## 毕业设计开题报告文献翻译

数 33 赵丰

March 15, 2017

## 摘要

本人的毕业设计论文题目是**无线网络中定位信息的时空传播机理研究**,为研究该题目做好充分准备,我积极进行了文献调研,先后阅读了研究有关协作定位网络中信息耦合的相关文献,并结合自身理解对其中的三篇进行了有选择的翻译,形成了约两万字的外文文献阅读翻译。三篇翻译的具体内容在之后的若干页给出。

# 协作定位中的信息耦合

沈渊, 清华大学电子工程系副教授

Abstract—第一篇论文翻译,原文的题目是 Information Coupling in Cooperative Localization,原文的摘要翻译如下:不依赖环境的高精度协作定位网络能有一系列的重要的应用。但是现有的分布式协作定位算法没有考虑到预测节点位置彼此之间的相关性。这篇文章通过费舍尔信息量的度量研究了协作定位网络的相关性问题,产生了信息耦合这个概念。为了描述这个特性,我们重点关注了最简单的非平凡情形并且推导出了信息耦合的表达式。

### I. 简介

关于研究背景的翻译略去,下面是原文一些记号上的约定。 $\operatorname{tr} A, \operatorname{adj} A$  和 |A| 分布表示方阵 A 的迹,伴随矩阵和行列式。 $[\cdot]^T$  表示变量的转置; $\mathbb{S}^2, \mathbb{S}^2_+, \mathbb{S}^2_+$  分别表示  $2 \times 2$  的实矩阵、半正定矩阵和正定矩阵。另外  $\angle \{u,v\}$  表示向量 u 和向量 v 之间的夹角。

#### II. 协作定位中的联合估计

考虑一个有  $N_a$  个移动节点和  $N_b$  个移动节点的协作定位网络,锚点的位置已知  $p_j: j \in N_b$ ,并且移动节点尝试通过和邻居节点的测距和通信确定它们自己的位置  $p_k: k \in N_a$ 。在文献 [2] 确定的测距信息是 FIM 的基本组成模块,这种测距信息描述了关于从测量中获得的距离信息的强度和方向。

**Definition 1.** 在节点 k 和 j 之间的总的测距信息强度 (RII) 定义为关于从它们之间的距离测量中得到的距离  $d_{k,j} = ||\mathbf{p}_k - \mathbf{p}_j||$  的费舍尔信息量。

**Definition 2.** 设  $u_{i_1,i_2}$  为从节点  $i_1$  到节点  $i_2$  的单位方向向量。定义  $C_{k,j}^{n,m}$  是关于  $k,j,n,m \in \mathcal{N}_a \cup \mathcal{N}_b$  矩阵:

$$oldsymbol{C}_{k,j}^{n,m} riangleq rac{oldsymbol{u}_{k,j} oldsymbol{u}_{n,m}^T + oldsymbol{u}_{n,m} oldsymbol{u}_{k,j}^T}{2} \in \mathbb{S}^2$$

另外,定义

$$\mathring{\boldsymbol{C}}_{k,j}^{n,m} \triangleq \frac{\mathring{\boldsymbol{u}}_{k,j}\mathring{\boldsymbol{u}}_{n,m}^T + \mathring{\boldsymbol{u}}_{n,m}\mathring{\boldsymbol{u}}_{k,j}^T}{2} \in \mathbb{S}^2$$

其中  $u_{i_1,i_2}$  为逆时针方向上垂直于  $u_{i_1,i_2}$  的单位向量,另外,为记号上的简便, $C_{k,j} \in \mathbb{S}^2_+$ 。EFIM 的概念 [6] 让我们能直接通过 Schur 补的方法从 FIM 中推导对于参数向量的一个子集的信息不等式。由于在已知移动节点位置的条件下测距彼此之间相互独立,对于移动节点位置的EFIM 可以写成闭式解的形式。用求导的链式法

则可以证明,对于协作定位这种 EFIM 是下面分块矩阵的形式:

$$oldsymbol{J}_e = \left[ egin{array}{cccc} oldsymbol{K}_1^{\mathcal{N}_a \setminus \{1\}} & -\zeta_{1,2} oldsymbol{C}_{1,2} & \cdots & -\zeta_{1,N_a} oldsymbol{C}_{1,N_a} \ -\zeta_{1,2} oldsymbol{C}_{1,2} & oldsymbol{K}_2^{\mathcal{N}_a \setminus \{2\}} & \cdots & -\zeta_{2,N_a} oldsymbol{C}_{2,N_a} \ dots & dots & dots & dots \ -\zeta_{1,N_a} oldsymbol{C}_{1,N_a} & -\zeta_{2,N_a} oldsymbol{C}_{2,N_a} & \cdots & oldsymbol{K}_2^{\mathcal{N}_a \setminus \{N_a\}} \ \end{array} 
ight]$$

其中  $\mathcal{N}_a = \{1, 2 \dots N_a\}$ , 对于  $k, j \in \mathcal{N}_a, \zeta_{k,j}$  是节点 k 和节点 j 总的 RII, 并且

$$oldsymbol{K}_k^{\mathcal{N}} = oldsymbol{J}_k^{\mathcal{N}_b} + \sum_{j \in \mathcal{N}} \zeta_{k,j} oldsymbol{C}_{k,j}, \mathcal{N} \subset \mathcal{N}_a$$

上式中  $J_k^{\mathcal{N}_b}$  表示仅从和  $\mathcal{N}_b$  测距中获得的关于第 k 个节点的 EFIM。

Remark 1. 对于式 (1) 中表示协作定位的 EFIM 不是对角矩阵,反映了从达到 CRLB 的位置估计量推断中的移动节点间位置信息是相关的。这种情况阻碍了针对协作定位的最优或次优的分布式算法的设计。因此在接下来的分析中我们会探究由于非对角结构引起的信息耦合的表现。

#### III. III. 信息耦合

为获得信息耦合的洞见,我们考虑一个含有  $N_b$  个移动节点和三个协作节点的网络: $N_a$  =  $\{1,2,3\}$ ,这代表了一个最简单的非平凡的信息耦合的情形。下面我们推导每一个移动节点的 EFIM和它的逆的闭式解。

**Definition 3.** 给定  $\zeta_{k,j} \in (0,\infty)$  和  $J \in \mathbb{S}^2_{++}$ 。定义  $\Phi_{k,j}(J)$  是如下形式的商:

$$\Phi_{k,j}(\boldsymbol{J}) \triangleq = \frac{|\boldsymbol{J}|}{|\boldsymbol{J} + \zeta_{k,j} \boldsymbol{C}_{k,j}|} \in (0,1).$$

Remark 2. 注意到  $\forall \boldsymbol{J} \in \mathcal{S}^2_{++}, \lim_{\zeta_{k,j} \to 0} \Phi_{k,j} = 1$  并且  $\lim_{\zeta_{k,j} \to \infty} \Phi_{k,j} = 0$ . 此外, $\forall \zeta_{k,j} \in (0,\infty), \lim_{|\boldsymbol{J}| \to 0} \Phi_{k,j} = 0$  并且  $\lim_{|\boldsymbol{J}| \to \infty} \Phi_{k,j} = 1$ . 又因为  $|\boldsymbol{J} + \zeta_{k,j}| = |\boldsymbol{J}| + \zeta_{k,j} \boldsymbol{u}_{k,j} adj \{\boldsymbol{J}\} \boldsymbol{u}_{k,j}$ ,

$$\frac{\mu_2}{\mu_2 + \zeta_{k,j}} \le \Phi_{k,j}(\boldsymbol{J}) \le \frac{\mu_1}{\mu_1 + \zeta_{k,j}}$$

其中  $\mu_1 \geq \mu_2 \geq 0$  是 J 的两个特征根。 $\Phi_{k,j}(J)$  表示从节点 j 获得的  $\zeta_{k,j}(RII)$  中可以被节点 k 有效利用的部分,而 J 是这个部分中的不确定性。

**Theorem 1.** 设  $J_1^{N_b}$ ,  $J_2^{N_b}$ ,  $J_3^{N_b}$  分别表示仅从锚点  $N_b$  获得的 *EFIM*,则移动节点 I 的 *EFIM* 由下式 给出:

$$J_1 = J_1^{\mathcal{N}_b} + \check{\zeta}_{1,2} C_{1,2} + \check{\zeta}_{1,3} C_{1,3} + \kappa_{2,3} C_{1,2}^{1,3} \quad (2)$$

其中

$$\check{\zeta}_{1,2} = \zeta_{1,2} \cdot \Phi_{1,2} (J_2^{\mathcal{N}_b} + \zeta_{2,3} \cdot \Phi_{2,3} (K_3^1) \cdot C_{2,3}) \quad (3)$$

$$\check{\zeta}_{1,3} = \zeta_{1,3} \cdot \Phi_{1,3} (J_3^{\mathcal{N}_b} + \zeta_{2,3} \cdot \Phi_{2,3} (K_2^1) \cdot C_{2,3}) \quad (4)$$

并且  $\kappa_{2,3}$  由 (5) 式给出。

$$(5) (5)$$

此外, EFIM 的逆为:

$$\boldsymbol{J}^{-1} = \frac{1}{|\boldsymbol{J}_1|} [adj \{\boldsymbol{J}_1^{\mathcal{N}_b}\} + \check{\zeta}_{1,2} \mathring{\boldsymbol{C}}_{1,2} + \check{\zeta}_{1,3} \mathring{\boldsymbol{C}}_{1,3} + \kappa_{2,3} \mathring{\boldsymbol{C}}_{1,2}^{1,3}]$$

其中  $|J_1|$  由 (7) 式给出。

$$(7) (7)$$

Proof. 待定。

Remark 3. 移动节点 I 的 EFIM 和它的逆都是三项的和,分别对应着从锚点、协作获取的信息以及耦合项。特别的,在 (2) 式中,第一项  $J_1^{N_0}$  是从锚点获取的信息,第二项  $\zeta_{1,2}C_{1,2}+\zeta_{1,3}C_{1,3}$  是从节点 I2 连线和节点 I3 连线获得的信息增量,这个增量取决于 RII 和由 (3) 式和 (4) 式给出的协作节点位置的不确定性。第三项  $\kappa_{2,3}C_{1,2}^{1,3}$  是来自节点 2 和 3 的信息耦合项,这一项的的出现是由于节点 2 和 3 彼此之间也有协作。在描述 EFIM的逆的 (6) 式中,三项共同的伸缩因子是行列式  $|J_1|$  的倒数,并且后面的每个矩阵都是由原来的单位向量逆时针转 90 度再做外积得到的。

从 (5) 式可以得到, $\kappa_{2,3}$  的一个上界是:

 $\kappa_{2,3} \leq 2\zeta_{1,2}\zeta_{1,3}\zeta_{2,3}|\boldsymbol{u}_{1,2}^T(\boldsymbol{J}_2^{\mathcal{N}_b})^{-1}\boldsymbol{C}_{2,3}(\boldsymbol{J}_3^{\mathcal{N}_b})^{-1}\boldsymbol{u}_{1,3}|$ 

从上式可以看出,在如下情形中没有耦合:

- (i) 如 果  $\angle\{u_{1,2}, J_2^{N_b}u_{2,3}\}$  或 者  $\angle\{u_{1,3}, J_3^{N_b}u_{2,3}\}$  为 90 度,那么  $\kappa_{2,3}=0$ ; (ii) 如果移动节点 2 成为一个锚点,也就是  $|J_2^{N_b}|$
- (ii) 如果移动节点 2 成为一个锚点, 也就是  $|J_2^{N_b}|$  趋向于无穷大,那么  $\zeta_{1,2} = \zeta_{1,2}, \zeta_{1,3} = \zeta_{1,3} \cdot \Phi_{1,3}(J_3^{N_b} + \zeta_{2,3}C_{2,3})$ , 并且  $\kappa_{2,3} = 0$ ; (iii) 如果节点 2 和节点 3 之间不协作,也就是
- (iii) 如果节点 2 和节点 3 之间不协作,也就是  $\zeta_{2,3} = 0$ ,那么  $\zeta_{1,2} = \zeta_{1,2} \cdot \Phi_{1,2}(\boldsymbol{J}_2^{\mathcal{N}_b}, \zeta_{1,3} = \zeta_{1,3} \cdot \Phi_{1,3}(\boldsymbol{J}_3^{\mathcal{N}_b})$ ,并且  $\kappa_{2,3} = 0$ ;

这些结果说明了当移动节点的位置满足 (i) 中的正交性条件或者如 (ii) 或 (iii) 给出的有少于 3 个节点参与协作时,不会有耦合项出现。

Corollary 1. 耦 合 项  $\kappa_{2,3}C_{1,2}^{1,3}$  有 特征 值  $[\cos(\angle\{u_{1,2},u_{1,3}\}) + 1]\kappa_{2,3}/2$  和  $[\cos(\angle\{u_{1,2},u_{1,3}\}) - 1]\kappa_{2,3}/2$ ,分别对应的特征向量是  $u_{1,2} + u_{1,3}$  和  $u_{1,2} - u_{1,3}$ 。

**Remark 4.** 这个引理说明了如果  $\kappa_{2,3} > 0$ (对应的,如果  $\kappa_{2,3} < 0$ ),如果忽略耦合项,由协作获得的信息椭圆在  $u_{1,2} + u_{1,3}$  方向上会被低估 (对应的,高估),而在  $u_{1,2} - u_{1,3}$  方向上会被高估 (对应的,低估)。另外当角  $\angle\{u_{1,2},u_{1,3}\}$  是锐角 (对应的,钝角) 时,在  $u_{1,2} + u_{1,3}$  方向上的信息耦合会比  $u_{1,2} - u_{1,3}$  方向上的更显著 (对应的,不如前者显 著)。



(a) Case where  $\kappa_{2,3}<0, \measuredangle\{\mathbf{u}_{1,2},\mathbf{u}_{2,3}\}>90^\circ$  and  $\measuredangle\{\mathbf{u}_{1,2},\mathbf{u}_{1,3}\}<90^\circ$ 



(b) Case where  $\kappa_{2,3}>0,\, \angle\{\mathbf{u}_{1,2},\mathbf{u}_{2,3}\}<90^{\circ},\, \angle\{\mathbf{u}_{1,3},\mathbf{u}_{2,3}\}<90^{\circ}$  and  $\angle\{\mathbf{u}_{1,2},\mathbf{u}_{1,3}\}>90^{\circ}.$ 

Fig. 1. 协作定位中的信息耦合可能会严重实际可达到的定位 信息

• 举例说明如下,图 1 描述了考虑和忽略耦合项的信息椭圆的形状。在这两种类别中,从锚点获得的 EFIM 为简便取成  $J_1^{N_b}, J_2^{N_b}, J_3^{N_b} = \text{diag}\{1,1\}$ ,并且三个协作节点分别位于位置 $p_1, p_2, p_3$ . 图 1 展示了节点 1 的真实信息椭圆 $J_1$  和忽略耦合项后的信息椭圆 $\tilde{J}_1$  的差别。

IV. 结论

略

References

[1] 略

#### 1

# 协作定位网络中的时空信息耦合

## 沈渊, 清华大学电子工程系副教授

Abstract—第二篇论文翻译,原文的题目是 Spatio-Temporal Information Coupling in Cooperative Network Navigation 原文的摘要翻译如下:可靠的定位信息对很多基于位置的应用起着至关重要的作用。通过时空联合协作的网络导航可以给移动节点提供高精度和鲁棒的位置信息。同时,由于待测节点的位置相关,这种联合协作导致了错综复杂的信息获取方式,也就是信息耦合的问题。在这篇文章中,通过对费舍尔信息量的分析,我们在四种有代表性的情形中量化了信息耦合。我们说明了每个节点所获得的信息来自与它进行时空协作的节点和由于和邻居节点的协作产生的信息耦合。我们的结果为网络中复杂信息获取提供了洞见,并且能够为高效的网络导航算法提供指导。

### 1 简介

关于研究背景的翻译略去,下面是原文一些记号上的约定。 $[\cdot]^T$  表示变量的转置; $\mathbb{S}^D, \mathbb{S}^D_+, \mathbb{S}^D_{++}$ 分别表示  $D \times D$  的实矩阵、半正定矩阵和正定矩阵。 $J_r(v) := vv^T$  表示由向量 v 做外积得到的秩 1 阵。另外  $\angle \{u,v\}$  表示向量 u 和向量 v 之间的夹角。

## 2 网络导航中的费舍尔信息量

在本节中,我们首先介绍网络模型和网络导航中的 FIM 作为预备知识,然后描述这篇文章重点讨论的 4 种场景。

#### 2.1 预备知识

考虑一个由若干节点构成的协作网络,用  $x_k^{(n)} \in \mathbb{R}^D$  表示节点 k 在时间  $t_n$  的位置状态,k=1,2,...,N 且 n=1,2,...T. 网络导航的目标是从 测量和先验信息中推断节点的位置信息。令  $\mathcal{S}=\{1,2,...,S\}$  with  $S=N\cdot T$  是位置状态的下标集,文献 [8] 已经证明了对于 S 个位置状态 FIM 可以分解成:

$$\boldsymbol{J} = \sum_{(i,j)\in\mathcal{S}^2, i>j} \boldsymbol{G}_{i,j}^S \otimes \boldsymbol{K}_{i,j}$$
 (1)

其中  $\otimes$  表示 Kronecker 矩阵积, $S \times S$  的矩阵  $G_{i,j}^S$  的元素 (k,r) 由下式给出:

$$[G_{i,j}^{S}]_{k,r} = \begin{cases} 1 & k = r = i \\ 1 & k = r = j \\ -1 & k = i, r = j, k \neq r \\ -1 & k = j, r = i, k \neq r \\ 0, & \text{otherwise} \end{cases}$$

 $K_{i,j} \in \mathbb{S}_{+}^{D}$  描述了包含在测量或先验知识中和位置状态 i,j 有关的位置信息。 $K_{i,j} = K_{j,i}$  并且在缺少关于位置状态 i,j 的测量或先验知识的情况下 $K_{i,j} = 0$ 。特别的,如果  $i = j, K_{i,i}$  描述了仅仅和位置状态 i 有关的位置信息。



Fig. 1. 四种场景:(A) 两个节点的空间协作(红色的连接);(B) 三个节点的空间协作;(C) 一个节点的时间协作(绿色的连接);(D) 两个节点的时空协作。

#### 2.2 有代表性的场景

我们考虑图 1 中的四种场景以获得对时空协作的洞见。

在这些场景中,位置状态就是节点的位置,节点通过和位置已知的锚点和位置未知的邻居节点的测距中获得位置信息。在接下来的讨论中,在时间步为 n 时, $K_{i,i}^{(n)}$ 表示节点 i 从锚点获取的信息; $u_{i,j}^{(n)}$ 表示节点 i 和 j 连线的单位方向向量; $\lambda_{i,j}^{(n)}=\lambda_{j,i}^{(n)}$ 表示节点 i 和 j 之间的测距信息强度 (RII); $u_{i,i}^{(n)}$ 表示链接节点 i 在时间步为 n 和 n+1 时的位置的单位方向向量; $\lambda_{i,i}^{(n)}$ 表示节点 i 的速度信息强度 (SII)。

场景 A: 两个节点通过彼此测距协作来确定它们的位置, 即位置状态是  $p_1$  和  $p_2$ , 测距信息是  $J_r(v_{1,2})$ , 其中  $v_{1,2}=\sqrt{\lambda_{1,2}}u_{1,2}$ , 因此,基于 (1) 式我们得到这种场景的 FIM 是:

场景 B: 三个节点通过彼此测距协作确定它们的位置,即位置状态是  $p_1, p_2$  和  $p_3$ , 测距信息是  $J_r(v_{i,j})$  对于  $i, j \in \{1, 2, 3\}, i \neq j$ , 其中  $v_{i,j}$ 

$$J_{B} = \begin{bmatrix} K_{1,1} + J_{r}(v_{1,2}) + J_{r}(v_{1,2}) & -J_{r}(v_{1,2}) & -J_{r}(v_{1,3}) \\ -J_{r}(v_{1,2}) & K_{2,2} + J_{r}(v_{1,2}) + J_{r}(v_{2,3}) & -J_{r}(v_{2,3}) \\ -J_{r}(v_{1,3}) & -J_{r}(v_{2,3}) & K_{3,3} + J_{r}(v_{1,3}) + J_{r}(v_{2,3}) \end{bmatrix}$$
(3)

 $\sqrt{\lambda_{i,j}} \boldsymbol{u}_{i,j}$ , 因此,基于式 (1) 我们可以得到这种情形的 FIM 由 (3) 给出,在下一页的最开始的地方。

场景 C: 单节点在两个不同的时刻通过速度测量协作来确定自身的位置,即位置状态是  $p_1^{(1)}$  和  $p_1^{(2)}$ , 速度测量的信息是  $J_r(t)$ , 其中  $t=\sqrt{\lambda_{1,1}^{(1)}u_{1,1}^{(1)}}$ . 因此基于 (1), 我们得到这种场景的 FIM 是:

$$m{J}_C = \left[egin{array}{ccc} m{K}_{1,1}^{(1)} + m{J}_r(m{t}) & -m{J}_r(m{t}) \ -m{J}_r(m{t}) & m{K}_{2,2}^{(2)} + m{J}_r(m{t}) \end{array}
ight]$$

场景  $\mathbf{D}$ : 两个节点在两个不同的时刻协作来确定它们的位置,即,位置状态是  $\mathbf{p}_1^{(1)}, \mathbf{p}_2^{(1)}, \mathbf{p}_1^{(2)}$  和  $\mathbf{p}_2^{(2)}$ ,每个节点测量自身的速度和相对另一节点的距离,并且

- 测距信息是  $J_r(v_{1,2})$  和  $J_r(w_{i,j})$ , 其中  $v_{1,2} = \sqrt{\lambda_{1,2}^{(1)}} u_{1,2}^{(2)}$ , 而  $w_{1,2} = \sqrt{\lambda_{1,2}^{(2)}} u_{1,2}^{(1)}$ • 测速信息是  $J_r(t_1)$  和  $J_r(t_2)$ , 其中  $t_i =$
- 测速信息是  $m{J_r(t_1)}$  和  $m{J_r(t_2)}$ ,其中  $m{t_i} = \sqrt{\lambda_{i,i}^{(1)} m{u}_{i,i}^{(1)}}$

因此,基于(1)式我们得到这种类形的 FIM 是

$$oldsymbol{J}_D = \left[egin{array}{cc} oldsymbol{J}_A^{(1)} + oldsymbol{T} & -oldsymbol{T} \ -oldsymbol{T} & oldsymbol{J}_A^{(2)} + oldsymbol{T} \end{array}
ight]$$

其中  $m{J}_A^{(1)}$  和  $m{J}_A^{(2)}$  由 (2) 式给出,上标代表了时间步长, $m{T}=\mathrm{diag}\{m{J}_r(m{t}_1),m{J}_r(m{t}_2)\}.$ 

## 3 空间信息耦合

在这一节中,我们推导了场景 A 和场景 B 的 EFIM, 并且描述了场景 B 中由于空间协作导致的信息耦合。由于篇幅所限,这篇文章的大部分证明略 去。

**Proposition 1.** 场景 *A* 中节点 *1* 的 *EFI* 是

$$\boldsymbol{J}_e = \boldsymbol{K}_{1,1} + (1 - \mu_2^{1,1}) \boldsymbol{J}_r(\boldsymbol{v}_{1,2})$$

其中

$$\mu_2^{1,1} = v_{1,2}^T (K_{2,2} + J_r(v_{1,2}))^{-1} v_{1,2}$$
  
= 1 - (1 + \lambda\_{1,2} u\_{1/2}^T K\_{2/2}^{-1} u\_{1,2})^{-1}.

此外, $J_e \leq K_{1,1} + J_r(v_{1,2})$ .

Remark 1. 场景 A 中节点 I 的 EFIM 是来自锚点和来自与节点 2 的协作的信息之和。协作在与节点 2 的连线方向上增加了信息,而节点 I 可以有效利用的 RII 随 RII  $\lambda_{1,2}$  增大而增大而随节点 2 位置在 $u_{1,2}$  方向的不确定性 (即  $u^T K_{2,2}^{-1} u_{1,2}$ ) 的增大而减小。此外,有效 RII 总是小于或等于 RII。当锚点在节点 I,2 连线方向上给节点 2 提供无穷大的信息量时取等号,而当锚点在这一方向上不提供任何信息时取 0。

**Proposition 2.** 在场景 *B* 中节点 *I* 的 *EFIM* 是

$$J_{e} = K_{1,1} + (1 - \mu_{2}^{1,1})J_{r}(\mathbf{v}_{1,2}) + (1 - \mu_{3}^{1,1})J_{r}(\mathbf{v}_{1,3}) + \delta J_{r}(\mu_{2}^{1,3}\mathbf{v}_{1,2} + \mu_{3}^{1,2}\mathbf{v}_{1,3})$$
(4)

其中  $\mu_i^{j,k} = \boldsymbol{v}_{j,i}^T (\boldsymbol{K}_{i,i} + \boldsymbol{J}_r(\boldsymbol{v}_{1,i}))^{-1} \boldsymbol{v}_{k,i}$ ,并且  $\delta = (1 + \mu_2^{3,3} + \mu_3^{2,2})^{-1}$ . 除此之外, $\boldsymbol{J}_e \leq \boldsymbol{K}_{1,1} + \boldsymbol{J}_r(\boldsymbol{v}_{1,2}) + \boldsymbol{J}_r(\boldsymbol{v}_{1,3})$ .

Remark 2. 命题 2 说明了场景 B 下节点 I 的 EFIM 是 4 项的和。第一项对应着从锚点获取的信息,其他三项对应着由于空间协作获得的信息。第二项和第三项对应着沿着与节点 2 和节点 3 的连线方向获取的有效信息,而最后一项代表着由于节点 2 和 3 协作造成的信息耦合。最后一项是一个秩一阵,有一个非负的特征值  $\delta||\mu_2^{1,3}v_{1,2} + \mu_3^{1,2}v_{1,3}||^2$  并且这个特征值对应的特征向量是  $\mu_2^{1,3}v_{1,2} + \mu_3^{1,2}v_{1,3}$ ,这个方向既依赖于 RII,又依赖于节点 2 和 3 位置的不确定性,还和节点的空间拓扑有关。

接下来我们将说明节点 2 和 3 的协作强度如何影响节点 1 的 EFIM.

**Corollary 1.** 设  $\lambda_{2,3}$  和  $\tilde{\lambda}_{2,3}$  分别表示节点 2 和节点 3 之间两个 RII, 并且  $(\mu_2^{1,3}, \mu_3^{1,2}, \delta), (\tilde{\mu}_2^{1,3}, \tilde{\mu}_3^{1,2}, \tilde{\delta})$  分别表示命题 2 中对应的两组参数,而其他参数均相同。那么:

$$\delta \boldsymbol{J}_r(\mu_2^{1,3}\boldsymbol{v}_{1,2} + \mu_3^{1,2}\boldsymbol{v}_{1,3}) \leq \tilde{\delta} \boldsymbol{J}_r(\tilde{\mu}_2^{1,3}\boldsymbol{v}_{1,2} + \tilde{\mu}_3^{1,2}\boldsymbol{v}_{1,3})$$
(5)

当且仅当  $\lambda_{2,3} \leq \tilde{\lambda}_{2,3}$ 。此外

$$\lim_{\lambda_{2,3}\to\infty} \delta \boldsymbol{J}_r(\mu_2^{1,3}\boldsymbol{v}_{1,2} + \mu_3^{1,2}\boldsymbol{v}_{1,3}) = \bar{\delta}\boldsymbol{J}_r(\bar{\mu}_2^{1,3}\boldsymbol{v}_{1,2} + \bar{\mu}_3^{1,2}\boldsymbol{v}_{1,3})$$

其中

$$egin{aligned} ar{\mu}_2^{1,3} &= oldsymbol{v}_{1,2}^T (oldsymbol{K}_{2,2} + oldsymbol{J}_r (oldsymbol{v}_{1,2}))^{-1} oldsymbol{u}_{2,3} \ ar{\mu}_3^{1,2} &= oldsymbol{v}_{1,3}^T (oldsymbol{K}_{3,3} + oldsymbol{J}_r (oldsymbol{v}_{1,3}))^{-1} oldsymbol{u}_{2,3} \end{aligned}$$

$$\bar{\delta} = (\boldsymbol{u}_{2,3}^T((\boldsymbol{K}_{2,2} + \boldsymbol{J}_r(\boldsymbol{v}_{1,2}))^{-1} + (\boldsymbol{K}_{3,3} + \boldsymbol{J}_r(\boldsymbol{v}_{1,3}))^{-1})\boldsymbol{u}_{2,3})^{-1}.$$

**Remark 3.** 从 (5) 中可以知道,当节点 2,3 方向保持不变时,节点 I 从和节点 2 和 3 协作中获得的信息随着节点 2 和 3 之间的 RII 的增大而增大。另外,这个信息量的上界是在节点 2 和 3 之间测距是理想情况时取得。

在下面这个推论中,我们将说明如果从协作中获得的信息是分别和节点 2, 节点 3 的测距信息的加权和这种情形。

Corollary 2. 场景 B 中节点 1 的 EFIM 可以写成

$$J_e = K_{1,1} + \eta_1 J_r(v_{1,2}) + \eta_2 J_r(v_{1,3}), \eta_1, \eta_2 \ge 0$$

当且仅当至少下面至少有一个条件满足:

$$\bullet \quad \lambda_{1,2} \cdot \lambda_{1,3} \cdot \lambda_{2,3} = 0$$

• 
$$\boldsymbol{u}_{1,2}^T(\boldsymbol{K}_{2,2} + \boldsymbol{J}_r((v)_{1,2}))^{-1}\boldsymbol{u}_{2,3} = 0$$

• 
$$\lambda_{1,2} \cdot \lambda_{1,3} \cdot \lambda_{2,3} = 0$$
  
•  $\boldsymbol{u}_{1,2}^T(\boldsymbol{K}_{2,2} + \boldsymbol{J}_r((v)_{1,2}))^{-1}\boldsymbol{u}_{2,3} = 0$   
•  $\boldsymbol{u}_{1,3}^T(\boldsymbol{K}_{3,3} + \boldsymbol{J}_r((v)_{1,3}))^{-1}\boldsymbol{u}_{2,3} = 0$ 

接下来我们将说明如果锚点提供各向同性的信息给节点 2,3, 那么权重参数  $\mu_i^{j,k}$  可以写成  $\theta_1$  =  $\angle \{u_{1,2}, u_{2,3}\}$  和  $\theta_2 = \angle \{u_{1,3}, u_{2,3}\}$  的函数。

Corollary 3. 如果  $K_{i,i} = \xi_i I$  对于 i = 2, 3 成立,则 场景 B 中节点 I 的 EFIM 为

$$egin{aligned} m{J}_e &= m{K}_{1,1} + rac{\xi_2}{\xi_2 + \lambda_{1,2}} m{J}_r(m{v}_{1,2}) + rac{\xi_3}{\xi_3 + \lambda_{1,3}} m{J}_r(m{v}_{1,3}) \ &+ \delta m{J}_r(\mu_2^{1,3} m{v}_{1,2} + \mu_3^{1,2} m{v}_{1,3}) \end{aligned}$$

其中

$$\begin{split} \mu_2^{1,3} &= \frac{\sqrt{\lambda_{1,2}\lambda_{2,3}}\cos\theta_1}{\xi_2 + \lambda_{1,2}} \\ \mu_3^{1,2} &= \frac{\sqrt{\lambda_{1,3}\lambda_{2,3}}\cos\theta_2}{\xi_3 + \lambda_{1,3}} \\ \mu_2^{3,3} &= \frac{\lambda_{2,3}}{\xi_2} (1 - \frac{\lambda_{1,2}\cos^2(\theta_2)}{\xi_2 + \lambda_{1,2}}) \\ \mu_3^{2,2} &= \frac{\lambda_{2,3}}{\xi_3} (1 - \frac{\lambda_{1,3}\cos^2(\theta_2)}{\xi_3 + \lambda_{1,3}}) \end{split}$$

Remark 4. 这个结果说明了如果 (i) 节点 2 和 3 来 自锚点或先验的信息是各向同性的 (ii) $m{u}_{1,2} \perp m{u}_{2,3}$ 或者  $u_{1,3} \perp u_{2,3}$ , 那么节点 I 通过写作获得的信息 是分别来自节点 2 的测距信息的加权和。

#### 空时信息耦合

在本节中,我们推导出了场景 C 和 D 下节点 1 在时间步 2 时的 EFIM, 并且描述了场景 D 中由于 空时协作产生的信息耦合。

**Proposition 3.** 场景 *C* 中节点 *I* 的 *EFIM* 是

$$m{J}_e = m{K}_{1,1}^{(2)} + rac{\lambda_{1,1}^{(1)}}{1 + \lambda_{1,1}^{(1)} m{u}_{1,1}^T (m{K}_{1,1}^1)^{-1} m{u}_{1,1}} m{J}_r(m{u}_{1,1})$$

此外 
$$\boldsymbol{J}_e \leq \boldsymbol{K}_{1,1}^{(2)} + \boldsymbol{J}_r(\boldsymbol{t})$$
.

Remark 5. 与场景 A 类似,场景 C 中时间步为 2时节点 1 的 EFIM 是从锚点获取的信息和与节点 1 在时间步为 1 时的协作信息之和。协作在节点 1 在两个时刻位置连线的方向上增加了信息,而节 点 I 可以有效利用的 SII 随 SII  $\lambda_{1,1}^{(1)}$  的增加而增大 而随着节点 1 在时间步 1 的位置不确定性 (即方向  $u_{1,1}^T(K_{1,1}^{(1)})^{-1}u_{1,1}$ 的增大而减小。此外,有效的 SII总是小于等于 SII, 当锚点给时间步 1 时的节点提供 无穷大的信息时取等号,当不提供任何信息时取 0.

**Proposition 4.** 场景 D 中节点 I 在时间步 2 时的

$$\begin{split} \boldsymbol{J}_{e} &= \boldsymbol{K}_{1,1}^{(2)} + [1 - \boldsymbol{v}_{1,2}^{T} (\boldsymbol{K}_{2,2}^{(2)} + \boldsymbol{H}_{1,2})^{-1} \boldsymbol{v}_{1,2}] \boldsymbol{J}_{r}(\boldsymbol{v}_{1,2}) \\ &+ [1 - \boldsymbol{t}_{1}^{T} (\boldsymbol{K}_{1,1}^{(1)} + \boldsymbol{H}_{1,1})^{-1} \boldsymbol{t}_{1}] \boldsymbol{J}_{r}(\boldsymbol{t}_{1}) \\ &+ \delta \boldsymbol{J}_{r} (\nu_{2} \boldsymbol{v}_{1,2} + \nu_{1} \boldsymbol{t}_{1}) \end{split}$$

此外 
$$J_e \leq K_{1,1}^{(2)} + J_r(v_{1,2}) + J_r(t_1)$$

**Remark 6.** 和场景 B 类似, 命题 4 说明了在场景 D中,时间步2时节点1的 EFIM 是4项的和。第 一项对应着从锚点获得的信息, 其余的项对应着 通过协作获得的信息。第二和第三项分别是节点2 在时间步 2 和节点 1 进行空间协作以及和自身在 时间步 1 的时间协作获得的信息。而最后一项对 应着耦合项。最后一项是一个秩一阵,有一个非负 的特征值为  $\delta||\nu_2 \boldsymbol{v}_{1,2} + \nu_1 \boldsymbol{t}_1||^2$ , 对应的特征向量为  $u_2 v_{1,2} + \nu_1 t_1$ 。这个方向依赖于 RII, SII,协作节点位置的不确定度以及节点在空间上的拓扑。特别的,当  $t_2^T (K_{2,2}^{(1)})^{-1} w_{1,2} = 0$  时,比如  $K_{2,2}^{(1)} = \xi_{2,2}^{(1)} I$  且  $u_{1,2}^{(1)} \perp u_{2,2}^{(1)}$ ,最后一项为 0.

## 5 数值结果

在本节中,我们给出若干个含有信息耦合的 EFIM 的数值的例子。特别的,我们将考察节点的网 络拓扑如何影响信息耦合项。

信息耦合项是协作节点方向加权组合作外积 得到的,对于场景 B, 权系数是  $\sqrt{\delta\mu_2^{1,3}}$  和  $\sqrt{\delta\mu_3^{1,2}}$ , 对于场景 D 权系数是  $\sqrt{\delta\nu_2}$  和  $\sqrt{\delta\nu_1}$ , 图 2 和图 3 分别 说明了这些系数对于角度  $\theta_1 = \angle \{u_{1,2}, u_{2,3}\}, \theta_2 = \angle \{u_{1,3}, u_{2,3}\}$  或者  $\vartheta_1 = \angle \{u_{1,1}, u_{1,2}^{(1)}\}, \vartheta_2 = \angle \{u_{2,2}, u_{1,2}^{(2)}\}$  的依赖关系。在数值结果里,我们 设  $\boldsymbol{K}_{2,2} = \boldsymbol{K}_{3,3} = \boldsymbol{K}_{2,2}^{(2)} = \boldsymbol{K}_{2,2}^{(1)} = \boldsymbol{K}_{1,1}^{(1)} = \boldsymbol{I}$ ,所以的 RII 和 SII 都取 1,并且  $\boldsymbol{u}_{1,1}^T \boldsymbol{u}_{1,2}^{(2)} = 0$ . 在图 2 中,我们可以看到  $\sqrt{\delta \mu_2^{1,3}}$  和  $\sqrt{\delta \mu_3^{1,2}}$ ,

即  $oldsymbol{v}_{1,2}$  或  $oldsymbol{v}_{1,3}$  的权重,当  $oldsymbol{u}_{1,2}$  和  $oldsymbol{u}_{1,3}$  正交于  $oldsymbol{u}_{2,3}$ 时分别为 0. 此外,这两项在节点 1,2,3 共线时达到 最大值。

类似的,在图 3 中,我们可以看到  $\sqrt{\delta\nu_2}$  和  $\sqrt{\delta 
u_1}$ ,即耦合项中  $oldsymbol{v}_{1,2}$  或  $oldsymbol{t}_1$  的系数,当  $oldsymbol{u}_{2,2}$  正交 于  $m{u}_{1,2}^{(2)}$  且  $m{u}_{1,1}$  正交于  $m{u}_{1,2}^{(1)}$  时分别为  $m{0}$ 。此外,这两项当节点  $m{2}$  在时间步  $m{1}$  和  $m{2}$  与节点  $m{1}$  在时间步  $m{2}$ 共线或者节点 1 在时间步 1 和 2 与节点 2 在时间步 1 共线时为 0.

## 结论

略

## References

[1] 略



Figure 2.  $\sqrt{\delta}|\mu_2^{1,3}|$  and  $\sqrt{\delta}|\mu_3^{1,2}|$  in (4) as a function of the cosines of angles  $\theta_1=\measuredangle\{\mathbf{u}_{1,2},\mathbf{u}_{2,3}\}$  and  $\theta_2=\measuredangle\{\mathbf{u}_{1,3},\mathbf{u}_{2,3}\}.$ 

Figure 3.  $\sqrt{\delta}|\nu_2|$  and  $\sqrt{\delta}|\nu_1|$  in (6) as a function of the cosines of angles  $\vartheta_1=\measuredangle\{\mathbf{u}_{1,1},\mathbf{u}_{1,2}^{(1)}\}$  and  $\vartheta_2=\measuredangle\{\mathbf{u}_{2,2},\mathbf{u}_{1,2}^{(2)}\}.$ 

#### REFERENCES

- [1] M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, D. Dardari, and M. Chiani, "Network localization and navigation via cooperation," *IEEE Commun. Mag.*, vol. 49, no. 5, pp. 56–62, May 2011.
- [2] J. J. Caffery and G. L. Stuber, "Overview of radiolocation in CDMA cellular systems," *IEEE Commun. Mag.*, vol. 36, no. 4, pp. 38–45, Apr. 1998
- [3] K. Pahlavan, X. Li, and J.-P. Makela, "Indoor geolocation science and technology," *IEEE Commun. Mag.*, vol. 40, no. 2, pp. 112–118, Feb. 2002.
- [4] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, "Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks," *IEEE Signal Process. Mag.*, vol. 22, no. 4, pp. 70–84, Jul. 2005.
- [5] R. Verdone, D. Dardari, G. Mazzini, and A. Conti, Wireless Sensor and Actuator Networks: Technologies, Analysis and Design. Elsevier, 2008.
- [6] S. Mazuelas, R. Lorenzo, A. Bahillo, P. Fernandez, J. Prieto, and E. Abril, "Topology assessment provided by weighted barycentric parameters in harsh environment wireless location systems," *IEEE Trans. Signal Process.*, vol. 58, no. 7, pp. 3842–3857, Jul. 2010.
- [7] Y. Shen and M. Z. Win, "Fundamental limits of wideband localization – Part I: A general framework," *IEEE Trans. Inf. Theory*, vol. 56, no. 10, pp. 4956–4980, Oct. 2010.
- [8] Y. Shen, S. Mazuelas, and M. Z. Win, "Cooperative network navigation: Fundamental limit and its geometrical interpretation," *IEEE J. Sel. Areas Commun.*, vol. 30, 2012, to appear.

- [9] Y. Shen, H. Wymeersch, and M. Z. Win, "Fundamental limits of wideband localization – Part II: Cooperative networks," *IEEE Trans. Inf. Theory*, vol. 56, no. 10, pp. 4981–5000, Oct. 2010.
- [10] H. Wymeersch, J. Lien, and M. Z. Win, "Cooperative localization in wireless networks," *Proc. IEEE*, vol. 97, no. 2, pp. 427–450, Feb. 2009.
  [11] U. A. Khan, S. Kar, and J. M. F. Moura, "DILAND: An algorithm
- 11] U. A. Khan, S. Kar, and J. M. F. Moura, "DILAND: An algorithm for distributed sensor localization with noisy distance measurements," *IEEE Trans. Signal Process.*, vol. 46, no. 5, pp. 1386–1396, May 1998.
- 12] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky, "Nonparametric belief propagation for self-localization of sensor networks," *IEEE J. Sel. Areas Commun.*, vol. 23, no. 4, pp. 809–819, Apr. 2005.
- [13] S. Mazuelas, Y. Shen, and M. Z. Win, "Information coupling in cooperative localization," *IEEE Commun. Lett.*, vol. 15, no. 7, pp. 737–739, Jul. 2011.
- [14] M. J. Wainwright and M. I. Jordan, "Graphical models, exponential families, and variational inference," University of California, Berkeley, Tech. Rep. TR-649, Sep. 2003.
- [15] Y. Weiss and W. T. Freeman, "Correctness of belief propagation in gaussian graphical models of arbitrary topology," *Neural Computation*, vol. 13, no. 10, pp. 2173–2200, 2001.
- [16] H. L. Van Trees, Detection, Estimation, and Modulation Theory, 1st ed. New York, NY 10158-0012: John Wiley & Sons, Inc., 1968.
- [17] S. Mazuelas, Y. Shen, and M. Z. Win, "Network navigation: Information coupling," *IEEE Trans. Signal Process.*, to be submitted.

## 宽带定位的理论极限-第二部分: 协作网络

## 沈渊, 清华大学电子工程系副教授

#### Abstract

第三篇论文的翻译,原文的题目是 Fundamental Limits Of Wideband Localization-Part II: Cooperative Networks 由于原文较长,翻译 部分只针对原文关于 EFIM 的一阶上下界的 部分。

对于每个移动节点, EFIM 的准确表达式非 常复杂。但是我们可以找到每个节点 EFIM 的上 下界,从而获得对定位问题的洞见。

Proposition 1. 设  $J_e^A(p_k) = F(\mu_k, \eta_k, \vartheta_k)$  表示节

点 k 从锚点获得的定位信息,  $C_{kj} = F(\nu_{kj}, 0, \phi_{kj})$ 表示该节点和节点j协作的测距信息RI。节点k的  $EFIM J_e(p_k)$  满足如下不等式:

$$J_e^L(p_k) \preceq J_e(p_k) \preceq J_e^U(p_k)$$

其中

$$\boldsymbol{J}_{e}^{L}(\boldsymbol{p}_{k}) = \boldsymbol{J}_{e}^{A}(\boldsymbol{p}_{k}) + \sum_{j \in \mathcal{N}_{a} \setminus k} \xi_{kj}^{L} \boldsymbol{C}_{kj}$$
 (1)

$$\boldsymbol{J}_{e}^{U}(\boldsymbol{p}_{k}) = \boldsymbol{J}_{e}^{A}(\boldsymbol{p}_{k}) + \sum_{j \in \mathcal{N}_{a} \setminus k} \xi_{kj}^{U} \boldsymbol{C}_{kj}$$
 (2)

Proof. 不失一般性, 我们假设 k=1. 下界: 考虑 EFIM**J**e<sup>L</sup>(**P**) 为:

$$J_e^L(\mathbf{P}) = \begin{bmatrix} J_e^A(\mathbf{p}_1) + \sum_{j \in \mathcal{N}_a \setminus \{1\}} C_{1,j} & -C_{1,2} & \dots & -C_{1,N_a} \\ -C_{1,2} & J_e^A(\mathbf{p}_2) + C_{1,2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -C_{1,N_a} & 0 & \dots & J_e^A(\mathbf{p}_{N_a}) + C_{1,N_a} \end{bmatrix}$$
(3)

这个矩阵是令  $J_e(\mathbf{P})$  中所有的  $C_{kj}=0$ , 对于  $1 \le k, j \le N_a$ . 这个 EFIM 对应着节点 2 到  $N_a$  的协作完全被忽略。通过线性代数的指数可以 证明  $J_e^L(\mathbf{P}) \leq J_e^L(\mathbf{P})$ , 这也可直观相符,因为没 有利用节点 2 到  $N_a$  的协作信息。利用 EFI 的方 法, 我们可以得到节点 1 的 EFIM 是:

$$egin{aligned} m{J}_e^L(m{p}_1) &= m{J}_e^A(m{p}_1) \ &+ \sum_{j \in \mathcal{N}_e \setminus \{1\}} [m{C}_{1,j} - m{C}_{1,j} (m{J}_e^A(m{p}_j) + m{C}_{1,j})^{-1} m{C}_{1,j}] \end{aligned}$$

$$J_e^L(p_1) = J_e^A(p_1) + \sum_{j \in \mathcal{N}_a \setminus \{1\}} \xi_{1,j}^L C_{1,j}$$
 (4)

其中  $\xi_{1,j}^L \triangleq 1 - \nu_{1,j} \boldsymbol{q}_{\phi_{1,j}}^T (\boldsymbol{J}_e^A(\boldsymbol{p}_j) + \boldsymbol{C}_{1,j})^{-1} \boldsymbol{q}_{\phi_{1,j}}$ . 系数  $\xi_{1,j}^L$  可以进一步化简为

$$\xi_{1,j}^{L} = 1 - \nu_{1,j} \boldsymbol{q}_{\vartheta_{j} - \phi_{1,j}}^{T} \\ \cdot (\operatorname{diag}\{\mu_{j}, \eta_{j}\} + \nu_{1,j} \boldsymbol{q}_{\vartheta_{j} - \phi_{1,j}} \boldsymbol{q}_{\vartheta_{j} - \phi_{1,j}}^{T})^{-1} \boldsymbol{q}_{\vartheta_{j} - \phi_{1,j}}) \\ = \frac{1}{1 + \nu_{1,j} \delta_{j}(\phi_{1,j})}$$

$$(5)$$

思う 
$$G_{1,j} = \nu_{1,j} \boldsymbol{q}_{\phi_{1,j}} \boldsymbol{q}_{\phi_{1,j}}^T$$
, 其中  $\boldsymbol{q}_{\phi_{1,j}} \triangleq [\cos(\phi_{1,j}), \sin(\phi_{1,j})]^T$ , 我们可以将  $\boldsymbol{J}_e^L(\boldsymbol{p}_1)$  表示成:  $\boldsymbol{J}_e^L(\boldsymbol{p}_1) = \boldsymbol{J}_e^A(\boldsymbol{p}_1) + \sum_{j \in \mathcal{N}_a \setminus \{1\}} \xi_{1,j}^L C_{1,j}$  (4) 上界: 考虑 EFIM $\boldsymbol{J}_e^U(\boldsymbol{P})$  为:

$$\boldsymbol{J}_{e}^{U}(\boldsymbol{P}) = \begin{bmatrix} \boldsymbol{J}_{e}^{A}(\boldsymbol{p}_{1}) + \sum_{j \in \mathcal{N}_{a} \setminus \{1\}} \boldsymbol{C}_{1,j} & -\boldsymbol{C}_{1,2} & \dots & -\boldsymbol{C}_{1,N_{a}} \\ -\boldsymbol{C}_{1,2} & \boldsymbol{J}_{e}^{A}(\boldsymbol{p}_{2}) + \boldsymbol{C}_{1,2} + \sum_{j \in \mathcal{N}_{a} \setminus \{1,2\}} 2\boldsymbol{C}_{1,j} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -\boldsymbol{C}_{1,N_{a}} & 0 & \dots & \boldsymbol{J}_{e}^{A}(\boldsymbol{p}_{N_{a}}) + \sum_{j \in \mathcal{N}_{a} \setminus \{1\}} \boldsymbol{C}_{1,j} 2\boldsymbol{C}_{1,N_{a}} \\ (6) \end{bmatrix}$$

这个矩阵可以通过把  $J_e^{\prime}P$ ) 种对角元  $C_{kj}$  扩大一倍同时让非对角元  $-C_{kj}=0$ ,对  $1 \le k, j \le N_a$ . 用线性代数的知识我们可以证明

 $J_e^U(P) \succeq J_e(P)$ , 这也符合直观,因为节点 2 到  $N_a$  之间有了更多的协作。利用 EFI 的方法, 我们 可以得到节点 1 的 EFIM 是:

$$oldsymbol{J}_e^U(oldsymbol{p}_1) = oldsymbol{J}_e^A(oldsymbol{p}_1) + \sum_{j \in \mathcal{N}_a \setminus \{1\}} \xi_{1,j}^U oldsymbol{C}_{1,j}$$

其中

$$\xi_{1,j}^{U} = \frac{1}{1 + \nu_{1,j}\tilde{\delta}_{j}(\phi_{1,j})}$$

$$\tilde{\delta}_j(\phi_{1,j}) = \frac{1}{\tilde{\mu}_j} \cos^2(\tilde{\vartheta} - \phi_{1,j}) + \frac{1}{\tilde{\eta}_j} \sin^2(\tilde{\vartheta} - \phi_{1,j})$$

而  $\tilde{\mu}_j, \tilde{\eta}_j, \tilde{\vartheta}_j$  满足:

$$\xi_{1,j}^{U} = \frac{1}{1 + \nu_{1,j}\tilde{\delta}_{j}(\phi_{1,j})}$$

$$(7) \qquad \mathbf{F}(\tilde{\mu}_{j}, \tilde{\eta}_{j}, \tilde{\vartheta}_{j}) = \mathbf{J}_{e}^{A}(\mathbf{p}_{j}) + \sum_{k \in \mathcal{N}_{a} \setminus \{1,j\}} 2\mathbf{C}_{jk}$$