Formale Semantik 04. Aussagenlogik

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

stets aktuelle Fassungen: https://github.com/rsling/VL-Deutsche-Syntax

Inhalt

- 1 What logic is about
 - On reasoningWhere we need logic
- 2 Statement calculus

- Formalization: Recursive Syntax
- Interpretation
- Laws of the PropC
- Rules of Inference
- Proof

Roland Schäfer Syntax | 04. Aussagenlogik 1 / 46

The book (PMW:87-246) deals with logic far more in-depth than we do. Only what is mentioned on the slides is relevant for the test. Reading the whole chapter from PMW will do you no harm, though.

Theories

- a collection of statements (propositions)
- axioms (statements accepted to be true)
- maybe based on observations (induction)
- statements that follow from the axioms (deduction)
- predictions beyond the axioms
- rechecking for usability: e.g., Russell's paradox

Roland Schäfer Syntax | 04. Aussagenlogik 3 / 46

Proofs

- axioms: atomic truths of your theory
- theorem: a proposition you want to prove
- lemma: subsidiary propositions (used to prove the theorem)
- corollary: propositions proved while proving some axiom

Roland Schäfer Syntax | 04. Aussagenlogik 4 / 46

A method of reasoning

- logic does not generate truths
- formalizing statements, predications etc.
- rules of deduction from axioms to theorems
- empirical (induction) and exact (deduction) science
- aiming at an adequate model of the world (e.g., heliocentric universe)

Roland Schäfer Syntax | 04. Aussagenlogik 5 / 46

Why logic for semantics?

- truth-conditional
- compositional behavior of propositions and connectives
- a logic for entailments
- why, e.g.: It is not the case that someone is happy. \rightarrow Nobody is happy.

Roland Schäfer Syntax | 04. Aussagenlogik 6 / 46

Atomic formulas: statements

- statements/propositions = the atoms
- a propositional symbol p: a well-formed formula (wff)
- ex.: Herr Keydana is a passionate cyclist.: k
- [k]=1 or o (depending on corresponding **model**)

Complex (molecular) formulas

- syntax: restricts the forms of wff's to make them interpretable
- define functors: functions in $\{0,1\}$
- If p and q are wff's, then
 - → ¬p
 - ▶ p∨q
 - ▶ p∧q
 - p → q
 - ▶ p↔q

is also a wff (a molecular term).

Complex (molecular) formulas

- syntax: restricts forms of wff's to make them interpretable
- define functors: functions in $\{\langle 0,1\rangle, \langle 1,0\rangle, 0,1\}$
- If p and q are wff's, then
 - ▶ ¬p (negation)
 - ▶ p∨q (disjunction)
 - ▶ $p \land q$ (conjunction)
 - ▶ $p \rightarrow q$ (conditional)
 - ▶ $p \leftrightarrow q$ (biconditional)

is also a wff.

Complex (molecular) formulas

- syntax: restricts forms of wff's to make them interpretable
- define functors: functions in $\{\langle 0,1\rangle, \langle 1,0\rangle, 0,1\}$
- If p and q are wff's, then
 - ▶ ¬p (negation 'not')
 - p∨q (disjunction 'or')
 - p∧q (conjunction 'and')
 - ▶ $p \rightarrow q$ (conditional 'if')
 - ▶ $p \leftrightarrow q$ (biconditional 'iff')

is also a wff.

Functions and truth tables

standard defintion:

$$\llbracket \neg \rrbracket = \left[\begin{array}{c} 1 \to 0 \\ 0 \to 1 \end{array} \right]$$

• but most widely used: truth tables

Disjunction

- Herr Keydana is a passionate cyclist **or** we all love logic.
- *K*∨L

Conjunction

р	\land	q
1	1	1
1	0	0
0	0	1
0	0	0

- Herr Keydana is a passionate cyclist **and** we all love logic.
- K∧L

Conditional

р	\rightarrow	q
1	1	1
1	0	0
0	1	1
0	1	О

- *If* it <u>rains</u>, **then** the <u>s</u>treets get wet.
- $R \rightarrow S$

Any problems with that?

If it rains, the streets get wet.

- it is raining (1), the streets are wet 1:1
- it is raining (1), the streets are dry 0:0
- it is not raining (o), the streets are wet 1:1
- it is not raining (o), the streets are dry 0:1
- ex vero non sequitur falsum

Biconditional

р	\leftrightarrow	q
1	1	1
1	0	0
0	0	1
0	1	0

- If and only if your score is above 50, then you pass the semantics exam.
- $S \leftrightarrow P$

Scope of functors

- brackets are facultative
- or set non-default functor scope
- default scope

- $p \land \neg q \lor r \rightarrow \neg s$
- $p \wedge (\neg q) \vee r \rightarrow (\neg s)$
- $(p \land (\neg q)) \lor r \rightarrow (\neg s)$
- $((p \land (\neg q)) \lor r) \rightarrow (\neg s)$
- $(((p \land (\neg q)) \lor r) \rightarrow (\neg s))$

Large truth tables

- for n atoms in the term: 2^n lines
- alternating blocks of 1's and 0's under every atom
- $2^{(m-1)}$ times '1' followed by $2^{(m-1)}$ times '0' for the m-th atom from the right
- until 2^n lines are reached

р	^	_	q	V	r	\rightarrow	_	s
1			1		1			1
1 1 1 1 1 1			1		1			0
1			1		0			1
1			1		0			0
1			0		1			1
1			0		1			0
1			0		0			1
1			0		0			0
0			1		1 1			1
0			1		1			0
0			1		0			1
0			1		0			0
0			0		1			1
0			0		1			0
0 0 0 0 0 0			0		0			1
0			0		0			0

р	\wedge	_	q	V	r	\rightarrow	_	s
1		0	1		1		0	1
1		0	1		1		1	0
1		0	1		0		0 1	1
1		0	1		0		1	0
1		1	0		1		0	1
1			0		1		1	0
1		1	0		0 0 1 1 0 0 1 1 0 0		0 1 0 1	1
1		1	0		0			0
0		0	1		1		0	1
0		0	1		1		1	0
0		0 0	1		0		0 1	1
0		0	1		0		1	0
0		1	0		1		0 1	1
0			0		1		1	0
1 1 1 1 1 1 1 0 0 0 0		1	0		0		0 1	1
0		1	0		0		1	0

21 / 46

Assignments: a contingent example

р	\wedge	_	q	V	r	\rightarrow	_	s
1	0	0	1	1	1	0	0	1
1	0	0	1	1	1	1	1	0
1	0	0	1	0	0	1	0	1
1 1 1	0	0	1	0	0	1	1	0
1	1	1	0	1	0 1 1	0	0	1
1	1	1	0	1	1	1	1	0
1	1	1	0	1	0	0	0 1 0 1 0	1
1	1	1	0	1	0	1	1	0
0	0	0	1	1	1	0	0	1
1 1 0 0 0 0 0	0	0	1	1		1	1	0
0	0	0	1	0	0	1 1		1
0	0	0		0	0	1	0	0
0	0	1	0	1	0 1 1	0	0	1
0	0	1	0	1	1	1	1	0
0	0	1	0	0	0	1	0	1
0	0	1	0	0	0	1	1	0

Tautology

- take $p \vee \neg p$
- truth-table: $\begin{array}{c|cccc} p & \lor & \neg & p \\ \hline 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ \end{array}$
- true under every assignment, it is valid
- by law of excluded middle: for every P, P $\lor \neg$ P is true

Contradiction

• take $p \land \neg p$

• truth-table:
$$\begin{array}{c|cccc} p & \land & \neg & p \\ \hline 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{array}$$

• false under every assignment, called contradictory

Contingency

• take $p \wedge p$

	-	\wedge	р
truth-table:	1	1	1
	0	0	0

• the truth value depends on the assignemt

What are laws?

- notice: similarities of set theory and logic
- non-trivial exact nature of their equivalence
- laws state equivalences of (types of) wff
- truth-conservative rewriting of wff's
- any subformula which is a tautology (T) or contradiction (F):

ignore by Identity Laws (Id.):

- $P \lor F) \Leftrightarrow P, (P \lor T) \Leftrightarrow T$
- $P \land F) \Leftrightarrow F, (P \land T) \Leftrightarrow P$

Equivalences: ⇔

- X ⇔ Y: X has the same truth-conditions as Y
- derivability of laws and rules (convenient redundancies)
- Idempotency (Idemp.):
 - $\triangleright (P \lor P) \Leftrightarrow P$
 - \triangleright $(P \land P) \Leftrightarrow P$
 - ▶ Peter walks and Peter walks. \Leftrightarrow Peter walks.

Simple laws

- Associative Laws for ∨ and ∧ (Assoc.):
 - $\qquad \qquad \bullet \ \, ((P \lor Q) \lor R) \Leftrightarrow (P \lor (Q \lor R))$
 - ► ((He walks or she talks) or we walk.) ⇔ (He walks or (she talks or we walk.))
- Commutative Laws for ∨ and ∧ (Comm.):
 - $\blacktriangleright (P \lor Q) \Leftrightarrow (Q \lor P)$
 - ▶ Peter walks or Sue snores. ⇔ Sue snores or Peter walks.
- Distributive Laws for ∨∧ and ∧∨ (Distr.):
 - $\blacktriangleright (P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$
 - (Sue snores) and (Peter walks or we talk).
 - \Leftrightarrow (Sue snores and Peter walks) or (Sue snores and we talk).

Roland Schäfer

Laws dealing with tautology and contradiction

Complement Laws:

- ▶ Tautology (T): $(P \lor \neg P) \Leftrightarrow \mathbf{T}$
- ► Contradiction (F): $(P \land \neg P) \Leftrightarrow \mathbf{F}$
- ▶ Double Negation (DN): $(\neg \neg P) \Leftrightarrow P$
- It is not the case that Sandy is not walking.
 ⇔ Sandy is walking.

Conditionals Laws

• Implication (Impl.):

Ρ	\rightarrow	Q	\Leftrightarrow	_	Ρ	\vee	Q
	1	1		0	1	1	1
1	0	0		0	1 0	0	0
0	1	1		1	0	1	1
0	1	0		1	0	1	0

• Contraposition (Contr.):

Ρ	\rightarrow	Q	\Leftrightarrow	¬	Q	\rightarrow	\neg	Ρ
1	1	1		0	1	1 0 1 1	0	1
1				1	0	0	0	1
	1			0	1	1	1	0
0	1	0		1	0	1	1	0

DeMorgan (DeM)

- DeMorgan's Laws:
 - $\qquad \qquad \neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$
 - ▶ alternatively: $\overline{P \lor Q} \Leftrightarrow \overline{P} \land \overline{Q}$

 - consequently: $\overline{\overline{P} \vee \overline{Q}} \Leftrightarrow \overline{\overline{P}} \wedge \overline{\overline{Q}} \Leftrightarrow P \wedge Q$

The Modus Ponens (MP)

• Definition:

Deminicion.				
Р	\rightarrow	Q	premise 1	
P			premise 2	
		Q	conclusion	

- or: $(P \rightarrow Q) \land (P) \rightarrow (Q)$
- (1) If It rains, the streets get wet. (2) It is raining.
 - \rightarrow The streets are getting wet.

MP: a truth table illustration

- Premises are always set to be true!
- the table:
 - $P \rightarrow C$
 - 1 1
 - 1 0 0
 - 0 1 1
 - 0 1 C

MP: a truth table illustration

- The conditional must be true.
- cancel the 'false' row

 $P \rightarrow Q$

1 1 1

1 0 0

011

010

MP: a truth table illustration

- P must be true.
- cancel the 'false' rows, Q can only be true:

 $P \rightarrow C$

1 1

1 0 0

0 1 1

O 1 C

The Modus Tollens (MT)

Definition:

• the table illustration:

```
P → Q

1 1 1 (by premise 2)

1 0 0 (by premise 1)

0 1 1 (by premise 2)

0 1 0
```

The Syllogisms

- Hypothetical Syllogism (HS):
 - $\blacktriangleright ((P \to Q) \land (Q \to R)) \to (P \to R)$
 - (1) If it rains, the streets get wet. (2) If the streets get wet, it smells nice. → If it rains, it smells nice.
- Disjunctive Syllogism (DS):
 - $\blacktriangleright ((P \lor Q) \land (\neg P)) \to (Q)$
 - ▶ (1) Either Peter sleeps or Peter is awake. (2) Peter isn't awake.
 - ightarrow Peter sleeps.

Trivial rules

- Simplification (Simp.):
 - $(P \land Q) \rightarrow P$
 - (1) It is raining and the sun is shining. \rightarrow It is raining.
- Conjunction (Conj.):
 - $\blacktriangleright (P) \land (Q) \rightarrow (P \land Q)$
 - lacksquare (1) It is raining. (2) The sun is shining. o It is raining and the sun is shining.
- Addition (Add.):
 - $\blacktriangleright \ (P) \to (P \land Q)$
 - lacksquare (1) It is raining. o It is raining or the sun is shining.
 - What if Q is instantiated as true or false by another premise?

A sample proof

- Prove $p \lor q$ from $(p \lor q) \to \neg (r \land \neg s)$ and $r \land \neg s$
- The proof:

$$\begin{array}{ccc} & & & & p \lor q \\ 1 & (p \lor q) \to \neg (r \land \neg s) \\ \hline 2 & r \land \neg s & & \\ \hline & p \lor q & & \text{1,2,MT} \end{array}$$

Literatur I

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.

Roland Schäfer Syntax | 04. Aussagenlogik 46 / 46