Dokumentacja techniczna Niduc 2						
Numer grupy	7	Termin zajęć Czw. parz. 11:1		15		
Skład grupy:		Prowadzący		Ocena		
Aleksander Dziągwa	281055	Prof. hab. Stanisław Piestrak				
Filip Kwiek	280947					
Kacper Mikosiński	280985					

Spis treści

1	Wprowadzenie	2
2	Instalacja	2
	2.1 Wymagania wstępne	2
	Instalacja 2.1 Wymagania wstępne	2
3	Użycie	2
	3.1 Podstawowe użycie	2
	3.1 Podstawowe użycie	2
4	Architektura	3
	Architektura 4.1 Struktura projektu	3

1 Wprowadzenie

Nazwa projektu: System tolerancji błędów

Opis: Projekt oparty na platformie Arduino, który wykorzystuje czujniki soniczne do pomiaru odległości. Wyniki są przetwarzane za pomocą różnych algorytmów, takich jak głosowanie większościowe, medianowe, Largest Difference Rejection oraz iteracyjne.

Cel: Celem projektu jest dokładne mierzenie odległości przy użyciu trzech czujników i przetwarzanie wyników za pomocą różnych algorytmów w celu uzyskania najbardziej wiarygodnego wyniku.

2 Instalacja

2.1 Wymagania wstępne

- Arduino IDE lub PlatformIO
- Płytka Arduino
- Trzy czujniki ultradźwiękowe
- Kable połączeniowe

2.2 Instrukcje instalacji

- 1. Sklonuj repozytorium projektu na swój komputer.
- 2. Otwórz projekt w Arduino IDE lub PlatformIO.
- 3. Podłącz płytkę Arduino do komputera.
- 4. Wgraj kod na płytkę Arduino.

3 Użycie

3.1 Podstawowe użycie

- 1. Po wgraniu kodu, uruchom płytkę Arduino.
- 2. Wyniki pomiarów będą wyświetlane w konsoli seryjnej co 1,5 sekundy.

3.2 Przykłady kodu

Kod główny znajduje się w pliku src/main.cpp:

```
### Serial.print("Canna.");

Serial.print("Algorytm gelsowania wiekszosciowego: "); //wypisanie wyniku algorytmu glosowania wiekszościowego

Serial.print("Algorytm medianowy: "); //wypisanie wyniku algorytmu odrzucenia największej różnicy

Serial.print("Algorytm medianowy: "); //wypisanie wyniku algorytmu odrzucenia największej różnicy

Serial.print("Algorytm dedianowy: ");

Serial.print("Algorytm dedian
```

Obraz 1: Przykładowa funkcja main

4 Architektura

4.1 Struktura projektu

- src/: Zawiera główny plik main.cpp, który inicjalizuje czujniki i przetwarza dane.
- include/: Zawiera pliki nagłówkowe z definicjami funkcji i algorytmów.
- lib/: Przeznaczone na biblioteki specyficzne dla projektu.