Pattern Recognition and Machine Learning

Lab - 8 Assignment Report

Aryan Himmatlal Prajapati (B21EE012)

Question 1.

Part 1

Preprocessed, cleaned and prepared the dataset. Separated features and labels as X and Y respectively.

Part 2

Created an object of SFS by embedding the Decision Tree classifier object, providing 10 features, forward as True, floating as False and scoring = accuracy. Trained SFS and report accuracy for all 10 features. Also, listed the names of the 10 best features selected by SFS.

- Cross Validation Scores: [0.94971368 0.95033925 0.94899187 0.95178288 0.95076997]
- Accuracy for all 10 features: 0.9503195300512115
- Best 10 features selected by SFS: ('Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Baggage handling', 'Inflight service')

Part 3

Using the forward and Floating parameter toggled between SFS(forward True, floating False), SBS(forward False, floating False), SFFS (forward True, floating True), SBFS (forward False, floating True), and chose cross validation = 4 for each configuration.

Also, reported cv scores for each configuration.

SFS:

- Cross Validation Scores: [0.94833693 0.94953034 0.94929935 0.95072374]
- Accuracy for all 10 features: 0.9503195300512115
- Best 10 features selected by SFS: ('Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Baggage handling', 'Inflight service')

SBS:

- Cross Validation Scores: [0.94833693 0.94953034 0.94929935 0.95072374]
- Accuracy for all 10 features: 0.9503195300512115
- Best 10 features selected by SBS: ('Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Baggage handling', 'Inflight service')

SFFS:

- Cross Validation Scores: [0.94833693 0.94953034 0.94929935 0.95072374]
- Accuracy for all 10 features: 0.9503195300512115
- Best 10 features selected by SFFS: ('Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Baggage handling', 'Inflight service')

SBFS:

- Cross Validation Scores: [0.95045427 0.95083924 0.9499923 0.95234062]
- Accuracy for all 10 features: 0.9517150522343117
- Best 10 features selected by SBFS: ('Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Baggage handling', 'Inflight service', 'Cleanliness')

Part 4

Visualized the output from the feature selection in a pandas DataFrame format using the get_metric_dict for all four configurations. Finally, plotted the results for each configuration.

Part 5

Implemented Bi-directional Feature Set Generation Algorithm from scratch.

Part 6

Used the function implemented in part 5 and used selection criteria from the following:

- Accuracy Measures: using Decision Tree and SVM Classifiers
- Information Measures: Information gain
- Distance Measure: Angular Separation, Euclidean Distance and City-Block Distance

• Distance Measures. - Measures of separability, discrimination or divergence measures. The most typical is derived from the distance between the class conditional density functions.)

Part 7

Trained Decision Tree classifier on the Selected features generated from each measure and reported its classification results.

• Decision Tree(Accuracy Measure):

	precision	recall	f1-score	support
0 : satisfied	0.40	0.60	0.48	453
1 : neutral or not satisfied	0.44	0.26	0.33	547
accuracy			0.42	1000
macro avg	0.42	0.43	0.41	1000
weighted avg	0.42	0.42	0.40	1000

• Support Vector Machine(Accuracy Measure):

	precision	recall	f1-score	support
0 : satisfied 1 : neutral or not satisfied		0.62	0.51	453 547
accuracy			0.46	1000
macro avg	0.47	0.47	0.45	1000
weighted avg	0.47	0.46	0.44	1000

• Information Gain(Information Measure):

	precision	recall	f1-score	support
0 : satisfi	.ed 0.40	0.60	0.48	453
1 : neutral or not satisfi	.ed 0.44	0.26	0.33	547
accura	су		0.41	1000
macro a	vg 0.42	0.43	0.40	1000
weighted a	o.42	0.41	0.40	1000

• K Means Clustering (Distance Measure):

	precision	recall	f1-score	support
0 : satisfied	0.22	0.28	0.24	453
1 : neutral or not satisfied	0.24	0.19	0.21	547
accuracy			0.23	1000
macro avg	0.23	0.23	0.23	1000
weighted avg	0.23	0.23	0.23	1000

• LDA Classifier (Distance Measures - Separability):

	precision	recall	f1-score	support
0 : satisfied 1 : neutral or not satisfied		0.63 0.18	0.48	453 547
accuracy			0.38	1000
macro avg	0.38	0.40	0.36	1000
weighted avg	0.38	0.38	0.35	1000

Question 2.

Part 1

Made a Dataset of 1000 points sampled from a zero-centered gaussian distribution with a covariance matrix

$$\sum = \begin{bmatrix} 0.6006771 & 0.14889879 & 0.244939 \\ 0.14889879 & 0.58982531 & 0.24154981 \\ 0.244939 & 0.24154981 & 0.48778655 \end{bmatrix}$$

Label the points as shown below:

$$class = \begin{cases} 0 & \overrightarrow{x}.\overrightarrow{v} > 0\\ 1 & \overrightarrow{x}.\overrightarrow{v} <= 0 \end{cases} where \overrightarrow{v} = \begin{bmatrix} 1/sqrt(6)\\ 1/sqrt(6)\\ -2/sqrt(6) \end{bmatrix}$$

and x is the data point. Visualized the data as a 3D scatter-plot using plotly's scatter_3d Function.

Part 2

Applied Principal Component analysis (using sklearn) with n_components=3 on the input data X and transformed the data accordingly.

Part 3

Performed Complete FS on the Transformed Data with a number of features in subset =2. Fitted a Decision Tree for every subset-set of features of size 2 and plotted their decision boundaries superimposed with the data.

Subset1(X1,X2):

Subset2(X2,X3):

Subset3(X1,X3):

Part 4

Applied Principal Component analysis (using sklearn) with n_components=2 on the input data X and transformed the data accordingly.

• Decision Boundary Obtained(n_components=2):

Obtained Decision Boundary is similar to subset1(X1,X2).

Thank You