31 December 2022

By Viraj Desai, Process Engineer

COMPRESSOR SIZING USING DWSIM:

A FREE AND OPEN-SOURCE CHEMICAL PROCESS SIMULATOR

By

VIRAJ DESAI, PROCESS ENGINEER

EMAIL: VIRAJ DESAI

LEVEL: INTERMEDIATE

VERSION: 0.00

DECEMBER 2022

COMPRESSOR SIZING USING DWSIM

31 December 2022 By Viraj Desai, Process Engineer

PREFACE

The manual "Compressor Sizing Using DWSIM" presents a set of Compressor Sizing exercise using a free and open-source chemical process simulator "DWSIM" and can be utilized to establish process simulation laboratory as part of undergraduate chemical engineering degree or in allied degree curriculum. The problem statements are of intermediate level.

Prerequisite

- Must know about DWSIM UI/UX.
- Flow sheeting in DWSIM
- Selection of Thermodynamic Packages.
- Manipulating variables
- Line Hydraulics
- Basic Modules

Thanks

Viraj Desai

P.E. 0&G

Disclaimer

All the exercises are strictly restricted to learning only and not meant to be used in real world application.

31 December 2022 By Viraj Desai, Process Engineer

PROCESS SIMULATION USING DWSIM: A FREE AND OPEN-SOURCE CHEMICAL PROCESS SIMULATOR

PREAMBLE

DWSIM is an open-source CAPE-OPEN compliant chemical process simulator. It features a Graphical User Interface (GUI), advanced thermodynamics calculations, reactions support and petroleum characterization / hypothetical component generation tools. DWSIM can simulate steady-state, vapor—liquid, vapor—liquid-liquid, solid—liquid and aqueous electrolyte equilibrium processes and has built-in thermodynamic models and unit operations (https://en.wikipedia.org/wiki/DWSIM). It is available for Windows, Linux and Mac OS.

The objective of the course is to create awareness of the open-source process simulator "DWSIM" among prospective graduates and practicing process engineers. The course will cover Intermediate aspects of create flow sheet in DWSIM and simulation of simple Pressure changing module like pipe segment, Compressor, etc.

Target Audience

- Junior Interns in Process Firms
- III / Final year B. Tech. Chemical Engineering students
- M. Tech. Chemical Engineering students
- Practicing Process Engineers

1	Bacl	kground	6
	1.1	Power Required In Fan, Blower And In Adiabatic Compressor	6
2	Con	npressor Sizing	7
3	Cros	ss-Checking in KORF hydraulics	18
4	Mar	nual calculation in SMath Studio	20
5	Rofe	erences	21

List of Figures

Figure 1 Problem Statement	7
Figure 2 Suction header stream specs	8
Figure 3 Pipe segment	8
Figure 4 Compressor Inlet Specs	9
Figure 5 Adding specs for hydraulic profile Compressor Inlet Pipe	10
Figure 6 Elevation vs horizontal distance profile for Compressor inlet pipe	11
Figure 7 Pipe segment of Compressor Outlet Specs	12
Figure 8 Adding specs for hydraulic profile Compressor Outlet Pipe	13
Figure 9 Elevation vs horizontal distance profile for Compressor outlet pipe	14
Figure 10 Compressor Specs	15
Figure 11 Flow Sheet	16
Figure 12 Power requirement	16
Figure 13 Compressor power calculation in KORF	18

Background	31 December 2022
	By Viraj Desai, Process Engineer

1 BACKGROUND

1.1 Power Required In Fan, Blower And In Adiabatic Compressor

Fans, blowers, and compressors are used to increase the mechanical energy of gases. Discharge pressure of a fan is less than 3.45 kPa g (350 mm WC). If discharge pressure required is higher than 3.45 kPa g then a blower is used. Maximum discharge pressure of blower is 1 atm g. If the discharge pressure required is more than 2 atm a then a compressor is used. Discharge pressure of compressor ranges from 2 atm a to thousands of atmospheres.

Blowers are always operated in an adiabatic manner. Many compressors are also operated in adiabatic manner (Example: air compressors up to 10 bar g). In adiabatic compressor, jacketed cooling is not provided. While in other types; polytropic and isothermal compressors, jacketed cooling is provided around the compressor section. In isothermal compressor, inlet temperature of gas is equal to outlet temperature of gas. If both temperatures are not same even after providing the jacket cooling, it is called polytropic compressor. For adiabatic compression

$$\tfrac{P_2}{P_1} = \left(\tfrac{V_1}{V_2} \right)^k, \tfrac{T_1}{T_2} = \left(\tfrac{V_1}{V_2} \right)^{(k-1)}, \tfrac{P_2}{P_1} = \left(\tfrac{T_2}{T_1} \right)^{\left(\tfrac{k}{k-1} \right)}$$

Where,

 $k = \frac{c_p}{c_v} = \;$ ratio of specific heat at constant pressure to specific heat at constant volume

 P_2 , P_1 = outlet/inlet pressure of gas, kPa

 V_2 , V_1 = outlet/inlet volume of gas, m^3 /kmol

 T_2 , T_1 = outlet/inlet temperatures of gas, K

Power required in single stage blowers or in single stage adiabatic compressor,

$$P_{0} = \frac{2.78 * 10^{-4}}{\eta} \left(\frac{k}{k-1} \right) q_{v1} P_{1} \left[\left(\frac{P_{2}}{P_{1}} \right)^{\frac{k-1}{k}} - 1 \right]$$

 P_0 = Power required, kW

 P_1 , P_2 = Absolute inlet pressure & Outlet pressure, kPa

 q_{v1} = Volumetric fl ow rate of gas based on inlet condition, m³/h

 $\eta = \text{Efficiency of compressor}$

Discharge temperature of gas from the blower or single stage adiabatic compressor,

$$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$$

Compressor Sizing	31 December 2022
	By Viraj Desai, Process Engineer

2 COMPRESSOR SIZING

Objective

Find the Power Requirements, outlet temperature for the given problem statement.

Data

Figure 1 Problem Statement

DWSIM Blocks Used

- Pipe segment
- Material Stream
- Compressor
- Indicators (Digital or Analog)

Procedure

- 1. Start a new DWSIM Simulation (DWSIM VER 8.2 CLASSIC UI). Click on "New steady state Simulation" as a template for new simulation
- 2. The simulation configuration window will be opened. It shows a specification page. Add components required to solve the problem statement. In the present case, add methane and ethane. Ensure all components are added from the same property database. For instance, in this case, both components are added from "ChemSep" database.
- 3. Specify the thermodynamic package as Peng-Robinson (PR) (1).
- 4. Customize the system of units for the simulation and click "Next".
- 5. The flow sheeting section of simulation window will be opened. First, let provide suction header, compressor inlet, compressor outlet and discharge header streams for the unit operation to be performed.

Compressor Sizing	31 December 2022
	By Viraj Desai, Process Engineer

6. On clicking the "Suction header" stream, general information about the stream will be displayed on the left side of screen. Specify the feed compositions, temperature, and pressure for the inlet streams. Once credentials are specified for the Suction header streams, the color of stream turns blue.

Figure 2 Suction header stream specs

7. Below the Unit Operation tab on left, locate the pipe segment block. Drag and drop into the flow sheet. Rename it as "Compressor inlet".

Figure 3 Pipe segment

Compressor Sizing	31 December 2022
'	By Virai Desai, Process Engineer

8. Under specification for pipe segment add the data as follows.

Figure 4 Compressor Inlet Specs

9. Click on the hydraulic profile as shown in the image

Figure 5 Adding specs for hydraulic profile | Compressor Inlet Pipe |

Segment	1
Туре	Straight Tube
Quantity	1
Increments	5
Material	Stainless Steel
Rugosity (m)	4,5E-05
Therm. Conduct. (W/[m.K])	T-Dep
Length (m)	5

Compressor Sizing	31 December 2022
	By Viraj Desai, Process Engineer

Elevation (m)	0
Ext. diameter (mm)	273.05
Int. diameter (mm)	254.508

10. Click on "View" in hydraulic profile tab to see layout of pipe network

Figure 6 Elevation vs horizontal distance profile for Compressor inlet pipe

11. Once all segments are added with the data provided as reference in the table above click on green tick mark to apply changes

Compressor Sizing	31 December 2022
	By Viraj Desai, Process Engineer

12. Similarly add a pipe segment name it as "Compressor outlet line" And add the following specs.

Figure 7 Pipe segment of Compressor Outlet Specs

Compressor Sizing

31 December 2022

By Viraj Desai, Process Engineer

Figure 8 Adding specs for hydraulic profile | Compressor Outlet Pipe |

Segment	1
Туре	Straight Tube
Quantity	1
Increments	5
Material	Stainless Steel
Rugosity (m)	4,5E-05
Therm. Conduct. (W/[m.K])	T-Dep
Length (m)	10
Elevation (m)	0

Compressor Sizing	31 December 2022			
	By Viraj Desai, Process Engineer			

Ext. diameter (mm)	168.275				
Int. diameter (mm)	154.051				

Figure 9 Elevation vs horizontal distance profile for Compressor outlet pipe

13. Once all segments are added with the data provided as reference in the table above click on green tick mark to apply changes

Compressor Sizing	31 December 2022
	By Viraj Desai, Process Engineer

14. Add a Compressor from the pressure changes ribbon and connect the "Compressor inlet line" and "Compressor outlet line". And add the following specs

Figure 10 Compressor Specs

Compressor Sizing 31 December 2022 By Viraj Desai, Process Engineer

15. Run the simulation by pressing "Solve flow sheet" button on the top corner of the screen.

Figure 11 Flow Sheet

16. Click on result tab and generate report for Compressor.

Simulation Report	Details	Details					
DWSIM 8.3	Title:	MySimulatio	1_20				
	Comments	:					
Object: Compressor							
Type: Adiabatic Compressor							
Property		Value					
Pressure Increase		5.00086	bar				
Adiabatic Efficiency		75	%				
Temperature Difference		174.93	C.				
Power Required		427.554	k/v/				
Outlet Pressure		5	barg				
PolytropicEfficiency		78.642	%				
AdiabaticCoefficient		1.26565					
PolytropicCoefficient		1.35073					
AdiabaticHead		34143.7	m				
PolytropicHead		35801.8	m				
RotationSpeed		1500	rpm				

Figure 12 Power requirement

Compressor Sizing	31 December 2022
	By Viraj Desai, Process Engineer

	Compressor Outlet	Compressor Inlet	Suction Header	Discharge Header	
Temperature (C)	199.93	24.9995	25	199.929	
Pressure (barg)	5	-0.000855553	0	4.99407	
Mass Flow (kg/h)	3600	3600	3600	3600	
Molar Flow (kmol/h)	215.005	215.005	215.005	215.005	
Volumetric Flow (m3/h)	1404.43	5252.25	5247.81	1405.81	
Density (Mixture) (kg/m3)	2.56332	0.685421	0.686	2.5608	
Molecular Weight (Mixture) (kg/kmol)	16.7438	16.7438	16.7438	16.7438	
Specific Enthalpy (Mixture) (kJ/kg)	426.366	-1.18823	-1.18823	426.366	
Specific Entropy (Mixture) (kJ/[kg.K])	0.300193	0.0643308	0.0639124	0.300681	
Molar Enthalpy (Mixture) (kJ/kmol)	7138.97	-19.8955	-19.8956	7138.98	
Molar Entropy (Mixture) (kJ/[kmol.K])	5.02636	1.07714	1.07014	5.03454	
Thermal Conductivity (Mixture) (W/[m.K])	0.060826	0.0335707	0.0335708	0.0608258	
Density (Vapor) (kg/m3)	2.56332	0.685421	0.686	2.5608	

Cross-Checking in KORF hydraulics	31 December 2022
	By Viraj Desai, Process Engineer

3 CROSS-CHECKING IN KORF HYDRAULICS

Figure 13 Compressor power calculation in KORF

Compressor Sizing Using Korf Hydraulics

Cross-Checking in KORF hydraulics

31 December 2022

By Viraj Desai, Process Engineer

Length	Inclination	Pressure	Temperature	Liquid	Vapor	Heat	Liquid	Flow	Overall HTC	h (Internal)	k/L (Wall)	k/L (Insulation)	h (External)	External
(m)	(degrees)	(barg)	(C)	Velocity (m/s)	Velocity (m/s)	(kW)	Holdup	Regime	(W/[m2.K])	(W/[m2.K])	(W/[m2.K])	(W/[m2.K])	(W/[m2.K])	Temperature (C)
0	0	0	25	0	28.6538	0	0	Vapor Only	0	0	0	0	0	25
1	0	-0.000171053	24.9999	0	28.6587	0	0	Vapor Only	0	0	0	0	0	25
2	0	-0.000342135	24.9998	0	28.6635	0	0	Vapor Only	0	0	0	0	0	25
3	0	-0.000513245	24.9997	0	28.6683	0	0	Vapor Only	0	0	0	0	0	25
4	0	-0.000684385	24.9996	0	28.6732	0	0	Vapor Only	0	0	0	0	0	25
5	0	-0.000855553	24.9995	0	28.678	0	0	-	0	0	0	0	0	25
COMPRE	SSOR OUTLET L	INE PROFILE DATA	A	•	•	•	•	•	•	•	•	•		•
Length (m)	Inclination (degrees)	Pressure (barg)	Temperature (C)	Liquid Velocity (m/s)	Vapor Velocity (m/s)	Heat (kW)	Liquid Holdup	Flow Regime	Overall HTC (W/[m2.K])	h (Internal) (W/[m2.K])	k/L (Wall) (W/[m2.K])	k/L (Insulation) (W/[m2.K])	h (External) (W/[m2.K])	External Temperature (C)
0	0	5	199.93	0	20.9304	0	0	Vapor Only	0	0	0	0	0	25
2	0	4.99882	199.93	0	20.9345	0	0	Vapor Only	0	0	0	0	0	25
4	0	4.99763	199.93	0	20.9387	0	0	Vapor Only	0	0	0	0	0	25
6	0	4.99645	199.929	0	20.9428	0	0	Vapor Only	0	0	0	0	0	25
8	0	4.99526	199.929	0	20.9469	0	0	Vapor Only	0	0	0	0	0	25
	0	4.99407	199.929	0	20.951	0	0	 	0	0	0	0	0	25

4 Manual calculation in SMath Studio

References	31 December 2022
	By Viraj Desai, Process Engineer

5 REFERENCES

 Thakore - Introduction To Process Engineering And Design-MC GRAW HILL INDIA (2015) Pg 116-117