МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования
«Национальный исследовательский университет
«Московский институт электронной техники»

Институт микроприборов и систем управления

Отчет по выполнению домашнего задания

«Расчет канала ВЧ-ячейки»

по дисциплине «Моделирование СВЧ-устройств в среде ADS»

Вариант 5.6

Приемная ячейка усиления и фильтрации с детектированием мощности

Выполнил Лазба Ф.Б. ______ Группа РТ-33

Рис. 1 Базовая структурная схема.

Таблица 1 па	раметры
---------------------	---------

Fc, ГГц	Кр, дБ, не менее	$\Delta F_{ ext{-3dB}}$, $\Gamma \Gamma$ ц, не менее	ΔA_{i}	_{vass} , дБ, не более
8,5	39	0,5		3
Нижний диапа- зон запирания, Fs1Fs2, ГГц	Верхний диапа- зон запирания, Fs3Fs4, ГГц	Δ <i>A</i> _{stop} , дБ, не менее	Кш, дБ, не более	Диапазон ожидае- мых входных мощ- ностей, Pin, дБмВт
7,37,85	9,19,6	33	3,3	-4215

Рис. 2 – Пояснение к ТЗ на АЧХ канала

Общие условия и пояснения:

- 1. КСВН по всем ВЧ-входам и ВЧ-выходам должен быть не более 1,5 в рабочей полосе частот.
- 2. Усилители МШУ1 и МШУ2 не обязательно должны быть одним устройством, могут являться каскадными.
- 3. Предпочтительно чтобы первым устройством был фильтр $\Phi 1$, однако, если из-за потерь на фильтре $\Phi 1$ невозможно удовлетворить на Кш, то первый МШУ с минимальным коэффициентом шума можно поставить первым.
- 4. Рабочий диапазон частот F_{p1} . . F_{p2} определяется как размах ΔF_{-3dB} относительно централь-

ной частоты F_c , т.е. $F_{p1} = F_c$ - 0,5 ΔF_{-3dB} и $F_{p2} = F_c$ +0,5 ΔF_{-3dB} .

5. Ячейка должна быть способна корректно измерять возможные значения входной мощности Pin. Это означает, что данный диапазон возможной входной мощности с учетом прохождения через канал (МШУ, ППФ, ответвление в вторичное плечо НО) должен попадать в динамический диапазон измеряемой мощности детектора мощности в рабочей полосе частот

Оглавление

Часть 1. Поиск ВЧ-компонентов	4
1.1 Выбор МШУ:	
1.2 Выбор детектора мощности:	
Часть 2. Проектирование полосковых устройств и согласование компонентов	
2.1 Проектирование фильтра	
2.2 Проектирование ответвителя	
2.3 МШУ 1 — PMA-183PLN+	
Часть 3. Общее моделирование.	
часть 3. Оощее моделирование	9

Часть 1. Поиск ВЧ-компонентов.

1.1 Выбор МШУ:

Пусть фильтр «съедает» 5дБ и НО — 1дБ. Тогда усилители должны суммарно давать не менее $39+5+1=45\,\partial E$ усиления.

На роль МШУ возьмём <u>PMA-183PLN+</u>

Рис 1.1 График S-параметров МШУ

Заявленных 25 дБ «хватит всем».

1.2 Выбор детектора мощности:

Перст судьбы указывает на LTC5597.

Рис 1.2 Диапазон возможных входных мощностей.

Основываясь на графиках с *Puc. 1.2* и диапазоне входных мощностей из Т3, понимаем, что нужно будет ответвлять порядка -40 дБ.

Часть 2. Проектирование полосковых устройств и согласование компонентов.

2.1 Проектирование фильтра

Проектировать будем на подложке RO4003 0.5 oz ED 20 mil (Er = 3.38, Ur = 1, Tand = 0.0027, T = 17 мкм, H = 0.508 мм).

Рис 2.1.1 Схема и параметры схемы фильтра

Рис 2.1.2 Топология фильтра

Рис 2.1.3 Характеристики фильтра

Сохраним фильтр как файл S-параметров.

2.2 Проектирование ответвителя.

Исходя из диапазона возможных входных значений, определяем ответвление в -40 дБ

Рис 2.2.1 Ответвитель на связных линиях

Рис 2.2.1 Характеристика ответвителя

2.3 МШУ 1 — PMA-183PLN+

Рис. 2.3.1 Размеры элемента

P = 0.25 mm K = 0.51 mm

Рис 2.3.2 Схема согласования

Таблица 2.3.1 Размеры элементов

Параметр	Вход	Выход	
Подводная линия	Д=0.2 мм Ш=0.3 мм	Д=0.2 мм Ш=0.3 мм	
Переходная линия	Д=0.6 мм Ш=0.7 мм	Д=1.1 мм Ш=0.8 мм	
Трансформатор- ная линия	Д=0.2 мм Ш=0.3 мм		
Шлейф	Д=1.1 мм Ш=1.1 мм	Д=1.5 мм Ш=1.1 мм	

Рис 2.3.3 Результаты согласования

Часть 3. Общее моделирование.

Рис 3.1 Итоговая схема

Рис 3.2 Результаты моделирования

Максимальный NF для МШУ из таблицы производителя равен 1.2. С помощью модели Noisy2Port установим шум в 1.2 дБ и проведём анализ.

Данная модель соответствует выданному Т3 и может быть отправлена на следующий этап проектирования.