Indian Institute of Technology Kharagpur Department of Mathematics MA11003 - Advanced Calculus (Autumn 2020) Answer Hints Tutorial Sheet - 7

1. Discuss the convergence of improper integrals using definition:

- (i) convergent
- (ii) divergent
- (iii) divergent
- (iv) divergent
- (v) convergent
- (vi) divergent
- (vii) divergent
- (viii) divergent
- (ix) convergent
- (x) divergent

2. Discuss the convergence of the following integrals:

- (i) convergent, apply μ test.
- (ii) convergent, apply μ test.
- (iii) divergent, as $0 \le x \le 1$ so $e^x \le e$ and $x(x+e^x) \le x(e+1)$, then apply comparison test.
- (iv) convergent, apply comparison test.
- (v) convergent, apply comparison test.
- (vi) convergent, apply μ test.
- (vii) convergent, no point of infinite discontinuity.
- (viii) convergent, $\frac{\cos x}{e^x} < \frac{1}{x^2}$ when x > 1, then apply comparison test.
- (ix) convergent, for $x \ge 1$ $e^{-(x+x^{-1})} \le e^{-x}$, apply comparison test.
- (x) convergent, apply comparison test.

3. Examine the convergence of the following integrals:

(i) Convergent, 0 and 1 are points of infinite discontinuity. Examine the convergence

of
$$\int_{0}^{\frac{1}{2}} \frac{1}{(x+2)\sqrt{x(1-x)}} dx$$
 at $x=0$ and convergence of $\int_{\frac{1}{2}}^{1} \frac{1}{(x+2)\sqrt{x(1-x)}} dx$ at

- x = 1; In both cases apply μ test.
- (ii) Convergent, 0 and ∞ are the point of infinite discontinuity. Examine the convergence

of
$$\int_{0}^{1} x^{-\frac{1}{2}} e^{-x} dx$$
 at $x = 0$ and convergence of $\int_{1}^{\infty} x^{-\frac{1}{2}} e^{-x} dx$ at $x = \infty$ For first integral

use comparison test and for second integral use $\frac{1}{e^x} < \frac{1}{x}$ for all $x \ge 1$ for comparison test.

- (iii) Divergent, ∞ is the only point of discontinuity. Apply comparison test taking $g(x) = \frac{1}{\frac{3}{4}}$.
- (iv) Convergent, modulus of integrand is $\leq \frac{1}{\sqrt{x^3+x}}$. First check that $\int_0^\infty \frac{1}{\sqrt{x^3+x}} dx$ is convergent by applying comparison test and use every absolutely convergent integral is convergent.
- (v) Divergent, 1 is a point of infinite discontinuity. If p < 1 then 0 is also a point of infinite discontinuity. Examine the convergence of $\int_{0}^{\frac{1}{2}} \frac{x^{p-1}}{1-x} dx$ at x = 0 when p < 1 and convergence of $\int_{\frac{1}{2}}^{1} \frac{x^{p-1}}{1-x} dx$ at x = 1. The second integral will be divergent.
- 4. Only point of infinite discontinuity is at x = 0. Apply comparison test by taking $g(x) = \frac{1}{x^{n-m}}$.
- 5. Here 0 is the point of infinite discontinuity. As $\left|\frac{\sin(\frac{1}{x})}{\sqrt{x}}\right| \leq \frac{1}{\sqrt{x}}$ for all $x \in (0,1]$, apply comparision test and use every absolutely convergent integral is convergent.
- 6. The only point of infinite discontinuity is at $x = \infty$. Examine the convergence of the integral with taking $g(x) = \frac{1}{x^2}$.
- 7. Convergent, Apply comparison test using $e^{-x^2} \leq e^{-x}$ for all $x \in [1, \infty)$.
- 8. Convergent, 0 is the point of infinite discontinuity of the integrand. Check that $\int_{0}^{1} \ln x x^{n-1} dx$ is convergent if n > 0. For this case $n = \frac{1}{2}$.
- 9. Here 0 is point of infinite discontinuity if m < 1 and 1 is the point of infinite discontinuity if n < 1. Examine the convergence of $\int\limits_0^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$ when m < 1 and convergence of $\int\limits_{\frac{1}{2}}^1 x^{m-1} (1-x)^{n-1} dx$ when n < 1. In both cases apply comparison test.
- 10. Apply $\int_{0}^{\infty} \frac{\phi(ax) \phi(bx)}{x} dx = (\lim_{x \to 0} \phi(x) \lim_{x \to \infty} \phi(x)) \log(\frac{a}{b}). \text{ Here } \phi(x) = \tan^{-1}(x) \text{ for } x \ge 0$
- 11. Similarly to previous problem, take $\phi(x) = \frac{\sin(x)}{x}$.