PROBLEM SET 8: RSA AND PRIME TESTING (DUE NOVEMBER 15)

HARM DERKSEN

Problem 1. Do 31.7-1 in the book.

Solution: We have $\phi(319) = \phi(29 \cdot 11) = 28 \cdot 10 = 280$. We have to find d with $3d \equiv 1 \pmod{280}$. Now $280 = 3 \cdot 93 + 1$, so $3 \cdot 93 \equiv -1 \pmod{280}$ and $3 \cdot (-93) \equiv 1 \pmod{280}$. Take d = (-93) + 280 = 197. To encrypt M = 100, we compute $100^3 \mod 319$. Now $100^2 = 31 \cdot 319 + 111$ and $100 \cdot 111 = 11100 = 34 \cdot 319 + 254$. So finally $100^3 \equiv 100 \cdot 111 \equiv 254 \pmod{319}$.

Problem 2. Do 31.8-3 in the book.

Solution: If gcd(x-1,n) = n, then $x \equiv 1 \pmod{n}$. If gcd(x-1,n) = 1, then from $n \mid (x-1)(x+1)$ follows that n divides x+1 and $x \equiv -1 \pmod{n}$. This shows that gcd(x-1,n) is a nontrivial divisor of n. The prove that gcd(x+1,n) is a nontrivial divisor goes similarly.

Problem 3. Do 31.9-1 in the book.

Solution: Consider the sequence modulo 73 as in figure 31.7(c) in the book. The first time, the value of y lies within the loop is when y is set to $x_8 = 814$. Then we have $y \equiv 11 \pmod{73}$. The loop modulo 73 has length four. We get $x_{12} = 84 \equiv 11 \pmod{73}$ again. The computation of $\gcd(y - x_1 2, 1387)$ (where y is set equal to x_8) yields $\gcd(814 - 84, 1387) = 73$. This is the first time that the divisor 73 will be printed. (the divisor 19 will be printed earlier).

Problem 4. * Do 31.8-2 in the book.

Solution: From the formula for $\phi(n)$ it is clear that

$$\lambda(n) = \operatorname{lcm}(\phi(p_1^{e_1}), \dots, \phi(p_r^{e_r})) \text{ divides } \phi(n) = \phi(p_1^{e_1}) \cdots \phi(p_r^{e_r}).$$

Suppose that a is relatively prime to n. Then a is relatively prime to $p_i^{e_i}$ for all i and

$$a^{\lambda(n)} \equiv 1 \pmod{p_i^{e_i}}$$

because $\lambda(n)$ is divisible by $\phi(p_i^{e_i})$. It follows that $a^{\lambda(n)}-1$ is divisible by $p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}=n$ and $a^{\lambda(n)}\equiv 1 \pmod{n}$. Suppose that $n=p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}$ is Carmichael. Now $p_i^{e_i-1}$ divides $\phi(p_i^{e_i})$, $\lambda(n)$ and n-1. But $p_i^{e_i-1}$ also divides n, hence $p_i^{e_i-1}$ divides n-(n-1)=1. This can only happen when $e_i=1$ for all i, which means that n is squarefree. Suppose that n=pq with p< q

primes. If n is Carmichael then $\lambda(n)$ divides n-1, so p-1 and q-1 divide n-1. Write n-1=a(q-1). Clearly a>p because p(q-1)=n-p< n. So $n-1\geq (p+1)(q-1)$ which implies that $n-1\geq pq+q-p-1=n-1+(q-p)$. We conclude that $p\geq q$ which contradicts our assumption that p< q.