	Analysis
	(CFA)
	CFA VS PCA
1)	PCA don maximising variance
	FA for maximising covariance
2)	PCA: July orthogonal components
	FA: onthogonality is not required
۱٦	
3)	PCA; each component is a lincomb.
	PCA: each component is a lin. comb. of observed variables
	FA: target variables is lin. comb.
	of latent Jactors
4)	PCA: components are not interprentable
')	·
	FA: fastor are labellable and interpretable
5)	
7	· ·
	FA: latent variable method/modelling techinque
	techinque

Common Factor

Factor madel: 2i. F, + 2iz Fz + ... + lim Fm + Vily - standantisca variable F - latent common flectors 4- unique factors +; = Wil X, + Wiz · X2 + ... + Wikxk Wi- weights / factor scores Factor loading - matrix shows relationship

Between variables and
common factors Eigenvalues - represents variance expained Communalities = sum et loadilys equared La common variance explained from o to 1 => share Factor Rotation - orthogonal or oblique weights of factors are redistributed

Assumptions:	
1) No outliers in data	
27 Sample size is greater then factor number	
3) No perfect multicollinearity	
(should be imperfect multicollinearity)	
PCA: decomposion of correlation matrix	
CFA: -11-	
diagonal elements are replaced with (1-van(d))	<u>\</u>
$\hat{\beta} = \frac{\hat{cov}}{\hat{var}}$	
	_
	_
	_
	_

	Steps in Factor Analysis
	X,, Xp - p measured variables
	F, Fm - m common factors
	m < p
	X; = 2; 1 F, + + 2; m Fn + &
1)	Calculate in:tial Judon Loadings
	Grant St. St. St. St. St. St. St. St. St. St
	- PCA
	- Principal Axis Factoring
	V
	1 Factor: find λ_{i} , s.t. $\max_{x} Van(\hat{x})$
	2 Factor: find liz s.t. max residual
	Varionee
	···
2)	Factor Potation
	- othogonae (varimax method)
	o the grown (voormee to grown
	- oblique
1	e-distribute weights s.t. for each
	variable only one factor has high loading

Calculate factor scores
Calculate factor scores - select how many factors should be left
(9) Fix threshold for variance explained:
(e.g. 75%) (2) Chose only factors with eigenvalues 71
Chose only factors with eigenvalues > 1
-> construct c.i. and
chose factors with c.i. > 1
(3) Chose by scree plots:
3) Chose by scree plots:
ellow
×
L 23 4 Facto 2 index

	Testing:
1	Bartlett test for Speciety
	Ho: correlation matrix is identify matrix
	Ho should be rijerted
2	Kaiser - Meyer - Olkin (KNO) statistic
	shows common variance share
	KMO > 0,6 => CFA can be done
Vani	ance and communalities