$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$

- 1. Given below are several pairs of functions f(n) and g(n). For each pair, Show work. For some of these, you may need to use L'Hospital's rule. (20 points)
 - (a) $f(n) = 15n^2$ and g(n) = 5.
 - (b) $f(n) = 2^n$ and $g(n) = n^2$.
 - (c) $f(n) = n \ln n$ and $g(n) = 17n^2 + 4$. (Note that "ln" denotes the natural logarithm.)
 - (d) $f(n) = 3^n$ and $g(n) = 2^n$.
- 2. (a) Use induction on n to prove that for all integers $n \ge 0$, the value $4^n + 1$ is not divisible by 3. (20 points)
 - (b) Consider the infinite sequence of integers f_0 , f_1 , f_2 , ..., defined by $f_0 = 1$, $f_1 = 2$ and

(b) Consider the infinite sequence of integers
$$f_0$$
, f_1 , f_2 , ..., defined by $f_0 = 1$, $f_1 = 2$ and $f_n > \left(\frac{3}{2}\right)^n$ for all $n >= 2$. Use induction on n to prove that $f_n = f_{n-1} + f_{n-2}$ for all $n >= 1$. (20 points)

- 3. Let $A = \{x; y; z; w\}$ and let $B = \{1; 2; 3\}$. Determine the number of functions from A to B that are neither one-to-one nor map y to 3. Show work. (20 points) **Hint:** Use the principle of inclusion-exclusion.
- 4. Let $A = \{x_1; x_2; ...; x_{10}\}$ be a set of 10 positive integers, not necessarily distinct, such that $x_i \le 10$, $1 \le i \le 10$. Prove that there are at least two different 5-element subsets S_1 and S_2 of A such that the sum of the elements in S_1 is equal to the sum of the elements in S_2 . (20 points)

Hint: Use the pigeonhole principle.