

Digital Logic and Computer Architecture - CS322M

Satyajit Das

Assistant Professor, Dept CSE

Co-Founder – Revin Tech

satyajit.das@iitg.ac.in

In This Lecture

- Why are arithmetic circuits so important
- Adders
 - Adding two binary numbers
 - Adding more than two binary numbers
 - Circuits Based on Adders
- Multipliers
- Functions that do not use adders
- Arithmetic Logic Units

Motivation: Arithmetic Circuits

- Core of every digital circuit
 - Everything else is side-dish, arithmetic circuits are the heart of the digital system
- Determines the performance of the system
 - Dictates clock rate, speed, area
 - If arithmetic circuits are optimized performance will improve
- Opportunities for improvement
 - Novel algorithms require novel combinations of arithmetic circuits, there is always room for improvement

Example: ARM Microcontroller

- Most popular embedded micro controller.
- Contains:
 - Multiplier
 - Accumulator
 - ALU/Adder
 - Shifter
 - Incrementer

Example: ARM Instructions

Arithmetic Based Instructions of ARM

Types of Arithmetic Circuits

- In order of complexity:
 - Shift / Rotate
 - Compare
 - Increment / Decrement
 - Negation
 - Addition / Subtraction
 - Multiplication
 - Division
 - Square Root
 - Exponentation
 - Logarithmic / Trigonometric Functions

Relation Between Arithmetic Operators

Addition

- Addition is the most important operation in computer arithmetic. Our topics will be:
 - Adding 1-bit numbers : Counting bits
 - Adding two numbers: Basics of addition
 - Circuits based on adders : Subtractors, Comparators
 - Adding multiple numbers : Chains of Adders
- Later we will also talk about fast adder architectures

Half-Adder (2,2) Counter

- The Half Adder (HA) is the simplest arithmetic block
- It can add two 1-bit numbers, result is a 2-bit number

• Can be realing

Α	В	C _o	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full-Adder (3,2) Counter

- The Full Adder (FA) is the essential arithmetic block
- It can add three 1-bit numbers, result is a 2-bit number
- There are many realizations both at gate and transistor level.
- Since it is used in building many arithmetic operations, the performance of one FA influences the overall performance greatly.

Adding Multiple 1-bit Numbers

Adding Multiple Digits

- Similar to decimal addition
- Starting from the right, each digit is added

Adding Multiple Digits

- Similar to decimal addition
- Starting from the right, each digit is added

• The cc

Ripple Carry Adder (RCA)

Curse of the Carry

The most significant outputs of the adder

Adding Multiple Numbers

- Multiple fast adders not a good idea
 - If more than 2 numbers are to be added, multiple fast adders are not really efficient
- Use an array of ripple carry adders
 - Popular and efficient solution
- Use carry save adder trees
 - Instead of using carry propagate adders (the adders we have seen so far), carry
 save adders are used to reduce multiple inputs to two, and then a single carry
 propagate adder is used to sum up.

Array of Ripple Carry Adders

Carry Save Principle

Reduces three numbers to two with a single gate delay

$$C + S = E + F + G$$

Carry Save Principle

$$Z = D + E + F + G + H$$

- An array of carry save adders reduce the inputs to two
- A final (fast) carry propagate adder (CPA) merges the two numbers
- Performance mostly dictated by CPA

Multipliers

- Largest common arithmetic block
 - Requires a lot of calculation
- Has three parts
 - Partial Product Generation
 - Carry Save Tree to reduce partial products
 - Carry Propagate Adder to finalize the addition
- Adder performance (once again) is important
- Many optimization alternatives

Decimal Multiplication

Binary Multiplication

For n-bit Multiplier m-bit Multiplicand

- Generate Partial Products
 - For each bit of the multiplier the partial product is either
 - when '0': all zeroes
 - when '1': the multiplicand

achieved easily by AND gates

- Reduce Partial Products
 - This is the job of a carry save adder
- Generate the Result (n + m bits)
 - This is a large, fast Carry Propagate Adder

Parallel Multiplier

Parallel Multiplier

Operations Based on Adders

- Several well-known arithmetic operation are based on adders:
 - Negator
 - Incrementer
 - Subtracter
 - Adder Subtracter
 - Comparator

Negating Two's Complement Numbers

• To negate a two's complement number

$$-A_= A + 1$$

- All bits are inverted
- One is added to the result
- Can be realized easily by an adder.
- B input is optimized away

Incrementer

- B input is zero
- Carry In (C_{in}) of the adder can be used as the Increment (Inc) input
- Decrementer similar in principle

Subtracter

- B input is inverted
- C_{in} of the adder is used to complement B

Subtracter

- B input is inverted
- C_{in} of the adder is used to complement B
- It can be made programmable so that both additions and subtractions can be performed at the same time

Comparator

• Based on a Subtractor

Functions Realized Without Adders

- Not all arithmetic functions are realized by using adders
 - Shift / Rotate Units
- Binary Logic functions are also used by processors
 - AND
 - OR
 - XOR
 - NOT

These are implemented very easily

Shifters

• Logical shifter: shifts value to left or right and fills empty spaces with 0's

```
Ex: 11001 >> 2 = ??Ex: 11001 << 2 = ??</li>
```

• **Arithmetic shifter:** same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb).

```
Ex: 11001 >>> 2 = ??Ex: 11001 <<< 2 = ??</li>
```

 Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end

```
Ex: 11001 ROR 2 = ??Ex: 11001 ROL 2 = ??
```

Shifters

• Logical shifter: shifts value to left or right and fills empty spaces with 0's

```
Ex: 11001 >> 2 = 00110
Ex: 11001 << 2 = 00100</li>
```

• **Arithmetic shifter:** same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb).

```
Ex: 11001 >>> 2 = 11110
Ex: 11001 <<< 2 = 00100</li>
```

 Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end

```
Ex: 11001 ROR 2 = 01110
Ex: 11001 ROL 2 = 00111
```

Shifter Design

Shifters as Multipliers and Dividers

• A left shift by N bits multiplies a number by 2^N

```
• Ex: 00001 << 2 = 00100 (1 \times 2^2 = 4)
```

- Ex: $11101 << 2 = 10100 (-3 \times 2^2 = -12)$
- The arithmetic right shift by N divides a number by 2^N
 - Ex: $01000 >>> 2 = 00010 (8 \div 2^2 = 2)$
 - Ex: $10000 >>> 2 = 11100 (-16 \div 2^2 = -4)$

Other Functions

- We have covered 90% of the arithmetic functions commonly used in a CPU
- Division
 - Dedicated architectures not very common
 - Mostly implemented by existing hardware (multipliers, subtractors comparators) iteratively
- Exponential, Logarithmic, Trigonometric Functions
 - Dedicated hardware (less common)
 - Numerical approximations:

$$exp(x) = 1 + x^2/2! + x^3/3! + ...$$

Look-up tables (more common)

Arithmetic Logic Unit

The reason why we study digital circuits:
the part of the CPU that does something (other than
copying data)

- Defines the basic operations that the CPU can perform directly
 - Other functions can be realized using the existing ones iteratively.
 (i.e. multiplication can be realized by shifting and adding)
- Mostly, a collection of resources that work in parallel.
 - Depending on the operation one of the outputs is selected

Example: Arithmetic Logic Unit (ALU), pg243

F _{2:0}	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

Example: ALU Design

F _{2:0}	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

Set Less Than (SLT) Example

- Configure a 32-bit ALU for the set if less than (SLT) operation. Suppose A = 25 and B = 32.
 - A is less than B, so we expect Y to be the 32-bit representation of 1 (0x0000001).

Set Less Than (SLT) Example

- Configure a 32-bit ALU for the set if less than (SLT) operation. Suppose A = 25 and B = 32.
 - A is less than B, so we expect Y to be the 32-bit representation of 1 (0x0000001).
 - For SLT, $F_{2.0} = 111$.
 - F2 = 1 configures the adder unit as a subtracter. So 25 32 = -7.
 - The two's complement representation of

 7 has a 1 in the most significant bit, so
 S₃₁ = 1.
 - With F_{1:0} = 11, the final multiplexer selects

 $Y = S_{31}$ (zero extended) = 0x0000001

What Did We Learn?

- How can we add, subtract, multiply binary numbers
- What other circuits depend on adders
 - Subtracter
 - Incrementer
 - Comparator
 - Important part of Multiplier
- Other functions (shifting)
- How is an Arithmetic Logic Unit constructed