- 1. Distributions de charges et de courants
- 2. Equations de Maxwell dans le vide
- 3. Potentiels en électromagnétisme
- 4. Champ électromagnétique
- 5. Régimes particuliers de l'électromagnétisme
 - 1. Régime statique
 - 2. Régime permanent
 - 3. Approximation des Régimes Quasi Stationnaires
- 6. Invariances et symétries du champ électromagnétique
- 7. Relations de continuité du champ électromagnétique

- ARQS (Régimes) ou parfois AEQS (Etats) selon les auteurs
- Consiste à calculer les champs selon :

$$\vec{B} = \vec{\nabla} \times \vec{A}$$
 et $\vec{E} = -\vec{\nabla} \Phi - \frac{\partial \vec{A}}{\partial t}$

mais néglige les retards, ie utilise les potentiels instantanés en régime non permanent

$$\Phi(M, t) \approx \frac{1}{4 \pi \varepsilon_0} \iiint_{\text{Espace}} \frac{\rho(P, t)}{PM} d^3 P$$
 $\vec{A}(M, t) \approx \frac{\mu_0}{4 \pi} \iiint_{\text{Espace}} \frac{\vec{J}(P, t)}{PM} d^3 P$

 De manière équivalente, l'ARQS néglige les phénomènes de propagation

- Champ magnétique : identique à la magnétostatique (puisque le potentiel vecteur a la même forme):
 - □ D'où les équations locales :

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$
 et $\vec{\nabla} \cdot \vec{B} = 0$

- □ L'ARQS néglige le courant de déplacement (c'est cohérent car il explique la propagation)
- □ Le caractère conservatif de l'intensité (flux de J) et ses conséquences (loi des mailles, loi des nœuds) sont valables dans l'ARQS (comme en régime permanent)
- Champ électrique : différent du cas statique puisque $\vec{E} = -\vec{\nabla}\Phi \frac{\partial A}{\hat{L}}$ □ D'où les équations locales :

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \qquad \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

■ En résumé, les équations de Maxwell de l'ARQS sont :

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \qquad \vec{\nabla} \times \vec{B} = \mu_0 \vec{J} \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \vec{\nabla} \cdot \vec{B} = 0$$
(MG) (MG) (MF) (MP)

Domaine de validité

- Approximation justifiée si tous les retards sont négligeables devant un temps caractéristique de l'évolution des champs
 - \Box Pour un régime sinusoïdal, ceci signifie que le circuit est petit devant $\lambda = c / v$
- Exemples « traditionnels » (dimension caractéristique d):
 - \Box Si $d \approx 1$ m (application courante), l'ARQS sera valable si $v \leftrightarrow 300$ MHz
 - ⇒ Circuits imprimés
 - \Box Si v = 10 MHz, l'ARQS sera valable si $d \leftrightarrow 30$ m
 - ⇒ On utilise généralement l'ARQS en TP!
 - \Box Si v = 50 Hz (λ = 6000 km), l'ARQS sera valable si $d \leftrightarrow 6000$ km
 - ⇒ Circuits industriels de distribution de l'électricité

- 1. Distributions de charges et de courants
- 2. Equations de Maxwell dans le vide
- 3. Potentiels en électromagnétisme
- 4. Champ électromagnétique
- 5. Régimes particuliers de l'électromagnétisme
- 6. Invariances et symétries du champ électromagnétique
 - 1. Principe de Curie
 - 2. Invariances
 - 3. Symétries
- 7. Relations de continuité du champ électromagnétique

Principe de Curie

- Si une cause présente une certaine symétrie ou invariance, alors son effet aura la même symétrie (ou la même invariance), ou une symétrie supérieure, à condition que la solution du problème soit unique
- Noter que les éléments de symétrie agissent sur les directions des grandeurs vectorielles, tandis que les invariances agissent sur les variables dont dépendent ces grandeurs
- Exemples d'application en mécanique :
 - \Box Conservation de $E \Rightarrow$ invariance par translation dans le temps
 - \Box Conservation de $p \Rightarrow$ invariance par translation dans l'espace
 - \Box Conservation de $\sigma \Rightarrow$ invariance par rotation dans l'espace

- Si un système physique possède un certain degré de symétrie, on peut déduire les effets créés par ce système en un point à partir des effets en un autre point
 - 6 propriétés (notées de P1 à P6) découlant du principe de Curie, valables aussi bien en statique qu'en régime variable tant qu'on néglige les retards - Cf polycopié
- Valable aussi bien pour les distributions volumiques que surfaciques, linéiques ou ponctuelles

- 1. Distributions de charges et de courants
- 2. Equations de Maxwell dans le vide
- 3. Potentiels en électromagnétisme
- 4. Champ électromagnétique
- 5. Régimes particuliers de l'électromagnétisme
- 6. Invariances et symétries du champ électromagnétique
 - 1. Principe de Curie
 - 2. Invariances
 - 3. Symétries
- 7. Relations de continuité du champ électromagnétique

- P1 (Invariance par translation) : si un système est invariant dans toute translation parallèle à un axe, les effets sont indépendants des coordonnées de cet axe
 - □ Utiliser les coordonnées cartésiennes!
 - \square Exemple: invariance de ρ par translation // (Oz):

$$\Phi(M) = \Phi(x, y)$$
 et $\vec{E}(M) = E_x(x, y) \vec{u}_x + E_y(x, y) \vec{u}_y + E_z(x, y) \vec{u}_z$

 \square Exemple: invariance de J par translation // (Oz):

$$\vec{A}(M) = \vec{A}(x, y)$$
 et $\vec{B}(M) = \vec{B}(x, y)$

- P2 (Symétrie axiale): si un système est invariant dans toute rotation autour d'un axe donné, alors ses effets ne dépendent pas de l'angle qui définit la rotation
 - □ Utiliser les coordonnées cylindriques!
 - \square Exemple: invariance de ρ par rotation par rapport à (Oz):

$$\Phi(M) = \Phi(r, z)$$
 et $\vec{E}(M) = E_r(r, z) \vec{u}_r + E_{\theta}(r, z) \vec{u}_{\theta} + E_z(r, z) \vec{u}_z$

 \square Exemple: invariance de J par rotation par rapport à (Oz):

$$\left\{ \begin{array}{l} \vec{A}(M) = A_r(r,z)\,\vec{u}_r + A_\theta(r,z)\,\vec{u}_\theta + A_z(r,z)\,\vec{u}_z \\ \vec{B}(M) = B_r(r,z)\,\vec{u}_r + B_\theta(r,z)\,\vec{u}_\theta + B_z(r,z)\,\vec{u}_z \end{array} \right.$$

- P3 (Symétrie cylindrique): si un système est invariant par translation et rotation, ses effets ne dépendent que de la distance à l'axe de rotation
 - □ Utiliser les coordonnées cylindriques!
- P4 (Symétrie sphérique): si un système est invariant dans toute rotation autour d'un point fixe, ses effets ne dépendent que de la distance à ce point fixe
 - □ Utiliser les coordonnées sphériques!

- 1. Distributions de charges et de courants
- 2. Equations de Maxwell dans le vide
- 3. Potentiels en électromagnétisme
- 4. Champ électromagnétique
- 5. Régimes particuliers de l'électromagnétisme
- 6. Invariances et symétries du champ électromagnétique
 - 1. Principe de Curie
 - 2. Invariances
 - 3. Symétries
- 7. Relations de continuité du champ électromagnétique

Qu'est-ce que le « champ magnétique »?

■ On peut définir un champ B à l'aide de la force de Lorentz :

$$\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

- La force étant reliée à l'énergie, la définition ne doit pas dépendre de la convention d'orientation de l'espace, ie de la définition du produit vectoriel!
 - □ B n'a pas la même forme que E (qui ne dépend d'aucune convention)
 - □ B dépend de la convention d'orientation de l'espace!

Une autre façon de dire la même chose (1/2)

 On montre expérimentalement que dans toute région subissant l'influence de courants, la force dF à laquelle un élément de circuit parcouru par le courant I est soumis dépend linéairement de I dl:

$$\begin{pmatrix} dF_{x} \\ dF_{y} \\ dF_{z} \end{pmatrix} = \begin{pmatrix} B \end{pmatrix} \begin{pmatrix} I dl_{x} \\ I dl_{y} \\ I dl_{z} \end{pmatrix} \text{ avec } \begin{pmatrix} B \end{pmatrix} = \begin{pmatrix} B_{xx} & B_{xy} & B_{xz} \\ B_{yx} & B_{yy} & B_{yz} \\ B_{zx} & B_{zy} & B_{zz} \end{pmatrix}$$

 \blacksquare On observe également que dF et I dI sont perpendiculaires :

$$dF_x dl_x + dF_y dl_y + dF_z dl_z = 0$$

$$\forall I \implies B_{xx} = B_{yy} = B_{zz} = 0$$
 $B_{yx} = -B_{xy}$ $B_{xz} = -B_{zx}$ $B_{yz} = -B_{zy}$

■ La matrice des coefficients est donc antisymétrique. Il suffit de 3 coefficients pour décrire l'action du champ magnétique

Une autre façon de dire la même chose (2/2)

• On pose $B_x = B_{yz}$, $B_y = B_{zx}$ et $B_z = B_{xy}$. Il reste :

$$(B) = \begin{pmatrix} 0 & B_z & -B_y \\ -B_z & 0 & B_x \\ By & -B_x & 0 \end{pmatrix}$$

- Les coordonnées B_x , B_y et B_z sont les 3 composantes d'un tenseur antisymétrie d'ordre 2 et de rang 3
- Ecrire B sous forme vectorielle permet de le visualiser, mais les composantes de ce vecteur ne sont pas « normales »

$$\vec{B} = B_x \vec{u}_x + B_y \vec{u}_y + B_z \vec{u}_z$$

□ B est un pseudo vecteur (ou vecteur axial) tandis que E est un vrai vecteur (ou vecteur polaire)

Vecteurs polaires ou axiaux

- \blacksquare Il est facile de se représenter les champs E et B par des vecteurs
- On appellera parité l'opération de symétrie par rapport au point O
- On définit 2 types de vecteurs :
 - un vecteur sera polaire (ou *vrai vecteur*) si Parité(V) = -VExemples \longrightarrow $\vec{E}, \vec{r}, \vec{v}, \vec{p}, \vec{F}, \vec{J}, \vec{A}, \vec{R}$
 - un vecteur sera axial (ou *pseudo vecteur*) si Parité(V) = VExemples $\longrightarrow \vec{r} \times \vec{p}, \vec{r} \times \vec{F}, \vec{B}$
- En particulier, B est axial pour que la force s'écrive $\vec{F} = q \vec{v} \times \vec{B}$

- Principe de Curie : les éléments de symétrie des causes doivent se retrouver dans les effets produits
 - Les propriétés de symétrie ou d'antisymétrie des distributions de charges et de courant se retrouvent dans les champs et les potentiels
- P5 (plan de symétrie) : si un système admet un plan de symétrie, alors en tout point de ce plan :
 - □ Un effet vectoriel est contenu dans ce plan
 - □ Un effet axial est perpendiculaire à ce plan
- P6 (plan d'antisymétrie) : si un système admet un plan d'antisymétrie, alors en tout point de ce plan :
 - □ Un effet vectoriel est perpendiculaire à ce plan
 - □ Un effet axial est contenu dans ce plan

- On peut ainsi étudier les symétries (ou antisymétries) d'une distribution par rapport à un point, un axe ou un plan
- Cf Polycopié page 33 et suivantes

Exemple d'une symétrie d'une distribution de charge wrt un plan (1/2)

 Une distribution de charge possède un plan de symétrie (π) si deux éléments de volume symétriques par rapport à ce plan contiennent la même charge

On montre que :

$$\begin{cases}
\Phi(M') = \Phi(M) \\
\vec{E}_{\perp}(M') = -\vec{E}_{\perp}(M) & \text{et } \vec{E}_{//}(M') = \vec{E}_{//}(M)
\end{cases}$$

■ En particulier, si un point appartient à un plan de symétrie de la distribution de charge, le champ électrique en ce point est contenu dans le plan

Exemple d'une symétrie d'une distribution de charge wrt un plan (2/2)

Une distribution de charge possède un plan E(M) E//
d'antisymétrie (π) si deux éléments de
volume symétriques par rapport à ce plan
contiennent des charges opposées

On montre que :

$$\begin{cases} \Phi(M') = -\Phi(M) \\ \vec{E}_{\perp}(M') = \vec{E}_{\perp}(M) \quad \text{et} \quad \vec{E}_{//}(M') = -\vec{E}_{//}(M) \end{cases}$$

■ En particulier, si un point appartient à un plan d'antisymétrie de la distribution de charge, le champ électrique en ce point est normal au plan

- 1. Distributions de charges et de courants
- 2. Equations de Maxwell dans le vide
- 3. Potentiels en électromagnétisme
- 4. Champ électromagnétique
- 5. Régimes particuliers de l'électromagnétisme
- 6. Invariances et symétries du champ électromagnétique
- 7. Relations de continuité du champ électromagnétique
 - 1. Modèles des densités ponctuelles, linéiques et volumiques
 - 2. Modèle des densités surfaciques

- Les propriétés de continuité/discontinuité dépendent de la modélisation des distributions
- Reste valable pour des phénomènes dépendant du temps tant qu'on peut négliger le temps de propagation sur le volume de test concerné
- Ne pas oublier que l'électromagnétisme classique n'est plus valable dès qu'on se rapproche « trop » des charges

Charges ponctuelles

■ Potentiel Φ et champ E et connus :

$$\Phi_{ponc}(M) = \frac{1}{4 \pi \varepsilon_0} \sum_i \frac{q_i}{r_i}$$

$$\Rightarrow \text{singularit\'e au voisinage des charges}$$
 (mais le modèle n'est plus valide)
$$\vec{E}_{ponc}(M) = \frac{1}{4 \pi \varepsilon_0} \sum_i \frac{q_i}{r_i^2} \vec{u}_i$$

ullet et E ne présentent aucune singularité mathématique dans un modèle de charges ponctuelles

Densités linéiques

Champ électrique

$$\vec{E}_{lin}(M) = \frac{\lambda}{2 \pi \varepsilon_0} \frac{1}{r} \vec{u}_r$$

$$\Phi_{lin}(M) = \frac{\lambda}{2 \pi \varepsilon_0} \ln \left(\frac{r}{r_0}\right)$$

$$\Rightarrow \text{ singularit\'e au voisinage du fil (mais le modèle n'est plus valide)}$$

(mais le modèle n'est plus valide)

Champ magnétique

$$\vec{B}(M) = \frac{\mu_0 I}{2 \pi r} \vec{u}_{\theta}$$

$$\vec{A}(M) = -\frac{\mu_0 I}{4 \pi} \ln(x^2 + y^2) \vec{u}_z$$

⇒ singularité au voisinage du fil (mais le modèle n'est plus valide)

 \blacksquare E, B, Φ et A ne présentent aucune singularité mathématique dans un modèle de charges linéiques

Densités volumiques

■ Champ électrique :

$$\vec{\nabla} \times \vec{E}_{vol} = \vec{0}$$

$$\vec{\nabla} \cdot \vec{E}_{vol} = \frac{\rho}{\varepsilon_0}$$

$$\Delta \Phi_{vol} = -\frac{\rho}{\varepsilon_0}$$

 \Rightarrow E et Φ sont définis en tout point

 \Rightarrow E et Φ sont continus en tout point (car dérivées partielles bornées)

- Champ magnétique : $\vec{B}(M) = \frac{\mu_0}{4\pi} \iiint_{(D)} \frac{\vec{J}(P) \times \vec{P}M}{PM^3} d^3P$
 - □ Le seule singularité est éventuellement en P = M. On montre en fait qu'elle n'en est pas une (cf poly § 1.7.1)
- Potentiel vecteur : $\vec{A}(M) = \frac{\mu_0}{4 \pi} \iiint_{(D)} \frac{\vec{J}(P)}{PM} d^3 P$
 - □ Même raisonnement pour la même conclusion
- ullet E, B, Φ et A ne présentent aucune singularité mathématique dans un modèle volumique

- 1. Distributions de charges et de courants
- 2. Equations de Maxwell dans le vide
- 3. Potentiels en électromagnétisme
- 4. Champ électromagnétique
- 5. Régimes particuliers de l'électromagnétisme
- 6. Invariances et symétries du champ électromagnétique
- 7. Relations de continuité du champ électromagnétique
 - 1. Modèles des densités ponctuelles, linéiques et volumiques
 - 2. Modèle des densités surfaciques

Qu'est-ce qu'une discontinuité?

■ La discontinuité d'une quantité F est $F(M_2)$ - $F(M_1)$

Discontinuité _ physique

____ Discontinuité mathématique

- En fait:
 - □ En math, la dérivée n'est pas définie
 - □ En physique, une discontinuité n'est qu'une variation rapide en z et est toujours définie :

$$F_2 - F_1 = \int_{M_1}^{M_2} \frac{\partial F}{\partial z} \, dz$$

- Dans le cas d'une discontinuité en z, on supposera toujours une continuité dans les autres direction (x, y et t), à cause de la petite dimension concernée en z
 - □ Par exemple:

$$\lim_{M_1 \to M_2} \left(\int_{M_1}^{M_2} \frac{\partial F}{\partial x} \, dx \right) = 0$$

■ Comme le rayon de courbure de la surface (Σ) est grand devant les variations caractéristiques du phénomène étudié, on assimilera donc (Σ) à son plan tangent pris pour plan z=0

Rappel de mécanique : choc d'un point matériel

Un point matériel évolue dans un référentiel galiléen selon le PFD.
 En intégrant :

$$\Delta \vec{p} = \int_{-\varepsilon}^{+\varepsilon} \vec{F} \ dt$$

- Par définition, le choc du point matériel correspond à la discontinuité de p lorsque $\epsilon \rightarrow 0$
 - \Box La force doit être infinie pour que Δp soit finie
- On va transposer à l'EM ce principe du choc d'un point matériel en mécanique en faisant jouer le rôle du temps t par la position z et le rôle de la force F par les quatre équations de Maxwell

Composante normale de E

■ (MG) s'écrit :
$$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = \frac{\rho}{\varepsilon_0}$$

■ On intègre sur
$$[-\varepsilon, +\varepsilon]$$
:
$$\int_{-\varepsilon}^{+\varepsilon} \frac{\partial E_x}{\partial x} dz + \int_{-\varepsilon}^{+\varepsilon} \frac{\partial E_y}{\partial y} dz + \int_{-\varepsilon}^{+\varepsilon} \frac{\partial E_z}{\partial z} dz = \frac{1}{\varepsilon_0} \int_{-\varepsilon}^{+\varepsilon} \rho dz$$

■ En faisant tendre $\epsilon \rightarrow 0$, la limite des deux premières intégrales est nulle (dérivées finies). Il reste :

$$\lim_{\varepsilon \to 0} \left(\int_{-\varepsilon}^{+\varepsilon} \frac{\partial E_z}{\partial z} \, dz \right) = \frac{1}{\varepsilon_0} \lim_{\varepsilon \to 0} \left(\int_{-\varepsilon}^{+\varepsilon} \rho \, dz \right)$$

$$\lim_{\varepsilon \to 0} \left(E_z(\varepsilon) - E_z(-\varepsilon) \right) = E_z(0^+) - E_z(0^-) = \Delta E_z$$

$$= \sigma \text{ (densit\'e surfacique de charges) par d\'efinition}$$

■ Finalement:

$$\Delta E_z = \frac{\sigma}{\varepsilon_0}$$
 ou encore $(\vec{E}_2 - \vec{E}_1) \cdot \vec{n}_{1 \to 2} = \frac{\sigma}{\varepsilon_0}$ Relation de continuité (de passage) pour la composante normale de \vec{E}

pour la composante normale de E

 Vous trouverez dans le polycopié (pages 39 et 40), en introduisant la densité superficielle de courant K :

$$\left(\vec{B}_2 - \vec{B}_1\right) \times \vec{n}_{1 \to 2} = -\mu_0 \vec{K}$$

Relation de continuité pour la composante tangentielle de *B*

$$\left(\vec{B}_2 - \vec{B}_1\right) \cdot \vec{n}_{1 \to 2} = 0$$

Relation de continuité pour la composante normale de *B*

$$\left(\vec{E}_2 - \vec{E}_1\right) \times \vec{n}_{1 \to 2} = \vec{0}$$

Relation de continuité pour la composante tangentielle de *E*

On peut présenter ces 4 relations sous forme plus compacte :

$$\Delta \vec{E} = \vec{E}_2 - \vec{E}_1 = \frac{\sigma}{\varepsilon_0} \vec{n}_{1 \to 2}$$
 et $\Delta \vec{B} = \vec{B}_2 - \vec{B}_1 = \mu_0 \vec{K} \times \vec{n}_{1 \to 2}$

- Ces relations sont valables pour les régimes non permanents (et évidemment) également pour les régimes permanents
 - □ La seule limitation serait pour les très hautes fréquences, où on ne peut plus négliger le temps de propagation
- En réalité, E et B sont continus
 - Les discontinuités viennent du fait qu'on a négligé l'épaisseur de la nappe chargée dans le modèle surfacique
 - Selon l'échelle, on utilisera un modèle volumique (donc continu)
 ou surfacique (donc discontinu)

■ Pour les potentiels :

- \Box Le potentiel scalaire Φ est continu à la traversée d'une surface chargée
- □ Le potentiel vecteur A est continu à la traversée d'une surface chargée

Application : champ et potentiel au voisinage d'une plaque de densité uniforme (exercice 1.4)

Savoir faire & connaître pour le chapitre « Equations de Maxwell »

- Ecrire les équations de Maxwell dans le vide et dans un milieu vide de charges et de courants
- Ecrire les champs en fonction des potentiels
- Ecrire et calculer le vecteur de Poynting
- Connaître les propriétés du champ EM
- Savoir simplifier un problème à l'aide des invariances et des symétries
- Connaître les conditions aux limites du champ électromagnétique dans le cas d'un modèle surfacique

Chapitre 2: « Electrostatique »

- L'électrostatique est l'étude des charges immobiles dans le vide
 - □ Les observables physiques seront indépendantes du temps
- \blacksquare La conservation de la charge totale implique que $\vec{\nabla} \cdot \vec{J} = 0$ mais n'interdit pas a priori $\vec{J} \neq 0$
 - $\vec{J} \neq 0$ sera étudié au chapitre 6
 - □ L'électrostatique dans les milieux sera étudié au chapitre 5
- Le domaine spatial de validité de l'électrostatique est très grand :
 - □ Limite haute: l'infini
 - □ Limite basse : la prise en compte des effets quantiques (QED) en s'approchant des charges ($d << 10^{-10}$ m)

- Historiquement, on a considéré deux types de « fluide électrique »
 - □ L'électricité négative (de l'ambre frottée avec de la fourrure)
 - * Interprétation moderne : excès d'électrons
 - □ L'électricité positive (du verre frotté avec de la soie)
 - * Interprétation moderne : défaut d'électrons
- Il y a deux types de corps :
 - □ Les conducteurs (métaux, électrolytes, etc...), sur lesquels de l'électricité peut se déplacer
 - → Interprétation moderne : déplacement macroscopique de charges
 - Les isolants (verre, soie, ébonite, etc...), sur lesquels de l'électricité ne peut pas se déplacer

- On peut électriser un corps de diverses façons :
 - □ Par frottement
 - □ Par contact
 - □ Par influence (cf chapitre 6)
 - □ Par compression ou par chauffage (cf chapitre 5)
- On doit utiliser des variables nivelées pour les densités continues

- 1. Loi de Coulomb, champs et potentiels en électrostatique
 - 1. Loi de Coulomb
 - 2. Champ électrostatique
 - 3. Potentiel électrostatique
 - 4. Equipotentielles et lignes de champ
 - 5. Le problème expérimental du zéro des potentiels
- 2. Relations avec les charges
- 3. Méthodes de calcul en électrostatique
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

Loi de Coulomb

- Loi expérimentale de 1785 s'exerçant entre 2 charges fixes :
 - Si l'espace est isotrope, la seule direction privilégiée est la droite reliant les charges : le système possède donc la symétrie de révolution autour de cet axe
 - □ La force doit posséder cette symétrie (principe de Curie) et donc être portée par l'axe
- Loi de Coulomb :

$$\vec{F}_{1\to 2} = \frac{1}{4\pi \,\varepsilon_0} \frac{q_1 \,q_2}{r_{12}^2} \,\vec{u}_{1\to 2} \qquad \frac{1}{4\pi \,\varepsilon_0} \approx 9 \,10^9 \,\text{MKSA}$$

 ε_0 : permittivité du vide

$$\varepsilon_0 \approx 8.85 \, 10^{-12} \text{ F/m}$$

Commentaires sur la loi de Coulomb (1/3)

- Force répulsive si $q_1 q_2 > 0$, attractive sinon
- Les forces électrostatiques vérifient le principe de l'action et de la réaction : $\vec{F}_{1\rightarrow 2} = -\vec{F}_{2\rightarrow 1}$
- Expérimentalement, on vérifie $F = k q_1 q_2 / r^2$
 - \square ϵ_0 vient du système SI
 - \Box Pour éviter les facteurs 4 π (géométriques), on prend : $k = \frac{1}{4 \pi \epsilon_0}$
- Les corps électrisés utilisés pour la mesure n'étaient pas réellement des charges ponctuelles
 - C'est la raison pour laquelle certains auteurs utilisent l'expression principe de Coulomb

Commentaires sur la loi de Coulomb (2/3)

- La loi de Coulomb est en $1/r^2$, comme la loi de la gravitation
 - Similitude dans les méthodes de résolution des problèmes en électrostatique avec les méthodes connues de la mécanique
- La loi de Coulomb est valide dans le vide. On l'appliquera également dans l'air pour lequel $\varepsilon_r \approx 1,00058$
 - □ Attention aux milieux matériels ($\epsilon_r \approx 81$ pour l'eau à basse fréquence)!

Commentaires sur la loi de Coulomb (3/3)

 On observe expérimentalement que pour une distribution discrète de charges (principe de superposition):

$$\vec{F}_i = \sum_{j \neq i} \vec{F}_{j \to i}$$

- □ On en déduit que :
 - On peut ramener l'électrostatique à l'étude de deux charges ponctuelles
 - Les lois de l'électrostatique doivent être linéaires
 - Attention à l'influence..
- L'étude expérimentale se fait à l'aide de la balance de Coulomb ou de la balance de torsion de Cavendish : le moment des forces entre deux charges est compensé par un couple de torsion

Jackson page 6

Deux façons de tester la loi de Coulomb

 On cherche une valeur limite à ε en modélisant l'interaction entre deux charges par une loi en r -2+ε

 \Box Cavendish (1772): $\varepsilon < 0.02$

Version originelle (globes et hémisphère en carton de 30 cm recouverts d'une feuille métallique « pour en faire des conducteurs plus parfaits de l'électricité »)

- On cherche une limite sur m_{γ} dans un potentiel de la forme $exp(-\mu r)/r$ où $\mu=m_{\gamma}c/\hbar$
 - □ Vérifiée sur [10⁷ m, 10⁻¹⁸ m]
 - □ Limite actuelle : m_{γ} < 4 10^{-51} kg ($m_{e} \approx 9 \cdot 10^{-31}$ kg) ou ϵ < 10^{-16}

Magistère de Physique, ENS et LDD (2021-2022)

Version moderne

Illustration : intensités relatives de deux lois en $1/r^2$: l'électrostatique et la gravitation

On considère 2 particules chargées en interaction

$$F^{elec} = \frac{1}{4 \pi \varepsilon_0} \frac{q_A q_B}{AB^2}$$

$$F^{grav} = G \frac{m_A m_B}{AB^2}$$

$$\Rightarrow \frac{F^{elec}}{F^{grav}} = \frac{1}{4 \pi \varepsilon_0 G} \times \frac{q_A q_B}{m_A m_B}$$

■ Pour des électrons : m = 9,1 10⁻³¹ kg

$$G = 6,67 \ 10^{-11} \ SI$$

 $1/4\pi\epsilon_0 = 9 \ 10^9 \ SI$

$$\frac{F^{elec}}{F^{grav}} \approx 4 \cdot 10^{42}$$

On négligera toujours la force de gravitation dans les problèmes où l'EM intervient

- 1. Loi de Coulomb, champs et potentiels en électrostatique
 - 1. Loi de Coulomb
 - 2. Champ électrostatique
 - 3. Potentiel électrostatique
 - 4. Equipotentielles et lignes de champ
 - 5. Le problème expérimental du zéro des potentiels
- 2. Relations avec les charges
- 3. Méthodes de calcul en électrostatique
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

Charges ponctuelles

Par définition pour des charges fixes :

Force de
$$\vec{F}_{1\rightarrow2} = q_2 \ \vec{E}_1$$
 soit $\vec{E}_1 = \frac{1}{4 \pi \varepsilon_0} \frac{q_1}{r^2} \vec{u}_{1\rightarrow2}$ Coulomb

Champ électrostatique créé par la charge (1) à l'endroit où se trouve la charge (2)

- Par abus de langage, on parle souvent de champ électrique
- Quelques ordres de grandeur (V/m):

	4 0 11
Laser de puissance	1()11
 Lusei de Duissuille	10

□ A proximité d'un atome d'Hydrogène
$$10^{10}$$
 (= 1 V/Å)

Distributions de charges discrètes ou distribution continue

Distribution de charges continue

$$\vec{E}(M) = \frac{1}{4 \pi \varepsilon_0} \sum_{i} \frac{q_i}{r_i^2} \vec{u}_i$$

$$\vec{E}(M) = \frac{1}{4 \pi \varepsilon_0} \iiint_{(D)} \rho(P) \frac{\vec{P}M}{PM^3} d^3 P$$

- Le passage d'une distribution de charges discrètes à une distribution continue s'effectue sans problème (somme de Riemann – cf Polycopié page 70)
- Pour une distribution surfacique (de densité $\sigma = dq/dS$) ou une densité linéique (de densité $\lambda = dq/dl$):

$$\vec{E}_{surf} = \frac{1}{4 \pi \varepsilon_0} \iint_{(\Sigma)} \frac{\sigma \, dS}{r^2} \, \vec{u} \quad \text{et} \quad \vec{E}_{lin} = \frac{1}{4 \pi \varepsilon_0} \int_{(\Gamma)} \frac{\lambda \, dl}{r^2} \, \vec{u}$$

- L'utilisation du champ au lieu de la force revient à remplacer une action à distance (la force) par une action locale (le champ)
 - □ Ceci peut être justifié par l'expérience car l'action sur une charge ne dépend que du champ, et non de ses sources
 - □ Par exemple, si 2 configurations de charges donnent en un lieu le même champ, alors l'action sur une particule en ce lieu sera la même
 - □ Formellement, on peut se passer du champ en statique, mais pour être cohérent avec l'électromagnétisme, on ne le fera pas
 - Le champ a une existence propre et n'est pas un simple artifice de calcul

Illustration: reproduction des fleurs « par les abeilles »

- Une abeille peut être chargée positivement (quelques dizaines de fC au maximum)
- En survolant les anthères d'une fleur isolées électriquement, le champ électrique (typiquement 10 V/cm) attire le pollen qui passe sur l'abeille
- En survolant les stigmates (reliées à la terre) d'une autre fleur, le pollen quitte l'abeille et fertilise la fleur

Anthères : partie terminale de l'étamine contenant le pistil

Stigmates : partie du pistil qui reçoit le pollen

Illustration: une imprimante à jet d'encre

- Une goutte chargée est plus ou moins déviée pour écrire selon la valeur de la tension entre les électrodes
- Il serait trop long de changer la tension à chaque goutte
- C'est la charge électrique de chaque goutte qui est adaptée

- 1. Loi de Coulomb, champs et potentiels en électrostatique
 - 1. Loi de Coulomb
 - 2. Champ électrostatique
 - 3. Potentiel électrostatique
 - 4. Equipotentielles et lignes de champ
 - 5. Le problème expérimental du zéro des potentiels
- 2. Relations avec les charges
- 3. Méthodes de calcul en électrostatique
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

■ Le champ qu'une charge q à l'origine du référentiel crée en M(x, y, z):

$$\vec{E}(M) = \frac{q}{4 \pi \varepsilon_0} \frac{1}{r^2} \vec{u} = \frac{q}{4 \pi \varepsilon_0} \frac{\vec{r}}{r^3} \text{ avec } \vec{u} = \frac{\vec{r}}{r}$$

$$\frac{\vec{r}}{r^3} = -\vec{\nabla} \left(\frac{1}{r} \right) \implies \vec{E}(M) = -\vec{\nabla} \left(\frac{q}{4 \pi \varepsilon_0} r \right)$$

■ Par définition :

Potentiel électrostatique
$$\Phi(M) = \frac{q}{4 \pi \, \varepsilon_0 \, r} + Cste \Rightarrow \vec{E}(M) = -\vec{\nabla} \Big(\Phi(M) \Big)$$
 créé par q en M

De manière équivalente :
$$\vec{E}(M) = -\vec{\nabla}(\Phi(M)) \Leftrightarrow \Phi(A) - \Phi(B) = \int_A^B \vec{E} \cdot d\vec{l}$$

- Propriétés immédiates :
 - \Box La circulation de E entre 2 points A et B ne dépend que de $\Phi(A)$ et $\Phi(B)$
 - ▲ En particulier, le long d'un contour fermé :

$$\oint_{(C)} \vec{E} \cdot d\vec{l} = 0$$

□ On a toujours:

$$\vec{\nabla} \times \vec{E} = \vec{0}$$

On prend souvent la convention *Cste = O* (voir plus loin)

■ Passage immédiat à des distributions discrètes ou continues (en supposant $\Phi(\infty) = 0$):

$$\Phi(M) = \frac{1}{4 \pi \varepsilon_0} \sum_{i} \frac{q_i}{r_i} \qquad \Phi(M) = \frac{1}{4 \pi \varepsilon_0} \iiint_{(D)} \frac{\rho(P)}{PM} d^3 P$$

Pour une distribution surfacique (de densité $\sigma = dq/dS$) ou pour une densité linéique (de densité $\Lambda = dq/dI$):

$$\Phi_{surf} = \frac{1}{4 \pi \varepsilon_0} \iint_{(\Sigma)} \frac{\sigma \, dS}{r} \quad \text{et} \quad \Phi_{lin} = \frac{1}{4 \pi \varepsilon_0} \int_{(\Gamma)} \frac{\lambda \, dl}{r}$$

La constante du potentiel électrostatique

- La convention Cste = 0 est valable au minimum si les charges sont localisées dans l'espace et s'il n'y a pas de charges à l'infini
 - On exclut par exemple le cas du fil infini chargé, ou du plan infini chargé
- Attention, on peut parfois utiliser Cste = 0 avec des charges à l'infini, à condition qu'elles n'interviennent pas dans le problème
 - □ Exemple : système baignant dans un champ uniforme : des charges à l'infini créent ce champ, mais si elles ne modifient pas les sources du champ, on peut prendre la convention Cste = 0
- Si ce n'est pas le cas, pour calculer Φ (qui reste défini), il faut revenir à :

$$\Phi(A) - \Phi(B) = \int_A^B \vec{E} \cdot d\vec{l}$$

- 1. Loi de Coulomb, champs et potentiels en électrostatique
 - 1. Loi de Coulomb
 - 2. Champ électrostatique
 - 3. Potentiel électrostatique
 - 4. Equipotentielles et lignes de champ
 - 5. Le problème expérimental du zéro des potentiels
- 2. Relations avec les charges
- 3. Méthodes de calcul en électrostatique
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

Equipotentielles - Lignes de champ

- Les équipotentielles sont les surfaces pour lesquelles Φ = Cste
- Les lignes de champ sont les courbes tangentes en chaque point au champ E
 - □ Orientées dans le sens des potentiels décroissants
 - Courbes ouvertes car le potentiel ne cesse de décroître sur une ligne de champ

Equipotentielles - Lignes de champ

■ Un tube de flux est une surface fermée constituée par l'ensemble des lignes de champ qui s'appuient sur un contour fermé

Théorème de Earnshaw

- Le potentiel qui est toujours décroissant le long d'une ligne de champ entraîne le théorème d'Earnshaw :
 - □ Il n'existe pas d'extremum absolu de potentiel dans une région de l'espace vide de charges
- Les lignes de champ ne convergent vers aucun point de l'espace vide de charges
- On ne peut pas confiner des charges avec un simple champ électrostatique

Recette pour trouver les lignes de champ

■ Pour trouver les lignes de champ, on écrit souvent que $d\vec{l} \times \vec{E} = \vec{0}$

$$\frac{dx}{E_x} = \frac{dy}{E_y} = \frac{dz}{E_z}$$

Coordonnées cartésiennes

$$\frac{dr}{E_r} = \frac{r \ d\theta}{E_{\theta}} = \frac{dz}{E_z}$$

Coordonnées cylindriques

$$\begin{cases} \frac{dx}{E_x} = \frac{dy}{E_y} = \frac{dz}{E_z} \\ \frac{dr}{E_r} = \frac{r d\theta}{E_{\theta}} = \frac{dz}{E_z} \\ \frac{dr}{E_r} = \frac{r d\theta}{E_{\theta}} = \frac{r \sin(\theta) d\phi}{E_{\phi}} \end{cases}$$

Coordonnées sphériques

- 1. Loi de Coulomb, champs et potentiels en électrostatique
 - 1. Loi de Coulomb
 - 2. Champ électrostatique
 - 3. Potentiel électrostatique
 - 4. Equipotentielles et lignes de champ
 - 5. Le problème expérimental du zéro des potentiels
- 2. Relations avec les charges
- 3. Méthodes de calcul en électrostatique
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

- 1. Loi de Coulomb, champs et potentiels en électrostatique
- 2. Relations avec les charges
 - 1. Flux du champ E
 - 2. Théorème de Gauss
 - 3. Equations de Poisson et de Laplace
- 3. Méthodes de calcul en électrostatique
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

- Je n'ai pas le temps d'aborder ce point ici, mais je vous invite à le voir dans le polycopié (page 62)
- En particulier, la notion d'angle solide est importante et utile pour la suite

- 1. Loi de Coulomb, champs et potentiels en électrostatique
- 2. Relations avec les charges
 - 1. Flux du champ E
 - 2. Théorème de Gauss
 - 3. Equations de Poisson et de Laplace
- 3. Méthodes de calcul en électrostatique
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

lacktriangle On considère une surface fermée (Σ) :

$$\iint_{(S)} \vec{E} \cdot d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon_0}$$

Théorème de Gauss pour des charges ponctuelles

- \Box où Q_{int} est la charge contenue à l'intérieur de (Σ)
- Pour une distribution continue:

$$\iint_{(S)} \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \iiint_{(V)} \rho \, d\tau \quad \Rightarrow \quad \iiint_{(V)} \left(\vec{\nabla} \cdot \vec{E} - \frac{\rho}{\varepsilon_0} \right) d\tau = 0 \quad \Rightarrow \quad \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

- On utilise le théorème de Gauss sous sa forme intégrale lorsque les symétries sont suffisantes pour simplifier le calcul du flux
 - \square Tout repose sur un choix judicieux de la surface de Gauss (Σ)

- Lien avec les extrema du potentiel

 - \square Si en un point à distance finie, Φ présente un maximum, alors il y a une charge positive placée en ce point. De même, si Φ présente un minimum, alors il y a une charge négative en ce point
- Les deux équations locales sont analogues dans leur forme à celles vérifiées par le champ de gravitation :

$$\vec{\nabla} \cdot \vec{g} = -4 \pi \mu G$$
 et $\vec{\nabla} \times \vec{g} = \vec{0}$

Exemple: champ d'un fil infini de rayon R uniformément chargé

- Les symétries et invariances entraı̂nent : $\vec{E} = E(r) \vec{u}_r$
- Le flux total à travers la surface de Gauss (hauteur h): $\Phi = \Phi_1 + \Phi_2 + \Phi_L$

$$\begin{cases}
\Phi_{1} = \iint_{(1)} \vec{E} \cdot d\vec{S} = 0 = \Phi_{2} \\
\Phi_{L} = \int_{0}^{2\pi} \int_{0}^{h} \left(E_{r}(r) \vec{u}_{r} \right) \cdot \left(r d\theta dz \vec{u}_{r} \right) = 2 \pi r h E_{r}(r)
\end{cases}$$

■ Théorème de Gauss : $\Phi = 2 \pi r h E_r(r) = \frac{\iint \rho dV}{\varepsilon_0}$ □ Si r < R :

$$\iiint \rho \, dV = \int_0^r \int_0^{2\pi} \int_0^h \rho \, u \, du \, d\theta \, dz = \rho \, \pi \, r^2 \, h \quad \Rightarrow \quad E_r(r) = \frac{\rho \, r}{2 \, \varepsilon_0}$$

 \Box Si r > R:

$$\iiint \rho \, dV = \int_0^R \int_0^{2\pi} \int_0^h \rho \, u \, du \, d\theta \, dz = \rho \, \pi \, R^2 \, h \quad \Rightarrow \quad E_r(r) = \frac{\rho \, R^2}{2 \, \varepsilon_0 \, r}$$

- 1. Loi de Coulomb, champs et potentiels en électrostatique
- 2. Relations avec les charges
 - 1. Flux du champ E
 - 2. Théorème de Gauss
 - 3. Equations de Poisson et de Laplace
- 3. Méthodes de calcul en électrostatique
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

Poisson - Laplace

■ Equation de Poisson :

$$\vec{E} = -\vec{\nabla}(\Phi)$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\Rightarrow \Delta \Phi + \frac{\rho}{\varepsilon_0} = 0$$
 Equation de Poisson

■ En l'absence de charge :

$$\Rightarrow \Delta \Phi = 0$$

Equation de Laplace

- La solution Φ est unique si:
 - □ Le potentiel est connu sur une surface fermée un conducteur -(Dirichlet)
 - □ Le champ est connu sur une surface fermée (Neumann)
 - Le potentiel est connu sur certains conducteurs, le champ l'est sur les autres
 Théorème d'unicité

- 1. Loi de Coulomb, champs et potentiels en électrostatique
- 2. Relations avec les charges
- 3. Méthodes de calcul en électrostatique
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

- Les méthodes générales de résolution des équations de Laplace et de Poisson font intervenir les fonctions de Green et imposent des calculs parfois pénibles
- Dans quelques cas particuliers simples, on peut trouver une solution littérale (méthode des images, méthode de séparation des variables)
- Dans d'autres cas, on peut trouver des solutions approchées (méthodes variationnelles, méthodes numériques)
- Notez que de nos jours, on utilise généralement une résolution numérique à l'aide de codes de calculs (commerciaux ou non - cf projet info pour les étudiants MAG1)

- 1. Loi de Coulomb, champs et potentiels en électrostatique
- 2. Relations avec les charges
- 3. Méthodes de calcul en électrostatique
 - 1. Méthodes formelles
 - 2. Méthodes liées à une modélisation particulière
 - 3. Méthodes variationnelles
 - 4. Méthodes numériques
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

L'électrostatique se traite à partir d'un ensemble d'équations

Formulation différentielle en champ

$$\vec{\nabla} \times \vec{E} = \vec{0} \qquad \qquad \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

■ Formulation différentielle en potentiel

$$\Delta \Phi + \frac{\rho}{\varepsilon_0} = 0 \qquad \qquad \vec{E} = -\vec{\nabla}(\Phi)$$

Formulation intégrée

$$\oint_{(C)} \vec{E} \cdot d\vec{l} = 0 \qquad \qquad \oiint_{(S)} \vec{E} \cdot d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon_0}$$

Formulation directe en champ ou en
$$\begin{cases} \vec{E}(M) = \frac{1}{4\pi \varepsilon_0} \iiint_{(D)} \rho(P) \frac{\vec{P}M}{PM^3} d^3P \\ \Phi(M) = \frac{1}{4\pi \varepsilon_0} \iiint_{(D)} \frac{\rho(P)}{PM} d^3P \text{ puis } \vec{E} = -\vec{\nabla}(\Phi) \end{cases}$$

- 1. Loi de Coulomb, champs et potentiels en électrostatique
- 2. Relations avec les charges
- 3. Méthodes de calcul en électrostatique
 - 1. Méthodes formelles
 - 2. Méthodes liées à une modélisation particulière
 - 3. Méthodes variationnelles
 - 4. Méthodes numériques
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

1^{er} exemple : méthode des images pour résoudre l'équation de Poisson

$$\Delta \Phi + \frac{\rho}{\varepsilon_0} = 0$$

- Lorsque 2 problèmes différents sont décrits par la même distribution volumique de charges et les mêmes CL, ils admettent la même solution de l'équation de Poisson
 - \Box E et Φ sont donc identiques dans tout l'espace
- Cette idée est la base de la méthode des images qui consiste à remplacer un problème donné par un problème ayant dans une partie de l'espace la même distribution volumique et les mêmes CL, mais un calcul de E ou de Φ plus simple

Exemple: charge ponctuelle devant un plan conducteur

- On cherche à calculer la force exercée par le demi-espace sur la charge q située en A
 - □ Il faut calculer le champ E exercé par le demi-espace sur q (Φ = 0 sur z = 0)
- On considère un dipôle dans le vide. Le potentiel dans le plan médian est nul. Donc le potentiel dans le demi-espace de droite est le même dans les 2 problèmes, puisqu'on résout la même équation avec les mêmes CL

$$\Rightarrow \vec{E}(A) = \frac{-q}{4 \pi \varepsilon_0} \frac{1}{(2 d)^2} \vec{u}_z$$

⇒ La charge est attirée par le demi-espace avec la force

$$\vec{F} = q \ \vec{E}(A) = \frac{-q^2}{16 \pi \varepsilon_0} \frac{1}{d^2} \vec{u}_z$$
Electrostatique

Problème #1

Problème #2

42

2^e exemple : méthode de séparation des variables pour résoudre $\Delta \Phi = 0$

■ En coordonnées cartésiennes, on cherche la solution sous la forme

$$\Phi(x, y, z) = X(x) Y(y) Z(z)$$

- On obtient immédiatement : $\frac{\Delta\Phi}{\Phi} = \frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} + \frac{Z''(z)}{Z(z)} = 0$
- On peut donc poser:

$$\frac{X''(x)}{X(x)} = -\alpha^2 \qquad \frac{Y''(y)}{Y(y)} = -\beta^2 \qquad \frac{Z''(z)}{Z(z)} = \alpha^2 + \beta^2$$

où α et β sont réels ou imaginaires purs (α^2 et β^2 > 0 ou < 0)

■ On en déduit :

$$\Phi(x, y, z) = \left(A e^{i \alpha x} + B e^{-i \alpha x}\right) \left(C e^{i \beta y} + D e^{-i \beta y}\right) \left(E e^{\sqrt{\alpha^2 + \beta^2} z} + F e^{-\sqrt{\alpha^2 + \beta^2} z}\right)$$

les constantes α , β , A, B, C, D, E et F sont déterminées par les CL

- 1. Loi de Coulomb, champs et potentiels en électrostatique
- 2. Relations avec les charges
- 3. Méthodes de calcul en électrostatique
 - 1. Méthodes formelles
 - 2. Méthodes liées à une modélisation particulière
 - 3. Méthodes variationnelles
 - 4. Méthodes numériques
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

Méthodes variationnelles

■ Le principe de moindre action stipule que la trajectoire réelle du système est telle que l'action est minimale :

$$S = \int L \, dt$$
 avec $\delta S = 0$

- Une méthode variationnelle utilise une famille de fonctions d'essai qui représente une approximation d'une quantité physique
 - On en déduit une valeur particulière d'une observable
 - □ La minimisation de cette valeur par rapport aux paramètres variationnels fournit un résultat qui s'approchera de la réalité physique

Méthodes variationnelles en électrostatique

Par exemple, en électrostatique, on pourrait montrer (cf Feynman)
 que le potentiel électrostatique réel est celui qui minimise :

$$U^* = \frac{\varepsilon_0}{2} \iiint (\vec{\nabla} \Phi)^2 dV - \iiint \rho \Phi dV$$

 $(\delta U^* = 0 \text{ au } 1^{er} \text{ ordre entraı̂ne } \Delta \Phi = -\rho/\epsilon_0)$

- Le résultat est l'équation de Poisson, mais il est équivalent de dire que la solution est donnée par la minimisation de
- Si les seules charges du système sont sur les conducteurs :

$$U^* = \frac{\varepsilon_0}{2} \iiint (\vec{\nabla} \Phi)^2 \ dV$$

lacktriangle On va chercher faire varier diverses formes de Φ sur un exemple

Exemple du condensateur cylindrique (1/4)

- Rayon interne a et rayon externe b
 - □ Le conducteur externe est au potentiel nul
 - \Box Le conducteur interne est au potentiel Φ_0

■ La forme de Φ permet de calculer U*, et donc de remonter à C_0 en écrivant que U* = $\frac{1}{2}$ x C_0 Φ_0 . On obtient la capacité réelle :

$$C_0 = \frac{2 \pi \varepsilon_0}{\ln(b/a)}$$

lacktriangle Si on prend une autre forme pour Φ , on obtiendra une valeur de capacité plus élevée que $C_{\mathcal{O}}$

Exemple du condensateur cylindrique (2/4)

- 1^{re} approximation : on suppose E constant donc Φ linéaire (en réalité, Φ varie en $\ln(1/r)$)
- Les CL s'écrivent : $\Phi(r=a) = \Phi_0$ et $\Phi(r=b) = 0$
- Avec les CL, on doit avoir :

$$\Phi = \Phi_0 \left(1 - \frac{r - a}{b - a} \right)$$

 On en déduit U* puis la capacité :

$$C_1 = 2 \pi \varepsilon_0 \frac{b+a}{2(b-a)}$$

Magistère de Physique, ENS et LDD (2021-2022)

Exemple du condensateur cylindrique (3/4)

- 2^e approximation : E linéaire, donc Φ quadratique
- Pour respecter les CL, on doit avoir : $\Phi = \Phi_0 \left[1 + \alpha \left(\frac{r-a}{b-a} \right) (1+\alpha) \left(\frac{r-a}{b-a} \right)^2 \right]$ (a constante arbitraire)
- On en déduit le champ et la capacité :

$$E(\alpha) = -\frac{d\Phi}{dr} = -\frac{\alpha \Phi_0}{b-a} + 2(1+\alpha)\frac{(r-a)\Phi_0}{(b-a)^2}$$

$$C(\alpha) = 2 \pi \varepsilon_0 \frac{a}{b-a} \left[\frac{1}{3} + \frac{\alpha^2}{6} + \frac{b}{a} \left(1 + \frac{2\alpha}{3} + \frac{\alpha^2}{6} \right) \right]$$

La valeur de C la plus proche de la réalité est celle qui va minimiser C(a): $C_2 = 2 \pi \varepsilon_0 \frac{b^2 + 4 a b + a^2}{3(b^2 - a^2)}$

Exemple du condensateur cylindrique (4/4)

■ Finalement:

 On peut généraliser cette approche à tout problème pour lequel on ne connaît pas le potentiel. On introduit une fonction d'essai, et on minimise le résultat obtenu

- Le résultat sera d'autant plus proche de la réalité que la fonction d'essai sera réaliste
- Pour les étudiants intéressés : cf problème d'Agrégation de 2016

- 1. Loi de Coulomb, champs et potentiels en électrostatique
- 2. Relations avec les charges
- 3. Méthodes de calcul en électrostatique
 - 1. Méthodes formelles
 - 2. Méthodes liées à une modélisation particulière
 - 3. Méthodes variationnelles
 - 4. Méthodes numériques
- 4. Aspects énergétiques liés à l'électrostatique
- 5. Dipôles électrostatiques

Exemple d'une méthode numérique pour résoudre $\Delta \Phi = 0$

■ Développement de Taylor du potentiel (par exemple à 2D) :

$$\Phi(x \pm \varepsilon, y) = \Phi(x, y) \pm \varepsilon \frac{\partial \Phi}{\partial x} + \frac{\varepsilon^2}{2} \frac{\partial^2 \Phi}{\partial x^2} \pm \frac{\varepsilon^3}{6} \frac{\partial^3 \Phi}{\partial x^3} + O(4)$$

$$\Phi(x, y \pm \varepsilon) = \Phi(x, y) \pm \varepsilon \frac{\partial \Phi}{\partial y} + \frac{\varepsilon^2}{2} \frac{\partial^2 \Phi}{\partial y^2} \pm \frac{\varepsilon^3}{6} \frac{\partial^3 \Phi}{\partial y^3} + O(4)$$

- D'où: $\Phi(x+\varepsilon, y) + \Phi(x-\varepsilon, y) + \Phi(x, y+\varepsilon) + \Phi(x, y-\varepsilon) = 4 \Phi(x, y) + \varepsilon^2 \Delta \Phi + O(4)$
- Si $\Delta \Phi = 0$, alors:

$$\Phi(x, y) = \frac{1}{4} \Big[\Phi(x + \varepsilon, y) + \Phi(x - \varepsilon, y) + \Phi(x, y + \varepsilon) + \Phi(x, y - \varepsilon) \Big] + O(4)$$