Lesson 8: Functional Dependencies & Normalization

CSC430/530 - DATABASE MANAGEMENT SYSTEMS

DR. ANDREY TIMOFEYEV

OUTLINE

- •Introduction.
- Informal design guidelines.
- •Functional dependencies.
- Normalization.
 - First normal form (1NF).
 - Second normal form (2NF).
 - Third normal form (3NF).
 - Boyce-Codd normal form (BCNF).

INTRODUCTION

- Relational database design.
 - Process of grouping of attributes to form "good" relation schemas.
- •Two levels of relational schemas:
 - Logical level how user views the relations.
 - **Physical level** how tuples are stored and updated.
- •Relational design is mainly focused on **physical level** (base relations).
 - The product of relational database design is a set of base relations.
- Relational design has two implicit goals:
 - Information preservation.
 - Capturing all the concepts from EER design.
 - Minimizing redundancy.
 - Reducing redundant storage of the same information and the need for multiple updates.

INFORMAL DESIGN GUIDELINES: OVERVIEW

- •Informal design guidelines that determine the quality of the relation schema design:
 - Making sure that the semantics of the attributes is clear in the schema;
 - Reducing the redundant information in tuples;
 - Reducing the NULL values in tuples;
 - Disallowing the possibility of generating spurious tuples.

INFORMAL DESIGN GUIDELINES (1)

- •GUIDELINE 1: Each tuple in a relation should represent one entity or relationship instance.
 - Attributes of different entities should **not be mixed** in the same relation.
 - Only foreign keys should be used to refer to other entities.
- Design schema that can be explained easily relation by relation.
 - The semantics of attributes should be easy to interpret.

INFORMAL DESIGN GUIDELINES (1)

Hours

Ssn

Pnumber

P.K.

INFORMAL DESIGN GUIDELINES (2)

- •GUIDELINE 2: Schema should **not contain** redundant information and must **not suffer** from the insertion, deletion and update anomalies.
- •If information stored **redundantly**:
 - Wastes storage space.
 - Causes update anomalies.
 - Insertion anomalies.
 - Deletion anomalies.
 - Modification anomalies.

(a)

EMP_DEPT

Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
-------	------------	-------	---------	---------	-------	----------

(b)

EMP_PROJ

	Ssn	Pnumber	Hours	Ename	Pname	Plocation
--	-----	---------	-------	-------	-------	-----------

EMP_DEPT and EMP_PROJ relations

INFORMAL DESIGN GUIDELINES (2)

Redundancy

EMP_DEPT

Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

Example of a redundancy in EMP_DEPT relation

INFORMAL DESIGN GUIDELINES (2)

		Redundancy Redundance		incy	
EMP_PROJ			<u> </u>		1
Ssn	<u>Pnumber</u>	Hours	Ename	Pname	Plocation
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston
888665555	20	Null	Borg, James E.	Reorganization	Houston

INFORMAL DESIGN GUIDELINES (3)

- GUIDELINE 3: Relations should be designed such that their tuples have as few NULL values as possible.
 - If NULLs are unavoidable, make sure that they apply in exceptional cases only and do not apply to a majority of tuples in the relation.
- •Negative effects of NULL values:
 - Waste of space.
 - Harder to understand the meaning of an attribute.
 - Harder to apply JOINs and aggregate functions (COUNT, SUM).

INFORMAL DESIGN GUIDELINES (4)

- •GUIDELINE 4: Relation schemas should only be able to be joined with equality conditions on attributes that are appropriately related pairs (foreign key primary key).
 - This guarantees that **no spurious** tuples are generated.
- •Joining relations that contain matching attributes that are not "foreign key primary key" combinations may produce spurious tuples.

INFORMAL DESIGN GUIDELINES (4)

EMP_LOCS

Plocation
Bellaire
Sugarland
Houston
Bellaire
Sugarland
Sugarland
Houston
Stafford
Stafford
Stafford
Stafford
Houston
Houston

EMP_PROJ1

Ssn	Pnumber	Hours	Pname	Plocation
123456789	1	32.5	ProductX	Bellaire
123456789	2	7.5	ProductY	Sugarland
666884444	3	40.0	ProductZ	Houston
453453453	1	20.0	ProductX	Bellaire
453453453	2	20.0	ProductY	Sugarland
333445555	2	10.0	ProductY	Sugarland
333445555	3	10.0	ProductZ	Houston
333445555	10	10.0	Computerization	Stafford
333445555	20	10.0	Reorganization	Houston
999887777	30	30.0	Newbenefits	Stafford
999887777	10	10.0	Computerization	Stafford
987987987	10	35.0	Computerization	Stafford
987987987	30	5.0	Newbenefits	Stafford
987654321	30	20.0	Newbenefits	Stafford
987654321	20	15.0	Reorganization	Houston
888665555	20	NULL	Reorganization	Houston

INFORMAL DESIGN GUIDELINES (4)

	Ssn	Pnumber	Hours	Pname	Plocation	Ename
	123456789	1	32.5	ProductX	Bellaire	Smith, John B.
*	123456789	1	32.5	ProductX	Bellaire	English, Joyce A.
	123456789	2	7.5	ProductY	Sugarland	Smith, John B.
*	123456789	2	7.5	ProductY	Sugarland	English, Joyce A.
*	123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.
	666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.
*	666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.
*	453453453	1	20.0	ProductX	Bellaire	Smith, John B.
	453453453	1	20.0	ProductX	Bellaire	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Smith, John B.
	453453453	2	20.0	ProductY	Sugarland	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Wong, Franklin T.
*	333445555	2	10.0	ProductY	Sugarland	Smith, John B.
*	333445555	2	10.0	ProductY	Sugarland	English, Joyce A.
	333445555	2	10.0	ProductY	Sugarland	Wong, Franklin T.
*	333445555	3	10.0	ProductZ	Houston	Narayan, Ramesh K.
	333445555	3	10.0	ProductZ	Houston	Wong, Franklin T.
	333445555	10	10.0	Computerization	Stafford	Wong, Franklin T.
*	333445555	20	10.0	Reorganization	Houston	Narayan, Ramesh K.
	333445555	20	10.0	Reorganization	Houston	Wong, Franklin T.

FUNCTIONAL DEPENDENCIES (1)

- •Functional dependencies (FDs) are used to specify formal measures of "goodness" of the database design.
 - **FD** is a **constraint** between two sets of data **attributes**, derived from real-world constrains (*semantic*) on these attributes.
- •FD is written as X -> Y.
 - *X* left-hand-side (LHS).
 - *Y* right-hand-side (RHS).
- •A set of attributes X functionally determines a set of attributes Y if the value of X determines a unique value for Y.
 - X -> Y holds if whenever two tuples have the same value for X, they must have the same value for Y.
 - If $t_1[X] = t_2[X]$, then $t_1[Y] = t_2[Y]$.

FUNCTIONAL DEPENDENCIES (2)

- •FD constraint is a **property** of the **relation schema** and cannot be inferred automatically from a particular relation **state**.
 - FD constraint must hold on every relation state.
- •If set of attribute K is a **key** of relation R, then K **functionally determines** all attributes in R.
 - Since there are **no two distinct** tuples with $t_1[K]=t_2[K]$.

FUNCTIONAL DEPENDENCIES: EXAMPLES (1)

Examples of possible FDs from EMP_PROJ relation:

•Ssn -> Ename

• The value of an employee's social security number (Ssn) uniquely determines the employee name (Ename).

•Pnumber -> {Pname, Plocation}

• The value of a project's number (Pnumber) uniquely determines the project name (Pname) and location (Plocation).

•{SSN, Pnumber} -> Hours

- Combination of social security number (Ssn) and project number (Pnumber) values uniquely determines the number of hours the employee currently works on the project per week (Hours).
- •FD is displayed as a horizontal line, LHS is a vertical line, RHS is a vertical line with arrow.

FUNCTIONAL DEPENDENCIES: EXAMPLES (2)

•Specify **possible FD(s)** for following relation:

TEACH

Teacher	Course	Text
Smith	Data Structures	Bartram
Smith	Data Management	Martin
Hall	Compilers	Hoffman
Brown	Data Structures	Horowitz

- •FDs that **may hold**:
 - Text -> Teacher
 - Text -> Course

- •FDs that are **violated**:
 - Teacher -> Course
 - Teacher -> Text
 - Course -> Text
 - Course -> Teacher

A	В	С	D
al	b1	c1	d1
a1	b2	c2	d2
a2	b2	c2	d3
a3	b3	c4	d3

NORMALIZATION (1)

- •Normalization (of a relation) top-down process that evaluates relation against the criteria for normal forms and decomposes relation as necessary.
 - Relation design by analysis.
- •Four main normal forms:
 - **First** normal form (1NF).
 - **Second** normal form (2NF).
 - **Third** normal form (3NF).
 - Boyce-Codd normal form (BCNF).
 - Stricter form of 3NF.

- Two additional NF (not used in practice):
 - Forth normal form (4NF).
 - Fifth normal form (5NF).

•All NFs are based on functional dependencies among the attributes of the relation & their PKs.

NORMALIZATION (2)

- •Goals of the normalization process:
 - Minimize redundancy.
 - Minimize the insertion, deletion, and update anomalies.
- •Normalization process insures that the relational schema complies with two properties:
 - Non-additive join (lossless join) property.
 - No spurious tuples are generated after decomposition.
 - Dependency preservation property.
 - Each FD is represented in some relation after decomposition.

DEFINITION OF KEYS (REVIEW)

Superkey.

• Set of attributes with the property that no two tuples in any relation state have same values.

•Key.

Minimal superkey – If we remove an attribute from key it would no longer be a superkey.

Candidate key(s).

If more then one key in a relation, then each is a candidate key.

Primary key.

One of the candidate keys that is arbitrarily designated to be primary.

Prime attribute.

Attribute that is a member of some candidate key.

Non-prime attribute.

Attribute that is not a member of any candidate key.

FIRST NORMAL FORM (1NF)

First normal form (1NF) informal definition.

No multivalued or composite attributes and their combinations are allowed.

•First normal form (1NF) formal definition.

- **Domains** of the attributes must include only **atomic** (*simple, indivisible*) values and every value must be a **single** value.
 - No sets of values, tuples of values, or combinations.
 - No relations within relation or relations as attribute values within tuples.

FIRST NORMAL FORM: EXAMPLE (1)

•DEPARTMENT relation is **not** in **1NF**, since *Dlocation* attributes is **not atomic** (*multivalued*).

DEPARTMENT

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

- •Three ways to normalize DEPARTMENT into 1NF:
 - Remove Diocation attribute and place it in a separate relation DEPT_LOCATIONS.
 - Propagate PK from DEPARTMENT, thus PK of DEPT_LOCATIONS is {Dnumber, Dlocation}.
 - **Expand** the **PK** of DEPARTMENT to be {*Dnumber, Dlocation*}.
 - Disadvantage redundancy.
 - Max # of locations known \rightarrow create separate attribute for each location.
 - Dlocation1, Dlocation2, Dlocation3 ...
 - Disadvantages NULL values & harder to write queries.

FIRST NORMAL FORM: EXAMPLE (1)

•Solution 1 (recommended):

DEPT_LOCATIONS

Dnumber	Dlocation	
1	Houston	
4	Stafford	
5	Bellaire	
5	Sugarland	
5	Houston	

•Solution 2 (redundant):

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

FIRST NORMAL FORM: EXAMPLE (2)

- •EMP_PROJ relation is **not** in **1NF**.
 - EMP_PROJ is a nested relation.
 - Each tuple is an employee entity with a relation PROJS(Pnumber, Hours) as an attribute.
- •Normalized into 1NF by removing nested relation attribute into separate relation and propagating PK of EMP_PROJ relation.

EMP_PROJ

Ssn	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
L		22	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
L		22	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
		20	10.0
999887777	Zelaya, Alicia J.	30	30.0
L		10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
		30	5.0
987654321	Wallace, Jennifer S.	30	20.0
	L	20	15.0
888665555	Borg, James E.	20	NULL

SECOND NORMAL FORM (2NF)

Second normal form (2NF) formal definition.

Relation is in 2NF if every non-prime attribute is fully functionally dependent on the PK.

•Full functional dependency.

- FD X -> Y is **full functional dependency** if **removing** any attributes from X means dependency **does not hold** anymore.
 - {Ssn, Pnumber} -> Hours
 - Neither Ssn -> Hours, nor Pnumber -> Hours holds.

Partial function dependency.

- FD X -> Y is **partial functional dependency** if some attribute(s) can be **removed** from X and the dependency **still holds**.
 - {Ssn, Pnumber} -> Ename
 - Ssn -> Ename holds.

SECOND NORMAL FORM: EXAMPLE

•EMP_PROJ relation is **1NF**, but **not** in **2NF**.

- •Normalizing EMP_PROJ into **2NF**:
 - **Decompose** relation into **2NF relations** where **non-prime attributes** are associated only with the **part** of the **PK** on which they are **fully functionally dependent**.

THIRD NORMAL FORM (3NF)

- Third normal form (3NF) formal definition.
 - Relation is in 3NF if it is in 2NF and no non-prime attribute(s) is transitively dependent on the PK.
- Transitive dependency.
 - FD X -> Y is **transitive dependency** if there exists set of attributes Z that is neither a **candidate key** nor a **subset** of any **keys**, and both X -> Z and Z -> Y **hold**.
 - Example:

EMP DEPT

- Ssn -> Dmgr_ssn and Ssn -> Dname are transitive through Dnumber.
 - Ssn -> Dnumber and Dnumber -> Dmgr_ssn hold.
 - Ssn -> Dnumber and Dnumber -> Dname hold.
 - *Dnumber* is not a **key** and not a **subset** of a **key**.

THIRD NORMAL FORM: EXAMPLE

- •EMP_DEPT is in **2NF**, but not in **3NF**.
 - 3NF is violated by transitive dependencies.
 - Dmgr_ssn & Dname are transitively dependent on Ssn through Dnumber.

- •Normalizing EMP_DEPT into 3NF:
 - Decompose relation into 3NF relations where no transitive dependencies exist.
 - ED1 and ED2 represent independent facts about employees & departments, both of which are entities on their own.
 - By applying natural join on ED1 and ED2 we can recover original EMP_DEPT with no spurious tuples.

NORMALIZATION EXAMPLE (1)

- •LOTS relation describes land for sale in various counties of a state.
 - Candidate keys:
 - Property_id# (chosen as primary).
 - Property id numbers are unique across counties.
 - {County_name, Lot#}
 - Lot number is unique only within county.
 - FDs:
 - FD1 and FD2 are based on candidate keys.
 - FD3: County_name -> Tax_rate
 - Tax rate is fixed for a given county.
 - FD4: Area -> Price
 - Price of a lot is determined by the area regardless of which county it is.
- •What is the highest NF of this relation?

NORMALIZATION EXAMPLE (2)

- •FD3: County_name -> Tax_rate violates 2NF.
 - Tax_rate is partially dependent on the candidate key {County_name, Lot#}.

LOTS1

FD₁

FD2

FD4

Property_id#

- •To normalize LOTS into 2NF:
 - Decompose it into LOTS1 and LOTS2.
 - LOTS1 is constructed by removing Tax_rate attribute.
 - LOTS2 is constructed as a FD3.
 - LHS of FD3 (Country_name) becomes a PK.
 - RHS of FD3 (*Tax_rate*) becomes a non-prime attribute.

NORMALIZATION EXAMPLE (3)

- •FD4 in LOTS1: Area -> Price violates 3NF.
 - Price is transitively dependent on each of the candidate keys of LOTS1 through non-prime attribute Area.

•To normalize LOTS1 into 3NF:

- Decompose it into LOTS1A and LOTS1B.
 - LOTS1A is constructed by removing Price attribute.

Lot#

LOTS1B

Area

FD4

LOTS1B is constructed as a FD4.

County_name

LOTS1A

FD1

FD2

Property id#

- LHS of FD4 (Area) becomes a PK.
- RHS of FD4 (*Price*) becomes a non-prime attribute.

Area

Price

LOTS₁

FD1

FD2

FD4

Candidate Key

NORMALIZATION EXAMPLE (4)

NORMAL FORMS SUMMARY

Summary of Normal Forms Based on Primary Keys and Corresponding Normalization				
Normal Form	Test	Remedy (Normalization)		
First (1NF)	Relation should have no multivalued attributes or nested relations.	Form new relations for each multivalued attribute or nested relation.		
Second (2NF)	For relations where primary key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the primary key.	Decompose and set up a new relation for each partial key with its dependent attribute(s). Make sure to keep a relation with the original primary key and any attributes that are fully functionally dependent on it.		
Third (3NF)	Relation should not have a nonkey attribute functionally determined by another nonkey attribute (or by a set of nonkey attributes). That is, there should be no transitive dependency of a nonkey attribute on the primary key.	Decompose and set up a relation that includes the nonkey attribute(s) that functionally determine(s) other nonkey attribute(s).		

THIRD NORMAL FORM: GENERAL DEFINITION

- •Third normal form general definition (based on multiple candidate keys):
 - Relation schema R is in 3NF if whenever a FD X -> A holds in R, then either:
 - X is a superkey of R, or
 - A is a **prime attribute** of R.
- •Third normal form alternative definition:
 - Relation schema R is in 3NF if every nonprime attribute of R meets following conditions:
 - It is **fully functionally dependent** on every **key** of R.
 - It is **non-transitively dependent** on every **key** of R.

BOYCE-CODD NORMAL FORM (BCNF)

- •Boyce-Codd normal form (BCNF) definition:
 - Relation schema R is in BCNF if whenever a FD X -> A holds in R, then X is a superkey of R.
- •Each normal form is **strictly stronger** than the previous one:
 - Every 2NF relation is in 1NF.
 - Every 3NF relation is in 2NF.
 - Every BCNF relation is in 3NF.
- •The **goal** of **normalization** process is to **decompose** each relation into **BCNF** (or **3NF**).

BOYCE-CODD NORMAL FORM: EXAMPLE (1)

•Example (a):

- FD5 is added to LOTS1A relation.
 - FD5: Area -> County_name.
- Relation LOTS1A is in 3NF, but not in BCNF.
 - Area is not superkey of LOTS1A.
- Relation LOTS1A is decomposed into two:
 - LOTS1AX & LOTS1AY.
 - Both in BCNF.

•Example (b):

 General case of relation in 3NF, but not in BCNF.

(a) LOTS1A

BOYCE-CODD NORMAL FORM: EXAMPLE (2)

•Relation TEACH has two FDs:

- **FD1:** {Student, Course} -> Instructor
- FD2: Instructor -> Course
- •{Student, Course} is a candidate key.
- •Relation TEACH is in 3NF, but not BCNF. Why?
- •Three alternative decompositions of TEACH:
 - R1(Student, Instructor) & R2(Student, Course).
 - R1(Course, Instructor) & R2(Course, Student).
 - R1(Instructor, Course) & R2(Instructor, Student).
- •Third alternative is more favorable, since it preserves non-additive join property.
 - No spurious tuples are generated.

TEACH

Student	Course	Instructor
Narayan	Database	Mark
Smith	Database	Navathe
Smith	Operating Systems	Ammar
Smith	Theory	Schulman
Wallace	Database	Mark
Wallace	Operating Systems	Ahamad
Wong	Database	Omiecinski
Zelaya	Database	Navathe
Narayan	Operating Systems	Ammar

TEACH relation is in 3NF, but not in BCNF

SUMMARY

- •Informal relation database design guidelines.
- •Functional dependencies.
- Normalization process.
- Normal forms and decomposition.
 - First normal from.
 - Second normal form
 - Third normal form.
 - Boyce-Codd normal form.