The following table is from "Note on the spectral lines of hydrogen" by J. J. Balmer dated 1885. Numerical values are wavelengths in units of 10^{-10} meter.

Investigator	H_{α}	H_{β}	H_{γ}	H_{δ}	H_{ϵ}	H_{ζ}	H_{η}	H_{ϑ}	H_{ι}
Van der Willigen	6565.6	4863.94	4342.80	4103.8	_	_	_	_	_
Angstrom	6562.10	4860.74	4340.10	4101.2	_	_	_	_	_
Mendenhall	6561.62	4860.16	_	_	_	_	_	_	_
Mascart	6560.7	4859.8	_	_	_	_	_	_	_
Ditscheiner	6559.5	4859.74	4338.60	4100.0	_	_	_	_	_
Huggins	_	_	_	_	_	3887.5	3834	3795	3767.5
Vogel	_	_	_	_	3969	3887	3834	3795	3769^{\dagger}

(†The value given in the paper is 6769 which is an obvious typo.)

Balmer discovered the following formula for fitting the data.

$$\lambda = \frac{m^2}{m^2 - 2^2} \times 3645.6 \times 10^{-10} \,\text{meter}$$

Symbol λ is spectral line wavelength and parameter m is from the following table.

Let β be the model coefficient for λ . Using linear regression and the above data we obtain

$$\beta = 3645.3 \times 10^{-10} \, \text{meter}$$

The currently accepted value is

$$\beta = \frac{4}{R_H} = 3647.1 \times 10^{-10} \,\mathrm{meter}$$

where R_H is the Rydberg constant for hydrogen

$$R_H = 1.09677576 \times 10^7 \,\mathrm{meter}^{-1}$$

Balmer's coefficient from 1885 is within 0.04% of the modern value.

$$100 \times \frac{4/R_H - 3.6456}{4/R_H} = 0.04$$