2022 年上海市崇明区中考数学一模试卷

2022.1

一、选择题: (本大题共6题, 每题4分, 满分24分)

【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答 题纸的相应位置上】

1. 将抛物线 $y = 2x^2$ 向上平移 3 个单位后所得抛物线的表达式是 ()

- A. $y = 2x^2 + 3$; B. $y = 2(x+3)^2$; C. $y = 2(x-3)^2$; D. $y = 2x^2 3$.
- 2. 如果两个相似三角形的周长比为 1: 4, 那么这两个三角形的对应中线的比为 ()

A.1: 2;

- B.1: 4;
- C.1: 8;
- 3. 如果向量 \vec{a} 与向量 \vec{b} 方向相反,且,那么向量 \vec{a} 用向量 \vec{b} 表示为(

- A. $\vec{a} = 3\vec{b}$; B. $\vec{a} = -3\vec{b}$; C. $\vec{a} = \frac{1}{3}\vec{b}$; D. $\vec{a} = -\frac{1}{3}\vec{b}$.
- 4. 在 $Rt \triangle ABC$ 中, $\angle C = 90^{\circ}$, AB = 2 , AC = 1 ,那么 $\cos B$ 的值是(

A. $\frac{\sqrt{2}}{2}$; B. $\frac{\sqrt{3}}{2}$; C. $\frac{1}{2}$;

- 5. 下列各组条件中,一定能推得 $\triangle ABC$ 与 $\triangle DEF$ 相似的是(

A. $\angle A = \angle E \perp \angle D = \angle F$; B. $\angle A = \angle B \perp \angle D = \angle F$;

C. $\angle A = \angle E \perp \frac{AB}{AC} = \frac{EF}{FD}$; D. $\angle A = \angle E \perp \frac{AB}{BC} = \frac{FD}{DE}$

- 6. 已知二次函数 $y = ax^2 + bx + c(a \neq 0)$ 的图像如图所示,那么下列结论 中正确的是()

A. ac > 0;

B. 当x > -1时,y > 0

C. b = 2a;

D. 9a + 3b + c = 0

二、填空题: (本大题共12题,每题4分,满分48分)

【请将结果直接填入答题纸的相应位置】

7. 如果
$$\frac{x-y}{y} = \frac{2}{3}$$
, 那么 $\frac{x}{y} =$ _______.

8. 计算: $2(3\vec{a}+2\vec{b})-5\vec{a}=$ ______.

9. 已知线段 AB=8cm,点 C 是 AB 的黄金分割点,且 AC>BC,那么线段 AC 的长为

____cm.

- 10. 如果抛物线 $y = (k-2)x^2$ 的开口向上,那么 k 的取值范围是______.
- 11. 如果抛物线 $y = -x^2 + 3x 1 + m$ 经过原点,那么 $m = _____$.
- 12. 已知二次函数 $y = ax^2 + bx + c(a \neq 0)$ 自变量 x 的值和它对应的函数值 y 如下表所示:

x	 -1	0	1	2	3	•••
У	 0	3	4	3	m	

那么上表中 m 的值为_____

- 14. 如图,直线 AD // BE // CF ,如果 $\frac{AB}{BC} = \frac{1}{3}$, AD = 2 , CF = 6 ,那么线段 BE 的长是

(第14题图)

- 15. 如图,在平行四边形 ABCD 中,点 M 是边 CD 中点,点 N 是边 BC 的中点,设 $AB = \vec{a}$, $BC = \vec{b}$,那么 \overrightarrow{MN} 可用 \vec{a} , \vec{b} 表示为______.
- 16. 如图,已知正方形 DEFG 的顶点 $D \times E$ 在 $\triangle ABC$ 的边 BC 上,顶点 $G \times F$ 分别在边 $AB \times AC$ 上,如果 BC = 4, $\triangle ABC$ 的面积为 6,那么这个正方形的边长是

- 17. 定义:有一组对边相等而另一组对边不相等的凸四边形叫做"对等四边形",如图,在 $Rt\triangle PBC$ 中, $\angle PCB$ = 90°,点 A 在边 BP 上,点 D 在边 CP 上,如果 BC = 11, $\tan \angle PBC$ = $\frac{12}{5}$, AB = 13 ,四边形 ABCD 为"对等四边形",那么 CD 的长为
- 18. 如图所示,在三角形纸片 ABC 中, AB=9, BC=6, $\angle ACB=2$ $\angle A$, 如果将 $\triangle ABC$ 沿过顶点 C 的直线折叠,使点 B 落在边 AC 上的点 D 处,折痕为 CM,那么

$$\cos \angle DMA =$$
_____.

三、解答题: (本大题共7题,满分78分)

19. (本题满分10分)

计算: 3tan 30°+2cos 45°-2sin 60°×cot 45°

20. (本题满分 10 分)

如图,在 $\triangle ABC$ 中,点F为 $\triangle ABC$ 的重心,联结AF并延长交BC于点D,联结BF并延长交AC于点E.

(1) 求
$$\frac{S_{\triangle DEF}}{S_{\triangle ABF}}$$
的值;

(1) 如果 $AB = \vec{a}$, $AC = \vec{b}$, 用 \vec{a} , \vec{b} 表示 \overrightarrow{BE} 和 \overrightarrow{AF} .

21. (本题满分 10 分, 第(1) 小题满分 5 分, 第(2) 小题满分 5 分)

如图,在
$$\triangle ABC$$
中, $AB = AC = \sqrt{5}$, $\sin B = \frac{2\sqrt{5}}{5}$.

- (1) 求边 BC 的长度;
- (2) 求 cos A 的值.

22. (本题满分 10 分, 第(1)小题满分 6 分, 第(2)小题满分 4 分)

如图,小明同学在学习了解直角三角形及其应用的知识后,尝试利用无人机测量他所住小区的楼房 BC 的高度,当无人机在地面 A 点处时,测得小区楼房 BC 顶端点 C 处的仰角为 30° ,当无人机垂直向上飞行到距地面 60 米的 D 点处时,测得小区楼房 BC 顶端点 C 处的俯角为 45° .

- (1) 求小区楼房 BC 的高度;
- (2) 若无人机保持现有高度沿平行于 *AB* 的方向,并以 5 米/秒的速度继续向前匀速飞行,问: 经过多少秒后,无人机无法观察到地面上点 *A* 的位置(计算结果保留根号)

23. (本题满分12分,每小题满分各6分)

已知:如图,在 $Rt \triangle ABC$ 中, $\angle ACB = 90^{\circ}$, $CD \perp AB$,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足 $BC^2 = CD \cdot BE$.

求证: (1) $\triangle BCE \hookrightarrow \triangle ACB$;

(2) 过点 C 作 $CM \perp BE$, 交 BE 于点 G, 交 AB 于点 M, 求证: $BE \cdot CM = AB \cdot CF$.

(本题满分12分,每小题满分各4分)

如图, 抛物线 $y = -\frac{3}{4}x^2 + bx + c$ 与 x 轴交于点 A(4,0) , 与 y 轴交于点 B(0,3) , 点 M(m,0)为线段 OA 上一动点,过点 M 且垂直于 x 轴的直线与直线 AB 及抛物线分别交于 点 P, N.

- (1) 求抛物线的解析式,并写出此抛物线的对称轴和顶点坐标;
- (2) 如果以点 P、N、B、O 为顶点的四边形为平行四边形, 求 m 的值;
- (3) 如果以 B、P、N 为顶点的三角形与相似,求点 M 的坐标.

25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)

已知:如图,正方形的边长为 1,在射线 AB 上取一点 E,联结 DE,将 ADE 绕点 D 针旋转 90° ,E 点落在点 F 处,联结 EF,与对角线 BD 所在的直线交于点 M,与射线 DC 交于点 N.

求证: (1) 当 $AE = \frac{1}{3}$ 时,求 $\tan \angle EDB$ 的值;

- (2) 当点 E 在线段 AB 上,如果 AE = x , FM = y ,求 y 关于 x 的函数解析式,并写出定义域;
 - (3) 联结 AM, 直线 AM 与直线 BC 交于点 G, 当 $BG = \frac{1}{3}$ 时,求 AE 的值.

2022 年上海市崇明区中考数学一模试券

答案

一、选择题(本大题共6题,每题4分,满分24分)

- A. D 4.C 5.C
- 二、填空题(本大题共12题,每题4分,满分36分)

7.
$$\frac{5}{3}$$

$$8. \quad \vec{a} + 4\vec{b}$$

7.
$$\frac{5}{3}$$
 8. $\vec{a} + 4\vec{b}$ 9. $4\sqrt{5} - 4$ 10. $k > 2$

10.
$$k > 2$$

15.
$$\frac{1}{2}\vec{a} - \frac{1}{2}\vec{b}$$

16.
$$\frac{12}{7}$$

15.
$$\frac{1}{2}\vec{a} - \frac{1}{2}\vec{b}$$
 16. $\frac{12}{7}$ 17. 13 或 12- $\sqrt{85}$ 或 12+ $\sqrt{85}$

18.
$$\frac{31}{32}$$

三、解答题(本大题共7题,满分78分)

19. **M**: $3 \tan 30^{\circ} + 2 \cos 45^{\circ} - 2 \sin 60^{\circ} \times \cot 45^{\circ}$

$$=3 \times \frac{\sqrt{3}}{3} + 2 \times \frac{\sqrt{2}}{2} - 2 \times \frac{\sqrt{3}}{2} \times 1$$

$$=\sqrt{3}+\sqrt{2}-\sqrt{3}$$

$$=\sqrt{2}$$

20. 【答案】(1)
$$\frac{1}{4}$$

20. [答案] (1)
$$\frac{1}{4}$$
 (2) $\overrightarrow{BE} = \frac{1}{2} \vec{b} - \vec{a}$, $\overrightarrow{AF} = \frac{1}{3} \vec{a} + \frac{1}{3} \vec{b}$

【解析】

【分析】(1)根据重心是三角形三边中线的交点即可得到DE是 $\triangle ABC$ 的中位线,则

$$DE = \frac{1}{2}AB$$
, $DE//AB$, 即可证明 $\triangle ABF \hookrightarrow \triangle DEF$, 得到 $\frac{S_{\triangle DEF}}{S_{\triangle ABE}} = \left(\frac{DE}{AB}\right)^2 = \frac{1}{4}$;

(2) 先求出 $\overrightarrow{AE} = \frac{1}{2} \overset{\text{U.U.F.}}{AC} = \frac{1}{2} \overset{\text{r}}{b}$,再由 $\overrightarrow{BE} = \overrightarrow{AE} - \overrightarrow{AB}$,即可求出 \overrightarrow{BE} ; 由 $\triangle ABF \hookrightarrow \triangle DEF$,

得到
$$\frac{BF}{EF} = \frac{AB}{DE} = 2$$
,可以推出 $\frac{uur}{BF} = \frac{2}{3}\frac{uur}{BE} = \frac{1}{3}\frac{r}{b} - \frac{2}{3}\frac{r}{a}$,则 $\frac{uur}{AF} = \frac{uur}{AB} + \frac{1}{BF} = \frac{1}{3}\frac{r}{a} + \frac{1}{3}\frac{r}{b}$.

【小问1详解】

解: :F 是三角形 ABC 的重心,

 $:D \times E$ 分别是 $BC \times AC$ 的中点,

 $\therefore DE$ 是 $\triangle ABC$ 的中位线,

$$\therefore DE = \frac{1}{2}AB, DE//AB,$$

 $\therefore \triangle ABF \hookrightarrow \triangle DEF$,

$$\therefore \frac{S_{\triangle DEF}}{S_{\triangle ABF}} = \left(\frac{DE}{AB}\right)^2 = \frac{1}{4};$$

【小问2详解】

解: $: F \oplus \triangle ABC$ 的重心,

∴D、E 分别是 BC、AC 的中点,

$$\vec{AB} = \vec{a}, \vec{AC} = \vec{b},$$

$$\therefore AE = \frac{1}{2}AC = \frac{1}{2}^{1}b,$$

$$\therefore BE = \begin{array}{c} uur \\ AE - AB = \frac{1}{2} \begin{array}{c} r \\ AB - \end{array} ,$$

 $\therefore \triangle ABF \hookrightarrow \triangle DEF$,

$$\therefore \frac{BF}{EF} = \frac{AB}{DE} = 2 ,$$

$$\therefore EF = \frac{1}{2}BF ,$$

$$\therefore BF = \frac{2}{3}BE,$$

$$\therefore BF = \frac{2}{3}BE = \frac{1}{3}F - \frac{2}{3}A,$$

$$\therefore AF = AB + BF = \frac{1}{3}x + \frac{1$$

21. (1) 2; (2) $\frac{3}{5}$.

【分析】(1) 作 $\triangle ABC$ 的高 AD,由等腰三角形的性质"三线合一",可知 AB=AC . 在 $\operatorname{Rt}\triangle ABD$ 中,由 $\sin B = \frac{AD}{AB} = \frac{2\sqrt{5}}{5}$,即可求出 AD 的长,再根据勾股定理即可求出 BD的长,从而即可求出 BC 的长;

(2) 再作 $\triangle ABC$ 的高 BE, 由面积法即可求出 BE 的长, 再在 $Rt \triangle ABE$ 中, 由勾股定理即 可求出 AE 的长,最后根据 $\cos A = \frac{AE}{AB}$ 求值即可.

【小问1详解】

解:如图,作 $\triangle ABC$ 的高AD,

- $\therefore AB = AC$,
- ∴点 D 为 BC 中点, 即 BD = CD.

∵在Rt△ABD中,sin
$$B = \frac{AD}{AB} = \frac{2\sqrt{5}}{5}$$
,即 $\frac{AD}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$,

$$\therefore AD = 2$$

:
$$BD = \sqrt{AB^2 - AD^2} = \sqrt{(\sqrt{5})^2 - 2^2} = 1$$

【小问2详解】

如图,再作 $\triangle ABC$ 的高 BE,

$$:: S_{\triangle ABC} = \frac{1}{2}BC \cdot AD = \frac{1}{2}AC \cdot BE ,$$

$$\therefore 2 \cdot 2 = \sqrt{5} \cdot BE ,$$

$$\therefore BE = \frac{4\sqrt{5}}{5}.$$

∴在
$$Rt\triangle ABE$$
 中, $AE = \sqrt{AB^2 - BE^2} = \sqrt{(\sqrt{5})^2 - (\frac{4\sqrt{5}}{5})^2} = \frac{3\sqrt{5}}{5}$,

$$\therefore \cos A = \frac{AE}{AB} = \frac{\frac{3\sqrt{5}}{5}}{\frac{5}{\sqrt{5}}} = \frac{3}{5}.$$

(2)
$$12\sqrt{3}$$
 $12\sqrt{3}$

【解析】

【分析】(1) 过点 C 作 $CE \perp AD$ 于点 E, 可得四边形 ABCE 为平行四边形, 从而得到 AB=CE, AE=BC, $\angle ACE=30^{\circ}$, 然后在 $Rt\triangle ACE$ 和 $Rt\triangle CDE$ 中, 利用锐角三角函数, 可得 $CE = \frac{AE}{\tan 30^\circ} = \sqrt{3}AE$, DE=CE, 即可求解;

(2) 设直线 DM 交 AC 延长线于点 F, 则 DF//AB, 可得 $\angle F = \angle BAC = 30^{\circ}$, 在 $Rt \triangle ADF$ 中, 可得 $DF = \frac{AD}{\tan 30^\circ} = 60\sqrt{3}$ 米, 再除以速度, 即可求解.

【小问1详解】

解:如图,过点C作 $CE \perp AD$ 于点E,

根据题意得: $AD \perp AB$, $BC \perp AB$, AD=60 米, $\angle BAC=30^{\circ}$, $\angle CDE=45^{\circ}$,

- $\therefore AD//BC$, AB//CE,
- :.四边形 ABCE 为平行四边形,
- $\therefore AB = CE$, AE = BC, $\angle ACE = 30^{\circ}$,

在 $Rt\triangle ACE$ 中, $\angle ACE=30^{\circ}$,

$$\therefore CE = \frac{AE}{\tan 30^{\circ}} = \sqrt{3}AE ,$$

在 $Rt\triangle CDE$ 中, $\angle CDE$ =45°,

- ∴ ∠*DCE*=45°,
- $\therefore \angle CDE = \angle DCE$,
- $\therefore DE = CE$,

∴
$$60 - AE = \sqrt{3}AE$$
 , 解得: $AE = 30(\sqrt{3} - 1)$ **,

即小区楼房 BC 的高度为 $30(\sqrt{3}-1)$ 米;

如图,设直线 DM 交 AC 延长线于点 F,则 DF//AB,

在Rt△ADF 中,

$$\therefore 60\sqrt{3} \div 5 = 12\sqrt{3}$$
 秒,

即经过 $12\sqrt{3}$ 秒后,无人机无法观察到地面上点 A 的位置.

23. (1) 见解析 (2) 见解析

【解析】

【分析】(1) 由 $BC^2 = CD \cdot BE$ 可得 $\frac{BC}{CD} = \frac{BE}{BC}$ 可得 $\triangle BCE \hookrightarrow \triangle BCD$, 然后再说明

 $\triangle ABC \hookrightarrow \triangle BCD$,即可证明结论;

(2) 说明 △ABE∽△CMF 即可证明结论.

【小问1详解】

证明: $: BC^2 = CD \cdot BE$

$$\therefore \frac{BC}{CD} = \frac{BE}{BC}$$

- $\therefore \angle ACB = 90^{\circ}, CD \perp AB$
- $\therefore \angle BDC = \angle ACB = 90^{\circ}$
- $\therefore \triangle EBC \hookrightarrow \triangle BCD$
- $\therefore \angle ACB = 90^{\circ}, CD \perp AB$
- $\therefore \angle A + \angle ABC = 90^{\circ}, \ \angle DCB + \angle ABC = 90^{\circ},$
- $\therefore \angle A = \angle DCB$
- $\therefore \angle CBD = \angle CBD$
- $\therefore \triangle ABC \hookrightarrow \triangle BCD$
- $\therefore \triangle BCE \hookrightarrow \triangle ACB$.

【小问2详解】

解: ∵△BCE∽△ACB

- $\therefore \angle A = \angle CBE$
- $: \triangle BCE \hookrightarrow \triangle BCD$
- $\therefore \angle DCB = \angle CBE$
- $\therefore \angle AEB = \angle CBE + \angle BCE, \angle CFM = \angle CDA + \angle FMD$
- $\therefore \angle AEB = \angle CFM$
- $:: CG \perp BE, CD \perp AB, \angle CFD = \angle DFB$
- $\therefore \angle MCF = \angle FBD$
- $\therefore \triangle ABE \hookrightarrow \triangle CMF$
- $BE \cdot CM = AB \cdot CF$.

- 24. 【答案】(1) 抛物线的解析式为 $y=-\frac{3}{4}x^2+\frac{9}{4}x+3$,对称轴为 $x=\frac{3}{2}$,顶点坐标为($\frac{3}{2}$, $\frac{75}{16}$);
 - (2) m=2; (3) 点 M 的坐标为 $(\frac{11}{9}, 0)$ 或 (3, 0).

【解析】

【分析】(1) 利用待定系数法求抛物线解析式,利用配方法可求得此抛物线的对称轴和顶点坐标;

better offer, better future

(2) 先求得直线 AB 的解析式,得到 $NP=-\frac{3}{4}m^2+3m$,根据 NP=OB,列出方程求解即可;

 $\triangle BPN \hookrightarrow \triangle OBA$; $\frac{PB}{AB} = \frac{PN}{OB}$ 时, $\triangle BPN \hookrightarrow \triangle ABO$ 两种情况讨论即可求解.

【小问1详解】

解: :: 抛物线 $y=-\frac{3}{4}x^2+bx+c$ 与 x 轴交于点 A(4,0), 与 y 轴交于点 B(0,3),

$$\therefore \begin{cases} -\frac{3}{4} \times 4^2 + 4b + c = 0, \\ c = 3 \end{cases}$$

解得:
$$\begin{cases} b = \frac{9}{4}, \\ c = 3 \end{cases}$$

∴抛物线的解析式为 $y=-\frac{3}{4}x^2+\frac{9}{4}x+3$,

$$\therefore y = -\frac{3}{4}x^2 + \frac{9}{4}x + 3 = -\frac{3}{4}(x - \frac{3}{2})^2 + \frac{75}{16},$$

∴此抛物线的对称轴为 $x=\frac{3}{2}$,

顶点坐标为 $(\frac{3}{2}, \frac{75}{16});$

【小问2详解】

解: 设直线 AB 的解析式为 y=px+q,

把 A (4, 0), B (0, 3) 代入得 $\begin{cases} 4p+q=0\\ q=3 \end{cases}$,

解得:
$$\begin{cases} p = -\frac{3}{4}, \\ q = 3 \end{cases}$$

∴直线 AB 的解析式为
$$y=-\frac{3}{4}x+3$$
,

 $:: M (m, 0), MN \perp x 轴,$

:.
$$N(m, -\frac{3}{4}m^2 + \frac{9}{4}m + 3), P(m, -\frac{3}{4}m + 3),$$

$$\therefore NP = -\frac{3}{4} m^2 + 3m, OB = 3,$$

:NP//OB, 且以点 P、N、B、O 为顶点的四边形为平行四边形,

∴
$$NP = OB$$
, $\mathbb{P} - \frac{3}{4} m^2 + 3m = 3$,

整理得: m²-4m+4=0,

解得: m=2;

【小问3详解】

$$A = (4, 0), B = (0, 3), P = (m, -\frac{3}{4}m + 3),$$

$$\therefore AB = \sqrt{4^2 + 3^2} = 5, BP = \sqrt{m^2 + \left(-\frac{3}{4}m + 3 - 3\right)^2} = \frac{5}{4}m,$$

$$\overrightarrow{III}$$
 NP= $-\frac{3}{4}m^2+3m$,

$$:PN//OB$$
,

当
$$\frac{PB}{OB} = \frac{PN}{AB}$$
时, $\triangle BPN \sim \triangle OBA$,

$$\mathbb{P}\frac{\frac{5}{4}m}{\frac{3}{3}} = \frac{-\frac{3}{4}m^2 + 3m}{5},$$

整理得 $9m^2$ -11m=0,解得 m_1 =0(舍去), m_2 = $\frac{11}{9}$,

此时 M 点的坐标为 $(\frac{11}{9}, 0);$

当
$$\frac{PB}{AB} = \frac{PN}{OB}$$
 时, $\triangle BPN \hookrightarrow \triangle ABO$,

$$\mathbb{P}\frac{\frac{5}{4}m}{\frac{5}{5}} = \frac{-\frac{3}{4}m^2 + 3m}{3},$$

整理得 $2m^2$ -5m=0,解得 m_1 =0 (含去), m_2 =3,

此时M点的坐标为(3,0);

综上所述,点M的坐标为 $(\frac{11}{9},0)$ 或 (3,0).

公众号:初高中学习

better offer, better future

【解析】

理即可;

【分析】(1) 过点 E 作 $EH \perp BD$ 与 H,根据正方形的边长为 1, $AE = \frac{1}{3}$,求出 $EB=1-AE=1-\frac{1}{3}=\frac{2}{3}$,根据正方形性质可求 $\angle ABD=45^{\circ}$,根据 $EH\perp BD$,得出 $\angle BEH = 180^{\circ} - \angle EBH - \angle EHB = 180^{\circ} - 45^{\circ} - 90^{\circ} = 45^{\circ}$,求出 $EH = BH = BE\sin 45 = \frac{2}{3} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{3}$,以 及 $DH=DB-BH=\sqrt{2}-\frac{\sqrt{2}}{2}=\frac{2\sqrt{2}}{2}$, 利用三角函数定义求解即可;

(2) 解:根据 AE=x,求出 BE=1-x,根据旋转将 $\triangle ADE$ 绕点 D 针旋转 90°,得到 $\triangle DCF$, CF=AE=x,根据勾股定理

$$ED=FD=\sqrt{AD^2+AE^2}=\sqrt{1+x^2}$$
, $EF=\sqrt{BE^2+BF^2}=\sqrt{(1-x)^2+(1+x)^2}=\sqrt{2+2x^2}$,可证 $\triangle DEF$ 为等腰直角三角形,先证 $\triangle BEM$ $\triangle FDM$,得出 $\frac{1-x}{\sqrt{1+x^2}}=\frac{BM}{y}$,再证 $\triangle EMD$ $\triangle BMF$,得出 $\frac{\sqrt{1+x^2}}{1+x}=\frac{\sqrt{2+2x^2}-y}{BM}$,两式相乘得出 $\frac{1-x}{1+x}=\frac{\sqrt{2+2x^2}-y}{y}$,整

消去 y, 当点 G 在 CB 延长线上, $BG = \frac{1}{3}$, 过 M 作 $ML \perp BC$, 交直线 $BC \mp L$, 证明 $\triangle BGM$ \hookrightarrow $\triangle DAM$, 得出 $BM = \frac{1}{2}BD$, 根据 $\angle LBM = \angle CBD = 45^{\circ}$, $ML \perp BC$, 证出 $\triangle MLB$ 为 等腰直角三角形,再证 $\triangle MLB \hookrightarrow \triangle DCB$, $\frac{BM}{BD} = \frac{ML}{DC} = \frac{1}{2}$, CD=1 , $ML=\frac{1}{2}$, ML//BE , 结

合
$$\triangle LMF \hookrightarrow \triangle BEF$$
,得出 $\frac{LM}{BE} = \frac{LF}{BF}$ 即 $\frac{1}{x-1} = \frac{\frac{3}{2} + x}{1+x}$ 解方程即可.

【小问1详解】

解: 过点 E 作 $EH \perp BD$ 与 H,

:正方形的边长为 1, $AE = \frac{1}{3}$,

:.
$$EB=1-AE=1-\frac{1}{3}=\frac{2}{3}$$
,

::BD 为正方形对角线,

∴BD 平分∠ABC,

∴ ∠ABD=45°,

 $:EH \perp BD$,

 $\therefore \angle BEH = 180^{\circ} - \angle EBH - \angle EHB = 180^{\circ} - 45^{\circ} - 90^{\circ} = 45^{\circ}$

 $\therefore EH=BH$,

$$\therefore EH = BH = BE \sin 45 = \frac{2}{3} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{3}, AB = BD \cos 45^{\circ},$$

$$\therefore BD = 1 \div \frac{\sqrt{2}}{2} = \sqrt{2},$$

$$\therefore DH = DB - BH = \sqrt{2} - \frac{\sqrt{2}}{3} = \frac{2\sqrt{2}}{3}$$

$$\tan \angle EDB = \frac{EH}{HD} = \frac{\frac{\sqrt{2}}{3}}{\frac{2\sqrt{2}}{3}} = \frac{1}{2};$$

【小问2详解】

解:如上图, ::AE=x,

 $\therefore BE=1-x$,

∵将 $\triangle ADE$ 绕点 D 针旋转 90°, 得到 $\triangle DCF$,

:
$$CF = AE = x$$
, $ED = FD = \sqrt{AD^2 + AE^2} = \sqrt{1 + x^2}$,

 $\therefore BF = BC + CF = 1 + x$

在Rt
$$\triangle EBF$$
中 $EF = \sqrt{BE^2 + BF^2} = \sqrt{(1-x)^2 + (1+x)^2} = \sqrt{2+2x^2}$,

 $\therefore \angle EDF = 90^{\circ}$, ED = FD,

 $∴ \triangle DEF$ 为等腰直角三角形,

 $\therefore \angle DFE = \angle DEF = 45^{\circ}$,

 $\therefore \angle EBM = \angle MFD = 45^{\circ}$

 $\therefore \angle EMB = \angle DMF$,

 $\therefore \triangle BEM \hookrightarrow \triangle FDM$,

$$\therefore \frac{BE}{DF} = \frac{BM}{FM}$$
, $\mathbb{E} \frac{1-x}{\sqrt{1+x^2}} = \frac{BM}{y}$,

 $\therefore \angle DEM = \angle FBM = 45^{\circ}, \angle EMD = \angle BMF,$

 $\therefore \triangle EMD \hookrightarrow \triangle BMF$,

$$\therefore \frac{ED}{BF} = \frac{EM}{BM}, \quad \mathbb{P} \frac{\sqrt{1+x^2}}{1+x} = \frac{\sqrt{2+2x^2}-y}{BM},$$

$$\therefore \frac{1-x}{\sqrt{1+x^2}} \times \frac{\sqrt{1+x^2}}{1+x} = \frac{BM}{y} \times \frac{\sqrt{2+2x^2}-y}{BM},$$

$$\therefore \frac{1-x}{1+x} = \frac{\sqrt{2+2x^2}-y}{y},$$

$$\therefore \frac{1 - x + 1 + x}{1 + x} = \frac{\sqrt{2 + 2x^2} - y + y}{y} \, \mathbb{P} \frac{2}{1 + x} = \frac{\sqrt{2 + 2x^2}}{y},$$

$$\therefore y = \frac{1}{2} (1+x) \sqrt{2+2x^2}, \ 0 \le x \le 1;$$

【小问3详解】

解: 当点 G 在 BC 上, $BG = \frac{1}{3}$,

:四边形 ABCD 为正方形,

 $\therefore AD //BG$,

∴ ∠DAM=∠BGM, ∠ADM=∠GBM,

 $\therefore \triangle BGM \hookrightarrow \triangle DAM$,

$$\therefore \frac{BG}{DA} = \frac{BM}{DM} = \frac{\frac{1}{3}}{1} = \frac{1}{3},$$

∵由 (2) 知 \triangle BEM \backsim \triangle FDM,

better offer, better future

$$\therefore \frac{BM}{MF} = \frac{BE}{DF},$$

$$\therefore DB = \sqrt{AB^2 + AD^2} = \sqrt{2},$$

$$\therefore BM = \frac{1}{3}DM, BM + DM = \sqrt{2},$$

$$\therefore BM = \frac{\sqrt{2}}{4},$$

$$\therefore \frac{\sqrt{2}}{4} = \frac{1-x}{\sqrt{1+x^2}},$$

$$y = \frac{1}{2}(1+x)\sqrt{2+2x^2}$$
,

$$\therefore \frac{\frac{\sqrt{2}}{4}}{\frac{1}{2}(1+x)\sqrt{2+2x^2}} = \frac{1-x}{\sqrt{1+x^2}} \oplus 1 - x^2 = \frac{1}{2},$$

当点 G 在 CB 延长线上, $BG = \frac{1}{3}$,过 M 作 $ML \perp BC$,交直线 $BC \mp L$,

$$:GB//AD$$
,

$$\therefore \therefore \angle DAM = \angle BGM, \angle ADM = \angle GBM,$$

$$\therefore \triangle BGM \hookrightarrow \triangle DAM$$
,

$$\therefore \frac{BG}{DA} = \frac{BM}{DM} = \frac{\frac{1}{3}}{1} = \frac{1}{3},$$

$$\therefore BM = \frac{1}{3}DM,$$

$$\therefore BM = \frac{1}{2}BD,$$

$$\therefore$$
 \angle LBM= \angle CBD=45°, ML \perp BC,

$$\therefore \triangle MLB$$
 为等腰直角三角形,

$$:ML//CD$$
,

$$\therefore$$
 $\angle LMB = \angle CDB$, $\angle L = \angle DCB$,

 $\therefore \triangle MLB \hookrightarrow \triangle DCB$,

$$\therefore \frac{BM}{BD} = \frac{ML}{DC} = \frac{1}{2}, CD=1,$$

$$\therefore ML = \frac{1}{2}$$

:ML //BE,

$$\therefore \angle L = \angle FBE$$
, $\angle LMF = \angle BEF$,

 $\therefore \triangle LMF \hookrightarrow \triangle BEF$,

$$\therefore \frac{LM}{BE} = \frac{LF}{BF} ,$$

:
$$BE=AE-AB=x-1$$
, $LF=LB+BC+CF=\frac{1}{2}+1+x=\frac{3}{2}+x$, $BF=BC+CF=1+x$,

$$\therefore \frac{\frac{1}{2}}{x-1} = \frac{\frac{3}{2} + x}{1+x},$$

整理得: $2x^2 = 4$,

解得
$$x_3 = \sqrt{2}$$
 , $x_4 = -\sqrt{2}$ 舍去,

$$\therefore AE$$
 的值为 $\frac{\sqrt{2}}{2}$ 或 $\sqrt{2}$.

