HOW MACHINE LEARNING CAN HELP **US ESTIMATE CROP** WATER DEMAND **AND INFORM** IRRIGATION **DECISIONS?**

Jamie Duan, Ph.D.

Lamont-Doherty Earth Observatory

Columbia University

SELF INTRODUCTION

2014-2018

Hohai University

□Nanjing, China
□Bachelor of Engineering in
Agriculture Water
Management & Business
Administration

2018-2020

Texas A&M University

- □College Station, Texas
- ☐ Master of Science in Civil Engineering - Water Resource Management
- ☐ Influence of land-use change and agriculture practices on water carbon and energy fluxes

2020-2024

University of Nebraska Lincoln

- □Lincoln, Nebraska
- ☐Doctor of Philosophy in Biological Engineering- Water Resource Management
- ☐ Integrating Water and
 Nitrogen Management for
 Sustainable Agriculture:
 Optimizing Resource Use
 Efficiency and Maximizing
 Crop Productivity

2024-NOW

Columbia University

- ☐ Lamont Doherty Earth Observatory
- ☐Postdoc scientist
- □leveraging modeling and remote sensing tools to estimate soil carbon, water, and nitrogen cycling,

WHY IRRIGATION MATTERS?

Growing challenges!

Figure 1.1. Global distribution of irrigation as a fraction of cultivated land area. Data from FAO (2021).

- Irrigation is essential for global food security, providing stability in crop production.
- Irrigation enables agriculture in otherwise dry or marginal regions.
- Irrigation consumes ~70% of global freshwater withdrawals, creating growing competition with urban and industrial use.
- Traditional irrigation methods often waste water and fail to match plant water needs.
- Poorly managed irrigation can lead to soil erosion, salinization, and water quality degradation.
- Climate change and population growth are increasing the demand for efficient irrigation systems.

TYPES OF IRRIGATION SYSTEM

- Surface Irrigation
- Sprinkler Irrigation
- Micro irrigation Drip irrigation

VARIABLE RATE IRRIGATION MANAGEMENT

AVAILABLE SOIL WATER CONTENT

WHERE DOES THE WATER COME AND GO?

PLANT WATER USE - ET

EvaporationTranspiration

Evapotranspiration

- <u>Evapotranspiration</u> is the term used to describe ecosystem water use
- <u>Evaporation</u> is the liquid turns into a gas at temperatures below its boiling point from a wet soil surface progresses
- <u>Transpiration</u> is vapor lost from plant leaves in the stomatal cavity and from the stomata into the atmosphere

PLANT WATER USE - DRIVERS

- It is important to understand how plant use water and how weather influence water use
- Key words:

Net Radiation

Soil water availability

Temperature

Wind speed

DEGREES ABOVE NON-STRESSED (DANS) INDEX

- Used for irrigation scheduling based on canopy temperature.
- Application
 - •If **DANS** > **0.5°C**, irrigation is recommended.
 - •If **DANS < 0.5°C**, no irrigation needed.
 - •Helps optimize water use efficiency.

EXAMPLE

- Dataset preparation Download from GEE
- Recurrent Neural Network and Random Forest model

WEATHER DATA OPTIONS

- Local level dataset: MESONET, https://nysmesonet.org/
- Regional/Continental/Global dataset:
 - NLDAS: https://developers.google.com/earth-engine/datasets/catalog/NASA_NLDAS_FORA0125_H002
 - GRIDMET: https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET
 - PRISM: https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81d#description