### Университет ИТМО

### Факультет программной инженерии и компьютерной техники

# Лабораторная работа №3 по «Методы Оптимизации»

Выполнил:

Студент группы Р3207 Разинкин А.В.

Преподаватели:

Селина Е.Г.

# Оглавление

| Цель лабораторной работы                  | 3  |
|-------------------------------------------|----|
| Порядок выполнения работы                 | 3  |
| Рабочие формулы                           | 4  |
| Графики функций на исследуемом интервале  | 5  |
| Заполненные таблицы                       | 6  |
| Решение системы нелинейных уравнений      | 8  |
| Ссылка на исходный код программы (GitHub) | 9  |
| Пример работы программы                   | 9  |
| Вывод                                     | 11 |

## Цель лабораторной работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов

### Порядок выполнения работы

- 1. Решение нелинейного уравнения:
  - Правый корень уточняется методом Ньютона
  - Левый корень уточняется методом половинного деления
  - Центральный корень уточняется методом простой итерации
- 2. Решение системы нелинейных уравнений методом простой итерации
- 3. Программная реализация четырех методов:
  - Метод хорд (для уравнений)
  - Метод Ньютона (для уравнений)
  - Метод простой итерации (для уравнений)
  - Метод Ньютона (для систем)

# Рабочие формулы

### 1 часть. Решение нелинейного уравнения

Метод Ньютона:  $x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$ 

Метод половинного деления:  $x_i = \frac{a_i + b_i}{2}$ 

Метод простой итерации:  $x_{i+1} = \varphi(x_i)$ , где  $x = \varphi(x)$  (x выражается из исходной функции f(x)

Метод хорд:  $x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$ 

# Графики функций на исследуемом интервале

1 часть. Решение нелинейного уравнения

Функция:  $f(x) = x^3 - 3{,}125x^2 - 3{,}5x + 2{,}458$ 

График:



2 часть. Решение системы нелинейных уравнений

Система:  $\begin{cases} \sin(x + 0.5) - y = 1\\ \cos(y - 2) + x = 0 \end{cases}$ 

График:



### Заполненные таблицы

Уточнение правого корня уравнения методом Ньютона:

$$f(x) = x^3 - 3{,}125x^2 - 3{,}5x + 2{,}458$$

$$f'(x) = 3x^2 - 6.25x - 3.5$$

$$f''(x) = 6x - 6.25$$

Интервал изоляции корня: [3; 4]

Точность:  $\varepsilon=10^{-2}$ 

Начальное приближение:  $x_0 = 4$ , т.к. f''(4) \* f(4) > 0

| №<br>итерации | $x_k$   | $f(x_k)$ | $f'(x_k)$ | $x_{k+1}$ | $ x_{k+1} - x_k $ |
|---------------|---------|----------|-----------|-----------|-------------------|
| 0             | 4       | 2,458    | 19,5      | 3,87395   | 0,12605           |
| 1             | 3,87395 | 0,13903  | 17,31028  | 3,86592   | 0,00804           |

Уточнение левого корня уравнения методом половинного деления:

$$f(x) = x^3 - 3{,}125x^2 - 3{,}5x + 2{,}458$$

Интервал изоляции корня: [-1,5; -1]

| № шага | а     | b        | х        | f(a)     | f(b)    | f(x)     | a-b     |
|--------|-------|----------|----------|----------|---------|----------|---------|
| 0      | -1,5  | -1       | -1,25    | -2,69825 | 1,833   | -0,00294 | 0,5     |
| 1      | -1,25 | -1       | -1,125   | -0,00294 | 1,833   | 1,01659  | 0,25    |
| 2      | -1,25 | -1,125   | -1,1875  | -0,00294 | 1,01659 | 0,53295  | 0,125   |
| 3      | -1,25 | -1,1875  | -1,21875 | -0,00294 | 0,53295 | 0,27163  | 0,0625  |
| 4      | -1,25 | -1,21875 | -1,23438 | -0,00294 | 0,27163 | 0,13606  | 0,03125 |
| 5      | -1,25 | -1,23438 | -1,24219 | -0,00294 | 0,13606 | 0,06693  | 0,01562 |
| 6      | -1,25 | -1,24219 | -1,24610 | -0,00294 | 0,06693 | 0,03206  | 0,00781 |

Уточнение центрального корня уравнения методом простой итерации:

$$f(x) = x^3 - 3{,}125x^2 - 3{,}5x + 2{,}458$$

Приведем f(x) = 0 к виду  $x = \varphi(x)$ :

$$x = \varphi(x) = \frac{1}{3.5}x^3 - \frac{3.125}{3.5}x^2 + \frac{2.458}{3.5}$$

$$\varphi'(x) = \frac{3}{3.5}x^2 - \frac{6,25}{3.5}x$$

Интервал изоляции корня: [0; 1]

Проверка достаточного условия сходимости метода:

На заданном интервале изоляции  $max|\varphi'(x)|=|\varphi'(0)|=0<1$ . Соответственно, вне зависимости от выбора начального приближения  $x_0$  итерационная последовательность метода будет сходиться к корню уравнения.

Начальное приближение:  $x_0 = 1$ 

Интервал изоляции корня: [0; 1]

| № итерации | $x_i$   | $x_{i+1} = \varphi(x_i)$ | $ x_{i+1}-x_i $ |
|------------|---------|--------------------------|-----------------|
| 0          | 1       | 0,09514                  | 0,90486         |
| 1          | 0,09514 | 0,69445                  | 0,59931         |
| 2          | 0,69445 | 0,36738                  | 0,32707         |
| 3          | 0,36738 | 0,59595                  | 0,22857         |
| 4          | 0,59595 | 0,44565                  | 0,15030         |
| 5          | 0,44565 | 0,55025                  | 0,10460         |
| 6          | 0,55025 | 0,47955                  | 0,07070         |
| 7          | 0,47955 | 0,52847                  | 0,04892         |
| 8          | 0,52847 | 0,49510                  | 0,03372         |
| 9          | 0,49510 | 0,51810                  | 0,02300         |
| 10         | 0,51810 | 0,50235                  | 0,01575         |
| 11         | 0,50235 | 0,51319                  | 0,01084         |
| 12         | 0,51319 | 0,50576                  | 0,00743         |

# Решение системы нелинейных уравнений

Уточнение решения системы нелинейных уравнений методом простой итерации:

Система: 
$$\begin{cases} \sin(x + 0.5) - y = 1\\ \cos(y - 2) + x = 0 \end{cases}$$

Определяем, что решение системы уравнений находится в квадрате:

$$0 < x < 1, -1 < v < 0$$

$$\begin{cases} y = \sin(x + 0.5) - 1 \\ x = -\cos(y - 2) \end{cases}$$

Проверим условие сходимости. В области *G* имеем:

$$\frac{\delta x}{\delta x} = 0 \qquad \qquad \frac{\delta x}{\delta y} = -\cos(y - 2)$$

$$\frac{\delta y}{\delta x} = \sin(x + 0.5) \qquad \frac{\delta y}{\delta y} = 0$$

$$\left|\frac{\delta x}{\delta x}\right| + \left|\frac{\delta x}{\delta y}\right| = \left|-\cos(y-2)\right| \le \cos(3) < 1$$

$$\left|\frac{\delta y}{\delta x}\right| + \left|\frac{\delta y}{\delta y}\right| = \left|\sin(x + 0.5)\right| \le \sin(1.5) < 1$$

 $\max |\varphi'(x)| \leq \sin(1.5) < 1 \to \mathsf{Процесс}$  сходящийся  $[x \in G]$ 

Выберем начальное приближение:  $x_0 = 1 \ y_0 = -1$ 

| № итерации | $x_i$   | $y_i$    | $x_{i+1}$ | $y_{i+1}$ | $ x_{i+1}-x_i $ | $ y_{i+1} - y_i $ |
|------------|---------|----------|-----------|-----------|-----------------|-------------------|
| 0          | 1       | -1       | 0,98999   | -0,00250  | 0,01001         | 0,99749           |
| 1          | 0,98999 | -0,00250 | 0,41842   | -0,00326  | 0,57157         | 0,00076           |
| 2          | 0,41842 | -0,00326 | 0,41911   | -0,20536  | 0,00069         | 0,20210           |
| 3          | 0,41911 | -0,20536 | 0,59283   | -0,20494  | 0,17372         | 0,00042           |
| 4          | 0,59283 | -0,20494 | 0,59249   | -0,11207  | 0,00034         | 0,09287           |
| 5          | 0,59249 | -0,11207 | 0,51523   | -0,11222  | 0,07726         | 0,00015           |
| 6          | 0,51523 | -0,11222 | 0,51536   | -0,15040  | 0,00013         | 0,03818           |
| 7          | 0,51536 | -0,15040 | 0,54769   | -0,15033  | 0,03233         | 0,00007           |
| 8          | 0,54769 | -0,15033 | 0,54763   | -0,13372  | 0,00006         | 0,01660           |
| 9          | 0,54763 | -0,13372 | 0,53366   | -0,13376  | 0,01397         | 0,00004           |
| 10         | 0,53366 | -0,13376 | 0,53369   | -0,14082  | 0,00003         | 0,00706           |

# Ссылка на исходный код программы (GitHub)

https://github.com/DecafMangoITMO/ITMO/tree/main/ComputationalMathematics/Lab\_2/src

## Пример работы программы

#### Пример 1:

Для выхода из программы пропишите exit.

Список доступных фукнций:

1) 
$$x^3 - x + 4 = 0$$

2) 
$$1.62x^3 - 8.15x^2 + 4.39x + 4.29 = 0$$

3) 
$$\exp(x) - 5 = 0$$

Введите номер функции: 1

Введите левую границу интервала: -2 Введите правую границу интервала: -1

Список доступных методов:



3) Метод простой итерации

Введите номер метода: 3

Введите точность: 0.001

Введите кол-во знаков после запятой: 4

Выберите способ вывода результата:

1) Терминал

2) Файл

Введите номер способа: 1 Уравнение:  $x^3 - x + 4 = 0$ 

Метод: Метод простой итерации

| № итерации | x\_k | x\_k+1 | f(x\_k+1) | |f(x\_k+1)| |

| 0.0079 | ١      |
|--------|--------|
| 0.0017 | ١      |
| 0.0004 | ١      |
|        | 0.0017 |



### Пример 2:

Для выхода из программы пропишите exit.

Список доступных систем нелинейных уравнений:

1)

$$|x^2 + y^2 = 4$$
  
-|  
|y = 3x^2  
2)  
 $|y = x$   
-|  
|y = cos(x)



Введите нулевое приближение х0: 1

Введите нулевое приближение у0: 1

Введите точность: 0.001

Введите кол-во знаков после запятой: 3

Выберите способ вывода результата:

1) Терминал

2) Файл



|          |   |   | x_i   | <u>_i  </u> | x_i | +1    | y_i- | +1   x | _i+1 | - x_i | y_i+´ | 1 - y_i |
|----------|---|---|-------|-------------|-----|-------|------|--------|------|-------|-------|---------|
| <u> </u> | 1 | I | 1.000 | 1.000       | 1   | 0.750 | l    | 0.750  | 1    | 0.250 |       | 0.250   |
|          | 2 |   | 0.750 | 0.750       |     | 0.739 |      | 0.739  | l    | 0.011 | ١     | 0.011   |
| <u> </u> | 3 |   | 0.739 | 0.739       |     | 0.739 |      | 0.739  | I    | 0.000 | I     | 0.000   |

• • •

График функции

# Вывод

В ходе выполнения данной лабораторной работы я ознакомился с основными численными методами решения нелинейных уравнений и систем нелинейных уравнений.