10

DERIVADAS PARCIAIS

10.1. DERIVADAS PARCIAIS

Seja z=f(x,y) uma função real de duas variáveis reais e seja $(x_0,y_0)\in D_f$ Fixado y_0 podemos considerar a função g de uma variável dada por

$$g\left(x\right)=f\left(x,y_{0}\right)$$

A derivada desta função no ponto $x = x_0$ (caso exista) denomina-se derivada parcual defem relação a x, no ponto (x_0, y_0) e indica-se com uma das notações:

$$\frac{\partial f}{\partial x}(x_0, y_0)$$
 ou $\frac{\partial z}{\partial x}\Big|_{y=y_0}^{x=x_0}$

Assim, $\frac{\partial f}{\partial x}(x_0, y_0) = g'(x_0)$. De acordo com a definição de derivada temos:

$$\frac{\partial f}{\partial x}\left(x_{0},y_{0}\right)=g'\left(x_{0}\right)=\lim_{x\to x_{0}}\frac{g(x)-g(x_{0})}{x-x_{0}}$$

ou seja,

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$

ou, ainda,

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

Socia o numero $\frac{\partial f}{\partial x}(x, y)$ en siste; $\frac{\partial f}{\partial x}$ e definida uma nova função, indicada por $\frac{\partial f}{\partial x}$ e definida em A, que a cada $(x, y) \in A$ associa o numero $\frac{\partial f}{\partial x}(x, y)$, onde $\frac{\partial f}{\partial x}(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}.$

$$\frac{\partial f}{\partial x}(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}.$$

Tal função denomina-se função derivada parcial de 1. a ordem de f, em relação a x, ou, simplemente, derivada parcial de f em relação a x. De modo análogo, define-se derivada parcial de f, em relação a y, no ponto (x_0, y_0) que

De mode and
$$\frac{\partial f}{\partial y}(x_0, y_0)$$
 ou $\frac{\partial z}{\partial y}|_{y=y_0}^{x=x_0}$:
se indica por $\frac{\partial f}{\partial y}(x_0, y_0)$ ou $\frac{\partial z}{\partial y}|_{y=y_0}^{x=x_0}$:

$$\frac{\partial f}{\partial y_{-}}(x_{0}, y_{0}) = \lim_{y \to y_{0}} \frac{f(x_{0}, y) - f(x_{0}, y_{0})}{y - y_{0}}$$

$$\boxed{\frac{\partial f}{\partial y} \left(x_0, y_0 \right) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}}$$

Para se calcular $\frac{\partial f}{\partial x}(x_0, y_0)$ fixa-se $y = y_0$ em z = f(x, y) e calcula-se a derivada de $g(x) = f(x, y_0)$ em $x = x_0$: $\frac{\partial f}{\partial x}(x_0, y_0) = g'(x_0)$. Da mesma forma, $\frac{\partial f}{\partial x}(x, y)$ é a derivada, em relação a x, de f(x, y), mantendo-se y constante. Por outro lado, $\frac{\partial f}{\partial y}(x, y)$ é a derivada, em relação a y de f(x, y), mantendo-se x constante

EXEMPLO 1. Seja f(x, y) = 2xy - 4y. Calcule:

a)
$$\frac{\partial f}{\partial x}(x, y)$$

b) $\frac{\partial f}{\partial y}(x, y)$
c) $\frac{\partial f}{\partial x}(1, 1)$
solução

$$\frac{\partial f}{\partial x}(x, y) = \frac{\partial}{\partial x}(2xy - 4y) \neq 2y$$

$$\frac{\partial}{\partial x}(2xy) = 2y \quad \text{e} \quad \frac{\partial}{\partial x}(-4y) = 0.$$

Por limite:

$$\frac{\partial f}{\partial x}(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{2(x + \Delta x)y - 4y - 2xy + 4y}{\Delta x}$$

$$= 2y.$$

b) Devemos olhar x como constante e derivar em relação a y:

$$\frac{\partial f}{\partial y}(x, y) = \frac{\partial}{\partial y}(2xy - 4y) = 2x - 4.$$

c) Conforme a, para todo (x, y) em IR², $\frac{\partial f}{\partial x}(x, y) = 2y$. Daf

$$\frac{\partial f}{\partial x}(1,1) = 2.$$

Assim, $\frac{\partial f}{\partial x}(1, 1) = 2$

d) Conforme b, para todo (x, y) em IR², $\frac{\partial f}{\partial y}(x, y) = 2x - 4$. Logo

$$\frac{\partial f}{\partial y}(-1,1) = -6$$

EXEMPLO 2. Considere a função z = f(x, y) dada por $z = \text{arc tg } (x^2 + y^2)$. Calcule

a)
$$\frac{\partial z}{\partial x}$$

b)
$$\frac{\partial}{\partial x}$$

$$c) \frac{\partial z}{\partial x}\Big|_{\substack{x=1\\y=1}}$$

$$d) \frac{\partial z}{\partial y} \Big|_{\substack{y = 0}} x = 0$$

Solução

a)
$$\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} (\text{arc tg } (x^2 + y^2)) = \frac{\frac{\partial}{\partial x} (x^2 + y^2)}{1 + (x^2 + y^2)^2},$$

on seia

$$\frac{\partial z}{\partial x} = \frac{2x}{1 + (x^2 + y^2)^2}$$

b)
$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} \left(\text{arc tg } (x^2 + y^2) \right) = \frac{1}{1 + (x^2 + y^2)^2} \cdot \frac{\partial}{\partial y} (x^2 + y^2),$$

$$\frac{\partial z}{\partial y} = \frac{2y}{1 + (x^2 + y^2)^2}$$

$$\int_{C} \frac{\partial z}{\partial x} \Big|_{y=1}^{x=1} = \frac{\frac{3}{2}}{1+4} = \frac{2}{5}$$

d)
$$\frac{\partial z}{\partial y}\Big|_{y=0} = 0$$

Antes de passarmos ao próximo exemplo, observamos que uma função z=f(x,y) se diz definida ou dada implicitamente pela equação g(x,y,z)=0 se, para todo $(x,y)\in D_p$ g(x,y,f(x,y))=0. Por exemplo, a função $z=\sqrt{1-x^2-y^2}$, $x^2+y^2<1$, é dada implicitamente pela equação $x^2+y^2+z^2=1$, pois, para todo (x,y) no seu domínio, $x^2+y^2+(\sqrt{1-x^2-y^2})^2=1$. As funções $z=\sqrt{1-x^2-y^2}$, $x^2+y^2\leqslant 1$, e $z=-\sqrt{1-x^2-y^2}$, $x^2+y^2\leqslant 1$, são também, dadas implicitamente pela equação $x^2+y^2+z^2=1$ (verifique).

EXEMPLO 3. Sendo z = f(x, y) dada implicitamente por $x^2 + y^2 + z^2 = 1, z > 0$, calcule:

$$a) \, \frac{\partial z}{\partial x}$$

$$b) \ \frac{\partial z}{\partial y}$$

Solução

a) $z = \sqrt{1 - x^2 - y^2}$, $x^2 + y^2 < 1$. Assim,

$$\frac{\partial z}{\partial x} = \frac{1}{2} (1 - x^2 - y^2)^{-\frac{1}{2}} (-2x)$$

ou seja.

$$\frac{\partial z}{\partial x} = \frac{\int_{-x}^{2} \frac{\partial z}{\sqrt{1 - x^2 - y^2}}, x^2 + y^2 < 1.$$

Poderíamos, também, ter chegado ao resultado acima trabalhando diretamente com a equa-

$$\frac{\partial}{\partial x} (x^2 + y^2 + z^2) = \frac{\partial}{\partial x} (1);$$

Solve
$$\frac{\partial}{\partial x}(x^2 + y^2) = 2x \left[\frac{\partial}{\partial x}\left[z^2\right] = \frac{d}{dz}\left[z^2\right] \cdot \frac{\partial z}{\partial x} = 2z \frac{\partial z}{\partial x} e^{-\frac{\partial}{\partial x}}(1) = 0, \text{ resulta:}$$

$$2x + 2z \frac{\partial z}{\partial x} = 0$$

$$\frac{\partial z}{\partial x} = -\frac{x}{z} = \frac{x}{\sqrt{1 - x^2 - y^2}}, x^2 + y^2 < 1.$$

b)
$$\frac{\partial}{\partial y}(x^2 + y^2 + z^2) = \frac{\partial}{\partial y}(1)$$
, ou seja,

$$2y + 2z \frac{\partial z}{\partial y} = 0$$

e, portanto,
$$\frac{\partial z}{\partial y} = -\frac{y}{z} = -\frac{y}{\sqrt{1 - x^2 - y^2}}, x^2 + y^2 < 1.$$

CUIDADOS COM NOTAÇÕES. A notação $\frac{\partial f}{\partial x}(x, y)$, como vimos, indica a derivada de f(x, y) em relação a x, onde y é olhado como constante, ou seja, como independente de xPor outro lado, a notação $\frac{d}{dx} \int f(x, y)$] indica a derivada de f(x, y), onde y deve ser obado (quando nada for dito em contrário) como função de x. As notações foram criadas para se rem usadas corretamente. Portanto, não confunda $\frac{\partial}{\partial x}$ com $\frac{d}{dx}$

EXEMPLO 4.
$$\frac{\partial}{\partial x} (x^2 + y^2) = 2x$$
, enquanto

$$\frac{d}{dx}(x^2 + y^2) = 2x + \frac{d}{dx}(y^2) = 2x + 2y\frac{dy}{dx}$$

pois,

$$\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2)\frac{dy}{dx} = 2y\frac{dy}{dx}$$

EXEMPLO 5. Suponha que z = f(x, y) seja dada implicitamente pela equação

$$e^{xyz} = x^2 + y^2 + z^2.$$

Suponha que f admita derivada parcial em relação a x, expresse $\frac{\partial z}{\partial x}$ em termos de x y e^z

Solução

Para todo $(x, y) \in D_\alpha$

$$\frac{\partial}{\partial x} (e^{xyz}) = \frac{\partial}{\partial x} (x^2 + y^2 + z^2).$$

Temos:

$$\frac{\partial}{\partial x}\left(e^{xyz}\right) = e^{xyz}\frac{\partial}{\partial x}\left(xyz\right) = e^{xyz}\left(yz + xy\frac{\partial z}{\partial x}\right)$$

$$\frac{\partial}{\partial x} (x^2 + y^2 + z^2) = 2x + 2z \frac{\partial z}{\partial x}.$$

$$e^{xyz}\left(yz + xy\frac{\partial z}{\partial x}\right) = 2x + 2z\frac{\partial z}{\partial x},$$

$$\frac{\partial z}{\partial x} = \frac{2x - yz e^{xyz}}{xy e^{xyz} - 2z}$$

em todo $(x, y) \in D_f \operatorname{com} xy e^{xyz} - 2z \neq 0$

EXEMPLO 6. Seja $\phi: \mathbb{R} \to \mathbb{R}$ uma função de uma variável e derivável. Considere a função g dada por $g(x, y) = \phi(x^2 + y^2)$. Verifique que

$$\frac{\partial g}{\partial x}(1,1) = \frac{\partial g}{\partial y}(1,1).$$

$$\frac{\partial g}{\partial x}(1,1) = \frac{\partial g}{\partial y}(1,1).$$

$$g(x,y) = \phi(u) \text{ onde } u = x^2 + y^2.$$

Então, $\frac{\partial g}{\partial x}(x, y) = \phi'(u) \frac{\partial u}{\partial x}$, ou seja,

$$\frac{\partial g}{\partial x}(x, y) = \phi'(x^2 + y^2) 2x.$$

Da mesma forma, $\frac{\partial g}{\partial y}(x, y) = \phi'(x^2 + y^2) \frac{\partial}{\partial y}(x^2 + y^2)$, ou seja,

$$\frac{\partial g}{\partial y}(x, y) = \phi'(x^2 + y^2) 2y.$$

$$\sqrt{\frac{\partial g}{\partial x}}(1,1) = 2 \phi'(2) = \frac{\partial g}{\partial y}(1,1).$$

Observação. Se no exemplo anterior a função ϕ fosse, por exemplo, a função seno, terfators $g(x, y) = \sin(x^2 + y^2)$ e, assim, $\frac{\partial g}{\partial x}(x, y) = \sin'(x^2 + y^2) \frac{\partial}{\partial x}(x^2 + y^2) = 2x\cos(x^2 + y^2)$ e $\frac{\partial g}{\partial y}(x, y) = \sin'(x^2 + y^2) \frac{\partial}{\partial y}(x^2 + y^2) = 2y\cos(x^2 + y^2)$.

EXEMPLO 7. Seja $f(x, y) = \begin{cases} \frac{x^3 - y^2}{x^2 + y^2} & \text{se } (x, y) \neq (0, 0) \\ 0 & \text{se } (x, y) = (0, 0) \end{cases}$. Determine

Solução

a) Nos pontos $(x, y) \neq (0, 0)$ podemos aplicar a regra do quociente

$$\frac{\partial f}{\partial x}(x, y) = \frac{3x^2(x^2 + y^2) - (x^3 - y^2)2x}{(x^2 + y^2)^2}$$

ou seja.

$$\frac{\partial f}{\partial x}(x, y) = \frac{x^4 + 3x^2y^2 + 2xy^2}{(x^2 + y^2)^2}.$$

Em (0, 0)

$$\frac{\partial f}{\partial x}$$
 (0, 0) é a derivada, em $x = 0$, de $g(x) = f(x, 0)$

$$f(x, 0) = \begin{cases} x \text{ se } x \neq 0 \\ 0 \text{ se } x = 0 \end{cases}$$

assim, g(x) = f(x, 0) = x, para todo x; segue que

$$\frac{\partial f}{\partial x}\left(0,0\right)=g'\left(0\right)=1.$$

Poderíamos, também, ter calculado $\frac{\partial f}{\partial x}$ (0, 0) por limite:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{x}{x} = 1.$$

Assim, $\frac{\partial f}{\partial x}$ é a função de IR² em IR dada por

$$\frac{\partial f}{\partial x}(x, y) = \begin{cases} \frac{x^4 + 3x^2y^2 + 2xy^2}{(x^2 + y^2)^2} & \text{se } (x, y) \neq (0, 0) \\ 1 & \text{se } (x, y) = (0, 0) \end{cases}$$

b) Para $(x, y) \neq (0, 0)$

$$\frac{\partial f}{\partial y}(x, y) = -\frac{2x^2y(1+x)}{(x^2+y^2)^2}.$$

 $\oint_{\partial Y} (0,0) \, \epsilon \, (\text{caso exista}) \, \text{a derivada, em } y = 0, \, \text{de } h \, (y) = f \, (0,y);$

$$f(0, y) = \begin{cases} -1 & \text{se } y \neq 0 \\ 0 & \text{se } y = 0 \end{cases}$$

x = 0, logo, h'(0) não existe, ou seja, $\frac{\partial f}{\partial y}(0, 0)$ não existe.

Segue que $\frac{\partial f}{\partial x}$ está definida em todo $(x, y) \neq (0, 0)$ (mas não em (0, 0)) e é dada por

$$\frac{\partial f}{\partial y}(x, y) = -\frac{2x^2y(1+x)}{(x^2+y^2)^2}.$$

EXEMPLO 8. Seja $f: \mathbb{R}^2 \to \mathbb{IR}$ tal que $\frac{\partial f}{\partial x}(x, y) = 0$ para todo (x, y) em \mathbb{IR}^2 . Prove que faio depende de x, isto é, que existe $\phi: \mathbb{IR} \to \mathbb{IR}$ tal que $f(x, y) = \phi(y)$, para todo $(x, y) \in \mathbb{IR}^2$.

Fixado um y qualquer, a função h(x) = f(x, y) é constante em IR, pois, para todo x, h'(x) = $\frac{\partial f}{\partial x}(x, y) = 0$. Segue que, para todo x,

$$h\left(x\right) =h\left(0\right)$$

$$f(x, y) = f(0, y).$$

Como y foi fixado de modo arbitrário, resulta que f(x, y) = f(0, y) se verifica para todo (x, y) em \mathbb{R}^2 . Tomando-se $\phi(y) = f(0, y)$ teremos

$$f(x, y) = \phi(y)$$

para todo $(x, y) \in \mathbb{R}^2$

EXEMPLO 9 (Interpretação geométrica). Suponhamos que z = f(x, y) admite derivadas parciais em $(x_0, y_0) \in D_f$ O gráfico da função $g(x) = f(x, y_0)$, no plano $x'(y_0) z'$ (veja figuada) a), é a intersecção do plano $y = y_0$ com o gráfico de f; $\frac{\partial f}{\partial x}(x_0, y_0)$ é, então, o *coeficiente* funda reta tangente T a esta intersecção no ponto $(x_0, y_0, f(x_0, y_0))$:

$$\frac{\partial f}{\partial x}(x_0, y_0) = \operatorname{tg} \alpha$$
. Interprete você $\frac{\partial f}{\partial y}(x_0, y_0)$.

O exemplo séguinte mostra-nos que a existência de derivada parcial num ponto não a continuidade da função neste ponto.

EXEMPLO 10. Mostre que a função

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } (x, y) \neq (0, 0) \\ 0 & \text{se } (x, y) = (0, 0) \end{cases}$$

admite derivadas parciais em (0, 0), mas não é contínua neste ponto.

Solução

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = 0$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = 0.$$

Assim, f admite derivadas parciais em (0,0). Vamos mostrar, a seguir, que f não é contínua em (0,0). A composta de f com a reta γ dada por γ (t)=(t,t) é

$$g(t) = f(t, t) = \begin{cases} \frac{1}{2} & \text{se } t \neq 0 \\ 0 & \text{se } t = 0 \end{cases}$$

Como γ é contínua em t=0 e a composta g(t)=f(t,t) não é contínua em t=0, resulta que f não é contínua em (0,0). (Por quê?)

O exemplo anterior mostra-nos ainda que a mera existência das derivadas parciais def num ponto (x_0, y_0) não implica a derivabilidade em t_0 da composta $g(t) = f(\gamma(t))$, onde γ é uma curva suposta diferenciável em t_0 e $\gamma(t_0) = (x_0, y_0)$. No exemplo anterior, f admite derivadas parciais em (0, 0), $\gamma(t) = (t, t)$ é diferenciável em t = 0, mas a composta $g(t) = f(\gamma(t))$ não é diferenciável em t = 0.

Do que vimos acima, resulta que a existência de derivadas parciais num ponto (x_0, y_0) não é uma boa generalização do conceito de diferenciabilidade dado para funções de uma

variável real. Uma boa generalização deverá implicar a continuidade da função e a variável real. Uma boa generalização deverá implicar a continuidade da função e a diferenciabilidade da composta $g(t) = f(\gamma(t))$ quando $f \in \gamma$ o forem, porque é isso que acontece no caso de funções de uma variável. Veremos no próximo capítulo qual é a boa generalização do conceito de diferenciabilidade para funções de várias variáveis reais.

$$b)z = \cos x$$

(c)
$$z = \frac{x^3 + y^2}{x^2 + y^2}$$

d)
$$f(x, y) = e^{-x^2 - y}$$

e)
$$z = x^2 \ln(1 + x^2 + y^2)$$

$$f(z = xy e^{xy})$$

c)
$$z = \frac{x^3 + y^2}{x^2 + y^2}$$

d) $f(x, y) = e^{-x^2 - y^2}$
e) $z = x^2 \ln(1 + x^2 + y^2)$
f) $z = xy e^{xy}$
g) $f(x, y) = (4xy - 3y^3)^3 + 5x^2y$
h) $z = \arctan \operatorname{tg} \frac{x}{y}$
j) $z = (x^2 + y^2) \ln(x^2 + y^2)$
 $z = x \sin y$

$$\hat{p}_{z} = (x^2 + y^2) \ln (x^2 + y^2)$$

1)
$$f(x, y) = \sqrt[3]{x^3 + y^2 + 3}$$

m)
$$z = \frac{x \operatorname{sen} y}{\operatorname{cos} (x^2 + y^2)}$$

2. Considere a função $z = \frac{xy^2}{x^2 + y^2}$. Verifique que $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$.

Seja ϕ : IR \rightarrow IR uma função de uma variável real, diferenciável e tal que ϕ' (1) = 4. Seja

$$g(x, y) = \phi\left(\frac{x}{y}\right)$$
 Calcule

(a)
$$\frac{\partial g}{\partial x}$$
 (1, 1)

b)
$$\frac{\partial g}{\partial x}$$
 (1, 1)

4. Seja $g(x, y) = \phi\left(\frac{x}{y}\right)$ a função do exercício anterior. Verifique que

$$x \frac{\partial g}{\partial x}(x, y) + y \frac{\partial g}{\partial y}(x, y) = 0$$

para todo $(x, y) \in \mathbb{IR}^2$, com $y \neq 0$.

5. Considere a função dada por $z = x \operatorname{sen} \frac{x}{z}$. Verifique que

$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$$

A função p=p(V,T) é dada implicitamente pela equação pV=nRT, onde n e R são constantes não-nulas. Calcule $\frac{\partial p}{\partial V}$ e $\frac{\partial p}{\partial T}$.

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z$$

8. Seja $\phi: \mathbb{R} \to \mathbb{R}$ uma função diferenciável de uma variável real e seja $f(x, y) = (x^2 + y^2) = (x^2 + y^2$

$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 2f$$

$$\frac{\partial z}{\partial \rho} = e^{x^2 + y^2} (2x \cos \theta + 2y \sin \theta).$$

$$\frac{\partial z}{\partial \rho} = \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta.$$

- que seja dada implicitamente pela equação $xyz+z^3=x$. Expresse $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ on temps dex.
- 11. Seja z = f(x + at) onde f c uma função diferenciável de uma variável real e a ur Verifique que

$$\frac{\partial z}{\partial t} = a \frac{\partial z}{\partial x}$$

 $\frac{\partial z}{\partial t} = a \frac{\partial z}{\partial x}.$ 12. Se ja $z = f(x^2 - y^2)$, onde f(u) é uma função diferenciável de uma variável real. Verfique que

$$y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = 0$$

- 13. Considere a função dada por $w = xy + z^4$, onde z = z(x, y). Admita que $\frac{1}{|\partial x|} \left(\frac{1}{|\partial x|} \right) = 1$ is degree z = 1 para x = 1 e y = 1. Calcule $\frac{\partial w}{\partial x}\Big|_{y=1}^{x=1}$
- 14. Scja $f(x, y) = e^{-\frac{x}{2}} \phi(2y x)$, onde ϕ é uma função diferenciável de uma variável real. Mos

$$2 \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = -f.$$

- 15. Scja $f(x, y) = \int_0^{x^2 + y^2} e^{-t^2} dt$. Calcule $\frac{\partial f}{\partial x}(x, y) e^{-\frac{\partial f}{\partial y}}(x, y)$.
- 16. Seja $f(x, y) = \int_{x^2}^{y^2} e^{-t^2} dt$. Calcule $\frac{\partial f}{\partial x}(x, y) \in \frac{\partial f}{\partial y}(x, y)$.

Seja $f: \mathbb{R}$ uma (unção diferenciável e seja $g(x, y) = f(y) + f\left(\frac{x}{y}\right)$. Verifique que

$$x \frac{\partial g}{\partial x} + y \frac{\partial g}{\partial y} = yf'(y).$$

18. Seja $f(x,y)=x^3y^2-6xy+\phi(y)$. Determine uma função ϕ de modo que $\frac{\partial f}{\partial y}=2x^3y-6x+\frac{y}{y^2+1}.$

$$\frac{\partial f}{\partial y} = 2x^3y - 6x + \frac{y}{y^2 + 1}$$

9. Determine uma função f(x, y) tal que

$$\begin{cases} \frac{\partial f}{\partial x} = 3x^2y^2 - 6y \\ \frac{\partial f}{\partial y} = 2x^3y - 6x + \frac{y}{y^2 + 1} \end{cases}$$

20. Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ sendo $f(x, y) = \begin{cases} \frac{x + y^4}{x^2 + y^2} & \text{se } (x, y) \neq (0, 0) \\ 0 & \text{se } (x, y) = (0, 0) \end{cases}$

21. Seja
$$f(x, y) = \begin{cases} e^{\left(\frac{-1}{x^2 + (y^2 - 1)}\right)} & \text{se } x^2 + y^2 < 1 \\ 0 & \text{se } x^2 + y^2 \ge 1 \end{cases}$$

b) Determine
$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$$
.

a) Esboce o gráfico de f.
b) Determine $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$.

22. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ dada por: $f(x, 0) = 1 + x^2$, $f(0, y) = 1 + y^2$ e f(x, y) = 0 se $x \neq 0$ e $y \neq 0$.

b) Calculd $\frac{\partial f}{\partial x}$ (0, 0) $e^{i\frac{\partial f}{\partial y}}$ (0, 0). c) $f \in \text{continua em } (0, 0)$? Justifique. d) $\frac{\partial f}{\partial x}$ (0, 1) existe? $\frac{\partial f}{\partial x}$ (1, 0)?

d)
$$\frac{\partial f}{\partial x}$$
 (0, 1) existe? $\frac{\partial f}{\partial x}$ (1, 0)?

23. Seja $f(x, t) = x^2 + y^2$ eseja $\gamma(t) = (t, t, z(t)), t \in IR$, uma curva cuja imagem está contida no gráfico de f.

as grafico de
$$f$$
.

a) Determine z (t).

b) Esboxe os gráficos de f e y .

c) Determine a reta tangente a y no ponto $(1, 1, 2)$.

d) Seja f a reta do item c ; mostre que T está contida no plano de equação

$$z - f(1, 1) = \frac{\partial f}{\partial x} (1, 1) (x - 1) + \frac{\partial f}{\partial y} (1, 1) (y - 1).$$

24. Seja $f(x, y) = x^2 + y^2$ e seja $\gamma(t) = (x(t), y(t), z(t))$ uma curva diferenciável cuja imagem está contida no gráfico de f. Suponha, ainda, $\gamma(0) = (1, 1, 2)$. Seja f a reta tangente a $\gamma \in \mathbb{R}$ 0). Mostre que f está contida no plano

$$z - f(1, 1) = \frac{\partial f}{\partial x} (1, 1) (x - 1) + \frac{\partial f}{\partial y} (1, 1) (y - 1).$$

25. Suponha que z = f(x, y) admita derivadas parciais em (x_0, y_0) . Considere as curvas cujas imagens estão contidas no gráfico de f:

$$\gamma_1: \begin{cases} x=x_0 \\ y=t \\ z=f(x_0,t) \end{cases} \quad \text{e} \quad \qquad \gamma_2: \begin{cases} x=t \\ y=y_0 \\ z=f(t,y_0) \end{cases}$$

Sejam T_1 e T_2 as retas tangentes a γ_1 e γ_2 , nos pontos γ_1 (γ_0) e γ_2 (γ_0), respectivamente. Mostre que a equação do plano determinado pelas retas T_1 e T_2 ϵ

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x} (x_0, y_0) (x - x_0) + \frac{\partial f}{\partial y} (x_0, y_0) (y - y_0).$$

26. Seja $f(x, y) = \begin{cases} \frac{2xy^2}{x^2 + y^4} & \text{se } (x, y) \neq (0, 0) \\ 0 & \text{se } (x, y) = (0, 0) \end{cases}$ e seja $\gamma(t) = (t, t, z(t)), t \in IR$, uma curva cuja imagem está no gráfico de f. Seja T a reta tangente a γ no ponto $\gamma(0)$. Mostre que T não está contida no plano da equação

$$z - f(0,0) = \frac{\partial f}{\partial x} (0,0) (x - 0) + \frac{\partial f}{\partial y} (0,0) (y - 0).$$

- 27. Considere a função z=f(x,y) e seja $(x_0,y_0)\in D_f$. Como você definiria plano tangente ao gráfico de f no ponto (x_0,y_0) ? Admitindo que f admita derivadas parciais em (x_0,y_0) , escreva a equação de um plano que você acha que seja um "forte" candidato a plano tangente ao gráfico de f no ponto $(x_0,y_0,f(x_0,y_0))$.
- 28. Dê exemplo de uma função $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $\frac{\partial f}{\partial y}$ seja contínua em \mathbb{R}^2 , mas que f não seja contínua em nenhum ponto de IR2.
- 29. Dizemos que (x_0, y_0) é um ponto crítico ou estacionário de z = f(x, y) se $\frac{\partial f}{\partial x}(x_0, y_0) = 0$ e $\frac{\partial f}{\partial y}(x_0, y_0) = 0$. Determine (caso existam) os pontos críticos da função dada.

$$a) f(x, y) = x^2 + y^2$$

$$b) f(x, y) = 2x + y^3$$

$$c) f(x, y) = x^2 - 2xy + 3y^2 + x - y$$

$$e) f(x, y) = 3x^2 + 8xy^2 - 14x - 16y$$

$$f(x, y) = x^4 + 4xy + y^4$$

30. Seja (x_0, y_0) um ponto de $D_{\tilde{F}}$ Dizemos que (x_0, y_0) é un *ponto de máximo local* de f (respectivamente, *ponto de mínimo local*) se existe uma bola aberta B de centro (x_0, y_0) tal que, para todo $(x, y) \in B \cap D_{\tilde{F}}$, $f(x, y) \leq f(x_0, y_0)$ (respectivamente, $f(x, y) \geq f(x_0, y_0)$). Prove que se

 (x_0,y_0) é um ponto interior de D_f e se f aómite derivadas parciais em (x_0,y_0) , então uma condição necessária para que (x_0,y_0) seja um ponto de máximo local ou de mínimo local é que (x_0,y_0) seja ponto crítico de f, isto é, que

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 e $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.

- 31. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ e suponha que $\frac{\partial f}{\partial x}(x, y) = 0$ e $\frac{\partial f}{\partial y}(x, y) = 0$, para todo $(x, y) \in \mathbb{R}^2$. Prove
- 32. Dê exemplo de uma função $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ tal que $\frac{\partial f}{\partial x}(x, y) = 0$ e $\frac{\partial f}{\partial y}(x, y) = 0$, para todo $(x, y) \in A$, mas que f não seja constante em A.
- 33. Suponha que, quaisquer que sejam (x, y) e (s, t) em \mathbb{IR}^2 , $|f(x, y) f(s, t)| \le ||(x, y) (s, t)||^2$. Prove que $f \epsilon$ constante.
- 34. Seja $f: A \subset \mathbb{R}^2 \to \mathbb{R}$, A aberto, e suponha que $\frac{\partial f}{\partial x}(x, y)$ existe para todo $(x, y) \in A$. Sejam (x_0, y_0) e $(x_0 + h, y_0)$ dois pontos de A. Prove que se o segmento de extremidades (x_0, y_0) e $(x_0 + h, y_0)$ estiver contido em A, então existirá \bar{x} entre $x_0 \in x_0 + h$ tal que

$$f(x_0+h,y_0)-f(x_0,y_0)=\,\frac{\partial f}{\partial x}\,\left(\overline{x}\,,y_0\right)h.$$

35. Seja $f:A\subset \mathbb{R}^2\to \mathbb{R}$, A aberto, e suponha que f admite derivadas parciais em A. Seja $(x_0,y_0)\in \mathbb{R}$ A. Prove que se $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ forem contínuas em (x_0, y_0) , então f também será

$$(\textit{Sugestão}.f(x,y) - f(x_0,y_0) = \underbrace{f(x,y) - f(x_0,y)}_{\text{(I)}} + \underbrace{f(x_0,y) - f(x_0,y_0)}_{\text{(II)}}; \text{ aplique o TVM a (I) c (II)}.$$

10.2. DERIVADAS PARCIAIS DE FUNÇÕES DE TRÊS OU MAIS VARIÁVEIS REAIS

Sejam $w=(f(x,y,z) \ e\ (x_0,y_0,z_0) \in D_f$. Mantendo-se $y_0 \ e\ z_0$ constantes, podemos considerar para função $g\ (x)=f\ (x,y_0,z_0)$. A derivada desta função, em $x=x_0$ (caso exista), denomina-se derivada parcial de f em relação a x no ponto (x_0,y_0,z_0) e indica-se por

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0)$$
 ou $\frac{\partial w}{\partial x}\Big|_{\substack{x = x_0 \\ y = y_0}}^{x = x_0}$

 $\frac{\partial f}{\partial x}\left(x_0,y_0,z_0\right) \text{ ou } \frac{\partial w}{\partial x}\bigg|_{\substack{y=y_0\\z=z_0}}^{x=x_0}.$ De modo análogo, define-se as derivadas parciais $\frac{\partial f}{\partial y}\left(x_0,y_0,z_0\right)$ e $\frac{\partial f}{\partial z}\left(x_0,y_0,z_0\right)$. Tem-se:

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0, z_0) - f(x_0, y_0, z_0)}{\Delta x}$$

$$\frac{\partial f}{\partial y}(x_0, y_0, z_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta x, z_0) - f(x_0, y_0, z_0)}{\Delta y}$$

$$\frac{\partial f}{\partial z}(x_0, y_0, z_0) = \lim_{\Delta z \to 0} \frac{f(x_0, y_0 + \Delta x, z_0) - f(x_0, y_0, z_0)}{\Delta z}$$