latex-math Macros

compiled: 2021-10-18

Latex macros like $\frac{\#1}{\#2}$ with arguments are displayed as $\frac{\#1}{\#2}$. Note that macro declarations may only span a single line to be displayed correctly in the below tables.

Contents

basic-math	2
basic-ml	4
ml-ensembles	7
ml-eval	8
ml-feature-sel	10
ml-gp	11
ml-hpo	12
ml-interpretable	13
ml-nn	14
ml-survival	15
ml-svm	16
ml-trees	17
probmodel	18

${\bf basic\text{-}math}$

Macro	Notation	Comment
\N	IN	N, naturals
\Z	\mathbb{Z}	Z, integers
\ Q	\mathbb{Q}	Q, rationals
\R	${\mathbb R}$	R, reals
\C	${f C}$	C, complex
\continuous	$\mathcal C$	C, space of continuous functions
\M	\mathcal{M}	machine numbers
\epsm	ϵ_m	maximum error
\setzo	$\{0, 1\}$	set $0, 1$
\star{setmp}	$\{-1, +1\}$	set -1, 1
\unitint	[0, 1]	unit interval
\xt	$ ilde{ ilde{x}}$	x tilde
\argmax	$\operatorname{arg} \max$	argmax
\argmin	$rg \min$	argmin
\argminlim	arg min	argmax with limits
\argmaxlim	$\operatorname{arg} \max$	argmin with limits
\sign	sign	sign, signum
\I	I	I, indicator
\order	\mathcal{O}	O, order
\pd	$\frac{\partial \#1}{\partial \#2}$	partial derivative
\sumin	$\sum_{i=1}^{n'}$	summation from $i=1$ to n
\sumim	$\sum_{i=1}^{m}$	summation from $i=1$ to m
\sumjp	$\begin{array}{l} \frac{\partial\#1}{\partial\#2} \\ \frac{\pi}{\partial\#2} \\ \sum_{i=1}^{n} \\ \sum_{j=1}^{m} \\ \sum_{i=1}^{p} \\ \sum_{j=1}^{k} \\ \sum_{j=1}^{q} \\ j=1 \end{array}$	summation from $j=1$ to p
\sumik	$\sum_{i=1}^{k}$	summation from $i=1$ to k
\sumkg	$\sum_{k=1}^{g}$	summation from k=1 to g
\sumjg	$\sum_{j=1}^{\infty}$	summation from j=1 to g
\meanin	$\frac{1}{n} \sum_{i=1}^{n}$	mean from i=1 to n
\meankg	$\frac{1}{g} \sum_{k=1}^{g}$	mean from $k=1$ to g
\prodin	$\prod_{i=1}$	product from i=1 to n
\prodkg	$\prod_{k=1}^{g}$	product from $k=1$ to g
\prodjp	$\prod_{j=1}^{k=1}$	product from $j=1$ to p
\one	1	1, unitvector
\zero	0	0-vector
\id	I	I, identity
\diag	diag	diag, diagonal
\trace	tr	tr, trace
\spn	span	span
\scp	$\langle #1, #2 \rangle$	<.,.>, scalarproduct
\mat	(#1)	short pmatrix command
\Amat	A	matrix A
\Deltab	Δ	error term for vectors
\ P	${\mathbb P}$	P, probability

∖ E	${ m I}\!{ m E}$	E, expectation
\var	Var	Var, variance
\cov	Cov	Cov, covariance
\corr	Corr	Corr, correlation
\normal	\mathcal{N}	N of the normal distribution
\iid	$\overset{i.i.d}{\sim}$	dist with i.i.d superscript
\distas	$\overset{\#1}{\sim}$	is distributed as

${\bf basic\text{-}ml}$

Macro	Notation	Comment
\Xspace	\mathcal{X}	X, input space
\Yspace	\mathcal{Y}	Y, output space
\nset	$\{1,\ldots,n\}$	set from 1 to n
\pset	$\{1,\ldots,p\}$	set from 1 to p
\gset	$\{1,\ldots,g\}$	set from 1 to g
\Pxy	\mathbb{P}_{xy}	P_xy
\Exy	\mathbb{E}_{xy}	E_xy: Expectation over random variables xy
/xv	X	vector x (bold)
\xtil	$ ilde{\mathbf{x}}$	vector x-tilde (bold)
\yv	y	vector y (bold)
\xy	(\mathbf{x}, y)	observation (x, y)
\xvec	$(x_1,\ldots,x_p)^T$	(x1,, xp)
\Xmat	X	Design matrix
\allDatasets	\mathbb{D}	The set of all datasets
\allDatasetsn	\mathbb{D}_n	The set of all datasets of size n
\D	${\cal D}$	D, data
\Dn	${\cal D}_n$	D_n, data of size n
\Dtrain	$\mathcal{D}_{ ext{train}}$	D_train, training set
\Dtest	$\mathcal{D}_{ ext{test}}$	D_test, test set
\xyi	$(\mathbf{x}^{(\#1)}, y^{(\#1)})$	(x^i, y^i) , i-th observation
\Dset	$((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)}))$	$\{(x1,y1)\},, (xn,yn)\}, data$
\defAllDatasetsn	$ \begin{array}{l} (\mathbf{x}^{(\#1)}, y^{(\#1)}) \\ ((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})) \\ (\mathcal{X} \times \mathcal{Y})^n \end{array} $	Def. of the set of all datasets of size n
\defAllDatasets	$\bigcup_{n\in\mathbb{N}}(\mathcal{X}\times\mathcal{Y})^n$	Def. of the set of all datasets
\xdat	$\{\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}\}$	$\{x1,, xn\}$, input data
\yvec	$ \bigcup_{n \in \mathbb{N}} (\mathcal{X} \times \mathcal{Y})^n \\ \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\} \\ (y^{(1)}, \dots, y^{(n)})^T $	(y1,, yn), vector of outcomes
\xi	$\mathbf{x}^{(\#1)}$	x^i, i-th observed value of x
\yi	$y^{(\#1)}$	y^i, i-th observed value of y
\xivec	$\left(x_1^{(i)}, \dots, x_p^{(i)}\right)^T$	(x1^i,, xp^i), i-th observation vector
\xj	\mathbf{x}_{j}	x_j, j-th feature
\xjvec	$\begin{pmatrix} \mathbf{x}_j \\ \left(x_j^{(1)}, \dots, x_j^{(n)}\right)^T \\ \phi \end{pmatrix}$	$(x^1_j,, x^n_j)$, j-th feature vector
\phiv	φ , ,	Basis transformation function phi
\phixi	$\overset{ au}{\phi}{}^{(i)}$	Basis transformation of xi: $phi^{\hat{i}} := phi(xi)$
\lamv	$\stackrel{dash}{oldsymbol{\lambda}}$	lambda vector, hyperconfiguration vector
\Lam	Λ	Lambda, space of all hpos
\preimageInducer	$\left(\bigcup_{n\in\mathbb{N}}(\mathcal{X} imes\mathcal{Y})^n ight) imesoldsymbol{\Lambda}$	Set of all datasets times the hyperparameter space
\preimageInducerShort	$\mathbb{D} \times \mathbf{\Lambda}$	Set of all datasets times the hyperparameter space
\inducer	${\mathcal I}$	Inducer, inducing algorithm, learning algorithm
\ftrue	$f_{ m true}$	True underlying function (if a statistical model is assumed)
\ftruex	$f_{ m true}({f x})$	True underlying function (if a statistical model is assumed)
\fx	$f(\mathbf{x})$	f(x), continuous prediction function
\Hspace	\mathcal{H}	hypothesis space where f is from
\fkx	$f_{\#1}(\mathbf{x})$	$f_{i}(x)$, discriminant component function
\fh	$\hat{f}^{"}$	f hat, estimated prediction function
\fxh	$\hat{f}(\mathbf{x})$	fhat(x)
\fxt	$f(\mathbf{x} \mid \boldsymbol{\theta})$	$f(x \mid \text{theta})$
\fxi	$f\left(\mathbf{x}^{(i)}\right)$	$f(x \cap bicou)$
\fxih	$\hat{f}\left(\mathbf{x}^{(i)}\right)$	$f(x^{-1})$
\fxit	$f\left(\mathbf{x}^{(i)} \mid \boldsymbol{ heta} ight)$	$f(x^{(i)})$ theta)
		* * * * * * * * * * * * * * * * * * * *
\fhD	$\hat{f}_{\mathcal{D}} = \hat{f}$	fhat_D, estimate of f based on D
\fhDtrain	$\hat{f}_{\mathcal{D}_{ ext{train}}}$	fhat_Dtrain, estimate of f based on D
\fhDnlambda	$f_{{\mathcal D}_n, {oldsymbol \lambda}}$	model learned on Dn with hp lambda

	•	
\fhDlambda	$\hat{f}_{\mathcal{D},oldsymbol{\lambda}}$	model learned on D with hp lambda
\fhDnlambdastar	$f_{\mathcal{D}_n, oldsymbol{\lambda}^*}$	model learned on Dn with optimal hp lambda
\fhDlambdastar	$f_{\mathcal{D}, oldsymbol{\lambda}^*}$	model learned on D with optimal hp lambda
\hx	$h(\mathbf{x})$	h(x), discrete prediction function
\hh	\hat{h}	h hat
\hxh	$\hat{h}(\mathbf{x})$	hhat(x)
\hxt	$h(\mathbf{x} oldsymbol{ heta})$	$h(x \mid theta)$
\hxi	$h\left(\mathbf{x}^{(i)}\right)$	$h(x^{(i)})$
\hxit	$h\left(\mathbf{x}^{(i)'}\mid\boldsymbol{ heta}\right)$	$h(x^(i) \mid theta)$
\yh	\hat{y} .	yhat for prediction of target
\yih	$\hat{y}^{(i)}$	yhat ⁽ⁱ⁾ for prediction of ith targiet
\thetah	$\hat{ heta}$	theta hat
\thetab	heta	theta vector
\thetabh	$\hat{m{ heta}}$	theta vector hat
\thetat	$oldsymbol{ heta}^{[\#1]}$	theta^[t] in optimization
\thetatn	$oldsymbol{ heta}^{[\#1+1]}$	theta $[t+1]$ in optimization
\thx	$oldsymbol{ heta}^T\mathbf{x}$	linear combination with theta
\thetahDnlambda	$\hat{ heta}_{\mathcal{D}_n,oldsymbol{\lambda}}$	theta learned on Dn with hp lambda
\thetahDlambda	$\hat{oldsymbol{ heta}}_{\mathcal{D},oldsymbol{\lambda}}$	theta learned on D with hp lambda
\pdf	p	p
\pdfx	$p p(\mathbf{x})$	p(x)
\pixt	$\pi(\mathbf{x} \mid \boldsymbol{\theta})$	p(x) p(x) pi(x theta), pdf of x given theta
\pixit	$\pi\left(\mathbf{x}^{(i)}\mid\boldsymbol{ heta} ight)$	$pi(x^{-i} theta)$, pdf of x given theta
\pixii	$\pi\left(\mathbf{x}^{(i)}\right)$	pi(x^i), pdf of i-th x
\pdfxy	$p(\mathbf{x},y)$	p(x, y)
\pdfxyt	$p(\mathbf{x}, y)$ $p(\mathbf{x}, y \mid \boldsymbol{\theta})$	$p(x, y)$ $p(x, y \mid theta)$
\pdfxyit	$p(\mathbf{x}, y \mid \boldsymbol{\theta})$ $p(\mathbf{x}^{(i)}, y^{(i)} \mid \boldsymbol{\theta})$	p(x, y + bbca) $p(x^(i), y^(i) theta)$
\pdfxyk	$p(\mathbf{x} y=\#1)$	$p(x \mid y = k)$
\lpdfxyk	$\log p(\mathbf{x} y=\#1)$	$\log p(x \mid y = k)$
\pdfxiyk	$p\left(\mathbf{x}^{(i)} y=\#1\right)$	$p(x^i y = k)$
\puk \pik	,	pi_k, prior
\lpik	$\frac{\pi_{\#1}}{\log \pi_{\#1}}$	log pi_k, log of the prior
\pit	$\pi(\boldsymbol{\theta})$	Prior probability of parameter theta
\post	$\mathbb{P}(y=1\mid \mathbf{x})$	$P(y = 1 \mid x)$, post. prob for $y=1$
\postk	$\mathbb{P}(y = \#1 \mid \mathbf{x})$	P(y = k y), post. prob for $y=k$
\pix	$\pi(\mathbf{x})$	$pi(x)$, $P(y = 1 \mid x)$
\pikx	$\pi_{\#1}(\mathbf{x})$	$pi_k(x), P(y = k \mid x)$
\pikxt	$\pi_{\#1}(\mathbf{x} \mid \boldsymbol{\theta})$	$pi_k(x \mid theta), P(y = k \mid x, theta)$
\pixh	$\hat{\pi}(\mathbf{x})$	pi(x) hat, $P(y = 1 x)$ hat
\pikxh	$\hat{\pi}_{\#1}(\mathbf{x})$	$pi_k(x)$ hat, $P(y = k \mid x)$ hat
\pixih	$\hat{\pi}(\mathbf{x}^{(i)})$	pi(x^(i)) with hat
\pikxih	$\hat{\pi}_{\#1}(\mathbf{x}^{(i)})$	$pi_k(x^{(i)})$ with hat
\pdfygxt	$p(y \mid \mathbf{x}, \boldsymbol{\theta})$	$p(y \mid x, \text{theta})$
\pdfyigxit	$p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)$	p(y^i x^i, theta)
\lpdfygxt	$\log p(y \mid \mathbf{x}, \boldsymbol{\theta})$	$\log p(y \mid x, \text{ theta})$
\lpdfyigxit	$\log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)$	$\log p(\hat{y} = \hat{x})$
\eps	ϵ	residual, stochastic
\epsi	$\epsilon^{(i)}$	epsilon i, residual, stochastic
\epsh	$\hat{\epsilon}$	residual, estimated
\yf	$yf(\mathbf{x})$	y $f(x)$, margin
\yfi	$y^{(i)}f(\mathbf{x}^{(i)})$	y^i f(x^i), margin
\Sigmah	$y^{(i)}f(\mathbf{x}^{(i)})$ $\hat{\Sigma}$	estimated covariance matrix
\Sigmahj	$\hat{\hat{\Sigma}}_{j}$	estimated covariance matrix for the j-th class
\Lyf	extstyle e	L(y, f), loss function
\Lxy	$L\left(y,f(\mathbf{x})\right)$	L(y, f(x)), loss function
·J	- (3) J (//	-(J) 1(1/); 1000 1011011

\Lxyi	$L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$	loss of observation
\Lxyt	$L(y, f(\mathbf{x} \mid \boldsymbol{\theta}))'$	loss with f parameterized
\Lxyit	$L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$	loss of observation with f parameterized
\Lxym	$L\left(y^{(i)}, f\left(\tilde{oldsymbol{x}}^{(i)} \mid oldsymbol{ heta} ight) ight)$	loss of observation with f parameterized
\Lpixy	$L(y,\pi(\mathbf{x}))$	loss in classification
\Lpixyi	$L\left(y^{(i)},\pi\left(\mathbf{x}^{(i)}\right)\right)$	loss of observation in classification
\Lpixyt	$L(y, \pi(\mathbf{x} \mid \boldsymbol{\theta}))'$	loss with pi parameterized
\Lpixyit	$L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$	loss of observation with pi parameterized
\Lhxy	$L(y, h(\mathbf{x}))$	L(y, h(x)), loss function on discrete classes
\Lr	$L\left(r\right)$	L(r), loss defined on residual (reg) / margin (classif)
\risk	\mathcal{R}	R, risk
\riskf	$\mathcal{R}(f)$	R(f), risk
\riskt	$\mathcal{R}(oldsymbol{ heta})$	R(theta), risk
\riske	$\mathcal{R}_{ ext{emp}}$	R_emp, empirical risk w/o factor 1 / n
\riskeb	$ar{\mathcal{R}}_{ ext{emp}}$	R_emp, empirical risk w/ factor 1 / n
\riskef	$\mathcal{R}_{ ext{emp}}(f)$	$R_{emp}(f)$
\risket	$\mathcal{R}_{ ext{emp}}(oldsymbol{ heta})$	R_emp(theta)
\riskr	$\mathcal{R}_{ ext{reg}}$	R_reg, regularized risk
\riskrt	$\mathcal{R}_{ ext{reg}}(oldsymbol{ heta})$	$R_{reg}(theta)$
\riskrf	$\mathcal{R}_{ ext{reg}}(f)$	$R_{reg}(f)$
\riskrth	$\hat{\mathcal{R}}_{ ext{reg}}(oldsymbol{ heta})$	hat R_reg(theta)
\risketh	$\hat{\mathcal{R}}_{ ext{emp}}(oldsymbol{ heta})$	hat R_emp(theta)
\LL	\mathcal{L}	L, likelihood
\LLt	$\mathcal{L}(oldsymbol{ heta})$	L(theta), likelihood
\log1	ℓ	l, log-likelihood
\loglt	$\ell(oldsymbol{ heta})$	l(theta), log-likelihood
\errtrain	$\operatorname{err}_{\operatorname{train}}$	training error
\errtest	$\mathrm{err}_{\mathrm{test}}$	test error
\errexp	$\overline{\mathrm{err}_{\mathrm{test}}}$	avg training error

ml-ensembles

Macro	Notation	Comment
\bl	$b^{[\#1]}$	baselearner, default m
\blh	$\hat{b}^{[\#1]}$	estimated base learner, default m
\blx	$b^{[\#1]}({f x})$	baselearner, default m
\fM	$f^{[M]}(\mathbf{x})$	ensembled predictor
\fMh	$\hat{f}^{[M]}(\mathbf{x})$	estimated ensembled predictor
\ambifM	$\Delta\left(f^{[M]}(\mathbf{x}) ight)$	ambiguity/instability of ensemble
\betam	$eta^{[\#1]}$	weight of basemodel m
\betamh	$\hat{eta}^{[\#1]}$	weight of basemodel m with hat
\betaM	$\beta^{[M]}$	last baselearner
\fm	$f^{[\#1]}$	prediction in iteration m
\fmh	$\hat{f}^{[\#1]}$	prediction in iteration m
\fmd	$f^{[\#1-1]}$	prediction m-1
\fmdh	$\hat{\hat{f}}^{[\#1-1]}$	prediction m-1
\errm	$\operatorname{err}^{[\#1]}$	weighted in-sample misclassification rate
\wm	$w^{[\#1]}$	weight vector of basemodel m
\wmi	$w^{[\#1](i)}$	weight of obs i of basemodel m
\thetam	$oldsymbol{ heta}^{[\#1]}$	parameters of basemodel m
\thetamh	$\hat{m{ heta}}^{[\#1]}$	parameters of basemodel m with hat
\blxt	$b(\mathbf{x}, oldsymbol{ heta}^{[\#1]}) \sum_{\substack{m=1 \ ilde{r}[\#1]}}^{M} eta^{[m]} b(\mathbf{x}, oldsymbol{ heta}^{[m]})$	baselearner, default m
\ens	$\sum_{m=1}^{M} \beta^{[m]} b(\mathbf{x}, \boldsymbol{\theta}^{[m]})$	ensemble
\rmm		pseudo residuals
\rmi	$\tilde{r}^{[\#1](i)}$	pseudo residuals
\Rtm	$R_t^{[\#1]}$	terminal-region
\Tm	$T^{[\#1]}$	
\ctm	$c_t^{[\#1]}$	mean, terminal-regions
\ctmh	$\hat{c}_t^{[\#1]} \\ \tilde{c}_t^{[\#1]}$	mean, terminal-regions with hat
\ctmt	$ ilde{c}_t^{[\#1]}$	mean, terminal-regions
\Lp	L'	
\Ldp	L''	
\Lpleft	$L'_{ m left}$	

ml-eval

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Macro	Notation	Comment
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	\ntest	$n_{ m test}$	size of the test set
$\begin{array}{llllllllllllllllllllllllllllllllllll$	\ntrain	$n_{ m train}$	size of the train set
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\ntesti	$n_{\mathrm{test},\#1}$	size of the i-th test set
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\ntraini	$n_{ m train,\#1}$	size of the i-th train set
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\Jtrain	$J_{ m train}$	index vector associated to the train data
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\Jtest	$J_{ m test}$	index vector associated to the test data
$\begin{array}{llllllllllllllllllllllllllllllllllll$	\Jtraini	$J_{ m train,\#1}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\Jtesti	$J_{\mathrm{test},\#1}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathcal{D}_{ ext{test},\#1}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	$\{1,\ldots,n\}^{n_{ ext{test}}}$	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\yJ	y #1	output vector associated to index J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\yJDef	$\left(y^{(J^{(1)})},\ldots,y^{(J^{(m)})}\right)$	def of the output vector associated to index J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\ JJ	Ĵ	cali-J, set of all splits
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$((J_{\text{train},1}, J_{\text{test},1}), \dots, (J_{\text{train},B}, J_{\text{test},B}))$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\GE	GE	GE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\GEh	$\widehat{ ext{GE}}$	GE-hat
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\GEfull	$\mathrm{GE}(\mathcal{I}, \boldsymbol{\lambda}, \#1, \rho)$	GE(I, lam, ?, rho)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\GEhholdout	$\widehat{\operatorname{GE}}_{J_{\operatorname{train}},J_{\operatorname{test}}}(\mathcal{I},oldsymbol{\lambda}, J_{\operatorname{train}} , ho)$	GE-hat_{Jtrain,Jtest} (I, lam, J , rho)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\GEhholdouti		GE-hat_{Jtrain_i,Jtest_i} (I, lam, Jtrain_i , rho)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\GEhlam		GE-hat(lam)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\GEhlamsubIJrho	$\widehat{\operatorname{GE}}_{\mathcal{I}\mathcal{I}.o}(oldsymbol{\lambda})$	GE-hat I,J,rho(lam)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	\GEhresa		GE-hat I.J.rho(lam)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\operatorname{GE}\left(\hat{f}\right)$	Generalization error of a fitted model
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Generalization error of a fitted model
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$GE_n\left(\hat{f}_{\#1}\right)$	Generalization error GE
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$\frac{\widetilde{CE}}{\widetilde{CE}}$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
\rhoL \rangle F \qquad \text{perf.} \text{measure derived from pointwise loss function L} \text{matrix of prediction scores} \text{YFI} \qquad \text{F} \qquad \qqquad \qquad \qqqq \qqqq \qqqqq \qqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqqq			-
$\begin{array}{llllllllllllllllllllllllllllllllllll$			-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$F^{(\#1)}$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$\overline{F}_{\#1}$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			-
\forall \fora			-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$oldsymbol{F}_{L}$, $\mathcal{I}(\mathcal{D}_{L}, \mathcal{I}(\mathcal{D}_{L}))$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$F_{J_{ ext{test}}, \#1, \mathcal{I}(\mathcal{D}_{ ext{train}}, \#1, oldsymbol{\lambda})}$	1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	\FJfDef	$\left(f(\mathbf{x}^{(J^{(1)})}), \dots, f(\mathbf{x}^{(J^{(m)})})\right)$	def of predscore mat index vector J and model f
$\begin{array}{llllllllllllllllllllllllllllllllllll$		$\bigcup_{m \in \mathbb{N}} (\mathcal{Y}^m \times \mathbb{R}^{m \times g})$	-
$\begin{array}{llllllllllllllllllllllllllllllllllll$			v
$\begin{array}{llllllllllllllllllllllllllllllllllll$	_ =		-
$\begin{array}{lll} \verb rp & \pi_+ & \text{proportion negative instances} \\ \verb tp & \#TP & \text{true pos} \\ \verb fap & \#FP & \text{false pos (fp taken for partial derivs)} \\ \end{array}$			~
\tp #TP true pos \fap #FP false pos (fp taken for partial derivs)			
\fap #FP false pos (fp taken for partial derivs)	=	•	
	_	· ·	-
	_	#TN	true neg

\fan #FN false neg

ml-feature-sel

Macro	Notation	Comment
\xjNull	x_{j_0}	
\xjEins	x_{j_1}	
\xl	\mathbf{x}_l	
\pushcode		

ml-gp

Macro	Notation	Comment
\gp	$\mathcal{GP}\left(m(\mathbf{x}), k\left(\mathbf{x}, \mathbf{x}'\right)\right)$	Gaussian Process Definition
\mvec	m	Gaussian process mean vector
\K mat	K	estimated base learner
\kstarx	$\mathbf{k}_*(x)$	cov of new obs with x
∖ls	ℓ	length-scale

ml-hpo

Macro	Notation	Comment
\Ilam	$\mathcal{I}_{\boldsymbol{\lambda}}$	I_lambda
\lami	$oldsymbol{\lambda}^{(\#1)}$	lambda i
\clam	$c(oldsymbol{\lambda})$	c(lambda)
\clamh	$c(\hat{oldsymbol{\lambda}})$	c(lambda-hat)
\lams	$\hat{oldsymbol{\lambda}}^*$ $\hat{oldsymbol{\lambda}}$	Theoretical min of c
\lamh	$\hat{oldsymbol{\lambda}}$	returned lambda of HPO
\LamS	$ ilde{m{\Lambda}}$	search space
\label{lamp}	$oldsymbol{\lambda}^+$	proposed lambda
\climbsize	$c(\boldsymbol{\lambda}^+)$	c of proposed lambda
\archive	\mathcal{A}	archive at time step t
\archivet	$\mathcal{A}^{[\#1]}$	archive at time step t
\tuner	$\mathcal T$	tuner
\tunerfull	$egin{aligned} \mathcal{T}_{\mathcal{I}, ilde{m{\Lambda}}, ho,\mathcal{J}}\ \hat{c}(m{\lambda}) \end{aligned}$	tuner with inducer, search space, performance measure and resampling strategy
\chlam		post mean of SM
\shlam	$\hat{\sigma}(oldsymbol{\lambda})$	post sd of SM
\vhlam	$\hat{\sigma^2}(oldsymbol{\lambda})$	post var of SM
\ulam	$u(\boldsymbol{\lambda})$	acquisition function
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	λ^*	Minimum of the black box function Psi
\metadata	$\left\{\left(oldsymbol{\lambda}^{(i)}, \Psi^{[i]} ight) ight\}$	Metadata for the Gaussian process
\lamvec	$(\lambda^{[1]},\ldots,\lambda^{[m_{\mathrm{init}}]})$	Vector of different inputs
\minit	$m_{ m init}$	Size of the initial design
\lambu	$\lambda_{ m budget}$	single lambda_budget komponent HP
\label{lamfid}	$\lambda_{ m fid}$	single lambda_budget komponent HP
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\lambda_{ m fid}^{ m low}$	single lambda_budget komponent HP
\lamfidu	$\lambda_{ m fid}^{ m tipp}$	single lambda_budget komponent HP
\etahb	$\eta_{ m HB}$	HB multiplier eta
\costs	\mathcal{C}	costs
\Celite	$oldsymbol{ heta}^*$	elite configurations
\instances	\mathcal{I}	sequence of instances
\budget	\mathcal{B}	computational budget

ml-interpretable

Macro	Notation	Comment
\fj	f_j	marginal function f_j, depending on feature j
\fnj	f_{-j}	marginal function $f_{-}\{-j\}$, depending on all features but j
\fS	f_S	marginal function f_S depending on feature set S
\fC	f_C	marginal function f_C depending on feature set C
\fhj	$egin{array}{l} f_C \ \hat{f}_j \ \hat{f}_{-j} \ \hat{f}_S \ \hat{f}_C \end{array}$	marginal function fh_j, depending on feature j
\fhnj	\hat{f}_{-j}	marginal function fh_{-j} , depending on all features but j
\fhS	\hat{f}_S	marginal function fh_S depending on feature set S
\fhC	\hat{f}_C	marginal function fh_C depending on feature set C
\XSmat	\mathbf{X}_S	Design matrix subset
\XCmat	\mathbf{X}_C	Design matrix subset
\Xnj	\mathbf{X}_{-j}	Design matrix subset $-j = \{1,, j-1, j+1,, p\}$
\Scupj	$S \cup \{j\}$	coalition S but without player j
\Scupk	$S \cup \{k\}$	coalition S but without player k
\SsubP	$S \subseteq P$	coalition S subset of P
\SsubPnoj	$S \subseteq P \setminus \{j\}$	coalition S subset of P without player j
\SsubPnojk	$S \subseteq P \setminus \{j, k\}$	coalition S subset of P without player k
\phiij	$\hat{\phi}_{j}^{(i)}$ \mathcal{G}	Shapley value for feature j and observation i
\Gspace	$\mathcal{G}^{"}$	Hypothesis space for surrogate model
\neigh	$\phi_{\mathbf{x}}$	Proximity measure
\zv	${f z}$	Sampled datapoints for surrogate
\Zspace	${\mathcal Z}$	Space of sampled datapoints
\Gower	d_G	Gower distance

ml-nn

Macro	Notation	Comment
\neurons	z_1,\ldots,z_M	vector of neurons
\hidz	${f z}$	vector of hidden activations
\biasb	b	bias vector
\biasc	c	bias in output
\wtw	\mathbf{w}	weight vector (general)
\Wmat	\mathbf{W}	weight vector (general)
\wtu	u	weight vector of output neuron
\Oreg	$R_{reg}(\theta X,y)$	regularized objective function
\Ounreg	$R_{emp}(\theta X,y)$	unconstrained objective function
\Pen	$\Omega(\theta)$	penalty
\Oregweight	$R_{reg}(w X,y)$	regularized objective function with weight
\Oweight	$R_{emp}(w X,y)$	unconstrained objective function with weight
\Oweighti	$R_{emp}(w_i X,y)$	unconstrained objective function with weight w_i
\Oweightopt	$J(w^* X,y)$	unconstrained objective function withoptimal weight
\Oopt	$\hat{J}(\theta X,y)$	optimal objective function
\Odropout	$J(\theta, \mu X, y)$	dropout objective function
\Loss	$L(y, f(\mathbf{x}, \boldsymbol{\theta}))$	
\Lmomentumnest	$L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta} + \varphi \boldsymbol{\nu}))$	momentum risk
\Lmomentumtilde	$L(y^{(i)}, f(x^{(i)}, \tilde{\boldsymbol{\theta}}))$	Nesterov momentum risk
\Lmomentum	$L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta}))$	
\Hess	H	
\nub	ν	
\uauto	L(x, g(f(x)))	undercomplete autoencoder objective function
\dauto	$L(x,g(f(\tilde{x})))$	denoising autoencoder objective function
\deltab	δ	-
\Lossdeltai	$L(y^{(i)}, f(\mathbf{x}^{(i)} + \boldsymbol{\delta} \boldsymbol{\theta}))$	
\Lossdelta	$L(y, f(\mathbf{x} + \boldsymbol{\delta} \boldsymbol{\theta}))$	

ml-survival

Macro	Notation	Comment
\Ti	$T^{(\#1)}$??
\Ci	$C^{(\#1)}$??
\oi	$o^{(\#1)}$??
\ti	$t^{(\#1)}$??
\deltai	$\delta^{(\#1)}$	
\Lxdi	$L\left(\boldsymbol{\delta}, f(\mathbf{x})\right)$	

ml-svm

Macro	Notation	Comment
\sv	SV	supportvectors
\HS	Φ	H, hilbertspace
\sl	ζ	
\slvec	$(\zeta^{(1)},\zeta^{(n)})$	slack variables (SVM)
\sli	$\dot{\zeta}^{(i)}$	slack variable (SVM)
\alphah	\hat{lpha}	alpha-hat
\alphav	lpha	vector alpha (bold)
\alphavh	$\hat{m{lpha}}$	vector alpha-hat
\phix	$\phi(\mathbf{x})$	$\backslash phi(x)$
<u>\phixt</u>	$\phi(\tilde{\mathbf{x}})$	\phi(x-tilde)

ml-trees

Macro	Notation	Comment
\Np	\mathcal{N}	(Parent) node N
\Npk	\mathcal{N}_k	$node \ N_k$
\Nl	\mathcal{N}_1	Left node N_1
\Nr	\mathcal{N}_2	Right node N_2
\pikN	$\pi_{k}^{(\mathcal{N})}$	class probability node N
\pikNh	$\hat{\pi}_{\#1}^{(\mathcal{N})}$	estimated class probability node N
\pikNlh	$\hat{\pi}_{\#1}^{(\mathcal{N}_1)}$	
\pikNrh	$\hat{\pi}_{\#1}^{(\mathcal{N}_2)}$	

${f probmodel}$

Macro	Notation	Comment
\muk	μ_{k}	