Q₁: Locate the points given in polar coordinates by
$$P(4,\frac{3}{4}\pi)$$
, $O(-3,\frac{1}{2}\pi)$, $R(4,\frac{1}{6}\pi)$ among [some] graph.
Let $x = r \cos \theta$

$$V = x = x \cos \theta$$

$$P(x,y) \rightarrow (-2.82, 2.82); Q(x,y) \longrightarrow (0,-3)$$

Q2: Which, if any, of

A. (4,
$$71/3$$
) \rightarrow (x,y): 2, 2 $\sqrt{3}$ \checkmark

B. (4, $71/3$) \rightarrow (x,y): A, 2 $\sqrt{3}$ \checkmark

C. (-4, $71/6$) \rightarrow (x,y): 2 $\sqrt{3}$, 2

are polar coordinates for the point given in Cartesian coordinates by $P(2, 2\sqrt{3})$

A and B only!

Q3: Find the Cartesian coordinates, (a,b), of the point given in polar coordinates by P(2, T/3)

Let
$$x = r \cos \theta \rightarrow 2 \cos (\frac{\pi}{3}) = 1$$

 $y = r \sin \theta \rightarrow 2 \sin (\frac{\pi}{3}) = \sqrt{3}$
 $P(2, \frac{\pi}{3}) : (r, \theta) \rightarrow P(x, y) : (1, \sqrt{3}) \checkmark$

 Q_4 : Find a polar equation for the curve given by the Cantesian equation:

$$3y^{2} = x$$

$$y = r \sin \theta$$

$$x = r \cos \theta$$

$$x = r \cos \theta$$

$$\frac{3r^{2} \sin^{2}\theta}{\sin^{2}\theta} = \frac{r \cos \theta}{\sin^{2}\theta}$$

$$\frac{1}{\sin^{2}\theta} \cdot 3r^{2} = \frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\sin \theta}$$

$$3r = \frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\sin \theta}$$

$$3r = \cot \theta \csc \theta$$

Qs: Find a Cartesian equation for the curve given by the polar equation:

$$\chi^2 + \chi^2 = -36 \cos^2 \theta$$
 $\chi = r \cos \theta$
 $\chi = r \cos \theta$

$$(x+1)^2 + y^2 = 1$$
 $(x+1)^2 + y^2 = 1$
 $(x+1$

$$r^{2} \cos^{2}\theta + 2r \cos\theta + r^{2} \sin^{2}\theta = 0$$

$$r^{2} (\cos^{2}\theta + \sin^{2}\theta) + 2r \cos\theta = 0$$

$$r^{2} + 2r \cos\theta = 0$$

$$r^{2} + 2r \cos\theta = -r^{2}$$

$$2 \cos\theta = -r$$

r+ 2 cos 0 = 0