A Practical Approach to Advanced Code Obfuscation with MBA Expressions

Arnau Gàmez i Montolio

Slides

https://github.com/arnaugamez/talks/raw/master/2022/02_hackinthebox-sin/slides.pdf

Hacker, Reverse Engineer & Mathematician.

Hacker, Reverse Engineer & Mathematician.

Senior Expert Security Engineer @ \$company

Hacker, Reverse Engineer & Mathematician.

Senior Expert Security Engineer @ \$company

Founder, Security Researcher & Trainer @ Fura Labs

Hacker, Reverse Engineer & Mathematician.

Senior Expert Security Engineer @ \$company

Founder, Security Researcher & Trainer @ Fura Labs

This presentation may contain traces of maths and assembly

Agenda

- Code obfuscation
- 2. Preliminary MBA concepts Introduction and Motivation Obfuscation vs Cryptography **Definitions** Polynomial MBA expressions Linear MBA expressions
- 3. Obfuscation with MBA expressions MBA rewriting Insertion of identities **Opaque constants**

Code obfuscation

Context

Technical protection against Man-At-The-End (MATE) attacks, where the attacker/analyst has an instance of the program and completely controls the environment where it is executed

Context

Technical protection against Man-At-The-End (MATE) attacks, where the attacker/analyst has an instance of the program and completely controls the environment where it is executed

Idea

Code obfuscation is the process of transforming an input program P into a functionally equivalent program P' which is harder to analyze and to extract information that from P.

$$P \longrightarrow \mathsf{Obfuscation} \longrightarrow P'$$

Idea

Code obfuscation is the process of transforming an input program P into a functionally equivalent program P' which is harder to analyze and to extract information that from P.

$$P \longrightarrow \mathsf{Obfuscation} \longrightarrow P'$$

Motivation: prevent complicate reverse engineering.

Software protection:

Software protection: Intellectual property

Software protection:

Intellectual property

Digital Rights Management (DRM)

Software protection:

Intellectual property

Digital Rights Management (DRM)

Anti-cheating

Software protection:

Intellectual property

Digital Rights Management (DRM)

Anti-cheating

Malware threats:

Software protection:

Intellectual property

Digital Rights Management (DRM)

Anti-cheating

Malware threats:

Avoid automatic signature detection

Software protection:

Intellectual property

Digital Rights Management (DRM)

Anti-cheating

Malware threats:

Avoid automatic signature detection

Slow down analysis \rightarrow time \rightarrow money

Methodology

Apply a transformation to mess (complicate) the program's control-flow and/or data-flow at different abstraction levels (source code, compiled binary or an intermediate representation) and affecting different target units (whole program, function, basic block or instruction).

Methodology

Apply a transformation to mess (complicate) the program's control-flow and/or data-flow at different abstraction levels (source code, compiled binary or an intermediate representation) and affecting different target units (whole program, function, basic block or instruction).

Remark: many "weak" techniques can be combined to create a "hard" obfuscation transformation.

Preliminary MBA concepts

In a nutshell, a Mixed Boolean-Arithmetic (MBA) expression is composed of integer arithmetic operators, e.g. $(+, -, \times)$ and bitwise operators, e.g. $(\land, \lor, \oplus, \lnot)$.

In a nutshell, a Mixed Boolean-Arithmetic (MBA) expression is composed of integer arithmetic operators, e.g. $(+, -, \times)$ and bitwise operators, e.g. $(\land, \lor, \oplus, \neg).$

$$E = (x \oplus y) + 2(x \wedge y)$$

MBA expressions can be leveraged to obfuscate the data-flow of code by iteratively applying rewriting rules and function identities that complicate (obfuscate) the initial expression while preserving its semantic behavior.

MBA expressions can be leveraged to obfuscate the data-flow of code by iteratively applying rewriting rules and function identities that complicate (obfuscate) the initial expression while preserving its semantic behavior.

Combination of operators from these different fields do not interact well together: we have no rules (distributivity, factorization...) or general theory to deal with this mixing of operators.

In **cryptography**, the MBA expression is the direct result of the algorithm description. The resulting cryptosystem has to verify a set of properties (e.g. non-linearity, high algebraic degree) from a black-box point of view.

In **cryptography**, the MBA expression is the direct result of the algorithm description. The resulting cryptosystem has to verify a set of properties (e.g. non-linearity, high algebraic degree) from a black-box point of view.

The complex form of writing is directly related to some kind of intrinsic computational (semantic) complexity for the resulting function: one wants the inverse computation to be difficult to deduce (without knowing the key).

In **obfuscation**, the MBA expression is the result of rewriting iterations from a simpler expression which can have very simple black-box characteristics.

In **obfuscation**, the MBA expression is the result of rewriting iterations from a simpler expression which can have very simple black-box characteristics.

There is no direct relation between the complex form of writing and any intrinsic computational (semantic) complexity of the resulting expression.

In **obfuscation**, the MBA expression is the result of rewriting iterations from a simpler expression which can have very simple black-box characteristics.

There is no direct relation between the complex form of writing and any intrinsic computational (semantic) complexity of the resulting expression.

On the contrary, when obfuscating simple expressions, one knows that the complex form of writing is related to a semantically simpler expression.

We will be focusing on MBA expressions in the context of code (de)obfuscation

Definitions

We choose to define MBA expressions by explicitly describing the different building blocks (operators) that compose them and how they are bundled together.

Definitions

We choose to define MBA expressions by explicitly describing the different building blocks (operators) that compose them and how they are bundled together.

Two main categorizations are considered and studied in literature:

Definitions

We choose to define MBA expressions by explicitly describing the different building blocks (operators) that compose them and how they are bundled together.

Two main categorizations are considered and studied in literature:

Linear MBA expressions

Definitions

We choose to define MBA expressions by explicitly describing the different building blocks (operators) that compose them and how they are bundled together.

Two main categorizations are considered and studied in literature:

Linear MBA expressions \subset

Definitions

We choose to define MBA expressions by explicitly describing the different building blocks (operators) that compose them and how they are bundled together.

Two main categorizations are considered and studied in literature:

Linear MBA expressions ⊂ Polynomial MBA expressions

Polynomial MBA expressions

A polynomial MBA expression consists of a sum of terms, each one composed by an n-bit constant a_i times the product of several bitwise expressions on a number t of n-bit variables.

Polynomial MBA expressions

A polynomial MBA expression consists of a sum of terms, each one composed by an n-bit constant a_i times the product of several bitwise expressions on a number t of n-bit variables.

$$E = \sum_{i \in I} a_i \cdot \left(\prod_{j \in J_i} e_{i,j}(x_1, \dots, x_t) \right)$$

Polynomial MBA expressions

A polynomial MBA expression consists of a sum of terms, each one composed by an n-bit constant a_i times the product of several bitwise expressions on a number t of n-bit variables.

$$E = \sum_{i \in I} a_i \cdot \left(\prod_{j \in J_i} e_{i,j}(x_1, \dots, x_t) \right)$$

Example

A polynomial MBA expression of the form

$$E = \sum_{i \in I} a_i \cdot e_i(x_1, \dots, x_t)$$

is called a linear MBA expression.

A polynomial MBA expression of the form

$$E = \sum_{i \in I} a_i \cdot e_i(x_1, \dots, x_t)$$

is called a linear MBA expression.

They are defined by imposing just one bitwise expression for each term instead of a product of an arbitrary number of them.

A polynomial MBA expression of the form

$$E = \sum_{i \in I} a_i \cdot e_i(x_1, \dots, x_t)$$

is called a linear MBA expression.

They are defined by imposing just one bitwise expression for each term instead of a product of an arbitrary number of them.

Note: In practice, you can vaguely think of linearity as a restriction not allowing variables to end up being multiplied together.

$$E = \sum_{i \in I} a_i \cdot e_i(x_1, \dots, x_t)$$

Example

$$E = (\underline{\underline{x} \oplus \underline{y}}) + 2(\underline{\underline{x} \wedge \underline{y}})$$

Notice that, assuming variables of the same bit size, the previous MBA expression example $E = (x \oplus y) + 2(x \wedge y)$ simplifies to $E_{simp} = x + y$.

Notice that, assuming variables of the same bit size, the previous MBA expression example $E = (x \oplus y) + 2(x \wedge y)$ simplifies to $E_{simp} = x + y$.

Namely, E is a more complex expression than E_{simp} syntactically speaking, but they are semantically equivalent.

We can easily verify this equivalence with an SMT solver like Z3.

We can easily verify this equivalence with an SMT solver like Z3.

```
from z3 import *
x = BitVec('x', 8)
v = BitVec('v', 8)
E = (x ^ y) + 2 * (x & y) # E = (x \oplus y) + 2(x \wedge y)
\mathsf{E\_simp} = \mathsf{x} + \mathsf{y} \qquad \qquad \# \ E_{simp} = x + y
                                   # E \stackrel{?}{\equiv} E_{simp}
prove (E == E simp)
```


We can easily verify this equivalence with an SMT solver like Z3.

```
from z3 import *
x = BitVec('x', 8)
v = BitVec('v', 8)
E = (x \land y) + 2 * (x \& y)  # E = (x \oplus y) + 2(x \land y)
\mathsf{E\_simp} = \mathsf{x} + \mathsf{y} \qquad \qquad \# \ E_{simp} = x + y
                                  # E \stackrel{?}{\equiv} E_{simp}
prove (E == E simp)
```

```
$ python eq.py
proved
```


Obfuscation with MBA expressions

The previous example already suggests a basic obfuscation idea: we could replace the arithmetic sum + of two variables in our code by the more complex expression involving \oplus and \wedge boolean operators, while preserving the code semantics.

Given an MBA expression E_1 , we are interested in generating a semantically equivalent expression E_2 which is syntactically more complex than the initial expression E_1 .

Given an MBA expression E_1 , we are interested in generating a semantically **equivalent** expression E_2 which is syntactically more complex than the initial expression E_1 .

The process relies on two differentiated components, which can be used either alone or combined:

Given an MBA expression E_1 , we are interested in generating a semantically equivalent expression E_2 which is syntactically more complex than the initial expression E_1 .

The process relies on two differentiated components, which can be used either alone or combined:

MBA rewriting & Insertion of identities

MBA rewriting

A chosen operator is rewritten with an equivalent MBA expression.

MBA rewriting

A chosen operator is rewritten with an equivalent MBA expression.

Example

$$x + y \rightarrow (x \oplus y) + 2 \times (x \wedge y)$$

Let e be any subexpression of the target expression being obfuscated. Then, we can write e as $f^{-1}(f(e))$ with f being any invertible function on n-bits.

Let e be any subexpression of the target expression being obfuscated. Then, we can write e as $f^{-1}(f(e))$ with f being any invertible function on n-bits.

The function f is often an affine function.

Let e be any subexpression of the target expression being obfuscated. Then, we can write e as $f^{-1}(f(e))$ with f being any invertible function on n-bits.

The function f is often an affine function.

Note: For our usage, you can vaguely think of affine functions as those with the form $f(e) = a \cdot e + b$, where a, b are n-bit constants and e is our MBA subexpression.

Example

Let $E_1 = x + y$, and the following functions f and f^{-1} on 8 bits:

$$f: x \mapsto 39x + 23$$

$$f: x \mapsto 39x + 23$$
 $f^{-1}: x \mapsto 151x + 111$

Example

Let $E_1 = x + y$, and the following functions f and f^{-1} on 8 bits:

$$f: x \mapsto 39x + 23$$
 $f^{-1}: x \mapsto 151x + 111$

Consider now E_2 obtained by applying the previous rewriting rule to E_1 :

$$E_2 = (x \oplus y) + 2 \times (x \wedge y)$$

Example

Let $E_1 = x + y$, and the following functions f and f^{-1} on 8 bits:

$$f: x \mapsto 39x + 23$$
 $f^{-1}: x \mapsto 151x + 111$

Consider now E_2 obtained by applying the previous rewriting rule to E_1 :

$$E_2 = (x \oplus y) + 2 \times (x \wedge y)$$

Then apply the insertion of identities produced by f and f^{-1} :

$$E_{tmp} = f(E_2) = 39 \times E_2 + 23$$

 $E_3 = f^{-1}(E_{tmp}) = 151 \times E_{tmp} + 111$

Example

Let $E_1 = x + y$, and the following functions f and f^{-1} on 8 bits:

$$f: x \mapsto 39x + 23$$
 $f^{-1}: x \mapsto 151x + 111$

Consider now E_2 obtained by applying the previous rewriting rule to E_1 :

$$E_2 = (x \oplus y) + 2 \times (x \wedge y)$$

Then apply the insertion of identities produced by f and f^{-1} :

$$E_{tmp} = f(E_2) = 39 \times E_2 + 23$$

 $E_3 = f^{-1}(E_{tmp}) = 151 \times E_{tmp} + 111$

Finally, expand E_3 to observe the final obfuscated expression:

$$E_3 = 151 \times (39 \times ((x \oplus y) + 2 \times (x \land y)) + 23) + 111$$

Let:

$$E_1 = x + y$$

$$E_2 = (x \oplus y) + 2 \times (x \wedge y)$$

$$E_3 = 151 \times (39 \times ((x \oplus y) + 2 \times (x \wedge y)) + 23) + 111$$

Let:

$$E_1 = x + y$$

$$E_2 = (x \oplus y) + 2 \times (x \wedge y)$$

$$E_3 = 151 \times (39 \times ((x \oplus y) + 2 \times (x \wedge y)) + 23) + 111$$

Task:

1 Compare syntactic complexity of E_1 , E_2 and E_3 .

Let:

$$E_1 = x + y$$

$$E_2 = (x \oplus y) + 2 \times (x \wedge y)$$

$$E_3 = 151 \times (39 \times ((x \oplus y) + 2 \times (x \wedge y)) + 23) + 111$$

Task:

- **1** Compare syntactic complexity of E_1 , E_2 and E_3 .
- **2** Observe semantic equivalence of E_1 , E_2 and E_3 .

Let:

$$E_1 = x + y$$

$$E_2 = (x \oplus y) + 2 \times (x \wedge y)$$

$$E_3 = 151 \times (39 \times ((x \oplus y) + 2 \times (x \wedge y)) + 23) + 111$$

Task:

- **1** Compare syntactic complexity of E_1 , E_2 and E_3 .
- **2** Observe semantic equivalence of E_1 , E_2 and E_3 .
- **3** Prove semantic equivalence of E_1 , E_2 and E_3 .

Task 1: Compare syntactic complexity of E_1 , E_2 and E_3 .

Task 1: Compare syntactic complexity of E_1 , E_2 and E_3 .

```
uint8 t E1(uint8 t x, uint8 t y)
  return x+y;
movzx edx, byte [var_4h]
movzx eax, byte [var_8h]
add eax, edx
```


Task 1: Compare syntactic complexity of E_1 , E_2 and E_3 .

```
uint8 t E1(uint8 t x, uint8 t y)
 return x+v;
movzx edx, byte [var_4h]
movzx eax, byte [var 8h]
```

```
uint8 t E2(uint8 t x, uint8 t y)
  return (x^v)+2*(x&v):
```

```
movzx eax, byte [var_4h]
      al, byte [var_8h]
xor
      edx, eax
mov
movzx eax. byte [var 4h]
     al, byte [var 8h]
and
add
     eax, eax
     eax, edx
add
```

add

eax, edx

Task 1: Compare syntactic complexity of E_1 , E_2 and E_3 .

```
uint8 t E1(uint8 t x, uint8 t y)
 return x+v;
```

```
movzx edx. byte [var 4h]
movzx eax, byte [var 8h]
add
    eax, edx
```

```
uint8 t E2(uint8 t x, uint8 t y)
 return (x^v)+2*(x&v):
```

```
movzx eax, byte [var 4h]
      al, byte [var 8h]
xor
      edx, eax
mov
movzx eax. byte [var 4h]
      al, byte [var 8h]
and
add
      eax, eax
      eax, edx
add
```

```
uint8 t E3(uint8 t x, uint8 t y)
  return 151*(39*((x^v)+2*(x&v))+23)+111;
```

```
movzx eax, byte [var 4h]
      al, byte [var 8h]
movzx edx, al
movzx eax, byte [var 4h]
      al, byte [var 8h]
movzx eax, al
add
      eax. eax
add
      eax, edx
      eax, eax, 0x27
i mull
add
      eax. 0 \times 17
      edx, 0xffffff97
mov
imul
      eax, edx
add
      eax. 0x6f
```


Task 2: Observe semantic equivalence of E_1 , E_2 and E_3 .

Task 2: Observe semantic equivalence of E_1 , E_2 and E_3 .

```
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
uint8 t E1(uint8 t x, uint8 t v)
\{ return x + y; \}
uint8 t E2(uint8_t x, uint8_t y)
{ return (x ^ y) + 2 * (x & y); }
uint8 t E3(uint8 t x. uint8 t v)
{ return 151 * (39 * ((x ^ v) + 2 * (x & v)) + 23) + 111; }
int main(int argc, char* argv[])
 uint8 t x = (uint8 t) atoi (argv[1]):
  uint8_t y = (uint8_t) atoi (argv[2]);
  printf ("%s(%d, %d) = %d\n", "E1", x, v, E1(x, v)):
  printf ("%s(%d, %d) = %d\n", "E2", x, v, E2(x, v)):
  printf ("%s(%d, %d) = %d\n", "E3", x, y, E3(x, y));
  return 0:
```


Task 2: Observe semantic equivalence of E_1 , E_2 and E_3 .

```
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
uint8 t E1(uint8 t x, uint8 t v)
\{ return x + y; \}
uint8 t E2(uint8_t x, uint8_t y)
{ return (x ^ v) + 2 * (x & v): }
uint8 t E3(uint8 t x. uint8 t v)
{ return 151 * (39 * ((x ^ v) + 2 * (x & v)) + 23) + 111; }
int main(int argc, char* argv[])
  uint8 t x = (uint8 t) atoi (argv[1]):
  uint8 t v = (uint8_t) atoi (argv[2]);
  printf ("%s(%d, %d) = %d\n", "E1", x, v, E1(x, v)):
  printf ("%s(%d, %d) = %d\n", "E2", x, v, E2(x, v)):
  printf (%s(%d, %d) = %d\n", E3", x, v, E3(x, v)):
  return 0:
```

```
$ gcc linear mba.c -o linear mba
$ ./linear mba 1 2
E1(1, 2) = 3
E2(1, 2) = 3
E3(1, 2) = 3
$ ./linear mba 23 89
E1(23.89) = 112
E2(23.89) = 112
E3(23.89) = 112
```


Task 3: Prove semantic equivalence of E_1 , E_2 and E_3 .

Task 3: Prove semantic equivalence of E_1 , E_2 and E_3 .

Task 3: Prove semantic equivalence of E_1 , E_2 and E_3 .


```
from z3 import *
x = BitVec('x', 8)
y = BitVec('y', 8)
E1 = x + y
E2 = (x ^ y) + 2 * (x & y)
E3 = 151 * (39 * ((x ^ y) + 2 * (x & y)) + 23) + 111
prove (E1 == E2)
prove (E2 == E3)
prove (E3 == E1)
```


Task 3: Prove semantic equivalence of E_1 , E_2 and E_3 .


```
from z3 import *
x = BitVec('x', 8)
y = BitVec('y', 8)
E1 = x + y
E2 = (x ^ y) + 2 * (x & y)
E3 = 151 * (39 * ((x ^ y) + 2 * (x & y)) + 23) + 111
prove (E1 == E2)
prove (E2 == E3)
prove (E3 == E1)
```

```
$ python prove.py
proved
proved
proved
```


This technique allows to hide a target constant K.

This technique allows to hide a target constant K.

It combines the power of MBA expressions with permutation polynomials.

This technique allows to hide a target constant K.

It combines the power of MBA expressions with permutation polynomials.

A permutation polynomial is a polynomial that acts as a permutation of the elements of the set they apply to (in our case, n-bit values), i.e. they define a 1-to-1 map (bijection).

This technique allows to hide a target constant K.

It combines the power of MBA expressions with permutation polynomials.

A permutation polynomial is a polynomial that acts as a permutation of the elements of the set they apply to (in our case, n-bit values), i.e. they define a 1-to-1 map (bijection).

Thus, for any permutation polynomial P, there exists another one Q that defines the inverse map, i.e., for all n-bit X values we have that:

$$P(Q(X)) = X$$

Let:

K be an n-bit target constant to hide,

Let:

K be an n-bit target constant to hide,

P and Q polynomials with n-bit coefficients and acting as inverse 1-to-1 maps, i.e. P(Q(X)) = X for all X,

Let:

K be an n-bit target constant to hide,

P and Q polynomials with n-bit coefficients and acting as inverse 1-to-1 maps, i.e. P(Q(X)) = X for all X,

E be an MBA expression of n-bit variables non-trivially equal to zero, i.e. $E(x_1, \ldots, x_t) = 0$ for any input variables x_1, \ldots, x_t .

Let:

K be an n-bit target constant to hide,

P and Q polynomials with n-bit coefficients and acting as inverse 1-to-1 maps, i.e. P(Q(X)) = X for all X,

E be an MBA expression of n-bit variables non-trivially equal to zero, i.e. $E(x_1, \ldots, x_t) = 0$ for any input variables x_1, \ldots, x_t .

Then, the constant K can be replaced by P(E+Q(K)) for any values taken by $(x_1, ..., x_t)$.

Working on 8-bit values, let:

$$P(X) = 97X + 248X^{2}$$

$$Q(X) = 161X + 136X^{2}$$

$$E(x, y) = x - y + 2(\neg x \land y) - (x \oplus y)$$

Working on 8-bit values, let:

$$P(X) = 97X + 248X^{2}$$

$$Q(X) = 161X + 136X^{2}$$

$$E(x, y) = x - y + 2(\neg x \land y) - (x \oplus y)$$

Task:

1 Check that P and Q define inverse maps, i.e. P(Q(X)) = X for all X.

Working on 8-bit values, let:

$$P(X) = 97X + 248X^{2}$$

$$Q(X) = 161X + 136X^{2}$$

$$E(x, y) = x - y + 2(\neg x \land y) - (x \oplus y)$$

Task:

- **1** Check that P and Q define inverse maps, i.e. P(Q(X)) = X for all X.
- **2** Check that E defines a non-trivially equal to zero MBA expression. i.e. E(x,y)=0 for all x,y.

Working on 8-bit values, let:

$$P(X) = 97X + 248X^{2}$$

$$Q(X) = 161X + 136X^{2}$$

$$E(x, y) = x - y + 2(\neg x \land y) - (x \oplus y)$$

Task:

- **1** Check that P and Q define inverse maps, i.e. P(Q(X)) = X for all X.
- **2** Check that E defines a non-trivially equal to zero MBA expression. i.e. E(x,y)=0 for all x,y.
- **3** Create an opaque constant function using P. Q and E to hide the constant K=123.

Working on 8-bit values, let:

$$P(X) = 97X + 248X^{2}$$

$$Q(X) = 161X + 136X^{2}$$

$$E(x, y) = x - y + 2(\neg x \land y) - (x \oplus y)$$

Task:

- **1** Check that P and Q define inverse maps, i.e. P(Q(X)) = X for all X.
- **2** Check that E defines a non-trivially equal to zero MBA expression. i.e. E(x,y)=0 for all x,y.
- **3** Create an opaque constant function using P. Q and E to hide the constant K=123.
- 4 Check the previous opaque constant.

Task 1: Check that P and Q define inverse maps (bruteforce).

Task 1: Check that P and Q define inverse maps (bruteforce).

```
#include <stdio h>
#include <stdint.h>
#include <stdlib.h>
uint8 t P(uint8 t x) { return 97*x + 248*x*x; }
uint8_t O(uint8_t x) { return 161*x + 136*x*x; }
int main(int argc, char* argv[])
  uint8 t i = 0:
  do
      if (P(Q(i)) != i) \{ printf("P(Q(X)) != X) \setminus n"); return -1; \}
      i++:
  } while (i != 0);
  printf("P(Q(X)) = X \setminus n");
  return 0:
```


Task 1: Check that P and Q define inverse maps (bruteforce).

```
#include <stdio h>
#include <stdint.h>
#include <stdlib.h>
uint8 t P(uint8 t x) { return 97*x + 248*x*x; }
uint8 t 0(uint8 t x)  { return 161*x + 136*x*x:  }
int main(int argc, char* argv[])
  uint8_t i = 0:
  do
      if (P(Q(i)) != i) \{ printf("P(Q(X)) != X) \setminus n"); return -1; \}
      i++:
  } while (i != 0);
  printf("P(Q(X)) = X \setminus n");
  return 0:
```

```
$ gcc check_poly.c -o check_poly
$ ./check polv
P(O(X)) = X
```


Task 1: Check that P and Q define inverse maps (SMT).

Task 1: Check that P and Q define inverse maps (SMT).

```
from z3 import *
X = BitVec('X', 8)
def P(X): return 97*X + 248*X*X
def O(X): return 161*X + 136*X*X
prove(P(Q(X)) == X)
```


Task 1: Check that P and Q define inverse maps (SMT).

```
from z3 import *
X = BitVec('X', 8)
def P(X): return 97*X + 248*X*X
def O(X): return 161*X + 136*X*X
prove(P(Q(X)) == X)
```

\$ python check_poly.py proved

Task 2: Check that E is non-trivially equal to zero (bruteforce).

Task 2: Check that E is non-trivially equal to zero (bruteforce).

```
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
uint8 t E(uint8 t x, uint8 t y) { return x-y + 2*(\sim x \& y) - (x^\circ y); }
int main(int argc, char* argv[])
  uint8 t i = 0: uint8 t i = 0:
  do
      do
          if (E(i, i) != 0) \{ printf("E(x, y) != 0) \ n") : return -1: \}
          j++;
      } while (i != 0):
      i++:
  } while (i != 0):
  printf("E(x, y) = 0 \ "); return 0;
```


Task 2: Check that E is non-trivially equal to zero (bruteforce).

```
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
uint8 t E(uint8 t x, uint8 t y) { return x-y + 2*(\sim x \& y) - (x^{\circ}y); }
int main(int argc, char* argv[])
  uint8 t i = 0: uint8 t i = 0:
  do
      do
          if (E(i, i) != 0) \{ printf("E(x, y) != 0) \ n") : return -1: \}
          j++;
      } while (i != 0):
      i++:
  } while (i != 0):
  printf("E(x, y) = 0 \ "); return 0;
```

```
$ gcc check mba.c -o check mba
$ ./check mba
\mathsf{E}(\mathsf{x},\;\mathsf{y})\;=\;0
```


Task 2: Check that E is non-trivially equal to zero (SMT).

Task 2: Check that E is non-trivially equal to zero (SMT).

```
from z3 import *
x = BitVec('x', 8)
y = BitVec('y', 8)
def E(x, y): return x-y + 2*(\sim x \& y) - (x^y)
prove(E(x, y) == 0)
```


Task 2: Check that E is non-trivially equal to zero (SMT).

```
from z3 import *
x = BitVec('x', 8)
y = BitVec('y', 8)
def E(x, y): return x-y + 2*(\sim x \& y) - (x^y)
prove(E(x, y) == 0)
```

```
$ python check_mba.py
proved
```


Task 3: Create an opaque constant function.

Task 3: Create an opaque constant function.

```
from z3 import *
X = BitVec('X', 8)
def P(X): return 97*X + 248*X*X
def O(X): return 161*X + 136*X*X
x = BitVec('x', 8)
y = BitVec('y', 8)
def E(x, v): return x-v + 2*(\sim x \& v) - (x^v)
K = BitVecVal(123, 8)
# Opaque Constant
OC = P(E(x,y) + Q(K))
# Apply basic simplification rules
print (simplify(OC))
```


Task 3: Create an opaque constant function.

```
from z3 import *
X = BitVec('X', 8)
def P(X): return 97*X + 248*X*X
def O(X): return 161*X + 136*X*X
x = BitVec('x', 8)
v = BitVec('v', 8)
def E(x, v): return x-v + 2*(\sim x \& v) - (x^v)
K = BitVecVal(123, 8)
# Opaque Constant
0C = P(E(x,y) + O(K))
# Apply basic simplification rules
print (simplify(OC))
```

```
$ pvthon create oc.pv
195 +
97*x +
159*v +
194*_{\sim}(x \mid \sim v) +
159*(x^v) +
(163 + x + 255*v + 2*\sim(x | \sim v) + 255*(x ^ v))*
(232 + 248*x + 8*v + 240**(x | *v) + 8*(x ^ v))
```


Task 4: Check an opaque constant function (bruteforce).

Task 4: Check an opaque constant function (bruteforce).

```
#include <stdio h>
#include <stdint.h>
#include <stdlib.h>
uint8 t OC(uint8 t x, uint8 t v)
    return 195 + 97*x + 159*v +
    194*\sim(x \mid \sim y) + 159*(x ^ y) +
    (163 + x + 255*y + 2*\sim(x \mid \sim y) + 255*(x ^ y))*
    (232 + 248*x + 8*y + 240*\sim(x \mid \sim y) + 8*(x ^ y));
int main(int argc, char* argv[])
    uint8_t i = 0; uint8_t j = 0;
    do
/* ... */
```

```
do
        if (OC(i, i) != 123)
            printf("0C(x, y) != 123)\n"):
            return -1:
        j++;
    } while (j != 0);
    i++:
} while (i != 0):
printf("OC(x, y) = 123\n"); return 0;
```


Task 4: Check an opaque constant function (bruteforce).

```
#include <stdio h>
#include <stdint.h>
#include <stdlib.h>
uint8 t OC(uint8 t x, uint8 t v)
    return 195 + 97*x + 159*v +
    194*\sim(x \mid \sim y) + 159*(x \land y) +
    (163 + x + 255*y + 2*\sim(x \mid \sim y) + 255*(x ^ y))*
    (232 + 248*x + 8*v + 240*\sim(x \mid \sim v) + 8*(x ^ v)):
int main(int argc, char* argv[])
    uint8 t i = 0: uint8 t i = 0:
    do
/* ... */
```

```
do
        if (OC(i, i) != 123)
            printf("0C(x, y) != 123)\n"):
            return -1:
        j++;
    } while (j != 0);
    i++:
} while (i != 0):
printf("OC(x, y) = 123\n"); return 0;
```

```
$ acc check oc.c -o check oc
$ ./check_oc
0C(x, y) = 123
```


Task 4: Check an opaque constant function (SMT).

Task 4: Check an opaque constant function (SMT).

```
from z3 import *
x = BitVec('x', 8)
v = BitVec('v', 8)
def \ OC(x, y):
    return 195 + 97*x + 159*v +\
    194 \times (x \mid \sim v) + 159 \times (x \land v) + 1
    (163 + x + 255*v + 2*(x | ~v) + 255*(x ^ v))*
    (232 + 248*x + 8*v + 240*\sim(x \mid \sim v) + 8*(x \land v))
prove(OC(x, y) == 123)
```


Task 4: Check an opaque constant function (SMT).

```
from z3 import *
x = BitVec('x', 8)
v = BitVec('v', 8)
def OC(x, v):
    return 195 + 97*x + 159*v +\
    194 \times (x \mid \sim v) + 159 \times (x \land v) + 1
    (163 + x + 255*y + 2*~(x | ~y) + 255*(x ^ y))*
    (232 + 248*x + 8*v + 240*\sim(x \mid \sim v) + 8*(x \land v))
prove(OC(x, y) == 123)
```

\$ python check_oc.py proved

Summary

We have seen how to apply several MBA obfuscation techniques: MBA rewriting, insertion of identities and opaque constants.

Summary

We have seen how to apply several MBA obfuscation techniques: MBA rewriting, insertion of identities and opaque constants.

For this purpose, we have used: rewrite rules, affine functions, non-trivially equal to zero MBA expressions and permutation polynomials.

Live demo

Learn methods to generate:

- Non-trivially equal to zero MBA expressions

- Non-trivially equal to zero MBA expressions
- Linear MBA rewrite rules

- Non-trivially equal to zero MBA expressions
- Linear MBA rewrite rules
- Pairs of inverse affine functions

- Non-trivially equal to zero MBA expressions
- Linear MBA rewrite rules
- Pairs of inverse affine functions
- Pairs of inverse permutation polynomials

References

Code deobfuscation by program synthesis-aided simplification of Mixed Boolean-Arithmetic expressions¹ - Arnau Gàmez i Montolio

Obfuscation with Mixed Boolean Arithmetic Expressions² – Ninon Evrolles

Information Hiding in Software with Mixed Boolean-Arithmetic Transforms³ - Y Zhou et al

³https://link.springer.com/chapter/10.1007/978-3-540-77535-5 5

¹https://github.com/arnaugamez/tfg

²https://tel.archives-ouvertes.fr/tel-01623849/document

Materials

https://github.com/arnaugamez/talks/tree/master/2022/02_hackinthebox-sin

Get in touch

https://arnaugamez.com

https://furalabs.com

EOF