

Ayudantía 2 - Lógica Proposicional

Héctor Núñez, Paula Grune, Manuel Irarrázaval

Resumen

• ¿Qué es la lógica proposicional?:

Es un sistema que busca obtener conclusiones a partir de premisas. Los elementos más simples (letras 'p', 'q' u otras) representan proposiciones o enunciados. Los conectivas lógicas $(\neg, \land, \lor y \rightarrow)$, representan operaciones sobre proposiciones, capaces de formar otras proposiciones de mayor complejidad.

Semántica:

Una valuación o asignación de verdad para las variables proposicionales en un conjunto P es una función $\sigma: P \to \{0,1\}$, donde '0' equivale a 'falso' y '1' a verdadero.

■ Tablas de verdad:

Las fórmulas se pueden representar y analizar en una tabla de verdad.

			p	q	$p \rightarrow q$		p	q	$p \wedge q$
p	$\neg p$		0	0	1		0	0	0
		_			1		0	1	0
1	1 0		1	0	0		1	0	0
	1		1	1	1		1	1	1
		I			'	İ			'

■ Equivalencia lógica ≡

Dos fórmulas son lógicamente equivalentes (denotado como $\alpha \equiv \beta$) si para toda valuación σ se tiene que $\sigma(\alpha) = \sigma(\beta)$

• Leyes de equivalencia

1. Doble negación:
$$\neg(\neg \alpha) \equiv \alpha$$

2. De Morgan:
$$\neg(\alpha \land \beta) \equiv (\neg \alpha) \lor (\neg \beta)$$
$$\neg(\alpha \lor \beta) \equiv (\neg \alpha) \land (\neg \beta)$$

3. Conmutatividad:
$$\alpha \wedge \beta \equiv \beta \wedge \alpha$$
 $\alpha \vee \beta \equiv \beta \vee \alpha$

4. Asociatividad:

$$\alpha \wedge (\beta \wedge \gamma) \equiv (\alpha \wedge \beta) \wedge \gamma$$
$$\alpha \vee (\beta \vee \gamma) \equiv (\alpha \vee \beta) \vee \gamma$$

5. Distributividad:
$$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$$
$$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

6. Idempotencia:
$$\alpha \wedge \alpha \equiv \alpha$$
$$\alpha \vee \alpha \equiv \alpha$$

7. Absorción: $\alpha \wedge (\alpha \vee \beta) \equiv \alpha$ $\alpha \vee (\alpha \wedge \beta) \equiv \alpha$

8. Implicancia: $\alpha \to \beta \equiv (\neg \alpha) \lor \beta$

9. Doble implicancia: $\alpha \leftrightarrow \beta \equiv (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$

Conectivos funcionalmente completos

Un conjunto de conectivos lógicos se dice funcionalmente completo si toda fórmula en L(P) es lógicamente equivalente a una fórmula que sólo usa esos conectivos.

Ejemplos:

$$\bullet \ \{\neg, \lor\}$$

$$\bullet \ \{\neg, \rightarrow\}$$

1. Tabla de Verdad

Sean p, q y r variables lógicas. Construya la tabla de verdad de las siguientes fórmulas lógicas:

- a) $(p \to q) \land (\neg p \to r)$
- b) $(p \leftrightarrow q) \lor (\neg q \leftrightarrow r)$

2. Interpretación

Capítulo 1.2 de Ross (ejercicio 16) Sea p, q y r las siguientes proposiciones:

- p: "Sacarse un 7 en el examen final."
- q: "Asistir a todas las ayudantías."
- r: "Sacarse un 7 en la ramo."

Expresa las siguientes proposiciones utilizando p, q y r, junto con conectivos lógicos (incluyendo negaciones):

- 1. Se saca un 7 en el ramo, pero no asiste a todas las ayudantías.
- 2. Se saca un 7 en el examen final, asiste a todas las ayudantías y se saca un 7 en el ramo.
- 3. Para sacarse un 7 en el ramo, es necesario sacarse un 7 en el examen final.
- 4. Se saca un 7 en el examen final, pero no asiste a todas las ayudantías; sin embargo, se saca un 7 en el ramo.
- 5. Sacarse un 7 en el examen final y asistir a todas las ayudantías es suficiente para sacarse un 7 en el ramo.
- 6. Se sacará un 7 en el ramo si y solo si asiste a todas las ayudantías o se saca un 7 en el examen final.

3. Equivalencia Lógica

Demuestre que

$$(p \vee (p \rightarrow q)) \wedge \neg (r \wedge \neg p) \wedge (p \wedge (r \vee q)) \wedge (r \rightarrow q) \equiv p \wedge q$$