Apresentação da disciplina

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

05 de outubro de 2017

Plano de Aula

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Professor

Formação

Bacharel em Sistemas de Informação Mestre em Representação Conhecimento (IA)

Quem?

Esdras Lins Bispo Junior Recife, Pernambuco.

Professor

- Esdras Lins Bispo Jr.
- bispojr@ufg.br
- Sala 18, 1° Andar (Bloco Novo dos Professores)

Disciplina

- Teoria da Computação
- 13h30-15h10 (Quarta, [CA2, Sala 10])
 07h30-09h10 (Quinta, [CA2, Sala 10])
- Dúvidas: 09h30 11h00 (Segunda)
 [é necessário confirmação comigo]
- Grupo: facebook.com/groups/teocomp.rej.2017.2/
- Repositório: github.com/bispojr/teoria-computacao

Metodologia

- Aulas expositivas utilizando quadro negro (ou branco) e DataShow;
- Atendimento individual ou em grupos;
- Aplicação de listas de exercícios;
- Aplicação de atividades utilizando o Canvas AVA (Ambiente Virtual de Aprendizagem);
- Tempo de Aula: 50 minutos.

Mini-Testes

- $MT_1 \Rightarrow 20\%$ da pontuação total;
- MT₂ ⇒ 20% da pontuação total;
- MT₃ ⇒ 20% da pontuação total;
- $MT_4 \Rightarrow 20\%$ da pontuação total.

Mini-Testes

- MT₁ ⇒ 20% da pontuação total;
- MT₂ ⇒ 20% da pontuação total;
- MT₃ ⇒ 20% da pontuação total;
- MT₄ ⇒ 20% da pontuação total.

Exercícios-Bônus (EB)

Serão propostos EBs, durante toda a disciplina.

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

- o SMT $_1$ (referente ao MT $_1$), e
- o SMT₂ (referente ao MT₂).

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

- o SMT_1 (referente ao MT_1), e
- o SMT_2 (referente ao MT_2).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

- o SMT $_1$ (referente ao MT $_1$), e
- o SMT₂ (referente ao MT₂).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

- o SMT₃ (referente ao MT₃), e
- o SMT₄ (referente ao MT₄).

Exercícios-Bônus

 Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;
 - Respondeu a um EB;

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;
 - Respondeu a um EB;
 - Respondeu a dois EBs;

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;
 - Respondeu a um EB;
 - Respondeu a dois EBs;
 - e assim por diante.

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;
 - Respondeu a um EB;
 - Respondeu a dois EBs;
 - e assim por diante.
- Haverá sorteio entre candidatos dentro da mesma prioridade;

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;
 - Respondeu a um EB;
 - Respondeu a dois EBs;
 - e assim por diante.
- Haverá sorteio entre candidatos dentro da mesma prioridade;
- Uma semana após, o candidato apresentará a sua resposta [texto escrito e slides] (normalmente na quinta, 09h30).

Avaliação

Média Final

O cálculo da média final será dada da seguinte forma:

• MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

PONT =
$$\left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0, 2 + EB$$

Avaliação

Média Final

O cálculo da média final será dada da seguinte forma:

MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

$$PONT = \left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0, 2 + EB$$

Previsão de Término das Atividades

07 de março de 2018

Como será?

Os alunos que estiverem entre as 3 melhores notas de cada avaliação receberão um distintivo digital.

Como será?

Os alunos que estiverem entre as 3 melhores notas de cada avaliação receberão um distintivo digital.

Quantos distintivos existem?

- Top One
- Top Two
- Top Three

Obter a 3ª melhor nota da turma em uma avaliação.

Obter a 2ª melhor nota da turma em uma avaliação.

Obter a melhor nota da turma em uma avaliação.

Pontuação

- Obter um Top One: 10 pontos;
- Obter um Top Two: 8 pontos;
- Obter um Top Three: 6 pontos.

Pontuação

- Obter um Top One: 10 pontos;
- Obter um Top Two: 8 pontos;
- Obter um Top Three: 6 pontos.

Na Prova Final...

Os três primeiros que obtiverem maior pontuação, nos quatro testes, ganharão medalhas.

Pontuação

- Obter um Top One: 10 pontos;
- Obter um Top Two: 8 pontos;
- Obter um Top Three: 6 pontos.

Na Prova Final...

Os três primeiros que obtiverem maior pontuação, nos quatro testes, ganharão medalhas.

Por que estamos usando distintivos digitais?

Pode aumentar a motivação dos alunos;

Pontuação

- Obter um Top One: 10 pontos;
- Obter um Top Two: 8 pontos;
- Obter um Top Three: 6 pontos.

Na Prova Final...

Os três primeiros que obtiverem maior pontuação, nos quatro testes, ganharão medalhas.

Por que estamos usando distintivos digitais?

Pode aumentar a motivação dos alunos;
 (Estou pesquisando para saber se isto é verdade...)

Conteúdo do Curso

- Introdução à Teoria da Computação;
- Modelos de Computação;
- Problemas decidíveis;
- Problemas indecidíveis;
- Complexidade de tempo;
- NP-Completude;
- Tópicos Avançados.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Pensamento

Pensamento,

Frase

Os limites do meu conhecimento são os limites do meu mundo.

Quem?

Ludwig Wittgenstein (1889-1951) Filósofo austríaco.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Pode ser dividida em três grandes áreas:

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.

Pode ser dividida em três grandes áreas:

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.

São interligadas pela pergunta:

Quais são as capacidades e limitações fundamentais dos computadores?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria da Computabilidade

O que faz alguns problemas serem solúveis e outros não?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria da Computabilidade

O que faz alguns problemas serem solúveis e outros não?

Teoria da Complexidade

O que faz alguns problemas serem computacionalmente difíceis e outros fáceis?

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\};$
- Fragilidades: não reconhecem linguagens como $A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\};$
- Fragilidades: não reconhecem linguagens como $A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Portanto são bem restritos para servir de modelo de computadores de propósito geral.

Máquinas de Turing (MT)

• Modelo mais poderoso que GLCs e AFDs;

Máquinas de Turing (MT)

- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;

Máquinas de Turing (MT)

- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;
- Características importantes:
 - faz tudo o que um computador real pode fazer;
 - existem certos problemas que uma MT não pode resolver.

Apresentação da disciplina

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

05 de outubro de 2017

