

Алферовская Зимняя Школа 2022

Квази-1D наноструктуры для интегральной нанофотоники

Участники:

Винецкая Полина, Зедоми Тамара, Шаповалов Павел, Снегирёв Андрей *Куратор проекта* - Кузнецов Алексей

Актуальность

Цель:

Изучение и анализ оптических параметров ННК на основе GaP

Основные задачи:

- Исследовать влияние латеральных размеров на волноводные свойства ННК GaP методами численного моделирования и экспериментально
- Сравнить картину люминесценции ННК GaAs с гетероструктурированными ННК на основе GaP с помощью микроспектроскопии ФЛ и численного расчета

Подготовка образцов для исследования

Исследование волноводного эффекта в ННК GaP

532 нм

632 нм

Исследование волноводного эффекта в ННК GaP

Длина волны	Отсечка
532 нм	98-111 нм
632 нм	127-143 нм

Расчет интенсивности электрического поля в поперечном сечении ННК

Расчет интенсивности электрического поля в поперечном сечении ННК

Эффективный показатель преломления фундаментальной моды

Моделирование распространения фундаментальной моды

Сравнительный анализ фотолюминесценции гетероструктурированных ННК GaP/GaPAs и ННК GaAs

Измерительное оборудование

Спектры фотолюминесценции гетероструктурированных ННК GaP/GaPAs и ННК GaAs

Распространение сигнала ФЛ по ННК GaP/GaPAs

Диполи ориентированы параллельно оси <i>Y</i>	Диполи ориентированы параллельно оси Z
Диполи ориентированы параллельно оси X	

Карты интегральной интенсивности ФЛ ННК GaAs

Карты интегральной интенсивности ФЛ ННК GaP/GaPAs

Карты интегральной интенсивности ФЛ ННК GaP/GaPAs

Выводы

- ННК GaP можно использовать в качестве волноводов для фабрикации интегральных фотонных схем.
- Основываясь на результатах эксперимента и численного моделирования асимметрия системы, возникающая в результате наличия подложки, вызывает делокализацию фундаментальной моды на 111 и 143 нм при длине волны 532 и 632 нм, соответственно.
- На основании полученных спектров ФЛ, измеренных на концах ННК GaP/GaPAs установлено, что капля галлия выступает как эффективный рефлектор.
- С помощью карт интегральной интенсивности ФЛ было обнаружено, что сигнал полученный на ННК GaP/GaPAs модулирован в отличии от ННК GaAs, что говорит о том, что ННК GaP/GaPAs выступает в роли резонатора Фабри-Перо.

Спасибо за внимание!