ETSETB

Enginyería de Telecomunicació

CISE IV

Qüadrimestre Primavera 2003 11 de Juny de 2003

Notes provisionals: 20/06/2003

Límit al·legacions: 25/06/2003 a les 14 hores

Notes definitives: 27/06/2003

S'ha de respondre en els mateixos fulls. No es poden entregar fulls addicionals

Temps: 3 hores

PROBLEMA 1 (25%)

Tenim un microprocessador amb una interfície semblant al 68000. Es a dir, disposa d'un bus de dades de 16 bits i d'un bus d'adreces de 24 bits peró el bit A₀ no és accessible desde l'exterior.

Es vol configurar un sistema de memòria extern d'acord amb el diagrama que apareix a continuació. El tamany de la memòria SRAM es de 256 Kwords i el de la memòria ROM de 256 Kbytes.

1) Determinar el nombre de línies que s'han de connectar a la interficie d'adreçament de les memòries SRAM (quin es el valor de n?) (10%)

n =

2) Ídem amb les memòries ROM (quin es el valor de m?) (10%)

 $\mathbf{m} =$

3) Si ens fixem ara en la interfície del microprocessador, determinar quines línies s'han de connectar tant pel cas de les memòries SRAM com pel de les ROM (valors de X i Y per cada cas) (15%)

SRAM: $\mathbf{X} = \mathbf{Y} =$

ROM: X = Y =

4) Volem ubicar la memòria ROM a la part més baixa del mapa (a partir de la posició 000000_H). Entre quines adreces es trobarà exactament? (10%)

5) Realitzar una descodificació senzilla, i de tal manera que tinguem 4 zones mirall contigües de la memòria ROM. Especifiqueu clarament les 4 ubicacions. (10%)

Ubicacions zones mirall:

6) Ídem per la memòria SRAM, però tenint en compte que no hi ha d'haver cap zona mirall, i que ha de situar-se a la part més alta del mapa de memòria. Quina és la ubicació exacta? (10%)

Ubicació:

Esquema de la descodificació de la SRAM i de la ROM (35%)

PROBLEMA 2 (30%)

A la següent figura tenim el cronograma de lectura de dades del μC 8051.

Figura 1

Parameter	Symbol	Limit Values				Unit
	18	18 MH	z Clock	Variable Clock 1/t _{CLCL} = 3.5 MHz to 18 MHz		
		min.	max.	min.	max.	
Address setup to ALE	t _{AVLL}	26	-	t _{CLCL} - 30	_	ns
RD pulse width	t _{RLRH}	233	-	6 t _{CLCL} – 100	_	ns
WR pulse width	t _{WLWH}	233	_	6 t _{CLCL} – 100	_	ns
Address hold after ALE	t _{LLAX2}	81	-	2 t _{CLCL} - 30	_	ns
RD to valid data in	t _{RLDV}	-	128	_	5 t _{CLCL} – 150	ns
Data hold after RD	t _{RHDX}	0	-	0	_	ns
Data float after RD	t _{RHDZ}	-	51	_	2 t _{CLCL} - 60	ns
ALE to valid data in	t _{LLDV}	-	294	_	8 t _{CLCL} - 150	ns
Address to valid data in	t _{AVDV}	-	335	_	9 t _{CLCL} – 165	ns
ALE to WR or RD	t _{LLWL}	117	217	3 t _{CLCL} - 50	3 t _{CLCL} +50	ns
WR or RD high to ALE high	t _{WHLH}	16	96	t _{CLCL} - 40	t _{CLCL} +40	ns
Address valid to WR	t _{AVWL}	92	_	4 t _{CLCL} – 130	_	ns
Data valid to WR transition	t _{QVWX}	11	-	t _{CLCL} - 45	_	ns
Data setup before WR	t _{QVWH}	239	-	7 t _{CLCL} – 150	_	ns
Data hold after WR	t _{WHQX}	16	_	t _{CLCL} - 40	_	ns
Address float after RD	t _{RLAZ}	_	0	_	0	ns

Taula 1

Aquest microcontrolador té un bus d'adreces de 16 bits, distribuït en dos ports (Port 0: [A0-A7/Bus de dades] i Port 2: [A8-A15]). El Port 0 és un port multiplexat: al principi del cicle de bus és un bus de sortida on el microcontrolador posa la part baixa del bus d'adreces (A0-A7) i després és el bus bidireccional de dades.

- A l'inici del cicle de bus l'adreça completa (A0-A15) surt per Port 0 i Port 2.
- Externament, s'utilitza un *latch* per guardar la part baixa del bus d'adreces (A0-A7).
- El *latch* és un element de memòria que és transparent (Q=Dn) quan el seu *enable* (LE) és actiu ('1') i manté l'última dada (Q_{futur}=Q_{passat}) quan *enable* (LE) és inactiu ('0').
- Com a senyal de control d'aquest latch, el microcontrolador disposa d'un senyal específic (ALE: *Address Latch Enable*) que és utilitzat com a senyal habilitador del latch.
- En el moment en que el senyal ALE fa una transició de '1' a '0', el latch emmagatzema A0-A7.

El sistema dissenyat es pot veure a la següent figura:

Figura 2

Les característiques del latch que fem servir són les següents:

	Min	Max
t_{SU}	7 ns	ı
$t_{\rm h}$	5 ns	-

	Min	Max
$t_{ m PHL}$	-	10 ns
tor u	_	10 ns

Figura 3

Les característiques temporals en lectura de la RAM utilitzada es poden veure a la següent figura.

	Min.	Max.
t_{AA}	ī	300 ns
t_{CO}	-	300 ns
toE	-	250 ns

Figura 4

Es demana:

1. Rang d'adreces ocupat per la memòria ROM. Hi ha zones imatge ? (10%)

Rang @: N° Z.I.:

- 2. Ens garanteix el microcontrolador que quan activa el senyal RD* ha deixat prèviament en alta impedància el Port 0 ? Per què ? (20%)
- 3. Si la frequència de treball del microcontrolador és de 18MHz, està complint el sistema les especificacions de *setup* i *hold* del latch ? (20%)
- 4. Quins 3 temps màxims del microcontrolador estan relacionats amb l'aparició de dada vàlida al bus de dades ? Identifiqueu els seus noms (Taula 1). (10%)
- 5. **Tenint en compte la resposta de l'apartat anterior**, quina és la frequència màxima del microcontrolador que permet accedir correctament a la RAM ? (40%)

PROBLEMA 3 (20%)

Volem comunicar dos μC V25 emulant un enllaç sèrie per *software*. Per fer-ho farem servir certs bits del port P1 tal i com s'indica a la figura 1.

Figura 1

Els bits de P1 que es fan servir per la transmissió-recepció son:

- P15 Sortida de transmissió Tx
- P16 Generació de la interrupció d'inici de transmissió ITx
- P17 Entrada de recepció Rx
- P11 Entrada INTP0* de la interrupció d'inici de transmissió

Considerant que, a més de INTP0*, el sistema fa servir (en tots dos μ C) també les interrupcions INTTU0 (*Timer* 0) INTTB (Base de temps) i INT (Externa) es demana, d'acord am la informació de la figura 2:

Configura	nciódel <i>PORT 1</i> (n=07; bits de regist			
	PMC1n=1	PMC1n=0 (mode port)		
	(mode control)	PM1n=1	PM1n=0	
P10		entrada NMI		
P11	NO PERMÉS	entrada INTPO*	NO PERMÉS	
P12		entrada INIP1*	NU PERIVIES	
P13	sortida INTAK*	entrada INTP2*		
P14	entrada INT	Port d'entrada (ent.POLL*)	Port de sortida	
P15	sortida TOUT	Port d'entrada	Port de sortida	
P16	sortida SCK0*	Port d'entrada	Port de sortida	
P17	entrada READY	Port d'entrada	Port de sortida	

Figura 2

Full de respostes del PROBLEMA 3

1.	Programar els bits del registre de control PMC1 del port P1 (20%)

- 2. Programar els bits del registre de control PM1 del port P1 (20%)
- 3. Identificar si algún bit d'entrada de P1 no es fa servir i pot interferir en el funcionament correcte del sistema i, en cas afirmatiu, connectar-lo adeqüadament per que no interfereixi (30%)

Un cop configurat el port P1, el µC que vol transmetre executa la següent rutina:

```
Rutina Tx
Generar ITx (avisar al receptor que es va a transmetre)
Funció 1
Funció Tx (Transmetre un caràcter)
Enviar Start
Enviar Bits 0-7
Enviar Stop
Fi Tx
Funció 2
```

Mentre que el receptor, quan rep la interrupció INTP0* fa les següents accions:

```
Saltar a la RSI (Retard = 75 T_{clk}) RSI El Rebre Start Rebre Bits 0-7 Rebre Stop RETI (Retard = 55 T_{clk})
```

A partir d'aquesta informació es demana:

4. Quina és la missió de les funcions *Funció 1* i *Funció 2* de la rutina de transmissió i en qué consisteixen cadascuna d'elles? (Només cal indicar-ho, no escriure la rutina) (15%)

5. Quin problema te la RSI de recepció i com l'evitaría? (15%)

PROBLEMA 4 (25%)

A l'esquema de la figura es mostra un microprocessador que pot rebre interrupcions no emmascarables (NMI* activa a nivell baix) per part de dos dispositius (D1 i D2 per les seves sortides IRQ*) amb sortida en drenador obert (d.o.). A més, el μ P pot impedir la petició d'aquesta interrupció, tan prioritària en certs moments claus del seu processament de la informació, tot programant la sortida d'un bit d'un port (P01) del μ P i amb l'ajut d'un buffer (B1), que dóna l'alimentació a una de les resistències de *pull up* (Rp1), i una porta OR (P1) amb sortida drenador obert que ataca a l'entrada NMI del μ P.

<u>Dades</u> Per a Vcc = 5V

Sortides IRQ* de D1i D2 i de la porta P1: I_{OL} = 24mA, V_{OL} = 0,5V, I_{OH} = 100 μ A

Entrades de la porta P1 i la NMI del μ P: , $V_{IL} = 1.5V$, $V_{IH} = 3.5V$, $I_{IH} = 1 \mu$ A = - I_{IL}

Sortida buffer B1: $V_{OH} = 4.5V$, $I_{OH} = -16mA$

Full de respostes del PROBLEMA 4

1) Indiqueu el funcionament del circuit de la figura, tot omplint la següent taula. (25%)

P01	Vp	V_{O} ; V_{N}	Petició de NMI al	Mode d'operació
		("1" o "0")	μP	(Normal/Control μP)
			(Sí/No)	
		D1 i D2 NO demanen Interrupció		
"1"		$V_{O} = ; V_{N} =$		
		D1 o D2 SÍ demanen Interrupció		
		$V_{O} = $; $V_{N} =$		
		D1 i D2 NO demanen Interrupció		
"0"		$V_O = V_N =$		
		D1 o D2 SÍ demanen Interrupció		
		$V_O = ; V_N =$		

2) Calculeu el límit mínim de Rp2 per a un bon funcionament de la connexió drenador obert de la porta P1 a l'entrada NMI* del μP. (25%)

3) Igualment amb el valor mínim de Rp1 per a una correcta operació de la connexió drenado obert entre les sortides IRQ* de D1i D2 i l'entrada de la port P1. (25%)
4) Calculeu ara el límit màxim de Rp1 per aconseguir un marge de soroll $NM_H = 1V$. (25%)