Due: Wednesday, 11 May

Homework #6

1. Show that if S has a primitive recursive <u>acceptor</u> then S has a primitive recursive recognizer.

Show that if S has an exponential time <u>acceptor</u> then S has an exponential time recognizer.

Give an example of a class which has acceptors, but does not have recognizers.

2. Do Ex 8.1 from Hard Problem Notes.

Hamiltonian Circuit ≤ Hamiltonian Path.

3. Do Ex 8.2 from Hard Problem Notes.

Hamiltonian Path < Hamiltonian Circuit.

4. Do Ex 8.3 from Hard Problem Notes.

Find **TSP** tour.

5. Do Ex 8.4 from Hard Problem Notes.

YES/NO Towers of Hanoi.

6. Do Ex 8.5 from Hard Problem Notes.

Graph Isomorphism.

7. Star Free Regular Expression Non-Equivalence

INPUT: Two star-free regular expressions, E_1 and E_2 .

QUESTION: Are the languages represented by E_1 and E_2 different (not equal)?

A Star Free Regular Expression contains strings over a finite alphabet, the operators: \vee (OR), \wedge (Followed By),

and parentheses to indicate the order of operations.

The empty string represents the empty language.

E and (E) represent the same language.

The language consists of a single string, if the expression is E or (E) where E is a single string.

If the expression has the form $R_1 \vee R_2$ then the corresponding language consists of the union of the languages corresponding to R_1 and R_2 .

If the expression has the form $R_1 \wedge R_2$ then the corresponding language consists of all strings which can be written as a string from the language of R_1 followed by a string from the language of R_2 .

SHOW that Star Free Regular Expression Non-Equivalence is NP-complete.