Математическая статистика. Прикладной поток.

Лектор: Никита Волков

Конспект набирали: Никита Павличенко, Артем Ямалутдинов

21 января 2020 г.

Оглавление

1	Глава 2. Точечные оценки параметров	3
	Лекция 2 (от 9.09)	3
	2.1. Статистики и оценки	3
	2.2. Свойства оценок	4
	2.3 Наследование свойств	5
	Лекция 3	7
	2.4. Методы нахождения оценкок	8
	Лекция 4	11
	2.5. Достаточные статистики	13
	Лекция 5 (от 30.09)	14
	2.6. Экспоненциальный класс распределений	14
	2.7. Сравнение оценок	16
	Лекция 6 (от 7.10)	
	2.8. Приближенный поиск ОМП	18
	2.9. Робастность и симметричные распределения	19
2	E 2 C	22
2	Глава 3. Сложные оценки параметров	
	3.1. Доверительные интервалы	
	Лекция 7 (от 14.10)	
	Лекция 8	
	3.3. Байесовский подход	
	3.4. Сопряженные распределения в байесовском подходе	
	3.4. Соприженные распределении в оанесовском подходе	20
3	Глава 4. Непараметрический подход	30
	4.1. Эмпирическое распределение	30
	4.2. Метод подстановки	31
4	Глава 5. Гипотезы и критерии	32
	Лекция 10	
	5.2. Критерий Вальда	
	5.3. Критерии отношения правдоподобия	34
5	Глава 7. Линейная регерессия	36
0	Лекция 13 (от 25.11)	36
	7.2. Метод наименьших квадратов	
	7.3. Гауссовская линейная модель	
	Lag cooperant similarinan magesib	01
6	Глава 8. Теория наилучших оценок	41
	Лекция 14 (от 2.12)	41

	8.1. Информация и расстояния	41
	8.2. Свойства ОМП	43
	8.3. Эффективные оценки	44
	Лекция 15	45
	8.4. Оптимальные оценки	45
7	Грана О. Памарана про променя	40
1		49
	9.1. Теорема Гливенко-Кантелли	49
	9.2. Лемма Неймана-Пирсона	49
	9.3. Критерий хи-квадрат	50

1 Глава 2. Точечные оценки параметров

Лекция 2 (от 9.09)

2.1. Статистики и оценки

Пусть $(\mathscr{X}, \mathcal{B}_{\mathscr{X}}, \mathcal{P})$ — вероятностно-статистическая модель, $\mathcal{P} = \{P_{\theta} \mid \theta \in \Theta\}$ — параметрическое семейство распределений.

Задача: оценить θ .

Пусть $X = (X_1, \dots, X_n)$ — выборка из неизвестного распределения $P \in \mathcal{P}$.

Определение 1. Пусть (E, \mathcal{E}) — измеримое пространство. Тогда измеримая функция $S: \mathcal{X}^n \to E$ называется *статистикой*. Если $E = \Theta$, то S(X) называется *оценкой* θ .

Примеры статистик:

Пусть $X = (X_1, ..., X_n)$ — действительная выборка, т. е. $\mathscr{X} = \mathbb{R}$.

- 1. Выборочные характеристики:
 - \bullet $\overline{g(X)} = \frac{1}{n} \sum_{i=1}^{n} g(X_i)$ выборочная характеристика функции g (g борелевская).
 - ullet $\overline{X}=rac{1}{n}\sum_{i=1}^n X_i$ выборочное среднее.
 - ullet $\overline{X^k}=rac{1}{n}\sum_{i=1}^n X_i^k$ выборочный k-ый момент.
- 2. Функции от выборочных характеристик (т.е $h(\overline{g_1(X)}, \dots, \overline{g_k(X)}); h, g_i$ борелевские):
 - $g_1(x)=x^2,g_2(x)=x,h(x,y)=x-y^2$ $h(g_1(X),\overline{g_2(X)})=\overline{X}^2-\overline{X}^2=S^2-$ выборочная дисперсия.

Утверждение 1. $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$.

3. Порядковые статистики:

Упорядочим выборку по возрастанию: $(X_{(1)},\ldots,X_{(n)})$ — вариационный ряд. $X_{(k)}-k$ -я порядковая статистика.

Пример 1. $(X_1, X_2, X_3) = (2, 5, 1)$.

$$\overline{X} = 8/3$$

$$\overline{X^2} = 10$$

$$S^2 = 10 - 64/9 = 26/9.$$

Вариационный ряд: $(X_{(1)}, X_{(2)}, X_{(3)}) = (1, 2, 5).$

2.2. Свойства оценок

Замечание 1. для распределения P_{θ} будем обозначать: E_{θ} — матожидание, D_{θ} — дисперсия, P_{θ} -п.н., d_{θ} .

Пусть $X = (X_1, \dots, X_n)$ — выборка из неизвестного распределения $P \in \{P_\theta \mid \theta \in \Theta\}, \Theta \in \mathbb{R}^d$.

Определение 2. оценка $\hat{\theta}$ называется несмещенной оценкой $\tau(\theta),$ если $E_{\theta}\hat{\theta}(X) = \tau(\theta) \ \forall \theta \in \Theta.$

Пример 2.

- $\hat{\theta}_1 = X_1, \ \hat{\theta}_2 = \overline{X}$ несмещенные оценки для $\tau(\theta) = E_{\theta}X_1$.
- $\mathcal{P} = \{Bern(\theta) \mid \theta \in (0,1)\} : \overline{X}, X_1$ несмещенные оценки θ .
- $\mathcal{P}=\{Exp(\theta)\;|\theta>0\}:\overline{X},X_1$ несмещенные оценки $\frac{1}{\theta}.$

Асимптотические свойства

Пусть $X=(X_1,\dots)$ — выборка неограниченного размера из $P\in \{P_\theta\mid \theta\in\Theta\},\Theta\in\mathbb{R}^d.$

Определение 3.

1. Оценка $\hat{\theta_n}(X_1,\ldots,X_n)$ называется состоятельной оценкой $\theta,$ если

$$\hat{\theta_n}(X_1,\ldots,X_n) \xrightarrow{P_\theta} \theta \quad \forall \theta \in \Theta.$$

2. Оценка $\hat{\theta_n}(X_1,\dots,X_n)$ называется сильно состоятельной оценкой $\theta,$ если

$$\hat{\theta_n}(X_1,\ldots,X_n) \xrightarrow{P_{\theta}-\text{п.н.}} \theta \quad \forall \theta \in \Theta.$$

3. Оценка $\hat{\theta_n}(X_1,\ldots,X_n)$ называется асимптотически нормальной оценкой θ , если

$$\sqrt{n}(\hat{\theta_n}(X_1,\ldots,X_n)-\theta) \xrightarrow{d_\theta} \mathcal{N}(0,\Sigma(\theta)) \quad \forall \theta \in \Theta,$$

где $\Sigma(\theta)-$ асимптотическая матрица ковариаций. Если d=1, то $\Sigma(\theta)=\sigma^2(\theta)-$ асимптотическая дисперсия.

Смысл 1.

- 1. Состоятельность: при больших n вероятность большого отклонения оценки $\hat{\theta_n}$ от θ мала, но нет численной характеристики степени отклонения.
- 2. Асимптотическая нормальность: дает численную характеристику степени отклонения Пусть $\hat{\theta_n}$ а.н.о. θ с а.д. $\sigma^2(\theta)$. Тогда при больших n $\hat{\theta_n} \sim_{\text{прибл.}} \mathcal{N}\left(\theta, \frac{\sigma^2(\theta)}{n}\right)$.
- 3. Сильная состоятельность важна тогда, когда данные поступают последовательно.

4

Пример 3. Пусть X_1, \ldots, X_n – выборка из распределения Лапласа со сдвигом θ .

$$p_{\theta}(x) = \frac{1}{2}e^{-|x-\theta|}. \quad E_{\theta}X_1 = \theta, D_{\theta}X_1 = 2.$$

 $\mathit{Y3B}\mathit{H}\colon \overline{X} \xrightarrow{P_{\theta}-\text{п.н.}} \theta \implies \overline{X} - (\text{сильно})$ состоятельная оценка $\theta.$

 $\underline{H}\Pi T: \sqrt{n}(\overline{X}-\theta) \xrightarrow{d_{\theta}} \mathcal{N}(0,2) \implies \overline{X} \sim_{\text{прибл.}} \mathcal{N}(0,\frac{2}{n}).$ По свойствам нормального распределения, с вероятностью > 0.99:

$$\theta - 3\sqrt{\frac{2}{n}} < \overline{X} < \theta + 3\sqrt{\frac{2}{n}}$$
$$\overline{X} - 3\sqrt{\frac{2}{n}} < \theta < \overline{X} + 3\sqrt{\frac{2}{n}}$$

(доверительный интервал).

Пусть $n=200, \overline{X}=1$. Тогда неравенство имеет вид

$$0.7 < \theta < 1.3$$

(реализация доверительного интервала).

Утверждение 2.

Сильная состоятельность

Асимпт. нормальность

Других следствий нет.

Утверждение 3. Пусть X_1, \ldots, X_n — выборка, т. ч. $E_{\theta}|X_1|^{2k} < +\infty$. Тогда $\overline{X^k}$ — несмещенная сильно состоятельная асимптотически нормальная оценка $E_{\theta}X^k$.

2.3 Наследование свойств

Цель: получить оценку для $\tau(\theta)$, обладающие некоторым свойством, если имеется оценка для $\psi(\theta)$ с тем же свойством.

Теорема 1 (о наследовании сходимостей). Пусть $\{\xi_n, n \in \mathbb{N}\}, \xi$ — случайные векторы размерности d. Тогда:

- 1. Если $\xi_n \xrightarrow{P} \xi$ и $h : \mathbb{R}^d \to \mathbb{R}^k$, т. ч. h непрерывна на $B : P(\xi \in B) = 1$. Тогда $h(\xi_n) \xrightarrow{P} h(\xi)$.
- 2. Аналогично для сходимости п. н.
- 3. Если $\xi_n \xrightarrow{d} \xi$ и $h : \mathbb{R}^d \to \mathbb{R}^k$ непрерывна, то $h(\xi_n) \xrightarrow{d} h(\xi)$.

Пример 4. Пусть $\{\xi_n, n \in \mathbb{N}\}$ — н.о.р.с.в., т.ч. $\mathbb{E}\xi_1 = a \neq 0$, $\mathbb{D}\xi_n$ ограничена.

Из ЗБЧ: $\frac{S_n}{n} \xrightarrow{P} a$, $S_n = \sum \xi_i$. Рассмотрим h(x) = 1/x и применим теорему:

$$h\left(\frac{S_n}{n}\right) = \frac{n}{S_n} \xrightarrow{P} h(a) = \frac{1}{a}.$$

Утверждение 4. Пусть $\hat{\theta}$ — (сильно) состоятельная оценка θ . Пусть τ непрерывна на Θ . Тогда $\tau(\hat{\theta})$ — (сильно) состоятельная оценка $\tau(\theta)$.

Замечание 2. Условие непрерывности на Θ нельзя ослабить.

Теорема 2 (лемма Слуцкого). Пусть $\{\xi_n, n \in \mathbb{N}\}$, $\{\eta_n, n \in \mathbb{N}\}$, ξ — случайные величины, $C \in \mathbb{R}$. Пусть $\xi_n \xrightarrow{d} \xi$, $\eta_n \xrightarrow{d} \xi$. Тогда $\xi_n + \eta_n \xrightarrow{d} \xi + C$, $\xi_n \cdot \eta_n \xrightarrow{d} \xi C$.

Теорема 3 (о производной). Пусть $\{\xi_n, n \in \mathbb{N}\}$, ξ — случайные векторы размерности d, m.ч. $\xi_n \xrightarrow{d} \xi, h : \mathbb{R}^d \to \mathbb{R}^k$ непрерывно дифференцируема в точке $a \in \mathbb{R}^d$, $\{b_n\} : b_n > 0, b_n \to 0$ — числовая последовательность. Тогда

$$\frac{h(a+\xi_n b_n) - h(a)}{b_n} \xrightarrow{d} \frac{\partial h}{\partial x}\Big|_a \cdot \xi,$$

 $\left. \operatorname{гдe} \left. \frac{\partial h}{\partial x} \right|_a - \operatorname{матрица} \left. \operatorname{Якоби} \right. \phi$ ункции h в точке a.

Доказательство: (d = 1):

Определим функцию

$$H(x) = \begin{cases} \frac{h(x+a) - h(a)}{x}, & \text{если } x \neq 0 \\ h'(a), & \text{если } x = 0. \end{cases}$$

Функция H непрерывна в нуле. Тогда по лемме Слуцкого $\xi_n b_n \stackrel{d}{\to} \xi \cdot 0 = 0 \implies \xi_n b_n \stackrel{p}{\to} 0$. Применим теорему о наследовании сходимостей:

$$H(\xi_n b_n) = \frac{h(\xi_n b_n + a) - h(a)}{\xi_n b_n} \xrightarrow{p} H(0) = h'(a) \implies \implies \frac{h(\xi_n b_n + a) - h(a)}{\xi_n b_n} \xrightarrow{d} h'(a).$$

Применим еще раз лемму Слуцкого:

$$\xi_n H(\xi_n b_n) \xrightarrow{d} h'(a)\xi.$$

Следовательно, $\frac{h(\xi_n b_n + a) - h(a)}{b_n} \xrightarrow{d} h'(a)\xi$. \square

Пример 5. Пусть $\{\xi_n, n \in \mathbb{N}\}$ — н.о.р.с.в, т.ч. $\mathbb{E}\xi_1 = a \neq 0, \ , \mathbb{D}\xi_1 = \sigma^2.$

$$\sqrt{n}\left(\frac{n}{S_n} - \frac{1}{a}\right) \xrightarrow{d} ?$$

 $\triangle \text{ } \coprod \Pi \text{ } \text{T: } \sqrt{n}(\frac{S_n}{n}-a) \xrightarrow{d} \mathcal{N}(0,\sigma^2).$

Воспользуемся теоремой о производной с $\xi_n = \sqrt{n}(\frac{S_n}{n} - a)$, $\xi \sim \mathcal{N}(0, \sigma^2)$, $h(x) = \frac{1}{x}$, $b_n = \frac{1}{\sqrt{n}}$:

$$\frac{h(\xi_n b_n + a) - h(a)}{b_n} = \sqrt{n} \left[h \left(a + \left(\frac{S_n}{n} - a \right) \right) - h(a) \right] =$$

$$= \sqrt{n} \left(\frac{n}{S_n} - \frac{1}{a} \right) \xrightarrow{d} \xrightarrow{d} \xi \cdot \left(\frac{1}{x} \right) \bigg|_{a} = -\xi \cdot \frac{1}{a^2} \sim \mathcal{N} \left(0, \frac{\sigma^2}{a^4} \right) \qquad \Box.$$

Замечание 3. Если мы рассмотрим ξ_n как выборку (X_1, X_2, \dots) , то $1/\overline{X}$ — а. н. о. для 1/a с асимптотической дисперсией σ^2/a^4 .

Лекция 3

Теорема 4 (дельта-метод). Пусть $\hat{\theta}_n$ — асимптотически нормальная оценка $\theta \in \Theta \subseteq \mathbb{R}^d$ с асимптотической матрицей ковариаций $\Sigma(\theta)$ и $\tau: \mathbb{R}^d \to \mathbb{R}^k$ — непрерывно дифференцируемая функция. Тогда $\tau(\hat{\theta}_n)$ — асимптотически нормальная оценка $\tau(\theta)$ с асимптотической матрицей ковариаций $D(\theta)\Sigma(\theta)D^T(\theta)$, где $D(\theta)=\frac{\partial \tau(\theta)}{\partial \theta}$.

Доказательство: Применим теорему о производной:

$$a = \theta, \ h(x) = \tau(x), \ \xi_n = \sqrt{n}(\hat{\theta}_n - \theta), \ \xi \sim \mathcal{N}(0, \Sigma(\theta)), \ b_n = \frac{1}{\sqrt{n}}$$
$$\frac{h(a + \xi_n b_n) - h(a)}{b_n} = \frac{\tau\left(\theta + \frac{1}{\sqrt{n}}\sqrt{n}(\hat{\theta} - \theta)\right) - \tau(\theta)}{1/\sqrt{n}} =$$
$$= \sqrt{n}(\tau(\hat{\theta}) - \tau(\theta)) \xrightarrow{d} \underbrace{\frac{\partial h}{\partial x}\Big|_{\theta}}_{D(\theta)} \xi \sim \mathcal{N}(0, D(\theta)\Sigma(\theta)D^T(\theta)).$$

Пример 6. $X_1, ... X_n \sim Exp(\theta), \theta > 0$. ЦПТ:

$$\sqrt{n}\left(\overline{X} - \frac{1}{\theta}\right) \xrightarrow{d_{\theta}} \mathcal{N}(0, 1/\theta^2) \Rightarrow \overline{X}$$
— а.н.о. $\frac{1}{\theta}$ с асимптотической дисперсией $1/\theta^2$.

Примерим дельта-метод с функцией $\tau(x)=1/x$: $\tau(\overline{X})=\frac{1}{\overline{X}}$ — а.н.о. $\tau\left(\frac{1}{\theta}\right)$. с асимптотической дисперсией $\frac{1}{\theta^2}\cdot\left(\frac{\partial \theta}{\partial x}\bigg|_{1/\theta}\right)^2=\frac{1}{\theta^2}\left(-\frac{1}{x^2}\right)^2=\theta^2$.

Доказательство теоремы о наследовании сходимостей:

- 2. $\xi_n \xrightarrow{\text{п.н.}} \xi$, $h: \mathbb{R}^d \to \mathbb{R}^k$ непрерывна на множестве $B: P(\xi \in B) = 1$. $\xi_n \xrightarrow{\text{п.н.}} \xi \Leftrightarrow P(\lim_{n \to \infty} \xi_n = \xi) = 1$. Хотим доказать, что $P(\lim_{n \to \infty} h(\xi_n) = h(\xi)) = 1$. $P(\lim_{n \to \infty} h(\xi_n) = h(\xi)) = 1 \geqslant P(\lim_{n \to \infty} \xi_n = \xi, \xi \in B)$, так как вероятность этого события равна 1.
- 1. $\xi_n \xrightarrow{P} \xi$ и $h: \mathbb{R}^d \to \mathbb{R}^k$ непрерывна на B таком, что $P(\xi \in B) = 1$.

$$h(\xi_n) \xrightarrow{P} h(\xi) \Leftrightarrow \forall \varepsilon > 0 \underbrace{P(\|h(\xi_n) - h(\xi)\|) > \varepsilon}_{\forall \delta > 0 \exists N : \forall n > NP(\|h(\xi_n) - h(\xi)\|) > \varepsilon) < \delta} \to 0.$$

$$h(\xi_n) \stackrel{P}{\nrightarrow} h(\xi) \Rightarrow \exists \varepsilon, \delta, \{\xi_n\}_{k=1}^{\infty} : P(\|h(\xi_n) - h(\xi)\| > \varepsilon) > \delta.$$

Заметим, что $\xi_{n_k} \to \xi \Rightarrow$ существует последовательность $\{\xi_{n_{k_s}}\}_{s=1}^{\infty}$ такая, что $\xi_{n_{k_s}} \xrightarrow{\text{п.н.}} \xi$, $s \to \infty$.

3. $\xi_n \xrightarrow{d} \xi$ и h непрерывна. Возьмем $f: \mathbb{R}^k \to \mathbb{R}$ — непрерывная ограниченная. Тогда f(h(x)) непрерывная ограниченная на \mathbb{R}^d , и, поскольку $\xi_n \xrightarrow{d} \xi$, то $\mathbb{E}f(h(\xi_n)) \to \mathbb{E}f(h(\xi)) \Rightarrow h(\xi_n) \xrightarrow{d} h(\xi)$ по определению.

Доказательство леммы Слуцкого для суммы: $\xi_n \xrightarrow{d} \xi$, $\eta_n \xrightarrow{d} c \Rightarrow \xi_n + \eta_n \xrightarrow{d} \xi + c$.

 $\xi_n \xrightarrow{d} \xi \Leftrightarrow F_{\xi_n}(x) \to F_{\xi}(x)$ в точках непрерывности F_{ξ} . $F_{\xi+c}(x) = F_{\xi}(x-c)$. $\xi_n \to \xi \Rightarrow \xi_n + c \to \xi + c$, так как есть сходимость в точках непрерывности $F_{\xi+c}(x)$. Пусть t — точка непрерывности $F_{\xi+c}(x)$ = $t \pm \varepsilon$ тоже точка непрерывности.

$$F_{\xi_n + \eta_n}(t) = P(\xi_n + \eta_n \leqslant t) = P(\xi_n + \eta_n \leqslant t, \ \eta_n < c - \varepsilon) + P(\xi_n + \eta_n \leqslant t, \ \eta_n \geqslant c - \varepsilon) \leqslant$$

1.

$$\{\xi_n + \eta_n \le t, \ \eta_n < c - \varepsilon\} \subseteq \{\eta_n < c - \varepsilon\} \subseteq \{|\eta_n - c| > \varepsilon\}.$$

2.

$$\{\xi_n + \eta_n \leqslant t, \ \eta_n \geqslant c - \varepsilon\} \subseteq \{\xi_n + c - \varepsilon \leqslant t, \ \eta_n \geqslant c - \varepsilon\} \subseteq \{\xi_n + c \leqslant t + \varepsilon\}.$$

$$\lim_{n\to\infty}\sup F_{\xi_n+\eta_n}(t)\leqslant \underbrace{\lim_{n\to\infty}P(|\eta_n-c|>\varepsilon)}_{=0\text{ t.k. }\eta_n\xrightarrow{d}c\Rightarrow\eta_n\xrightarrow{P}c} +\underbrace{\lim_{n\to\infty}F_{\xi_n+c}(t+\varepsilon)}_{=F_{\xi+c}(t+\varepsilon),\text{ t.k. }\xi_n+c\xrightarrow{d}\xi+c\text{ if }t+c-\text{ t.heiip.}}_{=F_{\xi+c}(t+\varepsilon),\text{ t.k. }\xi_n+c\xrightarrow{d}\xi+c\text{ if }t+c-\text{ t.heiip.}}$$

То есть $\lim_{n\to\infty}\sup F_{\xi_n+\eta_n}(t)\leqslant F_{\xi+c}(t+\varepsilon)$. Аналогично $\lim_{n\to\infty}\inf F_{\xi_n+\eta_n}(t)\geqslant F_{\xi+c}(t-\varepsilon)$, следовательно $F_{\xi+c}(t-\varepsilon)\Rightarrow F_{\xi+c}(t-\varepsilon)\leqslant \lim_{n\to\infty}\inf F_{\xi_n+\eta_n}(t)\leqslant \lim_{n\to\infty}\sup F_{\xi_n+\eta_n}(t)\leqslant F_{\xi+c}(t+\varepsilon)$. В силу произвольности $\varepsilon>0$ и непрерывности $F_{\xi+c}(t)$, получаем, что существует $\lim_{n\to\infty}F_{\xi_n+\eta_n}(t)=F_{\xi+c}(t)\Rightarrow \xi_n+\eta_n\xrightarrow{d}\xi+c$.

2.4. Методы нахождения оценкок

(1) Метод моментов

Идея: приравняем друг к другу теоретические и выборочные моменты.

Пусть $X = (X_1, ..., X_n)$ — выборка из неизвестного распределения $P \in \{P_\theta | \theta \in \Theta\}, \Theta \subseteq \mathbb{R}^d$. Составим систему:

$$\begin{cases} E_{\theta} X_1 = X \\ E_{\theta} X_1^2 = \overline{X^2} \\ \dots \\ E_{\theta} X_1^d = \overline{X^d} \end{cases}$$

Решение этой системы называется оценкой θ по методу моментов.

Обобщенный метод моментов

Пусть $g_1(x), \ldots, g_d(x)$ — борелевские функции, такие, что $|E_{\theta}g_j(x_j)| < +\infty$. Составим систему:

$$\begin{cases}
E_{\theta}g_1(X_1) = \overline{g_1(X)} \\
E_{\theta}g_2(X_1) = \overline{g_2(X)} \\
\dots \\
E_{\theta}g_d(X_1) = \overline{g_d(X)}
\end{cases}$$

Пример 7. $X_1, \dots, X_n \sim Exp(\theta)$. Найти оценку стандартным методом моментов и обобщенным с функцией $g(x) = I\{x > 1\}.$

Решение:

- 1. Стандартный метод моментов дает уравнение $E_{\theta}X_1 = \overline{X} \Rightarrow \hat{\theta}_1 = \frac{1}{\overline{X}}$. Ранее мы получали, что $\hat{\theta}_1$ — асимптотически нормальная оценка θ с асимптотической дисперсией $\theta^2 = \sigma^2(\theta)$.
- 2. Получаем систему из одного уравнения: $E_{\theta}I(X_1>1) = \overline{I(X>1)}$. $E_{\theta}I\{X_1>1\} = \int_{1}^{+\infty} \theta e^{-\theta x} dx = 0$ $e^{-\theta}$, $\overline{I\{X>1\}}=rac{1}{n}\sum_{i=1}^{n}I\{X_{i}>1\}$. Получаем $\hat{\theta}_{2}=\ln\overline{I\{X>1\}}$. ЦПТ: $\overline{I\{X>1\}}$ — асимптотически нормальная оценка $e^{-\theta}$ с асимптотической дисперсией $D_{\theta}I\{X_1>1\}=e^{-\theta}-e^{-2\theta}$. Применим дельта-метод с функцией $\tau(x)=-\ln x$. Отсюда $\hat{\theta}_2$ — асимптотически нормальная оценка θ с асимптотической дисперсией $(e^{-\theta}-e^{-2\theta})\cdot((-\ln x)')^2\Big|_{e^{-\theta}}=(e^{-\theta}-e^{-2\theta})\cdot$ $\left| \frac{1}{x^2} \right| = e^{\theta} - 1 = \sigma_2^2(\theta).$

Вывод: нужен метод сравнения оценок. Видимо, $\hat{\theta}_1$ лучше $\hat{\theta}_2$, так как $\sigma_1^2(\theta) < \sigma_2^2(\theta)$.

Распишем оценку по методу моментов: пусть $g_1(x), \ldots, g_d(x)$ — борелевские функции такие, что $|E_{\theta}g_i(x_i)| < +\infty.$

$$m(\theta) = \begin{pmatrix} E_{\theta}g_1(X_1) \\ \dots \\ E_{\theta}g_d(x_1) \end{pmatrix} = \begin{pmatrix} \overline{g_1(X)} \\ \dots \\ \overline{g_d(x)} \end{pmatrix} = \overline{g(X)} \Rightarrow \hat{\theta} = m^{-1}(g(\overline{X})).$$

Утверждение 5.

- 1. Если m^{-1} непрерывна, то $\hat{\theta}$ сильно состоятельная оценка θ .
- 2. Если m^{-1} непрерывно дифференцируема и $E_{\theta}g_i^2(X_i) < +\infty$, то $\hat{\theta}$ асимптотически нормальная оценка θ .

Доказательство:

- 1. В силу выбора $g_i: |E_{\theta}g_i(X_i)| < +\infty$ по УЗБЧ: $\overline{g(X)} \xrightarrow{P_{\theta}-\text{п.н.}} m(\theta) = E_{\theta}g(X_1)$. Поскольку m^{-1} непрерывна, то по теореме о наследовании сходимостей $\hat{\theta} = m^{-1}(\overline{g(X)})$ сильно состоятельная оценка $m^{-1}(m(\theta)) = \theta$.
- 2. ЦПТ: $\sqrt{n}(\overline{g(X)}-m(\theta)) \xrightarrow{d_{\theta}} \mathcal{N}(0,\Sigma(\theta)) \Rightarrow \overline{g(X)}$ асимптотически нормальная оценка $m(\theta)$. Применяем дельта-метод с функцией m^{-1} : $\hat{\theta}$ асимптотически нормальная оценка θ . \square

(2) Метод максимального правдоподобия

Пусть $X = (X_1, \dots X_n)$ — выборка из неизвестного распределения $P \in \{P_\theta | \theta \in \Theta\}$, где

- 1. Либо все P_{θ} абсолютно непрерывные и $p_{\theta}(x)$ плотность P_{θ} .
- 2. Либо все P_{θ} дискретные и $p_{\theta}(x) = P_{\theta}(X_1 = x)$ дискретная плотность.

Определение 4. $L_X(\theta) = p_{\theta}(X) = \prod_{i=1}^n p_{\theta}(X_i)$ — функция правдоподобия (как функция от θ).

Определение 5. $l_X(\theta) = \ln L_X(\theta)$ — логарифмическая функция правдоподобия.

Замечание 4. При фиксированном θ функция правдоподобия равна плотности выборки, в которую в качестве аргумента подставлена сама выборка.

Смысл 2. "вероятность" выборки в зависимости от значения параметра. Степень доверия к конкретному значению параметра. Интересует только относительное значение.

Пример 8. пусть x_1 — наблюдение.

Рисунок

Видимо θ_2 более правдоподобно, чем θ_1 и θ_3 .

Определение 6. $\hat{\theta} = \arg\max_{\theta \in \Theta} L_X(\theta)$ называется оценкой максимального правдоподобия.

Утверждение 6. ОМП не зависит от параметризации. Пусть $\hat{\theta} - OM\Pi$ для θ . $\tau:\Theta \to \Psi$ — биекция. Тогда $\tau(\hat{\theta}) - OM\Pi$ для $\tau(\theta)$.

Утверждение 7. Пусть $\forall n, \ \forall x_1, \dots, x_n \$ уравнение правдоподобия $\sum_{i=1}^n \frac{\partial}{\partial \theta} \ln p_{\theta}(x_i) = 0 \$ имеет только одно решение. Тогда

- 1. $[L1-L5] \Rightarrow OM\Pi$ состоятельна;
- 2. $[L1-L9]\Rightarrow OM\Pi$ является асимптотически нормальной оценкой θ с асимптотической матрицей ковариаций $i(\theta)^{-1}$, где $i(\theta)_{jk}=E_{\theta}\frac{\partial l_{X_1}(\theta)}{\partial \theta_i}\frac{\partial l_{X_1}(\theta)}{\partial \theta_i}$.
- 3. $[L1-L9] \Rightarrow$ решение уравнения и есть ОМП.

Задача 1. $X_1,\ldots,X_n\sim Exp(\theta)$. Найти ОМП для θ и $1/\theta$.

Решение: $p_{\theta}(x) = \theta e^{-\theta x} \cdot I\{x > 0\}$. Отсюда

$$L_X(\theta) = \prod_{i=1}^n \theta e^{-\theta X_i} \cdot I\{X_i > 0\} = \theta^n e^{-\theta \sum X_i} \cdot I\{\forall i \ X_i > 0\}.$$

Прологарифмируем:

$$l_X(\theta) = n \ln \theta - \theta \sum_{i=1}^n X_i.$$
$$\frac{\partial l_X(\theta)}{\partial \theta} = \frac{n}{\theta} - \sum_{i=1}^n X_i = 0 \Rightarrow \hat{\theta} = \frac{1}{\overline{X}}.$$

По утверждению о независимости от способа параметризации \overline{X} — ОМП для $1/\theta$, $i(\theta) = E_{\theta} \left(\frac{\partial l_{X_1}(\theta)}{\partial}\right)^2 = E_{\theta} \left(\frac{1}{\theta} - X_1\right)^2 = D_{\theta}X_1 = \frac{1}{\theta^2} \Rightarrow \hat{\theta} = \frac{1}{\overline{X}}$ — асимптотически нормальная оценка θ с асимптотической дисперсией $i(\theta)^{-1} = \theta^2$. \square

Лекция 4

Пример 9. $X_1, \ldots, X_n \sim Bern(\theta)$. Найти ОМП для θ и $\ln \frac{\theta}{1-\theta}$.

Решение:
$$p_{\theta}(x) = P_{\theta}(X_1 = x) = \begin{cases} \theta, & x = 1 \\ 1 - \theta, & x = 0 \end{cases} = \theta^x (1 - \theta)^{1 - x}.$$

$$L_X(\theta) = \prod_{i=1}^n p_{\theta}(X_i) = \prod_{i=1}^n \theta^{X_i} (1 - \theta)^{1 - X_i} = \theta^{\sum X_i} (1 - \theta)^{n - \sum X_i}$$

$$l_X(\theta) = \ln L_X(\theta) = \sum X_i \ln \theta + (n - \sum X_i) \ln(1 - \theta)$$

$$\frac{\partial l_X(\theta)}{\partial \theta} = \frac{\sum X_i}{\theta} - \frac{n - \sum X_i}{1 - \theta} = 0$$

$$(1 - \theta) \sum X_i = \theta(n - \sum X_i)$$

$$\sum X_i = n\theta \Rightarrow \theta = \overline{X}.$$

По свойству независимости от способа параметризации ОМП для $\ln \frac{\theta}{1-\theta}$ это $\ln \frac{\overline{X}}{1-\overline{X}}$. Посчитаем асимптотическую для $\hat{\theta} = \overline{X}$. $i(\theta) = E_{\theta} \left(\frac{\partial l_{X_1}(\theta)}{\partial \theta}\right)^2 = E_{\theta} \left(\frac{X_1}{\theta} - \frac{1-X_1}{1-\theta}\right)^2 = \frac{1}{\theta^2(1-\theta)^2} E_{\theta}((1-\theta)X_1 - \theta(1-X_1))^2 = \frac{1}{\theta^2(1-\theta)^2} E_{\theta}(X_1 - \theta)^2 = \frac{1}{\theta^2(1-\theta)^2} D_{\theta}X_1 = \frac{\theta(1-\theta)}{\theta^2(1-\theta)^2} = \frac{1}{\theta(1-\theta)}$. $\sigma^2(\theta) = 1/i(\theta) = \theta(1-\theta)$. \square

Задача 2. На высоте 1м от поверхности находится γ -излучатель. Регистрируются точки пересечения с горизонтальной осью. Направление равномерно распределено по полуокружности. Оценить θ .

Решение: x — точка пересечения с осью, α_x — угол, который образует точка x. Найдем распределение x. Заметим, что оно симметрично относительно θ . При $x \geqslant \theta$: $F_{\theta}(x) = P_{\theta}(X \leqslant x) = P_{\theta}(X \leqslant x) = P_{\theta}(X \leqslant x) = \frac{1}{2} + \frac{\alpha_x}{\pi} = \frac{1}{2} + \frac{\arctan(x - \theta)}{\pi}$.

$$p_{\theta}(x) = F'_{\theta}(x) = \frac{1}{\pi(1 + (x - \theta)^2)}$$
 — распределение Коши.

- 1. Метод моментов неприменим, т. к. несуществует $E_{\theta}X_{1}$.
- 2. Метод максимизации правдоподобия:

$$L_X(\theta) = \prod_{i=1}^n \frac{1}{\pi(1 + (X_i - \theta)^2)};$$

$$l_X(\theta) = -\sum_{i=1}^n \ln(1 + (X_i - \theta)^2);$$
$$\frac{\partial l_X(\theta)}{\partial \theta} = 2\sum_{i=1}^n \frac{X_i - \theta}{1 + (X_i - \theta)^2} = 0.$$

Дальше решать это грустно.

3. Почему бы не взять $\hat{\theta}=\overline{X}$? Посчитаем распределение \overline{X} : $\varphi_X(t)=\mathbb{E}e^{itX}$. Для Коши $\varphi_{X_1}=e^{-|t|}$ $(\theta=0)$.

$$\varphi_{\overline{X}}(t) = Ee^{it\overline{X}} = Ee^{it\frac{1}{n}\sum X_i} = \mathbb{E}\prod_{i=1}^n e^{i(t/n)X_i} = /\text{незав.}/ = \prod_{i=1}^n Ee^{i(t/n)X_i} = |X_i \stackrel{d}{=} X_1| = \left(Ee^{i(t/n)X_1}\right)^n = e^{-|t|} = \varphi_{X_1}(t) \Rightarrow \text{ по теореме о единственности } \overline{X} \stackrel{d}{=} X_1.$$

Вывод: усреднение ничего не дает.

4. Медиана - рассмотрим далее.

Выоброчные квантили

Определение 7. Пусть P — распределение на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ с функцией распределение F(X). Пусть $p \in (0,1)$. Тогда p-квантилью распределения P называется $u_p = \min\{x|F(x) \geqslant p\}$; 1/2-квантиль называется медианой.

Пример 10. $Exp(1), F(x) = 1 - e^{-x}, u_p = -\ln(1-p) - p$ -квантиль Exp(1).

Определение 8. Пусть $X=(X_1,\dots X_n)$ — выборка. Выборочной p-квантилью называется $\hat{u_p}=X_{(\lceil np \rceil)}$. Выборочной медианой

$$\hat{\mu} = \begin{cases} X_{(k+1)} & \text{если } n = 2k+1 \\ \frac{X_{(k)} + X_{(k+1)}}{2} & \text{если } n = 2k \end{cases}.$$

Пример 11. X=(7,9,15,8,12,1,8,5,17,21). Найти выборочные квантили уровней 0.01, 0.1, 0.25 и медиану.

Решение: Сортируем: (1,5,7,8,8,9,12,15,17,21). $\hat{\mu}=\frac{8+9}{2}=8.5$. $\hat{u}_{0.01}=X_{(\lceil 10\cdot 0.01\rceil)}=X_{(1)}=1$. $\hat{u}_{0.1}=X_{(1)}=1$. $\hat{u}_{0.25}=X_{(\lceil 10\cdot 0.25\rceil)}=X_{(3)}=7$. \square

Теорема 5. Пусть $(X_n, n \in \mathbb{N})$ — выборка неограниченного размера из распределения P с плотностью f(x). Число $p \in (0,1)$, такое что f(x) непрерывна в окрестности u_p и $f(u_p) > 0$. Тогда

$$\sqrt{n}(\hat{u}_p - u_p) \xrightarrow{d} \mathcal{N}\left(0, \frac{p(1-p)}{f^2(u_p)}\right).$$

Аналогично для выборочной медианы

$$\sqrt{n}(\hat{\mu} - u_{1/2}) \xrightarrow{d} \mathcal{N}\left(0, \frac{1}{4f^2(u_{1/2})}\right).$$

Вспомним про γ -котиков. $\hat{\mu}$ — а.н.о. θ с асимптотической дисперсией $\frac{1}{4\frac{1}{\pi^2(1-\theta)^2}}=\frac{\pi^2}{4}\approx 2.47$. При этом $i(\theta)=1/2\Rightarrow 1/i(\theta)=2$ — асимптотическая дисперсия ОМП.

2.5. Достаточные статистики

Определение 9. Пусть $X = (X_1, \dots, X_n)$ — выборка из неизвестного распределения $P \in \mathcal{P}$, где $\mathcal{P} = \{P_{\theta} | \theta \in \Theta\}$. Статистика S(X) называется достатичной для семейства \mathcal{P} , если условное распределение $P_{\theta}(X \in B | S(X))$ не зависит от $\theta \ \forall B$.

Смысл 3. вся информация о θ , которая содержится содержится в выборке, содержится в достаточной статистике.

Следствие 1. если данные поступают последовательно, можно только пересчитывать S(X).

Пример 12. $X_1, ..., X_n \sim Bern(\theta)$. Какая информация есть в выборке?

- 1. $S(X) = \sum X_i$ количество единиц.
- 2. Порядок нулей и единиц бесполезная информация, так как выборка.

Покажем, что S(X) — достаточная статистика.

$$\frac{P_{\theta}(X_1=x_1,\ldots,X_n=x_n,\sum X_i=s)}{P_{\theta}(\sum X_i=s)} = \frac{\theta^{\sum X_i}(1-\theta)^{n-\sum X_i}\cdot I\{\sum X_i=s\}}{C_n^s\theta^s(1-\theta)^{n-s}} = \frac{1}{C_n^s}I\{\sum X_i=s\}$$
— не зависит от $\theta\Rightarrow S(X)$ - достаточная статистика

Теорема 6 (критерий факторизации Неймана-Фишера). Пусть $X = (X_1, \dots X_n)$ — выборка из распределение $P \in \mathcal{P} = \{P_{\theta} | \theta \in \Theta\}$, причем \mathcal{P} — доминируемое семейство с плотностью $p_{\theta}(x)$. Тогда S(X) — достаточная статистика для $\mathcal{P} \Leftrightarrow$ справедлива факторизация:

$$p_{\theta}(x) = \psi(S(x), \theta) \cdot h(x),$$

h(x) не зависит от θ .

Доказательство: (для дискретного случая):

 (\Rightarrow) Пусть S(X) — достаточная статистика.

$$p_{\theta}(x) = P_{\theta}(X = x) = P_{\theta}(X = x, S(X) = S(x)) =$$

$$= \underbrace{P_{\theta}(X = x | S(X) = S(x))}_{\text{не зависит от}\theta} \cdot \underbrace{P_{\theta}(S(X) = S(x))}_{\text{зависит только от }S(x)} = h(x) \cdot \psi(S(x), \theta).$$

 (\Leftarrow) Пусть имеет место факторизация. Покажем, что $P_{\theta}(X = x | S(X) = s)$ не зависит от θ . Если $S(x) \neq s$, то вероятность = 0.

$$P_{\theta}(X = x | S(X) = S(x)) = \frac{P_{\theta}(X = x, S(X) = S(x))}{P_{\theta}(S(X) = S(x))} = \frac{P_{\theta}(X = x)}{\sum_{y:S(y) = S(x)} P_{\theta}(X = y)} = \frac{p_{\theta}(x)}{\sum_{y:S(y) = S(x)} p_{\theta}(y)} = \frac{\psi(S(x), \theta)h(x)}{\sum_{y:S(y) = S(x)} \psi(S(y), \theta)h(y)} = \frac{h(x)}{\sum_{y:S(y) = S(x)} h(y)} - \text{ не зависит от } \theta.$$

13

Пример 13. $X_1, \ldots, X_n \sim \Gamma(\alpha, \beta)$. Найти достаточные статистики.

Решение:

$$p_{\theta}(x) = \frac{\alpha^{\beta}}{\Gamma(\beta)} x^{\beta - 1} e^{-\alpha x}, \ x > 0$$

$$p_{\theta}(x_1, \dots, x_n) = \frac{\alpha^{n\beta}}{\Gamma^n(\beta)} \left(\prod_{i=1}^n x_i \right)^{\beta-1} e^{-\alpha \sum x_i}.$$

Вывод: $(\sum X_i, \prod X_i)$ — достаточная статистика.

Лучше $(\sum X_i, \sum \ln X_i)$. \square

Лекция 5 (от 30.09)

2.6. Экспоненциальный класс распределений

Определение 10. Семейство распределений $\mathcal{P} = \{P_{\theta} | \theta \in \Theta\}$ принадлежит экспоненциальному классу, если плотность $p_{\theta}(x)$ имеет вид

$$p_{\theta}(x) = \frac{g(x)}{h(\theta)} e^{a(\theta)^T u(x)},$$

где g(x) > 0, u(x) — произвольные борелевские функции, $h(\theta) = \int_{\mathscr{X}} g(x) e^{a(\theta)^T u(x)} dx$ — нормировочная константа. Если $a(\theta) = \theta$, будем говорить что параметризация естественная.

Пример 14. $\mathcal{P} = \{ \mathcal{N}(a, \sigma^2 | a \in \mathbb{R}, \sigma > 0 \}.$ Перейдем к естественным параметрам:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2} + \frac{xa}{\sigma^2} - \frac{a^2}{2\sigma^2}\right).$$

Введем параметры $\theta = (\theta_1, \theta_2)$: $\theta_1 = -\frac{1}{2\sigma^2}$, $\theta_2 = \frac{a}{\sigma^2}$.

$$p(x) = \sqrt{-\frac{\theta_1}{\pi}} e^{\theta_1 x^2 + \theta_2 x + \frac{\theta_2^2}{4\theta_1}}.$$

 $u(x)=\begin{pmatrix}x^2\\x\end{pmatrix}, a(\theta)=\theta,\ g(x)=1,\ h(\theta)=\sqrt{-\frac{\theta_1}{\pi}}e^{\frac{\theta_2^2}{4\theta_1}}.$ Найдем достаточные статистики для семейства \mathcal{P} :

$$p_{\theta}(x_1, \dots, x_n) = h^{-n}(\theta) \prod_{i=1}^n g(x_i) e^{a(\theta)^T \sum_{i=1}^n u(x_i)}.$$

По критерию факторизации Неймана-Фишера $S(X) = \sum u(X_i)$ — достаточная статистика.

Замечание 5. S(X) — статистика фиксированной размерности.

Теорема 7. Пусть $\mathcal{P} = \{P_{\theta} | \theta \in \Theta\}$ — семейство распределений т.ч. плотность $p_{\theta}(x)$ непрерывно дифференцируема по x и носитель не зависит от θ . Пусть также S(X) — достаточная статистика фиксированной размерности т. Тогда семейство \mathcal{P} принадлежит экспоненциальному классу.

Следствие 2. Если плотность достаточно хорошая, то только семейства из экспоненциального класса допускают сжатие данных с помощю достаточных статистик.

Пример 15.

- 1. $\mathcal{P} = \{$ Коши со сдвигом $\}$ не лежит в экспоненциальном классе \implies нет достаточных статистик фиксированного размера.
- 2. $\mathcal{P} = \{U[0,\theta]\}$ носитель зависит от θ . Однако достаточная статистика фикс. размера существует: $S(X) = X_{(n)}$.

Далее потребуем некоторые условия:

- 1. Параметризация естественная
- 2. g(x), u(x) непрерывны
- 3. Условие равномерной сходимости интеграла по параметру:

$$\forall s \ \forall j \leqslant k \ \exists \varphi(x) : \forall \theta \in \Theta \ |g(x)u_s^j(x)e^{\theta u(x)}| \leqslant \varphi(x),$$

и при этом $\int\limits_{\mathscr{X}} \varphi(x) dx$ сходится.

Следствие 3.

- 1. $h(\theta)$ непрерывно дифференцируема k раз
- 2. $p_{\theta}(x)$ непрерывно дифференцируема k раз по θ
- 3. Можно менять местами $\frac{\partial}{\partial \theta}$ и \int

Утверждение 8.

1.

$$E_{\theta}u(X_1) = \nabla \ln h(\theta) = \left(\frac{\partial}{\partial \theta} \ln h(\theta)\right)_i$$

2.

$$D_{\theta}u(X_1) = \nabla^2 \ln h(\theta) = \left(\frac{\partial^2}{\partial \theta^2} \ln h(\theta)\right)_{jk}$$

Доказательство:

$$\frac{\partial h(\theta)}{\partial \theta_j} = \frac{\partial}{\partial \theta} \int_{\mathcal{X}} g(x) e^{\theta^T u(x)} dx = \{\text{следствие } 3\} = \int_{\mathcal{X}} u_j(x) g(x) e^{\theta^T u(x)} dx =$$

$$= h(\theta) \int_{\mathcal{X}} \frac{u_j(x)}{h(\theta)} g(x) e^{\theta^T u(x)} dx = h(\theta) E_{\theta} u_j(X_1).$$

$$E_{\theta} u_j(X_1) = \frac{\partial h(\theta) / \partial \theta_j}{h(\theta)} = \frac{\partial \ln h(\theta)}{\partial \theta}$$

Утверждение 9. Если Θ — выпуклое множество, то ОМП существует и единственна.

Доказательство: $\nabla \nabla \ln h(\theta) = D_{\theta} u(X_1) \geqslant 0 \implies \ln h(\theta)$ выпукла.

$$l_X(\theta) = \underbrace{\sum_{\text{не зависит от } \theta} \ln g(X_i)}_{\text{не зависит от } \theta} \underbrace{-n \ln h(\theta)}_{\text{вогнута}} + \underbrace{\theta \sum_{\text{линейна по } \theta} u(X_i)}_{\text{линейна по } \theta} \implies l_X(\theta)$$
 вогнута.

Значит, максимум существует и единственный. 🗆

Утверждение 10. Если Θ — выпуклое открытое множество, то выполнены условия L5-L9.

Доказательство: L5-L7 выполнены из следствий 1-3

L8:
$$\frac{\partial \ln p_{\theta}(x)}{\partial \theta} = \frac{\partial}{\partial \theta} (\ln g(x) - n \ln h(\theta) + \theta u(x)) = \frac{\partial h(\theta)}{h(\theta)} + u(x)$$

$$i(\theta) = E_{\theta}(\frac{\partial \ln p_{\theta}(X_1)}{\partial \theta})^2$$
по утверждению 1 существует и конечна

L9 следует из того, что $\frac{\partial^2 \ln p_{\theta}(X_1)}{\partial \theta^2}$ не зависит от θ . \square

2.7. Сравнение оценок

Ранее было: $X_1, \ldots, X_n \sim Exp(\theta)$.

 $\widehat{\theta}_1=1/\overline{X},\ \widehat{\theta}_2=-\ln\overline{I\{X>1\}}$ — (сильно) состоятельная, а. н. оценка θ . Хотим построить оценку для $\tau(\theta)\in\mathbb{R}^d$.

Определение 11. Функция $L: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+$, которая характеризует степень отклонения оценки от $\tau(\theta)$, называется функцией nomepo (loss function).

Пример 16.

- 1. $L(x,y) = (x-y)^2$ квадратичная функция потерь
- 2. L(x,y) = |x-y| абсолютная функция потерь
- 3. $L(x,y) = \log(1+|x-y|)$ многомерный случай:
- 4. $L(x,y)=(x-y)^TA(x-y),$ A симметричная, положительно определенная матрица если $A=I_d:L(x,y)=\sum\limits_{j=1}^d(x_j-y_j)^2.$

Пусть $\widehat{\theta}$ — оценка $\tau(\theta)$, θ — истинное значение параметра. Тогда $L(\widehat{\theta},\theta)$ — штраф при оценивании $\tau(\theta)$ оценкой $\widehat{\theta}$. Проблема: штраф случаен

Определение 12. Функция риска

$$R_{\widehat{\theta},\tau}(\theta) = E_{\theta}L(\widehat{\theta},\tau(\theta)).$$

Пример 17.

- $MSE_{\widehat{\theta}_{\tau}}(\theta) = E_{\theta}(\widehat{\theta} \tau(\theta))^2 cpedheквадратичная ошибка.$
- $\mathrm{MAE}_{\widehat{\theta},\tau}(\theta) = E_{\theta}|\widehat{\theta} \tau(\theta)| cpe$ дняя абсолютная ошибка.

Замечание 6. если $\tau(\theta) = \theta$, то индекс τ опускаем.

Задача 3. X_1, \ldots, X_n — выборка. $\widehat{\theta}_1 = X_1, \ \widehat{\theta}_2 = \overline{X}$ — оценки $\tau(\theta) = E_{\theta}(X_1)$. Посчитать MSE. Решение: $\mathrm{MSE}_{\widehat{\theta}_1, \tau}(\theta) = E_{\theta}(X_1 - E_{\theta}X_1)^2 = D_{\theta}X_1$ $\mathrm{MSE}_{\widehat{\theta}_2, \tau}(\theta) = E_{\theta}(\overline{X} - E_{\theta}\overline{X})^2 = D_{\theta}\overline{X} = \frac{1}{n}D_{\theta}X_1$. \square

Вывод: усреднение уменьшает среднеквадратичный риск в n раз.

Подходы к сравнению оценок

1. Равномерный

- $\widehat{\theta}_1$ не хуже $\widehat{\theta}_2$, если $\forall \theta R_{\widehat{\theta}_1, \tau(\theta)} \leqslant R_{\widehat{\theta}_2, \tau(\theta)}$.
- $\widehat{\theta}_1$ лучше $\widehat{\theta}_2$, если, кроме того, $\exists \theta : R_{\widehat{\theta}_1, \tau(\theta)} < R_{\widehat{\theta}_2, \tau(\theta)}$.
- ullet Пусть ${\mathscr K}$ множество оценок. $\widehat{ heta}$ наилучшая в ${\mathscr K}$, если она лучше всех оценок из ${\mathscr K}$.
- Если $L(x,y) = (x-y)^2$, то подход называется среднеквадратичным.

Утверждение 11. Наилучшей оценки может не существовать.

Доказательство:
$$\mathscr{K}=\{\widehat{\theta}_1\equiv 1, \widehat{\theta}_2\equiv 2\}$$
 $\mathrm{MSE}_{\widehat{\theta}_1}(\theta)=E_{\theta}(\theta-1)^2=(\theta-1)^2$ $\mathrm{MSE}_{\widehat{\theta}_2}(\theta)=E_{\theta}(\theta-2)^2=(\theta-2)^2$ Если $\theta<1.5$, то $\mathrm{MSE}_{\widehat{\theta}_1}(\theta)<\mathrm{MSE}_{\widehat{\theta}_2}(\theta)$; если $\theta>1.5$, то $\mathrm{MSE}_{\widehat{\theta}_2}(\theta)<\mathrm{MSE}_{\widehat{\theta}_1}(\theta)$

Утверждение 12. Справедливо bias-variance разложение:

$$\underbrace{\mathrm{MSE}_{\widehat{\theta},\tau}(\theta)}_{error} = \underbrace{D_{\theta}\widehat{\theta}}_{variance} + \underbrace{(E_{\theta}\widehat{\theta} - \theta)^2}_{bias^2}.$$

Доказательство: $\text{MSE}_{\widehat{\theta},\tau}(\theta) = E_{\theta}(\widehat{\theta} - \tau(\theta))^2 = E_{\theta}((\widehat{\theta} - E_{\theta}\widehat{\theta}) + (E_{\theta}\widehat{\theta} - \tau(\theta))^2 = E_{\theta}(\widehat{\theta} - E_{\theta}(\widehat{\theta}))^2 + 2E_{\theta}(\widehat{\theta} - E_{\theta}\widehat{\theta})(E_{\theta}\widehat{\theta} - \tau(\theta)) + (E_{\theta}(\widehat{\theta}) - \tau(\theta))^2$ Второе слагаемое равно нулю, следовательно, получаем требуемое. \square

Следствие 4. Среди все несмещенных оценок наилучшей будет та, у которой меньше дисперсия.

2. Байесовский

Пусть Q — некоторое распределение на Θ . Тогда $\widehat{\theta}_1$ не хуже $\widehat{\theta}_2$, если $E_Q R_{\widehat{\theta}_1}(\theta) \leqslant E_Q R_{\widehat{\theta}_2}(\theta)$.

3. Минимаксный

$$\widehat{ heta}_1$$
 не хуже $\widehat{ heta}_2$, если $\sup_{ heta \in \Theta} R_{\widehat{ heta}_1}(heta) \leqslant \sup_{ heta \in \Theta} R_{\widehat{ heta}_2}(heta).$

4. Асимптотический (для а.н.о)

Пусть $\widehat{\theta}_1, \widehat{\theta}_2$ — а.н.о. $\tau(\theta)$ с асимпт. дисперсией σ_1^2 и σ_2^2 . Тогда

• $\widehat{\theta}_1$ не хуже $\widehat{\theta}_2$, если $\sigma_1(\theta) \leqslant \sigma_2(\theta) \ \forall \theta \in \Theta$.

- $\widehat{\theta}_1$ лучше $\widehat{\theta}_2$, если, кроме того $\exists \theta \in \Theta : \ \sigma_1(\theta) < \sigma_2(\theta)$.
- Относительная асимптотическая эффективность: $ARE_{\widehat{\theta}_1,\widehat{\theta}_2}^{\tau}(\theta) = \frac{\sigma_2^2}{\sigma_1^2}$ показывает, насколько $\widehat{\theta}_1$ лучше $\widehat{\theta}_2$.

 $\widehat{\theta}_1$ не хуже $\widehat{\theta}_2$, если $\mathrm{ARE}_{\widehat{\theta}_1,\widehat{\theta}_2}^{ au}(\theta)\geqslant 1 \forall \theta\in\Theta.$

Определение 13. Оценка $\widehat{\theta}$ называется асимптотически эффективной оценкой $\tau(\theta)$, если она имеет наименьшую асимптотическую дисперсию среди всех а.н.о. $\tau(\theta)$ с непрерывной а. д.

Утверждение 13. Если выполнены условия L1-L9, то ОМП асимптотически эффективна.

Пример 18. $X_1, ..., X_n \sim \mathcal{N}(\theta, 1)$.

- ОМП: $\widehat{\theta}_1 = \overline{X}$ а.н.о θ с а.д. $\sigma_1^2 = 1$.
- Теор. о выборочной медиане: $\widehat{\theta}_2 = \widehat{\mu}$ а.н.о θ с а.д. $\sigma_2^2 = \frac{2\pi}{4} = \frac{\pi}{2}$.

 $ARE_{\overline{X},\widehat{\mu}}(\theta) = \frac{\sigma_2^2(\theta)}{\sigma_1^2(\theta)} = \frac{\pi}{2} \approx 1.57.$

Лекция 6 (от 7.10)

2.8. Приближенный поиск ОМП

Метод Ньютона:

Пусть $f: \mathbb{R} \to \mathbb{R}$ — функция. Нужно решить уравнение f(x) = 0.

 x_0 — начальное приближение Формула касательной в точке $x_k: y = f(x_k) + f'(x_k)(x - x_k)$. Получим соотношение

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Пусть $X = (X_1, \dots, X_n)$ — выборка из неизвестного распределения $P \in \{P_\theta \mid \theta \in \Theta\}, \Theta \subset \mathbb{R}^d$. Пусть θ^* — ОМП. Хотим приблизить оценку θ^* .

Уравнение правдоподобия: $\frac{\partial l_X(\theta)}{\partial \theta} = 0$. Применим метод Ньютона для функции $l_X'(\theta)$. $\hat{\theta}_0$ — начальное приближение. Шаг метода:

$$\widehat{\theta}_{k+1} = \widehat{\theta}_k - \underbrace{(l_X''(\widehat{\theta}_k))^{-1}}_{\text{матрица}} \cdot \underbrace{l_X'(\widehat{\theta}_k)}_{\text{вектор}}.$$

Теорема 8. В условиях регулярности L1-L9, если $\widehat{\theta}_0$ — а.н.о, то

- 1. $\widehat{ heta}_1$ а.н.о с асимт. дисперсией $(i(\theta))^{-1}$.
- 2. $\widehat{\theta}_1$ асимптотически эквивалентна ОМП θ^* , т.е

$$\sqrt{n}(\widehat{\theta}_1 - \theta^*) \xrightarrow{P_{\theta}} 0.$$

Доказательство: (для d = 1, идея)

Утверждение 14 (б/д). $\widehat{\theta}_1 - \theta^* = (\widehat{\theta}_0 - \theta^*)\varepsilon_n(\theta), \ \textit{rde } \varepsilon_n(\theta) \xrightarrow{P_{\theta}} 0.$

(2).
$$\sqrt{n}(\widehat{\theta}_1 - \theta^*) = \sqrt{n}(\widehat{\theta}_0 - \theta^*)\varepsilon_n(\theta) =$$

$$=\underbrace{\sqrt{n}(\widehat{\theta}_0-\theta)}_{\stackrel{d_\theta}{\longrightarrow}\mathcal{N}(0,\dots)}\underbrace{\varepsilon_n(\theta)}_{\stackrel{d_\theta}{\longrightarrow}\mathcal{N}(0,\dots)}+\underbrace{\sqrt{n}(\theta-\theta^*)}_{\stackrel{d_\theta}{\longrightarrow}\mathcal{N}(0,\dots)}\underbrace{\varepsilon_n(\theta)}_{\stackrel{d_\theta}{\longrightarrow}0}.$$
 По лемме Слуцкого первое слагаемое $\stackrel{d_\theta}{\longrightarrow}0$, второе слагаемое

мое $\xrightarrow{d_{\theta}}$ 0. Применяя еще раз лемму Слуцкого для их суммы, получим $\sqrt{n}(\widehat{\theta}_1 - \theta^*) \xrightarrow{d_{\theta}(\iff P_{\theta}, \text{т.к. const})}$ 0.

$$(1).\ \sqrt{n}(\widehat{\theta}_1-\theta)=\underbrace{\sqrt{n}(\widehat{\theta}_1-\theta^*)}_{\stackrel{P_\theta}{\longrightarrow} 0(\text{из }(2))}-\underbrace{\sqrt{n}(\widehat{\theta}_0-\theta)}_{\stackrel{d_\theta}{\longrightarrow} \mathcal{N}(0,\frac{1}{i(\theta)})\ (\text{ОМП})}\ .\ \text{По лемме Слуцкого}$$

$$\sqrt{n}(\widehat{\theta}_1 - \theta) \xrightarrow{d_{\theta}} \mathcal{N}\left(0, \frac{1}{i(\theta)}\right)$$

Замечание 7. Утверждение теоремы не изменится, если заменить $l_X''(\theta)$ на $E_{\theta}l_X''(\theta) = -ni(\theta)$, т.е.

$$\widehat{\theta}_{k+1} = \widehat{\theta}_k + \frac{i(\widehat{\theta}_k)^{-1}}{n} l_X'(\widehat{\theta}_k).$$

Определение 14. Оценка $\widehat{\theta}_1$ называется одношаговой оценкой.

Смысл 4. Отклонение $\widehat{\theta}_1$ от θ^* на порядок менььше, чем отклонение θ^* от θ . Значит отклонение $\widehat{\theta}_1$ от θ тоже имеет порядок $\sqrt{\frac{1/i(\theta)}{n}}$.

Пример 19 (γ -котики). $\widehat{\mu}$ — а.н.о. с асимпт. дисперсией $\pi^2/4\approx 2.47$. При этом $i(\theta)=1/2$, т.е наименьшая возможная асимпт. дисперсия равна 2. Запишем одношаговую оценку:

$$\widehat{\theta}_1 = \widehat{\mu} + \frac{\sum_{i=1}^n \frac{X_i - \widehat{\mu}}{1 + (X_i - \widehat{\mu})^2}}{\sum_{i=1}^n \frac{1 - (X_i - \widehat{\mu})^2}{(1 + (X_i - \widehat{\mu})^2)^2}}.$$

 $\widehat{ heta}_1$ — наиболее асимптотически эффективная оценка.

2.9. Робастность и симметричные распределения

Пусть $X = (X_1, \dots, X_n)$ — выборка из $\mathcal{N}(\theta, \sigma^2)$, σ известна. Оценка $\widehat{\theta} = \overline{X}$ обладает всеми хорошими свойствами (сильная состоятельность, асимптотическая нормальность, ОМП и т. д.). Однако если в данных есть выбросы, то все свойства теряются. Для того, чтобы визуализировать выбросы в данных, можно использовать ящик с усами (box plot).

Будем рассматривать только одномерный случай.

Определение 15. Робастная оценка — оценка, допускающая отклонение от заданной модели.

Определение 16. Пусть оценка имеет вид $\widehat{\theta} = f(X_{(1)}, \dots, X_{(n)})$. Пусть k_n^* — наименьшее число k, т. ч. выполнено одно из условий:

1. Если
$$x_1, \ldots, x_{k+1} \to -\infty$$
, а x_{k+2}, \ldots, x_n фиксированы, то $f(x_1, \ldots, x_n) \to -\infty$.

α	l	1/20	l /	,	, ,	,
$ARE_{\overline{X}_{\alpha},\overline{X}}$	1	0.99	0.94	0.84	0.74	0.64

2. Если $x_{n-k}, \ldots, x_n \to +\infty$, а x_1, \ldots, x_{n-k+1} фиксированы, то $f(x_1, \ldots, x_n) \to +\infty$.

Тогда число $\tau_{\widehat{\theta}} = \lim_{n \to \infty} \frac{k_n^*}{n}$ называется асимптотической толерантностью оценки $\widehat{\theta}$.

Смысл 5. $\tau(\theta)$ — наибольшая доля выбросов, которые способна выдержать оценка, не смещаясь на $\pm\infty$.

Пример 20. • $\overline{X}: k_n^* = 0, \tau_{\overline{X}} = 0$

• $\widehat{\mu}: k_n^* = \lceil n/2 \rceil - 1, \tau_{\widehat{\mu}} = 1/2.$

Далее будем рассматривать класс распределений $\mathcal{P} = \{P_{\theta} | \theta \in \Theta\}$, т. ч.

- P_0 имеет плотность $p_0(x)$ симметричная, непрерывная, носитель плотности имеет вид $(-c,c),\ 0< c\leqslant +\infty.$
- θ параметр сдвига, т. е. $p_{\theta}(x) = p_{0}(x \theta)$.

Будем искать оценки, которые:

- 1. Достаточно эффективные в классе \mathcal{P} (в асимптотическом подходе).
- 2. Робастные допускают отклонение от \mathcal{P} .

1. Усеченное среднее

Определение 17. Пусть $\alpha \in (0, 1/2)$, $k = \lceil \alpha n \rceil$. Тогда усеченным средним по выборке X_1, \dots, X_n называется оценка

$$\overline{X}_{\alpha} = \frac{1}{n-2k} (X_{(k-1)} + \dots + X_{(n-k)}).$$

- $\alpha = 0$: $\overline{X}_{\alpha} = \overline{X}$
- $\alpha = 1/2 : \overline{X}_{\alpha} = \widehat{\mu}.$

Асимптотическая толерантность: $\tau_{\overline{X}_{\alpha}} = \alpha$.

Теорема 9 (б/д). Пусть $X=(X_1,\ldots,X_n)$ — выборка из распределения $P\in\mathcal{P}$. Тогда

$$\sqrt{n}(\overline{X}_{\alpha}-\theta) \xrightarrow{d_{\theta}} \mathcal{N}(0,\sigma_{\alpha}^2), \ \epsilon \partial e$$

$$\sigma_{\alpha}^{2} = \frac{2}{(1-2\alpha)^{2}} \left(\int_{0}^{u_{1-\alpha}} x^{2} p_{0}(x) dx + \alpha u_{1-\alpha}^{2} \right),$$

 $u_{1-lpha}-(1-lpha)$ -квантиль распределения $P_0.$

Пример 21. для $\mathcal{N}(0,1)$

При $\alpha=1/8$ достигается защита от 12.5% загрязнения выборки, но эффективность теряется на 6%.

Утверждение 15. Если $D_{\theta}X_1 < +\infty$, то $ARE_{\overline{X}_{\alpha},\overline{X}} \geqslant (1-2\alpha)^2$.

α	0	1/20	1/8	1/4	3/8	1/2
$(1-2\alpha)^2$	1	0.81	0.5	0.25	0.06	0

Доказательство: \overline{X}_{α} — а.н.о θ с асимпт. дисперсией σ_{α}^2 . Из ЦПТ: \overline{X} — а.н.о θ с асимпт. дисперсией $D_{\theta}X_1$. Так как дисперсия не зависит от сдвига, посчитаем дисперсию при $\theta=0$:

$$\frac{1}{2}D_{\theta}X_{1} = \frac{1}{2} \int_{\mathbb{R}} x^{2}p_{0}(x)dx = \int_{0}^{+\infty} x^{2}p_{0}(x)dx =$$

$$= \int_{0}^{u_{1-\alpha}} x^{2}p_{0}(x)dx + \int_{u_{1-\alpha}}^{+\infty} x^{2}p_{0}(x)dx \geqslant$$

$$\geqslant \int_{0}^{u_{1-\alpha}} x^{2}p_{0}(x)dx + u_{1-\alpha}^{2} \int_{u_{1-\alpha}}^{+\infty} p_{0}(x)dx = \int_{0}^{u_{1-\alpha}} x^{2}p_{0}(x)dx + \alpha u_{1-\alpha}^{2} = \frac{\sigma_{\alpha}^{2}(1-2\alpha)^{2}}{2}.$$

Отсюда
$$\mathrm{ARE}_{\overline{X}_{lpha},\overline{X}}=rac{D_{ heta}X_{1}}{\sigma_{lpha}^{2}}\geqslant(1-2lpha)^{2}$$
 \square

При $\alpha = 1/8$ возможна потеря эффективности до 44%.

2. Медиана средних Уолша

Определение 18. $Y_{ij} = \frac{X_i + X_j}{2} - cpe$ днее Уолша.

 $W = \operatorname{med}\{Y_{ij}, \ 1 \leqslant i \leqslant j \leqslant n\}$ — медиана средних Уолша.

Теорема 10. Пусть $X=(X_1,\ldots,X_n)$ — выборка из распределения $P\in\mathcal{P}$. Тогда

$$\sqrt{n}(W - \theta) \xrightarrow{d_{\theta}} \mathcal{N}(0, \sigma^{2}), \quad \epsilon \partial e$$
$$\sigma^{2} = \frac{1}{12 \left(\int_{\mathbb{R}} p_{0}^{2}(x) dx \right)^{2}}.$$

Пример 22. $\mathcal{N}(0,1): ARE_{W,\overline{X}} \approx 0.955$ (потеря эффективности на 4.5%).

Утверждение 16. Для $P_{\theta} \in \mathcal{P} ARE_{W,\overline{X}} \geqslant \frac{108}{125} = 0.864$ (в худшем случае теряем 14% эффективности). Равенство достигается при

$$p_0(x) = \frac{3\sqrt{5}}{100}(5 - x^2)I\{|x| < \sqrt{5}\}.$$

Утверждение 17. $\tau_W \approx 0.293$ (доказательство см. в ДЗ).

2 | Глава 3. Сложные оценки параметров

3.1. Доверительные интервалы

Определение 19. Пусть $X = (X_1, \dots, X_n)$ — выборка из неизвестного распределения $P \in \{P_\theta \mid \theta \in \Theta\}$.

• Если $\Theta \subset \mathbb{R}$, то пара статистик $(T_1(X), T_2(X))$ называется доверительным интервалом для θ уровня доверия α , если

$$\forall \theta \in \Theta \quad P_{\theta}(T_1(X) \leqslant \theta \leqslant T_2(X)) \geqslant \alpha.$$

• Если $\Theta \subset \mathbb{R}^d$, то статистика $S(X) \subset \Theta$ называется доверительной областью для θ уровня доверия α , если

$$\forall \theta \in \Theta \quad P_{\theta}(\theta \in S(X)) \geqslant \alpha.$$

• Если равенство точное, то интервал называтся точным.

Замечание 8. 1. Если $X=(X_1,\ldots,X_n)$ — выборка, то утверждение $P_{\theta}(T_1(X)\leqslant \theta\leqslant T_2(X))=\alpha$ имеет смысл $((T_1(X),T_2(X))$ — доверительный интервал).

2. Если $x = (x_1, \dots, x_n)$ — реализация выборки, то утверждение $P_{\theta}(T_1(x) \leqslant \theta \leqslant T_2(x)) = \alpha$ некорректно.

 $(T_1(x), T_2(x))$ — реализация доверительного интервала.

Первая магическая константа статистики: $\alpha = 0.95$ (она же 0.05).

Лекция 7 (от 14.10)

Методы поиска доверительных интервалов

1. Метод центральной функции

Пусть $G(X,\theta)$ — функция, распределение которой известно и не зависит от θ (центральная функция). Возьмем $\alpha_1,\alpha_2\in(0,1)$ т. ч. $\alpha_2-\alpha_1=\alpha$ и $g_j-\alpha_j$ -квантиль распределения $G(X,\theta)$. Тогда $S(X)=\{\theta\in\Theta|g_1\leqslant G(X,\theta)\leqslant g_2\}$ — доверительная область уровня доверия α . Действительно, $P_{\theta}(\theta\in S(X))=P_{\theta}(g_1\leqslant G(X,\theta)\leqslant g_2)=\alpha_2-\alpha_1=\alpha$.

Пример 23. $X_1, \ldots, X_n \sim \mathcal{N}(\theta, \sigma^2)$, σ известно. Построить точные доверительные интервалы для θ .

Решение: Заметим, что $X_i - \theta \sim \mathcal{N}(0, \sigma^2)$, следовательно, $\overline{X} - \theta \sim \mathcal{N}(0, \frac{\sigma^2}{n})$. $G(X, \theta) = \sqrt{n} \frac{\overline{X} - \theta}{\sigma} \sim \mathcal{N}(0, 1)$ — центральная функция. Будем обозначать через z_p p-квантили распреде-

ления $\mathcal{N}(0,1)$. Тогда

$$P_{\theta}\left(-z_{\frac{1+\alpha}{2}}\leqslant\sqrt{n}\frac{\overline{X}-\theta}{\sigma}\leqslant z_{\frac{1+\alpha}{2}}\right)=\alpha\implies P_{\theta}\left(\overline{X}-\frac{z_{\frac{1+\alpha}{2}}\sigma}{\sqrt{n}}\leqslant\theta\leqslant\overline{X}+\frac{z_{\frac{1+\alpha}{2}}\sigma}{\sqrt{n}}\right)=\alpha.$$

Otbet: $\left(\overline{X} \pm \frac{z_{\frac{1+\alpha}{2}}\sigma}{\sqrt{n}}\right)$.

Пусть $\alpha=0.95\implies z_{\frac{1+\alpha}{2}}=z_{0.975}\approx 1.96\approx 2.\ n=100, \overline{x}=5, \sigma=1.$ Тогда реализация интервала $(5\pm 2/10)=(4.8,5.2).$

2. Асимптотические доверительные интервалы

Определение 20. Пусть $X=(X_1,X_2,\dots)$ — выборка неограниченного размера из распределения $P\in \{P_{\theta}|\theta\in\Theta\}$. Последовательность пар статистик $(T_1^{(n)}(X_1,\dots,X_n),T_2^{(n)}(X_1,\dots,X_n))$ называется асимптотическим доверительным интервалом уровня доверия α , если

$$\forall \theta \in \Theta \liminf_{n \to \infty} P_{\theta}(T_1^{(n)}(X_1, \dots, X_n)) \leqslant \theta \leqslant T_2^{(n)}(X_1, \dots, X_n)) \geqslant \alpha.$$

Он называется точным, если

$$\forall \theta \in \Theta \lim_{n \to \infty} P_{\theta}(T_1^{(n)} \leqslant \theta \leqslant T_2^{(n)}) = \alpha.$$

Метод построения асимптотического доверительного интервала:

1. Пусть $\widehat{\theta}$ — а.н.о θ с асимпт. дисперсией $\sigma^2(\theta)$.

$$\sqrt{n}(\widehat{\theta} - \theta) \xrightarrow{d_{\theta}} \mathcal{N}(0, \sigma^2(\theta)).$$

2. Поделим все на $\sigma(\theta)$:

$$\frac{\sqrt{n}(\widehat{\theta} - \theta)}{\sigma(\theta)} \xrightarrow{d_{\theta}} \mathcal{N}(0, 1).$$

Из теоремы Александрова

$$P_{\theta}\left(\frac{\sqrt{n}|\widehat{\theta}-\theta|}{\sigma(\theta)}\leqslant z_{\frac{1+\alpha}{2}}\right)\to \alpha.$$

Проблема: $\sigma(\theta)$ может плохо зависеть от θ .

3. Пусть $\widehat{\sigma}$ — состоятельная оценка $\sigma(\theta)$. Тогда

$$\sqrt{n}\frac{\widehat{\theta} - \theta}{\widehat{\sigma}} = \underbrace{\sqrt{n}\frac{\widehat{\theta} - \theta}{\sigma(\theta)}}_{\underbrace{\frac{d_{\theta}}{\sigma(\theta)}}} \cdot \underbrace{\underbrace{\frac{\sigma(\theta)}{\widehat{\sigma}}}_{P_{\theta}}}_{\text{1 (th о насл. сх-тей)}}.$$

По лемме Слуцкого $\sqrt{n} \frac{\widehat{\theta} - \theta}{\widehat{\sigma}} \xrightarrow{d_{\theta}} \mathcal{N}(0, 1).$

4.
$$P_{\theta}\left(\frac{\sqrt{n}|\widehat{\theta}-\theta|}{\widehat{\sigma}}\leqslant z_{\frac{1+\alpha}{2}}\right) \to \alpha$$
. Получаем интервал $\left(\widehat{\theta}\pm\frac{z_{\frac{1+\alpha}{2}}\widehat{\sigma}}{\sqrt{n}}\right)$ — точный асимптотический доверительный интервал уровная доверия α .

5. Откуда взять $\hat{\sigma}$? Если $\sigma(\theta)$ непрерывна, то по теореме о наследовании сходимостей $\hat{\sigma} = \sigma(\hat{\theta})$ — состоятельная оценка $\sigma(\theta)$.

Пример 24.

- 1. $X_1, \dots, X_n \sim \mathcal{N}(\theta, \sigma^2)$, σ неизвестна. Построить асимптотический доверительный интервал уровня доверия α для θ . \triangle \overline{X} а.н.о θ с асимпт. дисперсией σ^2 . S состоятельная оценка θ . Получаем интервал $\left(\overline{X} \pm z_{\frac{1+\alpha}{2}} \frac{S}{\sqrt{n}}\right)$. \square
- 2. $X_1, \dots, X_n \sim Pois(\theta)$. Построить асимптотический доверительный интервал уровня доверия α для θ . \triangle \overline{X} а.н.о θ с асимпт. дисперсией $\sigma^2(\theta) = \theta$. $\sqrt{\overline{X}}$ состоятельная оценка $\sigma(\theta) = \sqrt{\theta}$. Получаем интервал $\left(\overline{X} \pm z_{\frac{1+\alpha}{2}} \sqrt{\frac{\overline{X}}{n}}\right)$. \square

Замечание 9. При n=30 условие ЦПТ применимо с хорошей точностью. Поэтому при $n\geqslant 30$ имеет смысл пользоваться асимптотическими доверительными интервалами.

3.2. Точные доверительные интервалы в нормальной модели

Пусть
$$X = (X_1, \ldots, X_n) \sim \mathcal{N}(a, \sigma^2)$$
.

1. Интервал для a, если σ известна

Уже получили:
$$\left(\overline{X}\pm z_{\frac{1+\alpha}{2}}\frac{S}{\sqrt{n}}\right)$$
.

2. Интервал для σ , если a известно

$$\frac{X_i - \theta}{\sigma} \sim \mathcal{N}(0, 1)$$

 $G(X,\theta) = \sum_{i=1}^n \left(\frac{X_i - a}{\sigma} \right)^2 \sim \chi_n^2$ — центральная функция (распределение хи-квадрат с n степенями свободы)

$$P_{\theta}\left(\chi_{n,\frac{1-\alpha}{2}}^{2} \leqslant \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - a)^{2} \leqslant \chi_{n,\frac{1+\alpha}{2}}^{2}\right) = \alpha$$

Получаем интервал
$$\left(\sqrt{\frac{\sum (X_i - a)^2}{\chi_{n, \frac{1+\alpha}{2}}^2}}, \sqrt{\frac{\sum (X_i - a)^2}{\chi_{n, \frac{1-\alpha}{2}}^2}}\right).$$

3. Интервал для a, если σ неизвестна

Теорема 11. Пусть $X = (X_1, \ldots, X_n) \sim \mathcal{N}(a, \sigma^2)$. Тогда:

1. Статистики \overline{X} и S^2 независимы

2.
$$\frac{nS^2}{\sigma^2} \sim \chi_{n-1}^2$$

3. $\sqrt{n-1}\frac{\overline{X}-a}{S} \sim T_{n-1}$ — распределение Стьюдента с n-1 степенями свободы.

Доказательство: 1), 2) — позже 3)
$$\sqrt{n} \frac{\overline{X} - a}{\sigma} \sim \mathcal{N}(0, 1); \ \frac{nS^2}{\sigma^2} \sim \chi^2_{n-1}$$

Свойство распределения Стьюдента: если $\xi \sim \mathcal{N}(0,1), \eta \sim \chi_k^2$ — независимые с.в., то $\zeta = \frac{\xi}{\sqrt{\eta/k}} \sim T_k$. Следовательно:

$$\frac{\sqrt{n}\frac{\overline{X} - a}{\sigma}}{\sqrt{\frac{nS^2}{\sigma^2} \cdot \frac{1}{n-1}}} = \sqrt{n-1}\frac{\overline{X} - a}{S} \sim T_{n-1}. \quad \Box$$

 $G(X, \theta) = \sqrt{n-1} \overline{\overline{X} - \theta}$ — центральная функция.

Получаем интервал
$$\left(\overline{X}\pm T_{n-1,\frac{1+\alpha}{2}}\frac{S}{\sqrt{n-1}}\right)$$
.

Замечание 10. При больших n интервал почти совпадает с интервалом из пункта 1.

4. Интервал для σ , если a неизвестно

$$G(X,\sigma)=rac{nS^2}{\sigma^2}\sim \chi^2_{n-1}$$
 — центральная функция.

Аналогично п.2 получаем интервал
$$\left(\sqrt{\frac{nS^2}{\chi^2_{n-1,\frac{1+\alpha}{2}}}},\sqrt{\frac{nS^2}{\chi^2_{n-1,\frac{1-\alpha}{2}}}}\right)$$
.

Теорема 12 (о разложении гауссовского вектора). Пусть $\xi = (\xi_1, \dots, \xi_n) \sim \mathcal{N}(a, \sigma^2 I_n)$, $\mathbb{R}^n = \mathcal{L}_1 \oplus \dots \oplus \mathcal{L}_k$ — разложение в прямую сумму ортогональных подпространств, $\eta_j = \operatorname{proj}_{\mathcal{L}_j} \xi$ — проекция на \mathcal{L}_j . Тогда:

- 1. η_1, \ldots, η_k независимы в совокупности;
- 2. $\mathbb{E}\eta_j = \operatorname{proj}_{\mathcal{L}_j} a;$
- 3. $\frac{1}{\sigma^2} \|\eta_j \mathbb{E}\eta_j\|^2 \sim \chi_{d_j}^2$, $\epsilon \partial e \ d_j = \dim \mathcal{L}_j$.

Доказательство: Выберем ортонормированный базис в \mathbb{R}^n следуюзим образом:

$$\underbrace{e_1,e_2,\dots}_{\text{базис в }\mathcal{L}_1}$$
 базис в \mathcal{L}_2 базис в \mathcal{L}_k

Обозначим:

- I_i набор индексов, соответствующий базису в \mathcal{L}_i ;
- $B = (e_1, \dots, e_n) \in \mathbb{R}^{n \times n}$ ортогональная матрица;
- $\zeta_i = \langle \xi, e_i \rangle = e^T \xi$ проекция на e_i .

Получаем:

$$\zeta = \begin{pmatrix} \zeta_1 \\ \vdots \\ \zeta_n \end{pmatrix} = \begin{pmatrix} e_1^T \xi \\ \vdots \\ e_n^T \xi \end{pmatrix} = B^T \xi$$
$$\xi = \sum_{i=1}^n \langle \xi, e_i \rangle \cdot e_i = \sum_{i=1}^n \zeta_i e_i = (e_1 \dots e_n) \cdot \zeta$$

 $\xi = B\zeta$

•
$$\mathbb{E}\zeta = \mathbb{E}B^T\xi = B^T\mathbb{E}\xi = B^Ta$$

•
$$\mathbb{D}\zeta = \mathbb{D}B^T\xi = B\mathbb{D}\xi B^T = B\sigma^2 I_n B^T = \sigma^2 \underbrace{BB^T}_{=I_n} = \sigma^2 I_n$$

Вывод: ζ — гауссовский вектор с независимыми компонентами.

$$\eta_j = \operatorname{proj}_{\mathcal{L}_j} \xi = \sum_{i \in I_i} \langle \xi, e_i \rangle e_i = \sum_{i \in I_i} \zeta_i e_i.$$

Компоненты вектора ζ в разных η_j не пересекаются, следовательно, η_1, \ldots, η_k независимы в совокупности — утв. 1 доказано;

$$\mathbb{E}\eta_j=\sum_{i\in I_j}\langle\mathbb{E}\xi,e_i
angle e_i=\sum_{i\in I_j}\langle a,e_i
angle e_i=\mathrm{proj}_{\mathcal{L}_j}\,a$$
 — утв. 2 доказано;

$$\frac{1}{\sigma^2} \|\eta_j - \mathbb{E}\eta_j\|^2 = \frac{1}{\sigma^2} \left\| \sum_{i \in I_j} \langle \xi - a, e_i \rangle e_i \right\|^2 = \sum_{i \in I_j} \underbrace{\left(\frac{\zeta_i - \mathbb{E}\zeta_i}{\sigma} \right)^2}_{\sim \mathcal{N}(0,1) \text{ is HeSab.}} \sim \chi^2_{\dim \mathcal{L}_j}. \quad \Box$$

Доказательство пп. 1-2 из предыдущей теоремы:

1.

$$\mathbb{R}^n = \mathcal{L} \oplus \mathcal{L}^\perp$$
, где $\mathcal{L} = \left\langle egin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
ight
angle$.

$$\operatorname{proj}_{\mathcal{L}} X = \operatorname*{arg\,min}_{c \in \mathbb{R}} \left\| X - \begin{pmatrix} c \\ c \\ \vdots \\ c \end{pmatrix} \right\|^2 = \operatorname*{arg\,min}_{c \in \mathbb{R}} \sum_{i=1}^n (X_i - c)^2 = \begin{pmatrix} \overline{X} \\ \overline{X} \\ \vdots \\ \overline{X} \end{pmatrix}.$$

$$\operatorname{proj}_{\mathcal{L}^{\perp}} X = X - \operatorname{proj}_{\mathcal{L}} X = \begin{pmatrix} X_1 - \overline{X} \\ X_2 - \overline{X} \\ \vdots \\ X_n - \overline{X} \end{pmatrix}.$$

По теореме о разложении гауссовского вектора \overline{X} и $(X_1-\overline{X},\dots,X_n-\overline{X})$ независимы, а S^2 зависит только от $(X_1-\overline{X},\dots,X_n-\overline{X})$. Вывод: \overline{X} и S^2 независимы.

2. Докажем, что $\frac{nS^2}{\sigma^2} \sim \chi_{n-1}^2$:

$$\frac{1}{\sigma^2} \|\operatorname{proj}_{\mathcal{L}^{\perp}} X - \mathbb{E}\operatorname{proj}_{\mathcal{L}^{\perp}} X\|^2 = \frac{nS^2}{\sigma^2} \sim \chi_{n-1}^2$$

по теореме о разложении гауссовского вектора.

Лекция 8

3.3. Байесовский подход

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство. $\Omega = \bigsqcup_{n=1}^{\infty} D_n$, то есть $\{D_n\}$ — разбиение. Событие $A \in \mathcal{F}$.

Теорема Байеса:

$$P(D_n|A) = \frac{P(A|D_n)P(D_n)}{\sum_{n=1}^{\infty} P(A|D_n)P(D_n)}.$$

Терминология:

- 1. A результат эксперимента;
- 2. $P(D_n)$ априорная вероятность D_n (a priori);
- 3. $P(D_n|A)$ апостериорная вероятность D_n (a posteriori).

Теорема 13 (общий случай теоремы Байеса). *Пусть* $\xi, \eta - c$ лучайные векторы. Тогда

$$p_{\xi|\eta}(x|y) = \frac{p_{\eta|\xi}(y|x)p_{\xi}(x)}{\int p_{\eta|\xi}(y|x)p_{\xi}(x)dx}.$$

Математическое описание байесовского подхода к статистике

 θ — случайный вектор, принимающий значения в $\Theta \subset \mathbb{R}^n$, имеющий распределение Q с плотностью q(t).

- θ параметр;
- t значение параметра (реализация).

При $\theta = t$: $X = (X_1, \dots, X_n)$ — выборка из распределения $P \in \{P_t | t \in \Theta\}$, причем P_t имеет плотность $p_t(x)$. Плотность пары (X, θ) имеет вид:

$$f(x_1,\ldots,x_n,t)=q(t)p_t(x_1)\cdot\ldots\cdot p_t(x_n).$$

Способ генерации выборки:

- 1. Выбрать значение θ из плотности q(t);
- 2. Сгенерировать выборку X из распределения P_t , где t выбранное значение параметра.

Замечание 11. Q — априорное распределение θ .

Способы оценки параметра

1. Апостериорное распределение, которое имеет плотность

$$q(t|x) = \frac{q(t) \cdot p_t(x_1) \cdot \dots \cdot p_t(x_n)}{\int_{\Theta} q(t) \cdot p_t(x_1) \cdot \dots \cdot p_t(x_n) dt}.$$

- 2. Доверительный интервал $(u_{\frac{1-\alpha}{2}},u_{\frac{1+\alpha}{2}})$, где u_p-p -квантиль апостериорного распределения.
- 3. Точечные оценки
 - (a) $\hat{\theta}_1 = \mathbb{E}(\theta|X)$ математическое ожидание апостериорного распределения;
 - (b) $\hat{\theta}_2 = \underset{t \in \Theta}{\arg\max} q(t|X)$ мода апостериорного распределения;
 - (c) $\hat{\theta}_3$ медиана апостериорного распределения.

Пример 25. $X_1, \ldots, X_n \sim U[0, \theta + 1]$, причем $\forall i X_i \leq 2, \ \theta \sim Bern(1/2)$. Найти апостериорное распределение θ .

Решение:

$$p_t(x_1,\dots,x_n)=rac{1}{(t+1)^n}I\{X_{(n)}\leqslant t+1\}$$
 $q(t)=rac{1}{2}$ при $t\in\{0,1\}$ $q(0|X)=rac{1}{z}\cdotrac{1}{2}I\{X_{(n)}\leqslant 1\},$

z — знаменатель в формуле Байеса.

$$q(1|X) = \frac{1}{z} \cdot \frac{1}{2} \cdot \frac{1}{2^n} = \frac{1}{z} \cdot \frac{1}{2^{n+1}}.$$
$$z = \frac{1}{2}I\{X_{(n)} \le 1\} + \frac{1}{2^{n+1}}.$$

Otbet: " $\theta|X$ " $\sim Bern(q(1/X))$. \square

Теорема 14. Пусть q(t) интегрируема по Риману, $p_t(x)$ дифференцируема по t, $\sqrt{i(t)}$ интегрируем на любом конечном отрезке. Пусть $\hat{\theta} = \mathbb{E}(\theta|X)$, $\theta^* - OM\Pi$ для θ . Тогда

$$\mathbb{E}n(\theta^* - \hat{\theta})^2 \to 0 \ u \sqrt{n}(\theta^* - \hat{\theta}) \xrightarrow{P} 0.$$

(при большой выборке подходы почти эквивалентны).

Теорема 15. Байесовская оценка $\hat{\theta}_1 = \mathbb{E}(\theta|X)$ — наилучшая в байесковском подходе с квадратичной функцией потерь (MSE). Аналогично $\hat{\theta}_3$ — медиана апостериорного распределения наилучшая оценка в байесковском подходе с MAE.

Доказательство: Теорема о наилучшем средневадратичном приближении, X — случайный вектор:

$$\underset{\eta \, - \, X}{\arg \min} \, \mathbb{E}(\xi - \eta)^2 = \mathbb{E}(\xi | X),$$

$$\int\limits_{\Theta} MSE_{\hat{\theta}}(t)q(t)dt = \int\limits_{\Theta} \int\limits_{\mathscr{X}} (\hat{\theta}(x) - t)^2 f(x, t)dtdx = \mathbb{E}(\hat{\theta} - \theta)^2 \to \min$$

По теореме о наилучшем средневадратичном приближении $\hat{\theta}(X) = \mathbb{E}(\theta|X)$. \square

3.4. Сопряженные распределения в байесовском подходе

Недостатки байесовского подхода:

- 1. Предполагается, что априорное распределение задано и не предлагается конструктивный способ по его выбору.
- 2. Требует больших вычислительных затрат.

Пример 26. $X_1, \ldots, X_n \sim \mathcal{N}(\theta, 1)$. θ имеет априорное распределение Коши.

Вычислим знаменатель в формуле Байеса:

$$\int\limits_{-\infty}^{+\infty} \frac{1}{\pi(1+t^2)} \cdot \frac{1}{(2\pi)^{n/2}} \cdot e^{-\frac{1}{2} \sum_{i=1}^{n} (X_i - t)^2} dt$$
— не берется.

Определение 21. Пусть X_1, \ldots, X_n — выборка из неизвестного распределения $P \in \mathcal{P}$, где $\mathcal{P} = \{P_t | t \in \Theta\}$ — семейство распределений на \mathscr{X} . Пусть также на Θ задано семейство распределений $\mathcal{Q} = \{Q_{\alpha} | \alpha \in \mathcal{A}\}$. Семейство распределений \mathcal{Q} называется сопряженным κ семейтву \mathcal{P} , если взятии априорного распределения из \mathcal{Q} , соответствующее апостериорное распределение тоже лежит в \mathcal{Q} . Иными словами, если " $X | \theta = t \sim P_t$ и $\theta \sim Q_{\alpha}$, то " $\theta | X$ " $\sim Q_{\alpha'}$.

Пример 27. $X_1, \dots, X_n \sim Exp(\theta)$ — подобрать сопряженное распределение и найти байесовскую оценку.

Решение: Плотность выборки $p_t(x) = t^n e^{-t\sum X_i}$ — зависит от выборки, в том числе от ее размера, и связана с t. Выпишем плотность по t пропорционально этому выражению, где вместо n и $\sum X_i$ подставим новые параметры из \mathcal{A} .

$$q(t) \propto t^{\beta-1} e^{-\alpha t}$$
 — это распределение $\Gamma(\alpha,\beta).$

То есть $\mathcal{Q} = \{\Gamma(\alpha, \beta)\}$ — кандидат на сопряженное. Докажем, что \mathcal{Q} — сопряженное к $\{Exp(\theta)\}$. Для этого найдем апостериорное распределение.

$$q(t|x) = \propto q(t)p_t(x) \propto t^{\beta-1}e^{-\alpha t} \cdot t^n \cdot e^{-t\sum X_i} = t^{\beta+n-1}e^{-t(\alpha+\sum X_i)}.$$

Это $\Gamma(\alpha + \sum X_i, \beta + n)$.

Otbet: "
$$\theta|X$$
" $\sim \Gamma(\alpha + \sum X_i, \beta + n), \ \hat{\theta}_1 = \mathbb{E}(\theta|X) = \frac{\beta + n}{\alpha + \sum X_i}.$

3 Плава 4. Непараметрический подход

4.1. Эмпирическое распределение

Пусть X_1, \ldots, X_n — выборка из распределения P, рассматриваем $\mathcal{P} = \{$ все распределения на $\mathscr{X} \}$.

Определение 22. Эмпирическим распределением, построенном по выборке, называется вероятностная мера \hat{P}_n , определенная по правилу:

$$\forall B \in \mathcal{B}_{\mathscr{X}} \ \hat{P}_n(B) = \frac{1}{n} \sum_{i=1}^n I\{X_i \in B\}.$$

Свойства:

- 1. $\hat{P}_n(B)$ случайная величина, равная доле элементов выборки, попавших в B.
- 2. \hat{P}_n случайная дискретная вероятностная мера.
- 3. $n\hat{P}_n(B) \sim Bin(n, P(B)), \ \mathbb{E}(\hat{P}_n)(B) = P(B), \ D\hat{P}_n(B) = \frac{P(B)(1 P(B))}{n}.$
- 4. УЗБЧ: $\hat{P}_n(B) \xrightarrow{P \text{п.н.}} P(B)$.

Рассмотрим случай $(\mathscr{X},\mathscr{B}_{\mathscr{X}})=(\mathbb{R},\mathscr{B}(\mathbb{R}))$. В таком случае для \hat{P}_n есть эмпирическая функция распределения.

$$\hat{F}_n(x) = \hat{P}_n((-\infty, x]) = \frac{1}{n} \sum_{i=1}^n I\{X_i \leqslant x\}.$$

Утверждение 18. $\hat{F}_n \xrightarrow{P - n.n.} F(X)$.

Теорема 16 (Гливенко-Кантелли).

$$D_n = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| \xrightarrow{P - n.n.} 0.$$

Заметим, что

$$D_n = \sup_{B \in \mathscr{A}} |\hat{P}_n(B) - P(B)|, \ \text{ide } \mathscr{A} = \{(-\infty, x] | x \in \mathbb{R}\}.$$

Теорема 17 (Вапника-Червоненкиса). $\sup_{B \in \mathscr{A}} |\hat{P}_n(B) - P(B)| \xrightarrow{P - n.n.} 0$ тогда и только тогда, когда конечна размерность Вапника-Червоненкиса при разбиении \mathbb{R}^d множествами из \mathscr{A} .

Теорема 18 (Колмогорова-Смирнова).

$$\sqrt{n}D_n = \sqrt{n}\sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| \xrightarrow{d} \xi,$$

где ξ имеет распределение Колмогорова:

$$F_{\xi}(x) = \sum_{k=-\infty}^{+\infty} (-1)^k e^{-2k^2 x^2} I\{x \geqslant 0\}.$$

4.2. Метод подстановки

Пусть $X=(X_1,\ldots,X_n)$ — выборка из распределения P с функцией распределения F. Пусть $\theta=G(P)$ — функционал, значение которого нужно оценить. Тогда $\hat{\theta}=G(\hat{P}_n)$ — оценка θ по методу подстановки.

Пример 28.

1.
$$\theta = G(P) = \int_{\mathscr{X}} f(x)dF(x) = \mathbb{E}_P f(X_1)$$
 — линейный функционал.

$$G(aP_1 + bP_2) = aG(P_1) + bG(P_2)$$

$$\hat{\theta} = G(\hat{P}_n) = \int_{\mathcal{X}} f(x)d\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n f(X_i) = \overline{f(X)}.$$

Если f(x) = x, то $\theta = \mathbb{E}_P X_1$ и $\hat{\theta} = \overline{X}$.

2.
$$\theta = G(P) = D_P(X_1) = \int_{\mathcal{X}} x^2 dF(x) - \left(\int_{\mathcal{X}} x dF(x)\right)^2$$

$$\hat{\theta} = \overline{X^2} - \overline{X}^2.$$

3.
$$\theta = G(P) = \min\{x | F(x) \geqslant \alpha\} - \alpha$$
-квантиль.

$$\hat{\theta} = G(\hat{P}_n) = \min\{x | \hat{F}_n(x) \geqslant \alpha\} = X_{(\lceil n\alpha \rceil)}$$
 — выборочная квантиль.

Замечание 12. Метод моментов — частный случай метода подстановки. (Какой функционал G(P) взять?)

4 Глава 5. Гипотезы и критерии

Лекция 10

Пусть S — критерий для проверки H_0 vs. H_1 .

	H_0 верна	H_0 не верна
H_0 не отвергается	:)	Ошибка II рода: $P(II_S) = \sup P(x \notin S)$
		$P \in \mathscr{P}_1$
H_0 отвергается	Ошибка I рода: $P(I_S) = \sup P(x \in S)$:)
	$P \in \mathscr{P}_0$	

Минимизировать обе сразу не получится, поэтому решаем такую задачу:

$$\begin{cases} P(I_S) \leqslant \alpha \\ P(II_S) \to \min_S \end{cases}$$

Определение 23. α — уровень значимости критерия S, то есть число $\alpha \in (0,1)$ называется уровнем значимости критерия S, если $P(I_S) \leqslant \alpha$.

Определение 24. Число $\alpha_0 = P(I_S)$ — реальный уровень значимости.

Первая магическая константа статистики $\alpha = 0.05$.

Как правило, альтернативная гипотеза сложная:

$$H_0: \theta = \theta_0 \quad H_1: \theta > \theta_0$$

 $H_0: X_i$ имеет нормальное распределение $H_1: X_i$ имеет распр., отличающееся от норм.

Определение 25. Для сравнения критериев определим мощность критерия S:

$$\beta_S(P) = P(X \in S)$$
, где $P \in \mathscr{P}_1$

Пример 29. $X \sim Exp(\theta)$ — выборка из одного наблюдения. H_0 : $\theta = \theta_0$ vs. H_1 : $\theta > \theta_0$.

Решение: Заметим, что $\mathbb{E}_0 X = \frac{1}{\theta} \Rightarrow$ при больших θ стоит ожидать меньшее значение X. Логично взять критерий $S = \{x \in \mathcal{X} | x < c\}$, где c подберем из условия:

$$P(I_S) = P_{\theta_0}(X < c) = 1 - e^{-\theta_0 c} \leqslant \alpha \Rightarrow c \leqslant -\frac{1}{\theta_0} \ln(1 - \alpha).$$

Мощность критерия:

$$\beta_S(\theta) = P_{\theta}(X < c) = 1 - e^{-\theta c} \to \max$$
 при $c \leqslant -\frac{1}{\theta_0} \ln(1 - \alpha)$.

Следовательно, получаем критерий $S = \{x \in \mathcal{X} | x < -\frac{1}{\theta_0} \ln(1-\alpha)\}$. $\beta_S(\theta) = 1$ и $\alpha = 0.05 \Rightarrow \ln(1-\alpha) \approx -0.051$.

Критерий: $S = \{x \in \mathcal{X} | x < 0.051\}.$

Выводы:

- 1. $x < 0.051 \Rightarrow H_0$ отвергается. Результат статистически значим. "x < 0.051" статистическое доказательство против H_0 .
- 2. $x \geqslant 0.051 \Rightarrow H_0$ не отвергается. Результат статистически не значим.

5.2. Критерий Вальда

Определение 26. Критерий S называется асимптотическим критерием уровня значимости α , если

$$\lim_{n\to\infty}\sup P(I_S)\leqslant \alpha.$$

Пусть $X = (X_1, \dots, X_n)$ — выборка из распределения $P \in \{P_\theta | \theta \in \Theta\}, \ \Theta \subset \mathbb{R}.\ \hat{\theta}$ — асимптотически нормальная оценка θ с асимптотической дисперсией $\sigma^2(\theta).\ (\hat{\sigma})$ — состоятельная оценка $\sigma(\theta)$. Рассмотрим гипотезы H_0 : $\theta = \theta_0$ vs. H_1 : $\theta \neq \theta_0$ и статистику $W(X) = \sqrt{n} \frac{\hat{\theta} - \theta_0}{\hat{\sigma}}$.

При справедливости H_0 $W(X) \xrightarrow{d_{\theta_0}} \mathcal{N}(0,1)$.

$$S = \{|W(X)| > z_{1-\alpha/2}\}.$$

$$P(I_{S}) = P_{\theta_{0}}(|W| > z_{1-\alpha/2}) = P_{\theta_{0}}(W > z_{1-\alpha/2}) + P_{\theta_{0}}(W < -z_{1-\alpha/2}) \to$$

$$\to 1 - \Phi(z_{1-\alpha/2}) + \Phi(-z_{1-\alpha/2}) = 1 - (1 - \alpha/2) + \alpha/2 = \alpha.$$

$$\beta_{S}(\theta) = P_{\theta}(|W| > z_{1-\alpha/2}) = P(W > z_{1-\alpha/2}) + P(W < -z_{1-\alpha/2}) =$$

$$= P_{\theta} \left(\underbrace{\sqrt{n} \frac{\hat{\theta} - \theta}{\hat{\sigma}}}_{\partial} > z_{1-\alpha/2} - \underbrace{\sqrt{n} \frac{\theta - \theta_{0}}{\hat{\sigma}}}_{w(\theta)} \right) + P_{\theta} \left(\underbrace{\sqrt{n} \frac{\hat{\theta} - \theta}{\hat{\sigma}}}_{\partial} < -z_{1-\alpha/2} - \underbrace{\sqrt{n} \frac{\theta - \theta_{0}}{\hat{\sigma}}}_{w(\theta)} \right) \approx$$

$$\approx 1 - \Phi(z_{1-\alpha/2} - w(\theta)) + \Phi(-z_{1-\alpha/2} - w(\theta)).$$

Заметим, что при $|w(\theta)| \to +\infty$: $\beta_S(\theta) \to 1$.

Вывод: мощность велика, если

- 1. выборка достаточно большая;
- 2. θ далека от θ_0 .

Замечание 13.

- 1. Критерий Вальда можно получить для случая односторонней альтернативы:
 - H_0 : $\theta = \theta_0$ vs. H_1 : $\theta > \theta_0 \Rightarrow S_1 = \{W > z_{1-\alpha}\};$

- H_0 : $\theta = \theta_0$ vs. H_1 : $\theta < \theta_0 \Rightarrow S_1 = \{W < z_\alpha\}$.
- 2. Если при односторонней альтернативе у H_0 поставить неравенство, ничего не изменится.
- 3. Рассмотрим H_0 : $\theta = \theta_0$ vs. H_1 : $\theta \neq \theta_0$.

$$P_{\theta}\left(\sqrt{n}\frac{\hat{\theta}-\theta}{\hat{\sigma}} < z_{1-\alpha/2}\right) \to 1-\alpha \Rightarrow c = \left(\hat{\theta} \pm \frac{z_{1-\alpha/2}\hat{\sigma}}{\sqrt{n}}\right).$$

 H_0 отвергается $\Leftrightarrow \theta_0 \notin c$.

Пример 30. $X_1, \ldots, X_n \sim Cauchy(\theta)$. $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$.

Решение: $\hat{\mu}$ — а.н.о. θ с асимптотической дисперсией $\pi^2/4$.

$$W(X) = \sqrt{n} \frac{\hat{\mu} - \theta_0}{\pi/2} \xrightarrow{d_{\theta_0}} \mathcal{N}(0, 1).$$

Критерий $\{|W(X)| > z_{1-\alpha/2}\}.$

$$z_{1-\alpha_2} = \text{sps.norm.ppf}(1 - \alpha/2).$$

$$\beta_S(\theta) = \text{sps.norm.sf}(z_{1-\alpha_2} - w(\theta)) + \text{sps.norm.cdf}(-z_{1-\alpha_2} - w(\theta)).$$

5.3. Критерии отношения правдоподобия

Пусть $X=(X_1,\ldots,X_n)$ — выборка из неизвестного распределения $P\in\mathscr{P}$, где $\mathscr{P}=\{P_\theta|\theta\in\Theta\}$ — доминируемое семейство. $L_X(\theta)=\prod_{i=1}^n p_\theta(X_i)$ — функция правдоподобия.

Гипотезы: H_0 : $\theta \in \Theta_0$ vs. H_1 : $\theta \in \Theta_1$, $\hat{\theta}_j$ — ОМП на множестве Θ_j , $j \in \{0,1\}$. Статистика отношения правдоподобия:

$$\lambda(X) = 2 \ln \left(\frac{L_X(\hat{\theta}_1)}{L_X(\hat{\theta}_0)} \right) = 2 \ln \left(\frac{\sup_{\theta \in \Theta_1} L_X(\theta)}{\sup_{\theta \in \Theta_0} L_X(\theta)} \right)$$

Замечание 14. На практике $\Theta \subset \mathbb{R}^D$ и $\Theta_0 \subset \Theta$, $\Theta_1 \subset \Theta \backslash \Theta_0$, $\dim \Theta_0 = d < D$, тогда $\hat{\theta}_1 = \hat{\theta}$ глобальная ОМП на Θ .

$$\lambda(X) = 2 \ln \frac{L_X(\hat{\theta})}{L_X(\hat{\theta}_0)}.$$

Теорема 19. Пусть $\Theta_0 = \{\theta \in \Theta_0 | \theta_{d+1} = \theta_{d+1}^0, \dots, \theta_D = \theta_D^0 \}$. Тогда при справедливости H_0 : $\theta \in \Theta_0$: $\lambda(X) \to \chi_{D-d}^2$.

Пример 31. H_0 : $\theta_4 = \theta_5 = 0$. Тогда $\lambda(X) \to \chi^2_{5-3} = \chi^2_2, \, \Theta = \mathbb{R}^5$.

Критерий: $S=\{\lambda(X)>\chi^2_{D-d,1-\alpha}\},\, \alpha$ — уровень значимости, $\chi^2_{k,p}$ — p-квантиль χ^2_k .

В некоторых случаях статистика $\lambda(X)$ позволяет построить неасимптотический критерий, в точности решающий заданную задачу

$$\begin{cases} P(I_S) \leqslant \alpha \\ \beta_S(P) \to \max_S \forall P \in \mathscr{P}_1 \end{cases}.$$

(1) Простые гипотезы: H_0 : $\theta = \theta_0$ vs. H_1 : $\theta = \theta_1$

Рассмотрим статистику $\Lambda = \frac{L_X(\theta_1)}{L_X(\theta_0)}$.

Теорема 20 (лемма Неймара-Пирсона). Если существует C_{α} такая, что $P_{\theta_0}(\Lambda(X) > C_{\alpha}) = \alpha$, то $S = \{\Lambda(X) > C_{\alpha}\}$ — критерий уровня значимости α , который имеет максимальную мощность.

(2) Сложные гипотезы

Определение 27. Критерий S уровня значимости α называется равномерно наиболее мощным критерием (РНМК), если для любого критерия R уровня значимости α : $\beta_S(P) \geqslant \beta_R(P) \ \forall P \in \mathscr{P}_1$.

Теорема 21 (о монотонном отношении правдоподобия). Пусть при $\theta_1 > \theta_2$ отношение правдоподобия представимо в виде $\frac{L_X(\theta_1)}{L_X(\theta_2)} = f_{\theta_1,\theta_2}(T(X))$, где T(X) - cтатистика, $f_{\theta_1,\theta_2}(t)$ возрастает по t. Тогда критерий $S = \{T(X) > C_{\alpha}\} - PHMK$ уровня значимости α для H_0 : $\theta = \theta_0$ vs. H_1 : $\theta > \theta_0$, где C_{α} подберем из условия $P_{\theta}(T(X) > C_{\alpha}) = \alpha$.

Замечание 15.

- 1. Пусть $\theta_1 > \theta_2 \Rightarrow \theta_1$ из альтернативы. $L_X(\theta_1)/L_X(\theta_2)$ возрастает при возрастании T(X), следовательно, большие значение T(X) более экстремальны.
- 2. В дискретном случае берем $\alpha_0 < \alpha$, такое что $P_{\theta_0}(T(X) > C_{\alpha}) = \alpha_0$.
- 3. Утверждение не изменится, если вместо H_0 : $\theta = \theta_0$ поставить H_0 : $\theta \leqslant \theta_0$.
- 4. H_0 : $\theta = \theta_0$ vs. H_1 : $\theta < \theta_0 \Rightarrow S = \{T(X) < C_{\alpha}\}$.
- 5. Если f_{θ_1,θ_2} убывает, то меняем знак в S.

Пример 32. $X_1, ..., X_n \sim Exp(\theta), H_0: \theta \leq \theta_0 \text{ vs. } H_1: \theta > \theta_0.$

Решение: Рассчитываем отношение правдоподобия при $\theta_1 > \theta_2$:

$$\frac{L_X(\theta_1)}{L_X(\theta_2)} = \frac{\theta_1^n e^{-\theta_1 \sum X_i}}{\theta_2^n e^{-\theta_2 \sum X_i}} = \left(\frac{\theta_1}{\theta_2}\right) e^{(\theta_2 - \theta_1) \sum X_i},$$

то есть убывает по $T(X) = \sum X_i$. Тогда критерий $S = \{\sum X_i < C_\alpha\}$, где C_α подбираем из условия $P_{\theta_0}(\sum X_i < C_\alpha) = \alpha$. Заметим, что $\sum X_i \sim \Gamma(\theta, n) \Rightarrow C_\alpha - \alpha$ -квантиль $\Gamma(\theta_0, n)$.

$$C_{\alpha} = \text{sps.gamma}(a=n, \text{scale}=1/\theta_0).\text{ppf}(\alpha),$$

$$\beta_S(\theta) = \text{sps.gamma}(a=n, scale=1/\theta_0).cdf(C_{\alpha}).$$

5 Глава 7. Линейная регерессия

Лекция 13 (от 25.11)

7.2. Метод наименьших квадратов

Предполагается зависимость $y(x) = x^T \theta, \ \theta \in \mathbb{R}^d$.

Наблюдения: $Y = X\theta + \varepsilon$, где $Y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times d}$, $\theta \in \mathbb{R}^d$, $\varepsilon \in \mathbb{R}^n$. Y случаен, у X строки — объекты, столбцы — признаки, θ неизвестен, ε случаен и неизвестен. $RSS(\theta) = \sum_{i=1}^n (y_i - x_i^T \theta)^2 = \|Y - X\theta\|^2$ — остаточная сумма квадратов. $\theta = \arg\min_i RSS(\theta)$ — МНК-оценка.

Утверждение 19. Если X^TX невырождена, то

$$\hat{\theta} = (X^T X)^{-1} X^T Y.$$

Доказательство:

$$RSS(\theta) = ||Y - X\theta||^2 = (Y - X\theta)^T (Y - X\theta) =$$

$$= Y^T Y - \underbrace{Y^T X \theta}_{=} - \underbrace{\theta^T X^T Y}_{=} + \theta^T X^T X \theta$$

$$\frac{\partial RSS(\theta)}{\partial \theta} = -2X^T Y + 2X^T X \theta = 0 \Rightarrow \hat{\theta} = (X^T X)^{-1} X^T Y.$$

Обучение: $\hat{\theta} = (X^T X)^{-1} X^T Y$.

Предсказание отклика на одном объекте x: $\hat{y}(x) = x^T \hat{\theta}$.

Теорема 22. Свойства:

1. $\mathbb{E}\varepsilon = 0 \Rightarrow \mathbb{E}\hat{\theta} = \theta$, $\mathbb{E}\hat{y}(x) = y(x)$.

2. $\mathbb{D}\varepsilon = \sigma^2 I_n$, $\mathbb{E}\varepsilon = 0 \Rightarrow \mathbb{D}\hat{\theta} = \sigma^2 (X^T X)^{-1}$, $\mathbb{D}\hat{y}(x) = \sigma^2 x^T (X^T X)^{-1} x$.

Доказательство:

1. $\mathbb{E}\hat{\theta} = \mathbb{E}(X^T X)^{-1} X^T Y = (X^T X)^{-1} X^T \mathbb{E}(X\theta + \varepsilon) = (X^T X)^{-1} X^T X \theta = \theta.$

2. $\mathbb{D}\hat{\theta} = \mathbb{D}(X^TX)^{-1}X^TY = (X^TX)^{-1}X^T \cdot \mathbb{D}Y \cdot X(X^TX)^{-1} = \sigma^2(X^TX)^{-1}X^TX(X^TX)^{-1} = \sigma(X^TX)^{-1}$.

Замечание 16. Часто на практике матрица X^TX вырождена или близка к вырожденной, следовательно, $\mathbb{D}\hat{\theta}$ очень большая.

Пусть λ_{\min} , λ_{\max} — минимальное и максимальное собственные числа матрицы X^TX .

$$CI = \sqrt{\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}}$$

— индекс обусловленности.

CI > 30 -плохо.

Геометрический смысл МНК:

 $L(X) = \{X\theta | \theta \in \mathbb{R}^d\}$ — пространство, порожденное столбцами матрицы $X \Rightarrow X\hat{\theta} = \mathrm{proj}_{L(X)}Y$.

Утверждение 20. Оценка на σ :

- $\hat{\varepsilon}_i = y_i x_i^T \hat{\theta} ocmanku$ модели,
- $\|\hat{\varepsilon}\| = RSS(\hat{\theta}),$
- $\hat{\sigma}^2 = \frac{RSS(\hat{\theta})}{n-d}$ несмещенная оценка σ^2 , если $\mathbb{E}\varepsilon = 0$, $\mathbb{D}\varepsilon = \sigma^2 I_n$.

Доказательство:

$$\begin{split} \mathbb{E}RSS(\hat{\theta}) &= \sum_{i=1}^n \mathbb{E}(y_i - x_i^T \hat{\theta})^2 = /\mathbb{E}y_i = x_i^T \theta, \ \mathbb{E}x_i^T \hat{\theta} = x_i^T \theta / = \sum_{i=1}^n \mathbb{D}(y_i - x_i^T \hat{\theta}) = \operatorname{Tr} \mathbb{D}(Y - X \hat{\theta}) \\ &\cdot \\ \mathbb{D}(Y - X \hat{\theta}) = \mathbb{D}(Y - X(X^T X)^{-1} X^T Y) = \mathbb{D}((I_n - \underbrace{X(X^T X)^{-1} X^T})Y) = \\ &= (I_n - A) \cdot \mathbb{D}Y \cdot (I_n - A)^T = \sigma^2(I_n - 2A + AA^T) = \sigma^2(I_n - a), \\ \text{так как } AA^T &= X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T = X(X^T X)^{-1} X^T = A. \\ \mathbb{E}RSS(\hat{\theta}) &= \operatorname{Tr}(\sigma^2(I_n - A)) = \sigma^2(\operatorname{Tr} I_n - \operatorname{Tr} A) = \sigma^2(n - \operatorname{Tr}(X(X^T X)^{-1} X^T)) = \\ &= \sigma^2(n - \operatorname{Tr}(X^T X(X^T X)^{-1})) = \sigma^2(n - \operatorname{Tr} I_d) = \sigma^2(n - d). \end{split}$$

7.3. Гауссовская линейная модель

Предполагается модель $Y = X\theta + \varepsilon$, где $\varepsilon \sim \mathcal{N}(0, \sigma I_n)$ — нормальность, несмещенность, гомоскедастичность.

Утверждение 21.

1. $\hat{\theta}$ и $Y - X\hat{\theta}$ независимы.

$$2. \ \frac{1}{\sigma^2} \|X \hat{\theta} - X \theta\|^2 \sim \chi_d^2, \ \frac{1}{\sigma^2} \|Y - X \hat{\theta}\|^2 \sim \chi_{n-d}^2.$$

Доказательство: $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n) \Rightarrow \hat{\theta} \sim \mathcal{N}(\theta, \sigma^2 (X^T X)^{-1})$ — потом и $Y \sim \mathcal{N}(X\theta, \sigma^2 I_n)$. $L(X) = \{X\theta | \theta \in \mathbb{R}^d\}$. Разбиение $\mathbb{R}^n = L(X) \oplus L^\perp(X)$. $\operatorname{proj}_{L^\perp(X)} Y = Y - X\hat{\theta}$.

По теореме о разложении гауссовского вектора $X\hat{\theta}$ и $Y-X\hat{\theta}$ независимы.

1. $\hat{\theta}=(X^TX)^{-1}X^TX\hat{\theta}=[(X^TX)^{-1}X^T]\cdot X\hat{\theta}\Rightarrow \hat{\theta}$ — линейная комбинация $X\hat{\theta}\Rightarrow \hat{\theta}$ независима с $Y-X\hat{\theta}$.

2.

$$\frac{1}{\sigma^2} \|X\hat{\theta} - \mathbb{E}X\hat{\theta}\|^2 = \frac{1}{\sigma^2} \|X\hat{\theta} - X\theta\|^2 \sim \chi_d^2, \ d = \dim L(X)$$
$$\frac{1}{\sigma^2} \|Y - X\hat{\theta} - \underbrace{\mathbb{E}(Y - X\hat{\theta})}_{=0} \|^2 = \frac{1}{\sigma^2} \|Y - X\hat{\theta}\|^2 \sim \chi_{n-d}^2.$$

1. Доверительный интервал на σ

$$\hat{\sigma}^2 = \frac{RSS(\hat{(}\theta))}{n-d} = \frac{\|Y-X\hat{\theta}\|^2}{n-d} - \text{несмещенная оценка.}$$

$$\underbrace{\frac{\hat{\sigma}^2(n-d)}{\sigma^2}}_{} \sim \chi^2_{n-d} \text{ по утверждению.}$$

центральная функция

$$P\left(\frac{\hat{\sigma}(n-d)}{\sigma^2} > \chi^2_{n-d,\alpha}\right) = 1 - \alpha.$$

Интервал:
$$\left(0, \frac{\sigma^2(\hat{n-d})}{\chi^2_{n-d,\alpha}}\right)$$
.

2. Доверительный интервал для θ_j и гипотезы H_0 : $\theta_j=0$

Утверждение 22.

$$\forall c \in \mathbb{R}^n \to T(X, Y) = \frac{c^T(\hat{\theta} - \theta)}{\hat{\sigma}\sqrt{c^T(X^TX)^{-1}c}} \sim T_{n-d}.$$

Доказательство:

$$\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2(X^T X)^{-1}).$$

$$\frac{c^T(\hat{\theta} - \theta)}{\sigma \sqrt{c^T (X^T X)^{-1} c}} \sim \mathcal{N}(0, 1)$$

— зависит только от $\hat{\theta} \Rightarrow$ назвисима с $Y - X\hat{\theta}$, то есть и с $\hat{\sigma}^2$.

$$T(X,Y) = \frac{c^{T}(\hat{\theta} - \theta)}{\sigma \sqrt{c^{T}(X^{T}X)^{-1}c}} \frac{1}{\sqrt{\frac{\hat{\sigma}^{2}(n-d)}{\sigma^{2}}/(n-d)}} \sim T_{n-d}.$$

Возьмем $c = (0, \dots, \underbrace{1}_{i}, \dots, 0)^{T}$. Тогда

$$T_j(X,Y) = \frac{\hat{\theta}_j - \theta_j}{\hat{\sigma}\sqrt{(X^T X)_{jj}^{-1}}} \sim T_{n-d}.$$

- 1. $P(|T_j(X,Y)| < T_{n-d,1-\alpha/2}) = 1 \alpha \Rightarrow (\hat{\theta}_j \pm \hat{\sigma}^2 \sqrt{(X^T X)_{jj}^{-1}} \cdot T_{n-d,1-\alpha/2})$ доверетильный интервал для θ_j .
- 2. H_0 : $\theta_j = 0$ гипотеза о незначимости коэффициента. При справедливости H_0 :

$$T_j^0(X,Y) = \frac{\hat{\theta}_j}{\hat{\sigma}^2 \sqrt{(X^T X)_{jj}^{-1}}} \sim T_{n-d}.$$

Критерий: $S = \{|T_i^0(X,Y)| > T_{n-d,1-\alpha/2}\}.$

3. Доверительная область для θ

Определение 28. Пусть $\xi \sim \chi_{k_1}^2, \ \eta \sim \chi_{k_2}^2$ — независимы, тогда случайная величина $\zeta = \frac{\xi k_2}{\eta k_1}$ имеет распределение Фишера с $k_1, \ k_2$ степенями свободы. Обозначение F_{k_1,k_2} .

Используем утверждение из начала 7.3:

$$F(X,Y) = \frac{\frac{1}{\sigma^2} ||X\hat{\theta} - X\theta||^2}{\frac{1}{\sigma^2} ||Y - X\theta||^2} \cdot \frac{n - d}{d} \sim F_{d,n-d}.$$

Доверительная область: $\{\theta \in \mathbb{R}^d | F(X,Y) \leqslant F_{d,n-d,1-\alpha} \}$.

4. Общий случай линейных гипотез

Линейная гипотеза: $H_0: T\theta = \tau$, где $T \in \mathbb{R}^{k \times d}$, $\tau \in \mathbb{R}^k$, $k \leqslant d$, $\operatorname{rg} T = k$.

Пример 33. Пусть
$$H_0: \begin{cases} \theta_1 = 0 \\ \theta_2 = \theta_3 \end{cases}$$
 , $T = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & -1 & 0 & \dots \end{pmatrix}$, $\tau = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

$$\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2(X^TX)^{-1})$$
. Обозначим $\hat{t} = T\hat{\theta} \sim \mathcal{N}(\underbrace{T\theta}_{=\tau \text{ при } H_0}, \sigma^2\underbrace{T(X^TX)^{-1}T^T}_{=B})$.

Тогда при справедливости H_0 :

$$\frac{1}{\sigma}B^{-1/2}(\hat{t}-\tau) \sim \mathcal{N}(0, I_k).$$

Возьмем скалярный квадрат:

$$\frac{1}{\sigma^2}(\hat{t} - \tau)^T B^{-1}(\hat{t} - \tau) \stackrel{H_0}{\sim} \chi_k^2 \Rightarrow$$

/по утверждению из начала 7.3: $\frac{1}{\sigma^2} \| Y - X \hat{\theta} \|^2 \sim \chi_{n-d}^2 /$

 \Rightarrow зависит только от $\hat{\theta}$ и не зависит от $Y-X\hat{\theta}.$

$$F(X,Y) = \frac{(\hat{t} - \tau)^T B^{-1}(\hat{t} - \tau)}{\|Y - X\hat{\theta}\|^2} \cdot \frac{n - d}{k} \stackrel{H_0}{\sim} F_{k,n-d}.$$

Критерий $S = \{F(X,Y) > F_{k,n-d,1-\alpha}\}$ — F-критерий.

6 Глава 8. Теория наилучших оценок

Лекция 14 (от 2.12)

8.1. Информация и расстояния

1. Вклад и информация Фишера

Пусть $X = (X_1, \dots, X_n)$ — выборка из неизвестного распределения $P \in \mathcal{P} = \{P_\theta | \theta \in \Theta\}, \mathcal{P}$ — доминируемое семейство распределений с плотностью $p_\theta(x)$.

- $L_X(\theta) = \prod_{i=1}^n p_{\theta}(X_i)$ функция правдоподобия.
- $l_X(\theta) = \sum_{i=1}^n \ln p_{\theta}(X_i)$ логарифмическая функция правдоподобия.

Определение 29. $u_X(\theta) = \frac{\partial}{\partial \theta} l_X(\theta) - \epsilon$ клад выборки X в параметр θ .

Определение 30. $I_X(\theta) = D_{\theta}u_X(\theta) - u$ нформация Фишера, содержащаяся в выборке X о параметре θ .

Пример 34. $X_1, \ldots, X_n \sim Bern(\theta)$

$$L_X(\theta) = \theta^{\sum X_i} (1 - \theta)^{n - \sum X_i}.$$

$$l_x(\theta) = \sum X_i \cdot \ln \theta + (n - \sum X_i) \ln (1 - \theta).$$

$$u_X(\theta) = \frac{\partial}{\partial \theta} l_X(\theta) = \frac{\sum X_i}{\theta} - \frac{n - \sum X_i}{1 - \theta} = \frac{(1 - \theta) \sum X_i - \theta(n - \sum X_i)}{\theta(1 - \theta)} = \frac{\sum X_i - n\theta}{\theta(1 - \theta)}.$$

$$I_X(\theta) = D_{\theta} u_X(\theta) = \frac{1}{\theta^2 (1 - \theta)^2} D_{\theta} \sum X_i = \frac{n\theta (1 - \theta)}{\theta^2 (1 - \theta)^2} = \frac{n}{\theta (1 - \theta)}.$$

Утверждение 23. В условиях Е1-Е4 (см. условия регулярности)

- 1. $E_{\theta}u_X(\theta) = 0;$
- 2. $I_X(\theta) = E_\theta u_X^2(\theta);$
- 3. $I_X(\theta) = ni(\theta)$, где $i(\theta) = I_{X_1}(\theta)$ (информация одного наблюдения);
- 4. $I_X(\theta) = -E_{\theta} \frac{\partial^2 l_X(\theta)}{\partial \theta^2}$.

Доказательство:

1.
$$u_X(\theta) = \frac{\partial}{\partial \theta} l_X(\theta) = \frac{\partial}{\partial \theta} \sum_{i=1}^n \ln p_{\theta}(X_i) = \sum_{i=1}^n \frac{\partial \ln p_{\theta}(X_i)}{\partial \theta} = \sum_{i=1}^n u_{X_i}(\theta)$$

Посчитаем матожидание: $E_{\theta}u_{X_1}(\theta) = E_{\theta} \frac{\partial \ln p_{\theta}(X_1)}{\partial \theta} = \int_{\mathscr{X}} \frac{\partial \ln p_{\theta}(x)}{\partial \theta} p_{\theta}(x) dx = \int_{\mathscr{X}} \frac{\frac{\partial p_{\theta}(x)}{\partial \theta}}{p_{\theta}(x)} p_{\theta}(x) dx = \int_{\mathscr{X}} \frac{\partial p_{\theta}(x)}{\partial \theta} dx \stackrel{E3}{=} \frac{\partial}{\partial \theta} \int_{\mathscr{X}} p_{\theta}(x) dx = \frac{\partial (1)}{\partial \theta} = 0.$

- 2. очевидным образом следует из п. 1.
- 3. $I_X(\theta) = D_\theta u_X(\theta) = D_\theta \sum u_{X_i}(\theta) \stackrel{\text{h.o.p.c.b}}{=} \sum D_\theta u_{X_i}(\theta) = ni(\theta)$.

4.
$$\frac{\partial^2 \ln p_{\theta}(x)}{\partial \theta^2} = \frac{\partial}{\partial \theta} \left(\frac{\frac{\partial p_{\theta}(x)}{\partial \theta}}{p_{\theta}(x)} \right) = \frac{\frac{\partial^2 p_{\theta}(x)}{\partial \theta^2}}{p_{\theta}(x)} - \frac{\left(\frac{\partial p_{\theta}(x)}{\partial \theta}\right)^2}{p_{\theta}^2(x)}$$

$$E_{\theta} \frac{\partial^{2} \ln p_{\theta}(X)}{\partial \theta^{2}} = E_{\theta} \frac{\frac{\partial^{2} p_{\theta}(X)}{\partial \theta^{2}}}{p_{\theta}(X)} - \underbrace{E_{\theta} \left(\frac{\frac{\partial p_{\theta}(X)}{\partial \theta}}{p_{\theta}(X)}\right)^{2}}_{=I_{X}(\theta)}.$$

Покажем, что первое слагаемое равно нулю:

$$E_{\theta} \frac{\frac{\partial^{2} p_{\theta}(X)}{\partial \theta^{2}}}{p_{\theta}(X)} = \int_{\mathcal{X}} \frac{\frac{\partial^{2} p_{\theta}(x)}{\partial \theta^{2}}}{p_{\theta}(x)} p_{\theta}(x) dx = \int_{\mathcal{X}} \frac{\partial^{2} p_{\theta}(x)}{\partial \theta^{2}} dx = \frac{\partial^{2}}{\partial \theta^{2}} \int_{\mathcal{X}} p_{\theta}(x) dx = 0$$

2. Энтропия в дискретном случае

Пусть P — распределение на $\{a_1, \ldots a_k\}$ с вероятностями p_1, \ldots, p_k .

Определение 31. $H(P) = -\sum_{j=1}^{k} p_j \log p_j$ — энтропия (считаем, что $0 \cdot \log 0 = 0$).

Свойства:

- 1. $H(P) \ge 0$, $H(P) = 0 \iff \exists j : p_j = 1$;
- 2. $H(P) \leq \log k$, $H(P) = \log k \iff \forall j \ p_j = 1/k$.

Доказательство:

- 1. $p_j \in [0,1] \implies -\log p_j \geqslant 0$.
- 2. $H(P) = -E \log p(\xi)$, где $\xi \sim P$.

$$H(P) = E \log \frac{1}{P(\xi)} \leqslant |$$
 неравенство Йенсена $| \leqslant \log E \frac{1}{p(\xi)} = \log \sum_{j=1}^{\kappa} \frac{1}{p_j} p_j = \log k$.

3. Общий случай

Пусть P, Q — распределения по одной и той же мере (либо оба дискретные, либо оба абсолютно непрерывные) с плотностями p(x) и q(x) соответственно.

Определение 32. 1. $H(P) = -E \log p(\xi)$, где $\xi \sim P$ — энтропия;

- 2. $H(P,Q) = -E \log q(\xi)$, где $\xi \sim P \kappa pocc$ -энтропия;
- 3. $KL(P,Q)=E\log\frac{p(\xi)}{q(\xi)}$, где $\xi\sim P-\partial$ ивергенция Кульбака-Лейблера.

Замечание 17. В общем случае H(P) может быть отрицательной:

$$P = U[0, 1/2], \ p(x) = 2I\{x \in [0, 1/2]\}.$$
 Тогда $H(P) = -E\log(p(\xi)) = -E\log 2 = -\log 2.$

Свойства KL:

1.
$$KL(P,Q) \geqslant 0$$
; $KL(P,Q) = 0 \iff P \stackrel{\text{\tiny II.B.}}{=} Q$

Доказательство:
$$-KL(P,Q)=E\log\frac{q(\xi)}{p(\xi)}\leqslant |$$
 неравенство Йенсена $|\leqslant\log E\frac{q(\xi)}{p(\xi)}=\log\int\limits_{\mathscr T}\frac{q(x)}{p(x)}p(x)dx=\log\int\limits_{\mathscr T}q(x)dx=\log 1=0.$

 $-KL(P,Q)\leqslant 0\iff KL(P,Q)\geqslant 0$, причем равенство в неравенстве Йенсена достигается тогда и только тогда, когда $P\stackrel{\text{п.в.}}{=}Q$. \square

- 2. $KL(P,Q) \neq KL(Q,P)$
- 3. Пусть $X = (X_1, \dots, X_n)$ выборка из дискретного распределения $P \in \{P_\theta | \ \theta \in \Theta\}$. Тогда

$$KL(\hat{P}_n, P_{\theta}) = E_{\hat{P}_n} \log \frac{\hat{P}_n(X_i)}{P_{\theta}(X_i)} = \frac{1}{n} \sum_{i=1}^n \log \frac{1/n}{p_{\theta}(X_i)} = \underbrace{-\frac{1}{n} \sum_{i=1}^n \log p_{\theta}(X_i)}_{H(\hat{P}_n, P_{\theta})} - \underbrace{\log n}_{H(\hat{P}_n)}.$$

$$KL(\hat{P}_n, P_{\theta}) \to \min_{\theta} \iff H(\hat{P}_n, P_{\theta}) \to \min_{\theta} \iff l_X(\theta) \to \max_{\theta}$$
, t.e. **OM** Π .

8.2. Свойства ОМП

Теорема 23 (Экстремальное свойство правдоподобия (L1-L3)).

$$\forall \theta_0, \theta_1 \in \Theta : \theta_0 \neq \theta_1 \ P_{\theta_0}(L_X(\theta_0) > L_X(\theta_1)) \xrightarrow{n \to \infty} 1.$$

Доказательство:
$$L_X(\theta_0) > L_X(\theta_1) \iff \frac{1}{n} \log \frac{L_X(\theta_0)}{L_X(\theta_1)} > 0$$

$$\frac{1}{n}\log\frac{L_X(\theta_0)}{L_X(\theta_1)} = \frac{1}{n} \sum_{i=1}^n \log\frac{p_{\theta_0}(X_i)}{p_{\theta_1}(X_i)} \overset{P_{\theta_0\text{--II.H}}\text{ (УЗБЧ)}}{\to} E_{\theta_0}\log\frac{p_{\theta_0}(X_1)}{p_{\theta_1}(X_1)} = KL(P_{\theta_0}, P_{\theta_1}) > 0, \text{ т.к. } \theta_0 \neq \theta_1 \text{ и выполнены условия L1-L2. } \square$$

Теорема 24 (Состоятельность ОМП (L1-L5)). C вероятностью $\to 1$ уравнение правдоподобия $\frac{\partial l_X(\theta)}{\partial \theta} = 0$ имеет решение $\tilde{\theta}$, причем $\tilde{\theta}$ — состоятельная оценка θ .

Доказательство: Пусть θ_0 — истинное значение. Тогда по свойству L4 $\exists \varepsilon > 0 : (\theta_0 - \varepsilon, \ \theta_0 + \varepsilon) \subset \Theta$. Из экстремального свойства правдоподобия получим, что

$$P_{\theta_0}(L_X(\theta_0) > L_X(\theta_0 + \varepsilon), L_X(\theta_0) > L_X(\theta_0 - \varepsilon)) \to 1. \tag{6.1}$$

Тогда из (6.1) и условия L5 следует, что на $(\theta_0 - \varepsilon, \ \theta_0 + \varepsilon)$ имеется корень уравнения правдоподобия. Пусть $\tilde{\theta}$ — ближайший к θ_0 корень. Из (6.1) следует, что $P_{\theta_0}(|\tilde{\theta} - \theta_0| > \varepsilon) \to 0$. В силу произвольности ε $\tilde{\theta}$ — состоятельная оценка θ . \square

Следствие 5. Если $\forall n \ \forall X_1, \dots, X_n \ ecm b$ ровно одно решение уравнения правдоподобия $\tilde{\theta}$, то $\tilde{\theta}$ — состоятельная оценка θ и $P_{\theta_0}(\tilde{\theta}=\hat{\theta}_{\mathrm{OM\Pi}}) \to 1$ и тогда ОМП также состоятельна.

Теорема 25 (Асимптотическая нормальность ОМП (L1-L9), б/д).

- 1. Пусть $\tilde{\theta}$ решение уравнения правдоподобия, т.ч. $\tilde{\theta}$ состоятельная оценка θ . Тогда $\tilde{\theta}$ a.н.o. θ c асимптотической дисперсией $\frac{1}{i(\theta)}$.
- 2. Пусть $\hat{\theta}$ произвольная а.н.о. с асимптотической дисперсией $\sigma^2(\theta)$, т. ч. $\sigma(\theta)$ непрерывна. Тогда $\sigma^2(\theta)\geqslant \frac{1}{i(\theta)}$.

Следствие 6.

- 1. Если $\forall n \ \forall X_1, \dots, X_n$ есть ровно один корень, то он является а.н.о.
- 2. ОМП асимптотически эффективная оценка (т.е. наилучшая среди всех а.н.о с непрерывной асимптотической дисперсией).

Замечание 18. Если L* не выполнено, то может быть еще круче!

$$X_1, \dots, X_n \sim U[0, \theta]; \ \hat{\theta} = X_{(n)} - \text{ОМП.}$$
 Тогда

$$n(\theta - X_{(n)}) \xrightarrow{d_{\theta}} Exp(1),$$

т.е. скорость сходимости $\sim 1/n$.

8.3. Эффективные оценки

Пусть X_1, \ldots, X_n — выборка из доминируемого семейства $P \in \{P_\theta | \theta \in \Theta\}$ с плотностью $p_\theta(x)$ и $\Theta \subset \mathbb{R}$. Рассмотрим семейство $\mathcal{K} = \{$ все несмещенные оценки $\tau(\theta)\}$. Задача: Найти наилучшую в с/к подходе оценку, т.е. нужно минимизировать $MSE_{\hat{\theta}}(\theta) = D_{\theta}\hat{\theta}$ по всем θ сразу (такие оценки называются *оптимальными* в \mathcal{K}).

Теорема 26 (Неравенство Рао-Крамера (Е1-Е4)). Для любой оценки из $\mathcal K$

$$D_{\theta}\hat{\theta} \geqslant \frac{(\tau'(\theta))^2}{I_X(\theta)} \forall \theta \in \Theta.$$

Доказательство:
$$\tau'(\theta) = \frac{\partial}{\partial \theta} \mathbb{E}_{\theta} \hat{\theta} = \frac{\partial}{\partial \theta} \int_{\mathcal{X}} \hat{\theta}(x) p_{\theta}(x) dx = \int_{\mathcal{X}} \hat{\theta}(x) \frac{\partial p_{\theta}(x)}{\partial \theta} dx = \int_{\mathcal{X}} \hat{\theta}(x) \frac{\partial \ln p_{\theta}(x)}{\partial \theta} p_{\theta}(x) dx = \int_{\mathcal{X}} \hat{\theta}(x) u_x(\theta) p_{\theta}(x) dx = \mathbb{E}_{\theta} \hat{\theta} u_X(\theta).$$

$$\mathbb{E}_{\theta}u_X(\theta) = 0 \Rightarrow \tau(\theta) = \mathbb{E}_{\theta}(\hat{\theta} - \tau(\theta))u_X(\theta).$$

Применим неравенство Коши-Буняковского:
$$(\tau'(\theta))^2 \leqslant \underbrace{\mathbb{E}_{\theta}(\hat{\theta} - \tau(\theta))^2}_{\mathbb{D}_{\theta}\hat{\theta}}\underbrace{\mathbb{E}_{\theta}u_X^2(\theta)}_{I_X(\theta)} \implies D_{\theta}\hat{\theta} \geqslant$$

$$\frac{(\tau'(\theta))^2}{I_X(\theta)}$$
. \square

Теорема 27. (Критерий эффективности) $\hat{\theta}$ — эффективная оценка $\tau(\theta) \iff \hat{\theta}$ — линейная функция от вклада, т.е.

$$\hat{\theta} - \tau(\theta) = c(\theta)u_X(\theta),$$

 $\operatorname{rde}\,c(\theta)=rac{ au'(heta)}{I_X(heta)}$ — линейная по X функция при фиксированном heta.

Доказательство: Равенство в неравенстве Коши-Буняковского достигается, когда величины линейно зависимы, т.е.

$$\hat{\theta} - \tau(\theta) = c(\theta)u_X(\theta) + a(\theta).$$

1.
$$\underbrace{\mathbb{E}_{\theta}(\hat{\theta} - \tau(\theta))}_{0} = \underbrace{\mathbb{E}_{\theta}c(\theta)u_{X}(\theta)}_{0} + \underbrace{\mathbb{E}_{\theta}a(\theta)}_{a(\theta)} \implies a(\theta) \equiv 0$$

2. Домножим на $u_X(\theta)$ и возьмем матожидание:

$$E_{\theta}(\hat{\theta} - \tau(\theta))u_X(\theta) = c(\theta)\mathbb{E}_{\theta}u_X^2(\theta) = c(\theta)I_X(\theta) = \tau'(\theta) \implies c(\theta) = \frac{\tau'(\theta)}{I_X(\theta)}.$$

Лекция 15

8.4. Оптимальные оценки

Пусть $X=(X_1,\ldots,X_n)$ — выборка из распределения $P\in\mathscr{P}=\{P_\theta|\theta\in\Theta\}.$

 $\mathcal{K} = \{$ все несмещенные оценки параметра $\theta\}.$

Определение 33. Оценка $\hat{\theta} \in \mathcal{K}$, которая для всех $\theta \in \Theta$ дает минимум величины

$$MSE_{\hat{\theta}}(\theta) = \mathbb{E}(\hat{\theta} - \theta)^2 = \mathbb{D}_{\theta}\hat{\theta}$$

называется оптимальной.

Теорема 28 (Колмогорова-Блекуэлла-Рао). Пусть $\hat{\theta}$ — несмещенная оценка $\tau(\theta)$, причем $\mathbb{E}_{\theta}\hat{\theta}^2 < +\infty$; S(X) — достаточная статистика. Тогда

- 1. $\theta^* = \mathbb{E}_{\theta}(\hat{\theta}|S(X))$ тоже является несмещенной оценкой $\tau(\theta)$.
- 2. $\mathbb{D}_{\theta}\theta^* \leqslant \mathbb{D}_{\theta}\hat{\theta} \ \forall \theta \in \Theta$

Равенство возможно $\Leftrightarrow \theta^* = \hat{\theta}$ - P_{θ} -n.н. $\forall \theta \in \Theta$, то есть $\hat{\theta}$ изначально является S(X)-измеримой.

Доказательство:

1. S(X) — достаточная, следовательно, $P_{\theta}(X \in B|S(X))$ не зависит от θ , значит $\mathbb{E}_{\theta}(\hat{\theta}|S(X))$ тоже не зависит от θ (как матожидание условного распределения), поэтому θ^* — действительно оценка.

$$\mathbb{E}_{\theta}(\mathbb{E}_{\theta})(\hat{\theta}|S(X)) = \mathbb{E}_{\theta}\hat{\theta} = \tau(\theta) \Rightarrow \theta^*$$
 — несмещенная оценка $\tau(\theta)$

•

2. (для $\tau(\theta) \in \mathbb{R}$):

$$\mathbb{D}_{\theta}\hat{\theta} = \mathbb{E}_{\theta}(\hat{\theta} - \tau(\theta))^{2} = \mathbb{E}_{\theta}(\hat{\theta} - \theta^{*} + \theta^{*} - \tau(\theta))^{2} = \underbrace{\mathbb{E}_{\theta}(\hat{\theta} - \theta^{*})^{2}}_{\geqslant 0} + \mathbb{D}_{\theta}\theta^{*} + 2\underbrace{\mathbb{E}_{\theta}(\hat{\theta} - \theta^{*})(\theta^{*} - \tau(\theta))}_{=0} \geqslant \mathbb{D}_{\theta}\theta^{*}.$$

$$\mathbb{E}_{\theta}(\hat{\theta} - \theta^*)(\theta^* - \tau(\theta)) = E_{\theta}(\mathbb{E}_{\theta}((\hat{\theta} - \theta^*)(\theta^* - \tau(\theta))|S(X))) =$$

$$= E_{\theta}((\theta^* - \tau(\theta))\mathbb{E}_{\theta}(\hat{\theta} - \theta^*|S(X))) = \mathbb{E}_{\theta}((\theta^* - \tau(\theta)) \cdot 0) = 0.$$

Равенство возможно $\Leftrightarrow \mathbb{E}_{\theta}(\hat{\theta} - \theta^*)^2 = 0 \forall \theta \in \Theta \Leftrightarrow \hat{\theta} = \theta^* \ P_{\theta}$ -п.н. $\forall \theta \in \Theta \Leftrightarrow \hat{\theta} = \mathbb{E}_{\theta}(\hat{\theta}|S(X)) \ P_{\theta}$ -п.н. $\forall \theta \in \Theta \Leftrightarrow \hat{\theta}$ является S(X)-измеримой.

Следствие 7.

- 1. θ^* не хуже $\hat{\theta}$ в среднеквадратичном подходе;
- 2. Если $\hat{\theta}$ не является S(X)-измеримой, то θ^* лучше в средневадратичном подходе;
- 3. Если $\theta^* e$ динственная несмещенная S(X)-измеримая оценка $\tau(\theta)$, то она и является оптимальной.

Доказательство: Если есть не S(X) измеримая оценка, то возьмем УМО, получим лучше и S(X)-измеримую и несмещенную, а она одна. Противоречие. \square

Единственность гарантирует свойство полноты.

Определение 34. Статистика S(X) называется *полной*, если для семейства распределений $\{P_{\theta}|\theta\in\Theta\}$, если выполнение свойства $\forall\theta\in\Theta$ $\mathbb{E}_{\theta}f(S(X))=0$ возможно только в случае $\forall\theta\in\Theta$ $f(S(X))\stackrel{P_{\theta}\text{-II.H.}}{=}0$.

Смысл 6. несмещенной S(X)-измеримой оценкой нуля может быть только ноль.

Теорема 29 (об оптимальной оценке). Пусть S(X) — полная и достаточная статистика для $\{P_{\theta}|\theta\in\Theta\}$. Оценка $\theta^*=\varphi(S(X))$ — несмещенная S(X)-измеримая оценка $\tau(\theta)$. Тогда θ^* — оптимальная оценка $\tau(\theta)$.

Доказательство: Согласно предыдущему следствию достаточно проверить, что θ^* — единственная несмещенная S(X)-измеримая оценка $\tau(\theta)$.

Пусть $\psi(S(X))$ — тоже несмещенная оценка $\tau(\theta)$. Обозначим $f(x) = \varphi(x) - \psi(x)$. Тогда

$$\mathbb{E}_{\theta} f(S(X)) = \mathbb{E}_{\theta} \varphi(S(X)) - \mathbb{E}_{\theta} \psi(S(X)) = 0 \ \forall \theta \in \Theta.$$

Но S(X) — полная, следовательно, P_{θ} -п.н. $\forall \theta \in \Theta \;\; f(S(X)) = 0 = \varphi(S(X)) - \psi(S(X))$. \square

Следствие 8. S(X) — полная и достаточная статистика для $\{P_{\theta} | \theta \in \Theta\}$.

- 1. Если θ^* несмещенная оценка $\tau(\theta)$, то $\mathbb{E}_{\theta}(\theta^*|S(X))$ оптимальная оценка $\tau(\theta)$.
- 2. Если θ_1^* , θ_2^* оптимальные оценки $\tau_1(\theta)$, $\tau_2(\theta)$, то $a\theta_1^* + b\theta_2^*$ оптимальная оценка $a\tau_1(\theta) + b\tau_2(\theta)$.
- 3. Если $\tau(\theta) = (\tau_1(\theta), \dots, \tau_k(\theta)) \in \mathbb{R}^k$ и θ_j^* оптимальная оценка $\tau_j(\theta)$, то $\theta^* = (\theta_1^*, \dots, \theta_k^*)$ оптимальная оценка вектора $\tau(\theta)$.

Алгоритм поиска оптимальных оценок

- 1. Найти S(X) полную и достаточную статистику в данной модели;
- 2. Решить уравнение несмещенности $\mathbb{E}_{\theta}\varphi(S(X)) = \tau(\theta)$ относительно φ . Оценка $\theta^* = \varphi(S(X))$ будет оптимальной согласно теореме об оптимальной оценке.

Оптимальные оценки в экспоненциальном семействе

Пусть
$$\mathscr{P} = \{P_{\theta} | \theta \in \Theta\}$$
, причем $p_{\theta}(x) = \frac{g(x)}{h(\theta)} e^{a(\theta)^T u(x)}$.

Теорема 30. Если множетсво Θ телесно (то есть содержит все внутренние точки), а функция $a(\theta)$ непрерывна и содержит линейно независимые компоненты, то статистика $S(X) = \sum_{i=1}^{n} u(X_i)$ является полной и достаточной для семейства \mathscr{P} .

Оптимальные оценки в гауссовской линейной модели

Гауссовская линейная модель $Y = X\theta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$.

$$L(X) = \{X\theta | \theta \in \mathbb{R}^d\}.$$

Утверждение 24. $S(Y) = (\operatorname{proj}_{L(X)} Y, \|\operatorname{proj}_{L^T(X)} Y\|^2) - \partial ocmamoчная статистика.$

Доказательство: Запишем плотность $Y \sim \mathcal{N}(X\theta, \sigma^2 I_n), \ c = (2\pi\sigma^2)^{-n/2}$:

$$p(y) = c \cdot \exp\left(-\frac{1}{2\sigma^2} \sum (Y_i - x_i^T \theta)^2\right) = c \cdot \exp\left(-\frac{1}{2\sigma^2} \|Y - X\theta\|^2\right) =$$

$$= c \cdot \exp\left(-\frac{1}{2\sigma^2} \left(\|\operatorname{proj}_{L(X)} (Y - X\theta)\|^2 + \|\operatorname{proj}_{L^T(X)} (Y - X\theta)\|^2\right)\right) =$$

$$= c \cdot \exp\left(-\frac{1}{2\sigma^2} \left(\|\operatorname{proj}_{L(X)} Y - X\theta\|^2 + \|\operatorname{proj}_{L^T(X)} Y\|^2\right)\right).$$

Утверждение 25.

- 1. S(Y) полная статистика $(6/\partial)$;
- 2. $\hat{\theta} = (X^T X)^{-1} X^T Y$ оптимальная оценка θ ;
- 3. $\hat{\sigma}^2 = \frac{1}{n-d} \|Y X\hat{\theta}\|^2 onmuмальная оценка <math>\sigma^2$.

Доказательство: Обе несмещенные и являются функциями от S(Y). \square

Утверждение 26. Если не предполагать нормальность ошибки, то $\hat{\theta}$ — наилучшая в среднеквадратичном подходе среди всех несмещенных оценок, линейных по Y.

7 Глава 9. Доказательства теорем

9.1. Теорема Гливенко-Кантелли

 $X = (X_1, X_2, \ldots)$ — выборка из распределения P с функцией распределения F. Тогда

$$D_n = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| \xrightarrow{P - \text{п.н.}} 0.$$

Доказательство: Замечание: $D_n = \max(2n \text{ точек}) \Rightarrow D_n - \text{случайная величина.}$ Обозначим $u_p - p$ -квантиль распределения P. Выберем $N \in \mathbb{N}, k \in \{1, \dots, N-1\}$. Пусть $x \in [u_{\frac{k}{N}}, u_{\frac{k+1}{N}})$. Тогда

$$\hat{F}_n(x) - F(x) \leqslant \hat{F}_n(u_{\frac{k+1}{N}} - 0) - F(u_{\frac{k}{N}}) = \hat{F}_n(u_{\frac{k+1}{N}} - 0) - F(u_{\frac{k+1}{N}} - 0) + \underbrace{F(u_{\frac{k+1}{N}} - 0)}_{\leqslant \frac{k+1}{N}} - \underbrace{F(u_{\frac{k}{N}})}_{\geqslant k/N} \leqslant \underbrace{F(u_{\frac{k+1}{N}} - 0)}_{\leqslant k/N} + \underbrace{F(u_{\frac{k+1}{N}} - 0)}_{$$

$$\leqslant \hat{F}_n(u_{\frac{k+1}{N}} - 0) - F(u_{\frac{k+1}{N}} - 0) + \frac{1}{N}.$$

Аналогично, $\hat{F}_n(x) - F(x) \geqslant \hat{F}_n(u_{k/N}) - F(u_{k/N}) - \frac{1}{N}$.

Пусть x произвольный

$$|\hat{F}_n(x) - F(x)| \leq \max_{k \in \{1, \dots, N-1\}} \left\{ \hat{F}_n\left(u_{\frac{k+1}{N}} - 0\right) - F\left(u_{\frac{k+1}{N}} - 0\right), \ \hat{F}_n\left(u_{\frac{k}{N}}\right) - F\left(u_{\frac{k}{N}}\right) \right\} + \frac{1}{N}.$$

Правая часть не зависит от x, следовательно, слева ставим sup.

УЗБЧ:
$$\hat{F}_n\left(u_{\frac{k+1}{N}}-0\right) \xrightarrow{P - \text{п.н.}} F\left(u_{\frac{k+1}{N}}-0\right); \hat{F}_n\left(u_{\frac{k}{N}}\right) \xrightarrow{P - \text{п.н.}} F\left(u_{\frac{k}{N}}\right).$$

По теореме о наследовании сходимостей

$$\lim_{n \to \infty} \sup \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| \leqslant \frac{1}{N},$$

В силу произвольности N существует $\limsup_{n\to\infty} |\hat{F}_n(x) - F(x)| \ P$ - п.н. \square

9.2. Лемма Неймана-Пирсона

Пусть $X=(X_1,\ldots,X_n)$ — выборка из распределения $P,\ H_0:P=P_0$ vs. $H_1:P=P_1,\ p_0,\ p_1$ — плотности. Если

$$\exists C_{\alpha} : P_0\left(\frac{p_1(X)}{p_0(X)} \geqslant C_{\alpha}\right) = \alpha,$$

то $S = \left\{\frac{p_1(x)}{p_0(x)} \geqslant C_{\alpha}\right\}$ — наиболее мощный критерий уровня значимости α для проверки H_0 vs. H_1 .

Доказательство: Пусть R — произвольный критерий уровня значимости α : $P_0(X \in R) \leqslant \alpha = P_0(X \in S)$

$$(p_1(x) - C_{\alpha}p_0(x))I\{x \in R\} \leqslant (p_1(x) - C_{\alpha}p_0(x))I\{x \in R\}I\{p_1(x) \geqslant C_{\alpha}p_0(x)\} \leqslant (p_1(x) - C_{\alpha}p_0(x))I\{x \in S\}.$$

Берем интеграл от левой и правой части

$$\underbrace{P_1(X \in R)}_{\beta_R} - C_{\alpha} P_0(X \in R) \leqslant \underbrace{P_1(X \in S)}_{\beta_S} - C_{\alpha} P_0(X \in S),$$
$$\beta_S - \beta_R \geqslant C_{\alpha} \underbrace{\left(P_0(X \in S) - P_0(X \in R)\right)}_{=\alpha} \geqslant 0.$$

Утверждение 27. Для критерия Неймана-Пирсона $P(I_S) \leqslant \beta_S$.

Доказательство: $S = \left\{ \frac{p_1(X)}{p_0(X)} \right\}$.

1. $C_{\alpha} \geqslant 1 \Rightarrow \forall x \in Sp_1(x) \geqslant p_0(x)$

$$\beta_S = P_1(X \in S) = \int_S p_1(x)dx \ge \int_S p_0(x)dx = P_0(X \in S) = P(I_S).$$

2. $C_{\alpha} < 1 \Rightarrow \forall x \in \overline{S}p_1(x) < p_0(x)$

Интегрируем по
$$\overline{S}$$
: $\underbrace{P_1(X \notin S)}_{=1-\beta_S} < \underbrace{P_0(X \notin S)}_{=1-P(I_S)}$.

9.3. Критерий хи-квадрат

Пусть $X=(X_1,\ldots,X_n)$ — выборка из распределения $P,\,H_0:P=P_0$ vs. $H_1\colon P\neq P_0$. Разбиение $\mathscr{X}=\bigsqcup_{j=1}^k B_j,\,\mu_j=\#\{i|X_i\in B_j\},\,p_j^0=P_0(X_1\in B_j).$ Статистика критерия

$$\chi(x) = \sum_{j=1}^{k} \frac{(\mu_j - np_j^0)^2}{np_j^0}.$$

Теорема: $\chi(X) \xrightarrow{d_0} \chi^2_{k-1}$.

Доказательство: Рассмотрим вектор $Y_i = \begin{pmatrix} I\{X_i \in B_1\} \\ \dots \\ I\{X_i \in B_k\} \end{pmatrix}$.

$$\mathbb{E}Y_{i} = p_{0} = \begin{pmatrix} p_{1}^{0} \\ \dots \\ p_{k}^{0} \end{pmatrix},$$

$$cov_{0}(I\{X_{i} \in B_{j}\}, I\{X_{i} \in B_{l}\}) = \mathbb{E}_{0}I\{X_{i} \in B_{j} \cap B_{l}\} - \mathbb{E}_{0}I\{X_{i} \in B_{j}\}\mathbb{E}_{0}I\{X_{i} \in B_{l}\} =$$

$$= \begin{cases} p_{j}^{0} - (p_{j}^{0})^{2}, & j = l \\ -p_{j}^{0}p_{l}^{0}, & j \neq l \end{cases}.$$

$$\mathbb{D}_0 Y_i = A - p_0 p_0^T$$
, где $A = \text{diag}(p_1^0, \dots, p_k^0)$.

ЦПТ:

$$\sqrt{n}(Y - p_0) \xrightarrow{d_0} \mathcal{N}(0, A - p_0 p_0^T),$$

$$A^{-1/2} = \operatorname{diag}\left(\frac{1}{\sqrt{p_1^0}}, \dots, \frac{1}{\sqrt{p_k^0}}\right).$$

По теореме о наследовании сходимостей

$$\xi = A^{-1/2} \sqrt{n} (Y - p_0) \xrightarrow{d_0} \mathcal{N}(0, A^{-1/2} (A - p_0 p_0^T) A^{-1/2}) = \mathcal{N}(0, I_k - \sqrt{p_0} \cdot \sqrt{p_0}^T),$$

где
$$\sqrt{p_0}=\begin{pmatrix}\sqrt{p_1^0}\\\vdots\\\sqrt{p_k^0}\end{pmatrix}$$
. Возьмем $B\in\mathbb{R}^{k\times k}=\begin{pmatrix}\sqrt{p_1^0}&\dots&\sqrt{p_k^0}\\&\text{что-то}\end{pmatrix}$ — ортонормированная. По

теореме о наследовании сходимостей

$$B\xi \xrightarrow{d_0} \mathcal{N}(0, \underbrace{BI_kB^T}_{I_k} - \underbrace{B\sqrt{p_0}\sqrt{p_0}^TB^T}) =$$

$$/B\sqrt{p_0} = \begin{pmatrix} \sqrt{p_1^0} & \dots & \sqrt{p_k^0} \end{pmatrix} \begin{pmatrix} \sqrt{p_1^0} \\ \vdots \\ \sqrt{p_k^0} \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}, \text{ т.к. } \sum_{j=1}^k p_j^0 = 1 \text{ и } B \text{ ортогональна/}$$

$$= \mathcal{N} \begin{pmatrix} 0, I_k - \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots \\ \vdots & \dots & \dots \\ 0 & \dots & \dots & 0 \end{pmatrix} \end{pmatrix} = \mathcal{N} \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots \\ \vdots & \dots & \dots \\ 0 & \dots & \dots & 1 \end{pmatrix} \end{pmatrix} = \mathcal{N}(0, I_k').$$

По теореме о наследовании сходимостей

$$\underbrace{\|B\xi\|^2}_{=\|\xi\|^2, \text{ T.K. } B \text{ opt.}} \xrightarrow{d_0} \|\mathcal{N}(0, I_k')\| = \chi_{k-1}^2.$$

$$\|\xi\|^2 = \|A^{-1/2}\sqrt{n}(Y - p_0)\|^2 = \sum_{j=1}^k \left[\frac{1}{\sqrt{p_j^0}} \cdot \sqrt{n} \left(\frac{\mu_j}{n} - p_j^0 \right) \right]^2 = \sum_{i=1}^k \frac{(\mu_j - np_j^0)^2}{np_j^0} \sim \chi_{k-1}^2.$$

Задача 4. $X_1, \ldots, X_n \sim U[0, \theta].$

1. Найти полную статистику. Возьмем $S(X) = X_{(n)}$ — достаточная статистика.

$$p_{X_{(n)}}(x) = \frac{nx^{n-1}}{\theta^n}, \ x \in [0, \theta],$$

$$\mathbb{E}_{\theta} f(X_{(n)}) = \int_{0}^{\theta} f(x) \frac{nx^{n-1}}{\theta^n} dx = 0 \Leftrightarrow \forall \theta \int_{0}^{\theta} f(x) nx^{n-1} dx = 0 \Leftrightarrow f(\theta) \cdot \theta^{n-1} = 0 \Leftrightarrow f(x) = 0.$$

- 2. Найти оптимальную оценку.
 - $X_{(n)}$ полная и достаточная статистика;

•
$$\mathbb{E}X_{(n)} = \frac{n}{n+1}\theta$$
, берем $\varphi(x) = \frac{n+1}{n}x$

$$E_{\theta}\varphi(X_{(n)}) = \theta.$$

$$\theta^* = \frac{n+1}{n} X_{(n)}.$$