Lecture 3: Numerical Linear Algebra (UMA021): Roots of Non-Linear Equations

Dr. Meenu Rani

Department of Mathematics TIET, Patiala Punjab-India

Dr. Meenu Rani 1/12

Bisection method

$$\chi_1 = 1.5$$
, $\chi_2 =$
 $- \chi_n > \rightarrow \chi$

Maximum error bound

Suppose that $f \in C[a, b]$ and f(a) * f(b) < 0. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with $|p_n - p| \le |\frac{b-a}{2^n}|$ when $n \ge 1$. to mot of fini=0

Proof:

set of continuors function on [a, b]

pn - mth apprenimate mot p = enact root

$$f(n) = 0$$

$$[a,b]$$

$$b_1 = \frac{a+b}{2}$$

$$[a,b_1], [b_1,b]$$

$$b_2 = b_1 + b_2$$

Dr. Meenu Rani 2/12

Bisection method

Continue this percent with n iterations, then we get root lies in
$$(an, bn)$$

and $bn = an + bn$
 $bn - b| = |a_n + bn| - b|$
 $bn - b| = |a_n + bn| - an$
 $an + bn - an$

Bisection method

Example

Determine the number of iterations necessary to solve $f(x) = x^3 + 4x^2 - 10 = 0$ with accuracy 10^{-3} using $a_1 = 1$ and $b_1 = 2$.

Solution:

$$a_1 = 1$$
, $b_1 = 2$
 $|b_n - b| \le |b - a| \le |b^{-3}|$
 $|2 - 1| \le |b^{-3}|$
 2^m
 $\frac{1}{2^m} \le |b^{-3}|$
 $\frac{1}{2^m} \le |b^{-3}|$
 $2^m \le |b^{-3}|$
 $2^m \ge |b^{-3}|$

Dr. Meenu Rani 4/12

\$(N)=0

Exercise:

1 Find a bound for the number of iterations needed to achieve an approximation of $(25)^{1/3}$ by the bisection method with an accuracy 10^{-2} . Hence find the approximation with given accuracy.

make a non-linear can
$$x - (25)^{\frac{1}{3}} = 0$$

$$x^{2} = 25$$

$$x^{2} - 25 = 0$$

$$f(0) = -ve$$

$$f(1) = -ve$$

$$f(1) = -ve$$

Dr. Meenu Rani