Semaine n° 19 : du 3 février au 7 février

Lundi 3 février

- Cours à préparer : Chapitre XVIII Fractions rationnelles
 - Partie 2.6 : Décomposition de $\frac{P'}{P}$.
 - Partie 3: Application au calcul intégral.
- Exercices à corriger en classe
 - Feuille d'exercices nº 18 : exercice 5.
- Exercices à rendre en fin de TD (liste non exhaustive)
 - Feuille d'exercices nº 17 : exercices 7, 9, 10, 12, 13, 15, 17, 19, 20.

Mardi 4 février

- Cours à préparer : Chapitre XIX Espaces vectoriels
 - Partie 1 : Notion de K-espace vectoriel; règles de calcul dans un K-espace vectoriel; premiers espaces vectoriels de référence; combinaisons linéaires d'une famille de vecteurs d'un K-espace vectoriel.
 - Partie 2.1 : Notion de sous-espace vectoriel; caractérisations des sous-espaces vectoriels.
- Exercices à corriger en classe
 - Feuille d'exercices nº 17 : exercice 11.

Jeudi 6 février

- Cours à préparer : Chapitre XIX Espaces vectoriels
 - Parties 2.1 et 2.2 : Caractérisations des sous-espaces vectoriels et exemples de sous-espaces vectoriels.
 - Partie 2.3a: Intersections de sous-espaces vectoriels.
 - Partie 2.3b : Sous-espace vectoriel engendré par une partie d'un espace vectoriel, par une famille de vecteurs.
 - Partie 2.3c : Somme de deux sous-espaces vectoriels.
- Exercices à corriger en classe
 - Feuille d'exercices n° 18 : exercices 1, 4, 7.

Vendredi 7 février

- Cours à préparer : Chapitre XIX Espaces vectoriels
 - Partie 2.4: Sous-espaces en somme directe; sous-espaces supplémentaires.
 - Partie 3 : Translation; sous-espaces affines, direction d'un sous-espace affine; égalité de deux sous-espaces affines; sous-espaces affines paralèles; intersection de sous-espaces affines.

Échauffements

Mardi 4 février

- Calculer $\int_0^1 \frac{1}{2t^2 2t + 1} dt$ Cocher toutes les assertions vraies : Soit $A, B \in \mathbb{K}[X]$ tels que $B \neq 0$, et soit la fraction rationnelle

$$R = \frac{A}{B}.$$

- $R = \frac{A}{B}.$ $\Box \deg R' = \deg R 1;$
- $\Box \deg R' \leqslant \deg R 1;$
- \square Les pôles de R sont les racines de B;
- \square La partie entière de R est nulle si et seulement si deg R < 0;
- $\square xR(x) \xrightarrow[x \to +\infty]{} 0$ si et seulement si deg R < 0;
- \square xR(x) a une limite finie en $+\infty$ si et seulement si deg R < 0.

Jeudi 6 février

• En utilisant la formule de Taylor, décomposer en éléments simples la fraction rationnelle

$$R = \frac{X^4 - 2X^2 + 6X - 5}{(X - 2)^5}$$

- Cocher toutes les assertions vraies : Soit f une fonction définie sur [0,1] telle que $\forall x \in]0,1], 0 \leq$ $f(x) \leq 1$.
 - \square Alors f admet un point fixe.
 - \square Alors f est bornée sur [0,1].
 - \square Alors $\forall x \in]0,1], |f'(x)| \leq 1$
 - \square Si f admet une limite en 0, alors f est prolongeable par continuité en 0.

Vendredi 7 février

- Cocher toutes les assertions vraies : Soit $E = \{(x,y) \in \mathbb{R}^2; x+y=1\}$, muni des opérations usuelles. Quelles sont les assertions vraies?
 - \square E est un espace vectoriel, car E est un sous-ensemble de l'espace vectoriel \mathbb{R}^2 .
 - \square E n'est pas un espace vectoriel, car $(0,0) \notin E$.
 - \square E n'est pas un espace vectoriel, car $(1,0) \in E$, mais $(-1,0) \notin E$.
 - \square E n'est pas un espace vectoriel, car $(1,0) \in E$ et $(0,1) \in E$, mais $(1,1) \notin E$.
- Cocher toutes les assertions vraies :
 - \square pour tout $x \in [0,1]$, $\arccos(\cos(x)) = x$.
 - \square pour tout $x \in \mathbb{R}$, $\arccos(\cos(x)) = x$.
 - \square pour tout $x \in [0, \pi]$, $\arccos(\cos(x)) = x$.
 - \square pour tout $x \in [-1,1]$, $\cos(\arccos(x)) = x$.
 - \square pour tout $x \in \mathbb{R}$, $\cos(\arccos(x)) = x$.
 - \square pour tout $x \in [0, \pi]$, $\cos(\arccos(x)) = x$.