第九讲: 凸函数扩展

凸函数相关的其他定义

杨林

大 纲

- 1. 共轭函数
- 2.对数凹函数和对数凸函数
- 3.拟凸函数

大 纲

- 1. 共轭函数
- 2.对数凹函数和对数凸函数
- 3.拟凸函数

1 共轭函数

■ 定义1(共轭函数):

函数 f 的共轭函数是

$$f^*(y) = \sup_{x \in \mathbf{dom}\, f} (y^T x - f(x))$$

f 是凸函数(即使 f 不是), 为什么?

1 共轭函数

口 例 1:

1. 负对数 $f(x) = -\log x$

$$f^*(y) = \sup_{x>0} (xy + \log x) = \begin{cases} -1 - \log(-y) & y < 0 \\ \infty & \text{其他情况} \end{cases}$$

2. 严格凸的二次函数 $f(x) = (1/2)x^TQx$,其中 $Q \in S_{++}^n$ $f^*(y) = \sup_{x} (y^Tx - (1/2)x^TQx) = (1/2)y^TQ^{-1}y$

分析: 关于x求导: $y - \left(\frac{1}{2}\right)(Q + Q^T)x = y - Qx$,极值在 $x = Q^{-1}y$ 时取得,从而有 $f^*(y) = y^TQ^{-1}y - \left(\frac{1}{2}\right)y^TQ^{-1}y = (1/2)y^TQ^{-1}y$

大 纲

- 1. 共轭函数
- 2.对数凹函数和对数凸函数
- 3.拟凸函数

2 对数凹函数和对数凸函数

■ 定义2(对数凹函数和对数凸函数):

一个正函数 f 是对数凹的若 $\log f$ 是凹的 $f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta} \quad \text{对于 } 0 \le \theta \le 1$ 或者

 $\log f (\theta x + (1 - \theta)y) \ge \theta \log f (x) + (1 - \theta) \log f (y)$ 函数 f 是对数凸的若 $\log f$ 是凸的

注: log函数不加说明默认底数为e

2 对数凹函数和对数凸函数

- **□ 例** 2 (幂函数): \mathbb{R}_{++} 上的 x^a 在 $a \le 0$ 时对数凸,在 $a \ge 0$ 时对数凹
- 证明:

对于任意 $0 \le \theta \le 1$, 当 $a \le 0$ 时

$$f(\theta x + (1 - \theta)y) = (\theta x + (1 - \theta)y)^a = e^{a \log(\theta x + (1 - \theta)y)}$$

由于 $f(x) = -\log x$ 是 \mathbb{R}_{++} 上的凸函数,所以有

$$\log(\theta x + (1 - \theta)y) \ge \theta \log x + (1 - \theta) \log y$$

故

$$e^{a\log(\theta x + (1-\theta)y)} \le e^{a(\theta\log x + (1-\theta)\log y)}$$
$$= x^{a\theta}y^{a(1-\theta)} = f(x)^{\theta}f(y)^{1-\theta}$$

 \mathbb{R}_{++} 上的 x^a 在 $a \leq 0$ 时对数凸, 同理可证在 $a \geq 0$ 时对数凹

2 对数凹函数和对数凸函数

□ **例** 3: 许多常见的概率密度函数是对数凹的,例如正态分布:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

■ 证明:

$$\log f(x) = \log \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} - \frac{1}{2} (x - \bar{x})^T \Sigma^{-1} (x - \bar{x})$$

因为 $\Sigma^{-1} \geq 0$, 所以常值函数 $g(x) = \log \frac{1}{\sqrt{(2\pi)^n \det \Sigma}}$ 与二次函数 $h(x) = -\frac{1}{2}(x - \bar{x})^T \Sigma^{-1}(x - \bar{x})$ 都是凹函数

其和函数 $\log f(x)$ 也是凹函数

注: $\Sigma = E[(x - \bar{x})(x - \bar{x})^T]$ 为协方差矩阵,为半正定对称矩阵

大 纲

- 1. 共轭函数
- 2.对数凹函数和对数凸函数
- 3.拟凸函数

■ 定义3(拟凸函数):

 $f: \mathbb{R}^n \to \mathbb{R}$ 是拟凸的,如果 $\operatorname{dom} f$ 是凸的,并且下水平集 $S_{\alpha} = \{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}$

对所有 α 都是凸的

如果 -f 是拟凸的,则 f 是拟凹的 如果 f 是拟凸且拟凹的,则它是拟线性的

■ 性质

修正的 Jensen 不等式: 对于拟凸函数 f $0 \le \theta \le 1 \Longrightarrow f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$

- 等价充要条件
- 证明(必要性):

显然, x 和 y 分别在 f(x) 和 f(y) 的下水平集内 x 和 y 在 f(x) 和 f(y) 中较大者对应的下水平集内 由于下水平集是凸的, $\theta x + (1 - \theta)y$ 必须在 f(x) 或 f(y) 的下水平集内, 即 $f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$

3 拟凸函数*

■ 性质

一阶条件: 可微函数 f 在凸域上为拟凸当且仅当 $f(y) \le f(x) \Rightarrow \nabla f(x)^T (y-x) \le 0$

■ 证明:

(提示) $f(y) \le f(x)$ 意味着 y 位于凸子水平集 $C_{f(x)}$ 的内部,而 x 位于边界上,∇f(x)和 x 决定了包含子水平集的半空间

3 拟凸函数*

■ 性质

二阶条件: f二次可微,如果函数f在凸域上为拟凸,则有 $y^T \nabla f(x) = 0 \Rightarrow y^T \nabla^2 f(x) y \ge 0$

反之,如果函数f满足

$$y^T \nabla f(x) = 0 \implies y^T \nabla^2 f(x) y > 0$$

则函数为拟凸函数

充分性解释:在斜率为0的点二阶导数非负

■ 性质

3. 拟凸函数的和不一定为拟凸,例如 $f_1(x) = -1/x$, $f_2(x) = -1/(1-x)$, $0 \le x \le 1$

口 例 4:

- 1. $\operatorname{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \geq x\}$ 是拟线性函数
- log x 在 ℝ++ 上是拟线性函数
- 3. $f(x_1, x_2) = x_1 x_2$ 在 \mathbb{R}^2_{++} 上是拟凹函数
- 4. 线性分数函数

$$f(x) = \frac{a^T x + b}{c^T x + d}$$
, **dom** $f = \{x | c^T x + d > 0\}$

是拟线性的

5. 距离比函数

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \mathbf{dom} \ f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

是拟凸函数

■ 证明 $4.1 \operatorname{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \ge x\}$:

$$ceil(\theta x + (1 - \theta)y) = [\theta x + (1 - \theta)y]$$

$$\leq [\max\{x, y\}] = \max\{ceil(x), ceil(y)\}$$

所以,ceil(x) 是一个拟凸函数,同理可证 ceil(x) 是一个拟凹函数. 故ceil(x) 是一个拟线性函数

■ 证明 4.2 (log x):

因为 $\log x$ 是 \mathbb{R}_{++} 上的单调递增函数, 所以有 $\min\{\log x, \log y\} \le \log[\theta x + (1-\theta)y] \le \max\{\log x, \log y\}$ 故 $\log x$ 是一个拟线性函数

■ 证明 $4.3 f(x_1, x_2) = x_1 x_2$:

因为 $f(x_1, x_2)$ 的上水平集

$$\{x \in \mathbb{R}^2_{++} \mid x_1 x_2 \ge \alpha\}$$

都是凸集

证明 4.4 $f(x) = \frac{a^T x + b}{c^T x + d}$:

$$f(x) = \frac{a^T x + b}{c^T x + d}, \text{dom } f = \{x | c^T x + d > 0\} \text{ 的}\alpha\text{-下水平集为}$$

$$S_{\alpha} = \{x | c^T x + d > 0, (a^T x + b) / (c^T x + d) \le \alpha\}$$

$$= \{x | c^T x + d > 0, (a^T x + b) \le \alpha (c^T x + d)\}$$

因为它是一个开的半平面和闭的半平面的交集,所以它是一个 凸集

■ 证明 $4.5 f(x) = \frac{\|x-a\|_2}{\|x-b\|_2}$:

 $f(x) = \frac{\|x-a\|_2}{\|x-b\|_2}$, **dom** $f = \{x \mid \|x-a\|_2 \le \|x-b\|_2\}$ 的 α -下水平集为

$$S_{\alpha} = \{x \mid ||x - a||_2 \le \alpha ||x - b||_2\}$$

由于在半平面 $\{x \mid ||x - a||_2 \le ||x - b||_2\}$ 上 $f(x) \le 1$,所以我们选取 $\alpha \le 1$

 $\|x - a\|_2 \le \alpha \|x - b\|_2$ 两端平方, 并重新排列各项得到 $(1 - \alpha^2)x^Tx - 2(a - \alpha^2 b)^Tx + a^Ta - \alpha^2 b^Tb \le 0$

当 $\alpha \leq 1$ 时是一个凸集(实际上是一个欧几里得球)

谢 谢!