Machine Learning

Introdução e aplicação na engenharia aeronáutica

Renato Cosin

Mini curso ministrado na XVIII SEA – EESC-USP

UST

https://sea.eesc.usp.br

Agenda

- Parte 1: Conceitos
 - Breve Introdução ao Machine Learning
 - O que é Machine Learning
 - Aprendizagem supervisionada e não supervisionada
 - O Classificação e regressão
 - Workflow de desenvolvimento de Machine Learning
 - Redes Neurais
 - Uma rede neural muito simples
 - Como treinar sua rede neural

Agenda

- Parte 2: Prática
 - O Preparação dos dados
 - Introdução ao Pandas
 - Tratando dados no Pandas
 - Introdução ao Tensorflow/Keras
 - A lógica de funcionamento do Tensorflow
 - "Hello world" no Tensorflow
 - Introdução ao Keras
 - O Exemplo prático de rede neural: Metamodelo de performance de uma aeronave
 - Montagem do modelo no Keras
 - Treinamento do modelo
 - Análise do resultados

Notas

- O Todos os dados apresentados neste curso foram gerados para fins exclusivamente didáticos e não se referem a qualquer aeronave real ou informação proprietária de qualquer espécie.
- O Todas as metodologias, algoritmos e software utilizados são disponíveis abertamente
- O material deste curso, incluindo os códigos e notebooks, será disponibilizado para que possam estudar os exemplos no futuro
- A execução dos exemplos requer os seguintes softwares free / open source:
 - Anaconda
 - Python 3
 - Conda gerenciador de ambientes
 - Numpy
 - Matplotlib
 - Pandas
 - Seaborn
 - Jupyter notebook
 - Tensorflow (com ou sem suporte a GPU)
 - O crédito das imagens será referenciado ao final do curso

Prefácio

Existem milhares de cursos on-line sobre Machine Learning. Fazer algo diferente foi realmente um desafio. O grande balizador para alcançar este objetivo foi a aplicação na engenharia aeronáutica, que é a razão deste curso fazer parte da SEA.

Neste curso abordaremos conceitos básicos de Machine Learning, Redes Neurais e um exemplo pertinente a atuação do engenheiro aeronáutico, mais especificamente no desenvolvimento de aeronaves.

O tema abordado é um universo por si só e cobrir todos os aspectos, se é que isso fosse possível, seria uma tarefa para 6 anos e não 6 horas. Assim, meu objetivo será focar em um exemplo, um algoritmo e um framework, de forma que exista continuidade e que permita uma aplicação efetiva deste conteúdo no futuro.

Machine Learning possui infinitas aplicações e cabe a criatividade de vocês desbravarem este potencial. Meu maior objetivo é trazer inspiração e uma base introdutória para que ingressem no universo do Machine Learning, seja ele aplicado a engenharia ou qualquer outra área

Bom estudo a todos,

Renato

Conceitos

O que é Machine Learning?

O que é Machine Learning?

O Vamos primeiro entender o que é IA

O que é Inteligência Artificial?

Pensando como um humano

- "O novo e interessante esforço para fazer os computadores pensarem (...) máquinas com mentes, no sentido total e literal." (Haugeland, 1985)
- "[Automatização de] atividades que associamos ao pensamento humano, atividades como a tomada de decisões, a resolução de problemas, o aprendizado..." (Bellman, 1978)

Pensando racionalmente

- "O estudo das faculdades mentais pelo uso de modelos computacionais." (Charniak e McDermott, 1985)
- "O estudo das computações que tornam possível perceber, raciocinar e agir." (Winston, 1992)

Agindo como seres humanos

- "A arte de criar máquinas que executam funções que exigem inteligência quando executadas por pessoas." (Kurzweil, 1990)
- "O estudo de como os computadores podem fazer tarefas que hoje são melhor desempenhadas pelas pessoas." (Rich and Knight, 1991)

Agindo racionalmente

- "Inteligência Computacional é o estudo do projeto de agentes inteligentes." (Poole et al., 1998)
- "Al... está relacionada a um desempenho inteligente de artefatos." (Nilsson, 1998)

O que é Inteligência Artificial?

https://youtu.be/n5phH2Mywl4

O que é Inteligência Artificial?

Smart-cities Sistemas-de-sugestão Analytics Marketing Chatbots Veículos-autônomos Aplicações Smart-logistics Smart-buildings Indústria-4.0

O que é Machine Learning?

Algoritmos de Machine Learning:

Utilizam métodos estatísticos para encontrar padrões em "grandes" quantidades de dados

Aprendizagem:

 Melhorar o desempenho após fazer observações sobre o mundo

Dados

- Dados numéricos
- Palavras, frases e textos
- Images
- Cliques

Tipos de aprendizagem

- Aprendizagem n\u00e3o supervisionada
- Aprendizagem supervisionada
- Aprendizagem semi-supervisionada

Aprendizagem não supervisionada

- O Descoberta de padrões ocultos em conjuntos de dados
- O Aplicações com dados sem classificação / labels

Classificação / Clusterização

Objetivo: divisão dos dados em um número definido ou indefinido de categorias

Exemplos de algoritmos:

- K-means
- Gaussian mixture models
- Nearest neighbors

Exemplos de aplicação:

- Segmentação de grupos de clientes
- Estudos estatísticos de populações, doenças

Exemplos de bibliotecas:

scikit-learn (sklearn)

Detecção de outliers

Objetivo: detecção de pontos de dados errôneos

Exemplos de aplicação:

- Detecção de anomalias/falhas em sistemas
- Detecção de fraudes
- Detecção de spams
- Limpeza da dados

Exemplos de algoritmos:

- Gaussian mixture models
- Auto-encoders
- Replicator neural networks
- Restricted Boltzman machines

Exemplos de bibliotecas:

- scikit-learn (sklearn)
- Tensorflow
- Pytorch

Redução de dimensão

Objetivo: Reduzir quantidade de dimensões

Exemplos de algoritmos:

- Principal component analysis
- Linear discriminant analysis
 (LDA)

Exemplos de aplicação:

- Metamodelagem
- Análise estatística
- Análise de experimentos
- Melhorar dados de modelos de regressão

Aprendizagem supervisionada

 \bigcirc Dados com labels – Y – conhecidos

- Treinamento aprendizagem realizada a partir de feedback de erros e acertos em relação aos labels conhecidos

Aprendizagem supervisionada

Aprendizagem supervisionada

Classificação

Classificação de imagens / Machine Vision

Classificação de dados numéricos

Classificação de séries temporais

Fig. 1: A unified deep learning framework for time series classification.

Classificação

Exemplos de aplicação:

- Diagnósticos por exames laboratoriais
- Manutenção preditiva

Exemplos de aplicação - Machine

Vision:

- Diagnósticos por imagem
- Filtros de imagens impróprias
- Controle de qualidade industrial
- Busca de imagem
- Prova de vida

Exemplos de algoritmos:

- Redes Neurais
- Redes Neurais Recorrentes
- Support Vector Machines
- Random Forest
- Deep belief networks
- Logistic Regression

Exemplos de algoritmos – Machine Vision:

- Redes Neurais de Convolução
- Deep Learning

Regressão

Objetivo:

 Reproduzir resultados de uma função dado um conjunto de entradas numéricas

Regressão

Exemplos de aplicação:

- Meta modelos para problemas de otimização
- Redução de custo computacional de funções complexas
- Análise estatística
- Criação de modelos a partir de dados experimentais
- Calibração de modelos
- Calibração de instrumentos
- Interpolação

Exemplos de algoritmos:

- Mínimos quadrados
- Redes Neurais
- Redes Neurais Recorrentes
- Support Vector Machines

Exemplos de frameworks:

- Tensorflow
- Pytorch
- Matlab
- Scikit-learn

Machine Vision

Image Classification

Classify an image based on the dominant object inside it.

datasets: MNIST, CIFAR,

ImageNet

Object Localization

Predict the image region that contains the dominant object. Then image classification can be used to recognize object in the region

datasets: ImageNet

Object Recognition

Localize and classify all objects appearing in the image. This task typically includes: proposing regions then classify the object inside them.

datasets: PASCAL, COCO

Semantic Segmentation

Label each pixel of an image by the object class that it belongs to, such as human, sheep, and grass in the example.

datasets: PASCAL, COCO

Instance Segmentation

Label each pixel of an image by the object class and object instance that it belongs to.

datasets: PASCAL, COCO

Keypoint Detection

Detect locations of a set of predefined keypoints of an object, such as keypoints in a human body, or a human face.

datasets: COCO

Natural Language Processing - Speech Recognition

Exemplos de algoritmos:

Redes Neurais de Recorrentes

Exemplos de aplicação:

- Machine translation
- Controle por voz
- Interpretação de resenhas / análise de sentimento
- Busca
- Chatbots

Exemplos de frameworks:

- Tensorflow
- Pytorch
- Matlab

Outras classes

Modelos paramétricos versus Modelos não paramétricos

- O Um modelo de aprendizagem que resume os dados com um conjunto de parâmetros de tamanho fixo (independentemente do número de exemplos de treinamento) é chamado de modelo paramétrico.
 - Exemplos: Redes Neurais, regressão linear
- Um modelo n\(\tilde{a}\) param\(\text{etrico}\) é aquele que n\(\tilde{a}\) pode ser caracterizado por um conjunto limitado de par\(\tilde{a}\) metros
 - Exemplos: Nearest neighbor, SVM

Dados estruturados versus Dados não estruturados

- O Dados estruturados:
 - Dados que podem ser organizados em tabelas
 - Exemplo:
 - Tabelas de dados numéricos
 - Dados armazenados em arquivos CSV
 - Dados armazenados em bancos de dados SQL
- O Dados não estruturados
 - Dados que não podem ser organizados em tabelas
 - Exemplos:
 - Imagens
 - Textos
 - Áudio

Definição dos objetivos e requisitos

Definição dos objetivos e requisitos

- O Qual é a necessidade que levou ao uso do ML?
- O que meu modelo precisa fazer?
- Quão acurado precisa ser?
- Que tipos de dados estrão disponíveis?
- © Em que volume?
- Quais são os resultados esperados?
- Qual é a métrica de acurácia?
- © Que poder computacional estará disponível para treinamento?
- © E para inferência?
- O Que tipo de ML poderei usar?

Obtenção dos dados

Obtenção dos dados

- O Dados públicos
- O Dados simulados ou sintéticos
- O Dados experimentais
- O Dados históricos
- © etc

Análise Exploratória dos Dados

Análise Exploratória dos Dados

- O Primeiro contato com os dados
- O Avaliação de qualidade
- O Visualização gráfica dos dados
- Métricas estatísticas dos dados

Exemplo de visualização de dados: Scatter Matrix de dataset gerada pela bibliotec Seaborn (Python)

Preparação e Transformação dos Dados

Preparação e Transformação dos Dados

- O Limpeza / filtragem dos dados
- Remoção de outliers
- O Seleção das features a serem utilizadas
- O Criação de novas features
- O Data agmentation
- Balanceamento dos dados
- O Segmentação dos dados
 - Dados de treinamento
 - Dados de teste
 - Dados de avaliação

Exemplo conceitual de detecção de outliers, que provavelmente devem ser removidos do dataset

Preparação e Transformação dos Dados

Exemplo de balanceamento de datastes, equilibrando o histograma de label numérica por amplitude da mesma

Exemplo de data augmentation para classificação de imagens

Desenvolvimento e treinamento dos modelos

Desenvolvimento e treinamento dos modelos

- O Definição dos algoritmos
- Implementação dos modelos
- O Definição / otimização do hiperparâmetros
- Treinamento

Exemplo de histórico de métrica de erro ao longo de treinamento de modelo de regressão

Validação dos modelos

Validação dos modelos

- © Testes de acurácia
- O Validação em condições reais de uso do modelo

Exemplo de histograma de erros na predição de um modelo de regressão

Deployment para produção

Monitoramento, atualização dos dados e modelos

Redes Neurais

 \hat{y} é uma combinação linear de $\{x_1, x_2, x_3\}$

Multi Layer Perceptrons – MLP ∈ Feed forward Neural Networks

for k in range(number of samples):
 for i in range(number of layers)
 ...

for k in range(number of samples):
 for i in range(number of layers)
...

- A definição termo a termo, neurônio por neurônio, é fundamental para entendermos o conceito... porém:
 - Muito complexo de se equacionar para redes com mais do que alguns poucos neurônios
 - Muito complexo de se implementar para redes com mais do que alguns poucos neurônios
 - [Muito!] Ineficiente computacionalmente, especialmente em Python
- O Solução:
 - Formulação tensorial (Vetores, Matrizes, "Matrizes 3D")
 - Simples de equacionar e implementar
 - Eficiente computacionalmente

L camadas ocultas

Camada i

Camada i

$$A^{[1]} = \sigma(W^{[1]} \cdot X + b^{[1]})$$

$$A^{[2]} = \sigma(W^{[2]} \cdot A^{[1]} + b^{[2]})$$

$$\vdots$$

$$A^{[L]} = \sigma(W^{[L]} \cdot A^{[L-1]} + b^{[L]})$$

$$Y = \sigma(W^{[L+1]} \cdot A^{[L]} + b^{[L+1]})$$

$$A^{[i]} = \sigma \left(W^{[i]} \cdot A^{[i-1]} + b^{[i]} \right)$$

$$b^{[i]} \rightarrow \text{vetor de biases} \quad (n_i \times 1)$$

$$W^{[i]} o ext{matriz de pesos} \quad (n_i imes n_{i-1})$$

Parâmetros treináveis da camada!

Quantos parâmetros treináveis temos num MLP?

$$\sum_{i=1}^{L+1} n_i \cdot n_{i-1} + b_i$$

Exemplo:

$$n_{inp} = 3$$

$$n_{out} = 2$$

$$L=3$$

$$n = \{3, 4, 3\}$$

$$N_{\theta} = (3 \cdot 3 + 3)$$
 $+(4 \cdot 3 + 4)$
 $+(3 \cdot 4 + 3)$
 $+(2 \cdot 3 + 2)$
 $= 51$

Como, enfim, treinamos a rede?

Ou seja,

Como definimos o valor dos parâmetros treináveis?

Rede Neural definida
conjunto de
parâmetros ⊕ ← Pesos, biases, etc

Loss function:

métrica de erro para finalidade de treinamento

$$\mathcal{L}(Y,\widehat{Y})$$

Objetivo do treinamento:

encontrar Θ que minimize a loss function!

Loss function:

métrica de erro para finalidade de treinamento

 $\mathcal{L}(Y, \widehat{Y}, \Theta)$

Algoritmo de minimização:

Gradient descent

Objetivo do treinamento: encontrar ⊕ que

encontrar \(\text{que} \)
minimize a *loss*function!

Θ ≡ vetor
contendo todos os
parâmetros
treináveis

Gradient descent

Gradient descent

Seja θ^i um elemento de Θ na iteração i:

$$\theta^i = \theta^{i-1} - \alpha \cdot \frac{\partial \mathcal{L}}{\partial \theta}$$

 $\alpha \rightarrow$ taxa de aprendizagem / learning rate

Gradient descent

$$\mathcal{L}(Y, f(g(h(X, \theta^{[1]}))))$$
Como calcular $\frac{\partial \mathcal{L}}{\partial \theta^{[1]}}$?

R: regra da cadeia

^{*} Os demais $\theta^{[i]}$ estão omitidos por clareza

Regra da cadeia

$$y = f(u)$$

$$u = g(x)$$

$$xraction y$$

$$y = f(g(x))$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \cdot \frac{\partial u}{\partial x}$$

Gradient descent:
$$\theta^i = \theta^{i-1} - \alpha \cdot \frac{\partial \mathcal{L}}{\partial \theta}$$

$$\frac{\partial \mathcal{L}}{\partial z^{[i]}} = W^{[i+1]T} \frac{\partial \mathcal{L}}{\partial z^{[i+1]}} * \sigma^{[i]'}(z^{[i]})$$

$$\frac{\partial \mathcal{L}}{\partial W^{[i]}} = \frac{\partial \mathcal{L}}{\partial z^{[i]}} a^{[i-1]^T} \quad \leftarrow \text{Atualização de W}$$

$$\frac{\partial \mathcal{L}}{\partial h[i]} = \frac{\partial \mathcal{L}}{\partial z[i]}$$
 \leftarrow Atualização de b

Gradient descent:
$$\theta^i = \theta^{i-1} - \alpha \cdot \frac{\partial \mathcal{L}}{\partial \theta}$$

Depende do resultado da camada a frente:

Derivadas devem ser calculadas "da" saída para a entrada"

Depende do resultado da camada atrás:

Resultados de cada camada devem ser guardados

$$\frac{\partial \mathcal{L}}{\partial z^{[i]}} = W^{[i+1]T} \underbrace{\frac{\partial \mathcal{L}}{\partial z^{[i+1]}}}_{\text{\leftarrow Atualização de W}} * \sigma^{[i]'}(z^{[i]})$$

$$\frac{\partial \mathcal{L}}{\partial W^{[i]}} = \frac{\partial \mathcal{L}}{\partial z^{[i]}} a^{[i-1]^T}$$

$$\frac{\partial \mathcal{L}}{\partial h^{[i]}} = \frac{\partial \mathcal{L}}{\partial z^{[i]}}$$

← Atualização de b

Resumindo:

Forward propagation: cálculo das saídas camada a camada até \hat{Y} e $\mathcal{L}(Y, \hat{Y})$

- Aprendizado supervisionado em redes neurais:
 - Back propagation
 - +
 - Gradient Descent e suas variações
- O Válido para outros tipos de redes neurais
 - Rede de convolução CNN
 - Redes recorrentes RNN (LSTM, GRU, etc)

Tipos de função de ativação

Funções de ativação - camada output

- © Regressão
 - Função identidade
- O Classificação binária duas classes
 - Sigmoid
- O Classificação múltiplas classes
 - Softmax

Problemas na propagação dos gradientes

- © Gradientes se propagam ao longo das camadas
- © Em redes com muitas camadas os gradientes podem apresentar dois problemas
 - Vanishing gradientes: gradientes se tornam zeros e "bloqueiam" o treinamento de um conjunto de neurônios
 - Exploding gradientes: valor dos gradientes explodem, podendo causar problemas numéricos na computação

Conclusões para guardar na memória

- O Uma rede neural é uma função complexa construída a partir de funções simples
- O que são os elementos de uma rede neural: camadas, neurônios, pesos, ativação, etc
- O que é, conceitualmente, back propagation e gradiente descent
- © Equações → quando precisar consulte um livro ou fonte confiável
- Relação entre número de neurônios e parâmetros treináveis
- Relação entre número de camadas e problemas na propagação dos gradientes

Machine Learning Parte 2

Introdução e aplicação na engenharia aeronáutica

Renato Cosin

- Qual é a necessidade que levou ao uso do ML?
 - Existe a necessidade de se fazer uma otimização de desempenho de uma aeronave para uma determinada missão
 - O modelo de desempenho é demasiadamente demorado dado o poder computacional disponível
 - O uso de meta modelo se faz necessário
- O que meu modelo precisa fazer?
 - Reproduzir resultados de modelo de desempenho para uma missão específica
- Quão acurado precisa ser?
 - Combustível utilizado: ±5.0%
 - Demais resultados: ±7.5%
- Que tipos de dados estrão disponíveis?
 - Resultados de estudo paramétrico com modelo de performance
 - ODE: hiper cubo latino
 - Número de variáveis: 9; Reais (float)
 - Número de saídas: 5; Reais (float)
- © Em que volume?
 - 10k samples

- Quais são os resultados esperados?
 - Atender requisito de acurácia em todo espaço de projeto coberto pelos dados de treinamento
 - Tempo de inferência para 1k sample < 10 segundos
- Qual é a métrica de acurácia?
 - Erro percentual
- Que poder computacional estará disponível para treinamento?
 - © CPU: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz
 - Memória: 16GB RAM
 - © GPU: NVIDIA GeForce 940MX; 4GB de memória dedicada
- © E para inferência?
 - O Idem
- O Que tipo de ML poderei usar?

Que tipo de ML poderei usar?

● Aprendizado supervisionado → Regressão

Modelo	Vantagens*	Desvantagens*	
Mínimos quadrados	Simples, disponível em muitas ferramentas, poucos hiperparâmetros	Problema excessivamente complexo, muitas dimensões	
Redes Neurais MLP	Amplamente disponível; muitas opções de arquitetura; complexidade escalável, lida bem com alta dimensionalidade de não linearidades	Excesso de opções pode dificultar escolha da arquitetura e hiperparâmetros; pode resultar em overfitting	
Support Vector Machines Regression - SVR	complexidade escalável, lida bem com alta dimensionalidade de não linearidades	Pouca documentação, menor versatilidade em relação as NNs	
CNN	Não se aplica		
RNN	Não se aplica		

^{*} Para este problema específico

Parâmetros fixos – missão da aeronave		Valor	
Altitude de decolagem	[ft]	0	
Altitude de pouso	[ft]	3000	
Payload	[kg]	22000	
Delta Temperatura ISA	[°C]	0.0	
Razão de descida média	[ft/min]	3000	
Velocidade calibrada de descida média	[kt]	250	
Mínima razão de subida residual	[ft/min]	300	

Parâmetros - entrada		Valor mínimo	Valor máximo
Area alar	[m²]	80	200
Alongamento	[]	7	14
Enflechamento 14/ da corda	[graus]	15	35
Máximo empuxo estático	[lbf]	20000	30000
Velocidade calibrada de subida	[kt]	200	300
Número de Mach máximo de subida	[]	0.45	0.65
Número de Mach de cruzeiro	[]	0.7	0.85
Altitude target de cruzeiro	[ft]	30000	45000
Distância da missão	[nm]	1000 cc	onstante

Parâmetros – Saída	
Peso de decolagem	[kg]
Peso básico operacional	[kg]
Peso de combustível	[kg]
Distância da missão – Verificação de convergência	[nm]
Tempo da missão	[min]
Altitude de cruzeiro	[ft]

- O Dataset 1:
 - 200 pontos
 - Apenas peso de combustível como saída
- O Dataset 2:
 - 10 mil pontos
 - Todas as saídas
- O Dataset 3:
 - 100 mil pontos
 - Distância variando
 - Todas as saídas
- O Dataset 4:
 - Dataset 1 + ruído

Análise Exploratória dos Dados

Preparação e Transformação dos Dados

Preparação e Transformação dos Dados

- O Limpeza / filtragem dos dados
- Remoção de outliers
- O Seleção das features a serem utilizadas
- O Criação de novas features
- O Data agmentation
- Balanceamento dos dados
- O Segmentação dos dados
 - Dados de treinamento
 - Dados de teste
 - Dados de avaliação

Desenvolvimento e treinamento dos modelos

Desenvolvimento e treinamento dos modelos

- O Definição dos algoritmos: MLP
- O Implementação dos modelos: Keras...
- O Definição / otimização do hiperparâmetros
 - Número de camadas / neurônios
 - Função de ativação
 - Learning rate

Validação dos modelos

Deployment para Não aplicavel ao presente exemplo!! Presente exemplo!! produção

Monitoramento, atualização dos dados e modelos de la comploi.

Introdução ao Tensorflow e Keras

O Tensorflow

- Plataforma de código aberto para Machine Learning
- © Foco em treinamento e inferência de modelos de Deep Learning
- © Funções de baixo nível
- API's de alto nível. Ex.: Keras
- O Diferenciação automática
- O Gráfos
- Suporte ao uso de GPU

Gráficos e Tensores no Tensorflow

- O Gráficos: estruturas de dados que contenham um conjunto de objetos que representam as unidades de computação
 - O Exemplos:
 - Neurônio
 - Multiplicação de matrizes
 - Convolução de matrizes
 - Camada de rede neural
- opodem ser salvos, executados e restaurados sem o código Python original

Gráficos e Tensores no Tensorflow

- Tensores: estrutura de dados que fluem entre os objetos dos gráficos.
 - Escalares, vetores, matrizes, matrizes multidimensionais
 - Tipo constante em todos os elementos
 - Similar ao numpy.ndarray

Gráficos e Tensores no Tensorflow

Exemplo de gráfico de rede neural de duas camadas:

Diferenciação automática

- O Cálculo do gradiente de uma computação com respeito a algumas entradas
- © Extremamente útil implementação de algoritmos de aprendizagem de máquina, como backpropagation

Keras

- API de alto nível para redes neurais do Tensorflow
- © Funções rápida para criação de redes neurais
- O Utiliza back-end do Tensorflow
- O Implementação pronta para tipos de redes neurais mais comuns
- O Suporta CNN's e RNN's

Pandas

- Biblioteca Python para manipulação e análise de dados
- © Estrutura de dados: DataFrame
- O Dados tabulares
 - tipo único por coluna
 - Análogo a Excel ou SQL
- O Princiapis operações:
 - Reshape, merge, join
 - Slicing, fancy indexing, sorting
 - Filtros
 - Handling de dados faltantes

Nos vemos no Jupyter Notebook !

Arquivos anexos !!!

Finalização - Redes Neurais

Conteúdo

- Overfitting e Underfitting
- Regularização e dropout
- © Convergência e Early Stopping
- Batch normalization

Overfitting e Underfitting

An example of overfitting, underfitting and a model that's "just right!"

Como resolver o overfitting

- Mais dados
- Regularização
- O Dropout
- © Early stopping

Early Stopping

Regularização e dropout

L1 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$

L2 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2$$
Loss function Regularization
Term

Dropout – during training

Regularização e dropout

Batch normalization

// scale and shift

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

 $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

Referências

- https://www.tensorflow.org/learn
- https://keras.io/api/
- https://pandas.pydata.org/docs/user_guide/index.html
- Russell, Stuart J. (Stuart Jonathan), 1962 Inteligência artificial / Stuart Russell, Peter Norvig; tradução Regina Célia Simille. Rio de Janeiro: Elsevier, 2013.
- Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. 2014. arXiv:1412.6980v9

Referências

- https://www.deeplearningbook.org/
- https://medium.com/analytics-vidhya/the-perfect-fit-for-a-dnn-596954c9ea39
- https://towardsdatascience.com/work-smarter-not-harder-when-building-neural-networks-6f4aa7c5ee61
- https://towardsdatascience.com/deep-learning-computer-vision-and-automated-optical-inspection-774e8ca529d3
- https://medium.com/@jorgesleonel/supervised-learning-c16823b00c13
- https://www.coursera.org/specializations/deep-learning
- https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-unsupervised-learning
- https://towardsdatascience.com/a-brief-overview-of-outlier-detection-techniques-1e0b2c19e561

Instalando o Tensorflow

- https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/
- https://www.tensorflow.org/install/pip#conda

Para quem quiser se divertir mais*:

https://towardsdatascience.com/installing-tensorflow-with-cuda-cudnn-and-gpu-support-on-windows-10-60693e46e781

* Desnecessário para modelos simples / Requer placa de vídeo compatível

Obrigado!

Renato Cosin

renato.cosin@gmail.com

www.linkedin.com/in/renato-cosin

