IMPARTIAL ACHIEVEMENT & AVOIDANCE GAMES FOR GENERATING FINITE GROUPS

ACGT Seminar at NAU

Dana C. Ernst Northern Arizona University September 27, 2017

Joint work with Bret Benesh and Nándor Sieben

COMBINATORIAL GAME THEORY

Intuitive Definition

Combinatorial Game Theory (CGT) is the study of two-person games satisfying:

- · Two players alternate making moves.
- · No hidden information.
- · No random moves.

COMBINATORIAL GAME THEORY

Combinatorial games

- · Chess
- · Go
- · Connect Four
- · Nim
- · Tic-Tac-Toe
- · X-Only Tic-Tac-Toe

COMBINATORIAL GAME THEORY

Combinatorial games

- · Chess
- · Go
- · Connect Four
- · Nim
- · Tic-Tac-Toe
- · X-Only Tic-Tac-Toe

Non-combinatorial games

- · Battleship (hidden information)
- · Rock-Paper-Scissors (non-alternating and random)
- · Poker (hidden information and random)

IMPARTIAL VS PARTIZAN

Definition

A combinatorial game is called **impartial** if the move options are the same for both players. Otherwise, the game is called **partizan**.

IMPARTIAL VS PARTIZAN

Definition

A combinatorial game is called **impartial** if the move options are the same for both players. Otherwise, the game is called **partizan**.

Partizan

- · Chess
- · Go
- · Connect Four
- · Tic-Tac-Toe

IMPARTIAL VS PARTIZAN

Definition

A combinatorial game is called **impartial** if the move options are the same for both players. Otherwise, the game is called **partizan**.

Partizan

- · Chess
- · Go
- · Connect Four
- · Tic-Tac-Toe

Impartial

- · Nim
- · X-Only Tic-Tac-Toe

OUR SETUP

Comments

- · We are interested in impartial games.
- · We will require that game sequence is finite and there are no ties.
- · Player that moves first is called α and second player is called β .
- · Normal Play: The last player to move wins.
- · Misère Play: The last player to move loses.

Start with a pile of n stones. Each player chooses at least one stone from the pile. The player that takes the last stone wins. Game is denoted *n (called a nimber).

Start with a pile of n stones. Each player chooses at least one stone from the pile. The player that takes the last stone wins. Game is denoted *n (called a nimber).

Question

Is there an optimal strategy for either player?

Start with a pile of n stones. Each player chooses at least one stone from the pile. The player that takes the last stone wins. Game is denoted *n (called a nimber).

Question

Is there an optimal strategy for either player?

Answer

Boring: α always wins; just take the whole pile.

Start with a pile of n stones. Each player chooses at least one stone from the pile. The player that takes the last stone wins. Game is denoted *n (called a nimber).

Question

Is there an optimal strategy for either player?

Answer

Boring: α always wins; just take the whole pile.

Multi-pile Nim

Start with k piles consisting of n_1, \ldots, n_k stones, respectively. Each player chooses at least one stone from a single pile. The player that takes the last stone wins. Denoted $*n_1 + \cdots + *n_k$.

NIM

Example

Let's play *1 + *2 + *2. Here's a possible sequence.

NIM

Example

Let's play *1 + *2 + *2. Here's a possible sequence.

NIM

Example

Let's play *1 + *2 + *2. Here's a possible sequence.

Let's play *1 + *2 + *2. Here's a possible sequence.

Let's play *1 + *2 + *2. Here's a possible sequence.

Let's play *1 + *2 + *2. Here's a possible sequence.

Let's play *1 + *2 + *2. Here's a possible sequence.

In this case, α wins.

Let's play *1 + *2 + *2. Here's a possible sequence.

In this case, α wins.

Question

In general, is there an optimal strategy for either player?

Let's play *1 + *2 + *2. Here's a possible sequence.

In this case, α wins.

Question

In general, is there an optimal strategy for either player?

Answer

Short answer is yes: write sizes of piles in binary, do binary addition without carry (XOR), and if possible, hand your opponent a sum of 0. If players make optimal moves, this is only possible for one of the players.

IMPARTIAL COMBINATORIAL GAMES

Definition

An **impartial game** is a finite set *X* of positions together with a starting position and a collection

$$\{\mathsf{Opt}(Q)\subseteq X\mid Q\in X\}$$

of possible options.

IMPARTIAL COMBINATORIAL GAMES

Definition

An **impartial game** is a finite set *X* of positions together with a starting position and a collection

$$\{ \mathsf{Opt}(Q) \subseteq X \mid Q \in X \}$$

of possible options.

- Two players take turns choosing a single available option in Opt(Q) of current position Q.
- · Player who encounters empty option set cannot move and loses.
- · P-position: previous player (player that just moved) wins
- · N-position: next player (player that is about to move) wins

,

IMPARTIAL COMBINATORIAL GAMES

Definition

An **impartial game** is a finite set *X* of positions together with a starting position and a collection

$$\{ \mathsf{Opt}(Q) \subseteq X \mid Q \in X \}$$

of possible options.

- Two players take turns choosing a single available option in Opt(Q) of current position Q.
- · Player who encounters empty option set cannot move and loses.
- · P-position: previous player (player that just moved) wins
- · N-position: next player (player that is about to move) wins

From perspective of the player that is about to move, a P-position is a losing position while an N-position is a winning position.

Examples

 $\cdot *n$ is an N-position

- $\cdot *n$ is an N-position
- $\cdot *1 + *1$ is a P-position

- $\cdot *n$ is an N-position
- $\cdot *1 + *1$ is a P-position
- $\cdot *1 + *2$ is an N-position

- · *n is an N-position
- $\cdot *1 + *1$ is a P-position
- $\cdot *1 + *2$ is an N-position
- · Empty X-Only Tic-Tac-Toe board is an N-position

- · *n is an N-position
- $\cdot *1 + *1$ is a P-position
- $\cdot *1 + *2$ is an N-position
- · Empty X-Only Tic-Tac-Toe board is an N-position

GAME SUMS

Definition

If G and H are games, then G+H is the game where each player makes a move in one of the games. Set of options:

$$\mathsf{Opt}_{\mathsf{G}+\mathsf{H}}(\mathsf{S}+\mathsf{T}) := \{\mathsf{Q}+\mathsf{T} \mid \mathsf{Q} \in \mathsf{Opt}_{\mathsf{G}}(\mathsf{S})\} \cup \{\mathsf{S}+\mathsf{R} \mid \mathsf{R} \in \mathsf{Opt}_{\mathsf{H}}(\mathsf{T})\}$$

GAME SUMS

Definition

If G and H are games, then G+H is the game where each player makes a move in one of the games. Set of options:

$$\operatorname{Opt}_{G+H}(S+T) := \{Q+T \mid Q \in \operatorname{Opt}_G(S)\} \cup \{S+R \mid R \in \operatorname{Opt}_H(T)\}$$

Theorem

G + G is a P-position.

GAME SUMS

Definition

If G and H are games, then G+H is the game where each player makes a move in one of the games. Set of options:

$$\mathsf{Opt}_{G+H}(S+T) := \{Q+T \mid Q \in \mathsf{Opt}_G(S)\} \cup \{S+R \mid R \in \mathsf{Opt}_H(T)\}$$

Theorem

G + G is a P-position.

Proof

Copy cat.

,

Definition

 $G_1 = G_2$ if and only if $G_1 + G_2$ is a P-position.

Intuition: something akin to "copy cat" works.

Definition

 $G_1 = G_2$ if and only if $G_1 + G_2$ is a P-position.

Intuition: something akin to "copy cat" works.

$$\cdot *1 + *1 = *0$$

Definition

 $G_1 = G_2$ if and only if $G_1 + G_2$ is a P-position.

Intuition: something akin to "copy cat" works.

Examples

**1 + *1 = *0 since *1 + *1 + *0 is a P-position.

Definition

 $G_1 = G_2$ if and only if $G_1 + G_2$ is a P-position.

Intuition: something akin to "copy cat" works.

- *1 + *1 = *0 since *1 + *1 + *0 is a P-position.
- $\cdot *1 + *2 = *3$

GAME EQUIVALENCE

Definition

 $G_1 = G_2$ if and only if $G_1 + G_2$ is a P-position.

Intuition: something akin to "copy cat" works.

Examples

- **1 + *1 = *0 since *1 + *1 + *0 is a P-position.
- *1 + *2 = *3 since *1 + *2 + *3 is a P-position.

GAME EQUIVALENCE

Definition

 $G_1 = G_2$ if and only if $G_1 + G_2$ is a P-position.

Intuition: something akin to "copy cat" works.

Examples

- *1 + *1 = *0 since *1 + *1 + *0 is a P-position.
- *1 + *2 = *3 since *1 + *2 + *3 is a P-position.

Theorem

 $G_1 = G_2$ if and only if $G_1 + H$ and $G_2 + H$ have the same outcome for all H.

MINIMUM EXCLUDANT

Definition

If A is a finite subset of nonnegative integers, then mex(A) is the smallest nonnegative integer not in A.

MINIMUM EXCLUDANT

Definition

If A is a finite subset of nonnegative integers, then mex(A) is the smallest nonnegative integer not in A.

Examples

- $mex({0,1,2,4,5}) = 3$
- $\cdot mex({1,3}) = 0$
- $\cdot mex({0,1}) = 2$
- · $mex(\emptyset) = 0$

11

NIM-NUMBER OF A GAME

Definition

If G is a game, then

$$nim(G) := mex(\{nim(Q) \mid Q \in Opt(G)\}).$$

This is a recursive definition. We start computing with terminal positions (empty option set).

NIM-NUMBER OF A GAME

Definition

If G is a game, then

$$nim(G) := mex(\{nim(Q) \mid Q \in Opt(G)\}).$$

This is a recursive definition. We start computing with terminal positions (empty option set).

Examples

- $\cdot \operatorname{nim}(*0) = \operatorname{mex}(\emptyset) = 0$
- $\cdot \min(*1) = \max(\{\min(*0)\}) = \max(\{0\}) = 1$
- $\cdot \ \mathsf{nim}(*2) = \mathsf{mex}(\{\mathsf{nim}(*0), \mathsf{nim}(*1)\}) = \mathsf{mex}(\{0, 1\}) = 2$
- $\cdot nim(*n) = n$
- $\cdot \min(*1 + *1) = \max(\{\min(*1)\}) = \max(\{1\}) = 0$
- $\cdot nim(*1 + *2) = mex(\{nim(*2), nim(*1), nim(*1 + *1)\})$ $= mex(\{2, 1, 0\}) = 3$

Theorem (Sprague-Grundy)

Every game is equivalent to a single Nim pile: G = * nim(G)

Theorem (Sprague-Grundy)

Every game is equivalent to a single Nim pile: G = * nim(G)

Big Picture

Fundamental problem in the theory of impartial combinatorial games is the determination of the nim-number of the game.

Theorem (Sprague-Grundy)

Every game is equivalent to a single Nim pile: G = * nim(G)

Big Picture

Fundamental problem in the theory of impartial combinatorial games is the determination of the nim-number of the game.

Loosely speaking, we can think of nim-numbers as "isomorphism" classes of games.

Theorem (Sprague-Grundy)

Every game is equivalent to a single Nim pile: G = * nim(G)

Big Picture

Fundamental problem in the theory of impartial combinatorial games is the determination of the nim-number of the game.

Loosely speaking, we can think of nim-numbers as "isomorphism" classes of games.

Theorem

2nd player β wins G if and only if G = *0.

Let G be a finite (possibly trivial) group.

Let G be a finite (possibly trivial) group.

Generate Game

For the achievement game GEN(G):

Let G be a finite (possibly trivial) group.

Generate Game

For the achievement game GEN(G):

- · 1st player chooses any $g_1 \in G$.
- · At kth turn, designated player selects $g_k \in G \setminus \{g_1, \dots, g_{k-1}\}$ to create position $\{g_1, \dots, g_k\}$.
- · Player wins on the *n*th turn if $\langle g_1, \ldots, g_n \rangle = G$.

Let G be a finite (possibly trivial) group.

Generate Game

For the achievement game GEN(G):

- · 1st player chooses any $g_1 \in G$.
- · At kth turn, designated player selects $g_k \in G \setminus \{g_1, \dots, g_{k-1}\}$ to create position $\{g_1, \dots, g_k\}$.
- · Player wins on the *n*th turn if $\langle g_1, \ldots, g_n \rangle = G$.

Positions of GEN(G) are subsets of terminal positions, which are certain generating sets of G.

MATCH-UP

Name:	LeBron James	Bret Benesh
Height: Weight: Age: Salary:	6'8" 260 lbs 32 years \$30.96 million/year	6'5" 180 lbs >32 years \$0 million/year
Accolades:	3x NBA Champion 4x NBA MVP 2x Olympic gold medalist 11x NBA All-Star	Never had a cavity Sagittarius

GEN on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron P $\langle P \rangle$ Bret

GEN on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron	Р	$\langle P \rangle$	Bret
(1, 2, 3)	{(1,2,3)}	\mathbb{Z}_3	

GEN on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron	Р	$\langle P \rangle$	Bret
(1, 2, 3)	{(1,2,3)} {(1,2,3),(1,3,2)}	\mathbb{Z}_3 \mathbb{Z}_3	(1, 3, 2)

GEN on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron	Р	$\langle P \rangle$	Bret
(1, 2, 3)	{(1,2,3)}	\mathbb{Z}_3	, ,
	$\{(1,2,3),(1,3,2)\}$	\mathbb{Z}_3	(1,3,2)
(1, 2)	$\{(1,2,3),(1,3,2),(1,2)\}$	S_3	

GEN on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron	Р	$\langle P \rangle$	Bret
(1, 2, 3)	{(1,2,3)}	\mathbb{Z}_3	
	$\{(1,2,3),(1,3,2)\}$	\mathbb{Z}_3	(1,3,2)
(1,2)	$\{(1,2,3),(1,3,2),(1,2)\}$	S_3	

GEN on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron	Р	$\langle P \rangle$	Bret
(1, 2, 3)	{(1,2,3)}	\mathbb{Z}_3	(4.2.2)
(1, 2)	$\{(1,2,3),(1,3,2)\}\$ $\{(1,2,3),(1,3,2),(1,2)\}$	\mathbb{Z}_3 S_3	(1, 3, 2)

AVOIDANCE GAMES ON FINITE GROUPS

Let G be a finite nontrivial group.

Do Not Generate Game

For the avoidance game DNG(G):

- · 1st player chooses $g_1 \in G$ such that $\langle g_1 \rangle \neq G$.
- · At the *k*th turn, designated player selects $g_k \in G \setminus \{g_1, \dots, g_{k-1}\}$ such that $\langle g_1, \dots, g_k \rangle \neq G$ to create position $\{g_1, \dots, g_k\}$.
- · Player that cannot select an element without building a generating set is loser.

Positions of DNG(G) are exactly the non-generating subsets of G and terminal positions are the maximal subgroups of G.

DNG on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron

P

 $\langle P \rangle$

Bret

DNG on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron	Р	$\langle P \rangle$	Bret
(1, 2, 3)	{(1,2,3)}	\mathbb{Z}_3	

DNG on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron	Р	$\langle P \rangle$	Bret
(1, 2, 3)	{(1,2,3)} {(1,2,3),(1,3,2)}	\mathbb{Z}_3 \mathbb{Z}_3	(1, 3, 2)

DNG on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron	Р	$\langle P \rangle$	Bret
(1, 2, 3)	{(1,2,3)}	\mathbb{Z}_3	
	$\{(1,2,3),(1,3,2)\}$	\mathbb{Z}_3	(1,3,2)
е	$\{(1,2,3),(1,3,2),e\}$	\mathbb{Z}_3	

DNG on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

		(5)	
LeBron	Р	$\langle P \rangle$	Bret
(1, 2, 3)	{(1,2,3)}	\mathbb{Z}_3	
(1,2,3)	, ,		(1 2 2)
	$\{(1,2,3),(1,3,2)\}$	\mathbb{Z}_3	(1,3,2)
е	$\{(1,2,3),(1,3,2),e\}$	\mathbb{Z}_3	

DNG on $S_3 = \{e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}$

LeBron	Р	$\langle P \rangle$	Bret
(1, 2, 3)	{(1,2,3)} {(1,2,3),(1,3,2)}	\mathbb{Z}_3 \mathbb{Z}_3	(1, 3, 2)
е	$\{(1,2,3),(1,3,2),e\}$	\mathbb{Z}_3	(1, 3, 2)

DNG on $D_8 = \langle r, s \rangle = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$

LeBron P $\langle P \rangle$ Bret

DNG on $D_8 = \langle r, s \rangle = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$

LeBron	Р	$\langle P \rangle$	Bret
	$\{r^2\}$	\mathbb{Z}_2	r ²

DNG on $D_8 = \langle r, s \rangle = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$

LeBron	Р	$\langle P \rangle$	Bret
r ³	$\{r^2\}$ $\{r^2, r^3\}$	\mathbb{Z}_2 \mathbb{Z}_4	r ²

DNG on $D_8 = \langle r, s \rangle = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$

LeBron	Р	$\langle P \rangle$	Bret
2	$\{r^2\}$	\mathbb{Z}_2	r ²
r ³	$\{r^2, r^3\}$ $\{r^2, r^3, e\}$	\mathbb{Z}_4 \mathbb{Z}_4	е

DNG on $D_8 = \langle r, s \rangle = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$

LeBron	Р	$\langle P \rangle$	Bret
	$\{r^2\}$	\mathbb{Z}_2	r ²
r^3	$\{r^2,r^3\}$	\mathbb{Z}_4	
	$\{r^2, r^3, e\}$	\mathbb{Z}_4	е
r	$\{r^2, r^2, e, r\}$	\mathbb{Z}_4	

DNG on $D_8 = \langle r, s \rangle = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$

LeBron	Р	$\langle P \rangle$	Bret
	$\{r^2\}$	\mathbb{Z}_2	r ²
r^3	$\{r^2,r^3\}$	\mathbb{Z}_4	
	$\{r^2, r^3, e\}$	\mathbb{Z}_4	е
r	$\{r^2, r^2, e, r\}$	\mathbb{Z}_4	

DNG on $D_8 = \langle r, s \rangle = \{e, r, r^2, r^3, s, rs, r^2s, r^3s\}$

LeBron	Р	$\langle P \rangle$	Bret
	$\{r^2\}$	\mathbb{Z}_2	r ²
r ³	$\{r^2,r^3\}$	\mathbb{Z}_4	
	$\{r^2, r^3, e\}$	\mathbb{Z}_4	е
r	$\{r^2, r^2, e, r\}$	\mathbb{Z}_4	

SOME HISTORY

• 1987: Harary and Anderson determine outcomes for abelian groups.

SOME HISTORY

- 1987: Harary and Anderson determine outcomes for abelian groups.
- 1988: Barnes establishes element-based criteria for who wins DNG, assorted GEN results.

SOME HISTORY

- 1987: Harary and Anderson determine outcomes for abelian groups.
- 1988: Barnes establishes **element-based criteria** for who wins DNG, assorted GEN results.
- · 2014: Ernst and Sieben determine nim-numbers (and hence outcomes) for cyclic, dihedral, abelian.

SOME HISTORY

- 1987: Harary and Anderson determine outcomes for abelian groups.
- 1988: Barnes establishes **element-based criteria** for who wins DNG, assorted GEN results.
- · 2014: Ernst and Sieben determine nim-numbers (and hence outcomes) for cyclic, dihedral, abelian.
- 2016: Benesh, Ernst, and Sieben establish subgroup-based criteria
 for the determination of nim-numbers (and hence outcomes) for
 DNG, characterize spectrum of nim-numbers for DNG, determine
 nim-numbers for GEN and DNG for a variety of groups including
 generalized dihedral, symmetric, and alternating groups.

REPRESENTATIVE GAME TREES

Representative game tree for $GEN(S_3) = *3$

STRUCTURE DIAGRAMS

SIMPLIFIED STRUCTURE DIAGRAMS

SIMPLIFIED STRUCTURE DIAGRAMS

Simplified structure diagrams for dihedral groups

NIM-NUMBERS FOR CYCLIC GROUPS

Theorem (Ernst, Sieben)

If $n \geq 2$, then $nim(GEN(\mathbb{Z}_n)) = nim(DNG(\mathbb{Z}_n)) + 1$.

NIM-NUMBERS FOR CYCLIC GROUPS

Theorem (Ernst, Sieben)

If $n \geq 2$, then $nim(GEN(\mathbb{Z}_n)) = nim(DNG(\mathbb{Z}_n)) + 1$.

Theorem (Ernst, Sieben)

If $n \ge 2$, then

$$DNG(\mathbb{Z}_n) = \begin{cases} *1, & n = 2 \\ *1, & n \equiv_2 1 \\ *0, & n \equiv_4 0 \\ *3, & n \equiv_4 2 \end{cases}$$

and

GEN(
$$\mathbb{Z}_n$$
) =
$$\begin{cases} *2, & n = 2 \\ *2, & n \equiv_2 1 \\ *1, & n \equiv_4 0 \\ *4, & n \equiv_4 2 \end{cases}$$

NIM-NUMBERS FOR DIHEDRAL GROUPS

Theorem (Ernst, Sieben)

For $n \ge 3$, we have

$$DNG(\mathbb{D}_n) = \begin{cases} *3, & n \equiv_2 1 \\ *0, & n \equiv_2 0 \end{cases}$$

and

GEN(
$$\mathbb{D}_n$$
) =
$$\begin{cases} *3, & n \equiv_2 1 \\ *0, & n \equiv_4 0 \\ *1, & n \equiv_4 2 \end{cases}$$

NIM-NUMBERS FOR ABELIAN GROUPS

Theorem (Ernst, Sieben)

If G is a finite nontrivial abelian group, then

$$\mathsf{DNG}(G) = \begin{cases} *1, & G \text{ is nontrivial of odd order} \\ *1, & G = \mathbb{Z}_2 \\ *3, & G = \mathbb{Z}_2 \times \mathbb{Z}_{2k+1} \text{ with } k \geq 1 \\ *0, & \text{else} \end{cases}$$

$$\begin{cases} *2, & |G| \text{ is odd and } d(G) \leq 2 \\ *1, & |G| \text{ is odd and } d(G) \geq 3 \\ *2, & G = \mathbb{Z}_2 \\ *1, & G = \mathbb{Z}_{4k} \text{ with } k \geq 1 \\ *4, & G = \mathbb{Z}_{4k+2} \text{ with } k \geq 1 \\ *1, & G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_m \times \mathbb{Z}_k \text{ for } m, k \text{ odd} \\ *0, & \text{else} \end{cases}$$

GENERAL RESULTS

Theorem (Ernst, Sieben)

· If G is any finite nontrivial group, then DNG(G) is *0, *1, or *3.

GENERAL RESULTS

Theorem (Ernst, Sieben)

- · If G is any finite nontrivial group, then DNG(G) is *0, *1, or *3.
- · If |G| is odd and nontrivial, then GEN(G) is *1 or *2.

GENERAL RESULTS

Theorem (Ernst, Sieben)

- · If G is any finite nontrivial group, then DNG(G) is *0, *1, or *3.
- · If |G| is odd and nontrivial, then GEN(G) is *1 or *2.

Conjecture (In Progress)

If |G| is even, then GEN(G) is one of *0, *1, *2, *3, *4.

GENERAL RESULTS FOR DNG

Theorem (Benesh, Ernst, Sieben)

Let G be a finite nontrivial group.

- · If all maximal subgroups are even, then DNG(G) = *0.
- · If all maximal subgroups are odd, then DNG(G) = *1.
- · If mixed maximal subgroups, then
 - · If the even maximals cover G, then DNG(G) = *0.
 - · If the even maximals do not cover G, then DNG(G) = *3.

GENERAL RESULTS FOR DNG

Theorem (Benesh, Ernst, Sieben)

Let G be a finite nontrivial group.

- · If all maximal subgroups are even, then DNG(G) = *0.
- · If all maximal subgroups are odd, then DNG(G) = *1.
- · If mixed maximal subgroups, then
 - · If the even maximals cover G, then DNG(G) = *0.
 - · If the even maximals do not cover G, then DNG(G) = *3.

Using our "checklist" criteria, we have completely characterized DNG for nilpotent, generalized dihedral, generalized quaternion, symmetric, Coxeter, alternating, and some Rubik's cube groups.

INTUITION FOR DNG

Big Picture for DNG

- The players just race to fill up one maximal subgroup M.
- The beginning of the game is a struggle to determine M.
- $\cdot \alpha$ wants |M| to be odd.
- $\cdot \beta$ wants |M| to be even.

INTUITION FOR DNG

Big Picture for DNG

- The players just race to fill up one maximal subgroup M.
- The beginning of the game is a struggle to determine M.
- $\cdot \alpha$ wants |M| to be odd.
- $\cdot \beta$ wants |M| to be even.

Strategy

- \cdot α wants to pick an element not in any maximal subgroups of even order.
- $\cdot \beta$ wants to pick an involution.

FUTURE WORK

What's left to work on?

- · Wrap up spectrum of GEN?
- · Wrap up characterization of GEN for nilpotent groups?
- · Are there nice results for products and quotients?
- Is it possible to characterize the nim-numbers of GEN in terms of covering conditions by maximal subgroups similar to what we did for DNG?
- · What about other "closure systems"? We are currently tinkering with convex hulls of finitely many points in the plane.

Thanks!