The max-min-hill-climbing algorithm

Michael Bauer

M.Sc. Comp. Science

July 15, 2014

Definition

A Bayesian Network is a directed acyclic graph (DAG) whose nodes are random variables and edges represent conditional dependencies. If two random variables are connected they are said to be dependent. If there is no connection they are said to be conditional independent.

- directed edges
- free of cycles
- random variable is represented as a node
- edges encode dependencies
- For instance: parent A, child C

Bioinformatics

Predicting the effect of missense mutations on protein function: analysis with Bayesian networks

Figure: http://www.biomedcentral.com/1471-2105/7/405/figure/F2?highres=y (by Chris J Needham1, James R Bradford, Andrew J Bulpitt, Matthew A Care and David R Westhead)

Bayesian Networks in sports and medicine

Figure: http://www-ekp.physik.uni-karlsruhe.de/z̃upanc/WS1011/docs/Datenanalyse2010_3.pdf

Figure: The data we observe from following the rules above.

Figure: The data we observe from following the rules above.

Empty graph without any edges

One iteration for the "Grade" node

One iteration for the "Grade" node

One iteration for the "Grade" node

All parents or children are found

Start new iteration

The benchmark for this algorithm

nobs	R	C	bnlearn
250	0.006	0.001	0.014
500	0.014	0.005	0.014
750	0.031	0.012	0.017
1000	0.038	0.015	0.014
1500	0.054	0.024	0.015
2500	0.086	0.037	0.019
5000	0.166	0.079	0.018

The arrows are still missing

Bayesian Dirichlet equivalent uniform (BDeu) score

$$BDeu(G) = \sum_{i=1}^n \sum_{j=1}^{q_i} \left(log \left(\frac{\Gamma(\frac{\eta}{q_i})}{\Gamma(N_{ij} + \frac{\eta}{q_i})} \right) + \sum_{k=1}^{r_i} log \left(\frac{\Gamma(N_{ijk} + \frac{\eta}{r_i q_i})}{\Gamma(\frac{\eta}{r_i q_i})} \right) \right).$$

Bayesian Dirichlet equivalent uniform (BDeu) score

Adding an edge

Adding an edge

Also possible: reverse and delete

Reverse again

Adding an edge

Adding an edge

Benchmark for the whole program

C	bnlearn
0.011	0.023
0.007	0.024
0.107	0.024
0.166	0.022
0.575	0.023
0.493	0.036
1.313	0.041
	0.011 0.007 0.107 0.166 0.575 0.493

Output of my program

Thanks for your attention!