ECS 427/627: Multi-agent Reinforcement Learning

Project Evaluation 1

Project Title: Ship Towing and Berthing

Environment: 100x100 grid. Brown box represent a dock. Further obstacles can be added.

Agents: green-colored tugboats and blue-colored ship.

The task of the agents is to align the ship (blue colored) attached to tugboats with red-colored ropes with the dock.

> The length of the rope can vary (has max and min values)

State space: The continuous state space consists of:

- Ship's position $(x_s, y_s) \in (0, 100]$ and heading $\theta_s \in [0, 2\pi]$
- Both tugboats' position, $(x_{t1}, y_{t1}) \in (0, 100]$, $(x_{t2}, y_{t2}) \in (0, 100]$ and heading, $\theta_{t1} \in [0, 2\pi]$, $\theta_{t2} \in [0, 2\pi]$
- Distance of the ship from dock, d_s.
- Length of rope, l.

Action space: The continuous action space consists of:

- Forces exerted by each tugboat, F_{t_1} and F_{t_2}
- Steering angle of tugboats α_{t1} and α_{t2} .
- Rotational force on ship, τ_s .

Reward: Different reward functions needs to be tested.

- High positive reward for docking in right alignment
- Very low negative reward for collision (if obstacles present).
- Reward for reducing the distance from the dock.

Approaches:

- Training of each agent independently to learn a policy using DQN, PPO, etc. without considering other agents.
- Learning joint policies for all agents.
- Communication between agent to improve coordination and so on...