каф. ЗБП, Биологический ф-т, СПбГУ	2016-09-29
Линейные модели — Условия применимости, множ. регрессия	Вариант № 01

Ф.И.О.:			

1. (a)	(b)	(c)	(d)	
2. (a)	(b)	(c)	(d)	
3. (a)	(b)	(c)	(d)	
4. (a)	(b)	(c)		

(-	7 [()	(-)		
5. (a	a) [(b)	(c)	(d)	

6. (a)	(b)	(c)	(d)	
0 . (\mathbf{a})	[(b)	(6)	(a)	

7. (a)	(b)	(c)	(d)	

8.	(a)	(b)	(c)	(d)	

9.										
----	--	--	--	--	--	--	--	--	--	--

Дата: 2016-09-29

1. Что такое доверительная вероятность (p-value)? Отметьте справедливые утверждения.

- (a) p показывает вероятность того, что можно отвергнуть H_0
- (b) Низкое значение p показывает, что значение тестовой статистики экстремально при условии справедливости H_O
- (c) Высокое значение p показывает, что значение тестовой статистики вполне обычно, если H_{O} была бы справедлива
- (d) p оценивает вероятность получить такое значение тестовой статистики, если H_0 верна
- 2. Отметьте условия применимости линейной регрессии
 - (а) Линейная связь
 - (b) Независимость значений *у* друг от друга
 - (c) Коэффициент детерминации $R^2 > 0.79$
 - (d) Нормальное распределение остатков
- 3. Какими из этих свойств обладают точки, исключение которых из расчетов может сильно повлиять на ход регрессии?
 - (а) Положение непосредственно на линии регрессии
 - (b) Большая величина остатка
 - (с) Очень большие и очень маленькие значения х
 - (d) Сильное отклонение от ожидаемого значения
- 4. Посмотрите на графики остатков (рис. 1) и отметьте истинные утверждения

Рис. 1: Диагностические графики остатков линейной регрессии.

- (а) Нарушено условие гомогенности дисперсий
- (b) Нарушено условие нормального распределения ошибок
- (с) Все условия соблюдены, нарушения крайне незначительны
- 5. Стандартизация (z-score scaling) шкал всех предикторов перед выполнением регрессионного анализа:

Дата: 2016-09-29

- (а) не позволяет правомерно сравнить силу эффектов разнородных предикторов
- (b) позволяет обойтись без проверки состоятельности модели
- (c) центрует значения каждого предиктора X_i вокруг нуля вместо средней
- (d) позволяет оценить ошибку предсказания модели
- 6. Во множественной регрессии, описываемой моделью $Y = 0.01 + 1.4X_1 4.3X_2 + 0.8X_3$, интерсепт это:
 - (a) ожидаемое среднее значение зависимой переменной, когда все предикторы (X_1, X_2, X_3) равны нулю
 - (b) один из параметров модели
 - (с) один из предикторов модели
 - (d) самый слабый предиктор
- 7. Поправка adjusted R^2 :
 - (а) всегда уменьшается с увеличением количества предикторов
 - (b) применима только для моделей с предварительно стандартизированными предикторами
 - (с) позволяет определить наиболее значимый предиктор множественной модели
 - (d) позволяет правомерно сравнивать модели с разным количеством предикторов
- 8. Во встроенном датасете stackloss пусть переменная stack.loss будет зависимой, а переменные Air.Flow, Water.Temp, Acid.Conc. предикторами. Проведите регрессионный анализ и определите значение коэффициента Water.Temp
 - (a) 1.2953
 - (b) -0.1521
 - (c) -39.9197
 - (d) NA
- 9. Для встроенного датасета stackloss рассчитайте (предскажите) значение зависимой переменной stack.loss при условии, что предиктор Air.Flow принимает значение 60, а остальные независимые переменные принимают свои средние значения. Запишите результат, округленный до третьего знака.