Improving the Energy Efficiency and Robustness of tinyML Computer Vision using Log-Gradient Input Images

Authors

Qianyun Lu Stanford University Stanford, United States savylu@stanford.edu Boris Murmann Stanford University Stanford, United States murmann@stanford.edu

Presenters

Team M&Ms

Masa Cirkovic

Mete Harun Akcay

AGENDA

Problem Statement

Log ♥ (Pipeline, Computation, Intuition)

Datasets

Experiments

Architecture Search, Fixed Architectures

Conclusion

Problem Statement

Conventional Computer Vision

- designed for human perception
- more costly
- more energy consumption
- longer processing time

inefficient.

TinyML Computer Vision

"Why not feed the neural network only what it needs — and cut out the rest?"

idea: improve each component

Image SensorSmaller sensorsLower-power sensors

Problem Statement

- improvements are isolated
- still not enough efficiency

Feed log-gradient images directly to the CNN — and skip everything else!

Solution: log V

Log V Computation

• Image $P \in \mathbb{R}^{H \times W}$

 \bullet $P' = \log(P+1)$ (normalize illumination variances)

$$\bullet \log \nabla = P' * f \quad \text{where} \quad f = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Ratio-to-digital converter (RDC)

$$(\log \nabla)_{j,k} = \log P_{j,k-1} - \log P_{j,k+1} = \log \left(\frac{P_{j,k-1}}{P_{j,k+1}}\right) \approx Q\left(\frac{P_{j,k-1}}{P_{j,k+1}}\right)$$

Log V Intiution

$$\log \left(\frac{\alpha \cdot P_{j,k-1}}{\alpha \cdot P_{j,k+1}} \right)$$

illumination invariance

- Robustness to global illumination changes
- Better quantization
- Smaller CNNs

Log gradients remove the lighting and keep the structure and shape.

Datasets

PASCAL RAW 2014

- 6550 images demosaicked grayscale
- 3 classes: bicycle, car, person
- It is a RAW dataset, meaning no ISP was applied
- Images are all from the same sensor
- Closer to the real-world scenarios

 Other datasets, like Visual Wake Words, were not used due to their processing of images. Usually given as JPEGs

Experiements

Comparison of metrics for:

- 8-bit JPEG
- generated from RAW images using only gamma correction
- 16-bit RAW
- demosaiced grayscale images from PASCAL RAW 2014

- FP log ∇ no quantization
- 1.5-bit log∇ 3 level quantization using empirical thresholds
- 2.25-bit log ∇ 5 level quantization using empirical thresholds

MAIN IDEA

Log V needs smaller CNNs

Architecture Search

- µNAS (Microcontroller Neural Architecture Search): NAS algorithm made for resource-constrained environments (RAM, persistent storage, processor speed)
- Aging evolution: evolutionary algorithm that maintains diversity in the search population by replacing the oldest models
- Structural pruning: technique to remove redundant parts of the network, further reducing model size and complexity

μNAS

- CNN architectures that are both accurate and efficient on microcontrollers
- High granularity search space: allows fine-grained control over architectural components, such as filter sizes, number of channels, and layer types
- Minimal connectivity restrictions: allows flexible layer connections, enabling the discovery of efficient architectures

μNAS

Performance of quantized models

Each individual dot = one architecture candidate produced during the search process

- Observed change in filter redundancy if we keep the CNN architecture fixed and vary the input
- c1 = 150, c2 = 5
- Higher filter redundancy means that there is a higher degree of similarity among the filters
- Leads to higher prunning possibilites

- Computer layer-wise cosine similarities among CNN filters after training
- Visualize similar filters for comparison

- RoyChowdhury et al. have shown that higher filter similarity allows more channel pruning
- Confirmed by fixing c2 = 8, and $c1 \in \{2, 4, 8, 16, 32\}$

- Sensitivity to simulated illumination changes
- Largest networks from the previous experiment (c1 = 32, c2 = 8)
- Vary the brightness of test images by factor $b \in \{2^{-6}, 2^{-5}, ..., 2^{8}\}$ relative to the nominal training brightness

Conclusions

- Log gradient inputs make the CNN more compressible and less sensitive to illumination
- Quantization down to 1.5 bits for input
- Unprocessed RAW images used to obtain log gradients. JPEGs and other processed formats don't represent real-world well
- Future work should consider training-based optimization of the log ∇ quantization thresholds, quantized training to reduce the internal compute precision of the CNN, as well as the response to the adversarial inputs

Thank you

APPENDIX

