ECE367 Cheatsheet

Hanhee Lee

September 15, 2024

Contents

1	Vec	tors, Norms, Inner Products (Ch. 2.1-2.2)
	1.1	Linear transformation
		1.1.1 Matrix representation of a linear transformation
	1.2	Vectors
	1.3	Vector spaces
		1.3.1 How to prove or disprove a vector space?
	1.4	Subspace
	1.5	Span
		1.5.1 How to draw the span?
	1.6	Linear independent (LI) set
		1.6.1 How to determine if a set is linearly independent
	1.7	Basis
	1.1	1.7.1 Dimension
	1.8	Norms (Notion of distance)
	1.0	1.8.1 Norm balls
		1.8.2 Motivation for Norms
		1.8.3 Distance metric
	1.9	Inner product (Notion of angle)
	1.9	
		1.9.2 Connection of inner product to angle
		1.9.3 Cauchy-Schwartz inequality and its generalization
	1 10	1.9.4 Inner product induces a norm
	1.10	Orthogonal decomposition
		1.10.1 Mutually orthogonal
		1.10.2 Orthonormal basis
		1.10.3 Orthogonal
		1.10.4 Orthogonal complement
2	Ont	hogonal Decomposition, Projecting onto Subspaces, Gram-Schmidt, QR Decomposition, Hyper-
4		nes and Half-Spaces (Ch. 2.2-2.3)
	2.1	Projection onto subspaces
	2.1	2.1.1 Basic problem
		2.1.1 Basic problem
	0.0	2.1.4 Application of projections: Fourier series
	2.2	Gram-Schmidt and QR decomposition
	2.3	Hyperplanes and half-spaces
	2.4	Non-euclidean projection
3	Nor	n-Euclidean Projection, Projection onto Affine Sets, Functions, Gradients and Hessians (Ch.
J		2.4)
		Projection onto affine sets
	3.2	Functions
	3.3	Gradients
	0.0	Gradients

4	, , , , , , , , , , , , , , , , , , , ,	16 16 16 16 16
5	5.1 Symmetric matrices	16 16 16 16 16
6	6.1 Singular value decomposition	16 16 16
7	Interpretations of SVD, Low-Rank Approximation (Ch. 5.2-5.3.1) 7.1 Interpretation of SVD	16 16 16
8	8.1 Least squares	16 16 16 16
9	Regularized Least-Squares, Convex Sets and Convex Functions (Ch. 6.7.3, 8.1-8.4) 9.1 Regularized least-squares 9.2 Convex sets and convex functions	16 16 16
10		16 16 16
	Numerical Algorithms for Unconstrained and Constrained Optimization (Ch. 12.1-12.3) 11.1 Numerical algorithms for unconstrained optimization 11.2 Numerical algorithms for constrained optimization	16 16 16
\mathbf{L}^{i}	ist of Figures	
	1 Vector addition and scalar multiplication. 2 Norm balls of different p values. 3 Ordering of the vector spaces. 4 Drawing any x. 5 Visual representation of the projection problem. 6 Generalization of projection. 7 Periodic triangle function.	4 8 10 11 12 13 14

List of Tables

1 Vectors, Norms, Inner Products (Ch. 2.1-2.2)

1.1 Linear transformation

Definition: $T: X \to Y$ that satisfies

1. Additivity: $T(x_1 + x_2) = T(x_1) + T(x_2)$

2. Homogeneity: $T(\alpha x) = \alpha T(x)$

• Note: Linear algebra is the study of linear transformations over vector spaces.

1.1.1 Matrix representation of a linear transformation

Definition: Let \mathcal{V} and \mathcal{W} be vector spaces. Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation. When $\mathcal{V} = \mathbb{R}^n$ (or \mathbb{C}^n) and $\mathcal{W} = \mathbb{R}^m$ (or \mathbb{C}^m), then T can be uniquely represented as a matrix $A \in \mathbb{R}^{m \times n}$ such that:

$$T(\mathbf{x}) = A\mathbf{x}$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• **Key:** Any linear transformation is a matrix multiplication. Any matrix multiplication is a linear transformation.

1.2 Vectors

Definition: Ordered collection of numbers, where $x_i \in \mathbb{R}$ or \mathbb{C}

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}.$$

• n: Dimension of \mathbf{x}

• x: Column vector

• \mathbf{x}^T : Transpose of x (row vector)

 \bullet T: Transpose

• x_i : i-th element of x.

1.3 Vector spaces

Definition: A vector space over a field \mathbb{F} (e.g. \mathbb{R}/\mathbb{C}) consists of:

- 1. A set of vectors \mathcal{V}
- 2. A vector addition operator $+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ s.t. $\forall x, y \in \mathcal{V} \to x + y \in \mathcal{V}$ (i.e. closed under VA)
- 3. A scalar multiplication operator $: \mathbb{F} \times \mathcal{V} \to \mathcal{V} \text{ s.t. } \forall \alpha \in \mathbb{F}, \ \forall x \in \mathcal{V} \to \alpha x \in \mathcal{V} \text{ (i.e. closed under SM)}$
- \bullet × is not scalar multiplication.

For $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$ and $\alpha, \beta \in \mathbb{F}$. The following properties are satisfied:

- Vector addition satisfies (i.e., Abelian group):
 - 1. Commutativity: x + y = y + x.
 - 2. Associativity: $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$.
 - 3. Additive identity: $\exists 0 \in \mathcal{V} \text{ s.t. } \mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}.$
 - 4. Additive inverse: $\forall x, \exists y \text{ s.t. } x + y = 0 \text{ (i.e. } y = -x).$
- Scalar multiplication satisfies:

- 1. Associativity: $\alpha \cdot (\beta \cdot \mathbf{x}) = (\alpha \cdot \beta) \cdot \mathbf{x}$.
- 2. Multiplicative Identity: $\exists 1 \in \mathbb{F} \text{ s.t. } 1 \cdot \mathbf{x} = \mathbf{x}$.
- 3. Right Distributivity: $\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y}$.
- 4. Left Distributivity: $(\alpha + \beta) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}$.

Figure 1: Vector addition and scalar multiplication.

1.3.1 How to prove or disprove a vector space?

Process:

Prove:

- 1. Prove that \mathcal{V} is closed under VA and SM.
- 2. Prove all the properties under VA and SM.

Disprove:

1. Disprove one of the properties or that it isn't closed under VA and SM.

Warning: If standard addition and multiplication then, closed under VA and SM properties is enough to prove it's a vector space.

Example:

• Let $\mathcal{V} = \mathbb{R}^n$ and $\mathbb{F} = \mathbb{R}$: This represents vectors of dimension n where each element belongs to \mathbb{R} .

$$\mathcal{V} = \mathbb{R}^n = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} : x_i \in \mathbb{R} \right\}$$

For
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$:

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

For $\alpha, \beta \in \mathbb{R}$:

$$\alpha \cdot \mathbf{x} = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

• Let $\mathcal{V} = \mathbb{C}^n$ and $\mathbb{F} = \mathbb{C}$: This represents vectors of dimension n with complex components.

$$\mathcal{V} = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} : x_i \in \mathbb{C} \right\}$$

4

 \mathcal{V} is a vector space over \mathbb{C} under element-wise addition and scalar multiplication.

• Let $\mathcal{V} = \{\text{set of all continuous functions } f : \mathbb{R} \to \mathbb{R}^n \}$ and $\mathbb{F} = \mathbb{R}$: Let $f_1, f_2 \in \mathcal{V}$, and for $t \in \mathbb{R}$:

$$(f_1 + f_2)(t) = f_1(t) + f_2(t) \implies f_1 + f_2 \in \mathcal{V}$$

For $\alpha \in \mathbb{R}$:

$$(\alpha f)(t) = \alpha f(t) \quad \Rightarrow \quad \alpha f \in \mathcal{V}$$

- f is the vector, $\mathbb{R} \to \mathbb{R}^n$ is the input-output relationship. For 2D, $f(x) = [x_1, x_2]^T$, where x is the input, the vector is the output in 2D, and the vector is f.
- Let $\mathcal{V} = \mathcal{P}_n$, the set of all polynomials with real coefficients and degree $\leq n$:

$$\mathcal{V} = \mathcal{P}_n = \{ p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n : a_0, a_1, \dots, a_n \in \mathbb{R} \}$$

 \mathcal{V} is a vector space over \mathbb{R} under standard addition and scalar multiplication.

1.4 Subspace

Definition: A subspace is a subset of a vector space \mathcal{V} that is a vector space by itself.

• Test: To check whether a subset is a subspace, check that it is closed under VA & SM.

Example:

• Let $\mathcal{V} = \mathbb{R}^3$, and consider the set:

$$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

This set S is a subspace of \mathbb{R}^3 .

• Let $\mathcal{V} = \mathbb{R}^3$, and consider the set:

$$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

This set S is **not** a subspace of \mathbb{R}^3 because adding two vectors will make the last component 2.

• Let $\mathcal{V} = \mathbb{R}^n$, and consider the set:

$$S = \{\mathbf{0}\}$$

This set S is a subspace of \mathbb{R}^n .

1.5 Span

Definition: Given a finite set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ in the same vector space \mathcal{V} over some field \mathbb{F} then,

$$\operatorname{Span}(S) = \left\{ \sum_{i=1}^{m} \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{F} \right\}$$

• Note: Span(S) is always a subspace of V.

1.5.1 How to draw the span?

Process:

- 1. Identify the vectors.
- 2. Plot the vectors: Plot each vector on a coordinate plane starting at the origin.
- 3. Draw the span: Extend the vectors in both directions to show the line or plane formed by their span. If they span the entire plane, draw dashed lines extending their direction.

Example:

• Let
$$S = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}$$
:

$$\operatorname{span}(S) = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

This set span(S) forms a plane in \mathbb{R}^3 . The vectors span the xy-plane with the z-coordinate fixed at zero.

• Let
$$S = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\-1\\0 \end{bmatrix} \right\}$$
:

$$\operatorname{span}(S) = \left\{ x \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} : x \in \mathbb{R} \right\}$$

In this case, $\operatorname{span}(S)$ is a line in \mathbb{R}^3 along the x-axis with y and z coordinates fixed at zero.

1.6 Linear independent (LI) set

Definition: A set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is LI if no vector in S can be written as a LC of other vectors in S. In other words, the only α_i 's that makes $\sum_{i=1}^{m} \alpha_i \mathbf{v}_i = 0$ is $\alpha_i = 0$, $\forall i$.

- If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is LI, then $\forall \mathbf{u} \in \text{span}(S)$, there is a **unique** set of α_i 's s.t. $\mathbf{u} = \sum_{i=1}^k \alpha_i \mathbf{v}_i$ (i.e. there is no redundancies in representation)
 - Coordinates: $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ of **u** w.r.t. S.
- If S is linearly dependent, then one of the vectors can be written as a LC of the other vectors. In this case, we can remove that vector and continue this process until the remaining set is LI.
 - Note: Such an irreducible linearly independent set is called a **basis** of span(S).

1.6.1 How to determine if a set is linearly independent

Process:

- 1. Write a linear combination with coefficients $\alpha_1, \ldots, \alpha_k$.
- 2. Set the linear combination equal to 0.
- 3. Solve for $\alpha_1, \ldots, \alpha_k$ by solving the set of equations (i.e. each component is one equation).
- 4. If $\alpha_1 = \ldots = \alpha_k = 0$, then it is linearly independent.
- 5. Else, linearly dependent by finding a counter example, where the linear combination is 0 for $\alpha_1, \ldots, \alpha_k$ not all equal to 0.

1.7 Basis

Definition: A set of vectors B is a basis of a vector space \mathcal{V} if

- \bullet B is LI
- $Span(B) = \mathcal{V}$

Example: What is the standard basis for $\mathcal{V} = \mathbb{R}^n$?

$$\mathbf{e}^{(1)} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}^{(2)} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots \quad , \quad \mathbf{e}^{(n)} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \quad \text{for } \mathbb{R}^n$$

If
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
, then:

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n$$

1.7.1 Dimension

Definition: The dimension is the number of basis vectors.

• Note: Basis is not unique. But $dim(\mathcal{V})$ is well-defined.

Example:

• dim $\left(\operatorname{span}\left(\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}\right)\right) = 2$

• $\dim \left(\operatorname{span} \left(\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} \right) \right) = 1$

• $\dim\left(\left\{\mathbf{0}\right\}\right) = 0$

• The dimension for $\mathcal{V} = \mathbb{R}^n$ of the standard basis is n

1.8 Norms (Notion of distance)

Definition: Let \mathcal{V} be a vector space over \mathbb{R} or \mathbb{C} . A norm is a function $\|\cdot\|$: $\mathcal{V} \to \mathbb{R}$ that satisfies

1. Non-negativity: $\|\mathbf{x}\| \geq 0$, $\forall \mathbf{x} \in \mathcal{V}$, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$

2. Homogeneity: $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \ \forall \mathbf{x} \in \mathcal{V}, \ \alpha \in \mathbb{F}$

3. Triangle inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$ (triangular inequality)

Example: ℓ_p norms:

$$\|\mathbf{x}\|_p \equiv \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}, \quad 1 \le p < \infty.$$

• Note: For p < 1, triangular inequality doesn't hold.

1. Sum-of-absolute-values length p = 1: $\|\mathbf{x}\|_1 \equiv \sum_{k=1}^{n} |x_k|$

2. Euclidean length p = 2: $\|\mathbf{x}\|_2 \equiv \sqrt{\sum_{k=1}^n x_k^2}$

3. Max absolute value norm $p = \infty$: $\|\mathbf{x}\|_{\infty} \equiv \max_{k=1,...,n} |x_k|$

• Largest term will dominate as if we common factor out the largest term, each of the other terms will go to 0 as noted in the lp norm.

4. Cardinality p=0: The number of non-zero vectors in x is

$$\|\mathbf{x}\|_0 = \operatorname{card}(\mathbf{x}) \equiv \sum_{k=1}^n \mathbb{I}(x_k \neq 0), \text{ where } \mathbb{I}(x_k \neq 0) \equiv \begin{cases} 1 & \text{if } x_k \neq 0 \\ 0 & \text{otherwise.} \end{cases}$$

• **Key:** Not a norm since $\|\alpha \mathbf{x}\|_0 = \|\mathbf{x}\|_0 \neq |\alpha| \cdot \|\mathbf{x}\|_0$ (e.g. if $\alpha = 2$ then this would double the count of number of non-zero vectors for the RS)

7

1.8.1 Norm balls

Definition: The set of all vectors with ℓ_p norm less than or equal to one,

$$B_p = \{\mathbf{x} : \|\mathbf{x}\|_p \le 1\} \tag{1}$$

Example: For 2D, the norm balls are as follows:

- ℓ_2 : $B_2 = \left\{ \mathbf{x} \mid \sqrt{x_1^2 + x_2^2} \le 1 \right\}$ ℓ_1 : $B_1 = \left\{ \mathbf{x} \mid |x_1| + |x_2| \le 1 \right\}$ ℓ_∞ : $B_\infty = \left\{ \mathbf{x} \mid \max |x_i| \le 1 \text{ or } |x_1| \le 1, |x_2| \le 1 \right\}$

- $\ell_0: B_0 = \{ \mathbf{x} \mid \text{card}(\mathbf{x}) \le 1 \}$

Figure 2: Norm balls of different p values.

1.8.2 **Motivation for Norms**

Example: In optimization problems, different norms are used to achieve various goals. Suppose we are trying to solve an optimal control problem, where $x = (x_1, \ldots, x_n)$ are some action variables.

- $\min \|\mathbf{x}\|_2^2 = x_1^2 + \ldots + x_n^2$ (i.e. minimizing the total energy (power) in \mathbf{x})
- $\min \|\mathbf{x}\|_{\infty}$ (i.e. minimizing the peak energy in \mathbf{x}).
- $\min \|\mathbf{x}\|_1$ (i.e. minimizing the sum of action variables).
- $\min \|\mathbf{x}\|_0$ (i.e. find sparse solution)

1.8.3 Distance metric

Definition: A norm induces a distance metric between two vectors x and y in \mathbb{V} as

$$d(x,y) = ||x - y||$$

• Note: The ℓ_2 -norm induces the Euclidean distance

$$||x - y||_2 = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

1.9 Inner product (Notion of angle)

Definition: An inner product on a vector space \mathcal{V} is a function $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathcal{F}$ such that:

- 1. Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0 \ \forall \mathbf{x} \in \mathcal{V} \ \text{and} \ \langle \mathbf{x}, \mathbf{x} \rangle = 0 \ \text{iff} \ \mathbf{x} = 0$
- 2. Conjugate Symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$
 - $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ in \mathbb{R}^n
 - $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ in \mathbb{C}^n .
- 3. Linearity in first argument: $\langle \alpha \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}, \alpha \in \mathbb{F}$

Example: How to use the properties of inner products?

$$\begin{split} \langle x, \alpha y + z \rangle &\stackrel{(2)}{=} \overline{\langle \alpha y + z, x \rangle} \\ &\stackrel{(3)}{=} \overline{\alpha} \overline{\langle y, x \rangle} + \overline{\langle z, x \rangle} \quad \text{ also by conjugate prop.} \\ &\stackrel{(2)}{=} \overline{\alpha} \langle x, y \rangle + \langle x, z \rangle \end{split}$$

1.9.1 Examples of inner products

Example:

• In
$$\mathbb{R}^n$$
 (Dot product): $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i = \mathbf{x}^\top \mathbf{y} = \mathbf{y}^\top \mathbf{x}$
 $- \mathbf{Key}: \langle \mathbf{x}, \mathbf{x} \rangle = \sum_{i=1}^n x_i^2 = \mathbf{x}^\top \mathbf{x} = \|\mathbf{x}\|_2^2$

• In
$$\mathbb{C}^n$$
: $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n \overline{x_i} y_i = \mathbf{x}^H \mathbf{y} = \overline{\mathbf{y}^H \mathbf{x}}$

$$- \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{x}^H = \begin{bmatrix} \overline{x_1} & \cdots & \overline{x_n} \end{bmatrix}$$

•
$$\mathcal{V} = \left\{ f : \mathbb{R} \to \mathbb{R} ; \int_{-\infty}^{+\infty} f^2(t) dt < \infty \right\}$$
 (i.e. the set of square integrable functions)

$$\langle f, g \rangle = \int_{-\infty}^{+\infty} f(t)g(t) dt$$

1.9.2 Connection of inner product to angle

In \mathbb{R}^n , the notion of inner product has a geometric interpretation, and is closely related to the notion of angle between vectors.

Definition:

$$\cos \theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2} = \left\langle \frac{\mathbf{x}}{\|\mathbf{x}\|_2}, \frac{\mathbf{y}}{\|\mathbf{y}\|_2} \right\rangle$$
(2)

- $\langle \mathbf{x}, \mathbf{y} \rangle = 0 \Rightarrow \cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}$ (i.e. perpendicular)
- $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \Rightarrow \cos \theta = 1 \Rightarrow \theta = 0$ (i.e. \mathbf{x} and \mathbf{y} are aligned)
- $\langle \mathbf{x}, \mathbf{y} \rangle = -\|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \Rightarrow \cos \theta = -1 \Rightarrow \theta = \pi$ (i.e **x** and **y** are in opposite directions)
- $\langle \mathbf{x}, \mathbf{y} \rangle > 0 \Rightarrow \cos \theta > 0 \Rightarrow$ angle is acute
- $\langle \mathbf{x}, \mathbf{y} \rangle < 0 \Rightarrow \cos \theta < 0 \Rightarrow$ angle is obtuse

Derivation: L3: Inner products and orthogonality.

1.9.3 Cauchy-Schwartz inequality and its generalization

Definition:

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \tag{3}$$

Hölder's Inequality (generalization):

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\|_p \|\mathbf{y}\|_q \quad \text{where } 1 \le p, q < \infty \text{ and } \frac{1}{p} + \frac{1}{q} = 1$$
 (4)

Example: For p = 1 and $q = \infty$, we have:

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\|_1 \cdot \|\mathbf{y}\|_{\infty}$$

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \left(\sum_{i=1}^n |x_i|\right) \cdot \max_i |y_i|$$

1.9.4 Inner product induces a norm

Definition: Any inner product induces a norm, but not all norms are induced by an inner product.

• **Key:** If given an inner product, take the square root of the inner product to get the norm.

$$- \text{ e.g. } \|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

Figure 3: Ordering of the vector spaces.

1.10 Orthogonal decomposition

1.10.1 Mutually orthogonal

 $\textbf{Definition: A set of non-zero vectors } S = \left\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(d)} \right\} \text{ is } \textbf{mutually orthogonal } \text{if } \langle \mathbf{v}^{(i)}, \mathbf{v}^{(j)} \rangle = 0 \; \forall \; i \neq j.$

- Fact: Orthogonal set of vectors $S = \{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(d)}\}$ is linearly independent.
 - Proof: In L3.

1.10.2 Orthonormal basis

Definition: Set of orthogonal basis vectors that have unit norm.

If $S = \left\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(d)} \right\}$ is a set of mutually orthogonal vectors, then $\left\{ \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}, \dots, \frac{\mathbf{v}_d}{\|\mathbf{v}_d\|} \right\}$ is an orthonormal basis for span(S)

Example: Standard basis is an orthonormal basis for \mathbb{R}^n

1.10.3 Orthogonal

Definition: Consider $\mathbf{x} \in \mathcal{V}$, and let S be a subspace of \mathcal{V} . We say \mathbf{x} is orthogonal to S if:

$$\langle \mathbf{x}, \mathbf{v} \rangle = 0 \quad \forall \, \mathbf{v} \in S.$$

We write: $\mathbf{x} \perp S$.

1.10.4 Orthogonal complement

Definition: The **orthogonal complement** of S, denoted S^{\perp} , is the set of all orthogonal vectors to S:

$$S^{\perp} = \{ \mathbf{x} \in \mathcal{V} : \mathbf{x} \perp S \}$$

- S^{\perp} is a subspace. (Closed under addition and scalar multiplication)
- $S \cap S^{\perp} = \{ \mathbf{0} \}$
- Orthogonal decomposition: Any $\mathbf{x} \in \mathcal{V}$ can be uniquely written as: $\mathbf{x} = \mathbf{x}_S + \mathbf{x}_{S^{\perp}}$ where $\mathbf{x}_S \in S$ and $\mathbf{x}_{S^{\perp}} \in S^{\perp}$

Figure 4: Drawing any x.

• $\mathcal{V} = S + S^{\perp} = \{\mathbf{u} + \mathbf{v} : \mathbf{u} \in S, \mathbf{v} \in S^{\perp}\}$

2 Orthogonal Decomposition, Projecting onto Subspaces, Gram-Schmidt, QR Decomposition, Hyperplanes and Half-Spaces (Ch. 2.2-2.3)

2.1 Projection onto subspaces

2.1.1 Basic problem

Definition: Given $x \in \mathcal{V}$ and a subspace S. Find the closest point (in norm) in S to x:

$$\operatorname{Proj}_{S}(x) = \arg\min_{y \in S} \|y - x\| \tag{5}$$

- ||y-x||: Some norm.
- \bullet Subspace: S doesn't have to be a subspace.
- arg min: Vector y that minimizes ||x y||

2.1.2 Projection onto a 1D subspace

Example: Projection onto a 1-dimensional subspace.

Let $S = \text{span}(\mathbf{v})$, and we denote the projection of \mathbf{x} onto S as:

$$\operatorname{Proj}_{S}(\mathbf{x}) = \mathbf{x}^{*}$$

Under the Euclidean norm, we have nice geometry: we should have

$$\langle \mathbf{x} - \mathbf{x}^*, \mathbf{v} \rangle = 0$$

Since $\mathbf{x}^* \in S$, $\mathbf{x}^* = \alpha \mathbf{v}$ for some scalar α .

We need to find α .

So,

$$\langle \mathbf{x} - \alpha \mathbf{v}, \mathbf{v} \rangle = 0$$

$$\Rightarrow \langle \mathbf{x}, \mathbf{v} \rangle - \alpha \langle \mathbf{v}, \mathbf{v} \rangle = 0$$

$$\Rightarrow \alpha = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Thus,

$$\mathbf{x}^* = \alpha \mathbf{v} = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$$

which simplifies to:

$$\mathbf{x}^* = \frac{\mathbf{x}^\top \mathbf{v}}{\|\mathbf{v}\|_2^2} \mathbf{v} = \left\langle \mathbf{x}, \frac{\mathbf{v}}{\|\mathbf{v}\|_2} \right\rangle \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$$

- Orthonormal Basis for S: $\left\{\frac{\mathbf{v}}{\|\mathbf{v}\|_2}\right\}$ since $\left\|\frac{\mathbf{v}}{\|\mathbf{v}\|_2}\right\|_2 = 1$
- Projection Coefficient: $\left\langle \mathbf{x}, \frac{\mathbf{v}}{\|\mathbf{v}\|_2} \right\rangle$
- Note: x^* is the point we are looking for in the projection problem.

Figure 5: Visual representation of the projection problem.

2.1.3 Projection onto an n dimensional space

Example: This can be generalized to higher dimensions. Let S be a subspace of \mathcal{V} , and let $\{\mathbf{v}_1, \dots, \mathbf{v}_d\}$ be an orthonormal basis of S.

1. Problem setup Let

$$\mathbf{x}^* = \sum_{i=1}^d \alpha_i \mathbf{v}_i$$

Goal: Find $\alpha_1, \ldots, \alpha_d$ so as to minimize the norm $\|\mathbf{x} - \mathbf{x}^*\|_2$.

2. **Derivation:** By geometry, we require that

$$\langle \mathbf{e}, \mathbf{v}_i \rangle = 0 \quad \forall j = 1, \dots, d$$

which implies:

$$\langle \mathbf{x} - \mathbf{x}^*, \mathbf{v}_j \rangle = 0 \quad \forall j$$

$$\Rightarrow \langle \mathbf{x} - \sum_{i=1}^d \alpha_i \mathbf{v}_i, \mathbf{v}_j \rangle = 0 \quad \forall j$$

Using linearity of the inner product:

$$\Rightarrow \langle \mathbf{x}, \mathbf{v}_j \rangle = \sum_{i=1}^d \alpha_i \langle \mathbf{v}_i, \mathbf{v}_j \rangle$$

Since $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ if $i \neq j$ and 1 if i = j, this simplifies to:

 $\alpha_j = \langle \mathbf{x}, \mathbf{v}_j \rangle$ b/c only the i=j term survives

Thus,

$$\mathbf{x}^* = \sum_{i=1}^d \alpha_i \mathbf{v}_i = \sum_{i=1}^d \langle \mathbf{x}, \mathbf{v}_i \rangle \mathbf{v}_i$$

3. Solution:

$$=\sum_{i=1}^d (\mathbf{x}^ op \mathbf{v}_i) \mathbf{v}_i$$

- $\mathbf{v}_i \in \mathbb{R}^n$.
- Projection Coefficients: $\mathbf{x}^{\top}\mathbf{v}_i$
- 4. Example of Orthogonal Decomposition:

$$\mathbf{e} = \mathbf{x} - \mathbf{x}^* \in S^{\perp}, \quad \mathbf{x}^* \in S$$

So,

$$\mathbf{x} = \mathbf{x}^* + \mathbf{e}$$
, where $\mathbf{x}^* \in S$, $\mathbf{e} \in S^{\perp}$

Figure 6: Generalization of projection.

2.1.4 Application of projections: Fourier series

Example: Fourier series:

1. Suppose we have a periodic function x(t) with period T_0 .

Figure 7: Periodic triangle function.

- 2. Inner product for time domain (complex version): $a_k = \langle x(t), y(t) \rangle = \frac{1}{T} \int_T x(t) \overline{y(t)} dt$
 - Note: Real version is without the conjugate.
- 3. Projection (i.e. one component of the sum): $\operatorname{Proj}_{v_i}(\underline{x}) = \langle \underline{x}, \underline{v_i} \rangle \underline{v_i}$
- 4. **Goal:** Express x(t) (i.e. any periodic function) as a sum of complex exponentials:

$$x^*(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

- **Projection:** $\operatorname{Proj}_{e^{jk\omega_0t}}(x(t)) = \langle x(t), \exp(jk\omega_0t) \rangle e^{jk\omega_0t} = a_k e^{jk\omega_0t}$ for a certain value of k.
- Projection coefficient: $a_k = \langle x(t), e^{jk\omega_0 t} \rangle = \frac{1}{T_0} \int_0^T x(t) e^{-jk\omega_0 t} dt$
- Fundamental frequency: $\omega_0 = \frac{2\pi}{T_0}$.
- 5. **Prove orthonormal basis for the complex exponentials:** To prove it's a orthogonal basis, must prove it has unit norm 1 and each pair of vectors are orthogonal (i.e. inner product is 0).
 - (a) Magnitude of exp: $|e^{j\theta}| = 1$. Therefore, it has unit norm.
 - (b) Orthogonality:

$$\langle e^{ji\omega_0 t}, e^{jl\omega_0 t} \rangle = \begin{cases} 1, & i = l \\ 0, & i \neq l \end{cases}$$

Therefore, for each pair of basis vectors, they are orthogonal.

- Conjugate of exp: $(e^{j\theta}) = e^{-j\theta}$
- 6. **Conclusion:** Fourier series is a projection of a function onto the set of othonormal basis functions $\exp(jk\omega_0 t)$, where k is an integer.
 - Optimal: This projection is optimal as it minimizes the approximation error $||x(t) x^*(t)||$, i.e.

$$\frac{1}{T} \int_{0}^{T} (x(t) - x^{*}(t))^{2} dt$$

As the number of terms in the summation increases to infinity, the error goes to 0.

- 2.2 Gram-Schmidt and QR decomposition
- 2.3 Hyperplanes and half-spaces
- 2.4 Non-euclidean projection
- 3 Non-Euclidean Projection, Projection onto Affine Sets, Functions, Gradients and Hessians (Ch. 2.3-2.4)
- 3.1 Projection onto affine sets
- 3.2 Functions
- 3.3 Gradients
- 3.4 Hessians
- 4 Matrices, Range, Null Space, Eigenvalues, Eigenvectors, Matrix Diagonalization (Ch. 3.1-3.5)
- 4.1 Matrices
- 4.2 Range
- 4.3 Null Space
- 4.4 Eigenvalues and eigenvectors
- 4.5 Matrices diagonalization
- 5 Symmetric Matrices, Orthogonal Matrices, Spectral Decomposition, Positive Semidefinite Matrices, Ellipsoids (Ch. 4.1-4.4)
- 5.1 Symmetric matrices
- 5.2 Orthogonal matrices
- 5.3 Spectral decomposition
- 5.4 Positive semidefinite matrices
- 5.5 Ellipsoids
- 6 Singular Value Decomposition, Principal Component Analysis (Ch. 5.1, 5.3.2)
- 6.1 Singular value decomposition
- 6.2 Principle component analysis
- 7 Interpretations of SVD, Low-Rank Approximation (Ch. 5.2-5.3.1)
- 7.1 Interpretation of SVD
- 7.2 Low-rank approximation
- 8 Least Squares, Overdetermined and Underdetermined Linear Equations (Ch. 6.1-6.4)
- 8.1 Least squares
- 8.2 Overdetermined linear equation
- 8.3 Underdetermined linear equation