Summary: Lecture 9

Summary for the chapter 10.3. [2, 1]

Function problems

Function problem

Finding a specific solution to a problem if possible, else return no.

- focus so far: languages deciding decision problems
- give *yes* or *no* as answer
- now: focus on finding a solution:
 - find satisfying truth assignment for a boolean expression
 - find optimal tour for Tsp
 - \rightarrow function problems
- decision problems are helpful for negative results of function problems
- complexity of the decision problem helps to specify the complexity of the corresponding function problem

SAT and FSAT

SAT

The Sat (satisfiability) problem is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. [3]

FSAT

The FSAT (satisfiability) problem is a function problem.

Given a boolean expression ϕ .

If ϕ is satisfiable, return a satisfying truth assignment and otherwise return no.

- for input ϕ there might be no satisfying truth assignment
 - return no
- for input ϕ there might be more than one satisfying truth assignment
 - return any satisfying truth assignment
- if SAT can be solved in polynomial time, FSAT can be solved in polynomial time, too

Algorithm for FSAT:

- expression ϕ with variables $x_1, ..., x_n$
- ask if ϕ is satisfiable:
 - if no: stop and return no
 - if yes: come up with satisfying truth assignment

- * consider two expressions: $\phi[x_1 = \text{true}]$ and $\phi[x_1 = \text{false}]$
- * check which one is satisfiable (if both are, chose one)
- * substitute the value of x_1 in ϕ
- * continue with x_2
- * at most 2n calls to find the satisfying truth assignment

Self-reducibilty:

•

TODO

Self-reducibility

Questions:

TSP and TSP(D)

TSP(D)

Given a list of cities and the distances between each pair of cities.

Is there a possible route of length k that visits each city exactly once and returns to the origin city?

TSP

Given a list of cities and the distances between each pair of cities.

What is the shortest possible route that visits each city exactly once and returns to the origin city?

- solve Tsp with an algorithm for Tsp(D)
- find optimum cost C of the tour with binary search (between 0 and 2^n)
- remove one intercity distance at a time to check if it is part of the optimal tour
- ullet after n^2 calls only entries of the distance matrix are there that are used for the optimum tour

TODO

```
algorithm TSP (?) maybe example (?) Questions:
```

FP and FNP

Lanugage L

```
L = \{x : (x, y) \in R \text{ for some } y\}
 L \text{ gets an input } x \text{ and finds a } y \text{ with } ((x, y) \in R \text{ and the relation } R \subseteq \Sigma^* \times \Sigma^*.
```

NP

The language $L \subseteq \Sigma^*$ is in NP only if there is a polynomially decidable and polynomially balanced relation R such that $L = \{x : (x, y) \in R \text{ for some } y\}.$

Relationship between decision and function problems:

- L is a lanuage in NP
 - Decision problem:

There is a string y with R(x, y) only if $x \in L$.

- Function problem:

Given x, find a string y such that R(x,y) if it exists, else return no.

FNP

Class of all function problems associated with languages in NP.

\mathbf{FP}

FP is the subclass of FNP that contains function problems, that can be solved in polynomial time.

Examples:

- FSAT is in FNP but expected to be in FP
- HornSat is in FP
- BipartiteGraph is in FP

Reductions between function problems

Reductions between function problems

A function problem A reduces to a function problem B if the following holds:

- R and S are string functions, x and z are strings
- If x is an instance of A then R(x) is an instance of B.
- If z is a correct output of R(x), then S(z) is a correct output of x.
- R produces an instance R(x) of the function problem B
- S(z) is an constructed output for x from any correct output z of R(x)
- translate answers back to the original problem
- reduction is a pair (R, S):
 - R translates input x to input x'
 - -S translates result z' to result z
- ullet a function problem A is complete for a class FC if it is in FC and all problems in that class reduce to A
- FP and FNP are closed under reduction
- reductions of function problems compose

How	to	prove	FP =	FNP?
	LU	DIOVE	—	

• FP = FNP only if P = NP

TODO

Questions:

Computing a satisfying assignment bit by bit

Title			
Content			

- Sat' is a formular φ plus an assignment that satisfies φ
- \bullet assignment as clauses that connects the single variables or their negation with \wedge

TODO

Questions:

If FP=FNP optimuzation problems become easy

Title
Content

•

TODO

Questions:

Another argument

Title

Content

• cryptographic argument: if P=NP, no safe encoding exists

TODO

Questions:

Total FNP

П	r	+	ിച
-		U	IC

Content

•

TODO

Questions:

References

- [1] Martin Berglund. Lecture notes in Computational Complexity.
- [2] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.
- [3] Prof. Dr. Thomas Schwentick. Lecture notes in Grundbegriffe der theoretischen Informatik. https://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Archiv/Bachelor_LA_GyGe_Inf_Modellv/_Module/INF-BfP-GTI/index.html.