

 $K(xy) = (a_1b_1 + a_2b_2 + 1)^2 = a_1^2 b_1^2 + a_2^2 b_2^2 + 2a_1b_1 a_2b_2 + 2a_1b_1 + 2a_2b_2 + 2a_2b_1 + 2a_2b_2 + 2a_2b_2 + 2a_2b_1 + 2a_2b_2 + 2a_2b$

اللّذال توابع الله رات است. الوزع مرفر حوست م بعد توزيع على مربوط هعلى اللّذال توابع على مربوط هعلى المستى توبع على مربوط هعلى المستى توبع على مربوط هعلى المستى توبع على مربوط هعلى مربوط هعلى مربوط هعلى مربوط هعلى مربوط هعلى المستى توبع على مربوط هعلى المستى توبع على مربوط هعلى مربوط هعلى مربوط هعلى المستى توبع على مربوط هعلى المستى توبع على مربوط هعلى مربوط هعلى مربوط هعلى مربوط هعلى المستى توبع على مربوط هعلى مربوط هعلى مربوط هعلى مربوط هعلى المستى توبع على مربوط هعلى مربوط ها مربوط ها مربوط هعلى مربوط ها مربوط تعامی تزیم حانبال حسد و فعظ مانلین و داییانی تعسری کند.

RERNAND DIN DIN CILI (T) معاب مركة خريطي ترفراهدردا SVD rise : Line SVD com PCA wide with the SVD completed of single sold of single $C = \frac{x^{2}x}{n-1} = \frac{A5B^{2}BSA^{2}}{n-1} = \frac{A5B^{2}BSA^{2}}{n-1}$ ب سولفه ها املی آمین سا سول های ماندس ۸۵ می ود و سرسرانی هم جو ل فلی قدر انعاد سیسرس low land sport

درست المراز بردار ویژه نتر به همال اندازه علمهٔ ۱۵ و بردار ویژه نیزهال محررهای اسلی ایران بردار ویژه نیزهال محررهای اسلی حرضر ایران بردار ویژه نتر به همال ایران سب به جو به نیزه در است است. حول المهله داریاس سب به جو به نشر در است است.

$$(0-1)^{\frac{1}{2}} = 1$$

$$\frac{1}{4} \frac{1}{(\alpha)} = \frac{1}{2} \frac{1}{(\alpha)} = \frac{$$

$$(b-1)^{r} = \frac{1}{2} \frac{b^{2}}{b^{2}} = \frac{1}$$

Lieure one out

نمآطها

$$\square P = \frac{0.0}{2 - (-2)} = 0, b = 0 \Rightarrow h(x) = 0 \Rightarrow b = 0$$

$$h_1 = \frac{1-0}{v-(-2)} = \frac{1}{v+2} = \frac{1}{$$

$$h_{r}\left(\overline{Y,r}\right)$$
 $\xrightarrow{Q_{-}} \frac{1-0}{v-2} \Rightarrow y-0 = \frac{1}{v-2}(x-2) \Rightarrow y = \frac{x}{v-2} - \frac{x}{v-2} \rightarrow b$

$$h_1(x) = h_1(+r) = \frac{4}{v+2}$$
, $fr(x) = h_1(x) = \frac{-4}{v-2}$

$$\left(\frac{4}{\sqrt{12}}\right)^2$$
 $\left(\frac{-4}{\sqrt{12}}\right)^2$

$$1 + \frac{4}{(v+2)^2} + \frac{(+4)^2}{(v-2)^2}$$

$$\Rightarrow \frac{1}{2} \Rightarrow 1 + \frac{16}{v^2_4 + 4} + \frac{16}{v^2_4 + 4} = \frac{3}{2}$$

Lo(hs) = E[II(hs(x)+y)] Mash انف است موی توان بیست آدرد مرافع اخال نفونبرداری از داده آموزش ی ریک نبوته (۲۸) است برطوری در برجیب (دار ۳ شفارت از لی باسد به مین ملایم. عی توسی اسرا از سے منوا مرزش کا مرزش ک سیس می توانع از داده سرسی دار هراس» اشعکه المیزد (۱۱ از این عدید ۱۱ میری هی و خواهد دور ونهاساً معرف از لا معبورت (۱۶ مهل راز به معبوس (۱۶۱ مه) ۲ - رهی از لا معبورت (۱۶ میرست (۱۶ میرست) و بیارست نیزست (۱۶ میرست) از این معبورت (۱۶ میرست) و بیارستان میرست (۱۶ میرست) و بیارستان و بیارستان میرست (۱۶ میرست) و بیارستان و بیا س الله دارم $E[I(y+y')] = E[I(y+y')] = S_{2} \sim D_{2}^{m}, y \sim \eta(x) \neq x \sim D_{2}, y \sim \eta(\pi(x))$ E [IP []+y']]
Show Down 2 - 1 [] +y'] [y=y']= \(\alpha\)\(\(\lambda\)\+\(\lambda\)\\\\(\alpha\)\) $= (\eta(x) - \eta(x) + \eta(x'))(1 - \eta(x)) + (1 - \eta(x) + \eta(x) - \eta(x'))\eta(x)$ y~りに)が~り(れに)) = $2\eta(x)(1-\eta(x))+(\eta(x)-\eta(x'))(2\eta(x)-1)$

F_S[2η(x)(1-η(x))] + CE[[x-x, || - x | - x || - x

سی خطای در آرین میسا میر سرامرخواهردو با:

LD(h#) = Ex[min (7(x), 1-7(x))] > Ex[7(x)(1-7(x))]

بالرئب مراطم آخر رامل نامی اثبات می کود.

این رابله ی توریم آند اول توریم تولیدلته داره را ناب درنظر بگیریم و ۵۰ سه برود و تون

قوسد که خای ۱۸۱ (نزمیک ۱-هسام) بروبرابر خای بیز صدرا خواصر کر.

من الن علت الن الست لم الله (r, x, ê) الله الم علم كسير خود ا درنصله ١٥٤٥ كسير و فراك م
من الله الله الله الله الله الله الله الل
$D(r, x, \hat{\theta}) = \frac{1}{2}r^{T}H(x, \hat{\theta})^{T}$
العنداز لل نقب در سربالارس آمد من دروانع اوس برداروس
H(α , $\hat{\theta}$) Hessian $\hat{\omega}$ $\hat{\omega}$ $\hat{\omega}$ $\hat{\omega}$ $\hat{\theta}$)
$r = \sum_{i=1}^{n} x_i ^2 \leq \sum_{i=1}^{n} x_i$
- I To refer and A reference of the state of
سرحار مک سردار واحد نیز سرداری شن اسد ی بار و طالبار و و
ناعرو ت
HVW D VM(r, x, Q) r= EU - Vr M(r, x, Q) r=0
$\sqrt{rM(r,\alpha,\Theta)} _{r=Ed} \longrightarrow \sqrt{r} M(r,\alpha,\Theta) _{r=Ed}$
$\frac{\sqrt{r/v_1(r,x)} \circ r_1r=2\alpha}{\mathcal{E}} \longrightarrow \sqrt{r}$

سلی هرخانه عربه ماس این اس که کستول هزیر تا خانه این را سیاکند

V*(V)=-1+y&V*(9)=9

V (0) = - Y+ 1/0 x Y- = 1 V(d)= +1/0 V(d) >> V(b)= 4 مرلی خام ۷ بهتری حالت این است م بالامردد

برای هانه ۵ موحال دارم

ی برلی فانه له بهتریل مان برش است یا ۱۵ (۵) ۲۴ (۵) سرای خانه ۹ بهسین کار ماندل است

1. + yov*(9)=v*(9) ⇒ v*(9)=r. Add این عام هاسری بوند می انقد سری مسد:

Q(1, right)=-1+10 +10 (V)= to Q(N) down) = -1 + 10 V*(d) = " برلی بھیر جانے صادارہے:

Q* (4, jump to F) = -2+0.5 x V* (7)= 2.5 max V* (2)=+ Q* (4, right) = -1+ 0.5 v* (5)= 3

V/42/ Chi

Q*(3, jump to 8) = -1+ 10 v*(1) = -1/2 @## Q(3, right)= -1 + yaxr= ya J V (m) = 1/0 /

Q*(2, jump to 5) = -1+, dV*(d)=1 Q*(2, down)=, vov*(r)=-, vo inage v*(1)= r

Q1(1, jumpto 4)= 2000 -1+100 (E)=-10 Q*(1, down) = -1 + yav*(r) = 0

برلىخة إدام،

حال برلی 7 های بهشردامم: T*(1)=down, T*(1)=gts, T*(3)=right, T*(4)=right, 71*(5)=junystag, 77(6)=up, 7*(4)=up, 18(8)=right, 7*(9)2 stay

اساست خانه ۹ هست ماندل فواهدور زمرا

V*(9)= 10+0V*(9)=> V*(9)= 1.0

V'(a)= + xv'(a) > V'(b) = + V'(0)=-1+0v*(9)=-1+10 برلى غافر ۵ داريم.

 $\sqrt{(a)} \sqrt{(a)} \Rightarrow \frac{r}{1-8} > -r + \frac{1.8}{1-8} \Rightarrow \frac{r-1.8}{1-8} > -r$

بناسرلين دارم

