```
مراجعة المستر في الرياضيات مراجعة ليلة الامتحان
```

اولاً: الجبر

السؤال الأول: اختر الإجابة الصحيحة من بين القوسين

 $\{1\}$ مجموعة حل المعادلة س + ص = ۰ ، س 2 + ص 3 = ۲ هي

 $\{ \{ (1,1), (1-1), (1-1) \} \in \{ (1,1), (1-1) \} \in \{ (1-1), (1-1) \} \in \{ (1-1), (1-1), (1-1), (1-1) \} \in \{ (1-1), (1-1$

 $\frac{m}{m} + \frac{1}{m}$ فإن مجال ن-١ هو $\frac{m}{m} + \frac{1}{m}$

المجال المشترك للكسرين $\frac{7}{m-7}$ ، $\frac{\sqrt{7}}{m+6}$ هو

(٤) مجموعة أصفار الدالة د : د (س) = - ٣ س هي { (٠) ؛؛ (- ٣) ؛؛ (- ٣) ؛؛ ح }

 $\{7\}$ إذا كان ل $\{4\} = \frac{1}{7}$ فإن ل $\{7\} = \dots$

 $\{1.\}$ عدد حلول المعادلتين : ٩س + ٦ ص = ٢٤ ، ٣ س + ٢ ص = ٨ هو

{ ۲ ؛؛ ۱ ؛؛ ۳ ؛؛ عدد لا نهائي }

{١١} في تجربة إلقاء حجر النردمنتظم مرة فإن احتمال ظهور عدد أقل من ٣ =

 $\left\{\frac{\gamma}{\gamma} :: \frac{\gamma}{\gamma} :: \frac{\gamma}{\gamma} :: \frac{\gamma}{\gamma}\right\}$

 $\{1 \ Y\}$ مجموعة حل المعادلتين : س = ص ، س ص = ۹ هي

7

```
\{ \{(\cdot, ')\} :: \{(', ')\} :: \{(\cdot, '-)\} :: \{('-, ')\} \}
                          { ٢٨} د (س) = س" - ٣سن + ٢ كثيرة الحدود من الدرجة .... { الاولي؛؛ الثانية ؛؛ الثالثة ؛؛ الصفرية }
   \{ q + \gamma m : q + m - \gamma m : q - \gamma m : q - \gamma m \} \dots = \gamma (\gamma - \gamma m) \{\gamma - \gamma m : q - \gamma m : q - \gamma m \} \dots = \gamma (\gamma - \gamma m) \{\gamma - \gamma m : q - 
           \{ \mathbb{T}^{\mathbb{T}} \}  مجموعة أصفار الدالة د (س) = س = س = س = \{ \mathbb{T}^{\mathbb{T}} \}  ؛؛ \{ \mathbb{T}^{\mathbb{T}} \}  ؛ \{ \mathbb{T}^{\mathbb{T}} \}  ) . . . . .
                                             فإن ل = ...... { المنابع المنا
                                                        \{ \ \overline{\mathsf{Y}} \backslash + \ \overline{\mathsf{o}} \backslash \ \ :: \ \overline{\mathsf{v}} \backslash - \ \overline{\mathsf{o}} \backslash \ :: \ \overline{\mathsf{o}} \backslash \ \mathsf{Y} \ :: \ \overline{\mathsf{o}} \backslash \ \mathsf{Y} \ \} \dots = \frac{\mathsf{w}}{\overline{\mathsf{w}} \backslash (1 + \overline{\mathsf{o}}) \backslash (1 +
                                                                                                            = \dots^{-1} إذا كان منحني الدالة د حيث د = \dots^{-1} س = \dots^{-1} عمر بالنقطة = \dots
                                                                                                                                                                                                                                                                                                                               { 9 99 7 99 W_ 99 W}
\emptyset ؛؛ (۹) ؛؛ \emptyset ، ب حدثین من فضاء العینة ، \emptyset ب فإن \emptyset ( \emptyset ل ب ) =...... وصفر ؛؛ \emptyset (۹) ؛؛ \emptyset
                                                           \{ P^{q} \} إذا كان ل \{ (q) = U (q) \} فإن ل \{ (q) = \dots \} صفر \{ P^{q} \} الله كان ل \{ (q) = U (q) \}

    { • • } إذا كان احتمال وقع الحدث ٩ هو ٥٧, • فإن احتمال عدم وقوعه هو ......

                                                                                                                                                                                                                                                                                                \{\frac{1}{10} !! % Y,0 !! \cdot, Y0 !! Y0 }
\{13\} مجموعة أصفار الدالة د : حيث د(س) = \frac{m-m}{m+n} هي .... \{\{\text{صفر}\}!!\{\}"\}": \{-7\}!!\{-7, \}"\}
 \{x^2\} معادلة محور تماثل د(س) = س x^2 _ 3 هي ...... x^2 س = صفر x^2 صفر x^2 صفر x^2
                                                                            { ٤٤ } المستقيمان: ٣س + ٥ص = صفر، ٥س ـ ٣ص = صفر يتقاطعان في الربع ......
                                                                                                                                                                                                                                                                  { الأول ؟؛ الثاني ؟؛ الثالث ؟؛ نقطة الأصل }
```

```
{٧٤} إلقي حجر نرد منتظم مرة واحدة فما احتمال ظهور عدد زوجي أو عدد فردي أو عدد أولي = ....
                                            \{ 43 \} إذا كانت ن (س) = \frac{w - 7}{w + 1} فإن ن(7) = \dots { صفر (2, 7) = 1 (3, 7) = 1
{ ٠٠} إذا كان ل (٩) = ٤ ل (٩) فإن ل ( ٩) = ..... { ٨,٠ ؛؛ ٦,٠ ؛؛ ٤,٠ ؛؛ ٢,٠ }
     \{0,0\} إذا كان \{0,0\} المكن أن تساوي \{0,0\} حل وحيد فإن ل لا يمكن أن تساوي \{0,0\}
                                                  { £ _ !! £ !! Y !! 1 }
   (٢٥) ضعف العدد س مطروح منه ٣ هو ...... ( س ـ ٣١٤٢ س ـ ٣ ١٢٢ س + ٣ ١٤ ٣ ـ ٢ س }
\{ ^{9} \}  إذا كان عمر رجل الآن سنه فإن عمره بعد ^{9}  سنوات هو .... \{ ^{9}  س)  إن ^{9}  \} 
  \{36\} مجموعة أصفار الدالة د حيث د(س) = س\{17\} هي ..... \{17\} ؛؛ \{-17\} ؛؛ \emptyset
               \{ \circ \circ \} \quad \Upsilon \times \Upsilon = \Gamma \stackrel{b}{=} i  فإن b = \dots 
 {٥٦} إذا كان عمر رجل الآن سنه فإن عمره منذ ٣ سنوات هو .... {٣س؛ س ـ ٣ ؟ س+٣ ؟ س٣
      \{ V = \} = \{ V \} اذا کانت ( س V = \{ V \} ) افن س \{ V : V = \{ V \} \} اذا کانت ( س \{ V = V \} \} افن س و سر \{ V : V = \{ V \} \} افن س
     \emptyset ؛؛ -\infty ؛؛ ح ؛؛ -\infty ، -\infty ، -\infty ، -\infty ؛؛ ح ؛؛ -\infty ، -\infty ، -\infty ) ؛؛ \otimes
                     { ۹ ه } نصف العدد ۲ ا ...... { ۲ ° ؛ ۲ ۲ ° ؛ ۲ ۳ ؛ ۲ ° ۲ }
                  { ۲° ؛ ۲° ؛؛ ۲° ؛ ۲° ؛ ۲° ؛ ۲° ؛ ۲° } ضعف العدد ۲° = .......
                  \{ 17 \} إذا كانت ٢ س = ١ فإن \frac{1}{6} س = ...... \{ \frac{7}{6} ?? \frac{1}{6} ?? \frac{1}{1} ?? \frac{1}{1} ?? \frac{1}{1} \}
                 {٢٢} عددان موجبان مجموعهما ٨ ، وحاصل ضربهما ٥ ١ فإن العددين هما ......
                     { (10,1) !! (£,£) !! (0,T) !! (7,Y)}
  \{ 77 \}  إذا كان س عدداً سالباً فإن أكبر الاعداد يمكن أن تكون .....  \{ 77 \}
```

```
\{37\} إذا كان س عدداً سالباً فإن \frac{6}{1+\frac{7}{1+\frac{7}{1+1}}} \div \frac{1}{1+\frac{7}{1+1}} = \dots
\{77\} مجال الدالة د حيث د(س) = \frac{m}{m-1} هو ..... \{7-\{1\}^2\} = \{1\}^2\} = \{1-1\}^2 ح - \{1, 0\}
                                                                                                                                                          { صفر ۱۱ ۱۱ ۲ ۱۱ ۳ }
                                                                                                                                                                                 {٦٩} إذا كانت النسبة بين محيطي مربعي ١: ٢ فإن النسبة بين مساحتيهما =
                                                                                                                                                                                                                                                                                                                                                                                                                                                   \{\emptyset' (۴، ۴)} و حموعة حل المعادلتين : \{\emptyset'''' = \emptyset'' = \emptyset''' = \emptyset'' = \emptyset''
                                                                                                                                                                              \{ YY \} إذا كان Y = 1 فإن Y = 1 الله عند Y = 1 ا
                                                                                                                                                             \{00\} إذا كان المقدار ( س 1+1 س 10+1 ) مربعاً كاملاً فإن ل 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 10+1 ؛ 
                                                                                                                                                                                                                                                                                                 \{\frac{1}{v}, \frac{1}{v}, 
                                                                                 \emptyset ' : \{ T , T = \}  المعادلة س \{ T = \}  في س هي .... \{ T = \} \} ' : \{ T \} \} 
                                                                                                                                                                                                                                                              { ۲0 ± ؛ ۲0 ؛ ؛ + 0 ؛ ؛ + 0 ؛ + √ { ۷٨}
                                                                       \{\frac{\xi}{\pi}\} اذا کان \{\frac{\pi}{2}\} ب فإن \frac{\pi}{2}\} ..... \{\frac{\pi}{2}\} ب غان \{\lambda \cdot \}
                                                                  \emptyset (۱ \emptyset ) المجموعة أصفار الدالة د : د (س) = س \emptyset + س + ۱ هي ..... \{\{1\}\} ؛ \{-1\} ؛ \{-1\} ؛ \{-1\} ؛ \{-1\} ؛ \{-1\} ، \{-1\} ؛ \{-1\} ، \{-1\} ؛ \{-1\} ، \{-1\} ؛ \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{-1\} ، \{
                                                                          \{ \wedge \} \} إذا كان س هو العنصر المحايد الجمعي ، ص هو العنصر المحايد الضربي فأن ( \wedge )^m + ( \wedge )
```

```
 \{ \Lambda T \}  إذا كان س ـ ص =  T  ، س + ص =  \Phi  فإن س ّ ـ ص  T + T = \dots 
            \emptyset ؛؛ \emptyset ؛؛ \{-0\} ؛؛ \{-0\} ؛؛ \{-0\} ؛؛ \{-0\} ؛؛ \{-0\} ؛؛ \{-0\} ؛؛ \{-0\} ؛ \{-0\} ؛؛ \{-0\}
                              \{ \frac{17}{9} :: \frac{9}{17} :: \frac{1}{7} :: \frac{1}
          \{ \land \land \} عدد حلول المعادلة س = \uppi في \uppi \times \uppi = \dots صفر \  \  \,    ؛ \  \  \,    ؛ \  \  \,   عدد \  \  \,   نهائي \  \  \,  
                       {٩٠} في المعادلة إس ٢ + ب س + ج = صفر إذا كان ب٢ - ٤ ٩ ج > صفر فإن عدد جذور المعادلة في
                                                                                           ح هي ...... { ١ ؛ ٢ ؛؛ صفر ؛؛ لا نهائي }
              {٩١} المعادلة ٣ س + ٤ص + س ص = ٥ من الدرجة .... { الاولي ؛؛ الثانية ؛؛ الثالثة ؛؛ الصفرية }
                              \{\frac{\zeta}{\omega}: \{ \alpha \wedge : \alpha - \alpha : \beta - \gamma \} + \alpha \} به \{ \alpha + \alpha : \beta - \gamma \} به \{ \alpha + \beta : \beta + \gamma \} \} به \{ \alpha \in \alpha : \beta = \gamma \} به \{ \alpha \in \alpha : \beta = \gamma \} به \{ \alpha \in \alpha : \beta = \gamma \}
            \{0,9\} منحني الدالة د:د(س) = \emptyset س(-1,0) س (-1,0) س (-1,0) منحني الدالة د:د(س) = \emptyset س(-1,0)
                                                                              { (~· ·) !! (P·~) !! (P··)}
     \{ 77 \} المعكوس الجمعي للعدد ( ۱ \sqrt{7} ) هو ... \{ 1+\sqrt{7} \ ?? -1 - \sqrt{7} \ ?? \sqrt{7} -1 \ ?? \sqrt{7} \}
 \{\emptyset^{\circ}\} يقال للحدثين \{\emptyset^{\circ}\} ، ب أنهما متنافيان إذا كان ل\{\emptyset^{\circ}\} ب \{\emptyset^{\circ}\} . . . . \{\emptyset^{\circ}\}
                   {٩٩} المستقيمان: س - ٣ = ٠، ص = ٤ يتقاطعان في ... [الربع الأول ؛؛ الربع الثاني ؛ الربع الثالث ؛؛ نقطة الأصل }
                                                   {۱۰۰} ربع العدد ۲''هو ..... {۲' ؛ ۲'' ؛؛ ۲° ؛ ۲<sup>۳</sup> }
                      ا المعادلتين : ٢س+ ص=ه ، ٤س+٢ص= ٩ عدد لا نهائي من الحلول في ح <math> \times  
                                                                                       فإن ( = ..... { ١٠ ؛ ١٠ ؛ ١٠ ؛ ١٠
```

```
\emptyset : \{Y, Y\} م ح المعادلة : \{Y\} 
                                                                                                                { "£ :: 'Y :: 'Y :: 'Y } ..... = "Y + "Y {1 · Y}
 \{3 \cdot 1\}مجموعة أصفار الدالة د : د (س) = س مس + هي .... \{7 \cdot 7\} \{7 \cdot 7\} \{7 \cdot 7\}
{٥٠٠} مجموعة أصفار الدالة د : د(س)=س(س ـ ١)هي .... { {١٠٠} ؟؛ {١٠٠١} ؟؛ { ـ ١٠١} ؟؛ { | -١٠١} ؟
             \{1 \cdot 1\} المعكوس الجمعي للكسر الجبري \frac{7}{4} هو ... \{\frac{7}{4}\} \{\frac{7}{4}\} \{\frac{7}{4}\} \{\frac{7}{4}\}
         \{ 1 \cdot \_ ?? \quad 1 \cdot ?? \quad 2 \cdot ?? \quad 2 \cdot ?? \quad 3 \cdot ?? \quad 4 \cdot ?
                                                                     { ۱۱٠} إذا كان: ٩ = ١٠ ٩ = ١٠ فإن: ٩ " = ..... { ٥ ؛ ١ ١ ؛ ١ ٢ ؛ ٢٠ }
                                                                                                   { ١١٤} إذا كان: ٩ حدثاً من فضاء العينة لتجربة عشوائية ، ل ( ٩ )=٥,٠ فإن: ل ( ٩ )=.....
                                                                                                                                                                     \emptyset (۱۱۷) مجموعة أصفار الدالة د : د (س) = س س - ۲س + ۱ هي .... \{1\} (۱۱ ؛ \{-1\} ؛ \{1 ، - ۱ ؛ \{1\} ) 
                        \{\ 1\ 1\} إذا كانت : \frac{1}{m} = \frac{1}{2} فإن : \frac{1}{m} = \frac{1}{2} الله \{\ 1\ 1\} \{\ 1\ 1\}
                                             {- ≥ U + ≥ " {·} - ≥ " Ø " ≥ } .... = - ≥ ∩ + ≥ {١١٩}
                                                     {۱۲۰} إذا كان: ٣س=٥٤ فإن: أس س = ..... و ٣ ؟؛ ٥٠ ؟؛ ١٥ ؟؛ ٥٤ }
           { ١٢١} إذا كان خمسة أمثال عدد يساوي ٥٤ فإن هذا العدد يساوي ..... { ٨١ ؟؛ ٢٧ ؟؛ ٩ ؟؛ ٥ }
                                  \{117\} إذا كانت : \{-17, 7\} هي مجموعة أصفار الدالة د حيث د(س) = س\{-17, 7\} فإن : \{-17, 7\}
```

```
:: Y :: £ :: £_
                                                                                                                                                                                     {
                                                                          {۱۲۳} إذا كان : ٥ <sup>...</sup> ا فإن س = ...... {   ـ ١   ؛؛   ١   ؛؛ صفر   ؛؛
            {٥٢١} إذا كان: ٩، بحدثين من فضاء العينة لتجربة عشوائية ما وكان: ل ( ٩ ) = ٧,٠،
                                         { ١٢٦} إذا كان: ٥٠ = ٣ فإن: ١٢٥ - ..... { ١٥ ؛؛ ٣٠ ؛؛ ٢٧
                                                            \{ 177 \} إذا كان : 1 + \frac{1}{2} = 1 فإن س = \frac{1}{2} = 1 ؛؛ صفر ؛؛ \pm 1 ؛؛ \pm 1
                  \{174\} اِذَا کان : m^2+9 س =17=(m-2)(m+2) فإن 9=....
                                                                                               {١٢٩} قيمة العدد المكون من رقمين الذي آحاده س و عشراته ص هي .....
                                                 { ۱۰ س ص ؛؛ س + ص ؛؛ س + ۱۰ ص ؛؛ ص + ۱۰ س }
                                 { ۲ س ؟ ؛ ٤ س ؛ ؛ ٤ س ؟ )؛ ٢ س ؟ إلى العدد س = ..... { ٢ س ؟ ؛ ٤ س ٢ )؛ ٢ س ٢ }
 (١٣١) م. ح المتباينة: س ≤ ١ في طهي .... { {١} ؛؛ {٠} ؛؛ {٠، ١} ؛؛ {١، ٠، ٠ }
                                                                              \{ A = \S \mid Y = \S \mid Y = \S \mid A \} \dots \times w = {}^{n} = w \times {}^{n} \times {}^{
```

السؤال الثاني: اجب عن ما يلي

```
۳
```

{٦} مستطيل طوله يزيد عن عرضه بمقدار ٤ سم، فإذا كان محيط المستطيل ٢٨ سم أوجد مساحة المستطيل.

{٧} عددان حقيقيان مجموعهما ٤٠، والفرق بينهم ١٠ أوجد العددين.

 $\{\Lambda\}$ أوجد مجموعة حل المعادلتين : $= m + 3 \cdot m + m = 3 \cdot$ جبرياً و بيانياً

{٩} زاويتان حادتان في مثلث قائم الزاوية الفرق بين قياسهما ٥٠ ° أوجد قياس كل زاوية .

(١٠) أوجد قيمتي ٩، ب علماً بأن (٣، ـ١) حل للمعادلتين

م س + ب ص ـ ٥ = صفر ، ٣ م س + ب ص = ١٧

 $\{11\}$ أوجد مجموعة حل المعادلتين : 1 + m + m = 1 ، m + 7 ص = 6 جبرياً

سٔ

- (١) أوجد مجموعة س٢ ـ ٢ س ـ ٦ = ٠ باستخدام القانون العام مقرباً الناتج لرقمين عشريين
- $\{Y\}$ ارسم الشكل البياني للدالة د حيث د (m) = m' 1 في الفترة [-T, T] و من الرسم أوجد مجموعة حل المعادلة m' 1 = m
 - $\{T\}$ أوجد مجموعة حل المعادلة س' T (T (T) = صفر مستخدما القانون العام
 - $\{3\}$ أوجد مجموعة حل المعادلة س (س ـ 1) = 0 مستخدما القانون العام مقربا الناتج لأقرب رقم عشري واحد
 - $\{0\}$ أوجد مجموعة حل المعادلة 7 س 7 $^ ^0$ س $^+$ $^+$ $^-$ صفر مستخدما القانون العام مقربا الناتج لأقرب رقم عشري واحد
 - $\{7\}$ أوجد مجموعة حل المعادلة 7 س' ' ' س' ' ' ' ' ' ' صفر مستخدما القانون العام مقربا الناتج لأقرب رقم عشري واحد
 - $\{V\}$ أوجد مجموعة حل المعادلة Y سY + Y = Y مستخدما القانون العام مقربا الناتج لأقرب رقمين عشريين .

 $\{\Lambda\}$ أوجد مجموعة حل المعادلة π س $^{\prime}$ = 0 س $_{-}$ ا مستخدما القانون العام مقربا الناتج لأقرب رقم عشري واحد

 $\{9\}$ أوجد مجموعة حل المعادلة (س – %) – % س = . مستخدما القانون العام مقربا الناتج لأقرب رقم عشري واحد

 $\{1.\}$ أوجد مجموعة حل المعادلة 1 = (- 0) = 1 مستخدما القانون العام

 $\{11\}$ أوجد مجموعة حل المعادلة $m + \frac{3}{m} = 7$ مستخدما القانون العام مقربا الناتج لأقرب رقم عشري واحد

 $\{11\}$ أوجد مجموعة حل المعادلة 7 س $^{\prime}$ - 0 س+1 = صفر مستخدما القانون العام مقربا الناتج لأقرب رقم عشري واحد

س

١ أوجد مجموعة حل المعادلتين: س + ص = ٧ ، س ص = ١٢ جبرياً

{٢} أوجد مجموعة حل المعادلتين: ص = س - ٣ ، س ص = ٤ جبرياً

 $\{ \mathbf{r} \}$ أوجد مجموعة حل المعادلتين : $\mathbf{w} = \mathbf{w} + \mathbf{1} \cdot (\mathbf{w} - \mathbf{w})^{\mathsf{Y}} + \mathbf{w} = \mathbf{r}$ جبرياً

 $\{7\}$ أوجد مجموعة حل المعادلتين: س ـ ص = ، ، س $^{\prime}$ + س ص + ص $^{\prime}$ = $^{\prime}$ جبريا

 $\{\Lambda\}$ أوجد مجموعة حل المعادلتين : س ـ $\Psi = \Lambda$ ، س $\Lambda + \Omega = \Lambda$ جبريا

٩٤} مثلث قائم الزاوية طول وتره ١٠ سم ومحيطه ٢٤ سم ، أوجد طولي ضلعي القائمة

(١٠} أوجد مجموعة حل المعادلتين: س ـ ص = ٠، س ص = ١٦ جبرياً

{١١} عددان حقيقيان موجبان مجموعهما ٩ والفرق بين مربعيهما ٥٤ أوجد العددين

 $\{17\}$ أوجد مجموعة حل المعادلتين: س ـ ص = ۰، 7س ـ ص = ٤ جبرياً $\{17\}$ عددان حقيقيان موجبان الفرق بينهما ١، و مجموع مربعيهما ٢٥ أوجد العددين

سځ

 $\{1\}$ إذا كانت مجموعة أصفار الدالة د حيث د $(m) = m^7 - 1$ m + 9 هي $\{9\}$ فأوجد قيمة $\{7\}$ إذا كانت مجموعة أصفار الدالة د حيث د $(m) = \frac{m^7 - 9}{m} + \frac{9}{8}$ هي $\{7\}$ ومجالها ح $-\{7\}$ فأوجد قيمتي $\{9\}$ $\{9\}$

أوجد: قيمة كل من ١ ، ب

 $\{ ^{2} \}$ إذا كان مجال الدالة \dot{v} : \dot{v} (س) = $\frac{(w - ^{1})(w - ^{2})}{w^{7}}$ هو \dot{v} - \dot{v} } $\frac{(^{2} + ^{2})(w - ^{2})}{w^{7}}$ هو \dot{v} - \dot{v} } \hat{v} = \dot{v} } \hat{v} + \hat{v} أوجد \dot{v} : \dot{v} - \dot{v} (\dot{v}) في أبسط صورة موضحاً مجال \dot{v} - \dot{v}

س

$$\gamma$$
ن و النا کانت ن (س) = $\frac{m}{m} + \frac{m}{m} + \frac{m}{m} + \frac{m}{m} + \frac{m}{m} + \frac{m}{m} + \frac{m}{m}$ اثبت أن ن $\{\xi\}$

$$\frac{w'-3}{w'-w} = \frac{w'-3}{w'-w}$$
 $\frac{w'-3}{w'-w} = \frac{w'-w}{w'-w} = \frac{w'-w}{w'-w}$
 $\frac{w'-w}{w'-w} = \frac{w'-w}{w}$
 $\frac{w'-w}{w} = \frac{w'-w}{w}$
 $\frac{w'-w}{w}$
 $\frac{w'-w}{w}$
 $\frac{w'-w}{w}$
 $\frac{w'-w}{w}$
 $\frac{w'-w}{w}$
 $\frac{w'-w}{w}$

المستر في الرياضيات

مراجعة ليلة الامتحان تالتة اعدادي

1

 $\frac{1+w+w}{w^2-w^2}=\frac{w^2+w+1}{w^2-w^2}=\frac{w^2+w+1}{w^2-w^2}$

أثبت أن ن، (س) = ن، (س) لجميع قيم س التي تنتمي إلي المجال المشترك.

س

$$\frac{7+mY}{7+mQ} + \frac{m^2-m^2}{m^2-m^2} + \frac{m$$

$$\frac{\gamma + w}{1} + \frac{w}{1} + \frac{w}{1}$$

$$\frac{1+w}{1+w} - \frac{7+w}{1+w} = (w) = \frac{7+w}{1+w} + \frac{1+w}{1+w} = \frac{1+w}{1+w} + \frac{1+w}{$$

$$\{a\}$$
 أوجد الدالة ن في أبسط صورة مبيناً المجال ن (س) = $\frac{m^7 + 3m}{m^7 - 17} + \frac{m + 7}{m^7 - m}$

 $\frac{w - w}{1}$ - $\frac{w - w}$ $\{V\}$ أوجد الدالة ن في أبسط صورة مبيناً المجال ن (س) = $\frac{w-w}{w^{2}-1}$ - $\frac{3}{w^{2}-3}$ $\frac{1}{1+w} - \frac{1-v^{w}}{w^{2}-1} = \frac{w^{2}-1}{w^{2}-1}$ أوجد الدالة ن في أبسط صورة مبيناً المجال ن (س) $\{1, 1\}$ أوجد الدالة ن في أبسط صورة مبيناً المجال ن $(m) = \frac{m - 1}{m^2 - 3} + \frac{m + m}{m^2 - 9}$ $\frac{W^{2}-Y^{2}-Y^{2}}{W^{2}-W^{2}}+\frac{W^{2}-W^{2}}{W^{2}-W^{2}-W^{2}}+\frac{W^{2}-Y^{2}-W^{2}}{W^{2}-W^{2}-W^{2}-W^{2}}+\frac{W^{2}-W^{2}-W^{2}}{W^{2}-W^{2}-W^{2}-W^{2}}+\frac{W^{2}-W^{2}-W^{2}}{W^{2}-W^{2}-W^{2}-W^{2}}+\frac{W^{2}-W^{2}-W^{2}}{W^{2}-W^{2}-W^{2}-W^{2}-W^{2}}+\frac{W^{2}-W^{2}-W^{2}-W^{2}-W^{2}-W^{2}}{W^{2}-W^{2} \frac{\xi - w}{17 - \chi_0} + \frac{w}{17 - \chi_0} = \frac{w}{17 - \chi_0} + \frac{w}{17 - \chi_0} +$ $\frac{7}{100} + \frac{7}{100} + \frac{7$ $\frac{w}{1 + y} = \frac{w}{1 + y}$ أوجد الدالة ن في أبسط صورة مبيناً المجال ن $(w) = \frac{w}{1 + y}$

> ٧ س

ردا کان: ن(س) = $\frac{m^{7}-7}{m^{7}-4}$ فأوجد ن- في أبسط صورة و عين مجال ن- $\frac{1}{4}$

 1 فأوجد ن $^{-1}$ فأوجد ن $^{-1}$ فأوجد ن $^{-1}$ فأوجد ن $^{-1}$ في أبسط صورة وعين مجال ن $^{-1}$

''' فأوجد ن' في أبسط صورة وعين مجال ن' في أبسط صورة وعين مجال ن' $\frac{m^2 + m}{m} = \frac{m^2 + m}{m}$

(*) إذا كان: ن(س) = $\frac{m^{7} - 7m}{(m - 7)}$ فأوجد ن(*) فأوجد ن

1 2

و أوجد قيمة س إذا كان : ن- (س) = π

وه إذا كانت: ن (س) = $\frac{m^7 + 7m + 1}{m}$ أوجد {۱} مجال ن- ' {۲} ن- ' (س)في أبسط m + 1

 $(7) = \frac{m^7 + 9m + 7}{m^7 - 1}$ فأوجد ن $(m) = \frac{m^7 + 9m + 7}{m^7 - 1}$

س^

 $\{1\}$ أوجد ن (س) في أبسط صورة مبيناً المجال ن (س) = $\frac{m^2 + 3m + 7}{m^2 + m} \div \frac{m + 7}{m^2 + 7}$

 $\frac{\gamma}{q} + \frac{\gamma}{q} + \frac{\gamma$

 $\frac{m+m}{1-m+2} \times \frac{m-m}{1-m+2} = (m)$ أوجد ن (س) في أبسط صورة مبيئاً المجال ن (س) في أبسط صورة مبيئاً المجال ن (س)

 $\frac{Y - wY}{1 + wY} \times \frac{Y - w}{1 + wY} = \frac{W^{2} - Y}{1 + wY} \times \frac{W$

 $\{0\}$ أوجد ن (س) في أبسط صورة مبيناً المجال ن (س) = $\frac{w'-w+v-w+v-v}{w'-v}$ ÷ $\frac{w'-v-v}{w'-v-v}$

 $\frac{W - P}{V} + \frac{W - P}{W}$ اوجد ن (س) في أبسط صورة مبيناً المجال ن (س) = $\frac{W - P}{W} + \frac{W - V}{W} + \frac{V - V}{W}$

 $\frac{w^{2} + Y + W^{2} + 2w}{W^{2}}$ $\frac{w^{2} - X}{W^{2} + W^{2} + 2w} + \frac{W^{2} - X}{W^{2} + W^{2} + 2w}$ $\frac{W^{2} - W}{W^{2} + W^{2} + w} + \frac{W^{2} - W}{W^{2} + w} + \frac$

 $\{\Lambda\}$ أوجد ن (س) في أبسط صورة مبيناً المجالن(س)= $\frac{\Upsilon w^2 - w - \Gamma}{w^2 - w} \div \frac{3 w^2 - P}{W^2 - w}$

$$\frac{m+m}{1+m} \times \frac{1-m-m}{m-1-m} = (س)$$
 اوجد ن (س) في أبسط صورة مبيناً المجال ن (س) في أبسط صورة مبيناً المجال ن (س)

$$\frac{17+ \frac{1}{2}}{10+ \frac{1}{2}} \times \frac{10- \frac{1}{2}}{10+ \frac{1}{2}} \times \frac{1}{2} \times \frac{1$$

$$\frac{V}{\{11\}}$$
 أوجد المجال المشترك للدالتين ن، ن، ن، حيث ن (س) = $\frac{W'+\frac{1}{2}}{W'-\frac{1}{2}}$ ، ن (س) = $\frac{V}{W'+\frac{1}{2}}$

س

 $\{1\}$ في الشكل المقابل: إذا كان $\{1\}$ ، $\{1\}$ فضاء عينة لتجربة عشوائية $\{1\}$ أوجد ل $\{1\}$ ل $\{7\}$ ل $\{7\}$ ل $\{7\}$ احتمال عدم وقوع الحدث $\{7\}$

 $\{Y\}$ إذا كان $\{Y\}$ ، ب حدثين من فضاء عينة لتجربة عشوائية ، وكان ل $\{Y\}$

 $\{ \gamma \}$ إذا كان $\{ \gamma \}$ ، ب حدثين من فضاء عينة لتجربة عشوائية ، وكان ل $\{ \gamma \}$

فأوجد {١} ل (٩ ل ب) {٢} ل (٩ ـ ب) {٣} احتمال عدم وقوع ب

{٥} كيس به ١٥ كرة متماثلة مرقمة من ١ إلي ١٥ سحبت كرة عشوائية إذا كان الحدث ٩ هو الحصول علي عدد فردي ، الحدث ب الحصول علي عدد يقبل القسمة علي ٥

أوجد (۱) ل (۹) (۲) ل (ب) (۳) ل (۱-ب)

£-(5)

مراجعة ليلة الامتحان في الجبر والإحصاء

★ الوحدة الأولي :

أولاً: أسئلة الاختيار من متعدد

مجموعة حل المعادلتين س + ۱ = ۰ ، ص - ۲ = ۰ معاً هي
 مجموعة حل المعادلتين س + ۱ = ۰ ، ص - ۲ = ۰ معاً هي
 (۲ ، ۱) } (۲ ، ۱) } (۲ ، ۱) } (۲) } (۲ ، ۱) }

نقطة تقاطع المستقيمين: $\omega = \Upsilon$ ، $\omega + T$ هي (Υ, Υ) (۲،۲) (۶) (Υ, Υ) (۲،۲) (۶)

المستقيمان: ٣س + ٥ ص = ٠، ٥س - ٣ ص = ٠ يتقاطعان في (٢) نقطة الأصل (-) الربع الأول (-) الربع الأاني (5) الربع الرابع الرابع الرابع الرابع الرابع الرابع الرابع الربع ا

والمعادلتين: -w + 3 = V، V = w + V عدد V = w + 1 + 2 = 0 الحلول فإن: v = 0 الحلول v =

المستقیمان: 7 - w + 3 = 1، 7 - w + A = -7 = 0 یکونان (۹) متوازیین (-) متعامدین (-) متقاطعین و غیر متعامدین (-) منطبقین

مجموعة حل المعادلتين: س – ω = ۰، س ω = ۱٦ في $g \times g \times g$ هي

(۲) {(۰،۰)} (۲)

(- ۲) - ۲)

(- ۲) - ۲)

- الزوج المرتب الذي يحقق كلاً من المعادلتين : س $\omega = Y$ ، س $-\omega = 1$ هو

 (۲ ، ۱) (۲ ، ۲) (۲ ، ۲) (۲ ، ۲) (۲ ، ۲)
 - - $\mathbf{v} = \mathbf{v} =$
 - $Y \pm (s)$ و ناکان: q = T ، q = T و ناکان: q = T
 - عددان موجبان مجموعهما ۷ ،حاصل ضربهما ۱۲ فإن: العددين هما (۲) ۲ ، ۵ (-) ۲ ، ۲ (-) ۳ ، ۶

ثانيًا: الأسئلة المقالية

* حل المعادلة من الدرجة الثانية في مجهول واحد:

العام العانون العام عشريين.

العام : $m = \frac{1}{r} + \frac{$

٢ استخدام القانون العام أوجد مجموعة المعادلة في ع: س(س − ۱) = ٤

مقرباً الناتج لأقرب ثلاثة أرقام عشرية.

$$\frac{\overline{\xi - \times 1 \times \xi - 1}}{1 \times Y} = \frac{\overline{\xi - Y}}{1 \times Y} = \cdots$$

$$1,077 - = \frac{1}{7} \frac{1}{7} = 750,7 \quad \therefore \quad 7,077 = \frac{1}{7} \frac{1}{7} = 150,7$$

ارسم الشكل البياني للدالة $c: c(-\infty) = -\infty^{7} - 1$ في الفترة [-7, 7] ومن الرسم

 1 العادلة: 7 – 1

(الحل)

٣	۲	١	•	١ –	۲ –	٣-	<u>.</u>
٨	٣		1 –	*	٣	٨	د(س)

$$\therefore \text{ $\lambda \in \mathbb{N}$ and $\lambda \in \mathbb{N}$.}$$

* حل معادلتين من الدرجة الأولي في متغيرين:

المعادلتين الآتيتين في ح×ح بيانيًا: كلا أن الآتيتين في ح×ح بيانيًا: ٤

2 = -0 + 3, -0 = 2

٣	۲	١	j
>	۲	0	ص

٣	۲	١	٦
١	۲	٣	ص

$$(\cdot, \cdot) = (\cdot, \cdot)$$
 نهجموعت الحل

أوجد مجموعة الحل لكل من المعادلتين الآتيتين في ح×ح جبرياً.

$$Y = \omega - \omega + \omega = 0$$

بالجمع

$$(\div)$$
 بالتعويض عن س في المعادلة (\div) $($

∴مجموعة الحل = {(۲،۲)}

أوجد مجموعة الحل لكل من المعادلتين الآتيتين في ح×ح جبرياً:

(الحل) بالضرب المعادلة () في (٢)

بالجمع

$$Y = Y + Y = V + Y$$

$$Y = - Y = 0$$
 $\therefore Y = - Y = 0$

V أوجد قيمتي ١ ، ب علماً بأن {(٢،١)} حل للمعادلتين:

بضرب المعادلة (في (- ٢):

$$7 = \checkmark \therefore \qquad (?\div) \quad 1? = \checkmark ? \qquad \vdots = \checkmark ? + \land -$$

عددان نسبیان مجموعهما ۱۲ وثلاثة أمثال أصغر هما یزید عن ضعف أكبر هما بمقدار واحد.
 أوجد العددین ؟

$$(Y) \qquad Y = \omega = Y - \omega - Y \qquad (Y \times Y) \qquad (Y \times Y)$$

بالجمع

س = ٥ بالتعويض عن س في المعادلة ()

$$\checkmark \circ + \circ = 1$$
 .: $\circ + \circ = \lor$.: $\circ + \circ \circ \circ \lor$

* حل معادلتين إحداهما من الدرجة الأولى والأخرى من الدرجة الثانية في متغيرين:

أوجد مجموعة الحل لكل من المعادلتين الآتيتين في ح×ح جبرياً:

$$\bullet = \xi - \omega = 1$$
, $\omega - \xi = 0$

$$\cdot = \xi - (\omega + \gamma) + \gamma$$
 بالتعویض عن ص فی المعادلة (γ) :

$$Y - Y = \omega \qquad | \quad Y + Y = \omega$$

اوجد مجموعة الحل لكل من العادلتين الآتيتين في ح×ح جبرياً:

$$T \cdot = {}^{\mathsf{T}} \omega - {}^{\mathsf{T}} + \omega^{\mathsf{T}} = {}^{\mathsf{T}}$$

(الحل)
$$w = 7 + \omega$$
 ، $w = 7 + \omega^7 = 0.7$

$$Y = Y - Y + Y$$
بالتعویض عن س فی المعادلة $Y = Y + Y + D$

$$\cdot = 7 \cdot - 7 \omega + \omega + \omega + 2 = 0$$

ال مستطیل محیطه ۱۸ سم و مساحته ۱۸ سم اوجد: طول کلاً من بعدیه ؟

$$\therefore \text{ acycle } Y = (w + \omega) = X$$

$$\cdot \cdot =$$
 $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$

.. بعديه المستطيل: ٣سم ، ٦سم

★ الوحدة الثانية :

أولاً: أسئلة الاختيار من متعدد

- * مجموعة أصفار الدالة كثيرة الحدود:
- 🕦 مجموعة أصفار الدالة د: د(س) = ٣٠٠٠ هي

$$\mathcal{E}(s) \qquad \{\Upsilon^-\}(s) \qquad \{\Upsilon^-\}(s) \qquad \{\Upsilon^+\}(s)$$

مجموعة أصفار الدالة د : د(س) = س (س
7
 - 7 س + 1) هي

$$\{1\}(s) \qquad \{1\cdot 1-\}(s) \qquad \{1-\cdot \cdot \}(s) \qquad \{1\cdot \cdot \}(s)$$

$$\{1\}(5) \qquad \emptyset(5) \qquad \{1\}(5) \qquad \{1\}(5)$$

$$\mathcal{E}(s) \qquad \qquad \{\cdot\}(s) \qquad \qquad \emptyset(s) \qquad \{\cdot\}-\mathcal{E}(s)$$

$$(c) = (c) = (c)$$

* دالة الكسر الجبري - وتساوي كسريين جبريين:

$$\sqrt{(-1)} = \frac{\omega(\omega - 1)}{\omega}$$
 هو

مجال الدالة
$$\omega: \omega(\omega) = \frac{\omega - \tau}{\tau}$$
 هو

$$\bullet$$
 مجال الدالة ω : $\omega(\omega) = \frac{\omega - V}{\Upsilon(\omega + 1)}$ هو

$$\{1-\}-\varrho(s)\{7,1-\}-\varrho(s)\{1\}-\varrho(s)$$

المجال المشترك للكسرين:
$$\frac{7}{m-m}$$
 ، $\frac{9}{m}$ هو

المشترك للدالتين
$$\omega_1(\omega) = \frac{V - V}{U + V}$$
 ، $\omega_2(\omega) = \frac{U}{U + V}$ وكان المجال المشترك للدالتين $\omega_1(\omega) = \frac{V - V}{U + V}$

$$(c) = \frac{w - w}{w}$$
 إذا كانت : $c(w) = \frac{w - w}{v + v}$ فإن : $c(w) = \frac{w}{v}$

$$\{Y-,Y\}(s) \qquad \{Y-\}(s) \qquad \{Y-\}-g(s) \qquad \{Y\}(P)$$

$$\frac{U - V - V}{V} = \frac{U}{V}$$
 إذا كانت: $V = V$ أحد أصفار الدالة د: د(س) = $\frac{V}{V}$

فإن: ك =

$$T-(s)$$
 $T-(s)$ $T(s)$

أبسط صورة للدالة د: د(س) =
$$\frac{3-\omega}{\omega-3}$$
 حيث $\omega\neq$ صفر هي

$$1-(5) \qquad \qquad \xi-(-) \qquad \qquad \xi(+)$$

$$\frac{Y-w}{Y-w} = \frac{\xi+w^{2}-\xi^{2}}{w^{2}-y^{2}} = \frac{w-Y}{w}$$
 إذا كان أبسط صورة للكسر الجبري $w(w) = \frac{Y-w}{w}$ هي $w(w) = \frac{Y-w}{w}$

فإن : ١ =

$$(\omega)_{Y}$$
 اِذَا کَان: $\omega_{1}(\omega) = \frac{\xi}{\omega - Y}$ ، $\omega_{2}(\omega) = \frac{\xi}{\omega - Y}$ ، $\omega_{3}(\omega) = \omega_{3}(\omega)$

فَإِن : ١ =

* العمليات على الكسور الجبرية:

مجال الدالة
$$\omega$$
 حيث $\omega(-\omega) = \frac{\omega - \gamma}{\omega + \gamma} + \frac{\gamma - \omega}{\omega - \gamma}$ هو

$$\{\%, \Upsilon\} - g(s) \{\Upsilon, \Upsilon - \} - g(s) \{\Upsilon, \Upsilon -$$

$$\frac{\mathcal{V}-\mathcal{V}}{\mathcal{V}}\left(s\right) \qquad \frac{\mathcal{V}+\mathcal{V}}{\mathcal{V}}\left(s\right) \qquad \frac{\mathcal{V}}{\mathcal{V}+\mathcal{V}}\left(s\right) \qquad \frac{\mathcal{V}}{\mathcal{V}+\mathcal{V}}\left(s\right)$$

$$=\frac{1-1}{1-1}+\frac{1+1}{1-1}=\frac{1+1}{1-1}=\frac{1+1}{1-1}=\frac{1+1}{1+1}=\frac{$$

$$\frac{Y}{Y(1-w)}(5) \qquad \frac{Y}{1-w}(5) \qquad \frac{Y}{Y-w+1}(5)$$

المعكوس الجمعي للكسر:
$$\frac{7}{1+1}$$
 هو

$$\frac{T}{1-T_{or}}(s) \qquad \frac{1-T_{or}}{T}(s) \qquad \frac{1+T_{or}}{T}(s) \qquad \frac{T-T_{or}}{T}(s)$$

يكون للدالة د : د(س) =
$$\frac{w - Y}{w - o}$$
 معكوساً جمعياً في المجال

يكون للدالة د : د(س) =
$$\frac{w - 7}{w - 0}$$
 معكوساً ضربياً في المجال

$$(1)^{1-\omega}$$
 إذا كان: $(-\infty) = \frac{1-\omega}{1+\omega} = (1)$ فإن $(-\infty)^{1-\omega}$

تساوي
$$-1 (-1)$$
 تساوي صفر (-1) تساوي $-1 (-1)$ غير معرفة

ثانيًا: الأسئلة المقالية

* تساوى كسريين والمجال المشترك:

$$\frac{w^{4}}{(1-w^{4})} = (w)^{2} + ($$

ن سر= سر لأن: مجال سر =مجال سر ، اختزال سر = اختزال سر

هل: ١٠٠ مع ذكر السبب؟

$$\frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma} \omega \therefore \qquad \frac{(\gamma + \omega)(m - \omega)}{(m + \omega)(m - \omega)} = (\omega)_{\gamma}$$

· بر ب به الأن: مجال به ر ب مجال به ، اختزال به = اختزال به ب

ا أوجد المجال المشترك الذي تتساوي فيه $\wp_{\wedge}(w)=\wp_{\wedge}(w)$ حيث:

$$u_{1}(w) = \frac{w^{2} + w^{2} + w}{w^{2} - w}, \quad u_{2}(w) = \frac{w^{2} - w}{v^{2} - w} = \frac{w^{2} - w}{v^{2} - w} = \frac{w^{2} - w}{v^{2} - w} = \frac{(w)^{2} - w}{v^{2} - w} = \frac{(w)^{2} - w}{(w^{2} - w)(w^{2} - w)} = \frac{(w)^{2} - w}{(w^{2} - w)(w^{2} - w)} = \frac{(w)^{2} - w}{(w^{2} - w)(w^{2} - w)} = \frac{(w)^{2} - w}{v^{2} - w} = \frac{(w)^{2} - w}{v^{2}$$

 $\{1, 7, 7\} - 2 = 3 - \{1, -7, 7\}$ نسبال المشترك $\{1, 7, 7\}$

* العمليات على الكسور الجبرية:

الجال $(^{\omega})$ في أبسط صورة موضحاً المجال $^{\omega}$

$$\omega(\omega) = \frac{\omega + \gamma}{\omega^{2} - \omega} \times \frac{\omega + \gamma}{\omega^{2} + \omega + 1} \times \frac{\omega + \gamma}{\omega^{2} - \omega} \times \frac{1 - \omega}{\omega} = (\omega)$$
 ان أمكن

$$\frac{\Upsilon + \omega}{1 + \omega + \Upsilon \omega} \times \frac{(1 + \omega + \Upsilon \omega)(1 - \omega)}{(1 - \omega)\omega} = (\omega)\omega \quad \therefore$$

$$\frac{\psi + \psi}{\psi} = (\psi)$$
 نہ مجال $\psi = g = g$ ہے۔

$$\Upsilon = \frac{r+r}{r} = (\Upsilon)$$
 نیر معرفة ، $\sigma(\Upsilon) = \frac{r+r}{r} = \Upsilon$

ו أوجد ש (ש) في أبسط صورة موضحاً المجال ש حيث: 🚺

$$\frac{1 \cdot - \omega \Upsilon}{q + \omega \Upsilon - \Upsilon \omega} \div \frac{1 \circ - \omega \Upsilon - \Upsilon \omega}{q - \Upsilon \omega} = (\omega) \omega$$

$$\frac{(\circ-\omega)^{\Upsilon}}{(\neg-\omega)(\neg-\omega)} \div \frac{(\neg-\omega)^{(\circ-\omega)}}{(\neg-\omega)(\neg-\omega)} = (\neg-\omega)^{-\omega} :$$

$$:$$
 مجال $v = 2 - \{7, -7, 0\}$

$$\frac{\neg \neg \neg}{r} = \frac{(\neg \neg \neg)(\neg \neg \neg)}{(\neg \neg \neg)} \times \frac{(\neg \neg \neg)(\neg \neg \neg)}{(\neg \neg \neg)(\neg \neg \neg)} = (\neg \neg \neg) \rightarrow \cdots$$

اوجد (ω) في أبسط صورة موضحاً المجال ω حيث:

$$\frac{\xi}{\omega \xi + \gamma \omega} + \frac{\gamma + \omega}{\gamma + \gamma \omega} = (\omega) \omega$$

$$\frac{\omega \xi}{(1+\omega)(\omega)} + \frac{\omega + \omega}{(1+\omega)(\omega + \omega)} + \frac{\omega + \omega}{(1+\omega)(\omega + \omega)} = (\omega)\omega \quad \therefore \quad (\omega + \omega)$$

$$\{\cdot, \cdot \xi - \cdot \Upsilon - \} - \mathcal{E} = \mathcal{A}$$
مجال ω

$$\frac{\circ}{\xi + \omega} = \frac{\xi}{\xi + \omega} + \frac{1}{\xi + \omega} = (\omega)\omega \quad \therefore$$

<u>٨</u> أوجد له (س) في أبسط صورة موضحاً المجال له حيث :

$$\frac{Y - w}{Y + w - w} - \frac{w + w}{w - w + w} = (w)$$

$$\frac{\Upsilon-\omega}{(\Upsilon-\omega)(\Upsilon-\omega)} - \frac{(\Upsilon+\omega)\omega}{(\Upsilon-\omega)(\Upsilon+\omega)} = (\omega)\omega \quad \therefore \quad (\Box)$$

$$\{\Upsilon, \Upsilon, \Upsilon, \Upsilon - \} - \mathcal{S} = \mathcal{S}$$
 مجال ω

$$1 = \frac{1 - \omega}{1 - \omega} = \frac{1}{1 - \omega} - \frac{\omega}{1 - \omega} = (\omega) \omega \quad \therefore$$

مراجعة ليلة الامتحان في الجبر والإحصاء الجال ه حيث: في أبسط صورة موضعاً المجال ه حيث:

$$\omega(w) = \frac{w' + Yw + 2}{w'' + w} - \frac{Y - w''}{w'' + w''} = \frac{1}{2}$$
 ثم أوجد: $\omega(Y)$ إن أمكن

$$\frac{9-7\omega}{7-\omega+7\omega}+\frac{\xi+\omega 7+7\omega}{\Lambda-7\omega}=(\omega)\omega : (ULL)$$

$$\frac{(\Upsilon+\omega)(\Upsilon-\omega)}{(\Upsilon+\omega)(\Upsilon-\omega)} + \frac{\xi+\omega\Upsilon+\Upsilon\omega}{(\xi+\omega\Upsilon+\Upsilon\omega)(\Upsilon-\omega)} =$$

$$\{ \Upsilon - \Upsilon \} - \mathcal{E} = \mathcal{E}$$
 مجال \mathcal{L}

$$\omega(\omega) = \frac{\gamma - \omega}{\omega - \gamma} = \frac{$$

الجال $(^{\omega})$ اوجد $(^{\omega})$ المجال محيث المجال المحيث

$$\frac{7+\omega Y}{7-\omega + 7\omega} + \frac{\xi - \omega Y}{7+\omega - \gamma \omega} = (\omega)\omega$$

$$\frac{(m+\omega)^{\gamma}}{(m+\omega)(\gamma-\omega)} + \frac{\xi-\omega^{\gamma}}{(m-\omega)(\gamma-\omega)} = (\omega)^{\gamma} \therefore (\omega+\omega)$$

$$:$$
 مجال $\omega = \mathcal{S} - \{\Upsilon, \Upsilon, -\Upsilon\}$

$$\frac{(m-w)^{\Upsilon}}{(m-w)(\Upsilon-w)} + \frac{\xi-w^{\Upsilon}}{(m-w)(\Upsilon-w)} = (w)^{\Upsilon} :$$

$$\frac{\circ}{m-\omega} = \frac{(\gamma-\omega)\circ}{(\gamma-\omega)(\gamma-\omega)} = \frac{\gamma-\omega}{(\gamma-\omega)(\gamma-\omega)} = \frac{\gamma-\omega\gamma+\xi-\omega\gamma}{(\gamma-\omega)(\gamma-\omega)} = \frac{\gamma-\omega\gamma+\zeta-\omega\gamma}{(\gamma-\omega)(\gamma-\omega)} = \frac{\gamma-\omega\gamma+\zeta-\omega}{(\gamma-\omega)(\gamma-\omega)} = \frac{\gamma-\omega\gamma+\zeta-\omega}{(\gamma-\omega)(\gamma-\omega)} = \frac{\gamma-\omega\gamma+\zeta-\omega}{(\gamma-\omega)(\gamma-\omega)} = \frac{\gamma-\omega\gamma+\zeta-\omega}{(\gamma-\omega)(\gamma-\omega)} = \frac{\gamma-\omega}{(\gamma-\omega)(\gamma-\omega)} = \frac{\gamma-\omega}{($$

* أمثلة متنوعة :

ال إذا كان:
$$(w) = \frac{w^{2} + 7w}{7 + w - 7}$$
 أوجد: (w) في أبسط صورة مبينًا المجال

$$\frac{(Y-\omega)(Y+\omega)}{(Y+\omega)} = \frac{Y-\omega+Y\omega}{\omega+Y\omega} = (\omega)^{1-\omega} \therefore (\omega)$$

$$\frac{v-w}{w} = (w)^{1-\omega}$$
 $\sim \{v, v, v-\} - \mathcal{E} = \sqrt{-\omega}$ مجال ω

$$\frac{Y - w - Y}{1}$$
 أوجد أصفار الدالة د : د $(w) = \frac{w - w - w}{w - 2}$

$$\{1-\} = (2) \quad \therefore \quad \frac{(1-\omega)(\omega-1)(\omega-1)}{(1-\omega)(\omega-1)(\omega-1)} = (2\omega) \quad \therefore \quad (2\omega) = (2\omega)$$

$$\tau = \frac{1}{1 + \epsilon} = (\cdot) \epsilon \quad \therefore$$

$$\Upsilon = (\circ)$$
 هو $g - \{\circ, \circ = 1\}$ ، $G(m) = \frac{1}{2} + \frac{9}{100 + 1}$ هو $g - \{\circ, \circ = 1\}$ ، $G(m) = 1$

أوجد: قيمة كل من ١ ، ب

$$\xi = \emptyset$$
 \therefore $\cdot = \emptyset + \xi - \therefore$

$$Y = (\circ) \circ : \frac{1}{2} + \frac{1}{2} = (\circ) \circ : \frac{1}{2$$

$$Y = \frac{9}{6+0} + \frac{3}{6} = (0) \sim :$$

★ الوحدة الثالثة :

أولاً: أسئلة الاختيار من متعدد

1 احتمال الحدث المستحيل =

$$\emptyset$$
 (ع) \emptyset (ع) $\frac{1}{7}$ (ع) (5)

- إذا ألقيت قطعة نقود منتظمة مرة واحدة فإن: احتمال ظهور صورة أو كتابة = () إذا () () () () () صفر
- () $\frac{1}{3}$ إذا كان احتمال وقوع الحدث $\frac{1}{3}$ هو $\frac{1}{3}$: احتمال عدم وقوع الحدث $\frac{1}{3}$ =

ر إذا كان $9 \subset V$ فإن: $U(9 \cup V) =$ (4) $U(9) \cup U(9)$ (5) صفر (4) $U(9) \cup U(9)$ (5) صفر

(۱) إذا كان (7) ب حدثين متنافيين ، وكان (7) = (7) ، (7) = (7) = (7) فإن : (7) = (7) = (7)

·, o (s) ·, T(>) ·, T(>)

ان ا کان () ، () حدثین متنافیین من فضاء عینهٔ لتجربهٔ عشوائیهٔ ما ، وکان () (

اذا کان $\{ (a, b, b, c) \in A \}$ اذا کان $\{ (a, b, c) \in A \}$ العینة ف وکان $\{ (a, b, c) \in A \}$ العینة ف وکان $\{ (a, b, c) \in A \}$ العینة ف وکان $\{ (a, b, c) \in A \}$ العینة ف وکان $\{ (a, b, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة ف وکان $\{ (a, c) \in A \}$ العینة فی العینة فی العینة فی العینة فی العینة فی العینة فی العین فی العین

ثانيًا: الأسئلة المقالية

* أمثلة هامة على الاحتمال:

<u>ا</u> من الشكل أوجد:

إذا كان ٩ ، ب حدثين من فضاء عينة لتجربة عشوائية ما وكان

$$U(4) = 7, \cdot \cdot \cdot U(4) = 0, \cdot \cdot \cdot U(4) = 0, \cdot \cdot U(4) = 0, \cdot \cdot U(4) = 0, \cdot U(4$$

$$(1 - 1)$$
 $(1 - 1)$ $(1 - 1)$ $(2 - 1)$ $(3 - 1)$ $(4 - 1)$ $(4 - 1)$ $(4 - 1)$ $(4 - 1)$ $(4 - 1)$

$$(4) = (-1)(4) = (-7, -3)$$

$$\mathcal{L}(\mathsf{q}-\mathsf{c})=\mathsf{L}(\mathsf{q})-\mathsf{L}(\mathsf{q}\cap\mathsf{c})=\mathsf{r},\mathsf{r}-\mathsf{r},\mathsf{r}=\mathsf{s},\mathsf{r}$$

 $\frac{1}{\sqrt{2}}$ إذا كان $\frac{1}{\sqrt{2}}$ ، $\frac{1}{\sqrt{2}}$ من فضاءِ عينة وكان ل($\frac{1}{\sqrt{2}}$) = $\frac{1}{\sqrt{2}}$ ، ل($\frac{1}{\sqrt{2}}$) في الحالات الآتية:

(الحل)
$$\therefore$$
 (۱ ، ب متنافیین \therefore (۱ الحل) \therefore (۱ م متنافیین \therefore (۱ الحل) \therefore (۱ الحل) \Rightarrow \Rightarrow (۱ الحل) \Rightarrow (۱

$$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}$$

 $\frac{\sqrt{4}}{\sqrt{4}} = \frac{\sqrt{4}}{\sqrt{4}} \cdot \sqrt{4} = \frac{\sqrt{4}}{\sqrt{4}} = \frac{$

$$\frac{\vee}{2} = (-1) + \frac{1}{2} \therefore (-1) +$$

```
جبراع ت
       إذا كان الما عد شين متنافيين ، وكان ل (ا) = غو- كال (الالال) = او. فإن ل (u) = --
                                                                       م إذاكان عمى حدثين من فضاء العينة ع عدد فإن ل(عال) = ---
    ٦ المستقيمان: ٣-س = ٦ ، ٢ من = ٨ .... (متوازيان ك منطبقان ك متعامدان كا متعالمان وغيرتعلمان)
  ٧ مجدوعة قيرس التي تجعل د(س) = صنر تسى ... (المدى كم الجال كم مجوعة أصفار الدالة كم مجوعة (صفار المقام)
  ((06T) 6 (T-60-)6 (T-10) 6 (T60)) - co = - co 6 T= or instant de lai abai 1
  ٩ يكون للدالة د هيد د(س) = سيس معلى فالجال. [ 2- (١٥٤٦ - 2 / 16 ) 6 - (س) = سيت د المالة د هيد د(س) = سيت معلوس معلى فالجال. [ 2- (١٥٤٦ - 2 / 16 ) 6 - (س) على المالة د هيد د المالة د هيد د المالة د هيد د المالة ا
  ٠ إذا كانت: س = - ٦ أحد حلول المعادلة: س + اس - ١٥ = صفر فيا ١٥ = - ( ٢ 6 - ٢ 6 ٢ 6 ٥ )
 ١١ مجسرعة حل المعادلين، س +ص = . 6 ص = ( ص = ( ص ) } ( (-١٠١) } كا ((-١٠١) } كا ((-١٠١) } كا ((-١٠١) )
  ( or ) = (1) d (1) = (1) d (1) = (1) d (1) ] Ir
   ( 1- 6 1- 6 1- )= (1-)>x(1)> wls [+v= = (v-) = 106] in
    الذاكان احمال وقوع الحدث إ هو ٥٧٪ فإن احمال عدم وقوعن هو ... ( ٥٥ ك ١٥٥٪ ك ١٥٠٪ ك ١٥٠ ١٤
   (1-616 26.) - co + v in 0-0 = (v-) ~ William 10
    ({ [ - ] 6 { [ - ] 6 { [ ] 6 { [ ] 6 } ... ( [ ص - ] - ] 0 ... ( [ ص - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 6 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ - ] 7 [ -
   ١١ إذا كان للمعادلتيد س ٢٠ ص = ٤ ٥٦ س بد ص = ١١ عددلاتحائ من (لحلول فإرم
( 7- 6 7 6 5 io) = Polis P+ v-r= (v) > 6 7 6 19 | 19
  . عدد حلول المعادلين: س + ص = ١ ٤ س + ص - ٢ = . مقاغ ٤×٤ هو - (صغر ك ١ 6 ٢ ك عدلاتك )
```

```
إعداد /عبدالمنتاع جمعة
                               جبراع ت
                                             ساعتاري قبل الامتحاري
                                   ثانياء اختر الصحيح ممايي الفوسين
                       -= co+ or cli T = co- or 6 )0= co- or: 06/3/1
 ( 56 1 6 jun 6 5-)
                        ٢ إذا كان اس عددًا سالبا فإن العدد الأكر ف الأعداد التالية حو -
 (006060406 JO
                               = elulo 7 = ° x x ° 5 06/3! 5
 (006 jeus 6). 6 0)
(] TET[ 6 ( TET] 6 (TET)
                           مجبوعة حل المتباينة: 7 رس ح ٢ في ع عي ...
                                   الذاكان: ٦س = ١ فان م اس = ٠٠٠
 (\frac{1}{r} 6)06 \frac{1}{10} 6 \frac{r}{0})
                                           V35+57 = 1 + ...
 ( "9 6 " 6 'FV 6 "T)
                             ٩ المنصر المحايد الصرى في صد هو...
( 5 6 1 - 6 ) 6 jum)
( Y 6 7 6 0 6 E)
                     1. الوسط الحسال للقير: 76565 ك 4646 مو ...
(99.6 (91) 6 1... 6 91...)
(VF & VI & V7 & 3)
                         = = 0 0 15 = 50 1 = 0 P 0 15 15 15
(06265)
(76 56 1) = CUIS "7X C = "XX" C : U6/3) 12
(765 6 5 6 1) = 00+0 0/6 7= 600+00 67=000 67 = 0000 1 cibls) 10
(26 fo)-26 fo-)-26 fi]-2) ... > - 50 b) 1= (0-0) 17
( V 6 0 6 7 6 5) ... = 0 N/s = 1 (V - 0 60) This liv
( V 6 0 6 1 6 1) ...= 02 - mls . # (w+w) 20 (w+w) 5 = w - w : ibli) 11
                                  = 5 2 / 6 = 5 06/3/19
( p 6 V 6 11 6 17) = (0+00) T+0- wis V=00 T+0-:06/3/ [
                              17 المعادلة: س +7 ص + س ص = x من الدرجة
(الصعرية ، الأولى ، الثاينة ، الثالثة)
(360-606)
                               1705 - 2 Nis "1.X 7,0 = .....7055
(070-6040-60-40-60->0-)
                                      --- ulà 0 < 0- : Ubis! TT
(1; 6 19 6 1° 6 0 5)
                             عى ربع العدد ع عو ...
(78611/6 T 67) = (5)0/5 T= 569 = 506/5/6
```

إعداد/عبدالفياع جمعة

جبر۳ع ت۲

ساعتان قبل الامتحان

تالنا ، ا جب عمایلی ، ۔ ا اوجد ن (س) نے ابسط صورت مبینا محال ن ، 5-5-4 2+50- = (0-) i

 $(\sigma)_{r}o = (\sigma)_{r}o : oiai)$ $\frac{\sigma_{r}+\sigma_{r}+\sigma_{r}}{\sigma_{r}} = (\sigma_{r})_{r}o \in \frac{\sigma_{r}}{\sigma_{r}-\sigma_{r}} = (\sigma_{r})_{r}o : olaing)$

ع أوجد ن (س) في أ بسط صورة مبينًا مجال ن ، ن (س)= سا - ٢- ن ب 10-0-5

٦ أوجد ن (س) في أبسط مبورة موضعًا الجال حيث ن (س) = ساً-٧- س اع عن المحال المحال

٧ إذا كان جال الدالمان ، ن (س) = س + مو ع - (٤٤٠) كان (٥) = ١ أوجد قيمتي اكان

١٥ = محبوعة حل المعادلين: س -ص = ١ ٤ س +ص = ٥٦

م أوجد في 2 مجموعة الحل للمعادلة: س - كس - 9 - . علمًا بأن ١٠٠ ١١٦ علمًا

1-0-5 = (0-) : i ill disil. شراوجد: ن(-۱) ، ن(۲)

وجد فيستى ١٥٥ علمًا بأن (١٠٥٢) عل للمعادلين،

1V=000+0-176 =0-000+0-P

إعداد) عبدالفت عمدة

ساعتان قبل الامتحان

حو 2 - (267) فاوجد قستی م) بر

(د) ازداکان: ن (س) = سو می فاوجد ن ارس) مبینا مجلها ک شر اوجد ن ارد)

٥٠ إذا كانت مجسعة (صفار العالمة د: درس) = اس + دس + ٨ حى (١٤٤٢ فا وجد قيمة ١٥٠

الفاكان بيرس التي تنتي للمجال المشترك

۱۷ إذاكان ۱۹ م حدثين من فمناء عينة لمتجربه عشوالله وكان ، ل (۱) = ٦ و ، ك ل (د) = ٥ و . ك ل (۱۷) = ٢ و ، ك ل (۱۷) = ٥ و . ك ل (۱۲ ل) = ٢ و ، فأوجد ، (١) ل (١))

١١ إذا كان ٩٥٠ حدثين من فضاء عينة لتجرية عشوالمة وكان: ل(٩) = م م ل (١) = فأوجد ل (١٤٤ من المالين الآتينن :

ر) م م حدثان متنافيان $\frac{1}{K} = (U \cap P) \cup I$

١٩كيس يحتوى على ١٦كم مسمالتلة منها ٨كلت بيضاء ٢ كلت حراء ع باقي الكرات سوداء سحبت كرة واحدة عشواش فاحسب ان تكون اللرة المسحوبه

(1) enaile (1) human angele

، إذا كان؛ ٢ ، ى حدثين من فمناء عينة لتجيه عشوائية وكان؛ ل (٩) = ٧و. ٥ ل (١) = ١و.

م احقال وقع أحد الحدثين على الأقل.

إعداد / عبدالفتاع جمعة

جبراع ت

ساعتان قبل الامتحان

ارشادات

(U) (U) (U) -7- (U) -7- (U) : 15- (U)

5- (03-2 @ (045) (Natholisties) in in its (7)

)- (1) ((141-)) (1)

Ø (1) 7- (1) {165}-2 (1) 7 (1) onia (1) Q

كانيا ١٠٥٥ (١) صفر ١١٥٥ (١) ٥ س ١١٥٥ (١)

(II) ... (P) 3 (II) 3 (III)

rr (9) / (1) (9) / (1) (9) {0} -2 (1)

 $\frac{U}{\Gamma - U} = \frac{1 - U}{\Gamma - U} + \frac{1}{\Gamma - U} = \frac{(1 - U)(\Gamma + U)}{(\Gamma + U)(\Gamma - U)} + \frac{2 + U + V}{(2 + U + V)(\Gamma - U)} = \frac{(1 - U)(\Gamma + U)}{(1 - U)(\Gamma - U)}$

fr--1}-2=~ Ul=

(1407-10) = (1+07-10) = (0) (0) = (1-0

-بال سراس) = ع - (۱۵۰۶ - ع - ال سے ع - (۱۵۰۶ - ع - ا

٠٠٠ - ١٠٠٠) ع عبل سر = مبلاس .. سر = سر

 $\frac{(r-ur)(r+ur)}{(o+ur)} = \frac{(r-ur)(r+ur)}{(r-ur)(o+ur)} \times \frac{(r+ur)(r-ur)}{(r+urr)ur} = (ur)i$

{ 860-65-6.3-8=~ Je

5-0- (1+0-)(0-0-) x (1-0-)(1-0-) = (0-)i

€061-613-2=15

إعدد / عبدالفيم عبدا

جبر۳ع ت۲

ساعتان قبل الامتحان

$$\frac{1}{\omega} = \frac{2-\omega}{(2-\omega)\omega} = \frac{2}{(2-\omega)\omega} = \frac{2}{(2-\omega)\omega} = \frac{2}{(2-\omega)\omega} = \frac{2}{(2-\omega)\omega} = (2-\omega)\omega$$

$$= \frac{2-\omega}{(2-\omega)(2-\omega)} = (2-\omega)$$

$$\frac{\Gamma}{\Gamma-\nu} = \frac{(\Gamma-\nu)\Gamma}{(\Gamma-\nu)} = (\nu)i$$

$$\frac{\Gamma}{\Gamma-\nu} = \frac{(\Gamma-\nu)(\Gamma-\nu)}{\Gamma(\Gamma-\nu)} = \frac{1}{\Gamma} = \frac{\Gamma}{\Gamma-\Gamma} = (\Gamma-\nu)i$$

$$i(\Gamma-\nu) = \frac{1}{2\pi} - \frac{1}{2\pi} = (\Gamma-\nu)i$$

$$i(\Gamma-\nu) = \frac{1}{2\pi} - \frac{1}{2\pi} = (\Gamma-\nu)i$$

$$\frac{TT + 2V \pm \Gamma}{1} = \omega - 1 + \omega = \omega = \omega + 1 + \omega = 1$$

$$\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = 1$$

$$\frac{1}{1} = \frac{1}{1} = 1$$

$$\begin{cases} \{\xi \in \Gamma\} = (3) \text{ is } - (10) \\ (12) \\ (12) \\ (13) \\ (14) \\ (14) \\ (15) \\ (1$$

$$\begin{cases} 267 \} - 2 = 3 \text{ div} : \\ 1 = 1 + 1 + 1 = 2 \end{cases}$$

$$\frac{-1}{(r-v)} = \frac{-1}{(r-v)} = (0)$$

$$\frac{-1}{(r-v)} = \frac{-1}{(r-v)} = (0)$$

$$\frac{-1}{(r-v)} = \frac{-1}{(r-v)} = (0)$$

$$\frac{(r-v)(r+v)v}{(r-v)(r+v)v} = \frac{(1-v-iv)v}{(4-iv)v} = (v)_{i}i$$

$$\frac{(r-v)(r+v)v}{(r-v)(r-v)(r-v)v} = (v)_{i}i$$

$$\frac{(1+4)(1-4)}{(1+4)(1-4)} = (2)$$

$$\frac{(1+4)(1-4)}{(1-4)} = (2)$$

$$\frac{(1+4)(1$$

```
المراجعة النهائية جبر
                              أختر الاجابة الصحيحة منبين الاجابات المعطاة
            (1) مجموعة حل المعادلتين:  w + w = 0   on = 1  هي
(أ)((زرز)) (ب) (ب) ((۲،۲)) (ع) ((۲،۲)) (ابرز)) (ابرز)) (ب) (ابرز)) (ابرز)) (ب)
     (\Upsilon) مجموعة حل المعادلتين: w-w=1، w+w=V=0
عدد الحلول الممكنة للمعادلتين: س-7 ص=7 ، \pi س-7 ص=7 هو ......
  (أ) (ب) ۲ (ج) ۳ (د) عدد لا نهائي
 عدد حلول المعادلتين : س - \frac{1}{4} ص = 3 ، 7 س- ص = 7 هو ......
                                                     (٤)
  (ا) ۱ (اب) ۲ (ج) عدد لا نهائي (د) صفر
  (٥) إذا كان للمعادلتين :  w + 3 = V = V  ،  T = W + U = V = V  عدد  Y = V = V = V 
  الحلول فإن ك = .....(أ) ٤ (ب) ٧ (ج) ١٢ (د) ٢١
     (أ) نقطة الأصل (ب) الربع الأول (ج) الربع الثاني (د) الربع الرابع
       (۷) المستقیمان : m + 0 \longrightarrow -1 ، m + 0 \longrightarrow -\Lambda = 0 یکونان
 (أ) متوازیین (ب) منطبقین (ج) متعامدان (د) متقاطعین و غیر متعامدین
                  (أ) متوازيين (ب) منطبقين (ج) متعامدان (د) متقاطعين وغير متعامدين
                        (١٠) معادلة محور تماثل منحني الدالة دحيث د (س) = س ١ – ٤ هي .....
\xi = -3 (ب) \bar{w} = -4 (ب) \bar{w} = -4 (ا) \psi = -3
 (١١) إذا كان منحني الدالة التربيعية د لا يقطع محور السينات في أي نقطة فإن عدد حلول
                       المعادلة د (س) = صفر في ع هو .....
  (أ) حل وحيد (ب) حلان (ج) عدد لا نهائي (د) صفر
  ١٢) إذا كان منحنى الدالة التربيعية ديمر بالنقاط (٢،٠) ، (٣-٣،٠) ، (٠،-٢)
               مجموعة حل المعادلة د (س) = صفر في ع هي .....
(أ) { ٣- ، ٣ } (ب) { ٣ ، ٢ } (ج) { ٢ ، ٣ } (أ)
 ( 17 ) إذا كانت مجموعة حل المعادلة:  w' - q + 3 = 0  هي  \{ -7 \}  فإن:  q = 1 
          (أ) صفر (ب) - ۱ (ج) - ۲ (د) - ٤
```

أ / أبوبكر عامر , مامر عامر المراكزة عامر المراكزة المراك

```
(۱٤) منحنى الدالة د : حيث د ( س ) = m^{7} – m يقطع محور السينات في النقطتين .....
                     (\cdot, \circ -), (\cdot, \cdot, \circ) (\tau) (\cdot, \cdot, \circ), (\cdot, \cdot, 
                     (١٥) في المعادلة: ٩ س ٢ + ب س + ج إذا كان ب٢ - ٤ ٩ ج > صفر فإن عدد جذور
        المعادلة في ع = ..... (أ) ١ (ب) ٢ (ج) صفر (د) عدد لا نهائي
                  (١٦) في المعادلة : ٩ س ٢ + ب سُ + ج إذا كان ب٢ - ٤ أُج حَسُور فإنُ عدد جذور
        المعادلة في ع = ..... (أ) ١ (ب) ٢ (ج) صفر (د) عدد لا نهائي
                 (١٧) في المعادلة : ٩ س ٢ + ب سُ + ج إذا كان ب٢ - ٤ أُج = صفر فإن عدد جذور
       المعادلة في ع = ..... (أ) ١ (ب) ٢ (ج) صفر (د) عدد لا نهائي
                                                                                                        (۱۸) إذا كانت w \in \mathcal{S} فإن المعادلة w' + w + 1 = \cdot .......
                (أ) لها جذران (ب) لها جذر واحد (ج) لا يوجد لها جذور (د) لها عدد لا نهائي من الجذور
                       (١٩) عددان موجبان مجموعهما ٨، حاصل ضربهما ١٥ فان العددين هما:
                            (أ) ۲ ، ۲ (ب) ۳ ، ۵ (ج) ٤ ، ٤ (١ ، ١٥
                                         (أ){(۰٬۰)} (ب){(٤٬٤)} (ج){(-٤،-٤)} (د) {(٤،٤)}،{(-٤،-٤)} (أ) {(٠،٠)}، {(-٤،-٤)} (ب) {(٤،٤)}، {(-٤،-٤)} (٢١) مجموعة حل المعادلتين : س + ص = ، ، س ن + ص ن = ۲ هي .......
\{(\ 1\ \cdot\ 1\ -)\ \cdot\ \{(\ 1\ -\ \cdot\ 1\ )\}\ (2)\ \{(\ 1\ \cdot\ 1\ -)\ \}(2)\ (1\ \cdot\ 1\ )\}\ (2)
                     الاعن الساعد المعادلة س+ م س= فان المعادلة س المعادلة س المعادلة سام المعادلة س المعادلة سام المعادلة ال
        (د) ۱ (ح) ۲ (ب) ۱ (د) ۱ (۲۳) مستطیل بزید طوله عن عرضه بمقدار ۲ سم و مساحته ۲۶ سم فإن محیطه = .........
                               (أ) ۱۰ سم (ب) ۲۰ سم (ج) ۳۰ سم (د) ۶۰ سم
                                                                      - نان : س- - ، ص^{\prime} = س+ نان : ص- فإن : ص- الأدا كان : س- ، - ، - ، - ، - .
                                           (أ) ۹ (ب) ۳ (ج) ۳–۳ (۱)
                                       -4 اذا کان : -4 -4 اذا کان : -4 اذا کان : -4 اذا کان : -4
                                                                                                                                          (اً) - ٥ (ب) ٣-
                                    (ج) ۳ (د) ه
                                                   (٢٦) إذا كان : ُسْ ٢ + س ص = ١٥ ، س + ص = ٥ فإن : س = ______
                                                                                       (أ)٣ (ب)٤ (ج)٥
                                                           (۲۷) أحد حلول المعادلتين: w - \omega = \gamma ، w' + \omega' = \gamma هو
           (1)(-3,7) \qquad (1,7)(5) \qquad (5-7)(1) \qquad (7,5-7)(1)
          ( ۲ \land ) إذا كانت w' - w' = Y(w + w) حيث (w + w) \neq w صفر،فإن  (w - w) = w
                                                          (أ) ۲ (ب) ٤ (ج) ۲ (أ)
```

```
(1, \frac{1}{2})(2) (7, 1) (3) (7, 1) (4) (1, 1)
                                        (٣٠) مجموعة أصفار الدالة د حيث د (س) = س-٣ هي ............
(ب) ع - (٣) ع - (٣) ع - (٣) ع +
                                                                                                           (٣١) مجموعة أصفار الدالة د : (س) = - س هي .....
                        ا) \{ -\frac{1}{2} \}  د) ع
                (٣٢) مجموعة أصفار الدالة د حيث د (m) = m (m^{2} - 7m + 1) هي ......
                      \{1\}(2) \qquad \{\cdot\}(5) \qquad \{1-\cdot\cdot\}(4) \qquad \{1\cdot\cdot\}(1)
                                                                                               (mr) مجموعة أصفار الدالة د : (س) = \frac{m-n}{m+1} هي.....
               (۱۰-۲) (صفر) ب (۳) ج (۲۰-۲) د (۲۰-۲)
                                                                                          (أ) {٣} <del>[</del> (ح) {-٣،٣-} (ح) {-٣} <del>[</del> (د) {صفر}
                                                                                               (٣٥) مجموعة أصفار الدالة د : (س) = ٢-س هي .....
                   (1) \{V\} (1) \{V\} (2) \{V,V\} (1) \{V\} (1) \{V\} (2) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (1) \{V\} (2) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (7) \{V\} (7) \{V\} (8) \{V\} (9) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (1) \{V\} (2) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (7) \{V\} (8) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (1) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (7) \{V\} (8) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (1) \{V\} (2) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (7) \{V\} (8) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (1) \{V\} (2) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (7) \{V\} (8) \{V\} (8) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (8) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (8) \{V\} (8) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (1) \{V\} (2) \{V\} (2) \{V\} (3) \{V\} (4) \{V\} (4) \{V\} (5) \{V\} (6) \{V\} (7) \{V\} (8) \{V\} (8)
          (أ) ع-{ - ۱ } (ب) ع-{ الله على الله عل
                                                     ( ۳۷ ) مجموعة أصفار الدالة د حيث د ( w ) = w' + w + 1  هي ......
                                                 ( ^{N} ) اذا کانت : ص (د) = \{ ^{N} \} حیث د ( ^{N} ) = ( ^{N} - ^{N} ) فإن  ^{N} = ( ^{N} )
                                                      (أ) ۲√۲ (ب) ۲ (ج) غ ﴿(ك) ٨
      ( ^{\mathbf{P}} ^{\mathbf{q}} ) اذا کانت : ص (د) = \{ ^{\mathbf{q}} : ^{\mathbf{q}} : ^{\mathbf{q}} : ^{\mathbf{q}} : ^{\mathbf{q}} = ^{\mathbf{q}} : 
                                                          (۱) ۲۸ (ب) ۱ (ج) ۱۰ (۲۸ (۱)
(٠٤) إذا كانت مجموعة أصفار الدالة د: د (س) = س ٢ + ل س + ١ هي ﴿ فَإِنْ لِي = .....
                                         (أ) صفر (ب) ۲ (ج) ۱ (د) <del>- ۲ (</del>
                                                                                                                                                   \{0\} - \{0\} - \{0\}\} = \{0\} - \{0\}\} - \{0\} - \{0\}\} = \{0\} - \{0\}\} = \{0\} - \{0\}\} = \{0\} = \{0\} = \{0\}\} = \{0\} = \{0\}\} = \{0\} = \{0\}\} = \{0\}
                                                                                                                                         (73) مجال الدالة د (س): m+7 = 80
                        \{\xi\} - \mathcal{E}(\Delta) \{Y\} - \mathcal{E}(\xi) \{Y\} (\psi) \mathcal{E}(\xi)
                                                                                                                                                                                                                                                                                       أ / أبوبكر عامر
 01146251564
                                                                                                                                                                        ٣
```

```
\{1, 1-\}-2(2) \{1\}-2(2) \{1-\}-2(2) \{1-\}
                                                              \frac{\omega}{(1)} (1) \frac{\omega}{\omega^{2}+1} (1) \frac{\omega}{\omega-\omega} (2) \frac{\omega}{\omega-\omega} 
                                                                    الكسر ن (س) = \frac{m-7}{7} له معكوس ضربي في المجال
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (20)
                                           \{Y, \cdot \} - \mathcal{E}(\Delta) = \{Y\} - \mathcal{E}(A) = \{Y\} - \mathcal{
         اذا کان : ن (س) = \frac{7}{1+1} وکان مجال الدالهٔ 2 - \{-7\} فان : ل= \frac{7}{1+1}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (13)
                                                                                    (۱) - ۲ (ب) ۳ (ع) ۲ (۱) - ۳
                                                                                                                                                                                                                                  مجال الدالة د حيث د (س) = \frac{m-7}{v} هو .....
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (£ Y)
                                                                              \{7\} - \{2\}  (2) \{7\} - \{7\}  (3) \{7\} - \{7\} 
                                                                                                                                                                                       المجال المشترك للدالتين \frac{m+7}{m-7}، \frac{m}{m-5} هو .......
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (£ A)
                            \{7, 7\} - \{2, (2)\} \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7\} - \{7
                    المجال المشترك للكسرين : مرس = \frac{\omega}{2} ، مرس = هو ......
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ( ( 4 )
                            (أ) ع- {٠٠٠} (ب) ع- {٢} - {٢} (ج) ع-{١٠)
                                                                                                                                                                                      المجال المشترك للدالتين \frac{m+n}{m-1}، \frac{m-6}{m+1} هو ........
               \{1-, 1\}-2 (4) \{1-\}-2 (5) \{1\}-2 (4) \{1\}-2 (1)
  (١٥) أبسط صورة للكسر الجبري ن : ن (س) = \frac{3 m^7 - 7 m}{7 m} ، س \neq صفر هي ..........
                           (۱) ٤س٢ (ب) ٢س-١ (ج) ٢س (د) ٢
                                                                                                                                                                                                                                        المعكوس الجمعي للكسر \frac{\pi}{1+1} هو ......
                          \frac{1+\omega}{1+\omega}(1) \qquad \frac{\pi}{1+\omega}(2) \qquad \frac{\pi}{1+\omega}(3) \qquad \frac{\pi}{1+\omega}(3)
                                                                                                                                                                                                                                                                                 (۳۰) المعكوس الجمعي للكسر \frac{w+v}{w-o} هو ......
\frac{\sqrt{-\omega}}{\sqrt{-\omega}}(\Delta) \qquad \frac{(\omega + \sqrt{\omega})}{\sqrt{-\omega}}(\Delta) \qquad \frac{(\omega + \sqrt{\omega})}{\sqrt{-\omega}}(\Delta) \qquad \frac{(\omega + \sqrt{\omega})}{\sqrt{-\omega}}(\Delta)
```

```
\{Y, Y-\}(2) \{Y\}-\{Z, Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y\}-\{Y-Y
                                        \{\Upsilon \cdot \cdot \cdot\} - \mathcal{E}(\bot) \qquad \{\cdot\} - \mathcal{E}(\Xi) \qquad \{\Upsilon\} - \mathcal{E}(\bot) \qquad \mathcal{E}(\bot)
                                الكسر ن (س) =\frac{m-4}{m} له معكوس ضربي في المجال
              \{\Upsilon \cdot \cdot \} - \mathcal{E}(\Delta) \qquad \{\cdot\} - \mathcal{E}(\Xi) \qquad \{\Upsilon\} - \mathcal{E}(\Box) \setminus \mathcal{E}(\Box)
                                                              ( ^{\circ} ) إذا كان :  ^{\circ}  (س) = \frac{ ^{\circ} + 1 }{ ^{\circ} - 7 }  فإن : مجال  ^{\circ}  هو
      \{1, 1-\} - 2(1) \quad \{7\} - 2(2) \quad \{7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{1, 7\} - \{
                                                                  (^{\wedge}) اذا کان: \sqrt{(^{\vee})} = \frac{^{\vee} - ^{\vee}}{^{\vee} + ^{\vee}} فإن مجال ن^{-} (س) هو
     \{ \forall \} - 2 (2) \qquad \{ \forall , \forall - \} - 2 (3) \qquad \{ \forall , \forall - \} - 2 (4) \}
                                                      (۹ ه) إذا كان: \sqrt{(w)} = \frac{w-1}{w+\pi} فإن: مجال \sqrt{(w)} هو
   \{7,1\} (2) \{7,1\} (3) \{7,1\} (5) \{7,1\} (6)
                                                                     (3.7) إذا كانت : \omega (\omega) = \frac{v-v}{v+v} فإن : \omega (\omega) = ......
                         (أ) صفر (ب) ٢ (ج) - ١ (د) غير معرفة
                                                                 (۱۱) إذا كان : م (س) = \frac{w}{w^{7} + P} فإن : مجال مه '' هو ......
            \{\cdot\} - \mathcal{E}(\bot) \qquad \mathcal{E}(-\tau) \qquad \{ (\tau) \} - \mathcal{E}(-\tau) \qquad \emptyset(1)
(٦٢) إذا كان ن (س)=\frac{m+1}{m-7} فإن المجال الذي يكون فيه للكسر الجبري معكوس ضربي هو.
\{Y, Y-\}-\mathcal{E}(A)\} - \{Y, Y-\}-\mathcal{E}(A)\} - \{Y, Y-\}-\mathcal{E}(A)\} - \{Y, Y-\}-\mathcal{E}(A)\}
                                            إذاالقيت قطعة نقود منتظمة مرة واحدة فإن احتمال ظهور صورة أو كتابة = ...
                                                                                                                                                                                                                                                                                                            (10)
                          (أ) صفر (ب) ۲۰% (ج) ۵۰% (د) ۱۰۰%
           في تجربة إلقاء حجر نرد مرة واحدة فإن احتمال ظهور عدد أقل من ٣ = ______
                                                                                                                                                                                                                                                                                                         (77)
                              \frac{1}{2}(7) \qquad \frac{1}{2}(2) \qquad \frac{1}{2}(7) \qquad \frac{1}{2}(7)
         01146251564
                                                                                                                                                                                                                                          أ / أبو بكر عامر
```

```
إذا ألقى حجر نرد منتظم مرة واحدة فإن احتمال ظهور عدد فردى يساوى .....
                                                                 (77)
      \frac{1}{7}(2) \frac{1}{7}(3) \frac{1}{7}(4) \frac{1}{7}(4)
 إذا ألقى حجر نرد منتظم مرة واحدة فإن احتمال ظهور عدد زوجي وظهور عدد
   فردی میگا یساوی ...... (أ) صفر ( ) \frac{1}{7}  ( + ) \frac{1}{7}  ( c ) ا
(۲۹) ألقى حجر نرد منتظم مرة واحدة فإذا كان الحدث ( هو ظهور عدد اولى والحدث ب هو
 \frac{1}{7} (ح) \frac{1}{7} (ج) \frac{1}{7} (ب) \frac{1}{7} (ب) \frac{1}{7} (ح) \frac{1}{7}
           اذا کان: ۹، ب حدثین متنافیین، فإن ل (۹ ∩ ب)=
                                                                  (Y)
       (4) (4) (4) (4) (4)
                    (Y1)
      (أ) صفر (ب) ل (٩) (ج) ل (ب) (د) Ø
 إذا كان \P \subset \Psi حيث \P ، \Psi حدثان من فضاء عينة لتجربة عشوائية فان \Psi \cup \Psi ب
                                                                  (YY)
    = ...... (أ) ل (٠)     (ب) ل (ب)     (ج) ٠,٥     (د) صفر
                                   ل ( ۱ ) + ل ( ۱ ) = ......
                                                                  (٧٣)
             رأ) (ا
(أ) (ب) – ۱ (ج) صفر (د) Ø
 (Y £)
    \emptyset(ع) = .....(۱) ا (ب) صفر (\mathfrak{F})
   إذا كان A حدثاً من فضاء العينة لتجربة عشوائية وكان : U(A) = Y = V(A)
                                                                  (Yo)
      (2) \frac{7}{7} (3) \frac{7}{7} (4) \frac{7}{7} (5) \frac{7}{7} (5) \frac{7}{7}
              (۲۷) إذا كان: ل (٩) = ٤ ل (٩) ، فإن ل (٩) = .....
     (أ) ٨,٠ (ب) ٢,٠ (ج) ٤,٠٨ (أ)
      أِذا كان احتمال نجاح حمدي ٩٥% فان احتمال عدم نجاحه =
                                                                 (YY)
      (۱) ۲۰ (ب) ۱۰ (ب) ۳۲۰ (د) صفر
         (٧٨) إذا كان احتمال وقوع الحدث P هو ٧٥ % فإن احتمال عدم وقوع الحدث P
        يساوي ...... (أ) \frac{1}{7} (ب) \frac{1}{7} (ج) \frac{7}{7} (د) ۱
 (۹۷) إذا كان \{ \} ، \{ \} ، \{ \} من فضاء العينة ف ، وكان \{ \} \{ \} \{ \} ، \{ \} \{ \} \{ \} (ب
   \cdot, \cdot (خ) \cdot, \wedge (خ)
(۸۰) إذا كان : \{ \} ، \{ \} ، حدثين متنافيين ، وكان ل \{ \} ) = \{ \} ، \{ \} ، \{ \} وأن ال \{ \}
  ل (ب)= ..... (أ) ٥,٠ (ب) ٤,٠ (ج) ٢,٠ (د) ٣,٠
 01146251564
                                                   أ / أبوبكر عامر
                            ٦
```

الاختياري	äl	1
ر د سیاری	-	* 5

1	2					6	5		<u> </u>
د	0	3	٤٩	ŀ	44	j	1 7	7	1
ب	7	7	٥,	·Ĺ	٣ ٤	ج	1 /	د	۲
٦	٦٧	·	٥١	ح	٣٥	ب	19	3	7 4
1	77	·Ĺ	۲٥	3	77	د	۲.	د	٤
ب	79	·Ĺ	٣٥	3	٣٧	د	۲۱	ج 🛕	٥
ب	٧.	1	٤٥	7	٣٨	ب	77		٦
ب	٧١	·Ĺ	٥٥	٥	٣٩	Ļ	74		٧
ب	٧٢	2	۲٥	ح	٤٠	بې	7 £	5	٨
1	٧٣	د	٥٧	7	٤١	اد'	70	3	٩
٦	٧٤	3	٥٨	3	٤٢)	77	ب	1
1	0	ح	٥٩	1	٤٣	د	77	د 🔪	11
1	77	7	۲.	1	٤٤	1	11	ج	17
٦	٧٧	٥	71	ŀ	20	Ļ	79	د ۱	١٣
١	٧٨	ŀ	77	<u>ه</u>	٤٦	ج	٣.	Ļ	١٤
د	٧٩	·Ĺ	74	1	٤٧	1	۳۱	ب	١٥
1	٨٠	3	٦٤	4	٤٨	1	77	ج	١٦

ثانيا الاسئلة المقالية

أوجد مجموعة حل المعادلتين جبريا في 2×2

$$\Lambda = \omega = \gamma - \omega$$

بالجمع
$$\frac{7w+7w=y}{0}$$
 وس $= 01$ $w=y$

01146251564

```
Y = \omega + \omega Y, Y = \omega - \omega Y
                               الحــل ٣ - ص = ٣
                               \frac{Y - w + w - Y}{1 + w + w}
                           ه س = ه س = ۱
                بالتعويض في الأولى ص=٣سـ٣=٣-٣=٠
 \{(\cdot,\cdot)\}=2.7
                         الحـــل ضرب المعادلة الأولى × ٢ والثانية ×٣
 12 = 0 کامل = 1
T - = V - Y \times Y = T
                                بالجمع <u>٩ ص + ٦ س = ٢ (</u>
                          ۱۳ ص = ۲۱ ص = ۲
       N = - \omega
                   \{(7, 1-)\} = 2.7
  فأوجد قيمتي 🕩 ب
                         الحسل
       ·· (۱، ۲) حلاً للمعادلتين ·· س=١، ص=٢
                          بالطرح ٢+٢ب = - ٥
                     7 = 1 = 7 + P = 7 = 7 = 7 = 7 = 7 = 7
                         بالتعويض في المعادلة الأولى 🖣 + ٢ ب = - 🍳
٤-= ب ∴ ۸-= ب۲ ∴
                         ۲+۳ ب = - ه
        1) = (7)، ه اذا کانت د : (س) = 4 س + ب ، وکانت د (۱) = ه ، د (۲) = 1
                                      فأوجد قيمتي ١ ، ب
        الحــل
• د (۱) = ٥ يعني نعوض س = ١ ٩×١٠ + ب = ٥
                  ٠ ﴿ + بِ = ٥
           بالطرح
                               بالتعويض في المعادلة الأولى
```

```
باستخدام القانون العام أوجد في ع مجموعة حل المعادلة
                       m'-Y — T=- m=0 — T=1 m=0 — m'=0 — 
                                                                                                                                                                                              الحال
                                                                                                                                                                                                             w' - 7w - 7 = \cdot
0 = 1 \cdot v = -7 \cdot z = -7
                                                                                                                                              r.7 = \frac{\sqrt{1+1}}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 7.7
                                \{1,7-,7,7\} = 2.7 : 1,7- = 7,7 \}
                                                                          حل المعادلة: ٢س٢ - ٥ س + ١ = ٠ مقربا الناتج لرقمين عشريين
                                                                                                                                                                                                                     الحسا
                                                                                                                                                                                                                                              ٢ س ١ - ٥ س + ١ = ٠
                                                                                                                                                                                                  ١= = ٥ = = ٢=٨
\omega = \frac{-\frac{1}{\sqrt{1+1}} + \frac{1}{\sqrt{1+1}}}{\sqrt{1+1}} = \frac{1}{\sqrt{1+1}} = \sqrt{1+1}
\omega = \frac{-\frac{1}{\sqrt{1+1}} + \frac{1}{\sqrt{1+1}}}{\sqrt{1+1}} = \sqrt{1+1}
1 = \sqrt{1+1} + \sqrt{1+1} = \sqrt{1+1} + \sqrt{1+1} = \sqrt{1+1} 
                                                                                                                 {·, 77 · 7, 7 } = 2 · / *
                                                                                                                                                                         أوجد مجموعة حل المعادلتين جبريا في 2 × 2
                                                                                                                                                                       1 = 0
                                                                                                                                                              w = \omega + 1 بالتعویض في المعادلة الثانیة (\omega + 1)^{2} + \omega^{2} - 1
                                                                                                                                                                                                                               ص ۲ + ۲ ص + ۱ + ص ۲ – ۲۵ = صفر
                                                                                                                                                                                                                                                     ۲ ÷ ۰ = ۲٤ – س۲ + ۲ ص۲
                                                                                                                                                                                                                                                                                                    \bullet = 17 - \omega^7 + \omega
                                                                                                                                                                                                                                                                                     \cdot = (\xi + \omega) (\Upsilon - \omega)
                                                                                                           m = 2 أو m = 2 ،،، m = 3 أو m = 2
                                                                                                                                                                      \{(\xi - \xi - \xi - \xi), (\xi - \xi)\} = \xi \cdot \zeta :
```

```
10 = w = 7 + w + 7 = 0
                                                                                                                                                          الحلل
                                                                                   10 = (w + T) + w + w + w + w = 0
                                                                                                                                                      m^{2}-1 س + ۳ س + ۹ – ۱۵ = صفر
                                                                                                               \cdot = (\Upsilon + \omega)(\Upsilon - \omega) \cdot = \Upsilon - \omega + \Upsilon \omega
                                                                                                 \bullet = \emptyset, m = -\infty, m = -\infty, m = -\infty
                                                                                                                           \{(\cdot, \cdot, \tau_{-}), (\circ, \tau_{-})\} = \mathcal{E}_{\cdot, \tau_{-}} : \mathcal{E}_{\cdot, \tau_{-}} 
                                                                                                               مسائل التطبيقات والمسائل اللفظية
   إذا كان عددالفرق الرياضية المشاركة في بطولة كأس الامم الافريقية ١٦ فريق
    وكان عدد الفرق الغير عربية يزيد عن ثلاثة أمثال عدد الفرق العربية بمقدار ٤ ، اوجد
                                                                                                                                                                                  عدد الفرق العربية المشاركة في البطولة
                                                                        الحـــل
نفرض أن عدد الفرق الغير عربية س، والعربية ص
                                                                                                                                                                                                                  بالطرح
                                                                                                                                                                                                                 س ــ ٣ ص <u>ــ ٤</u>
                                 ٤ ص = ١٧ ص = ٣ ٠٠٠ عدد الفرق العربية ٣ فرق
 زاويتان حادتان في مثلث قائم الزواية الفرق بين قياسهما . ٥٠ ، اوجد قياس كل زاوية
                                                                                                                                                 الحسال
                                                                                   نفرض أن الزاوية الكبرى سي، والصغرى ص°
                                                                                                                                                                                      9 \cdot = 0 + 0
                                                                                                                                                                                         بالطرح <u>س-ص=٥٠</u>
                                                                                                                                                 ۲ س = ۲۰ س = ۲۰°
                                               ^{\circ} نعوض عن قيمة س في المعادلة الأولى ص^{\circ} ص^{\circ}
                                                   ن. الزاوية الكبرى=٠٠° ، والصغرى=٠٠°
                                                                                    عددان نسبيان مجموعهم ٤٢ ، والفرق بينهما ١٠ ، أوجد العددين
                                                                                                                                                                                                                                   يفرض العددان س، ص
                                                                                                                                                                                                                                                             \xi \Upsilon = \omega + \omega
                                                                                                                                                                                                                                                            \underline{\mathsf{N}} = \underline{\mathsf{M}} = \underline{\mathsf{M}}
                                                                                                                                                                                                                    ۲ س = ۲ م س = ۲۲
                           ٠٠ العددين هما ٢٦ ١٦٠
01146251564
                                                                                                                                                                                                                                               أ/أبوبكر عامر
                                                                                                                                                           ١.
```

مستطیل پزید طوله عن عرضه بمقدار ۳ سم و مساحته ۲۸ أو جد محیطه الحصل الحصل نفرض بعدیه س ، ص س $- \omega = \pi$ منها $\omega = \pi + \omega$ نفرض بعدیه س ، ω س $- \omega = \pi$ منها $\omega = \pi + \omega$ بالتعویض بالاولی $\omega = \pi + \omega$ $\omega = \pi + \omega$ $\omega = \pi + \omega$ $\omega = \pi + \omega$ أو حد محیط محیط المستطیل $\omega = \pi + \omega$ محیط المستطیل $\omega = \pi + \omega$ محیط المستطیل $\omega = \pi + \omega$ محیط المستطیل $\omega = \pi + \omega$

عددان موجبان أحدهما يزيد عن ثلاثة امثال الاخر بمقدار ١ ، ومجموع مربعيهما ١٧ فما العددان

س = ٤ . العددان هما ٤،١

أ / أبوبكر عامر

01146251564

11

مقالى الوحدة الثانية

$$\frac{m-m}{r+m}=(m)$$

۰**۰** س=۳

$$^{"}$$
 ص $^{(c)} = {^{"}}$

أوجد مجموعة أصفار كل من الدوال الآتية
$$c(\omega) = \frac{\omega - \gamma}{\omega + \gamma}$$

$$c(w) = w' - P$$
 $c(w) = w' - P$
 $c(w) = w' - P$
 $c(w) - P = P$
 $c(w) - P$
 $c(w) = P$
 c

$$w = w + w$$
 $w = w + w = w$
 $w = w + w + w$
 $w = w + w$

أ / أبوبكر عامر

$$\frac{q - \frac{7}{\omega}}{\varepsilon - \frac{7}{\omega}} = (\omega) 2$$

$$= q - \frac{1}{\omega}$$

$$= q - \frac{1}{\omega}$$

$$\begin{array}{ccc} \cdot & (m-m)(m+m) = \cdot \\ \cdot & (m-m)(m+m) = \cdot \\ \cdot & m = m \end{array}$$

 $(س) = س^{7} - 7 س^{7} - 9$ إذا كانت د فأثبت أن العدد ٥ هو أحد أصفار الدالة د

إذا كان مجموعة أصفار الدالة د حيث د (س) = س + ب س + ٩ هي {٣} فما قيمة ب

$$\frac{\lambda - \omega + \psi}{1 + \omega} = (\omega)_{\gamma} \dot{\upsilon}$$

$$\frac{(\omega)_{\gamma} - \psi}{1 + \omega} = (\omega)_{\gamma} \dot{\upsilon}$$

$$\frac{(\omega)_{\gamma} - \psi}{1 + \omega} = (\omega)_{\gamma}$$

$$\frac{(\omega)_{\gamma} - \psi}{1 + \omega} = (\omega)_{\gamma} \dot{\upsilon}$$

$$\dot{v}_{1}(w) = \frac{-\circ}{w^{7}-1}, \dot{v}_{1}(w) = \frac{-\circ}{w^{7}-1}$$
 $\dot{v}_{1}(w) = \dot{v}_{2}(w) = \dot{v}_{1}(w) = \dot{v}_{2}(w)$
 $\dot{v}_{2}(w) = \dot{v}_{2}(w) = \dot{v}_{2}(w)$
 $\dot{v}_{3}(w) = \dot{v}_{2}(w)$
 $\dot{v}_{4}(w) = \dot{v}_{2}(w)$
 $\dot{v}_{1}(w) = \dot{v}_{2}(w)$
 $\dot{v}_{2}(w) = \dot{v}_{3}(w)$
 $\dot{v}_{4}(w) = \dot{v}_{4}(w)$
 $\dot{v}_{1}(w) = \dot{v}_{2}(w)$
 $\dot{v}_{2}(w) = \dot{v}_{3}(w)$
 $\dot{v}_{3}(w) = \dot{v}_{4}(w)$
 $\dot{v}_{4}(w) = \dot{v}_{4}(w)$
 $\dot{v}_{1}(w) = \dot{v}_{2}(w)$
 $\dot{v}_{2}(w) = \dot{v}_{3}(w)$
 $\dot{v}_{3}(w) = \dot{v}_{4}(w)$
 $\dot{v}_{4}(w) = \dot{v$

عین مجال الدالة ن: ن (س) =
$$\frac{7m+7}{m^7-6m+7}$$
ثم أوجد: ن (۰) ، ن (۲)
ثم أوجد: س^4-6 س+7 =
 $m-7$) ($m-m$) = m
 $m-7$) أو $m=7$
 $m=7$ أو $m=7$
 $m=7$ أو $m=7$
 $m=7$

أوجد مجال كل من الدوال الآتية اي دالة ملهاش مقام مجالها ح

$$e(m) = \frac{m^{7} - 11 m + 11}{m}$$
 $e(m) = \frac{m^{7} - 11 m + 11}{m}$
 $e(m) = \frac{m^{7} - 11 m + 11}{m}$

أ / أبوبكر عامر

· 4 = ٢

$$\frac{V}{V} = \frac{V}{V} = \frac{$$

$$\frac{w^{7} + 7w}{15} = (w)^{7} + 3w + \frac{1}{5}$$

$$\frac{w^{7} + 1}{15} = (w)^{7} + \frac{1}{5}$$

$$\frac{w^{7} + 1}{15} = (w)^{7} = (w)$$

$$\frac{w^{7} + 1}{15} = (w)^{7}$$

$$\frac{w^{7$$

خلي بالك بقي :مدام قال في السؤال المجال المشترك يبقى مش شرط المجالين يكونوا متساويين عشان نثبت ان الكسريين متساويين زي المثال اللي جاي

لجميع قيم س ∈ ع-{٠٠، - ٢}

خلى بالك تطلع المجال قبل الاختصار $\{Y\} - 2 = 3 - \{Y\}$

$$\frac{1}{1} (w) = \frac{0}{0} \frac{w}{1}$$
 $\frac{1}{1} (w) = \frac{7}{1} \frac{w}{1}$
 $\frac{1}{1} (w) = \frac{7}{1} \frac{w}{1}$
 $\frac{1}{1} (w) = \frac{0}{1} \frac{w}{1}$
 $\frac{1}{1} (w) = \frac{0}{1} \frac{w}{1}$

مسائل العمليات علي الكسور مسائل العمليات علي الكسور أوجد في أبسط صورة موضحا مجال
$$(w)$$
 $(w) = \frac{w}{m+r} + \frac{\pi}{m+r} + \frac{\pi}{m+r}$ المقام هذا موحد المرس) $= \frac{w+r}{m+r} = 1$ حد منهم مقام واجمع البسط واجمع البسط ثمال $= 3 - \{-7\}$ أو اطرحه لو عملية طرح

$$\frac{(w)^{2}}{(w)^{2}} + \frac{(w)^{2}}{(w)^{2}} + \frac{(w)^{2}}{(w)^{2}}$$

هنا المقامات غير موحدة فاستخدمنا طريقة المقص لتوحيد المقامات

قاعدة القسمة ساهلة ومجنونة ثبت أضرب شقلب مجال القسمة تاخد اصفار مقام الكسر الاول وكل اصفار الكسر الثاني اوعي تنسي وتزعلني منك

$$\frac{(v+w)}{(v-w)} \div \frac{(v-w)}{(v-w)} = (v-v)^{2}$$

$$\frac{1}{(v-w)} = (v-v)^{2}$$

$$\frac{(v-w)}{(v-w)} \times \frac{(v-w)}{(v-w)} = (v-v)^{2}$$

$$\frac{(v-w)}{(v-w)} = \frac{(v-w)}{(v-w)} = (v-w)^{2}$$

$$\frac{1}{2} (w) = \frac{w' - 7 w}{(w' - 3)}$$
 $\frac{1}{2} (w) = \frac{w' - 3}{(w' - 3)}$
 $\frac{1}{2} (w) = \frac{1}{2} (w' - 3)$
 $\frac{1}{2} (w - 7)$
 $\frac{1}{2} (w - 7)$
 $\frac{1}{2} (w - 7)$
 $\frac{1}{2} (w - 7)$

$$(-1)(m + 1)$$
 $(-1)(m + 1)$
 $(-1)(m + 1)$
 $(-1)(m + 1)$
 $(-1)(m) = (-1)$
 $(-1)(m) = (-1)$

 $\frac{7\omega - 9}{7 - \omega + 7\omega} - \frac{5 + \omega + 7\omega}{\Lambda - \omega} = (\omega) \omega$

$$\frac{(9-7\omega)-}{7-\omega+7\omega} - \frac{\xi+\omega Y-Y\omega}{\lambda+\omega} = (\omega) \omega$$

$$+\omega(\omega-1) \cdot \omega$$

$$\frac{(m+\omega)(m-\omega)}{(m+\omega)(m-\omega)} + \frac{\xi+\omega+\gamma+\gamma\omega}{(\xi+\omega+\gamma)(\gamma-\omega)} = (\omega)\omega$$

$$|| \text{lapper lapper l$$

$$\frac{7+m}{7 \cdot -m} \times \frac{10-m}{10-m} \times \frac{7+m}{10-m} = \frac{10-m}{10-m} \times \frac{7+m}{10-m} = \frac{10-m}{10-m} \times \frac{(m-m)(m-m)}{(m-m)} = \frac{10-m}{10-m} \times \frac{(m-m)(m-m)}{(m-m)} = \frac{10-m}{10-m} \times \frac{10-m}{10-m} = \frac{10-m}{10-m} \times \frac{10-m}{10-m} = \frac{10-m}{10-m} \times \frac{10-m}{10-m} \times \frac{10-m}{10-m} \times \frac{10-m}{10-m} = \frac{10-m}{10-m} \times \frac{10-m}{10-m} \times$$

$$=\frac{(\omega+7)}{(\omega+7)(\omega-3)} =$$

$$\frac{m+m}{1+m+7m} \times \frac{1-7m}{m-7m} = (m) \sim$$

$$\frac{1-m+m+7m}{m-1} \times \frac{1-7m}{m-1} = (m) \sim$$

$$(w) = \frac{(w-1)(w^{7}+w+1)}{w(w-1)} \times \frac{w+\pi}{(w-1)(w^{7}+w+1)} \times \frac{(w+\pi)(w^{7}+w+1)}{(w+\pi)(w-1)} = 0$$

$$\lambda = 3 - \{1, \cdot, \cdot\}$$
مجال $\lambda = 3 - \{1, \cdot, \cdot\}$
مجال $\lambda = 3 - \{1, \cdot, \cdot\}$

قاعدة الضرب طبعا من اولي معروفة عند الضرب اوعي تنام بسط ×بسط مقام × مقام

أ / أبوبكر عامر

17

ل (أ) = 0.0 وأحتمال وقوع ب فقط = 0.0أوجد أحتمال عدم وقوع ب ار ب ل (أ رب) = ل (أ) = ه٠٠٥ ل (ب – أ) = ۳٫۰ ل(ب) - ل (أ ∩ ب) = ٠ ن(ب) ـ ه ، ، = ، ل(ب) = ۲,۰ + ۰,۰ ل(ب) = ۸,۰ أحتمال عدم وقوع ب ل(ب/) = ۱ – ل (ب) = ۱ – ۸٫۰ = ۲۰۰ إذا كان (ب ،حدثين من فضاء العينة وكان $U(4) = \vee, \cdot$ \cdot , $\xi = (\cdot \cap \cap) \cdot \cdot , = \xi , \cdot$ أوجد قيمة (((∪ ب) (4-4) (D ((4)) $(4 \cup 4) = (4) + (4) - (4)$ ·,9=·,٤-(·,7+·,V)= $U(9 - \psi) = U(9) - U(9 - \psi)$ \cdot , $\forall = \cdot$, $\xi - \cdot$, $\forall =$ احتمال عدم وقوع الحدث ع ا - ٧ , ١ = ٣ ,٠ سلة بها ۲۰ كرة بها ۸ كرات حمراء ، ۷ كرات بيضاء ، ٥ كرات صفراء فإذا سُحبت كرة واحدة عشوائيا أوجد أحتمال أن تكون الكرة المسحوية (۱) حمراء (۲) حمراء أو صفراء ُ(٣) ليست صفراعي أحتمال أن تكون الكرة حمراء = عدد الكرات الحمراء = 🉏 العدد الكلي كمل مع نفسي بقي 01146251564

إذا كان للكسر الجبري $\frac{w+Y}{x-3}$ معكوس ضربي هو إذا كان أ ، ب حدثين من ف حيث أ ب ، $\frac{m-7}{1}$ أوجد قيمة ه ك الحـــــل $\frac{1}{1-\omega} = \frac{1}{(1+\omega)(1-\omega)} = (\omega) \sim$ · · معكوسه الضربي هو س- ٢-٠ ه = ١ الاحتمال إذا كان ٢ ،ب $(4) = \pi, \cdot \cdot (4) = \pi, \cdot \cdot (4) = \pi, \cdot \cdot (4)$ أوجد قيمة (ال ال ال ال (ال − ب) ال (ال − ب) الحلل

 $\cdot, \forall = \cdot, \forall - (\cdot, \forall + \cdot, \forall) =$ (4--)=(4)-(4)-(4) \cdot , $1 = \cdot$, $7 - \cdot$, $7 = \cdot$

إذا كان أ ، ب حدثان متنافيان ، ل (أ) = ٥,٠ أ، ب حدثان متنافيان فإن ل (أ رب ب) = صفر

ل (أبب) = ل (أ) + ل (ب) = ٥,٠+٣٠٠ م.٠

خلى بالك: $\emptyset = 1 \cap 1 \dots = 1 \cap 1 = \emptyset$ $(1) \cup (1) + (1) \cup (1)$ = 1 - U(1)(') J - 1 = (i)J(r)

إذا كان: س ، ص حدثين من فضاء العينة وكان أ $(\omega) = \frac{1}{2} \quad (\omega) = (\omega)$ ، ل $(m \cap m) = \frac{1}{n}$ فأوجد $\mathbf{O} \cup (\mathbf{w} \cup \mathbf{w})$ الحال ((w) = (w)) $\frac{1}{2} = (\omega)$ \therefore $(\omega \cap \omega) = (\omega) + (\omega) + (\omega) \cup (\omega \cup \omega) \cup (\omega \cup \omega$ $\frac{1}{1} = \frac{1}{2} = \frac{1}$ إذا كان ل(م) = ٤ ل(م) فإن ل(م) = ·· b(4) + b(4) = 1 ·· 3 b(4) + b(4) = 1 ۰ ÷ ر ۱ = (۴)راه (A) = \$ P(A) $\frac{\mathfrak{t}}{\mathfrak{o}} = \frac{1}{\mathfrak{o}} \times \mathfrak{t} = (\mathfrak{p}) \mathfrak{d} :$

انتهت مع تمنياتي لكم بالتوفيق

صندوق به ۲۰ بطاقة متماثلة ومرقمة من ۲۰:۱ سحبت بطاقة واحدة عشوائيا احسب احتمال أن تكون البطاقة المسحوبة

- تحمل عدداً أوليا
- T تحمل عدد يقبل القسمة على ٥
- انحمل عدداً فرديا القسمة على ٥ الاعداد الاولية هنا هي {19,14,17,11,4,0,7,7}

تحمل عدداً أوليا $=\frac{\Lambda}{1}$ الاعداد التي تقبل القسمة على وهي { 1.10.1.0}

 $\frac{1}{1} = \frac{2}{1} = \frac{2}{1} = \frac{2}{1}$ تحمل عدد يقبل القسمة علي $\frac{2}{1} = \frac{2}{1} = \frac{2}{1}$ الاعداد الفردية وتقبل القسمة على ٥

{10,0} تحمل عدداً فرديا القسمة على ٥= ٢٠= ١٠

0 (10

الشكل المقابل يوضح) 10

فصل به عطالبا، منهم . ٣ طالب يلعبون كرة القدم و ٢يلُعبون كرة السلة

وه ١ يلعبون اللعبتين ٥ لا يمار سون اي لعبة

اختير طالب عشوائيا احسب احتمال أن يكون الطالب احتمال ممن يلعبون إحدى اللعبتين على الأقل احتمال ممن يلعبون لعبة دون الأخرى المطلوب الاول $=\frac{80}{3}=\frac{7}{3}$ المطلوب الثاني $=\frac{7}{2}=\frac{7}{7}$

م / محمد متولي عبدالجليل	رياضيات الصف الثالث الإعدادي
C. = " 6 C = 00 -	٥٥ أحد حلول العاد لين ، س
(18)(1) (11 19) (4) (2-10) (4) (6	is => (i) (-1)
(11)(1) (11 (4) (4) (2-10) (4) (6 (11)(1) (11 (4) (4) (2-10) (4) (6 (11)(1) (1) (1) (1) (1) (1) (1) (1) (1)	(c) Un (U) = 2,(-
ن ن ن ن مو	ماريم المجال المستترك للمالية
(4) B- (4) (4)	
ب صده م ص - ٥ و صن معا	(ج) ص (د _ر) ل ص (د _ر)
واحد (ج) ادنين (ر) ثلاثة	
	٧٥- إذا كام المتيمام المثلام
	سن + عدد ۲ متوانیس مر
١ ، حاصل منها ١٢ مأم العديم هما .	
761 (5) 264 (
	Po- [c:1 Un: (0) V)=(a
ر ۲ می سے سے کشوق حدود سرارہے ۔۔۔ درسان سے ۹ میر بالنقطم (۱۱)	به اداکار د در دی در دی در
	. 4
ث درس و ۲۰ م س	١٠ مُرمة أصنار الدالة د: حيد
E (1) {. 14.} (1)	(1) {1} (1)
	٦٢. عبوسة أصفار الدالة د: حبير
1	(1-1.) (4) (11.) (1)
د (ب م) و س ا ما ما ما ما ما در	
(s) & (=)	٥٦- إدا كانت صرد) د (٥) ،
0. (1) 0 (7) 0-	
P+0+60=(0)) 6 {c	-617 = (0) co - 17
(-(5) -(7) (6	ناسم تا دی (۱) م
225 · 3 · C = (w)	ناسم شاوی: (۱) ۸۶ (۱) ۱۷- ا بط صورة للالت ن حيث س نه م
	· · · · · · · · · · · · · · · · · · ·

Design to the second

م / محمد متولي عبدالجليل	رياضيات الصف الثالث الإعدادي
مسر العادلات الرسير	ما وحد محمومة الحل مكل
{ = 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	6 2+ cm = cm (1)
س + ع والتويين في العادلة لثانية + س + ع = ك ن ع س = ع - ع	اکلی: باک
2-2= we:	طريقة القويين: .: س
٤ = ٤ + . = ١٠٠٠	بالتعويف في العادلة الأوبي
ε=ε+ =ω; ε ξ(ε ι .) } = 2.7:
	(0)
ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	(2) (2) = 3-0 (C)
	بالتويفي العائلة ي
	4004
1-= up: 0-= upo:	
	بالتعوين في العادلة (كوك :
{(1- 6 ·	r)} = 2.p:.
	ب باد متخدم لمريت الحذف
V3 4/c+ 5-1	
N=4/c-v-c	
W===: 10= ~0	-
	بالتويني العادلة (١):
1-:40: 1:40-:- 1-	\$ - wa - :.
{(1- c m)	} = 2.7 :.
4+3=0 6 = E+4	* x x 1: - x - x
({(161-)}=2.6	(الالعم:
Emy ({((,,))}=5.	6 11 = up 2+ u-r-c
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(اللع:


```
م / محمد متولى عبدالجليل
                                                                          رياضيات الصف الثالث الإعدادي
    (N) (e) كام: (->) ع) أحد حلول المعادلتين: ٩ من + ٢٠ من = > >
    plesophous up Cus 742 is = con c+ wous up
    ١٠٠٠ ((١٤١)) ((١٤١)) )
    (9) (01 dn: (99+0) = (11) = (11) doctor; 900
     " 1 sey 6 y= P , cold!"
                                                      * محومة أحمفار الدالية:
                                                     (c-u) (+u) = (u) ) (1)
                                                  12/00)(1-0-1)(-0-2)=
        {c(1}=(s)up: e= ... \= ...
                                                            (2) ((1) = (1)
    {c 6,} = (s) up :. e = 0 6 . = 0 :.
                                                         ~ 11 - " - c = (m) 1 (m)
    .= (q-c)-c:...= 11-10-c: eld1
   [\(\mathreal\) \(\mathreal\) \
                                                    (5) (6) = (0 = (1) (5)
     1249: 07-4-07 -- (1923-07)=.
     · = (0-up)(0+up) -
                                 تدريدي : ما (د) ته ﴿ جُهُ ﴾
    (0) c(~): ~ (0) (0)
{c-6 x 6.}=(1) up ; eld ( -7 - 5 - + 5 - c = ( -1) (7)
   (v) (() (() = (-1) + () - () (v)
    [c-6 4] = (0-0) -3 ( (0) (N)
            { e } = (0) up ; cels 1 N-0 (-50+ 50 = (0)) (9)
     { c - ( c 6 m } = (3) co ; (2) 1C+ w- (- " - " - " - ( w ) ) (1)
        (4) ((~) = (~) = (~) + (~) + (~) = (~) > ((1))
                {16 c-}=(2) co : 2 dd 1 2+(+++)(c-+) =(->) =(1)
```

م / محمد متولي عبدالجليل	رياضيات الصف الثالث الإعدادي
: کیم	* عيم عبال كلم الدوال ال
و المنارعة على المنارعة الم	C.31. Sidle >=
	۳۰۰ میربیو
کلمی: عال ن = ع کلمی، مجال ن = ع _ {.}	1
(c 2 0 - : 11 - 1	(1)
: 0)	م أوجد المحرب المحرب
	را ن در الله و الله الله الله الله الله الله ال
١- ١- ١- ٠ - ١٠ -	الحاله : س : ولحا
31-3 51-63	ر ،) - کی نابد : - کی ن (د) ن (د) : (س) ن (د)
W-v-e = (-1. · · · · · · · · · · · · · · · · · · ·
1-6	
	-= (1-0-)0-
1===	٠. ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ
2-4-6-11-1	المبال المنترك والمنترك والمنترك والمنترك والمنترك والمنازع والمنا
2 3(-) " 6 "	- ع (س) ن ، سود ت ع (س) ن (۱)
.=(+'=	·
·=(1-~)(c+~) ·=(1-~	-) () ()
1=0	1
	.) { (~ (,)
(6-010-0406)	اندریی، : الجال کم تتراه = ع
[1-617 50-1	(۷) ن، (س) و درس) و درس) و درسا و
	مارت المارية على المارية الماري
7/2 / (- «) - 2 = 0/24/1/4 .	عاد الله
Zwin?	

P

رياضيات الصف الثالث الإعدادى م / محمد متولي عبدالجليل * العلبات على الكسوراكبرية: مع أوجد ن (س) في أبط صورة مبيت المبال: {(-) -8 = i dle : cals 1 = 1 = (-) i (1) C = (w)::. (.) -8 = idle . els (e) -+ 17+ 2-00 = (w): 0-+7+ (1-0) = (w) i 1-wr = (w) i: (د-رو) - المان: (ع-مه) (عبت - المان: 1-0- - (m) i: 1 - 0- - (m) i: 1-0- 1-0-アナル + で = (ひ) (と) ルアナ・ピー サナル : gは1 ن (س) = ع - د اعدا) : العاد العدا) - العدا الع (mr(-) - (m)); 1 + c = (m)); ; (mr)-(1+w) = 4+v+ = (w):.

```
رياضيات الصف الثالث الإعدادى م / محمد متولي عبدالجليل
         · gral - (a) : (a) : (b)
1-w - 1-w = (w):: (1-w)- + --- = (w):
   813-8=00/4: 0-30=000:
  (1-0-) - (w) i:
               تدريب: .:نارس) = س
             1+ we + " = (w) : (7)
           0-0-2-°0- + 19+0-1-°0- = (0-10 (4)
        euc-11-0-0 10+0-11-euc
          4+0-
                   ۳- س = (سان (۹)
         1+0-+ c x 1- c = (0.) i (11)
          v (1+w+0-)(1-6-) = (0-)i.
         عال ن = ح - { . ، ١١٠
       (7-0) = (0) i.
   (7-5)(7-5) = (w):.
```


م / محمد متولي عبدالجليل	رياضيات الصف الثالث الإعدادي
روب (و) ن (و) ن (و) الم	سے درسے نہادا کام : درسے ت ص ن ا دس میت میال ن اد
C+ U-W.	ادا کام : نارس) : مال انها ده خاصر ا
نيام مالن	(س) أن الله عام عالى الله عام عام الله
٣ = (مد) ¹ ² ن	© قیمتر سی (دا کام:
***************************************	•الاحتال: ســــــــــــــــــــــــــــــــــــ
٩ و ل عا - ل (٩١٩ ب)	ا۔ احتال وقع الحديث ا
أوب أوتلاهما = ١١٩٧٠)	م احتال وحق الدين ٩
(4°)	٣ . احتمال عدم وعدّ ع الحدث
زمل - احتال وحقع أي مد الحدثيم ول (١٧٠)	ع احتمال وقدم أحد الحدثين على
يشم و د (۱۹۷۰)	a low be a con lo
= إحمال ومق أحد الحدثيم ع الآثرة للامها	٦- احتالسم وفقع الدشيم معا
(Y-P) J = 4	٧۔ احمال وقوع م دوس وقوع ب
	م احتال معتبع المدث ع ف
ر وفقع الحدث الآخر = ل (٩-ب) + ل (١-٩)	٨- ١٠ حمال وقوع ١٠ حدها دوم
(P) J = (۲ (۹۷۰) = (۱۹۹) + (۱۹۹)
۱- ل(ع) متنامنیس مارس ((ع)ب)ء لدع)+لدب	م (نان عاد الم
ما دیگری در ۱۹۵۶ در ۱۹۵۹ در ۱۹۵۹	١١ - اودا نام و م ب حد س
٥ (١١٤) و طبعي	· φ= · Λρ
، د د د د د د د د د د د د د د د د د د د	ور ا کام : ع دب خام اردون ، ع دب خام
	٣١٠ ل (٩-ب) - ل (٩) -
	داداکاس م،ب م
M	= (ب-۹) ا
Zen (19)0	

#			
ل	م / محمد متولي عبدالجلي	الث الإعدادي	رياضيات الصف الثا
	II I 1'	00 1 11	- 11-
	٥٦١٠ مرا ما وتال عدم وقويم	اكدت م لعو	٧- احتمال وقوي
	***************************************	**********	************************************
	متنا فسم ما به ادا ۱۸ ۱۸ مینات	· · ·	1-10:01-A
	متنامیسه مارس ۱ (۱۹۹۰) ۲۵ و او		
	,\ ,0	معر	······•
		*****************************	*************
	. ل (عرب) تاوی ل رب) لاعرب	مان ا	p 1:12/10 9
	(i)) (i)	·············	U(A)
	سفية مرة مامدة مام:	اور د انده	11 11 1

3.64	ابده	موره اوکت	احتال ظهور
***	(:1 1.0	1100 6	· / in)
		7. 5	1,500
***	Ai 11m . 11 -		
***	رة عام اعتمال فاعور عدد معال معال معال معال معال معال معال معال	سرد مرة واحد	السردا المي محر
	ے معالی اول میں	امم حجد ف دع	Si de di
	(, - , - , -		رد و ح
		······ -	· ~)
***			***************************************
12.			

		***************************************	*******************************
***		*****************************	***************************************
			•••••••
***		***************************************	******************************
		***************************************	*************
	M	***********************	*****************************
4			**************************
Z	The state of the s	***************************************	************

الممسوحة ضوئيا بـ CamScanner

·177797777

الممسوحة ضوئيا بـ CamScanner

الفصك الدراسي الثاني	الصف الثالث الإصادي
عد <i>دان نسسيا</i> ن . م خسوعهما ٢٥ والفرق مبيغيما ١١ .	国 عرب ممايات: 国
والعرف سيقرسا ١١٠.	- 0 - UPU+U-P
الحلي	14=444-46
نعرمن العددات سي على	
Or 10 = up + u	علماً بأسر (٢٥١) حل المعادلين
	الحالية - (۱- ۲۲) حل المعادلة
(r÷) シフ= レート をさい	
179=U-	4X7 + LX-1-0===================================
التعویق یی سه +۴۷=۴۵	51
10 = UP + M	De-0=4-17
TIT = 04)	: (۲>-۱) کے عمر المعادلة
15 C 5m L Buble	1 1 = 10 + W- PT
	- 1V = 1-XU + TXPT
ا منظیل کوله بزید عبر عرضه بعقل رعم ماذ کان	Q-1V= P9
المنطالستطيل ٢٥٠ أوجد	1-X (Dablell + 1-X
المتطيل المامال	0
1 151	
فعرص الطول سدى العرص من	17-1 15
De E = 00 - 0-	المعونين
TN= die 1100	0 = U-17
(+) [N=[X(0+1-)]	0 = W - TXT
O- 18=00+0-	0=4-7-
	7-0-0-
(r:) 11 = U-5 0=0	1=0/4-1-=4-
التعديد الدينة	-
التعورين في في	
10=60=31=9 114eb=12=07	
مامرالتفيل= ٩ x٥ =٥٤٠	•
.111464111.	المصاع سعيد الممسوحة ضوئيا بـ CamScanner

المحماح سيد الممسوحة ضوئيا بـ CamScanner

الفصل الدراسي الثاني	(v	يف الثالث الإعدادي	الد
الفطة الاداهم الله الله الله الله الله الله الله ا	(a) 1/2/1		
.17779777/.		مرا او سو ۱۱ لمسوحة ضوئيا بـ CamScanner	ıΛ

