§2-2 **有理數與實數**

(甲)有理數

(1)自然數系 N 對於+× 是完備的,但對於減法則有缺憾,而整數系 Z 對於+× -是完備的,但是整數有除不盡的缺憾,我們因缺而補,在整數系外補上一切「除不盡」的有理數,擴大成爲有理數系 \mathbf{Q} ,故使得有理數系中對於+ - × ÷是完備的。

$$N \xrightarrow{\text{id} b \oplus \{\bullet \bullet \bullet -3, -2, -1,\}} Z \xrightarrow{\text{id} b \oplus T} Q$$

(2)有理數(Q)的形式:凡是能表成形如 $\frac{a}{b}$ 的數,其中 a,b 是整數,且 $b\neq 0$ 。 即 Q={ $\frac{a}{b}$ | a,b 是整數,且 $b\neq 0$ }

- (3)有理數的性質:
 - (a)a,b,c,d 為整數, $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$
 - (b)整數系的基本運算性質(結合律、交換律、分配律、消去律)及大小次序性質(三一律、遞移律、乘法律)在有理數中照樣成立。
 - (c)有理數與整數的差異:

有理數的稠密性:若設r,s 為有理數且r<s,則存在一有理數t 使得r<t<s。

整數的離散性: 設p,q 為兩相異整數,則p-q/≥1。

(4)有理數的作圖:

在數線上,我們可用直尺圓規作出一有理數 $\frac{m}{n}$ 所對應的點。

例如:在數線上作出 $\frac{3}{4}$ 所代表的點。

[例題1] 整數離散性的應用

- (1)設a,b∈Z, 若|a-1|+5|b-3|=4, 求a,b之値。
- (2)設 $a,b,c \in \mathbb{Z}$,且 $3|a-4|+4(b-2)^2+\sqrt{(c-1)^2}=2$,求a,b,c之值。

Ans: (1)a=5 或-3, b=3 (2)a=4,b=2,c=3 或-1

[**例題2**] (1)將<u>21</u>化爲小數。

(2)將 $\frac{5}{13}$ 化爲小數後,小數點後第 2000 位數字是多少?

Ans: (1)1.75 (2)8

[**例題3**] 設數線上相異二點 A,B 的坐標分別爲 α , β ,且 α < β ,今在 A,B 之間取一點 P,使 \overline{AP} : \overline{BP} = m:n,m,n \in N,則 P 點的坐標爲何?Ans: $\frac{m\beta+n\alpha}{m+n}$

[**例題4**] 設 a,b 為有理數,且 a < b

- (1)試證明: $a < \frac{ma + nb}{m + n} < b$ 。
- (2)根據(1)的結果,試問有多少個有理數解於a,b之間。

- (練習1) 設 a,b,c 為整數,且 3|a+1/+2/b-3/+/c+4|=2,求 a,b,c 之值。 Ans:a=-1,b=3,c=-2 或-6; a=-1,b=2 或 4,c=-4
- (練習2) 下列何者可化爲有限小數? $(A)\frac{283}{350} (B)\frac{63}{128} (C)\frac{147}{168\times125} (D)\frac{149}{21\times40} (E)\frac{56}{25^9} \circ Ans: (B)(C)(E)$
- (練習3) 設 A,B,P 在數線上之坐標分別為-7,5,x,且 $\overline{AP} = \frac{3}{5}\overline{BP}$,求 x 之值。 Ans:x=-25 或 $-\frac{5}{2}$
- (練習4) 設 a,b 為有理數, 且 a < b,則下列敘述何者為真? $(A)a < \frac{a+b}{2} < b(B)a < \frac{a+b}{3} < b(C)a < \frac{2a+b}{3} < \frac{a+2b}{3} < b$ (D) $a < \frac{3a+b}{4} < \frac{a+3b}{4} < b$ (E) $a < \frac{2a+2b}{5} < \frac{a+3b}{5} < b$ Ans: (A)(C)(D)
- (練習5) 一最簡分數,分子與分母之差爲 7,將其化爲小數,並四捨五入得 0.5, 則此分數爲何? $Ans:\frac{6}{13}$ 或 $\frac{8}{15}$

(**8**) 震變實(**8**)

 $(1)\sqrt{n}$ 的作圖:

(作法): $\overline{\text{NC}}=1,\overline{\text{BC}}=n$, 以 $\overline{\text{AB}}$ 長爲直徑作一半圓,過 C 點作垂直線交半

圓於 D,則 $\overline{CD} = \sqrt{n}$,即爲所求。

(證明):

(2)證明√2 不爲有理數。

(3)有理點不能填滿數線:雖然數線上的有理點是稠密的,即兩個有理點之間 有無限多個有理點存在,似乎稠密得擁擠不堪,但由(1)我們可以作出代表√2 的點,由(2)之證明可知這個點不是有理點,換句話說,有理點並沒有將數 線佔滿,數線還有留白,爲了方便起見,在數線上非有理點所代表的數稱 爲「無理數」。

即無理數所代表的點為數線上不能表示成分數的點。

- (4)無理數有多少? $\sqrt{2}$ 雖然是一個無理數,但是無理數並非只有 $\sqrt{2}$ 一個,還有 $\sqrt{3}$, $\sqrt{5}$,..., \sqrt{p} (p 爲質數), $\sqrt[3]{2}$, $\sqrt[3]{3}$...而這些無理數有無限多個,其中有些可用尺規作圖,有些則不能。
- (5)**實數系**:對應數線上的點不是代表有理數,就是無理數,而有理數補上了無理數之後就稱爲「實數系」。因此,每一個實數在數線上都有唯一一個點與之對應,反過來說,數線上每一個點都對應唯一一個實數。
- (6) 實數系中的基本運算性質與有理數系同。

實數的大小次序:

設 x,y,z 均爲實數,則

- (a)下列三式恰有一成立:x>y, x=y, x<y (三一律)
- (b)若 x<y,y<z,則 x<z。
- $(c)x < y \Leftrightarrow x + z < y + z$
- (d)若z>0,則 $x<y\Leftrightarrow xz<yz$ 。
- (e)若 z<0,則 x<y \Leftrightarrow xz>yz。
- (7)實數系的家譜:

[**例題5**] 證明: $(1)\sqrt{3}$ 爲無理數。 $(2)5+\sqrt{3}$ 爲無理數。 $(3)\sqrt{2}+\sqrt{3}$ 爲無理數。

[例題6] 試做下列二小題:

設 a,b,c,d 爲有理數,而 \sqrt{d},\sqrt{b} 爲無理數, 試證: $a+\sqrt{b}=c+\sqrt{d}$ ⇔ a=c 且 b=d

- (練習6) 若 a,b 爲任意無理數,c 爲任意有理數,則下列敘述何者是正確的? (A)a+b是無理數(B)ab是無理數(C)a+c爲無理數(D)cb 爲無理數(E)a+b 與 ab 至少有一是無理數。Ans:(C)
- (練習7) 已知 $\sqrt{2}$ 爲無理數,試證明: $(1)\frac{\sqrt{2}}{5}$ $(2)\sqrt{2}$ + $\sqrt{7}$ 爲無理數。
- (練習8) 若 n 爲任意自然數,試證明: $(1)n < \sqrt{n(n+1)} < n+1 \quad (2) \ \sqrt{n(n+1)} \ 爲無理數。$
- (練習9) 設 a,b 為有理數, $(2+\sqrt{3})a+(1-\sqrt{3})b=7-\sqrt{3}$,則 a+b=? Ans: 5

- (8)實數的絕對值
- (a)定義:在數線上,設原點O(0),A(a),B(b),則

 \overline{OA} =_____ , \overline{AB} =_____ \circ

(b)性質:

1. $-|a| \le a \le |a|$ 2. $|a+b| \le |a| + |b|$ (等號成立会

3.|ab|=|a||b| $|\frac{a}{b}|=\frac{|a|}{|b|}$ $4.\sqrt{a^2}=|a|$ $5.|a|^2=a^2$

(c)推廣:設 $x \in \mathbf{R}, a \ge 0, b \ge 0$

 $1.|x|=a \Leftrightarrow x=\pm a$ $2.|x| \le a \Leftrightarrow -a \le x \le a$ $3.|x| \ge a \Leftrightarrow x \ge a \Rightarrow x \le -a$

(d)絕對值的幾何意義:|x| 代表數線上代表x的點到原點的距離。

例:1.|x|=1 \Rightarrow 2.|x|<2 \Rightarrow

 $3.|x|>3 \Rightarrow$

)

4. $2 < |x| < 3 \Rightarrow$

[**例題7**] 設 *a,b* 爲實數,試證:

 $(1)-|a| \le a \le |a| \qquad (2)|ab| = |a||b| \qquad (3) |\frac{a}{b}| = \frac{|a|}{|b|} \quad (b \ne 0)$

[**例題8**] 設 a,b 為兩實數,請證明: $||a|-|b|| \le |a\pm b| \le |a|+|b|$

[例題9] 求下列絕對值不等式的解:

 $(1)|x-2| \ge 3$ $(2)|2x+3| \le 5$ $(3)|x-1| \ge |x+2|$

Ans : (1) $x \ge 5$ 或 $x \le -1$ (2) $-4 \le x \le 1$ (3) $x \le \frac{-1}{2}$

[例題10] (1)若|ax+1| $\leq b$ 之解爲 $-1\leq x\leq 5$,求 a,b 之値。Ans: $a=\frac{-1}{2},b=\frac{3}{2}$ (2)若|ax-2| $\geq b$ 之解爲 $x\leq 0$ 或 $x\geq \frac{4}{3}$,求實數 a,b。Ans:a=3,b=2

[**例題**11] 設 $2 \le x \le 5$, $-1 \le y \le 3$,求下列各式的範圍。

$$(1)x+2y$$
 $(2)2x-y$ $(3)xy$ $(4)\frac{1}{x}$ $(5)\frac{y}{x}$ °

Ans: $(1)0 \le x + 2y \le 11$ $(2)1 \le 2x - y \le 11$ $(3) - 5 \le xy \le 15$ $(4)\frac{1}{5} \le \frac{1}{x} \le \frac{1}{2}$ $(5)\frac{-1}{2} \le \frac{y}{x} \le \frac{3}{2}$

(練習10) 解下列不等式:

$$(1)|x-1| \ge |2x+3|$$
 $(2)|x-1|+|x-2| < 3$

Ans:
$$(1) -4 \le x \le \frac{-2}{3}$$
 $(2) 0 < x < 3$

(練習11) 解方程式: |x+3|+|2x-5|=10。 Ans: x=4 或-2

(練習12) 設 $x \in \mathbb{R}$,且滿足 $3 \le |x+1| < 5$,則 x 的範圍爲_____。

(練習13) 若|ax+3|≤b 之解爲-3≤x≤7,則 a=?b=?

Ans:
$$a = \frac{-3}{2}$$
, $b = \frac{15}{2}$

(練習14) 方程式 $|2x-a| \le b$ 之解爲 $-2 \le x \le 5$,則 a = ? b = ? Ans: a = 3,b = 7

(練習15) 設 x, $y \in \mathbb{R}$,且 $|x+1| \le 3$, $|y-2| \le 1$,試求

(1)
$$2x+y$$
 (2) xy (3) $x-3y$ (4) $\frac{1}{y}$ 的範圍。

Ans:
$$(1)-7 \le 2x+y \le 7$$
 $(2)-12 \le xy \le 6$ $(3)-13 \le x-3y \le -1$ $(4)\frac{1}{3} \le \frac{1}{y} \le 1$

二重方根的化簡:

可以化簡的形式:

設 *p*,*q* 爲正數:

$$\sqrt{p+q+2\sqrt{pq}} = \sqrt{(\sqrt{p}+\sqrt{q})^2} = \sqrt{p} + \sqrt{q}$$

$$\sqrt{p+q-2\sqrt{pq}} = \sqrt{(\sqrt{p}-\sqrt{q})^2} = |\sqrt{p} - \sqrt{q}|$$

[**例題12**] 設
$$a=\sqrt{41-2\sqrt{180}}$$
, b 爲 a 的純小數部份,則 $\frac{a}{4}+\frac{1}{b}=?$ Ans: $\frac{9}{4}$

(練習16) 設
$$a=\sqrt{17-12\sqrt{2}}$$
, b 為 a 之整數部分,則 $\frac{9}{b-3}+\frac{15-5a}{2}=?$ Ans: $-3+5\sqrt{2}$

綜合練習

- (1) 下列敘述那些是正確的?
 - (A)若 a,b,a-b 均為無理數,則 a+b 為無理數。
 - (B)若 $a,b,\frac{a}{b}$ 均爲無理數,則ab爲無理數。
 - (C)若 a+b,b+c,c+a 均爲有理數,則 a+b+c 爲有理數。
 - (D)設 a,b 均爲有理數,且 $ab\neq$,則 $a+b\sqrt{3}\neq 0$ 。
 - (E)可以找到兩個無理數 a,b, 使得 $\frac{a}{b}$ 爲無理數,且 ab 爲有理數。
- (2) 設 a,b,c,d 為實數,且 a < b, c < d,則下列何者成立?

$$\text{(A)} a < \frac{2a + 5b}{7} < b \quad \text{(B)} \frac{b}{a} < \frac{b + c}{a + c} < \frac{b + d}{a + d} \quad \text{(C)} \frac{a}{b} > \frac{a + d}{b + d} > \frac{a + c}{b + c} \quad \text{(D)} \stackrel{\text{#}}{\rightleftarrows} \frac{b}{a} < \frac{d}{c} \; , \; \text{[I]} \; \frac{b}{a} < \frac{b + d}{a + c} < \frac{d}{c} \; \circ \\ \text{(E)} a < \frac{4a + 5b}{7} < b \; \circ \;$$

- (3) 設 $a,b,c,d \in \mathbb{R}$,則下列何者成立?
 - (A)a>b, $c>d \Rightarrow a+c>b+d$
 - (B) a>b, $c>d \Rightarrow a-c>b-d$
 - (C)a>b>0, $c>d>0 \Rightarrow ac>bd$
 - (D) a>b>0, $c< d<0 \Rightarrow ac< bd$
 - (E)a>b>0, $c>d \Rightarrow ac>bd$
- (4) 設 a,b,c 爲異於 0 之有理數,試證明 $\frac{a\sqrt{2}}{b+c}$ 爲無理數。
- (5) (a) 設n 爲整數,若 n^2 爲 3 的倍數,則n也是 3 的倍數。
 - (b)利用(a)的結果,證明 $\sqrt{3}$ 爲無理數。
 - (c)證明: 2+√3 爲無理數。
 - (d)證明: $\frac{\sqrt{3}}{2}$ 爲無理數。

(6)
$$\sqrt{11-\sqrt{72}} = a+b$$
,其中 $a \in \mathbb{N}$,0 $\leq b < 1$,求 $\frac{1}{a-b} + b$ 之値。

- (7) 設x,y,z 爲整數,試解下列各方程式:
 - (a)|x+2|+2|y|=3
 - (b)3|x+1|+2|y-2|+|z-1|=1
- (8) 設x爲有理數,且 $(x^2-1)+(x^2-2x-3)\sqrt{5}=0$,則x=____。
- (9) 設 A={x||x-a|≤2}, B={x||x-3|≤5}, 若 A⊂B, 求實數 a 之範圍。
- (10) 若 $|-2a+1| \le 3$, $|b-8| \le 1$,則求(a)a+b $(b)\frac{a}{b}$ 的範圍。
- (11) 不等式 $|ax+2| \le b$,的解爲 $-2 \le x \le 6$,則a=?b=?

- (12) 試求不等式 5<|2x-1|<33。
- (13) 試解方程式|x+3|+|2x-5|=10。
- (14) 設 a,b,c 爲實數,利用 $|a|+|b|\ge|a+b|$ 求出 y=|x+2|+|x-5|的最小值,並問此時 x 的範圍。

進階問題

- (15) 試證明: $\sqrt[3]{2} + \sqrt{3}$ 為無理數。
- (16) 設 a,b 為實數,且|a|<1,|b|<1,試證|a+b|+|a-b|<2。
- (17) 實數a之小數部分爲b,若 $a^2+b^2=38$,求a+b=?
- (18) 一個最簡分數,其分子、分母之和為 70,將其化成小數並四捨五入後為 0.6, 求此分數。
- (19) 下列敘述那些是正確的?
 - (A)若 $a^3 \in Q \mid a^6 \in Q$,則 $a \in Q$ 。
 - (B) 若 $a^3 \in Q \mid a^5 \in Q$,則 $a \in Q$ 。
 - (C)若a,b為無理數,則a+b為無理數。
 - (D)若a為有理數,b為無理數,則ab為無理數。
 - $(E)a,b\in R$, $a+b\in Q$, $ab\notin Q \Rightarrow a-b\notin Q$
- (20) 若 $\sqrt{9+4\sqrt{4+2\sqrt{3}}}$ 的整數部分爲 a , 小數部分爲 b , 求 b=?
- (21) 設 $x = \frac{2a}{1+a^2}$ (a>0), $y = \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}$,試就 a 的値的大小,討論 y 値(以 a 表示)。
- (22) 設 a,b,c 為實數,且|a|<1,|b|<1,|c|<1,試證: (a)ab+1>a+b (b)abc+2>a+b+c
- (23) 設 a,b 為實數,試證明: $\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$ 。

綜合練習解答

- (1) (B)(C)(D)(E)
- (2) (A)(B)(D)
- (3) (A)(C)(D)
- (4) 利用反證法
- (5) 仿照例題 5 的證法
- **(6)** 3
- (7) (a) $(x,y)=(-1,1) \cdot (-1,-1) \cdot (-3,1) \cdot (-3,-1) \cdot (1,0) \cdot (-5,0) \cdot (b)(x,y,z)=(-1,2,0) \cdot (-1,2,2)$
- (8) -1
- (9) $0 \le a \le 6$
- (10) $6 \le a + b \le 11$ $\frac{-1}{7} \le \frac{a}{b} \le \frac{2}{7}$
- (11) a=-1, b=4
- (12) 3 < x < 17 或-16 < x < -2
- (13) x=4 或-2

- (14) 最小值=7,此時-2≤x≤5
- (16) 提示:去證明(|a+b|)²<(2-|a-b|)²會成立。
- (17) $2\sqrt{10}$ [提示: $0 < b < 1 \Rightarrow 0 < b^2 < 1 \Rightarrow a^2 + 0 < a^2 + b^2 < a^2 + 1 \Rightarrow a^2 < 38 < a^2 + 1$, ∴ a的 整數爲 6,再令a = 6 + b,代入 $a^2 + b^2 = 38$,求b]
- (18) $\frac{23}{47}$
- (19) (B)[提示:(A)反例 $a=\sqrt[3]{2}$,(B) $a=\frac{(a^3)^2}{a^5}$ 爲有理數]
- (20) $2\sqrt{3} -3$
- (21) a>1 時, $y=\frac{1}{a}$; $0< a \le 1$ 時,y=a
- (22) (b)利用(a)的結果, (ab)c+1+1>ab+c+1=ab+1+c>a+b+c
- (23) 提示: $\frac{|a+b|}{1+|a+b|} = 1 \frac{1}{1+|a+b|} \le 1 \frac{1}{1+|a|+|b|} = \frac{|a|+|b|}{1+|a|+|b|}$, 再證明 $\frac{|a|+|b|}{1+|a|+|b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$ 。