1.3. Let Y be the algebraic set in A^3 defined by the two polynomials $x^2 - yz$ and xz - x. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.

Solubrow: $Y = V(x_2-x) \cap V(x^2-y_2)$ = $(V(x) \cup V(z-1)) \cap V(x^2-y_2)$ = $(V(x) \cap V(x^2-y_2)) \cup (V(z-1) \cap V(x^2-y_2))$ = $V(x,y_2) \cup V(z-1,x^2-y_1)$ = $V(x,y_2) \cup V(x,z) \cup V(z-1,x^2-y_1)$

- 1.7. (a) Show that the following conditions are equivalent for a topological space X:

 (i) X is noetherian; (ii) every nonempty family of closed subsets has a minimal element; (iii) X satisfies the ascending chain condition for open subsets; (iv) every nonempty family of open subsets has a maximal element.
 - (b) A noetherian topological space is *quasi-compact*, i.e., every open cover has a finite subcover.
 - (c) Any subset of a noetherian topological space is noetherian in its induced topology.
 - (d) A noetherian space which is also Hausdorff must be a finite set with the discrete topology.

Solubion:

a)

(i')

complements

(i'i)

complements

complements

(i'i)

complements

complements

(i'i)

complements

comple

- b) let $X = Uu_i$. Consider the family of finite unions $U_iU_i = UU_{in}$, $U_{in} = U_{in} = U_{in}$
- c) Let $S \subseteq X$ be a subset of a Noetherson space X. Then $U \subseteq S$ is open in the buddled topology i'll $U = U \cap S$ for $U \subseteq X$.

 An church $U_1 \subseteq U_2 \subseteq U_3 \subseteq ...$ i'm S gives a cherin $U_1 \subseteq U_1 \cup U_2 \subseteq U_1 \cup U_3 \cup U_3 \subseteq ...$ which must forcelly stabilize, i.e., $\exists N \in \mathbb{N}$ s.t. $U_1 \subseteq \bigcup_{i=1}^{n} U_i$; $\forall n \ni N$. Hence $U_1 = U_1 \cap S \subseteq (\bigcup_{i=1}^{n} U_i) \cap S$ $= \bigcup_{i=1}^{n} U_i$ $= U_1 \cup U_2 \cup U_3 \cup U_4$ $= U_1 \cup U_2 \cup U_3 \cup U_4$ $= U_2 \cup U_3 \cup U_4$ $= U_3 \cup U_4 \cup U_4$ $= U_4 U_$

This S is Noebreroan in the induced bupology by a).

d) Let SEX be any subset. By c) S is

Noetherson and by b) S is compact.

Since X is Hunsdorff own nears tent

S is closed. Hence X has the discrete

topology. Sonce X is compact (by b) it

must be fourte (X = UEX3 is an open cover).

AM2. Let A be a Noetherlan why. Show that $f = \sum_{k=0}^{\infty} a_k x^k \in AG \times F$ is nilpotent iff each are is nilpotent.

Solution: We start with the "only if" part: Suppose $\exists n \in \mathbb{N}$ such that f'' = 0. We have $f'' = a_0^n + n a_0^{n-1} a_1 x + (\binom{n}{2} a_0^{n-2} a_1^2 + n a_2 a_0^{n-1}) x^2 + \dots$

f" = an + nanda, x + ((12) an ai + na, an) x² + ...

So ao i's wilpotent. But a sum of wilpotent elements is wilpotent (prove i't yourself) and hence f-ab is wilpotent.

Write f-ao = xp with p ∈ AlixI. Then p i's wilpotent and has constant term a. Hence a is wilpotent by the same argument as for ao. By induction we see that au is wilpoten for all k.

Conversely, assume trab all are are not potent. By [DF, Proposition 15.2.14] the not potent, i.e., there will am men site. N°=0. Every coefficient in the is a sum of dem. of the form ariman which is an element of N°=0 and hence zero. Thus $f^m=0$.

**Example: The politure shows a chardnoof closed vired. subsets of A3

(x-1,2,y) > (x-1,22-y) > (x-1) > (0)

The domension of A3 vs 3.

16: Show that any nonempty open subsets of an irred. Space is dance.

Solution:

heb U \(\subseteq \text{v} \) be nonempty open and V

ved. If \(\overline{\text{v}} \) \(\overline{\text{v}} \) \(\overline{\text{v}} \).