

《模式识别》

第一章 课程简介与预备知识

马锦华

https://cse.sysu.edu.cn/teacher/MaJinhua

SUN YAT-SEN University

声明:该PPT只供非商业使用,也不可视为任何出版物。由于历史原因,许多图片尚没有标注出处,如果你知道图片的出处,欢迎告诉我们 majh8@mail.sysu.edu.cn.

课程目录(暂定)

第一章	课程简介与预备知识	6学时
第二章	特征提取与表示	6学时
第三章	主成分分析	3学时
第四章	归一化、判别分析、人脸识别	3学时
第五章	EM算法与聚类	3学时
第六章	贝叶斯决策理论	3学时
第七章	线性分类器与感知机	3学时
第八章	支持向量机	3学时
第九章	神经网络、正则项和优化方法	3学时
第十章	卷积神经网络及经典框架	3学时
第十一章	循环神经网络	3学时
第十二章	Transformer	3学时
第十三章	自监督与半监督学习	3学时
第十四章	开放世界模式识别	6学时

第二部分: 数学背景知识

目标

• 回忆掌握相关基本概念和最重要的定理

• 能够熟练应用提供的资源列表

- 提高目标
 - □理解相关定理的证明和推导过程
 - □能不看书熟练应用一些重要定理和推导
 - □进一步:通过查阅资料掌握一些课堂没有讲授的定理, 并能应用到学习、研究中遇到的问题中去

线性代数

向量 (vector)

- $\boldsymbol{x} = (x_1, x_2, \dots, x_d)^T \in \mathbb{R}^d$
- 内积 (dot-product, inner-product, 点积)

$$\mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x} = \sum_{i=1}^d x_i y_i$$

- · 向量的长度(vector norm)
 - $||x|| = \sqrt{x^T x}, ||x||^2 = x^T x$
 - □若 $\|x\|$ = 1,称x为单位向量
- · 正交(orthogonal)
 - $\Box x^T y = 0$
 - □x和y被称为垂直

(perpendicular): $x \perp y$

内积、角度、投影

- x: ||x|| 决定长度, $\frac{x}{||x||}$ 决定方向
- · 向量之间的夹角(angle):
 - $\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cdot \cos\theta$
 - $||x^Ty|| \leq ||x|| \cdot ||y||$
- x在y上的投影(projection)
 - □方向: $\frac{y}{\|y\|}$ 长度: $\|x\|\cos\theta = \|x\|\frac{x^Ty}{\|x\|\cdot\|y\|} = \frac{x^Ty}{\|y\|}$
 - □ 投影 $proj_{y} x : \frac{x^{T}y}{\|y\|^{2}} y$
 - \square proj_v $x \perp z$
 - $\square \operatorname{proj}_{y} x + z = x$

柯西-施瓦茨不等式

- \mathbb{R}^n
 - $\Box \left(\sum_{k=1}^{n} a_k b_k\right)^2 \le \left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} b_k^2\right)$
 - □等号成立当且仅当存在固定实数c,使得 $\forall k$, $a_k = cb_k$

- 平方可积函数空间 L^2
 - $\Box \left[\int_a^b f(x)g(x) dx \right]^2 \le \left[\int_a^b [f(x)]^2 dx \right] \left[\int_a^b [g(x)]^2 dx \right]$
 - □等号成立当且仅当存在固定实数c,使得 $\forall x \in [a \ b]$, f(x) = cg(x) (几乎处处)

矩阵(Matrix)

•
$$X = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{bmatrix}$$
: $m \times n$ 的矩阵

- n = m时称为方阵(square matrix)
- □行向量: *m* = 1
- □列向量(向量): n = 1
- · 对角阵(diagonal matrix): 方阵中,只有对角线非零
- · 单位阵(identity matrix): 对角线全部为1的对角阵
 - \Box 一般记为I或者 I_n

矩阵运算

- 乘法: *X*: *m* × *n*, *Y*: *n* × *p*
 - □X的列数等于Y的行数时矩阵乘法XY才有定义
 - □一般来说*XY ≠ YX*
- · 矩阵的幂(power)
 - □对方阵有定义: $X^2 = XX, X^3 = XXX, ...$
- 转置(transpose)
 - $\square X: m \times n$,那么 $X^T: n \times m$
 - $\square X^T X: n \times n, XX^T: m \times m$
- 对称矩阵(symmetric matrix)
 - □是方阵, $X_{ij} = X_{ji}$, $\forall i, j$

行列式值、矩阵的逆

- · 方阵的行列式值(determinant)
 - □ |*X*|, 或写作det(*X*)
 - $\square |X| = |X^T|$
 - $\square |XY| = |X||Y|$
 - $\square |\lambda X| = \lambda^{n} |X| \quad (X: n \times n)$
- · 方阵的逆矩阵(inverse matrix)
 - $\square X^{-1}$: 满足 $XX^{-1} = X^{-1}X = I_n$
 - □ X可逆(invertible) \iff $|X| \neq 0$
 - $\square (X^{-1})^{-1} = X, (\lambda X)^{-1} = \frac{1}{\lambda} X^{-1}$
 - $(XY)^{-1} = Y^{-1}X^{-1}, (X^{-1})^T = (X^T)^{-1}$

方阵的特征值、特征向量、迹

- 特征值(eigenvalue)和特征向量(eigenvector)
 - $\Box Ax = \lambda x \qquad A: n \times n$

 - $\square \lambda$:特征值 x:特征向量
- n阶方阵有n个特征值(复数域)
 - □可能存在相等的特征值
- 特征值和对角线的关系
 - $\square \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \lambda_i$
 - $\square \det(A) = \prod_{i=1}^n \lambda_i$
- 方阵的迹(trace)
 - $\Box \operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii} = ??, \operatorname{tr}(AB) = \operatorname{tr}(BA)$

实对称矩阵

- 对称矩阵,每个项都是实数
 - □ Real symmetric matrix
 - □这门课程中最常用到

• 性质:

- □所有特征值都是实数,特征向量都是实向量
- □特征值记为 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$
- □对应的特征向量记为 ξ_1 , ξ_2 ,..., ξ_n
- □特征向量互相垂直: $\xi_i^T \xi_j = 0$ $(i \neq j)$
- $\square E = [\xi_1 \xi_2 \dots \xi_n]$ 是 $n \times n$ 的,是满秩(full rank)的,rank(E) = n.

实对称矩阵的分解

- $X: n \times n$ 的实对称矩阵
 - □特征值为 λ_i ,其对应的特征向量为 ξ_i
- $X = \sum_{i=1}^{n} \lambda_i \, \xi_i \xi_i^T$
 - □称为谱分解(spectral decomposition)
 - □约定 $\|\boldsymbol{\xi}_i\| = 1$,则E是正交矩阵(orthogonal matrix)
 - $\Box X = E \Lambda E^T$
 - Λ 是一个对角矩阵, $\Lambda_{ii} = \lambda_i$
 - $EE^T = E^TE = I$, $E^{-1} = ?$, |E| = ?
- 进一步阅读
 - □LU分解, Cholesky分解, QR分解
 - □资源: Horn & Johnson, Matrix Analysis (Second Edition)

正定、半正定

- · 对称方阵A是正定的(positive definite)当且仅当

 - □ $\forall x \neq 0$ $x^T Ax \geq 0$ 则A为半正定(positive semi-definite)
 - □分别记为A > 0或 $A \ge 0$
- · x^TAx: 称为二次型(quadratic)
 - □这门课程会经常用到,一般满足 $A \ge 0$
- 等价关系
 - $\square 1. A > 0 (A \ge 0)$
 - □2. 特征值全部为正数 (非负实数)
- 正定矩阵的任意主子矩阵也是正定矩阵

矩阵求导

• 假设一切求导的条件都满足(导数都存在)

•
$$\frac{\partial a}{\partial x}$$
 是一个向量, $\left(\frac{\partial a}{\partial x}\right)_i = \frac{\partial a_i}{\partial x}$

• 对于矩阵,
$$\left(\frac{\partial A}{\partial x}\right)_{ij} = \frac{\partial A_{ij}}{\partial x}$$

•
$$\left(\frac{\partial x}{\partial a}\right)_i = \frac{\partial x}{\partial a_i}$$
 $\left(\frac{\partial x}{\partial A}\right)_{ij} = \frac{\partial x}{\partial A_{ij}}$ $\left(\frac{\partial a}{\partial x}\right)_{ij} = \frac{\partial a_i}{\partial x_j}$

- 如何求导?
 - □能够查表(例如The Matrix Cookbook)并合理应用

概率与统计

随机变量(Random variable)

 X: 可以是离散(discrete)、连续(continuous)、或者混合 (hybrid)的

概率密度函数

- (古典) 离散(discrete):
 - □可数的(countable)不相容的若干事件 $c_1, c_2, ...$
 - $\Box p(X = x_i) = c_i$ --- probability mass function
 - $\Box c_i \geq 0, \quad \sum_i c_i = 1$
 - □伯努利分布、二项分布、几何分布、泊松分布等
- 连续(continuous): 为简化,只考虑 $X \in (-\infty, \infty)$
 - $\square p(x)$:概率密度函数probability density function (pdf)
 - $p(x) \ge 0, \quad \int_{-\infty}^{+\infty} p(x) \, \mathrm{d}x = 1$
 - □均匀分布、正态分布、指数分布、Γ分布等
- 随机变量可以看成是一个(可测)函数,而不是一个数学分析意义上的变量

分布函数(连续)

- Cumulative distribution function (cdf)
- $F(x) = P(X \le x) = \int_{-\infty}^{x} p(x) dx$
 - $\Box F(-\infty) = 0 \le F(x) \le F(+\infty) = 1$
 - □ 非减性(non-decreasing)

如果
$$x \le y$$
, 那么 $F(x) \le F(y)$

- $\Box P(X=x)=?$
- $P(x_1 < x < x_2) = F(x_2) F(x_1) = \int_{x_1}^{x_2} p(x) dx$
- PDF和CDF的关系

$$\Box p(x) = F'(x)$$

联合、条件分布、变换

- 联合(joint distribution): P(X = x)
- 条件(conditional distribution): P(X = x | Y = y)
- p(x,y) = p(y)p(x|y)
- $p(x) = \int_{y} p(x, y) dy$ --marginal(边缘)分布
- 假设x = g(y), 那么

$$p_Y(y) = p_X(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right| = p_X(g(y))|g'(y)|$$

- □如果x和y是向量?
- □对*g*的具体要求?
- □ 应用: normalizing flows

Normalizing Flows

多维分布的期望

- 假设有函数f(x), 在x服从分布p(x)时:
- f的期望(Expectation),记为E[f(X)]
 - $\square E[f(X)] = \sum_{x} f(x) \cdot p(X = x), \quad \vec{\mathbf{x}}$
 - $\Box E[f(X)] = \int f(x)p(x)dx$
- · X的方差(Variance,一维)或协方差(covariance,多维)

 - □ $Var(X) = E[X^2] (E(X))^2$ 向量形式时怎么样?
- 当p(x)和f(x)固定时
 - □期望、方差是一个确定的数(或向量、矩阵)
 - $\square g(\mathbf{y}) = E(X|Y = \mathbf{y})$ 是什么?

估计均值和协方差矩阵

- 训练样本: x₁,x₂,...,x_n
- · 均值的估计estimation:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Covariance的估计

$$Cov(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})^T$$

无偏估计unbiased estimation

$$Cov(\mathbf{x}) = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$

两个随机变量的独立、相关

- 一般说来 $p(x,y) \neq p(x)p(y)$
- 如果 $\forall x, y, p(x,y) = p(x)p(y), 则X和Y互相独立 (independent)$
- 协方差Cov(X,Y) = E[(X E(X))(Y E(Y))]
- Pearson相关系数(Pearson's correlation coefficient):

$$-1 \le \rho_{XY} \le 1$$

$$\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}},$$

- $\square \rho_{XY} = 0$,称为不相关(not correlated)
- $\square \rho_{XY} = \pm 1$,称为完全相关,如存在线性关系
- □独立保证一定不相关,但是,不相关不一定能保证独立

高斯分布

- 又叫正态分布, normal distribution, Gaussian distribution
- 单变量或一维高斯分布 $N(\mu, \sigma^2)$

$$p(x) = (2\pi)^{-\frac{1}{2}} (\sigma^2)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (x - \mu)(\sigma^2)^{-1} (x - \mu)\right\}$$

$$\vec{x} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) = \mathbf{E}$$

- μ: 期望,或称均值
- σ^2 :方差
 - $\Box \sigma$:标准差(standard deviation)

- ✓ 图例中 $\mu = 2$, $\sigma = 1$,
- ✓ Markov不等式: 若 $X \ge 0$ (非负随机变量),则 $P(X \ge a) \le \frac{E(X)}{a}$
- ✓ Chebyshev不等式: 对任何分布, $P((X \mu)^2 \ge k^2) \le \frac{\sigma^2}{k^2}$ 或 $P(|X \mu| > k) \le \frac{\sigma^2}{k^2} (k > 0)$
- ✓ 如果k = 3,这个界是多少?正态分布上的实际值是多少?

多维高斯分布

· 一维:

$$p(x) = (2\pi)^{-\frac{1}{2}} (\sigma^2)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(x-\mu)(\sigma^2)^{-1}(x-\mu)\right\}$$

多维

$$p(\mathbf{x}) = (2\pi)^{-\frac{D}{2}} |\mathbf{\Sigma}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

□*D*: 维数

记为 $x \sim N(\mu, \Sigma)$

□Σ: 协方差矩阵

μ: 均值

多维高斯PDF示意图

- ✓ 图例中 $\mu = (0,0), \Sigma = I_2$
- ✓ 更多相关知识,将在PCA中讲授

高斯分布中的相关性和独立

- 一般来说,两变量
 - ■独立保证一定不相关
 - □不相关不一定保证独立
- 但是,对于多维高斯分布
 - □不相关意味着协方差矩阵中非对角线项是0

 c_{ii} ... 0

 $0 \quad \dots \quad c_{ij}$

□在正态分布中,不相关就等价于独立

多维与一维高斯的关系

- 多维高斯 $X = \begin{pmatrix} X_a \\ X_b \end{pmatrix}$
 - □条件分布: $x_a|x_b$ 还是高斯分布
 - □边缘分布(margin distribution):

$$p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b$$
 也是高斯分布

- 两个高斯分布的加权和也是高斯分布
 - $\Box aX + bY$
- 为什么大家用高斯分布?

优化基础知识

- 本课程主要利用已有优化软件,不讲授优化算法或者理论
 - □最优化自身是一门复杂的课程
 - □吴建鑫《模式识别》第2.3、2.4节(2.3.1节之后)
- 知识要点:
 - □凸集、凸函数
 - 吴建鑫《模式识别》第2.3.2节
 - □拉格朗日乘子法 (等式约束)
 - 吴建鑫《模式识别》第2.3.3节
 - □算法复杂性
 - 吴建鑫《模式识别》第2.4节

进一步的阅读

- 如果对本节内容感兴趣,可以参考:
 - □吴建鑫《模式识别》第13章:正态分布
 - □PRML的相关章节(第二章和附录)
 - □其他数学课程:实分析、矩阵分析、概率论、最优化等