PNI: INDUSTRIAL ANOMALY DETECTION USING POSITION AND NEIGHBORHOOD INFORMATION

AE-FLOW: AOTOENCODERS WITH NORMALIZING FLOWS FOR MEDICAL IMAGES ANOMALY DETECTION

Jaehyeok Bae^{1,2}, Jae-Han Lee¹, Seyun Kim¹ wogur110@snu.ac.kr, {jaehan.lee, seyun.kim}@gausslabs.ai

Presenters: Yuki⁴ & Yu⁴

Yuzhong Zhao³, Qiaoqiao Ding³, Xiaoqun Zhang³ zhaoyuzhong, dingqiaoqiao, xqzhang}@sjtu.edu.cn

- Anomaly Detection relies on pretrained models due to lack of anomalous samples
- Existing methods ignore position and neighborhood information in normal feature distribution
- AEs have limited capabilities in modelling high-dimensional data distribution
- Erroneous reconstructions such as blurry image

- Use the pretrained model as feature extracters
- Add MLP to train neighborhood fearures
- Implement refinement network to refine anomaly map
- Just insert a flow model!
- Keep structural information with CNN encoder
- 8 flow steps in flow model

 These values are good according to the AUROC mertic, but its usefulness is low when we look at the anomaly map.

Code

2 Seoul National University

3 School of Mathematical Sciences, MOE-LSC and Institute of Natural Sciences, Shanghai Jiao Tong University