פתרון לדף תרגילים 4 – אלגברה לינארית ב'

1. נשים לב כי לאחר חיסור 2I השורה הראשונה והשניה זהות ועל כן 2 הינו ע"ע. של A. יהיו 2+a+b=tr(A)=2ו ב $ab=\det(A)=2$ ו אם שני הערכים העצמיים האחרים אז a,b=dו מכאן a=tו הפולינום האופייני של a=tו מתפרק לשני גורמים אי פריקים a=t1 לכסינה מעל a=t2. מתפרק לשני גורמים אי פריקים a=t2.

עפ"י הגדרה ($W_1 = \ker (A^2 + I)$ ו $W_2 = \ker (A - 2I)$ לאחר דירוג נקבל כי

$$A - 2l \sim \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $A^2 + I \sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

 $.W_1=span_R\{e_1+2e_3\}, W_2=span_R\{e_3,e_1+e_2\}$ כש \sim מציין שקילות ע"י דירוג. מכאן \sim מכאן $B=\{v_1=e_1+2e_3,v_2=e_1+e_2,v_3=e_3\}$ נייצג את A לפי הבסיס

$$Av_1 = 2e_1 + 4e_3 = 2v_1$$

$$Av_2 = 3e_1 + 3e_2 + 5e_3 = 3v_2 + 5v_3$$

$$Av_3 = -2e_1 - 2e_2 - 3e_3 = -2v_2 - 3v_3$$

$$[A]_E = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 5 & -3 \end{pmatrix}$$
 ונקבל

2. נשים לב כי 1,2 ע"ע של B וכי הריבוי הגאומטרי של שניהם הוא 1. נחשב את הפולינום $\Delta_A(x) = (x-1)(x-2)^2$. האופייני (בדיוק באותה הדרך כמו בסעיף א') ונקבל: כפי שעשינו בסעיף א' נחשב :

כעת עפ"י . $W_1=\ker(B-I)=sp\{e_1+2e_3\}, W_2=\ker(B-2I)=sp\{e_1+e_2,e_3\}$ הוכחת הפירוק . $f_1=(x-2)^2, f_2=x-1$. נבצע חלוקת פולינומים ונקבל

$$(x-2)^2 = (x-3)(x-1)+1$$

נציב . $h_1(x)=f_1(x), h_2(x)=-(x-3)f_2(x)$ נגדיר . נ

$$E_1=h_1(T)=egin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ -2 & 2 & 1 \end{pmatrix}, E_2=h_2(T)=egin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$
ונקבל:

 $...W_2$ ולחשב את ההיטל על W_1,W_2 במקביל בסיס לעל אחרת: ניתן למצוא בסיס ל W_1,W_2 ולחשב את ההיטל על

$$N = \begin{pmatrix} 2 & 0 & -1 \\ 2 & 0 & -1 \\ 4 & 0 & -2 \end{pmatrix}$$
ו $D = 2E_1 + E_2 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -2 & 2 & 2 \end{pmatrix}$ נקבל:

.
$$e_t=r_t$$
 מכאן . $\prod_{i=1}^r(x-\lambda_t)^{r_i}=\Delta_T(x)=\Delta_{T_2}(x)\dots\Delta_{T_r}(x)=\prod_{i=1}^r(x-\lambda_t)^{e_i}$

אכן נראה זאת s+t=k כאשר A^sBA^t כאשר ארן ורק גורמים מכיל אך ורק גורמים מהצורה t=k כאשר אt=k באינדוקציה: עבור t=k הטענה טריוויאלית. נקח גורם t=k כאשר

עליו את $T(A^sBA^t)=A^{s+1}BA^t-A^sBA^{t+1}$ וואכן (כך מוגדר גורם של $T(A^sBA^t)=A^{s+1}BA^t-A^sBA^{t+1}$ וואכן את s+1+t=k+1=s+t+1

נניח A^sBA^t נניח T^{2r} . נקבל כי כל גורמיו מהצורה A^sBA^t כאשר T^{2r} . מכאן או $T^{2r}=0$ נניח $T^{2r}=0$ או $T^{2r}=0$ או $T^{2r}=0$ או בכל מקרה $T^{2r}=0$ ולכן $T^{2r}=0$ או בכל מקרה $T^{2r}=0$ ולכן $T^{2r}=0$ או בכל מקרה

אכן אלכסונית N אכן נילפוטנטית אך D, לאו דווקא מתחלפים ועל כן התהליך אינו D. 5 מספק את הפירוק הנדרש. דוגמא:

$$[T]_E = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$DN = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, ND = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$

6. נפרק את W_i נסמן ב $m=m_1^{\mathfrak{s}_1}\dots m_k^{\mathfrak{s}_k}$ נפרק את הרכיבים אי פריקים מעל השדה: $W_i=\ker(m_i(T)^{\mathfrak{s}_i})$ נשים לב כי $W_i=\ker(m_i(T)^{\mathfrak{s}_i})$ נשים לב כי $W_i=\ker(m_i(T)^{\mathfrak{s}_i})$ נשים לב כי $W_i=m_i(x)^{\mathfrak{s}_i}$ הפולינום המינימלי הוא $W_i=m_i(x)^{\mathfrak{s}_i}$ עבור איזשהו $W_i=m_i(x)^{\mathfrak{s}_i}$ כיוון ש $W_i=m_i(x)^{\mathfrak{s}_i}$ הינו הפולינום המינימלי יש וקטור $W_i\in W_i$ עבורו $W_i=m_i(x)^{\mathfrak{s}_i}$

ונקבל כי $f_i < e_i$ כאשר $m_i^{f_i}$ הוא T_i המינמלי של המינמלי אחרת הפולינום המינמלי הי

. מתחלק מתחלק ב $m_i^{g_i}$ אבל לא ב $m_i^{f_i}$ מתחלק מתחלק

נתבונן ב v_1,\dots,v_k כיוון ש v_1,\dots,v_k כיוון ש v_1,\dots,v_k בלתי תלוים ונמצאים במרחבים $v_1+\dots+v_k$ שונים נקבל כי לכל פולינום $v_1+\dots+v_k$ מתקים מתקים $v_1+\dots+v_k$ מתקים מכאן $v_1+\dots+v_k$ נקבל כי $v_1+\dots+v_k$