NP Completeness Examples

CPSC 413 - Algorithm Design

Benyamin Bashari

NP

- In order to prove that the decision problem A is NP, we need to prove that there is a polynomial time verification algorithm V(input x, certificate y).
- Basically certificate (y) is an answer to the decision problem
 A and the verification algorithm can check the answer and
 determine if it is correct or not.

NP

- How to prove a decision problem A is NP?
 - State the input to the verification algorithm (input to the problem and a certificate).
 - Show that certificate size is polynomial in size to the remaining input.
 - Give the verification algorithm.
 - Prove that the verification algorithm is correct.
 - Show that the verification algorithm runs in polynomial time.

3-Coloring Problem

- Precondition:
 - \circ Graph G = (V, E)
 - |V| = n
- Postcondition:
 - Coloring C = $(c_1, c_2, ..., c_n)$, where c_i is the color of the ith node in the graph and $c_i \in \{\text{red}, \text{green}, \text{blue}\}$
 - No two adjacent node have the same color

Input of the Verification Algorithm

- Input:
 - \circ Graph G = (V, E)
 - \circ C = (c₁, c₂, ..., c_n) (certificate)
- Certificate size:
 - Assume that we show that color is {blue, green, red} with
 2 bits then certificate size is (2n)
 - Since n is the number of vertices in the graph then 2n is polynomial in size of G.

Verification Algorithm

Verification Algorithm:

```
{"yes", "no"} V(G = (V, E), C[n]) {
  for a in V:
     if C[a] is not in {"red", "blue", "green"}
        return "no"
  for each edge (a, b) in E:
     if c[a] == c[b] //there is two adjacent nodes with the same color
        return "no"
  return "yes"
}
```

Runtime of the Verification Algorithm

```
{"yes", "no"} V(G = (V, E), C[n]) {
  for a in V:
     if C[a] is not in {"red", "blue", "green"}
        return "no"
  for each edge (a, b) in E:
     if c[a] == c[b] //there is two adjacent nodes with the same color
        return "no"
  return "yes"
}
```

- First for iterates over all the nodes and the second for iterates over all the edges so the runtime is O(|V| + |E|)
- This is obviously polynomial in the size of the input

Correctness of the Verification Algorithm

```
{"yes", "no"} V(G = (V, E), C[n]) {
  for a in V:
     if C[a] is not in {"red", "blue", "green"}
        return "no"
  for each edge (a, b) in E:
     if c[a] == c[b] //there is two adjacent nodes with the same color
        return "no"
  return "yes"
}
```

- If G = (V, E) is a "yes" instance of 3-Coloring, then there is a coloring C, such that no two adjacent nodes have the same color then V(G, C) returns "yes".
- □ If G = (V, E) is a "no" instance then there is no coloring C, so every V(G, C) returns "no".

NP Completeness Proof

- Assume that we want to prove that the decision problem A is NP Complete
 - We need to prove that A is NP (which we covered)
 - Then we need to find another NP Complete problem B
 and prove that B ≤_P A
 - Give an algorithm to transform the input to B to an input to A.
 - Prove that the transformation algorithm runs in polynomial time.
 - Let s be an input to B and s' the transformed input to A. Prove that s is a "yes" instance of B if and only if s' is a "yes" instance of A.

NP Completeness Proof

- Let s be an input to B and s' the transformed input to A.
 Prove that s is a "yes" instance of B if and only if s' is a "yes" instance of A.
 - If s is a "yes" instance of B then s' is a "yes" instance of A
 - o If s' is a "yes" instance of A then s is a "yes" instance of B

Clique Cover Problem

- Precondition:
 - Graph G = (V, E)
 - \circ V = {1, 2, ..., n}
 - 0 **K**
- Postcondition:
 - V₁, V₂, ..., V_K
 - $V_1 \cup V_2 \cup ... \cup V_n = \{1, ..., n\}$
 - $\bigvee_{i} \cap \bigvee_{j} = \emptyset \text{ for } i \neq j$
 - Each of V_i is a clique in G.

3-Coloring ≤_P Clique Cover

- So we have a solver for clique cover problem.
- If we want to solve 3-Coloring problem we need to find three sets of vertices (V_1, V_2, V_3) such that
 - $V_1 \cup V_2 \cup V_3 = \{1, ..., n\}$
 - $\circ V_i \cap V_j = \emptyset \text{ for } i \neq j$
 - There is no edge between any vertices in V_i
 - Then we can color V₁ as "blue", V₂ as "red", and V₃ as "green".
- But Clique Cover with K = 3 can find 3 sets where each of them are cliques in graph.

3-Coloring ≤_P Clique Cover

- Complement of a graph G = (V, E) is shown with \overline{G} and it is a graph with vertices V, and there is an edge between two node (a, b) if and only if there is not an edge between a and b in G.
- Now if we give \bar{G} and 3 to clique cover it will find 3 sets of vertices in $t\bar{G}$ at they form 3 cliques.
- Now if we consider those three sets in G, they are 3 sets of vertices where there is no edge between the vertices of one set.

3-Coloring ≤ Clique Cover (Transforming Inputs)

Inputs of 3-Coloring:

$$\circ$$
 G = (V, E)

Inputs of Clique Cover:

```
\circ ar{G}
```

○ K = 3

```
transformToCliqueCover(G = (V, E)) { //inputs of 3-Coloring
   GBar = (V, E'={})
   for each two nodes a and b:
      if (a, b) is not an edge in E
        add (a, b) to E'
   return (GBar, 3) //K = 3
}
```

3-Coloring ≤ Clique Cover (Transforming Inputs)

```
transformToCliqueCover(G = (V, E)) { //inputs of 3-Coloring
   GBar = (V, E'={})
   for each two nodes a and b:
      if (a, b) is not an edge in E
        add (a, b) to E'
   return (GBar, 3) //K = 3
}
```

Runtime:

- o Initializing GBar takes O(|V|) and then checking for each two nodes takes $O(|V|^2 |E|)$
- This runtime is polynomial in the input size.

3-Coloring ≤ Clique Cover (Correctness)

```
transformToCliqueCover(G = (V, E)) { //inputs of 3-Coloring
   GBar = (V, E'={})
   for each two nodes a and b:
        if (a, b) is not an edge in E
        add (a, b) to E'
   return (GBar, 3) //K = 3
}
```

- Let s be an input to 3-Coloring and s' the transformed input to Clique
 Cover.
- We want to prove that if s is a "yes" instance of 3-Coloring then s' is also a "yes" instance of Clique Cover.
- If s is a "yes" instance of 3-Coloring there there are 3 sets of nodes (V_1, V_2, V_3) that there is no edge between the nodes of one set.
- ▶ Then in GBar V_1, V_2, V_3 are cliques.
- Then CliqueCover(GBar, 3) returns "yes"

3-Coloring ≤_p Clique Cover (Correctness)

```
transformToCliqueCover(G = (V, E)) { //inputs of 3-Coloring
   GBar = (V, E'={})
   for each two nodes a and b:
        if (a, b) is not an edge in E
        add (a, b) to E'
   return (GBar, 3) //K = 3
```

- Let s be an input to 3-Coloring and s' the transformed input to Clique Cover.
- We want to prove that if s' is a "yes" instance of Clique Cover then s is also a "yes" instance of 3-Coloring.
- If s' is a "yes" instance of Clique Cover there are 3 sets of nodes (V_1, V_2, V_3) in GBar that each of them are cliques.
- ▶ Then in G there is no edge between the nodes of one of the sets V_i
- ▶ Then we can color V_1 in "blue", V_2 in "red", and V_3 in "green".
- Then s ia "yes" instance of 3-Coloring.