Билеты к экзамену по курсу «Математические методы аналитической механики» (ФПМИ)

ТеХ:Астафуров Евгений

2 июня 2020 г.

Содержание

1	Постулаты классической механики. Понятие силы. Инерциальные системы отсчета и законы Ньтона. Группа преобразований Галилея, инвариантность уравнений механики.	4
	1.1 Постулаты и аксиомы классической механики	4
	1.2 Законы Ньютона. Инерциальные CO	4
	1.3 Группа преобразований Галилея. Инвариантность уравнений механики	4
2	Кинематика точки. Траектория, скорости и ускорение точки. Скорость и ускорение точки	
	в полярных координатах (с испольованием комплекснозначных функций).	5
	2.1 Траектория, скорость и ускорение	5
	2.2 Скорость и ускорение точки в полярных координатах	5
3	Кинематика точки. Естественный трёхгранник. Теорема Гюйгенса о разложении ускорения точки. Уравнения Френе-Серре.	6
	3.1 Естественный трехгранник	6
	3.2 Теорема Гюйгенса и разложении ускорения точки	6
	3.3 Уравнения Френе-Серре	6
4	Криволинейные координаты точки. Коэффициенты Ламе. Скорость и ускорение точки в	
	криволинейных координатах. Скорость точки в цилиндрических координатах.	8
	4.1 Криволинейные координаты точки	8
	4.2 Коэффициенты Ламе	8
	4.3 Скорость и ускорение точки в криволинейных координатах	8
	4.4 Скорость и ускорение точки в циллиндрических координатах	Ĝ
5	Угловая скорость и угловое ускорение твёрдого тела. Скорости и ускорения точек твёрдого	
	тела в общем случае его движения (формулы Эйлера и Ривальса).	10
	5.1 Кинематика твердого тела	10
	5.2 Углы конечного вращения. Углы Эйлера	10
	5.3 Векторно-матричное задание движения ТТ	10
	5.4 Угловая ускорость и угловое ускорение ТТ. Формулы Эйлера и Ривальса	11
6	Комплексная форма описания плоско-параллельного движения точки и твёрдого тела. Мгно-	
	венные центры скоростей и ускорений.	12
	6.1 Комплексная форма описания плоско-параллельного движения точки и твёрдого тела	12

7	Понятие гиперкомплексной числовой системы. Алгебра кватернионов. Кватернионный спо-			
	соб задания ориентации твёрдого тела. Теорема Эйлера о конечном повороте.	13		
	7.1 Алгебра кватернионов	13		
	7.2 Кватернионный способ задания ориентации TT	14		
	7.3 Теорема Эйлера о конечном повороте тела с неподвижной точкой	14		
8	Формулы сложения поворотов твёрдого тела в кватернионах. Параметры Родрига-Гамильтона.			
	Теорема Эйлера о конечном повороте твёрдого тела с неподвижной точкой.	15		
	8.1 Формулы сложения поворотов твердого тела в кватернионах	15		
	8.2 Параметры Родрига-Гамильтона	15		
9	Кинематические уравнения вращательного движения твёрдого тела в кватернионах (урав-			
	нения Пуассона). Прецессионное движение твёрдого тела.	16		
	9.1 Уравнения Пуассона	16		
	9.2 Прецессионное движение твердого тела	16		
10	Кинематические инварианты. Кинематический винт. Мгновенная винтовая ось. Представ-			
	ление винтового движения твёрдого тела с помощью дуальных чисел.	17		
	10.1 Кинематические инварианты	17		
	10.2 Дуальные числа и их свойства	17		
	10.3 Описание винтового движения	17		
11	Несвободные системы. Связи и их классификация. Возможные, действительные и виртуальные перемещения точек системы. Число степеней свободы системы. Теорема Фробениуса о голономности дифференциальной связи в \mathbb{R}^3 (только формулировка). 11.1 Несвободные системы. Связи и их классификация			
	11.2 Возможные, действительные и виртуальные перемещения точек системы	19		
	11.3 Число степеней свободы системы	19		
	11.4 Теорема Фробениуса о голономности дифференциальной связи в \mathbb{R}^3	19		
12	Элементарная работа сил системы в обобщенных координатах. Обобщенные силы и их вы-			
	числение. Случай потенциального поля сил.	2 0		
	12.1 Силовое поле. Силовая функция. Потенциал	20		
	12.2 Элементарная работа сил в обобщенных координатах. Обобщенные силы	20		
	12.3 Случай потенциального поля сил	21		
13	Голономные связи. Достаточное условие голономности дифференциальной связи. Идеальные связи. Уравнения Лагранжа голономной системы с идеальными связями и их свойства: ковариантность, невырожденность. 13.1 Уравнения Лагранжа для голономной системы			
	13.2 Ковариантность уравнений Лагранжа	24		
	13.3 Анализ выражения кинетической энергии системы как функции обобщённых скоростей	24		
	13.4 Преобразование Функции Лагранжа	$\frac{25}{25}$		
14	Уравнения Лагранжа второго рода в случае потенциальных сил. Функция Лагранжа и её	3		
	преобразование. Циклические координаты и первые интегралы.	26		
	14.1 Уравнения Лагранжа второго рода в случае потенциальных сил	26		
	14.2 Функция Лагранжа	26		
	14.3 Преобразование функции Лагранжа	26		
	14.4 Циклические координаты	26		
	14.5 Понятие первого интеграла	26		
15	Натуральные и ненатуральные системы. Анализ выражения кинетической энергии систе-			
	мы как функции обобщённых скоростей. Разрешимость уравнений Лагранжа относительно)		
	обобщенных ускорений.	27		
	15.1 Натуральные механические системы	27		
	15.2~ Анализ выражения кинетической энергии системы как функции обобщенных скоростей	27		
	15.3 Разрешимость уравнений Лагранжа относительно обобщенных ускорений	27		

16	Теорема об изменении полной механической энергии голономной системы. Интеграл энер-	
	гии, консервативные системы. Гироскопические силы. Диссипативные силы, функция Рэ-	•
		28
	16.1 Теорема об изменении полной механической энергии голономной системы	28
	16.2 Консервативные системы. Интеграл энергии	28
	16.3 Гироскопические силы	28
		28
	16.5 Функция Релея	29
17	Движение материальной точки в центральном поле. Интеграл площадей; второй закон Кеплера. Уравнение Бине.	30
		30
	17.1 Эадача двух 1ел	30
18	Движение точки в поле всемирного тяготения: уравнение орбиты, зако- ны Кеплера. Инте-	
		31
19	Момент инерции системы относительно оси. Матрица тензора инерции. Эллипсоид инерции. Главные оси и главные моменты инерции. Преобразование матрицы тензора инерции при параллельном переносе осей и ортогональном преобразовании. Свойства осевых моментов инерции.	32
20	Кинетический момент и кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной точки или вокруг неподвижной оси. Кинетический момент и кинетическая энергия	
	твёрдого тела при его произвольном движении.	33

Страница 4 Билеты ММАМ

1 Постулаты классической механики. Понятие силы. Инерциальные системы отсчёта и законы Ньтона. Группа преобразований Галилея, инвариантность уравнений механики.

1.1 Постулаты и аксиомы классической механики

- 1. Первая группа аксиом, определяющих поведение объектов (точки, прямые, плоскости) целиком задействована из Евклидовой геометрии.
- 2. Объекты в \mathbb{E}^3 полагаются зависящими от времени; отображение $\mathbb{R} \to \mathbb{E}^3$ называется движением.
- 3. Материальная точка геометрическая точка, которой поставлена в соответствие величина m, называемая массой (масса полагается независящей ни от времени, ни от положения в пространстве). Материальная точка однохначно задается парой \mathbf{r}, m , где \mathbf{r} вектор в евклидовом пространстве, отнесенный к какой либо декартовой системе координат.
- 4. Каждой паре материальных точек может быть поставлена пара векторов $\mathbf{F}_1, \mathbf{F}_2$ (называемых *силами*), причем эти векторы удовлетворяют соотношению $\mathbf{F}_1 = -\mathbf{F}_2$ и $\mathbf{F}_1 \parallel (\mathbf{r}_1 \mathbf{r}_2)$.

1.2 Законы Ньютона. Инерциальные СО

Перечислим три закона Ньютона:

- 1. Существуют инерциальные СО.
- 2. Существуют СО, в которых выполнено

$$m\ddot{\mathbf{r}} = \mathbf{F},$$

причем такие СО называются инерциальными.

3. В инерциальной СО, если равнодействующая сил на материальную точку равна нулю, то данная материальноя точка движется равномерно и прямолинейно.

1.3 Группа преобразований Галилея. Инвариантность уравнений механики

Определение 1. Π *ринцип относительности Галилея* — все уравнения и законы механики не зависят от выбора инерциальной системы отсчета.

Определение 2. Преобразования, осуществляющие переход от одной инерциальной СО к другой, носят названия преобразований Галилея и могут быть записаны в следующем виде: $\{t, \mathbf{r}\} \to \{t', \mathbf{r}'\}: \begin{cases} t' = t + \tau \\ \mathbf{r}' = \mathbf{r}_o + \mathbf{v}t + A\mathbf{r} \end{cases}$ где постоянные \mathbf{r}_o и τ характеризуют смещение начала отсчета координат и времени, а постоянная \mathbf{v} характеризует равномерное и прямолинейное движение новой СО относительно старой, матрица A — матрица поворота осей новой системы координат относительно старой. Совокупность этих независимых коэффициентов представляет собой spynny преобразований s

Утверждение 1. Законы классической механики инвариантны относительно группы преобразований Галилея.

Страница 5 Билеты ММАМ

2 Кинематика точки. Траектория, скорости и ускорение точки. Скорость и ускорение точки в полярных координатах (с испольованием комплекснозначных функций).

2.1Траектория, скорость и ускорение

Определение 3. Движение материальной точки задается явной функцией от времени $\mathbf{r}(t)$, что эквивалентно заданию трех скалярных функций x(t), y(t), z(t) при рассмотрении в базисе i, j, k:

$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k},$$

причем кривая, которую описывает $\mathbf{r}(t)$ называется траекторией точки.

Определение 4. *Скоростью* материальной точки называется вектор $\mathbf{v} = \dot{\mathbf{r}}.$

Определение 5. Ускорением материальной точки называется величина $\mathbf{w} = \ddot{\mathbf{r}}$. Модуль усокрения $w = |\mathbf{w}| =$ $\sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2}$, а направление задается косинусами:

$$\cos(\mathbf{w}, \mathbf{i}) = \frac{\ddot{x}}{w}, \quad \cos(\mathbf{w}, \mathbf{j}) = \frac{\ddot{y}}{w}, \quad \cos(\mathbf{w}, \mathbf{k}) = \frac{\ddot{z}}{w}.$$

Скорость и ускорение точки в полярных координатах

Помимо декартовых координа x(t), y(t), движение может быть задано в полярных координатах (Рис. 1): пусть заданы функции r=r(t) и $\varphi=\varphi(t)$, найдем скорость и ускорение точки P.

Определение 6. Радиальной осью называется ось, направленная вдоль радиусвектора \mathbf{r} .

Определение 7. Трансверсальной осью называется ось, направленная вдоль единичного вектора \mathbf{e}_{φ} , который образован поворотом на $\pi/2$ против часовой стрелки вектора \mathbf{e}_r .

Рис. 1: Движение в поляр-

Так как
$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}$$
, в системе координат Oxy имеем:
$$\begin{cases} \mathbf{v} = (\dot{x}, \dot{y}) = (\dot{r} \cos \varphi - r\dot{\varphi} \sin \varphi, \dot{r} \sin \varphi + r\dot{\varphi} \cos \varphi) \\ \mathbf{w} = (\ddot{x}, \ddot{y}) = ((\ddot{r} - r\dot{\varphi}^2) \cos \varphi - (r\ddot{\varphi} + 2\dot{r}\dot{\varphi}) \sin \varphi, (\ddot{r} - r\dot{\varphi}^2) \sin \varphi + (r\ddot{\varphi} + 2\dot{r}\dot{\varphi}) \cos \varphi \end{cases}. \tag{1}$$

Определение 8. Проекции v_r и v_{φ} скорости на радиальную и трансверсвальную оси называются соответственно радиальными и трансверсальными скоростями (для ускорений аналогично).

$$v_r = (\mathbf{v} \cdot \mathbf{e}_r) \quad v_\varphi = (\mathbf{v} \cdot \mathbf{e}_\varphi).$$

Страница 6 Билеты ММАМ

3 Кинематика точки. Естественный трёхгранник. Теорема Гюйгенса о разложении ускорения точки. Уравнения Френе-Серре.

3.1 Естественный трехгранник

Пусть задан закон движения материальной точки x(t), y(t), z(t). Выберем на траектории произвольную точку s в момент времени t=0, тогда s=s(t). Рассматривая s в качестве нового параметра для траектории, получим выражение для скорости:

$$\mathbf{v} = \dot{\mathbf{r}}[s(t)] = \frac{d\mathbf{r}}{ds} \frac{ds}{st} = \boldsymbol{\tau}\dot{s},$$

где единичный вектор au определяет направление касательной к траектории в рассматриваемой точке. Вычислим ускорение точки:

$$\mathbf{w} = \dot{\mathbf{v}} = \frac{d}{dt}(v\boldsymbol{\tau}) = \dot{v}\boldsymbol{\tau} + v\frac{d\boldsymbol{\tau}}{ds}\frac{ds}{dt} = \dot{v}\boldsymbol{\tau} + v^2\frac{d\boldsymbol{\tau}}{ds}.$$
 (2)

Определение 9. Вектором кривизны называется вектор $\frac{d\tau}{ds}$ (см. 2). Он связан с единичным вектором нормали **n** и радиусом кривизны ρ следующим соотношением:

$$\frac{d\boldsymbol{\tau}}{ds} = \frac{1}{\rho}\mathbf{n}.$$

Тогда формула (2) перепишется в виде:

$$\mathbf{w} = \dot{v}\boldsymbol{\tau} + \frac{v^2}{\rho}\mathbf{n}$$
 — Ускорение точки. (3)

Определение 10. *Естественным (сопровождающим) трехгранником* называется набор векторов τ , \mathbf{n} и \mathbf{b} , где последний вектор дополняет первые два таким образом, чтобы получившийся базис из трех векторов был правым.

Исходя из вышесказанного можем записать выражения для скорости и ускорения в осях трехгранника:

$$\mathbf{v} = \begin{pmatrix} v \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} \dot{v} \\ v^2/\rho \\ 0 \end{pmatrix}. \tag{4}$$

3.2 Теорема Гюйгенса и разложении ускорения точки

Сформулируем теорему:

Теорема 1 (*Теорема Гюйгенса*). Исходя из формулы (3), ускорение всегда лежит в соприкасающейся плоскости. Его можно записать в виде:

$$\mathbf{w} = \mathbf{w}_{\tau} + \mathbf{w}_{n}, \quad \mathbf{w}_{\tau} = \dot{v}\boldsymbol{\tau}, \quad \mathbf{w}_{n} = \frac{v^{2}}{\rho}\mathbf{n},$$

где $\mathbf{w}_{ au}$ — касательное ускорение, \mathbf{w}_{n} — нормальное ускорение точки.

Рис. 2: Сопровождающий трехгранник

3.3 Уравнения Френе-Серре

Рассмотрим вектор кривизны (9) в сопровождающем трехграннике: $\tau = \frac{d\mathbf{r}}{ds}$. Из выражения

$$\frac{d(\boldsymbol{\tau} \cdot \boldsymbol{\tau})}{ds} = (2\boldsymbol{\tau} \cdot \frac{d\boldsymbol{\tau}}{ds}) = (2\boldsymbol{\tau} \cdot \frac{d^2 \mathbf{r}}{ds^2}) = 0,$$

откуда получаем, что векторы первой и второй производной au ортогональны, следовательно вторая производная направлена по главной нормали:

Страница 7 Билеты ММАМ

$$\boxed{\frac{d\boldsymbol{\tau}}{ds} = \frac{1}{\rho}\mathbf{n}} - \text{Первая формула Френе-Серре.}$$
 (5)

Рассматривая вектор **b** и выполяняя с ним те же действия, что и с вектором τ , приходим ко второй формуле Френе-Серре (коэффициент $\chi - \kappa py$ чение кривой линии):

$$\boxed{\frac{d\mathbf{b}}{ds} = -\chi\mathbf{n}} - \text{Вторая формула Френе-Серре.}$$
 (6)

Теперь найдем производную нормали по длине дуги:

$$\frac{d\mathbf{n}}{ds} = \frac{d[\mathbf{b} \times \boldsymbol{\tau}]}{ds} = \left[\frac{d\mathbf{b}}{ds} \times \boldsymbol{\tau}\right] + \left[\mathbf{b} \times \frac{d\boldsymbol{\tau}}{ds}\right] = -\chi \underbrace{\left[\mathbf{n} \times \boldsymbol{\tau}\right]}_{-\mathbf{b}} + \frac{1}{\rho} \underbrace{\left[\mathbf{b} \times \mathbf{n}\right]}_{-\boldsymbol{\tau}},$$

откуда следует третья формула Френе-Серре:

$$\frac{d\mathbf{n}}{ds} = \chi \mathbf{b} - \frac{1}{\rho} \boldsymbol{\tau}$$
— Третья формула Френе-Серре. (7)

Страница 8 Билеты ММАМ

4 Криволинейные координаты точки. Коэффициенты Ламе. Скорость и ускорение точки в криволинейных координатах. Скорость точки в цилиндрических координатах.

4.1 Криволинейные координаты точки

Рис. 3: Оси в криволинейных координатах

Введем определение:

Определение 11 (Криволинейные координаты). Всякие три числа q_1, q_2, q_3 , однозначно определяющие положение точки в пространстве называются криволинейными координатами. Движение считается заданным, если заданы функции $q_1(t), q_2(t), q_3(t)$.

Утверждение 2. Связь между декартовыми и криволинейными координатами дается формулой

$$\mathbf{r} = \mathbf{r}(q_1, q_2, q_3) = x(q_1(t))\mathbf{i} + y(q_2(t))\mathbf{j} + z(q_3(t))\mathbf{k}.$$
 (8)

Определение 12 (Координатная линия). Рассмотрим произвольную точку P_0 (Рис. 3) с координатами q_{10} , q_{20} , q_{30} . Первой координатной линией называется кривая $\mathbf{r} = \mathbf{r}(\cdot, q_{20}, q_{30})$, получающуюся из (8) при фиксированных $q_2 = q_{20}$, $q_3 = q_{30}$ и переменном q_1 . Аналогично получаются вторая и третья координатные линии.

Определение 13 (Координатная ось). Касательную к координатной линии в точке P_0 называют координатной осью (соответственно первой, второй и третьей). Единичный \mathbf{e}_i вектор i-ой координатной оси может быть записан в виде

$$\mathbf{e}_{i} = \frac{1}{H_{i}} \frac{\partial \mathbf{r}}{\partial q_{i}}, \text{ где } \frac{\partial \mathbf{r}}{\partial q_{i}} = \frac{\partial x}{\partial q_{i}} \mathbf{i} + \frac{\partial y}{\partial q_{i}} \mathbf{j} + \frac{\partial z}{\partial q_{i}} \mathbf{k}.$$
 (9)

4.2 Коэффициенты Ламе

Определение 14 (*Коэффициенты Ламе*). Коэффициент H_i в формуле (9) называется i-ым коэффициентом Ламе и равен

$$H_i = \left| \frac{\partial \mathbf{r}}{\partial q_i} \right| = \sqrt{\left(\frac{\partial x}{\partial q_i} \right)^2 + \left(\frac{\partial y}{\partial q_i} \right)^2 + \left(\frac{\partial z}{\partial q_i} \right)^2} \right|$$
 — Коэффициент Ламе. (10)

4.3 Скорость и ускорение точки в криволинейных координатах

Утверждение 3 (Скорость в КК). Из того, что $\mathbf{v} = \frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{dq_1} \frac{dq_1}{dt} + \frac{d\mathbf{r}}{dq_2} \frac{dq_2}{dt} + \frac{d\mathbf{r}}{dq_3} \frac{dq_3}{dt} = v_{q_1}\mathbf{e}_1 + v_{q_2}\mathbf{e}_2 + v_{q_3}\mathbf{e}_3$ следует, что проекции скоростей на координатные оси (onp. 13) равны:

$$v_{q_i} = H_i \dot{q_i} - \Pi$$
роекция скорости на координатную ось. (11)

Утверждение 4 (Ускорение в KK). (Вывод см. Маркеев стр. 28) Проекция ускорения на i-ую координатную ось равно

$$w_{q_i} = \frac{1}{H_i} \left[\frac{d}{dt} \left(\mathbf{v} \cdot \frac{d\mathbf{v}}{d\dot{q}_i} \right) - \left(\mathbf{v} \cdot \frac{d\mathbf{v}}{dq_i} \right) \right] - \Pi poekuus \ yckopehus \ ha координатную ось$$
 (12)

Eсли ввести обозначение $T=rac{v^2}{2},$ то выражение для w_{q_i} можно записать в следующем виде

$$w_{q_i} = \frac{1}{H_i} \left(\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} \right) - Проекция ускорения на координатную ось (T).$$
 (13)

4.4 Скорость и ускорение точки в циллиндрических координатах

Рис. 4: Циллиндрические координаты

Положим
$$\begin{cases} q_1=r,\\ q_2=\varphi, & \text{тогда}\\ q_3=z, \end{cases} \begin{cases} x=r\cos\varphi,\\ y=r\sin\varphi, & \text{Коэффициенты Ламе:}\\ z=z. \end{cases}$$

Из формулы (11) получаем:

$$v_r = \dot{r}, \quad v_\varphi = r\dot{\varphi}, \quad v_z = \dot{z}.$$

Так же $T = \frac{v^2}{2} = \frac{1}{2}(\dot{r}^2 + (r\dot{\varphi})^2 + \dot{z}^2)$, а значит по формуле (13) имеем:

$$w_r = \ddot{r} - r\dot{\varphi}^2$$
, $w_\varphi = r\ddot{\varphi} + 2\dot{r}\dot{\varphi}$, $w_z = \ddot{z}$.

Страница 10 Билеты ММАМ

5 Угловая скорость и угловое ускорение твёрдого тела. Скорости и ускорения точек твёрдого тела в общем случае его движения (формулы Эйлера и Ривальса).

5.1 Кинематика твердого тела

Определение 15 (*Абсолютно твердое тело*). *Абсолютно твердое тело* — такая механическая система, у которой взаимные расстояния между всеми точками постоянны.

Определение 16 (*Поступательное движение*). *Поступательным* назовем такое движение, при котором перемещения всех его точек геометрически равны.

Определение 17 (*Вращение*). Перемещение твердого тела, при котором его конечное положение получается из начального путем поворота вокруг некоторой неподвижной прямой называется *вращением*.

Определение 18 (*Винтовое перемещение*). *Винтовым перемещением* называется совокупность поступательного перемещения и вращения вокруг неподвижной прямой, вдоль которой происходит поступательное перемещение.

5.2 Углы конечного вращения. Углы Эйлера

С любым твердым телом может быть жестко связан координатный трехгранник $(mpu \ni \partial p) xyz$ (Рис. 5), в котором все точки тела неподвижны. Обычно начало триэдра помещается в неподвижную точку твердого тела (TT).

Рис. 5: 3-1-3

Определение 19 (*Ориентация TT*). *Ориентация TT* определяется как ориентация одного триэдра (жестко связанного с TT) относительно другого, принимаемого за неподвижный.

Определение 20 (Углы конечного вращения). Три числа ψ , θ , φ , определяющие ориентацию TT, не являются наблюдаемыми (как это имело место в случае декартовых координат и материальной точки). Углы ψ , θ , φ называют углами конечного вращения.

Определение 21 (Углы Эйлера). Существует, однако, множество различных способов задать поворот ТТ с помощью углов конечного вращения ψ, θ, φ , но самым распространенным является способ углов Эйлера, так называемый метод «3-1-3»:

- Первый поворот совершается вокруг оси номер три (оси z) на угол ψ (Рис. 5) угол прецессии.
- Второй поворот совершается вокруг оси номер один (оси x) на угол θ (поворачиваем триэдр, получившийся на первом шаге) угол нутации.
- Третий поворот совершается вокруг оси номер три (оси z) на угол φ (поворачиваем триэдр, получившийся на втором шаге) угол собственного вращения.

5.3 Векторно-матричное задание движения TT

Пусть $O_{\alpha}XYZ$ — абсолютная система координат (Рис. 7), O — произвольная фиксированная точка TT, OXYZ — система координат, полученная из $O_{\alpha}XYZ$ при помощи поступательного перемещения, а Oxyz — система координат, жестко связанная с TT.

Пусть P — некоторая точка ТТ и ρ — ее радиус-вектор в системе координат Oxyz. Тогда если ${\bf r}$ — радиус-вектор точки P в системе координат OXYZ, то векторы ${\bf r}$ и ρ связны соотношением:

$$\mathbf{r} = \mathbf{A}\boldsymbol{\rho}$$
,

где ${\bf A}$ — матрица перехода от системы Oxyz к OXYZ. Тогда радиус вектор точки P твердого тела в абаолютной системе координат $O_{\alpha}XYZ$ задается:

$$\mathbf{R} = \mathbf{R}_0 + \mathbf{A}\boldsymbol{\rho}. \tag{14}$$

Рис. 6:

Страница 11 Билеты ММАМ

5.4 Угловая ускорость и угловое ускорение ТТ. Формулы Эйлера и Ривальса

Определение 22 (Угловая скорость). Существует единственный вектор ω , называемый угловой скоростью тела, с помощью которого скорость точки P (Рис. 7) может быть представлена в виде

$$\boxed{\mathbf{v} = \mathbf{v}_O + [\boldsymbol{\omega} \times \mathbf{r}]} - \text{Скорость ТТ}, \tag{15}$$

где \mathbf{v}_O — скорость полюса O, а вектор $\boldsymbol{\omega}$ от полюса не зависит.

Утверждение 5 (Формула Эйлера).

$$\begin{bmatrix} \dot{\mathbf{r}} = [\boldsymbol{\omega} \times \mathbf{r}] \end{bmatrix} - \Phi$$
ормула Эйлера. (16)

Определение 23 (*Угловое ускорение*). Чтобы найти ускорение **w** точки P твердого тела, продифференцируем выдажение (15), получим:

$$\mathbf{w} = \dot{\mathbf{v}}_O + [\dot{\boldsymbol{\omega}} \times \mathbf{r}] + [\boldsymbol{\omega} \times \dot{\mathbf{r}}] - \text{Ускорение TT},$$
(17)

где величина $oldsymbol{arepsilon} = \dot{oldsymbol{\omega}}$ называется угловым ускорением.

Утверждение 6 (Формула Ривальса). Подставляя в (17) формулу Эйлера (16), пполучаем

$$\mathbf{w} = \mathbf{w}_O + [\boldsymbol{\varepsilon} \times \mathbf{r}] + [\boldsymbol{\omega} \times [\boldsymbol{\omega} \times \mathbf{r}]] - \Phi$$
ормула Ривальса. (18)

Страница 12 Билеты ММАМ

6 Комплексная форма описания плоско-параллельного движения точки и твёрдого тела. Мгновенные центры скоростей и ускорений.

6.1 Комплексная форма описания плоско-параллельного движения точки и твёрдого тела

При аналитическом решении некоторых задач кинематики плоского движения может быть использован метод комплекснозначных функций. Будем рассматривать плоскость движения как комплексную плоскость $\mathbb C$. Тогда положение любой точки на ней с радиус-вектором $\mathbf r$ задается комплексным числом z.

- Переход в декартову систему координат фактически означает запись числа z в алгебрарической форме z = x + iy.
- Переход в полярную систему координат означает запись в показательной форме $z = \rho e^{i\varphi}$. Это можно интерпретировать как результат поворота точки оси абсцисс с координатой ρ на угол φ вокруг начала координат. При необходимости выделить действительную и мнимую части нужно перейти к тригонометрической форме записи $z = \rho(\cos \varphi + i \sin \varphi)$.

Пусть движение точки описывается комплексно-значной функцией z(t) вещественного аргумента t. Тогда кинематические характеристики движения (скорость v(t) и ускорение w(t)) суть первая и вторая производные функции z(t) по t, то есть так же являются комплекснозначными функциями вещественного аргумента.

Определение 24 (Paduaльная и трансверсальная компонента ${\bf v}$). Так как $\dot{z}(t)={\bf v}(t)=(\dot{\rho}+i\rho\dot{\varphi})e^{i\varphi}$, то вещественная часть множетеля при $e^{i\varphi}-paduaльная$ состовляющая вектора скорости, а мнимая часть множетеля при $e^{i\varphi}-$ трансверсальная состовляющая вектора скорости.

Определение 25 (Paduaлъная и трансверсальная компонента \mathbf{w}). Так как $\ddot{z}(t) = \mathbf{w}(t) = \left[(\ddot{\rho} - \rho \dot{\varphi}^2) + i(\rho \ddot{\varphi} + 2\dot{\rho} \dot{\varphi}) \right] e^{i\varphi}$, то вещественная и мнимая части множетеля при $e^{i\varphi}$ – суть paduaльная и трансверсальная состовляющие вектора ускорения \mathbf{w} .

Страница 13 Билеты ММАМ

7 Понятие гиперкомплексной числовой системы. Алгебра кватернионов. Кватернионный способ задания ориентации твёрдого тела. Теорема Эйлера о конечном повороте.

7.1 Алгебра кватернионов

Определение 26 (*Кватернион*). *Кватернионы* представляют собой четырехмерные гиперкомплексные числа и записываются выражениями следующего вида

$$\Lambda = \lambda_0 + \lambda_1 i_1 + \lambda_2 i_2 + \lambda_3 i_3,$$

где $\lambda_0, \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ — компоненты кватерниона Λ , а i_1, i_2, i_3 — кватернионные единицы.

Определение 27 (*Кватернионное сложение*). Кватернионное сложение определяется по правилам обычной векторной алгебры: если $\begin{cases} \Lambda = \lambda_0 + \lambda_1 i_1 + \lambda_2 i_2 + \lambda_3 i_3 \\ M = \mu_0 + \mu_1 i_1 + \mu_2 i_2 + \mu_3 i_3, \end{cases}$ то

$$\Lambda + M = (\lambda_0 + \mu_0) + \sum_{k=1}^{3} (\lambda_k + \mu_k) i_k.$$

Определение 28 (*Произведение кватерниона на скаляр*). Произведение кватерниона Λ на скаляр a определятся «поэлементно»

$$a\Lambda = a\lambda_0 + \sum_{k=1}^3 a\lambda_k i_k.$$

Определение 29 (*Произведение кватернионов*). Правила умножения кватернионных единиц определяется следующей таблицей:

$$\begin{vmatrix} i_k \circ i_k = -1 \\ i_1 \circ i_2 = i_3 \\ i_2 \circ i_3 = i_1 \\ i_3 \circ i_1 = i_2 \\ \hline i_2 \circ i_1 = -i_3 \\ i_3 \circ i_2 = -i_1 \\ i_1 \circ i_3 = -i_2 \end{vmatrix}$$

В связи с этими правилами можно использовать такую интерпретацию кватернионов, при которой элементы i_1,i_2,i_3 отождествляются с единичными векторами, образующими в трехмерном пространстве правую тройку. Тогда по аналогии с комплексными числами, кватернион Λ можно представить как сумму скалярной λ_0 и векторной части λ :

$$\Lambda = \lambda_0 + \boldsymbol{\lambda}.$$

Утверждение 7 (Формула умножения кватернионов).

$$\Lambda \circ M = \lambda_0 \mu_0 + \lambda_0 \mu + \mu_0 \lambda + [\lambda \times \mu] - (\lambda \cdot \mu)$$
(19)

Определение 30 (*Сопряжсенный кватернион*). По аналогии с комплексными числами, определяется сопряженный кватернион $\tilde{\Lambda} = \lambda_0 - \lambda$ к кватерниону $\Lambda = \lambda_0 + \lambda$.

Определение 31 (*Норма кватерниона*). *Нормой* кватерниона называется произведение этого кватерниона на его сопряженное значение:

$$\|\Lambda\| = \sum_{k=0}^{3} \lambda_k^2.$$

Если $\|\Lambda\| = 1$, то такой кватернион называется *нормированным*. Норма произведения кватернионов: $\|\Lambda \circ M\| = \|\Lambda\| \cdot \|M\|$.

Определение 32 (*Обратный кватернион*). Кватернионом, *обратным* к Λ называется кватернион Λ^{-1} , определяемый из условия

$$\Lambda \circ \Lambda^{-1} = \Lambda^{-1} \circ \Lambda = 1.$$

Домножим обе части $\Lambda \circ \Lambda^{-1} = 1$ на $\widetilde{\Lambda}$ слева и получим:

$$\Lambda^{-1} = \frac{\widetilde{\Lambda}}{\|\Lambda\|}.$$

Страница 14 Билеты ММАМ

7.2 Кватернионный способ задания ориентации ТТ

Теорема 2 (О положении TT). Пусть базис $Oe_1e_2e_3$ связан с TT, а базис $Oi_1i_2i_3$ — неподвижен. Произвольное положение TT с неподвижной точкой задается нормированным кватернионом Λ по формулам:

$$\begin{cases}
\mathbf{e}_{1} = \Lambda \circ \mathbf{i}_{1} \circ \widetilde{\Lambda}, \\
\mathbf{e}_{2} = \Lambda \circ \mathbf{i}_{2} \circ \widetilde{\Lambda}, \\
\mathbf{e}_{3} = \Lambda \circ \mathbf{i}_{3} \circ \widetilde{\Lambda}
\end{cases} (20)$$

7.3 Теорема Эйлера о конечном повороте тела с неподвижной точкой

Теорема 3. Любое положение твердого тела с неподвижной точкой может быть получено из начального положения одним поворотом вокруг оси $\mathbf{e} = \frac{\lambda}{|\lambda|}$ на угол $\theta = 2 \arccos \lambda_0$, где $\Lambda = \lambda_0 + \lambda$ — нормированный кватернион, задающий положение тела.

 \square Запишем кватернион Λ в тригонометрической форме: $\Lambda = \cos \varphi + \mathbf{e} \sin \varphi$, где $\cos \varphi = \lambda_0$ и $\mathbf{e} = \frac{\lambda}{|\lambda|}$. Дополним вектор \mathbf{e} единичными векторами \mathbf{j} и \mathbf{k} до правой тройки таким образом, чтобы вектор \mathbf{r} оказался в плоскости векторов \mathbf{e} и \mathbf{j} . Тогда $\mathbf{r} = |\mathbf{r}| (\mathbf{e} \cos \beta + \mathbf{j} \sin \beta)$. Учитывая, что из условия ортогональности векторов \mathbf{e} и \mathbf{j} следует равенство $\mathbf{j} \circ \widetilde{\Lambda} = \Lambda \circ \mathbf{j}$, по теореме о положении твердого тела получим

$$\mathbf{r}' = |\mathbf{r}|(\Lambda \circ \mathbf{e} \circ \widetilde{\Lambda} \cos \beta + \Lambda \circ \mathbf{j} \circ \widetilde{\Lambda} \sin \beta) = |\mathbf{r}|(\mathbf{e} \cos \beta + (\mathbf{j} \cos 2\varphi + \mathbf{k} \sin 2\varphi) \sin \beta),$$

сравнивая полученное выражение с вектором г, получаем требуемое.

Страница 15 Билеты ММАМ

8 Формулы сложения поворотов твёрдого тела в кватернионах. Параметры Родрига-Гамильтона. Теорема Эйлера о конечном повороте твёрдого тела с неподвижной точкой.

8.1 Формулы сложения поворотов твердого тела в кватернионах

Пусть кватернион Λ задает поворот тела из базиса \mathbf{I} в базис \mathbf{I}' , а кватернион M — из базиса \mathbf{I}' в базис \mathbf{I}'' . В результате двух указанных поворотов начальное положение \mathbf{r} точки тела преобразуется в конечное положение \mathbf{r}'' по формуле:

$$\mathbf{r}'' = M \circ \mathbf{r}' \circ \widetilde{M} = M \circ \Lambda \circ \mathbf{r} \circ \widetilde{\Lambda} \circ \widetilde{M} = N \circ \mathbf{r} \circ \widetilde{N},$$

где $N=M\circ\Lambda$ — кватернион результирующего поворота.

По индукции можно показать, что в случае n последовательных поворотов, задаваемых кватернионами $\Lambda_1, \Lambda_2, \ldots, \Lambda_n$, формула сложения имеет вид:

$$N = \Lambda_n \circ \ldots \circ \Lambda_2 \circ \Lambda_1.$$

8.2 Параметры Родрига-Гамильтона

Запишем единичный кватернион в форме $\Lambda = \lambda_0 + \lambda \mathbf{e}$, где $\lambda = |\lambda|$, а вектор \mathbf{e} — единичный вектор, задающий направление вектора λ .

Так как кватернион Λ — единичный, то $\lambda_0^2 + \lambda^2 = 1$. Два скаляра, удовлетворяющих уравнению единичной окружности всегда могут быть представлены в таком виде, что

$$\Lambda = \cos\frac{\varphi}{2} + \mathbf{e}\sin\frac{\varphi}{2}.$$

Теорема 4 (О повороте базиса). Поворот, определяемый кватернионом $\Lambda = \cos \frac{\varphi}{2} + \mathbf{e} \sin \frac{\varphi}{2} - есть поворот вокруг вектора <math>\mathbf{e}$ на угол φ .

 \square Доказательство состоит в непосредственном вычислении матрицы поворота A по заданному кватерниону Λ . Между всеми ортогональными матрицами ($\det A=1$) и всеми поворотами твердого тела существует взаимнооднозначное соответствие. Действительно, рассмотрим образ первого единичного вектора триедра xyz:

$$\mathbf{i'} = A\mathbf{i} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix},$$

то есть образом первого орта является первый столбец матрицы A (аналогично для остальных).

Столбцы матрицы A представляют собой образы ортов исходного базиса. Вычислим эти образы. При этом исходный базис выберем так: $\mathbf{i}_1 = \mathbf{e}, \ \mathbf{i}_2, \mathbf{i}_3 \perp \mathbf{e}.$ Тогда

Рис. 7:

$$\begin{cases} \mathbf{i}_1' = (\cos\frac{\varphi}{2} + \mathbf{i}_1\sin\frac{\varphi}{2}) \circ \mathbf{i}_1 \circ (\cos\frac{\varphi}{2} - \mathbf{i}_1\sin\frac{\varphi}{2}) = \mathbf{i}_1, \\ \mathbf{i}_2' = (\cos\frac{\varphi}{2} + \mathbf{i}_2\sin\frac{\varphi}{2}) \circ \mathbf{i}_2 \circ (\cos\frac{\varphi}{2} - \mathbf{i}_2\sin\frac{\varphi}{2}) = \mathbf{i}_2\cos\varphi + \mathbf{i}_3\sin\varphi, \\ \mathbf{i}_3' = (\cos\frac{\varphi}{2} + \mathbf{i}_3\sin\frac{\varphi}{2}) \circ \mathbf{i}_3 \circ (\cos\frac{\varphi}{2} - \mathbf{i}_3\sin\frac{\varphi}{2}) = -\mathbf{i}_2\sin\varphi + \mathbf{i}_3\cos\varphi. \end{cases}$$

Следовательно,

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix},$$

что и требовалось доказать.

Таким образом, в записи единичного кватерниона $\cos\frac{\varphi}{2} + \mathbf{e}\sin\frac{\varphi}{2}$, вектор \mathbf{e} есть единичный вектор оси Эйлерова поворота, а φ — угол этого поворота.

Определение 33 (Параметры Родрига-Гамильтона). В покомпонентной записи кватернион $\Lambda = \cos\frac{\varphi}{2} + \mathbf{e}\sin\frac{\varphi}{2}$ имеет вид

$$\Lambda = \left\{ \cos \frac{\varphi}{2}, x \sin \frac{\varphi}{2}, y \sin \frac{\varphi}{2}, z \sin \frac{\varphi}{2} \right\}, \tag{21}$$

коэффициенты которого носят название параметров Родрига-Гамильтона конечного поворота.

Теорема Эйлера о конечном повороте твёрдого тела с неподвижной точкой -7.3.

Страница 16 Билеты ММАМ

9 Кинематические уравнения вращательного движения твёрдого тела в кватернионах (уравнения Пуассона). Прецессионное движение твёрдого тела.

9.1 Уравнения Пуассона

Рассмотрим движение тела с неподвижной точкой O относительно базиса **I**. Моментам времени t и $t+\Delta t$ соответствуют положения связанного с телом базиса $\mathbf{E}(t)$ и $\mathbf{E}(t+\Delta t)$.

По теореме Эйлера о конечном повороте (7.3) указанные положения можео совместить одним поворотом вокруг некоторой оси $\mathbf{e}(t, \Delta t)$ на некоторой угол $\Delta \varphi(t, \Delta t)$.

Угловой скоростью твердого тела относительно базиса ${f I}$ в момент времени t называется предел

$$\boldsymbol{\omega} = \lim_{\Delta t \to 0} \frac{\Delta \varphi(t, \Delta t)}{\Delta t} \mathbf{e}(t, \Delta t). \tag{22}$$

Найдем выражение для вектора угловой скорости через кватернион $\Lambda(t)$, задающий положение TT относительно базиса I. Из формулы сложения поворотов (8.1) $\Lambda(t+\Delta t)=\delta\Lambda\circ\Lambda(t)$, где $\delta\Lambda$ — кватернион, который соответствует перемещению тела из положения $\mathbf{E}(t)$ в положение $\mathbf{E}(t+\Delta t)$. Исходя из теоремы номер (4) кватернион $\delta\Lambda$ запишется в виде

$$\delta \Lambda = \cos \frac{\Delta \varphi}{2} + \mathbf{e}(t, \Delta t) \sin \frac{\Delta \varphi}{2} = 1 + \mathbf{e}(t, \Delta t) \sin \frac{\Delta \varphi}{2} + O((\Delta \varphi)^2).$$

Найдем $\dot{\Lambda}$, для этого посчитаем следующую разность:

$$\Delta\Lambda = \Lambda(t + \Delta t) - \Lambda(t) = \delta\Lambda \circ \Lambda(t) - \Lambda(t) = (\delta\Lambda - 1) \circ \Lambda(t),$$

откуда следует

$$\dot{\Lambda} = \lim_{\Delta t \to 0} \frac{\Delta \Lambda}{\Delta t} = \lim_{\Delta t \to 0} \frac{\delta \Lambda - 1}{\Delta t} \circ \Lambda(t) = \frac{1}{2} \omega \circ \Lambda(t). \tag{23}$$

Утверждение 8 (Уравнения Пуассона). Из формулы (23) следуют два уравнения

где кватернион $\Lambda(t)$ задает положение твердого тела относительно базиса ${\bf I},\, {\boldsymbol \omega}-$ угловая скорость твердого тела относительно базиса ${\bf I}.$

9.2 Прецессионное движение твердого тела

Определение 34 (*Прецессионное движение*). Движение TT с неподвижной точкой называется *прецессионным*, если некоторая фиксированная в TT ось е (проходящая через неподвижную точку), совершает движение по поверхности неподвижного кругового конуса. Если составляющие угловой скорости не зависят от времени, то такая прецессия называется *регулярной*.

Пусть ось \mathbf{e} — фиксированная в теле ось, а ось \mathbf{i} — ось конуса (по поверхности которого движется ось тела \mathbf{e}). Пусть угол между осями \mathbf{e} и \mathbf{i} равен θ , и он, очевидно, не зависит от времени, следовательно $(\mathbf{i} \cdot \dot{\mathbf{e}}) = 0$, отсюда, с учетом формулы $\dot{\mathbf{e}} = [\boldsymbol{\omega} \times \mathbf{e}]$ (16), получаем $(\mathbf{i} \cdot [\boldsymbol{\omega} \times \mathbf{e}]) = 0$, то есть вектор угловой скорости $\boldsymbol{\omega}$ тела раскладывается на ось конуса \mathbf{i} и ось тела \mathbf{e} :

$$\omega = \omega_1 + \omega_2 = \omega_1(t)\mathbf{i} + \omega_2(t)\mathbf{e}$$
.

Определение 35 (*Оси прецессии и собственного вращения*). Ось конуса і называется *осью прецессии*, а ось тела **e** (которая совершает вращение по поверхности конуса) называется *осью собственного вращения*.

Определение 36 (Угловые скорости прецессии и собственного вращения). Проекция угловой скорости TT на ось прецессии ω_1 называется угловой скоростью прецессии. Проекция угловой скорости TT на ось собственного вращения ω_2 называется угловой скоростью собственного вращения.

Страница 17 Билеты ММАМ

10 Кинематические инварианты. Кинематический винт. Мгновенная винтовая ось. Представление винтового движения твёрдого тела с помощью дуальных чисел.

10.1 Кинематические инварианты

- 1. В определении угловой скорости ТТ (22), ω не зависит от выбора полюса P. Вектор ω называется nepsum кинематическим инвариантом.
- 2. Из определения (22) следует, что для любых двух точек тела A и B, скалярные произведения их скоростей на вектор ω одинаковы. Вторым кинематическим инвариантом будем называть скалярное произведение скорости точки тела на угловую скорость тела: $(\mathbf{v} \cdot \boldsymbol{\omega})$.

10.2 Дуальные числа и их свойства

Рассмотрим трансцендентное расширение поля вещественных чисел \mathbb{R} в виде z=a+bE, где трансцендентный элемент $E\notin\mathbb{R}$ обладает свойством:

$$E^2 = p + qE, \ p, q \in \mathbb{R}.$$

Определение 37 (*Алгебра дуальных чисел*). Если $(E-\frac{q}{2})^2=p+\frac{q^2}{4}=0$, полагая $\varepsilon=\frac{E-\frac{q}{2}}{k}$, $(\varepsilon^2=0)$ получаем расширение $\mathbb R$ в виде алгебры *дуальных чисел*. Для дуального числа $A=a+\varepsilon b$ имеет место представление

$$A = a + \varepsilon b = a[1 + \varepsilon(b/a)] = a[1 + \varepsilon p(A)],$$

где a — главная часть, $b = \text{mom}\,A$ — моментная часть, b/a = p(A) — параметр дуального числа A. Действия над дуальными числами:

- Ассоциативны по отношению к умножению: $(a_1 + \varepsilon b_1)(a_2 + \varepsilon b_2) = (a_1 a_2) + \varepsilon (a_1 b_2 + a_2 b_1)$.
- Дистрибутивны по отношению к сложению: $(a_1 + \varepsilon b_1) + (a_2 + \varepsilon b_2) = (a_1 + a_2) + \varepsilon (b_1 + b_2)$.

Любая аналитическая функция, представимая степенным рядом своего аргумента, может рассматриваться как дуальная функция дуального аргумента $\Phi = \varphi + \varepsilon \psi$. В частности

$$\cos \Phi = \cos \varphi - \varepsilon \psi \sin \varphi, \quad \sin \Phi = \sin \varphi + \varepsilon \psi \cos \varphi.$$

P.S.

Проще говоря, дуальные числа — гиперкомплексные числа вида $a + \varepsilon b$, где ε — абстрактный элемент, квадрат которого равен нулю. Любое дуальное число однозначно определяется такой парой чисел a, b.

В отличии от комплексных чисел, алгебра дуальных чисел содержит в себе делители нуля, причес все они имеют вид $a\varepsilon$. Плоскость всех дуальных чисел представляет собой «альтернативную комплексную плоскость».

10.3 Описание винтового движения

Определение 38 (Bинтовое dвижение TT). Винтовым движением TT называют движение, при котором помимо вращения вокруг неподвижной оси имеет место его поступательное перемещение вдоль этой оси.

Для описания винтового движение вводится понятие ∂y ального yгла, характеризующего взаимное расположение двух скрещивающихся прямых:

Определение 39 (Дуальный угол). Дуальный угол характеризует взаимное расположение двух скрещивающихся прямых. Мерой дуального угла является дуальное число $\Phi = \varphi + \varepsilon s$. Рассмотрим две скрещивающиеся прямые и единичный вектор \mathbf{e} , задающий общий перпендикуляр. Тогда главная часть числа Φ (величина φ) определяет угол поворота одной из прямых вокруг вектора \mathbf{e} , в результате которого прямые станут параллельными, а моментная часть числа Φ (величина s) — смещение этой прямой, в результате которого прямые совпадут.

P.S. Числа φ и s считаются положительными, если вращение и перемещение совершаются в положительном направлении оси e.

P.S. Очевидно, что если прямые пересекаются под углом φ , то дуальный угол Φ становится вещественным. А если прямые параллельны, то дуальный угол содержит только моментную часть.

Утверждение 9 (Представление винтового движения TT с помощью дуальных чисел). Винтовое движение можно представить в виде композиции вращения вокруг оси с вектором e на угол φ и смещения на величину s вдоль этой же оси. В терминах кватернионах, получаем так называемый дуальный кватернион $\Lambda_{\Phi} = \cos\frac{\Phi}{2} + e\sin\frac{\Phi}{2}$, где $\Phi = \varphi + \varepsilon s - d$ уальное число.

$$\Lambda_{\Phi} = \left(\cos\frac{\varphi}{2} + \mathbf{e}\sin\frac{\varphi}{2}\right) + \varepsilon\frac{s}{2}\left(-\sin\frac{\varphi}{2} + \mathbf{e}\cos\frac{\varphi}{2}\right) = \left(\cos\frac{\varphi}{2} + \mathbf{e}\sin\frac{\varphi}{2}\right) \circ \left(1 + \varepsilon\frac{\mathbf{s}}{2}\right) = \Lambda_{\varphi} \circ \Lambda_{\mathbf{s}} = \Lambda_{\mathbf{s}} \circ \Lambda_{\varphi}. \tag{25}$$

Страница 18 Билеты ММАМ

11 Несвободные системы. Связи и их классификация. Возможные, действительные и виртуальные перемещения точек системы. Число степеней свободы системы. Теорема Фробениуса о голономности дифференциальной связи в \mathbb{R}^3 (только формулировка).

11.1 Несвободные системы. Связи и их классификация

Определение 40 (Несвободная система). Рассмотрим движение системы материальных точек P_{ν} ($\nu=1,2,\ldots,N$) относительно некоторой прямоугольной системы координат, предполагаемой неаодвижной. Состояние системы задается радиусами-векторами \mathbf{r}_{ν} и скоростями \mathbf{v}_{ν} ее точек. Связями называются ограничения, накладываемые на величины \mathbf{r}_{ν} и \mathbf{v}_{ν} , которые должны выполняться при любых действующих на систему силах. Если на систему наложены связи, то она называется несвободной.

Приведем примеры несвободных систем:

- 1. Материальная точка может двигаться только в заданной плоскости, проходящей через начало координат. Если ось Oz системы координат направить перпендикулярно плоскости, в которой движется точка, то z=0— уравнение связи (y dep системыми, геометрическая).
- 2. Точка движется по сфере переменного радиуса R = f(t) с центром в начале координат. Если x, y, z координаты движущейся точки, то уравнение связи имеет вид $x^2 + y^2 + z^2 f^2(t) = 0$ (удерживающая, геометрическая).
- 3. Две материальные точки P_1 и P_2 связаны нерастяжимой нитью длиной l. Связь в этом случае задается соотношением $l^2-({\bf r}_1-{\bf r}_2)^2\geqslant 0$ (неудерживающая)

Определение 41 (Виды связей). В общем случае связь задается соотношением

$$f(\mathbf{r}_{\nu}, \mathbf{v}_{\nu}, t) = f(r_1, \dots, r_N, v_1, \dots, v_N, t) \geqslant 0.$$

$$(26)$$

- (Удерживающая) Если в неравенстве (26) реализуется только знак равенства, то такая связь называется удерживающей (двусторонней, неосвобождающей).
- (**Неудерживающая**) Если в неравенстве (26) реализуется как знак равенства, так и знак неравенства, то такая связь называется *неудерживающей* (односторонней, освобождающей). Системы с неудерживающими связями далее не рассматриваются.
- (Геометрическая) Если уравнение связи можнозаписать в виде $f(\mathbf{r}_{\nu},t)=0$, не содержащем проекции скоростей точек системы, то такая связь называется геометрической (конечной, голономной).
- (Дифференциальная) Если в уравнение связи $f(\mathbf{r}_{\nu}, \mathbf{v}_{\nu}, t) = 0$ входят проекции скоростей \mathbf{v}_{ν} , то связь называется дифференциальной (кинематической).
- (Интегрируемая) Дифференциальную связь $f(\mathbf{r}_{\nu}, \mathbf{v}_{\nu}, t) = 0$ называют *интегрируемой*, если ее можно представить в виде зависимости между координатами точек системы и времени (как в случае геометрической связи).
- (**Неинтегрируемая**) Если дифференциальную связь $f(\mathbf{r}_{\nu}, \mathbf{v}_{\nu}, t) = 0$ нельзя представить в виде зависимости между координатами точек системы и временем, то ее называют неинтегрируемой (неголономной).

P.S.

Если на система материальных точек не наложены дифференциальные неинтегрируемые связи, то она называется *голономной*. Если же среди связей, наложенных на систему, есть дифференциальные неинтегрируемые связи, то система называется *неголономной*.

В дальнейшем, при изучении движения неголономных систем, мы будем предполагать, что соответствующие им дифференциальные связи линейны относительно проекций $\dot{x}_{\nu},\dot{y}_{\nu},\dot{z}_{\nu}$ скоростей точек системы. Таким образом, в дальнейшем мы будем изучать движение свободных механических систем или несвободных систем со связями, аналитическое представление которых имеет вид:

$$f_{\alpha}(\mathbf{r}_{\nu}, t) = 0 \quad (\alpha = 1, 2, \dots, r), \tag{27}$$

$$\sum_{\nu=1}^{N} (\mathbf{a}_{\beta\nu} \cdot \mathbf{v}_{\nu}) + a_{\beta} = 0 \quad (\beta = 1, 2, \dots, s).$$

$$(28)$$

Векторы $\mathbf{a}_{\beta\nu}$ и скаляры a_{β} — заданные функции от $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N$ и t. В частных случаях r и s могут быть равны нулю.

Страница 19 Билеты ММАМ

Определение 42 (*Стационарные или склерономные связи*). Геометрические связи называются *стационарными* или *склерономными*, если переменная t не входит в уравнения (27).

Дифференциальные связи называются *стационарными* или *склерономными*, если функция $\mathbf{a}_{\beta\nu}$ (28) не зависит явно от t, а функции a_{β} тождественно равны нулю.

Определение 43 (*Склерономные система*). Система называется *склерономной*, если она либо свободная, либо на нее наложены только стационарные связи.

Определение 44 (*Реономная система*). Система называется *реономной*, если среди наложенных на нее связей есть хотя бы одна нестационарная.

11.2 Возможные, действительные и виртуальные перемещения точек системы.

Пусть в момент времени $t=t^*$ система находится в положении, задаваемом радиусами-векторами ее точек $\mathbf{r}_{\nu 0}^*$, а скорости точек имеют некоторые конкретные возможные значения $\mathbf{v}_{\nu 0}^*$. Если заданы силы, действующие на систему, то, проинтегрировав систему дифференциальных уравнений движения, можно получить значения радиусов-вектором \mathbf{r}_{ν} точек системы для моментов времени t, следующих за t^* . Если обозначить за t^* 0 приращение времени $t-t^*$, то приращения радиус-векторов точек системы можно представить в виде:

$$\mathbf{r}_{\nu}(t^* + dt) - \mathbf{r}_{\nu}(t^*) = \mathbf{v}_{\nu 0}^* dt + \frac{1}{2} \mathbf{w}_{\nu 0}^* (dt)^2 + \dots,$$
 (29)

где $\mathbf{w}_{\nu 0}^*$ — ускорения точек системы в момент времени $t=t^*$; многоточием обозначены величины порядка $(dt)^3$ и выше.

Определение 45 (Действительные (истинные) перемещения). Величины в (29) суть действительные (истинные) перемещения точек системы за время dt.

Определение 46 (Bupmyaльные перемещения). Пусть в момент времени $t=t^*$ система занимает некоторое положение, определяемое радиусами-векторами ее точек \mathbf{r}_{ν}^* . Bupmyaльными перемещениями системы называется совокупность величин $\delta \mathbf{r}_{\nu}$, удовлетворяющая линейным однородным уравнениям:

$$\sum_{\nu=1}^{N} \left(\frac{\partial f_{\alpha}}{\partial \mathbf{r}_{\nu}} \cdot \delta \mathbf{r}_{\nu} \right) = 0 \quad (\alpha = 1, 2, \dots, r), \tag{30}$$

$$\sum_{\nu=1}^{N} (\mathbf{a}_{\beta\nu} \cdot \delta \mathbf{r}_{\nu}) = 0 \quad (\beta = 1, 2, \dots, s),$$
(31)

где величины $\frac{\partial f_{lpha}}{\partial \mathbf{r}_{
u}}$ и $\mathbf{a}_{eta
u}$ вычислены при $t=t^*,\,\mathbf{r}_{
u}=\mathbf{r}_{
u}^*.$

11.3 Число степеней свободы системы

Определение 47 ($Число\ cmenene\ csoбod\ u$). Виртуальные перемещения δx_{ν} , δy_{ν} , δz_{ν} удовлетворяют r+s уравнениям (30), (31). Число независимых виртуальных перемещений системы называется ее числом $cmenene\ csofod\ u$. Ясно, что n=3N-r-s.

11.4 Теорема Фробениуса о голономности дифференциальной связи в \mathbb{R}^3

В предположении, что уравнения геометрических связей $f_j(\mathbf{r},t)=0$ независимы, можно ввести обобщенные координаты $\mathbf{q}=(q_1,q_2,\ldots,q_n)$ на конфигурационном многообразии и записать уравнения $g_l=0$ дифференциальных связей в виде

$$\sum_{i=1}^{n} a_{li}(\mathbf{q}, t)\dot{q}_i + b_l(\mathbf{q}, t) = 0 \quad (l = 1, 2, \dots, m)$$
(32)

В пространстве $\{\mathbf{q},t\}$ уравнения (32) можно переписать в виде

$$\omega_l = \sum_{i=1}^n a_{li}(\mathbf{q}, t) dq_i + b_l(\mathbf{q}, t) dt = 0 \quad (l = 1, 2, \dots, m),$$
 (33)

где ω_l — дифференциальные 1-формы.

Теорема 5 (Фробениус). Теорема Фробениуса утверждает, что связи (32) интегрируемы тогда и только тогда, когда $d\omega_i \wedge \omega_1 \wedge \ldots \wedge \omega_m = 0$ при всех i.

Страница 20 Билеты ММАМ

12 Элементарная работа сил системы в обобщенных координатах. Обобщенные силы и их вычисление. Случай потенциального поля сил.

12.1 Силовое поле. Силовая функция. Потенциал

Определение 48 (*Силовое поле*). Предположим, что на материальную точку, движущуюся относительно инерциальной системы отсчета, во всем пространстве или в какой-то его части действует сила, зависящая от положения точки. В этом случае говорят, что в пространстве или в его части задано *силовое поле*, а так же, что точка движется в силовом поле.

Определение 49 (Потенциальное силовое поле). Силовое поле называется потенциальным, если существует скалярная функция U, зависящая только от координат $x_{\nu}, y_{\nu}, z_{\nu}$ точек P_{ν} материальной системы (и, быть может, от времени), такая, что

$$\begin{cases}
F_{\nu x} = \frac{\partial U}{\partial x_{\nu}}, \\
F_{\nu y} = \frac{\partial U}{\partial y_{\nu}}, \\
F_{\nu z} = \frac{\partial U}{\partial z_{z}},
\end{cases} (\nu = 1, 2, \dots, N).$$
(34)

Определение 50 (Силовая функция, потенциал). В формуле (34) функция U называется силовой функцией. Функция $\Pi = -U$ называется потенциалом или потенциальной энергией.

Определение 51 (*Стационарное/нестационарное потенциальное поле*). Потенциальное поле называтеся *стационарным*, если функция П не зависит явно от времени и *нестационарным* в противном случае.

Определение 52 (Потенциальная сила). Силы \mathbf{F}_{ν} , удовлетворяющие (34), называются потенциальными.

Элементарная работа сил стационарного потенциального силового поля представляет собой полный дифференциал:

$$d'A = \sum_{\nu=1}^{N} \left(\frac{\partial U}{\partial x_{\nu}} dx_{\nu} + \frac{\partial U}{\partial y_{\nu}} dy_{\nu} + \frac{\partial U}{\partial z_{\nu}} dz_{\nu} \right) = dU = -d\Pi.$$
 (35)

Поэтому, если в рассматриваемой области пространства Π является однозначной функцией от $x_{\nu}, y_{\nu}, z_{\nu}$ ($\nu = 1, 2, \ldots, N$), то полная работа сил потенциального поля при переходе из одного положения системы в другое не зависит от путей перехода точек из начальных положений в конечные.

Пример: (однородное поле тяжести) пусть m — масса точки, g — ускорение свободного падения, тогда $F_x=0,\,F_y=0,\,F_z=-mg,\,\Pi=mgz.$

12.2 Элементарная работа сил в обобщенных координатах. Обобщенные силы

Пусть ${\bf F}_{\nu}$ — равнодействующая всех сил, приложенных к точке P_{ν} системы ($\nu=1,2,\ldots,N$), а ${\bf r}_{\nu}$ — радиусывекторы точек P_{ν} относительно начала координат.

Пусть положение системы задается ее обобщенными координатами q_j $(j=1,2,\ldots,m)$. Элементарную работу системы сил на виртуальных перемещениях $\delta \mathbf{r}_{\nu}$ будем обозначать δA . Найдем выражение для элементарной работы через обобщенные координаты и их вариации δq_j .

$$\delta A = \sum_{\nu=1}^{N} (\mathbf{F}_{\nu} \cdot \delta \mathbf{r}_{\nu}) = \sum_{\nu=1}^{N} \left(\mathbf{F}_{\nu} \cdot \sum_{j=1}^{m} \frac{\partial \mathbf{r}_{\nu}}{\partial q_{j}} \delta q_{j} \right) = \sum_{j=1}^{m} \left[\sum_{\nu=1}^{N} \left(\mathbf{F}_{\nu} \cdot \frac{\partial \mathbf{r}_{\nu}}{\partial q_{j}} \right) \right] \delta q_{j}. \tag{36}$$

Определение 53 (Обобщенная сила). Величина Q_j в формуле (36) называется обобщенной силой и соответствует обобщенной координате q_j ($j=1,2,\ldots,m$). В общем случае обобщенные силы будут функциями обобщенных координат, скоростей и времени.

После введения понятия обобщенной силы, формулу (36) можно переписать в виде:

$$\delta A = \sum_{j=1}^{m} Q_j \delta q_j. \tag{37}$$

Утверждение 10 (Вычисление обобщенной силы). В практических задачах при вычислении обобщенных сил, формулой (37) обычно не пользуются. Обычно дают системе такое виртуальное перемещение, при котором $\delta q_k = 0 \ \forall k \neq j$, тогда $\delta A = \delta A_j = Q_j \delta q_j$ и

$$Q_j = \frac{\delta A_j}{\delta q_j} - B$$
ычисление обобщенной силы. (38)

Страница 21 Билеты ММАМ

12.3 Случай потенциального поля сил

Пусть \mathbf{F}_{ν} — потенциальные силы с потенциалом $\Pi = \Pi(\mathbf{r}_{\nu}, t)$. ТОгда и обобщенные силы — потенциальные, причем им соответствует потенциал, полученный из функции $\Pi(\mathbf{r}_{\nu}, t)$, если в ней выразить величины \mathbf{r}_{ν} через обобщенные координаты. С учетом формулы (35) имеем

$$\delta A = \sum_{j=1}^m Q_j \delta q_j = \sum_{\nu=1}^N (\mathbf{F}_{\nu} \cdot \delta \mathbf{r}_{\nu}) = -\delta \Pi = -\sum_{j=1}^m \frac{\partial \Pi}{\partial q_j} \delta q_j.$$

Отсюда следует, что в случае потенциальных сил обобщенные силы могут быть вычислены по формулам

$$Q_{j} = -\frac{\partial \Pi}{\partial q_{j}} \quad (j = 1, 2, \dots, m)$$
— Выражение обобщенный сил в потенциальном поле. (39)

Страница 22 Билеты ММАМ

13 Голономные связи. Достаточное условие голономности дифференциальной связи. Идеальные связи. Уравнения Лагранжа голономной системы с идеальными связями и их свойства: ковариантность, невырожденность.

Механической системой будем называть конечную или бесконечную совокупность материальных точек в трехмерном евклидовом пространстве.

Будем говорить, что *положение* механической системы известно, если известно положение любой ее точки в некоторой декартовой системе координат. Это означает, что нам известна вектор-функция:

$$\mathbf{R} = \mathbf{R}(\nu) = \begin{vmatrix} x(\nu) \\ y(\nu) \\ z(\nu) \end{vmatrix},$$

ставящая в соответствие точке системы, имеющей номер ν , ее декартовы координаты x,y,z.

13.1 Уравнения Лагранжа для голономной системы

Определение 54 (Конфигурационное многообразие). Механическая система называется системой с конечным числом степеней свободы, если если можно ввести такое конечномерное линейное (векторное) пространство R^m и такое множесто точек M в нем6 что между всеми возможными положениями механической системы и всеми точками множества $M \subset R^m$ имеется взаимно-однозначное соответствие.

Множество M называется конфигурационным многообразием механической системы если указанное соответствие дифференцируемо в обе стороны (под дифференцируемостью понимается k-кратная непрерывная дифференцируемость, при этом конкретное значение k несущественно).

Рис. 8:

Пример 1 (Конфигурационное многообразие: тор). На Рис. 8 (а) изображен двухзвенный маятник, состоящий из двух материальных точек 1 и 2, соединенных невесомыми, нерастяжимыми стержнями. Конфигурационное многообразие этой системы является тором (Рис. 8 (б)). Откладывая углы α и β от произвольно выбранных за нулевые меридиана и параллели, убеждаемся в наличии взаимно однозначного соответствия между точками тора и положениями двухзвенного маятника. Сам тор в R^3 может быть задан, например, таким уравнением:

$$(x_1^2 + x_2^2 + x_3^2 - 5)^2 + 16x_3^2 = 16.$$

P.S.

Числом степеней свободы механической системы называется размерность ее конфигурационного многообразия. Напомним, что размерностью многообразия называется разность между размерностью пространства, в которое оно погружено, и числом уравнений, задающих многообразие аналитически. В примере выше, число степеней свободы равно двум.

Определение 55 (*Лагранжевы параметры*). *Параметризацией* механической системы с конечным числом степенй свободы называется введение конечного числа параметров q_1, \ldots, q_n , задание которых однозначно определяет положение системы: $\mathbf{R} = \mathbf{R}(\nu, t, q_1, \ldots, q_n)$. Сами параметры $q_1, \ldots, q_n -$ *пагранжевы параметры*.

Определение 56 (Глобальная параметризация). В качестве лагранжевых параметров q_1, \ldots, q_n можно взять координаты того пространства R^m , в которое погружено конфигурационное многообразие $(M \subset R^m)$: $q_1 = x_1$, $q_2 = x_2, \ldots, q_m = x_m$, тогда запись $\mathbf{R} = \mathbf{R}(\nu), t, \mathbf{q}$, где $\mathbf{q} \in M \subset R^m$ определяет глобальную параметризацию.

Страница 23 Билеты ММАМ

Определение 57 (*Локальная параметризация*). Если взаимно-однозначного соответствия между положениями механической системы и точками ее конфигурационного многообразия требовать не всюду, а лишь в некоторой окрестности выбранного положения, то, используя уравнения многообразия, можно уменьшить число параметров q_i , до минимального, равного числу степеней свободы. Такая параметризация называется *локальной*.

Определение 58 (*Обобщенные координаты*). Геометрически независимые параметры q_i , задающие локальную параметризацию, называются локальными координатами конфигурационного многообразия или *обобщенными координатами* рассматриваемой механической системы.

В примере выше, локальная параметризация может быть такой:

$$\begin{cases} \mathbf{R}(1,q) = \begin{pmatrix} l_1 \cos q_1 \\ l_1 \sin q_1 \end{pmatrix}, \\ \mathbf{R}(2,q) = \begin{pmatrix} l_1 \cos q_1 + l_2 \cos q_2 \\ l_1 \sin q_1 + l_2 \sin q_2 \end{pmatrix}, \end{cases}$$

где $q_1 = \alpha, q_2 = \beta$.

Определение 59 (*Стационарная параметризация*). Если параметризация $\mathbf{R} = \mathbf{R}(\nu, t, q)$ от времени явно не зависит, то такая параметризация называется *стационарной*. В противном случае параметризация *нестационарная*.

Определение 60 (Голономные механические системы). Если механическая система движется, то локальные кординаты конфигурационного многообразия ${\bf q}$ являются функциями времени: $q_i=q_i(t)~(i=1,2,\ldots,n)$. Если в движении системы локальные координаты не стеснены никакими дополнительными условиями типа $f_k(t,{\bf q},\dot{{\bf q}})=0~(k=1,2,\ldots,s)$ связывающими производные от обобщенных координат, то такие координаты называются кинематически независимыми, а сами механические системы — голономными.

Определение 61 (Виртуальное перемещение). Виртуальным перемещением механической системы, локальная параметризация которой — $\mathbf{R}(\nu,t,q)$, называется полный дифференциал этой функции при фиксированном времени:

$$\delta \mathbf{R} = \sum_{i} \frac{\partial \mathbf{R}}{\partial q_{i}} \delta q_{i}.$$

Определение 62 (*Идеальная связь*). Связи называются идеальными, если виртуальная работа реакций связей тождественно по δq равна нулю.

Утверждение 11 (Необходимое и достаточное условие идеальности связи). Для того чтобы связи были идеальными, необходимо и достаточно равенство нулю коэффициентов линейной формы виртуальной работы, вычисленных для $\mathbf{F} = \mathbf{F}^l$ (действующие на элемнет dm силы с массовой плотностью \mathbf{F} разбиты на два класса — реакции связей, которые обозначаются \mathbf{F}^l и все остальное с плотностью \mathbf{F}^d).

Если в примере со стержнем предположить, что он находится в однородном поле тяжест с силой тяжести, направленной вдоль оси x, то $\mathbf{F}^d = \begin{pmatrix} g \\ 0 \end{pmatrix}$, где g — ускорение силы тяжести.

Определение 63 (*Обобщенные силы мех. системы*). Коэффициенты линейной формы виртуальной работы заданных сил \mathbf{F}^d называются *обобщенными силами* рассматриваемой механической системы:

$$Q_i = \int \left(\frac{\partial \mathbf{R}}{\partial q_i} \cdot \mathbf{F}^d \right) dm.$$

Определение 64 (*Кинетическая энергия механической системы*). Кинечтической энергией механической системы называется интеграл

$$T = \frac{1}{2} \int (\mathbf{V} \cdot \mathbf{V}) dm$$

Утверждение 12 (Уравнения Лагранжа для голономных механических систем (вывод: стр.133 Журавлев)).

$$\left[\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = Q_i \quad (i = 1, 2, \dots, n) \right] - Уравнения Лагранжа для голономных систем.$$
 (40)

Страница 24 Билеты ММАМ

Определение 65 (Потенциальные обобщенные силы). Обобщенные силы Q_i , называются потенциальными, если существует такая скалярная функция времени и обобщенных координат $U(t, q_1, \ldots, q_n)$, что силы Q_i могут быть представлены в виде

 $Q_i = \frac{\partial U}{\partial q_i}$ $(i = 1, \dots, n).$

Определение 66 (Обобщенно потенциальные обобщенные силы). Обобщенные силы Q_i называются обобщенно потенциальными, если существует такая функция времени, координат и скоростей $U(t, q_1, \ldots, q_n, \dot{q}_1, \ldots, \dot{q}_n)$, что обобщенные силы могут быть представлены в виде

$$Q_i = \frac{\partial U}{\partial q_i} - \frac{d}{dt} \frac{\partial U}{\partial \dot{q}_i} \quad (i = 1, \dots, n).$$

Определение 67 (Функция Лагранжа (лагранжиан)). В случае потенциальных и обобщенно потенциальных обобщенных сил можно ввести функцию $\mathcal{L} = T + U$, называемую функцией Лагранжа или лагранжианом.

Утверждение 13 (Уравнения Лагранжа с использованием лагранжиана).

$$\boxed{\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = 0 \quad (i = 1, \dots, n)} - \text{Уравнения Лагранжа.}$$
(41)

13.2 Ковариантность уравнений Лагранжа

Если обобщенные координаты q_i , подвергнуть невырожденным дважды непрерывно дифференцируемым преобразованиям $q_i \to \widetilde{q}_i$:

$$q_i = q_i(t, \widetilde{q}),$$

то в новых переменных уравнения Лагранжа сохранят свою форму. Сказанное означает коммутативность диаграммы:

Рис. 9: Ковариантность

Справедливость утверждения очевидна, поскольку переменные \widetilde{q}_i также являются локальными координатами конфигурационного многообразия системы. Напомним, что ковариантность уравнений движения означает инвариантность правила их составления (уравнения Лагранжа), а не инвариантность самих, полученных в результате применения этого правила уравнений.

13.3 Анализ выражения кинетической энергии системы как функции обобщённых скоростей.

Выясним, как зависит кинетическая энергия механической системы от обобщенных скоростей \dot{q}_i :

$$T = \frac{1}{2} \int \mathbf{V}^{2} dm = \frac{1}{2} \int \left(\frac{\partial \mathbf{R}}{\partial t} + \sum_{i} \frac{\partial \mathbf{R}}{\partial q_{i}} \dot{q}_{i} \right)^{2} dm =$$

$$= \frac{1}{2} \sum_{i,j} \dot{q}_{i} \dot{q}_{j} \underbrace{\int \left(\frac{\partial \mathbf{R}}{\partial q_{i}} \cdot \frac{\partial \mathbf{R}}{\partial q_{j}} \right) dm}_{a_{ij}} + \underbrace{\sum_{i} \dot{q}_{i} \underbrace{\int \left(\frac{\partial \mathbf{R}}{\partial t} \cdot \frac{\partial \mathbf{R}}{\partial q_{i}} \right) dm}_{b_{i}} + \underbrace{\frac{1}{2} \int \left(\frac{\partial \mathbf{R}}{\partial t} \cdot \frac{\partial \mathbf{R}}{\partial t} \right) dm}_{T_{0}} =$$

$$= \underbrace{\frac{1}{2} \sum_{i,j} a_{ij} \dot{q}_{i} \dot{q}_{j}}_{T_{2}} + \underbrace{\sum_{i} b_{i} \dot{q}_{i}}_{T_{1}} + T_{0} = T_{2} + T_{1} + T_{0}. \quad (42)$$

Страница 25 Билеты ММАМ

Кинетическая энергия представляет собой сумму трех форм от обобщенных скоростей: квадратичной T_2 , линейной T_1 и формы нулевой степени T_0 . Коэффициенты этих форм являются функциями времени и координат.

Определение 68 (*Натуральные механические системы*). Механические системы, у которых кинетическая энергия зависит от обобщенных скоростей указанным образом, называются *натуральными*.

P.S.

В натуральных системах функция Лагранжа вводится как разность $T-\Pi$ и является многочленом второй степени относительно обобщенных скоростей. В натуральных системах уравнения Лагранжа разрешимы относительно обобщенных ускорений.

13.4 Преобразование Функции Лагранжа

Из формулы (42): $T = T_2 + T_1 + T_0$. Так как $\mathcal{L} = T - \Pi$, где $\Pi = -U$, то функцию лагранжа \mathcal{L} можно представить в виде многочлена второй степени относительно обобщенных скоростей

$$\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_0,$$

где

$$\mathcal{L}_1 = T_1$$
 $\mathcal{L}_2 = T_2$ $\mathcal{L}_0 = T_0 - \Pi$.

13.5 Невырожденность уравнений Лагранжа

В силу указанной структуры кинетической энергии 13.3 уравнений Лагранжа всегда оказываются линейными по обобщенным ускорениям:

$$\sum_{j} a_{ij} \ddot{q}_{j} + F_{i}(t, q, \dot{q}) = 0 \quad (i = 1, \dots, n).$$

Матрица коэффициентов при ускорениях $A = \{a_{ij}\}$, являющаяся матрицей квадратичной (T_2) части кинетической энергии невырождена: $\det A \neq 0$. (доказательство: Журавлев стр. 117)

Страница 26 Билеты ММАМ

14 Уравнения Лагранжа второго рода в случае потенциальных сил. Функция Лагранжа и её преобразование. Циклические координаты и первые интегралы.

14.1 Уравнения Лагранжа второго рода в случае потенциальных сил

Уравнения Лагранжа второго рода в случае потенциальных сил.

14.2 Функция Лагранжа

Функция Лагранжа.

14.3 Преобразование функции Лагранжа

Преобразование функции Лагранжа.

14.4 Циклические координаты

Определение 69 (Циклическая координата). Пусть система имеет n степеней свободы, а q_1, q_2, \ldots, q_n — ее обобщенные координаты. Координата q_{α} называется uuknuveckou, если она не входит в функцию Лагранжа, то есть $\frac{\partial \mathcal{L}}{\partial q_{\alpha}} = 0$.

P.S.

Из п.148 формула (10) стр. 258 (Маркеев) следует то, что $\frac{\partial \mathcal{L}}{\partial q_{\alpha}} = -\frac{\partial H}{\partial q_{\alpha}}$, следовательно, если координата циклическая, то она так же не входит в функцию Гамильтона. Верно и обратное.

14.5 Понятие первого интеграла

Рассмотрим автономную (отсутствует t) динамическую систему общего вида:

$$\dot{x}_i = F_i(x_1, \dots, x_n), \quad (i = 1, \dots, n).$$
 (43)

Правые части определены в некоторой области $D \subset \mathbb{R}$.

Определение 70 (Глобальный первый интеграл). Скалярная функция $G(x_1, ..., x_n)$, не являющаяся тождественной константой и определенная в той же области D, что и рассматриваемая автономная система (43), называется глобальным первым интегралом или просто первым интегралом, если вдоль каждого решения системы (43) она остается постоянной:

$$G[x_1(t), \ldots, x_n(t)] \equiv const \ \forall t.$$

Утверждение 14 (Необходимое и достаточное условие ΠM). Если функция G(x) дифференцируемая, то необходимым и достаточным условием первого интеграла является следующее тождество:

$$\sum_{i} \frac{\partial G}{\partial x_i} F_i(x_1, \dots, x_n) \equiv 0.$$

Определение 71 (*Локальный ПИ*). Если функция G(x) удовлетворяет определению 70, но она определена в некоторой подобласти D, то она называется локальным первым интегралом.

Утверждение 15 (Количество функционально независимых ПИ). Если правые части системы (43) дифференцируемы, то в окрестности любой точки x_0 , такой, что $F(x_0) \neq 0$, система (43) имеет n-1 функционально независимых интегралов.

Определение 72 (Первый интеграл неавтономной системы). В случае неавтономной системы $\dot{x}_i = F_i(t, x_1, \dots, x_n)$, $i=1,\dots,n$, определение первого интеграла сводится к приведенному выше определению формальным сведением к автономной системе добавлением еще одного уравнения $\dot{t}=1$. Первым интегралом неавтономной системы будет скалярная функция, удовлетворяющая всем указанным выше условиям. В частности, в случае дифференцируемости этой функции должно выполняться тождество

$$\frac{\partial G}{\partial t} + \sum_{i} \frac{\partial G}{\partial x_i} F_i \equiv 0 \ \forall t.$$

Страница 27 Билеты ММАМ

15 Натуральные и ненатуральные системы. Анализ выражения кинетической энергии системы как функции обобщённых скоростей. Разрешимость уравнений Лагранжа относительно обобщенных ускорений.

15.1 Натуральные механические системы

Натуральные механические системы.

15.2 Анализ выражения кинетической энергии системы как функции обобщенных скоростей

Анализ выражения кинетической энергии системы как функции обобщенных скоростей.

15.3 Разрешимость уравнений Лагранжа относительно обобщенных ускорений

Используя структуру выражения кинетической энергии (42), уравнения Лагранжа (40) можно записать в виде

$$\sum_{k=1}^{n} a_{ik} \ddot{q}_k = g_i \quad (i = 1, 2, \dots, n), \tag{44}$$

где функции g_i не зависят от обобщенных ускорений. Определитель линейной относительно \ddot{q}_i системы уравнений (44) отличен от нуля, поэтому она разрешима и имеет единственное решение

$$\ddot{q}_i = G_i(q_k, \dot{q}_k, t).$$

Страница 28 Билеты ММАМ

16 Теорема об изменении полной механической энергии голономной системы. Интеграл энергии, консервативные системы. Гироскопические силы. Диссипативные силы, функция Рэлея.

16.1 Теорема об изменении полной механической энергии голономной системы

Пусть помимо потенциальных сил к системе приложены также некоторые непотенциальные силы. Часть обобщенных сил, соответствующую непотенциальным силам, обозначим через Q_i^* . Пусть $E=T+\Pi$ — полная механическая энергия системы, а $T=T_2+T_1+T_0$ (см. 42).

Определение 73 (Мощность непотенциальных сил). Величина $N^* = \sum_{i=1}^n Q_i^* \dot{q}_i$ называется мощностью непотенциальных сил.

Теорема 6 (Об изменении полной механической энергии голономной системы). (Вывод: n.142 стр. 275 Маркеев)

$$\frac{dE}{dt} = N^* + \frac{d}{dt}(T_1 + 2T_0) + \frac{\partial \Pi}{\partial t} - \frac{\partial T}{\partial t} - U$$
Зменение полной мех. энергии E. (45)

16.2 Консервативные системы. Интеграл энергии

Рассмотрим некоторые частные случаи применения теоремы (6):

1. Пусть система *склерономна*. Тогда $T_1=0, T_0=0, \frac{\partial T}{\partial t}=0$, следовательно:

$$\frac{dE}{dt} = N^* + \frac{\partial \Pi}{\partial t}.$$

2. Пусть система склерономна и *потенциал не зависит явно от времени* $(\frac{\partial \Pi}{\partial t} = 0)$, следовательно:

$$\frac{dE}{dt} = N^*. (46)$$

Определение 74 (Консервативная система). Если система:

- 1. склерономна;
- 2. все силы потенциальны;
- 3. потенциал не зависит явно от времени,

то такая система называется консервативной. Для консервативной системы $\frac{dE}{dt}=0$ и имеет место интеграл энергии

$$E = T + \Pi \equiv const. \tag{47}$$

Определение 75 (Интеграл энергии). Величина (47) называется интегралом энергии.

16.3 Гироскопические силы

Определение 76 (*Гироскопические силы*). Непотенциальные силы называются гироскопическими, если их мощность (N^*) равна нулю.

P.S.

Из формулы (46) следует, что если система не является консервативной по причине наличия в ней гироскопических сил, то, несмотря на это, интеграл энергии у нее существует.

16.4 Диссипативные силы

Определение 77 (Диссипативные силы). Непотенциальные силы называются диссипативными, если их мощность отрицательна или равна нулю (то есть $N^* \leq 0$, но $N^* \not\equiv 0$).

P.S.

Из равенства (46) следует, что для склерономной системы, у которой потенциал Π не зависит явно от времени, при наличии диссипативных сил

 $\frac{dE}{dt}\leqslant 0,$

то есть полная механическая энергия системы убывает во время движения. Систему в этому случае называют $\partial uccunamu$ вной.

Страница 29 Билеты ММАМ

16.5 Функция Релея

Пусть задана положительная квадратичная форма

$$R = \frac{1}{2} \sum_{i,k=1}^{n} b_{ik} \dot{q}_i \dot{q}_k \quad (b_{ik} = b_{ki}), \tag{48}$$

такая, что непотенциальные силы Q_i^st задаются соотношениями

$$Q_i^* = -\frac{\partial R}{\partial \dot{q}_i} = -\sum_{k=1}^n b_{ik} \dot{q}_k \quad (i = 1, 2, \dots, n).$$
(49)

Тогда для склерономной системы мощность N^* непотенциальных сил равна

$$N^* = \sum_{\nu=1}^{N} (\mathbf{F}_{\nu}^* \cdot \mathbf{v}_{\nu}) = \sum_{i=1}^{n} Q_i^* \dot{q}_i = -2R \leqslant 0.$$
 (50)

Определение 78 (Φ ункция Pэлея). Функция R (48) называется θ иссипативной ϕ ункцей Pэлея.

Утверждение 16 (Связь функции Рэлея и энергии). Из формул (49) и (50) следует, что в случае склерономной системы с потенциалом, не зависящим явно от времени

$$\frac{dE}{dt} = -2R,$$

то есть скорость убывания полной механической энергии системы равна удвоенной функции Рэлея.

Пример 2. В качестве примера рассмотрим склерономную систему, к каждой точке которой приложена сила сопротивления, пропорциональная скорости этой точки: $\mathbf{F}_{\nu} = -k\mathbf{v}_{\nu}~(\nu=1,2,\ldots,N)$, где k>0. Мощность этих сил будет равна $N^* = \sum_{\nu=1}^N (\mathbf{F}_{\nu} \cdot \mathbf{v}_{\nu}) = -2R$, где функция Рэлея $R = \frac{1}{2}k\sum_{\nu=1}^N v_{\nu}^2$.

Страница 30 Билеты ММАМ

17 Движение материальной точки в центральном поле. Интеграл площадей; второй закон Кеплера. Уравнение Бине.

17.1 Задача двух тел

Рис. 10:

Если считать, что сила взаимодействия между планетой и Солнцем много больше сил взаимодействия планет друг с другом, то задача изучения движения любой планеты сводится к задаче движения в инерциальном пространстве двух тел (Рис. 10). Масса Солнца обозначена буквой M, масса планеты — буквой m.

Оба тела притягиваются друг к другу с силой, модуль которой равен

$$F = \gamma \frac{mM}{(\mathbf{R} - \mathbf{r})^2},$$

где коэффициент γ — универсальная гравитационная постоянная, ${\bf R}$ и ${\bf r}$ — радиусы-векторы Солнца и планеты соответственно. Отметим, что центр масс системы Солнце + планета в произвольной инерциальной системе отсчета движется равномерно и прямолинейно, следовательно мы можем выбрать такую инерциальную систему отсчета, в которой этот центр покоится, и поместить начало координат в этот центр. Тогда в новой системе координат $M{\bf R} + m{\bf r} = 0$. Значит

достаточно найти закон движения планеты $\mathbf{r} = \mathbf{r}(t)$, а движение Солнца будет определяться из соотношения $\mathbf{R}(t) = -\frac{m}{M}\mathbf{r}(t)$. Подставим эту связь в выражение для силы тяготения и запишем уравнение движения планеты:

$$m\ddot{\mathbf{r}} = -\gamma \frac{mM}{(1 + \frac{m}{M})^2} \cdot \frac{\mathbf{r}}{|\mathbf{r}|^3}.$$

Обозначив величину $\frac{\gamma M^3}{(M+m)^2}$ буквой $k=\mathrm{const},$ получим:

$$\ddot{\mathbf{r}} = -k \frac{\mathbf{r}}{|\mathbf{r}|^3},\tag{51}$$

домножим обе части векторно слева на \mathbf{r} и получим: $[\mathbf{r} \times \ddot{\mathbf{r}}] = 0$. Полученное соотношение можно переписать как $\frac{d}{dt}[\mathbf{r} \times \dot{\mathbf{r}}] = 0$ (так как $[\dot{\mathbf{r}} \times \dot{\mathbf{r}}] = 0$), откуда следует

$$[\mathbf{r} \times \dot{\mathbf{r}}] = \mathbf{C}.\tag{52}$$

Отсюда следует, что движение происходит в неизменной плоскости, ортогональной вектору \mathbf{C} , а значит исходную систему отсчета можно выбрать так, чтобы это была плоскость $\{x,y\}$. Следовательно уравнение (51) пример вид:

$$\begin{cases} \ddot{x} = -\frac{kx}{\sqrt{(x^2 + y^2)^3}}, \\ \ddot{y} = -\frac{ky}{\sqrt{(x^2 + y^2)^3}}. \end{cases}$$
 (53)

Решение системы нелинейных уравнений (53) удобно проводить в полярной системе координат:

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi. \end{cases}$$
 (54)

18 Движение точки в поле всемирного тяготения: уравнение орбиты, зако- ны Кеплера. Интеграл площадей, интеграл энергии, интеграл Лапласа. Задача двух тел.

19 Момент инерции системы относительно оси. Матрица тензора инерции. Эллипсоид инерции. Главные оси и главные моменты инерции. Преобразование матрицы тензора инерции при параллельном переносе осей и ортогональном преобразовании. Свойства осевых моментов инерции.

20 Кинетический момент и кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной точки или вокруг неподвижной оси. Кинетический момент и кинетическая энергия твёрдого тела при его произвольном движении.