Coresets for k-median/means Clustering

TOP: Data Clustering 076/091

Instructor: Sayan Bandyapadhyay
Portland State University

Outline

1 Coresets for *k*-median/means

2 Coreset Construction for *k*-median

Euclidean *k*-median

Given a set X of n points in \mathbb{R}^d

■ Find a set C of k points (cluster centers) in \mathbb{R}^d that minimizes,

$$cost(X, C) = \sum_{p \in X} ||p - NearestCenter(p)||$$

Cost comparison of original dataset and coreset

Given a set S of points with weight w_p for each $p \in S$, the k-median cost of S w.r.t a set of centers C

$$\operatorname{wcost}(S, C) = \sum_{p \in S} w_p \cdot ||p - NearestCenter(p)||$$

Given a set S of points with weight w_p for each $p \in S$, the k-median cost of S w.r.t a set of centers C

$$\operatorname{wcost}(S, C) = \sum_{p \in S} w_p \cdot ||p - NearestCenter(p)||$$

For the original set X, $w_p = 1$ for all $p \in X$, so $\operatorname{wcost}(X, C) = \operatorname{cost}(X, C)$

Given a set S of points with weight w_p for each $p \in S$, the k-median cost of S w.r.t a set of centers C

$$\operatorname{wcost}(S, C) = \sum_{p \in S} w_p \cdot ||p - NearestCenter(p)||$$

For the original set X, $w_p = 1$ for all $p \in X$, so $\operatorname{wcost}(X, C) = \operatorname{cost}(X, C)$

(ϵ -coreset.) A weighted subset $S \subseteq X$ is an ϵ -coreset if for any set of k centers C,

$$(1 - \epsilon) \cdot \cos(X, C) \le \operatorname{wcost}(S, C) \le (1 + \epsilon) \cdot \cos(X, C)$$

Back to Our Example

Outline

1 Coresets for *k*-median/means

2 Coreset Construction for *k*-median

- Similar to *k*-center
- Compute an approximate clustering

- Similar to *k*-center
- Compute an approximate clustering
- From each cluster, carefully pick a weighted subset of points

- Similar to *k*-center
- Compute an approximate clustering
- From each cluster, carefully pick a weighted subset of points
- The main obstacle is that clusters are not balls

- Similar to *k*-center
- Compute an approximate clustering
- From each cluster, carefully pick a weighted subset of points
- The main obstacle is that clusters are not balls
- We will take multiple balls per cluster

■ How to compute a good clustering?

- How to compute a good clustering?
- How about applying the local search algorithm?

- How to compute a good clustering?
- How about applying the local search algorithm?
- Local search works with finite set of centers

- How to compute a good clustering?
- How about applying the local search algorithm?
- Local search works with finite set of centers
- Set *X* as the set of centers

- How to compute a good clustering?
- How about applying the local search algorithm?
- Local search works with finite set of centers
- Set *X* as the set of centers
- How much is the cost increase if we use X instead of \mathbb{R}^d ?

A Cluster with a Center not from X

Reassign Points to the One Closest to *c*

Reassign Points to the One Closest to *c*

There is a subset of K centers of X that has $cost \le 2 \cdot OPT$

- How to compute a good clustering?
- How about applying the local search algorithm?
- Local search works with finite set of centers
- Set *X* as the set of centers
- How much is the cost increase if we use X instead of \mathbb{R}^d ? 2-factor!!

- How to compute a good clustering?
- How about applying the local search algorithm?
- Local search works with finite set of centers
- Set *X* as the set of centers
- How much is the cost increase if we use X instead of \mathbb{R}^d ? 2-factor!!

Local search yields a 3-factor approximation to the best solution

- How to compute a good clustering?
- How about applying the local search algorithm?
- Local search works with finite set of centers
- Set *X* as the set of centers
- How much is the cost increase if we use X instead of \mathbb{R}^d ? 2-factor!!

Local search yields a 3-factor approximation to the best solution \Rightarrow we obtain a clustering of cost \leq 6· OPT

■ Compute a 6-approximate solution *A* of the input *X*

- Compute a 6-approximate solution *A* of the input *X*
- Let $\mu = \mathbf{cost}(X, A)/n$ be the average cost

- Compute a 6-approximate solution *A* of the input *X*
- Let $\mu = \mathbf{cost}(X, A)/n$ be the average cost
- Maximum $||p NearestCenter(p)|| \le cost(X, A) = n \cdot \mu$

- Compute a 6-approximate solution *A* of the input *X*
- Let $\mu = \mathbf{cost}(X, A)/n$ be the average cost
- Maximum $||p NearestCenter(p)|| \le cost(X, A) = n \cdot \mu$
- For each cluster, do the following

Division of a Cluster into Rings

All Points in the Cluster are in the Rings

■ Points in each ring j are similar: $||p - c|| \in [2^{j-1}\mu, 2^{j}\mu]$

- Points in each ring j are similar: $||p c|| \in [2^{j-1}\mu, 2^{j}\mu]$
- Set **s** to be a sample size

- Points in each ring j are similar: $||p c|| \in [2^{j-1}\mu, 2^{j}\mu]$
- Set *s* to be a sample size
- Pick a uniformly random sample of size s from each ring
 R and add them to coreset

- Points in each ring j are similar: $||p c|| \in [2^{j-1}\mu, 2^{j}\mu]$
- Set *s* to be a sample size
- Pick a uniformly random sample of size s from each ring
 R and add them to coreset
- Distribute the total weight |R| equally to the chosen coreset points from R, i.e., $w_p = |R|/s$

A Random Sample is Picked from each Ring

Coreset Bounds

■ Total $k(\log n + 1)$ rings: coreset size = $s \times k(\log n + 1)$

Coreset Bounds

- Total $k(\log n + 1)$ rings: coreset size = $s \times k(\log n + 1)$
- Pick a sample size $s = O(kd \log n/\epsilon^3)$
 - Cost in coreset within $(1 \pm \epsilon)$ of the original cost

Coreset Bounds

- Total $k(\log n + 1)$ rings: coreset size = $s \times k(\log n + 1)$
- Pick a sample size $s = O(kd \log n/\epsilon^3)$
 - Cost in coreset within $(1 \pm \epsilon)$ of the original cost
- Total coreset size: $O(k^2 d \log^2 n/\epsilon^3)$