REGIMEN TRANSITORIO (CIRCUITO RC)

Este circuito es inicialmente de continua, la tensión V' (=V $_{\rm I}$) alimenta al circuito RC. Antes de que el interruptor cambie de posición, la tensión en el condensador es v $_{\rm c}$ =V $_{\rm I}$. Cuando cambia el interruptor (en t=0s), la tensión V' cambia instantáneamente a V $_{\rm F}$, pero la tensión en el condensador sigue siendo V $_{\rm I}$.

Se plantea una ecuación de malla, en tiempo t>0, es decir cuando el interruptor ha cambiado a la posición V_F

Se utiliza la relación i-v del condensador, y se obtiene la ecuación diferencial (2).

Se resuelve la ecuación diferencial. La solución (3) debe cumplir que $v_c(t=0)=V_l$ y $v_c(t\to\infty)=V_F$ (ya que en $t\to\infty$ se alcanza el estado final de continua).

$$v_{c}(t_{10\%}) = V_{I}+10\% \ de \ (V_{F}-V_{I})$$

$$V_{F}+(V_{I}-V_{F}) \ e^{-\frac{t_{10\%}}{RC}} = V_{I}+0,10 \ (V_{F}-V_{I})$$

$$(V_{I}-V_{F}) \ e^{-\frac{t_{10\%}}{RC}} = 0,90 \ (V_{I}-V_{F})$$

$$t_{10\%} = -RC \ \ln 0,9 \approx 0,1 \ RC$$

$$(4)$$

$$v_{c}(t_{90\%}) = V_{I}+90\% \ de \ (V_{F}-V_{I})$$

$$V_{F}+ \ (V_{I}-V_{F}) \ e^{-\frac{t_{90\%}}{RC}} = V_{I}+0,90 \ (V_{F}-V_{I})$$

$$(V_{I}-V_{F}) \ e^{-\frac{t_{90\%}}{RC}} = 0,10 \ (V_{I}-V_{F})$$

$$t_{90\%} = -RC \ \ln 0,1 \approx 2,3RC$$
(5)

 $V_F = i \cdot R + v_c(t)$; $i = C \frac{dv_c(t)}{dt}$ (1)

$$RC \frac{dv_c(t)}{dt} + v_c = V_F$$
 (2)

$$v_c(t) = V_F + (V_I - V_F) e^{-\frac{t}{RC}}$$
 (3)

Se calcula $t_{10\%}$, que es el tiempo necesario para que el condensador recorra un 10% de su cambio de tensión. Análogamente se define $t_{90\%}$.

En el cálculo de $t_{10\%}$ o de $t_{90\%}$ desaparecen V_I y V_F . Sólo queda RC. Es indiferente que V_I sea mayor o menor que V_F , es indiferente el signo de V_i o V_F .

Finalmente, el tiempo necesario para pasar del 10% al 90% es 2,2 RC (6). Como ni $t_{10\%}$ ni $t_{90\%}$ dependen de $V_{\rm I}$ ni de $V_{\rm F}$, el tiempo de bajada (o de subida) es 2,2 RC.

$$t_{(Del\ 10\%\ al\ 90\%)} = 2.2\,RC$$
 (6)

Tiempo de subida $(\mathbf{t_r})$ es el tiempo necesario para que se pase del 10% al 90% del recorrido de salida.

Tiempo de caída ($\mathbf{t_f}$) es el tiempo necesario para que se pase del 90% al 10% del recorrido de salida.

En ambos casos $\mathbf{t_r} = \mathbf{t_f} = \mathbf{2,2RC}$, ya que es el tiempo desde que la tensión cambia en un 10% hasta que cambia en un 90% respecto al valor inicial.

^{*} El Transitorio, estrictamente es de duración infinita.