Computer Vision

YOLO v1

Pham Viet Cuong
Dept. Control Engineering & Automation, FEEE
Ho Chi Minh City University of Technology

- ✓ Object detection problem
 - Single object detection
 - Multiple object detection

- Bounding box(es)
- Class(es) of object(s)

- ✓ Haar-like features
 - ❖ Window size: 24x24
 - Type
 - Position
 - Size
 - ~ 160K features
- ✓ Features usefulness?

- ✓ Feature selection
 - Positive & negative sets10K examples/set
 - Weak classifiers

$$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$$

- Objective: min # examples misclassified
- ~ 6K features selected

- ✓ Trade-off
 - More features (higher detection rate, lower false positive rate)
 - More computational complexity
- ✓ Cascade structure
 - 6061 features
 - 38 stages
 - First 5 layers: 1, 10, 25, 25, 50 features
 - Average: 10 feature evaluations per window
 - ❖ 15 600 times faster than others
 - Negative examples?
 false positive examples

- ✓ How to detect face(s) in an image?
 - Sliding window: 24x24 (384x288 image)

- Binay classifier: Face / Non face
- Window scaling

- ✓ How to detect face(s) in an image?
 - Sliding window: 24x24 (384x288 image)

- AlexNet?
 - Binary classifier → AlexNet
 - Multiple object detection
- More efficient?
 - Region proposal

Two-stage object detection (R-CNN, fast R-CNN, faster R-CNN)

Image

Region **Proposal**

Object Classification

Image

CNN

YOLO – You Only Look Once

- 1. Resize image.
- 2. Run convolutional network.
- 3. Non-max suppression.

 \checkmark S = 7

- ✓ Confidence score

 $S \times S$ grid on input

$$x = (220-149) / 149 = 0.48$$

 $y = (190-149) / 149 = 0.28$
 $w = 224 / 448 = 0.50$
 $h = 143 / 448 = 0.32$

outputs: (5B + C)5²/₄

$$B = 2, C = 20, S = 7$$

 $S \times S$ grid on input

- Confidence score
 - How likely the bounding box contains an object?
 - How accurate is the bounding box (location and size)?

Confidence score = Pr(Object)*IoU

IoU: Intersection over Union

IoU: 0.9264

- Confidence score
 - How likely the bounding box contains
 - How accurate is the bounding box (log Confidence score C = Pr(Object)*IoU
- Conditional class probability $p_i(c) = Pr(Class_i | Object)$
- ✓ Test:

$$\Pr(\text{Class}_i|\text{Object}) * \Pr(\text{Object}) * \text{IOU}_{\text{pred}}^{\text{truth}} = \Pr(\text{Class}_i) * \text{IOU}_{\text{pred}}^{\text{truth}}$$

Class-specific confidence scores for each box: probability of that class appearing in the box and how well the predicted box fits the object.

✓ Activation function

$$\phi(x) = \begin{cases} x, & \text{if } x > 0\\ 0.1x, & \text{otherwise} \end{cases}$$

Loss function

$$\left(\begin{array}{c} 100 \\ 0 \\ 0 \end{array} \right) = 100$$

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \widehat{\mathbb{1}}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \qquad \lambda_{\text{A}} + (y_i - \hat{y}_i)^2$$

$$+ \lambda_{\mathbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{h}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right]$$

$$+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2$$

$$+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2$$

$$+ \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2$$

$$i=0 \ j=0$$

$$\left(\begin{array}{c} \swarrow = 100 \\ \swarrow = 100 \\ \end{array} \right) + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ \stackrel{}{\swarrow} = 110 \\ \stackrel{}{\searrow} = 100 \\ \stackrel{}{\searrow} = 100$$

$$+\sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2$$

✓ Training

We pretrain our convolutional layers on the ImageNet 1000-class competition dataset [30]. For pretraining we use the first 20 convolutional layers from Figure 3 followed by a average-pooling layer and a fully connected layer. We train this network for approximately a week and achieve a single crop top-5 accuracy of 88% on the ImageNet 2012 validation set, comparable to the GoogLeNet models in Caffe's Model Zoo [24]. We use the Darknet framework for all training and inference [26].

We then convert the model to perform detection. Ren et al. show that adding both convolutional and connected layers to pretrained networks can improve performance [29]. Following their example, we add four convolutional layers and two fully connected layers with randomly initialized weights. Detection often requires fine-grained visual information so we increase the input resolution of the network from 224×224 to 448×448 .

We train the network for about 135 epochs on the training and validation data sets from PASCAL VOC 2007 and 2012. When testing on 2012 we also include the VOC 2007 test data for training. Throughout training we use a batch size of 64, a momentum of 0.9 and a decay of 0.0005.

Our learning rate schedule is as follows: For the first epochs we slowly raise the learning rate from 10^{-3} to 10^{-2} . If we start at a high learning rate our model often diverges due to unstable gradients. We continue training with 10^{-2} for 75 epochs, then 10^{-3} for 30 epochs, and finally 10^{-4} for 30 epochs.

To avoid overfitting we use dropout and extensive data augmentation. A dropout layer with rate = .5 after the first connected layer prevents co-adaptation between layers [18]. For data augmentation we introduce random scaling and translations of up to 20% of the original image size. We also randomly adjust the exposure and saturation of the image by up to a factor of 1.5 in the HSV color space.

- ✓ Limitations
 - Spatial constrain
 - Two bounding boxes, one class per grid cell
 - Struggle with small objects in groups, e.g. flocks of birds
 - Relatively coarse features due to multiple downsampling layers
 - Main error: incorrect localization

✓ Results – PASCAL VOC 2007

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

Fast R-CNN

YOLO

- Correct: correct class and IOU > .5
- Localization: correct class, .1 < IOU < .5
- Similar: class is similar, IOU > .1

- Other: class is wrong, IOU > .1
- Background: IOU < .1 for any object

✓ Results – PASCAL VOC 2007

	mAP	Combined	Gain
Fast R-CNN	71.8	-	_
Fast R-CNN (2007 data)	66.9	72.4	.6
Fast R-CNN (VGG-M)	59.2	72.4	.6
Fast R-CNN (CaffeNet)	57.1	72.1	.3
YOLO	63.4	75.0	3.2

✓ Results – PASCAL VOC 2012

NOC 2012 44	1 AD		1.3	1.1.1	1	11									1.71				C		
VOC 2012 test	mAP	aero	bike	bird	boat	bottle		car	cat	chair		table	dog				n plant	sheep		train	tv
MR_CNN_MORE_DATA [11]	73.9	85.5	82.9	76.6	57.8	62.7	79.4	77.2	86.6	55.0	79.1	62.2	87.0	83.4	84.7	78.9	45.3	73.4	65.8	80.3	74.0
HyperNet_VGG	71.4	84.2	78.5	73.6	55.6	53.7	78.7	79.8	87.7	49.6	74.9	52.1	86.0	81.7	83.3	81.8	48.6	73.5	59.4	79.9	65.7
HyperNet_SP	71.3	84.1	78.3	73.3	55.5	53.6	78.6	79.6	87.5	49.5	74.9	52.1	85.6	81.6	83.2	81.6	48.4	73.2	59.3	79.7	65.6
Fast R-CNN + YOLO	70.7	83.4	78.5	73.5	55.8	43.4	79.1	73.1	89.4	49.4	75.5	57.0	87.5	80.9	81.0	74.7	41.8	71.5	68.5	82.1	67.2
MR_CNN_S_CNN [11]	70.7	85.0	79.6	71.5	55.3	57.7	76.0	73.9	84.6	50.5	74.3	61.7	85.5	79.9	81.7	76.4	41.0	69.0	61.2	77.7	72.1
Faster R-CNN [28]	70.4	84.9	79.8	74.3	53.9	49.8	77.5	75.9	88.5	45.6	77.1	55.3	86.9	81.7	80.9	79.6	40.1	72.6	60.9	81.2	61.5
DEEP_ENS_COCO	70.1	84.0	79.4	71.6	51.9	51.1	74.1	72.1	88.6	48.3	73.4	57.8	86.1	80.0	80.7	70.4	46.6	69.6	68.8	75.9	71.4
NoC [29]	68.8	82.8	79.0	71.6	52.3	53.7	74.1	69.0	84.9	46.9	74.3	53.1	85.0	81.3	79.5	72.2	38.9	72.4	59.5	76.7	68.1
Fast R-CNN [14]	68.4	82.3	78.4	70.8	52.3	38.7	77.8	71.6	89.3	44.2	73.0	55.0	87.5	80.5	80.8	72.0	35.1	68.3	65.7	80.4	64.2
UMICH_FGS_STRUCT	66.4	82.9	76.1	64.1	44.6	49.4	70.3	71.2	84.6	42.7	68.6	55.8	82.7	77.1	79.9	68.7	41.4	69.0	60.0	72.0	66.2
NUS_NIN_C2000 [7]	63.8	80.2	73.8	61.9	43.7	43.0	70.3	67.6	80.7	41.9	69.7	51.7	78.2	75.2	76.9	65.1	38.6	68.3	58.0	68.7	63.3
BabyLearning [7]	63.2	78.0	74.2	61.3	45.7	42.7	68.2	66.8	80.2	40.6	70.0	49.8	79.0	74.5	77.9	64.0	35.3	67.9	55.7	68.7	62.6
NUS_NIN	62.4	77.9	73.1	62.6	39.5	43.3	69.1	66.4	78.9	39.1	68.1	50.0	77.2	71.3	76.1	64.7	38.4	66.9	56.2	66.9	62.7
R-CNN VGG BB [13]	62.4	79.6	72.7	61.9	41.2	41.9	65.9	66.4	84.6	38.5	67.2	46.7	82.0	74.8	76.0	65.2	35.6	65.4	54.2	67.4	60.3
R-CNN VGG [13]	59.2	76.8	70.9	56.6	37.5	36.9	62.9	63.6	81.1	35.7	64.3	43.9	80.4	71.6	74.0	60.0	30.8	63.4	52.0	63.5	58.7
YOLO	57.9	77.0	67.2	57.7	38.3	22.7	68.3	55.9	81.4	36.2	60.8	48.5	77.2	72.3	71.3	63.5	28.9	52.2	54.8	73.9	50.8
Feature Edit [33]	56.3	74.6	69.1	54.4	39.1	33.1	65.2	62.7	69.7	30.8	56.0	44.6	70.0	64.4	71.1	60.2	33.3	61.3	46.4	61.7	57.8
R-CNN BB [13]	53.3	71.8	65.8	52.0	34.1	32.6	59.6	60.0	69.8	27.6	52.0	41.7	69.6	61.3	68.3	57.8	29.6	57.8	40.9	59.3	54.1
SDS [16]	50.7	69.7	58.4	48.5	28.3	28.8	61.3	57.5	70.8	24.1	50.7	35.9	64.9	59.1	65.8	57.1	26.0	58.8	38.6	58.9	50.7
R-CNN [13]	49.6	68.1	63.8	46.1	29.4	27.9	56.6	57.0	65.9	26.5	48.7	39.5	66.2	57.3	65.4	53.2	26.2	54.5	38.1	50.6	51.6
		'																			

✓ Results

	VOC 2007	Picasso		People-Art
	AP	AP	Best F_1	AP
YOLO	59.2	53.3	0.590	45
R-CNN	54.2	10.4	0.226	26
DPM	43.2	37.8	0.458	32
Poselets [2]	36.5	17.8	0.271	
D&T [4]	_	1.9	0.051	

(a) Picasso Dataset precision-recall curves.

(b) Quantitative results on the VOC 2007, Picasso, and People-Art Datasets. The Picasso Dataset evaluates on both AP and best F_1 score.

✓ Comparison

- ✓ Evaluation
 - Classification problem?
 - Top-1 error rate
 - Top-5 error rate
 - Object detection problem?

- Confusion matrix
- Recall (detection rate, true positive rate, sensitivity)

$$Recall = DR = \frac{TP}{TP + FN}$$

Precision

$$Precision = \frac{TP}{TP + FP}$$

IoU = Area of Overlap

Area of Union

		Positive	Negative			
cted	Positive	True Positive	False Positive			
Predi	Negative	False Negative	True Negative			

Actual

- Evaluation
 - Precision Recall curve
 - Interpolated Precision Recall curve
 - **♦** AP
 - **AP50, AP75**
 - MAP
- ✓ Dataset
 - PASCAL VOC
 - COCO

0.

0.6