What we discussed last time?

- What is MASP algorithm?
- Why MASP algorithm?
- How to generate MASP tree?
- How to extract rules from MASP tree?

Problem associated with MASP algorithm

It depends on the order of items in transactions

Scenario 1

		KUUI
1234	Ts = 50%	1
2431	>	2
3 2 4 1		1
4231		3

Scenario 2

		ROOT
1234	Ts = 50%	I
1234	>	1
1234		1
1234		2
		1
		3
		1
		4

MASP can generate contradictory rules

Examples

$$(A, B, \sim C, D, E) ===> (\sim E)$$

$$(A, B, \sim C, D, E) ===> (C)$$

OIMASP algorithm

- Order Independent
- Non-contradictory rules

Shuffle: TOIB: TOICB

T1	1	2	3	4		T1	1	2	3	4		T1	1	2	3	4
T2	5	4	2	1	CTED 1	T2	1	4	2	5	CTED 3	T2	1	4	2	5
T3	2	4	3	5	STEP 1	T3	2	4	3	5	STEP 2	T5	1	5	2	4
T4	4	2	5	1	6	T4	1	2	5	4		T4	1	2	5	4
T5	1	5	2	4	8	T5	1	5	2	4		Т3	2	4	3	5

1 function OIMASP ($\Gamma_{current}$, Node); **Input**: A transaction dataset $\Gamma_{current}$ associated with the

Algorithm 1: Algorithm to generate *OIMASP* tree.

Node of the OIMASP tree Output: An OIMASP tree

/*
$$\Gamma$$
 is the input transaction database, $|\Gamma|$ is the number of rows in Γ , τ_s is the threshold support, and τ_c is the threshold confidence.

- 2 Obtain the frequency table of $\Gamma_{current}$ 3 Find the item I_{max} having maximum frequency f_{max}
- 4 if (support = $\frac{f_{max}}{|\Gamma|}$) < τ_s then
- return Node
- 6 end

12 OIMASP(Γ_{left} , Node_{left})

- 9 end

- I_{max} in it
- 10 Add a node on the left side of Node say Node_{left} and store

are explained in Algorithm 2

return Node

11 $\Gamma_{left} = TOIB(\Gamma_{current}, I_{max}) /* TOIB()$ and TOICB() functions

7 **if** $(confidence = \frac{f_{max}}{|\Gamma_{current}|}) < \tau_c$ **then**

13 if
$$(support = \frac{|\Gamma_{current}| - f_{max}}{|\Gamma|}) < \tau_s$$
 then

14 | return Node

15 end

18 end

 $\sim I_{max}$ in it

22 return Node

return Node

20 $\Gamma_{right} = TOICB(\Gamma_{current}, I_{max})$

21 $OIMASP(\Gamma_{right}, Node_{right})$

16 if (confidence = $\frac{|\Gamma_{current}| - f_{max}}{|\Gamma_{current}|}$) < τ_c then

19 Add a node Node_{right} on the right side of Node and store

Example [Ts = 0.2 and Tc = 0.3]

		Transa	ction	lable	
T1	1	12	3	4	5
T2	1	5	6	4	12
T3	8	6	9	12	5
T4	9	2	3	6	7
T5	6	9	10	8	7
T6	1	8	3	2	7

Frequency Table						
Item	Count					
1	3					
10	1					
12	3					
2	2					
3	3					
4	2					
5	3					
6	4					
7	3					
8	3					
9	3					

Example

Example

OIMASP VS MASP

			M	ASP	OIMASP		
Dataset	Min-Support	Min-Confidence	total rules	max-rule-size	total rules	max-rule-size	
Α	0.30	0.60	1	2	2	3	
В	0.30	0.60	0	0	9	10	
С	0.30	0.60	0	0	15	16	
D	0.30	0.60	0	0	50	51	
Е	0.30	0.60	0	0	131	132	

Second Contribution

Concept of unbiased support and unbiased confidence

Taking into consideration the origins of items

Second Contribution

Fig. 9. Partition of dataset based on the origin of item 10.

Second Contribution

OIMASP Tree

$$(7, 8, \sim 1)$$
 => (10)
 $(7, 8, \sim 1, 10)$ => (6)
 $(7, 8, \sim 1, 10, 6)$ => (9)

OOIMASP [Origin+Order+MASP]

Algorithm 3: OOIMASP algorithm.

```
1 function OOIMASP (\Gamma, \tau_s, \tau_c);
   Input: A transaction dataset \Gamma[N][M], threshold support \tau_s
             and threshold confidence \tau_c
   Output: association rules
2 items [1: j] \leftarrow unique items list
 3 origins[1: j] \leftarrow origin of corresponding items in items
4 globalRules ← {}
 5 for i in 1 : j do
      currentItem \leftarrow items[i]
      itemOrigin \leftarrow origins[i]
7
      if OIMASP tree is not yet generated for origin itemOrigin
8
      then
          generate OIMASP tree for dataset = \Gamma[itemOrigin : N]
9
          and given \tau_s, \tau_c
      end
10
      generate all association rules from OIMASP tree having
11
      origin = itemOrigin, which contains item currentItem and
      add these to globalRules
12 end
13 return globalRules;
```

OOIMASP vs MASP

			MA	MASP		MASP	
A	0.01	0.30	14	7	24	7 21 41 101 846 45 24 33 7 22 37 86 461	
В	0.01	0.30	0	0	85	21	
С	0.01	0.30	0	0	133	41	
D	0.01	0.30	0	0 0 201		101	
E	0.01	0.30	0	0	1690	846	
Connect	0.01	0.30	50	38	192	45	
Mushroom	0.01	0.30	144	23	282	24	
Chess	0.01	0.30	50	33	91	33	
A	0.05	0.10	24	7	28	7	
В	0.05	0.10	394	27	493	22	
С	0.05	0.10	45	12	207	37	
D	0.05	0.10	0	0	151	86	
E	0.05	0.10	0	0	920	461	
Connect	0.05	0.10	56	35	211	45 +	
Mushroom	0.05	0.10	85	19	129	20	
Chess	0.05	0.10	53	27	83	27	

Conclusions

- OOIMASP generates same association rules irrespective of the order of items
- OOIMASP will not generate contradictory rules
- OOIMASP outperforms MASP in terms of both the metrics i.e. #rules and longest rule size
- OOIMASP requires more computational resources as compared to the MASP algorithm

Conclusions

• Future work : Parallelize OOIMASP algorithm