IAO4 – Systèmes Multi-Agents

Modélisation logique et dynamique des croyances des agents

Sylvain Lagrue

sylvain.lagrue@hds.utc.fr

I. Introduction

Croyances des agents

- Des agents évolués ont des buts (et des préférences) qui dépendent de leurs croyances sur le monde
- Ils sont capables de mettre à jour leurs buts en fonction de l'évolution de leurs croyances (de leur dynamique)
- Ils peuvent même avoir des croyances sur les autres agents (voire des croyances sur les croyances des autres agents)
- On ne peut pas mélanger facilement buts et croyances ! Ex : but = {Clef récupérée, Porte Ouverte} ; croyances = {Si Clef récupérée alors Porte Ouverte}

Quelques dichotomies

- Buts (l'état du monde que l'agent cherche à atteindre) ≠ Croyances (ce que l'agent sait sur le monde)
- Connaissances (qui ne peuvent pas être remises en question) ≠ Croyances (qui peuvent être remises en question)

I. Introduction

Objectif du cours

- Représentation logique des croyances d'un agent
- Dynamique de ces croyances: comment évoluent les croyances d'un agent à l'arrivée d'une nouvelle information plus sûre (plus récente, venant d'une source plus fiable, issue d'un calcul plus long, etc.)?

Quelques opérations

- *Révision* de croyances
- *Fusion* de croyances

Mais aussi : *Mise à jour*, expansion, contraction, confluence, amélioration, révision itérée, extrapolation, etc.

I. Introduction

Plan du cours

- 1. Introduction
- 2. Raisonnement logique
 - Conséquences logiques
 - Logique propositionnelle
- 3. Dynamique des croyances

Le raisonnement

$$A \Rightarrow B$$

- A : prémisse(s)
- B: conséquence(s)
- **Déduction** : à partir de la cause et de la règle, trouver les conséquences
- Abduction : à partir de la règle et des conséquences, trouver les causes
- Induction : à partir des causes et des conséquences, trouver la règle

Quelques remarques

- Seule la déduction est valide (si l'on accepte la règle et ses prémisses, les conclusions sont toujours vraies)
- Il existe aussi le raisonnement par cas, raisonnement plausible, raisonnement par analogie, raisonnement contrefactuel, etc.
- La logique modélise la déduction via les opérations de conséquences logiques

Opération de conséquence [Tarski 1930]

Soit L un langage construit sur un ensemble d'atomes $\mathcal{A}=\{a,b,c,\dots\}$ et les connecteurs usuels \neg , \wedge , \vee , \rightarrow et \leftrightarrow . \bot dénote la contradiction et \top la tautologie.

Une opération de conséquence sur un langage L est une fonction $Cn: 2^L o 2^L$ vérifiant les conditions suivantes :

- (inclusion) $K \subseteq Cn(K)$
- *(monotonie)* Si $K \subseteq K'$ alors $Cn(K) \subseteq Cn(K')$
- (idempotence) Cn(K) = Cn(Cn(K)) On supposera également :
- (supraclassicalité) Cn(K) contient les conséquences logiques classiques
- ullet (compacité) Si $A\in Cn(K)$ alors il existe K' un sous-ensemble fini de K tel que $A\in Cn(K')$
- ullet (déduction) $B \in Cn(K \cup \{A\})$ si et seulement si $A o B \in Cn(K)$

Attitudes épistémiques

Soient une base de croyances K représentant les croyances d'un agent, et une information A. Il y a trois attitudes possibles de K envers A:

- $A \in Cn(K)$: A est acceptée
- $\neg A \in Cn(K)$: A est refusée
- $A \not\in Cn(K)$ et $\neg A \not\in K$: A est indéterminée

Soit une nouvelle information A, 3 opérations peuvent être considérées par l'agent :

- ullet K+A est l'expansion de K par A
- $K \div A$ est la contraction de K par A
- K * A est la révision de K par A

- $K*A = (K \div \neg A) + A$ (Identité de Levi)
- $K \div A = K \cap (K * \neg A)$ (Identité de Harper)

Présentation

- Fragment le plus simple de la logique mathématique
- Issue des travaux de Georges Boole (1815-1864) et d'Auguste de Morgan (1806-1871)
- Possède de bonnes propriétés
- Possède des moteurs (solveurs) efficaces

Le langage

- $V_S = \{a, b, \dots, p, q, \dots\}$ est un ensemble fini de variables propositionnelles
- $V_C = \{\neg, \land, \lor, \rightarrow, \leftrightarrow, \top, \bot\}$ est un ensemble de connecteurs (resp. d'arité 1, 2, 2, 2, 2, 0, 0)

Remarque: les connecteurs \neg et \rightarrow forment un *système complet* (tous les autres peuvent être définis à partir de ceux-ci).

Formules propositionnelles (bien formées)

- 1. Tout élément de V_S est une formule
- 2. Si F est une formule, alors $\neg F$ est une formule
- 3. Si F et G sont des formules alors $(F \wedge G)$, $(F \vee G)$, $(F \to G)$ et $(F \leftrightarrow G)$ sont des formules
- 4. \top et \bot sont des formules
- 5. Toute formule s'obtient en appliquant un nombre fini de ces règles
- 6. Il n'existe pas d'autre moyen de créer une formule

Priorité des opérateurs

Pour limiter les parenthèses, on peut utiliser les règles de priorité suivantes :

$$\neg > \land > \lor > \rightarrow, \leftrightarrow$$

Exemples:

- $eg a \lor b \to c \ ext{ est \'equivalent \'a} (((
 eg a) \lor b) \to c)$
- $\neg a \leftrightarrow b \rightarrow c$ n'est pas une formule bien formée (pas de priorité droite/gauche)

Théorie de la preuve

Schéma d'axiomes (système hilbertien)

$$\bullet \ (A \to B) \to ((A \to (B \to C)) \to (A \to C))$$

$$ullet A
ightarrow (B
ightarrow A \wedge B)$$

$$\blacksquare (A \land B) \rightarrow A$$

•
$$(A \wedge B) \rightarrow B$$

$$\blacksquare B \rightarrow A \lor B$$

$$\bullet \ (A \to C) \to ((B \to C) \to (A \lor B \to C))$$

$$\bullet \ (A \to B) \to ((A \to \neg B) \to \neg A)$$

$$\blacksquare \neg \neg A \rightarrow A$$

Règle de substitution

Les A, B et C peuvent être remplacés par n'importe quelle formule

Règle d'inférence, le *Modus Ponens*

$$rac{A,\;A o B}{B}$$

Définition: la *déduction* (ou preuve) d'une formule A à partir d'hypothèses H_1, \ldots, H_m (notée $H_1, \ldots, H_m \vdash A$) est une liste finie de formules (A_1, \ldots, A_n) tel que :

- \bullet $A_n = A$
- ullet pour $i=1,\ldots,n$, la formule A_i est
 - soit un axiome
 - ullet soit égale à une des hypothèses H_j
 - ullet soit obtenue par application d'une règle d'inférence à des prémisses précédant A_i dans la liste

Un *théorème* est une formule toujours vraie (notée $\vdash A$), c.-à.-d. déductible sans hypothèse

Autre schéma d'axiomes

- $Axiome 1: A \rightarrow (B \rightarrow A)$
- $Axiome\ 2:\ (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- $Axiome \ 3: \ (\neg B o \neg A) o (A o B)$

Exemple

Montrons : $\vdash A \rightarrow A$

A1:
$$\vdash (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$
 (Axiome 2)

A2: en substituant $A \rightarrow A$ à B et A à C on obtient

$$dash (A
ightarrow ((A
ightarrow A)
ightarrow A))
ightarrow ((A
ightarrow (A
ightarrow A))
ightarrow (A
ightarrow A))$$

$$A3: \vdash A \rightarrow (B \rightarrow A)$$
 (Axiome 1)

A4: en substituant $A \rightarrow A$ à B dans 3 on obtient

$$\vdash A \rightarrow ((A \rightarrow A) \rightarrow A)$$

A5: modus ponens entre 4 et 2 permet d'obtenir

$$\vdash (A
ightarrow (A
ightarrow A))
ightarrow (A
ightarrow A)$$

A6: en substituant A à B dans l'axiome 1 on obtient :

$$\vdash A \rightarrow (A \rightarrow A)$$

A7: modus ponens entre 5 et 6

$$\vdash A \rightarrow A$$

Sémantique

Objectif : donner des valeurs de vérité aux formules

• {V, F} ou {0, 1}

Interprétation

Définition : une interprétation ω est une application de V_S dans $\{V,F\}$ qui associe à chaque proposition la valeur V ou F On notera Ω l'ensemble des interprétations possibles définies sur le langage.

(si
$$n=|V_S|$$
 , on a $|\Omega|=2^n$)

Exemple:

- $V_S = \{a,b,c\}$
- ullet $\omega_0(a)=F$
- ullet $\omega_0(b)=F$
- ullet $\omega_0(c)=F$

Valuation

Définition : Soit φ une formule bien formée et $\omega \in \Omega$, la valuation de φ pour ω (notée $Val(\varphi,\omega)$) est telle que :

- si φ est une proposition, alors $Val(\varphi,\omega) = \omega(\varphi)$;
- $Val(\top,\omega) = V \text{ et } Val(\bot,\omega) = F$;
- si φ est de la forme $\neg A$ (resp. A \wedge B , AvB , A \rightarrow B , A \leftrightarrow B), alors appliquer récursivement la table de vérité suivante.

A	В	¬ A	Α Λ Β	AvB	A→B	A↔B
F	F	V	F	F	V	V
F	V	V	F	V	V	F
V	F	F	F	V	F	F
V	V	F	V	V	V	V

Remarque : on est sûr que la valuation se termine, car à chaque étape un connecteur est résolu.

Exemple

- $\omega = \{a,b,\neg c\}$
- $\varphi = \neg(a \lor (b \rightarrow \neg c))$
- $Val(\phi,\omega) = F$

D'autres définitions...

- ω satisfait φ , noté $\omega \models \varphi$ ssi $V(\varphi,\omega)$ = V. On dit alors que ω est un **modèle** de φ .
- L'ensemble des modèles de φ est noté Mod(φ), c.-à-d. :

$$Mod(\varphi) = \{ \omega \in \Omega : \omega \models \varphi \}$$

• ω **falsifie** φ , noté ω \not⊨ φ ssi $V(\varphi,\omega)$ = F. On dit alors que ω est un **contre-modèle** de φ .

Une formule propositionnelle ϕ est dite :

- valide (noté $\models \varphi$) ssi pour toute interprétation $\omega \in \Omega$ on a $\omega \models \varphi$. Dans ce cas φ est également appelé tautologie ;
- **contradictoire** ssi pour toute interprétation $\omega \in \Omega$ on a $\omega \setminus \text{not} \models \phi$;
- satisfiable ssi elle n'est pas contradictoire;
- contingente ssi il existe ω ∈ Ω tel que ω ⊨ φ et il existe ω' ∈ Ω tel que $ω' \setminus not ⊨ φ$.

Conséquence logique

Définition : une formule ψ est dite **conséquence logique** de ϕ (noté $\phi \models \psi$) ssi quel que soit $\omega \in \Omega$, $\omega \models \phi$ implique $\omega \models \psi$

En d'autres termes : $Mod(\phi)\subseteq Mod(\psi)$

Par extension : $\varphi_1,...,\varphi_n \models \psi$ ssi pour tout $\omega \in \Omega$ tel que quel que soit $\varphi_i, \omega \models \varphi_i$, on a $\omega \models \psi$

Exemples:

- \bullet a \models a \lor b
- $a, a \rightarrow b \models b$
- \blacksquare $\bot \models a \rightarrow b \lor c$

Remarques

- On peut tout déduire de la contradiction...
 - Principe d'explosion : ex falso quodlibet.
- Équivalence logique $\varphi_1 \equiv \varphi_2 \operatorname{ssi} \varphi_1 \models \varphi_2 \operatorname{et} \varphi_2 \models \varphi_1$
- $\models \varphi$ est une écriture raccourcie de $\top \models \varphi$

Propriétés fondamentales, théorèmes et corollaires

Théorème de la déduction :

```
\phi_1,...,\phi_n \models \psi \setminus \text{textrm}\{\text{ ssi }\} \setminus \phi_1,...,\phi_n = \phi_n \rightarrow \psi \text{ Corollaire 1}:
```

 $\phi \models \psi \setminus \text{textrm} \{ \text{ ssi } \} \models \phi \rightarrow \psi \text{ L'implication matérielle et la déduction logique coïncident } !$

Corollaire 2:

 $\varphi_1,...,\varphi_n \models \psi \setminus \text{textrm}\{ \text{ ssi }\} \setminus \varphi_1 \land ... \land \varphi_n \models \psi \text{ En particulier si les } \varphi_i \text{ sont des littéraux...}$

Corollaire 3:

 $\varphi_1,...,\varphi_n \models \psi \setminus \text{textrm}\{\text{ ssi }\} \setminus \varphi_1,...,\varphi_n, \neg \psi \models \bot \text{ C'est le raisonnement par l'absurde : la conséquence logique peut se ramener à un simple test de satisfiabilité !$

Propriété 1. (de complétude) Le calcul propositionnel est fortement complet, c'est-à-dire :

 $si E \models A alors E \vdash A$

Corollaire. Le calcul propositionnel est faiblement complet :

 $si \models A alors \vdash A$

Proposition 2. (d'adéquation) Le calcul propositionnel est adéquat :

 $si \vdash A alors \models A$

Proposition 3. (de consistance) Le calcul propositionnel est cohérent :

il n'existe pas de formule A telle que \vdash A et $\vdash \neg$ A

Remarque: Cn(K) = $\{F : K \mid F \}$

Opérateurs de révision

Principes

Comment intégrer une nouvelle information plus sûre, mais potentiellement incompatible avec les croyances actuelles de l'agent ?

- Primauté de la nouvelle information
- Principe de cohérence
- Principe de changement minimal

Exemple introductif

Il y a des pommes ou des bananes dans un panier, mais pas les 2. J'apprends qu'il n'y a pas de pomme. Que puis-je en déduire ?

- $\varphi = (\neg p \land b) \lor (p \land \neg b)$
- $\mu = \neg p$
- φ ∘ μ \equiv ¬p ∧ b

Révision en logique propositionnelle

- φ est une base de croyance propositionnelle (c.-à-d. un ensemble de formules ou, de manière équivalente, la conjonction de ces formules)
- μ est formule propositionnelle une nouvelle information considérée plus sûre
- $\phi \circ \mu$ est une formule propositionnelle, résultat de la révision de ϕ par μ

Postulats de Katsuno Mendelzon [KM 1991]

Réécriture en logique propositionnelle des postulats AGM (Alchourrón, Gärdenfors, and Makinson)

- (R1) $\varphi \circ \mu \vdash \mu$
- (R2) Si $\varphi \wedge \mu$ est cohérent alors $\varphi \circ \mu \equiv \varphi \wedge \mu$
- (R3) Si μ est cohérent alors $\phi \circ \mu$ est cohérent
- (R4) Si $\phi_1 \equiv \phi_2$ et $\mu_1 \equiv \mu_2$ alors $\phi_1 \circ \mu_1 \equiv \phi_2 \circ \mu_2$
- (R5) $(\phi \circ \mu) \wedge \mu' \vdash \phi \circ (\mu \wedge \mu')$
- (R6) Si $(\phi \circ \mu) \wedge \mu'$ est cohérent alors $\phi \circ (\mu \wedge \mu') \vdash (\phi \circ \mu) \wedge \mu'$

Exemple : l'opérateur de Dalal ∘_D

- Basé sur la distance de Hamming entre interprétations $d_H(\omega, \omega') = |\{x \in V_S \mid \omega(x) \neq \omega'(x)\}|$
- On peut généraliser à la distance d'une interprétation à une formule : $d(\omega, \varphi) = \min_{\omega' \in \varphi} d(\omega, \omega')$
- Soit une nouvelle information \mu, le résultat de la révision \circ_D est une formule dont les modèles minimisent la distance de Hamming à la base φ

Propriété : l'opérateur °_D de Dalal est un opérateur de révision KM (c.-à-d. il vérifie les postulats R1-R6)

Définition : Un assignement fidèle (*faithful assignment*) est une fonction qui associe à chaque base de croyances φ un préordre $\leq_{-}\varphi$ sur les interprétations tel que :

- Si $\omega \models \varphi$ et $\omega' \models \varphi$, alors $\omega \setminus \text{simeq}_{\varphi} \omega'$
- Si $\omega \models \varphi$ et $\omega' \setminus not \models \varphi$, alors $\omega < \varphi \omega'$
- Si $\phi_1 \equiv \phi_2$, alors $\leq \{\phi_1\} = \leq \{\phi_2\}$

Théorème (de représentation) : [Katsuno Mendelzon 1991] Un opérateur de révision \circ satisfait les postulats (R1)-(R6) si et seulement si il existe un assignement fidèle qui associe à chaque base de croyances φ un préordre total \leq_{ϕ} tel que : $Mod(\varphi \circ \mu) = min(Mod(\mu), \leq_{\phi})$

Fusion de croyances sous contraintes

Principe

- n agents ont leur vision du monde
- On suppose qu'ils partagent le même vocabulaire
- Comment mettre en commun ces informations ?
- Comment mettre en commun ces informations en respectant une contrainte d'intégrité μ?

Notations

Profil E de croyance des agents (multi-ensemble de formules propositionnelles) :

$$E = \{ \phi_1, ..., \phi_n \}$$

Union des mutli-ensembles:

$$E_1 \sqcup E_2$$

Résultats de la fusion sous contrainte (une formule propositionnelle) :

$$\triangle_{\mu}(E)$$

avec μ une formule propositionnelle

Postulats KP [Konieczny, Pino Pérez 2002]

- (IC0) \triangle _ μ (E) \vdash μ
- (IC1) Si μ est cohérent, alors $\triangle \mu(E)$ est cohérent
- (IC2) Si \bigwedge E est cohérent avec μ , alors $\triangle \mu(E) = \beta \mu$
- (IC3) Si E1 \equiv E2 et μ_1 \equiv μ_2 , alors $\Delta_{\mu_1}(E1) \neq \Delta_{\mu_2}(E2)$
- (IC4) Si $\phi \vdash \mu$ et $\phi' \vdash \mu$, alors $\triangle_{\mu}(\{\phi,\phi'\}) \land \phi \mid \bot$ si et seulement si $\triangle_{\mu}(\{\phi,\phi'\}) \land \phi' \mid \bot$
- (IC5) \triangle _ μ (E1) \wedge \triangle _ μ (E2) \vdash \triangle _ μ (E1 \sqcup E2)
- (IC6) Si \triangle _ μ (E1) \wedge \triangle _ μ (E2) est cohérent, alors \triangle μ (E1 \sqcup E2) \vdash \triangle μ (E1) \wedge \triangle μ (E2)
- (IC7) $\triangle \{\mu_1\}$ (E) $\wedge \mu_2 \vdash \triangle \mu_{1} \{1 \wedge \mu_{2}\}$ (E)
- (IC8) Si \triangle { μ _1}(E) \wedge μ _2 est cohérent, alors \triangle { μ _1 \wedge μ _2} (E) \vdash \triangle μ _1 (E)

Remarque : Si on se restreint à 1 seul agent, on retrouve la révision !

Opérateurs basés sur des distances

Idée:

- On utilise une distance (ex. de Hamming) entre les croyances individuelles et la contrainte
- On agrège ces distances en utilisant différents agrégateurs (+, \max, leximax, ...)

```
\omega \leq (d_x)_E \omega' \text{ } d_x(\omega, E) \leq d_x(\omega', E)
```

Exemple

- $\mu = ((S \land T) \lor (S \land P) \lor (T \land P)) \rightarrow I$
- $\phi_1 = \phi_2 = S \wedge T \wedge P$
- $\phi_3 = \neg S \land \neg T \land \neg P \land \neg I$
- $\phi_4 = T \wedge P \wedge \neg I$
- $mod(\phi_1) = \{(1, 1, 1, 1), (1, 1, 1, 0)\}$
- $mod(\phi_3) = \{(0, 0, 0, 0)\}$
- $mod(\phi_4) = \{(1, 1, 1, 0), (0, 1, 1, 0)\}$

	arphi1	$arphi_{2}$	arphi3	arphi4	$d_{d_H,Max}$	$d_{d_H,\Sigma}$	d_{d_H,Σ^2}	$d_{d_H,GMax}$
(0,0,0,0)	3	3	0	2	3	8	22	(3,3,2,0)
(0,0,0,1)	3	3	1	3	3	10	28	(3,3,3,1)
(0,0,1,0)	2	2	1	1	2	6	10	(2,2,1,1)
(0,0,1,1)	2	2	2	2	2	8	16	(2,2,2,2)
(0, 1, 0, 0)	2	2	1	1	2	6	10	(2,2,1,1)
(0, 1, 0, 1)	2	2	2	2	2	8	16	(2,2,2,2)
(0,1,1,1)	1	1	3	1	3	6	12	(3,1,1,1)
(1,0,0,0)	2	2	1	2	2	7	13	(2,2,2,1)
(1,0,0,1)	2	2	2	3	3	9	21	(3,2,2,2)
(1,0,1,1)	1	1	3	2	2	7	15	(3,2,1,1)
(1, 1, 0, 1)	1	1	3	2	3	7	15	(3,2,1,1)
(1, 1, 1, 1)	0	0	4	1	4	5	17	(4,1,0,0)

Conclusion

- 2 opérations présentés (*révision*, *fusion*), mais il en existe d'autres...
- Des postulats de rationalités permettent de classer les différents opérateurs pouvant être proposés
- Il existe des théorèmes de représentation permettant de faire le lien entre la syntaxe et la sémantique des opérations
- De nombreuses extensions à des états épistémiques plus complexes (ordre sur des formules, distributions de possibilités, fonctions ordinales, etc.)

Pour aller plus loin...

Opérateurs de mise à jour

Exemple introductif

Il y a des pommes ou des bananes dans un panier, mais pas les 2. J'apprends qu'il n'y a pas de pomme. Que puis-je en déduire ?

- $\varphi = (\neg p \land b) \lor (p \land \neg b)$
- $\mu = \neg p$
- φ ∘ μ \equiv ¬p ∧ b

Il y a des pommes ou des bananes dans un panier, mais pas les 2. J'apprends qu'on a retiré les pommes s'il y en avait. Que puis-je en déduire ?

- $\varphi = (\neg p \land b) \lor (p \land \neg b)$
- µ = ¬p
- φ ♦ μ \equiv ¬p

On part de la même modélisation logique, mais dans le premier cas, le monde est statique tandis que dans le second, il est dynamique

Postulats de mise à jour

- (U1) $\varphi \diamond \mu \vdash \mu$
- (U2) Si $\varphi \vdash \mu$, alors $\varphi \diamond \mu \equiv \varphi$
- (U3) Si φ et μ sont cohérents alors $\varphi \diamond \mu$ est cohérent
- (U4) Si $\varphi_1 \equiv \varphi_2$ et $\mu_1 \equiv \mu_2$ alors $\varphi_1 \diamond \mu_1 \equiv \varphi_2 \diamond \mu_2$
- (U5) $(\phi \diamond \mu_1) \wedge \mu_2 \vdash \phi \diamond (\mu_1 \wedge \mu_2)$
- (U6) Si $\varphi \diamond \mu_1 \vdash \mu_2$ et $\varphi \diamond \mu_2 \vdash \mu_1$, alors $\varphi \diamond \mu_1 \equiv \varphi \diamond \mu_2$
- (U7) Si φ est une formule complète, alors $(\varphi \diamond \mu_1) \land (\varphi \diamond \mu_2) \vdash \varphi \diamond (\mu_1 \lor \mu_2)$
- (U8) $(\phi_1 \lor \phi_2) \diamond \mu \equiv (\phi_1 \diamond \mu) \lor (\phi_2 \diamond \mu)$

Une formule B est complète ssi pour tout A, ou bien B→A ou alors B→\neg A

Théorème de représentation

Théorème [Katsuno Mendelzon 1991]: Un opérateur de mise à jour \diamond satisfait les postulats (U1)-(U8) si et seulement si il existe un assignement fidèle qui associe à chaque interprétation ω un préordre partiel \leq_{ω} tel que :

 $mod(\phi \diamond \mu) = \langle \omega \rangle = \min(Mod(\mu), \leq \omega)$

Exemple: opérateur PMA

- PMA = Possible Models Approach
- Initialement basée sur une distance ensembliste, mais peut être utilisée avec une distance de Hamming
- On calcule pour chaque modèle de la base