

Model order reduction using artificial neural networks

Hendrik Kleikamp

October 7, 2021 - Afternoon session

Institute for Analysis and Numerics - WWU Münster

Mathematical background

• Starting point: Given a full-order model $\mu \mapsto u(\mu)$ and a reduced space V_N with orthonormal basis Ψ_N , how to compute a fast and reliable reduced model without affine decomposition of operators (i.e. without using EIM for instance)?

Mathematical background

- Starting point: Given a full-order model $\mu \mapsto u(\mu)$ and a reduced space V_N with orthonormal basis Ψ_N , how to compute a fast and reliable reduced model without affine decomposition of operators (i.e. without using EIM for instance)?
- ullet Goal: Approximate the map $\pi_N\colon \mathcal{P} o \mathbb{R}^N$, given as

$$\pi_N(\mu) = u_{\text{proj}}(\mu) \in \mathbb{R}^N,$$

where $u_{\text{proj}}(\mu)$ holds the coefficients of the **orthogonal** projection of the full-order solution $u(\mu)$ onto the reduced space V_N .

Mathematical background

- Starting point: Given a full-order model $\mu \mapsto u(\mu)$ and a reduced space V_N with orthonormal basis Ψ_N , how to compute a fast and reliable reduced model without affine decomposition of operators (i.e. without using EIM for instance)?
- ullet Goal: Approximate the map $\pi_N\colon \mathcal{P} o \mathbb{R}^N$, given as

$$\pi_N(\mu) = u_{\text{proj}}(\mu) \in \mathbb{R}^N,$$

where $u_{\mathrm{proj}}(\mu)$ holds the coefficients of the **orthogonal** projection of the full-order solution $u(\mu)$ onto the reduced space V_N .

• Idea: Use a neural network to approximate π_N .

Example: Feed-forward neural networks

Bias neurons

Definition: Feed-forward neural networks

Components of a neural network Φ :

- ullet Number of layers L
- Number of neurons N_1, \dots, N_{L-1} in the L-1 hidden layers
- Input size N_0 ; Output size N_L
- Matrices A_1, \ldots, A_L with $A_i \in \mathbb{R}^{N_i \times N_{i-1}}$ (weights)
- Vectors b_1, \dots, b_L with $b_i \in \mathbb{R}^{N_i}$ (biases)
- Activation function $\rho \colon \mathbb{R} \to \mathbb{R}$ (ReLU, \tanh, \ldots)

Definition: Feed-forward neural networks

Components of a neural network Φ :

- ullet Number of layers L
- Number of neurons N_1, \dots, N_{L-1} in the L-1 hidden layers
- Input size N_0 ; Output size N_L
- Matrices A_1, \ldots, A_L with $A_i \in \mathbb{R}^{N_i \times N_{i-1}}$ (weights)
- Vectors b_1, \ldots, b_L with $b_i \in \mathbb{R}^{N_i}$ (biases)
- Activation function $\rho \colon \mathbb{R} \to \mathbb{R}$ (ReLU, \tanh, \ldots)

For an input $x \in \mathbb{R}^{N_0}$, the output of Φ is given by

$$\Phi(x) = A_L r^{L-1}(x) + b_L,$$

where

$$r^{i}(x) = \rho^{*}(A_{i}r^{i-1}(x) + b_{i}), \quad i = 1, \dots, L-1,$$

 $r^{0}(x) = x,$

with ρ^* being the component-wise application of ρ .

Visualization of the definition: Feed-forward neural networks

Bias

PYMOR | Artificial neural networks

Neural network training in a nutshell

- ullet Task: Adjust weights and biases such that Φ approximates a function f.
- Problem: Typically, f is not given explicitly, but we can only compute samples of f.

Neural network training in a nutshell

- ullet Task: Adjust weights and biases such that Φ approximates a function f.
- Problem: Typically, f is not given explicitly, but we can only compute samples of f.
- Idea: Choose training set x_1, \ldots, x_n , compute $f(x_1), \ldots, f(x_n)$, and minimize error

$$E(\Phi) = \frac{1}{n} \sum_{i=1}^{n} l(\Phi(x_i), f(x_i))$$

with respect to the weights and biases of Φ .

Here, $l: \mathbb{R}^{N_L} \times \mathbb{R}^{N_L} \to \mathbb{R}$ denotes a loss function, for instance $l(y, \tilde{y}) = \|y - \tilde{y}\|_2^2$.

• Optimization of E: Compute gradient of E with respect to weights and biases using backpropagation and apply (variant of) gradient descent algorithm to gradually minimize E.

Pseudo code for neural network training

```
for r = 1, \ldots, N_{\text{restarts}} do
    initialize weights and biases randomly
    for e=1,\ldots,N_{\rm epochs} do
        create batches of training data
        /* Training */
        for b = 1, \dots, N_{\text{batches}} do
            apply optimization step with loss function for batch b
        end
        /* Validation */
        compute validation loss
        if early stopping criterion is fulfilled then
             stop training and perform next restart
        end
    end
    update neural network with lowest validation loss if necessary
```

Hendrik Kleikamp (hendrik.kleikamp@uni-muenster.de)

end

General information on the implementation in pyMOR

- Reduced basis Ψ_N via POD of snapshots $u(\mu_1), \ldots, u(\mu_n)$.
- Neural networks implemented and trained using PyTorch (https://pytorch.org/).
- Training with snapshots $u(\mu_i)$ projected on reduced space V_N :

$$\{(\mu_i, \underbrace{u_{\text{proj}}(\mu_i)}_{=\pi_N(u(\mu_i))}) \in \mathcal{P} \times \mathbb{R}^N : i = 1, \dots, n\}$$

- Validation phase to assess generalization ability.
- Early stopping and multiple restarts of training.
- Customizable training routine (optimizer, epochs, learning rate, ...).
- Everything hidden in a reductor!

Let's look at some code ...

```
class NeuralNetworkReductor(BasicObject):
    def __init__(self, fom, training_set, validation_set=None,
                 validation_ratio=0.1, basis_size=None,
                 rtol=0., atol=0., 12_err=0., pod_params=None,
                 ann mse='like basis'):
    def reduce(self, hidden layers='[(N+P)*3, (N+P)*3]',
               activation function=torch.tanh,
               optimizer=optim.LBFGS, epochs=1000,
               batch_size=20, learning_rate=1., restarts=10,
               seed=0):
    def reconstruct (self, u):
        . . .
```

A bit more code ...

```
def train neural network (training data, validation data,
                         neural network, training parameters={}):
    """Training algorithm for artificial neural networks.
    Trains a single neural network using the given training and
    validation data."""
    . . .
def multiple_restarts_training(training_data, validation_data,
                               neural network, target loss=None,
                               max restarts=10,
                               training parameters={}, seed=None):
    """Algorithm that performs multiple restarts of neural network
    This method either performs a predefined number of restarts and
    returns the best trained network or tries to reach a given target
    loss and stops training when the target loss is reached."""
    . . .
```

The NeuralNetworkReductor in action

More details:

https://docs.pymor.org/main/tutorial_mor_with_anns.html

Variants of the NeuralNetworkReductor

Instationary models:

Treat time as an additional parameter and apply same procedure as for stationary problems, i.e. approximate the map $(\mu,t)\mapsto u_N(\mu,t)\in\mathbb{R}^N$ by a neural network.

Usage shown in a demo:

https://github.com/pymor/pymor/blob/2021.1.x/src/pymordemos/neural_networks_instationary.py

Variants of the NeuralNetworkReductor

Instationary models:

Treat time as an additional parameter and apply same procedure as for stationary problems, i.e. approximate the map $(\mu,t)\mapsto u_N(\mu,t)\in\mathbb{R}^N$ by a neural network.

Usage shown in a demo:

https://github.com/pymor/pymor/blob/2021.1.x/src/pymordemos/neural_networks_instationary.py

Statefree outputs:

Learn map from parameter space to output directly without computing a (reduced) state, i.e. given an output functional $\mathcal{J}(\mu) := J(u(\mu), \mu)$, approximate \mathcal{J} by a neural network instead of using a reduced order model to obtain $u_N(\mu)$ and computing $\mathcal{J}(\mu) \approx J(u_N(\mu), \mu)$ afterwards.

Usage shown in the tutorial:

https://docs.pymor.org/main/tutorial_mor_with_anns.html

All available neural network-based reductors

Stationary problems:

- NeuralNetworkReductor
 Approximates map from parameter to reduced state.
- NeuralNetworkStatefreeOutputReductor Approximates map from parameter to output. *

Instationary problems:

- NeuralNetworkInstationaryReductor
 Approximates map from parameter and time to reduced state.
- NeuralNetworkInstationaryStatefreeOutputReductor Approximates map from parameter and time to output. *
- * New in release 2021 1

Remarks on the method

Advantages:

- Non-intrusive method.
- Parameter separability is not required.
- Very fast during online computations.
- Orthogonal projection produces smaller error than Galerkin projection (constant from the Lemma of Céa).

Disadvantages:

- Neural network produces additional error (beside the error of the reduced space).
- Finding a proper neural network architecture is crucial to obtain good results.
- Training in the offline phase might be expensive.

References

Jan S. Hesthaven and Stefano Ubbiali: Non-intrusive reduced order modeling of non-linear problems using neural networks.

J. Comput. Phys., 363:55-78, 2018.

Qian Wang, Jan S. Hesthaven, and Deep Ray: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem.

J. Comput. Phys., 384:289-307, 2019.

