

Aufgabenblatt 10

letzte Aktualisierung: 07. February, 16:46

Ausgabe: 25.01.2002

Abgabe: 04./05.02.2002 Prozent: 100

Thema: Boolesche Algebra, KV-Minimierung

1. Aufgabe (20 Prozent): Gleichungen umformen

1.1. NOR und NOT (Tut) Die folgenden Gleichungen (Halbaddierer-Gleichungen) sollen ausschließlich mit NOR- und NOT-Funktionen dargestellt werden:

$$u = x \cdot y$$
$$s = x \oplus y$$

Lösung:

$$u = x \cdot y$$
 $= \overline{x \cdot y}$

$$=$$
 $\overline{x} \cdot \overline{y}$ $=$ $\overline{\overline{x} + \overline{y}}$

$$s=-x\oplus y$$

$$= \quad x \cdot \overline{y} + \overline{x} \cdot y$$

$$=$$
 $\overline{x \cdot \overline{y} + \overline{x} \cdot \overline{y}}$

$$=$$
 $\frac{\overline{\overline{x} \cdot \overline{y}} + \overline{\overline{x} \cdot \overline{x}}}{\overline{x} \cdot \overline{x}}$

$$=$$
 $\overline{\overline{x} + \overline{y} + \overline{x} + y}$

$$=$$
 $\overline{\overline{x} + y} + \overline{x + \overline{y}}$

1.2. NAND und NOT (20 Prozent) Die folgenden Gleichungen (Volladdierer-Gleichungen) sollen ausschließlich mit NAND- und NOT-Funktionen dargestellt werden:

$$u_{i+1} = x_i \cdot y_i + (x_i + y_i) \cdot u_i$$

$$s_i = x_i \oplus y_i \oplus u_i$$

Lösung:

$$\begin{array}{rcl} u_{i+1} = & x_i \cdot y_i + (x_i + y_i) \cdot u_i \\ = & \overline{x_i \cdot y_i + x_i \cdot u_i + y_i \cdot u_i} \\ = & \overline{x_i \cdot y_i \cdot \overline{x_i \cdot u_i} \cdot \overline{y_i \cdot u_i}} \end{array}$$

$$\begin{array}{lll} x_i = & x_i \oplus y_i \oplus u_i \\ = & (x_i \cdot \overline{y_i} + \overline{x_i} \cdot y_i) \oplus u_i \\ = & (x_i \cdot \overline{y_i} + \overline{x_i} \cdot y_i) \cdot \overline{u_i} + \overline{(x_i \cdot \overline{y_i} + \overline{x_i} \cdot y_i)} \cdot u_i \\ Nehmen & wir & an, daß & p = x_i \cdot \overline{y_i} & und & q = \overline{x_i} \cdot y_i & dann: \\ = & (p+q) \cdot \overline{u_i} + \overline{(p+q)} \cdot u_i \\ = & p \cdot \overline{u_i} + q \cdot \overline{u_i} + \overline{p} \cdot \overline{q} \cdot u_i \\ = & \overline{p \cdot \overline{u_i} + q \cdot \overline{u_i} + \overline{p} \cdot \overline{q} \cdot u_i} \end{array}$$

$$= \overline{x_i \cdot \overline{y_i} \cdot \overline{u_i} \cdot \overline{x_i} \cdot y_i \cdot \overline{u_i} \cdot \overline{x_i \cdot \overline{y_i}} \cdot \overline{\overline{x_i} \cdot y_i} \cdot u_i}$$

2. Aufgabe (30 Prozent): Normalformen

2.1. Ausaddieren (15 Prozent) Wendet auf den folgenden Ausdruck

 $\overline{p \cdot \overline{u_i}} \cdot \overline{q \cdot \overline{u_i}} \cdot \overline{\overline{p} \cdot \overline{q} \cdot u_i}$

$$p = ab + \overline{b} + ca + \overline{c}$$

die Regel (6) solange an, bis der Ausdruck

$$\begin{array}{ll} q & = & (c+a+\overline{b}+\overline{c})(a+a+\overline{b}+\overline{c})(c+b+\overline{b}+\overline{c})(a+b+\overline{b}+\overline{c}) \\ & = & (a+\overline{b}+\overline{c}) \end{array}$$

erreicht ist.

Lösung:

$$\begin{array}{rcl} ab+\overline{b}+ca+c & = & (a+\overline{b}+ca+\overline{c})(b+\overline{b}+ca+\overline{c}) \\ & = & (ca+a+\overline{b}+\overline{c})(ca+b+\overline{b}+\overline{c}) \\ & = & (c+a+\overline{b}+\overline{c})(a+a+\overline{b}+\overline{c}) \\ & & (c+b+\overline{b}+\overline{c})(a+b+\overline{b}+\overline{c}) \\ & = & (a+\overline{b}+\overline{c}) \end{array}$$

2.2. Ausmultiplizieren (15 Prozent) Vereinfacht den folgenden Ausdruck

$$p = \overline{b}(a+b+c)(\overline{c}+\overline{a})(\overline{b}+c)$$

derart, daß keine Klammern mehr notwendig sind. Hinweis: Es sind insbesondere die Regeln (5) und (9) anzuwenden.

Lösung:

$$\overline{b}(a+b+c)(\overline{c}+\overline{a})(\overline{b}+c) = (\overline{b}a+\overline{b}b+\overline{b}c)(\overline{c}+\overline{a})(\overline{b}+c)$$

$$= (\overline{b}a+\overline{b}c)(\overline{c}+\overline{a})(\overline{b}+c)$$

$$= (\overline{b}a\overline{c}+\overline{b}a\overline{a}+\overline{b}c\overline{c}+\overline{b}c\overline{a})(\overline{b}+c)$$

$$= (\overline{b}a\overline{c}+\overline{b}c\overline{a})(\overline{b}+c)$$

$$= \overline{b}a\overline{c}b+\overline{b}a\overline{c}c+\overline{b}c\overline{a}b+\overline{b}c\overline{a}c$$

$$= \overline{b}a\overline{c}+\overline{b}c\overline{a}+\overline{b}c\overline{a}$$

$$= \overline{b}a\overline{c}+\overline{b}c\overline{a}$$

$$= \overline{b}a\overline{c}+\overline{b}c\overline{a}$$

3. Aufgabe (50 Prozent): KV-Tafeln

Mit den sogenannten KV-Tafeln lassen sich auf einfache Weise Minimalformen (mDNF und mKNF) für beliebig komplizierte Ausdrücke mit wenigen Eingangsvariablen erstellen. In dieser Aufgabe werden wir lernen, wie KV-Tafeln aus Wertetabellen erstellt werden und wie wir aus diesen Tabellen auf einfache Weise die Minimalformen 'ablesen' können.

3.1. Veranschaulichung. (Tut) Veranschaulicht euch (i) den Aufbau einer KV-Tafel für die vier Variablen x₀...x₃, (ii) die Nachbarschaftsbeziehungen zwischen Feldern und (iii) die Beschriftung der KV-Tafel. Tragt dazu in die Felder die entsprechende 'Adresse' als Dualzahl ein.

Lösung:

x_3	x_2	x_1	x_0	y	
0	0	0	0		V
0	0	0	1		7
0	0	1	0		0000
0	0	1	1		_ 0000
0	1	0	0		0100
0	1	0	1		「 X₂
0	1	1	0		1100
0	1	1	1		X ₃ L 1000
1	0	0	0		

У					
	0	1	3	2	
_ [4	5	7	6	
$\begin{bmatrix} X_2 \\ X_3 \end{bmatrix}$	12	13	15	14	
\(\)	8	9	11	10	

 $KV ext{-}Diagramme$ sind im Gray-Code kodiert, d.h. benachbarte Felder unterscheiden sich nur in einem Bit.

3.2. Nachbarschaften (10 Prozent)

Bedenkt, daß zwei Felder in einer KV-Tafel dann benachbart sind, wenn sich ihre 'Adressen' um genau ein 'Bit' unterscheiden. (a) Betrachtet eine 6-dimensionale KV-Tafel. Welche Nachbarn haben die Felder 39_{10} , 50_{10} und 9_{10} ? (b) Wieviele Nachbarn hat ein Feld in einer KV-Tafel mit n Variablen?

Lösung:

Die Nachbarn sind

39: 35, 37, 38, 47, 7, 55

50: 51, 54, 58, 48, 34, 18

9: 13, 11, 8, 1, 41, 25

Allgemein besitzt ein Feld in einer n-dimensionalen KV-Tafel genau n-Nachbarn, weil zwei Felder genau dann benachbart sind, wenn sie sich in einer Dimension unterscheiden.

3.3. Minimale DNF und KNF für vollständig definierte Funktionen. (20 Prozent)

Findet eine minimale DNF sowie eine minimale KNF für die folgenden Funktionen. Stellt dafür zunächst die Wertetabelle auf, übertragt diese dann in eine KV-Tafel und ermittelt die Minimalformen graphisch aus der Tafel.

1. **(Tut)**
$$y = \overline{x_0} \cdot (x_1 + \overline{x_2})$$

Lösung:

x_2	x_1	x_0	y		V
0	0	0	1	yx	
0	0	1	0		1
0	1	0	1	1 0 0 1	X-1 0
0	1	1	0	$\mathbf{x}_{2} \mid 0 \mid 0 \mid 0 \mid 1 \mid$	1 ² 1-2
1	0	0	0	¥	_
1	0	1	0	<u> </u>	y =
1	1	0	1	$y = \overline{x_0} \cdot \overline{x_2} + \overline{x_0} \cdot x_1$	y =
1	1	1	0		y =

 $\overline{x_0} \cdot (x_1 + \overline{x_2})$

2.
$$y = (x_0 + \overline{x_2}) \cdot \overline{(x_1 + \overline{x_0}) + (\overline{x_1} + x_2)} \cdot \overline{(x_3 + x_1)}$$

Lösung:

Spätestens nach Erstellen der Wertetabelle wird klar, daß y=0 ist für alle Belegungen der Variablen x_3, x_2, x_1 und x_0, d . h. eine KV-Tafel muß gar nicht erst angelegt werden.

3.
$$y = x_0 \cdot \overline{(x_1 + \overline{x_2})}$$

Lösung.

x_2	x_1	x_0	y	
0	0	0	0	у х
0	0	1	0	
0	1	0	0	0 0 0
0	1	1	0	$x_2 \mid 0 \mid 1 \mid 0 \mid$
1	0	0	0	
1	0	1	1	$y = x_0 \cdot \overline{x_1} \cdot x_2$
1	1	0	0	<i>y</i> 0 1 2
1	1	1	0	

$$\overline{y} = \overline{x_0} + x_1 + \overline{x_2}
y = \overline{x_0} + x_1 + \overline{x_2}
y = x_0 \cdot \overline{x_1} \cdot x_2$$

3.4. Minimale DNF und KNF für unvollständig definierte Funktionen. (20 Prozent)

Bei unvollständig definierten Funktionen dürfen die undefinierten Fälle als sogenannte "Don't Care"-Fälle betrachten werden.

Übertragt die Wertetabellen in KV-Tafeln und minimiert diese graphisch.

Aufgabe 3c ist ein Beispiel dafür, daß die DNF und die KNF getrennt voneinander minimiert werden sollen: Ein und derselbe '*' – beispielsweise der '*' im Feld 1111 – kann bei der Bestimmung der DNF als 1 und bei der Bestimmung der KNF als 0 behandelt werden.