

Parsing techniques for graph analysis

Ekaterina Verbitskaja

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

Oktober 22, 2017

Language-constrained paths filtering

Navigation through the graph

- Can nodes A and B be treated as nodes on the same level of hierarchy?
- Is there exists path of form Up"Down"?
- Show me all path of form UpⁿDownⁿ whish starts from node A.
- (How) Can this automata generates SQL queries?
- (How) Can this program can produce some specific chain of calls?

Language-constrained paths filtering: more formal

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar
- G = (V, E, L) directed graph, $E \subseteq V \times L \times V$, $L \subseteq \Sigma$
- $p = (v_0, l_0, v_1), \cdots, (v_{n-1}, l_{n-1}, v_n)$ path in G
- $\omega(p) = \omega((v_0, l_0, v_1), \cdots, (v_{n-1}, l_{n-1}, v_n)) = l_0 l_1 \cdots l_{n-1}$
- $R = \{p | \exists N_i \in N(\omega(p) \in L(\mathbb{G}, N_i))\}$

Applications

- Graph analysis
 - Graph database querying
 - Network graph analysis
- Code analysis
 - Static analysis CFL(linear conjunctive) reachability: alias analysis, points-to analysis, etc
 - Dynamically generated strings analysis
 - Multiple input parsing
- ..

Existing solutions

- Do not use power of advanced parsing techniques
 - Mostly based on CYK
 (Xiaowang Zhang, et al. "Context-free path queries on RDF graphs.";
 Jelle Hellings. "Conjunctive context-free path queries.")
 - ▶ Do not provide useful structural representation of result
- Have restrictions on input
 - Problems with cicles in the input graph (Petteri Sevon, Lauri Eronen. "Subgraph queries by context-free grammars.")

Open problems

- Effective algorithm development
- Result representation for debugging, further processing
- GPGPU utilization
- Processing of different types of grammars (ECFG, conjunctive, etc)

Bar-Hillel theorem

- Context-free languages are closed under intersection with regular languages
- Parsing algorithms are constructive proof of Bar-Hille theorem for one simple case ...
-so, calssical parsing can be generalized for arbitrary regular language processing

Example

Figure: Input graph

 $0: S \rightarrow a S b$ $1: S \rightarrow Middle$ $2: Middle \rightarrow a b$

Figure: Query: grammar for language $L = \{a^n b^n; n \ge 1\}$ with additional marker for the middle of a path

Example

Figure: Input graph

Qury result: SPPF

Tree for path from 0 to 3

Tree for path from 0 to 0

Our solutions

- Relaxed parsing of dynamically generated SQL-queries
 - Based on RNGLR parsing algorithm (Elizabeth Scott, Adrian Johnstone)
- Context-free path querying with structural representation of result
 - ► Based on GLL parsing algorithm (Elizabeth Scott, Adrian Johnstone)
- Combinators for context-free path querying
 - ► Based on the Meerkat: a general parser combinator library for Scala (Ali Afroozeh, Anastasia Izmaylova)
- Context-free path querying by matrix multiplication
 - ► Inspired by Valiant and Okhotin

Future work

- Other grammars and language classes intersection
 - Context-free grammars intersection: Mark-Jan Nederhof, "The language intersection problem for non-recursive context-free grammars"
 - Approximated intersection of regular and conjunctive/boolean languages
- Mechanization in Coq
 - Bar-Hillel theorem.
 - GLL-based algorithms
- New areas for application

Information

- Ekaterina Verbitskaia: kajigor@gmail.com
- Semyon Grigorev: semen grigorev@jetbrains.com
- YaccConstructor: https://github.com/YaccConstructor