Aktueller Stand: 28.03.18

-Masterthesis-

Besprochenen ToDos

- Informationen über Feature-based DTW
- Abspeichern der Klassen in rawdata
- CNN implementieren
- Ergebnisse der beiden Klassifizierungen vergleichen

Value-based DTW

In Distanzmatrix werden die berechneten Distanzen zweier Zeitreihen gespeichert, es wird der kürzeste "Path" in Matrix bestimmt, dessen Summe, die minimale Distanz der beiden Zeitreihen darstellt.

Problem:

Da wir die y werte betrachten, ist es problematisch, wenn die beiden Sequenzen Unterschiede in der y-Achse aufweisen. Globale Unterschiede, andere Mittelwerte oder unterschiedliche Skalierungen führen zu sogenannten "Singularities". Normalisierung hilft hier nur teilweise.

[Keogh, E. J., & Pazzani, M. J. (2001, April). Derivative dynamic time warping. In Proceedings of the 2001 SIAM International Conference on Data Mining (pp. 1-11). Society for Industrial and Applied Mathematics.]

Derivative DTW

Ermittelt die Distanzen zweier Zeitreihen basierend auf der ersten Ableitung der jeweiligen Punkte

Vorteil: Tendenzen der Steigung der Kurven ist mit im Vergleich

<u>Derivative of datapoint r:</u>

$$D(r_i) = \frac{(r_i - r_{i-1}) + ((r_{i+1} - r_{i-1})/2)}{2}$$

[Keogh, E. J., & Pazzani, M. J. (2001, April). Derivative dynamic time warping. In Proceedings of the 2001 SIAM International Conference on Data Mining (pp. 1-11). Society for Industrial and Applied Mathematics.]

Problem:

Globale Trends auch hier nicht mit modelliert und dadurch nicht erkennbar bei der Bestimmung der Distanzen zweier Zeitreihen

[Xie, Y., & Wiltgen, B. (2010). Adaptive feature based dynamic time warping. International Journal of Computer Science and Network Security, 10(1), 264-273.]

Feature-based DTW

<u>Für Datapoint r</u>:

Local Feature:

$$f_{local}(r_i) = (r_i - r_{i-1}, r_i - r_{i+1})$$

Global Feature:

$$f_{global}(r_i) = \left(r_i - \frac{\sum_{k=1}^{l-1} r_k}{(i-1)}, r_i - \frac{\sum_{k=i+1}^{M} r_k}{(M-1)}\right)$$

 $r_i \in a$ sequence $R = r_1, r_2, ..., r_i, ..., r_M$

Performanz kann sich je nach Datensatz bei Verwendung von lokalen zu globalen Featuren unterscheiden

Adaptive Feature-based DTW

- Deshalb lernen welche Feature zur paarweisen Distanzberechnnung verwendet werden soll: Adaptive Feature-based DTW
- Berechnung der Gewichten w_1 und w_2 , um globale und lokale Distanz zu gewichten, mittels *In-class range*
- *In-class range:* Die Distanz zw. Betrachteter Sequenz und der weitesten Sequenz der Klasse
- Differenz der Anzahl der Sequenzen, die innerhalb dieser Range liegen und in der eigenen Klasse und der Sequenzen, innerhalb der Range jedoch außerhalb der Klasse, wird aufsummiert

[Xie, Y., & Wiltgen, B. (2010). Adaptive feature based dynamic time warping. International Journal of Computer Science and Network Security, 10(1), 264-273.]

Class 1: Normal progression

Class 2: Bolus too high

Class 4: Bolus too small

14,09 %

Class 6: Bolus correction

Adaptive Feature-based DTW 14,09 %

CNN

- Implementiert, verwendetes Package: Tensorflow
- 800 Trainings und Testsamples
- 2 Convolutional Layer
- Erste Trainingsergebnisse

Training des CNNs

Klassen

Convolutional Neural Network

Class1: Normal Prograssion 21,34 %

35,22 %

Class2: Bolus too high 8,61 %

Class6: Bolus correction 34,83 %

Übersicht der Klassenzuteilung

Method	Class 1 Normal	Class 2 Too high	Class 4 Too small	Class 6 bolus correction	Class 5 residue class	Discovered curves	Time series (MxTS)	Trainings- samples (N)	Duration and Compexity O(N) (TS = 20)
VBDTW (threshold > 58)	61 ~ 16,9 %	10 ~ 2,77 %	59 ~16,34 %	50 ~ 13,85 %	181 ~ 50,14 %	361	9716	400	1,5 h O(NxMxTS²)
DDTW (threshold > 21)	116 ~ 29,44 %	0 0%	44 ~ 11,17 %	48 ~ 12,18 %	186 ~ 47,1%	394	9716	400	1,5 h O(NxMxTS²)
FBDTW (threshold > 32)	101 ~ 29,36 %	0 0%	23 ~ 6,7 %	48 ~ 13,95 %	172 ~ 50 %	344	9716	400	4h O(NxMxTS²)
AFBDTW (threshold > 26)	248 ~ 27,96 %	0 0%	125 ~ 14,09 %	125 ~ 14,09 %	389 ~ 43,86 %	887	9716	400	$5 h$ $O(N^2xM^2) + O(NxMxTS^2)$
CNN	166 ~ 21,34 %	67 ~ 8,61%	274 ~35,22 %	271 ~34,83 %	_	778	9716	800	1min

Accuracy rate of Classification

Method	Accuracy	Improvement	Sam- ples
Value-based DTW	0.75	_	400
Derivative DTW	0.3425	-0.4075	400
Feature-based DTW	0.87	0.12	400
Adaptive Feature-based DTW	TBA	TBA	400
CNN	0.99375	0.24375	800

ToDos

CNN verbessern

• Ergebnisse in Datensatz einlesen → Methode zum Abgleich mit Boluswert, Evaluation der gewählten Klassen