OVERALGEBRAS:

EXPANSIONS AND EXTENSIONS OF FINITE ALGEBRAS

William DeMeo

williamdemeo@gmail.com

Iowa State University
Algebra & Combinatorics Seminar

22 Feb 2016

These slides and other resources are available at https://github.com/williamdemeo/Talks

Question: Is this a congruence lattice?

Question: Is this a congruence lattice?

Answer: Yes! ...of which algebra?

Question: Is this a congruence lattice?

Answer: Yes! ...of which algebra?

Question: Is this a congruence lattice?

Question: Is this a congruence lattice?

Answer: Yes! ...of which algebra?

Question: Is this a congruence lattice?

Answer: Yes! ...but this one is harder.

There are infinitely many but here's an easy one:

STEP 1 Find a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice $\operatorname{Con} \mathbf{B} \cong M_4$.

There are infinitely many but here's an easy one:

- Let $B = \{0, 1, \dots, 5\}$ index the elements of S_3 .
- the right regular action of S_3 on itself has generators $g_0=(0,4)(1,3)(2,5)$ and $g_1=(0,1,2)(3,4,5)$.
- Con $\langle B, \{g_0, g_1\} \rangle \cong M_4$ has elements $\alpha = |012|345|, \ \beta = |03|14|25|, \ \gamma = |04|15|23|, \ \delta = |05|13|24|.$

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|25|, \ \theta = |05|15|24$$

STEP 1 Find a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice $\operatorname{Con} \mathbf{B} \cong M_4$.

There are infinitely many but here's an easy one:

- Let $B = \{0, 1, \dots, 5\}$ index the elements of S_3 .
- the right regular action of S_3 on itself has generators $g_0 = (0,4)(1,3)(2,5)$ and $g_1 = (0,1,2)(3,4,5)$.
- $\operatorname{Con} \langle B, \{g_0, g_1\} \rangle \cong M_4$ has elements $\alpha = |012|345|, \beta = |03|14|25|, \gamma = |04|15|23|, \delta = |05|13|24$

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|.$$

STEP 2 Define $A = B_0 \cup B_1 \cup B_2$ where

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$\textit{B}_2 = \{11, 12, 2, 13, 14, 15\}.$$

STEP 1 Find a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice $\operatorname{Con} \mathbf{B} \cong M_4$.

There are infinitely many but here's an easy one:

- Let $B = \{0, 1, \dots, 5\}$ index the elements of S_3 .
- the right regular action of S_3 on itself has generators $g_0 = (0,4)(1,3)(2,5)$ and $g_1 = (0,1,2)(3,4,5)$.
- Con $\langle B, \{g_0, g_1\} \rangle \cong M_4$ has elements

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|.$$

STEP 2 Define $A = B_0 \cup B_1 \cup B_2$ where

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 2, 13, 14, 15\}.$$

STEP 3 Define unary operations e_0 , e_1 , e_2 , s, g_0e_0 , and g_1e_0 .

STEP 1 Find a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice $\operatorname{Con} \mathbf{B} \cong M_4$.

There are infinitely many but here's an easy one:

- Let $B = \{0, 1, \dots, 5\}$ index the elements of S_3 .
- the right regular action of S_3 on itself has generators $g_0 = (0,4)(1,3)(2,5)$ and $g_1 = (0,1,2)(3,4,5)$.
- Con $\langle B, \{g_0, g_1\} \rangle \cong M_4$ has elements

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|.$$

STEP 2 Define $A = B_0 \cup B_1 \cup B_2$ where

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 2, 13, 14, 15\}.$$

STEP 3 Define unary operations e_0 , e_1 , e_2 , s, g_0e_0 , and g_1e_0 .

$$\operatorname{Con}\langle B,\{g_0,g_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

 $\delta = [0, 5|1, 3|2, 4]$

 $\operatorname{Con} \langle A, F_A \rangle$

$$\widehat{\alpha} = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10, 13, 14, 15|$$

$$\alpha^* = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10|13, 14, 15|$$

$$\beta^* = |0, 3, 8|1, 4|2, 5, 15|6, 9|7, 10|11, 13|12, 14|$$

$$\gamma^* = |0, 4, 9|1, 5|2, 3, 13|6, 10|7, 8|11, 14|12, 15|$$

$$\delta^* = |0, 5, 10|1, 3|2, 4, 14|6, 8|7, 9, 11, 15|12, 13|$$

$$\operatorname{Con}\langle B,\{g_0,g_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

Con $\langle A, F_A \rangle$

$$\widehat{\alpha} = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10, 13, 14, 15|$$

$$\alpha^* = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10|13, 14, 15|$$

$$\beta^* = |0, 3, 8|1, 4|2, 5, 15|6, 9|7, 10|11, 13|12, 14|$$

$$\gamma^* = |0, 4, 9|1, 5|2, 3, 13|6, 10|7, 8|11, 14|12, 15|$$

$$\delta^* = |0, 5, 10|1, 3|2, 4, 14|6, 8|7, 9, 11, 15|12, 13|$$

$$\alpha = \alpha^* \cap B^2 = \widehat{\alpha} \cap B^2, \quad \beta = \beta^* \cap B^2, \quad \dots$$

EXPANSION & EXTENSION

Expanded Universe

$$\textit{A} = \textit{B}_0 \cup \textit{B}_1 \cup \textit{B}_2$$
 where

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$\textit{B}_1 = \{ {\color{red}0}, 6, 7, 8, 9, 10 \}$$

$$B_2 = \{11, 12, 2, 13, 14, 15\}.$$

New Operations

$$e_0: A \rightarrow B_0$$

$$e_1:A woheadrightarrow B_1$$

$$\textit{e}_2:\textit{A} \twoheadrightarrow \textit{B}_2$$

$$s: A \rightarrow B_0$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0,$$

for each $g \in F^B$.

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

 $\delta = [0, 5|1, 3|2, 4]$

Con $\langle A, F_A \rangle$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

 $\text{Con}\,\langle \textbf{\textit{A}},\textbf{\textit{F}}_{\textbf{\textit{A}}}\rangle$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

 $\text{Con}\,\langle \textbf{\textit{A}},\textbf{\textit{F}}_{\textbf{\textit{A}}}\rangle$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

 $\delta = [0, 5|1, 3|2, 4]$

	B_1				B_2	
10	9	8		15	14	13
7	6	0	1	2	12	11)
	^	3	4	5		
	α		B_0			

Con $\langle A, F_A \rangle$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$

 $\gamma = |0, 4|1, 5|2, 3|$

 $\delta = [0, 5|1, 3|2, 4]$

 $\text{Con}\,\langle \textbf{\textit{A}},\textbf{\textit{F}}_{\textbf{\textit{A}}}\rangle$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

 $\text{Con}\,\langle \textbf{\textit{A}},\textbf{\textit{F}}_{\textbf{\textit{A}}}\rangle$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

 $\operatorname{Con}\langle A, F_A\rangle$

Why don't
$$\beta$$
 classes of B_1 , B_2 mix?

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

• Suppose we want $\beta=\mathrm{Cg}^{\mathtt{B}}(0,3)=|0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathtt{B}}^{-1}=[\![\beta^*,\widehat{\beta}]\!].$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\![\beta^*,\widehat{\beta}]\!].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

- Suppose we want $\beta = \operatorname{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\![\beta^*,\widehat{\beta}]\!].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2 \quad \text{where}$$

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 13, 3, 14, 15\}.$$

- Suppose we want $\beta = \mathrm{Cg^B}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\![\beta^*,\widehat{\beta}]\!].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\![\beta^*,\widehat{\beta}]\!].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\![\beta^*,\widehat{\beta}]\!].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\![\beta^*,\widehat{\beta}]\!].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\![\beta^*,\widehat{\beta}]\!].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

THE P^5 LEMMA

LEMMA (PÁLFY-PUDLÁK, 1980)

Let $\mathbf{A} = \langle A, F \rangle$ be a unary algebra where F is a monoid.

Suppose $e \in F$ satisfies $e \circ e = e$.

Define $\mathbf{B} = \langle B, G \rangle$

$$B = e(A)$$
 and $G = \{ef|_B \mid f \in F\}.$

Let $|_{B}: Con(\mathbf{A}) \rightarrow Con(\mathbf{B})$ be the restriction mapping:

$$\theta|_{B} = \theta \cap B^{2}$$

Then |B| is a surjective homomorphism (even for arbitrary meets and joins).

Péter Pál Pálfy and Pavel Pudlák: Congruence lattices of finite algebras AU (1980).

hat map map hat

STAR MAP * : $\operatorname{Con} \mathbf{B} \to \operatorname{Con} \mathbf{A}$ is congruence generation:

$$\beta^* = \operatorname{Cg}^{\mathbf{A}}(\beta) \qquad (\forall \, \beta \in \operatorname{Con} \mathbf{B})$$

HAT MAP $\widehat{\ }$: Con ${f B} \to {\hbox{\rm Con}}\, {f A}$ is

$$\widehat{\beta} = \{(x,y) \in A^2 \mid (ef(x), ef(y)) \in \beta, \ \forall f \in \text{Pol}_1(\mathbf{A})\}.$$

STAR MAP * : Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$ is congruence generation:

$$\beta^* = \operatorname{Cg}^{\mathbf{A}}(\beta) \qquad (\forall \, \beta \in \operatorname{Con} \mathbf{B})$$

HAT MAP $\widehat{\ }$: Con ${f B}
ightarrow$ Con ${f A}$ is

$$\widehat{\beta} = \{(x,y) \in A^2 \mid (ef(x), ef(y)) \in \beta, \ \forall f \in \text{Pol}_1(\mathbf{A})\}.$$

The hat map appears in McKenzie's "Finite Forbidden Lattices" paper (Puebla, 1982) where he gives an alternative proof of the P^5 Lemma.

RESIDUATION LEMMA

A lemma relating the three maps *, $|_{B}$ and $\hat{}$.

LEMMA

- (I) * : Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$ is a residuated mapping with residual $|_{\mathcal{B}}$.
- (II) \mid_{B} : Con $A \to \text{Con } B$ is a residuated mapping with residual $\hat{}$.
- (III) For all $\alpha \in \operatorname{Con} \mathbf{A}$, $\beta \in \operatorname{Con} \mathbf{B}$,

$$\beta = \alpha|_{\mathcal{B}} \quad \Leftrightarrow \quad \beta^* \leqslant \alpha \leqslant \widehat{\beta}.$$

In particular, $\beta^*|_{B} = \beta = \widehat{\beta}|_{B}$.

ADJUNCTION LEMMA

New version of the lemma:

That is,

LEMMA

- (I) * : Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$ is left adjoint to $|_{\mathcal{B}}$.
- (II) $|_{B} : \operatorname{Con} \mathbf{A} \to \operatorname{Con} \mathbf{B}$ is left adjoint to $\hat{}$.
- (III) For all $\alpha \in \operatorname{Con} \mathbf{A}, \ \beta \in \operatorname{Con} \mathbf{B}$,

$$\beta = \alpha|_{\mathcal{B}} \quad \Leftrightarrow \quad \beta^* \leqslant \alpha \leqslant \widehat{\beta}.$$

In particular, $\beta^*|_{\mathsf{B}} = \beta = \widehat{\beta}|_{\mathsf{B}}$.

PROOF OF THE P^5 LEMMA

LEMMA (PÁLFY-PUDLÁK, 1980)

The restriction mapping

$$\operatorname{Con} \mathbf{A} \ni \alpha \mapsto \alpha|_{\mathcal{B}} = \alpha \cap \mathcal{B}^2 \in \operatorname{Con} \mathbf{B}$$

is a complete lattice epimorphism.

NEW PROOF

Recall, for $f: X \to Y$ a monotone function on preorders X and Y, if f has a right (left) adjoint, then f preserves all joins (meets) that exist in X.

By the lemma $|_{B}$ has both a left and right adjoint.