12.1 הכנסות במ"ש של טורי חזקות

5202 בפברואר 71

משפטים

0 < r < R לכל $[x_0 - r, x_0 + r]$ מתכנס במ"ש ב $R \in \mathbb{R}$ לכל התכנסות טור חזקות עם רדיוס התכנסות .1

לכל $[x_0-r,x_0+r]$ אזי הי הסגור במ"ש בקטע הסגור התכנסות אזי $\sum\limits_{k=0}^{\infty}a_k\left(x-x_0\right)^k$ מתכנס במ"ש בקטע הסגור $\sum\limits_{k=0}^{\infty}a_k\left(x-x_0\right)^k$ לכל היי $0< R\in\mathbb{R}$

 $\left|a_k\left(x-x_0
ight)^k
ight| \leq \left|a_kr^k
ight|$ מתקיים $x \in \left[x_0-r,x_0+r
ight], \quad k \in \mathbb{Z}_{\geq 0}$ מתכנס. לכל $\sum_{k=0}^\infty \left|a_kr^k
ight|$ מתקיים $x \in \left[x_0-r,x_0+r
ight],$ ובפרט במ"ש. $\left[x_0-r,x_0+r
ight]$, ובפרט במ"ש.

$x \in \mathbb{R}$ על טור חזקות המתכנס לכל .2

יהי $(R=\infty)$ $x\in\mathbb{R}$ אזי: המתכנס לכל חזקות חזקות ה $\sum_{k=0}^{\infty}a_{k}\left(x-x_{0}\right)^{k}$ יהי

- $r \in \mathbb{R}^+$ לכל וכל $[x_0-r,x_0+r]$ לכל קטע המיש בכל מתכנס ממיש .1
- k>N לכל $a_k=0$ כך ש $N\in\mathbb{N}$ לכל אם"ם במ"ש ב \mathbb{R} לכל .2

3. התכנסות של טור פונקציות רציף בקטע חצי פתוח גוררת התכנסות במ"ש בקטע סגור

 $\sum\limits_{n=0}^\infty f_n\left(b
ight)$ אזי הטור הטור במ"ש בקטע במ"ש בקטע היי $\sum\limits_{n=0}^\infty f_n$ לכל [a,b] לכל [a,b] לכל [a,b] אוי הטור $\sum\limits_{n=0}^\infty f_n\left(x
ight)$ מתכנס במ"ש ב $\sum\limits_{n=0}^\infty f_n\left(x
ight)$ מתכנס במ"ש ב $\sum\limits_{n=0}^\infty f_n\left(x
ight)$

הוכחה

נבחין שמתנאי קושי קיים f_k . $\left|\sum\limits_{k=n}^m f_k\left(x\right)\right|<rac{arepsilon}{2}$ מקיים $x\in[a,b)$ ולכל ולכל m,n>N שלכל איי נפעיל איי נפעיל אריתמטיקה של רציפות ונקבל

$$\left| \sum_{k=n}^{m} f_k \left(b \right) \right| \le \frac{\varepsilon}{2} < \varepsilon$$

. כנדרש, ק[a,b] מתכנס. אזי מתכנס אזי מתכנס ב[a,b] וגם ב-[a,b] מתכנס. אזי טור הפונקציות מתכנס ב[a,b] מתכנס. אזי טור הפונקציות מתכנס ב

מסקנה

אם טור חזקות עם רדיוס $R\in\mathbb{R}^{++}$ אינו מתכנס בR, אז אינו מתכנס במ"ש ב x_0 , אינו מתכנס ב x_0 אינו מתכנס ב x_0 , אינו מתכנס ב x_0

$[x_0,x_0+R]$ התכנסות במ"ש בקצה הרדיוס גוררת התכנסות בקצה הרדיוס

 $[x_0,x_0+R]$ יהי $\sum_{k=0}^\infty a_k \left(x-x_0
ight)^k$ אזי הטור חזקות עם רדיוס התכנסות $0< R\in \mathbb{R}$ המתכנס עבור היי $\sum_{k=0}^\infty a_k \left(x-x_0
ight)^k$ אזי הטור חזקות עם רדיוס התכנסות $0< R\in \mathbb{R}$ המתכנס עבור $\sum_{k=0}^\infty a_k \left(x-x_0
ight)^k$ (יהי $\sum_{k=0}^\infty a_k \left(x-x_0
ight)^k$ טור חזקות עם רדיוס התכנסות $1< R\in \mathbb{R}$ המתכנס עבור

מסקנה: טור חזקות מתכנס במ"ש בכל תת קטע סגור של תחום ההתכנסות הנקודתית שלו