第四章 动态规划

修贤超

机电工程与自动化学院 上海大学

https://xianchaoxiu.github.io

Outline

1. 多阶段决策过程的最优化

2. 动态规划的基本概念和基本原理

3. 动态规划模型的建立与求解

4. 动态规划在经济管理中的应用

Outline

1. 多阶段决策过程的最优化

2. 动态规划的基本概念和基本原理

3. 动态规划模型的建立与求解

4. 动态规划在经济管理中的应用

■ 动态规划

□ 动态规划是解决多阶段决策过程最优化问题的一种方法,该方法由美国数学家贝尔曼 (R. Bellman)等人在 20 世纪 50 年代初提出。

- □ 1976 年, 获得美国运筹与管理学会最高奖——冯·诺伊曼理论奖
- □ 1977 年,当选为美国艺术与科学研究院院士和美国工程科学院院士
- □ 1979 年, 授予 IEEE 协会最高奖项——荣誉勋章奖

■ 动态规划

□ 动态规划是现代企业管理中的一种重要决策方法,可用于解决最优路径问题、资源分配问题、生产计划与库存、投资、装载、排序等问题及生产过程的最优控制等。

- □ 动态规划和线性规划均属于数学规划,研究对象均为求极值问题,均利用迭代法逐步求解。
- 不同之处,线性规划所研究的问题与时间无关,为静态规划,而动态规划所研究的问题 与时间有关。

■ 多阶段决策问题

- □ 概念: 所谓多阶段决策问题是指一类特殊的活动过程,它们按时间可以分为若干相互联系的阶段,称为"时段",在每个阶段都要做出决策,全部过程就是一个决策序列。
- 特点 (序贯决策): 每一阶段的决策都不是完全独立的,每个单阶段的决策不仅影响该阶段的效果,还要影响到下阶段的初始状态。
- □ <mark>目标:</mark> 每个阶段的决策确定以后,就得到一个决策序列,称为<mark>策略</mark>。多阶段决策问题就是 求一个策略,使各阶段的效益的总和达到最优。

■ 例 1 (最短路问题)

■ 例 2 (投资决策问题)

- 』 某公司有资金 10 万元, 若投资于项目 i (i-1,2,3) 的投资额为时, 其收益分别为 $g_1(x_1)=4x_1$, $g_2(x_2)=9x_2$, $g_3(x_3)=2x_3^2$, 问应如何分配投资数额才能使总收益最大?
- □ 静态模型

max
$$z = 4x_1 + 9x_2 + 2x_3^2$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 = 10 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

为了应用动态规划方法求解,可以人为地赋予它"时段"的概念,将本例转化成一个三阶段的决策问题。

■ 例 3 (设备更新问题)

- $flue{Q}$ 企业在使用设备时都要考虑设备的更新问题,因为设备越陈旧所需的维修费用越多,但购买新设备则要一次性支出较大的费用。现某企业要决定一台设备未来 8 年的更新划,已预测了第 j 年购买设备的价格为 K_j ,设 G_j 为设备经过 j 年后的残值, C_j 为设备续使用 j-1 年后在第 j 年的维修费 $(j=1,\ldots,8)$,问应在哪些年更新设备可使总费用最小。
- □ 这是一个 8 阶段决策问题,每年年初要做出决策,是继续使用旧设备,还是购买新设备。

- 小结
 - □ 动态规划
 - □ 动态规划与线性规划
 - □ 多阶段决策问题
 - □ 多阶段决策问题例子
 - 最短路问题
 - 投资决策问题
 - 设备更新问题

Outline

1. 多阶段决策过程的最优化

2. 动态规划的基本概念和基本原理

3. 动态规划模型的建立与求解

4. 动态规划在经济管理中的应用

■ 动态规划的基本概念

 \square 阶段: 将所给问题的过程,按时间或空间特征分解成相互联系的阶段,以便按次序求每 阶段的解。记 k 为阶段变量。

- $k = 1, A \to B (B_1, B_2)$
- $k = 2, B \to C(C_1, C_2, C_3, C_4)$
- $k = 3, C \to D (D_1, D_2, D_3)$
- k = 4, $D \to E(E_1, E_2)$
- $k=5, E \rightarrow F$

■ 动态规划的基本概念

- \square <mark>状态</mark>: 每个阶段开始时的客观条件,描述了研究问题的状况。记 s_k 为第 k 阶段的状态变量, S_k 为状态变量 s_k 的取值集合。
- □ 当某阶段状态给定以后,在这阶段以后过程的发展不受这段以前各段状态的影响,这称为<mark>无后效性</mark>。

- 第一阶段状态为 A, 状态变量 s_1 的集合为 $S_1 = \{A\}$;
- $S_2 = \{B_1, B_2\}$, $S_3 = \{C_1, C_2, C_3, C_4\}$, $S_4 = \{D_1, D_2, D_3\}$, $S_5 = \{E_1, E_2\}$.

■动态规划的基本概念

- 从第二阶段的状态 B_1 出发,可选择下一阶段的 C_1, C_2, C_3 ,即其允许决策集合为 $D_2(B_1) = \{C_1, C_2, C_3\}$ 。
- 如果我们决定选择 C_3 , 则 $u_2(B_1) = C_3$

■ 动态规划的基本概念

□ 策略: 由所有各阶段组成的决策函数序列

$$p_{1,n}\{u_1(s_1), u_2(s_2), \dots, u_n(s_n)\} \in P_{1,n}$$

- □ 最优策略: 使整个问题达到最优效果的策略
- □ 状态转移方程: 本阶段状态与上一阶段状态和上一阶段决策的关系

$$s_{k+1} = T(s_k, u_k)$$

• 从 k 阶段到 k+1 阶段的状态转移方程为 $s_{k+1}=u_k(s_k)$

- 动态规划的基本概念
 - □ 指标函数: 衡量所选定策略优劣的数量指标。
 - \square 阶段指标函数: 第 k 阶段,从状态 s_k 出发,采取决策 u_k 时的效益,记 $d(s_k,u_k)$ 。
 - ② <mark>过程指标函数</mark>: 一个 n 段决策过程,从 1 到 n 叫做问题的原过程。对于任意一个给定的 k,从第 k 阶段到第 n 阶段的过程称为原过程的一个后部子过程。
 - 回 例如, $V_{1,n}(s_1,p_{1,n})$ 表示初始状态为 s_1 采取策略 $p_{1,n}$ 时原过程的指标函数值。 $V_{k,n}(s_k,p_{k,n})$ 表示在第 k 阶段状态为 s_k 采取策略 $p_{k,n}$ 时,后部子过程的指标函数值。

- 动态规划的基本概念
 - □ 最优指标函数: 指标函数的最优值。
 - 回 例如, $f_k(s_k)$ 表示从第 k 阶段状态 s_k 采用最优策略 $p_{k,n}$ 到过程终止时的最佳效益值。 $f_1(s_1)$ 表示从第 1 阶段状态 s_1 采用最优策略 $p_{1,n}$ 到过程终止时的最佳效益值。
 - \square 最优指标函数 $f_k(s_k)$ 与 $V_{k,n}(s_k,p_{k,n})$ 的关系

$$f_k(s_k) = V_{k,n}(s_k, p_{k,n}^*)$$

= opt_{p_{k,n} \in P_{k,n}} V_{k,n}(s_k, p_{k,n})}

■ 动态规划的基本概念

© 例如指标函数是距离,第 2 阶段,状态为 B_1 时 $d(B_1,C_2)$ 表示由 B_1 出发,采用决策到下一段 C_2 点间的距离。

- V_{2.5}(B₁) 表示从 B₁ 到 F 的距离
- $f_2(B_1)$ 表示从 B_1 到 F 的最短距离
- 总目标是求 $f_1(A)$, 即从 A 到终点 F 的最短距离

■ 动态规划的基本思想

- \square 从过程的最后一段开始,用<mark>逆序递推方法</mark>求解,逐步求出各段各点到终点 F 的最短路线,最后求得 A 点到 F 点的最短路线。
- \square 当 k=5 时: 状态变量 s_5 可取两种状态 E_1, E_2 , 它们到 F 点的路长分别为

$$f_5(E_1) = 4, \ f_5(E_2) = 3$$

- 动态规划的基本思想
 - ② 当 k=4 时: 状态变量 s_4 可取三种状态 D_1,D_2,D_3 ,这是经过一个中途点到达终点 F 的两级决策问题

- 从 D_1 到 F,其路径为 $D_1 \to E_1 \to F$,相应决策为方程 $u_4^*(D_1) = E_1$ $f_4(D_1) = \min\{d(D_1,E_1) + f_5(E_1), d(D_1,E_2) + f_5(E_2)\}$ $= \min\{3+4,5+3\} = 7$
- 从 D_2 到 F,其路径为 $D_2 o E_2 o F$,相应决策为方程 $u_4^*(D_2) = E_2$ 。
- 从 D_3 到 F,其路径为 $D_3 \rightarrow E_1 \rightarrow F$,相应决策为方程 $u_4^*(D_3) = E_1$ 。

■ 动态规划的基本思想

- □ 当 k = 3 时: 有
 - $f_3(C_1) = 7$, $u_3^*(C_1) = D_1$
 - $f_3(C_2) = 7$, $u_3^*(C_2) = D_2$
 - $f_3(C_3) = 7$, $u_3^*(C_3) = D_2$
 - $f_3(C_4) = 7$, $u_3^*(C_4) = D_3$
- \square 当 k=2 时: 有
 - $f_2(B_1) = 13$, $u_2^*(B_1) = C_2$
 - $f_2(B_1) = 15$, $u_2^*(B_1) = C_3$

- 动态规划的基本思想
 - \square 当 k=1 时: 只有一个状态点 A,因有

$$f_1(A) = \min\{d(A, B_1) + f_2(B_1), d(A, B_2) + f_2(B_2)\}$$

= \(\text{min}\{4 + 13, 5 + 15\} = 17\)

- □ 从 A 到 F 的最短距离为 17
- \square 按计算顺序反推可得最优决策序列 $\{u_k\}$, 即

$$u_1^*(A) = B_1, \ u_2^*(B_1) = C_2, \ u_3^*(C_2) = D_2$$

 $u_4^*(D_2) = E_2, \ u_5^*(E_2) = F$

□ 最优路线为

$$A \to B_1 \to C_2 \to D_2 \to E_2 \to F$$

- 动态规划的基本思想
 - $\ \square$ 从本例的计算过程可以看出,在求解的各个阶段,都利用了第 k 段和第 k+1 段的如下 关系

$$\begin{cases} f_k(s_k) = \min\{d_k(s_k, u_k) + f_{k+1}(s_{k+1})\}, \ k = 5, 4, 3, 2, 1\\ f_6(s_6) = 0 \end{cases}$$

- □ 上式称为动态规划的基本方程

■ 动态规划的基本思想

- 求解时从边界条件开始,逆(或顺)过程行进方向,逐段递推寻优。在每一个子问题求解时,都要使用它前面已求出的子问题的最优结果,最后一个子问题的最优解就是整个问题的最优解。
- □ 既将当前一段与未来各段分开,又将当前效益与未来效益结合起来考虑的一种最优化方法,因此每段的最优决策选取时从全局考虑的,与该段的最优选择一般是不同的。
- □ 动态规划基本方程

$$\begin{cases} f_k(s_k) = \operatorname{opt}_{u_k \in D_k(s_k)} \{ v_k(s_k, u_k) + f_{k+1}(s_{k+1}) \}, \ k = n, n-1, \dots, 1 \\ f_{n+1}(s_{n+1}) = 0 \end{cases}$$

- 动态规划的最优化原理
 - □ 作为整个过程的最优策略具有如下性质: 不管在此最优策略上的某个状态以前的状态和 决策如何,对该状态而言,以后所有的决策必定构成最优子策略。
 - □ 对最短路问题而言, 从最短路上任一点到终点的部分道路(最短路上的子路)也一定是从 该点到终点的最短路。

- 小结
 - □ 基本概念
 - 阶段 k
 - 状态 s_k
 - 决策 u_k
 - 策略 p_{1,n}
 - 状态转移方程 $s_{k+1} = T_k(s_k, u_k)$
 - 指标函数 $f_k(s_k)$
 - □ 逆序递推法
 - □ 标号法
- 课后作业: P217, 习题 7.1 (逆序法)

Outline

1. 多阶段决策过程的最优化

2. 动态规划的基本概念和基本原理

3. 动态规划模型的建立与求解

4. 动态规划在经济管理中的应用

■ 动态规划建模举例

© 例 1: 某公司有资金 10 万元, 若投资于项目 i (i=1,2,3) 的投资额为 x_i (i=1,2,3) 时, 其收益分别为

$$g_1(x_1) = 4x_1, \ g_2(x_2) = 9x_2, \ g_3(x_3) = 2x_3^2$$

问应如何分配投资数额才能使总收益最大?

- 划分阶段: 引入时段的概念,即将投资项目排序。首先考虑对项目 1 投资,然后对项目 2 和项目 3 投资。
- ② 选择状态变量: 通常选择随递推过程累计的量或者按某种规律变化的量作为状态变量, 即把每阶段可供使用的资金定为状态变量 s_k , 初始状态 $s_1=10$ 。
- 回 确定决策变量: 通常可以把决策变量 u_k 定为原静态问题中的变量 x_k ,即设 $u_k = x_k \; (k=1,2,3)$ 。

■ 动态规划建模举例

© 写出状态转移方程: 记 u_1 为可分配用于第一种项目的最大资金,则当第一阶段 (k=1) 时,有

$$\begin{cases} s_1 = 10 \\ u_1 = x_1 \end{cases}$$

当第二阶段 (k=2) 时,状态变量 s_2 为可投资余下两个项目的资金,即

$$\begin{cases} s_2 = s_1 - u_1 \\ u_2 = x_2 \end{cases}$$

□ 一般地, 当第 k 阶段时

$$\begin{cases} s_k = s_{k-1} - u_{k-1} \\ u_k = x_k \end{cases}$$

■ 动态规划建模举例

- □ 阶段: k = 1, 2, 3
- \square 状态变量: s_k 表示第 k 段可以投资于第 k 项到第 3 个项目的资金
- □ 决策变量: x_k 表示决定给第 k 个项目投资的资金
- □ 状态转移方程: $s_{k+1} = s_k x_k$
- \square 指标函数: $V_{k,3} = \sum_{i=k}^{3} g_i(x_i)$
- $\ \square \$ 最优指标函数: $f_k(s_k)$ 表示当可投资金为 s_k 时,投资第 k 个至第 3 个项目所得的最大收益
- □ 基本方程:

$$\begin{cases} f_k(s_k) = \max_{0 \le x_k \le s_k} \{g_k(x_k) + f_{k+1}(s_{k+1})\}, \ k = 3, 2, 1 \\ f_4(s_4) = 0 \end{cases}$$

用动态规划方法逐段求解,便可得各项目最佳投资金额, $f_1(10)$ 就是所求的最大收益

■ 动态规划建模步骤

- □ 第一步: 划分阶段
 - 分析题意,识别问题的多阶段特性,按时间或空间的先后顺序适当地划分为满足递推关系的若干阶段,对非时序的静态问题要人为地赋予"时段"概念。

□ 第二步: 正确选择状态变量

- 状态变量 s_k 首先应描述研究过程的演变特征,其次应包含到达这个状态前的足够信息并具有无后效性,即到达这个状态前的过程的决策将不影响到该状态以后的决策。
- 状态变量应具有可知性,即规定的状态变量之值可通过直接或间接的方法测知。
- 状态变量可以是离散的,也可以是连续的。
- 建模时,一般从与决策有关的条件中,或者从问题的约束条件中去寻找状态变量,通常选择随 递推过程累计的量或者按某种规律变化的量作为状态变量。

- 动态规划建模步骤
 - □ 第三步: 写出状态转移方程
 - 决策变量 u_k 是对过程进行控制的手段,复杂问题中决策变量可以是多维的向量,它的取值可能离散,也可能连续。
 - 每阶段的允许决策集合相当于线性规划问题中的约束条件。
 - 写出状态转移方程 $s_{k+1} = T(s_k, u_k)$ 。
 - □ 第四步: 确定基本方程
 - 指标函数 V_{k,n}
 - 最优指标函数 $f_k(s_k)$
 - 阶段指标 d(sk, uk)
 - 列出最优指标函数的递推关系及边界条件(即基本方程)

■ 逆序解法

- □ 寻优的方向与多阶段决策过程的实际行进方向<mark>相反</mark>,从最后一段开始计算逐段前推,求 得全过程的最优策略,称为<mark>逆序解法</mark>。
- ② 设已知初始状态为 s_1 ,并假定最优值函数 $f_k(s_k)$ 表示第 k 阶段的初始状态为 s_k ,从 k 阶段到 n 阶段所得到的最大效益。
- □ 从第 n 阶段开始,则有

$$f_n(s_n) = \max_{u_n \in D_n(s_n)} d_n(s_n, u_n)$$

其中 $D_n(s_n)$ 表示状态 s_n 所确定的第 n 阶段的允许决策集合。解此一维极值问题,就得到最优解 $u_n=u_n(s_n)$ 和最优值 $f_n(s_n)$ 。

■ 逆序解法

 \square 在第 n-1 阶段,有

$$f_{n-1}(s_{n-1}) = \max_{u_{n-1} \in D_{n-1}(s_{n-1})} [d_{n-1}(s_{n-1}, u_{n-1}) * f_n(s_n)]$$

其中, $s_n = T_{n-1}(s_{n-1}, u_{n-1})$ 。解此一维极值问题,就得到最优解 $u_{n-1} = u_{n-1}(s_{n-1})$ 和最优值 $f_{n-1}(s_{n-1})$ 。这里 * 表示 + 和 ×。

□ 在第 k 阶段,有

$$f_k(s_k) = \max_{u_k \in D_k(s_k)} \left[d_k(s_k, u_k) * f_{k+1}(s_{k+1}) \right]$$

其中, $s_{k+1}=T_k(s_k,u_k)$ 。解此一维极值问题,得到最优解 $u_k=u_k(s_k)$ 和最优值 $f_k(s_k)$ 。

■ 逆序解法

□ 如此类推,直到第1阶段,有

$$f_1(s_1) = \max_{u_1 \in D_1(s_1)} [d_1(s_1, u_1) * f_2(s_2)]$$

其中, $s_2 = T_1(s_1, u_1)$ 。 通过计算得到最优解 $u_1 = u_1(s_1)$ 和最优值 $f_1(s_1)$ 。

 \square 由于 s_1 已知,那么 $u_1=u_1(s_1)$ 和 $f_1(s_1)$ 是确定的,从而 $s_2=T_1(s_1,u_1)$ 也可确定,依 此类推就可逐步确定出每阶段的决策及效益。

■ 例 2

□ 用逆序解法求解问题

max
$$z = x_1 \cdot x_2^2 \cdot x_3$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 = c \ (c > 0) \\ x_i \ge 0 \ (i = 1, 2, 3) \end{cases}$$

- 按问题的变量个数划分阶段,看作一个三阶段决策问题。
- \Box 设状态变量为 s_1, s_2, s_3, s_4 , 并记 $s_1 = c_0$
- \square 取问题中的变量为决策变量 x_1, x_2, x_3 , 各阶段指标函数按乘积方式结合。

■ 例 2

- □ 状态变量: s_1, s_2, s_3, s_4
- □ 决策变量: x₁,x₂,x₃
- \square 阶段指标函数: $d_k(s_k, u_k), x_1, x_2^2, x_3$
- \Box 过程指标函数: $V_{1,3} = x_1 \times x_2^2 \times x_3$
- ② 分析: 设 $s_3=x_3$, $s_3+x_2=s_2$, $s_2+x_1=s_1=c$, 于是有 $s_3=x_3$, $0 \le x_2 \le s_2$, $0 \le x_1 \le s_1=c$ 。采用逆序解法,从后向前依次有

$$f_3(s_3) = \max_{x_3 \in D_3(s_3)} d_3(s_3, u_3) = \max(x_3) = s_3$$

及最优解 $x_3^* = s_3$

■ 例 2

🛛 (续)

$$f_2(s_2) = \max_{x_2 \in D_2(s_2)} [d_2(s_2, u_2) \cdot f_3(s_3)]$$

$$= \max_{0 \le x_2 \le s_2} [x_2^2 \cdot f_3(s_3)]$$

$$= \max_{0 \le x_2 \le s_2} [x_2^2 \cdot (s_2 - x_2)]$$

$$= \max_{0 \le x_2 \le s_2} h_2(s_2, x_2)$$
由 $\frac{dh_2}{dx_2} = 2x_2s_2 - 3x_2^2 = 0$ 得 $x_2 = \frac{2}{3}s_2$, $x_2 = 0$ (舍去)。

又
$$\frac{d^2h_2}{dx_2^2}=2s_2-6x_2$$
,而 $\frac{d_2^h}{dx_2^2}\mid_{x_2=\frac{2}{3}s_2}=-2s_2<0$,故 $x_2=\frac{2}{3}s_2$ 为极大值点,所以

$$f_2(s_2) = \frac{4}{27}s_2^3, \ x_2^* = \frac{2}{3}s_2$$

■ 例 2

□ (续)

$$f_1(s_1) = \max_{x_1 \in D_1(s_1)} [d_1(s_1, u_1) \cdot f_2(s_2)]$$

$$= \max_{0 \le x_1 \le s_1} [x_1 \cdot f_2(s_2)]$$

$$= \max_{0 \le x_1 \le s_1} [x_1 \cdot \frac{4}{27}(s_1 - x_1)^3]$$

$$= \max_{0 \le x_1 \le s_1} h_1(s_1, x_1)$$

同理, 利用微分法易知

$$f_1(s_1) = \frac{1}{64}s_1^4, \ x_1^* = \frac{1}{4}s_1$$

- 例 2
 - \square (续) 由于已知 $s_1 = c$,故按计算的顺序反推可得

$$x_1^* = \frac{1}{4}s_1, \ f_1(c) = \frac{1}{64}c^4$$

$$x_2^* = \frac{2}{3}s_2 = \frac{1}{2}c, \ f_2(s_2) = \frac{1}{16}c^3$$

$$x_3^* = \frac{1}{4}c, \ f_3(s_3) = \frac{1}{4}c$$

因此,目标函数的最大值为 $f_1(c)=rac{1}{64}c^4$

■顺序解法

- □ 寻优的方向与多阶段决策过程的实际行进方向相同,从问题的第 1 阶段开始逐段向后递推,计算后一阶段要用到前一阶段的求优结果,最后一段计算的结果就是全过程的最优结果,称为顺序解法。
- □ 已知终止状态用顺序解法与已知初始状态用逆序解法在本质上没有区别。它相当于把实际的起点视为终点,实际的终点视为起点,按逆序解法进行。

■顺序解法

 $\ lue{}$ 将逆序解法时的 n 阶段决策过程的箭头倒转过来即可,将 s_{k+1} 看作输入,将 s_k 看作输出。

- $\ \ \square$ 此时状态变换是逆序解法时的逆变换,记为 $s_k=T_k(s_{k+1},u_k)$,即由 s_{k+1} 和 u_k 确定 s_k 。
- ② 设已知终止状态为 s_{n+1} ,并假定最优值函数 $f_k(s)$ 表示第 k 阶段末的结束状态为 s,从 1 阶段到 k 阶段所得到的最大效益。

■ 顺序解法

□ 从第 1 阶段开始,则有

$$f_1(s_2) = \max_{u_1 \in D_1(s_1)} d_1(s_1, u_1)$$

其中 $s_1 = T_1(s_2, u_1)$, 得到最优解 $u_1 = u_1(s_2)$ 和最优值 $f_1(s_2)$ 。

□ 在第2阶段,有

$$f_2(s_3) = \max_{u_2 \in D_2(s_2)} [d_2(s_2, u_2) * f_1(s_2)]$$

其中 $s_2 = T_2(s_3, u_2)$, 得到最优解 $u_2 = u_2(s_3)$ 和最优值 $f_2(s_3)$ 。

□ 如此类推,直到第 n 阶段,有

$$f_n(s_{n+1}) = \max_{u_n \in D_n(s_n)} \left[d_n(s_n, u_n) * f_{n-1}(s_n) \right]$$

其中 $s_n = T_n(s_{n+1}, u_n)$, 得到最优解 $u_n = u_n(s_{n+1})$ 和最优值 $f_n(s_{n+1})$ 。

flue 由于终止状态 s_{n+1} 已知,故 $u_n=u_n(s_{n+1})$ 和 $f_n(s_{n+1})$ 是确定的。按过程的相反顺序推算下去,就可逐步求出每段的决策及效益。

- 例 2
 - □ 用顺序解法求解下面问题

max
$$z = x_1 \cdot x_2^2 \cdot x_3$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 = c \ (c > 0) \\ x_i \ge 0 \ (i = 1, 2, 3) \end{cases}$$

- □ 状态变量: s_1, s_2, s_3, s_4
- □ 决策变量: x₁, x₂, x₃
- □ 阶段指标函数: $d_k(s_k, u_k), x_1, x_2^2, x_3$
- \square 过程指标函数: $V_{1,3} = x_1 \times x_2^2 \times x_3$

■ 例 2

 \bigcirc 分析: 设 $s_4=c$, 令最优值函数值 $f_k(s_{k+1})$ 表示第 k 阶段末的结束状态为 s_{k+1} , 从 1 阶段到 k 阶段的最大值。设 $s_3+x_3=s_4=c$, $s_2+x_2=s_3$, $s_2=x_1$ 。状态转移方程为 $s_k=T_k(s_{k+1},u_k)$,有

$$s_2 = x_1, \ 0 \le x_2 \le s_3, \ 0 \le x_3 \le s_4 = c$$

- □ 用顺序解法,从前向后依次有
 - $f_1(s_2) = \max_{x_1 = s_2} (x_1) = s_2$, 最优解 $x_1^* = s_2$
 - $f_2(s_3) = \max_{0 \le x_2 \le s_3} [x_2^2 \cdot f_1(s_2)] = \frac{4}{27} s_3^3$, 最优解 $x_2^* = \frac{2}{3} s_3$
 - $f_3(s_4) = \max_{0 \le x_3 \le s_4} [x_3 \cdot f_2(s_3)] = \frac{1}{64} s_4^4$, 最优解 $x_3^* = \frac{1}{4} s_4$
- 回 由于已知 $s_4=c$,故可得最优解 $x_1^*=\frac{1}{4}c$, $x_2^*=\frac{1}{2}c$, $x_3^*=\frac{1}{4}c$,相应的最大值为 $\max z=\frac{1}{64}c^4$ 。

■ 逆序与顺序解法的区别

- □ 状态转移方式不同
 - 逆序解法: 状态 s_k 到 s_{k+1} 的状态转移方程为 $s_{k+1} = T_k(s_k, u_k)$

• 顺序解法: 状态 s_{k+1} 到 s_k 的状态转移方程为 $s_k = T_k(s_{k+1}, u_k)$

- 逆序与顺序解法的区别
 - □ 指标函数的定义不同
 - 逆序解法: 定义最优指标函数 $f_k(s_k)$ 表示第 k 段从状态 s_k 出发,到终点后部子过程最优效益值, $f_1(s_1)$ 是整体最优函数值。
 - 顺序解法: 定义最优指标函数 $f_k(s_{k+1})$ 表示第 k 段从起点到状态 s_{k+1} 的前部子过程最优效益值, $f_n(s_{n+1})$ 是整体最优函数值。

- 逆序与顺序解法的区别
 - □ 基本方程形式不同——当指标函数为阶段指标和形式
 - 在逆序解法中, $v_{k,n} = \sum\limits_{j=k}^n v_j(s_j,u_j)$, 则基本方程为

$$\begin{cases} f_k(s_k) = \underset{u_k \in D_k}{\text{opt}} & \{v_k(s_k, u_k) + f_{k+1}(s_{k+1})\} \ (k = n, \dots, 1) \\ f_{n+1}(s_{n+1}) = 0 \end{cases}$$

• 在顺序解法中, $v_{1,k}=\sum\limits_{j=1}^k v_j(s_{j+1},u_j)$,基本方程为

$$\begin{cases} f_k(s_{k+1}) = \underset{u_k \in D_k}{\text{opt}} \ \{v_k(s_{k+1}, u_k) + f_{k-1}(s_k)\} \ (k = 1, \dots, n) \\ f_0(s_1) = 0 \end{cases}$$

- 逆序与顺序解法的区别
 - □ 基本方程形式不同——当指标函数为阶段指标积形式
 - 在逆序解法中, $v_{k,n}=\prod_{j=k}^n v_j(s_j,u_j)$,则基本方程为 $\begin{cases} f_k(s_k)= \underset{u_k\in D_k}{\mathrm{opt}} \ \{v_k(s_k,u_k)\cdot f_{k+1}(s_{k+1})\}\ (k=n,\dots,1) \\ f_{n+1}(s_{n+1})=1 \end{cases}$

• 在顺序解法中,
$$v_{1,k} = \prod\limits_{j=1}^k v_j(s_{j+1},u_j)$$
, 基本方程为

$$\begin{cases} f_k(s_{k+1}) = \underset{u_k \in D_k}{\text{opt}} & \{v_k(s_{k+1}, u_k) \cdot f_{k-1}(s_k)\} \ (k = 1, \dots, n) \\ f_0(s_1) = 1 \end{cases}$$

■ 课堂练习 1

 $\ \square$ 某公司有资金 10 万元, 若投资于项目 i (i=1,2,3) 的投资额为 x_i (i=1,2,3) 时,其收益分别为

$$g_1(x_1) = 4x_1, \ g_2(x_2) = 9x_2, \ g_3(x_3) = 2x_3^2$$

问应如何分配投资数额才能使总收益最大?

■ 课堂练习 1——逆序解法

$$f_2(s_2) = \max_{0 \le x_2 \le s_2} [9x_2 + f_3(s_3)]$$

$$= \max_{0 \le x_2 \le s_2} [9x_2 + 2(s_2 - x_2)^2]$$

$$= \max_{0 \le x_2 \le s_2} h_2(s_2, x_2)$$

由 $\frac{dh_2}{dx_2}=9-4(s_2-x_2)=0$ 得 $x_2=s_2-\frac{9}{4}$ 。又 $\frac{d^2h_2}{dx_2^2}=4>0$,故 $x_2=s_2-\frac{9}{4}$ 为极小值点。

极大值只可能在 $[0,s_2]$ 端点取得: $f_2(0)=2s_2^2$, $f_2(s_2)=9s_2$

- $extbf{y}$ $f_2(0) = f_2(s_2)$ 时, 解得 $s_2 = \frac{9}{2}$.
- 当 $s_2 > \frac{9}{2}$, $f_2(0) > f_2(s_2)$, 此时 $x_2^* = 0$; $s_2 < \frac{9}{2}$, $f_2(0) < f_2(s_2)$, 此时 $x_2^* = s_2$ 。

■ 课堂练习 1——逆序解法

$$f_1(s_1) = \max_{0 \le x_1 \le s_1} [4x_1 + f_2(s_2)]$$

$$f_1(10) = \max_{0 \le x_1 \le 10} [4x_1 + 9(s_1 - x_1)]$$
$$= \max_{0 \le x_1 \le s_1} [9s_1 - 5x_1]$$

易知,
$$x_1^*=0$$
, $f_1(s_1)=9s_1$ 。
但此时 $s_2=s_1-x_1=10-0=10>\frac{9}{2}$,与 $s_2<\frac{9}{2}$ 矛盾,所以舍去。

- 课堂练习 1 一一 逆序解法

$$f_1(10) = \max_{0 \le x_1 \le 10} [4x_1 + 2(s_1 - x_1)^2]$$
$$= \max_{0 \le x_1 \le 10} h_1(s_1, x_1)$$

由
$$\frac{dh_1}{dx_1} = 4x_1 + 4(s_1 - x_1)(-1) = 0$$
, 解得 $x_1 = s_1 - 1$, 而 $\frac{d^2h_1}{dx_1^2} = 1 > 0$, 所以 $x_1 = s_1 - 1$ 是极小点。

- 比较 [0,10] 两个端点, $x_1 = 0$, $f_1(0) = 200$; $x_1 = 10$, $f_1(10) = 40$, 所以 $x_1^* = 0$ 。
- 回 再由状态转移方程顺推 $s_2=s_1-x_1^*=10-0=10$,因为 $s_2>\frac{9}{2}$,所以 $x_2^*=0$, $s_3=s_2-x_2^*=10-0=10$,于是 $x_3^*=s_3=10$ 。
- □ 最优投资方案为全部资金投于第 3 个项目,可得最大收益 200 万元。

■ 课堂练习 1 ──顺序解法

 $\ \square$ 阶段划分和决策变量的设置同逆序解法,令状态变量 s_{k+1} 表示可用于第 1 到第 k 个项目投资的金额,则有

$$s_4 = 10, \ s_3 = s_4 - x_3, \ s_2 = s_3 - x_2, \ s_1 = s_2 - x_1$$

即态转移方程为 $s_k = s_{k+1} - x_k$ 。

② 令最优指标函数 $f_k(s_{k+1})$ 表示第 k 段投资额为 s_{k+1} 时第 1 到第 k 个项目所获得的最大收益。此时顺序解法的基本方程为

$$\begin{cases} f_k(s_{k+1}) = \max_{0 \le x_k \le s_{k+1}} [g_k(s_k) + f_{k-1}(s_k)] & (k = 1, 2, 3) \\ f_0(s_1) = 0 & \end{cases}$$

■ 课堂练习 1 ──顺序解法

$$f_1(s_2) = \max_{0 \le x_1 \le s_2} [g_k(x_1) + f_{k-1}(s_k)]$$

$$= \max_{0 \le x_1 \le s_2} [4x_1]$$

$$= 4s_2$$

最优解 $x_1^* = s_2$

$$\square$$
 当 $k=2$ 时,有

$$f_2(s_3) = \max_{0 \le x_2 \le s_3} [9x_2 + f_1(s_2)]$$

$$= \max_{0 \le x_2 \le s_3} [9x_2 + 4(s_3 - x_2)]$$

$$= \max_{0 \le x_2 \le s_3} [5x_2 + 4s_3]$$

$$= 9s_3$$

最优解 $x_2^* = s_3$

- 课堂练习 1 ──顺序解法
 - \square 当 k=3 时,有

$$f_3(s_4) = \max_{0 \le x_3 \le s_4} [2x_3^2 + f_2(s_3)]$$

$$= \max_{0 \le x_3 \le s_4} [2x_3^2 + 9(s_4 - s_3)]$$

$$= \max_{0 \le x_3 \le s_4} h(s_4, x_3)$$

由
$$\frac{dh}{dx_3} = 4x_3 - 9 = 0$$
 得 $x_3 = \frac{9}{4}$ 。

又
$$\frac{d^2h}{dx_2^2} = 4 > 0$$
,故 $x_3 = \frac{9}{4}$ 为极小值点。

极大值只可能在 $[0, s_4]$ 端点取得: $x_3 = 0, f_3(0) = 90, x_3 = 10, f_3(10) = 200$,所以 $x_3^* = 10$ 。

- 课堂练习 1 ----顺序解法
 - □ 再由状态转移方程逆推

•
$$s_3 = x_1^* = 10 - x_3^* = 0, \ x_2^* = 0$$

- $s_2 = s_3 x_2^* = 0$, $x_1^* = 0$
- □ 优投资方案为全部资金投于第 3 个项目,可得最大收益 200 万元。
- □ 与逆序解法结果相同,但解法简单 (为什么)。

- 课堂练习 2
 - □ 用动态规划方法解下面问题

max
$$z = 4x_1 - x_2^2 + 2x_3^2 + 12$$

s.t.
$$\begin{cases} 3x_1 + 2x_2 + x_3 \le 9 \\ x_i \ge 0 \ (i = 1, 2, 3) \end{cases}$$

■小结

- □ 动态规划建模步骤
 - 划分阶段
 - 选择状态变量
 - 写出状态转移方程
 - 确定基本方程
- □ 动态规划基本解法
 - 逆序解法
 - 顺序解法
- □ 逆序解法和顺序解法的区别
 - 状态转移方式不同
 - 指标函数的定义不同
 - 基本方程形式不同
- 课后作业: P219, 习题 7.8

Outline

1. 多阶段决策过程的最优化

2. 动态规划的基本概念和基本原理

3. 动态规划模型的建立与求解

4. 动态规划在经济管理中的应用

■ 背包问题

- \Box 一位旅行者携带背包去登山,已知他所能承受的背包重量限度为 a_{kg} ,现有 n 种可供他选择背入背包,第 i 种物品的单件重量为 a_i kg,其价值 (可以是表明本物品对登山的重要性的数量指标) 是携带数量 x_i 的函数 $c_i(x_i)$ (i=1,2,,n)。问旅行者应如何选择携带各种物品的件数,以使总价值最大?
- $lue{}$ 设 x_i 为第 i 种物品装入的件数,则背包问题可归结为如下形式的整数规划模型

max
$$z = \sum_{i=1}^{n} c_i(x_i)$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} a_i x_i \le a \\ x_i \ge 0 \text{ 且为整数 } (i = 1, \dots, n) \end{cases}$$

■ 动态规划顺序解法

- © 阶段: 将可装入物品按 $1, \ldots, n$ 排序, 每段装一种物品, 共划分为 n 个阶段, 即 $k=1,\ldots,n$
- \square 状态变量: 在第 k 段开始时,背包中允许装入前 k 种物品的总重量为 s_{k+1}
- \square 决策变量: 装入第 k 种物品的件数, 记 x_k
- \square 状态转移方程: $s_k = s_{k+1} a_k x_k$
- ① 允许决策集合: $D_k(s_{k+1}) = \{x_k \mid 0 \le x_k \le [s_{k+1}/a_k], x_k$ 为整数}
- $lacksymbol{\Box}$ 最优指标函数: 表示在背包中允许装入物品的总重量不超过 s_{k+1} kg,采用最优策略只装前 k 种物品时的最大使用价值,记 $f_k(s_{k+1})$

- 动态规划顺序解法
 - □ 顺序递推方程

$$\begin{cases} f_k(s_{k+1}) = \max_{x_k = 0, 1, \dots, [s_{k+1}/a_k]} \{c_k(x_k) + f_{k-1}(s_{k+1} - a_k x_k)\} \\ f_0(s_1) = 0 \end{cases}$$

- \square 用前向动态规划方法逐步计算出 $f_1(s_2), f_2(s_3), \ldots, f_n(s_{n+1})$ 及相应的决策函数 $x_1(s_1), x_2(s_3), \ldots, x_n(s_{n+1})$,最后得到的 $f_n(a)$ 即为所求的最大价值,相应的最优策略则由反推计算得出。
- \square 当 x_i 仅表示装入 (取 1) 和不装 (取 0) 第 i 种物品,则本模型就是 0-1 背包问题。

■ 例 1

□ 有一辆最大货运量为 10t 的卡车,用以装载 3 种货物,每种货物的单位重量及相应单位价值如下。应如何装载可使总价值最大?

货物编号 i	1	2	3
单位重量 $(t)(a_i)$	3	4	5
单位价值 c_i	4	5	6

② 设第 i 种货物装载的件数为 x_i (i = 1, 2, 3), 则问题可表为

max
$$z = 4x_1 + 5x_2 + 6x_3$$

s.t.
$$\begin{cases} 3x_1 + 4x_2 + 5x_3 \le 10 \\ x_1, x_2, x_3 \ge 0$$
且为整数

- 例 1
 - \square 当 k=1 时,有

$$f_1(s_2) = \max_{0 \le 3x_1 \le s_2, \ x_1 \text{ pressure}} \{4x_1\}$$

或

$$f_1(s_2) = \max_{0 \le x_1 \le s_2/3, \ x_1 \text{ number } \{4x_1\} = 4[s_2/3]$$

s_2	0	1	2 3	4	5	6	7	8	9	10
$f_1(s_2)$	0	0	0 4	4	4	8	8	8	12	12
x_1^*	0	0	0 1	1	1	2	2	2	3	3

■ 例 1

 \square 当 k=2 时,有

$$f_2(s_3) = \max_{0 < 4x_2 < s_2, x_2, y_2 \notin \S} \{5x_2 + f_1(s_3 - 4x_2)\}$$

或

$$f_2(s_3) = \max_{0 \le x_2 \le s_3/4, \ x_2 \ne 2} \{5x_2 + f_1(s_3 - 4x_2)\}$$

$s_2 0 1 2 3 $	4 5 6 7 8	9 10
$x_2 0 0 0 0 $	01 01 01 01 012	012 012
	45 45 85 89 8910	12 9 10 12 13 10
$f_2(s_3) \mid 0 \mid 0 \mid 0 \mid 4 \mid$	5 5 8 9 10	12 13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 0 1 2	0 1

- 例 1
 - \square 当 k=3 时,有

$$f_3(s_4) = \max_{0 \le x_3 \le [s_4/5]} \{6x_3 + f_2(s_4 - 5x_3)\}$$

$$= \max_{x_3 = 0, 1, 2} \{3x_3 + f_2(10 - 5x_3)\}$$

$$= \max \{f_2(10), 6 + f_2(5), 12 + f_2(0)\}$$

$$= \max \{13, 6 + 5, 12 + 0\}$$

$$= 13$$

- □ 最大价值为 13

- 小结
 - □ 背包问题
 - □ 生产经营问题
 - □ 设备更新问题
 - □ 复合系统工作可靠性问题
 - □ 货郎担问题
- 马氏决策规划

Q&A

Thank you!

感谢您的聆听和反馈