10-월차 IPP보고서 (10월)

2022년

학부	융합소프트웨어 학부	전공	데이터테크놀로지	학번	6017 1632	성명	김형진
실습기간	2022년 9월 1일 ~ 2022년 12월 31일						
실습기관	㈜코나아이		부서	AI팀			
실습직무	AI 개발		지도 담당자	엄용운 등		8 10 to	

[※] 반드시 보고서 최종본에 멘토 확인 후 서명 하여 업로드.

2-차월 현장실습 일지

기간	주요 실습내용			
1주차 (10/3~10/7)	- Cryptrade 불건전 발언 관련 예문 서칭 - 욕설/성적 발언 약 2400개 수집 - uuid4를 사용하여 각 발언에 고유의 id를 부여하고 json형식으로 저장 - 왕이어 프레임 수정사항 종합 및 토의 - 와이어 프레임 수정사항 반영			
2주차 (10/10~10/14)	< 작무>			
3주차 (10/17~10/21)	<직무> - Python을 이용한 개인화 추천 시스템 강의 수강 ● 인기제품 추천 방식			

	● 추천시스템의 정확도 측정					
	● CF 알고리즘					
	● 이웃기반 CF 알고리즘					
	<공통>					
	- Figma Prototype 연결					
	<직무>					
	- Python을 이용한 개인화 추천 시스템 강의 학습					
4 7. ±1	● 추천 시스템의 평가 지표(Precision, Recall)					
4주차	● 아이템 기반 CF 알고리즘					
(10/24~10/31)	● 추천 시스템의 정확도를 높이기 위한 파라미터 튜닝					
	<공통>					
	- 최종 발표 준비 및 시연					

현장실습 내용 주요 목차

- I. Cryptrade 불건전 발언 관련 업무 보조
 - 1, 욕설/성적 발언 데이터 약 2,400개 수집
 - 2, .txt파일을 json형식으로 변환
- Ⅱ. 추천 알고리즘 학습
 - 1. CF 알고리즘에 관한 내용 학습
 - 2. 인프런 Python을 이용한 개인화 추천 시스템 강의 수강

현장실습 주요내용

- I. Cryptrade 불건전 발언 관련 업무 보조
 - 1. 욕설/성적 발언 데이터 약 2,400개 수집
 - 1) 구글링을 통해 약 2,000개, 약 700개의 욕설/성적 발언이 포함된 txt파일 다운로드
 - 2. .txt파일을 json형식으로 변환
 - 1) 두 txt파일을 하나로 합치고 중복되는 내용제거, 특수문자 및 공백을 제거
 - 2) uuid4로 랜덤Id를 생성한 후 Dialogflow의 json형식에 맞추어 json파일 생성 후 저장
- Ⅱ. 추천 알고리즘 학습

1. CF알고리즘에 관한 내용 학습

- 1) CF의 정의
 - (1) CF는 Collaborative Filtering의 줄임말로 협업 필터링이라고도 한다.
 - (2) 나와 비슷한 취향을 가진 유저들은 어떠한 아이템에 대해 비슷한 선호도를 가질 것이라는점을 가정한다.
- 2) 모델 기반의 접근 방식
 - (1) Latent Factor 방식(Matrix Factorization): 아이템 Latent Vector (잠재 벡터)와 유저 Latent Vector 간 Inner Product로 아이템에 대한 유저의 선호도를 모델링하는 방식
 - (2) Classification/Regression(분류/회귀) 방식: 콘텐츠 기반 추천과 쉽게 융합이 가능
- 3) 메모리 기반의 접근 방식
 - (1) User based CF: 사용자 A와 비슷한 사용자 B를 찾고 B의 item 평가를 기반으로 A가 평가하지 않은 item의 평가를 예측
 - (2) Item based CF: 사용자 A가 평가하지 않은 item A와 비슷한 Item B를 찾고 item B의 평가를 기반으로 item A에 대한 평가를 예측
- 2. 인프런 Python을 이용한 개인화 추천 시스템 강의 수강
 - 1) 인기제품 추천 방식
 - (1) 개별 사용자 정보가 없을 때 사용할 수 있는 간단한 추천 방식
 - (2) Best-Seller 제품을 추천해주는 방식
 - 2) 추천 시스템의 성과측정지표
 - (1) 각 아이템의 예상 평점과 실제 평점의 차이를 성과측정지표로 사용하고 보통 RMSE를 가장 많이 사용한다.

(2) 추천한 아이템과 사용자 실제 선택과 비교

		예측 결과		
		TRUE	FALSE	
실제 정답	TRUE	TP (True Positive)	FN (False Negative)	
	FALSE	FP (False Positive)	TN (True Negative)	

- 3) 이웃기반 CF 알고리즘
 - (1) KNN + CF 알고리즘: 사용자와 유사도가 높은 K명의 데이터를 통해 사용자에게 추천하는 방식
 - (2) 최적의 이웃 크기 결정: 너무 클 경우에는 전체 집단으로 추천하는 것과 크게 다르지 않고, 반대로 너무 작을 경우에는 편향된결과로 신뢰성이 떨어지게됨
- 4) 사용자의 평가경향을 고려한 CF 알고리즘
 - (1) 각 사용자의 평점을 구한 후 평점 편차를 계산
 - (2) 평점 편차로부터 예측값을 계산
 - (3) 평점 편차 예측값 + 평균값을 통해 실제 예측값을 계산

느낀점

어느덧 코나아이에서 인턴 생활을 시작한지도 4개월차다. 팀이 주로 어떤 업무를 맡고 있는지 직장 생활을 어떻게 돌아가는지 알 것 같다. 4개월간 진행한 인턴 공통프로젝트도 2등이라는 만족스럽기도하고 아쉽기도 한 결과로 끝났다. 인턴 기간도 끝나가고 한창 공채 시즌이라서 미래에 대한 고민이 많다.