

PARTICIPANTES

⊕ otros

Navegación por el cuestionario

Mostrar una página cada

Finalizar revisión

Comenzado el sábado, 24 de abril de 2021, 08:00

Estado Finalizado en sábado, 24 de abril de 2021, 10:37

Tiempo empleado 2 horas 36 minutos

Calificación 20,00 de 20,00 (100%)

Pregunta

Finalizado

Puntúa 5,00 sobre 5,00

Marcar pregunta La figura muestra dos máquinas eléctricas DC integradas para formar un sistema motorgenerador:

Modele el sistema en forma de espacio de estados considerando lo siguiente:

Entrada: Alimentación (u.spm)

Estados: Corrientes de armadura (japon, jag) y velocidad angular (ω_{κρον})

Salida: Voltaje (u.)

Parámetros del sistema:

Prime Mover		Generator	
r _{apm}	0.4 Ω	rag	0.3 Ω
Lapm	0.05 H	Lag	0.06 H
K _{apm}	0.3 V-s/rad	k _{ag}	0.25 V-s/rad
kT _{apm}	0.3 N-m/A	kT _{ag}	0.25 N-m/A
f _{ageo.}	0.0007 N-m-s/rad	f _{ag}	0.0008 N-m-s/rad
Jam	0.04 kg-m ²	Je	0.05 kg-m ²
		R _L	5 Ω

(5.0 puntos)

Preg1.pdf

Comentario:

Estado

Ecuaciones:

$$x_1 = iapm$$
 $y = v_1$
 $x_2 = iap$ $u = u_{apm}$
 $x_3 = w_{apm}$

→En estados

Reardenando

(1)
$$X_1 = \frac{r_{apm}}{L_{apm}} X_1 - \frac{K_{apm}}{L_{apm}} X_3 + \frac{1}{L_{apm}} M$$

(4)
$$\dot{x}_2 = -\frac{(rag + r_L)}{Lag} x_2 + \frac{kag}{Lag} x_3$$

(2)
$$x_3 = \frac{K_T apm}{(J_{pm} - J_g)} x_1 - \frac{K_T ag}{(J_{pm} - J_g)} x_2 - \frac{(f_{apm} - f_{ag})}{(J_{pm} - J_g)} x_3$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -\frac{r_{apm}}{l_{apm}} & O & -\frac{K_{apm}}{l_{apm}} \\ O & -\frac{K_{apm}}{l_{apm}} & \frac{K_{apm}}{l_{apm}} \\ \frac{K_{T_{apm}}}{l_{apm}} & \frac{K_{T_{ap}}}{l_{apm}} & \frac{(k_{apm} - k_{ap})}{(l_{apm} - l_{ap})} & \frac{(l_{apm} - l_{ap})}{(l_{apm} - l_{ap})} & \frac{(l_{apm} - l_{ap})}{(l_{apm} - l_{ap})} & 0 \end{bmatrix}$$

$$\begin{cases} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} O & R_1 & O \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_2 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_2 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_2 \\ x_3 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_3 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_3 \\ x_3 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_3 \\ x_3 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_3 \\ x_3 \\ x_3 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_3 \\ x_3 \\ x_3 \\ x_3 \\ x_3 \end{bmatrix} + O \\ \begin{pmatrix} x_1 \\ x_3 \\ x$$

Donde:

Parámetros del sistema:

Prin	Prime Mover		Generator	
r _{apm}	0.4 Ω	r _{as}	0.3 Ω	
Lapm	0.05 H	Log	0.06 H	
Kapm	0.3 V-s/rad	Kag	0.25 V-s/rad	
kT _{apm}	0.3 N-m/A	kT.,,	0.25 N-m/A	
f _{apro} .	0.0007 N-m-s/rad	fag	0.0008 N-m-s/rad	
Jam	0.04 kg-m ²	Ja	0.05 kg-m ²	
- Aleksan		R _L	5 Ω	

Pregunta **2**

Finalizado

Puntúa 5,00 sobre 5,00

Marcar pregunta El siguiente diagrama bloques representa un sistema de posicionamiento mecánico:

- a) Obtenga el modelo de espacio de estados del sistema dado.
- (2 puntos)
- b) Respuesta de ω y x a las condiciones iniciales: $\omega_0 = 1$, $x_0 = 0$ y entrada tipo escalón unitario (sin utilizar Matlab o similar). (3 puntos)

Comentario:

$$\mathcal{U} = \text{Ontrada} \qquad \mathcal{U} \rightarrow \boxed{\frac{2000}{0.55+1}} \rightarrow \boxed{\frac{0.01}{1005}} \times \boxed{\frac{\times}{1005}}$$

$$X_1 = \omega$$
 $w = -2\omega + 4000 u$
 $x_1 = -2x_1 + 4000 u$

$$\frac{1}{2} - \frac{1}{2} \frac{$$

$$\chi_{z=1}$$
 $\rightarrow 100 \text{ y} = 0.01 \text{ W}$
 $100 \text{ x}_{z} = 0.01 \text{ x}_{1}$
 $\dot{\chi}_{z} = 10^{-4} \text{ x}_{1}$

$$\begin{bmatrix} x_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 10^{-4} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ \dot{x}_2 \end{bmatrix} + \begin{bmatrix} 4000 \\ 0 \end{bmatrix} M$$

$$X_1 = W_0 = 1$$
 $M = 1$, 0 et = $X_2 = X_0 = 0$

$$(31-A)^{-1} = \begin{bmatrix} \frac{1}{5} & 0 \\ -\frac{10^{-41}}{5^{2}+25} & \frac{1}{5+2} \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & 0 \\ -\frac{10^{-4}}{5} & \frac{1}{5+2} & \frac{1}{5+2} \end{bmatrix}$$

$$e^{At} = L^{-1} \left((52-A^{-1}) \right) = \begin{bmatrix} 1 & 0 \\ -0.5 \times 10^{-4} - 0.5 \times 10^{-4} e^{-2t} & e^{-2t} \end{bmatrix}$$

$$\int_{0}^{t} \begin{bmatrix} 4000 \\ -0.2 - 0.2e^{2t} \end{bmatrix} d\tau = \begin{bmatrix} 4000 \\ -0.2 + 0.1e^{2t} \end{bmatrix}$$

$$X(E) = \begin{bmatrix} 1 & 0 \\ -0.5, 10^4 - 0.5, 10^4 e^{-2t} e^{2t} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} t \begin{bmatrix} 4000 E \\ -0.5 + 0.1 e^{-2t} \end{bmatrix}$$

$$\lambda(t) = \begin{bmatrix} 1 \\ -0.5 \times 10^{-4} - 0.5 \times 10^{4} - 2t \end{bmatrix} \begin{bmatrix} 4000 t \\ -0.5 \times 0.10^{-2} \end{bmatrix}$$

Pregunta

3

Finalizado

Puntúa 5,00 sobre 5,00

Marcar pregunta Para el siguiente sistema.

Donde:
$$q_1=rac{h_1-h_2}{R_1}$$
; $q_0=rac{h_2}{R_2}$; $C_1\dot{h}_1=q_{i1}-q_1$; $C_2\dot{h}_2=q_1-q_0$

- a) Hallar el modelo en espacio estados si la entrada es q_{i1} y la salida es h_2 . (3 p)
- b) Hallar la función de transferencia (sin utilizar <u>MatLab</u> o similar) a partir del modelo en espacio estados. (2 p)

Preg3.pdf

Comentario:

- 1. Muy bien se obtuvo de forma adecuada el modelo de espacio de estados, 3pts.
- 2. Muy bien se obtuvo la función de transferencia de forma adecuada, 2pts.

3)
$$q_1 = \frac{h_1 - h_2}{R_1}$$
 $C_1 h_1 = q_{11} - q_1$ $M_1 = h_1$
a) $q_0 = \frac{h_2}{R_2}$ $C_2 h_2 = q_1 - q_0$ $X_2 = h_2$
 $Y = X_2$ $M = q_{ij}$

· Euceines especio estelo

$$C_{1} h_{1} = 4 - \frac{h_{1}}{R_{1}} - \frac{h_{2}}{R_{1}} \rightarrow x_{1} = -\frac{1}{C_{1}R_{1}} x_{1} - \frac{1}{C_{1}R_{1}} x_{2} + 4$$

$$C_{2} h_{2} = \frac{h_{1}}{R_{1}} - \frac{h_{2}}{R_{2}} - \frac{h_{2}}{R_{2}} - x_{2} = \frac{x_{1}}{R_{1}C_{2}} - \left(\frac{R_{1} + R_{2}}{R_{1}R_{2}C_{2}}\right) x_{2}$$

$$\dot{X} = \begin{bmatrix} \frac{1}{C_1 R_1} & -\frac{1}{C_2 R_2} \\ \frac{1}{R_1 C_2} & -\frac{1}{R_2 R_2} \end{bmatrix} \times + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \times$$

$$\lambda(2) = [0]$$

$$\frac{e_{5} + (\frac{S'_{5} + S^{5}}{S'_{5} + S^{5}} - \frac{c'_{5} S'_{5}}{1})^{2} + \frac{S'_{5} + S^{5}}{S'_{5} + S^{5}}}{[1 - \frac{1}{5}]^{2}} \left[\frac{e'_{5} c'_{5}}{1} - \frac{c'_{5}}{1}\right]} \left[\frac{e'_{5} c'_{5}}{1}\right]$$

Pregunta

Finalizado

Puntúa 5,00 sobre 5,00

Marcar pregunta

Considere el diagrama mostrado en la figura:

- a) Obtenga la representación del sistema en espacio de estados. (2.0 p)
- b) Verifique si el sistema es estable, controlable y observable (sin utilizar MatLab o similar, puede utilizar calculadora).
- c) Simular el sistema utilizando MatLab o Simulink con: u=0, x1(0)=0.1, x2(0)=0.3. Mostrar la gráfica de la salida. (1.0 p)

Preg4.pdf

Comentario

- 1. Muy bien se obtuvo de forma adecuada el modelo de espacio de estados, 2pts.
- 2. Muy bien se determinó la estabilidad, controlabilidad y observabilidad, 2pts.
- 3. Se mostró los gráficos de MATLAB obtenido asi como su código. 1pt

$$\dot{X} = \begin{bmatrix} -1 & 2 \\ 0 & -4 \end{bmatrix} X + \begin{bmatrix} 0 \\ 3 \end{bmatrix} M$$

$$\dot{Y} = \begin{bmatrix} 0 & 1 \end{bmatrix} X$$

6) autovalores

$$(\lambda J - A) = \begin{bmatrix} \lambda + 1 & -2 \\ 0 & \lambda + 4 \end{bmatrix}$$

$$det(\lambda J - A) = \lambda^{2} + 5\lambda + 4 \rightarrow \lambda_{1} = -1$$

$$\lambda_{2} = -4$$

$$P_{\infty} \Rightarrow \begin{bmatrix} \lambda_{1} + 1 & -2 \\ -0 & \lambda_{1} + 4 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 0 & 3 \end{bmatrix} \qquad P_{\infty} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

$$P_{\infty}^{(1)} \Rightarrow \begin{bmatrix} \lambda_{2} + 1 & -2 \\ 0 & \lambda_{2} + 4 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ 0 & 0 \end{bmatrix} \qquad P_{\infty}^{(1)} = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$$

$$P_{\infty}^{(1)} \Rightarrow \begin{bmatrix} \lambda_{2} + 1 & -2 \\ 0 & \lambda_{2} + 4 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ 0 & 0 \end{bmatrix} \qquad P_{\infty}^{(1)} = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$$

$$estable (autovertage)$$

$$C_0 = \begin{bmatrix} 0 & 6 \\ 3 & -12 \end{bmatrix}$$
 = Rango = $2 = n$ -> es controlable

$$O_0 = \begin{bmatrix} c \\ cA \end{bmatrix}$$

CÓDIGO EN MATLAB

```
clc;
clear;
close all;
A = [-1 \ 2; \ 0 \ -4];
B = [0; 3];
C = [0 \ 1];
D = [0];
figure(1)
hold on;
t = 0:0.01:10;
u = 0*ones(size(t));
x0 = [0.1 \ 0.3]';
[T xt] = lsim(A,B,C,D,u,t,x0);
x1t = xt(:,1);
x2t = xt(:,2);
plot(t,x1t,t,x2t);
title("Respuesta Completa (u => 0, c.i. => [0.1 0.3]')");
legend('x1(t)','x2(t)');
```

