高等微积分(上)

邹文明

第一章: 实数和数列极限

§8. 关于实数系的几个基本定理

定理 1. (区间套定理)

设 $[a_1,b_1] \supseteq [a_2,b_2] \supseteq \cdots \supseteq [a_n,b_n] \supseteq \cdots$

且 $\lim_{n\to\infty} (b_n - a_n) = 0$, 则 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = c$, 并且 c 是上述所有闭区间的唯一公共点, 也即

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}.$$

证明: 由题设可知, $\forall n \geq 1$, 我们有

$$a_1 \leqslant a_n \leqslant a_{n+1} \leqslant b_{n+1} \leqslant b_n \leqslant b_1.$$

于是由单调有界定理可知 $\{a_n\}$ 和 $\{b_n\}$ 均收敛. 设其极限分别为 a,b. 那么我们有

$$0 = \lim_{n \to \infty} (b_n - a_n) = b - a.$$

故 a = b =: c. 下证: $\forall m \ge 1$, 均有 $c \in [a_m, b_m]$.

事实上, $\forall n \geq m$, $a_m \leq a_n \leq b_m$. 再让 $n \to \infty$, 则由数列极限的保序性立刻可得 $a_m \leq c \leq b_m$.

任取 $x \in \bigcap_{n=1}^{\infty} [a_n, b_n]$. 则 $\forall n \ge 1$, $a_n \le x \le b_n$.

于是由夹逼原理可知 x = c. 故所证结论成立.

关于区间套定理的评注

思考题: 假设数列 $\{a_n\}$ 递增而数列 $\{b_n\}$ 递减且 $\lim_{n\to\infty} (b_n - a_n) = 0$. 求证: 数列 $\{a_n\}$ 与 $\{b_n\}$ 均收敛且其极限相等.

- 区间套定理是单调有界定理的特殊情形. 其实我们也可证明由区间套定理可导出单调 有界定理.
- •对于开区间列,区间套定理一般不成立.例如 开区间 $\{(0,\frac{1}{n})\}$ 的交集为空集.

定理 2. (列紧性) 有界数列必有收敛子列. 不讲证明: 假设 $\{x_n\}$ 有界并且 a_0, b_0 为其下、

上界. 将闭区间 $[a_0, b_0]$ 两等分, 于是其中一个子区间

(记作 $[a_1,b_1]$) 必会包含该数列中的无穷多项,

再将 $[a_1,b_1]$ 两等分,那么其中也有一个子区间 (记作 $[a_2,b_2]$) 必包含该数列当中的无穷多项...

如此下去可得如下递降闭区间列 $\{[a_n,b_n]\}$ 满足:

(1)
$$\forall n \geqslant 1$$
, $b_n - a_n = \frac{1}{2^n}(b_0 - a_0)$;

(2) $\forall k \geq 1$, $[a_k, b_k]$ 包含着 $\{x_n\}$ 中的无穷多项.

由区间套定理可知 $\{a_n\}$, $\{b_n\}$ 收敛到同一个极限, 记作 c. 而由 (2), 我们可以构造 $\{x_n\}$ 的子列 $\{x_{n_k}\}$ 使得 $\forall k \geq 1$, 我们有 $a_k \leq x_{n_k} \leq b_k$. 于是由夹逼原理可知子列 $\{x_{n_k}\}$ 收敛到 c.

定义 1. 称 $\{x_n\}$ 为 Cauchy (柯西、哥西) 数列, 若 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall m, n > N$, 均有 $|x_m - x_n| < \varepsilon$.

注: 由上可知数列 $\{x_n\}$ 为 Cauchy 数列当且仅当 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n > N$ 以及 $\forall p > 0$, 均有 $|x_{n+p} - x_n| < \varepsilon$.

柯西(Cauchy, Augustin Louis 1789-1857), 出生于巴黎, 他的父亲路易•弗朗索瓦•柯西是法国波旁王朝的官员, 在法国动荡的政治漩涡中一直担任公职. 由于家庭的原因, 柯西本人属于拥护波旁王朝的正统派, 是一位虔诚的天主教徒. 并且在数学领域, 有很高的建树和造诣. 很多数学的定理和公式也都以他的名字来称呼, 如柯西不等式、柯西积分公式。

柯西(Cauchy, 1789-1857)是法国数学家、物理学家、天文学家。19世纪初期, 微积分已发展成一个庞大的分支,,内容丰富,应用非常广泛。与此同时,它的 薄弱之处也越来越暴露出来,微积分的理论基础并不严格。为解决新问题并澄 清微积分概念,数学家们展开了数学分析严谨化的工作,在分析基础的奠基工 作中,做出卓越贡献的要首推伟大的数学家柯西。柯西1789年8月21日出生于巴 黎。父亲是一位精诵古典文学的律师,与当时法国的大数学家拉格朗日与拉普 拉斯交往密切。柯西少年时代的数学才华颇受这两位数学家的赞赏,并预言柯 西日后必成大器。拉格朗日向其父建议"赶快给柯西一种坚实的文学教育", 以便他的爱好不致把他引入歧途。父亲因此加强了对柯西的文学教养、使他在 诗歌方面也表现出很高的才华。

1807年至1810年柯西在工学院学习,曾当过交通道路工程师。由于身体欠佳,接受了拉格朗日和拉普拉斯的劝告,放弃工程师而致力于纯数学的研究。柯西在数学上的最大贡献是在微积分中引进了极限概念,并以极限为基础建立了逻辑清晰的分析体系。这是微积分发展史上的精华,也是柯西对人类科学发展所做的巨大贡献。

1821年柯西提出极限定义的方法,把极限过程用不等式来刻画,后经魏尔斯特拉斯改进,成为现在所说的柯西极限定义或叫定义。当今所有微积分的教科书都还(至少是在本质上)沿用着柯西等人关于极限、连续、导数、收敛等概念的定义。他对微积分的解释被后人普遍采用。柯西对定积分作了最系统的开创性工作,他把定积分定义为和的"极限"。在定积分运算之前,强调必须确立积分的存在性。他利用中值定理首先严格证明了微积分基本定理。

通过柯西以及后来魏尔斯特拉斯的艰苦工作, 使数学分析的基本概念得到严格 的论述。从而结束微积分二百年来思想上的混乱局面,把微积分及其推广从对 几何概念、运动和直观了解的完全依赖中解放出来,并使微积分发展成现代数 学最基础最庞大的数学学科。1852年拿破仑第三发动政变, 法国从共和国变成 了帝国,恢复了公职人员对新政权的效忠宣誓,柯西立即向巴黎大学辞职。后 来拿破仑第三特准免除他和物理学家阿拉果的忠诚盲誓。于是柯西得以继续讲 行所担任的教学工作, 直到1857年他在巴黎近郊逝世时为止。柯西直到逝世前 仍不断参加学术活动,不断发表科学论文。1857年5月23日,他突然去世,享 年68岁,他因为热病去世,临终前,他还与巴黎大主教在说话,他说的最后一 句话是, "人总是要死的, 但是, 他们的功绩永存。"

命题 1. 收敛的数列为 Cauchy 数列.

证明: 设
$$\lim_{n\to\infty} x_n = a$$
. 则 $\forall \varepsilon > 0$, $\exists N > 0$ 使得

$$\forall n > N$$
, 均有 $|x_n - a| < \frac{\varepsilon}{2}$. 于是 $\forall m, n > N$,

$$|x_m - x_n| \leqslant |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

故 $\{x_n\}$ 为 Cauchy 数列.

命题 2. Cauchy 数列为有界数列.

证明: 假设 $\{x_n\}$ 为 Cauchy 数列. 那么 $\exists N > 0$ 使得 $\forall m, n > N$, 我们均会有 $|x_m - x_n| < 1$.

选取 $M = 1 + |x_{N+1}| + \max_{1 \le i \le N} |x_i|$. 那么 $\forall n \ge 1$, 当 $n \le N$ 时,均有 $|x_n| \le M$;而当 n > N 时,则

 $|x_n| \leqslant |x_n - x_{N+1}| + |x_{N+1}| < 1 + |x_{N+1}| \leqslant M.$

因此数列 $\{x_n\}$ 有界.

定理 3. (Cauchy 判别准则) 数列收敛当且仅当它为 Cauchy 数列.

证明: 由前面讨论可知, 我们只需证明充分性.

假设 $\{x_n\}$ 为 Cauchy 数列, 则该数列有界, 从而由列紧性定理可知它拥有收敛的子列 $\{x_{k_n}\}$. 令 $a=\lim_{n\to\infty}x_{k_n}$. $\forall \varepsilon>0$, $\exists N_1>0$ 使得 $\forall n>N_1$,

 $|x_{k_n}-a|<\frac{1}{2}\varepsilon.$

又由于 $\{x_n\}$ 为 Cauchy 数列, 则 $\exists N_2 > 0$ 使得 $\forall m, n > N_2$, 我们均有 $|x_m - x_n| < \frac{1}{2}\varepsilon$. 令 $N = \max(N_1, N_2)$.

则
$$\forall n > N$$
, 我们有 $k_n \ge n > N$. 于是

$$|x_n - a| \leq |x_n - x_{k_n}| + |x_{k_n} - a| < \varepsilon.$$

 $|x_n - \alpha| \leqslant |x_n - x_{k_n}| + |x_{k_n} - \alpha| < \varepsilon.$

故数列 $\{x_n\}$ 收敛到 a.

例 1. 假设 a > 0, 0 < q < 1, 而数列 $\{x_n\}$ 使得

i=n

证明: $\forall n, p > 0$, 我们有

 $\forall n \geq 1$, $|x_{n+1} - x_n| \leq aq^n$. 求证: $\{x_n\}$ 收敛.

 $|x_{n+p} - x_n| = |\sum_{j=1}^{n} (x_{j+1} - x_j)| \leqslant \sum_{j=1}^{n} |x_{j+1} - x_j|$

 $\leqslant \sum_{n+p-1}^{n+p-1} aq^j = \frac{a(1-q^p)q^n}{1-q} < \frac{aq^n}{1-q}.$

 $\forall \varepsilon > 0$, 若我们选取

$$N = \left| \left[\frac{\log \frac{\varepsilon(1-q)}{a}}{\log q} \right] \right| + 1.$$

则 $\forall n > N$ 以及 $\forall p > 0$,我们有

$$|x_{n+p} - x_n| < \frac{aq^n}{1 - q} < \varepsilon.$$

故 $\{x_n\}$ 为 Cauchy 数列, 从而收敛.

例 2. 求证: 数列 $\left\{\sum_{k=0}^{n} \frac{(-1)^k}{k^2}\right\}$ 收敛. 证明: $\forall n \geq 1$, $\diamondsuit x_n = \sum_{k=1}^n \frac{(-1)^k}{k^2}$. 则 $\forall \varepsilon > 0$, 如果

取
$$N = \left[\frac{1}{\varepsilon}\right] + 1$$
,则 $\forall n > N$ 以及 $\forall p > 0$,我们有

$$|x_{n+p} - x_n| = \Big| \sum_{k=n+1}^{n+p} \frac{(-1)^k}{k^2} \Big| \le \sum_{k=n+1}^{n+p} \frac{1}{k^2} \le \sum_{k=n+1}^{n+p} \frac{1}{k(k-1)}$$

 $= \sum_{k=n+1}^{n-1} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n} < \varepsilon.$

例 3.(不讲! 供学有余力的同学参考)
$$\forall n \geq 1$$
, 令 $x_n = \prod_{k=1}^n (1 + \frac{1}{2^k})$. 求证 $\{x_n\}$ 收敛. 证明: $\forall k \geq 1$, $1 + \frac{1}{k} \leq e^{\frac{1}{k}}$, 于是 $\forall n \geq 1$, 我们有
$$|x_{n+1} - x_n| = \frac{x_n}{2^{n+1}} \leq \frac{1}{2^{n+1}} \prod_{k=1}^n e^{2^{-k}} = \frac{1}{2^{n+1}} e^{1-2^{-n}} < \frac{e}{2^{n+1}}$$
.

$$\forall \varepsilon > 0$$
, $\Leftrightarrow N = \left| \left[\frac{\log \frac{e}{\varepsilon}}{\log 2} \right] \right| + 1$. $\forall n > N \not \mathbb{Z} \ \forall p > 0$,

 $|x_{n+p} - x_n| \leqslant \sum_{k=1}^{n+p-1} |x_{k+1} - x_k| \leqslant \sum_{k=1}^{n+p-1} \frac{e}{2k+1} \leqslant \frac{e}{2n} \leqslant \tilde{\varepsilon}.$

例 4. 如果 $\exists C > 0$ 使得数列 $\{x_n\}$ 满足 $\forall n \geq 1$, $y_n := |x_2 - x_1| + \dots + |x_{n+1} - x_n| < C$.

求证:数列 $\{x_n\}$ 收敛.

有界定理可知该数列收敛, 从而为 Cauchy 数列. 则 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n > N$ 以及 $\forall p > 0$,

证明: 由于 $\{y_n\}$ 递增并且有上界 C, 则由单调

 $y_{n+p-1}-y_{n-1}=\sum_{n+p-1}|x_{k+1}-x_k|<\varepsilon.$

由此我们立刻可得

$$|x_{n+p} - x_n| = \left| \sum_{k=n}^{n+p-1} (x_{k+1} - x_k) \right|$$

 $\leq \sum_{k=n}^{n+p-1} |x_{k+1} - x_k| < \varepsilon.$

故 $\{x_n\}$ 为 Cauchy 数列, 因此收敛.

注: 例 1, 例 2, 例 3 均为 例 4 的特殊情形.

同学们辛苦了!