UML Behavioural Modelling

HUSZERL Gábor huszerl@mit.bme.hu

Critical Systems Research Group

Learning Outcomes

At the end of the lecture the students are expected to be able to

- (K1) recall the objectives of structural modelling in UML,
- (K3) use the UML activity diagrams to model processes,
- (K3) use the UML state machines to model reactive systems,
- (K3) use the UML interactions to model scenarios.

Further Topics of the Subject

I. Software development practices

Steps of the development

Planning and

Version controlling

High quality source code

Requirements management

Testing and test development

II. Modelling

Why to model, what to model?

architecture

Unified Modeling Language

Modelling languages

III. Processes and projects

Methods

Project management

Measurement and analysis

UML Diagram Types

Aspects of Modelling Behaviour

- What can the system do?
 - How does the state of the system change over time?
 - What are the expected and/or prohibited behaviours?
 - How does the system react to the changes in its environment?
 - In which order should the steps be executed?

Main approaches

- -State based models
- Control flow models
- Data flow models

What Behaviour Can Be Modelled?

Internal algorithms

private void analyzeRoutes() for (String routeName : routeNames) { Collection<Route> versions = nameToRoute.get(routeName); List<Trip> trips = new ArrayList<>(); for (Route route : versions) { trips.addAll(routeIdToTrips.get(route.getId())); if (trips.isEmpty()) { System.out.println(String.format("%s: no trips found", routeN continue; System.out.println(String.format("%s: %d trips", routeName, trips.siz Multiset<StopIdList> stopIdListSet = HashMultiset.create(): for (Trip trip : trips) { StopIdList stopsIds = tripIdToStopList.get(trip.getId()); stopIdListSet.add(stopsIds); Multiset<StopIdList> histogram = Multisets .copyHighestCountFirst(stopIdListSet); StopIdList longest = null; int maxStops = -1; for (StopIdList stopIds : histogram.elementSet()) { if (stopIds.size() > maxStops) { maxStops = stopIds.size(); longest = stopIds;

Behaviour and reactions of a system

Protocol among multiple parties

What Can UML Model and What It Cannot

It can model

Discrete time/value behaviour

Characteristics:

- Discrete, typically finite state space
- Instantaneous transitions
- Reactions to events (invocation, input, ...)

It cannot model (well)

Continuous time/value behaviour

$$egin{aligned} rac{dy}{dx} &= f(x) \ rac{dy}{dx} &= f(x,y) \ x_1 rac{\partial y}{\partial x_1} &+ x_2 rac{\partial y}{\partial x_2} &= y \end{aligned}$$

Modelling:

- Differential equations, controllers, ...
- MATLAB/Simulink, Modelica, ...

See the course **System Theory**

UML Behavioural Models (1)

Discrete states of the system (~noun), waits for events ch

Response to external events and change of state

State machine

Steps: actions (~verb) Elementary behaviour, may change the state Edges: specifying dependency and ordering

Activity

UML Behavioural Models (2)

Representation of one/more possible trace(s)

Representation of a simple trace

Representation of timing: both on internal and external changes

Sequence diagram Communication diagram

Timing diagram

Common Behavioural Elements (Illustration!)

Events in UML

Active Object

Acts "autonomously", answers calls/messages

After creation, it starts its behaviour (classifierBehavior)

Can receive signals (Reception)

Notation:

Not only 1 active object can be in the system! (competition problems!)

