

Regression: Linear regression

GU 4241

Statistical Machine Learning

Xiaofei Shi

Tasks

```
Input — Regressor — Predict real number

Input — Classifier — Predict category

Input — Density Estimator — Probability
```


Regression:

Learning algorithm

Prediction rule

 \widehat{f}_n that predicts/estimates output Y given input X

Regression:

- In everyday life we need to make decisions by taking into account lots of factors
- The question is what weight we put on each of these factors (how important are they with respect to the others)
- Suppose your task is to help build a evaluation system for food delivery apps

		熊猫外卖 HungryPanda	Uber Eats	# chowb)
	Available restaurants	30	10	20	
	Average delivery time	Next day	>3hr	1hr	
	Mandatory service fee	>10%	>20%	>13%	
	Score	9	7	8	1

Regression:

- Given an input x, we want to compute an output y
- For example:
 - predict Google's stock price using the current price of Bitcoin
 - predict arrival time using the traffic condition

Linear Regression:

- Given an input x, we want to compute an output y
- In linear regression we assume that y and x are related with the following

Road map

- Build your model:
 - 1) relationship: $y = wx + \varepsilon$
 - 2) preference: choose w to minimize $\underset{w}{\operatorname{arg min}} \sum_{i} (y_i wx_i)^2$
- Estimate your model parameters:
 - 1) pluging in observed data to express your preference
 - 2) get parameters estimation for your model
- Understand your model:

Linear Regression:

- Our goal is to estimate w from a training data of <xi,yi> pairs
- One easy way to determine w is to minimize the least squares error:

$$\arg\min_{w} \sum_{i} (y_i - wx_i)^2$$

- Why least squares?
 - easy to compute
 - has a nice probabilistic interpretation.
- Several other approaches

If the noise is Gaussian with mean 0 then least squares is also the MLE of w

Solving linear regression using minimization

- Goal function:
- 3-step:
 - take derivative wrt parameter w
 - set it to 0
 - solve optimal w from the equation

$$\frac{\partial}{\partial w} \sum_{i} (y_{i} - wx_{i})^{2} = 2\sum_{i} - x_{i}(y_{i} - wx_{i}) \Rightarrow$$

$$2\sum_{i} x_{i}(y_{i} - wx_{i}) = 0 \Rightarrow$$

$$\sum_{i} x_{i}y_{i} = \sum_{i} wx_{i}^{2} \Rightarrow$$

$$w = \frac{\sum_{i} x_{i}y_{i}}{\sum_{i} x_{i}^{2}}$$

Regression Example

Adding in intercept

- So far we assume the regression line passes through the origin
- What if the line does not?

$$y = w_0 + w_1 x + \varepsilon$$

Adding in intercept!

• We can determine w = (w0, w1) explicitly

$$w_0 = \frac{\sum_i y_i - w_1 x_i}{n}$$

$$w_1 = \frac{\sum_{i} x_i (y_i - w_0)}{\sum_{i} x_i^2}$$

Observation vs. Day

Multivariate Regression:

- What if we want to input more information?
- For example:
 - predict Google's stock price using the current price of Bitcoin might not be enough, we might want to also consider the stock price of Amazon, Apple, and other index
 - predict arrival time using the traffic condition, the weather condition, and the vehicle's condition to make it more accurate
- This becomes a multivariate linear regression problem:

Multivariate Regression:

- What if we want to input more information?
- For example:
 - predict Google's stock price using the current price of Bitcoin might not be enough, we might want to also consider the stock price of Amazon, Apple, and other index

Not all functions can be represented

using the input values directly!

How to capture nonlinearity?

- predict arrival time using the traffic condition, the weather condition, and the vehicle's condition to make it more accurate
- This becomes a multivariate linear regression problem:

How to capture nonlinearity?

- In some cases we would like to use polynomial or other terms based on the input data
 - Polynomial: $\phi_i(x) = x^j$ for j=0 ... n

 - Gaussian: $\phi_j(x) = \frac{(x \mu_j)}{2\sigma_j^2}$ Sigmoid: $\phi_j(x) = \frac{1}{1 + \exp(-s_j x)}$
- Are these still linear regression problems?

How to capture nonlinearity?

- In some cases we would like to use polynomial or other terms based on the input data
 - Polynomial: $\phi_i(x) = x^j$ for j=0 ... n

- Gaussian:
$$\phi_j(x) = \frac{(x - \mu_j)}{2\sigma_j^2}$$

- Gaussian:
$$\phi_j(x) = \frac{(x - \mu_j)}{2\sigma_j^2}$$

- Sigmoid: $\phi_j(x) = \frac{1}{1 + \exp(-s_j x)}$

Are these still linear regression problems?

As long as the coefficients are linear the equation is still a linear regression problem!

Nonlinear basis functions

In some cases we would like to use polynomial or other terms based on the input data

- Polynomial:
$$\phi_i(x) = x^j$$
 for j=0 ... n

- Gaussian:
$$\phi_j(x) = \frac{(x - \mu_j)}{2\sigma_j^2}$$

- Gaussian:
$$\phi_j(x) = \frac{(x - \mu_j)}{2\sigma_j^2}$$

- Sigmoid: $\phi_j(x) = \frac{1}{1 + \exp(-s_j x)}$

Any function of the input values can be used. The solution for the parameters of the regression remains the same.

- Linear regression can be applied in the same way to functions of these values
- As long as these functions can be directly computed from the observed values the parameters are still linear in the data and the problem remains a linear regression problem

Nonlinear basis functions

• We use the new notation for the basis functions, linear regression can be written as

$$y = \sum_{j=0}^{n} w_{j} \phi_{j}(x)$$

 Nothing changed! Once again we can use 'least squares' to find the optimal solution to figure out parameter w

General linear regression problem

 $y = \sum_{i=1}^{n} w_{i} \phi_{i}(x)$

w - vector of dimension k+1 $\phi(x^i)$ – vector of dimension k+1

v - a scaler

Our goal is to minimize the following loss function:

$$J(\mathbf{w}) = \sum_{i} (y^{i} - \sum_{j} w_{j} \phi_{j}(x^{i}))^{2}$$

Moving to vector notations we get

$$J(\mathbf{w}) = \sum_{i} (y^{i} - \mathbf{w}^{\mathrm{T}} \phi(x^{i}))^{2}$$

We take the derivative w.r.t w

$$\frac{\partial}{\partial w} \sum_{i} (y^{i} - \mathbf{w}^{\mathrm{T}} \phi(x^{i}))^{2} = 2 \sum_{i} (y^{i} - \mathbf{w}^{\mathrm{T}} \phi(x^{i})) \phi(x^{i})^{\mathrm{T}}$$
Equating to 0 we get
$$2 \sum_{i} (y^{i} - \mathbf{w}^{\mathrm{T}} \phi(x^{i})) \phi(x^{i})^{\mathrm{T}} = 0 \Rightarrow$$

$$\sum_{i} y^{i} \phi(x^{i})^{\mathrm{T}} = \mathbf{W}^{\mathrm{T}} \left[\sum_{i} \phi(x^{i}) \phi(x^{i})^{\mathrm{T}} \right]$$

General linear regression problem

 $J(\mathbf{w}) = \sum_{i} (y^{i} - \mathbf{w}^{\mathrm{T}} \phi(x^{i}))^{2}$

We take the derivative w.r.t w

$$\frac{\partial}{\partial w} \sum_{i} (y^{i} - \mathbf{w}^{\mathrm{T}} \phi(x^{i}))^{2} = 2 \sum_{i} (y^{i} - \mathbf{w}^{\mathrm{T}} \phi(x^{i})) \phi(x^{i})^{\mathrm{T}}$$

Equating to 0 we get
$$2\sum_{i}(y^{i} - \mathbf{w}^{T}\phi(x^{i}))\phi(x^{i})^{T} = 0 \Rightarrow$$
$$\sum_{i}y^{i}\phi(x^{i})^{T} = \mathbf{w}^{T}\left[\sum_{i}\phi(x^{i})\phi(x^{i})^{T}\right]$$

$$\Phi = \begin{pmatrix} \phi_0(x^1) & \phi_1(x^1) & \cdots & \phi_k(x^1) \\ \phi_0(x^2) & \phi_1(x^2) & \cdots & \phi_k(x^2) \\ \vdots & \vdots & \cdots & \vdots \\ \phi_0(x^n) & \phi_1(x^n) & \cdots & \phi_k(x^n) \end{pmatrix}$$

Then deriving w we get:

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

Example: polynomial regression

Thoughts?

References

- Christopher Bishop: Pattern Recognition and Machine Learning, Chapter 3
- Kutner, Nachtsheim and Neter: Applied Linear Regression Models.
- Agresti: Foundations of Linear and Generalized Linear Models.
- Ziv Bar-Joseph, Tom Mitchell, Pradeep Ravikumar and Aarti Singh: CMU 10-701

