Econometria

Autocorrelação Parte II

I. Gráfico dos Resíduos

- A hipótese de ausência da autocorrelação do modelo clássico refere-se aos termos de erro da população, que não são observáveis.
- Contudo uma avaliação visual do comportamento dos resíduos (ût) plotados contra o tempo pode nos dar alguma indicação da presença de autocorrelação.
- É possível plotar os resíduos simples (resíduo padronizado) ou o quadrado deles contra o tempo.
- A vantagem de usar os resíduos padronizados é que eles não têm unidade de medida e podem ser comparados com resíduos padronizados de outras regressões.

Plotagem dos resíduos contra o tempo.

Plotagem de u(t) contra u(t-1).

II. Teste de Durbin-Watson

- É o teste mais conhecido para verificação de autocorrelação.
- Considere que $u_t = \rho u_{t-1} + \epsilon_t$ e $\epsilon_t \sim N(0, \sigma_{\epsilon}^2)$.
- Se $\rho = 0 \rightarrow u_t = \epsilon_t$, sendo os erros não autocorrelacionados.
- $H_0 = \rho = 0$
- A dedução da distribuição de probabilidade exata de $\hat{\rho}$ é difícil de ser deduzida.

- II. Teste de Durbin-Watson
 - Como alternativa, Durbin e Watson propuseram a seguinte estatística de teste.

$$d = \frac{\sum_{t=2}^{n} (\hat{u}_{t} - \hat{u}_{t-1})^{2}}{\sum_{t=1}^{n} \hat{u}_{t}^{2}}$$

• Relação de $d \operatorname{com} \hat{\rho}$:

II. Teste de Durbin-Watson

- Como $-1 \le ρ \le 1 → 0 \le d \le 4$
- Se $\hat{\rho} = 0 \rightarrow d = 2$: Não há autocorrelação. Se $\hat{\rho} = +1 \rightarrow d = 0$: autocorrelação positiva perfeita. Se $\hat{\rho} = -1 \rightarrow d = 4$: autocorrelação negativa perfeita.
- PERGUNTA: Quão próximo de 0 ou de 4 o valor da estatística deve estar para que possamos concluir que os erros são correlacionados?
- A determinação de um valor crítico para o teste exige o conhecimento da distribuição de probabilidade da estatística de teste sob H₀.
- Contudo, essa distribuição de probabilidade depende dos valores das variáveis explicativas.

II. Teste de Durbin-Watson

- Diferentes conjuntos de variáveis explicativas conduzem a diferentes distribuições para d.
- Uma possibilidade é considerar um software que calcule o p-valor do teste para as variáveis explicativas do modelo emm questão.
- Durbin e Watson determinaram um limite inferior d_L e um superior d_U que dependem apenas do número de observações e do número de variáveis (Tabela D.5 Gurjarati) e consideraram as seguintes regras de decisão:

HIPÓTESE NULA

Não há autocorrelação + Não há autocorrelação + Não há autocorrelação -Não há autocorrelação -Há autocorrelação

DECISÃO Rejeitar

Inconclusivo Rejeitar Inconclusivo Não Rejeitar

SE

 $0 < d < d_{L}$ $d_{L} \le d \le d_{U}$ $4 - d_{L} < d < 4$ $4 - d_{U} \le d \le 4 - d_{L}$ $d_{U} < d < 4 - d_{U}$

 Uma desvantagem dessa regra é o intervalo de valores para os quais não se pode chegar a nenhuma conclusão.

Legenda

H₀: Ausência de autocorrelação positiva
 H₀*: Ausência de autocorrelação negativa

X variables, excluding the intercept											
Observations 1 2 3 4 5											
N	Prob.	D-L	D-U								
15	0.05	1.08	1.36	0.95	1.54	0.82	1.75	0.69	1.97	0.56	2.21
100	0.01	0.81	1.07	0.7	1.25	0.59	1.46	0.49	1.70	0.39	1.96
20	0.05	1.20	1.71	1.10	1.54	1.00	1.68	0.90	1.83	0.79	1.99
2727	0.01	0.95	1.15	0.86	1.27	0.77	1.41	0.68	1.57	0.60	1.74
25	0.05	1.29	1.45	1.21	1.55	1.12	1.66	1.04	1.77	0.95	1.89
2 72 75 7	0.01	1.05	1.21	0.98	1.30	0.90	1.41	0.83	1.52	0.75	1.65
30	0.05	1.35	1.49	1.28	1.57	1.21	1.65	1.14	1.74	1.07	1.83
	0.01	1.13	1.26	1.07	1.34	1.01	1.42	0.94	1.51	0.88	1.61
40	0.05	1.44	1.54	1.39	1.60	1.34	1.66	1.39	1.72	1.23	1.79
	0.01	1.25	1.34	1.20	1.40	1.15	1.46	1.10	1.52	1.05	1.58
50	0.05	1.50	1.59	1.46	1.63	1.42	1.67	1.38	1.72	1.34	1.77
0.50	0.01	1.32	1.40	1.28	1.45	1.24	1.49	1.20	1.54	1.16	1.59
60	0.05	1.55	1.62	1.51	1.65	1.48	1.69	1.44	1.73	1.41	1.77
	0.01	1.38	1.45	1.35	1.48	1.32	1.52	1.28	1.56	1.25	1.60
80	0.05	1.61	1.66	1.59	1.69	1.56	1.72	1.53	1.74	1.51	1.77
	0.01	1.47	1.52	1.44	1.54	1.42	1.57	1.39	1.60	1.36	1.62
100	0.05	1.65	1.69	1.63	1.72	1.61	1.74	1.59	1.76	1.57	1.78
27000	0.01	1.52	1.56	1.50	1.58	1.48	1.60	1.46	1.63	1.44	1.65

- II. Teste de Durbin-Watson: Hipóteses que fundamentam a estatística *d*:
 - O modelo de regressão inclui o intercepto.
 - Os termos de erro são gerados por um processo autoregressivo de primeira ordem.
 - O termo de erro é distribuído normalmente.
 - O modelo n\u00e3o inclui valores defasados da vari\u00e1vel dependente como uma das vari\u00e1vels explicativas.
 - As variáveis explicativas são não estocásticas.

Exemplo 6.2

Sabendo que um modelo tem 3 variáveis explicativas e 80 observações, verifique, a partir do teste de Durbin-Watson, a presença de autocorrelação em um resíduo que segue o processo

$$u_t = 0.75u_{t-1} + \varepsilon_t$$

III. Teste de Breusch-Godfrey

- Breusch e Godfrey desenvolveram um teste de autocorrelação que permite valores defasados da variável dependente como variável explicativa, esquemas autoregressivos de ordem superior a 1 e esquema de média móveis.
- Considere o seguinte modelo de regressão $Y_t = \beta_1 + \beta_2 X_t + u_t$ e que o termo de erro segue um esquema autoregressivo de ordem p:

$$u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \ldots + \rho_p u_{t-p} + \epsilon_t$$

A hipótese nula a ser testada é:

$$H_0: \rho_1 = \rho_2 = \ldots = \rho_p = 0$$

Ou seja, não há correlação serial de qualquer ordem.

III. Teste de Breusch-Godfrey

ETAPAS:

- Estime a equação de regressão por MQO e obtenha os resíduos (û_t).
- Faça a regressão \hat{u}_t contra os X_t e $\hat{u}_{t-1}, \hat{u}_{t-2}, \dots, \hat{u}_{t-p}$, que são os valores defasados dos resíduos estimados na etapa anterior.
- Note que para fazer essa regressão teremos apenas n – p observações.

$$\hat{u}_t = \alpha_1 + \alpha_2 X_t + \hat{\rho}_1 \hat{u}_{t-1} + \hat{\rho}_2 \hat{u}_{t-2} + \ldots + \hat{\rho}_p \hat{u}_{t-p} + \epsilon_t$$

Obtenha o R² dessa regressão auxiliar.

III. Teste de Breusch-Godfrey

ETAPAS:

Breusch e Godfrey propuseram a estatística de teste

$$BG = (n - p)R^2,$$

se o tamanho da amostra for grande $BG \sim \chi_p^2$

- Rejeitamos a hipótese nula, de que pelo menos um ρ é diferente de zero, se BG excede o valor crítico da qui-quadrado no nível de significância escolhido.
- Para encontrar o valor de p é necessário recorrer aos gráficos de autocorrelação e autocorrelação parcial bem como aos critérios de seleção, como o de Akaike e o de Schwarz.

Bibliotecas:

```
library(foreign)
library(dynlm)
library(lmtest)
```

Definindo os dados como ST:

```
tsdata=ts(dados, start=2000)
```

Teste Durbin Watson:

```
dwtest (ajuste)
```

Teste Breusch-Godfrey:

```
bgtest(ajuste, order=2)
```

Exemplo 6.3

Considere o banco de dados "phillips" (wooldridge) do R. A Curva Phillips é usada para explicar a alteração percentual no IPC (inf) a partir da taxa de desemprego (%) (unem).

- Obtenha um ajuste para a curva de Phillips.
- Faça o gráfico dos resíduos x ano. O que você pode concluir?
 Que outro gráfico é possível construir para verificar a presença de autocorrelação?
- Utilize os testes de Durbin Watson e Breusch-Godfrey para testar a presença de autocorrelação. O que você pode concluir?
- A curva de Phillips também é utilizada considerando a primeira diferença da variável "inf" (use "d(inf)" no R). O que você pode concluir? alguma modificação no que se refere a autocorrelação?

Exemplo 6.3:

O que fazer na presença de autocorrelação?

- Verificar se é um caso de autocorrelação pura e não consequência de especificação incorreta do modelo (exclusão de variáveis importantes ou forma funcional incorreta).
- Usar o método de mínimos quadrados generalizados:
 Transformar o modelo de modo que o modelo transformado não contenha o problema de autocorrelação pura.
- Em grandes amostras, usar o método de Newey-West para obter erros padrão corrigidos para a autocorrelação. Esse método é similar aos erros padrão consistentes para heterocedasticidade de White.
- Se a amostra for relativamente pequena e o ρ não for alto é possível utilizar o método de MQO.

NESSE PROCESSO DE OBTENÇÃO DE DIFERENÇÃO, UMA DESCRUPÇÃO, OU SESA, TENOS Yt a Xt para t=2131 ..., 10, MAS 1000 tous Y's X'. SE m é GRANDE, FODENOS REOCEDER À ESTIMA ÇÃO COM BASE EM (M-1) OBSERVAÇÕES, MAS O ESTIMPTOR RESULTANTE NOD E MAS O MECHOS Estimados Lineas não tembencioso de 1406.

PARA OBTER O EMOG DEVENOS TRANSFORME A PRIMEIA OBSCEVAÇÃO DE FORMA DE SEU ERRO TRANSFORMADO TENHA A MESHA VARIANCA Ox os EROS (Ez, Ez,..., En) TEMOS QUE 1= B1+B2 x + U1, COM VAX (U)= $\delta_u = \delta_E^2/(n-p^2)$. PORA OBJER UNIV VARIANCIA DE SARO DE δ_E^2 , VAMOS MULTIPLICA イロトイ団トイミト イミト 草 めなべ

$$\sqrt{(1-p^2)} y_n = \sqrt{(1-p^2)} \beta_1 + \sqrt{(1-p^2)} \beta_2 x_n + \sqrt{(1-p^2)} u_1$$
 $y_n^{\dagger} = \beta_1^{\dagger} + \beta_2^{\dagger} x_n^{\dagger} + u_1^{\dagger}$
 $VAe(ut) = VAe(\sqrt{(1-p^2)} u_1) = (1-p^2) \times \sqrt{e^2}$
 $VAR(ut) = 6e^2$

PERSONAL: E SE O P FOR DESCRIPTION?

PERSONNA: E SE O P FOR

RESPOSIA: VAMOS VEZ ALGUMAS POSSIBILIDA

() USANDO OS RESÍDUOS, CONSIDERADO QUE O PROCESSO ARCA) É VÁLIDO.

EN ONE THE SÃO OS RESTIDOS DETIDOS NA EO. ORIGINAL E HE É O TERMO DE GREO.

ASSIM, USANDO MQO

P = \(\frac{\infty}{\infty} \text{Uz-1} \)

ii) usanto A Estatística de Durbin-Waron

$$\hat{p} \approx 1 - \frac{d}{a}$$

MÉTODO DE NEWEY-WEST

- É uma extensão dos erros robustos de White.
- Corrige para autocorrelação e heterocedasticidade
- Válido para grandes amostras.

RESUMO

- 1) Se violarmos a hipótese de que os erros não são correlacionados, teremos autocorrelação serial.
- 2) Devido à diversidade de fontes, convém distinguir autocorrelação e viés de variáveis omitidas.
- 3) A autocorrelação causa ineficiência nos estimadores de MQO, apesar de não causar viés e inconsistência. Por isso, os testes t e F podem não ser legítimos.
- 4) A correção depende da natureza do problema e do conhecimento sobre o processo gerador do erro.

No R

Bibliotecas:

```
library(foreign)
library(dynlm)
library(car)
library(orcutt)

\item Usando MQG:
cochrane.orcutt(ajuste)
```

Usando o método de Newey-West:

```
library(sandwich)
coeftest(ajuste, vcovHAC)
```

Exemplo 6.4:

Considere o banco de dados "prminwge" (wooldridge) do R. O interesse é modelar a taxa de emprego (prepop), a partir do salário mínimo (mincov), bem como do PNB (produto Nacional Bruto - estimativa do valor total de todos os produtos e serviços finais produzidos em um determinado período pelos meios de produção pertencentes aos residentes de um país) em Porto Rico (prgnp) e nos EUA (usgnp).

- Obtenha um ajuste considerando os logaritmos das variáveis e acrescente a tendência como variável (No R use "trend(tsdata)").
- Verifique através das técnicas vistas em sala se existe autocorrelação nos resíduos?. O que você pode concluir?
- Utilize o método de Newey-West para obter erros padrões consistentes. O que você pode concluir??

Exemplo 6.4: