Resolution Size By Graph Based Parameters

Ziyi Cai

BASICS Lab, Shanghai Jiao Tong University

March 10, 2023

Content

- Introduction
 - Graph Parameters
 - SAT and Resolution
 - Background
- 2 Upper Bound Results
 - Primal Tree-depth
 - Primal Treewidth
 - Incidence Treewidth
 - Incidence Pathwidth
- 3 Bibliography

Tree Decompositions of Graphs

Definition 1.1 (tree decomposition)

Let G be a graph. A tree decomposition of G is a tuple $(T, (B_t)_{t \in V(T)})$, where T is a tree and B_t the bag at t such that the following conditions are satisfied:

• For every $v \in V(G)$ the set

$$T_{v} := \{t \in V(T) \mid v \in B_{t}\}$$

is nonempty and connected in T, i.e, $T[T_v]$ is a subtree of T.

• For every $e \in E(G)$ there exists a $t \in V(T)$ such that $e \subseteq B_t$.

Tree Decompositions of Graphs

Graph *G*

Treewidth

The width of a tree decomposition $\left(T,(B_t)_{t\in V(T)}\right)$ is

$$\mathsf{width}\left(T, (B_t)_{t \in V(T)}\right) := \mathsf{max}\{|B_t| - 1 \mid t \in V(T)\}.$$

The *treewidth* of *G* is the minimum width.

Pathwidth

Definition 1.2 (path decomposition)

Path decompositions and pathwidth are defined similarly as tree decompositions and treewidth, except that in the definition of path decomposition, T is restricted to a simple path.

Fact 1.3

For any graph G, $pw(G) \ge tw(G)$.

Theorem 1.4 ([KS93])

For any graph G, $pw(G) = O(tw(G) \cdot \log |V(G)|)$.

Definition 1.5 (tree-depth)

The *tree-depth* td(G) of a graph G is the minimum height of a rooted forest F such that $G \subseteq clos(F)$.

Figure: The tree-depth of the 3×3 grid is 4, adopted from [NdM12].

Theorem 1.6

Theorem 1.6

For any graph G, $td(G) - 1 \ge pw(G)$.

Theorem 1.7

For any connected graph G, $td(G) = O(tw(G) \cdot \log |V(G)|)$.

SAT

- Variable x: takes Boolean value
- Literal ℓ : variable x or its negation \overline{x}
- Clause $C = \ell_1 \vee \cdots \vee \ell_k$: disjunction of literals
- Conjunctive normal form (CNF) formula $\varphi = C_1 \wedge \cdots \wedge C_m$: conjunction of clauses
 - k-CNF: conjunction of clauses with at most k literals each

Definition 1.8 (SAT)

Given a CNF formula φ , is it satisfiable?

Example 1.9

$$\varphi = (a \lor b \lor c) \land (a \lor \overline{c}) \land \overline{b} \land (\overline{a} \lor c) \land (b \lor \overline{c})$$

Underlying Graphs of SAT Formulas

Some methods to get a graph from a hypergraph are discussed in [HOSG07]. We use them to construct graphs from SAT formulas.

Definition 1.10

The primal graph P_{φ} of a formula φ is the graph whose vertices are the variables of F, where two vertices are connected by an edge iff the corresponding variables appear together (negated or unnegated) in some clauses.

Definition 1.11

The incidence graph I_{φ} of a formula φ is the bipartite graph between variables and clauses where two vertices are connected by an edge iff the corresponding variable appears (negated or unnegated) in the corresponding clause.

Underlying Graphs of SAT Formulas

Figure: Underlying graphs of $\varphi = (a \lor b \lor c) \land (a \lor \overline{c}) \land \overline{b} \land (\overline{a} \lor c) \land (b \lor \overline{c}).$

Primal Graph v.s. Incidence Graph

Theorem 1.12

For any CNF formula φ , $tw(I_{\varphi}) \leq tw(P_{\varphi}) + 1$.

The treewidth of an incidence graph can be significantly smaller than the one of a primal graph.

Example 1.13

Let $\varphi = x_1 \vee x_2 \vee \cdots \vee x_m$. Then $\operatorname{tw}(P_{\varphi}) = m - 1$ while $\operatorname{tw}(I_{\varphi}) = 1$.

Resolution

Definition 1.14 (resolution)

Resolution is one of the propositional proof systems and has only one inference rule:

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Resolution rules take two clauses and produce a new implied clause (resolvent). A resolution refutation of a formula φ is a sequence of clauses C_1, C_2, \ldots, C_k such that

- for each $i(1 \le i \le k)$, C_i is a clause occurring in φ or a resolvent of two previous clauses, and
- the last clause C_k is an empty clause.

The *size* of the refutation is the number k of clauses. The *width* of the refutation is the maximum number of literals in clauses.

Resolution

Theorem 1.15

Resolution is sound and complete.

Theorem 1.16

If for every unsatisfiable CNF φ there exists a polynomially bounded resolution refutation proof, then NP = coNP.

It is shown by [Hak85] that there are infinitely many CNF formulas φ such that the resolution size of φ cannot be bounded by a polynomial of the size of φ .

Fixed Parameter Tractable

The complexity of SAT and #SAT parameterized by primal and incidence treewidth is FPT for all cases and of the form $2^{O(k)} \cdot |\varphi|^{O(1)}$, where k is the (primal / incidence) treewidth.

These results are obtained from numerous studies that advance in this direction, including [AR02] and [CMR01], demonstrating similar findings both explicitly and implicitly.

The topic of this talk is whether such an upper bound can be established for the resolution proof system.

Bounded by $\operatorname{td}(P_{\varphi})$

Theorem 2.1

For an unsatisfiable formula φ with primal tree-depth $td(P_{\varphi})$, there exists a resolution refutation bounded by $2^{O(td(P_{\varphi}))} \cdot |\varphi|$.

Theorem 2.1

For an unsatisfiable formula φ with primal tree-depth $td(P_{\varphi})$, there exists a resolution refutation bounded by $2^{O(td(P_{\varphi}))} \cdot |\varphi|$.

$$a \lor c$$
 $b \lor \overline{c}$ $a \lor b$

Theorem 2.1

For an unsatisfiable formula φ with primal tree-depth $td(P_{\varphi})$, there exists a resolution refutation bounded by $2^{O(td(P_{\varphi}))} \cdot |\varphi|$.

$$\frac{a \lor c \qquad b \lor \overline{c}}{a \lor b} \qquad \frac{a \lor \overline{b} \lor d \qquad a \lor \overline{d}}{a \lor \overline{b}}$$

Theorem 2.1

For an unsatisfiable formula φ with primal tree-depth $td(P_{\varphi})$, there exists a resolution refutation bounded by $2^{O(td(P_{\varphi}))} \cdot |\varphi|$.

$$\begin{array}{c|c}
a \lor c & b \lor \overline{c} \\
\hline
 & a \lor b & a \lor \overline{b}
\end{array}$$

Theorem 2.1

For an unsatisfiable formula φ with primal tree-depth $td(P_{\varphi})$, there exists a resolution refutation bounded by $2^{O(td(P_{\varphi}))} \cdot |\varphi|$.

$$\begin{array}{c|c}
a \lor c & b \lor \overline{c} \\
\hline
 & \underline{a \lor b} & \underline{a \lor \overline{b}} \lor d & \underline{a \lor \overline{d}} \\
\hline
 & \underline{a \lor \overline{b}} & \underline{a}
\end{array}$$

Theorem 2.1

For an unsatisfiable formula φ with primal tree-depth $td(P_{\varphi})$, there exists a resolution refutation bounded by $2^{O(td(P_{\varphi}))} \cdot |\varphi|$.

Theorem 2.1

For an unsatisfiable formula φ with primal tree-depth $td(P_{\varphi})$, there exists a resolution refutation bounded by $2^{O(td(P_{\varphi}))} \cdot |\varphi|$.

Bounded by $\operatorname{\mathsf{tw}}(P_{\varphi})$

Recall that $\operatorname{tw}(P_{\varphi}) < \operatorname{td}(P_{\varphi})$.

Theorem 2.2

For an unsatisfiable formula φ with primal treewidth $tw(P_{\varphi})$, there exists a resolution refutation bounded by $2^{O(tw(P_{\varphi}))} \cdot |\varphi|$.

Bounded by $\operatorname{\mathsf{tw}}(P_{\varphi})$

Theorem 2.2

For an unsatisfiable formula φ with primal treewidth $tw(P_{\varphi})$, there exists a resolution refutation bounded by $2^{O(tw(P_{\varphi}))} \cdot |\varphi|$.

Proof Sketch

A smooth tree decomposition is a tree decomposition satisfying that $|B_t \setminus B_{fa(t)}| = 1$ for all $t \in V(T)$ but root. For any graph G there exists a smooth tree decomposition of width $\operatorname{tw}(G)$. We call $B_t \setminus B_{fa(t)}$ the forgotten vertex w.r.t. t.

The desired resolution refutation is obtained by resolving over forgotten vertices in a depth-first order.

Bounded by $\operatorname{\mathsf{tw}}(P_{\varphi})$

Theorem 2.2

For an unsatisfiable formula φ with primal treewidth $\operatorname{tw}(P_{\varphi})$, there exists a resolution refutation bounded by $2^{O(\operatorname{tw}(P_{\varphi}))} \cdot |\varphi|$.

$$\{b, c, d, \dots\}$$

$$\{a, b, c, d, \dots\}$$

Recall that $\operatorname{tw}\left(I_{\varphi}\right) \leq \operatorname{tw}\left(P_{\varphi}\right) + 1$.

Conjecture 2.2.1

For an unsatisfiable formula φ with incidence treewidth $tw(I_{\varphi})$, there exists a resolution refutation bounded by $2^{O(tw(I_{\varphi}))} \cdot |\varphi|$.

Bounded by tw (I_{φ}) , Under Fixed k

Theorem 2.3

For any k-CNF formula φ , $tw(P_{\varphi}) = O(tw(I_{\varphi}))$.

Proof Sketch

Replace all clauses in bags with their variables.

Corollary 2.4

For an unsatisfiable k-CNF formula φ with incidence treewidth $tw(I_{\varphi})$, there exists a resolution refutation bounded by $2^{O(tw(I_{\varphi}))} \cdot |\varphi|$.

It's well-known that any CNF formula can be converted into an equivalent 3-CNF formula. This conversion can be done without significantly increasing the incidence treewidth.

Theorem 2.5

For any CNF formula φ , there exists an equivalent 3-CNF formula ψ such that $tw(I_{\psi}) = O(tw(I_{\varphi}))$.

For each clause C, relabel its variables according to the inorder traversal.

We show a simple example which converts $C = (\cdots \lor x_1 \lor x_2 \lor x_3 \lor x_4 \lor \cdots)$ to $C_1 = (\overline{v_0} \lor x_1 \lor v_1)$, $C_2 = (\overline{v_1} \lor x_2 \lor v_2)$, $C_3 = (\overline{v_2} \lor x_3 \lor v_3)$, $C_4 = (\overline{v_3} \lor x_4 \lor v_4)$.

For each clause C, relabel its variables according to the inorder traversal.

We show a simple example which converts $C = (\cdots \lor x_1 \lor x_2 \lor x_3 \lor x_4 \lor \cdots)$ to $C_1 = (\overline{y_0} \lor x_1 \lor y_1), C_2 = (\overline{y_1} \lor x_2 \lor y_2), C_3 = (\overline{y_2} \lor x_3 \lor y_3), C_4 = (\overline{y_3} \lor x_4 \lor y_4).$

For each clause C, relabel its variables according to the inorder traversal.

We show a simple example which converts $C = (\cdots \lor x_1 \lor x_2 \lor x_3 \lor x_4 \lor \cdots)$ to $C_1 = (\overline{y_0} \lor x_1 \lor y_1), C_2 = (\overline{y_1} \lor x_2 \lor y_2), C_3 = (\overline{y_2} \lor x_3 \lor y_3), C_4 = (\overline{y_3} \lor x_4 \lor y_4).$

For each clause C, relabel its variables according to the inorder traversal.

We show a simple example which converts $C = (\cdots \lor x_1 \lor x_2 \lor x_3 \lor x_4 \lor \cdots)$ to $C_1 = (\overline{y_0} \lor x_1 \lor y_1), C_2 = (\overline{y_1} \lor x_2 \lor y_2), C_3 = (\overline{y_2} \lor x_3 \lor y_3), C_4 = (\overline{y_3} \lor x_4 \lor y_4).$

$$\{y_{1}, C_{2}, \dots\}$$

$$\{y_{3}, C_{4}, \dots\}$$

$$\{C_{1}, x_{1}, y_{1}, \dots\} \{C_{2}, x_{2}, y_{2}, \dots\} \{C_{3}, x_{3}, y_{3}, \dots\} \{C_{4}, x_{4}, y_{4}, \dots\}$$

Bounded by tw (I_{φ})

For each clause C, relabel its variables according to the inorder traversal.

We show a simple example which converts $C = (\cdots \lor x_1 \lor x_2 \lor x_3 \lor x_4 \lor \cdots)$ to

$$C_{1}=\left(\overline{y_{0}}\vee x_{1}\vee y_{1}\right),\,C_{2}=\left(\overline{y_{1}}\vee x_{2}\vee y_{2}\right),\,C_{3}=\left(\overline{y_{2}}\vee x_{3}\vee y_{3}\right),\,C_{4}=\left(\overline{y_{3}}\vee x_{4}\vee y_{4}\right).$$

$$\{y_{2}, C_{3}, C_{1}, y_{4}, \dots\}$$

$$\{y_{1}, C_{2}, C_{1}, y_{2}, \dots\}$$

$$\{C_{1}, x_{1}, y_{1}, \dots\} \{C_{2}, x_{2}, y_{2}, \dots\} \{C_{3}, x_{3}, y_{3}, \dots\} \{C_{4}, x_{4}, y_{4}, \dots\}$$

After removing an original clause C, sizes of bags which contained C will at most increase by 4. Hence we have $\operatorname{tw}(I_{tb}) < 4 \cdot \operatorname{tw}(I_{tc})$.

Bounded by $tw(I_{\varphi})$

Theorem 2.5

For any CNF formula φ , there exists an equivalent 3-CNF formula ψ such that $tw(I_{\psi}) = O(tw(I_{\varphi}))$.

Corollary 2.6

For an unsatisfiable CNF formula φ with incidence treewidth $\operatorname{tw}(I_{\varphi})$, there exists an equivalent 3-CNF formula ψ with resolution refutation bounded by $2^{O(\operatorname{tw}(I_{\varphi}))} \cdot |\varphi|$.

Remark 2.6.1

Additional variables are introduced while obtaining the equivalent formula. Hence this result does not necessarily imply we have a resolution refutation with size $2^{O(tw(I_{\varphi}))} \cdot |\varphi|$.

Bounded by pw (I_{φ})

Theorem 2.7 ([Ima17])

For an unsatisfiable CNF formula φ with incidence pathwidth $pw(I_{\varphi})$, there exists a resolution refutation bounded by $2^{O(pw(I_{\varphi}))} \cdot |\varphi|$.

Corollary 2.8

For an unsatisfiable CNF formula φ with incidence treewidth $tw(I_{\varphi})$, there exists a resolution refutation bounded by $|\varphi|^{O(tw(I_{\varphi}))}$.

References I

M. Alekhnovich and A.A. Razborov, *Satisfiability, branch-width and tseitin tautologies*, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., 2002, pp. 593–603.

B. Courcelle, J. A. Makowsky, and U. Rotics, *On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic*, Discrete Appl. Math. **108** (2001), no. 1, 23–52.

Armin Haken, *The intractability of resolution*, Theoretical Computer Science **39** (1985), 297–308, Third Conference on Foundations of Software Technology and Theoretical Computer Science.

Petr Hliněný, Sang-il Oum, Detlef Seese, and Georg Gottlob, Width Parameters Beyond Tree-width and their Applications, The Computer Journal 51 (2007), no. 3, 326–362.

Kensuke Imanishi, *An upper bound for resolution size: Characterization of tractable sat instances*, WALCOM: Algorithms and Computation (Cham) (Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen, eds.), Springer International Publishing, 2017, pp. 359–369.

Ephraim Korach and Nir Solel, Tree-width, path-widt, and cutwidth, Discret. Appl. Math. 43 (1993), 97-101.

References II

Jaroslav Neetil and Patrice Ossona de Mendez, *Sparsity: Graphs, structures, and algorithms*, Springer Publishing Company, Incorporated, 2012.