Amortization

Tufts University

Warm-up Question

How much time does it take to Increment() a bit counter?

Cheat of the day

$$\sum_{i=0}^{\infty} \frac{1}{2^i} = 1 + \frac{1}{2} + \frac{1}{4} + \dots = 2$$

Introducing amortized analysis

Formal version of average runtime Used when we repeatedly call same operations Some operations will be expensive others will be cheap How to combine average with big O and Ω ?

Back to bit counter

```
Say counter has \log_2 n bits

Start at 0. Call Increment() n times

Runtime is \Theta(c_i) where c_i is number of changed bits

Worst-case runtime of one Increment()?

c_i = \# \text{bits} (from 011...1 to 10...0)
```

Lemma

The total time used in n executions of INCREMENT() is $\Theta(n)$

Brute force math

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	1	0
1	1	1	1	1	1	1	1	1	1

How many changes in the lowest order digit? n changes What about second lowest order digit? n/2 changes And highest order digit? one change Total number of changes = $\sum_{i=0}^{\log n} \frac{n}{2^i} = n \sum_{i=0}^{\log n} \frac{1}{2^i} < 2n$ \Rightarrow Runtime needed by the n operations is O(n)

Amortized runtime

Lemma

The total time used in n executions of INCREMENT() is $\Theta(n)$

A single operation could take $\Theta(\#bits)$, but most need $\Theta(1)$

On "average" each execution needs O(1)On "average" each execution needs O(1)

Amortized cost of INCREMENT() over n operations is O(1)

 \Leftrightarrow The n executions will need $n \cdot O(1)$ time in the worst case

For short, we say INCREMENT has O(1) amortized cost

Remember bottom up heap construction?

Insert all numbers at once. Fix from leaves upwards At each node we have to sink root $\Rightarrow \Theta(\log n_i)$ n_i = number of elements in the sub-heap Sometimes n_i is big but often n_i is small n sink operations need $\Theta(n)$ time in total $\Rightarrow \Theta(1)$ amortized runtime

Potential method

General technique for computing amortized runtime

- ▶ Main idea: set a goal g runtime per operation
- ▶ Let *c_i* cost of *i*-th operation
- ► Compare c_i against our goal If $c_i < g$ we gain potential If $c_i > g$ we lose potential
- Goal: always maintain positive potential
 - \Rightarrow Average runtime is gn remaining potential

Definitions

Key point: define a potential function Φ to the DS In the bit vector: Potential $\Phi(\text{bit vector}) = \#$ of 1s in vector c_i cost of i-th operation (in bit vector, $c_i = \#$ of bits changed) $\phi_i = \text{potential after } i$ -th operation $\hat{c}_i = c_i + \phi_i - \phi_{i-1}$

Counter	Ci	Ф	ĉį
00000			
00001			
00010			
00011			
	:		

Lemma

If
$$\phi_0 = 0$$
 and $\Phi \ge 0$, then $\sum_i \hat{c}_i \ge \sum_i c_i$

Proof.

$$\sum_{i} \hat{c}_{i} = \sum_{i} (c_{i} + \phi_{i} - \phi_{i-1}) = \sum_{i} (c_{i}) + \phi_{n} - \phi_{0} \ge \sum_{i} c_{i}$$

Potential method

We know
$$\sum_i \hat{c}_i \ge \sum_i c_i$$

Goal: show $\hat{c}_i = O(1)$
 $\Rightarrow \sum_i c_i \le \sum_i \hat{c}_i \le n \cdot O(1) = O(n)$

Lemma

In the bit vector problem, it holds that $\hat{c}_i = 2$ for any $i \ge 0$

Proof.

Counter
$$X = \begin{bmatrix} \text{Rest of vector} & 0 & 1 & 1 & 1 \end{bmatrix}$$

sequence of 1s

$$X + 1 =$$
 Rest of vector $\begin{vmatrix} 1 & 0 & 0 \end{vmatrix}$

Summary

- 1. Defined a potential function Φ , representing cost of structure
- 2. Defined amortized cost \hat{c}_i (real cost + change in potential) Real cost varies wildly but amortized remains consistent
- 3. Show that runtime= $\sum_i c_i \le \sum_i \hat{c}_i$
- 4. Give an upper bound on \hat{c}_i
- 5. Combine above steps to obtain amortized bound

In order to use the potential you should

- ▶ Define a potential function Φ $\Phi(\text{start}) = 0, \ \Phi \ge 0$
- Give an upper bound on \hat{c}_i

Accountant method

Alternative version for bounding amortized runtime:

- Use a virtual currency:
 - User **deposits** coins when invoking an operation To compute we must **withdraw** coins
- ▶ Each coin can be used to do O(1) computations
- Golden rule: never run out of coins

Example 3: Dynamic Array

Simple data structure

Data pointer + 2 counters (current size/max capacity)

Insertion is often fast (first empty slot) $\Rightarrow \Theta(1)$

If full, we double size of array. Copy everything and insert

 $\Rightarrow \Theta(n)$ runtime if this happens

Let's prove that amortized insertion time is O(1)

Accountant approach

Two operations involved in n insertions

Insert Insertion when array has space. User deposits 3 coins in each invocation

Resize Grow array when full. Implicitly invoked. 0 coins deposited

Checking balance

Let's look at INSERTION

3 coins are deposited

Insertion needs O(1) number of operations

Check if space, insert, increase counter

O(1) operations $\Rightarrow 1$ coin withdrawn

Net gain: 2 coins. We associate them to the inserted element

What about EXPAND?

0 coins are deposited. Must withdraw coins to pay for runtime **Key property**: only when array full.

Items in second half have 2 coins saved each.

⇒ one coin per element in array!

Withdraw 1 coin for element we copy onto bigger array

⇒ Use all coins but never go negative

After expansion half of the array is full

Big picture

Theorem

n insertions in a dynamic array will need $\Theta(n)$ time in total. (or insertion in a dynamic array uses $\Theta(1)$ amortized time).

User deposits 3 coins per INSERT (0 on EXPAND) n operations invoked $\Rightarrow 3n$ coins deposited Coins withdrawn each time computer spends time Never go negative balance \Rightarrow at most 3n coins withdrawn Each coin is O(1) operations \Rightarrow at most $3n \cdot O(1)$ time spent

Food for thought

Showed that insertion on DA needs $\Theta(1)$ amortized What did we change? Nothing! Amortized analysis just changes... analysis Same algorithm, just better bounds Brute force counting Just count. Needs critical idea

Potential Associate a Potential to data structure

Change in potential flattens amortized runtime

Accounting Associate runtime to coins

Keep track of deposit/withdrawals

Never run out of coins