

Ciência da Computação Heurísticas e Metaheurísticas

Uso de Metaheurísticas para encontrar soluções aproximadas para os problemas Knapsack e Travelling Salesman Problem

Davi dos Reis de Jesus

1 Introdução

Os problemas Knapsack e Travelling Salesman Problem (TSP) são amplamente conhecidos, principalemente, pelo fato de que para se achar sua solução ótima por meio de algoritmos de força bruta, o custo é excessivamente alto. Dessa forma, a utilização de Heurísticas e Metaheurísticas é uma opção viável para, pelo menos, obter uma solução aproximada da solução ótima.

2 Algoritmos

2.1 Simulated Annealing

O algoritmo Simulated Annealing é uma técnica de otimização inspirada no processo de resfriamento dos metais. Ele começa com uma solução inicial e, iterativamente, faz movimentos aleatórios no espaço de soluções, aceitando mudanças com base em uma função de custo e uma probabilidade que diminui ao longo do tempo. Essa probabilidade de aceitação permite escapar de ótimos locais e explorar mais amplamente o espaço de busca. À medida que o "resfriamento" avança, a probabilidade de aceitar soluções piores diminui, permitindo a convergência para uma solução de alta qualidade.

Os resultados obtidos nas execuções desse algoritmo ao variar determinados parâmetros, foram:

2.1.1 Para o problema TSP

Entrada tsp 51 vairando iterações

	- dad osp_o1 , dir directory o os				
	100	1000	10000		
1	446.8839533818554	479.32319948147637	456.6510933490022		
2	446.8839533818554	473.6765193084388	451.6913882874033		
3	465.09886117833685	473.6765193084388	454.006531219934		
4	452.07883610442667	473.14784516522485	462.21735301328874		
5	450.5322829079545	473.14784516522485	449.542222422409		
6	450.5322829079545	483.91388449601357	451.3987326629402		
7	455.06930123901407	483.91388449601357	460.01586726597316		
8	447.73425921186265	486.44387495823634	468.1214713850992		
9	447.73425921186265	478.9110546154637	451.6102396372289		
10	448.0784329246814	478.9110546154637	451.6102396372289		
best	446.8839533818554	473.14784516522485	449.542222422409		
mean	551.06264224498	478.506568161	455.68651388805		

Entrada tsp_51 variando temperatura inicial

	1000	10000	100000
1	519.6903027326407	485.791800227416	488.2375051429463
2	466.476149855813	485.791800227416	488.2375051429463
3	466.476149855813	511.43841677311497	498.4036303249113
4	495.815613269299	493.0699573959538	498.4036303249113
5	497.7779188878564	472.14333701995275	468.52855537739583
6	476.7253411432183	472.14333701995275	468.52855537739583
7	476.7253411432183	469.5571792686633	488.8852136766204
8	499.78082197084973	464.8967523903425	466.09929911426946
9	502.45503801996364	464.8967523903425	460.2706574718082
10	479.9467454078328	529.9689058860827	460.2706574718082
best	466.476149855813	464.8967523903425	460.2706574718082
mean	488.18694222865	484.96982385992	478.5865209425

Entrada tsp_51 variando taxa de decaimento da temperatura

	0.9	0.99	0.999
1	513.9348430903356	519.280945944461	437.47908898275665
2	513.9348430903356	490.3394905081451	437.47908898275665
3	557.4774484665963	468.08261233972974	447.8150322862758
4	571.1144179149917	464.553345420177	466.3064784948007
5	525.1924529782809	464.553345420177	443.60013712269694
6	525.1924529782809	459.9834926869079	443.60013712269694
7	533.8976446300086	459.9834926869079	459.9023891916206
8	548.123332402517	488.0096960381462	458.8305928042997
9	552.5780946146165	488.0096960381462	444.94870402176974
10	520.671869396656	485.65421505365316	444.94870402176974
best	520.671869396656	459.9834926869079	437.47908898275665
mean	536.21173995626	478.84503321365	448.49103530314

Entrada tsp_5 variando iterações

	100	1000	10000
1	106.9907544830948	106.9907544830948	106.9907544830948
2	106.9907544830948	106.9907544830948	106.9907544830948
3	106.9907544830948	106.9907544830948	106.9907544830948
4	106.9907544830948	106.9907544830948	106.9907544830948
5	106.9907544830948	106.9907544830948	106.9907544830948
6	106.9907544830948	106.9907544830948	106.9907544830948
7	106.9907544830948	106.9907544830948	106.9907544830948
8	106.9907544830948	106.9907544830948	106.9907544830948
9	106.9907544830948	106.9907544830948	106.9907544830948
10	106.9907544830948	106.9907544830948	106.9907544830948
best	106.9907544830948	106.9907544830948	106.9907544830948
mean	106.9907544830948	106.9907544830948	106.9907544830948

Entrada tsp_5 variando temperatura

	1000	10000	100000
1	106.9907544830948	106.9907544830948	106.9907544830948
2	106.9907544830948	106.9907544830948	106.9907544830948
3	106.9907544830948	106.9907544830948	106.9907544830948
4	106.9907544830948	106.9907544830948	106.9907544830948
5	106.9907544830948	106.9907544830948	106.9907544830948
6	106.9907544830948	106.9907544830948	106.9907544830948
7	106.9907544830948	106.9907544830948	106.9907544830948
8	106.9907544830948	106.9907544830948	106.9907544830948
9	106.9907544830948	106.9907544830948	106.9907544830948
10	106.9907544830948	106.9907544830948	106.9907544830948
best	106.9907544830948	106.9907544830948	106.9907544830948
mean	106.9907544830948	106.9907544830948	106.9907544830948

Entrada tsp_5 variando decaimento da temperatura

	1000	10000	100000
1	106.9907544830948	106.9907544830948	106.9907544830948
2	106.9907544830948	106.9907544830948	106.9907544830948
3	106.9907544830948	106.9907544830948	106.9907544830948
4	106.9907544830948	106.9907544830948	106.9907544830948
5	106.9907544830948	106.9907544830948	106.9907544830948
6	106.9907544830948	106.9907544830948	106.9907544830948
7	106.9907544830948	106.9907544830948	106.9907544830948
8	106.9907544830948	106.9907544830948	106.9907544830948
9	106.9907544830948	106.9907544830948	106.9907544830948
10	106.9907544830948	106.9907544830948	106.9907544830948
best	106.9907544830948	106.9907544830948	106.9907544830948
mean	106.9907544830948	106.9907544830948	106.9907544830948

2.1.2 Para o problema Knapsack

Entrada mochila_4_20 variando iterações

	100	1000	10000
1	35	35	35
2	35	35	35
3	35	35	35
4	35	35	35
5	35	35	35
6	35	35	35
7	35	35	35
8	35	35	35
9	35	35	35
10	35	35	35
best	35	35	35
mean	35	35	35

Entrada mochila_4_20 variando temperatura inicial

	======================================			
	100	1000	10000	
1	35	35	35	
2	35	35	35	
3	35	35	35	
4	35	35	35	
5	35	35	35	
6	35	35	35	
7	35	35	35	
8	35	35	35	
9	35	35	35	
10	35	35	35	
best	35	35	35	
mean	35	35	35	

Entrada mochila_4_20 variando decaimento de temperatura

	100	1000	10000
1	35	35	35
2	35	35	35
3	35	35	35
4	35	35	35
5	35	35	35
6	35	35	35
7	35	35	35
8	35	35	35
9	35	35	35
10	35	35	35
best	35	35	35
mean	35	35	35

Entrada mochila_100_1000 variando iterações

	100	1000	10000
1	8709	8756	8536
2	8709	8374	8536
3	8693	7961	8504
4	8693	7961	8407
5	8258	7554	8653
6	8258	7459	8445
7	8911	8416	8713
8	8411	8573	8713
9	7816	8629	8270
10	8686	8657	8139
best	8709	8756	8713
mean	8514.4	8234	8491.6

Entrada mochila_100_1000 variando temperatura inicial

	1000	10000	100000
1	7099	8135	7705
2	8528	7566	7705
3	8808	8197	7908
4	8900	8629	7933
5	8570	8690	8017
6	8570	7895	8530
7	7731	8599	8349
8	8382	9147	7305
9	8455	8559	8756
10	8179	6981	8756
best	8900	9147	8756
mean	8322.2	8239.8	8096.4

Entrada mochila_100_1000 variando decaimento de temperatura

	0.9	0.99	0.99
1	8653	7082	7631
2	8653	8507	7631
3	8559	8783	8507
4	8990	7546	8788
5	8990	7705	8817
6	8900	7848	8504
7	8230	7848	8349
8	8817	8382	7933
9	8541	8681	8929
10	8232	8808	8929
best	8900	7082	7631
mean	8656.5	8119	8401.8

2.2 Tabu Search

O algoritmo Tabu Search é uma meta-heurística usada para encontrar soluções aproximadas em problemas de otimização. Ele começa com uma solução inicial e iterativamente busca melhorar a solução através de movimentos em um espaço de soluções. Para evitar ciclos e melhorar a diversidade das soluções, o algoritmo usa uma memória chamada de lista tabu, que armazena as soluções recentemente visitadas e impede a sua reutilização por um certo período. A busca é guiada por uma combinação de exploração local e memória, permitindo encontrar soluções de alta qualidade em um espaço de busca complexo. Os resultados encontrados para as variações dos parâmetros do algoritmo foram:

2.2.1 Para o problema TSP

Entrada tsp 5 variando número de iterações

iterations	value
20	106.9907544830948
40	106.9907544830948
60	106.9907544830948
80	106.9907544830948
100	106.9907544830948
120	106.9907544830948
140	106.9907544830948
160	106.9907544830948
180	106.9907544830948
200	106.9907544830948

Entrada tsp_5 variando tamanho da lista tabu

value
115.18241536066049
115.18241536066049
115.18241536066049
115.18241536066049
115.18241536066049
115.18241536066049
115.18241536066049
115.18241536066049
115.18241536066049
115.18241536066049
115.18241536066049

Entrada tsp_51 variando número de iterações

iterations	value
20	1311.9107081148343
40	1308.2169459369752
60	1308.2169459369752
80	1308.2169459369752
100	1308.2169459369752
120	1308.2169459369752
140	1308.2169459369752
160	1308.2169459369752
180	1308.2169459369752
200	1308.2169459369752

Entrada tsp_51 variando tamanho da lista tabu

tabu_list_size	value
1	1260.9741610093743
2	1260.9741610093743
3	1260.9741610093743
4	1260.9741610093743
5	1260.9741610093743
6	1260.9741610093743
7	1260.9741610093743
8	1260.9741610093743
9	1260.9741610093743
10	1260.9741610093743
11	1260.9741610093743

2.2.2 Para o problema Knapsack

Entrada mochila_4_20 variando iterações

iterations	weight	value
20	18	35
60	18	35
100	18	35
140	18	35
180	18	35
220	18	35
260	18	35
300	18	35
340	18	35
380	18	35

Entrada mochila_4_20 variando tamanho da lista tabu

tabu_list_size	weight	value
1	18	35
2	18	35
3	18	35
4	18	35
5	18	35
6	18	35
7	18	35
8	18	35
9	18	35
10	18	35
11	18	35

Entrada mochila_100_1000 variando iterações

iterations	weight	value
20	959	6871
60	959	6871
100	959	6871
140	959	6871
180	959	6871
220	959	6871
260	959	6871
300	959	6871
340	959	6871
380	959	6871

Entrada mochila_100_1000 variando tamanho da lista tabu

tabu_list_size	weight	value
1	987	2983
2	959	6871
3	959	6871
4	985	5530
5	987	7846
6	987	7846
7	987	7846
8	987	7846
9	987	7846
10	987	7846
11	990	8544

3 Conclusão

Portanto, pode-se concluir, após todas as execuções com variação de parâmetros, que a utilização de metaheurísticas é uma opção viável, principalmente, para problemas em que a resolução trivial não é capaz de obter a solução ótima em tempo polinomial.

Além disso, observa-se que o ajuste de parâmetros dos algoritmos é de grande importância, dado que influenciam, diretamente, no quão próximo o algoritmo consegue chegar do resultado almejado. Na maioria dos casos, quanto maior o tempo de execução e o custo computacional, melhor é o resultado da função objetivo. Portanto, é necessário saber realizar o tradeoff entre qualidade e custo para