Sheaf semantics of termination-insensitive noninterference

Jonathan Sterling (j.w.w. Robert Harper)

Aarhus University

MURI 2022 Team Meeting

recollection: open and closed modalities in type theory

Let φ be a proposition in a topos X. Then φ determines two complementary open/closed subtopoi U, $K \subseteq X$ via the following Lawvere–Tierney local operators:

$$j_{\mathsf{U}}\psi = \phi \Longrightarrow \psi$$

 $j_{\mathsf{K}}\psi = \phi \lor \psi$

Rijke, Shulman, and Spitters explained how to adapt open and closed modalities to (homotopy) type theory.

- 1. The **open modality** $\phi \Rightarrow E$ projects the part of E that "thinks that" ϕ is true.
- 2. The **closed modality** $\phi \cdot E = \phi \sqcup_{\phi \times A} E$ projects the part of E that "thinks that" ϕ is not true.

Today I will talk about an application to types for security.

open and closed modalities for SECURITY

Computer programs frequently must deal with sensitive data.

- your passwords
- your browser history
- your bank account number

The goal of **information flow control** is to provide tools to control the leakage of such data through program outputs.

Measured by **noninterference**: what kind of outputs can depend on what kinds of inputs?

Our contribution: a new denotational semantics for information flow control based on open and closed modalities.

S., Harper. **Sheaf semantics of termination-insensitive noninterference**. In FSCD 2022.

presheaves on a security (semi)lattice

We start with a meet semilattice \mathbb{P} to be thought of as the collection of **security clearances**. For instance, we could have:

$$\mathbb{P} = \{low \le med \le high \le \top\}$$

The *presheaf topos* $P = \hat{P}$ is an ideal setting to develop a synthetic theory of security and redaction.

- 1. An open $\phi \in \mathcal{O}_{\mathbf{P}} = [\mathbb{P}^{op}, \Omega]$ is a formal join of security clearances, which we may refer to as a **security policy**.
- 2. A (pre)sheaf $A \in \mathcal{S}_{\mathbf{P}} = [\mathbb{P}^{op}, \mathbf{Set}]$ then has extent over each security policy $\phi \in \mathcal{O}_{\mathbf{P}}$, *i.e.* we may restrict A to $A_{|\phi} = \phi \times A \in \mathcal{S}_{\mathbf{P}} \downarrow \phi$.

 $A_{|\varphi}$ is the part of A that is visible under the policy φ .

In particular, $A_{\text{lmed}} \in \mathcal{S}_{P} \downarrow \text{med}$ is the part of A that is visible to medium- and low-security observers.

open and closed subtopos

For each security policy $\phi \in \mathcal{O}_P$, we have a pair of complementary open and closed subtopoi:

- 1. The **open** subtopos $U_{\phi} \subseteq P$ is defined by setting $S_{U_{\phi}}$ to be the full subcategory of S_P spanned by sheaves A such that $A \longrightarrow A^{\phi}$ is an isomorphism, *i.e.* the slice $S_P \downarrow \phi$.
- 2. The **closed** subtopos $K_{\phi} \subseteq P$ is defined by setting $S_{K_{\phi}}$ to be the full subcategory of S_P spaned by sheaves A such that $A \times \phi \longrightarrow \phi$ is an isomorphism.

We will visualize the modal operators corresponding to these subtopoi and their application to security.

a topo-logical viewpoint on redaction

We may visualize an object $A \in \mathcal{S}_P$ as a "pill" $\frac{A_{\text{high}}}{A_{\text{med}}}$ with components

corresponding to what is visible at each security level.

Restricting into $S_P \downarrow$ med we have a truncated "pill": $A_{\text{med}} \downarrow$

Restriction was the *inverse image* of the open immersion $P_{\text{med}} \hookrightarrow P$. The direct image extends our truncated "pill" as follows:

Thus all high-security data is redacted and replaced with medium security data.

the open modality as redactor

The round-trip $S_P \to (S_P \downarrow \text{med}) = S_{U_{\text{med}}} \hookrightarrow S_P$ is the **open modality** for the (representable) proposition $\text{med} \in \mathcal{O}_P$ depicted below:

$$med = \frac{\emptyset}{\{*\}}$$

Indeed, the following is not too hard to compute:

$$(\text{med} \Rightarrow A) \cong \frac{A_{\text{med}}}{A_{\text{med}}}$$
 A_{med}
 A_{low}

The open modality thus purges higher-security data.

sealing and closed subspace

The **closed complement** K_{med} to U_{med} is what parameterizes "high security (pre)sheaves", *i.e.* objects that only have extent visible to high and top security observers.

The closure operator corresponding to $K_{\text{med}} \subseteq P$ causes a sheaf $A \in \mathcal{S}_P$ to appear to contract to a point as far as medium and low security observers are concerned:

This is indeed the closed modality med • $A = \text{med} \sqcup_{\text{med} \times A} A$.

interaction between open and closed modalities

Here's the application to security. Suppose we want a type of integers that cannot leak to medium- and low-security clients.

- 1. We **seal** the type \mathbb{Z} under the closed modality for med $\in \mathcal{O}_P$, *i.e.* we will use med $\bullet \mathbb{Z}$.
- 2. Using the universal property of the closed modality, we can always unseal $med \cdot \mathbb{Z}$ for consumption by higher security clients, *i.e.* types C that are contractible within med, *i.e.* med-connected or $(med \cdot -)$ -modal types:

$$(\mathsf{med} \bullet \mathbb{Z} \to C) \cong (\mathbb{Z} \to C)$$

noninterference

Theorem 1. Let $f : med \cdot A \rightarrow 2$ be any function; then f is constant.

Proof. The type 2 is *constant*, *i.e.* we have
$$2 = \frac{\{0, 1\}}{\{0, 1\}}$$
.

Thus 2 is in particular (med \Rightarrow –)-modal and so we have:

$$(\text{med} \cdot A \rightarrow 2) \cong (\text{med} \cdot A \rightarrow \text{med} \Rightarrow 2)$$

$$\cong \text{med} \Rightarrow (\text{med} \cdot A \rightarrow 2)$$

$$\cong \text{med} \Rightarrow 2$$

$$\cong 2$$

So we are done.

partiality via dominances

In the field of **programming languages** we are mainly interested in languages that support partial functions and general recursion.

In semantics, partiality means that we have a **dominance** $T: 1 \rightarrow \Sigma$, *i.e.* a classifier for a collection of monomorphisms that will serve as the supports of partial functions.

The **partial map classifier** is the partial product of $\top: 1 \rightarrow \Sigma$, *i.e.*

$$A_{\perp} = \sum_{\phi:\Sigma} \phi \Longrightarrow A$$

A partial function $C \to A_{\perp}$ is determined by a total function $U \to A$ defined on a Σ -subobject $U \subseteq C$.

total and partial noninterference

With partiality, we can consider two kinds of noninterference:

- 1. **Total noninterference** means that any function $f : med \cdot A \rightarrow 2_{\perp}$ is constant. (*a.k.a.* "termination-sensitive noninterference")
- 2. **Partial noninterference** means that any function $f : med \cdot A \rightarrow 2$ is constant. (*a.k.a.* "termination-insensitive noninterference")

From partial noninterference we conclude:

$$\forall x, y : \text{med} \cdot A. \quad fx \downarrow \land fy \downarrow \longrightarrow fx = fy$$

Partial noninterference has been difficult to model satisfactorily in the past (*cf.* Abadi *et al.*). But follows immediately from standard **domain theoretic semantics** if we take **P** as our base topos.

synthetic domain theory: domain theory in a topos

Synthetic domain theory (Hyland) is to classical domain theory as synthetic differential geometry is to the theory of manifolds. Take a topos **D** equipped with a dominance $T: 1 \rightarrow \Sigma$; the dominance is a **dualizing object** that associates to each object X a topology Σ^X .

We define a **predomain** to be an object X of S_D satisfying a certain orthogonality condition; many possible conditions, but the weakest one that can possibly work is **well-completeness** (Longley):

Let $\omega_{\perp} \to \omega$ be the initial algebra for the endofunctor $X \mapsto X_{\perp}$ and let $\bar{\omega} \to \bar{\omega}_{\perp}$ be the final coalgebra; let $\omega \mapsto \bar{\omega}$ be the canonical inclusion.

Definition 2. (Fiore, Plotkin) An object X is a **predomain** when it is internally orthogonal to any pullback of $\omega \mapsto \bar{\omega}$ along a Σ -monomorphism $U \mapsto \bar{\omega}$.

Orthogonality condition = closure under suprema of ω -chains.

synthetic domain theory over a base topos

Two class of model of SDT have emerged: realizability models and sheaf models. We will focus on sheaf models.

The recipe of Fiore and Plotkin is to take sheaves on a small category of ordinary domains (*e.g.* ω -cpos, &c.). Fiore and Plotkin construct Grothendieck topos models of SDT over **Set**, but this recipe works over any base topos.

We construct a model of SDT over S_P , *i.e.* a geometric morphism $\delta: D \rightarrow P$ such that $\Sigma = \delta^* \Omega_P$.

The resulting notion of partial map includes not only convergence and divergence, but also divergence *above a certain security level*. There are computations that appear to converge for low-security clients, but can be seen to diverge by high-security clients.

declassification in the partial map classifier

Let A be modal for the closed modality (med \bullet –), *i.e.* suppose we have an algebra $\alpha : \text{med } \bullet A \longrightarrow A$. Then we may define a function

$$dcls: med \cdot A_{\perp} \rightarrow A_{\perp}$$

that "unseals" or "declassifies" a partial computation of type A.

The subobject $med \cdot A \rightarrow med \cdot A_{\perp}$ lies in Σ because Σ is closed under the closed modality $(med \cdot -)$: a form of **parallel computation**!

computational adequacy via synthetic Tait computability

We have defined a denotational semantics in synthetic domain theory for a programming language with modalities for security.

What is the relationship between equality of programs (the equational theory) and equality of their denotations?

Plotkin's **computational adequacy** lemma states that for base types (*e.g.* booleans) we have $\vdash e_1 = e_2 :$ bool if and only if $\llbracket e_1 \rrbracket = \llbracket e_2 \rrbracket$.

We prove such a lemma for our language using **synthetic Tait computability**, an axiomatization of the internal language of Artin gluings.

gluing for computational adequacy, geometrically

- 1. Let **T** be the classifying topos of our programming language viewed as a lex theory, *i.e.* presheaves on its syntactic category \mathbb{T} . This is a **P**-topos, as we have a lex functor $\mathbb{P} \to \mathbb{T}$ sending each security level to its syntactic counterpart.
- 2. Let **D** be the **P**-topos model of synthetic domain theory in which we constructed our denotational semantics.
- 3. Then take the (relative) scone of **T** + **D** in the category of bounded **P**-topoi, *i.e.* the following co-comma object **GTop**:

gluing for computational adequacy, synthetically

Extend the internal language of a topos with:

- 1. disjoint propositions $\Phi_{syn} \wedge \Phi_{sem} = \bot$ and define $\Phi = \Phi_{syn} \vee \Phi_{sem}$;
- 2. a **generic** model $[-]_{syn}$ of \mathbb{T} in the slice over Φ_{syn} ;
- 3. the axioms of \mathbb{P} -indexed SDT in the slice over Φ_{sem} ;
- 4. such that for each $l \in \mathbb{P}$ we have $[l]_{\text{sem}} \leq \Phi \cdot [l]_{\text{syn}}$.

Under these axioms, we may construct a **synthetic logical relation** between the generic model and the denotational model that establishes computational adequacy.

Theorem 3. If $[\![\vdash e : bool_{\perp}]\!] = \eta b$ then there exists $\vdash v : bool$ such that $\vdash e = ret(v) : bool$ and $[\![\vdash v : bool]\!] = b$.

Corollary 4. *Partial noninterference holds in the equational theory* \mathbb{T} .

towards HIGHER synthetic domain theory?

The results of Schreiber, Shulman, Cherubini, &c. suggest that the Fiore–Plotkin approach to synthetic domain theory based on **sheaves** and well-completeness should extend directly to ∞-topoi.

The work of Awodey, Frey, Speight, Swan, Uemura, &c. toward realizability ∞-topoi are promising as a direction to generalize the Hyland–Phoa–Taylor approach to synthetic domain theory based on repleteness.

A step toward recursive programming with higher-dimensional spaces? **Help me do it!**