武汉大学 2021-2022 学年第一学期

《高等数学 B1》期中考试试卷

考试时间: 9:50-12:10

一、 求下列极限 (每小题 6 分小题, 共 12 分)

1)
$$\lim_{x\to 0} \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{x(1-\cos x)}.$$
 2)
$$\lim_{n\to \infty} \left(n-n^2\ln\left(1+\frac{1}{n}\right)\right).$$

二、 (8 分)设
$$\lim_{x\to 0} \left(1 + \frac{f(x)}{\sin x}\right)^{\frac{1}{\arctan^2 x}} = A$$
 (其中 A 为正实数),求极限 $\lim_{x\to 0} \frac{f(x)}{x-\sin x}$.

三、 (8 分)设
$$y = y(x)$$
 由
$$\begin{cases} x = \arctan t \\ y = \ln(1+t^2) \end{cases}$$
 所确定,求 $\frac{dy}{dx}, \frac{d^2y}{dx^2}.$

- 四、(8分)设函数 $y = f(\varphi(x) + u)$, 其中 u = g(x) 由方程 $y + e^y = x$ 确定,且 f(x), $\varphi(x)$ 均有二阶 导数,求 $\frac{\mathrm{d} y}{\mathrm{d} x}$ 及 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$.
- 五、 (8 分)函数 $f(x) = ax b \ln x$ (a > 0)有 2 个零点,求 $\frac{b}{a}$ 的取值范围.

六、 (8 分)设函数
$$f(x) = \begin{cases} a(1+x)^x, & x > 0 \\ \ln(e^{2x} + bx) + 3, x \le 0 \end{cases}$$
 在 $x = 0$ 处连续,求 a, b 及导函数 $f'(x)$.

七、 (8分)求函数 $y = \arctan x$ 的 n 阶麦克劳林公式(带佩亚诺型余项).

八、 (8 分)设
$$x_1 = 1, x_{n+1} = 1 - e^{-x_n}$$
 $(n = 1, 2, 3, \dots)$,

- 1) 试证明数列 $\{x_n\}$ 收敛,并求 $\lim_{n\to\infty} x_n$.
- 2) 求极限 $\lim_{n\to\infty} \frac{x_{n+1}-x_n}{x_n^2}$.
- 九、 $(8 \, f)$ 求函数 $y = \frac{x^3}{(1-x)^2}$ 的单调区间,凹凸区间,极值点,拐点.
- 十、 (8 分)计算如下不定积分: 1) $\int \frac{x^2-6x+7}{x^2-8x+15} dx$; 2) $\int x \arctan x dx$.

十一、 (8 分)若函数
$$f(x) = \begin{cases} \ln(x + \sqrt{1 + x^2}), x > 0 \\ x\sqrt{x^2 + 1}, & x \le 0 \end{cases}$$
, 求不定积分 $\int f(x) dx$.

- 十二、 (8 分)设 f(x) 在[0,1]上三阶可导,且 f(0) = f(1) = f'(1) = 0,证明:
 - 1) 存在 $\xi \in (0,1)$, 使得 $f''(\xi) = 0$;
 - 2) 存在 $\eta \in (0,1)$, 使得 $2021f''(\eta) + \eta f'''(\eta) = 0$.