Cálculo de índices Balanceados de Kenworthy (B)

Webert Saturnino Pinto

24 de junho de 2017

Introdução

De acordo com MARTINEZ et al. (1999), os ídices balanceados de Kenworthy, propostos por KENWORTHY(1961), permitem avaliar o estado nutricinal como percentagem da concentração de determinado nutriente em relação à norma. A vantagem deste método em relação à outros é o fato deste considerar o coeficiente de variação para cada nutriente na população de onde se obteve a norma. Para o cálculo dos coeficientes, procede-se destintamente quando a concentração do nutriente na população teste for menor ou maior que a norma:

```
    a. Y_am > Y_ref
    I = (P-100)CV/100
    B = P-I
    b. Y_am < Y_ref</li>
    I = (100-P)CV/100
    B = P+I
```

A interpretação dos resultados é feita de acordo com a colocação dos valores em relação às faixas:

1. Faixa de deficiência: 17 a 50 %

2. Faixa marginal (abaixo do normal): 50 a 83 %

3. Faixa adequada (normal): 83 a 117 %

4. Faixa elevada (acima do normal): 117 a 150 %

5. Faixa de excesso: 150 a 183 %

Bibliotecas adicionais utilizadas

```
library(data.table)
library(dplyr)
library(matrixStats)
library(ggplot2)
```

Lendo a base de dados

```
#Arquivo com os dados de referência, para cálculo da norma:
d.ref <- data.frame(read.csv2("dados ref cafe.csv"))</pre>
print(d.ref)
## amostra N P K S Ca Mg Cu Mn Fe Zn B
## 1 am 1 3.00 0.20 2.30 0.18 2.25 0.35 15 180 130 13 75
## 2 am 2 2.85 0.15 2.00 0.16 2.20 0.35 14 113 127 9 60
## 3 am 3 2.37 0.14 2.10 0.20 2.50 0.40 10 127 155 5 63
## 4 am 4 2.56 0.16 2.50 0.22 2.40 0.20 12 190 140 8 80
## 5 am 5 2.70 0.15 2.80 0.28 2.10 0.30 15 205 100 14 77
## 6 am 6 3.50 0.14 2.50 0.19 2.20 0.25 9 137 125 16 58
## 7 am 7 2.89 0.13 2.20 0.16 3.00 0.30 16 113 130 13 75
## 8 am 8 3.01 0.27 2.33 0.30 2.35 0.35 20 148 135 15 80
## 9 am 9 3.60 0.25 2.50 0.15 2.40 0.25 12 136 130 10 66
## 10 am 10 2.30 0.10 3.00 0.20 2.85 0.20 15 144 150 12 60
#Arquivo com os teores foliares da amostra sob avaliação:
d.amostra <- data.frame(read.csv2("dados am cafe.csv"))</pre>
print(d.amostra)
## nut N P K S Ca Mg Cu Mn Fe Zn B
## 1 t amostra 2.41 0.23 1.42 0.2 1.18 0.22 11.49 207.03 141.15 13.23 60
```

Calculando os valores das médias e variâncias da população de referência

```
d.ref.media <-data.frame(y_ref = sapply(d.ref[2:10,2:12], mean))
d.ref.variancia <-data.frame(variancia = sapply(d.ref[2:10,2:12], sd))
d.ref.media.var <- cbind.data.frame(d.ref.media, d.ref.variancia)</pre>
```

Calculando o coeficiente percentual de variação (CV) da população de referência (norma)

```
d.ref.media.var$cv <- (d.ref.media.var$variancia/d.ref.media.var$y ref)*100</pre>
```

Criando um data frame com os valores referência e de amostra

```
d.kw <- data.frame(d.ref.media.var)
y <- as.data.frame(t(d.amostra))</pre>
```

```
Y<- data.frame(v = y[2:12,])
d.kw$y_am <- as.numeric(as.character(Y$v))
d.kw$y ref <- as.numeric(as.character(d.kw$y ref))</pre>
```

Calculando os parâmetros I e P

```
d.kw$P <- (d.kw$y_am/d.kw$y_ref)*100  
d.kw  

KaTeX parse error: Expected 'EOF', got '&' at position 3: I &lt;-y_am > d.kwy_ref, (d.kwP-100) (d.kw
```

Calculando os índices balanceados de Kenworthy

```
d.kw$B <- ifelse(d.kw$y_am > d.kw$y_ref, d.kw$P- d.kw$I, d.kw$P + d.kw$I)
```

Interpretando os valores obtidos para os índices

Reordenando os índices dos nutrintes em função do coeficiente B

```
d.ikw <- data.table(nutriente = row.names(d.kw), B = d.kw$B, Interpretacao = d.kw$inte
print(d.ikw)</pre>
```

##		nutriente	В	Inte	erpi	retacao
##	1:	N	86.65019			Normal
##	2:	Р	125.67179	Acima	do	normal
##	3:	K	63.80107	Abaixo	do	normal
##	4:	S	97.59643			Normal
##	5:	Ca	54.65283	Abaixo	do	normal
##	6:	Mg	81.90898	Abaixo	do	normal
##	7:	Cu	87.98197			Normal
##	8:	Mn	132.74323	Acima	do	normal
##	9:	Fe	105.78239			Normal
##	10:	Zn	111.41118			Normal
##	11:	В	88.93508			Normal

Plotando os índices balanceados para cada nutriente

```
graf_ikw <- ggplot(d.ikw, aes(nutriente,B))
graf_ikw + geom_col()+
    ylab("B(%)") +

geom_hline(yintercept = 17)+
    annotate(geom="text", label= "Deficiente", x=1, y=32.5, vjust=0, hjust = -4)+
    geom_hline(yintercept = 50)+
        annotate(geom="text", label= "Abaixo do normal", x=1, y=66.5, vjust=0, hjust = -2)
    geom_hline(yintercept = 83)+
        annotate(geom="text", label= "Normal", x=1, y=100, vjust=0, hjust = -5.25)+
    geom_hline(yintercept = 117)+
        annotate(geom="text", label= "Acima do normal", x=1, y=133.5, vjust=0, hjust = -2)
    geom_hline(yintercept = 150)+
        annotate(geom="text", label= "Excesso", x=1, y=150, vjust=-0.5, hjust = -4.3)</pre>
```


Fontes consultadas e referenciadas

KENWORTHY, A. L. Interpreting the balance of nutrient-elements in leaves of fruit trees. In: Reuther W. Plant analysis and fertilizers problems. Washington: American Institute of Biological Science, 1961. p.28-23.

MARTINEZ, H. E. P.; CARVALHO, J. G.; SOUZA, R. B. Diagnose Foliar. In: RIBEIRO, A. C.; GUIMARÃES, P. T. G.; ALVAREZ V., V. H. (Org.). Recomendações para o uso de corretivos e fertilizantes em Minas Gerais - 5° Aproximação. Viçosa: [s.n.], 1999. p. 359.

ggplot2 barplots : Quick start guide - R software and data visualization. Disponível em: http://www.sthda.com/english/wiki/ggplot2-barplots-quick-start-guide-r-software-and-data-visualization. Último acesso: 26/06/2017.

Find the Standard deviation for a vector, matrix, or data.frame - do not return error if there are no cases. Disponível em: https://www.personality-project.org/r/html/SD.html. Último acesso: 26/06/2017.

Disponível em: http://www.statmethods.net/management/subset.html. Último acesso: 26/06/2017.

Disponível em: https://s3.amazonaws.com/content.udacity-data.com/courses/gt-cse6242/recommended+reading/ggplot2-book.pdf. Último acesso: 26/06/2017.

Disponível em: https://stackoverflow.com/questions/39178740/ggplot2-reorder-bars-in-barplot-from-highest-to-lowest.

Último acesso: 26/06/2017.