《线性代数》作业 7

截止时间: 11 月 12 日 18:00。注明姓名, 学号和组号。 纸质。请写出完整的计算等解题过程。提交于课堂或近春园西楼入口处我的信箱。

- 1. 求一个四阶正交矩阵,其中前两个列向量分别为: $\frac{1}{\sqrt{6}}[1 1 \ 0 \ 2]^{\mathrm{T}}$, $\frac{1}{\sqrt{6}}[-2 \ 0 \ 1 \ 1]^{\mathrm{T}}$.
- 2. 证明命题 3.2.6: 给定 \mathbb{R}^n 中向量 x, y, 满足 $\|x\| = \|y\|$. 则存在反射 H_v , 其中 $v = \frac{y-x}{\|y-x\|}$, 使得 $H_v(x) = y$.
- 3. 设 $\boldsymbol{a}_1,\cdots,\boldsymbol{a}_n$ 和 $\boldsymbol{b}_1,\cdots,\boldsymbol{b}_n$ 是 \mathbb{R}^n 中的两组标准正交基,证明存在正交矩阵 Q,使得

$$Q\mathbf{a}_i = \mathbf{b}_i, \quad 1 \le i \le n.$$

4. 计算下列矩阵的 QR 分解。

(a)
$$\begin{bmatrix} -1 & 2 & 3 \\ 2 & -1 & 2 \\ 3 & 2 & -1 \end{bmatrix}$$
. (b)
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
.

- 5. 考虑矩阵 $A = \begin{bmatrix} 1 & 0 \\ -2 & 5 \end{bmatrix}$ 的列向量围成的平行四边形。
 - (a) 通过列变换,把第二列的若干倍加到第一列,使得平行四边形变成长方形。这对应着 *A* 右乘哪个矩阵?
 - (b) 考虑 x_1 - x_2 平面。通过旋转和反射,把平行四边形的第一条边变到对应 $x_2 > 0$ 的上半平面,不妨变到 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 。再把第二条边变到 x_1 轴的正半轴上。两次变动时,另一列可以随之变化。这对应着 A 左乘哪个正交矩阵?
- 6. 设 a_1, \dots, a_s 是 \mathbb{R}^n 中的 s 个向量, 定义矩阵

$$G = G(oldsymbol{a}_1, \cdots, oldsymbol{a}_s) = \left[egin{array}{cccc} oldsymbol{a}_1^{
m T} oldsymbol{a}_1 & \cdots & oldsymbol{a}_1^{
m T} oldsymbol{a}_s \ \cdots & \cdots & oldsymbol{a}_s^{
m T} oldsymbol{a}_1 & \cdots & oldsymbol{a}_s^{
m T} oldsymbol{a}_s \end{array}
ight],$$

称为 a_1, \dots, a_s 的 Gram 矩阵。证明:

(a) $\mathbf{a}_1, \dots, \mathbf{a}_s$ 是正交单位向量组当且仅当 $G(\mathbf{a}_1, \dots, \mathbf{a}_s) = I_s$.

- (b) $G \in S$ 阶对称矩阵,且对任意 $x \in \mathbb{R}^s$,都有 $x^T Gx \geq 0$.
- (c) a_1, \dots, a_s 线性无关当且仅当 G 可逆,也等价于对任意非零向量 $x \in \mathbb{R}^s$,都有 $x^{\mathrm{T}}Gx > 0$.
- 7. 设 M 是下列齐次线性方程组的解空间,即零空间

$$\begin{cases} 2x_1 + x_2 + 3x_3 - x_4 = 0, \\ 3x_1 + x_2 - 2x_4 = 0, \\ 3x_1 + x_2 + 9x_3 - x_4 = 0. \end{cases}$$

分别求 M 和 M[⊥] 的一组标准正交基。

8. 设
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 4 \\ 5 & 3 \\ 4 & 1 \end{bmatrix}.$$

- (a) 求两个矩阵列空间的交集中的一个非零向量;由此判断两个列空间是否正交。
- (b) 求标准正交基 v_1, v_2, v_3 , 使得 $v_1 \in \mathcal{R}(A) \cap \mathcal{R}(B)$, $v_1, v_2 \in \mathcal{R}(A)$, 且 $v_1, v_3 \in \mathcal{R}(B)$.
- (c) 求 [A B] 零空间的一组基,并求所有的 $x, y \in \mathbb{R}^2$,满足 Ax = By.
- 9. 给定向量组 $S = \{v_1, \dots, v_k\}$,定义 S^{\perp} 为与 S 中向量都正交的向量所构成的子集。
 - (a) 证明: S^{\perp} 是一个子空间。
 - (b) 构造矩阵 A,使得 $\mathcal{N}(A) = S^{\perp}$.
 - (c) 证明: $(S^{\perp})^{\perp} = \text{span}(S)$.
- 10. 证明: 设 ℒ 是 ℝ3 中的直线:

$$\mathcal{L}: \left\{ \begin{array}{ccccc} x_1 & + & x_2 & + & 2x_3 & = & 0, \\ 2x_1 & - & x_2 & - & 3x_3 & = & 0. \end{array} \right.$$

求向量 $\boldsymbol{b} = [1 \quad 0 \quad 2]^{\mathrm{T}}$ 在直线 \mathcal{L} 上的正交投影。

- 11. 设 \mathcal{M} 是 \mathbb{R}^3 中由方程 $x_1 x_2 + x_3 = 0$ 决定的平面,求 $\boldsymbol{b} = [2 \ 1 \ 2]^T$ 在平面 \mathcal{M} 上的正交投影,并求出 \boldsymbol{b} 到平面 \mathcal{M} 的距离。
- 12. 设 $A = \begin{bmatrix} 3 & 3 & 6 \\ 4 & 4 & 8 \end{bmatrix}$.
 - (a) 求关于 A 的列空间的正交投影矩阵 P_1 .
 - (b) 求关于 A 的行空间的正交投影矩阵 P_2 .
 - (c) 计算 P_1AP_2 .