Problem Set #3

Quiz, 5 questions 3/5 points (60%)

X	Try again once you are ready. Required to pass: 80% or higher You can retake this quiz up to 2 times every 12 hours.	Back to Week 3 Retake	
~	1/1 point		
1.			
Suppo smalle	ise you implement the functionality of a priority queue using a <i>sorted</i> arrast). What is the worst-case running time of Insert and Extract-Min, respectenough array to accommodate the Insertions that you face.)		
0	$\Theta(n)$ and $\Theta(1)$		
Corr	rect		
	$\Theta(n)$ and $\Theta(n)$		
	$\Theta(1)$ and $\Theta(n)$		
	$\Theta(\log n)$ and $\Theta(1)$		
	1/1		
	point		
2.			
runnin	se you implement the functionality of a priority queue using an <i>unsorted</i> ag time of Insert and Extract-Min, respectively? (Assume that you have a landom the Insertions that you face.)	•	
	$\Theta(n)$ and $\Theta(n)$		
	$\Theta(n)$ and $\Theta(1)$		

 $\Theta(1)$ and $\Theta(n)$

Oblems Set #3 3/5 points (
$\Theta(1)$ and $\Theta(\log n)$		
0/1		
point		
e given a heap with n elements that supports Insert and Extract-Min. Which of the following tasks can nieve in $O(\log n)$ time?		
None of these.		
Find the largest element stored in the heap.		
should not be selected		
Find the fifth-smallest element stored in the heap.		
Find the median of the elements stored in the heap.		
1 / 1		
point		
e given a binary tree (via a pointer to its root) with n nodes. As in lecture, let size(x) denote the number es in the subtree rooted at the node x. How much time is necessary and sufficient to compute size(x) founds n of the tree?		
$\Theta(n^2)$		
$\Theta(n)$		
ect		
the lower bound, note that a linear number of quantities need to be computed. For the upper and, recursively compute the sizes of the left and right subtrees, and use the formula size(x) = 1 +		

0/1 point

5.

Suppose we relax the third invariant of red-black trees to the property that there are no *three* reds in a row. That is, if a node and its parent are both red, then both of its children must be black. Call these *relaxed* red-black trees. Which of the following statements is *not* true?

The height of every relaxed red-black tree with n nodes is $O(\log n)$.

This should not be selected

The proof from lecture can be modified to give a bound of $3\log_2(n+1)$.

There is a relaxed red-black tree that is not also a red-black tree.
THEFE IS a relaxed red-black tree that is not also a red-black tree.

