Facial Emotion Detection

MIT Applied Data Science Program: Leveraging AI for Effective Decision-Making

Capstone Project on Facial Emotion Detection based on the domain - Deep Learning

Emanuel Alves Ricardo

Facial Emotion Detection

Computer Vision: enables computers to understand and analyze visual data from the world

- Facial expression
 - Width
 - Height
 - Color channels

- Emotion
 - Label

Objective: Recognize four emotional states - **happiness**, **sadness**, **surprise**, and **neutrality** - in facial expressions.

Applications across various domains:

- Human-Machine Interaction
- Healthcare and therapy
- Education and Learning Environments
- Human-Centric Marketing
- Entertainment and Gaming
- Autonomous Vehicles and Driver Monitoring

Data science and Machine Learning:

- Problem: Multiclass classification problem
- Input data: Visual data
- Model: Convolutional Neural Network, a Supervised machine learning algorithm well suited to analyzing visual data

Convolution Neural Networks (CNN)

- Convolutional layers
 - Neurons respond to a restricted region known as the receptive field
- Neurons in the same convolutional layer share the same parameters
- Apply filters (kernels) to the input image to extract low/high-level features
- Pooling layers downsample the image to reduce computation
- A Fully connected layer makes the final prediction

Dataset Overview: Training, Testing, and Validation Sets

- Datasets:
 - Training 15109 images
 - Testing 128 images
 - Validation 4977 images
- (48,48) gray scale images

Models and Architectures

Accuracy and performance

Performance for each model and emotion

Final conclusions

Model 6

- We recommend adopting Model 6 (gray)
 - Strong overall performance (accuracy 0.79 and average F1-score)
 - Well-balanced F1-score profile
- Future implementations to enhance model's performance:
 - Balancing Strategies:
 - Data augmentation for underrepresented classes
 - Under-sampling for overrepresented classes
 - Data cleaning
 - Hyperparameter tuning
 - Fine-tuning of transfer learning architectures
 - Regularization techniques
 - Batch normalization
 - Architecture modifications
 - Learning rate scheduling
 - Ensemble learning

Thank you for your attention