Элементы теории чисел. Теория сравнений.

Ученик 10-4 класса Оконешников Д.Д. по лекции к.ф.-м.н. Протопоповой Т.В.

от 20 января 2021 г.

1 Лекция №13

1.1 Каноническое разложение числа. НОД. НОК

```
Весь алгоритм: Пример. HOД(5083,3553)-? 

1) a = q_1b + r_1 \Rightarrow r_1 = a - q_1b = A_1a + B_1b \Rightarrow r_2 = b - q_2r_1 = b - q_2(A_1a + B_1b) = -q_2A_1a + (1 - B_1q_2)b = A_2a + B_2b \Rightarrow r_3 = r_1 - q_3r_2 = A_1a + B_1b - q_3(A_2a + B_2b) = \therefore \Rightarrow r_3 = r_1 - q_3r_2 = A_1a + B_1b - q_3(A_2a + B_2b) = \Rightarrow r_3 = r_1 - q_3A_2a + (B_1 - q_3B_2)b = A_3a + B_3b \Rightarrow r_4 = A_4a + B_4b или \Rightarrow r_5 = A_5a + B_5b или \Rightarrow r_6 = A_5a + B_5b или \Rightarrow r_7 = A_5a + B_5b или \Rightarrow r_8 = A_5a + A_5b или \Rightarrow r_8 = A_5a + A_5b
```

Утверждение. Если d = HOД(a, b), то существуют целые A и B : d = Aa + Bb.

Замечание. Если НОД(a,b)=1 (т.е. a и b взаимно просты), то существуют целые A и B:1=Aa+Bb.

1.2 Доказательство свойств делимости 8 и 9

Свойство 8. Если ab.m и НОД(a, m) = 1, то b.m

 \uparrow Имеем НОД $(a, m) = 1 \Rightarrow \exists A, M : Aa + Mm = 1.$

Домножим последнее равенство на $b:Aab+Mmb=b\Rightarrow b$ ти \downarrow

m m

Свойство 9. Если a.m, a.k и НОД(m,k) = 1, то a.mk

 \uparrow

- 1) $a:m \Rightarrow a = mq_1$
- 2) $a k \Rightarrow mq_1 k$
- 3) из 2) и НОД $(m,k)=1\Rightarrow$ по свойству 8 q_1 : $k\Rightarrow q_1=kq_2$
- 4) $a = mq_1 = mkq_2$, T.e. $a : mk \downarrow$

1.3 Решение уравнений ax + by = c

Определение. Диофантово уравнение первой степени - уравнение вида ax + by = c, где a, b, c, x, y — целые числа.

Пусть HOД(a,b) = d.

- 1) Если c:d, то делим на d правую и левую части уравнения и получаем $a_1x+b_1y=c_1$, где $\mathrm{HOД}(a_1,b_1)=1$.
- 2) Если c не делится на d, то уравнение решений не имеет.

Таким образом, будем рассматривать уравнения (*) ax + by = c, HOД(a, b) = 1.

Так как HOД(a,b)=1, то по следствию из алгоритма Евклида \exists целые $A,\ B:Aa+Bb=1$. Домножим равенство на c:Aca+Bcb=c.

Видим, что пара целых чисел $(x_0, y_0) = (Ac, bc)$ является решением уравнения.

Мы нашли частное (одно из) решение нашего уравнения. Найдем все решения (x,y).

$$\begin{cases} ax_0 + by_0 = c, \\ ax + by = c. \end{cases} \Rightarrow a(x - x_0) + b(y - y_0) = 0, \ a(x - x_0) = -b(y - y_0)$$

. НОД(a,b)=1, значит $(x-x_0)$:b, т.е. $x-x_0=bt$ или $x=x_0+bt$, где t — целое. Тогда $y-y_0=\frac{-a(x-x_0)}{b}=-at$ или $y=y_0-at$. Таким образом, все пары вида (x_0+bt,y_0-at) , где t — целое, являются решениями (*).

Замечание. Общее решение диофантова уравнения представляет собой сумму частного решения уравнения и решения соответствующего однородного уравнения (уравнения ax + by = 0).

Легко понять, что решениями однородного уравнения являются все пары вида (bt, -at), где t — целое.

Пример. 7х - 23у = 131 Проверка решения: c : НОД(a,b) \Rightarrow имеет решения. Можно угадать частное решение (22,1), так как 154 - 23 = 131. Тогда все решения — (22-33t,1-7t), $t \in \mathbb{Z}$.

1.4 Сравнения

Основная идея теории сравнений заключается в том, что два числа a и $b \in \mathbb{Z}$, имеющие при делении на $m \in \mathbb{N}$ один и тот же остаток, обнаруживают целый ряд одинаковых свойств по отношению к m.

Так по отношению к 2 мы выделяем четные и нечетные числа. Знаем, например, что сумма/разность четных - четное число, произведение четных - четное и т.д.

Определение. Целые числа a и b называются сравнимыми по модулю $m(a \equiv b \pmod{m})$, если при делении на m они дают одинаковые остатки. (1)

Пример. $8 \equiv 3 \pmod{5} \equiv 103 \pmod{5} \equiv -2 \pmod{5} \equiv -17 \pmod{5}$ и т.д.

Определение. $a \equiv b \pmod{m} \Leftrightarrow (a-b)m$. (2)

Докажем эквивалентность определений 1 и 2.

1) (1) \Rightarrow (2). Пусть остатки одинаковы, т.е. $a = q_1 m + r, \ b = q_2 m + r \Rightarrow a - b = m(q_1 - q_2), \ (q_1 - q_2) \in \mathbb{Z},$ т.е. (a - b):m;

2) **(2)** \Rightarrow **(1)**. От противного.

 $r_1 = r_2. \downarrow$

Пусть остатки разные, т.е. $a=q_1m+r_1,\ b=q_2m+r_2,$ где $0\leq r_1<|m|,\ 0\leq r_2<|m|\,(-|m|<-r_2\leq 0).$

Тогда $a-b=m(q_1-q_2)+r_1-r_2$ и $-|m|< r_1-r_2<|m|$ ($|r_1-r_2|<|m|$ (3)) \Rightarrow (r_1-r_2) :m Но тогда по свойству делимости 4, если $r_1-r_2\neq 0$, то $|r_1-r_2|\geq |m|$, противоречие с (3). Таким образом,

1.5 Свойства сравнений