

Realizado por:

Alberto Moreno González Francisco López González Ciro Leon Espinosa Aviles

INDICE

01	Obtención de Datos	05	Entrenamiento del modelo
02	Exploración y Visualización de los Datos	06	Procesamiento de Lenguaje Natural
03	Limpieza de Datos	07	Aplicación Web
04	Preparación de Datos	08	Conclusión

ExpecteedFoot

Se trata de un proyecto mediante el cual con datos recogidos de jugadores de las 5 grandes ligas (Liga Española, Liga Inglesa, Liga Alemana, Liga Italiana y Liga Francesa). Se tratará de predecir en base a unas estadísticas introducidas cuántos Expected Goals ('xG') que será capaz de anotar un futbolista.

Los Expected Goals ('xG') son un medida de la llamada "estadística avanzada" que se utiliza en fútbol para cuantificar la probabilidad de que un disparo a portería se convierta en gol. Un jugador con un número elevado de xG será un jugador muy a tener en cuenta.

Obtención de Datos

Para la obtención de los datos se ha decidido realizar Web Scrapping sobre la web **FBREF**, la cual nos proporciona los datos perfectos para realizar la predicción.

Se ha realizado mediante tecnicas avanzadas de scrapping así como medidas de seguridad para no ser detectados por los servidores de la web.

Exploración y Visualización de los Datos

Una vez tengamos los datos recopilados, pasaremos a la visualización de datos, en este caso con dos ejemplos

Los 10 jugadores con mayor numero de goles esperados

Los 10 jugadores con mayor avance progresivo

Limpieza de Datos

Para la limpieza de datos hemos eliminado las columnas innecesarias

En esta limpieza hemos seleccionado los datos no necesarios, como columnas "Expected" ya que ese no va a ser dato de entrenamiento. Tambien eliminamos los datos de 2015 hasta 2017 ya que investigamos que faltaban datos de "XG".

+							++	
player	season	team	games	games_starts	minutes	minutes_90s	goals	assists goal
++-					·		++	
David Abraham 2							: :	
Amir Abrashi 2	2017-2018	Freiburg	12	11	850	9.4	0	0
René Adler 2	2017-2018	Mainz 05	14	14	1260	14.0	0	0
Ailton 2	2017-2018	Stuttgart	5	1	108	1.2	0	0
Manuel Akanji 2	2017-2018	Dortmund	11	10	904	10.0	0	0
Chadrac Akolo 2	2017-2018	Stuttgart	22	13	1102	12.2	5	0
Kevin Akpoguma 2	2017-2018	Hoffenheim	22	17	1690	18.8	0	1
David Alaba 2	2017-2018	Bayern Munich	23	17	1551	17.2	2	2
Lucas Alario 2	2017-2018	Leverkusen	23	17	1550	17.2	9	4
Miiko Albornoz 2	2017-2018	Hannover 96	10	7	703	7.8	0	0
Thiago Alcántara 2	2017-2018	Bayern Munich	19	12	1247	13.9	2	2
Stephan Ambrosius 2	2017-2018	Hamburger SV	1	1	45	0.5	0	0
Nadiem Amiri 2	2017-2018	Hoffenheim	28	19	1744	19.4	2	3
Waldemar Anton 2	2017-2018	Hannover 96	27	26	2278	25.3	1	0
Dennis Aogo 2	2017-2018	Stuttgart	29	22	1954	21.7	0	6
Charles Aránguiz 2	2017-2018	Leverkusen	27	27	2302	25.6	1	3
Maximilian Arnold 2	2017-2018	Wolfsburg	29	28	2454	27.3	2	0
Jann-Fiete Arp 2	2017-2018	Hamburger SV	18	8	850	9.4	2	0
Takuma Asano 2	2017-2018	Stuttgart	15	7	721	8.0	1	0
Santiago Ascacíbar 2						26.5	9	1
++-								

Preparación de Datos

Se comprueba que la correlación de los datos se encuentre correctamente y se encuentran los datos en float o int para su posterior entrenamiento.

Entrenamiento del modelo

Tras realizar varios modelos de entrenamiento el elegido ha sido Decision Tree (árbol de decisiones), por su gran porcentaje de aciertos a la hora de entrenar los datos.

Se puede comprobar como el modelo tiene un 100% de acierto, he de aclarar que los modelos comparados obtenian entre un 70% y 90% de acierto, por eso elegimos este.

```
from sklearn.tree import DecisionTreeRegressor
dt_model = DecisionTreeRegressor()
# Entrenamiento del modelo
dt_model.fit(X_train, y_train)
# Predicción
y pred = dt model.predict(X test)
y_test_list = y_test.tolist()
                    XG Estimado
                                     Error absoluto")
print("XG Real
for i in range(20):
  r = y_test_list[i]
  e = y_pred[i]
  e_abs = abs(r - e)
   zero_num = [x for x in results['Error absoluto'] if x == 0]
   zero_per = (len(zero_num) / results['Error absoluto'].count()) * 100
   print("Porcentaje de acierto:", zero per, "%")
   Porcentaje de acierto: 100.0 %
```

Procesamiento del lenguaje natural

Para el procesamiento de lenguaje natural, en la web hemos incorporado un ChatBot diseñado desde 0.

También contamos con varios idiomas en la web para que ningún usuario que navegue por la misma se encuentre con problemas gramaticales.

Aplicación Web

ExpectedFoot

Conclusión

Este trabajo en el que hemos aplicado todos los conocimientos aprendidos durante todo el curso nos ha servido para ver cuanto sabemos y de lo que somos capaces. Estamos muy orgullosos del resultado final que pensamos que es proporcional al esfuerzo invertido. Muchas gracias por leer hasta el final y esperamos que os haya gustado tanto el proyecto como a nosotros realizarlo.

MUCHAS GRACIAS