

# ID2209 Distributed Artifical Intelligence and Intelligent Agents

**Project Description** 





## **Project Introduction**

- Topics covered in this session:
  - Agent Oriented Software Engineering (AOSE)
    - Using GAIA AOSE model
  - Reusing concepts learned throughout homeworks so far



### **Materials** needed

- You can download them from Canvas Modules/Project:
- 1. "Representing Agent Interaction Protocols in UML"
- 2." UML Class Diagrams Revisited in the Context of Agent-based Systems"
- 3. "ROMAS: a role-based modeling method for multi-agent system"
- 4. "The Gaia Methodology for Agent—Oriented Analysis and Design"
- 5. "From m-GAIATo Grasshopper: Engineering Mobile Agent ApplicaQons"
- 1. Reference materials:
  - Course Book + Slides of "Agent Oriented Software Engineering"



### Goal

Objective of the project is to model the following Smart Museum scenario using GAIA AOSE.















Scenario should include Ontologies, Mobility, and interaction protocols 6



 Task 1. Model your system via GAIA AOSE Methodology

# Check the following two references uploaded in Canvas:

1. GAIA

And for the "Mobility Model" refer to:

2. Mobile GAIA



# Gaia Methodology Relationships between Gaia Models





### **Mobile GAIA**

The mobility scenarios are supported in the extended model m-GAIA (mobile GAIA), which includes the mobility model, that identifies the movement and travel path of each mobile agent.





### **Expected Output:**

 Requirements Statement (Use your knowledge from previous homeworks – the previous scenarios supported interaction and mobility between agents).

virtual tour, Dutch auction, intra-platform auctions

**Expected**: one (long) or two paragraphs describing the virtual tour, Dutch auction, and mobility in the context of multi-agent systems.



### 1. Roles Model

Check the "GAIA" reference in Canvas

| Role Schema:                         | name of role                                                                                     |
|--------------------------------------|--------------------------------------------------------------------------------------------------|
| Description Protocols and Activities | short English description of the role<br>protocols and activities in which the role plays a part |
| Permissions Responsibilities         | "rights" associated with the role                                                                |
| Liveness<br>Safety                   | liveness responsibilities<br>safety responsibilities                                             |



### Example for a Role Schema:

Role Schema: AUCTIONEER - system

#### Description:

Responsible for initiating an auction, processing proposals, modifying quote price, and terminating the auction either by accepting the best bid or by informing participants of no suitable bids when exceeding reserve price.

#### Protocols and Activities:

<u>GeneratePriceService</u>, InformStartAuction, RequestForProposals, AwaitBids, ReplyToBids, InformNoBids, InformSuccessfulBid

#### Permissions:

reads supplied bidderProposal

generates quotePrice

#### Responsibilities:

#### Liveness:

AUCTIONEER = AuctionProcess

AUCTIONPROCESS = <u>GeneratePriceService</u> . InformStart. GenerateProposalResult GENERATEPROPOSALRESULT = (RunProposalCycle)+ . InformSuccessfulBid | (RunProposalCycle)+ . InformNoBids

RUNPROPOSALCYCLE = (RequestForProposals . AwaitBids . ReplyToBids)

#### Safety:

- quotePrice < reservePrice => auctionStatus = Terminated
- proposalPrice < quotePrice => proposalAcceptance = false



### 3. Interaction Model

Example of protocol definition:

|            |            |         | Purpose: description of the nature of interaction                                        |
|------------|------------|---------|------------------------------------------------------------------------------------------|
| protoco    | ol purpose |         | Initiator: the role that starts the protocol                                             |
| ::4: a4 a  |            |         | Responder: the role with which the initiator interacts                                   |
| initiator  | responder  | inputs  | <b>Inputs:</b> information used by the initiator while performing the protocol           |
| Processing |            |         | performing the protocol                                                                  |
|            |            |         | <b>Outputs:</b> information supplied by/to the protocol responder during the interaction |
|            |            | outputs | <b>Processing:</b> description of activities performed during the interaction            |



## **Example - Interaction Model**

| RequestForProposal    |        |               |
|-----------------------|--------|---------------|
|                       |        | price         |
| Auctioneer            | Bidder |               |
|                       |        | Participating |
|                       |        | bidders'      |
|                       |        | addresses     |
| Request for proposals |        |               |
| for a product with    |        |               |
| •                     |        | Request       |
| certain price         |        | message       |

| ReceiveProposals     |            |                            |  |
|----------------------|------------|----------------------------|--|
| Bidder               | Auctioneer | Request for proposal price |  |
| Receive requ         |            |                            |  |
| their values and     |            | propose                    |  |
| compare with the     |            | message                    |  |
| expected quote price |            |                            |  |
| and replies with a   |            |                            |  |
| proposal             |            |                            |  |



# **Analysis Process**

**Objective**: to develop an understanding of the system and its structure.

| Steps                                                                  | Output                                                                  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 1. Identify roles                                                      | Roles model                                                             |
| 2. For each role, identify associated protocols                        | Interaction model                                                       |
| 3. Using the protocol/interaction model as basis, elaborate role model | Fully elaborated roles model (with permissions, responsibilities, etc.) |



### 4. Agent Model

Identification of the agent types that will be used in the system, and the agent instances that will realise these agent types at run-time





#### 5. Service Model

For each protocol, you identify the services, and for each service: input, output, precondintions, and postconditions

Example of one service for this protocol:

Auctioneer protocol services:

| Service          | Input     | Output         | Preconditions     | Postconditions      |
|------------------|-----------|----------------|-------------------|---------------------|
| Send inform      | Bidders'  | Inform message | Bidders           | Bidders informed of |
| start of auction | addresses |                | registered at the | start of auction    |
| message          |           |                | DF                |                     |



### 6. Acquaintance Model

Show the communication links between the agents: profiler, curator, tour-guide and artist manager

**Expected output:** one single graph showing which agents can communicate with each other



# **Design Process**

| Step                                                                  | Output                                                                        |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 1. Create agent model                                                 | Agent model (identifies agent types)                                          |
| 2. Develop service model                                              | Service model  (identifies main services required to realise agent's role)    |
| 3. Develop acquaintance model from interaction model and agent model. | Acquaintance model  (documents the lines of communication between the agents) |



### 7. Mobility Model

#### Please check "mobile GAIA" reference in Canvas:

Identification of place types (example: Museo Galileo Museum).

#### Example:

| Place Type               | Description               | Instances                   |
|--------------------------|---------------------------|-----------------------------|
| Heritage Malta Container | A container where curator | 3 mobile agents             |
|                          | agents can reside and get | (on assumption that we      |
|                          | cloned                    | will clone two participants |
|                          |                           | from the curator agent and  |
|                          |                           | one from the artist         |
|                          |                           | management)                 |



Identification of relationships between agent types and place types

#### Example:

| Agent Type   | Mobile | Place Type                | Constraints |
|--------------|--------|---------------------------|-------------|
| CuratorAgent | Yes    | Heritage Malta Container, |             |
|              |        | Museo galileo Container   |             |



c. Definition of the cardinality between agent types and place types Example:





### d. Identification of the travel path of each mobile agent

| Agent Type         | CuratorAgent                                            |                          |  |
|--------------------|---------------------------------------------------------|--------------------------|--|
| Description:       | This agent will be cloned to participate in the auction |                          |  |
| Origin:            | Heritage Malta container                                |                          |  |
|                    | Or                                                      |                          |  |
|                    | Museo galileo container                                 |                          |  |
| Final Destination: | Same as its origin                                      |                          |  |
| List of atomic     |                                                         |                          |  |
| movement:          | Heritage Malta container                                | Cloned in this container |  |
|                    | Museo galileo container                                 | Cloned in this container |  |
| Paths:             | Cloned in the same container, no paths                  |                          |  |



 Task 2. Model interactions among agents in AgentUML

### **Check this reference from Canvas:**

Representing Agent Interaction Protocols in UML



### Example of a protocol diagram modeled using Agent UML





### **Expected Output:**

Application of the following:

- Level 1: Representing the overall protocol
   Output: Detailed package and template diagrams + brief description
- Level 2: Representing interactions among agents
   Output: Sequence diagrams + brief description
- Level 3: Representing internal agent processing
   Output: State chart diagrams + brief description



Task 3. Use UML Class diagrams to design behavior of your agents.

### **Check this reference from Canvas:**

UML Class Diagrams Revisited in the Context of Agent -Based Systems

### **Expected Output:**

UML class diagrams according to the descriptions found in the reference



# **Agent Class Diagrams**





Task 4. Model your system using Role based modeling approach

### **Check this reference from Canvas:**

ROMAS: a role-based method for multi-agent system



### **RoMAS: Role Based Modeling Method for Multi-Agent Systems**

The main development process is as follows:

- (1) Capture use cases;
- (2) Identify roles from use cases;
- (3) Construct role organization;
- (4) For each role, if the appropriate agent does not exist, then go to (5); else
  - I. Bind roles to agents
  - II. Describe dynamic properties of bind relation between agents and roles
  - III. Go to (6)
- (5) Generate agents according to roles; Go to(4).I.
- (6) Generate codes for agents with roles bound;



### **Some Examples**





Role organizations



- Task 4.1 Perform role-based modeling using RoMAS for the initial task.
- Task 4.2 Comment on differences in resulting designs of 4.1 and GAIA (from Task1).
  - (i.e. Analysis phase of GAIA against performing role-based modeling as first step to GAIAanalysis)



## Task 5 JADE and (Other Agent Platforms)

- There are number of implementations of agent platforms which conform to the FIPA Specifications. Perform a comparison of at least 02 other Agent Platforms with JADE.
- Your comparison should comprise of
  - i). Architecture of Platform
  - ii). Services provided by Platform
  - iii). Comparison of implementation of a simple scenario same as Question 2 (i.e. Service Implementation, Service Registration, and Service Discovery)
  - iv). List some notable projects which used that platform.
  - v). your personnel opinion/judgment about the platform as compared to JADE. You can take part iii) as your starting point, and explain the architecture and services the platform provides from a practical point of view.



# Task 5 JADE and (Other Agent Platforms)

 Agent Development Kit, FIPA-OS, JACK Intelligent Agents, ZEUS, SAGE ... just to name a few other FIPA Complaint implementaBons. (Feel free to use some other FIPA Complaint ImplementaBon)



### **Deliverables**

- Upload Documented Reports in Canvas