USP - Universidade de São Paulo Instituto de Ciências Matemáticas e Computação

Introdução à Ciência da Computação I SCC0221

CONSTRUINDO TRIÂNGULOS

1 Introdução

Na matemática, uma das formas geométricas mais identificada em padrões é o triângulo. Um claro exemplo em que podemos localizar a construção dessa forma é na representação do Triângulo de Pascal, um triângulo de coeficientes binomiais, utilizado de forma frequente no estudo da matemática combinatória e na expansão de polinômios:

Linha 0							$\binom{0}{0}$						
Linha 1						$\binom{0}{1}$		$\binom{1}{1}$					
Linha 2					$\binom{0}{2}$		$\binom{1}{2}$		$\binom{2}{2}$				
Linha 3				$\binom{0}{3}$		$\binom{1}{3}$		$\binom{2}{3}$		$\binom{3}{3}$			
Linha 4			$\binom{0}{4}$		$\binom{1}{4}$		$\binom{2}{4}$		$\binom{3}{4}$		$\binom{4}{4}$		
Linha 5		$\binom{0}{5}$		$\binom{1}{5}$		$\binom{2}{5}$		$\binom{3}{5}$		$\binom{4}{5}$		$\binom{5}{5}$	
Linha 6	$\binom{0}{6}$		$\binom{1}{6}$		$\binom{2}{6}$		$\binom{3}{6}$		$\binom{4}{6}$		$\binom{5}{6}$		$\binom{6}{6}$

No estudo da geometria, sabemos da existência de diversos tipos de triângulo: isósceles, retângulo, escaleno e, enfim, o triângulo equilátero. A perfeição do triângulo equilátero vem da sua capacidade de possuir lados de igual tamanho e ângulos internos também iguais, fazendo-o se tornar uma das formas mais icônicas e precisas da matemática como um todo. Na ascensão da computação, tornou-se cada vez mais fácil de emular formas geométricas visualmente.

Nesse trabalho, utilizando dos artifícios que a matemática nos proporciona, você deverá construir um código que gere e exiba na tela um triângulo equilátero a partir de condições dadas de entrada.

2 Entrada

A entrada começará com um número inteiro n, que pode ser lido com **scanf**. Esse inteiro representará a altura do triângulo em questão. Além dele, será dado em seguida um caractere qualquer c correspondente ao caractere no qual o triângulo será formado.

- O valor de n deve ser tal que $0 < n \le 25$.
- \bullet O caractere c estará incluso na tabela ASCII.

3 Saída

• Exemplo 1

A saída do programa deverá conter uma impressão, podendo ser feita com printf, do triângulo de caracteres c (dado de entrada) e altura n.

- A altura do triângulo em questão deve estar centralizada com relação a ele mesmo, como será exemplificado a seguir.
- Não deverá haver identação alguma com relação a ultima linha horizontal impressa (isto é, o triângulo estará alinhado à esquerda). Além disso, não deve haver espaçamento algum ao lado direito do triângulo (isto é, após o último caractere c inserido na linha, devemos logo encontrar um \n).
- Caso seja disponibilizada uma altura fora do intervalo especificado, o programa não deverá proceder com a execução e deve finalizar exibindo na tela a mensagem 'Altura invalida\n'. A função exit(0) pode te ajudar nessa tarefa.

4 Exemplos de entrada e saída

Entrada 1 3 2 \$ Saída • Exemplo 2 Entrada 1 5 2 0 Saída @ 000 000000000 • Exemplo 3 Entrada 1 39 Saída 1 Altura invalida

Bom trabalho!:)