CLAIMS

What is claimed is:

1	1.	A bandgap reference circuit comprising:
2		a transistor having an emitter, a collector, and a base;
3		a first resistor and a second resistor, where the first resistor is coupled
4		between the collector and the second resistor;
5		a proportional to absolute temperature (PTAT) current source for
6		providing a PTAT current, where the PTAT current source is
7		coupled to a node between the first resistor and the second resistor;
8		where a reference voltage is generated at the node between the first
9		resistor and the second resistor.
1	2.	The bandgap reference circuit of claim 1, further comprising:
2		a bias current source for providing a bias current to the transistor.
1	3.	The handgan reference circuit of alain 1 at 1 at 1
	٥.	The bandgap reference circuit of claim 1, where the base is coupled to the
2		collector.
1	4.	The bandgap reference circuit of claim 3, where the second resistor couples
2		between the first resistor and ground.
		The fact toolstor and ground.
1	5.	The bandgap reference circuit of claim 4, where the emitter is coupled to ground

12.

PATENT TKHR Docket No. 050323-1010 01CXT0166W

1	6.	The bandgap reference circuit of claim 1, where the reference voltage remains
2		substantially constant in response to variations in temperature.
1	7.	The bandgap reference circuit of claim 1, where the transistor is a bipolar
2		transistor.
1	8.	The bandgap reference circuit of claim 7, where the bipolar transistor comprises
2		silicon and germanium.
1	9.	The bandgap reference circuit of claim 1, where the bandgap reference circuit is
2		part of a wireless communications device.
1	10.	A method for providing a reference voltage, comprising:
2		providing a transistor having an emitter, a collector, and a base;
3		providing a first resistor and a second resistor, where the first resistor is
4		coupled between the collector and the second resistor;
5		providing a proportional to absolute temperature (PTAT) current, where
6		the PTAT current source is received by a node between the first
7		resistor and the second resistor;
8		where a reference voltage is generated at the node between the first
9		resistor and the second resistor.
1	11.	The method of claim 10, further comprising:
2		providing a bias current to the transistor.

The method of claim 10, where the base is coupled to the collector.

1 2

1

1

2

	Express Mail No. g Date:	PATE TKHR Docket No. 050323-10 01CXT0166	010
13.	The method of claim 12, where the second resistor and ground.	resistor couples between the firs	it
14.	The method of claim 13, where the emitter	r is coupled to ground.	
15.	The method of claim 10, where the reference constant in response to variations in temper		

- 1 16. The method of claim 10, where the transistor is a bipolar transistor.
- 1 17. The method of claim 16, where the bipolar transistor comprises silicon and germanium.
- 1 18. A method for providing a reference voltage, comprising:
- 2 providing a base-emitter voltage;
- providing a first current that varies in proportion to the base-emitter
- 4 voltage;
- 5 providing a second current that is proportional to absolute temperature 6 (PTAT);
- routing the first current and a portion of the second current through a

 second resistor thereby generating a reference voltage V_{ref} that is

 substantially constant in response to variations in temperature.
- 1 19. The method of claim 18, where:
- the base-emitter voltage is provided by a transistor having an emitter, a
- 3 collector, and a base;
- a first resistor is coupled between the collector and the second resistor;

PATENT TKHR Docket No. 050323-1010 01CXT0166W

5		the PIAI current source is received by a node between the first resistor
6		and the second resistor;
7		the reference voltage V_{ref} is generated at the node between the first resistor
8		and the second resistor.
1	20.	A bandgap reference circuit comprising:
2		a diode having an anode and a cathode;
3		a first resistor and a second resistor, where the first resistor is coupled
4		between the anode and the second resistor;
5		a proportional to absolute temperature (PTAT) current source for
6		providing a PTAT current, where the PTAT current source is
7		coupled to a node between the first resistor and the second resistor;
8		where a reference voltage is generated at the node between the first
9		resistor and the second resistor.
1	21.	The bandgap reference circuit of claim 20, further comprising:
2		a bias current source for providing a bias current to the diode.
1	22.	The bandgap reference circuit of claim 20, where the second resistor couples
2		between the first resistor and ground.
1	23.	The bandgap reference circuit of claim 20, where the emitter is coupled to ground.
1	24.	The bandgap reference circuit of claim 20, where the reference voltage remains
2		substantially constant in response to variations in temperature.