BTS OPTICIEN LUNETIER

MATHÉMATIQUES SESSION 2019

Note : ce corrigé n'a pas de valeur officielle et n'est donné qu'à titre informatif sous la responsabilité de son auteur par Acuité.

Corrigé proposé par M DESHAYES, professeur de mathématiques de l'Institut et Centre d'Optométrie de Bures-sur-Yvette.

INSTITUT ET CENTRE D'OPTOMÉTRIE INTERNATIONAL COLLEGE OF OPTOMETRY

EXERCICE 1

A.

1°)

a) Les solutions de (*E*) sont les fonctions f définies sur [0 ; $+\infty$ [par : $f(t) = k e^{-\frac{0.2}{1}t} = k e^{-\frac{0.2t}{1}}$; k constante réelle

b)
$$f(0) = 20$$

k e⁰ = 20

k = 20

La fonction f solution de (E) qui vérifie la condition initiale est la fonction f définie sur [0 ; + ∞ [par f(t) = 20 e $^{-0.2t}$

2°)
a)
$$e^{-0.2t} = 0.5$$

 $-0.2 t = \ln 0.5$
 $t = \frac{\ln 0.5}{-0.2}$

b) La demi-vie vérifie : $20 e^{-0.2t} = \frac{20}{2} = 10$; ce qui correspond à l'équation précédente : $e^{-0.2t} = 0.5$

La demi-vie est donc $\frac{\ln 0.5}{-0.2}$

Environ 3,4657 heures (avec 0,4657 h = 0,4657x 60 = 27,942 minutes)

La demi-vie de cet antibiotique est d'environ 3 h et 28 minutes.

3°)

a) La fonction F définie sur [0; +∞ [par

$$F(t) = \frac{20}{-0.2} e^{-0.2t} = -100 e^{-0.2t}$$

est une primitive de la fonction f sur [0 ; $+\infty$ [.

b) A (U A) =
$$\int_0^{15} f(t)dt$$
 (car la fonction f est positive sur [0 ; 15])

A (U A) =
$$[F(t)]_0^{15}$$
 = $F(15) - F(0)$
= $-100 e^{-0.2x15} - (-100 e^{-0}) = -100 e^{-3} + 100 = 100 (1 - e^{-3})$

B.

1°)

a)
$$g(t) = 20 (e^{-0.2t} - e^{-2t})$$

$$g'(t) = 20 (-0.2 e^{-0.2t} - (-2) e^{-2t}) = 20 (-0.2 e^{-0.2t} + 2 e^{-2t})$$
$$= -4 e^{-0.2t} + 40 e^{-2t}$$

or 40 e^{-2t}
$$(1 - 0.1 e^{1.8t}) = 40 e^{-2t} - 4 e^{-2t} e^{1.8t} = 40 e^{-2t} - 4 e^{-2t + 1.8t}$$

= $40 e^{-2t} - 4 e^{-0.2t}$

Les 2 expressions soulignées sont égales donc on a bien :

$$g'(t) = 40 e^{-2t} (1 - 0.1 e^{1.8t})$$
, pour tout t de [0; +\infty]

b) Le signe de g'(t) est celui de $1-0.1 \text{ e}^{1.8t}$ car $40 \text{ e}^{-2t} > 0$, sur [0; + ∞ [Le résultat de logiciel permet d'établir le signe de g'(t):

t	0	5/9 ln(10)			+∞
Signe de g'(t)		+	0	econic	

c)

t	0	5/9 ln(10)			-00
Signe de g'(t)		+	0	-	
Variations de la fonction g	/		A		

- d) La concentration plasmatique maximale est g($\frac{5}{9}$ ln(10)) \cong 13,9 μ g.L⁻¹.
- 2°) La biodisponibilité absolue de cet antibiotique est :

$$\frac{85,02}{100(1-e^{-3})} \cong 0,89 \text{ soit } 89\%$$

C.

1°)
$$u_2 = 0.5 u_1 + 20 = 0.5 \times 20 + 20 = 30$$

Donc la concentration plasmatique de l'antibiotique immédiatement après la deuxième injection est 30 μ g.L⁻¹.

2°)

a)
$$v_{n+1} = u_{n+1} - 40$$

= 0,5 $u_n + 20 - 40 = 0,5$ $u_n - 20$
= 0,5 $(v_n + 40) - 20 = 0,5$ $v_n + 20 - 20 = 0,5$ v_n

 v_{n+1} = 0,5 v_n , pour tout entier $n \ge 1$,

donc la suite (v_n) est la suite géométrique de raison q = 0,5 et de premier terme $v_1 = u_1 - 40 = 20 - 40 = -20$

b) La suite (v_n) étant géométrique, on a : $v_n = v_1 \, q^{n-1} = -20 \times 0.5^{n-1}$ Donc $u_n = v_n + 40 = 40 - 20 \times 0.5^{n-1}$

c)
$$u_n = 40 - 20 \times 0.5^{n-1} = 40 - 20 \times 0.5^n \times 0.5^{-1} = 40 - 40 \times 0.5^n$$

d) La limite de la suite géométrique (v_n) est égale à 0 car sa raison est comprise entre 0 et 1 donc la limite de la suite (u_n) est égale à 40.

3°)

a)

b) On applique cet algorithme en calculant les termes de la suite (u_n) :

-	n	1	2	3	4	5
	u	20	30	35	37,5	38,75

Donc il faut 5 injections pour atteindre cet équilibre.

EXERCICE 2

A.

1°) Avec un grand nombre de meuleuses, la moyenne est très proche de l'espérance donc $\frac{1}{\lambda} = 2$ donc $\lambda = \frac{1}{2}$

2°)

a)
$$P(T < 1) = P(T \le 1) = 1 - e^{-0.5 \times 1} \cong 0.393$$

b)
$$P(T > 3) = 1 - P(T \le 3) = 1 - (1 - e^{-0.5 \times 3}) = e^{-0.5 \times 3} \cong 0.223$$

3°) Pour une meuleuse, il y a en moyenne une panne toutes les 2 semaines ; $\frac{52}{2}$ = 26 donc le nombre moyen de pannes survenant en une année est de 26.

B.

1°)

a) Exactement 20 pannes: 0,042

b) Au maximum 22 :

0,252

 $P(X > 40) = 1 - P(X \le 40) \cong 1 - 0.996 \cong 0.004$ 2°)

C.

1°)

• On considère une épreuve de Bernoulli, qui consiste à considérer une seule meuleuse avec :

Succès : cette meuleuse est jugée défaillante de probabilité p = 0,004 Échec : l'évènement contraire.

- On répète 1000 fois cette épreuve de façon identique et indépendante car tirage avec remise.
- La variable aléatoire Y compte le nombre de succès obtenus.
- Donc Y suit la loi binomiale de paramètres 1000 et 0,004.

2°)

- a) La loi de la variable aléatoire Y peut être approchée par la loi normale
 - de moyenne : $np = 1000 \times 0,004 = 4$
 - d'écart type $\sqrt{np(1-p)} = \sqrt{1000 \times 0,004 \times (1-0,004)} \cong 2,0$
- b) $P(2.5 \le Z \le 7.5) \cong 0.733$

D.

- 1°) L'estimation ponctuelle f de la proportion inconnue p est : $f = \frac{85}{100} = 0.85$
- 2°) L'intervalle de confiance est : $\left[f 2,58\sqrt{\frac{f(1-f)}{n}}\right]$; $f + 2,58\sqrt{\frac{f(1-f)}{n}}$

Avec: f = 0.85 et n = 100 cela donne:

[
$$0.85 - 2.58\sqrt{\frac{0.85 \times 0.15}{100}}$$
; $0.85 - 2.58\sqrt{\frac{0.85 \times 0.15}{100}}$]

L'intervalle de confiance de la proportion p avec le coefficient de confiance de 99% est donc [0,758 ; 0,942]

3°) On ne peut pas affirmer que p est compris dans cet intervalle

Car le niveau de confiance de 99% signifie qu'environ 99% des intervalles qu'on peut obtenir ainsi contiennent la proportion p de la population.