

Laborprotokoll

Studiengang: Informations- und Elektrotechnik, Ba					
Laborpraktikum: Grundlagen der Elektrotechnik II					
Versuchsbezeichnung: Frequenzanalyse periodischer Signale					
Datum: 28.05.2019					
Raum: Haus 16					
Versuchsbetreuer: Prof. DrIng. Ar	nsgar Wego				
Teilnehmer:					
Name, Vorname (Blockschrift)	Matrikelnummer	Versuchsgruppe			
Grünert, Richard	289427	Gruppe 1			
Protokollführer (Unterschrift): Raned					
(Wird vom Betreuer ausgefüllt) Abgabedatum:					
Bemerkungen:					
Bestätigung:					

Grundlagen der Elektrotechnik II

Frequenzanalyse periodischer Signale

Studien- und Versuchsaufgaben

Autor: Richard Grünert 3.6.2019

1 Vorbereitungsaufgaben

1.1

$$\underline{X}_{\nu} = \frac{1}{T_1} \cdot \int_{T_1} x(t) \cdot e^{-(j\nu \cdot \omega_1 t)} dt$$

$$= \frac{1}{T_1} \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} X_m \cdot e^{-(j\nu \cdot \omega_1 t)} dt$$

$$= -\frac{X_m}{T_1 \cdot j\nu \omega_1} \cdot \left[e^{-(j\nu \cdot \omega_1 t)} \right]_{-\frac{\tau}{2}}^{\frac{\tau}{2}}$$

$$= -\frac{X_m}{T_1 \cdot j\nu \omega_1} \cdot \left(e^{-j\nu \cdot \omega_1 \frac{\tau}{2}} - e^{j\nu \cdot \omega_1 \frac{\tau}{2}} \right)$$

 $\omega_1 = \frac{2\pi}{T_1}$ und Erweiterung mit $\frac{-1}{-1}$:

$$\underline{X}_{\nu} = \frac{X_m}{2j\pi\nu} \cdot \left(e^{j\nu \cdot \pi \frac{\tau}{T_1}} - e^{-j\nu \cdot \pi \frac{\tau}{T_1}} \right)$$
$$= \frac{X_m}{\pi\nu} \cdot \frac{\left(e^{j\nu \cdot \pi \frac{\tau}{T_1}} - e^{-j\nu \cdot \pi \frac{\tau}{T_1}} \right)}{2j}$$

mit
$$\frac{\left(e^{jx} - e^{-jx}\right)}{2j} = \sin(x)$$
 und $\frac{\tau}{T_1} = D$:
$$\underline{X}_{\nu} = \frac{X_m}{\pi\nu} \cdot \sin(\pi\nu D)$$

Erweitert man wieder mit $\frac{D}{D}$ erhält man das Bild einer Spaltfunktion $si(x) = \frac{\sin x}{x}$:

$$\underline{X}_{\nu} = D \cdot X_m \cdot \frac{\sin(\pi \nu D)}{\pi \nu D} = D \cdot X_m \cdot \sin(\pi \nu D)$$

Als reele Reihe:

$$x(t) = X_0 + \sum_{\nu=1}^{\infty} \hat{X}_{\nu} \cos(\nu \cdot \omega_1 t + \phi_{\nu})$$
$$X_0 = \frac{1}{T_1} \cdot \int_{T_1} x(t) dt = \frac{X_m}{2}$$

Aus der komplexen Reihendarstellung folgt

$$b_{\nu} = -2 \cdot \operatorname{Im}(\underline{X}_{\nu}) = 0$$

$$\hat{X}_{\nu} = \sqrt{a_{\nu}^{2} + b_{\nu}^{2}} = 2 \cdot |\underline{X}_{\nu}| \Longrightarrow a_{\nu} = 2 \cdot |D \cdot X_{m} \cdot \operatorname{si}(\nu \pi D)|$$

 ϕ_{ν} hängt nur vom Wert von $\mathrm{si}(\nu\pi D)$ ab, da \underline{X}_{ν} rein reell ist:

$$\phi_{\nu} = \begin{cases} 0 & ; \nu = \frac{4k+1}{2D} \\ \pi & ; \nu = \frac{4k-1}{2D} \\ \text{n.d.} & ; \text{sonst} \end{cases}$$

Somit ist

$$x(t) = \frac{X_m}{2} + \sum_{\nu=1}^{\infty} 2DX_m \cdot |\sin(\pi\nu D)| \cdot \cos(\nu \cdot \frac{2\pi}{T_1} \cdot t + \phi_{\nu})$$

Reihenentwicklung von x(t) bis zur 16. Oberwelle

D=0.5

Effektivwert:

$$X_{\text{eff}} = \sqrt{\frac{1}{T_1} \cdot \int_{T_1} x^2(t) \, dt} = \sqrt{\frac{X_m^2}{T_1} \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} 1 \, dt}$$
$$X_{\text{eff}} = X_m \cdot \sqrt{\frac{\tau}{T_1}} = X_m \cdot \sqrt{D}$$

	$O = \frac{1}{2}, X_{\text{eff}}$	$r = \frac{X_m}{\sqrt{2}}$		D	$=\frac{1}{4}, X_{\text{eff}}$	$=\frac{X_m}{2}$	D	$=\frac{1}{8}, X_{\text{eff}}=\frac{1}{8}$	$\frac{X_m}{\sqrt{8}}$
ν	\underline{X}_{ν}	$\hat{X}_{ u}$	$\phi_{ u}$	ν	$\hat{X}_{ u}$	$\phi_{ u}$	ν	$\hat{X}_{ u}$	$\phi_{ u}$
1	$\frac{1}{\pi}X_m$	$\frac{2}{\pi}X_m$	0	1	$\frac{\sqrt{2}}{\pi}X_m$	0	1	$\frac{\sqrt{2-\sqrt{2}}}{\pi}X_m$	0
2	_	_	_	2	$\frac{1}{\pi}X_m$	0	2	$\frac{\sqrt{2}}{2\pi}X_m$	
3	$-\frac{1}{3\pi}X_m$	$\frac{2}{3\pi}X_m$	π	3	$\frac{\sqrt{2}}{3\pi}X_m$	0	3	$\frac{\sqrt{2+\sqrt{2}}}{3\pi}X_m$	0
4	_	_	_	4	_	_	4	$\frac{1}{2}X_m$	
5	$\frac{1}{5\pi}X_m$	$\frac{2}{5\pi}X_m$	0	5	$\frac{\sqrt{2}}{5\pi}X_m$	π	5	$\frac{\sqrt{2+\sqrt{2}}}{5\pi}X_m$	0
6	_	_	_	6	$\frac{1}{3\pi}X_m$	π		$\frac{\sqrt{2}}{16\pi}X_m$	
7	$-\frac{1}{7\pi}X_m$	$\frac{2}{7\pi}X_m$	π	7	$\frac{\sqrt{2}}{7\pi}X_m$	π	7	$\frac{\sqrt{2-\sqrt{2}}}{7\pi}X_m$	0
8	_	_	_	8	_	_		_	_
9	$\frac{1}{9\pi}X_m$	$\frac{2}{9\pi}X_m$	0	9	$\frac{\sqrt{2}}{9\pi}X_m$	0	9	$\frac{\sqrt{2-\sqrt{2}}}{9\pi}X_m$	π
10	_	_	_	10	$\frac{1}{5\pi}X_m$	0		$\frac{\sqrt{2}}{5\pi}X_m$	π
11	$-\frac{1}{11\pi}X_m$	$\frac{2}{11\pi}X_m$	π	11	$\frac{\sqrt{2}}{11\pi}X_m$	0	11	$\frac{\sqrt{2+\sqrt{2}}}{11\pi}X_m$	π
12	_	_	_	12	_	_	12	$\frac{1}{6\pi}X_m$	π
13	$\frac{1}{13\pi}X_m$	$\frac{2}{13\pi}X_m$	0	13	$\frac{\sqrt{2}}{13\pi}X_m$	π	13	$\frac{\sqrt{2+\sqrt{2}}}{13\pi}X_m$	π
14	_	_	_	14	$\frac{1}{7\pi}X_m$	π	14	$\frac{\sqrt{2}}{7\pi}X_m$	π
15	$-\frac{1}{15\pi}X_m$	$\frac{2}{15\pi}X_m$	π	15	$\frac{\sqrt{2}}{15\pi}X_m$	π	15	$\frac{\sqrt{2-\sqrt{2}}}{15\pi}X_m$	π
16	_	_	_	16	_	_	16	_	_

1.2

$$\begin{split} \underline{X}_{\nu} &= \frac{1}{T_{1}} \cdot \int_{-\frac{T_{1}}{2}}^{\frac{T_{1}}{2}} X_{m} \cos\left(\frac{\pi}{T_{1}}t\right) \cdot e^{-(j\nu\frac{\pi}{T_{1}}t)} \, \mathrm{d}t \\ &= \frac{X_{m}}{T_{1}} \cdot \left[\frac{e^{-(j\nu\frac{\pi}{T_{1}}t)}}{(-j\nu\frac{\pi}{T_{1}})^{2} + (\frac{\pi}{T_{1}})^{2}} \cdot \left((-j\nu\frac{\pi}{T_{1}}) \cdot \cos\left(\frac{\pi}{T_{1}}t\right) + \frac{\pi}{T_{1}} \cdot \sin\left(\frac{\pi}{T_{1}}t\right) \right) \right]_{-\frac{T_{1}}{2}}^{\frac{T_{1}}{2}} \\ &= \frac{X_{m}}{\pi(1 - 4\nu^{2})} \cdot \left[e^{-j\nu\pi} \cdot (-j2\nu \cdot \cos\left(\frac{\pi}{2}\right) + 1) - e^{j\nu\pi} \cdot (-j2\nu \cdot \cos\left(-\frac{\pi}{2}\right) - 1) \right] \\ &= \frac{X_{m}}{\pi(1 - 4\nu^{2})} \cdot (e^{-j\nu\pi} + e^{j\nu\pi}) = 2\frac{X_{m}}{\pi(1 - 4\nu^{2})} \cdot \left(\frac{e^{j\nu\pi} + e^{-j\nu\pi}}{2} \right) \end{split}$$

$$\underline{X}_{\nu} = \frac{2X_m}{\pi(1 - 4\nu^2)} \cdot \cos\left(\nu\pi\right)$$

$$\hat{X}_{\nu} = 2 \cdot \mid \underline{X}_{\nu} \mid = \frac{4 \cdot X_m}{\pi (1 - 4\nu^2)} \cdot \cos(\nu \pi)$$

Mittelwert:

$$X_{0} = \frac{1}{T_{1}} \cdot \int_{-\frac{T_{1}}{2}}^{\frac{T_{1}}{2}} X_{m} \cdot \cos\left(\frac{\pi}{T_{1}}t\right) dt = \frac{X_{m}}{\pi} \cdot \left[\sin\left(\frac{\pi}{T_{1}}t\right)\right]_{-\frac{T_{1}}{2}}^{\frac{T_{1}}{2}}$$
$$X_{0} = \frac{2X_{m}}{\pi}$$

Effektivwert:

$$X_{\text{eff}} = \sqrt{\frac{X_m^2}{T_1} \cdot \int_{-\frac{T_1}{2}}^{\frac{T_1}{2}} (\cos(\frac{\pi}{T_1}t))^2 dt}$$

$$X_{\text{eff}} = \sqrt{\frac{X_m^2}{T_1} \cdot \left[\frac{t}{2} + \frac{\sin(\frac{2\pi}{T_1})t}{4 \cdot \frac{\pi}{T_1}}\right]_{-\frac{T_1}{2}}^{\frac{T_1}{2}}}$$

$$X_{\text{eff}} = \frac{X_m}{\sqrt{2}}$$

D	$=\frac{1}{4}, X_{\text{eff}} =$	$\frac{X_m}{2}$
ν	$\hat{X}_{ u}$	$\phi_{ u}$
1	$\frac{4}{3\pi}X_m$	0
2	$\frac{4}{15\pi}X_m$	π
3	$\frac{4}{35\pi}X_m$	0
4	$\frac{4}{63\pi}X_m$	π
5	$\frac{4}{99\pi}X_m$	0
6	$\frac{4}{143\pi}X_m$	π
7	$\frac{4}{195\pi}X_m$	0
8	$\frac{4}{255\pi}X_m$	π
9	$\frac{4}{323\pi}X_m$	0
10	$\frac{4}{399\pi}X_m$	π
11	$\frac{4}{483\pi}X_m$	0
12	$\frac{4}{575\pi}X_m$	π
13	$\frac{4}{675\pi}X_m$	0
14	$\frac{4}{783\pi}X_m$	π
15	$\frac{4}{899\pi}X_m$	0

1.3

$$\underline{U}_2 = \underline{U}_0 \cdot \frac{\frac{1}{j\omega C + \frac{1}{R_2}}}{R_1 + \frac{1}{j\omega C + \frac{1}{R_2}}} = \frac{\underline{U}_0 \cdot R_2}{R_1 + R_2 + j\omega C R_1 R_2}$$

Betrag:

$$\hat{U}_2 = \frac{\hat{U}_0 \cdot R_2}{\sqrt{(R_1 + R_2)^2 + (\omega C R_1 R_2)^2}}$$

Phase:

$$\phi_{\underline{U}_2} = \phi_{\underline{U}_0} - \arctan \frac{\omega C R_1 R_2}{R_1 + R_2}$$

Mittelwert:

$$\underline{U}_{0_{\nu}}(\nu=0) = \hat{U}_{0_{\nu}}(\nu=0) \cdot \frac{R_2}{R_1 + R_2} = \frac{2 \cdot 1 \text{V} \cdot 1 \text{k}\Omega}{\pi \cdot (1 \text{k}\Omega + 400 \text{k}\Omega)} \approx 0.424 \text{ V}$$

$\overline{\nu}$	$\underline{U}_{0_{\nu}}/\mathrm{V}$	$\hat{U}_{0_{\nu}}/\mathrm{V}$	ϕ	$\hat{U}_{2\nu}/\mathrm{V}$	$\phi_{U_{2\nu}}/^{\circ}$	$U_{2_{ ext{eff}}}/ ext{V}$
1	0.2122	-0.4244	0	0.1219	-60.88	0.0862
2	-0.4244	0.08488	π	0.0131	105.56	0.0093
3	0.0182	0.03638	0	0.0038	-79.48	0.0027
4	-0.0101	0.02021	π	0.0016	97.93	0.0011
5	0.0064	0.01286	0	0.0008	-83.64	0.0006
6	-0.0045	0.00890	π	0.0005	95.3	0.0004
7	0.0033	0.00652	0	0.0003	-85.45	0.0002
8	-0.0025	0.00499	π	0.0002	93.19	0.0001
9	0.0020	0.00394	0	-	-86.45	-
10	-0.0016	0.00319	π	-	93.19	-
11	0.0013	0.00264	0	-	-87.1	-
12	-0.0011	0.00221	π	-	92.28	-
13	-0.0009	0.00189	0	-	-87.55	-
14	-0.0008	0.00163	π	-	92.28	-
15	0.0007	0.00142	0	-	-87.87	-
16	-0.0006	0.0012	π	-	91.99	-

Effektivwert aus Summe der einzelnen Effektivwerte:

$$U_{2_{\text{eff}}} = \sqrt{U_{2_{\nu}}^2 + \sum_{\nu=1}^{\infty} U_{2_{\text{eff}_{\nu}}}^2} \approx 0.433 \text{ V}$$

2 Versuchsaufgaben

2.1

Messwerte der Aufgabe 3.1 für $T=10~\mu s$:

	$D = \frac{1}{2}, X_{\text{eff}} = ?$					
ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{\nu_{ ext{eff}}}/ ext{mV}$	$f_{ u}/\mathrm{kHz}$			
1	608.112	430	100			
2	-	-	-			
3	208.045	147.11	300			
4	-	-	-			
5	123.546	87.36	500			
6	-	-	-			
7	91.040	64.375	700			
8	-	-	-			
9	68.059	48.125	900			
10	-	-	-			
11	57.544	40.69	1100			
12	-	-	-			
13	48.691	34.43	1300			
14	-	-	-			
15	41.606	29.42	1500			

D	$D = \frac{1}{4}, X_{\text{eff}} = 500 \text{ mV}$					
ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{\nu_{ ext{eff}}}/ ext{mV}$	$f_{ u}/{ m kHz}$			
1	445.477	315	100			
2	311.070	219.96	200			
3	143.401	101.4	300			
4	-	-	-			
5	88.388	62.5	500			
6	105.217	74.4	600			
7	64.488	45.6	700			
8	-	-	-			
9	48.225	34.1	900			
10	60.670	42.9	1000			
11	38.891	27.5	1100			
12	-	-	-			
13	34.083	24.1	1300			
14	45.255	32	1400			
15	30.123	21.3	1500			

D	$D = \frac{1}{8}, X_{\text{eff}} = 343 \text{ mV}$				
ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{\nu_{ ext{eff}}}/ ext{mV}$	$f_{ u}/{ m kHz}$		
1	244.942	173.2	100		
2	222.965	157.66	200		
3	189.787	134.2	300		
4	154.291	109.1	400		
5	116.673	82.5	500		
6	75.095	53.1	600		
7	36.204	25.6	700		
8	-	-	-		
9	27.436	19.4	900		
10	43.416	30.7	1000		
11	51.760	36.6	1100		
12	52.609	37.2	1200		
13	45.962	32.5	1300		
14	33.234	23.5	1400		
15	16.829	11.9	1500		

Messwerte der Aufgabe 3.1 für $T=1\,$ µs:

D	$=\frac{1}{2}, X_{\text{eff}}$	= 692 mV		D	$=\frac{1}{4}, X_{\text{eff}}:$	= 489 mV	
ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{\nu_{ ext{eff}}}/ ext{mV}$	$f_{ u}/{ m MHz}$	ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{\nu_{ ext{eff}}}/ ext{mV}$	$f_{ u}/{ m MHz}$
1	627.911	444	1	1	445.477	315	1
2	-	-	-	2	308.864	218.4	2
3	203.647	144	3	3	143.401	101.4	3
4	-	-	-	4	-	-	-
5	119.077	84.2	5	5	87.540	61.9	5
6	-	-	-	6	103.379	73.1	6
7	85.984	60.8	7	7	106.915	75.6	7
8	-	-	-	8	-	-	-
9	63.922	45.2	9	9	47.800	33.8	9
10	-	-	-	10	59.256	41.9	10
11	53.599	37.9	11	11	38.467	27.2	11
12	-	-	-	12	-	-	-
13	46.528	32.9	13	13	32.244	22.8	13
14	-	-	-	14	43.416	30.7	14
15	40.305	28.5	15	15	29.274	20.7	15

D	$D = \frac{1}{10}, X_{\text{eff}} = 305 \text{ mV}$				
ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{\nu_{ ext{eff}}}/ ext{mV}$	$f_{ u}/{ m MHz}$		
1	193.606	136.9	1		
2	180.312	127.5	2		
3	161.786	114.4	3		
4	143.260	101.3	4		
5	122.895	86.9	5		
6	98.995	70	6		
7	73.398	51.9	7		
8	46.810	33.1	8		
9	22.062	15.6	9		
10	-	-	-		
11	15.415	10.9	11		
12	28.426	20.1	12		
13	37.052	26.2	13		
14	40.871	28.9	14		
15	39.881	28.2	15		

2.2

X	$_{\rm eff} = 698 \mathrm{m}^3$	$V, X_0 = 627 \text{ mV}$	
ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{ u_{ ext{eff}}}/ ext{mV}$	$f_ u/{ m kHz}$
1	406.021	287.1	1
2	85.843	60.7	2
3	39.881	28.2	3
4	23.617	16.7	4
5	17.395	12.3	5
6	13.011	9.2	6
7	9.475	6.7	7
8	8.202	5.8	8
9	6.930	4.9	9
10	5.940	4.2	10
11	4.808	3.4	11
12	4.384	3.1	12
13	4.243	3	13
14	3.536	2.5	14
15	3.253	2.3	15
16	2.828	2	16

Messwerte der Aufgabe 3.2

2.3

L	$V_{2_{\text{eff}}} = 425 \text{ m}$	$uV, U_0 = 416 \text{ mV}$	7
ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{\nu_{ ext{eff}}}/ ext{mV}$	$f_{ u}/{ m kHz}$
1	117.238	82.9	1
2	12.445	8.8	2
3	3.677	2.6	3
4	1.485	1.05	4
5	0.813	0.575	5
6	0.443	0.313	6
7	0.252	0.178	7
8	0.208	0.147	8

Messwerte der Aufgabe 3.3

