STANDARD CODE LIBRARY OF EATING KEYBOARD

Edited By

SDDYZJH DragoonKiller Alisa

Huazhong University of Science and Technology

目录

宏	1
计算几何	2
平面几何通用	2
立体几何通用	4
判断点在凸多边形内	5
	5
- · · ·	6
动态点凸包	7
	9
	9
最小覆盖圆	9
数据结构	10
KD 树	
Splay	
表达式解析	15
并查	17
可持久化并查集	18
可持久化线段树	19
轻重边剖分	20
手写 bitset	21
树状数组	23
线段树	23
左偏树	25
图论	27
k 短路可持久化堆	27
spfa 费用流	
Tarjan 有向图强连通分量	30
割点割边及双联通分量....................................	31
zkw 费用流	34
倍増 LCA	35
虚树	35
点分治	35
堆优化 dijkstra	36
矩阵树定理	36
平面欧几里得距离最小生成树	39
十国以九圭侍距离取小王以内	42
KM(bfs)	44
最大团	44
最小度限制生成树	46
最优比率生成树	48
欧拉路径覆盖	48

数学	50
常见积性函数	. 50
常用公式	. 50
	. 50
莫比乌斯反演	. 50
常用等式	. 51
Pell 方程	
· · · · · · · · · · · · · · · · · · ·	
矩阵乘法快速幂	
线性规划	
线性基	
线性求逆元	
FFT	
NTT+CRT	
NTT 启发式合并	
FWT	
类欧和 Farey 序列	
学	
中国剩余定理	. 62
字符串	63
AC 自动机	. 63
子串 Hash	. 64
Manacher	. 65
Trie 树	. 65
后缀数组-DC3	. 66
后缀数组-倍增法	. 67
后缀自动机	. 68
回文自动机	. 68
KMP	. 69
扩展 KMP	. 69
动态规划	70
插头 DP	
概率 DP	
数位 DP	
四边形 DP	
完全背包	
斜率 DP	. 73
状压 DP	
最长上升子序列....................................	. 75
杂项	75
日期公式	
随机数	
高精度	
ויייו	. 10

康托展开与逆展开	81
快速乘	82
模拟退火	82
魔法求递推式。	83
常用概念	84
欧拉路径	84
映射	84
反演	84
弦图	84
五边形数	84
pick 定理	84
重心	84
曼哈顿距离与切比雪夫距离	85
第二类 Bernoulli number	85
Fibonacci 数	85
Catalan 数	85
Lucas 定理	85
扩展 Lucas 定理	85
BEST theorem	85
欧拉示性数定理	85
最值反演 (MinMax 容斥)	86
Polya 定理	86
Stirling 数	86
常用排列组合公式	86
三角公式	86
积分表....................................	86

宏

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4
   typedef unsigned int uint;
5 typedef double db;
 6 typedef long double ld;
7 typedef long long ll;
8 typedef unsigned long long ull;
   typedef vector<int> vi;
10 typedef pair<int,int> pii;
11 typedef set<int> si;
12
   int sc(int &x){return scanf("%d", &x);}
13
   int sc(uint &x){return scanf("%u", &x);}
14
15 int sc(ll &x){return scanf("%lld", &x);}
int sc(ull &x){return scanf("%llu", &x);}
int sc(db &x){return scanf("%lf", &x);}
18 int sc(ld &x){return scanf("%Lf", &x);}
19
   int sc(char *x){return scanf("%s", x);}
20 int sc(char &x){return scanf("%c", &x);}
21 template<typename T, typename... Args> void sc(T& v, Args&... args) { sc(v); sc(args...); }
22
23
   void pr(const int &x){printf("%d", x);}
^{24}
   void pr(const uint &x){printf("%u", x);}
25
   void pr(const 11 &x){printf("%11d", x);}
26 | void pr(const ull &x){printf("%llu", x);}
27 void pr(const db &x){printf("%.10lf", x);}
28
   void pr(const ld &x){printf("%.10Lf", x);}
29
   void pr(const char* const &x){printf("%s", x);}
30
   void pr(char* const &x){printf("%s", x);}
  void pr(const char &x){printf("%c", x);}
31
32 template<typename T, typename... Args> void pr(T const& v, Args const& ... args) { pr(v); pr(' '); pr(args...); }
33
   #define sp pr(" ")
34
35
   #define ln pr("\n")
36
37
   #define return return
38
39
   #define pb push back
   #define mp make_pair
40
41
42
   #define null NULL
43
   #define rep(i,l,r) for (int i = l, lim = r; i <= lim; ++i)
44
   #define repr(i,l,r) for (int i = r, lim = l;i >= lim; --i)
46
47 #define fi first
48 #define se second
49
50
   #define SET(__set, val) memset(__set, val, sizeof __set)
51
52 | #define fill(a,v,n) memset((a),(v),sizeof(a[0])*(n)) |
53
54 | #define copy(a,b,n) memcpy((a),(b),sizeof(a[0])*(n)) |
55
56
   #define ALL(x) (x).begin(), (x).end()
   #define SZ(x) ((int)(x).size())
57
59 #define for_edge(u) for(int i = point[u];i;i = G[i].n)
60
61
   const int N = 100010;
62 const int M = 1024;
63 const int mod = 1000000007;
64 inline void _add(int &a, int b){a = (a+b)%mod;}
   inline void _sub(int &a, int b){a = (a+mod-b)%mod;}
65
66
   inline void _mul(int &a, int b){a = (ll)a*b%mod;}
67
68 inline int _Add(int a, int b){return (a+b)%mod;}
69 inline int _Sub(int a, int b){return (a+mod-b)%mod;}
70
   inline int _Mul(int a, int b){return (ll)a*b%mod;}
71
72 template<typename T>inline void _max(T &a, T b){if(b > a)a = b;}
73 template<typename T>inline void _min(T &a, T b){if(b < a)a = b;}
```

```
75 #define gcd __gcd
 76
 77 int pw(int a, int b){int res(1); while(b){if(b&1)_mul(res,a);_mul(a,a);b>>=1;}return res;}
 78 int pwM(int a, int b, int m){int res(1); while(b){if(b&1)res=(11)res*a%m;a=(11)a*a%m;b>>=1;}return res;}
 79
    const int infi = 2147483647;
 80
 81 const ll infl = 922337203685477580711;
 82 const db PI = 3.14159265358979323846;
 83 const int inf = 1000000000+100;
 84
 85
    struct E{
 86
    }G[N*2];
 87
    int cnt, point[N];
 89
    void add_d(int u, int v, int w = 0){
            G[++cnt]=(E){v,w,point[u]},point[u]=cnt;
 90
 91
    void add_u(int u, int v, int w = 0){
 92
            G[++cnt]=(E){v,w,point[u]},point[u]=cnt;
 93
 94
            G[++cnt]=(E){u,w,point[v]},point[v]=cnt;
 95
 96
    void Ginit(int n){
            cnt = 0:
 97
            fill(point,0,n+1);
 98
 99
100
101
    struct hh{
102
103
104
            bool operator < (const hh &x) const{</pre>
105
                    if(a==x.a)return b<x.b;</pre>
106
                    return a<x.a;
107
108 }a[N];
109
110 | int n, m, k, q;
111 int main(){
            freopen("1", "r", stdin);
112
113
114
            int Case;
115
            sc(Case);
116
            rep(ca, 1, Case){
                printf("Case #%d: ", ca);
117
118
120
            return 0;
121 }
```

计算几何

平面几何通用

```
/// 计算几何专用. 按需选用.
3 db eps = 1e-12; // 线性误差范围; Long double : 1e-16;
   db eps2 = 1e-6; // 平方级误差范围; Long double: 1e-8;
4
   bool eq(db a, db b) { return abs(a-b) < eps; }</pre>
6
7
                 8 struct pt
9
   {
10
11
      pt operator+(pt const& b) const { return {x + b.x, y + b.y}; }
      pt operator-(pt const& b) const { return {x - b.x, y - b.y}; }
12
      pt operator()(pt const& b) const { return b - *this; } // 从本顶点出发, 指向另一个点的向量.
13
14
      db len2() const { return x*x+y*y; } // 模的平方.
15
      db len() const { return sqrt(len2()); } // 向量的模.
16
      pt norm() const { db 1 = len(); return pt(x/1, y/1); } // 标准化.
17
18
      // 把向量旋转 ƒ 个弧度.
19
20
      pt rot(double const& f) const
21
      { return pt(x*cos(f) - y*sin(f), x*sin(f) + y*cos(f)); }
22
```

```
23
       // 极角, +x 轴为 Θ, 弧度制, (-π, π].
24
       db a() const { return atan2(y, x); }
25
26
       void out() const { printf("(%.2f, %.2f)", (double)x, (double)y); } // 输出.
27 };
28
29
30 pt operator*(pt const& a, db const& b) { return {a.x * b, a.y * b}; }
31 pt operator*(db const& b, pt const& a) { return {a.x * b, a.y * b}; }
32
33
   // 叉积.
34 db operator*(pt const& a, pt const& b) { return a.x * b.y - a.y * b.x; }
35 // 点积.
36 db operator&(pt const& a, pt const& b) { return a.x * b.x + a.y * b.y; }
37
   bool operator==(pt const& a, pt const& b) { return eq(a.x, b.x) && eq(a.y, b.y); }
38
39
           ----- 线段 ------
40
41 struct seg
42 | {
43
       pt from, to;
44
       seg(pt const \& a = pt(), pt const \& b = pt()) : from(a), to(b) { }
45
46
       pt dir() const { return to - from; } // 方向向量, 未标准化.
47
       db len() const { return dir().len(); } // 长度.
48
49
       // 点在线段上。
50
       bool overlap(pt const& v) const
51
52
       { return eq(from(to).len(), v(from).len() + v(to).len()); }
53
54
       pt projection(pt const& p) const // 点到直线上的投影.
55
           db h = abs(dir() * from(p)) / len();
56
57
           db r = sqrt(from(p).len2() - h*h);
58
           if(eq(r, ∅)) return from;
59
           if((from(to) & from(p)) < 0) return from + from(to).norm() * (-r);</pre>
60
           else return from + from(to).norm() * r;
61
62
       pt nearest(pt const& p) const // 点到线段的最近点.
63
64
65
           pt g = projection(p);
           if(overlap(g)) return g;
66
           if(g(from).len() < g(to).len()) return from;</pre>
68
           return to;
69
       }
70 };
71
72 bool operator/(seg const& a, seg const& b) // 平行 (零向量平行于任意向量).
73 {
74
       return eq(a.dir() * b.dir(), 0);
75 }
76
77 // 相交. 不计线段端点则删掉 eq(..., 0) 的所有判断.
78 bool operator*(seg const& A, seg const& B)
79 | {
80
       pt dia = A.from(A.to);
81
       pt dib = B.from(B.to);
       db a = dia * A.from(B.from);
82
83
       db b = dia * A.from(B.to);
       db c = dib * B.from(A.from);
84
85
       db d = dib * B.from(A.to);
       return ((a < 0 && b > 0) || (a > 0 && b < 0) || A.overlap(B.from) || A.overlap(B.to)) &&
86
           ((c < 0 \&\& d > 0) \mid | (c > 0 \&\& d < 0) \mid | B.overlap(A.from) \mid | B.overlap(A.to));
87
88 }
89
   // 直线相交. 假设其不平行.
90
91 pt Intersection(seg const& a, seg const& b)
92 | {
       // if(eq(a.dir() * b.dir(), 0)) throw exception("No Intersection");
94
       db ax = (a.from(b.from) * b.dir()) / (a.dir() * b.dir());
95
       return a.from + ax * a.to;
96 }
```

立体几何通用

```
1 db eps = 1e-12; // 线性误差范围; Long double : 1e-16;
 2 db eps2 = 1e-6; // 平方级误差范围; Long double: 1e-8;
   bool eq(db a, db b) { return abs(a-b) < eps; }</pre>
 3
 4
                     ----- 点和向量 -----
 6 struct pt;
7 struct pt
 8
 9
       db x, y, z;
       pt operator+(pt const& b) const { return {x + b.x, y + b.y, z + b.z}; }
10
       pt operator-(pt const& b) const { return {x - b.x, y - b.y, z - b.z}; }
11
       pt operator()(pt const& b) const { return b - *this; } // 从本顶点出发, 指向另一个点的向量.
12
13
14
       db len2() const { return x*x+y*y+z*z; } // 模的平方.
       db len() const { return sqrt(len2()); } // 向量的模.
15
       pt norm() const { db l = len(); return pt(x/l, y/l, z/l); } // 标准化.
16
17
18
       void out(const char* c) const { printf("(%.2f, %.2f, %.2f)%s", x, y, z, c); } // 輸出.
19 };
20
22 pt operator*(pt const& a, db const& b) { return pt(a.x * b, a.y * b, a.z * b); }
23 pt operator*(db const& b, pt const& a) { return pt(a.x * b, a.y * b, a.z * b); }
24
25 // 叉积.
26 pt operator*(pt const& a, pt const& b)
27 { return pt(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x); }
28
29
30 db operator&(pt const& a, pt const& b)
31 { return a.x * b.x + a.y * b.y + a.z * b.z; }
32
33 // 点 T 到直线 AB 的投影点.
34 pt projection(pt const& A, pt const& B, pt const& T)
35 { return A + (A(B).norm() & A(T)) * A(B).norm(); }
36
37
   // 直线 A + Lm * S 和 B + mu * T 的距离.
38 db dist(pt const& A, pt const& S, pt const& B, pt const& T)
39
       if((S * T).len() < eps) { return (A(B) * S).len() / S.len(); }</pre>
40
       return abs(A(B) & (S * T).norm());
41
42 }
43
44
   // 直线 A + Lm * S 和 B + mu * T 上的最近点对.
45 // first 在 A + Lm * S 上, second 在 B + mu * T 上.
46 pair<pt,pt> closest(pt const& A, pt const& S, pt const& B, pt const& T)
47 {
48
       if((S * T).len() < eps) { return {A, projection(B, T, A)}; }</pre>
       pt X = (S * T).norm();
49
50
       pt Z = S.norm();
      pt Y = Z * X;
51
      pt b = { A(B) & X, A(B) & Y, A(B) & Z };
53
       pt t = \{ 0, T & Y, T & Z \};
54
       db mu = -b.y / t.y;
55
       db lm = (b.z + mu * t.z) / S.len();
       return { A + 1m * S, B + mu * T };
56
57 }
58
   // 点 T 在直线 AB 上.
59
60 bool contains(pt const& A, pt const* B, pt const& T)
61 { return (A(B).norm() * T).len() < eps; }
63 // 点 T 在线段 AB 上.
64 bool overlap(pt const& A, pt const& B, pt const& T)
   { return (A(B) & A(T)) > -eps && (B(A) & B(T)) > -eps && (A(B).norm() * T).len() < eps; }
65
66
67 // 点 T 到线段 AB 的最近点.
68 pt nearest(pt const& A, pt const& B, pt const& T)
69 {
70
       pt G = projection(T);
71
       if(overlap(A, B, G)) return G;
       if(G(A).len() < G(B).len()) return A;</pre>
72
73
       return B;
74 }
```

判断点在凸多边形内

```
1 /// 在线, 单次询问 O(Logn), st 为凸包点数, 包括多边形上顶点和边界.
   /// 要求凸包上没有相同点, 仅包含顶点.
2
4 bool agcmp(point const& a,point const& b) { return sp(a) * sp(b) < 0; }
5 | bool PointInside(point target)
6 | {
       sp = stk[0];
7
       point vt = sp(stk[1]);
8
       point vb = sp(stk[st-2]);
9
10
       db mt = vt * sp(target);
11
       db mb = vb * sp(target);
       bool able = (eq(mt, 0) \&\& eq(mb, 0)) | |
12
13
           (eq(mt, \theta) && mb > \theta) || (eq(mb, \theta) && mt < \theta) ||
14
           (mt < 0 \&\& mb > 0);
       if(able)
15
16
           int xp = (int)(lower\_bound(stk+1, stk+st-2, target, agcmp) - stk);
17
18
           able &= !(segment(sp, target) * segment(stk[xp], stk[xp-1]));
19
           able |= segment(stk[xp], stk[xp-1]).overlap(target);
20
21
       return able;
22 }
23
   /// 在线, 单次询问 O(Logn), st 为凸包点数, ** 不 ** 包括多边形上顶点和边界.
24
25
26 | bool agcmp(point const& a,point const& b) { return sp(a) * sp(b) < 0; }
27 | bool PointInside(point target)
28 {
29
       sp = stk[0];
30
       point vt = sp(stk[1]);
       point vb = sp(stk[st-2]);
31
32
       db mt = vt * sp(target);
       db mb = vb * sp(target);
33
34
       bool able = mt < 0 && mb > 0;
       if(able)
35
36
37
           int xp = (int)(lower_bound(stk+1, stk+st-2, target, agcmp) - stk);
           able &= !(segment(sp, target) * segment(stk[xp], stk[xp-1]));
38
39
40
       return able;
41 }
```

凸包

```
/// 去除输入中重复顶点, 保留头尾重复, 顺时针顺序.
2
4 /// a: 输入点.
5 /// stk: 用来存凸包上的点的栈.
6 /// st: 栈顶下标, 指向最后一个元素的下一个位置.
7
   /// stk[0]: 凸包上y值最小的点中, x 值最小的点.
   10
11
  int n;
12
  point a[105000];
13 point stk[105000]; int st;
15 | bool operator<(point const& a, point const& b) { return eq(a.y, b.y) ? a.x < b.x : a.y < b.y; }
16
   // 使用 >= eps 则取凸包上的点.
   // 使用 >= -eps 不取凸包上的点.
17
18 void Graham()
19 {
20
      sort(a,a+n);
      int g = (int)(unique(a, a+n) - a);
21
22
      st=<mark>0</mark>;
23
24
      rep(i, 0, g-1)
25
         \label{eq:while(st>1 && stk[st-2](stk[st-1]) * stk[st-1](a[i]) >= eps) st--;} \\
26
27
         stk[st++]=a[i];
28
29
      int p=st;
```

多边形面积并

```
1 #include<bits/stdc++.h>
2
   using namespace std;
3 #define mp make_pair
 4 typedef long long 11;
5 const double inf=1e200;
   const double eps=1e-12;
   const double pi=4*atan(1.0);
8 int dcmp(double x){ return fabs(x)<eps?0:(x<0?-1:1);}</pre>
   struct point{
10
       double x,y;
       point(double a=0, double b=0):x(a),y(b){}
11
12 };
point operator +(point A,point B) { return point(A.x+B.x,A.y+B.y);}
point operator -(point A,point B) { return point(A.x-B.x,A.y-B.y);}
15
   point operator *(point A,double p){ return point(A.x*p,A.y*p);}
   point operator /(point A,double p){ return point(A.x/p,A.y/p);}
16
   bool operator ==(const point& a,const point& b){
17
       return fabs(a.x-b.x)<eps&&fabs(a.y-b.y)<eps;</pre>
18
19 }
20 double dot(point A,point B){ return A.x*B.x+A.y*B.y;}
   double det(point A.point B){ return A.x*B.v-A.v*B.x:}
21
   double det(point 0,point A,point B){ return det(A-0,B-0);}
23 double length(point A){ return sqrt(dot(A,A));}
   double area(vector<point>p){
24
25
       double ans=0; int sz=p.size();
        for(int i=1;i<sz-1;i++) ans+=det(p[i]-p[0],p[i+1]-p[0]);</pre>
26
27
        return ans/2.0;
28 }
   double seg(point 0,point A,point B){
29
30
       if(dcmp(B.x-A.x)==0) return (0.y-A.y)/(B.y-A.y);
31
       return (0.x-A.x)/(B.x-A.x);
32
33
   vector<point>pp[110];
   pair<double,int>s[110*60];
34
   double polyunion(vector<point>*p,int N){
36
       double res=0:
37
        for(int i=0;i<N;i++){</pre>
38
            int sz=p[i].size();
            for(int j=0;j<sz;j++){</pre>
39
                int m=0;
41
                s[m++]=mp(0,0);
42
                s[m++]=mp(1,0);
43
                point a=p[i][j],b=p[i][(j+1)%sz];
                for(int k=0; k<N; k++){</pre>
44
                    if(i!=k){
45
                        int sz2=p[k].size();
46
                        for(int ii=0;ii<sz2;ii++){</pre>
47
48
                            point c=p[k][ii],d=p[k][(ii+1)\%sz2];
49
                            int c1=dcmp(det(b-a,c-a));
                            int c2=dcmp(det(b-a,d-a));
50
51
                            if(c1==0&&c2==0){
                                if(dcmp(dot(b-a,d-c))){
52
53
                                     s[m++]=mp(seg(c,a,b),1);
54
                                     s[m++]=mp(seg(c,a,b),-1);
                                }
55
56
                            }
                            else{
57
58
                                 double s1=det(d-c,a-c);
59
                                 double s2=det(d-c,b-c);
                                 if(c1)=0\&\&c2<0) s[m++]=mp(s1/(s1-s2),1);
60
61
                                 else if(c1<0\&&c2>=0) s[m++]=mp(s1/(s1-s2),-1);
62
                            }
63
                        }
                    }
64
```

```
65
66
                sort(s,s+m);
67
                double pre=min(max(s[0].first,0.0),1.0),now,sum=0;
68
                int cov=s[0].second;
69
                for(int j=1;j<m;j++){</pre>
                     now=min(max(s[j].first,0.0),1.0);
70
71
                     if(!cov) sum+=now-pre;
                     cov+=s[j].second;
72
73
                     pre=now;
                }
74
75
                 res+=det(a,b)*sum;
76
77
78
        return res/2;
79 }
80 int main()
81
        int N,M,i,j; point tp;
82
83
        scanf("%d",&N);
84
        for(i=0;i<N;i++){</pre>
85
            scanf("%d",&M);
86
            for(j=0;j<M;j++){</pre>
                scanf("%lf%lf",&tp.x,&tp.y);
87
88
                pp[i].push_back(tp);
89
            }
90
        }
91
        double t1=0,t2=polyunion(pp,N);
92
        for(i=0;i<N;i++) t1+=area(pp[i]);</pre>
        printf("%.71f %.71f\n",-t1,-t2);
93
94
        return 0;
95 | }
```

动态点凸包

```
1 /// 凸包
2 /// 支持动态插点,查询点是否在多边形内。
3
   /// AC CF 70D.
6 /// a: 输入点.
7 /// stk: 用来存凸包上的点的栈.
8 /// st: 栈顶下标, 指向最后一个元素的下一个位置.
  /// stk[0]: 凸包上y值最小的点中, x 值最小的点.
10
   11
12
   /// 需要数乘.
13
pt operator*(db const& v, pt const& p) { return pt{v * p.x, v * p.y}; }
15
16 | bool operator<(pt const& a, pt const& b)
17 {
      return eq(a.a(), b.a()) ? a.len2() < b.len2() : a.a() < b.a();</pre>
18
19 }
20
  struct ConvexHull // 极角序凸包.
21
22 {
23
      typedef set<pt>::iterator iter;
24
25
      set<pt> hull;
                       // 逆时针排列的壳. 坐标相对于中央点.
                      // 中央点.
26
      pt c = pt\{0, 0\};
28
      bool degen = true; // 是否是退化多边形. 不影响算法, 可以删掉.
29
30
      iter pre(iter x) { if(x == hull.begin()) x = hull.end(); x--; return x; }
31
      iter nxt(iter x) { x++; if(x == hull.end()) x = hull.begin(); return x; }
      iter LowerBound(pt const& v)
32
33
          iter t = hull.lower bound(v);
34
35
          return t == hull.end() ? hull.begin() : t;
36
37
38
      // 返回元素是否被插入.
      bool Add(pt v)
39
40
41
          if(hull.size() < 2) return hull.insert(v).second;</pre>
```

```
42
             if(hull.size() == 2)
43
44
                 auto x = hull.begin();
45
                 pt a = *x, b = *(++x);
46
47
                 if(eq(v(a) * v(b), 0))
48
                     if(eq(v(a).len() + v(b).len(), a(b).len()))
49
50
                         return false;
51
52
                     if(eq(a(v).len() + a(b).len(), v(b).len()))
53
                         hull.erase(hull.begin());
                     else if(eq(b(v).len() + b(a).len(), a(v).len()))
54
                         hull.erase(x);
56
57
                     return hull.insert(v).second;
58
                }
59
                hull.clear();
60
61
                c = 1 / 3.0 * (a + b + v);
                hull.insert(a - c);
62
63
                hull.insert(b - c);
                hull.insert(v - c);
64
                degen = false;
65
66
                 return true;
67
68
             if(eq(v.x, c.x) && eq(v.y, c.y)) return false;
69
70
71
             v = c(v);
             iter r = LowerBound(v);
72
73
             iter 1 = pre(r);
74
            if((*1)(v) * (v)(*r) <= -eps) return false;</pre>
75
76
             while(hull.size() > 2 && (*pre(1))(*1) * (*1)(v) <= eps)</pre>
77
78
79
                 1 = hull.erase(1);
                1 = pre(1);
80
81
82
             while(hull.size() > \frac{2}{2} && v(*r) * (*r)(*nxt(r)) <= eps)
83
84
                 r = hull.erase(r);
85
                 if(r == hull.end()) r = hull.begin();
87
88
89
             return hull.insert(v).second;
90
        }
91
92
        bool Contains(pt v)
93
94
             if(hull.size() == 0) return false;
             if(hull.size() == 1) return eq(hull.begin()->x, v.x) && eq(hull.begin()->y, v.y);
95
96
             if(hull.size() == 2)
97
                pt a = *hull.begin();
98
99
                 pt b = *std::next(hull.begin());
                 return eq(v(a).len() + v(b).len(), a(b).len());
100
101
             }
102
103
             v = c(v);
             iter a = LowerBound(v);
104
             pt r = *a;
105
            pt 1 = *pre(a);
106
107
             return 1(v) * v(r) < eps;</pre>
        }
108
109
110
        void Out() const
111
112
             for(auto i : hull) printf("%.4f %.4f\n", i.x + c.x, i.y + c.y);
             printf("\n");
113
114
        }
115 };
```

旋转卡壳

```
1 /// 旋转卡壳求 ** 最远点对 ** 距离.
2 /// st: 凸包长度.
  /// stk[]: 按顺序存储的凸壳上的点的数组.
5 int GetmaxDistance()
6 {
    int res=0;
7
    int p=2;
9
    rep(i, 1, st-1)
10
11
       12
         p++;
13
       // 此时 stk[i] 的对踵点是 stk[p].
14
       if(p==st) break;
       // 修改至想要的部分.
15
16
       res=max(res,stk[i-1](stk[p]).dist2());\\
17
       res=max(res,stk[i](stk[p]).dist2());
18
19
    return res;
20 }
```

求圆交点

```
1 typedef long double db;
2
   const db eps=1e-12;
3 struct pt
4 {
5
       db x,y;
       pt operator+(pt const& t) const { return pt{ x + t.x, y + t.y }}; }
6
       pt operator-(pt const& t) const { return pt{ x - t.x, y - t.y }; }
       pt operator*(db const& t) const { return pt{ x * t, y * t }; }
       pt operator/(db const& t) const { return pt{ x / t, y / t }; }
10
       bool operator<(pt const& t) const { return eq(x, t.x) ? y < t.y : x < t.x; }</pre>
11
       bool operator==(pt const& t) const { return eq(x, t.x) && eq(y, t.y); }
12
       db len() const { return sqrt(x * x + y * y); }
       pt rot90() const { return {-y, x}; }
13
14 };
15
16 struct Circle
17
   {
18
       pt o;
19
       db r;
20
       friend vector<pt> operator&(Circle const& c1,Circle const& c2)
21
22
           db d=(c1.o-c2.o).len();
23
           if(d>c1.r+c2.r+eps || d<abs(c1.r-c2.r)-eps) return vector<pt>();
           db dt=(c1.r*c1.r-c2.r*c2.r)/d,d1=(d+dt)/\frac{2}{3};
24
25
           pt dir=(c2.o-c1.o)/d,pcrs=c1.o+dir*d1;
           dt=sqrt(max(0.0L,c1.r*c1.r-d1*d1)),dir=dir.rot90();
26
           return vector<pt>{pcrs+dir*dt,pcrs-dir*dt};
27
28
29 };
```

最小覆盖圆

```
/// 最小覆盖圆.
2
3 /// n: 点数.
 4 /// a: 输入点的数组.
5
6
8 \mid const \mid db \mid eps = 1e-7;
10 /// 过三点的圆的圆心。
point CC(point const& a, point const& b, point const& c)
12
13
       point ret;
14
       db a1 = b.x-a.x, b1 = b.y-a.y, c1 = (a1*a1+b1*b1)*0.5;
15
       db a2 = c.x-a.x, b2 = c.y-a.y, c2 = (a2*a2+b2*b2)*0.5;
       db d = a1*b2 - a2*b1;
16
17
       if(eq(d, 0)) return (b+c)*0.5;
```

```
ret.x=a.x+(c1*b2-c2*b1)/d;
18
19
       ret.y=a.y+(a1*c2-a2*c1)/d;
20
       return ret;
21 }
22
23 int n;
24
   point a[1005000];
25
26 struct Result { db x,y,r; };
27 Result MCC()
28
29
       if(n==0) return {0, 0, 0};
       if(n==1) return {a[0].x, a[0].y, 0};
30
       if(n==2) return {(a[0]+a[1]).x*0.5, (a[0]+a[1]).y*0.5, dist(a[0],a[1])*0.5};
32
33
       for(int i=0;i<n;i++) swap(a[i], a[rand()%n]); // 随机交换.
34
       point 0; db R = 0.0;
35
       rep(i, 2, n-1) if(0(a[i]).len() >= R+eps)
36
37
           O=a[i];
38
39
           R=0.0;
40
41
           rep(j, 0, i-1) if(0(a[j]).len() >= R+eps)
42
               O=(a[i] + a[j]) * 0.5;
43
44
               R=a[i](a[j]).len() * 0.5;
45
               rep(k, 0, j-1) if(0(a[k]).len() >= R+eps)
46
47
                   0 = CC(a[i], a[j], a[k]);
48
49
                   R = O(a[i]).len();
50
51
           }
52
53
54
       return {0.x, 0.y, R};
55 }
```

数据结构

KD 树

```
1 /// KD 树.
2 /// 最近邻点查询.
3 /// 维度越少剪枝优化效率越高. 4 维时是 1/10 倍运行时间, 8 维时是 1/3 倍运行时间.
   /// 板子使用欧几里得距离.
5 /// 可以把距离修改成曼哈顿距离之类的, ** 剪枝一般不会出错 **.
7
  9
  const int mxnc = 105000; // 最大的所有树节点数总量.
  const int dem = 4; // 维度数量.
10
12 const db INF = 1e20;
13
14
   /// 空间中的点。
15 struct point
16
17
      db v[dem]; // 维度坐标.
               // 注意你有可能用到每个维度坐标是不同的 * 类型 * 的点.
18
19
               // 此时需要写两个点对于第 k 个维度坐标的比较函数.
20
      point() { }
      point(db* coord) { memcpy(v, coord, sizeof(v)); }
22
      point(point const& x) { memcpy(v, x.v, sizeof(v)); }
23
24
      point& operator=(point const& x)
25
      { memcpy(v, x.v, sizeof(v)); return *this; }
26
27
      db& operator[](int const& k) { return v[k]; }
      db const% operator[](int const% k) const { return v[k]; }
28
29 };
30
31 db dist(point const& x, point const& y)
```

```
32 | {
        db a = 0.0;
33
       for(int i=0; i<dem; i++) a += (x[i] - y[i]) * (x[i] - y[i]);</pre>
34
35
        return sqrt(a);
36 | }
37
    /// 树中的节点.
38
39 struct node
40 {
       point loc; // 节点坐标点.
41
                // 该节点的下层节点从哪个维度切割. 切割坐标值由该节点坐标值给出.
42
       int d;
43
       node* s[2]; // 左右子节点.
44
        int sep(point const& x) const { return x[d] >= loc[d]; }
46 };
47
   node pool[mxnc]; node* curn = pool;
48
49 // 这个数组用来分配唯独切割顺序。可以改用别的维度选择方式。
50 int flc[] = {3, 0, 2, 1};
51 node* newnode(point const& p, int dep)
52 {
53
        curn->loc = p;
       curn->d = flc[dep % dem];
54
       curn->s[0] = curn->s[1] = NULL;
55
56
       return curn++;
57 | }
58
59 /// KD 树.
60 struct KDTree
61 {
       node* root:
62
63
64
       KDTree() { root = NULL; }
65
66
       node* insert(point const& x)
67
68
           node* cf = NULL;
           node* cur = root;
69
           int dep = 0;
70
71
           while(cur != NULL)
72
73
               dep++;
74
               cf = cur;
75
               cur = cur->s[cur->sep(x)];
76
           if(cf == NULL) return root = newnode(x, dep);
77
78
           return cf->s[cf->sep(x)] = newnode(x, dep);
79
80
       // 求最近点的距离, 以及最近点.
81
82
        pair<db, point*> nearest(point const& p, node* x)
83
84
           if(x == NULL) return make_pair(INF, (point*)NULL);
85
           int k = x->sep(p);
86
87
           // 拿到点 p 从属子区域的结果.
88
89
           pair<db, point*> sol = nearest(p, x->s[k]);
90
           // 用当前区域存储的点更新答案.
91
92
           db cd = dist(x->loc, p);
           if(sol.first > cd)
93
94
           {
               sol.first = cd:
95
               sol.second = &(x->loc);
96
97
98
           // 如果当前结果半径和另一个子区域相交, 询问子区域并更新答案.
99
           db divDist = abs(p[x->d] - x->loc[x->d]);
100
           if(sol.first >= divDist)
101
               pair<db, point*> solx = nearest(p, x->s[!k]);
103
               if(sol.first > solx.first) sol = solx;
104
105
106
107
           return sol;
108
```

Splay

```
1 /// Splay.
2 /// 没有特殊功能的平衡树. 预留了一个自底向上更新的 update 函数.
3 /// pool: 点的池子. Splay 数据结构本身只保存根节点指针.
4 /// 重新初始化: nt = pool + 1; 不要更改 nil.
5
   /// mxn: 节点池子大小.
   const int mxn = 205000;
9
   10
11
   struct node* nil;
12 struct node
13 {
14
      int v;
15
     int cnt;
16
     node*s[2];
^{17}
     node*f;
     void update()
18
19
20
         cnt=1;
21
         if(s[0]!=nil) cnt+=s[0]->cnt;
22
         if(s[1]!=nil) cnt+=s[1]->cnt;
23
      }
24 }
25 pool[mxn]; node* nt=pool;
26
27
   node*newnode(int v, node*f)
28 {
29
     nt->v=v;
30
     nt->cnt=1;
     nt->s[0]=nt->s[1]=nil;
31
32
33
      return nt++;
34 }
35
36
37
   struct SplayTree
38
39
      node*root;
40
      SplayTree():root(nil){}
41
42
       void rot(node*x)
43
44
          node*y=x->f;
45
          int k=(x==y->s[0]);
46
          y->s[k^1]=x->s[k];
47
48
          if(x->s[k]!=nil) x->s[k]->f=y;
49
          x->f=y->f;
          if(y->f!=nil) y->f->s[y==y->f->s[1]]=x;
51
52
53
          y->f=x; x->s[k]=y;
54
55
          y->update();
56
      }
57
58
      node* splay(node*x,node*t=nil)
59
60
          while(x->f!=t)
61
62
              node*y=x->f;
              if(y->f!=t)
```

```
64
                 if((x==y->s[0])^(y==y->f->s[0]))
 65
                     rot(x); else rot(y);
 66
                 rot(x);
 67
             }
             x->update();
 68
 69
             if(t==nil) root=x;
 70
             return x;
 71
 72
 73
 74
 75
        void Insert(int v)
 76
 77
             if(root==nil) { root=newnode(v, nil); return; }
 78
             node *x=root, *y=root;
 79
             while(x!=nil) { y=x; x=x->s[x->v <= v]; }
 80
             splay(y->s[y->v<=v] = newnode(v, y));
 81
        }
 82
 83
        node*Find(int v) // 查找值相等的节点. 找不到会返回 nil.
 84
 85
             node *x=root, *y=root;
 86
             node *r=nil;
 87
 88
             while(x!=nil)
 89
 90
                 y=x;
                 if(x->v==v) r=x;
91
                 x=x->s[x->v < v];
 92
 93
94
             splay(y);
 95
             return r;
96
 97
 98
        node* FindRank(int k) // 查找排名为 k 的节点.
99
100
             node *x=root, *y=root;
101
             while(x!=nil)
102
103
104
                 if(k==x->s[0]->cnt+1) break;
                 if(k < x - > s[0] - > cnt + 1) x = x - > s[0];
105
106
                 else { k-=x->s[0]->cnt+1; x=x->s[1]; }
107
108
             splay(y);
109
             return x;
110
        }
111
        // 排名从 1 开始.
112
        int GetRank(node*x) { return splay(x)->s[0]->cnt+1; }
113
114
        node*Delete(node*x)
115
116
             int k=GetRank(x);
117
             node*L=FindRank(k-1);
118
119
             node*R=FindRank(k+1);
120
121
             if(L!=nil) splay(L);
             if(R!=nil) splay(R,L);
122
123
124
             if(L==nil && R==nil) root=nil;
             else if(R==nil) L->s[1]=nil;
125
             else R->s[0]=nil;
126
127
             if(R!=nil) R->update();
128
129
             if(L!=nil) L->update();
130
131
             return x;
132
133
134
        node*Prefix(int v) // 前驱.
135
             node *x=root, *y=root;
136
137
             node*r=nil;
138
             while(x!=nil)
139
140
                 y=x;
```

```
141
                if(x->v<v) r=x;
142
                x=x->s[x->v<v];
143
144
            splay(y);
145
            return r;
146
147
        node*Suffix(int v) // 后继.
148
149
            node *x=root, *y=root;
150
            node*r=nil;
151
152
            while(x!=nil)
153
154
155
                if(x->v>v) r=x;
156
                x=x->s[x->v<=v];
157
            splay(y);
158
159
            return r;
160
161
162
        void output() { output(root); printf("%s\n",root==nil ? "empty tree!" : ""); }
163
164
        void output(node*x)
165
            if(x==nil)return ;
166
167
            output(x->s[0]);
            printf("%d ",x->v);
168
169
            output(x->s[1]);
170
171
172
        void test() { test(root); printf("%s\n",root==nil ? "empty tree!" : ""); }
173
        \textcolor{red}{\textbf{void}} \ \texttt{test(node*x)}
174
            if(x==nil)return ;
            test(x->s[0]);
176
177
            178
            test(x->s[1]);
179
180
181 };
182
183
    int n;
184
185
186 int main()
187
188
       nil=newnode(-1, nullptr);
       nil->cnt=0;
189
       nil->f=nil->s[0]=nil->s[1]=nil;
190
191
       n=getint();
192
193
       SplayTree st;
194
       for(int i=0;i<n;i++)</pre>
195
196
197
           int c;
198
           c=getint();
199
           switch(c)
200
201
                case 1: //Insert
202
                   c=getint();
203
                   st.Insert(c);
204
               break;
               case 2: //Delete
205
206
                   c=getint();
                   st.Delete(st.Find(c));
207
208
               break;
209
               case 3: //Rank
                   c=getint();
210
211
                   printf("%d\n",st.GetRank(st.Find(c)));
212
               break;
               case 4: //FindRank
213
214
                   c=getint();
215
                   printf("%d\n",st.FindRank(c)->v);
216
               break;
217
               case 5: //prefix
```

```
218
                    c=getint();
219
                    printf("%d\n",st.Prefix(c)->v);
                break;
220
221
                case 6: //suffix
222
                     c=getint();
                     printf("%d\n",st.Suffix(c)->v);
223
224
                case 7: //test
225
227
                break;
                default: break;
228
229
       }
230
232
       return ∅;
233 }
```

表达式解析

```
1 /// 表达式解析
2 /// 线性扫描,直接计算.
3 /// 不支持三元运算符.
4
   /// 一元运算符经过特殊处理. 它们不会 (也不应) 与二元运算符共用一种符号.
6 /// prio: 字符优先级. 在没有括号的约束下, 优先级高的优先计算.
7 /// pref: 结合顺序. pref[i] == true 表示从左到右结合, false 则为从右到左结合.
8 /// 圆括号运算符会特别对待.
10 /// 如果需要建树, 直接改 Calc 和 Push 函数.
12 /// ctt: 字符集编号下界.
13 /// ctf: 字符集编号上界.
14 /// ctx: 字符集大小.
15 const int ctf = -128;
16 const int ctt = 127;
17 const int ctx = ctt - ctf;
18
   /// 表达式字符总数.
19
20 const int mxn = 1005000;
22 /// inp: 输入的表达式; 已经去掉了空格.
23 /// inpt: 输入的表达式的长度.
24 /// sx, aval: 由 Destruct 设定的外部变量数组. 无需改动.
26 int len = Destruct(inp, inpt);
27 Evaluate(sx, len, aval);
28
29
30
   /// 重新初始化:调用 Destruct 即可.
31
   33
34
  int _prio[ctx]; int* prio = _prio - ctf;
35
  bool _pref[ctx]; bool* pref = _pref - ctf;
36
   // 设置一个运算符的优先级和结合顺序.
37
38 void SetProp(char x, int a, int b) { prio[x] = a; pref[x] = b; }
39
40
   stack<int> ap; // 变量栈.
41
  stack<char> op; // 符号栈.
43 int Fetch() { int x = ap.top(); ap.pop(); return x; }
  void Push(int x) { ap.push(x); }
44
45
   /// 这个函数定义了如何处理栈内的实际元素.
46
47 | void Calc()
48 {
49
      char cop = op.top(); op.pop();
50
      switch(cop)
51
52
         case '+': { int b = Fetch(); int a = Fetch(); Push(a + b); } return;
         case '-': { int b = Fetch(); int a = Fetch(); Push(a - b); } return;
         case '*': { int b = Fetch(); int a = Fetch(); Push(a * b); } return;
54
55
         case '/': { int b = Fetch(); int a = Fetch(); Push(a / b); } return;
56
         case '|': { int b = Fetch(); int a = Fetch(); Push(a | b); } return;
```

```
case '&': { int b = Fetch(); int a = Fetch(); Push(a & b); } return;
57
           case '^': { int b = Fetch(); int a = Fetch(); Push(a ^ b); } return;
58
59
           case '!': { int a = Fetch(); Push(a); } return;
                                                           // '+' 的一元算符.
                                                            // '-' 的一元算符.
60
           case '~': { int a = Fetch(); Push(-a); } return;
           default: return;
61
62
63 }
64
    /// s: 转化后的表达式, 其中 0 表示变量, 其它表示相应运算符.
                                                           Len: 表达式长度.
    /// g: 变量索引序列,表示表达式从左到右的变量分别是哪个.
66
67
   void Evaluate(char* s, int len, int* g)
68
       int gc = 0;
69
        for(int i=0; i<len; i++)</pre>
70
71
72
           if(s[i] == 0) // 输入是一个变量. 一般可以直接按需求改掉,例如 if(IsVar(s[i])).
73
               Push(g[gc++]); // 第 gc 个变量的 ** 值 ** 入栈.
74
75
           }
           else // 输入是一个运算符 s[i].
76
77
78
               if(s[i] == '(') op.push(s[i]);
               else if(s[i] == ')')
79
80
               {
81
                  while(op.top() != '(') Calc();
82
                  op.pop();
83
               }
               else
84
85
               {
                   while( prio[s[i]] < prio[op.top()] ||</pre>
                      (prio[s[i]] == prio[op.top()] \&\& pref[s[i]] == true))
87
88
                      Calc();
89
                  op.push(s[i]);
90
               }
91
92
       }
93
   }
94
    /// 解析一个字符串, 得到能够被上面的函数处理的格式.
95
   /// 对于这个函数而言,"变量"是某个十进制整数.
   /// 有些时候输入本身就是这样的格式, 就不需要过多处理.
97
    /// 支持的二元运算符: +, -, *, /, /, &, ^. 支持的一元运算符: +, -.
98
99
   char sx[mxn]; // 表达式序列.
   int aval[mxn]; // 数字. 这些是扔到变量栈里面的东西.
100
                 // 可以直接写成某种 place holder, 如果不关心这些变量之间的区别的话.
    /// 返回:表达式序列长度.
102
   int Destruct(char* s, int len)
103
104
       int xlen = 0;
105
       sx[xlen++] = '(';
106
107
       bool cvr = false;
108
       int x = 0:
        int vt = 0;
109
110
       for(int i=0; i<len; i++)</pre>
111
112
           if('0' <= s[i] && s[i] <= '9')</pre>
113
114
               if(!cvr) sx[xlen++] = 0;
115
               cvr = true;
               if(cvr) x = x * 10 + s[i] - '0';
116
117
           }
118
           else
119
120
               if(cvr) { aval[vt++] = x; x = 0; }
               cvr = false;
121
               sx[xlen++] = s[i];
           }
123
124
125
       if(cvr) { aval[vt++] = x; x = 0; }
126
        for(int i=xlen; i>=1; i--) // 一元运算符特判, 修改成不同于二元运算符的符号.
           if((sx[i]=='+' || sx[i]=='-') && sx[i-1] != ')' && sx[i-1])
128
               sx[i] = sx[i] == '+' ? '!' : '~';
129
130
        sx[xlen++] = ')';
131
132
        return xlen;
133 }
```

```
134
135
    char c[mxn];
136
    char inp[mxn]; int inpt;
138
    int main()
139
140
         SetProp('(', 0, true);
        SetProp(')', 0, true);
141
142
        SetProp('+', 10, true);
143
        SetProp('-', 10, true);
144
145
        SetProp('*', 100, true);
146
        SetProp('/', 100, true);
148
        SetProp('|', 1000, true);
149
150
         SetProp('&', 1001, true);
        SetProp('^', 1002, true);
151
152
153
        SetProp('!', 10000, false);
        SetProp('~', 10000, false);
154
        inpt = 0;
156
157
        char c;
        while((c = getchar()) != EOF && c != '\n' && c!='\r') if(c != ' ') inp[inpt++] = c;
158
159
160
        printf("%s\n", inp);
161
         // 表达式符号
        int len = Destruct(inp, inpt);
162
163
         for(int i=0; i<len; i++) if(sx[i] == 0) printf("."); else printf("%c", sx[i]); printf("\n");
164
        // 运算数.
        int t = 0; for(int i=0; i < len; i++) if(sx[i] == 0) printf("%d ", aval[t++]); printf("\n");
165
166
        Evaluate(sx, len, aval);
        // 结果.
167
        printf("%d\n", ap.top());
169
170
        return 0;
171 }
172
     // (123+---213-+--321)+4*--57^6 = -159 correct!
```

并查

```
/// 并查集
3
4
  /// 简易的集合合并并查集, 带路径压缩.
5 /// 重新初始化:
6 | memset(f, 0, sizeof(int) * (n+1));
9 int fidnf(int x){ return f[x]==x ? x : f[x]=findf(f[x]); }
int connect(int a,int b){ f[findf(a)]=findf(b); }
11
12
13 /// 集合并查集, 带路径压缩和按秩合并.
14 /// c[i]: 点 i 作为集合表头时, 该集合大小.
15 /// 重新初始化:
16 memset(f, 0, sizeof(int) * (n+1));
17 | memset(c, 0, sizeof(int) * (n+1));
19 int f[mxn];
20 | int c[mxn];
  int connect(int a,int b)
^{21}
22
     if(c[findf(a)]>c[findf(b)]) // 把 b 接到 a 中.
23
24
     { c[findf(a)]+=c[findf(b)]; f[findf(b)]=findf(a); } // 执行顺序不可对调.
     else // 把 a 接到 b 中.
25
     { c[findf(b)]+=c[findf(a)]; f[findf(a)] = findf(b); }
26
27 }
28
30 /// 集合并查集, 带路径压缩, 非递归.
31 /// 重新初始化:
32 memset(f, 0, sizeof(int) * (n+1));
```

可持久化并查集

```
1 int n,m,sz;
2 int root[200005],ls[2000005],rs[2000005],v[2000005],deep[2000005];
   void build(int &k,int l,int r){
4
       if(!k)k=++sz;
       if(l==r){v[k]=1;return;}
5
6
       int mid=(1+r)>>1;
       build(ls[k],1,mid);
       build(rs[k],mid+1,r);
9 }
10
   void modify(int l,int r,int x,int &y,int pos,int val){
11
       if(l==r){v[y]=val;return;}
12
13
       ls[y]=ls[x];rs[y]=rs[x];
14
       int mid=(1+r)>>1;
15
       if(pos<=mid)</pre>
            modify(1,mid,ls[x],ls[y],pos,val);
16
17
        else modify(mid+1,r,rs[x],rs[y],pos,val);
18 }
19
   int query(int k,int l,int r,int pos){
       if(l==r)return k;
20
21
        int mid=(l+r)>>1;
22
       if(pos<=mid)return query(ls[k],1,mid,pos);</pre>
       else return query(rs[k],mid+1,r,pos);
23
24 }
25
   void add(int k,int l,int r,int pos){
26
       if(l==r){deep[k]++;return;}
27
       int mid=(1+r)>>1;
       if(pos<=mid)add(ls[k],1,mid,pos);</pre>
28
29
        else add(rs[k],mid+1,r,pos);
30
   }
31
   int find(int k,int x){
32
       int p=query(k,1,n,x);
       if(x==v[p])return p;
33
34
        return find(k,v[p]);
35 }
   int la=0;
36
37
   int main(){
       n=read();m=read();
38
39
       build(root[0],1,n);
40
       int f,k,a,b;
41
       for(int i=1;i<=m;i++){</pre>
42
            f=read();
            if(f==1){//合并
43
44
                root[i]=root[i-1];
45
                a=read()^la;b=read()^la;
                int p=find(root[i],a),q=find(root[i],b);
46
47
                if(v[p]==v[q])continue;
48
                if(deep[p]>deep[q])swap(p,q);
49
                modify(1,n,root[i-1],root[i],v[p],v[q]);
50
                if(deep[p]==deep[q])add(root[i],1,n,v[q]);
51
52
            if(f==2)//返回第 k 次的状态
            \{\texttt{k=read()^la;root[i]=root[k];}\}
53
            if(f==3){//询问
54
                root[i]=root[i-1];
                a=read()^la;b=read()^la;
56
57
                int p=find(root[i],a),q=find(root[i],b);
58
                if(v[p]==v[q])puts("1"),la=1;
59
                else puts("0"),la=0;
60
            }
61
       }
62
       return 0;
63 }
```

可持久化线段树

```
1 /// 可持久化线段树.
2
3
   /// 动态开点的权值线段树; 查询区间 k 大;
4 /// 线段树节点记录区间内打上了标记的节点有多少个; 只支持插入; 不带懒标记.
5 /// 如果要打 tag 和推 tag,参考普通线段树. 注意这样做以后基本就不能支持两棵树相减 (因为查询时要推 tag).
6
7
  /// AC : vijos 1081 野生动物园
9 /// 池子大小. 通常需要直接开到 Log(V).
10 /// 离散化可以缩小需要的点数。
11 const int pg = 3200000;
12
13
   /// 树根数量.
14 const int mxn = 105000;
15
16 /// 权值的最大值. 默认线段树的插入范围是 [0, INF]. 离散化可以改成 n.
17 const int INF=(1<<30)-1;
18
19 /// 重新初始化:
20 | SegmentTreeInit(n);
23
24 struct node
25 {
      node *1, *r;
27
      int t;
28
      void upd() { t = 1->t + r->t; }
29 }pool[pg];
30 node* nt:
31 | node* newnode() { memset(nt, 0, sizeof(node)); return nt++; }
32
33 node* nil;
34
   node* root[mxn];
35
36 void SegTreeInit(int sz = 0)
37 {
38
      nt = pool;
39
      nil = newnode();
     nil->l = nil->r = nil;
40
41
     nil->t = 0;
42
      root[0] = nil;
43 }
44
45 /// 在 (子) 树 y 的基础上新建 (子) 树 x, 修改树中位置为 cp 的值.
46 int cp;
47 | node*Change(node*y, int l = 0, int r = INF)
48 | {
49
      if(cp<1 || r<cp) return y;</pre>
50
      node* x = newnode();
     if(l==r) { x->t = 1 + y->t; return x; }
51
52
     int mid = (l+r)>>1;
53
     x->1 = Change(y->1, 1, mid);
54
      x->r = Change(y->r, mid+1, r);
55
      x->upd();
56
      return x;
57 }
58
   /// 查询区间 [L,r] 中的第 k 大.
59
60 int Query(int ql, int qr, int k)
61 {
      node *x = root[qr], *y = root[ql-1];
62
63
      int 1 = 0, r = INF;
64
      while(1 != r)
65
          int mid = (l+r)>>1;
66
67
          if(k <= x->1->t - y->1->t)
68
              r = mid, x = x->1, y = y->1;
69
          else
70
          {
             k -= x->l->t-y->l->t;
71
             1 = mid+1, x = x->r, y = y->r;
72
73
74
      }
      return 1;
75
```

76 }

轻重边剖分

```
1 /// 轻重边剖分 +dfs 序.
2 /// ** 节点编号从 1 开始 **.
   const int mxn = 105000; // 最大节点数.
3
5 int n;
                    /// 树上的点数.
6 int vat[mxn];
                    /// 树上点的初始权值.
                     /// 顶点 i 属于的链的编号.
7 int c[mxn];
   int f[mxn];
                     /// 顶点 i 的父节点.
9 int dep[mxn];
                     /// 节点深度.
                     /// 记录点 i 的重边应该连向哪个子节点。 用于 dfs 序构建。
10 int mxi[mxn];
11 int sz[mxn];
                     /// 子树 i 的节点个数.
                     /// 链的数量. 也是叶节点数量.
12 int ct;
                     /// 链头节点编号. 从 0 开始.
13 int ch[mxn];
                     /// 节点 i 在 dfs 序中的位置. 从 0 开始.
14 int loc[mxn];
15 int til[mxn]:
                     /// 以节点 i 为根的子树在 dfs 序中的末尾位置. ** 闭区间 **, 从 0 开始.
17 /// 操作子树 i 的信息 <=> 操作线段树上闭区间 Loc[i], til[i].
   /// 操作路径信息 <=> 按照 LCA 访问方式访问线段树上的点.
18
19
20 /// 重新初始化:
21 et = pool;
22 memset(eds, 0, sizeof(edge*) * (n + 1));
23
24
   25
26 | struct edge{ int in; edge*nxt; } pool[mxn<<1];</pre>
27 edge*eds[mxn]; edge*et=pool;
   void addedge(int a,int b){ et->in=b; et->nxt=eds[a]; eds[a]=et++; }
28
   #define forsons(e,x) for(edge*e=eds[x];e;e=e->nxt) if(f[x]!=e->in)
30
   void BuildChain(int root) /// 拓扑序搜索 (逆向广搜).
31
32 | {
33
      static int q[mxn]; int qh = 0, qt = 0;
34
      f[root]=-1; // 不要修改! 清除根的 f 标记能够使递推在不清除 f 数组的情况下正确运行.
35
      q[qt++]=root;
      dep[root] = 1;
36
37
      while(qh != qt)
38
39
          int x = q[qh++];
40
          for sons(e,x) f[e\rightarrow in] = x, dep[e\rightarrow in] = dep[x] + 1, q[qt++] = e\rightarrow in;
41
      }
      repr(i, 0, n-1)
42
43
44
          int x = q[i];
45
          sz[x] = 0;
          mxi[x] = -1; // 不要修改! 这个标记不能和节点编号冲突.
46
          forsons(e, x)
48
          {
49
              sz[x] += sz[e->in];
50
              if(mxi[x] == -1 \mid \mid sz[e->in] > sz[mxi[x]]) mxi[x] = e->in;
51
52
          if(mxi[x] == -1) { sz[x] = 1; ch[ct] = x; c[x] = ct++; continue; } // 叶子. 开一条链.
53
          c[x] = c[mxi[x]]; ch[c[x]] = x;
54
      }
55 }
56
57 // 如果不需要 dfs 序, 只需要节点所在链的信息, 该函数可去掉.
58 int curl;
   void BuildDFSOrder(int x)
59
60
61
      loc[x] = curl++;
      if(mxi[x] != -1) BuildDFSOrder(mxi[x]); // dfs 序按照重边优先顺序构造, 可以保证所有重边在 dfs 序上连续。
62
63
      forsons(e,x) if(e->in != mxi[x]) BuildDFSOrder(e->in);
64
      til[x] = curl-1;
65 }
66
67
   void HLD(int root)
68 {
69
      ct = 0; BuildChain(root);
70
      curl = 0; BuildDFSOrder(root);
71 }
```

```
72
73 /// 求最近公共祖先;
74 /// 在路径 a<->b 上执行函数 F, 其中第一个参数是底部节点的编号,第二个是左端界,第三个是右端界。闭区间。
75 int Link(int a, int b, function<void(int,int,int)> const& F)
76 | {
77
       while(c[a] != c[b])
78
           if(dep[ch[c[a]]] < dep[ch[c[b]]]) swap(a, b);</pre>
79
80
           F(a, loc[ch[c[a]]], loc[a]);
           a = f[ch[c[a]]];
81
82
83
       if(dep[a] < dep[b]) swap(a, b);</pre>
       F(a, loc[b], loc[a]);
84
       return b;
85
86 }
```

手写 bitset

```
1
2
           预处理 p[i] = 2^i
           保留N位
3
           get(d) 获取 d 位
           set(d,x) 将 d 位设为 x
           count() 返回 1 的个数
6
           zero() 返回是不是 0
8
           print() 输出
9
10
   #define lsix(x) ((x)<<6)
11 \# define rsix(x) ((x)>>6)
12 | #define msix(x) ((x)-(((x)>>6)<<6))
13 ull p[64] = {1};
14 | struct BitSet{
15
           ull s[rsix(N-1)+1];
           int cnt:
16
17
       void resize(int n){
18
               if(n>N)n=N;
               int t = rsix(n-1)+1;
19
20
                            memset(s+cnt, 0, sizeof(ull)*(t-cnt));
21
                   cnt = t;
22
23
           }
       BitSet(int n){
24
^{25}
               SET(s,0);
26
               cnt=1;
               resize(n);
27
28
29
       BitSet(){cnt=1;SET(s,0);}
       BitSet operator & (BitSet &that){
30
               int len = min(that.cnt, this->cnt);
31
32
               BitSet ans(lsix(len));
33
               Repr(i,len)ans.s[i] = this->s[i] & that.s[i];
34
               ans.maintain();
35
               return ans;
36
       BitSet operator | (BitSet &that){
37
               int len = max(that.cnt, this->cnt);
38
39
               BitSet ans(lsix(len));
               Repr(i,len)ans.s[i] = this->s[i] | that.s[i];
40
                   ans.maintain();
41
42
               return ans;
43
           }
       BitSet operator ^ (BitSet &that){
44
45
               int len = max(that.cnt, this->cnt);
46
               BitSet ans(lsix(len));
               Repr(i,len)ans.s[i] = this->s[i] ^ that.s[i];
47
48
                   ans.maintain();
49
               return ans;
50
           }
51
       BitSet operator << (int x){</pre>
               int c = rsix(x), r = msix(x);
52
               BitSet ans(lsix(cnt+c+(r!=∅)));
53
54
               for (int i = min(ans.cnt-1, cnt+c); i-c >= 0; --i){
                       if(i-c<cnt)
55
56
                                ans.s[i] = s[i-c] << r;
57
                       if (r \&\& i-c-1 >= 0) ans.s[i] |= s[i-c-1] >> (64-r);
```

```
58
59
                     ans.maintain();
60
                 return ans;
61
            }
        BitSet operator >> (int x){
62
63
                 int c = rsix(x), r = msix(x);
64
                 BitSet ans(lsix(cnt));
65
                 if(c>=cnt)return ans;
66
                         ans.s[i] = s[i+c] >> r;
67
                         if (r \&\& i+c+1 < cnt) ans.s[i] |= s[i+c+1] << (64-r);
68
69
70
                     ans.maintain();
71
                 return ans;
            }
72
73
        int get(int d){
74
                 int c = rsix(d), r = msix(d);
75
                 if(c>=cnt)return 0;
76
                 return (s[c] & p[r]);
77
            }
        void set(int d, int x){
78
79
                 if(d>N)return;
                 int c = rsix(d), r = msix(d);
80
81
                 if(c>=cnt)
82
                             resize(lsix(c+1));
                 if(x&&(s[c] & p[r]))return;
83
84
                 if(!x&&!(s[c] & p[r]))return;
                 s[c] ^= p[r];
85
86
             }
87
        int count(){
88
                     int res=0;
89
                     Rep(i,cnt){
90
                             ull x = s[i];
                             while(x){
91
92
                                      res++;
                                      x&=x-1;
93
94
95
                     }
                     return res;
96
97
            void maintain(){
98
                     while(s[cnt-1]==0&&cnt>1)
99
100
                             cnt--;
                 if(lsix(cnt)>N){
101
                             while(lsix(cnt)>N)cnt--;
102
103
                                if(lsix(cnt)<N){</pre>
104
                                         cnt++;
105
                                         for(int i = 63;i>N-lsix(cnt-1)-1;--i)
                                                 if(p[i]&s[cnt-1])s[cnt-1]-=p[i];
106
107
                                }
108
                     }
109
            }
110
        bool zero(){
                 Rep(i,cnt)if(s[i])return 0;
111
                 return 1;
112
113
             }
        void print(){
114
115
                 if(lsix(cnt)<=N){</pre>
                             rep(i,N-lsix(cnt))putchar('0');
116
                             Repr(j,64)putchar(p[j] & s[cnt-1]?'1':'0');
117
118
                     }else{
                             Repr(i,N-lsix(cnt-1)-1)
119
                                      putchar(p[i] & s[cnt-1]?'1':'0');
120
121
                     }
                 Repr(i,cnt-2){
122
123
                         ull x = s[i];
                             Repr(j,64)putchar(p[j] & x?'1':'0');
124
125
                     putchar('\n');
126
             }
127
128 };
```

树状数组

```
1 inline int lowbit(int x){return x&-x;}
   //前缀和, 可改前缀最值
2
3
   void update(int d, int x=1){
           if(!d)return;
4
           while(d<=n){</pre>
6
                   T[d]+=x;
                   d+=lowbit(d);
7
9 }
10 int ask(int d){
11
           int res(0);
12
           while(d>0){
13
                   res+=T[d];
14
                   d-=lowbit(d);
15
           }
16
           return res;
17 }
```

线段树

```
1 /// 线段树.
2 /// 带乘法和加法标记。
3 /// 只作为样例解释.
4 /// 线段树池子开到节点数的五倍。
6 /// mxn: 区间节点数. 线段树点数是它的四倍.
7 const int mxn = 105000;
8 /// n: 实际节点数.
9 /// a: 初始化列表.
10
   /// 重新初始化:
11
12 build(); // 可以不使用初始化数组 A.
13
14
15
16 | 11 a[mxn];
17 int n,m;
18 11 MOD;
19
20 #define L (x<<1)
21 | #define R (x << 1/1)
22 11 t[mxn * 5]; // 当前真实值.
23 | 11 tagm[mxn * 5]; // 乘法标记.
24 | 11 taga[mxn * 5]; // 加法标记. 在乘法之后应用.
25
   void pushtag(int x,int l,int r)
26 {
27
       if(tagm[x]==1 && taga[x]==0) return;
28
      11 &m = tagm[x]; 11 &a = taga[x];
      // 向下合并标记
29
       (tagm[L] *= m) %= MOD;
30
31
       (tagm[R] *= m) %= MOD;
      taga[L] = (taga[L] * m % MOD + a) % MOD;
32
33
      taga[R] = (taga[R] * m % MOD + a) % MOD;
      // 修改子节点真实值.
34
      int mid = (1+r)>>1;
35
      t[L] = (t[L] * m % MOD + (mid-l+1) * a) % MOD;
36
      t[R] = (t[R] * m % MOD + (r-mid) * a) % MOD;
37
38
      // 清理当前标记.
      tagm[x] = 1;
39
40
       taga[x] = 0;
41 }
42
43 /// 从子节点更新当前节点真实值.
44 /// 以下程序可以保证在 Update 之前该节点已经没有标记.
45
   void update(int x) { t[x] = (t[L] + t[R]) % MOD; }
46
47
   void build(int x=1,int l=0,int r=n) // 初始化.
48 {
49
       taga[x] = 0; tagm[x] = 1;
       if(l==r) { t[x] = a[1] % MOD; return; }
50
51
       int mid=(l+r)>>1;
      build(L,1,mid); build(R,mid+1,r);
52
53
      update(x);
```

130 /// 线段树 II.

```
54 }
55
56 int cl,cr; ll cv; int ct;
57 void Change(int x=1,int l=0,int r=n)
58
   {
59
        if(cr<1 || r<cl) return;</pre>
        if(cl<=1 && r<=cr) // 是最终访问节点, 修改真实值并打上标记.
60
61
62
            if(ct == 1)
63
            {
64
                (tagm[x] *= cv) %= MOD;
65
                (taga[x] *= cv) %= MOD;
                (t[x] *= cv) %= MOD;
66
67
            else if(ct == 2)
68
69
            {
70
                (taga[x] += cv) %= MOD;
                (t[x] += (r-1+1) * cv) \%= MOD;
71
72
            }
73
            return:
74
75
        pushtag(x,l,r); // 注意不要更改推标记操作的位置.
        int mid = (1+r)>>1;
76
        Change(L,1,mid); Change(R,mid+1,r); update(x);
77
78 }
79
80
    void Modify(int l,int r,ll v,int type)
81 { cl=1; cr=r; cv=v; ct=type; Change(); }
82
83 int ql,qr;
84 | 11 Query(int x=1,int l=0,int r=n)
85
86
        if(qr<1 || r<q1) return 0;</pre>
87
        if(q1<=1 && r<=qr) return t[x];</pre>
88
        pushtag(x,l,r); // 注意不要更改推标记操作的位置.
        int mid=(1+r)>>1;
89
90
        return (Query(L,1,mid) + Query(R,mid+1,r)) % MOD;
91 }
92 11 Getsum(int l,int r)
   { ql=1; qr=r; return Query(); }
94
    void Output(int x=1,int l=0,int r=n,int depth=0)
95
96
        printf("[%d] [%d,%d] t:%lld m:%lld a:%lld\n",x,l,r,t[x],taga[x],tagm[x]);
97
98
        if(l==r) return;
        int mid=(l+r)>>1; Output(L,1,mid); Output(R,mid+1,r);
99
100
    }
101
   int main()
102
103
   {
104
        n=getint(); MOD=getint();
        for(int i=1;i<=n;i++) a[i]=getint();</pre>
105
106
        build();
        m=getint():
107
        for(int i=0;i<m;i++)</pre>
108
109
            int type = getint();
110
111
            if(type==3)
112
113
                int 1 = getint();
114
                int r = getint();
                printf("%lld\n",Getsum(1,r));
115
            }
116
117
            else
118
            {
119
                int 1 = getint();
                int r = getint();
120
121
                int v = getint();
122
                Modify(1,r,v,type);
123
            }
124
125
        return 0;
126
127
    128
129
```

```
131 /// 求区间中数字的平方和与和的平方。
    /// 可以用来求区间中数字的两两之积,它等于 二分之一倍和的平方减去平方之和. 0.5 * ((sigma{ai})^2 - sigma{ai^2})
132
133
134
    struct Num
135
    {
136
        static const int mod = 1e9+7;
137
        int v;
        Num() { }
138
139
        Num(\textbf{int const} \& \ x) \ : \ v(x) \ \{ \ \}
140
        Num operator+(Num const& a) const { return { (a.v + v) % mod }; }
        Num operator-(Num const& a) const { return { (v - a.v + mod) % mod }; }
141
142
        Num operator*(Num const\& a) const \{ return \{ (int)((1LL * a.v * v) \% mod) \}; \}
143 };
144
    struct TD /// 线段树数据池子.
145
146
    {
147
        Num sum;
                    /// 区间和.
                    /// 区间每个数平方的和.
148
        Num sas:
                    /// 区间加标记.
149
        Num add;
150 } t[mxn * 5];
151
152
    inline void pushtag(int x, int l, int r)
153
        if(t[x].add.v == 0) return;
154
155
        int mid = (1 + r) >> 1;
156
157
        Num v = t[x].add; t[x].add = 0;
158
        t[L].add = t[L].add + v;
159
160
        t[L].sqs = t[L].sqs + t[L].sum * v * 2 + v * v * (mid - 1 + 1);
161
        t[L].sum = t[L].sum + v * (mid - 1 + 1);
162
163
        t[R].add = t[R].add + v;
        t[R].sqs = t[R].sqs + t[R].sum * v * 2 + v * v * (r - mid);
164
        t[R].sum = t[R].sum + v * (r - mid);
165
166 }
167
168
    inline void upd(int x,int l,int r)
169 {
170
        t[x].sum = t[L].sum + t[R].sum;
171
        t[x].sqs = t[L].sqs + t[R].sqs;
172 }
```

左偏树

```
1 int n,m,root,add;
2
   struct node{
3
            int key,1,r,fa,add;
4
   }heap1[maxn*2+1],heap2[maxn*2+1];
   void down(int x){
5
            heap1[heap1[x].1].key+=heap1[x].add;
7
            \verb|heap1[heap1[x].1].add+=\verb|heap1[x].add||
8
            heap1[heap1[x].r].key+=heap1[x].add;
9
            \verb|heap1[heap1[x].r].add+=\verb|heap1[x].add||
10
            heap1[x].add=\theta;
11 }
12 int fa(int x){
13
            int tmp=x;
14
            while (heap1[tmp].fa) tmp=heap1[tmp].fa;
15
            return tmp;
16 }
17 int sum(int x){
18
            int tmp=x,sum=0;
19
            while (tmp=heap1[tmp].fa) sum+=heap1[tmp].add;
20
            return sum;
21 }
22 int merge1(int x,int y){
            if (!x \mid | \cdot !y) return x?x:y;
23
^{24}
            if (heap1[x].key<heap1[y].key) swap(x,y);</pre>
25
            down(x);
26
            heap1[x].r=merge1(heap1[x].r,y);
27
            heap1[heap1[x].r].fa=x;
28
            swap(heap1[x].1,heap1[x].r);
29
            return x;
30 }
```

```
31
   int merge2(int x,int y){
32
            if (!x || !y) return x?x:y;
33
            if (heap2[x].key<heap2[y].key) swap(x,y);</pre>
34
            heap2[x].r=merge2(heap2[x].r,y);
            heap2[heap2[x].r].fa=x;
35
            swap(heap2[x].1,heap2[x].r);
36
37
            return x;
38 }
39
   int del1(int x){
40
            down(x);
            int y=merge1(heap1[x].1,heap1[x].r);
41
42
            if (x==heap1[heap1[x].fa].l) heap1[heap1[x].fa].l=y;else heap1[heap1[x].fa].r=y;
            heap1[v].fa=heap1[x].fa;
43
44
            return fa(y);
45 }
    void del2(int x){
46
47
            int y=merge2(heap2[x].1,heap2[x].r);
            if (root==x) root=y;
48
            if (x==heap2[heap2[x].fa].1) heap2[heap2[x].fa].l=y;else heap2[heap2[x].fa].r=y;
49
50
            heap2[y].fa=heap2[x].fa;
51
    }
52
    void renew1(int x,int v){
53
            heap1[x].key=v;
54
            heap1[x].fa=heap1[x].l=heap1[x].r=0;
55 }
    void renew2(int x,int v){
56
57
            heap2[x].key=v;
            \verb|heap2[x].fa=heap2[x].l=heap2[x].r=0|;
58
59 }
60
    //建树
61 int heapify(){
62
            queue<int> Q;
63
            for (int i=1;i<=n;++i) Q.push(i);</pre>
            while (Q.size()>1){
64
65
                    int x=Q.front();Q.pop();
66
                    int y=Q.front();Q.pop();
67
                    Q.push(merge2(x,y));
68
            return Q.front();
69
70 }
   //合并两棵树
71
72
    void U(){
73
            int x,y;scanf("%d%d",&x,&y);
74
            int fx=fa(x),fy=fa(y);
75
            if (fx!=fy) if (merge1(fx,fy)==fx) del2(fy);else del2(fx);
76 }
    //单点修改
77
78
    void A1(){
            int x,v;scanf("%d%d",&x,&v);
79
80
            del2(fa(x));
81
            int y=del1(x);
82
            renew1(x,heap1[x].key+v+sum(x));
83
            int z=merge1(y,x);
84
            renew2(z,heap1[z].key);
            root=merge2(root,z);
85
86 }
    //联通块修改
87
    void A2(){
88
            int x,v,y;scanf("%d%d",&x,&v);
89
90
            del2(y=fa(x));
91
            heap1[y].key+=v;
92
            heap1[y].add+=v;
93
            renew2(y,heap1[y].key);
94
            root=merge2(root,y);
95 }
    //全局修改
    void A3(){
97
            int v;scanf("%d",&v);
98
99
            add+=v;
100 }
    //单点查询
102
   void F1(){
            int x;scanf("%d",&x);
103
104
            printf("%d\n",heap1[x].key+sum(x)+add);
105 }
106 //联通块最大值
107 void F2(){
```



```
int x;scanf("%d",&x);
108
             printf("%d\n",heap1[fa(x)].key+add);\\
109
110 }
111 //全局最大值
112 void F3(){
            printf("%d\n",heap2[root].key+add);
113
114 }
115 int main(){
116
             scanf("%d",&n);
             for (int i=1;i<=n;++i)</pre>
117
                     scanf("%d",&heap1[i].key),heap2[i].key=heap1[i].key;
118
119
             root=heapify();
             scanf("%d",&m);
120
             for (int i=1;i<=m;++i){</pre>
                     scanf("%s",s);
122
                     if (s[0]=='U') U();
123
124
                     if (s[0]=='A'){
                             if (s[1]=='1') A1();
125
                              if (s[1]=='2') A2();
126
127
                              if (s[1]=='3') A3();
128
                     }
129
                     if (s[0]=='F'){
                              if (s[1]=='1') F1();
130
                              if (s[1]=='2') F2();
131
132
                              if (s[1]=='3') F3();
                     }
133
134
             return ∅;
135
136 }
```

图论

k 短路可持久化堆

```
1
2
           G 为原图, E 为反图
           细节看 solve()
3
4
5
   namespace Leftist_Tree{
6
       struct Node{
           int 1, r, x, h;
           int val;
       }T[N*50];
10
       int Root[N];
11
       int node_num;
12
       int newnode(const Node& o){
13
           T[node_num] = o;
           return node_num++;
14
15
       }
       void init(){
16
17
           node num = 1;
18
           T[0].1 = T[0].r = T[0].x = T[0].h = 0;
           T[0].val = infi;
19
21
       int merge(int x, int y){
22
           if(!x)return y;
23
           if(T[x].val> T[y].val)swap(x,y);
           int o = newnode(T[x]);
24
25
           T[o].r = merge(T[o].r,y);
26
           if(T[T[o].1].h<T[T[o].r].h)swap(T[o].1,T[o].r);</pre>
27
           T[o].h = T[T[o].r].h + 1;
28
           return o;
29
30
       void insert(int& x, int val, int v){
31
           int o = newnode(T[0]);
           T[o].val = val, T[o].x = v;
32
33
           x = merge(x, o);
34
35 }
36 using namespace Leftist_Tree;
37
   struct Edge{
38
           int v, w, n;
39 }G[N], E[N];
40 int cnt, point[N], cnt1, point1[N];
```



```
41 | void adde(int u, int v, int w = 0){
             G[++cnt]=(Edge){v,w,point[u]},point[u]=cnt;
42
43
             \label{eq:entile} \begin{split} & \texttt{E[++cnt1]=(Edge)\{u,w,point1[v]\},point1[v]=cnt1;} \end{split}
44 }
    int n, m, Len;
45
     void Ginit(){
46
47
             cnt = cnt1 = 0;
             fill(point,0,n+1);
48
49
             fill(point1,0,n+1);
50 | }
51
    int vis[N];
52
   int in[N], p[N];
53 int d[N];
    void dij(int s){
        priority_queue<pii> q;
55
56
        d[s] = 0;
57
         q.push(mp(\theta, s));
         while(!q.empty()){
58
             int u = q.top().se;
59
60
             q.pop();
             if(vis[u])continue;
61
62
             vis[u] = 1;
             for(int i = point1[u];i;i=E[i].n){
63
                 int v = E[i].v;
64
65
                 if(d[v]> d[u] + E[i].w){
66
                     p[v] = u;
67
                     d[v] = d[u] + E[i].w;
68
                     q.push(mp(-d[v], v));
69
70
71
         }
72
73
    void dfs(int u){
74
75
         if(vis[u])return;
         vis[u] = 1;
76
77
         if(p[u])Root[u] = Root[p[u]];
78
         int flag = 1;
         for(int i = point[u];i;i=G[i].n){
79
80
             int v = G[i].v;
81
             if(d[v] == infi)continue;
             if(p[u] == v \&\& d[u] == G[i].w + d[v] \&\& flag){
82
                 flag = 0;
83
84
                 continue;
             int val = d[v] - d[u] + G[i].w;
86
87
             insert(Root[u], val, v);
88
         for(int i = point1[u];i;i=E[i].n){
89
             if(p[E[i].v] == u)dfs(E[i].v);
90
91
92
    }
93
    int kth(int s, int t, int k){
94
95
         dij(t);
96
         if(d[s] == infi){
97
             return -1;
98
         if(s != t)--k;
99
100
        if(!k){
101
                      return -1;
102
         fill(vis,0,n+1);
103
104
         init();
         Root[t] = 0;
105
106
         priority_queue<pii, vector<pii>, greater<pii>> q;
107
         if(Root[s])q.push(mp(d[s] + T[Root[s]].val, Root[s]));
108
109
         while(k--){
             if(q.empty()){
110
111
                 return -1;
112
             }
113
             pii u = q.top();
114
             q.pop();
115
             if(!k){
                              return u.fi;
116
117
             }
```

```
图论
```

```
118
             int x = T[u.se].1, y = T[u.se].r, v = T[u.se].x;
119
             \textbf{if}(\texttt{Root[v]}) \\ \texttt{q.push(mp(u.fi + T[Root[v]].val, Root[v]));}
120
             if(x)q.push(mp(u.fi + T[x].val - T[u.se].val, x));
121
             if(y)q.push(mp(u.fi + T[y].val - T[u.se].val, y));
122
         }
123
     }
124
     void solve(){
125
126
             Ginit();
127
         rep(i,1,n){
             d[i] = infi;
128
129
             vis[i] = 0;
             p[i] = 0;
130
131
132
         int s, t, k;
         sc(s),sc(t),sc(k),sc(Len);
133
134
         rep(i,1,m){
135
             int u, v, c;
136
             sc(u),sc(v),sc(c);
137
             adde(u, v, c);
138
139
         int res = kth(s,t,k);
         if(res >= 0 && res <= Len)
140
141
                      printf("yareyaredawa\n");
^{142}
             else
                      printf("Whitesnake!\n");
143
144
145
146
     int main(){
147
         while(~scanf("%d%d", &n, &m))solve();
148
         return 0;
149
    }
```

spfa 费用流

```
2
             调用 minCostMaxfLow(s,t,cost) 返回 s 到 t 的最大流,cost 保存费用
3
             多组数据调用 Ginit()
4
    struct E{
5
             int v,n,F,f,cost;
7
   }G[M];
   int point[N],cnt;
8
    int pre[N];
10 | int dis[N];
11
   bool vis[N];
12
    void Ginit(){
13
             cnt=1:
14
             SET(point,0);
15 }
    void addedge(int u,int v,int F,int cost){
16
17
             G[++cnt]=(E)\{v,point[u],F,0,cost\},point[u]=cnt;
            \label{eq:G-cost} \begin{split} & G[++cnt] = (E)\{u,point[v], \begin{subarray}{c} 0,0,-cost\},point[v] = cnt; \end{subarray} \end{split}
18
19
    }
20
   bool spfa(int s,int t){
21
             queue<int>q;
22
             SET(vis,₀);
23
             SET(pre,0);
24
             rep(i,s,t)
25
                     dis[i]=infi;
26
             dis[s]=0;
27
             vis[s]=1;
28
             q.push(s);
29
             while(!q.empty()){
30
                      int u=q.front();q.pop();
31
                     vis[u]=0;
32
                      for(int i=point[u];i;i=G[i].n){
33
                               int v=G[i].v;
                               if(G[i].F>G[i].f&&dis[v]-dis[u]-G[i].cost>0){
34
35
                                        dis[v]=dis[u]+G[i].cost;
36
                                        pre[v]=i;
37
                                        if(!vis[v]){
38
                                                 vis[v]=1;
                                                 q.push(v);
39
                                        }
```

```
图论
```

```
41
                            }
42
43
44
            return pre[t];
45
   }
46
   int minCostMaxflow(int s,int t,int &cost){
47
            int f=0;
            cost=0;
48
49
            while(spfa(s,t)){
50
                    int Min=infi;
                    for(int i=pre[t];i;i=pre[G[i^1].v]){
51
52
                            if(Min>G[i].F-G[i].f)
                                    Min=G[i].F-G[i].f;
53
                    for(int i=pre[t];i;i=pre[G[i^1].v]){
55
                            G[i].f+=Min;
56
57
                            G[i^1].f-=Min;
                            cost+=G[i].cost*Min;
58
59
                    }
60
                    f+=Min;
61
62
            return f;
63 }
```

Tarjan 有向图强连通分量

```
1
           调用 SCC() 得到强连通分量,调用 suodian() 缩点
2
3
           belong[i] 为所在 scc 编号,sccnum 为 scc 数量
           原图用 addedge, 存在 G, 缩点后的图用 addedge2, 存在 G1
           多组数据时调用 Ginit()
6
7
   int n, m;
   int point[N], cnt;
  int low[N], dfn[N], belong[N], Stack[N];
10 bool instack[N];
int dfsnow, Stop, sccnum, num[N];
12
   struct E{
13
           int u, v, n;
   }G[M],G1[M];
14
15
   void tarjan(int u){
16
           int v;
           dfn[u] = low[u] = ++dfsnow;
17
18
           instack[u] = 1;
           Stack[++Stop] = u;
19
           for (int i = point[u];i;i = G[i].n){
20
21
                   v = G[i].v;
                   if (!dfn[v]){
22
23
                           low[u] = min(low[u], low[v]);
24
25
                   }
26
                   else
                           if (instack[v])
27
                                  low[u] = min(low[u], dfn[v]);
28
29
           if (dfn[u] == low[u]){
30
31
                   sccnum++;
32
                   do{
33
                           v = Stack[Stop--];
34
                           instack[v] = 0;
                           belong[v] = sccnum;
35
36
                           num[sccnum]++;
37
38
                   while (v != u);
39
40 }
41
   void Ginit(){
42
           cnt = 0;
43
           fill(point,0,n+1);
44
45
   void SCC(){
           Stop = sccnum = dfsnow = ∅;
46
47
           fill(dfn, 0, n+1);
           rep(i,1,n)
48
                   if (!dfn[i])
```

图论

```
50
                        tarjan(i);
51 }
52
  void addedge(int a, int b){
53
          G[++cnt] = (E){a,b,point[a]}, point[a] = cnt;
54 }
55
   void addedge2(int a, int b){
56
         G1[++cnt] = (E){a,b,point[a]}, point[a] = cnt;
57 }
58 int degre[N];
  void suodian(){
59
          Ginit();
60
61
          fill(degre,0 ,n+1);
          rep(i, 1, m)
62
                 if (belong[G[i].u] != belong[G[i].v]){
63
64
                        addedge2(belong[G[i].u], belong[G[i].v]);
65
                        degre[belong[G[i].v]]++;
66
                 }
67 }
68
          割点和桥
69
          割点: 删除后使图不连通
70
71
          桥 (割边): 删除后使图不连通
          对图深度优先搜索, 定义 DFS(u) 为 u 在搜索树(以下简称为树)中被遍历到的次序号。定义 Low(u) 为 u 或 u 的子树中能通过非树边追溯到的 DFS 序号最小的节点。
72
          Low(u)=Min{DFS(u);DFS(v),(u,v) 为非树边;Low(v),(u,v) 为树边}
73
74
          一个顶点 u 是割点, 当且仅当满足 (1) 或 (2)
75
          (1) u 为树根, 且 u 有多于一个子树。 (2) u 不为树根, 且满足存在 (u,v) 为树边, 使得 DFS(u)<=Low(v)。
76
           -条无向边 (u,v) 是桥,当且仅当 (u,v) 为树边,且满足 DFS(u)<Low(v)。
77
```

割点割边及双联通分量

```
1 /// Tarjan 割点, 割边和双联通分量
3 /// 割点: 删除后使原图 (边) 双联通分量增加的点
4 /// 割边: 删除后是原图 (边) 双联通分量增加的边
5 ///
6 /// 基于如下定理:
  /// 一个点是割点当且仅当:
8 ///
      1. 这个点是搜索树的根,并且该根的子树超过一个.
9 ///
      2. 这个点不是搜索树的根,且存在一个子节点,子节点不存在绕过其父节点返回其祖先的路径.
10 /// 一条边是割边当且仅当:
      1. 在搜索树上, 这条边是树边, 并且子节点不存在绕过其父节点返回其祖先的路径.
11 ///
12 ///
13 /// 注意一个割点可能会被不止一个点双联通分量包含.
14 ///
15 /// 一个图按照点双联通分量缩边后是一条链.
16 /// 因而凡是搜索树中的横叉边,一定是连接一个双联通分量中的两点的边。
17 /// 因而使用横叉边更新 Low 值是正确的.
18
  /// 每找到一个割点, 将子树所有边出栈, 它们属于同一个点双.
19 ///
20 /// 点双: 至少两个环公用一条路。
21 /// 边双: 至少两个环公用一个点.
22 ///
23
  24
25 /// dfs 编号 dfn 从 1 开始.
26 /// 块编号 bcnt 从 1 开始.
27
28
  // AC 洛谷 P3388 (无向图割点)
29
30 int n, m, bcnt;
31 int dfn[mxn], low[mxn], ft[mxn];
32 bool used[mxn], ins[mxn];
33
  int dfx = 0;
34
35 int ans[mxn]; int anst = 0; // 存割点.
36
  void Reset()
37
38
  {
39
     et = pool;
40
     eg = dfx = anst = 0;
41
     memset(used, 0, sizeof(bool) * (n + 1));
42 }
44 void DFS(int x, bool rt = true)
```



```
45 {
        low[x] = dfn[x] = ++dfx;
46
       used[x] = true;
47
        int cut = 0;
49
       foredges(e, x)
50
51
           if(!used[e->in])
52
53
               ft[e->in] = x;
               DFS(e->in, false);
54
               low[x] = min(low[x], low[e->in]);
55
56
               if(low[e->in] >= dfn[x]) cut++;
57
           else if(e->in != ft[x])
58
59
           {
               low[x] = min(low[x], dfn[e->in]);
60
61
62
63
       if(cut > rt)
64
           ans[anst++] = x; // 记录割点.
65
66
67
   }
68
69
70
71
    int main()
72
73
       n = getint();
74
       m = getint();
75
       rep(i, 1, m)
76
77
           int a = getint();
           int b = getint();
78
           addedge(a, b);
80
           addedge(b, a);
81
82
       rep(i, 1, n) if(!used[i]) DFS(i);
83
84
85
        sort(ans, ans + anst);
86
       printf("%d\n", anst);
        rep(i, 0, anst-1) printf("%d ", ans[i]);
87
88 }
89
    90
91
    /// dfs 编号 dfn 从 1 开始.
92
93 /// 点双编号从 1 开始.
94 /// 注意每条边只有一个方向会被标记. 未标记的边, 所属点双应该记为 0.
95
    // AC HDU 3394 (无向图割边和点双)
96
97
98
    const int mxn = 1e5 + 50; // 点数
   const int mxm = 2e5 + 50; // 单向边数
99
   struct edge { int in; edge* nxt; int blc; } pool[mxm]; edge* et = pool;
101
   edge* eds[mxn];
    void addedge(int a, int b) { et->blc = 0; et->in = b; et->nxt = eds[a]; eds[a] = et++; }
102
103
    \#define\ foredges(i,x)\ for(edge*i=eds[x];\ i;\ i=\ i->nxt)
104
105
    int n, m;
106
   int dfn[mxn], low[mxn], ft[mxn];
107
    bool used[mxn];
108
    int dfx, anst;
   stack<pair<int, edge*>> ek; int eg = 0; // eg : 点双数量.
109
111
    void Reset()
112
   {
113
        et = pool;
       eg = dfx = anst = 0;
114
115
       memset(used, 0, sizeof(bool) * (n + 1));
       memset(eds, 0, sizeof(edge*) * (n + 1));
116
117 }
118
119 void DFS(int x, bool rt = true)
120 {
       low[x] = dfn[x] = ++dfx;
121
```



```
122
        used[x] = true;
        foredges(e, x) if(!used[e->in])
123
124
        {
125
            ek.push(make_pair(x, e)); // 树边.
            ft[e->in] = x;
126
            DFS(e->in, false);
127
            low[x] = min(low[x], low[e->in]);
128
            if(low[e->in] >= dfn[x])
129
130
                if(low[e->in] > dfn[x])
131
132
                {
133
                     // 确认 e 是一条割边.
134
                    anst++;
                }
135
136
                if(!ek.empty()) // 找到一个点双.
137
138
                {
139
                    eg++;
                    while(!ek.empty())
140
141
                         // 确认 ek.top().second 是在点双内的边.
142
143
                         ek.top().second->blc = eg;
                         int cur = ek.top().first; ek.pop();
144
                         if(cur == x) break;
145
146
                    }
                }
147
148
149
        }
        else if(e->in != ft[x])
150
151
            if(dfn[e->in] < dfn[x]) ek.push(make_pair(x, e)); // 返祖边. 无向图没有横叉边.
152
153
            low[x] = min(low[x], dfn[e->in]);
154
155 }
156
    int main()
157
158
    {
159
        while(true)
160
161
            n = getint();
162
            m = getint();
            if(n == 0 && m == 0) break;
163
164
            Reset();
165
            rep(i, 0, m-1)
166
167
            {
                int a = getint();
168
169
                int b = getint();
                addedge(a, b);
170
                addedge(b, a);
171
172
173
174
            rep(i, 0, n-1) if(!used[i]) DFS(i);
175
            int ansg = 0;
176
177
            map<int,set<int>> cntp;
            map<int,int> cnte;
178
179
            rep(x, 0, n-1) foredges(e, x) if(e->blc != 0)
180
181
                if(cntp[e->blc].empty() \mid | cntp[e->blc].find(x) == cntp[e->blc].end())
182
                    cntp[e->blc].insert(x);
                if(cntp[e->blc].empty() \mid \mid cntp[e->blc].find(e->in) == cntp[e->blc].end())
183
                    cntp[e->blc].insert(e->in);
184
185
                cnte[e->blc]++;
            }
186
187
            rep(i, 1, eg) { if((int)cntp[i].size() < cnte[i]) ansg += cnte[i]; }</pre>
188
            printf("%d %d\n", anst, ansg);
189
190
        return 0;
191
192 }
```

zkw 费用流

```
1
              调用 zkw(s,t,cost) 返回 s 到 t 的最大流,cost 保存费用
 2
 3
              多组数据调用 Ginit()
 4
 5 struct E{
 6
             int v,n,F,f,c;
 7
    }G[M];
    int point[N],cnt;
 9 int dis[N];
10 bool vis[N];
11 void Ginit(){
             cnt=1;
12
13
             SET(point,0);
14
   }
    void addedge(int u,int v,int F,int cost){
15
16
             G[++cnt]=(E)\{v,point[u],F,0,cost\},point[u]=cnt;
17
             G[++cnt]=(E)\{u,point[v],0,0,-cost\},point[v]=cnt;
18
    }
    bool spfa(int s,int t){
19
             queue<int>q;
20
21
             SET(vis,0);
22
             rep(i,s,t)
23
                      dis[i]=infi;
24
             dis[s]=0;
             vis[s]=1;
25
26
             q.push(s);
27
             while(!q.empty()){
28
                      int u=q.front();q.pop();
29
                      vis[u]=<mark>0</mark>;
                       for(int i=point[u];i;i=G[i].n){
30
31
                                int v=G[i].v;
32
                                \textbf{if}(\texttt{G[i].F}\texttt{>}\texttt{G[i].f}\&\texttt{dis[v]}\texttt{-}\texttt{dis[u]}\texttt{-}\texttt{G[i].c}\texttt{>}\textbf{0})\{
                                         dis[v]=dis[u]+G[i].c;
33
34
                                         if(!vis[v]){
                                                  vis[v]=1;
35
                                                  q.push(v);
36
37
                                         }
                                }
38
39
                      }
40
41
             return dis[t]!=infi;
42 }
   bool mark[N];
43
44
    int dfs(int u,int t,int f,int &ans){
45
             mark[u]=1;
             if(u==t)return f;
46
47
             double w;
             int used=0;
48
49
             for(int i=point[u];i;i=G[i].n){
                       \textbf{if}(G[i].F>G[i].f\&\&!mark[G[i].v]\&\&dis[u]+G[i].c-dis[G[i].v]==0) \{ \\
50
                                w = \mathsf{dfs}(\mathsf{G[i].v,t,min}(\mathsf{G[i].F-G[i].f,f-used}),\mathsf{ans});
51
52
                                G[i].f+=w;
                                G[i^1].f-=w;
53
54
                                ans+=G[i].c*w;
55
                                used+=w;
                                if(used==f)return f;
56
57
                      }
58
             }
59
             return used;
60
    int zkw(int s,int t,int &ans){
61
             int tmp=0;
62
63
             ans=<mark>0;</mark>
64
             while(spfa(s,t)){
65
                      mark[t]=1;
                      while(mark[t]){
66
67
                                SET(mark,0);
68
                                tmp+=dfs(s,t,infi,ans);
69
                      }
70
71
             return tmp;
72 }
```

图论

倍增 LCA

```
1
           调用 Lca_init() 后
2
3
           调用 Lca(u,v) 得到 u,v 的 Lca
4
5 int fa[N][M];
6 void lca_init(){
           rep(k,1,M-1)rep(i,1,n)
7
                   fa[i][k] = fa[fa[i][k-1]][k-1];
9 }
10 int lca(int u,int v){
11
           if(dep[u] < dep[v])</pre>
                   swap(u, v);
12
13
           repr(i,0,M-1)
14
                   if(((dep[u] - dep[v])>>i) & 1)
15
                           u = fa[u][i];
16
           repr(i,0,M-1)
                   if(fa[u][i] != fa[v][i]){
17
18
                           u = fa[u][i];
19
                           v = fa[v][i];
20
                   }
21
           if(u != v)
                  return fa[u][0];
22
23
           return u;
24 }
```

35

虚树

```
2
       add(u,v) 表示虚树上建一条边 (u,,v)
3
4 | top=0;
5 s[++top]=1;
6 | for(i=1;i<=m;i++){
        grand=lca(s[top],q[i]);
7
        while(1){
            \textbf{if}(\mathsf{dep[s[top-1]]} < = \mathsf{dep[grand]}) \{
9
10
                add(grand,s[top--]);
11
                if(s[top]!=grand) s[++top]=grand;
12
                break;
13
            add(s[top-1],s[top]);top--;
14
15
16
        if(s[top]!=q[i]) s[++top]=q[i];
17 }
   while(--top>=1) add(s[top],s[top+1]);
```

点分治

```
int n, siz[N], maxs[N], r;
 2 | bitset<N> vis:
    void getroot(int u, int f){
        siz[u] = 1, maxs[u] = 0;
        for (int i = point[u];i;i = G[i].n){
            if (G[i].v == f || vis[G[i].v])continue;
             getroot(G[i].v, u);
 7
             siz[u] += siz[G[i].v];
             maxs[u] = max(maxs[u], siz[G[i].v]);
 9
10
11
        maxs[u] = max(maxs[u], n-siz[u]);
        \quad \textbf{if} \ (\texttt{maxs}[\texttt{r}] \ > \ \texttt{maxs}[\texttt{u}])
12
13
            r = u;
14 }
15 | queue<int> Q;
16 bitset<N> hh;
17 void bfs(int u){
18
        hh.reset();
19
        Q.push(u);
        hh[u] = 1;
20
        while (!Q.empty()){
22
            int i = Q.front();Q.pop();
23
             for (int p = point[i];p;p = G[p].n){
24
                 if (hh[G[p].v] || vis[G[p].v])continue;
```

图论

```
Q.push(G[p].v);
26
27
28 }
29 int calc(int u){
30
           int res(0);
31
       bfs(u);
       return res;
32
33 }
   void solve(int u){
34
35
       dis[u] = 0, vis[u] = 1;
36
       ans += calc(u);
       for (int i = point[u];i;i = G[i].n){
37
            if (vis[G[i].v])continue;
            dis[G[i].v] = G[i].w, ans -= calc(G[i].v);
39
            n = siz[G[i].v];
40
41
            \max[r=0] = N, getroot(G[i].v, 0);
            solve(r);
42
43
44 }
   void p_d(){
45
46
            vis.reset();
           \max[r=0]=n+1;
47
       getroot(1, 0);
48
49
       solve(r);
50 }
```

堆优化 dijkstra

```
调用 Dijkstra(s) 得到从 s 出发的最短路, 存在 dist 中
              多组数据时调用 Ginit()
 3
 4
    struct qnode{
        int v,c;
 6
         bool operator <(const qnode &r)const{</pre>
             return c>r.c;
9
10 };
11 bool vis[N];
12 int dist[N];
13 void dij(int s){
         fill(vis,0,n+1);
14
15
         fill(dist, 127, n+1);
16
             dist[s]=0;
17
        priority_queue<qnode> que;
18
         while(!que.empty())que.pop();
        que.push((qnode)\{s,0\});
19
20
        qnode tmp;
21
         while(!que.empty()){
22
             tmp=que.top();
23
             que.pop();
24
             int u=tmp.v;
25
             if(vis[u])continue;
26
             vis[u]=1;
27
             for_each_edge(u){
                  int v = G[i].v;
29
                  \textbf{if}(! \texttt{vis}[\texttt{v}] \& \texttt{dist}[\texttt{v}] \\ > \texttt{dist}[\texttt{u}] \\ + \texttt{G}[\texttt{i}]. \\ \texttt{w}) \\ \{
30
                       dist[v]=dist[u]+G[i].w;
31
                       que.push((qnode){v,dist[v]});
32
                  }
33
         }
34
35
```

矩阵树定理

```
      1
      /*

      2
      矩阵树定理

      3
      令 g 为度数矩阵,a 为邻接矩阵

      4
      生成树的个数为 g-a 的任何一个 n-1 阶主子式的行列式的绝对值

      5
      det(a,n) 返回 n 阶矩阵 a 的行列式

      6
      所以直接调用 det(g-a,n-1) 就得到答案
```



```
O(n^3)
            有取模版和 double 版
            无向图生成树的个数与根无关
10
            有必选边时压缩边
           有向图以 i 为根的树形图的数目 = 基尔霍夫矩阵去掉第 i 行和第 i 列的主子式的行列式的值 (即 Matrix-Tree 定理不仅适用于求无向图生成树数目,也适用于求有向图
11
       树形图数目)
^{12}
13 | int det(int a[N][N], int n){
14
           rep(i, 1, n)
15
                   rep(j,<mark>1</mark>,n)
16
                           a[i][j]=(a[i][j]+mod)%mod;
17
           11 ans=1,f=1;
           rep(i, 1, n){
18
                   rep(j,i+1,n){
19
                           11 A=a[i][i],B=a[j][i];
20
                            while(B!=0){
21
22
                                    11 t=A/B;A%=B;swap(A,B);
23
                                    rep(k,i,n)
^{24}
                                            a[i][k]=(a[i][k]-t*a[j][k]%mod+mod)%mod;
25
                                    rep(k,i,n)
                                            swap(a[i][k],a[j][k]);
26
27
                                    f=-f;
                            }
28
29
30
                   if(!a[i][i])return 0;
31
                   ans=ans*a[i][i]%mod;
32
           if(f==-1)return (mod-ans)%mod;
33
34
           return ans;
35 }
36
   double det(double a[N][N],int n){
37
           int i, j, k, sign = 0;
38
           double ret = 1, t;
           for (i = 1; i <= n; i++)</pre>
39
40
                   for (j = 1; j <= n; j++)</pre>
                           b[i][j] = a[i][j];
41
42
           for (i = 1; i <= n; i++) {</pre>
43
                   if (zero(b[i][i])) {
                            for (j = i + 1; j \ll n; j++)
44
45
                                    if (!zero(b[j][i]))
46
                                            break;
47
                            if (j > n)
48
                                    return ₀;
                            for (k = i; k <= n; k++)</pre>
49
                                    t = b[i][k], b[i][k] = b[j][k], b[j][k] = t;
51
                            sign++;
52
                   }
53
                   ret *= b[i][i];
                   for (k = i + 1; k \le n; k++)
54
55
                           b[i][k] /= b[i][i];
56
                   for (j = i + 1; j \le n; j++)
                            for (k = i + 1; k <= n; k++)</pre>
57
58
                                    b[j][k] -= b[j][i] * b[i][k];
59
           if (sign & 1)
60
61
                   ret = -ret;
62
           return ret;
63 }
64
65
            最小生成树计数
66
67
   #define dinf 1e10
68
   #define linf (LL)1<<60
69
   #define LL long long
70 | #define clr(a,b) memset(a,b,sizeof(a))
71 LL mod;
72 | struct Edge{
73
           int a,b,c;
74
           bool operator<(const Edge & t)const{</pre>
75
                   return c<t.c;</pre>
76
77 }edge[M];
78 | int n,m;
79
80 int fa[N],ka[N],vis[N];
81 LL gk[N][N],tmp[N][N];
82 | vector<int>gra[N];
```



```
83 | int findfa(int a,int b[]){return a==b[a]?a:b[a]=findfa(b[a],b);}
84
    LL det(LL a[][N],int n){
85
             for(int i=0;i<n;i++)for(int j=0;j<n;j++)a[i][j]%=mod;</pre>
86
             long long ret=1;
87
             for(int i=1;i<n;i++){</pre>
88
                      for(int j=i+1;j<n;j++)</pre>
89
                               while(a[j][i]){
                                       LL t=a[i][i]/a[j][i];
90
91
                                        for(int k=i;k<n;k++)</pre>
                                                a[i][k]=(a[i][k]-a[j][k]*t)%mod;
92
93
                                        for(int k=i;k<n;k++)</pre>
94
                                                swap(a[i][k],a[j][k]);
95
                                        ret=-ret;
96
97
                      if(a[i][i]==0)return 0;
                      ret=ret*a[i][i]%mod;
98
99
100
101
             return (ret+mod)%mod;
102
    }
103
    int main(){
104
             while(scanf("%d%d%I64d",&n,&m,&mod)==3){
105
                      if(n==0 && m==0 && mod==0)break;
106
                      memset(gk,0,sizeof(gk));
107
                      memset(tmp,0,sizeof(tmp));
                      memset(fa,0,sizeof(fa));
108
109
                      memset(ka,0,sizeof(ka));
110
                      memset(tmp,0,sizeof(tmp));
                      for(int i=0;i<N;i++)gra[i].clear();</pre>
111
112
                      for(int i=0;i<m;i++)</pre>
113
                               scanf("%d%d%d",\&edge[i].a,\&edge[i].b,\&edge[i].c);\\
114
                      sort(edge,edge+m);
115
                      for(int i=1;i<=n;i++)fa[i]=i,vis[i]=0;</pre>
                      int pre=-1;
116
                      ans=1;
118
                      for(int h=0;h<=m;h++){</pre>
119
                               if(edge[h].c!=pre||h==m){
120
                                        for(int i=1;i<=n;i++)</pre>
                                                if(vis[i]){
121
                                                         int u=findfa(i,ka);
123
                                                         gra[u].push_back(i);
124
                                                         vis[i]=0;
125
                                        for(int i=1;i<=n;i++)</pre>
126
                                                if(gra[i].size()>1){
128
                                                         for(int a=1;a<=n;a++)</pre>
129
                                                                  for(int b=1;b<=n;b++)</pre>
130
                                                                           tmp[a][b]=0;
                                                         int len=gra[i].size();
131
                                                         for(int a=0;a<len;a++)</pre>
132
133
                                                                  for(int b=a+1;b<len;b++){</pre>
134
                                                                           int la=gra[i][a],lb=gra[i][b];
                                                                           tmp[a][b]=(tmp[b][a]-=gk[la][lb]);
136
                                                                           tmp[a][a]+=gk[la][lb];tmp[b][b]+=gk[la][lb];
137
138
                                                         long long ret=(long long)det(tmp,len);
139
                                                         ret%=mod;
                                                         ans=(ans*ret%mod)%mod;
140
141
                                                         for(int a=0;a<len;a++)fa[gra[i][a]]=i;</pre>
                                                }
142
143
                                        for(int i=1;i<=n;i++){</pre>
144
                                                ka[i]=fa[i]=findfa(i,fa);
145
                                                gra[i].clear();
146
                                        if(h==m)break;
147
148
                                        pre=edge[h].c;
149
150
                               int a=edge[h].a,b=edge[h].b;
151
                               int pa=findfa(a,fa),pb=findfa(b,fa);
                               if(pa==pb)continue;
152
153
                               vis[pa]=vis[pb]=1;
154
                               ka[findfa(pa,ka)]=findfa(pb,ka);
155
                               gk[pa][pb]++;gk[pb][pa]++;
157
                      int flag=0;
                      for(int i=2;i<=n&&!flag;i++)if(ka[i]!=ka[i-1])flag=1;</pre>
158
159
                      ans%=mod;
```

39


```
160 printf("%164d\n",flag?0:ans);
161 }
162 return 0;
163 }
```

平面欧几里得距离最小生成树

```
#define x first
   #define y second
3 #define mp make_pair
   #define pb push_back
   using namespace std;
   typedef long long LL;
   typedef double ld;
   const int MAX=400000+10;
   const int NUM=20;
9
10
   int n;
11
   struct point{
           LL x,y;
12
13
            int num;
14
            point(){}
15
            point(LL a,LL b){
16
                    x=a;
                   y=b;
17
18
19 }d[MAX];
20
   int operator < (const point& a,const point& b){</pre>
21
            if(a.x!=b.x)return a.x<b.x;</pre>
22
            else return a.y<b.y;</pre>
23 }
24
   point operator - (const point& a,const point& b){
25
           return point(a.x-b.x,a.y-b.y);
26
   LL chaji(const point& s,const point& a,const point& b){
27
28
           return (a.x-s.x)*(b.y-s.y)-(a.y-s.y)*(b.x-s.x);
29 }
   LL dist(const point& a,const point& b){
30
31
            return (a.x-b.x)*(a.x-b.x)+(b.y-a.y)*(b.y-a.y);
32 }
   struct point3{
33
34
           LL x,y,z;
           point3(){}
35
36
            point3(LL a,LL b,LL c){
37
                    x=a;
                    v=b:
38
39
                    z=c;
40
            point3(point a){
41
42
                    y=a.y;
43
                    z=x*x+y*y;
45
46
   };
47
   point3 operator - (const point3 a,const point3& b){
           return point3(a.x-b.x,a.y-b.y,a.z-b.z);
48
49 }
50
   point3 chaji(const point3& a,const point3& b){
51
            return point3(a.y*b.z-a.z*b.y,-a.x*b.z+a.z*b.x,a.x*b.y-a.y*b.x);
52
   LL dianji(const point3& a,const point3& b){
53
            return a.x*b.x+a.y*b.y+a.z*b.z;
54
55 }
56
   LL in_circle(point a,point b,point c,point d){
57
           if(chaji(a,b,c)<0)</pre>
58
                    swap(b,c);
            point3 aa(a),bb(b),cc(c),dd(d);
59
60
            bb=bb-aa;cc=cc-aa;dd=dd-aa;
            point3 f=chaji(bb,cc);
61
62
            return dianji(dd,f);
63 }
64
   struct Edge{
65
            int t;
            list<Edge>::iterator c;
66
67
            Edge(){}
68
            Edge(int v){
```



```
69
 70
 71 };
 72 list<Edge> ne[MAX];
 73
     void add(int a,int b){
 74
               ne[a].push_front(b);
 75
               ne[b].push_front(a);
 76
               ne[a].begin()->c=ne[b].begin();
 77
               ne[b].begin()->c=ne[a].begin();
78 }
 79
     int sign(LL a){
 80
               return a>0?1:(a==0?0:-1);
 81
    1 }
     int cross(const point& a,const point& b,const point& c,const point& d){
 82
               return sign(chaji(a,c,b))*sign(chaji(a,b,d))>0 && sign(chaji(c,a,d))*sign(chaji(c,d,b))>0;
 83
 84
     }
 85
     void work(int l,int r){
 86
               int i,j,nowl=1,nowr=r;
               list<Edge>::iterator it;
 87
 88
               if(1+2>=r){
 89
                         for(i=1;i<=r;++i)</pre>
 90
                                   for(j=i+1;j<=r;++j)</pre>
 91
                                             add(i,j);
 92
                         return;
 93
               int mid=(l+r)/2:
 94
 95
               work(1,mid);work(mid+1,r);
               int flag=1;
 96
 97
               for(;flag;){
 98
                         flag=<mark>0</mark>;
 99
                         point ll=d[nowl],rr=d[nowr];
100
                         for(it=ne[nowl].begin();it!=ne[nowl].end();++it){
101
                                   point t=d[it->t];
                                   LL s=chaji(rr,ll,t);
102
                                   if(s>0 || ( s==0 && dist(rr,t)<dist(rr,ll) ) ){</pre>
104
                                             nowl=it->t;
105
                                             flag=1;
106
                                             break;
                                   }
107
108
                         if(flag)
109
                                   continue;
110
111
                         for(it=ne[nowr].begin();it!=ne[nowr].end();++it){
                                   point t=d[it->t];
112
                                   LL s=chaji(ll,rr,t);
                                    \textbf{if}(s < 0 \text{ } | \text{ } | \text{ } (s = = 0 \text{ } \&\& \text{ } dist(ll,rr) > dist(ll,t) \text{ }) \text{ }) \{
114
115
                                             nowr=it->t;
116
                                              flag=1;
                                             break;
117
118
                                   }
119
                         }
120
               add(nowl,nowr);
121
122
               for(;1;){
                         flag=0;
123
124
                         int best=0,dir=0;
                         point ll=d[nowl],rr=d[nowr];
125
                         for(it=ne[nowl].begin();it!=ne[nowl].end();++it)
                                    \textbf{if}(\texttt{chaji}(\texttt{ll,rr,d}[\texttt{it->t}]) > 0 \text{ && ( best==0 } || \text{ in\_circle}(\texttt{ll,rr,d}[\texttt{best}],\texttt{d}[\texttt{it->t}]) < 0 \text{ ) ) } 
127
                                             best=it->t,dir=-1;
128
129
                         for(it=ne[nowr].begin();it!=ne[nowr].end();++it)
                                    \textbf{if}(\texttt{chaji}(\texttt{rr},\texttt{d}[\texttt{it->t}],\texttt{ll}) \\ > \emptyset \text{ &\& ( best==0 } || \text{ in\_circle}(\texttt{ll},\texttt{rr},\texttt{d}[\texttt{best}],\texttt{d}[\texttt{it->t}]) \\ < \emptyset \text{ ) )} 
130
131
                                             best=it->t,dir=1;
                         if(!best)break;
132
                         if(dir==-1){
133
134
                                   for(it=ne[nowl].begin();it!=ne[nowl].end();)
                                             if(cross(ll,d[it->t],rr,d[best])){
135
                                                       list<Edge>::iterator ij=it;
136
137
                                                       ne[it->t].erase(it->c);
138
139
                                                       ne[nowl].erase(it);
140
                                                       it=ij;
                                             }
141
^{142}
                                              else ++it;
143
                                   nowl=best:
144
                         else if(dir==1){
145
```



```
146
                               for(it=ne[nowr].begin();it!=ne[nowr].end();)
147
                                       if(cross(rr,d[it->t],ll,d[best])){
                                               list<Edge>::iterator ij=it;
148
149
                                                ne[it->t].erase(it->c);
150
151
                                                ne[nowl].erase(it);
152
                                                it=ij;
                                       }
153
154
                                       else ++it;
                              nowr=best;
155
156
157
                      add(nowl,nowr);
158
159
160
     struct MstEdge{
             int x,y;
161
162
             LL w;
    }e[MAX];
163
164
    int m;
165
    int operator < (const MstEdge& a,const MstEdge& b){</pre>
166
             return a.w<b.w;
167
168
    int fa[MAX];
     int findfather(int a){
169
170
             return fa[a]==a?a:fa[a]=findfather(fa[a]);
171
172
     int Hash[MAX],p[MAX/4][NUM],deep[MAX],place[MAX];
173 | LL dd[MAX/4][NUM];
    vector<int> ne2[MAX];
174
    queue<int> q;
176
    LL getans(int u,int v){
177
             if(deep[u]<deep[v])</pre>
178
179
             LL ans=0;
             int s=NUM-1;
181
             while(deep[u]>deep[v]){
                      while(s && deep[p[u][s]]<deep[v])--s;</pre>
182
183
                      ans=max(dd[u][s],ans);
                      u=p[u][s];
184
185
             }
             s=NUM-1;
186
             while(u!=v){
187
188
                      while(s && p[u][s]==p[v][s])--s;
                      ans=max(dd[u][s],ans);
189
                      ans=max(dd[v][s],ans);
190
191
                      u=p[u][s];
192
                      v=p[v][s];
193
             return ans;
194
195 }
196
    int main(){
     #ifndef ONLINE_JUDGE
197
             freopen("input.txt","r",stdin);freopen("output.txt","w",stdout);
198
199
     #endif
             int i,j,u,v;
200
201
             scanf("%d",&n);
             for(i=1;i<=n;++i){</pre>
202
                      cin>>d[i].x>>d[i].y;
204
                      d[i].num=i;
205
206
             sort(d+1,d+n+1);
207
             for(i=1;i<=n;++i)</pre>
208
                      place[d[i].num]=i;
209
             work(1,n);
210
             for(i=1;i<=n;++i)</pre>
211
                      for(list<Edge>::iterator it=ne[i].begin();it!=ne[i].end();++it){
                              if(it->t<i)continue;</pre>
212
213
214
                              e[m].x=i;
215
                              e[m].y=it->t;
216
                              e[m].w=dist(d[e[m].x],d[e[m].y]);
217
                      }
             sort(e+1,e+m+1);
218
219
             for(i=1;i<=n;++i)</pre>
220
                      fa[i]=i;
221
             for(i=1;i<=m;++i)</pre>
                      if(findfather(e[i].x)!=findfather(e[i].y)){
222
```

42


```
223
                               fa[findfather(e[i].x)]=findfather(e[i].y);
224
                              ne2[e[i].x].pb(e[i].y);
225
                              ne2[e[i].y].pb(e[i].x);
226
                      }
             q.push(1);
227
228
             deep[1]=1;
229
             Hash[1]=1;
             while(!q.empty()){
230
231
                      u=q.front();q.pop();
                      for(i=0;i<(int)ne2[u].size();++i){</pre>
232
                              v=ne2[u][i];
233
234
                              if(!Hash[v]){
                                       Hash[v]=1;
235
                                       p[v][0]=u;
237
                                       dd[v][0]=dist(d[u],d[v]);
                                       deep[v]=deep[u]+1;
238
239
                                       q.push(v);
                              }
240
                      }
241
242
             for(i=1;(1<<i)<=n;++i)</pre>
243
                      for(j=1;j<=n;++j){</pre>
                              p[j][i]=p[p[j][i-1]][i-1];
245
                              dd[j][i]=max(dd[j][i-1],dd[p[j][i-1])[i-1]);
246
247
             int m:
248
249
             scanf("%d",&m);
             while(m--){
250
                      scanf("%d%d",&u,&v);
251
252
                      printf("\%.10lf\n", sqrt((ld)getans(place[u], place[v])));\\
253
             }
254
             return 0;
255 }
```

最大流 Dinic

```
1
 2
            调用 maxfLow() 返回最大流
 3
            S.T 为源汇
            addedge(u,v,f,F)F 为反向流量
 5
            多组数据时调用 Ginit()
 6
 7
    struct E{
 8
            int v, f, F, n;
 9 | }G[M];
   int point[N], D[N], cnt, S, T;
10
11
   void Ginit(){
12
            cnt = 1;
13
            fill(point,0,T+1);
14 }
   void addedge(int u, int v, int f, int F){
15
            G[++cnt] = (E)\{v, 0, f, point[u]\}, point[u] = cnt;
16
17
            G[++cnt] = (E)\{u, 0, F, point[v]\}, point[v] = cnt;
18
   }
   int BFS(){
19
20
            queue<int> q;
21
            fill(D,0,T+1);
22
            q.push(S);
23
            D[S] = 1;
            while (!q.empty()){
24
                    int u = q.front();q.pop();
26
                    for_each_edge(u)
27
                             if (G[i].F > G[i].f){
28
                                     int v = G[i].v;
                                     \quad \textbf{if} \ (\texttt{!D[v]}) \{
29
                                             D[v] = D[u] + 1;
30
31
                                              if(v==T)return D[T];
                                              q.push(v);
32
33
                                     }
34
                             }
35
36
            return D[T];
37 | }
   int Dinic(int u, int F){
38
39
            if (u == T)
                                return F;
```



```
40
        int f = 0;
41
        for\_each\_edge(u)\{
              if(F<=f)break;</pre>
42
              int v = G[i].v;
43
              if (G[i].F > G[i].f && D[v] == D[u] + 1){
44
45
                    int temp = Dinic(v, min(F - f, G[i].F-G[i].f));
46
                    if (temp == 0)
                          D[v] = 0;
47
                    else{
48
                          f += temp;
49
50
                          G[i].f += temp;
                          G[i^1].f -= temp;
51
                    }
52
53
              }
54
        if(!f)D[u]=0;
55
56
        return f;
57 }
58
  int maxflow(){
59
        int f = 0:
60
        while (BFS())
              f += Dinic(S, infi);
61
62
        return f;
63 }
64
   最大权闭合子图
65
66
         在一个有向无环图中, 每个点都有一个权值。
        现在需要选择一个子图,满足若一个点被选,其后继所有点也会被选。最大化选出的点权和。
67
        建图方法:源向所有正权点连容量为权的边,所有负权点向汇点连容量为权的绝对值的边。若原图中存在有向边 <u,v>,则从 u 向 v 连容量为正无穷的边。答案为所有正权点
68
     和 - 最大流
   最大权密度子图
69
70
         在一个带点权带边权无向图中,选出一个子图,使得该子图的点权和与边权和的比值最大。
71
         二分答案 k, 问题转为最大化 |V|-k|E|
        确定二元关系:如果一条边连接的两个点都被选择,则将获得该边的权值 (可能需要处理负权)
72
   二分图最小点权覆盖集
73
         点覆盖集: 在无向图 G=(V,E) 中,选出一个点集 V′,使得对于任意 <u,v> 属于 E,都有 u 属于 V′ 或 v 属于 V′,则称 V′ 是无向图 G 的一个点覆盖集。
74
75
         最小点覆盖集:在无向图中,包含点数最少的点覆盖集被称为最小点覆盖集。
        这是一个 NPC 问题, 但在二分图中可以用最大匹配模型快速解决。
76
77
         最小点权覆盖集:在最小点覆盖集的基础上每个点均被赋上一个点权。
78
        建模方法: 对二分图进行黑白染色,源点向白点连容量为该点点权的边,黑点向汇点连容量为该点点权的边,对于无向边 <u,v>,设 u 为白点,则从 u 向 v 连容量为正无穷
79
     的边。最小割即为答案。
80
   二分图最大点权独立集
        点独立集:在无向图 G=(V,E) 中,选出一个点集 V',使得对于任意 u,v 属于 V',<br/>。u,v> 不属于 E',则称 V' 是无向图 G 的一个点独立集。
81
         最大点独立集:在无向图中,包含点数最多的点独立集被称为最大点独立集。
82
        / 最大独立集 / = /V/-/ 最大匹配数 /
83
         这是一个 NPC 问题, 但在二分图中可以用最大匹配模型快速解决。
84
85
         最大点权独立集:在最大点独立集的基础上每个点均被赋上一个点权。
        建模方法: 对二分图进行黑白染色,源点向白点连容量为该点点权的边,黑点向汇点连容量为该点点权的边,对于无向边 <u,v>,设 u 为白点,则从 u 向 v 连容量为正无穷
86
     的边。所有点权-最小割即为答案。
87
   最小路径覆盖
         在一个 DAG 中, 用尽量少的不相交的简单路径覆盖所有的节点。
88
         最小路径覆盖数 = 点数-路径中的边数
89
        建立一个二分图, 把原图中的所有节点分成两份 (X 集合为 i, Y 集合为 i ), 如果原来图中有 i->j 的有向边, 则在二分图中建立 i->j' 的有向边。最终 / 最小路径覆盖
90
     /=/V/-/ 最大匹配数 /
91
   无源汇可行流
92
93
        建图方法:
         首先建立附加源点 ss 和附加汇点 tt,对于原图中的边 x->y,若限制为 [b,c],那么连边 x->y,流量为 c-b,对于原图中的某一个点 i,记 d(i) 为流入这个点的所有边
94
      的下界和减去流出这个点的所有边的下界和
95
         若 d(i)>0, 那么连边 ss->i, 流量为 d(i), 若 d(i)<0, 那么连边 i->tt, 流量为-d(i)
96
        求解方法:
              在新图上跑 ss 到 tt 的最大流,若新图满流,那么一定存在一种可行流,此时,原图中每一条边的流量应为新图中对应的边的流量 + 这条边的流量下界
97
98
   有源汇可行流
        建图方法: 在原图中添加一条边 t->s, 流量限制为 [0,inf], 即让源点和汇点也满足流量平衡条件, 这样就改造成了无源汇的网络流图, 其余方法同上
99
        求解方法: 同 无源汇可行流
100
   有源汇最大流
101
102
        建图方法: 同有源汇可行流
103
         求解方法: 在新图上跑 ss 到 tt 的最大流,若新图满流,那么一定存在一种可行流,记此时 sigma f(s,i)=sum1,将 t->s 这条边拆掉,在新图上跑 s 到 t 的最大流,
     记此时 sigma f(s,i)=sum2, 最终答案即为 sum1+sum2
104
   有源汇最小流
105
        建图方法: 同 无源汇可行流
         求解方法: 求 ss->tt 最大流, 连边 t->s,inf, 求 ss->tt 最大流, 答案即为边 t->s,inf 的实际流量
106
107
   有源汇费用流
        建图方法: 首先建立附加源点 ss 和附加汇点 tt, 对于原图中的边 x->y, 若限制为 [b,c], 费用为 cost, 那么连边 x->y, 流量为 c-b, 费用为 cost, 对于原图中的某一
108
      个点 i, 记 d(i) 为流入这个点的所有边的下界和减去流出这个点的所有边的下界和, 若 d(i)>0, 那么连边 ss->i, 流量为 d(i), 费用为 0, 若 d(i)<0, 那么连边 i->tt, 流
     量为-d(i), 费用为 0, 连边 t->s, 流量为 inf, 费用为 0
```

44

KM(bfs)

```
1 | #include <bits/stdc++.h>
    using namespace std;
3
   #define LL long long
4 const LL N = 222;
 5 const LL inf = 0x3f3f3f3f3f3f3f3f3f3f3;
6 LL n;
7 | LL val[N][N];
   LL lx[N],ly[N];
9 LL linky[N];
10 LL pre[N];
11 bool vis[N];
12 bool visx[N], visy[N];
13
   LL slack[N];
14
15
   void bfs(LL k){
16
       LL px, py = 0, yy = 0, d;
17
       memset(pre, 0, sizeof(LL) * (n+2));
18
        memset(slack, inf, sizeof(LL) * (n+2));
19
       linky[py]=k;
20
21
            px = linky[py], d = inf, vis[py] = 1;
            for(LL i = 1; i <= n; i++)</pre>
22
                if(!vis[i]){
23
24
                    if(slack[i] > lx[px] + ly[i] - val[px][i])
                        slack[i] = lx[px] + ly[i] -val[px][i], pre[i]=py;
25
26
                    if(slack[i]<d) d=slack[i],yy=i;</pre>
                }
27
28
            for(LL i = 0; i <= n; i++)</pre>
29
                if(vis[i]) lx[linky[i]] -= d, ly[i] += d;
                else slack[i] -= d;
30
31
            py = yy;
32
        }while(linky[py]);
33
        while(py) linky[py] = linky[pre[py]] , py=pre[py];
34 }
35 LL KM(){
       memset(lx, 0, sizeof(LL)*(n+2));
37
       memset(ly, 0, sizeof(LL)*(n+2));
        memset(linky, 0, sizeof(LL)*(n+2));
38
39
        for(LL i = 1; i <= n; i++)</pre>
           memset(vis, 0, sizeof(bool)*(n+2)), bfs(i);
40
41
        LL ans = 0;
42
        for(LL i = 1; i <= n; ++i)</pre>
           ans += lx[i] + ly[i];
43
44
        return ans;
45 }
46 int main()
47 {
48
        LL T;
49
        scanf("%lld",&T);
50
        LL cas=0;
51
       while(T--){
52
            scanf("%lld",&n);
53
            for(LL i=1;i<=n;i++)</pre>
54
                for(LL j=1;j<=n;j++)</pre>
55
                    scanf("%1ld",&val[i][j]),val[i][j]=-val[i][j];
            printf("Case #%lld: %lld\n",++cas,-KM());
56
57
58
        return 0;
59
```

最大团


```
6 typedef bool BB[N];
   struct Maxclique {
            const BB* e; int pk, level; const float Tlimit;
8
9
            struct Vertex\{ int i, d; Vertex(int i):i(i),d(0)\{\} \};
            typedef vector<Vertex> Vertices; typedef vector<int> ColorClass;
10
11
            Vertices V; vector<ColorClass> C; ColorClass QMAX, Q;
12
            static bool desc_degree(const Vertex &vi, const Vertex &vj){
                    return vi.d > vj.d;
13
14
            void init_colors(Vertices &v){
15
16
                    const int max degree = v[0].d;
17
                    for(int i = 0; i < (int)v.size(); i++) v[i].d = min(i, max_degree) + 1;</pre>
18
19
            void set_degrees(Vertices &v){
20
                    for(int i = 0, j; i < (int)v.size(); i++)</pre>
                             for(v[i].d = j = 0; j < int(v.size()); j++)</pre>
21
22
                                     v[i].d += e[v[i].i][v[j].i];
23
^{24}
            struct StepCount{ int i1, i2; StepCount():i1(0),i2(0){}};
25
            vector<StepCount> S;
            bool cut1(const int pi, const ColorClass &A){
26
                    for(int i = 0; i < (int)A.size(); i++) if (e[pi][A[i]]) return true;</pre>
27
28
                    return false;
30
            void cut2(const Vertices &A, Vertices &B){
31
                    for(int i = 0; i < (int)A.size() - 1; i++)</pre>
32
                             if(e[A.back().i][A[i].i])
                                     B.push_back(A[i].i);
33
34
            void color_sort(Vertices &R){
35
36
                    int j = 0, maxno = 1, min_k = max((int)QMAX.size() - (int)Q.size() + 1, 1);
37
                    C[1].clear(), C[2].clear();
38
                    for(int i = 0; i < (int)R.size(); i++) {</pre>
                             int pi = R[i].i, k = 1;
39
                             while(cut1(pi, C[k])) k++;
41
                             if(k > maxno) maxno = k, C[maxno + 1].clear();
42
                             C[k].push back(pi);
43
                             if(k < min_k) R[j++].i = pi;
44
                    }
                    if(j > 0) R[j - 1].d = 0;
45
46
                    for(int k = min_k; k <= maxno; k++)</pre>
47
                             for(int i = 0; i < (int)C[k].size(); i++)</pre>
                                     R[j].i = C[k][i], R[j++].d = k;
48
49
            void expand_dyn(Vertices &R){// diff -> diff with no dyn
51
                    S[level].i1 = S[level].i1 + S[level - 1].i1 - S[level].i2;//diff
                    S[level].i2 = S[level - 1].i1;//diff
52
53
                    while((int)R.size()) {
                             if((int)Q.size() + R.back().d > (int)QMAX.size()){
54
                                     Q.push_back(R.back().i); Vertices Rp; cut2(R, Rp);
55
56
                                     if((int)Rp.size()){
                                             if((float)S[level].i1 / ++pk < Tlimit) degree_sort(Rp);//diff</pre>
57
58
                                              color_sort(Rp);
59
                                             S[level].i1++, level++;//diff
60
                                             expand_dyn(Rp);
61
                                             level--;//diff
62
63
                                     else if((int)Q.size() > (int)QMAX.size()) QMAX = Q;
64
                                     Q.pop_back();
65
                             else return;
66
                             R.pop_back();
67
68
                    }
69
70
            void mcqdyn(int* maxclique, int &sz){
71
                    set_degrees(V); sort(V.begin(),V.end(), desc_degree); init_colors(V);
                    for(int i = 0; i < (int)V.size() + 1; i++) S[i].i1 = S[i].i2 = 0;</pre>
72
73
                    expand_dyn(V); sz = (int)QMAX.size();
74
                    for(int i = 0; i < (int)QMAX.size(); i++) maxclique[i] = QMAX[i];</pre>
75
76
            void degree_sort(Vertices &R){
77
                    set_degrees(R); sort(R.begin(), R.end(), desc_degree);
78
79
            Maxclique(const BB* conn, const int sz, const float tt = 0.025) \
80
             : pk(0), level(1), Tlimit(tt){
                    for(int i = 0; i < sz; i++) V.push_back(Vertex(i));</pre>
81
82
                    e = conn, C.resize(sz + 1), S.resize(sz + 1);
```

图论

```
83 }
84 };
```

最小度限制生成树

```
1
           只限制一个点的度数
3
4 #define CL(arr, val)
                        memset(arr, val, sizeof(arr))
5 #define REP(i, n)
                        for((i) = 0; (i) < (n); ++(i))
6 #define FOR(i, l, h) for((i) = (l); (i) \leftarrow (h); ++(i))
   #define FORD(i, h, l)
                         for((i) = (h); (i) >= (l); --(i))
8 #define L(x) (x) << 1
9 #define R(x) (x) << 1 | 1
10 #define MID(l, r) (l + r) >> 1
11 | #define Min(x, y)  x < y ? x : y
12
   #define Max(x, y) \quad x < y ? y : x
13 #define E(x) (1 << (x))
14 const double eps = 1e-8;
15 typedef long long LL;
16 using namespace std;
17 const int inf = ~0u>>2;
18 const int N = 33;
19 int parent[N];
20 int g[N][N];
21 bool flag[N][N];
22 map<string, int> NUM;
23 int n, k, cnt, ans;
24 struct node {
      int x;
26
      int y;
      int v;
27
28 } a[1<<10];
29 struct edge {
     int x;
30
31
       int y;
      int v;
32
33
   } dp[N];
34 bool cmp(node a, node b) {
35
       return a.v < b.v;</pre>
36 }
37 | int find(int x) { //并查集查找
38
      int k, j, r;
39
       r = x;
      while(r != parent[r]) r = parent[r];
40
       k = x;
41
42
       while(k != r) {
43
          j = parent[k];
44
           parent[k] = r;
           k = j;
45
47
       return r;
48 }
49
   int get_num(string s) { //求编号
       if(NUM.find(s) == NUM.end()) {
50
          NUM[s] = ++cnt;
51
52
53
       return NUM[s];
54 }
55 void kruskal() { //...
       int i;
56
57
       FOR(i, 1, n) {
58
          if(a[i].x == 1 || a[i].y == 1) continue;
59
           int x = find(a[i].x);
          int y = find(a[i].y);
60
          if(x == y) continue;
61
62
           flag[a[i].x][a[i].y] = flag[a[i].y][a[i].x] = true;
63
           parent[y] = x;
           ans += a[i].v;
64
65
      //printf("%d\n", ans);
66
67 }
68 void dfs(int x, int pre) { //dfs 求 1 到某节点路程上的最大值
       int i;
69
       FOR(i, 2, cnt) {
70
```



```
71
            if(i != pre && flag[x][i]) {
 72
                if(dp[i].v == -1) {
 73
                    if(dp[x].v > g[x][i]) dp[i] = dp[x];
 74
                       dp[i].v = g[x][i];
 75
                                      //记录这条边
 76
                       dp[i].x = x;
 77
                       dp[i].y = i;
                    }
 78
 79
 80
                dfs(i, x);
 81
 82
 83 }
    void init() {
 84
 85
        ans = 0; cnt = 1;
        CL(flag, false);
 86
 87
        CL(g, -1);
        NUM["Park"] = 1;
 88
        for(int i = 0; i < N; ++i) parent[i] = i;</pre>
 89
 90 }
 91 | int main() {
 92
        //freopen("data.in", "r", stdin);
        int i, j, v;
 93
 94
        string s;
 95
        scanf("%d", &n);
        init();
 96
 97
        for(i = 1; i <= n; ++i) {</pre>
 98
            cin >> s;
 99
            a[i].x = get_num(s);
100
            cin >> s;
101
            a[i].y = get_num(s);
102
            scanf("%d", &v);
103
            a[i].v = v;
            if(g[a[i].x][a[i].y] == -1)
                                           g[a[i].x][a[i].y] = g[a[i].y][a[i].x] = v;
104
105
                   g[a[i].x][a[i].y] = g[a[i].y][a[i].x] = min(g[a[i].x][a[i].y], v);
106
107
        scanf("%d", &k);
108
        int set[N], Min[N];
        REP(i, N) Min[i] = inf;
109
        sort(a + 1, a + n + 1, cmp);
110
111
        kruskal();
        FOR(i, 2, cnt) { //找到 1 到其他连通块的最小值
112
113
            if(g[1][i] != -1) {
                int x = find(i);
114
                if(Min[x] > g[1][i]) {
116
                    Min[x] = g[1][i];
117
                    set[x] = i;
118
                }
            }
119
120
        }
121
        int m = 0;
        FOR(i, 1, cnt) { //把 1 跟这些连通块连接起来
122
123
            if(Min[i] != inf) {
124
               m++;
                flag[1][set[i]] = flag[set[i]][1] = true;
125
126
                ans += g[1][set[i]];
            }
127
128
        //printf("%d\n", ans);
129
        for(i = m + 1; i <= k; ++i) { //从度为 m+1 一直枚举到最大为 k, 找 ans 的最小值
130
131
            CL(dp, -1);
132
            dp[1].v = -inf; //dp 初始化
            for(j = 2; j <= cnt; ++j) {</pre>
133
134
                if(flag[1][j]) dp[j].v = -inf;
135
136
            dfs(1, -1);
            int tmp, mi = inf;
137
138
            for(j = 2; j <= cnt; ++j) {</pre>
139
                if(g[1][j] != -1) {
                                                 //找到一条 dp 到连通块中某个点的边,替换原来连通块中的边(前提是新找的这条边比原来连通块中那条边要大)
                    if(mi > g[1][j] - dp[j].v) {
140
                       mi = g[1][j] - dp[j].v;
142
                       tmp = j;
143
                    }
144
                }
145
            if(mi >= 0) break;
                                //如果不存在这样的边,直接退出
146
147
            int x = dp[tmp].x, y = dp[tmp].y;
```

图论 48

```
      148
      flag[1][tmp] = flag[tmp][1] = true; //加上新找的边

      149
      flag[x][y] = flag[y][x] = false; //删掉被替换掉的那条边

      150
      ans += mi;

      151
      }

      152
      printf("Total miles driven: %d\n", ans);

      153
      return 0;

      154
      }
```

最优比率生成树

```
1 #define mod 1000000009
    #define inf 1000000000
3 #define eps 1e-8
4 using namespace std;
5 int n,cnt;
6 int x[1005],y[1005],z[1005],last[1005];
   double d[1005],mp[1005][1005],ans;
   bool vis[1005];
   void prim(){
10
            for(int i=1;i<=n;i++){</pre>
                    d[i]=inf;vis[i]=0;
11
12
13
            d[1]=0;
            for(int i=1;i<=n;i++){</pre>
14
15
                    int now=0;d[now]=inf;
16
                     17
                     ans+=d[now];vis[now]=1;
18
                     for(int j=1;j<=n;j++)</pre>
                             \textbf{if}(\texttt{mp[now][j]} < \texttt{d[j]} \& \& ! \texttt{vis[j]})
19
                                      d[j]=mp[now][j];
20
21
22
23
   double sqr(double x){
24
            return x*x;
25 }
26
   double dis(int a,int b){
27
            return sqrt(sqr(x[a]-x[b])+sqr(y[a]-y[b]));
28
29
   void cal(double mid){
            ans=<mark>0;</mark>
30
31
            for(int i=1;i<=n;i++)</pre>
32
                    for(int j=i+1;j<=n;j++)</pre>
33
                             mp[i][j]=mp[j][i]=abs(z[i]-z[j])-mid*dis(i,j);
34
            prim();
35 }
36
   int main(){
            while(scanf("%d",&n)){
37
38
                     if(n==0)break;
39
                     for(int i=1;i<=n;i++)</pre>
                             scanf("%d%d%d",&x[i],&y[i],&z[i]);
40
41
                     double l=0,r=1000;
                    for(int i=1;i<=30;i++){</pre>
42
43
                             double mid=(l+r)/2;
44
                             cal(mid);
                             if(ans<0)r=mid;</pre>
45
                             else l=mid;
46
47
                    }
                    printf("%.3f\n",1);
48
49
50
            return 0;
51 }
```

欧拉路径覆盖

```
1 /// 无向图的最少欧拉路径覆盖
2 /// mxn : 点数.
3 /// mxm : 边数.
4 /// 最终结果存在 Ls 中,代表边的编号.
5 /// 初始化: 直接将图和结果链表清除即可.
6 // et = pool;
8 // memset(eds, 0, sizeof(edge*) * (n + 1));
9 // Ls.clear();
10
```



```
11 /// AC HDU 6311
12
13
   14
15 typedef list<edge*>::iterator iter;
16
17 const int mxn = 1e5 + 50;
18 | cosnt int mxm = 1e5 + 50;
19 struct edge { int id; int in; edge* nxt; bool used; } pool[mxm * 2]; edge* et = pool;
20 | edge* opp(edge* t) { int x = (int)(t - pool); if(x & 1) return t - 1; return t + 1; }
   edge* eds[mxn]; // 注意这一数组在运算时可能改变. 需要原图的话应做备份.
21
22
   void addedge(int a, int b, int id)
23 {
       et->used = false; et->id = id; et->in = b; et->nxt = eds[a]; eds[a] = et++;
25
       et->used = false; et->id = -id; et->in = a; et->nxt = eds[b]; eds[b] = et++;
26 }
27 int n, m;
28 int deg[mxn]; //度数.
29 | list<edge*> ls;
30 | iter pos[mxn];
31 | bool inq[mxn];
   queue<int> q;
33 int stk[mxn]; int st = 0;
34 // 走一条路, 清除路上的边.
35 // 如果起点是奇数度, 最终会走到另一个度数为奇数的点。
36 // 如果起点是偶数度, 最终会走回起点.
37
   void Reduce(int x, iter loc)
38 {
       stk[st++] = x;
39
40
       while(true)
41
42
          while(eds[x] && eds[x]->used) eds[x] = eds[x]->nxt;
43
          if(!eds[x]) break;
          edge* e = eds[x];
44
45
          opp(e)->used = true;
46
          e->used = true;
47
          deg[x]--;
48
          deg[e->in]--;
          pos[x] = ls.insert(loc, e);
49
50
          x = stk[st++] = e->in;
51
       }
       repr(i, 0, st-1) if(deg[stk[i]] != 0 && !inq[stk[i]])
52
53
54
          q.push(stk[i]);
          inq[stk[i]] = true;
56
       }
57
       st = 0;
58 }
   // 使用欧拉路清除同一个连通分量内部的边。
59
60 void ReduceIteration()
61 {
62
       while(!q.empty())
63
          int x = q.front(); q.pop(); inq[x] = false;
64
65
          if(deg[x] & 1)
66
67
              Reduce(x, ls.end());
              ls.insert(ls.end(), nullptr);
68
69
70
          else if(deg[x] != 0) Reduce(x, pos[x]);
71
72 | }
73
74
75
76 | {
       // 读入数据.
77
78
       rep(i, 1, m)
79
          int a = getint();
80
81
          int b = getint();
82
          deg[a]++;
83
          deg[b]++;
84
          addedge(a, b, i);
85
       }
86
       // 初始化.
87
```

```
rep(i, 1, n) pos[i] = ls.end();
89
90
        // 先清除所有奇数度节点所在联通块。
        rep(i, 1, n) if(deg[i] & 1) q.push(i);
        ReduceIteration();
92
        // 清除所有仅包含偶数度节点的联通块。
94
       rep(i, 1, n) if(deg[i] != 0)
95
           q.push(i);
97
98
           inq[i] = true;
99
           ReduceIteration();
           ls.insert(ls.end(), nullptr);
100
102 }
```

数学

常见积性函数

常用公式

$$\Sigma_{d|n}\varphi(n)=n o \varphi(n)=n-\Sigma_{d|n,d< n}$$
 $[n=1]=\Sigma_{d|n}\mu(d)$ 排列组合后二项式定理转换即可证明 $n=\Sigma_{d|n}\varphi(d)$ 将 $\frac{i}{n}(1\leq i\leq n)$ 化为最简分数统计个数即可证明

狄利克雷卷积

 $h(n)=\sum_{d|n}f(d)g(\frac{n}{d})$ 称为 f 和 g 的狄利克雷卷积,也可以理解为 $h(n)=\sum_{ij=n}f(i)g(j)$ 两个积性函数的狄利克雷卷积仍为积性函数 狄利克雷卷积满足交换律和结合律

莫比乌斯反演

$$\begin{split} f(n) &= \sum_{d|n} g(d) \Rightarrow g(n) = \sum_{d|n} \mu(d) * f(\frac{n}{d}) \\ \mathbb{P} f &= g * I \Leftrightarrow g = \mu * f \\ \mu * I &= e \\ f &= g * I \Rightarrow \mu * f = g * (\mu * I) = g * e = g \\ g &= \mu * f \Rightarrow f = g * I \\ F(n) &= \sum_{n|d} f(d) \Rightarrow f(n) = \sum_{n|d} \mu(\frac{n}{d}) * F(d) \\ f(n) &= \sum_{d|n} \phi(d) \Rightarrow \phi(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \mu(d) \frac{n}{d} \end{split}$$

常用等式

```
\begin{split} \varphi &= \mu * id \\ \varphi * I &= id \\ \sum_{d|N} \phi(d) &= N \\ \sum_{i \leq N} i * [(i,N) = 1] &= \frac{N*\phi(N)}{2} \\ \sum_{d|N} \frac{\mu(d)}{d} &= \frac{\phi(N)}{N} \\ \\ \ddot{\mathbf{F}}\mathbf{H}代换 \\ \sum_{d|N} \mu(d) &= [N = 1] \\ \\ \mathbf{考虑每个数的贡献} \\ \sum_{i < N} \left\lfloor \frac{N}{i} \right\rfloor &= \sum_{i < N} d(i) \end{split}
```

Pell 方程

```
形如 x^2 - dy^2 = 1 的方程
当 d 为完全平方数时无解
假设 (x_0, y_0) 为最小正整数解
x_n = x_{n-1} \times x_0 + d \times y_{n-1} \times y_0
y_n = x_{n-1} \times y_0 + y_{n-1} \times x_0
```

SG 函数

```
1 #define MAX 150 //最大的步数
2 int step[MAX], sg[10500], steps; //使用前应将 sg 初始化为-1
3 //step: 所有可能的步数,要求从小到大排序
   //steps:step 的大小
5 //sg: 存储 sg 的值
6 int getsg(int m){
      int hashs[MAX] = \{\emptyset\};
       int i:
       for (i = 0; i < steps; i++){
          if (m - step[i] < 0) {</pre>
10
              break;
11
12
          if (sg[m - step[i]] == -1) {
13
              sg[m - step[i]] = getsg(m - step[i]);
14
15
          hashs[sg[m - step[i]]] = 1;
16
       for (i = 0;; i++) {
18
19
           if (hashs[i] == 0) {
20
              return i;
21
23 }
24
25
26 Array(存储可以走的步数, Array[0] 表示可以有多少种走法)
27 Array[] 需要从小到大排序
28 1. 可选步数为 1-m 的连续整数,直接取模即可, SG(x)=x%(m+1);
29 2. 可选步数为任意步, SG(x) = x;
30 3. 可选步数为一系列不连续的数,用 GetSG(计算)
31
32 //获取 sg 表
33 int SG[MAX], hashs[MAX];
34
   void init(int Array[], int n){
36
      int i, j;
       memset(SG, 0, sizeof(SG));
37
38
       for (i = 0; i <= n; i++){</pre>
          memset(hashs, 0, sizeof(hashs));
39
40
           for (j = 1; j <= Array[0]; j++){</pre>
              if (i < Array[j]) {</pre>
41
42
                  break;
43
              hashs[SG[i - Array[j]]] = 1;
44
```

矩阵乘法快速幂

```
MATN 为矩阵大小
2
            MOD 为模数
3
4
            调用 pamt(a,k) 返回 a^k
5
6
    struct mat{
7
            int c[MATN][MATN];
8
            mat(){SET(c,0);}
9
   };
10
   mat cheng(const mat &a, const mat &b){
11
            mat w = mat();
12
            \texttt{rep(i,0,MATN-1)} \\ \texttt{rep(j,0,MATN-1)} \\ \texttt{rep(k,0,MATN-1)} \\ \{
                     w.c[i][j] += (ll)a.c[i][k] * b.c[k][j] % MOD;
13
                     if(w.c[i][j]>=MOD)w.c[i][j]-=MOD;
14
15
            }
16
            return w;
^{17}
   mat pmat(mat a, 11 k){
18
19
            mat i = mat();
20
            rep(j,0,MATN-1)
                     i.c[j][j] = 1;
21
22
            if(k<0)return i;</pre>
            while(k){
23
24
25
                              i=cheng(i,a);
26
                     a=cheng(a,a);
27
28
29
            return i;
```

线性规划

```
//求 max{cx|Ax<=b,x>=0} 的解
   typedef vector<double> VD;
 3
   VD simplex(vector<VD> A, VD b, VD c) {
            int n = A.size(), m = A[0].size() + 1, r = n, s = m - 1;
 4
            vector<VD> D(n + 2, VD(m + 1, 0)); vector<int> ix(n + m);
 6
            for (int i = 0; i < n + m; ++ i) ix[i] = i;
            for (int i = 0; i < n; ++ i) {</pre>
                    for (int j = 0; j < m - 1; ++ j) D[i][j] = -A[i][j];
 9
                    D[i][m - 1] = 1; D[i][m] = b[i];
                    if (D[r][m] > D[i][m]) r = i;
10
11
            for (int j = 0; j < m - 1; ++ j) D[n][j] = c[j];
12
            D[n + 1][m - 1] = -1;
            for (double d; ; ) {
14
15
                    if (r < n) {
16
                             int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
                            D[r][s] = 1.0 / D[r][s]; vector<int> speedUp;
17
18
                             for (int j = 0; j <= m; ++ j) if (j != s) {
19
                                     D[r][j] *= -D[r][s];
                                     if(D[r][j]) speedUp.push_back(j);
20
21
                             for (int i = 0; i \le n + 1; ++ i) if (i != r) {
22
                                     for(int j = 0; j < speedUp.size(); ++ j)</pre>
23
                                     D[i][speedUp[j]] += D[r][speedUp[j]] * D[i][s];
24
25
                                     D[i][s] *= D[r][s];
26
                    }} r = -1; s = -1;
27
                    for (int j = 0; j < m; ++ j) if (s < 0 \mid | ix[s] > ix[j])
28
                             if (D[n + 1][j] > EPS \mid | (D[n + 1][j] > -EPS \&\& D[n][j] > EPS)) s = j;
                    if (s < 0) break;</pre>
29
                    for (int i = 0; i < n; ++ i) if (D[i][s] < -EPS)</pre>
30
```

线性基

```
1 | 11 a[N],b[N];
 3 void insert(ll *ff,ll x){
       repr(i,<mark>0,60</mark>)
 4
           if((x>>i)&111)
               if(!ff[i]){
 6
                    ff[i] = x;
                    return;
               }
 9
10
               else
11
                    x ^= ff[i];
12 }
  // 查询一个数是否在异或集合内
13
14 bool check(ll x){
15
       repr(i,0,60){
16
            if((x>>i)&1){
               if(((b[i]>>i)&1)==0)return 0;
17
                x^=b[i];
18
19
               if(!x)return 1;
20
            }
21
22
       return 0;
```

线性筛

```
is=0 是质数
2
          phi 欧拉函数
          mu 莫比乌斯函数
          minp 最小质因子
5
          mina 最小质因子次数
          d 约数个数
9 int prime[N];
10 int size;
11
   bool is[N];
12 int phi[N];
13 | int mu[N];
14 int minp[N];
15 int mina[N];
16
   int d[N];
   void getprime(int list){
17
          mu[1] = 1;
18
19
          phi[1] = 1;
20
          is[1] = 1;
21
           rep(i,2,list){
                  if(!is[i]){
22
                          // 新的质数
23
                          prime[++size] = i;
25
                          phi[i] = i-1;
26
                          mu[i] = -1;
27
                          minp[i] = i;
                         mina[i] = 1;
28
                          d[i] = 2;
30
31
                  rep(j,1,size){
32
                          // 用已有的质数去筛合数
                          if(i*prime[j]>list)
33
34
                                 break;
                          // 标记合数
35
                          is[i * prime[j]] = 1;
36
```

```
minp[i*prime[j]] = prime[j];
37
38
                              if(i % prime[j] == 0){
                                      // i 是质数的倍数
39
                                       // 这个质数的次数大于 1
                                       mu[i*prime[j]] = 0;
41
42
43
                                       phi[i*prime[j]] = phi[i] * prime[j];
44
45
                                       mina[i*prime[j]] = mina[i]+1;
                                       \label{eq:disprime} \begin{split} d[i*prime[j]] &= d[i]/(mina[i]+1)*(mina[i]+2); \end{split}
46
47
48
                              }else{
                                       // 添加一个新的质因子
49
                                       phi[i*prime[j]] = phi[i] * (prime[j] - 1);
50
51
                                       mu[i*prime[j]] = -mu[i];
                                       mina[i*prime[j]] = 1;
52
53
                                       d[i*prime[j]] = d[i]*d[prime[j]];
                              }
54
55
                     }
56
            }
57
```

线性求逆元

```
1 inv[1] = 1;
2 rep(i,2,n)inv[i] = (MOD-(MOD/i)) * (11)inv[MOD%i] % MOD;
```

FFT

```
1 #define maxfft 524288+5
2
   const double pi=acos(-1.0);
3
    struct cp{
        double a,b;
       cp operator +(const cp &o)const {return (cp){a+o.a,b+o.b};}
       cp operator -(const cp &o)const {return (cp){a-o.a,b-o.b};}
        cp operator *(const cp &o)const {return (cp){a*o.a-b*o.b,b*o.a+a*o.b};}
       cp operator *(const double &o)const {return (cp){a*o,b*o};}
        cp operator !() const{return (cp){a,-b};}
10 }w[maxfft];
  int pos[maxfft];
11
12
   void fft_init(int len){
13
        int j=0;
14
        while((1<<j)<len)j++;</pre>
15
        for(int i=0;i<len;i++)</pre>
16
            \mathsf{pos[i]}\!\!=\!\!\mathsf{pos[i>>\!\!1]>>\!\!1}\!\mid\!((i\&\!1)<\!<\!j);
^{17}
18
   }
19
    void fft(cp *x,int len,int sta){
       for(int i=0;i<len;i++)</pre>
20
21
            if(i<pos[i])swap(x[i],x[pos[i]]);</pre>
^{22}
        w[0]=(cp)\{1,0\};
23
        for(unsigned i=2;i<=len;i<<=1){</pre>
            cp g=(cp){cos(2*pi/i),sin(2*pi/i)*sta};
24
25
            for(int j=i>>1;j>=0;j-=2)w[j]=w[j>>1];
            for(int j=1;j<i>>1;j+=2)w[j]=w[j-1]*g;
26
27
            28
                cp *a=x+j,*b=a+(i>>1);
                for(int l=0; 1<i>>1; 1++){
29
30
                     cp o=b[1]*w[1];
31
                    b[1]=a[1]-o;
32
                     a[1]=a[1]+o;
33
                }
34
35
36
        if(sta==-1)for(int i=0;i<len;i++)x[i].a/=len,x[i].b/=len;</pre>
37 }
   cp x[maxfft],y[maxfft],z[maxfft];
38
39
    // a[0..n-1] 和 b[0..m-1] 的卷积存在 c 中
40
   void FFT(int *a,int n,int *b,int m,ll *c){
41
        int len=1;
42
        while(len<(n+m+1)>>1)len<<=1;</pre>
43
        fft_init(len);
        for(int i=n/2; i<len; i++)x[i].a=x[i].b=0;
44
45
        for(int i=m/2;i<len;i++)y[i].a=y[i].b=0;</pre>
```

```
46
        for(int i=0;i<n;i++)(i&1?x[i>>1].b:x[i>>1].a)=a[i];
47
       48
       fft(x,len,1),fft(y,len,1);
49
        for(int i=0;i<len/2;i++){</pre>
           int j=len-1&len-i;
50
           z[i]=x[i]*y[i]-(x[i]-!x[j])*(y[i]-!y[j])*(w[i]+(cp)\{1,0\})*0.25;
51
52
       for(int i=len/2;i<len;i++){</pre>
53
54
           int j=len-1&len-i;
           z[i] = x[i] * y[i] - (x[i] - !x[j]) * (y[i] - !y[j]) * ((cp)\{1,0\} - w[i^{len})^{1}) * 0.25;
55
56
57
       fft(z,len,-1);
       for(int i=0;i<n+m;i++)</pre>
58
           if(i&1)c[i]=(11)(z[i>>1].b+0.5);
59
60
           else c[i]=(ll)(z[i>>1].a+0.5);
61 }
```

NTT+CRT

```
计算形式为 a[n] = sigma(b[n-i]*c[i]) 的卷积, 结果存在 c 中
2
3
            下标从 0 开始
4
           调用 convolution(a,n,b,m,c)
           MOD 为模数,CRT 合并
           若模数为 m1, 卷积做到 x3, 把 x3 替换为 c
           首先调用 GetWn(m1,WN[0]),GetWn(m2,WN[1])
           模数满足的性质为 mod=2^k*(奇数)+1 2^k>2n 时可以在模意义下做 FFT
9
           998244353 = 2^23*7*17+1
           1004535809 = 2^21*479+1
10
11
12 const int G = 3;
   const int MOD=1000003,m1=998244353,m2=1004535809;
13
14
   const ll P=1002772198720536577LL;
15
   inline ll mul(ll a,ll b){
           11 d=(11)floor(a*(double)b/P+0.5);
16
17
           11 ret=a*b-d*P;
18
           if(ret<0)ret+=P;</pre>
19
           return ret;
20 }
  inline int CRT(int r1,int r2){
21
^{22}
           ll a = mul(r1,m2);
23
           a = mul(a,33274795911);
^{24}
           11 b = mul(r2,m1);
25
           b = mul(b,66969069911);
           a = (a+b)\%P;
26
27
           return a%MOD;
28 | }
   int mul(int x, int y, int mod){
29
30
           return (11)x*y%mod;
31 }
32
  int add(int x, int y, int mod){
33
           x += y;
34
           if(x >= mod)return (x-mod);
35
           return x;
36 }
37
   const int NUM = 20;
38
  int WN[2][NUM];
   void GetWn(int mod, int wn[]){
39
40
           rep(i,0,NUM-1){
41
                   int t = 1<<i;
                   wn[i] = pwM(G, (mod - 1) / t, mod);
42
43
44
   }
45
   void NTT(int a[], int len, int t, int mod, int wn[]){
           for(int i = 0, j = 0; i < len; ++i){}
46
47
                   if(i > j)swap(a[i], a[j]);
48
                   for(int 1 = len >> 1;(j ^= 1) < 1;1 >>= 1);
49
           }
           int id = 0;
50
           for(int h = 2;h <= len;h <<= 1){</pre>
51
52
                   id++;
                    for(int j = 0;j < len;j += h){</pre>
54
                           int w = 1;
55
                           for(int k = j; k < j+h/2; ++k){
56
                                   int u = a[k];
```

```
57
                                               int t = mul(w, a[k+h/2], mod);
58
                                               a[k] = add(u, t, mod);
59
                                               a[k+h/2] = add(u, mod-t, mod);
60
                                               w = mul(w, wn[id], mod);
                                    }
61
62
                         }
63
               if(t == -1){
64
65
                         rep(i,1,len/2-1)swap(a[i], a[len-i]);
                         int inv = pwM(len, mod-2, mod);
66
67
                         rep(i,0,len-1)a[i] = mul(a[i], inv, mod);
68
69 }
70 int x1[N], x2[N], x3[N], x4[N];
71
    void convolution(ll a[], int l1, ll b[], int l2, ll c[]){
72
               int len = 1;
73
               while(len < 11*2 || len < 12*2)len <<= 1;
               rep(i,0,11-1)x1[i] = a[i]\%m1;
74
75
               rep(i,11,len-1)x1[i] = 0;
76
               rep(i,0,12-1)x2[i] = b[i]\%m1;
77
               rep(i,12,len-1)x2[i] = 0;
78
               \label{eq:NTT} $$\operatorname{NTT}(x1, \operatorname{len}, \mathbf{1}, \operatorname{m1}, \operatorname{WN}[\mathbf{0}]); \operatorname{NTT}(x2, \operatorname{len}, \mathbf{1}, \operatorname{m1}, \operatorname{WN}[\mathbf{0}]);
79
               rep(i,0,len-1)x3[i] = (ll)x1[i]*x2[i]%m1;
80
               NTT(x3,len,-1,m1,WN[0]);
81
               // 单模数到这里结束
               rep(i,0,11-1)x1[i] = a[i]\%m2;
82
83
               rep(i,l1,len-1)x1[i] = 0;
               rep(i,0,12-1)x2[i] = b[i]\%m2;
84
85
               rep(i,12,len-1)x2[i] = 0;
86
               \label{eq:NTT} \mbox{NTT}(\mbox{x1},\mbox{len},\mbox{\bf 1},\mbox{m2},\mbox{WN}[\mbox{\bf 1}]); \mbox{NTT}(\mbox{x2},\mbox{len},\mbox{\bf 1},\mbox{m2},\mbox{WN}[\mbox{\bf 1}]);
87
               rep(i,0,len-1)x4[i] = (ll)x1[i]*x2[i]%m2;
88
               NTT(x4,len,-1,m2,WN[1]);
89
               // 合并两次卷积的结果
               rep(i,0,len-1)c[i] = CRT(x3[i], x4[i]);
90
```

NTT 启发式合并

```
// 2017 CCPC Hangzhou G
2 const int MOD = 998244353;
3 \mid const int G = 3;
4 const int m1=998244353;
   const int NUM = 20;
6
   int WN[2][NUM];
   void GetWn(int mod, int wn[]){
7
            rep(i,0,NUM-1){
9
                    int t = 1<<i;</pre>
10
                    wn[i] = pwM(G, (mod - 1) / t,mod);
11
12 }
   void NTT(vi &a, int len, int t, int mod, int wn[]){
13
14
            for(int i = 0, j = 0; i < len; ++i){
15
                    if(i > j)swap(a[i], a[j]);
16
                    for(int 1 = len >> 1;(j ^= 1) < 1;1 >>= 1);
17
            int id = 0;
18
19
            for(int h = 2;h <= len;h <<= 1){</pre>
20
                    id++;
21
                    for(int j = 0;j < len;j += h){</pre>
                            int w = 1;
22
                             for(int k = j; k < j+h/2; ++k){
24
                                     int u = a[k];
25
                                     int t = _Mul(w, a[k+h/2]);
26
                                     a[k] = Add(u, t);
                                     a[k+h/2] = Add(u, mod-t);
27
                                     w = _Mul(w, wn[id]);
28
29
                            }
                    }
30
31
            if(t == -1){
32
                    rep(i,1,len/2-1)swap(a[i], a[len-i]);
33
34
                    int inv = pw(len, mod-2);
                    rep(i,0,len-1)a[i] = Mul(a[i], inv);
35
36
            }
37 }
```

```
int n, m, k, q;
39
    \textcolor{red}{\textbf{struct}} \ \textbf{VI} \{
40
            vector<int> r;
41
             int len;
            void clear(){
42
43
                     len = 0;
44
                     r.clear();
45
            }
46
             void out(){
                     pr(len),pr(':');
47
48
                     for(auto x:r)pr(' '),pr(x);
49
                     ln;
50
             VI operator *=(VI &a){
52
                     int L = 1;
                     while(L < len+a.len)L <<= 1;</pre>
53
54
                     rep(i,len,L-1)r.pb(0);
                     rep(i,a.len,L-1)a.r.pb(0);
55
56
                     NTT(r,L,1,m1,WN[0]);NTT(a.r,L,1,m1,WN[0]);
57
                     rep(i,0,L-1)r[i] = (ll)r[i]*a.r[i]%m1;
58
                     NTT(r,L,-1,m1,WN[0]);
59
                     while(L-1 >= 1 && r[L-1] == 0)L--;
60
                     r.resize(L);
                     len = L;
61
62
                     return *this;
63
64
    }A[N];
    set<pii> s;
65
66 int a[N], b[N];
   int jc[N];
68 int inv[N];
69
    int C(int n, int m){
70
             return _Mul(jc[n],_Mul(inv[m],inv[n-m]));
71 }
72
   int main(){
              freopen("1", "r", stdin);
73
74
             n = 100000;
75
             jc[0] = 1;
76
             rep(i,1,n)jc[i] = \_Mul(jc[i-1],i);
77
             inv[n] = pw(jc[n],MOD-2);
             repr(i,0,n-1)inv[i] = _Mul(inv[i+1],i+1);
78
79
             GetWn(m1,WN[0]);
80
             int Case;
81
             sc(Case);
             rep(ca, 1, Case){
83
                     sc(n);
                     s.clear();
84
85
                     m = 0;
                     rep(i,1,n){
86
87
                              sc(a[i]),sc(b[i]);
88
                             m += a[i];
89
                     }
90
                     rep(i,1,n){}
                              A[i].r.resize(A[i].len = min(a[i],b[i])+1);
91
                              rep(j,0,min(a[i],b[i]))
92
93
                                      A[i].r[j] = _Mul(jc[j], _Mul(C(a[i],j), C(b[i],j)));
94
                              s.insert(mp(A[i].len,i));
95
                     while(s.size() > 1){
96
97
                              int i = s.begin()->se;
98
                              s.erase(s.begin());
99
                              int j = s.begin()->se;
100
                              s.erase(s.begin());
101
                             A[i] *= A[j];
102
                              A[j].clear();
103
                              s.insert(mp(A[i].len,i));
104
                     int i = s.begin()->se;
105
106
                     s.erase(s.begin());
107
                     int ans = 0;
108
                     rep(j,0,A[i].len-1){
109
                              _mul(A[i].r[j], jc[m-j]);
                              if(j&1)
110
111
                                      _sub(ans,A[i].r[j]);
112
                              else
                                      _add(ans,A[i].r[j]);
113
114
                     }
```

```
115 pr(ans),ln;
116 }
117 return 0;
118 }
```

FWT

```
void fwt1(int *a, int len){
2
             for(int i=0;i<len;i+=2)</pre>
3
                      _add(a[i+1],a[i]);
             for(int i=4;i<=len;i<<=1)</pre>
5
                      for(int j=0;j<len;j+=i)</pre>
                               for(int k=0; k<i/2; k+=2){
                                        _{\mathsf{add}(\mathsf{a[j+k+i/2],a[j+k]);}}
                                         _{add(a[j+k+i/2+1],a[j+k+1]);}
8
9
10
11
    void fwt2(int *a, int len){
12
             for(int i=0;i<len;i+=2)</pre>
13
                      _sub(a[i+1],a[i]);
14
             for(int i=4;i<=len;i<<=1)</pre>
15
                      for(int j=0;j<len;j+=i)</pre>
                               for(int k=0; k<i/2; k+=2){
16
17
                                        _sub(a[j+k+i/2],a[j+k]);
18
                                         _{sub(a[j+k+i/2+1],a[j+k+1]);}
19
                               }
20
   void fwt3(int *a, int len){
21
^{22}
             for(int i=2;i<=len;i<<=1)</pre>
23
                      for(int j=0;j<len;j+=i)</pre>
                               for(int k=0; k<i/2; k++){
24
25
                                        int u=a[j+k];
26
                                        int v=a[j+k+i/2];
27
                                        _add(a[j+k],v);
28
                                        _sub(u,v);
29
                                        a[j+k+i/2]=u;
30
                               }
31
32
    void fwt4(int *a, int len){
33
             for(int i=2;i<=len;i<<=1)</pre>
                      for(int j=0;j<len;j+=i)</pre>
34
35
                               for(int k=0; k<i/2; k++){
36
                                        int u=a[j+k];
                                        int v=a[j+k+i/2];
37
38
                                        _add(a[j+k],v);
39
                                         sub(u,v);
                                        a[j+k+i/2]=u;
40
41
             11 inv=pw(len%MOD,MOD-2);
42
43
             for(int i=0;i<len;i++)</pre>
44
                      _mul(a[i],inv);
45
46
    void fwt5(int *a, int len){
             for(int i=2;i<=len;i<<=1)</pre>
47
48
                      for(int j=0;j<len;j+=i)</pre>
49
                               for(int k=0; k<i/2; k++)
                                        _{add(a[j+k],a[j+k+i/2]);}
50
51
   void fwt6(int *a, int len){
52
53
             for(int i=2;i<=len;i<<=1)</pre>
                      for(int j=0;j<len;j+=i)</pre>
54
                               for(int k=0; k<i/2; k++)</pre>
55
56
                                         _{\text{sub}(a[j+k],a[j+k+i/2]);}
57
58
   int bitcount[N];
59
   int a1[18][N],a2[18][N];
60
    void or_conv(int *a,int *b,int *c, int len){
61
             for(int i=0;i<len;i++)</pre>
62
                      a1[bitcount[i]][i]=a[i];
             int width=bitcount[len-1];
63
64
             for(int i=0;i<=width;i++)</pre>
65
                      fwt1(a1[i],len);
             for(int i=width;i>=0;i--)
66
67
                      for(int j=0;j<=i;j++)</pre>
68
                               for(int k=0;k<len;k++)</pre>
```

```
69
                                     a2[i][k]=(a2[i][k]+(ll)a1[i-j][k]*a1[j][k])%MOD;
            for(int i=0;i<=width;i++)</pre>
70
71
                    fwt2(a2[i],len);
72
            for(int i=0;i<len;i++)</pre>
                    c[i]=a2[bitcount[i]][i];
73
74
75
   void xor_conv(int *a,int *b,int *c, int len){
           static int a1[N],a2[N];
76
77
           memcpy(a1,a,sizeof a1);
78
           memcpy(a2,b,sizeof a2);
79
            fwt3(a1,len);
80
            fwt3(a2,len);
            for(int i=0;i<len;i++)</pre>
81
                    a1[i]=(ll)a1[i]*a2[i]%MOD;
83
            fwt4(a1,len);
           memcpy(c,a1,sizeof a1);
84
85 }
   void and_conv(int *a,int *b,int *c, int len){
86
87
           static int a1[N],a2[N];
88
           memcpy(a1,a,sizeof a1);
89
           memcpy(a2,b,sizeof a2);
90
            fwt5(a1,len);
91
            fwt5(a2,len);
92
            for(int i=0;i<len;i++)</pre>
93
                    a1[i]=(ll)a1[i]*a2[i]%MOD;
            fwt6(a1.len):
94
95
            memcpy(c,a1,sizeof a1);
96 }
```

类欧和 Farey 序列

```
1 /// 类欧几里得
2 /// 类欧几里得用于计算 sum i = 0..n (a i + b) // c
   /// 它的几何意义是计算区域 1 <= y <= a \times + b, 0 <= x <= n 的整点个数.
4 ///
5 /// Farey 序列
6 /// 是一个用于枚举最简有理数 y/x 序列.
7 /// 序列由 1/0 和 0/1 构造,
   /// 每次对相邻的两个数 Ly/Lx, ry/rx, 在其中插入一个数 (Ly+ry)/(Lx/rx) 构造新的序列.
9 /// 第 n 个序列满足 0 <= y <= n, 0 <= x <= n.
10 ///
11 /// 可以使用类欧几里得统计的无限长 Farey 序列的前缀中 \theta \leftarrow y \leftarrow n, \theta \leftarrow x \leftarrow m 的数字个数,
12 /// 进而可以在 0 <= y <= n, 0 <= x <= m 的序列上二分.
13
15
16 // AC 牛客多校 2018 第十场 Rikka with Ants
17 // 注意对结果取模的方式.
18
19
   const 11 mod = 998244353;
20
21 struct Num
22 {
23
       ll val;
24
       Num() { }
25
       Num(11 const& v) : val(v >= mod ? v \% mod : v) { }
27 \mid \text{Num operator+(Num const\& a, Num const\& b)} \ \{ \ \text{return} \ \{ \ (\text{a.val} + \text{b.val}) \ \% \ \text{mod} \ \}; \ \}
   Num operator-(Num const& a, Num const& b) { return { ((a.val - b.val) % mod + mod) % mod }; }
28
   Num operator*(Num const& a, Num const& b) { return { (a.val * b.val) % mod }; }
29
30
   // 要求 a, b, n >= 0, c > 0.
32 Num euc(11 a, 11 b, 11 c, 11 n)
33 | {
34
       ll m = n / c * a + (n % c * a + b) / c;
35
       return
36
          a == 0 ? Num(b / c) * (n + 1) :
37
           a >= c \mid \mid b >= c ?
              euc(a % c, b % c, c, n)
38
39
              + Num(a / c) * (n * (n + 1) / 2)
              + Num(b / c) * (n + 1) :
40
41
          Num(n \% mod) * m - euc(c, c - b - 1, a, m - 1);
42 }
43
44 int main()
```

```
45 {
46
        rep(T, 1, getint())
47
48
            11 a = getint(); 11 b = getint();
            11 c = getint(); 11 d = getint();
49
50
            if(a * d == b * c) { printf("-1\n"); continue; }
            if(a * d > b * c) swap(a, c), swap(b, d);
51
            11 n = (a + b) * d / (b * c - a * d);
52
53
            Num ans = euc(a, a, b, n) - euc(c, 0, d, n) + n + 1;
            printf("%lld\n", ans.val);
54
55
56
        return ∅;
57 }
58
59
    60
61
    // AC NAIPC 2018 Probe Droids (https://open.kattis.com/problems/probedroids)
62
63
64
   struct pt { 11 y, x; }; // y / x
65
66
   11 euc(11 a, 11 b, 11 c, 11 n)
67 {
        if(a == 0) return b / c * (n + 1);
68
69
        11 m = (a * n + b) / c;
        if(a >= c | | b >= c) return euc(a % c, b % c, c, n) + a / c * (n * (n + \frac{1}{2}) / 2) + b / c * (n + \frac{1}{2});
70
71
        return n * m - euc(c, c - b - 1, a, m - 1);
72 }
73
74
    // 考虑上界: sum i=0..n, j=1..m [ j <= (ai+b)/c ]
75 | 11 euccut(11 a, 11 b, 11 c, 11 n, 11 m)
76
    {
77
        11 \lim = (m * c - b - 1) / a;
        return max(n - lim, OLL) * m + euc(a, b, c, min(lim, n));
78
79 }
80
81 int main()
82 {
        11 m = getint(); 11 n = getint(); int q = getint();
83
84
        rep(t, 1, q)
85
86
            ll s = getll() + 1;
87
            if(s <= n) { printf("%lld %lld\n", 1LL, s); continue; }</pre>
            if(s > n * m - m + 1) { printf("%lld %lld\n", s - m * (n - 1), 1LL); continue; }
88
            pt 1 = pt \{ 0, 1 \}, r = pt \{ 1, 0 \};
90
            while(true) // Stern-Brocot Tree
91
92
                pt mid = pt { 1.y + r.y, 1.x + r.x };
                11 cnt = euccut(mid.y, mid.x, mid.x, n-1, m);
93
94
                11 \times cnt = min((n - 1) / mid.x, (m - 1) / mid.y);
95
                if(cnt - xcnt < s && s <= cnt) { l = r = mid; break; }</pre>
                if(s <= cnt) r = mid; else l = mid;</pre>
96
97
            ll bcnt = euccut(l.y, l.x, l.x, n-1, m) - min((n-1) / l.x, (m-1) / l.y);
98
            printf("%lld %lld\n", 1.y * (s - bcnt) + 1, 1.x * (s - bcnt) + 1);
99
100
101
        return 0;
102
```

常系数线性齐次递推

```
1 typedef vector<int> vi;
2 const int K=200005, mod=998244353, G=3;
   int n,k,a[K],h[K];
4 inline void swap(int &x,int &y){int t=x;x=y;y=t;}
5 inline void add(int &x,int y){
6
       y=(y%mod+mod)%mod;
       (x+=y)\%=mod;
7
8 }
9 inline int pow(int x,int y){
10
       int ret=1;
11
       for(;y;x=1LL*x*x%mod,y>>=1)
           if(y&1) ret=1LL*ret*x%mod;
12
13
       return ret;
14 }
```

```
namespace NTT{/*{{{*/
15
        int n,invn,bit,rev[K*4],A[K*4],B[K*4],W[K*4][2];
16
17
        void build(){
18
            int bas=pow(G,mod-2);
            for(int i=0;i<=18;i++){</pre>
19
                W[1<<i][0]=pow(G,(mod-1)/(1<<i));
20
21
                W[1<<i][1]=pow(bas,(mod-1)/(1<<i));
            }
22
23
       void init(int na,int nb,vi &a,vi &b,int fn=0){
24
25
            if(!fn) fn=na+nb;
26
            for(n=1,bit=0;n<fn;n<<=1,bit++);</pre>
27
            invn=pow(n,mod-2);
            for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));</pre>
29
            for(int i=0;i<n;i++) A[i]=B[i]=0;</pre>
            for(int i=0;i<na;i++) A[i]=a[i];</pre>
30
31
            for(int i=0;i<nb;i++) B[i]=b[i];</pre>
32
       void ntt(int *a,int f){
33
34
            for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);</pre>
35
            int w_n,w,u,v;
36
            for(int i=2;i<=n;i<<=1){</pre>
37
                w_n=W[i][f==-1];
38
                for(int j=0;j<n;j+=i){</pre>
39
                    w=<mark>1</mark>;
                    for(int k=0;k<i/2;k++){</pre>
40
41
                        u=a[j+k]; v=1LL*a[j+i/2+k]*w%mod;
42
                        a[j+k]=(u+v)\%mod;
43
                        a[j+i/2+k]=(u+mod-v)%mod;
44
                        w=1LL*w*w_n%mod;
45
                    }
46
                }
47
            if(f==1) return;
48
            for(int i=0;i<n;i++) a[i]=1LL*a[i]*invn%mod;</pre>
50
51
        void calc(){
52
            ntt(A, 1);
            ntt(B, 1);
53
            for(int i=0;i<n;i++) A[i]=1LL*A[i]*B[i]%mod;</pre>
54
55
            ntt(A,-1);
56
57
        void calchh(){
            ntt(A, 1);
58
59
            60
            ntt(A,-1);
61
62
63 }
64
   vi mop,b,c,T;
65
   vi operator - (vi A,vi B){
        int n=A.size(),m=B.size(),fn=max(n,m);
66
67
       for(int i=0;i<m;i++) add(A[i],-B[i]);</pre>
68
69
        return A;
70 }
71 vi operator * (int a,vi A){
72
        int n=A.size();
73
        a=(a+mod)%mod;
74
        for(int i=0;i<n;i++) A[i]=1LL*a*A[i]%mod;</pre>
75
76 | }
77
   vi operator * (vi &A,vi B){
78
       int n=A.size(),m=B.size();
       NTT::init(n,m,A,B);
79
80
81
       A.resize(n+m-1);
        for(int i=0;i<n+m-1;i++) A[i]=NTT::A[i];</pre>
82
83
        return A;
84 }
85
   vi inverse(vi A){
86
        int n=A.size();
87
        if(n==1){
88
            A[0]=pow(A[0],mod-2);
89
            return A;
90
91
       vi B=A;
```

```
92
         B.resize((n+1)/2);
93
         B=inverse(B);
94
95
         int m=B.size();
         \label{eq:ntt} \mbox{NTT::init(n,m,A,B,n+m-1+m-1);}
96
97
         NTT::calchh();
98
         B.resize(NTT::n);
         for(int i=0;i<NTT::n;i++) B[i]=NTT::A[i];</pre>
99
100
         //B=(2*B)-((A*B)*B);
101
102
         B.resize(n);
103
         return B;
104 }
    vi operator / (vi A,vi B){
105
106
         int n=A.size()-1,m=B.size()-1;
         vi C;
107
108
         \textbf{if}(n \hspace{-0.5mm}\cdot\hspace{-0.5mm} m) \hspace{-0.5mm} \{
              C.resize(1); C[0]=0;
109
110
              return C;
111
112
         reverse(A.begin(),A.end());
113
         reverse(B.begin(),B.end());
114
         B.resize(n-m+1);
115
         C=A*inverse(B);
116
         C.resize(n-m+1);
         reverse(C.begin(),C.end());
117
118
119 }
    void module(vi &A,vi B){
120
121
         int n=A.size()-1, m=B.size()-1;
122
         if(n<m) return;</pre>
123
         vi D=A/B;
124
         A=A-(B*D);
125
         A.resize(m);
    void ksm(int y){
127
128
         for(;y;y>>=1){
129
              if(y&1){
                  c=c*b:
130
131
                   module(c,mop);
132
              }
133
              b=b*b;
134
              module(b,mop);
135
136 }
137
    int main(){
         NTT::build();
138
139
          scanf("%d%d",&n,&k); n++;
         for(int i=1;i<=k;i++) scanf("%d",&h[i]),h[i]%=mod;</pre>
140
         for(int i=1;i<=k;i++) scanf("%d",&a[i]),a[i]%=mod;</pre>
141
^{142}
         if(n<=k){printf("%d\n",h[n]);return 0;}</pre>
143
         mop.resize(k+1);
144
         for(int i=1;i<=k;i++) mop[k-i]=(mod-a[i])%mod;</pre>
145
         b.resize(2); b[1]=1;
146
147
         c.resize(1); c[0]=1;
         ksm(n-1);
148
150
         c.resize(k);
151
         for(int i=0;i<k;i++)</pre>
152
              \verb"add(ans," \verb"1LL*c[i]*h[i+1]% mod");
153
         printf("%d\n",ans);
154
         return 0;
155 }
```

中国剩余定理

```
9
            else{
10
                    int d = exgcd(b, a % b, x, y), t = x;
11
                    x = y, y = t - a / b * y;
12
13
14 }
15 inline int inv(int a, int p){
16
           int d, x, y;
17
            d = exgcd(a, p, x, y);
18
           return d == 1 ? (x + p) % p : -1;
19
   }
20
   int china(int n,int *a,int *m){
           int _{M} = MOD - 1, d, x = 0, y;
21
            for(int i = 0;i < n; ++i){</pre>
23
                   int w = __M / m[i];
24
                    d = exgcd(m[i], w, d, y);
25
                    x = (x + ((long long)y*w%__M)*(long long)a[i]%__M)%__M;
26
            while(x <= 0)
27
28
                   x += __M;
29
            return x;
30
```

字符串

AC 自动机

```
1 /// AC 自动机.
2
   /// mxn: 自动机的节点池子大小.
3
   const int mxn = 105000;
6 /// ct: 字符集大小.
7 const int cst = 26;
   /// 重新初始化:
10 | node*pt = pool;
11
12
   13
14
   struct node
15 {
                    // Trie 转移边.
      node*s[cst];
16
      node*trans[cst]; // 自动机转移边.
                    // Fail 指针.
18
      node*f;
19
      char v;
                     // 当前节点代表字符 (父节点指向自己的边代表的字符).
20
      bool leaf;
                     // 是否是某个字符串的终点. 注意该值为 true 不一定是叶子.
21 }
22 pool[mxn]; node*pt=pool;
23 | node* newnode() { memset(pt, 0, sizeof(node)); return pt++; }
24
25
   /// 递推队列.
26 node*qc[mxn];
27 node*qf[mxn];
28 int qh,qt;
29
30
   struct Trie
31
32
      node*root;
      Trie(){ root = newnode(); root->v = '*' - 'a'; }
33
34
35
      /// g: 需要插入的字符串; Len: 长度.
      void Insert(char* g, int len)
36
37
38
          node*x=root;
          for(int i=0;i<len;i++)</pre>
39
40
41
             int v = g[i]-'a';
             if(!x->s[v])
42
43
                 x \rightarrow s[v] = newnode();
44
45
                 x->s[v]->v = v;
46
             }
47
             x = x->s[v];
```

```
48
            x->leaf = true;
49
50
        }
51
        /// 在所有字符串插入之后执行.
52
        /// BFS 递推, qc[i] 表示队中节点指针, qf 表示队中对应节点的 fail 指针.
53
54
        void Construct()
55
56
            node*x = root;
57
            qh = qt = 0;
            for(int i=0; i<cst; i++) if(x->s[i])
58
59
                x->s[i]->f = root;
60
                for(int j=0; j<cst; j++) if(x->s[i]->s[j])
62
                { qc[qt] = x->s[i]->s[j]; qf[qt]=root; qt++; }
63
64
            while(qh != qt)
65
66
67
                node*cur = qc[qh], *fp = qf[qh]; qh++;
68
69
                while(fp != root && !fp->s[cur->v]) fp = fp->f;
                if(fp->s[cur->v]) fp = fp->s[cur->v];
70
                cur->f = fp;
71
72
                for(int i=0; i<cst; i++)</pre>
73
74
                    if(cur->s[i]) { qc[qt] = cur->s[i]; qf[qt] = fp; qt++; }
75
            }
76
        }
77
        // 拿到转移点.
78
79
        // 暴力判定.
80
        node* GetTrans(node*x, int v)
81
82
            while(x != root && !x->s[v]) x = x->f;
            if(x->s[v]) x = x->s[v];
83
84
            return x;
85
86
87
        // 拿到转移点.
        // 记忆化搜索.
88
89
        node* GetTrans(node*x, int v)
90
            if(x->s[v]) return x->trans[v] = x->s[v];
91
93
            if(!x->trans[v])
94
95
                if(x == root) return root;
                return x->trans[v] = GetTrans(x->f, v);
96
97
98
            return x->trans[v];
99
100
101 };
```

64

子串 Hash

```
1 /// 字符串/数字串双模哈希.
   /// 另外一些大质数, 可以用来做更多模数的哈希.
3 /// 992837513, 996637573, 996687641, 996687697, 996687721
5 const int mxn = 1e6 + 50;
6 const int hashmod1 = 1000000007;
   const int hashmod2 = 992837507;
8 const int sysnum1 = 31;
9 const int sysnum2 = 29;
10 | 11 hx[mxn];
11 | 11 hy[mxn];
12
  struct Hash { int x; int y; };
13 | bool operator<(Hash const& a, Hash const& b) { return a.x == b.x ? a.y < b.y : a.x < b.x; }
14 | bool operator==(Hash const& a, Hash const& b) { return a.x == b.x && a.y == b.y; }
15 | bool operator!=(Hash const& a, Hash const& b) { return !(a == b); }
16 /// 取子串的哈希值. 自觉改值域, 进制数和串类型.
17 Hash GetHash(int* c, int 1, int r)
18 {
```

```
19
       Hash v = \{0, 0\};
20
       rep(i, l, r)
21
22
           v.x = (((1LL * v.x * sysnum1) % hashmod1) + c[i] + 1) % hashmod1;
           v.y = (((1LL * v.y * sysnum2) % hashmod2) + c[i] + 1) % hashmod2;
23
^{24}
^{25}
       return v;
26 }
   /// 合并两个串的哈希值. 注意左右顺序.
28 Hash MergeHash(Hash left, Hash right, int rightLen)
29
30
       return Hash {
           (int)((1LL * left.x * hx[rightLen] % hashmod1 + right.x) % hashmod1),
31
           (int)((1LL * left.y * hy[rightLen] % hashmod2 + right.y) % hashmod2),
33
34 }
35
   /// 哈希计算初始化.
  void HashInit(int sz)
36
37
38
       hx[0] = hy[0] = 1;
39
       rep(i, 1, sz)
40
           hx[i] = hx[i-1] * sysnum1 % hashmod1;
41
           hy[i] = hy[i-1] * sysnum2 % hashmod2;
43
44
```

Manacher

```
1 #define MAXM 20001
   //返回回文串的最大值
   //MAXM 至少应为输入字符串长度的两倍 +1
4 int p[MAXM];
5 char s[MAXM];
6 int manacher(string str) {
       memset(p, 0, sizeof(p));
       int len = str.size();
9
       int k;
10
       for (k = 0; k < len; k++) {
11
           s[2 * k] = '#';
           s[2 * k + 1] = str[k];
12
13
       s[2 * k] = '#';
14
       s[2 * k + 1] = '\0';
15
16
       len = strlen(s);
17
       int mx = 0:
18
       for (int i = 0; i < len; ++i) {
19
           if ( i < mx ) {
20
21
               p[i] = min(p[2 * id - i], mx - i);
           }
22
           else {
23
24
               p[i] = 1;
25
           for (; s[i - p[i]] == s[i + p[i]] \&\& s[i - p[i]] != '\0' \&\& s[i + p[i]] != '\0' ; ) {
^{27}
               p[i]++;
28
           if ( p[i] + i > mx ) {
29
               mx = p[i] + i;
30
32
33
34
       int res = 0;
       for (int i = 0; i < len; ++i) {
35
36
           res = max(res, p[i]);
37
38
       return res - 1;
39
```

Trie 树

```
5 }
6 struct Trie{
        int num;//记录多少单词途径该节点,即多少单词拥有以该节点为末尾的前缀
        bool terminal;//若 terminal==true, 该节点没有后续节点
8
        int count;//记录单词的出现次数,此节点即一个完整单词的末尾字母
9
10
        struct Trie *son[CHAR_SIZE];//后续节点
11 | };
12 struct Trie trie_arr[MAX_NODE_SIZE];
13 int trie_arr_point=0;
14 Trie *NewTrie(){
15
       Trie *temp=&trie_arr[trie_arr_point++];
16
       temp->terminal=false;
18
       temp->count=0;
       for(int i=0;i<sonnum;++i)temp->son[i]=NULL;
19
20
21 }
  //插入新词,root: 树根,s: 新词,Len: 新词长度
^{22}
23 void Insert(Trie *root, char *s, int len){
       Trie *temp=root;
24
25
        for(int i=0;i<len;++i){</pre>
                    \label{eq:if-temp-} \textbf{if}(\texttt{temp-}\texttt{>} \texttt{son}[\texttt{getCharID}(\texttt{s[i]})] = \texttt{NULL}) \\ \texttt{temp-}\texttt{>} \texttt{son}[\texttt{getCharID}(\texttt{s[i]})] = \texttt{NewTrie}();
26
                    else {temp->son[getCharID(s[i])]->num++;temp->terminal=false;}
28
                    temp=temp->son[getCharID(s[i])];
29
30
        temp->terminal=true;
31
        temp->count++;
32 }
33 //删除整棵树
34
   void Delete(){
35
       memset(trie_arr,0,trie_arr_point*sizeof(Trie));
36
37 }
   //查找单词在字典树中的末尾节点.root: 树根,s: 单词,Len: 单词长度
39 Trie* Find(Trie *root, char *s, int len){
40
       Trie *temp=root;
41
        for(int i=0;i<len;++i)</pre>
                    if(temp->son[getCharID(s[i])]!=NULL)
42
43
                             temp=temp->son[getCharID(s[i])];
44
        else return NULL;
45
        return temp;
46 }
```

后缀数组-DC3

```
1 //dc3 函数:s 为输入的字符串,sa 为结果数组,slen 为 s 长度,m 为字符串中字符的最大值 +1
 2
   //s 及 sa 数组的大小应为字符串大小的 3 倍.
4 #define MAXN 100000 //字符串长度
 6 #define F(x) ((x)/3+((x)%3==1?0:tb))
   #define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
 9 int wa[MAXN], wb[MAXN], wv[MAXN], ws[MAXN];
10
11 int co(int *s, int a, int b)
12
13
       return s[a] == s[b] \&\& s[a + 1] == s[b + 1] \&\& s[a + 2] == s[b + 2];
14 }
15
16 int c12(int k, int *s, int a, int b)
17 | {
       if (k == 2) return s[a] < s[b] || s[a] == s[b] && c12(1, s, a + 1, b + 1);
18
19
       else return s[a] < s[b] \mid | s[a] == s[b] && wv[a + 1] < wv[b + 1];
20 }
void sort(int *s, int *a, int *b, int slen, int m)
23
24
       int i;
       for (i = 0; i < slen; i++) wv[i] = s[a[i]];</pre>
25
       for (i = 0; i < m; i++) ws[i] = 0;
27
       for (i = 0; i < slen; i++) ws[wv[i]]++;</pre>
28
       for (i = 1; i < m; i++) ws[i] += ws[i - 1];</pre>
29
       for (i = slen - 1; i >= 0; i--) b[--ws[wv[i]]] = a[i];
```

```
30
        return;
31
  |}
32
33
   void dc3(int *s, int *sa, int slen, int m)
34
   {
35
        int i, j, *rn = s + slen, *san = sa + slen, ta = \frac{0}{3}, tb = \frac{1}{3}, tbc = \frac{0}{3}, tbc = \frac{0}{3}, p;
36
        s[slen] = s[slen + 1] = 0;
        for (i = 0; i < slen; i++) if (i % 3 != 0) wa[tbc++] = i;</pre>
37
38
        sort(s + 2, wa, wb, tbc, m);
39
        sort(s + 1, wb, wa, tbc, m);
40
        sort(s, wa, wb, tbc, m);
41
        for (p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
            rn[F(wb[i])] = c0(s, wb[i - 1], wb[i]) ? p - 1 : p++;
42
        if (p < tbc) dc3(rn, san, tbc, p);</pre>
44
        else for (i = 0; i < tbc; i++) san[rn[i]] = i;
        for (i = 0; i < tbc; i++) if (san[i] < tb) wb[ta++] = san[i] * 3;
45
46
        if (slen % 3 == 1) wb[ta++] = slen - 1;
        sort(s, wb, wa, ta, m);
47
        for (i = 0; i < tbc; i++) wv[wb[i] = G(san[i])] = i;
48
49
        for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
50
            sa[p] = c12(wb[j] \% 3, s, wa[i], wb[j]) ? wa[i++] : wb[j++];
51
        for (; i < ta; p++) sa[p] = wa[i++];</pre>
        for (; j < tbc; p++) sa[p] = wb[j++];
52
53
        return;
54 }
```

后缀数组-倍增法

```
1
2
           细节看 main
3
            最后结果存在 p 为下标的数组内
4
   int n;
6 int a[N],v[N],h[N],sa[2][N],rk[2][N];
7 int p,q,k;
   void init(){
9
           SET(a,0);
10
           SET(v,0);
11
           SET(h,0);
12
           SET(sa,0);
13
           SET(rk,0);
14 }
   void calsa(int *sa,int *rk,int *SA,int *RK){
15
16
           rep(i,1,n)v[rk[sa[i]]]=i;
           repr(i,1,n)
17
18
19
                            SA[v[rk[sa[i]-k]]--]=sa[i]-k;
20
           rep(i,n-k+1,n)SA[v[rk[i]]--]=i;
21
                    RK[SA[i]]=RK[SA[i-1]]+(rk[SA[i-1]]!=rk[SA[i]]||rk[SA[i-1]+k]!=rk[SA[i]+k]);
22
24
   void getsa(){
25
           p=0, q=1, k=1;
26
           rep(i,1,n)v[a[i]]++;
           rep(i,1,26)v[i]+=v[i-1];
27
28
           rep(i,1,n)sa[p][v[a[i]]--]=i;
29
           rep(i, 1, n)
                   rk[p][sa[p][i]]=rk[p][sa[p][i-1]]+(a[sa[p][i]]!=a[sa[p][i-1]]);
30
31
            for(k=1; k<n; k<<=1, swap(p,q))</pre>
                   calsa(sa[p],rk[p],sa[q],rk[q]);
32
33 }
34
   void geth(){
35
           k=0;
36
           rep(i, 1, n)
37
                   if(rk[p][i]==1)h[rk[p][i]]=0;
                   else{
38
39
                            int j=sa[p][rk[p][i]-1];
40
                            while(a[i+k]==a[j+k])k++;
41
                            h[rk[p][i]]=k;
42
                            if(k>0)k--;
                   }
43
45 | int main(){
           while(T--){
46
47
                   init();
```

后缀自动机

```
init() 初始化
 2
 3
           ins(w) 从后插入新点
           getsz() 做出 parent 树, 求出 right 集合大小 =sz
 4
 5
 6
    struct SAM{
           static const int K = 26;
           int rt, la, nodes;
           int len[N], n[N][K], pa[N], sz[N];
 9
10
           void init(){
11
                   nodes = 0;
                   rt = la = newnode(0);
12
13
14
           int newnode(int pl){
15
                   int i = ++nodes;
                   len[i] = pl;
16
                   pa[i] = 0;
17
                   sz[i] = 0;
18
19
                   SET(n[i],0);
                   return i;
20
21
           void ins(int w){
22
23
                   int p = la, np = newnode(len[p]+1);
24
                   la = np;
25
                   sz[np] = 1;
26
                   while(p && !n[p][w])n[p][w] = np, p = pa[p];
27
                   if(!p)pa[np] = rt;
28
                   else{
29
                            int q = n[p][w];
30
                            if(len[q] == len[p]+1)pa[np] = q;
31
                            else{
32
                                    int nq = newnode(len[p]+1);
                                   memcpy(n[nq], n[q], sizeof(n[q]));
33
34
                                    pa[nq] = pa[q];
35
                                    pa[q] = pa[np] = nq;
36
                                    while(p && n[p][w] == q)n[p][w] = nq, p = pa[p];
37
                            }
38
                   }
39
           void getsz(){
40
                   rep(i,2,nodes)
41
42
                            adde(pa[i],i);
                   dfs(rt);
43
44
           void dfs(int u){
45
                    for(int i = point[u];i;i=G[i].n){
46
47
                            int v = G[i].v;
                            dfs(v);
48
                            sz[u] += sz[v];
50
                   }
51
           }
52 }sam;
```

回文自动机

```
      1
      /*

      2
      用法类似 sam

      3
      本质不同的回文串有 O(n) 个

      4
      回文树有两个根

      5
      a 向 b 有一个 c 的转移表示对 a 表示的回文串两端都加上 c 变成 b

      6
      分别为 even,odd, 长度分别是 Ø 和-1

      7
      Len 为一个点代表的字符串的实际长度
```

```
suffix 为这个点失配后的最长回文后缀, 且下标比 i 小
8
           n 是自动机的边
9
           cnt 是出现次数,向 suffix 传递,需要调用 calc()
10
11
12
   struct PAM{
13
           char str[N];
14
           int n[N][M], suffix[N], len[N], cnt[N];
           int tot, suf;
15
16
           int newnode(){
                   int i = tot++;
17
                   SET(n[i],0);
18
19
                   suffix[i] = len[i] = cnt[i] = 0;
                   return i;
20
           void init(){
22
23
                   tot = 0;
24
                   int p = newnode(), q = newnode();
                   len[p] = 0;
25
26
                   suffix[p] = q;
^{27}
                   len[q] = -1;
28
                   suffix[q] = q;
29
                   suf = 0;
30
           int getfail(int x, int 1){
31
32
                   while(str[1-1-len[x]] != str[1])
                           x = suffix[x];
33
34
                   return x;
35
           }
           int insert(int x){
36
37
                   int c = str[x]-'a';
38
                   int p = getfail(suf,x);
39
                   if(!n[p][c]){
40
                           int q = newnode();
                           len[q] = len[p]+2;
41
                           suffix[q] = n[getfail(suffix[p],x)][c];
                           n[p][c] = q;
43
44
                   }
45
                   p = n[p][c];
46
                   cnt[p]++;
47
                   suf = p;
48
                   return suf;
49
50
           void calc(){
                   repr(i,0,tot-1)
51
                           cnt[suffix[i]] += cnt[i];
52
53
           void debug(){
54
55
                   rep(i,0,tot-1){
                           pr(i),sp,pr(suffix[i]),sp,pr(cnt[i]),ln;
56
57
                           rep(j, 0, M-1) if(n[i][j]) putchar('a'+j), sp, pr(n[i][j]), ln;\\
58
                   }
59
           }
60
           void solve(){
61
                   init();
62
                   cin>>str;
63
                   rep(i,0,strlen(str)-1)
64
                           insert(i);
65
           }
66 };
```

KMP

扩展 KMP

```
1 //使用 getExtend 获取 extend 数组 (s[i]...s[n-1] 与 t 的最长公共前缀的长度)
2 //s,t,slen,tlen,分别为对应字符串及其长度.
```

```
3 //next 数组返回 t[i]...t[m-1] 与 t 的最长公共前缀长度,调用时需要提前开辟空间
   void getNext(char* t, int tlen, int* next){
 4
 5
        next[0] = tlen;
 6
        int a;
7
        int p;
        for (int i = 1, j = -1; i < tlen; i++, j--){}
            \textbf{if} \ (\texttt{j} \ < \ 0 \ \ | \ | \ \ \texttt{i} \ + \ \mathsf{next[i - a]} \ >= \ \texttt{p)} \{
 9
                if (j < 0) {
10
11
                     p = i;
12
                     j = <mark>0</mark>;
13
                 }
14
                 while (p < tlen \&\& t[p] == t[j]) {
                     p++;
15
                     j++;
17
                 }
                 next[i] = j;
18
19
                 a = i;
             }
20
             else {
^{21}
22
                 next[i] = next[i - a];
23
24
25 }
   void getExtend(char* s, int slen, char* t, int tlen, int* extend, int* next){
26
27
        getNext(t, next);
        int a;
28
29
        for (int i = 0, j = -1; i < slen; i++, j--){
30
            if (j < 0 || i + next[i - a] >= p){
31
32
                 if (j < 0) {
33
                     p = i, j = 0;
34
                 while (p < slen && j < tlen && s[p] == t[j]) {
35
36
                     p++;
37
                 }
38
39
                 extend[i] = j;
40
                 a = i;
            }
41
42
             else {
                 extend[i] = next[i - a];
43
44
45
46 }
```

动态规划

插头 DP

```
1 //POJ 2411
 2 //一个 row*col 的矩阵, 希望用 2*1 或者 1*2 的矩形来填充满, 求填充的总方案数
 3 //输入为长和宽
 4 #define LL long long
 5 const int maxn=2053;
 6 struct Node{
7
           int H[maxn];
           int S[maxn];
           LL N[maxn];
 9
10
           int size;
11
           void init(){
12
                  size=0:
13
                  memset(H,-1,sizeof(H));
14
           void push(int SS,LL num){
15
16
                  int s=SS%maxn;
                  while( \simH[s] && S[H[s]]!=SS )
17
18
                          s=(s+1)%maxn;
19
                  if(~H[s]){
20
21
                          N[H[s]]+=num;
22
                  }
23
                  else{
24
                          S[size]=SS;
25
                          N[size]=num;
```

```
26
                            H[s]=size++;
27
                    }
28
29
           LL get(int SS){
30
                    int s=SS%maxn;
                    while( \simH[s] && S[H[s]]!=SS )
31
32
                            s=(s+1)%maxn;
33
34
                    if(\sim H[s]){
                            return N[H[s]];
35
36
                    }
37
                    else{
38
                            return 0;
                    }
40
   }dp[2];
41
42
   int now,pre;
   int get(int S,int p,int l=1){
43
44
           if(p<0) return 0;</pre>
45
           return (S>>(p*1))&((1<<1)-1);
46
   }
47
   void set(int &S,int p,int v,int l=1){
48
           S^=get(S,p,1)<<(p*1);
49
           S^{=}(v&((1<<1)-1))<<(p*1);
50 }
   int main(){
51
52
           int n,m;
           while( scanf("%d%d",&n,&m),n||m ){
53
54
                    if(n%2 && m%2) {puts("0");continue;}
55
                    int now=1,pre=0;
56
                    dp[now].init();
57
                    dp[now].push(0,1);
58
                    59
                            swap(now,pre);
                            dp[now].init();
                            for(int s=0;s<dp[pre].size;s++){</pre>
61
62
                                    int S=dp[pre].S[s];
63
                                    LL num=dp[pre].N[s];
                                    int p=get(S,j);
64
                                     int q=get(S,j-1);
66
                                    int nS=S;
67
                                    set(nS,j,1-p);
68
                                    dp[now].push(nS,num);
                                    if(p==0 && q==1){
69
70
                                             set(S,j-<mark>1,0</mark>);
71
                                             dp[now].push(S,num);
                                    }
72
73
                            }
74
75
                    printf("%lld\n",dp[now].get(0));
76
           }
77
   }
```

概率 DP

```
2 POJ 2096
   一个软件有 s 个子系统, 会产生 n 种 bug
3
  某人一天发现一个 bug, 这个 bug 属于一个子系统,属于一个分类
  每个 bug 属于某个子系统的概率是 1/s, 属于某种分类的概率是 1/n
  问发现 n 种 bug, 每个子系统都发现 bug 的天数的期望。
  dp[i][j] 表示已经找到 i 种 bug,j 个系统的 bug,达到目标状态的天数的期望
  dp[n][s]=0; 要求的答案是 dp[0][0];
  dp[i][j] 可以转化成以下四种状态:
      dp[i][j], 发现一个 bug 属于已经有的 i 个分类和 j 个系统。概率为 (i/n)*(j/s);
10
      dp[i][j+1], 发现一个 bug 属于已有的分类,不属于已有的系统. 概率为 (i/n)*(1-j/s);
11
12
      dp[i+1][j],发现一个 bug 属于已有的系统,不属于已有的分类,概率为 (1-i/n)*(j/s);
      dp[i+1][j+1],发现一个 bug 不属于已有的系统,不属于已有的分类,概率为 (1-i/n)*(1-j/s);
13
14
  整理便得到转移方程
15
16 const int MAXN = 1010;
17 double dp[MAXN][MAXN];
18 | int main(){
19
         int n, s;
20
         while (scanf("%d%d", &n, &s) != EOF){
```

```
21
                    dp[n][s] = 0;
22
                    for (int i = n; i >= 0; i--)
                             for (int j = s; j >= 0; j--){
23
                                     if (i == n && j == s)continue;
                                     dp[i][j] = (i * (s - j) * dp[i][j + 1] + (n - i) * j * dp[i + 1][j] + (n - i) * (s - j) * dp[i + 1][j + 1] + n * s)
25
                                     \hookrightarrow / (n * s - i * j);
26
                    printf("%.41f\n", dp[0][0]);
27
28
29
            return 0;
30
```

数位 DP

```
1 //HDU-2089 输出不包含 4 和 62 的数字的个数
  2 int dp[22][2][10];
  3 int digit[20];
             //pos: 当前位置;Lim: 是否考虑位数;pre: 前一位;alr: 已经匹配?
  4
  5 int dps(int pos, int lim, int pre, int alr){
                          if(pos < 0){
  7
                                       return alr;
  8
  9
                         if(!lim && (dp[pos][alr][pre] != -1)){
                                       return dp[pos][alr][pre];
10
11
12
                         int result = 0;
13
                         int len = lim ? digit[pos] : 9;
                          for(int i = 0; i <= len; i++){</pre>
14
                                       result += dps(pos - 1, lim && (i == len), i, alr || (pre == 6 && i == 2)||(i==4));
15
16
                         if(!lim){
17
                                       dp[pos][alr][pre] = result;
18
19
                          return result;
20
21 }
22 int solve(int x){
                         memset(dp, -1, sizeof(dp));
23
24
                          int length = 0;
25
                         while(x){
                                       digit[length++] = (x \% 10);
26
27
28
                         }
29
                          return dps(length - 1, 1, 0, 0);
30 }
          int main(){
31
32
                          int a,b;
                          \label{eq:while} \begin{tabular}{ll} \begin{
33
                                       printf("%d\n", b-a+1-slove(b>0?b:1)+slove((a-1)>0?(a-1):1));
34
35
36
                          return 0;
```

四边形 DP

```
/*HD072829
   题目大意;给定一个长度为 n 的序列,至多将序列分成 m 段,每段序列都有权值,权值为序列内两个数两两相乘之和。m<=n<=1000.令权值最小。
3 状态转移方程:
4 | dp[c][i]=min(dp[c][i],dp[c-1][j]+w[j+1][i])
   url->:http://blog.csdn.net/bnmjmz/article/details/41308919
6
7 const int INF = 1 << 30;
8 const int MAXN = 1000 + 10;
9 typedef long long LL;
10 LL dp[MAXN][MAXN];//dp[c][j] 表示前 j 个点切了 c 次后的最小权值
12 int w[MAXN][MAXN];//w[i][j] 表示 i 到 j 无切割的权值
13 int s[MAXN][MAXN];//s[c][j] 表示前 j 个点切的第 c 次的位置
14 int sum[MAXN];
15 int main(){
16
          int n, m;
          while (~scanf("%d%d", &n, &m)){
17
18
                 if (n == 0 && m == 0)break;
19
                 memset(s, 0, sizeof(s));
20
                 memset(w, 0, sizeof(w));
```

```
21
                     memset(dp, 0, sizeof(dp));
22
                     memset(sum, 0, sizeof(sum));
                     for (int i = 1; i <= n; ++i){</pre>
23
                              scanf("%d", &val[i]);
                              sum[i] += sum[i - 1] + val[i];
25
26
^{27}
                     for (int i = 1; i <= n; ++i){</pre>
                             w[i][i] = 0;
28
                              for (int j = i + 1; j \le n; ++j){
                                      w[i][j] = w[i][j - 1] + val[j] * (sum[j - 1] - sum[i - 1]);
30
31
32
                     for (int i = 1; i <= n; ++i){</pre>
33
                              for (int j = 1; j <= m; ++j){</pre>
35
                                      dp[j][i] = INF;
36
37
                     for (int i = 1; i <= n; ++i){</pre>
38
                              dp[0][i] = w[1][i];
39
40
                              s[0][i] = 0;
41
42
                     for (int c = 1; c \le m; ++c){
                              s[c][n + 1] = n; //设置边界
43
                              for (int i = n; i > c; --i){
45
                                      int tmp = INF, k;
                                      for (int j = s[c - 1][i]; j <= s[c][i + 1]; ++j){
46
47
                                               if (dp[c - 1][j] + w[j + 1][i] < tmp){
                                                        \mathsf{tmp} = \mathsf{dp[c-1][j]} + \mathsf{w[j+1][i]}; //状态转移方程, j 之前切了 c\text{--1} 次, 第 c 次切 j 到 j\text{+-1} 间的
48
                                                        k = j;
49
51
52
                                      dp[c][i] = tmp;
53
                                      s[c][i] = k;
54
                              }
                     printf("%d\n", dp[m][n]);
56
57
58
            return 0;
59 | }
```

完全背包

```
for (int i = 1;i <= N;i++){
   for (int v = weight[i];v <= V;v++){
      f[v] = max(f[v],f[v - weight[i]] + Value[i]);
4    }
5 }</pre>
```

斜率 DP

```
1 //HDU 3507
2 //给出 n,m, 求在 n 个数中分成任意段, 每段的花销是 (sigma(a[L],a[r])+m)^2, 求最小值
3 //http://acm.hdu.edu.cn/showproblem.php?pid=3507
   const int MAXN = 500010;
5 int dp[MAXN];
6 int q[MAXN];
7 int sum[MAXN];
8 int head, tail, n, m;
   int getDP(int i, int j){
          return dp[j] + m + (sum[i] - sum[j]) * (sum[i] - sum[j]);
10
11 }
^{12}
  int getUP(int j, int k){
          13
14 }
15
   int getDOWN(int j, int k){
          return 2 * (sum[j] - sum[k]);
16
17 }
18 | int main(){
19
          while (scanf("%d%d", &n, &m) == 2){
20
                 for (int i = 1; i <= n; i++)</pre>
                        scanf("%d", &sum[i]);
21
                 sum[0] = dp[0] = 0;
23
                 for (int i = 1; i <= n; i++)</pre>
                         sum[i] += sum[i - 1];
```

```
25
           head = tail = 0;
26
           q[tail++] = 0;
           for (int i = 1; i <= n; i++){</pre>
               29
                    head++;
30
               dp[i] = getDP(i, q[head]);
^{31}
               \hookrightarrow 2])*getDOWN(i, q[tail - 1]))
32
               q[tail++] = i;
33
34
           }
35
           printf("%d\n", dp[n]);
36
37
      return 0;
38 }
```

状压 DP

```
2 //有 n 种菜,选 m 种。每道菜有一个权值,有些两个菜按顺序挨在一起会有 combo 的权值加成。求最大权值
3 const int maxn = 20;
   typedef long long LL;
   int a[maxn];
6 int comb[maxn][maxn];
7 LL dp[(1 << 18) + 10][maxn];
8 LL ans = 0;
9 int n, m, k;
10
   int Cnt(int st){
11
           int res = 0;
12
           for (int i = 0; i < n; i++){
13
                   if (st & (1 << i)){</pre>
14
                            res++;
15
16
           }
17
           return res;
18 }
19 int main(){
20
           memset(comb, 0, sizeof comb);
21
           scanf("%d%d%d", &n, &m, &k);
           for (int i = 0; i < n; i++){
22
23
                   scanf("%d", &a[i]);
24
25
           for (int i = 0; i < k; i++){
26
                   int x, y, c;
                   scanf("%d%d%d", &x, &y, &c);
27
29
                   y--;
                   comb[x][y] = c;
30
31
           int end = (1 << n);</pre>
32
           memset(dp, ∅, sizeof dp);
34
           for (int st = 0; st < end; st++){</pre>
35
                   for (int i = 0; i < n; i++){
36
                            if (st & (1 << i)){</pre>
                                    bool has = false;
37
                                    for (int j = 0; j < n; j++){
38
39
                                            if (j != i && (st & (1 << j))){</pre>
40
41
                                                     dp[st][i] = max(dp[st][i], dp[st ^ (1 << i)][j] + a[i] + comb[j][i]);
42
43
                                    }
                                    if (!has){
44
45
                                            dp[st][i] = a[i];
46
47
                            if (Cnt(st) == m){
48
49
                                    ans = max(ans, dp[st][i]);
                            }
50
51
                   }
52
53
           cout << ans << endl;</pre>
           return 0;
55 }
```

最长上升子序列

```
1 //f[i] 表示前缀 LIS,g[i] 表示长为 i 的 LIS 的最小结尾数字
2 int LIS(int *f, int *g){
           memset(f,0,(n+1)*sizeof(int));
4
           f[1] = 1;
           memset(g,127,(n+1)*sizeof(int));
6
           g[0] = -infi;
7
           int nmax = 1:
           g[nmax] = a[1];
9
           rep(i, 2, n){
10
                  int v = lower_bound(g,g+nmax+1,a[i])-g-1;
11
                   f[i] = v+1;
12
                   nmax = max(nmax, v+1);
13
                   g[v+1] = min(g[v+1], a[i]);
14
15
           return nmax;
16 }
```

杂项

测速

```
2
    require c++11 support
3
4 #include <chrono>
5 using namespace chrono;
6 int main(){
7
           auto start = system_clock::now();
           //do something
8
9
           auto end = system_clock::now();
           auto duration = duration_cast<microseconds>(end - start);
10
11
           cout << double(duration.count()) * microseconds::period::num / microseconds::period::den << endl;</pre>
12 }
```

日期公式

```
1 /*
2
            zeller 返回星期几%7
3
4 int zeller(int y,int m,int d) {
            if (m<=2) y--,m+=12; int c=y/100; y%=100;
            int w=((c>>2)-(c<<1)+y+(y>>2)+(13*(m+1)/5)+d-1)%7;
6
7
            if (w<0) w+=7; return(w);</pre>
8 }
9
            用于计算天数
10
11
12 int getId(int y, int m, int d) {
13
            if (m < 3) \{y --; m += 12; \}
            return 365 * y + y / \frac{4}{4} - y / \frac{100}{400} + y / \frac{400}{400} + (153 * m + 2) / 5 + d;
14
15 }
```

读入挂

```
// sc(x) pr(x)
2 #define BUF_SIZE 100000
3 bool IOerror = 0;
4 inline char nc(){//next char
           static char buf[BUF_SIZE], *p1 = buf + BUF_SIZE, *pend = buf + BUF_SIZE;
5
6
           if(p1 == pend){
                   p1 = buf;
7
                   pend = buf + fread(buf, 1, BUF_SIZE, stdin);
9
                   if(pend == p1){
10
                           IOerror = 1;
11
                           return -1;
12
                   }
13
           return *p1++;
14
15 | }
```

```
16 inline bool blank(char ch){
            return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
^{17}
18 }
19 inline int sc(int &x){
20
           char ch;
21
            int sgn = 1;
22
            while(blank(ch = nc()));
23
           if(IOerror)
24
                    return -1;
           if(ch=='-')sgn=-1,ch=nc();
25
            for(x = ch - '0'; (ch = nc()) >= '0' && ch <= '9'; x = x * 10 + ch - '0');
26
27
28
            return 1;
30 | inline void pr(int x){
31
            if (x == 0){
32
                    putchar('0');
33
                    return;
34
           }
35
            short i, d[19];
36
            for (i = 0;x; ++i)
37
                    d[i] = x \% 10, x /= 10;
            while (i--)
38
                    putchar(d[i] + '0');
39
40 }
41 #undef BUF SIZE
```

随机数

```
1 #include <random>
2
   #include <chrono>
   using namespace std::chrono;
3
4
5 int rd(int 1, int r)
6 {
7
       static default_random_engine gen(high_resolution_clock::now().time_since_epoch().count());
       return uniform_int_distribution<int>(1, r)(gen);
8
9
10
11 double rd(double l, double r)
12 {
13
       static default_random_engine gen(high_resolution_clock::now().time_since_epoch().count());
14
       return uniform_real_distribution<double>(l, r)(gen);
15 }
```

高精度

```
1 const int base = 1000000000;
   const int base_digits = 9;
3
   struct bigint{
           vector<int> a;
           int sign; // 符号位 1 / -1
5
           // 基本函数
6
           bigint() : sign(1){}
           bigint(long long v){
                   *this = v;
10
11
           bigint(const string &s){
12
                   read(s);
13
           void operator=(const bigint &v){
14
15
                   sign = v.sign;
16
                   a = v.a;
17
18
           void operator=(long long v){
19
                   sign = 1;
                   if (v < 0) sign = -1, v = -v;
21
                   a.clear();
22
                   for (; v > 0; v = v / base)
23
                           a.push_back(v % base);
24
           }
           // 长度
           int size(){
26
27
                   if (a.empty())
```

```
28
                             return 0;
                     int ans = (a.size() - 1) * base_digits;
29
30
                     int ca = a.back();
31
                             ans++, ca /= 10;
32
33
                     return ans;
34
             // 去前导零
35
36
             void trim(){
                     while (!a.empty() && !a.back())
37
38
                             a.pop_back();
39
                     if (a.empty())
40
                             sign = 1;
42
             bool isZero() const{
43
                     return a.empty() || (a.size() == 1 && !a[0]);
44
             // 负号
45
46
             bigint operator-() const{
^{47}
                     bigint res = *this;
48
                     res.sign = -sign;
49
                     return res;
50
             }
             // 绝对值
51
52
             \texttt{bigint abs()} \; \textcolor{red}{\textbf{const}} \{
                     bigint res = *this;
53
54
                     res.sign *= res.sign;
55
                     return res;
56
             }
57
             // 转 Long Long
58
             long longValue() const{
59
                     long long res = 0;
60
                     for (int i = a.size() - 1; i >= 0; i--)
                            res = res * base + a[i];
61
                     return res * sign;
63
             }
64
             // 基本运算
             // 幂
65
             bigint operator ^(const bigint &v){
66
                     bigint ans = 1, a = *this, b = v;
                     while (!b.isZero()){
68
69
                             if (b % 2)
                                      ans *= a;
70
                             a *= a, b /= 2;
71
                     }
73
                     return ans;
74
             }
             // 高精度加
75
             bigint operator+(const bigint &v) const{
76
77
                     if (sign == v.sign){
78
                             bigint res = v;
                             for (int i = 0, carry = 0; i < (int) max(a.size(), v.a.size()) || carry; ++i){</pre>
79
80
                                      if (i == (int) res.a.size())
81
                                              res.a.push_back(∅);
                                      res.a[i] += carry + (i < (int) a.size() ? a[i] : 0);
82
83
                                      carry = res.a[i] >= base;
                                      if (carry)
84
85
                                              res.a[i] -= base;
86
87
                             return res;
88
                     }
                     return *this - (-v);
89
90
             // 高精度减
91
             bigint operator-(const bigint &v) const{
92
93
                     if (sign == v.sign){
                             if (abs() >= v.abs()){
94
                                      bigint res = *this;
95
96
                                      for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i){</pre>
                                              res.a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
97
                                              carry = res.a[i] < 0;</pre>
                                              if (carry)
99
                                                       res.a[i] += base;
100
101
102
                                      res.trim();
103
                                      return res;
104
                             }
```

```
105
                             return -(v - *this);
106
                     }
107
                     return *this + (-v);
108
             // 高精度乘 前置函数
109
110
             static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits){
111
                     vector<long long> p(max(old_digits, new_digits) + 1);
                     p[0] = 1;
112
113
                     for (int i = 1; i < (int) p.size(); i++)</pre>
114
                             p[i] = p[i - 1] * 10;
115
                     vector<int> res;
116
                     long long cur = 0;
                     int cur digits = 0;
117
                     for (int i = 0; i < (int) a.size(); i++){</pre>
118
119
                             cur += a[i] * p[cur_digits];
                             cur digits += old digits;
120
121
                              while (cur_digits >= new_digits){
                                      res.push_back(int(cur % p[new_digits]));
122
123
                                      cur /= p[new_digits];
124
                                      cur_digits -= new_digits;
125
                             }
126
                     res.push\_back((\textbf{int}) \ cur);
127
128
                     while (!res.empty() && !res.back())
129
                             res.pop_back();
                     return res:
130
131
             typedef vector<long long> vll;
132
             // 高精度乘 前置函数
133
             static vll karatsubaMultiply(const vll &a, const vll &b){
134
135
                     int n = a.size();
136
                     vll res(n + n);
137
                     if (n <= 32){
                             for (int i = 0; i < n; i++)
138
                                      for (int j = 0; j < n; j++)
                                              res[i + j] += a[i] * b[j];
140
                             return res;
141
142
                     }
                     int k = n \gg 1:
143
                     vll a1(a.begin(), a.begin() + k);
145
                     vll a2(a.begin() + k, a.end());
                     vll b1(b.begin(), b.begin() + k);
146
147
                     vll b2(b.begin() + k, b.end());
                     vll a1b1 = karatsubaMultiply(a1, b1);
148
                     vll a2b2 = karatsubaMultiply(a2, b2);
150
                     for (int i = 0; i < k; i++)
                             a2[i] += a1[i];
151
152
                     for (int i = 0; i < k; i++)
                             b2[i] += b1[i];
153
                     vll r = karatsubaMultiply(a2, b2);
154
155
                     for (int i = 0; i < (int) a1b1.size(); i++)</pre>
156
                             r[i] -= a1b1[i];
                     for (int i = 0; i < (int) a2b2.size(); i++)</pre>
157
                             r[i] -= a2b2[i];
158
                     for (int i = 0; i < (int) r.size(); i++)</pre>
159
160
                             res[i + k] += r[i];
                     for (int i = 0; i < (int) a1b1.size(); i++)</pre>
161
162
                             res[i] += a1b1[i];
163
                     for (int i = 0; i < (int) a2b2.size(); i++)</pre>
                             res[i + n] += a2b2[i];
164
165
                     return res;
166
             // 高精度乘 需要两个前置函数
167
168
             bigint operator*(const bigint &v) const{
                     vector<int> a6 = convert_base(this->a, base_digits, 6);
169
170
                     vector<int> b6 = convert_base(v.a, base_digits, 6);
                     vll a(a6.begin(), a6.end());
171
                     vll b(b6.begin(), b6.end());
173
                     while (a.size() < b.size())</pre>
                             a.push_back(0);
174
                     while (b.size() < a.size())</pre>
176
                             b.push_back(∅);
                     while (a.size() & (a.size() - 1))
177
178
                             a.push_back(0), b.push_back(0);
                     vll c = karatsubaMultiply(a, b);
179
                     bigint res;
180
181
                     res.sign = sign * v.sign;
```

```
182
                     for (int i = 0, carry = 0; i < (int) c.size(); i++){</pre>
183
                              long long cur = c[i] + carry;
184
                              res.a.push_back((int) (cur % 1000000));
185
                              carry = (int) (cur / 1000000);
186
187
                     res.a = convert_base(res.a, 6, base_digits);
188
                     res.trim();
                     return res;
189
190
             // 高精度除/取模 前置函数
191
             friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1){
192
193
                     int norm = base / (b1.a.back() + 1);
                     bigint a = a1.abs() * norm;
194
                     bigint b = b1.abs() * norm;
196
                     bigint q, r;
                     q.a.resize(a.a.size());
197
198
                     for (int i = a.a.size() - 1; i >= 0; i--){
                              r *= base:
199
200
                              r += a.a[i];
201
                              int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];</pre>
                              int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];</pre>
202
203
                              int d = ((long long) base * s1 + s2) / b.a.back();
                              r -= b * d;
204
205
                              while (r < 0)
206
                                     r += b, --d;
                              q.a[i] = d;
207
208
                     q.sign = a1.sign * b1.sign;
209
                     r.sign = a1.sign;
210
211
                     q.trim();
212
                     r.trim();
213
                     return make_pair(q, r / norm);
214
             // 高精度除
215
             \label{eq:const_bigint_wv} \mbox{bigint operator/(const bigint \&v) const} \{
                     return divmod(*this, v).first;
217
218
             // 高精度取模
219
             bigint operator%(const bigint &v) const{
220
                     return divmod(*this, v).second;
221
222
             }
223
             void operator+=(const bigint &v){
224
                     *this = *this + v;
225
             void operator-=(const bigint &v){
227
                     *this = *this - v;
228
229
             void operator*=(const bigint &v){
                     *this = *this * v;
230
231
             }
232
             void operator/=(const bigint &v){
                     *this = *this / v;
233
234
             // 低精度乘
235
             void operator*=(int v){
236
237
                     if (v < 0)
                             sign = -sign, v = -v;
238
                     for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i){</pre>
239
240
                             if (i == (int) a.size())
241
                                      a.push_back(0);
^{242}
                              long long cur = a[i] * (long long) v + carry;
243
                              carry = (int) (cur / base);
                              a[i] = (int) (cur \% base);
244
245
                     }
                     trim();
246
247
             // 低精度乘
248
             bigint operator*(int v) const{
250
                     bigint res = *this;
                     res *= v;
251
                     return res;
253
             }
             // 低精度除
254
255
             void operator/=(int v){
256
                     if (v < 0)
257
                              sign = -sign, v = -v;
                     for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i){
258
```

```
259
                               long long cur = a[i] + rem * (long long) base;
260
                               a[i] = (int) (cur / v);
261
                               rem = (int) (cur % v);
262
                      }
                      trim();
263
264
265
             // 低精度除
             bigint operator/(int v) const{
266
                      bigint res = *this;
268
                      res /= v;
269
                      return res;
270
             // 低精度模
271
             int operator%(int v) const{
273
                     if (v < 0)
274
275
                      int m = 0;
                      for (int i = a.size() - 1; i >= 0; --i){
276
                              m = (a[i] + m * (long long) base) % v;
277
278
                      }
                      return m * sign;
279
             // 比较关系
281
             bool operator<(const bigint &v) const{</pre>
283
                      if (sign != v.sign)
                              return sign < v.sign;</pre>
284
                      if (a.size() != v.a.size())
                              return a.size() * sign < v.a.size() * v.sign;</pre>
286
                      for (int i = a.size() - 1; i >= 0; i--)
287
                               if (a[i] != v.a[i])
                                       return a[i] * sign < v.a[i] * sign;</pre>
289
290
                      return false;
291
             \begin{tabular}{ll} bool & operator>(const & bigint & v) & const \{ \end{tabular}
292
294
             bool operator<=(const bigint &v) const{</pre>
295
296
                     return !(v < *this);</pre>
297
             bool operator>=(const bigint &v) const{
299
                      return !(*this < v);</pre>
300
301
             bool operator==(const bigint &v) const{
                      return !(*this < v) && !(v < *this);
302
             bool operator!=(const bigint &v) const{
304
                     return *this < v || v < *this;
305
306
             // 输入输出
307
             void read(const string &s){
308
309
                      sign = 1;
                      a.clear();
310
311
                      while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')){</pre>
312
                               if (s[pos] == '-')
313
314
                                       sign = -sign;
                               ++pos;
315
316
                      for (int i = s.size() - 1; i >= pos; i -= base_digits){
317
318
319
                               for (int j = max(pos, i - base\_digits + 1); j <= i; j++)
                                       x = x * 10 + s[j] - '0';
320
321
                               a.push_back(x);
322
                      }
323
                      trim();
             friend istream& operator>>(istream &stream, bigint &v){
325
326
                      string s;
327
                      stream >> s;
                      v.read(s);
328
330
             friend ostream& operator<<((ostream &stream, const bigint &v){</pre>
331
332
333
                      stream << (v.a.empty() ? 0 : v.a.back());</pre>
334
335
                      for (int i = (int) v.a.size() - 2; i >= 0; --i)
```

81

```
stream << setw(base_digits) << setfill('0') << v.a[i];</pre>
336
337
                     return stream;
338
339
             // 扩展功能
             friend bigint gcd(const bigint &a, const bigint &b){
340
341
                     return b.isZero() ? a : gcd(b, a % b);
342
             friend bigint lcm(const bigint &a, const bigint &b){
343
344
                     return a / gcd(a, b) * b;
345
             }
             friend bigint sqrt(const bigint &a1) {
346
347
             bigint a = a1;
             while (a.a.empty() || a.a.size() % 2 == 1)
348
349
                 a.a.push_back(0);
350
             int n = a.a.size();
351
352
             int firstDigit = (int) sqrt((double) a.a[n - 1] * base + a.a[n - 2]);
353
354
             int norm = base / (firstDigit + 1);
355
             a *= norm;
             a *= norm;
356
             while (a.a.empty() || a.a.size() % 2 == 1)
357
358
                 a.a.push_back(0);
359
360
             bigint r = (long long) a.a[n - 1] * base + a.a[n - 2];
             firstDigit = (int) sqrt((double) a.a[n - 1] * base + a.a[n - 2]);
361
362
             int q = firstDigit;
             bigint res;
363
364
             for(int j = n / 2 - 1; j >= 0; j--) {
365
366
                 for(; ; --q) {
367
                     bigint r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long) a.a[2 * j - 1] * base + a.a[2 * j - 2] : 0);
368
                     if (r1 >= 0) {
                         r = r1;
369
                         break;
371
                     }
372
                 }
373
                 res *= base;
                 res += q;
374
376
                 if (j > 0) {
377
                     int d1 = res.a.size() + 2 < r.a.size() ? r.a[res.a.size() + 2] : 0;</pre>
378
                     int d2 = res.a.size() + 1 < r.a.size() ? r.a[res.a.size() + 1] : 0;</pre>
                     int d3 = res.a.size() < r.a.size() ? r.a[res.a.size()] : 0;</pre>
379
                     q = ((long long) d1 * base * base + (long long) d2 * base + d3) / (firstDigit * 2);
380
381
                 }
382
             }
383
384
             res.trim();
385
             return res / norm;
386
387 | };
```

康托展开与逆展开

```
1 /// 康托展开.
2 /// 从一个排列映射到排列的 rank.
  /// power : 阶乘数组.
3
  5 int power[21];
6 /// 康托展开, 排名从 Ø 开始.
7 /// 输入为字符串, 其中的字符根据 ascii 码比较大小.
8 /// 可以将该字符串替换成其它线序集合中的元素的排列。
9 int Cantor(const char* c, int len)
10 {
     int res = 0;
11
12
     for(int i=0; i<len; i++)</pre>
13
14
       int rank = 0;
15
       res += rank * power[len - i - 1];
16
18
     return res;
19 }
20 bool cused[21]; // 该数组大小应为字符集的大小。
```

```
21 /// 逆康托展开, 排名从 ∅ 开始.
22 /// 输出排名为 rank 的, 长度为 Len 的排列.
23 void RevCantor(int rank, char* c, int len)
24 {
25
       for(int i=0; i<len; i++) cused[i] = false;</pre>
26
       for(int i=0; i<len; i++)</pre>
27
           int cnt = rank / power[len - i - 1];
28
29
           rank %= power[len - i - 1];
           cnt++;
30
31
           int num = ∅;
32
           while(true)
33
               if(!cused[num]) cnt--;
35
               if(cnt == 0) break;
36
               num++;
37
           cused[num] = true;
38
           c[i] = num + 'a'; // 输出字符串, 从 a 开始.
39
40
41 }
42
   /// 阶乘数组初始化.
43 int main()
44 {
45
       power[0] = power[1] = 1;
       for(int i=0; i<20; i++) power[i] = i * power[i-1];</pre>
46
47
48 }
```

快速乘

模拟退火

```
1 /// 模拟退火.
2 /// 可能需要魔法调参. 慎用!
3 /// Thegin: 退火起始温度.
   /// Tend: 退火终止温度.
5 /// rate: 退火比率.
6 /// 退火公式: rand_range(0, 1) > exp(dist / T), 其中 dist 为计算出的优化增量.
8 srand(11212);
  db Tbegin = 1e2;
10 db Tend = 1e-6;
11 db T = Tbegin;
12 db rate = 0.99995;
13 | int tcnt = 0;
point mvbase = point(0.01, 0.01);
15 point curp = p[1];
16 db curmax = GetIntArea(curp);
17 | while(T >= Tend)
18 {
19
      // 生成一个新的解.
20
      point nxtp = curp + point(
         (randdb() - 0.5) * 2.0 * mvbase.x * T,
21
22
         (randdb() - 0.5) * 2.0 * mvbase.y * T);
      // 计算这个解的价值。
23
      db v = GetIntArea(nxtp);
24
25
      // 算出距离当前最优解有多远.
      db dist = v - curmax;
26
      if(dist > eps || (dist < -eps && randdb() > exp(dist / T)))
27
28
         // 更新方案和答案.
29
30
         curmax = v;
         curp = nxtp;
31
32
         tcnt++;
```

魔法求递推式

```
1 #define rep(i,a,n) for (int i=a;i<n;i++)</pre>
   #define per(i,a,n) for (int i=n-1;i>=a;i--)
3
   #define pb push_back
4 #define mp make_pair
 5 #define all(x) (x).begin(),(x).end()
6 #define fi first
   #define se second
   #define SZ(x) ((int)(x).size())
9 typedef vector<int> VI;
10 typedef long long ll;
11 typedef pair<int,int> PII;
   const 11 mod=1000000007;
12
13 | 11 powmod(11 a,11 b) {11 res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
14 // head
15 int _;
16 | 11 n;
17
   namespace linear_seq {
18
       const int N=10010;
       11 res[N],base[N],_c[N],_md[N];
19
20
       vector<int> Md;
21
       void mul(ll *a,ll *b,int k) {
           rep(i,0,k+k) _c[i]=0;
22
23
           \label{eq:continuous} $$ rep(i,0,k) $ if (a[i]) $ rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j]) $$ mod; $$ $$
24
           for (int i=k+k-1;i>=k;i--) if (_c[i])
25
               26
           rep(i,0,k) a[i]=_c[i];
27
       }
28
       int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
29
           11 ans=0,pnt=0;
           int k=SZ(a);
30
31
           assert(SZ(a)==SZ(b));
           rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
32
33
           Md.clear();
           \texttt{rep(i,0,k)} \ \textbf{if} \ (\_\texttt{md[i]!=0}) \ \texttt{Md.push\_back(i);}
34
35
           rep(i,0,k) res[i]=base[i]=0;
36
           res[0]=1;
37
           while ((111<<<pnt)<=n) pnt++;</pre>
           for (int p=pnt;p>=0;p--) {
38
39
               mul(res,res,k);
40
               if ((n>>p)&1) {
                    for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
41
42
                   43
               }
44
           rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
45
           if (ans<0) ans+=mod;</pre>
47
           return ans;
48
       }
49
       VI BM(VI s) {
           VI C(1,1), B(1,1);
50
51
           int L=0, m=1, b=1;
52
           rep(n,0,SZ(s)) {
53
               11 d=0;
54
               rep(i,0,L+1) d=(d+(11)C[i]*s[n-i])%mod;
               if (d==0) ++m;
55
               else if (2*L<=n) {
56
57
                   VI T=C;
                   11 c=mod-d*powmod(b,mod-2)%mod;
58
                   while (SZ(C)<SZ(B)+m) C.pb(∅);
59
60
                   rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                   L=n+1-L; B=T; b=d; m=1;
61
62
                   11 c=mod-d*powmod(b,mod-2)%mod;
63
64
                   while (SZ(C)<SZ(B)+m) C.pb(∅);</pre>
65
                   rep(i,\theta,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
66
                   ++m;
67
           }
68
69
           return C;
70
```

```
int gao(VI a,ll n) {
71
72
           VI c=BM(a);
73
           c.erase(c.begin());
           rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
74
           return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
75
76
77 };
78 | int main() {
       for (scanf("%d",&_);_;_--) {
79
           scanf("%11d",&n);
80
81
           printf("%d\n",linear_seq::gao(VI{x1,x2,x3,x4},n-1));
82
83 }
```

常用概念

欧拉路径

欧拉回路:每条边恰走一次的回路 欧拉通路:每条边恰走一次的路径

欧拉图:存在欧拉回路的图 半欧拉图:存在欧拉通路的图 有向欧拉图:每个点入度 = 出度 无向欧拉图:每个点度数为偶数

有向半欧拉图: -个点入度 = 出度 +1, -个点入度 = 出度-1, 其他点入度 = 出度

无向半欧拉图:两个点度数为奇数,其他点度数为偶数

映射

```
[injective] or [one-to-one] 函数值不重复
[surjective] or [onto] 值域都被取到
[bijective] or [one-to-one correspondence] ——对应
```

反演

反演中心 O,反演半径 r,点 p 的反演点 p' 满足 $|OP||OP'|=r^2$ 不经过反演中心的直线,反形为经过反演中心的圆 不经过反演中心的圆,反形为圆,反演中心为这两个互为反形的圆的位似中心

弦图

设 next(v) 表示 N(v) 中最前的点. 令 w* 表示所有满足 $A \in B$ 的 w 中最后的一个点, 判断 $v \cup N(v)$ 是否为极大团, 只需判断是否存在一个 $w \in w*$, 满足 Next(w) = v 且 $|N(v)| + 1 \le |N(w)|$ 即可.

五边形数

$$\prod_{n=1}^{\infty} (1-x^n) = \sum_{n=0}^{\infty} (-1)^n (1-x^{2n+1}) x^{n(3n+1)/2}$$

pick 定理

整多边形面积 A= 内部格点数 i+ 边上格点数 $\frac{b}{2}-1$

重心

半径为 r , 圆心角为 θ 的扇形重心与圆心的距离为 $\frac{4r\sin(\theta/2)}{3\theta}$ 半径为 r , 圆心角为 θ 的圆弧重心与圆心的距离为 $\frac{4r\sin^3(\theta/2)}{3(\theta-\sin(\theta))}$

曼哈顿距离与切比雪夫距离

曼哈顿距离:

$$dis = |x1 - x2| + |y1 - y2|$$

切比雪夫距离:

$$dis = max(|x1 - x2|, |y1 - y2|)$$

manhattan to chebyshev

$$(x,y) \rightarrow (x+y,x-y)$$

chebyshev to manhattan

$$(x,y) \to (\frac{x+y}{2}, \frac{x-y}{2})$$

第二类 Bernoulli number

$$B_m = 1 - \sum_{k=0}^{m-1} {m \choose k} \frac{B_k}{m-k+1}$$

$$S_m(n) = \sum_{k=1}^n k^m = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose k} B_k n^{m+1-k}$$

Fibonacci 数

$$F_n = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}}, \varphi = \frac{1 + \sqrt{5}}{2}$$
$$F_n = \lfloor \frac{\varphi^n}{\sqrt{5}} + \frac{1}{2} \rfloor$$

Catalan 数

$$C_{n+1} = \frac{2(2n+1)}{n+2}C_n$$

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$$

前 20 项:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190

所有的奇卡塔兰数 C_n 都满足 $n=2^k-1$ 。所有其他的卡塔兰数都是偶数

Lucas 定理

C(n,m)modp = C(nmodp, mmodp) * C(n/p, m/p), p 是质数

扩展 Lucas 定理

若 p 不是质数,将 p 分解质因数后分别求解,再用中国剩余定理合并

BEST theorem

有向图中欧拉回路的数量 $ec(G) = t_w(G) \prod (deg(v) - 1)!$.

其中 deg(v) 表示 v 的入度,tw(G) 表示以 w 为根的外向树的数量,且在连通欧拉图中以任一点为根的外向树数量相同

若需要定起点,则答案乘上 deg(s),表示对每一条欧拉回路,s 出现了 deg(s) 次,选取一个点切开得到一条从 s 出发的欧拉回路

欧拉示性数定理

对平面图 V - E + F = 2

最值反演 (MinMax 容斥)

$$max\{S\}=\sum_{T\subseteq S}(-1)^{|T|-1}min\{T\}$$

扩展到期望
$$E[max\{S\}]=\sum_{T\subset S}(-1)^{|T|-1}E[min\{T\}]$$

Polya 定理

设对 n 个对象用 m 种颜色: b_1, b_2, \cdots, b_m 着色。

设 $m^{c(p_i)}=(b_1+b_2+\cdots+b_m)^{c_1(p_i)}(b_1^2+b_2^2+\cdots+b_m^2)^{c_2(p_i)}\cdots(b_1^n+b_2^n+\cdots+b_m^n)^{c_n(p_i)}$, 其中 $c_j(p_i)$ 表示置换群中第 i 个置换循环长度为 i 的个数。

设
$$S_k = (b_1^k + b_2^k + \dots + b_m^k), k = 1, 2 \dots, n$$
,则波利亚计数定理的母函数形式为: $P(G) = \frac{1}{\mid G \mid} \sum_{i=1}^g \Pi_{k=1}^n S_k^{c_k(p_j)}$

Stirling 数

第一类:n 个元素的项目分作 k 个环排列的方法数目

$$s(n,k)=(-1)^{n+k}|s(n,k)|$$
 $|s(n,0)|=0$ $|s(1,1)|=1$ $|s(n,k)|=|s(n-1,k-1)|+(n-1)*|s(n-1,k)|$ 第二类:n 个元素的集定义 k 个等价类的方法数 $S(n,1)=S(n,n)=1$ $S(n,k)=S(n-1,k-1)+k*S(n-1,k)$

常用排列组合公式

$$\sum_{i=1}^n x_i = k, x_i \geq 0$$
 的解数为 $C(n+k-1,n-1)$ $x_1 \geq 0, x_i \leq x_{i+1}, x_n \leq k-1$ 的解数等价于在 $[0,k-1]$ 共 k 个数中可重复的取 n 个数的组合数,为 $C(n+k-1,n)$

三角公式

$$\begin{split} &\sin(a\pm b) = \sin a \cos b \pm \cos a \sin b \\ &\cos(a\pm b) = \cos a \cos b \mp \sin a \sin b \\ &\tan(a\pm b) = \frac{\tan(a)\pm\tan(b)}{1\mp\tan(a)\tan(b)} \\ &\tan(a)\pm\tan(b) = \frac{\sin(a\pm b)}{\cos(a)\cos(b)} \\ &\sin(a) + \sin(b) = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2}) \\ &\sin(a) - \sin(b) = 2\cos(\frac{a+b}{2})\sin(\frac{a-b}{2}) \\ &\cos(a) + \cos(b) = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2}) \\ &\cos(a) + \cos(b) = -2\sin(\frac{a+b}{2})\sin(\frac{a-b}{2}) \\ &\sin(na) = n\cos^{n-1}a\sin a - \binom{n}{3}\cos^{n-3}a\sin^3 a + \binom{n}{5}\cos^{n-5}a\sin^5 a - \dots \\ &\cos(na) = \cos^n a - \binom{n}{2}\cos^{n-2}a\sin^2 a + \binom{n}{4}\cos^{n-4}a\sin^4 a - \dots \end{split}$$

积分表

$$\begin{split} \int \frac{1}{x^2(ax+b)} dx &= \frac{n}{k^2} \ln \left| \frac{ax+b}{x} \right| - \frac{1}{b^2} + C \\ &= \frac{2\pi}{4} \sqrt{a + bx} \ln \Re \Im \right) = \\ \int x^2 \sqrt{a + bx} dx &= \frac{1}{105^2} (3bx - 2a)(a + bx)^{\frac{3}{2}} + C \\ \int x^2 \sqrt{a + bx} dx &= \frac{1}{105^2} (3bx - 2a)(a + bx)^{\frac{3}{2}} + C \\ \int x^n \sqrt{a + bx} dx &= \frac{1}{205^2} (3bx^2 - 2a) dx + bx)^{\frac{3}{2}} + C \\ \int x^n \sqrt{a + bx} dx &= \frac{1}{2\sqrt{a + bx}} dx + a \int \frac{2a(a + 1)}{x \sqrt{a + bx}} dx \\ \int \frac{\sqrt{a + bx}}{x^{\frac{1}{2}}} dx &= \frac{1}{\sqrt{a + bx}} \left(\frac{a + bx}{x} \right)^{\frac{3}{2}} - \frac{2a(a + 1)}{x^{\frac{1}{2}}} \int \frac{x^{n - 1}}{x^{n - 1}} dx + bx dx \\ \int \frac{\sqrt{a + bx}}{x^{\frac{1}{2}}} dx &= \frac{1}{\sqrt{a + bx}} \left(\frac{a + bx}{x^{\frac{1}{2}}} \right) + C, a > 0 = \frac{2}{\sqrt{a}} \cdot \arctan \sqrt{\frac{a + bx}{a - a}} + C, a < 0 \\ \int \frac{1}{x^2 + a^2} dx &= \frac{1}{a(a + 1)} \frac{\sqrt{a + bx}}{x^{\frac{1}{2}}} - \frac{2a(a + 1)}{2a(a + 1)} \int \frac{1}{x^{\frac{1}{2}}} \sqrt{a + bx} dx, n \neq 1 \\ &= \frac{2\pi}{4} x^{\frac{1}{2}} dx - \frac{1}{a(a + 1)} \frac{\sqrt{a + bx}}{x^{\frac{1}{2}}} - \frac{2a(a + 1)}{2a(a + 1)} \int \frac{1}{x^{\frac{1}{2}}} \sqrt{a + bx} dx, n \neq 1 \\ &= \frac{2\pi}{4} x^{\frac{1}{2}} dx - \frac{1}{a(a + 1)} \frac{\sqrt{a + bx}}{\sqrt{a}} + C \\ &= \frac{2\pi}{4} x^{\frac{1}{2}} dx - \frac{1}{a(a + 1)} \frac{\sqrt{a + bx}}{\sqrt{a}} + C \\ &= \frac{2\pi}{4} x^2 + bx + c \quad (a > 0) \text{ BR} \mathcal{O} = \\ &= \frac{2\pi}{4} x^2 + bx + c + c \quad (a > 0) \text{ BR} \mathcal{O} = \\ &= \frac{2\pi}{4} x^2 + bx + c + c \quad (a > 0) \text{ BR} \mathcal{O} = \\ &= \frac{2\pi}{4} x^2 + bx + c + \frac{a^2}{2} x^2 + \frac{a^2}{2} \ln (x + \sqrt{a^2 + x^2}) + C \\ &\int \frac{a^2 + b^2}{x^2 + x^2} dx - \frac{a^2}{x^2 + x^2} + \frac{a^2}{2} \ln (x + \sqrt{a^2 + x^2}) + C \\ &\int \frac{x^2 \sqrt{a^2 + x^2} dx - \frac{1}{2} x \sqrt{a^2 + x^2} + \frac{1}{2} a^2 \ln (\sqrt{a^2 + x^2 + x}) + C \\ &\int \frac{x^2 \sqrt{a^2 + x^2} dx - \frac{1}{2} x \sqrt{a^2 + x^2} + \frac{1}{2} a^2 \ln (\sqrt{a^2 + x^2 + x}) + C \\ &\int \frac{x^2 \sqrt{a^2 + x^2} dx - \frac{1}{2} x \sqrt{a^2 + x^2} + \frac{1}{2} a^2 \ln (\sqrt{a^2 + x^2 + x}) + C \\ &\int \frac{x^2 \sqrt{a^2 + x^2} dx - \frac{1}{2} x \sqrt{a^2 + x^2} + \frac{1}{2} a^2 \ln (\sqrt{a^2 + x^2 + x}) + C \\ &\int \frac{x^2 \sqrt{a^2 + x^2} dx - \frac{1}{2} x \sqrt{a^2 + x^2} + \frac{1}{2} a^2 \ln (\sqrt{a^2 + x^2 + x}) + C \\ &\int \frac{1}{x^2 \sqrt{a^2 + x^2}} dx - \frac{1}{a^2 - x^2} (x - 2^2 + \frac{1}{2} x \ln (\sqrt{a^2 + x^2 + x}) + C \\ &\int \frac{1}{x^2 \sqrt{a^2 + x^2}} dx - \frac{1}{a^2 - x^2} \frac{1}{a^2 - x^2} + \frac{1}{a^$$

$$\int_{S_{0}}^{R} dx = -\frac{b}{a_{0}} \int_{S_{0}}^{R} dx \\ \int_{S_{0}}^{R} dx = -\cos x + C \\ \int_{S_{0}}^{R} dx = -\cos x + C \\ \int_{S_{0}}^{R} dx = -\cos x + C \\ \int_{S_{0}}^{R} dx = -\sin |\cos x| + C \\ \int_{S_{0}}^{R} dx = -\sin |\cos x| + C \\ \int_{S_{0}}^{R} dx = -\sin |\cos x| + C \\ \int_{S_{0}}^{R} dx = -\sin |\cos x| + C \\ \int_{S_{0}}^{R} dx = -\sin |\cos x| + C \\ \int_{S_{0}}^{R} dx = -\sin |\cos x| + C \\ \int_{S_{0}}^{R} dx = -\sin |\cos x| + C \\ \int_{S_{0}}^{R} dx = -\frac{b}{a_{0}} \sin^{2} dx \\ \int_{S_{0}}^{R} dx = -\frac{b}{a_{0}} \cos^{2} dx \\ \int_{S_{0}}^{R} dx = -\frac{b}{a_{0}} \cos^{2} dx \\ \int_{S_{0}}^{R} dx \\ \int_{S_{0}}^{R} dx = -\frac{b}{a_{0}} \cos^{2} dx \\ \int_{S_{0}}^{R} dx \\ \int_{S_{0}}^{R} dx = -\frac{b}{a_{0}} \cos^{2} dx \\ \int_{S_{0}}^{R} dx \\ \int_{S_{0$$

$$\int \cosh x \mathrm{d}x = \sinh x + C$$

$$\int \tanh x \mathrm{d}x = \ln (\cosh x) + C$$

$$\int \coth x \mathrm{d}x = \ln (\sinh x) + C$$

$$\int \operatorname{sech} x \mathrm{d}x = \arcsin (\tanh x) + C = \arctan (\sinh x) + C$$

$$\int \operatorname{csch} x \mathrm{d}x = \ln \left(\tanh \frac{x}{2}\right) + C$$

$$== 定积分 ==$$

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} \mathrm{d}x = \sqrt{\frac{\pi}{\alpha}}$$

$$\int_{0}^{\frac{\pi}{2}} \sin^n x \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} \cos^n x \mathrm{d}x =$$

$$\left\{\begin{array}{ccc} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \frac{4}{5} \cdot \frac{2}{3}, & \text{if } n > 1 \ \text{Bn} \ \text{为奇数} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \ldots \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & \text{if } n > 0 \ \text{Bn} \ \text{为偶数} \end{array}\right.$$