

DisplaceNet: Recognising Displaced People from Images by Exploiting Dominance Level

Grigorios Kalliatakis Shoaib Ehsan Maria Fasli Klaus McDonald-Maier University of Essex, UK

Proposed Solution: Extend typical image

classification by assigning a triplet score

 $s_{ima,d}^{DP}$ to pairs of candidate human boxes b_h

 $s_{imq,d}^{DP} = s_h \cdot s_{h,imq}^d \cdot s_{imq}^{DP}$

Object Detection Branch: Localise the

boxes containing a human b_h and the object

• Dominance score s_{img}^d that characterises

of interaction b_o using RetinaNet [2].

Human-centric Branch:

• VAD score for each b_h .

Displaced People Branch:

entire image.

Code & Trained Models: https://github.com/GKalliatakis/DisplaceNet

and the displaced people category

Components:

OVERVIEW

Objective: Inference of potential displaced people from real-world images. **Motivations:**

- 68.5 million forcibly displaced individuals worldwide roughly equivalent to the entire UK population being forced to flee their homes.
- Traditional methods for human-rights-related image analysis require **manual labour** by human rights analysts and advocates.
- Computer vision can help **automate parts** of this process and turn recognition of displaced populations into a powerful and cost-effective application that could improve humanitarian responses.

PROBLEM FORMULATION

Can you label the images below as either displaced people or non-displaced people?

Try to label them from the inference results of object detection and/or scene recognition.

Main Idea: A person's control level of a situation can be a notifying difference between the encoded visual content of an image that depicts a non-violent situation and the encoded visual content of an image displaying displaced people.

OVERALL DOMINANCE SCORE

- 1. Combine the person bounding box with the information present in scene context similar to [1]—to recognise emotions expressed in continuous dimensions *Valence*, *Arousal* and *Dominance*
- 2. Introduce the **overall dominance score** that characterises an entire image based on all individuals' control level of the situation

Model Architecture: (a) object detection branch box class s_h, s_o (b) human-centric branch img (c) displaced people branch dominance s_{img}^d dominance s_{img}^d

EXPERIMENTS & RESULTS

Quantitative Comparison of vanilla CNNs* & DisplaceNet:

backbone	layers	vanilla CNN		DisplaceNet	
network	fine-tuned	Top-1 acc.	Coverage	Top-1 acc.	Coverage
VGG16		58%	0%	54%	3%
VGG19	1	69%	3%	60%	6%
ResNet50	1	60%	0%	55%	4%
VGG16		63%	43%	63%	49%
VGG19	$\frac{1}{2}$	77%	54%	74%	58%
ResNet50	2	42%	1%	38%	5%
mean	_	61.5%	16.83%	57.33%	20.83%

Qualitative Results:

*image classification using solely fine-tuning without any other modification

DATASET & METRICS

• Re-adjust classification score based on

• Classification score for input image.

- Two-class subset of Human Rights Archive Dataset [3].
- Use of *coverage*—proportion of a dataset for which a classifier is able to produce a prediction—as a realistic performance metric.
- DisplaceNet refuses to classify an input x, whenever the probability of the output sequence p(y|x) < t for some confidence threshold t = 0.85.

REFERENCES

- [1] Emotion Recognition in Context [Kosti et al., CVPR17]
- [2] Focal loss for dense object detection [Lin *et al.*, ICCV17]
- [3] Exploring Object-Centric and Scene-Centric CNN Features and Their Complementarity for Human Rights Violations Recognition in Images [Kalliatakis *et al.*, IEEE Access 2019]

ACKNOWLEDGEMENTS

This work is supported by the UK ESRC through grant ES/M010236/1 & EPSRC through grants EP/R02572X/1 and EP/P017487/1