FCM32F103

FCM32H103

规格书

Ver 0.11

适用型号	适用芯片版本	说明
F0103x8/xB	С	
H103x8/xB		

High performance ARM®-based 32-bit MCU, with up to 128KB Flash, USB FS 2.0, CAN, 7 timers, ADC & 9 comm. interfaces, 1.8-5.5V

特点

- ARM® 32 位 Cortex-M4 CPU,最高频率 96 MHz
- 存储
 - ♦ 64/128 KB FLASH 存储器
 - ◆ FLASH 接口带 FLASH Turbo 模块,大幅提高程序从 FLASH 运行时的性能(仅 H 系列)
 - ◆ FLASH 工作速度为32MHz,可按此设置等待周期(仅H系列)
 - ♦ 32 KB SRAM
- CRC 计算单元
- 复位和电源管理
 - ◆ 数字和 I/O 供电: VDD = 1.8 5.5V
 - ◆ 模拟供申: VDDA = 1.8 5.5V
 - ◆ 上电/掉电(POR/PDR)复位
 - ◆ 可编程电压检测(PVD)
 - ◆ 低功耗模式:睡眠、停止、待机
- 时钟管理
 - ◆ 4-16 MHz 晶体振荡器
 - ◆ 32 KHz 振荡器用于带校准的 RTC
 - ◆ 内部 8 MHz RC 振荡器
 - ◆ 内部 40 KHz RC 振荡器
 - ◆ PLL 用于 CPU 时钟
- 最多 80 个快速 I/O
 - ◆ 全部可映射至外部中断向量
 - ◆ 大部分可在 3V 供电时容忍外部 5V 电平
- DMA 控制器
 - ◆ 7 通道
 - ◆ 支持外设: TIMER/ADC/SPI/I²C/USART
- 2 个 12 位、1us ADC(最多 10 通道)
 - ◆ 转换范围: 0-5.5 V
 - ◆ 温度传感器
- 7个定时器
 - ◆ 1个16位先进定时器,带死区和刹车功能的马达控制 PWM
 - ◆ 3个16位定时器,最多至4输入IC/OC/OCN,支持正交编码输入
 - ◆ PWM 支持 PLLCLK*2 的输入时钟(仅 H 系列)
 - ◆ 独立看门狗和系统看门狗定时器
 - ◆ SysTick 定时器
- 通讯接口
 - ◆ 2个 I²C 接口, SMBus/PMBus
 - ◆ 3 个 USART (带 ISO7816 接口、LIN、IrDA、modem 控制信号)
 - ◆ 2 个 SPI(48 Mbit/s),支持 4-16 位数据帧,带 I²S 接口
 - **◆ CAN**接口
 - ◆ USB 2.0 全速接口
- 调试模式

- ◆ 2线串行调试(SWD)或4线JTAG
- 96 位唯一 ID
- 封装
 - ♦ LQFP48/64/100
 - ♦ UFQFPN48

目录

1	简介	·		6
2	描述	<u>``</u>		7
3	功能	ዸ概述		9
	3.1	ARM®	Cortex-M4 内核	9
	3.2	存储		9
	3.3	Boot 村	美式	9
	3.4	循环冗	C余检测计算单元(CRC)	g
	3.5	电源管]理	10
	3	3.5.1	电源供电	10
	3	3.5.2	电源监测	10
	3	3.5.3	稳压器	10
	3	3.5.4	低功耗模式	10
	3.6	时钟		11
	3.7	GPIO		12
	3.8	DMA		13
	3.9	中断利	口事件	13
	3	3.9.1	嵌套向量中断控制器(NVIC)	13
	3	3.9.2	扩展的中断/事件控制器(EXTI)	13
	3.10	ADC		14
	3	3.10.1	温度传感器(TS)	14
	3	3.10.2	内部电压基准(VREFINT)	14
	3.11	定时	 器和看门狗	14
	3	3.11.1	先进定时器 TIM1	15
	3	3.11.2	通用定时器 TIM2/3/4	15
	3	3.11.3	独立看门狗 IWDG	15
	3	3.11.4	系统窗口看门狗 WWDG	15
	3	3.11.5	SysTick 定时器	16
	3.12	实时	†时钟(RTC)和备份寄存器	16
	3.13	I ² C		16
	3.14	USART		16
	3.15	SPI/I ² S		16
	3.16			
	3.17	USB		17
	3.18	SWJ-D	P	17
4				
5				
6	电气			
	6.1	参数	条件	
	(5.1.1	最小/最大值	
		5.1.2	典型值	
		5.1.3	典型曲线	
		5.1.4	负载电容	
	6	5.1.5	引脚输入电压	29

FCM32x103x	DATASHEET
6.1.6	电源供电30
6.1.7	电流消耗测量

		6.1.6	电源供电	30
		6.1.7	电流消耗测量	30
	6.2	绝对:	最大值	30
	6.3	工作	条件	31
		6.3.1	普通工作条件	31
		6.3.2	上电/下电工作条件	31
		6.3.3	内置复位/电源控制	31
		6.3.4	内置参考电压	32
		6.3.5	供电电流	33
		6.3.6	低功耗模式唤醒时间	33
		6.3.7	外部时钟源	33
		6.3.8	内部时钟源特性	34
		6.3.9	PLL 特性	35
		6.3.10	存储特性	35
		6.3.11	EMC 特性	35
		6.3.12	电气敏感特性	36
		6.3.13	I/O 电流注入特性	36
		6.3.14	I/O 端口特性	36
		6.3.15	NRST 引脚特性	38
		6.3.16	ADC 特性	38
		6.3.17	温度传感器特性	39
7	封	虔信息		41
	7.1	LQFP4	48 封装信息	41
	7.2	LQFP64	封装信息	43
	7.3	LQFP100) 封装信息	45
	7.4	UFQFPN	48 封装信息	47
8	器付	牛编码		49
9	版	本历史		50
10		其它		51

1 简介

本规格书提供 FCM32x103 的订购信息及器件电气特性。

有关 ARM® Cortex-M4 核的信息,请参考 Cortex-M4 Technical Reference Manual。

2 描述

FCM32x103 单片机包含可以工作在 96 MHz 的 32 位高性能 ARM Cortex-M4 RISC 核,高速内嵌存储(最多 128 Kbytes FLASH 和 32 Kbytes SRAM),丰富的高性能外设和 I/O。所有型号提供标准通信接口(I²C、SPI/I²S、USART)、USB 全速设备、2 个 12-bit ADC、3 个通用 16-bit 定时器、1 个 16-bit 先进控制 PWM 定时器。

FCM32x103 单片机可以在 1.8~5.5V 电源范围、-40 至 125C 温度范围内工作。综合的节电模式适用于低功耗应用。

FCM32x103 单片机包含多种不同硬封装,从 48 至 100 PIN。根据封装的不同,包含不同的外设。下表提供了 FCM32x103 完整的外设范围。

这些特征使得 FCM32x103 单片机非常适合宽范围应用,例如马达驱动、应用控制和用户接口、手持设备、A/V 接收器和数字电视、PC 外设、游戏周边、GPS 平台、工业应用、PLC、打印机、扫描仪、警报系统、视频连接和 HVAC。

FCM32x103 medium-density device features and peripheral counts

			-		•	1			
Perip	heral	FCM32x	103Cx	FCM32	x103Rx	FCM3	2x103Vx		
Flash(k	(bytes)	64	128	64	128	64	128		
SRAM(I	Kbytes)				<i>32</i>				
Timers	Advanced			1 ((16-bit)				
	control								
	General			3 ((16-bit)				
	purpose								
Comm.	SPI/I2S ⁽¹⁾	2/	2	2	/2		2/2		
interfaces	I2C				2				
	USART	3							
	CAN	1							
	USB	1							
12-bit	t ADC	2				2			
(number o	f channels)	10)			16			
GP	IOs	37	7	5	51		80		
Max. CPU	frequency			9	6 MHz				
Flash	Turbo	Y(H103)							
Operatin	g voltage			1.	8~5.5V		·		
Operating to	emperature			-4	0~125				
Pack	ages	LQFP48		LQF	P64	LQ	FP100		
		UFQFF	PN48						

1. SPI1/2 接口可以工作在 SPI 模式或 I2S 音频模式

3 功能概述

3.1 ARM® Cortex-M4 内核

ARM® Cortex-M4 处理器是适用于嵌入式系统的 32 位内核,它被开发适用于需要 MCU 应用的低引脚数、低功耗、需要快速响应中断以及对计算能力有需求的应用场合。

ARM® Cortex-M4 处理器和 8、16 位器件相比,具有优秀的代码效率和更高的性能。

3.2 存储

该器件具有以下特点:

- 32 KB 内置 SRAM, 和 CPU 相同的时钟运行速度(0 等待周期)
- 非易失存储器(FLASH)分为3部分:
 - 64/128 KB FLASH 存储用于程序和数据
 - System Memory 用于存放 boot 程序以及 UID 等
 - Option Bytes (选项字)

选项字用于 FLASH 写保护(以 4KB 为单位)和整个 FLASH 的读保护,有以下选项:

- Level 0: 无读保护
- Level 1: FLASH 读保护,不能通过调试接口或从 RAM 引导来对 FLASH 读取或写入
- 集成 FLASH Turbo 模块,大幅减少从 FLASH 执行程序所需的等待周期,提高性能
- FLASH 工作速度为 32MHz(全电压范围),可依此设置 FLASH 等待周期(LATENCY)

3.3 Boot 模式

在启动时, boot 引脚和 boot select 选项位用于从以下三种引导模式中选择:

- 从用户 FLASH 引导
- 从系统存储区(System Memory)引导
- 从内置 SRAM 引导

Boot loader 位于 System Memory。

3.4 循环冗余检测计算单元 (CRC)

CRC 计算单元用于从 32 位数据和多项式返回 CRC 结果。

- 完全可编程的多项式及大小(7、8、16、32 位)
- 8、16、32 位数据大小
- 单个 32 位输入/输出数据寄存器
- 输入缓冲以避免在计算时的总线停止
- 32 位数据只需要 4 个 AHB 时钟

- 通用 8 位寄存器可用于临时存储
- 可选的数据取反

3.5 电源管理

3.5.1 电源供电

- VDD = 1.8 5.5V: 外部电源, 供给 I/O 和内部稳压器。通过 VDD 引脚提供。
- VDDA = 1.8 5.5V:外部模拟电源,供给 ADC、复位电路、RC 振荡器和 PLL。VDDA 电压必须总 是>=VDD 电压,并且必须先供电。

3.5.2 电源监测

该器件集成电源上电复位(POR)和电源掉电复位(PDR)电路。

POR/PDR 总是有效,并确保在 1.8V 以上正常操作。MCU 在电源电压低于指定阈值电压(VPOR/PDR)时保持在复位状态,且不需要外部复位电路。

- POR 只监测 VDD 电压。在启动阶段,要求 VDDA 先供电并>=VDD 电压。
- PDR 监测 VDD 和 VDDA 电压。VDDA 电压监测可以通过编程选项字关闭来降低电源消耗。

该器件也集成了可编程电压监测器 (PVD), 通过对 VDD 和 VPVD 阈值电压比较来监测 VDD。当 VDD 低于或高于 VDD 时产生中断。中断服务程序可以产生警告信息和/或使 MCU 进入安全模式。PVD 通过软件使能。

3.5.3 稳压器

稳压器有两种工作模式,且在复位后总是被使能。

- 主模式 (MR) 用于普通操作 (Run)
- 低功耗模式(LPR)可用于 Stop 模式,因为此时电源需求减小

在待机(Standby)模式,稳压器进入低功耗模式,MCU 内核及 SRAM、寄存器停止工作,数据被保持不会丢失。

3.5.4 低功耗模式

FCM32x103 支持三种节电模式,可以根据不同的电源消耗、快速启动时间、唤醒源来选择:

- 睡眠(Sleep)模式
 在 Sleep模式,只有 CPU 被停止。所以外设继续工作,并且可以通过中断/事件唤醒 CPU。
- 停止(Stop)模式 Stop 模式实现了在保持 SRAM 和寄存器内容时非常低的电源消耗。所有 1.5V 区域的时钟都

被停止,PLL、HSI RC 和 HSE 晶振电路被关闭。稳压器可以被置于 MR 或 LPR 模式。
MCU 在 Stop 模式可以通过任意 EVTI 线喷醒。EVTI 源可以是 16 条外部线。BVD 输出。BTC 3

MCU 在 Stop 模式可以通过任意 EXTI 线唤醒。EXTI 源可以是 16 条外部线、PVD 输出、RTC 警报、I²C1、USART1 或 CEC。

I²C1、USART1 和 CEC 可以被配置成允许 HSI RC 振荡器以使其能处理输入数据。如果稳压器在此时被配置成 LPR 模式,它会在时钟提供给外设前先切换至 MR 模式。

待机(Standby)模式

待机模式用来实现最低的电源消耗。内部稳压器被配置成 LPR 模式。PLL、HSI RC 和 HSE 晶振电路也被关闭。SRAM 和寄存器内容不会丢失,I/O 保持在模拟输入状态。

通过外部复位(NRST 引脚)、IWDG 复位、WKUP 引脚上升沿或 RTC 事件,使 MCU 退出 Standby 模式。

Note: RTC、IWDG,和其相应的时钟源在进入 Stop/Standby 模式后不会停止。

3.6 时钟

在 MCU 启动时,内部 RC 8MHz 振荡器被选择 CPU 时钟。外部 4-16MHz 晶体振荡器也可以被选择,并且带时钟故障监测。如果该振荡器监测到故障,系统会自动切换回内部 RC 振荡器。时钟故障时可以产生中断。并且,在该时钟直接或间接用于 PLL 输入时,也可产生中断。

多种预分频器可以用于配置 AHB/APB 时钟。AHB 和 APB 最大时钟频率为 96MHz。

Clock tree

FCM32H103 有以下性能提升:

- ARM Cortex-M4 可以运行在96MHz
- FLASH 接口带 FLASH Turbo 加速模块,大幅提高程序从 FLASH 运行时的性能
- PLLCLK/SYSCLK/AHBCLK/PCLK 最高可运行在96MHz
- USART 最高通讯速率得到提升
- SPI 最高通讯速度得到提升
- TIM1 PWM 可选 PLLCLK*2 作为时钟(此时 PCLK 需为 PLLCLK),最高可至 192MHz

3.7 GPIO

每一个 GPIO 可以被软件配置成输出(推挽或开路)、输入(带/不带上、下拉)或外设附加功能。 大多数 GPIO 和模拟、数字附加功能复用。

I/O 配置可以通过指定操作序列进行锁定。

3.8 DMA

7 通道通用 DMA 管理存储至存储、外设至存储、存储至外设的数据传输。

DMA 支持环形缓冲管理,在控制器到达缓冲最后位置时,不需要用户代码干预。

每一个通道连接至专门的硬件 DMA 请求,并且支持软件触发。DMA 通过软件进行配置,源和目的的传输大小不受限制。

DMA 可以用于主要的外设: SPI、I²S、I²C、USART、TIMx 定时器和 ADC。

DMA 主要特点:

- 最多可支持7个独立的可配置通道(请求)
- 每个通道连接至专用的硬件 DMA 请求,也可由软件触发
- 4级可编程的优先级
- 源/目的可配置独立的传输大小(字节、半字、字),源/目的地址单独配置
- 支持环形缓冲管理(circular buffer management)
- 3个事件标志(半传输完成、传输完成、传输出错),事件标志相或用于产生单个中断
- 存储器至存储器传输
- 外设至存储器、存储器至外设、外设至外设传输
- FLASH、SRAM、外设作为源或目的
- 最大 65535 的可编程传输大小

3.9 中断和事件

3.9.1 嵌套向量中断控制器(NVIC)

FCM3x103x 系列集成了一个最多支持 43 个可屏蔽中断通道(不包含 Cortex-M3 的 16 个中断线)和 16 个优先级的嵌套向量中断控制器。

- · 紧耦合 NVIC 提供低延时中断处理
- 中断入口向量表地址直接传输至 CPU 核
- 允许更早的处理中断
- 处理晚到的高优先级中断
- 支持尾链
- 处理器状态自动保存

3.9.2 扩展的中断/事件控制器(EXTI)

扩展的中断/事件控制器由 19 条边沿检测线组成,用于产生中断/事件请求和唤醒系统。每条线可独立的配置成选择触发事件(上升沿、下降沿或边沿),也可单独屏蔽。一个暂存寄存器包含中断请求状态。EXTI可以检测比内部 APB2 时钟周期更短的外部输入。最多 80 个 GPIO 可以连接至 16 个外部中断线。

3.10 ADC

2 个 12 位 ADC 模数转换器最多包含 16 个外部和 2 个内部(温度传感器、电压参考)通道,可以以单次或扫描模式转换。在扫描模式,模拟输入的被选中组能够自动完成转换。

ADC 接口内置附加的逻辑功能:

- 同时采样和保持
- 交错采样和保持
- 单个使用

ADC 支持 DMA。

模拟看门狗可以对一个、部分或全部被选的通道进行高精度监测。当转换电压超出阈值设定时会产生中断。

3.10.1 温度传感器(TS)

温度传感器产生一个和温度成线性变化的电压 VSENSE。

温度传感器在内部连接至 ADC_IN16 输入通道,用来将传感器输出电压转换成数字值。

3.10.2 内部电压基准(VREFINT)

内部基准电压(VREFINT)提供一个稳定的(基准)电压输出用于 ADC。VREFINT 在 IC 内部连接至 ADC_IN17 输入通道。

3.11 定时器和看门狗

FCM32x103 系列包含最多 3 个通用定时器和 1 个先进定时器。

Timer feature comparison

Timer	Timer	Counter	Counter	Prescaler	DMA request	ССР	Complementary
type		resolution	type	factor	generation	channels	outputs
Advanced	TIM1	16-bit	Up, down,	1~65536	Yes	4	Yes
control			Up/down				
General	TIM2	16-bit	Up, down,	1~65536	Yes	4	No
purpose			Up/down				
	TIM3	16-bit	Up, down,	1~65536	Yes	4	No
			Up/down				
	TIM4	16-bit	Up, down,	1~65536	Yes	4	No
			Up/down				

3.11.1 先进定时器 TIM1

先进定时器 TIM1 可用于 6 通道的 3 相 PWM。它的互补输出带可编程死区。它也可用作一个完整的通用定时器。4 个独立通道可用作:

- 输入捕捉 IC
- · 输出比较 OC
- · PWM(边沿或中心对齐模式)
- 单脉冲输出

如果配置成标准 16 位定时器,它的功能和 TIMx 一样。如果配置成 16 位 PWM,拥有完全调制的占空比(0%-100%)。

在 MCU 的调试模式,定时器也可以工作。

TIM1 的大多数功能和其它标准定时器的功能一样。先进定时器可以和其它定时器级联和同步。

3.11.2 通用定时器 TIM2/3/4

FCM32x103 拥有 3 个通用定时器。每个通用定时器可用于产生 PWM,或者只作简单定时用途。

TIM2/3/4

FCM32x103 包含 3 个同步 4 通道通用定时器。TIMx 由 16 位预分频器和 16 位自动重装载向上/向下计数器构成。它们包含 4 个独立通道,每一个可用于输入捕捉/输出比较、PWM 或单击模式输出。总共可提供 12 个输入捕捉/输出比较通道。

TIM2/3/4 可以级联,也可以和 TIM1 连接用于同步。

TIM2/3/4 可以支持正交编码信号,或 1~3 个霍尔传感器的数字输出。

该定时器可以在 debug 模式运行。

3.11.3 独立看门狗 IWDG

IWDG 基于 8 位预分频器和 12 位向下计数器,支持用户定义的刷新窗口。它的时钟由内部 40KHz 独立 RC 定时器提供,独立于主时钟工作。可以 Stop/Standby 模式工作。它可用于在发生问题时 复位系统的看门狗,或者作为应用中的自由运行的定时器。它可通过硬件或配置字的软件配置。IWDG 可以在 Debug 模式工作。

3.11.4 系统窗口看门狗 WWDG

WWDG 是一个 7 位向下计数器,可以自由运行。它可用于在发生问题时复位系统的看门狗。WWDG 时钟来自于 APB 时钟 PCLK。它有提前警告中断能力。

WWDG 可以在 Debug 模式工作。

3.11.5 SysTick 定时器

该定进器专用于实时操作系统,但也可作为标准向下计数器。

- 24 位向下计数器
- 自动重装载
- 计数至0时,可产生可屏蔽系统中断

3.12 实时时钟(RTC)和备份寄存器

备份寄存器为 10 个 16 位寄存器,用于存储 20 字节的用户数据。它们不会被系统复位,也不会在从 Standby 模式唤醒时复位。

RTC 是一个连续运行的计数器,可以用来配合软件实现日历功能。

RTC 时钟源可以是:

- 32768 Hz 外部晶体
- 陶振或其它振荡器
- 内部低功耗 RC 振荡器(40KHz)
- 高速外部时钟/128

3.13 I²C

 I^2C 可以工作在多主机或从机模式。支持标准模式(100 kbit/s)、快速模式(400 kbit/s)。 I^2C 支持双从机地址(仅 7 位)和在主机模式 7/10 位地址寻址,内置硬件 CRC 产生/校验功能。 I^2C 接口可以通过 DMA 操作。

3.14 USART

UART 为通用异步收发接口,它提供工业标准的双全工数据交换能力,使用可编程的波特率产生器以支持非常宽范围的波特率。

它支持全双工、半双工通讯,或多主机通讯。也支持 LIN(Local Interconnect Network)、smartcard 协议以及 IrDA(Infrared Data Association) SIR ENDEC 规格和 modem 操作(CTS/RTS)。 可以使用 DMA 来实现高速数据交换。

3.15 SPI/I²S

SPI 接口用于和外部器件使用 SPI 协议通讯。SPI 支持半双工、全双工和简单同步串行通讯。当配置成主机(MASTER)时,对外接从机(SLAVE)提供通讯时钟(SCK)。该接口也可以配置成多主机模式。

一个标准的 I2S 接口(和 SPI1 引脚复用)支持 4 种不同的音频格式,可以在主/从机模式以半双工进行通讯。可以配置成 16/24 或 32 位数据格式、16 或 32 位数据精度。通过 8 位可编程线性预分频器将音频采样频率设定在 8-192 kHz。在主机模式时,可输出 256 位的采样时钟给外部器件。

3.16 CAN

CAN 支持 CAN 2.0A/B 协议。规格 2.0A 覆盖标准信息格式(11 位标识符), 2.0B 覆盖标准和扩展信息格式(11 位/29 位标识符)。

CAN 兼容 Philips SJA1000 的 PeliCAN 模式。

CAN 中断

Position	Priority	Type of priority	Acronym	Description	Address
30	37	Settable	CEC_CAN	CAN interrupts	0x0000 00B8

CAN 地址

CAN 基地分配在 0x4000_6400。CAN 未与 USB 共用 RAM。

3.17 USB

FCM32x103 内置支持 USB2.0 协议的全速 USB 外设。内部 USB PHY 支持 USB FS 信号。USB 包含通过软件配置的端点,支持休眠/唤醒。USB 自带 1 KB 缓存。USB 需要高精度 48MHz 时钟来工作,可以通过外部晶振+PLL 来实现。

3.18 SWJ-DP

ARM SWJ-DP 接口用于调试/烧写 MCU, 支持 SWD/JTAG。

4 引脚信息

FCM32x103 LQFP100 pinout

FCM32x103 LQFP48 pinout

FCM32x103 UFQFPN48 pinout

FCM32x103 pin definitions

Pins	⊢ \	Alternate functions(4)
------	-----	------------------------

		/3X	I			r		DAIASHLLI
LQFP48/UFQFPN48	LQFP64	LQFP100	Pin name			Main function ⁽³⁾ (after reset)	Default	Remap
-	-	1	PE2	I/O	FT	PE2	TRACECK	-
-	-	2	PE3	I/O	FT	PE3	TRACED0	-
-	-	3	PE4	I/O	FT	PE4	TRACED1	-
-	-	4	PE5	I/O	FT	PE5	TRACED2	-
-	-	5	PE6	I/O	FT	PE6	TRACED3	-
1	1	6	NC	-	-	-	-	-
2	2	7	PC13- TAMPER- RTC(5)	I/O	-	PC13 ⁽⁶⁾	TAMPER-RTC	-
3	3	8	PC14- OSC32_IN ⁽⁵⁾	I/O	-	PC14 ⁽⁶⁾	OSC32_IN	-
4	4	9	PC15- OSC32_O UT(5)	I/O	-	PC15 ⁽⁶⁾	OSC32_OUT	-
-	-	10	NC	-	-	-	-	-
-	-	11	NC	-	-	-	-	
5	5	12	OSC_IN	I	-	OSC_IN	-	PD0 ⁽⁷⁾
6	6	13	OSC_OUT	0	-	OSC_OUT		PD1 ⁽⁷⁾
7	7	14	NRST	I/O	-	NRST	-	-
-	8	15	PC0	I/O	-	PC0	ADC12_IN10	-
-	9	16	PC1	I/O	-	PC1	ADC12_IN11	-
-	10	17	PC2	I/O	-	PC2	ADC12_IN12	-
-	11	18	PC3	I/O	-	PC3	ADC12_IN13	-
8	12	19	V _{SSA}	S	-	V _{SSA}	-	-
-	-	20	V _{REF-}	S	-	V _{REF-}	-	-
-	-	21	V _{REF+}	S	-	V _{REF+}	-	-
9	13	22	V_{DDA}	S	-	V_{DDA}	-	-
10	14	23	PA0-WKUP	I/O	-	PA0	WKUP/ USART2_CTS ⁽⁹⁾ / ADC12_IN0/ TIM2_CH1_ ETR ⁽⁹⁾	-
11	15	24	PA1	I/O	-	PA1	USART2_RTS ⁽⁹⁾ / ADC12_IN1/	-

I CIVI	SZXIC)JX						DAIASHLLI
							TIM2_CH2 ⁽⁹⁾	
							USART2_TX ⁽⁹⁾ /	
12	16	25	PA2	I/O	-	PA2	ADC12_IN2/	-
							TIM2_CH3 ⁽⁹⁾	
							USART2_RX ⁽⁹⁾ /	
13	17	26	PA3	I/O	-	PA3	ADC12_IN3/	-
							TIM2_CH4 ⁽⁹⁾	
-	18	27	V_{SS_4}	S	-	V _{SS_4}	-	-
-	19	28	V_{DD_4}	S	-	V_{DD_4}	-	-
							SPI1_NSS ⁽⁹⁾ /	
14	20	29	PA4	I/O	-	PA4	USART2_CK ⁽⁹⁾ /	-
							ADC12_IN4	
15	21	30	PA5	I/O	_	PA5	SPI1_SCK ⁽⁹⁾ /	_
							ADC12_IN5	
							SPI1_MISO ⁽⁹⁾ /	
16	22	31	PA6	I/O	-	PA6	ADC12_IN6/	TIM1_BKIN
							TIM3_CH1 ⁽⁹⁾	
							SPI1_MOSI ⁽⁹⁾ /	
17	23	32	PA7	I/O	-	PA7	ADC12_IN7/	TIM1_CH1N
							TIM3_CH2 ⁽⁹⁾	
-	24	33	PC4	I/O	-	PC4	ADC12_IN14	-
-	25	34	PC5	I/O	-	PC5	ADC12_IN15	-
18	26	35	PB0	I/O	-	PB0	ADC12_IN8/	TIM1_CH2N
							TIM3_CH3 ⁽⁹⁾	
19	27	36	PB1	I/O	_	PB1	ADC12_IN9/	TIM1_CH3N
							TIM3_CH4 ⁽⁹⁾	_
20	28	37	PB2	I/O	FT	PB2/BOOT1	-	-
-	-	38	PE7	I/O	FT	PE7	-	TIM1_ETR
-	-	39	PE8	I/O	FT	PE8	-	TIM1_CH1N
-	-	40	PE9	I/O	FT	PE9	-	TIM1_CH1
-	-	41	PE10	I/O	FT	PE10	-	TIM1_CH2N
-	-	42	PE11	I/O	FT	PE11	-	TIM1_CH2
-	-	43	PE12	I/O	FT	PE12	-	TIM1_CH3N
-	-	44	PE13	I/O	FT	PE13	-	TIM1_CH3
-	-	45	PE14	I/O	FT	PE14	-	TIM1_CH4
-	-	46	PE15	I/O	FT	PE15	-	TIM1_BKIN
21	29	47	PB10	I/O	FT	PB10	I2C2_SCL/	TIM2_CH3
21	20	-77		1/0		1 510	USART3_TX ⁽⁹⁾	111VI2_0110
22	30	48	PB11	I/O	FT	PB11	I2C2_SDA/	TIM2_CH4
~~	30	40		1/0	FI	FUII	USART3_RX ⁽⁹⁾	
23	31	49	VSS_1	S	-	V _{SS_1}	-	-
<u> </u>			i	1			•	I

	ı			1			1	
24	32	50	VDD_1	S	-	V_{DD_1}	-	-
25	33	51	PB12	I/O	FT	PB12	SPI2_NSS/ I2C2_SMBAI/ USART3_CK ⁽⁹⁾ / TIM1_BKIN ⁽⁹⁾	-
26	34	52	PB13	I/O	FT	PB13	SPI2_SCK/ USART3_CTS ⁽⁹⁾ / TIM1_CH1N ⁽⁹⁾	-
27	35	53	PB14	I/O	FT	PB14	SPI2_MISO/ USART3_RTS ⁽⁹⁾ TIM1_CH2N ⁽⁹⁾	-
28	36	54	PB15	I/O	FT	PB15	SPI2_MOSI/ TIM1_CH3N ⁽⁹⁾	-
-	-	55	PD8	I/O	FT	PD8	-	USART3_TX
-	-	56	PD9	I/O	FT	PD9	-	USART3_RX
-	-	57	PD10	I/O	FT	PD10	-	USART3_CK
-	-	58	PD11	I/O	FT	PD11	-	USART3_CTS
-	-	59	PD12	I/O	FT	PD12	-	TIM4_CH1 / USART3_RTS
-	-	60	PD13	I/O	FT	PD13	-	TIM4_CH2
-	-	61	PD14	I/O	FT	PD14	-	TIM4_CH3
-	-	62	PD15	I/O	FT	PD15	-	TIM4_CH4
-	37	63	PC6	I/O	FT	PC6	-	TIM3_CH1
	38	64	PC7	I/O	FT	PC7	-	TIM3_CH2
	39	65	PC8	I/O	FT	PC8	-	TIM3_CH3
-	40	66	PC9	I/O	FT	PC9	-	TIM3_CH4
29	41	67	PA8	I/O	FT	PA8	USART1_CK/ TIM1_CH1 ⁽⁹⁾ / MCO	-
30	42	68	PA9	I/O	FT	PA9	USART1_TX ⁽⁹⁾ / TIM1_CH2 ⁽⁹⁾	-
31	43	69	PA10	I/O	FT	PA10	USART1_RX ⁽⁹⁾ / TIM1_CH3 ⁽⁹⁾	-
32	44	70	PA11	I/O	FT	PA11	USART1_CTS/ CANRX ⁽⁹⁾ / USBDM/ TIM1_CH4 ⁽⁹⁾	-
33	45	71	PA12	I/O	FT	PA12	USART1_RTS/ CANTX ⁽⁹⁾ /USBDP TIM1_ETR ⁽⁹⁾	-

								2711110111111
34	46	72	PA13	I/O	FT	JTMS/SWDIO	-	PA13
-	-	73			Not	connected		-
35	47	74	VSS_2	S	-	V_{SS_2}	•	-
36	48	75	VDD_2	S	-	V_{DD_2}	-	-
37	49	76	PA14	I/O	FT	JTCK/SWCLK	-	PA14
								TIM2_CH1_
38	50	77	PA15	I/O	FT	JTDI	-	ETR/ PA15
								/SPI1_NSS
-	51	78	PC10	I/O	FT	PC10	-	USART3_TX
-	52	79	PC11	I/O	FT	PC11	-	USART3_RX
-	53	80	PC12	I/O	FT	PC12	-	USART3_CK
-	-	81	PD0	I/O	FT	PD0	-	CANRX
-	-	82	PD1	I/O	FT	PD1	-	CANTX
	54	83	PD2	I/O	FT	PD2	TIM3_ETR	-
-	-	84	PD3	I/O	FT	PD3	-	USART2_CTS
-	-	85	PD4	I/O	FT	PD4	-	USART2_RTS
-	-	86	PD5	I/O	FT	PD5	-	USART2_TX
-	-	87	PD6	I/O	FT	PD6	-	USART2_RX
-	-	88	PD7	I/O	FT	PD7	-	USART2_CK
								TIM2_CH2 /
39	55	89	PB3	I/O	FT	JTDO	-	PB3
								TRACESWO
								SPI1_SCK
4.0			DD 4			W.TD.G.T		TIM3_CH1/
40	56	90	PB4	I/O	FT	JNTRST	-	PB4/
								SPI1_MISO
41	57	91	PB5	I/O		PB5	I2C1_SMBAI	TIM3_CH2 /
								SPI1_MOSI
42	58	92	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁹⁾ / TIM4_CH1 ⁽⁹⁾	USART1_TX
43	59	93	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁹⁾ / TIM4_CH2 ⁽⁹⁾	USART1_RX
44	60	94	воото	I		BOOT0	-	-
45	61	95	PB8	I/O	FT	PB8	TIM4_CH3 ⁽⁹⁾	I2C1_SCL /
			. 50			. 50		CANRX
46	62	96	PB9	I/O	FT	PB9	TIM4_CH4 ⁽⁹⁾	I2C1_SDA/
			. 50	.,,		. 50		CANTX
-	-	97	PE0	I/O	FT	PE0	TIM4_ETR	-
	-	98	PE1	I/O	FT	PE1	-	-
	1	1		1	1	1		I

47	63	99	V_{SS_3}	S	ı	V_{SS_3}	-	-
48	64	100	V_{DD_3}	S	-	V_{DD_3}	-	-

^{1.} I = input, O = output, S = supply.

5 存储器映射

FCM32x1038/xB不同的是程序存储空间的结束地址分别为 0x0800FFFF、0x0801FFFF。

^{2.} FT = 5 V tolerant.

FCM32x1038/xB 外设寄存器边界地址

			投寄仔器辺界地址 _ ・・・・・
Bus	Boundary address	Size	Peripheral
	0xA000 0000 – 0xA000 0FFF	4KB	-
	0x9000 0000 – 0x9FFF FFFF	2GB	-
	0x8000 0000 – 0x8FFF FFFF	2GB	-
	0x7000 0000 – 0x7FFF FFFF	2GB	-
АНВ	0x6C00 0000 – 0x6FFF FFFF	64MB	-
	0x6800 0000 – 0x6BFF FFFF	64MB	-
	0x6400 0000 – 0x67FF FFFF	64MB	-
	0x6000 0000 – 0x63FF FFFF	64MB	-
	0x4800 0000 – 0x5FFF FFFF	~384 MB	-
	0x4002 4400 – 0x47FF FFFF	~128MB	
	0x4002 4000 – 0x4002 43FF	1KB	-
	0x4002 3400 – 0x4002 3FFF	ЗКВ	-
	0x4002 3000 – 0x4002 33FF	1KB	CRC
	0x4002 2400 – 0x4002 2FFF	ЗКВ	-
АНВ	0x4002 2000 – 0x4002 23FF	1KB	Flash memory interface
	0x4002 1400 – 0x4002 1FFF	ЗКВ	-
	0x4002 1000 – 0x4002 13FF	1KB	RCC
	0x4002 0400 – 0x4002 0FFF	ЗКВ	-
	0x4002 0000 – 0x4002 03FF	1KB	DMA
	0x4001 8000 - 0x4001 FFFF	32KB	-
	0x4001 5C00 - 0x4001 7FFF	9КВ	-
	0x4001 5800 - 0x4001 5BFF	1KB	-
	0x4001 4C00 - 0x4001 57FF	ЗКВ	-
	0x4001 4800 – 0x4001 4BFF	1KB	-
	0x4001 4400 – 0x4001 47FF	1KB	-
	0x4001 4000 – 0x4001 43FF	1KB	-
	0x4001 3C00 - 0x4001 3FFF	1KB	-
	0x4001 3800 - 0x4001 3BFF	1KB	USART1
	0x4001 3400 – 0x4001 37FF	1KB	-
	0x4001 3000 - 0x4001 33FF	1KB	SPI1/I2S1
	0x4001 2C00 - 0x4001 2FFF	1KB	TIM1
	0x4001 2800 – 0x4001 2BFF	1KB	ADC2
	0x4001 2400 – 0x4001 27FF	1KB	ADC1
APB	0x4001 2000 – 0x4001 23FF	1KB	-
	0x4001 1C00 - 0x4001 1FFF	1KB	-
	0x4001 1800 – 0x4001 1BFF	1KB	GPIOE
	0x4001 1400 – 0x4001 17FF	1KB	GPIOD
	0x4001 1000 – 0x4001 13FF	1KB	GPIOC
	0x4001 0C00 - 0x4001 0FFF	1KB	GPIOB
	0x4001 0800 - 0x4001 0BFF	1KB	GPIOA
	0x4001 0400 - 0x4001 07FF	1KB	EXTI
	0x4001 0000 - 0x4001 03FF	1KB	AFIO
	0.4001 0000 0.4001 0311	TIVD	/ W 10

1 CIVISENTO			DAIAGILLI
	0x4000 8000 – 0x4000 FFFF	32KB	-
	0x4000 7C00 – 0x4000 7FFF	1KB	-
	0x4000 7800 – 0x4000 7BFF	1KB	-
	0x4000 7400 – 0x4000 77FF	1KB	-
	0x4000 7000 – 0x4000 73FF	1KB	PWR
	0x4000 6C00 - 0x4000 6FFF	1KB	ВКР
	0x4000 6800 – 0x4000 6BFF	1KB	-
	0x4000 6400 – 0x4000 67FF	1KB	CAN
	0x4000 6000 – 0x4000 63FF	1KB	USB RAM
	0x4000 5C00 - 0x4000 5FFF	1KB	USB
	0x4000 5800 – 0x4000 5BFF	1KB	12C2
	0x4000 5400 – 0x4000 57FF	1KB	I2C1
	0x4000 4C00 - 0x4000 53FF	2KB	-
	0x4000 4800 – 0x4000 4BFF	1KB	USART3
	0x4000 4400 – 0x4000 47FF	1KB	USART2
	0x4000 3C00 - 0x4000 43FF	2KB	-
	0x4000 3800 – 0x4000 3BFF	1KB	SPI2
	0x4000 3400 – 0x4000 37FF	1KB	-
	0x4000 3000 – 0x4000 33FF	1KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1KB	WWDG
	0x4000 2800 – 0x4000 2BFF	1KB	RTC
	0x4000 2400 – 0x4000 27FF	1KB	-
	0x4000 2000 – 0x4000 23FF	1KB	-
	0x4000 1800 – 0x4000 1FFF	2KB	-
	0x4000 1400 – 0x4000 17FF	1KB	-
	0x4000 0C00 - 0x4000 13FF	2KB	-
	0x4000 0800 – 0x4000 0BFF	1KB	TIM4
	0x4000 0400 – 0x4000 07FF	1KB	TIM3
	0x4000 0000 – 0x4000 03FF	1KB	TIM2

6 电气特性

6.1 参数条件

除非额外指定,所有电压以 VSS 为参考。

6.1.1 最小/最大值

除非额外指定,最小/最大值保证在环境温度下的最差条件。电源供电和频率在环境温度为 25C 时测试。

6.1.2 典型值

除非额外指定,典型值基于 25C 和 VDD=VDDA=3.3V。这些值为设计值,非测试结果。

6.1.3 典型曲线

除非额外指定,所有典型曲线为设计参考值,非测试结果。

6.1.4 负载电容

6.1.5 引脚输入电压

6.1.6 电源供电

每一对电源(VDD/VSS、VDDA/VSSA等)应该接有滤波电容,电容在 PCB 上应尽可能靠近引脚。

6.1.7 电流消耗测量

6.2 绝对最大值

超出绝对最大值范围可能引起器件损坏。

电压特性

Symbol	Ratings	Min	Max	Unit
V_{DD} - V_{SS}	External main supply voltage	-0.3	5.8	V
V_{DDIO2} - V_{SS}	External I/O supply voltage	-0.3	5.8	V
V_{DDA} - V_{SS}	External analog supply voltage	-0.3	5.8	V
V_{DD} - V_{DDA}	Allowed voltage difference for V _{DD} > _{VDDA}	-	0.3	V
V _{BAT} -V _{SS}	External backup supply voltage	-0.3	5.8	V
V _{IN}	Input voltage on FT and FTf pins	V _{SS} -0.3	V _{DDIOx} +0.3	V
	Input voltage on TTa pins	V _{SS} -0.3	5.8	V
	Input voltage on any other pins	V _{SS} -0.3	5.8	V
$ \triangle V_{DDx} $	Variations between different V _{DD} power	-	50	mV
	pins			
_{VSSx} -V _{SS}	Variations between all the different ground	-	50	mV
	pins			
V _{ESD} (HBM)	Electrostatic discharge voltage		3000	V

6.3 工作条件

6.3.1 普通工作条件

普通工作条件

Symbol	Parameter	Conditions	Min	Max	Unit
f_{HCLK}	Internal AHB clock frequency	-	0	100	MHz
f_{PCLK}	Internal APB clock frequency	-	0	100	MHz
V_{DD}	Standard operating voltage	-	1.8	5.5	V
V_{DDIO2}	I/O supply voltage		1.65	5.5	V
V_{DDA}	Analog operating voltage		V_{DD}	5.5	V
V_{BAT}	Backup operating voltage		2.1	5.5	V
V _{IN}	I/O input voltage	TC and RST I/O	-0.3	V _{DDIOx} +0.3	
		TTa I/O	-0.3	V _{DDA} +0.3	V
		FT and FTf I/O	-0.3	5.5	
P _D	Power dissipation at TA=85C	LQFP48	-	350	mW
		UFQFPN48	-	600	
		LQFP32		350	
		UFQFPN32		500	
		UFQFPN28		170	
		TSSOP20		250	
TA	Ambient temperature for the	Maximum power dissipation	-40	85	С
	suffix 6 version	Low power dissipation	-40	105	
	Ambient temperature for the	Maximum power dissipation	-40	105	С
	suffix 7 version	Low power dissipation	-40	125	
TJ	Junction temperature range	Suffix 6 version	-40	105	С
		Suffix 7 version	-40	125	

6.3.2 上电/下电工作条件

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	VDD rise time rate	-	0	∞	
	VDD fall time rate		20	8	us/V
t_{VDDA}	VDDA rise time rate	-	0	8	
	VDDA fall time rate		20	8	

6.3.3 内置复位/电源控制

内置复位和电源控制模块特性

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{POR/PDR}	Power on/down reset	Falling edge	1.51	1.58	1.65	V
	threshold	Rising edge	1.54	1.62	1.70	
$V_{PDRhyst}$	PDR hysteresis	-	-	40	=	mV
t _{RSTTEMPO}	Reset temporization	-	1.5	2.5	4.5	ms

可编程电压检测(PVD)特性

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{PVD0}	PVD threshold 0	Falling edge	1.59	1.67	1.75	
		Rising edge	1.75	1.83	1.91	
V _{PVD1}	PVD threshold 1	Falling edge	1.75	1.83	1.91	
		Rising edge	1.90	1.98	2.06	
V _{PVD2}	PVD threshold 2	Falling edge	1.90	1.98	2.06	
		Rising edge	2.06	2.14	2.22	
V _{PVD3}	PVD threshold 3	Falling edge	2.06	2.14	2.22	
		Rising edge	2.21	2.29	2.37	
V_{PVD4}	PVD threshold 4	Falling edge	2.21	2.29	2.37	V
		Rising edge	2.35	2.43	2.51	
V_{PVD5}	PVD threshold 5	Falling edge	2.35	2.43	2.51	
		Rising edge	2.49	2.57	2.65	
V_{PVD6}	PVD threshold 6	Falling edge	2.49	2.57	2.65	
		Rising edge	2.64	2.72	2.80	
V _{PVD7}	PVD threshold 7	Falling edge	2.64	2.72	2.80	
		Rising edge	2.80	2.88	2.96	
V _{PVDhyst}	PVD hysteresis	-	-	160	-	mV
I _{DD(PVD)}	PVD current consumption	-		0.15		uA

6.3.4 内置参考电压

内置参考电压特性

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	-40C <ta<+105< td=""><td>1.16</td><td>1.20</td><td>1.26</td><td>V</td></ta<+105<>	1.16	1.20	1.26	V
t _{START}	ADC_IN17 buffer startup time	-		-	10	us
ts_vrefint	ADC sampling time when reading the internal reference voltage	-	8	-	-	us
△V _{REFINNT}	Internal reference voltage spread over the temperature range	V _{DDA} =3V	-	-	10	mV
T_{Coeff}	Temperature coefficient	-	-	-	100	ppm/C

6.3.5 供电电流

典型供电电流消耗 (VDD+VDDA @ 3.3V)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD} +I _{DDA}	Run from Flash	All peripherals enabled, HSI		4.92		
	memory	8MHz				mA
		All peripherals enabled, HSI + PLL		26.7		
		72MHz				
	Stop mode	Regulator in run mode, all		18.2		uA
		oscillators OFF				
		Regulator in low-power mode, all		7.5		
		oscillators OFF				
	Standby mode	Regulator in low-power mode, all		7.2		uA
		oscillators OFF				

6.3.6 低功耗模式唤醒时间

Low-power mode wakeup timings

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{WUSTOP}	Wakeup from stop mode	Regulator in run mode	-	2.8	5	
t _{START}		Regulator in low power mode		4.6	10	us
twustanndby	Wakeup from standby mode	-	-	50	-	
twusleep	Wakeup from sleep mode	-	4 :	SYSCLK cyc	cles	

6.3.7 外部时钟源

High-speed external user clock characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{HSE_EXT}	User external clock source frequency	-	8	24	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7*V _{DDIOx}	-	V_{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	VSS	-	0.3*V _{DDIOx}	
t _{W(HSEH)}	OSC_IN high or low time	15	-	-	ns
tw(HSEL)					
t _{r(HSE)}	OSC_IN rise or fall time	-	-	20	
$t_{\text{f(HSE)}}$					

Low-speed external user clock characteristics

Symbol	Parameter	Min	Тур	Max	Unit	l
--------	-----------	-----	-----	-----	------	---

f _{LSE_EXT}	User external clock source frequency	-	32.768	1000	KHz
V_{LSEH}	OSC32_IN input pin high level voltage	0.7*V _{DDIOx}	-	V_{DDIOx}	V
V _{LSEL}	OSC32_IN input pin low level voltage	VSS	-	0.3*V _{DDIOx}	
tw(LSEH)	OSC32_IN high or low time	450	-	-	ns
tw(LSEL)					
t _{r(LSE)}	OSC32_IN rise or fall time	-	-	50	
t _{f(LSE)}					

HSE oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	16	MHz
RF	Feedback resistor	-	-	200	-	ΚΩ
I _{DD}	HSE current consumption	VDD=3.3V, Rm=45 Ω ,		0.57		mA
		CL=10pF@8MHz				
g _m	Oscillator transconductance	Startup	10	-	-	mA/V
t _{SU(HSE)}	Startup time	VDD is stabilized	-	2	-	ms

LSE oscillator characteristics(f_{LSE}=32.768KHz)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD}	LSE current consumption	low drive capability		360		
		medium-low drive capability		450		nA
		medium-high drive capability		540		
		high drive capability		700		
g _m	Oscillator	low drive capability	5	-	-	
	transconductance	medium-low drive capability	8			uA/V
		medium-high drive capability	15			
		high drive capability	25			
t _{SU(LSE)}	Startup time	V _{DDIOx} is stabilized	-	2	-	S

6.3.8 内部时钟源特性

HSI8 oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Freqency	-		8		MHz
DuCy	Duty cycle	-	45	-	55	%
ACC _{HSI48}	Accuracy of the HSI	TA=-40 to 105 @SS	-1.84		2.00	%
	oscillator(factory calibrated)	TA=-40 to 105@TT	-1.58		1.76	
		TA=-40 to 105@FF	-1.24		1.72	
t _{SU(HSI8)}	HSI8 oscillator startup time	-			6	us
I _{DDA(HSI8)}	HSI8 oscillator power consumption	-		643	801	uA

LSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Freqency	-	31.9	40	55.5	KHz
t _{SU(LSI)}	LSI oscillator startup time	-			100	us
I _{DDA(LSI)}	LSI oscillator power consumption	-		400		nA

6.3.9 PLL 特性

PLL characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock	1	8	24	MHz
t _{PLL_OUT}	PLL multiplier output clock	16		96	MHz
t _{LOCK}	PLL lock time	30		100	us
I _{DDA(PLL)}	PLL power consumption			350	uA
Jitter _{PLL}	Cycle-to-cycle jitter			300	ps

6.3.10 存储特性

Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PROG}	16-bit programming time	TA=-40 to +125			20	us
t _{ERASE}	Page(1KB) erase time				5	ms
t _{ME}	Mass erase time				40	ms
I _{DD}	Supply current	Write mode			3.5	mA
		Erase mode			2	mA
N _{END}	Enndurance	TA=-40 to +125	20			kcycle
t _{RET}	Data retention	TA=25C	100			Year

6.3.11 EMC 特性

EMC characteristics

Symbol	Parameter	Conditions	Level/Class
V _{FESD}	Voltage limits to be applied on any I/O pin		
	to induce a functional disturbance		
V _{EFTB}	Fast transient voltage burst limits to be		
	applied through 100pF on V _{DD} and V _{SS} pins		
	to induce a functional disturbance		

EMI characteristics

Symbol	Parameter	Conditions	Monitored	Max vs.[f _{HSE} /f _{HCLK}]	Unit
--------	-----------	------------	-----------	---	------

			frequency band	8/48 MHz	
SEMI	Peak level	VDD=3.6V, TA=25C,	0.1 to 30MHz		
		LQFP48 package	30 to 130MHz		dBuV
		compliant with IEC	130 MHz to 1GHz		
		61967-2	EMI level		-

6.3.12 电气敏感特性

ESD absolute maximum ratings

Symbol	Parameter	Conditions	Packages	Class	Maxi value	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage	TA=+25C, conforming	All	2	2000	V
	(human body model)	to JESD22-A114				
V _{ESD(CDM)}	Electrostatic discharge voltage	TA=+25C, conforming	All	C6	1000	V
	(charge device model)	to AEC-Q100-011				

6.3.13 I/O 电流注入特性

I/O current injection susceptibility

Symbol	Parameter	Functional su	Unit	
		Negative injection	Positive injection	
I _{INJ}	Injected current	-5	+5	mA

6.3.14 I/O 端口特性

I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Low level input	TC and TTa I/O			0.3*V _{DDIOx}	٧
	voltage	FT and FTf I/O			0.475*V _{DDIOx} -0.2	
		All I/Os			0.3*V _{DDIOx}	
V _{IH}	High level input	TC and TTa I/O	0.445*V _{DDIOx} +0.4			٧
	voltage	FT and FTf I/O	0.5*V _{DDIOx} +0.2			
		All I/Os	0.7*V _{DDIOx}			
V _{hys}	Schmitt trigger	TC and TTa I/O		200		mV
	hysteresis	FT and FTf I/O		100		
I _{lkg}	Input leakage	TC,FT and FTf I/O			±0.1	uA
	current	TTa in digital mode				
		$V_{SS} <= V_{IN} <= V_{DDIOx}$				
		TTa in digital mode	_		1	

		$V_{DDIOx} <= V_{IN} <= V_{DDA}$			
		TTa in analog mode		± 0.2	
		$V_{SS} <= V_{IN} <= V_{DDA}$			
		FT and FTf I/O		10	
		$V_{DDIOx} <= V_{IN} <= 5V$			
R _{PU}	Weak pull-up	V _{IN} =V _{SS}	40		$\mathbf{K} \Omega$
	resistor				
R _{PD}	Weak pull-down	V _{IN} =-V _{DDIOX}	40		$\mathbf{K} \Omega$
	resistor				
C _{IO}	I/O pin		5		pF
	capacitance				

Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port -		0.4	V
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8mA	V _{DDIOx} -0.4	-	
		V _{DDIOx} >= 2.7V			
V_{OL}	Output low level voltage for an I/O pin	TTL port	-	0.4	V
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8mA	2.4	-	
		V _{DDIOx} >= 2.7V			
V _{OL}	Output low level voltage for an I/O pin	I _{IO} = 20mA	-	1.3	V
V _{OH}	Output high level voltage for an I/O pin	V _{DDIOx} >= 2.7V	V _{DDIOx} -1.3	-	
V _{OL}	Output low level voltage for an I/O pin	I _{IO} = 6mA	-	0.4	V
V _{OH}	Output high level voltage for an I/O pin	V _{DDIOx} >= 2.7V	V _{DDIOx} -0.4	-	
V _{OL}	Output low level voltage for an I/O pin	I _{IO} = 4mA	-	0.4	V
V _{OH}	Output high level voltage for an I/O pin	V _{DDIOx} >= 2.7V	V _{DDIOx} -0.4	-	
V _{OLFm+}	Output low level voltage for an FTf I/O pin	I _{IO} = 20mA	-	0.4	V
	in FM+ mode	V _{DDIOx} >= 2.7V			
		I _{IO} = 10mA	-	0.4	

I/O AC characteristics

OSPEEDRy	Symbol	Parameter	Conditions	Min	Max	Unit
[1:0]						
х0	f _{max(IO)out}	Maximum frequency	C _L =50pF, V _{DDIOx} >=2V	-	2	MHz
	t _{f(IO)out}	Output fall time		-	38	ns
	t _{r(IO)out}	Output rise time		-	39	
x1	f _{max(IO)out}	Maximum frequency	C _L =50pF, V _{DDIOx} >=2V	-	10	MHz
	t _{f(IO)out}	Output fall time		-	25	ns
	t _{r(IO)out}	Output rise time		-	25	
11	f _{max(IO)out}	Maximum frequency	C _L =30pF, V _{DDIOx} >=2.7V	-	50	
			C _L =50pF, V _{DDIOx} >=2.7V	-	30	MHz
			C _L =50pF, 2V<=V _{DDIOx} <2.7V	-	20	
	t _{f(IO)out}	Output fall time	C _L =30pF, V _{DDIOx} >=2.7V	-	6.5	

			C _L =50pF, V _{DDIOx} >=2.7V	-	9	
			C _L =50pF, 2V<=V _{DDIOx} <2.7V	-	15.5	ns
	t _{r(IO)out}	Output rise time	C _L =30pF, V _{DDIOx} >=2.7V	-	6.6	
			C _L =50pF, V _{DDIOx} >=2.7V	-	8.6	
			C _L =50pF, 2V<=V _{DDIOx} <2.7V	-	39	
Fm+	f _{max(IO)out}	Maximum frequency	C _L =50pF, V _{DDIOx} >=2V	-	2	MHz
configuratio	t _{f(IO)out}	Output fall time		-	15.5	ns
n	t _{r(IO)out}	Output rise time		-	39	
-	t _{EXTIpw}	Pulse width of external	-	10	-	ns
		signals detected by the				
		EXTI controller				

6.3.15 NRST 引脚特性

NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3*VDD	V
V _{IH(NRST)}	NRST input high level voltage	-	0.445*VDD+0.4	-	-	
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up resistor	V _{IN} =V _{SS}	-	40	-	ΚΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100	ns
V _{NF(NRST)}	NRST input not filtered	2.7 <vdd<3.6< td=""><td>300</td><td>-</td><td>-</td><td>ns</td></vdd<3.6<>	300	-	-	ns
	pulse	2.0 <vdd<3.6< td=""><td>500</td><td>-</td><td>-</td><td></td></vdd<3.6<>	500	-	-	

6.3.16 ADC 特性

ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage	-	1.8	3.3	5.5	V
I _{DD(ADC)}	Current consumption of the ADC	V _{DDA} =3.3V	-	1.1	-	mA
f _{ADC}	ADC clock freqency	-	-	-	16	MHz
f _S	Sampling rate	12-bit resolution	0.03	-	1	MHz
f _{TRIG}	External trigger frequency	12-bit resolution	-	-	18	1/f _{ADC}
V _{AIN}	Conversion voltage range		0		V_{DDA}	V
R _t	Input resistor during sampling	V _{DDA} =3V		0.5		kΩ
Cs	Internal sample and hold capacitor			26	30	рF
ts	Sampling time	f _{ADC} =16MHz	4	-	-	1/f _{ADC}
t _{STAB}	Stabilization time		32	-	-	1/f _{ADC}

t _{CONV}	Total conversion time	12-bit resolution	12	1/f _{ADC}	
-00111				-1 -1100	

ADC accuracy

Symbol	Parameter	Conditions	Тур	Max	Unit
ET	Total unadjusted error	f _{PCLK} =48MHz,	±1.5	-	LSB
EO	Offset error	f_{ADC} =16MHz,RAIN<10k Ω	±1.5	±3.0	
EG	Gain error	V _{DDA} =3V to 3.6V	±2	±5	
ED	Differential linearity error	TA=25C	±0.6	±1.5	
EL	Integral linearity error		±1.5	±3.0	

Analog Input Equivalent Circuit

$$Rs = \frac{Tsamp}{10 * Cs} - Rt$$

R_{AIN} max for $f_{ADC} = 16$ MHz

T _s (cycles)	t _s (us)	RAIN max (kΩ)
4	0.35	0.33
7.5	0.47	1.1
13.5	0.84	2.3
28.5	1.78	5.4
41.5	2.59	8.1
55.5	3.47	11.1
71.5	4.47	14.4
239.5	14.97	49.4

6.3.17 温度传感器特性

TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L	V _{SENSE} linearity with temperature	-	±1	±2	С
Avg_Slope	Average slope	4.2	4.28	4.36	mV/C
V30	Voltage at 30C	1.423	1.425	1.43	V
tSTART	ADC_IN16 buffer startup time	1	-	5	us
t _{S_temp}	ADC sampling time when reading the temperature	4	-	-	us

7 封装信息

7.1 LQFP48 封装信息

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.

LQFP48 package outline

		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

7.2 LQFP64 封装信息

LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.

LQFP64 package outline

LQFP64 package mechanical data

		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
K	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

7.3 LQFP100 封装信息

LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.

LQFP100 package outline

LQFP100 package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.2	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.00	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-8	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

7.4 UFQFPN48 封装信息

UFQFPN48 is a 48-pin, 7 x 7 mm low-profile quad flat package.

UFQFPN48 package outline

UFQFPN48 package outline

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
Е	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

8 器件编码

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest FCM sales office.

x = Revision code

9 版本历史

Date	Revision	Author	Changes
2021/5/6	0.10	Dick Hou	初版,适应于 C 版 IC
2023/7/3	0.11		*F1 系列最高频率修改为 96MHz
			* F1 系列 SRAM 修改为 32KB

10 其它

