

ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH) TRƯỜNG ĐẠI HỌC BÁCH KHOA

Review Cryptography & Network Security

MSc. NGUYEN CAO DAT

- **Principles of modern ciphers**
 - Implement crypto library
- **Network Security Applications**
 - System Security

Outline

- Introduction
- Basics of Cryptography
- Network Security Applications
- System Security

OSI Security Architecture

- Defines a systematic way of defining and providing security requirements
- ITU-T X.800
- Focuses on security attacks, mechanisms and services.

- Security Attack
 - Any action that compromises the security of information owned by an organization
 - Types of attacks
- Security mechanism
 - A process (or a device incorporating such a process) that is designed to detect, prevent or recover from a security attack.

Security service

- A processing or communication service that enhances the security of the data processing systems and the information transfers of an organization.
- The services are intended to counter security attacks, and they make use of one or more security mechanisms to provide the service.

Questions and Problems

Questions: 1.1, 1.2, 1.3

Problems: 1.1, 1.2

Outline

- Introduction
- Basics of Cryptography
 - Symmetric cipher
 - Public key cryptography
 - Message authentication
 - Digital signatures

- Symmetric cipher model
 - two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
 - mathematically have:

$$Y = E_{\kappa}(X)$$

 $X = D_{\kappa}(Y)$

- assume encryption algorithm is known
- implies a secure channel to distribute key

- Classical encryption techniques
 - Substitution Techniques
 - The letters of plaintext are replaced by other letters or by numbers or symbols.
 - · Caesar cipher, Monoalphabetic ciphers
 - · Playfair cipher, Hill cipher
 - Transposition Techniques
 - Perform some sort of permutation on the plaintext
 - Product Ciphers

- □ Block ciphers
 - Process messages in blocks, each of which is then en/decrypted
- ■Stream ciphers
 - Process messages a bit or byte at a time when en/decrypting

☐ Ideal Block Cipher

- Modern Block Cipher
 - Substitution-permutation (S-P) networks
 - *substitution* (S-box)
 - *permutation* (P-box)
- □ Diffusion
 - Make the statistical relationship between the plaintext and ciphertext as complex as possible.
- **□** Confusion
 - Make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible.

DES

Questions

- -2.1-2.9, 2.13
- 3.1 3.9

Problems

- · 2.1, 2.5
- 3.2, 3.5 3.7

Number Theory

- Basic theorem of arithmetic (every number can be a product of prime powers), LCM, GCD.
- Computing GCD using the Euclidean Algorithm (Chapter 4.3)
- Modular arithmetic operations (Chapter 4.2)
- Computing modular multiplicative inverse using extended Euclidean Algorithm (Chapter 4.4)

Number Theory

- Arithmetic in a finite ring or field $Z_m = \{0, 1, \dots, m-1\}$
- If m is prime, the ring is a field
- Possible to perform additions, multiplication
- Multiplicative inverses
- In a field all numbers have a multiplicative inverse(except zero)
- In a ring only number relatively prime to the modulus have a multiplicative inverse

Number Theory

- Fermat's theorem: $a^{p-1} \mod p \equiv 1$
- Euler Phi Function (m) number of numbers below m relatively prime to m.
- Euler's theorem: $a^{\phi(m)} \mod m \equiv 1$ if GCD(a, m) = 1.

■ Hard problems

- Factorization
 - Given two primes p and q finding n = pq is trivial.
 - But given n finding p and / or q is not.
- Discrete Logarithms
 - Let $y = g^x \mod p$. Given x, g and p easy to calculate.
 - But given y, g and p practically impossible to calculate x for large p.

Public-Key Cryptosystems

- □RSA (Rivest Shamir Adelman)
 - Choose two large primes p and q.
 - n = pq is the modulus (Z_n is a ring not a field)
 - $\phi(n) = (p-1)(q-1).$
 - Choose e such that (e, (n)) = 1.
 - Find d such that de $\equiv 1 \mod \phi(n)$ (use extended Euclidean algorithm)
 - Destroy p, q and $\phi(n)$.
 - PU = (n,e) are public key; PR = (n,d)
 - Cannot determine p and q from n (factorization is hard).
 - Cannot determine $\phi(n)$ without factoring n.
 - So finding d given e (and n) is hard.

- RSA (Rivest Shamir Adelman)
 - Key Generation

```
PU = (e,n)
PR = (d,n)
```

Encryption

C = Me mod n, where 0≤M<n

Decryption

 $M = C^d \mod n$

□Diffie Helman Key Exchange

- DH is based on difficulty of calculating discrete logarithms
- A known p, and (preferably) a generator g in Z_p .
- Alice chooses a secret a, calculates $\alpha = g^a \mod p$.
- Bob chooses a secret b, calculates $β = g^b \mod p$.
- Alice and Bob exchange and
- Alice calculates $K_{AB} = \beta^a \mod p$.
- □ Bob calculates $K_{AB} = \alpha^b \mod p$.
- Both of them arrive at $K_{AB} = g^{ab} \mod p$.
- K_{AB} is a secret that no one apart from Alice and Bob can calculate!

- Questions
 - 9.1 8.5
 - □ 9.1 − 9.3
- Problems
 - -8.4 8.8
 - 9.2 9.4
 - □ 10.1 − 10.2

■ Message Authentication Code

- Message Authentication Code
 - Data Authentication Algorithm

- Hash functions
 - Hash Functions & Digital Signatures

■ Hash functions

Modern Hash Functions

IV = Initial value

CV_i = chaining variable

Y_i = ith input block

f = compression algorithm

L = number of input blocks

n = length of hash code

= length of input block

- Questions
 - · 11.1 11.7
 - **12.2**
- **□**Problems
 - 12.2 12.3

☐ Practical Signature Schemes

(a) RSA Approach

- ☐ Distribution of Public Keys
 - public announcement
 - publicly available directory
 - public-key authority
 - public-key certificates

- ☐ PKI Public Key Infrastructure
 - X.509 Authentication service
 - Based on asymmetric cryptography
 - Basic function authentication of public keys
 - Achieved by signing public keys
 - Public key certificates issued by certifying authorities
 (CA)
 - Permits different public key algorithms
 - Revocation of certificates

- ☐ PKI Public Key Infrastructure
 - X.509 Authentication service
 - Based on asymmetric cryptography
 - Basic function authentication of public keys
 - Achieved by signing public keys
 - Public key certificates issued by certifying authorities
 (CA)
 - Permits different public key algorithms
 - Revocation of certificates

- Questions
 - □ 10.1 − 10.5
 - **13.7 13.9**
- Problems
 - **13.3**

Trường ĐHBK TP.HCM - Khoa Khoa học & Kỹ thuật máy tính 2008

Outline

- Introduction
- Basics of Cryptography
- Network Security Applications
 - E-mail Security
 - Web Security
 - IP Security
- System Security

Trường ĐHBK TP.HCM - Khoa Khoa học & Kỹ thuật máy tính 2008

E-mail Security

- ■Email Security Enhancements
 - confidentiality
 - authentication
 - message integrity
 - non-repudiation

(b) Generic Reception Diagram (to B)

Trường ĐHBK TP.HCM - Khoa Khoa học & Kỹ thuật máy tính 2008

E-mail Security

□ Pretty Good Privacy (PGP)

(a) Generic Transmission Diagram (from A)

E-mail Security

Questions

- Why does PGP generate a signature before applying compression
- How does PGP use the concept of trust

Problems

- 15.1
- 15.2
- **15.3**

Web Security

- Web Security Threats
 - integrity
 - confidentiality
 - denial of service
 - Authentication
- ■SSL (Secure Socket Layer)
 - SSL Record Protocol
 - SSL Change Cipher Spec Protocol
 - SSL Alert Protocol
 - SSL Handshake Protocol

Web Security

■ Secure Electronic Transactions (SET)

Web Security

Questions

- What is the difference between an SSL connection and an SSL session
- List and briefly define the parameters that define an SSL connection
- List and briefly define the principal categories of SET participants
- What is a dual signature and what is its purpose

Problems

17.1, 17.2

IP Security

□IPSec Services

- Access control
- Connectionless integrity
- Data origin authentication
- Rejection of replayed packets
- Confidentiality (encryption)
- Limited traffic flow confidentiality

□IPSec modes

- Transport Mode
- Tunnel Mode

IP Security

Questions

- What services are provided by IPSec
- What is the difference between transport mode and tunnel mode
- Why does ESP include a padding field

Problems

- **16.2**
- 16.3

Outline

- Introduction
- Basics of Cryptography
- Network Security Applications
- System Security
 - Intruders & IDS
 - Firewalls

System Security

- Intruders & IDS
 - Intrusion Techniques
 - Approaches to Intrusion Detection
 - statistical anomaly detection
 - rule-based detection
 - Distributed Intrusion Detection

System Security

■Intruders & IDS

- Questions
 - List and briefly define three classes of intruders.
 - What are two common techniques used to protect a password file?
 - What are three benefits that can be provided by an intrusion detection system?
 - What is the difference between statistical anomaly detection and rule-based intrusion detection?

Problems

· 18.5, 18.6

System Security

- Firewalls
 - a choke point of control and monitoring
 - Firewall Basic Types
 - Firewall Configurations

System Security

■ Firewalls

- Questions
 - List three design goals for a firewall
 - What are some weaknesses of a packet-filtering router?
 - What is the difference between a packet-filtering router and a stateful inspection firewall?
 - What are the differences among the three configurations of Figure 20.2?

Problems

- · 20.2
- 20.3