Optimization Report

In Litterman's carbon pricing model, the original optimization consists of 2 phases: genetic algorithm (GA) and gradient search (GS). In order to improve the optimization approach, we introduce alternative methods and integrate them with the original pricing model. Results of all appropriate combinations of these methods, including GA and GS, are given in this documentation, to be compared with the GA+GS benchmark.

Here are some explanations for the variables:

• Final Utility:

Final objective function value of our optimization. This is essentially -U(0) or negative optimized utility at the start point. Our original question has to do with the utility maximization, so we need to minimize -U(0) in our optimization part. In another word, the smaller the final utility -U(0) is, the better.

• Percentage Decrease:

The percentage decrease in average utility of each combination compared to the benchmark, -9.4936. Here, the benchmark is the weighted average of the utility results from RBF+QN, GA+QN (excluding unsatisfactory results), and QN.

• Error due to Initial Point:

This error comes up when we use Quasi-Newton method. In our tests, we take the final utility as the average of all the utility results. These results differ a little bit from each other and we take their standard deviation to be the error here. Notice that no randomness exists in our algorithm except the initial point, so the difference in final utility values must be resulted from that in the initial points. This is what we call error due to initial point here.

• Stop Constraint

3 appropriate stop constraints are listed in most of the tables. Only the one marked in red is the stop constraint that we take in the method in concern.

1 Comparison of Phase 1: GA, RBF, Random

Table 1: Phase 1 Comparison

	GA		
Utility after Phase 1	Standard Deviation of Utility	Number of Tests	Average Time
-8.5998	0.9411	100	222.136
	RBF		
Utility after Phase 1	Standard Deviation of Utility	Number of Tests	Average Time
-7.9547	0.0337	100	35.85283
Random			
Utility after Phase 1	Standard Deviation of Utility	Number of Tests	Average Time
-8.0585	0.1050	100	3.19

If we compare the 3 phase 1 methods, RBF gives the worst results. GA does a relatively better job, but it has the largest standard deviation and takes much longer time. This is due to the heuristic nature of GA. Indeed, as we can see in the analysis to follow, the advantage of GA is negligible. We can easily make it up with Quasi-Newton and achieve the optimization efficiently.

2 Comparison of Phase 2

Here we compare the phase 2 methods. We do 75 GA iterations and take it as phase 1. The 3 combinations we consider are GA+Fmincon, GA+GS, and GA+Quasi-Newton, whose summary tables are given below. If we look into the final utilities and time summaries, we can see that Quasi-Newton gives us the most favorable outcome. It outperforms not only in the utility result but also in time consumption. Most importantly, Quasi-Newton is the only one that manages to attain the local minimum/maximum.

2.1 GA+Fmincon

When it comes to Fmincon, we use its default settings, including the stop constraint. Upon our observation, Fmincon always stops at stepsize 1×10^{-10} . The 9th test hits the maximum number of iteration (3000), so it exits automatically (exitflag = 0). We therefore take the results of the other 8 tests.

Table 2: GA+Fmincon

Phase 1: GA			
Utility after Phase 1	Consequent Norm of Gradient	Number of Iterations	
-8.1343	0.4066	75	
Phase 2: Fmincon			
Final Utility	Number of Iterations	Number of Utility Iterations	
-9.3634	12.6250	932	
Norm of Gradient			
0.3909			
Percentage Decrease	Number of Tests	Error due to Initial Point	
1.37%	8	0.0312	

As we can see from Table 2, the final utility given by Fmincon is not close enough to the true value for our purpose. Below is the time decomposition for your reference.

Table 3: Time Decomposition (Average) for GA + Fmincon

	Self Time
GA	223.716
Fmincon	0.083
Utility_g	2056.272

2.2 GA+GS

The GA+GS combination is EZ-Climate's original method. We fix GS iterations to 200 times.

Table 4: GA+GS

	Phase 1: GA	
Utility after Phase 1	Consequent Norm of Gradient	Number of Iterations
-8.4932	0.4415	75
	Phase 2: GS	
Final Utility	Final Norm of Gradient	Number of Iterations
-9.4647	0.1640	200
Number of Utility Iterations	Number of Gradient Evaluations	Average Time
200	200	590.5188
Percentage Decrease	Number of Tests	Error of 200 Iterations
0.3%	20	0.0549

Compared to the Fmincon results, GS is much closer to the -9.4936 benchmark, to the first decimal place. We are likely to achieve ideal results with more iterations. Notice here that GA+GS combination gives the greatest standard error though. GS has its advantage with fast speed, but it takes around 10 minutes to complete in Matlab (average time ≈ 591 s).

2.3 GA+Quasi-Newton

As we said, Quasi-Newton seems to be the most desirable method among the 3 for phase 2. Out of the 20 GA+Quasi Newton tests, we get 17 qualified ones. The other 3 fail because the penalty for negative mitigation levels influences the value of our objective function to a large degree. The average of the 17 samples is -9.4936. We summarize them in the table to follow.

Table 5: GA+Quasi-Newton

Phase 1: GA			
Utility after Phase 1	Consequent Norm of Gradient	Number of Iterations	
-8.4932	0.4415	75	
Stop Constraint			
Norm of Gradient $< 10^{-3}$	Iteration $> 500 \times 10^{20}$	fcount $< 10^3$	
Phase 2: Quasi-Newton 17			
Utility after Phase 1	Final Norm of Gradient	Number of Iterations	
-9.4936	8.8510×10^{-4}	218.1765	
Number of Utility Iterations	Number of Gradient Evaluations	Average Time	
530.6471	530.6471	0.1349	
Percentage Decrease	Number of Tests	Error due to Initial Point	
0	17	8.4707×10^{-4}	

If we focus on the 17 results, they give the best final utility, which agrees with the benchmark to the fourth decimal place. Final gradient norm is 8.8510×10^{-4} and finite differentiation error is 8.4707×10^{-4} . Both support Quasi-Newton to be a good method. In addition, they on average take 218 iterations, compared to the 932 ones of Fmincon.

3 Further Analysis with Quasi-Newton

Based on the 2 sections above, we find Quasi-Newton a good candidate for phase 2. In this section, we integrate it with the other 2 phase 1 techniques and compare their outcomes.

3.1 Random + Quasi-Newton

Table 6: Quasi-Newton

Final Utility	Final Norm of Gradient	Number of Iterations
-9.4932	8.6961×10^{-4}	215.8000
Number of Utility Iterations	Number of Gradient Evaluations	
567.7000	567.7000	
Percentage Decrease	Number of Tests	Error due to Initial Point
0.0042%	10	0.0010

Table 7: Time Decomposition (Average) for Quasi-Newton

	Self Time
Damage Simulation	24.981
Calling utility and gradient	1403.744
Quasi-Newton	0.0767
Line Search	0.0258

Compared with the 17 results given by GA+Quasi-Newton, final utility here differs for 0.0004, which is acceptable. The finite differentiation error here is a little bit greater than that of the GA+Quasi-Newton combination.

3.2 RBF+Quasi-Newton

The RBF+Quasi-Newton is the only combination that gives better utility than the benchmark. Furthermore, the finite differentiation error is even smaller than that of the GA+QN combination. Notice that we test this combination using the GRI computer. This is the main reason it turns out to consume extremely long time, compared to the other methods. See Table 9.

Table 8: RBF + QN

	RBF		
Utility after Phase 1	Consequent Norm of Gradient	Number of Iterations	
-7.9427	0.3378	20	
Stop Constraint			
Norm of Gradient $< 10^{-3}$	Iteration > 500×10^{20}	f count $< 10^3$	
Quasi-Newton			
Final Utility	Final Norm of Gradient	Number of Iterations	
-9.4939	8.1948×10^{-4}	226	
Number of Utility Iterations	Number of Gradient Evaluations		
593.6667	593.6667		
Percentage Decrease	Number of Tests	Error due to Initial Point	
-0.00316%	6	7.8043×10^{-4}	

Table 9: Time Decomposition (Average) for RBF + Quasi-Newton

	Self Time
RBF	20.755
Calling utility and gradient	7421.8635
Quasi-Newton	0.122
Line Search	0.0393

4 Sensitivity Analysis with Quasi-Newton

Table 10: Quasi-Newton Sensitivity Analysis

Final Utility	Final Norm of Gradient	Number of Iterations
-9.4942	8.6500×10^{-4}	214.6897
Number of Utility Iterations	Number of Gradient Evaluations	
549.4333	549.4333	
Standard Deviation of Final Utility	Number of Tests	Total Time Average
0.0011	29	1472.2