Algorithm one analysis

$$\sum_{i=2}^{n} 1 = \text{n-2+1} \approx O(n)$$

Best case	Average case	Worst case
$\Omega(1)$	$\Theta(n)$	O(n)
When number of steps = 0 or 1	When number of steps > 1 to n	When number of steps > 1 to n

Algorithms two analysis

$$T(n) = t(n-1) + t(n-2)$$

$$T(1) = 1, T(2) = 2$$

$$= 2T(n - 2) + b$$

=
$$2[T(n - 3) + T(n - 4) + b] + b$$
 by substituting $T(n - 2)$ in

$$\geq 2[T(n-4) + T(n-4) + b] + b$$

$$= 2^2T(n-4) + 2b + b$$

$$= 2^{2}[T(n-5) + T(n-6) + b] + 2b + b$$

by substituting T(n - 4) in (2)

$$\geq 2^3 T(n-6) + (2^2 + 2^1 + 2^0)b$$

. . .

$$\geq 2^k T(n-2k) + (2^{k\cdot 1} + 2^{k\cdot 2} + \ldots + 2^1 + 2^0)b$$

$$= 2^{k}T(n-2k) + (2^{k}-1)b$$

Hence $T(n) \ge 2^{(n-2)/2} T(2) + [2^{(n-2)/2} - 1]b$

$$= (b + c)2^{(n-2)/2} - b$$

= [(b + c) / 2]*(2)^{n/2} - b $\approx O(2^n)$

Best case	Average case	Worst case
$\Omega(1)$	$\Theta(2^n)$	$0(2^n)$
When number of steps	When number of steps	When number of steps
= 1 or 2	> 2	> 2

Comparison between algorithm one and two

	Algorithm one	Algorithm two
Best case	Ω(1)	Ω(1)
Average case	Θ(n)	$\Theta(2^n)$
Worst case	0(n)	$O(2^n)$