Importing libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Reading data

- Ambient Pressure (AP) in the range 992.89-1033.30 milibar,
- Relative Humidity (RH) in the range 25.56% to 100.16%
- Exhaust Vacuum (V) in teh range 25.36-81.56 cm Hg
- Net hourly electrical energy output (EP)

4 10.82 37.50 1009.23 96.62 473.90

we are trying to predict EP based on the other features there is no categorical data so we don't need to do any encoding

Spliting the data set for training and testing

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
```

Multiple Regression

Polynomial Regression

- SVR

```
from sklearn.svm import SVR
# have to standardize x train and y train
from sklearn.preprocessing import StandardScaler
sc x = StandardScaler()
sc y = StandardScaler()
x train std = sc x.fit transform(x train)
# y has to be a matraix
y train std = y train.reshape(len(y train), 1)
y_train_std = sc_y.fit_transform(y_train_std)
svr = SVR(kernel='rbf')
svr.fit(x train std, y train std)
     C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:761: DataConversi
       y = column or 1d(y, warn=True)
     SVR(C=1.0, cache size=200, coef0=0.0, degree=3, epsilon=0.1,
       gamma='auto_deprecated', kernel='rbf', max_iter=-1, shrinking=True,
       tol=0.001, verbose=False)
```

→ Decision Tree

```
from sklearn.tree import DecisionTreeRegressor
    tree reg = DecisionTreeRegressor(random state=0)
https://colab.research.google.com/drive/1oNUwQciGMIP5TO1bNrn2Mc4jOVyvh2aU#printMode=true
```

Random Forest

Model evaluation

```
from sklearn import metrics
# multiple linear regression
lin_reg_score = metrics.r2_score(y_test, lin_reg.predict(x_test))
print("Multiple Linear regression score: ", lin reg score)
# random forest regression
forest_reg_score = metrics.r2_score(y_test, forest_reg.predict(x_test))
# from 10 to 500, it didn't improve much
#TODO: how do you set the number of instances
print("Random Forest regression score: ", forest_reg_score)
#decision regression
tree_reg_score = metrics.r2_score(y_test, tree_reg.predict(x_test))
print("Decision Tree regression score: ", tree reg score)
# random forest regression
x_poly_test = poly_reg.fit_transform(x_test)
poly_reg_score = metrics.r2_score(y_test, lin_reg_2.predict(x_poly_test))
print("Polynomial regression score: ", poly reg score)
# svr
y_pred_svr = sc_y.inverse_transform(svr.predict(sc_x.transform(x_test)))
svr_score = metrics.r2_score(y_test, y_pred_svr)
```

print(Svk score: , svr_score)

Multiple Linear regression score: 0.9325315554761303 Random Forest regression score: 0.9615980699813017 Decision Tree regression score: 0.9226091050550043 Polynomial regression score: 0.945819341122773

SVR score: 0.9480784049986264