Folha 2.1 – Sistemas de Forças e Binários

Forças, Resultante, Momento de uma Força e Momento Resultante

Questões:

- 1. Quatro forças complanares e concorrentes, com intensidades $F_1 = 30 \,\mathrm{N}$, $F_2 = 40 \,\mathrm{N}$, $F_3 = 20 \,\mathrm{N}$ e $F_4 = 50 \,\mathrm{N}$, actuam sobre um corpo. Os ângulos entre as forças são, ordenadamente, 50°, 30° e 60°. Calcule a intensidade da força resultante e o ângulo que ela faz com a força \vec{F}_1 .
- 2. Um bloco com massa $m = 6 \,\mathrm{kg}$ é empurrado, sobre uma superfície horizontal lisa, por uma vara que exerce uma força com intensidade de 60 N, e que forma um ângulo de 30° com a superfície horizontal.
 - a) Qual a força total, perpendicular ao plano horizontal, exercida sobre a superfície?
 - b) Qual a força total paralela à superfície?
- 3. Considere o corpo representado na Figura 1, sobre o qual actua, no ponto A, uma força \vec{F} com intensidade de 6 N, que forma um ângulo de 30° com o eixo dos xx. Calcule o momento da força em relação à origem do sistema de eixos, sabendo que o vector posição da força relativamente à origem do sistema de eixos, \vec{r} , tem módulo 45 cm e faz um ângulo de 50° com o eixo dos xx.

Figura 1

4. Considere três forças, $\vec{F}_1 = 6\hat{i}(N)$, $\vec{F}_2 = 6\hat{i} - 7\hat{j} + 14\hat{k}(N)$ e $\vec{F}_3 = 5\hat{i} - 3\hat{k}(N)$, aplicadas no ponto \vec{A} da Figura 2, para o qual $|\vec{r}| = 1,5$ m. Calcule o momento resultante destas forças em relação ao ponto \vec{O} , e mostre que é perpendicular à resultante das forças.

Figura 2

- 5. Dadas três forças $\vec{F}_1 = 500\,\hat{i}\,(kgf)$, $\vec{F}_2 = -200\,\hat{j} + 100\,\hat{k}\,(kgf)$ e $\vec{F}_3 = -100\,\hat{i} + 50\,\hat{j} 400\,\hat{k}\,(kgf)$, aplicadas no ponto A(4, -3, 15) m, determine:
 - a) A força resultante, indicando a sua intensidade e direcção.
 - b) O momento de cada força em relação à origem, O, e o momento resultante.
 - c) O momento da resultante, e prove que este é perpendicular à força resultante.
- 6. Calcule o momento resultante em relação à origem, O, das forças indicadas no problema 5, quando elas estão aplicadas em pontos diferentes: $\vec{F_1}$ em (3,8,10) m, $\vec{F_2}$ em (-2,0,4) m e $\vec{F_3}$ em (4,-25,10) m.

Soluções:

1.
$$R \approx 85,0 \text{ N e } \angle \vec{R}, \vec{F}_1 \approx 75,8^{\circ}$$

2.

- a) $F_{\perp} = 28.8 \text{ N}$, se a componente vertical de \vec{F}_1 apontar para cima. $F_{\perp} = 88.8 \text{ N}$, se a componente vertical de \vec{F}_1 apontar para baixo.
- b) $F_{\parallel} \simeq 52,0 \text{ N}$.

3.
$$\vec{M}_{\vec{F}O} \simeq -0.923 \hat{k} (Nm)$$

4. $\vec{M}_{r,Q} = 8,25\sqrt{2} \ \hat{i} - 8,25\sqrt{2} \ \hat{j} - 18\sqrt{2} \ \hat{k} \ (\text{Nm}).$

Calculando $\vec{M}_{r,O} \cdot \vec{R}$, verifica-se que este produto escalar é nulo. Como os módulos de $\vec{M}_{r,O}$ e \vec{R} não são nulos, então os vectores $\vec{M}_{r,O}$ e \vec{R} têm de ser perpendiculares.

5.

a)
$$\vec{R} = 400\hat{i} - 150\hat{j} - 300\hat{k}$$
 (N)
 $R = 50\sqrt{109}$ (N), $\theta_x = 39.98^\circ$, $\theta_y = 106.70^\circ$ e $\theta_z = 125.08^\circ$

b)
$$\vec{M}_{\vec{F}_1,O} = 7500 \,\hat{j} + 1500 \,\hat{k} \, (\text{kgf m})$$

 $\vec{M}_{\vec{F}_2,O} = 2700 \,\hat{i} - 400 \,\hat{j} - 800 \,\hat{k} \, (\text{kgf m})$
 $\vec{M}_{\vec{F}_3,O} = 450 \,\hat{i} + 100 \,\hat{j} - 100 \,\hat{k} \, (\text{kgf m})$
 $\vec{M}_{r,O} = 3150 \,\hat{i} + 7200 \,\hat{j} + 600 \,\hat{k} \, (\text{kgf m})$

c) $\vec{M}_{\vec{R},O} = 3150\,\hat{i} + 7200\,\hat{j} + 600\,\hat{k} \,(\text{kgf m})$

Calculando $\vec{M}_{\vec{R},O} \cdot \vec{R}$, verifica-se que este produto escalar é nulo. Como os módulos de $\vec{M}_{\vec{R},O}$ e \vec{R} não são nulos, então os vectores $\vec{M}_{\vec{R},O}$ e \vec{R} têm de ser perpendiculares.

6.
$$\vec{M}_{r,O} = 10300\,\hat{i} + 800\,\hat{j} - 1900\,\hat{k}\,(\text{kgf m})$$