dont know	know a bit	OK	good!	master	COMS 311 TOPICS						
						wke	wk5	wk4	wk3	wk2	wk1
1	2	3	4	5	BIG-OH						
					Basics						Х
					Definitions of big-oh, omega, theta c>0, n>=0 (7 things)						Х
					big-omega						х
					big-theta						Х
					Intuition/understanding (graph)						х
					tighter and weaker bounds					Х	Х
					how to prove O/Omega/Theta techniques						Х
					for polynomials choose c >sum of coeff or coeff for omega						х
					for same type compare exponents						X
					take log						х
											<u> </u>
					Application to Algorithms	_					X
					ram model (vs actual)						х
					instances and runtime graphs					Х	х
					WCET, BCET, ACET					Х	х
					Big-oh of code segments	_				Х	Х
					problem complexity and algorithmic complexity						х
					code examples of different Os						х
					Big-oh in real world					Х	
					real code times (matrix mult)					Х	
					effect of cache/pipelining etc	_				Х	
					choosing algo in real-world vs big-Oh	_				Х	
					constants might matter more in real world than O					Х	
					easier implementation might make the diff					Х	
					Dominance Relationships						х
					logs beat constants						х
					poly beats all logs						х
					exp beats all poly	_					х
					fact beats all exp	_					х
					n^n beats fact	_					х
1	2	3	4	5	DATA STRUCTURES						
					Basic					Х	Х
					arrays (sorted/unsorted)					Х	х
					linked lists (singly/doubly; sorted/unsorted)					Х	х
					comparison of arrays and linked lists					Х	х
					Basic Abstract Data Types	 _				Х	х
					Stack, Queue (implementations using array/linkedlists)	 _				Х	х
					comparison of operations of diff impl of stack/queue					Х	х
					reasons for differences					Х	х
					Dictionaries				Х	Х	
					Hash Tables				Х	Х	
											L

dont know	know a bit	OK	good!	master	COMS 311 TOPICS							
							wk6	wk5	wk4	wk3	wk2	wk1
					Other ADTs and their Java Implementations					х	Х	
					Binary Search Trees					х	Х	
					Priority Search Queues					х	Х	
					Heap impl					х	х	
					Fast Heap Impl and Analysis					х	<u> </u>	
											<u> </u>	
					Storing points, graphs, sets etc					х	х	
					graphs			х	Х	х	х	
					sets				Х	х	х	
											<u> </u>	
					big-oh of operations on data structures					х	х	
					algorithms on data structures (BST, HEAP etc)					х	х	
1	2	3	4	_	GRAPHS (unweighted)							
					BFS				Х	х	<u> </u>	
					connected components				Х	х	<u> </u>	
					two-color problem				Х	х	<u> </u>	
					DFS on undirected graphs (tree and back edges)			х	Х	х	<u> </u>	
					articulation vertices (parent, root, bridge cutnodes)			х	Х		<u> </u>	
					DFS on directed graphs(tree,back,cross,forward)			х	Х		<u> </u>	
					topological sorting/DAG			х	Х		<u> </u>	
					strongly connected components			х	Х		<u> </u>	
					following algorithm by marking graph			х	Х		<u> </u>	
					big-oh of graph algorithms			Х	Х	х	<u> </u>	
											<u> </u>	<u> </u>
1	2	3	4		Weighted GRAPHS							
					MST			Х			<u> </u>	—
					prims			Х			<u> </u>	—
					kruskals			Х			<u> </u>	—
					union-find data structure			Х			<u> </u>	—
					reverse delete			Х			<u> </u>	—
					proofs of prims and kruskals	_		Х			<u> </u>	₩
			-	\vdash	big-ohs of prims and kruskals	_		Х			<u> </u>	
				$\vdash \vdash \vdash$	Shortest Paths	_	_	Х			<u> </u>	<u> </u>
			-	\vdash	Dijkstras		X	X			<u> </u>	_
			-	\vdash	proof		X	X			<u> </u>	<u> </u>
				\vdash	big-oh	1	X	Х			<u> </u>	<u> </u>
				\vdash	AllPairs Shortest		_	Х			<u> </u>	<u> </u>
			-	\vdash	Dijkstras forall nodes	-	X	Х			<u> </u>	<u> </u>
			-	\vdash	Floyd-Warshalls how algo works + big-oh	-	X	Х			<u> </u>	<u> </u>
			-	\vdash	Floyd-Warshall's recurrence formula	<u> </u>	X	Х			<u> </u>	<u> </u>
1	2	2	0		D ND							
1	2	3	4		P-NP							-
			-	\vdash	Intro Concepts						<u> </u>	X
			-	\vdash	the diagram and four classes of problems				X		<u> </u>	X
					informal (solvable, probab intract, provably intract, prov unsolvable)				Х		<u> </u>	X
					examples of problems in four classes				Х		Щ.	Х

dont know	know a bit	ОК	good!	master	OMS 311 TOPICS						
						wke	wk5	wk4	wk3	wk2	wk1
					Halting Problem			Х			х
					Hamiltonian Cycle Enumeration problem			Х			Х
					Hamiltonian Cycle Search problem			Х			х
					Independent Set problem			Х			х
					Search/Sort problems			Х			х
											_
					lasses of problems	<u> </u>					ــــــ
					Undecidable (prove Halting problem is undecidable)	<u> </u>		Х			Х
					Р			Х			Х
					NP			Х			Х
					prove P is a subset of NP	<u> </u>					
					NP-Complete (probably intractable class)	<u> </u>					Х
					why if a NP-C problem is in P, then P=NP						
					provably intractable classes	<u> </u>					Х
					NP-Hard problems	<u> </u>					_
						<u> </u>					
					eduction	<u> </u>					
					optimization, search, decision and reductions	<u> </u>	Х	Х			
					definition of polynomial-time reduction & notation	<u> </u>	Х	Х			
					conclusions (or implications of) from Y <=p X	-	Х	Х			
					transitive property (x <=p y, y <=p z => x<=p z)	<u> </u>	Х	Х			
					how to prove X <=p Y (the three steps)	-	Х	Х			
					Yes->yes, no-> no, false positives, false negatives etc	X	Х				
					interval sched <=p IS constructions and proofs	Х	Х	Х			_
					vector cover <=p IS constructions and proofs	Х	Х	Х			_
					IS <=p vector cover constructions and proofs	Х	Х	Х			
					bipartite matching <=p IS constructions and proofs	Х	Х	Х			_
					given some reduction - ability to prove/disprove yes/no part	X	Х				-
					ID Complete	-					-
					IP-Complete Definition and Intuition	 					-
					The first NP-C problem (circuitSAT) & Cook-Levin's theorem	+					┢
				-	how to prove that a problem is NP-C	+	-				_
					prove 3-SAT is NP-C	1					_
					prove IS is NP-C	 					_
					prove VC is NP-C	 					
					prove ve is in r-c	 					
1	2	3	4	5	ROOF TECHNIQUES						
			7		Vhy is proving important?						х
	\vdash				Job selection problem	1					×
	\vdash				solutions to JS problem	+					x
					why is proving so important?	+					x
					with 15 proving 50 importants	+					Ĥ
					ALCULUS	+				P	reRe
					propositional logic rules	+					reRe
					predicate logic rules	1					reRe
					form of deduction proofs	+					reRe
					s. season proofs				L		

dont know	know a bit	ОК	good!	master	COMS 311 TOPICS							
							wke	wk5	wk4	wk3	wk2	wk1
											<u> </u>	<u></u>
					DIFFERENT TECHNIQUES	1						reRe
					contradiction (and correct form)			Х		Х	Х	reRe
					induction (form)	-		Х			Х	reRe
					direct proof (see form of deduction proofs)			Х			Х	reRe
					trivial/vacuous	-			<u> </u>		_	reRe
					contrapositive	+		-	Х		Х	reRe
					_ EXAMPLES IN CLASS	+	-				<u> </u>	l PreRe
					contradiction (and correct form)	1				Х		reRe
					induction (form)					^	_	PreRe
					direct proof (see form of deduction proofs)						_	PreRe
					trivial/vacuous	+					_	reRe
					contrapositive				х			reRe
					Contrapositive				<u> ^</u>		<u> </u>	T
					Proofs in class							+
					Halting problem is undecidable	+				Х	Х	reRe
					VC <=p IS and IS <=p VC	+		х	Х			1
					select jobs satisfies greedy choice + opt substructuring		Х					\vdash
												1
					Proving Code correct							†
					Loop invariants							t
					proof of recursive codes							
					T T							
1	2	3	4	5	ALGORITHMIC TECHNIQUES							
					BRUTE FORCE TECHNIQUES							
					search space for different problems						х	х
					recursion tree for brute force approach						Х	х
					back track algo from text book						Х	х
					iterative way to generate all subsets							
					recursive way to generate all subsets						Х	х
					recursive way to generate all perms						Х	х
					recursive way to gen size k subsets						Х	х
							_				<u> </u>	<u> </u>
					DIVIDE AND CONQUER						<u> </u>	
					recurrence formula	1			Х	Х	<u> </u>	_
					divide and conquer approach				х	Х	<u> </u>	
					mergesort + analysis		_		Х	Х	<u> </u>	
					quicksort + analysis		_		Х	Х	<u> </u>	
					max		_		Х	Х	<u> </u>	<u> </u>
					max sum of sequence	1	_		Х		<u> </u>	₩
					counting inversions	1			Х		<u> </u>	\vdash
					finding sink in graph	1					<u> </u>	├
						1					<u> </u>	₩
					Recurrence Formulae		_		Х	Х	<u> </u>	\vdash
					general form of recurrence formula & masters theorem	1	_		Х	Х	<u> </u>	₩
					how to derive recurrence tree, term for each level, sum	1			Х	Х	Щ	

dont	know	OK	goodl	master								
know	a bit	OK .	good:	master	OMS 311 TOPICS							
					27/ /2)		wk6	wk5			wk2	wk1
					2T(n/2) + c				Х	Х		<u> </u>
					T(n/2) + cn				Х	Х		├
					2T(n/2) + cn				X	X		<u> </u>
					3T(n/2) + cn				X	X		\vdash
					$2T(n/2) + cn^2$				X	X		\vdash
					5T(n/2) + cn^2				Х	Х		\vdash
					DEEDA LECHNIQUE							
					REEDY TECHNIQUE		X					├
					greedy approach interval scheduling by greedy approach		X					┢
							X					
					greedy choice property optimal substructuring property		X					┢
							X					├
					proving as property		X					\vdash
					proving os property		X					\vdash
1	2	3	4	5	/NAMIC PROGRAMMING							
1	Z	3	4		ea							
					tabular computing (recursive or iterative)		X					\vdash
					memoization		X					\vdash
					ex: fibonacci		X					\vdash
					Finding the solution (i.e. aside from the max/min val)		X					\vdash
					I maing the solution (i.e. aside from the max/min var)		^					\vdash
					operties							
					diff from Divide & Conquer, Greedy algorithms		Х					\vdash
					overlapping subproblems		X					\vdash
					optimal substructuring property		X					
					examples of greedy-choice property is not satisfied		X					
					examples of greedy divide property is not successed							
					oplications (recurrence formula/table/solution)							
					min operations		Х					
					rod-cutting		Х					
					longest increasing subsequence		X					
					min coin change		X					
					subset sum		X					
					0-1 knapsack		X					
					edit-distance							
					matrix mult							
					weighted interval scheduling (select jobs)							
					largest-sum triangle							
					Floyd Warshall							
					??							
1	2	3	4	5	OGRAMMING ASSIGNMENTS							
					Graduate				Х			
					Rumors			х				
					Larvae Walk		Х					
-			i		Risk	х						$\overline{}$