Contents

- 1 멀티심 소개
- 2 멀티심 회로도 작성
- 3 멀티심 계측기 사용하여 회로 해석
- 4 멀티심 Analysis 이용한 회로 해석

MultiSim 소개

- ❖통합적인 전자공학 실험환경을 PC에 도식적으로 시뮬레이션 할 수 있습니다.
- ❖ Multisim은 시뮬레이션이 동작하고 있는 상태에서 도 회로상의 변화를 줌과 동시에 그때의 변화를 즉시 확인할 수 있는 기능을 가능하게 하는 세계 유일의 상호 보완적 시뮬레이터 입니다. 이것은 쉽게 사용 할 수 있는 폭 넓은 범위의 virtual instruments와 광대한 범위의 컴포넌트 데이터베이 스, 그리고 강력한 분석 기능을 포함 하기 때문입 니다.

MultiSim 화면 구성

Multisim - [Circuit1] Edit View Place Simulate Transfer Tools Reports Options Window Help _ 8 × ■ ◆ 从 巫 ◆ ← 啓 ■ · ? 0 ☑ K 단축아이콘 ₩, 米本中野日 4回 시뮬레이션 # ₽ 스위치 ·Virtual 둘바 3₽ 부품상자 ♥□□✓♥♥ 계측기 상자 AG 작업 영역 AAC HAG 상태표시 창 회로도면 탭 4 > Tran: 00,000 ms OnKeyUp(18d)

MultiSim 부품상자

+ Source: 전원 라이브러리 그룹

Basic: 기본 라이브러리 그룹

Diode: 다이오드 라이브러리 그룹

Transistor: 트랜지스터 라이브러리 그룹

Analog: 아날로그 라이브러리 그룹

TTL: TTL 라이브러리 그룹

CMOS: CMOS 라이브러리 그룹

Miscellaneous Digital: 혼합된 디지털 라이브러리 그룹

Mixed: 기타 라이브러리 그룹

Indicator: 방향성을 가진 라이브러리 그룹

Miscellaneous : 혼합된 라이브러리 그룹

RF: RF 라이브러리 그룹

Electromechanical: Electromechanical 라이브러리 그룹

Place Hierarchical Block: 계층 구조회로도 선택

Place Bus: Bus 작업

4000

十十

+

⋣≒-

Ov.

:∃:

MISC

Y

<u>-(Fi)-</u>

₹.

MultiSim 계측기 상자

Multimeter: 전압, 전류, 저항, 데시벨 측정

Function Generator: 정현파, 삼각파, 펄스파 생성

Wattmeter: 전압계와 전류계의 조합으로 전력측정

Oscilloscope: 시간 영역에서 파형 측정(2채널)

4-channel Oscilloscope : 4개 채널을 지닌 오실로스코프

Bode Plotter: 주파수 영역에서 주파수대의 크기 및 위상 측정

Frequency Counter: 주파수, 펄스 간격, 펄스 폭, 상승 하강 시간 측정

Word Generator: 2진수, 10진수, 16진수, 아스키 입력

Logic Analyzer : 디지털 논리 파형 측정

Logic Converter: 디지털의 진리표<->논리식 측정

IV-Analysis: 전류 전압 특성 측정

Distortion Analysis : 신호 왜곡 현상 측정

Agilent Function Generator

Agilent Multimeter

Agilent Oscilloscope

MultiSim Simulate

Run/Pause

Run: 시뮬레이션 실행

Pause: 시뮬레이션 일시 정지

Default Instrument Setting

: 시뮬레이션에 필요한 시간을 설정하는 기능

MultiSim Simulate

Digital Simulation Settings

: Ideal 또는 Real 로 시뮬레이션 형태를 설정한다. 보다 빠른 시뮬레이션을 원한다면 "Ideal"을 선택하고, 보다 정확한 해석을 원한다면 "Real"을 선택하여 시뮬레이션을 한다.

MultiSim의 회로도 작성

- ❖회로도 작성의 3단계
- -부품 선택
- -부품의 배치(위치와 방향고려)
- -각 부품들을 배선

❖ Real 소자, Ideal 소자 MultiSim 에서는 Real소자와 Ideal소자를 병행하 여 사용할 수 있다.

❖ Real소자

값이 정해져 있는 것으로 실제로 사용되고 있는 부품들의 해당 데이터 시트의 파라미터 값이 정의 되어 있다.

❖ Real 소자 선택 방법

❖Ideal소자

이상적인 소자는 더블 클릭하여 부품 값을 기입하여 사용하도록 되어있다.

즉, 실제 부품으로 없는 값의 소자를 이용하여 시물레이션을 할 수 있다.

❖ Ideal 소자 선택 방법

❖배선

커서	상태
№	선택한부품이나 아이콘 을 배치하거나 다른 곳으 로 이동할 때
· -	배선할때
, , , , , , , , , , , , , , , , , , , 	재배선 할 때

마우스 커서가 상황에 따라 변화됨 (배선하지 않을 때와 배선할 경우를 비교)

계측기 사용법

❖ MultiSim에서는 여러 가지 계측 장비들이 존재를 하고 있다. 오른쪽의 화면을 보게 되면 계측장비 들을 나타내고 있는 툴바가 존재한다. 여기서 원 하는 계측장비들을 선택하여 사용한다.

₩측기 사용법-Voltmeter/Ammeter

Voltmeter/Ammeter

Voltmeter: 원하는 부분의 전압 측정

측정하고자 하는 부품과 병렬로 측정 측정값이 "一"값이 나오는 경우에는 극이 반대로 되어 있을 수 있으니 확인 을 한다.

Ammeter: 원하는 부분의 전류 측정 측정하고자 하는 부분과 직렬로 연결한다.

❖ Voltmeter/Ammeter의 기능은 Multimeter에서 모든 기능을 사용할 수 있다.

베측기 사용법-Voltmeter/Ammeter

❖ Voltmeter/Ammeter 사용

계측기 사용법-Voltmeter/Ammeter

Multimeter

회로 상에서 전류, 전압, 저항 및 데시벨을 측정하는 기능을 담당한다.

전류 측정은 Ammeter과 마찬가지로 직렬연결

전압 측정은 Voltmeter과 마찬가지로 병렬연결

저항 측정은 측정 소자와 병렬연결

❖ Voltmeter/ Ammeter/ Ohmmeter사용 예제

❖Ohmmeter로 저항 측정

cf>멀티미디어로 저항 측정 시에는 소자에 전원을 가해서는 안 된다. 멀 티미터의 저항 측정은 자체적으로 일정한 전압을 유지하여 흐르는 전 류를 통하여 저항을 측정하기 때문이다. 이러한 이유로 인하여 앞의 시뮬레이션에서 저항 값이 이상하게 측정이 되었다.

계측기 사용법-Function Generator

Function Generator

주파수 발진기로, 실시간으로 파형의 변화를 관찰할 수 있다.

자세한 내용은 실험 2장에서 다루어 지겠습니다.

일반적인 DC 전원으로 전압을 인가하는 것이 아니라 여러 모양의 파형을 전원으로 사용을 할 수 있습니다.

예제는 파형을 관찰해야 하므로 오실로스코프와 함께 하겠습니다.

계측기 사용법-Function Generator

기호

계측기 사용법-Wattmeter

Wattmeter

전압과 전류의 크기를 통해 평균 전력을 측정하는 계측 장비로, Voltmeter와 Ammeter의 조합으로 구 성되어 있다.

계측기 사용법-Wattmeter

❖ Wattmeter 사용 예제

Oscilloscope

XSC1

주파수 및 파형을 관찰하는 계측 장비이다.

❖Oscilloscope 사용 예제

❖ Timebase 설정

❖채널 설정

❖트리거 설정

❖ 파형의 자세한 관찰 사용법: View-Grapher 사용

❖예제2

Analysis를 이용한 회로 해석

❖ MultiSim에서는 회로를 해석하는 데 잇어 계측기 들과 Pspice에서 회로를 해석하는 Analysis 기능을 함께 제공하고 있다.

Analysis-Transient Analysis

❖ Transient Analysis(과도 해석)

시간 영역에서 입력 신호에 대한 출력을 결정하는 해석을 말한다.

Analysis-Transient Analysis

❖방법

1. Node의 이름을 정한다.

"Show Node Name" 선택하다.

연결된 선을 더블 클릭하면 [Node]속성 창이 뜬다. 그 이후에 여기에 원하는 이름을 작성한다. 참고>노드의 이름이 보이지 않는 경우에는 [Option->Preference]를 실행하여 [Circuit]탭에서

2. 메인 메뉴에서 [Simulate]-[Analysis]-[Transient Analysis] 를 클릭한다. 또는 아이콘을 이용하여 Transient Analysis를 선택한다.

Analysis-Transient Analysis

3. Analysis Parameters 탭에서 시작시간과 종료 시간 을 선택한다.

Analysis-Transient Analysis

4. Output Variables 탭에서 각 부품의 노드를 선택하고 "Simulate"를 클릭한다.

Analysis-Transient Analysis

5. 결과

DC Sweep

어떤 소자의 값을 변화시키는 과정을 Sweep이라고 한다. 예를 들면 DC전원을 0V에서 10V까지 1V단위로 변화시키면서 R2의 전압이 어떻게 변화하는지 알아보고자 할 때 사용한다.

- ❖방법
- 1. 회로도 작성
- 2. [Simulate]-[Analysis]-[DC Sweep] 클릭 또는 단축 아이콘을 클릭하여 "DC Sweep"를 클릭한다.
- 3. [Analysis]탭에서 Source, 시작값, 종료값, 증가값을 설정한다.

다음의 예제 에서는 0V부터 10V까지 1V씩 증가하는 것을 실험하고자 한다.

회로도

4. R2를 측정하고자 하니 Node 3을 측정하는 Output 으로 설정한다.

5. Simulate 클릭

Parameter Sweep

회로 내의 부품 값을 변경하면서 회로 특성이 어떻게 변화하는가를 살펴보는 해석이 Parameter Sweep이다.

- ❖방법
- 1. 회로도 작성
- 2. [Simulate]-[Analysis]-[Parameter Sweep] 클릭 또는 단축 아이콘을 클릭하여 "Parameter Sweep"를 클릭한다.
- 3. [Analysis Parameter]탭에서 값을 어떻게 변화시 킬지 설정을 한다.

다음의 예제 에서는 전압 분배기에서 저항의 값의 변화에 따라 전압의 변화를 살펴본다.

3. [Analysis]-[Parameter Sweep]

4. [Output Variables]탭 선택

5. Simulate 클릭

6. 그래프의 값 확인

Thank You!

Source: 전자회로 설계를 위한 MultiSim, 강창수 저, 성안당