Integrated Project 2

Recovered gold share prediction model

Table of Contents

- 1 Goal
- 2 Data description
- 3 Feature naming
- 4 Imports
- 5 Input data
- 6 Descriptive statistics
- 7 Recovery calculation check
- 8 Missing features analysis
- 9 Preprocessing
 - 9.1 Data type change
 - 9.2 Test targets
 - 9.3 Missing values
 - 9.4 Duplicates
- 10 EDA
 - 10.1 Concentrations of metals
 - 10.2 Feed particle size comparison
 - 10.3 Outliers
 - 10.4 Target analysis
- 11 Common columns
- 12 Standard scaling
- 13 Evaluation metric
- 14 Model selection
- 15 Hyperparameter tuning
- 16 Test the model
- 17 Feature importance
- 18 Sanity check

Goal

Develop a machine learning model for Zyfra, efficiency solutions for heavy industry company, that would analyze data on extraction and purification of gold from an ore and predict the amount of recovered gold. The model will help to optimize the production and eliminate unprofitable parameters.

Data description

Technological process

- Rougher feed raw material
- Rougher additions (or reagent additions) flotation reagents: Xanthate, Sulphate, Depressant
 - Xanthate promoter or flotation activator;
 - Sulphate sodium sulphide for this particular process;
 - Depressant sodium silicate.
- Rougher process flotation
- Rougher tails product residues
- Float banks flotation unit
- Cleaner process purification
- Rougher Au rougher gold concentrate
- Final Au final gold concentrate

Parameters of stages

- air amount volume of air
- · fluid levels
- feed size feed particle size
- feed rate

Feature naming

Here's how we name the features:

```
[stage].[parameter type].[parameter name]
```

Example: rougher.input.feed ag

Possible values for [stage]:

- rougher flotation
- primary_cleaner primary purification
- secondary_cleaner secondary purification
- final final characteristics

Possible values for [parameter type]:

- input raw material parameters
- output product parameters
- state parameters characterizing the current state of the stage
- calculation calculation characteristics

Imports

```
In [2]:
```

```
import pandas as pd
import matplotlib
import numpy as np
import seaborn as sns
from sklearn.preprocessing import StandardScaler as ss
from sklearn.dummy import DummyRegressor
from sklearn import linear model
from sklearn.linear model import LinearRegression, Lasso, Ridge
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn import svm
from sklearn.model selection import cross val score
from sklearn.metrics import make scorer
import matplotlib.pyplot as plt
%matplotlib inline
import sys
import warnings
if not sys.warnoptions:
      warnings.simplefilter("ignore")
pd.set option('display.max rows', None, 'display.max columns', None)
print("Setup Complete")
```

Setup Complete

Input data

```
In [3]:
```

```
try:
   df train = pd.read csv('gold recovery train.csv')
   df test = pd.read csv('gold recovery test.csv')
   df full = pd.read csv('gold recovery full.csv')
except:
   df train = pd.read csv('/datasets/gold recovery train.csv')
   df test = pd.read csv('/datasets/gold recovery test.csv')
   df full = pd.read csv('/datasets/gold recovery full.csv')
```

Descriptive statistics

In [4]:

df_train.head()

Out[4]:

	date	final.output.concentrate_ag	final.output.concentrate_pb	final.output.concentrate_sol
0	2016- 01-15 00:00:00	6.055403	9.889648	5.507324
1	2016- 01-15 01:00:00	6.029369	9.968944	5.257781
2	2016- 01-15 02:00:00	6.055926	10.213995	5.383759
3	2016- 01-15 03:00:00	6.047977	9.977019	4.858634
4	2016- 01-15 04:00:00	6.148599	10.142511	4.939416

In [5]:

df_test.head()

Out[5]:

	date	primary_cleaner.input.sulfate	primary_cleaner.input.depressant	primary_cleaner.input
0	2016- 09-01 00:59:59	210.800909	14.993118	
1	2016- 09-01 01:59:59	215.392455	14.987471	
2	2016- 09-01 02:59:59	215.259946	12.884934	
3	2016- 09-01 03:59:59	215.336236	12.006805	
4	2016- 09-01 04:59:59	199.099327	10.682530	

Notes for preprocessing:

• All features are numerical, except for the date variable.

In [6]:

df_train.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 16860 entries, 0 to 16859 Data columns (total 87 columns): Column Non-Null Co unt Dtype --- ----_____ ____ Λ date 16860 non-n ull object 1 final.output.concentrate_ag 16788 non-n ull float64 final.output.concentrate pb 16788 non-n 2 ull float64 3 final.output.concentrate sol 16490 non-n ull float64 4 final.output.concentrate au 16789 non-n ull float64 15339 non-n final.output.recovery ull float64 6 final.output.tail ag 16794 non-n ull float64 7 final.output.tail pb 16677 non-n ull float64 8 final.output.tail sol 16715 non-n ull float64 9 final.output.tail au 16794 non-n ull float64 10 primary cleaner.input.sulfate 15553 non-n ull float64 15598 non-n 11 primary_cleaner.input.depressant ull float64 12 primary_cleaner.input.feed_size 16860 non-n ull float64 13 primary cleaner.input.xanthate 15875 non-n ull float64 14 primary cleaner.output.concentrate ag 16778 non-n ull float64 15 primary_cleaner.output.concentrate_pb 16502 non-n ull float64 16 primary cleaner.output.concentrate sol 16224 non-n ull float64 17 primary cleaner.output.concentrate au 16778 non-n ull float64 18 primary cleaner.output.tail ag 16777 non-n ull float64 19 primary cleaner.output.tail pb 16761 non-n ull float64 20 primary_cleaner.output.tail_sol 16579 non-n ull float64 21 primary_cleaner.output.tail_au 16777 non-n ull float64 22 primary_cleaner.state.floatbank8_a_air 16820 non-n ull float64 23 primary_cleaner.state.floatbank8_a_level 16827 non-n ull float64 24 primary cleaner.state.floatbank8 b air 16820 non-n 25 primary cleaner.state.floatbank8 b level 16833 non-n ull float64 26 primary_cleaner.state.floatbank8_c_air 16822 non-n ull float64

10/2021	Recovered_gold_share_prediction_model		
27	primary_cleaner.state.floatbank8_c_level	16833 non-n	
ull 28	<pre>float64 primary_cleaner.state.floatbank8_d_air</pre>	16821 non-n	
ull 29	float64 primary cleaner.state.floatbank8 d level	16833 non-n	
ull	float64	10033 11011-11	
30	rougher.calculation.sulfate_to_au_concentrate	16833 non-n	
ull 31	float64 rougher.calculation.floatbank10_sulfate_to_au_feed	16833 non-n	
ull	float64	10000 11011 11	
32	rougher.calculation.floatbank11_sulfate_to_au_feed	16833 non-n	
ull 33	float64 rougher.calculation.au_pb_ratio	15618 non-n	
ull	float64		
34 ull	<pre>rougher.input.feed_ag float64</pre>	16778 non-n	
35	rougher.input.feed_pb	16632 non-n	
ull	float64	16247	
36 ull	<pre>rougher.input.feed_rate float64</pre>	16347 non-n	
37	rougher.input.feed_size	16443 non-n	
ull 38	float64 rougher.input.feed_sol	16568 non-n	
ull	float64	10300 11011-11	
39	rougher.input.feed_au	16777 non-n	
ull 40	float64 rougher.input.floatbank10 sulfate	15816 non-n	
ull	float64		
41 ull	<pre>rougher.input.floatbank10_xanthate float64</pre>	16514 non-n	
42	rougher.input.floatbank11_sulfate	16237 non-n	
ull	float64	1.4056	
43 ull	<pre>rougher.input.floatbank11_xanthate float64</pre>	14956 non-n	
44	rougher.output.concentrate_ag	16778 non-n	
ull 45	float64 rougher.output.concentrate pb	16778 non-n	
ull	float64	10770 11011 11	
46 ull	<pre>rougher.output.concentrate_sol float64</pre>	16698 non-n	
47	rougher.output.concentrate_au	16778 non-n	
ull	float64	14207	
48 ull	rougher.output.recovery float64	14287 non-n	
49	rougher.output.tail_ag	14610 non-n	
ull 50	float64 rougher.output.tail pb	16778 non-n	
ull	float64		
51 ull	<pre>rougher.output.tail_sol float64</pre>	14611 non-n	
52	rougher.output.tail_au	14611 non-n	
ull	float64	16007	
53 ull	<pre>rougher.state.floatbank10_a_air float64</pre>	16807 non-n	
54	rougher.state.floatbank10_a_level	16807 non-n	
ull 55	float64 rougher.state.floatbank10 b air	16807 non-n	
ull	float64		
56 ull	<pre>rougher.state.floatbank10_b_level float64</pre>	16807 non-n	
57	rougher.state.floatbank10_c_air	16807 non-n	
			

ull	float64	16014			
58	rougher.state.floatbank10_c_level	16814	non-n		
ull 59	float64 rougher.state.floatbank10 d air	16002	non-n		
ull	float64	10002	11011-11		
60	rougher.state.floatbank10_d_level	16809	non-n		
ull	float64	10007	11011-11		
61	rougher.state.floatbank10_e_air	16257	non-n		
ull	float64	10237			
62	rougher.state.floatbank10_e_level	16809	non-n		
ull	float64		-		
63	rougher.state.floatbank10_f_air	16802	non-n		
ull	float64				
64	rougher.state.floatbank10_f_level	16802	non-n		
ull	float64				
65	secondary_cleaner.output.tail_ag	16776	non-n		
ull	float64				
66	secondary_cleaner.output.tail_pb	16764	non-n		
ull	float64				
67	secondary_cleaner.output.tail_sol	14874	non-n		
ull	float64				
68	secondary_cleaner.output.tail_au	16778	non-n		
ull	float64	16407			
69	<pre>secondary_cleaner.state.floatbank2_a_air float64</pre>	16497	non-n		
ull 70		16751	non n		
ull	<pre>secondary_cleaner.state.floatbank2_a_level float64</pre>	10/51	non-n		
71	secondary_cleaner.state.floatbank2_b_air	16705	non-n		
ull	float64	10703	11011-11		
72	secondary_cleaner.state.floatbank2_b_level	16748	non-n		
ull	float64				
73	secondary cleaner.state.floatbank3 a air	16763	non-n		
ull	float64				
74	secondary_cleaner.state.floatbank3_a_level	16747	non-n		
ull	float64				
75	secondary_cleaner.state.floatbank3_b_air	16752	non-n		
ull	float64				
76	secondary_cleaner.state.floatbank3_b_level	16750	non-n		
ull	float64				
77	secondary_cleaner.state.floatbank4_a_air	16731	non-n		
ull	float64				
78	secondary_cleaner.state.floatbank4_a_level	16/4/	non-n		
ull	float64	16760			
79 ull	<pre>secondary_cleaner.state.floatbank4_b_air float64</pre>	10/08	non-n		
80	secondary cleaner.state.floatbank4 b level	16767	non-n		
ull	float64	10/0/	11011-11		
81	secondary_cleaner.state.floatbank5_a_air	16775	non-n		
ull	float64	20770			
82	secondary_cleaner.state.floatbank5_a_level	16775	non-n		
ull	float64				
83	secondary_cleaner.state.floatbank5_b air	16775	non-n		
ull	float64				
84	secondary_cleaner.state.floatbank5_b_level	16776	non-n		
ull	float64				
85	secondary_cleaner.state.floatbank6_a_air	16757	non-n		
ull	float64				
86	secondary_cleaner.state.floatbank6_a_level	16775	non-n		
ull	float64				
	es: float64(86), object(1)				
memory usage: 11.2+ MB					

In [7]:

df_test.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5856 entries, 0 to 5855 Data columns (total 53 columns): Column Non-Null Count Dty рe ___ 5856 non-null 0 date obi ect 1 primary cleaner.input.sulfate 5554 non-null flo at64 2 primary cleaner.input.depressant 5572 non-null flo. at64 3 primary cleaner.input.feed size 5856 non-null flo at64 4 primary_cleaner.input.xanthate 5690 non-null flo at64 5 primary cleaner.state.floatbank8 a air 5840 non-null flo at64 primary cleaner.state.floatbank8 a level 5840 non-null 6 flo. at64 7 primary cleaner.state.floatbank8 b air 5840 non-null flo at64 8 primary cleaner.state.floatbank8 b level 5840 non-null flo at64 9 primary cleaner.state.floatbank8 c air 5840 non-null flo at64 primary cleaner.state.floatbank8 c level 5840 non-null 10 at64 11 primary cleaner.state.floatbank8 d air 5840 non-null flo at64 12 primary_cleaner.state.floatbank8_d_level 5840 non-null flo at64 13 rougher.input.feed ag 5840 non-null flo. at64 5840 non-null 14 rougher.input.feed pb flo at64 5816 non-null 15 rougher.input.feed_rate flo. at64 5834 non-null rougher.input.feed size flo 16 at64 5789 non-null 17 rougher.input.feed sol flo at.64 18 rougher.input.feed au 5840 non-null flo at64 19 rougher.input.floatbank10 sulfate 5599 non-null flo at64 flo rougher.input.floatbank10 xanthate 5733 non-null 20 at64 rougher.input.floatbank11 sulfate 5801 non-null 21 flo at64 22 rougher.input.floatbank11 xanthate 5503 non-null flo at64 23 rougher.state.floatbank10_a_air 5839 non-null flo. at64 rougher.state.floatbank10 a level 24 5840 non-null flo at.64 25 rougher.state.floatbank10 b air 5839 non-null flo. at64 rougher.state.floatbank10_b_level 5840 non-null flo 26 at64

```
27
     rougher.state.floatbank10 c air
                                                 5839 non-null
                                                                 flo
at64
    rougher.state.floatbank10 c level
                                                 5840 non-null
                                                                 flo
 28
at64
    rougher.state.floatbank10 d air
                                                 5839 non-null
                                                                 flo
 29
at64
 30
    rougher.state.floatbank10 d level
                                                 5840 non-null
                                                                 flo
at64
    rougher.state.floatbank10 e air
                                                 5839 non-null
 31
                                                                 flo
at64
    rougher.state.floatbank10 e level
 32
                                                 5840 non-null
                                                                 flo
at64
 33
    rougher.state.floatbank10 f air
                                                 5839 non-null
                                                                 flo
at64
 34
    rougher.state.floatbank10 f level
                                                 5840 non-null
                                                                 flo
at64
     secondary cleaner.state.floatbank2 a air
                                                 5836 non-null
 35
                                                                 flo
at64
    secondary cleaner.state.floatbank2 a level 5840 non-null
                                                                 flo
 36
at64
 37
     secondary cleaner.state.floatbank2 b air
                                                 5833 non-null
                                                                 flo
at64
    secondary cleaner.state.floatbank2 b level 5840 non-null
                                                                 flo
 38
at64
 39
    secondary cleaner.state.floatbank3 a air
                                                 5822 non-null
                                                                 flo
at64
     secondary cleaner.state.floatbank3 a level 5840 non-null
 40
                                                                 flo
at64
 41
     secondary cleaner.state.floatbank3 b air
                                                 5840 non-null
                                                                 flo
at64
     secondary cleaner.state.floatbank3 b level 5840 non-null
 42
                                                                 flo
at64
 43
     secondary cleaner.state.floatbank4 a air
                                                 5840 non-null
                                                                 flo
at64
 44
    secondary_cleaner.state.floatbank4_a_level 5840 non-null
                                                                 flo
at64
    secondary cleaner.state.floatbank4 b air
                                                 5840 non-null
 45
                                                                 flo
at64
    secondary cleaner.state.floatbank4 b level 5840 non-null
 46
                                                                 flo
at64
 47
     secondary cleaner.state.floatbank5 a air
                                                 5840 non-null
                                                                 flo
at64
     secondary cleaner.state.floatbank5 a level 5840 non-null
 48
                                                                 flo
at64
    secondary cleaner.state.floatbank5 b air
                                                 5840 non-null
                                                                 flo
 49
at64
     secondary cleaner.state.floatbank5 b level 5840 non-null
 50
                                                                 flo
at64
     secondary cleaner.state.floatbank6 a air
                                                 5840 non-null
                                                                 flo
 51
at64
 52
     secondary cleaner.state.floatbank6 a level 5840 non-null
                                                                 flo
at64
dtypes: float64(52), object(1)
```

memory usage: 2.4+ MB

Notes for preprocessing:

- There are 16860 observations in the train set and 5856 observations in the test set, so the test set is around 26% of the full dataset:
- There are 87 features in the train set and only 53 features in the test set. Some parameters are not available in the test set because they were measured and/or calculated much later. We will analyze this point further in more detail;
- There are 2 target variables: rougher.output.recovery and final.output.recovery;
- Each feature data type is float except for the date column, it should be converted to datetime format;
- There are guite a few missing values to fill.

Recovery calculation check

Let's use the following formula to check whether rougher.output.recovery was calculated correctly in the train set:

Recovery =
$$\frac{C \times (F - T)}{F \times (C - T)} \times 100\%$$

where:

- C share of gold in the concentrate right after flotation (for finding the rougher concentrate recovery)
- F share of gold in the feed before flotation (for finding the rougher concentrate recovery)
- T share of gold in the rougher tails right after flotation (for finding the rougher concentrate recovery)

In [8]:

```
C = df train['rougher.output.concentrate au']
F = df train['rougher.input.feed au']
T = df train['rougher.output.tail au']
df train['recovery calc'] = (100*((C*(F-T))) / (F*(C-T))).round(6)
```

```
In [9]:
```

```
df train[['recovery calc', 'rougher.output.recovery']][0:5]
```

Out[9]:

	recovery_calc	rougher.output.recovery
0	87.107763	87.107763
1	86.843261	86.843261
2	86.842308	86.842308
3	87.226430	87.226430
4	86.688794	86.688794

The first 5 rows are identical, let's calculate MAE to make sure it holds for all observations.

```
In [10]:
```

```
MAE = (df_train['recovery_calc'] - df_train['rougher.output.recovery']).abs().me
an()
MAE
```

Out[10]:

2.4482453097445186e-07

The MAE value is very close to 0, which means the rougher.output.recovery was calculated correctly.

Missing features analysis

```
In [11]:
```

```
missing col = list(set(df train.columns)-set(df test.columns))
sorted(missing col)
```

```
Out[11]:
['final.output.concentrate ag',
 'final.output.concentrate au',
 'final.output.concentrate pb',
 'final.output.concentrate sol',
 'final.output.recovery',
 'final.output.tail ag',
 'final.output.tail au',
 'final.output.tail pb',
 'final.output.tail sol',
 'primary cleaner.output.concentrate ag',
 'primary_cleaner.output.concentrate_au',
 'primary cleaner.output.concentrate pb',
 'primary cleaner.output.concentrate sol',
 'primary cleaner.output.tail ag',
 'primary cleaner.output.tail au',
 'primary cleaner.output.tail pb',
 'primary cleaner.output.tail sol',
 'recovery calc',
 'rougher.calculation.au pb ratio',
 'rougher.calculation.floatbank10_sulfate_to_au_feed',
 'rougher.calculation.floatbank11 sulfate to au feed',
 'rougher.calculation.sulfate_to_au_concentrate',
 'rougher.output.concentrate ag',
 'rougher.output.concentrate au',
 'rougher.output.concentrate pb',
 'rougher.output.concentrate sol',
 'rougher.output.recovery',
 'rougher.output.tail ag',
 'rougher.output.tail au',
 'rougher.output.tail_pb',
 'rougher.output.tail sol',
 'secondary_cleaner.output.tail_ag',
 'secondary cleaner.output.tail au',
 'secondary cleaner.output.tail pb',
 'secondary cleaner.output.tail sol']
```

The missing features are directly connected to the target variables (types output and calculation). It's only logical that they are not included in the test set as we are developing a model precisely to predict those 2 targets.

In order to be able to use an ML model, we need to remove these extra features from the train set, so that both train and test set have the same shapes.

Preprocessing

Data type change

As mentioned above, let's convert the date column into the datetime type.

```
In [12]:
df train['date'] = pd.to datetime(df train['date'])
df_test['date'] = pd.to_datetime(df_test['date'])
```

Test targets

Let's use the full dataset to extract test targets and include them in the test set to be able to compare our predictions to the actual values.

```
In [13]:
df full['date'] = pd.to datetime(df full['date'])
In [14]:
df_test = df_test.merge(df_full[['date', 'final.output.recovery', 'rougher.outpu
t.recovery']],
                        how='left', on='date')
```

Missing values

```
In [15]:
df_train.isnull().sum().mean()/len(df_train)
Out[15]:
0.021974414968187212
In [16]:
df_test.isnull().sum().mean()/len(df_test)
Out[16]:
0.010394932935916543
```

In both datasets there are a few missing values in almost each column, but their share is not significant (no more than 2%, on average), we will simply drop them.

```
In [17]:
df train = df train.dropna(how='any', axis=0)
df train.reset index(drop=True, inplace=True)
df test = df test.dropna(how='any', axis=0)
df test.reset index(drop=True, inplace=True)
In [18]:
df train.isnull().sum().sum()
Out[18]:
```

```
In [19]:
df train.shape
Out[19]:
(11017, 88)
In [20]:
df_test.isnull().sum().sum()
Out[20]:
0
In [21]:
df test.shape
Out[21]:
(5229, 55)
```

All missing values were removed.

Duplicates

Let's check if any rows are duplicated.

```
In [22]:
df train.duplicated().sum()
Out[22]:
0
In [23]:
df_test.duplicated().sum()
Out[23]:
0
```

EDA

Concentrations of metals

Let's see how the concentrations of metals (Au, Ag, Pb) change depending on the purification stage.

```
In [24]:
```

```
metals = ['au', 'ag', 'pb']
stages = ['rougher.output.concentrate', 'primary_cleaner.output.concentrate', 'f
inal.output.concentrate']
plt.figure(figsize=(12,6))

for i,metal in enumerate(metals):
    for stage in stages:
        plt.subplot(3,1,i+1)
        plt.hist(df_train[stage+'_'+metal], bins=100, label=stage+'_'+metal, alp
ha=.5);
    plt.title(metal)
    plt.legend()

plt.tight_layout()
```


First of all, we see around 2000 outliers for each metal and stage - values with 0 concentration of metals. We will need to remove them as they directly correlate with our targets.

As for the gold concentration (au), there is a clear trend towards quality improvement after each stage: the share of gold is higher and higher on average as we proceed with purification (from 20% to more than 45%, on average).

Interestingly, we see the opposite trend for silver concentration (ag): the more we purify the feed, the lower gets the share of this metal (from around 11% to less than 5%, on average).

As for the lead concentration (pb), we can say that there is probably no need for the second purification stage, as the quality of this metal doesn't improve, on average. However, we see a slight improvement after the first stage (from around 8% to almost 11%, on average).

Feed particle size comparison

Let's compare the feed particle size distributions in the training set and in the test set. If the distributions vary significantly, the model evaluation will be incorrect.

In [25]:

```
plt.figure(figsize=(12,6))
plt.hist(df_train['rougher.input.feed_size'],bins=50,label='rougher.input.feed_s
ize_train',alpha=.5, density=1)
plt.hist(df_test['rougher.input.feed_size'],bins=50,label='rougher.input.feed_si
ze_test',alpha=.5, density=1)
plt.legend()
plt.title('Feed particle size comparison');
```


The two distributions are very close to each other, which means that we will not have a problem of applying a model trained on the train set to the test set.

Outliers

Let's remove the outliers in the target variables. We will first transform any 0 values to NaNs and then drop them from the data sets because there amount is insignificant.

In [26]:

```
plt.figure(figsize=(12,6))
for stage in stages:
    df train[stage+' all metals'] = 0
    for metal in metals:
        df_train[stage+'_all_metals'] += df_train[stage+'_'+metal]
    plt.hist(df_train[stage+'_all_metals'], bins=100, label=stage, alpha=.5)
    plt.title('Total concentration of metals per stage')
    plt.legend();
```


We can see that the total concentration of metals per stage does get better, on average.

Just as before we see multiple outliers around 0, let's remove them.

In [27]:

```
for i,metal in enumerate(metals):
    for stage in stages:
        df_train[df_train[stage+'_'+metal]<0.01] = np.nan</pre>
df train = df train.dropna(how='any', axis=0)
```

```
In [28]:
```

```
df_train.isnull().sum().sum()
```

Out[28]:

0

```
In [29]:
```

```
df train.shape
Out[29]:
(10676, 91)
```

Target analysis

Finally, let's analyze our targets.

In [30]:

```
targets = ['rougher.output.recovery', 'final.output.recovery']
dfs = [df_train, df_test]
df train.name = 'df train'
df test.name = 'df test'
plt.figure(figsize=(10,10))
c=1
for i, df in enumerate(dfs):
    for target in targets:
        plt.subplot(4,2,c)
        plt.hist(df[target], alpha=.5)
        plt.title(df.name)
        plt.xlabel(target)
        c = c + 1
plt.tight_layout()
```


Train distribution looks ok, both targets in the test set have outliers around 0, let's remove them.

```
In [31]:
```

```
for target in targets:
    df test[df test[target]<0.01] = np.nan</pre>
df_test = df_test.dropna(how='any', axis=0)
```

```
In [32]:
df test.isnull().sum().sum()
Out[32]:
0
In [33]:
df test.shape
Out[33]:
(5105, 55)
```

Common columns

In the end, we will get rid of extra features in the train set.

```
In [34]:
common columns = list(set(df train.columns).intersection(set(df test.columns)))
df train filtered = df train[common columns]
df_train_filtered[['rougher.output.recovery', 'final.output.recovery']] = df_tra
in[['rougher.output.recovery', 'final.output.recovery']]
```

Standard scaling

Let's scale the features before modeling to be able to compare their coefficients in the later sections.

```
In [35]:
```

```
X train = df train filtered.drop(['rougher.output.recovery', 'final.output.recov
ery', 'date'], axis=1)
X_test = df_test.drop(['rougher.output.recovery', 'final.output.recovery', 'dat
e'], axis=1)
y_train = df_train_filtered[['rougher.output.recovery', 'final.output.recovery'
]].values
y_test = df_test[['rougher.output.recovery', 'final.output.recovery']].values
sc = ss()
X train = sc.fit transform(X train)
X_test = sc.transform(X_test)
```

Evaluation metric

Let's write a function to calculate the final sMAPE value.

sMAPE is a symmetric Mean Absolute Percentage Error.

It is similar to MAE, but is expressed in relative values instead of absolute ones. It equally takes into account the scale of both the target and the prediction.

Here's how sMAPE is calculated:

sMAPE =
$$\frac{1}{N} \sum_{i=1}^{N} \frac{|y_i - \hat{y}_i|}{(|y_i| + |\hat{y}_i|)/2} \times 100\%$$

Denotation:

- Value of target for the observation with the i index in the sample used to measure quality.
- Value of prediction for the observation with the *i* index, for example, in the test sample.
- Number of observations in the sample.
- Summation over all observations of the sample (*i* takes values from 1 to *N*).

We need to predict two values:

- 1. rougher concentrate recovery rougher.output.recovery
- 2. final concentrate recovery final.output.recovery

The final metric includes the two values:

```
= 25% × sMAPE(rougher) + 75% × sMAPE(final)
```

```
In [36]:
def smape(y true, y pred):
    return (np.abs(y_true-y_pred)/((np.abs(y_true) + np.abs(y_pred))/2)).mean()
In [37]:
def smape_final(y_true,y_pred):
    smape_rougher = smape(y_true[:,0], y_pred[:,0])
    smape_final = smape(y_true[:,1], y_pred[:,1])
    return 0.25*smape rougher + 0.75*smape final
```

Model selection

Now let's train our models on the train set and select the best model using the cross-validation technique.

In [38]:

```
LR = LinearRegression()
DT = DecisionTreeRegressor(random state=12345)
RF = RandomForestRegressor(random state=12345)
Lasso = linear model.Lasso()
Ridge = linear model.Ridge()
base model = DummyRegressor(strategy='mean')
```

In [39]:

```
def crossval(model, X train, y train, cv):
    smape score = make scorer(smape final)
    scores = cross_val_score(model, X_train, y_train, cv=cv, scoring=smape_score
)
    return scores.mean()
```

In [40]:

```
smape final Lasso = crossval(Lasso, X train, y train, 5)
smape final Ridge = crossval(Ridge, X train, y train, 5)
smape final LR = crossval(LR, X train, y train, 5)
smape_final_DT = crossval(DT, X_train, y_train, 5)
smape final RF = crossval(RF, X train, y train, 5)
smape final base = crossval(base model, X train, y train, 5)
```

In [41]:

```
models = pd.DataFrame({
    'Model': ['Baseline', 'LR', 'DT', 'RF', 'Lasso', 'Ridge'],
    'Score': [smape final base, smape final LR, smape final DT, smape final RF,
smape_final_Lasso, smape_final_Ridge]})
sorted by score = models.sort values(by='Score', ascending=False)
```

In [42]:

```
sns.barplot(x='Score', y = 'Model', data = sorted_by_score, color = 'g')
plt.title('Machine Learning Algorithms Smape final Score \n')
plt.xlabel('Average sMAPE final score')
plt.ylabel('Model');
```

Machine Learning Algorithms Smape final Score

Lasso regression model shows the best average score. Let's try to tune its hyperparameters.

Hyperparameter tuning

```
In [43]:
```

```
d = []
for alpha in np.arange(0.1,1,0.1):
    for tol in [0.01, 0.05, 0.001]:
        for max iter in (100, 500, 1000):
            Lasso = linear model.Lasso(alpha=alpha, tol=tol, max iter=max iter)
            smape final Lasso = crossval(Lasso, X train, y train, 5)
            d.append(
            {
                'alpha': alpha,
                'tol': tol,
                'max iter': max iter,
                'smape final Lasso': smape final Lasso
            }
            )
best param = pd.DataFrame(d).nlargest(1, ['smape final Lasso'], keep='first')
smape final RF = best param['smape final Lasso'].values
best param
```

Out[43]:

	alpha tol		max_iter	smape_final_Lasso	
3	0.1	0.05	100	0.08001	

Test the model

```
In [44]:
```

```
Lasso = linear model.Lasso(alpha=0.1, tol=0.001, max iter=100)
Lasso.fit(X train, y train)
y pred = Lasso.predict(X test)
smape_final(y_test, y_pred)
```

Out[44]:

2.0

The test score is pretty bad even after hyper parameters tuning. The model seems to be overfitted to the train set. Let's try feature selection to reduce overfitting.

Feature importance

One of the goals of this report is to eliminate unprofitable features. We can do that by comparing feature importances.

In [45]:

```
LR.fit(X_train, y_train)
coeff_df = pd.DataFrame()
coeff df['Feature'] = df train filtered.drop(['rougher.output.recovery','final.o
utput.recovery','date'], axis=1).columns.values
coeff_df["Correlation"] = pd.Series(LR.coef_[0])
coeff df.sort values(by='Correlation', ascending=False)
```

Out[45]:

	Feature	Correlation
50	rougher.state.floatbank10_f_air	2.873959
41	rougher.input.feed_ag	1.969526
29	rougher.state.floatbank10_b_level	1.882530
9	rougher.input.feed_sol	1.829609
30	rougher.state.floatbank10_a_level	1.695842
20	primary_cleaner.input.sulfate	1.635028
43	secondary_cleaner.state.floatbank5_a_air	1.521347
35	rougher.input.floatbank11_sulfate	1.245344
38	primary_cleaner.state.floatbank8_b_air	1.223162
17	secondary_cleaner.state.floatbank3_a_air	1.167750
42	rougher.input.floatbank10_xanthate	1.153397
33	secondary_cleaner.state.floatbank2_a_air	1.106496
45	secondary_cleaner.state.floatbank5_b_level	1.069566
7	primary_cleaner.state.floatbank8_c_level	0.695207
36	$secondary_cleaner.state.floatbank3_b_level$	0.582116
3	secondary_cleaner.state.floatbank4_b_level	0.532246
6	rougher.input.floatbank11_xanthate	0.347046
13	primary_cleaner.input.feed_size	0.299679
46	rougher.input.feed_pb	0.237812
34	$secondary_cleaner.state.floatbank2_a_level$	0.175052
37	secondary_cleaner.state.floatbank4_a_level	0.161707
4	secondary_cleaner.state.floatbank4_b_air	0.125723
16	rougher.state.floatbank10_b_air	0.060345
51	rougher.input.feed_au	0.049011
21	primary_cleaner.state.floatbank8_d_level	0.047284
28	rougher.input.feed_size	-0.015142
18	rougher.state.floatbank10_f_level	-0.116173
47	primary_cleaner.input.xanthate	-0.136632
39	primary_cleaner.state.floatbank8_a_air	-0.140311
5	secondary_cleaner.state.floatbank5_b_air	-0.175401
27	primary_cleaner.input.depressant	-0.200300
15	primary_cleaner.state.floatbank8_b_level	-0.247245
40	rougher.state.floatbank10_d_level	-0.258105
0	primary_cleaner.state.floatbank8_a_level	-0.261074
10	secondary_cleaner.state.floatbank5_a_level	-0.357582
11	primary_cleaner.state.floatbank8_c_air	-0.359393

	Feature	Correlation
26	secondary_cleaner.state.floatbank4_a_air	-0.384321
23	secondary_cleaner.state.floatbank2_b_level	-0.545032
32	rougher.state.floatbank10_d_air	-0.593025
22	rougher.state.floatbank10_e_level	-0.630099
12	secondary_cleaner.state.floatbank2_b_air	-0.705941
24	secondary_cleaner.state.floatbank6_a_air	-0.742980
44	secondary_cleaner.state.floatbank6_a_level	-0.753929
31	rougher.state.floatbank10_c_air	-0.773621
19	primary_cleaner.state.floatbank8_d_air	-0.988076
49	secondary_cleaner.state.floatbank3_a_level	-1.069232
1	secondary_cleaner.state.floatbank3_b_air	-1.101443
25	rougher.state.floatbank10_c_level	-1.157193
48	rougher.state.floatbank10_a_air	-1.270705
14	rougher.input.feed_rate	-1.903286
8	rougher.state.floatbank10_e_air	-1.986217
2	rougher.input.floatbank10_sulfate	-2.558315

From the above table we can see that $rougher.state.floatbank10_e_air$ and rougher.state.floatbank10 f air have the highest impact on the target variables. The features with scores close to 0 have almost no impact on the targets and can be eliminated.

In [46]:

```
profitable params = coeff df.loc[abs(coeff df["Correlation"]) > 0.1 , 'Feature']
```

In [47]:

```
df train params = df train filtered[profitable params]
df_test_params = df_test[profitable_params]
df_train_params[['rougher.output.recovery', 'final.output.recovery']] = df_train
_filtered[['rougher.output.recovery', 'final.output.recovery']]
df_test_params[['rougher.output.recovery', 'final.output.recovery']] = df_test[[
'rougher.output.recovery', 'final.output.recovery']]
```

```
In [48]:
```

```
X_train = df_train_params.drop(['rougher.output.recovery', 'final.output.recover
y'], axis=1)
X test = df test params.drop(['rougher.output.recovery', 'final.output.recover
y'], axis=1)
y train = df train params[['rougher.output.recovery', 'final.output.recovery']].
values
y test = df test params[['rougher.output.recovery', 'final.output.recovery']].va
lues
sc = ss()
X_train = sc.fit_transform(X_train)
X test = sc.transform(X test)
```

In [49]:

```
Lasso = linear model.Lasso(alpha=0.1, tol=0.001, max iter=100)
Lasso.fit(X_train, y_train)
y pred = Lasso.predict(X test)
smape final score = smape final(y test, y pred)
smape final score
```

Out[49]:

0.06794437817892128

Sanity check

Let's calculate the test baseline score to perform this check.

```
In [50]:
```

```
base model = DummyRegressor(strategy='mean')
base model.fit(X train, y train)
y pred = base model.predict(X test)
smape final base = smape final(y test, y pred)
smape_final_base
```

Out[50]:

0.07637178944673645

```
In [51]:
```

```
print(round((smape_final_base - smape_final_score)/smape_final base,2)*100,'%')
```

11.0 %

Lasso model cross-validation score is lower than the baseline score by 11%.

Conclusion

In this project we have developed a machine learning model for Zyfra, efficiency solutions for heavy industry company, that analyzes data on extraction and purification of gold from an ore and predicts the amount of recovered gold. The model helps to eliminate unprofitable parameters.

First of all, we have familiarized ourselves with the data by performing the descriptive statistics. We found missing values, wrong date column data type.

Next, we checked the recovery calculation in the dataset. It turned out to be performed correctly as the MAE value between the rougher.output.recovery column and our calculations was very close to 0.

We found that some features are missing from the test set as they are directly connected to the target variables (types output and calculation).

In the preprocessing step we have converted date column data type to datetime, filled missing tenure values with the mean per each column and checked for duplicated values. In order to be able to use an ML model, we removed those extra features from the train set, so that both train and test set have the same shapes.

In the following section we have performed an exploratory data analysis and reached the following conclusions:

- As for the gold concentration (au), there is a clear trend towards quality improvement after each stage: the share of gold is higher and higher on average as we proceed with purification (from 20% to more than 45%, on average).
- Interestingly, we see the opposite trend for silver concentration (ag): the more we purify the feed, the lower gets the share of this metal (from around 11% to less than 5%, on average).
- As for the lead concentration (pb), we can say that there is probably no need for the second purification stage, as the quality of this metal doesn't improve, on average. However, we see a slight improvement after the first stage (from around 8% to almost 11%, on average).
- The train and test distributions of feed particle sizes are very close to each other, which means that we will not have a problem of applying a model trained on the train set to the test set.
- We found some outliers in the target variables and removed them.

In the next step we developed and tested, using cross-validation, several ML algorithms and tuned the best model's hyperparameters. Lasso regression model showed the lowest score.

The selected model appeared to be overfitting to the train set, so we decided to implement feature selection method to reduce the overfitting. We have measured feature importances using the coefficients from the Linear Regression model and identified the most profitable parameters.

Then we have tested our model on the test set. We have reached 6.8% error rate on the test set.

Finally, we have checked our model for sanity by comparing the final score to the baseline score. The final score of our model is lower (by 11%) than the baseline score.