Frühjahr 2025 Thema 1 Aufgabe 5

mks

7. Mai 2025

Für $\alpha > 0$ bezeichne

$$f_{\alpha}: \mathbb{R} \times (0, \infty) \to \mathbb{R}, \quad f_{\alpha}(t, x) := x^{\alpha} \cos(t)$$

Geben Sie die Teilmenge $A\subseteq (0,\infty)$ an, die genau aus den $\alpha>0$ besteht, für die das Anfangswertproblem

$$(AWP_{\alpha})$$
 $\dot{x} = f_{\alpha}(t, x), \quad x(0) = 1,$

genau eine auf ganz \mathbb{R} definierte Lösung besitzt. Weisen Sie Ihr Ergebnis nach, indem Sie

- a) Für alle $\alpha \in A$ die Lösung explizit bestimmen und deren Eindeutigkeit begründen,
- b) für alle $\alpha \in (0,\infty) \setminus A$ zeigen, dass keine Lösung auf \mathbb{R} existieren kann oder dass es mindestens zwei verschiedene auf ganz \mathbb{R} definierte Lösungen gibt.

Lösung:

a)

Sei $\alpha > 0$ beliebig. Da f_{α} ein Produkt von stetigen Funktionen ist, ist f_{α} stetig.

Weiterhin ist aus diesem Grund auch $\partial_x f_{\alpha}(t,x) = \alpha x^{\alpha-1} \cos(t)$ stetig auf $D = (0,\infty) \times \mathbb{R}$. Dies zeigt, dass f_{α} lokal Lipschitz-stetig bezüglich x ist.

Mit dem globalen Existenz- und Eindeutigkeitssatz folgt dann, dass das AWP für jedes $\alpha > 0$ eine eindeutige maximale Lösung $x_{\alpha}: (t_{-,\alpha}, t_{+,\alpha}) \to \mathbb{R}$ besitzt mit $-\infty \le t_{-,\alpha} < 0 < t_{+,\alpha} \le \infty$.

Nach dem Hinweis betrachten wir zunächst $\alpha = 1$.

Wir bestimmen die maximale Lösung x_1 mit Trennung der Variablen.

$$\int_{1}^{x} \frac{1}{s} \, \mathrm{d}s = \int_{0}^{t} \cos(w) \, \mathrm{d}w \quad \Rightarrow \quad \ln(x) - \ln(1) = \sin(t) - \sin(0) \quad \Rightarrow \quad x_{1}(t) = e^{\sin(t)}$$
 Probe für $\alpha = 1$: $x_{1}(0) = e^{\sin(0)} = e^{0} = 1$, $x'_{1}(t) = e^{\sin(t)} \cos(t) = x_{1}(t) \cos(t) \, \forall t \in \mathbb{R}$, passt.

Da x_1 auf ganz \mathbb{R} definiert ist gilt $1 \in A$.

Sei nun $\alpha \neq 1$.

Wir verwenden erneut Trennung der Variablen zur Lösung des AWP.
$$\int_{1}^{x} s^{-\alpha} ds = \int_{0}^{t} \cos(w) dw \quad \Rightarrow \quad \frac{1}{1-\alpha} (x^{1-\alpha} - 1^{1-\alpha}) = \sin(t) \quad \Rightarrow \quad x_{\alpha}(t) = ((1-\alpha)\sin(t) + 1)^{\frac{1}{1-\alpha}}$$

Wir zeigen zunächst, dass $x_{\alpha} \ \forall \alpha \in (0,2) \setminus \{1\}$ wohldefiniert ist.

Für kein $\alpha \in (0,\infty) \setminus \{1\}$ ist $\frac{1}{1-\alpha} \in \mathbb{Z}$. Es ist also zu zeigen, dass $(1-\alpha)\sin(t)+1>0$ ist $\forall t \in \mathbb{R}$. Für $\alpha \in (0,1)$ ist $1>1-\alpha>0$. Es folgt $(1-\alpha)\sin(t)\geq -1(1-\alpha)>-1$ und somit $(1-\alpha)\sin(t)+1>0$. Für $\alpha \in (1,2)$ ist $-1<1-\alpha<0$. Es folgt $(1-\alpha)\sin(t)\geq (1-\alpha)1>-1$ und somit $(1-\alpha)\sin(t)+1>0$. Probe für $\alpha \neq 1$: $x_{\alpha}(0)=1^{1-\alpha}=1$,

Somit ist gezeigt
$$(0,2) \subseteq A$$
.
$$x'_{\alpha}(t) = \frac{1}{1-\alpha}((1-\alpha)\sin(t)+1)^{\frac{\alpha}{1-\alpha}-1}(1-\alpha)\cos(t) = ((1-\alpha)\sin(t)+1)^{\frac{\alpha}{1-\alpha}}\cos(t) = (x_{\alpha}(t))^{\alpha}\cos(t) \forall t \in \mathbb{R}(+), \text{ passt.}$$

b)

Sei nun $\alpha > 2$.

Wir haben gezeigt, dass es eine eindeutige maximale Lösung des AWP, $x_{\alpha}:(t_{-\alpha},t_{+,\alpha})\to\mathbb{R}$ gibt.

Die Rechnung (+) gilt für alle $t \in \mathbb{R}$ mit $(1 - \alpha)\sin(t) + 1 > 0$.

Das bedeutet, dass $(t_{-\alpha}, t_{+\alpha})$ das maximale Intervall ist, dass die 0 enthält und für das x_{α} wohldefiniert ist, also

 $\begin{array}{l} (1-\alpha)\sin(t)+1>0 \ \forall t\in (t_{-,\alpha},t_{+,\alpha}).\\ \text{F\"{u}r}\ \alpha\geq 2 \ \text{gilt}\ 1-\alpha\geq -1 \ \text{und somit existieren}\ t^*\in\mathbb{R}\ \text{mit}\ (1-\alpha)\sin(t^*)+1+1<0.\ \text{Dort ist}\ x_\alpha \ \text{also nicht definiert}\\ \text{und es folgt, dass}\ t_{-\alpha}>-\infty \ \text{oder}\ t_{+,\alpha}<\infty.\\ \text{Damit ist gezeigt, dass f\"{u}r}\ \alpha\geq 2 \ \alpha\notin A \ \text{und somit}\ A=(0,2). \end{array}$