HW #8

Sam Fleischer

November 30, 2015

Problem 1

Consider the Banach space C([0,1]) with the supremum norm. For $x \in [0,1]$ let δ_x denote the linear functional on C([0,1]) given by

$$\delta_x(f) = f(x), \quad \text{for all } f \in C([0,1])$$

a)

Show that $\|\delta_x\| = 1$.

b)

Show that there does not exist a Riemann integrable function $k : [0,1] \to \mathbb{R}$, such that

$$\delta_x(f) = \int_0^1 k(y)f(y)dy$$
, for all $f \in C([0,1])$

Problem 2

Prove that there does not exist an inner product on C([0,1]) such that the supremum norm is derived from this inner product.

Problem 3

Let \mathcal{H} be a Hilbert space and let M be a subset of \mathcal{H} .

a)

Prove that M^{\perp} is a closed linear subspace of \mathcal{H} .

First we show M^{\perp} is a linear subspace. Let $x, y \in M^{\perp}$ and $\lambda, \mu \in \mathbb{C}$. Then for each $m \in M$,

$$\langle m, \lambda x + \mu y \rangle = \lambda \langle m, x \rangle + \mu \langle m, y \rangle = 0$$

Thus $\lambda x + \mu y \in M^{\perp}$. Thus M^{\perp} is a linear subspace of \mathcal{H} . Next, let (x_n) be a convergent sequence in M^{\perp} , and let $x_n \to x$. Then for each $m \in M$,

$$\langle x, m \rangle = \langle \lim_{n \to \infty} x_n, m \rangle$$

but since $\langle \cdot, \cdot \rangle$ is continuous,

$$\langle \lim_{n \to \infty} x_n, m \rangle = \lim_{n \to \infty} \langle x_n, m \rangle = \lim_{n \to \infty} 0 = 0$$

Thus $\langle x, m \rangle = 0$, which shows $x \in M^{\perp}$, proving M^{\perp} is closed.

b)

Prove that $M \cap M^{\perp} \subset \{0\}$.

Let $x \in M \cap M^{\perp}$. Then by the definition of M^{\perp} ,

$$\langle x, x \rangle = 0$$

Then ||x|| = 0, which shows x = 0. Thus $M \cap M^{\perp} \subset \{0\}$.

 $\mathbf{c})$

If M is a linear subspace of \mathcal{H} , prove that $(M^{\perp})^{\perp} = \overline{M}$.

Assume $x \in \overline{M}$. Then there is a sequence $x_n \in M$ such that $x_n \to x$. Then $\langle x_n, y \rangle = 0$ for every $y \in M^{\perp}$. Then by continuity of $\langle \cdot, \cdot \rangle$, $\langle x, y \rangle = 0$ for every $y \in M^{\perp}$. Then $x \in (M^{\perp})^{\perp}$ by the definition of $(M^{\perp})^{\perp}$. Thus $\overline{M} \subset (M^{\perp})^{\perp}$.

Now assume $x \notin \overline{M}$. Since \overline{M} is closed, then by the Projection Theorem, $\exists y \in \overline{M}$ such that $(x-y) \perp \overline{M}$. Since $y \in \overline{M}$, $\langle x-y,y \rangle = 0$. Since $x \neq y$ ($x \notin \overline{M}$ and $y \in \overline{M}$), then $\langle x-y,x-y \rangle \neq 0$. However, $\langle x-y,x-y \rangle = \langle x-y,x \rangle - \langle x-y,y \rangle = \langle x-y,x \rangle$. Since $x-y \perp \overline{M}$, then $x-y \perp M$. So $x-y \in M^{\perp}$. Then since $\langle x-y,x \rangle \neq 0$, then $x \notin (M^{\perp})^{\perp}$. Then $(M^{\perp})^{\perp} \subset \overline{M}$.

Thus,
$$\overline{M} = (M^{\perp})^{\perp}$$
.

Problem 4

Let \mathcal{H} be a Hilbert space and $A \in \mathcal{B}(\mathcal{H})$. If $\langle x, Ay \rangle = 0$ for all $x, y, \in \mathcal{H}$, prove $A = \mathbb{O}$.

Since $\langle x, Ay \rangle = 0$ for all $x, y \in \mathcal{H}$, then in particular, take x = Ay, and so $\langle Ay, Ay \rangle = 0$ for all $y \in \mathcal{H}$. Thus $A = \mathbb{O}$.

Problem 5

Let \mathcal{H} be a Hilbert space and P and Q two orthogonal projections on \mathcal{H} .

a)

Prove that PQ is an orthogonal projection if and only if PQ - QP = 0, i.e., if and only if P and Q commute.

First note that

$$\langle PQx, y \rangle = \langle Qx, Py \rangle = \langle x, QPy \rangle$$
 (1)

Assume PQ is an orthogonal projection. Then by the definition of orthogonal projection, and by (1), $\langle PQx, y \rangle = \langle x, PQy \rangle$. Then for all $x, y \in \mathcal{H}$,

$$\langle x, QPy \rangle = \langle x, PQy \rangle$$

$$\implies \langle x, (QP - PQ)y \rangle = 0$$

$$\implies QP - PQ = 0$$

$$\implies QP = PQ$$

Thus P and Q commute.

Now assume PQ = QP. Then $(PQ)^2 = PQPQ = PPQQ = PQ$ since P and Q are orthogonal projections. Also, by (1), $\langle PQx, y \rangle = \langle x, QPy \rangle = \langle x, PQy \rangle$. Thus PQ is an orthogonal projection.

b)

Prove that for commuting orthogonal projections P and Q, one has $ran(PQ) = ran(P) \cap ran(Q)$.

Let $x \in \operatorname{ran}(PQ)$. Then $\exists y$ such that PQy = x. Then P maps Qy on to x. Then $x \in \operatorname{ran}(P)$. However, since P and Q commute, then QPy = x, and thus Q maps Py on to x, and so $x \in \operatorname{ran}(Q)$. Thus $x \in \operatorname{ran}(P) \cap \operatorname{ran}(Q)$. So $\operatorname{ran}(PQ) \subset \operatorname{ran}(P) \cap \operatorname{ran}(Q)$.

Now let $x \in \operatorname{ran}(P) \cap \operatorname{ran}(Q)$. Then $x \in \operatorname{ran}(P)$ and $x \in \operatorname{ran}(Q)$. So $\exists y_1, y_2$ such that $Py_1 = Qy_2 = x$. Thus, $PQy_2 = P^2y_1 = Py_1 = x$, and thus $x \in \operatorname{ran}(PQ)$. So $\operatorname{ran}(P) \cap \operatorname{ran}(Q) \subset \operatorname{ran}(PQ)$.

Thus,
$$ran(PQ) = ran(P) \cap ran(Q)$$
.

 $\mathbf{c})$

Prove that P+Q is an orthogonal projection if and only if $PQ=\mathbb{O}$.

Assume $PQ = \emptyset$. Then $\langle PQx, y \rangle = 0$ for all $x, y \in \mathcal{H}$. But by (1), $\langle x, QPy \rangle = 0$ for all $x, y \in \mathcal{H}$. Thus $QP = \emptyset$. Then $(P+Q)^2 = P^2 + PQ + QP + Q^2 = P^2 + \emptyset + \emptyset + Q^2 = P + Q$ since P and Q are orthogonal projections. Also,

$$\langle (P+Q)x, y \rangle = \langle Px + Qx, y \rangle$$

$$= \langle Px, y \rangle + \langle Qx, y \rangle$$

$$= \langle x, Py \rangle + \langle x, Qy \rangle$$

$$= \langle x, Py + Qy \rangle$$

$$= \langle x, (P+Q)y \rangle$$

Thus P + Q is an orthogonal projection.

Assume P+Q is an orthogonal projection. Then $(P+Q)^2=P+Q$, but $(P+Q)^2=P^2+PQ+QP+Q^2=P+PQ+QP+Q$. Thus PQ+QP=0, i.e. PQ=-QP.

Assume $x \in \operatorname{ran}(P) \cap \operatorname{ran}(Q)$ and note 0 = (PQ + QP)x = PQx + QPx. Since $x \in \operatorname{ran}(P)$, Px = x. Also, since $x \in \operatorname{ran}(Q)$, Qx = x. Then PQx = Px = x and QPx = Qx = x. So 0 = PQx + QPx = 2x. Thus x = 0.

Now, take any $x \in \mathcal{H}$, then certainly $PQx \in \text{ran}(P)$ and since PQx = -QPx = Q(-Px), then $PQx \in \text{ran}(Q)$. Then PQx = 0 by the paragraph above, and thus $PQ = \emptyset$, i.e. $\text{ran}(PQ) = \{0\}$.

Thus, P + Q is an orthogonal projection if and only if $ran(PQ) = \{0\}$.

 \mathbf{d}

Prove that if PQ = 0, we have $ran(P + Q) = ran(P) \oplus ran(Q)$.

Let $PQ = \emptyset$ and assume $y \in \operatorname{ran}(P+Q)$. Then $\exists x \in \mathcal{H}$ such that Px + Qx = y. Then y is the sum of an element in $\operatorname{ran}(P)$ and an element in $\operatorname{ran}(Q)$. Thus $y \in \operatorname{ran}(P) \oplus \operatorname{ran}(Q)$. Assume $y \in \operatorname{ran}(P) \oplus \operatorname{ran}(Q)$. Then $\exists x_1, x_2 \in \mathcal{H}$ such that $y = Px_1 + Qx_2$. Then $Py = P^2x_1 + PQX_2 = Px_1$ and $Qy = QPx_1 + Q^2x_2 = Qx_2$. Thus $y = Px_1 + Qx_2 = Py + Qy = (P+Q)y$. Thus $y \in \operatorname{ran}(P+Q)$, which shows $\operatorname{ran}(P+Q) = \operatorname{ran}(P) \oplus \operatorname{ran}(Q)$.

Problem 6

Let \mathcal{H} be a Hilbert space and $P \in \mathcal{B}(\mathcal{H})$ such that $P^2 = P$ and $\dim \operatorname{ran}(P) = 1$.

a)

Show that $||P|| \ge 1$.

Let $x \in \text{ran}(P)$ such that ||x|| = 1. Then Px = x, and so ||Px|| = ||x|| = 1. Thus $||P|| \ge 1$.

b)

Suppose dim $\mathcal{H} \geq 2$. Find

$$\sup \{ ||P|| \mid P \in \mathcal{B}(\mathcal{H}), P^2 = P, \dim \text{ran}(P) = 1 \}$$

Problem 7

Let $\{e_1, e_2, \dots\}$ be an orthonormal basis of a separable Hilbert space \mathcal{H} .

a)

Let $(a_n) \in \ell^1(\mathbb{N})$. Show that $\sum_{n=1}^{\infty} a_n e_n$ converges absolutely to a limit in \mathcal{H} .

b)

Let $\alpha \in (0,\infty)$ and define $a_n = n^{-\alpha}$, $n \geq 1$. For which values of α does $\sum_{n=1}^{\infty} a_n e_n$ converge unconditionally but not absolutely?

Problem 8

Define the Legendre polynomials P_n by

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n$$

a)

Show that the Legendre polynomials are orthogonal in $L^2([-1,1])$, and that they are obtained by Gram-Schmidt orthogonalization of the monomials.

b)

Show that

$$\int_{-1}^{1} P_n(x)^2 \mathrm{d}x = \frac{2}{2n+1}$$

c)

Prove that the Legendre polynomials form an orthogonal basis of $L^2([-1,1])$.

 \mathbf{d}

Prove that the Legendre polynomial P_n is an eigenfunction of the differential operator

$$L = -\frac{\mathrm{d}}{\mathrm{d}x}(1 - x^2)\frac{\mathrm{d}}{\mathrm{d}x}$$

with eigenvalue $\lambda_n = n(n+1)$, meaning that

$$LP_n = \lambda_n P_n$$