RELATÓRIO TÉCNICO - VIII DESAFIO EM CIÊNCIAS DE DADOS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

Implementação de Agente A2C para Trading com Interface Interativa Streamlit

Grupo: Nulos e Vazios

Amaury Cordeiro Junior

Andrei Ferreira Inomata

Guilherme Magalhães Lima

Sofia Souza Costa

Resumo

Este trabalho apresenta o desenvolvimento e a implementação de um agente de trading automatizado baseado no algoritmo de aprendizado por reforço A2C (Advantage Actor-Critic), integrado a uma interface gráfica interativa construída com Streamlit. O sistema é projetado para tomar decisões de compra, venda ou manutenção de posições em ativos financeiros, utilizando dados históricos de cotações fornecidos em formato CSV. A metodologia abrange o pré-processamento dos dados, a engenharia de features com indicadores técnicos (SMA, RSI, OBV) calculados manualmente, a criação de um ambiente de negociação personalizado herdando de `gym-anytrading`, o treinamento do agente A2C utilizando `Stable Baselines3`, e sua subsequente avaliação em dados não vistos. A interface Streamlit permite ao usuário carregar seus dados, selecionar tickers, definir parâmetros de simulação como investimento inicial e duração do treinamento, e visualizar os resultados através de gráficos de simulação, métricas de lucro (percentual e monetário) e tabelas qualitativas. O projeto visa oferecer uma ferramenta prática para experimentação e análise de estratégias de trading baseadas em aprendizado por reforço, no contexto do VIII Desafio em Ciência de Dados - Investe.Al.

1. Introdução e Objetivos

Este trabalho detalha o desenvolvimento, treinamento e avaliação de um agente de trading automatizado que utiliza o algoritmo de aprendizado por reforço A2C (Advantage Actor-Critic). Uma componente chave do projeto é a criação de uma interface gráfica interativa com Streamlit, que facilita a análise de desempenho e a experimentação com diferentes ativos. O sistema foi concebido para o VIII Desafio

em Ciência de Dados - Investe.Al, cujo tema é "Investe.Al Sua IA, Seu Bot, Sua Estratégia".

O objetivo principal consiste em criar um agente capaz de aprender estratégias de trading a partir de dados históricos de mercado e demonstrar sua eficácia em simulações. Especificamente, o agente deve ser capaz de processar dados de cotações, utilizar indicadores técnicos para embasar suas decisões, e aprender uma política de negociação que maximize uma função de recompensa relacionada ao lucro. A interface Streamlit visa tornar o processo de teste e avaliação transparente e acessível, permitindo a visualização do comportamento do agente e de suas métricas de desempenho para diferentes tickers. Utilizamos dados históricos fornecidos em formato CSV, com o sistema dividindo os dados de cada ticker em conjuntos de treinamento e avaliação para testar a generalização do modelo.

2. Fundamentação Teórica

2.1 Aprendizado por Reforço (RL)

O Aprendizado por Reforço é um paradigma de aprendizado de máquina onde um agente aprende a tomar uma sequência de decisões interagindo com um ambiente para atingir um objetivo. O agente recebe feedback na forma de recompensas (positivas ou negativas) por suas ações e aprende, por tentativa e erro, uma política (estratégia) que maximiza a recompensa total esperada a longo prazo. Componentes chave do RL incluem o agente, o ambiente, o estado (uma representação da situação atual do ambiente), as ações (decisões que o agente pode tomar) e a função de recompensa. No contexto de robôs de trading, o mercado financeiro é o ambiente, os dados de mercado (preços, volumes, indicadores) compõem o estado, as ações são comprar/vender/manter, e as recompensas são baseadas nos resultados financeiros.

2.2 Advantage Actor-Critic (A2C)

O A2C é um algoritmo popular de aprendizado por reforço do tipo "on-policy" e "actor-critic". Ele possui duas redes neurais principais: o **Ator (Policy Network)**, que aprende a política (qual ação tomar em um determinado estado), e o **Crítico (Value Network)**, que aprende a função de valor (estima quão bom é estar em um determinado estado ou tomar uma determinada ação). O A2C utiliza a "função de vantagem" – a diferença entre o retorno real obtido e o valor estimado pelo crítico – para guiar as atualizações de ambas as redes, promovendo um aprendizado mais

estável e eficiente. Para este projeto, utilizamos a implementação do A2C fornecida pela biblioteca `Stable Baselines3`.

2.3 Gymnasium, gym-anytrading e Streamlit

- * **Gymnasium:** Sucessor do OpenAl Gym, é uma biblioteca padrão que fornece uma interface comum para o desenvolvimento e comparação de algoritmos de aprendizado por reforço, definindo a estrutura básica de interação entre agente e ambiente.
- * **gym-anytrading:** É uma biblioteca que estende o Gymnasium para criar ambientes especificamente voltados para a simulação de trading de ações e outros instrumentos financeiros. Ela gerencia aspectos como o estado da carteira, cálculo de lucros e o processamento de dados de séries temporais financeiras.
- * **Streamlit:** É um framework Python open-source que permite criar e compartilhar aplicativos web interativos para projetos de dados e aprendizado de máquina com poucas linhas de código, facilitando a visualização e a interação com os modelos.

3. Metodologia

3.1 Estrutura do Código e Ambiente de Desenvolvimento

A implementação foi realizada integralmente em Python, utilizando o Google Colab como ambiente de desenvolvimento e execução. O código foi modularizado em dois arquivos principais:

- * `backtesting_engine.py`: Contém a lógica central de processamento de dados, cálculo de indicadores, definição do ambiente de RL, treinamento do modelo A2C e sua avaliação.
- * `app_streamlit_online.py`: Responsável pela criação da interface gráfica do usuário (GUI) com Streamlit, que interage com o `backtesting_engine.py` para executar análises e exibir resultados.

As bibliotecas chave incluem `pandas` e `numpy` para manipulação de dados, `matplotlib` para gráficos, `gymnasium` e `gym-anytrading` para o ambiente de RL, `Stable Baselines3` para o algoritmo A2C, e `Streamlit` para a interface. `pyngrok` é utilizado para expor a aplicação Streamlit do Colab na web.

3.2 Preparação e Análise dos Dados

Os dados históricos de ativos financeiros são carregados a partir de um arquivo CSV fornecido pelo usuário. O processo para cada ticker selecionado envolve:

- 1. **Carregamento e Filtragem:** O DataFrame principal é carregado, e os dados são filtrados para o `Ticker` específico.
- 2. **Indexação e Limpeza:** A coluna `Date` é convertida para datetime e definida como índice. As colunas OHLCV (Open, High, Low, Close, Volume) são convertidas para tipo numérico, e valores ausentes são tratados por preenchimento (`ffill`, `bfill`).
- 3. **Engenharia de Features:** Os seguintes indicadores técnicos são calculados manualmente:
- ***SMA (Média Móvel Simples):** Período de 12 dias sobre o preço de fechamento.
 - ***RSI (Índice de Força Relativa):** Período de 14 dias.
 - ***OBV (On-Balance Volume):** Baseado no preço de fechamento e volume.

Os valores NaN resultantes (no início da série) são preenchidos com 0.

3.3 Ambiente de Trading Personalizado

Uma classe `MyCustomEnv` foi criada, herdando de `StocksEnv` (`gymanytrading`), para integrar nossos indicadores ao estado observado pelo agente.

- * **Função `add_signals`:** Processa o DataFrame do ticker, selecionando `Low`, `Volume`, `SMA`, `RSI` e `OBV` para compor a observação do agente.
- * **Estado:** Uma janela (`window_size`) dos dados de preço e indicadores mais recentes.
- * **Ações:** Comprar, vender ou manter a posição.
- * **Recompensa:** Baseada no lucro/prejuízo percentual das operações, conforme definido pelo `gym-anytrading`.

3.4 Arquitetura de Rede e Algoritmo

O agente de trading utiliza o modelo ****A2C**** de `Stable Baselines3` com a política padrão `MlpPolicy` (Perceptron Multicamadas). Esta rede neural mapeia o estado do ambiente (observações) para uma distribuição de probabilidade sobre as ações possíveis.

3.5 Processo de Treinamento

Para cada ticker:

- 1. **Divisão dos Dados:** Os dados são divididos em conjuntos de treinamento (ex: 70%) e avaliação (ex: 30%).
- 2. **Ambiente de Treino:** Uma instância de `MyCustomEnv` é criada com os dados de treinamento.
- 3. **Treinamento:** O modelo A2C é treinado (`model.learn()`) por um número de `total_timesteps` definido pelo usuário.

3.6 Teste e Avaliação

- 1. **Ambiente de Avaliação:** Uma instância de `MyCustomEnv` é criada com os dados de avaliação.
- 2. **Execução:** O agente treinado opera de forma determinística no ambiente de avaliação.
- 3. **Métricas:** `total_reward` e `total_profit` (lucro percentual) são coletados.
- 4. **Lucro em R\$:** Calculado multiplicando o `total_profit` pelo "Valor de Investimento Inicial (R\$)" fornecido pelo usuário.
- 5. **Visualização:** Um gráfico Matplotlib é gerado mostrando as operações.

4. Resultados e Análises

4.1 Métricas de Desempenho

O sistema reporta, para cada ticker analisado através da interface Streamlit:

- * **Lucro/Prejuízo (%):** Resultado percentual no período de avaliação.
- * **Lucro/Prejuízo (R\$):** Estimativa monetária baseada no investimento inicial definido.
- * **Recompensa Total do Agente:** Soma das recompensas do agente na avaliação.

* **Tabela Qualitativa:** Resumo incluindo ticker, investimento, recompensas, lucros e status do treinamento.

4.2 Visualização de Resultados com Streamlit (`app_streamlit_online.py`)

A interface Streamlit é o principal meio de interação e visualização:

- * **Carregamento de Dados e Configuração:** Permite upload de CSV, seleção de ticker, definição de investimento inicial e timesteps de treinamento.
- * **Modos de Análise:** Suporta análise de um ticker individual ou de todos os tickers do arquivo em lote, com barra de progresso para o último.

* **Exibição Detalhada por Ticker:**

- * Gráfico da simulação de avaliação com operações de compra (verde) e venda (vermelho).
 - * Métricas financeiras destacadas (lucro %, lucro R\$).
 - * Tabela qualitativa com resumo.
 - * Logs de processamento detalhados.
- * **Resumo Geral:** Se múltiplos tickers são analisados, uma tabela comparativa de performance e métricas agregadas (lucro médio, lucro total R\$) são apresentadas.
- * **Acesso Remoto (Colab):** A aplicação é exposta via `ngrok` para acesso por navegador.

4.3 Análise Crítica dos Resultados Simulados

As simulações conduzidas através da interface Streamlit indicam que o modelo A2C, alimentado com os indicadores SMA, RSI e OBV, é capaz de aprender estratégias de negociação que podem resultar em lucratividade em dados de avaliação não vistos. O desempenho varia consideravelmente entre diferentes tickers, refletindo as dinâmicas únicas de cada ativo. Por exemplo, em testes anteriores, observamos tickers com lucros percentuais expressivos e alinhamento positivo com a recompensa do agente, enquanto outros apresentaram lucros financeiros com recompensas de agente menos otimizadas, sugerindo que a função de recompensa padrão do ambiente pode nem sempre capturar perfeitamente o objetivo de maximização de lucro monetário em todos os contextos. A flexibilidade da interface Streamlit permite a rápida iteração e teste desses cenários, facilitando a identificação de ativos onde a estratégia se mostra

mais promissora e a observação do comportamento do agente. A sensibilidade aos `total_timesteps` de treinamento e ao valor de investimento inicial (para cálculo do lucro em R\$) também são aspectos observáveis através da ferramenta.

5. Pontos Fortes e Limitações

5.1 Pontos Fortes

- * **Aprendizado Autônomo:** O A2C aprende estratégias sem regras explícitas, adaptando-se aos padrões dos dados.
- * **Interface Interativa e Visual:** O Streamlit facilita o uso, configuração de simulações e interpretação dos resultados, mesmo para usuários com menos conhecimento técnico em RL.
- * **Engenharia de Features Transparente:** O uso de indicadores técnicos conhecidos (SMA, RSI, OBV) torna a base de decisão do agente mais compreensível.
- * **Modularidade:** A separação entre o motor de backtesting (`backtesting_engine.py`) e a interface (`app_streamlit_online.py`) promove organização e facilita futuras manutenções.
- * **Flexibilidade:** Capacidade de analisar diferentes tickers de um mesmo arquivo de dados.

5.2 Limitações e Possíveis Melhorias

- * **Realismo da Simulação:** O ambiente `gym-anytrading` padrão não inclui custos de transação (corretagem, taxas) ou *slippage*, o que pode levar a uma visão otimista dos lucros.
- * **Risco de Overfitting:** A estratégia aprendida pode ser excessivamente ajustada aos dados de treinamento. Validações mais robustas (ex: walk-forward) são recomendadas.
- * **Sensibilidade a Hiperparâmetros:** O desempenho de modelos de RL é sensível à configuração de hiperparâmetros (ex: `total_timesteps`, arquitetura da rede, taxa de aprendizado).

- * **Função de Recompensa:** A recompensa padrão pode não ser ideal. Explorar funções que incorporem risco (ex: Sharpe Ratio) ou penalizem excesso de trades poderia ser benéfico.
- * **Features Adicionais:** A inclusão de mais indicadores técnicos, dados fundamentalistas ou análise de sentimento poderia aprimorar o modelo.
- * **Desempenho no Colab para Lotes Grandes:** O treinamento sequencial de muitos tickers via Streamlit no Colab pode ser demorado e sujeito a timeouts da sessão. Uma arquitetura de processamento offline para análises em larga escala seria mais eficiente.

6. Conclusão

Este projeto demonstrou com sucesso a viabilidade da implementação de um agente de trading baseado no algoritmo A2C, complementado por uma interface gráfica interativa desenvolvida com Streamlit. O sistema permite o carregamento de dados de mercado, o treinamento de modelos de aprendizado por reforço para tickers específicos e a visualização detalhada do desempenho simulado. Os resultados indicam que o agente pode aprender estratégias lucrativas para certos ativos, e a interface facilita a exploração e análise desses resultados.

Apesar das limitações inerentes a simulações e ao escopo do projeto, a combinação de `Stable Baselines3` para o RL e `Streamlit` para a interface provou ser uma abordagem poderosa para a prototipagem e experimentação no campo do trading algorítmico. As direções para trabalhos futuros incluem o refinamento do ambiente de simulação, a exploração de funções de recompensa mais sofisticadas e a validação extensiva da estratégia em diferentes condições de mercado e com um conjunto mais amplo de features. O sistema desenvolvido cumpre o objetivo de fornecer uma ferramenta prática para o estudo e aplicação de IA no domínio financeiro, alinhado com o espírito do VIII Desafio em Ciência de Dados - Investe.Al.

7. Referências

- * Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., ... & Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In *International conference on machine learning* (pp. 1928-1937). PMLR. (Referência para A2C/A3C)
- * Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021). Stable-Baselines3: Reliable Reinforcement Learning Implementations. *Journal of Machine Learning Research, 22*(268), 1-8.
- * Documentação do Gymnasium: https://gymnasium.farama.org/
- * Repositório `gym-anytrading` (Adam King): https://github.com/AminHP/gym-anytrading (ou o fork/versão utilizada)
- * Documentação do Streamlit: https://docs.streamlit.io/
- * Documentação do Pandas: https://pandas.pydata.org/pandas-docs/stable/
- * Documentação do NumPy: https://numpy.org/doc/
- * Documentação do Matplotlib: https://matplotlib.org/stable/contents.html

8. Apêndice: Configuração de Reprodutibilidade

O desenvolvimento foi realizado em Python, primariamente utilizando o ambiente Google Colaboratory. As versões das bibliotecas são gerenciadas pelo comando `!pip install ... --upgrade` no Colab, que busca as versões estáveis mais recentes no momento da execução. Para garantir reprodutibilidade estrita em experimentos futuros, seria recomendado fixar as versões das bibliotecas em um arquivo `requirements.txt`.

A biblioteca `Stable Baselines3` permite a configuração de uma `seed` (semente aleatória) durante a inicialização do modelo A2C (ex: `A2C('MlpPolicy', ..., seed=42)`). Embora não tenhamos implementado uma `seed` global fixa em todas as iterações de desenvolvimento dos scripts para este guia, essa é uma prática crucial para garantir que os resultados do treinamento do modelo de RL sejam exatamente reprodutíveis. A preparação dos dados e a estrutura do ambiente, conforme descritas, contribuem para a reprodutibilidade conceitual da abordagem.