Imagine maps: $\operatorname{Map}_*^G(A,B)$ where $A,B\in\operatorname{Top}_*^G$. If $X\in\operatorname{Top}_*$ and $Y\in\operatorname{Top}$, we can form the spectra: $\Sigma^\infty X, \Sigma_+^\infty Y$ Theorem 1 (Pythagoras). $a^2+b^2=c^2$. $Proof. \text{ Trivial} \qquad \qquad \square$ Lemma 2 (Zorn's Lemma). An poset $P\in\operatorname{Poset}$ where all chains are bounded above has a maximal element. $Proof. \text{ Axiom of choice.} \qquad \qquad \square$ Proposition 3. $\sqrt[3]{2}$ is not a rational number. $Proof. \text{ Suppose it was. Then, there will be two integers } a,b\in\mathbb{Z} \text{ such that } a^3+a^3=b^3. \text{ We will need the following:}$

solutions when $n \geq 3$. Proof. Trivial [Theorem 4] \square

Theorem 4 (Fermat's Last Theorem, due to Andrew Wiles). The equation $a^n + b^n = c^n$ has no integer

We see that $\sqrt[3]{2}$ being rational produces a contradiction to Fermat's Last Theorem. Therefore, it must be irrational. [Proposition 3] \square

Remark 5 (Jordan curve theorem). It happens

Proof. Duh \Box