## Multiplication

CPP Array Size SIMD Speedup 1024...191444152.313760...124119391.293786...1.542419 2048...507681693.536188...219129892.683491...2.316807 4096...449376367.743333...221787519.470701...2.026157 8192...385054687.702676...221579404.674329...1.737773 16384...352125421.225300...215253522.144143...1.635864 32768...366319762.086576...226456471.205415...1.617617 65536...392529392.411803...232031787.232794...1.691705 131072...421533480.013053...231907812.536457...1.817677 262144...425483797.241072...228095498.024271...1.865376 524288...424482811.382664...227719232.991769...1.864062 1048576...535363094.675029...230544580.856623...2.322167 2097152...644353830.829563...230376391.572707...2.796961 4194304...740473499.986825...228402437.123103...3.241968 8388608...763424887.532274...227701692.221746...3.352741 16777216...783737630.314495...229570565.788152...3.413929 33554432...799614268.532508...229321973.717185...3.486863



| Array Multipli | cation & Summ | ation    |     |              |            |
|----------------|---------------|----------|-----|--------------|------------|
| Array Size     | SIMD          |          | CPP | S            | peedup     |
|                | 1024          | 1.08E+08 |     | 59886254     | 1.801059   |
|                | 2048          | 5.17E+08 |     | 89961678     | 5.746121   |
|                | 4096          | 4.91E+08 |     | 88552461     | 5.544937   |
|                | 8192          | 4.66E+08 |     | 86333543     | 5.40017    |
| 1              | 16384         | 4.52E+08 |     | 85161254     | 5.305229   |
| 3              | 32768         | 4.27E+08 |     | 81415529     | 5.239231   |
| 6              | 55536         | 4.24E+08 |     | 83331254     | 5.08963    |
| 13             | 31072         | 4.31E+08 |     | 82059278     | 5.247192   |
| 26             | 52144         | 4.33E+08 |     | 81964318     | 5.280242   |
| 52             | 24288         | 4.26E+08 |     | 82232066     | 5.178677   |
| 104            | 18576         | 5.76E+08 |     | 86841489     | 6.633363   |
| 209            | 7152          | 7.52E+08 |     | 89387996     | 8.409945   |
| 419            | 94304         | 8.59E+08 |     | 90837967     | 9.45453    |
| 838            | 38608         | 9.25E+08 |     | 91505475     | 10.11226   |
| 1677           | 77216         | 9.62E+08 |     | 91 Chart Are | a 10.47531 |
| 3355           | 4432          | 9.83E+08 |     | 92042652     | 10.67614   |



I ran this on flip. The speedup increased in correlation with the arraysize. It was close to 1.5 when the array size was 1024, 1.9 near arraysize 262144 and 3.5 for array size 33554432. Overall the speedup increases (quite rapidly around arraysize 2048), before dropping down and rising at a more steady rate. We can see that there was a drop to 1.8 around array size 8192, before beginning to increase to 3.48 again. This increase probably occurred because eventually the hardware overtook the communication overhead. On the other hand, for the multiplication and summation there is also an increase, but there is minimum fluctuation in values. It jumps from a speedup of one to five, before steadily increasing to ten by an arraysize of 33554432.

This time the speedup was a lot larger than the approximated value, most likely because the assembly code optimized better the code. I'm not entirely sure why the speedup didn't remain consistent across the array size for either the multiplication or add/multiplication. It seems logical that it would stagnate after a certain array size, or maybe I didn't test for a large enough size.