1: Constraint Inference

Consider a relation R(A,B,C,D,E) with FD's, S=AB \rightarrow C, CD \rightarrow E, C \rightarrow A, C \rightarrow D, D \rightarrow B:

Determine all the keys of relation R. Do not list super keys that are not a minimal key.

(solution)

Keys: AB, AD, C

To get the key AB, we can do the following:

From $AB \to C$ and $C \to D$, we obtain $AB \to D$.

From AB \rightarrow C and AB \rightarrow D, we obtain AB \rightarrow CD.

From AB \rightarrow CD and CD \rightarrow E, we obtain AB \rightarrow E.

To get the key AD, we can do the following:

From $D \to B$, we can get $AD \to AB$.

From AB, we can obtain the rest of the attributes.

To get the key C, we can do the following:

From $C \to A$ and $C \to B$, we obtained $C \to AB$.

From AB, we can obtain the rest of the attributes.

2: Constraint Inference

Consider a relation R(A, B, C, D, E, F) with the following set of FDs: S: $\{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A, CF \rightarrow B\}$

(a) Give an example of FD that follows from S and explain your answer.

(Solution)

 $AB \to D$, D is in the closure of AB. Because $A \to B$ and $B \to D$, thus $AB \to D$ is a valid FD that follows S.

(b) Give an example of FD that does not follow from S and explain your answer.

(Solution)

 $B \to C$, C is not in the closure of B. B doesnt uniquely identify C accordance to S. So, $B \to C$ is not valid according to S.

3: Schema Decomposition

Consider relation R (A, B, C) with a set of FDs $F=\{AB\rightarrow C, C\rightarrow A\}$. Determine whether R is in BCNF.

(solution)

The keys are AB and BC. R is not in BCNF since left hand side of $C \rightarrow A$ is not a super key.

4: Schema Decomposition

Consider the relation schema R(A, B, C, D, E) with FDs, A \rightarrow BCDE, C \rightarrow D, and CE \rightarrow B . Decompose the relation till it follows BCNF.

(solution)

R is not in BCNF because $CE \rightarrow B$ and CE is not a super key.

Decompose R: R1= {CEB}, R2={ACDE}

R1 is in BCNF

R2 is not in BCNF, because $C \to D$ and C is not a super key

Decompose R2: $R21 = \{C,D\}$, $R22 = \{A,C,E\}$

R1,R21,R22 are in BCNF.

5: Schema Decomposition

Consider a relation R=(A,B,C,D,E) with the following functional dependencies, $S=BC \to ADE$, $D \to B$.

(a) Find all candidate keys.

(solution)

The keys are $\{B,C\}$ and $\{C,D\}$.

 $\{B,C\}$ is a key from $BC \to ADE$.

To get the key $\{C,D\}$:

from $D \rightarrow B$ we get B, with B and C we have $BC \rightarrow ADE$

(b) Identify whether or not R is in BCNF.

(solution)

The relation is not BCNF because D is not a super key which violates BCNF.

6: Schema Decomposition

Consider a relation R = (A,B,C,D,E) with the following functional dependencies: $S = \{CE \rightarrow D,D \rightarrow B,C \rightarrow A\}.$

(a) Find all candidate keys.

(solution)

The only key is $\{C,E\}$

To get the key CE, we can do the following: From CE \rightarrow D and D \rightarrow B, we obtain CE \rightarrow B. From CE \rightarrow D and C \rightarrow A, we obtain CE \rightarrow AD.

(b) If the relation is not in BCNF, decompose it until it becomes BCNF.

(solution)

Relation R is not in BCNF.

Step 1: Decomposes R into R1=(A,C) and R2=(B,C,D,E).

Resulting R1 is in BCNF. R2 is not.

Step 2: Decompose R2 into, R21=(C,D,E) and R22=(B,D).

Both relations are in BCNF.