```
In [112]: #Ho Wing Wong
import statsmodels.api as sm
from scipy import stats
import matplotlib.pyplot as plt
import numpy as np
```

```
In [113]:
          #1
          bc4000 = [131, 138, 125, 129, 131, 135, 132, 134, 138]
          bc1850 = [129, 134, 136, 137, 137, 129, 136, 138, 134]
          ad150 = [128, 138, 136, 139, 141, 142, 137, 145, 137]
          F, P = stats.f oneway(bc4000, bc1850, ad150)
          print('a, ')
          print('H0: 4000B.C. mean - 1850 B.C. mean - 150 A.D. mean = 0')
          print('Ha: 4000B.C. mean - 1850 B.C. mean - 150 A.D. mean != 0')
          print('F = ', F)
          print('P = ', P)
          print('Because P < .05, we reject null hypothesis. There are changes in
           head shape over time')
          print('b, ')
          print('I think 4000 B.C. and 150 A.D. are not equal, because thay have t
          o longest time range')
          print('H0: mean of 4000 B.C. = mean of 150 A.D')
          print('H0: mean of 4000 B.C. != mean of 150 A.D')
          F, P = stats.f oneway(bc4000, ad150)
          print('F = ', F)
          print('P = ', P)
          print('Because P < .05, we reject null hypothesis. The means are not equ
          al')
```

```
a, H0: 4000B.C. mean - 1850 B.C. mean - 150 A.D. mean = 0 Ha: 4000B.C. mean - 1850 B.C. mean - 150 A.D. mean != 0 F = 4.16989247312 P = 0.0279054717857 Because P < .05, we reject null hypothesis. There are changes in head s hape over time b, I think 4000 B.C. and 150 A.D. are not equal, because thay have to long est time range H0: mean of 4000 B.C. = mean of 150 A.D H0: mean of 4000 B.C. != mean of 150 A.D F = 6.87757909216 P = 0.0184754538327 Because P < .05, we reject null hypothesis. The means are not equal
```


/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/scipy/stats/stats.py:1327: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=10 "anyway, n=%i" % int(n))

Out[114]: OLS Regression Results

Dep. Variable:	у	R-squared:	0.873
Model:	OLS	Adj. R-squared:	0.810
Method:	Least Squares	F-statistic:	13.81
Date:	Mon, 15 May 2017	Prob (F-statistic):	0.00421
Time:	17:47:17	Log-Likelihood:	-61.441
No. Observations:	10	AIC:	130.9
Df Residuals:	6	BIC:	132.1
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	-3130.4749	1759.505	-1.779	0.126	-7435.828 1174.878
x1	10.0378	7.412	1.354	0.224	-8.099 28.175
x2	40.0501	32.492	1.233	0.264	-39.456 119.556
х3	0.1877	0.032	5.871	0.001	0.109 0.266

Omnibus:	2.231	Durbin-Watson:	2.412
Prob(Omnibus):	0.328	Jarque-Bera (JB):	0.860
Skew:	-0.039	Prob(JB):	0.651
Kurtosis:	1.566	Cond. No.	4.61e+05

```
In [115]: pvalue = 1-stats.f.cdf(13.81, 3,6)
          x1 = 24.7
          x2 = 47.1
          x3 = 12250
          y = -3130.4749 + 10.0378*x1 + 40.0501*x2 + 0.1877*x3
          print('a, Corn Production = -3130.4749 + 10.0378* Precipitation + 40.050
          1 * Average temp + 0.1877 * Acres harvested')
          print('b, ')
          print('H0: B1=B2=B3=0')
          print('Ha: B1 or B2 or B3 != 0')
          print('F = 13.81')
          print('P-value = 0.00421')
          print('Becuase P = 0.00421 < 0.05, we reject H0')
          print('c, y(year9) = ', y)
          print('d, 87.3%')
          print('e, Yes, the residuals looks like it come from a normal distributi
          cornhat = -3130.4749 + 10.0378*precip + 40.0501*avetemp + 0.1877* acres
          stats.probplot(corn-cornhat, plot = plt)
          plt.show()
          print('f, ')
          X = np.array([avetemp]).T
          X = sm.add\_constant(X)
          model = sm.OLS(corn, X).fit()
          model.summary()
```

```
a, Corn Production = -3130.4749 + 10.0378* Precipitation + 40.0501* Average temp + 0.1877* Acres harvested b, H0: B1=B2=B3=0 Ha: B1 or B2 or B3 != 0 F = 13.81 P-value = 0.00421 Becuase P = 0.00421 < 0.05, we reject H0 c, y(year9) = 1303.1434700000004 d, 87.3\% e, Yes, the residuals looks like it come from a normal distribution
```


f,

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/scipy/stats/stats.py:1327: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=10 "anyway, n=%i" % int(n))

Out[115]: OLS Regression Results

Dep. Variable:	у	R-squared:	0.028
Model:	OLS	Adj. R-squared:	-0.094
Method:	Least Squares	F-statistic:	0.2283
Date:	Mon, 15 May 2017	Prob (F-statistic):	0.646
Time:	17:47:18	Log-Likelihood:	-71.637
No. Observations:	10	AIC:	147.3
Df Residuals:	8	BIC:	147.9
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	3070.3371	3484.895	0.881	0.404	-4965.846 1.11e+04
x1	-34.1563	71.478	-0.478	0.646	-198.986 130.673

Omnibus:	4.220	Durbin-Watson:	1.805
Prob(Omnibus):	0.121	Jarque-Bera (JB):	2.004
Skew:	-1.096	Prob(JB):	0.367
Kurtosis:	2.958	Cond. No.	1.54e+03

In [116]: print('H0: There is no linear correaltion') print('Ha: There is linear correaltion') print('t = -0.478')print('P = 0.646') print('Becuase P > 0.05, we fail to reject H0') print('g, ') a = -34.1563 + stats.t.isf(0.05, 8)*71.478b = -34.1563 - stats.t.isf(0.05, 8)*71.478print('90% confident intervial = ', b,' ',a) print('h, ') print('H0: B - (-22.1)=0')print('Ha: B - (-22.1)>0')print('t = ', (-34.1563+22.1)/71.478)print('P = ', stats.t.sf((-34.1563+22.1)/71.478, 8))print('Becuase P > 0.05, we fail to reject H0') print('i, ') X = np.array([precip, avetemp]).T $X = sm.add_constant(X)$ model = sm.OLS(corn, X).fit() model.summary()

```
HO: There is no linear correaltion
Ha: There is linear correaltion
t = -0.478
P = 0.646
Becuase P > 0.05, we fail to reject H0
90% confident intervial = -167.073074626 98.7604746261
h,
H0: B - (-22.1)=0
Ha: B - (-22.1) > 0
t = -0.1686714793362993
P = 0.564879190421
Becuase P > 0.05, we fail to reject H0
/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-pa
ckages/scipy/stats/stats.py:1327: UserWarning: kurtosistest only valid
for n>=20 ... continuing anyway, n=10
  "anyway, n=%i" % int(n))
```

Out[116]: OLS Regression Results

Dep. Variable:	у	R-squared:	0.147
Model:	OLS	Adj. R-squared:	-0.097
Method:	Least Squares	F-statistic:	0.6015
Date:	Mon, 15 May 2017	Prob (F-statistic):	0.574
Time:	17:47:23	Log-Likelihood:	-70.985
No. Observations:	10	AIC:	148.0
Df Residuals:	7	BIC:	148.9
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	2580.5664	3525.342	0.732	0.488	-5755.543 1.09e+04
x1	17.3507	17.569	0.988	0.356	-24.193 58.894
x2	-36.1795	71.618	-0.505	0.629	-205.530 133.171

Omnibus:	7.334	Durbin-Watson:	1.730
Prob(Omnibus):	0.026	Jarque-Bera (JB):	2.861
Skew:	-1.207	Prob(JB):	0.239
Kurtosis:	4.021	Cond. No.	1.90e+03

In [117]: print('H0: B1=B2=0')
 print('Ha: B1 or B2!= 0')
 print('F = 0.6015')
 print('P-value = 0.574')
 print('Becuase P = 0.574 > 0.05, we fail to reject H0, the least square
 equation is not useful')
 print('j, Using only Acres harvested as the only prediction variable wou
 ld not make sense. Temperature and precipitation \
 do affect the corn production. Imagine an extreme cases: when precipitat
 ion = 0 and average temperature = 0, \
 it make sense that cron production is equal to 0. \
 precipitation and average temp contributed on the model. Only using Acre
 s will make the model less accurate')

H0: B1=B2=0
Ha: B1 or B2!= 0
F = 0.6015
P-value = 0.574
Becuase P = 0.574 > 0.05, we fail to reject H0, the least square equati on is not useful j, Using only Acres harvested as the only prediction variable would not make sense. Temperature and precipitation do affect the corn productio n. Imagine an extreme cases: when precipitation = 0 and average tempera ture = 0, it make sense that cron production is equal to 0. precipitati on and average temp contributed on the model. Only using Acres will make the model less accurate