

Computational design of protein:

peptide recognition

David Mignon et Nicolas Panel

Laboratoire de Biochimie, Ecole Polytechnique

- Méthode CPD et performances
- Applications et simulations détaillées

Computational protein design (CPD)

Concevoir ou modifier des protéines par informatique pour leur conférer de nouvelles propriétés

Applications:

- protéines redessinées
- enzymes, complexes
- insertion d'acides aminés non-naturels

Principaux programmes de CPD:

- ORBIT (Mayo, 1996)
- Toulbar2 (Allouche, 2014)
- Proteus (Simonson, 2008)
- Rosetta (Baker, 2003)

Protein design with Proteus

Conformational space

- Particular structure for backbone
- Side chains rotamers
- Simple model of unfolded state (important for stability)

Energy function

- intra-protein molecular mechanics
- Solvant: dielectric model = Generalized Born

Le Monte-Carlo

algorithme Metropolis-Hastings

Le but est de générer une collection d'états échantillonnés selon la distribution de Boltzmann.

$$p(etat) = \frac{1}{Z}e^{(-\frac{E}{RT})}$$

L'algorithme définit une chaîne de Markov pour laquelle:

1- La distribution de probabilité des états est stationnaire

C'est garantie par la balance détaillée.

2- Il n'y a qu'une seule distribution stationnaire.

C'est garantie par le caractère ergodique de la chaine.

L'exploration Monte-Carlo

Déplacement MC dans l'espace des conformations:

modification du rotamère à une position i sur la protéine repliée

$$\Delta E = E(..,rot_i^{new},..) - E(..,rot_i^{old},..)$$

Déplacement MC dans l'espace des séquences :

modification du type de chaîne latérale à une position i sur la protéine repliée.

En même temps, une mutation inverse sur la protéine dépliée, en i.

$$\Delta E = \Delta E_f - \Delta E_{uf}$$

Etat déplié: les énergies de référence

• **Définition**: Pour une séquence **s**, l'énergie de l'état déplié est de la forme:

$$E^u_s = \sum_{i \subset s} E^r_{t_i}$$

Ce sont des paramètres ajustables.

- lacktriangle L'objectif est de déterminer les E^r_t pour obtenir les bonnes fréquences d'acide aminé.
- ◆ La méthode (maximum de vraisemblance):

Soit ${\bf S}$ un ensemble de séquences de Swissprot , p(${\bf S}$) sa probabilité de Boltzmann est une fonction des E^r_t .

Nous cherchons les E_t^r qui maximisent p($\emph{\textbf{S}}$), elles réalisent notre objectif.

Un algorithme itératif:

$$E^r_t(n+1) = E^r_t(n) + \delta E imes (freq^{exp}_t - freq^{proteus_n}_t)$$

PDZ domains as test systems

- Participate in PPIs
- Around 80-100 residues
- Conserved structure:
 - 5/6 β -strands
 - 2 α -helices
- ullet Recognize 4-7 C-terminal amino acids of their targets ($K_d=10-80 \mu M$)
- β-sheet augmentation mechanism
- ullet Binding groove by eta_2 and $lpha_2$
- Carboxylate binding loop highly conserved

Paramétrisation, mesure de performance de notre modèle CPD

- 8 protéines PDZ 1G9O,1R6J,2BYG,1IHJ,1N7E,3K82,Tiam1,Cask

(entre 72 et 84 résidus)

- Design de toutes les positions sauf Gly et Pro
- Optimisation des énergies de référence sur des homologues proches des protéines dans Swissprot.

- Une simulation finale est effectuée avec les énergies de référence optimisées: REMC ,8 marcheurs, 750 millions de pas chacun.
- Comparaisons des séquences calculées à la base de données Pfam-RP55
- Comparaisons au Séquences calculées par Rosetta
- Test de nos séquences avec les outils Superfamily de reconnaissance de repliement.

Séquence Proteus et Rosetta sous forme de logos

positions à la surface

positions du cœur

Reconnaissance de pli avec Superfamily

	Proteus		Rosetta	
Protein	Family Evalue	Family success	Family Evalue	Family success
NHREF	$8.94 \ 10^{-2}$	10000	${ 2.2 \ 10^{-3}}$	10000
Syntenin	$2.69 \ 10^{-3}$	10000	$1.8 \ 10^{-3}$	10000
DLG2	$1.96 \ 10^{-3}$	10000	$9.6 \ 10^{-4}$	10000
Tiam1	$1.96 \ 10^{-3}$	10000	$2.8 \ 10^{-2}$	9030
Cask	$1.96 \ 10^{-3}$	10000	$7.5 \ 10^{-3}$	9832

Comparaison aux séquences naturelles Similarité des séquences

Et Nicolas Panel...