Задания к лабораторным работам для группы №117172

дата генерации документа 14 ноября 2020 г.

Содержание

Лабораторная работа № 9 «Моделирование реакций в реакторах с различной структурой потоков»

3

Лабораторная работа № 9 «Моделирование реакций в реакторах с различной структурой потоков»

Вариант 1

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$
$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=342K, теплоемкость смеси $c_p=3090_{\overline{K}}$, состав подаваемой смеси: $c_A=32.3$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=25.8$, $E_{a2}=36.6$, $E_{a3}=30.8$, предэкспоненциальный множитель $k_{01}=1306, k_{02}=20656, k_{03}=4722$, тепловой эффект $\Delta H_1=-11.9$, $\Delta H_2=21.9$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 2

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=243K, теплоемкость смеси $c_p=2247_{\overline{K}}$, состав подаваемой смеси: $c_A=27.2$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=9.5$, $E_{a2}=14.4$, $E_{a3}=16.4$, предэкспоненциальный множитель $k_{01}=6$, $k_{02}=60$, $k_{03}=120$, тепловой эффект $\Delta H_1=14.6$, $\Delta H_2=32.9$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 3

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=371K, теплоемкость смеси $c_p=2794_{\overline{K}}$, состав подаваемой смеси: $c_A=33.6$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=29.0$, $E_{a2}=35.5$, $E_{a3}=29.7$, предэкспоненциальный множитель $k_{01}=1044, k_{02}=2877, k_{03}=939$, тепловой эффект $\Delta H_1=-34.6$, $\Delta H_2=-33.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 4

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=234K, теплоемкость смеси $c_p=2852_{\overline{K}}$, состав подаваемой смеси: $c_A=23.2$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=12.5$, $E_{a2}=24.4$, $E_{a3}=13.4$, предэкспоненциальный множитель $k_{01}=83,k_{02}=6627,k_{03}=104$, тепловой эффект $\Delta H_1=-12.4$, $\Delta H_2=26.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 5

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=221K, теплоемкость смеси $c_p=3673_{\overline{K}}$, состав подаваемой смеси: $c_A=29.1$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=12.5$, $E_{a2}=15.3$, $E_{a3}=13.7$, предэкспоненциальный множитель $k_{01}=94, k_{02}=205, k_{03}=123$, тепловой эффект $\Delta H_1=26.7$, $\Delta H_2=-26.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 6

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=316K, теплоемкость смеси $c_p=3927_{\overline{K}}$, состав подаваемой смеси: $c_A=17.0$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=19.1$, $E_{a2}=32.5$, $E_{a3}=27.4$, предэкспоненциальный множитель $k_{01}=241,k_{02}=12365,k_{03}=1863$, тепловой эффект $\Delta H_1=-25.5$, $\Delta H_2=5.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 7

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=373K, теплоемкость смеси $c_p=3693_{\overline{K}}$, состав подаваемой смеси: $c_A=31.8$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=19.7$, $E_{a2}=46.8$, $E_{a3}=23.2$, предэкспоненциальный множитель $k_{01}=60,k_{02}=127897,k_{03}=207$, тепловой эффект $\Delta H_1=-40.5$, $\Delta H_2=-14.9$, $\Delta H_3=-25.4$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 8

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=329K, теплоемкость смеси $c_p=3662_{\overline{K}}$, состав подаваемой смеси: $c_A=31.3$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=22.3$, $E_{a2}=29.4$, $E_{a3}=14.8$, предэкспоненциальный множитель $k_{01}=229, k_{02}=951, k_{03}=17$, тепловой эффект $\Delta H_1=-19.4$, $\Delta H_2=36.7$, $\Delta H_3=-10.2$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 9

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=396K, теплоемкость смеси $c_p=2038_{\overline{K}}$, состав подаваемой смеси: $c_A=24.6$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=32.7$, $E_{a2}=39.9$, $E_{a3}=54.2$, предэкспоненциальный множитель $k_{01}=2937, k_{02}=9898, k_{03}=532329$, тепловой эффект $\Delta H_1=7.1$, $\Delta H_2=8.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 10

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$
$$A \xrightarrow{k_2} C + \Delta H_2$$
$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=224K, теплоемкость смеси $c_p=3399_{\overline{K}}$, состав подаваемой смеси: $c_A=33.2$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=9.3$, $E_{a2}=14.8$, $E_{a3}=6.9$, предэкспоненциальный множитель $k_{01}=15, k_{02}=121, k_{03}=5$, тепловой эффект $\Delta H_1=34.8$, $\Delta H_2=-27.1$, $\Delta H_3=-38.4$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 11

В реакторе идеального вытеснения протекает реакция:

$$A \xrightarrow{k_1} B + \Delta H_1$$

$$A \xrightarrow{k_2} C + \Delta H_2$$

$$A \xrightarrow{k_3} D + \Delta H_3$$

На вход реактор подается смесь при температуре T=277K, теплоемкость смеси $c_p=2953_{\overline{K}}$, состав подаваемой смеси: $c_A=26.8$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=18.2$, $E_{a2}=22.5$, $E_{a3}=24.8$, предэкспоненциальный множитель $k_{01}=402,k_{02}=715,k_{03}=3470$, тепловой эффект $\Delta H_1=-10.8$, $\Delta H_2=19.1$, $\Delta H_3=-24.4$

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 12

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \underset{k_3}{\overset{k_3}{\longleftrightarrow}} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=228K, теплоемкость смеси $c_p=2675_{\overline{K}}$, состав подаваемой смеси: $c_A=33.0$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=10.4$, $E_{a2}=14.2$, $E_{a3}=14.9$, предэкспоненциальный множитель $k_{01}=33, k_{02}=104, k_{03}=246$, тепловой эффект $\Delta H_1=-38.8$, $\Delta H_2=-8.5$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 13

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=200K, теплоемкость смеси $c_p=2898_{\overline{K}}$, состав подаваемой смеси: $c_A=23.0$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=10.6$, $E_{a2}=14.9$, $E_{a3}=12.7$, предэкспоненциальный множитель $k_{01}=81, k_{02}=300, k_{03}=160$, тепловой эффект $\Delta H_1=25.0$, $\Delta H_2=-35.5$.

Вариант 14

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=291K, теплоемкость смеси $c_p=2793_{\overline{K}}$, состав подаваемой смеси: $c_A=16.9$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=19.9$, $E_{a2}=28.0$, $E_{a3}=21.5$, предэкспоненциальный множитель $k_{01}=482,k_{02}=5902,k_{03}=707$, тепловой эффект $\Delta H_1=5.3$, $\Delta H_2=39.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 15

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\longleftrightarrow} B + \Delta H_1$$
$$B \underset{k_3}{\longleftrightarrow} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=376K, теплоемкость смеси $c_p=2953_{\overline{K}}$, состав подаваемой смеси: $c_A=32.4$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=23.0$, $E_{a2}=46.1$, $E_{a3}=30.4$, предэкспоненциальный множитель $k_{01}=151, k_{02}=72239, k_{03}=1701$, тепловой эффект $\Delta H_1=-27.2$, $\Delta H_2=41.1$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 16

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=362K, теплоемкость смеси $c_p=2845_{\overline{K}}$, состав подаваемой смеси: $c_A=26.4$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=25.2$, $E_{a2}=44.8$, $E_{a3}=27.6$, предэкспоненциальный множитель $k_{01}=508, k_{02}=108960, k_{03}=762$, тепловой эффект $\Delta H_1=8.9$, $\Delta H_2=22.0$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 17

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$B + C \stackrel{k_3}{\longrightarrow} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=395K, теплоемкость смеси $c_p=2483_{\overline{K}}$, состав подаваемой смеси: $c_A=29.8$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=25.0$, $E_{a2}=42.3$, $E_{a3}=30.5$, предэкспоненциальный множитель $k_{01}=156, k_{02}=17537, k_{03}=826$, тепловой эффект $\Delta H_1=6.1$, $\Delta H_2=-26.8$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 18

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$

$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=311K, теплоемкость смеси $c_p=3773_{\overline{K}}$, состав подаваемой смеси: $c_A=20.6$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=18.0$, $E_{a2}=31.1$, $E_{a3}=28.3$, предэкспоненциальный множитель $k_{01}=164,k_{02}=5475,k_{03}=2392$, тепловой эффект $\Delta H_1=-13.7$, $\Delta H_2=9.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 19

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} B + \Delta H_1$$

$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=391K, теплоемкость смеси $c_p=3833_{\overline{K}}$, состав подаваемой смеси: $c_A=19.8$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=30.1$, $E_{a2}=38.3$, $E_{a3}=28.0$, предэкспоненциальный множитель $k_{01}=1369, k_{02}=6265, k_{03}=622$, тепловой эффект $\Delta H_1=-11.5$, $\Delta H_2=-38.7$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 20

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$B + C \xrightarrow{k_3} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=372K, теплоемкость смеси $c_p=3955_{\overline{K}}$, состав подаваемой смеси: $c_A=34.0$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=27.1$, $E_{a2}=50.3$, $E_{a3}=39.8$, предэкспоненциальный множитель $k_{01}=1103, k_{02}=501444, k_{03}=16159$, тепловой эффект $\Delta H_1=-16.7$, $\Delta H_2=-22.0$.

Вариант 21

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=290K, теплоемкость смеси $c_p=3837_{\overline{K}}$, состав подаваемой смеси: $c_A=34.0$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=16.3$, $E_{a2}=22.1$, $E_{a3}=13.5$, предэкспоненциальный множитель $k_{01}=85, k_{02}=399, k_{03}=31$, тепловой эффект $\Delta H_1=-10.3$, $\Delta H_2=17.9$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 22

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=258K, теплоемкость смеси $c_p=2924_{\overline{K}}$, состав подаваемой смеси: $c_A=33.2$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=11.6$, $E_{a2}=20.4$, $E_{a3}=18.4$, предэкспоненциальный множитель $k_{01}=23, k_{02}=669, k_{03}=425$, тепловой эффект $\Delta H_1=34.9$, $\Delta H_2=-15.0$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 23

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=397K, теплоемкость смеси $c_p=2366_{\overline{K}}$, состав подаваемой смеси: $c_A=27.9$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=31.4$, $E_{a2}=36.8$, $E_{a3}=37.6$, предэкспоненциальный множитель $k_{01}=1144, k_{02}=2980, k_{03}=3295$, тепловой эффект $\Delta H_1=-19.7$, $\Delta H_2=6.2$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 24

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$A \underset{k_3}{\overset{k_3}{\longleftrightarrow}} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=293K, теплоемкость смеси $c_p=3298_{\overline{K}}$, состав подаваемой смеси: $c_A=15.8$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=14.9$, $E_{a2}=28.7$, $E_{a3}=24.6$, предэкспоненциальный множитель $k_{01}=38,k_{02}=3574,k_{03}=821$, тепловой эффект $\Delta H_1=-8.3$, $\Delta H_2=20.5$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 25

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} B + \Delta H_1$$

$$B \xrightarrow{k_3} C + \Delta H_2$$

На вход реактор подается смесь при температуре T=318K, теплоемкость смеси $c_p=3768_{\overline{K}}$, состав подаваемой смеси: $c_A=32.4$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=20.0$, $E_{a2}=32.7$, $E_{a3}=27.3$, предэкспоненциальный множитель $k_{01}=155, k_{02}=7912, k_{03}=1548$, тепловой эффект $\Delta H_1=20.5$, $\Delta H_2=-22.1$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 26

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$

$$B+C \xrightarrow{k_3} D+\Delta H_2$$

На вход реактор подается смесь при температуре T=380K, теплоемкость смеси $c_p=3100_{\overline{K}}$, состав подаваемой смеси: $c_A=22.7$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=26.8$, $E_{a2}=51.3$, $E_{a3}=34.9$, предэкспоненциальный множитель $k_{01}=683, k_{02}=286153, k_{03}=4937$, тепловой эффект $\Delta H_1=-25.0$, $\Delta H_2=-44.6$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 27

В реакторе идеального вытеснения протекает реакция:

$$A \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$

$$A \xrightarrow{k_3} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=343K, теплоемкость смеси $c_p=3492_{\overline{K}}$, состав подаваемой смеси: $c_A=26.6$, $c_B=0.2$. Параметры реакций: энергии активации $E_{a1}=16.5$, $E_{a2}=37.0$, $E_{a3}=31.0$, предэкспоненциальный множитель $k_{01}=58, k_{02}=14735, k_{03}=4522$, тепловой эффект $\Delta H_1=-42.7$, $\Delta H_2=21.2$.

Вариант 28

В реакторе идеального вытеснения протекает реакция:

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftrightarrow}} C + \Delta H_1$$
$$A \stackrel{k_3}{\longrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=212K, теплоемкость смеси $c_p=3965_{\overline{K}}$, состав подаваемой смеси: $c_A=26.9$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=10.6$, $E_{a2}=14.5$, $E_{a3}=9.7$, предэкспоненциальный множитель $k_{01}=40, k_{02}=190, k_{03}=20$, тепловой эффект $\Delta H_1=-22.0$, $\Delta H_2=33.9$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 29

В реакторе идеального вытеснения протекает реакция:

$$A + B \underset{k_2}{\overset{k_1}{\longleftrightarrow}} C + \Delta H_1$$
$$B + C \xrightarrow{k_3} D + \Delta H_2$$

На вход реактор подается смесь при температуре T=333K, теплоемкость смеси $c_p=3588_{\overline{K}}$, состав подаваемой смеси: $c_A=32.6$, $c_B=0.4$. Параметры реакций: энергии активации $E_{a1}=19.2$, $E_{a2}=31.6$, $E_{a3}=23.8$, предэкспоненциальный множитель $k_{01}=139, k_{02}=3386, k_{03}=521$, тепловой эффект $\Delta H_1=24.1$, $\Delta H_2=-27.5$.

• Составить математическую модель изотермического реактора. Определить распределение концентрации компонентов по времени. Определить изменение конверсии по компоненту A, селективности и выхода по компоненту B.

Вариант 30

В реакторе идеального вытеснения протекает реакция:

$$A \stackrel{k_1}{\longleftrightarrow} C + \Delta H_1$$
$$A \stackrel{k_3}{\longleftrightarrow} B + \Delta H_2$$

На вход реактор подается смесь при температуре T=271K, теплоемкость смеси $c_p=2932_{\overline{K}}$, состав подаваемой смеси: $c_A=22.3$, $c_B=0.3$. Параметры реакций: энергии активации $E_{a1}=10.9$, $E_{a2}=17.6$, $E_{a3}=18.9$, предэкспоненциальный множитель $k_{01}=11, k_{02}=137, k_{03}=304$, тепловой эффект $\Delta H_1=21.5$, $\Delta H_2=9.7$.