Programming Assignment 1

(Due on September 15, 2018 by 11:59pm)

I. Questions (20%):

(1) (as 2.11) (4%) Consider the two image subsets, S1 and S2, shown in the following figure. For $V = \{1\}$, determine whether these two subsets are (a) 4-adjacent, (b) 8-adjacent, or (c) m-adjacent.

	S1				S2					
0	0	0	0	0	0	0	1	1	0	A) No
1	0	0	1	0	0	1	0	0	1	B) Yes
1	0	0	1	0	1	1	0	0	0	,
0	0	1	1	1	0	0	0	0	0	C) Yes
0	0	1	1	1	0	0	1	1	1	

- (2) (as 2.15) (4%) Consider the image segment shown
 - (a) Let $V = \{0,1\}$ and compute the lengths of the shortest 4-, 8-, and m-path between p and q. If a particular path does not exist between these two points, explain why.

- (b) Repeat for $V = \{1,2\}.$

- 4) 7 length
- 8) 5 length
- m) 7 length

- (3) Based on the definition of EXTADD(f, g),
- (a) (2%) Design a block diagram to realize the EXTADD(f, g) operation using ADD and EXTEND operations.

(b) (2%) Compute the EXTADD(f, g), where $f = \begin{pmatrix} 3 & 5 & -2 \\ * & 0 & * \end{pmatrix}_{1,2}$; $g = \begin{pmatrix} 2 & 4 \\ 3 & 9 \\ -2 & * \end{pmatrix}_{2,2}$

EXTADD(f, g) =
$$\begin{pmatrix} * & 2 & 4 \\ 3 & 8 & 7 \\ * & -2 & * \end{pmatrix}$$

<u>(4) 4%</u>

Given the following histogram (A), after a shifting by T, the histogram becomes (B). Write a transformation function and plot the transformation curve for such a shifting transformation.

$$B = A(x-T)$$

<u>(5) 4%</u>

Give the histogram (A), after applying the transformation (C), plot the new histogram after the transformation.

