UE 4TIN603U - Compilation - Licence 3 - 2018-2019

TD4 - Grammaires non LR - Premiers calculs sémantiques

1. Analyse LR

Soit la grammaire augmentée suivante :

- 1) $E' \rightarrow E$
- 2) $E \rightarrow E + B$
- 3) $E \rightarrow E * B$
- 4) $E \rightarrow B$
- 5) $B \rightarrow nb$

La construction de la table d'analyse par la méthode SLR donne ceci :

État	Action					
	*	+	nb	#	E	В
0			S3		G1	G2
1	S5	S4		R1 & OK		
2	R4	R4		R4		
3	R5	R5		R5		
4			S3			G6
5			S3			G7
6	R2	R2		R2		
7	R3	R3		R3		

FIGURE 1 – Table d'analyse SLR

Où:

- S_i signifie décalage (shift) et aller à l'état i
- G_i signifie aller à l'état i
- R_i signifie réduire (reduce) par la règle i
- (a) Construire les ensembles d'items qui ont permis la construction de la table 1
- (b) Analyser le mot nb + nb * nb #
- (c) Construire l'arbre d'analyse étant donné l'analyse obtenue
- (d) Que doit-on conclure de la grammaire en examinant cet arbre?

2. Grammaire étendue des expressions

Soit les expressions arithmétiques faites d'opérateurs habituels $(+, \times, -, /)$, les expressions de comparaison $(<, \le, >, \ge, =, \ne)$ et les expressions logiques (\lor, \land, \lnot) .

- (a) Écrire une grammaire n'utilisant que trois symboles exprArithm, exprComp et exprLog pour rassembler toutes ces expressions en y ajoutant les constantes et les notations parenthésées.
 - Compiler l'analyseur syntaxique et observer les informations données par Beaver. Les corrections apportées automatiquement sont-elles satisfaisantes?
- (b) Réécrire la même grammaire en tenant compte des propriétés suivantes de l'algèbre :
 - Les multiplications sont prioritaires sur les additions. $(a + b \times c = a + (b \times c))$
 - Les conjonctions sont prioritaires sur les disjonctions. $(a \lor b \land c = a \lor (b \land c))$
 - Les opérateurs unaires sont prioritaires sur les opérateurs binaires (a + -b = a + (-b)).
 - Tous les opérateurs binaires sont associatifs à gauche. (a+b+c=(a+b)+c)
 - Les opérateurs unaires sont associatifs à droite. (---a = -(-(-a))))
 - Les opérandes finales des opérations logiques sont des expressions de comparaison ou des constantes logiques.
 - Les opérandes finales des opérations de comparaison sont des expressions arithmétiques ou des nombres.
 - Les opérandes finales des opérations arithmétiques sont des nombres
- (c) Écrire une classe qui étend beaver. Symbol pour chacune des trois expressions.
- (d) Y implémenter les méthodes permettant les calculs sur ces expressions.
- (e) Écrire un analyseur syntaxique qui prend n'importe quelle expression (logique, de comparaison, arithmétique) et affiche le résultat en sortie.