Cervical Spine Fracture Detection **Team presentation 3**

W210 Capstone Fall 2022 - Section 3 Fengyao Luo, Weijia Li, Jane Hung, Minjie Xu

Agenda

Background

Product Demo

Dataset

Pipeline

Models

Model Performance

Future Work

Background

- Cervical Spine Fractures (broken neck)
- 1.5 million vertebral compression fractures occur
- 3 millions patients per year
- only 25–33% of incident radiographically identified vertebral fractures are clinically diagnosed
- Quickly detecting and determining the location of vertebral fractures is essential for prevent paralysis after trauma.
- RSNA Cervical Spine Fracture Al Challenge

Mission

Quicker, better, more accurate diagnosis to save lives.

- Traditionally, this process takes 30 mins on average with the first priority.
- With NeckFrac, this process will take less than 10 mins.

Product Demo

Introduce Tool

Fracture Bounding Boxes

Datasets

Train.csv

2019 patients in train set (balanced at patient_overall level)

	StudyInstanceUID	patient_overall	C1	C2	C3	C4	C5	C6	C7
0	1.2.826.0.1.3680043.6200	1	1	1	0	0	0	0	0
1	1.2.826.0.1.3680043.27262	1	0	1	0	0	0	0	0
2	1.2.826.0.1.3680043.21561	1	0	1	0	0	0	0	0
3	1.2.826.0.1.3680043.12351	0	0	0	0	0	0	0	0
4	1.2.826.0.1.3680043.1363	1	0	0	0	0	1	0	0

Bounding Box

235 patients (12% of train set) have the bounding box

- Most of patient have 15-25 bounding boxes
- Patients rarely have 100 bounding boxes, distribution right skewed

Train Image / Metadata

No missing data, Image size varies, need to resize to 512x512

- Patient ID
- Slice Number
- Image Size
- Slice Thickness
- Image Position Patient
- Image Orientation Patient

Segmentation

87 patients (4% of train set) have segmentation labelled

- Image has overlap of adjacent vertebrae
- Need to predict C1-C7 for rest of train set

Pipeline (1/4)

Pipeline (2/4)

Random
Anisotropy

Make images look anisotropic
25% of times

Random
Affine

Apply a random affine transformation

Random
Noise

Apply Gaussian noise 25% of times

Random Flip

5) Inference

Fracture

Pipeline (3/4)

EfficientNet

Treat each vertebrate as its own standalone EffNet Model

2.5D Model

Stage 1:

Predict Segmentation with 2.5D UNet

Stage 2:

Predict Fracture with Resnet 50 spatial dropout bi-GRU

Pipeline (4/4)

4) Evaluation

Train Val Loss Recall Precision

Accuracy F2 Score FP FN Rate

5) Inference

StudyInstanceUID	prediction_type	fractured	pred_flag
1.2.826.0.1.3680043.14833	patient_overall	0.599315107	1
1.2.826.0.1.3680043.14833	C1	0.68948257	1
1.2.826.0.1.3680043.14833	C2	0.420390278	1
1.2.826.0.1.3680043.14833	C3	0.389513612	1
1.2.826.0.1.3680043.14833	C4	0.362404943	1
1.2.826.0.1.3680043.14833	C5	0.733516157	1
1.2.826.0.1.3680043.14833	C6	0.156630933	0
1.2.826.0.1.3680043.14833	C7	0.836084545	1

Model I: EfficientNet (1/2)

Why EfficientNet?

It's all about Scale!

EfficientNet paper — Tan, M., & Le, Q. v. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. 36th International Conference on Machine Learning, ICML 2019, 2019-June. Link: https://arxiv.org/abs/1905.11946

Model I: **EfficientNet** (2/2)

Model II: 2.5D UNet + biGRU

Stage 1: Predict Segmentation

Train dataset **Load Data** dicom/nii files (87 examples) Normalize & Augmentation Quantization Cross **Validation** Net 2.5D (pretrained: Imagenet) Save to Save Models Local

Stage 2: Predict Fracture

Ensemble Model Performance

Cervical spine C1 C2 C3 C4 C5 C5 C7

- * Assign variable classification threshold for each vertebrae based on F2
- * Model does well at detecting overall patient level fractures according to F2
- * C3-C5 are the worst performing vertebrae in the model

Best Classification Thresholds			
Vertebrae	Classification Threshold		
C1	0.42		
C2	0.36		
C3	0.19		
C4	0.19		
C5	0.13		
C6	0.22		
C7	0.36		

F2 Evaluation Metric

False Negative Rate Evaluation Metric

Ensemble Model Error Analysis

Model predicts mostly 3.5 - 5.5 fractures on average regardless of actual vertebrae fracture count

Patient 1.2.826.0.1.3680043.21982

^{*} Better orientation leads to better predictions

Patient 1.2.826.0.1.3680043.17370

Vertebrae Label	Actual Vertebrae Fracture	Predicted Vertebrae Fracture
C1	-	-
C2	Yes	Yes
C3	-	-
C4	-	-
C5	-	-
C6	-	-
C7	Yes	Yes

Business Impact

	Recall / Sensitivity	Inference Time
Radiologist	93%	33-43 min
AIDOC Model	76%	3-8 min
NeckFrac	98%	2min

Future Work

- Labeling stretched images for better error analysis
- Incorporating soft tissue into model to identify fracture
- Combine three anatomical planes axial, sagittal, and coronal for modeling
- Designing a model API for use in CT imaging devices
- Rank the fracture severity (low, medium, high) based on probability

Appendix

Market Analysis & Problem Statement

- MVP and product version
- Mission statement:
 Quicker, better, more accurate diagnosis to save lives.

- The global spinal imaging market size was valued at \$1.6 billion in 2019 with expect growth rate of 5.2% from 2020 to 2027
- Estimated market value of CT in U.S. is over \$150 million in 2022
- The demand is continuing growing rapidly

Competitors' Products

Company/Author	Product Name	Performance
aldoc	C-spine	A FDA-approved CNN in cervical spine fracture detection with overall accuracy 92%, sensitivity 76%, and specificity 97%
香港中文大學 The Chinese University of Hong Kong	Ofeye 1.0	Achieve accuracy 93.9%, sensitivity of 86%, and specificity 97.1%
Joseph Redmon University of Washington	YOLOv3 software	CNN (darknet-53) models with accuracy 93%, sensitivity 91%, and specificity 93%.
NIH Clinical Center America's Research Hospital	Not disclosure	The computer system has a accuracy 95%, sensitivity 95.7%, and specificity 77.3%. Localization of fractures: a false-positive rate of 0.29 per patient.

EDA - Part I

Patient Overall Fracture:

 48% of patients in the train set have broken bones. The training data is well-balanced.

Vertebrae Fracture Frequency:

 C7, C2 bones have most frequent injuries. C3, C4 bones have the least frequent injuries.

N of Bones Fractured:

- Majority (65%) of patients broke only 1 bone, and very few (3%) patients broke over 4 bones.
- Patients, who have over 1 broken bone, usually broke the bones in the nearby area, such as broke C6, C7 or C1, C2 at the same time.

Patient Overall Fracture Frequency

1000

EDA - Part II

Patient slice counts:

 Majority of patients have 200-400 CT scans in the train set. Distribution right skewed.

Slice Thickness Frequency:

- Most of patients' CT scan slice thickness is 0.62
- Many variation

Bounding box counts:

- Most of patient have 15-25 bounding boxes
- Patients rarely have 100 bounding boxes, distribution right skewed

Sagittal Views

Scans to ignore: Due to funky image

Scans to ignore: Due to image size

Sagittal View - Randomly Pick 18

patient_id: 2923

patient_id: 30451

patient_id: 22968

EfficientNet Model Performance

- * Assign variable classification threshold for each vertebrae based on F2 and false positive count
- * With only 500 patients used in validation, the model struggles with C3-C5 fracture detection according to F2
- * We miss detection of 72.22% of C5 fractures

Best Classification Thresholds			
Vertebrae		Classification Threshold	
	C1	0.67	
	C2	0.42	
	C3	0.31	
	C4	0.34	
	C5	0.73	
	C6	0.21	
	C7	0.81	

False Negative Rate Evaluation Metric

F2 Evaluation Metric

EfficientNet Error Analysis

Model predicts mostly 2 - 4 fractures on average regardless of actual vertebrae fracture count

- * Predict all inferior vertebrae fractures 9% of the time
- * Predict all superior vertebrae fractures 22% of the time

1.2.826.0.1.3680043.21561

Actual Vertebrae Fracture	Predicted Vertebrae Fracture
None	None
C2	None
None	None
None	C4
None	None
None	C6
None	None

1.2.826.0.1.3680043.22438

Actual Vertebrae Fracture	Predicted Vertebrae Fracture
None	None
None	C2
None	None
None	None
None	None
C6	None
C7	None

2.5D UNet + biGRU Model Performance

- * Assign variable classification threshold for each vertebrae based on F2
- * Model does well at detecting overall patient level fractures according to F2
- * C3 and C4 are the worst performing vertebrae in the model

Best Classification Thresholds			
Vertebrae	Classification Threshold		
C1	0.23		
C2	0.34		
C3	0.23		
C4	0.15		
C5	0.19		
C6	0.23		
C7	0.42		

False Negative Rate Evaluation Metric

F2 Evaluation Metric

2.5D UNet + biGRU Error Analysis

Average predicted fracture count trends higher than actual fracture count but underpredicts for higher actual fracture count.

Actual Vertebrae Fracture	Predicted Vertebrae Fracture
None	None
None	C2
None	C3
None	C4
None	C5
None	C6
None	C7

Experience of the control of the con

1.2.826.0.1.3680043.10515

Actual Vertebrae Fracture	Predicted Vertebrae Fracture
None	None
None	C2
None	None
C7	С7

* Common for model to overpredict the number of fractures

* Better orientation leads to better predictions

Error Analysis

- * The ensemble model typically overpredicts the number of fractures since we prioritize not missing positive fractures (F2)
- * Inferior fracture detection: Actual fracture is in C1, but we predict fractures in C2 and C3 instead
- * Superior fracture detection: Actual fracture is in C7, but we predict fractures in C1 and C2 instead
- * The model preferentially predicts all inferior vertebrae 6% of the time and predicts all superior vertebrae 1% of the time

Model predicts mostly 3.5 - 5.5 fractures on average regardless of actual vertebrae fracture count

All Predicted Fractures Dectected in Inferior Vertebrae?

False True
All Predicted Fractures Dectected in Superior Vertebrae?