CS 513: Knowledge Discovery And Data Mining

Ali Abdullah Ahmad

February 18, 2025

Q1.1 Let:

- P(J) = 0.2 be the probability that Jerry goes to the bank on a given day.
- P(S) = 0.3 be the probability that Susan goes to the bank on a given day.
- $P(J \cap S) = 0.08$ be the probability that both go to the bank on the same day.

Using the formula for the union of two events:

$$P(J \cup S) = P(J) + P(S) - P(J \cap S)$$

$$P(J \cup S) = 0.2 + 0.3 - 0.08 = 0.42$$

(a) Given that Susan was at the bank last Monday, what's the probability that Jerry was there too?

We need to find P(J|S), which is given by:

$$P(J|S) = \frac{P(J \cap S)}{P(S)}$$

$$P(J|S) = \frac{0.08}{0.3} = \frac{8}{30} = \frac{4}{15} \approx 0.267$$

(b) Given that Susan wasn't at the bank last Friday, what's the probability that Jerry was there?

We need to find P(J|S'), where S' denotes that Susan was not at the bank. This is given by:

$$P(J|S') = \frac{P(J \cap S')}{P(S')}$$

First, calculate $P(J \cap S')$:

$$P(J \cap S') = P(J) - P(J \cap S) = 0.2 - 0.08 = 0.12$$

Since
$$P(S') = 1 - P(S) = 1 - 0.3 = 0.7$$
, we get:

$$P(J|S') = \frac{0.12}{0.7} = \frac{12}{70} = \frac{6}{35} \approx 0.171$$

(c) Given that at least one of them was at the bank last Wednesday, what is the probability that both of them were there?

We need to find $P(J \cap S|J \cup S)$, which is given by:

$$P(J\cap S|J\cup S) = \frac{P(J\cap S)}{P(J\cup S)}$$

$$P(J \cap S|J \cup S) = \frac{0.08}{0.42} = \frac{8}{42} = \frac{4}{21} \approx 0.190$$

Q1.2 Let:

- P(H) = 0.8 be the probability that Harold gets a "B".
- P(S) = 0.9 be the probability that Sharon gets a "B".
- $P(H \cup S) = 0.91$ be the probability that at least one of them gets a "B".

Using the formula for the union of two events:

$$P(H \cup S) = P(H) + P(S) - P(H \cap S)$$
$$0.91 = 0.8 + 0.9 - P(H \cap S)$$
$$P(H \cap S) = 1.7 - 0.91 = 0.79$$

(a) Probability that only Harold gets a "B": We need to find $P(H \cap S')$:

$$P(H \cap S') = P(H) - P(H \cap S)$$

$$P(H \cap S') = 0.8 - 0.79 = 0.01$$

(b) Probability that only Sharon gets a "B": We need to find $P(S \cap H')$:

$$P(S \cap H') = P(S) - P(H \cap S)$$

$$P(S \cap H') = 0.9 - 0.79 = 0.11$$

(c) Probability that neither Harold nor Sharon gets a "B": We need to find $P(H' \cap S')$:

$$P(H' \cap S') = 1 - P(H \cup S)$$

$$P(H' \cap S') = 1 - 0.91 = 0.09$$

Thus, the final probabilities are:

- (a) 0.01
- (b) 0.11
- (c) 0.09

Q1.3 Are the events "Jerry is at the bank" and "Susan is at the bank" independent?

To determine independence, we check whether:

$$P(J \cap S) = P(J)P(S)$$

Given:

- P(J) = 0.2 (Probability that Jerry goes to the bank)
- P(S) = 0.3 (Probability that Susan goes to the bank)
- $P(J \cap S) = 0.08$ (Probability that both are at the bank together)

Step 1: Compute P(J)P(S)

$$P(J)P(S) = (0.2)(0.3) = 0.06$$

Step 2: Compare with $P(J \cap S)$

$$P(J \cap S) = 0.08 \neq 0.06 = P(J)P(S)$$

Conclusion: Since $P(J \cap S) \neq P(J)P(S)$, the events Jerry is at the bank and Susan is at the bank are not independent.

Q1.4(a) Are the events "the sum is 6" and "the second die shows 5" independent?

To determine independence, we check whether:

$$P(A \cap B) = P(A) \cdot P(B)$$

where:

- A is the event "the sum is 6".
- \bullet B is the event "the second die shows 5".

Step 1: Compute P(A)

The possible outcomes that give a sum of 6 are:

There are 5 such outcomes out of 36 possible outcomes, so:

$$P(A) = \frac{5}{36}$$

Step 2: Compute P(B)

The probability that the second die shows 5 is:

$$P(B) = \frac{1}{6}$$

Step 3: Compute $P(A \cap B)$

The outcome where both events occur is (1,5), so:

$$P(A \cap B) = \frac{1}{36}$$

Step 4: Compare $P(A \cap B)$ with $P(A) \cdot P(B)$

$$P(A) \cdot P(B) = \left(\frac{5}{36}\right) \left(\frac{1}{6}\right) = \frac{5}{216}$$

Since:

$$P(A \cap B) = \frac{1}{36} \neq \frac{5}{216} = P(A) \cdot P(B)$$

the events are not independent

•

(b) Are the events "the sum is 7" and "the first die shows 5" independent?

We check whether:

$$P(C \cap D) = P(C) \cdot P(D)$$

where:

- C is the event "the sum is 7".
- D is the event "the first die shows 5".

Step 1: Compute P(C)

The possible outcomes that give a sum of 7 are:

$$(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)$$

There are 6 such outcomes out of 36 possible outcomes, so:

$$P(C) = \frac{6}{36} = \frac{1}{6}$$

Step 2: Compute P(D)

The probability that the first die shows 5 is:

$$P(D) = \frac{1}{6}$$

Step 3: Compute $P(C \cap D)$

The outcome where both events occur is (5, 2), so:

$$P(C \cap D) = \frac{1}{36}$$

Step 4: Compare $P(C \cap D)$ with $P(C) \cdot P(D)$

$$P(C) \cdot P(D) = \left(\frac{1}{6}\right) \left(\frac{1}{6}\right) = \frac{1}{36}$$

Since:

$$P(C \cap D) = P(C) \cdot P(D)$$

the events are independent.

1. Probability of finding oil

We are given the following probabilities:

- Probability of choosing TX: P(TX) = 0.6
- Probability of choosing AK: P(AK) = 0.3 (since 1 0.6 0.1 = 0.3)
- Probability of choosing NJ: P(NJ) = 0.1
- Probability of finding oil in TX: $P(Oil \mid TX) = 0.3$
- Probability of finding oil in AK: $P(Oil \mid AK) = 0.2$
- Probability of finding oil in NJ: $P(Oil \mid NJ) = 0.1$

The total probability of finding oil can be calculated using the law of total probability:

$$P(Oil) = P(TX) \cdot P(Oil \mid TX) + P(AK) \cdot P(Oil \mid AK) + P(NJ) \cdot P(Oil \mid NJ)$$

Substituting the given values:

$$P(Oil) = (0.6 \times 0.3) + (0.3 \times 0.2) + (0.1 \times 0.1)$$
$$P(Oil) = 0.18 + 0.06 + 0.01 = 0.25$$

So, the probability of finding oil is 0.25 or 25%.

2. Probability that they drilled in TX given they found oil

This is a conditional probability problem. We need to find $P(TX \mid Oil)$, the probability that they drilled in TX given that they found oil. We can use Bayes' Theorem:

$$P(TX \mid Oil) = \frac{P(Oil \mid TX) \cdot P(TX)}{P(Oil)}$$

From the previous calculations: - $P(Oil \mid TX) = 0.3$ - P(TX) = 0.6 - P(Oil) = 0.25

Substituting these values into Bayes' Theorem:

$$P(TX \mid Oil) = \frac{(0.3) \cdot (0.6)}{0.25} = \frac{0.18}{0.25} = 0.72$$

So, the probability that they drilled in TX given that they found oil is 0.72 or 72%.

Q1.6 Given Data

- Total passengers: 2, 201
- Total survived: 711
- Total not survived: 1,490
- First-class passengers (total): 325
- First-class passengers (survived): 203
- First-class child survivors: 6
- First-class adult survivors: 197

Probability Calculations

1. Probability that a passenger did not survive

$$P(NotSurvived) = \frac{TotalNotSurvived}{TotalPassengers} = \frac{1,490}{2,201} \approx 0.677$$

2. Probability that a passenger was staying in first class

$$P(FirstClass) = \frac{TotalFirstClass}{TotalPassengers} = \frac{325}{2,201} \approx 0.148$$

3. Given that a passenger survived, probability that they were in first class

$$P(FirstClass \mid Survived) = \frac{FirstClassSurvived}{TotalSurvived} = \frac{203}{711} \approx 0.285$$

4. Are survival and staying in first class independent?

If survival and first-class status were independent, then:

$$P(FirstClass \cap Survived) = P(FirstClass) \times P(Survived)$$

From earlier,

$$P(FirstClass) \approx 0.148, \quad P(Survived) \approx 0.323$$

$$P(FirstClass \cap Survived)_{expected} = 0.148 \times 0.323 = 0.048$$

$$P(FirstClass \cap Survived)_{actual} = \frac{203}{2,201} \approx 0.092$$

Since $0.092 \neq 0.048$, survival and first-class status are **not independent**.

5. Given that a passenger survived, probability that they were a first-class child

$$P(FirstClassChild \mid Survived) = \frac{FirstClassChildSurvived}{TotalSurvived} = \frac{6}{711} \approx 0.0084$$

6. Given that a passenger survived, probability that they were an adult

$$P(Adult \mid Survived) = \frac{TotalSurvivedAdults}{TotalSurvived} = \frac{654}{711} \approx 0.920$$

7. Given that a passenger survived, are age and staying in first class independent?

If age and first-class status were independent given survival, then:

$$P(FirstClass \cap Adult \mid Survived) = P(FirstClass \mid Survived) \times P(Adult \mid Survived)$$

From previous calculations:

$$P(FirstClass \mid Survived) \approx 0.285, \quad P(Adult \mid Survived) \approx 0.920$$

$$P(FirstClass \cap Adult \mid Survived)_{expected} = 0.285 \times 0.920 = 0.262$$

$$P(FirstClassAdult \mid Survived)_{actual} = \frac{197}{711} \approx 0.277$$

Since $0.277 \neq 0.262$, age and first-class status are **not independent** given survival.

Q1.7 Confusion Matrix

The classification results are as follows:

- False Positives (FP): 70 human-generated documents misclassified as AI-generated.
- False Negatives (FN): 30 AI-generated documents misclassified as human-generated.
- Total AI-generated documents (Actual Positives): 1000.
- Total human-generated documents (Actual Negatives): 1000.
- True Positives (TP): Correctly classified AI-generated documents: 1000 30 = 970.
- True Negatives (TN): Correctly classified human-generated documents: 1000 70 = 930.

Thus, the confusion matrix is:

	PredictedAI	PredictedHuman
ActualAI	TP = 970	FN = 30
ActualHuman	FP = 70	TN = 930

Performance Metrics Calculation

1. Accuracy

Accuracy is the proportion of correctly classified documents:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$= \frac{970 + 930}{970 + 930 + 70 + 30} = \frac{1900}{2000} = 0.95 \quad (95\%)$$

2. Precision (for AI-generated classification)

Precision measures how many of the predicted AI-generated documents were actually AI-generated:

$$Precision = \frac{TP}{TP + FP}$$

$$=\frac{970}{970+70}=\frac{970}{1040}\approx 0.933$$

3. Recall (for AI-generated classification)

Recall (or sensitivity) measures how many actual AI-generated documents were correctly classified:

$$Recall = \frac{TP}{TP + FN}$$

$$=\frac{970}{970+30}=\frac{970}{1000}=0.97$$

4. F1 Score

The F1 score is the harmonic mean of precision and recall:

$$F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

$$=2\times\frac{0.933\times0.97}{0.933+0.97}$$

$$=2\times\frac{0.905}{1.903}\approx0.951$$

Final Results

- Accuracy = 95%
- Precision = 93.3%
- Recall = 97%
- **F1 Score** = 95.1%

These metrics indicate that the app performs well, with high accuracy and recall, though there is a slight trade-off in precision due to false positives.