presented by

Firmware in the datacenter: Goodbye PXE and IPMI. Welcome HTTP Boot and Redfish!

UEFI Spring Plugfest – May 18-22, 2015

Samer El-Haj-Mahmoud Master Technologist Hewlett Packard

Agenda

- PXE and HTTP Boot
 - PXE Challenges
 - UEFI 2.5 HTTP Boot
- IPMI and Redfish
 - IPMI Challenges
 - Redfish and REST APIs
- Putting it all together
 - Case study of HP ProLiant Servers

Goodbye PXE. Welcome HTTP Boot!

PXE Boot Challenges

Preboot eXecution Environment

- Security Issues
 - Only physical. No encryption or authentication
 - Rouge DHCP servers, man-in-the-middle attacks

Scaling issues

- Circa 1998
- TFTP timeouts
- UDP packet loss
- Download time = Deployment time = \$\$\$
- Aggravated in density-optimized data datacenters

OEMs and Users "duct-tape"

- Retry (DHCP request, download, reboot, etc...)
- Chain-load 3rd party boot loaders (iPXE, mini-OS, etc...)
- Alternate net-booting (Boot from SAN, iSCSI, etc...)

UEFI 2.4 Network Stack

UEFI Plugfest – May 2015 www.uefi.org 5

UEFI 2.5 Network Stack

DNS support

- EFI_DNS4_SERVICE_BINDING_PROTOCOL
- EFI_DNS6_SERVICE_BINDING_PROTOCOL
- EFI_DNS4_PROTOCOL
- EFI_DNS6_PROTOCOL
- EFI_IP4_CONFIG2_PROTOCOL

HTTP support

- EFI_HTTP_SERVICE_BINDING_PROTOCOL
- EFI_HTTP_PROTOCOL
- EFI_HTTP_UTILITIES_PROTOCOL
- HTTP Boot Wire Protocol

TLS support

- EFI_TLS_SERVICE_BINDING_PROTOCOL
- EFI_TLS_PROTOCOL
- EFI_TLS_CONFIGURATION_PROTOCOL

UEFI 2.5 HTTP Boot

HTTP Boot Wire Protocol

- Boot from configured URL
- Target can be:
 - 1. EFI Network Boot Program (NBP)
 - 2. Shrink-wrapped ISO image
- URL pre-configured or autodiscovered (DHCP)

Addresses PXE issues

- HTTPs addresses security
- TCP reliability
- HTTP load balancing

HTTP Boot DHCP Discovery

- HTTP Boot "Architectural Types"
- http://www.iana.org/assignments/dhcpv6-parameters.xml
- IPv4/IPv6 DHCP Discover request
 - ➤ DHCP Option 93: Client system Architecture
 - DHCPv6 Option 61: Client system Architecture

0x10 = x64 EFI boot from HTTP

0x13 = AArch64 EFI boot from HTTP

 Server responds with DHCPOFFER that includes the boot file HTTP URI for the requested processor architecture

Processor Architecture Types

Registration Procedure(s)

Expert Review

Expert(s)

Vincent Zimmer

Reference

[RFC5970]

Available Formats

Type 🖫	Architecture Name	Reference 🖫
0x00 0x00	x86 BIOS	[RFC5970][RFC4578]
0x00 0x01	NEC/PC98 (DEPRECATED)	[RFC5970][RFC4578]
0x00 0x02	Itanium	[RFC5970][RFC4578]
0x00 0x03	DEC Alpha (DEPRECATED)	[RFC5970][RFC4578]
0x00 0x04	Arc x86 (DEPRECATED)	[RFC5970][RFC4578]
0x00 0x05	Intel Lean Client (DEPRECATED)	[RFC5970][RFC4578]
0x00 0x06	x86 UEFI	[RFC5970][RFC4578]
0x00 0x07	x64 UEFI	[RFC5970][RFC4578]
80x0 00x0	EFI Xscale (DEPRECATED)	[RFC5970][RFC4578]
0x00 0x09	EBC	[RFC5970][RFC4578]
0x00 0x0a	ARM 32-bit UEFI	[RFC5970]
0x00 0x0b	ARM 64-bit UEFI	[RFC5970]
0x00 0x0c	PowerPC Open Firmware	[Thomas_Huth]
0x00 0x0d	PowerPC ePAPR	[Thomas_Huth]
0x00 0x0e	POWER OPAL v3	[Jeremy_Kerr]
0x00 0x0f	x86 uefi boot from http	[Samer_El-Haj-Mahmoud]
0x00 0x10	x64 uefi boot from http	[Samer_El-Haj-Mahmoud]
0x00 0x11	ebc boot from http	[Samer_El-Haj-Mahmoud]
0x00 0x12	arm uefi 32 boot from http	[Samer_El-Haj-Mahmoud]
0x00 0x13	arm uefi 64 boot from http	[Samer_El-Haj-Mahmoud]
0x00 0x14	pc/at bios boot from http	[Samer_El-Haj-Mahmoud]
0x00 0x15	arm 32 uboot	[Joseph_Shifflett]
0x00 0x16	arm 64 uboot	[Joseph_Shifflett]
0x00 0x17	arm uboot 32 boot from http	[Joseph_Shifflett]
0x00 0x18	arm uboot 64 boot from http	[Joseph_Shifflett]
0x00 0x19-0xff 0xff	Unassigned	

UEFI 2.5 / ACPI 6.0 RAM Disk

- UEFI 2.5 defined RAM Disk device path nodes
 - Standard access to a RAM Disk in UEFI
 - Supports Virtual Disk and Virtual CD (ISO) in persistent or volatile memory
- ACPI 6.0 NVDIMM Firmware Interface Table (NFIT)
 - Describe the RAM Disks to the OS
 - Runtime access of the ISO boot image in memory

Type: 4 (Media Device Path)	RamDisk
SubType: 9 (RAM Disk)	(StartingAddress,EndingAddress,DiskInstance,DiskTypeGuid)
	The StartingAddress and EndingAddress are both 64-bit integers and are both required. The DiskInstance is a 16-bit integer and is optional. The default value is 0. The DiskTypeGuid is a GUID and is required.

Goodbye IPMI. Welcome Redfish!

IPMI Challenges

Intelligent Platform Management Interface

- Security (or lack of)
 - Lacks modern security best practices
 - "IPMI 2.0 RAKP Authentication Remote Password Hash Retrieval" vulnerability (IPMI 2.0 spec "feature")

Out-of-Date

- Lacks the ability to describe modern architectures (e.g. multi-node servers)
- Not UEFI-aware (boot device/order selection, Secure Boot, etc...)

Scaling Limits

- Scale-out servers usage model drastically different from traditional and enterprise servers
- Management complexities grow exponentially at scale
- Unique "OEM extensions" create inconsistencies

What is Redfish?

- Industry standard replacement to IPMI
 - DMTF Scalable Platforms Management Forum (SPMF)
- RESTful interface over HTTPs
 - JSON format (Based on OData v4)
 - Secure (HTTPs)
 - Multi-node and aggregated rack-level servers capable
 - Schema-backed, human readable output
- Current Specification
 - Version 0.97.0 (Redfish API Specification , Schema, Mockup Data)
 - Targeting 1.0.0 in June, 2015

What is REST?

REpresentational **S**tate **T**ransfer

- Scalable Software Architectural "style" for the WWW
 - Defined by Roy Fielding, principal author of HTTP specification
- Standardized operations (verbs)
 - HTTP GET, POST, PUT, PATCH, HEAD and DELETE
- Standardized operands (nouns)
 - Resources (and resource states), uniquely identified by URIs
- Stateless, atomic operations
 - No client/application context stored on server

REST: Simple Wins

70% of WWW APIs

Source: http://www.programmableweb.com

What is JSON?

Java Script Object Notation

- Lightweight human readable data-interchange format
 - Easy for humans to read and write
 - Easy for machines to parse and generate
- Much smaller grammar than XML
 - XML good for "documents"
 - JSON better for "data structures" used in programming languages

JSON Grammar

JSON One-Pager

JSON on the Rise

~50% of WWW APIs data

Redfish Data Model

- Root of service "/redfish/v1"
 - All resources linked from root using "href"
- Each resource has a type
 - Versioned, schema-backed
 - Standard or OEM extensions
 - Self-describing meta-data
- Collections to describe versatile hardware architectures
 - Stand-alone, multi-node, rack-level aggregated systems
- Major types
 - ComputerSystem: Logical view of the host (as seen by software)
 - Chassis: Physical view of the system (as seen by human)
 - Manager: Service processor BMC subsystem

RedFish Resource Map

UEFI 2.5: REST Protocol

- UEFI 2.5 EFI_REST_PROTOCOL and BMC Device Path
- Standard in-band access to a RESTful API, like Redfish
- Abstracts BMC-specific access methods from UEFI (proprietary)
- Uses EFI HTTP UTILITY PROTOCOL to build/parse HTTP headers

BMC

20

Putting it together: Case Study of HP ProLiant Servers

UEFI Deployment solution on HP ProLiant Servers

THE STATE OF THE S

UEFI Network Stack Extensions

- HTTP, FTP, DNS
- "Boot from URL"
- Target can be NBP or ISO image

Embedded UEFI Shell

- Integrates with the HP UEFI network stack
- HP value-add commands for bare-metal deployment

HP RESTful API

- Accessible in-band (from OS) or out-of-band (iLO4 HTTPs)
- HP OEM extensions including support for UEFI BIOS configuration and Secure Boot

UEFI Network configuration

- Select pre-boot NIC (or auto select)
- Static / DHCP configuration
- Boot from URL configuration

BIOS/Platform Configuration (RBSU) Network Options → Pre-Boot Network Settings				
► Pre-Boot Network Interface DHCPv4 IPv4 Address IPv4 Subnet Mask IPv4 Gateway IPv4 Primary DNS IPv4 Secondary DNS	[Auto] [Enabled] [0.0.0.0] [0.0.0.0] [0.0.0.0] [0.0.0.0] [0.0.0.0]			
Boot from URL	Ι	1		

Embedded UEFI Shell

- Embedded in the BIOS image
- Fully documented and supported
- Dangerous commands removed (mm, hexedit, etc...)
- Configurable:
 - Enable / Disable
 - Policy for "startup.nsh" file location
 - 1. Local/virtual media
 - 2. URL for script location

BIOS/Platform Configuration (RBSU)

Embedded UEFI Shell

Embedded UEFI Shell
Add Embedded UEFI Shell to Boot Order
UEFI Shell Script Auto-Start
Shell Auto-Start Script Location

▶ Network Location for Shell Auto-Start Script

[Enabled] [Disabled] [Enabled] [Auto]

[http://192.168.1.1/deploy/startup.nsh]

Embedded UEFI Shell

- HP value-add commands for bare metal deployment
- ramdisk: Provision temporary staging locations, and mount ISO files
- webclient and ftp: Scriptable Network download/upload
- sysconfig: Configuration CLI (integrates with HP RESTful API)
- **secboot**: Secure Boot management (physical presence)
- boot: Transition to OS/boot targets without rebooting
- sysinfo: System hardware/firmware inventory
- fwupdate : Firmware components updates
- compress : ZIP/UNZIP archives
- ifconfig: Extensions to support DNS
- Commands to collect HP service/system logs

HP RESTful API

26

- RESTful API in iLO4
 - Main management API for iLO and iLO Chassis Manager based servers
 - Comprehensive inventory and server configuration
- Integrated with UEFI
 - UEFI BIOS settings configuration
 - Includes standard settings such as UEFI Boot Order and Secure Boot

HP RESTful API UEFI Secure Boot Settings

GET @ /rest/v1/systems/1/secureboot

- Enable/Disable Secure Boot
- Reset all Secure Boot variables to defaults
- Clear all keys (Setup Mode)

```
"Name": "SecureBoot",
    "ResetAllKeys": false,
    "ResetToDefaultKeys": false,
    "SecureBootCurrentState": false,
    "SecureBootEnable": false,
    "Type": "HpSecureBoot.0.9.5"
}
```

HP RESTful API Get UEFI BIOS Settings

GET @ /rest/v1/systems/1/bios

```
"AcpiRootBridgePxm": "Enabled",
"AcpiSlit": "Enabled",
"AdjSecPrefetch": "Enabled",
"AdminEmail": "",
"AdminName": "",
"AdminOtherInfo": "".
"AdminPassword": null,
"AdminPhone": "5555555",
"AdvancedMemProtection": "AdvancedEcc",
"AsrStatus": "Enabled",
"AsrTimeoutMinutes": "10",
"AssetTagProtection": "Unlocked",
"AttributeRegistry": "HpBiosAttributeRegistryP89.1.0.40",
"AutoPowerOn": "RestoreLastState",
"BootMode": "Uefi".
"BootOrderPolicy": "RetryIndefinitely",
"ChannelInterleaving": "Enabled",
"CollabPowerControl": "Enabled",
"ConsistentDevNaming": "LomsOnly",
                                                   28
```

HP RESTful API Set UEFI BIOS Settings

PATCH @ /rest/v1/systems/1/bios/settings

```
form-data x-www-form-urlencoded raw binary JSON (application/json) ▼

1 [{"AdminName": "Samer"}]
```

Response in Body:

UEFI Deployment solution on HP ProLiant Servers

Sample HPREST config script

```
# Login to iLO
hprest login https://clientilo.domain.com -u username -p password
# Configure UEFI network settings (Use Auto and DHCP defaults)
hprest set PreBootNetwork=Auto --selector HpBios.
hprest set Dhcpv4=Enabled
# Configure UEFI Shell to start from URL
hprest set UefiShellStartup=Enabled
hprest set UefiShellStartupLocation=NetworkLocation
hprest set UefiShellStartupUrl=http://192.168.1.1/deploy/startup.nsh
# Set one-time-boot to Shell
hprest set Boot/BootSourceOverrideEnabled=Once --selector ComputerSystem.
hprest set Boot/BootSourceOverrideTarget=UefiShell
# Save and reboot server
hprest commit --reboot=ON
```

Sample startup.nsh


```
# Create RAM Disk

ramdisk -c -s 512 -v MYRAMDISK -t F32
FS0:

# Download provisioning OS files

webclient -g http://192.168.1.1/deploy/efilinux.efi
webclient -g http://192.168.1.1/deploy/deploy.kernel
webclient -g http://192.168.1.1/deploy/deploy.ramdisk

# Start provisioning OS
efilinux.efi -f deploy.kernel initrd=deploy.ramdisk
```

References

- UEFI 2.5 and ACPI 6.0 Specifications
 - http://www.uefi.org/specs/
- Redfish Specification
 - http://www.redfishspecification.org/
- UEFI on HP ProLiant Servers
 - http://hp.com/go/proliant/uefi
- Redfish-python github module https://github.com/devananda/python-redfish

Thanks for attending the UEFI Spring Plugfest 2015

For more information on the Unified EFI Forum and UEFI Specifications, visit http://www.uefi.org

presented by

