

Dense Label Encoding for Boundary Discontinuity Free Rotation Detection

Xue Yang - Shanghai Jiao Tong University

X. Yang, et al. "Dense Label Encoding for Boundary Discontinuity Free Rotation Detection." In CVPR21.

Virtual, 2021

Limitations of CSL

• **Issue 1:** Thick prediction layer

$$Th_{reg.} = A$$

$$Th_{onehot} = Th_{csl} = A \times AR/\omega$$

• **Issue 2:** Unfriendliness to small aspect ratio objects

Densely Coded Label (DCL)

Use Densely Coded Label (DCL) instead of Sparsely Coded Label (SCL) (for Issus 1)

$$\underbrace{\operatorname{Th}_{bcl} = \operatorname{Th}_{gcl}}_{\operatorname{TH}_{dcl}} = A \times \lceil \log_2(AR/\omega) \rceil$$

where A indicates the number of anchors. AR represents angle range. W indicates the angle discretization granularity

• Example : A=21, AR=180, w=1

$$Th_{reg} = 21$$
, $Th_{onehot} = Th_{csl} = 3780$, $Th_{dcl} = 168$

Base Model	ω	GFlops	ΔGFlops	Params (M)	Δ Params	Training Time
RetinaNet-Reg	-	139.35	-	36.97	-	2 -
RetinaNet-CSL	1	254.96	+82.96%	45.63	+23.42%	$\sim 3x$
RetinaNet-BCL	1	143.87	+3.24%	37.31	+0.92%	\sim 1x
RetinaNet-GCL	1	143.87	+3.24%	37.31	+0.92%	$\sim 1x$

Densely Coded Label (DCL)

Use Densely Coded Label (DCL) instead of Sparsely Coded Label (SCL) (for Issus 1)

Densely Coded Label (DCL)

Use Densely Coded Label (DCL) instead of Sparsely Coded Label (SCL) (for Issus 1)

boundary GT=88, w=1, AR=180, n= AR/w=180 Encode: CSL-Gauss (-Round(GT-90)/w) =[0.61,0.88,1.0,0.88,0.61,0.32, 0.14,0.04...,0.14,0.32] Decode: 90-w(Argmax(Sigmoid(logits))+0.5)

(c) SCL: Circular Smooth Label

ADARSW

Angle Distance and Aspect Ratio Sensitive Weighting (for Issus 2)

$$W_{ADARSW}(\Delta\theta) = |\sin(\alpha(\Delta\theta))| = |\sin(\alpha(\theta_{gt} - \theta_{pred}))|$$

$$\alpha = \begin{cases} 1, & (h_{gt}/w_{gt}) > r \\ 2, & otherwise \end{cases}$$

(a) Ground Truth

(b) Prediction after using ADARSW

- When angle discretization granularity w is too small, too many angle categories, then classification affects performance
- When angle discretization granularity w is too large, the theoretical error is too large, thus the upper limit of performance is low

Method	ω	BR	SV	LV	SH	HA	5-mAP ₅₀	mAP_{50}	mAP_{75}	mAP _{50:95}
Reg	-	34.52	51.42	50.32	73.37	55.93	53.12	62.21	26.07	31.49
CSL	180/180	35.94	53.42	61.06	81.81	62.14	58.87	64.40	32.58	35.04
	180/4	30.74	40.54	50.98	72.07	59.54	50.77	62.38	24.88	31.01
	180/8	36.65	52.58	60.46	82.24	61.60	58.71	66.17	33.14	35.77
BCL	180/32	39.83	54.41	60.62	80.81	60.32	59.20	65.93	35.66	36.71
	180/64	38.22	54.70	60.16	80.75	60.11	58.79	65.00	34.31	36.00
	180/128	36.76	53.73	61.35	82.52	58.42	58.56	65.14	34.28	35.69
	180/180	37.42	53.72	58.70	80.73	63.31	58.78	65.83	33.94	36.35
	180/256	37.66	53.83	60.66	80.43	60.74	58.66	64.97	33.52	35.21
	180/512	37.93	53.85	58.52	80.04	60.87	58.24	64.88	33.09	34.99
	180/4	30.90	41.20	48.30	72.93	60.16	50.70	62.98	23.83	30.81
	180/8	36.88	51.10	59.81	82.40	61.57	58.35	65.23	33.92	35.29
	180/32	38.04	54.77	60.88	82.75	61.24	59.54	65.11	34.67	36.15
GCL	180/64	38.05	54.36	60.59	81.84	60.39	59.05	64.78	33.23	35.67
	180/128	37.74	54.36	59.43	81.15	60.51	58.64	66.13	33.65	36.34
	180/256	35.81	53.78	58.35	81.45	59.84	57.85	64.87	33.77	35.97
	180/512	37.99	54.23	61.61	80.84	62.13	59.36	64.34	34.08	35.92

(a)
$$\omega = 180/4$$

(c)
$$\omega = 180/128$$

(b)
$$\omega = 180/32$$

(d)
$$\omega = 180/256$$

Angle Distance and Aspect Ratio Sensitive Weighting

Method	ADARSW	PL	BD	GTF	TC	BC	ST	SBF	RA	SP	HC	10-mAP ₅₀	mAP_{50}
D.C.I.		88.63	71.62	65.18	90.70	76.32	78.47	52.26	60.25	66.61	49.15	69.92	66.53
BCL	✓	88.92	72.11	66.32	90.79	79.86	79.03	54.11	63.18	67.86	60.04	72.22	67.39
CCI		88.52	73.58	64.38	90.80	77.66	76.38	50.84	59.46	65.83	48.42	69.59	66.27
GCL	✓	88.96	75.20	65.24	90.78	79.13	77.95	55.60	61.90	66.18	56.27	71.72	67.02

Verification on different datasets

Method	ICDAR2015				UCA	MLT				
Method	Recall	Precision	Hmean	car(07/12)	plane(07/12)	mAP ₅₀ (07)	mAP ₅₀ (12)	Recall	Precision	Hmean
RetinaNet-Reg	81.49	83.29	82.38	87.28/90.79	90.42/97.52	88.85	94.16	55.70	75.24	64.01
RetinaNet-CSL	80.50	87.40	83.81 (+1.43)	88.09/ 92.93	90.38/97.22	89.23 (+0.38)	95.07 (+0.91)	58.32	73.62	65.08 (+1.07)
RetinaNet-BCL	81.61	84.79	83.17 (+0.79)	88.15 /92.35	90.57/97.86	89.36 (+0.51)	95.10 (+0.94)	58.91	73.14	65.26 (+1.25)

Visualization

Thank You!

- Paper: https://arxiv.org/abs/2011.09670
- Code: https://github.com/yangxue0827/RotationDetection
- Contact:
 - Xue Yang: yangxue-2019-sjtu@sjtu.edu.cn
 - Junchi Yan: yanjunchi@sjtu.edu.cn
- Homepage of our Lab:
 - http://thinklab.sjtu.edu.cn/