Package 'YieldCurve'

February 19, 2015
Type Package
Title Modelling and estimation of the yield curve
Version 4.1
Date 2013-01-19
Depends R (>= 2.10), xts
Author Sergio Salvino Guirreri
Maintainer Sergio Salvino Guirreri <sergioguirreri@gmail.com></sergioguirreri@gmail.com>
Description Modelling the yield curve with some parametric models. The models implemented are: Nelson-Siegel, Diebold-Li and Svensson. The package also includes the data of the term structure of interest rate of Federal Reserve Bank and European Central Bank.
License GPL (>= 2)
LazyLoad yes
<pre>URL http://www.guirreri.host22.com</pre>
Repository CRAN
Repository/R-Forge/Project yield-curve
Repository/R-Forge/Revision 54
Repository/R-Forge/DateTimeStamp 2013-01-27 15:34:11
Date/Publication 2013-01-30 15:15:09
NeedsCompilation no
R topics documented:
YieldCurve-package 2 ECBYieldCurve 3 FedYieldCurve 4 Nelson.Siegel 5 NSrates 6 Srates 7 Svensson 8
57(1155011

2 YieldCurve-package

Index 10

YieldCurve-package Modelling and estimation of the yield curve

Description

Modelling the yield curve with some parametric models. The models implemented are: Nelson-Siegel, Diebold-Li and Svensson. The package also includes the data of the term structure of interest rate of Federal Reserve Bank and European Central Bank.

Details

Package: YieldCurve Type: Package Version: 4.1

Date: 2013-01-19 License: GPL (>= 2) LazyLoad: yes

DieboldLi

Author(s)

Sergio Salvino Guirreri

Maintainer: Sergio Salvino Guirreri <sergioguirreri@gmail.com>

References

Diebold, F.X. and Li, C. (2006), Forecasting the Term Structure of Government Bond Yields, *Journal of Econometrics*, **130**, 337-364.

Diebold, F.X., Ji, L. and Li, C. (2006), A Three-Factor Yield Curve Model: Non-Affine Structure, Systematic Risk Sources, and Generalized Duration, in L.R. Klein (ed.), *Long-Run Growth and Short-Run Stabilization: Essays in Memory of Albert Ando*. Cheltenham, U.K.: Edward Elgar, 240-274.

Nelson, C.R., and A.F. Siegel (1987), Parsimonious Modeling of Yield Curve, *The Journal of Business*, **60**, 473-489.

Svensson, L.E. (1994), Estimating and Interpreting Forward Interest Rates: Sweden 1992-1994, *IMF Working Paper*, **WP/94/114**.

```
### Nelson.Siegel function and Fed data-set ###
data(FedYieldCurve)
rate.Fed = first(FedYieldCurve,'5 month')
```

ECBYieldCurve 3

```
maturity.Fed <- c(3/12, 0.5, 1, 2, 3, 5, 7, 10)
NSParameters <- Nelson.Siegel( rate= rate.Fed, maturity=maturity.Fed )
y <- NSrates(NSParameters[5,], maturity.Fed)</pre>
plot(maturity.Fed,rate.Fed[5,],main="Fitting Nelson-Siegel yield curve", type="o")
lines(maturity.Fed,y, col=2)
legend("topleft",legend=c("observed yield curve","fitted yield curve"),
col=c(1,2),lty=1)
### Svensson function and ECB data-set ###
data(ECBYieldCurve)
rate.ECB = ECBYieldCurve[1:5,]
maturity.ECB = c(0.25, 0.5, seq(1, 30, by=1))
SvenssonParameters <- Svensson(rate.ECB, maturity.ECB)</pre>
Svensson.rate <- Srates( SvenssonParameters ,maturity.ECB,"Spot")</pre>
plot(maturity.ECB, rate.ECB[5,],main="Fitting Svensson yield curve", type="o")
lines(maturity.ECB, Svensson.rate[5,], col=2)
legend("topleft",legend=c("observed yield curve","fitted yield curve"),
col=c(1,2),lty=1)
```

ECBYieldCurve

Yield curve data spot rate, AAA-rated bonds, maturities from 3 months to 30 years

Description

Government bond, nominal, all triple A issuer companies. The maturities are 3 and 6 months and from 1 year to 30 years with frequency business day, provided by European Central Bank. The range date is from 2006-12-29 to 2009-07-24.

Usage

```
data(ECBYieldCurve)
```

Format

It is an xts object with 32 interest rate at different maturities and 655 obeservations.

Source

```
ECB: http://www.ecb.europa.eu/stats/money/yc/html/index.en.html.
```

```
### plot ECB Yield Curve ###
data(ECBYieldCurve)
first(ECBYieldCurve,'3 day')
```

4 FedYieldCurve

```
last(ECBYieldCurve, '3 day')

mat.ECB <- tau <- c(3/12,6/12,1:30)

par(mfrow=c(2,3))
for( i in c(1,2,3,653,654,655) ){
  plot(mat.ECB, ECBYieldCurve[i,], type="o", xlab="Maturities structure in years", ylab="Interest rates values")
  title(main=paste("European Central Bank yield curve obeserved at",time(ECBYieldCurve[i], sep=" ") ))
  grid()
}</pre>
```

FedYieldCurve

Federal Reserve interest rates

Description

The data-set contains the interest rates of the Federal Reserve, from January 1982 to December 2012. The interest rates are Market yield on U.S. Treasury securities constant maturity (CMT) (more information on the Treasury yield curve can be found at the following website http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/yieldmethod.aspx) at different maturities (3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years and 10 years), quoted on investment basis and have been gathered with monthly frequency.

Usage

```
data(FedYieldCurve)
```

Format

An object with class attributes xts.

Source

FED: http://www.federalreserve.gov/datadownload/Build.aspx?rel=H15.

```
require(xts)
require(YieldCurve)
data(FedYieldCurve, '3 month')
last(FedYieldCurve, '3 month')
mat<-c(3/12, 0.5, 1,2,3,5,7,10)

par(mfrow=c(2,3))
for( i in c(1,2,3,370,371,372) ){
  plot(mat, FedYieldCurve[i,], type="o", xlab="Maturities structure in years", ylab="Interest rates values")
  title(main=paste("Federal Reserve yield curve obeserved at",time(FedYieldCurve[i], sep=" ") ))
  grid()
}</pre>
```

Nelson.Siegel 5

Nelson.Siegel

Estimation of the Nelson-Siegel parameters

Description

Returns the estimated coefficients of the Nelson-Siegel's model.

Usage

```
Nelson.Siegel( rate, maturity )
```

Arguments

rate vector or matrix which contains the interest rates.

maturity vector wich contains the maturity (in months) of the rate. The vector's length

must be the same of the number of columns of the rate.

Details

The Nelson-Siegel's model to describe the yield curve is:

$$y_t(\tau) = \beta_{0t} + \beta_{1t} \frac{1 - \exp(-\lambda \tau)}{\lambda \tau} + \beta_{2t} \left(\frac{1 - \exp(-\lambda \tau)}{\lambda \tau} - \exp(-\lambda \tau) \right)$$

Value

Returns a data frame with the estimated coefficients: β_{0t} , β_{1t} , β_{2t} , and λ .

Author(s)

Sergio Salvino Guirreri

References

Diebold, F.X. and Li, C. (2006), Forecasting the Term Structure of Government Bond Yields, *Journal of Econometrics*, **130**, 337-364.

Diebold, F.X., Ji, L. and Li, C. (2006), A Three-Factor Yield Curve Model: Non-Affine Structure, Systematic Risk Sources, and Generalized Duration, in L.R. Klein (ed.), *Long-Run Growth and Short-Run Stabilization: Essays in Memory of Albert Ando*. Cheltenham, U.K.: Edward Elgar, 240-274.

Nelson, C.R., and A.F. Siegel (1987), Parsimonious Modeling of Yield Curve, *The Journal of Business*, **60**, 473-489.

See Also

NelsonSiegel, Svensson

6 NSrates

Examples

NSrates

Interest rates of the Nelson-Siegel's model.

Description

Returns the interest rates by Nelson-Siegel's model.

Usage

```
NSrates(Coeff, maturity)
```

Arguments

Coeff Vector or matrix of the beta's coefficients and lambda as the function Nelson. Siegel

returns.

maturity maturity of the yield curve of which want to return the interest rates.

Details

Coeff is a vector or matrix of the four coefficients of the Nelson-Siegel's model: $(\beta_0; \beta_1; \beta_2; \lambda)$.

Value

Return interest rates in matrix object with number of rows equal to nrow(betaCoeff) and number of columns equal to length(maturity).

Author(s)

Sergio Salvino Guirreri

Srates 7

References

Diebold, F.X. and Li, C. (2006), Forecasting the Term Structure of Government Bond Yields, *Journal of Econometrics*, **130**, 337-364.

Diebold, F.X., Ji, L. and Li, C. (2006), A Three-Factor Yield Curve Model: Non-Affine Structure, Systematic Risk Sources, and Generalized Duration, in L.R. Klein (ed.), *Long-Run Growth and Short-Run Stabilization: Essays in Memory of Albert Ando*. Cheltenham, U.K.: Edward Elgar, 240-274.

Nelson, C.R., and A.F. Siegel (1987), Parsimonious Modeling of Yield Curve, *The Journal of Business*, **60**, 473-489.

Examples

```
data(FedYieldCurve)
maturity.Fed <- c(3/12, 0.5, 1,2,3,5,7,10)
NSParameters <- Nelson.Siegel( rate = first(FedYieldCurve, '10 month'), maturity=maturity.Fed )
y <- NSrates(NSParameters[5,],maturity.Fed)
plot(maturity.Fed,FedYieldCurve[10,],main="Fitting Nelson-Siegel yield curve", type="o")
lines(maturity.Fed,y, col=2)
legend("topleft",legend=c("observed yield curve","fitted yield curve"),
col=c(1,2),lty=1)
grid()</pre>
```

Srates

Interest rates of the Svensson's model.

Description

Returns the interest rates by Svensson's model.

Usage

```
Srates(Coeff, maturity, whichRate = "Forward")
```

Arguments

Coeff vector or matrix of the beta's coefficients and of λ_1 and λ_2 .

maturity maturity of the yield curve of which want to return the interest rates.

whichRate which rate want to return: "Spot" or "Forward" rates.

Details

Coeff is a vector or matrix of the four coefficients of the Svensson's model, while lambdaValues is a vector or matrix of two lambda values of Svensson's model.

8 Svensson

Value

Return interest rates in matrix object with number of rows equal to nrow(Coeff) and number of columns equal to length(maturity).

Author(s)

Sergio Salvino Guirreri

References

Svensson, L.E. (1994), Estimating and Interpreting Forward Interest Rates: Sweden 1992-1994, *IMF Working Paper*, **WP/94/114**.

Nelson, C.R., and A.F. Siegel (1987), Parsimonious Modeling of Yield Curve, *The Journal of Business*, **60**, 473-489.

Examples

Svensson

Estimation of the Svensson parameters

Description

Returns the estimated coefficients of the Svensson's model.

Usage

```
Svensson(rate, maturity )
```

Arguments

rate vector or matrix which contains the interest rates.

maturity vector wich contains the maturity (in months) of the rate. The vector's length

must be the same of the number of columns of the rate.

Svensson 9

Details

The Svensson's model to describe the forward rate is:

$$y_t(\tau) = \beta_0 + \beta_1 \exp\left(-\frac{\tau}{\lambda_1}\right) + \beta_2 \frac{\tau}{\lambda_1} \exp\left(-\frac{\tau}{\lambda_1}\right) + \beta_3 \frac{\tau}{\lambda_2} \exp\left(-\frac{\tau}{\lambda_2}\right)$$

The spot rate can be derived from forward rate and it is given by:

$$y_t(\tau) = \beta_0 + \beta_1 \frac{1 - \exp(-\frac{\tau}{\lambda_1})}{\frac{\tau}{\lambda_1}} + \beta_2 \left[\frac{1 - \exp(-\frac{\tau}{\lambda_1})}{\frac{\tau}{\lambda_1}} - \exp(-\frac{\tau}{\lambda_1}) \right] + \beta_3 \left[\frac{1 - \exp(-\frac{\tau}{\lambda_2})}{\frac{\tau}{\lambda_2}} - \exp(-\frac{\tau}{\lambda_2}) \right]$$

Value

Returns a data frame with the estimated coefficients: β_0 , β_1 , β_2 , β_3 , λ_1 and λ_2 .

Author(s)

Sergio Salvino Guirreri

References

Svensson, L.E. (1994), Estimating and Interpreting Forward Interest Rates: Sweden 1992-1994, *IMF Working Paper*, **WP/94/114**.

Nelson, C.R., and A.F. Siegel (1987), Parsimonious Modeling of Yield Curve, *The Journal of Business*, **60**, 473-489.

```
data(ECBYieldCurve)
maturity.ECB <- c(0.25,0.5,seq(1,30,by=1))
A <- Svensson(ECBYieldCurve[1:10,], maturity.ECB )
Svensson.rate <- Srates( A, maturity.ECB, "Spot" )
plot(maturity.ECB, Svensson.rate[5,],main="Fitting Svensson yield curve",
    xlab=c("Pillars in years"), type="1", col=3)
lines( maturity.ECB, ECBYieldCurve[5,],col=2)
legend("topleft",legend=c("fitted yield curve","observed yield curve"),
col=c(3,2),lty=1)
grid()</pre>
```

Index

```
*Topic datasets
    ECBYieldCurve, 3
    FedYieldCurve, 4
*Topic htest
    Nelson.Siegel, 5
    Srates, 7
    Svensson, 8
    YieldCurve-package, 2
*Topic models
    Nelson.Siegel, 5
    Svensson, 8
    YieldCurve-package, 2
ECBYieldCurve, 3
FedYieldCurve, 4
Nelson.Siegel, 5
NSrates, 6
Srates, 7
Svensson, 8
YieldCurve (YieldCurve-package), 2
YieldCurve-package, 2
```