Vektoralgebra –előadás fóliák

Elméleti anyag –tételek, definíciók, bizonyítás vázlatok

©Bércesné Novák Ágnes

Források, ajánlott irodalom:

Hajós György: Bevezetés a geometriába, Tankönyvkiadó, 1971, 1989,.. Scharnitzki Viktor: Vektoralgebra és lineáris algebra, Tankönyvkiadó, 1989. Bércesné Novák Ágnes-Hosszú Ferenc-Pentelényi Pál-Rudas Imre: Matematika, BDMF, 1994.

Vektoralgebra

1. Vektor: irányított szakasz (síkban, térben)

- Jelölések
- Egyenlőség→szabad vektorok
- Párhuzamosság
- Hossz (abszolút érték)
- Egységvektor
- Nullvektor iránya

Műveletek vektorokkal

Összeadás:

- nyílfolyam-módszer: eltolás, a második vektor kezdőpontját az első végpontjába, és így tovább...

Összegvektor: az első vektor kezdőpontjából az utolsó vektor végpontjába mutató vektor. (Két vektor esetén paralelogramma módszernek)

Összeadás tulajdonságai:

(0.Zárt: összeadás eredménye is vektor)

- 1. Kommutatív (ld. ábra): **a**+**b**=**b**+**a**
- 2. Létezik egységelem: **a**+**0**=**a**
- 3. Létezik inverz (ellentett) elem: $\mathbf{a}+(\mathbf{a} \ \mathbf{inverze}) = \mathbf{0}$

a inverze

Összeadás tulajdonságai (folytatás):

4. Asszociatív: (a+b)+c=a+(b+c)

Kivonás értelmezése: inverz elem hozzáadása, inverz elem jelölése

x+b=a vektoregyenletet x-re megoldva:

x+b+(b inverze)=a+(b inverze)

x+0=a+(b inverze) Jelölés (számokkal összhangban): a+(-b)=a-b=x

Összeadás tulajdonságai (összefoglalás):

(- zárt)

- asszociatív

- létezik egység

- létezik inverz

CSOPORT

(- zárt)

- asszociatív

- létezik egység

- létezik inverz

- kommutatív

KOMMUTATÍV

CSOPORT

A kommutatív csoportot Abel csoportnak is hívjuk.

<u>Feladat:</u> Mondjunk példát más halmazra, melynek elemei adott műveletre nézve csoportot alkotnak

a.) Számot vektorral: számmal való szorzás (λa)

b.) Vektort vektorral-eredménye szám, neve: skalárszorzat, angolul: dot product, (**ab**)

c.) Vektort vektorral-eredménye vektor,
neve: vektoriális (vagy kereszt)szorzat, angolul cross product
(a x b)

Megjegyzés: A fenti szorzások közül algebrai értelemben csak a c.) nevezhető műveletnek. (Miért?)

Számmal való szorzás / Vektor szorzása számmal:

 $\lambda \cdot \underline{\mathbf{a}}$ $\lambda \geq 0$, \mathbf{a} -val egyirányú, hossza: $|\lambda \mathbf{a}| = \lambda |\mathbf{a}|$ (ismételt összeadás)

 λ <0, **a**-val ellentétes irányú, hossza: $|\lambda \mathbf{a}| = |\lambda| \cdot |\mathbf{a}|$ (a inverzének, ellentettjének ismételt összeadása)

Lemma: $a \parallel b \Leftrightarrow \exists \lambda \in \mathbf{R} a = \lambda b$

<u>**Biz.:**</u> \Rightarrow Tegyük fel hogy (Tfh.) $\mathbf{a} \mid \mathbf{b} \Rightarrow \mathbf{a} = |\mathbf{a}| \ \mathbf{e}_a \text{ és } \mathbf{b} = |\mathbf{b}| \ \mathbf{e}_a$ Ezekből: $\mathbf{a} = |\mathbf{a}| (1/|\mathbf{b}| (|\mathbf{b}| \ \mathbf{e}_a)) = |\mathbf{a}| (1/|\mathbf{b}|)\mathbf{b}, \ \mathbf{a} = \lambda \mathbf{b}, \ \lambda = |\mathbf{a}| /|\mathbf{b}|$ \Leftarrow Tfh. $\exists \ \lambda \in \mathbf{R} \ \mathbf{a} = \lambda \mathbf{b}, \ \text{akkor a párhuzamosság a definícióból közvetlenül adódik.}$

Tulajdonságok:

- 1. $\lambda \mathbf{a} = \mathbf{a} \lambda$
- 2. $\mu(\lambda \mathbf{a}) = (\mu \lambda) \mathbf{a}$ (definícióból közvetlenül adódik)
- 3. $(\lambda + \mu)\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}$ (definícióból közvetlenül adódik)
- 4. $\lambda(\mathbf{a}+\mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$ (ld. alábbi ábra)

<u>Ábra:</u> 4. λ (**a**+**b**)= λ **a**+ λ **b**, **ábra:** λ =2 eset

Skalárszorzat (belső szorzat)

vektor-vektor=szám (DOT product, INNER product)

<u>Def.</u>: $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \alpha$, ahol α a vektorok által bezárt szög, $0 \le \alpha \le 180^{\circ}$. Két vektor által bezárt szög (a kisebb!):

Speciális esetek:

$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}| |\mathbf{a}| \cos(\mathbf{a}, \mathbf{a}) = |\mathbf{a}|^2$$

Következmény: $a \cdot a > 0$, ha $a \ne 0$, és $a \cdot a = 0$ akkor és csak akkor, ha a = 0. Ezt a tulajdonságot úgy mondjuk, hogy a skalárszorzat **pozitív definit.**

Ha \mathbf{a} egységvektor, akkor $\mathbf{a} \cdot \mathbf{a} = 1$. Ha \mathbf{a} és \mathbf{b} egységvektorok, $\mathbf{a} \cdot \mathbf{b} = \cos \alpha$.

Ezek koordináta rendszertől független eredmények!!

A skalárszorzat geometriai jelentése:

 \mathbf{e} – egységvektor $\mathbf{a} \cdot \mathbf{e} = |\mathbf{a}| \cdot |\mathbf{e}| \cdot \cos\alpha = |\mathbf{a}| \cdot \cos\alpha = \mathbf{x}$

x: az a vektor e-re vett előjeles merőleges vetületének hossza.

$$\cos\alpha = \frac{x}{|\underline{a}|} \Rightarrow \mathbf{x} = |\mathbf{a}| \cos\alpha$$

Megjegyzés:

A geometriai jelentés a definícó egyszerű következménye.

A skalárszorzat tulajdonságai:

- 1 . Kommutatív: a·b=b·a
- 2. **NEM** asszociatív: $(a \cdot b) \cdot c \neq a \cdot (b \cdot c)$, ugyanis:

Bal oldal=szám \cdot **c** =(**c**-vel párhuzamos vektor)

Jobb oldal= a · szám (a-val párhuzamos vektor)

3. $\lambda (\mathbf{a} \cdot \mathbf{b}) = (\lambda \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\lambda \mathbf{b})$

<u>Biz.:</u> Nyilvánvaló, ha λ =0, akkor az azonosság fennáll. Továbbá a kommutativitás miatt elegendő a λ (**a·b**)=(λ **a**)·**b** azonosság bizonyítása.

BALOLDAL: $\lambda (\mathbf{a} \cdot \mathbf{b}) = \lambda (|\mathbf{a}| |\mathbf{b}| \cos \alpha)$ JOBBOLDAL: $(\lambda \mathbf{a}) \cdot \mathbf{b} = (|\lambda \mathbf{a}| |\mathbf{b}| \cos \alpha) = \lambda (|\mathbf{a}| |\mathbf{b}| \cos \alpha)$, ha $\lambda > 0$.

Ha λ <0, akkor λ = (-1) $|\lambda|$, emmiatt elegendő a λ = (-1) eset tárgyalása:

BALOLDAL: $(-1)(\mathbf{a} \cdot \mathbf{b}) = (-1) |\mathbf{a}| |\mathbf{b}| \cos \alpha$

JOBBOLDAL: $(-1\mathbf{a}) \cdot \mathbf{b} = |(-1)\mathbf{a}| |\mathbf{b}| \cos(180 - \alpha) = (-1) |\mathbf{a}| |\mathbf{b}| \cos\alpha$

4. Disztributív: a·(b+c)=a·b+a·c Biz.:

a·(b+c)=a·b+a·c
e· (b+c)=e·b+e·c /·
$$\lambda$$
 e || a \Rightarrow λ ·e=a
 λ ·e(b+c)=(λ e)·b+(λ e)·c

Tétel: $\mathbf{a} \cdot \mathbf{b} = 0 \Leftrightarrow \mathbf{a} \perp \mathbf{b}$ (milyen koordináta rendszerben?)

Biz.: Ha a·b=0 akkor a⊥b:

Ha
$$|\underline{a}| \neq 0$$
 és $|\underline{b}| \neq 0$, akkor $|\underline{a}| \cdot |\underline{b}| \cdot \cos(a,b) = 0 \Rightarrow \cos(a,b) = 0 \Rightarrow (a,b) \angle = 90^{\circ}$

Ha valamelyik vektor nullvektor, annak iránya tetszőleges, így a merőlegesség teljesül.

Ha a⊥b akkor a·b=0

 $|\mathbf{a}| \cdot |\mathbf{b}| \cdot \cos 90^{\circ} = 0 \Rightarrow \cos(\mathbf{a}, \mathbf{b}) = 0 \Rightarrow (\mathbf{a}, \mathbf{b})_{1} \angle = 90^{\circ} \text{ vagy } (\mathbf{a}, \mathbf{b})_{2} \angle = 270^{\circ}, \text{ de mivel a}$ megállapodás szerint a kisebb szöget tekintjük, ezért a két vektor 90°-os szöget zár be

Ha a két vektor merőlegessége oly módon biztosított, hogy legalább egyikük nullvektor, akkor a $\mathbf{0}$ def. alapján $|\mathbf{a}| = 0$ vagy $|\mathbf{b}| = 0$, tehát $\mathbf{a} \cdot \mathbf{b} = 0$

A skalárszorzat általános tulajdonságai

A skalárszorzat a V x V halmazon (ahol V vektortér) értelmezett, kétváltozós valós **függvény**, (nem művelet!) amely az alábbi, 1.-4. tulajdonságokkal rendelkezik. Minden olyan függvény, amely ennek eleget tesz, **skalárszorzat**-nak nevezhető.

Skalárszorzat: V x V→R

A skalárszorzat egy másik, szokásos jelölése: s(x, y)

- 1. $s(x, x) \ge 0$, s(x, x) = 0 szám $\leftrightarrow x = 0$ -vektor pozitív definit tulajdonság
- 2. s(x, y) = s(x, y) kommutatív tulajdonság
- 3. $s(\lambda x, y) = \lambda s(x, y)$ lineáris
- 4. s(x, y+z)=s(x,y)+s(x,z) lineáris

A skalárszorzat egy másik, szokásos jelölése: <x, y>

- 1. $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \leftrightarrow \mathbf{x} = \mathbf{0}$ (pozitív definit)
- $2. <\mathbf{x}, \mathbf{y}> =<\mathbf{x}, \mathbf{y}>$ (kommutatív)
- 3. $\langle \lambda \mathbf{x}, \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle$ (lineáris)
- 4. $\langle x, y+z \rangle = \langle x,y \rangle + \langle x,z \rangle$ (lineáris)

A 3.-4. linearitás a következőképpen is megfogalmazható: $\langle x, \lambda y + \mu z \rangle = \lambda \langle x, y \rangle + \mu \langle x, z \rangle$

A vektoralgebrában a skalárszorzatot $\langle \mathbf{x}, \mathbf{y} \rangle := |\mathbf{x}| |\mathbf{y}| \cos(\mathbf{x}, \mathbf{y})$ függvénnyel adtuk meg, és bizonyítottuk a fenti tulajdonságokat. Ezen definíció alapján bebizonyítható a következő tétel (ld. e jegyzet 28. oldalán):

Az **i, j, k** ortonormált bázisra vonatkoztatott koordinátákkal (a 3 dimenziós térben) a skalárszorzat:

$$<\mathbf{x}, \mathbf{y}>:= |\mathbf{x}| |\mathbf{y}| \cos(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{n} a_i b_i$$

A $\langle \underline{\mathbf{x}}, \underline{\mathbf{y}} \rangle := \sum_{i=1}^{n} a_i b_i$ is lehetett volna a definíciója a skalárszorzatnak, azonban így az eredeti fizikai jelentése elsikkadt volna. Magasabb dimenziós vektorterekben azonban a definíció lehetősége éppen fordított, szög geometriai értelmezhetetlensége miatt éppen a skalárszorzat segítségével lehet a szög fogalmát kialakítani.

<u>**Tétel (Vektorok felbontása síkban):**</u> Ha adott a síkban két nem párhuzamos vektor (**a** és **b**), akkor minden más **c** síkbeli vektor felbontható **a** és **b** vektorokkal párhuzamos összetevőkre:

$$\underline{\mathbf{c}} = \alpha \mathbf{a} + \beta \mathbf{b}$$
, ahol $\alpha, \beta \in \mathbf{R}$

A felbontás egyértelmű.

18

<u>Biz.</u>: felbonthatóság: A c vektorkezdőpontján át húzzunk a-val, végpontján át b-vel (vagy fordíva) párhuzamos egyeneseket. Mivel a és b nem párhuzamosak, ezért M-ben metszik egymást.

mivel
$$\overrightarrow{AM} \parallel \underline{a} \Rightarrow \exists \alpha \in \mathbb{R} \Rightarrow \overrightarrow{AM} = \alpha \underline{a}$$

mivel $\overrightarrow{MB} \parallel \underline{b} \Rightarrow \exists \beta \in \mathbb{R} \Rightarrow \overrightarrow{MB} = \beta \underline{b}$, és $\mathbf{c} = \overrightarrow{AM} + \overrightarrow{MB} = \alpha \mathbf{a} + \beta \mathbf{b}$

<u>Tétel (Vektorok felbontása síkban):</u> Ha adott a síkban két nem párhuzamos vektor (**a** és **b**), akkor minden más **c** síkbeli vektor felbontható **a** és **b** vektorokkal párhuzamos összetevőkre: $\mathbf{c} = \alpha \mathbf{a} + \beta \mathbf{b}$, ahol $\alpha, \beta \in \mathbf{R}$. A felbontás egyértelmű.

Biz.: Egyértelműség:

$$\mathbf{c} = \alpha_1 \mathbf{a} + \beta_1 \mathbf{b}$$

$$\mathbf{c} = \alpha_2 \mathbf{a} + \beta_2 \mathbf{b}$$

$$0 = (\alpha_2 - \alpha_1) \mathbf{a} + (\beta_1 - \beta_2) \mathbf{b}$$

$$0$$

Mivel **a** nem párhuzamos **b**-vel, így számszorosaik sem párhuzamosak, ezért számszoroaik összege nem lehet nulla a jobb oldalon. Tehát a és b együtthatói egyenlők nullával: $\alpha_1 = \alpha_2$ és $\beta_1 = \beta_2$

Definíció:

a és b lineáris kombinációja: c=αa+βb

{ a,b}, ha a nem párhuzamos b-vel, akkor függetlenek. Maximális számú független vektor bázist alkot. Később részletesen tárgyaljuk..

 α, β az { $\underline{a},\underline{b}$ } bázisra vonatkoztatott **koordináták.**

Tétel (Vektorok felbontása térben):

Ha adott a térben három, nem egysíkú, páronként nem párhuzamos vektor, **a**, **b**, **c**, akkor bármely **d** térbeli vektorhoz van olyan $\alpha, \beta, \gamma \in \mathbf{R}$, amelyekre igaz, hogy $\mathbf{d} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$. Ez a felbontás egyértelmű.

Biz.:

- 1. d talppontján, T-n át az S síkkal | S' síkot rajzolunk.
- 2. c nem párhuzamos a-val és b-vel, tehát a d végpontjában c-vel húzott | egyenes D-ben döfi S'-t.
- 3. D-ből T-be mutató vektor legyen d'.

$$\mathbf{d} = \mathbf{d'} + \mathbf{c'} = (\alpha \mathbf{a} + \beta \mathbf{b}) + \gamma \mathbf{c},$$

hiszen **d**' egy síkban van **a**-val és **b**-vel, így az előző tétel miatt felírható azok lineáris kombinációjaként.

Bázis: A térben bármely 3, nem egysíkú, páronként nem párhuzamos vektor független. Maximális számú független vektor **bázis**t alkot. Később részletesen tárgyaljuk.

Például:

Ha a, b, c, a tér egy bázisa, az előző tétel értelmében bármely d vektorra:

$$\mathbf{d} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$
.

A jobb oldalon álló kifejezés az a, b, c vektorok egy lineáris kombinációja.

Az α , β , γ számokat a **d** vektor **a**, **b**, **c** bázisra vonatkoztatott koordinátáinak nevezzük. Ha a bázisvektorok sorrendjét rögzítjük, a lineáris kombinációt rövidíthetjük a következő számhármassal: $[\alpha, \beta, \gamma]$.

Speciális bázisok:

Ortogonális: a vektorok páronként merőlegesek

Normált: a vektorok egységnyi hosszúak

Ortonormált: ortogonális és normált, szokásos jelölése 3

dimenzióban: i, j, k (Descartes), jobbrendszer:

Vektorműveletek, ha a vektorok koordinátáikkal adottak

Összeadás: megfelelő koordinátákat összeadjuk

Biz.:

$$X=\alpha b1 + \beta b2 + \gamma b3$$

$$Y=\delta b1 + \epsilon b2 + \phi b3$$

$$x+y=(\alpha \mathbf{b1} + \beta \mathbf{b2} + \gamma \mathbf{b3}) + (\delta \mathbf{b1} + \epsilon \mathbf{b2} + \phi \mathbf{b3}) =$$

$$= (\alpha \mathbf{b1} + \delta \mathbf{b1}) + (\beta \mathbf{b2} + \epsilon \mathbf{b2}) + (\gamma \mathbf{b3} + \phi \mathbf{b3}) =$$

$$(\alpha + \delta)\mathbf{b1} + (\beta + \epsilon)\mathbf{b2} + (\gamma + \phi)\mathbf{b3} =$$

$$x+y=(\alpha+\delta)b1+(\beta+\epsilon)b2+(\gamma+\phi)b3$$

VEKTOR ÖSSZEADÁS + SZÁMOK ÖSSZADÁSA+

Számmal való szorzás: koordinátánként szorozzuk a számmal

Biz.: HF

Kivonás: Megfelelő koordinátákat kivonjuk

Biz.: HF

Vektorműveletek, ha a vektorok koordinátáikkal adottak

$$X = \alpha b 1 + \beta b 2$$

$$Y=y b1+\delta b2$$

$$x+y=\alpha b1+\beta b2+\gamma b1+\delta b2=(\alpha b1+\gamma b1)+(\beta b2+\delta b2)$$

$$x+y=(\alpha+\gamma)b1+(\beta+\delta)b2$$

VEKTOROK ÖSSZEADÁSA: koordinátánként

Milyen koordinátarendszerben igaz e szabály?

Műveletek koordinátás alakban, ORTONORMÁLT BÁZISBAN

A koordináták szemléltetésére animáció:

http://www.usd.edu/~jflores/MultiCalc02/WebBook/Chapter 13/Graphics/Chapter13 1/DemoHtml13 1/13.1coorsys.htm

Műveletek koordinátás alakban, ORTONORMÁLT BÁZISBAN

Uu., mint általános bázisban:

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \Leftrightarrow x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$$

$$b=b_1i+b_2j+b_3k$$

$$\lambda \mathbf{a} = \lambda (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) = (\lambda a_1) \mathbf{i} + (\lambda a_2) \mathbf{j} + (\lambda a_3) \mathbf{k}$$

$$a+b=a_1i+b_1i+a_2j+b_2j+a_3k+b_3k=(a_1+b_1)i+(a_2+b_2)j+(a_3+b_3)k$$

Skalárszorzat kiszámítása ORTONORMÁLT BÁZISban

Animáció:

http://www.falstad.com/dotproduct/

(mind a piros, mind a kék vektort a végénél fogva lehet mozgatni, jobb felső sarokban leolvasható minden számadat. A piros vektor vetülete látható a kék vektoron.)

http://magnus.poly.edu/~mleung/java/vectors/dproduct/dproduct.html

Skalárszorzat kiszámítása ORTONORMÁLT BÁZISban

A skalárszorzat értéke függ a bázistól.

<u>**Tétel:**</u> Legyenek **i, j, k** páronként merőleges egységvektorok, amelyek jobbrendszert alkotnak. (Descartes). A felbontási tétel szerint ekkor:

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$

 $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{3} a_i b_i$$

Alkalmazva a skalárszorzat disztributív tulajdonságát:

$$\mathbf{a} \cdot \mathbf{b} = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \cdot (b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}) = a_1 \mathbf{i} \cdot b_1 \mathbf{i} + a_1 \mathbf{i} \cdot b_2 \mathbf{j} + a_1 \mathbf{i} \cdot b_3 \mathbf{k} + a_2 \mathbf{j} \cdot b_1 \mathbf{i} + a_2 \mathbf{j} \cdot b_2 \mathbf{j} + a_2 \mathbf{j} \cdot b_3 \mathbf{k} + a_3 \mathbf{k} \cdot b_1 \mathbf{i} + a_3 \mathbf{k} \cdot b_2 \mathbf{j} + a_3 \mathbf{k} \cdot b_3 \mathbf{k} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Felhasználása:

- I. Fizika, pl. W=F·s
- II. Vetületek (Pl. fizikában is erők felbontása)

$$\mathbf{a}_b = (\mathbf{a}, \mathbf{e}_b) \mathbf{e}_b$$
 $\mathbf{a}_b = (\text{hossz}) \text{ irány}$

III. Sík normálvektoros egyenlete

Animáció:

http://www.usd.edu/~jflores/MultiCalc02/WebBook/Chapter_13/Graphics/Chapter13
5/DemoHtml13 5/13.5%20LinesAndPlanes.htm

IV. <u>Sík normálvektoros egyenlete</u>

n az S sík normálvektora (n a síkra merőleges)

 $P_0(x_0, y_0, z_0) - a$ sík tartópontja (tetszőleges, de rögzített) P(x, y, z) - a sík tetszőleges pontja, futópont

S egyenlete: $\mathbf{n} \cdot \mathbf{P}_0 \mathbf{P} = 0$, hiszen merőleges vektorok

$$\overrightarrow{P_0 P} = \mathbf{p} - \mathbf{p_0}$$

Példa:

$$\mathbf{n}(1,2,3)$$
 \longrightarrow $\mathbf{p_0}(4,5,6), \quad P_0 P = (x-4), \ (y-5), \ (z-6)$

$$P(x,y,z)$$
 $(x-4)\cdot 1+(y-5)\cdot 2+(z-6)\cdot 3=0$

Rendezve: 1x+2y+3z-4-10-18=0

$$(1)x+(2)y+(3)z=32$$

Általában az

Ax+By+Cz=D lineáris egyenlet egy A, B, C, normálvektorú sík egyenletének tekinthető.

Típusfeladatok:

- 1. Koordinátáival adott a sík 3 pontja. Adja meg a sík egyenletét!
- 2. Adott 4 pont. Hogyan lehet eldönteni, hogy egysíkúak-e?

Vektoriális szorzat:

vektor×vektor=vektor (CROSS product)

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \sin(\mathbf{a}, \mathbf{b}) \cdot \mathbf{e}$$

$$hossz == |\mathbf{a}| \cdot |\mathbf{b}| \cdot sin(\mathbf{a}, \mathbf{b})$$

 $|\mathbf{e}| = 1$ $\mathbf{a} \perp \mathbf{e}$, $\mathbf{b} \perp \mathbf{e}$ \mathbf{a} , \mathbf{b} , \mathbf{e} jobbrendszert alkot(\mathbf{a} -hüvelyk-, \mathbf{b} -mutató-, \mathbf{e} -középsőujj)

$$a \times b \parallel e$$

Érdekes ez az animáció:

http://www.phy.syr.edu/courses/java-suite/crosspro.html

(Megjegyzés: az **a** és **b** vektorokat lehet mozgatni az egérrel, a **c** vektorral lehet forgatni az ábrát)

A vektoriális szorzat geometriai jelentése:

 $m = |\mathbf{b}| \cdot \sin \alpha$

alap: |a|

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \sin\alpha = \text{Terület} = (\text{alap} \cdot \text{magasság})$$

Fontosabb vektoriális szorzatok:

$$i \times k = -j$$
, stb.

A vektoriális szorzat tulajdonságai:

a×b=-b×a antikommutatív

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$$
 (nem asszociatív)

$$\frac{(a+b)\times c=(a\times c)+(b\times c)}{a\times (b+c)=(a\times b)+(a\times c)}$$
 kétoldali disztributivitás

Vektoriális szorzat kiszámítása ORTONORMÁLT BÁZISban

Tétel:

Ha

$$\mathbf{a} = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k})$$

 $\mathbf{b} = (b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k})$ adottak, akkor

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \mathbf{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

$$\mathbf{a} \times \mathbf{b} = (a_1 \mathbf{i} \times b_1 \mathbf{i}) + (a_1 \mathbf{i} \times b_2 \mathbf{j}) + (a_1 \mathbf{i} \times b_3 \mathbf{k}) + (a_2 \mathbf{j} \times b_1 \mathbf{i}) + (a_2 \mathbf{j} \times b_2 \mathbf{j}) + (a_2 \mathbf{j} \times b_3 \mathbf{k}) + (a_3 \mathbf{k} \times b_1 \mathbf{i}) + (a_3 \mathbf{k} \times b_2 \mathbf{j}) + (a_3 \mathbf{k} \times b_3 \mathbf{k})$$

Felhasználva az előzőleg kiszámított vektoriális szorzatokat, és alkalmazva a disztributivitást (kiemelés):

$$\mathbf{a} \times \mathbf{b} = \mathbf{i}(a_2b_3 - a_3b_2) - \mathbf{j}(a_1b_3 - a_3b_1) + \mathbf{k}(a_1b_2 - a_2b_1) = \mathbf{i}_{\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}}^{\begin{vmatrix} a_2 & a_3 \\ b_1 & b_3 \end{vmatrix}} + \mathbf{j}_{\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}^{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}} = \mathbf{i}_$$

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 (Determináns)

Determinánsok kiszámítása a kifejtési TÉTEL szerint (nem definíció, később biz.):

1 x 1: $|a_{1_1}| = a_{1_1}$

2× 2: Sor szerinti kifejtés: a sor minden elemét megszorozzuk a hozzá tartozó (előjeles) aldeterminánssal és az így kapott számokat összeadjuk.

Adott elemhez tartozó (előjeles) **aldetermináns:** Az elem sorát és oszlopát elhagyva újabb determinánst kapunk. Előjele a sakktábla szabály szerint.

Pl. első sor szerint kifejtve:
$$\begin{vmatrix} a_{1_1} & a_{1_2} \\ a_{2_1} & a_{2_2} \end{vmatrix} = a_{1_1}a_{2_2} - a_{2_1}a_{1_2}$$

3 x 3: Sor szerinti kifejtés: a sor minden elemét megszorozzuk a hozzá tartozó (előjeles) aldeterminánssal és az így kapott számokat összeadjuk.

Tétel:

$$\mathbf{a} \times \mathbf{b} = \mathbf{0} \Leftrightarrow \mathbf{a} \mid \mathbf{b}$$

Biz.:

1)
$$\mathbf{a} \parallel \mathbf{b} \Rightarrow \mathbf{a} \times \mathbf{b} = \mathbf{0}$$

Ha a két vektor egymással párhuzamos, akkor a bezárt szög 0 vagy π , és így a $\sin(\underline{a},\underline{b})=0$, tehát $\mathbf{a}\times\mathbf{b}=\mathbf{0}$.

2)
$$\mathbf{a} \times \mathbf{b} = \mathbf{0} \Rightarrow \mathbf{a} \parallel \mathbf{b}$$

Ha **a** és **b** vektoriális szorzata **0**, akkor a

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \sin(\mathbf{a}, \mathbf{b}) = \mathbf{0}$$

A jobb oldalon álló nullvektor kétféleképpen állhat elő. Vagy $\sin(a,b)=0$, és ekkor a bezárt szög $=0^{\circ}$ vagy $\pi \Rightarrow$ a két vektor párhuzamos. A másik eset, hogy **a** vagy **b** legalább egyike nullvektor. Nullvektor iránya tetszőleges, így a párhuzamosság fennáll.

Vegyes szorzat

<u>Definíció:</u> Az (a x b) ·c szorzatot vegyes szorzatnak nevezzük. <u>Geometriai jelentés:</u>

e legyen **a** x **b**-vel || egységvektor, tehát merőleges az **a**_és **b** vektorok síkjára | **a**×**b** | : alapterület,

$$\mathbf{a} \times \mathbf{b}$$

$$(|\mathbf{a} \times \mathbf{b}| \cdot \mathbf{e}) \cdot \mathbf{c} = (\text{alapter\"{u}let} \cdot \text{magass\'{a}g}) = \text{el\"{o}jeles t\'{e}r\'{f}ogat}$$

$$\text{magass\'{a}g}$$

Az előjel a paralelepipedon elhelyezkedését (attól függően + vagy -, hogy a c vektor ugyanabba a térfélbe mutat-e, mint az **a** x **b**) adja meg, a szám pedig a térfogat mérőszámát.

Vegyes szorzat kiszámítási módja ortonormált bázis esetén

Tétel: Ha
$$\mathbf{a} = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k})$$

 $\mathbf{b} = (b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k})$
 $\mathbf{c} = (c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k})$ adottak, akkor $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} =$

$$\begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = c_1 \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - c_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + c_3 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

<u>Biz.:</u> $\mathbf{a} \times \mathbf{b} = \mathbf{i}(a_2b_3 - a_3b_2) - \mathbf{j}(a_1b_11_3 - a_3b_1) + \mathbf{k}(a_1b_2 - a_2b_1) =$

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \cdot \mathbf{c} = (\mathbf{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}) \cdot (\mathbf{c}_1 \mathbf{i} + \mathbf{c}_2 \mathbf{j} + \mathbf{c}_3 \mathbf{k}) = \mathbf{c}_1 \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \mathbf{c}_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \mathbf{c}_3 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \mathbf{c}_1 \begin{vmatrix} a$$

$$= \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$