Supplementary Materials for Comparing the Effectiveness of a Brief Intervention to Reduce

Unhealthy Alcohol Use Across Adult Primary Care Patients with and without Depression: A

Machine Learning Approach with Augmented Inverse Probability Weighting

Table of Contents

- 1. Appendix 1: Electronic Health Records Codes
- 2. Appendix 2: Augmented Inverse Probability Weighting (AIPW)
- 3. Appendix 3: R Analysis Code
- 4. Appendix 4: AIPW Estimates of the Average Treatment (BI) Effect

Appendix 1: Electronic Health Records Codes

Item	Code Type and Code(s)			
Alcohol Brief Intervention (BI)	ICD-9 (V65.42 and V65.49 before October 2015)			
	ICD-10 codes (Z71.41 and Z71.89 after October 2015)			
	Current Procedural Terminology codes (96160, 99420, 99408,			
	and 99409)			
	Healthcare Common Procedure Coding System codes (G0396,			
	G0397, G0443, and H0050)			
Alcohol Use Disorders	ICD9 (291*, 303*, 305.0*)			
	ICD10 (F10.1*m F10.2*, F10.9*)			
Depression	ICD-9 (296.2*, 296.3*, 296.82, 300.4, 301.12, 309.0, 309.1,			
	309.28)			
	ICD-10 (F32*, F33*, F34.1, F43.21, F43.23)			
Drug Use Disorders	ICD9 (292*, 304*, 305* except 305.0*)			
	ICD10 (F11, F11.1*, F11.2*, F11.9*, F12, F12.1*, F12.2*,			
	F12.9, F13, F13.1*, F13.2*, F13.9*, F14, F14.1*, F14.2*,			
	F14.9*, F15, F15.1*, F15.2*, F15.9*, F16, F16.1*, F16.2*,			
	F16.9*, F18, F18.1*, F18.2*, F18.9*, F19, F19.1*, F19.2*,			
	F19.9*)			
Other Mental Health Conditions				

Anxiety disorders	ICD9 (300.0*, 300.21, 300.3, 309.21, 309.24, 309.81)				
	ICD10 (F40.01, F41*, F42*, F43.1*, F43.22)				
Bipolar disorders	ICD9 (296.0*, 296.1*, 296.4*, 296.5*, 296.6*, 296.7*, 296.80,				
	296.81, 296.89, 301.13)				
	ICD10 (F30*, F31*, F34.0)				
Eating disorders	ICD9 (307.1, 307.51)				
	ICD10 (F50.0*, F50.2)				
Other mood disorders	ICD9 (293.83, 296.9, 296.90, 296.99, 799.24)				
	ICD10 (F34.8, F34.89, F34.9, R45.86, F06.3*)				
Pervasive developmental	ICD9 (299*)				
disorders	ICD10 (F84*)				
Schizophrenia,	ICD9 (295*, 297*, 298*)				
schizoaffective disorders	ICD10 (F20*, F22*, F23*, F25*, F28*, F29*)				
and other psychosis					

Augmented Inverse Probability Weighting

Here we briefly outline the construction of our estimators and required assumptions. For a didactic explanation of these kinds of methods see Schuler & van der Laan (Schuler and van der Laan, 2022).

Setup Let Y, D, A and X represent our outcome (possibly missing), an indicator of outcome observed, an indicator of treatment, and a vector of covariates. Let Y(a) represent the potential outcome that would obtain if treatment were forced to A=a. Define $\psi_a^*=E[Y(a)]$ to be the counterfactual population average outcomes. The causal average treatment effect (ATE) is defined as $\psi^*=\psi_1^*-\psi_0^*$. For notational convenience define

- $\mu_a(X) = E[Y(a)|X]$ (conditional potential outcome means)
- $\pi_a(X) = P\{A = a | X\}$ (propensity scores)
- $\delta(X) = P\{D = 1|X\}$ (conditional probability of being observed)

Identification The measured outcome $Y=D\times Y(A)$ depends on which treatment is given and on the observation indicator (without loss of generality we arbitrarily say Y=0 when it goes unobserved). We can identify the causal ATE under the following assumptions:

- $P\{A = a | X = x\} > 0 \ \forall \ a, x \text{ (treatment positivity)}$
- $(Y(a) \perp A)|X$ (treatment unconfounded)
- $P\{D=1|A=a,X=x\}>0 \ \forall a,x \text{ (missingness positivity)}$
- \bullet $D \perp Y(a)|X, A$ (missingness unconfounded)

Given these, standard conditioning arguments show that $E[Y|D=1,A=a,X]=\mu_a(X)$. Define the statistical counterfactual mean $\psi_a=E[E[Y|D=1,A=1,X]]$ and define the

statistical ATE to be $\psi = \psi_1 - \psi_0$ (which is equal to the *causal* ATE ψ^* when our identifying assumptions hold).

Inference Standard derivation techniques (Kennedy, 2022) show that the efficient influence function for ψ_a is

$$\phi_a = \frac{D1_a(A)}{\delta(X)\pi_a(X)}(Y - \mu_a(X)) + (\mu_a(X) - \psi_a)$$

and the efficient influence function for ψ is therefore $\phi_1 - \phi_0$.

We can thus obtain an efficient estimating equations (i.e. AIPW-style) estimator

$$\hat{\psi}_a = \frac{1}{n} \sum_i \frac{D_i 1_a(A_i)}{\hat{\delta}(X_i) \hat{\pi}_a(X_i)} (Y_i - \hat{\mu}_a(X_i)) + \hat{\mu}_a(X_i)$$

where the hat quantities are cross-fit estimates of their true counterparts. We obtain our estimate of the ATE by taking $\hat{\psi} = \hat{\psi}_1 - \hat{\psi}_0$.

By standard theory, this estimator is asymptotically normal with asymptotic sampling variance $V[\phi]$. We can therefore obtain a consistent estimate $\hat{\sigma}_{\infty}^2$ by taking the empirical sample variance of the estimated influence function $\hat{\phi} = \hat{\phi}_1 - \hat{\phi}_0$ where

$$\hat{\phi}_a = \frac{D1_a(A)}{\hat{\delta}(X)\hat{\pi}_a(X)}(Y - \hat{\mu}_a(X)) + (\hat{\mu}_a(X) - \hat{\psi}_a)$$

An estimate of the finite-sample sampling variance is therefore $\hat{\sigma}^2 = \hat{\sigma}_{\infty}^2/n$, which we can use to build confidence intervals (e.g. 95% CI is $\hat{\psi} \pm 1.96 \times \hat{\sigma}$) and compute p-values (use a Z-test to compare the estimated effect to the null $H_0: \hat{\psi} \sim \mathcal{N}(0, \hat{\sigma}^2)$).

Difference in ATEs Let G represent a moderator of interest, which is one of the covariates in $X = [X_1 \dots G \dots X_p]$. Let $\psi_{a,g}^* = E[Y(a)|G = g]$ and define a difference in causal ATEs between two groups G = 0 and G = 1 to be $(\psi_{a=1,g=1}^* - \psi_{a=0,g=1}^*) - (\psi_{a=1,g=0}^* - \psi_{a=0,g=0}^*)$. This transparently and nonparametrically represents a measure of the extent to which G moderates the causal effect of A on Y.

Identification proceeds along the same lines as the standard ATE. Again using standard techniques we obtain that the efficient influence function for this estimand is

$$\phi = (\phi_{a=1,g=1} - \phi_{a=0,g=1}) - (\phi_{a=1,g=0} - \phi_{a=0,g=0})_{\text{where}}$$

$$\phi_{a,g} = \frac{1_g(G)}{\gamma_g} \left[\frac{D1_a(A)}{\delta(X)\pi_a(X)} (Y - \mu_a(X)) + (\mu_a(X) - \psi_{a,g}) \right]$$

and we define the population group proportion $\gamma_g = P\{G = g\}$. The appropriate efficient estimating equations estimator and inference follow immediately in similar fashion to the above.

Appendix 3. R Analysis Code

I. Function for the machine learning analyses

```
model avs <- function(preprocess, features, outcome, treatment, estimand) {</pre>
  # load preprocessed data
  df <- preprocess</pre>
  # select outcome distribution
  distribution <- ifelse(grepl("BI|uncensored", outcome), "bernoulli",
"qaussian")
  # add treatment indicator for uncensored models
  if(grep1("uncensored", outcome) == TRUE) {features <- append(features,</pre>
  cat("Estimand:", estimand, "\nFeatures:", features)
  # run analysis
  Sys.sleep(5)
 h2o.init(nthreads = 32, max mem size = "64G")
 h2o.removeAll()
 list preds <- list()</pre>
  for(i in 1:5){
    # for treatment outcome models (mu1 and mu0), training uses uncensored
cases that received the specific treatment,
    # trained model is applied to entire test set
    h2o train <- as.h2o(df[df$fold != i & is.na(df[,outcome]) == FALSE &
df$BI %in% treatment,])
    h2o test <- as.h2o(df[df$fold == i, features])
    h2o model <- h2o.automl(x = features,
                             y = outcome,
                             max models = 50,
                             training frame = h2o train,
                             keep cross validation predictions = TRUE,
                             fold column = "fold",
                             distribution = distribution,
                             seed = 2001,
                             verbosity = "error"
    h2o model best <- h2o.get best model(h2o model, algorithm =
"stackedensemble")
    h2o.saveModel(h2o model best, path = "/bd-fs-
mnt/sam5 root/sasg project/sri/projects/papini/git/sbirt/models/", filename =
paste("model", outcome, i, sep = " "), force = TRUE)
    df preds raw <- as.data.frame(h2o.predict(h2o model best, h2o test))</pre>
    # extract predictions for binary and continuous outcomes
    prediction <- ifelse("p1" %in% names(df preds raw), "p1", "predict")
    df preds <- data.frame(id = df[df$fold == i, "id"], y =</pre>
df preds raw[,prediction])
    names(df preds) <- c("id", estimand)</pre>
    list preds[[i]] <- df preds</pre>
  # save predictions
  df preds <- do.call(rbind, list preds)</pre>
```

```
filename <- paste("/bd-fs-
mnt/sam5_root/sasg_project/sri/projects/papini/git/sbirt/predictions/",
estimand, ".rds", sep = "")
   saveRDS(df_preds, filename)
   h2o.shutdown(prompt = FALSE)
   return(filename)
}</pre>
```

II. Inputs for each model

```
# treatment model
model avs(preprocess, features, "BI", c("1", "0"), "pi")
# follow-up participation model
model avs(preprocess, features, "uncensored", c("1", "0"), "delta")
# outcome models
model_avs(preprocess, features, "uncensored", c("1", "0"), "delta")
## change in drinking days
model_avs(preprocess, features, "drinking_days_delta", "1",
"mul drinking days delta")
model avs(preprocess, features, "drinking days delta", "0",
"mu0 drinking days delta")
## change in heavy drinking days
model avs(preprocess, features, "binge days delta", "1",
"mul binge days delta")
model avs(preprocess, features, "binge days delta", "0",
"mu0 binge days delta")
## change in drinks per drinking day
model avs(preprocess, features, "drinks day delta", "1",
"mul drinks day delta")
model avs(preprocess, features, "drinks day delta", "0",
"mu0 drinks day delta")
## change in drinks per week
model avs(preprocess, features, "drinks week delta", "1",
"mul drinks week delta")
model avs(preprocess, features, "drinks week delta", "0",
"mu0 drinks week delta")
```

III. AIPW Estimates

```
# df: dataframe with columns:
      Y: the continuous outcome (except NA in rows where D=1)
      A: binary exposure: 1="exposed", 0="control"
      D: outcome observation indicator: 1="outcome observed", 0="outcome
missing" (df\$D = !is.na(df\$Y))
     X: covariates (multiple columns)
      G: binary group indicator (also counts as a covariate, e.g. use as a
predictor when fitting models below)
  PREDICTIONS:
     mul: outcome prediction assuming exposure
     mu0: outcome prediction assuming no exposure
     pil: predicted probability of exposure
#
#
     pi0: predicted probability of no exposure (same as 1-pi1)
      delta: predicted probability of observing outcome
```

```
list_outcomes <- c("drinking_days_delta", "binge days delta",</pre>
"drinks week delta", "drinks day delta")
list results <- list()</pre>
for(i in 1:length(list outcomes)){
  outcome <- list outcomes[[i]]</pre>
  df$Y <- df[ ,paste0(outcome)]</pre>
  df$A <- as.numeric(as.character(df$BI))</pre>
  df$D <- as.numeric(as.character(df$uncensored))</pre>
  df$G <- ifelse(df$dep0 == "Y", 1, 0)
  df$mu1 <- df[ ,paste0("mu1 ", outcome)]</pre>
  df$mu0 <- df[ ,paste0("mu0", outcome)]</pre>
  df$pi1 <- df$pi
  df$pi0 <- 1- df$pi
  df$delta <- df$delta
  # Run AIPW estimators
  df xi = df %>%
   mutate(Y = ifelse(is.na(Y), 0, Y)) %>% # replace NAs with 0 so that NA *
(D==0) = 0
   mutate(
      xi1 = (D*(A==1))*(Y-mu1) / (delta*pi1) + mu1,
      xi0 = (D*(A==0))*(Y-mu0) / (delta*pi0) + mu0
 psi_ = list()
 phi = list()
  for (g in c(0,1)) {
    df g = df xi %>% filter(G==g)
    psi [[paste0("a1g",g)]] = df g %$% mean(xi1)
    psi_[[paste0("a0g",g)]] = df_g %% mean(xi0)
    phi [[paste0("alg",g)]] = df xi %$% (((G==g)/mean(G==g)) * (xi1 -
psi [[paste0("a1g",g)]]))
   phi_{[paste0("a0g",g)]]} = df xi %% (((G==g)/mean(G==g)) * (xi0 - g)
psi [[paste0("a0g",g)]]))
  # ATE all
  psi all <- mean(df xi$xi1) - mean(df xi$xi0)</pre>
  sigma all <- sqrt( sum(((df xi$xi1 - df xi$xi0) - psi all)^2)/nrow(df)^2)
  # ATE depressed
  psi g1 <- psi [[paste0("a1g1")]] - psi [[paste0("a0g1")]]</pre>
  df g1 <- df xi %>% filter(G==1)
  sigma g1 <- sqrt( sum(((df g1$xi1 - df g1$xi0) - psi g1)^2)/nrow(df g1)^2 )
  # ATE non-depressed
  psi g0 <- psi [[paste0("alg0")]] - psi [[paste0("a0g0")]]</pre>
  df g0 \leftarrow df xi \%\% filter(G==0)
  sigma g0 < - sqrt(sum(((df g0$xi1 - df g0$xi0) - psi g0)^2)/nrow(df g0)^2)
  # Difference in ATE (depressed - non-depressed)
  psi g1minusg0 <- psi g1 - psi g0
  phi glminusg0 <- ( phi [[paste0("alg1")]] - phi [[paste0("a0g1")]] ) - (</pre>
phi [[paste0("alg0")]] - phi [[paste0("a0g0")]] )
  sigma glminusg0 <- sqrt( mean(phi glminusg0^2) / nrow(df) )</pre>
```

```
# Compile results
  results <- data.frame(outcome = outcome,</pre>
                          comparison = c("All", "Depressed", "Non-depressed",
"Depressed -\nNon-depressed"),
                          ATE = round(c(psi all, psi g1, psi g0,
psi glminusg0), 2),
                          CI = NA,
                          ci.lo = NA,
                          ci.hi = NA,
                          z = NA)
  list models <- c("all", "g1", "g0", "g1minusg0")</pre>
  for(j in 1:nrow(results)){
    psi <- get(paste0("psi_", list_models[[j]]))</pre>
    sigma <- get(paste0("sigma_", list_models[[j]]))</pre>
    results[j, "CI"] <- paste0("[", round(psi - 1.96*sigma, 2), ", ",
round(psi + 1.96*sigma, 2), "]")
    results[j, "ci.lo"] <- round(psi - 1.96*sigma, 2)</pre>
    results[j, "ci.hi"] <- round(psi + 1.96*sigma, 2)</pre>
    results[j, "z"] <- round(psi/sigma, 3)</pre>
list results[[i]] <- results</pre>
# combine all results
results <- do.call(rbind, list results)
# add p-values
results$p <- round(2*pnorm(q=abs(results$z), lower.tail=FALSE), 4)</pre>
```

Appendix 4: AIPW Estimates of the Average Treatment (BI) Effect

Outcome	Comparison	ATE	95% CI	Z	p
Change in Drinking					
Days					
	All	-0.05	[-0.08, -0.02]	-3.33	< .001
	Depressed	-0.01	[-0.11, 0.09]	-0.2	.84
	Non-depressed	-0.05	[-0.08, -0.02]	-3.44	< .001
	Depressed - Non-depressed	0.04	[-0.06, 0.15]	0.78	.44
Change in Heavy					
Drinking Days					
	All	-0.41	[-0.59, -0.22]	-4.26	< .001
	Depressed	-0.33	[-1.25, 0.58]	-0.71	.48
	Non-depressed	-0.41	[-0.6, -0.23]	-4.38	< .001
	Depressed - Non-depressed	0.08	[-0.85, 1.02]	0.17	.87
Change in Drinks					
per Week					
	All	-0.17	[-0.28, -0.05]	-2.88	.004
	Depressed	-0.07	[-0.54, 0.40]	-0.29	.77
	Non-depressed	-0.18	[-0.29, -0.06]	-2.97	.003
	Depressed - Non-depressed	0.11	[-0.37, 0.59]	0.44	.66
Change in Drinks					
per Drinking Days					
	All	-0.06	[-0.09, -0.03]	-4.06	< .001
	Depressed	-0.06	[-0.17, 0.05]	-1.08	.28
	Non-depressed	-0.06	[-0.1, -0.03]	-3.92	< .001
	Depressed - Non-depressed	0	[-0.11, 0.12]	0.07	.95