Université Nangui Abrogona

Année Universitaire 2019-2020

UFR-SFA Licence 1-MI×PC

TD-Fiche Nº1-ALGEBRE 1

Exercice 1

1) <u>Déterminons le complémentaire dans R des</u> parties suivantes:

$$A =]-\infty;0] \Rightarrow \overline{A} = [A =]0;+\infty[$$

$$B =]-\infty \circ [\Rightarrow \overline{B} = C_R B = [\circ i + \infty [$$

$$C =]oi + \infty[$$
 $\Rightarrow \bar{C} = C_{R}C =]-\alpha_{i}o]$

$$D = [0] + \infty [\longrightarrow \overline{D} = C_R D =] - \infty [0]$$

$$E = J1;2[\rightarrow D E = J-\infty;1]U[2;+\infty[$$

$$F = \begin{bmatrix} 1/2 \end{bmatrix} \implies F = C F = J - \infty i 1 \begin{bmatrix} U \begin{bmatrix} 2i + \infty \end{bmatrix} \end{bmatrix}$$
2) Socient $G = J - \infty i 1 \begin{bmatrix} U \end{bmatrix} 2i + \infty \begin{bmatrix} 1 \end{bmatrix}$, $H = J - \infty i 1 \begin{bmatrix} 0 \end{bmatrix} \end{bmatrix}$

$$e^{\frac{1}{2}} I = \begin{bmatrix} 2i + \infty \end{bmatrix}$$

$$Comparons les ensembles pruvants: $C_{R}GetC_{R}HnC_{R}I$

$$C_{R}G = \begin{bmatrix} 1/2 \end{bmatrix}$$

$$C_{R}HnC_{R}I = (\begin{bmatrix} 1/2 \end{bmatrix} \cap (J - \infty i) 2 [) = \begin{bmatrix} 1/2 \end{bmatrix}$$

$$Comme \begin{bmatrix} 1/2 \end{bmatrix} \subsetneq \begin{bmatrix} 1/2 \end{bmatrix} ;$$
alors $C_{R}HnC_{R}I \subsetneq C_{R}G$.$$