

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

#### «МИРЭА – Российский технологический университет»

# ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

# Лабораторная работа 2

по курсу «Теория вероятностей и математическая статистика, часть 2»

| Тема: | Первичная обработка выборки из      |  |
|-------|-------------------------------------|--|
|       |                                     |  |
|       | дискретной генеральной совокупности |  |

Выполнил: Студент 3-го курса Маргулис А.П.

Группа: <u>КМБО-01-17</u>

#### Задание

**Задание 1.** Получить выборку псевдослучайных чисел, распределенных по нормальному закону.

**Задание 2.** Получить выборку псевдослучайных чисел, распределенных по показательному закону.

**Задание 3.** Получить выборку псевдослучайных чисел, распределенных равномерно на отрезке.

#### Построить:

- 1) группированную выборку (интервальный вариационный ряд) и ассоциированный статистический ряд;
- 2) гистограмму относительных частот;
- 3) график эмпирической функции распределения.

#### Найти:

- 1) выборочное среднее;
- 2) выборочную дисперсию с поправкой Шеппарда;
- 3) выборочное среднее квадратическое отклонение;
- 4) выборочную моду;
- 5) выборочную медиану;
- 6) выборочный коэффициент асимметрии;
- 7) выборочный коэффициент эксцесса.

Составить таблицы:

- 1) сравнения относительных частот и теоретических вероятностей попадания в интервалы;
- 2) сравнения рассчитанных характеристик с теоретическими значениями.

Вычисления проводить с точностью до 0,00001.

#### Краткие теоретические сведения

#### Биномиальное распределение:

- ряд распределения:  $P(X = k) = C_n^k p^k q^n(n k)$
- математическое ожидание (среднее значение): *а*
- дисперсия: sigma<sup>2</sup>
- среднее квадратичное отклонение: sigma
- мода: а
- медиана: *а*
- коэффициент асимметрии: 0
- коэффициент эксцесса: 0

#### Показательное распределение:

- ряд распределения:  $P(X = n) = q^n p$
- математическое ожидание (среднее значение): lambda^-1
- дисперсия: lambda^-2
- среднее квадратичное отклонение: lambda^-1
- мода: 0
- медиана:  $\left[\frac{\ln 2}{lambda}\right]$
- коэффициент асимметрии: 2
- коэффициент эксцесса: 6

#### Равномерное распределение:

- ряд распределения:  $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$
- математическое ожидание (среднее значение): (a+b)/2
- дисперсия: (b-a)^2 / 12
- среднее квадратичное отклонение: (b-a) / (2\*sqrt(3))

• мода:  $\left[\frac{a+b}{2}\right]$ 

• медиана:  $\left[\frac{a+b}{2}\right]$ 

• коэффициент асимметрии: 0

• коэффициент эксцесса:  $\frac{-6}{5}$ 

#### Группированная выборка:

| Интервалы                                               | $n_i$                | $w_i$                |
|---------------------------------------------------------|----------------------|----------------------|
| $[a_0,a_1]$                                             | $n_1$                | $w_1$                |
| $(a_1,a_2]$                                             | $n_2$                | $w_2$                |
|                                                         | •••                  |                      |
| $(a_{\scriptscriptstyle m-1},a_{\scriptscriptstyle m}]$ | $n_m$                | $W_m$                |
|                                                         | $\sum_{i=1}^{m} n_i$ | $\sum_{i=1}^{m} w_i$ |

#### Ассоциированный статистический ряд:

| $x_i^*$ | $n_i$ | $w_i$ |
|---------|-------|-------|
| $x_1^*$ | $n_1$ | $w_1$ |
| $x_2^*$ | $n_2$ | $w_2$ |
|         | •••   |       |
| $x_m^*$ | $n_m$ | $W_m$ |

# • Эмпирическая функция распределения

$$F_{N}^{\Im}(x; x_{1}, x_{2}, ..., x_{N}) = \sum_{x_{k} \leq x} \frac{1}{N} = \begin{cases} 0, & x < x_{(1)}, \\ \frac{1}{N}, & x_{(1)} \leq x < x_{(2)}, \\ \frac{2}{N}, & x_{(2)} \leq x < x_{(3)}, \\ \frac{3}{N}, & x_{(3)} \leq x < x_{(4)}, \\ \vdots, & x \geq x_{(N)}. \end{cases}$$

Выборочное среднее:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{m} x_i^* \cdot n_i = \sum_{i=1}^{m} x_i^* \cdot w_i.$$

Выборочная дисперсия с поправкой Шеппарда:

$$s_{\scriptscriptstyle B}^2 = \sum_{i=1}^m (x_i^* - \overline{x})^2 \cdot w_i - \frac{h^2}{12}$$
, где  $h = (a_{\scriptscriptstyle m} - a_{\scriptscriptstyle 0})/m$  .

Выборочное среднее квадратичное отклонение:

$$\tilde{\sigma} = \sqrt{S_B^2}$$
.

Выборочная мода

$$\bar{M}_0 = a_{k-1} + h \frac{w_k - w_{k-1}}{2 w_k - w_{k-1} - w_{k+1}}$$

 $a_{k-1}^{}-$  левая граница модального интервала (  $a_{k-1}^{}$  , $a_k^{}$  ) (интервала, имеющего наибольшую частоту);

 $\mathcal{W}_k$  — относительная частота на модальном интервале;

 $w_{k-1}$  ,  $w_{k+1}$  – относительные частоты интервалов слева и справа от модального интервала.

Выборочная медиана:

$$ar{M}_e = a_{k-1} + rac{h}{w_k} \left(rac{1}{2} - \sum_{i=1}^{k-1} w_i 
ight)$$
, если  $\sum_{i=1}^{k-1} w_i < rac{1}{2} < \sum_{i=1}^k w_i$ ;

$$\bar{M}_e = a_k$$
, если  $\sum_{i=1}^k w_i = \frac{1}{2}$ .

Выборочный момент k-ого порядка:

$$\overline{\mu}_k = \overline{x^k} = \sum_{i=1}^m (x_i^*)^k \cdot w_i, \overline{\mu}_1 = \overline{x}.$$

Выборочный центральный момент k-ого порядка:

$$\overline{\mu}_{k}^{0} = \sum_{i=1}^{m} (x_{i}^{*} - \overline{x})^{k} \cdot w_{i}, \overline{\mu}_{1}^{0} = 0, \overline{\mu}_{2}^{0} = D_{B} = \overline{\mu}_{2} - (\overline{\mu}_{1})^{2}.$$

Выборочный коэффициент асимметрии:

$$\bar{\gamma}_1 = \frac{\bar{\mu}_3^0}{\bar{\sigma}^3}$$
.

Выборочный коэффициент эксцесса:

$$\overline{\gamma}_2 = \frac{\overline{\mu}_4^0}{\overline{\sigma}^4} - 3$$
.

#### Средства языка Python

В программе расчёта используются следующие средства языка python:

- функция stats.norm.rvs(mu, sigma, size) возвращает матрицу случайных значений из нормального распределения с параметрами mu и sigma, где mu есть математическое ожидание, sigma среднеквадратичное отклонение, size количество элементов.
- функция stats.expon.rvs(scale=1.0/lambda) возвращает матрицу случайных значений из показтельного распределения с параметром lambda, size количество элементов.
- функция stats.unifrom.rvs(a, b) возвращает матрицу случайных значений из равномерного распределения на отрезке [a,b], size количество элементов.
- sorted(x) возвращает копию x с элементами, расположенными в порядке возрастания.
  - $\bullet$  plot(x,y) построение графика по координатам x,y

### Результаты расчетов

Задание 1 (нормальное распределение)

a = -1.5, sigma = 1.15.

#### Неупорядоченная выборка (200 чисел):

| -0.70173 | -0.05719 | -1.65308 | -1.01296 | -1.99263 | -1.2209  | -0.98839 | -0.8808  | -2.33442 | -3.61558 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.52413  | -2.69514 | -2.92026 | -2.05086 | -4.28943 | -0.56916 | -1.64454 | 0.26896  | -1.42977 | -2.15677 |
| -1.60152 | -1.19808 | -1.92039 | -1.85156 | -4.81043 | -0.85691 | -3.61121 | -2.04912 | -3.96904 | -1.40656 |
| -0.56747 | -2.31204 | -1.67626 | -2.36936 | -4.21348 | -1.26742 | -4.01428 | -2.90302 | 0.40474  | -1.46881 |
| -2.68777 | 0.8623   | -0.73874 | -3.47128 | 0.78598  | -1.84781 | -1.96633 | -4.76334 | -3.0808  | -0.25353 |
| -1.34837 | -0.85369 | -2.31223 | -3.92839 | -5.8342  | -4.79146 | -2.37577 | -2.14428 | 0.24358  | 0.4006   |
| -2.01923 | -1.76944 | -4.24736 | -1.25184 | -3.25124 | -3.01075 | -2.65712 | -2.81276 | -0.02107 | -3.64766 |

| -0.16122 | -2.0712  | 0.35845  | 0.39934  | -0.91342 | -1.10884 | -3.05746 | -0.96038 | -0.60832 | -0.65228 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| -1.29053 | -0.37557 | -2.76593 | -0.80463 | 0.95699  | 3.72364  | 0.61849  | -1.3926  | -0.1388  | -2.76233 |
| -2.10733 | -0.17511 | -2.72465 | 0.96748  | 2.29233  | -3.26791 | -0.87422 | 0.59608  | -2.45822 | -3.07546 |
| 0.66913  | -4.47839 | -1.27483 | -2.86937 | -3.36879 | -3.25012 | -3.7023  | -2.34538 | 1.46169  | -0.07601 |
| -0.168   | -3.14228 | -3.89163 | -4.44166 | -1.77463 | -4.72523 | -3.39096 | 1.53596  | -2.44595 | -3.06224 |
| -4.249   | -2.65346 | -1.62075 | 0.17642  | -5.73048 | -0.82383 | -0.9719  | -1.39183 | -0.63895 | -2.62225 |
| -0.67351 | -1.01372 | -1.00875 | -2.50627 | -0.82341 | -1.48967 | 1.31873  | -0.22601 | -0.17914 | -2.27375 |
| -1.18683 | -3.24379 | -0.02634 | -1.93927 | 0.80787  | -1.34957 | -2.71346 | -0.41952 | -3.50022 | -0.54566 |
| 0.4447   | -2.92676 | 1.44405  | -1.07292 | -5.59311 | 0.60916  | 0.57346  | -2.83553 | -0.4262  | -3.4484  |
| -5.3389  | 2.47931  | 0.8146   | -3.25974 | 1.50226  | -0.30881 | -2.32515 | 1.09816  | -2.96827 | 0.25471  |
| -1.37835 | -0.98979 | 1.07481  | -5.29052 | -1.36842 | -3.41074 | -2.10083 | 0.68326  | -2.10111 | -2.39642 |
| 0.27172  | -2.49083 | -2.3957  | -2.00104 | -1.49567 | -1.66092 | 0.60002  | -2.41492 | -2.67075 | -0.91565 |
| 0.4624   | 0.18403  | -1.36015 | 1.92313  | 0.57428  | -3.99065 | -1.61141 | -0.98953 | -2.66193 | -1.40212 |

### Упорядоченная выборка (200 чисел):

| -5.8342  | -5.73048 | -5.59311 | -5.3389  | -5.29052 | -4.81043 | -4.79146 | -4.76334 | -4.72523 | -4.47839 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| -4.44166 | -4.28943 | -4.249   | -4.24736 | -4.21348 | -4.01428 | -3.99065 | -3.96904 | -3.92839 | -3.89163 |
| -3.7023  | -3.64766 | -3.61558 | -3.61121 | -3.50022 | -3.47128 | -3.4484  | -3.41074 | -3.39096 | -3.36879 |
| -3.26791 | -3.25974 | -3.25124 | -3.25012 | -3.24379 | -3.14228 | -3.0808  | -3.07546 | -3.06224 | -3.05746 |
|          |          |          |          |          |          |          |          |          |          |
| -3.01075 | -2.96827 | -2.92676 | -2.92026 | -2.90302 | -2.86937 | -2.83553 | -2.81276 | -2.76593 | -2.76233 |
| -2.72465 | -2.71346 | -2.69514 | -2.68777 | -2.67075 | -2.66193 | -2.65712 | -2.65346 | -2.62225 | -2.50627 |
| -2.49083 | -2.45822 | -2.44595 | -2.41492 | -2.39642 | -2.3957  | -2.37577 | -2.36936 | -2.34538 | -2.33442 |
| -2.32515 | -2.31223 | -2.31204 | -2.27375 | -2.15677 | -2.14428 | -2.10733 | -2.10111 | -2.10083 | -2.0712  |
| -2.05086 | -2.04912 | -2.01923 | -2.00104 | -1.99263 | -1.96633 | -1.93927 | -1.92039 | -1.85156 | -1.84781 |
| -1.77463 | -1.76944 | -1.67626 | -1.66092 | -1.65308 | -1.64454 | -1.62075 | -1.61141 | -1.60152 | -1.49567 |
| -1.48967 | -1.46881 | -1.42977 | -1.40656 | -1.40212 | -1.3926  | -1.39183 | -1.37835 | -1.36842 | -1.36015 |
| -1.34957 | -1.34837 | -1.29053 | -1.27483 | -1.26742 | -1.25184 | -1.2209  | -1.19808 | -1.18683 | -1.10884 |
| -1.54357 | -1.54657 | -1.29033 | -1.27465 | -1.20742 | -1.23104 | -1.2203  | -1.19808 | -1.18083 | -1.10004 |
| -1.07292 | -1.01372 | -1.01296 | -1.00875 | -0.98979 | -0.98953 | -0.98839 | -0.9719  | -0.96038 | -0.91565 |
| -0.91342 | -0.8808  | -0.87422 | -0.85691 | -0.85369 | -0.82383 | -0.82341 | -0.80463 | -0.73874 | -0.70173 |
| -0.67351 | -0.65228 | -0.63895 | -0.60832 | -0.56916 | -0.56747 | -0.54566 | -0.4262  | -0.41952 | -0.37557 |
| -0.30881 | -0.25353 | -0.22601 | -0.17914 | -0.17511 | -0.168   | -0.16122 | -0.1388  | -0.07601 | -0.05719 |
| -0.02634 | -0.02107 | 0.17642  | 0.18403  | 0.24358  | 0.25471  | 0.26896  | 0.27172  | 0.35845  | 0.39934  |
| 0.4006   | 0.40474  | 0.4447   | 0.4624   | 0.52413  | 0.57346  | 0.57428  | 0.59608  | 0.60002  | 0.60916  |
| 0.4000   | 0.40474  | 0.447    | 3.4024   | 0.02410  | 3.37340  | 3.37.420 | 3.33000  | 3.00002  | 3.00310  |
| 0.61849  | 0.66913  | 0.68326  | 0.78598  | 0.80787  | 0.8146   | 0.8623   | 0.95699  | 0.96748  | 1.07481  |
| 1.09816  | 1.31873  | 1.44405  | 1.46169  | 1.50226  | 1.53596  | 1.92313  | 2.29233  | 2.47931  | 3.72364  |

### Статистический ряд:

| a            | b        | Nk | Wk    |
|--------------|----------|----|-------|
| -5.8342      | -4.63947 | 9  | 0.045 |
| -<br>4.63947 | -3.44474 | 18 | 0.09  |
| -<br>3.44474 | -2,25001 | 47 | 0.235 |
| -<br>2,25001 | -1,05528 | 47 | 0.235 |
| -<br>1,05528 | 0,13945  | 41 | 0.205 |
| 0,13945      | 1,33418  | 30 | 0.15  |
| 1,33418      | 2,52891  | 7  | 0.035 |
| 2,52891      | 3,72364  | 1  | 0.005 |

### Ассоциированный статистический ряд:

| Xk        | N  | k Wi  |
|-----------|----|-------|
| -5.236835 | 9  | 0.045 |
| -4.042105 | 18 | 0.090 |
| -2.847375 | 47 | 0.235 |
| -1.652645 | 47 | 0.235 |
| -0.457915 | 41 | 0.205 |
| 0.736815  | 30 | 0.150 |
| 1.931545  | 7  | 0.035 |
| 3.126275  | 1  | 0.005 |

#### График эмпирической функции:



### Гистограмма относительных частот:



выборочное среднее = -1.55707 выборочная дисперсия = 2.17951 выборочное среднее квадратическое отклонение = 1.47632 выборочная мода = -2.25001 выборочная медиана = -0.39437 выборочный момент 2-го порядка = 5.5556 выборочный центральный момент 2-ого порядка = 3.1311 выборочный коэффициент асимметрии = -0.00444 выборочный коэффициент эксцесса = -1.91974

#### Задание 2 (показательное распределение)

Lambda = 2.85 Неупорядоченная выборка (200 чисел):

| 0.06478 | 0.0805  | 0.47277 | 0.2856  | 0.21391 | 0.29702 | 0.41938 | 0.38807 | 0.02025 | 0.00744 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.37624 | 0.16009 | 0.51127 | 0.03776 | 0.09479 | 1.94518 | 0.24865 | 0.0899  | 0.00688 | 0.28609 |
| 0.30432 | 0.39371 | 0.16539 | 0.40737 | 0.40654 | 0.10726 | 0.20742 | 0.4097  | 0.38087 | 0.49031 |
| 0.11724 | 0.90698 | 1.16606 | 0.71847 | 0.03902 | 0.3631  | 0.3121  | 0.16673 | 0.52622 | 0.49555 |
| 0.49164 | 0.714   | 0.3829  | 0.18736 | 0.059   | 1.14758 | 0.30593 | 0.01512 | 0.63264 | 0.1006  |
| 1.07828 | 0.85593 | 0.03462 | 0.07844 | 0.65795 | 0.7771  | 0.1938  | 0.29429 | 0.00559 | 0.10353 |
| 0.05745 | 0.01407 | 0.74513 | 0.0275  | 0.64167 | 0.69627 | 0.20344 | 0.18536 | 0.01941 | 0.14528 |
| 0.31    | 0.09946 | 0.13164 | 0.03624 | 0.6076  | 0.00263 | 0.27706 | 0.18708 | 0.57342 | 0.9322  |
| 0.34903 | 0.19833 | 0.23167 | 0.05974 | 0.32255 | 0.60119 | 0.18743 | 0.33066 | 0.68373 | 0.24904 |
| 0.15978 | 0.02259 | 0.34784 | 0.02115 | 0.14699 | 0.51034 | 0.5407  | 0.0784  | 0.24316 | 0.21541 |
| 0.11264 | 0.1715  | 0.18719 | 0.23529 | 0.45881 | 0.07007 | 0.25074 | 0.56781 | 0.30803 | 0.95646 |
| 0.21363 | 0.12606 | 0.1258  | 0.13642 | 0.66989 | 0.61823 | 0.60302 | 0.17047 | 0.67091 | 0.15276 |
| 0.13246 | 0.01983 | 0.9179  | 0.19317 | 0.248   | 0.05001 | 0.10887 | 0.00437 | 0.05545 | 0.21381 |
| 0.0263  | 0.53392 | 0.12011 | 0.53216 | 0.31692 | 0.2246  | 1.34521 | 0.14456 | 0.19797 | 0.22201 |
| 0.3885  | 0.42889 | 0.3831  | 0.8627  | 0.35082 | 0.44121 | 0.4917  | 1.07766 | 1.61165 | 1.36892 |
| 0.14539 | 0.07405 | 0.37556 | 0.48274 | 0.38384 | 0.31865 | 0.00294 | 0.16553 | 0.2942  | 0.48693 |
| 1.03319 | 0.24618 | 0.08273 | 0.15577 | 0.97195 | 0.15193 | 0.0976  | 0.05463 | 0.10186 | 0.08055 |
| 1.04496 | 1.04292 | 0.15796 | 0.33002 | 0.78859 | 0.07389 | 0.30146 | 0.62293 | 0.068   | 0.34017 |
| 0.04832 | 0.31765 | 0.21355 | 0.06148 | 0.16026 | 0.23271 | 0.73297 | 0.23003 | 0.09353 | 0.25247 |
| 0.17974 | 0.04044 | 0.08438 | 0.11937 | 0.09273 | 0.32843 | 0.65551 | 0.22847 | 0.19335 | 0.07031 |
|         |         |         |         |         |         |         |         |         |         |

#### Упорядоченная выборка (200 чисел):

|         | 1       |         |         |         |         |         |         |         |         |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.00263 | 0.00294 | 0.00437 | 0.00559 | 0.00688 | 0.00744 | 0.01407 | 0.01512 | 0.01941 | 0.01983 |
| 0.02025 | 0.02115 | 0.02259 | 0.0263  | 0.0275  | 0.03462 | 0.03624 | 0.03776 | 0.03902 | 0.04044 |
| 0.04832 | 0.05001 | 0.05463 | 0.05545 | 0.05745 | 0.059   | 0.05974 | 0.06148 | 0.06478 | 0.068   |
| 0.07007 | 0.07031 | 0.07389 | 0.07405 | 0.0784  | 0.07844 | 0.0805  | 0.08055 | 0.08273 | 0.08438 |
| 0.0899  | 0.09273 | 0.09353 | 0.09479 | 0.0976  | 0.09946 | 0.1006  | 0.10186 | 0.10353 | 0.10726 |
| 0.10887 | 0.11264 | 0.11724 | 0.11937 | 0.12011 | 0.1258  | 0.12606 | 0.13164 | 0.13246 | 0.13642 |
| 0.14456 | 0.14528 | 0.14539 | 0.14699 | 0.15193 | 0.15276 | 0.15577 | 0.15796 | 0.15978 | 0.16009 |
| 0.16026 | 0.16539 | 0.16553 | 0.16673 | 0.17047 | 0.1715  | 0.17974 | 0.18536 | 0.18708 | 0.18719 |
| 0.18736 | 0.18743 | 0.19317 | 0.19335 | 0.1938  | 0.19797 | 0.19833 | 0.20344 | 0.20742 | 0.21355 |
| 0.21363 | 0.21381 | 0.21391 | 0.21541 | 0.22201 | 0.2246  | 0.22847 | 0.23003 | 0.23167 | 0.23271 |
| 0.23529 | 0.24316 | 0.24618 | 0.248   | 0.24865 | 0.24904 | 0.25074 | 0.25247 | 0.27706 | 0.2856  |
| 0.28609 | 0.2942  | 0.29429 | 0.29702 | 0.30146 | 0.30432 | 0.30593 | 0.30803 | 0.31    | 0.3121  |
| 0.31692 | 0.31765 | 0.31865 | 0.32255 | 0.32843 | 0.33002 | 0.33066 | 0.34017 | 0.34784 | 0.34903 |
| 0.35082 | 0.3631  | 0.37556 | 0.37624 | 0.38087 | 0.3829  | 0.3831  | 0.38384 | 0.38807 | 0.3885  |
| 0.39371 | 0.40654 | 0.40737 | 0.4097  | 0.41938 | 0.42889 | 0.44121 | 0.45881 | 0.47277 | 0.48274 |
| 0.48693 | 0.49031 | 0.49164 | 0.4917  | 0.49555 | 0.51034 | 0.51127 | 0.52622 | 0.53216 | 0.53392 |
| 0.5407  | 0.56781 | 0.57342 | 0.60119 | 0.60302 | 0.6076  | 0.61823 | 0.62293 | 0.63264 | 0.64167 |
| 0.65551 | 0.65795 | 0.66989 | 0.67091 | 0.68373 | 0.69627 | 0.714   | 0.71847 | 0.73297 | 0.74513 |
| 0.7771  | 0.78859 | 0.85593 | 0.8627  | 0.90698 | 0.9179  | 0.9322  | 0.95646 | 0.97195 | 1.03319 |
| 1.04292 | 1.04496 | 1.07766 | 1.07828 | 1.14758 | 1.16606 | 1.34521 | 1.36892 | 1.61165 | 1.94518 |
|         |         |         |         |         |         |         |         |         |         |

### Статистический ряд:

| а       | b       | Nk  | Wk    |
|---------|---------|-----|-------|
| 0.00263 | 0.24545 | 102 | 0.51  |
| 0.24545 | 0.48827 | 49  | 0.245 |
| 0.48827 | 0.73109 | 27  | 0.135 |
| 0.73109 | 0.97391 | 11  | 0.055 |
| 0.97391 | 1.21673 | 7   | 0.035 |
| 1.21673 | 1.45955 | 2   | 0.01  |
| 1.45955 | 1.70237 | 1   | 0.005 |
| 1.70237 | 1.94519 | 1   | 0.005 |

### Ассоциированный статистический ряд:

| Xk      | Nk  | Wk    |
|---------|-----|-------|
|         |     |       |
| 0.12404 | 102 | 0.510 |
|         |     |       |
| 0.36686 | 49  | 0.245 |
|         |     |       |
| 0.60968 | 27  | 0.135 |
|         |     |       |
| 0.85250 | 11  | 0.055 |
|         |     |       |
| 1.09532 | 7   | 0.035 |
|         |     |       |
| 1.33814 | 2   | 0.010 |
|         |     |       |
| 1.58096 | 1   | 0.005 |
|         |     |       |
| 1.82378 | 1   | 0.005 |

### График эмпирической функции:



### Гистограмма относительных частот:



выборочное среднее = 0.35108 выборочная дисперсия = 0.05743 выборочное среднее квадратическое отклонение = 0.23966 выборочная мода = 0.16242 выборочная медиана = 0.48351 выборочный момент 2-го порядка = 0.22 выборочный центральный момент 2-ого порядка = 0.09674 выборочный коэффициент асимметрии = 277.7211 выборочный коэффициент эксцесса = 5568.25977

#### Задание 3 (равномерное распределение)

a = -0.75, b = 2.25

#### Неупорядоченная выборка (200 чисел):

| 0.79857  | 0.63119  | 1.11028  | 0.49508  | 0.0196   | 1.21199  | -0.31139 | 0.91481  | -0.07069 | 1.11327  |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0.1838   | -0.61877 | 1.45916  | 1.10436  | 0.79666  | 0.07559  | 0.04654  | -0.04947 | -0.60359 | 1.12611  |
| 1.2798   | 0.17039  | 1.30784  | 0.908    | 1.28977  | -0.4696  | 0.59497  | -0.24997 | 0.13608  | -0.33474 |
| 1.24208  | -0.59398 | 0.98557  | 1.34538  | 1.23372  | 0.59462  | -0.62703 | 0.73473  | -0.37247 | -0.02931 |
| -0.23712 | -0.2123  | 1.172    | 1.225    | -0.44118 | -0.24695 | 0.69363  | 0.75339  | -0.63587 | -0.17446 |
| 0.69202  | -0.1849  | 1.26135  | -0.06643 | 0.71435  | 1.00262  | 0.36123  | -0.14304 | -0.15809 | 1.39059  |
| 0.09395  | -0.28084 | -0.0854  | -0.37128 | 0.39609  | 0.70435  | 0.88573  | -0.48797 | 1.32619  | 1.21419  |
| 0.26612  | 0.25236  | -0.38785 | 0.53978  | -0.73412 | 1.28364  | -0.66781 | 0.24795  | 0.59922  | 0.90932  |
| 0.46501  | 1.15281  | -0.2764  | 0.61547  | 0.6933   | 1.30457  | -0.38725 | 0.65644  | 0.35483  | 1.45713  |
| -0.52343 | -0.53374 | 0.3719   | 0.12529  | -0.09714 | 1.10538  | -0.67559 | 0.70414  | 1.22534  | -0.43454 |
| -0.74165 | -0.23871 | -0.02724 | 0.27862  | -0.19515 | -0.48068 | -0.69666 | -0.06046 | 0.52197  | 0.50662  |
| 0.23091  | 0.50584  | -0.42084 | 0.79946  | -0.41291 | -0.49299 | -0.35679 | 0.66341  | 0.08443  | 0.96233  |
| 0.53517  | 0.5489   | 1.28762  | 1.08523  | -0.53732 | 0.07347  | -0.36627 | -0.7344  | 1.36368  | 0.33733  |
| 0.52395  | 1.00616  | 0.73507  | 1.49856  | 0.28063  | -0.20898 | 0.86723  | 1.46942  | 1.49872  | 1.09281  |
| 1.27516  | -0.70251 | 0.82517  | -0.0323  | 0.05043  | 0.78046  | 0.1158   | -0.44886 | 0.03757  | -0.06252 |
| 0.55887  | 1.32544  | 0.61681  | 0.55473  | 0.85881  | -0.10453 | 0.40693  | 0.87916  | 1.4929   | 0.62742  |
| 1.11576  | 0.68011  | 1.06215  | 0.57598  | -0.5352  | 0.59045  | 0.37905  | -0.0068  | 1.39286  | -0.18833 |
| 1.37245  | 1.24663  | 0.19367  | 0.28096  | -0.07547 | 0.40281  | -0.63174 | -0.62599 | 1.20221  | 1.2418   |
| 0.10156  | 1.48304  | 0.44274  | -0.47081 | 1.10085  | 1.32008  | 1.42725  | 0.83613  | 0.83002  | 0.2903   |
| 0.01567  | 1.22303  | 0.44385  | 0.89418  | 0.63623  | 0.26202  | 0.18606  | 1.43744  | 0.8937   | -0.41607 |

#### Упорядоченная выборка (200 чисел):

| - 110 P/12 | to ioiiiias | 1 bbicopi | (200 1   | 110031). |          |          |          |          |          |
|------------|-------------|-----------|----------|----------|----------|----------|----------|----------|----------|
| -0.74165   | -0.7344     | -0.73412  | -0.70251 | -0.69666 | -0.67559 | -0.66781 | -0.63587 | -0.63174 | -0.62703 |
| -0.62599   | -0.61877    | -0.60359  | -0.59398 | -0.53732 | -0.5352  | -0.53374 | -0.52343 | -0.49299 | -0.48797 |
| -0.48068   | -0.47081    | -0.4696   | -0.44886 | -0.44118 | -0.43454 | -0.42084 | -0.41607 | -0.41291 | -0.38785 |
| -0.38725   | -0.37247    | -0.37128  | -0.36627 | -0.35679 | -0.33474 | -0.31139 | -0.28084 | -0.2764  | -0.24997 |
| -0.24695   | -0.23871    | -0.23712  | -0.2123  | -0.20898 | -0.19515 | -0.18833 | -0.1849  | -0.17446 | -0.15809 |
| -0.14304   | -0.10453    | -0.09714  | -0.0854  | -0.07547 | -0.07069 | -0.06643 | -0.06252 | -0.06046 | -0.04947 |
| -0.0323    | -0.02931    | -0.02724  | -0.0068  | 0.01567  | 0.0196   | 0.03757  | 0.04654  | 0.05043  | 0.07347  |
| 0.07559    | 0.08443     | 0.09395   | 0.10156  | 0.1158   | 0.12529  | 0.13608  | 0.17039  | 0.1838   | 0.18606  |
| 0.19367    | 0.23091     | 0.24795   | 0.25236  | 0.26202  | 0.26612  | 0.27862  | 0.28063  | 0.28096  | 0.2903   |
| 0.33733    | 0.35483     | 0.36123   | 0.3719   | 0.37905  | 0.39609  | 0.40281  | 0.40693  | 0.44274  | 0.44385  |
| 0.46501    | 0.49508     | 0.50584   | 0.50662  | 0.52197  | 0.52395  | 0.53517  | 0.53978  | 0.5489   | 0.55473  |
| 0.55887    | 0.57598     | 0.59045   | 0.59462  | 0.59497  | 0.59922  | 0.61547  | 0.61681  | 0.62742  | 0.63119  |
| 0.63623    | 0.65644     | 0.66341   | 0.68011  | 0.69202  | 0.6933   | 0.69363  | 0.70414  | 0.70435  | 0.71435  |
| 0.73473    | 0.73507     | 0.75339   | 0.78046  | 0.79666  | 0.79857  | 0.79946  | 0.82517  | 0.83002  | 0.83613  |
| 0.85881    | 0.86723     | 0.87916   | 0.88573  | 0.8937   | 0.89418  | 0.908    | 0.90932  | 0.91481  | 0.96233  |
| 0.98557    | 1.00262     | 1.00616   | 1.06215  | 1.08523  | 1.09281  | 1.10085  | 1.10436  | 1.10538  | 1.11028  |
| 1.11327    | 1.11576     | 1.12611   | 1.15281  | 1.172    | 1.20221  | 1.21199  | 1.21419  | 1.22303  | 1.225    |
| 1.22534    | 1.23372     | янв.18    | 1.24208  | 1.24663  | 1.26135  | 1.27516  | 1.2798   | 1.28364  | 1.28762  |
| 1.28977    | 1.30457     | 1.30784   | 1.32008  | 1.32544  | 1.32619  | 1.34538  | 1.36368  | 1.37245  | 1.39059  |
| 1.39286    | 1.42725     | 1.43744   | 1.45713  | 1.45916  | 1.46942  | 1.48304  | 1.4929   | 1.49856  | 1.49872  |

### Статистический ряд:

| a        | b        | Nk | Wk    |
|----------|----------|----|-------|
| -0.74165 | -0.4616  | 23 | 0.115 |
| -0.4616  | -0.18155 | 25 | 0.125 |
| -0.18155 | 0.0985   | 25 | 0.125 |
| 0.0985   | 0.37855  | 21 | 0.105 |
| 0.37855  | 0.6586   | 28 | 0.14  |
| 0.6586   | 0.93865  | 27 | 0.135 |
| 0.93865  | 1.21870  | 19 | 0.095 |
| 1.21870  | 1.49875  | 32 | 0.16  |

### Ассоциированный статистический ряд:

| Xk        | Nk | Wk    |
|-----------|----|-------|
| -0.601625 | 23 | 0.115 |
| -0.321575 | 25 | 0.125 |
| -0.041525 | 25 | 0.125 |
| 0.238525  | 21 | 0.105 |
| 0.518575  | 28 | 0.140 |
| 0.798625  | 27 | 0.135 |
| 1.078675  | 19 | 0.095 |
| 1.358725  | 32 | 0.160 |

#### График эмпирической функции:



#### Гистограмма относительных частот:



выборочное среднее = 0.41076 выборочная дисперсия = 0.3694 выборочное среднее квадратическое отклонение = 0.60779 выборочная мода = 1.2996 выборочная медиана = 0.90364 выборочный момент 2-го порядка = 0.59041 выборочный центральный момент 2-ого порядка = 0.42169 выборочный коэффициент асимметрии = -0.15588 выборочный коэффициент эксцесса = 13.82325

## Анализ результатов

#### Задание 1 (нормальное распределение)

a = -1.5, sigma = 1.15. Таблица сравнения относительных частот и теоретических вероятностей:

| [a,b]                | $w_j$   | $P_{j}$       | $ w_j - P_j $ |
|----------------------|---------|---------------|---------------|
| [-5.8342, -4.63947]  | 0.045   | 0.00828       | 0.03672       |
| [-4.63947, -3.44474] | 0.09    | 0.06191       | 0.02809       |
| [-3.44474, -2.25001] | 0.235   | 0.21461       | 0.02039       |
| [-2.25001, -1.05528] | 0.235   | 0.34635       | 0.11135       |
| [-1.05528, 0.13945]  | 0.205   | 0.26078       | 0.05578       |
| [0.13945, 1.33418]   | 0.15    | 0.0915        | 0.0585        |
| [1.33418, 2.52891]   | 0.035   | 0.0149        | 0.0201        |
| [2.52891 3.72364]    | 0.005   | 0.00112       | 0.00388       |
| _                    | Sum = 1 | Sum = 0.99945 | Max = 0.11135 |

#### Таблица сравнения рассчитанных характеристик с теоретическими значениями:

| Название     | Эксперимента | Теоретическое | Абсолютное | Относитель |
|--------------|--------------|---------------|------------|------------|
| показателя   | льное        | значение      | отклонение | ное        |
|              | значение     |               |            | отклонение |
| Выборочное   | -1.55707     | -1.5          | 0.05707    | 3.80466%   |
| среднее      |              |               |            |            |
| Выборочная   | 2.17951      | 1.749         | 0.43051    | 24.61463%  |
| дисперсия с  |              |               |            |            |
| поправкой    |              |               |            |            |
| Шеппарда     |              |               |            |            |
| Выборочное   |              | 1.33225       | 0.14407    | 10.81403%  |
| среднее      | 1.47632      |               |            |            |
| квадратичное |              |               |            |            |
| отклонение   |              |               |            |            |
| Выборочная   | -2.25001     | -1.5          | 0.75001    | 50%        |
| мода         |              |               |            |            |
| Выборочная   | -0.39437     | -1.5          | 1.10563    | 73.70866%  |
| медиана      |              |               |            |            |
| Выборочный   | -0.00444     | 0             | 0.00444    | -          |
| коэффициент  |              |               |            |            |
| асимметрии   |              |               |            |            |
| Выборочный   | -1.91974     | 0             | 1.91974    | -          |
| коэффициент  |              |               |            |            |
| эксцесса     |              |               |            |            |

#### Задание 2 (показательное распределение)

Lambda = 2.85
Таблица сравнения относительных частот и теоретических вероятностей:

| [a,b]                | $w_j$   | $P_{j}$       | $ w_j - P_j $ |
|----------------------|---------|---------------|---------------|
| [-5.8342, -4.63947]  | 0.51    | 0.49572       | 0.01428       |
| [-4.63947, -3.44474] | 0.245   | 0.24813       | 0.00313       |
| [-3.44474, -2.25001] | 0.135   | 0.1242        | 0.0108        |
| [-2.25001, -1.05528] | 0.055   | 0.06217       | 0.00717       |
| [-1.05528, 0.13945]  | 0.035   | 0.03112       | 0.00388       |
| [0.13945, 1.33418]   | 0.01    | 0.01558       | 0.00558       |
| [1.33418, 2.52891]   | 0.005   | 0.0078        | 0.0028        |
| [2.52891 3.72364]    | 0.005   | 0.0039        | 0.0011        |
|                      | Sum = 1 | Sum = 0.98862 | Max = 0.01428 |

#### Таблица сравнения рассчитанных характеристик с теоретическими значениями:

| Название     | Эксперимента | Теоретическое | Абсолютно  | Относительн                             |  |
|--------------|--------------|---------------|------------|-----------------------------------------|--|
| показателя   | льное        | значение      | e          | oe                                      |  |
|              | значение     |               | отклонение | отклонение                              |  |
| Выборочное   | 0.35108      | 0.35087       | 0.00021    | 0.05985%                                |  |
| среднее      | 0.33100      | 0.33007       | 0.00021    | 0.0398370                               |  |
| Выборочная   | 0.05743      | 0.12311       | 0.06568    | 53.35066%                               |  |
| дисперсия    | 0.03713      | 0.12311       | 0.00500    | 23.3300070                              |  |
| Выборочное   |              |               |            |                                         |  |
| среднее      | 0.22066      | 0.35087       | 0.11121    | 31.69549%                               |  |
| квадратичное | 0.23966      | 0.55007       | 0,11121    |                                         |  |
| отклонение   |              |               |            |                                         |  |
| Выборочная   | 0.16242      | 0             | 0.16242    | -                                       |  |
| мода         |              |               | 0.1001.    |                                         |  |
| Выборочная   | 0.48351      | 0.2432        | 0.24031    | 0.98811%                                |  |
| медиана      | 0.10001      | 0.2.10.2      | 0.2.1001   | 0.5 0 0 1 1 7 0                         |  |
| Выборочный   |              |               |            |                                         |  |
| коэффициент  | 277.7211     | 2             | 275.7211   | 13786.055%                              |  |
| асимметрии   |              |               |            |                                         |  |
| Выб. коэфф.  | 5568.25977   | 6             | 5562.25977 | 92704.3295%                             |  |
| эксцесса     | 2000.2077    |               |            | , , , , , , , , , , , , , , , , , , , , |  |

#### Задание 3 (равномерное распределение)

а=0.75, b=2.25 Таблица сравнения относительных частот и теоретических вероятностей:

| [a,b]                | $w_{j}$ | $P_{j}$       | $ w_j - P_j $ |
|----------------------|---------|---------------|---------------|
| [-5.8342, -4.63947]  | 0.115   | 0.12447       | 0.00947       |
| [-4.63947, -3.44474] | 0.125   | 0.12447       | 0.00053       |
| [-3.44474, -2.25001] | 0.125   | 0.12447       | 0.00053       |
| [-2.25001, -1.05528] | 0.105   | 0.12447       | 0.01947       |
| [-1.05528, 0.13945]  | 0.140   | 0.12447       | 0.01553       |
| [0.13945, 1.33418]   | 0.135   | 0.12447       | 0.01053       |
| [1.33418, 2.52891]   | 0.095   | 0.12447       | 0.02947       |
| [2.52891 3.72364]    | 0.160   | 0.12447       | 0.03553       |
|                      | Sum = 1 | Sum = 0.99575 | Max = 0.03553 |

#### Таблица сравнения рассчитанных характеристик с теоретическими значениями:

| Название     | Эксперимента | Теоретическое | Абсолютно  | Относительн |
|--------------|--------------|---------------|------------|-------------|
| показателя   | льное        | значение      | e          | oe          |
|              | значение     |               | отклонение | отклонение  |
| Выборочное   | 0.41076      | 0,75          | 0.33924    | 45.232%     |
| среднее      |              |               |            |             |
| Выборочная   | 0.3694       | 0,75          | 0.3806     | 50.74667%   |
| дисперсия    |              |               |            |             |
| Выборочное   | 0.60779      | 2.59807       | 1.99028    | 76.60609%   |
| среднее      |              |               |            |             |
| квадратичное |              |               |            |             |
| отклонение   |              |               |            |             |
| Выборочная   | 1.2996       | 0.75          | 0.5496     | 0.7328%     |
| мода         |              |               |            |             |
| Выборочная   | 0.90364      | 0.75          | 0.15364    | 20.48533%   |
| медиана      |              |               |            |             |
| Выборочный   | -0.15588     | 0             | 0.15588    | -           |
| коэффициент  |              |               |            |             |
| асимметрии   |              |               |            |             |
| Выб. коэфф.  | 13.82325     | -1.2          | 15.02325   | 1251.9375%  |
| эксцесса     |              |               |            |             |

### Вывод

В ходе лабораторной работы выяснилось, что полученные экспериментальным путем данные соответствуют заданным распределениям, если принимать в расчет отклонения от теоретического значения.

Экспериментальная оценка выборочных показателей может сильно отличаться от теоретического значения, в силу того, что выборки из 200 элементов недостаточно для проведения точных расчетов. С увеличением выборки точность будет улучшаться.

#### Список литературы

- 1. Математическая статистика [Электронный ресурс]: метод. указания по выполнению лаб. работ / А.А. Лобузов М.: МИРЭА, 2017.
- Боровков А. А. Математическая статистика. СПб.: Лань, 2010.
   704 с.
- 3. Гмурман В.Е. Теория вероятностей и математическая статистика.– М.: Юрайт, 2013. 479 с.
- 4. Кетков Ю.Л., Кетков Ю.Л., Шульц М.М. МАТLAВ 7: программирование, численные методы. СПб.: БВХ-Петербург,  $2005.-752~{\rm c}.$

#### Приложение

```
# coding: utf-8
# In[75]:
import matplotlib.pyplot as plt
from numpy import arange
from numpy.random import normal, exponential, uniform
from scipy import stats
import pandas as pd
from collections import Counter
from math import *
# In[122]:
# вычисление значений
V = 15
a = (-1)**V*0.1*V
sigma = 0.01*V+1
lam = 3+(-1)**V*0.01*V
a uni = (-1)**V*0.05*V
b = a uni+3
size = 200
m Sterdjes = int(1+log(size, 2)//1)
print('a =', a, '\nsigma =', sigma, '\nlam =', lam, '\na uni =', a uni,
   '\nb =', b,'\nsize =', size, '\nm Sterdjes =', m Sterdjes)
# In[123]:
# создание датафрейма
def df create(Xk, Nk, Wk):
  df = pd.DataFrame(Xk, columns=['Xk'])
  df['Nk'] = Nk
  df['Wk'] = Wk
  return df
## теоретические величины
# In[155]:
def phi(x, a, sigma):
```

```
return (1 + erf((x - a) / sigma / sqrt(2))) / 2
# вероятность попадания в і-ый интервал для нормального распределения
def normal teor probability(data, a, sigma, m Sterdjes, len of interval):
  probabilityes = []
  intervals = []
  summ = 0
  for i in range(m Sterdjes+1):
    intervals.append(data[0]+len of interval*i)
  print()
  for i in range(len(intervals)-1):
    probabilityes.append(round(phi(intervals[i+1], a, sigma**2)-phi(intervals[i], a, sigma**2), 5))
    print(i+1, probabilityes[i])
    summ += probabilityes[i]
  print('sum =', summ)
  return probabilityes
#Function for the CDF of the exponential distribution
def CDFExponential(lam,x): #lamb = lambda
  if x<=0:
    cdf=0
  else:
    cdf=1-exp(-lam*x)
  return cdf
# вероятность попадания в і-ый интервал для показательного распределения
def exp teor probability(data, lam, m Sterdjes, len of interval):
  probabilityes = []
  intervals = []
  summ = 0
  for i in range(m Sterdjes+1):
    intervals.append(data[0]+len of interval*i)
  print()
  for i in range(len(intervals)-1):
    probabilityes.append(round(CDFExponential(lam,intervals[i+1])-
CDFExponential(lam,intervals[i]), 5))
    print(i+1, probabilityes[i])
    summ += probabilityes[i]
  print('sum =', summ)
  return probabilityes
# вероятность попадания в і-ый интервал для равномерного распределения
def uni teor probability(data, a, b, m Sterdjes, len of interval):
  probabilityes = []
  intervals = []
  summ = 0
  for i in range(m Sterdjes+1):
```

```
intervals.append(data[0]+len of interval*i)
  print()
  for i in range(len(intervals)-1):
     probabilityes.append(round(stats.uniform.cdf(intervals[i+1], a, b)-
stats.uniform.cdf(intervals[i], a, b), 5))
     print(i+1, probabilityes[i])
     summ += probabilityes[i]
  print('sum =', summ)
  return probabilityes
# In[15]:
def print normal teor():
  print('NORMAL teoreric')
  print('expected value =', a)
  print('dispersion =', (sigma**2)**2)
  print('quadratic deviation =', sigma**2)
  print('fashion =', a)
  print('median =', a)
  print('asymmetry =', 0)
  print('kurtosis =', 0)
def print exp teor():
  print('EXPONENTIAL teoreric')
  print('expected value =', lam**(-1))
  print('dispersion =', lam**(-2))
  print('quadratic deviation =', lam**(-1))
  print('fashion =', 0)
  print('median =', log1p(1)/lam)
  print('asymmetry =', 2)
  print('kurtosis =', 6)
def print uni teor():
  print('UNIFORM teoreric')
  print('expected value =', (a uni + b) / 2)
  print('dispersion =', (b - a uni)**2 / 12)
  print('quadratic deviation =', (b - a uni) / 2*sqrt(3))
  print('fashion =', (a uni + b) / 2)
  print('median =', (a uni + b) / 2)
  print('asymmetry =', 0)
  print('kurtosis =', -6/5)
# In[16]:
print normal teor
print exp teor
print uni teor
```

```
## методы
# ### вычисление
# In[17]:
# распределение элементов по интервалам
def make elems in intervals(data, len of interval):
  elem in intervals = [
     []
     []
     [],
     []
     []
     []
     []
     []
  intervals = [
     data[0],
     data[0]+len of interval,
     data[0]+len of interval*2,
     data[0]+len of interval*3,
     data[0]+len of interval*4,
     data[0]+len of interval*5,
     data[0]+len of interval*6,
     data[0]+len of interval*7,
     data[0]+len of interval*8
  round(intervals[0], 5)
  for i in range(len(intervals)-1):
     round(intervals[i+1], 5)
     print(intervals[i], intervals[i+1])
  for i in range(len(data)-1):
     if intervals[0] <= data[i] <= intervals[1]:
       elem in intervals[0].append(data[i])
     elif intervals[1] < data[i] <= intervals[2]:
       elem in intervals[1].append(data[i])
     elif intervals[2] < data[i] <= intervals[3]:
       elem in intervals[2].append(data[i])
     elif intervals[3] < data[i] <= intervals[4]:
       elem in intervals[3].append(data[i])
     elif intervals[4] < data[i] <= intervals[5]:
       elem in intervals[4].append(data[i])
     elif intervals[5] < data[i] <= intervals[6]:
       elem in intervals[5].append(data[i])
     elif intervals[6] < data[i] <= intervals[7]:
       elem in intervals[6].append(data[i])
     elif intervals[7] < data[i] <= intervals[8]:
       elem in intervals[7].append(data[i])
```

```
elem in intervals[7].append(data[-1])
  return elem in intervals
# In[18]:
# растояние от первого до последнего элемента
def len of all(sort data):
  len of all value = round(sort data[size-1] - sort data[0], 5)
  return len of all value
# длина интервала
def len of interval i(sort data, m):
  len of all value = len of all(sort data)
  len of interval = round(len of all value/m, 5)
  return len of interval
# In[19]:
# число значений попавщих в і-ый интервал
def count elems(elems in intervals):
  Nk = []
    summ = 0
  for i in range(len(elems in intervals)):
    Nk.append(len(elems in intervals[i]))
#
      summ = Nk[i] + summ
#
    Nk.append(summ)
  return Nk
# относительная частота попадания в і-ый интервал
def relative frequency(Nk, size):
  Wk = []
    summ = 0
  for i in range(len(Nk)):
    Wk.append(Nk[i]/size)
      summ = Wk[i] + summ
    Wk.append(summ)
  return Wk
# середина интервалов
defintervals mid(data, len of interval):
  intervals = [
    data[0],
    data[0]+len of interval,
    data[0]+len of interval*2,
    data[0]+len of interval*3,
    data[0]+len of interval*4,
    data[0]+len of interval*5,
    data[0]+len of interval*6,
    data[0]+len of interval*7,
```

```
data[0]+len of interval*8
     Xk = []
     for i in range(len(intervals)-1):
           Xk.append((intervals[i]+intervals[i+1])/2)
     return Xk
# In[20]:
# выборочное среднее
def sample mean(df):
     summ = 0
     for i in range(len(df)):
           summ = summ + df['Xk'][i]*df['Wk'][i]
     return summ
# выборочная дисперсия
def sample dispersion with Shepard(df, len of interval):
     sample mean value = sample mean(df)
     summ = 0
     for i in range(len(df)):
           summ = summ + ( (df['Xk'][i]-sample mean value)**2 * df['Wk'][i] - (len of interval**2 /
     return summ
# выборочное среднее квадратическое отклонение
def sample quadratic deviation(df, len of interval):
      return (sqrt(sample dispersion with Shepard(df, len of interval)))
# нахождение номера модального интервала
def search fashion interval(df, max N):
      for i in range(len(df)):
           if df['Nk'][i] == max N:
                 return i
# выборочная мода
def sample fashion(df, first, len of interval):
      \max N = \max(df['Nk'])
     num = search fashion interval(df, max N)
     a = first + len of interval*num
     if num == 0:
           M = a + len of interval*(df['Wk'][num])/(2*df['Wk'][num]-df['Wk'][num+1])
     elif num==len(df)-1:
           M = a + len of interval*(df['Wk'][num]-df['Wk'][num-1])/(2*df['Wk'][num]-df['Wk'][num-1])
     else:
           M = a + len of interval*(df['Wk'][num]-df['Wk'][num-1])/(2*df['Wk'][num]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df['Wk'][num-1]-df[
df['Wk'][num+1])
     return M
# выборочная медиана
def sample median(df, first, len of interval):
```

```
\max N = \max(df['Nk'])
  num = search fashion interval(df, max N)
  summ = 0
  for i in range(num):
    summ = summ + df['Wk'][i]
  if summ == 0.5:
    M = first + len of interval*(num+1)
    return M
  else:
    summ = summ - df['Wk'][num]
    a = first + len of interval*num
    M = a + len of interval/df['Wk'][num] * (0.5 - summ)
    return M
# выборочниый момент К-го порядка
def sample moment k(df, k):
  summ = 0
  for i in range(len(df)):
    summ = summ + (df['Xk'][i]**k*df['Wk'][i])
  return summ
# выборочный центральный момент k-ого порядка
def sample centr moment k(df, k):
  summ = 0
  sm = sample mean(df)
  for i in range(len(df)):
    summ = summ + ((df['Xk'][i]-sm)**k)*df['Wk'][i]
  return summ
# выборочный коэффициент асимметрии
def sample asymmetry coef(df, len of interval):
  return (sample centr moment k(df, 3) / sample dispersion with Shepard(df,
len of interval)**3)
# выборочный коэффициент эксцесса
def sample kurtosis coef(df, len of interval):
  return ((sample centr moment k(df, 4) / sample dispersion with Shepard(df,
len of interval)**4) - 3)
# In[131]:
def print all(df, first, len of interval):
  print('выборочное среднее =', round(sample_mean(df), 5))
  print('выборочная дисперсия =', round(sample dispersion with Shepard(df, len of interval),
  print('выборочное среднее квадратическое отклонение =',
round(sample quadratic deviation(df, len of interval), 5))
  print('выборочная мода =', round(sample fashion(df, first, len of interval), 5))
  print('выборочная медиана =', round(sample median(df, first, len of interval), 5))
  print('выборочниый момент 2-го порядка =', round(sample moment k(df, 2), 5))
  print('выборочный центральный момент 2-ого порядка =', round(sample centr moment k(df,
(2), (5))
```

```
print('выборочный коэффициент асимметрии =', round(sample asymmetry coef(df,
len of interval),5))
            print('выборочный коэффициент эксцесса =', round(sample kurtosis coef(df,
len of interval),5))
# ### построение
# In[22]:
# график эмпир. ф-ии распр.
def plot emperic(sort data, size):
             arr x = sort data
            arr y = []
            plt.figure(figsize=(10, 8), dpi=200)
            for i in range(len(sort data)-1):
                         arr y.append((i+1)/size)
                         plt.plot([arr x[i],arr x[i+1]], [arr y[i], arr y[i]])
            plt.plot([arr x[0]-0.3,arr_x[0]], [0,0], color='blue')
             plt.plot([arr x[-1],arr x[-1]+0.3], [1,1], color='blue')
            plt.yticks(arange(0, 1.1, step=0.1))
            plt.grid(True)
def plot hist(df, len of interval):
             width = len of interval
             plt.figure(figsize=(10, 8), dpi=200)
            plt.bar(df['Xk'], df['Wk']/width, width, color='orange', edgecolor='dodgerblue', linewidth=0.6)
            plt.xticks(df normal['Xk'])
            plt.show()
## нормальное распределение
# In[23]:
# data normal = stats.norm.rvs(a, sigma**2, 200)
# for i in range(size):
                     data normal[i] = round(data normal[i], 5)
# print(list(data normal))
data normal = [-0.70173, -0.05719, -1.65308, -1.01296, -1.99263, -1.2209, -0.98839, -0.8808, -1.01296, -1.99263, -1.2209, -0.98839, -0.8808, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.01296, -1.99263, -1.99263, -1.01296, -1.99263, -1.99263, -1.01296, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99263, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.99265, -1.
2.33442, -3.61558,
  0.52413, -2.69514, -2.92026, -2.05086, -4.28943, -0.56916, -1.64454, 0.26896, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.42977, -1.429
2.15677,
  -1.60152, -1.19808, -1.92039, -1.85156, -4.81043, -0.85691, -3.61121, -2.04912, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.96904, -3.9
1.40656,
  -0.56747, -2.31204, -1.67626, -2.36936, -4.21348, -1.26742, -4.01428, -2.90302, 0.40474, -6.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, -1.401428, 
1.46881.
  -2.68777, 0.8623, -0.73874, -3.47128, 0.78598, -1.84781, -1.96633, -4.76334, -3.0808, -0.25353,
  -1.34837, -0.85369, -2.31223, -3.92839, -5.8342, -4.79146, -2.37577, -2.14428, 0.24358, 0.4006,
```

```
-2.01923, -1.76944, -4.24736, -1.25184, -3.25124, -3.01075, -2.65712, -2.81276, -0.02107, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.25184, -1.2
3.64766,
  -0.16122, -2.0712, 0.35845, 0.39934, -0.91342, -1.10884, -3.05746, -0.96038, -0.60832, -0.65228,
 -1.29053, -0.37557, -2.76593, -0.80463, 0.95699, 3.72364, 0.61849, -1.3926, -0.1388, -2.76233,
 -2.10733, -0.17511, -2.72465, 0.96748, 2.29233, -3.26791, -0.87422, 0.59608, -2.45822, -3.07546,
 0.66913, -4.47839, -1.27483, -2.86937, -3.36879, -3.25012, -3.7023, -2.34538, 1.46169, -0.07601,
 -0.168, -3.14228, -3.89163, -4.44166, -1.77463, -4.72523, -3.39096, 1.53596, -2.44595, -3.06224,
 -4.249, -2.65346, -1.62075, 0.17642, -5.73048, -0.82383, -0.9719, -1.39183, -0.63895, -2.62225,
 -0.67351, -1.01372, -1.00875, -2.50627, -0.82341, -1.48967, 1.31873, -0.22601, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17914, -0.17
2.27375.
 -1.18683, -3.24379, -0.02634, -1.93927, 0.80787, -1.34957, -2.71346, -0.41952, -3.50022, -1.18683, -3.24379, -0.02634, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93927, -1.93
0.54566,
 0.4447, -2.92676, 1.44405, -1.07292, -5.59311, 0.60916, 0.57346, -2.83553, -0.4262, -3.4484,
 -5.3389, 2.47931, 0.8146, -3.25974, 1.50226, -0.30881, -2.32515, 1.09816, -2.96827, 0.25471,
 -1.37835, -0.98979, 1.07481, -5.29052, -1.36842, -3.41074, -2.10083, 0.68326, -2.10111, -
2.39642,
 0.27172, -2.49083, -2.3957, -2.00104, -1.49567, -1.66092, 0.60002, -2.41492, -2.67075, -0.91565,
 0.4624, 0.18403, -1.36015, 1.92313, 0.57428, -3.99065, -1.61141, -0.98953, -2.66193, -1.40212
# In[127]:
sort data normal = sorted(data normal)
for i in range(0,len(sort data normal),10):
        print(sort data normal[i], sort data normal[i+1],
                    sort data normal[i+2], sort data normal[i+3],
                    sort data normal[i+4], sort data normal[i+5],
                    sort data normal[i+6], sort data normal[i+7],
                    sort data normal[i+8], sort data normal[i+9])
# In[25]:
len of interval normal = len of interval i(sort data normal, m Sterdjes)
print('d =', len of interval normal)
# In[26]:
elems normal = make elems in intervals(sort data normal, len of interval normal)
for i in range(len(elems normal)):
        print(elems normal[i])
# In[27]:
Nk normal = count elems(elems normal)
Nk normal
```

```
# In[28]:
Wk_normal = relative_frequency(Nk_normal, size)
Wk normal
# In[29]:
Xk_normal = intervals_mid(sort_data_normal, len_of_interval_normal)
Xk normal
# In[30]:
df_normal = df_create(Xk_normal, Nk_normal, Wk_normal)
df normal
# In[31]:
summ = 0
for i in range(len(df_normal)):
  summ = summ + \overline{df}_normal['Wk'][i]
summ
# In[32]:
plot_emperic(sort_data_normal, size)
# In[33]:
plot_hist(df_normal, len_of_interval_normal)
# In[149]:
print_all(df_normal, sort_data_normal[0], len_of_interval_normal)
print()
print normal teor()
# In[150]:
```

```
normal teor values = normal teor probability(sort data normal, a, sigma, m Sterdies,
len of interval normal)
print()
for i in range(len(normal teor values)):
  print(abs(normal teor values[i]-Wk normal[i]))
# # показательное распределение
# In[109]:
# data exp = exponential(1/lam, size)
# for i in range(size):
    data exp[i] = round(data exp[i], 5)
# print(list(data exp))
data \exp = [0.06478, 0.0805, 0.47277, 0.2856, 0.21391, 0.29702, 0.41938, 0.38807, 0.02025,
0.00744,
0.37624, 0.16009, 0.51127, 0.03776, 0.09479, 1.94518, 0.24865, 0.0899, 0.00688, 0.28609,
0.30432, 0.39371, 0.16539, 0.40737, 0.40654, 0.10726, 0.20742, 0.4097, 0.38087, 0.49031,
0.11724, 0.90698, 1.16606, 0.71847, 0.03902, 0.3631, 0.3121, 0.16673, 0.52622, 0.49555,
0.49164, 0.714, 0.3829, 0.18736, 0.059, 1.14758, 0.30593, 0.01512, 0.63264, 0.1006,
1.07828, 0.85593, 0.03462, 0.07844, 0.65795, 0.7771, 0.1938, 0.29429, 0.00559, 0.10353,
0.05745, 0.01407, 0.74513, 0.0275, 0.64167, 0.69627, 0.20344, 0.18536, 0.01941, 0.14528,
0.31, 0.09946, 0.13164, 0.03624, 0.6076, 0.00263, 0.27706, 0.18708, 0.57342, 0.9322,
0.34903, 0.19833, 0.23167, 0.05974, 0.32255, 0.60119, 0.18743, 0.33066, 0.68373, 0.24904,
0.15978, 0.02259, 0.34784, 0.02115, 0.14699, 0.51034, 0.5407, 0.0784, 0.24316, 0.21541,
0.11264, 0.1715, 0.18719, 0.23529, 0.45881, 0.07007, 0.25074, 0.56781, 0.30803, 0.95646,
0.21363, 0.12606, 0.1258, 0.13642, 0.66989, 0.61823, 0.60302, 0.17047, 0.67091, 0.15276,
0.13246, 0.01983, 0.9179, 0.19317, 0.248, 0.05001, 0.10887, 0.00437, 0.05545, 0.21381,
0.0263, 0.53392, 0.12011, 0.53216, 0.31692, 0.2246, 1.34521, 0.14456, 0.19797, 0.22201,
0.3885, 0.42889, 0.3831, 0.8627, 0.35082, 0.44121, 0.4917, 1.07766, 1.61165, 1.36892,
0.14539, 0.07405, 0.37556, 0.48274, 0.38384, 0.31865, 0.00294, 0.16553, 0.2942, 0.48693,
1.03319, 0.24618, 0.08273, 0.15577, 0.97195, 0.15193, 0.0976, 0.05463, 0.10186, 0.08055,
1.04496, 1.04292, 0.15796, 0.33002, 0.78859, 0.07389, 0.30146, 0.62293, 0.068, 0.34017,
0.04832, 0.31765, 0.21355, 0.06148, 0.16026, 0.23271, 0.73297, 0.23003, 0.09353, 0.25247,
0.17974, 0.04044, 0.08438, 0.11937, 0.09273, 0.32843, 0.65551, 0.22847, 0.19335, 0.07031
# In[134]:
sort data exp = sorted(data exp)
for i in range(0,len(sort data exp),10):
  print(sort data exp[i], sort data exp[i+1],
      sort data exp[i+2], sort data exp[i+3],
      sort data \exp[i+4], sort data \exp[i+5],
      sort data exp[i+6], sort data exp[i+7],
      sort data \exp[i+8], sort data \exp[i+9])
```

# In[111]:

```
len of interval exp = len of interval i(sort data exp, m Sterdjes)
print('d =', len_of_interval_exp)
# In[112]:
elems exp = make elems in intervals(sort data exp, len of interval exp)
for i in range(len(elems exp)):
  print(elems_exp[i])
# In[113]:
Nk exp = count elems(elems exp)
Nk_exp
# In[114]:
Wk exp = relative frequency(Nk exp, size)
Wk_exp
# In[115]:
Xk exp = intervals mid(sort data exp, len of interval exp)
Xk exp
# In[116]:
df_exp = df_create(Xk_exp, Nk_exp, Wk_exp)
df exp
# In[117]:
summ = 0
for i in range(len(df_exp)):
  summ = summ + df_exp['Wk'][i]
summ
# In[118]:
plot emperic(sort data exp, size)
```

```
# In[119]:
plot hist(df exp, len of interval exp)
# In[133]:
print all(df exp, sort data exp[0], len of interval exp)
print()
print exp teor()
# In[157]:
exp teor values = exp teor probability(sort data exp, lam, m Sterdies, len of interval exp)
print()
for i in range(len(exp teor values)):
  print(round(abs(exp teor values[i]-Wk exp[i]), 5))
## равномерное распределение
# In[60]:
# data uni = stats.uniform.rvs(a uni, b, size)
# for i in range(size):
    data uni[i] = round(data uni[i], 5)
# print(list(data uni))
data uni = [0.79857, 0.63119, 1.11028, 0.49508, 0.0196, 1.21199, -0.31139, 0.91481, -0.07069,
1.11327,
0.1838, -0.61877, 1.45916, 1.10436, 0.79666, 0.07559, 0.04654, -0.04947, -0.60359, 1.12611,
1.2798, 0.17039, 1.30784, 0.908, 1.28977, -0.4696, 0.59497, -0.24997, 0.13608, -0.33474,
1.24208, -0.59398, 0.98557, 1.34538, 1.23372, 0.59462, -0.62703, 0.73473, -0.37247, -0.02931,
-0.23712, -0.2123, 1.172, 1.225, -0.44118, -0.24695, 0.69363, 0.75339, -0.63587, -0.17446,
0.69202, -0.1849, 1.26135, -0.06643, 0.71435, 1.00262, 0.36123, -0.14304, -0.15809, 1.39059,
0.09395, -0.28084, -0.0854, -0.37128, 0.39609, 0.70435, 0.88573, -0.48797, 1.32619, 1.21419,
0.26612, 0.25236, -0.38785, 0.53978, -0.73412, 1.28364, -0.66781, 0.24795, 0.59922, 0.90932,
0.46501, 1.15281, -0.2764, 0.61547, 0.6933, 1.30457, -0.38725, 0.65644, 0.35483, 1.45713,
-0.52343, -0.53374, 0.3719, 0.12529, -0.09714, 1.10538, -0.67559, 0.70414, 1.22534, -0.43454,
-0.74165, -0.23871, -0.02724, 0.27862, -0.19515, -0.48068, -0.69666, -0.06046, 0.52197, 0.50662,
0.23091, 0.50584, -0.42084, 0.79946, -0.41291, -0.49299, -0.35679, 0.66341, 0.08443, 0.96233,
0.53517, 0.5489, 1.28762, 1.08523, -0.53732, 0.07347, -0.36627, -0.7344, 1.36368, 0.33733,
0.52395, 1.00616, 0.73507, 1.49856, 0.28063, -0.20898, 0.86723, 1.46942, 1.49872, 1.09281,
1.27516, -0.70251, 0.82517, -0.0323, 0.05043, 0.78046, 0.1158, -0.44886, 0.03757, -0.06252,
0.55887, 1.32544, 0.61681, 0.55473, 0.85881, -0.10453, 0.40693, 0.87916, 1.4929, 0.62742,
1.11576, 0.68011, 1.06215, 0.57598, -0.5352, 0.59045, 0.37905, -0.0068, 1.39286, -0.18833,
1.37245, 1.24663, 0.19367, 0.28096, -0.07547, 0.40281, -0.63174, -0.62599, 1.20221, 1.2418,
```

```
0.10156, 1.48304, 0.44274, -0.47081, 1.10085, 1.32008, 1.42725, 0.83613, 0.83002, 0.2903,
0.01567, 1.22303, 0.44385, 0.89418, 0.63623, 0.26202, 0.18606, 1.43744, 0.8937, -0.41607
# In[135]:
sort_data_uni = sorted(data_uni)
for i in range(0,len(sort data uni),10):
  print(sort data uni[i], sort data uni[i+1],
      sort_data_uni[i+2], sort_data_uni[i+3],
      sort data uni[i+4], sort data uni[i+5],
      sort data uni[i+6], sort data uni[i+7],
      sort data uni[i+8], sort data uni[i+9])
# In[62]:
len of interval uni = len of interval i(sort data uni, m Sterdjes)
print('d =', len of interval uni)
# In[63]:
elems uni = make elems in intervals(sort data uni, len of interval uni)
for i in range(len(elems uni)):
  print(elems uni[i])
# In[64]:
Nk uni = count elems(elems uni)
Nk uni
# In[65]:
Wk_uni = relative_frequency(Nk_uni, size)
Wk uni
# In[66]:
Xk uni = intervals mid(sort data uni, len of interval uni)
Xk uni
# In[67]:
```

```
df uni = df create(Xk uni, Nk uni, Wk uni)
df_uni
# In[68]:
summ = 0
for i in range(len(df_uni)):
  summ = summ + df_uni['Wk'][i]
summ
# In[69]:
plot_emperic(sort_data_uni, size)
# In[70]:
plot hist(df uni, len of interval uni)
# In[158]:
print_all(df_uni, sort_data_uni[0], len_of_interval_uni)
print()
print_uni_teor()
# In[160]:
uni_teor_values = uni_teor_probability(sort_data_uni, a_uni, b, m_Sterdjes, len_of_interval_uni)
print()
for i in range(len(uni teor values)):
  print(round(abs(uni teor values[i]-Wk uni[i]), 5))
```