## CS109 – Data Science

Verena Kaynig-Fittkau

vkaynig@seas.harvard.edu
staff@cs109.org

### **Announcements**

- Register your teams until Thursday!
- Next coming up: Survey for actual project proposal
- Will be due 11/17

What would you like to see in class?

## **Books**

- "Elements of Statistical Learning"
- http://statweb.stanford.edu/~tibs/ElemStatLe arn/

- "Pattern Recognition and Machine Learning"
- http://research.microsoft.com/enus/um/people/cmbishop/PRML/

# **Next Topics**

- Classification and regression trees (CART)
- Bagging
- Random Forest
- Boosting
- Cascade

## **Decision Tree**



### **Decision Trees**

- Fast training
- Fast prediciton
- Easy to understand
- Easy to interpret

http://en.akinator.com/personnages/jeu

## Decision Tree - Idea



## Decision Tree - Idea

 What is a the benefit on using only one feature at a time?

What is the drawback?

## **Decision Tree - Idea**

#### Benefits:

- Fast in training and prediction
- Invariant to feature scaling
- Can handle categorical data

#### • Drawback:

lots of splits for diagonal decision boundary

## **Decision Tree - Prediction**



# **Decision Tree - Training**

- Learn the tree structure:
  - which feature to query
  - which threshold to choose



# **Node Purity**



- Expected error
- if you randomly choose a sample
- and predict the class of the entire node based on it.

### Example:

4 red, 3 green, 3 blue data points

Class probabilities:

- red: 4/10 green: 3/10 blue: 3/10

misclassification:

- red: 4/10 \* (3/10 + 3/10)





misclassification:

#### – red:

$$4/10 * (3/10 + 3/10) = 0.24$$

– green and blue:

$$3/10 * (4/10 + 3/10) = 0.21$$

• gini impurity: 0.24 + 0.21 + 0.21 = 0.66

- Number of classes: C
- Number of data points:N
- Number of data points of class i: $N_i$

$$I_G = \sum_{i=1}^{C} \frac{N_i}{N} (1 - \frac{N_i}{N})$$
true
class
wrong
prediction



Hastie et al.,"The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Springer (2009)

#### Gini Index - Income Disparity since World War II



#### http://en.wikipedia.org/wiki/Gini\_coefficient

# **Node Purity Gain**

- Compare:
  - Gini impurity of parent node
  - Gini impurity of child nodes



$$\Delta I_G = I_G(A) - \frac{N(B)}{N(A)} I_G(B) - \frac{N(C)}{N(A)} I_G(C)$$

## Misclassification

• 
$$\frac{1}{N} \sum_{i}^{N} \mathbf{1}(\hat{\mathbf{y}}_i \neq y_i)$$

not differentiable

## Comparison Gini vs Misclassification

Binary problem: 400 samples per class





Misclassification: 0.25

Gini gain: 0.125

Misclassification: 0.25

Gini gain: 0.166

## Pseudocode

- Check if already finished
- For each attribute a
  - Calculate the gain from splitting on a
- Let a\_best be the attribute with highest gain
- Create a decision node that splits on a\_best
- Repeat on the sub-nodes
- Does this produce an optimal tree?
- What would an optimal tree be here?

# When to Stop

- node contains only one class
- node contains less than x data points
- max depth is reached
- node purity is sufficient
- you start to overfit => cross-validation

# Tree Pruning



How do you make a prediction for the merged cell? What is the relation between pruning and k in knn?

# Decision Trees - Disadvantages

- Sensitive to small changes in the data
- Overfitting
- Only axis aligned splits

## **Decision Trees vs SVM**

| Characteristic                                        | SVM      | Trees    |
|-------------------------------------------------------|----------|----------|
| Natural handling of data<br>of "mixed" type           | •        | <b>A</b> |
| Handling of missing values                            | •        | <b>A</b> |
| Robustness to outliers in<br>input space              | •        | <b>A</b> |
| Insensitive to monotone<br>transformations of inputs  | •        | <b>A</b> |
| Computational scalability (large $N$ )                | •        | <b>A</b> |
| Ability to deal with irrel-<br>evant inputs           | •        | <b>A</b> |
| Ability to extract linear<br>combinations of features | <b>A</b> | •        |
| Interpretability                                      | •        | <b>*</b> |
| Predictive power                                      | <u> </u> | ▼        |

# **Real Data**

## DecisionTree in sklearn

 http://scikitlearn.org/stable/modules/generated/sklearn.t ree.DecisionTreeClassifier.html

## Wisdom of Crowds

The collective knowledge of a diverse and independent body of people typically exceeds the knowledge of any single individual, and can be harnessed by voting.

James Surowiecki





https://www.youtube.com/watch?v=ImpV70uLxyw