Gebruikershandleiding CO₂-Calculator

Robbin de Greef, Mik Hage June 11, 2025

Inleiding

Deze handleiding is bedoeld voor gebruikers van de CO₂-calculator die ontwikkeld is voor Makita. De tool stelt gebruikers in staat om op een overzichtelijke manier inzicht te krijgen in de CO₂-uitstoot van verschillende energieverbruikers binnen de organisatie. De calculator is ontwikkeld met behulp van het Streamlit-framework en werkt op basis van Excel-bestanden waarin verbruiksdata zijn gespecificeerd.

1 Doel van de tool

Het doel van de CO₂-calculator is om automatisch en overzichtelijk de CO₂-uitstoot te berekenen op basis van energieverbruik. De tool maakt onderscheid tussen emissies uit:

- Scope 1: directe emissies door verbranding van brandstoffen, bijvoorbeeld in voertuigen of verwarmingsketels;
- Scope 2: indirecte emissies door het gebruik van aangekochte energie, zoals elektriciteit of gas.

2 Benodigd Excelbestand

De tool werkt op basis van een Excelbestand met meerdere tabbladen. Elk tabblad vertegenwoordigt een aparte groep energieverbruikers, zoals voertuigen, HVAC-installaties of andere apparaten. Elk type tabblad moet voldoen aan een specifieke kolomstructuur, zodat de tool de gegevens correct kan inlezen en verwerken.

2.1 Voor voertuigen

Een tabblad dat voertuigen bevat moet ten minste de volgende kolommen bevatten:

- Brandstof het type brandstof, zoals Diesel, Benzine, Elektrisch, of Hybride
- Eenheid de eenheid van het verbruik, meestal L (liters) of kWh
- Brandstof p/j het jaarlijkse brandstofverbruik per voertuiggroep
- Aantal het aantal voertuigen in de betreffende groep

Kolommen als Merk en Type zijn niet noodzakelijk voor de berekening, maar kunnen wel gebruikt worden voor informatieve overzichten in de visualisaties.

Voor een visueel voorbeeld van de vereiste structuur verwijzen we naar Figuur 1, waarin een correct opgebouwd Excel-tabblad wordt weergegeven.

Omschrijvi	Merk	Туре	Aantal	Bouwjaar	Vermogen	Eenheid	Draaiuren p/j
Heftruck	Jungheinri	EFG Dhac1	1	2009	4.7	kWh	2008
Pallettruck	Jungheinri	EJE116	2	2009	0.3	kWh	2008
Pallettruck	Jungheinri	EJE116	1	2007	0.3	kWh	2008
Reachtruc	Jungheinri	ETV216-10	1	2012	3.19	kWh	2008
Reachtruc	Jungheinri	ETV216-D2	1	2017	3.19	kWh	2008
Palletwage	Jungheinri	EJE116	1	2017	0.3	kWh	2008
Pallettruck	Jungheinri	ERE120-54	1	2018	0.4	kWh	2008
Palletwage	Jungheinri	ERE120-11	1	2018	0.4	kWh	2008
Reachtruc	Jungheinri	ETV216-10	1	2019	3.19	kWh	2008
Pallettruck	Toyota	LWE160	2	2020	0.3	kWh	2008
Pallettruck	Toyota	LPE200	1	2020	0.46	kWh	2008
Reachtruc	Toyota	RRE 160H	1	2021	3.71	kWh	2008
Meerijtruc	Jungheinri	ERE220 JH	1	2009	0.36	kWh	2008
Stapelaar	Jungheinri	ERC 212 25	1	2021	0.63	kWh	2008
Pallettruck	Jungheinri	EJE116	1	2021	0.3	kWh	2008
Pallettruck	Jungheinri	ERE120	6	2021	0.4	kWh	2008
Reachtruc	Jungheinri	ETV216-10	1	2021	3.19	kWh	2008
Palletwage	Jungheinri	ERE225	1	2021	0.36	kWh	2008
Reachtruc	Jungheinri	ETV216-10	1	2022	3.19	kWh	2008
Palletwage	Jungheinri	ERE120-11	1	2022	0.4	kWh	2008

Figure 1: Voorbeeld van een correct opgebouwd Excel-tabblad (Intern transport) voor voertuigen met vereiste kolommen geel ingekleurd.

2.2 Voor installaties of apparaten

Een tabblad dat installaties of apparaten bevat (zoals HVAC, machines of verlichting) moet de volgende kolommen bevatten:

- Aantal het aantal apparaten van hetzelfde type
- Vermogen het elektrisch of thermisch vermogen in kW per apparaat
- Draaiuren p/j het verwachte aantal gebruiksuren per jaar
- Eenheid de eenheid waarin het energieverbruik wordt uitgedrukt, zoals kWh, m³ of L

Deze kolommen zijn essentieel voor een correcte berekening van het energieverbruik per onderdeel. De tool vermenigvuldigt het aantal apparaten met hun vermogen en draaiuren, en bepaalt vervolgens de CO₂-uitstoot op basis van de opgegeven eenheid en bijbehorende emissiefactor.

Figuur 2 toont een voorbeeld van een correct opgebouwd tabblad. De geel gemarkeerde kolommen zijn verplicht om opgenomen te worden in het bestand.

Figure 2: Voorbeeld van een Excel-tabblad (HVAC) voor apparaten met geel gemarkeerde verplichte kolommen.

3 Functionaliteiten van de tool

De tool bestaat uit drie hoofdonderdelen, te bedienen via de zijbalk:

1. Opties – Instellingen emissiefactoren

Op deze pagina kunnen gebruikers de emissiefactoren instellen die gebruikt worden voor het berekenen van de CO₂-footprint. Er zijn twee manieren om dit te doen:

- Handmatig invoeren: de gebruiker kan zelf voor elke brandstof of energievorm (bijv. kWh grijs, m³ groen, benzine, diesel, enzovoort) de bijbehorende emissiefactor ingeven in kilogram CO₂ per eenheid.
- Automatisch inladen via Excel: er kan een Excelbestand worden geüpload dat is gebaseerd op de openbare emissiefactoren van de website co2emissiefactoren.nl. Deze emissiefactoren zijn officieel erkend en voldoen aan de Europese regelgeving voor CO₂-rapportages. De tool herkent automatisch de juiste rijen en vult de bijbehorende factoren in voor elektriciteit, gas en brandstoffen.

In Figuur 3 is een voorbeeld te zien van de *Opties*-pagina in de tool, waarin zowel handmatige invoer als automatische import mogelijk is.

Figure 3: Voorbeeld van de Opties-pagina waar emissiefactoren handmatig kunnen worden ingevoerd of via Excel automatisch worden geladen.

2. CO₂ Calculator – Berekeningen

Via deze pagina kunnen gebruikers het verbruiksbestand uploaden. De tool voert per tabblad berekeningen uit en toont voor elk onderdeel:

- Onderdeelnaam
- Verbruikswaarde
- Emissiefactor
- CO₂-footprint

De totale CO₂-uitstoot wordt onderaan weergegeven en kan worden geëxporteerd naar een Excelbestand.

Figure 4: Voorbeeldoutput van de CO_2 -calculator, met verbruiksgegevens, toegepaste emissiefactoren en de berekende totale CO_2 -footprint.

3. Visualisaties – Analyse

De laatste pagina van de tool biedt visuele inzichten in de verdeling van energieverbruik en CO₂-uitstoot per groep of tabblad. Dit maakt het mogelijk om snel te zien welke onderdelen de grootste bijdrage leveren aan de totale footprint. De weergegeven visualisaties omvatten:

- De **Top 5 verbruikers per tabblad**, bijvoorbeeld de vijf HVAC-installaties met het hoogste jaarverbruik;
- Het totaalverbruik per groep, berekend over alle apparaten binnen een tabblad;
- De totale CO₂-footprint per tabblad, op basis van het totale verbruik en de toegepaste emissiefactoren;
- Cirkeldiagrammen waarin de verhoudingen tussen verschillende groepen of afdelingen visueel worden weergegeven.

Tabblad: HVAC

Top 5 hoogste verbruik per apparaat

	Merk	Туре	Verbruik per apparaat
0	Remeha	Quinta PRO 115	104,028.8
5	Remeha	Quinta PRO 115	98,739.2
1	Remeha	Quinta 115	93,240
2	Remeha	Quinta 115	93,240
7	Remeha	Quinta PRO 115	91,025.2

Figure 5: Voorbeeld van een tabel met de top 5 hoogste verbruikers binnen een HVAC-tabblad.

Verhouding totaal verbruik per tabblad 🖘

Figure 6: Voorbeeld van een cirkeldiagram met de verdeling van CO_2 -uitstoot per groep.

4 CO₂-intensiteit visualisaties

In de tab CO_2 -Intensiteit Trend kun je een aparte Excel uploaden om de uitstootprestaties van je organisatie over meerdere jaren te analyseren. Dit onderdeel is bedoeld om te laten zien hoe efficiënt je organisatie omgaat met CO_2 -uitstoot ten opzichte van omzet.

Benodigd Excelbestand

Het Excelbestand moet ten minste de volgende drie kolommen bevatten:

- Jaar bijvoorbeeld 2021, 2022, 2023...
- Omzet (in miljoenen euro's) totale jaaromzet van de organisatie
- CO₂-Footprint (in ton) de totale jaarlijkse uitstoot

C	L	~	$: \times \checkmark fx \lor $	Co2-Footprint (ton)	
4	Α	В	С	D	
1	Jaar	Omzet	Co2-Footprint (ton)	Co2-Footprint (kg)	
2	2024	85.21	322.86283	322862.83	
3	2023	89.64	335.7773432	335777.3432	
4	2022	95.5	339.1351166	339135.1166	
5	2021	89.14	342.5264678	342526.4678	
6	2020	84.68	345.9517325	345951.7325	

Figure 7: Voorbeeld van de benodigde kolommen in het Excelbestand

Gevisualiseerde gegevens

Zodra het bestand correct is ingeladen, worden de volgende inzichten weergegeven:

1. CO₂-Intensiteit Trend (lijn- en puntgrafiek)

Deze grafiek toont hoeveel ton CO_2 er jaarlijks wordt uitgestoten per miljoen euro omzet. Dit geeft een indicatie van de duurzaamheidsefficiëntie van de organisatie. Interpretatie: Hoe lager deze waarde, hoe efficiënter het bedrijf presteert qua uitstoot per verdiende euro.

2. Omzet versus CO₂-Footprint (scatterplot)

Een spreidingsdiagram waarin per jaar de omzet wordt afgezet tegen de absolute CO₂-uitstoot. Dit maakt het mogelijk om uitzonderlijke jaren of trends visueel te herkennen.

3. Overzichtstabel

Een tabel met alle ingevoerde gegevens, inclusief berekende CO₂-intensiteit (ton per miljoen euro omzet), geordend op jaartal.

4. Kerncijfers

De tool toont automatisch:

- De huidige CO₂-intensiteit
- De startwaarde
- De procentuele verandering sinds het beginjaar
- Het jaar met de laagste (beste) intensiteit

5. Interpretatiebericht

Op basis van de trend wordt automatisch feedback gegeven, zoals "je intensiteit is gedaald" of "er is verbetering nodig".

De resultaten kunnen worden geëxporteerd als Excelbestand via de downloadknop onderaan de pagina.

Figure 8: Voorbeeld van een CO₂-Intensiteit Trend Analyse op basis van fictieve gegevens

5 Gebruik van de tool – Stappenplan

- 1. Ga naar de pagina **Opties** en upload een Excelbestand met emissiefactoren (rij 5 bevat de kolomkoppen).
- 2. Controleer of de emissiefactoren correct zijn ingelezen of pas ze handmatig aan.
- 3. Ga naar de pagina CO₂ Calculator en upload het Excelbestand met verbruiksdata.
- 4. Controleer of alle tabbladen correct zijn verwerkt. Indien nodig, geef aan of de energiebron groen of grijs is, of kies de juiste brandstof.
- 5. Download de berekende resultaten via de knop *Download resultaten*.
- 6. Ga naar de pagina **Visualisaties** om de topverbruikers en -emissies per tabblad te analyseren.

6 Interpretatie van resultaten

De berekende CO₂-footprint wordt uitgedrukt in kilogrammen CO₂-equivalenten per jaar. Deze waarde geeft inzicht in de klimaateffecten van energieverbruik en is een eerste stap richting verduurzaming. De uitsplitsing per onderdeel helpt bij het identificeren van de grootste emissiebronnen binnen de organisatie.

7 Tips en opmerkingen

- Zorg dat het Excelbestand geen lege rijen bevat boven de kolomnamen.
- Verwijder onvolledige tabbladen of tabbladen zonder relevante kolommen.
- Als een tabblad niet wordt herkend, verschijnt er een waarschuwing. Controleer dan of de kolomnamen exact kloppen.

Contact

Voor ondersteuning of feedback over de tool kan contact worden opgenomen met het projectteam via: mikhage1@gmail.com of robbinschool1@gmail.com

Bronnen

- co2emissiefactoren.nl –Emissiefactoren voor Nederland
- $\bullet\,$ Makita Nederland interne dataset (2025)