DS (2) de physique-chimie – Électrocinétique & Cinétique chimique

Le samedi 14 novembre 2020 - Durée 3h

Prolégomènes : vous êtes invités à porter une attention particulière à la rédaction!

- Les fautes de français et les copies mal présentées seront pénalisées.
- N'utilisez que des copies doubles que vous devrez numéroter en indiquant le total (par exemple 1/3, 2/3, 3/3).
- Une marge doit être laissée pour la correction sur la partie gauche de votre copie.
- Les réponses non justifiées et les applications numériques ne comportant pas d'unité seront ignorées.
- Vous prendrez soin de bien numéroter les questions et d'encadrer vos réponses.

I Cinétique de décomposition de l'eau oxygénée (D'après CCINP 2019)

L'eau oxygénée H₂O₂(aq) se décompose en solution aqueuse selon l'équation de réaction partielle :

$$H_2O_2(aq) \longrightarrow produits$$
 (1)

On effectue sur le mélange réactionnel des prélèvements échelonnés dans le temps et on dose immédiatement l'eau oxygénée à l'aide d'une solution de permanganate de potassium $\mathrm{MnO_4}^-(\mathrm{aq})$, de pH tamponné à zéro et de concentration molaire volumique $c_1 = 1,0 \times 10^{-2} \ \mathrm{mol} \cdot \mathrm{L}^{-1}$. L'équation de réaction associée au dosage, supposée totale, s'écrit :

$$2MnO_4^{-}(aq) + 5H_2O_2(aq) + 6H_3O^{+}(aq) \longrightarrow 2Mn^{2+}(aq) + 5O_2(g) + 14H_2O(\ell)$$
 (2)

À chaque date t, on prélève un volume $V=10~{\rm cm}^3$ d'eau oxygéné de concentration c qu'on mélange avec un volume V_1 de permanganate. La température du mélange réactionnel est supposée constante et égale à $25\,{\rm ^{\circ}C}$. On donne $R=8,31~{\rm J\cdot K^{-1}\cdot mol^{-1}}$ la constante des gaz parfaits.

- 1. Construire le tableau d'avancement en quantité de matière de la réaction de dosage 2. La composition du mélange réactionnel aux instants t = 0 initial et t quelconque sera donnée en fonction de c, c_1 , V, V_1 , de la quantité de matière initiale n_0 en $H_3O^+(aq)$ et de l'avancement ξ .
- 2. Sachant que V_1 correspond exactement au volume nécessaire pour doser l'eau oxygénée contenue dans le prélèvement, en déduire l'expression de c en fonction de c_1 , V et V_1 .

Le volume V_1 nécessaire au dosage mesuré à différentes dates t est indiqué dans le tableau suivant :

t (en s)	0	180	360	540	720	900
$V_1 \text{ (en cm}^3)$	12,3	8,4	6,1	4,1	2,9	2,0

3. On émet l'hypothèse que la réaction 1 est d'ordre de 1 et de constante de vitesse k. Établir dans ce cas l'expression de la concentration c en $H_2O_2(aq)$ à chaque instant en fonction de k, t et de la concentration c_0 en eau oxygénée à t=0.

- 4. Déduire de ce qui précède l'expression du rapport $\frac{V_1}{V}$ à chaque instant en fonction de c_0 , c_1 , k et t.
- 5. En utilisant une régression linéaire, montrer que les données expérimentales sont compatibles avec une hypothèse de cinétique d'ordre 1. En déduire les valeurs numériques de la concentration c_0 et de la constante de vitesse k à 25 °C.
- 6. Après l'avoir défini, évaluer numériquement le temps de demi-réaction $t_{1/2}$ de la réaction 1 à 25 °C.
- 7. Toutes choses égales par ailleurs, la vitesse de réaction de la décomposition 1 est multipliée par 5 quand la température augmente de 25 °C à 75 °C.
 - (a) Nommer et énoncer la loi qui permet de rendre compte de cette observation. On précisera le nom et l'unité usuelle de toutes les grandeurs intervenant dans sa formulation.
 - (b) Utiliser les résultats des expériences décrites dans ce problème pour déterminer, chaque fois que c'est possible, la valeur numérique des grandeurs introduites dans la réponse à la question 7a.

II Etude d'un circuit RC, RL parallèle

On considère le circuit de la figure ci-dessous, composé de deux branches de même résistance R et comportant pour la première une bobine idéale d'inductance L et pour la seconde un condensateur idéal de capacité C. Ces branches sont alimentées par une source idéale de tension continue de force électromotrice (f.é.m.) E = 10 V.

II. A Réponse du circuit à un échelon montant

Le condensateur étant initialement déchargé, l'interrupteur K qui était ouvert depuis très longtemps est fermé à l'instant t = 0. On appelle i_1 et i_2 les intensités respectives des courants circulant dans la branche contenant la bobine et dans la branche contenant le condensateur.

1. Etablir l'équation différentielle vérifiée par i_1 après fermeture de l'interrupteur et définir la constante de temps associée notée τ_1 .

On s'intéresse à la figure ci-dessous :

- 2. Que représente ce graphe?
- 3. Le reproduire sur votre copie et indiquer, en justifiant votre réponse, le sens de parcours de celui-ci.
- 4. Identifier la zone correspondant au régime transitoire et celles correspondant aux régimes permanents.
- 5. En déduire la valeur $i_1(0^+)$ de l'intensité i_1 juste après la fermeture de K. Comment justifier simplement la valeur obtenue?
- 6. Déterminer graphiquement la valeur de la constante de temps τ_1 ainsi que l'intensité $i_1(t \to \infty)$ atteinte en régime permanent.
- 7. À partir des résultats précédents, et sans résoudre l'équation différentielle déjà établie, déterminer les valeurs numériques de R et L.
- 8. Établir l'équation différentielle vérifiée par i_2 et définir la constante de temps associée notée τ_2 .
- **9.** Déterminer analytiquement l'expression de $i_2(t)$ pour $t \geq 0$.
- 10. Donner un ordre de grandeur de la durée du régime transitoire associée à cette évolution.

On enregistre grâce à un oscilloscope numérique la tension e(t) ainsi que la tension $Ri_2(t)$ aux bornes de la résistance située dans la branche du condensateur. Les courbes obtenues sont représentées sur la figure 1 à la fin de ce sujet sur une page qu'il faudra joindre à la copie. La base de temps choisie est d'1 ms/div alors que la sensibilité sur chacune des voies 1 et 2 est de 2 V/div.

- 11. Déterminer, en justifiant votre réponse, la valeur de τ_2 et en déduire la valeur de C.
- 12. Déterminer l'expression littérale puis la valeur numérique de l'instant t_0 pour lequel $i_1 = i_2$.
- 13. Représenter $i_1(t)$ sur la figure compte tenu de l'ensemble des résultats établis ci-dessus.

II. B Evolution du circuit en régime libre

Le circuit est toujours alimenté par le même générateur. L'interrupteur K étant fermé, le régime permanent est établi. À un instant t_1 que l'on choisira comme nouvelle origine des temps, l'interrupteur est ouvert.

- 14. Représenter le nouveau circuit à étudier.
- 15. Montrer que l'équation différentielle vérifiée par la charge $q = Cu_C$ se met sous la forme :

$$\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + 2\lambda\omega_0 \frac{\mathrm{d}q}{\mathrm{d}t} + \omega_0^2 q = 0$$

On donnera les expressions de littérales puis numériques de λ et de ω_0 en fonction de L, C et R.

- 16. De quel type de système s'agit-il? Compte tenu des valeurs obtenues pour les deux paramètres ω_0 et λ , quelle est la nature de l'évolution?
- 17. Établir en conséquence l'expression complète de q(t) en tenant compte des conditions initiales.
- 18. Représenter précisément le portrait de phase associé à la charge q(t) portée par les armatures du condensateur.
- 19. À quel type de système correspond usuellement ce type de portrait de phase?
- **20.** Exprimer l'énergie instantanée $\mathcal{E}_C(t)$ stockée dans le condensateur, celle $\mathcal{E}_L(t)$ stockée dans la bobine puis celle $\mathcal{E}_R(t)$ dissipée par les résistances. Commenter.
- 21. On souhaite à présent observer une évolution pseudo-périodique de la charge sans pour autant modifier la pulsation propre du circuit. Sur la valeur de quel paramètre électrique peut-on jouer pour obtenir le résultat souhaité? Établir dans cette nouvelle configuration l'expression complète de q(t) en tenant compte une fois encore des conditions initiales.

Nom: Prénom:

Figure 1 – Evolution de e(t) et $Ri_2(t)$ après fermeture de l'interrupteur.

FEUILLE A RENDRE AVEC SA COPIE

FIN DE L'ÉNONCÉ

* * *

5