

Classification | Bank project

How to know which client will say "Yes" or "No" to our offers?

Table of Contents

01

Tableau Exploration

02

Python Discoveries

03

Our Best model

Tableau Exploration

01

Offer Accepted | Dashboard

Offer Accepte	d / Credit card rating
---------------	------------------------

Offer accepted / Mailer Type	Offer	acce	pted	/ Mailer 1	ype
------------------------------	-------	------	------	------------	-----

Offer accepted / Overdraft Protection

Offer accepted / Reward

Offer Accepted	Low	Medium	High	Offer Accepted	Letter	Postcard	Offer Accepted	No	Yes	Offer Accepted	Air Miles	Cash Back	Points
No	31.36%	33.58%	35.06%	No	50.38%	49.62%	No	85.10%	14.90%	No	32.96%	34.12%	32.92%
Yes	61.88%	26.49%	11.63%	Yes	29.33%	70.67%	Yes	85.53%	14.47%	Yes	45.45%	20.14%	34.41%

Percentage of people saying "Yes" or "No"

% of "Yes/No" over no of credit cards held

Average number of credit cards held

Python Discoveries

02

Problems & data

Steps

- EDA
- Correlation matrix
- 2 Jupyter Notebooks : With/Without outliers
- Dealing with the features to take or not
- Choosing the right Scaling method STD / Normalizer / MinMax
- Choosing the right Sampling method
- Dealing with the Unbalanced data

- 1 Case Study Classification
 - 1.1 Preparing the Dataset
 - 1.2 Exploratory Data Analysis (EDA)
 - 1.2.1 Dealing with Nulls
 - 1.2.2 Quick check of irrelevant columns
 - 1.2.3 Overlooking of numerical columns
 - o 1.2.4 Correlations
 - 1.2.5 Dealing with Outliers
 - 1.2.6 Numerical and Categorical Columns
 - o 1.2.6.1 Preprocessing numerical columns
 - 1.2.6.2 Preprocessing categorical columns
 - 1.3 DataFrame after preprocessing
 - 1.4 Modelling with Logistic Regression
 - o 1.4.1 Split data into train test
 - o 1.4.2 Fit train to the model
 - 1.4.3 Model2: Over Samling Method SMOTE
 - 1.4.4 Model 3: Under Sampling Tomek Links
 - 1.4.5 Model 4: Mixed Sampling Methods SMOTE followed by Tomek Links
 - o 1.4.6 Model 5: KNN Classifier

Logistic regression

Confusion Matrix

Plot figures

Our mistakes

1 - Not understanding well

We used a different sampling methods : "BalancedBaggingClassifer"

2 - Overfitting

At the end we understood that the model was overfitting

Our models

	OUR BEST MODEL	Model 1	Model 2	Model 3				
Columns								
Scalers	Normalizer	Normalizer	Normalizer	MinMax				
Outliers	With	With	With	Without				
Sampling methods	SMOTE - TOMEK LINKS	KNN	SMOTE	SMOTE				
Results	Accuracy Score = 0.64 AUC Score = 0.77 F1 Score = 0.84	Accuracy Score = 0.94 AUC Score = 0.60 F1 Score = 0.52	Accuracy Score = 0.67 AUC Score = 0.77 F1 Score = 0.76	Accuracy Score = 0.67 AUC Score = 0.76 F1 Score = 0.79				

Our Best Model

03

Our best model

Confusion Matrix

ROC Curve

Results

Summary of the results of this model:

- accuracy score = 0.64
- auc score = 0.77
- f1 scores are around 0.84.

Do you have any questions?

Thanks

