Exercise Sheet 1

Exercise 3

Let $R = \mathbb{Z}[i]$.

- 1. Find a factorization of 2i into irreducible elements.
- 2. Use the factorization $x^2 + 1 = (x i)(x + i)$ to find all integral solutions to the equation $x^2 + 1 = y^3.$

Solution

1: We have 2i = (1+i)(1-i). As N(1+i) = N(1-i) = 2 these are irreducible elements. 2: From Theorem 1.0.1. we have that $y^3 = 2$ or $y^3 \equiv 1 \mod 4$. Since $y^3 = 2$ is not possible, we have $x^2 + 1 = y^3 = 1 + 4n$ for some $n \in \mathbb{N}$. So y is odd and x is even.

Therefore, the only integral solutions is x = 0 and y = 1.