

# Université Abdelmalek Essaâdi



# المعة عبد المالك السعدي Faculté des Sciences et Techniques-Tanger وهم المراكد المعدي 1 مهم المراكد المعدي المعادل الم

Département Génie Informatique

# Machine Learning (Master SIBD) Atelier 1 « Régression »



<u>Réalisé Par :</u>

Yossra safi chetouan

**Encadre Par:** 

Pr . EL AACHAk LOTFI

# Partie 1 : Régression Simple cas Expérience Salaire

- 1. Préparation des données
- > Traiter les valeurs manquantes

```
#3.a)traiter les valeur manquantes
data.isnull().sum()
#remarque:On voit qu'il y a aucune valeurs nulles

YearsExperience 0
Salary 0
dtype: int64
```

# On voit qu'il n'y a pas de valeurs manquantes

> Le traitement des valeurs dupliquées

```
#3.b)Le traitement des valeurs dupliquées
data.duplicated().sum()
#remarque:pas des valeurs dupliquées
```

0

# On voit qu'il n'y a pas de valeurs dupliquées

Traitement des valeurs aberrantes (Outliers)



On voit qu'il n'y a pas de valeurs aberrantes

#### 2. Visualisation des données

# > Afficher les dernières lignes de data set

| [10]: |    | YearsExperience | Salary   |
|-------|----|-----------------|----------|
|       | 25 | 9.0             | 105582.0 |
|       | 26 | 9.5             | 116969.0 |
|       | 27 | 9.6             | 112635.0 |
|       | 28 | 10.3            | 122391.0 |
|       | 29 | 10.5            | 121872.0 |
|       |    |                 |          |

# > Afficher les premières lignes

|   | YearsExperience | Salary  |
|---|-----------------|---------|
| 0 | 1.1             | 39343.0 |
| 1 | 1.3             | 46205.0 |
| 2 | 1.5             | 37731.0 |
| 3 | 2.0             | 43525.0 |
| 4 | 2.2             | 39891.0 |

# > Afficher les Informations sur les types de données et les valeurs manquantes

# > Statistiques descriptives

|       | YearsExperience | Salary        |
|-------|-----------------|---------------|
| count | 30.000000       | 30.000000     |
| mean  | 5.313333        | 76003.000000  |
| std   | 2.837888        | 27414.429785  |
| min   | 1.100000        | 37731.000000  |
| 25%   | 3.200000        | 56720.750000  |
| 50%   | 4.700000        | 65237.000000  |
| 75%   | 7.700000        | 100544.750000 |
| max   | 10.500000       | 122391.000000 |

- Le nombre d'observations non nulles pour les deux colonnes est de 30.
- La moyenne des salaires est de 76 003.
- La moyenne des années d'expérience est de 5,313.
- La valeur maximale dans la colonne des salaires est de 122 391.
- La valeur minimale dans la colonne des salaires est de 37 731.
- La valeur maximale dans la colonne des années d'expérience est de 10,50.
- ♣ La valeur minimale dans la colonne des années d'expérience est de 1,10.
- **♣** 25% (premier quartile): Le quartile inférieur, sous lequel se trouvent 25% des données.
- ≠ 50% (médiane ou deuxième quartile): La médiane divise les données en deux moitiés égales.
- → 75% (troisième quartile): Le quartile supérieur, au-dessus duquel se trouvent 25% des données.

# > Afficher la nuage des points matplotlib



# > Afficher la nuage des points Pandas



#### 3. Entraînement de modèle

➤ Division data en 2 data sets : traitement \*08% et test 20%

```
X = data['YearsExperience']].values
Y = data['Salary'].values
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test,Y_train, Y_test = train_test_split(X, Y, test_size=0.2,random_state=0)
print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)

(24, 1)
(6, 1)
(24,)
(6,)
```

#### > Entraîner le modèle

```
lmodellineaire = LinearRegression()
lmodellineaire.fit(X_train, Y_train)

* LinearRegression
LinearRegression()
```

#### 4. Prédiction sur les données de test

5. Visualiser le résultat de la régression sous forme d'un graphe



# 6. Évaluation de modèle

La performance du modèle sur la base dapprentissage Mean Squared Error (MSE): 12823412.298126549 Root Mean Squared Error (RMSE): 3580.979237321343 Mean Absolute Error (MAE): 2446.1723690465064

# Partie 2 : Régression multiple cas d'assurance

# 1. Préparation des données

# > Le traitement les valeurs manquantes

```
age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64
```

# > Le traitement des valeurs dupliquées

```
#3.b)le traitement des valeurs dupliquées
print(data.duplicated().sum())

1

data = data.drop_duplicates()
print(data.duplicated().sum())
```

# Il y a une seule valeur dupliquée

# > Traitement des valeurs aberrantes (Outliers)



<sup>&#</sup>x27;Remarque: On voit qu'il y a aucune valeurs nulles '

#### Il y a des valeurs aberrantes (outliers) pour les colonnes BMI et charges

Traiter valeurs aberrantes pour colonne BMI

```
Q1 = data['bmi'].quantile(0.25)
Q3 = data['bmi'].quantile(0.75)
   IQR = Q3 - Q1
   # Définition des bornes pour les outliers
   lower bound = 01 - 0.4* IOR
   upper_bound = Q3 + 0.4 * IQR
   # Filtrage des outliers
   data= data[(data['bmi'] >= lower_bound) & (data['bmi'] <= upper_bound)]</pre>
   print(data)
                                 bmi children smoker region
                      sex
                                                                                        charges
            19 female 27.90 0 yes southwest 16884.9240
18 male 33.77 1 no southeast 1725.5523
28 male 33.00 3 no southeast 4449.4620
            18 male 33.77
28 male 33.00
   1
   2
           32 male 28.88 0 no northwest 3866.8552
31 female 25.74 0 no southeast 3756.6216
   1333 50 male 30.97 3 no northwest 10600.5483
1334 18 female 31.92 0 no northeast 2205.9808
1335 18 female 36.85 0 no southeast 1629.8335
1336 21 female 25.80 0 no southwest 2007.9450
1337 61 female 29.07 0 yes northwest 29141.3603
   [1052 rows x 7 columns]
```

# Traiter valeurs aberrantes pour colonne Charges

```
Q1 = data['charges'].quantile(0.25)
Q3 = data['charges'].quantile(0.75)
IQR = Q3 - Q1
# Définition des bornes pour les outliers
lower_bound = Q1 - 0.4 * IQR
upper_bound = Q3 + 0.4 * IQR
# Filtrage des outliers
data= data[(data['charges'] >= lower_bound) & (data['charges'] <= upper_bound)]</pre>
print(data)
                    sex bmi children smoker region
          age
        19 female 27.90 0 yes southwest 16884.92400
18 male 33.77 1 no southeast 1725.55230
28 male 33.00 3 no southeast 4449.46200
32 male 28.88 0 no northwest 3866.85520
31 female 25.74 0 no southeast 3756.62160
2
5
                                                 0 no southeast 3756.62160
... ... ... ...
0 no southwest 10795.93733
3 no northwest 10600.54830
0 no northeast 2205.98080
0 no southeast 1629.83350
0 no southwest 2007.94500
... ... ... ... ... ... ... ... 1331 23 female 33.40
1333 50 male 30.97
1334 18 female 31.92
1335 18 female 36.85
1336 21 female 25.80
[860 rows x 7 columns]
```

#### Résultat :



Nous ne voyons maintenant plus de valeurs aberrantes dans les colonnes BMI et charges après traitement

# > Encodage des valeurs catégoriques vers numérique

| [449]: |      | age | sex | bmi   | children | smoker | region | charges     |
|--------|------|-----|-----|-------|----------|--------|--------|-------------|
|        | 0    | 19  | 0   | 27.90 | 0        | 1      | 3      | 16884.92400 |
|        | 1    | 18  | 1   | 33.77 | 1        | 0      | 2      | 1725.55230  |
|        | 2    | 28  | 1   | 33.00 | 3        | 0      | 2      | 4449.46200  |
|        | 4    | 32  | 1   | 28.88 | 0        | 0      | 1      | 3866.85520  |
|        | 5    | 31  | 0   | 25.74 | 0        | 0      | 2      | 3756.62160  |
|        |      |     |     | •••   |          |        |        |             |
|        | 1331 | 23  | 0   | 33.40 | 0        | 0      | 3      | 10795.93733 |
|        | 1333 | 50  | 1   | 30.97 | 3        | 0      | 1      | 10600.54830 |
|        | 1334 | 18  | 0   | 31.92 | 0        | 0      | 0      | 2205.98080  |
|        | 1335 | 18  | 0   | 36.85 | 0        | 0      | 2      | 1629.83350  |
|        | 1336 | 21  | 0   | 25.80 | 0        | 0      | 3      | 2007.94500  |

860 rows × 7 columns

#### 2. Visualisation des données

# > Afficher les dernières lignes de data set

|    |    | age | sex | bmi   | children | smoker | region | charges     |
|----|----|-----|-----|-------|----------|--------|--------|-------------|
| 13 | 31 | 23  | 0   | 33.40 | 0        | 0      | 3      | 10795.93733 |
| 13 | 33 | 50  | 1   | 30.97 | 3        | 0      | 1      | 10600.54830 |
| 13 | 34 | 18  | 0   | 31.92 | 0        | 0      | 0      | 2205.98080  |
| 13 | 35 | 18  | 0   | 36.85 | 0        | 0      | 2      | 1629.83350  |
| 13 | 36 | 21  | 0   | 25.80 | 0        | 0      | 3      | 2007.94500  |

# > Afficher les premières lignes

|   | age | sex | bmi   | children | smoker | region | charges    |
|---|-----|-----|-------|----------|--------|--------|------------|
| 0 | 19  | 0   | 27.90 | 0        | 1      | 3      | 16884.9240 |
| 1 | 18  | 1   | 33.77 | 1        | 0      | 2      | 1725.5523  |
| 2 | 28  | 1   | 33.00 | 3        | 0      | 2      | 4449.4620  |
| 4 | 32  | 1   | 28.88 | 0        | 0      | 1      | 3866.8552  |
| 5 | 31  | 0   | 25.74 | 0        | 0      | 2      | 3756.6216  |

# > Afficher les Informations sur les types de données et les valeurs manquantes

```
<class 'pandas.core.frame.DataFrame'>
Index: 860 entries, 0 to 1336
Data columns (total 7 columns):
# Column Non-Null Count Dtype
--- ----- ------
          860 non-null int64
860 non-null int32
0
   age
1
          860 non-null float64
2 bmi
3 children 860 non-null int64
4 smoker 860 non-null int32
5 region 860 non-null int32
6 charges 860 non-null float64
dtypes: float64(2), int32(3), int64(2)
memory usage: 43.7 KB
```

# Statistiques descriptives

|       | age        | sex        | bmi        | children   | smoker     | region     | charges      |
|-------|------------|------------|------------|------------|------------|------------|--------------|
| count | 860.000000 | 860.000000 | 860.000000 | 860.000000 | 860.000000 | 860.000000 | 860.000000   |
| mean  | 38.639535  | 0.491860   | 30.048529  | 1.105814   | 0.073256   | 1.532558   | 8492.440043  |
| std   | 13.651502  | 0.500225   | 3.950011   | 1.233681   | 0.260708   | 1.109850   | 5291.822479  |
| min   | 18.000000  | 0.000000   | 22.990000  | 0.000000   | 0.000000   | 0.000000   | 1121.873900  |
| 25%   | 27.000000  | 0.000000   | 26.885000  | 0.000000   | 0.000000   | 1.000000   | 4236.576662  |
| 50%   | 39.000000  | 0.000000   | 29.830000  | 1.000000   | 0.000000   | 2.000000   | 7636.569025  |
| 75%   | 50.000000  | 1.000000   | 33.155000  | 2.000000   | 0.000000   | 3.000000   | 11743.457775 |
| max   | 64.000000  | 1.000000   | 38.060000  | 5.000000   | 1.000000   | 3.000000   | 22493.659640 |

Sélection les caractéristiques importantes en utilisant la méthode d'importance des caractéristiques (FI)

```
[456]: X = data[['age', 'sex', 'bmi', 'children', 'smoker', 'region']] # Features
y = data['charges']

model = ExtraTreesRegressor()
model.fit(X, y)

# Affichage de L'importance des caractéristiques
importances = model.feature_importances,
importance dict = (X.columns[i]: imp for i, imp in enumerate(importances))
print("Feature Importance:", importance_dict)

Feature Importance: {'age': 0.4530099831347224, 'sex': 0.01841560551585683, 'bmi': 0.1017005512145458, 'children': 0.051956331727668725, 'smoker': 0.3294
7403301043793, 'region': 0.04544349539676829}
```

> Afficher la nuage des points



# 3. Entraînement de modèle

➤ Division data en 2 data sets : traitement \*08% et test 20%

```
X = data[['age','bmi','smoker']].values
Y = data['charges'].values
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test,Y_train, Y_test = train_test_split(X, Y, test_size=0.2,random_state=0)
print(X_train.shape)
print(X_test.shape)
print(Y_test.shape)
print(Y_test.shape)

(688, 3)
(172, 3)
(688,)
(172,)
```

#### > Entraîner le modèle

```
regressor = LinearRegression()
regressor.fit(X_train, Y_train)

* LinearRegression
```

#### 4. Prédiction sur les données de test

LinearRegression()

```
[464]: y_pred = regressor.predict(X_test)
y_pred
[464]: array([ 6208.49927093, 11248.59424481, 11638.20852718, 6224.72787829, 8249.29223103, 3721.52794628, 11853.84888849, 8275.0693104, 5461.71819189, 12726.42675086, 10290.13579444, 5770.96284298, 14087.8482878, 2009.868248, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.868288, 2009.8682888, 2009.868288888, 2009.8682888, 2009.868288, 2009.868288, 2009.868288, 2009.86
                                                                                                                                                                                                                                                                                                                                                                   5473.94707874,
                                                                                                                                                                                                                                                                                                                                                                 6652,27624238,
                                                                                                                                                                                                                                                                           5770.96284298, 10455.65950645,
                                                                                    11085.48892305, 7232.86954514,
                                                                                                                                                                                                                                                                        8742.97900206, 10707.46705068,
                                                                                                                                                                                                                                                                        5273.3764938 , 5626.9473374 ,
4134.81195821, 11918.04986181,
                                                                                    11486.01961604, 4085.96618465,
                                                                                    12155.20150906, 2631.20545229,
                                                                                         5952.42097878, 4778.70119091, 2646.02452056, 11821.95958133,
                                                                                         7474-1247397 , 5028.4267358 , 4718.58328631 , 10081.12939643, 8734.33557342 , 4992.00554134 , 8018.57039395 , 6525.26337524 , 3028.60526081 , 6594.11532484 , 5828.97955678 , 4234.01266358 ,
                                                                                   3028.60526081, 6594.11532484,
11260.19489178, 7200.51440351,
11529.47928616, 6923.02901614,
                                                                                                                                                                                                                                                                       7923.55656507, 11728.86653219, 7162.25772919, 7899.2637531,
                                                                                   11529.47/26016.0 9923.02/901614, 7162.257/2919, 7099.2637531, 5049.54645598, 7193.41744957, 3993.852/215145, 8668.97/427706, 6272.8358281, 3760.46803535, 9790.3689546, 8333.70145557, 10030.3682263, 10238.45370291, 10112.0822671, 10395.94633812, 5216.93653871, 13231.84479823, 8082.98293473, 9415.78713216, 5216.93653871, 13231.84479823, 5546.57254866, 12975.50140199,
                                                                                 5216.93653871, 13231.84479823, 5546.572548666, 12975.50140199, 18984.5733145, 10620.28492001, 12609.75698337, 12536.64947097, 6955.97926981, 3447.64428806, 11150.83741089, 10514.70957934, 6092.52063526, 6473.77552491, 13834.32533123, 6682.12999535, 5317.15966679, 10855.1561549, 6902.39460023, 11433.78512206, 10419.79363493, 9358.516862, 10818.67958583, 5128.29585309, 12140.40694872, 9814.51448333, 8722.09041561, 12843.50904266, 8002.12833038, 10542.47272525, 9542.1830759, 8009.83216034, 8919.14165076, 5426.86117154, 7571.78410881, 10199.53812176, 7926.6277579, 4004.2478563, 12217.7847520, 9374.88818185
                                                                                         7920.62775579, 4909.47438693, 12221.73025629, 9374.88818105, 7037.02615682, 7104.64575166, 13280.19064762, 3760.46803535, 10457.05046903 7615.88410114 11139.49917143 12744.81996086
```

# 5. Visualiser le résultat de la régression sous forme d'un graphe



#### 6. Évaluation de modèle

```
La performance du modèle sur la base dapprentissage
```

Mean Absolute Error: 1348.6295945645788 Mean Squared Error: 7277241.235054895 Root Mean Squared Error: 2697.6362310465242

The triangular and the second second

# Partie 4 : Régression linière polynomial multiple cas de china GDP

# 1. Préparation des données

#### > Traitement les valeurs manquantes

```
#3.a)traiter les valeur manquantes
data.isnull().sum()
```

Year 0 Value 0 dtype: int64

#### On voit qu'il n'y a pas de valeurs manquantes

# > Traitement des valeurs dupliquées

```
#3.b)Le traitement des valeurs dupliquées
data.duplicated().sum()
```

0

## On voit qu'il n'y a pas de valeurs dupliquées

> Traitement des valeurs aberrantes (Outliers)



# Il y a des valeurs aberrantes dans la colonne Value

```
Q1 = data['Value'].quantile(0.25)
Q3 = data['Value'].quantile(0.75)
IQR = Q3 - Q1

# Définition des bornes pour les outliers
lower_bound = Q1 -3 * IQR
upper_bound = Q3 + 3* IQR

# Filtrage des outliers
data= data[(data['Value'] >= lower_bound) & (data['Value'] <= upper_bound)]
data</pre>
```

|   | Year | Value        |
|---|------|--------------|
| 0 | 1960 | 5.918412e+10 |
| 1 | 1961 | 4.955705e+10 |
| 2 | 1962 | 4.668518e+10 |
| 3 | 1963 | 5.009730e+10 |
| 4 | 1964 | 5.906225e+10 |
| 5 | 1965 | 6.970915e+10 |
| 6 | 1966 | 7.587943e+10 |
| 7 | 1967 | 7.205703e+10 |
| 8 | 1968 | 6.999350e+10 |
|   |      |              |

# 2. Visualisation des données

> Afficher les dernières lignes de data set

|    | Year | Value        |
|----|------|--------------|
| 44 | 2004 | 1.941746e+12 |
| 45 | 2005 | 2.268599e+12 |
| 46 | 2006 | 2.729784e+12 |
| 47 | 2007 | 3.523094e+12 |
| 48 | 2008 | 4.558431e+12 |

# > Afficher les premières lignes

|   | Year | Value        |
|---|------|--------------|
| 0 | 1960 | 5.918412e+10 |
| 1 | 1961 | 4.955705e+10 |
| 2 | 1962 | 4.668518e+10 |
| 3 | 1963 | 5.009730e+10 |
| 4 | 1964 | 5.906225e+10 |

# Afficher les Informations sur les types de données et les valeurs manquantes

#### > Statistiques descriptives

| [83]: |       | Year       | Value        |
|-------|-------|------------|--------------|
|       | count | 49.00000   | 4.900000e+01 |
|       | mean  | 1984.00000 | 6.558925e+11 |
|       | std   | 14.28869   | 9.455853e+11 |
|       | min   | 1960.00000 | 4.668518e+10 |
|       | 25%   | 1972.00000 | 1.121598e+11 |
|       | 50%   | 1984.00000 | 2.580821e+11 |
|       | 75%   | 1996.00000 | 8.608441e+11 |
|       | max   | 2008.00000 | 4.558431e+12 |

# > Afficher la nuage des points matplotlib



# > Afficher la nuage des points Pandas



#### 3. Entraînement de modèle

Division data en 2 data sets : traitement \*08% et test 20%

```
[89]: X = data['Year']].values
Y = data['Yalue'].values
scaler = StandardScaler()
X = scaler.fit_transform(X)
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(39, 1)
(10, 1)
(39,)
(10,)
```

#### > Entraîner le modèle

LinearRegression()

La régression linière

```
# La régression linière
regressor_linière = LinearRegression()
regressor_linière.fit(x_train, y_train)

* LinearRegression
```

# La régression linière polynomiale

```
#La régression linière polynomiale

degree = 5

poly_features = PolynomialFeatures(degree=degree)

x_poly_train = poly_features.fit_transform(x_train)

x_poly_test = poly_features.transform(x_test)

poly_model = LinearRegression()

poly_model.fit(x_poly_train, y_train)

* LinearRegression

LinearRegression()
```

#### 4. Prédiction sur les données de test

La régression linière

# 4 La régression linière polynomiale

#### 5. Visualiser le résultat de la régression sous forme d'un graphe

4 La régression linière



La régression linière polynomiale

# Polynomial Regression Degree 5



#### 6. Évaluation de modèle

4 La régression linière

La performance du modèle sur la base dapprentissage Mean Squared Error (MSE): 2.9890893352317472e+23 Root Mean Squared Error (RMSE): 546725647398.37726 Mean Absolute Error (MAE): 513553890488.1462

La régression linière polynomiale

La performance du modèle sur la base dapprentissage Mean Squared Error (MSE): 1.0599858156118995e+22 Root Mean Squared Error (RMSE): 102955612552.7841 Mean Absolute Error (MAE): 83638911270.11707