

Trabalho Prático 02 – Máquinas de Estado Finito CCF 251 – Introdução aos Sistemas Lógicos Ciência da Computação – Campus UFV-Florestal Prof. José Augusto Miranda Nacif

Uma empresa está desenvolvendo uma máquina para decifrar mensagens enviadas por um grupo de hackers, tentando assim descobrir qual será a próxima ação do grupo. Os 16 grupos de ISL serão responsáveis por decifrar 16 combinações no total de conjuntos, que servirão de base para decodificar as informações recebidas.

Descrição da Máquina

Trata-se de uma máquina de estados de Moore, que possui uma entrada de 8 bits, correspondente a uma letra criptografada em um terminal, e seu bit de controle. A saída possui 4 bits, que corresponde a uma saída de uma ação, ou número decodificado.

O bit mais à esquerda da entrada corresponde ao bit de controle, que irá determinar junto com o sinal de subida do clock, se a informação será mandada para frente ou não.

Figura 1 - Detalhamento dos 8 bits de entrada da máquina de estados

Os bits correspondentes de entrada correspondem a um dos primeiros 5 caracteres diferentes colocados na tabela de criptografia, que significam o tipo de informação a ser inserida no decodificador. Visto que interferências podem alterar os valores recebidos, a primeira entrada pode mudar de um estado para o outro lendo um caractere codificado diferente, corrigindo assim o seu erro. Porém, para

a correção de erros, apenas o caractere próximo pode ser usado para correção (Ou seja, C1 <=> C2 <=> C3 <=> C4 <=> C5), caso contrário, será considerado uma mensagem inválida (Saída 1000) (Exemplo: C1 não pode ir para C3, então vai para saída inválida).

A próxima entrada, corresponde aos 3 últimos caracteres colocados na tabela.

- O 6° caractere leva os 3 primeiros estados (C1 a C3) a saída 1, significando que a informação recebida é uma ação.
- O 7° caractere leva a uma saída Inválida para todos os 5 estados (C1 a C5), significando que o código recebido é uma mensagem falsa.
- O 8° caractere leva os últimos 2 estados (C4 e C5) a saída 2, significando um horário.

Tabela abaixo para as saídas:

Saída	Estado			
0000	Estado inicial			
0001	Estado 1 (Letra 1)			
0010	Estado 2 (Letra 2)			
0011	Estado 3 (Letra 3)			
0100	Estado 4 (Letra 4)			
0101	Estado 5 (Letra 5)			
1000	Mensagem Falsa, Invalido			
1001	Saída 1, Ação			
1010	Saída 2, Horário			

Tabela 1 - Valores de saída

Algo a se notar é que a máquina precisa de um sinal de RESET para retornar ao estado inicial. Ela não roda continuamente.

Grupo	C1	C2	С3	C4	C5	C6	C7	C8
1	8		\Box	8	8	8	8	8
2	8	8	8	8	8	В	8	8
3	8	8	8	В	8	8	8	8
4	8	8	8	8	8	8	8	8
5	8	8	В	8	8	В	8	8
6	8	8	8	8	8	8	8	8
7	8	8	В	8	8	B	В	8
8	8	8	8				8	0
9	8	8	8	8	8	8	8	8
10	8	8	8	8	В	8	8	8
11	8	8	8	8	8	8	В	8
12	8	8	8	8	8	В	8	8
13	8	8	8	8	8	8	8	8
14	8	8	8	8	8	8	8	8
15	8	8	8	8	8	8	8	8
16	8	8	8	8	8	8	8	8

Tabela 2 - Tabela de codificação.

Figura 2 - Display de 7 Segmentos.

Observações:

- É necessário uma borda de subida de clock e o bit de controle ativo para avançar para o próximo estado.
- A máquina deve ser capaz de alternar entre os estados 1-5 andando entre eles caso a letra mude.
- O botão de RESET que retornará a máquina para o estado inicial.
- A utilização de desenhos ou ferramentas como a JFLAP para a representação da máquina de estados é obrigatória.

Dicas:

• Não é necessário a criação ou utilização de um mapa de Karnaugh nem da função Assign. A entrada deverá ser checada para a mudança de estados, e a saída deve ser impressa no terminal.

Avaliação:

- Funcionalidade do código fonte em Verilog/SystemVerilog e organização do código (legibilidade e separação de módulos).
- Vídeo de 2 a 4 minutos apresentando o grupo e a execução do trabalho para pelo menos os casos teste apresentados na tabela 3.
- Documentação do trabalho com a máquina de estados. Apresente os estados e transições. É recomendado usar um desenho para representar a máquina de estados, pode ser feito à mão ou digital. Faça pelo menos uma introdução, desenvolvimento e conclusão. Coloque os nomes e números de matrícula dos integrantes do grupo.

O que deverá ser entregue:

Uma única pasta compactada em formato zip contendo os arquivos acima.
Deixe sua pasta organizada, separe os arquivos em subpastas para cada tópico (código, vídeo e documentação).

Informação:

 É permitido que grupos comuniquem entre si sobre como resolver o trabalho, mas é PROIBIDA a cópia de quaisquer partes de código fonte e/ou documentação. Cópias serão exemplarmente punidas para quem copiou e quem forneceu o trabalho.