1. Data

I have chosen a dataset from <u>Kaggle.com about air pollution</u> which contains Air quality index (AQI) values which means number of pollutants from cities across the world. I have chosen a column called "Ozone AQI value". I chose 190 values just randomly selecting cells.

2. Hypothesis

In kaggle there were histograms of each value and it looked normally distributed. The significance level would be 2.5%.

3. Measures of Location, Dispersion and Skewness

Mean	35.616
Median	37.000
St.dev	13.509
Skewness	-0.307

I have calculated skewness and it shows a minus number which means it is negatively skewed.

I believe that this data is normally distributed because it is close to zero.

4. Histogram

The bucket size is 5.15.

According to the histogram the bars do not fully look symmetric, somewhere there are gaps, somewhere it is small. I would say that they are moderately symmetric and this data could be normally distributed.

Left		Right	Frequency	Percentage
	22.107	49.125	135	0.7105
	8.598	62.634	176	0.9263
	-4.911	76.143	190	1.0000

This percentage that I obtained is slightly higher but it is close to the original percentages. So, I believe that based on that it might be normally distributed.

5. Chi-squared test

8.15 13.3		Observed	standardized inte	ervals (z-scores)			Expected		
	lcb	ucb	frequency	lcb	ucb	P(Z <lcb)< th=""><th>P(Z<ucb)< th=""><th>frequency</th><th></th></ucb)<></th></lcb)<>	P(Z <ucb)< th=""><th>frequency</th><th></th></ucb)<>	frequency	
	3	8.15	4		-2.033	0.000	0.021	3.995	
	8.15	13.31	5	-2.033	-1.651	0.021	0.049	5.385	
	13.31	18.46	9	-1.651	-1.270	0.049	0.102	10.008	
	18.46	23.62	17	-1.270	-0.888	0.102	0.187	16.193	
	23.62	28.77	24	-0.888	-0.507	0.187	0.306	22.573	
	28.77	33.92	19	-0.507	-0.126	0.306	0.450	27.320	
	33.92	39.08	38	-0.126	0.256	0.450	0.601	28.720	
	39.08	44.23	35	0.256	0.638	0.601	0.738	26.075	
	44.23	49.38	17	0.638	1.019	0.738	0.846	20.451	
	49.38	54.54	6	1.019	1.401	0.846	0.919	13.964	
	54.54	59.69	5	1.401	1.782	0.919	0.963	8.214	
	59.69	64.85	4	1.782	2.164	0.963	0.985	4.207	
	64.85	70	7	2.164		0.985	1.000	2.894	
			190					190	

After combining cells:

О	Е	(O-E)^2/E
9	9.380	0.015
9	10.008	0.102
17	16.193	0.040
24	22.573	0.090
19	27.320	2.534
38	28.720	2.998
35	26.075	3.055
17	20.451	0.582
6	13.964	4.542
5	8.214	1.258
11	7.101	2.141
190	190.000	17.357

6. Conclusion

2.5% 17.53 R33 <q37 accept="" hypothesis<="" th="" the=""><th>Sig.level</th><th>Critical Value</th><th></th><th></th><th></th></q37>	Sig.level	Critical Value			
	2.5%	17.53	R33 <q37< th=""><th colspan="2">Accept the hypothesis</th></q37<>	Accept the hypothesis	

Degree of freedom is 8. So according to the Chi-square distribution table I found the intersection, which showed that Critical Value is 17.53. I accept the hypothesis because the test statistic was slightly lower than Critical Value (17.357<17.53).