

INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Mid-Spring Semester Examination, 2013-2014

Subject: Mass Transfer – II

Subject No.: CH31010

Date: 18.02.2014 (AN)

Time: 2 Hrs

Full Marks: 30

Instructions: Answer all Questions. Assume any missing data suitably.

1. Derive the equation of the wet-bulb lines of the psychrometric chart. Discuss the procedure for humidity measurement with the help of a wet-bulb thermometer.

[3]

2. Ethyl alcohol is removed from a crystallized pharmaceutical material by evaporation into a nitrogen stream. At 30°C and 1 std. atm, the resulting nitrogen-alcohol vapour mixture has a relative humidity of 70%. It is required to remove 95% of the alcohol present by cooling to 10°C and compressing to a suitable pressure. What should this pressure be? Given the vapour pressure of ethyl alcohol at 30°C as 78 mm Hg and at 10°C as 23 mm Hg.

[4]

3. (a) What is "approach" of a cooling tower? What do you mean by "5% wet-bulb temperature"?

(b) A once-through cooling tower operation is done by supplying air by a blower having a capacity of 254880 m³/h. The air enters the tower at a dry-bulb temperature of 24°C and humidity of 0.007 kg water/kg dry air. It leaves the tower at a dry-bulb temperature of 32.5°C with 0.0255 kg water/kg dry air. The hot process water enters the tower 54.5°C. The return water to the process operation must be at a temperature of 32.5°C. How much water can be cooled by this operation?

DATA: Heat capacity of air = $0.24 \text{ kcal/(kg)(}^{\circ}\text{C}\text{)}$

Heat capacity of water vapour = 0.45 kcal/(kg)(°C)

Latent heat of vaporization of water at 0° C = 597 kcal/kg.

[2+6]

OR

A cooling tower operates in counter-current mode with entering air of humidity 0.013 kg/kg dry air at a dry bulb temperature of 27°C . Hot process water enters the tower at 48°C and cold water leaves at 27°C . The cross sectional area of the tower is 63.6 m^2 . Determine the height of the tower required to meet the process requirements. Air is supplied to the tower by a blower having a capacity of $4.2 \times 10^5 \text{ m}^3\text{/h}$ and the water loading is $7244 \text{ kg/m}^2 \text{ h}$.

DATA: Heat capacity of air = $0.24 \text{ kcal/(kg)}(^{\circ}\text{C})$

Heat capacity of water vapour = $0.45 \text{ kcal/(kg)(}^{\circ}\text{C)}$

Latent heat of vaporization of water at 0° C = 597 kcal/kg

 $K_Y a = 2.28 \text{ kg/m}^3 \text{ s } (\Delta Y')$

[8]

4. 1000 kg/h of a 45wt% acetone-in-water solution is to be extracted at 25°C in a continuous, countercurrent system with pure 1,1,2-trichloroethane to obtain a raffinate containing 10wt% acetone. Using the following equilibrium data, determine: (a) the minimum flow rate of the solvent; (b) the number of theoretical stages required for a solvent rate equal to 1.5 times the minimum.

[6]

Wt. fraction	Extract						Raffinate					
Acetone	0.6	0.5	0.4	0.3	0.2	0.1	0.55	0.5	0.4	0.3	0.2	0.1
Water	0.13	0.04	0.03	0.02	0.015	0.01	0.35	0.43	0.57	0.68	0.79	0.895
C ₂ H ₃ Cl ₃	0.27	0.46	0.57	0.68	0.785	0.89	0.1	0.07	0.03	0.02	0.01	0.005

5. Liquids A and C (1000 lb), which have nearly identical boiling points, are to be separated by liquid-liquid extraction with solvent B. The following data represent the phase equilibrium. Determine the number of theoretical stages on both sides of the feed to produce an extract containing 83% C and 17% A (compositions are on a solvent-free basis) and a raffinate of 10% C and 90% A with a reflux rate of 1,644lb/h. The feed contains 35% C and 65% A.

[7]

Wt %	Extract										
C	0.0	1.0	1.8	3.7	6.2	9.2	13.0	18.3	24.5	31.2	
A	7.0	6.1	5.5	4.4	3.3	2.4	1.8	1.8	3.0	5.6	
В	93.0	92.9	92.7	91.9	90.5	88.4	85.2	79.9	72.5	63.2	
Wt %	Raffinate										
С	0.0	9.0	14.9	25.3	35.0	42.0	48.1	52.0	47.1	PL.	
A	92.0	81.7	75.0	63.0	51.5	41.0	29.3	20.0	12.9	PLAIT POINT	
В	8.0	9.3	10.1	11.7	13.5	17.0	22.6	28.0	40.0	TINIC	

6. Answer the following questions:

[2]

- (a) Briefly explain: Selectivity and Distribution coefficient.
- (b) What is a conjugate curve and how is it obtained on an equilateral triangle?

Psychrometric chart for the air-water system at 1 atm total pressure