Multilingual and zeroshot translation

Multilingual translation

- Isn't translation already multilingual?
- Consider these datasets:
 - United Nations (6 languages)
 - European parliament (21 languages)
 - The Bible (484 complete and 2551 partial translations)
- What can we do with more than two languages?

Interlingua

335 Automatic Translation

Figure 28.1

from Vauquois, 1968

 Suppose we have a document in French and its (human) translation in German. Questions:

- Suppose we have a document in French and its (human) translation in German. Questions:
 - Will it help to use both translations?

- Suppose we have a document in French and its (human) translation in German. Questions:
 - Will it help to use both translations?
 - Is there any use for this?

- Suppose we have a document in French and its (human) translation in German. Questions:
 - Will it help to use both translations?
 - Is there any use for this?
 - YES! The European Parliament has 24 official languages. But not all translation is directly from a source and target language; there is often a bridge language.

Quite an old idea (e.g. Och & Ney 2001)

Table 4: Absolute improvements in WER combining two languages using method MAX compared with the best WER obtained by any of the two languages.

	fr	pt	es	it	sv	da	nl
fr	0.0	1.5	1.2	0.5	2.7	1.9	0.8
pt		0.0	2.2	2.1	4.0	3.4	1.3
es			0.0	2.4	3.9	2.6	1.7
it				0.0	3.5	3.2	1.6
sv					0.0	2.7	1.7
da		12				0.0	4.3
nl							0.0

Table 5: Absolute improvements in WER combining two languages using method PROD compared with the best WER obtained by any of the two languages.

	fr	pt	es	it	sv	da	nl
fr	0.0	0.8	0.1	0.4	1.0	0.8	-0.2
pt		0.0	2.6	2.1	2.6	2.8	-0.1
es			0.0	2.4	3.4	3.7	1.1
it				0.0	1.9	3.0	0.3
sv					0.0	1.8	0.5
da						0.0	1.5
nl							0.0

Table 6: Language combination using method MAX.

languages	WER	PER
fr	55.3	45.3
fr+sv	52.6	43.7
fr+sv+es	52.0	43.2
fr+sv+es+pt	52.3	43.6
fr+sv+es+pt+it	52.7	44.0
fr+sv+es+pt+it+da	52.5	43.9

Table 7: Language combination using method PROD.

languages	WER	PER
fr	55.3	45.3
fr+sv	54.3	44.5
fr+sv+es	51.0	41.4
fr+sv+es+pt	50.2	40.2
fr+sv+es+pt+it	49.8	39.8
fr+sv+es+pt+it+da	48.8	39.1

 Assorted techniques to do this in IBM-style or phrasebased MT.

- Assorted techniques to do this in IBM-style or phrasebased MT.
- Difficult to model directly due to independence assumptions of these models.

- Assorted techniques to do this in IBM-style or phrasebased MT.
- Difficult to model directly due to independence assumptions of these models.
- Usually done as a kind of system combination (merging the output of two MT systems).

- Assorted techniques to do this in IBM-style or phrasebased MT.
- Difficult to model directly due to independence assumptions of these models.
- Usually done as a kind of system combination (merging the output of two MT systems).
- But this introduces other problems, e.g. decoding.

- Assorted techniques to do this in IBM-style or phrasebased MT.
- Difficult to model directly due to independence assumptions of these models.
- Usually done as a kind of system combination (merging the output of two MT systems).
- But this introduces other problems, e.g. decoding.
- Fundamentally, it's interpolation of conditional LMs.

Direct multi-source

Zoph & Knight 2016

- Directly learns and uses p(English|French,German)
- For attention: two context vectors (uses p-local attention of Luong, et al, but could use other methods).

Direct multi-source

Zoph & Knight 2016

- Directly learns and uses p(English|French,German)
- For attention: two context vectors (uses p-local attention of Luong, et al, but could use other methods).

Source 1:	UNK Aspekte sind ebenfalls wichtig.
Target:	UNK aspects are important, too.
	11/1
Source 2:	Les aspects UNK sont également importants.

Target = English							
Source	Method	Ppl	BLEU				
French	_	10.3	21.0				
German	_	15.9	17.3				
French+German	Basic	8.7	23.2				
French+German	Child-Sum	9.0	22.5				
French+French	Child-Sum	10.9	20.7				
French	Attention	8.1	25.2				
French+German	B-Attent.	5.7	30.0				
French+German	CS-Attent.	6.0	29.6				

Firat et al. 2016 (two papers)

Assume only many bilingual parallel corpora.

- Assume only many bilingual parallel corpora.
- For N languages: learn N encoders and N decoders.

- Assume only many bilingual parallel corpora.
- For N languages: learn N encoders and N decoders.
- But what about attention?

- Assume only many bilingual parallel corpora.
- For N languages: learn N encoders and N decoders.
- But what about attention?

$$p(f_i|f_{i-1},...,f_1,\mathbf{e}) = g(f_{i-1},s_i,c_i)$$

$$c_{i} = \sum_{j=1}^{|\mathbf{e}|} \alpha_{ij} h_{j}$$

$$\alpha_{ij} = \frac{\exp(a_{ij})}{\sum_{k=1}^{|\mathbf{e}|} \exp(a_{ik})}$$

$$a_{ij} = a(s_{i-1}, h_{j})$$

Firat et al. 2016 (two papers)

- Assume only many bilingual parallel corpora.
- For N languages: learn N encoders and N decoders.
- But what about attention?

$$p(f_i|f_{i-1},...,f_1,\mathbf{e}) = g(f_{i-1},s_i,c_i)$$

Everything we need is right here!

$$c_{i} = \sum_{j=1}^{|\mathbf{e}|} \alpha_{ij} h_{j}$$

$$\alpha_{ij} = \frac{\exp(a_{ij})}{\sum_{k=1}^{|\mathbf{e}|} \exp(a_{ik})}$$

$$a_{ij} = a(s_{i-1}, h_{j})$$

Firat et al. 2016 (two papers)

- As in Bahdanu et al. (2014), attention mechanism is a feedforward function of both decoder hidden state and encoder context vector.
- Shared between all encoders and decoders.

$$p(f_i|f_{i-1},...,f_1,\mathbf{e}) = g(f_{i-1},s_i,c_i)$$

Everything we need is right here!

$$c_{i} = \sum_{j=1}^{|\mathbf{e}|} \alpha_{ij} h_{j}$$

$$\alpha_{ij} = \frac{\exp(a_{ij})}{\sum_{k=1}^{|\mathbf{e}|} \exp(a_{ik})}$$

$$a_{ij} = a(s_{i-1}, h_{j})$$

Firat et al. 2016 (two papers)

	Size	Single	Single+DF	Multi
	100k	5.06/3.96	4.98/3.99	6.2/5.17
· 下	200k	7.1/6.16	7.21/6.17	8.84/7.53
En-	400k	9.11/7.85	9.31/8.18	11.09/ 9.98
щ	800k	11.08/9.96	11.59/10.15	12.73/11.28
	210k	14.27/13.2	14.65/13.88	16.96/ 16.26
\En	420k	18.32/17.32	18.51/17.62	19.81/19.63
De-	840k	21/19.93	21.69/20.75	22.17/21.93
D	1.68m	23.38/23.01	23.33/22.86	23.86/23.52
6)	210k	11.44/11.57	11.71/11.16	12.63/12.68
En→De	420k	14.28/14.25	14.88/15.05	15.01/15.67
1	840k	17.09/17.44	17.21/17.88	17.33/18.14
田	1.68m	19.09/19.6	19.36/20.13	19.23/20.59

Table 2: BLEU scores where the target pair's parallel corpus is constrained to be 5%, 10%, 20% and 40% of the original size. We report the BLEU scores on the development and test sets (separated by /) by the single-pair model (Single), the single-pair model with monolingual corpus (Single+DF) and the proposed multi-way, multilingual model (Multi).

Low-resource **simulation** (using high-resource European languages)

		1	Fr (3	39m)	Cs (12m)	De (4	1.2m)	Ru (2	2.3m)	Fi (2m)
		Dir	\rightarrow En	$En \rightarrow$								
n	ev	Single	27.22	26.91	21.24	15.9	24.13	20.49	21.04	18.06	13.15	9.59
(a) BLEU	Ŏ	Multi	26.09	25.04	21.23	14.42	23.66	19.17	21.48	17.89	12.97	8.92
) B	st	Single	27.94	29.7	20.32	13.84	24	21.75	22.44	19.54	12.24	9.23
(a)	Test	Multi	28.06	27.88	20.57	13.29	24.20	20.59	23.44	19.39	12.61	8.98
	83	Single	-50.53	-53.38	-60.69	-69.56	-54.76	-61.21	-60.19	-65.81	-88.44	-91.75
L	Dev	Multi	-50.6	-56.55	-54.46	-70.76	-54.14	-62.34	-54.09	-63.75	-74.84	-88.02
@	st	Single	-43.34	-45.07	-60.03	-64.34	-57.81	-59.55	-60.65	-60.29	-88.66	-94.23
•	Test	Multi	-42.22	-46.29	-54.66	-64.80	-53.85	-60.23	-54.49	-58.63	-71.26	-88.09

Table 3: (a) BLEU scores and (b) average log-probabilities for all the five languages from WMT'15.

Firat et al. 2016 (two papers)

		Fr (3	39m)	Cs (12m)	De (4	1.2m)	Ru (2	2.3m)	Fi (2m)	
		Dir	\rightarrow En	$En \rightarrow$								
n	ev	Single	27.22	26.91	21.24	15.9	24.13	20.49	21.04	18.06	13.15	9.59
BLEU	Ŏ	Multi	26.09	25.04	21.23	14.42	23.66	19.17	21.48	17.89	12.97	8.92
	st	Single	27.94	29.7	20.32	13.84	24	21.75	22.44	19.54	12.24	9.23
(a)	Test	Multi	28.06	27.88	20.57	13.29	24.20	20.59	23.44	19.39	12.61	8.98
	es	Single	-50.53	-53.38	-60.69	-69.56	-54.76	-61.21	-60.19	-65.81	-88.44	-91.75
L	Ď	Multi	-50.6	-56.55	-54.46	-70.76	-54.14	-62.34	-54.09	-63.75	-74.84	-88.02
a	Test	Single	-43.34	-45.07	-60.03	-64.34	-57.81	-59.55	-60.65	-60.29	-88.66	-94.23
•	Te	Multi	-42.22	-46.29	-54.66	-64.80	-53.85	-60.23	-54.49	-58.63	-71.26	-88.09

Table 3: (a) BLEU scores and (b) average log-probabilities for all the five languages from WMT'15.

ok, but what about multi-source?

- Still assumes only many bilingual parallel corpora.
- What to do if there are multiple input sentences?
- Early averaging (average context vectors).
- Late averaging (aka linear interpolation).

- Still assumes only many bilingual parallel corpora.
- What to do if there are multiple input sentences?
- Early averaging (average context vectors). $\mathbf{c}_t = \frac{\mathbf{c}_t^1 + \mathbf{c}_t^2}{2}$.
- Late averaging (aka linear interpolation).

$$P(w_i|\boldsymbol{c}) = \sum_{k=1}^K \lambda_k(\boldsymbol{c}) P_k(w_i|\boldsymbol{c})$$

Firat et al. 2016 (two papers)

- Still assumes only many bilingual parallel corpora.
- What to do if there are multiple input sentences?
- Early averaging (average context vectors). $\mathbf{c}_t = \frac{\mathbf{c}_t^1 + \mathbf{c}_t^2}{2}$.
- Late averaging (aka linear interpolation).

$$P(w_i|\boldsymbol{c}) = \sum_{k=1}^K \lambda_k(\boldsymbol{c}) P_k(w_i|\boldsymbol{c})$$

Early and late averaging are orthogonal, can be combined.

			Mı	ulti	Single Dev Test		
	Src	Trgt	Dev	Test	Dev	Test	
(a)	Es	En	30.73	28.32	29.74	27.48	
(b)	Fr	En	26.93	27.93	26.00	27.21	
(c)	En	Es	30.63	28.41	31.31	28.90	
(d)	En	Fr	22.68	23.41	22.80	24.05	

Table 2: One-to-one translation qualities using the multi-way, multilingual model and four separate single-pair models.

	Src	Trgt	Multi Test	Single Test
(a)	Es	En	28.32	27.48
(b)	Fr	En	27.93	27.21
(c)	En	Es	28.41	28.90
(d)	En	Fr	23.41	24.05

Table 2: One-to-one translation qualities using the multi-way, multilingual model and four separate single-pair models.

			Multi	Single
	Src	Trgt	Test	Test
(a)	Es	En	28.32	27.48
(a) (b)	Fr	En	27.93	27.21

Table 2:	One-to-one	translation	qualities	using	the	multi-way
multiling	ual model ar	nd four sepa	arate sing	le-pair	mo	dels.

		Multi		Single	
		Dev	Test	Dev	Test
(a)	Early	31.89 32.04 32.61	31.35	_	_
(b)	Late	32.04	31.57	32.00	31.46
(c)	E+L	32.61	31.88	_	_

Table 3: Many-to-one quality (Es+Fr→En) using three translation strategies. Compared to Table 2 (a–b) we observe a significant improvement (up to 3+ BLEU), although the model was never trained in these many-to-one settings. The second column shows the quality by the ensemble of two separate single-pair models.

			Multi	Single
	Src	Trgt	Test	Test
(a)	Es	En	28.32	27.48
(a) (b)	Fr	En	27.93	27.21

Table 2:	One-to-one	translation	qualities	using	the	multi-way
multiling	ual model ar	nd four sepa	arate sing	le-pair	mo	dels.

		Multi		Single	
		Dev	Test	Dev	Test
(a)	Early	31.89 32.04 32.61	31.35	_	_
(b)	Late	32.04	31.57	32.00	31.46
(c)	E+L	32.61	31.88	_	_

Table 3: Many-to-one quality (Es+Fr→En) using three translation strategies. Compared to Table 2 (a–b) we observe a significant improvement (up to 3+ BLEU), although the model was never trained in these many-to-one settings. The second column shows the quality by the ensemble of two separate single-pair models.

Zero-shot MT

Firat et al. 2016 (two papers)

 Suppose our bilingual parallel data include a pair of languages for which we have no parallel data.

Spanish ← English English ← French

 Q: Can we use the multi-way encoder-decoder system to translate Spanish into French?

Firat et al. 2016 (two papers)

- Suppose our bilingual parallel data include a pair of languages for which we have no parallel data.
- Q: Can we use the multi-way encoder-decoder system to translate Spanish into French?

	Pivot	Many-to-1	Dev	Test
(a)			< 1	< 1
(b)	\checkmark		20.64	20.4

A: Not really

Table 4: Zero-resource translation from Spanish (Es) to French (Fr) without finetuning. When pivot is $\sqrt{\ }$, English is used as a pivot language.

Must pivot (explicitly) through English

Firat et al. 2016 (two papers)

- Finetuning: what if we use a small amount of parallel data in this setting?
- Q: Where would we get this data?

	Pivot	Many-to-1	Dev	Test
(a)			<1	< 1
(b)	\checkmark		20.64	20.4

Table 4: Zero-resource translation from Spanish (Es) to French (Fr) without finetuning. When pivot is $\sqrt{\ }$, English is used as a pivot language.

Firat et al. 2016 (two papers)

- Finetuning: what if we use a small amount of parallel data in this setting?
- Q: Where would we get this data? Backtranslation

Spanish ← English English ← French

Firat et al. 2016 (two papers)

- Finetuning: what if we use a small amount of parallel data in this setting?
- Q: Where would we get this data? Backtranslation

Firat et al. 2016 (two papers)

- Finetuning: what if we use a small amount of parallel data in this setting?
- Q: Where would we get this data? Backtranslation

Spanish ← English English ← French

\$\frac{1}{2}\$

Spanish (MT)

Firat et al. 2016 (two papers)

 Finetuning: what if we use a small amount of parallel data in this setting?

			Pseudo Parallel Corpus			
Pivot	Many-to-1		1 k	10k	100k	1m
Cinala Dain Madala		Dev	_	-	-	_
Siligic	Single-Pair Models		_	_	_	_
\checkmark	No Finetur	ning	De	ev: 20.64	, Test: 2	0.4
		Dev	0.28	10.16	15.61	17.59
		Test	0.47	10.14	15.41	17.61

Firat et al. 2016 (two papers)

• Finetuning: what if we use a small amount of parallel data in this setting?

		Pseudo Parallel Corpus			Tı	rue Paral	lel Corp	us	
Pivot Many-to-1		1 k	10k	100k	1m	1k	10k	100k	1m
Single Dair Medela	Dev	_	_	_	_	_	_	11.25	21.32
Single-Pair Models	Test	_	_	_	-	-	_	10.43	20.35
√ No Finetur	ning	De	v: 20.64	, Test: 2	0.4		,	-	
	Dev	0.28	10.16	15.61	17.59	0.1	8.45	16.2	20.59
	Test	0.47	10.14	15.41	17.61	0.12	8.18	15.8	19.97

Firat et al. 2016 (two papers)

• Finetuning: what if we use a small amount of parallel data in this setting?

		Pseudo Parallel Corpus			Tı	rue Paral	lel Corp	us	
Pivot Many-to-1		1 k	10k	100k	1m	1k	10k	100k	1m
Single Dair Medela	Dev	_	_	_	_	_	_	11.25	21.32
Single-Pair Models	Test	_	_	_	-	-	_	10.43	20.35
√ No Finetur	ning	De	v: 20.64	, Test: 2	0.4		,	-	
	Dev	0.28	10.16	15.61	17.59	0.1	8.45	16.2	20.59
	Test	0.47	10.14	15.41	17.61	0.12	8.18	15.8	19.97

Johnson et al. 2016 (Google)

- Do we really need N encoders and N decoders?
- Can we just learn a single function parameterized by the desired output language?
 - Implementation: add a token indicating desired output language to input.
- Why is this a nice solution (for Google)?

Multi-source MT

Johnson et al. 2016 (Google)

Sanity check: must not make things worse.

Table 1: Many to One: BLEU scores on various data sets for single language pair and multilingual models.

Model	Single	Multi	Diff
WMT German→English (oversampling)	30.43	30.59	+0.16
WMT French→English (oversampling)	35.50	35.73	+0.23
WMT German→English (no oversampling)	30.43	30.54	+0.11
WMT French→English (no oversampling)	35.50	36.77	+0.27
Prod Japanese→English	23.41	23.87	+0.46
$\operatorname{Prod} \operatorname{Korean} \rightarrow \operatorname{English}$	25.42	25.47	+0.05
Prod Spanish→English	38.00	38.73	+0.73
Prod Portuguese→English	44.40	45.19	+0.79

Multi-target MT

Johnson et al. 2016 (Google)

Sanity check: must not make things worse.

Table 2: One to Many: BLEU scores on various data sets for single language pair and multilingual models.

Model	Single	Multi	Diff
WMT English→German (oversampling)	24.67	24.97	+0.30
WMT English→French (oversampling)	38.95	36.84	-2.11
WMT English→German (no oversampling)	24.67	22.61	-2.06
WMT English French (no oversampling)	38.95	38.16	-0.79
Prod English→Japanese	23.66	23.73	+0.07
Prod English→Korean	19.75	19.58	-0.17
Prod English→Spanish	34.50	35.40	+0.90
$\operatorname{Prod} \operatorname{English} \rightarrow \operatorname{Portuguese}$	38.40	38.63	+0.23

Johnson et al. 2016 (Google)

 Incremental training: add a small amount of (true) parallel data in the language pair of interest.

Table 5: Portuguese→Spanish BLEU scores using various models.

	Model	BLEU
(a)	PBMT bridged	28.99
(b)	NMT bridged	30.91
(c)	$NMT Pt \rightarrow Es$	31.50
(d)	Model 1 (Pt \rightarrow En, En \rightarrow Es)	21.62
(e)	Model 2 (En \leftrightarrow {Es, Pt})	24.75
(f)	Model 2 + incremental training	31.77

Johnson et al. 2016 (Google)

Table 6: BLEU scores for English↔{Belarusian, Russian, Ukrainian} models.

	Zero-Shot	From-Scratch	Incremental
English→Belarusian	16.85	17.03	16.99
English→Russian	22.21	22.03	21.92
$English \rightarrow Ukrainian$	18.16	17.75	18.27
$Belarusian \rightarrow English$	25.44	24.72	25.54
$Russian \rightarrow English$	28.36	27.90	28.46
$Ukrainian \rightarrow English$	28.60	28.51	28.58
$Belarusian \rightarrow Russian$	56.53	82.50	78.63
$Russian {\rightarrow} Belarusian$	58.75	72.06	70.01
$Russian \rightarrow Ukrainian$	21.92	25.75	25.34
$Ukrainian \rightarrow Russian$	16.73	30.53	29.92

trained on parallel data

Johnson et al. 2016 (Google)

Table 6: BLEU scores for English↔{Belarusian, Russian, Ukrainian} models.

	Zero-Shot	From-Scratch	Incremental
English→Belarusian	16.85	17.03	16.99
English→Russian	22.21	22.03	21.92
$English \rightarrow Ukrainian$	18.16	17.75	18.27
$Belarusian \rightarrow English$	25.44	24.72	25.54
Russian -> English	28.36	27.90	28.46
$Ukrainian \rightarrow English$	28.60	28.51	28.58
$Belarusian \rightarrow Russian$	56.53	82.50	78.63
$Russian \rightarrow Belarusian$	58.75	72.06	70.01
$Russian \rightarrow Ukrainian$	21.92	25.75	25.34
$Ukrainian \rightarrow Russian$	16.73	30.53	29.92

zero-shot + small parallel data

Johnson et al. 2016 (Google)

Table 6: BLEU scores for English↔{Belarusian, Russian, Ukrainian} models.

	Zero-Shot	From-Scratch	Incremental
English→Belarusian	16.85	17.03	16.99
English→Russian	22.21	22.03	21.92
English→Ukrainian	18.16	17.75	18.27
$Belarusian \rightarrow English$	25.44	24.72	25.54
$Russian \rightarrow English$	28.36	27.90	28.46
$Ukrainian \rightarrow English$	28.60	28.51	28.58
$Belarusian \rightarrow Russian$	56.53	82.50	78.63
$Russian {\rightarrow} Belarusian$	58.75	72.06	70.01
$Russian \rightarrow Ukrainian$	21.92	25.75	25.34
$Ukrainian \rightarrow Russian$	16.73	30.53	29.92

actual zero-shot experiment

Johnson et al. 2016 (Google)

Table 6: BLEU scores for English↔{Belarusian, Russian, Ukrainian} models.

	Zero-Shot	From-Scratch	Incremental
English→Belarusian	16.85	17.03	16.99
English→Russian	22.21	22.03	21.92
English→Ukrainian	18.16	17.75	18.27
$Belarusian \rightarrow English$	25.44	24.72	25.54
$Russian \rightarrow English$	28.36	27.90	28.46
$Ukrainian \rightarrow English$	28.60	28.51	28.58
$Belarusian \rightarrow Russian$	56.53	82.50	78.63
$Russian {\rightarrow} Belarusian$	58.75	72.06	70.01
$Russian \rightarrow Ukrainian$	21.92	25.75	25.34
$Ukrainian \rightarrow Russian$	16.73	30.53	29.92

actual zero-shot experiment

Johnson et al. 2016 (Google)

code-switching in the input language:

Japanese: 私は東京大学の学生です。 → I am a student at Tokyo University.

Korean: 나는 도쿄 대학의 학생입니다. → I am a student at Tokyo University.

Mixed Japanese/Korean: 私は東京大学학생입니다. → I am a student of Tokyo University

code-switching in the output language:

Spanish/Portuguese:	Here the other guinea-pig cheered, and was suppressed.
$w_{pt} = 0.00$	Aquí el otro conejillo de indias animó, y fue suprimido.
$w_{pt}=0.30$	Aquí el otro conejillo de indias animó, y fue suprimido.
$w_{pt}=0.40$	Aquí, o outro porquinho-da-índia alegrou, e foi suprimido.
$w_{pt} = 0.42$	Aqui o outro porquinho-da-índia alegrou, e foi suprimido.
$w_{pt} = 0.70$	Aqui o outro porquinho-da-índia alegrou, e foi suprimido.
$w_{pt} = 0.80$	Aqui a outra cobaia animou, e foi suprimida.
$w_{pt} = 1.00$	Aqui a outra cobaia animou, e foi suprimida.
$w_{pt} = 0.40 \ w_{pt} = 0.42 \ w_{pt} = 0.70 \ w_{pt} = 0.80$	Aquí o outro porquinho-da-índia alegrou, e foi suprimido. Aqui o outro porquinho-da-índia alegrou, e foi suprimido. Aqui o outro porquinho-da-índia alegrou, e foi suprimido. Aqui a outra cobaia animou, e foi suprimida.

Johnson et al. 2016 (Google)

Portuguese informant: "we decided it's impossible to judge the correctness of the translation without context (but it's likely wrong). After finding the context (Alice in Wonderland) we can conclude it's wrong."

code-switching in the output language:

Spanish/Portuguese:	Here the other guinea-pig cheered, and was suppressed.
$w_{pt} = 0.00$	Aquí el otro conejillo de indias animó, y fue suprimido.
$w_{pt}=0.30$	Aquí el otro conejillo de indias animó, y fue suprimido.
$w_{pt}=0.40$	Aquí, o outro porquinho-da-índia alegrou, e foi suprimido.
$w_{pt}=0.42$	Aqui o outro porquinho-da-índia alegrou, e foi suprimido.
$w_{pt}=0.70$	Aqui o outro porquinho-da-índia alegrou, e foi suprimido.
$w_{pt} = 0.80$	Aqui a outra cobaia animou, e foi suprimida.
$w_{pt} = 1.00$	Aqui a outra cobaia animou, e foi suprimida.

Johnson et al. 2016 (Google)

Portuguese informant: "we decided it's impossible to judge the correctness of the translation without context (but it's likely wrong). After finding the context (Alice in Wonderland) we can conclude it's wrong."

code-switching in the output language:

Spanish/Portuguese:	Here the other guinea-pig cheered, and was suppressed.
$w_{pt} = 0.00$	Aquí el otro conejillo de indias animó, y fue suprimido.
$w_{pt}=0.30$	Aquí el otro conejillo de indias animó, y fue suprimido.
$w_{pt}=0.40$	Aquí, o outro porquinho-da-índia alegrou, e foi suprimido.
$w_{pt}=0.42$	Aqui o outro porquinho-da-índia alegrou, e foi suprimido.
$w_{pt}=0.70$	Aqui o outro porquinho-da-índia alegrou, e foi suprimido.
$w_{pt} = 0.80$	Aqui a outra cobaia animou, e foi suprimida.
$w_{pt} = 1.00$	Aqui a outra cobaia animou, e foi suprimida.

Johnson et al. 2016 (Google)

Low-dimensional embeddings of context vectors

Johnson et al. 2016 (Google)

Low-dimensional embeddings of context vectors Provocative (untestable) claim: this is an interlingua