Machine Learning Regression

Algorithm Validation:

1. SVM (Support Vector Machine)

Support Vector Machine								
Serial	Hyper	Linear	RBF(Non Linear)	Poly	Sigmoid			
number	parameter	(r2 value)	r2 value	(r2 value)	(r2 value)			
1	C1.0	0.8950	-0.0574	-0.0571	-0.0572			
2	C10	-2.4370	-0.0568	-0.0537	-0.0547			
3	C100	-357.0790	-0.0507	-0.0198	-0.030453			
4	C1000	-36014.0206	0.0068	0.2662	0.1851			
5	C1500	not checked	0.0378	0.3875	0.2949			
6	C3000	not checked	0.1232	0.6370	0.59136			
7	C6000	not checked	0.2452	0.8226	0.79725			
8	C8000	not checked	0.3150	0.8286	0.83652			

The Kernel type Linear R² value is 0.8950. This model looks good (1st choice)

The Kernel type Sigmoid R² value is 0.836(2nd choice)

2. Decision Tree

Decision Tree								
Sno	Criterion	Splitter	Max	R Value				
			Features					
1	squared_error	best	log2	0.662				
2	squared_error	best	sqrt	0.424				
3	friedman_mse	best	log2	-0.443				
4	friedman_mse	best	sqrt	0.202				
5	friedman_mse	random	sqrt	0.823				
6	friedman_mse	random	log2	0.673				
7	absolute_error	best	log2	0.702				
8	absolute_error	random	log2	0.246				
9	absolute_error	best	sqrt	0.414				
10	absolute_error	random	sqrt	0.210				
11	poisson	best	sqrt	0.773				
12	poisson	best	log2	0.893				
13	poisson	random	log2	0.676				
14	poisson	random	sqrt	0.793				
15	squared_error	random	log2	0.709				
16	squared_error	random	sqrt	0.483				

The Decision tree algorithm gives a better R² value (0.893) when using Criterion =poisson, splitter=best and max_features=log2