W4995 Applied Machine Learning

Word Embeddings

04/10/17

Andreas Müller

Beyond Bags of Words

Limitations of bag of words:

- Semantics of words not captured
- Synonymous words not represented
- Very distributed representation of documents

Last Time

- Latent Semantic Analysis
- Non-negative Matrix Factorization
- Latent Dirichlet Allocation
- All embed documents into a continuous, corpusspecific space.
- Today: Embed words in a "general" space.

Idea

- Unsupervised extraction of semantics using large corpus (wikipedia etc)
- Input: one-hot representation of word (as in BoW).
- Use auxiliary task to learn continuous representation.

Skip-Gram models

- Given a word, predict surrounding word
- Supervised task, each document yields many examples
- Not interested in performance for this task, just want to learn representations.

["What is my purpose?" "You pass the butter."]

Using context windows of size 1 (in practice 5 or 10):

word	context
"is"	["what", "my"]
"my"	["is", "purpose"]
"pass"	["you", "the"]
"the"	["pass", "butter"]

Softmax Training

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

Output weights $p(w_O|w_I) = \frac{\exp\left(\overrightarrow{v_{w_O}}^{\top} v_{w_I}\right)^{\top} \text{Word embedding}}{\sum_{w=1}^{W} \exp\left(v_w^{\prime} {}^{\top} v_{w_I}\right)}$

Normalize over whole vocabulary! [We want to do stochastic gradient descent / minibatch learning] Monte-Carlo estimate: use some "noise words"

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

Implementations

- Gensim
- Word2vec
- Tensorflow
- For small applications don't train yourself

Gensim – topic models for humans

- Multiple LDA implementations
- Wrappers for Mallet and vopal wabbit
- Tools for analyzing topic models
- No supervised learning
- Uses list-of-tuples instead of sparse matrices to store documents.

Introduction to gensim

```
docs = ["What is my purpose", "You bring butter"]
texts = [[token for token in doc.lower().split()] for doc in docs]
print(texts)

[['what', 'is', 'my', 'purpose'], ['you', 'bring', 'butter']]

from gensim import corpora
dictionary = corpora.Dictionary(texts)
print(dictionary)

Dictionary(7 unique tokens: ['you', 'bring', 'butter', 'what', 'is']...)

new_doc = "what butter"
dictionary.doc2bow(new_doc.lower().split())

[(0, 1), (4, 1)]

corpus = [dictionary.doc2bow(text) for text in texts]
corpus

[[(0, 1), (1, 1), (2, 1), (3, 1)], [(4, 1), (5, 1), (6, 1)]]
```

Use NLTK or spacy or a regexp for tokenization in real applications. This method here doesn't even handle punctuation.

In gensim, a document is represented as list of tuples (index, frequency), corpus is a list of these.

Converting to/from sparse matrix import gensim corpus [[(0, 1), (1, 1), (2, 1), (3, 1)], [(4, 1), (5, 1), (6, 1)]]gensim.matutils.corpus2csc(corpus) <7x2 sparse matrix of type '<class 'numpy.float64'>' Transposed! with 7 stored elements in Compressed Sparse Column format> X = CountVectorizer().fit transform(docs) <2x7 sparse matrix of type '<class 'numpy.int64'>' with 7 stored elements in Compressed Sparse Row format> sparse_corpus = gensim.matutils.Sparse2Corpus(X.T) print(sparse corpus) print(list(sparse_corpus)) <gensim.matutils.Sparse2Corpus object at 0x7faf015e3e48> [[(4, 1), (3, 1), (2, 1), (5, 1)], [(1, 1), (0, 1), (6, 1)]]

most transformations is gensim are lazy: They yield a generator (like Sparse2Corpus) which can be converted to a list.

Corpus Transformations

```
tfidf = gensim.models.TfidfModel(corpus)
tfidf[corpus[0]]
[(0, 0.5), (1, 0.5), (2, 0.5), (3, 0.5)]

print(tfidf[corpus])
print(list(tfidf[corpus]))

<gensim.interfaces.TransformedCorpus object at 0x7faf015e3ef0>
[[(0, 0.5), (1, 0.5), (2, 0.5), (3, 0.5)], [(4, 0.5773502691896258), (5, 0.5773502691896258), (6, 0.5773502691896258)]]
```

Word2Vec in Gensim

```
from gensim import models
w = models.KeyedVectors.load_word2vec_format(
   '../GoogleNews-vectors-negative300.bin', binary=True)

w['queen'].shape
(300,)
w.syn0.shape
(3000000, 300)
```

Prepare document

This is a silly way to tokenize the input and using only words that appear in the vocabulary used in the pretrained model.

Represent doc by average

X_train = np.vstack([np.mean(w[doc], axis=0) for doc in docs])

X_train.shape

(18750, 300)

docs_val = vect_w2v.inverse_transform(vect_w2v.transform(text_val))
X_val = np.vstack([np.mean(w[doc], axis=0) for doc in docs_val])

lr = LogisticRegression(C=100).fit(X_train, y_train_sub)
lr.score(X_train, y_train_sub)

0.8676266666666666

lr.score(X_val, y_val)

0.85711999999999999

Analogues and Relationships

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

Answer "King is to Kings as Queen is to ?": Find closest vector to vec("Queen") + (vect("Kings") - vec("King"))

http://www.aclweb.org/anthology/N13-1090

Examples with Gensim

```
w.most_similar(positive=['woman', 'king'], negative=['man'], topn=3)

[('queen', 0.7118192911148071),
    ('monarch', 0.6189674139022827),
    ('princess', 0.5902431607246399)]

w.most_similar(positive=['woman', 'he'], negative=['man'], topn=3)

[('she', 0.8492251634597778),
    ('She', 0.6329933404922485),
    ('her', 0.6029669046401978)]

w.most_similar(positive=['Germany', 'pizza'], negative=['Italy'], topn=3)

[('bratwurst', 0.5436394810676575),
    ('Domino_pizza', 0.5133179426193237),
    ('donuts', 0.5121968984603882)]
```

Input	Result Produced
Chicago: Illinois: : Houston	Texas
Chicago: Illinois:: Philadelphia	Pennsylvania
Chicago: Illinois:: Phoenix	Arizona
Chicago: Illinois: : Dallas	Texas
Chicago: Illinois:: Jacksonville	Florida
Chicago: Illinois: : Indianapolis	Indiana
Chicago: Illinois: : Austin	Texas
Chicago: Illinois: : Detroit	Michigan
Chicago: Illinois:: Memphis	Tennessee
Chicago: Illinois:: Boston	Massachusetts

.

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

 $\label{eq:chang2} Tolga \ Bolukbasi^1, \ Kai-Wei \ Chang^2, \ James \ Zou^2, \ Venkatesh \ Saligrama^{1,2}, \ Adam \ Kalai^2 \\ {}^1Boston \ University, \ 8 \ Saint \ Mary's \ Street, \ Boston, \ MA \\ {}^2Microsoft \ Research \ New \ England, \ 1 \ Memorial \ Drive, \ Cambridge, \ MA \\ tolgab@bu.edu, \ kw@kwchang.net, \ jamesyzou@gmail.com, \ srv@bu.edu, \ adam.kalai@microsoft.com \\ Tolgab@bu.edu, \ kw@kwchang.net, \ jamesyzou@gmail.com, \ srv@bu.edu, \ adam.kalai@microsoft.com \\ Tolgab@bu.edu, \ bu.edu, \ bu.$

$$\overrightarrow{\operatorname{man}} - \overrightarrow{\operatorname{woman}} \approx \overrightarrow{\operatorname{king}} - \overrightarrow{\operatorname{queen}}$$

 $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$.

Going along he-she direction:

Gender stereotype she-he analogies.

housewife-shopkeeper sewing-carpentry register-nurse-physician interior designer-architect softball-baseball nurse-surgeon blond-burly feminism-conservatism cosmetics-pharmaceuticals giggle-chuckle vocalist-guitarist petite-lanky sassy-snappy diva-superstar charming-affable hairdresser-barber volleyball-football cupcakes-pizzas

Gender appropriate she-he analogies.

queen-king sister-brother mother-father waitress-waiter ovarian cancer-prostate cancer convent-monastery

Add a vector for each paragraph / document, also randomly initialized.

To infer for new paragraph: keep weights fixed, do stochastic gradient descent on the representation D, sampling context examples from this paragraph.

Doc2Vec with gensim

```
def read corpus(text, tokens_only=False):
    for I, line in enumerate(text):
        if tokens_only:
            yield_gensim.utils.simple_preprocess(line)
        else:
            # For training data, add tags
            yield_gensim.models.doc2vec.TaggedDocument(gensim.utils.simple_preprocess(line), [i])

train_corpus = list(read_corpus(text_train_sub))
test_corpus = list(read_corpus(text_val, tokens_only=True))

model = gensim.models.doc2vec.Doc2Vec(size=50, min_count=2, iter=55)
model.build_vocab(train_corpus)

model.train(train_corpus, total_examples=model.corpus_count)
```

Encoding using doc2vec

```
X_train = np.vstack(vectors)
```

```
X_train.shape
```

(18750, 50)

```
X_test = np.vstack(test_vectors)
```

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=100).fit(X_train, y_train_sub)

lr.score(X_train, y_train_sub)

0.817386666666666671

lr.score(X_val, y_val)

0.803200000000000003
```

Not working well here. Either not enough training data, sgd didn't converge yet, or too low dimension.

GloVe: Global Vectors for Word Representation

- https://nlp.stanford.edu/projects/glove/
- Co-occurence not prediction

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2 \,,$$

$$f(x) = \begin{cases} (x/x_{\text{max}})^{\alpha} & \text{if } x < x_{\text{max}} \\ 1 & \text{otherwise} \end{cases}.$$

Here X_ij is the coocurrance count matrix, counting how often word I and j appear in the same context – say a 5 word window.

We are learning a factorization of log(X_ij) into w_i and ~w_j, where w_i are the word-vectors we want to extract.

Very infrequent word-pairs are less important to get right, and are down-weighted using f(X_ij).

Word analogies

Model	Dim.	Size	Sem.	Syn.	Tot.
ivLBL	100	1.5B	55.9	50.1	53.2
HPCA	100	1.6B	4.2	16.4	10.8
GloVe	100	1.6B	<u>67.5</u>	<u>54.3</u>	60.3
SG	300	1B	61	61	61
CBOW	300	1.6B	16.1	52.6	36.1
vLBL	300	1.5B	54.2	64.8	60.0
ivLBL	300	1.5B	65.2	63.0	64.0
GloVe	300	1.6B	80.8	61.5	70.3
SVD	300	6B	6.3	8.1	7.3
SVD-S	300	6B	36.7	46.6	42.1
SVD-L	300	6B	56.6	63.0	60.1
CBOW [†]	300	6B	63.6	67.4	65.7
SG [†]	300	6B	73.0	66.0	69.1
GloVe	300	6B	77.4	67.0	71.7
CBOW	1000	6B	57.3	68.9	63.7
SG	1000	6B	66.1	65.1	65.6
SVD-L	300	42B	38.4	58.2	49.2
GloVe	300	42B	81.9	<u>69.3</u>	75.0

https://nlp.stanford.edu/pubs/glove.pdf

Comparison of CBOW, SGD, skip-gram and Glove on the semantic (ie. state → capital) and syntactic (ie singular → plural) word analogy tasks