

CURSO DE ENGENHARIA

Disciplina: Limite e Derivada de uma Variável Real

Gráficos de funções e Interpretação do limite intuitivo.

Anápolis - 2021.2

CURSO DE ENGENHARIAS

Disciplina: Limite e Derivada de uma Variável Real

Gráficos de funções e Interpretação do limite intuitivo.

OBJETIVOS:

- •Conceituar limites de uma função.
- •Resolver limites por aproximações numéricas e gráficas.

CURSO DE ENGENHARIAS

Disciplina: Limite e Derivada de uma Variável Real

Gráficos de funções e Interpretação do limite intuitivo.

REFERÊNCIAS:

FLEMMING, D. M.; GONÇALVES, M. B. **Cálculo A: Funções, Limite, Derivação e Integração**. 6. ed. São Paulo: Pearson, 2006

Noção Intuitiva

Sucessões numéricas	Dizemos que:
1, 2, 3, 4, 5,	
$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots$	
1, 0, -1, -2, -3,	
$1, \frac{3}{2}, 3, \frac{5}{4}, 5, \frac{6}{7}, 7, \dots$	

Noção Intuitiva

Sucessões numéricas		Dizemos que:
1, 2, 3, 4, 5,	Os termos tornam-se cada vez maiores, sem atingir um limite	$X \rightarrow + \infty$
$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots$	Os números aproximam-se cada vez mais de 1, sem nunca atingir esse valor	$X \rightarrow 1$
1, 0, -1, -2, -3,	Os termos tornam-se cada vez menor, sem atingir um limite	$X \rightarrow -\infty$
$1, \frac{3}{2}, 3, \frac{5}{4}, 5, \frac{6}{7}, 7, \dots$	Os termos oscilam sem tender a um limite	

Limites Laterais

- Quando faz-se x tender para a, por valores menores que a, está se calculando o limite lateral esquerdo. x → a -
- Quando faz-se x tender para a, por valores maiores que a, está se calculando o limite lateral direito. x → a +
- Para o limite existir, os limites laterais devem ser iguais:

$$\lim_{x \to a^{-}} [f(x)] = \lim_{x \to a^{+}} [f(x)]$$

Noção Intuitiva de Limite Noção intuitiva de limite

$$\therefore \lim_{x \to 2} (x^2) = 4$$

"O limite da função $f(x) = x^2$ quando x tende a 2 é 4".

Limites Intuitivos

$$(a) \lim_{x \to 0^{-}} f(x) = 0$$

$$(a) \lim_{x \to 0^{-}} f(x) = -\infty$$

$$(a) \lim_{x \to 0^{-}} f(x) = 0$$

$$(b) \lim_{x \to 0^+} f(x) = 1$$

$$(b)\lim_{x\to 0^+} f(x) = +\infty$$

(b)
$$\lim_{x \to 0^+} f(x) = entre[-1, 1]$$

$$(c)\lim_{x\to -\infty} f(x) = 0$$

$$(c) \lim_{x \to -\infty} f(x) = 0$$

$$(c)\lim_{x\to-\infty}f(x)=0$$

$$(d)\lim_{x\to+\infty}f(x)=1$$

$$(d)\lim_{x\to +\infty} f(x) = 0$$

$$(d)\lim_{x\to+\infty}f(x)=entre[-1,1]$$

Limites laterais

∴não existe
$$\lim_{x \to 3} f(x)$$

$$\therefore \lim_{x\to 3} f(x) = 0$$

Questões-Limite Bilateral

1- Use o gráfico dado da f para determinar cada expressão, se ela existir.

(a)
$$\lim_{x \to -1^+} f(x)$$

(e) $\lim_{x \to 1^{-}} f(x)$

(g) $\lim_{x\to 1} f(x)$

$$(i) \lim_{x \to 0^+} f(x)$$

(b)
$$\lim_{x \to -1^{-}} f(x)$$
 (j) $\lim_{x \to 0^{-}} f(x)$

(c)
$$\lim_{x \to -1} f(x)$$
 (k) $\lim_{x \to 0} f(x)$

$$(x) \lim_{x \to 0} f(x)$$

(d)
$$f(-1)$$
 (l) $f(0)$

$$(m) \lim_{x \to 3^-} f(x)$$

(f)
$$\lim_{x \to 1^+} f(x)$$
 (n) $\lim_{x \to 3^+} f(x)$

$$(o) \lim_{x \to 3} f(x)$$

(h)
$$f(1)$$
 (p) $f(3)$

Questões- Limite Bilateral

2– Em cada caso, use o gráfico da função identidade para determinar o valor do límite dado.

(a)
$$\lim_{x \to -1^+} x$$

(e)
$$\lim_{x\to\pi} x$$

(b)
$$\lim_{x \to -1^-} x$$

$$(f) \lim_{x \to \frac{1}{2}} f(x)$$

(c)
$$\lim_{x \to -1} x$$

(g)
$$\lim_{x \to -e} x$$

(d)
$$\lim_{x\to 0} x$$

(h)
$$\lim_{x \to \frac{\sqrt{3}}{2}} x$$

Questões

3- De maneira Intuitiva encontre os Limites de:

$$a)\lim_{x\to 0}\frac{1}{x}$$

b)
$$\lim_{x\to\infty}\frac{1}{x}$$

c)
$$\lim_{x\to 0} \frac{5}{x}$$

d)
$$\lim_{x\to\infty}\frac{5}{x}$$

e)
$$\lim_{x \to 0} \frac{2x+1}{x-1}$$

f)
$$\lim_{x\to\infty}\frac{2x+1}{x-1}$$

Questões

3- De maneira Intuitiva encontre os Limites de:

g)
$$\lim_{x\to 0} \frac{2}{x-1}$$

$$j) \lim_{x \to 0} x^3$$

h)
$$\lim_{x\to\infty}\frac{2}{x-1}$$

$$1) \lim_{x \to \infty} x^3$$

$$i) \lim_{x \to -\infty} \frac{2x+1}{x-1}$$

m)
$$\lim_{x\to 0}\frac{1}{x^2}$$