Basi di Dati: Complementi

Docente: Prof. Pierangela Samarati Appello di Maggio online – 07 Maggio 2010 *Tempo a disposizione 2:00h Soluzioni*

Domanda 1)

Caratterizzare in modo preciso, completo ed esauriente il *modello multidimensionale* dei dati e fornirne un esempio. Descrivere quindi le operazioni di *slice-and-dice*, *roll-up* e *drill-down* fornendo per ciascuna di queste un esempio.

Domanda 2)

Rispondere in modo preciso e completo alle seguenti domande.

- 1. Descrivere le regole Write Ahead Log e Commit-Precedenza e dire perché servono.
- 2. Elencare e descrivere brevemente gli *indicatori di ordinamento* utilizzati in *XML schema*. Dato poi il seguente XML schema:

dire se il seguente file XML è valido rispetto allo schema, giustificando la risposta.

Sia data una sequenza di azioni da parte di transazioni concorrenti.

Si indichi per ciascuna affermazione riportata nella tabella allegata se è vera per qualsiasi istanza (*Vero*), falsa per qualsiasi istanza (*Falso*), o se *Non è possibile determinarlo* (potrebbe essere vera oppure falsa).

1.	se va a buon fine in un sistema basato su 15 muttiversione, allora va a buon fine anche in un sistema basato su 15 monoversione.
	□ Vero
	□ Falso
	✓ Non è possibile determinarlo
2.	Se va a buon fine in un sistema basato su 2PL base, allora va a buon fine anche in un sistema basato su 2PL stretto.
	□ Vero
	□ Falso
	✓ Non è possibile determinarlo
3.	Se va a buon fine in un sistema basato su 2PL con lock a 2 stati, allora va a buon fine anche in un sistema basato su 2PL con lock a 3 stati.
	✓ Vero
	□ Falso
	☐ Non è possibile determinarlo
4.	Se va a buon fine in un sistema basato su 2PL, allora va a buon fine anche in un sistema basato su TS.
	□ Vero
	□ Falso
	✓ Non è possibile determinarlo
5.	Se va a buon fine in un sistema basato su TS, allora va a buon fine anche in un sistema basato su 2PL.
	□ Vero
	✓ Non è possibile determinarlo
6.	Se va a buon fine in un sistema basato su CSR, allora va a buon fine anche in un sistema basato su 2PL.
	□ Vero
	□ Falso
	✓ Non è possibile determinarlo

Si considerino i tre insiemi di oggetti X, Y e Z e le corrispondenti regole di associazione. Indicare (scegliendo la corrispondente
casella $\overline{\checkmark}$) quale delle affermazioni è vera, basandosi sulle relazioni fra $supporto$ e $confidenza$.

Si **ricorda** di scegliere (♥) **solo una** delle risposte per ogni affermazione.

• Supponendo che: $supporto(X \to Y) > supporto(Z \to Y)$
\square X compare in più transazioni di Z
✓ Non è possibile determinarlo
☐ Non è possibile
• Supponendo che: supporto($\{X, Z\} \rightarrow Y$) > supporto($X \rightarrow Y$)
\square Z compare in più transazioni di X
☐ Non è possibile determinarlo
✓ Non è possibile
• Supponendo che: $confidenza(X \to Y) > confidenza(Z \to Y)$
\square X compare in più transazioni di Z
✓ Non è possibile determinarlo
☐ Non è possibile
• Supponendo che: confidenza($\{X,Y\} \rightarrow Z$) = confidenza($\{Y,Z\} \rightarrow X$)
\overline{A} X compare nello stesso numero di transazioni di Z
☐ Non è possibile determinarlo
☐ Non è possibile

Esercizio 1)

Avendo le seguenti informazioni riguardo una **ripresa a caldo**, si indichi per ciascuna affermazione riportata nella tabella allegata se è sicuramente vera (*Vero*), sicuramente falsa (*Falso*), o se *non è possibile determinarlo* (potrebbe essere vera oppure falsa).

- record di checkpoint: CK(T2, T3, T5);
- insieme di UNDO: {T3, T6, T7};
- insieme di REDO: {T2, T5};
- operazioni di UNDO:
 - $D(T7, O7, B7) \rightarrow INSERT(O7), O7 := B7$
 - $D(T6, O6, B6) \rightarrow INSERT(O6), O6 := B6$
 - $U(T3, O3, B3, A3) \rightarrow O3 := B3$
- operazioni di REDO:
 - $U(T2, O2, B2, A2) \rightarrow O2 := A2$
 - $I(T5, O8, A8) \rightarrow INSERT(O8), O8 := A8$
 - $I(T5, O5, A5) \rightarrow INSERT(O5), O5 := A5$

Si indichi per ciascuna affermazione riportata nella tabella allegata se è sicuramente vera (*Vero*), sicuramente falsa (*Falso*), o se *non è possibile determinarlo* (potrebbe essere vera oppure falsa).

1. nel log esistono esattamente due operazioni da parte della transazione T5
✓ Vero
□ Falso
 □ Non è possibile determinarlo 2. la transazione T2 è iniziata (<i>begin transaction</i>) prima del <i>checkpoint</i> e ha fatto <i>abort</i> dopo il <i>checkpoint</i>
□ Vero
□ Non è possibile determinarlo
3. la transazione T7 è iniziata (begin transaction) dopo che la transazione T2 è iniziata (begin transaction)
✓ Vero
☐ Falso
☐ Non è possibile determinarlo 4. la transazione T3 è iniziata (<i>begin transaction</i>) dopo il <i>checkpoint</i>
□ Vero
□ vero ☐ Falso
□ Non è possibile determinarlo
5. la transazione T5 ha fatto <i>commit</i> dopo il <i>checkpoint</i>
☑ Vero
□ Falso
☐ Non è possibile determinarlo
6. la transazione T5 è iniziata (begin transaction) e ha fatto commit dopo che la transazione T3 è inziata (begin transaction)
□ Vero
☐ Falso
 ✓ Non è possibile determinarlo 7. il log contiene un record di <i>abort</i> per la transazione T6
□ Vero □ Falso
☐ Faiso ☐ Non è possibile determinarlo
8. l'operazione di <i>delete</i> di O7 da parte di T7 segue nel log l'operazione di <i>insert</i> di O5 da parte di T5
□ Vero
□ Falso
✓ Non è possibile determinarlo
9. l'operazione di <i>delete</i> di O6 da parte di T6 segue nel log l'operazione di <i>update</i> di O3 da parte di T3
✓ Vero
□ Falso
□ Non è possibile determinarlo
10. l'operazione di <i>insert</i> di O8 da parte di T5 precede nel log l'operazione di <i>update</i> di O2 da parte di T2
□ Vero
✓ Falso☐ Non è possibile determinarlo

Esercizio 2)

Dati i seguenti schedule:

- 1. $r_1(z) r_3(x) r_2(z) w_1(z) w_2(y) w_4(y) w_1(y) w_2(t) r_4(t) w_3(y)$
- 2. $r_3(z) r_1(y) w_3(z) w_3(y) r_1(x) r_2(y) w_2(y) w_1(x) r_2(x) w_3(x)$

Si dica se gli schedule sono *VSR* e/o *CSR*, indicando (qualora esistano) *tutti* gli schedule seriali equivalenti. Si svolga l'esercizio illustrando dettagliatamente il processo/ragionamento seguito.

Schedule 1

1. Relazioni legge-da

LETTURA	LEGGE-DA VINCOLI ALTRI VINCOLI		ALTRI VINCOLI
$r_1(z)$	_		
$r_3(x)$	_		
$r_2(z)$	_		$2 \rightarrow 1$ (altrimenti introdurrebbe una leggi-da)
$r_4(t)$	$w_2(t)$	$2 \rightarrow 4$	

RISORSA	SCRITTURA FINALE	ALTRE SCRITTURE	VINCOLI
x	_		
у	$w_3(y)$	$w_1(y), w_2(y), w_4(y)$	$ \begin{array}{c} 1 \to 3 \\ 2 \to 3 \end{array} $
			$2 \rightarrow 3$
			$4 \rightarrow 3$
z	$w_1(z)$		
t	$w_2(t)$		

Non è presente alcun ciclo e quindi lo schedule potrebbe essere *VSR*. Esistono due possibili schedule seriali view-equivalente a quello dato:

- t_2, t_1, t_4, t_3
- t_2, t_4, t_1, t_3

Tutti e due gli schedule equivalenti presentano le stesse relazioni *leggi-da* e le stesse *scritture finali*, dello schedule analizzato, che risulta quindi *VSR*.

Essendo VSR potrebbe essere anche CSR.

2. Valutiamo ora i conflitti presenti nello schedule:

- $r_2(z), w_1(z)$
- $w_2(y), w_4(y)$
- $w_2(y), w_1(y)$
- $w_2(y), w_3(y)$
- $w_4(y), w_1(y)$
- $w_4(y), w_3(y)$
- $w_1(y), w_3(y)$
- $w_2(t), r_4(t)$

Il grafo dei conflitti riportato di seguito è aciclico.

Si conclude che lo schedule è CSR. Esiste un solo schedule seriale conflict-equivalente a quello dato:

•
$$t_2, t_4, t_1, t_3$$

Schedule 2

1. Relazioni legge-da

LETTURA	LEGGE-DA	VINCOLI	ALTRI VINCOLI	
$r_3(z)$	_			
$r_1(y)$	_		$1 \rightarrow 3$ (altrimenti introdurrebbe una leggi-da)	
			$1 \rightarrow 2$ (altrimenti introdurrebbe una leggi-da)	
$r_1(x)$	_		$1 \rightarrow 3$ (altrimenti introdurrebbe una leggi-da)	
$r_2(y)$	$w_3(y)$	$3 \rightarrow 2$		
$r_2(x)$	$w_1(x)$	$1 \rightarrow 2$	$1 \rightarrow 3$ oppure $2 \rightarrow 3$ (siccome la prima non può essere	
			per il vincolo delle scritture finali, allora deve essere la	
			seconda)	

Scritture finali

RISORSA	SCRITTURA FINALE	ALTRE SCRITTURE	VINCOLI
X	$w_3(x)$	$w_1(x)$	$1 \rightarrow 3$
У	$w_2(y)$	$w_3(y)$	$3 \rightarrow 2$
z	$w_3(z)$		

Nel grafo è presente un ciclo (tra t_2 e t_3) e quindi lo schedule non è VSR. Non essendo VSR non è neppure CSR.

2. Valutiamo ora i conflitti presenti nello schedule per verificare che non sia effettivamente CSR:

- $r_1(y), w_3(y)$
- $r_1(y), w_2(y)$
- $w_3(y), r_2(y)$
- $w_3(y), w_2(y)$
- $r_1(x), w_3(x)$
- $w_1(x), r_2(x)$
- $w_1(x), w_3(x)$
- $r_2(x), w_3(x)$

Il grafo dei conflitti riportato di seguito è ciclico.

Si conclude che lo schedule non è CSR.

Esercizio 3)

Si consideri lo schedule:

$$r_1(y) r_1(z) r_2(x) r_3(y) w_1(x) w_2(t) r_4(t) w_3(x) w_4(y)$$

Dire se può essere stato generato da uno scheduler basato su 2PL base, motivando opportunamente la risposta. Si consideri, per la soluzione, un lock a due stati.

• Transazioni da considerare:

$$t_1 = r_1(y) \ r_1(z) \ w_1(x)$$

$$t_2 = r_2(x) \ w_2(t)$$

$$t_3 = r_3(y) \ w_3(x)$$

$$t_4 = r_4(t) \ w_4(y)$$

• Valutiamo ora le singole operazioni:

OPERAZIONE	Lock	x	у	z	t
init.					
$r_1(y)$	$lock(t_1, y)$: OK		t_1		
$r_1(z)$	$lock(t_1, z)$: OK		t_1	t_1	
$r_2(x)$	$lock(t_2, x)$: OK	t_2	t_1	t_1	
$r_3(y)$	$lock(t_2,t)$: OK	t_2	t_1	t_1	t_2
	$unlock(t_2, x)$: OK		t_1	t_1	t_2
	$lock(t_1, x)$: OK	t_1	t_1	t_1	t_2
	$unlock(t_1, y)$: OK	t_1		t_1	t_2
	$lock(t_3, y)$: OK	t_1	<i>t</i> ₃	t_1	t_2
$w_1(x)$	OK	t_1	<i>t</i> ₃	t_1	t_2
$w_2(t)$	OK	t_1	<i>t</i> ₃	t_1	t_2
$r_4(t)$	$unlock(t_2,t)$: OK	t_1	<i>t</i> ₃	t_1	
	$lock(t_4,t)$: OK	t_1	<i>t</i> ₃	t_1	<i>t</i> ₄
$w_3(x)$	$unlock(t_1,x)$: OK		<i>t</i> ₃	t_1	t_4
	$lock(t_3, x)$: OK	<i>t</i> ₃	<i>t</i> ₃	t_1	<i>t</i> ₄
$w_4(y)$	$unlock(t_3, y)$: OK	<i>t</i> ₃		t_1	t_4
	$lock(t_4, y)$: OK	<i>t</i> ₃	<i>t</i> ₄	t_1	<i>t</i> ₄

• Lo schedule può essere stato prodotto da uno scheduler 2PL.

Esercizio 4)

Si considerino i seguenti schemi relazionali:
AGENTE(<u>Codice</u>, Nome, Cognome)
PROVVIGIONE(<u>CodiceAgente</u>, <u>Data</u>, Ammontare)
STORICO(CodiceAgente, AmmontareTotale)

Scrivere un sistema di trigger che quando un AGENTE viene cancellato dal database:

- salvi nella tabella STORICO il totale di tutte le provvigioni da lui percepite;
- cancelli dalla tabella Provvigione tutti i record relativi all'agente cancellato.

```
CREATE TRIGGER AggiornaStorico
BEFORE DELETE ON Agente
FOR EACH ROW
BEGIN
    INSERT INTO Storico
    SELECT CodiceAgente, SUM(Ammontare)
    FROM Provvigione
    WHERE CodiceAgente = OLD.Codice
END;
CREATE TRIGGER AggiornaStorico
AFTER DELETE ON Agente
FOR EACH ROW
BEGIN
    DELETE FROM Provvigione
    WHERE CodiceAgente = OLD.Codice
END;
```