Exercise Sheet 1

22. October 2015

F. Bornemann, C. Ludwig

Assignment 1

How many digits are (at best) correct? Give a short explanation.

Solution

Because of $sum(x) \approx 3000$ we have $sum(x)^2/3 \approx (3000^2)/3 = 3000\,000$ and seven digits in front of the decimal point. These 7 digits and one other digit after the decimal point are cancelled. Hence 16 - (7 + 1) = 8 digits are (at best) correct.

Assignment 2

Replace the following expression by an equivalent one, such that the evaluation using floating-point arithmetic is free of cancellation:

$$\frac{1-\cos x}{x} \qquad x \neq 0, \quad |x| \ll 1.$$

Compare the expression above and your expression in Matlab.

Solution

With $1 - \cos x = 2\sin^2(x/2)$ we write the Matlab function

```
function erg=sol(x)

erg = (2*\sin(x/2).^2)./x;

erg(x==0)=0;

end
```

and get

Х		(1-cos(x))/x		(2*sin(x/2)^2)/x	
1.0000000000000000e-04	 I	4.9999999969612645e-05	 	4.9999999995833334e-05	-
9.9999999999999e-06	- 1	5.000000413701856e-06		4.999999999958332e-06	1
1.0000000000000000e-06		5.000444502911705e-07		4.99999999999583e-07	
1.0000000000000000e-07		4.996003610813204e-08		4.9999999999996e-08	
1.0000000000000000e-08		0.000000000000000e+00		5.000000000000000e-09	
1.0000000000000000e-09		0.000000000000000e+00		5.000000000000000e-10	

Assignment 3

Consider

$$f(x) = \sqrt{x+1} - \sqrt{x}$$
 for $x \in [0, \infty[$
 $g(x) = \arcsin(2(1-\cos(x))/x^2)$ for $x \in \mathbb{R}$.

- (a) What values of x result in cancellation?
- (b) Find equivalent expressions for f and g without cancellation.
- (c) Compare the expressions above and your expressions in Matlab.

Solution

- (a) f: for $x \gg 1$. g: for $|x| \ll 1$.
- (b) We use

$$\sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}.$$

With $1 - \cos(x) = 2\sin^2(x/2)$ we write

$$\arcsin(2(1-\cos(x))/x^2) = \arcsin\left(\left(\frac{2\sin(x/2)}{x}\right)^2\right)$$

(c)

Х	sqrt(x+1)-sqrt(x)	1/(sqrt(x+1)+sqrt(x))
1.0000000000000000e+48 1.0000000000000000e+49 1.0000000000000000e+50 1.0000000000000000e+51 1.0000000000000000e+52	0.000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00	5.00000000000001e-25 1.581138830084190e-25 5.0000000000000000e-26 1.581138830084190e-26 4.99999999999999-27 1.581138830084190e-27
х	given expression	asin((2*sin(x/2)./x)^2)
x	given expression 1.570686077341591e+00 1.570796326794897e+00 1.570796326794897e+00 1.530811721401428e+00 0.0000000000000000e+00 0.0000000000000000e+00	asin((2*sin(x/2)./x)^2)

Assignment 4

Consider for $|x| \ll 1$ the two expressions:

$$\log(x+1)$$
 and $\frac{\log(1+x)}{(1+x)-1} \cdot x$

and the following divisions in submaps:

$$x \xrightarrow{h} 1 + x =: a \xrightarrow{g} \log(a)$$
$$x \xrightarrow{h} \begin{pmatrix} 1 + x =: a \\ x =: b \end{pmatrix} \xrightarrow{g} \frac{\log(a)}{a - 1}b$$

- (a) Explain why the first algorithm is unstable?
- (b) Draw (in Matlab) a plot of the graph of both expressions.
- (c) Give a heuristic argument, why the second algorithm is stable. [Hint: Use the Taylor expansion of log.]

Solution

(a) For $f(x) = \log(1+x)$ we have

$$\kappa_f(x) = \frac{f'(x)x}{f(x)} = \frac{x}{(x+1)\log(1+x)} \to 1$$

for $x \to 0$, but

$$\kappa_g(a) = \frac{g'(a)a}{g(a)} = \frac{1}{\log a} \to \infty$$

for $a \to 1$. Hence $\kappa_g \gg \kappa_f$ for $|x| \ll 1$.

(b)

(c) $\log(1+x) = 1+x - 1 + O(x^2)$. Hence for $|x| \ll 1$ the algorithm returns a good approximation to x.