	(141.6×10^6)			(4 218)		(12.3)	(3.13)	
Jupiter ^d	778×10^{6}	0.0489	4333	139 822	317.8	24.79	59.5	
	$\left(483\times10^{6}\right)$			(86 884)		(81.3)	(36.8)	

TABLE D/3 PROPERTIES OF PLANE FIGURES

FIGURE	CENTROID	AREA MOMENTS OF INERTIA
Arc Segment (αr)	$\overline{r} = \frac{r \sin \alpha}{\alpha}$	
Quarter and Semicircular Arcs $ C $	$\overline{y} = \frac{2 r}{\pi}$	
Circular Area	_	$I_x = I_y = \frac{\pi r^4}{4}$ $I_z = \frac{\pi r^4}{2}$
Semicircular Area r $\frac{C}{\frac{1}{y}}$ $-x$	$\overline{y} = \frac{4r}{3\pi}$	$I_x = I_y = \frac{\pi r^4}{8}$ $\bar{I}_x = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^4$ $I_z = \frac{\pi r^4}{4}$
Quarter-Circular Area r \overline{x} C \overline{y} $-x$	$\overline{x} = \overline{y} = \frac{4r}{3\pi}$	$I_x = I_y = \frac{\pi r^4}{16}$ $\bar{I}_x = \bar{I}_y = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) r^4$ $I_z = \frac{\pi r^4}{8}$

