Summary of Track 3: Data Analysis and Visualisation

Lucas Taylor Northeastern University, Boston

Outline:

Topics and program

Session 1: Architecture and Frameworks

Session 2: Experiments' Analysis Environments

Session 3: Generic Analysis Tools

Impressions, trends, and platitudes...

- Spawned reconstruction session ⇒Track 5
- Extensive Poster Session (~ 20 papers)
- Cancelled: 3-047, 3-049, 3-051, 3-074

Architecture and Frameworks

(Session 1, Monday PM)

Outline:

Topics and program

Session 1: Architecture and Frameworks

Session 2: Experiments' Analysis Environments

Session 3: Generic Analysis Tools

Impressions, trends, and platitudes...

The ALICE Offline framework, status and perspectives (Federico Carminati)

- ALICE heavy ions at LHC
 - ❖ Will need to write data at 1.25GB/s to tape
- AliROOT: C++ framework based on ROOT
 - ❖ Virtual MC interface: GEANT3, GEANT4, Fluka
 - Need a common geometrical modeler
 - ❖ Whiteboard & "Alien" distributed file catalog (SQL,SOAP)[©]
- Testing approach with data challenges
 - ❖ DATE+ROOT+CASTOR : 120 MB/s, <85> MB/s
 - ❖ 110 TB written into CASTOR tape system
- DataGrid and ROOT: working on PROOF

Status of the GAUDI eventprocessing framework (Pere Mato)

- Initially LHCb, now also ATLAS ("Athena")
 - Also used by GLAST and HARP
- Architecture-centric; emphasizes interfaces
 - Separates: "Data-handling" and "algorithms"
 - Separates: "Transient" and "persistent" representations
- Many new and improved services
 - Resource monitoring; dynamic-loading, Histo / Ntuple persistency, scripting (with Python) [3-065]
 - ♦ Object Definition Language for automatic code generation introspection, ... XML (LHCb), IDL (ATLAS) [4-051]
 - Integration with GEANT4 [5-009]
- Plan: "Grid-capable" not "Grid-dependent"

IGUANA Open Architecture (Lassi Tuura)

Software Development

Data **Browser**

Event Display

GEANT4 browser

IGUANA components [3-040]

Analysis Tools

Network **Services**

Reconstruction

Simulation

Visualization

Tools

Persistency **Services**

Distributed Data Store

Batch Services

File

File

- ❖Thin portability layer
- ❖Tiny kernel
- ❖ Variety of plug-ins ➤ Application personalities (drivers) ➤ Session and application extensions ➤ Browsers and sites

 - ➤ Data models and representations

IGUANA example: Interactive GEANT4 Browser

The PHENIX Offline Computing System (Martin Purschke)

- Heavy ions at RHIC (109 Au+Au evt/yr)
 - Running experiment! 20 MB/sec for few months / year
- ROOT-based C++ framework
 - * Raw data in PHENIX (PRDF) format
 - Objectivity as main archival DB
 - ❖ ROOT DST's "wrapped" with templated accessors
- Large computing facility
 - ♦ 1.2 PB capacity in HPSS STK silos ("data carousel" model)
 - ❖ 40 TB RAID and 1200 CPU's
- Year 1 data analyzed (QM'01, publications)
 - Year 2 data: gearing up for production

A new OO physics analysis framework for the H1 experiment (Ursula Berthon)

- H1 running until ~2006 (shutdown '99/'00)
 - ❖ 6 TByte / year (50 million raw events / year)
- Implemented new (ROOT-based) framework
 - Exploiting established f77 code
 - ❖ Able to read legacy H1 data format
- A number of extensions to ROOT required
 - + H1Tree: treatment of parallel trees
 - + H1Pointer: persistent relations across files
 - RunCatalog: file/event handling (mySQL)

SND offline framework (Dmitry Bukin)

- VEPP e+e- φ-factory is upgrading
 - energy and luminosity
 - software to OO

- New C++ framework
 - Transient / persistent data separation
 - SWI G-generated Python interface (and perl)

Experiments' Analysis Environments

(Session 2, Tuesday PM)

Outline:

Topics and program

Session 1: Architecture and Frameworks

Session 2: Experiments' Analysis Environments

Session 3: Generic Analysis Tools

Impressions, trends, and platitudes...

CMS Object-Oriented Analysis (Stephan Wynhoff)

- LHC beam in 2006 but already a large effort

 - CERN, I taly, Russia, UK, USA,...
 - ❖ ~ 500 CPUs
- 50 Tbyte in Objectivity
 - Actively read for analysis
 - Integrated tape systems (CASTOR and ENSTORE)
 - Objectivity performing well
- Interactive analysis
 - ❖ PAW, ROOT, Anaphe/Lizard, I GUANA...
- Active use and development of GRID tools:

[10-051, 10-052, 10-053]

The BES III Offline Analysis Software and Computing Environment (Mao Zepu)

- BES III: expects ~400 TByte/year
 - Sum of: raw, reconstructed, and simulated data
- New OO/C++ framework and environment
 - ❖ Backwards-compatible with BESII software
 - GEANT4 / CERN SW for simulation/analysis
- New computing system at IHEP, Beijing
 - ❖ 500 TByte / year tape system and 25T Byte disk
 - ❖ 36,000 MIPS of CPU (PC farm)

Multithreaded Inter-Task Communication with ROOT — the Go4 TaskHandler (Joern Adamczewski)

Go4 developed for continuous analysis in GSI experiments

Analysis and GUI are separate tasks

- Non-blocking GUI
- Continuous analysis

http://go4.gsi.de
(and a nice "viewlet" movie)

Need multi-threading

ROOT not thread-safe

Prototype for a Generic Thin-Client Remote Analysis Environment for CMS (Conrad Steenberg)

- Data server of histograms/tags (Clarens)
 - standalone process or CGI process in web server
- Client for remote analysis
 - Java (JAS) for analysis/histogramming of tags
 - Python analysis (using Lizard)
- Communication based on XML-RPC over http
 - currently transfers histograms and tags
- GRID tools foreseen
 - GSI authentication and data-moving (Globus)

http://heppc22.hep.caltech.edu

Distributed Analysis with Java & Objectivity (Jeremiah Mans)

- Resource discovery
- Brokering (job-to-data)
- Execution (sandbox)
- Result merging

http://flywheel.princeton.edu/BlueOx

Linear Collider Detector Analysis using JAS & ROOT (Norman Graf)

- Full suite of OO tools (C++ and Java)
 - Simulation, Reconstruction & Analysis
- Newcomers generally prefer JAS / Java
 - Easier to get started
 - Extensible using plug-ins (FreeHEP)
 - Integrated analysis and development environment
 - Natural support for client-server remote analysis
- See also:
 - FreeHep Java Library [8-017]
 - Java Analysis Studio 3.0 [3-022]
 - ❖ LCD Full Simulation & Reconstruction [3-029]

http://www-sldnt.slac.stanford.edu/nld

Generic Analysis and Visualisation Tools

(Session 3, Wednesday PM)

Outline:

Topics and program

Session 1: Architecture and Frameworks

Session 2: Experiments' Analysis Environments

Session 3: Generic Analysis Tools

Impressions, trends, and platitudes...

Summary of the HEPVis'01 Workshop (George Alverson)

- Initially visualisation; now also analysis tools
- Common software efforts
 - HEPVis (OpenInventor extensions; C++)
 - AIDA (Abstract Interfaces for Data Analysis)
 - FreeHEP (HEP related software; mostly-Java)
- I will not try to (recursively) summarise

 * sorry George...
- ...but I have shamelessly plagiarised!
 - thanks George

Data Visualization and Graphics in ROOT (Fons Rademakers)

- Clear message: lots of graphics functionality!
- Quasi-in-house graphical user interface
 - Functionally quite good (but little documentation)
 - ❖ Go4 extension: can use ROOT with free Qt toolkit
- Rich canvases and many 2D primitives
- Rather basic in-house 3D
 - But a virtual interface to OpenGL exists
- Technically could migrate to modern graphics packages (e.g. Qt, OpenGL, OpenInventor...)
 - ❖ But it would take quite some work

See also: 3-070, 3-075, 4-028, 7-013, 8-051, 10-021

Data Visualization and Graphics in ROOT (Fons Rademakers)

Abstract Interfaces for Data Analysis -Component Architecture for Data Analysis Tools (Andreas Pfeiffer)

AIDA defines abstract interfaces for common physics analysis tools

- No interference with user code
- Minimizes component coupling
- Choice of implementations
- Replacement of components
- Who uses AIDA?
 - Anaphe / Lizard (next slide)
 - IGUANA (CMS visualization)
 - ❖ GAUDI (LHCB) framework
 - ♦ ATHENA (Atlas) framework
 - Analyzer modules in Geant 4
 - ◆ JAS
 - Open Scientist
 - Conspicuously absent: ROOT, Hippodraw

Anaphe - OO Libraries and Tools for Data Analysis (Jakub Moscicki)

- OO replacement of CERNLIB (was "LHC++")
- Full range of (AIDA-compliant) packages
 - Still improving, especially Lizard analysis tool

Data Analysis	Lizard - AIDA
Custom graphics (2-D)	Qt - Qplotter
Basic graphics (3-D)	OpenInventor - OpenGL
Basic math	NAG C
HEP foundation	CLHEP
HEP math	FML - Gemini - CLHEP
Histograms	HTL
Database	HepODBMS
Persistency	ODMG/Objectivity DB
C++	Standard Libraries

Not "all or nothing"

If you don't want some bit (e.g. Objectivity) you can still use the rest of it

Anaphe - OO Libraries and Tools for Data Analysis (Jakub Moscicki)

Lucas Taylor,

The IGUANA Interactive Graphics Toolkit with Examples from CMS and D0 (lanna Osborne)

C++ event display tools (used: CMS, DQ,L3...)

GEANT3 and GEANT4 browsers

components are now free

See also: "I GUANA Open Architecture" [3-039]

IGUANA free from:

http://iguana.cern.ch

Java Analysis Studio (JAS) 3.0 (Norman Graf)

- Rich GUI and well-integrated environment
 - Built in editor / compiler
- Designed to be easily extended
 - Plug-ins and Data Interface Modules (DI M's)
- New for the (AIDA-compliant) JAS 3.0:
 - Scripting (probably) using Jython
 - Improved plug-in handling (in FreeHEP)
 - New DIM to read ROOT files (version ≥ 3.0)
 - * tuple explorer plug-in: PAW, ROOT, SQL, & ASCII files
- Local and Client-Server Operation
 - Prototype system for distributing analysis on a farm
 - ❖ Future: integrate with GRID services (with e.g. "BlueOx")
 - > Authentification, data catalog, resource locator,...

Java Analysis Studio (JAS) 3.0 (Norman Graf)

Impressions, Trends and Platitudes

An attempt to objectively summarise - not intended to offend

Outline:

Topics and program

Session 1: Architecture and Frameworks

Session 2: Experiments' Analysis Environments

Session 3: Generic Analysis Tools

Impressions, trends, and platitudes...

Conspicuous by their absence

- No mention of commercial integrated analysis and visualisation systems
 - AVS Express, IDL, IRIS Explorer...assume dead for HEP
- Graphics performance not mentioned
 - Moore's law is doing its job ?
- Virtual reality
 - not useful? too expensive? just a passing fad?
- 📕 No talks by IT groups at: FNAL, DESY, KEK, ... 🖫 🗟
 - ❖ Is it significant? Quite a few from CERN and SLAC

Alive and well but simply not presented here

- CMS "COBRA" framework
- OpenScientist OnX/Lab packages
- WI RED event display

Some Personal Disappointments

- Generic analysis tools: duplicated effort
 - Anaphe / Lizard, HippoDraw, JAS, OnX/Lab, ROOT,.
- ROOT: well-used and very functional ...but...
 - Schizophrenic... am I a framework? a persistency mechanism? an analysis toolkit? a graphics library?
 - No plans to make ROOT AI DA-compliant
 - Hope: split ROOT into loosely-coupled "ROOT-lets"
 - > Framework, persistency, CINT,...
 - > Histograms, fitting, functions,...
 - > GUI, 2D graphics,3D graphics,...
- Disturbing: software quality barely mentioned
 - ❖ Can we believe the handful of Higgs in ~109 evts/yr?
 - Modularity in design...can it be verified /quantified?

"Ignominy" Tool to Quantify Modularity

Favourable Developments

- Acceptance of collaborating frameworks rather than a single all-powerful framework
- DIM's for reading ROOT files
 - ❖ C++: RioGrande
 - ❖ Java: hep.io.root in FreeHEP, used by JAS & Hippodraw
- Several prototypes for remote analysis
 - (Correlated) lightweight Java clients: BlueOx, Clarens, JAS
- Progress towards modular architectures buzz-words are turning into realities
 - * "Abstract Interfaces", "components", "plug-ins",...
- Some HEP-wide de-facto standards emerging

Emerging Standard? Python as "Software Glue"

- Clear trend towards Python
 - ◆ Used by: ATLAS (Athena), CMS, D0, LHCb (Gaudi), SND,...
 ◆ Used by: Lizard/Anaphe HippoDraw JAS (Jython)
 - Used by: Lizard/Anaphe, HippoDraw, JAS (Jython)...
 - Architecturally, scripting is "just another service"
 - * ROOT is the exception to the "Python rule"
 - > CINT interpreter plays a central role
 - > Developers and users seem happy
- Python is popular with developers...
 - * Rapid prototyping; gluing together code
 - (Almost) auto-generation of wrappers (SWIG)
- ...but acceptance by users not yet proven
 - Another language to learn, syntax,...

Emerging Standards? HEP Graphics Toolkits

- Some significant commercial graphics software has become free
 - High-quality, good support, well-documented
 - Linux, other Unixes, and Windows
- Qt (Graphical User Interface toolkit)
 - Used by: Anaphe / Lizard, CLEO, CMS, D0, Go4, etc...
 - * ROOT does not use Qt but it is interoperable (Go4)
- OpenGL/OpenInventor(low/high-level graphics)
 - ❖ Used by: Anaphe / Lizard, CDF, CMS, D0, GEANT4,...
 - * ROOT now has a virtual GL interface
- If the above holds true, maybe add the IGUANA C++ event display toolkit

Emerging Standards? Analysis Tools Interfaces

- AIDA Abstract Interfaces for Data Analysis
 - Anaphe / Lizard
 - IGUANA (CMS visualization)
 - ❖ GAUDI (LHCB) framework
 - ❖ ATHENA (Atlas) framework
 - Analyzer modules in Geant4
 - JAS
 - Open Scientist
 - ⊗ No participation from ROOT and Hippodraw
- Less risk, easier maintenance, and (hopefully!) less duplication of effort for e.g.
 - Histograms, plotters, fitting, function algebra, canvas, event viewers, GUI toolkits and extensions, etc...
 - ❖ Aside: why not a HEP software project hosting site?

Acknowledgements

Thank you all for your patience

Thanks to the many people who helped me with this session

- Organisers:
 - > especially Guo Yanan, Yu Chuansong, and Zhijia Sun
- Co-convenors:
 - > Irwin Gaines and Takashi Sasaki
- Speakers:
 - especially George Alverson, Vincenzo Innocente, I anna Osborne, Andreas Pfeiffer, Lassi Tuura...