(-zraph Theory N.
Graph Theory Notes
Graph Colorings
- Four Color Theorem: Any map split into contiguous region can be colored
using at most 4 colour so that no two bordering regions are
given the same colour,
-> K-coloring. A proper K-coloring of a graph of is an assignment of
· Flore to the vertices of G such that no two adjacent vertices
and given the same after and exactly K offers are used.
> Color classes: given a proper K-coloring of G, the color classes are
Sets Si Sk where Si consists of all vertices of islar i.
-> Independence Number:
of (9)=n: it there exists a set of a vartices with no edges
- b/w them but every set of n+1 vertices contain at least one edge
I we want to find the lowest value of K so that of has proper
coloring.
=> Vertex Coloring:
-> Chromatic Number: Smallest value of the forwhich a graph has
a oproper K-coloving.
- Denoted by X(G)
- To find divomatic number of a graph;
?) Find a vortex coloring of on using K colors.
"i) Show why fewer store will not suffice.

- color higher degree vertices jirst.
- After assigning a color to an initial vertex, look for diques
within the graph containing that vertex.
July syrus
-> Equitable Coloring: A minimal proper coloring of G 500 that - une
number of vertices of each color differs by at most one.
>Strategy 8
- Begin with vertices of high degree - Look por locations where colors are jorced (cliques, cycles,
wheels etc) vattres than chosen.
- After tunt, a Nor the remaining ventices while toping to
avoid using any additional colors.
-> General Results:
-First we begin with a basic counting angument relating the
no. of edges of a graph, with it's duamatic number.
- Hence we can create an upper bound based on the no. of
edges in a graph reither than maximum degree.
$\chi(G) = \frac{1}{2} + \sqrt{2m+\frac{1}{4}}$
- Let 9 be a graph and i (a) be the length of the longest path in 69.
Then x (G) = 1 + 1 (G).
Then N Colf 2 11 1 C 1.
1. C.
shiven a graph 9= (V,E), an induced subgraph is a subgraph of (V') where V' C V and every available edge from 9 blw-the
G(V) where V'CV and every available edge from a blos the
vertices in v'is included.
- > Let G be a graph and of (b) denote the min. degree of by
The x(G) to E I+ max 8(H) for any induced subgraph. Page No.

-> Ramsey Number:
-> Karnsey Number:
is the minimum number of vertices of so that all simple
graphe on r vertices contain either a chique of size m or independent
Set ax since vi
- atten described as guests at a party.
R&352)
Prove R(m,n)=r requires two steps
- first, we juid an edge coloring of Kr-1 without a red
m-clique and without a blue n-clique.
- second, we must show that any edge estoring of Kr will
eithe have a red m-clique, or a blue n-clique.
Octavine R(313) Not poisible for \$5.
14 is possible for Ke
R(3,3) 26.
- R(n,m) = R(m,n)
- R(2, n) 2 h
R(4,4) 2 18
⇒ Color Variation:
-> Oratione On-line Coloring:
-verties examined one at a time, in a linear manner.
- relies on "induced subgraph"
- Consider a graph of with the vertices ordered as 1,2x,2x, 2xn
An on-line algorithm colors the vertices one at a time where the
color for no, depends on the induced subgraph [m, nz, ni].
which consists of the vertices up to and including no The
meximum Number of colors a specific algorithm A was on any
possible ordering of the vertices is denoted $XA(G)$.
Page No.

>K-Che	oosability:
-9	I lar every collection of lists, each of lize k, a proper
list	coloring exists, then G is K-choosable. The minimum value
Jor	k for which G is K-choosable is called the choosability
0	a, densted by ch (17).
-> c	h(G) z X(G)
-	-Proof:
	Let a x (6) 2 k and give each vertex of G the
	ist [1, 2, 163 there the is a proper : coloring
3 4 4	for 9 from these bots, namely one to exhibited by me
	fact that or (4) rk. Hower, if we memore-his some
	Same one element from each of the lists, then by
	cannot be estored since otherway x(G) (K.
-7° For.	any simple graph G,
<u> </u>	
	$ch \leq \Delta(G) + 1$
1	