

rMAP (Rapid Microbial Analysis Pipeline)

Authors:

Ivan Sserwadda & Gerald Mboowa

Impacts/Milestones of rMAP (2020 -2022)

- 1. ASM conference on Rapid Applied Microbial NGS and Bioinformatics pipelines (2020) *Travel award*
- 2. African Association for Research and Control of AMR Validating rMAP (2020) *Young Investigators Grant*
- 3. Inaugural International Synthetic Biology & Biosecurity Conference in Africa (14th Oct 2021) *Travel award*

Impacts/Milestones of rMAP (2020 -2022)

- 4. Peer reviewed publication (2021) Microbial Genomics (DOI: https://doi.org/10.1099/mgen.0.000583) *Publication*
- 5. African Research Collaboration on Sepsis Bioinformatics and Molecular Biology training in Transcriptomics (2021) *Fellowship*
- 6. PHA4GE Sub-grants Promoting Sustainable Development in Bioinformatics to Support Public Health (2022) *Research grant*

Public Health Alliance for Genomic Epidemiology

Synopsis: rMAP

 Purpose: A resistome-profiling pipeline [amr genes, plasmids, virulence factors, mlsts, insertion sequences, pangenome analysis, amr-SNPs] using Illumina WGS Paired End data inputs

Architecture:

- ➤ Written in: Shell script, Python, Perl, R
- Command-line based requires basic knowledge of Unix terminal
- ➤ OS support: original pre-compilation unix-based-64-bit platforms [WSL Ubuntu 20.04.1 LTS (Focal Fossa) & Ubuntu 18.04.4 LTS (Bionic Beaver), MacOS Catalina]: Full compatibility with MacOS Big Sur & MacOS Monterey

Rapid Microbial Analysis Pipeline(rMAP)

GitHub repository: https://github.com/GunzIvan28/rMAP

Target group : ESKAPE WHO high priority bugs

- Enterococcus faecium
- Staphylococcus aureus
- Klebsiella pneumoniae,
- Acinetobacter baumannii
- Pseudomonas aeruginosa
- Enterobacter species

Other bugs:

- Escherichia coli
- Citrobacter species
- Salmonella species
- Shigella species
- Proteus species

Tool Features:

- QC and sequence trimming
- Assembly
- Annotations
- Variant calling
- Phylogenetic inference
- Pangenome analysis
- AMR profiling
- Virulence factor detection
- Plasmids detection
- Multilocus sequence typing
- Insertion sequence

Graphical schema of rMAP workflow and tools

Why use rMAP?

- Highly sensitive to African-derived datasets
- Easy installation and usage
- Application to a vast range of AMR organisms

Pipeline to generate complete public health microbiology reports from sequenced isolates

⚠ This documents the current Nullarbor 2.x version; previous 1.x is here

TORMES

TORMES is An automated and user-friendly pipeline for whole bacterial genome analysis of your genomes (previou assembled or downloaded from any repository) and/or your raw Illumina paired-end sequencing data, regardless thumber of bacterial isolates, their origin or taxonomy.

rMAP technical aspects

- Conda installation
 - ➤ Miniconda3 platform [Anaconda as well]
 - > Packages versioned in .yaml file depending on OS
- Code snippets

```
rMAP -t 8 --reference --input dir_name --output dir_name --quality --assembly megahit --amr --varcall --phylogeny --pangenome --gen-ele
```

OR:

rMAP -t 8 -r full_genome.gbk -i dir_name -o dir_name -f -a shovill -m -vc -q -p -s -g

- Algorithm parameters
- 24/7 development and user support https://github.com/GunzIvan28/rMAP/issues

Future prospects

GitHub repository: https://github.com/GunzIvan28/nextflow-rMAP

license repo not found

Nextflow Rapid Microbial Analysis Pipeline (nextflow-rMAP)

An rMAP resistome-profiling pipeline implemented in the modern DevOps nextflow engine.

Implementation facts

- Private open to only collaborators
- Still under development
- Manuscript in draft phase
- Opens up the vast possibilities of scalability & reproducibility - overcome the shortcomings of its predecessor
- Designed for experienced
 Bioinformatics users continuously
 interacting with High Performance
 Compute (HPC) stations, Cloud and
 Cluster nodes
- High level container integration -Docker, Conda and Singularity

Future prospects

Acknowledgements

Special thanks to our funders and collaborators

SAGESA Network

