Matemáticas para Ciencias e Ingeniería I

Universidad Santo Tomás Facultad de Ingeniería

Departamento de Ingeniería

Índice general

\mathbf{P}_{1}	resen	tación	1
1	Lóg	ica y Polinomios	3
	1.1	Lógica proposicional	3
	1.2	Tablas de verdad	4
	1.3	Álgebra Booleana	6
	1.4	Funciones Proposicionales	8
	1.5	Cuantificadores Lógicos	8
	1.6	Conjuntos	11
	1.7	Operaciones entre Conjuntos y Diagrama de Venn	12
	1.8	Cardinalidad	15
	1.9	Conjuntos numéricos	16
	1.10	Polinomios	17
	1.11	División de polinomios	19
	1.12	Teorema del Resto	21
	1.13	Raíces Reales y Racionales	21
	1.14	Números complejos	22
	1.15	Ejercicios	24
2	Geo	ometría Analítica	2 5
	2.1	El plano Euclideano	25
3	Trig	gonometría y Relación de Orden	27
	3.1	Trigonometría en el Triángulo	27
	3.2	Trigonometría en el plano	27
	3.3	Identidades Trigonometricas	27
	3.4	Forma polar de un número complejo	27
4	Fun	ciones y Límites	29
	4.1	Funciones reales	29
	4.2	Funciones polinomiales, racionales y raíces	29
	4.3	Funciones Trigonométricas y sus inversas	29
	4.4	Función exponencial y logaritmos	29
	4.5	Límites y Continuidad	29
	4.6	Álgebra de Límites	29

4.7	Cambios de variable																29
4.8	Ejercicios																29

Presentación

Este apunte busca ser una guía esencial y concisa para el curso de primer año *Matemáticas* para Ciencias e Ingeniería I que comparten diversas carreras en la Universidad Santo Tomás. Incluye el contenido en pocas palabras, incluyendo ejemplos y ejercicios propuestos. En versiones posteriores se pretende agregar:

- 1) Ejercicios resueltos, con mayor complejidad que los ejemplos básicos del contenido
- II) Agregar un solucionario para los ejercicios
- III) Añadir una sección o subsección en cada capitulo con ideas o problemas interesantes para profundizar
- IV) Añadir una bibliografía

Matemáticas para Ciencias e Ingeniería © 2025 by Dr. José Alejandro Aburto is licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0

Lógica y Polinomios

1.1. Lógica proposicional

Comencemos con una definición fundamental. Queremos formalizar el concepto de *proposición*, las cuales trabajaremos usualmente como incógnitas y operaremos con operaciones binarias (que requieren dos) semejantes a la suma o al producto usuales.

Definición 1.1 Proposición

Una proposición es una expresión que puede poseer solo uno de dos valores: **verdadero** ó **falso**.

Podemos comenzar pensando en qué no es una proposición, y hay muchísimos ejemplo: todas las preguntas no son proposiciones. Primero tenemos proposiciones en el lenguaje cotidiano, y también expresiones matemáticas.

Ejemplo 1.1

- 1. Todos los alumnos de la UST deben sacar 5,5 o más para eximirse.
- 2. El número 5 es par.
- 3. La ecuación $x^2 + x + 1$ no tiene solución en los números reales.
- 4. Todos los gatos son grises.

Tendremos tres operaciones:

- \bullet La conjunción, «y», que denotaremos por \wedge
- La disyunción, «ó», que denotaremos por V
- La negación, «no», que denotaremos por ¬

¡Cuidado!

Hay 3 notaciones para la negación, por ejemplo:

$$\neg p = \sim p = \overline{p}$$

1.2. Tablas de verdad

Como las proposiciones solo pueden tener dos valores: **verdadero** ó **falso**, podemos describir los resultados de las operaciones al usarlas en una tabla. Este tipo de tabla les llamaremos **tablas de verdad**. Las siguientes tablas son por definición:

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

(a) Conjunción

p	q	$p\vee q$
V	V	V
V	F	V
F	V	V
F	F	F

(b) Disyunción

$$egin{array}{c|c} p & \overline{p} \ \hline V & F \ F & V \ \hline \end{array}$$

(c) Negación

¡Cuidado!

Las disyunción no es exclusiva, es decir, si decimos «p ó q» pueden ocurrir ambas a la vez. Hay que prestar atención a esto al principio ya que en el lenguaje cotidiano suele ser exclusivo, o sea, solemos elegir solo uno de los dos.

Podemos utilizar las tablas de verdad para determinar los valores posibles de una proposición compuesta, es decir, una proposición construida con estos operadores usando otras proposiciones. Por ejemplo:

Ejemplo 1.2

Consideremos la proposición compuesta: $(p \lor q) \land (\overline{p} \lor \overline{q})$. Sería difícil desarrollarlo en solo un paso, por lo que agregaremos columnas a la tabla de manera que nos ayude a calcular el resultado, poniendo partes más simples que forman la proposición compuesta que nos interesa:

p	q	$p \lor q$	$\overline{p} \vee \overline{q}$
V	V	V	F
V	F	V	V
F	V	V	V
F	F	F	V

Ahora que ya hemos calculado estas proposiciones más simples, podemos calcular los valores posibles de la proposición compuesta inicial:

p	q	$p \lor q$	$\overline{p} \vee \overline{q}$	$(p\vee q)\wedge(\overline{p}\vee\overline{q})$
V	V	V	F	\overline{F}
V	F	V	V	V
F	V	V	V	V
F	F	F	V	F

Además, tenemos otro operador que aparece usualmente en matemáticas, por ejemplo en cada resultado. Solemos tener una hipótesis que es aquello que suponemos como cierto y una consecuencia de esos resultados. Podemos pensar en el teorema de Pitágoras como ejemplo, partimos de un triángulo rectángulo en el plano, y como consecuencia obtenemos una ecuación que satisfacen sus lados.

Definición 1.2 Implica

Definimos el conectivo (u operador) **implica** (o **entonces**) como se indica en la siguiente tabla:

p	q	$p \Rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Notemos que si completamos la siguiente tabla de verdad: Las dos últimas columnas

p	q	$p \Rightarrow q$	$\overline{p} \lor q$
V	V	V	V
V	F	F	F
F	V	V	V
F	F	V	V

Cuadro 1.2: Primera equivalencia lógica

tienen los mismos valores de verdad pero no son la misma proposición. Por ejemplo, «dos es un número par» y «5 es un número primo» tienen el mismo valor de verdad pero no son la misma proposición. Por ello, son equivalentes de cierta forma pero no iguales. Esto motiva usar un símbolo diferente:

Definición 1.3

Equivalencia lógica

Cuando dos proposiciones (compuestas) R y T poseen los mismos valores (en el mismo orden) en la tabla de verdad, diremos que son **equivalentes** y lo denotaremos por:

$$R \equiv T$$

Esto es una relación como equivalencia al igual que la igualdad cuando trabajamos los números reales por dar un ejemplo.

1.3. Álgebra Booleana

Ahora que tenemos un sentido de «igualdad», quisieramos poder desarrollar expresiones como en el álgebra habitual. A esta operatoria y sus propieades les llamamos **Álgebra Booleana**.

Tenemos varias propiedades que nos serán de utilidad y enlistamos ahora:

Teorema 1.1

Propiedades del álgebra booleana

I. Conmutatividad

$$p \wedge q \equiv q \wedge p$$
 $p \vee q \equiv q \vee q$

II. Identidad

$$p \wedge V \equiv p$$
, $p \wedge F \equiv F$, $p \vee V \equiv V$, $p \vee F \equiv p$

III. Idempotencia

$$p \wedge p \equiv p, \qquad p \vee p \equiv p$$

IV. Involución

$$\overline{\overline{p}} \equiv p$$

v. Complemento

$$p \wedge \overline{p} \equiv F, \qquad p \vee \overline{p} \equiv V$$

VI. Asociatividad

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r, \qquad p \vee (q \vee r) \equiv (p \vee q) \vee r$$

VII. Distributividad

$$\begin{split} p \wedge (q \vee r) &\equiv (p \wedge q) \vee (p \wedge r) \\ p \vee (q \wedge r) &\equiv (p \vee q) \wedge (p \vee r) \end{split}$$

VIII. Transitividad

$$(p \Rightarrow q) \land (q \Rightarrow r) \equiv p \Rightarrow r$$

IX. Leyes de De Morgan

$$\overline{p \vee q} \equiv \overline{p} \wedge \overline{q} \qquad \overline{p \wedge q} \equiv \overline{p} \vee \overline{q}$$

x. Absorción

$$[p \land (p \lor q)] \equiv p, \qquad [p \lor (p \land q)] \equiv p$$

Esto nos permite trabajar con proposiciones compuestas de una manera más convienente muchas veces.

Ejemplo 1.3

Se tienen 3 proposiciones: p, q, r. Sabemos que $p \vee q \equiv r \wedge q$, queremos desarrollar y simplificar la siguiente proposición compuesta: $[(p \wedge q) \vee r] \vee \overline{r}$. Procedemos a desarrollar utilizando las propiedades anteriores:

$$\begin{split} [(p \lor q) \land r] \lor \overline{r} &\equiv [(r \land q) \land r] \lor \overline{r} \\ &\equiv [(q \land r) \land r] \lor \overline{r} \\ &\equiv [(q \land (r \land r)] \lor \overline{r} \\ &\equiv [q \land r] \lor \overline{r} \\ &\equiv (q \lor \overline{r}) \land (r \lor \overline{r}) \\ &\equiv q \lor \overline{r}. \end{split}$$

Aunque en general podríamos obtener un resultado solo en incógnitas, a veces podremos hallar el valor.

Ejemplo 1.4

Tenemos que

$$\begin{split} (p \wedge q) \vee (p \Rightarrow \overline{q}) &\equiv (p \wedge q) \vee (\overline{p} \vee \overline{q}) \\ &\equiv (p \wedge q) \vee \overline{(p \wedge q)} \\ &\equiv V \end{split}$$

Ya sea con álgebra booleana o con las tablas de verdad, a veces ocurrirá que sin importar los casos una proposición compuesta sea verdadera, falsa o con un valor indeterminado. Esto tiene un nombre definido como sigue:

Definición 1.4

Tautología - Contingencia - Contradicción

Si una proposición compuesta da como resultado

- verdadero, le llamaremos Tautología
- falso, le llamaremos Contradicción
- indeterminado, le llamaremos Contingencia

¡Cuidado!

El que una contingencia tenga un valor indeterminado significa que depende de los valores de p,q,r,\ldots

1.4. Funciones Proposicionales

Definición 1.5

Función proposicional

Una función proposicional es una función que toma como argumento un elemento de un universo definido y devuelve una proposición.

Ejemplo 1.5

Tenemos las siguientes funciones proposicionales:

I.
$$q(k) \equiv k$$
 es par y mayor que 5

II.
$$F(x) \equiv x^2 + x + 1 = 0$$

III.
$$r(t) \equiv t$$
 es divisible por 3

En estos casos no hemos definido un universo, el cual es el dominio de la función. Sin embargo, si el contexto es claro podemos omitir esta información.

Observación 1.1

En general tendremos dos usos para las funciones proposicionales: Uno será con cuantificadores lógicos y el otro en la definción de conjuntos. En ambos casos estará escrito con claridad cuál es el universo en el que estaremos trabajando.

1.5. Cuantificadores Lógicos

Para describir qué tanto una función proposicional nos proporciona proposiciones verdaderas, utilizaremos cuantificadores lógicos.

Definición 1.6

Cuantificador Lógico

Un **cuantificador lógico** es un operador que se aplica a las funciones proposicionales para indicar qué tantas proposiciones resultan ser verdaderas. Tenemos tres cuantificadores:

 \bullet Para todo / Para cada: \forall

• Existe alguno / Hay algún: ∃

• Existe un único: ∃!

Ejemplo 1.6

1. «Todos los números enteros son pares ó impares» podemos escribirlo como:

$$\forall n \in \mathbb{Z} : n \text{ es par } \forall n \text{ es impar}$$

2. «Existe un número par» podemos escribirlo como:

$$\exists n \in \mathbb{Z} : n \text{ es par}$$

3. «Para cada número natural hay un número primo mayor que él» podemos escribirlo como:

$$\forall n \in \mathbb{N}, \ \exists p \in \mathbb{N} : p \text{ es primo } \land \ p > n$$

Para determinar el valor de verdad de cada una de las proposiciones compuestas en las que está involucrado un cuantificador lógico, tenemos que seguir los siguientes razonamientos:

Observación 1.2

- Para que un **para todo** sea verdad, necesitamos que todos los elementos del universo nos dé verdadero al pasarlos por la función proposicional, por ello, si tan solo uno de los elementos nos da como resultado una proposición falsa, el para todo será falso.
- Para que un **existe** sea verdadero bastará con que uno de los elementos del universo nos de verdadero, sin importar si hay varios que nos sirvan para esto, con uno basta. Por otro lado, si todos nos dan como resultado una proposición falsa, el existe será falso.
- Para que un **existe un único** sea verdadero, necesitaremos que haya un elemento del universo que nos de verdadero, y además que todos los demás sean falsos. Por lo tanto, el existe un único será falso si hay dos *elementos diferentes* que nos dan una proposición verdadera, ó si todos los elementos del universo nos dan falso.

Ejemplo 1.7

1. «Todos los números enteros son pares» podemos escribirlo como:

$$\forall n \in \mathbb{Z} : n \text{ es par}$$

En este caso, esta proposición es **falsa**. Esto, debido a que existe un^a número entero que no es par, particularmente n=3.

2. «Existe un único número real que satisface $x^2 - 1 = 0$ » podemos escribirlo como:

$$\exists! x \in \mathbb{R} : x^2 - 1 = 0$$

En este caso, esta proposición es **falsa**. Esto, debido a que existen dos números reales que satisfacen la proposición, particularmente x = 1 y x = -1.

^asi hay más no importa, solo nos interesa que haya al menos un elemento del universo que resulte en una proposición falsa para que el **para todo** sea falso.

Ahora quisieramos saber como resulta ser la negación de una de estas proposiciones compuestas en las que hay cuantificadores lógicos involucrados.

Aunque ya hemos hablado acerca de cómo saber una proposición de este tipo es verdadera o falsa, no hemos visto formalmente la negación de estas proposiciones:

Proposición 1.1

Negación de Cuantificadores Lógicos

Tenemos las siguientes maneras de negar una proposición compuesta con cuantificadores lógicos:

• La negación del para todo:

$$\neg (\forall u \in U : P(u)) \equiv \exists u \in U : \neg P(u)$$

• La negación del existe:

$$\neg (\exists u \in U : P(u)) \equiv \forall u \in U : \neg P(u)$$

• La negación del existe un único:

$$\neg (\exists! \ u \in U : P(u)) \equiv (\forall u \in U : \neg P(u))$$
$$\lor \exists u_1, u_2 \in U : P(u_1) \land P(u_2) \land u_1 \neq u_2$$

Ejemplo 1.8

Consideremos la proposición siguiente:

T: «El cuadrado de cada número real es mayor que 1»

La podemos escribir formamente como:

$$T: \forall x \in \mathbb{R}: x^2 > 1$$

La negación de esta proposición es:

$$\neg T: \exists x \in \mathbb{R}: x^2 < 1$$

Podemos observar que $\neg T$ es una proposición verdadera ya que por ejemplo x=0 cumple que $x^2 \le 1$. Por lo tanto, T es falsa.

1.6. Conjuntos

Debido a que puede resultar ser complicado definir un conjunto de una manera formal lo entenderemos como una colección de elementos. Tenemos varias maneras de representarlos:

Definición 1.7 Conjunto

Un **conjunto** es una colección de elementos de un universo dado. Podemos representarlo mediante:

- Definición intensiva (o por compresión): Especificamos un universo, y una propiedad (una proposición) que los elementos deben cumplir.
- Definición extensiva: Especificamos todos los elementos explícitamente.
- Definición ostensiva: Especificamos ejemplos que representan al conjunto.

¡Cuidado!

Solo la definición intensiva y la extensiva son formales. Esto debido a que la definición ostensiva puede llevar a errores dependiendo de la interpretación que le demos.

Ejemplo 1.9

1. Consideremos el conjunto:

$$\{x \in \mathbb{R} : x^2 - 1 < 0\}$$

Este conjunto está definido de manera intensiva ó por comprensión.

2. Consideremos el conjunto:

$$\{2,3,5,7,9,\pi\}$$

Este conjunto está definido de manera extensiva.

3. Consideremos el conjunto:

$$\{2, 3, 5, 7, \ldots\}$$

Este conjunto está definido de manera ostensiva.

Observación 1.3

En el ejemplo 1.9 notemos la manera en que está escrita el conjunto $x \in \mathbb{R}$: $x^2 - 1 < 0$. La definición se lee como:

«Todos los reales x tales que $x^2 - 1 < 0$ »

Aquí, los dos puntos «:» ó bien la barra vertical «|» se lee como «tal que». Además, el símbolo \in se lee como «pertenece a».

¡Cuidado!

La manera ostensiva es solamente una representación informal. Por ejemplo el conjunto $\{3,5,7,\ldots\}$ podemos interpretarlo de al menos dos maneras. ¿Se trata de números primos mayores que 2 o de números impares mayores que 2?

1.7. Operaciones entre Conjuntos y Diagrama de Venn

Tenemos tres operaciones elementales, la **unión**, la **intersección** y el **complemento**. Cada uno se obtendrá de las tres operaciones en lógica.

Denotaremos el universo por X a menos que se indique lo contrario.

Definición 1.8

Operaciones entre Conjuntos

• Unión:

$$A \cup B = \{x \in X : x \in A \lor x \in B\}$$

• Intersección:

$$A\cap B=\{x\in X:x\in A\wedge x\in B\}$$

• Complemento:

$$U \setminus A = A^c = \{x \in X : x \notin A\}$$

• Diferencia^a:

$$A \setminus B = \{ x \in X : x \in A \land x \notin B \}$$

Para facilitar la compresión veamos unos ejemplos concretos sencillos:

Ejemplo 1.10

Consideremos los siguientes conjuntos:

$$A = \{-1, 1, 3, 6, 8\}, \qquad B = \{1, 5, 8\}$$

 $[^]a\mathrm{Notemos}$ que el símbolo que utilizamos es como un menos pero inclinado. Así lo diferenciamos del menos usual

$$U = \{-1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

Y así, tenemos que:

a) La unión de A y B es contiene los elementos de ambos conjuntos:

$$A \cup B = \{-1, 1, 3, 5, 6, 8\}$$

b) La intersección de A y B es el conjunto de los elementos que pertenecen a ambos conjuntos a la vez:

$$A \cap B = \{1, 8\}$$

c) El complemento de A es el conjunto de todos los elementos que no pertenecen a A:

$$U \setminus A = \{0, 2, 4, 5, 7\}$$

d) La diferencia de A y B es el conjunto de los elementos de A que no pertenecen a B:

$$A \setminus B = \{-1, 3, 6\}$$

¡Cuidado!

La diferencia de A y B solo quita elementos a el conjunto A. Si B tiene elementos que A no posee, son totalmente ignorados. Por ejemplo, si $A = \{1, 2\}$ y $B = \{2, 3, 4, 5\}$, obtendremos que $A \setminus B = \{1\}$.

Notar además que $B \setminus A = \{3, 4, 5\}.$

Podemos representar los conjuntos de una manera gráfica, especialmente cuando se trata de conjuntos abstractos ó si son de finitos elementos (no son infinitos). En el caso de los conjuntos abstractos, estos diagramas nos ayudarán a comprender mejor las operaciones entre conjuntos ya que podremos visualizarlas fácilmente.

Definición 1.9

Diagrama de Venn

Un diagrama de Venn es una representación gráfica de conjuntos que utiliza figuras geométricas cerradas para representar conjuntos. Particularmente,

Figura 1.1: Unión de A con B

Figura 1.2: Intersección de A con B

Figura 1.3: Diferencia de A con B

Figura 1.4: Complemento de A

Podemos representar diferentes operaciones entre conjuntos usando el diagrama de Venn.

Ejemplo 1.11

Consideremos el siguiente diagrama de Venn que representa una operación entre los conjuntos A y B:

Figura 1.5: Diferencia Simétrica de A con B

En esta figura tenemos representado lo que es conocido como **diferencia simétrica**. Gracias a la figura, podemos deducir que:

$$A \setminus B \cup B \setminus A = (A \cup B) \setminus (A \cap B)$$

1.8. Cardinalidad

Cuando tenemos un conjunto, sabemos si un elemento pertenece al conjunto o no. Considerando aquellos que sí pertenecen podemos asignarle un valor, y este valor será llamado cardinalidad.

Definición 1.10 Cardinalidad

La cardinalidad de un conjunto es el número de elementos que contiene. Sea el conjunto A, denotaremos su cardinalidad por: |A|.

¡Cuidado!

Es importante que solo contemos una vez cada elemento del conjunto, ya que por diversas circunstancias podría aparecer varias veces.

Ejemplo 1.12

Calculemos la cardinalidad de los siguientes conjuntos:

a)
$$|\{-3,4,5,6,7\}| = 5$$

b)
$$\left| \left\{ \frac{1}{2}, \frac{2}{4}, \frac{6}{12}, -\frac{1}{2} \right\} \right| = 2$$

c)
$$|\{2,3,5,7,11,13\}| = 6$$

Cuando se trata conjuntos con cardinalidad finita, podemos obtener la cardinalidad de un conjunto formado mediante operaciones de varios conjuntos vía dos propiedades principalmente:

Proposición 1.2

Propiedades de la Cardinalidad

Sean A y B dos conjuntos. Entonces:

$$|A \cup B| = |A| + |B| - |A \cap B$$

$$|A \setminus B| = |A| - |A \cap B|$$

Observación 1.4

Vale la pena notar que si dos conjuntos son disjuntos, es decir, que su interesección es vacía. Entonces, su cardinalidad es la suma de las cardinalidades de ambos conjuntos.

Ejemplo 1.13

Si |A|=3 y |B|=4 y además $|A\cup B|=5$, y queremos determinar $|A\cap B|$, entonces tenemos que

$$|A \cup B| = |A| + |B| - |A \cap B|$$

 $5 = 3 + 4 - |A \cap B|$
 $-|A \cap B| = 5 - 3 - 4$
 $|A \cap B| = 2$

Ejemplo 1.14

En una clase, cada estudiante debe elegir algún taller para realizar. De los 40 estudiantes, 15 de ellos eligieron el taller de arduino, 20 de ellos el taller de ajedrez y 15 de ellos el taller de juego de mesa. Se sabe que:

- No hay estudiantes que tengan el taller de ajedrez y el de juegos de mesa.
- Hay 5 estudiantes que solo tienen el taller de arduino.
- Hay 7 estudiantes que tienen el taller de arduino y el de ajedrez.

¿Cuántos estudiantes tienen el taller de juegos de mesa y Arduino juntos? ¿Cuántos solo juegos de mesa?

1.9. Conjuntos numéricos

1.10. Polinomios

Definición 1.11 Polinomio

Un polinomio es una expresión algebraica de la forma siguiente:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

en donde a_j son coeficientes de algún conjunto en particular, y x es una variable. Denotaremos al conjunto de los polinomios de variable x y coeficientes en un conjunto A por A[x].

En este caso los coeficientes pertenecerán a un conjunto numérico, por ejemplo \mathbb{Z} .

También tenemos que conocer los nombres usuales que utilizaremos para referirnos a ciertas características o partes de un polinomio.

Definición 1.12

Grado, coeficiente libre y lider

Sea $p(x) \in A[x]$, digamos $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$. Entonces:

- El grado de p(x) es el mayor exponente de x que aparece en p(x).
- El coeficiente libre de p(x) es el coeficiente libre de la variable x en p(x).
- El lider de p(x) es el coeficiente del término de mayor grado en p(x).

Veamos algunos ejemplos para clarificar esta definición:

Ejemplo 1.15

- 1. Consideremos el polinomio: $p(x) = x^3 2x^2 + 3x 1$. Entonces,
 - El grado de p(x) es 3.
 - El coeficiente libre de p(x) es -1.
 - El lider de p(x) es 1.
- 2. Consideremos el polinomio: $q(x) = 4x^3 + 2x$. Entonces,
 - El grado de q(x) es 3.
 - El coeficiente libre de q(x) es 2.
 - El lider de q(x) es 4.
- 3. Consideremos el polinomio: $r(x) = -x^2 x + 6$. Entonces,
 - El grado de r(x) es 2.
 - El coeficiente libre de r(x) es 6.
 - El lider de r(x) es -1.

Observación 1.5

El grado de un polinomio p(x) lo denotaremos por $\deg(p(x))$. Además, notemos que el grado del polinomio nulo no quedaría bien definido si le asignamos un número entero. Convendremos que $\deg(0) = -\infty$.

En los polinomios tenemos dos operaciones, que son la suma y el producto. Los cuales herederán sus propiedades de la suma y producto que ya tenemos en el conjunto A.

Cuando se trata realizar operaciones entre polinomios, hay algunas expresiones que aparecen regularmente y por ello vale la pena conocer, e incluso memorizar ciertas reglas para poder trabajar de una manera más cómoda. Estas expresiones recurrentes son conocidas como **productos notables**, debido a que justamente se trata de ciertos productos entre polinomios.

Tendremos una herramienta simple para utilizaremos en algunas potencias de binomios (polinomios de dos términos).

Definición 1.13

Triángulo de Pascal

Sea $n \in \mathbb{N}$. El triángulo de Pascal de n filas es el siguiente arreglo de números:

En los extremos ponemos 1, y rellenamos con la suma de los números de la fila anterior.

Utilizaremos el triángulo de Pascal para poder determinar los coeficientes de las potencias de un binomio, es decir, la potencia de una suma de dos términos.

Ejemplo 1.16

Escribimos los desarrollos de las siguientes poencia de binomio utilizando los coeficientes del triángulo de Pascal:

- $\bullet \ (x+y)^0 = 1$
- $(x+y)^1 = x + y$
- $(x+y)^2 = x^2 + 2xy + y^2$
- $(x+y)^3 = x^3 + 3xy^2 + 3xy + y^3$
- $(x+y)^4 = x^4 + 4xy^3 + 6xy^2 + y^4$

Podemos seguir escribiendolos ampliando el triángulo de Pascal.

Vale la pena igualmente conocer otros productos notables que no aparecen naturalmente de una potencia como las anteriores:

1.11. División de polinomios

Al igual que en la división de números enteros, podemos realizar una división de polinomios.

Primero que todo, esta división se corresponde con el siguiente resultado:

Teorema 1.2

Algoritmo de Euclides

Sean $f(x) \in A[x]$ y $g(x) \in A[x]$. Entonces, existen dos polinomios $h(x), r(x) \in A[x]$ tales que:

$$f(x) = g(x)h(x) + r(x),$$

en donde r(x) = 0 ó $\deg(r(x)) < \deg(q(x))$.

A r(x) se le llama el **resto** de la división de f(x) por g(x). Además, diremos que f(x) es el dividendo, g(x) es el divisor y h(x) es el cuociente.

Este resultado puede resultar se puramente abstracto, y aún nos queda ver cómo se realiza la división de polinomios.

Observación 1.6

Utilizaremos los siguientes polinomios para ejemplificar el algoritmo de Euclides: $f(x) = 4x + x^2 + 1$ y g(x) = x + 1. Para dividir f(x) por g(x) aplicaremos los siguientes pasos:

• Paso 1: Primero ponemos los polinomios ordenando sus términos de mayor a menor grado, de izquierda a derecha:

$$x^2 + 4x + 1 : x + 1$$

• Paso 2: Buscamos un monomio que al multiplicarlo por x+1 resulte en un polinomio cuyo término lider coincida con el de x^2+4x+1 . Ese monomio siempre es único. Este este caso, es x, ya que $x(x+1)=x^2+x$, que tiene el mismo término lider que x^2+4x+1 . Lo anotamos de la manera siguiente:

$$x^2 + 4x + 1 : x + 1 = x$$

• Paso 3: Anotamos el producto de x con x + 1 abajo de la división:

$$x^{2} + 4x + 1 : x + 1 = x$$
$$-(x^{2} + x)$$

• Paso 4: Realizamos la resta del dividendo menos el producto recién mencionado:

$$x^{2} + 4x + 1 : x + 1 = x$$
$$-(x^{2} + x)$$
$$= 3x + 1$$

• Paso 5: Repetimos el proceso con el nuevo dividendo 3x + 1, y repetimos hasta que el resultado de la resta tenga grado menor que el divisor, o que sea cero. En este caso:

$$x^{2} + 4x + 1 : x + 1 = x + 3$$

$$-(x^{2} + x)$$

$$= 3x + 1$$

$$-(3x + 3)$$

$$= -2$$

La conclusión de este algoritmo es que:

$$x^{2} + 4x + 1 = (x+1)(x+3) - 2.$$

Ejemplo 1.17

Dividimos $f(x) = x^3 + 2x - 3$ por g(x) = x - 1, y resulta:

$$x^{3} + 2x - 3 = (x - 1)(x^{2} + x + 3).$$

En este caso el resto es cero.

Ejemplo 1.18

Dividimos $f(x) = x^3 + 1$ por $g(x) = x^2$, y resulta:

$$x^3 + 1 = x \cdot x^2 + 1.$$

Aquí el resto es 1.

1.12. Teorema del Resto

Definición 1.14

Raíz de un polinomio

Sea $p(x) \in A[x]$. Una raíz de p(x) es el elemento $a \in A$ tal que p(a) = 0.

Ocurrirá que cada vez que un polinomio tenga una raíz, se podrá factorizar en un producto de polinomios en donde estará presente la raíz.

Teorema 1.3

Teorema del Resto

Sea $p(x) \in A[x]$ y $a \in A$. Entonces:

$$p(x) = (x - a)q(x) + p(a).$$

En otras palabras, si dividimos p(x) por (x-a) el resto resultará ser p(a).

Notemos que en particular, si a es una raíz de p(x), entonces p(a) = 0.

Teorema 1.4

Teorema del factor

Sea $p(x) \in A[x]$ y $a \in A$ es una raíz de p(x). Entonces existe un polinomio $q(x) \in A[x]$ tal que

$$p(x) = (x - a)q(x).$$

1.13. Raíces Reales y Racionales

Cuando queremos hallar las raíces de un polinomio de grado 2, podremos encontrarlas utilizando la fórmula de Bhaskara. Sin embargo, cuando se trata de otros polinomios de

mayor grado, la dificultad crece rápidamente. Hace siglos, la primera esperanza era hallar una solución por radicales, como en la fórmula de Bhaskara o la de Cardano, pero tomo varios siglos en descubrir que es imposible en general para polinomios de grado 5 o más.

Hay dos maneras de enfrentar este problema: Hallar las soluciones más simples de encontrar en polinomios amigables, como los que tienen coeficientes enteros. Y la otra alternativa es aproximar esas soluciones. Nosotros aprenderemos la primera de estas maneras en esta sección.

Teorema 1.5 Teorema de Gauss

Sea $p(x) \in \mathbb{Z}$, digamos $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, con $a_n \neq 0$. Entonces, las raíces racionales de p(x) pertenecen al conjunto:

$$\left\{\pm \frac{c}{d} : c \text{ es un divisor de } a_0 \wedge d \text{ es un divisor de } a_n\right\}$$

Primero tenemos que entender como se contruye este conjunto, a pesar de que en su definción se describe completamente, es buena idea aclarar los conceptos ante ideas nuevas.

Ejemplo 1.19

Consideremos el polinomio $p(x) = x^3 - 3x^2 - 8x + 4$. Entonces, el conjunto de las posibles raíces racionales de p(x) es:

$$\left\{\pm\frac{1}{1},\pm\frac{2}{1},\pm\frac{4}{1}\right\}$$

Y probamos estos valores evaluando en p(x) uno a uno:

$$p(1) = 1^{3} - 3 \cdot 1^{2} - 8 \cdot 1 + 4 = -6$$

$$p(2) = 2^{3} - 3 \cdot 2^{2} - 8 \cdot 2 + 4 = -16$$

$$p(4) = 4^{3} - 3 \cdot 4^{2} - 8 \cdot 4 + 4 = -12$$

$$p(-1) = (-1)^{3} - 3 \cdot (-1)^{2} - 8 \cdot (-1) + 4 = 8$$

$$p(-2) = (-2)^{3} - 3 \cdot (-2)^{2} - 8 \cdot (-2) + 4 = 0$$

$$p(-4) = (-4)^{3} - 3 \cdot (-4)^{2} - 8 \cdot (-4) + 4 = -76$$

Y hemos encontrado una raíz racional de p(x).

1.14. Números complejos

Los números complejos se documentaron por primera vez en el siglo XVI cuando Cardano encontró una solución en radicales para la cúbica. Desde entonces ha sido objeto de estudio debido a su utilización en Electromagnetismo, Mecánica cuántica, acústica, electroencefalografía, resonancias magnéticas, etc.

Ahora nos corresponde estudiar las bases de este interesante objeto matemático.

Definición 1.15

Conjunto de números complejos

El conjunto de los números complejos se define por:

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

en donde $i^2 = -1$.

Las operaciones entre números complejos estás definidas polinomialmente. Aunque esto ya lo hemos visto, es importante nota que la adición de la unidad imaginaria i propocionará diferencias notables.

Proposición 1.3

Operaciones en $\mathbb C$

Las operaciones algebraicas en $\mathbb C$ son la suma, el producto, la conjugación y la inversión. Sean $a,b,c,d\in\mathbb R$, luego se tiene que:

I) La suma:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

II) El producto:

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

III) La conjugación:

$$\overline{(a+bi)} = (a-bi)$$

IV) La inversión:

$$\frac{1}{a+bi} =$$

1.15. Ejercicios

Lógica

1. Calcule la tabla de verdad de la siguiente proposición:

$$[p \lor (\overline{p} \land q)] \Rightarrow q$$

2. Usando tablas de verdad, pruebe que la siguiente proposición es una tautología:

$$(p \Rightarrow q) \iff (\overline{q} \Rightarrow \overline{p})$$

3. Usando tablas de verdad, pruebe que la siguiente proposición es una contingencia:

$$(p \vee q) \Rightarrow (\overline{p} \wedge \overline{q})$$

Conjuntos

1. Sean los conjuntos $A = \{1, 3, 5, 7\}$, $B = \{1, 3, 5, 9\}$, $C = \{9\}$. Determine si son verdaderas o falsas las siguiente contenciones:

a)
$$A \subset B$$

d)
$$B \subset C$$

b)
$$B \subset A$$

e)
$$C \subset A$$

c)
$$A \subset C$$

f)
$$C \subset B$$

 $2.\,$ Determine la cardinalidad de los siguientes conjuntos:

a)
$$\{-1,1,2\}$$

b)
$$\left\{\frac{3}{9}, \frac{1}{3}, \frac{1}{9}\right\}$$

c)
$$\left\{2, 3, 5, 7, -\frac{4}{2}, \frac{9}{3}\right\}$$

Polinomios

1.

2.

3. Factorice y simplifique la siguiente expresión:

4.

Números complejos

Geometría Analítica

2.1. El plano Euclideano

Trigonometría y Relación de Orden

- 3.1. Trigonometría en el Triángulo
- 3.2. Trigonometría en el plano
- 3.3. Identidades Trigonometricas
- 3.4. Forma polar de un número complejo

Funciones y Límites

- 4.1. Funciones reales
- 4.2. Funciones polinomiales, racionales y raíces
- 4.3. Funciones Trigonométricas y sus inversas
- 4.4. Función exponencial y logaritmos
- 4.5. Límites y Continuidad
- 4.6. Álgebra de Límites
- 4.7. Cambios de variable
- 4.8. Ejercicios

Índice alfabético

Cardinalidad, 15 Polinomio, 17 Cuantificador lógico, 8 Paíz Raíz de un polinomio, 21 Función proposicional, 8 Triángulo Números complejos, 23 de Pascal, 18