

The National Higher School of Artificial Intelligence

DATABASES

Chapter 2 : The Relational Database Model

Pr. Kamel BOUKHALFA

16/10/2022

Slides From the Textbook : Carlos Coronel and Steven Morris, Database Systems: Design, Implementation, and Management Tenth Edition

Objectives

In this chapter, students will learn:

- That the relational database model offers a logical view of data
- About the relational model's basic component: relations
- That relations are logical constructs composed of rows (tuples) and columns (attributes)
- That relations are implemented as tables in a relational DBMS

Database Systems, 10th Edition

2

Objectives (cont'd.)

- About relational database operators, the data dictionary, and the system catalog
- How data redundancy is handled in the relational database model
- Why indexing is important

A Logical View of Data

- Relational model
 - View data logically rather than physically
- Table
 - Structural and data independence
 - Resembles a file conceptually
- Relational database model is easier to understand than hierarchical and network models

Tables and Their Characteristics

- Logical view of relational database is based on relation
 - Relation thought of as a table
- Table: two-dimensional structure composed of rows and columns
 - Persistent representation of logical relation
- Contains group of related entities (entity set)

TABL	TABLE 3.1 Characteristics of a Relational Table				
1	A table is perceived as a two-dimensional structure composed of rows and columns.				
2	Each table row (tuple) represents a single entity occurrence within the entity set.				
3	Each table column represents an attribute, and each column has a distinct name.				
4	Each intersection of a row and column represents a single data value.				
5	All values in a column must conform to the same data format.				
6	Each column has a specific range of values known as the attribute domain.				
7	The order of the rows and columns is immaterial to the DBMS.				
8	Each table must have an attribute or combination of attributes that uniquely identifies each row.				

Database Systems, 10th Edition 5 Database Systems, 10th Edition

Keys

- Each row in a table must be uniquely identifiable
- Key: one or more attributes that determine other attributes
 - Key's role is based on determination
 - If you know the value of attribute A, you can determine the value of attribute B
 - Functional dependence
 - Attribute B is functionally dependent on A if all rows in table that agree in value for A also agree in value for B

TABLE 3.2 Student Classification				
HOURS COMPLETED	CLASSIFICATION			
Less than 30	Fr			
30-59	So			
60-89	Jr			
90 or more	Sr			

Database Systems, 10th Edition 9 Database Systems, 10th Edition

Types of Keys (cont'd.)

- Entity integrity
 - Each row (entity instance) in the table has its own unique identity
- Nulls
 - No data entry
 - Not permitted in primary key
 - Should be avoided in other attributes

Types of Keys

- Composite key
 - Composed of more than one attribute
- Key attribute
 - Any attribute that is part of a key
- Superkey
 - Any key that uniquely identifies each row
- Candidate key
 - A superkey without unnecessary attributes

Types of Keys (cont'd.)

- Can represent:
 - An unknown attribute value
 - · A known, but missing, attribute value
 - A "not applicable" condition
- Can create problems when functions such as COUNT, AVERAGE, and SUM are used
- Can create logical problems when relational tables are linked

Types of Keys (cont'd.)

- Controlled redundancy
 - Makes the relational database work
 - Tables within the database share common attributes
 - Enables tables to be linked together
 - Multiple occurrences of values not redundant when required to make the relationship work
 - Redundancy exists only when there is unnecessary duplication of attribute values

Database Systems, 10th Edition

Database Systems, 10th Edition

Types of Keys (cont'd.)

- Foreign key (FK)
 - An attribute whose values match primary key values in the related table
- Referential integrity
 - FK contains a value that refers to an existing valid tuple (row) in another relation
- Secondary key
 - Key used strictly for data retrieval purposes

Relational Database Keys				
KEY TYPE	DEFINITION			
Superkey	An attribute or combination of attributes that uniquely identifies each row in a table			
Candidate key	A minimal (irreducible) superkey; a superkey that does not contain a subset of attributes that is itself a superkey			
Primary key	A candidate key selected to uniquely identify all other attribute values in any given row cannot contain null entries			
Foreign key	An attribute or combination of attributes in one table whose values must either match the primary key in another table or be null			
Secondary key	An attribute or combination of attributes used strictly for data retrieval purposes			

Integrity Rules

- Many RDBMs enforce integrity rules automatically
- Safer to ensure that application design conforms to entity and referential integrity rules
- Designers use flags to avoid nulls
 - Flags indicate absence of some value

TABLE 3.4 Integrity Rules				
ENTITY INTEGRITY	DESCRIPTION			
Requirement	All primary key entries are unique, and no part of a primary key may be null.			
Purpose	Each row will have a unique identity, and foreign key values can properly reference primary key values.			
Example	No invoice can have a duplicate number, nor can it be null. In short, all invoices are uniquely identified by their invoice number.			
REFERENTIAL INTEGRITY	DESCRIPTION			
Requirement	A foreign key may have either a null entry, as long as it is not a part of its table's primary key, or an entry that matches the primary key value in a table to which it is related. (Every non-null foreign key value <i>must</i> reference an existing primary key value.)			
Purpose	It is possible for an attribute <i>not</i> to have a corresponding value, but it will be impossible to have an invalid entry. The enforcement of the referential integrity rule makes it impossible to delete a row in one table whose primary key has mandatory matching foreign key values in another table.			
Example	A customer might not yet have an assigned sales representative (number), but it will be impossible to have an invalid sales representative (number).			

A Dummy Variable Value Used as a Flag						
AGENT_CODE	AGENT_AREACODE	AGENT_PHONE	AGENT_LNAME	AGENT_YTD_SLS		
-99	000	000-0000	None	\$0.00		

Database Systems, 10th Edition 17 Database Systems, 10th Edition

Relational Set Operators

- Relational algebra
 - Defines theoretical way of manipulating table contents using relational operators
 - Use of relational algebra operators on existing relations produces new relations:
 - SELECT

- UNION
- PROJECT
- DIFFERENCE

• JOIN

- PRODUCT
- INTERSECT
- DIVIDE

Database Systems, 10th Edition 21 Database Systems, 10th Edition

Relational Set Operators (cont'd.)

- Natural join
 - Links tables by selecting rows with common values in common attributes (join columns)
- Equijoin
 - Links tables on the basis of an equality condition that compares specified columns
- Theta join
 - Any other comparison operator is used

Relational Set Operators (cont'd.)

- Inner join
 - Only returns matched records from the tables that are being joined
- Outer join
 - Matched pairs are retained, and any unmatched values in other table are left null

Database Systems, 10th Edition

25

Database Systems, 10th Edition

FIGURE Two tables that will be used in join illustrations 3.10 Table name: CUSTOMER Table name: AGENT AGENT_CODE | AGENT_PHONE CUS_CODE | CUS_LNAME | CUS_ZIP | AGENT_CODE | 6152439887 167 1217782 Adares 32145 6153426778 1312243 Rakowski 34129 231 6152431124 1321242 Rodriguez 37134 333 9041234445 1542311 37134 421 Smithson SOURCE: Course Technology/Cengage Learning

Relational Set Operators (cont'd.)

- · Left outer join
 - Yields all of the rows in the CUSTOMER table
 - Including those that do not have a matching value in the AGENT table
- Right outer join
 - Yields all of the rows in the AGENT table
 - Including those that do not have matching values in the CUSTOMER table

Exercise

Actor(idA, name, Firstname, Nationality)

Film(idF, Title, Year, Country, NBSpec, idMaker*,idKind*)

Acting(*idActor**, *idFilm**, Salary)

Maker(idM, Name, Firstname, Nationality)

Kind(idK, Description)

Database Systems, 10th Edition

20

The Data Dictionary and System Catalog

- Data dictionary
 - Provides detailed accounting of all tables found within the user/designer-created database
 - Contains (at least) all the attribute names and characteristics for each table in the system
 - Contains metadata: data about data
- System catalog
 - Contains metadata
 - Detailed system data dictionary that describes all objects within the database

	ATTRIBUTE NAME	CONTENTS						FK REFERENCED TABLE
CUSTOMER	CUS_CODE CUS_LNAME CUS_FNAME CUS_INITIAL CUS_RENEW_DATE AGENT_CODE	Customer account code Customer last name Customer first name Customer initial Customer insurance renewal date Agent code	CHAR(5) VARCHAR(20) VARCHAR(20) CHAR(1) DATE CHAR(3)	99999 Xxxxxxxx Xxxxxxxx X dd-mmm-yyyy 999	10000-99999	Y Y Y	PK FK	AGENT_COD
AGENT	AGENT_CODE AGENT_AREACODE AGENT_PHONE AGENT_LNAME AGENT_YTD_SLS	Agent code Agent area code Agent telephone number Agent last name Agent year-to-date sales	CHAR(3) CHAR(3) CHAR(8) VARCHAR(20) NUMBER(9,2)	999 999 999-9999 Xxxxxxxx 9,999,999.99		Y Y Y	PK	

FK	=Foreign key
PK	=Primary key
CHAR	=Fixed character length data (1-255 characters)
VARCHAR	=Variable character length data (1-2,000 characters)
NUMBER	=Numeric data (NUMBER(9,2)) are used to specify numbers with two decimal places and up to nine digits, including the decimal places. Some
	RDBMSs permit the use of a MONEY or CURRENCY data type.

The Data Dictionary and System Catalog (cont'd.)

- Homonym
 - Indicates the use of the same name to label different attributes
- Synonym
 - Opposite of a homonym
 - Indicates the use of different names to describe the same attribute

Relationships within the Relational Database

- 1:M relationship
 - Relational modeling ideal
 - Should be the norm in any relational database design
- 1:1 relationship
 - Should be rare in any relational database design

Database Systems, 10th Edition

33

Database Systems, 10th Edition

D 1 (1) 1 1

Relationships within the Relational Database (cont'd.)

- M:N relationships
 - Cannot be implemented as such in the relational model
 - M:N relationships can be changed into 1:M relationships

The 1:M Relationship

- Relational database norm
- Found in any database environment

The 1:1 Relationship

- One entity related to only one other entity, and vice versa
- Sometimes means that entity components were not defined properly
- Could indicate that two entities actually belong in the same table
- · Certain conditions absolutely require their use

Database Systems, 10th Edition

37

Database Systems, 10th Edition

- -

The 1:1 relationship between PROFESSOR and DEPARTMENT 3.21 PROFESSOR Chairs DEPARTMENT SOURCE: Course Technology/Cengage Learning

The M:N Relationship

- Implemented by breaking it up to produce a set of 1:M relationships
- Avoid problems inherent to M:N relationship by creating a composite entity
 - Includes as foreign keys the primary keys of tables to be linked

Database Systems, 10th Edition

41

Database Systems, 10th Edition

Data Redundancy Revisited

- Data redundancy leads to data anomalies
 - Can destroy the effectiveness of the database
- Foreign keys
 - Control data redundancies by using common attributes shared by tables
 - Crucial to exercising data redundancy control
- Sometimes, data redundancy is necessary

Database Systems, 10th Edition

45

Database Systems, 10th Edition

. .

FIGURE The relational diagram for the invoicing system 3.30 CUSTOMER INVOICE 8 CUS CODE INV NUMBER **§** INV NUMBER PROD_CODE CUS_LNAME CUS_CODE V LINE_NUMBER PROD_DESCRIPT CUS_FNAME INV_DATE PROD_CODE PROD_PRICE CUS INITIAL LINE_UNITS PROD_ON_HAND CUS_AREACODE LINE_PRICE VEND_CODE CUS_PHONE

Indexes

- Orderly arrangement to logically access rows in a table
- Index key
 - Index's reference point
 - Points to data location identified by the key
- Unique index
 - Index in which the index key can have only one pointer value (row) associated with it
- Each index is associated with only one table

SOURCE: Course Technology/Cengage Learning

Codd's Relational Database Rules

- In 1985, Codd published a list of 12 rules to define a relational database system
 - Products marketed as "relational" that did not meet minimum relational standards
- Even dominant database vendors do not fully support all 12 rules

Database Systems, 10th Edition

49

Database Systems, 10th Edition

Summary

- Tables are basic building blocks of a relational database
- Keys are central to the use of relational tables
- Keys define functional dependencies
 - Superkey
 - Candidate key
 - Primary key
 - Secondary key
 - Foreign key

Summary (cont'd.)

- Each table row must have a primary key that uniquely identifies all attributes
- Tables are linked by common attributes
- The relational model supports relational algebra functions
 - SELECT, PROJECT, JOIN, INTERSECT UNION, DIFFERENCE, PRODUCT, DIVIDE
- Good design begins by identifying entities, attributes, and relationships
 - 1:1, 1:M, M:N