a_1, a_2, \dots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in *G* then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k).$$

Theorem 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

function on
$$G^-$$
 which is analytic in G . Then
$$\max\{|f(z)|: z \in G^-\} = \max\{|f(z)|: z \in \partial G\}.$$

 $\max\{|f(z)|: z \in G^-\} = \max\{|f(z)|: z \in \partial G\}.$

ΑΛΔ∇ΒCDΣΕΓΓGHIJKLMNΟΘΩΌΡΦΠΞQRSTUVWXΥΥΨΖ $aab\beta c\partial d\delta e\epsilon ef \zeta \xi g \gamma h\hbar \hbar i i i j j k κ x l l \lambda m n η θ θ ο σ ς φ φρρρ q r s t τ π u μ ν ν υ w ω ω x γ γ ψ z <math>\infty$ € őb⊗0