What is claimed is:

The first contract of the first contract of

1	1.	A solid-state imaging element, comprising:
2		a plurality of light-receiving sensors converting optical signals to electrical
3	signals; and	
4		a memory storing the electrical signals as optical image data, said memory being
5	formed of a p	plurality of line buffers.
1	2.	The solid-state imaging element of claim 1, further comprising:
2		a first switch circuit connecting one of the line buffers and said light-receiving
3	sensors.	
1	3.	The solid-state imaging element of claim 2, wherein the data in the line
2	buffers are o	utput in parallel.
1	4.	The solid-state imaging element of claim 1, further comprising:
2		a second switch circuit selecting one of the line buffers to output the electrical
3	signal.	
1	5.	A solid-state imaging element, comprising:

1		a plurality of light receiving sensors arranged as m sensors in each of n lines
2	to convert opt	ical signals to electrical signals; and
3		a memory storing the electrical signals as optical image data, said memory
4	being formed	of a plurality of buffers, each buffer storing m data.
1	6.	The solid-state imaging element of claim 5, further comprising:
2		a switch circuit connecting one of the buffers and said light-receiving sensors.
1	7.	The solid-state imaging element of claim 6, further comprising:
2		a transfer control circuit selecting certain ones of said light-receiving sensors
3	to supply the	electrical signal to the buffers.
1	8.	An image processor, comprising:
2		a solid-state imaging element comprising a plurality of light receiving sensors
3	to convert op	tical signals to electrical signals;
4		an encoder encoding the electrical signals in units of n x m pixels; and
5		an electrical signal holder within said solid-state imaging element comprising
6	line buffers.	
1	9.	The image processor of claim 8, further comprising:
2	a first switch	circuit connecting one of the line buffers and the light receiving sensors.

region group, growing weeps, growing the control of the control of

	I	10.	The image processor of claim 9, wherein data in the line butters are output in			
	2	parallel.				
	1	11.	The image processor of claim 8, further comprising:			
	2		a second switch circuit selecting one of the line buffers and outputting an			
	3	electrical sign	al thereto.			
grang, They Te, Te, White House, grang, second, Steel, The House, white he will be the theory	1	12.	The image processor of claim 8, wherein said encoder is a JPEG encoder.			
And the thing the	1	13.	An image processor, comprising:			
	2		a solid-state imaging element having a plurality of light-receiving sensors to			
The Sant tons they were they	3	convert optical signals into electrical signals;				
	4		a code encoder encoding the electrical signals in units of n x m pixels; and			
	5		an electrical signal holder within said solid-state imaging element comprising			
	6	a plurality of	buffers, each buffer storing m data.			
	1	14.	The image processor of claim 13, further comprising:			
	2		a switch circuit connecting one of the buffers and the light-receiving sensors.			
	1	15.	The image processor of claim 13, further comprising:			

1	a transfer control circuit selecting certain ones of the light-receiving sensors
2	to supply an electrical signal to the buffers.
1	16. The image processor of claim 13, wherein said code encoder is a JPEG
2	encoder.
1	17. An image processing method, comprising:
2	converting optical signals to electrical signals in a plurality of light-receiving
3	sensors;
4	outputting the electrical signals in units of n x m blocks of pixels; and
5	encoding the electrical signals.
1	18. A charge-coupled device (CCD), comprising:
2	a vertical CCD having a plurality of photosensors arranged in v vertical lines
3	and n horizontal lines corresponding to an n x v frame of pixels, and converting optical
4	signals to electrical signal image data;
5	a horizontal CCD having n line buffers, each buffer holding up to v pixels of
6	image data;
7	a first switch circuit connected to each of the vertical lines and the line
8	buffers;

The first great great ways given the control of the great great great of the great great first flash that the first flash that the flash that the great grea

1	a first switch control circuit controlling said first switch circuit so that each
2	line buffer sequentially connects to said vertical CCD, the image data in sequential ones of
3	the n horizontal lines of said vertical CCD being transferred to a corresponding one of the n
4	line buffers;
5	a second switch circuit connected to the line buffers and an external circuit;
6	and
7	a second switch control circuit controlling said second switch circuit so that
8	each line buffer sequentially connects to the external circuit, the image data in the line
9	buffers being transferred to the external circuit in blocks of n x m (m < v) pixels, each line
10	buffer in each block transferring m pixels.
1	19. A charge-coupled device (CCD), comprising:
2	a vertical CCD having a plurality of photosensors arranged in v vertical lines
3	and n horizontal lines corresponding to an n x v frame of pixels, each horizontal line being
4	divided into k line sections, each line section corresponding to m (m < k) pixels of image
5	data, and converting optical signals to electrical signal image data;
6	a horizontal CCD having k line buffers connected to an external circuit, each
7	line buffer holding up to m pixels of image data;
8	a switch circuit connected to the line buffers and the external circuit;
9	a transfer control circuit controlling said vertical CCD such that blocks of n

m pixels of image data are transferred from said vertical CCD to the line buffers, wherein a

10

1	first one of the buffers receives m pixels from a horizontal line and outputs the m pixels to
2	the external circuit before receiving another m pixels from the next horizontal line and so
3	forth until a first block of n x m pixels has been transferred and output, and repeating the
4	transfer and output operations for each remaining line buffer and the remaining image data;
5	and

a switch control circuit controlling said switch circuit so that each line buffer sequentially connects to the external circuit to output the image data to the external circuit.

20. A charge-coupled device (CCD), comprising:

6

7

1

7

8

9

10

11

12

13

a vertical CCD having a plurality of photosensors arranged in v vertical lines and n horizontal lines corresponding to an n x v frame of pixels, and converting optical signals to electrical signal image data;

a horizontal CCD having n line buffers, each buffer holding up to v pixels of image data;

a switch circuit connected to each of the vertical lines and the line buffers; and

a switch control circuit controlling said switch circuit so that each line buffer sequentially connects to said vertical CCD, the image data in sequential ones of the n horizontal lines of said vertical CCD being transferred to a corresponding one of the n line buffers, and the image data in the n line buffers being output in parallel to the external circuit.

2.1	Α	charge-coupled	device	(CCD).	comprising:
41 .	7.7	Charge Coupled	uc vice	$(\cup\cup D)$	COMPTIONS.

1

2

3

4

5

6

and the feet will be 2

3

4

5

6

7

8

9

an array of photosensors arranged in v vertical lines and n horizontal lines corresponding to an $n \times v$ pixel array of image data; and

a plurality of n line buffers, each line buffer holding up to v pixels of image data,

wherein each line buffer sequentially connecting to said array, the image data in sequential ones of the n horizontal lines of said array being transferred to a corresponding one of the n line buffers, and each line buffer sequentially outputting the image data, the image data in the line buffers being output in blocks of n x m (m < v) pixels, each line buffer in each block outputting m pixels.

22. A charge-coupled device (CCD), comprising:

an array of photosensors arranged in v vertical lines and horizontal lines corresponding to an n x v pixel array of image data, each horizontal line being divided into k line sections, each line section corresponding to m (m < k) pixels of image data; and a plurality of k line buffers, each line buffer holding up to m pixels of image data,

wherein blocks of $n \times m$ pixels of image data are transferred from the array of photosensors to the line buffers, such that a first one of the buffers receives m pixels from a horizontal line and outputs the m pixels before receiving another m pixels from the next

1	horizontal line and so forth until a first block of n x m pixels has been transferred and
2	output, and repeating the transfer and output operations for each remaining line buffer and
3	the remaining image data.
1	23. A charge-coupled device (CCD), comprising:
2	an array of photosensors arranged in v vertical lines and n horizontal lines
3	corresponding to an n x v pixel array of image data; and
4	a plurality of n line buffers, each line buffer holding up to v pixels of image
5	data,
6	wherein each line buffer sequentially connecting to said array, the image data
7	in sequential ones of the n horizontal lines of said array being transferred to a corresponding
8	one of the n line buffers, the image data in the n line buffers being output in parallel.
1	24. A method of outputting image data from a charge-coupled device (CCD),
2	comprising:
3	arranging a plurality of photosensors in v vertical lines and n horizontal lines
4	corresponding to an n x v pixel array of image data;
5	connecting, sequentially, each one of a plurality of n line buffers to the array
6	of photo sensors, each line buffer holding up to v pixels of image data, and transferring the

Her Gard and Half time Book

7

8

the n line buffers; and

image data in sequential ones of the n horizontal lines of the array to a corresponding one of

outputting, sequentially, the image data of each line buffer, the image data in
the line buffers being output in blocks of n x m (m < v) pixels, each line buffer in each
block outputting m pixels.
25. A method of outputting image data from a charge-coupled device (CCD),
comprising:
arranging a plurality of photosensors in v vertical lines and n horizontal lines
corresponding to an n x v pixel array of image data;
dividing each horizontal line into k line sections, each line section
corresponding to $m (m < k)$ pixels of image data;
transferring blocks of n x m pixels of image data from the array of
photosensors to a plurality of k line buffers, each line buffer holding up to m pixels of image
data, such that a first one of the buffers receives m pixels from a horizontal line and outputs
the m pixels before receiving another m pixels from the next horizontal line and so forth
until a first block of n x m pixels has been transferred and output, and repeating the transfer
and output operations for each remaining line buffer and the remaining image data.
26. A method of outputting image data from a charge-coupled device (CCD),
comprising:

corresponding to an n x v pixel array of image data; and

3

4

arranging a plurality of photosensors in v vertical lines and n horizontal lines

- connecting, sequentially, each one of a plurality of n line buffers to the array
- of photo sensors, each line buffer holding up to v pixels of image data, and transferring the
- 3 image data in sequential ones of the n horizontal lines of the array to a corresponding one of
- 4 the n line buffers, and outputting the image data in the n line buffers in parallel.