Assignment Project Exiden Help

https://eduassistpro.github.

Classification III: Classification objectives

https://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exam Help

Outline

- Scoring functions
- ► Cost-sensitive classification
- Assigning multi-class to binary text Exam Help

https://eduassistpro.github.

Scoring functions in general

 \blacktriangleright Statistical model: $(X,Y) \sim P$ for distribution P over

Assignmente Projecto Exam Help x = sign(h(x))

https://eduassistpro.github. where $\eta(x) = Pr(Y = +1 \mid X = x)$

- Use with loss functions like $\ell_{0/1}$ edu_assist_predictions $\mathbb{E}[\ell]$
 - Issues to consider:
 - ▶ Different types of mistakes have different costs
 - ► How to get $Pr(Y = +1 \mid X = x)$ from h(x)?
 - More than two classes

Cost-sensitive classification

lacktriangle Cost matrix for different kinds of mistakes (for $c \in [0,1]$)

Assignment Project Exam Help

https://eduassistpro.github.

$$\ell^{(c)}(y,\hat{y}) = \left(\mathbf{1}_{\{y=+1\}} \cdot (1-c\right)$$

Add...Wie Chat edu_assist_pr

► Cost-sensitive (empirical) risk:

$$\mathcal{R}^{(c)}(h) := \mathbb{E}[\ell^{(c)}(Y, h(X))]$$
$$\widehat{\mathcal{R}}^{(c)}(h) := \frac{1}{n} \sum_{i=1}^{n} \ell^{(c)}(y_i, h(x_i))$$

Minimizing cost-sensitive risk

► What is the analogue of Bayes classifier for cost-sensitive (zero-one loss) risk?

Assignment Project Exam Help

https://eduassistpro.github.

- ▶ So use scoring function $h(x) = \eta(x) c$
 - \blacktriangleright Equivalently, use η as scoring function, but threshold at c instead of 1/2
- ▶ Where does *c* come from?

Example: balanced error rate

- ▶ Balanced error rate: BER := $\frac{1}{2}$ FNR + $\frac{1}{2}$ FPR

Assignment Project Exam Help

https://eduassistpro.github).

where $\pi = \Pr(Y = +1)$.

Therefore we want to use the following cost Add WeChat edu_assist_pr

	y = -	
y = -1	0	$\frac{1}{1-\pi}$
y = +1	$\frac{1}{\pi}$	0

▶ This corresponds to $c = \pi$.

Importance-weighted risk

- ▶ Perhaps the world tells you how important each example is
- Assignmentation of h:

 Statistical model: $(X,Y,W) \sim P$ Assignmentation properties of h:
 - https://eduassistpro.github.
 - Add We@nat edu_assist_pr

Conditional probability estimation (1)

- ▶ How to get estimate of $\eta(x) = \Pr(Y = +1 \mid X = x)$?

Assignment Project Exam Help
$$\mathbb{E}[\ell_{0/1}^{(c)}(Yh(X)) \mid X = x] = (1-c) \cdot \eta(x)$$
 if $h(x) \leq 0$

https://eduassistpro.github.

$$h(x) = 2\eta($$

- ► Recipe:
 - ► Find scoring function *h* that (approximately) minimizes (empirical) squared loss risk
 - ightharpoonup Construct conditional probability estimate $\hat{\eta}$ using above formula

Conditional probability estimation (2)

- ► Similar strategy available for logistic loss
- ▶ But not for hinge loss!

```
Assignment is Project Egyam¹ Help
```

https://eduassistpro.github.

Add WeChat edu_assist_pr

h (e.g.,

Application: Reducing multi-class to binary

Multi-class: Conditional probability function is vector-valued

Assignment Project Exam Help

https://eduassistpro.github.

$$\eta_k(x) = \Pr(Y = A \text{ did an Work Cutat edu}_{assist_p}$$

▶ Given the *K* learned conditional probability functions $\hat{\eta}_1, \dots, \hat{\eta}_K$, we form a final predictor \hat{f}

$$\hat{f}(x) = \underset{k=1,\dots,K}{\arg\max} \, \hat{\eta}_k(x).$$

When does one-against-all work well?

▶ If learned conditional probability functions $\hat{\eta}_k$ are accurate, Assignment Project Exam Help

```
f^{\star}(x) = \arg \max \Pr(Y = k \mid X = x).
```

https://eduassistpro.github.

```
\operatorname{err}(\hat{f}) \leq \operatorname{err}(f^{\star}) + 2 \cdot \mathbb{E}[\mathbf{m}]
```

Fairness

Use of predictive models (e.g., in admissions, hiring, criminal justice) has raised concerns about whether they offer "fair ASSITATION FOR THE We will focus on group-based fairness

https://eduassistpro.github.

Disparate treatment

▶ Often predictive models work better for some groups than for others

Assignment Project Exam 1911 Jely p

https://eduassistpro.github.

Possible causes of unfairness

- People deliberately being unfair

Assignment Project Exam Help Sparity in usefulness of available features for different groups

https://eduassistpro.github.

ProPublica study

ProPublica (investigative journalism group) studied a particular predictive model being used to determine "pre-trial detention"

Assignment to least to decide whether or not an arrested defendant should be released while awaiting trial

https://eduassistpro.github.

Study argued that COMPAS treated blac in the talk server echat edu_assist_prediction with the server black with the compassion of the comp

Fairness criteria

- ► Setup:
- Assignation of the product (e.g., will repay loan", will re-offend")
 - https://eduassistpro.github.
 - Add WeChatedu_assist_predu_assist_preductions

Classification parity

► Fairness criterion: *Classification parity*

Assignment Project Exam Help

- ▶ Sounds reasonable, but easy to satisfy with perverse methods
- https://eduassistpro.github.

- ightharpoonup For A=0 people, correctly give loans to people who will repay
- For A=1 people, give loans randomly (Bernoulli(1/2))
- lacktriangle Satisfies criterion, but bad for A=1 people

Equalized odds (1)

► Fairness criterion: *Equalized odds*

Assignment Project Exam Help

https://eduassistpro.github.

E.g., A=0 group has 0% FPR, while A=1 has 50% FPR.

- ► Criteria imply constraints on the classifier / scoring function
 - ► Can try to enforce constraint during training

Equalized odds (2)

- ProPublica study:

https://eduassistpro.github.