In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore") df=pd.read_csv("iris.data",header=None,names=["Sepal_length","Sepal_width" In [2]: df Out[2]: Sepal_length Sepal_width Petal_length Petal_width **Species** 0 5.1 0.2 3.5 1.4 Iris-setosa 1 4.9 3.0 1.4 0.2 Iris-setosa 2 4.7 3.2 0.2 Iris-setosa 1.3 3 4.6 3.1 1.5 0.2 Iris-setosa 4 5.0 3.6 1.4 0.2 Iris-setosa 145 6.7 3.0 5.2 2.3 Iris-virginica 146 6.3 2.5 5.0 1.9 Iris-virginica 147 6.5 3.0 5.2 Iris-virginica 148 6.2 3.4 5.4 2.3 Iris-virginica 149 5.9 3.0 5.1 Iris-virginica

150 rows × 5 columns

Exploring the data

, ,		.,	, ,			
Out[3]:		Sepal_length	Sepal_width	Petal_length	Petal_width	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

In [4]: ▶ df.tail(10) # display last 10 rows

Out[4]:		Sepal_length	Sepal_width	Petal_length	Petal_width	Species
	140	6.7	3.1	5.6	2.4	Iris-virginica
	141	6.9	3.1	5.1	2.3	Iris-virginica
	142	5.8	2.7	5.1	1.9	Iris-virginica
	143	6.8	3.2	5.9	2.3	Iris-virginica
	144	6.7	3.3	5.7	2.5	Iris-virginica
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

In [5]: ► df.head(10)

Out[5]:		Sepal_length	Sepal_width	Petal_length	Petal_width	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	5	5.4	3.9	1.7	0.4	Iris-setosa
	6	4.6	3.4	1.4	0.3	Iris-setosa
	7	5.0	3.4	1.5	0.2	Iris-setosa
	8	4.4	2.9	1.4	0.2	Iris-setosa
	9	4.9	3.1	1.5	0.1	Iris-setosa

Getting Information about the Dataset

In [6]:

df.shape

Out[6]: (150, 5)

```
In [7]:
          ▶ df.info()# information about the columns and its datatypes
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 150 entries, 0 to 149
             Data columns (total 5 columns):
                                  Non-Null Count Dtype
              #
                  Column
              0
                  Sepal_length 150 non-null
                                                    float64
              1
                                                    float64
                  Sepal width
                                  150 non-null
                  Petal_length 150 non-null
              2
                                                    float64
              3
                  Petal_width
                                  150 non-null
                                                    float64
                  Species
                                  150 non-null
                                                    object
             dtypes: float64(4), object(1)
             memory usage: 6.0+ KB
             df.describe() # function gives a good picture of the distribution of data
In [8]:
    Out[8]:
                    Sepal_length Sepal_width Petal_length Petal_width
                      150.000000
                                  150.000000
                                              150.000000
                                                         150.000000
              count
                        5.843333
                                   3.054000
                                                3.758667
                                                           1.198667
              mean
                        0.828066
                std
                                   0.433594
                                                1.764420
                                                           0.763161
                min
                        4.300000
                                   2.000000
                                                1.000000
                                                           0.100000
               25%
                        5.100000
                                   2.800000
                                                1.600000
                                                           0.300000
               50%
                        5.800000
                                                4.350000
                                   3.000000
                                                           1.300000
               75%
                        6.400000
                                    3.300000
                                                5.100000
                                                           1.800000
```

Checking Missing Values

4.400000

6.900000

2.500000

7.900000

max

In [9]: ▶	df.isna	()					
Out[9]:	Sej	pal_length S	epal_width	Petal_length	Petal_width	Species	
	0	False	False	False	False	False	
	1	False	False	False	False	False	
	2	False	False	False	False	False	
	3	False	False	False	False	False	
	4	False	False	False	False	False	
	145	False	False	False	False	False	
	146	False	False	False	False	False	
	147	False	False	False	False	False	
	148	False	False	False	False	False	
	149	False	False	False	False	False	
n [10]: ▶		x 5 columns		our data c	ontains an	y missing	values or n
Out[10]:	Sepal_1 Sepal_w Petal_1 Petal_w Species dtype:	idth 0 ength 0 idth 0					
[n [11]: ▶	df["Spe	cies"].val	ue_counts	() # no mis	sing value.	S	
Out[11]:	Iris-ve Iris-vi	rsicolor	50 50 50 ype: int6	4			
In [12]: ▶	feature	input data =df.iloc[: df["Specie	,: -1]	re,output d	ata as tar	get	

In [13]: 🕨	featur	re				
Out[13]:	S	Sepal_length	Sepal_width	Petal_lengt	h Petal __	_width
	0	5.1	3.5	1.	4	0.2
	1	4.9	3.0	1.	4	0.2
	2	4.7	3.2	1.	3	0.2
	3	4.6	3.1	1.	5	0.2
	4	5.0	3.6	1.	4	0.2
		•••				
	145	6.7	3.0	5.		2.3
	146	6.3	2.5	5.		1.9
	147	6.5	3.0	5.		2.0
	148	6.2	3.4	5.		2.3
	149	5.9	3.0	5.	1	1.8
	150 rov	ws × 4 column	S			
In [14]: ▶	target	<u> </u>				
Out[14]:	0	Iris-se	tosa			
	1	Iris-se				
	2	Iris-s∈				
	3	Iris-s∈				
	4	Iris-s∈ 	etosa			
	145	Iris-virgi	nica			
	146	Iris-virgi				
	147	Iris-virgi				
	148	Iris-virgi				
	149	Iris-virgi				
		Species, Le		, dtype:	object	

Data Visualization

In [15]: N sns.countplot(x="Species",data=df);

In [18]: ► sns.scatterplot(x='Sepal_length', y='Sepal_width', hue='Species', data=df);

from fig:-

Setosa has smaller sepal lengths but larger sepal widths. versicolor lies in the middle,in the case of sepal length and sepal width. virginica has larger sepal length and smaller sepal width.

In [19]: ▶ sns.scatterplot(x='Petal_length', y='Petal_width',hue='Species', data=df);

from fig:-

Setosa has smaller petal lengths and widths. Versicolor lies in the middle of the other two species in terms of petal length and width Virginica has the largest of petal lengths and widths.

Sepal_length

In [23]: ▶ df.describe()

Out[23]	Sepal_length
---------	--------------

	Sepal_length	Sepal_width	Petal_length	Petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
▶ feature=df.iloc[:,:-1]
In [25]:
               target=df["Species"]
           ▶ | feature
In [26]:
    Out[26]:
                    Sepal_length Sepal_width Petal_length Petal_width
                 0
                             5.1
                                         3.5
                                                      1.4
                                                                 0.2
                 1
                             4.9
                                         3.0
                                                      1.4
                                                                 0.2
                 2
                             4.7
                                         3.2
                                                      1.3
                                                                 0.2
                  3
                             4.6
                                         3.1
                                                      1.5
                                                                  0.2
                  4
                             5.0
                                         3.6
                                                      1.4
                                                                 0.2
                                                                  ...
                              ...
                                                       ...
                145
                             6.7
                                         3.0
                                                      5.2
                                                                  2.3
                                         2.5
                                                      5.0
                                                                  1.9
                146
                             6.3
                147
                             6.5
                                         3.0
                                                      5.2
                                                                  2.0
                148
                             6.2
                                         3.4
                                                      5.4
                                                                  2.3
                149
                             5.9
                                         3.0
                                                      5.1
                                                                  1.8
               150 rows × 4 columns
In [27]:
           ▶ target
    Out[27]: 0
                          Iris-setosa
               1
                          Iris-setosa
               2
                          Iris-setosa
               3
                          Iris-setosa
               4
                          Iris-setosa
               145
                       Iris-virginica
               146
                       Iris-virginica
               147
                       Iris-virginica
               148
                       Iris-virginica
               149
                       Iris-virginica
               Name: Species, Length: 150, dtype: object
```

Handling Outliers

```
In [28]:  plt.figure(figsize=(10,10))
  plt.grid()
  sns.boxplot(data=feature,x=target,y="Sepal_length");
```


Out[29]: Sepal_length Sepal_width Petal_length Petal_width Species

106 4.9 2.5 4.5 1.7 Iris-virginica

Out[33]:		Sepal_length	Sepal_width	Petal_length	Petal_width	Species
	119	6.0	2.2	5.0	1.5	Iris-virginica

In [35]: sns.boxplot(data=feature,x=target,y="Sepal_width");

Out[37]: Sepal_length Sepal_width Petal_length Petal_width Species

98 5.1 2.5 3.0 1.1 Iris-versicolor

In [40]: ► df[(df["Species"]=="Iris-setosa")&(df["Petal_length"]<1.2)]</pre>

 Out[40]:
 Sepal_length
 Sepal_width
 Petal_length
 Petal_width
 Species

 13
 4.3
 3.0
 1.1
 0.1
 Iris-setosa

 22
 4.6
 3.6
 1.0
 0.2
 Iris-setosa

In [44]: ▶ df[(df["Species"]=="Iris-setosa")&(df["Petal_width"]>0.4)]

Out[44]:		Sepal_length	Sepal_width	Petal_length	Petal_width	Species
	23	5.1	3.3	1.7	0.5	Iris-setosa
	43	5.0	3.5	1.6	0.6	Iris-setosa

In [47]: ▶ feature.head()

Out[47]:		Sepal_length	Sepal_width	Petal_length	Petal_width
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2

Encoding

Target

```
In [48]: ▶ from sklearn.preprocessing import LabelEncoder
```

```
▶ le=LabelEncoder()
In [49]:
      le.fit transform(target)
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
         Train and fit the model
In [50]:
    xtrain,xtest,ytrain,ytest=train_test_split(feature,target,test_size=0.2,ra
    ▶ | from sklearn.neighbors import KNeighborsClassifier
In [51]:
      knn = KNeighborsClassifier(n_neighbors=3)
      knn.fit(xtrain, ytrain)
      ypred = knn.predict(xtest)
```

	precision	recall	f1-score	support
Tu:+	1 00	1 00	1 00	11
Iris-setosa	1.00	1.00	1.00	11
Iris-versicolor	1.00	0.92	0.96	13
Iris-virginica	0.86	1.00	0.92	6
accuracy			0.97	30
macro avg	0.95	0.97	0.96	30
weighted avg	0.97	0.97	0.97	30

```
In [53]: # KNN :-Training score and testing score
    trainacc = knn.score(xtrain, ytrain)
    testacc = knn.score(xtest, ytest)
    print(f"Training Accuracy -: {trainacc}\nTesting Accuracy -: {testacc}")
```

ytest accuracy for k=1 is 100 ytest accuracy for k=2 is 96 ytest accuracy for k=3 is 96 ytest accuracy for k=4 is 100 ytest accuracy for k=5 is 96 ytest accuracy for k=6 is 100 ytest accuracy for k=7 is 100 ytest accuracy for k=8 is 100 ytest accuracy for k=9 is 100 ytest accuracy for k=10 is 100 ytest accuracy for k=11 is 100 ytest accuracy for k=12 is 100 ytest accuracy for k=13 is 100 ytest accuracy for k=14 is 100 ytest accuracy for k=15 is 100 ytest accuracy for k=16 is 100 ytest accuracy for k=17 is 100 ytest accuracy for k=18 is 100 ytest accuracy for k=19 is 100 ytest accuracy for k=20 is 100 ytest accuracy for k=21 is 100 ytest accuracy for k=22 is 100 ytest accuracy for k=23 is 100 ytest accuracy for k=24 is 100 ytest accuracy for k=25 is 100 ytest accuracy for k=26 is 96 ytest accuracy for k=27 is 93 ytest accuracy for k=28 is 93

```
ytest accuracy for k=30 is 96
In [55]:
        knn=KNeighborsClassifier(n neighbors=1)
           knn.fit(xtrain,ytrain)
           ypred=knn.predict(xtest)
In [56]:

    | acc=accuracy_score(ytest,ypred)
           cm=confusion_matrix(ytest,ypred)
           cr=classification_report(ytest,ypred)
           print(f"Accuracy :- {acc}\n{cm}\n{cr}")
           Accuracy :- 1.0
            [[11 0 0]
            [ 0 13 0]
            [0 0 6]]
                           precision recall f1-score support
               Iris-setosa
                               1.00
                                        1.00
                                                 1.00
                                                            11
           Iris-versicolor
                                                            13
                               1.00
                                       1.00
                                                 1.00
            Iris-virginica
                               1.00
                                        1.00
                                                 1.00
                                                             6
                                                 1.00
                                                            30
                  accuracy
                               1.00 1.00
                                                            30
                 macro avg
                                                 1.00
              weighted avg
                               1.00
                                        1.00
                                                 1.00
                                                            30
```

Function for selecting model

ytest accuracy for k=29 is 93

```
In [57]: M

def mymodel(model):
    #model creation
    model.fit(xtrain, ytrain)
    ypred = model.predict(xtest)

#checking bias & variance
    train = model.score(xtrain, ytrain)
    test = model.score(xtest, ytest)
    print(f"Training Accuracy : {train}\nTesting Accuracy : {test}\n\n")

#model evaluation
    print(classification_report(ytest, ypred))
    return model
```

Using Decision Tree

```
▶ | from sklearn.tree import DecisionTreeClassifier
In [58]:
In [59]:
          decision_tree = mymodel(DecisionTreeClassifier())
             Training Accuracy : 1.0
             Testing Accuracy : 1.0
                             precision
                                          recall f1-score
                                                             support
                 Iris-setosa
                                  1.00
                                            1.00
                                                      1.00
                                                                  11
             Iris-versicolor
                                  1.00
                                            1.00
                                                      1.00
                                                                  13
              Iris-virginica
                                  1.00
                                            1.00
                                                      1.00
                                                                   6
                                                                  30
                   accuracy
                                                      1.00
                   macro avg
                                   1.00
                                            1.00
                                                      1.00
                                                                  30
                weighted avg
                                  1.00
                                            1.00
                                                      1.00
                                                                  30
```

In []: ▶