

Распознавание изображений из небольшого набора данных (Caltech-101) с помощью дообучения (fine-tuning) заранее обученных глубоких нейронных сетей (VGGNet, AlexNet)

> Выполнили: Студенты 16 МАГ ИАД Волкович Полина Павлова Елена

Задача

Распознать изображения из базы данных Caltech101 с помощью дообучения заранее обученных глубоких сетей AlexNet и VGG16.

Архитектура сети AlexNet

Архитектура сети VGG16

VGGNet Softmax Input Conv Conv Conv Conv Conv Conv Pool Conv Pool Pool Pool Pool Layer1 Layer3 Layer4 Layer6 Layer7 Layer2 Layer5

Fine-tuning

- 1. Подгружаем предобученную сеть.
- 2. "Замораживаем" все слои кроме последних трех.
- 3. Уменьшаем скорость обучения на "замороженных" слоях.
- 4. Заменяем последние три слоя исходной сети на Fully Connected, SoftMax и Classification Output слои.
- 5. Устанавливаем параметры нового Fully Connected слоя согласно нашим данным.

В качестве алгоритма оптимизации используется стохастический градиентный спуск.

База данных Caltech101

База данных содержит изображения объектов, принадлежащих 101 категории. Каждая категория содержит от 40 до 800 изображений. Большинство категорий имеет около 50 изображений. Примерный размер изображений - 300х200 пикселей. Примеры категорий:

- Accordion
- Brain
- Emu
- Airplanes
- Crab
- Hedgehog и другие

Источник: http://www.vision.caltech.edu/lmage Datasets/Caltech101/

Эксперименты

Первый эксперимент был проведен на GPU на трех эпохах на сети AlexNet. Результат: Accuracy 89%

Эксперименты. AlexNet

Nautilus из Caltech101

Дообученная сеть

Заранее обученная сеть

nautilus

emu

Gong

Hare

Эксперименты. AlexNet

Дообученная сеть

Motorbikes

lobster

Заранее обученная сеть

Mountain bike

Knot

Эксперименты. AlexNet

Второй эксперимент был проведен на CPU на одной эпохе на сети AlexNet. Т.к. CPU не выдержал и вылетела ошибка, процесс был остановлен на 350 итерации.

Эксперименты. VGG16

Третий эксперимент был проведен на GPU на двух эпохах на сети VGG16. Результат: Ассигасу – 91%

Эксперименты. VGG16

Дообученная сеть

 $\mathsf{BACKGROUND}_\mathsf{G}\mathsf{oogle}$

emu

Заранее обученная сеть

Valley

Ostrich

Эксперименты. VGG16

Дообученная сеть

Motorbikes

lobster

Заранее обученная сеть

Moped

Rock crab

Выводы

- 1. Были дообучены глубокие нейронные сети: AlexNet и VGG16.
- 2. Были проведены эксперименты по распознаванию изображений на дообученных сетях.
- 3. Были проведены сравнения на качество распознавания изображений на заранее обученных сетях и дообученных сетях.
- 4. Дообученная сеть VGG16 показала лучшие результаты, но AlexNet отстал примерно на 3%.
- 5. Был сделан вывод, что для успешного распознавания изображений из выбранной базы данных (в нашем случае Caltech101) требуется дообучение глубокой нейронной сети.

Спасибо за внимание!