Основные понятия экономической статистики

План:

- 1. Понятие случайной величины
- 2. Закон распределения ДСВ
- з. Числовые характеристики ДСВ
- 4. Генеральная и выборочная совокупность
- 5. Ковариация, корреляция и дисперсия

Случайная величина

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, заранее не известное и зависящее от случайных причин

Примеры

- 1. Число родившихся мальчиков среди ста новорожденных есть случайная величина, которая имеет следующие возможные значения: 0, 1, 2,...,100.
- 2. Расстояние, которое пролетит снаряд при выстреле из орудия, есть случайная величина. Действительно, расстояние зависит не только от установки прицела, но и от многих других причин (силы и направления ветра, температуры и т. д.), которые не могут быть полностью учтены. Возможные значения этой величины принадлежат некоторому промежутку (а, b).

Дискретные и непрерывные случайные величины

- **Дискретной** называют случайную величину, которая принимает отдельные, изолированные значения с определенными вероятностями
- **Непрерывной** называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка

Закон распределения вероятностей ДСВ

Законом распределения дискретной случайной величины (ДСВ) называют соответствие между возможными значениями и их вероятностями (сумма вероятностей равна единице)

X	1	3	4	7
P	0,2	0,1	0,3	0,4

Пример

В денежной лотерее выпущено 100 билетов. Разыгрывается один выигрыш в 50 млн.сум и десять выигрышей по 1 млн. сум. Найти закон распределения случайной величины **X** — стоимости возможного выигрыша для владельца одного лотерейного билета.

Решение

X	50	1	0	
P	P 0,01		0,89	

$$P = 0.01+0.1+0.89 = 1.$$

Числовые характеристики ДСВ

Математическим ожиданием ДСВ называют сумму произведений всех ее возможных значений на их вероятности:

	X	\mathbf{x}_1	\mathbf{x}_2		X _n	
3	P	p_1	p_2		p _n	
$M(X) = x_1 p_1 + x_2 p_2 + + x_n p_n$						

Пример

Найти математическое ожидание случайной величины X:

X	3	5	2	
P 0,1		0,6	0,3	

$$M(X) = 3*0,1 + 5*0,6 + 2*0,3 = 3,9.$$

Задание

Найти математическое ожидание случайной величины X:

X	2	5	8
Р	0,2	0,5	0,3

$$M(X) = 2*0,2 + 5*0,5 + 8*0,3 = 5,3.$$

Вероятностный смысл

Вероятностный смысл математического ожидания таков: математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) **среднему арифметическому** наблюдаемых значений случайной величины

Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной:

$$M(C) = C$$

2. Постоянный множитель можно выносить за знак математического ожидания:

$$M(CX) = C*M(X)$$

Свойства математического ожидания

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

$$M(X*Y) = M(X)*M(Y)$$

4. Математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий:

$$M(X+Y) = M(X) + M(Y)$$

Дисперсия ДСВ

Можно указать такие случайные величины, которые имеют одинаковые математические ожидания, но различные возможные значения

X	-0,01	0,01
P	0,5	0,5

$$M(X) = -0.01*0.5 + 0.01*0.5 = 0.$$

Y	-100	100
P	0,5	0,5

$$M(Y) = -100*0,5 + 100*0,5 = 0.$$

Дисперсия ДСВ

Дисперсией ДСВ называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

$$D(X) = M[X - M(X)]^{2}$$

Дисперсия

Дисперсия это оценка рассеяния возможных значений случайной величины вокруг ее среднего значения.

Формула для вычисления дисперсии:

$$D(X) = M(X^{2}) - [M(X)]^{2}$$

Пример

Найти дисперсию случайной величины X, которая задана следующим законом распределения:

X	2	3	5
P	P 0,1		0,3

$$M(X^2) = 4*0,1 + 9*0,6 + 25*0,3 = 13,3$$

 $D(X) = M(X^2) - [M(X)]^2 = 13,3 - (3,5)^2 = 1,05$

Свойства дисперсии

1. Дисперсия постоянной величины равна нулю:

$$D(C) = 0$$

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

$$D(C*X) = C^2*D(X)$$

Свойства дисперсии

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

$$D(X + Y) = D(X) + D(Y)$$

4. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин:

$$D(X - Y) = D(X) + D(Y)$$

4

Среднее квадратическое отклонение

Средним квадратическим отклонением случайной величины X называют квадратный корень из дисперсии:

$$\sigma(X) = \sqrt{D(X)}$$

Пример

Дисперсия случайной величины равна D(X) = 1,05

Найти среднее квадратическое отклонение

$$\sigma(X) = \sqrt{D(X)} = \sqrt{1,05} = 1,02$$

Среднее квадратическое отклонение

Дисперсия имеет размерность, равную квадрату размерности случайной величины. Так как среднее квадратическое отклонение (СКО) равно квадратному корню из дисперсии, то размерность СКО совпадает с размерностью Х. Поэтому в тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют среднее квадратическое отклонение, а не дисперсию

Задание

Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины, зная закон ее распределения:

X	6+к	$3+_{\mathrm{K}}$	1+ _K	
P	0,2	0,3	0,5	

Терминология

- Генеральная совокупность (population) это совокупность всех объектов
- Выборочная совокупность или просто выборка (sample) это совокупность случайно отобранных из генеральной совокупности объектов
- Объемом совокупности называют число объектов этой совокупности (объем генеральной совокупности population size, объем выборки - sample size)

Выборочный метод

- **Повторной** называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность
- **Бесповторной** называют выборку, при которой отобранный объект в генеральную совокупность не возвращается
- Выборка должна правильно представлять пропорции генеральной совокупности, т.е. она должна быть представительной (репрезентативной)
- В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществить случайно: каждый объект выборки отобран случайно из генеральной совокупности, если все объекты имеют одинаковую вероятность попасть в выборку

Функциональная, статистическая и корреляционная зависимости

- Две случайные величины могут быть связаны либо функциональной зависимостью, либо зависимостью другого рода, называемой статистической, либо быть независимыми.
- Функциональная зависимость: Если каждому значению случайной величины X соответствует одно возможное значение случайной величины Y, то Y называют функцией случайного аргумента X:

 $Y = \phi(X)$

Примеры (функциональная зависимость)

- 1. y = ax + b
- 2. $y = x^2$
- $y = \sin(x)$

Статистическая зависимость

- Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения другой
- В частности, статистическая зависимость проявляется в том, что при изменении одной из величин изменяется среднее значение другой; в этом случае статистическую зависимость называют корреляционной

Пример

Зависимость между урожайностью хлопка и количеством вносимых удобрений является статистической. Действительно, увеличение количества вносимых удобрений приводит к увеличению урожайности хлопка в среднем

Корреляционный анализ

Пусть изучается зависимость между факторами **X** и **Y**. В результате **n** независимых опытов получены **n** пар чисел:

$$(x_1; y_1), (x_2; y_2), ..., (x_n; y_n)$$

X	\mathbf{x}_1	x ₂		X _n
Y	y_1	y_2	•••	y_n

Коэффициент ковариации

Является мерой взаимосвязи между факторами:

$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - x_i \right) \left(y_i - y_i \right)$$

Пример 1

Найти коэффициент ковариации:

Количество						
ВН						
ec						
ен						
x = X	150 † 1 60 +	180 †6200 +	250_{180} $5 = 1$	88 200	250	
$y \times y$	(25 + 24 + 26)	6 + 27 + 28	/ 5 = 26			
$cov(x,y)_{\overline{pe}}^{ob}$	((150–188)	(25-26)+(160–188)(24-26)+(1	80-188)(2	6-26)+
(200-1848)	(27–26)+(250–188)(2	28-26))/5	= 46		
Урожайность	25	24	26	27	28	

Тесноту связи между двумя взаимозависимыми рядами характеризует <u>коэффициент линейной</u> корреляции, который показывает, существует ли и насколько велика связь изучаемых явлений

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}$$

Пример 2

Найти коэффициент корреляции:

Количество					
ВН					
ec					
ен					
ны					
X	150	160	180	200	250
уд					
об					
pe					
ни					
й					
Урожайность	25	24	26	27	28

Δ	Α	В	С	D	Е	F	G	Н	1	J	K	L
2												
2												
			Колич									
			ество									
			внесен	Урожа					()40		_	
				йность	X-XCD	у-уср	(x-xcp)(y-ycp)	(x-xcp)^2	(y-ycp) ²	r	D	
			удобре									
3			ний									
4		1	150	25	-38	-1	38	1444	1			
5		2	160	24	-28	-2	56	784	4			
6		3	180	26	-8	0	0	64	0			
7		4	200	27	12	1	12	144	1			
8		5	250	28	62	2	124	3844	4			
9		Сумма	940	130			230	6280	10			
10 11		Среднее	188	26			46		250,599	0,92	0,84	
11												
10												

Коэффициент корреляции

• Коэффициент корреляции г может принимать значения от -1 до 1. Если r<0, то связь обратная, если r>0, то связь прямая

Чем ближе значение коэффициента корреляции к -1 или +1, тем теснее связь между факторами, и наоборот, чем ближе значение коэффициента корреляции к 0, тем слабее связь между факторами

Свойства r

Коэффициент корреляции

Коэффициент корреляции указывает следующую степень связи:

•
$$0 \div \pm 0.15$$

$$\pm 0.16 \div \pm 0.20$$

•
$$\pm 0.21 \div \pm 0.30$$

•
$$\pm 0.31 \div \pm 0.40$$

$$\pm 0.41 \div \pm 0.60$$

$$\pm 0.61 \div \pm 0.80$$

•
$$\pm 0.81 \div \pm 0.9$$

•
$$\pm 0.91 \div \pm 1.0$$

Коэффициент детерминации

При анализе взаимосвязи между факторами также вычисляют коэффициент детерминации (r-квадрат)

$$D = r^2$$

Коэффициент детерминации

Коэффициент детерминации показывает, какое влияние оказывают выбранные факторы на результативный показатель

Пример 3

Например, если $\mathbf{r} = \mathbf{0,92}$ (\mathbf{r} - коэффициент корреляции), то $\mathbf{D} = \mathbf{0,84}$, то есть величина результативного показателя на $\mathbf{84\%}$ ($\mathbf{0,84\cdot100}$) зависит от изменения исследуемых факторов и на $\mathbf{16\%}$ от остальных факторов

СПАСИБО ЗА ВНИМАНИЕ!

+ 998 71 237 1948

 \bowtie

s.mirzaev@tiiame.uz