Les règles de calcul élémentaire ou l'algèbre des nombres réels

Maxime Forriez^{1,2,a}

^amaxime.forriez@sorbonne-universite.fr

19 octobre 2025

1 Les égalités

$$ka + kb = k(a+b) \tag{1}$$

$$\frac{a}{k} + \frac{b}{k} = \frac{a+b}{k} \tag{2}$$

avec $k \neq 0$

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \tag{3}$$

avec $b \neq 0$ et $d \neq 0$.

$$(a+b)(c+d) = ac + ad + bc + bd \tag{4}$$

$$n \times \frac{a}{b} = \frac{an}{b} \tag{5}$$

avec $b \neq 0$.

$$\frac{\frac{a}{c}}{\frac{b}{d}} = \frac{a}{c} \times \frac{d}{b} \tag{6}$$

¹ Sorbonne université, 2, rue Francis de Croisset, 75 018 Paris

² Institut de géographie, 191, rue Saint-Jacques, Bureau 105, 75 005 Paris,

 $b \neq 0$, $c \neq 0$ et $d \neq 0$.

Deux nombres sont dits inverses si leur produit est égal à 1.

$$a \times \frac{1}{a} = 1 \tag{7}$$

Deux nombres sont dits **opposés** si leur somme est égale à 0.

$$-a + a = 0 \tag{8}$$

$$\frac{a}{b} = 0 \Leftrightarrow a = 0 \tag{9}$$

$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc \tag{10}$$

avec $b \neq 0$ et $d \neq 0$

2 Les puissances

$$-- a^m a^n = a^{m+n}$$

$$- \frac{a^m}{a^n} = a^{m-n}$$

$$-\frac{1}{a} = a^{-m}$$

$$-- (ab)^n = a^n b^n$$

$$-- a^{n+1} = a^n a$$

$$-- a^{n-1} = \frac{1}{a}a^n$$

$$-\frac{a}{b} = \frac{1}{\frac{b}{a}}$$

3 Les racines carrées

—
$$\forall a \in \mathbb{R}^+_*, \sqrt{a^2} = a \text{ ou } \sqrt{a^2} = -a$$

4 Les identités remarquables

$$- (a+b)^2 = a^2 + 2ab + b^2$$

$$- (a-b)^2 = a^2 - 2ab + b^2$$

$$- (a-b)(a+b) = a^2 - b^2$$

$$- (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$$

$$- (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$- (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$- a^3 + b^3 = (a-b)(a^2 + ab + b^2)$$

$$- a^3 - b^3 = (a+b)(a^2 - ab + b^2)$$

$$- a^3 + b^3 + c^3 + 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc)$$

$$- \forall n \in \mathbb{N}^* - \{1\}, a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + a^2b^{n-3} + ab^{n-2} + b^{n-1})$$

$$- \forall x \in \mathbb{R} - \{1\}, 1 + x + x^2 + \dots + x^n = \frac{1-x^{n+1}}{1-x}$$

5 Les équations

Règle 1.
$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall c \in \mathbb{R}, a = b \Leftrightarrow a + c = b + c$$

Règle 2. $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall c \in \mathbb{R}^*, a = b \Leftrightarrow ac = bc$
 $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, ab = 0 \Leftrightarrow \begin{cases} a = 0 \\ b = 0 \end{cases}$.

6 Les inéquations

Règle 1. $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall c \in \mathbb{R}, a > b \Leftrightarrow a + c > b + c$ **Règle 2.** On distingue deux cas : $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall c \in \mathbb{R}_+^*, a > b \Leftrightarrow ac > bc$ et $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall c \in \mathbb{R}_-^*, a > b \Leftrightarrow ac < bc$.

7 La valeur absolue

La valeur absolue de a se note |a|.

- Si $x \ge 0$, alors |x| = x.
- Si $x \leq 0$, alors |x| = -x.

Soient a et b deux nombres réels, alors le nombre réel|a-b| est la **distance** entre les nombres réels a et b.

$$\forall x \in \mathbb{R}, |x| = 0 \Leftrightarrow x = 0 \tag{11}$$

$$\forall a \in \mathbb{R}, |a| = |-a| \tag{12}$$

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, |a| = |b| \Leftrightarrow a = b \text{ ou } a = -b$$
 (13)

$$\forall a \in \mathbb{R}, \forall x \in \mathbb{R}, |x| = a \Leftrightarrow x = a \text{ ou } x = -a \tag{14}$$

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, |a+b| = |a| + |b| \tag{15}$$

$$\forall a \in \mathbb{R}, \sqrt{a^2} = |a| \tag{16}$$

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, |ab| = |a||b| \tag{17}$$

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$
 (18)

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, |a+b| \le |a| + |b| \tag{19}$$

$$\forall x \in \mathbb{R}, \forall r \in \mathbb{R}_+, |x| \le r \Leftrightarrow -r \le x \le r \tag{20}$$

$$\forall x \in \mathbb{R}, \forall a \in \mathbb{R}, \forall r \in \mathbb{R}_+, |x - a| \le |r| \Leftrightarrow a - r \le x \le a + r$$
 (21)

$$\forall x \in \mathbb{R}, \forall r \in \mathbb{R}_+, |x| \ge r \Leftrightarrow x > r \text{ ou } x < r \tag{22}$$

Les approximations 8

Encadrer un nombre réel x, c'est trouver deux nombres réels a et b tels que $a \le x \le b$.

La double inégalité $a \le x \le b$ s'appelle un encadrement de x.

L'amplitude de cet encadrement est un nombre positif : b-a.

Le **centre de l'intervalle** [a,b] est : $\frac{a+b}{2}$. Le **rayon de l'intervalle** [a,b] est : $\frac{b-a}{2}$.

 $a \le x \le b \Leftrightarrow x \in [a, b]$

Soit r un nombre réel strictement positif, lorsque $a \le x \le a + r$, le nombre réel a est une valeur approchée par défaut de x à r près. Lorsque $a-r \le x \le a$, le nombre réel a est une valeur approchée par excès de x à r près. Lorsque $a-r \le x \le a+r$, le nombre réel a est une **valeur approchée par excès** de x à r près. On remplace souvent l'expression « valeur approchée » par **approximation**. Le nombre réel r est la précision de l'approximation.

9 Les études de signes

Théorème. Si A < B, alors la différence B - A est un nombre positif.

Rechercher le signe d'une expression algébrique A revient à résoudre A=0, A>0 et A<0.

Par exemple, rechercher le signe de A=ax+b revient à rechercher le signe de a>0.

$$A = 0 \Leftrightarrow x = -\frac{b}{a} \tag{23}$$

$$A > 0 \Leftrightarrow x > -\frac{b}{a} \tag{24}$$

$$A < 0 \Leftrightarrow x < -\frac{b}{a} \tag{25}$$

On peut alors dresser un tableau de signes.

	<u>U</u>						
Signe de x	$-\infty$		$-\frac{b}{a}$		$+\infty$		
Signe de A		_	0	+			

De même, rechercher le signe de A=ax+b revient à rechercher le signe de a<0.

$$A = 0 \Leftrightarrow x = -\frac{b}{a} \tag{26}$$

$$A > 0 \Leftrightarrow x < -\frac{b}{a} \tag{27}$$

$$A < 0 \Leftrightarrow x > -\frac{b}{a} \tag{28}$$

On peut alors dresser un autre tableau de signes.

Signe de x	$-\infty$		$-\frac{b}{a}$		$+\infty$
Signe de A		+	0	_	

Remarque. Si un nombre n'est pas défini, on le note dans le tableau de signe en barrant sa solution avec deux barres verticales.

10 Les encadrements

La soustraction et la division sont interdites dans les encadrements.

10.1 Ordre et additions

 $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall c \in \mathbb{R}, \forall d \in \mathbb{R}, \forall x \in \mathbb{R}, \forall y \in \mathbb{R}, a \leq x \leq b \text{ et } c \leq x \leq d \\ \Rightarrow a + c \leq x + y \leq b + d.$

10.2 Ordre et multiplications

$$\forall a \in \mathbb{R}_+, \forall b \in \mathbb{R}_+, \forall c \in \mathbb{R}_+, \forall d \in \mathbb{R}_+, \begin{cases} 0 \le a \le b \\ 0 \le c \le d \end{cases} \Rightarrow 0 \le ac \le bd$$

10.3 Ordre et inverse

$$\forall a \in \mathbb{R}^*, \forall b \in \mathbb{R}^*, \forall x \in \mathbb{R}^*, a \leq x \leq b \Rightarrow \frac{1}{b} \leq \frac{1}{x} \leq \frac{1}{a}$$

10.4 Ordre et carrés

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall x \in \mathbb{R}, a \le x \le b \Rightarrow a^2 \le x^2 \le b^2$$

10.5 Ordre et racines carrées

$$\forall a \in \mathbb{R}_+, \forall b \in \mathbb{R}_+, \forall x \in \mathbb{R}_+, a < x < b \Rightarrow \sqrt{a} < \sqrt{x} < \sqrt{b}$$

10.6 Comment faire une soustraction?

Encadrer a - b revient à :

- 1. $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall m \in \mathbb{R}, \forall l \in \mathbb{R}, m < a < l$
- 2. $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall n \in \mathbb{R}, \forall p \in \mathbb{R}, n \leq b \leq p$

On multiple l'équation 2 par -1. On obtient alors $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall n \in \mathbb{R}, \forall p \in \mathbb{R}, -p \leq -b \leq -n$. On additionne les équations 1 et 2. On obtient l'encadrement rechercher de a-b:

 $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall l \in \mathbb{R}, \forall m \in \mathbb{R}, \forall n \in \mathbb{R}, \forall p \in \mathbb{R}, m - p \le a - b \le l - n$ (29)

10.7 Comment faire une division?

Encadrer $\frac{a}{b}$ revient à :

- 1. $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall m \in \mathbb{R}, \forall l \in \mathbb{R}, l \leq a \leq m$
- 2. $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall n \in \mathbb{R}, \forall p \in \mathbb{R}, p \leq b \leq n$

On applique la fonction inverse dans l'inéquation 2. On obtient alors $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall n \in \mathbb{R}, \forall p \in \mathbb{R}, \frac{1}{n} \leq \frac{1}{b} \leq \frac{1}{p}$. On multiple les équations 1 et 2. On obtient alors l'encadrement de $\frac{a}{b}$:

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \forall l \in \mathbb{R}, \forall m \in \mathbb{R}, \forall n \in \mathbb{R}, \forall p \in \mathbb{R}, \frac{l}{n} \le \frac{a}{b} \le \frac{m}{p}$$
 (30)

11 La méthode de résolution d'un système linéaire

Un **système linéaire** d'équation est composée de variables non élevées à une quelconque puissance autre que 0 ou 1.

Soit un système de n équations à n inconnues, pour résoudre un tel système, on doit :

1. numéroter les équations E_1, E_2, \ldots, E_n ;

$$\begin{cases}
\dots (E_1) \\
\dots (E_2) \\
\dots (E_3) \\
\dots \\
\dots \\
\dots (E_n)
\end{cases}$$
(31)

2. résoudre le système en proposant des **combinaisons linéaires** des équations entre elles afin de déterminer la valeur de chaque inconnue. Par exemple, ici, on modifie l'équation E_3 avec la combinaison $E_3 + k_1E_1 + k_2E_2$

$$\begin{cases}
\dots (E_1) \\
\dots (E_2) \\
\dots (E_3) \leftarrow E_3 + k_1 E_1 + k_2 E_2 \\
\dots \\
\dots \\
\dots (E_n)
\end{cases}$$
(32)

Dans un système linéaire, on peut ajouter à une des équations une combinaison linéaire des autres équations. Cela permet d'obtenir des **systèmes équivalents**. Toutefois, il est interdit de faire une combinaison linéaire avec une équation modifiée.

Pour réduire le système aux inconnues recherchées, il faut repérer les coefficients 1 ou -1 et conserver l'équation qui les contient jusqu'au terme de la résolution. S'il en existe plusieurs en choisir un seul. La méthode consiste à passer d'un système quelconque à un système triangulaire.