I/O Performance Traps

Erich Focht NEC HPC Europe

WSSP, Stuttgart, October 28-29, 2013

Overview

- Motivation
- Parallel Filesystems: Lustre
 - Architecture
 - LXFS
 - LXFS in a Data Center
- High performance I/O on node local filesystem

Motivation

- I/O in High Performance Computing
 - Checkpoints
 - mostly write, maybe read, bandwidth
 - Input / Output
 - read, write, bandwidth
 - Databases, eg. genome/protein/...
 - Random I/O, IOPS
 - Intermediate results, eg. out of core solvers, ...
 - Random I/O, IOPS, bandwidth
 - Mostly to/from parallel filesystems

Motivation

- Big Data
 - Structured data: SQL databases
 - In memory, or not
 - IOPS, memory bandwidth, alignment, compression
 - Unstructured data
 - NoSQL
 - HDFS
 - Node local filesystems
 - MapReduce, analytics...
 - MPI

Parallel Filesystem: Lustre

- Architecture: built for scalability
 - Scale with number of
 - OSS/OST: capacity, bandwidth
 - MDS/MDT: number of files, metadata performance (DNE)
 - Lnet Router: decouple I/O network from compute network

Lustre Based LXFS Appliance

- Since 2007: parallel filesystem solution integrating validated HW (servers, networks, high performance storage), deployment, management, monitoring SW.
- Each LXFS block is a pre-installed appliance
 - Extremely simple provisioning
- Entire storage cluster configuration is in one place: LxDaemon
 - Describes the setup, hierarchy
 - Contains all configurable parameters
 - Single data source used for deployment, management, monitoring
- Deploying the storage cluster is very easy:
 - Auto-generate configuration of components from data in LxDaemon
 - Storage devices setup, configuration
 - Servers setup, configuration
 - HA setup, services, dependencies, STONITH
 - Formatting, Lustre mounting
- Managing & monitoring LXFS
 - Set of simple commands, hiding complexity of underlying setup
 - Health monitoring: pro-active, sends messages to admins, reacts to issues
 - Performance monitoring: time-history, GUI, discover issues and bottlenecks

Eg.: Performance Optimized OSS Block

Specs

- > 6GB/s write, > 7.5GB/s read, up to 384TB in 8U (storage)
- 2 Servers: highly available, active-active
 - 2 x 6core E5-2620(-v2)
 - 2 x LSI9207 HBA, 1 x Mellanox ConnectX 3 FDR HCA
- Storage
 - NEC SNA460 + SNA060 (built on NetApp E5500)

Performance example 80 x 1TB NL-SAS 7.2k IOR In noisy environment

Integrated In The Datacenter

- Check all layers!
- OSS to Block Devices
 - vdbench, sgpdd-survey, with Lustre: obdfilter-survey
 - not fio! (multiple threads hit same address: controller cache)
 - Seen with blktrace
 - Read/write to controller cache! Check PCIe, HBAs (SAS)

- Lnet (Lustre Network Layer)
 - Derived from Portals
 - TCP/IP (socklnd), InfiniBand Verbs (o2iblnd), ...
 - added routing between LNETs
 - Test with Inet-selftest (Ist)
 - peer_credits? Enough in-flight transactions?
 - Default: 8, small. Number of streams, clients, OSSes...

- Client nodes
 - InfiniBand BW: QDR, PCle gen2 x8: max 3.2GB/s...
 often 2.8GB/s
 - 8 nodes: peak QDR bandwidth ~24GB/s, close to 20GB/s
 - Client Lustre Version!
 - 1.8.9 still fastest client!
 - 2.1.6 : striped I/O performance doesn't scale
 - 2.4.0 : striped I/O performance doesn't scale

Multi-Streams I/O Benchmark Problems

- IOR, IOZONE, ...
- When "just" measuring IOR on 8/16/24 nodes:
 - Bandwidth varies, 10-18GB/s
 - Storage is ... idle
- Stragglers!
 - Hide performance of I/O subsystem

Might point to problems: measurement method, scheduling, imbalances of all kinds...

Multi-Streams I/O Benchmark Problems

- IOR, IOZONE, ...
- Naively measuring IOR on 8/16/24 nodes:
 - Bandwidth varies, 10-18GB/s
 - Storage is ... idle
- Stragglers!
 - Hide performance of I/O subsystem

- Might point to problems: measurement method, scheduling, imbalances of all kinds...
- Stonewalling
 - Stop measuring once first thread finished

Multi-Streams I/O Benchmark Problems

- InfiniBand
 - Is great!
 - Brings in new problems due to static routing
 - Each IB switch chip has a static routing table
 - Go to LID x through port y
 - Not dynamically changeable:
 - Existing connections (QPs) contain the route
 - Mellanox UFM helps, eg. for jobs, changes routing, but before job starts and connenctions are built up
 - Why do I mention this here?

- Given the routing is static: select nodes carefully
 - Out of a pool of reserved nodes
 - Minimize oversubscription of InfiniBand links on both paths
 - to OSTs/OSSes that are involved
 - ... and back to client nodes 30000
- Use stonewalling
- Result from 16 clients
 - Write: max 24.7GB/s
 - Read: max 26.6GB/s

Remarks

- Performance of storage devices is huge
 - Performance of one OSS is O(IB link bandwidth)
- Sane way of integrating is more expensive and more complex:
 - Lustre/Lnet routers
 - Additional hardware
 - Each responsible for its "island"
 - Can also limit I/O bandwidth in an "island"

Integrated In Datacenter: The Right Way

And now to something much simpler

Server doing I/O to own block storage

- Quite fat server
 - 8 sockets Intel E7-8800, 80 cores, 1TB RAM
- Quite fast storage (SNA400 AKA E5500)
 - O(300) disk drives, NL-SAS
- Accessed through InfiniBand SRP
- QDR, for technical reasons :-(
- Big Data, somehow...
 - Storage on demand
 - Assigned to server that needs it

Local Block Storage: Software

- RedHat Enterprise Linux 6.4 (basically)
- OFED InfiniBand Stack
 - SRP daemon
- Device Mapper Multipath
 - Each block device seen through 8 paths (at least)
- Logical Volume Manager
 - O(10) block devices / RAID
- XFS Filesystem
 - Or ext4

Expect Trouble When Going To Limits!

- Storage: 3 x (6-10GB/s)
- Server: 4-8 InfiniBand HCAs, QDR (max 3.2GB/s each)
- PCIe is limiting...

LVM Scales ... Not

- Surprise: LVM doesn't scale!
 - Huge system time
 - Kernel wastes time85% spent in:

dm_table_put dm_table_get dm_table_find_target _read_lock_irqsave _spin_lock_irqsave Bandwidth, RHEL6.4 original kernel, directIO to LVM over 16 LUNs

I/O to raw devices

Read / write directly to block devices, no LVM

Bandwidth, RHEL6.4 original kernel, directIO, LVM on 2 RAIDs, raw on 3 RAIDs

- Ok, we speak of huge bandwidths. To Disk!
- Compare with STREAM a few years ago

2011.06.28 Intel Core i7-2600

4 12235.0 12294.0 13780.0 13779.0

LVM Patch Get's Us Closer

- Replace dm table locking by SRCU
 - Was "out" since mid 2012
 - Went into mainline with Linux kernel 3.11 (September 2013)
 - Working with RedHat to get into RHEL6.6
- Results: LVM, 3 RAIDs, 24 LUNs
 - Read: reaches 15GB/s
 - Write: tops at 10-11GB/s
- New limitation in write path unveiled:

```
10,54% [dm_mod] [k] dm_table_unplug_all 5,74% [kernel] [k] put_page 5,66% [kernel] [k] blk_unplug 5,31% [kernel] [k] get_page 4,07% [dm_mod] [k] stripe_map_sector
```

I/O To Local Filesystem

- XFS and ext4 behave quite similarly
 - For the multi-threaded iozone tests we did
- Setup: XFS on LVM on 24 LUNs from 3 RAIDs
- Results:
 - Read: up to 12.5GB/s
 - Write: up to 10GB/s
- Tuning:
 - The usual: align for RAIDs stripe line size (1MB)
 - Surprise: hugepages are not useful!
 - At these performance levels compound huge pages are expensive

Conclusion

- New, ultra-fast storage devices reveal performance bottlenecks where we didn't see them before
 - And help reach new performance levels!
- Lustre parallel filesystem performance requires careful consideration of all layers, including InfiniBand in odd ways.
- O(10GB/s) for local filesystem I/O is doable, but challenging
 - Works for DAS and SAN
- Lessons learned for rotating storage apply for SSDs!
 - Only nobody could afford buying me enough of them ;-)