ABSTRACT

Tuberculosis (TB) remains a significant global health concern, necessitating prompt and accurate diagnostic tools for effective disease management. This project presents a novel approach for the early detection of tuberculosis using Chest X-ray (CXR) images, complemented by a Computer-Aided Diagnosis (CAD) system. The integration of advanced image processing techniques and machine learning algorithms aims to enhance the efficiency and reliability of tuberculosis diagnosis, facilitating timely intervention and reducing the spread of the disease. This project amalgamates cutting-edge technology with medical diagnostics, providing a robust solution for the early detection of tuberculosis using Chest X-ray images. The CAD system serves as a valuable tool in the hands of healthcare professionals, contributing to the global efforts to combat and control the prevalence of tuberculosisa Computer-aided Diagnosis (CADx) system based on image processing is proposed to assist doctors and radiologists in interpreting Chest X-rays (CXR) for early detection of lung Tuberculosis (TB). CXR can indicate lung abnormalities including TB. However, the interpretations of CXR might vary from one individual to another. It is important to accurately and quickly detect TB because early treatment will prevent more infections and fatal effects from happening. The steps that were performed by the proposed system consisted of preprocessing, segmentation, feature extraction, and classification.

LIST OF FIGURES

FIG NO	NAME OF THE FIGURE	PAGE NO
1.1	Block Diagram	2
1.2	Original CXR Image	4
1.3	Enhancement of CXR Image	4
1.4	Flow Chart System	7
2.1	Radio as a Triage Tool	13
2.2	Demonstrate the Work Space	14
2.3	Algorithm options for Triaging Patients	19
2.4	Chest X-ray for Early Detection of TB	26
3.1	Data Collection of Chest X-ray Image	31
4.1	Percentage True TB Case	37
4.2	CXR:Chest X-ray	38
4.3	Chest X-ray for Screening of TB	39
5.1	Chest X-ray Dark Field System	50
5.2	Raw Data	50
5.3	Conventional Chest X-ray	50
5.4	Dark Field Chest X-ray	50
6.1	Digital CXR Image	54
6.2	Block Diagram of Chest X-ray	54
7.1	Study Flow Chart	60
7.2	Performance Metrics Retween AL& TR	63

LIST OF TABLES

TABLE NO	NAME OF THE TABLE PAGE	E NO
1.1	Limitations of Advances in Chest X-ray	5
1.2	Chest X-ray for TB in Recent WHO Guidelines	8
1.3	First Order Features of Normal Abnormal CXR	10
2.1	Chest Radiography in TB Detection Algorithms	24
6.1	Relevant Issues to be Addressed	55
6.2	Drugs used in TB	56
7.1	Assumptions Used to Model Yield	59
7.2	CXR : Chest X-ray ;SSM;Xpert	61
7.3	CXR : chest X-ray ;SSM;Xpert (CA)	62
7.4	CXR: chest X-ray; SSM; Xpert (Cepheid)	64
7.5	CXR Chest X-ray	65