INTECHARACTERIZATION OF SOLUTES AND SOLUTION PROSESCUE 1/1 UNCLASSIFIED F/G 7/4 END BATE 5 88

 $\frac{1}{2} \frac{\mathbf{w}_{i}}{\mathbf{w}_{i}} = \frac{1}{2} \frac{\mathbf{w}_{i}}{\mathbf{w}_{i}} + \frac{1}{2} \frac{\mathbf{w}_{i}}{\mathbf{w}_{i}$

THE CHARACTERIZATION OF SOLUTES & SOLVENT PHASES

PROGRESS REPORT 14 OCTOBER 1987

Dr Michael H. Abraham Mr Gary S. Whiting

University of Surrey, Guildford, Surrey, U.K.

Contract No. DAJA45-57-C-0004 R&D 5390-CH-01

Summary

The characterisation of five gas-liquid chromatographic stationary phases, using retention data obtained by Laffort and co-workers for 240 solutes, has been carried out by the method of multiple linear regression analysis. Relative gas-liquid partition coefficients for as many solutes as possible were correlated against various combinations of parameters. The best general equation was found to be one containing the exploratory variables π_2^\star , δ , α_m , β_m , and log L^{16} . Attempts to replace π_2^\star by the dipole moment (μ^2) were not very successial, and neither were attempts to use refractive index functions or molar refractions in combination with μ^2 . However, replacement of π_2^\star by the dipole moment itself was more successful, and led to quite good equations in μ , δ , α_m , β_m , and log L^{16} .

A number of new log L^{16} values have been determined experimentally, using the gas-chromatographic method.

Access	lon For	
NTIS (SEIFI	V
- DTIO TA	l.F	F 1
Vosane	ណៈ។ និ	1
3 40 * 14	. 94	
*		
* · · ·		=
. 11 - 1	7.1007	
i Aznii	et 111y	t ·
4	Victaria i	٠
5		-
1	1	
10/1		

Introduction

Over the past few years, Abraham, Doherty, Kamlet, Taft and co-workers 1,2 have constructed equations for the correlation and prediction of a very large number of physicochemical and biochemical phenomena. These equations are based on a cavity theory of solution, in which the process of dissolution of a solute in a solvent may be broken down into a number of hypothetical steps: (i) the endoergic formation of a cavity in the bulk solvent, (ii) rearrangement of solvent molecules round the cavity, and (iii) the exoergic interaction of the solute with the surrounding solvent molecules after the solute has been inserted into the cavity. If the Gibbs energy change in step (ii) is zero, or very nearly zero as is usually assumed, only steps (i) and (iii) need to be modelled. The energy of formation of a cavity can be taken as proportional to the solvent cohesive energy density, $(\delta_{\rm H}^{\,2})_1,$ where $\delta_{\rm H}$ is the Hildebrand solubility parameter, and to some function of the solute size, or volume, V_2 , the leading to a term $(\delta_H^2)_1.V_2$ with the units of energy. Various solvent-solute interactions can take place in step (iii). If both solvent and solute are dipolar, a term in π_1^* . π_2^* will arise, where π^* is the solvent or Hydrogen-bond interactions will also be set up, either solute dipolarity. between a solvent acting as a hydrogen-bond base and a solute acting as a hydrogen-bond acid, $\beta_1.\alpha_2$, or between a solvent acting as the acid and the solute as the base, $\alpha_1.\beta_2$. In these two terms, α_1 and β_1 refer to the solvent hydrogen-bond acidity and basicity, and α_2 and β_2 to the solute hydrogen-bond acidity and basicity. The full equation for the correlation of some solubility related property, SP, is then given by the multiple linear regression equation,

We denote, as usual, solvent properties by the subscript 1 and solute properties by the subscript 2.

$$SP = A + B\pi_1^*\pi_2^* + C\beta_1^*\alpha_2 + D\alpha_1^*\beta_2 + E(\delta_H^2)_1^*V_2$$
 (1)

Now for a process involving a series of solutes in a given solvent, all the solvent parameters in equation (1) are constant, leading to equation (2). For solutes that are aromatic or polyhalogenated, a polarisability

$$SP = C + s.\pi_2^* + a.\alpha_2 + b.\beta_2 + M.V_2$$
 (2)

correction term is needed, which takes the form δ_2 = 1 for aromatic solutes, 0.5 for polyhalogenated solutes, and zero for all other solutes. This leads to the final equation, used extensively in the correlation of a wide variety of phenomena in condensed phases, equation (3). An early application of

$$SP = C + s.\pi_{2}^{*} + d.\delta_{2} + a.\alpha_{1} + b.\beta_{2} + m.V_{2}$$
(3)

equation (3) to a process involving a gaseous phase, namely the solubility of gases and vapours in polymers, 3 revealed a possible deficiency in that equation (3) contains no term that corresponds to solute-solvent dispersion, or van der Waals, interaction. An alternative equation was therefore put forward, with a new solute parameter, $\log L^{16}$, replacing the volume term V_2 . This new parameter was defined as the logarithm of the solute Ostwald solubility coefficient, L, on n-hexadecane at 298K.

$$L = \frac{\text{concentration of solute in solution}}{\text{concentration of solute in the gas phase}}$$
 (4)

Two possible equations for the correlation of the solubility of a series of gases and vapours in a given condensed phase are therefore equations (3) and (5), and we set out to investigate the use of these two equations. There are several ways of describing the solubility of gases in liquids, but in view

of the use of the Ostwald solubility coefficient in equation (5) shall define gas solubility through equation (4). It should be noted that L is actually the same as the gas-liquid partition coefficient, K, used in the description of gas-liquid chromatography (GLC). The coefficient L or K is related to the specific retention volume at the column temperature, V_G , through equation (6) where ρ_1 is the stationary phase density.

$$SP = C + s.\pi_2^* + d.\delta_2 + a.\alpha_2 + b.\beta_2 + 1.\log L^{16}$$
 (5)

$$L (or K) = \beta_1 \cdot V_G$$
 (6)

In order to apply equations (3) and (5), values of SP (i.e. \log L or \log V_G) should be available for a wide selection of solutes on the same liquid phase. By far the most convenient and accurate method of obtaining such a series of SP values is by GLC itself, and there are numerous compilations of such data. Probably the most extensive, carefully measured, values are those recorded by Laffort and co-workers 5 for 240 solutes on 5 stationary phases, and this is the data we have chosen first to analyse. Laffort and co-workers published their data in the form of Kovat's retention indices, defined for isothermal GLC through equation (7).

$$I(x) = 100 \frac{\log V_G(x) - \log V_G(Pn)}{\log V_G(Pn + 1) - \log V_G(Pn)} + 100n$$
 (7)

Here, I(x) is the retention index of solute x, V_G is the specific retention volume, and (Pn) and (Pn + 1) represent n-alkanes of carbon number n and N + 1. The equation used to calculate their retention indices is,

$$I = 100 \frac{\log \tau(x) - \log \tau(P_{10})}{b} + 1000$$
 (8)

where $\tau(x)$ and $\tau(P_{10})$ are the corrected retention times for compound x and n-decane, and b is the slope for n-alkanes. From equation (8) it follows that

$$\log L(x) = \frac{I-1000}{100} b + \log L(P_{10})$$
 (9)

and hence values of log L(x) may be calculated for the 240 solutes relative to log L for n-decane. These relative values of log L(x) - log $L(P_{10})$ can be used in equations (3) and (5) to yield exactly the same coefficients etc. as would be found with the absolute values of log L(x). The constant quantity log $L(P_{10})$ will be subsumed into the value of C.

The five phases studied by Laffort and co-workers are listed in Table 1, and the 240 solutes are given in Table 2. In Table 3 are given those listed in our database, i.e. those for which we had some, or most, of the required solute parameters and in Table 4 are the b-values used in equation (9). The parameters that were chosen to be used in regressions are as follows:

- These values are those that have been extensively used by Kamlet and co-workers. $^{1,2,7-10}$
- This is a trivially-calculated parameter, taken as 1.0 for aromatic solutes, 0.5 for polyhalogenated solutes, and zero for all others.
- $\alpha_2(\alpha_m)$ These values were taken from recent papers of Kamlet and coworkers. $^{7-10}$

This is not the case if only Kovat's retention indices are known. It is therefore fortunate that Laffort and co-workers had the foresight to record values of b for each of the five stationary phases studied. Note that slightly different b-values are given in Laffort's table III. We are indebted to Professor Laffort for suggesting that those in the first rwo would be the most suitable to use in our equation (9).

$\alpha_2(\alpha_2^H)$	This is a new hydrogen-bond acidity parameter recently developed
	by Abraham and co-workers using log K values for hydrogen-bond
	complexation. 11

- $\beta_2(\beta_m)$ These were, again, taken from papers of Kamlet and coworkers. $^{7-10}$
- $\beta_2(\beta_2^H)$ This is a new hydrogen-bond basicity parameter, 12 obtained by the same procedure as $\alpha_2^H.$
- $\rm V_2(\rm V_x)$. In all our calculations we used the trivially calculatable characteristic volume, as detailed by Abraham and McGowan. 13
- log L^{16} Many of values were taken from the experimental paper of Abraham, Grellier, and McGill.⁴ Other values have been obtained in this work, see experimental section and the section on log L^{16} values.
- Dipole moments were taken from standard literature sources. 14,15 f(2) This refractive index function, defined as f(2) = $(^2-1)/(^2+2)$ was calculated from literature values of the refractive index of the solute liquid at 293 K and the sodium-D line. 16
- MR The molar refraction was obtained from the usual definition, MR = $f(n^2).M/P$, where M and P are the solute molecular weight and density; MR is the same as the electron polarisation, P_F .
- MR_x To eliminate the need for a new parameter (the density), a modified molar refraction was calculated as MR_x = $f(n^2) \cdot V_x$.

In the present report, we set out equations, based on the α_m and β_m values of Kamlet and co-workers, 7^{-10} and in a subsequent report we shall investigate the use of the new parameters α_2^H and β_2^H . To some extent equations (3) and (5) are straightforward in that, apart from α_m and β_m taken as standard, the other parameters V_X and log L^{16} are well-defined solute parameters. However τ_2^* is partly derived from the solvent parameter τ_1^* , and

partly obtained through a dipole moment correlation. One aim of the present work was therefore to see if π_2^* could be replaced either by the dipole moment (μ or μ^2) or some combination of dipole moment with $f(n^2)$ or MR. Of course, another aim is to obtain the best regression equation that could be used to predict new values of the chromatographic parameter.

Results and discussion

Regressions were run for the relative values of $\log L(x)$ on the five phases listed in Table 1. The coefficients of the parameters are listed in a series of Tables, together with the number of data points (n), the multiple correlation constant (r), and the standard deviation (s.d.). Also given are the per cent confidence levels for the coefficients (correlation %). The Tables are as follows:

Table 5:
$$\delta, \pi_2^{\star}, \alpha_m, \beta_m, Vx$$
 All phases
$$f(n^2), \mu^2, \alpha_m, \beta_m, Vx$$

Table 6:
$$\delta, \ \pi_2^{\bigstar}, \ \alpha_m, \ \beta_m, \ \log \ L^{16}$$
 All phases
$$f(n^2), \ \mu^2, \ \alpha_m, \ \beta_m, \ \log \ L^{16}$$

Table 7:
$$\delta$$
, μ^2 , α_m , β_m , Vx Polyph ether only δ , μ^2 , α_m , β_m log L^{16}

$$MR_x$$
, μ^2 , α_m , β_m , Vx

$$MR_x$$
, μ^2 , α_m , β_m , log L^{16}

Since the various regressions in μ^2 were not very good, an additional series was run that included only solutes with a single dominant dipole moment - i.e. solutes such as acids, esters, nitro compounds and so forth were removed. Further regressions were carried out as follows:

Table 8:
$$f(n^2), \ \mu^2, \ \alpha_m, \ \beta_m, \ Vx$$
 TCEP orly
$$f(n^2), \ \mu^2, \ \alpha_m, \ \beta_m, \ \log \ L^{16}$$

$$MR_x, \ \mu^2, \ \alpha_m, \ \beta_m, \ VX$$

$$MR_x, \ \mu^2, \ \alpha_m, \ \beta_m, \ \log \ L^{16}$$

Although μ^2 is theoretically a better parameter to use than μ itself, two sets of regressions were run using μ as a dipolar parameter. In each set, regressions were carried out for all solutes for which parameters were available, and for solutes with δ = 0:

Table 9:
$$f(n^2), \mu, \alpha m, \beta m, \log L^{16}$$
 All phases Table 10:
$$\delta, \mu, \alpha m, \beta m, \log L^{16}$$
 All phases
$$\mu, \alpha m, \beta m, \log L^{16}$$

A direct comparison of Tables 5 and 6 shows quite clearly that regressions in $\log L^{16}$ are always markedly superior to those in Vx, and hence we shall consider only the $\log L^{16}$ correlations henceforth. Results in Table 6 for the general equation (5) are quite good, with correlation constants ranging from 0.9943 to 0.9805 for the five phases with about 90 solutes. The constants in equation (5) make general chemical sense: all five phases are hydrogen-bond bases and have no hydrogen-bond acidity, and hence the coefficient in the term b.8 should be statistically not significant. This is true for all the phases except Zonyl E7. This phase is supposed to be a

fluorinated ester of "pyromellitic acid and a trihydrofluoro alcohol". The former is 1,2,4,5-benzene tetra-carboxylic acid, and it is possible that the commercial product contains either unesterified carboxylic acid or hydroxyl groups.

One difficulty over a physicochemical interpretation of equation (5) is that polarisability effects are contained in the s. π_2^* term as well as on the d. δ term. It would be particularly useful if the dipolarity and polarisability effects, both contained in s. π_2^* , could be separately counted. To this end, we have investigated the effect of replacing the δ/π_2^* terms by various combinations of the dipole movement, as μ^2 , and polarisability functions such as $f(n^2)$ or MR. In Table 6 are results of a direct replacement in equation (5) of π_2^* and δ by $f(n^2)$ and μ^2 . The overall correlation constants are not as good as those in the original equation (5), but are not too bad. However, most surprisingly, the b. θ_m terms are statiscally significant for all five phases, thus making the entire regression equations rather suspect from a chemical point of view.

In Table 7 are results of replacing π_2^* and δ by either μ^2 and δ or by μ^2 and MR_x , for the polyphenyl ether phase as an example. There is an excellent correlation with δ , μ^2 , α_m , β_m , and $\log L^{16}$ with r=0.9922 and sd=0.093, which must be close to an exhaustive fit. But once again, the $b.\beta_m$ term is highly significant. Regressions with $f(n^2)$ and μ^2 or MR_x and μ^2 for TCNE using a restricted set of solutes that contain either no dipole or else a single dominant dipole, are in Table 8. The only chemically reasonable regressions are those of the original form in δ/π_2^* .

Our conclusion as a result of the regressions set out in Tables 5-8 is that replacement of the δ/π_2^* symbolism by μ^2 in combination with a polarisability term leads (i) to regressions that are not as good, and (ii) to regressions that contain an unacceptable b.8 term.

In terms of chemical theory, correlations of an energy-related quantity such as log V_G or log L with dipole moment should certainly involve μ^2 and not μ . However, we thought it useful on an empirical level to investigate the use of μ as a solvent parameter. Table 9 gives details of regressions where $f(n^2)$ and μ replace δ and π_2^* . Once again, the b. β_m term is highly significant for all five phases. Finally, in Table 10, are results of simply making a direct replacement of π_2^* by μ in equation(5), to give:

$$SP = C + s.\mu + d.\delta_2 + a.\alpha_2 + b.\beta_2 + 1.\log L^{16}$$
 (10)

The regressions are all very good, and the only difficulty is that the b.8 term is still too significant for the phases TCEP, Polyphenyl ether, and DEGS. We carried out another set of regressions using equation (10) for a restricted set of solutes for which δ = 0 (about 60-65 such solutes). The regression coefficients and sd values are the best we have obtained (compare Table 10 with Table 6), and now the b.8 terms are statistically not significant, as required (except for zonyl E7!). We are much encouraged by the results in Table 10, and intend to pursue this line of regression analyses. If, indeed, π_2^* can be replaced by μ , not only would interpretation be much easier, but it would be possible to predict the dipole parameter rather easier from a knowledge of molecular structure.

Work in Progress

Further work is in hand on the refinement of equation (10) for the correlation and prediction of gas-liquid and gas-polymer partition coefficients. We hope that on the next report we shall be able to set out a modified equation (10) that will deal with the Laffort data set.

We also have in hand the analysis of a large number of log L values (or the equivalent log ${\rm V_G}$ values) on the nonpolar phases Apiezon and squalane. It

will be possible to extract from this data a rather extended list of secondary $\log L^{16}$ values that will considerably extend our data base.

Our next projected experimentation will be the acquisition of log L values for a range of solutes on some simple organic solvents, so that a direct comparison can be made with GLC stationary phases and with polymer phases.

Experimental

In order to increase the number of Laffort solutes for which we had all the parameters, additional $\log L^{16}$ values were determined, at the standard temperature of 298.15 K. A short column was used of length 50 cm and internal diameter 2 mm, containing 8.34% w/w of n-hexadecane on chromosorb B, mesh size 45/60. The standard used was n-octane of $\log L^{16}$ value 3.677, and $\log L^{16}$ values for other solutes were obtained relative to n-octane, using a flame ionisation detector, as described before. Results are given in Table 11. Attempts were also made to obtain $\log L^{16}$ values for proprionic acid and higher carboxylic acids, but without success, but further attempts will be made to determine these quantities, either directly or indirectly.

- 1. M. J. Kamlet, R. M. Doherty, J.-L. M. Abboud, M H. Abraham and R. W. Taft, Chemtech., 1986, 566.
- 2. M. H. Abraham, R. M. Doherty, M. J. Kamlet and R. W. Taft, Chem. Brit., 1986, 75, 629.
- 3. M. H. Abraham, P. L. Grellier, R. A. McGill, R. M. Doherty, M. J. Kamlet, T. N. Hall, R. W. Taft, P. W. Carr and W. J. Koros, Polymer, 1987, 28, 1363.
- 4. M. H. Abraham, P. L. Grellier and R. A. McGill, J.C.S. Perkin Trans. 2, 1987, 797.
- 5. F. Patte, M. Etcheto and P Laffort, Anal. Chem., 1982, 54, 2239.
- 6. Personal communication from Professor Laffort.
- 7. M. J. Kamlet, R. M. Doherty, G. D. Veith, R. W. Taft and M. H. Abraham, Envir. Sci. Tech., 1986, 20, 690.
- 8. M. J. Kamlet, R. M. Doherty, R. W. Taft, M. H. Abraham, G. D. Veith and D. J. Abraham, Envir. Sci. Tech., 1987, 21, 149.
- 9. M. J. Kamlet, R. M. Doherty, J.-L. M. Abboud, M. H. Abraham and R. W. Taft, J. Pharm. Sci., 1986, 75, 338.
- M. J. Kamlet, R. M. Doherty, M. H. Abraham, P. W. Carr, R. F. Doherty and
 R. W. Taft, J. Phys. Chem., 1987, 91, 1996.
- 11. M. H. Abraham, P. P. Duce, P. L. Grellier, D. V. Prior, J. J. Morris and P. J. Taylor, in the press.
- 12. M. H. Abraham, P. L. Grellier, D. V. Prior, J. J. Morris, P. J. Taylor,
 C. Laurence and M. Berthelot, in the press.
- 13. M. H. Abraham and J. C. McGowan, Chromatographia, 1987, 23, 243.
- 14. A. L. McClellan, "Tables of Experimental Dipole Moments" pub. W. H. Freeman and Co.
- 15. R. J. W. le Fevre, Trans. Faraday Soc., 1934, Vol. 30, appendix.
- 16. Handbook of Chemistry and Physics.

Table 1. The five stationary phases studied by Laffort and co-workers.

Zonyl Zonyl E7 (Dupont). This is a fluoro-ester.

CW 1540 Carbowax 1540 (Applied Science).

TCEP Tricyanoethoxypropane

Polyph. ether Polyphenyl ether, six rings.

DEGS Diethyleneglycol succinate.

kovats retention indexes in GLC of 240 substances on five stationary phases. E corresponds to extrapolated values. The numbers of Handbook followed by x or an additional digit are not reported in the 50th edition but correspond to the same logic of classification,

Substances	Handbook	Lony	156	x ICLI	Poly	ph.DEGS
I METEAROL I METEAROL 2 ETHAROL 2 ETHAROL 3 1-PROFAROL 4 1907 ROPAROL 6 ALL'IL ALCOBOL 7 1808UTAROL 8 2-BOTAROL 10 TER-SUTAROL 11 ARYL ALCOBOL 12 TER-AVIL ALCOBOL 13 TER-AVIL ALCOBOL 14 CYCLOPENTAROL 16 -EZKAROL 17 2-BEXAROL 18 2-BEXAROL 19 3-BEXAROL 19 3-BEXAROL 10 3-BEXAROL 11 3-BEXAROL 11 3-BEXAROL 11 3-BEXAROL 11 3-BEXAROL 11 3-BEXAROL 13 1-BEXAROL 13 1-BEXAROL 14 1-BEXAROL 15 1-BODECAROL 15 EXD-ETRYL FENCIROL	Ne3-00 E0336 P1387 F1388 F1388 F14130 82806 F1433 82806 F1433 82806 E0807 82806 E0807 82806 E0807 82806 E0807 82806 E0807 82806 E0807 82806 E0807 E080	457 794 823 741 832 987 8616 1023 1023 1023 1166 1166 1166 1162 1276 1276 1277 1277	916 933 3945 916 1112 1112 1226 1271 1272 1316 1415 1415 1415 1415 1415 1415 1415 14	1226 1230 1353 1394 1392 1394 1312 1312 1312 1329 1276 1497 1497 1497 1582 1686 1674 1686 1674 1686 1686 1697 1982 1982 1982 1982 1982 1982 1982 1982	\$22 \$47 763 614 763 614 763 773 654 886 883 883 1163 1163 1163 1163 1163 11	1062 1083 1198 1097 (204 1324 (144 1324 1454 1364 137 1364 1436 1331 1233 1233 1233 1233 1233 1233 12
ALPENTOES 44 ACETALDENTOE 27 PROPIONAL 28 PROPENAL 49 BOTTHALDENTOE 40 1806WITHALDENTOE 41 2-80TERALI TRANS 44 EZ-KAPAL 45 2-80TERALI TRANS 46 2-80TERALI TRANS 46 0-70TERALI TRANS 47 2-80TERALI TRANS 48 0-70TERALI TRANS 49 0-70TERALI TRANS	A0018 F1003 F1707 82471 F1009 w 82433 82481 F0277 80316 80400 80107c 00110 00206s 80035 80122	738 830 842 933 887 1994 1358 (149 1349 1440 1347	742 825 844 834 1886 948 1413 1276 1224 1311	1073 1170 1220 1253 1173 1517 1290 2037 1713 1573 1668	541 654 659 753 766 670 013 1135 664 1077 1064 1172	914 950 1053 1078 992 1305 1103 1816 1294 1398 1600
S 2-BUTAMORE 8 BIACTIVL 8 2-PERTAMORE 8 CYCLOPENTAMORE 9 CYCLOPENTAMORE 9 CYCLORENTAMORE 9 CYCLORENTAMORE 10 CYCLORENTAMORE 11 CYCLORENTAMORE 12 OCCLORENTAMORE 12 OCCLORENTAMORE 13 OYCLORENTAMORE 14 CYCLORENTAMORE 15 CYCLORENTAMORE 16 CYCLORENTAMORE 17 CYCLORENTAMORE 18 CYCLORENTAMORE 19 2-WINDECAMORE 10 2-WINDECAMORE 10 2-WINDECAMORE 11 CYCLORENTAMORE 12 OCCLORENTAMORE 12 OCCLORENTAMORE 13 CYCLORENTAMORE 14 CANORE 15 CYCLORENTAMORE 16 CANORE 17 CYCLORENTAMORE 17 CYCLORENTAMORE 18 CANORE 19 CYCLORENTAMORE 19 CYCLORENTAMORE 10 CYCLORENTAMORE 10 CYCLORENTAMORE 11 CYCLORENTAMORE 11 CYCLORENTAMORE 12 OCCLORENTAMORE 12 CYCLORENTAMORE 13 CYCLORENTAMORE 14 CANORE 15 CYCLORENTAMORE 17 CYCLORENTAMORE 17 CYCLORENTAMORE	P1649 82912 82922 P2346 C6696 86317 86317 86317 06186 C6417 06187 C6617 C6857 A645 A6352 C6852 C	1092 (276 1193 1149 1384 (284) 1491 1496 1662 1678 1719 1597 1628 1792 1493 1794 2046	1930 1230 1123 11904 1345 223 1476 1332 1332 1390 3605 1427 1702 1526 (812 J747 1417	1424 1748 1416 1416 1612 1612 1613 1612 1711 1711 1711 1711 1711 1711 1711	837 1656 7665 1666 1686 1686 1686 1686 1686 1675 1675 1675 1675	1220 1220 1220 1320 1122 1422 1422 1422 150 1624 1624 1624 1624 1624 1624 1624 1624
ETHERM 76 ETHEL ETHER 77 BUTCH, LIBER 78 FURAN 79 F. 4-BIONARE 61 2-ACETYL, 3-RETBYL FURAN 62 2-FROM (1971), 7-RETBYL FURAN 63 2-ACETYL, 3-RETBYL FURAN 63 2-ACETYL, 3-RETBYL FURAN 63 2-ACETYL, 3-RETBYL FURAN 63 3-ACETYL BYLL 64 APETROL 65 APETROL 67 APETROL 67 APETROL	20077 20077 20193 20194 201942 201942 211943 211943 211943 211943 211943	1612 1679 1277 1231	\$27 974 003 008 008 008 008 1041 1346 1113 1113	736 1099 1328 2106 2211 1987 1383 1783		768 1834 964 1347 1891 1463 1614 71,1

Table 2 (Continued)						
Substances	Handbook	Zony	1 C.va	* TOPP	Polyr	h DEGS
RITHOCER COMPOUNDS			154	0	ethe	-
ST 1-FITHOHETHARE	M0284	1010	1161	1639	784	1402
## 1-HITMORTHANE ####################################	E0255 P1210	1184	1741			
91 3-HITROTOLUENE	P12010 T0355	1743	1826	1579	933 1521	1356 2206
92 ACETONITRILE	A0241	962	1048	1500	7 6 i	1262
93 BUTYRORITRILE 94 VALERORITRILE	A0241 B2680 P0229 B1291	1132	1234	1644 1645 2172	884 987	1352
95 BERZONITRILE	B(29)	1534	1643	2172	1216	1942
96 TRIMETEYLANINE 97 ALLYLANINE 98 2-ANINOBUTANE	A0939 P1714	784	077			1036
98 2-ANIHOBUTARE 99 FYRROLE	B2489 P2126	826 1123	879	1200	674 698	1327 1318 1762
98 2-ANIHOBUTARE 99 PYRHOLE 199 PYRHOLE 190 1911 DIRE 191 2.3,6-TRIBETBYL PYRIDIRE	P1939 P2032	1155	1242	1200 1961 1668 1811	1232	1507
102 TRIMETHYL PYRAZIKE	P19943					
102 TRIMETHYL, PYRAZIKE 103 2-METHYL, 3-ETHYL PYRAZIKE 104 2-METHOXY, 3-18080TYL PYRAZ	P19042 IRE P19041	1354	1438 1550	1825	1236	1685
CARBORYLIC ACIDS						
106 ACETIC ACID 106 PROPIORIC ACID	A0058 P1302	1035		1823	734 884	1480
188 ACETIC ACID 189 PROPIORIC ACID 187 BUTYRIC ACID 188 ISOSUTYRIC ACID 189 S-BUTEROIC ACID 119 A-PETRYLBUTYRIC ACID 111 VALERIC ACID 111 REMANDIC ACID 114 REMANDIC ACID 115 REFTANDIC ACID 116 POTANDIC ACID 117 REFTANDIC ACID 117 HORANDIC ACID 118 DECARDIC ACID 119 URBECANDIC ACID 119 URBECANDIC ACID 120 DECARDIC ACID 121 URBECANDIC ACID 122 DODECARDIC ACID 123 DODECARDIC ACID	B2651 P1518	1235	1418	1004		
IIO V-MELENCENTALIC VCID	B3016 B2797	1248 1248 1345 1371	1738	2140	983 1994	1991
112 190-VALERIC ACID	F9214 B2862	1371	1749	2009 2016	1108	1954 1877
114 IBODERANGIC ACID	P9291	1302 1483 1417 1593	1779	2191	1233	1963
LIG OCTANOIC ACID	00161 #0534	1707 1819 1931 2043	2074	2373	1483	2147
118 DECAMOIC ACID	D0042 B0022	1931	2290	2559	1733	2333
120 DODECAROIC ACID	De295	2155	2506	2744	1982	2519
ENTERS						
121 HETEYL ACETATY 122 ETEYL ACETATE	A0221 A0199 P1324 F0146	984 969 935	844	1164	666	1026
123 METRYL PROPIONATE 124 PROPYL FORMATE 125 PROPYL ACCTATE	P1324 F0146	935	929	1241	770 742	1099
125 PROPYL ACETATE 126 BUTYL ACETATE 127 PROPYL BUTYRATE 128 ANYL ACETATE	A0259 A0178	1054	984	1298	844	1152
126 ANYL ACETATE 129 180ANYL ACETATE	82484 A0253	1218	1143	1446	1024	1297
130 IROSUTYL BOSUTTRATE 131 RETEYL SALICYLATE 132 ISOANYL ISOVALERATE	A0223 P1530	1226	1147	1446	1010	1304
132 ISOANYL ISOVALERATE 133 BERZYL ACETATE 134 NETWYL BERZOATE	\$2807#	1432	1323	1592	1217	1760
134 RETBYL BEFZOATE 135 2-ETBOXY ETBYL ACETATE	A0221 A0109 P1324 F0144 A0239 A0178 B2686 A0233 A0223 F1530 B1671 B28070 A0173 B1286 A0446	1394	1924	2502 1776	1442	2982 2298 1573
EALOCER CONFOUNDS						
194 1-FLOORGOCTARE	09129	1990	1050	1237	972	1196
137 1. IBIPLUOROTETRACELOROETEARE 138 1. 2017LUOROTETRACELOROETEARE	FA223	874	889	1015	784 796	976 991
159 CELOROFORN 140 CARBON TETRACELORIDE	79/304 79/294 E0214	773	1429	1240	775	1157
142 TRICHLORDETWYLERS	E4423	863 862	1481	1240 1847 1398 1216	634	1233
143 I.I.Z.2-TETRACELOCOETHARE 144 MEXACHLOROBOTABLERE	E#267	1151 1363 1333	1774	1034	1160	1741 1713
144 I-CHLOROREXARY	80330	1008	1463	1266	968	1807 1171
148 C18-2-CILONO (SOPROPYL, ETREM 149 2-CILONO PREFIOL	84335 E4498 P4413	1317 1367 1367	1523 1512	1862 1941 2274	273	1749 1764 2120
130 ETBYL BROWIDE 131 1-BROWDFERTANE	E0 195	677	793	1012	665	914
152 2-BROMOGCTANE	P0010 09117	984 1242	1350	1300 1323 I	973	199
163 NETWYL 1001DE 134 (-1000BUTARE 185 2-1000BUTARE	M0282 82368 82369	643 934 926	844 	056 340	989 1	967 234
•		720 1		213	* 46 i	178
BULFUR COMPNUNDS	E0328	623	733	970	435	884
137 I.2-ETHAREDITHIOL 138 I-PROPARETRIOL	E4312	1944		771 1	699 1	585 979
159 "-PROPARETEIOL 169 ALLTE SERCAPTAN	P1294 P1739	693	786	975	677	₹7₹ 86.2 €5:j
161 1-BUTARETRIOL 162 ISOBUTARETRIOL	B2443	849 817	965 1	193	656 612	984 929
FA3 TYR-BUTARETHIOL 9 154 TETRABYDROTH(OPEERE	P1295 P1296 T9224	717 1038 1	786	957	4	878 363

Table 2 (Continued)						
Substances	Handbook	Zony I	C.vax	TCEP	Polyph	. DEGS
			1540		ether	
IAS TRIOCHERE	T9 (87	186	1936	1353		1236
166 I-PENTAMETHIOL 167 ISOPENTAMETHIOL	P0249 B2448	951 817	1973	1293		1193
IAG DITWIAPENTANE	P# 1384	1132	1367	1739	1144	1574
140 2-METRYL THIOPHERE 170 REKARSTHIOL	T9215 NG420	1662	1154	1441		1314
171 2.5-DINETHYL THIOPHERE 172 BERZENETHIOL	T0200	1094	1224	1508	1032	1377
172 BERZENETHIOL 173 I-WEPTANETHIOL	B0854 H0142	1374	1632	2103 1508	1365 1166	1918 1407
174 BENZYL MERCAPTAN	T#343	1379	1262 1658	2112	1372	1920
175 I-OCTANETHIOL 176 I-MONANETHIOL	00158 #0333#	1269 1374	1386	1615		1514 1621
177 1-DECAMETHIOL	D0041	1479	1594	1829	1482	
176 NETRYL SULFIDE	89313	694	776	1015	654	912
179 ETHYL SULFIDE	\$0303 \$0332	864 1049	930	1171	83 I 102 I	1057 1228
IST PROPYLENE SULFIDE	S#350#	821	965	1238		1110
182 ALLYL SULFIDE	60292 80298	1863	1188	1463	1034	1355
183 190AMYL SULFIDE 184 DIMETRYL DISULFIDE	00242	1374 935 1113	1138	1425	947	1286
184 DIMETRYL DISULFIDE	D0238	1113	1292	1563	1112	1425
184 DIBUTYL SULFIDE 187 METRYL ETRYL SULFIDE	S0293 S0341 S0348	1255 626	1322	1525	1217	1400 805
167 METRYL ETRYL SULFIDE 166 METRYL PROPYL SULFIDE 169 METRYL TRISULFIDE	S0348 T0744=	885	961	1196	853	1076
189 RETRYL TRISULFIDE	T9744#	1163	1456	1779	1230	1646
190 METHYL THIOCYANAYE 191 METNAMETHIOL ACETATE 192 ETHYL IBOTRIOCYANATE 193 METRAMETHIOL PROPAROATE	T0175 M03451	1160	1325	1821 1438	985 899	1583 1286
192 ETRYL ISOTELOCYANATE	10228	1077	1265	1651	1019	1461
	M03454 10216	1109	1179	1397	995 1101	1357
194 ALLYL INOTBIOCYARATE 195 METHANETHIOL BUTYRATE	1193452	1188	1255	1580	1079	1428
196 METRAMETEIOL ISOVALERATE 197 PEENYL ISOTRIOCYANATE	M03453 10236		1284	1586	1117	1444 1985
TVI TEMPLE 13VIIIVOITAMIE	10200	*****			140.	1700
TYDROCARBORS						
198 ETBYLERE 199 PROPYLERE	E0401 P1713	222 324	308 395	363 450	27 0 360	465 533
200 I-BUTENE	B2940	422	483	536	450	661
201 FETTERE 202 1-REXERE	P#375 B#3461	522 598	561	632 679	552 614	689 712
203 I-MEPTEME	80197	722	744	794	723	Be 5
204 1-OCTERE 205 2-OCTERE(CIS)	00208 00209	822 848	843 879	896 939	819	893 931
204 2-ETHYL BEXENE	80564	837	854	922	824	894
207 2-BUTYNE 208 1-OCTYNE	8307 I 0022 I	595 937	796 183 0	890 1187	587 947	636 1116
200 2-0CTYNE	00222	975	1475			1167
210 BENZERE 211 TOLUENE	80202 70275	871 994	979 1878	1257	833 938	1141
212 ETBYL BENZEME	86758	1984	1162	1439	1035	1333
213 STYRENE	SQ 139	1150	1280	1620	1094	1510
214 ETWYNYL BERZERE 215 Q-XYLENE	80778 80468	1144	1386	1698	1096	1367
215 Q-XYLENE 216 H-XYLENE	8066 t	1115	1188	1479	1050	1362
217 P-KYLENE 218 MESITYLENE	80662 80975	1113	1180	1473	1153	1350
219 A-PINENE Le Mame	P#923	1007	1064	1143	1015	1131
220 ETBARE	E0162	200	200	200	200	200
221 PROPARE	P1107	300	300	300	300	300
222 BUTANE 223 ISOBUTANE	B2485 ₽12₩0#	400 376	364	400 339		400 359
224 PERTARE	P9654	500	500	500		500
225 BUKANE 226 CYCLOSEYARE	20319 C0637	673	600 734	616	733	636 821
227 MEPTANE	MOU13	700	700	700	700	700
228 2-RETBYL BEPTAME 229 3-RETBYL BEPTAME	90126 90127	780 793	761 778	769 789	760 774	765 784
230 2.4-DIMETRYL PENTARE	PG 133	616	394	544	608	664
231 I-OCTARE 232 I-MORANE	03112 86519	800 900	800 900	900	900	80A 900
233 2.2.3-THINETHYL BEXAME	F0378	813	737	739	739	757
204 PECATE 205 DECALIN	00020 00006	1000	1000	1408	1090	1376
. 236 HYDRINUARE	H0713	1037	1134	1275	1117	1239
237 UNDECATE 238 POHECATE	80019 60284	1100	1100	1100	1100	1100
238 BUNECARE 239 TRIDECUIE	TC716	1200 1300	1390	1300	1200	1300
249 TETRADECARE	T0077	1400	1490	1400	1400	1490

Section (Section 6)							4.5			
JJSI ethano:	9.000	0.27:	1.300	. • • .	. :				1.7425	443
3354 impropenci	1,393	0.234	1.37				45		1.007	0.590
TTEE 1-probabe.	5.000	0.230	2.755	: . 7.5 *	4.4		w.517	, : 、 *	321	6,596
0470 080±04,6800H	0.690	0.250	1.560	:.Tér	9.450	0.37	4,45		1.995	. 547
3325 i-butanol	0,000	0.747	2.755	:. `5•	4.	0.130	45	. 435	. 5.1	6.731
1358 2-Me-propan-1-bl	0.000	0.240	2.679	1,752	0.440	0.330), 450	5.475	2.799	1.731
3301 Inbutansi	0.000	0.241	2,727	1.762	0.400	4.339	0.510	9.E4	1.318	0.731
3357 t-outanoi	0.000	0.236	2.557	1.725	0.496	0.373	0.570	0.475	118	0.731
IJS: 1-centanol	0.000	0.248	2.75a	1.153	0.4()	370	8.456	ું, દુવ:	1.175	
Not 1-Me-butan-1-01	0.000	0.248	-		0.460		450	0.5%	-	∂.372
7152 3-Me-butan-1-ol	0. (6) 6	0.245	2.560	2.138	9.400	0.750	0.450	5.7	-	J. 872
7357 2-Me-butan-2-c)	0.000	0.245	2.958	2,136	0.400	0.000	0.570	97.590	-	0.872
3440 cyclopentanol	0.000	0.270	2.990	2.000	0.400	0.330	0.510	0.511	-	0.742
JJ68 1-hexanol	0.000	0.252	2.390	1.553	C. 460	0.379	450		laiv	1.013
37e9 2-mexamol	0.000	0.250	2.890	3.530	6,4,6	6.773	J. 51 -		1.34%	1.413
3370 J-hexanol	θ , $\theta\theta\phi$	0.251	•	2.543	0.4%	0.334	3.51.	1537	[.44].	1.017
3372 2-Me-pentan-2-61	0.000	0.248	-	1.512	0.4%			. 51	1.19.	1.013
	0.000	0.252	_	2.533	6.400		3.570		1.277	1.013
3374 3-Me-pentan-3-oi										
3389 1-neptanol	0.000	0.256	2.924	2,954	Û . 4 ⊕ê	1,100	45:	9.789	4.115	1.154
3405 i-potanel	0.000	0.258	2.958	3.341	0.400	1	45	0.390	4.519	1.295
3416 1-monanol	0.000	0.250	2.958	7.771	9.400	ú. 137	9.450	:3:	5.:24	1.435
∃426 1-decanol	0.000	0.252	2.592	4,129	0.400	9.330	3.450	1.13	5.528	1.576
1551 acetaldehyde	0.000	0.205	7.236	0.832	0.670	020	. 110	0.337	277	0.406
•	0.000	0.223	6.350	1.220	0.550		5,415	1.791		
1552 propionaldehyde						0.000			1.815	0.547
1553 butyraldehyde	0,000	0.234	7,398	1.510	0.530	y_* (30)	4;	. 13	1, 276	0.698
1554 iso-butyraldenyde	0.000	0.228	-	1.569	0.526	0.11.	1, 4:11	1.1	-	0.699
1570 trans-MeCH=CHCHO	0.000	0.267	12.530						_	
				1.500	0.750		5			0.645
1555 pentanal	0.000	0.239	5.750	1.981	V. 5.	<i>*</i> . ***	1.41			0.329
1590 benzaldehyde	1.000	0.317	7.553	2.787	0.924	6.055	2.440		1.985	3, 973
1651 2-propanone	0.000	0.220	8,204	1.207	0.710	0.138				0.547
							43	0.180	1.760	
1852 2-butanone	0.000	0.231	7.618	1.539	0.570	00	9.489	6,477	1.187	3.598
1557 2-pentanone	0.000	0.237	7,290	1.955	1.570)0) 1	574	1.755	0.919
076± syclopentamone	0.000	0.282	10.390	1.580			.52		1.110	720
					1.750					
1859 I-rexambne	0.000	0.743	7.827	1.757	0.85		420	6.57	1.252	9.970
.5e0 3-bexanone	0.000	0.243	7.023 ^e	1.357	οĒ.	1.630	A.450	0.553	7.716	0.970
170E cyclohexansse	0.000	0.269	9,000	1.316	0.750	0.400	0.500	0.571	3.5.5	0.361
1564 2-heptanone	0.000	0.247	6.310	2.744	0.650	6.000	0.420	6.757	3.760	1.111
1575 2-octanone	0.000	0.250	7.400	3.128	0.610),360	3.430	3.35	4.257	1.251
1750 acetophenone	1.000	0.317	9.000	3.154	0.960	Çi ji işliki	1,400	D. 595	4.483	1.014
15B5 2-monamone	0.000	0.254	7.300	1.536	0.510	ો.પાર્	0.480	0.955	4.755	1.392
1559 Indecanone	0.000	0.256	7:200 [€]	1.924	0.516	3.460	0.486	1.451	5.250	1.533
IJ52 Et20	0.000	0.217	1.323	1.536	0.270	$\hat{Q}_{\bullet},\hat{Q}_{\bullet}$	9.470	0.505	1.051	0.73!
1555 n-Bu20	0.000	0.242	1.350	J. 134	0.240	0.000	0.450	0.390	4.001	1.295
1414 furan	1.000	0.254	0.436	1.361	-	0-000	-	0.770	-	0.536
1421 dioxan	0.000	0.254	0.000	1.730	0.550	0.000	6,740	0,49)	2.797	0.581
1459 PhOMe	1.000	0.303	1.904	2.775	0.730	6.535	0.010	0.500	3.925	0.916
1950 methyl acetate	0.000	0.220	2.953	1.350	0.500	6.55	0.42	424	1.960	0.605
1851 ethyl acetate	0.060	0.227	3.168	1.596	0.550	9.5 5	45	1.511	2.376	5.747
1931 methyl propionate	0.000	0.230	2.890	1.718	0.500	9	4.7	4,504		0.747
1362 n-propyl acetate	0.000	0.234	3.42	2.078	0.520	0	450	9.222	2,878	0.388
1964 n-butyl acetate	5,000	0.239	3,240	2.457	0.500	a.)n((45)			1.028
								-21		
1957 pentyl acetate	0.000	0.244	3.053	7.857	0.450	\$. Ave	0.450		3.881	1.160
1973 pe nzyl acetate	1.000	0.306	5.240	3,715	0.530	0.000	3.544	373	-	1.214
1921 methyl benicate	1,000	0.302	3.240	3.240	0.770	J. 166	3.730		534	1.073
IFTT MeCOUA	0.000	0.227	1.028	1.(56		0.710	5.54×			
					0.450				7. [3	0.485
INET FLOOCH	9.999	0.275	3.063	-	0 .45 6	4.077	.5:	.,417		0.608
1954 a-Pr 300H	0.000	0.24;	1.510	-	0.450	9.50	0.540	0.513		0.747
3955 ±24 0664	0.000	0.239	1.193	-	0.45		0.54	9,515	-	0.747
1936 t-80000H	6.036	0.247	1.590		(0.45)	6.50	1,540	5	-	0.933
19 57 , -8,4200#	0.000	0.744	1.740	-	0.500	6.590	0.54	0.518	-	0.593
(45A n-pent(00)A	0.06ω	0.251	1,294	-	0.500	1.50	1,540	0.708		1.029
[]}54 = -ħ∉+€]][]+	$G_{i_1,\ldots,i_n}(g_{i_1})$	0.251	1.30°	-	0.450		0.540	4.804		1.167
J°≥4 *-heptCGOH	6.060	0.258	1. 3.	-	0.430	G. ÷ *	4	4.34		1.310
197 4 h-465038H	6.006	0.253	1.30€		0.45%		. (4	÷ [1.592
្រុះ ក្នុងកុះ។										
The Same	6,500	0.757	1.02%	1.547	4. 230	1, 11 ⁵ (1.1	.427	1,49	0.617
	· -, -	1-2-6						· -		1, 9

Sea 1122-tetraCl-ethane	1.500	0.29;	1.741	2.551	7. 10			• . •	·		
1017 Archiorotoluene	1.000	0.302	4.380	î. ₹5ê • × /	0.57	A hos		.35.		15	
1002 o-bichlorobeniene	1.000	0.319	6.250	1,385 2,374	0.300	u, 666 -	6.64.			751	
3154 I-31-06H40H	1.000	0.320	4.796		A. 10:			1,514		0.898	
5-5 Et9r	0.000 0.000	0.755	4.121 4.840	1.44; 1.879	0.43∂ -	- 6,660 - 1,791		·		1,565	
524 1-bromopentame	0.000	0.266	2.624	1,590	0.400	d meet	0.070 0.070	0,487 6,3 44	1.115	5.706 5.508	
551 Mei	0.000	0.294	4,494	2.734	0.500	9,690	0.057	2-1	. 1 2	9. 9 30	
570 n-Bul 2101 MeNG2	0.000		11.972	988	0.850	0.000	0.250	0.343	1.597	0.424	
2102 EtNO2	0.000		13.329	1.345	0.820	0,000	0.250	j.445	2.367	0.565	
2103 n-8rNG2	5.000		13.398	1.716	0.790	0.000	0.250	0.540	2.710	0.705	
2201 MeEN	0.000		15.360	0.858	0.750	0.000	0.370	0.271	:.560	0.404	
2203 h-ArdN	0.000		15.550	1.505	0.630	0.000	0.370	6.405		9.696	
2205 a-BeCN	0.000	0.741	16.970	1.793	-	0.000	0.370	.570	-	0.827	
2241 PHCN	1.000	0.303	17.475	2.633	6.956	0.000	0.360	0.5%	4.604	0.871	
234 : MeIN	0.000	0.222	9.375	1.401	0.140	0,900	0.550		1.520	0.631	
1951 purnole	1.069	0,298	3.335	1.719	-		-	1.4.1	2.885	0.577	
270: cyridine	1.005	0.299		2.013	0.870	0.656	0.840	1,40%	1.003	0.675	
J850 8t3A	0.000	0.259	2.489	1.435	0.350	$\hat{c} = \hat{c}$	0,210	. 754	2,173	0.554	
3553 APT 54	0.000	0.263	2.280	1.823	035	0.100	0.20	े,49∂	2.485	0.695	
3554 1PF34	0.000	0.255	2.560	1,779	0.35	0.100	0.20	9,480	2.406	0.695	
3555 n-buSH	0,30a	0.250	2.37)	2, 224	0.350	3.198	0.150	0.575	3,242	0.836	
3553 t9u3H	0.000	0.254		2.123	•	0.100	-	e.£75	2.558	0.936	
Jaol throphene	1.000	0.308	0.325	1,974	-	-	-	0,443	2.943	0.641	
1602 1-Me-thiophen	1.600 1.600	0.304 0.301	0.449 0.260	2.777 2.778	-	-	-	0.539 0.635	•	0.782	
- 3503- 25-diffe nthiophen - 3565- P hSH	1.000	0.337	1.440	2.756	-	-	-	0,600	-	0.923 0.880	
7579 Mali	0.000	0.255	2.250	1.474	0.360	0.000	0.250	0.376	2.238	0.554	
159) E:15	0.000	0.255	2.316	2.215	0.360	0.000	0.230	0.575	2,104	0.835	
1881 n8r 18	0.000	0.263	2,450	2,996	036	0-000	0.28		-	1.118	
054F #e25 2	0.000	0.308	3.880	2.208	0.300	0.605	V. 189	0,495	3.549	0.717	
170 ethene	0.000	0.222	0.000	0.770	0.090	0.000	0.080	0.232	. 289	0.347	
[7] propene	0.000	0.219	0.134	1.059	0.090	0.000	0.69.	6,336	3,945	0.488	
373 1-butene	0.000	0.240	0.118	1,510	0.090	6.000	0.090	0.427	1.491	0.629	
380 I-pentene	6.000	0.227	0.115	1.748	0.080	0.600	0.070	0.531	2.013	0.770	
392 i-bekene	0.000	0.234	0.116	2.132	0.080	0.000	0.070	0.518	2.547	0.911	
40c i-heptene	3.000	0.242	0.116	2,548	0.080	0.000	0.070	9.745	3.083	1.052	
404 I-actene	0.000	0.247	0.116	2.944	0.080	0.000	0.076	0.210	3.591	1.192	
450 2-butyne	0.000	0.238	0.558	1.395	0.200	0.000	0.170	η, 4 (- <u>5</u>	-	0.586	
4eB 1-oftype	0.000	0.251	0.456	2.886	0.200	0.100	0.170	0.740	-	1.150	
469 2-octyne	0.000	0.257	0.656		0.200	0.000	0.170	0.75	2.227	1.150	
751 benzene	1.000	0.295 0.292	0.000 0.130	2.112 2.502	0.590 0.540	0.000	0,100 0,110	9,491	2.803	0.716 0.857	
752 toluene	1,000 1,000	0.272	0.130	2.914	0.480	0.000	0.120	0.572 0.587	3.344 3.765	0.998	
766 PhEt 343 styrene	1.000	0.317	0.000	3.027	-	D.800	-	0.559	3.908	0.955	
795 Ph00d	1.000	0.300	0.533	2.736	_	-	-	0.628	-	0.912	
750 e-xylene	1.000	0.207	0.394	2.954	0.470	0.000	0.110	1.683	3,937	0.998	
754 m-sylene	1.000	0.293	0.160	2.924	0.470	0.000	0.120	Stand	3.854	0.998	
755 p-kylene	1.000	0.292	0,000	2,914	0.430	0.000	0.12	4.571	1.858	3.778	
Tax mesitylene	1.000	0.294	0.000	3.349	0.4(0	0.000	0.175	0.767	4.397	1.139	
51 ethane	0.000	0.025	0,000	- ?	0.006	0.000	0.000	0.282	0.492	0.390	
57 propane	0.000	0.181	0.000	0.961	0,000	0.000	0.000	0.760	1.050	0.531	*
🖸 n-butane	0.000	0.205	9.695	1.378	0.000	0.000	0,000	0.455	1.615	0.672	ģ.
54 iso-outane	0.000	0.197	0.000	1,024	0.000	0.000	0.000	6,458	1.409	0.672	
EE h-gentane	0.000	0.219	$\partial_+ \phi \partial \phi$	1.790	0.065	2. 600	0, 4	.55	1.152	0.813	•;
St t-perate	9.000	0.229	9.039	1.135	063	0, 1, 1	, .1e*	.,6 - 3	. 623	·\. 954	1
IET tyclonexame	0.000	0.257	0.372	1.171	0.000	0,000	0.000	0.543	2.917	0.845	
bi n-heptage	0.000	0.236	0.690	2.594	0.000	9 - 300 3 - 323	(i. ė.)	1,74 <u>5</u>		1.095	
73 2-Me-heptane	0.000	0.240	0,000 4.600	2,755	∳, 3(66 20.00	0.36	7. Qu.	340	-	1.236	
74 Genethy!heptane	0. 000 6.600	0.242	0.066	2,94;	0.00	Qeso	Qeeo	1.342	24.	1.236	
69 24-diMe-pentane Transtona	0.00 0 Naer	0.232	0, (6 - 06.5],} 4 %],454	(N).		9. 16.	145	1,341	1.035 1.38	• • •
TI meditane Pi rodoane	0.000 0.000	0.241 0.245	2, % ∂ 3,7 s	7.714	ari Srese	Carrier	V.	.34.	1.677 4.132	1.377	
To incomane The III thimethy she xame	0.000	0.742	74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.00	0.000	0000		7 - 1 7 -	1.377	
in progerape	0.000	0.249	3.00		0.00	0.060			4.535	1.518	
r tagung	3.090 3.090	0.243					•		1.191	:.658	
•		****					•			63	

Andrew Andrew

(14 netridecas)

:

Table 4. Values of b used in equation (8) and (9).

Stationary phase	р
Zonyl	0.203
CWAX 1540	0.214
TCEP	0.178
Polyph ether	0.262
DEGS	0.190

निर्वाद इ		PARMETER COEFFICIENTS OF FROM REGRESSIONS USING	EG C	SSONS	COEFFICIENTS ESSIONS USIN	190 P	OBTRINED 7 VX			9	CORRELATION	ATIC	ON NO	/a
02	ZONYL E7	E7	•											
p	TT.*	ζ	Œ _€	۸×	C	5	7	5.d.	q	17.2	λ	$\omega_{arepsilon}$	×	U
0.14	0144 1.781 0.602 0354	0.60		1.511	-2.33		104 0.979 0.53	0.133	7.66	8	6.66	8.66	8	8
F(1)	7T	χ	$\omega_{arepsilon}$	×	U	ے	7	s.d.	F(n2)	Ju2	β _ξ	$\omega_{\bar{\epsilon}}$	*	U
9.366	1820 290.0 992.6	1880	1.205	1.158	-4.0	8	±810 6.9579 001	781 0	8	8	92.4	8	8	100
CAR	CARBOWAX	χŧ												
ರ	TT.2	کے	G _E	٧×	C	\boldsymbol{r}	٦	s.d.	P	J.*	β	$\omega_{arepsilon}$	×	U
0.236	0.236 2.17 2.345	2.345	-04431446-2206	1446	-3506	103	0.9714 0172	0172	6.66	8	8	7.66	8	8
f(23)	f(r2) 12	χ ^ε	8	\ ×	C	\mathcal{L}	\mathcal{T}	s.d	s.d f(1)	Mz	β _€	α_{ε}	×	U
13.051	13.051 0.068 1.809	608:1	0.842 0.968-4.648	0.%8	-4:648	88	0.95480.215	0.215	8	8	8	8	8	001
TRIC	TRICYANOETHOXYPROPANE	ETH	XYPF	ROPA	NF									
ન્ઠ	*4	χ	$\omega_{\scriptscriptstyle{E}}$	×	C	5	7	s.d.	q	TT.2	λ	$\mathcal{B}_{\bar{r}}$	\ \	U
0.231	0.231 2.552 1.873 0065 1.189	1.873	0065	1.189	-1.787 108		9.66 213 62%0	0-213	9.66	8	8	30.4	8	8
F(5)	$F(\mathcal{N})/\mathcal{M}^2$	ž	Ø E	×	IJ	2	7	5.d.	F(N)	μ^2	, K	B	×	U
13.92	6:088	0.0881.445		1.388 0.651	-4368	96	0.94940.248	0.248	8	8	8	8	8	100

9/9	U	8	U	201		(8	U	8					1
NO	3	8	×	8		>	8	×	8		1-			\dagger
LAT.	W.	97.3	Œ	8		æ	988	(X)	8			1	-	\dagger
CORREGATION	β _ε	8	λ_{ϵ}			8	8	8 X	8	-	-	-	-	+
19	*4	8	22	8		* C	8	777	8		-		-	+
	3	8	s.d. F(12)	8		0	6.66	(LV3)	<u>8</u>		-	-	-	-
	5.d.	0.158	s.d.	0.00		s.d		s.d						
	2	851.0826.0	1	0.9744 0.160		2	0.9621 0.199	1	0.9473 0.236					
				7		حا	8		99					
	U	CO1 can x			SUCCINELE.	U	17	- 1		<u> </u>	1		\dashv	
Q			X	. ,	,	*	_	×××	0.127-4.208	-	+		1	
CONT.	W _E	a	JE 2		3/5	$\mathcal{D}_{\varepsilon}$	0.274	υ <u>.</u> .		}	+		-	
9 3	λ	8	A7 A7		1	8	640		1		-		-	
POCYPHENYL ETHER	6 77 x	11.2		DETHY FAF CAME	1	4 2	(102) 1.2	1004 OK				+		
Pok	2360	F(n2) 112	2.534	DET	1	CC	(102)	2 2			+		+	

Table 6.	1 !	Roameter Coeff From regressions	oter (1:3	cients obtained USING LOG LIG	29 29 29 29	2 LIG			9	CORRELATION	ATIC	1 1	9/9
8	70NY E7	E7	S											
δ	本工	X	$\omega_{_{\scriptscriptstyle{\Sigma}}}$	Logle	C	5	Σ	s.d.	9	π2*	λ _ξ	(ST_	27 607	C
-0.038	0.038 1.029 -0.0550708	-0.065		0422 -1978	-1978	8	60.0 0 066·0	60.0	9.89	8	6.85	8	8	8
f(123)	27	S	W _E	917B07	U	ے	1	8.d	(W) J	μ^2	3 .£	Œ	la le	U
3.389 0.052 0.094 1.126	0.052	460.0	l i	96£ 0	-2.611	28	0.9826 0.124	0.124	60	8	60.9	8	8	8
CARE	CARBOWAX	×												
9	TT.2	X F	$G_{\overline{\imath}}$	97807	C	٦	7	5.d.	Q	112	λ ₹	ø.	917607	C
0.034 1.549 1.743	675-1		0.141	10416-1.93	-1.93	94	0.98470128		£05	8	8	82.1	8	8
F(N3) M2	μ^2	7,	Œ	917607	2	5	۲.	5.d.	5.d. F(12)	μ^2	SE	Œ	9h 601)
7.559	7.559 0:051:514			0.539	-3.3%	88	991·0 <u>SE</u> 16·0	991.0	8	8	8	8	001	8
TRIC	TRICYANDETHOXY	K T T		PROPANE	NE									
9	173	ጸ	B	97607	C	N	7	s.d.	٩	Tx	S	8	Loglic	J
0.012	2.178	2.178 1.572 0.112	- •	0.355	-1.63	76	0.9838	6tm ·0	16.3	001	80	8	8	8
$f(n^2)$	Ju2	S	ω_{ϵ}	10g L16	U	2	ጉ	S.d. (F(n²)	F(n²)	\mathcal{M}^2	δ	7	lagle	U
10.903	0.086	0.086 1.247		1.402 0.25	-3.749	68	956.0		8	8	8	8	8	8

Talke CONT. POLYPHENY ETHER Social Street Social St

12	Table 7									O	CORRELATION	ATIC	_	%
\$	PH PH PH PH	POLYPHENYZ ETHE	THER	anson 3	19 5	ALI	R USING S AND UZ		,					
~	12 x	XE	W,	×	U	2	7	s.d.	40	μ^2	Å	Ø2 2	×>	C
1260	9900	809.0 128.0 9900 126.0		1.724-2.534 96	-2.534	Ì	0.9567 0.215	0.25	8	8	6.66	6.66	00	001
0	27	S.	ω_{ϵ}	97607	U	5	٢	s.d.	0	M2	SE	₩ _₹	1096	U
0.413	90	0.413 009 0.513 0.445		0.509 -2.33 84	-2.33		0.9922 0.093	0093	8	∞ ₂	6.66	8	8	8
POLY	PHEN	POLYPHENYL ETHER	HER	USING		MRx	GNA	AND UL2						
MKX	MKx 22 8"	S _z	£	××	2	C)_	S.d. MKx	i i	η	Å	B.	×	U
6725-1	0.008	1.549 0008 0438 0757		-2.456 -2.047	-2-047	95	0.9825 0.133	0.133	8	8	6.66	001	901	100
MRx	μ^2	X _z	Ø.	97607	U	C	٦	5.d.	MRx 4	MRx W2	X	Br	47607	
-0.727	0.023	-0.727 0.023 0.145 D.312		60:1	-2.22	98	PSI-0 086-0		8	6.66	72.7	8.66	001	100
						}								
					1									

	T	Τ	T	7	T -	1	T	1-	т	γ	4	1	1		1
6/8		U	8	U	8		U	8	U	$ \tilde{8} $					
Z		××	8	Lack	8		Š	8	7/807	8					
) TA		W.	8	απ _ξ	8		(VC=	8	(va	8					
CORRE/ ATION		8	8	X	8		X	8	R						
5		277	8	W2	8		777	8	42	00					
		S.d. (Fir) 122	8	f(n2)	8		MRX	8	MAX	8					
		5.d.	0.8200.228	5.d F(n2)	8610		s.d.	0.167	s.d.						
	DOMINANT DIPOLES	7	æ%.0	7	0.97% 0.198	DIPOLES	2	0.9768 O.167	(0.9420.267					
		C	85	J	72	DIPOLES	7	18	5	72					
	AN-F	C	0.709 4.53	C	3.68		C	26.0-	U	1.259					
	PROF	×̈́	0.709	97807	0.25	AN HA	× /	-4429 -0.998	12 Jan	1.444 -1.259					
	4XX	$\omega_{\rm r}$	1.333	300	1.262	OPRC	æ		β	1.081					
%	TRICYANOETHOXYPROMINE	X	4.20-0-086 1.54 1.353	γ ^ε		TRICYANDETHOXYPROPANE		2.049 0.092 1.642 1.224	8.	0.833					
	Ž U	$F(n^2)$ \mathcal{U}^2 \propto_n	9800	μ^2	0.5230.082 1.518	SAN CAN CAN CAN CAN CAN CAN CAN CAN CAN C	μ^2 \ll_{r}	0.032	μ^{r}	600					
Table	T Ž	F(n²)	4 34	Rn2)	0.523	TRIC	MRX	2.049	×	-1.402 0.045 0.833					

			,	,			·—		,		 ·		
/ q	'	U	8	U	8		U	180	U	CÓ		 	
, V		×	ð	767	8		X	33	17607	ي			
ATI		$\beta_{\rm lb}$	%	$\sigma_{_{\!\!\!\!E}}$	73		B.	001	B	8)			
CORRELATION %		$\stackrel{\mathfrak{L}}{\sim}$	99	Å	8		8 F	8)	β	100			
9		TT 2	8	1×2	8		22	8	7m	8)			
		9	œ,	9	9.18		P	8	9	8			
	压	5.d.	261.0	s.d.	0.134	II)	5.d.	0250	P.5	0.49			
	TRICYANDETHOXYPROPANE	Τ	18460	7	78 0984 0.134	TRICYANCETHCXYPROPANE	L	0.95870250	ſ	0.93% 0.49			
	CXYA	٦	68	5	f 1	CXYR	7	61	υ	11			
	DEITH	C	1.243 -1.544	C	036 1.43	ETH	C	1.117 -1.620	C	9034 1500			
	SICYAR	×	1.245	9,7607		CYANK	×	£11·1	10g/16	120			
		$\mathcal{Q}_{\mathbf{z}}$	-0365	$\mathcal{Q}_{_{\mathbf{\Sigma}}}$	2100	TRIC	$\mathcal{B}_{\mathbf{r}}$	954.1	β_{m}	96.0			
	CONT	X	2.105	X	153		\propto_{m}	Œ6·1	w w	202 096			
	&	The	2.508 2.105 -0.385	TT*	0.03 2.154 1929 0015		2	02619600180	m2	0.8510113			
	Table	q	151.0	9	000		\sim	1.020.1	⟨♥	0 851			

Table	b 3									9	CORRELATION	ATI		%
ZONYL E7	1%	E7			' ; !		,							
f(u)	n	χ	₽ m	g7607	2	ح	7	s.d.	f(n²)	77	Å €	み	7007	U
2.528 0.191 -0.293 0.997	1610	-0.23	0.997	0404	-2:472	82	0.9815 0.128	0.128	6.66	8	1.66	<u>®</u>	8	8
CARBOWAX	%O.W	×.												
F(n2)	n	χœ	3 m	7007	C	ح	٢	S.d.	(LU)	3	β E	₩	7/607	7
6.933 0.33 1.44	5.24		0.30	0.352	-332	58	0.9753 0.162	0.162	8	8	8	2.96	8	8
TRICY	AND!	TRICYANDETHOXYPR		OPANE	帀									
ξ(n²)	77	× ⊕	$\mathcal{B}_{\mathfrak{m}}$	97807	C	٦	7	S.d. (An2)	An2)	7	X	$\mathcal{B}_{\mathfrak{m}}$	Page	2
9.30	0.292	9.30 0.32 0.87 1.94	1.194	0.272 -3.492	-3.492	8	212.0 99%.0	0.212	00)	8	666	8	8	8
POLYPHENYL ETH	PHE	NYZ		ER										
G(n ²)	7	\propto_{m}	$oldsymbol{\mathcal{B}}_{\mathfrak{m}}$	المهداد	C	U	7	s.d.	F(n2)	7	A =	€	קשרוני	V
5.16	0.172	0.172 0.261 0.231	0 231	9470	9470-3423	85	36960	9050	8	8	985	9.0%	8	8
DETHYLENE GLY	17/4	SNE	474	707	SUCCINATE	INAT	田							
f(n2)	77	χ	B m	9767	C	U	\mathcal{T}	s.d.	(nu)	n	K	Bm	917607	7
9465	0.22	0.22 6.995 0.976	2260	0.768	-3513	B	0.966	0.91	8	8	8	8	8	8

0/0	U	=	U	8			U {	3	U	8		1	1/8	T	00
1 _ 1	9787	00	100/0	8		7, 27	36	1	9767	8		(30/10)	1	18/09	- }
-{AT	20,3	8	B	8		100			D ₃	65.6		Dan J		Bm 6	1-
ORRELATION	8 3	76	& B	50.2		8	8		8	8		8	00	8 8	8
17		8	7	00		7	8	1=	3	8		7	8	7	8
	1.0	200	انه	_		√ 0	8	_				0	00		
	. S.d.	160.091	S.d.	10.010		2.4	F 0.135	54		}		S.d.	200		0:138
	1 1	85 0.916	7	7	-	1	0.9837		0.9884			2	5000	1	0.3872
	0 2		-1.935 CO	- 1	-	5	15	-	2 65		-		~	1	00
	(08/6 (91/20/		1		5	4 - 8 - 8 - 1 - 8 - 1 - 8 - 1 - 1 - 1 - 1	27	0.410 -1.962	11/2	1 2				Cac 1
					1	3782 4	~ !	7697	15 04	858	2	0.833 0.520	3/00/	7	
		8	0023		a	1.416 T		E D	50 -0.115	HOXY	3	_		+=	
Table 10.	12 Cm	13	0.252 -0.053 0.735	PREDWAX				3 1	0.389 1.880	TRICYANDETHOXYPROBLIE	4 K	0.395 1.262	ا ا ا	0.530 1.810	1
18 BE	0.345	 `		TARB	~	0552 0			ė	ZICYA	3	0.812 0.3	7	Ö	
			<u></u>			10	1_	1_		1		0.0			

Tab	Table 10 cont.	gt.								CO	RRE1	ATIC	CORRELATION %	10
\$	POLYPHENYL ETHER	3 7/7	STHE	a										
0	7	٤	Æ	103 610	U	ے	7	s.d.	4	77	هج	Bm	9767	U
0.424	0.199	0.410	0.173	0.510 -2.531	-2.531	48	0.9927	0.093	8	8	6.66	2.96	8	8
	7	ďω	Æ	7767	U	ع	٢	s.d.		7	αζw	Æ	7367	U
	0.232	0.232 0486 0.06		0519	-2.403	29	910.0 0566.0	9,000		8	8	55:3	8	8
DE	DIETHYLENE GLYCOL SUCCINATE	ENE	G.K	70:	SUCC	INAT	E							
0	$ \pi $	wy	Ą	97607	2	2	7	sd.	20	77	w y	Bm	9767	S
169.0	0.691 0.355 1.458 0.314	1.458		655-056-0	4.559	98	0.9810 0.149		8	82	ω	7.%	8	ω
	77	dm	Bm	2087	۲	ح	7	5.d.		3	$\propto \omega$	Bm	7/607	C
	0439	0439 1.761	-0:352	-0.032 0.366 -1.661	199.1-	29	9586.0	0.132		8	8	9.51	001	8

Table 11. Further values of $\log L^{16}$ obtained at 298.15 K relative to n-octane standard.

Solute	log L ¹⁶
n-Octane	3.677
Benzonitrile	3.994
Benzaldehyde	3.985
2-Methyl-3-pentanol	3.183
3-Methyl-3-pentanol	3.227
3-Hexanol	3.440
Ethyleneglycol diacetate	4.083
Pyrrole	2.866
2-Chlorophenol	4.937
N-Methylaniline	4.494
2-Chlorotoluene	4.160
Methyl benzoate	4.634
Mesitylene	4.399

DATE JLMED S