Package 'climate'

January 8, 2021

Title Interface to Download Meteorological (and Hydrological) Datasets

Version 0.9.9

Description Automatize downloading of meteorological and hydrological data from publicly available repositories:

OGIMET (http://ogimet.com/index.phtml.en),

University of Wyoming -

atmospheric vertical profiling data (http://weather.uwyo.edu/upperair),

Polish Institute of Meterology and Water Management -

National Research Institute (https://dane.imgw.pl),

and National Oceanic & Atmospheric Administration (NOAA).

This package also allows for adding geographical coordinates for each observation.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Depends R (>= 3.1)

Imports XML, httr, curl

Suggests testthat, knitr, rmarkdown, dplyr, tidyr, maps

URL https://github.com/bczernecki/climate

BugReports https://github.com/bczernecki/climate/issues

VignetteBuilder knitr NeedsCompilation no

Author Bartosz Czernecki [aut, cre] (https://orcid.org/0000-0001-6496-1386),

Arkadiusz Głogowski [aut] (https://orcid.org/0000-0002-7587-8892),

Jakub Nowosad [aut] (https://orcid.org/0000-0002-1057-3721),

IMGW-PIB [ctb] (source of the data)

Maintainer Bartosz Czernecki <nwp@amu.edu.pl>

Repository CRAN

Date/Publication 2021-01-08 09:10:12 UTC

co2_demo

R topics documented:

co2_0		Examplary dataset)	CO2	dataset	from	Mauna	Loa Obs	servatory (NC)AA
Index									24
	test_url								. 23
	stations_ogimet								
	sounding_wyoming								
	profile_demo								
	nearest_stations_ogir								
	nearest_stations_noo								
	nearest_stations_img								
	meteo_ogimet								
	meteo_noaa_hourly								
	meteo_noaa_co2 .								
	meteo_imgw_monthl	•							
	meteo_imgw_hourly								
	meteo_imgw_daily								
	meteo_imgw								
	imgw_meteo_station								
	imgw_meteo_abbrev								
	imgw_hydro_stations	3							7
	imgw_hydro_abbrev								6
	hydro_imgw_monthl	y							5
	hydro_imgw_daily								5
	hydro_imgw_annual								4
	hydro_imgw								3
	co2_demo								. 2

Description

The object contains pre-downloaded CO2 dataset from Mauna Loa observatory The snapshot was taken 2020/05/05.

Usage

co2_demo

Format

An object of class data. frame with 745 rows and 7 columns.

```
data(co2_demo)
head(co2_demo)
```

hydro_imgw 3

hydro_imgw	Hydrological data from IMGW
------------	-----------------------------

Description

Downloading hourly, daily, and monthly hydrological data from the measurement stations available in the dane.imgw.pl collection

Usage

```
hydro_imgw(
  interval,
  year,
  coords = FALSE,
  value = "H",
  station = NULL,
  col_names = "short",
  ...
)
```

Arguments

interval	$temporal\ resolution\ of\ the\ data\ ("daily"\ , "monthly",\ or\ "semiannual_and_annual")$
year	vector of years (e.g., 1966:2000)
coords	add coordinates of the stations (logical value TRUE or FALSE)
value	type of data (can be: state - "H" (default), flow - "Q", or temperature - "T")
station	vector of hydrological stations dane.imgw.pl; can be given as station name with CAPITAL LETTERS (character) It accepts either names (characters in CAPITAL LETTERS) or stations' IDs (numeric)
col_names	three types of column names possible: "short" - default, values with shorten names, "full" - full English description, "polish" - original names in the dataset
	other parameters that may be passed to the 'shortening' function that shortens column names

Value

A data.frame with columns describing the hydrological parameters (e.g. flow, water level) where each row represent a measurement, depending on the interval, at a given hour, month or year. If coords = TRUE additional two columns with geografic coordinates are added.

```
x <- hydro_imgw("monthly", year = 1999)
head(x)</pre>
```

4 hydro_imgw_annual

hydro_imgw_annual

Semi-annual and annual hydrological data

Description

Downloading hydrological data for the semi-annual and annual period available in the dane.imgw.pl collection

Usage

```
hydro_imgw_annual(
  year,
  coords = FALSE,
  value = "H",
  station = NULL,
  col_names = "short",
  ...
)
```

Arguments

year	vector of years (e.g., 1966:2000)
coords	add coordinates of the stations (logical value TRUE or FALSE)
value	type of data (can be: state - "H" (default), flow - "Q", or temperature - "T")
station	name or ID of hydrological station(s). It accepts names (characters in CAPITAL LETTERS) or stations' IDs (numeric)
col_names	three types of column names possible: "short" - default, values with shorten names, "full" - full English description, "polish" - original names in the dataset
• • •	other parameters that may be passed to the 'shortening' function that shortens column names

```
yearly = hydro_imgw_annual(year = 2000, value = "H", station = "ANNOPOL")
head(yearly)
```

hydro_imgw_daily 5

hydro_imgw_daily	<i>Daily</i>	hydro	logical	data

Description

Downloading daily hydrological data from the dane.imgw.pl collection

Usage

```
hydro_imgw_daily(
  year,
  coords = FALSE,
  station = NULL,
  col_names = "short",
  ...
)
```

Arguments

year	vector of years (e.g., 1966:2000)
coords	add coordinates of the stations (logical value TRUE or FALSE)
station	name or ID of hydrological station(s). It accepts names (characters in CAPITAL LETTERS) or stations' IDs (numeric)
col_names	three types of column names possible: "short" - default, values with shorten names, "full" - full English description, "polish" - original names in the dataset
	other parameters that may be passed to the 'shortening' function that shortens column names

Examples

```
daily = hydro_imgw_daily(year = 2000)
head(daily)
```

 $\begin{tabular}{ll} hydro_{\tt imgw_monthly} & \textit{Monthly hydrological data} \end{tabular}$

Description

Downloading monthly hydrological data from the dane.imgw.pl collection

6 imgw_hydro_abbrev

Usage

```
hydro_imgw_monthly(
  year,
  coords = FALSE,
  station = NULL,
  col_names = "short",
  ...
)
```

Arguments

year	vector of years (e.g., 1966:2000)
coords	add coordinates of the stations (logical value TRUE or FALSE)
station	name or ID of hydrological station(s). It accepts names (characters in CAPITAL LETTERS) or stations' IDs (numeric)
col_names	three types of column names possible: "short" - default, values with shorten names, "full" - full English description, "polish" - original names in the dataset
	other parameters that may be passed to the 'shortening' function that shortens column names

Examples

```
monthly <- hydro_imgw_monthly(year = 2000)
head(monthly)</pre>
```

imgw_hydro_abbrev	Definitions of hydrological parameters used for shortening column
	names from the dane.imgw.pl collection

Description

The object contains 3 columns that are currently used for improving readability of the downloaded dataset: fullname, abbr_eng, and fullname_eng

Usage

```
imgw_hydro_abbrev
```

imgw_hydro_stations 7

Format

The data contains a data.frame with ca. 20 elements described in three ways:

- fullname original column names as downloaded from the repository
- abbr_eng shorten column names with abbreviations derived from the most popular scheme used for meteorological parameters
- fullname_eng detailed description of downloaded meteorological variables

The object is created mostly to be used altogether with the hydro_shortening_imgw() function

Examples

```
data(imgw_hydro_abbrev)
head(imgw_hydro_abbrev)
```

imgw_hydro_stations

Location of the hydrological stations from the dane.imgw.pl collection

Description

The object contains weather stations coordinates, ID numbers, and elevations

Usage

```
imgw_hydro_stations
```

Format

The data contains a data frame with 1304 obs. of 3 variables:

- id Station ID
- X Longitude
- Y Latitude

The object is in the geographic coordinates using WGS84 (EPSG:4326).

```
data(imgw_hydro_stations)
head(imgw_hydro_stations)
```

imgw_meteo_abbrev	Definitions of meteorological parameters used for shortening column names for the meteorological data from the dane.imgw.pl collection

Description

The object contains 3 columns that are currently used for improving readability of the downloaded dataset: fullname, abbr_eng, and fullname_eng

Usage

```
imgw_meteo_abbrev
```

Format

The data contains a data.frame with ca. 250 elements described in three ways:

- fullname original column names as downloaded from the repository
- abbr_eng shorten column names with abbreviations derived from the most popular scheme used for meteorological parameters
- fullname_eng detailed description of downloaded meteorological variables

The object is created mostly to be used altogether with the meteo_shortening_imgw function

Examples

```
data(imgw_meteo_abbrev)
head(imgw_meteo_abbrev)
```

imgw_meteo_stations Location of the meteorological stations from the dane.imgw.pl collection

Description

The object contains weather stations coordinates, ID numbers, and elevations

Usage

```
imgw_meteo_stations
```

meteo_imgw 9

Format

The data contains a data.frame with 1998 obs. of 3 variables:

- id Station ID
- X Longitude
- Y Latitude

The object is in the geographic coordinates using WGS84 (EPSG:4326).

Examples

```
data(imgw_meteo_stations)
head(imgw_meteo_stations)
```

meteo_imgw

Meteorological data from IMGW

Description

Downloading hourly, daily, and monthly meteorological data from the SYNOP / CLIMATE / PRE-CIP stations available in the dane.imgw.pl collection

Usage

```
meteo_imgw(
   interval,
   rank = "synop",
   year,
   status = FALSE,
   coords = FALSE,
   station = NULL,
   col_names = "short",
   ...
)
```

Arguments

interval temporal resolution of the data ("hourly", "daily", "monthly")

rank rank of the stations: "synop" (default), "climate" or "precip"

year vector of years (e.g., 1966:2000)

status leave the columns with measurement and observation statuses (default status = FALSE - i.e. the status columns are deleted)

coords add coordinates of the station (logical value TRUE or FALSE)

station vector of hydrological stations dane.imgw.pl can be name of station CAPITAL LETTERS(character) It accepts names (characters in CAPITAL LETTERS) or stations' IDs (numeric)

10 meteo_imgw_daily

col_names	three types of column names possible: "short" - default, values with shorten names, "full" - full English description, "polish" - original names in the dataset
•••	other parameters that may be passed to the 'shortening' function that shortens column names

Value

A data.frame with columns describing the meteorological parameters (e.g. temperature, wind speed, precipitation) where each row represent a measurement, depending on the interval, at a given hour, month or year. If coords = TRUE additional two columns with geografic coordinates are added.

Examples

```
x \leftarrow meteo\_imgw("monthly", year = 2018, coords = TRUE)
head(x)
```

meteo_imgw_daily

Daily IMGW meteorological data

Description

Downloading daily (meteorological) data from the SYNOP / CLIMATE / PRECIP stations available in the dane.imgw.pl collection

Usage

```
meteo_imgw_daily(
  rank = "synop",
  year,
  status = FALSE,
  coords = FALSE,
  station = NULL,
  col_names = "short",
  ...
)
```

rank	rank of the stations: "synop" (default), "climate", or "precip"
year	vector of years (e.g., 1966:2000)
status	leave the columns with measurement and observation statuses (default status = FALSE - i.e. the status columns are deleted)
coords	add coordinates of the station (logical value TRUE or FALSE)
station	name of meteorological station(s). It accepts names (characters in CAPITAL LETTERS); stations' IDs (numeric) are no longer valid

meteo_imgw_hourly 11

```
col_names three types of column names possible: "short" - default, values with shorten names, "full" - full English description, "polish" - original names in the dataset other parameters that may be passed to the 'shortening' function that shortens column names
```

Examples

```
daily <- meteo_imgw_daily(rank = "climate", year = 2000)
head(daily)</pre>
```

meteo_imgw_hourly

Hourly IMGW meteorological data

Description

Downloading hourly (meteorological) data from the SYNOP / CLIMATE / PRECIP stations available in the dane.imgw.pl collection

Usage

```
meteo_imgw_hourly(
  rank = "synop",
  year,
  status = FALSE,
  coords = FALSE,
  station = NULL,
  col_names = "short",
  ...
)
```

rank	rank of the stations: "synop" (default), "climate", or "precip"
year	vector of years (e.g., 1966:2000)
status	leave the columns with measurement and observation statuses (default status = FALSE - i.e. the status columns are deleted)
coords	add coordinates of the station (logical value TRUE or FALSE)
station	name or ID of meteorological station(s). It accepts names (characters in CAPITAL LETTERS) or stations' IDs (numeric)
col_names	three types of column names possible: "short" - default, values with shorten names, "full" - full English description, "polish" - original names in the dataset
	other parameters that may be passed to the 'shortening' function that shortens column names

Examples

```
hourly <- meteo_imgw_hourly(rank = "climate", year = 1984)
head(hourly)</pre>
```

meteo_imgw_monthly

Monthly IMGW meteorological data

Description

 $Downloading\ monthly\ (meteorological)\ data\ from\ the\ SYNOP\ /\ CLIMATE\ /\ PRECIP\ stations\ available\ in\ the\ dane.imgw.pl\ collection$

Usage

```
meteo_imgw_monthly(
  rank = "synop",
  year,
  status = FALSE,
  coords = FALSE,
  station = NULL,
  col_names = "short",
  ...
)
```

rank	rank of the stations: "synop" (default), "climate", or "precip"
year	vector of years (e.g., 1966:2000)
status	leave the columns with measurement and observation statuses (default status = FALSE - i.e. the status columns are deleted)
coords	add coordinates of the station (logical value TRUE or FALSE)
station	name or ID of meteorological station(s). It accepts names (characters in CAPITAL LETTERS) or stations' IDs (numeric)
col_names	three types of column names possible: "short" - default, values with shorten names, "full" - full English description, "polish" - original names in the dataset
	other parameters that may be passed to the 'shortening' function that shortens column names

meteo_noaa_co2

Examples

meteo_noaa_co2

CO2 Mauna Loa (NOAA) dataset

Description

Carbon Dioxide (CO2) monthly measurements from Mauna Loa observatory. The source file is available at: ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt with all further details.

Usage

```
meteo_noaa_co2()
```

Details

Data from March 1958 through April 1974 have been obtained by C. David Keeling of the Scripps Institution of Oceanography (SIO) and were obtained from the Scripps website (scrippsco2.ucsd.edu).

The "average" column contains the monthly mean CO2 mole fraction determined from daily averages. The mole fraction of CO2, expressed as parts per million (ppm) is the number of molecules of CO2 in every one million molecules of dried air (water vapor removed). If there are missing days concentrated either early or late in the month, the monthly mean is corrected to the middle of the month using the average seasonal cycle. Missing months are denoted by -99.99. The "interpolated" column includes average values from the preceding column and interpolated values where data are missing. Interpolated values are computed in two steps. First, we compute for each month the average seasonal cycle in a 7-year window around each monthly value. In this way the seasonal cycle is allowed to change slowly over time. We then determine the "trend" value for each month by removing the seasonal cycle; this result is shown in the "trend" column. Trend values are linearly interpolated for missing months. The interpolated monthly mean is then the sum of the average seasonal cycle value and the trend value for the missing month. NOTE: In general, the data presented for the last year are subject to change, depending on recalibration of the reference gas mixtures used, and other quality control procedures. Occasionally, earlier years may also be changed for the same reasons. Usually these changes are minor. CO2 expressed as a mole fraction in dry air, micromol/mol, abbreviated as ppm

14 meteo_noaa_hourly

Examples

```
#co2 <- meteo_noaa_co2()
#head(co2)
#plot(co2$yy_d, co2$co2_avg, type='l')</pre>
```

meteo_noaa_hourly

Hourly NOAA Integrated Surface Hourly (ISH) meteorological data

Description

Downloading hourly (meteorological) data from the SYNOP stations available in the NOAA ISD collection. Some stations in the dataset are dated back even up to 1900. By default only records that follow FM-12 (SYNOP) convention are processed. Further details available at: https://www1.ncdc.noaa.gov/pub/data/noaa/re

Usage

```
meteo_noaa_hourly(station = NULL, year, fm12 = TRUE)
```

Arguments

station ID of meteorological station(s) (characters). Find your station's ID at: https://www1.ncdc.noaa.gov/pub/d

history.txt

year vector of years (e.g., 1966:2000)

fm12 use only FM-12 (SYNOP) records (TRUE by default)

meteo_ogimet 15

meteo_ogimet	Scrapping meteorological (Synop) data from the Ogimet webpage

Description

Downloading hourly or daily (meteorological) data from the Synop stations available at https://www.ogimet.com/

Usage

```
meteo_ogimet(interval, date, coords = FALSE, station, precip_split = TRUE)
```

Arguments

date

interval 'daily' or 'hourly' dataset to retrieve - given as character

start and finish date (e.g., date = c("2018-05-01", "2018-07-01")) - character or

Date class object

coords add geographical coordinates of the station (logical value TRUE or FALSE)

station WMO ID of meteorological station(s). Character or numeric vector

precip_split whether to split precipitation fields into 6/12/24h numeric fields (logical value

TRUE (default) or FALSE); valid only for hourly time step

Value

A data frame of measured values with columns describing the meteorological parameters (e.g. air temperature, wind speed, cloudines). Depending on the interval, at a given hour or day. Different parameters are returned for daily and hourly datasets.

- 1. station_ID WMO station identifier
- 2. Lon longitude
- 3. Lat latitude
- 4. Date date (and time) of observations
- 5. TC air temperature at 2 metres above ground level. Values given in Celsius degrees
- 6. TdC dew point temperature at 2 metres above ground level. Values given in Celsius degrees
- 7. TmaxC maximum air temperature at 2 metres above ground level. Values given in Celsius degrees
- 8. TminC minimum air temperature at 2 metres above ground level. Values given in Celsius degrees
- 9. ddd wind direction
- 10. ffkmh wind speed in km/h
- 11. Gustkmh wind gust in km/h
- 12. P0hpa air pressure at elevation of the station in hPa
- 13. PseahPa sea level pressure in hPa

16 meteo_ogimet

- 14. PTnd pressure tendency in hPa
- 15. Nt total cloud cover
- 16. Nh cloud cover by high-level cloud fraction
- 17. HKm height of cloud base
- 18. InsoD1 insolation in hours
- 19. Viskm visibility in kilometres
- 20. Snowcm depth of snow cover in centimetres
- 21. pr6 precicipitation totals in 6 hours
- 22. pr12 precicipitation totals in 12 hours
- 23. pr24 precicipitation totals in 24 hours
- 24. TemperatureCAvg average air temperature at 2 metres above ground level. Values given in Celsius degrees
- 25. TemperatureCMax maximum air temperature at 2 metres above ground level. Values given in Celsius degrees
- 26. TemperatureCMin minimum air temperature at 2 metres above ground level. Values given in Celsius degrees
- 27. TdAvgC average dew point temperature at 2 metres above ground level. Values given in Celsius degrees
- 28. HrAvg average relative humidity. Values given in %
- 29. WindkmhDir wind direction
- 30. WindkmhInt wind speed in km/h
- 31. WindkmhGust wind gust in km/h
- 32. PresslevHp Sea level pressure in hPa
- 33. Precmm precipitation totals in mm
- 34. TotClOct total cloudiness in octants
- 35. lowClOct cloudiness by low level clouds in octants
- 36. SunD1h sunshine duration in hours
- 37. PreselevHp atmospheric pressure measured at altitude of station in hPa
- 38. SnowDepcm depth of snow cover in centimetres

```
# downloading data for Poznan-Lawica
# poznan = meteo_ogimet(interval = "daily",
# date = c(Sys.Date()-30, Sys.Date()),
# station = 12330,
# coords = TRUE)
# head(poznan)
```

nearest_stations_imgw

 ${\it nearest_stations_imgw} \quad {\it List~of~nearby~meteorological~or~hydrological~IMGW-PIB~stations~in} \\ {\it Poland}$

Description

Returns a data frame of meteorological or hydrological stations with their coordinates in particular year. The returned object is valid only for a given year and type of stations (e.g. "synop", "climate" or "precip"). If add_map = TRUE additional map of downloaded data is added.

Usage

```
nearest_stations_imgw(
  type = "meteo",
  rank = "synop",
  year = 2018,
  add_map = TRUE,
  point = NULL,
  no_of_stations = 50,
  ...
)
```

Arguments

type	data name; "meteo" (default), "hydro"
rank	rank of the stations: "synop" (default), "climate", or "precip"; Only valid if type = "meteo
year	select year for serching nearest station
add_map	logical - whether to draw a map for a returned data frame (requires maps/mapdata packages) $$
point	a vector of two coordinates (longitude, latitude) for a point we want to find nearest stations to (e.g. $c(15,53)$); If not provided calculated as a mean longitude and latitude for the entire dataset
no_of_stations	how many nearest stations will be returned from the given geographical coordinates. 50 used by default
	extra arguments to be provided to the $graphics::plot()$ function (only if $add_map = TRUE$)

Value

A data frame with a list of nearest stations. Each row represents metadata for station which collected measurements in a given year. Particular columns contain stations metadata (e.g. station ID, geographical coordinates, official name, distance from a given coordinates).

18 nearest_stations_nooa

Examples

```
nearest_stations_imgw(type = "hydro",
rank="synop",
year=2018,
point = c(17, 52),
add_map = TRUE,
no_of_stations = 4)
```

Description

Returns a data frame of meteorological stations with their coordinates and distance from a given location based on the noaa website. The returned list is valid only for a given day.

Usage

```
nearest_stations_nooa(
  country,
  date = Sys.Date(),
  add_map = TRUE,
  point = NULL,
  no_of_stations = 10,
  ...
)
```

country	country name; use CAPITAL LETTERS (e.g., "SRI LANKA"), if not used function will found selected number of nearest stations without country classification
date	optionally, a day when measurements were done in all available locations; current Sys.Date used by default
add_map	logical - whether to draw a map for a returned data frame (requires maps/mapdata packages)
point	a vector of two coordinates (longitude, latitude) for a point we want to find nearest stations to (e.g. $c(80,6)$)
no_of_stations	how many nearest stations will be returned from the given geographical coordinates
•••	extra arguments to be provided to the graphics::plot() function (only if add_map = TRUE)

Value

A data frame with number of nearest station according to given point columns describing stations parameters (e.g. ID station, distance from point, geografic coordinates) where each row represent a measurement, each station which has a measurements on selected date. If add_map = TRUE additional map of downloaded data is added.

Examples

```
nearest_stations_nooa(country = "SRI LANKA",
point = c(80, 6),
add_map = TRUE,
no_of_stations = 10)
```

nearest_stations_ogimet

List of nearby synop stations for a defined geographical location

Description

Returns a data frame of meteorological stations with their coordinates and distance from a given location based on the ogimet webpage. The returned list is valid only for a given day.

Usage

```
nearest_stations_ogimet(
  country = "United+Kingdom",
  date = Sys.Date(),
  add_map = FALSE,
  point = c(2, 50),
  no_of_stations = 10,
  ...
)
```

country	country name; for more than two words they need to be seperated with a plus character (e.g., "United+Kingdom")
date	optionally, a day when measurements were done in all available locations; current Sys.Date used by default
add_map	logical - whether to draw a map for a returned data frame (requires maps/mapdata packages)
point	a vector of two coordinates (longitude, latitude) for a point we want to find nearest stations to (e.g. $c(0,0)$)

20 profile_demo

```
no_of_stations how many nearest stations will be returned from the given geographical coordinates
... extra arguments to be provided to the graphics::plot() function (only if add_map = TRUE)
```

Value

A data.frame with number of nearest station according to given point columns describing stations parameters (e.g. ID station, distance from point,geografic coordinates) where each row represent a measurement, each station which has a measurements on selected date. If add_map = TRUE additional map of downloaded data is added.

Examples

profile_demo

Examplary sounding profile from University of Wyoming collection

Description

The object contains pre-downloaded atmospheric (sounding) profile for Łeba, PL rawinsonde station. The measurement was taken 2000/03/23 at 00 UTC.

Usage

```
profile_demo
```

Format

The data contains list of two data.frames as derived from sounding_wyoming()

```
data(profile_demo)
head(profile_demo)
```

sounding_wyoming 21

Description

Downloading the mea (i.e., measurements of the vertical profile of atmosphere) sounding data

Usage

```
sounding_wyoming(wmo_id, yy, mm, dd, hh)
```

Arguments

wmo_id	international WMO station code (World Meteorological Organization ID); For Polish stations: Łeba - 12120, Legionowo - 12374, Wrocław- 12425
уу	year - single number
mm	month - single number denoting month
dd	day - single number denoting day
hh	hour - single number denoting initial hour of sounding; for most stations this measurement is done twice a day (i.e. at 12 and 00 UTC), sporadically 4 times a day

Value

Returns two lists with values described at: weather.uwyo.edu; The first list contains:

```
1. PRES - Pressure (hPa)
```

- 2. HGHT Height (metres)
- 3. TEMP Temperature (C)
- 4. DWPT Dew point (C)
- 5. RELH Relative humidity (%)
- 6. MIXR Mixing ratio (g/kg)
- 7. DRCT Wind direction (deg)
- 8. SKNT Wind speed (knots)
- 9. THTA = (K)
- 10. THTE = (K)
- 11. THTV = (K)

The second list contains metadata and calculated thermodynamic / atmospheric instability indices

A list of 2 data.frames where first data frame represents parameters of upper parts o with columns describing the meteorogical parameters (e.g. temperature, air pressure) where each row represent a measurement, depending on the height. Secound data.frame present a description of the conditions under which the sounding was carried out.

22 stations_ogimet

Source

http://weather.uwyo.edu/upperair/sounding.html

Examples

stations_ogimet

Scrapping a list of meteorological (Synop) stations for a defined country from the Ogimet webpage

Description

Returns a list of meteorological stations with their coordinates from the Ogimet webpage. The returned list is valid only for a given day

Usage

```
stations_ogimet(country = "United+Kingdom", date = Sys.Date(), add_map = FALSE)
```

Arguments

country country name; for more than two words they need to be seperated with a plus

character (e.g. "United+Kingdom")

date a day when measurements were done in all available locations

add_map logical - whether to draw a map with downloaded metadata (requires maps/mapdata

packages)

Value

A data.frame with columns describing the synoptic stations in selected countries where each row represent a statation. If add_map = TRUE additional map of downloaded data is added.

test_url 23

Examples

```
stations_ogimet(country = "Australia", add_map = TRUE)
```

test_url

Download file in a graceful way

Description

Function for downloading & testing url/internet connection according to CRAN policy Example solution strongly based on https://community.rstudio.com/t/internet-resources-should-fail-gracefully/49199/12 as suggested by kvasilopoulos

Usage

```
test_url(link, output, quiet = FALSE)
```

Arguments

link character vector with URL to check output character vector for output file name

quiet logical vector (TRUE or FALSE) to be passed to curl_download function. FALSE

by default

```
link = "https://www1.ncdc.noaa.gov/pub/data/noaa/2019/123300-99999-2019.gz"
output = basename(link)
test_url(link = link, output = output)
```

Index

* abbreviations
$imgw_hydro_abbrev, 6$
${\sf imgw_meteo_abbrev}, 8$
* datasets
$co2_demo, 2$
<pre>imgw_hydro_abbrev, 6</pre>
${\it imgw_hydro_stations}, 7$
${\sf imgw_meteo_abbrev}, 8$
${\it imgw_meteo_stations}, 8$
profile_demo, 20
* hydro
imgw_hydro_abbrev,6
* meteo
co2_demo, 2
imgw_hydro_stations,7
${\sf imgw_meteo_abbrev}, 8$
${\tt imgw_meteo_stations}, 8$
profile_demo, 20
* shortening
imgw_hydro_abbrev,6
${\sf imgw_meteo_abbrev}, 8$
co2_demo, 2
graphics::plot(), <i>17</i> , <i>18</i> , <i>20</i>
hydro_imgw, 3
hydro_imgw_annual, 4
hydro_imgw_daily, 5
hydro_imgw_monthly, 5
imgw_hydro_abbrev,6
<pre>imgw_hydro_stations, 7</pre>
imgw_meteo_abbrev,8
<pre>imgw_meteo_stations, 8</pre>
meteo_imgw, 9
<pre>meteo_imgw_daily, 10</pre>
meteo_imgw_hourly, 11
<pre>meteo_imgw_monthly, 12</pre>
meteo_noaa_co2, 13

```
meteo_noaa_hourly, 14
meteo_ogimet, 15

nearest_stations_imgw, 17
nearest_stations_nooa, 18
nearest_stations_ogimet, 19

profile_demo, 20

sounding_wyoming, 21
stations_ogimet, 22

test_url, 23
```