Experimental Techniques in Particle Physics

Geant4: Geometry Replicas

Andreas Nowack

nowack@physik.rwth-aachen.de

RWTH Aachen University

WS 2020/21

Hierarchy of Volumes

- Box-2: 5 cm × 5 cm × 5 cm
- Cyl-1: diameter 5 cm and height 5 cm
- Cyl-2: diameter 2 cm and height 2 cm

Multiple Placements of Volumes

Replicas

- easy way to repeat a given structure
- no need to manually calculate the individual coordinates of the objects
- G4PVReplica represents n volumes
 - differing only in their positioning
 - completely filling the containing mother volume
 - no gaps between repeated volumes
 - no other volumes in the mother volume

Replicas—Linear Repetition

- mother volume (envelope) is divided into n equal daughter volumes (divisions)
- each division contains the same content

Replicas and Axes

- Cartesian axes (kXAxis, kYAxis, kZAxis)
 - offset shall not be used
 - centre of n-th daughter: -width*(nReplicas-1)*0.5+n*width
 - origins of the replicas are at the centre of each replica
- Radial axis (kRho)
 - cons/tubs sections, centred on the origin and are unrotated
 - centre of n-th daughter: width*(n+0.5)+offset
 - coordinate system is unchanged with respect to the mother.
- Phi axis (kPhi)
 - phi sections or wedges, and of cons/tubs form
 - centre of n-th daughter: width*(n+0.5)+offset
 - new coordinate system is rotated (X axis bisects the angle made by each wedge, Z parallel to the mother's Z axis)
- solid of the replicated logical volume
 - dimensions of the first volume created
 - must be of the correct symmetry/type in order to assist in good visualisation

Replicas—Circular Repetition

- mother volume (envelope) is divided into n equal daughter volumes (divisions)
- each division contains the same content

Exercise

- Download
 DetectorPhys_T4.tar.gz and decompress it.
- Model the set-up shown in the figure using the template
 DetectorPhysDetectorConstruction.cc.

Follow instructions and create 21 components in nine steps.

3. Check your geometry with: /geometry/test/run

