtacctaga
120

cttggaaagg aggctgcagt caaggccatt aaagaatggg gtcaacccaa gtcaaagatt
180

actcacttaa tctttgcac cacaagtggt gtagacatgc ctggagctga ttaccaactc
240

acaaaaactct taggtcttcg tccatacgtg aagaggtaca tgatgtacca acaagggtgc
300

tttgcaggtg ggacgggtct tcgtttggcc aaggatttgg ccgagaacaa caaaggtgct
360

cgtgtgttgg ttgttgttgc tgaagtcacc gcagtcacat tccgcggccc tagtgacact
420

catttggaca gtcttgttgg acaagcacta ttccggagatg gagctgctgc tctcattgtt
480

ggttctgatc cagttaccaga aattgagaag ccaatatttg agatggatg gaccgcacag
540

acaatttgctc cag
553

<210> 63
<211> 591
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (35)..(35)
<223> Any nucleotide

<400> 63
gcttnaagaa tggggacnac cnnaatctaa gantncacat ttgatctttt gcaccacaag
60
tggtgttagac atgcctggtg ctgattacca gtcacaaaaa ctcttaggtc ttcccccata
120
tgtgaagagg tatatgatgt atcaacaagg ttgctttgca ggaggcacgg tgcttcgttt
180
ggctaaagat ttggccgaga acaacaaaagg tgctcgatgt ctagttgttt gttctgaagt
240
aacagcagtc acattcccgcg gtccaaagtga cactcacttg gacagtcttg ttggacaagc
300
actattcggta gatggagctg ctgctctcat tggatgtca gaccctgtac cagaaatcga
360
gaaacctata tttgagatgg tatggaccgc acagacaatt gctccggaca gtgaagggtgc
420
cattgtatgtt caccttcgtg aagctggact aacatttcat cttctttaag atgttcgtgg
480
gattgtatca aagaacatta ataaagcatt ggtcgaggct ttccaaaccat taggaatttc
540
tgattacaac tcaatctttt ggattgcaca cccgggtgga cctgcaattc t
591

<210> 64
<211> 634
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<400> 64
tcttcgncna gctggacnaa cattntgct tcttaaagat gttcctgaga ttgtctcaaa
60
gaacatttgat aaggcattgg ttgaggcatt ccaaccatta aacatctctg attacaattc
120
aatcttttgg attgctcatc caggtggtcc tgcaattcta gaccaagttg agataaagt
180
gggccttaaaa cctgaaaaaaaaa tgaaggccac cagagatgta cttagtgaat atggtaacat
240
gtcaagtgc a tggattgt tcacatcttgc tgagatgca aagaaatcg ctgaaaatgg
300
actgaaaaacc acaggagaag gacttgactg gggtgtgttgc tttggatttg gaccaggact
360
taccattgaa actgttgttc tacatagtgt ggctatatgc gaatgcgaga cttgattgtt
420
ttgtattgttgc ttgtattgttgc ttgtattact ttatcttgc cttgaatttc catttaacaa
480
taaatatggc gttcaataag taccatcgtt gttaaaataa tatatcggtt atagctatta
540
tttttagtgtc tggttttttt tactaaacta tatttttattt tagtatttgc tattgatttg
600
aaaaataat tgccttta actgaaaaaaaaaaa
634

<210> 65
<211> 132
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (3)...(3)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (6)...(6)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (9)...(9)
<223> Any amino acid

<400> 65

Leu Arg Xaa Ala Gly Xaa Thr Phe Xaa Leu Leu Lys Asp Val Pro Glu
1 5 10 15

Ile Val Ser Lys Asn Ile Asp Lys Ala Leu Val Glu Ala Phe Gln Pro
20 25 30

Leu Asn Ile Ser Asp Tyr Asn Ser Ile Phe Trp Ile Ala His Pro Gly
35 40 45

Gly Pro Ala Ile Leu Asp Gln Val Glu Ile Lys Leu Gly Leu Lys Pro
50 55 60

Glu Lys Met Lys Ala Thr Arg Asp Val Leu Ser Glu Tyr Gly Asn Met
65 70 75 80

Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu Met Gln Lys Lys Ser
85 90 95

Ala Glu Asn Gly Leu Lys Thr Thr Gly Glu Gly Leu Asp Trp Gly Val
100 105 110

Leu Phe Gly Phe Gly Pro Gly Leu Thr Ile Glu Thr Val Val Leu His
115 120 125

Ser Val Ala Ile
130

<210> 66
<211> 491
<212> DNA
<213> Trifolium repens

```
<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (429)..(429)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (452)..(452)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (468)..(468)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (480)..(480)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (482)..(482)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (486)..(486)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (488)..(488)
<223> Any nucleotide
```

<220>
<221> misc_feature
<222> (491)..(491)
<223> Any nucleotide

<400> 66
tcttcgnncna gctggacnaa catttntgct tcttaaagat gttcctgaga ttgtctcaaa
60

gaacatttgat aaggcattgg ttgaggcatt ccaaccatta aacatctctg attacaattc
120

aatcttttgg attgctcatc caggtggtcc tgcaattcta gaccaagttg agataaagtt
180

gggcttaaaa cctgaaaaaaaa tgaaggccac cagagatgta cttagtgaat atggtaacat
240

gtcaagtgc a tgtgtattgt tcacatcttgc tgagatgaga aagaaatcg ggaaatgg
300

actaaaaacc acaggagaag gacttgactg gggtgtgttgc ttggatttg ggcccgact
360

taccattgaa actgttgttc tacatagtgt ggctatatgc gaatgagaga ctgttgc
420

ttttatttgc ttgttattact ttaaatcttgc gntgaacttc catttaanaa taagtatgg
480

gntcantntg n
491

<210> 67
<211> 363
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<400> 67
gagatgcaca agaaatcgcc tnaaaatggc ctgaaaacca caggagaagg acttgactgg
60

ggtgtgttgt ttggatttgg accaggactt accattgaaa ctgttgc acatagtgt
120

gctatatgag aatgcgagac ttgattgtt tgtattgtat tgtattgtat tgtattactt
180

ttaatcttgc ttgaatttcc attaacaat aaatatggag ttcaataagt accatcagt
240

ttaaaaataat atatcgtaa tagctattat ttttagtgc gtttctttt actaaactat
300

attttatattt agtatttgct attgatttgc aataaaatatt gtcctctaa ctgaaaaaaaa
360

aaa

<210> 68
<211> 363
<212> DNA
<213> Trifolium repens

<400> 68
gagatgccta agaaaatcggc tcaaaatgga ctgaaaacca caggagaagg acttgactgg
60

ggtgtgttgt ttggatttgg accaggactt accattgaaa ctgttgttct acatagtgtg
120

gctatatgag aatgcgagac ttgattgttt tgtattgtat tgtattgtat tgtattactt
180

ttaatcttgc ttgaatttcc attaacaat aaatatggag ttcaataagt accatcagtg
240

ttaaaaataat atatcgtaa tagtatttat ttttagtgtct gtttctttt actaaactat
300

attttatttt agtatttgct attgatttga aataaatatt gtcctcttaa ctgaaaaaaaa
360

aaa
363

<210> 69
<211> 897
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<400> 69
gnttaatct gtgtgcata aaattnctt gcnatagaaa accatacaca tttgatcttg
60

caaagaagaa atatggaga cgaaggata gtgagaggtg tcacaaagca gacaaccct
120

ggaaaggcta ctatattggc tcttgcaag gcattccctc accaacttgt gatgcaagag
180

tathtagttg atggttatcc tagggacact aattgtgaca atcctgaact taagcagaaa
240

cttgctagac tttgtaagac aaccacggta aaaacaaggt atgttgttat gaatgaggag
300

atactaaaga aatatccaga acttgggttc gaaggcgct caactgtaaa acaacgttta
360

gagatatgta atgaggcagt aacacaaatg gcaattgaag cttcccaagt ttgcctaaag
420

aattgggtta gatccttatac ggacataact catgtggttt atgtttcatc tagtgaagct
480

agattacccg gtggtgacct atacttgtca aaaggactag gactaaaccc taaaattcaa
540

agaaccatgc tctatttctc tggatgctcg ggaggcgtag ccggccttcg cgttgcgaaa
600

gacatagctg agaacaaccc tggaagtaga gtttgcttg ctacttctga aactacaatt
660

attggattca agccaccaag tggatgataga ctttatgatc ttgttggtgt ggcactctt
720

ggagatggtg ctggtgctat gataattggc tcagacccaa tacttgaaac tgagactcca
780

ttgttgagc ttcatacttc agctcaggag tttataccag acacagagaa gaaaatagat
840

gggcggctga cggaggaggg cataagttc acgctagcga gggaaactgcc gcagata
897

<210> 70

<211> 275

<212> PRT

<213> Trifolium repens

<400> 70

Met	Gly	Asp	Glu	Gly	Ile	Val	Arg	Gly	Val	Thr	Lys	Gln	Thr	Thr	Pro
1				5					10					15	

Gly	Lys	Ala	Thr	Ile	Leu	Ala	Leu	Gly	Lys	Ala	Phe	Pro	His	Gln	Leu
				20				25					30		

Val	Met	Gln	Glu	Tyr	Leu	Val	Asp	Gly	Tyr	Phe	Arg	Asp	Thr	Asn	Cys
				35			40				45				

Asp	Asn	Pro	Glu	Leu	Lys	Gln	Lys	Leu	Ala	Arg	Leu	Cys	Lys	Thr	Thr
				50		55				60					

Thr	Val	Lys	Thr	Arg	Tyr	Val	Val	Met	Asn	Glu	Glu	Ile	Leu	Lys	Lys
65					70				75				80		

Tyr	Pro	Glu	Leu	Val	Val	Glu	Gly	Ala	Ser	Thr	Val	Lys	Gln	Arg	Leu
				85				90				95			

83/390

Glu Ile Cys Asn Glu Ala Val Thr Gln Met Ala Ile Glu Ala Ser Gln
 100 105 110

Val Cys Leu Lys Asn Trp Gly Arg Ser Leu Ser Asp Ile Thr His Val
 115 120 125

Val Tyr Val Ser Ser Ser Glu Ala Arg Leu Pro Gly Gly Asp Leu Tyr
 130 135 140

Leu Ser Lys Gly Leu Gly Leu Asn Pro Lys Ile Gln Arg Thr Met Leu
 145 150 155 160

Tyr Phe Ser Gly Cys Ser Gly Gly Val Ala Gly Leu Arg Val Ala Lys
 165 170 175

Asp Ile Ala Glu Asn Asn Pro Gly Ser Arg Val Leu Leu Ala Thr Ser
 180 185 190

Glu Thr Thr Ile Ile Gly Phe Lys Pro Pro Ser Val Asp Arg Pro Tyr
 195 200 205

Asp Leu Val Gly Val Ala Leu Phe Gly Asp Gly Ala Gly Ala Met Ile
 210 215 220

Ile Gly Ser Asp Pro Ile Leu Glu Thr Glu Thr Pro Leu Phe Glu Leu
 225 230 235 240

His Thr Ser Ala Gln Glu Phe Ile Pro Asp Thr Glu Lys Lys Ile Asp
 245 250 255

Gly Arg Leu Thr Glu Glu Gly Ile Ser Phe Thr Leu Ala Arg Glu Leu
 260 265 270

Pro Gln Ile
 275

<210> 71
 <211> 577
 <212> DNA
 <213> Trifolium repens

<220>
 <221> misc_feature
 <222> (2)..(2)
 <223> Any nucleotide

<220>
 <221> misc_feature
 <222> (26)..(26)
 <223> Any nucleotide

<220>

<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<400> 71
gnttcaatct gttgtgcata aaattncttt gcnatagaaa acnctacaca tttgatcttg
60

caaagaagaa atatggaga cgaaggata gtgagaggtg tcacaaagca gacaaccct
120

gggaaggcta ctatattggc tcttggcaag gcattccctc accaacttgt gatgcaagag
180

tgttagttt atggtttattt tagggacact aattgtgaca atcctgaact taaggcagaaa
240

cttgcgtac tttgttaagac aaccacggta aaaacaaggt atgttgttat gaatgaggag
300

atactaaaga aatatccaga acttgggttc gaaggcgctt caactgtaaa acaacgttta
360

gagatatgta atgaggcagt aacacaaatg gcaattgaag cttcccaagt ttgcctaaag
420

aattgggtta gatccttatac ggacataact catgtggttt atgtttcatc tagtgaagct
480

agattacccg gtgggtgacct atacttgtca aaaggactag gactaaaccc taaaattcaa
540

agaaccatgc tctatttctc tggatgctcg ggaggcg
577

<210> 72
<211> 599
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<400> 72
tcaatctgtt gngcatttn ttnctttgcn atagaaaacc atacacatTTT gatcttgctt
60

agaagaaaata tgggagacga aggtatagtg agaggtgtca caaAGCAGAC aaccCCTGGG
120

aaggctacta tattggctct tggcaaggca ttccctcacc aacttgtgtat gcaagagtgt
180

ttagttgatg gttatttttag ggacactaat tgtgacaatc ctgaacttaa gcagaaactt
240

gctagacttt gtaagacaac cacggtaaaa acaaggatgt ttgttatgaa tgaggagata
300

ctaaagaaaat atccagaact tgTTGTCGAA ggCGCCTCAA ctgtaaaaca acgttttagag
360

atATGTAATG aggCAGTAAC acaaATGGCA attGAAGCTT cccAAGTTG CCTAAAGAAT
420

tgggtagat ctttatcgga cataactcat gtggTTTATG tttcatctag tgaagctaga
480

ttacCCGGTG gtGACCTATA CTTGTCAAAA ggACTAGGAC taaACCCTAA aATTCAAAGA
540

accatgctct atttctctgg atgctcggga ggcgtAGCCG gccttcgcgt tgcgaaaga
599

<210> 73
<211> 581
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (10)..(11)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<400> 73
tctgttggn ntaacattnc tttccnTTAG aaaactatac acatttGATC ttgcaaagaa
60

gaaatatggg agacgaaggt atagtgagag gtgtcacaaa gcagacaacc cctggaaagg

120

ctactatatt ggctcttggc aaggcattcc ctcaccaact tgtgatgcaa gagtatttag
180

ttgatggtaa ttttagggac actaattgtg acaatcctga acttaagcag aaacttgcta
240

gactttgtaa gacaaccacg gtaaaaacaa ggtatgtgt tatgaatgag gagataactaa
300

agaaatatcc agaacttgtt gtgcaggcg cctcaactgt aaaacaacgt ttagagatat
360

gtaatgaggc agtaacacaa atggcaattt aagcttccc agtttgccta aagaattggg
420

gtagatcctt atcggacata actcatgtgg tttatgttc atctagtgaa gctagattac
480

ccgggtggta cctatacttg tcaaaaggac taggactaaa ccctaaaatt caaagaacca
540

tgctctatcc ctctggatgc tcggaggcg tagccggcct t
581

<210> 74

<211> 588

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (11)..(11)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (13)..(13)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (25)..(27)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (36)..(36)

<223> Any nucleotide

<400> 74

tctgttgtgc nttaaaattac tttgnnntag aaaacnctac acatggatc ttgcaaagaa
60

gaaatatggg agacgaaggat atagtgagag gtgtcacaaa gcagacaacc cctgggaagg
120

ctactatatt ggctcttggc aaggcattcc ctcaccaact tgtgatgcaa gagtgtttag
180

ttgatggta ttttagggac actaattgtg acaatcctga acttaagcag aaacttgcta
240

gactttgtaa gacaaccacg gtaaaaacaa ggtatgttgc tatgaatgag gagataactaa
300

agaaaatatcc agaacttgtt gtcgaaggcg cctcaactgt aaaacaacgt ttagagatata
360

gtaatgagggc agtaacacaa atggcaattt aagcttccc agtttgccta aagaattggg
420

gtagatcctt atcggacata actcatgtgg tttatgttcc atctagtgaa gctagattac
480

ccgggttgta cctatacttg tcaaaaggac taggactaaa ccctaaaatt caaagaacca
540

tgctctatTT ctctggatgc tcgggaggcg tagcggcct tcgcgttG
588

<210> 75

<211> 563

<212> DNA

<213> Trifolium repens

<400> 75

ttaacatTTT tttattgttag aaaatataca tttgatctag caaagaagaa atatggaga
60

cgaaggta GTGAGAGGTG tcacaaggca GCCAACCCCT GGGAAAGGCTA CTTATTTGGC
120

tcttggcaag gcattccctc accaacttgt gatgcaagag tatttagttg atggTTATTT
180

tagggacact aattgtgaca atcctaagct taagcagaaa cttgctagac tttgcaagac
240

aaccacagtG AAAACAAGGT ATGTTGTTAT GAATGAAGAG ATACTAAAGA AATATCCAGA
300

acttactatC GGAGGCACCT CGACGGTAAA ACAACATTa GAGATATGTA ATGAGGCAGT
360

aacacaaatG GCAATTGAAG CTTCCTAAAGT TTGCTAAAG AATTGGGGTA GACCCATATC
420

agacataact CATGTGGTTT ATGTTTCATC TAGTGAAGCT AGATTACCTG GTGGTGACCT
480

atacttgcA AAAGGACTAG GACTAAACCC TAAAATTCAA AGAACCATGC TCTATTTCTC
540

gggatgctcg ggaggcgtag ccg
563

<210> 76

<211> 603

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (4)..(4)
<223> Any nucleotide

<400> 76
gcantagaaa accctacaca ttgtatcttg caaagaagaa atatgggaga cgaatgtata
60

gtgagaggtg tcacaaagca gacaaccctt gggaggcta ctatattggc tcttggcaag
120

gcattccctc accaacttgt gatgcaagag tatttagttt atggttttagggacact
180

aatttgtaca atcctgacct taagcagaaa cttgctagac tttgttaagac aaccacggta
240

aaaacaaggt atgttgttat gaatgaggag atactaaaga aatatccaga acttgttgc
300

gaaggcgctt caactgtaaa acaacgttta gagatatgta atgaggcagt aacacaaatg
360

gcaattgaag ctcccagt ttgcctaaag aattgggta gatccttatac ggacataact
420

catgtggttt atgtttcatc tagtgaagct agattacccg gtggtgacact atacttgtca
480

aaaggactag gactaaaccc taaaattcaa agaaccatgc tctatttcctc tggatgctcg
540

ggaggcgtag ccggccttcg cgttgcgaaa gacatagctg agaacaaccc tggaagtaga
600

gtt
603

<210> 77
<211> 584
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (1)..(1)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<400> 77
ntccngaact tactgtggaa ggcccttcga ctgtaaaacn acgttttagag atatgtatg
60

aggcagtaac acaaatggca attgaagctt cccaaatggc cctaaagaat tgggttagac
120

ccttatcaga cataactcat gtggtttatg tttccctctag tgaagctaga ttacccggtg
180

gtgacctata tttgtcaaaa ggactaggac taaatcctaa aattcaaaga accatgctct
240

atttctctgg atgctcagga ggcgttagccg gccttcgcgt tgcgaaagac atagctgaga
300

acaaccctgg aagtagagtt ttgcttgcta cttctgaaac tacaattatt ggattcaagc
360

caccaagtgt tgatagacct tatgatctt tgggtgtggc actctttgga gatggtgctg
420

gtgctatgtat aattggctca gacccaatac ttgaaactga gactccattt tttgagcttc
480

ataacttcagc tcaggagttt ataccagaca cagagaagaa aatagatggg cggctgacgg
540

aggagggcat aagtttcacg ctacgcgggg aactgccgca gata
584

<210> 78

<211> 735

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (47)..(47)

<223> Any nucleotide

<400> 78

gtagcaacac acactttgat ttcttttga gtccttgcta cgtggcntta ccaaaaaacg
60

ttgcttaagtc atcaaccatt ccaattcctt aatataacct atcagtaactc accatcttt
120

cttcctccct gctaacttta tacttagaga agatggtgaa agttaatgag atccgccagg
180

cacagagagc tgaaggccct gccactgtgt tggcaatcgg cactgcaact cctccaaact
240

gtgttcatca gagtacatac cccgactact acttccgcatt cacaaacagt gagcacaaga
300

cagagctcaa agaaaaattc cagcgcattgt gtgacaaatc tatgattaag aagagataaca
360

tgcatttgac agaagagatt ttgaaggaga atccaagttt atgtgagtac atggcacctt
420

cattggatgc aagacaagac atgggtggtg tggaaagtacc aaggcttagga aaagagggcag
480

caacaaaggc aatcaaggaa tgggtcaac ctaagtccaa gattaccac ctcatcttt
540

gcaccacacaag tgggtgtggac atgcccggtg ccgactatca gcttacaaag ctttaggcc
600

ttcgtccgca tgtgaagcgt tacatgatgt accaacaagg ttgtttgct ggtggcacgg
660

tgcttcgttt ggctaaagac ttggctgaaa acaacaaagg tgccccgtgta ttggtggttt
720

gttcagagat aactg
735

<210> 79
<211> 194
<212> PRT
<213> Trifolium repens

<400> 79

Met Val Lys Val Asn Glu Ile Arg Gln Ala Gln Arg Ala Glu Gly Pro
1 5 10 15

Ala Thr Val Leu Ala Ile Gly Thr Ala Thr Pro Pro Asn Cys Val Asp
20 25 30

Gln Ser Thr Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr Asn Ser Glu His
35 40 45

Lys Thr Glu Leu Lys Glu Lys Phe Gln Arg Met Cys Asp Lys Ser Met
50 55 60

Ile Lys Lys Arg Tyr Met His Leu Thr Glu Glu Ile Leu Lys Glu Asn
65 70 75 80

Pro Ser Leu Cys Glu Tyr Met Ala Pro Ser Leu Asp Ala Arg Gln Asp
85 90 95

Met Val Val Val Glu Val Pro Arg Leu Gly Lys Glu Ala Ala Thr Lys
100 105 110

Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile Thr His Leu Ile
115 120 125

Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp Tyr Gln Leu
130 135 140

Thr Lys Leu Leu Gly Leu Arg Pro His Val Lys Arg Tyr Met Met Tyr
145 150 155 160

Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys Asp
165 170 175

Leu Ala Glu Asn Asn Lys Gly Ala Arg Val Leu Val Val Cys Ser Glu

91/390

180

185

190

Ile Thr

<210> 80
<211> 574
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<400> 80
gtagcaacac acactttgat ttcttttga gtccttgcta cgtggcntta ccaaaaaacg
60
ttgctcactc atcaaccatt ccaattcctt aatataacctt atcagtactt accatcttt
120
ttccctccct gctaacttta gaatcagaga agatggtaa tgttaatgag atccgccagg
180
cacagagagc tgaaggccct gccactgtgt tggcaatcg cactgcaact cctccaaact
240
gtgtcgatca gagtacatac ccggactact acttccgcat cacaaacagt gagcacaaga
300
cagagctcaa agaaaaattc cagcgcattgt gtgacaaatc tatgattaag aagagataca
360
tgcatttgac agaagagatt ttgaaggaga atccaagttt atgtgagtac atggcacctt
420
cattggatgc aagacaagac atggtggttg tggaagtacc aaggcttagga aaagaggcag
480
caacaaaggc aattaaggaa tgggtcaac ctaagtccaa gattacccac ctcatcttt
540
gcaccaccag tggtgtcgac atgccccgtg ccgc
574

<210> 81
<211> 597
<212> DNA
<213> Trifolium repens

<400> 81
gtagcaacac acactttgat ttcttttga gtccttgcta cgtggctta ccaaaaaacg
60
ttgctaagtc atcaaccatt ccaattcctt aatataacctt atcagtactc accatcttt
120
ttccctccct gctaacttta gactcagaga agatggtaa tgttaatgag atccgccagg
180
cacagagagc tgaaggccct gccaccgtgt tggcaatcg cactgcaact cctccaaact

240

gtgtcgatca gagtacatac ccagactact acttccgcat cacaacagt gagcacaaga
300

cagagctcaa agaaaaattc cagcgcatgt gtgacaaatc tatgattaag aagagataaca
360

tgcatttgac agaagagatt ttgaaggaga atccaagttt atgtgagtagtac atggcacctt
420

cattggatgc aagacaagac atggtggttg tggaagtacc aaggcttagga aaagaggctg
480

caacaaaggc tatcaaggaa tgggtcaac ctaagtccaa gattactcac ctcatctttt
540

gcaccacaag tgggtgtggac atgcctggcg ccgactatca gcttacaaag cttag
597

<210> 82
<211> 616
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (70)..(70)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (616)..(616)
<223> Any nucleotide

<400> 82
gtagcaacac acactttgat ttcttttga gtccttgcta cgtggcttta ccaaaaaacg
60

ttgctaagtn atcaaccatt ccaattcctt aatataacct atcagtactc accatctttt
120

cttcctccct gctaacttta gactcagaga agatggtgaa tgttaatgag atccgccagg
180

cacagagagc tgaaggccct gccaccgtgt tggcaatcgg cactgcaact cctccaaact
240

gtgtcgatca gagtacatac ccagactact acttccgcat cacaacagt gagcacaaga
300

cagagctcaa agaaaaattc cagcgcatgt gtgacaaatc tatgattaag aagagataaca
360

tgcatttgac agaagagatt ttgaaggaga atccaagttt atgtgagtagtac atggcacctt
420

cattggatgc aagacaagac atggtggttg tggaagtacc aaggcttagga aaagaggctg
480

caacaaaggc tatcaaggaa tgggtcaac ctaagtccaa gattactcac ctcatctttt
540

93/390

gcaccacaag tggtgtggac atgcctggcg ccgactatca gcttacaaag cttttaggcc
600

ttcgtccgca tgtgan
616

<210> 83
<211> 585
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (1)..(3)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(37)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (61)..(61)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (451)..(451)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (507)..(507)
<223> Any nucleotide

<400> 83
nnncacncac actttttgn atccctgcta cgtggcntta ccaaaaaacg ttgctaagtc
60

ntcaaccatt ccaattcctt aatataacct atcagtactc accatctttt ctccctccct
120

gctaacttta gactcagaga agatggtaa tgttaatgag atccgccagg cacagagagc
180

tgaaggccct gccaccgtgt tggcaatcgg cactgcaact cctccaaact gtgttgatca
240

gagtagatacccgactact acttccgcata cacaacagt gagcacaaga cagagctcaa
300

agaaaaattc cagcgcatgt gtgacaaatc tatgattaag aagagataca tgcatttaac
360

agaagagatt ttgaaggaga atccaagttt atgtgagttac atggcacctt cattggatgc
420

aagacaagac atggtggttg tggaaagtacc naggcttagga aaagaggcag taacaaaggc
480

aatttagggaa tgggtcaac ctaagtncaa gattacccac ctcatcttt gcaccaccag
540

tggtgtggac atgcccggtg ccgactatca gctcacaaag ctctt
585

<210> 84

<211> 596

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (3)..(3)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (14)..(14)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (37)..(37)

<223> Any nucleotide

<400> 84

ttnatccccct aatntagttt tctttttgt tacttanaga atatggttac agttaatgag
60

atccgcccagg cacagagagc tgaaggccct gcaactgtgt ttgcaatcgg cactgcaact
120

cctaaaaact gtgttgatca gagtacttac cccgactact atttccgaat cacaacagc
180

gaacacaaga ctgaactcaa agaaaaattc cagcgcatgt gtgacaaatc tatgattaag
240

aagagataca tgcatttgac agaagagatt ttgaaggaga atccaagttt atgtgagttac
300

atggcacctt cattggatgc aagacaagac atggtggttg tggaaagtacc aaggcttagga
360

aaagaggctg caacaaaggc tatcaaggaa tgggtcaac ctaagtccaa gattactcac
420

ctcatctttt gcaccacaag tggtgtggac atgcctggtg ccgactatca gcttacaaag

480

cttttaggcc ttctgtccgca tgtgaagcgt tatatgatgt accaacaagg ttgtttgct
540

ggtgacacgg tgcttcgttt ggctaaagac ttggctgaaa acaacaaagg tgcccg
596

<210> 85
<211> 618
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(37)
<223> Any nucleotide

<400> 85
ttnatnccntaatntagttttcttctttgt tacttanaga atatggttac agttaatgag
60

atccgccagg cacagagagc tgaaggccct gcaactgtgt ttgcaatcgg cactgcaact
120

cctaaaaact gtgttgatca gagtacttac cccgactact atttccgaat cacaacagc
180

gaacacaaga ctgaactcaa agaaaaattc cagcgcatgt gtgacaaatc tatgattaag
240

aagagataca tgcatttgac agaagagatt ttgaaggaga attcaagttt atgtgagtac
300

atggcacctt cattggatgc aagacaagac atgggtggttg tggaaagtacc aaggcttagga
360

aaagaggctg caacaaaggc tatcaaggaa tggggtcaac ctaagtccaa gattactcac
420

ctcatctttt gcaccacaag tggtgtggac atgcctggtg ccgactatca gcttacaaag
480

cttttaggcc ttcgcccgca tgtgaagcgt tatatgatgt accaacaagg ttgtttgct
540

ggtggcacgg tgcttcgttt ggctaaagac ttggctgaaa acaacaaagg tgcccgtgta
600

ttggtggttt gttcagag
618

<210> 86
<211> 609
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (32)..(33)
<223> Any nucleotides

<400> 86
tccnataatn tagtttctt ctttgttact tnnagaatat ggttacagtt aatgagatcc
60

gccaggcaca gagagctgaa ggccctgcaa ctgtgtttgc aatcggcact gcaactccta
120

aaaactgtgt tgatcagagt acttaccccg actactattt ccgaatcaca aacagcgaac
180

acaagactga actcaaagaa aaattccagc gcatgtgtga caaatctatg attaagaaga
240

gatacatgca tttgacagaa gagattttga aggagaattc aagtttatgt gagtacatgg
300

caccttcatt ggatgcaaga caagacatgg tgggtgttga agtaccaagg ctaggaaaag
360

aggctgcaac aaaggctatc aaggaatggg gtcaacctaa gtccaagatt actcacctca
420

tcttttgcac cacaagtggt gtggacatgc ctgggtggca ctatcagctt acaaagcttt
480

taggccttcg tccgcatgtg aagcggtata tgatgtacca acaaggttgtt tttgctgggtg
540

gcacggtgct tcgtttggct aaagacttgg ctgaaaacaa caaagggtgcc cgtgtattgg
600

tggtttgtt
609

<210> 87
<211> 571
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(4)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(19)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (60)..(60)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (87)..(87)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (89)..(89)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (91)..(91)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (247)..(247)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (571)..(571)
<223> Any nucleotide

<400> 87
gcnnntaacct ttanaatnng anaagatggt gaaagttaat gagatccgcc aggcacagan
60
agctgaaggc cctgccactg tgggnant nggcactgca actcctccaa actgtgtcga
120
tcagagtaca taccggact actacttccg catcacaaac agtgagcaca agacagagct
180
caaagaaaaa ttccagcgca tgggtgacaa atctatgatt aagaagagat acatgcattt
240
gacagangag attttgaagg agaatccaag tttatgttag tacatggcac cttcatttgg
300
tgcaagacaa gacatggtgg ttgtggaagt accaaggcta ggaaaagagg cagcaacaaa
360
ggcaattaag gaatggggcc aacctaaatgc caagattacc cacctcatct tttgcaccac
420
cagtgggtgtc gacatgccccg gtggccacta tcagctcaca aagctcttag gcctgcgtcc
480
atatgtgaag cgttacatga tgtatcaaca aggttggttt gctggtggca cggtgcttgc
540
tttggctaaa gacttggctg aaaacaacaa n
571

<210> 88
<211> 603
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(4)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(14)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (32)..(32)
<223> Any nucleotide

<220>

99/390

<221> misc_feature
<222> (567)..(567)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (594)..(594)
<223> Any nucleotide

<400> 88
tnnnnnttana atnngagaag atggtgaaag tnaatgagat ccgccaggca cagagagctg
60

aaggccctgc cactgtgttgc acaatcggtca ctgcaactcc tccaaactgt gtcgatcaga
120

gtacatacccg ggactactac ttccgcattca caaacagtga gcacaagaca gagotcaaag
180

aaaaaattcca ggcgcattgtgt gacaaatcta tgattaagaa gagatacatg catttgacag
240

aagagatttt gaaggagaat ccaagtttat gtgagttacat ggcacccatca ttggatgcaa
300

gacaagacat ggtgggtgtg gaagtaccaa ggcttaggaaa agaggcagca acaaaggcaa
360

ttaaggaatg gggccaaacct aagtccaaaga ttaccacccat catctttgc accaccatgt
420

gtgtcgacat gcccggtgcc gactatcagc tcacaaagct cttaggcctg cgtccatatg
480

tgaaggcgatca catgatgtat caacaagggtt gttttgttgg tggcacgggtg cttcgatgg
540

ctaaagactt ggctgaaaac aacaaangtg cccgtgtgtt ggtgggttgt tcanagataa
600

ctg
603

<210> 89
<211> 588
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)

<223> Any nucleotide

<220>

<221> misc_feature
<222> (68)..(68)

<223> Any nucleotide

<400> 89

tttgttnatt gnagaatatg gttacagtta atgagatccg ccnggcacaa agagccgaag
60

gccctgcncc tgtgttgca atcggcactg caactcctaa aaactgtgtt gatcagagta
120

cttaccccga ctactatssc cgaatcacaa acagcgaaca caagactgag ctcaaagaaa
180

aattccagcg catgtgtgac aaatctatga ttaagaagag atacatgcat ttgacagaag
240

agattttgaa ggagaatcca agtttatgtg agtacatggc accttcattt gatgcaagac
300

aagacatggg ggttagtgaa gtaccaaggc tagaaaaaga ggcagcaaca aaggcaatta
360

aagaatgggg tcaacctaag tccaaagatta cccacccat cttttgcacc accagtggtg
420

tggacatgcc cggtgccgac tatcagctca caaagctttt aggccctgcgt ccataatgtga
480

agcgttacat gatgtatcaa caaggttgtt ttgctggtgg cacggtaattt cgtttggcta
540

aagacttggc tgaaaacaac aaaggtgccc gtgtgttggt ggtttgg
588

<210> 90

<211> 250

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (17)..(17)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (35)..(35)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (48)..(49)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (165)..(165)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (188)..(188)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (212)..(212)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (224)..(225)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (228)..(228)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (232)..(232)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (235)..(235)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (240)..(240)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (247)..(247)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (250)..(250)
<223> Any nucleotide

<400> 90
taaaaactgtg ttgatcngag tacttacccc gactnctatt tccgaatnnnc aaacagcgaa
60
cacaagactg agctcaaaga aaaattccag cgcatgttg acaaatctat gattaagaag
120
agataacatgc atttgacacaga agagattttg aaggagaatc caagnttatg tgagtacatg

180

gcacacctnat tggatgcaag acaagacatg gnggccgccc accnnccntc cnccncacn
240

caacccnccn
250

<210> 91
<211> 583
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (552)..(552)
<223> Any nucleotide

<400> 91
gnagcaacac acactttgat ttcttttga atccctgcta cgtggcncac caaaaaacgt
60

tgcttaagtca tcaaccattc caattcctta atataaccta tcagtaactca ccatttttc
120

tccctccctg ctaacttttag actcagtaga agatggtagaa tgttaatgag atccgcccagg
180

cacagagagc tgaaggccct gccaccgtgt tggcaatcg cactgcaact cctccaaact
240

gtgttgatca gagtacatac ccggactact acttccgcat cacaaacagt gagcacaaga
300

cagagctcaa agaaaaattc cagcgcacgt gtaagatatt tatcttatac tccatgcattg
360

tcttttctg ctgactgccc tgtttatata ttgtttgtt ttgttcctta aatttggat
420

gtcactctca catgtacaaa acacttaaga ctaaactgca tatcatttt ttcaggaca
480

aatctatgtat taagaagaga tacatgcatt tgacagaaga gattttgaag gagaatccaa
540

gtttatgtga gnacatggca ccttcttggg atgcaagaca agt
583

<210> 92
<211> 95

<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (86)..(86)
<223> Any amino acid

<400> 92

Met Val Asn Val Asn Glu Ile Arg Gln Ala Gln Arg Ala Glu Gly Pro
1 5 10 15

Ala Thr Val Leu Ala Ile Gly Thr Ala Thr Pro Pro Asn Cys Val Asp
20 25 30

Gln Ser Thr Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr Asn Ser Glu His
35 40 45

Lys Thr Glu Leu Lys Glu Lys Phe Gln Arg Thr Arg Asp Lys Ser Met
50 55 60

Ile Lys Lys Arg Tyr Met His Leu Thr Glu Glu Ile Leu Lys Glu Asn
65 70 75 80

Pro Ser Leu Cys Glu Xaa Met Ala Pro Ser Trp Asp Ala Arg Gln
85 90 95

<210> 93
<211> 582
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (551)..(551)
<223> Any nucleotide

<400> 93
gnagcaacac acactttgat ttcttttga atccctgcta cgtggcttac caaaaaacgt
60

tgcttaagtca tcaaccattc caattcctta atataaaccta tcagttactca ccatttttc
120

ttcctccctg ctaacttttag actcagagaa gatggtaat gttaatgaga tccgccaggc
180

acagagagct gaaggccctg ccaccgtgtt ggcaatcgcc actgcaactc ctccaaactg
240

tgttgatcag agtacataacc cggactacta cttccgcattt acaaacagtg agcacaagac

300

agagctcaaa gaaaaattcc agcgacgtg taagatattt atcttatact ccatgcgt
360

ctttttctgc tgactgccgt gtttatatat tgggggttt tgcccttaa atttgtatg
420

tcactctcac atgtacaaaa cacttaagac taaactgcac atcattttt tcagggacaa
480

atctatgatt aagaagagat acatgcattt gacagaagag attttgaagg agaatccaag
540

tttatgtgag nacatggcac cttcttggga tgcaagacaa gt
582

<210> 94
<211> 167
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (34)..(34)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<400> 94
gtccctgctg cgtggcncac caaaaacgtt gctnagtntg aaccttccat tccttaatat
60

aacctatcag tactcaccat ctttcttcc tccctgctaa cttagactc agtagaagat
120

ggtaatgtt aatgagatcc gccaggcaca gagagctgaa ggccctg
167

<210> 95
<211> 613
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)

105/390

<223> Any nucleotide

<400> 95
 gcntaaggcct tgattttgtt ttgtttccata acacaagaac tagtgtttgc ttgaatctta
 60
 agaaaaaatg cctcaagggtg atttgaatgg aagttcctcg gtgaatggag cacgtgctag
 120
 acgtgctcct actcaggaa aggcaacgat acttgcat ta ggaaaggcct tccccgccc
 180
 agtcctccct caagagtgt tggtggaagg attcattcgc gacactaagt gtgacgatac
 240
 ttatattaag gagaaattgg agcgtcttg caaaaacaca actgtaaaaa caagatacac
 300
 agtaatgtca aaggagatct tagacaacta tccagagcta gccatagatg gaacaccaac
 360
 aataaggcaa aagcttggaaa tagcaaattcc agcagtagtt gaaatggcaa caagagcaag
 420
 caaagattgc atcaaagaat ggggaaggc acctcaagat atcacacaca tagtctatgt
 480
 ttccctcgagc gaaattcgtc tacccgggtgg tgacctttat ctgc当地 aactcggc
 540
 aaacagcgat gtttatcgcg taatgctcta ttccctcggt tgctacgggg gtgtcactgg
 600
 cttacgtgtc gcc
 613

<210> 96
<211> 182
<212> PRT
<213> Trifolium repens

<400> 96

Met Pro Gln Gly Asp Leu Asn Gly Ser Ser Ser Val Asn Gly Ala Arg
 1 5 10 15

Ala Arg Arg Ala Pro Thr Gln Gly Lys Ala Thr Ile Leu Ala Leu Gly
 20 25 30

Lys Ala Phe Pro Ala Gln Val Leu Pro Gln Glu Cys Leu Val Glu Gly
 35 40 45

Phe Ile Arg Asp Thr Lys Cys Asp Asp Thr Tyr Ile Lys Glu Lys Leu
 50 55 60

Glu Arg Leu Cys Lys Asn Thr Thr Val Lys Thr Arg Tyr Thr Val Met
 65 70 75 80

Ser Lys Glu Ile Leu Asp Asn Tyr Pro Glu Leu Ala Ile Asp Gly Thr

106/390

85

90

95

Pro Thr Ile Arg Gln Lys Leu Glu Ile Ala Asn Pro Ala Val Val Glu
100 105 110

Met Ala Thr Arg Ala Ser Lys Asp Cys Ile Lys Glu Trp Gly Arg Ser
115 120 125

Pro Gln Asp Ile Thr His Ile Val Tyr Val Ser Ser Ser Glu Ile Arg
130 135 140

Leu Pro Gly Gly Asp Leu Tyr Leu Ala Asn Glu Leu Gly Leu Asn Ser
145 150 155 160

Asp Val Asn Arg Val Met Leu Tyr Phe Leu Gly Cys Tyr Gly Gly Val
165 170 175

Thr Gly Leu Arg Val Ala
180

<210> 97

<211> 613

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (3)..(3)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (16)..(16)

<223> Any nucleotide

<400> 97

gcntaaggcct tgattttgt ttgtttccata acacaagaac tagtgtttgc ttgaatctta
60

agaaaaaaatg cctcaagggtg atttgaatgg aagttccctcg gtgaatggag cacgtgctag
120

acgtgctcct actcaggaa aggcaacgat acttgcatta ggaaaggcctt tccccggcca
180

agtcccccct caagagtgtc tggtggagg attcattcgc gacactaagt gtgacgatac
240

ttatattaag gagaaaattgg agcgtctttg caaaaacaca actgtaaaaa caagatacac
300

agtaatgtca aaggagatct tagacaacta tccagagcta gccatagatg gaacaccaac
360

aataaggcaa aagcttgaaa tagcaaatcc agcagtagtt gaaatggcaa caagagcaag
420

107/390

caaagattgc atcaaagaat ggggaaggtc acctaagat atcacacaca tagtctatgt
480

tccctcgagc gaaattcgac tacccgggtgg tgaccatat cttgcaaatg aactcggctt
540

aaacagcgat gttaatcgcg taatgctcta tttcctcggt tgctacggcg gtgtcaactgg
600

cttacgtgtc gcc
613

<210> 98
<211> 570
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<400> 98
taaggccttga ttnttgtttg tttcctaaca caagaactag tgtttgcttg aatcttaaga
60

aaaaatgcct caaggtgatt tgaatggaag ttcctcggtg aatggagcac gtgctagacg
120

tgctcctact cagggaaaagg caacgatact tgcatttagga aaggctttcc ccgccccaggt
180

cctccctcaa gagtgcttgg tggaggatt cattcgcgac actaagtgtg acgataactta
240

tattaaggag aaattggagc gtcttgcaa aaacacaact gtgaaaacaa gatacacagt
300

aatgtcaaag gagatcttag acaactatcc agagctagcc atagatggaa caccaacaat
360

aaggccaaag cttgaaatag caaatccagc agtagttgaa atggcaacaa gagcaagcaa
420

agattgcattc aaagaatggg gaaggtcacc tcaagatatc acacacatag tctatgttc
480

ctcgagcgaa attcgtctac ccgggtggta cctttatctt gcaaatgaac tcggcttaaa
540

cagcgatgtt aatcgcgtaa tgctctatcc
570

<210> 99
<211> 575
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<400> 99
ttgattcttg tttgttccct aacacaagaa ctngtgttg cttgaatctt aagaaaaaat
60

gcctcaaggat gatttgaatg gaagttcctc ggtgaatgga gcacgtgcta gacgtgctcc
120

tactcaggga aaggcaacga tacttgcatt aggaaaaggct ttccccgccc aggtcctccc
180

tcaagagtgc ttgggtgaaag gattcattcg cgacactaag tgtgacgata cttatattaa
240

ggagaaaattg gagcgttottt gcaaaaacac aactgtgaaa acaagataca cagtaatgtc
300

aaaggagatc ttagacaact atccagagct agccatagat ggaacaccaa caataaggca
360

aaagcttgaa atagcaaact cagcagtagt tgaaatggca acaagagcaa gcaaagattg
420

catcaaagaa tggggaaaggc cacctcaaga tatcacacac atagtctatg tttcctcgag
480

cgaaattcgt ctacccggtg gtgaccttta tcttgcaaat gaactcggct taaacagcga
540

tgttaatcgc gtaatgctct atttcctcgg ttgct
575

<210> 100
<211> 573
<212> DNA
<213> Trifolium repens

<400> 100
gtttgtttcc taacacaaga actagtgttt gcttgaatct taagaaaaaaa tgccctcaagg
60

tgatttgaat ggaagttcct cggtaatgg agcacgtgct agacgtgctc ctactcaggg
120

aaaggcaacg atacttgcatt taggaaaggc tttcccgcc caagtcctcc ctcaagagtg
180

cttgggtggaa ggattcattc gcgacactaa gtgtgacgat acttatatta aggagaaaatt
240

ggagcgtctt tgcaaaaaca caactgtaaa aacaagatata acagtaatgt caaaggagat
300

cttagacaac tatccagagc tagccataga tggAACACCA acaataaggc aaaagcttga
360

aatacgaaat ccagcagtag ttgaaatggc aacaagagca agcaaaagatt gcatcaaaga
420

atggggaaagg tcacctcaag atatcacaca catagtctat gtttcctcgag gcgaaattcg
480

tctacccgggt ggtgaccttt atcttgcaaa tgaactcggc ttaaacagcgt atgttaatcg
540

109/390

cgtaatgctc tatttcctcg gttgctacgg cg
573

<210> 101
<211> 607
<212> DNA
<213> Trifolium repens

<400> 101
gtataccaag gttgtttgc tggggcacg gtacttcgtt tggctaaaga cttggctgaa
60

aacaacaaag gtgcccgtgt gttggtggtt tggtcagaga taactgcagt tactttccgt
120

ggaccaggatg acactcacct tgatagcctt gtggggcaag cattgtttgg agatggtgca
180

gcagctgtga ttgttggttc agaccctttg ccagaagttg agaaggcctt gttgaattt
240

gtatggaccg cacaaacaat cgctccagat agtgaaggag ccattgatgg tcacccatcg
300

gaagcagggc tgacattcca tctcctcaag gatgttccta gccttgcctc aaataacatt
360

gagaaagcgc ttgttgatgc ctttcaacct ttgaatattt ctgactacaa ttccatctt
420

tggattgcac acccaggcgg accagcaatt cttgaccaag ttgaagctaa gttaggctt
480

aagccagaga aaatgcaagc cactcgacat gtacttagcg aatatggtaa catgtcaagt
540

gcgtgtgtgt tatattatctt ggatgagatg aggaggaagt caaaagaaga cggacttgcc
600

acaacag
607

<210> 102
<211> 202
<212> PRT
<213> Trifolium repens

<400> 102

Val Tyr Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys
1 5 10 15

Asp Leu Ala Glu Asn Asn Lys Gly Ala Arg Val Leu Val Val Cys Ser
20 25 30

Glu Ile Thr Ala Val Thr Phe Arg Gly Pro Ser Asp Thr His Leu Asp
35 40 45

Ser Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala Val Ile
50 55 60

Val Gly Ser Asp Pro Leu Pro Glu Val Glu Lys Pro Leu Phe Glu Leu
 65 70 75 80

Val Trp Thr Ala Gln Thr Ile Ala Pro Asp Ser Glu Gly Ala Ile Asp
 85 90 95

Gly His Leu Arg Glu Ala Gly Leu Thr Phe His Leu Leu Lys Asp Val
 100 105 110

Pro Ser Leu Val Ser Asn Asn Ile Glu Lys Ala Leu Val Asp Ala Phe
 115 120 125

Gln Pro Leu Asn Ile Ser Asp Tyr Asn Ser Ile Phe Trp Ile Ala His
 130 135 140

Pro Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Ala Lys Leu Gly Leu
 145 150 155 160

Lys Pro Glu Lys Met Gln Ala Thr Arg His Val Leu Ser Glu Tyr Gly
 165 170 175

Asn Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu Met Arg Arg
 180 185 190

Lys Ser Lys Glu Asp Gly Leu Ala Thr Thr
 195 200

<210> 103
<211> 607
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (46)..(46)
<223> Any nucleotide

<400> 103
gtataccaaag gntgttttgc tgggtggcacg gtacttcgtt tggctnaaga cttggctgaa
60

aacaaccaaag gtgcccgtgt gttggtggtt tgttcagaga taactgcagt tactttccgt
120

ggaccaggatg acactcatct tgatagcctt gtggggcaag cattgtttgg agatggtgca
180

gcagctgtga ttgttggttc agaccctttg ccagaagttg agaagccttt gtttgaattg
240

gtatggaccg cacaacaat cgctccagat agtgaaggag ccattgatgg tcacacctcg
300

gaagcagggc tgacattcca ttcctcaag gatgttccta gccttgctc aaataacatt
360

gagaaagctc ttgttgcac ctttcaacct ttgaatatct ccgattacaa ttccatctt
420

tggattgcac acccaggcgg accagcaatt cttgaccaag ttgaagctaa gtaggctta
480

aagccagaga aatgcaatc cactcgacat gtacttagcg aatatggtaa catgtcgagt
540

gcgtgtgttatttatctt ggatgagatg aggaggaagt caaaagaaga cggacttgcc
600

acaacag
607

<210> 104
<211> 591
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (562)..(562)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (587)..(587)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (589)..(589)
<223> Any nucleotide

<400> 104
ccaagggttgt tttgtggc gcacggtaact tcgtttggct aaagacttgg ctgaaaacaa
60

caaagggtgcc cgtgtgttgg tggttgttc agagataact gcagttactt tccgtggacc
120

cagtgacact caccttgata gccttgggg gcaaggcattt tttggagatg gtgcagcagc
180

tgtgattgtt ggttcagacc ctttgcaga agttgagaag cttttgtttt aattggatg
240

gaccgcacaa acaatcgctc cagatagtga aggagccatt gatggtcacc ttgcgcaagc
300

agggctgaca ttccatctcc tcaaggatgt tccttagcctt gtctcaaata acattgagaa
360

agcgcttgcgtt gatgccttcc aacccttgaa tatttctgac tacaattcca tctttggat

420

tgcacaccca ggccggaccag caattcttga ccaagttgaa gctaagtttag gcttaaagcc
480

agagaaaaatg caagccactc gacatgtact tagcgaatat ggtaacatgt caagtgcgtg
540

tgtgttattt atcttgatg anatgaggag gaagtcaaaa gaacacngnc t
591

<210> 105
<211> 590
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (55)..(55)
<223> Any nucleotide

<400> 105
ggttgttttg ctgggtggcac ggtacttcgt ttggctaaag acttggctga aaacnacaaa
60

ggtgcccggtg tgttggtggt ttgttcagag ataactgcag ttactttccg tggaccagg
120

gacactcacc ttgatagcct tgtggggcaa gcattgtttg gagatggtgc agcagctgt
180

attgttggtt cagacccttt gccagaagtt gagaagcctt tgttgaatt ggtatggacc
240

gcacaaaacaa tcgctccaga tagtgaagga gccattgtatg gtcaccttcg cgaagcaggg
300

ctgacattcc atctcctcaa ggatgttcct agccttgtct caaataacat tgagaaagcg
360

cttggatg ctttcaacc tttgaatatt tctgactaca attccatctt ttggattgca
420

caccaggcg gaccagcaat tcttgaccaa gttgaagcta agttaggctt aaagccagag
480

aaaatgcaag ccactcgaca tgtacttagc gaatatggta acatgtcaag tgcgtgtgt
540

ttatttatct tggatgagat gaggaggaag tcaaaaagaag acggacttgc
590

<210> 106
<211> 510
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (397)..(397)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (417)..(417)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (437)..(437)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (458)..(458)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (496)..(496)
<223> Any nucleotide

<400> 106
aatnacacn tnanaccttc caattctcgt acctcaccaa tctcattttt attatatac
60

ttggtagatc ttttgttacc tccaacaaaa aaatggtgac cgtagaagag attcgtaacg
120

cccaacgttc aaatggccct gccactatct tagctttgg cacagccact cttctaaact
180

gtgtcactca agctgattat cctgattact actttcgtat caccaacagc gaacatatga
240

ctgatcttaa ggaaaaattc aagcggatgt gtgatagatc aatgataaag aaacgttaca
300

tgcacctaac agaagacttt ctgaaggaga atccaaatat gtgtgaatac atggcaccat
360
```

cactagatgt aagacgagac atagtggttt gttgaagnacc aaagcttaggt aaagaancac
420

caaaaaaaagc catatngaa tggggacaac caaaaatcnaa aatcacacat gcttggttgc
480

tgaccacttc cggtgntgac atgccccgggg
510

<210> 107
<211> 137
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (102)..(102)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (114)..(114)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (121)..(121)
<223> Any amino acid

<400> 107

Met Val Thr Val Glu Glu Ile Arg Asn Ala Gln Arg Ser Asn Gly Pro
1 5 10 15

Ala Thr Ile Leu Ala Phe Gly Thr Ala Thr Pro Ser Asn Cys Val Thr
20 25 30

Gln Ala Asp Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr Asn Ser Glu His
35 40 45

Met Thr Asp Leu Lys Glu Lys Phe Lys Arg Met Cys Asp Arg Ser Met
50 55 60

Ile Lys Lys Arg Tyr Met His Leu Thr Glu Asp Phe Leu Lys Glu Asn
65 70 75 80

Pro Asn Met Cys Glu Tyr Met Ala Pro Ser Leu Asp Val Arg Arg Asp
85 90 95

Ile Val Val Val Glu Xaa Pro Lys Leu Gly Lys Glu Pro Lys Lys Ala
100 105 110

Ile Xaa Glu Trp Gly Gln Pro Lys Xaa Lys Ile Thr His Ala Trp Phe
115 120 125

Leu Thr Thr Ser Gly Asp Met Pro Gly
130 135

<210> 108
<211> 240
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (129)..(129)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (162)..(162)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (184)..(184)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (194)..(194)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (217)..(218)
<223> Any nucleotides

<220>
<221> misc feature
<222> (231)..(231)
<223> Any nucleotide

<400> 108
gacaaatgcn tgtggttgga atgggatccg cacctgattt tacatgttaag aaagacacaa
60

aagatgcaat cgttgaagcc atcaaacaag gttatagaca cttagataact gctgctgctt
120

atggctcana acaagctctt ggtgaagggtt tgaaaagaagc anttgaactt ggtcttgtca
180

ctanagaaga gctntttgtt acttctaaac tttgggnac tgaaaatcat nctaacccttg
240

<210> 109
<211> 79
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (43)..(43)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (54)..(54)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (61)..(61)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (64)..(64)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (72)..(72)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (77)..(77)
<223> Any amino acid

<400> 109

Gln Met Xaa Val Val Gly Met Gly Ser Ala Pro Asp Phe Thr Cys Lys
1 5 10 15

Lys Asp Thr Lys Asp Ala Ile Val Glu Ala Ile Lys Gln Gly Tyr Arg
20 25 30

His Phe Asp Thr Ala Ala Ala Tyr Gly Ser Xaa Gln Ala Leu Gly Glu
35 40 45

Gly Leu Lys Glu Ala Xaa Glu Leu Gly Leu Val Thr Xaa Glu Glu Xaa
50 55 60

117/390

Phe Val Thr Ser Lys Leu Trp Xaa Thr Glu Asn His Xaa Asn Leu
 65 70 75

<210> 110
<211> 604
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<400> 110
gtgttagcaga gtnagaaaaa gagagaaaaa aaaacatggc aggaaagaaa atcccagaag
60

tgttattgaa ttcaggacac aaaatgccag tcatacgaaat ggaaacatca gtagacaatc
120

gtcccatcaaa tgatgttctt gcttcaatct ttgttgatgc aattgaagt ggttatcgcc
180

atttcgattc tgcttctgtg tatggaacag aggaagccat aggaattgct ttagcaaaaag
240

ctttagaaaa agggcttatt aagagtagag atgaagttt catcaactca aagccatgga
300

atactgatgc agattatgaa cttattgttc cagctctcaa gaccacattg aaaaagctgg
360

ggacggagta tgtggatctt tatctgatcc attggccagt gagacttaga catgatctt
420

aaaacctgt tttttcacc aaagaagatt tactccctt tgatataaaaa gggacatgga
480

aagctatgga agaatgttat aagttaggct tagcaaagtc tattggata tgcaattatg
540

gtacccaaaaa actcaccaaa ctcttgaaa cagccaccat tacccttgca gtcaatcagg
600

tgga
604

<210> 111
<211> 189
<212> PRT
<213> Trifolium repens

<400> 111

Met Ala Gly Lys Lys Ile Pro Glu Val Leu Leu Asn Ser Gly His Lys
1 5 10 15

Met Pro Val Ile Gly Met Gly Thr Ser Val Asp Asn Arg Pro Ser Asn
20 25 30

Asp Val Leu Ala Ser Ile Phe Val Asp Ala Ile Glu Val Gly Tyr Arg

118/390

35

40

45

His Phe Asp Ser Ala Ser Val Tyr Gly Thr Glu Glu Ala Ile Gly Ile
50 55 60

Ala Leu Ala Lys Ala Leu Glu Lys Gly Leu Ile Lys Ser Arg Asp Glu
65 70 75 80

Val Phe Ile Thr Ser Lys Pro Trp Asn Thr Asp Ala Asp Tyr Glu Leu
85 90 95

Ile Val Pro Ala Leu Lys Thr Thr Leu Lys Lys Leu Gly Thr Glu Tyr
100 105 110

Val Asp Leu Tyr Leu Ile His Trp Pro Val Arg Leu Arg His Asp Leu
115 120 125

Glu Asn Pro Val Val Phe Thr Lys Glu Asp Leu Leu Pro Phe Asp Ile
130 135 140

Glu Gly Thr Trp Lys Ala Met Glu Glu Cys Tyr Lys Leu Gly Leu Ala
145 150 155 160

Lys Ser Ile Gly Ile Cys Asn Tyr Gly Thr Lys Lys Leu Thr Lys Leu
165 170 175

Leu Glu Thr Ala Thr Ile Thr Pro Ala Val Asn Gln Val
180 185

<210> 112

<211> 334

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (10)..(10)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (17)..(17)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (21)..(21)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (246)..(246)

<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (268)..(268)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (277)..(277)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (281)..(281)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (294)..(294)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (328)..(328)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (330)..(330)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (334)..(334)
<223> Any nucleotide

<400> 112
gtgttagcagn attaganaaa natataaaaa aaaacatggc aggaaagaaa atcccagaag
60

tgttattgaa ttcaaggacac aaaatgccag tcataggaat gggAACATCA gtagacaatc
120

gtccatcaaa tgatgttctt gttcaatct ttgttgatgc aattgaagtt ggTTATCGCC
180

atTCGATTc tgTTCTGTG tatggaacAG aggaAGCCAT aggaATTGCT ttAGCAAAG
240

ctttanaaaa agggcttatt aagagtANAG atGAAGNttt natcacttgc aAGNCATGGA
300

ataCTGATGC acattatgaa cttattgnTN caan
334

<210> 113
<211> 602
```

<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<400> 113
gtagcagngt tagnanaagn gngaaaaaaaaaacatggcag gaaagaaaaat cccagaagtg
60

ttattgaatt caggacacaa aatgccagtc ataggaatgg gaacatcagt agacaatcgt
120

ccatcaaatg atgttcttgc ttcaatcttt gttgatgcaa ttgaagttgg ttatcgccat
180

ttcgattctg cttctgtgta tggAACAGAG gaAGCCATAG gaATTGCTTT agcaAAAGCT
240

ttagaaaaag ggcttattaa gagtagagat gaagtttca tcacttcaaa gccatggaaat
300

actgatgcag attatgaact tattgttcca gctctcaaga ccacattgaa aaagctgggg
360

acggagttatg tggatcttta tctgatccat tggccagtga gacttagaca tgatcttcaa
420

aaccctgttg tttcaccaa agaagattta ctccccttg atatagaagg gacatggaaa
480

gctatggaag aatgttataa gttaggctta gcaaagtcta ttggatatgt caattatgg
540

accaaaaaaac tcaccaaact cttggaaaca gccaccatta cccctgcagt caatcaggtg
600

ga
602

<210> 114
<211> 584
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(5)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (27)..(27)
<223> Any nucleotide

<400> 114
agttnngaaaa agagagaaaa aaaaacntgg caggaaagaa aatcccagaa gtgttattga
60
attcaggaca caaaatgcc a gtcataggaa tggaaacatc agtagacaat cgtccatcaa
120
atgatgttct tgcttcaatc tttgttgatg caattgaagt tggttatcgc catttcgatt
180
ctgcttctgt gtatggaaca gaggaagcca taggaattgc tttagcaaaa gctttagaaa
240
aagggcttat taagagtaga gatgaagt ttcatcacttc aaagccatgg aataactgatg
300
cagattatga acttattgtt ccagctctca agaccacatt gaaaaagctg gggacggagt
360
atgtggatct ttatctgatc cattggccag tgagacttag acatgatctt gaaaaccctg
420
ttgtttcac caaagaagat ttacttccct ttgatataaga agggacatgg aaagctatgg
480
aagaatgtta taagtttaggc ttagcaaagt ctattggat atgcaattat ggtaccaaaa
540
aactcaccaa actcttggaa acagccacca ttacccctgc agtc
584

<210> 115
<211> 547
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(5)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (27)..(27)
<223> Any nucleotide

<400> 115
agtngaaaa agagagaaaa aaaaacntgg caggaagaa aatcccagaa gtgttattga
60

attcaggaca caaatgccca gtcataaggaa tggaaacatc agtagacaat cgtccatcaa
120

atgatgttct tgcttcaatc tttgttgatg caattgaagt tggttatcgc catttcgatt
180

ctgcttctgt gtatggaaca gaggaagcca taggaattgc tttagcaaaa gcttagaaaa
240

aaggccttat taagagtaga gatgaagttt tcatacttc aaagccatgg aatactgatg
300

cagattatga acttattgtt ccagctctca agaccacatt gaaaaagctg gggacggagt
360

atgtggatct ttatctgatc cattggccag tgagacttag acatgatctt gaaaaccctg
420

ttgtttcac caaagaagat ttactccct ttgatataaga agggacatgg aaagctatgg
480

aagaatgtta taagtttaggc ttagcaaagt ctattggat atgcaattat ggtacccaaaa
540

aactcac
547

<210> 116
<211> 334
<212> DNA
<213> Trifolium repens

<220>
<221> misc feature
<222> (295)..(295)
<223> Any nucleotide

<400> 116
acatggcagg aaagaaaatc ccagaagtgt tattgaattc aggacacaaaa atgccagtca
60

taggaatggg aacatcgta gacaatgtc catcaaatga tttcttgct tcaatcttg
120

ttgatgcaat tgaagtttgt tatcgatcatt tcgattctgc ttctgtttat ggaacagagg
180

aagctatagg aattgcttta gcaaaagctt tagaaaaagg gcttattaag agtagagatg
240

aagtttcat cactcaaag ccatggaata ctgatgcaga ttatgatctt attgntccag
300

ctctcaagac cacattgaaa aagctgggaa caga
334

<210> 117

<211> 694
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (32)..(33)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (48)..(49)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (62)..(62)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (94)..(96)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (101)..(101)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (106)..(106)
<223> Any nucleotide

<400> 117
taagaatgaa ncaattttat ctnanaaaaag gnncangcaa gtnagtttta ttcaaacata
60

gncttaaagt gtgttaacata ttcttaactt aaannntttt naccnacaa aaaaaaacaa
120

agacaataac atgggttagtg ttgaaattcc aacaaagggtt cttactaaca cttctagtca
180

agtgaaaatg cctgtggttg gaatgggatc agtcctgtat ttcacatgta agaaagatac
240

aaaagatgca atcattgaag ccatcaaaca aggttataga cactttgata ctgctgctgc
300

ttatggctca gaacaagctc ttggtaagg tttgaaagaa gcaattgaac ttggccttgt
360

cactagagaa gagcttttg ttacttctaa actttgggtc actgaaaatc atcctcacct
420

tggtgttcct gctcttcaaa aatctctcaa gactcttcaa ttggagtact tggacttgta
480

tttgatccat tggccactta gttctcagcc tggaaagttt tcatttccaa ttgatgtggc
540

agatctcttg ccatttgatg tgaagggtgt ttggaatcc atggaagaag gcttgaaact
600

tggactcact aaagctattg gtgttagtaa cttctctgtc aagaaacttc aaaatcttgt
660

ctcagttgcc accgttcttc ctgcggtcaa tcag
694

<210> 118
<211> 188
<212> PRT
<213> Trifolium repens

<400> 118

Met Gly Ser Val Glu Ile Pro Thr Lys Val Leu Thr Asn Thr Ser Ser
1 5 10 15

Gln Val Lys Met Pro Val Val Gly Met Gly Ser Ala Pro Asp Phe Thr
20 25 30

Cys Lys Lys Asp Thr Lys Asp Ala Ile Ile Glu Ala Ile Lys Gln Gly
35 40 45

Tyr Arg His Phe Asp Thr Ala Ala Ala Tyr Gly Ser Glu Gln Ala Leu
50 55 60

Gly Glu Gly Leu Lys Glu Ala Ile Glu Leu Gly Leu Val Thr Arg Glu

125/390

65

70

75

80

Glu Leu Phe Val Thr Ser Lys Leu Trp Val Thr Glu Asn His Pro His
85 90 95

Leu Val Val Pro Ala Leu Gln Lys Ser Leu Lys Thr Leu Gln Leu Glu
100 105 110

Tyr Leu Asp Leu Tyr Leu Ile His Trp Pro Leu Ser Ser Gln Pro Gly
115 120 125

Lys Phe Ser Phe Pro Ile Asp Val Ala Asp Leu Leu Pro Phe Asp Val
130 135 140

Lys Gly Val Trp Glu Ser Met Glu Glu Gly Leu Lys Leu Gly Leu Thr
145 150 155 160

Lys Ala Ile Gly Val Ser Asn Phe Ser Val Lys Lys Leu Gln Asn Leu
165 170 175

Val Ser Val Ala Thr Val Leu Pro Ala Val Asn Gln
180 185

<210> 119
<211> 576
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (48)..(48)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (62)..(62)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (65)..(65)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (95)..(95)
<223> Any nucleotide

<400> 119
taagaatgaa ncaattttat cttataaaaag gtncangcaa gttagttnct attaaacata
60

gnctnaaagt gtgttaacata ttcttaactt aaacnatttt cacccaacaa aaaaaaacaa
120

agacaataac atggtagtg ttgaaattcc aacaaagggtt cttactaaca cttctagtca
180

agtggaaatg cctgtggttg gaatgggatc agtcctgat ttcacatgta agaaagatac
240

aaaagatgca atcattgaag ccatcaaaca aggttataga cactttgata ctgctgctgc
300

ttatggctca gaacaagctc ttggtaagg tttgaaagaa gcaattgaac ttggcttgt
360

cactagagaa gagcttttg ttgcttctaa actttgggtc actggaaatc atccatct
420

tgttgttcct gctcttcaaa aatctctcaa gactcttcaa ttggagtact tggacttga
480

tttgattcac tggccactta gttctcagcc cgaaaagttt tcatttccaa ttgaggtggc
540

agatcttttg ccatttgatg tgaaggggtgt ttgggg
576

<210> 120
<211> 524
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(6)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (13)..(14)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (24)..(24)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (29)..(30)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (46)..(46)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (55)..(55)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (76)..(76)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (524)..(524)
<223> Any nucleotide

<400> 120
tctnnnnaaaa ggnncangca agtnagtttt tanttnaact agnctnaaag tgtgnaacat
60

attcttaact taaacnattt tcacccaaca aaaaaaaaaaca aagacaataa catgggtgt
120

gttgaaattc caacaaaggt tcttactaac acttcttagtc aagtgaaaat gcctgtggtt
180

ggaatggat cagctcctga tticacatgt aagaaagata caaaagatgc aatcattgaa

240

gccccatcaaac aaggttatacg acactttgat actgctgctg cttatggctc agaacaagct
300

cttggtaag gtttgaaaga agcaattgaa cttggctttg tcactagaga agagctttt
360

gttgcattcta aactttgggt cactgaaaat catcctcatc ttgttgttcc tgctttcaa
420

aaatctctca agactcttca attggagtac ttggacttgtt atttgattca ctggccactt
480

agtttcagc ccggaaagtt ttcatttcca attgaggtgg cagn
524

<210> 121
<211> 577
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (54)..(54)
<223> Any nucleotide

<400> 121
gnattcaaac atagnctnaa agtgtgtaac atattcttaa cttaaaacat tttnaccaa
60

aaaaaaaaaa caaagacaac aacatggta gtgttgaat tccaaacaaag gttcttacta
120

acacttctag tcaagtgaaa atgcctgtgg ttggaatggg atcagctcct gatttcacat
180

gtaagaaaaga tacaaaagat gcaatcattg aagccatcaa acaaggat agacactttg
240

atattgtgc tgcttatggc tcagaacaag ctcttggta aggtttgaaa gaagcaattg
300

aacttggct tgcactaga gaagacctt ttgttacttc taaactttgg gtcactgaaa
360

129/390

atcatcctca ccttgttatt cctgctcttc aaaaatctct caagactctt caattggagt
420

acttggactt gtatttgatc cactggccac ttagttctca gccccgaaag ttttcatttc
480

caatttgaggt ggcagatctc ttgccatttg atgtgagggg tgtttggcaa tccatggaag
540

aaggcttgaa acttggactc actaaagcta ttggtgt
577

<210> 122
<211> 597
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (29)..(29)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (52)..(52)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (57)..(57)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (597)..(597)
<223> Any nucleotide

<400> 122
attcaaacat agnctnaaaag tgtgtaacnt attcttaact taaaacnntt tnaccnaca
60

aaaaaaaaaca aagacaacaa catgggtagt gttgaaattc caacaaaggt tcttactaac
120

acttctagtc aagtgaaaat gcctgtgggt ggaatggat cagctcctga tttcacatgt
180

aagaaaagata caaaagatgc aatcattgaa gccatcaaac aaggttatag acactttgat
240

attgctgctg cttatggctc agaacaagct cttggtaag gtttgaaga agcaattgaa
300

cttggtcttg tcactagaga agacctttt gttacttcta aactttgggt cactgaaaat
360

catcctcacc ttgttattcc tgctcttcaa aaatctctca agactcttca attggagtac
420

ttggacttgt atttgatcca ctggccactt agttctcagc ccggaaagtt ttcatttcca
480

attgaggtgg cagatctttt gccatttgat gtgaggggtg tttggcaatc catggaagaa
540

ggcttgaaac ttggactcac taaagctatt ggtgtcagta acttctctgt caagaan
597

<210> 123
<211> 293
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (51)..(51)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (59)..(59)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (224)..(224)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (250)..(250)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (257)..(257)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (274)..(277)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (279)..(280)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (285)..(285)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (293)..(293)
<223> Any nucleotide

<400> 123
ttcaaacata gcctccnagt gtgtaacata ttcttaactt aaaacatttt nacccaacna
60

taaaaaaacaa agacaacaac atgggttagtg ttgaaattcc aacaaagggtt cttactaaca
120

gttctagtc a gtaaaaatg cctgtggttg gaatgggatc agtcctgac ttcacatgta
180

agaaaagacac aaaagatgca atcattgaag ccatcaaaca aggntataga cactttgaaa
240

ctgctgctgn ttatgcntca caacaagctc ttgnnnnnnnn cttcnatgcc ccn
293

<210> 124
<211> 636
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (86)..(86)
<223> Any nucleotide

<220>

132/390

<221> misc_feature
<222> (244)..(244)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (261)..(261)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (458)..(458)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (485)..(485)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (507)..(507)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (515)..(515)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (540)..(540)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (545)..(545)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (574)..(574)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (577)..(578)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (588)..(588)
<223> Any nucleotide

<220>

133/390

<221> misc_feature
<222> (593)..(593)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (609)..(609)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (630)..(630)
<223> Any nucleotide

<400> 124
ttcnaacata gnctcaaagt gtgtaacata ttcttaactt aaaacatttt cacccaacaa
60

aaaaaaaaacaa agacaacaac atgggnaggg ttgaaattcc aacaaagggtt cttactaaca
120

cttctagtca agtgaaaatg cctgtggttg gaatgggatc agtcctgtat tttacatgta
180

aaaaagacac aaaagatgca atcattgaag ccatcaaaca aggttataga cactttgata
240

ctgntgctgc ttatggctca naacaagctc ttggtaagg tttgaaagaa gcaattgaac
300

ttggccttgt cactagaaaa gagcttttg ttacttctaa actttgggtc actgaaaatc
360

atcctcacct tttgttccct gctttcaaa aatctctcaa gactttctaa ttggagttact
420

tggacttgtt tttgatccat tggccactta attctcancc tggaaagttt tcatttccca
480

ttgangtggc aaatctcttg ccatttnatg tgaanggtgt ttggaaatcc atggaaaaan
540

gcttnaaact tggactcact aaagctattg gtgnccannaa cttctctntc aanaaacttc
600

aaaatcttnt ctcaattgcc accgttcttn ctgcgg
636

<210> 125
<211> 570
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (11)..(11)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (21)..(21)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (23)..(23)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (25)..(25)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (41)..(42)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (55)..(55)

<223> Any nucleotide

<400> 125

aacatagnct naaagtgtgt nananattct taacttaaaa nntttcacc caacnaaaaa
60

aaacaaaagac aaaaacatgg gtagtgttga aattccaaca aaggttctta ctaacacttc
120

tagtcaagtg aaaatgcctg tgggttggat gggatcagca cctgatttca catgtaaagaa
180

agacacaaaaa gatgcaatca ttgaagccat caaacaaggt tatagacact ttgatactgc
240

tgctgcttat ggctcagaac aagctttgg tggaggtttgg aaagaagcaa ttgaacttgg
300

ccttgcact agagaagagc tttttgttac ttctaaactt tgggtcactg aaaatcatcc
360

tcaccttggc gttcctgctc ttcaaaaatc tctcaagact ctcaattgg agtacttgg
420

cttgcattttg atccattggc cacttagttc tcagcctgg aagtttcat ttcaattga
480

tgtggcagat ctcttgccat ttgatgtgaa ggggtttgg caatccatgg aagaaggctt
540

gaaacttggc ctcactaaag ctattgggt
570

<210> 126

<211> 621
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (17)..(18)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (21)..(22)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (27)..(27)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (32)..(32)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (44)..(44)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (49)..(51)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (62)..(62)
<223> Any nucleotide

<400> 126
acatngctna agtgtgnnaa nnattcntaa cntaaacnat tttnaccnn nacaaaaaaa

60

cnaagacaat aacatgggta gtgttgaat tccaacaaag gttcttacta acacttctag
120
tcaagtgaaa atgcctgtgg ttggaatggg atcagctcct gatttcacat gtaagaaaaga
180
tacaaaagat gcaatcattg aagccatcaa acaaggttat agacactttg atactgctgc
240
tgcttatggc tcagaacaag ctcttggtga aggtttgaaa gaagcaattt aacttggcct
300
tgtcactaga gaagagctt ttgttacttc taaactttgg gtcactgaaa atcatcctca
360
tcttgggtt cctgcttcc aaaaatctct caagactctt caattggagt acttggactt
420
gtatttgate cattggccac ttagttctca gcctggaaag ttttcatttc caattgatgt
480
ggcagatctc ttgccatgg atgtgaaggg tggttggaa tccatggaaag aaggcttgaa
540
acttggactc actaaagcta ttgggttag taacttctct gtcaagaaac ttcaaaaatct
600
tgtctcagtt gccaccgttc t
621

<210> 127
<211> 573
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(38)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (48)..(48)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (61)..(61)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (573)..(573)
<223> Any nucleotide

<400> 127
catacgtnaa gtgtgnaana atttcttaac taaaannntt ttnaccnac aaaaaaaaaac
60

naagacaaaa acatggtag tttgaaatt ccaacaagg ttcttactaa cagttctagt
120

caagtgaaaa tgcctgtgg tggaatggga tcagcacctg atttcacatg taagaaagac
180

acaaaaagatg caatcattga agccatcaa caaggttata gacactttga tactgctgct
240

gcttatggct cagaacaagc tcttggtgaa gtttggaaag aagcaattga acttggcctt
300

gtcactagag aagagcttt ttttacttct aaactttggg tcactgaaaa tcatttcac
360

cttgggttca ctgctttca aaaatctctc aagacttttc aattggagta cttggacttg
420

tatttgatcc attggccact tagttctcag cctggaaagt tttcatttcc aattgatgtg
480

gcagatctct tgccattga tgtgaagggt gtttggaaat ccatggaaga aggcttgaaa
540

cttggactca ctaaagctat tgggttagt aan
573

<210> 128
<211> 583
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(17)
```

<223> Any nucleotides

<220>
<221> misc_feature
<222> (19)..(20)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (31)..(31)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(38)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (48)..(48)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (61)..(61)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (79)..(79)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (81)..(81)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (83)..(84)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (239)..(239)

<223> Any nucleotides

<400> 128
catngctaaa gtgtgnmann tattcntaac ntaaaannntt ttnaccnac aaaaaaaaaac
60

naagacaata acatgggtng ngnngaaatt ccaacaaagg ttcttactaa cacttctagt
120

caagtgaaaaa tgcctgtggt tggaatggga tcagctcctg atttcacatg taagaaagat
180

acaaaagatg caatcattga agccatcaa caaggttata gacactttga tactgctgnt
240

gcttatggct cagaacaaggc tcttggtgaa ggtttggaaag aagcaattga acttggcctt
300

gtcactagag aagagctttt tgttacttct aaactttggg tcactgaaaa tcattcctcac
360

cttggatttc ctgctcttca aaaatctctc aagactcttc aattggagta cttggacttg
420

tatttgatcc attggccact tagttcttag cctggaaagt tttcatttcc aattgatgtg
480

gcagatctct tgccatttga tgtgaagggt gtttggaaat ccatggaaga aggcttgaaa
540

cttggactca ctaaagctat tggtgtagt aacttctctg tcc
583

<210> 129

<211> 597

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (4)..(4)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (8)..(8)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (16)..(16)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (18)..(18)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (21)..(21)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(38)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (48)..(48)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (61)..(61)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (67)..(67)
<223> Any nucleotides

<400> 129
catngctnaa gtgtgnanca natttctaac taaaannntt ttcacccnac aaaaaaaaaac
60

naagacnaaa acatgggtag tgttgaaatt ccaacaaagg ttcttactaa cagttctagt
120

caagtgaaaa tgcctgtggc tggaatggga tcagcacctg atttcacatg taagaaagac
180

acaaaaagatg caatcattga agccatcaaa cagggtata gacactttga tactgctgct
240

gcttatggct cagaacaagc tcttggtgaa ggtttgaag aagcaattga acttggcttt
300

gtcacttagag aagaccttt tgttacttct aaactttggg tcactgaaaa tcatcctcat
360

cttgggtttc ctgctttca aaaatctctc aagactcttc aattggagta cttggacttg
420

tatttgcattcc attggccact tagttctcag cctggaaagt ttcatattcc aattgatgtg
480

gcagatctct tgccatttga tgtgaagggt gtttggaaat ccatggaaga aggcttgaaa
540

cttggactca ctaaagctat tgggtttagt aacttctctg tcaagaaaact tc当地
597

<210> 130
<211> 597
<212> DNA
<213> Trifolium repens

<220>

```
<221> misc_feature
<222> (16)..(17)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(38)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (48)..(48)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (55)..(55)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (61)..(61)
<223> Any nucleotide

<400> 130
catagctaaa gtgtgnnana atttcttnac taaaannntt ttcacccnac aaaanaaaaac
60

naagacaaaa acatggtag tggtaaaatt ccaacaaagg ttcttactaa cacttctagt
120

caagtgaaaa tgcctgtggc tggatggga tcagcacctg atttcacatg taagaaagac
180

acaaaaagatg caatcattga agccatcaa caaggtata gacactttga tactgctgct
240

gcttatggct cagaacaagc tcttggtgaa ggtttggaaag aagcaattga acttggcctt
300

gtcactagag aagagcttt tgttacttct aaactttggg tcactgaaaa tcacccac
360

cttgggtttc ctgctttca aaaatctctc aagactcttc aattggagta cttggacttg
420

tatttgatcc attggccact tagttctcag cctggaaagt tttcatttcc aattgatgtg
480
```

gcagatctct tgccatttga tgtgaagggt gtttgcaat ccatggaaga aggcttgaaa
540

cttggactca ctaaagctat tggtgttagt aacttctctg tcaagaaact tcaaaat
597

<210> 131
<211> 574
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(28)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (51)..(51)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (57)..(57)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (83)..(83)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (519)..(519)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (540)..(540)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (559)..(561)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (568)..(568)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (572)..(572)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (574)..(574)
<223> Any nucleotide

<400> 131
gngtgtaaca tattcttaac ttaaannntt tttnaccnac aaaaaaaaaac naagacnata
60

acatggtag tgttgaaatt ccnacaaagg ttcttactaa cacttctagt caagtgaaaa
120

tgcctgtgg tggaatggga tcagctcctg atttcacatg taagaaagat acaaaagatg
180

caatcattga agccatcaaa caaggttata gacactttga tactgctgct gcttatggct
240

cagaacaagc tcttggtgaa ggtttgaaag aagcaattga acttggcctt gtcactagag
300

aagagcttt tgttacttct aaactttggg tcactgaaaa tcatcctcac cttgttgttc
360

ctgctttca aaaatctctc aagactcttc aattggagta cttggacttg tatttgatcc
420

attggccact tagttcttag cctggaaagt tttcatttcc aattgatgtg gcagatctct
480

tgccatattga tgtgaagggt gtttggaaat ccatgaaana aggcttgaaa cttggactcn
540

ctaaagctat tggtgttann nacttctntg tnan
574

<210> 132
<211> 578
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(27)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(37)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (578)..(578)
<223> Any nucleotide

<400> 132
gngtgtaaca tatncttaac ttaaannatt tttnaccnaac aaaaaaaaaac aaagacaata
60

acatggtag tgttgaaatt ccaacaaagg ttcttactaa cacttctagt caagtgaaaa
120

tgcctgtggc tggaaatggga tcagctcctg atttcacatg taagaaagat acaaaagatg
180

caatcattga agccatcaaa caaggttata gacacttga tactgctgct gcttatggct
240

cagaacaaggc tcttggtgaa ggtttggaaag aagcaattga acttggcctt gtcactagag
300

aagagctttt tgttacttct aaactttggg tcactgaaaa tcatcctcac cttgttgttc
360

ctgctttca aaaatctctc aagactcttc aattggagta cttggacttg tatttgatcc
420

attggccact tagttctcag cctggaaagt tttcatttcc aattgatgtg gcagatctct
480

tgccatttga tgtgaagggt gttggaaat ccatgaaaga aggcttgaaa cttggactca
540

ctaaagctat tgggttttagt aacttctctg tcaagaan
578

<210> 133
<211> 600
<212> DNA
```

<213> Trifolium repens

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (8)..(12)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (26)..(28)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(38)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (48)..(48)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (51)..(51)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (57)..(59)
<223> Any nucleotides

<400> 133
gtgtgnannn nntttctaac taaaannntt tttnaccnnac aaaaaatnaa ngacacnnna
60

acatggtag tggtgaaatt ccaacaaagg ttcttactaa cagttctagt caagtgaaaa
120

tgcctgttgt tggaatggga tcagcacctg atttcacatg taagaaagac aaaaaagatg
180

caatcattga agccatcaa caaggttata gacacttga tactgctgct gcttatggct
240

cagaacaagg tcttggtgaa ggtttgaaag aagcaattga acttggcctt gtcactagag
300

aagagcttt tgttacttct aaactttggg tcactgaaaa tcatcctcac cttgttgttc
360

ctgccttca aaaatctctc aagactcttc aattggagta ctggacttg tatttgatcc
420

attggccact tagttctcag cccgaaaagt tttcatttcc aattgatgtg gcagatctct
480

tgccatttga tgtgaagggt gtttggaaat ccatggaaga aggcttggaaa ctggactca
540

ctaaagctat tggtgtcagt aacttctctg tcaagaaact tcaaaatctt gtctcagttg
600

<210> 134

<211> 612

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (1)..(1)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (6)..(6)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (13)..(14)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (19)..(19)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (23)..(24)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (27)..(27)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (37)..(37)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (43)..(43)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (46)..(46)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (69)..(69)
<223> Any nucleotide

<400> 134
nttctnacta aannttttna ccnnacnaaa aaaaacnaag acnatnacat gggtagtgtt
60

gaaattccna caaagggtct tactaacact tctagtcaag tgaaaatgcc tgtgggttggaa
120

atggatcatc ctcctgattt cacatgttaag aaagatacaa aagatgcaat cattgaagcc
180

atcaaacaag gttatagaca ctttgatact gctgctgctt atggctcaga acaagcttt
240

ggtaagggtt tgaaaagaagc aattgaactt ggccttgtca ctagagaaga gctttttgtt
300

acttctaaac tttgggtcac tgaaaatcat cctcaccttgc ttgttcctgc tcttcaaaaa
360

tctctcaaga ctcttcaatt ggagtacttg gacttgttatt tgatccattt gccacttagt
420

tctcagcctg gaaagtttc atttccaatt gatgtggcag atctcttgcattt gatgtgtt
480

aagggtgttt gggaatccat ggaagaaggc ttgaaacttg gactcactaa agctattgg
540

gttagtaact tctctgtcaa gaaacttcaa aatcttgtct cagttgccac cgttcttcct
600

gcggtaatc ag
612

<210> 135
<211> 610
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(41)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (67)..(67)
<223> Any nucleotide

<400> 135
gcacacnttc ttgacttacc aattgtataatn cataataatt ntaaaacatgt caaagacagt
60

tttgtgnacc ggagccagcg gagccatcggt ttcatgggtg gttcgctcc tcctcgaacg
120

cggctacatt gtccacgcca ccatccaaga tctcgaggat gagaacgaga caaaacattt
180

ggaagcaatg gaaggagcaa agggtcatct caaattttc gaaatggatc ttcttaacag
240

cgactctatt gcggccgccc tgaaagggtt tgccggagtt atacatcttgcatgtcctaa
300

catcattgggt gaagtcaaag accccgagaa gcaaatttttg gaaccggcaa ttcaaggaac
360

ggtaatgtg ttgaagggtgg caaaggaagc aggggtggag cgtgtgggtgg cgacatcgtc
420

gatctccgcc atcataccga gtcctaatttgcagctgtat aagattaagg gagaagattt
480

ttggacagac cttgatttattt gcaaggaaaaa gaagttatac tacccatttgc caaagacact
540

agcagaaaaa gctggttggg aatttgctaa agagaccggt tttgatgttg ttatgattaa
600

ccctggtaact
610

<210> 136
<211> 188
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Any amino acid

<400> 136

Met Ser Lys Thr Val Cys Xaa Thr Gly Ala Ser Gly Ala Ile Gly Ser
1 5 10 15

Trp Val Val Arg Leu Leu Glu Arg Gly Tyr Ile Val His Ala Thr

20

25

30

Ile Gln Asp Leu Glu Asp Glu Asn Glu Thr Lys His Leu Glu Ala Met
35 40 45

Glu Gly Ala Lys Gly His Leu Lys Phe Phe Glu Met Asp Leu Leu Asn
50 55 60

Ser Asp Ser Ile Ala Ala Ala Val Lys Gly Cys Ala Gly Val Ile His
65 70 75 80

Leu Ala Cys Pro Asn Ile Ile Gly Glu Val Lys Asp Pro Glu Lys Gln
85 90 95

Ile Leu Glu Pro Ala Ile Gln Gly Thr Val Asn Val Leu Lys Val Ala
100 105 110

Lys Glu Ala Gly Val Glu Arg Val Val Ala Thr Ser Ser Ile Ser Ala
115 120 125

Ile Ile Pro Ser Pro Asn Trp Pro Ala Asp Lys Ile Lys Gly Glu Asp
130 135 140

Cys Trp Thr Asp Leu Asp Tyr Cys Lys Glu Lys Lys Leu Tyr Tyr Pro
145 150 155 160

Ile Ala Lys Thr Leu Ala Glu Lys Ala Gly Trp Glu Phe Ala Lys Glu
165 170 175

Thr Gly Phe Asp Val Val Met Ile Asn Pro Gly Thr
180 185

<210> 137

<211> 327

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (30)..(30)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (41)..(41)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (67)..(67)

<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (255)..(255)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (271)..(271)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (287)..(287)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (291)..(291)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (313)..(313)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (317)..(319)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (326)..(327)
<223> Any nucleotides

<400> 137
gcacacacctc ttgacttacc aattgtatn cataataatt ntaaacatgt caaagacagt
60

ttgtgttacc ggagccagcg gagccatcgg ttcatgggtg gttcgccctcc tcctcgaacg
120

cggtctacatt gtccacgcca ccatccaaga tctcgaggat gagaacgaga caaaacattt
180

ggaagcaatg gaaggagcaa agggtcatct caaatttttc gaaatggatc ttcttaacag
240

cgactctatt gcggncgccg taaaaggatcg ngccggagtt atacatnttg nctgtcctac
300

cccccttggg gangagnnng cacccnn
327

<210> 138
<211> 349
<212> DNA
<213> Trifolium repens
```

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (67)..(67)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (287)..(287)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (314)..(314)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (316)..(316)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (320)..(320)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (324)..(324)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (328)..(328)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (333)..(333)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (341)..(341)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (346)..(346)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (348)..(349)
<223> Any nucleotides

<400> 138
gcncacnttc ttgacttacc aattgttaatn cataatatattt ataaacatgt caaagacagt
60

tttgtgnacc ggagccagcg gagccatcg ttcatgggtg gttcgctcc tcctggaacg
120

cggctacatc gtccacgcca ccatccaaga tctcgaggat gagaacgaga caaaacattt
180

ggaagcaatg gaaggggcaa agggtcatct taaattttc gaaatggatc ttcttaacag
240

tgactctatt gcggccgccg tgaaaggttg tgccggagtt atacatnttg catgtgctaa
300

catcattgct gaangnaaan accncganaa cgngattttg naaccngnn
349

<210> 139
<211> 592
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(41)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (481)..(481)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (505)..(505)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (542)..(542)
<223> Any nucleotide

<400> 139
gcacacnttc ttgacttacn aattgtatn cataataatt nttaaacatgt caaaggcagt
60

tttgttcacc ggagccagcg gagccattgg ttcatgggtg gttcgctcc tcctccaacg
120

cggctacatt gtccacgcca ccatccaaga tctcgaggat gagaacgaga caaaacattt
180

ggaagcaatg gaaggagcaa agggtcatct caaatttttt gaaatggatc ttcttaacag
240

cgactctatt gcggccgccg tgaaagggtt tgccggagtt atacatcttgcatgtcctaa
300

catcattggtaa gtcaatggat accccgagaa gcaaattttt gaaatggatc ttcaagggac
360

ggtaatgtt ttgaagggtgg caaaggaagc aggggtggag cgtgtgggtt cgacatcgtc
420

gatctccgccc atcataccga gtcctaattt gccagctgat aagattaagg gagaagattt
480

ntggacagac cttgatttatt gcaangaaaaa gaagttatac tacccattt gaaagacatt
540

ancagaaaaaa gctgggtggg aatttgctaa agagaccgggt tttgatgttg tt
592

<210> 140
<211> 594
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(41)
<223> Any nucleotide

<400> 140
gcacacnttc ttgacttacc aattgttaatn cataataatt ntaaaacatgt caaagacagt
60

tttgtgtcacc ggagccagcg gagccatcggt ttcatgggtg gttcgctcc tcctcgaacg
120

cggctacatt gtccacgcca ccatccaaga tctcgaggat gagaacgaga caaaacattt
180

ggaagcaatg gaaggagcaa agggtcatct caaatttttc gaaatggatc ttctcaacag
240

cgactctatt gcggccgccc tgaaagggtt tgccggagtt atacatcttg catgtcctag
300

catcatttgtt gaagtcaaag accccgagaa gcaaatttttgaacccggcaa ttcaaggaac
360

ggttaatgtt ttgaagggtgg caaaggaagc aggggtggag cgtgtgggtt cgacatcgtc
420

gatctccgcc atcataccga gtcctaattt gccagctgat aagattaagg gagaagattt
480

ttggacagac cttgatttatt gcaaggaaaaa gaagttatac tacccttatttcaaaagacact
540

agcagaaaaaa gctgggtggg aatttgctaa agagaccgggt tttgatgttg ttat
594

<210> 141
<211> 583
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (49)..(50)
<223> Any nucleotides

<400> 141
gccncttctt gacncacnaa ttgtaatnca taataattat aaacatgttn aagacagttt
60

gtgtcactgg agccagcgga gccatcggtt catgggtggt tcgcctcctc ctccaacgcg
120

gctacattgt ccacgcccacc atccaagatc tcgaggatga gaacgagaca aaacatttgg
180

aagcaatgga aggagcaaag ggtcatctca aattttcga aatggatctt cttaacagcg
240

actctattgc ggccgccgtg aaaggttgtg ccggagttat acatcttgca tgtcctaaca
300

tcatggtga agtcaaagac cccgagaagc aaattttgga accggcaatt caaggaacgg
360

ttaatgtgtt gaaggtggca aaggaagcag gggtggagcg tgtggtggcg acatcgtcga
420

tctctgccat cataccgagt cctaattggc cagctgataa gattaaggga gaagattgtt
480

ggacagacct tgattattgc aaggaaaaga agttatacta ccccattgca aagacactag
540

cagaaaaagc tggttggaa tttgctagag agaccggttt tgt
583

<210> 142
<211> 608
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>

```
<221> misc_feature
<222> (39)..(39)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (49)..(49)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (65)..(65)
<223> Any nucleotide

<400> 142
gctncttctt gacttacnaa ttgttaatnca taataattnt aaacatgtna aagacagttt
60

gtgttnaccgg agccagcggga gccatcggtt catgggtggt tcgccttcctc ctcgaacgcg
120

gctacattgt ccacgcccacc atccaagatc tcgaggatga gaacgagaca aaacatttg
180

aagcaatgga aggagcaaag ggtcatctca aattttcga aatggatctt ctcaacagcg
240

actctattgc ggccgccccgtg aaagggttggc ccggagttat acatcttgca tgtccttagca
300

tcattggtga agtcaaagac cccgagaagc aaattttgga accggcaatt caaggaacgg
360

ttaatgtgtt gaaggtggca aaggaagcag gggtgagcgt tggtggcgt acatcgatcg
420

tctccgccat cataccgagt cctaattggc cagctgataa gattaaggga gaagattgtt
480

ggcacagacct tgattattgc aaggaaaaga agttatacta ccccatggca aagacactag
540

cagaaaaaagc tggttggaa tttgctaaag agaccggttt tgatgttggc atgattaacc
600

ctggtaact
608

<210> 143
<211> 571
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (11)..(11)
```

<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (62)..(63)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (72)..(72)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (537)..(537)
<223> Any nucleotide

<400> 143
cnncttgac ntaccaattg taatncataa taattntaaa catgtcnaag gcagtttgt
60

tnnccggagc cngcggagcc attggttcat gggtggttcg cctcctcctc caacgcggct
120

acattgtcca cgccaccatc caagatctcg aggatgagaa cgagacaaaa catttggaaag
180

caatggaagg agcaaagggt catctcaa at ttttgaaat ggatcttott aacagcgact
240

ctattgcggc cgccgtaaaa ggttgtgccg gagttataca tcttgatgt cctaacatca
300

ttgggtgaagt caaagacccc gagaagcaaa ttttggaaacc ggcaattcaa ggaacggta
360

atgtgttcaa ggtggcaaag gaagcagggg tggagcgtgt ggtggcgaca tcgtcgatct
420

ccgccccatcat accgagtcct aattggccag ctgataagat taagggagaa gattgttgaa
480

cagacccatcat ttattgcaag gaaaagaagt tatactaccc cattgcaaaag acattancag
540

aaaaagctgg ttgggaattt gctaaagaga c
571

<210> 144
<211> 586
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Any nucleotide

<400> 144
cnttcttgac ttacnaattt taatncataa tatttataaa catgtcaaag acagtttgt
60

tcaccggagc cagcggagcc atcggttcat gggtggttcg tctcctcctg gaacgcggct
120

acatcgtcca cgccaccatc caagatctcg aggatgagaa cgagacaaaa catttggaaag
180

caatggaagg ggcaaagggt tatcttaaat ttttgc当地 ggatcttctt aacagtgact
240

ctattgcggc cgccgtgaaa ggttgtgccg gagttataaca tcttgc当地 cctaacatca
300

ttggtaagt caaagacccc gagaagcaaa ttttggaaacc ggcgattcaa ggaacggta
360

acgtgttcaa ggtggcaaag gaagcagggg tggagcgtgt ggtggcgacg tcatcgatct
420

ccgccccatcat accgagtcct aattggccag ctgataagat taagggagaa gattgttgg
480

cggaccttga ttattgcaag gaaaagaagt tacactaccc catcgcaaag acactagcag
540

aaaaagctgg ttgggaattt gctaaagaga ccggtttga tgttgt
586

<210> 145
<211> 328
<212> DNA
<213> Trifolium repens

<220>

<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (24)..(24)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (31)..(31)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (35)..(37)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (41)..(41)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (45)..(45)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (61)..(61)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (71)..(71)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (249)..(249)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (289)..(289)
<223> Any nucleotide

<220>

```
<221> misc_feature
<222> (310)..(310)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (315)..(315)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (320)..(320)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (326)..(326)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (328)..(328)
<223> Any nucleotide

<400> 145
tttcttgacn tacccattnt tatncataat natnnnaac ntgttnaaaga cagtttgtgt
60
naccggagcc ngcggagcca tcggttcatg ggtggttcgc ctcccttcg aacgcggcta
120
cattgtccac gccaccatcc aagatctcga ggatgagaac gagacaaac atttggaaagc
180
aatggaagga gcaaagggtc atctcaaatt ttttggaaatg gatcttccta acagcgactc
240
tattgcggnc gccgtgaaag gttgtgccgg agttatacat cttgcatgng ctaacatcat
300
tggggaagcn aaagnactcn ataagnan
328

<210> 146
<211> 232
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (1)..(1)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide
```

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (21)..(22)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (39)..(39)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (60)..(60)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (69)..(69)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (154)..(154)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (156)..(156)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (178)..(178)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (186)..(186)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (232)..(232)
<223> Any nucleotide

<400> 146
nngtttgtg tnanctgagc nngcggagcc ctgcgttgc gggtggttcg ctcctcctn
60

ccacgcggnt acattgtcca cgccaccatc caagatctcg aggatgagaa cgagacaaaa
120

catttggaaag caatggaagg agcaaagggt catntnaaat ttttcgaaat ggatcttntt
180

aacagngact ctattgcggc cgccgtgaaa ggttgcggc gagttataca tn
232

<210> 147

<211> 623

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (11)..(11)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (14)..(14)

<223> Any nucleotide

<400> 147

ataaaaaccaa nctncaaaac tgatttggaaac tcagaaaaat agaagaaaaag agatgcctga
60

gttttgtt acagggggca ctggcttcat agcagcctac ctagtggaaag ctttattaga
120

aaagggtcac acagtaagga ctactgttaag aaaccaggat gatttggaga aggttggta
180

tctaactgaa ctaagtgaag acaaagagag attgaagatt ttaaaagcag atctattgg
240

ggaaggaggat ttgtatgagg cagtgagtgg tttgtatgggt gtgtttcata cagcttcccc
300

tgttcttgcgtt ccacatgtatg acaacattca ggttacttttgc attgtatccat gtataaaagg
360

aacacaaaaat gtgcttaact catgtatcaa agcaaagggtg aaacgtgtgg tgttaacatc
420

ttcataatgttccataatgc accgtgacga tgtgcaacaa atttctcctc ttaatgaatc
480

tcatttggagt gattctgaat actgcaaacg ctataacctg tggatgtatgc atgcaaaagac
540

ttttaggagaa aaagaagcat ggaggattgc aaaggaaagt ggaattgatc tagttgttagt
600

taacccctct tttgttgggt gtc
623

<210> 148
<211> 190
<212> PRT
<213> Trifolium repens

<400> 148

Met Pro Glu Phe Cys Val Thr Gly Gly Thr Gly Phe Ile Ala Ala Tyr
1 5 10 15

Leu Val Lys Ala Leu Leu Glu Lys Gly His Thr Val Arg Thr Thr Val
20 25 30

Arg Asn Pro Asp Asp Leu Glu Lys Val Gly Tyr Leu Thr Glu Leu Ser
35 40 45

Glu Asp Lys Glu Arg Leu Lys Ile Leu Lys Ala Asp Leu Leu Val Glu
50 55 60

Gly Ser Phe Asp Glu Ala Val Ser Gly Val Asp Gly Val Phe His Thr
65 70 75 80

Ala Ser Pro Val Leu Val Pro His Asp Asp Asn Ile Gln Val Thr Leu
85 90 95

Ile Asp Pro Cys Ile Lys Gly Thr Gln Asn Val Leu Asn Ser Cys Ile
100 105 110

Lys Ala Lys Val Lys Arg Val Val Leu Thr Ser Ser Cys Ser Ser Ile
115 120 125

Arg Tyr Arg Asp Asp Val Gln Gln Ile Ser Pro Leu Asn Glu Ser His
130 135 140

Trp Ser Asp Ser Glu Tyr Cys Lys Arg Tyr Asn Leu Trp Tyr Ala Tyr
145 150 155 160

Ala Lys Thr Leu Gly Glu Lys Glu Ala Trp Arg Ile Ala Lys Glu Ser
165 170 175

Gly Ile Asp Leu Val Val Asn Pro Ser Phe Val Gly Gly
180 185 190

<210> 149
<211> 570
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (32)..(32)
<223> Any nucleotide

<400> 149
ataaaaaccaa nctncaaaac tgatttggAAC tnagaaaaat agaagaaaaAG agatgcctga
60

gttttgtgtt acagggggca ctgggttcAT agcagccTAC ctagtgAAAG ccttattAGA
120

aaagggtcac acagtaAGGA ctactgtAAg aaACCCAGAT gatttggAGA aggTTGGTta
180

tctaactgaa ctaagtGAAG acaaAGAGAG attGAAGATT ttaaaAGCAG atctattGgt
240

ggaaggggAGT tttgatgAGG cagtGAGTgg tGttGatGgt gtGtttcATA cagcttccc
300

tgttcttGtt ccacatgatG acaatattca ggTTactttG attGatccAT gtataaaagg
360

aacacaAAAT gtGcttagct catGcatCAA agcaaAGGTg aaacgtgtgg tGttAACATC
420

tTCatGctct tccataAGAT accgtgacga tGtGcaACAA atttcaccAC ttaatGAATC
480

tcattggAGT gattctGAAT actGcaaACG ctataacCTG tggtatGcat atGcaaAGAC
540

attaggagAA aaagaAGCAT ggaggattGC
570

<210> 150
<211> 572
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (8)..(9)
<223> Any nucleotides

<400> 150
gnacctcnna AAAATAGAAG AAAAGAGATG CCTGAGTTT GTGTTACAGG GGGCACTGGG
60

ttcatAGCAG CCTACCTAGT gaaAGCCCTA ttAGAAAAGG gTCACACAGT aaggACTACT

120

gtaagaaacc cagatgattt ggagaagggtt ggttatctaa ctgaactaag tgaagacaaa
180

gagagattga agatttaaa agcagatcta ttggtggaag ggagtttga tgagggcagt
240

agtggtgttg atggtgtgtt tcatacagct tccccctgttc ttgttccaca tcatgc
300

attcaggtta ctttgattga tccatgtata aaaggaacac agaatgtgct taactcatgc
360

atcaaagcaa aggtgaaacg tgggtgtta acatcctcat gctcttccat aagataccgt
420

gacgatgtgc aacaaatttc tcctcttaat gaatctcatt ggagtgattc tgattactgc
480

aaacgctata acctgtggta tgcataatgca aagacttttag gagaaaaaaga agcatggagg
540

attgcaaagg aaagtggat taatctagtt gt
572

<210> 151

<211> 572

<212> DNA

<213> Trifolium repens

<400> 151

ggaaagagat gcctgagttt tgtgttacag ggggcactgg cttcatagca gcttacctag
60

tgaaagcctt attagaaaaag ggtcacacag taaggactac tgtaagaaac ccagatgatt
120

tggagaaggt tggtatcta actgaactta gtgaagacaa agagagattg aagatttaa
180

aagcagatct attggtgaa gggagtttg atgagggcagt gagtgggtt gatgggtgt
240

ttcacacagc tccccctgtt ctgttccac atgatgacaa cattcaggtt actttgattt
300

atccatgtat aaaaggaaca caaaatgtgc ttaactcatg catcaaagca aaggtgaaac
360

gtgtgggttt aacatcttca tgctcttcca taagataccg tgacgatgtg caacaaattt
420

ctcctcttaa tgaatctcat tggagtgatt ctgaatactg caaacgctat aacctgtgg
480

atgcataatgc aaagacttta ggagaaaaag aagcatggag gattgcaaag gaaagtggaa
540

ttgatctagt tggatctaac ccctttttt tt
572

<210> 152

<211> 574

```
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<400> 152
gagatgcctg agttttgtgt tacagggggc actggctcn tagcagctta cctagtgaaa
60

gccttattag aaaagggtca cacagtaagg actactgtaa gaaacccaga tgctttggag
120

aagggttgtt atctaactga acttagtgaa gacaaagaga gattgaagat tttaaaagca
180

gatctattgg tggaaaggag ttttgatgag gcagtgagtg gtgttgatgg tgtgtttcat
240

acagcttccc ctgttcttgt tccacatgtat gacaacattc aggttacttt gattgatcca
300

tgtataaaag gaacacaaaaa tgtgcttaac tcatgcatca tagcaaaggt gaaacgtgtg
360

gtgttaacat cttcatgctc ttccataaga taccgtgacg atgtgcaaca aatttctcct
420

cttaatgaat ctcattggag tgattctgaa tactgcaaac gctataacct gtggtatgca
480

tatgcaaaga ctttaggaga aaaagaagca tggaggattg caaaggaaag tggaaattgat
540

ctagttgttag ttaacccttc ttttgttggt ggtc
574

<210> 153
<211> 641
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
```

<222> (505)..(505)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (565)..(565)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (608)..(608)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (615)..(616)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (626)..(628)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (632)..(632)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (641)..(641)
<223> Any nucleotide

<400> 153
gngaaganct agtttgcgta acccgganca acgggttcat cggAACATGG ctatgtaaaa
60

ccctactcca aaaacactac aaaattcacg ccacaatctt ccccaattcc aacgcatactc
120

atctcttcac actccacccg gaagctcaat cccggatcac aattttcctt gtcgatatacc
180

tcgactccac cgccgttccc tccgctatca ataactgatc aggtgtcttt catgccgtt
240

ctccatgtac cctcgaagat ccaactgatc cgcaaaaaga gtttctagaa cctgctgtac
300

aaggAACCTT aaatgttcta gaagcatcca ggcgcgcagg accaaACCTT aattggccgg
360

agaaaaaggc gatcgatgag gcgtcggtggc cggatgttgta gtactgtaaa ttgagaggga
420

agtggtatct ggtgtcgaaa acggaggcgg agaaggcggc ttgggatttt cgagagaaaa
480

atggtgtgt tgatgtgggg gcggntcatc cggggacttg tttgggagag ttgatacaga

540

aggagttgaa tgcgagttca gcggntttac agaggttcat gatggggagt gaggatactc
600

aagagtgnata ttggnnngggg ggctgnnnat gntaaagatg n
641

<210> 154
<211> 206
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (168)..(168)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (201)..(201)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (204)..(204)
<223> Any amino acid

<400> 154

Glu Xaa Leu Val Cys Val Thr Arg Xaa Asn Gly Phe Ile Gly Thr Trp
1 5 10 15

Leu Val Lys Thr Leu Leu Gln Lys His Tyr Lys Ile His Ala Thr Ile
20 25 30

Phe Pro Asn Ser Asn Ala Ser His Leu Phe Thr Leu His Pro Glu Ala
35 40 45

Gln Ser Arg Ile Thr Ile Phe Pro Val Asp Ile Leu Asp Ser Thr Ala
50 55 60

Val Phe Ser Ala Ile Asn Asn Cys Ser Gly Val Phe His Ala Ala Ser
65 70 75 80

Pro Cys Thr Leu Glu Asp Pro Thr Asp Pro Gln Lys Glu Leu Leu Glu
85 90 95

Pro Ala Val Gln Gly Thr Leu Asn Val Leu Glu Ala Ser Ser Ala Gln
100 105 110

Val Pro Asn Pro Asn Trp Pro Glu Lys Lys Ala Ile Asp Glu Ala Ser
115 120 125

Trp Thr Asp Val Glu Tyr Cys Lys Leu Arg Gly Lys Trp Tyr Leu Val
130 135 140

Ser Lys Thr Glu Ala Glu Lys Ala Ala Trp Asp Phe Arg Glu Lys Asn
145 150 155 160

Gly Gly Val Asp Val Gly Ala Xaa His Pro Gly Thr Cys Leu Gly Glu
165 170 175

Leu Ile Gln Lys Glu Leu Asn Ala Ser Ser Ala Leu Gln Arg Leu Met
180 185 190

Met Gly Ser Glu Asp Thr Gln Glu Xaa Tyr Trp Xaa Gly Gly
195 200 205

<210> 155
<211> 822
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (574)..(574)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (601)..(601)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (614)..(614)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (619)..(619)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (692)..(693)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (729)..(730)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (743)..(743)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (752)..(752)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (756)..(757)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (777)..(777)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (779)..(780)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (789)..(789)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (794)..(794)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (797)..(797)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (812)..(813)
<223> Any nucleotides

<400> 155
gcnttgcata gcgtatnaac acacangtct tcccttgagc tctgtttctc cacatgtcga
60
agcttagtttgcgtcaccggc ggcagcggat gcatcggttc atggctagtc catctccttc
120
tcctccgcgg ctacactgtt caccgcacccg tccaaaatct caatgatgag aacgaaacga
180
agcatctaga agctctcgaa ggagcacaaa ctaatctccg tctcttccag atcgatctcc
240
ttaactacga cacaatcctc gctgctgtcc gcgggtgcgt cggaaatttc caccctcgctt
300
caccttgcac tgttagacaaa gttcatgatc ctcagaagga gctttggat cctgcaatta
360
aaggacttt gaatgtgctt actgcagcta aggaagttagg ggtgaagcgt gtgggtgtta
420
cctcgtctgt ctcggcgatt actcctagtc ctgattggcc ttctgatgtt gttaaaagag
480
aggattgttg gactgatgtt gaatattgca agaaaaaaaga gttgggttat ccgttgtcca
540
aaacattggc tgaaaaagct gcgtgggatt ttncaaaga aaatggtttgcgt gatgttgc
600
nggtgaatcc cggnactgng atgggtcctg ttttccacc acggcataat gcaagcatgc
660
tcatgccttg ggaaacctttt ttgaaggctg gnnctgaaac atttgaagac tattttatgg
720
gattggccnn cttaaagat gtngcattgg cncatnntt ggggtatgag aacaaanann
780
ctttggana catngggnggg ttgaaaactat cnntccttac gg
822

<210> 156
<211> 256
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (174)..(174)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (183)..(183)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (187)..(187)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (189)..(189)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (213)..(214)
<223> Any amino acids

<220>
<221> MISC_FEATURE
<222> (226)..(226)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (230)..(230)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (233)..(233)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (235)..(235)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (242)..(243)
<223> Any amino acids

<220>
<221> MISC_FEATURE
<222> (246)..(248)
<223> Any amino acids

<220>
<221> MISC_FEATURE
<222> (253)..(254)
<223> Any amino acids

<400> 156

Met Ser Lys Leu Val Cys Val Thr Gly Gly Ser Gly Cys Ile Gly Ser
1 5 10 15

Trp Leu Val His Leu Leu Leu Arg Gly Tyr Thr Val His Ala Thr
20 25 30

Val Gln Asn Leu Asn Asp Glu Asn Glu Thr Lys His Leu Glu Ala Leu
35 40 45

Glu Gly Ala Gln Thr Asn Leu Arg Leu Phe Gln Ile Asp Leu Leu Asn
50 55 60

Tyr Asp Thr Ile Leu Ala Ala Val Arg Gly Cys Val Gly Ile Phe His
65 70 75 80

Leu Ala Ser Pro Cys Thr Val Asp Lys Val His Asp Pro Gln Lys Glu
85 90 95

Leu Leu Asp Pro Ala Ile Lys Gly Thr Leu Asn Val Leu Thr Ala Ala
100 105 110

Lys Glu Val Gly Val Lys Arg Val Val Val Thr Ser Ser Val Ser Ala
115 120 125

Ile Thr Pro Ser Pro Asp Trp Pro Ser Asp Val Val Lys Arg Glu Asp
130 135 140

Cys Trp Thr Asp Val Glu Tyr Cys Lys Lys Glu Leu Gly Tyr Pro
145 150 155 160

Leu Ser Lys Thr Leu Ala Glu Lys Ala Ala Trp Asp Phe Xaa Lys Glu
165 170 175

Asn Gly Leu Asp Val Val Xaa Val Asn Pro Xaa Thr Xaa Met Gly Pro
180 185 190

Val Phe Pro Pro Arg His Asn Ala Ser Met Leu Met Pro Trp Glu Thr
195 200 205

Phe Leu Lys Ala Xaa Xaa Glu Thr Phe Glu Asp Tyr Phe Met Gly Leu
210 215 220

Ala Xaa Phe Lys Asp Xaa Ala Leu Xaa His Xaa Leu Gly Tyr Glu Asn
225 230 235 240

Lys Xaa Xaa Leu Gly Xaa Xaa Gly Leu Lys Leu Xaa Xaa Leu Thr
245 250 255

<210> 157
<211> 535
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (52)..(52)
<223> Any nucleotide

<400> 157
gcnttgatca gcgtatnaac acacangtct tcccttgagc tctgtttctc cncatgtcga
60
agcttagtttgcgtt cgtcaccggc ggcagcggat gcatcggttc atggctagtc catctcccttc
120
tcctccgcgg ctacactgtt cacgccaccg tccaaaatct caatgtatgag aacgaaacga
180
agcatctaga agctctcgaa ggagcacaaa ctaatctccg tctttccag atcgatctcc
240
ttaactacga cacaatccctc gctgctgtcc gcggttgcgt cgaaatttcc cacctcgctt
300
caccttgcac tgttagacaaa gttcatgtatc ctcagaagga gctttggat cctgcaatta
360
aaggacttt gaatgtgctt actgcagcta aggaagttagg ggtgaagcgt gtggttgtta
420
cctcgctgtt ctcggcgatt actcctagtc ctgattggcc ttctgatgtt gttaaaagag
480
aggattgttg gactgatgtt gaatattgca agaaaaaaga gttgtggat ccgtt
535

<210> 158
<211> 801
<212> DNA
<213> Trifolium repens

<220>

<221> misc_feature
<222> (1)..(1)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (5)..(6)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (62)..(62)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (553)..(553)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (580)..(580)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (593)..(593)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (598)..(598)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (671)..(672)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (708)..(709)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (722)..(722)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (731)..(731)
<223> Any nucleotide

<220>

```
<221> misc_feature
<222> (735)..(736)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (756)..(756)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (758)..(759)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (768)..(768)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (773)..(773)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (776)..(776)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (791)..(792)
<223> Any nucleotides

<400> 158
nacanntctt cccttgagct ctgtttctcc acatgtcgaa gctagttgc gtcaccggcg
60
gnggcggatg catcggttca tggctagtcc atctccttct cctccggc tacactgttc
120
acgccaccgt ccaaaatctc aatgatgaga acgaaaacgaa gcatctagaa gctctcgaag
180
gagcacaaac taatctccgt ctcttccaga tcgatctcct taactacgac acaatcctcg
240
ctgctgtccg cggttgcgtc ggaattttcc acctcgcttc accttgact gttagacaaag
300
ttcatgatcc tcagaaggag cttttggatc ctgcaattac agggactttg aatgtgctta
360
ctgcagctaa ggaagttaggg gtgaagcgtg tggttgttac ctcgtctgtc tcggcgatta
420
ctcctagtcc tgattggcct tctgatgttg ttaaaagaga ggattgttgg actgatgttgc
480
```

aatattgcaa gaaaaaagag ttgggttac cgttgtccaa aacattggct gaaaaagctg
540

cgtgggattt ttncaaagaa aatggtttg atgttgtgn ggtgaatccc ggnactgnga
600

tgggtcctgt tttccacca cggcataatg caagcatgct catgccttgg gaaactttt
660

tgaaggctgg nnctgaaaca tttgaagact attttatggg attggccnnc tttaaagatg
720

tngcattggc ncatnnnttg gggtatgaga acaaannnc tttggganac atngnggggt
780

tgaaaactatc nntccttacg g
801

<210> 159

<211> 582

<212> DNA

<213> Trifolium repens

<400> 159

gtcaacttagt aaatggaaca caaagggtgga gacaaagtat gtgtgacagg ggcacatcaggc
60

tttttagcat cttggcttat taagaaaactt cttttgtctg gctatcaagt cattggaaca
120

gttagagatt tagggaagaa gaagaaaagtt gaacattttt ggaaatttggg aggagcaaca
180

gaaagactag aactaatcca agctgattta atggaagaaa atagtttcga caaagcgatc
240

atgggatgca aagggtgtt ccacattgcc tctccagtac tcaatcatat atcagataat
300

cctaaggcgg aaatcttggg accggcagtc caaggtacgc taaatgtgtt gcgttcttgt
360

aagaggaacc ccgatcttgt tcgagtggtg ctgcctcat catcttcggc tgtagagta
420

agagctgatt ttgatccaag cataccaatt gatgaatcat cttggagctc cttggaaattg
480

tgcgagaaac tcaaggcatg gtacccaatg tcaaagacaa tggcagaaaa agcagcttgg
540

gaatatagca aagagaatgg aatagactta gtgactatTTT tc
582

<210> 160

<211> 190

<212> PRT

<213> Trifolium repens

<400> 160

Met Glu His Lys Gly Gly Asp Lys Val Cys Val Thr Gly Ala Ser Gly
1 5 10 15

Phe Leu Ala Ser Trp Leu Ile Lys Lys Leu Leu Ser Gly Tyr Gln
20 25 30

Val Ile Gly Thr Val Arg Asp Leu Gly Lys Lys Lys Val Glu His
35 40 45

Leu Trp Lys Leu Glu Gly Ala Thr Glu Arg Leu Glu Leu Ile Gln Ala
50 55 60

Asp Leu Met Glu Glu Asn Ser Phe Asp Lys Ala Ile Met Gly Cys Lys
65 70 75 80

Gly Val Phe His Ile Ala Ser Pro Val Leu Asn His Ile Ser Asp Asn
85 90 95

Pro Lys Ala Glu Ile Leu Glu Pro Ala Val Gln Gly Thr Leu Asn Val
100 105 110

Leu Arg Ser Cys Lys Arg Asn Pro Asp Leu Val Arg Val Val Leu Ala
115 120 125

Ser Ser Ser Ser Ala Val Arg Val Arg Ala Asp Phe Asp Pro Ser Ile
130 135 140

Pro Ile Asp Glu Ser Ser Trp Ser Ser Leu Glu Leu Cys Glu Lys Leu
145 150 155 160

Lys Ala Trp Tyr Pro Met Ser Lys Thr Met Ala Glu Lys Ala Ala Trp
165 170 175

Glu Tyr Ser Lys Glu Asn Gly Ile Asp Leu Val Thr Ile Phe
180 185 190

<210> 161
<211> 572
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (4)..(5)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (24)..(24)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (39)..(39)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<400> 161
tncnngctnc ntncgggcag agantttccc tgacctatnt gttactnaag aatatttcta
60
tatatatatt tgtgtttcaa gaacccaaaa aatagaatag ttagtggaaag gagttgcaag
120
gtttgtgtca ccgggtggtgc tggttatatt ggttctcttt tagtcaaaaa gctttggaa
180
aagggttaca ccgttcatgc tactcttaga aacttgaagg acgaatccaa agtagattt
240
ttgagaggct ttcccacatgc agatactaga cttatgttat ttgaagctga tatatacaaa
300
tcagatgaat tttggcccg aattcaaggt tgtgagtttgc ttttcaccc tgctactcct
360
tttcaacatc aaactgattc tcagtttaag agcatagagg aagctgcaat agcaggggta
420
aaaagcatag ctgaaaattg cataaaatca ggaacagtga gaaaattgat atacactgga
480
actgttaatttgc cttcttcttc tctgaaagat gatggaagtg gctacaaaga cttcattgat
540
572
gaaacttgtt ggacacctct ccatcttcct ct
<210> 162
<211> 156
```

<212> PRT
<213> Trifolium repens

<400> 162

Met Glu Arg Ser Cys Lys Val Cys Val Thr Gly Gly Ala Gly Tyr Ile
1 5 10 15

Gly Ser Leu Leu Val Lys Lys Leu Leu Glu Lys Gly Tyr Thr Val His
20 25 30

Ala Thr Leu Arg Asn Leu Lys Asp Glu Ser Lys Val Asp Phe Leu Arg
35 40 45

Gly Phe Pro His Ala Asp Thr Arg Leu Met Leu Phe Glu Ala Asp Ile
50 55 60

Tyr Lys Ser Asp Glu Phe Trp Pro Ala Ile Gln Gly Cys Glu Phe Val
65 70 75 80

Phe His Leu Ala Thr Pro Phe Gln His Gln Thr Asp Ser Gln Phe Lys
85 90 95

Ser Ile Glu Glu Ala Ala Ile Ala Gly Val Lys Ser Ile Ala Glu Asn
100 105 110

Cys Ile Lys Ser Gly Thr Val Arg Lys Leu Ile Tyr Thr Gly Thr Val
115 120 125

Ile Ala Ser Ser Ser Leu Lys Asp Asp Gly Ser Gly Tyr Lys Asp Phe
130 135 140

Ile Asp Glu Thr Cys Trp Thr Pro Leu His Leu Pro
145 150 155

<210> 163
<211> 714
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (131)..(131)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (147)..(147)
<223> Any nucleotide

<400> 163
gccnttgctt actactaaac tataattat tattatatta tatgtatgata catagtgaca
60

ttaataattg gaagggagaa taaaatagttg aaaaacacac agttggagtg tttttgttgt
120

taaagaagct ngaaaatgga ggaagcnaca aagatggtga aaaagagtgg acaaattgtt
180

cctactgcca aatactgtgt tacaggagca acaggctata ttggttcatg gcttggaa
240

gctttcttc aaagagggttg cactgttcat gctactgtta gagatcctga aaaatcgta
300

cacccctgt cgttgtggaa aggttagtgac caattgagaa ttttccgtgc ggatttgcaa
360

gaagaaggaa gtttcgatga tgccgtaaaa ggatgtattt gtgtgttcca tggtcagct
420

tcaatgcaat tcaatattag tgacaaagaa aacactgagg actttgttga agcaaata
480

attgaccctg caatcaaagg aaccataaat cttctcaaata catgcttgcgaa atcaaattca
540

gtgaaaaggg ttgtttcac atcttccata agtactatta ctgctaaaga caacgacgga
600

aaatggaaac ctattgttga tgaatcttgc caaacaaaaa ctgagattct gtggaataca
660

caaccaagtg gatgggttta tgcaacttca aagcttcatg cagaagaagc ggct
714

<210> 164
<211> 187
<212> PRT
<213> Trifolium repens

<400> 164

Met Val Lys Lys Ser Gly Gln Ile Val Pro Thr Ala Lys Tyr Cys Val
1 5 10 15

Thr Gly Ala Thr Gly Tyr Ile Gly Ser Trp Leu Val Glu Ala Leu Leu
20 25 30

Gln Arg Gly Cys Thr Val His Ala Thr Val Arg Asp Pro Glu Lys Ser
35 40 45

Leu His Leu Leu Ser Leu Trp Lys Gly Ser Asp Gln Leu Arg Ile Phe
50 55 60

Arg Ala Asp Leu Gln Glu Glu Gly Ser Phe Asp Asp Ala Val Lys Gly
65 70 75 80

Cys Ile Gly Val Phe His Val Ala Ala Ser Met Gln Phe Asn Ile Ser
85 90 95

Asp Lys Glu Asn Thr Glu Asp Phe Val Glu Ala Asn Ile Ile Asp Pro
100 105 110

Ala Ile Lys Gly Thr Ile Asn Leu Leu Lys Ser Cys Leu Lys Ser Asn
115 120 125

Ser Val Lys Arg Val Val Phe Thr Ser Ser Ile Ser Thr Ile Thr Ala
130 135 140

Lys Asp Asn Asp Gly Lys Trp Lys Pro Ile Val Asp Glu Ser Cys Gln
145 150 155 160

Thr Lys Thr Glu Ile Leu Trp Asn Thr Gln Pro Ser Gly Trp Val Tyr
165 170 175

Ala Leu Ser Lys Leu His Ala Glu Glu Ala Ala
180 185

<210> 165

<211> 289

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (4)..(4)

<223> Any nucleotide

<400> 165

gccnttgcct actactaaac tataattat tattatatta tatgtatgata catagtgaca
60

ttaataattg gaagggagaa taaaatagttt aaaaacacac agttggagtg tttttgttgt
120

taaagaagct ataaaatgga ggaaacaaca aagatggtgaa aaaatagtgg acaaattgtt
180

cctatacgcca aatactgtgt cacaggagcc acaggctata ttggttcatg gcttggaa
240

gctcttcattc aaagagggtt cactgttcat gctactgtta gagatcctg
289

<210> 166

<211> 591

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (8)..(8)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (23)..(24)
<223> Any nucleotides

<400> 166
agaagctnga aaatggagga agnnacaaag atggtaaaaa agagtggaca aattgttcct
60

actgccaaat actgtgttac aggagcaaca ggcttatattg gttcatggct tggtaagct
120

cttcttcaaa gaggttgcac tggcatgct actgttagag atcctgaaaa atcgttacac
180

ctccgtcgt tgtggaaagg tagtgaccaa ttgagaattt tccgtgcgga tttgcaagaa
240

gaaggaagtt tcgatgatgc cgtaaaagga tgtattggtg tggccatgt tgcagcttca
300

atgcaattca atattagtga caaagaaaac actgaggact ttgttgaagc aaataatt
360

gaccctgcaa tcaaaggaac cataaatctt ctcaaatcat gcttggaaatc aaattcagtg
420

aaaagggttg ttttcacatc ttccataagt actattactg ctaaagacaa cgacggaaaa
480

tggaaaccta ttgttcatgtatca atcttgc当地 acaaaaactg agattctgtg gaatacaccaa
540

ccaagtggat gggtttatgc actttcaaag cttcatgcag aagaagcggc t
591

<210> 167
<211> 572
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<400> 167
ctngaaaatg gaggaagcna caaagatggta gaaaaagagt ggacaaatttgc ttcctactgc
60

caaatactgt gttacaggag caacaggcta tattggttca tggcttggta aagctttct
120

tcaaagaggt tgcactgttc atgctactgt tagagatcct gaaaaatcgt tacacccct
180

gtcgttgtgg aaaggtagtg accaattgag aattttccgt gcggatttgc aagaagaagg
240

aagtttcgat gatgccgtaa aaggatgtat tggtgtgttc catgttgcag cttcaatgca
300

attcaatatt agtgacaaaag aaaacactga ggactttgtt gaagcaaata taattgaccc
360

tgcaatcaaa ggaaccataa atcttctcaa atcatgcttg aaatcaaatt cagtaaaaag
420

ggttgttttc acatcttcca taagtactat tactgctaaa gacaacgacg gaaaatggaa
480

acctattgtt gatgaatctt gccaaacaaa aactgagatt ctgtggaata cacaaccaag
540

tggatgggtt tatgcacttt caaagcttca tg
572

<210> 168
<211> 976
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(3)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Any nucleotide

<400> 168
gnngngtctt ccgttnaatt tnagnctata ttgaaaagga aaaaaagagt agagaagtga
60

agtgaagtga aaacatacat gggttccgaa tcagaaatag tttgtgttac cggagcttca
120

ggtttcatcg gatcgtggct tgttatgaga cttatagagc gtggctacac ggttcgagcc

180

accgttcgca acccagataa catgaagaag gtgaagcatt tggtggact gcccggtgca
240

aaaagcaaat tgtcttttg gaaggctgat cttgataaaag aggggagttt tgatgaagca
300

attaaagggt gcacaggagt ttttcatgtt gctacaccaa tggatttga atccaaggac
360

cctgagaatg aagtgataaa gcctacaata aatggattaa tagacataact gaaagcatgc
420

gaaaaggcaa aaacagtttag aaaattggtt ttcacatcat cggttggaaac tgtggacgtt
480

actgaacatc caaagtctat tattgatgaa acatgctgga gtgacgttga cttttgccgt
540

agagtcaaga tgaccggttg gatgtatTTT gtttcaaaga ccctagcaga gcaagaagct
600

tggaaagtatt cgaaagagca caacatagac tttgtctcca tcattccacc tcttgttgg
660

ggcccctttc ttatggcctc aatgccacct agtctaataca ctgcttttc tcttatcaca
720

ggaaatgagg cccattactc aatcataaaag caagggcaat acgtccattt agatgacctt
780

tgtcttgctc atatatttct gtatgagaat ccaaaagctc aagggagata catttgctgt
840

tcacatgaag caaccattca tcaagttgca aaacttatta aagaaaaata cccagagttc
900

aatgtcccaa caaaattcaa tgatatccca gatgaattgg aaattattaa attttctaaa
960

aagaagatca cagact
976

<210> 169

<211> 299

<212> PRT

<213> Trifolium repens

<400> 169

Met Gly Ser Glu Ser Glu Ile Val Cys Val Thr Gly Ala Ser Gly Phe
1 5 10 15

Ile Gly Ser Trp Leu Val Met Arg Leu Ile Glu Arg Gly Tyr Thr Val
20 25 30

Arg Ala Thr Val Arg Asp Pro Asp Asn Met Lys Lys Val Lys His Leu
35 40 45

Val Glu Leu Pro Gly Ala Lys Ser Lys Leu Ser Leu Trp Lys Ala Asp
50 55 60

Leu Asp Lys Glu Gly Ser Phe Asp Glu Ala Ile Lys Gly Cys Thr Gly
65 70 75 80

Val Phe His Val Ala Thr Pro Met Asp Phe Glu Ser Lys Asp Pro Glu
85 90 95

Asn Glu Val Ile Lys Pro Thr Ile Asn Gly Leu Ile Asp Ile Leu Lys
100 105 110

Ala Cys Glu Lys Ala Lys Thr Val Arg Lys Leu Val Phe Thr Ser Ser
115 120 125

Ala Gly Thr Val Asp Val Thr Glu His Pro Lys Ser Ile Ile Asp Glu
130 135 140

Thr Cys Trp Ser Asp Val Asp Phe Cys Arg Arg Val Lys Met Thr Gly
145 150 155 160

Trp Met Tyr Phe Val Ser Lys Thr Leu Ala Glu Gln Glu Ala Trp Lys
165 170 175

Tyr Ser Lys Glu His Asn Ile Asp Phe Val Ser Ile Ile Pro Pro Leu
180 185 190

Val Val Gly Pro Phe Leu Met Ala Ser Met Pro Pro Ser Leu Ile Thr
195 200 205

Ala Leu Ser Leu Ile Thr Gly Asn Glu Ala His Tyr Ser Ile Ile Lys
210 215 220

Gln Gly Gln Tyr Val His Leu Asp Asp Leu Cys Leu Ala His Ile Phe
225 230 235 240

Leu Tyr Glu Asn Pro Lys Ala Gln Gly Arg Tyr Ile Cys Cys Ser His
245 250 255

Glu Ala Thr Ile His Gln Val Ala Lys Leu Ile Lys Glu Lys Tyr Pro
260 265 270

Glu Phe Asn Val Pro Thr Lys Phe Asn Asp Ile Pro Asp Glu Leu Glu
275 280 285

Ile Ile Lys Phe Ser Lys Lys Lys Ile Thr Asp
290 295

<210> 170

<211> 586

<212> DNA

<213> Trifolium repens

```
<220>
<221> misc_feature
<222> (2)..(3)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (53)..(55)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (57)..(58)
<223> Any nucleotides

<400> 170
gnnttgtctt ccgttnaatt tnagnctata ttgaaaaaga aaaaaagagt agnnnannga
60

agtgaagtga aaacatacat gggttccgaa tcagaaaatag tttgtgttac cggagcttca
120

tgtttcatcg gatcgtggct tggatgaga cttatagagc gtggctacac gggtcgagcc
180

accgttgcg acccagataa catgaagaag gtgaagcatt tggtggaact gccgggtgca
240

aaaagcaaat tgtctcttg gaaggctgat cttgataaag aggggagttt tgatgaagca
300

attaaagggt gcacaggagt ttttcatgtt gctacaccaa tggattttga atccaaggac
360

cctgagaatg aagtgataaa gcctacaata aatggattaa tagacatact gaaagcatgc
420

gaaaaggcaa aaacagttaa aaaattggtt ttcacatcat cggctggaac tgtggacgtt
480

actgaacatc caaagtctat tattgatgaa acatgctgga gtgacgttga ctgttgcgt
540

agagtcaaga tgaccggttg gatgtatccc gtttcaaaga ccctag
```

586

<210> 171
<211> 569
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (24)..(24)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (209)..(209)
<223> Any nucleotide

<400> 171
ttttgtctta aatccaattt cagnctaaat tgaaaaggaa aaaaagagga gagaagtcaa
60

ctggagtgaa aatatacatg ggttctgaat cgaaaaatagt ttgtgttacc ggagcttcag
120

gtttcatcgg gtcgtggctt gttatgagac ttatggagca tggctacact gttcgagcca
180

ccgttcgtga cccagataac atgaagaang tgaagcattt gctggaactg ccaggtgcaa
240

aaagcaaatt gtctcttgg aaggctgatc ttgataaaga ggggagttt gatgaagcaa
300

ttaaagggtg cacaggagtt tttcatgttg ctacaccaat ggatttttag tccaaggacc
360

ctgagaatga agtgataaag cctacaataa acggattaat agacatactg aaagcatgcg
420

aaaaggcaaa aacagttaga aaattggttt tcacatcatc ggctggaact gtggacgtta
480

ctgaacatcc aaagtctatt attgatgaaa catgctggag tgacgttgac tttgccgta
540

gagtcaaaat gaccgggtgg atgtatTTT
569

<210> 172
<211> 493
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (50)..(52)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (54)..(55)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (69)..(69)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (102)..(102)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (123)..(123)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (154)..(154)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (161)..(161)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (322)..(322)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (418)..(418)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (464)..(464)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (493)..(493)
<223> Any nucleotide

<400> 172
gngtcttcg tttaatttta gnctatattg aaaaagaaaa aaagagtagn nnanngaagt
60

gaagtgaana catacatggg ttccgaatca gaaatagttt gngttaccgg agcttcatgt
120

ttnatcgat cgtggcttgt tatgagactt atanagcgtg nctacacggc tcgagccacc
180

gttcgcgacc cagataacat gaagaaggtg aagcatttg tggactgcc gggtgcaaaa
240

agcaaattgt ctctttggaa ggctgatctt gataaagagg ggagtttga tgaagcaatt
300

aaagggtgca caggagttt tnatgttgct acaccaatgg attttgaatc caaggaccct
360

gagaatgaag tgataaagcc tacaataaat ggattaatag acatactgaa agcatgcnaa
420

aaggcaaaaa cagttaaaaa attggtttc acatcatcg ctgnaactgt ggacgttact
480

gaacatccaa agn
493

<210> 173
<211> 580
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (54)..(55)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (57)..(59)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (539)..(539)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (546)..(546)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (576)..(576)
<223> Any nucleotide

<400> 173
gngtcttcg tttaatttta gnctatattg aaaaagaaaa aaagagtaga gaannnnnt
60

gaagtgaaaa catacatggg ttccgaatca gaaatagttt gtgttaccgg agcttcatgt
120

ttcatcgat cgtggcttgt tatgagactt atagagcgtg gctacacggt tcgagccacc
180

gttcgcgacc cagataacat gaagaaggta aagcatttgg tggactgcc gggtgcaaaa
240

agcaaattgt ctctttggaa ggctgatctt gataaagagg ggagtttga tgaagcaatt
300

aaagggtgca caggagtttt tcatttttgct acaccaatgg attttgaatc caaggaccct
360

gagaatgaag tgataaagcc tacaataat ggattaatag acatactgaa agcatgcgaa
420

aaggcaaaaa cagttaaaaa attggtttc acatcatcggt ctggacttgt ggacgttact
480

gaacatccaa agtctattat tgatgaaaca tgctggagtgc acgttgactt ttgccgtana
540

gtcaanatga ccggctggat gtatTTGTT tcaaananccc

580

<210> 174
<211> 581
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (50)..(52)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (54)..(55)
<223> Any nucleotides

<400> 174
gngtcttccg tttaattaa gnctatattg aaaagnaaaa aaagagtagn nnanngaagt
60

gaagtgaaaa catacatggg ttccgaatca gaaatagttt gtgttaccgg agcttcaggt
120

ttcatcgat cgtggcttgt tatgagactt atagagcgtg gctacacggt tcgagccacc
180

gttcgcgacc cagataacat gaagaaggtg aagcatttgg tggactgcc gggtgcaaaa
240

agcaaattgt ctctttggaa ggctgatctt gataaagagg ggagtttga tgaagcaatt
300

aaagggtgca caggagttt tcatgttgct acaccaatgg attttgaatc caaggaccct
360

gagaatgaag tgataaagcc tacaataaat ggattaatag acatactgaa agcatgcgaa
420

aaggcaaaaa cagttagaaa attggtttc acatcatcggttggaaactgt ggacgttact
480

gaacatccaa agtctattat tgatgaaaca tgctggagtgcgttgactttttaga
540

gtcaagatga ccggttggat gtatggat tcaaagaccc t
581

<210> 175
<211> 592
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (50)..(52)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (54)..(55)
<223> Any nucleotides

<400> 175
gngtcttccg tttaanttaa gnctatatttggaaaagnaaaaaa aaagagtagn nnanngaagt
60

gaagtgaaaa catacatggg ttccgaatca gaaatagttt gtgttaccgg agttcaggt
120

ttcatcgat cgtggcttgt tatgagactt atagagcgtg gctacacggt tcgagccacc
180

gttcgcgacc cagataacat gaagaaggta aagcatttg tggactgcc gggcaaaa
240

agcaaattgt ctctttggaa ggctgatctt gataaagagg ggagtttga tgaagcaatt
300

aaagggtgca caggagttt tcattgtgct acaccaatgg attttgaatc caaggaccct
360

gagaatgaag tgataaagcc tacaataaat ggattaatag acatactgaa agcatgcgaa
420

aaggcaaaaa cagtttagaaa attggtttc acatcatcggtt gggactgt ggacgttact
480

gaacatccaa agtcttattat tgatgaaaca tgctggagt acgttactt ttgccgtaga
540

gtcaagatga ccggttggat gtattttgtt tcaaagaccc tagcagagca ag
592

<210> 176

<211> 598

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (2)..(2)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (13)..(13)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (19)..(19)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (22)..(22)

<223> Any nucleotide

<400> 176

gngtcttccg tttaatttta gnctatattt aaaaagaaaa aaagagtaga gaagtgaagt
60

gaagtgaaaa catacatggg ttctgaatca gaaatagttt gtgttaccgg agcatcagg
120

ttcatcgat cgtggcttgt tatgagactt atagagcgtg gctacacggc tcgagccact
180

gttcgcgacc cagataacat gaagaaggta aagcatttg tggactgcc gggcaaaa
240

agcaaattgt ctctttggaa ggctgatctt gataaagagg ggagtttga tgaagcaatt

300

aaagggtgca caggagttt tcatgttgct acaccaatgg atttgaatc caaggaccct
360

gagaatgaag tgataaagcc tacaataaaat ggattaatag acatactgaa agcatgcgaa
420

aaggcaaaaa cagttaaaaa attggtttc acatcatcg ctggaactgt ggacgttact
480

gaacatccaa agtctattat tgatgaaaca tgctggagt acgttgactt ttgccgtaga
540

gtcaagatga ccggttggat gtatTTGTT tcaaagaccc tagcagagca agaagctt
598

<210> 177
<211> 576
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (21)..(21)
<223> Any nucleotide

<400> 177
ggtctccnt tnaattcnag ncgaaattga aaaggaaaaa aagaggagag aagtgaactg
60

aagtgaaaat atacatgggt tccgaatcg aaatagttt tgttaccgga gtttcagggtt
120

tcatcgggtc gtggcttggat atgagactta tggagcgcgg ctacacgggt cgagccactg
180

ttcgcgaccc agataaacatg aagaagggtga agcatttgat ggaactgccc ggtgcaaaaa
240

gcaaattgtc tctttggaaag gctgatctt ataaagaggg gagttttgtat gaagcaatta
300

aagggtgcac aggagttttt catgttgcta caccaatggg ttttgaatcc aaggaccctg
360

196/390

agaacgaagt gataaaggct acaataaatg gactaataga catactgaga gcatgtgaaa
420

aggcaaaaac aattagaaga ttggtttca catcatcagc tggaaactgtg gacgtaactg
480

aacactcaa atcaatttgtt gatgaaacat gttggagtga cgttgacttt tgccgttagag
540

tcaaaatgac cggttggatg tattttgtt caaaga
576

<210> 178

<211> 587

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (12)..(12)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (21)..(21)

<223> Any nucleotide

<400> 178

ggtcttcgt tnaatttaag nctatattga aaaagaaaaa aagagtagag aagtgaagtg
60

aagtgaaaac atacatgggt tctgaatcag aaatagttt ttttaccggg gcatcagggtt
120

tcatcggtc gtggcttgtt atgagactta tagagggtgg ctacacgggtt cgagccactg
180

ttcgcgaccc agataacatg aagaagggtga agcatttgggt ggaactgccg ggtgcaaaaa
240

gcaaattgtc tctttggaag gctgatctt ataaagaggg gagttttgtat gaagcaatta
300

aagggtgcac aggagttttt catgttgcta caccaatggg ttttgaatcc aaggaccctg
360

agaatgaagt gataaaggct acaataaatg gattaataga catactgaaa gcatgcgaaa
420

aggcaaaaac agttaaaaaa ttggtttca catcatcggc tggaaactgtg gacgttactg
480

aacatccaaa gtctattatt gatgaaacat gctggagtga cgttgacttt tgccgttagag
540

tcaagatgac cggttggatg tattttgtt caaagaccct agcagag
587

<210> 179

<211> 630

<212> DNA

<213> Trifolium repens

```
<220>
<221> misc_feature
<222> (12)..(13)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (21)..(21)
<223> Any nucleotide

<400> 179
ggtctccgt tnnatttaag nctatattga aaaagaaaaa aagagtagag aagtgaagtg
60

aagtgaaaaac atacatgggt tctgaatcag aaatagtttgc ttaccggaa gcatcagggtt
120

tcatcggtttc gtggcttggtt atgagactta tagagcgtgg ctacacgggtt cgagccactg
180

ttcgcgaccc agataacatg aagaaggtga agcatttttgtt ggaactgccg ggtgcaaaaa
240

gcaaattgtc tcttttggaaag gctgatcttgc ataaagaggg gagttttgtat gaagcaattt
300

aagggtgcac aggagttttt catgttgcta caccaatggaa ttttgaatcc aaggaccctg
360

agaatgaagt gataaaggct acaataaatg gattaataga catactgaaa gcatgcgaaa
420

aggcaaaaaac agttaaaaaaa ttgggtttca catcatcggtt tggaaactgtg gacgttactg
480

aacatccaaa gtctattattt gatgaaacat gctggagtga cgttgacttt tgccgttagag
540

tcaagatgac cggttggatg tattttgtt caaagaccctt agcagagcaa gaagcttgaa
600

agtattctaa agagcacaac atagattttg
630

<210> 180
<211> 579
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (7)..(8)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
```

<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<400> 180
gtcttcnntt naattcnagn cgaaattgaa aaggaaaaaa agaggagaga agtgaactga
60

agtggaaaata tacatgggtt ccgaatcgga aatagtttgt gttaccggag cttaggttt
120

catcgggtcg tggcttgtta tgagacttat ggagcgcggc tacacggttc gagccactgt
180

tcgcgaccca gataacatga agaaggtgaa gcatttgatg gaactgccgg gtgcaaaaag
240

caaattgtct ctttggaagg ctgatcttga taaagagggg agtttgatg aagcaattaa
300

aggggtgcaca ggagtttttc atgttgctac accaatggat tttgaatcca aggaccctga
360

gaacgaagtg ataaagccta caataaatgg actaatagac atactgagag catgtgaaaa
420

ggcaaaaaca attagaagat tggtttcac atcatcagct ggaactgtgg acgtaactga
480

acactcaaaa tcaattgtt atgaaacatg ttggagtgac gttgacttt gccgttagagt
540

caaaatgacc ggttggatgt attttggttc aaagaccct
579

<210> 181
<211> 604
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (34)..(34)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (52)..(53)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (55)..(57)
<223> Any nucleotides

<400> 181
gtctccgtt cnatttnagn ctatattgaa aagnaaaaaa agatgatgaga annnnntga
60

agtggaaaaca tacatgggtt ccgaatcaga aatagtttgt gttaccggag cttcagggtt
120

catcgatatcg tggcttgta tgagacttat agagcgtggc tacacggttc gagccaccgt
180

tgcgcgaccga gataacatga agaaggtgaa gcatttggtg gaactgccgg gtgcaaaaag
240

caaattgtct ctttggaaagg ctgatcttga taaagagggg agttttgatg aagcaattaa
300

agggtgcaca ggagtttttc atgttgctac accaatggat tttgaatcca aggaccctga
360

gaatgaagtg ataaaggccta caataaatgg attaatagac atactgaaag catgcggaaa
420

ggcaaaaaca gtttagaaaat tggtttcac atcatcggct ggaactgtgg acgttactga
480

acatccaaag tctattattg atgaaacatg ctggagtgac gttgacttt gccgttagagt
540

caagatgacc ggttggatgt atttgtttc aaagacccta gcagagcaag aagcttggaa
600

gtat
604

<210> 182
<211> 586
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<400> 182
ggtcttcttn aatccagcta aattgaaaag gaaaaaaaaga ggagagaagt gaactggagt

60

gaaaatatac atgggttctg aatcgaaat agtttgtt accggagctt caggttcat
120

cgggtcggtgg ctgttatga gacttatgga gcgtggctac actgttcgag ccaccgttcg
180

tgacccagat aacatgaaga aggtgaagca tttgctggaa ctgccgggtg caaaaagcaa
240

attgtctctt tggaaggctg atcttgataa agaggggagt tttgatgaag caattaaagg
300

gtgcacagga gttttcatg ttgctacacc aatggatttt gaatccaagg accctgagaa
360

tgaagtgata aagcctacaa taaacggatt aatagacata ctgaaagcat gcgaaaaggc
420

aaaaaacagtt agaaaattgg tttcacatc atcggtcgga actgtggacg ttactgaaca
480

tccaaagtct attattgatg aaacatgctg gagtgacgtt gactttgcc gtagagtcaa
540

aatgaccgggt tggatgtatt ttgtttcaaa gaccctagca gagcag
586

<210> 183

<211> 586

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (2)..(2)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (11)..(11)

<223> Any nucleotide

<400> 183

gnagagaagt nacctggagt gaaaatatac atgggttctg aatcgaaat agtttgtt
60

accggagctt caggttcat cgggtcggtgg ctgttatga gacttatgga gcgtggctac
120

actgttcgag ccaccgttcg tgacccagat aacatgaaga aggtgaagca tttgctggaa
180

ctgcgggtg caaaaagcaa attgtctctt tggaaggctg atcttgataa agaggggagt
240

tttgatgaag caattaaagg gtgcacagga gttttcatg ttgctacacc aatggatttt
300

gagtccaagg accctgagaa tgaagtgata aagcctacaa taaacggatt aatagacata
360

ctgaaaagcat gcgaaaaggc aaaaacagtt agaaaattgg tttcacatc atcggttgaa
420

actgtggacg ttactgaaca tccaaagtct attattgatg aaacatgctg gagtgacgtt
480

gactttgcc gtagagtcaa aatgaccggt tggatgtatt ttgtttcaaa gaccctagca
540

gagcaagaag cttggaagta ttcgaaagag cacaacatag actttg
586

<210> 184
<211> 570
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (10)..(11)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<400> 184
tactgaaagn ntgcgaaaag gcnaaaacag ttagaaaatt ggttttcaca tcateggctg
60

gaactgtgga cgttactgaa catccaaagt ctattattga tgaaacatgc tggagtgacg
120

ttgacttttg ccgttagagtc aaaatgaccg gttggatgta tttgtttca aagaccctag
180

cagagcaaga agcttggaaag tattcgaaag agcacaacat agactttgtc tccatcatc
240

cacctcttgt tgttggcccc tttcttatgg cctcaatgcc acctagtcta atcaactgctc
300

tttctcttat cacagggaaat gaggcccatt actcaatcat aaagcaaggg caatacgtcc
360

attnagatga cctttgtctt gctcatatat ttctgtatga gaatccaaaa gctcaaggga
420

gatacatttg ctgttcacat gaagcaacca ttcataagt tgcaaaaactt attaaagaaa
480

aatacccaga gttcaatgtc ccaacaaaat tcaatgatat cccagatgaa ttggaaatta
540

ttaaattttc taaaaagaag atcacagact
570

<210> 185
<211> 833
<212> DNA
<213> Trifolium repens

```
<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide
```

```
<220>
<221> misc_feature
<222> (34)..(34)
<223> Any nucleotide
```

```
<400> 185  
ggncataaaa actgcactag tgtgtataag tttnttagtg aaaaaagagt gtgtaaatta  
60
```

acatcatggc tagtatcaa caaattggaa acaagaaaagc atgtgtgatt ggtggcactg
120

gttttggc atctatgttgc atcaaacagt tacttgaaaa gggttatgct gttaatacta
180

ctgttagaga cccagatgt cctaagaaaa tatctcacct agtggcactg caaagtttgg
240

gggaactgaa tctat taga gcagacttaa cagttgaaga agat tttgat gctcctata
300

caggatgtga gcttggaaaa caacttgctaa cacctgtgaa ctttgcttct caagatccctg
360

agaatgacat gataaagcca gcaatcaaag gtgtgttcaa tgtgttggaa gcaagtgc
420

gagcaaaaaga agtcaaaaga gttatcttaa catcttcggc agccgcggtg actataaaatg
480

aactcaaagg gacagggcat gttatggatg aaacccaactg gtcaagatgtt gaatttctga
540

acactgcaaa gccacccact tggggttatc ctgcgttcaaa aatgcttagct gaaaaggctg
600

catggaaatt tgctgaagaa aatgacatcg atctaatac ac tgtgatacc t agtttaacaa
660

ctgggtcccttc ttcacaccca gataatcccat cttagtgttgg cttggcaatg tctcttaataa
720

caggcaatga ttccctcata aatgtctgta aaggaaatgca atttcttgtcg ggttcgttat
780

ccatcaatcg tgctgaggat atttggccgag ctcataatatt tctggcagag aag
833

<210> 186
<211> 256
<212> PRT
<213> Trifolium repens

<400> 186

Met Ala Ser Ile Lys Gln Ile Gly Asn Lys Lys Ala Cys Val Ile Gly
 1 5 10 15

Gly Thr Gly Phe Val Ala Ser Met Leu Ile Lys Gln Leu Leu Glu Lys
20 25 30

Gly Tyr Ala Val Asn Thr Thr Val Arg Asp Pro Asp Ser Pro Lys Lys
35 40 45

Ile Ser His Leu Val Ala Leu Gln Ser Leu Gly Glu Leu Asn Leu Phe
50 55 60

Arg Ala Asp Leu Thr Val Glu Glu Asp Phe Asp Ala Pro Ile Ala Gly
65 70 75 80

Cys Glu Leu Val Phe Gln Leu Ala Thr Pro Val Asn Phe Ala Ser Gln
85 90 95

Asp Pro Glu Asn Asp Met Ile Lys Pro Ala Ile Lys Gly Val Leu Asn
100 105 110

Val Leu Lys Ala Ser Ala Arg Ala Lys Glu Val Lys Arg Val Ile Leu
115 120 125

Thr Ser Ser Ala Ala Ala Val Thr Ile Asn Glu Leu Lys Gly Thr Gly
130 135 140

His Val Met Asp Glu Thr Asn Trp Ser Asp Val Glu Phe Leu Asn Thr
145 150 155 160

Ala Lys Pro Pro Thr Trp Gly Tyr Pro Ala Ser Lys Met Leu Ala Glu
165 170 175

Lys Ala Ala Trp Lys Phe Ala Glu Glu Asn Asp Ile Asp Leu Ile Thr
180 185 190

Val Ile Pro Ser Leu Thr Thr Gly Pro Ser Leu Thr Pro Asp Ile Pro
195 200 205

Ser Ser Val Gly Leu Ala Met Ser Leu Ile Thr Gly Asn Asp Phe Leu
210 215 220

Ile Asn Ala Leu Lys Gly Met Gln Phe Leu Ser Gly Ser Leu Ser Ile
225 230 235 240

Thr His Val Glu Asp Ile Cys Arg Ala His Ile Phe Leu Ala Glu Lys
245 250 255

<210> 187

<211> 576

<212> DNA

<213> Trifolium repens

```
<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (34)..(34)
<223> Any nucleotide

<400> 187
ggncataaaa actgcactag tgtgtataag tttnatagt aaaaaagagt gtgtaaatta
60

acatcatggc tagtatcaa caaattggaa acaagaaggc atgtgtgatt ggtggcactg
120

gttttgttgc atctatgttgc atcaaacagt tacttgaaaa gggttatgtt gttaatacta
180

ctgttagaga cccagatagt cctaagaaaa tatctcacct agtggcactg caaagtttgg
240

gggaactgaa tctattnaga gcagacttaa cagttgaaga agatttgtt gctcctata
300

caggatgtga gcttgtttt caacttgcta cacctgtgaa ctggcttctt caagatcctg
360

agaatgacat gataaagcca gcaatcaaag gtgtgttgc ttgtgttgc gcaagtgc
420

gagcaaaaga agtcaaaaga gttatcttaa catcttcggc agccgcggc actataaatg
480

aactcaaagg gacaggtcat gttatggatg aaaccaactg gtcagatgtt gaatttctga
540

acactgcaaa gccacccact tgggttatac ctgctt
576

<210> 188
<211> 580
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (34)..(35)
<223> Any nucleotides
```

<220>
<221> misc_feature
<222> (580)..(580)
<223> Any nucleotide

<400> 188
ggncntaaaa actgcactag tgtgtataag tttnntagtg aaaaaagagt gtgtaaatta
60

acatcatggc tagtatcaaa caaattggaa acaagaaagc atgtgtgatt ggtggcactg
120

gttttgttc atctatgttg atcaaacagt tacttgaaaa gggttatgct gttataacta
180

ctgttagaga cccagatagt cctaagaaaa tatctcacct agtggcactg caaagttgg
240

gggaactgaa tctatTTAGA gcagacttaa cagttgaaga agatTTTgat gctcctatacg
300

caggatgtga gcttggTTTT caacttgcta cacctgtgaa ctttgcttct caagatcctg
360

agaatgacat gataaagcca gcaatcaaag gtgtgttgaa tgtgttgaaa gcaagtgcgg
420

gagcaaaaga agtcaaaaga gttatcttaa catcttcggc agccgcggtg actataaaatg
480

aactcaaagg gacaggtcat gttatggatg aaaccaactg gtcagatgtt gaatttctga
540

acactgcaaa gccaccact tggggttatc ctgcttcaan
580

<210> 189
<211> 578
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (29)..(30)
<223> Any nucleotides

<400> 189
taaaaaactgt actngtgtgt ataagttnn tagtgaaaaa agagtgtgtaa aatTAACATC
60

atggctagta tcaaacaat tggaaacaag aaagcatgtg tgattgggtgg cactggTTT
120

gttgcatcta tgTTGATCAA acagttactt gaaaagggtt atgctgttaa tactactgtt
180

agagacccag atagcctaa gaaaatatct cacctagtgg cactgcaaag tttggggaa
240

ctgaatctat ttagagcaga cttaacagtt gaagaagatt ttgatgctcc tatagcagga
300

tgtgagcttgc ttttcaact tgctacacct gtgaactttg cttctcaaga tcctgagaat
360

gacatgataa agccagcaat caaagggttg ttgaatgtgt tgaaagcaag tgcaagagca
420

aaagaagtca aaagagttat cttaacatct tcggcagccg cggtgactat aaatgaactc
480

aaaggacag gtcatgttat ggatgaaacc aactggtcag atgttgaatt tctgaacact
540

gcaaagccac ccacttgggg ttatcctgct tcaaaaat
578

<210> 190

<211> 619

<212> DNA

<213> Trifolium repens

<400> 190

taaaaaactgc actagtgtgt ataagttct tggtaaaaaa agagtttgta aattaacatc
60

atggctagta tcaaacaat tggaaacaag aaagcatgtg tgattgggtgg cactggttt
120

gttgcatacta tggatcaaa gcagttactt gaaaagggtt atgctgttaa tactaccgtt
180

agagacccag atagccctaa gaaaatatct cacctagtgg cactgcaaag tttggggaa
240

ctgaatctat ttagagcaga cttaacagtt gaagaagatt ttgatgctcc tatagcagga
300

tgtgacttgc ttttcaact tgctacacct gtgaactttg cttctcaaga tcctgagaat
360

gacatgataa agccagcaat caaagggttg ttgaatgtgt tgaaagcaat tgcaagagca
420

aaagaagtta aaagagttat cttaacatct tcggcagccg cggtgactat aaatgaactc
480

aaaggacag gtcatgttat ggatgaaacc aactggtctg atgttgaatt tctcaacact
540

gcaaaaccac ccacttgggg ttatcctgcc tcaaaaatgc tagctgaaaa ggctgcattgg
600

aaatttgctg aagaaaatg
619

<210> 191

<211> 619

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (12)..(12)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (14)..(14)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (45)..(45)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (53)..(53)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (59)..(59)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (614)..(614)

<223> Any nucleotide

<400> 191
gacctcgtgt gnantagttt cttggtaaaa aaagagtttg taaantaaca tcntggctng
60

tatcaaacaa attggaaaca agaaaggcatg tgtgatttgtt ggcactggtt ttgttgcattc
120

tatgttgcattc aagcagttac ttgaaaaggg ttatgtgtt aatactaccg ttagagaccc
180

agatagccct aagaaaaatat ctcacctagt ggcactgcaa agtttgggggg aactgaatct
240

attttagagca gacttaacag ttgaagaaga ttttgatgtt cctatagcag gatgtgaact
300

tgtttttcaa cttgctacac ctgtgaactt tgcttctcaa gatcctgaga atgacatgt
360

aaagccagca atcaaagggtg tggtaatgt gttgaaagca attgcaagag caaaagaagt
420

taaaaagagtt atcttaacat cttcgccagc cgccggact ataaatgaac tcaaaggac
480

aggcatgtt atggatgaaa ccaactggtc tggatgtt gttctcaaca ctgcaaaacc
540

acccacttgg ggttatcctg cctcaaaaat gctagctgaa aaggctgcat ggaaatttgc
600

tgaagaaaat gacnttgat
619

<210> 192
<211> 586
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<400> 192
gngnacctga atctatttag agnagactta acagttgaag aagatttga tgctcctata
60

gcaggatgtg agcttgttt tcaacttgct acacctgtga cctttgcttc tcaagatcct
120

gagaatgaca tgataaagcc agcaatcaa ggtgtgttga atgtgttgaa agcaagtgc
180

agagcaaaag aagtcaaaag agttatctta acatcttcgg cagccgcgg gactataaat
240

gaactcaaag ggacaggtca tgttatggat gaaacccaact ggtcaggtgt tgaatttctg
300

aacactgcaa agccaccac ttggggttat cctgcttcaa aaatgctagc tgaaaaggct
360

gcatggaaat ttgctgaaga aaatgacatt gatctaatac ctgtgataacc tagtttaaca
420

actggtcctt ctctcacacc agatatccc tctagtggtt gcttggcaat gtctctaata
480

acaggcaatg atttcctcat aaatgctctg aaaggaatgc aatttctgtc gggttcgta
540

tccatcactc atgttgagga tatttgccga gctcatatat ttctgg
586

<210> 193
<211> 567
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (55)..(55)
<223> Any nucleotide

<400> 193
ttaacagttg aagaagattt tgatgctcct atagcaggat gtgagcttgt ttttnaactt
60

gctacacctg tgacctttgc ttctcaagat cctgagaatg acatgataaa gccagcaatc
120

aaagggtgtgt tgaatgtgtt gaaagcaagt gcaagagcaa aagaagtcaa aagagttatc
180

ttaacatctt cggcagccgc ggtgactata aatgaactca aagggacagg tcatgttatg
240

gatgaaacca actggtcaga tggtaattt ctgaacactg caaagccacc cacttgggt
300

tatcctgctt caaaaatgct agctgaaaag gctgcatgga aatttgctga agaaaatgac
360

attgatctaa tcactgtgat acctagttt acaactggtc cttctctcac accagatatc
420

ccatcttagtg ttggcttggc aatgtctcta ataacaggca atgatttcct cataaatgct
480

ctgaaaggaa tgcaatttct gtcgggttcg ttatccatca ctcatgttga ggatatttgc
540

cgagctcata tatttcttggc agagaag
567

<210> 194
<211> 597
<212> DNA
<213> Trifolium repens

<400> 194
ggaaccaatt tgtcggactt tttcccccggg ttggcccgat tcgatttgca gggtgtggtg
60

aaagagatgg atgtcttggt tccacgtttt gatagccatat ttgaaaaaat gattggtgaa
120

cgtaagaaga aggaagtgg gggaaagaa aatgaaagta aggattttct gcagtttttg
180

ttgaatttga aggatgaggg tgattctaag actccattca caattaccca tgttaaggct
240

ctactcatgg acatgggtgt gggggatca gacacatcct ccaacacaat tgagtttgca
300

ttggcagaaa tggatgaacaa cccagaagta atgagggagg ttcaagagga attagaagat
360

gtagttggga aagataactt agtagaagag tctcacattc ataagctacc ctacttgcat
420

210/390

gcagtgtatga aagaaacact tcgtttacac ccagcacttc cacttttagt ccctcactgt
480

ccaagtgaaa ccaccaatgt tggaggctac acaattccaa agggatctcg tgtgttgtg
540

aacgtttggg ctattcatag agacccttcc atttgggaga aaccactaga atttgat
597

<210> 195
<211> 199
<212> PRT
<213> Trifolium repens

<400> 195

Gly Thr Asn Leu Ser Asp Phe Phe Pro Gly Leu Ala Arg Phe Asp Leu
1 5 10 15

Gln Gly Val Val Lys Glu Met Asp Val Leu Val Pro Arg Phe Asp Ser
20 25 30

Ile Phe Glu Lys Met Ile Gly Glu Arg Lys Lys Lys Glu Val Glu Gly
35 40 45

Lys Glu Asn Glu Ser Lys Asp Phe Leu Gln Phe Leu Leu Asn Leu Lys
50 55 60

Asp Glu Gly Asp Ser Lys Thr Pro Phe Thr Ile Thr His Val Lys Ala
65 70 75 80

Leu Leu Met Asp Met Val Val Gly Ser Asp Thr Ser Ser Asn Thr
85 90 95

Ile Glu Phe Ala Leu Ala Glu Met Met Asn Asn Pro Glu Val Met Arg
100 105 110

Lys Val Gln Glu Glu Leu Glu Asp Val Val Gly Lys Asp Asn Leu Val
115 120 125

Glu Glu Ser His Ile His Lys Leu Pro Tyr Leu His Ala Val Met Lys
130 135 140

Glu Thr Leu Arg Leu His Pro Ala Leu Pro Leu Leu Val Pro His Cys
145 150 155 160

Pro Ser Glu Thr Thr Asn Val Gly Tyr Thr Ile Pro Lys Gly Ser
165 170 175

Arg Val Phe Val Asn Val Trp Ala Ile His Arg Asp Pro Ser Ile Trp
180 185 190

Glu Lys Pro Leu Glu Phe Asp

<210> 196
<211> 700
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (698)..(698)
<223> Any nucleotide

<400> 196
gnaatccacn aatctcttga antaatacca tttctttaca agaacttaac catggtgatg
60

atcactcaat accaaacctt cctttacaaa gaactttcta tatcctttt cattttcttg
120

ataaccatt tcatacataag tttctcttc aaaaaaaaaatc taaaaaaaaact tccaccaggc
180

ccaaaagggtt ttccagttgt tggtgcactc ccactaatgg gatccatgcc tcatgttacc
240

ctattcaaaa tgtcacaaaa atatggtccc ataatgtacc taaaaatggg atcaaataac
300

atgggtttagt catcaactcc ttcttcagcc aaagcatttc tcaaaacact tgacctaaat
360

ttctccaata gaccgcccggaa cgctggcgca actcacctag cttatgattc acaagacttg
420

gttttcgccc actatggatc taggtggaaa ttacttagga aactaagtaa cttgcacatg
480

ctcggcggaa aagccctcga aaattggtcg aaagttcgtg agattgaaat gggtcacatg
540

attcgtacaa tgtacgattt tagcaagaaa gacgaatccg ttgttgtggc cgaaatgttg
600

acatatgcta tggccaatat gataggtcaa gtttatattga gtcgtcgct gttcgagaca
660

212/390

aaaggtagtg actcaaatga attaaggat atgggtgntg
700

<210> 197
<211> 216
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (216)..(216)
<223> Any amino acid

<400> 197

Met Val Met Ile Thr Gln Tyr Gln Thr Phe Leu Tyr Lys Glu Leu Ser
1 5 10 15

Ile Ser Phe Phe Ile Phe Leu Ile Thr His Phe Ile Ile Ser Phe Leu
20 25 30

Phe Lys Lys Asn Leu Lys Lys Leu Pro Pro Gly Pro Lys Gly Phe Pro
35 40 45

Val Val Gly Ala Leu Pro Leu Met Gly Ser Met Pro His Val Thr Leu
50 55 60

Phe Lys Met Ser Gln Lys Tyr Gly Pro Ile Met Tyr Leu Lys Met Gly
65 70 75 80

Ser Asn Asn Met Val Val Ala Ser Thr Pro Ser Ser Ala Lys Ala Phe
85 90 95

Leu Lys Thr Leu Asp Leu Asn Phe Ser Asn Arg Pro Pro Asn Ala Gly
100 105 110

Ala Thr His Leu Ala Tyr Asp Ser Gln Asp Leu Val Phe Ala Asp Tyr
115 120 125

Gly Ser Arg Trp Lys Leu Leu Arg Lys Leu Ser Asn Leu His Met Leu
130 135 140

Gly Gly Lys Ala Leu Glu Asn Trp Ser Lys Val Arg Glu Ile Glu Met
145 150 155 160

Gly His Met Ile Arg Thr Met Tyr Asp Cys Ser Lys Lys Asp Glu Ser
165 170 175

Val Val Val Ala Glu Met Leu Thr Tyr Ala Met Ala Asn Met Ile Gly
180 185 190

Gln Val Ile Leu Ser Arg Arg Val Phe Glu Thr Lys Gly Ser Asp Ser

213/390

195

200

205

Asn Glu Phe Lys Asp Met Val Xaa
210 215

<210> 198
<211> 584
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (27)..(27)
<223> Any nucleotide

<400> 198
gnaatccacn aatctcttga attaatncca tttctttaca agaacttaac catggtgatg
60

atcactcaat accaaacacctt cctttcaaa gaactttcta tctcctttt cattttcttg
120

ataacccgtt tcatacataag ttttcttttc aaaaaaaaatc taaaaaaaaact tccaccaggc
180

ccaaagggtt ttccagttgt tggtgcactc ccactaatgg gatccatgcc tcatgttacc
240

ctattcaaaa tgtcacaaaa atatggtccc ataatgtacc taaaaatggg atcaaatacg
300

atgggttag catcaactcc ttcttcagcc aaagcatttc tcaaaacact tgacctaaat
360

ttctccaata gaccggccaa cgctggcgcg actcacctag cttatgattc acaagacttg
420

gttttcgccc actatggatc taggtggaaa ttacttagga aactaagtaa cttgcacatg
480

ctcggcggaa aagccctcga agattggtcg aaagttcgtg agattgaaat gggtcacatg
540

attcgtacaa tgtatgattg tagcaagaaa gacgaatccg ttgt
584

<210> 199
<211> 694
<212> DNA
<213> Trifolium repens

```
<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(21)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (692)..(692)
<223> Any nucleotide

<400> 199
gncaaatctc ttgcantaan nccatttctt tacaagaact taaccatgg gatgatcact
60

caacacaaaa ctttccttta caaagaactt tctatacctt ttttcatttt cttgataacc
120

catttcatca ttagtttctt cttcaaaaaa aatctcaaaa aacttccacc aggccccaaa
180

ggttttccag ttgttggtgc actcccacta atgggatcca tgccatgt tacccatttc
240

aaaatgtcac aaaaatatgg tcctataatg tacctaaaaa tggatcaaa taacatggtt
300

gtagcatcaa ctccatttcc agccaaagca tttctcaaaa cacttgacct aaatttctcc
360

aataggccgg cgaacgctgg cgcaactcac ctagcttatg atccacaaga cttggtttcc
420

gccgactatg gatcttaggtg gaaattactt agggaaactaa gtaacttgca catgctcgcc
480

ggaaaagccc ttgaaaattt gtcgaaagtt cgtgagattt aatgggtca catgattcgt
540

acaatgtacg attgttagcaa gaaagacgaa tccgttgg tggccgaaat gttgacatata
600

gctatggcca atatgatagg tcaagttata ttgagtcgtc gcgtgttcga gacaaaaggt
660

agtgactcaa atgaatttaa ggatatggtt gntg
694

<210> 200
<211> 580
<212> DNA
```

<213> Trifolium repens

<220>

<221> misc_feature

<222> (2)..(2)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (14)..(14)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (16)..(16)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (44)..(44)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (55)..(56)

<223> Any nucleotides

<400> 200

cnaatctttt gaantnatac catttcttta caagaactta accntggta tgatnnctca
60

ataccaaacc ttcctttca aagaactttc tatctccctt ttcattttct tgataacccg
120

tttcatcata agtctttctt tcaaaaaaaaa tctcaaaaaa cttccaccag gcccaaaggg
180

ttttccagtt gttggtgcac tcccaactaat gggatccatg cctcatgtta ccctattcaa
240

aatgtcacaa aaatatggtc ccataatgtt cctaaaaatg ggatcaaata acatggttgt
300

agcatcaact ccttcttcag ccaaaggcatt tctcaaaaaca cttgaccaa atttctccaa
360

tagaccgcgc aacgctggcg cgactcacct agcttatgtat tcacaagact tggtttcgc
420

cgactatgga tcttaggtgga aattgcttag gaaactaagt aacttgacaca tgctcggcgg
480

aaaagccctc gaagatttgtt cgaaaagttcg cgagatttagt atgggtcaca tgattcgtac
540

aatgtacgat tgttagcaaga aagacgaata tgttgttg
580

<210> 201

<211> 574

<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (51)..(52)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (56)..(56)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (569)..(569)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (572)..(572)
<223> Any nucleotide

<400> 201
tctcttgnaa tnataccatt tctttacaag aacttaaccn tggtgatgat nnctcnatac
60

caaacaccttcc tttacaaaaga actttctata tccttttca ttttcttgat aaccatttc
120

atcatttagtt ttctcttcaa aaaaaatctc aaaaaacttc caccaggccc aaaaggtttt
180

ccagttgttg gtgcactccc actaatggga tccatgcctc atgttaccct attcaaaatg
240

tcacaaaaat atggtcctat aatgtaccta aaaatggat caaataacat ggtttagca
300

tcaactccctt cttagccaa agcatttctc aaaacacttg acctaaattt ctccaatagg
360

ccggcgaaacg ctggcgcaac tcacctagct tatgattcac aagacttggt tttcgccgac
420

tatggatcta ggtggaaatt acttaggaaa ctaagtaact tgcacatgct cggcggaaaa
480

gcccttgaaa attggtcgaa agttcgtgag attgaaatgg gtcacatgat tcgtacaatg
540

tacgattgta gcaagaaaga cgaatccgnt gntg
574

<210> 202
<211> 1261
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (31)..(31)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (92)..(93)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (96)..(96)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (957)..(957)
<223> Any nucleotide

<400> 202
gcacacntct atttatttct acttaaacct nacaaaaat aanaccacaca aaacacaaac
60

accacaaaaca ccaaaaccga gtccgttcc tnntcnaaca tggcaccaag ccaaactcta
120

agttatctct cacaacaaaa cactcttgag tcaagttcg ttaggaaaga agatgagcgt
180

ccaaaagttg cctacaataa cttagcaac gagattccaa tcatttctct tgctggaatt
240

gatgaggttg atggtcgtag aacagagata tgtaacaaga ttgttgaagc ttgtgagaat

300
tgggttattt ttcaggttgt tgatcatggt gttgatacaa aacttgtttc tgagatgacc
360
cgtttgctca gagagtttt tgcttgcca ccggaagaga agctccggtt tgacatgtcc
420
ggtggtaaaa agggtggttt cattgtctct agtcatctcc aaggagaagc agtgaaggat
480
tggagagagc tagtgacata ttttcatac ccaattaaac aaagagatta ttcaaggtgg
540
ccagacaagc cagaaggatg gaaagaggtt acagaaaaat acagtaaaaa cctaataaat
600
tttagcttgca aactatttgg agtttatca gaagcaatgg gtttagaaaa agaagctcta
660
acaaaaagcat gtgttgatat ggatcaaaaa gttgttataa attattaccc aaaatgccct
720
gaacctgacc tcacacttgg ctttaaacgt cacactgacc ctggcacaat tactctttt
780
cttcaagatc aagttggtgg cttcaagct accaaagata atggtaagac gtggattaca
840
gttcaaccag ttgaagggtgc ttttgggttt aatcttggag accatggtca ctatctaagt
900
aatggacggt tcaaaaatgc tgaccaccaa gcagtggtga attcgaacta cagccgntta
960
tcaatagcaa catttcaaaaa tccagctccc gatgcaactg tataccctt gaagattaga
1020
gagggtgaaa aatctgtgtt ggaagaacca atcacttttgc tgaaatgtt tagaaggaag
1080
atgaccaaag accttggaaat tgctaggatg aagaagttgg ctaaggaaca acaacttgg
1140
gacttggagg agaacaagac taaatatgg gccaaacctt tgaatgagat ctttgcttaa
1200
ttaatttagtc ttaatttaaa taattaataa attttagact taatttacat ataataattt
1260
t
1261

<210> 203
<211> 366
<212> PRT
<213> Trifolium repens

<220>
<221> MISC FEATURE
<222> (286)..(286)
<223> Any amino acid

<400> 203

Met Ala Pro Ser Gln Thr Leu Ser Tyr Leu Ser Gln Gln Asn Thr Leu
1 5 10 15

Glu Ser Ser Phe Val Arg Glu Glu Asp Glu Arg Pro Lys Val Ala Tyr
20 25 30

Asn Asn Phe Ser Asn Glu Ile Pro Ile Ile Ser Leu Ala Gly Ile Asp
35 40 45

Glu Val Asp Gly Arg Arg Thr Glu Ile Cys Asn Lys Ile Val Glu Ala
50 55 60

Cys Glu Asn Trp Gly Ile Phe Gln Val Val Asp His Gly Val Asp Thr
65 70 75 80

Lys Leu Val Ser Glu Met Thr Arg Phe Ala Arg Glu Phe Phe Ala Leu
85 90 95

Pro Pro Glu Glu Lys Leu Arg Phe Asp Met Ser Gly Gly Lys Lys Gly
100 105 110

Gly Phe Ile Val Ser Ser His Leu Gln Gly Glu Ala Val Lys Asp Trp
115 120 125

Arg Glu Leu Val Thr Tyr Phe Ser Tyr Pro Ile Lys Gln Arg Asp Tyr
130 135 140

Ser Arg Trp Pro Asp Lys Pro Glu Gly Trp Lys Glu Val Thr Glu Lys
145 150 155 160

Tyr Ser Glu Asn Leu Met Asn Leu Ala Cys Lys Leu Leu Glu Val Leu
165 170 175

Ser Glu Ala Met Gly Leu Glu Lys Glu Ala Leu Thr Lys Ala Cys Val
180 185 190

Asp Met Asp Gln Lys Val Val Ile Asn Tyr Tyr Pro Lys Cys Pro Glu
195 200 205

Pro Asp Leu Thr Leu Gly Leu Lys Arg His Thr Asp Pro Gly Thr Ile
210 215 220

Thr Leu Leu Leu Gln Asp Gln Val Gly Gly Leu Gln Ala Thr Lys Asp
225 230 235 240

Asn Gly Lys Thr Trp Ile Thr Val Gln Pro Val Glu Gly Ala Phe Val
245 250 255

Val Asn Leu Gly Asp His Gly His Tyr Leu Ser Asn Gly Arg Phe Lys

220/390

260

265

270

Asn Ala Asp His Gln Ala Val Val Asn Ser Asn Tyr Ser Xaa Leu Ser
275 280 285

Ile Ala Thr Phe Gln Asn Pro Ala Pro Asp Ala Thr Val Tyr Pro Leu
290 295 300

Lys Ile Arg Glu Gly Glu Lys Ser Val Leu Glu Glu Pro Ile Thr Phe
305 310 315 320

Ala Glu Met Tyr Arg Arg Lys Met Thr Lys Asp Leu Glu Ile Ala Arg
325 330 335

Met Lys Lys Leu Ala Lys Glu Gln Gln Leu Arg Asp Leu Glu Glu Asn
340 345 350

Lys Thr Lys Tyr Glu Ala Lys Pro Leu Asn Glu Ile Phe Ala
355 360 365

<210> 204
<211> 586
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<400> 204
gcacacntct atttatttct acttaaacct cacaaaaaat aaacccacaa cacacaaaca
60

ccaaaaacag agcaccgttt ccatcatcaa acatggcacc aagccaaact ctaagttatc
120

tctcacaaca aaacactctc gagtcagtt tcgttaggga agaagatgag cgtccaaaag
180

ttgcctacaa taacttcagc aacgagattc caatcatttc tcttgctgga attgatgagg
240

ttgatggtcg tagaacagag atatgtaaca agattgtga agcttgtgag aattgggta
300

ttttcaggt ttttgatcat ggtgttgata caaaacttgt ttctgagatg acccgttttg
360

ctagagagtt ttttgcttg ccaccggaag agaagctccg gtttgacatg tccgggtggta
420

aaaagggtgg tttcattgtc tctagtcatc ttcaaggaga agcagtgaag gattggagag
480

agctagtgac atattttca tacccaatta aacaaagaga ttattcaagg tggccagaca
540

221/390

agccagaagg atggaaagag gtaacagaaa aatacagtga aaacct
586

<210> 205
<211> 597
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (31)..(31)
<223> Any nucleotide

<400> 205
gcacngntct atttatttct acttaaacct naaaaataaa cccacaacac aaaccaaaaa
60

cagagcacccg tttccatcat caaacatggc accaagccaa accctaagtt atcttcaca
120

acaaaagact cttgagtcaa gttcgtag ggaagaagat gagcgtccaa aagttgccta
180

caataacttc agcaacgaga ttccaatcat ttctcttgct ggaattgatg aggttgatgg
240

tcgcagaaca gagatatgta acaagattgt tgaagcttgt gagaattggg gtattttca
300

ggttggat catgggttg atacaaagct tgttctgag atgactcggtt ttgcttagaga
360

gtttttgct ttgccgccccg aagagaagct ccgggttgac atgtccgggtg gtaaaaaggg
420

tggtttcatt gtctctagtc atctccaagg agaagcagtg aaagattgga gagagcttagt
480

gacatatttt tcatacccaa ttaaacaag agattattca aggtggccag acaagccaga
540

agaatggaaa gaagtaacag aaaaatacag tgaaaaccta atgaatttag cttgcag
597

<210> 206

222/390

<211> 605
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (42)..(42)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (71)..(71)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (90)..(92)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (94)..(95)
<223> Any nucleotides

<400> 206
cacacntcta tttatttctta cttaaacctn acaaaaaata anacccacaa cacacaaaca
60

ccaaaaaacag nagcaccggtt tccatcatcn nnannaacat ggcaccaagg ccaaactctaa
120

gttatctctc acaacaaaac actctcgagt caagttcgt tagggaagaa gatgagcgtc
180

caaaaagttgc ctacaataac tttagcaacg agattccaat catttctctt gctggaattg
240

atgaggttga tggtcgtaga acagagatat gtaacaagat tgttgaagct tgtgagaatt
300

ggggtatattt tcaggttgtt gatcatggtg ttgataaaaa acttgtttct gagatgaccc
360

gttttgctag agagttttt gctttgccac cggaagagaa gctccgggtt gacatgtccg
420

gtggtaaaaaa gggtggttcc attgtctcta gtcatcttca aggagaagca gtgaaggatt
480

ggagagagct agtgacatat tttcataacc caattaaaca aagagattat tcaagggtggc

540

cagacaagcc agaaggatgg aaagaggtaa cagaaaaata cagtgaaaac ctaatgaatt
600

tagct
605

<210> 207
<211> 492
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (29)..(30)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (40)..(41)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (55)..(55)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (58)..(58)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (60)..(60)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (68)..(68)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (70)..(70)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (75)..(75)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (436)..(436)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (439)..(439)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (450)..(450)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (452)..(452)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (455)..(455)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (459)..(459)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (469)..(469)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (471)..(471)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (473)..(473)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (490)..(492)
<223> Any nucleotides

<400> 207
tcccctctan ttatTTctnc ttaaacctnn caaaaatnan nacccacaac acacnaanan
60

caccaaanan acagnagtagc cgTTTccatc atcaaacatg gcaccaagcc aaactctaag
120

ttatctctca caacaaaaca ctctcgagtc aagttcgtt agggaagaag atgagcgtcc
180

aaaagttgcc tacaataact tcagcaacga gattccaatc atttctcttg ctggaattga
240

tgaggttgat ggTCgttagaa cagagatatg taacaagatt gttgaagctt gtgagaattg
300

gggtatTTTT caggttgTTG atcatggtgt tgataaaaaa cttgtttctg agatgaccgg
360

ttttgttaga gagTTTTTG ctTtgccacc ggaagagaag ctccggTTG acatgtccgg
420

tggtaaaaag ggtggnttna ttgtctgtan tngtntccna ggacaaccng ngnaggattg
480

cagagagctn nn
492

<210> 208
<211> 690
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (34)..(34)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (49)..(49)
<223> Any nucleotide
```

226/390

<400> 208
gttaaacacac nccAACACAA acACCAAAA cAGNANCACC gTTTCCATNC ATCAAACATG
60

gcACCAAGCC AAACtCTAAG ttATCTCTCA caACAAAACA CTCTCGAGTC aAGtttCGTT
120

aggGAAGAAG atGAGCGTCC AAAAGTTGCC tACAATAACT tCAGCAACGA gATTCCAATC
180

atTTCTCTTG ctGGAAATTGA tgAGGTTGAT gGTcGTAGAA cAGAGATATG taACAAGATT
240

gttGAAGCTT gtGAGAATTG gGGTATTTT cAGGTGTTG ATCATGGTGT tgATACAAAAA
300

cttGTTTCTG agATGACCCG tTTTGTAGA gagTTTTTG cTTTGCACC gGAAGAGAAG
360

ctCCGGTTTg acATGTCCGG tggtaAAAAG ggtGGTTCA ttGTCTCTAG tCATCTCCAA
420

ggAGAAAGCAG tGAAGGATTG gagAGAGCTA gtGACATATT tttCATAACCC aATTAAACAA
480

agAGATTATT caAGGTGGCC AGACAAGCCA gaAGGATGGA aAGAGGTAAC agAAAAATAC
540

agtGAAAACC taATGAATTt agCTTGCAAA ctATTGGAAG ttttatcaga agcaatgggt
600

ttagaaaaAG aAGCTCTAAC AAAAGCATGT gttGATATGG ATCAAAAAGT tgTTATAAAT
660

tattACCCAA aATGCCCTGA acCTGACCTT
690

<210> 209
<211> 573
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(41)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<400> 209
gnaaccacaca acacacaaaac accaaaacag agnccgttc ntnatcaaac atggcaccaa
60

· gccaaactct aagttatctc tcacaacaaa acactctcg a gtcaagttc gttagggaag
120

aagatgagcg tccaaaagtt gcctacaata acttcagcaa cgagattcca atcatttctc
180

ttgctggat tgatgaggtt gatggtcgta gaacagagat atgtaacaag attgttgaag
240

cttgtgagaa ttgggttatt tttcaggtt g ttgatcatgg ttttgataca aaacttgg
300

ctgagatgac ccgtttgct agagagttt ttgcttgcc accggaagag aagctccggt
360

ttgacatgtc cggtgtaaa aagggtggtt tcattgtctc tagtcatctc caaggagaag
420

cagtgaagga ttggagagag cttagtgacat attttcata cccatta aaaa caaagagatt
480

attcaaggtg gccagacaag ccagaaggat ggaaagaggt aacagaaaa tacagtgaaa
540

acctaatgaa tttagcttgc aagctattgg aag
573

<210> 210
<211> 716
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (576)..(576)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (619)..(619)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (702)..(702)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (714)..(714)
<223> Any nucleotide

<400> 210
cacacnaacn ccaaacacca aaaacagnan caccgttcc atncatncaa acatggcacc
60

aagccaaact ctaagttatc tctcacaaca aaacactctt gagtcaagtt tcgtaggga
120

agaagatgag cgtccaaaag ttgcctacaa taacttcagc aacgagatcc caatcatttc
180

tcttgctgga attgatgagg ttgatggtcg tagaacagag atatgtaaca agattgttga
240

agcttgtgag aattgggta ttttcaggt tggtgatcat ggtgttgata caaaacttgt
300

ttctgagatg acccgaaaaa ctagagatgt ttttgcttgc ccaccggaaag agaagctccg
360

gtttgacatg tccgggtgta aaaagggtgg tttcattgtc tctagtcata tccaaggaga
420

agcagtgaag gattggagag agctagtgac atattttca tacccaatta aacaaagaga
480

ttattcaagg tggccagaca agccagaagg atggaaagag gtaacagaaa aatacagtga
540

aaacctaattg aatttagctt gcaaactatt ggaagntta tcagaagcaa tgggtttaga
600

aaaagaagct ctaacaaang catgtgttga tatggatcaa aaagttgtta taaattatta
660

229/390

cccaaaatgc cctgaacctg acctcccact tgccctaaac gncacactga cccnga
716

<210> 211
<211> 721
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (721)..(721)
<223> Any nucleotide

<400> 211
cacnacnacc acaaacacca aaaacagnan caccgttcc atncatcaaa catggcacca
60

agccaaactc taagttatct ctcacaacaa aacactcttg agtcaagttt cgtagggaa
120

gaagatgagc gtccaaaagt tgccctacaat aacttcagca acgagattcc aatcatttct
180

cttgctggaa ttgatgaggt tgatggcgt agaacagaga tatgtaacaa gattgttcaa
240

gcttgtgaga attgggttat tttcagggtt gttgatcatg gtgttgatac aaaacttgg
300

tctgagatga cccgtttgc tagagagttt tttgcttgc caccggaaga gaagctccgg
360

tttgacatgt ccggtggtaa aaagggtggg ttcattgtct ctgtcatct ccaaggagaa
420

gcagtgaagg attggagaga gctagtgaca tattttcat acccaattaa acaaagagat
480

tattcaaggt ggccagacaa gccagaagga tggaaagagg taacagaaaa atacagtcaa
540

aacctaattga atttagcttg caaactattg gaagtttat cagaagcaat gggtttagaa
600

aaagaagctc taacaaaagc atgtgttcat atggatcaaa aagttgttat aaattattac
660

ccaaaatgcc ctgaacctga ctcacactt ggccttaaac gtcacactga ccctggcaca
720

n
721

<210> 212
<211> 453
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (79)..(79)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (173)..(173)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (215)..(215)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (220)..(220)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (235)..(235)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (245)..(245)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (257)..(257)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (283)..(284)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (303)..(303)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (307)..(307)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (311)..(311)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (317)..(317)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (322)..(322)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (336)..(336)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (346)..(346)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (361)..(361)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (366)..(367)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (375)..(375)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (393)..(393)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (397)..(397)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (399)..(399)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (401)..(401)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (407)..(407)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (411)..(411)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (422)..(422)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (425)..(425)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (430)..(432)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (437)..(437)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (445)..(445)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (447)..(448)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (450)..(453)
<223> Any nucleotides

<400> 212
ccacancaca caaacaccaa aaacagaagc accgtttcca tcatcaaaca tggcaccaag
60

ccaaactcta agttatctng gacaacaaaa cactctcgag tcaagttcg tttaggaaaga
120

agatgaccgt ccaaaagtgc cctacaatac cttagcacc gagattccaa tcntttctct
180

tgcttgaatt gatgagggttg atggccgaaa aacanaaaatn tttaccaaga ttggnggggc
240

ttgttnaaat tgggtnttt ttcaggttgg tgatcatggg gtnnaacaaa acttgtttcc
300

canaaanccc nttnntaa anagttttt gcttncccc cgaaanaaaa cctccggttt
360

nacttnncgg ggggnaaaaa aggggggggt ttnatngnc nttaagnccc ncccaaggg
420

anaancccan nnaaggnttt ggaananncn nnn
453

<210> 213
<211> 267
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (45)..(46)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (48)..(49)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (208)..(208)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (210)..(210)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (215)..(215)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (226)..(227)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (231)..(231)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (245)..(245)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (250)..(250)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (253)..(253)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (260)..(260)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (265)..(265)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (267)..(267)
<223> Any nucleotide

<400> 213
gaanccacn aacancaaac acncaaaaan agagaccgtt tcctnnnnna acatggcacc
60

aaggccaaact ctaagttatc ttcacaaca aaacactt gagtcaagg tcgttaggga
120

agaagatgag cgtccaaaag ttgcctacaa taacttcagc aacgagattc caatcatttc
180

tcttgctgga attgatgagg ttgatggncn cacancacac atctgnncca nattgctgga
240

acctngcgan agncgccctn cctcncn
267

<210> 214
<211> 580
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<400> 214
gnaccacaca aacacccaaa acagaggacc gtttcctnat caacaatggc accaagccaa
60

actctaagtt atctctcaca acaaaacact ctcgagtcaa gtttcgttag ggaagaagat
120

gagcgtccaa aagttgccta caataacttc agcaacgaga ttccaatcat ttctcttgct
180

ggaattgatg aggtttagtgg tcgtagaaca gagatatgt acaagattgt tgaagcttgc
240

gagaattggg gtatTTTca ggttggat catgggttg atacaaaact tgTTTctgag
300

atgaccggtt ttgctagaga gtttttgct ttgccaccgg aagagaagct ccggTTTgac
360

atgtccggtg gtaaaaaggg tggTTTcatt gtctctagtc atcttcaagg agaagcagt
420

aaggattgga gagagctagt gacatatttt tcataccaa ttaaacaaag agattattca
480

aggtggccag acaagccaga aggatggaaa gaggtAACAG aaaaatacag tgaaaaccta
540

atgaatttag ctgcgaagct attggaagtt ttatcagaag
580

<210> 215
<211> 586
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (31)..(31)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (586)..(586)
<223> Any nucleotide

<400> 215
ggcacacaaaa ccaaaacgag cccgtttcct nttaacatgg caccaagcca aaccctaagt
60

tatctctcca acaaaaagact ctggagtcaa gtttcgttag ggaagaagat gagcgtccaa
120

aagttgccta caataacttc agcaacgaga ttccaatcat ttctcttgct ggaattgatg
180

aggtttagtgg tcgcagaaca gagatatgt acaagattgt tgaagcttgc gagaattggg
240

gtatTTTca ggttggat catgggttg atacaaaact tgTTTctgag atgactcggt
300

ttgctagaga gtttttgct ttgccaccgg aagagaagct ccggTTTgac atgtccggtg

360

gtaaaaaggg tggtttcatt gtctctagtc atctccaagg agaagcagtg aaagattgga
420

gggagctagt gacatatttt tcatacccaa ttaaacaaag agattattca aggtggccag
480

acaagccaga aggatggaaa gaagtaacag aaaaatacag tgaaaaccta atgaatttag
540

cttgcaagct attggaagtt ttatcagaag caatgggatt agaaan
586

<210> 216
<211> 450
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(37)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (96)..(96)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (363)..(363)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (390)..(390)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (403)..(403)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (410)..(410)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (416)..(417)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (421)..(421)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (436)..(436)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (438)..(438)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (450)..(450)
<223> Any nucleotide

<400> 216
tctaacacaaa acacccaaaa cagagnaccg tttcctntcc aacatggcac caagccaaac
60

tctaagttat ctctcaccac aaaacactct tgagttaagt ttcgtaggg aagaagatga
120

gcgtccaaaa gttgcctaca ataacttcag caacgagatt ccaatcattt ctcttgctgg
180

aattgatgag gttgatggc gttagaacaga gatatgtAAC aagattgttg aagcttgtga
240

gaattggggt attttcagg ttgttgcata tggtgttgat acaaaaacttg tttctgagat
300

gaccgcgttt gctagagagt ttttgcttt gccacccggaa gagaagctcc ggtttgacat
360

gtncgggtggt aaaaagggtg gtttcattgn ctctagtcata ctncaaggan aagcanngaa
420

ngattggaga gagctngnnga catatTTTn
450

<210> 217
<211> 681
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (24)..(24)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (39)..(39)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (644)..(644)
<223> Any nucleotide

<400> 217
cncaacacaa acaccaaaaa cagnancacc gtttccatnc atncaaacat ggcaccaagc
60

caaactctaa gttatctctc acaacaaaac actcttgagt caagttcgt taggaaagaa
120

gatgagcgtc caaaaaggtagc ctacaataac ttcagcaacg agattccaat catttctctt
180

gctggaaattg atgagggttga tggtcgtaga acagagatat gtaacaagat tgttgaagct
240

tgtgagaatt ggggtatattt tcaggttgtt gatcatggtg ttgataaaaa acttgtttct
300

gagatgaccc gtttgctag agagttttt gctttgccac cgaaagagaa gctccggttt
360

gacatgtccg gtggtaaaaa gggtggttcc attgtctcta gtcatctcca aggagaagca
420

gtgaaggatt ggagagagct agtgacatat tttcataacc caattaaaca aagagattat
480

tcaagggtggc cagacaagcc agaaggatgg aaagaggtaa cagaaaaata cagtaaaaac
540

ctaattgaatt tagcttgcaa actattggaa gtttatcag aagcaatggg tttagaaaaa
600

gaagctctaa caaaagcatg tggtgatatg gatcaaaaag ttgntataaa ttattaccca
660

aaatgcctg aacctgacct c
681

<210> 218

240/390

<211> 582
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(3)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (21)..(21)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<400> 218
gnnaatccac aacancaaac nccanaaacg agcccgttcc ttnctcnaac atggcaccaa
60

gc当地actct aagttatctc tcacaacaaa acactctcga gtcaagtttc gtttagggaaag
120

aagatgagcg tccaaaagtt gcctacaata acttcagcaa cgagattcca atcatttctc
180

ttgctgaaat tgatgagggtt gatggtcgaa gaacagagat atgtaacaag attgttgaag
240

cttgtgagaa ttgggttatt tttcaggttg ttgatcatgg tggatgataca aaacttgg
300

ctgagatgac ccttttgc agagagttt ttgcttgcc accggaagag aagctccggt
360

ttgacatgtc cggtggtaaa aagggtggtt tcattgtctc tagtcatctc caaggagaag
420

cagtgaagga ttggagagag ctagtgacat atttttcata cccaaattaaa caaagagatt
480

attcaaggtg gccagacaag ccagaaggat ggaaagaggt aacagaaaaa tacagtggaa

241/390

540

acctaataatgaa ttttagcttgc aaactattgg aagttttatc ag
582

```
<210> 219
<211> 610
<212> DNA
<213> Trifolium repens
```

```
<220>
<221> misc_feature
<222> (31)..(31)
<223> Any nucleotide
```

```
<220>
<221> misc_feature
<222> (41)..(41)
<223> Any nucleotide
```

<400> 219
gaaccccaaca acacccaaac caaaaacgag nccgtttcct ntcaacatgg caccaaggca
60

aactctaagt tatctctcac aacaaaacac tctcgagtca agtttcgtta ggaaagaaga
120

tgagcgtcca aaagttgcct acaataactt cagcaacgag attccaatca tttctcttgc
180

tggaaattgat gaggttgatg gtcgtagaac agagatatgt aacaagattg ttgaagcttg
240

tgagaattgg ggtatTTTC aggttGTTga tcatGGTgtt gatacaaaac ttgtttctga
300

gatgaccggcgt tttgcttagag agtttttgc tttgccacccg gaagagaaggc tccgggttga
360

catgtccgggt ggtaaaaagg gtggtttcat tgtctctagt catctccaag gagaaggagt
420

gaaggattgg agagagctag tgacatattt ttcataccca attaaacaaa gagattttc
480

aagggtggcca gacaagccag aaggatggaa agaggttaaca gaaaaataca gtgaaaacct
540

aatgaattta gcttgcaagc tattggaagt tttatcagaa gcaatgggtt tagaaaaaga
600

agctctaaaca
610

<210> 220
<211> 593
<212> DNA
<213> Trifolium repens

```
<220>
<221> misc_feature
<222> (16)..(16)
```

<223> Any nucleotide

<220>

<221> misc_feature

<222> (23)..(23)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (41)..(42)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (45)..(45)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (593)..(593)

<223> Any nucleotide

<400> 220

aaccccacga caccanaacc canaaaacgag cccgttcct nntcnaacat ggcaccaagc
60

caaactctaa gttatctctc acaacaaaac actctcgagt caagttcgt taggaaagaa
120

gatgagcgtc caaaaagttgc ctacaataac tttagcaacg agattccaat catttctt
180

gctggaattt atgagggttga tggtcgtaga acagagatat gtaacaagat tggttgaagct
240

tgtgagaatt ggggttatttt tcaggttgtt gatcatggtg ttgataaaaa acttgtttt
300

gagatgaccc gtttgctag agagttttt gctttgccac cgaaagagaa gctccggttt
360

gacatgtccg gtggtaaaaaa gggtggttcc attgtctcta gtcatcttca aggagaagca
420

gtgaaggatt ggagagagct agtacatat tttcataacc caattaaaca aagagattat
480

tcaagggtggc cagacaagcc agaaggatgg aaagaggtaa cagaaaaata cagtaaaaac
540

ctaataatgaaatt tagcttgcaa gctattggaa gtttatcag aagcaatggg ttn
593

<210> 221

<211> 236

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(41)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (203)..(206)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (209)..(209)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (213)..(213)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (216)..(217)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (224)..(225)
<223> Any nucleotides

<220>
<221> misc_feature

<222> (234)..(236)
<223> Any nucleotides

<400> 221
gcacnaacan cacaaacncc caaaaangaga ccgttgcctc ntnaaacatg gcaccaagcc
60

aaactctaag ttatctctca caacaaaaca ctctcgagtc aagttcggtt agggagaag
120

atgagcgtcc aaaagttgcc tacaataact tcagcaacga gattccaatc atttctcttg
180

ctggaattga tgaggttgat ggnnnnggna ccnggnnatg tggnnagagg acgnnn
236

<210> 222
<211> 273
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(10)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (34)..(34)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (151)..(151)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (198)..(198)
<223> Any nucleotide

<220>

```
<221> misc_feature
<222> (205)..(205)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (255)..(255)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (270)..(270)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (273)..(273)
<223> Any nucleotide

<400> 222
acancaccnn acnccaaaac gagtccgttc cctntnaaca tggcaccaag ccaaactcta
60

agttatctct cacaacaaaa cactctcgag tcaagtttcg ttaggaaaga agatgagcgt
120

ccaaaagttg cctacaataa cttagcaac nagattccaa tcatttctct tgctggaatt
180

gatgaggttg atggtcgnag aacanagata tgtaacaaga ttgttgaagc ttgtgagaat
240

tgggttattt ttcangttgt tgatcatggn gtn
273

<210> 223
<211> 572
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(4)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
```

<223> Any nucleotide

<220>
<221> misc_feature
<222> (39)..(39)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(42)
<223> Any nucleotides

<400> 223
gcnncaanca caaacncnaa aacgagcacc gtttcctant nnaacatggc accaaggcaa
60

actctaagtt atctctcaca acaaaaaacc gtcgagtcaa gtttcgttag ggaagaagat
120

gagcgtccaa aagttgccta caataacttc agcaacgaga ttccaatcat ttctcttgct
180

ggaattttagt aggtttagatgg tcgcagaaca gagatatgt acaagattgt tgaagcttgt
240

gagaatttggg gtattttca ggttgtttagt catgggtttg atacaaagct tgtttctgag
300

atgactcggtt ttgcttagaga gttttttgtt ttgccgcgg aagagaagct ccggtttgac
360

atgtccggtg gtaaaaaggg tggtttcatt gtctctagtc atctccaagg agaaggcagt
420

aaagatttggaa gagagctagt gacatatttt tcatacccaa ttaaacaag agattattca
480

aggtagggccag acaagccaga aggatggaaa gaagtaacag aaaaatacag tggaaaaccta
540

atgaattttag cttgcaagct atttggaaagtt tt
572

<210> 224
<211> 575
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(42)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (54)..(54)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (77)..(78)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (99)..(99)
<223> Any nucleotide

<400> 224
gnaccacan cnaacnccan aaacgagccc gtttcctnct nnaacatggc accnagccaa
60

actctaagtt atctctnnca acaaaaacact cttgagtcna gtttcgttag ggaagaagat
120

gagcgtccaa aagttgccta caataacttc agcaacgaga ttccaatcat ttctcttgct
180

ggaattgatg aggttcatgg tcgtagaaca gagatatgt acaagattgt tgaagcttgt
240

gagaattggg gtattttca ggttgttcatgatggatgtt aataaaaaact tgtttctgag
300

atgacccgtt ttgcttagaga gttttttgtt ttgccaccgg aagagaagct ccggtttgac
360

atgtccgggtg gtaaaaaagggg tggtttcatt gtctctagtc atctccaagg agaaggcgtg

420

aaggatttggaa gagagctagt gacatatttt tcatacccaa taaaacaaaag agattattca
480

agggtggccag acaagccaga aggatggaaa gaggttaacag aaaaatacag tgaaaaccta
540

atgaattttag cttgcaaact attggaagtt ttatc
575

<210> 225
<211> 596
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (10)..(11)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<400> 225
ccacaacacn naacnccaaa acgagnccgt ttcctctcaa catggcacca agccaaactc
60

taagtttatct ctcacaacaa aacactctcg agtcaagttt cgtagggaa gaagatgagc
120

gtccaaaagt tgcctacaat aacttcagca acgagattcc aatcatttct cttgctggaa
180

ttgatgaggt tcatggcgtt agaacagaga tatgtacaa gattgttcaa gcttgtgaga
240

attgggttat tttcaggtt gttgatcatg gtgttgatac aaaacttggtt tctgagatga
300

cccggtttgc tagagagttt tttgctttgc caccggaaaga gaagctccgg tttgacatgt
360

ccgggtggtaa aaagggtgg ttcattgtct ctatgtatct ccaaggagaa gcagtgaagg
420

attggagaga gctagtgaca tattttcat acccaattaa acaaagagat tattcaaggt
480

ggccagacaa gccagaaggg tggaaagagg taacagaaaa atacagtcaa aacctaattga
540

attttagcttg caaactatttga gaagttttat cagaagcaat gggttttagaa aaagag
596

<210> 226
<211> 612
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (36)..(36)
<223> Any nucleotide

<400> 226
cacaacacnc acnccaaaac gagcccgttt cctctnaaca tggcaccaag ccaaactcta
60
agttatctct ccaacaaaac actcttgagt caagttcgt taggaaagaa gatgagcgtc
120
caaaagttgc ctacaataac tttagcaacg agattccaat catttctt gctggaattg
180
atgagggttga tggtcgtaga acagagatat gtaacaagat tggtaagct tgtgagaatt
240
gggttatattt tcaggttgtt gatcatggtg ttgataaaaa acttgggttct gagatgaccc
300
gttttgctag agagttttt gcttgccac cggaagagaa gctccggttt gacatgtccg
360
gtggtaaaaaa gggtggtttc attgtctcta gtcatctcca aggagaagca gtgaaggatt
420
ggagagagct agtgacatat tttcataacc caattaaaca aagagattat tcaagggtggc
480
cagacaagcc agaaggatgg aaagaggtaa cagaaaaata cagtgaaaac ctaatgaatt
540
tagcttgcaa actattggaa gtttatcag aagcaatggg ttttagaaaaa gaagctctaa
600
caaaagcatg tg
612

<210> 227
<211> 535
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature

<222> (32)..(32)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (69)..(69)
<223> Any nucleotide

<400> 227
acaacacaaaa cccaaaacga gcccgttcc tntcaacatg gcacccaagcc aaactctaag
60

ttatctctnc aacaaaacac tcttgagtca agtttcgtta gggagaaga tgagcgtcca
120

aaagttgcct acaataactt cagcaacgag attccaatca tttctcttgc tggaattgat
180

gaggttgatg gtcgtagaac agagatatgt aacaagattg ttgaagcttg tgagaattgg
240

ggtatTTTC aggttgttga tcATGGTGTt gataaaaaac ttGTTTCTGA gatgaccCGT
300

tttgcttagag agTTTTTGC ttGCCACCG gaAGAGAAGC TCCGGTTTGA catgtccGGT
360

ggtaaaaaagg gtggTTTcat tgtctctagt catctccaag gagaAGCAGT gaaggattgg
420

agagagctag tgacatatTT ttcatACCCa attaaacaaa gagattattc aaggTggCCA
480

gacaAGCCAG aaggatggaa agaggtaaca gaaaaataca gtgaaaacct aatgc
535

<210> 228
<211> 559
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (559)..(559)
<223> Any nucleotide

<400> 228
gcaacacaaaa caccaaaacg agnccgttcc ctntcaacat ggcaccaagc caaactctaa
60

251/390

gttatctctc ccacaaaaca ctcttgagtc aagttcggtt agggagaagaat atgagcgtcc
120

aaaagttgcc tacaataact tcagcaacga gattccaatc atttctcttg ctgaaattga
180

tgaggttgat ggtcgttagaa cagagatatg taacaagatt gttgaagctt gtgagaattg
240

gggtatTTT caggttggttg atcatggtgt tgatacaaaa cttgtttctg agatgaccgg
300

ttttgctaga gagtttttg ctttgccacc ggaagagaag ctccgggttg acatgtccgg
360

tggtaaaaag ggtgggttca ttgtctctag tcatctccaa ggagaagcag tgaaggattg
420

gagagagcta gtgacatatt tttcataaccc aattaaacaa agagattatt caaggtggcc
480

agacaagcca gaaggatgga aagaggtaac agaaaaatac agtggaaacc taatgaattt
540

agcttgcaaa ctattggan
559

<210> 229

<211> 565

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (3)..(3)

<223> Any nucleotide

<400> 229

gcncaacaca aacccaaacg agcccggttc ctatcaacat ggcaccaagc caaaccctaa
60

gttatctctc acaacaaaag actcttgagt caagttcggtt tagggaaagaat gatgagcgtc
120

caaaagttgc ctacaataac tttagcaacg agattccat catttctctt gctgaaattg
180

atgaggttga tggtcgcaga acagagatat gtaacaagat tggtaagct tgtgagaatt
240

gggtatTTT tcaggttggttt gatcatgggtg ttgatacaaaa cttgtttctt gagatgactc
300

ttttgcttag agagttttt gctttggccgc cggaagagaa gctccgggtt gacatgtccg
360

gtggtaaaaaa gggtggttca attgtctcta gtcatctccaa aggagaagca gtgaaagatt
420

ggagagagct agtgcacatatt tttcataacc caattaaaca aagagattat tcaaggtggc
480

cagacaagcca agaaggatgg aaagaagtaa cagaaaaata cagtggaaac ctaatgaatt
540

tagcttgc当地 gctattggaa gtttt
565

<210> 230
<211> 591
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (32)..(32)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (34)..(34)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (74)..(74)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (591)..(591)
<223> Any nucleotide

<400> 230
caacancaa cnccanaaaac gagccccgttt ctnntcnaa catggcacca agccaaactc
60

taagttatct ctcncaacaa aacactctcg agtcaagttt cgtagggaa gaagatgagc
120

gtccaaaagt tgcctacaat aacttcagca acgagattcc aatcatttct cttgctggaa

180

ttgatgaggt ttagtggtcga agaacagaga tatgttaacaa gattgttgaa gcttgtgaga
240

attggggtat ttccagggtt gttgatcatg gtgttgatac aaaacttgtt tctgagatga
300

cccggtttgc tagagagttt tttgcttgc caccggaaga gaagctccgg tttgacatgt
360

ccgggtggtaa aaagggtgg ttcattgtct ctagtcatct ccaaggagaa gcagtgaagg
420

attggagaga gctagtgaca tattttcat acccaattaa acaaagagat tattcaaggt
480

ggccagacaa gccagaagga tgaaaagagg taacagaaaa atacagtgaa aacctaata
540

atttagcttg caaactatttgaagttttat cagaagcaat gggttttagaa n
591

<210> 231
<211> 609
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (66)..(66)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (76)..(76)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (84)..(84)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (94)..(95)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (98)..(98)
<223> Any nucleotide

<400> 231

254/390

gcagtttatct ctcncaacaa aacactctcg agtcaagttt cgtagggaa gaagatgagc
60

gtacancaaa caccanaaaac gagnccgttt cctnnntcnaa catggcacca agccaaactc
120

taccaaaaagt tgcctacaat aacttcagca acgagattcc aatcatttct cttgctggaa
180

ttgatgaggt tgatggtcgt agaacagaga tatgtaacaa gattgttcaa gcttgtgaga
240

attggggtat tttcaggtt gttgatcatg gtgttgatac aaaacttgtt tctgagatga
300

cccggtttgc tagagagttt tttgcttgc caccggaaga gaagctccgg tttgacatgt
360

ccgggtggtaa aaagggtgggt ttcatgtct ctgtcatct tcaaggagaa gcagtgaagg
420

attggagaga gctagtgaca tattttcat acccaattaa acaaagagat tattcaaggt
480

ggccagacaa gccagaagga tggaaagagg taacagaaaa atacagtcaa aacctaata
540

attnagcttg caagctattt gaagttttat cagaagcaat gggtttagaa aaagaagctc
600

taacaaaag

609

<210> 232
<211> 597
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (15)..(16)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (24)..(24)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(27)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (29)..(29)

<223> Any nucleotide

<400> 232

aacccaaaac ngagnncgt ttcntnnntna acatggccca gccaaactct aagtatctc
60

tccacaacaaa cactctcgag tcaagtttcg ttagggaaga agatgagcgt cccaaagttg
120

cctacaataa ottcagcaac gagattccaa tcatttctct tgctggaatt gatgaggttg
180

atggtcgttag aacagagata tgtaacaaga ttgttgaagc ttgtgagaat tgggttattt
240

ttcaggttgt tgatcatggt gttgatacaa aacttggttc tgagatgacc cgtttgcta
300

gagagtttt tgcttgcca ccggaagaga agctccggtt tgacatgtcc ggtggtaaaa
360

agggtggttt cattgtctct agtcatctcc aaggagaagc agtgaaggat tggagagagc
420

tagtacata ttttcatac ccaattaaac aaagagatta ttcaaggtgg ccagacaagc
480

cagaaggatg gaaagaggta acagaaaaat acagtaaaaa cctaatgaat ttagcttgc
540

agctatttgg agttttatca gaagcaatgg gtttagaaaaa agaagctcta acaaaag
597

<210> 233

<211> 418

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (10)..(10)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (25)..(25)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (29)..(29)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (31)..(31)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (354)..(354)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (361)..(361)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (369)..(369)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (378)..(378)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (387)..(387)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (410)..(410)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (412)..(412)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (415)..(415)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (418)..(418)
<223> Any nucleotide

<400> 233
accccacctn aaaccgagac cgttnccntn naacatggca ccaagccaaa ctctaagtta
60

tctctcacaa caaaacactc ttgagtcaag tttcgtagg gaagaagatg agcgtccaaa
120

agttgcctac aataacttca gcaacgagat tccaatcatt tctcttgctg gaattgtatga
180

ggttcatggc cgtagaacag agatatgtaa caagattgtt gaagcttgtg agaattgggg
240

tatccccatc gttgttgatc atgggtttga tacaaaactt gtttctgaga tgacccgttt

300

tgctagagag tttttgctt tgccaccgga agagaagctc cggtttgaca tgtnccgtgg
360

naaaaaggnt ggctccantg cctgtancca tctccaagga gaaccacccn angantgn
418

<210> 234
<211> 570
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (3)..(4)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (31)..(32)
<223> Any nucleotides

<400> 234
gcnnaaacac canaaacgag cccgttcct nntcgaacat ggcaccaagc caaactctaa
60

gttatctctc acaacaaac actcttgagt caagttcgt taggaaagaa gatgagcgta
120

caaaagttgc ctacaataac tttagcaacg agattccat catttctttt gctggatttg
180

atgaggttga tggtcgtaga acagagatat gtaacaagat tggtaagct tgtgagaatt
240

gggttatttt tcagggtgtt gatcatggtg ttgataaaaa acttggttct gagatgaccc
300

gttttgctag agagttttt gctttgccac cggaaagagaa gctccggttt gacatgtccg
360

gtggtaaaaaa gggtggttcc attgtctcta gtcatctcca aggagaagca gtgaaggatt
420

ggagagagct agtgacatat ttttcataacc caattaaaca aagagattat tcaaggtggc
480

cagacaagcc agaaggatgg aaagaggtaa cagaaaaata cagtgaaaac ctaatgaatt
540

tagcttgcaa actattggaa gttttatcag
570

<210> 235
<211> 608

<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<400> 235
caacaccacc caaaaacgagc ccgtttcctn tcaacatggc accaagccaa actctaagtt
60
atctctcaca acaaaaacact cttgagtcaa gtttcgttag ggaagaagat gagcgtccaa
120
aagttgccta caataacttc agcaacgaga ttccaatcat ttctcttgct ggaattgatg
180
aggtttagatgg tcgtagaaca gagatatgt acaagattgt tgaagcttgt gagaattggg
240
gtatTTTca ggTTGTTGAT catgggtttg atacaaaact tgTTTCTGAG atgacCCGTT
300
ttgcttagaga gTTTTTGCT ttGCCACCGG aagagaagct ccggTTGAC atgtCCGGTG
360
gtaaaaaggg tggTTTcatt gtctctagtc atctccaagg agaagcagtg aaggattgga
420
gagagctagt gacatatttt tcatacccaa ttAAATAAAG agattattca aggtggccag
480
acaAGCCAGA aggatggAAA gaggtAACAG AAAAATACAG tgAAAACCTA atGAATTAG
540
cttgcAAACT attGGAAGTT ttATCAGAAG caatGGGTTT agAAAAAGAA gctctaACAA
600
aagcatgt
608

<210> 236
<211> 602
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (506)..(506)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (536)..(536)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (569)..(569)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (597)..(597)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (599)..(599)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (601)..(601)
<223> Any nucleotide

<400> 236
caaacccaaaa cngagnccgt ttccatnnaa catggcacca agccaaactc taagtttatct
60

ctcacaacaa aaaaccgtcg agtcaagttt cgtagggaa gaagatgagc gtcacaaagt
120

tgccataat aacttcagca acgagattcc aatcatttct cttgctggaa ttgatgaggt
180

tgcgttcgc agaacagaga tatgtaacaa gatttgtgaa gtttgtgaga attgggtat
240

tttcagggtt gttgatcatg gtgttgatac aaagcttgtt tctgagatga ctgcgtttgc
300

tagagagttt tttgctttgc cggcggaga gaagctccgg tttgacatgt ccgggtggtaa
360

aaagggtggc ttcattgtct ctagtcgtct ccaaggagaa gcagtgaaag attggagaga
420

gcttagtgaca tattttcat acccaattaa acaaagagat tattcaaggt ggccagacaa
480

gccagaagga tggaaagaag taacanaaaa atacagtgaa aacctaattga atttancttg
540

caagctattg gaagtttat cacaagcattt gggattacaa aaagaagctg ttacaananc
```

600

nt

602

:

<210> 237
<211> 536
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (1)..(1)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (24)..(24)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (155)..(155)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (271)..(271)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (314)..(314)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (388)..(388)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (395)..(395)
<223> Any nucleotide

<220>

```
<221> misc_feature
<222> (401)..(401)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (499)..(499)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (533)..(533)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (536)..(536)
<223> Any nucleotide

<400> 237
nacccaaaac gagnccgttt cntrnctcaac atggctccta gccaaactct aagttatctc
60
tccccacaaaa cactcttgag tcagttcgt tagggaagaa gatgagcgtc caaaaagtgc
120
ctacaataaac ttcagcaacg agattccaat cattnctctt gctggaattt atgagggtga
180
tggtcgcaga acagagatat gtaacaagat tggtaagct tgtgagaatt ggggtatccc
240
tcaggttgtt gatcatggtg ttgataaaaa ncttgggttct gagatgaccc gttttgctag
300
agagtttttt gctntgccac cggaagagaa gctccgggtt gacatgtccg gtggtaaaaaa
360
gggtggtttc attgtctcta gtcatctnca agganaagca ntgaaggatt ggagagagct
420
agtgacatat ttttcataacc caattaaaca aagagattat tcaagggtggc cagacaagcc
480
agaaggatgg aaagaggtna cagaaaaata cagcgaaaac ctaatgaatt tanctn
536

<210> 238
<211> 572
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (21)..(21)
```

<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(26)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (39)..(39)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (87)..(87)
<223> Any nucleotide

<400> 238
caaaccaaaa cngagccgt nttcnnttn aacatggcna ccagccaaac cctaagttat
60

ctctcacaac aaaagactct tgagtcnagt ttcgtaggg aagaagatga gcgtccaaaa
120

gttgcttaca ataacttcag caacgagatt ccaatcattt ctcttgctgg aattgatgag
180

gttgatggtc gcagaacaga gatatgtAAC aagattgttg aagcttgtga gaattgggg
240

attttcagg ttgttgcata tgggtttgat acaaagcttgg tttctgagat gactcgaaaa
300

gctagagagt ttttgcttt gcccggaa gagaagctcc ggtttgacat gtccgggtgg
360

aaaaaggggtg gtttcattgt ctctagtcattt ctccaaggag aagcagtgaa agattggagg
420

gagcttagtga catattttc atacccaaatt aaacaaagag attattcaag gtggccagac
480

aagccagaag gatggaaaga agtaacagaa aaatacagtgg aaaaacctaattt gaatttagct
540

tgcaagctat tggaaagtttt atcagaagca at
572

<210> 239

<211> 573
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (7)..(7)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(26)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (28)..(29)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(41)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (65)..(65)
<223> Any nucleotide

<400> 239
aacaccnaca cgagnccgtt tcntnntnnna acatggcncc nagccaaact ctaagttatc
60

tctcncaaca aaacactctc gagtcaagtt tcgttaggga agaagatgag cgtccaaaag
120

ttgcctacaa taacttcagc aacgagattc caatcatttc tcttgctgga attgatgagg
180

ttgatggtcg aagaacagag atatgtaaca agattgttga agcttgtgag aattggggta
240

tttttcaggt tggtgatcat ggtgttgata caaaaacttgt ttctgagatg acccgaaaa

300

ctagagagtt ttttgcttg ccaccggaag agaagctccg gtttgacatg tccggtggt
360

aaaagggtgg tttcattgtc tctagtcatac tccaaggaga agcagtgaag gattggagag
420.

agcttagtgac atattttca tacccaatta aacaaagaga ttattcaagg tggccagaca
480

agccagaagg atggaaagag gtaacagaaa aatacagtga aaacctaattg aatttagctt
540

gcaaactatt ggaagttta tcagaagcaa tgg
573

<210> 240

<211> 573

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (8)..(8)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (14)..(14)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (23)..(24)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (26)..(26)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (28)..(28)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (37)..(37)

<223> Any nucleotide

<400> 240

aaccaaanc gagnccgtt ccnnntntnaa catggcncca agccaaaccc taagttatct
60

ctcacaaacaa aagactctt agtcaagttt cgtagggaa gaagatgagc gtccaaaagt
120

265/390

tgcctacaat aacttcagca acgagattcc aatcatttct ctgtgtggaa ttgtatgaggt
180

tgatggtcgc agaacagaga tatgtaccaa gattgtgaa gcttgtgaga attggggtat
240

tttcagggtt gttgatcatg gtgtgtatac aaagcttgaa tctgagatga ctcgtttgc
300

tagagagttt ttgtttgc cgccggaaga gaagctccgg tttgacatgt ccgggtgtaa
360

aaagggtggt ttcattgtct ctagtcatct ccaaggagaa gcagtgaaag attggaggga
420

gctagtgaca tattttcat acccaattaa acaaagagat tattcaaggt ggccagacaa
480

gccagaagga tggaaaagaag taacagaaaa atacagtcaa aacctaataatga atttagctt
540

caagctatttgaagttttat cagaagcaat ggg
573

<210> 241
<211> 584
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (23)..(24)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(37)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<400> 241
aaccaaaaanc gagnccgtnt tcnnntatnaa catggcncn agccaaaccc taagttatct
60

ctcacacaacaa aagactcttg agtcaagttt cgtagggaa gaagatgagc gtccaaaagt
120

tgccctacaat aacttcagca acgagattcc aatcatttct cttgctggaa ttgatgaggt
180

tgatggtcgc agaacagaga tatgtaacaa gattgttcaa gcttgtgaga attgggttat
240

tttcaggtt gttgatcatg gtgttgatac aaagcttgtt tctgagatga ctgcgtttgc
300

tagagagttt tttgctttgc cgccggaaga gaagctccgg tttgacatgt ccgggtggtaa
360

aaagggtgggt ttcattgtct ctagtcatct ccaaggagaa gcagtgaaag attggagaga
420

gcttagtgaca tattttcat acccaattaa acaaagagat tattcaaggt ggccagacaa
480

gccagaagga tggaaagaag taacagaaaa atacagtcaa aacctaattga atttagctg
540

caagctattg gaagttttat cagaagcaat gggattagaa aaag
584

<210> 242
<211> 529
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(15)
<223> Any nucleotides
```

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (27)..(27)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (35)..(35)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (49)..(49)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (103)..(103)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (332)..(333)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (354)..(354)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (368)..(368)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (385)..(385)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (413)..(413)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (425)..(425)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (428)..(428)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (488)..(488)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (515)..(515)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (517)..(517)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (522)..(522)
<223> Any nucleotide

<400> 242
tngatntntc tnnnnacnaa agnctcntca gtnangtttc gttgggaang aagatgagcg
60
tccaaaagtt gcctacaata acttcagcaa cgagattcca atnatttctc ttgctggaat
120
tgatgagggtt gatggtcgca gaacagagat atgtaacaag attgttgaag cttgtgagaa
180
ttgggttatt tttcaggttg ctgatcatgg tggtgataca aagcttgtt ctgagatgac
240
tcgtttgct agagagttt ttgcttgcc gccggaagag aagctccggt ttgacatgtc
300
cggtggtaaa aagggtggtt tcattgtctc tnntcatctc caaggagaag cagngaaaga
360
ttggaganag ctatgtacat atttntcata cccaaataaaa caaagagatt atncaagggtg
420
gtcanacnag ccagaaggat ggaaagaagt aacagaaaaa tacagtgaaa acctaatgaa
```

480

tttacacctngc aagctattgg aagtttata ataancnatg gnattaaga
529

<210> 243
<211> 698
<212> DNA
<213> *Trifolium repens*

```
<220>
<221> misc_feature
<222> (3)..(3)
<223> Any nucleotide
```

```
<220>
<221> misc_feature
<222> (9)..(10)
<223> Any nucleotides
```

```
<220>
<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide
```

```
<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide
```

```
<220>
<221> misc_feature
<222> (685)..(685)
<223> Any nucleotide
```

```
<400> 243  
gttgcggcgtt tttttttttt cttttttttt atatatatat  
60
```

tgtatacaaga cttgtttctg agatgaccccg ttttgctaga gagtttttg ctggccacc
120

ggaagagaag ctccggtttg acatgtccgg tggtaaaaag ggtggtttca ttgtctctag
180

tcatctccaa ggagaagcag tgaaggattg gagagagcta gtgacatatt tttcataccc
240

aattaaacaa agagattatt caaggtggcc agacaagcca gaaggatgga aagaggtaac
300

agaaaaatac agtggaaacc taatgaattt agcttgcaaa ctattggaag ttttatcaga
360

agcaatgggt ttagaaaaag aagctctaac aaaagcatgt gttgatatgg atcaaaaagt
420

tgttataaaat tattacccaa aatgccctga acctgacctc acacttgccc ttaaacgtca
480

270/390

cactgaccct ggcacaat~~ta~~ ctctttgct tcaagatcaa gttggtggtc ttcaagctac
540

caaagataat ggtaagacgt ggattacagt tcaaccagtt gaaggtgctt ttgttgtaa
600

tcttggagac catggtcact atctaagtaa tggacggttc aaaaatgctg accatcaagc
660

agtggtaat tcgaactaca gccgnnttac~~a~~ aatagcaa
698

<210> 244
<211> 579
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (4)..(4)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (20)..(20)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (29)..(29)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (83)..(83)
<223> Any nucleotide

<400> 244
atcnaaaagt tgtgataaa~~n~~ tattaccna aatgccctga acctgac~~c~~tc acacttggcc
60

ttaaacgcca cactgaccct ggnacaat~~ta~~ ctctttgct tcaagatcaa gttggtggtc
120

ttcaagctac caaagataat ggtaagacgt ggattacagt tcaaccagtt gaaggtgctt
180

ttgttgtaa tcttggagac catggtcatt atctaagtaa tggacggttc aaaaatgctg
240

accaccaagc agtggtaat tcgaactaca gccgnttac~~a~~ aatagcaaca tttcaaaatc
300

cagctcccga tgcaactgta tacccttga agattagaga gggtaaaaaa tctgtgttgg
360

aagaaccaat cactttgct gaaatgtata gaaggaagat gaccaaaagac cttgaaattg
420

ctaggatgaa gaagttggct aaggaacaac aacttaggga cttggaggag aacaagacta
480

aatatgaggc caaaccttg aatgagatct ttgcttaatt aattagtctt aattaaata
540

attaataaat tttagactta attacatat aataatttt
579

<210> 245
<211> 601
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<400> 245
gnagcataac ataaaccctg tncccgattn atgtaacaca atctccccctt ttcttattac
60

aagtaaaata ccataacaca ataatatgaa taccataatc ttgaatcata caaacaacct
120

tggatcaaac aaaacaacaa ccatggttga tctagaaaca gaaccaagtt caccatttat
180

tcaatccccca gaacacagac caaaatcctc aataatcatt gctgaaggta tccctctaatt
240

tgatctcaact cctataaact acaaagatga aatcatcacc aacccacttt ccattgaaga
300

cttagtcaaa gaaataggca aagcatgtaa agaatggggt ttctttcaag tgattaatca
360

caaagttcct ttggataaac gtgaaaggat tgaagaatct tcaaagaagt tttttgaact
420

tagttggag gaaaaactta aggtgagaag agatgaagtt aatttgcttg gttattttga
480

agctgagcat acaaaaaatg ttagggactg gaaggaaatt tatgattttta atgtgcaaca
540

accaactttt ataccacctt cgatgacca aagtttcag tttcaatggg aaaatcgatg
600

g
601

<210> 246
<211> 172
<212> PRT
<213> Trifolium repens

<400> 246

Met Asn Thr Ile Ile Leu Asn His Thr Asn Asn Leu Gly Ser Asn Lys
1 5 10 15

Thr Thr Thr Met Val Asp Leu Glu Thr Glu Pro Ser Ser Pro Phe Ile
20 25 30

Gln Ser Pro Glu His Arg Pro Lys Ser Ser Ile Ile Ile Ala Glu Gly
35 40 45

Ile Pro Leu Ile Asp Leu Thr Pro Ile Asn Tyr Lys Asp Glu Ile Ile
50 55 60

Thr Asn Pro Leu Ser Ile Glu Asp Leu Val Lys Glu Ile Gly Lys Ala
65 70 75 80

Cys Lys Glu Trp Gly Phe Phe Gln Val Ile Asn His Lys Val Pro Leu
85 90 95

Asp Lys Arg Glu Arg Ile Glu Glu Ser Ser Lys Lys Phe Phe Glu Leu
100 105 110

Ser Leu Glu Glu Lys Leu Lys Val Arg Arg Asp Glu Val Asn Leu Leu
115 120 125

Gly Tyr Phe Glu Ala Glu His Thr Lys Asn Val Arg Asp Trp Lys Glu
130 135 140

Ile Tyr Asp Phe Asn Val Gln Gln Pro Thr Phe Ile Pro Pro Ser Asp
145 150 155 160

Asp Gln Ser Phe Gln Phe Gln Trp Glu Asn Arg Trp
165 170

<210> 247
<211> 585
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<400> 247
ttacccaaca atnatgtgtg actgatgtta gtgtaccagg aaagatggga gaggtggatc
60

cagctttctt caaatccaga aaataggcca aaactttcca taatccaagg tgaaggaatt
120

cctgtaatca atctctcccc attaattcac cacacagtcc aagactcctc tgccattgaa
180

agcttagtca aagaaaatagg aaatgcttgc aaggaatggg gtttcttcca agtaacaaac
240

catggtgtcc ctctaaatct aaggctcaga ctcgaggaag ctaccaaagt tttcttgca
300

cagagtttgg aggagaagag gaagcttacc gtagatgata acagtttgc tggttatcat
360

gatacagagc acaccaagaa tgtcagagac tggaaagaag ttttgattt tttatccaaa
420

gaccgcactt tgattcctct gaattctgat gaacatgatg atcgagtcac tcaatggact
480

aatccatccc ctcaatatcc tccaaacttc aaagttatTT tggaaagagta tattaaagag
540

atggaaaagc taggcttaa gttgctagag cttatacgTT tgac
585

<210> 248

<211> 187

<212> PRT

<213> Trifolium repens

<400> 248

Met Leu Val Tyr Gln Glu Arg Trp Glu Arg Trp Ile Gln Leu Ser Ser
1 5 10 15

Asn Pro Glu Asn Arg Pro Lys Leu Ser Ile Ile Gln Ala Glu Gly Ile
20 25 30

Pro Val Ile Asn Leu Ser Pro Leu Ile His His Thr Val Gln Asp Ser
35 40 45

Ser Ala Ile Glu Ser Leu Val Lys Glu Ile Gly Asn Ala Cys Lys Glu
50 55 60

Trp Gly Phe Phe Gln Val Thr Asn His Gly Val Pro Leu Asn Leu Arg
65 70 75 80

Leu Arg Leu Glu Glu Ala Thr Lys Val Phe Phe Ala Gln Ser Leu Glu
85 90 95

Glu Lys Arg Lys Leu Thr Val Asp Asp Asn Ser Leu Pro Gly Tyr His
100 105 110

Asp Thr Glu His Thr Lys Asn Val Arg Asp Trp Lys Glu Val Phe Asp
115 120 125

Phe Leu Ser Lys Asp Pro Thr Leu Ile Pro Leu Asn Ser Asp Glu His
 130 135 140

Asp Asp Arg Val Thr Gln Trp Thr Asn Pro Ser Pro Gln Tyr Pro Pro
 145 150 155 160

Asn Phe Lys Val Ile Leu Glu Glu Tyr Ile Lys Glu Met Glu Lys Leu
 165 170 175

Gly Phe Lys Leu Leu Glu Leu Ile Ala Leu Ser
 180 185

<210> 249

<211> 604

<212> DNA

<213> Trifolium repens

<400> 249

gggaatggtg gaggcgaatg tgaccctagg gctgatgaat tagtaatggt agttgagctt
 60

atggcgtag ctggagttt caatatttgtt gattttgttc ctgcggatggaa atggtagat
 120

attcaaggtg tacaaggaaa aatgaagaaa ttacataaaa gatttgatgc atttttaact
 180

agcattatttg aagatcacat gatttccaag agtgagaagc ataatgactt attgagtacg
 240

ttgttatcac taaaagaaaa agttgatgag gatggtgaca aacttaatga tactgagatc
 300

aaagcattac tcttgaacat gttcacagct ggaacagaca catcatcaag cacaacagag
 360

tgggctattg ctgaactaat aaaaaatcca aaactaatga ttctgtttca aaatgagttg
 420

gacactgttg tgggcccaga caagcttgta actgaacaag acttggccca tcttccttac
 480

ttagaggctg taataaagga gacatttcgt ctccatccat caaccctct ttctctccca
 540

cgtgttgcaa caaatagttg tgaaatcctc gactatcaca ttcccaaagg tgcaactctc
 600

ttgg

604

<210> 250

<211> 201

<212> PRT

<213> Trifolium repens

<400> 250

Gly Asn Gly Gly Gly Glu Cys Asp Pro Arg Ala Asp Glu Leu Val Met
 1 5 10 15

Val Val Glu Leu Met Ala Leu Ala Gly Val Phe Asn Ile Gly Asp Phe
20 25 30

Val Pro Ala Leu Glu Trp Leu Asp Ile Gln Gly Val Gln Gly Lys Met
35 40 45

Lys Lys Leu His Lys Arg Phe Asp Ala Phe Leu Thr Ser Ile Ile Glu
50 55 60

Asp His Met Ile Ser Lys Ser Glu Lys His Asn Asp Leu Leu Ser Thr
65 70 75 80

Leu Leu Ser Leu Lys Glu Lys Val Asp Glu Asp Gly Asp Lys Leu Asn
85 90 95

Asp Thr Glu Ile Lys Ala Leu Leu Leu Asn Met Phe Thr Ala Gly Thr
100 105 110

Asp Thr Ser Ser Ser Thr Thr Glu Trp Ala Ile Ala Glu Leu Ile Lys
115 120 125

Asn Pro Lys Leu Met Ile Arg Val Gln Asn Glu Leu Asp Thr Val Val
130 135 140

Gly Arg Asp Lys Leu Val Thr Glu Gln Asp Leu Ala His Leu Pro Tyr
145 150 155 160

Leu Glu Ala Val Ile Lys Glu Thr Phe Arg Leu His Pro Ser Thr Pro
165 170 175

Leu Ser Leu Pro Arg Val Ala Thr Asn Ser Cys Glu Ile Leu Asp Tyr
180 185 190

His Ile Pro Lys Gly Ala Thr Leu Leu
195 200

<210> 251

<211> 581

<212> DNA

<213> Trifolium repens

<400> 251

ggaaatggtg gaggcgaatg tgaccctagg gctgatgaat ttaagtaatg gtagttgagc
60

ttaggcgtt agctggagtt ttcaatattg gtgatttgt tcctgcttg gaatggtag
120

atattcaagg tgtacaagga aaaatgaaga aattacataa aagatttgat gcattttaa
180

ctagcattat tgaagatcac atgatttcca agagtgagaa gcataatgac ttattgagta

240

cgttggttatc actaaaagaa aaagttgatg aggatggta caaacttaat gatactgaga
300

tcaaaggcatt actcttgaac atgttcacag ctggAACAGA cacatcatca agcacaacag
360

agtgggctat tgctgaacta ataaaaaaatc caaaaactaat gattcgtgtt caaaaatgagt
420

tggacactgt tgtggccga gacaagcttg taactgaaca agacttggcc catttccctt
480

acttagaggc tgtaataaaag gagacatttc gtctccatcc atcaaccctt ctttctctcc
540

cacgtgttgc aacaaatagt tgtgaaatcc tcgactatca c
581

<210> 252

<211> 603

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (44)..(44)

<223> Any nucleotide

<400> 252

aatgggtggag gtgaatgtga ccctagggt gatgaattta agtnatggta gttgagctta
60

tggcgtagc tggagtttc aatattggtg attttgtcc tgctttggaa tggtagata
120

ttcaaggtgt acaaggaaaa atgaagaaat tacataaaag atttgatgca ttttaacta
180

gcattattga agatcacatg attccaaga gtgagaagca taatgactta ttgagtacgt
240

tgttatcact aaaagaaaaa gttgatgagg atggtgacaa acttaatgat actgagatca
300

aagcattact cttgaacatg ttcacagctg gaacagacac atcatcaagc acaacagagt
360

gggctattgc tgaactaata aaaaatccaa aactaatgat tcgtgttcaa aatgagttgg
420

acactgttgt gggccgagac aagcttgtaa ctgaacaaga cttggcccat cttccttact
480

tagaggctgt aataaaggag acatttcgtc tccatccatc aacccttctt tctctcccac
540

gtgttgcaac aaatagttgt gaaatcctcg actatcacat tcccaaaggt gcaactctct
600

tgg

603

<210> 253
<211> 621
<212> DNA
<213> *Trifolium repens*

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (44)..(44)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (58)..(58)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (91)..(91)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (104)..(105)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (120)..(120)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (124)..(124)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (566)..(566)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (598)..(598)
<223> Any nucleotide

<400> 253
gnagggaaatt tcaactaaat attgccttta attcttnntn atanatnttt gaatttcntt
60

ctccctaaaa attctatagc taccacatca ncacaacata acannaatta agaaatattn
120

tatntactat tttaagatat ggaagtagta gcagcagcaa tcacaaaaaa caatggcaag
180

attgattcat tttgcttgaa tcatgcta at gctaataaca tgaaagtgaa tggtgctgat
240

ccttgaatt ggggtgtggc tgctgaggca atgaaggaa gtcacttgaa tgaggtgaag
300

cgtatggtgg aggaataccg gaaaccgggt gtccgtctt gtcggcgagac actgacgatt
360

tctcaggtgg ctgccattgc tgcacacgat ggtgcaacgg tggagctatc ggaatctgct
420

agagccggcg ttaaggcgag cagtgactgg gttatggaga gtatgaacaa aggtacagac
480

agttatggtg tcaactacagg gttcggcgct acctcgacc gccgaaccaa acaaggtgg
540

gctttgcaga aagagctcat aaggtnnnn gaatgcagga atatggaa atggAACntg
600

agacaaaagcc acacactacc c
621

<210> 254
<211> 159
<212> PRT
<213> Trifolium repens

<400> 254

Met Glu Val Val Ala Ala Ala Ile Thr Lys Asn Asn Gly Lys Ile Asp
1 5 10 15

Ser Phe Cys Leu Asn His Ala Asn Ala Asn Asn Met Lys Val Asn Gly
20 25 30

Ala Asp Pro Leu Asn Trp Gly Val Ala Ala Glu Ala Met Lys Gly Ser
35 40 45

His Leu Asp Glu Val Lys Arg Met Val Glu Glu Tyr Arg Lys Pro Val
50 55 60

Val Arg Leu Gly Gly Glu Thr Leu Thr Ile Ser Gln Val Ala Ala Ile
65 70 75 80

Ala Ala His Asp Gly Ala Thr Val Glu Leu Ser Glu Ser Ala Arg Ala
85 90 95

Gly Val Lys Ala Ser Ser Asp Trp Val Met Glu Ser Met Asn Lys Gly
100 105 110

Thr Asp Ser Tyr Gly Val Thr Thr Gly Phe Gly Ala Thr Ser His Arg
115 120 125

Arg Thr Lys Gln Gly Gly Ala Leu Gln Lys Glu Leu Ile Arg Phe Glu
130 135 140

Cys Arg Asn Ile Trp Lys Trp Asn Arg Gln Ser His Thr Leu Pro
145 150 155

<210> 255
<211> 582
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(3)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (44)..(44)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (91)..(91)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (104)..(105)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (120)..(120)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (124)..(124)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (154)..(154)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (405)..(405)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (516)..(516)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (549)..(549)
<223> Any nucleotide

<400> 255
gnnggaaatt ncaactaaat attgccttta attcttntn atanatntt gaatttcctt
60

ctccctaaaa attctatacg taccacatca ncacaacata acannaatta agaaatattn
120

tatntactat tttaagatat ggaagtagta gcancagcaa tcacaaaaaa caatggcaag
180

attgattcat tttgcttcaa tcatgcta at gctaataaca tgaaagtcaa tggtgctgat
240

cctttgaatt ggggtgtggc tgctgaggca atgaagggaa qtcacttgaa tgaggtgaag
300

cgtatggtgg aggaataccg gaaaccggtt gtccgtcttg gtggcgagac gctgacgatt
360

tctcaggtgg ctgccattgc tgcacacgat ggtgcaacgg tgganctatc ggaatctgct
420

agagccggcg ttaaggcgag cagtgactgg gttatggaga gcatgaacaa aggtacagac
480

agttatggtg tcactacggg gttcggcgct acctcncacc gccgaaccaa acaaggtgg
540

gctttgcana aagagctcat aagctaattt gcttgtgtca at
582

<210> 256
<211> 621
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (24)..(24)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (44)..(44)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (58)..(58)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (91)..(91)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (104)..(105)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (120)..(120)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (124)..(124)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (131)..(131)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (566)..(566)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (598)..(598)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (605)..(605)
<223> Any nucleotide

<400> 256
gnaggaaatt acaactaaat attnccttta attctttatn atanatnttt gaatttcntt
60

ctccctaaaa attctatagc taccacatca ncacaacata acannaatta agaaatattn
120

tatntactat nttaagatat ggaagtagta gcagcagcaa tcacaaaaaaaa caatggcaag
180

attgattcat tttgcttgaa tcatgctaatt gctaataaca tgaaagtgaa tggtgctgat
240

cctttgaatt ggggtgtggc tgctgaggca atgaaggaa gtcacttgaa tgaggtgaag
300

cgtatggtgg aggaataaccg gaaaccggtt gtccgtcttg gtggcgagac actaaccatt
360

tctcaggtgg ctgccattgc tgcacacgat ggtgcaacgg tggagctatc ggaatctgct
420

agagccggcg ttaaggcaag cagtgactgg gttatggaga gtatgaacaa aggtacccgac
480

agctacggtg tcccaacagg gttcggcgct acctcgacc gccaaccaa acaagggtgg

540

gctttgcaga aagagctcat aaggtnnnn gaatgctgga atatttggaa atggaacntg
600

agtcnnaagcc acacactacc c
621

<210> 257
<211> 600
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (20)..(21)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (33)..(33)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (42)..(42)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (48)..(48)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (57)..(57)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (127)..(128)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (556)..(556)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (592)..(592)
<223> Any nucleotide

<400> 257
tcaagaaaatt acactcttn nttcttnta atntttgttt tnatttcntt ctctctncaa
60

atactatagt taccaaaaca taacaaagta acacttatta ctagctatta tttgttatcaa
120

tttaagnnat ggaagttagta gcagcagcaa tcacaaaaaa caacggaaag attgattcat
180

tttgcttgaa tcatgcta at gctaataaca tgaaagtgaa tggtgctgat cctttgaatt
240

ggggtgtggc tgctgaggca atgaaaggaa gtcacttgga tgaggtgaag tgtatggtg
300

aggagtatcg aaaaccggtt gtccgtcttg gtggcgagac actgacgatt tctcaagtgg
360

ctgccattgc tgcacacgat ggtgcgacgg tggagctatc ggaatctgct agagccggcg
420

ttaaggcgag cagtgactgg gttatggaaa gatatgaacaa aggtactgac agttatggtg
480

tcactacagg gttcggcgct acctcgcacc gccgaaccaa acaaggtggt gctttgcaga
540

aagagctcat aaggtnnnn gaatgcagga atatttggaa atggaaacttg anacaaatcc
600

<210> 258
<211> 693
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (52)..(52)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (60)..(60)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (86)..(86)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (95)..(95)
<223> Any nucleotide

<400> 258
gnagaaaana attntattgt tattatttcc ccccacacaa cggaaaanaat tntattgttn
60

cttatttccc cccacacaac ataacnaata cattnccctc tcctctcatc acaattatta
120

ctttctacac accccccctct caactattat taactaacat aatggaggga attaccaatg
180

gccatgctga agcaactttt tgcgtgacca aaagtgttgg tgatccactc aactggggtg
240

cagccgcgga gtcgttgatg gggagtcatt tggatgaggt gaagcgtatg gtggaggaat
300

accgtaatcc attggtaaaa attggcggcg agacgcttac cattgctcag gtggctggaa
360

ttgcttctca tgatagtggt gtgagggtgg agctgtctga gtccgccagg gccggcgtta
420

aggcgagtag tgattgggtg atggacagca tgaacaatgg gactgatagt tatggtgtta
480

ccacccggtt cggcgccacc tctcaccgga gaaccaagca gggtggtgcc ttgcagaagg
540

agctaattag gttttgaat gctgaaatat ttggcaatgg tacagaatct aactgtacac
600

taccacacac agcaaccaga gctgcaatgc ttgtgagaat caacactctt cttcaagagg
660

aatatttctt gaatggcatt tgtaaatttt tgg
693

<210> 259
<211> 177
<212> PRT
<213> Trifolium repens

<400> 259

Met Glu Gly Ile Thr Asn Gly His Ala Glu Ala Thr Phe Cys Val Thr
1 5 10 15

Lys Ser Val Gly Asp Pro Leu Asn Trp Gly Ala Ala Ala Glu Ser Leu
20 25 30

Met Gly Ser His Leu Asp Glu Val Lys Arg Met Val Glu Glu Tyr Arg
35 40 45

Asn Pro Leu Val Lys Ile Gly Gly Glu Thr Leu Thr Ile Ala Gln Val
50 55 60

Ala Gly Ile Ala Ser His Asp Ser Gly Val Arg Val Glu Leu Ser Glu
65 70 75 80

Ser Ala Arg Ala Gly Val Lys Ala Ser Ser Asp Trp Val Met Asp Ser
85 90 95

Met Asn Asn Gly Thr Asp Ser Tyr Gly Val Thr Thr Gly Phe Gly Ala
100 105 110

Thr Ser His Arg Arg Thr Lys Gln Gly Gly Ala Leu Gln Lys Glu Leu
115 120 125

Ile Arg Phe Leu Asn Ala Gly Ile Phe Gly Asn Gly Thr Glu Ser Asn
130 135 140

Cys Thr Leu Pro His Thr Ala Thr Arg Ala Ala Met Leu Val Arg Ile
145 150 155 160

Asn Thr Leu Leu Gln Glu Glu Tyr Phe Leu Asn Gly Leu Cys Lys Phe
165 170 175

Leu

<210> 260
<211> 592
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>

<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (53)..(53)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (60)..(60)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (77)..(77)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (86)..(87)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (92)..(92)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (96)..(96)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (99)..(99)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (101)..(102)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (105)..(106)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (128)..(128)
<223> Any nucleotide

<220>

<221> misc_feature
<222> (592)..(592)
<223> Any nucleotide

<400> 260
gnaggaaana attntattgt tattatcc ccccacacaa cataacaaat acnattatn
60

ctctcctctc atcacanatt attacnntt cntacnacnc nnctnnccctc tcaactatta
120

ttaactangc ataatggagg gaattaccaa tggccagctg ctttcaaaaa aaaaccaatg
180

gccatgctga aacaactttt tgctgtacca aaagtgttgg tgatccactc aactggggtg
240

cagccgcgga gtcgttgacg gtagtcatt tggatgaggt gaagcgtatg gtggaggagt
300

accgtaatcc gttggtaaaa attggcggcg agacgcttac cattgctcag gtggctggaa
360

ttgcttctca tgatagtggt gtgagggtgg agctgtccga gtccgcaagg gccggcgtta
420

aggcgagtag tgattgggtg atggatagca tgaacaatgg gactgatagt tacggtgtta
480

ccaccggttt tggtgccacc tctcaccgga gaaccaagca gggtggtgcc ttgcagaagg
540

agctaattag gttttgaat gctggaatat ttggcaatgg tacagaatct an
592

<210> 261
<211> 618
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (21)..(22)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (56)..(56)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (91)..(92)
<223> Any nucleotides

<400> 261
gagggaaanaa ttnttattgtt nnttttcct acccacacaa cataacaaat acattntcct
60

ctcctctcat cacaattatt actttctaca nncccccctc tcaagtatta ttaactaaca
120

taatggaggg aattaccaat ggccatgctg aagcaacttt ttgcgtgacc aaaagtgttg
180

gtgatccact caactggggt gcagccgcgg agtcgttcat ggggagtcat ttggatgagg
240

tgaagcgtat ggtggaggaa taccgtatac cattggtaaa aattggcggc gagacgctta
300

ccattgctca ggtggctgga attgcttctc atgatagtgg tgtgagggtg gagctgtctg
360

agtccgcgag ggccggcggt aaggcgagta gtgattgggt gatggacagc atgaacaatg
420

ggactgatag ttatgggttt accaccgggtt tcgggccac ctctcaccgg agaaccaagc
480

aagggtggtgc cttgcagaag gagctaatta ggttttgaa tgctggaata tttggcaatg
540

gtacagaatc taactgtaca ctaccacaca cagcaaccag agctgcaatg cttgtgagaa
600

tcaacactct tcttcaag
618

<210> 262
<211> 654
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (9)..(9)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (14)..(14)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (21)..(21)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(38)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (47)..(47)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (58)..(58)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (60)..(60)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (66)..(66)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (89)..(90)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (167)..(167)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (216)..(216)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (228)..(228)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (245)..(245)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (338)..(338)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (340)..(340)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (364)..(364)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (383)..(383)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (398)..(398)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (410)..(410)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (437)..(437)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (440)..(440)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (565)..(565)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (580)..(580)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (583)..(583)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (601)..(602)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (608)..(608)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (617)..(618)
<223> Any nucleotides

<400> 262
ccttgaatna ttgntttgnc ncacccaaca caacatanac aaatacnatt tcttgctncn
60

ctactngcat cacaattatt actttctann cacccccc tcaactatta ttaactaaca
120

taatggaggg aattactaat ggccatgctg aagcaacttt ttgcgttnacc aaaagtgttg
180

gtgatccact caactgggg gcagccgcgg agtcgntgat ggggagtnat ttggatgagg
240

tgaancgtat ggtggaggaa taccgtaatc cattggtaaa aattggcggc gagacgctta
300

ccattgctca ggtggctgga attgcttctc atgatagnn tgtgagggtg gagctgtctg
360

agtncccgag ggccggcggtt aangcgagta gtgattgnat gatggacagn atgaacaatg
420

ggactgatag ttatggngtn accaccgggtt tcggccac ctctcacccgg agaaccaagc
480

agggtgttgc cttgcaaaag gagctaatta tgttttgaa tgctggaata tttggcaatg
540

gtacagaatc taactgtaca cttcnacaca cagcaaccan agntgcattg ctttggtgca
600

nnatcacnct tcttctnnag gaatatttct tgaatggcct ttgtaaattt ttgg
654

<210> 263
<211> 590
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(21)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (37)..(37)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (45)..(45)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (54)..(54)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (66)..(66)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (66)..(66)
<223>

<220>
<221> misc_feature
<222> (89)..(90)
<223> Any nucleotides

<400> 263
ggaanaatt atnttgtnn nttttcccc ccacacnaca taacnaatac attntcttct
60

cctctnatca caattattac tttctacann ccccccctctc aactattatt aactaacata
120

atggagggaa ttactaatgg ccatgctgaa gcaacttttt gcgtgaccaa aagtgttggt
180

gatccactca actgggggtgc agccgcggag tcgttgatgg ggagtcattt ggatgagggtg
240

aagcgtatgg tggaggaata ccgtaatcca ttggtaaaa ttggcggcga gacgcttacc
300

attgctcagg tggctggaat tgcttctcat gatagtggtg tgagggtgga gctgtctgag
360

tccgccaggg ccggcgtaa ggcgagtagt gattgggtga tggacagcat gaacaatggg
420

actgatagtt atgggtttac caccggtttc ggccgcacct ctcaccggag aaccaagcag
480

ggtgggtgcct tgcagaagga gctaattagg ttttgaatg ctggaatatt tggcaatgg
540

acagaatcta actgtacact accacacacg gcaaccagag ctgcaatgct
590

<210> 264
<211> 616
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (29)..(29)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (54)..(54)
<223> Any nucleotide

<400> 264
ggaaaanaatt atattgttcc ttatttccnc ccacacaaca taacaaatac attntcctct
60

cctctcatca caattattac tttctacacc cccccctctc aactattatt aactaacata
120

atggagggaa ttaccaatgg ccatgctgaa gcaactttt gcgtgaccaa aagtgttggt
180

gatccactca actggggtgc agcccgaggag tcgttcatgg ggagtcatgg gatgaggtg
240

aagcgtatgg tggaggaata ccgtaatcca ttggtaaaaa ttggcggoga gacgcttacc
300

attgctcagg tggctggaat tgcttctcat gatagtgggtg tgagggtgga gctgtctgag
360

tccgccaggg ccggcgtaa ggcgagtagt ggtgggtga tggacagcat gaacaatggg
420

actgatagtt atgggtttac cactggtttc ggccgcacct ctcaccggag aaccaagcag
480

ggtgggtgcct tgcagaagga gctaattagg ttttgaatg ccggaatatt tggcaatgg
540

acagaatcta actgtacact accacacaca gcaaccagag ctgcaatgct tgtgagaatc
600

aacactcttc ttcaag
616

<210> 265
<211> 441
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (28)..(28)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (44)..(44)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (86)..(87)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (354)..(355)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (402)..(402)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (426)..(426)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (430)..(430)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (434)..(434)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (437)..(437)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (440)..(441)
<223> Any nucleotides

<400> 265
gaaanaattn tnttgtnat tatttccncc cacacaacat aacnaataca ttattctctc
60

ctctcatcac aatttattact ttctanncac ctcctctca actattatta actagcataa
120

tggagggaat taccaatggc catgctgaaa caacttttg cgtgaccaaa agtgttggtg
180

atccactcaa ctggggtgca gcccggagt cttgacggg gagtcattt gatgaggtga
240

agcgatgggt ggaggagtac cgtaatccgt tggctaaaat tggcggcgag acgcttacca
300

ttgctcaggt ggcttggatt gcttctcatg atagtggtgt gaggggtggag ctgnncgagt
360

ccgcaagggc cggcgtaag gcgagttactg attgggtgat gnataacatg aacaatggga
420

ctgatnggtn cggngcnacn n
441

<210> 266
<211> 567
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (10)..(10)
<223> Any nucleotide

```
<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (53)..(53)
<223> Any nucleotide

<400> 266
gaaanaattn tnttgccct tatttcccc cacacaacat aacaaataca ttntcctctc
60

ctctcatcac aatttattact ttctacaccc cccctctca actattatta actaacataa
120

tggagggaat taccaatggc catgctgaag caacttttg cgtgacccaaa agtgttggtg
180

atccactcaa ctggggtgca gccgcggagt cggtgatggg gagtcatttg gatgaggta
240

agcgatgggt ggaggaatac cgtaatccat tggtaaaat tggcggcgag acgcttacca
300

ttgctcaggt ggcttggatt gcttctcatg atagttgtgt gagggtggag ctgtctgagt
360

ccgccaggc cggcgtaag gcgagtagtg gttgggtgat ggacagcatg aacaatggga
420

ctgatagtta tgggttacc actggttcg gcccaccc tcaccggaga accaagcagg
480

gtggtgcctt gcagaaggag ctaatttagt ttttgaatgc cgaaatattt ggcaatggta
540

cagaatctaa ctgtacacta ccacacc
567

<210> 267
<211> 532
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (6)..(6)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (8)..(8)
```

<223> Any nucleotide

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (17)..(17)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (35)..(35)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (38)..(39)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (41)..(42)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (48)..(51)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (53)..(53)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (63)..(63)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (72)..(72)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (78)..(78)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (94)..(94)
<223> Any nucleotide

<400> 267
anatananaa tcntatnttc tctcctctan taacnatnnt nnctttcnnn ncncctcct
60

ctnaactatt antaactngc ataatggagg gaantaccaa tggccatgct gaaacaactt
120

tttgcggtgac caaaaagtgtt ggtgatccac tcaactgggg tgcagccgct gagtcgtcga
180

cggggagtca tttggatgag gtgaagcgta tgggtggagga gtaccgtaat cgggtggta
240

aaattggcgg cgagacgctt accattgctc aggtggctgg aattgcttct catgatactg
300

gtgtgagggt ggagctgtcc gagtccgcaa gggccggcgt taaggcgagt agtgattggg
360

tgtatggatag catgaacaat gggactgata gttacggtgt taccaccggg tttggtgcca
420

cctctcacccg gagaaccaag cagggtggtg cttgcagaa ggagctaatt aggttttga
480

atgctggaat atttggcaat ggtacagaat ctaactttac actaccacac ac
532

<210> 268
<211> 579
<212> DNA
<213> Trifolium repens

<400> 268
aacaagatcg ttatgcctta gaacttcacc tcaatggctt ggtcctttga ttgaagtgtat
60

aagatttca accaaatcaa ttgaaagaga aattaactcg gtcaacgaca accctttgat
120

cgatgtttca aggaacaagg ccattcatgg tggtaacttt caaggaacac ctattggagt
180

ttcaatggat aacacacggt tagctcttgc ttcaattgggt aaactcatgt ttgctcaatt
240

ctctgaactt gttaatgatt tttacaacaa cgggttgccc tcaaatctta ctgcttagtag
300

gaacccgagc ttggactatg gttcaaggg atcggaaatt gccatggctt cgtattgttc
360

cgagttacaa tatcttgcta atcctgtcac cacccatgtc caaagtgccg agcaacacaa
420

ccaagatgtt aactctttgg gtttggatcc atctagaaaa acaaatgaag ctattgagat

480

tctcaagctc atgtcttcca ctttcttgat tgcattatgt caagcaatcg acttaaggca
540

cttggaggaa aatctcagga acaccgtcaa gaacacggg
579

<210> 269
<211> 192
<212> PRT
<213> Trifolium repens

<400> 269

Thr Arg Ser Leu Cys Leu Arg Thr Ser Pro Gln Trp Leu Gly Pro Leu
1 5 10 15

Ile Glu Val Ile Arg Phe Ser Thr Lys Ser Ile Glu Arg Glu Ile Asn
20 25 30

Ser Val Asn Asp Asn Pro Leu Ile Asp Val Ser Arg Asn Lys Ala Ile
35 40 45

His Gly Gly Asn Phe Gln Gly Thr Pro Ile Gly Val Ser Met Asp Asn
50 55 60

Thr Arg Leu Ala Leu Ala Ser Ile Gly Lys Leu Met Phe Ala Gln Phe
65 70 75 80

Ser Glu Leu Val Asn Asp Phe Tyr Asn Asn Gly Leu Pro Ser Asn Leu
85 90 95

Thr Ala Ser Arg Asn Pro Ser Leu Asp Tyr Gly Phe Lys Gly Ser Glu
100 105 110

Ile Ala Met Ala Ser Tyr Cys Ser Glu Leu Gln Tyr Leu Ala Asn Pro
115 120 125

Val Thr Thr His Val Gln Ser Ala Glu Gln His Asn Gln Asp Val Asn
130 135 140

Ser Leu Gly Leu Ile Ser Ser Arg Lys Thr Asn Glu Ala Ile Glu Ile
145 150 155 160

Leu Lys Leu Met Ser Ser Thr Phe Leu Ile Ala Leu Cys Gln Ala Ile
165 170 175

Asp Leu Arg His Leu Glu Glu Asn Leu Arg Asn Thr Val Lys Asn Thr
180 185 190

<210> 270
<211> 591

<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (8)..(8)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (41)..(41)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (66)..(66)
<223> Any nucleotide

<400> 270
ggtaatnca gcttnggaga tctagtcccc ctttcttact ntgctggttt actaactgga
60

agaccaatt ctaaagctca tgggcctaca ggagaagtac ttaatgcaaa agaagcttt
120

caattggctg gaatcaatac cgagttcttt gaattacaac caaaaagaagg tcttgactt
180

gttaatggaa ctgctgttgg ttctggttt gcttcttattg ttcttttga ggctaacata
240

ttggcggtgt tgtctgaagt tctatggca attttcgctg aagttatgca agggaaagccc
300

gaatttactg atcatttgac acataagttg aagcaccacc ctggtaaat tgaggctgct
360

gctatttatgg aacacatttt ggatggaggt gcttatgtta aagacgcgaa gaagttgcat
420

gagatggacc ctttacagaa gccaaagcaa gatagatatg cacttagaac ttcaccacaa
480

tggcttggtc ctttgattga agtgattaga ttttcaacca agtcaattga gagagagatc
540

aactctgtca atgacaaccc tttgattgtat gtttcgagaa acaaggcttt g
591

<210> 271
<211> 197
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE

<222> (3)..(3)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (22)..(22)
<223> Any amino acid

<400> 271

Gly Gln Xaa Ser Xaa Gly Asp Leu Val Pro Leu Ser Tyr Xaa Ala Gly
1 5 10 15

Leu Leu Thr Gly Arg Xaa Asn Ser Lys Ala His Gly Pro Thr Gly Glu
20 25 30

Val Leu Asn Ala Lys Glu Ala Phe Gln Leu Ala Gly Ile Asn Thr Glu
35 40 45

Phe Phe Glu Leu Gln Pro Lys Glu Gly Leu Ala Leu Val Asn Gly Thr
50 55 60

Ala Val Gly Ser Gly Leu Ala Ser Ile Val Leu Phe Glu Ala Asn Ile
65 70 75 80

Leu Ala Val Leu Ser Glu Val Leu Ser Ala Ile Phe Ala Glu Val Met
85 90 95

Gln Gly Lys Pro Glu Phe Thr Asp His Leu Thr His Lys Leu Lys His
100 105 110

His Pro Gly Gln Ile Glu Ala Ala Ala Ile Met Glu His Ile Leu Asp
115 120 125

Gly Ser Ala Tyr Val Lys Asp Ala Lys Lys Leu His Glu Met Asp Pro
130 135 140

Leu Gln Lys Pro Lys Gln Asp Arg Tyr Ala Leu Arg Thr Ser Pro Gln
145 150 155 160

Trp Leu Gly Pro Leu Ile Glu Val Ile Arg Phe Ser Thr Lys Ser Ile
165 170 175

Glu Arg Glu Ile Asn Ser Val Asn Asp Asn Pro Leu Ile Asp Val Ser
180 185 190

Arg Asn Lys Ala Leu
195

<210> 272
<211> 592
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(3)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (11)..(11)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (18)..(18)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (30)..(30)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(37)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (508)..(508)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (579)..(579)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (585)..(585)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (592)..(592)

<223> Any nucleotide

<400> 272

gnnggaaatt ncaactcnat tntttctttn tataatnttt gaatttcctt ctctctcaaa
60

ttctatagct actctaccac atcacacacaac ataacaaaatt aagaaatatt cattactata
120

ctattaagat atggaagtag tagcagcgc aatcacaaaa aacaacggca agattgattc
180

attttgcttg aatcatgcta atgctaataa catgaaaatgt aatgatgctg atcccttgaa
240

ttggggtgtg gctgctgagg caatgaaggg aagtcaattt gatgaggtga aacgtatgg
300

ggaggaggta cggaaaggccga ttgtccgtct tggggcgag acgctgacga tttctcaggt
360

ggctgccatt gctgcacacg atggtgcgat gggtgagctg tcggaatctg ctagagccgg
420

cgttaaggca agcagtgatt gggttatggg gagttatggaa aaaggtactg acagttatgg
480

tgtcaccaca gggttcggcg ctacctcnca ccggccgaacc aaacaagggtg gtgctttaca
540

gaaagggctc ataagggttt tgaatgctgg aatatttgna aatgnaactg an
592

<210> 273

<211> 154

<212> PRT

<213> Trifolium repens

<220>

<221> MISC_FEATURE

<222> (126)..(126)

<223> Any amino acid

<220>

<221> MISC_FEATURE

<222> (150)..(150)

<223> Any amino acid

<220>

<221> MISC_FEATURE

<222> (152)..(152)

<223> Any amino acid

<220>

<221> MISC_FEATURE

<222> (154)..(154)
<223> Any amino acid

<400> 273

Met Glu Val Val Ala Ala Ala Ile Thr Lys Asn Asn Gly Lys Ile Asp
1 5 10 15

Ser Phe Cys Leu Asn His Ala Asn Ala Asn Asn Met Lys Val Asn Asp
20 25 30

Ala Asp Pro Leu Asn Trp Gly Val Ala Ala Glu Ala Met Lys Gly Ser
35 40 45

His Leu Asp Glu Val Lys Arg Met Val Glu Glu Tyr Arg Lys Pro Ile
50 55 60

Val Arg Leu Gly Gly Glu Thr Leu Thr Ile Ser Gln Val Ala Ala Ile
65 70 75 80

Ala Ala His Asp Gly Ala Met Val Glu Leu Ser Glu Ser Ala Arg Ala
85 90 95

Gly Val Lys Ala Ser Ser Asp Trp Val Met Glu Ser Met Asn Lys Gly
100 105 110

Thr Asp Ser Tyr Gly Val Thr Thr Gly Phe Gly Ala Thr Xaa His Arg
115 120 125

Arg Thr Lys Gln Gly Gly Ala Leu Gln Lys Gly Leu Ile Arg Phe Leu
130 135 140

Asn Ala Gly Ile Phe Xaa Asn Xaa Thr Xaa
145 150

<210> 274
<211> 566
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (164)..(165)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (168)..(168)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (186)..(186)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (239)..(239)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (259)..(259)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (295)..(296)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (301)..(301)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (384)..(384)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (435)..(435)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (469)..(469)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (498)..(499)

<223> Any nucleotides

<220>
<221> misc_feature
<222> (511)..(511)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (517)..(517)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (522)..(522)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (529)..(530)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (545)..(545)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (553)..(553)
<223> Any nucleotide

<400> 274
cnattgttag tngttccnc ccacccacat aacaataca taattctctc ctctgatcac
60

aattattact ttactacacc ctctctcaa ctattattaa ctagcataat ggagggatt
120

accaatggcc atgctgaaac aacttttagc gtgacccaaa gtgnngnng tccactcaac
180

tggcgngcag ccgcggagtc gtcgacgggg agtcatttgg atgaggtgaa gcgtatggng
240

gaggagtacc gtaatccgnt ggtaaaatt ggcggcgaga cgcttaccat tgctnnggta
300

nctggaaattg cttctcatga tagtggagtg agggtgagc tgtccgagtt cgcaagggcc
360

ggcgtaagg cgagtagtga ttgnngtcatg gatagcatga acaatggac tgatagttac
420

ggtgttacca ccgcntttgg tgccacctgt caccggagaa ccaagccang gtgggcctt
480

gcagaaggag ctaaattnng gtgtttgaa ngctggnaat antttggcnn tggtcagaa
540

atctnaactt gtncacttac cacacc
566

<210> 275
<211> 152
<212> PRT
<213> Trifolium repens

<220>
<221> MISC_FEATURE
<222> (19)..(20)
<223> Any amino acids

<220>
<221> MISC_FEATURE
<222> (26)..(26)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (44)..(44)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (51)..(51)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (63)..(63)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (65)..(65)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (92)..(92)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (109)..(109)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (121)..(121)
<223> Any amino acid

<220>
<221> MISC_FEATURE

<222> (130)..(131)
<223> Any amino acids

<220>
<221> MISC_FEATURE
<222> (135)..(135)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (137)..(138)
<223> Any amino acids

<220>
<221> MISC_FEATURE
<222> (141)..(141)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (146)..(146)
<223> Any amino acid

<220>
<221> MISC_FEATURE
<222> (149)..(149)
<223> Any amino acid

<400> 275

Met Glu Gly Ile Thr Asn Gly His Ala Glu Thr Thr Phe Ser Val Thr
1 5 10 15

Lys Ser Xaa Xaa Asp Pro Leu Asn Trp Xaa Ala Ala Ala Glu Ser Ser
20 25 30

Thr Gly Ser His Leu Asp Glu Val Lys Arg Met Xaa Glu Glu Tyr Arg
35 40 45

Asn Pro Xaa Val Lys Ile Gly Gly Glu Thr Leu Thr Ile Ala Xaa Val
50 55 60

Xaa Gly Ile Ala Ser His Asp Ser Gly Val Arg Val Glu Leu Ser Glu
65 70 75 80

Phe Ala Arg Ala Gly Val Lys Ala Ser Ser Asp Xaa Val Met Asp Ser
85 90 95

Met Asn Asn Gly Thr Asp Ser Tyr Gly Val Thr Thr Xaa Phe Gly Ala
100 105 110

Thr Cys His Arg Arg Thr Lys Pro Xaa Trp Cys Leu Ala Glu Gly Ala
115 120 125

Lys Xaa Xaa Cys Phe Glu Xaa Trp .Xaa Xaa Phe Gly Xaa Gly Ser Glu
130 135 140

Ile Xaa Thr Cys Xaa Leu Thr Thr
145 150

<210> 276
<211> 188
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (12)..(12)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (26)..(26)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (34)..(34)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (43)..(43)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (73)..(73)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (165)..(165)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (168)..(168)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (172)..(173)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (175)..(175)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (178)..(179)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (186)..(186)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (188)..(188)
<223> Any nucleotide

<400> 276
cnattgttag tngtttccnc ccacccnacat aacnaatacn tanttctctc ctctgatcac
60

aattattact tttnctacacc ctccctctcaa ctattattaa ctagcataat ggagggaatt
120

accaaatggcc atgctgaaac aactttttgc gtgacccaaaa gtgtnggnnga tnnantgnnc
180

tgtcgngn
188

<210> 277
<211> 541
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (139)..(139)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (214) .. (214)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (234) .. (234)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (270) .. (271)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (276) .. (276)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (359) .. (359)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (410) .. (410)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (444) .. (444)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (473) .. (474)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (486) .. (486)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (492) .. (492)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (497) .. (497)
<223> Any nucleotide

<220>
<221> misc_feature

<222> (504)..(505)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (520)..(520)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (528)..(528)
<223> Any nucleotide

<400> 277
cccatataaca atacattatt ctctcctctg atcacaatta ttactttact acaccctcct
60

ctcaactatt attaacttagc ataatggagg gaattaccaa tggccatgct gaaacaactt
120

ttatcggtac caaaaagtgt ggtgatccac tcaactgggg tgcagccgctg gagtcgtcga
180

cggggagtca tttggatgag gtgaagcgta tggnggagga gtaccgtaat ccgntggta
240

aaattggcgg cgagacgctt accattgctn nggtanctgg aattgcttct catgatagtg
300

gagtgagggt ggagctgtcc gagttcgcaa gggccggcgt taaggcgagt agtgattgng
360

tgtatggatag catgaacaat gggactgata gttacggtgt taccaccgcn tttggtgcca
420

cctgtcaccg gagaaccaag ccanggtgg gccttgcaga aggagctaaa ttnnggtgtt
480

ttgaangctg gnaatanttt ggcnnntgggtt cagaaatctn aacttgnca cttaccacac
540

C
541

<210> 278
<211> 1185
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (19)..(19)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (35)..(35)
<223> Any nucleotide

<220>

<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (444)..(444)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (482)..(483)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (485)..(485)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (552)..(552)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (596)..(596)
<223> Any nucleotide

<400> 278
gtaagagttg agaaaaaaana ccaataaaagt aaacnctatn tagaaaagaga gtcaaaaatg
60

gctgaaggaa aaggaagggt ttgtgttact ggaggaacag gttttcttgg ttcattggatc
120

atcaagagtc ttcttgaaaaa tggatactct gttaataccca ctattagagc tgatccagaa
180

cgttaagaggg atgtaagctt cctaacaat ctaccggcg catccgaaag gctacatttc
240

ttcaacgccc atcttagacga cccagagagt ttcaacgaaag caattgaagg ttgtgtcggg
300

atattccaca ccgcttccacc aatcgatttc gccgtgagtg agccagaaga aataagtgaca
360

aaaagaacag tggatggagc attaggaatt ttaaaagcat gtgtgaattc aaagacagtg
420

aagagattta tttacacttc aagnggttct gctgtttcat tcaatggaaa aaacaaagat
480

gnntnggatg agagtgattg gagtgatgtt gatttgctta gaagtgttaa accatttggt
540

tggagttatg gngtgttcaa gactttggct gagaaagcag tgcttgaatt tggtnacaa
600

aatgggattg atgttggta cttgattctt ccttttattg ttggagggtt tgggttgc
660

aagtttcctg attctgttga gaaagctctt gttttggta taggcaaaaa ggaacaaatt
720

ggtattataa gtttccacat ggtacatgtt gatgtatgtt ctagagcaca tatcttatcta
780

cttggagaatc ctgttccagg aggttagatat aattgttcac cattcttgtt atctattgaa
840

gaaatgtcac agcttctctc agccaaatata ccagaatatac aaataactatac agtagatgag
900

ttgaaggaaa ttaaaggggc aagattgcc aatttgaact cgaagaagct cgtggacgct
960

ggtttgagt ttaagtatac tgtcgatgtat atgttcgatg atgcgattca atgctgcaag
1020

aaaaaaaggct atctctaaggc atgtatgtt aattccatg aagttgagaa aacaataatg
1080

tgcctaaat caatgatggc taatgagatg tacaagttt tgcattaagt tatttgtgat
1140

caatcaaata atgaaataat ctgttcattt ttccgaaaaaaa aaaaa
1185

<210> 279

<211> 326

<212> PRT

<213> Trifolium repens

<220>

<221> MISC_FEATURE

<222> (129)..(129)

<223> Any amino acid

<220>

<221> MISC_FEATURE

<222> (142)..(143)

<223> Any amino acids

<220>

<221> MISC_FEATURE

<222> (165)..(165)

<223> Any amino acid

<220>

<221> MISC_FEATURE

<222> (180)..(180)

<223> Any amino acid

<400> 279

Met Ala Glu Gly Lys Gly Arg Val Cys Val Thr Gly Gly Thr Gly Phe
1 5 10 15

Leu Gly Ser Trp Ile Ile Lys Ser Leu Leu Glu Asn Gly Tyr Ser Val
20 25 30

Asn Thr Thr Ile Arg Ala Asp Pro Glu Arg Lys Arg Asp Val Ser Phe
35 40 45

Leu Thr Asn Leu Pro Gly Ala Ser Glu Arg Leu His Phe Phe Asn Ala
50 55 60

Asp Leu Asp Asp Pro Glu Ser Phe Asn Glu Ala Ile Glu Gly Cys Val
65 70 75 80

Gly Ile Phe His Thr Ala Ser Pro Ile Asp Phe Ala Val Ser Glu Pro
85 90 95

Glu Glu Ile Val Thr Lys Arg Thr Val Asp Gly Ala Leu Gly Ile Leu
100 105 110

Lys Ala Cys Val Asn Ser Lys Thr Val Lys Arg Phe Ile Tyr Thr Ser
115 120 125

Xaa Gly Ser Ala Val Ser Phe Asn Gly Lys Asn Lys Asp Xaa Xaa Asp
130 135 140

Glu Ser Asp Trp Ser Asp Val Asp Leu Leu Arg Ser Val Lys Pro Phe
145 150 155 160

Gly Trp Ser Tyr Xaa Val Phe Lys Thr Leu Ala Glu Lys Ala Val Leu
165 170 175

Glu Phe Gly Xaa Gln Asn Gly Ile Asp Val Val Thr Leu Ile Leu Pro
180 185 190

Phe Ile Val Gly Gly Phe Val Cys Pro Lys Leu Pro Asp Ser Val Glu
195 200 205

Lys Ala Leu Val Leu Val Leu Gly Lys Lys Glu Gln Ile Gly Ile Ile
210 215 220

Ser Phe His Met Val His Val Asp Asp Val Ala Arg Ala His Ile Tyr
225 230 235 240

Leu Leu Glu Asn Pro Val Pro Gly Gly Arg Tyr Asn Cys Ser Pro Phe
245 250 255

Phe Val Ser Ile Glu Glu Met Ser Gln Leu Leu Ser Ala Lys Tyr Pro
260 265 270

Glu Tyr Gln Ile Leu Ser Val Asp Glu Leu Lys Glu Ile Lys Gly Ala
275 280 285

Arg Leu Pro Asp Leu Asn Ser Lys Lys Leu Val Asp Ala Gly Phe Glu
290 295 300

Phe Lys Tyr Ser Val Asp Asp Met Phe Asp Asp Ala Ile Gln Cys Cys
305 310 315 320

Lys Glu Lys Gly Tyr Leu
325

<210> 280
<211> 493
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (22)..(22)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (35)..(35)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (40)..(40)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (444)..(444)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (467)..(467)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (473)..(473)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (482)..(483)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (485)..(487)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (492)..(492)
<223> Any nucleotide

<400> 280
gtagtagttg agaaaaaaata cnaataaaagt aaacnctatn tagaaagaga gtcaaaaatg
60

gctgaaggaa aaggaagggt ttgtgttact ggaggaacag gttttcttgg ttcatggatc
120

atcaagagtc ttcttgaaaa tggatactct gttataccca ctattagagc tgatccagaa
180

cgttaagaggg atgtaagctt cctaacaat ctaccggcg catccgaaag gctacattc
240

ttcaacgccc atctagacga cccagagagt ttcaacgaag caattgaagg ttgtgtcggg
300

atattccaca ccgcattcacc aatcgatttc gccgtgagtg agccagaaga aatagtgaca
360

aaaagaacag tggatggagc attaggaatt ttaaaagcat gtgtgaattc aaagacagtg
420

aagagattta tttacacttc aagnngttct gctgtttcat tcaatgnaaa aancaaagat
480

gnntnnnnatg ana
493

<210> 281
<211> 601
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (16)..(17)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (32)..(32)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (37)..(37)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (50)..(51)
<223> Any nucleotides

<220>

<221> misc_feature
<222> (552)..(552)
<223> Any nucleotide

<400> 281
agagttgaga aaaaanncca ataaagtaaa cnctatntag aaagagagtn naaaatggct
60

gaaggaaaaag gaagggtttg tttactgga ggaacaggtt ttcttggttc atggatcatc
120

aagagtcttc ttgaaaatgg atactctgtt aataccacta tttagagctga tccagaacgt
180

aagagggatg taagcttcct aacaaatcta cccggcgcat ccgaaaggct acatttcttc
240

aacccgcata tagacgaccc agagagttc aacgaagcaa ttgaagggtt tgcggata
300

ttccacaccc cttcaccaat cgatttcgcc gtgagtgagc cagaagaaat agtacaaaaa
360

agaacagtgg atggaggcatt aggaatttta aaagcatgtg tgaattcaaa gacagtgaag
420

agatttattt acacttcaag tggttctgct gtttcatca atggaaaaaaa caaagatgtt
480

ttggatgaga gtgattggag tggatgttgc ttgcttagaa gtgttaaacc atttgggtgg
540

agttatggtg tnttcaagac tttggctgag aaagcagtgc ttgaatttgg tcaacaaaat
600

g
601

<210> 282
<211> 613
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (2)..(2)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (45)..(46)
<223> Any nucleotides

<400> 282
gntgtttaa gactttagct gagaaagcag tgcttgaatt tggtnnacaa aatgggattg
60

atgttggtaac tttgattttt ctttttattt ttggaggttt tgtttgcct aagcttcctg
120

attctgttga gaaagctttt gttttggtaac taggcaaaaaa ggaacaaatt ggtattataa
180

gtttccacat ggtacatgtg gatgatgtgg ctagagcaca tatcttatcta cttgagaatc
240

ctgttccagg aggtagatat aattgttcac cattcttgt atctattgaa gaaatgtcac
300

agctctttc agccaaatat ccagaatatc aaatactatc tgttagatgag ttgaaggaaa
360

ttaaaggggc aagggtgcc aatttgaact cgaagaagct cgtggacgct ggtttgagt
420

ttaagtatacg tgtcgatgat atgttcgatg atgcgattca atgctgcaag gaaaaaggct
480

atctctaagc atgtgtttga aaattccatg aagttgagaa aacaatactg tgctaaaat
540

caatgatggc taatgagatg tacaagttt tgcattaagt tatttgtgat caatcaaata
600

atgaaataat ctg
613

<210> 283

<211> 602

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (8)..(8)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (20)..(20)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (37)..(37)

<223> Any nucleotide

<400> 283

agaccttngc tgagaaagcn gtgcttgaat ttggtnaca aaatggatt gatgttgta
60

cttgattct tcctttatt gttggagggtt ttgttgtcc taagcttctt gattctgttg
120

agaaaagctct tgttttggta ctaggcaaaa aggaacaaat tggtattata agttccaca
180

tggtacatgt ggatgatgtg gctagagcac atatctatct acttgagaat cctgttccag
240

gaggtagata taattgttca ccattcttg tatctattga agaaatgtca cagcttctt
300

cagccaaata tccagaatat caaatactat ctgttagatga gttgaaggaa attaaagggg

360

caagggtgcc agatttgaac tcgaagaagc tcgtggacgc tggtttgag tttaagtata
420

gtgtcgatga tatgttcgat gatgcgattc aatgctgcaa ggaaaaaggc tatctctaag
480

catgtgtttg aaaattccat gaagttgaga aaacaatact gtgcctaaaa tcaatgatgg
540

ctaatgagat gtacaaggaaa atgcattaag ttatttgtga tcaatcaaataat aatgaaataa
600

tc

602

<210> 284
<211> 575
<212> DNA
<213> Trifolium repens

<220>
<221> misc_feature
<222> (1)..(2)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (13)..(13)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (15)..(15)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (56)..(56)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (575)..(575)
<223> Any nucleotide

<400> 284
nnttgaattt ggncnacaaa atgggattga tgttgttact ttgattcttc cttttnttgt
60

tggaggtttt gtttgtccca agttcctga ttctgtttag aaagctcttg ttttgttact
120

aggcaaaaag gaacaaattg gtattataag ttccacatg gtacatgttag atgatgtggc
180

tagagcacat atctatctac ttgagaatcc tggccagga ggttagatata attgttcacc
240

attctttgt a tctattgaag aaatgtcaca gtttctctca gccaaatatac cagaatatca
300

aatactatca gtagatgagt tgaaggaaat taaaggtgca agattgccag atttgaactc
360

gaagaagctc gtggacgctg gtttgagtt taagtatagt gtcgatgata tgtttgatga
420

tgcgattcaa tgctgcaagg aaaaaggcta tctctaagca tgtatggaa aattccatga
480

agttgagaaa acaataatgt gcctaaaatc aatgatggct aatgagatgt acaagtttat
540

gcattaagtt atttgtgatc aatcaaataa tgaan
575

<210> 285

<211> 604

<212> DNA

<213> Trifolium repens

<220>

<221> misc_feature

<222> (1)..(2)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (14)..(15)

<223> Any nucleotides

<220>

<221> misc_feature

<222> (56)..(56)

<223> Any nucleotide

<400> 285

nnttgaattt ggtnnacaaa atgggattga tgggttact ttgattcttc cttttnttgt
60

tggaggtttt gtttgcucca agttccctga ttctgtttag aaagctcttg ttttggtaact
120

aggcaaaaag gaacaaattg gtattataag tttccacatg gtacatgttag atgatgtggc
180

tagagcacat atctatctac ttgagaatcc tggccatggaa ggttagatata attgttccacc
240

attctttgt a tctattgaag aaatgtcaca gtttctctca gccaaatatac cagaatatca
300

aatactatca gtagatgagt tgaaggaaat taaaggtgca agattgccag atttgaactc
360

gaagaagctc gtggacgctg gtttgagtt taagtatagt gtcgatgata tgtttgatga
420

tgcgattcaa tgctgcaagg aaaaaggcta tctctaagca tgtatggaa aattccatga
480

agttgagaaa acaataatgt gcctaaaatc aatgatggct aatgagatgt acaagtttat
540

gcattaagtt atttgtgatc aatcaaataa taaaataatc tgttcatttt tccgaaaaaa
600

aaaaa
604

<210> 286

<211> 695

<212> DNA

<213> *Lolium perenne*

<400> 286

gtsywttcga gtttgagaga atggcttcca gggcaagggtg tgggttactg gggcctctgg
60

ctttgttgct tcttggcttg tcaaaaagact actcgagtcc gggtataatg ttcttagggac
120

agtcagagac ccaggcaatc agaagaaggt agcacacctc tggacttag caggggccaa
180

ggaaagggtg gagcttgtca aagctgacct cttggaagaa gggagcttcg atgatgctgt
240

gatggcctgt gagggtgtct tccacactgc atcacctatc atcaccaaat ctgataccaa
300

ggaagaaatg cttgattctg caattaacgg cactctaaac gtgctgagat cgtcaagaa
360

gaatcccttt ctcaaaaggg ttgttctcac gtcatcatcg tcaaccgtga ggctgaggaa
420

tgaagctgaa ttcccaccca acgtgttgct ggtatgaaaca tcatggagct ccgtggagtt
480

ctgtgaaagt atccaggtat ggtatgggtg cgcgaagatc cttgctgaga aatcagcttg
540

ggagttcgcc aaggagaaca acatcgacct agtggctgtt cttccaacgt tcgtgattgg
600

acctaatactc tcgtctgaat taggacccac tgtttttagat gtccttggct tatttaaagg
660

agagacagag aagttcacca tgtttkggaa ggatg
695

<210> 287

<211> 231

<212> PRT

<213> *Lolium perenne*

<400> 287

Val Phe Ser Ser Leu Arg Glu Trp Leu Pro Gly Gln Val Cys Val Thr
1 5 10 15

Gly Ala Ser Gly Phe Val Ala Ser Trp Leu Val Lys Arg Leu Leu Glu

20

25

30

Ser Gly Tyr Asn Val Leu Gly Thr Val Arg Asp Pro Gly Asn Gln Lys
35 40 45

Lys Val Ala His Leu Trp Asn Leu Ala Gly Ala Lys Glu Arg Leu Glu
50 55 60

Leu Val Lys Ala Asp Leu Leu Glu Glu Gly Ser Phe Asp Asp Ala Val
65 70 75 80

Met Ala Cys Glu Gly Val Phe His Thr Ala Ser Pro Ile Ile Thr Lys
85 90 95

Ser Asp Thr Lys Glu Glu Met Leu Asp Ser Ala Ile Asn Gly Thr Leu
100 105 110

Asn Val Leu Arg Ser Cys Lys Lys Asn Pro Phe Leu Lys Arg Val Val
115 120 125

Leu Thr Ser Ser Ser Thr Val Arg Leu Arg Asp Glu Ala Glu Phe
130 135 140

Pro Pro Asn Val Leu Leu Asp Glu Thr Ser Trp Ser Ser Val Glu Phe
145 150 155 160

Cys Glu Ser Ile Gln Val Trp Tyr Gly Val Ala Lys Ile Leu Ala Glu
165 170 175

Lys Ser Ala Trp Glu Phe Ala Lys Glu Asn Asn Ile Asp Leu Val Ala
180 185 190

Val Leu Pro Thr Phe Val Ile Gly Pro Asn Leu Ser Ser Glu Leu Gly
195 200 205

Pro Thr Val Leu Asp Val Leu Gly Leu Phe Lys Gly Glu Thr Glu Lys
210 215 220

Phe Thr Met Phe Gly Lys Asp
225 230

<210> 288

<211> 667

<212> DNA

<213> Lolium perenne

<220>

<221> misc_feature

<222> (19)..(19)

<223> Any nucleotide

<400> 288
gtttgagaga atggcttcna gggcaggtgt gtgttactgg ggcctctggc ttttgtgctt
60
cttggcttgtt caaaaagacta ctcgagtccg gttataatgt tctagggaca gtcagagacc
120
caggcaatca gaagaaggta gcacacctct ggaacttagc agggggccaag gaaagggttgg
180
agcttgtcaa agctgacctc ttggaagaag ggagcttcga tgatgctgtg atggcctgtg
240
agggtgtctt ccacactgca tcaccttatca tcaccaaatc tgataccaag gaagaaatgc
300
ttgattctgc aattaacggc actctaaacg tgctgagatc gtgcaagaag aatccttttc
360
tcaaaaagggt ttttctcacg tcatcatcgt caaccgtgag gctgagggat gaagctgaat
420
tcccacccaa cgtgttgctg gatgaaacat catggagctc cgtggagttc tgtgaaagta
480
tccaggtatg gtatggtgtc gcgaagatcc ttgctgagaa atcagcttgg gagttcgcca
540
aggagaacaa catcgaccta gtggctgttc ttccaacgtt cgtgattgga cctaatctct
600
cgtctgaatt aggacccact gtttagatg tccttggctt atttaagga gagacagaga
660
agttcac
667

<210> 289
<211> 688
<212> DNA
<213> *Lolium perenne*

<220>
<221> misc_feature
<222> (23)..(23)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (651)..(651)
<223> Any nucleotide

<400> 289
tcgagttga gagaatggct tcnagggcag gtgtgttta ctggggcctc tggctttgtt
60
gcttcttggc ttgtcaaaaag actactcgag tccggttata atgttctagg gacagtcaga
120
gacccaggca atcagaagaa ggtgcacac ctctggaact tagcaggggc caaggaaagg
180
ttggagcttg tcaaagctga cctcttggaa gaagggagct tcgatgatgc tgtgatggcc

240

tgtgagggtg tcttccacac tgcatcacct atcatcacca aatctgatac caaggaagaa
300

atgcttgatt ctgcaattaa cggcactcta aacgtgctga gatcgtgcaa gaagaatcct
360

tttctcaaaa gggttgttct cacgtcatca tcgtcaaccg tgaggctgag ggatgaagct
420

gaattcccac ccaacgtgtt gctggatgaa acatcatgga gctccgtgga gttctgtgaa
480

agtatccagg tatggtatgg tgtcgcaag atccttgctg agaaaatcagc ttgggagttc
540

gccaggaga acaacatcga cctagtggtc gttcttccaa cgttcgtgat tggacctaatt
600

ctctcgtctg aattaggacc cactgtttta gatgtccttg gcttatttaa nggagagaca
660

gagaagttca ccatgttttg gaaggatg
688

<210> 290

<211> 425

<212> DNA

<213> *Lolium perenne*

<220>

<221> misc_feature

<222> (3)..(3)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (62)..(62)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (321)..(321)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (332)..(332)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (344)..(344)

<223> Any nucleotide

<220>

<221> misc_feature

<222> (352)..(352)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (360)..(360)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (363)..(363)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (387)..(387)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (390)..(390)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (396)..(396)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (404)..(404)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (409)..(409)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (423)..(423)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (425)..(425)
<223> Any nucleotide

<400> 290
gtnggcttcc agggccggtg tgtgttactg gggcctctgg ctttgttgct tcttggcttg
60

ttaaagacta ctcgagtccg gttataatgt tctaggaca gtcagagacc caggcaatca
120

gaagaaggta gcacacctct ggaacttagc aggggccaag gaaagggttgg agcttgtcaa
180

agctgaccc tcgttggaaagg ggagcttcga tgatgctgtg atggcctgtg agggtgtctt
240

ccacactgca tcacccatatca tcacccaaatc tgataccaaag gaagaaaatgc ttgattctgc
300

aattaacggc actctaaacg ngctgagatc gngcaagaag aatnctttc tnaaaagggn
360

tgncttcacg tcatcatcgc caccggngan gctganggat gaanctgant tcccacccaa
420

cgngn
425

<210> 291

<211> 691

<212> DNA

<213> Lolium perenne

<220>

<221> misc_feature

<222> (691)..(691)

<223> Any nucleotide

<400> 291

gcattcgagt ttgagagaat ggcttccagg gcaggtgtgt gttactgggg cctctggctt
60

tgttgcgttcc tggcttgtca aaagacttct cgagtcgggt tataatgttc tagggacagt
120

cagagaccca ggcaatcaga agaaggttagc acacctctgg agcttagcag gggccaagga
180

aaggctggag cttgtcagag ctgacccctt ggaagaaggg agcttcgatg atgccgtgat
240

ggcctgtgag ggtgtcttcc acactgcattc acctatcattc accaaatctg ataccaagga
300

agaaatgctt gattctgcaa taaacggcac tctaaacgtg ctgagatcgt gcaagaagaa
360

tcctttctc aaaagggttg ttctcacgtc atcatcgtca accgtgaggg tgagggatga
420

agctgaattc ccacccaaacg tggctgttggaa tgaaacatca tggagctccg tggagttctg
480

tgaaagtatc caggtatggc acgggtgtcgaa aaagatcctt gccgagaaat cagcctggaa
540

gtttgccaag gagaacaaca tcgacccatgtt ggctgttctt ccaacattcg tgattggacc
600

taatctctcg tctgaatttag gacccactgt ttttagatgtc cttggcttat ttaaaggaga
660

gacagagaag ttcaccatgt ttggaaagga n
691

<210> 292

<211> 365
<212> DNA
<213> Lolium perenne

<220>
<221> misc_feature
<222> (29)..(29)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (331)..(331)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (346)..(347)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (356)..(356)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (365)..(365)
<223> Any nucleotide

<400> 292
gtctttcgag tttgagcaga atggcttcna gggcaggtgt gtgttactgg ggcctctggc
60
tttgttgctt cctggcttgt caaaagactt ctcgagtcgg gttataatgt tctaggaca
120
gtcagagacc caggcaatca gaagaaggta gcacacctct ggagcttagc aggggccaag
180
gaaaggctgg agcttgcag agctgacctc ttggaagaag ggagcttcga tgatgccgtg
240
atggcctgtg agggtgtctt ccacactgca tcaccttatca tcaccaaatac tgataccaag
300
gaagaaaatgc ttgattctgc aataaacggc nctctaaacg tgctgnnatic cgggtnaaaa
360
aaaan
365

<210> 293
<211> 524
<212> DNA
<213> Lolium perenne

<220>
<221> misc_feature
<222> (169)..(169)
<223> Any nucleotide

<400> 293
gtcctcgctt acgagcgccc cgacgccccgc ggccgctacc tctgcatcg ggccgtgctg
60

caccgcgcgc acttcctaaa gcttctcaag gacctttcc cgcagtactc ctaccggcc
120

aagtgcgaag acgacggcaa gcccatggcg aagccgtaca agttctccna ccagaggctc
180

agggacctgg gattaaaatt cactccgctg gcggaaagtt tgtacgagac cgtgacgtgc
240

ctgcaaaaaaa atggccacct gcctctgccc gctccatgg cgccaaagcg tgcataccta
300

taatactaca aagacacggc cgggatcgac aagccaagaa acagaggatt ctcccgaggt
360

tcaccatgga atttgttatt tcacaaagtt tgaattctta ttttttttat tatgaagaaa
420

tacgaaaaac caatactgta taccagaggc aagtgtaca atgtaaatag tcgtgtaaat
480

cttggcaag aatgaatgat aaagtatttt ttgcaaaaaa aaaa
524

<210> 294
<211> 100
<212> PRT
<213> *Lolium perenne*

<220>
<221> MISC_FEATURE
<222> (57)..(57)
<223> Any amino acid

<400> 294

Val Leu Ala Tyr Glu Arg Pro Asp Ala Arg Gly Arg Tyr Leu Cys Ile
1 5 10 15

Gly Ala Val Leu His Arg Ala His Phe Leu Lys Leu Leu Lys Asp Leu
20 25 30

Phe Pro Gln Tyr Ser Phe Thr Ala Lys Cys Glu Asp Asp Gly Lys Pro
35 40 45

Met Ala Lys Pro Tyr Lys Phe Ser Xaa Gln Arg Leu Arg Asp Leu Gly
50 55 60

Leu Lys Phe Thr Pro Leu Ala Glu Ser Leu Tyr Glu Thr Val Thr Cys
65 70 75 80

Leu Gln Lys Asn Gly His Leu Pro Leu Pro Ala Pro Met Ala Pro Lys
85 90 95

Arg Ala Tyr Leu
100

<210> 295
<211> 524
<212> DNA
<213> *Lolium perenne*

<220>
<221> misc_feature
<222> (306)..(306)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (482)..(482)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (519)..(519)
<223> Any nucleotide

<400> 295
gtcctcgccct acgagcgccc cgacgcccgc ggccgctacc tctgcattgg ggccgtgtg
60

caccgcgcgc acttcctaaa gcttctcaag gacctttcc cgcagtactc cttcacccgc
120

aagtgcgaag acgacggcaa gccatggcg aagccgtaca agttctccaa ccagaggctc
180

agggacctgg gattaaaatt cactccgctg gcggaaaagtt tgtacgagac cgtgacgtgc
240

ctgcaaaaaaa atggccacct gcctctgccc gtcgggtgg cgccaaagcg tgcataccta
300

taatantacc aagacacggc cgggatcgac aagccaagaa acagaggatt ctcccgaggt
360

tcaccatgga atttgttatt tcagaaagtt tgaatttta ttttttttat tatgaaggaa
420

tacggataac caataactgta taccagaggc aagtgttaaca atgtaaatag tcgtgtaaat
480

cntgttcaag attgaatgat aaagtatttt ttgcaaaaana aaaa
524

<210> 296
<211> 374
<212> DNA
<213> *Lolium perenne*

<220>
<221> misc_feature
<222> (19)..(19)

<223> Any nucleotide

<220>
<221> misc_feature
<222> (25)..(26)
<223> Any nucleotides

<400> 296
aagccgtaca agttctccna ccagnngctc agggacacctg gattaaaatt cactccgctg
60

gcggaaagtt tgtacgagac cgtgacgtgc ctgcaaaaaa atggccacct gcctctgcc
120

gctcccatgg cgccaaagcg tgcataccta taatactaca aagacacggc cgggatcgac
180

aagccaagaa acagaggatt ctcccggaggt tcaccatgga atttgttatt tcacaaagtt
240

tgaattctta ttttttttat tatgaagaaa tacggaaaac caatactgta taccagaggc
300

aagtgtaca atgtaaatag tcgtgtaaat cttgttcaag aatgaatgat aaagtatttt
360

ttgcaaaaaa aaaa
374

<210> 297
<211> 363
<212> DNA
<213> Lolium perenne

<220>
<221> misc_feature
<222> (7)..(8)
<223> Any nucleotides

<220>
<221> misc_feature
<222> (363)..(363)
<223> Any nucleotide

<400> 297
gttctcnac cagaggctca gggacctggg attaaaattc actccgctgg cgaaaaagttt
60

gtacgagacc gtgacgtgcc tgcaaaaaaaaaa tggccacctg cctctgcccc ctccatggc
120

gccaaagcgt gcataacctat aatactacaa agacacggcc gggatcgaca agccaagaaa
180

cagaggattc tcccggaggtt caccatggaa ttgtgttatt cacaaagttt gaattcttat
240

tttttttatt atgaagaaaat acggaaaacc aatactgtat accagaggca agtgtacaaca
300

tgtaaatagt cgtgtaaatc ttgttcaaga atgaatgata aagtatttt tgcaaaaaaaaa

360

aan
363

<210> 298
<211> 1381
<212> DNA
<213> *Lolium perenne*

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (1280)..(1280)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (1338)..(1338)
<223> Any nucleotide

<400> 298
tctcnagaca cactgtgtaa ccacggtagc gagtgccaaatgactacgaaa agtacggaca
60

tcagactaacccattcctcaac tagaataaggc atggctccgg cgatgtccaa ccctctcc
120

agtgatcggttggcacgcgtcaagaaatgtcgaccacgag tccggcgccgg gcattccgct catcgac
180

cggccagacc tcgccaatgt cgaccacgag tccggcgccgg gcattccgct catcgac
240

aaggcagctcg aagggtccagg gcccgcgcagg gtcgtcgagg ccatcggtc cgcgtgc
300

aacgatgggt ttttcatgggt gacgaatcat ggcattccag aggccgtcgt ggaggggatg
360

ctgagcgtgg cgagggagtt cttccacctg ccggagtcgg agcggctcaa gtgctactcc
420

gacgacccca agaaggcggt ccggctgtcg acgagttca acgtgcgcac ggagaagg
480

agcaactggc gcgacttcct ccggctgtcat tgctaccctc ttgagagctt cgtcgacc
540

tggccgtcga acccgccccgc ctccaggcaa gtcgtcgac cctactcgac ggaagcgaga
600

gcgctggcgcc tgaggctcct ggaggcgata tcggagagcc tagggctgga gagaggcc
660

atggtaagg ccatggggcg gcacgcgcag cacatggcggtt gaaactacta cccggcg
720

ccgcagccgg agtcaccta cggctgcca gggcacacgg accccaacgc cctcaccatc
780

ctcctcatgg atccccacgt ctccggcctc caggtcctca gggacggcgc caagtggatc
840

ggcggtccacc cacgccccaa cgccctggtc atcaacctag gcgaccagct acaggcgctg
900

960 agcaacggcg cgtacaagag cgtgtggcac cgggcagtgg tgaacgcgga gcaggagcgt

ctgtcgggtgg catcttcct gtgccgtgc aacagcgccg ttatctgccc cgcgccgagg
1020

ctcggtggcg acggggagga ccccgctac cgagactaca cttacgacga gtactacaag
1080

aggttttgga gcaggaacct ggatcaggag cactgcctcg agtcttcag gagtcagcac
1140

tgatgcttga accttgagtt actagcttagc ttccttaac agtgccaaatc catggcccaa
1200

ggggccccg attgcattttt gtttgaactg gtattgctta agtgccata
1260

aacattgctta cattctactn ctatcttgtc cgtttaaaat tataagatgg cctaacccttt
1320

ttcttaattg tatgcatnct gaacatattt aagtgtgtgt gttcagacag ttttagtctgc
1380

<210> 299
<211> 346
<212> PRT
<213> *Lolium perenne*

<400> 299

Met	Ser	Asn	Pro	Leu	Leu	Ser	Asp	Arg	Val	Ala	Arg	Ser	Lys	Lys	Val
1				5				10						15	

Pro Ser Ser His Val Arg Ala Val Gly Asp Arg Pro Asp Leu Ala Asn
20 25 30

Val Asp His Glu Ser Gly Ala Gly Ile Pro Leu Ile Asp Leu Lys Gln
35 40 45

Leu Glu Gly Pro Gly Arg Arg Arg Val Val Glu Ala Ile Gly Ser Ala
50 55 60

Cys Glu Asn Asp Gly Phe Phe Met Val Thr Asn His Gly Ile Pro Glu
 65 70 75 80

Ala Val Val Glu Gly Met Leu Ser Val Ala Arg Glu Phe Phe His Leu
85 . 90 95

Pro Glu Ser Glu Arg Leu Lys Cys Tyr Ser Asp Asp Pro Lys Lys Ala
100 105 110

Val Arg Leu Ser Thr Ser Phe Asn Val Arg Thr Glu Lys Val Ser Asn
115 120 125

Trp Arg Asp Phe Leu Arg Leu His Cys Tyr Pro Leu Glu Ser Phe Val
130 135 140

Asp Gln Trp Pro Ser Asn Pro Pro Ala Phe Arg Gln Val Val Gly Thr
145 150 155 160

Tyr Ser Thr Glu Ala Arg Ala Leu Ala Leu Arg Leu Leu Glu Ala Ile
165 170 175

Ser Glu Ser Leu Gly Leu Glu Arg Gly His Met Val Lys Ala Met Gly
180 185 190

Arg His Ala Gln His Met Ala Val Asn Tyr Tyr Pro Pro Cys Pro Gln
195 200 205

Pro Glu Leu Thr Tyr Gly Leu Pro Gly His Thr Asp Pro Asn Ala Leu
210 215 220

Thr Ile Leu Leu Met Asp Pro His Val Ser Gly Leu Gln Val Leu Arg
225 230 235 240

Asp Gly Ala Lys Trp Ile Ala Val His Pro Arg Pro Asn Ala Leu Val
245 250 255

Ile Asn Leu Gly Asp Gln Leu Gln Ala Leu Ser Asn Gly Ala Tyr Lys
260 265 270

Ser Val Trp His Arg Ala Val Val Asn Ala Glu Gln Glu Arg Leu Ser
275 280 285

Val Ala Ser Phe Leu Cys Pro Cys Asn Ser Ala Val Ile Cys Pro Ala
290 295 300

Pro Arg Leu Val Gly Asp Gly Glu Asp Pro Val Tyr Arg Ser Tyr Thr
305 310 315 320

Tyr Asp Glu Tyr Tyr Lys Arg Phe Trp Ser Arg Asn Leu Asp Gln Glu
325 330 335

His Cys Leu Glu Leu Phe Arg Ser Gln His
340 345

<210> 300
<211> 755
<212> DNA
<213> *Lolium perenne*

<220>
<221> misc_feature
<222> (5)..(5)
<223> Any nucleotide

<400> 300
tctcnagaca cactgtgtaa ccacggtagc gagtggcaag actagcagaa agtacggaca
60
tcagctaacc attcctcaac tagaataagc atggctccgg cgatgtccaa ccctctcctc
120
agtgatcggg tggcacgctc caagaaagtc ccatctagcc acgttagagc ggtgggagac
180
cgcccagacc tcgccaatgt cgaccacgag tccggcgcgg gcattccgct catcgacctg
240
aagcagctcg aaggccagg gcgcgcagg gtcgtcgagg ccatcggctc cgcgtgcgag
300
aacgatgggt ttttcatggg gacgaatcat ggcattccag aggccggcgt ggagggatg
360
ctgagcgtgg cgagggagtt ctccacctg ccggagtcgg agcggctcaa gtgtactcc
420
gacgacccca agaaggccggt ccggctgtcg acgagcttca acgtgcgcac ggagaaggtg
480
agcaactggc gcgacttcct ccggctgcat tgctaccctc ttgagagctt cgtcgaccag
540
tggccgtcga acccgccccgc ctccaggcaa gtcgtcggtca cctactcgac ggaagcgaga
600
gcgcgtggcgc tgaggctcct ggaggcgata tcggagagcc tagggctgga gagaggccac
660
atggtaagg ccatggggcg gcacgcgcag cacatggccgg tgaactacta cccgccgtgc
720
ccgcagccgg agctcaccta cggctgtcca gggca
755

<210> 301
<211> 780
<212> DNA
<213> *Lolium perenne*

<220>
<221> misc_feature
<222> (21)..(21)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (778)..(778)

<223> Any nucleotide

<400> 301
tctagacaca ctgtgtaacc ncggtagcga gtggcaagac tagcagaaaag tacggacatc
60
agctaaccat tcctcaacta gaataaggcat ggctccggcg atgtccaacc ctctcctcag
120
tgatcgggtg gcacgctcca agaaaagtccc atctagccac gtttagagcgg tgggagaccg
180
cccagacctc gccaatgtcg accacgagtc cggcgcccc attccgctca tcgacactgaa
240
gcagctcgaa ggtccagggc gcccagggt cgtcgaggcc atcggctccg cgtgcgagaa
300
cgatgggttt ttcatggtga cgaatcatgg catcccagag gcggtcgtgg agggatgct
360
gagcgtggcg agggagttct tccacctgcc ggagtcggag cggctcaagt gctactccga
420
cgaccccaag aaggcggtcc ggctgtcgac gagcttcaac gtgcgcacgg agaaggtgag
480
caactggcgc gacttcctcc ggctgcattt ctaccctctt gagagcttcg tcgaccagtg
540
gccgtcgaac ccgccccct tcaggcaagt cgtcggcacc tactcgacgg aagcgagagc
600
gctggcgctg aggctcctgg aggcgatatac ggagagccta gggctggaga gaggccacat
660
ggtgaaggcc atggggcggc acgcgcagca catggcggtg aactactacc cgccgtgccc
720
gcagccggag ctcacctacg gtctgccagg gcacacggac cccaatgccc tcaccatnct
780

<210> 302
<211> 793
<212> DNA
<213> Lolium perenne

<220>
<221> misc_feature
<222> (64)..(64)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (692)..(692)
<223> Any nucleotide

<220>
<221> misc_feature
<222> (750)..(750)
<223> Any nucleotide

<400> 302
gggaaagtcc ggctgctggg gcttcggctt ctgggcgca tctcgctggg gctggggctg
60
gagngagggt atgtggagaa ggtgctggc gagcaggagc agcacatggc cgtgaactac
120
tacccgcggt gccccgagcc ggacctcacc tacggcctgc ccaagcacac ggaccccaac
180
gcctcacca tcctcctcat ggatccccac gtctccggcc tccaggtcct cagggacggc
240
gcctcacca tcctcctcat ggatccccac gtctccggcc tccaggtcct cagggacggc
300
ctacaggcgc tgagcaacgg cgctgtacaag agcgtgtggc accgggcagt ggtgaacgca
360
gagcaggagc gtctgtcggt ggcattttc ctgtgcccgt gcaacagcgc ggatatctgc
420
ccgcgcgcga ggctcgtcgg cgacggggag gacccgtct accggagcta cacctacgac
480
gagtactaca agaggtttg gaggcaggaac ctggatcagg agcaactgcct cgagctttc
540
aggagtcaagc actgatgctt gaaccttgag ttacttagta gctctcctta acagtgcata
600
tccatggccc aagagggccc cgattgcatg gttacttatg ttgtttgaac tggtattgct
660
taagtgccta ataacattgc tacattctac tnctatcttg tccgtttaaa attataagat
720
ggcctaacct ttttcttaat tgtatgcatn ctgaacatata ttaagtgtgt gtgttcagac
780
agtttagtct gca
793

<210> 303
<211> 1395
<212> DNA
<213> Lolium perenne

<400> 303
gaattcgatt aagcagtggt aacaacgcag agtacgcggg gactctcaga acacactgtg
60
taaccacggt agcgagtggc aagactagca gaaagtacgg acatcagcta accattcctc
120
aactagaata agcatggctc cggcgatgtc caaccctctc ctcagtgtac gggtggcacg
180
ctccaagaaa gtcccatcta gccacgttag agcggtggga gaccgcccag acctcgccaa
240
tgtcgaccac gagtccggcg cggcattcc gtcatcgac ctgaagcagc tcgaaggtcc
300

agggcgccgc agggtcgtcg aggccatcg ctccgcgtgc gagaacgatg ggttttcat
360
ggtgcacgaat catggcatcc cagaggcggt cgtggagggg atgctgagcg tggcgaggga
420
gttcttccac ctgccggagt cggagcggct caagtgtac tccgacgacc ccaagaaggc
480
gttccggctg tcgacgagct tcaacgtgcg cacggagaag gtgagcaact ggcgcgactt
540
cctccggctg cattgttacc ctcttgagag ctctgtcgac cagtggccgt cgaacccgccc
600
cgcccttcagg caagtcgtcg gcacctactc gacggaagcg agagcgctgg cgctgaggct
660
cctggaggcg atatcgaga gccttagggct ggagagaggc cacatggtga aggccatggg
720
gcggcacgcg cagcacatgg cggtaacta ctacccgcgc tgccgcagc cggagctcac
780
ctacggtctg ccagggcaca aggacccaa tgccatcagc ctccctctgc aggacggcg
840
ctccggcctg caggtccagc gcgacggccg gtgggtggcc gtcaacccgg tgcccaacgc
900
cctcgtcatc aacatcgccg atcagttaca ggcgctgagc aacgaccgat acaagagcgt
960
gaaccacaga gtgatcgta acagcgccgag cgagaggatt tcggtgccga cgttctactg
1020
cccgtcgccg gacacggtgg tcgacgcggc cgacgcgtg gtggacgacg cccacccctcg
1080
ggcctaccag cccttcacgt accaggagta ctacgaggag ttcttggaaa tggcccttca
1140
gtcagcaagt tgcctcgaca ggttccgacg gatcgagtga tggacaagac gtggcccg
1200
gttatctactt gggccatgag ctttgccgca gccgatgtgt cgccatatgg tggagacgtt
1260
tcctccctcc ggaaaagaaa aataaaacag agtggagacc actagaaccc tcagatagca
1320
tccccaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaagtactc tgcgttgtt ccactgctta
1380
atcaactatgt aattc
1395

<210> 304
<211> 348
<212> PRT
<213> Lolium perenne

<400> 304

Met Ala Pro Ala Met Ser Asn Pro Leu Leu Ser Asp Arg Val Ala Arg

1

5

10

15

Ser Lys Lys Val Pro Ser Ser His Val Arg Ala Val Gly Asp Arg Pro
20 25 30

Asp Leu Ala Asn Val Asp His Glu Ser Gly Ala Gly Ile Pro Leu Ile
35 40 45

Asp Leu Lys Gln Leu Glu Gly Pro Gly Arg Arg Val Val Glu Ala
50 55 60

Ile Gly Ser Ala Cys Glu Asn Asp Gly Phe Phe Met Val Thr Asn His
65 70 75 80

Gly Ile Pro Glu Ala Val Val Glu Gly Met Leu Ser Val Ala Arg Glu
85 90 95

Phe Phe His Leu Pro Glu Ser Glu Arg Leu Lys Cys Tyr Ser Asp Asp
100 105 110

Pro Lys Lys Ala Val Arg Leu Ser Thr Ser Phe Asn Val Arg Thr Glu
115 120 125

Lys Val Ser Asn Trp Arg Asp Phe Leu Arg Leu His Cys Tyr Pro Leu
130 135 140

Glu Ser Phe Val Asp Gln Trp Pro Ser Asn Pro Pro Ala Phe Arg Gln
145 150 155 160

Val Val Gly Thr Tyr Ser Thr Glu Ala Arg Ala Leu Ala Leu Arg Leu
165 170 175

Leu Glu Ala Ile Ser Glu Ser Leu Gly Leu Glu Arg Gly His Met Val
180 185 190

Lys Ala Met Gly Arg His Ala Gln His Met Ala Val Asn Tyr Tyr Pro
195 200 205

Pro Cys Pro Gln Pro Glu Leu Thr Tyr Gly Leu Pro Gly His Lys Asp
210 215 220

Pro Asn Ala Ile Thr Leu Leu Gln Asp Gly Val Ser Gly Leu Gln
225 230 235 240

Val Gln Arg Asp Gly Arg Trp Val Ala Val Asn Pro Val Pro Asn Ala
245 250 255

Leu Val Ile Asn Ile Gly Asp Gln Leu Gln Ala Leu Ser Asn Asp Arg
260 265 270

Tyr Lys Ser Val Asn His Arg Val Ile Val Asn Ser Ala Ser Glu Arg
275 280 285

Ile Ser Val Pro Thr Phe Tyr Cys Pro Ser Pro Asp Thr Val Val Ala
290 295 300

Pro Ala Asp Ala Leu Val Asp Asp Ala His Pro Arg Ala Tyr Gln Pro
305 310 315 320

Phe Thr Tyr Gln Glu Tyr Tyr Glu Glu Phe Trp Lys Met Gly Leu Gln
 325 330 335

Ser Ala Ser Cys Leu Asp Arg Phe Arg Arg Ile Glu
340 345

<210> 305
<211> 1309
<212> DNA
<213> Trifolium repens

<400> 305
gaattcgatt aagcagtggt aacaacgcag agtacgcggg ataaaaactg cactagtgtg
60

tataaggtttc ttgggtaaaa aagagtttgt aaattaacat catggctagt atcaaaca 120

ttggaaacaa gaaagcatgt gtgattggtg gcactggttt tggatgtatct atgttgatca
180

agcagttact tggaaaagggt tatgctgtta atactaccgt tagagaccca gatagcccta
240

agaaaatatac tcaccttagtg gcactgcaaa gtttggggga actgaatcta ttttagagcag
300

acttaaacgt tgaagaagat tttgatgctc ctatagcagg atgtgaactt gttttcaac
360

ttgctacacc tgtgaactt gcttctcaag atcctgagaa tgacatgata aagccagcaa
420

tcaaagggtgt gttgaatgtg ttgaaagcaa ttgcaagagc aaaagaagtt aaaagagtta
480

tcttaacatc ttccggcagcc gcgggtgacta taaatgaact caaaggggaca ggtcatgtta
540

tggatgaaac caactggtct gatgttgaat ttctcaacac tgcaaaaacca cccacttggg
600

gttatccatgc ctcaaaaatg ctagctgaaa aggctgcattt gaaatggct gaagaaaaatg
660

acatttgcata aatcactgtg ataccttagtt taacaactgg tccttctctc acaccagata
720

tcccatctag tggggcttg gcaatgtctc taataacagg caatgatttt ctcataaaatg
780

ctttgaaagg aatgcagttt ctgtcggtt cgttatccat cactcatgtt gaggatattt
840

gccgagctca tatatttctt gcagagaaaag aatcagcttc tggtagatac atttgctgtg
900

ctcacaatac tagtgccc gagctgcaa agtttctcaa caaacgatat cctcagtata
960

aagttccaac tgaatttgat gattgccccca gcaaggcaaa gttgataatc tcttctgaaa
1020

agcttatcaa agaagggttc agttcaagc atggattgc cgaaacttgc gaccagactg
1080

tcgagtatTT taagactaag ggggcaactga agaatttagat tttgatattt ctaattcaat
1140

agcaaactct aagcttgta tgtgtttgtg aagttcagag tgaaatatca aatgaataag
1200

tggagagagc acaataagag gagagcacaa taattttgga aaaaaaaaaaaaa
1260

aaaaaaaaagt actctgcgtt gttaccactg cttaatcact agtgaattc
1309

<210> 306

<211> 338

<212> PRT

<213> Trifolium repens

<400> 306

Met Ala Ser Ile Lys Gln Ile Gly Asn Lys Lys Ala Cys Val Ile Gly
1 5 10 15

Gly Thr Gly Phe Val Ala Ser Met Leu Ile Lys Gln Leu Leu Glu Lys
20 25 30

Gly Tyr Ala Val Asn Thr Thr Val Arg Asp Pro Asp Ser Pro Lys Lys
35 40 45

Ile Ser His Leu Val Ala Leu Gln Ser Leu Gly Glu Leu Asn Leu Phe
50 55 60

Arg Ala Asp Leu Thr Val Glu Glu Asp Phe Asp Ala Pro Ile Ala Gly
65 70 75 80

Cys Glu Leu Val Phe Gln Leu Ala Thr Pro Val Asn Phe Ala Ser Gln
85 90 95

Asp Pro Glu Asn Asp Met Ile Lys Pro Ala Ile Lys Gly Val Leu Asn
100 105 110

Val Leu Lys Ala Ile Ala Arg Ala Lys Glu Val Lys Arg Val Ile Leu
115 120 125

Thr Ser Ser Ala Ala Ala Val Thr Ile Asn Glu Leu Lys Gly Thr Gly
130 135 140

His Val Met Asp Glu Thr Asn Trp Ser Asp Val Glu Phe Leu Asn Thr
145 150 155 160

Ala Lys Pro Pro Thr Trp Gly Tyr Pro Ala Ser Lys Met Leu Ala Glu
165 170 175

Lys Ala Ala Trp Lys Phe Ala Glu Glu Asn Asp Ile Asp Leu Ile Thr
180 185 190

Val Ile Pro Ser Leu Thr Thr Gly Pro Ser Leu Thr Pro Asp Ile Pro
195 200 205

Ser Ser Val Gly Leu Ala Met Ser Leu Ile Thr Gly Asn Asp Phe Leu
210 215 220

Ile Asn Ala Leu Lys Gly Met Gln Phe Leu Ser Gly Ser Leu Ser Ile
225 230 235 240

Thr His Val Glu Asp Ile Cys Arg Ala His Ile Phe Leu Ala Glu Lys
245 250 255

Glu Ser Ala Ser Gly Arg Tyr Ile Cys Cys Ala His Asn Thr Ser Val
260 265 270

Pro Glu Leu Ala Lys Phe Leu Asn Lys Arg Tyr Pro Gln Tyr Lys Val
275 280 285

Pro Thr Glu Phe Asp Asp Cys Pro Ser Lys Ala Lys Leu Ile Ile Ser
290 295 300

Ser Glu Lys Leu Ile Lys Glu Gly Phe Ser Phe Lys His Gly Ile Ala
305 310 315 320

Glu Thr Phe Asp Gln Thr Val Glu Tyr Phe Lys Thr Lys Gly Ala Leu
325 330 335

Lys Asn

<210> 307

<211> 1005

<212> DNA

<213> Trifolium repens

<400> 307

gaatttcgatt aagcagtgggt aacaacgcag agtacgcggg gacttaaaca ttgacacacaag
60

tcccaaataa aaaagatctg aaacaacata gtcaccccat ttttaacat taaactaaaa
120

atatgtcggc catcaccgca atccaagtgc agaacottga atttccggct gtggttactt
180

ctccggccac cggttaagtca tattttcttg gtgggtcagg ggagagaggt ttgactattg
240

aagggaaactt catcaaggttc actgccatag gagtatattt ggaagatgt a gcagtggctt
300

cacttgccac taaatggaag ggttaatcct ctgaggagtt gcttgagact cttgacttct
360

atagagacat catttcagga cccttgaaa agttgattcg aggatcgaag attaggaaat
420

tgagtggtcc tgagtactca aggaaggta atgaaaactg cgtggcacac ttaaaatctg
480

ttgggactta tggagatgct gaagctgaag ctatgaaaa atttgttga gcttcaggc
540

ctattaattt tccacctggc gcctctgttt tttacaggca atcacctgat ggaatattag
600

ggcttagttt ctctcaagat gcaagtatac cagaaaagga ggctgcagta atagagaaca
660

aggcagcttc atcggcagtg ttagaaaacta tgattggtga acatgctgtt tctcctgatt
720

taaagcgttt tttggctgca agattacctg cttgttgaa cgagggtact ttcaagattg
780

aatggaaaact gattattatt atctccaaaa gcattgcagc acaagattga gtcattttag
840

agcatggaca tttttatgtc cacacatgtt taactttgtt atctctctt agattctcat
900

caatatcaat aatactaata tgaaacgaag tcaaaaaaaaaaaaaaa aaaaaaaaaaaa
960

aaaagtactc tgcgttgtt ccactgctta atcactagtg aattc
1005

<210> 308

<211> 220

<212> PRT

<213> Trifolium repens

<400> 308

Met Ser Ala Ile Thr Ala Ile Gln Val Glu Asn Leu Glu Phe Pro Ala
1 5 10 15

Val Val Thr Ser Pro Ala Thr Gly Lys Ser Tyr Phe Leu Gly Gly Ala
20 25 30

Gly Glu Arg Gly Leu Thr Ile Glu Gly Asn Phe Ile Lys Phe Thr Ala
35 40 45

Ile Gly Val Tyr Leu Glu Asp Val Ala Val Ala Ser Leu Ala Thr Lys
50 55 60

Trp Lys Gly Lys Ser Ser Glu Glu Leu Leu Glu Thr Leu Asp Phe Tyr
65 70 75 80

Arg Asp Ile Ile Ser Gly Pro Phe Glu Lys Leu Ile Arg Gly Ser Lys
85 90 95

Ile Arg Glu Leu Ser Gly Pro Glu Tyr Ser Arg Lys Val Asn Glu Asn
100 105 110

Cys Val Ala His Leu Lys Ser Val Gly Thr Tyr Gly Asp Ala Glu Ala
115 120 125

Glu Ala Met Gln Lys Phe Val Glu Ala Phe Lys Pro Ile Asn Phe Pro
130 135 140

Pro Gly Ala Ser Val Phe Tyr Arg Gln Ser Pro Asp Gly Ile Leu Gly
145 150 155 160

Leu Ser Phe Ser Gln Asp Ala Ser Ile Pro Glu Lys Glu Ala Ala Val
165 170 175

Ile Glu Asn Lys Ala Ala Ser Ser Ala Val Leu Glu Thr Met Ile Gly
180 185 190

Glu His Ala Val Ser Pro Asp Leu Lys Arg Cys Leu Ala Ala Arg Leu
195 200 205

Pro Ala Leu Leu Asn Glu Gly Thr Phe Lys Ile Glu
210 215 220

<210> 309
<211> 1105
<212> DNA
<213> Trifolium repens

<400> 309
gaattcacta gtgattaagc agtggttaaca acgcagagta cgcggggaca ttacaactca
60

caacaccccttc tccattacca tctatcttct actaagttca acgagatcaa tggcacttcc
120

ttctgtcacc gctttgaata tcgagaacaa tctattccct cctaccgtca caccaccggg
180

atccaccaac aatttcttcc tcggcggtgc aggagagcgg ggtcttcaaa ttcaagacaa
240

atttgtcaaa ttcaccgcta ttgggtttta tctacaggac attgctgttc cttacacctgc
300

cactaaatgg aagggttaaga ctgctcaaga gctaacggaa actgttcctt tcttcaggga
360

catcgttaca ggtccatttg agaaatttat gcaggtgaca atgatcttgc cattgactgg
420

gcaacaatac tcagagaaaag tgtcagaaaa ttgtgttagct atttgaaagt ctcttggat
480

ttataccgac gaagaaggcca aagcaattga gaagttgtt tctgtcttca aagatgaaac
540

attcccacca ggctcctcta tcctttcac agtattaccc aaaggattag gatcactaac
600

gataagtttc tctaaagatg gatccattcc agagaccgag tctgcagttt tagagaataa
660

gctactctca caagctgtgc ttgagtcgat gatagggcgc cacgggtct cccctgcagc
720

aaaacagagt ttggccacca gtttatccga gttattcaac gaggttggtg atgctagcaa
780

ctgattatat caacaaaacg aaaatgaaag tccttctgc aataaagacc aagcggaaat
840

tttatttttag gtgcactttg aaatgacctc tttggcgact tttcttgta ctaataataa
900

agagtgtgtt tgtatcatgt tgtaatttttta ttttagaaaaa agtgaggtaa gaaaggagtc
960

cttatgttta tttcaattat tgaaaaattta tttgcatgta taattgattt caactgatgt
1020

tatttaatca cgtttttct aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa gtactctgca
1080

ttgttaccac tgcttaatcg aattc
1105

<210> 310

<211> 224

<212> PRT

<213> Trifolium repens

<400> 310

Met Ala Leu Pro Ser Val Thr Ala Leu Asn Ile Glu Asn Asn Leu Phe
1 5 10 15

Pro Pro Thr Val Thr Pro Pro Gly Ser Thr Asn Asn Phe Phe Leu Gly
20 25 30

Gly Ala Gly Glu Arg Gly Leu Gln Ile Gln Asp Lys Phe Val Lys Phe
35 40 45

Thr Ala Ile Gly Val Tyr Leu Gln Asp Ile Ala Val Pro Tyr Leu Ala
50 55 60

Thr Lys Trp Lys Gly Lys Thr Ala Gln Glu Leu Thr Glu Thr Val Pro
65 70 75 80

Phe Phe Arg Asp Ile Val Thr Gly Pro Phe Glu Lys Phe Met Gln Val
85 90 95

Thr Met Ile Leu Pro Leu Thr Gly Gln Gln Tyr Ser Glu Lys Val Ser
100 105 110

Glu Asn Cys Val Ala Ile Trp Lys Ser Leu Gly Ile Tyr Thr Asp Glu
115 120 125

Glu Ala Lys Ala Ile Glu Lys Phe Val Ser Val Phe Lys Asp Glu Thr
130 135 140

Phe Pro Pro Gly Ser Ser Ile Leu Phe Thr Val Leu Pro Lys Gly Leu
145 150 155 160

Gly Ser Leu Thr Ile Ser Phe Ser Lys Asp Gly Ser Ile Pro Glu Thr
165 170 175

Glu Ser Ala Val Ile Glu Asn Lys Leu Leu Ser Gln Ala Val Leu Glu
180 185 190

Ser Met Ile Gly Ala His Gly Val Ser Pro Ala Ala Lys Gln Ser Leu
195 200 205

Ala Thr Arg Leu Ser Glu Leu Phe Asn Glu Val Gly Asp Ala Ser Asn
210 215 220

<210> 311

<211> 1272

<212> DNA

<213> Trifolium repens

<400> 311

gaatttcgatt aagcagtgggt aacaacgcag agtacgcggg gattcaaaca tagctcaaag
60

tgtgtaacaa atttcttaac ttaaacatt ttcaacccaa caaaaaaaaaa caaagacaaa
120

aacatggta gtgttcaa atccaacaaag gttcttacta acagttcttag tcaagtgaaa
180

atgcctgtgg ttggaatggg atcagcacct gatttcacat gtaagaaaga cacaaggat
240

gcaatcattg aagccatcaa acagggttat agacactttg atactgctgc tgcttatggc
300

tcagaacaag ctcttggtga aggttgaaa gaagcaattg aacttggctc tgtcactaga
360

gaagacctt ttgttacttc taaactttgg gtcactgaaa atcatcctca tcttttgtt

420

cctgctttc aaaaatctct caagactctt caattggagt acttggactt gtatttgatc
480

cattggccac ttagttctca gcctggaaag ttttcatttc caattgatgt ggcagatctc
540

ttgccatgg atgtgaaggg tgtttggaa tccatggaag aaggcttcaa acttggactc
600

actaaagcta ttgggttttag taacttctct gtcaagaaac ttcaaaaatct tgtctcagtt
660

gccactgttc ttccctgctgt caatcaagtg gagatgaacc ttgcatggca acaaaaagaag
720

cttagagaat tttgcaatgc aaatggaata gtgttaactg cattttcacc attgagaaaaa
780

ggtgcaagca ggggacccaaa tgaagttatg gaaaatgata tgcttaaaga gattgcagat
840

gctcatggaa agtctgttgc acaaatttca ttgagatggt tatatgaaca aggagtca
900

tttggccca agagctatga taaggaaaga atgggtcaaa atttggctat ctttgattgg
960

acattggcaa aagaagatca tgagaaaattt gatcaaatta agcagaaccc tttgatccct
1020

ggaccaacca agccaggact cagtgaccta tgggatgatg aaatataaaag tggaagatgt
1080

taaaagtccc ttaagctcac tcaatatcta tctattgtgt actttttgca tttgggttt
1140

gaaattgagt cacccttgtt tctgtatcga tttaaaattt aaataatcaa ttttcattta
1200

aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa agtactctgc gttgttacca ctgcttaatc
1260

actagtgaat tc
1272

<210> 312
<211> 314
<212> PRT
<213> Trifolium repens

<400> 312

Met Gly Ser Val Glu Ile Pro Thr Lys Val Leu Thr Asn Ser Ser Ser
1 5 10 15

Gln Val Lys Met Pro Val Val Gly Met Gly Ser Ala Pro Asp Phe Thr
20 25 30

Cys Lys Lys Asp Thr Lys Asp Ala Ile Ile Glu Ala Ile Lys Gln Gly
35 40 45

Tyr Arg His Phe Asp Thr Ala Ala Ala Tyr Gly Ser Glu Gln Ala Leu
50 55 60

Gly Glu Gly Leu Lys Glu Ala Ile Glu Leu Gly Leu Val Thr Arg Glu
65 70 75 80

Asp Leu Phe Val Thr Ser Lys Leu Trp Val Thr Glu Asn His Pro His
85 90 95

Leu Val Val Pro Ala Leu Gln Lys Ser Leu Lys Thr Leu Gln Leu Glu
100 105 110

Tyr Leu Asp Leu Tyr Leu Ile His Trp Pro Leu Ser Ser Gln Pro Gly
115 120 125

Lys Phe Ser Phe Pro Ile Asp Val Ala Asp Leu Leu Pro Phe Asp Val
130 135 140

Lys Gly Val Trp Glu Ser Met Glu Glu Gly Leu Lys Leu Gly Leu Thr
145 150 155 160

Lys Ala Ile Gly Val Ser Asn Phe Ser Val Lys Lys Leu Gln Asn Leu
165 170 175

Val Ser Val Ala Thr Val Leu Pro Ala Val Asn Gln Val Glu Met Asn
180 185 190

Leu Ala Trp Gln Gln Lys Lys Leu Arg Glu Phe Cys Asn Ala Asn Gly
195 200 205

Ile Val Leu Thr Ala Phe Ser Pro Leu Arg Lys Gly Ala Ser Arg Gly
210 215 220

Pro Asn Glu Val Met Glu Asn Asp Met Leu Lys Glu Ile Ala Asp Ala
225 230 235 240

His Gly Lys Ser Val Ala Gln Ile Ser Leu Arg Trp Leu Tyr Glu Gln
245 250 255

Gly Val Thr Phe Val Pro Lys Ser Tyr Asp Lys Glu Arg Met Gly Gln
260 265 270

Asn Leu Ala Ile Phe Asp Trp Thr Leu Ala Lys Glu Asp His Glu Lys
275 280 285

Ile Asp Gln Ile Lys Gln Asn Arg Leu Ile Pro Gly Pro Thr Lys Pro
290 295 300

Gly Leu Ser Asp Leu Trp Asp Asp Glu Ile

305 310

<210> 313
<211> 1548
<212> DNA
<213> Trifolium repens

<400> 313
gaattcgatt aaggcgtggt atcaacgcag agtacgcggg gacaacaact ataacttcct
60

gttattaacc aattgagttc aaattacata catagcagga actataactaa agatatcaac
120

atggtagtg tttctgaaat tcgcaaggct caaaggcgtg aaggccctgc aactatTTG
180

gccatggta ctgcaaATCC agcaaATCgt gttgaccaga gtacatatCC tgatttctAC
240

tTCaaaATCA ctaacagtGA gcataaggTT gagCTTAAAG agaaATTCA gCGcatGTgt
300

gataAAATCTA tgatcaagAG cagatacatG tatctaACAG aagAGATTT gaaAGAAAAT
360

cctagtcttt gtgaatacat ggcacCTtCA ttggatgCTA ggcaagACAT ggtggTggTT
420

gaggtaccta gacttggaa ggaggctgca gtgaaAGCTA tcaaAGAAATg gggtcaacca
480

aagtcaaAGA ttactcactt aatctttGC accacaAGTG gtgttgACAT gcctggTgCC
540

gattaccaAC tcacaaaACT cttaggtctt cgcccatATG tgaAGAGGTA catgatgtAC
600

caacaaggGT gcttgcagg tggacggTT cttcgTTGG ccaaggATTt ggccgagaAC
660

aacaaaggTG ctcgtgttttgc ttgtgttgc tctgaagtaa ccgcAGTCAC attccgcggc
720

cccagtGACA ctcatttGGA cagtcttGTT ggacaAGCAC tattcggAGA tggAGCTGCT
780

gcactcattG ttggctcAGA cccagtacca gaaATTGAGA agccaATATT tgAGATggTT
840

tggaccgcAC agacaATTGc tccAGATAGT gaaggTgCCA ttgatggTCa tcttcgtGAA
900

gctggactAA catttcatct tcttaAGAT gttcctggGA ttgtctCAAa gaacattGAT
960

aaggcattGG ttgaggcatt ccaaccATTA aacatctCTG attacaattC aatctttGG
1020

attgctcATC caggTggTCC tgcaattCTA gaccaAGTTG agataAAAGTT gggcttaAAA
1080

cctgaaaaAA tgaaggccAC cagAGATGTA cttAGTGAAT atggtaACAT gtcaAGTGCA
1140

tgtgtattgt tcatcttaga tgagatgaga aagaaatcg 1200
1200 ctgaaaatgg acttaaaacc

acaggagaag gacttgactg gggtgtgttg tttggatttg ggcccggaact taccattgaa 1260
1260

actgttgttc tacatagtgt ggctatatga gaatgagaga ctgatttgtt ttttattgt 1320
1320

ttgtattgtta ttactttaaa tcttgggtga acctccattt taagaataaa tatggagttc 1380
1380

aatatggacc atcctgttaa aataatatac cgtaatagc tattatTTTA gtgtctgttt 1440
1440

cTTTTTacta aactattta ttttagtatt tgTTTTGAC caaaaaaaaaaaaaaaa 1500
1500

aaaaaaaaagta ctctgcgttgc ttaccactgc ttaatcacta gtgaattc
1548

<210> 314
<211> 389
<212> PRT
<213> Trifolium repens

<400> 314

Met Val Ser Val Ser Glu Ile Arg Lys Ala Gln Arg Ala Glu Gly Pro
1 5 10 15

Ala Thr Ile Leu Ala Ile Gly Thr Ala Asn Pro Ala Asn Arg Val Asp
20 25 30

Gln Ser Thr Tyr Pro Asp Phe Tyr Phe Lys Ile Thr Asn Ser Glu His
35 40 45

Lys Val Glu Leu Lys Glu Lys Phe Gln Arg Met Cys Asp Lys Ser Met
50 55 60

Ile Lys Ser Arg Tyr Met Tyr Leu Thr Glu Glu Ile Leu Lys Glu Asn
65 70 75 80

Pro Ser Leu Cys Glu Tyr Met Ala Pro Ser Leu Asp Ala Arg Gln Asp
85 90 95

Met Val Val Val Glu Val Pro Arg Leu Gly Lys Glu Ala Ala Val Lys
100 105 110

Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile Thr His Leu Ile
115 120 125

Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp Tyr Gln Leu
130 135 140

Thr Lys Leu Leu Gly Leu Arg Pro Tyr Val Lys Arg Tyr Met Met Tyr

145

150

155

160

Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys Asp
165 170 175

Leu Ala Glu Asn Asn Lys Gly Ala Arg Val Leu Val Val Cys Ser Glu
180 185 190

Val Thr Ala Val Thr Phe Arg Gly Pro Ser Asp Thr His Leu Asp Ser
195 200 205

Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala Leu Ile Val
210 215 220

Gly Ser Asp Pro Val Pro Glu Ile Glu Lys Pro Ile Phe Glu Met Val
225 230 235 240

Trp Thr Ala Gln Thr Ile Ala Pro Asp Ser Glu Gly Ala Ile Asp Gly
245 250 255

His Leu Arg Glu Ala Gly Leu Thr Phe His Leu Leu Lys Asp Val Pro
260 265 270

Gly Ile Val Ser Lys Asn Ile Asp Lys Ala Leu Val Glu Ala Phe Gln
275 280 285

Pro Leu Asn Ile Ser Asp Tyr Asn Ser Ile Phe Trp Ile Ala His Pro
290 295 300

Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Ile Lys Leu Gly Leu Lys
305 310 315 320

Pro Glu Lys Met Lys Ala Thr Arg Asp Val Leu Ser Glu Tyr Gly Asn
325 330 335

Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu Met Arg Lys Lys
340 345 350

Ser Ala Glu Asn Gly Leu Lys Thr Thr Gly Glu Gly Leu Asp Trp Gly
355 360 365

Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Ile Glu Thr Val Val Leu
370 375 380

His Ser Val Ala Ile
385

<210> 315
<211> 1447
<212> DNA

<213> Trifolium repens

<400> 315

gaattcacta gtgattaagc agtggtaaca acgcagagta cgcgaaaaac aaaaacaact
60

acgcatatta tatatatata tatatagtct ataattgaaa gaaactgcta aagatattat
120

taagatatgg tgagtgttagc taaaattcgc aaggctcaga gggctgaagg ccctgcaacc
180

attttggcca ttggcactgc aaatccacca aaccgtgttg agcagagcac atatcctgat
240

ttctacttca aaattacaaa cagtgagcac aagactgagc tcaaagagaa gttccaacgc
300

atgtgtgaca aatccatgat caagagcaga tacatgtatc taacagaaga gattttgaaa
360

gaaaatccta gtctttgtga atacatggca ctttcattgg atgctaggca agacatggtg
420

gtggttgagg tacctagact tggaaaggag gctgcagtca aggccattaa agaatgggt
480

caaccaaagt caaagattac tcacttaatc tttgcacca caagtggtgt tgacatgcct
540

ggtgctgatt accaactcac aaaactctta ggtttcgcc catatgtgaa aaggatata
600

atgtaccaac aagggtgttt tgcaggaggc acggtgcttc gtttggcaaa agatttggcc
660

gagaacaaca aagggtgctcg tgtgctagtt gtttggctcg aagtccacgc agtcacattt
720

cgcggccccca gtgatactca ctggacagt ctgttggac aagcattgtt tggagatgga
780

gccgctgcac taattgttgg ttctgatcca gtgcctgaaa ttgagaaacc aatatttgag
840

atggtttggc ctgcacaaac aattgctcca gacagtgaag gtgcatttga tggcatctt
900

cgtgaagctg ggctaaccatt tcattttttt aaagatgttc ctgggattgt atcaaagaac
960

attaataaaag cattgggtga ggcttccaa ccattaggaa ttctgacta caactcaatc
1020

ttttggattt cacacccggg tggacctgca attcttgcatt aagtagaaca aaagctagcc
1080

ttgaagcccg aaaagatgag ggccacgagg gaagtctaa gtgaatatgg aaacatgtca
1140

agcgcatgtg tattgttcat cttagatgag atgcggaga aatcggtca aaatggactt
1200

aagacaactg gagaaggact tgattgggt gtgttgcg gttcggacc aggacttacc
1260

attgaaaccg ttgttcttcg tagcgtggct atataagatg tgtgattgtt tttatTTAA
1320

tgtattactt ttaatcttgc tgccttgaat ttcgatttaa gaataaataa atatatctt
1380

tgataaaaaa aaaaaaaaaa aaaaaaaaaa aagtactctg cgttgttacc actgcttaat
1440

cgaatc
1447

<210> 316
<211> 389
<212> PRT
<213> Trifolium repens

<400> 316

Met Val Ser Val Ala Glu Ile Arg Lys Ala Gln Arg Ala Glu Gly Pro
1 5 10 15

Ala Thr Ile Leu Ala Ile Gly Thr Ala Asn Pro Pro Asn Arg Val Glu
20 25 30

Gln Ser Thr Tyr Pro Asp Phe Tyr Phe Lys Ile Thr Asn Ser Glu His
35 40 45

Lys Thr Glu Leu Lys Glu Lys Phe Gln Arg Met Cys Asp Lys Ser Met
50 55 60

Ile Lys Ser Arg Tyr Met Tyr Leu Thr Glu Glu Ile Leu Lys Glu Asn
65 70 75 80

Pro Ser Leu Cys Glu Tyr Met Ala Pro Ser Leu Asp Ala Arg Gln Asp
85 90 95

Met Val Val Val Glu Val Pro Arg Leu Gly Lys Glu Ala Ala Val Lys
100 105 110

Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile Thr His Leu Ile
115 120 125

Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp Tyr Gln Leu
130 135 140

Thr Lys Leu Leu Gly Leu Arg Pro Tyr Val Lys Arg Tyr Met Met Tyr
145 150 155 160

Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys Asp
165 170 175

Leu Ala Glu Asn Asn Lys Gly Ala Arg Val Leu Val Val Cys Ser Glu
180 185 190

Val Thr Ala Val Thr Phe Arg Gly Pro Ser Asp Thr His Leu Asp Ser
195 200 205

Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala Leu Ile Val
210 215 220

Gly Ser Asp Pro Val Pro Glu Ile Glu Lys Pro Ile Phe Glu Met Val
225 230 235 240

Trp Thr Ala Gln Thr Ile Ala Pro Asp Ser Glu Gly Ala Ile Asp Gly
245 250 255

His Leu Arg Glu Ala Gly Leu Thr Phe His Leu Leu Lys Asp Val Pro
260 265 270

Gly Ile Val Ser Lys Asn Ile Asn Lys Ala Leu Val Glu Ala Phe Gln
275 280 285

Pro Leu Gly Ile Ser Asp Tyr Asn Ser Ile Phe Trp Ile Ala His Pro
290 295 300

Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Gln Lys Leu Ala Leu Lys
305 310 315 320

Pro Glu Lys Met Arg Ala Thr Arg Glu Val Leu Ser Glu Tyr Gly Asn
325 330 335

Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu Met Arg Lys Lys
340 345 350

Ser Ala Gln Asn Gly Leu Lys Thr Thr Gly Glu Gly Leu Asp Trp Gly
355 360 365

Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Ile Glu Thr Val Val Leu
370 375 380

Arg Ser Val Ala Ile
385

<210> 317

<211> 2394

<212> DNA

<213> Trifolium repens

<400> 317

gaattcgatt aagcagtgggt aacaacgcag agtacgcggg gattcaatct gtttgtcata
60

aaatttcactc attgcataga aaaccataca catttgatct tgcaaagaag aaatatggga
120

gacgaaggta tagtgagagg tgtcacaaag cagacaaccc ctgggaaggc tactatattg
180

gctcttggca aggcattccc tcaccaactt gtgatgcaag agtgttttagt tgatggttat
240

tttagggaca ctaattgtga caatcctgaa cttaagcaga aacttgctag actttgtaag
300

acaaccacgg taaaaacaag gtagttgtt atgaatgagg agatactaaa gaaatatcca
360

gaaccttggc tcgaaggcgc ctcaactgta aaacaacgtt tagagatatg taatgaggca
420

gtaacacaaa tggcaattga agcttccaa gtttgctaa agaattgggg tagatccta
480

tcggacataa ctcatgtggt ttatgtttca tctagtgaag ctagattacc cggtggtgac
540

ctatacttgt caaaaaggact aggactaac cctaaaattc aaagaaccat gctctatttc
600

tctggatgct cgggaggcgt agccggcctt cgcgttgcga aagacgtgc tgagaacaac
660

cctggaagta gagtttgct tgctacttcg gaaactacaa ttattggatt caagccacca
720

agtgttgata gaccttatga tcttgggt gtggactct ttggagatgg tgctggtgca
780

atgataattg gtcagaccc ggtatttgaa actgagacac cattgtttga gctgcatact
840

tcagctcagg agtttataacc agacaccgag aagaaaattg atggcggt gacggaggag
900

ggcataagtt tcacactagc aagggactt ccgcagataa tcgaagacaa tgttgaggga
960

ttctgtataata aactaattga tgggttggg ttggagaata aggagtacaa taagttgtt
1020

tgggctgtgc atccaggtgg gcctgcgata ttgaatcgcg tggagaagcg gcttgagttg
1080

tcgccccaga agctgaatgc tagtagaaaa gctctaattgg attatggaaa tgctagcagc
1140

aataactattg tttatgtgct ggaatataatg ctagaagagg aaaagaagat taaaaaggcg
1200

ggtgaggag attctgaatg gggattgata cttgctttg gacctggaat tacttttgag
1260

gggattctag caaggaactt gtgtgcata agtcttatac aattgtgatg catgacttat
1320

actcttattt ctactaatta ttatattaag caaattcaga acttttaagt aatgatttaa
1380

tgaagaatac ttatagtata ttgactttat tcactttcaa agcaagttt tgatcctaag
1440

acatggtaga acttgagcat gtggaatagt tgtaacaaaa actctaagca aatagagact
1500
ttatgttagta taaagcattt ccagacatga taaataatgg tacctcagaa cataaaaatat
1560
attagctat ctttcattccc caactttaca catccaccaa ggtacagaat aagcatatgt
1620
caacacaaaa tgtactctaa gtctaacatg agtaacccaa catgatgcct gattaagtt
1680
aaagaaaaaga aaatctgagg gcatacatct tcaatcacac cactccagag ggaaggcgta
1740
gaacaagctg tccgcccggaaa acactgcaat tcaataaata tcattaggac aacagtgcag
1800
agtcatgcgg gaaatgtctt aagtcactgt actaaaaata taggattata ttatgaacta
1860
tactaacctt ttcacataat agtaacagaa atcagctaag atgaatgtct ggacaatttc
1920
tgagataaga accatgacgg ccataagcca taccggcaagg caaccaataa atgtccacgg
1980
gtatctaaca cctgttgcaa gaaatagtaa gttattagga gatgtgcgg tacgaaattc
2040
aagctacaca acaaaaggag gccagaacaa cagcaatctt gtaaccagat gacaacaata
2100
aatgtaaac ttaaagagac cgaacacacaa aacattgcaa ctcagatgga attgctgcca
2160
tgtaactagt aggagatttgggacgtcaaa tcagtatatt atgcaaatac aaggtatgac
2220
cgccctgtct attgttagcat acaacaaacg tacagtgggt ttgtccctct caaaatggca
2280
ggatcttac agcacaatat ttgggttgt catacttata ccataaaaaaaa aaaaaaaaaaaa
2340
aaaaaaaaaa aaagtactct gcgttggcacactgcttaa tcactagtga attc
2394

<210> 318
<211> 391
<212> PRT
<213> Trifolium repens

<400> 318

Met Gly Asp Glu Gly Ile Val Arg Gly Val Thr Lys Gln Thr Thr Pro
1 5 10 15

Gly Lys Ala Thr Ile Leu Ala Leu Gly Lys Ala Phe Pro His Gln Leu
20 25 30

Val Met Gln Glu Cys Leu Val Asp Gly Tyr Phe Arg Asp Thr Asn Cys
35 40 45

Asp Asn Pro Glu Leu Lys Gln Lys Leu Ala Arg Leu Cys Lys Thr Thr
50 55 60

Thr Val Lys Thr Arg Tyr Val Val Met Asn Glu Glu Ile Leu Lys Lys
65 70 75 80

Tyr Pro Glu Leu Val Val Glu Gly Ala Ser Thr Val Lys Gln Arg Leu
85 90 95

Glu Ile Cys Asn Glu Ala Val Thr Gln Met Ala Ile Glu Ala Ser Gln
100 105 110

Val Cys Leu Lys Asn Trp Gly Arg Ser Leu Ser Asp Ile Thr His Val
115 120 125

Val Tyr Val Ser Ser Ser Glu Ala Arg Leu Pro Gly Gly Asp Leu Tyr
130 135 140

Leu Ser Lys Gly Leu Gly Leu Asn Pro Lys Ile Gln Arg Thr Met Leu
145 150 155 160

Tyr Phe Ser Gly Cys Ser Gly Gly Val Ala Gly Leu Arg Val Ala Lys
165 170 175

Asp Val Ala Glu Asn Asn Pro Gly Ser Arg Val Leu Leu Ala Thr Ser
180 185 190

Glu Thr Thr Ile Ile Gly Phe Lys Pro Pro Ser Val Asp Arg Pro Tyr
195 200 205

Asp Leu Val Gly Val Ala Leu Phe Gly Asp Gly Ala Gly Ala Met Ile
210 215 220

Ile Gly Ser Asp Pro Val Phe Glu Thr Glu Thr Pro Leu Phe Glu Leu
225 230 235 240

His Thr Ser Ala Gln Glu Phe Ile Pro Asp Thr Glu Lys Lys Ile Asp
245 250 255

Gly Arg Leu Thr Glu Glu Gly Ile Ser Phe Thr Leu Ala Arg Glu Leu
260 265 270

Pro Gln Ile Ile Glu Asp Asn Val Glu Gly Phe Cys Asn Lys Leu Ile
275 280 285

Asp Val Val Gly Leu Glu Asn Lys Glu Tyr Asn Lys Leu Phe Trp Ala
290 295 300

359/390

Val His Pro Gly Gly Pro Ala Ile Leu Asn Arg Val Glu Lys Arg Leu
305 310 315 320

Glu Leu Ser Pro Gln Lys Leu Asn Ala Ser Arg Lys Ala Leu Met Asp
325 330 335

Tyr Gly Asn Ala Ser Ser Asn Thr Ile Val Tyr Val Leu Glu Tyr Met
340 345 350

Leu Glu Glu Glu Lys Lys Ile Lys Lys Ala Gly Gly Asp Ser Glu
355 360 365

Trp Gly Leu Ile Leu Ala Phe Gly Pro Gly Ile Thr Phe Glu Gly Ile
370 375 380

Leu Ala Arg Asn Leu Cys Ala
385 390

<210> 319

<211> 1663

<212> DNA

<213> Trifolium repens

<400> 319

gaattcgtt aagcagtgggt aacaacgcag agtacgcggg gatagcaaca cacactttga
60

tttcttttg agtccttgct acgtggcttt accaaaaaac gttgctaagt catcaaccat
120

tccaaattcct taatataacc tatcagtact caccatcttt tcttcctccc tgctaacttt
180

agactcagag aagatggtga atgttaatga gatccgccag gcacagagag ctgaaggccc
240

tgccaccgtg ttggcaatcg gcactgcaac tcctccaaac tgtgtcgatc agagtacata
300

cccagactac tactccgca tcacaaacag tgagcacaag acagagctca aagaaaaatt
360

ccagcgtatg tgtgacaaaat ctatgattaa gaagagatac atgcatttga cagaagagat
420

tttgaaggag aatccaagtt tatgtgagta catggcacct tcattggatg caagacaaga
480

catgggttgtt gtggaagtac caaggctagg aaaagaggct gcaacaaagg ctatcaagga
540

atggggtaa cctaagtcca agattactca cctcatcttt tgcaccacaa gtggtgtgga
600

catgcctggc gccgactatc agcttacaaa gcttttaggc ctgcgtccgc atgtgaagcg
660

ttatatgatg taccaacaag gttgtttcgc tgggtggtacg gtgcttcgtt tggctaaaga
720

360/390

cttggctgaa aacaacaaag gtccccgtgt gttggggtt tgttcagaga tcactgcgg
780

tactttccgt ggaccaggatg acactcatct tgatagcatt gtggggcaag cattgtttgg
840

agatggtgca gcagctgtga tttaggttc agaccatta ccacaagtgc agaagccctt
900

gtttgaattt gatatggactg ctcaaacaat cttccagac agtgaaggag ccattgtatgg
960

gcaccttcgt gaagtcgggc tgacattcca ttcctcaag gatgttcctg gactcatctc
1020

aaagaacatt gagaaagctc ttgtttaggc ctttcaacct ttaggtatct ctgattacaa
1080

ttctatattt tggatcgac atcctgggtgg acctgcaatt ctggaccaag tggaagccaa
1140

atthaagctta aagccagaga aaatgcaagc cacccggcat gtgcttagcg agtatggtaa
1200

catgtcaagt gcatgtgtgt tatttatctt ggatgagatg aggaggaagt caaaagaaga
1260

tggacttgcc acaacaggcg aggggctgga atgggggtgtt ctattcggtt ttggacccgg
1320

actcaactgtt gagactgtat tgctccatag tggtgccact taaattgcct agatatgcta
1380

taactatatg cttatataat tctttgtttc tgggggattt tatcttcact tacttcactg
1440

agcatttgaa taaagtttgt tttaatttata cataatgtaa tatgggtttt cttaatgtac
1500

ccatccatat aatatttgta atacatatat taatcaactt gcaatttcat gaaaaaaaaaaa
1560

aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaa aagaaaaaaa aaaaaaaaaa aaaaaaaaaa
1620

aagtactctg cggtgttacc actgcttaat cactagtgaa ttc
1663

<210> 320

<211> 389

<212> PRT

<213> Trifolium repens

<400> 320

Met Val Asn Val Asn Glu Ile Arg Gln Ala Gln Arg Ala Glu Gly Pro
1 5 10 15

Ala Thr Val Leu Ala Ile Gly Thr Ala Thr Pro Pro Asn Cys Val Asp
20 25 30

Gln Ser Thr Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr Asn Ser Glu His
35 40 45

Lys Thr Glu Leu Lys Glu Lys Phe Gln Arg Met Cys Asp Lys Ser Met
50 55 60

Ile Lys Lys Arg Tyr Met His Leu Thr Glu Glu Ile Leu Lys Glu Asn
65 70 75 80

Pro Ser Leu Cys Glu Tyr Met Ala Pro Ser Leu Asp Ala Arg Gln Asp
85 90 95

Met Val Val Val Glu Val Pro Arg Leu Gly Lys Glu Ala Ala Thr Lys
100 105 110

Ala Ile Lys Glu Trp Gly Gln Pro Lys Ser Lys Ile Thr His Leu Ile
115 120 125

Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp Tyr Gln Leu
130 135 140

Thr Lys Leu Leu Gly Leu Arg Pro His Val Lys Arg Tyr Met Met Tyr
145 150 155 160

Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys Asp
165 170 175

Leu Ala Glu Asn Asn Lys Gly Ala Arg Val Leu Val Val Cys Ser Glu
180 185 190

Ile Thr Ala Val Thr Phe Arg Gly Pro Ser Asp Thr His Leu Asp Ser
195 200 205

Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala Val Ile Val
210 215 220

Gly Ser Asp Pro Leu Pro Gln Val Glu Lys Pro Leu Phe Glu Leu Val
225 230 235 240

Trp Thr Ala Gln Thr Ile Leu Pro Asp Ser Glu Gly Ala Ile Asp Gly
245 250 255

His Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu Lys Asp Val Pro
260 265 270

Gly Leu Ile Ser Lys Asn Ile Glu Lys Ala Leu Val Glu Ala Phe Gln
275 280 285

Pro Leu Gly Ile Ser Asp Tyr Asn Ser Ile Phe Trp Ile Ala His Pro
290 295 300

362/390

Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Ala Lys Leu Ser Leu Lys
305 310 315 320

Pro Glu Lys Met Gln Ala Thr Arg His Val Leu Ser Glu Tyr Gly Asn
325 330 335

Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu Met Arg Arg Lys
340 345 350

Ser Lys Glu Asp Gly Leu Ala Thr Thr Gly Glu Gly Leu Glu Trp Gly
355 360 365

Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu Thr Val Leu Leu
370 375 380

His Ser Val Ala Thr
385

<210> 321

<211> 1653

<212> DNA

<213> Trifolium repens

<400> 321

gaattcgatt aagcagtgggt aacaacgcag agtacgcggg actaaggcctt gattcattgt
60

ttgtttccat aacacaagaa ctagtgtttgc ttgaatctt aagaaaaaat gcctcaaggt
120

gatttgaatg gaagttccttc ggtgaatggc gcacgtgcta gacgtgctcc tactcaggga
180

aaggcaacga tacttgcat tggaaaggct ttccccgccc aggtcctccc tcaagagtgc
240

ttgggttggaaag gattcattcg cgacactaag tgtgacgata cttatattaa ggagaaattg
300

gagcgtcttt gcaaaaacac aactgtgaaa acaagataca cagtaatgtc aaaggagatc
360

ttagacaact atccagagct agccatagat ggaacaccaa caataaggca aaagcttgaa
420

atagcaaatc cagcagttagt tgaaatggca acaagagcaa gcaaagattg catcaaagaa
480

tggggaaagggt cacctcaaga tatcacacac atagtctatg tttcctcgag cgaaattcgt
540

ctaccgggtg gtgaccttta tcttgcaaat gaactcggct taaacagcga tgttaatcg
600

gtaatgctct atttcctcgg ttgctacggc ggtgtcactg gcttacgtgt cgccaaagac
660

atcggcggaaa ataaccctgg tagtagggtg ttactcacaa catccgagac cactattctc
720

363/390

ggtttgcac caccgagtaa agcttagacct tatgacacctg ttggcgctgc actttcggt
780

gatggcgccg ctgctgcaat aatttggaaaca gaccctatat tgaatcaaga atcaccttc
840

atggaattga accatgcagt ccaaaaattc ttgcctgata cacaaaatgt gattgatggt
900

agaatcactg aagagggtat taattttaag cttggaagag accttcctca aaaaattgaa
960

gacaatattg aagaattttg caagaaaatt atggctaaaa gtgatgttaa ggaatttaat
1020

gacttatttt gggctgttca tcctggtggg ccagctatac tcaataagct agaaaatata
1080

ctcaaattga aaagtgataa attggattgt agtaggaagg cattaatgga ttatggaaat
1140

gttagtagca atactatatt ctatgtgatg gagtatatga gagattattt gaaggaagat
1200

ggaagtgaag aatggggatt aggattggct tttggaccag ggattacttt tgaagggggtt
1260

ctcctccgta gccttaatc ttgaaataat aattcatatg aaattacttg tcttaagatt
1320

gtgatagggaa gatgaatatg tattggatta atattgatat ggtgttatTT taagttgatt
1380

ttaaaaaaaag tttattaata aagtatgatg taacaattgt tgTTTgaatg ttaaaaggga
1440

agtatactat tttaagttct tgaccatact gatTTTTCT ttacacatTT tcataatctaa
1500

aattgttcta tgatatcttc attgttgata ctgtaataat ataatatcta atttggctgg
1560

caaaatgaaa gatTTTCAC cgaaaaaaaaaaaaaaa aaaaaaaaaaaa aagtaactctg
1620

cgttgttacc actgcttaat cactagtgaa ttc
1653

<210> 322
<211> 389
<212> PRT
<213> Trifolium repens

<400> 322

Met Pro Gln Gly Asp Leu Asn Gly Ser Ser Ser Val Asn Gly Ala Arg
1 5 10 15

Ala Arg Arg Ala Pro Thr Gln Gly Lys Ala Thr Ile Leu Ala Leu Gly
20 25 30

Lys Ala Phe Pro Ala Gln Val Leu Pro Gln Glu Cys Leu Val Glu Gly
35 40 45

Phe Ile Arg Asp Thr Lys Cys Asp Asp Thr Tyr Ile Lys Glu Lys Leu
50 55 60

Glu Arg Leu Cys Lys Asn Thr Thr Val Lys Thr Arg Tyr Thr Val Met
65 70 75 80

Ser Lys Glu Ile Leu Asp Asn Tyr Pro Glu Leu Ala Ile Asp Gly Thr
85 90 95

Pro Thr Ile Arg Gln Lys Leu Glu Ile Ala Asn Pro Ala Val Val Glu
100 105 110

Met Ala Thr Arg Ala Ser Lys Asp Cys Ile Lys Glu Trp Gly Arg Ser
115 120 125

Pro Gln Asp Ile Thr His Ile Val Tyr Val Ser Ser Ser Glu Ile Arg
130 135 140

Leu Pro Gly Gly Asp Leu Tyr Leu Ala Asn Glu Leu Gly Leu Asn Ser
145 150 155 160

Asp Val Asn Arg Val Met Leu Tyr Phe Leu Gly Cys Tyr Gly Gly Val
165 170 175

Thr Gly Leu Arg Val Ala Lys Asp Ile Ala Glu Asn Asn Pro Gly Ser
180 185 190

Arg Val Leu Leu Thr Thr Ser Glu Thr Thr Ile Leu Gly Phe Arg Pro
195 200 205

Pro Ser Lys Ala Arg Pro Tyr Asp Leu Val Gly Ala Ala Leu Phe Gly
210 215 220

Asp Gly Ala Ala Ala Ala Ile Ile Gly Thr Asp Pro Ile Leu Asn Gln
225 230 235 240

Glu Ser Pro Phe Met Glu Leu Asn His Ala Val Gln Lys Phe Leu Pro
245 250 255

Asp Thr Gln Asn Val Ile Asp Gly Arg Ile Thr Glu Glu Gly Ile Asn
260 265 270

Phe Lys Leu Gly Arg Asp Leu Pro Gln Lys Ile Glu Asp Asn Ile Glu
275 280 285

Glu Phe Cys Lys Lys Ile Met Ala Lys Ser Asp Val Lys Glu Phe Asn
290 295 300

365/390

Asp Leu Phe Trp Ala Val His Pro Gly Gly Pro Ala Ile Leu Asn Lys
305 310 315 320

Leu Glu Asn Ile Leu Lys Leu Lys Ser Asp Lys Leu Asp Cys Ser Arg
325 330 335

Lys Ala Leu Met Asp Tyr Gly Asn Val Ser Ser Asn Thr Ile Phe Tyr
340 345 350

Val Met Glu Tyr Met Arg Asp Tyr Leu Lys Glu Asp Gly Ser Glu Glu
355 360 365

Trp Gly Leu Gly Leu Ala Phe Gly Pro Gly Ile Thr Phe Glu Gly Val
370 375 380

Leu Leu Arg Ser Leu
385

<210> 323

<211> 1600

<212> DNA

<213> Trifolium repens

<400> 323

gaattcacta gtgatataagc agtggtaaca acgcagagta cgcgggggaa tccaccaaatt
60

caacaccatt aataaaccttc caaattctcg ttacctcacc aaatctcatt tttcattata
120

tatcttggtt acatcttttgc ttacctccaa caaaaaaatg gtgaccgttag aagagattcg
180

taacgccccaa cggttcaaatg gcccctgccac tatcttagct tttggcacag ccactccttc
240

taactgtgtc actcaagctg attatcctga ttactacttt cgtatcacca acagcgaaca
300

tatgactgat cttaaggaaa aattcaagcg gatgtgtgat agatcaatga taaagaaaacg
360

ttacatgcac ctaacagaag actttctgaa ggagaatcca aatatgtgtg aatacatggc
420

accatcacta gatgttaagac gagacatagt ggttgttcaa gtaccaaagc taggtaaaga
480

agcagcaaaa aaagccatat gtgaatgggg acaaccaaaa tccaaaatca cacatcttgt
540

tttctgcacc acttccggtg ttgacatgcc gggagccgat tccaactca ccaaactttt
600

aggcttaaaa ccttctgtca agcgtctcat gatgtatcaa caagggttgg tcgctggcgg
660

cacagttctc cgcttagcaa aagaccttgt tgagaataac aaaaatgcaa gagttcttgt
720

tgtttgttct gaaattactg cggttacttt tcgtggacca tcggatactc atcttgattc
780

gctcgtggga caggcgctt ttgggtatgg agccgcagca atgattatttgg tgccggatcc
840

tgatttaacc gtggagcgtc cgattttcga gattgttcg gctgctcaga ctattttcc
900

tgattctgat ggcgcatttgc atggacatct tcgtgaagtgc gggctcactt ttcattttt
960

gaaagatgtt ccggggatta tttcaaagaa cattgaaaaa agtttagtttgc aagctttgc
1020

gccttattggg attaatgatt ggaactcaat attttgggtt gcacatccag gtggaccggc
1080

tatttttagac caggttgaag agaaaactcca tcttaaagag gagaaaactcc ggtccaccccg
1140

gcatgtgctt agtgaatatgc gaaatatgtc aagtgcatttgc tttttttttgc ttttggatga
1200

aatgagaaaag aggtctaaag aggaagggat gattacaact ggtgaagggt tggaatgggg
1260

tgtgtgttt gggtttggac cgggttaac tggtaaacc gttgtgcttc atagtgttcc
1320

ggttcagggt tgaatttattt atacatagat tggaaaataa aatttgccctg ccgagagatg
1380

tgaactaact ttgttaggcaa gctcaaattt aagtttgcata taatattgtgc tttagttat
1440

tatggtatgt aatgtatgt ttactttt ttcgaaattc atgtatgttgc atatgtaaag
1500

taatatgttt gggtttggaaataattttt gttactaaa aaaaaaaaaaaa aaaaaaaaaaaa
1560

aaaaaagtact ctgcgttgc accactgctt aatcgaattc
1600

<210> 324
<211> 391
<212> PRT
<213> Trifolium repens

<400> 324

Met Val Thr Val Glu Glu Ile Arg Asn Ala Gln Arg Ser Asn Gly Pro
1 5 10 15

Ala Thr Ile Leu Ala Phe Gly Thr Ala Thr Pro Ser Asn Cys Val Thr
20 25 30

Gln Ala Asp Tyr Pro Asp Tyr Tyr Phe Arg Ile Thr Asn Ser Glu His
35 40 45

Met Thr Asp Leu Lys Glu Lys Phe Lys Arg Met Cys Asp Arg Ser Met

367/390

50	55	60
Ile Lys Lys Arg Tyr Met His Leu Thr Glu Asp Phe Leu Lys Glu Asn		
65	70	75
Pro Asn Met Cys Glu Tyr Met Ala Pro Ser Leu Asp Val Arg Arg Asp		
85	90	95
Ile Val Val Val Glu Val Pro Lys Leu Gly Lys Glu Ala Ala Lys Lys		
100	105	110
Ala Ile Cys Glu Trp Gly Gln Pro Lys Ser Lys Ile Thr His Leu Val		
115	120	125
Phe Cys Thr Thr Ser Gly Val Asp Met Pro Gly Ala Asp Tyr Gln Leu		
130	135	140
Thr Lys Leu Leu Gly Leu Lys Pro Ser Val Lys Arg Leu Met Met Tyr		
145	150	155
Gln Gln Gly Cys Phe Ala Gly Gly Thr Val Leu Arg Leu Ala Lys Asp		
165	170	175
Leu Val Glu Asn Asn Lys Asn Ala Arg Val Leu Val Val Cys Ser Glu		
180	185	190
Ile Thr Ala Val Thr Phe Arg Gly Pro Ser Asp Thr His Leu Asp Ser		
195	200	205
Leu Val Gly Gln Ala Leu Phe Gly Asp Gly Ala Ala Ala Met Ile Ile		
210	215	220
Gly Ala Asp Pro Asp Leu Thr Val Glu Arg Pro Ile Phe Glu Ile Val		
225	230	235
240		
Ser Ala Ala Gln Thr Ile Leu Pro Asp Ser Asp Gly Ala Ile Asp Gly		
245	250	255
His Leu Arg Glu Val Gly Leu Thr Phe His Leu Leu Lys Asp Val Pro		
260	265	270
Gly Ile Ile Ser Lys Asn Ile Glu Lys Ser Leu Val Glu Ala Phe Ala		
275	280	285
Pro Ile Gly Ile Asn Asp Trp Asn Ser Ile Phe Trp Val Ala His Pro		
290	295	300
Gly Gly Pro Ala Ile Leu Asp Gln Val Glu Glu Lys Leu His Leu Lys		
305	310	315
320		

Glu Glu Lys Leu Arg Ser Thr Arg His Val Leu Ser Glu Tyr Gly Asn
325 330 335

Met Ser Ser Ala Cys Val Leu Phe Ile Leu Asp Glu Met Arg Lys Arg
340 345 350

Ser Lys Glu Glu Gly Met Ile Thr Thr Gly Glu Gly Leu Glu Trp Gly
355 360 365

Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu Thr Val Val Leu
370 375 380

His Ser Val Pro Val Gln Gly
385 390

<210> 325

<211> 1333

<212> DNA

<213> Trifolium repens

<400> 325

gaattcacta gtgattaagc agtggttaaca acgcagagta cgcgggggtg acttgatcta
60

gcagttatca aacacaacag tcttccactt gagctctgtt tctccacatg tcgaagctag
120

tttgcgtcac cggcgccagc gcatgcatcg gttcatggct agtccatctc cttctctcc
180

gcggctacac tgttcacgcc accgtccaaa atctcaatga tgagaacgaa acgaagcata
240

tagaagctct cgaaggagca caaactaatac tccgtctctt ccagatcgat ctccttaact
300

acgacacaat cctcgctgct gtccgcgggtt gcgtcggaaat tttccacctc gttcacctt
360

gcactgtaga caaagttcat gatcctcaga aggagctttt ggatcctgca attaaaggaa
420

ctttgaatgt gcttactgca gctaaggaag taggggtgaa gcgtgtggtt gttacctcgat
480

ctgtctcgcc gattactcct agtcctgatt ggccttctga ttttgttaaa agagaggatt
540

gttggactga ttttgaatat tgcaagaaaa aagagttgtg gtatccgttg tccaaaacat
600

tggctgagaa agctgcgtgg gatTTTCCA aagaaaaatgg tttggatgtt gttgtggta
660

atcccggtac tgtgatgggt cctgttattc caccacggca taatgcaagc atgctcatgc
720

ttgtgagact tcttgaaggc tgcgctgaaa catttgaaga ctatTTATG ggattggtcc
780

acttcaaaga tgttagcatgg gcgcataattt tggtgtatga gaacaaagaa gcatctggta
840

gacatgtgtg tgttgaaact atctctcaact acggtgattt tgtggaaaaa gttgctgaac
900

tttatccaga atatagtgtt cctaggatgc agcgagatac gcaacctgga ttgttgagag
960

cgaatgatgg atcaaagaag ctcatacgatt tgggttgga attcattcca atggagcaaa
1020

ttatcaagga tgctgttagag agtttgaaga acaaaggatt catttcttga atgatgttac
1080

tgttcttgg agaaccctat agttaccaga gtatagacta aataatata aggtgatggg
1140

tcagagaatg agtacttatg tcatacgatt tggtgtata atatgtttc tcaattctta
1200

tatgttaaat tgctaattttt aacttcaata tttatcagcc agtattgttt ttttaataaaa
1260

atattgaagc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaagt actctgcgtt gttaccactg
1320

cttaatcgaa ttc
1333

<210> 326

<211> 320

<212> PRT

<213> Trifolium repens

<400> 326

Met Ser Lys Leu Val Cys Val Thr Gly Gly Ser Gly Cys Ile Gly Ser
1 5 10 15

Trp Leu Val His Leu Leu Leu Arg Gly Tyr Thr Val His Ala Thr
20 25 30

Val Gln Asn Leu Asn Asp Glu Asn Glu Thr Lys His Leu Glu Ala Leu
35 40 45

Glu Gly Ala Gln Thr Asn Leu Arg Leu Phe Gln Ile Asp Leu Leu Asn
50 55 60

Tyr Asp Thr Ile Leu Ala Ala Val Arg Gly Cys Val Gly Ile Phe His
65 70 75 80

Leu Ala Ser Pro Cys Thr Val Asp Lys Val His Asp Pro Gln Lys Glu
85 90 95

Leu Leu Asp Pro Ala Ile Lys Gly Thr Leu Asn Val Leu Thr Ala Ala
100 105 110

Lys Glu Val Gly Val Lys Arg Val Val Val Thr Ser Ser Val Ser Ala
115 120 125

Ile Thr Pro Ser Pro Asp Trp Pro Ser Asp Val Val Lys Arg Glu Asp
130 135 140

Cys Trp Thr Asp Val Glu Tyr Cys Lys Lys Glu Leu Trp Tyr Pro
145 150 155 160

Leu Ser Lys Thr Leu Ala Glu Lys Ala Ala Trp Asp Phe Ser Lys Glu
165 170 175

Asn Gly Leu Asp Val Val Val Asn Pro Gly Thr Val Met Gly Pro
180 185 190

Val Ile Pro Pro Arg His Asn Ala Ser Met Leu Met Leu Val Arg Leu
195 200 205

Leu Glu Gly Cys Ala Glu Thr Phe Glu Asp Tyr Phe Met Gly Leu Val
210 215 220

His Phe Lys Asp Val Ala Leu Ala His Ile Leu Val Tyr Glu Asn Lys
225 230 235 240

Glu Ala Ser Gly Arg His Val Cys Val Glu Thr Ile Ser His Tyr Gly
245 250 255

Asp Phe Val Ala Lys Val Ala Glu Leu Tyr Pro Glu Tyr Ser Val Pro
260 265 270

Arg Met Gln Arg Asp Thr Gln Pro Gly Leu Leu Arg Ala Asn Asp Gly
275 280 285

Ser Lys Lys Leu Ile Asp Leu Gly Leu Glu Phe Ile Pro Met Glu Gln
290 295 300

Ile Ile Lys Asp Ala Val Glu Ser Leu Lys Asn Lys Gly Phe Ile Ser
305 310 315 320

<210> 327

<211> 1470

<212> DNA

<213> Trifolium repens

<400> 327

gaatttcgatt aagcagtgggt aacaacgcag agtacgcggg gaccactcta tttatttcta
60

cttaaacctc acaaaaaata aaccacacaa cacacaaaca ccaaaaacag agcaccgttt
120

ccatcatcaa acaatggcac cagccaaaac tcttaagttat ctctcacaac aaaacactct
180

cgagtcaagt ttcgttaggg aagaagatga gcgtccaaaa gttgcctaca ataacttcag
240
caacgagatt ccaatcattt ctcttgctgg aattgatgag gttgatggtc gtagaacaga
300
gatatgtaac aagattgttg aagcttgtga gaattgggtt attttcagg ttgttgcata
360
tggtgttgcataaaaaacttg tttctgagat gaccgcgttt gctagagagt tttttgcgtt
420
gccacccggaa gagaagctcc ggtttgacat gtccgggtggt aaaaagggtg gtttcattgt
480
ctcttagtcat cttcaaggag aagcagtgaa ggattggaga gagctagtga catattttc
540
atacccaatt aaacaaagag attattcaag gtggccagac aagccagaag gatggaaaga
600
ggtaacagaa aaatacagtg aaaacctaattt gaatttagct tgcaagctat tggaagttt
660
atcagaagca atgggttttag aaaaagaagc tctaacaaaa gcatgtgttg atatggatca
720
aaaagttgtt ataaattattt accaaaaatg ccctgaacct gacccacac ttggccttaa
780
acgtcacact gaccctggca caattactct tttgcttcaa gatcaagttg gtggcttca
840
agctacccaaa gataatggta agacgtggat tacagttcaa ccagttgaag gtgcgtttgt
900
tgttaatctt ggagaccatg gtcactatct aagtaatgga cggttcaaaa atgctgacca
960
tcaaggcagt gtgaattcga actacagccg tttatcaata gcaacatttc aaaatccagc
1020
tccagatgca actgtgtacc ctttgaagat tagagatggt gaaaaatctg ttttggaaaga
1080
accaatcact tttgctgaaa tgtatagaag gaagatgacc aaagaccttg aaattgcttag
1140
gatgaagaag ttggcttaagg aacaacaact tagggacttg gaggagaaca agactaaata
1200
tgaggccaaa cctttgaatg agatcttgc ttaattaattt agtcttaattt taaataataa
1260
attttagact taatttacat ataataattt taatttttg ttcattttat ctatgtttaa
1320
tttgcgtta ttgtccacgt gtattaaagct gcttgggtgt gtgtgccttg gagaataatc
1380
aataatatta catctatgtt taattataaa aaaaaaaaaa aaaaaaaaaa gtatctgcgt
1440
tgttaccact gcttaatcac tagtgaattc
1470

<210> 328

<211> 366

<212> PRT

<213> Trifolium repens

<400> 328

Met Ala Pro Ala Lys Thr Leu Ser Tyr Leu Ser Gln Gln Asn Thr Leu
1 5 10 15

Glu Ser Ser Phe Val Arg Glu Glu Asp Glu Arg Pro Lys Val Ala Tyr
20 25 30

Asn Asn Phe Ser Asn Glu Ile Pro Ile Ile Ser Leu Ala Gly Ile Asp
35 40 45

Glu Val Asp Gly Arg Arg Thr Glu Ile Cys Asn Lys Ile Val Glu Ala
50 55 60

Cys Glu Asn Trp Gly Ile Phe Gln Val Val Asp His Gly Val Asp Thr
65 70 75 80

Lys Leu Val Ser Glu Met Thr Arg Phe Ala Arg Glu Phe Phe Ala Leu
85 90 95

Pro Pro Glu Glu Lys Leu Arg Phe Asp Met Ser Gly Gly Lys Lys Gly
100 105 110

Gly Phe Ile Val Ser Ser His Leu Gln Gly Glu Ala Val Lys Asp Trp
115 120 125

Arg Glu Leu Val Thr Tyr Phe Ser Tyr Pro Ile Lys Gln Arg Asp Tyr
130 135 140

Ser Arg Trp Pro Asp Lys Pro Glu Gly Trp Lys Glu Val Thr Glu Lys
145 150 155 160

Tyr Ser Glu Asn Leu Met Asn Leu Ala Cys Lys Leu Leu Glu Val Leu
165 170 175

Ser Glu Ala Met Gly Leu Glu Lys Glu Ala Leu Thr Lys Ala Cys Val
180 185 190

Asp Met Asp Gln Lys Val Val Ile Asn Tyr Tyr Pro Lys Cys Pro Glu
195 200 205

Pro Asp Leu Thr Leu Gly Leu Lys Arg His Thr Asp Pro Gly Thr Ile
210 215 220

Thr Leu Leu Leu Gln Asp Gln Val Gly Gly Leu Gln Ala Thr Lys Asp

373/390

540

ggcgctacct cgcacccgcg aaccaaacaa ggtggtgctt tgcagaaaga gctcataagg
600

ttttgaatg ctggaatatt tgaaaatgga actgagtc当地 gccacacact accacacaca
660

gccacaagag ctgccc当地 agtgagaatc aacacacttc tccaaggcta ttcaaggtaatt
720

agatttgaaa tcttagaagc tatcaccaag cttcttaaca acaatgtcac cccatgttta
780

ccgcttc当地 gtacaatcac agttcagga gatttagtc当地 ctctttctta cattgctgg
840

ttactaaccg gacgacccaa ttccaaggct catggacctt ctggagaagt acttaatgca
900

aaacaagctt ttcaatcagc tggaatcgat gccgagttct ttgaattaca accaaaagaa
960

ggccttgc当地 ttgttaacgg aaccgctgtt gggtctggtt tagcttctat tgtttttt
1020

gaggctaata tattggcggt gttgtctgaa gttctatctg caattttcgc tgaagttatg
1080

caagggaagc cc当地 atttac cgatcatttgc acacataagt taaaacatca ccctggtaa
1140

attgaggctg ctgctattat ggaacacatt ttggatggga gtgcttatgt taaagacgct
1200

aagaagttgc atgagatgga tc当地 ttacag aagccaaaac aagatagata tgcacttagg
1260

acttc当地 cc当地 aatggcttgg tc当地 ttgatttgaatgatta gattctctac caagtcaatt
1320

gagagagaga tcaactctgt caatgacaat cctttgattt atgtttcaag gaacaaggct
1380

ttgcatggtg gaaattttca aggaacacct atcggaggat ccatggataa tacacgttg
1440

gctcttgc当地 caattggcaa acttatgttt gctcaattct ctgagcttgtt caatgatttt
1500

tacaacaatg gattgccatc aaatctctct gcttagtagaa atccgagctt ggattatgg
1560

ttcaagggat cc当地 aatttgc catggcttct tattgttccg agttgcaata tcttgcaaat
1620

ccggttacaa ctc当地 gtccaa aagtgc当地 aaacacaacc aagatgtcaa ctctttgggt
1680

ttgatttctt ctagaaaaac ttatgaagca attgagatcc ttcaatttgtt gtcttccaca
1740

ttcttgattt cactttgtca agcaattgtt ttaagacatt tggaggagaa tttgaaaaac
1800

tcggtaaaa ataccgttaag ccaagtggcc aaaaagacac taaccatagg tgtcaatgga

1860

gaacttcatc cttcaagatt ttgtaaaaaa gacttattga aagtgggtga taggaaacat
1920

gtctttgcct acattgatga tcctttagt gctacatacc cattgatgca aaaactcagg
1980

caagtactag tggatcatgc attagttat ggagaaaatg agaagaattt gaacacatca
2040

atcttccaaa agattgcaac ttttggaa gagttaaaa acctttgcca aaagagggttg
2100

aaagtgc₂₁₆₀aag gattgcata_t gaaagtggaa attcaacaat tccaaacaag atcaatggat

gcagatctta tccactctac aattttgtga gaaaggagtt gggacttgtt ttgcttaactg
2220

gagaaaaatgt catttcacccg ggtgaagagt gtgcacaaact attcacagct atgtgtcaag
2280

aaaaaatcat tgatcctttt cttgaatgct tggggagagtg gaacggtgct ccttttccaa
2340

tttgttaact ttgattgtta gtcataaaaa tgttttatTTT gtatTTATCA tttgtattTA
2400

tgcgagtgtatataatgtatccatggtttttgtgcctttaatggaaaaaaaaaaaaaaaaaaaaaa
2460

aaaaaaaaaaa aaaagtactc tgcggttgcata ccactgctta atcactagtg aattc
2515

<210> 330
<211> 671
<212> PRT
<213> Trifolium repens

<400> 330

Met	Glu	Val	Val	Ala	Ala	Ala	Ile	Thr	Lys	Asn	Asn	Gly	Lys	Ile	Asp
1				5					10					15	

Ser Phe Cys Leu Asn His Ala Asn Ala Asn Asn Met Lys Val Asn Gly
20 25 30

Ala Asp Pro Leu Asn Trp Gly Val Ala Ala Glu Ala Met Lys Gly Ser
35 40 45

His Leu Asp Glu Val Lys Arg Met Val Glu Glu Tyr Arg Lys Pro Val
50 55 60

Val Arg Leu Gly Gly Glu Thr Leu Thr Ile Ser Gln Val Ala Ala Ile
65 70 75 80

Ala Ala His Asp Gly Ala Thr Val Glu Leu Ser Glu Ser Ala Arg Ala
85 90 95

Gly Val Lys Ala Ser Ser Asp Trp Val Met Glu Ser Met Asn Lys Gly
100 105 110

Thr Asp Ser Tyr Gly Val Pro Thr Gly Phe Gly Ala Thr Ser His Arg
115 120 125

Arg Thr Lys Gln Gly Gly Ala Leu Gln Lys Glu Leu Ile Arg Phe Leu
130 135 140

Asn Ala Gly Ile Phe Gly Asn Gly Thr Glu Ser Ser His Thr Leu Pro
145 150 155 160

His Thr Ala Thr Arg Ala Ala Met Leu Val Arg Ile Asn Thr Leu Leu
165 170 175

Gln Gly Tyr Ser Gly Ile Arg Phe Glu Ile Leu Glu Ala Ile Thr Lys
180 185 190

Leu Leu Asn Asn Asn Val Thr Pro Cys Leu Pro Leu Arg Gly Thr Ile
195 200 205

Thr Ala Ser Gly Asp Leu Val Pro Leu Ser Tyr Ile Ala Gly Leu Leu
210 215 220

Thr Gly Arg Pro Asn Ser Lys Ala His Gly Pro Ser Gly Glu Val Leu
225 230 235 240

Asn Ala Lys Gln Ala Phe Gln Ser Ala Gly Ile Asp Ala Glu Phe Phe
245 250 255

Glu Leu Gln Pro Lys Glu Gly Leu Ala Leu Val Asn Gly Thr Ala Val
260 265 270

Gly Ser Gly Leu Ala Ser Ile Val Leu Phe Glu Ala Asn Ile Leu Ala
275 280 285

Val Leu Ser Glu Val Leu Ser Ala Ile Phe Ala Glu Val Met Gln Gly
290 295 300

Lys Pro Glu Phe Thr Asp His Leu Thr His Lys Leu Lys His His Pro
305 310 315 320

Gly Gln Ile Glu Ala Ala Ile Met Glu His Ile Leu Asp Gly Ser
325 330 335

Ala Tyr Val Lys Asp Ala Lys Lys Leu His Glu Met Asp Pro Leu Gln
340 345 350

Lys Pro Lys Gln Asp Arg Tyr Ala Leu Arg Thr Ser Pro Gln Trp Leu

355

360

365

Gly Pro Leu Ile Glu Val Ile Arg Phe Ser Thr Lys Ser Ile Glu Arg
370 375 380

Glu Ile Asn Ser Val Asn Asp Asn Pro Leu Ile Asp Val Ser Arg Asn
385 390 395 400

Lys Ala Leu His Gly Gly Asn Phe Gln Gly Thr Pro Ile Gly Val Ser
405 410 415

Met Asp Asn Thr Arg Leu Ala Leu Ala Ser Ile Gly Lys Leu Met Phe
420 425 430

Ala Gln Phe Ser Glu Leu Val Asn Asp Phe Tyr Asn Asn Gly Leu Pro
435 440 445

Ser Asn Leu Ser Ala Ser Arg Asn Pro Ser Leu Asp Tyr Gly Phe Lys
450 455 460

Gly Ser Glu Ile Ala Met Ala Ser Tyr Cys Ser Glu Leu Gln Tyr Leu
465 470 475 480

Ala Asn Pro Val Thr Thr His Val Gln Ser Ala Glu Gln His Asn Gln
485 490 495

Asp Val Asn Ser Leu Gly Leu Ile Ser Ser Arg Lys Thr Tyr Glu Ala
500 505 510

Ile Glu Ile Leu Gln Leu Met Ser Ser Thr Phe Leu Ile Ala Leu Cys
515 520 525

Gln Ala Ile Asp Leu Arg His Leu Glu Glu Asn Leu Lys Asn Ser Val
530 535 540

Lys Asn Thr Val Ser Gln Val Ala Lys Lys Thr Leu Thr Ile Gly Val
545 550 555 560

Asn Gly Glu Leu His Pro Ser Arg Phe Cys Glu Lys Asp Leu Leu Lys
565 570 575

Val Val Asp Arg Glu His Val Phe Ala Tyr Ile Asp Asp Pro Cys Ser
580 585 590

Ala Thr Tyr Pro Leu Met Gln Lys Leu Arg Gln Val Leu Val Asp His
595 600 605

Ala Leu Val Asn Gly Glu Ser Glu Lys Asn Leu Asn Thr Ser Ile Phe
610 615 620

Gln Lys Ile Ala Thr Phe Glu Glu Glu Leu Lys Asn Leu Cys Gln Lys
625 630 635 640

Arg Leu Lys Val Gln Gly Leu His Met Lys Val Glu Ile Gln Gln Phe
645 650 655

Gln Thr Arg Ser Met Asp Ala Asp Leu Ile His Ser Thr Ile Leu
660 665 670

<210> 331

<211> 2667

<212> DNA

<213> Trifolium repens

<400> 331

gaatttcgatt aagcagtgg aacaacgcag agtacgcggg agggaaataaa ttcatcattg
60

ttccttattt cccacccaac acaacataac aaatacattt cctctcctct catcacaatt
120

attactttct acacccccc ctctcaacta ttattaacta acataatgga gggattacc
180

aatggccatg ctgaagcaac ttttgcgtg accaaaagtg ttgggtatcc actcaactgg
240

ggcgcaggcg cggagtcgtt gatggggagt catttggatg aggtgaagcg tatggtgag
300

gaataccgta atccattgg taaaattggc ggcgagacgc ttaccattgc tcaggtggct
360

ggaattgctt ctcatgatag tgggtgagg gtggagctgt ctgagtccgc cagggccggc
420

gttaaggcga gtagtggttt ggtgatggac agcatgaaca atgggactga tagttatgg
480

gttaccactg gtttcggcgc cacctctcac cggagaacca agcagggtgg tgccttgcag
540

aaggagctaa ttaggtttt gaatgccgga atatggca atggtacaga atctaactgt
600

acactaccac acacagcaac cagagctgca atgcttgta gaatcaacac tcttctcaa
660

ggatattctg gaatttagatt tgaaattttt gaagctatca caaagcttct aaacaacaac
720

attacccat gtttaccact tcgtggtaca atcacggctt ccgggtatct cgttccgctt
780

tcctacattg ccggtttgg aaccggtaga ccgaactcca aagccgttgg accctccgga
840

gaaattctca atgcaaaaga agctttcaa cttgccggca ttgggtctga gtttttgaa
900

ttgcagccaa aagaaggctt tgctcttgg aatggtactg ctgttggttc tggtttagct
960

tctattgttc tgtttgaagc aaatgtacta gctgtttgt ctgaagttat gtcggcgatt
1020

ttcgctgaag ttatgcaagg gaaaccagaa ttcactgatc atttgactca taagttgaaa
1080

catcacccctg gtcaaattga agctgctgca attatggaac atatttgga tggaagtgct
1140

tatgttaaag cagctaagaa attacacgaa accgatcctt tacaaaagcc gaaacaagat
1200

cgtttatgcac ttagaacttc acctcaatgg cttggcctt tgattgaagt gataagattt
1260

tcaactaagt caattgagag agaaattaac tctgtcaatg ataaccctt gattgatgtt
1320

tcaaggaaca aggccattca cggtggtaat tttcaaggaa cacctattgg agtttcaatg
1380

gataacacac gtttagctct tgcttcaatt ggtaaactca tgtttgctca attctctgaa
1440

cttgttaatg atttttacaa caacgggtta cttcgaatc ttactgctag taggaaccca
1500

agcttggatt acggtttcaa gggatcggaa attgccatgg cttcttattg ttctgagtt
1560

caatatctt ctaatcctgt caccacccat gtccaaagtg cggagcaaca caatcaagat
1620

gttaactctt tgggtttgat ttcttcaaga aaaacaaatg aagctattga gatcctaaag
1680

ctcatgtctt cgacatttct gattgcactt tgtcaagcaa ttgatttaag gcatttggag
1740

gaaaatctga ggaacactgt caagaacacg gtaagccaag tagcgaagag aacactcacc
1800

accgggttta atggagaact tcataccttct agattttgtg agaaagattt gctcaaagtt
1860

gttgataggg agtatgtatt tgcctatgtc gacgatcctt gtctagctac ataccctttg
1920

atgcaaaagt tgagacaagt gcttggat catgcattgg taaatgctga tggagagaag
1980

aatttgaaca catcaatctt tcaaaagatt gcaacttttgg aggatgaatt gaaagctatc
2040

ttgccaaagg aagttgaaag tacaagaact gcatatgaaa atggacaatg tggaatttca
2100

aacaagatta aggaatgcag gtcttatcca ttgtacaagt ttgttagaga ggagtttagga
2160

accgcgttgc taaccggaga aaaaacgata tcgctggcgc aagagtgtga caaattgttc
2220

acagctatgt gccaaaggtaa aattgttgcatttgcattttgg aatgccttgg agagtgaaat
2280

ggtgctcctc taccaatatg ttaatttagca gaattaatat gtttcttga gaagtgattt
2340

ctttatataat ttgttagtata ctatagtagt tgcattgaga agcaattggt ttgtctataa
2400

gcctatggaa aatggcaaaa caatttctg ctc当地gat cgtttattaa gtttcctta
2460

aagtgttaag gaactttaa ttgtttgt aatagaattt catttgtttg ccacaacttt
2520

gggtgcaa atcacgtgat acatgtggtg tttgatgtaa atgggtttt ctcaattat
2580

aaatagtgtt tcagccatga aaaaaaaaaa aaaaaaaaaa aaaaaaagtac tctgcgttgt
2640

taccactgct taatcactag tgaattc
2667

<210> 332

<211> 712

<212> PRT

<213> Trifolium repens

<400> 332

Met Glu Gly Ile Thr Asn Gly His Ala Glu Ala Thr Phe Cys Val Thr
1 5 10 15

Lys Ser Val Gly Asp Pro Leu Asn Trp Gly Ala Ala Ala Glu Ser Leu
20 25 30

Met Gly Ser His Leu Asp Glu Val Lys Arg Met Val Glu Glu Tyr Arg
35 40 45

Asn Pro Leu Val Lys Ile Gly Gly Glu Thr Leu Thr Ile Ala Gln Val
50 55 60

Ala Gly Ile Ala Ser His Asp Ser Gly Val Arg Val Glu Leu Ser Glu
65 70 75 80

Ser Ala Arg Ala Gly Val Lys Ala Ser Ser Gly Trp Val Met Asp Ser
85 90 95

Met Asn Asn Gly Thr Asp Ser Tyr Gly Val Thr Thr Gly Phe Gly Ala
100 105 110

Thr Ser His Arg Arg Thr Lys Gln Gly Gly Ala Leu Gln Lys Glu Leu
115 120 125

Ile Arg Phe Leu Asn Ala Gly Ile Phe Gly Asn Gly Thr Glu Ser Asn
130 135 140

Cys Thr Leu Pro His Thr Ala Thr Arg Ala Ala Met Leu Val Arg Ile
145 150 155 160

Asn Thr Leu Leu Gln Gly Tyr Ser Gly Ile Arg Phe Glu Ile Leu Glu
165 170 175

Ala Ile Thr Lys Leu Leu Asn Asn Ile Thr Pro Cys Leu Pro Leu
180 185 190

Arg Gly Thr Ile Thr Ala Ser Gly Asp Leu Val Pro Leu Ser Tyr Ile
195 200 205

Ala Gly Leu Leu Thr Gly Arg Pro Asn Ser Lys Ala Val Gly Pro Ser
210 215 220

Gly Glu Ile Leu Asn Ala Lys Glu Ala Phe Gln Leu Ala Gly Ile Gly
225 230 235 240

Ser Glu Phe Phe Glu Leu Gln Pro Lys Glu Gly Leu Ala Leu Val Asn
245 250 255

Gly Thr Ala Val Gly Ser Gly Leu Ala Ser Ile Val Leu Phe Glu Ala
260 265 270

Asn Val Leu Ala Val Leu Ser Glu Val Met Ser Ala Ile Phe Ala Glu
275 280 285

Val Met Gln Gly Lys Pro Glu Phe Thr Asp His Leu Thr His Lys Leu
290 295 300

Lys His His Pro Gly Gln Ile Glu Ala Ala Ala Ile Met Glu His Ile
305 310 315 320

Leu Asp Gly Ser Ala Tyr Val Lys Ala Ala Lys Lys Leu His Glu Thr
325 330 335

Asp Pro Leu Gln Lys Pro Lys Gln Asp Arg Tyr Ala Leu Arg Thr Ser
340 345 350

Pro Gln Trp Leu Gly Pro Leu Ile Glu Val Ile Arg Phe Ser Thr Lys
355 360 365

Ser Ile Glu Arg Glu Ile Asn Ser Val Asn Asp Asn Pro Leu Ile Asp
370 375 380

Val Ser Arg Asn Lys Ala Ile His Gly Gly Asn Phe Gln Gly Thr Pro
385 390 395 400

Ile Gly Val Ser Met Asp Asn Thr Arg Leu Ala Leu Ala Ser Ile Gly
405 410 415

Lys Leu Met Phe Ala Gln Phe Ser Glu Leu Val Asn Asp Phe Tyr Asn
420 425 430

Asn Gly Leu Pro Ser Asn Leu Thr Ala Ser Arg Asn Pro Ser Leu Asp
435 440 445

Tyr Gly Phe Lys Gly Ser Glu Ile Ala Met Ala Ser Tyr Cys Ser Glu
450 455 460

Leu Gln Tyr Leu Ala Asn Pro Val Thr Thr His Val Gln Ser Ala Glu
465 470 475 480

Gln His Asn Gln Asp Val Asn Ser Leu Gly Leu Ile Ser Ser Arg Lys
485 490 495

Thr Asn Glu Ala Ile Glu Ile Leu Lys Leu Met Ser Ser Thr Phe Leu
500 505 510

Ile Ala Leu Cys Gln Ala Ile Asp Leu Arg His Leu Glu Glu Asn Leu
515 520 525

Arg Asn Thr Val Lys Asn Thr Val Ser Gln Val Ala Lys Arg Thr Leu
530 535 540

Thr Thr Gly Val Asn Gly Glu Leu His Pro Ser Arg Phe Cys Glu Lys
545 550 555 560

Asp Leu Leu Lys Val Val Asp Arg Glu Tyr Val Phe Ala Tyr Val Asp
565 570 575

Asp Pro Cys Leu Ala Thr Tyr Pro Leu Met Gln Lys Leu Arg Gln Val
580 585 590

Leu Val Asp His Ala Leu Val Asn Ala Asp Gly Glu Lys Asn Leu Asn
595 600 605

Thr Ser Ile Phe Gln Lys Ile Ala Thr Phe Glu Asp Glu Leu Lys Ala
610 615 620

Ile Leu Pro Lys Glu Val Glu Ser Thr Arg Thr Ala Tyr Glu Asn Gly
625 630 635 640

Gln Cys Gly Ile Ser Asn Lys Ile Lys Glu Cys Arg Ser Tyr Pro Leu
645 650 655

Tyr Lys Phe Val Arg Glu Glu Leu Gly Thr Ala Leu Leu Thr Gly Glu
660 665 670

Lys Thr Ile Ser Leu Gly Glu Glu Cys Asp Lys Leu Phe Thr Ala Met
675 680 685

Cys Gln Gly Lys Ile Val Asp Pro Leu Leu Glu Cys Leu Gly Glu Trp
690 695 700

Asn Gly Ala Pro Leu Pro Ile Cys
705 710

<210> 333
<211> 2664
<212> DNA
<213> Trifolium repens

<400> 333
gaattcacta gtgattaagc agtggttaaca acgcagagta cgcggggagg aaataaaattc
60

atcattgttc attatttccc acccaacaca acataacaaa tacattattc tctcctctga
120

tcacaattat tactttctac accctcctct caactattat taacttagcat aatggaggga
180

attaccaatg gccatgctga aacaactttt tgcgtgacca aaagtgttgg tgatccactc
240

aactgggtg cagccgcgga gtcgttgacg gggagtcatt tggatgaggt gaagcgtatg
300

gtggaggagt accgtaatcc gttggctaaa attggcggcg agacgcttac cattgctcag
360

gtggctggaa ttgcttctca tgatagtggt gtgagggtgg agctgtccga gtccgcaagg
420

gccggcgtta aggcgagtag tgattgggtg atggatagca tgaacaatgg gactgatagt
480

tacggtgtta ccaccggttt tggtgccacc tctcacccgga gaaccaagca gggtgtgct
540

ttgcagaagg agctaattag gttttgaat gctggaatat ttggcaatgg tacagaatct
600

aactgtacac taccacacac agcaactaga gctgcaatgc ttgtgagaat caacactctt
660

cttcaagggt actctggtat tagatttcaa attttggaa ctatcacaaa gcttccaaac
720

aacaacatta ccccatgttt accacttcgt ggtacaatca cggcttccgg tgatcttgg
780

ccgcttcct acattgcggg tttgttaacc ggaagaccca actccaaagc agttggacct
840

tccggagaaa ttttgagtgc taaagaagct tttcaactcg cccgcattgg ttctgagttt
900

tttgaattgc aaccaaaaaga aggtcttgct cttgttaatg gtactgctgt tggctctgg
960

ttagcttcta ttgttctgtt tgaagcaaat gtactagctg ttttatccga agttatgtcg
1020

gcgattttcg ctgaagttat gcaagggaaa ccggaattta ccgatcattt gactcataag
1080

ttgaaacatc accctggtca aattgaagct gctgcaatta tggAACATAT tttggatgga
1140

agtgcTTATG ttaaAGCAGC taagaAGTTA cacgAAACCG atcCTTACA AAAACCGAAA
1200

caagatcgTT atgcacttag aacttcacCT caatggCTTG gTCCTTGTat tgaagtgata
1260

agatTTCAA ccaaATCGAT tgAAAGAGAA attaACTCGG tcaACGACAA CCCTTGTAC
1320

gatgttCAA ggaacaaggc cattcatggT ggtaacttTC aaggaACACC tattggagTT
1380

tcaatggata acacacgTT agctcttgCT tcaattggTA aactcatgTT tgctcaattC
1440

tctgaacttg ttaatgATT ttacaacaAC gggTTGCCTT cgtatcttAC tgcttagg
1500

aacccgagCT tggactatgg tttcaaggGA tcggAAATTG ccatggCTTC gtattgttCC
1560

gagttacaAT atcttgCTAA tcctgtcacc acccatgtCC aaagtGCCGA gcaacacaAC
1620

caagatgtTA actctttggg tttgatttCT tctagaaaaAA caaatgaAGC tattgagatt
1680

ctcaagCTCA tgcTTCCAC tttcttgatt gcattatgTC aagcaatcgA cttaaggcac
1740

ttggagggAAA atctcaggAA caccgtcAG aacacggtaa gccaaGTAGC gaagagaaca
1800

ctcaccaccG gcgtcaacGG agaacttcat tcttcttagat tttgtgagaa agatttgct
1860

aaagtgttG atagggagta tgcTTGCC tatGCCGACG atcCTTGTCT agctacatac
1920

cctttgatgc aaaagtgtgAG acaagtgcTT gtggatcatg cattggtaaa tgTTGATGGA
1980

gagaagaatt tgaacacatc aatcttcaa aagattgcaa ctTTTgagGA tgagtGAAA
2040

gctattttgc caaaggaggt tgAAAGTACA agaactgcAT atgAAAATGG acaatgtgGA
2100

atTCaaaca agattaAGGA atgcaggTCT tatccattgt acaagttgt tagagaggAG
2160

tttaggaACCG cgTTGCTAAC CGGAGAAAAAA ACTATATCGC CGGGCGAAGA gtgcgataAA
2220

ttgttcacAG ctatgtGCCA aggtAAAATT gttgatcCTC ttatggatG cctcgagAG
2280

tggaatggtg ctcctctacc aatatgttaa ttagcataat atgtttctt tgagaagtga
2340

ttactttata tatttgtagt atactatagt agttgcattg agaagaaatt ggtttgtta
2400

taaggctatg gaaaatggca aatcaatttt ctgctcaaag catcgtttat taagtttcc
2460

ttaaagtgtt aaggaactt taattgttt tgtaatagaa ttcatgggtt ttgcacaaac
2520

tttgggtgca aatatcacat gatacatgtg gtgttgcattg taaatgggtt ttttcaata
2580

aataaatagt gtttcaacta aaaaaaaaaa aaaaaaaaaa aaaaaaaaaaag tactctgcgt
2640

tgttaccact gcttaatcga attc
2664

<210> 334

<211> 712

<212> PRT

<213> Trifolium repens

<400> 334

Met Glu Gly Ile Thr Asn Gly His Ala Glu Thr Thr Phe Cys Val Thr
1 5 10 15

Lys Ser Val Gly Asp Pro Leu Asn Trp Gly Ala Ala Ala Glu Ser Leu
20 25 30

Thr Gly Ser His Leu Asp Glu Val Lys Arg Met Val Glu Glu Tyr Arg
35 40 45

Asn Pro Leu Ala Lys Ile Gly Gly Glu Thr Leu Thr Ile Ala Gln Val
50 55 60

Ala Gly Ile Ala Ser His Asp Ser Gly Val Arg Val Glu Leu Ser Glu
65 70 75 80

Ser Ala Arg Ala Gly Val Lys Ala Ser Ser Asp Trp Val Met Asp Ser
85 90 95

Met Asn Asn Gly Thr Asp Ser Tyr Gly Val Thr Thr Gly Phe Gly Ala
100 105 110

Thr Ser His Arg Arg Thr Lys Gln Gly Gly Ala Leu Gln Lys Glu Leu
115 120 125

Ile Arg Phe Leu Asn Ala Gly Ile Phe Gly Asn Gly Thr Glu Ser Asn
130 135 140

Cys Thr Leu Pro His Thr Ala Thr Arg Ala Ala Met Leu Val Arg Ile

145

150

155

160

Asn Thr Leu Leu Gln Gly Tyr Ser Gly Ile Arg Phe Glu Ile Leu Glu
165 170 175

Ala Ile Thr Lys Leu Pro Asn Asn Ile Thr Pro Cys Leu Pro Leu
180 185 190

Arg Gly Thr Ile Thr Ala Ser Gly Asp Leu Val Pro Leu Ser Tyr Ile
195 200 205

Ala Gly Leu Leu Thr Gly Arg Pro Asn Ser Lys Ala Val Gly Pro Ser
210 215 220

Gly Glu Ile Leu Ser Ala Lys Glu Ala Phe Gln Leu Ala Gly Ile Gly
225 230 235 240

Ser Glu Phe Phe Glu Leu Gln Pro Lys Glu Gly Leu Ala Leu Val Asn
245 250 255

Gly Thr Ala Val Gly Ser Gly Leu Ala Ser Ile Val Leu Phe Glu Ala
260 265 270

Asn Val Leu Ala Val Leu Ser Glu Val Met Ser Ala Ile Phe Ala Glu
275 280 285

Val Met Gln Gly Lys Pro Glu Phe Thr Asp His Leu Thr His Lys Leu
290 295 300

Lys His His Pro Gly Gln Ile Glu Ala Ala Ala Ile Met Glu His Ile
305 310 315 320

Leu Asp Gly Ser Ala Tyr Val Lys Ala Ala Lys Lys Leu His Glu Thr
325 330 335

Asp Pro Leu Gln Lys Pro Lys Gln Asp Arg Tyr Ala Leu Arg Thr Ser
340 345 350

Pro Gln Trp Leu Gly Pro Leu Ile Glu Val Ile Arg Phe Ser Thr Lys
355 360 365

Ser Ile Glu Arg Glu Ile Asn Ser Val Asn Asp Asn Pro Leu Ile Asp
370 375 380

Val Ser Arg Asn Lys Ala Ile His Gly Gly Asn Phe Gln Gly Thr Pro
385 390 395 400

Ile Gly Val Ser Met Asp Asn Thr Arg Leu Ala Leu Ala Ser Ile Gly
405 410 415

Lys Leu Met Phe Ala Gln Phe Ser Glu Leu Val Asn Asp Phe Tyr Asn
420 425 430

Asn Gly Leu Pro Ser Tyr Leu Thr Ala Ser Arg Asn Pro Ser Leu Asp
435 440 445

Tyr Gly Phe Lys Gly Ser Glu Ile Ala Met Ala Ser Tyr Cys Ser Glu
450 455 460

Leu Gln Tyr Leu Ala Asn Pro Val Thr Thr His Val Gln Ser Ala Glu
465 470 475 480

Gln His Asn Gln Asp Val Asn Ser Leu Gly Leu Ile Ser Ser Arg Lys
485 490 495

Thr Asn Glu Ala Ile Glu Ile Leu Lys Leu Met Ser Ser Thr Phe Leu
500 505 510

Ile Ala Leu Cys Gln Ala Ile Asp Leu Arg His Leu Glu Glu Asn Leu
515 520 525

Arg Asn Thr Val Lys Asn Thr Val Ser Gln Val Ala Lys Arg Thr Leu
530 535 540

Thr Thr Gly Val Asn Gly Glu Leu His Ser Ser Arg Phe Cys Glu Lys
545 550 555 560

Asp Leu Leu Lys Val Val Asp Arg Glu Tyr Val Phe Ala Tyr Ala Asp
565 570 575

Asp Pro Cys Leu Ala Thr Tyr Pro Leu Met Gln Lys Leu Arg Gln Val
580 585 590

Leu Val Asp His Ala Leu Val Asn Val Asp Gly Glu Lys Asn Leu Asn
595 600 605

Thr Ser Ile Phe Gln Lys Ile Ala Thr Phe Glu Asp Glu Leu Lys Ala
610 615 620

Ile Leu Pro Lys Glu Val Glu Ser Thr Arg Thr Ala Tyr Glu Asn Gly
625 630 635 640

Gln Cys Gly Ile Ser Asn Lys Ile Lys Glu Cys Arg Ser Tyr Pro Leu
645 650 655

Tyr Lys Phe Val Arg Glu Glu Leu Gly Thr Ala Leu Leu Thr Gly Glu
660 665 670

Lys Thr Ile Ser Pro Gly Glu Glu Cys Asp Lys Leu Phe Thr Ala Met

675

680

685

Cys Gln Gly Lys Ile Val Asp Pro Leu Met Glu Cys Leu Gly Glu Trp
690 695 700

Asn Gly Ala Pro Leu Pro Ile Cys
705 710

<210> 335

<211> 1296

<212> DNA

<213> Trifolium repens

<400> 335

gaatttcgatt aagcagtgggt aacaacgcag agtacgcggg atagtagtagtttggagaaaaaa
60

atacacaaaat aaagtaaaca ctatcataga aagagagtca aaaatggctg aaggaaaaagg
120

aagggtttgt gttactggag gaacagggttt tcttggttca tggatcatca agagtcttct
180

tgaaaatgga tactctgtta ataccactat tagagctgat ccagaacgta agagggatgt
240

aagcttccta acaaattctac ccggcgcatc cgaaaggcta catttcttca acgccgatct
300

agacgaccca gagagtttca acgaagcaat tgaagggtgt gtcgggatata tccacaccgc
360

ttcaccaatc gatttcgccc tgagtgagcc agaagaaaata gtgacaaaaaa gaacagtggaa
420

tggagcatta ggaattttaa aagcatgtgtt gaattcaaag acagtgaaga gatttattta
480

cacttcaagt ggttctgctg tttcattcaa tggaaaaaac aaagatgttt tggatgagag
540

tgattggagt gatgttgatt tgcttagaag tgttaaacca tttggttggaa gttatgggt
600

ttcaaagact ttggctgaga aagcagtgt tgaatttggt caacaaaatg ggattgtatgt
660

tgttactttt attcttcctt ttattgttgg aagttttgtt tgccttaagc ttcctgattc
720

tgttggaaaa gctcttgaaa tggacttagg caaaaaggaa caaattggta ttataagttt
780

ccacatggta catgtggatg atgtggctag agcacatatt tatctacttg agaatcctgt
840

tccaggaggt agatataatt gttcaccatt ctttgttatct attgaagaaa tgtcacaact
900

tctttcagcc aaatatccag aatatcaaatt actatcgta gatgagttga agggaaatcaa
960

aggcgcaagg ttgccagatt tgaactcgaa aaagctcggt gacgctgggtt ttgagttaa

1020

gtatagtgtc ggtgatatgt tcgatgatgc gattcaatgc tgcaaggaaa aaggctatct
1080

ctaagtatgt gtttgaaaaa aattccatga agctgagaaa acaataatat gcctaaaatc
1140

aatgatggct aatgaaatgt acaagtttat gcataaagtt atttgtgatg aatcaaataa
1200

tgaaataatc ggttcattt tccgaaaaaaaaaaaaaaaaaaaaaaa aaaaactact
1260

ctgcgttgtt accactgctt aatcactagt gaattc
1296

<210> 336

<211> 326

<212> PRT

<213> Trifolium repens

<400> 336

Met Ala Glu Gly Lys Gly Arg Val Cys Val Thr Gly Gly Thr Gly Phe
1 5 10 15

Leu Gly Ser Trp Ile Ile Lys Ser Leu Leu Glu Asn Gly Tyr Ser Val
20 25 30

Asn Thr Thr Ile Arg Ala Asp Pro Glu Arg Lys Arg Asp Val Ser Phe
35 40 45

Leu Thr Asn Leu Pro Gly Ala Ser Glu Arg Leu His Phe Phe Asn Ala
50 55 60

Asp Leu Asp Asp Pro Glu Ser Phe Asn Glu Ala Ile Glu Gly Cys Val
65 70 75 80

Gly Ile Phe His Thr Ala Ser Pro Ile Asp Phe Ala Val Ser Glu Pro
85 90 95

Glu Glu Ile Val Thr Lys Arg Thr Val Asp Gly Ala Leu Gly Ile Leu
100 105 110

Lys Ala Cys Val Asn Ser Lys Thr Val Lys Arg Phe Ile Tyr Thr Ser
115 120 125

Ser Gly Ser Ala Val Ser Phe Asn Gly Lys Asn Lys Asp Val Leu Asp
130 135 140

Glu Ser Asp Trp Ser Asp Val Asp Leu Leu Arg Ser Val Lys Pro Phe
145 150 155 160

Gly Trp Ser Tyr Gly Val Ser Lys Thr Leu Ala Glu Lys Ala Val Leu

390/390

165

170

175

Glu Phe Gly Gln Gln Asn Gly Ile Asp Val Val Thr Leu Ile Leu Pro
180 185 190

Phe Ile Val Gly Ser Phe Val Cys Pro Lys Leu Pro Asp Ser Val Glu
195 200 205

Lys Ala Leu Val Leu Val Leu Gly Lys Lys Glu Gln Ile Gly Ile Ile
210 215 220

Ser Phe His Met Val His Val Asp Asp Val Ala Arg Ala His Ile Tyr
225 230 235 240

Leu Leu Glu Asn Pro Val Pro Gly Gly Arg Tyr Asn Cys Ser Pro Phe
245 250 255

Phe Val Ser Ile Glu Glu Met Ser Gln Leu Leu Ser Ala Lys Tyr Pro
260 265 270

Glu Tyr Gln Ile Leu Ser Val Asp Glu Leu Lys Glu Ile Lys Gly Ala
275 280 285

Arg Leu Pro Asp Leu Asn Ser Lys Lys Leu Val Asp Ala Gly Phe Glu
290 295 300

Phe Lys Tyr Ser Val Gly Asp Met Phe Asp Asp Ala Ile Gln Cys Cys
305 310 315 320

Lys Glu Lys Gly Tyr Leu
325

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU02/01345

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl. ⁷: C12N 15/29, 15/52, 15/53, 15/55, 15/60, 15/61; A01H 5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

SEE ELECTRONIC DATABASE BOX BELOW

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SEE ELECTRONIC DATABASE BOX BELOW

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PEPTIDE DATABASES (SWISSPROT, GENBANK, EMBL, PIR) DGENE: SEQ ID NOS

2,9,14,18,24,65,70,79,92,96,109,111,118,136,148,154,156,160,162,164,169,186,195,197,203,246,248,250,279,287,29
4,299,304,308,310,312,314,318,320,322,324,326,328,334

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
PX	WO 02 18604 A (THE SALK INSTITUTE FOR BIOLOGICAL STUDIES) 7 March 2002 Fig 1D shares ~92% identity with SEQ ID NOS 2, 9, 14, 308	1-3, 13-19, 25, 27
X	US 6 054 636 A (FADER GM) 25 April 2000 Fig 2 shares ~81% identity with SEQ ID NOS 2, 9, 14, 308	1-3, 13-27

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 28 November 2002	Date of mailing of the international search report 05 DEC 2002
Name and mailing address of the ISA/AU AUSTRALIAN PATENT OFFICE PO BOX 200, WODEN ACT 2606, AUSTRALIA E-mail address: pct@ipaaustralia.gov.au Facsimile No. (02) 6285 3929	Authorized officer TERRY MOORE Telephone No : (02) 6283 2632

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU02/01345

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99 36543 A (PIONEER HI-BRED INTERNATIONAL, INC.) 22 July 1999 SEQ ID NO 2 shares ~81% identity with SEQ ID NOS 2, 9, 14, 308 Genbank Acc No AAB41524 chalcone isomerase (<i>Medicago sativa</i>) 29 January 1997 (See also Medline Abstract 8193301) 92% identity with SEQ ID NOS 18, 310 Genbank Acc No CAA74847 anther-specific protein (<i>Nicotiana sylvestris</i>) (See also Medline Abstract 99084767) 83% identity with SEQ ID NOS 96, 322 and 67% identity with SEQ ID NOS 318, 70 Genbank Acc No CAC14061 chalcone synthase (<i>Ruta graveolens</i>) 27 October 2000 ~87% identity with SEQ ID NOS 24, 65, 79, 92, 102, 107, 314, 316, 320, 324 Genbank Acc No AAB41556 chalcone reductase (<i>Medicago sativa</i>) 30 January 1997 ~95% identity with SEQ ID NOS 109, 118, 312 Genbank Acc No CAA11226 chalcone reductase (<i>Sesbania rostrata</i>) 3 July 2001 90% identity with SEQ ID NO 111 Genbank Acc No AAK52955 dihydro-flavonoid reductase-like protein (<i>Zea mays</i>) 14 May 2001 69% identity with SEQ ID NOS 287, 160 and 53% identity with SEQ ID NO 148	1-3, 13-17, 21, 22, 24-27 1-3, 13-18, 24-27 1, 2, 4, 13-18, 24-26, 28 1, 2, 4, 13-18, 24-26, 28 1, 2, 5, 13-18, 20, 24-26, 29 1, 2, 5, 13-18, 24-26, 29 1, 2, 6, 13-18, 24-26, 30 1, 2, 7, 9, 13-17, 24-26, 31, 32 1, 2, 6, 13-17, 21, 22, 24-26, 30
PX	WO 02 063021 A (PIONEER HI-BRED INTERNATIONAL, INC.) 15 August 2002 SEQ ID NO 1 shares 74% identity with SEQ ID NOS 148, 160, 287 Genbank Acc No AAD54273 dihydroflavonol-4-reducatse DFR1 (<i>Glycine max</i>) 10 September 1999 81 % identity with SEQ ID NO 169 WO 95 27790 A (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE) 19 October 1995 SEQ ID NO 1 shares 43% identity with SEQ ID NOS 136, 156, 326, 39% identity with SEQ ID NO 154 and 51% identity with SEQ ID NO 294.	1, 2, 6, 13-18, 24-26, 30 1, 2, 6, 13-18, 24-26, 30 1, 2, 6, 13-18, 24-26, 30
PX	WO 02 10210 A (BAYER AKTIENGESELLSCHAFT) 7 February 2002 SEQ ID NO 2329 shares 51% identity with SEQ ID NO 164, SEQ ID NO 636 shares 62% identity with SEQ ID NO 186, SEQ ID NO 1573 shares 49% identity with SEQ ID NOS 246, 248, SEQ ID NO 2091 shares 57% identity with SEQ ID NOS 304, 299 WO 99 14351 (E.I. DU PONT DE NEMOURS AND COMPANY) 25 March 1999 SEQ ID NO 1 shares 56% identity with SEQ ID NO 162	1, 2, 7, 9, 13-17, 24-26, 31, 32 1, 2, 6, 13-17, 21, 22, 24-26, 30

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU02/01345

C (Continuation)		DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*		Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
PX		WO 02 26994 A (AGRICULTURE VICTORIA SERVICES PTY LTD) 4 April 2002 Fig 39 shares 72% identity with SEQ ID NO 294	1, 2, 6, 13-18, 21, 22, 24-26, 30
X		WO 97 12982 A (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE) 10 April 1997 SEQ ID NO 5 shares 55% identity with SEQ ID NO 294	1, 2, 6, 13-17, 24-26, 30
X		Genbank Acc No CAA80265 flavonoid 3',5'-hydroxylase (<i>Petunia x hybrida</i>) 7 December 1993 70% identity with SEQ ID NO 197	1, 2, 8, 13-18, 24-26, 32
X		EP 1 033 405 (CERES INCORPORATED) 6 September 2000 SEQ ID NO 49742 shares 57% identity with SEQ ID NO 195	1, 2, 8, 13-18, 24-26, 32
X		Genbank Acc No AAF23859 DFR-like protein (<i>Arabidopsis thaliana</i>) 11 January 2000 61% identity with SEQ ID NO 186	1, 2, 7, 13-18, 24-26, 31
X		Genbank Acc No BAB01697 oxidase-like protein (<i>Arabidopsis thaliana</i>) 27 December 2000 50% identity with SEQ ID NOS 246, 248	1, 2, 9, 13-18, 24-26, 33
X		TREMBL Acc No CAB63776 F3'H1 protein (<i>Glycine max</i>) 1 May 2000 85% identity with SEQ ID NO 328, 203	1, 2, 9, 13-18, 24-26, 33
X		Genbank Acc No CAB78172 flavanone 3-beta-hydroxylase (<i>Arabidopsis thaliana</i>) 16 March 2000 57% identity with SEQ ID NOS 304, 299	1, 2, 9, 13-17, 24-26, 33
X		Genbank Acc No AAG49298 Flavonoid 3'-hydroxylase (<i>Callistephus chinensis</i>) 16 January 2001 68% identity with SEQ ID NO 250	1, 2, 10, 13-18, 20, 24-26, 34
X		Genbank Acc No AAA99500 Phenylalanine ammonia lyase (<i>Stylosanthes humilis</i>) 15 May 1996 88% identity with SEQ ID NOS 254, 259, 269, 271, 273, 275, 330, 332, 334	1, 2, 11, 13-18, 24-26, 35
X		Genbank Acc No CAA41169 phenylalanine ammonia lyase (<i>Medicago sativa</i>) 5 May 1995 87% identity with SEQ ID NOS 254, 259, 269, 271, 273, 275, 330, 332, 334	1, 2, 11, 13-18, 24-26, 35
X		Genbank Acc No AAB41550 vestitone reductase (<i>Medicago sativa</i>) 30 January 1997 (See also Medline abstract 7625843) 95% identity with SEQ ID NOS 336, 279	1, 2, 12-18, 21, 22, 24-26, 36

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU02/01345

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos :
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos :
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos :
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See supplemental Box

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/AU02/01345
--

Supplemental Box 1

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: II (lack of unity)

The international application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single general inventive concept. The fundamental test for unity of invention is specified in Rule 13.2 of the Regulations under the PCT.

"Where a group of inventions is claimed in one and the same international application, the requirement of unity of invention referred to in Rule 13.1 shall be fulfilled only where there is a technical relationship among those inventions involving one or more of the same or corresponding special technical features. The expression "special technical feature" shall mean those technical features that define a contribution which each of the claimed inventions, considered as a whole, make over the prior art."

The problem addressed by the application is the modification of flavonoid biosynthesis (see page 2, line 29-page 3, line 7). The solution provided by the claims resides in the use of 56 specific polypeptides from clover, medic, ryegrass or fescue species (claim 25) and the nucleic acids or fragments coding for these polypeptides (claim 1). These 56 specific polypeptides fall within the following ten groups:

1.	Chalcone isomeras (CHI)	(SEQ IDS 2,9,14,18,308,310)
2.	Chalcone synthase (CHS)	(SEQ IDS 24,65,70,79,92,96,102,107,314,316,318,322,324)
3.	Chalcone reductase (CHR)	(SEQ IDS 109,111,118,312)
4.	Dihydroflavonol 4-reductase (DFR)	(SEQ IDS 136,148,154,156,160,162,164,169,287,294,326)
5.	Leucoanthocyanidin reductase (LCR)	(SEQ ID 186)
6.	Flavonoid 3',5' hydrolase (F3'5'H)	(SEQ IDS 195,197)
7.	Flavanone 3-hydrolase (F3H)	(SEQ IDS 203,246,248,299,304,328)
8.	Flavonoid 3'-hydroxylase (F3'H)	(SEQ ID 250)
9.	Phenylalanine ammonia-lyase (PAL)	(SEQ IDS 254,259,269,271,273,275,330,332,334)
10.	Vestitone reductase (VR)	(SEQ IDS 279,336)

The application acknowledges that representatives of these enzyme species, and the nucleotides that encode them, are known and have been isolated from other plant species (see page 2 lines 29-31). This is supported by the following documents, which disclose the isolation and characterisation of a number of these enzymes from a range of species, including clover and medic and rye.

EMBL CAA63306	<i>Secale cereale</i> chalcone synthase (CHS) (5 March 1999)
GENBANK AAA17993	<i>Trifolium subterraneum</i> phenylalanine ammonia-lyase (PAL) (10 May 1994)
PIR S66262	<i>Medicago sativa</i> vestitone reductase (VS) (12 November 1999)
SWISSPROT P51109	<i>Medicago sativa</i> dihydroflavonol 4-reductase (DHR) (1 October 1996)
SWISSPROT P51088	<i>Trifolium subterraneum</i> chalcone synthase (CHS) (15 July 1999)
PIR S44371	<i>Medicago sativa</i> chalcone isomerase (CHI) (16 July 1999)
Medline Abstract 11164576	altered pigmentation using CHS and DFR
Medline Abstract 7981963	altered plant stress response using CHS and PAL

These documents disclose not only flavonoid biosynthesis enzymes in a range of plant species they also disclose manipulation of these sequences to modify features such as pigmentation and stress responses. Thus features such as the 10 listed enzyme families, the isolation of representative of these families from a range of plant species and modification of flavonoid pathway enzymes are known. Furthermore, the enzymes isolated from the 4 specific species: clover, medic, ryegrass and fescue, do not appear to contribute any advantage or produce any unexpected result in comparison to known members of the same families isolated from other species. Thus these features are known or are obvious and cannot be regarded as "special technical features" conferring unity on the separate inventions.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU02/01345**Supplemental Box 1**

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: II (lack of unity)

In the absence of an obvious special technical feature, it is appropriate to use the Markush approach.

Claims 1 and 26 are written as claims directed to alternatives, in a so-called Markush style of drafting. The application of the test for Markush claims gives the following result:

(A) the common property is modification of the flavonoid biosynthesis pathway.

(B) (1) no common structure is evident as the structures of the polypeptides are not revealed

(B) (2) there is no single recognised class of compounds embracing all the polypeptides, as the polypeptides belong to different classes ie CHI, CHS, CHR, DFR, LCR F3'5'H, F3H, F3'H, PAL, VR, each carrying out different biological functions.

The species of origin of the polypeptides does not provide a legitimate classification as proteins are primarily classified by their activity not their origin. Thus the polypeptides can be grouped into 10 classes CHI, CHS, CHR, DFR, LCR F3'5'H, F3H, F3'H, PAL, VR, based on their activities, and represent 10 different inventions. Each of these inventions can only be searched using independent search strategies and thus each search requires significant additional effort.

As a service to the Applicant, multiple inventions, as specified by the Applicant, were searched for a single search fee with the proviso that the total number of amino acid sequences associated with the combination of inventions was no greater than 10. This offer was independent of unity consideration and was provided solely as a service to the Applicant. For five additional search fees all the inventions, totalling 56 sequences were searched.

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report				Patent Family Member			
US	6 054 636	AU	94934/98	EP	1 015 614	WO	99 14351
WO	99 36543	AU	22321/99	EP	1 045 909		
WO	99 14351	AU	94934/98				
WO	97 12892	EP	0 853 672	FR	2739395		

END OF ANNEX