Midterm 2

Math 252

Spring 2021

You have 50 minutes to complete this exam and upload it to Canvas. You may use a scientific calculator, but no other resources. When you're finished, first check your work if there is time remaining, then scan the exam and upload it. If you have a question, don't hesitate to ask — I just may not be able to answer it.

1. (32 points) Multiple choice. You don't need to show any work.
a) (8 points) Suppose $y = f(x)$, and that the graph of f is rotated about the y -axis. Then
A) the shell method integrates with respect to y and the disk method with respect to x .
B) the shell method integrates with respect to x and the disk method also with respect to x .
C) the shell method integrates with respect to x and the disk method with respect to y .
D) the shell method integrates with respect to y and the disk method also with respect to y .
b) (8 points) The area between two functions can be negative
A) when one function goes below the x-axis.
B) when both functions are to the left of the y-axis.
C) when the functions cross over each other.
D) never.
c) (8 points) If a lamina is given by $f(x)$ on $[a,b]$ with $f(x) \ge 0$, then it is always true that
A) $a \le \overline{x} \le b$.
B) $\overline{y} \ge 0$.
C) both.
D) neither.
d) (8 points) True or false: there is a number L such that every continuous function f on $[0,1]$ has arc length less
than L .
) (4
e) (4 points extra credit) Justify your answer to part d): if you answered true, then find L . If you answered false, then given any number L , find a function on $[0,1]$ with arc length of at least L .

- 2. (32 points) Short answer.
- a) (8 points) Let f and g be continuous functions on [1,6] such that $f(x) \le g(x)$ on [1,3] and $g(x) \le f(x)$ on [3,6]. What is the area between f and g on [1,6]?

b) (8 points) Let $f(x) = 2x^3$. Set up the integrals to find the volume of the solid given by rotating the graph of f on [1,3] about the x-axis, using **both** the disk and shell methods. Don't solve either of the integrals.

c) (8 points) Let L be a lamina bounded above by f(x) on [-1,1]. Write the three integrals necessary to calculate \overline{x} and \overline{y} .

d) (8 points) Evaluate $\int x \sin(2x) dx$.

The rest of the problems require setting up and solving integrals. Half the credit is for the set-up and half for the solving.

3. (32 points) Consider the region given in the graph below, bounded by $f(x) = 8\sin\left(\frac{5\pi}{12}x\right)$ above and g(x) = 2x below. These functions intersect at (0,0) and (2,4).

a) (16 points) Find the volume of the solid of revolution given by rotating the region about the y-axis.

b) (16 points) Suppose the region is a lamina with density $\rho = 1$. Find the center of mass.

4. (16 points) Evaluate $\int_1^3 x^2 \ln(x) dx$.