CSC 315, Fall 2016 Exam II Outline

- 1. Empirical probability
 - a. Formula: empirical probability of an event E = its long run proportion

$$P(E) = \frac{\text{# of times event occurs}}{\text{# of trials or experiments}}$$

- b. Can be calculated in *R* using the *replicate* function to replicate an event (implemented in a function) such as flipping a coin.
- 2. Classical probability
 - a. Formula: classical probability of an event E =

$$P(E) = \frac{\text{# of ways in which E occurs}}{\text{# of possible outcomes in the sample space}}$$

when all possible outcomes are equally likely

- b. Can be calculated in *R* using the *permutations* function from the library *gtools*. Note: in some cases, the *combinations* function can also be used (for example, for the sample space of possible poker hands, where the order of cards does not matter). I will give you the code if *combinations* is appropriate.
- 3. Probability distributions
 - a. The probability that a random variable X is less than the value k can be calculated based on classical probability and is

$$P(X < k) = \frac{\# of \ oservations < k}{total \# of \ observations \ (sample \ size)}$$

- b. This probability is equivalent to the sum of histogram densities for the bars corresponding to X < k.
- c. This probability is equivalent to the area under the curve between $-\infty$ and k for a probability density function.
- d. For any probability density function, the area under the curve between points a and b is equal to the P(a < X < b).
- 4. The normal probability distribution.
 - a. $X \sim N(\mu, \sigma)$ if it is a unimodal, symmetric, bell-shaped distribution with mean μ and standard deviation σ

- b. Empircal rule: for a normal distribution, approximately 68%, 95% and 99% of observations are within 1, 2, and 3 standard deviations of the mean.
- c. The standard normal distribution is a normal distribution with $\mu=0$ and $\sigma=1$.
- d. *R* functions:
 - i. *pnorm* to calculate probabilities (area under the curve and to the *left* of the specified value)
 - ii. *dnorm* to calculate the probability density (e.g., if plotting the curve)
 - iii. *qnorm* to calculate percentiles of the normal distribution
 - iv. *rnorm* random number generation
- 5. Sampling distribution of the sample mean
 - a. The sample mean is a random variable!
 - b. Central Limit Theorem: If a distribution X has mean μ and standard deviation σ then the sample distribution of the sample mean \overline{X}_n from a sample of size n has mean μ and standard deviation σ/\sqrt{n} . Furthermore, the distribution of \overline{X}_n is normal if X is normally distributed, and approximately normal if n > 30. The larger the sample size, the closer to normal the distribution.
- 6. Hypothesis testing based on a population proportion, a population mean, the difference between population means, or difference between two proportions.
 - a. State the null and alternative hypotheses
 - b. Specify the distribution of the sample statistic (i.e., a sample proportion or sample mean) under the null hypothesis, and graph this distribution.
 - c. Calculate/find the test statistic (using the *prop.test* or *t.test* functions), or manually using the appropriate formula
 - d. Find the *p*-value
 - i. From *prop.test* or *t.test*
 - ii. Based on a z- or t- test statistic and using the *pnorm* or *pt* function with appropriate degrees of freedom.
 - e. State the conclusion regarding the null hypothesis in the context of the problem, and justify your conclusion based on the *p*-value.
 - f. Interpretation of Type I or Type II errors