AYUDANTÍA 4: Introducción a la Búsqueda

Benjamín Pizarro - Jaime Moreno

CONTENIDOS

- 1. Qué es Buscar
- 2. Definición Formal
- 3. Ejemplo: Puzzle 8
- 4. Algoritmos
- 5. Problema Adicional

¿QUÉ ES BUSCAR?

Y FORMALMENTE...

- Estado (s): Configuración específica de un sistema.
- Acción (a): Función que hace pasar al sistema de un estado a otro.
- Conjunto de acciones (A): Todas las acciones posibles.
- Espacio de Búsqueda (S): Conjunto de todos los estados posibles.
- Grafo de Búsqueda: Todos los estados posibles conectados por las acciones que los unen.

¿CÓMO SE DEFINE UN PROBLEMA DE BÚSQUEDA?

- G es un subconjunto de S con los estados objetivo.
- s_init el estado inicial.
- Un problema de búsqueda es…

$$(S, A, s_{init}, G)$$

UN CASO CLÁSICO: EL PUZZLE DE 8

1	2	3
4		6
7	8	5

PROBLEMA DE BÚSQUEDA (S, A, S_INIT, G)

- \circ S = conjunto de estados
- \circ \mathcal{A} = conjunto de acciones
- o S_{init} = estado inicial
- G = conjunto de estados finales

1	2	3		1	2
4		6	3	4	5
7	8	5	6	7	8

Estado inicial

Estado final ∈ G

¿CUÁLES SON LAS ACCIONES, CUÁLES LOS ESTADOS?

¿CUÁLES SON LAS ACCIONES, CUÁLES LOS ESTADOS?

GRAFO DE BÚSQUEDA:

ESPACIO DE BÚSQUEDA:

1		3
5	2	4
6	7	8

1	3	
5	2	4
6	7	8

1	2	3
5		4
6	7	8

1	2	3
5	4	8
6	7	

1	2	3
	5	4
6	7	8

1	2	3
5	4	
6	7	8

1	2	3
5	7	4
6	8	

1	2	3
6	5	4
7		8

• • •

PREGUNTA: ¿CUÁL ES LA CARDINALIDAD DEL ESPACIO DE BÚSQUEDA?

¿CÓMO RESOLVER UN PROBLEMA DE BÚSQUEDA?

ALGORITMOS DE BÚSQUEDA

```
El siguiente es un algoritmo de búsqueda genérico.
Input: Un problema de búsqueda (S, A, s<sub>init</sub>, G)
Output: Un nodo objetivo
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open parent(s_{init}) = null
while Open != ∅:
       u \leftarrow Extraer(Open)
       Inserta u en Closed
      for each v \in Succ(u) \setminus (Open \cup Closed)
             parent(v) = u
             if v \in G return v
             Inserta v a Open
```

¿CUÁL ES LA DIFERENCIA ENTRE BFS Y DFS?

El siguiente es un algoritmo de búsqueda genérico. **Input:** Un problema de búsqueda (S, A, s_{init}, G) **Output:** Un nodo objetivo

Open es un contenedor vacío Closed es un conjunto vacío Inserta s_{init} a Open parent(s_{init}) = null while Open != ∅: u ← Extraer(Open) Inserta u en Closed **for each** $v \in Succ(u) \setminus (Open \cup Closed)$ parent(v) = uif $v \in G$ return vInserta v a Open

La estructura de datos que se utiliza para mantener Open

¿CUÁL ES LA DIFERENCIA ENTRE BFS Y DFS?

¿CUÁL ES LA DIFERENCIA ENTRE BFS Y DFS?


```
El siguiente es un algoritmo de búsqueda genérico.
Input: Un problema de búsqueda (S, A, s<sub>init</sub>, G)
Output: Un nodo objetivo
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open parent(s_{init}) = null while Open != \varnothing:
       u \leftarrow Extraer(Open)
       Inserta u en Closed
       for each v \in Succ(u) \setminus (Open \cup Closed)
               parent(v) = u
               if v \in G return v
```

Inserta v a Open

Closed:{}
Open:{}
Goal:{10}

```
El siguiente es un algoritmo de búsqueda genérico.
Input: Un problema de búsqueda (S, A, s<sub>init</sub>, G)
Output: Un nodo objetivo
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open parent(s_{init}) = null while Open != \varnothing:
       u \leftarrow Extraer(Open)
       Inserta u en Closed
       for each v \in Succ(u) \setminus (Open \cup Closed)
              parent(v) = u
              if v \in G return v
              Inserta v a Open
```



```
Closed:{}
Open:{1}
Goal:{10}
```

```
El siguiente es un algoritmo de búsqueda genérico.
Input: Un problema de búsqueda (S, A, s<sub>init</sub>, G)
Output: Un nodo objetivo
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open parent(s_{init}) = null while Open != \varnothing:
       u \leftarrow Extraer(Open)
       Inserta u en Closed
       for each v \in Succ(u) \setminus (Open \cup Closed)
               parent(v) = u
               if v \in G return v
              Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico.
Input: Un problema de búsqueda (S, A, s<sub>init</sub>, G)
Output: Un nodo objetivo
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open parent(s_{init}) = null while Open != \varnothing:
       u \leftarrow Extraer(Open)
       Inserta u en Closed
       for each v \in Succ(u) \setminus (Open \cup Closed)
               parent(v) = u
               if v \in G return v
              Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico.
Input: Un problema de búsqueda (S, A, s<sub>init</sub>, G)
Output: Un nodo objetivo
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open parent(s_{init}) = null
while Open != ∅:
      u \leftarrow Extraer(Open)
      Inserta u en Closed
      for each v \in Succ(u) \setminus (Open \cup Closed)
             parent(v) = u
             if v \in G return v
             Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico.
Input: Un problema de búsqueda (S, A, s<sub>init</sub>, G)
Output: Un nodo objetivo
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open parent(s_{init}) = null
while Open != ∅:
      u \leftarrow Extraer(Open)
      Inserta u en Closed
      for each v \in Succ(u) \setminus (Open \cup Closed)
             parent(v) = u
             if v \in G return v
             Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico.
Input: Un problema de búsqueda (S, A, s<sub>init</sub>, G)
Output: Un nodo objetivo
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open parent(s_{init}) = null
while Open != ∅:
      u \leftarrow Extraer(Open)
      Inserta u en Closed
      for each v \in Succ(u) \setminus (Open \cup Closed)
             parent(v) = u
             if v \in G return v
             Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico.
Input: Un problema de búsqueda (S, A, s<sub>init</sub>, G)
Output: Un nodo objetivo
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open parent(s_{init}) = null
while Open != ∅:
      u \leftarrow Extraer(Open)
      Inserta u en Closed
      for each v \in Succ(u) \setminus (Open \cup Closed)
             parent(v) = u
             if v \in G return v
             Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico. Input: Un problema de búsqueda (S, A,s_{init}, G) Output: Un nodo objetivo

Open es un contenedor vacío Closed es un conjunto vacío Inserta s_{init} a Open parent(s_{init}) = null while Open != \varnothing:
```

u \leftarrow Extraer(Open) Inserta u en Closed for each $v \in Succ(u) \setminus (Open \cup Closed)$ parent(v) = uif $v \in G$ return vInserta v a Open

Closed:{}
Open:{}
Goal:{10}

```
El siguiente es un algoritmo de búsqueda genérico. Input: Un problema de búsqueda (S, A, s<sub>init</sub>, G) Output: Un nodo objetivo
```

```
Open es un contenedor vacío Closed es un conjunto vacío Inserta s_{init} a Open parent(s_{init}) = null while Open != \varnothing:

u \leftarrow \text{Extraer}(Open)
Inserta u en Closed
for each v \in \text{Succ}(u) \setminus (Open \cup Closed)

parent(v) = u
if v \in G return v
Inserta v a Open
```



```
Closed:{}
Open:{1}
Goal:{10}
```

```
El siguiente es un algoritmo de búsqueda genérico. Input: Un problema de búsqueda (S, A,s_{init}, G) Output: Un nodo objetivo
```

```
Open es un contenedor vacío Closed es un conjunto vacío Inserta s_{init} a Open parent(s_{init}) = null while Open != \varnothing:

u \leftarrow \text{Extraer}(Open)
Inserta u en Closed for each v \in \text{Succ}(u) \setminus (Open \cup Closed)
parent(v) = u
if v \in G return v
Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico. Input: Un problema de búsqueda (S, A ,s_{init}, G) Output: Un nodo objetivo
```

```
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open
parent(s_{init}) = null
while Open != \varnothing:
u \leftarrow \text{Extraer}(Open)
Inserta u en Closed
for each v \in \text{Succ}(u) \setminus (Open \cup Closed)
parent(v) = u
if v \in G return v
Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico. Input: Un problema de búsqueda (S, A ,s_{init}, G) Output: Un nodo objetivo
```

```
Open es un contenedor vacío
Closed es un conjunto vacío
Inserta s_{init} a Open
parent(s_{init}) = null
while Open != \varnothing:
u \leftarrow \text{Extraer}(Open)
Inserta u en Closed
for each v \in \text{Succ}(u) \setminus (Open \cup Closed)
parent(v) = u
if v \in G return v
Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico. Input: Un problema de búsqueda (S, A,s_{init}, G) Output: Un nodo objetivo
```

```
Open es un contenedor vacío Closed es un conjunto vacío Inserta s_{init} a Open parent(s_{init}) = null while Open != \varnothing:

u \leftarrow \text{Extraer}(Open)
Inserta u en Closed for each v \in \text{Succ}(u) \setminus (Open \cup Closed)
parent(v) = u
if v \in G return v
Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico. Input: Un problema de búsqueda (S, A ,s_{init}, G) Output: Un nodo objetivo
```

```
Open es un contenedor vacío Closed es un conjunto vacío Inserta s_{init} a Open parent(s_{init}) = null while Open != \varnothing:

u \leftarrow \text{Extraer}(Open)
Inserta u en Closed for each v \in \text{Succ}(u) \setminus (Open \cup Closed)
parent(v) = u
if v \in G return v
Inserta v a Open
```



```
El siguiente es un algoritmo de búsqueda genérico. Input: Un problema de búsqueda (S, A ,s_{init}, G) Output: Un nodo objetivo
```

```
Open es un contenedor vacío Closed es un conjunto vacío Inserta s_{init} a Open parent(s_{init}) = null while Open != \varnothing:

u \leftarrow \text{Extraer}(Open)
Inserta u en Closed
for each v \in \text{Succ}(u) \setminus (Open \cup Closed)
parent(v) = u
if v \in G return v
Inserta v a Open
```


Closed: {1,4,8,3,7,6}

Open:{2,9}
Goal:{10}

RETORNAMOS NODO 10

IDDFS

www.educba.com

DIJKSTRA

iVAYAMOS AL NOTEBOOK!

OTRO EJEMPLO...

UN EJEMPLO:

NOS VAMOS A CENTRAR EN UNA SOLA PIEZA:

Ejemplo de u

¿CÓMO SE MUEVE?

BUSCAR UN CAMINO PARA EL CABALLO, DADOS DOS CUADROS DEL TABLERO