CS 542 Stats RL Homework 2

Name: Kai-Jie Lin October 31, 2024

1. Bisimulation and Bellman-completeness (5 pts)

Let $M = (S, A, P, R, \gamma)$ be an MDP and $\phi : S \to S_{\phi}$ be a state abstraction. Let \mathcal{F}^{ϕ} be the set of all possible functions over $S \times A$ with value range $[0, V_{\text{max}}]$ ($V_{\text{max}} = R_{\text{max}}/(1-\gamma) > 0$) that are piece-wise constant under ϕ . That is, for any $f \in \mathcal{F}^{\phi}$, $\forall s^{(1)}, s^{(2)}$ such that $\phi(s^{(1)}) = \phi(s^{(2)})$, we always have $f(s^{(1)}, a) = f(s^{(2)}, a), \forall a \in A$.

Prove that the following two conditions are equivalent:

- 1. ϕ is a bisimulation for M.
- 2. \mathcal{F}^{ϕ} is closed under \mathcal{T} , the Bellman optimality operator of M. That is, $\mathcal{T}f \in \mathcal{F}^{\phi}$, $\forall f \in \mathcal{F}^{\phi}$.

Proof:

We first show that $(2) \implies (1)$: Suppose ϕ is a bisimulation for M. $\forall f \in Fcal^{\phi}$, $\forall s^{(1)}$, $s^{(2)}$ such that $\phi(s^{(1)}) = \phi(s^{(2)})$, we have $R(s^{(1)}, a) = R(s^{(2)}, a)$ and $P(s'|s^{(1)},a) = P(s'|s^{(2)},a)$. $(\mathcal{T}f)(s^{(1)},a) = R(s^{(1)},a) + \gamma \langle P(\cdot|s^{(1)},a), V_f \rangle = R(s^{(2)},a) + \gamma \langle P(\cdot|s^{(2)},a), V_f \rangle = (\mathcal{T}f)(s^{(2)},a)$, where $V_f(s) = (\mathcal{T}f)(s^{(2)},a) + \gamma \langle P(\cdot|s^{(2)},a), V_f \rangle = (\mathcal{T}f)(s^{(2)},a)$ $\sum_{a \in \mathcal{A}} \pi(a|s) f(s,a). \implies \mathcal{T} f \in \mathcal{F}^{\phi}, \forall f \in \mathcal{F}^{\phi}.$ Then we show that (1) \implies (2): by proving \neg (2) \implies \neg (1) Suppose ϕ is not a bisimulation for M. $\exists s^{(1)}, s^{(2)}$ such that $\phi(s^{(1)}) = \phi(s^{(2)})$ and $R(s^{(1)}, a) \neq R(s^{(2)}, a)$ or

 $P(s'|s^{(1)},a) \neq P(s'|s^{(2)},a).$

2. (5 pts) In the FQE analysis, we assumed that $\|d_t^{\pi}/\mu\|_{\infty}$ is bounded for all t, where $\mu \in \Delta(\mathcal{S} \times \mathcal{A})$ is the data distribution. What if we instead assume that $\|d^{\pi}/\mu\|_{\infty}$ is bounded, that is, we only cover the discounted occupancy d^{π} as a whole?

(1) (2 pts) To put things more formally, define $C_t^{\pi} := \|d_t^{\pi}/\mu\|_{\infty}$, and $C^{\pi} := \|d^{\pi}/\mu\|_{\infty}$. Upper bound C_t^{π} as a function of C_t^{π} , and also upper bound C^{π} as a function of $\{C_t^{\pi}\}_{t>0}$.

Lemma 1: For any t > 0, we have $d^{\pi} \ge \gamma^{t-1}(1-\gamma)d_t^{\pi}$, $\forall (s,a)$ pairs. Proof: $d^{\pi} = (1-\gamma)\sum_{t=0}^{\infty} \gamma^t d_t^{\pi} = (1-\gamma)(\sum_{i=0}^{t-1} \gamma^{t-1} d_i^{\pi} + \gamma^{t-1} d_t^{\pi} + \sum_{i=t+1}^{\infty} \gamma^{i-1} d_t^{\pi}) \ge (1-\gamma)\gamma^{t-1} d_t^{\pi}$.

Claim 1: $C_t^{\pi} \leq \frac{1}{\gamma^{t-1}(1-\gamma)}C^{\pi}$.

Proof: $C_t^{\pi} = \left\| \frac{d_t^{\pi}}{\mu} \right\|_{\infty} \le \frac{1}{\gamma^{t-1}(1-\gamma)} \left\| \frac{d^{\pi}}{\mu} \right\|_{\infty} = \frac{1}{\gamma^{t-1}(1-\gamma)} C^{\pi}$ by Lemma 1.

Claim 2: $C^{\pi} \leq (1 - \gamma) \sum_{t=1}^{\infty} \gamma^{t-1} C_t^{\pi}$.

Proof:
$$C^{\pi} = \left\| \frac{d^{\pi}}{\mu} \right\|_{\infty} = \left\| (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} d_{t}^{\pi} / \mu \right\|_{\infty} \le (1 - \gamma) \sum_{t=1}^{\infty} \gamma^{t-1} \left\| d_{t}^{\pi} / \mu \right\|_{\infty} = (1 - \gamma) \sum_{t=1}^{\infty} \gamma^{t-1} C_{t}^{\pi}.$$

(2) (3 pts) Perform the FQE analysis using C^{π} (in class what we used is essentially $\max_t C_t^{\pi}$). To make your life easier, let's assume that FQE produces f_0, f_1, \ldots, f_K that satisfies

$$||f_k - \mathcal{T}^{\pi} f_{k-1}||_{2,\mu} \le \epsilon, \quad \forall k.$$

Your task is to give a bound on $|\mathbb{E}_{s\sim d_0}[f_K(s,\pi)] - J(\pi)|$ as a function of ϵ , γ , K, $V_{\max} = R_{\max}/(1-\gamma)$, and C^{π} , in a form similar to the bound given in the class. Hint: the easiest way is to start with Eq.(5) in HW2.

Claim 3:

$$|\hat{J}(\pi) - J(\pi)| \le \frac{c^{\pi}K}{(1-\gamma)}\varepsilon$$

Proof:

$$\begin{aligned} |\hat{J}(\pi) - J(\pi)| &= |\mathbb{E}_{s \sim d_0} \left[f_k(s, \pi) \right] - J(\pi) | \\ &= \left| \left(\sum_{t=1}^K \gamma^{t-1} \mathbb{E}_{d_t^{\pi}} \left[f_{k-t+1} - \mathcal{T}^{\pi} f_{k-t} \right] \right) - \mathbb{E} \left[\sum_{t=k+1}^\infty \gamma^{t-1} r_t \mid \pi, d_0 \right] \right| \\ &\leq \left| \sum_{t=1}^k \gamma^{t-1} \mathbb{E}_{d_t^{\pi}} \left[f_{k-t+1} - \mathcal{T}^{\pi} f_{k-t} \right] \right| = \left| \sum_{t=1}^k \gamma^{t-1} \left\| f_{k-t+1} - \mathcal{T}^{\pi} f_{k-t} \right\|_{1, d_t^{\pi}} \right| \\ &\leq \left| \sum_{t=1}^K \gamma^{t-1} \left\| f_{k-t+1} - \mathcal{T}^{\pi} f_{k-t} \right\|_{2, d_t^{\pi}} \right\| \leq \left| \sum_{t=1}^K \gamma^{t-1} \sqrt{C_t^{\pi}} \left\| f_{k-t+1} - \mathcal{T}^{\pi} f_{k-t} \right\|_{2, \mu} \right| \\ &\leq \left| \sum_{t=1}^K \gamma^{t-1} \frac{C^{\pi}}{\gamma^{t-1} (1 - \gamma)} \varepsilon \right| = \frac{c^{\pi} K}{(1 - \gamma)} \varepsilon \end{aligned}$$

3. Refined coverage coefficient (5 pts) In the FQE/FQI analysis, whenever we use the concentrability condition, it is to perform a change of measure in the form of (for FQI \mathcal{T}^{π} should be replaced by \mathcal{T} , but the story is similar)

$$||f - \mathcal{T}^{\pi} f'||_{2,d_t^{\pi}} \le \sqrt{C_t^{\pi}} ||f - \mathcal{T}^{\pi} f'||_{2,\mu}$$

for some choices of f and f' (e.g., $f = f_k$ and $f' = f_{k-1}$). So naturally, we can replace the definition of C_t^{π} with the following one, which can be potentially tighter by leveraging the structure of the \mathcal{F} class:

$$C_t^{\pi}(\mathcal{F}) := \max_{f, f' \in \mathcal{F}} \frac{\|f - \mathcal{T}^{\pi} f'\|_{2, d_t^{\pi}}^2}{\|f - \mathcal{T}^{\pi} f'\|_{2, \mu}^2}.$$
 (1)

Now consider $C_t^{\pi}(\mathcal{F})$ in the "linear-completeness" setting, that is,

- 1. \mathcal{F} is the linear class induced from feature $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$, i.e., $\mathcal{F} = \{(s, a) \to \phi(s, a)^\top \theta: \theta \in \mathbb{R}^d\}$.
- 2. \mathcal{F} that satisfies Bellman-completeness w.r.t. π , i.e., $\mathcal{T}^{\pi} f \in \mathcal{F} \ \forall f \in \mathcal{F}$.

Let σ_{\min} be the smallest eigenvalue of $\Sigma_{\mu} := \mathbb{E}_{(s,a) \sim \mu}[\phi(s,a)\phi(s,a)^{\top}] \in \mathbb{R}^{d \times d}$ and assume that

- $\sigma_{\min} > 0$.
- $\|\phi(s,a)\| \le 1$ (here the norm is the standard L_2 norm for vectors).

Your tasks:

(1) (4 pts) Derive an upper bound on $C_t^{\pi}(\mathcal{F})$ as a function of $1/\sigma_{\min}$.

Claim:
$$C_t^{\pi}(F) \leq \frac{1}{\sigma_{\min}}$$

Proof:

$$C_{t}^{\pi}(F) = \max_{f, f' \in \mathcal{F}} \frac{\|f - \mathcal{T}^{\pi} f'\|_{2, d_{t}^{\pi}}^{2}}{\|f - \mathcal{T}^{\pi} f'\|_{2, \mu}^{2}}$$

$$= \max_{\theta} \frac{\theta^{\top} \Sigma_{d_{t}^{\pi}} \theta}{\theta^{\top} \Sigma_{\mu} \theta} \qquad \text{(Since linear completeness, } f - T^{\pi} f' \text{ can be written as } \phi(s, a)^{\top} \theta \text{ for some } \theta\text{)}$$

$$= \leq \frac{1}{\sigma_{\min}} \qquad \qquad \text{(since } |\phi(s, a)| \leq 1, \ \theta^{\top} \Sigma_{d_{t}^{\pi}} \theta = \mathbb{E}[(\phi(s, a)^{\top} \theta)^{2}] \leq |\theta|^{2} \leq 1)$$

(2) (1 pts) The tabular setting is a special case when $d = |\mathcal{S} \times \mathcal{A}|$ and $\phi(s, a) = \mathbf{e}_{(s, a)}$, i.e., a vector with the coordinate indexed by (s, a) being 1 and all other coordinates being 0. Give an explicit expression of σ_{\min} as a function of μ .

$$\Sigma_{\mu} = \mathbb{E}_{(s,a)-\mu} \left[\phi(s,a)\phi(sa)^{\top} \right] = \mu I$$

$$\sigma_{\min} = \min_{|x|=1} x^{\top} \Sigma_{\mu} x = \min_{(s,a)} \mu$$

The smallest eigenvalue is simply the smallest probability mass assigned to any state-action pair by μ .