The Sortino ratio and distributions

December 30, 2019

1 Introduction

The **Sortino ratio** is defined by

$$S = \frac{R - T}{DR},$$

where R is the rate of return of an asset, T is a threshold rate of return, and DR is the **downside variation** of the asset, defined by

$$DR = \sqrt{\int_{-\infty}^{T} (T - r)^2 \cdot f(r) \ dr}.$$

Here, f is the probability density function of the returns. The implicit assumption is that f is integrable, which is a problem for our purposes.

Instead, we only have the empirical cumulative distribution function. For the sequence of observed returns R_1, R_2, R_3, \ldots , the *n*th update of the empirical CDF is given by

$$\widehat{F}_n(x) = n^{-1} \sum_{k=1}^n H(x - R_k),$$

where

$$H(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

is the standard Heaviside function. Unfortunately, H is not differentiable, or even continuous, so $\hat{f}_n = \hat{F}'_n$ does not exist.

2 Distributions

Let $\mathcal{D} \subset \mathbb{R}^{\mathbb{R}}$ be a suitably-chosen closed subspace of real functions. We will pin down exactly what constitutes the space once we understand the parameters of our problem. A **distribution** is an element of the dual space \mathcal{D}^* of linear functionals which are continuous with respect to a certain topology. Again, this topology will be determined later. For $G \in \mathcal{D}^*$ and $g \in \mathcal{D}$, we write $\langle G, g \rangle$ to denote the application G(g). Some common distributions include

- evaluation functionals: for $x_0 \in \mathbb{R}$ let $\delta_{x_0} \in \mathcal{D}^*$ be defined by $\langle \delta_{x_0}, g \rangle = g(x_0)$.
- integration functionals: for a suitably chosen function φ , let $I_{\varphi} \in \mathcal{D}^*$ be defined by $\langle I_{\varphi}, g \rangle = \int \varphi g$.

We can use integration by parts to motivate a special kind of **distributional** derivative, but this will depend on the specification of \mathcal{D} .

Let's examine the downside variation again. To expose the radicand, consider the term

$$DR^{2} = \int_{-\infty}^{T} (T - r)^{2} \cdot f(r) dr.$$

The existence and integrability of the probability density function f is the problem we are trying to fix. We want to turn f into a suitable distribution, which means we will need to identify the correct space of functions \mathcal{D} . The only function we know we need to be in \mathcal{D} is $r \mapsto (T-r)^2$, which is a $C^{\infty}((-\infty,T])$ function. Let's run with $\mathcal{D}=C^{\infty}((-\infty,T])$, and we can topologize it with the seminorms $\{\rho_n\}_{n=1}^{\infty}$ defined by $\rho_n(g)=\|g^{(n)}\|_u$. Thus $g_k \to g$ in \mathcal{D} if and only if $g_k^{(n)} \to g^{(n)}$ uniformly for each n.

With \mathcal{D} specified, we now need to worry about \mathcal{D}^* , the space of continuous linear functionals on \mathcal{D} . In order for a linear functional ϕ on \mathcal{D} to be continuous, we will need the sequence $\langle \phi, g_k \rangle$ to converge to $\langle \phi, g \rangle$ for every converging sequence $g_k \to g$ in \mathcal{D} . For the theory of distributions to be of use to us, then, we need to verify that the Heaviside functions can be viewed as elements in \mathcal{D}^* and confirm that their distributional derivatives are also elements in \mathcal{D}^* .

The Heaviside "distribution" H is the functional that operates on \mathcal{D} like $\langle H, g \rangle = \int_0^T g(r) \ dr$. This is because, in the function sense, integration

against a Heaviside function yields the following equality:

$$\int_{-\infty}^{T} g(r) \cdot H(r) \ dr = \int_{0}^{T} g(r) \ dr.$$

Introduce the shift notation $\langle H_{x_0}, g \rangle = \int_{x_0}^T g(r) \ dr$. This again is designed to match the integration intuition:

$$\int_{-\infty}^{T} g(r) \cdot H(r - x_0) dr = \int_{x_0}^{T} g(r) dr.$$

The set of Heaviside functions $\{H_{x_0}\}_{x_0\in\mathbb{R}}$ is important for our purposes because the empirical cumulative distribution function \widehat{F}_n is a linear combination of Heavisides. We therefore need to verify that all Heaviside functions reside as distributions in \mathcal{D}^* . By appealing to a continuity argument, it will suffice to check that the canonical Heaviside $H = H_0$ is a distribution in \mathcal{D}^* . To this end, it is clear that H is linear. To check that H is continuous, suppose $g_k \to g$ in \mathcal{D} . On the interval [0,T], each g_k is bounded; moreover, since g_k converges to g uniformly, all but finitely many g_k are bounded above by the function g+1. The dominated convergence theorem therefore implies that $\int_0^T g_k(x) dx \to \int_0^T g(x) dx$, so $\langle H, g_k \rangle \to \langle H, g \rangle$. This means that H is continuous as a distribution, and so $H \in \mathcal{D}^*$.

Since \mathcal{D}^* is a vector space, and since $H_{x_0} \in \mathcal{D}^*$ for each $x_0 \in \mathbb{R}$, it follows that every empirical cumulative distribution function \widehat{F}_n is in \mathcal{D}^* , being a linear combination of Heavisides. The remaining question is whether the distributional derivative of \widehat{F}_n resides in \mathcal{D}^* . To this end, it again suffices to verify that $H' \in \mathcal{D}^*$, since the rest will follow by a continuity argument. By integration by parts, we have the identity

$$\int_{-\infty}^{T} g(r) \cdot H'(r) \, dr = g(r) \cdot H(r) \Big|_{-\infty}^{T} - \int_{-\infty}^{T} g'(r) \cdot H(r) \, dr$$

$$= g(T) \cdot H(T) - \int_{0}^{T} g'(r) \, dr$$

$$= g(T) \cdot H(T) - (g(T) - g(0))$$

$$= g(T) \cdot (H(T) - 1) + g(0),$$

so we should define H'_{x_0} to be the distribution $\langle H'_{x_0}, g \rangle = g(T) \cdot (H(T - x_0) - 1) + g(x_0)$. It is not hard to show that H'_{x_0} , so defined, resides in \mathcal{D}^* .

3 Conclusion

We can now evaluate \widehat{F}'_n . In particular, we have

$$\langle \widehat{F}'_n, g \rangle = n^{-1} \sum_{k=1}^n \langle H'_{R_k}, g \rangle$$

$$= n^{-1} \sum_{k=1}^n \left[g(T) \cdot (H(T - R_k) - 1) + g(R_k) \right]$$

$$= n^{-1} \cdot g(T) \sum_{k=1}^n \left[H(T - R_k) - 1 \right] + n^{-1} \sum_{k=1}^n g(R_k).$$

This is the evaluation on an arbitrary $g \in \mathcal{D}$. For the specific function $g(r) = (T - r)^2$ in the Sortino ratio, this becomes

$$\langle \widehat{F}'_n, g \rangle = n^{-1} \sum_{k=1}^n (T - R_k)^2$$

since g(T) = 0. The nth estimate of the Sortino ratio is, therefore, given by

$$\widehat{S}_n = \frac{R_n - T}{\widehat{DR}_n} = \frac{R_n - T}{\sqrt{n^{-1} \sum_{k=1}^n (T - R_k)^2}}.$$

Interestingly, and perhaps coincidentally, the computation of $\langle \widehat{F}'_n, g \rangle$ corresponds to the uniform Monte Carlo sampling estimate of the original integral.