中山大学本科生期末考试

考试科目:《大学物理》(工) A卷

学年学期: 2019 学年第 1 学期	姓 名:
学 院/系:	学 号:
考试方式: 闭卷	年级专业:
考试时长: 120 分钟	班 别:
警示《中山大学授予学士学位工作	细则》第八条:"考试作弊者,不授予学士学
位。"	
以下为试题区域, 共 25 道题, 总	分 100 分,考生请在答题纸上作答
一、单选题(共20小题,每小题 2 分,	共 40 分)
1. 电场中高斯面上各点的电场强度是	由()
(A) 分布在高斯面内的电荷决定的	; (B) 分布在高斯面外的电荷决定的;
(C) 空间所有电荷决定的:	(D) 高斯面内电荷代数和决定的。
2. 对带电的孤立导体球,以下说法正	确的是()
(A) 导体内的场强与电势均为零;	(B) 导体内电势高于导体表面;
(C) 导体内电势低于导体表面:	(D) 导体内场强为零, 电势为恒量。
3. 真空中有一均匀带电的球体和一均	匀带电的球面,它们的半径和所带的总电量都相
等,则它们的静电能()	
(A) 球体的静电能等于球面的静电	能; (B) 球体的静电能大于球面的静电能;
(C) 球体的静电能小于球面的静电	能; (D) 不能确定。
4. 极板间为真空的平行板电容器, 充	电后与电源断开,将两极板用绝缘工具拉开一些
距离,则下列说法正确的是()	
(A) 电容器极板上电荷面密度增加	i; (B) 电容器极板间的电场强度增加;
(C) 电容器的电容不变;	(D) 电容器极板间的电势差增大。
5. 若空间存在两根无限长直载流导线	,空间的磁场分布就不具有简单的对称性,则该
磁场分布()	
(A) 不能用环路定理来计算;	(B) 可以直接用安培环路定理求出;
(C) 口能田比图一萨伐尔定律求出	; (D) 可以用安培环路定理和磁感应强度的叠加

原理求出。

- 6. 在感生电场中电磁感应定律可写成 $\oint_{\mathcal{C}} \vec{E}_k \cdot d\vec{r} = -d\Phi_m/dt$, 式中 E_k 为感生电场的电 场强度, Φ_m 为闭合回路的磁通量。此式表明()
 - (A) 闭合曲线 C上E, 处处相等: (B) 感生电场是保守场;
- - (C) 感生电场的电场线不是闭合曲线; (D) 在感应电场中不能引入静电势概念。
- 长为1的单层密绕螺线管,共绕有N 匝导线,螺线管的自感为L,下列说法错误的 是()
 - (A)将螺线管的半径增大一倍,自感为原来的四倍;
 - (B) 换用直径比原来导线直径大一倍的导线密绕,自感为原来的四分之一;
 - (C) 用同样直径的导线再顺序密绕一层, 自感为原来的二倍;
 - (D) 用同样直径的导线再反方向密绕一层,自感为零。
- 8. 在下列公式中,属于正确的麦克斯韦方程组公式之一的是()

(A)
$$\iint_{S} \vec{B} \cdot d\vec{S} = \Phi;$$

(B)
$$\oint_L \vec{B} \cdot d\vec{l} = \mu_0 \sum I$$
:

(C)
$$\oint_L \vec{E} \cdot d\vec{l} = -\iint_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$
; (D) $\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$.

(D)
$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$$
.

- 9. 关于光波以下说法不正确的是()
 - (A) 光在真空中的传播速度在任何参考系中测量都是一样的;
 - (B) 光波是一种电磁波:
 - (C) 光波既可以是横波, 也可以是纵波;
 - (D) 光自它的诞生开始,就要一直向前运动,光的停止就意味着它的消失。
- 10. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是()

 - (A) 使屏靠近双缝: (B) 使两缝的间距变小;
 - (C) 把两个缝的宽度稍微调窄: (D) 改用波长较小的单色光源。
- 11. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入 后,这条光路的光程改变了()
- (A) 2(n-1)d; (B) 2nd; (C) nd; (D) (n-1)d.
- 12. 用臂尖干涉仪检验工件的表面,波长为λ的单色光垂直入射时,观测到干涉条纹如 图所示, 图中每一条条纹弯曲部分的顶端恰好与左边相邻条纹 的直线部分的联线相切,由图可知工件表面()
 - (A) 有一高为λ/4凸起: (B) 有一深为λ的凹陷:

(C) 有一高为λ的凸起; (D) 有一深为λ/2的凹陷;
(中) 在一直为1/2凸起。
13. 一束波长为λ的平行单色光垂直入射到单缝 AB 上,装置如图。在屏幕上形成衍射
图样,如果P是中央亮纹一侧第一个暗纹所在的
位置,则BC的长度为()
A
(A) $\lambda/2$;
$(C) 3\lambda/2$: $(D) 2\lambda$ 。
entrata de
14. 单缝夫琅禾费衍射实验中, 若仅增大缝宽,则中央明条纹()
(A) 宽度变小: (B) 宽度变大:
(C) 宽度不变,且中心强度也不变; (D) 宽度不变,但中心强度变小。
15 一个海长为2的单色光照射在夫琅和费单缝上,若在远处的观察屏上看见兵第二级
明纹位置恰好与波长更换为 600nm 的第二级衍射明纹位置一样,则从为
(A) 420 Cm. (B) 533 Snm: (C) 617.4nm; (D) 450.2nm.
16 A的暗孔士小约为 3 mm, 其主要对 550 nm 左右的光敏感; 美国宇航局的哈勃太空
想示接 其口经大小为24m, 主要探测的电磁波波长也在550 nm 生石; 而入口
型起現,其口任人引力 2.4 m 工文
左右。以上三个探测设备(器官),其分辨本领由强到弱依次是()
(A) 贵州天眼射电望远镜>哈勃太空望远镜>人眼;
(B)哈勃太空望远镜>贵州天眼望远镜>人眼;
(C) 哈勃太空望远镜>人眼>贵州天眼望远镜;
(D) 人眼>贵州天眼望远镜>哈勃太空望远镜。
17. 设星光的有效波长为 550nm, 用一台物镜直径为 1.20m 的望远镜观察双星时, 能
分辨的双星的最小角间距是()
(A) 2.8×10^{-7} rad: (B) 5.6×10^{-5} rad:
(C) 2.8×10^{-5} rad; (D) 5.6×10^{-7} rad.
18. 一束白光垂直照射在一光栅上,在同一级光谱中偏离中央明纹最远的是()
(A) 紫光; (B) 绿光; (C) 黄光; (D) 红光。
19. 一束光强为 16 的自然光垂直穿过两个偏振片,且两偏振片的振偏化方向成 45°角,
若不考虑偏振片的反射和吸收,则穿过两偏振片后的光强 1为()
(A) $\sqrt{2}I_0/4$; (B) $I_0/4$; (C) $I_0/2$; (D) $\sqrt{2}I_0/2$.
20. 有一种简单的产生偏振光的方法,反射一折射法: 当光以一个特别的角度入射在两
种介质的分界面上时,反射光具有完全的线偏振状态,则该入射角被称为()
(A) 马吕斯角; (B) 布儒斯特角; (C) 全反射角; (D) 全偏振角。

- 二、计算题(共5小题,每小题12分,共60分)
 - 1. 如图所示,在真空中有一个电量为 q 的点电荷放置于带电量为 Q 的导体球壳的球心处,已知导体球壳的内外半径分别为 R₁和 R₂,当它们达到静电平衡后,试求:
 - (1) 利用高斯定理计算电场分布:
 - (2) 电势分布:
 - (3) P点的电场和电势(已知 P 到球心距离为 R₁/2)。
- 通有电流 I 的无限长的载流直导线和一正方形的 N 匝密绕导线框如图所示放置, 二者在同一平面内, 导线与线框绝缘。 试求:

空气 n=1

MgE, n, = 1.38

玻璃 712

- 3. 双缝干涉实验中,双缝的间距d = 0.5 mm,双缝到观察屏的距离D = 50 cm,用波长 $\lambda = 480 \text{nm}$ 平行光垂直照射。试求:
 - (1)条纹间距:(2)若用同样厚度 n_1 = 1.6, n_2 = 1.3的玻璃薄片覆盖双缝 S_1 和 S_2 ,使屏上中央明纹移动到了第五级明纹的位置,求玻璃片的厚度t,单位用 μm 表示。提示:可认为光线垂直穿过玻璃海片。

- 4. 照相机镜头上镀有一层折射率n₁ = 1.38的二氟化镁薄膜作为增透膜。假设光线垂直入射到镜头上,试求:
- (1) 若镜头的折射率 $n_2 = 1.5$, 要使绿光 (552nm) 反射最小,求膜的最小厚度 (单位用 nm 表示)。
- (2) 增透膜的下一个厚度是多少? 此厚度与最小厚度的差值与波长之间是什么关系?
 - (3) 仅增透膜满足上面的厚度条件,两束反射光并不能完全相消,试分析原因。
 - 5. $\lambda = 500 \text{nm}$ 的平行光垂直入射到一透射式光栅上,第二级主极大的衍射角满足 $\sin \theta = 0.2$,第四级主极大缺级。试求:
 - (1) 光栅常数 (单位用 µm 表示);
 - (2) 狭缝宽度 (单位用 µm 表示);
 - (3) 光栅后的整个衍射范围内可能观察到的明条纹级数。