IT University of Copenhagen Discrete Mathematics, MSc SD Exam

24 January, 2021

Instructions (Read Carefully)

Contents: The exam contains 13 questions for a total of 100 points. The exam is divided into two parts: The first part has 9 multiple choice questions and the second part has 4 open ended questions.

What to check: In the multiple-choice questions, there is one and only one correct answer. You should only check 1 box.

Definitions and theorems: At the end of this document (page 8) you can find some definitions and theorems that could be useful for answering some of the questions.

Info about you: Write *clearly* your full name and your date of birth (DoB) on *every page* (top-right).

—IMPORTANT—

Only information written on the pages 1-7 will be evaluated. Anything else that you hand in will NOT be considered for the final evaluation! Part I. Answer the following multiple choice questions.

S 1. (6 pts) Which of the following statements is **false**?

 $\underline{\mathbf{A}} \emptyset \subseteq \{1, 2, 3\}.$

$$\mathbb{P}$$
 $\{1,2,3\} \subseteq \mathcal{P}(\{1,2,3\}).$

$$\square$$
 {1, 2, 3} $\cup \emptyset = \{1, 2, 3\} - \emptyset$.

S 2. (6 pts) Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as follows:

$$f(n) = 2 \cdot (n \bmod 12)$$

for all $n \in \mathbb{Z}$

where \mathbb{Z} is the set of integers. Which of the following statements is **true**?

 $\boxed{\mathbf{A}}$ f is not a function because 12 and 24 have the same image.

 $\boxed{\mathbf{B}}$ f is one-to-one.

 $\boxed{\mathbb{D}} f$ is onto.

S 3. (6 pts) Which of the following statements is **true**?

 $\underline{\mathbf{A}} \gcd(11,7n) = 1$ for all positive integers n.

C 33 | 11.

 \boxed{D} -5n mod 3 = 1 for all positive integers n.

- **CP** 4. (6 pts) You have a standard deck of 52 cards: It has 13 cards of each of the four suits $(\heartsuit, \spadesuit, \clubsuit, \diamondsuit)$. The 13 cards of each suit have different ranks $(A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K)^1$. How many ways are there to have a hand of 5 cards so that 3 cards have the suit \heartsuit and 3 cards have the rank king? For example, $A\heartsuit, 2\heartsuit, K\heartsuit, K\diamondsuit, K\clubsuit$ is such a hand. Note that the order of the cards does not matter, i.e. $K\diamondsuit, K\clubsuit, K\heartsuit, A\heartsuit, 2\heartsuit$ is considered to be the same hand as $A\heartsuit, 2\heartsuit, K\heartsuit, K\diamondsuit, K\clubsuit$.
 - **1**98
 - B 286
 - C 468
 - D 1144

Solution: One of the 5 cards must be $K \heartsuit$. Of the other 4 cards, 2 must have suit \heartsuit and 2 must have rank king. There are $\binom{12}{2}$ many ways of choosing the \heartsuit cards and $\binom{3}{2}$ many ways of choosing the king cards. By the multiplication rule we thus have the following number of possible choices:

$$\binom{12}{2} \cdot \binom{3}{2} = 198$$

- CP 5. (6 pts) You have three *six-sided* dice. One of them is *loaded*. The chance of rolling a 6 with the loaded die is 25%. The other two dice are *fair*, i.e. each side is equally likely to come up. You pick up one of the three dice at random, roll it, and observe that you rolled a 6. What is the probability that the die that you rolled was the loaded die?
 - $A \frac{1}{2}$
 - $\mathbb{B} \frac{3}{5}$
 - $\mathbb{C}^{\frac{2}{3}}$
 - $\mathbf{p} \frac{3}{7}$

Solution: Let L be the event of rolling the loaded die, and X be the event of rolling a 6. We need to calculate P(L|X). According to the text we have the following probabilities: $P(X|L) = \frac{1}{4}$, $P(X|L^c) = \frac{1}{6}$, and $P(L) = \frac{1}{3}$. Hence, $P(L^c) = 1 - P(L) = \frac{2}{3}$. According to Bayes' Theorem, we can calculate P(L|X) as follows:

$$P(L|X) = \frac{P(X|L) \cdot P(L)}{P(X|L) \cdot P(L) + P(X|L^c) \cdot P(L^c)} = \frac{\frac{1}{4} \cdot \frac{1}{3}}{\frac{1}{4} \cdot \frac{1}{3} + \frac{1}{6} \cdot \frac{2}{3}} = \frac{3}{7}$$

 $[\]overline{^{1}A = ace, J = jack, Q = queen, K = king}$

6. (6 pts) Consider the binary relation R on N defined as follows for all $n, m \in \mathbb{N}$:

$$mRn$$
 iff $n = 5 \cdot m$

Which of the following statements is **true**?

- $\overline{\mathbf{A}}$ R is an equivalence relation.
- $\boxed{\mathbb{B}}$ R is a partial order relation.
- \square R is symmetric, but not reflexive.
- A 7. (6 pts) Below you are given four languages described using Kleene closure (*), concatenation and union. Which of these languages contains the string 1010, but does not contain the string 10101?

$$\boxed{A} \{101\}^* \cup \{0\}^*$$

$$\mathbb{B} \{10\}^* \{1,0\}^*$$

$$\square$$
 ({1}* {0})* { λ , 1}

$$\mathbf{D}(\{1\}^*\{10\})^*$$

G 8. (6 pts) Let G be the following graph:

Which of the following statements is **true**?

- $\overline{\mathbf{A}}$ G is a tree.

- $\boxed{\mathbb{D}}$ G has two connected components.

Solution: The graph is connected, two vertices have degree 3, while all remaining vertices have degree 2. Hence, the graph has an Euler trail.

9. (6 pts) Let the sequence a_0, a_1, a_2, \ldots be recursively defined by

– 4 of 16 –

$$a_k = a_{k-1} + 2^k \quad \text{for all } k > 0$$

$$a_0 = 1$$

Which of the following equations is **true** for all $n \ge 0$?

$$\mathbf{M} \ a_n = \sum_{i=0}^n 2^i$$

Solution: B cannot be true since $a_1 = 3$, but 2! = 2; C cannot be true since $a_1 = 3$, but $2^1 = 2$; D cannot be true since $a_3 = 15$, but $3(3+1) + 1 = 3 \cdot 4 + 1 = 13$.

Part II. Answer the following questions. Be brief but precise. Your correct use of mathematical notation is an important aspect of your answer.

10. (12 pts) Using the logical equivalences on page 8, prove the following logical equivalence:

$$(q \lor p) \to p \equiv p \lor \sim q$$

In each step, indicate (by number) which equivalence from page 8 you have used. Solution:

$$(q \lor p) \to p$$

$$\equiv \sim (q \lor p) \lor p \tag{12}$$

$$\equiv (\sim q \land \sim p) \lor p \tag{9}$$

$$\equiv p \lor (\sim q \land \sim p) \tag{1}$$

$$\equiv (p \lor \sim q) \land (p \lor \sim p) \tag{3}$$

$$\equiv (p \lor \sim q) \land \mathbf{t} \tag{5}$$

$$\equiv p \lor \sim q \tag{4}$$

L 11. (12 pts) Prove the following statement by mathematical induction:

$$\sum_{i=1}^{n} (10i - 8) = 5n^2 - 3n \quad \text{for all } n \ge 1$$

Solution: We want to prove the statement

$$\sum_{i=1}^{n} (10i - 8) = 5n^2 - 3n$$

for all $n \geq 1$.

Basis step: Let n = 1. The left-hand side of P(1) simplifies to

$$\sum_{i=1}^{1} (10i - 8) = 10 \cdot 1 - 8 = 2$$

and the right-hand side of P(1) simplifies to

$$5 \cdot 1^2 - 3 \cdot 1 = 5 - 3 = 2$$

Inductive step:

Suppose that $k \geq 1$ and that P(k) holds, that is,

$$\sum_{i=1}^{k} (10i - 8) = 5k^2 - 3k$$

We must show that P(k+1) holds, that is,

$$\sum_{i=1}^{k+1} (10i - 8) = 5(k+1)^2 - 3(k+1)$$

The following derivation proves this equation:

$$\sum_{i=1}^{k+1} (10i - 8)$$

$$= \sum_{i=1}^{k} (10i - 8) + (10(k + 1) - 8)$$
 (write last summand separately)
$$= 5k^2 - 3k + 10(k + 1) - 8$$
 (inductive hypothesis)
$$= 5k^2 - 3k + 10k + 10 - 8$$
 (distributivity)
$$= 5k^2 + 10k + 5 - 3k - 3$$
 (10 - 8 = 2 = 5 - 3)
$$= 5(k^2 + 2k + 1) - 3k - 3$$
 (factorisation)
$$= 5(k + 1)^2 - 3(k + 1)$$
 (binomial theorem)

12. (10 pts) Construct a finite-state automaton A with input alphabet $\{a,b\}$ that recognises the set of strings starting with an even number of 'a's followed by a single 'b'. That is, A must satisfy

$$L(A) = \left\{ a^{2n}b \mid n \ge 0 \right\}$$

Describe the automaton A using a next-state table or a transition diagram. Solution:

- A 13. (12 pts) In the following you are asked to construct grammars that generate languages over the alphabet $\{a,b\}$. Remember to give all components of the grammar: its terminal symbols, non-terminal symbols, the starting symbol and the productions of the grammar.
 - (a) Construct a grammar that generates the language $\{a^{2n}b^n \mid n \geq 0\}$.

Solution: (V, T, S, P) where

- 7 of 16 -

- $\bullet \ V = \{a, b, S\}$
- $\bullet \ T = \{a, b\}$
- $P = \{S \to \lambda, S \to aaSb\}$
- (b) Construct a grammar that generates the language $\{a^nb^m \mid m \geq n \text{ and } n \geq 0\}$.

Solution: (V, T, S, P) where

- $\bullet \ V = \{a, b, S\}$
- $\bullet \ T = \{a, b\}$
- $P = \{S \to Sb, S \to aSb, S \to \lambda\}$

Definitions and theorems

Logic

The truth table for a number of logical operators is given below.

p	q	$\sim p$	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
\mathbf{T}	$\mid \mathbf{T} \mid$	\mathbf{F}	${f T}$	${f T}$	\mathbf{T}	\mathbf{T}
$ \mathbf{T} $	$\mid \mathbf{F} \mid$	\mathbf{F}	${f T}$	${f F}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	$\mid \mathbf{T} \mid$	\mathbf{T}	${f T}$	${f F}$	${f T}$	${f F}$
\mathbf{F}	$\mid \mathbf{F} \mid$	\mathbf{T}	${f F}$	${f F}$	\mathbf{T}	${f T}$

A compound proposition is called a *tautology* if it is always true no matter what the truth values of the propositional variables are. A compound proposition that is always false is called a *contradiction*.

The compound propositions p and q are called *logically equivalent* if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

Given any propositional variables p, q, r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold:

1. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
2. Associative laws:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p\vee q)\vee r\equiv p\vee (q\vee r)$
3. Distributive laws:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
4. Identity laws:	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
5. Negation laws:	$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
6. Double negative law:	$\sim (\sim p) \equiv p$	
7. Idempotent laws:	$p \wedge p \equiv p$	$p\vee p\equiv p$
8. Universal bound laws:	$pee\mathbf{t}\equiv\mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
9. De Morgan's laws:	${\sim}(p \wedge q) \equiv {\sim}p \vee {\sim}q$	${\sim}(p\vee q)\equiv{\sim}p\wedge{\sim}q$
10. Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
11. Negations of $\mathbf{t} \ \& \ \mathbf{c}$:	${\sim}{ m t}\equiv{ m c}$	${\sim}{ m c}\equiv{ m t}$
12. Conditional:	$\sim p \vee q \equiv p \to q$	$p \to q \equiv \sim q \to \sim p$
13. Biconditional:	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	$p \leftrightarrow q \equiv \sim p \leftrightarrow \sim q$

Sets

A set is an (unordered) collection of objects, called elements or members. We write $a \in A$ to indicate that a is an element of A

A set A is a subset of a set B, written $A \subseteq B$, if for all $a, a \in A$ implies $a \in B$.

Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$.

The power set of a set A, denoted $\mathcal{P}(A)$, is the set of all subsets of A. That is, $\mathcal{P}(A) = \{B \mid B \subseteq A\}$.

The union of two sets A and B is the set $A \cup B = \{x \mid x \in A \lor x \in B\}$.

The intersection of A and B is the set $A \cap B = \{x \mid x \in A \land x \in B\}.$

The difference of two sets A and B is the set $A - B = \{x \mid x \in A \land x \notin B\}$.

The complement of a set A is the set $A^c = \{x \in \mathcal{U} \mid x \notin A\}$, where \mathcal{U} is the universal set.

The Cartesian product of A and B is the set $A \times B = \{(a,b) \mid a \in A \land b \in B\}$. That is, $A \times B$ is the set of all pairs (a,b) with $a \in A$ and $b \in B$.

Functions

Given two sets A and B, a function f from A to B (written $f : A \to B$) is an assignment of exactly one element of B to each element of A.

A function $f: A \to B$ is *onto* if for every element $b \in B$ there is an element $a \in A$ such that f(a) = b.

A function $f: A \to B$ is one-to-one if f(a) = f(b) implies a = b for all a and b in the domain of f.

A function f is a *one-to-one correspondence* if it is both one-to-one and onto.

Given two functions $g:A\to B$ and $f:B\to C$, the *composition* of f and g (written $f\circ g:A\to C$) is given by

$$(f \circ g)(a) = f(g(a))$$
 for all $a \in A$

Let $f: X \to Y$. If f(x) = y we say that y is the *image* of x and x is an *inverse image* (or *preimage*) of y. The range (or *image*) of f is the set of all values of f, i.e.

$$\mathsf{range}\,(f) = \{y \in Y \mid \exists x \in X. f(x) = y\}$$

The *inverse image* of an element $y \in Y$ is the set of all inverse images of y, i.e.

inverse image of
$$y = \{x \in X \mid f(x) = y\}$$

Relations

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

A relation on a set A is a binary relation from A to A.

A relation R on a set A is called *reflexive* if $(a, a) \in R$ for every element $a \in A$.

A relation R on a set A is called *symmetric* if $(b,a) \in R$ whenever $(a,b) \in R$, for all $a,b \in A$.

A relation R on a set A is called *antisymmetric* if whenever $(a, b) \in R$ and $(b, a) \in R$, then a = b, for all $a, b \in A$,.

A relation R on a set A is called *transitive* if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$.

The transitive closure of a relation R is the smallest transitive relation T such that $R \subseteq T$.

A relation is an *equivalence relation* if it is reflexive, symmetric and transitive.

Let R be an equivalence relation on a set A. The equivalence class of $a \in A$ is the set $[a]_R = \{x \in A \mid x R a\}.$

A relation is a partial order relation if it is reflexive, antisymmetric and transitive.

A partially ordered set is a pair (A, R) consisting of a set A and a partial order relation R on A.

Elements a and b of a partially ordered set (A, \preceq) are said to be *comparable* if $a \preceq b$ or $b \preceq a$. Otherwise, a and b are said to be *incomparable*.

Let (A, \preceq) be a partially ordered set. An element $a \in A$ is called

- a greatest element of A, if $x \leq a$ for all $x \in A$
- a least element of A, if $a \leq x$ for all $x \in A$
- a maximal element of A if, for all $x \in A$, either $x \leq a$ or a and x are incomparable
- a minimal element of A if, for all $x \in A$, either $a \leq x$ or a and x are incomparable

Number Theory

Given two integers a and b, with $a \neq 0$, we say that a divides b (written $a \mid b$) if there exist an integer c such that b = ac, or equivalently, if $\frac{b}{a}$ is an integer.

Theorem 1. Let a, b, and c be any integers.

1. If $a \mid b \text{ and } a \mid c \text{ then } a \mid (b+c)$.

- 2. If $a \mid b$ then $a \mid bc$.
- 3. If $a \mid b$ and $b \mid c$ then $a \mid c$.

Theorem 2 (The Quotient/Remainder Theorem). Given any integer a and a positive integer d, there exist unique integers q and r such that

$$a = dq + r$$
 and $0 \le r < d$

In Theorem 2 the value d is called the divisor, a is the dividend, q is the quotient, and r is the remainder. Then div and mod are defined as a div d = q, $a \mod d = r$. Remember that the remainder cannot be negative.

Let n and m be any integers and d a positive integer. We write $n \equiv m \pmod{d}$ if

$$(n \bmod d) = (m \bmod d)$$

Theorem 3. Let n and m be any integers and d a positive integer then

$$n \equiv m \pmod{d}$$
 if and only if $d \mid (n-m)$

Let n be a nonnegative integer and $b_r b_{r-1} ... b_0$ a finite sequence of binary digits, i.e. $b_i \in \{0,1\}$ for $0 \le i \le r$. The sequence $b_r b_{r-1} ... b_0$ is a binary representation of n if

$$n = b_r \cdot 2^r + b_{r-1}2^{r-1} + \dots + b_1 \cdot 2 + b_0$$

For example 101101 is the binary representation of $1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2 + 1 = 45$

The greatest common divisor of two integers a and b, not both zero, is denoted by gcd(a, b) and is the largest integer that both divides a and divides b.

The *least common multiple* of two positive integers a and b is denoted by lcm(a, b) and is the smallest positive integer c such that $a \mid c$ and $b \mid c$.

Theorem 4. If a and b integer, not both zero, then

$$\gcd(a, b) = \gcd(b, a \bmod b)$$

Counting

The table below states how many different ways there are to order n distinct objects, and how many ways there are to choose r objects out of n distinct objects (depending on whether the order matters or repetition is allowed).

Order n objects (permutation)	$P(n) = n! = n \cdot (n-1) \dots 2 \cdot 1$		
Choose r objects from n	without repetition with repetiti		
- order matters $(r$ -permutation)	$P(n,r) = \frac{n!}{(n-r)!}$	n^r	
- order doesn't matter $(r$ -combination)	$\binom{n}{r} = \frac{n!}{r! (n-r)!}$	$\binom{n+r-1}{r}$	

Theorem 5 (Binomial Theorem). Given real numbers a and b, and non-negative integer n,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Let A be a finite set. We write N(A) to denote the number of elements in A. We say A has N(A) elements or A is a set of size N(A)

Theorem 6. If A and B are finite sets, then

$$N(A \cup B) = N(A) + N(B) - N(A \cap B)$$

Theorem 7 (Difference Rule). If A is a finite set and B is a subset of A, then

$$N(A - B) = N(A) - N(B).$$

Probability

A sample space is the set of all possible outcomes of a random process or experiment. An event is a subset of a sample space. The probability of an event E is denoted P(E). If S is a finite sample space in which all outcomes are equally likely and E is an event in S, then the probability of E is

$$P(E) = \frac{N(E)}{N(S)}$$

Let S be a sample space. A probability function P is a function from the set of all events in S to the set of real numbers satisfying

- 1. $0 \le P(A) \le 1$ for all events A in S.
- 2. $P(\emptyset) = 0$ and P(S) = 1.
- 3. If A and B are disjoint events in S, i.e. $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.

Theorem 8. If A is any event in a sample space S then the probability of the complement event $A^c = S - A$ is

$$P(A^c) = 1 - P(A)$$

Theorem 9. If A and B are events in a sample space S then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Suppose the sample space of an experiment or a random process is given by $S = \{a_1, ..., a_n\}$ where a_i is a real number for all $1 \le i \le n$. Suppose that each a_i occur with probability p_i for $1 \le i \le n$. The *expected value* of the process is

$$\sum_{i=1}^{n} a_i p_i = a_1 p_1 + a_2 p_2 + \dots + a_n p_n$$

Let A and B be events in a sample space S. If $P(A) \neq 0$, then the conditional probability of B given A, denoted P(B|A), is

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Theorem 10 (Bayes' Theorem). Suppose that a sample space S is the union of mutually disjoint events $B_1, ..., B_n$ where $P(B_i) \neq 0$ for all $1 \leq i \leq n$. Suppose that A is an event in S and that $P(A) \neq 0$. Then

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \dots + P(A|B_n)P(B_n)}$$

Graphs & Trees

A graph is a triple (V, E, f) consisting of: a finite, nonempty set V of vertices; a finite set E of edges; and a function $f: E \to \{\{x,y\} \mid x,y \in V\}$.

An edge with only one endpoint is called a *loop*. Two edges with the same set of endpoints are called *parallel*. Vertices are called *adjacent* if they are endpoints of the same edge (if the edge is a loop, its endpoint is called *adjacent to itself*). We say that an edge is *incident on* its endpoints. Two edges with a common endpoint are called *adjacent*. A vertex on which no edge is incident is called *isolated*.

A graph is called *simple* if it has no loops or parallel edges.

Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), is the number of edges that are incident on v, with an edge that is a loop counted twice. The total degree of G is the sum of the degrees of all vertices in G.

Theorem 11 (Handshake Theorem). A graph with m edges has total degree 2m.

The table below gives an overview over the different kinds of walks in a graph:

	repeated edge	repeated vertex	same start & end vertex	must contain at least 1 edge
Walk	allowed	allowed	allowed	no
Trail	no	allowed	allowed	no
Path	no	no	no	no
Closed walk	allowed	allowed	yes	no
Circuit	no	allowed	yes	yes
Simple Circuit	no	first and last only	yes	yes

A subgraph of G is a graph (V', E', f') with $V' \subseteq V, E' \subseteq E$ and f'(e) = f(e) for all $e \in E'$.

A graph (V, E, f) is connected if there exists a walk from u to v for all $u, v \in V$. A connected component of a graph G is a maximal connected subgraph C of G (i.e. every connected subgraph of G is either a subgraph of C or has no common vertices with C).

An Euler circuit of a graph G is a circuit that contains every edge and every vertex of G.

An Euler trail of a graph G is a trail that contains every edge and every vertex of G.

Theorem 12. A graph has an Euler circuit if and only if it is connected and every vertex has positive even degree.

Theorem 13. Given two distinct vertices u and v in a graph G, there exists an Euler trail from u to v if and only if G is connected, u and v have odd degree, and all other vertices have positive even degree.

A graph is called *circuit-free* if it has no circuits. A *tree* is a connected and circuit-free graph. In a tree, a vertex is called a *leaf* if it has degree 1, and an *internal vertex* if it has degree 2 or greater. A tree which consists of only one vertex is called *trivial*.

Theorem 14. Let n be a positive integer. A tree with n vertices has n-1 edges.

A rooted tree is a tree in which one vertex is distinguished from the others and is called the root. The level of a vertex in a rooted tree is the number of edges on the unique path from that vertex to the root. Given two adjacent vertices v and w such that the level of w is one greater than the level of v, then we call w a child of v and v the parent of w. In

a rooted tree, a vertex with one or more children is called an *internal vertex*, and a vertex with no children is called a *leaf*. A *binary tree* is a rooted tree in which every parent has at most two children. A *full binary tree* is a binary tree in which each parent has *exactly* two children.

Theorem 15. A full binary tree with n internal vertices has n + 1 leaves.

Automata, Regular Expressions, Grammars

An alphabet Σ is a finite set of symbols.

A string (or word) w over Σ is a finite sequence of symbols from Σ .

A language A is a set of strings over some Σ .

 λ is the *empty string*.

The length of w, written |w|, is the number of symbols that w contains. We write $|w|_a$ for the number of times the symbol a occurs in w.

Given words $w_1 = a_1 a_2 \dots a_m$ and $w_2 = b_1 b_2 \dots b_n$, we write $w_1 w_2$ to mean their concatenation: $a_1 a_2 \dots a_m b_1 b_2 \dots b_n$.

The concatenation of two languages L_1 and L_2 is defined as the language

$$L_1L_2 = \{w_1w_2 \mid w_1 \in L_1 \text{ and } w_2 \in L_2\}$$

The Kleene closure of a language L is the language $L^* = \{\lambda\} \cup L \cup LL \cup LLL \cup ...$

A finite-state automaton is a 5-tuple (S, I, N, s_0, F) consisting of: a finite set of states S; a finite set I (the input alphabet); a transition function $N: S \times I \to S$; an initial state s_0 ; and a set $F \subseteq S$ of accepting states.

The language accepted by an automaton A is denoted by L(A):

$$L(A) = \{ w \mid w \in I^* \text{ and } N^*(s_0, w) \in F \}$$

where $N^*: S \times I^* \to S$ is defined by

$$N^*(s, \lambda) = s$$

 $N^*(s, aw) = N^*(s', w)$ where $s' = N(s, a)$

A regular expression r over an alphabet Σ can be built using: \emptyset ; λ ; a symbol $a \in \Sigma$; concatenation r s and union $r \mid s$ of regular expressions r, s; and Kleene closure r^* of a regular expression r.

The language L(r) defined by a regular expression r is

$$\begin{array}{ll} L(\emptyset) = \emptyset & L(a) = \{a\} & L(r \mid t) = L(r) \cup L(r) \\ L(\lambda) = \{\lambda\} & L(r \, t) = L(r) \, L(r) & L(r^*) = L(r)^* \end{array}$$

A grammar G = (V, T, S, P) consists of: A set of symbols V called *vocabulary*; a set $T \subset V$ of terminal symbols (symbols in N = V - T are called *non-terminal*); a starting symbol $S \in V$; and a set P of productions of the form $z_0 \to z_1$, where $z_0, z_1 \in V^*$ and z_0 must contain at least one non-terminal symbol.

Given a grammar G and two strings $s, t \in V^*$, we write $s \Rightarrow t$, if s can be rewritten to t by applying one production from P. We write $s \stackrel{*}{\Rightarrow} t$, and say that t is derivable from s, if s can be rewritten to t by applying several productions from P. The language defined by the grammar G is the set of strings over T derivable from S:

$$L(G) = \left\{ w \mid w \in T^* \text{ and } S \stackrel{*}{\Rightarrow} w \right\}$$