INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT237

3-to-8 line decoder/demultiplexer with address latches

Product specification
File under Integrated Circuits, IC06

December 1990

3-to-8 line decoder/demultiplexer with address latches

74HC/HCT237

FEATURES

- Combines 3-to-8 decoder with 3-bit latch
- Multiple input enable for easy expansion or independent controls
- · Active HIGH mutually exclusive outputs
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT237 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT237 are 3-to-8 line decoder/demultiplexers with latches at the three address inputs (A_n). The "237" essentially combines the 3-to-8 decoder function with a 3-bit storage latch. When the latch is enabled ($\overline{\text{LE}}$ = LOW), the "237" acts as a 3-to-8 active LOW decoder. When the latch enable ($\overline{\text{LE}}$) goes from LOW-to-HIGH, the last data present at the inputs before this transition, is stored in the latches. Further address changes are ignored as long as $\overline{\text{LE}}$ remains HIGH.

The output enable input (\overline{E}_1 and E_2) controls the state of the outputs independent of the address inputs or latch operation. All outputs are HIGH unless \overline{E}_1 is LOW and E_2 is HIGH.

The "237" is ideally suited for implementing non-overlapping decoders in 3-state systems and strobed (stored address) applications in bus oriented systems.

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	DADAMETED	CONDITIONS	TYP	LINUT	
	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V			
	A_n to Y_n		16	19	ns
	LE to Y _n		19	21	ns
	\overline{E}_1 to Y_n		14	17	ns
	E ₂ to Y _n		14	17	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	60	63	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_1 \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

3-to-8 line decoder/demultiplexer with address latches

74HC/HCT237

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION				
1, 2, 3	A ₀ to A ₂	data inputs				
4	<u>LE</u>	latch enable input (active LOW)				
5 <u>E</u> ₁		data enable input (active LOW)				
6	E ₂	data enable input (active HIGH)				
8	GND	ground (0 V)				
15, 14, 13, 12, 11, 10, 9, 7	Y ₀ to Y ₇	multiplexer outputs				
16	V _{CC}	positive supply voltage				

3-to-8 line decoder/demultiplexer with address latches

74HC/HCT237

FUNCTION TABLE

INPUTS						OUTPUTS								
LE	E ₁	E ₂	A ₀	A ₁	A ₂	Y ₀	Y ₀ Y ₁ Y ₂ Y ₃ Y ₄ Y ₅ Y ₆ Y							
Н	L	Н	Х	Х	Х	stable								
X	Н	X	X	X	X	L	L	L	L	L	L	L	L	
X	X	L	Х	X	X	L	L	L	L	L	L	L	L	
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L	
L	L	Н	Н	L	L	L	Н	L	L	L	L	L	L	
L	L	Н	L	Н	L	L	L	Н	L	L	L	L	L	
L	L	Н	Н	Н	L	L	L	L	Н	L	L	L	L	
L	L	Н	L	L	н	L	L	L	L	Н	L	L	L	
L	L	Н	Н	L	Н	L	L	L	L	L	Н	L	L	
L	L	Н	L	Н	Н	L	L	L	L	L	L	Н	L	
L	L	Н	Н	Н	н	L	L	L	L	L	L	L	н	

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

3-to-8 line decoder/demultiplexer with address latches

74HC/HCT237

3-to-8 line decoder/demultiplexer with address latches

74HC/HCT237

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					UNIT	TEST CONDITIONS					
SYMBOL							WAVEFORMS				
	PARAMETER	+25				-40 to +85		-40 to +125		V _{CC} (V)	
		min.	typ.	max.	min.	max.	min.	max.		(*)	
t _{PHL} / t _{PLH}	propagation delay A _n to Y _n		52 19 15	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay LE to Y _n		61 22 18	190 38 32		240 48 41		285 57 48	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay \overline{E}_1 to Y_n		47 17 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay E ₂ to Y _n		47 17 14	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6
t _W	LE pulse width	50 10 9	11 4 3		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.8
t _{su}	set-up time A _n to LE	50 10 9	6 2 2		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.8
t _h	hold time A _n to LE	30 6 5	3 1 1		40 8 7		45 9 8		ns	2.0 4.5 6.0	Fig.8

3-to-8 line decoder/demultiplexer with address latches

74HC/HCT237

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT								
A _n	1.50								
E ₁	1.50								
E ₂	1.50								
ĪĒ	1.50								

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER					TEST CONDITIONS					
SYMBOL							WAVEFORMS				
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORWIS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay A _n to Y _n		22	38		48		57	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay LE to Y _n		25	42		53		63	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay \overline{E}_1 to Y_n		20	35		44		53	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay E ₂ to Y _n		20	33		41		50	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _W	LE pulse width HIGH	10	5		13		15		ns	4.5	Fig.8
t _{su}	set-up time A _n to LE	10	2		13		15		ns	4.5	Fig.8
t _h	hold time A _n to LE	5	0		5		5		ns	4.5	Fig.8

3-to-8 line decoder/demultiplexer with address latches

74HC/HCT237

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the address input (A_n) and enable inputs (E_2, \overline{LE}) to output (Y_n) propagation delays and the output transition times.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the enable input (\overline{E}_1) to output (Y_n) propagation delays and the output transition times.

The shaded areas indicate when the input is permitted to change for predictable output performance.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.8 Waveforms showing the data set-up, hold times for A_n input to \overline{LE} input and the latch enable pulse width.

3-to-8 line decoder/demultiplexer with address latches

74HC/HCT237

APPLICATION INFORMATION

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".