Q: Moment of inertia is the
 a) Second moment of area b) Second moment of mass c) Second moment of force d) All of these
Q: Moment of inertia of a circular section about an axis perpendicular to the section is
a) $\pi d^3/16$ b) $\pi d^3/32$ c) $\pi d^4/32$ d) $\pi d^4/64$
Q : The centre of gravity of hemisphere lies at a distance offrom its base measured along the vertical radius.
a) 3r/8b) 3/8rc) 8r/3d) 8/3r
Q : The moment of inertia of a square of side a about its base is
 a) a⁴/3 b) a⁴/12 c) a³/3 d) a⁴/16
Q: Mass moment of inertia of a thin rod about its one end isthe mass moment of inertia of the same rod about its mid point
a) Same asb) Twicec) Thriced) Four times
Q: Moment of Inertia of a solid sphere of mass m and radius r is
a) 2mr ² /3 b) 2mr ² /5 c) mr ² d) mr ² /2
Q: Moment of inertia of triangular section of base b and height h about an axis passes through its

centre of gravity and parallel to the base is

a) bh³/4
 b) bh³/8

bh³/36 ent of inertia of a thin disc of mass m and radius r, about an axis through its centre of gravity
ent of mercia of a tillifuist of mass in and radius i, about an axis through its tentre of gravity
pendicular to the plane of the disc is
mr²/2
mr²/4
mr²/6
mr²/8
tatement is wrong:
tre of gravity of uniform rod is at its middle point
tre of gravity of a triangle lies at a point where three medians intersect
tre of gravity of a semicircle is at its centre.
tre of gravity of rectangle is at the point where diagonals meet each other.
centroid of the thin wire made section we useinstead of area
Volume
Length
Density
thickness
roid of a composite section can be found by
Integration method
Moment method
All of the above
None of the above
noment of inertia of a solid cylinder of mass m, radius r and length I about the longitudinal
polar axis is
mr²/2
mr²/4
mr²/6
mr²/8
centre of gravity of a semicircle lamina lies at a distance of from its base
ed along the vertical radius
3r/8
4r/3π
8r/3
3r/4π

b)	$\pi d^3/32$
c)	πd ⁴ /32
d)	πd ⁴ /64
Q : the	centre of gravity of a right circular cone of diameter (d) and height (h) lies at a distance of
	from the base measured along the vertical radius
a)	h/2
b)	h/3
c)	h/4
d)	h/6
Q : the	moment of inertia of a square of side a about its diagonal is
a)	a²/8
b)	a ³ /12
c)	a ⁴ /12
d)	a⁴/16
Q: Mor	ment of Inertia of a thin spherical shell of mass m and radius r about its diameter is
a)	mr²/3
b)	2mr ² /3
c)	2mr ² /5
d)	3mr ² /5
Q: Mor	ment of inertia of a triangular section of base b and height h about an axis passing through its
vertex to the	and parallel to its base isthan that passing through its Centre of gravity and parallel base.
a)	Nine times
-	Six times
c)	Four times
d)	Two times
	moment of inertia of a thin rod of mass m and length I about an axis through its centre of and perpendicular to its length is
Siavicy	and perpendicular to its length is
a)	$ml^2/4$
b)	ml ² /6
c)	ml ² /8
d)	ml ² /12
Q: Which statement is correct:	
a)	Moment of inertia is the second moment of mass or area
h)	Centre of gravity of right circular solid cone lies at a distance of h/6 from its hase measured

a) $\pi d^3/16$

along vertical axis

- c) Centre of gravity of a circle will be a point on circumference
- d) All of the above are correct

Q: Which statement is correct.

- a) Moment of inertia is the 2nd moment.
- b) Centre of gravity can be different from center of mass in some cases.
- c) Centroid of rectangle is the point where diagonals meet with each other
- d) All of the above