*Chapitre 3 : M1108* 

# Plan : Les méthodes de codage numérique en bande de base

#### 3.1 Introduction

### 3.2 Codages binaires

- 3.2.1 Codage NRZ (Non Retour à Zéro)
- 3.2.2 Codage biphasé ou (Manchester)
- 3.2.3 Codage CMI (Code Mark Inversion)

### 3.3 Codages à trois niveaux (ternaires)

- 3.3.1 Codage RZ (Retour à Zéro)
- 3.3.2 Codage AMI (Alternate Mark Inversion),

### 3.4 Codages à multi niveaux

3.4.1 Codage à quatre niveaux (2B1Q)

### 3.5 Réception et régénération du signal numérique

- 3.5.1 Principe de la régénération
- 3.5.2 Circuits de récupération d'horloge
- 3.5.3 Diagramme de l'oeil

#### 3.6 Conclusions

### 3.1 Introduction

- Adéquation entre le codage en bande de base et la bande passante du canal transmission.
- Critères à optimiser
  - Le débit doit être maximisé
  - Reconstitution du signal d'horloge à la réception.
  - Une bande passante s'étendant jusqu'au continu (f=0) implique des solutions électriques plus complexes

Choix d'un mode de codage

# Plan : Les méthodes de codage numérique en bande de base

#### 3.1 Introduction

### 3.2 Codages binaires

- 3.2.1 Codage NRZ (Non Retour à Zéro)
- 3.2.2 Codage biphasé ou (Manchester)
- 3.2.3 Codage CMI (Code Mark Inversion)

### 3.3 Codages à trois niveaux (ternaires)

- 3.3.1 Codage RZ (Retour à Zéro)
- 3.3.2 Codage AMI (Alternate Mark Inversion),

### 3.4 Codages à multi niveaux

3.4.1 Codage à quatre niveaux (2B1Q)

### 3.5 Réception et régénération du signal numérique

- 3.5.1 Principe de la régénération
- 3.5.2 Circuits de récupération d'horloge
- 3.5.3 Diagramme de l'oeil

#### 3.6 Conclusions

# 3.2.1 Codage NRZ Principe

### • Principe NRZ (Non Retour à Zéro)

| Valeur  | Tension | Tension   |
|---------|---------|-----------|
| logique | unipol. | bipolaire |
| « 0 »   | 0       | -E        |
| «1»     | +E      | +E        |



### Remarque

Codage utilisé usuellement par les circuits logiques

Exercice: Transmission NRZ de la chaîne « Do »

# 3.2.1 Codage NRZ Spectre

- Densité spectrale de puissance d'une suite binaire aléatoire
  - Signal aléatoire → Spectre infini
  - de 0 à  $1/\Delta$  → 90% de la puissance totale
  - Maximum de la puissance à f = 0





## 3.2.1 Codage NRZ Caractéristiques, pour & contre et applications

- Caractéristiques
  - Débit : D =  $1/\Delta$  (v=2 et k=1)
  - Bande passante : BP =  $1/\Delta$
- Avantages / Inconvénients
  - Simple à mettre en œuvre
  - Bon rapport S/N (en bipolaire)
  - Perte de la synchronisation sur les séquences de bits identiques
  - Le canal doit passer le continu
  - Nécessité de maintenir la polarité (repérer les fils)
- Applications
  - Normes V24, RS421, RS422, RS485

## 3.2.1 Codage NRZ Variante NRZI

• Principe NRZI (No Return to Zero Inverted on Space )

| Valeur  | Tension   |
|---------|-----------|
| logique | unipol.   |
| « 0 »   | Inversion |
| «1»     | Maintien  |



- •Codage binaire par présence ou absence de front
- •Le spectre du codage NRZI est identique à celui d'un signal NRZ
- •Intérêt : La polarité peut être modifiée

Exercice: Transmission NRZI de la chaîne « Do »

## 3.2.2 Codage Manchester Principe

• Principe Manchester (ou diphasé)

| Valeur  | Tension   |
|---------|-----------|
| logique | bipolaire |
| « 0 »   |           |
| «1»     |           |



### Remarque

Fronts pour chaque valeur binaire Analogue à une modulation de phase

Exercice: Transmission Manchester de la chaîne « Do »

# 3.2.2 Codage Manchester Spectre

- Densité spectrale de puissance d'une suite binaire aléatoire
  - de 0 à  $2/\Delta$  → 85% de la puissance totale
  - Pas de composante continue
  - Maximum de la puissance à  $f = 0.75/\Delta$

$$S^2_{\text{Manchester}}(f)/E^2$$





## 3.2.2 Codage Manchester Caractéristiques, pour & contre et applications

- Caractéristiques
  - Débit : D =  $1/2\Delta$  (v=2 et k=2)
  - Bande passante : BP =  $2/\Delta$
- Avantages / Inconvénients
  - Présence front de synchronisations
  - Le canal ne doit pas passer le continu
  - Bande passante doublée
  - Nécessité de maintenir la polarité (repérer les fils)
- Applications
  - Les transmissions de réseaux Ethernet en bande de base : 10Base5,
     10Base2, 10BaseT, 10BaseFL, Token Ring.
  - Les informations numériques du RDS (avant modulation de fréquence).

# 3.2.3 Codage CMI Principe

• Principe codage CMI (Code Mark Inversion)

| Valeur  | Tension   |
|---------|-----------|
| logique | bipolaire |
| « 0 »   | -E ou +E  |
| «1»     |           |



### Remarque

Mixte « Manchester » et NRZI.

Exercice: Transmission CMI de la chaîne « Do »

## 3.2.3 Codage CMI Spectre

- Densité spectrale de puissance d'une suite binaire aléatoire
  - de 0 à  $2/\Delta$  → 80 % de la puissance totale
  - Pas de composante continue
  - Maximum de la puissance à  $f = 0.4/\Delta$



# 3.2.3 Codage CMI Caractéristiques, pour & contre et applications

- Caractéristiques
  - Débit : D =  $1/2\Delta$  (v=2 et k=2)
  - Bande passante : BP =  $2/\Delta$
- Avantages / Inconvénients
  - Présence front de synchronisations
  - Le canal ne doit pas passer le continu
  - Bande passante doublée
- Applications
  - Le mode CMI se rencontre sur les multiplexeurs de lignes coaxiales et de fibres optiques.

# Plan : Les méthodes de codage numérique en bande de base

#### 3.1 Introduction

### 3.2 Codages binaires

- 3.2.1 Codage NRZ (Non Retour à Zéro)
- 3.2.2 Codage biphasé ou (Manchester)
- 3.2.3 Codage CMI (Code Mark Inversion)

### 3.3 Codages à trois niveaux (ternaires)

- 3.3.1 Codage RZ (Retour à Zéro)
- 3.3.2 Codage AMI (Alternate Mark Inversion),

### 3.4 Codages à multi niveaux

3.4.1 Codage à quatre niveaux (2B1Q)

### 3.5 Réception et régénération du signal numérique

- 3.5.1 Principe de la régénération
- 3.5.2 Circuits de récupération d'horloge
- 3.5.3 Diagramme de l'oeil

#### 3.6 Conclusions

# 3.3.1 Codage RZ Principe

### • Principe RZ (Retour à Zéro)

| Valeur  | Tension | Tension   |
|---------|---------|-----------|
| logique | unipol. | bipolaire |
| « 0 »   | 0       | -E et 0   |
| «1»     | +E et 0 | +E et 0   |

### Remarque

Introduction de front Le codage RZ bipolaire fait apparaître 3 tensions (+E, 0, -E)



Exercice: Transmission RZ de la chaîne « Do »

# 3.3.1 Codage RZ Spectre

- Densité spectrale de puissance d'une suite binaire aléatoire
  - de 0 à  $2/\Delta$  → 90% de la puissance totale
  - Maximum de la puissance à f = 0







## 3.3.1 Codage RZ Caractéristiques, pour & contre et applications

- Caractéristiques
  - Débit : D =  $1/2\Delta$  (v=2 et k=2)
  - Bande passante : BP =  $2/\Delta$
- Avantages / Inconvénients
  - Présence front de synchronisations (bipolaire ou raies spectrales à  $1/\Delta$ )
  - Bande passante doublée
  - Rapport S/N réduit (trois niveaux)
  - Perte de la synchronisation sur les séquences de bits identiques
  - Le canal doit passer le continu
  - Nécessité de maintenir la polarité (repérer les fils)

# 3.3.2 Codage AMI Principe

• Principe codage à trois niveaux AMI (Alternate Mark

Inversion),

| Valeur  | Tension   |
|---------|-----------|
| logique | bipolaire |
| « 0 »   | 0         |
| «1»     | -E ou +E  |



### Remarque

Codage NRZ + présence de front.

Exercice: Transmission AMI de la chaîne « Do »

# 3.3.2 Codage AMI Spectre

- Densité spectrale de puissance d'une suite binaire aléatoire
  - de 0 à  $1/\Delta$  → 85 % de la puissance totale
  - Pas de composante continue
  - Maximum de la puissance à  $f = 0.38/\Delta$

$$S^2_{AMI}(f)/E^2$$



## 3.3.2 Codage AMI Caractéristiques, pour & contre et applications

- Caractéristiques
  - Débit : D =  $1/\Delta$  (*v*=2 et *k*=1)
  - Bande passante : BP =  $1/\Delta$
- Avantages / Inconvénients
  - Le canal ne doit pas passer le continu
  - Risque de pertes de synchronisations
- Applications
  - Anciennes liaisons téléphoniques numériques comme les systèmes de téléphonie numérique PCM.

## 3.3.2 Codage AMI Variante HBD3

• Principe variante AMI avec introduction d'impulsions pour les séquences de n bit à «  $\emptyset$  »

| Valeur  | Tension        |
|---------|----------------|
| logique | bipolaire      |
| « 0 »   | 0  si < 3 bits |
| «1»     | -E ou +E       |



### Violation du code AMI

« 0000 » codée par « 000V » valeur moyenne nulle sinon « B00V »

Exercice: Transmission HDB3 de la chaîne « Do »

# 3.3.2 Codage AMI Variante MLT3

• Principe variante AMI mais changement sur 3 niveaux

| Valeur  | Tension    |
|---------|------------|
| logique | bipolaire  |
| « 0 »   | inchangé   |
| «1»     | transition |



### Remarque

Variations moins rapides soit BP réduite

Pertes synchronisation sur longue séquence de « 0 »

Applications: Fast Ethernet (100BaseTX, 100BaseT4)

Exercice: Transmission MLT3 de la chaîne « Do »

# Plan : Les méthodes de codage numérique en bande de base

#### 3.1 Introduction

### 3.2 Codages binaires

- 3.2.1 Codage NRZ (Non Retour à Zéro)
- 3.2.2 Codage biphasé ou (Manchester)
- 3.2.3 Codage CMI (Code Mark Inversion)

### 3.3 Codages à trois niveaux (ternaires)

- 3.3.1 Codage RZ (Retour à Zéro)
- 3.3.2 Codage AMI (Alternate Mark Inversion)

### 3.4 Codages à multi niveaux

3.4.1 Codage à quatre niveaux (2B1Q)

### 3.5 Réception et régénération du signal numérique

- 3.5.1 Principe de la régénération
- 3.5.2 Circuits de récupération d'horloge
- 3.5.3 Diagramme de l'oeil

#### 3.6 Conclusions

# 3.4.1 Codage 2BQ1 Principe

• Principe codage à quatre niveaux

| Bits | Tension |
|------|---------|
| 00   | -E      |
| 01   | -E/3    |
| 11   | +E/3    |
| 10   | +E      |



### Remarque

Transmission simultanée de deux bits.

# 3.4.1 Codage 2BQ1 Spectre

- Densité spectrale de puissance d'une suite binaire aléatoire
  - de 0 à  $1/\Delta$  → 90% de la puissance totale
  - Maximum de la puissance à f = 0



## 3.4.1 Codage 2BQ1 Caractéristiques, pour & contre et applications

- Caractéristiques
  - Débit : D =  $2/\Delta$  (*v*=4 et *k*=1)
  - Bande passante : BP =  $1/\Delta$
- Avantages / Inconvénients
  - Débit doublé
  - Rapport S/N détérioré
  - Perte de la synchronisation sur les séquences de bits identiques
  - Le canal doit passer le continu
  - Nécessité de maintenir la polarité (repérer les fils)
- Applications
  - RNIS

# Plan : Les méthodes de codage numérique en bande de base

#### 3.1 Introduction

### 3.2 Codages binaires

- 3.2.1 Codage NRZ (Non Retour à Zéro)
- 3.2.2 Codage biphasé ou (Manchester)
- 3.2.3 Codage CMI (Code Mark Inversion)

### 3.3 Codages à trois niveaux (ternaires)

- 3.3.1 Codage RZ (Retour à Zéro)
- 3.3.2 Codage AMI (Alternate Mark Inversion),

### 3.4 Codages à multi niveaux

3.4.1 Codage à quatre niveaux (2B1Q)

### 3.5 Réception et régénération du signal numérique

- 3.5.1 Principe de la régénération
- 3.5.2 Circuits de récupération d'horloge
- 3.5.3 Diagramme de l'oeil

#### 3.6 Conclusions

## 3.5.1 Principe de la régénération

- La regénération du signal numérique à partir du signal électrique reçu nécessite 4 opérations
  - Filtrer le bruit
  - Reconstituer l'horloge
  - Retrouver les différents niveaux de codage dans le signal atténué et bruité à l'aide de seuils de tensions
  - Définir des instants d'échantillonnage



### 3.5.2 Reconstitution du signal d'horloge

 Horloge locale au récepteur synchronisée sur les fronts

1 0 1 1 0 1 0

Fr/2

Fr 

Horloge récupérée

Signal numérique reçu

Ampli ecreteur

- Récupération de la raie spectrale de l'horloge par filtrage
- Reconstitution de l'horloge à l'aide d'une PLL



### 3.5.3 Seuils de tension et instants d'échantillonnage



• Transmission numérique filaire sur une paire torsadée



• Réponse du canal (en fréquence et en temporelle)



• Signaux dans le cas d'une modulation NRZ





• La fenêtre d'observation est la durée d'un symbole (T)



## • Influence du bruit sur le canal SNR 10 dB SNR 20 dB 1.5<sub>1</sub> 0.5 1.5 0.5 Reconstitution impossible Reconstitution possible

• Codage multi niveaux (exemple 2B1Q)



• Influence du choix de codage sur bruit dans canal (SNR 15 dB)



# Plan : Les méthodes de codage numérique en bande de base

#### 3.1 Introduction

### 3.2 Codages binaires

- 3.2.1 Codage NRZ (Non Retour à Zéro)
- 3.2.2 Codage biphasé ou (Manchester)
- 3.2.3 Codage CMI (Code Mark Inversion)

### 3.3 Codages à trois niveaux (ternaires)

- 3.3.1 Codage RZ (Retour à Zéro)
- 3.3.2 Codage AMI (Alternate Mark Inversion),

### 3.4 Codages à multi niveaux

3.4.1 Codage à quatre niveaux (2B1Q)

### 3.5 Réception et régénération du signal numérique

- 3.5.1 Principe de la régénération
- 3.5.2 Circuits de récupération d'horloge
- 3.5.3 Erreur en réception

#### 3.6 Conclusions

## 3.5 Conclusions

- Multitude de codage
  - Codages sur fronts facilitent la reconstitution de l'horloge et autorisent les changement de polarité mais doublement de la bande passante
  - Codages multi niveaux augmentent le débit au détriment du rapport S/
- Pas de codage optimal il faut choisir le codage en fonction de l'application visée

