2

3

1

2

1

1

2

1

WHAT IS CLAIMED IS:

1	1. A primary lithium electrochemical cell comprising:
2	a cathode including lambda-manganese dioxide;
3	an anode including lithium;
4	a separator between the anode and the cathode; and
5	an electrolyte contacting the cathode, the anode and the separator,
6	wherein the cell has an average closed circuit voltage of about between about 3.8 and
7	4.1V and a specific discharge capacity to a 3V cutoff of greater than 130 mAh/g at a nominal
8	discharge rate of 1 mA/cm ² .

- 2. The electrochemical cell of claim 1, wherein the cell has a 3V cutoff of greater than 135 mAh/g.
- 3. The electrochemical cell of claim 1, wherein the cell has a 3V cutoff of 140 mAh/g or greater.
- 4. The electrochemical cell of claim 1, wherein the lambda-manganese dioxide is maintained at a temperature of less than 150°C during processing or cathode fabrication.
- 5. The electrochemical cell of claim 1, wherein the cathode containing the lambdamanganese dioxide is maintained at a temperature of 120°C or less during processing or fabrication.
- 6. The electrochemical cell of claim 1, wherein the lambda-manganese dioxide has a BET surface area of greater than 4 m²/g.
- 7. The electrochemical cell of claim 1, wherein the lambda-manganese dioxide has a BET surface area of greater than 8 m²/g. 2
 - 8. The electrochemical cell of claim 1, wherein the lambda-manganese dioxide has a total pore volume of from 0.05 to 0.15 cubic centimeters per gram.

6

7

1

2

1	9. A primary lithium electrochemical cell comprising:
2	a cathode including lambda-manganese dioxide having a total pore volume of greater
3	than 0.11 cubic centimeters per gram, and the lambda-manganese dioxide has a BET surface
4	area of greater than 8 m ² /g, wherein the lambda-manganese dioxide is maintained during
5	processing at a temperature of 120°C or less;
6	an anode including lithium or a lithium alloy;
7	a separator between the anode and the cathode; and
8	an electrolyte contacting the cathode, the anode and the separator,
9	wherein the cell has an average closed circuit voltage of about 4V, a specific
0	discharge capacity to a 3V cutoff of greater than 130 mAh/g at a nominal discharge rate of 1
1	mA/cm ² .

- 10. The electrochemical cell of claim 9, wherein the cell has a 3V cutoff of 135 mAh/g or greater at a nominal discharge rate of 0.4 mA/cm².
- 11. A method of preparing lambda-manganese dioxide comprising: contacting water with a compound of the formula Li_{1+x}Mn_{2-x}O₄, wherein x is from -0.02 to +0.02;

adding an acid to the water and compound until the water has a pH of 1 or less; separating a solid from the water and acid; and

drying the solid at a temperature of 120°C or below to obtain the lambda-manganese dioxide.

- 12. The method of claim 11, wherein the compound has a BET surface area of between 1 and 10 m²/g.
- 13. The method of claim 11, wherein the compound has a spinel-type crystal 1 2 structure.
- 14. The method of claim 11, wherein the solid is dried at a temperature between 30°C 1 to 90°C. 2

1	15. The method of claim 11, wherein the solid is dried at a temperature between 50°C
2	and 70°C.
1	16. The method of claim 11, wherein x is from -0.005 to $+0.005$.
1	17. The method of claim 11, wherein contacting water and the compound includes
2	forming a slurry.
1	18. The method of claim 17, wherein the slurry is maintained at a temperature below
2	50°C.
1 2	19. The method of claim 11, wherein the acid sulfuric acid, nitric acid, perchloric acid, hydrochloric acid, toluenesulfonic acid or trifluoromethylsulfonic acid.
1	20. The method of claim 17, wherein the temperature of the slurry is held
2	substantially constant during the addition of acid.
1	21. The method of claim 11, wherein the pH is 0.7 or less.
1	22. The method of claim 11, wherein the acid has a concentration of between 1 and 8
2	molar.
1	23. The method of claim 11, further comprising washing the solid separated from the
2	liquid phase with water until the washings have a pH of between 6 and 7.
1	24. A method of manufacturing an electrochemical cell comprising:
2	providing an positive electrode including a lambda-manganese oxide; and
3	forming a cell including the electrode and a lithium negative electrode,
4	wherein the cell has a closed circuit voltage of about 4V and a specific discharge
5	capacity at a nominal discharge rate of 1 mA/cm ² to a 3V cutoff of greater than 120 mAh/g.

1	25. The method of claim 24, wherein providing the electrode includes preparing
2	lambda-manganese dioxide by a method comprising:
3	contacting water with a compound of the formula Li _{1+x} Mn _{2-x} O ₄ , wherein x is from
4	-0.02 to +0.02;
5	adding an acid to the water and compound until the water has a pH of 1 or less;
6	separating a solid from the water and acid; and
7	drying the solid at a temperature of 120°C or below to obtain the lambda-manganese
8	dioxide.