Metodologia Box & Jenkins para escolha de modelos ARIMA

- Dada uma série temporal, uma vez identificado o modelo ARIMA(p,d,q) adequado, através da FAC/FACP e critérios de informação, não segue necessariamente que o modelo identificado deva ser mantido e utilizado para previsão.
- A razão principal é que a FAC e a FACP amostrais podem apresentar "falhas" na identificação da ordem "correta" do processo gerador da ST.
- Duas das principais razões destas falhas são:
 - i. tamanho da amostra pequeno (T): as estimativas da FAC e FACP ficam pouco precisas, e assim sendo as FAC e FACP estimadas tornam-se estimativas não confiáveis das suas contrapartes teóricas.
 - ii. influência desproporcional de um ou mais par de observações (yt, yt-k) na estimativa da FAC/FACP, podendo resultar em valores espúrios, o que pode levar a identificação errônea da verdadeira ordem do modelo para a ST.

- iii. o processo gerador dos dados pode ter componente de dependência não-linear, e o modelo ARIMA apenas captura a dependência linear.
- Como consequência, um modelo "mal" identificado pode apresentar algumas características estatísticas indesejáveis, tais como:
 - alguns parâmetros podem ser estatisticamente insignificantes, implicando que o modelo identificado pode ser simplificado;
 - -alguns pressupostos referentes às propriedades probabilísticas do termo aleatório podem estar sendo violados. Por exemplo, erros não normais ou com variância não constante invalidam estatísticas de teste, intervalos de confiança e testes de hipótese.
- Assim, na prática, o processo de identificação não representa a etapa final na procura do melhor modelo para uma ST, tendo que ser complementado por outros procedimentos de diagnóstico, até que um modelo satisfatório seja encontrado.

- Este processo de natureza iterativa que compreende a identificação do modelo, estimação e diagnóstico dos resultados do melhor modelo ARIMA(p,d,q) com repetição ou não do passo de identificação, define a Metodologia Box & Jenkins para modelos ARIMA, apresentada no fluxograma a seguir.
- As fases de identificação e estimação foram detalhadas em seções anteriores. As páginas seguintes serão dedicadas aos diagnósticos estatísticos da adequação do modelo identificado e estimado à ST.

Esquema da metodologia Box & Jenkins

 Os diagnósticos do modelo são em geral efetuados sob os "resíduos", ou inovações estimadas do modelo, as quais são dadas por:

$$\hat{\varepsilon}_{t} = y_{t} - \hat{y}_{t|t-1}$$

em que $\hat{y}_{t|t-1} = E(y_t|Y_{t-1})$.

 Às vezes é mais adequado realizar os diagnósticos nos resíduos padronizados, dados por:

$$\hat{\boldsymbol{\varepsilon}}_{t}^{\star} = \hat{\boldsymbol{\varepsilon}}_{t} / \hat{\boldsymbol{\sigma}}$$

>> melhor para detectar outliers

- Na sequência iremos apresentar os testes para diagnósticos mais utilizados na prática:
 - normalidade: Jarque-Bera
 - autocorrelação: Ljung Box e Breusch-Pagan
 - variância constante

Teste de Jarque-Bera para normalidade dos resíduos

A hipótese de normalidade do termo aleatório num modelo ARIMA é importante por diversas razões:

- é crucial no processo de estimação pontual e das variâncias dos estimadores, intervalos de confiança e testes de hipótese.
- é utilizada nos testes significância da FAC, FACP e CI's.

A normalidade será investigada através de dois coeficientes associados a distribuições de probabilidade:

- assimetria → S (skewness)
- curtose → K (kurtosis)
- coeficiente de assimetria = é uma medida de assimetria de uma densidade de probabilidade em relação à sua média.

$$S = \frac{E(w_t - \mu)^3}{\sigma^3}$$

 Se a variável aleatória possuir densidade simétrica em torno da média, como é o caso da densidade de probabilidade **normal**, prova-se que $E(w - \mu)^3$ = 0, pois a integral abaixo será nula.

$$E(w_t - \mu)^3 = \int_{-\infty}^{+\infty} (w_t - \mu)^3 f(w) dw$$

 Se S > 0, a variável aleatória tem assimetria positiva, com maior concentração de massa à esquerda da média, como a distribuição hipotética do exemplo abaixo.

 Se S < 0, a variável aleatória tem assimetria positiva, com maior concentração de massa à direita da média, como a distribuição hipotética do exemplo abaixo.

 Na prática, para um conjunto de observações, calculamos a estimativa amostral de S, dada por:

$$\hat{S} = (1/T) \sum_{t=1}^{T} (w_t - \overline{w})^3 / \left((1/T) \sum_{t=1}^{T} (w_t - \overline{w})^2 \right)^{3/2}$$

 coeficiente de curtose= mede simultaneamente o achatamento da densidade em torno do seu centro e a largura das caudas.

$$K = \frac{E(w_t - \mu)^4}{\sigma^4}$$

 Se a variável aleatória possuir densidade normal, então a integral

$$E(w_{t} - \mu)^{4} = \int_{-\infty}^{+\infty} (w_{t} - \mu)^{4} f(w) dw$$

é igual a $3\sigma^4$ e portanto a curtose da densidade normal padrão será K=3 (densidades **mesocúrticas**).

 Se K > 3, a variável aleatória é dita leptocúrtica, de caudas grossas, ou com excesso de curtose, possuindo assim mais concentração de massa de probabilidade nas caudas e no centro em relação à densidade normal. Estas densidades produzem eventos extremos com maior probabilidade do que a normal e são muito importantes na avaliação de risco de mercado (Exs: densidade t, GED)

 Se K < 3, a variável aleatória é dita platicúrtica, com caudas que caem mais rapidamente do que a normal e mais achatada no centro do que a normal. (Exemplo: densidade uniforme)

 Na prática, para um conjunto de observações calculamos a estimativa amostral de K, dada por:

$$\hat{K} = (1/T) \sum_{t=1}^{T} (w_t - \overline{w})^4 / \left((1/T) \sum_{t=1}^{T} (w_t - \overline{w})^2 \right)^2$$

 O teste de Jarque-Bera investiga se séries temporais de observações ou de resíduos são oriundas de uma variável aleatória com distribuição normal, utilizando que sob normalidade, S=0 e K=3.

Formalmente:

- H_o: S=0 e K=3 (série/resíduos seguem distribuição normal)
- H_a: cc → série/resíduos não seguem distribuição normal.
- Demonstra-se, sob a hipótese nula, que as distribuição assintóticas dos estimadores de S e K possuem a seguinte forma:

$$\hat{S} \sim N(0, \frac{6}{n})$$
 e $\hat{K} \sim N(3, \frac{24}{n})$

Padronizando:

$$(\hat{S} - 0) / \sqrt{6/n} \sim N (0,1)$$

$$((\hat{S} - 0) / \sqrt{6/n})^{2} = (n/6) (\hat{S} - 0)^{2} \sim \chi^{2}(1)$$

$$(\hat{K} - 3) / \sqrt{24/n} \sim N (0,1)$$

$$((\hat{K} - 3) / \sqrt{24/n})^{2} = (n/24) (\hat{K} - 3)^{2} \sim \chi^{2}(1).$$

 Demonstra-se ainda que os dois momentos da distribuição são independentes. Por fim, sabe-se que a soma de k variáveis aleatórias Z elevadas ao quadrado segue uma distribuição Qui-quadrada com k graus de liberdade. Chega-se assim a estatística de teste para esse teste:

$$JB = (n/6) (\hat{S} - 0)^{2} + (n/24) (\hat{K} - 3)^{2} \sim \chi^{2}(2)$$

• Se **JB** > valor crítico a 100α % de χ^2 (2), então se rejeita H_0 .

Problemas com o teste JB

- A aproximação normal para a distribuição da curtose estimada somente é válida para amostras muito grandes, de tamanho superior a 1000 observações. Portanto, a distribuição Quiquadrada, usada nos testes, deve ser utilizada com cautela.
- Os autores, através de estudos de simulação, puderam obter os valore críticos para o teste sobre os resíduos para vários tamanhos de amostra:

T	5%	10%
30	3.71	2.49
50	4.26	2.90
75	4.27	3.09
100	4.29	3.14

300	4.60	3.68
500	4.82	3.91
∞	5.99	4.61

 Deb & Sefton (96) obtiveram os valores críticos do teste para estatísticas amostrais obtidas a partir dos dados originais

T	5%	10
		%
20	3.77	2.33
50	5.00	3.19
75	5.30	3.49
100	5.44	3.67
200	5.71	4.05
500	5.89	4.35
∞	5.99	4.61

Teste para significância conjunta de autocorrelações (Ljung-Box):

- O objetivo desse teste é investigar se as primeiras m autocorrelações de uma série temporal são conjuntamente significantes estatisticamente (ou seja, se algum subconjunto das autocorrelações é não nulo).
- As hipóteses nula e alternativa para esse teste são:
 - H_o : $\rho(1) = \rho(2) = ... = \rho(m) = 0$ - H_a : pelo menos um dos ρ 's $\neq 0$
- A estatística de teste é:

$$LB(m) = T(T + 2) \sum_{k=1}^{m} \hat{\rho}^{2}(k) / (T - k) \sim \chi^{2}(v)$$

- Os graus de liberdade v, dependem se o teste é aplicado na ST original ou nos resíduos do modelo ARMA(p,q).
 - observações originais: v = m.
 - resíduos: v = m (p + q)

- O teste é realizado comumente sobre os resíduos de um modelo ajustado.
- Rejeitar a hipótese nula deste teste implica na existência de autocorrelação nos resíduos do modelo ajustado.
- Portanto, o modelo é inadequado para descrever a série temporal e deverá ser modificado.
- ⇒ O teste de Ljung-Box possui dois inconvenientes:
 - Para valores elevados de k, o teste pode apresentar baixa potência, pois haverá poucas observações para a estimação.
 - O teste apenas indica se o modelo é inadequado, mas não sugere como o modelo deve ser modificado, na rejeição de Ho.

Teste tipo multiplicador de Lagrange para um conjunto de autocorrelações (Breusch-Godfrey)

- Alternativa ao teste de Ljung-Box, possuindo algumas vantagens sobre esse:
 - estudos de simulação mostram que o teste Breusch-Godfrey é mais potente do que o teste Ljung-Box e tende a ter mais sensibilidade em detectar a presença de autocorrelação nos dados.
 - se utilizado de forma inteligente pode fornecer indicações sobre como o modelo deve ser corrigido.
- Esse teste é facilmente implementado, sendo automaticamente realizado pelo EViews.
- Suponha que um modelo AR(p) tenha sido estimado para a sua série. Para testar se essa especificação é satisfatória para a sua série devese estimar o seguinte modelo para a série de resíduos do seu modelo, e_t:

$$e_{t} = \alpha_{1}y_{t-1} + \alpha_{2}y_{t-2} + \dots + \alpha_{p}y_{t-p} + \gamma_{1}e_{t-1} + \gamma_{2}e_{t-2} + \dots + \gamma_{p}e_{t-p} + \varepsilon_{t}$$

 Ou seja, na primeira parte da equação colocam-se os termos que foram incluídos no modelo, e depois o resíduo com as defasagens que estão no seu modelo.

- O teste BG possui as seguintes hipóteses:
 - H_o : o modelo estimado é satisfatório, ou seja, a estrutura de autocorrelação assumida é adequada (no caso do exemplo AR(p))

$$\gamma_1 = \gamma_2 = ... = \gamma_p = 0;$$

- Ha: o modelo não é satisfatório.

onde e_t são os resíduos estimados do modelo original, nesse caso, um AR(p).

 Sob a hipótese nula de que o modelo ajustado é adequado (no caso um AR(p)):

$$nR^2 \sim \chi^2(s)$$

onde n é o número de observações da série e R² é o coeficiente de determinação da regressão dos resíduos.

 Obs: se o modelo j teste também pode ser utilizado para s > p. Nesse caso

Teste BDS (87) para independência dos resíduos (Brock, Dechert, Sheinkman)

- O teste de Ljung-Box apenas testa se as observações da série ou seus resíduos são descorrelatados.
- Aceitar a hipótese nula no teste LB não necessariamente implica que as observações da série ou seus resíduos estejam desprovidos de algum tipo de dependência, por exemplo, de ordem não linear.
- O teste de BDS é um teste mais geral do que o teste LB, onde a aceitação da sua hipótese nula implica ausência de qualquer estrutura de dependência nos dados.
- As hipóteses nula e alternativa do teste BDS são:

H_o: os dados são i.i.d.

H_a: os dados apresentam dependência linear, não-linear (média e/ou variância) ou caos determinístico.

 A estatística de teste é dada por (detalhes mais adiante):

BDS(
$$\varepsilon$$
,m)= $\sqrt{T} \left[C_m(\varepsilon) - \left(C_1(\varepsilon)\right)^m\right] / V_m^{1/2} \sim N(0,1)$

em que V_m é a expressão da variância, cuja fórmula pode ser encontrada em Cromwell *et al.* (1994, pág. 34).

- Brock, Hsieh e Le Baron (1990) recomendam usar
 ε entre 0.5 e 2 vezes o desvio padrão da série, e o parâmetro dimensional m, entre 2 e 10.
- Esta distribuição assintótica é adequada desde que T/m > 200 (T=n, # de obs da série).
- Fora deste limite, ou quando a série é de resíduos de modelos do tipo GARCH (para ARMA não precisa) deve-se levantar os valores críticos da estatística BDS através da técnica de bootstrap (EViews 4.0).

Detalhes do teste BDS

 A base da construção do teste BDS é a chamada integral de correlação, definida pela seguinte expressão:

$$C_{m}(\varepsilon) = \sum_{t < s} I_{\varepsilon}(x_{t}^{m}, x_{s}^{m}) / {T_{m} \choose 2} = \left[\frac{2}{\left(T_{m}(T_{m} - 1)\right)}\right] \sum_{t < s} I_{\varepsilon}(x_{t}^{m}, x_{s}^{m})$$

em que:

- A IC mede, para um dado m, a fração dos pares de "pontos" [x_i^m, x_s^m], com distância máxima ε um do outro, isto é, ||x_i^m x_s^m|| < ε.
 - Se x^m_t e x^m_s estiverem muito próximos, então a integral de correlação assumirá um valor próximo ou igual a 1; caso contrário, essa assumirá um valor muito próximo de zero.

Teste de Homocedasticidade para o erro (variância constante)

- Uma das hipóteses dos modelos ARIMA(p,d,q) é que o termo aleatório tenha variância constante, i.e, que Ε(ε,)= σ², ∀ t.
- Esta hipótese é utilizada explicitamente na expressão das variâncias dos estimadores dos parâmetros do modelo, e assim na realização dos testes de significância dos parâmetros.
- Também na utilização dos intervalos de confiança para as previsões do modelo.
- Na prática existem duas maneiras principais desta hipótese ser violada:
 - i. se a variância do erro variar monotonicamente com o tempo, através de uma relação heterocedástica incondicional:

Ex: supor um processo AR(1) onde a variância é crescente no tempo

$$E(\epsilon_t^2) = \sigma^2 \exp(bt) \Rightarrow Var(y_t) = \frac{\sigma^2 \exp(bt)}{(1-\varphi^2)}, b > 0$$

>> observar que neste caso o processo não mais será estacionário de 2ª ordem.

Para detectar este tipo de comportamento, além da inspeção visual da série, é possível realizar um teste de variância constante:

$$H(h) = \sigma_{final}^2 / \sigma_{inicio}^2$$

H₀: H(h) =1 ⇔ variância cte

 H_a : $H(h) > 1 \Leftrightarrow variância crescente$

$$\hat{\sigma}_{inicio}^{2} = 1 / h \sum_{t=1}^{h} \hat{\epsilon}_{t}^{2} \qquad \hat{\sigma}_{final}^{2} = 1 / h \sum_{t=h+(T+1-2h)}^{T} \hat{\epsilon}_{t}^{2}$$

Estatística de teste: $\hat{H}(h) = \hat{\sigma}_{final}^2 / \hat{\sigma}_{inicio}^2 \sim F(h,h)$,

$$h \sim T / 3$$

 $Se \ \hat{H}(h) > F^{\alpha}(h,h)$, rejeita-se a hipótese de variância constante.

ii. se a variância do erro seguir um processo tipo ARCH/GARCH (heterocedasticidade condicional)

$$E(\varepsilon_{t}^{2}|Y_{t-1}) = \sigma_{t}^{2} = \alpha_{0} + \alpha_{1}\varepsilon_{t-1}^{2} + \beta_{1}\sigma_{t-1}^{2} (GARCH(1,1))$$

$$\alpha_{0} > 0, \alpha_{1} \ge 0, \beta_{1} \ge 0, \alpha_{1} + \beta_{1} < 1$$

Série com variância GARCH

- Este teste investiga se há presença de volatilidade, ou seja, mudanças na variância condicional da série, testando-a nos resíduos.
- Se houver evidência de volatilidade, então se deve acoplar ao modelo ARIMA um modelo ARCH/GARCH para capturar as mudanças na variância condicional da série.
- A lógica do teste é do tipo multiplicador de Lagrange. As hipóteses nula e alternativa são:

H_o: não existe efeito ARCH até ordem p nos resíduos

Ha: existe efeito ARCH

- Esse teste é facilmente implementado, sendo automaticamente realizado pelo EViews.
- Suponha que um modelo ARIMA(p,d,q) tenha sido estimado para a sua série temporal. Para testar que os resíduos possuem efeito ARCH(q) deve-se estimar:

$$\hat{\varepsilon}_t^2 = \alpha_0 + \sum_{i=1}^q \alpha_i \hat{\varepsilon}_{t-i}^2 + V_t$$

em que $\hat{\epsilon}_r$ são os resíduos estimados do modelo ARIMA(p,d,q).

 Sob a hipótese nula de que não existe efeito ARCH até ordem q nos resíduos (para T grande):

$$TR^2 \sim \chi^2(q)$$

em que T é o número de observações e R^2 é o coeficiente de determinação da regressão dos resíduos.

Avaliação da capacidade preditiva de um modelo (Forecast Evaluation)

- Suponha que uma série temporal com T observações foi modelada por um determinado modelo dentro da classe ARIMA (p,d,q).
- Idealmente devem ser utilizados dois períodos disjuntos para avaliar a capacidade preditiva de modelos:

-in-sample ou treinamento = a parte da amostra utilizada para estimar os parâmetros do modelo.

-out-of-sample, teste ou validação = a parte da amostra utilizada para validar o modelo estimado no período de treinamento.

 As medidas de capacidade preditiva, ou aderência do modelo aos dados estão baseadas nos resíduos ou erro de previsão um passo à frente e_t = y_t - ŷ_{t|t-1} t =1,2,...,m. Algumas medidas de aderência (goodness of fit) usuais:

nome	expressão
i. Erro percentual	$MAPE = \frac{1}{m} \sum_{t=T-m+1}^{T} \left \frac{e_t}{y_t} \right .100$
absoluto médio (MAPE)	$m \underset{t=T-m+1}{\sim} y_t $
ii. Coeficiente de	$R^{2} = [corr(y_{t}, \hat{y}_{t t-1})]^{2}, \ 0 < R^{2} < 1$
determinação	
iii. Raiz do erro	$RMSE = \sqrt{\frac{1}{m} \sum_{t=T-m+1}^{T} e_t^2}$
quadrático médio	$\sqrt{m} \sum_{t=T-m+1}^{\infty} S_t$

- A medida (i) é comparável entre modelos de escala diferente, enquanto que as medidas (ii) e (iii) não o são. Assim sendo, se queremos comparar um modelo p/ y_t com outro p/ log y_t, só podemos utilizar a medida (i).
- Estas medidas são utilizadas tanto no período "dentro da amostra" como "fora da amostra".

Sazonalidade nos processos ARIMA

- Muitas séries temporais econômicas, financeiras, físicas (meteorologia, hidrologia) e biológicas apresentam sazonalidade.
- Sazonalidade são flutuações periódicas que ocorrem num período máximo de um ano, e estão relacionadas a variações climáticas (estações do ano, ciclo dia-noite), convenções sociais (Carnaval, Páscoa, Natal, Dia das Mães, São João etc).
- S é o período da sazonalidade: o "tempo" que a série leva para se repetir dentro de um período máximo de 1 ano.

```
s = 2, séries semestrais;
s = 4, séries trimestrais;
s = 12, séries mensais;
s = 52, séries semanais;
s = 365, séries diárias
```

- Em muitas circunstâncias, o termo sazonal pode ser visto como algo indesejável, pois pode obscurecer a visualização de outros fatores de interesse da série temporal, como por exemplo, a tendência.
- Denomina-se de ajuste sazonal ou desazonalização o processo de retirada/filtragem do

termo sazonal de uma série temporal de forma a se obter uma série livre das flutuações sazonais.

 Nos modelos lineares, a maneira padrão para filtragem da componente sazonal de uma série é considerar essa componente como aditiva às componentes de tendência e irregulares da série.

- Para se obter uma série sazonalmente ajustada, é necessário que o modelo trate explicitamente a componente sazonal.
- A série sazonalmente ajustada teria portanto a seguinte forma:

$$y_t^{(a)} = y_t - \hat{\gamma}_t = \hat{\mu}_t + \hat{\varepsilon}_t$$

- O tratamento da componente sazonal pode ser efetuado por dois grupos de modelos, a saber:
 - Sazonalidade determinística (regressão)
 - o variáveis dummies
 - o funções trigonométricas
 - Sazonalidade estocástica (SARIMA)
 - o variável endógena ou erros defasados: y_{t-s} , ϵ_{t-s} .

Sazonalidade com variáveis dummies

 Nesse modelo de simples implementação, o coeficiente de cada variável dummy representa o fator sazonal (mês, trimestre, etc.) de interesse.

Exemplo: série com frequência trimestral (s=4).

$$\begin{aligned} \mathbf{y}_{\,t} &= \, \mathbf{a}_{\,0} + \, \, \gamma_{\,1} \mathbf{d}_{\,1,\,t} + \, \, \gamma_{\,2} \mathbf{d}_{\,2,\,t} + \, \, \gamma_{\,3} \mathbf{d}_{\,3,\,t} + \, \, \gamma_{\,4} \mathbf{d}_{\,4,\,t} + \, \, \varepsilon_{\,t} \\ \\ \mathbf{d}_{\,i,\,t} &= \left\{ \begin{aligned} 1 & & \text{, se t= i, s+i, 2s+i} \\ 0 & & \text{, caso contrário} \end{aligned} \right. \end{aligned}$$

PROBLEMA: este modelo possui multicolinearidade perfeita e portanto, seus parâmetros não podem ser estimados simultaneamente.

- A solução é eliminar uma das variáveis dummies. O "mês" / "trimestre" sem dummy é o mês base, ou mês de referência. Assim sendo a flutuação sazonal (positiva ou negativa) será medida em relação a este mês (sempre que o modelo tiver intercepto).
- Por exemplo:

$$\begin{aligned} \mathbf{y}_{t} &= \mathbf{a}_{0} + \ \gamma_{2} \mathbf{d}_{2,t} + \ \gamma_{3} \mathbf{d}_{3,t} + \ \gamma_{4} \mathbf{d}_{4,t} + \ \varepsilon_{t} \\ & \mathbf{E} \left(\mathbf{y}_{t} \ | \mathbf{1}^{0} \ \text{trim estre} \right) = \ \mathbf{a}_{0} \\ & \mathbf{E} \left(\mathbf{y}_{t} \ | \mathbf{2}^{0} \ \text{trim estre} \right) = \ \mathbf{a}_{0} + \ \gamma_{2} \\ & \mathbf{\gamma}_{2} &= \mathbf{E} \left(\mathbf{y}_{t} \ | \mathbf{2}^{0} \ \text{trim estre} \right) - \mathbf{E} \left(\mathbf{y}_{t} \ | \mathbf{1}^{0} \ \text{trim estre} \right) \end{aligned}$$

Exemplo: série da taxa de desemprego mensal e 1^a diferença (Região Metropolitana de São Paulo-jan/85 à jul/04 – DIEESE).

- Observem que no gráfico da série no tempo a sazonalidade se confunde com as variações da tendência da série, sendo as flutuações sazonais bem mais aparentes na série da 1ª diferença.
- A sazonalidade pode também ser inferida através da inspeção da FAC estimada da série da 1ª diferenças, mostrada a seguir:

Autocorrelation	Partial Correlation	683	AC	PAC	Q-Stat	Prob
1	1	1 1	0.576	0.576	78.715	0.000
1	I	2 1	0.204	-0.191	88.654	0.000
THE PARTY OF THE P	I I	3 -1	0.235	-0.412	101.87	0.000
THE REAL PROPERTY OF THE PERTY	1	4 -1	0.237	0.234	115.34	0.000
	I	5 -1	0.239	-0.153	129.13	0.000
1	1	6 -1	0.215	-0.305	140.31	0.000
	1 4 1	7 -1	0.277	-0.077	158.99	0.000
1	E	8 -1	0.290	-0.149	179.57	0.000
1		9 -1	0.212	-0.118	190.58	0.000
ı 🔟	I P	300000	0.083	0.304	192.30	0.000
1	1 =		0.411	0.283	234.10	0.000
, I = 2	1 10		0.586	0.063	319.54	0.000
.1.	141		0.419	-0.043	363.38	0.000
1 🗐 1			0.079	-0.120	364.93	0.000
	' " '		0.191	-0.073	374.16	0.000
	101	0.00		-0.034	391.97	0.000
THE REAL PROPERTY.	' " '	0.000		-0.061	405.68	0.000
	' " '	22-0	0.232	-0.080	419.47	0.000
	111		0.260	0.012	436.85	0.000
	111		0.268	-0.023	455.34	0.000
	1 1		0.142	-0.005	460.57	0.000
1	· -		0.128	0.135	464.83	0.000
	1 P		0.414	0.076	509.67	0.000
' ===	1 1		0.520	-0.016	580.91	0.000
			0.370	0.020	616.99	0.000
1 D 1	101	26	0.070	-0.046	618.30	0.000

- Vamos agora proceder à modelagem sazonal da série da 1^a diferença da taxa de desemprego utilizando variáveis dummies, e adotando o mês de janeiro como o mês base.
- O modelo será da forma:

$$\Delta y_{t} = a_{0} + \gamma_{2} d_{2,t} + \gamma_{3} d_{3,t} + \gamma_{4} d_{4,t} + ... + \gamma_{12} d_{12,t} + \varepsilon_{t}, \quad \varepsilon_{t} \sim NID(0, \sigma^{2})$$

Os comandos do EViews são:

 A saída do EViews quando esse modelo é estimado é mostrada a seguir:

	98	(e)		
∨ariable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.378947	0.088469	-4.283400	0.0000
@SEAS(2)	0.498947	0.123540	4.038752	0.0001
@SEAS(3)	1.158947	0.123540	9.381152	0.0000
@SEAS(4)	1.248947	0.123540	10.10966	0.0000
@SEAS(5)	0.828947	0.123540	6.709952	0.0000
@SEAS(6)	0.358947	0.123540	2.905516	0.0040
@SEAS(7)	0.148947	0.123540	1.205661	0.2292
@SEAS(8)	0.078947	0.125114	0.631004	0.5287
@SEAS(9)	0.126316	0.125114	1.009607	0.3138
@SEAS(10)	0.205263	0.125114	0.125114 1.640612	
@SEAS(11)	0.173684	0.125114	1.388210	0.1665
@SEAS(12)	-0.031579	0.125114	-0.252402	0.8010
R-squared	0.564230	Mean depen	dent var	0.028632
Adjusted R-squared	0.542637	S.D. dependent var		0.570213
S.É. of regression	0.385627	Akaike info criterion		0.982026
Sum squared resid	33.01316	Schwarz criterion		1.159222
Log likelihood	-102.8971	F-statistic		26.13115
Durbin-Watson stat	1.197241	Prob(F-statis	0.000000	

 Esse modelo ainda não pode ser considerado definitivo pois os resíduos ainda apresentam autocorrelação:

Correlogram of Residuals						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
t 🔲	1 1	1	0.395	0.395	37.019	0.000
1	1 🔟	2	0.303	0.174	58.929	0.000
II 1	T I	3	-0.117	-0.349	62.215	0.000
i þ i	1 🔤	4	0.054	0.208	62.912	0.000
1 1	1 11	5	-0.022	0.040	63.033	0.000
111	= 1	6	-0.020	-0.215	63.126	0.000
10 1	1 11	7	-0.098	0.028	65.454	0.000
10 1	1 11	8	-0.073	0.039	66.744	0.000
10 1	■ 1	9	-0.094	-0.140	68.925	0.000
T T	1 (0)	10	-0.008	0.089	68.940	0.000
t) r	1 🗐	11	0.040	0.120	69.329	0.000
i 🔳	111	12	0.139	0.019	74.117	0.000
r þ r	111	13	0.091	-0.011	76.168	0.000
i i	101	14	0.003	-0.078	76.171	0.000

- Devemos, então, reespecificar o modelo, adicionando um erro com estrutura ARMA adequada para capturar a autocorrelação presente nos resíduos.
 - Portanto, o modelo adequado para a série da 1º diferenças da taxa de desemprego mensal será dado por:

$$\Delta y_{t} = a_{0} + \gamma_{2} d_{2,t} + \gamma_{3} d_{3,t} + \gamma_{4} d_{4,t} + \dots + \gamma_{12} d_{12,t} + \varepsilon_{t}$$

$$\Phi_{p}(L) \varepsilon_{t} = \Theta_{q}(L) \eta_{t}, \quad \eta_{t} \sim NID(0, \sigma^{2})$$

$$\Theta_{q}(L)=1 + \theta_{1}L + \theta_{2}L^{2} + ... + \theta_{q}L^{q}$$

$$\Phi_{p}(L) = 1 - \varphi_{1}L - \varphi_{2}L^{2} - \dots - \varphi_{p}L^{p}$$

- A FAC e FACP dos resíduos sugerem um modelo MA (2) ou MA (3). O MA (3) foi escolhido pois minimiza o AIC.
- A sintaxe do modelo a ser estimado no EViews será:

```
d(desemp_sp) c @seas(2) @seas(3) @seas(4) @seas(5) @seas(6) @seas(7) @seas(8) @seas(9) @seas(10) @seas(11) @seas(12) ma(1) ma(2) ma(3)
```

• O resultado do ajuste do modelo é dado a seguir:

Variable	Coefficient	Std. Error	td. Error t-Statistic	
С	-0.388791	0.088108	-4.412656	0.0000
@SEAS(2)	0.520096	0.093637	5.554369	0.0000
@SEAS(3)	1.167428	0.105748	11.03972	0.0000
@SEAS(4)	1.257698	0.131219	9.584741	0.0000
@SEAS(5)	0.838791	0.123332	6.801066	0.0000
@SEAS(6)	0.368791	0.123330	2.990275	0.0031
@SEAS(7)	0.158791	0.123330	1.287531	0.1993
@SEAS(8)	0.080740	0.124331	0.649390	0.5168
@SEAS(9)	0.150081	0.124593	1.204565	0.2297
@SEAS(10)	0.212618	0.132812	1.600892	0.1108
@SEAS(11)	0.188330	0.106601	1.766680	0.0787
@SEAS(12)	-0.035483	0.094226	-0.376570	0.7069
MA(1)	0.521503	0.065580	7.952187	0.0000
MA(2)	0.540334	0.065150	8.293733	0.0000
MA(3)	-0.209991	0.066665 -3.149960		0.0019
R-squared	0.732242	Mean depen	dent var	0.028632
Adjusted R-squared	0.715125	S.D. dependent var		0.570213
S.É. of regression	0.304343	Akaike info criterion		0.520636
Sum squared resid	20.28486	Schwarz criterion		0.742131
Log likelihood	-45.91438	F-statistic		42.77876
Durbin-Watson stat	2.036700	Prob(F-statistic)		0.000000

- Observe que o sinal e significância dos parâmetros sazonais permitem-nos afirmar que:
 - em relação à variação da taxa de janeiro, a variação mensal na taxa de desemprego é maior nos primeiros meses do ano, sendo abril o mês de maior variação da taxa de desemprego.
 - a variação da taxa de desemprego nos meses de julho a dezembro não são estatisticamente discerníveis da variação da taxa em janeiro.
- O correlograma dos resíduos, apresentado abaixo, indica que o modelo é satisfatório, pois os resíduos se comportam como ruído branco.

Correlogram of Residuals							
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob		
il)	[([)	1 -0.021	-0.021	0.1039			
1.11	i iji	2 0.039	0.039	0.4746			
r i i	i) i	3 -0.018	-0.016	0.5524			
i b i	())	4 0.047	0.045	1.0753	0.300		
1 1 1	141	5 -0.029	-0.026	1.2844	0.526		
i la	i i i	6 0.015	0.010	1.3355	0.721		
10 1	101	7 -0.068	-0.062	2.3794	0.666		
1 🗓 1	101	8 -0.048	-0.055	2.9441	0.709		
i d i	il ili	9 -0.029	-0.024	3.1475	0.790		
1 1	() t	10 -0.007	-0.008	3.1591	0.870		
i d i	141	11 -0.032	-0.026	3.4114	0.906		
1.	(in	12 0.117	0.119	6.8384	0.654		
i 🛅	(III)	13 0.082	0.092	8.5225	0.578		
i j	111	14 -0.027	-0.036	8.7069	0.649		

- Para obter previsões fora da amostra para a taxa de desemprego (a série original), temos os seguintes comandos do EViews:
 - inicialmente observar que a série de desemprego se inicia em jan 1985 e vai até julho de 2004.
 - aumentamos o range e o sample (nesta ordem), clicando a seta indicadora nos seus respectivos nomes que aparecem no canto superior esquerdo da janela workfile.
 - nas janelas que se abrem, colocamos uma data final que englobe o horizonte de previsão desejado. Por exemplo, se queremos obter previsões de agosto de 2004 até março de 2005, colocamos: 2005.03.
 - em seguida na janela que possui os resultados da estimação do modelo selecionamos a opção Forecast no canto superior direito.
 - na janela que se abre, em *Forecast Sample* colocamos 2004:08 2005:03.

 é então criada a variável com as previsões (a qual possui o nome da variável original acrescida da letra f no final) e um gráfico das previsões com intervalos de confiança de 95%.

 A título de ilustração apresentamos uma tabela como os valores previstos e os atuais, fornecidos pelo DIEESE, na tabela subseqüente.

Mês	previsão	atual
Ago.04	18.64 \	18.3
Set.04	18.66 \	17.9
Out.04	18.45\\	
Nov.04	18.26	
Dez.04	17.85	
Jan.05	17.44	
Fev.05	17.57	
Mar.05	18.35	

- Observar que no EViews existem duas opções p/ forecast:
 - Static calcula a previsão 1 passo à frente, utilizando os valores reais da série. É adequado para in-sample forecasts.
 - Dynamic calcula a previsão k passos à frente, iniciando a partir da 1ª data do forecast sample. É a escolha adequada para previsão out-of-sample.

Sazonalidade com funções trigonométricas

- A sazonalidade também pode ser capturada através de funções periódicas, as quais podem ser representadas através de uma série de Fourier.
- Teorema de Fourier (p/ seqüências)
 - se f(t) é uma sequência periódica com período s, então f(t) admite a seguinte expansão em séries trigonométricas (série de Fourier):

$$f(t) = a_0 + \sum_{j=1}^{\lfloor S/2 \rfloor} (a_j \cos \omega_j t + b_j \sin \omega_j t), \quad t = 1, 2, ..., T$$

$$\omega_{j} = \frac{2\pi j}{s}$$
 [s/2]=
$$\begin{cases} s/2, s \text{ par} \\ (s+1)/2, s \text{ im par} \end{cases}$$

 Portanto, sob a hipótese de que o resíduo deste modelo pode conter autocorrelação, uma ST estacionária com sazonalidade por termos trigonométricos pode ser representada pelo seguinte modelo geral:

$$\Delta^{d} y_{t} = a_{0} + \sum_{j=1}^{\lfloor S/2 \rfloor} (a_{j} \cos \omega_{j} t + b_{j} \sin \omega_{j} t) + \varepsilon_{t}$$

$$\Phi_{p}(L) \varepsilon_{t} = \Theta_{q}(L) \eta_{t}, \quad \eta_{t} \sim NID(0, \sigma^{2})$$

$$\Theta_{q}(L) = 1 + \theta_{1}L + \theta_{2}L^{2} + ... + \theta_{q}L^{q}$$

$$\Phi_{p}(L) = 1 - \varphi_{1}L - \varphi_{2}L^{2} - ... - \varphi_{p}L^{p}$$

- Observem que, ao contrário do tratamento por dummies, o fator sazonal associado ao "mês" t, não pode ser lido diretamente do modelo, tendo que ser avaliado.
- Assim sendo, para o "mês" t, o fator sazonal será dado por:

$$\gamma(t) = \sum_{j=1}^{\lfloor S/2 \rfloor} (a_j \cos \omega_j t + b_j \sin \omega_j t)$$

 A implementação destes modelos no EViews será deixada como exercício.

Modelo SARIMA(p,d,q)(P,D,Q)s

 Inicialmente, considere um modelo AR com lag no período sazonal, assumido como s =12:

$$y_{t} = \varphi_{12} y_{t-12} + \eta_{t}, |\varphi_{12}| < 1$$

 $(1 - \varphi_{12} L^{12}) y_{t} = \eta_{t}$

- Este é um modelo AR (12) com parâmetros intermediários $\varphi_i = 0$, j = 1, 2, ..., 11.
- A FAC do modelo é dada por:

$$\rho(k) = \phi_{12}^{k/12}, k = 12, 24, 36, ...$$

que terá picos (decrescentes) apenas nos *lags* 12, 24, 36,...

• É fácil de ver que o modelo anterior pode ser generalizado através da seguinte expressão:

$$\begin{split} \Phi_{P}\left(L^{S}\right)y_{t} &= \Theta_{Q}\left(L^{S}\right)\eta_{t} & \text{(I)} \\ \text{onde:} \\ &- \Theta_{Q}\left(L^{S}\right) = 1 + \Theta_{1}L^{S} + \Theta_{2}L^{2S} + ... + \Theta_{Q}L^{QS} \\ &- \Phi_{P}\left(L^{S}\right) = 1 - \Phi_{1}L^{S} - \Phi_{2}L^{2S} - ... - \Phi_{P}L^{PS} \end{split}$$

• **Exemplo**: s=12, P=Q=2.

$$(1 - \Phi_{1}L^{12} - \Phi_{2}L^{24}) y_{t} = (1 + \Theta_{1}L^{12} + \Theta_{2}L^{24}) \eta_{t}$$

$$y_{t} = \Phi_{1}y_{t-12} + \Phi_{2}y_{t-24} + \Theta_{1}\epsilon_{t-12} + \Theta_{2}\epsilon_{t-24} + \eta_{t}$$

- Na prática, o modelo acima será apenas adequado se apenas existir dependência sazonal na série, pois não incorpora a presença de dependência de curta duração na série.
- Isto poderia ser verificado formalmente obtendo a forma da FAC e FACP, e observando que nos lags diferentes de s, 2s, 3s, ... que os valores são nulos.
- Assim sendo, ao utilizarmos este modelo na prática os resíduos apresentarão estrutura de dependência, implicando que os erros η_t não são ruídos brancos, e assim sendo podem ser modelados por um modelo ARMA, i.e. :

$$\varphi_{p}(L)\eta_{t} = \theta_{q}(L)\varepsilon_{t} : \eta_{t} = [\theta_{q}(L)/\varphi_{p}(L)]\varepsilon_{t}$$

 Finalmente, substituindo esta expressão na eq(I), obtemos o modelo SARIMA (p,q) x (P,Q)_s, um modelo onde a parte sazonal e não-sazonal são combinadas multiplicativamente:

$$\Phi_{P}(L^{S})\phi_{p}(L)y_{t} = \Theta_{Q}(L^{S})\theta_{q}(L)\epsilon_{t}$$
 (II)

Deve-se notar que, em se tratando de séries com tendência estocástica e sazonalidade, a não-estacionariedade se manifesta através de duas formas:

 Através da tendência estocástica que pode ser removida por um número adequado de diferenças:

$$z_{1t} = \Delta^{d} y_{t} = (1 - L)^{d} y_{t}$$

A sazonalidade implica que observações y_t, y_{t-s}, y_{t-2s}, ..., apresentarão "picos", induzindo não-estacionariedade, a qual pode ser removida pela operação de diferenças sazonais:

$$z_{2t} = (1 - L^s) y_t = y_t - y_{t-s}$$

ou de forma geral:

$$Z_{2t} = \Delta_s^D y_t, \Delta_s^D = (1-L^s)^D$$
 (D geralmente é 1)

 Combinando as duas operações anteriores podemos definir o modelo SARIMA (p,d,q)(P,D,Q)_s para séries não estacionárias:

$$\Phi_{P}(L^{S})\Phi_{p}(L)\Delta^{d}\Delta_{s}^{D}y_{t} = \Theta_{Q}(L^{S})\Theta_{q}(L)\epsilon_{t} \qquad (III)$$

$$-\Theta_{Q}(L^{S})=1+\Theta_{1}L^{S}+\Theta_{2}L^{2S}+...+\Theta_{Q}L^{QS}$$

$$-\Phi_{P}(L^{S})=1-\Phi_{1}L^{S}-\Phi_{2}L^{2S}-...-\Phi_{P}L^{PS}$$

$$-\Theta_{q}(L)=1+\theta_{1}L+\theta_{2}L^{2}+...+\theta_{q}L^{q}$$

$$-\Phi_{Q}(L)=1-\phi_{1}L-\phi_{2}L^{2}-...-\phi_{P}L^{P}$$

Modelo Airline

 Uma estrutura particular dos modelos SARIMA é o modelo SARIMA (0,1,1) x (0,1,1)₁₂, conhecido como o modelo Airline:

$$\Delta \Delta_{s} y_{t} = (1 + \Theta_{1}L^{s})(1 + \theta_{1}L) \epsilon_{t}$$

$$Z_{t} = \theta_{1} \epsilon_{t-1} + \Theta_{1} \epsilon_{t-12} + \Theta_{1} \theta_{1} \epsilon_{t-13} + \epsilon_{t}$$

 Pode-se mostrar que a função de autocovariância deste modelo é dada por:

$$\gamma(k) = E(z_1 z_{t-k}), k = 0,1,2,...$$

$$\gamma(0) = \sigma^2(1 + \theta_1^2 + \Theta_1^2 + \theta_1^2 \Theta_1^2)$$

$$\gamma(1) = \sigma^2(\theta_1 + \theta_1 \Theta_1^2)$$

$$\gamma(j) = 0, j = 2, 3, ..., 10$$

$$\gamma(11) = \sigma^2(\theta_1 \Theta_1)$$

$$\gamma(12) = \sigma^2(\theta_1 + \theta_1^2 \Theta_1)$$

$$\gamma(13) = \sigma^2(\theta_1 \Theta_1)$$

$$\gamma(13) = \sigma^2(\theta_1 \Theta_1)$$

$$\gamma(13) = \sigma^2(\theta_1 \Theta_1)$$

- Portanto, a FAC, $\rho(k) = \frac{\gamma(k)}{\gamma(0)}$, tem lags differentes de zero apenas em k= 1,11,12 e 13.
- Comando para estimar o "airline" no EViews:

• Observe que um modelo aditivo "equivalente" ao modelo *Airline* seria dado por:

$$\Delta\Delta_s \log(y_t) = (1 + \theta_1 L + \Theta_1 L^{12} + \Theta_2 L^{13}) \varepsilon_t$$

 Deixamos como exercício o cálculo da FAC para este modelo, a qual possui valores diferentes para os lags 11,12 e 13. Em algumas situações, pode ser mais adequado do que modelos multiplicativos.

- A identificação procede em linhas gerais como nos modelos não sazonais:
 - inicialmente tente utilizar a FAC e FACP para especificar um modelo inicial. O "airline" é sempre um bom ponto de partida;
 - caso necessário complemente o processo de identificação usando AIC e BIC;
 - observe a FAC dos resíduos, nas frequências baixas e nas sazonais.

 Aplicação: 1ª diferença da série de desemprego de São Paulo

 Assim sendo, como primeira tentativa iremos estimar um modelo SARIMA(0,1,2) x (0,1,1) pelo EViews:

d(desemp_sp,1,12) ma(1) ma(2) sma(12)

 Observe que tem alguma correlação no lag 3 dos resíduos deste modelo. Vamos aumentar o lag da parte não sazonal para um ma(3)

• O novo modelo resultante é:

Sample(adjusted): 1986:02 2004:07 Included observations: 222 after adjusting endpoints Convergence achieved after 11 iterations Backcast: 1984:11 1986:01 Variable Coefficient Std. Error t-Statistic Prob. 0.062858 MA(1) 0.526791 8.380592 0.0000 MA(2) 0.0000 0.544615 0.064722 8.414612 MA(3) -0.188332 0.059651 -3.157230 0.0018 SMA(12) -0.911501 0.018472 -49.34427 0.0000 R-squared 0.605677 Mean dependent var 0.006306 Adjusted R-squared 0.600251 S.D. dependent var 0.489950 S.E. of regression 0.309774 Akaike info criterion 0.511907 Sum squared resid Schwarz criterion 20.91927 0.573216 Log likelihood -52.82164 Durbin-Watson stat 2.034011

- Observe que o termo ma(3) é estatisticamente significante.
- A FAC dos resíduos indica que o modelo é adequado:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1(1	[i[i	1	-0.023	-0.023	0.1172	
3 j a	i di	2	0.040	0.040	0.4832	
10	10	3	-0.069	-0.067	1.5569	
1 10	L Dir	4	0.048	0.044	2.0745	
3 1 13	100	5	-0.037	-0.030	2.3906	0.122
. ju	().	6	0.018	0.009	2.4624	0.292
1 0 1	101	7	-0.087	-0.079	4.2142	0.239
10	100	8	-0.054	-0.065	4.9023	0.297
3 (3)	1 1	9	-0.024	-0.016	5.0337	0.412
id i	10	10	-0.044	-0.055	5.4880	0.483
id i	10	11	-0.047	-0.049	6.0078	0.539
1 🛅	1 10	12	0.128	0.129	9.9072	0.272
i b i	(1)	13	0.061	0.065	10.799	0.290
10	101	14	-0.044	-0.061	11.255	0.338
(C)	(E)	15	-0.099	-0.103	13.622	0.255
1 1	100	16	-0.013	-0.027	13.665	0.323
()	i di	17	0.032	0.027	13.910	0.380
101	101	18	-0.030	-0.051	14.129	0.440
3 3	1 1	19	0.001	0.012	14.129	0.518
i d i	101	20	-0.079	-0.053	15.654	0.477
3 3	1(1	21	-0.002	-0.013	15.655	0.548
1 🔟	D	22	0.115	0.123	18.932	0.398
1 111	i ju	23	0.042	0.041	19.366	0.434
1 11	1 1	24	0.013	-0.007	19.410	0.495
1 11	(I)	25	0.052	0.025	20.101	0.515

 A hipótese de normalidade dos resíduos não pode ser rejeitada:

• Previsão fora da amostra:

Mês	Saz c/	SARIMA	atual
	dummies		
Ago.04	18.64	18.66	18.3
Set.04	18.66	18.75	17.9
Out.04	18.45	18.64	
Nov.04	18.26	18.47	
Dez.04	17.85	18.09	
Jan.05	17.44	17.68	
Fev.05	17.57	17.79	