文法誤りに頑健な機械翻訳システムの

実現に向けた敵対性ノイズの検討

<u>藤井 諒</u>¹, 阿部 香央莉¹, 塙 一晃^{2,1}, 三田 雅人^{2,1}, 鈴木 潤^{1,2}, 乾 健太郎^{1,2}

1. 東北大学 2. 理研AIP

概要

- NMTの文法誤りに対する頑健性向上に向けた ノイズ文付与手法の分析
- 逆翻訳モデルに誤り文を生成させる工夫が必要
- タグによる誤り文の学習空間分離は有効

1. 研究背景 / 目的

- 実世界には様々な誤りが存在▶例: SNS, 文法誤り, 綴りの多様性
- NMTはノイズ文の影響大

Could you please call me a taxi? タクシーと呼んでもらえますか?

Taxi

主要なノイズである文法誤りへのモデルの頑健性向上手法の分析

2. 手法

混同行列によるルールベースの誤り付加 [Anastasopoulos+'19]

① **逆翻訳** (BT) [Sennrich+'16, Vaibhav+'19] 目的言語側単言語コーパスの翻訳結果を利用 多様な文法誤りに対する網羅性向上が狙い

② タグ付き翻訳 [Johnson+'17, Caswell+'19]

誤り文と綺麗な文を区別するタグを付与 タグによる学習空間の分離 -> 学習効率向上? 誤りタグの粒度, 有無による影響を調査

5.分析

タグのアテンション分布

NN: 名詞部分に注目する傾向

DROP: 正しい綴りを欠落が起きた場合と近い分割にし

て入力 (officially -> offici@@ al@@ ly)

→ 綴り誤りの有無とは関係なく欠落により頻度が上がる。

低頻度subwordに注目

NN:levels, monthなどの名詞 DROP:綴り○でも異なる分割では注目

3. 実験設定-

モデル: Transformer base [Vaswani+, 2017]

付加誤り: DROP (文字欠落), ART (冠詞), PREP (前置詞),

NN (名詞の単複), SVA (主述の一致)

データセット (En -> Es):

訓練/開発用: Europarl v7/newstest2011

評価用: newstest2012 (擬似誤り付与), JFLEG (自然な誤り) BT訓練用: News Commentary / News Crawl 2007 – 2012

評価指標: BLEU [Papineni+, 2002]

4. 結果

① ナイーブなBT:誤り (ノイズ)に影響受けやすい

■ BTの対象訳 (Es→**En**)にDROPの適用で改善 (trg=DROP)

課題:自然な誤り分布を再現可能なBT対訳の作成 テスト文と同ドメインの大規模単言語コーパス確保

()内:CLEANからの差分,*:1シードのみのスコア,他:3シードの平均スコア

		newstest2012						IEI EC					
		CLEAN	DROP	ART	PREP	NN	SVA	JFLEG					
	baseline	32.88	30.21 (-2.67)	31.88 (-1.00)	31.74 (-1.14)	29.90 (-2.98)	32.70 (-0.18)	24.93					
	MIXALL	33.07	31.96 (-1.11)	32.43 (-0.64)	32.18 (-0.89)	31.10 (-1.97)	32.97 (-0.10)	26.15					
	BT *	35.27	31.95 (-3.32)	33.80 (-1.47)	33.63 (-1.64)	32.07 (-3.20)	35.03 (-0.24)	25.36					
	BT (trg=DROP) *	35.61	33.93	34.27	33.98	32.36	35.49	25.82					
	BT (trg=MIX) *	35.24	32.83	34.25	33.60	32.92	35.00	26.32					

② 誤り種別タグによる学習空間の分離

誤りのパターンが決まっているARTやNN:有効パターン多様なDROP:タグの情報量が少ない?

課題: テスト時のタグ自動付与の困難性

COARSE_TAG

<NOISY> Could you please call me taxi?

誤りあり / なし

<NOISY> For example ,

FINE_TAG

<ART> Could you please call me taxi?

誤りタイプ別

<DROP> For example ,

	DROP タグ	CLEAN	DROP	ART	PREP	NN	SVA	JFLEG
MIXALL	-	33.07	31.96	32.43	32.18	31.10	32.97	26.15
COARSE_TAG	✓	32.84	31.85	32.23	32.01	30.99	32.65	26.65
	X	33.22	32.23	32.46	32.31	31.58	32.75	26.43
FINE_TAG	V	33.06	32.06	32.54	32.36	31.66	32.94	26.48
	X	33.22	32.12	32.71	32.57	31.88	33.09	26.19

- ・ DROPにおいては、「タグの持つ情報」より 「表層的な分割の多様性」が頑健性に寄与?
- ・ 綴り誤りが軽微ならばDROPのみで置換 / 挿入も対処可能

ノイズ有 : 学習時にe@@ ampleのような例

入力:

For ex@@ s@@ ample

Por ejemplo (example)

Para la muestra (sample)

ノイズ無: ex@@やampleはexampleと遠い