

Computer Vision

(Summer Semester 2020)

Lecture 4, Part 1

Edge Detection

Edges

- What types of edges do exist?
- Edges in noisy images
- Canny edge detector

Note: The core of these slides stems from the class CSCI 1430:
 "Introduction to Computer Vision" by James Tompkin, Fall 2017, Brown University.

Low Level vs. High Level

Sensing

Data Representation

Edges

Corners

Descriptors

Camera Calibration

Alignment of Multi-view stereo

3D Reconstruction

Vanishing Point

- Any 2 parallel lines
 (real world/ground
 plane) have same
 vanishing point in the
 image plane
- Ray OV, is parallel to the parallel lines
- There can be multiple vanishing points

Vanishing Point

- Any 2 parallel lines
 (real world/ground
 plane) have same
 vanishing point in the
 image plane
- Ray OV, is parallel to the parallel lines
- There can be multiple vanishing points

Vanishing Lines

- Any set of parallel lines (ground plane) meet at a vanishing point
- Set of all the vanishing points form the horizon line OR the vanishing line
- Different planes define different vanishing lines

Edge detection (Szeliski 4.2)

 Goal: Identify visual changes (discontinuities) in an image.

Why we care about edges?

- Recover viewpoint and geometry
- Higher level vision tasks,
 e.g. for recognition

Origin of Edges

Edges are caused by a variety of factors

Closeup of edges

Characterizing edges

An edge is a place of rapid change in the image intensity function

Intensity profile

With a little Gaussian noise

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

To find edges, look for peaks in d

$$\frac{d}{dx}(f*g)$$

S.Seitz

Derivative theorem of convolution

• Convolution is differentiable: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

This saves us one operation:

Derivative of 2D Gaussian filter

Tradeoff between smoothing and localization

1 pixel

3 pixels

7 pixels

 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Designing an edge detector

- Criteria for a good edge detector:
 - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
 - Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point
- Cues of edge detection
 - Differences in color, intensity, or texture across the boundary
 - Continuity and closure
 - High-level knowledge

Closeup of edges

Designing an edge detector

- "All real edges"
 - We can aim to differentiate later on which edges are 'useful' for our applications.
 - If we can't find all things which *could* be called an edge, we don't have that choice.

Is this possible?

Where do humans see boundaries?

human segmentation

gradient magnitude

image

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

45 years of boundary detection

Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011

State of edge detection

- Local edge detection works well
 - 'False positives' from illumination and texture edges (depends on our application).
- Some methods to take into account longer contours
- Modern methods that actually "learn" from data. [not in this class]
- Poor use of object and high-level information.

Canny edge detector

- Probably the most widely used edge detector in computer vision.
- Theoretical model: step-edges corrupted by additive Gaussian noise.
- Canny showed that first derivative of Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization.

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Demonstrator Image

rgb2gray('img.png')

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

Derivative of Gaussian filter

Compute Gradients

X Derivative of Gaussian

Y Derivative of Gaussian

(x2 + 0.5 for visualization)

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient

Compute Gradient Magnitude

sqrt(XDerivOfGaussian .^2 + YDerivOfGaussian .^2) = gradient magnitude

(x4 for visualization)

Compute Gradient Orientation

- Threshold magnitude at minimum level
- Get orientation via theta = atan2(gy, gx)

Thresholded:

Compute Gradient Orientation

- Threshold magnitude at minimum level
- Get orientation via theta = atan2(gy, gx)

Unthresholded:

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width

Non-maximum suppression for each orientation

At pixel q:

We have a maximum if the value is larger than those at both p and at r.

Interpolate along gradient direction to get these values.

Before Non-max Suppression

Gradient magnitude (x4 for visualization)

After non-max suppression

Gradient magnitude (x4 for visualization)

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
- 4. 'Hysteresis' Thresholding

'Hysteresis' thresholding

- Two thresholds high and low
- Grad. mag. > high threshold? = strong edge
- Grad. mag. < low threshold? noise
- In between = weak edge
- 'Follow' edges starting from strong edge pixels
- Continue them into weak edges
 - Connected components (Szeliski 3.3.4)

Final Canny Edges

$$\sigma=\sqrt{2}, t_{low}=0.05, t_{high}=0.1$$

Effect of σ (Gaussian kernel spread/size)

Original

$$\sigma = \sqrt{2}$$

$$\sigma = 4\sqrt{2}$$

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
- 'Hysteresis' Thresholding:
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
 - 'Follow' edges starting from strong edge pixels
 - Connected components (Szeliski 3.3.4)

MATLAB: edge(image, 'canny')