

CHEMISTRY HIGHER LEVEL PAPER 1

Thursday 10 May 2001 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

221-152 14 pages

0
$\overline{}$
2
ಹ
U
•
ರ
0
•=
er
~

2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)	
	9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)	
	8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60		
	7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98	
	6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	, ,	
	5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37	
			30 Zn 65.37	48 Cd 112.40	80 Hg 200.59	
			29 Cu 63.55	47 Ag 107.87	79 Au 196.97	
			28 Ni 58.71	46 Pd 106.42	78 Pt 195.09	
			27 Co 58.93			109 Mt
			26 Fe 55.85	44 Ru 101.07	76 Os 190.21	108 Hs
			25 Mn 54.94	43 Tc 98.91	75 Re 186.21	107 Bh (262)
Atomic Number	Atomic Mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85	106 Sg (263)
Atomic	Atomi		23 V 50.94	41 Nb 92.91	73 Ta 180.95	105 Db (262)
			22 Ti 47.90	40 Zr 91.22	72 Hf 178.49	104 Rf (261)
			21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)
	4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)
1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)

Lu	174.97		103	Lr	(260)
$^{\mathrm{Ap}}$	173.04		102	No	(259)
			101	Md	(258)
Er.	167.26		100	Fm	(257)
Ho	164.93		66	Es	(254)
Dy	162.50		86	Cf	(251)
$^{\mathrm{L}}$	158.92		26	Bķ	(247)
Вd	157.25		96	Cm	(247)
Eu	151.96		95	Am	(243)
			94	Pu	(242)
Pm	146.92		93	Np	(237)
PN	144.24		92	Ω	238.03
Pr	140.91		91	Pa	231.04
Ce	40.12		06	Th	232.04
	Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb	Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 0.12 140.91 144.24 146.92 150.35 151.96 157.25 158.92 162.50 164.93 167.26 168.93 173.04 174.97	Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 140.91 144.24 146.92 150.35 151.96 157.25 158.92 162.50 164.93 167.26 168.93 173.04	Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 140.91 144.24 146.92 150.35 151.96 157.25 158.92 162.50 164.93 167.26 168.93 173.04 91 92 93 94 95 96 97 98 99 100 101 102	Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 140.91 144.24 146.92 150.35 151.96 157.25 158.92 162.50 164.93 167.26 168.93 173.04 91 92 93 94 95 96 97 98 99 100 101 102 Pa Np Pu Am Cm Bk Cf Es Fm Md No

1.		cm 3 of 0.200 moldm $^{-3}$ H $_3$ PO $_4$ (aq) is converted into Na $_2$ HPO $_4$ (aq). What volume (in cm 3) of 0 moldm $^{-3}$ NaOH(aq) is required?
	A.	10.0
	B.	13.3
	C.	20.0
	D.	30.0
2.		reason for the general increase in ionisation energy of the elements across period 3 of the odic Table is the increasing number of
	A.	outer electrons.
	B.	neutrons.
	C.	protons.
	D.	electron sub-levels occupied.
3.	Whi	ch molecule has the greatest polarity?
	A.	Fluorine
	B.	Hydrogen fluoride
	C.	Hydrogen chloride
	D.	Tetrafluoromethane
4.	Whi	ch is the best description of metallic bonding?
	A.	The attraction between oppositely charged ions
	B.	The attraction between protons and electrons
	C.	The attraction between positive ions and delocalised electrons

221-152 Turn over

The attraction between nuclei and electron pairs

D.

- **5.** Which compound is the most soluble in water?
 - A. Methane
 - B. Propane
 - C. Propan-1-ol
 - D. Pentan-1-ol
- **6.** Which change will have the greatest effect on the pressure of a fixed mass of an ideal gas?

	Volume	Temperature / K
A.	Doubles	Halves
B.	Doubles	Doubles
C.	Halves	Halves
D.	Halves	Remains constant

- 7. Which process is endothermic?
 - A. $H_2O(g) \rightarrow H_2O(l)$
 - B. $H_2O(1) \rightarrow H_2O(s)$
 - C. $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$
 - D. $H_2O(g) \rightarrow 2H(g) + O(g)$

- 8. An experiment was carried out to measure the enthalpy change of solution of sodium hydroxide when a small amount of it is dissolved in water. x mol of sodium hydroxide was dissolved in y g of water, giving a temperature rise of z °C. The specific heat capacity of water is $c \lg^{-1} K^{-1}$. Which expression should be used to calculate the molar enthalpy change (in $\lg mol^{-1}$)?
 - A. $\frac{xyz}{c}$
 - B. $\frac{xy}{cz}$
 - C. $\frac{c}{xyz}$
 - D. $\frac{cyz}{x}$
- **9.** Some average bond enthalpies (in kJ mol⁻¹) are as follows:

$$H-H = 436$$
, $Cl-Cl = 242$, $H-Cl = 431$

What is the enthalpy change (in kJ) for the decomposition of hydrogen chloride?

$$2HCl \rightarrow H_2 + Cl_2$$

- A. -184
- B. +184
- C. +247
- D. -247
- **10.** The reaction between nitrogen and oxygen in the atmosphere under normal conditions is extremely slow. Which statement best explains this?
 - A. The concentration of oxygen is much lower than that of nitrogen
 - B. The molar mass of nitrogen is less than that of oxygen
 - C. The frequency of collisions between nitrogen and oxygen molecules is lower than that between nitrogen molecules themselves
 - D. Very few nitrogen and oxygen molecules have sufficient energy to react

- 11. The position of equilibrium in a reversible reaction is shifted to the right until it reaches equilibrium again. Which statement must be true for the reaction when the new position of equilibrium is reached?
 - A. The rate of the forward reaction is greater than the rate of the reverse reaction
 - B. The concentrations of reactants and products do not change
 - C. The concentrations of reactants and products are equal
 - D. The value of K_c is greater than 1
- 12. Which change will shift the position of equilibrium to the right in this reaction?

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ}$

- A. Increasing the temperature
- B. Decreasing the pressure
- C. Adding a catalyst
- D. Removing ammonia from the equilibrium mixture
- 13. Which of the following represents a conjugate acid-base pair in this reaction?

$$CH_3COOH(aq) + H_2O(1) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$$

- A. CH₃COOH/H₂O
- B. CH₃COOH/CH₃COO
- C. CH₃COOH/H₃O⁺
- D. CH_3COO^-/H_3O^+

- **14.** Which statement is **not** correct?
 - A. Hydrochloric acid can have a pH value of zero
 - B. pH paper contains more than one indicator
 - C. The pH value of an acidic solution decreases when water is added to it
 - D. Dilute hydrochloric acid conducts electricity
- **15.** Which statement about the MnO_4^- ion is correct?
 - A. An acidified solution of MnO₄ oxidises fluoride ions
 - B. The oxidation number of manganese in MnO_4^- is +5
 - C. An acidified solution of MnO₄ oxidises bromide ions
 - D. The oxidation number of oxygen in MnO_4^- is +2
- **16.** During the electrolysis of a molten salt, which statement is **not** correct?
 - A. The ions only move when a current flows
 - B. Positive ions are attracted to the negative electrode
 - C. Positive ions gain electrons at the negative electrode
 - D. Negative ions lose electrons at the positive electrode
- 17. Which product is formed from the reaction between CH₃COOH and CH₃CH₂OH?
 - A. CH₃COOCH₂CH₃
 - B. CH₃CH₂COOCH₂CH₃
 - C. CH₃CH₂COOCH₃
 - D. CH₃COOCH₃

221-152 **Turn over**

-8-

18. Whi	ich compou	nd is opti	ically active?
----------------	------------	------------	----------------

- A. CH₃COCH(CH₃)₂
- B. $(CH_3)_3CCHO$
- C. CH₃CH₂COCH₂CH₃
- D. CH₃CH₂CH(CH₃)CHO

19. In which pair do both types of compound take part in hydrogen bonding?

- A. Alkanals and esters
- B. Bromoalkanes and alkanals
- C. Alkanes and alkenes
- D. Alkanols and amines

20. Which product is formed in the reaction between ethene and bromine?

- A. CHBr=CH₂
- B. CHBr=CHBr
- C. CH₂BrCH₂Br
- D. CH₃CH₂Br

21. The separation of ions in a mass spectrometer depends on

- A. only the charge on the ions.
- B. only the mass of the ions.
- C. the mass and the charge of the ions.
- D. only the velocity of the ions.

- 22. The electronic configuration of chromium (Cr) is
 - A. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4 4s^2$.
 - B. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$.
 - C. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$.
 - D. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^5$.
- 23. Which could **not** act as a ligand in a complex ion of a d-block element?
 - A. Cl
 - B. NCl₃
 - C. PCl₃
 - D. PCl₅
- **24.** In which of the following are the compounds BF₃, CH₄, CO₂ and SF₆ arranged in **decreasing** order of bond angle?
 - A. BF_3 , CH_4 , CO_2 , SF_6
 - B. BF_3 , SF_6 , CO_2 , CH_4
 - C. CO_2 , BF_3 , CH_4 , SF_6
 - D. SF₆, CO₂, CH₄, BF₃

- **25.** Which molecule has the longest nitrogen–nitrogen bond length?
 - A. N_2
 - $B. \qquad N_2 F_2$
 - $C. N_2H_4$
 - D. N_2H_2
- **26.** Which species is/are sp² hybridised?
 - I. C_2H_4
 - II. C_2H_6
 - III. C_3H_6
 - A. I only
 - B. I and II only
 - C. I and III only
 - D. II and III only
- **27.** Which species contains no delocalised electrons?
 - A. O₃
 - B. NO_3^-
 - C. CO_3^{2-}
 - D. H₂SO₄

- **28.** In which of the following are the compounds CaF₂, CaCl₂, CsF and LiF arranged in **increasing** order of lattice enthalpy?
 - A. CaCl₂, CaF₂, CsF, LiF
 - B. CsF, LiF, CaCl, , CaF,
 - C. CaCl₂, CaF₂, LiF, CsF
 - D. LiF, CaF₂, CsF, CaCl₂
- **29.** Which reaction has an entropy change closest to zero?
 - A. $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - B. $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$
 - C. $NH_3(g) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)$
 - D. $P_4(s) + 4OH^-(aq) + 4H_2O(1) \rightarrow 4H_2PO_2^-(aq) + 2H_2(g)$
- **30.** The reaction

$$3M + Q \rightarrow M_3Q$$

is first order with respect to M and second order with respect to Q. When $[M] = 0.100 \, \text{mol dm}^{-3}$ and $[Q] = 0.020 \, \text{mol dm}^{-3}$, the rate is $0.010 \, \text{mol dm}^{-3} \, \text{s}^{-1}$. What is the value of the rate constant, in $\text{mol}^{-2} \, \text{dm}^6 \, \text{s}^{-1}$?

- A. 10
- B. 100
- C. 250
- D. 500

31.	Wha	at is the effect of adding a catalyst to a reaction mixture at equilibrium?
	A.	It decreases the activation energy of the forward reaction and increases the activation energy of the reverse reaction
	B.	It decreases both the activation energy and the enthalpy change of the forward reaction
	C.	It decreases the activation energies of both forward and reverse reactions
	D.	It decreases the activation energies and enthalpy changes of both forward and reverse reactions
32.		cm³ of liquid bromine is placed in an empty 100 cm³ bottle, which is then sealed and left to reach librium at room temperature. What happens first?
	A.	The rate of evaporation is greater than the rate of condensation
	B.	The rate of condensation is greater than the rate of evaporation
	C.	The rate of evaporation is equal to the rate of condensation
	D.	There is no evaporation or condensation
33.	The	pH value of a 1.00×10^{-3} mol dm ⁻³ solution of sodium hydroxide is
	A.	3.
	B.	8.
	C.	11.
	D.	14.
34.	Whi	ch salt would form a neutral solution when dissolved in water?
	A.	FeCl ₃
	B.	Na_2CO_3
	C.	KBr
	D.	$\mathrm{NH_4NO_3}$

35.	Whi	ch factor does not affect the value of the standard electrode potential of a half-cell?
	A.	The surface area of the electrode
	B.	The concentration of the solution
	C.	The temperature of the solution
	D.	The material of the electrode
36.	The	mass of a metal deposited during electrolysis does not depend on
	A.	the current flowing.
	B.	the voltage between the electrodes.
	C.	the time for which the current passes.
	D.	the charge on the metal ion.
37.		infrared spectrum of a compound shows a broad absorption band at 3325 cm ⁻¹ and another band at 0 cm ⁻¹ , but no absorption around 1700 cm ⁻¹ . Which type of compound is it most likely to be?
	A.	Amine
	B.	Alkanol
	C.	Alkanone
	D.	Alkanoic acid
38.	Whi	ch is a correct description of a free radical?
	A.	It is a negatively charged species formed by the homolytic fission of a covalent bond
	B.	It is a neutral species formed by the heterolytic fission of a covalent bond
	C.	It has an unpaired electron and is formed by the heterolytic fission of a covalent bond

221-152 Turn over

It has an unpaired electron and is formed by the homolytic fission of a covalent bond

D.

39.	. Which molecule does not act as a nucleophile in a reaction with a halogenoalkane?			
	A.	Ethane		
	B.	Ethanol		
	C.	Ethylamine		
	D.	Water		
40.	Alka	nols can undergo dehydration reactions. Which products could be obtained from the dehydration of nol?		
	A.	Ethane and ethanal		
	B.	Ethene and ethanal		
	C.	Ethene and ethoxyethane		
	D.	Ethanal and ethanoic acid		

39.