

Week 8: Model Training, Evaluation, and Validation

Introduction

➤ We covered data preparation and model training in previous sessions. Today, we explore how to evaluate these trained models to ensure their effectiveness.

Objective of the Lesson:

Our goal is to equip you with the knowledge to assess model performance, understand key metrics, and validate models for reliable predictions.

Roadmap for the Session:

We'll delve into common evaluation metrics, explore model validation techniques, and touch on the importance of hyperparameter tuning.

Data Splitting

- ➤ Before training a model, it's crucial to divide the dataset into two subsets: a training set and a testing set.
- ➤ The training set is used to train the model, while the testing set is reserved for evaluating the model's performance on unseen data.
- > Data splitting ensures the model is not overfitting (memorizing the training data) and can generalize well to new, unseen data.
- > Commonly used split ratios include 70/30 or 80/20 for training/testing.

Model Training

- This phase involves feeding the training set into the chosen algorithm to enable it to learn the patterns and relationships within the data.
- The algorithm adjusts its parameters based on the input features and corresponding target values.
- > The algorithm iteratively refines its parameters to minimize the difference between its predictions and the actual target values.
- The learning process involves adjusting coefficients (in regression), or decision boundaries (in decision trees).

Model Evaluation

After training, the model's performance is assessed using the testing set, which the model has not seen before.

- > Various metrics, such as accuracy, precision, recall, and F1 score, are calculated to evaluate how well the model generalizes to new data.
- >Adjustments:
 - Based on the evaluation results, the model may be adjusted, hyperparameters tuned, or additional features considered to improve performance.

Key topics we'll cover

Evaluation Metrics: Understanding metrics crucial for assessing model performance.

Model Validation: Techniques to ensure models generalize well to new data.

Hyperparameter Tuning: Fine-tuning models for optimal performance.

Model Evaluation Metrics

They allow us to gauge how well our machine learning models are performing in various aspects.

We'll explore metrics tailored to different types of tasks.

Common Evaluation Metrics:

- Classification Metrics: Accuracy, Precision, Recall, F1 Score.
- Regression Metrics: Mean Squared Error (MSE). (Self-Study)
- Receiver Operating Characteristic (ROC) Curve for Classification Models. (Self-Study)

Confusion Matrix

A confusion matrix is a table that helps evaluate the performance of a classification model by summarizing its predictions.

- > Table showing the true positive, true negative, false positive, and false negative counts.
- ➤ Provides a detailed breakdown of model performance, which are essential for making decisions about model adjustments and improvements.

Confusion Matrix Key Components

1. True Positives (TP):

- The number of instances correctly predicted as positive by the model.
- These are the cases where the model correctly identified positive instances.

2. True Negatives (TN):

- The number of instances correctly predicted as negative by the model.
- These are the cases where the model correctly identified negative instances.

3. False Positives (FP):

- The number of instances incorrectly predicted as positive by the model.
- These are the cases where the model predicted positive, but the actual class was negative (Type I error).

4. False Negatives (FN):

- The number of instances incorrectly predicted as negative by the model.
- These are the cases where the model predicted negative, but the actual class was positive (Type II error).

Construction of Confusion Matrix

Format: A 2x2 matrix with rows representing the actual classes and columns representing the predicted classes.

Accuracy

> Accuracy is a measure of overall correctness. It calculates the ratio of correctly predicted instances to the total instances.

Formula:

Accuracy = (True Positives + True Negatives) / Total Instances

➤ High accuracy suggests that the model is making correct predictions across both positive and negative classes.

Example: An accuracy of 90% means 9 out of 10 predictions are correct.

Considerations:

- Works well when classes are balanced.
- Accuracy can be misleading with imbalanced datasets. For example, in a dataset with 95% negative instances, a model predicting all negatives can still achieve 95% accuracy.

Precision

> Precision measures the accuracy of positive predictions. It calculates the ratio of true positive predictions to the total positive predictions made by the model.

Formula:

Precision = True Positives / (True Positives + False Positives)

- Out of all predicted positive instances, how many are actually positive.
- > High precision indicates that when the model predicts a positive class, it is often correct.

Considerations:

- Suitability: Important when false positives are costly (e.g., spam detection).
- Limitation: Ignores false negatives.

Recall (Sensitivity or True Positive Rate)

➤ Recall, measures the ability of the model to capture all positive instances. It calculates the ratio of true positive predictions to the total actual positive instances.

Formula:

Recall = True Positives / (True Positives + False Negatives)

- > Out of all actual positive instances, how many were correctly predicted.
- ➤ High recall indicates that the model effectively identifies a significant portion of the positive instances.

Considerations:

- Suitability: Important when false negatives are costly. (e.g., in scenarios like fraud detection, we want to minimize false negatives, or disease diagnosis).
- Limitation: Ignores false positives.

Specificity (True Negatives Rate)

> Specificity is a measure of how well a classification model can correctly identify instances of the negative class (non-events or non-diseased cases).

Formula:

Specificity = True Negatives / (True Negatives + False Positives)

- Out of all actual negative instances, how many were correctly predicted.
- ➤ High specificity indicates a low rate of false positives, meaning the model is good at correctly identifying instances where the negative class is truly negative.
- In a medical diagnosis scenario, where the positive class represents a disease, specificity would measure how well the model identifies individuals without the disease.

Confusion Matrix

F1 Score

The F1 Score is the harmonic mean of precision and recall. It provides a balance between precision and recall, especially in imbalanced datasets.

Formula:

> F1 Score combines the strengths of precision and recall. It is suitable when there's a need to balance false positives and false negatives.

Considerations:

• F1 Score is especially useful in scenarios where both precision and recall are equally important, avoiding favoring one over the other.

Evaluating the Model

Using Metrics: Accuracy, precision, recall, and F1 score.

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# Evaluate accuracy
accuracy = accuracy_score(y_test, predictions)

# Evaluate precision
precision = precision_score(y_test, predictions)

# Evaluate recall
recall = recall_score(y_test, predictions)

# Evaluate F1 score
f1 = f1_score(y_test, predictions)
```

Example

In this example, we'll use the Breast Cancer Wisconsin (Diagnostic) dataset from scikit-learn. This dataset is commonly used for binary classification tasks related to breast cancer diagnosis.

```
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score

# Load the Breast Cancer dataset
data = load_breast_cancer()
X = data.data
y = data.target

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train a Logistic Regression model
model = LogisticRegression(random_state=42)
model.fit(X_train, y_train)

# Make predictions on the test set
y_pred = model.predict(X_test)
```

Example

We calculate and print common evaluation metrics: accuracy, precision, recall, and F1 score.

```
# Calculate Confusion Matrix
conf_matrix = confusion_matrix(y_test, y_pred)
# Calculate Evaluation Metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision score(y test, y pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
# Display the results
print("Confusion Matrix:")
print(conf matrix)
print("\nEvaluation Metrics:")
print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")
Confusion Matrix:
[[39 4]
[ 1 70]]
Evaluation Metrics:
Accuracy: 0.9561
Precision: 0.9459
Recall: 0.9859
F1 Score: 0.9655
```

ROC Curve

- The ROC (Receiver Operating Characteristic) curve is a graphical representation of a binary classification model's ability to distinguish between the positive and negative classes.
- > AUC-ROC: Area Under the ROC Curve, a single value representing the model's performance.

Components of ROC Curve:

- 1. True Positive Rate (TPR) or Sensitivity:
- TPR measures the proportion of actual positive instances that are correctly identified by the model.
 - Formula: TPR = True Positives / (True Positives + False Negatives)
- High TPR indicates that the model is good at capturing positive instances.

ROC Curve

2. False Positive Rate (FPR):

• FPR measures the proportion of actual negative instances that are incorrectly identified as positive by the model.

Formula: FPR = False Positives / (False Positives + True Negatives)

• Low FPR indicates that the model is not incorrectly labeling too many negatives as positives.

3. Thresholds:

- The ROC curve is constructed by varying the decision threshold of the model, which determines the classification boundary between positive and negative instances.
- Each point on the curve corresponds to a different threshold.

Example

Finally, we plot the ROC curve to visualize the model's performance.

```
from sklearn.metrics import roc curve, roc auc score
import matplotlib.pyplot as plt
# Get predicted probabilities for the positive class
y_prob = model.predict_proba(X_test)[:, 1]
# Calculate ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
# Calculate AUC (Area Under the Curve)
roc_auc = roc_auc_score(y_test, y_prob)
# Plot ROC Curve
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label=f'AUC = {roc_auc:.4f}')
plt.plot([0, 1], [0, 1], linestyle='--', color='gray', label='Random')
plt.title('ROC Curve for Breast Cancer Detection')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.legend()
plt.show()
# Display AUC score
print(f"AUC: {roc_auc:.4f}")
```

Example

AUC: 0.9977

ROC Curve code explanation

fpr, tpr, thresholds = roc_curve(y_test, y_prob)

- roc_curve is a function in scikit-learn used to calculate the ROC curve.
- ➤ It takes two parameters: y_test (true labels) and y_prob (predicted probabilities of the positive class).
- > It returns three values:
 - fpr (False Positive Rate): The ratio of false positives to the total number of actual negatives.
 - tpr (True Positive Rate or Sensitivity): The ratio of true positives to the total number of actual positives.
 - thresholds (Thresholds): Threshold values used to calculate the points on the ROC curve.

ROC Curve explanation

roc_auc = roc_auc_score(y_test, y_prob)

- roc_auc_score is another function in scikit-learn used to calculate the Area Under the Curve (AUC) of the ROC curve.
- This function, roc_auc_score, takes the true labels (y_test) and the predicted probabilities (y_prob) and computes the AUC for the ROC curve.
- It takes two parameters: (y_test) and (y_prob)
- > It returns the AUC score, which represents the area under the ROC curve.
- The AUC score is a single value that summarizes the model's ability to distinguish between positive and negative instances. A higher AUC score indicates better performance.

ROC Curve Interpretation

Perfect Model:

In an ideal scenario, the ROC curve would reach the top-left corner, indicating a TPR of 1 and an FPR of 0.

Random Model:

• A random model would produce a diagonal line from the bottom-left to the top-right, indicating that the model's ability to distinguish between classes is no better than chance.

AUC (Area Under the Curve) Score:

- The AUC score quantifies the overall performance of the model by calculating the area under the ROC curve.
- A higher AUC score (closer to 1) indicates better discrimination between positive and negative instances.

ROC Curve Interpretation

- ➤ Visualizing the ROC curve helps us understand how the model's performance changes at different classification thresholds.
- > A curve that rises steeply and approaches the top-left corner suggests a more effective model.

Model Selection:

Comparing ROC curves and AUC scores helps in selecting the best-performing model among multiple candidates.

Threshold Adjustment:

ROC curve analysis guides the selection of an appropriate threshold based on the desired balance between TPR and FPR.

Cross-Validation

> Cross-validation is a technique used to assess the performance and generalization ability of a machine learning model by dividing the dataset into multiple subsets.

Key Components:

- 1. Training Set:
 - The training set is the portion of the dataset used to train the model.
- 2. Validation Set:
- The validation set is a subset of the dataset used to assess the model's performance during training.

Cross-Validation Techniques

- K-fold cross-validation
- Hold-out cross-validation
- Stratified k-fold cross-validation
- Leave-p-out cross-validation

K-Fold Cross-Validation:

- The dataset is divided into k equally sized folds.
- The model is trained and validated k times, each time using a different fold as the validation set.
- All data points are used for both training and validation, ensuring comprehensive assessment.

K-Fold Cross-Validation Diagram

The diagram illustrates how the dataset is divided into k folds, and the model is trained and validated iteratively.

Example

5-fold Cross-Validation

```
from sklearn.datasets import load breast cancer
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
# Load the Breast Cancer dataset
data = load_breast_cancer()
X = data.data
y = data.target
# Create an SVM classifier
model = SVC(random_state=42)
# Perform 5-fold cross-validation
cv_scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
# Display the cross-validation scores
print("Cross-Validation Scores:")
print(cv_scores)
print("\nMean Accuracy: {:.4f}".format(cv_scores.mean()))
Cross-Validation Scores:
[0.85087719 0.89473684 0.92982456 0.94736842 0.9380531 ]
Mean Accuracy: 0.9122
```

Parameter vs. Hyperparameter:

Parameter:

Parameters are internal variables learned by the model during training.

Hyperparameter:

Hyperparameters are external settings that influence the model's learning process.

> Hyperparameters are external configuration settings that are not learned from the data but are set before the training process.

Examples: Learning rate, number of trees in a random forest, etc.

Hyperparameter Tuning

- ➤ Hyperparameter tuning is the process of finding the optimal configuration of hyperparameters for a machine learning model to improve its performance.
- Hyperparameter Tuning Strategies: Manual and Automated methods like grid search.

Manual Hyperparameter Tuning:

Advantages:

- Leverages domain knowledge and intuition.
- Allows for a targeted and efficient exploration.

Disadvantages:

- Limited in exploring a wide hyperparameter space.
- Time-consuming and may lack systematic exploration.

Hyperparameter Tuning

Automated Hyperparameter Tuning:

Advantages:

- Systematically explores a broad hyperparameter space.
- Efficient, especially for complex models.
- Easily reproducible and saves time.

Disadvantages:

- May lack interpretability, treating the model as a black box.
- Can be computationally expensive, especially with exhaustive searches.

Hyperparameter Tuning Diagram

Automated Tuning (Grid Search)

Automated tools and libraries (e.g., GridSearchCV in scikit-learn) can streamline the hyperparameter tuning process.

Key Concepts:

Hyperparameters:

• Examples: Learning rate, regularization strength, number of trees in a random forest, etc.

Grid Search Space: Grid Search defines a grid of hyperparameter values to be explored.

• Example: For two hyperparameters, learning rate and number of trees, the grid might look like [(0.1, 0.01), (50, 100)].

Process of Grid Search

1. Selection of Hyperparameters:

Choose the hyperparameters to be tuned and define their potential values to create a grid.

2. Grid Search Exploration:

- Iterations: Systematically explores all possible combinations of hyperparameter values in the defined grid.
- Each combination represents a different configuration for the model.

3. Model Training and Evaluation:

- Training: Train the model for each combination of hyperparameters.
- Evaluation: Evaluate the model's performance using a validation set or cross-validation.

4. Performance Comparison:

- Metrics: Compare models based on performance metrics.
- Selection: Choose the combination that yields the best performance.

Grid Search Consideration

Exhaustive Search:

• Grid Search performs an exhaustive search across the specified hyperparameter space, ensuring no combination is missed.

Optimal Model Configuration:

The combination of hyperparameter values that leads to the best model performance is selected.

Computational Cost:

• Grid Search can be computationally expensive, especially with a large hyperparameter space.

Cross-Validation:

• Combining Grid Search with cross-validation provides a more robust estimate of model performance.

Example

Grid Search:

```
from sklearn.datasets import load iris
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.neighbors import KNeighborsClassifier
# Load the Iris dataset
data = load_iris()
X = data.data
y = data.target
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create a k-Nearest Neighbors classifier
knn_model = KNeighborsClassifier()
# Define the hyperparameters and their possible values
param_grid = {
    'n neighbors': [3, 5, 7],
    'weights': ['uniform', 'distance'],
    'p': [1, 2],
```

Example

Grid Search:

```
# Create a grid search object with 5-fold cross-validation
grid_search = GridSearchCV(knn_model, param_grid, cv=5, scoring='accuracy')
# Fit the grid search to the data
grid search.fit(X train, y train)
# Display the best hyperparameters and corresponding accuracy
best_params = grid_search.best_params_
best accuracy = grid search.best score
print("Best Hyperparameters:", best params)
print("Best Cross-Validation Accuracy: {:.4f}".format(best_accuracy))
# Evaluate the model on the test set with the best hyperparameters
best_model = grid_search.best_estimator_
test accuracy = best model.score(X test, y test)
print("Test Set Accuracy with Best Hyperparameters: {:.4f}".format(test accuracy))
Best Hyperparameters: {'n_neighbors': 3, 'p': 1, 'weights': 'uniform'}
Best Cross-Validation Accuracy: 0.9583
Test Set Accuracy with Best Hyperparameters: 1.0000
```