Limits and Geometry

Aiden Rosenberg

December MMXXII A.D

1 Problem

Let $P(a, a^2)$ be a point on the parabola $y = x^2$, a > 0. Let O denote the origin and (0, b) the y-intercept of the perpendicular bisector of the line segment \overline{OP} . Find the $\lim_{R \to O} b$.

2 Conjecture

Proposition 1. The $\lim_{P\to O} b = k$ such that $k \in \mathbb{R}^+$.

3 Graph

4 Analysis

4.1 Numerical Analysis

The table above represents simulated values for b using graphical analysis via the Desmos engine. Link to the interactive graph: https://www.desmos.com/calculator/kwepdntlyx

4.2 Algebraic Analysis

Let m denote the slope of the secant line of the point (0,0) and (0,a) $\therefore m = \frac{f(a)}{a} = \frac{a^2}{a} = a$. The equation for the perpendicular bisector of the line can be written as $y_{\perp} = \frac{-1}{a}(x - x_m) + y_m$ where (x_m, y_m) is the midpoint of the secant line. The point (x_m, y_m) can be expressed as $\left(\frac{a}{2}, \frac{f(a)}{2}\right) \Longrightarrow y_{\perp} = \frac{-1}{a}\left(x - \frac{a}{2}\right) + \frac{f(a)}{2} \xrightarrow{\text{Simplifying}} y_{\perp} = \frac{-x}{a} + \underbrace{\frac{1}{2} + \frac{a^2}{2}}_{\text{Real Number}}$. When $x = 0 \Longrightarrow y = \underbrace{\frac{1 + a^2}{2}}_{y\text{-intercept}} = b$.

The
$$\lim_{P \to O} b = \lim_{a \to 0} \frac{1 + a^2}{2} = \boxed{\frac{1}{2}}$$