

P/A²
6/12/1

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

09/814099
U.S. PTO
JC971
03/22/01

In re application of: **Masanori IKARI**

Serial No.: **Not Yet Assigned**

Filed: **March 22, 2001**

For: **WORKING UNIT CONTROL APPARATUS OF EXCAVATING AND LOADING MACHINE**

CLAIM FOR PRIORITY UNDER 35 U.S.C. 119

Commissioner for Patents
Washington, D.C. 20231

March 22, 2001

Sir:

The benefit of the filing dates of the following prior foreign applications are hereby requested for the above-identified application, and the priority provided in 35 U.S.C. 119 is hereby claimed:

Japanese Appln. No. 2000-085427, filed March 24, 2000;

Japanese Appln. No. 2000-085446, filed March 24, 2000 and

Japanese Appln. No. 2000-085448, filed March 24, 2000

In support of these claims, the requisite certified copies of said original foreign applications are filed herewith.

It is requested that the file of these applications be marked to indicate that the applicant has complied with the requirements of 35 U.S.C. 119 and that the Patent and Trademark Office kindly acknowledge receipt of said certified copies.

In the event that any fees are due in connection with this paper, please charge our Deposit Account No. 01-2340.

Respectfully submitted,
ARMSTRONG, WESTERMAN, HATTORI
McLELAND & NAUGHTON, LLP

Mel R. Quintos
Reg. No. 31,898

Atty. Docket No.: 010270
Suite 1000, 1725 K Street, N.W.
Washington, D.C. 20006
Tel: (202) 659-2930
Fax: (202) 887-0357
MRQ/l1

井

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 2000年 3月24日

出願番号
Application Number: 特願2000-085448

出願人
Applicant(s): 株式会社小松製作所

2001年 1月26日

特許庁長官
Commissioner,
Patent Office

及川耕造

出証番号 出証特2001-3000832

【書類名】 特許願
【整理番号】 KM00004
【提出日】 平成12年 3月24日
【あて先】 特許庁長官殿
【国際特許分類】 E02F 3/43
【発明者】
【住所又は居所】 栃木県小山市横倉新田400 株式会社小松製作所 小山工場内
【氏名】 碇 政典
【特許出願人】
【識別番号】 000001236
【氏名又は名称】 株式会社小松製作所
【代表者】 安崎 曜
【手数料の表示】
【予納台帳番号】 065629
【納付金額】 21,000円
【提出物件の目録】
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 掘削積込機械の作業機制御装置

【特許請求の範囲】

【請求項1】 ブームのリフトを制御するブームシリンダと、
ブームシリンダの伸縮を制御するブーム制御弁と、
ブームシリンダの伸縮速度を指令するブームレバーと、
ブームレバーの操作量を検出するブームレバー操作量検出器と、
バケットのチルトを制御するバケットシリンダと、
バケットシリンダの伸縮を制御するバケット制御弁と、
バケットシリンダの伸縮速度を指令するバケットレバーと、
バケットレバーの操作量を検出するバケットレバー操作量検出器と、
ブームレバー操作量検出器から入力されるブームレバー操作量に基づきブーム
制御指令値をブーム制御弁に出力し、バケットレバー操作量検出器から入力され
るバケットレバー操作量に基づきバケット制御指令値をバケット制御弁に出力す
るコントローラとを備えた掘削積込機械の作業機制御装置において、
エンジン回転速度を検出するエンジン回転速度検出器を付設し、
コントローラは、手動による指令又は車両が掘削中であるか否かを判断する負
荷判断部の判断に基づいて各制御弁への自動掘削指令値を設定して出力する自動
掘削制御手段を有し、前記自動掘削制御手段は、ブームレバー操作時にはエンジ
ン回転速度が大きくなるに従って小さくなるブーム制御指令値をブーム制御弁に
出力する
ことを特徴とする掘削積込機械の作業機制御装置。

【請求項2】 ブームのリフトを制御するブームシリンダと、
ブームシリンダの伸縮を制御するブーム制御弁と、
ブームシリンダの伸縮速度を指令するブームレバーと、
ブームレバーの操作量を検出するブームレバー操作量検出器と、
バケットのチルトを制御するバケットシリンダと、
バケットシリンダの伸縮を制御するバケット制御弁と、
バケットシリンダの伸縮速度を指令するバケットレバーと、

バケットレバーの操作量を検出するバケットレバー操作量検出器と、
ブームレバー操作量検出器から入力されるブームレバー操作量に基づきブーム
制御指令値をブーム制御弁に出力し、バケットレバー操作量検出器から入力され
るバケットレバー操作量に基づきバケット制御指令値をバケット制御弁に出力す
るコントローラとを備えた掘削積込機械の作業機制御装置において、
エンジン回転速度を検出するエンジン回転速度検出器を付設し、
コントローラは、手動による指令又は車両が掘削中であるか否かを判断する負
荷判断部の判断に基づいて各制御弁への自動掘削指令値を設定して出力する自動
掘削制御手段を有し、前記自動掘削制御手段は、エンジン回転速度又はブームレ
バー操作量に基づく制御指令値をバケット制御弁に出力する
ことを特徴とする掘削積込機械の作業機制御装置。

【請求項3】 請求項2記載の掘削積込機械の作業機制御装置において、
自動掘削制御手段は、ブームレバー操作時には、ブームレバー操作量に応じた
バケット制御指令値をバケット制御弁に出力する
ことを特徴とする掘削積込機械の作業機制御装置。

【請求項4】 請求項2記載の掘削積込機械の作業機制御装置において、
自動掘削制御手段は、エンジン回転速度が大きくなるに従って小さくなるバケ
ット制御指令値をバケット制御弁に出力する
ことを特徴とする掘削積込機械の作業機制御装置。

【請求項5】 ブームのリフトを制御するブームシリンダと、
ブームシリンダの伸縮を制御するブーム制御弁と、
ブームシリンダの伸縮速度を指令するブームレバーと、
ブームレバーの操作量を検出するブームレバー操作量検出器と、
バケットのチルトを制御するバケットシリンダと、
バケットシリンダの伸縮を制御するバケット制御弁と、
バケットシリンダの伸縮速度を指令するバケットレバーと、
バケットレバーの操作量を検出するバケットレバー操作量検出器と、
ブームレバー操作量検出器から入力されるブームレバー操作量に基づきブーム
制御指令値をブーム制御弁に出力し、バケットレバー操作量検出器から入力され

るバケットレバー操作量に基づきバケット制御指令値をバケット制御弁に出力するコントローラとを備えた掘削積込機械の作業機制御装置において、

コントローラは、手動による指令又は車両が掘削中であるか否かを判断する負荷判断部の判断に基づいて各制御弁への自動掘削指令値を設定して出力する自動掘削制御手段を有し、前記自動掘削制御手段は、ブームシリンダの作動・停止に拘らずバケット制御指令値をバケット制御弁に出力することを特徴とする掘削積込機械の作業機制御装置。

【請求項6】 ブームのリフトを制御するブームシリンダと、
ブームシリンダの伸縮を制御するブーム制御弁と、
ブームシリンダの伸縮速度を指令するブームレバーと、
ブームレバーの操作量を検出するブームレバー操作量検出器と、
バケットのチルトを制御するバケットシリンダと、
バケットシリンダの伸縮を制御するバケット制御弁と、
バケットシリンダの伸縮速度を指令するバケットレバーと、
バケットレバーの操作量を検出するバケットレバー操作量検出器と、
ブームレバー操作量検出器から入力されるブームレバー操作量に基づきブーム制御指令値をブーム制御弁に出力し、バケットレバー操作量検出器から入力されるバケットレバー操作量に基づきバケット制御指令値をバケット制御弁に出力するコントローラとを備えた掘削積込機械の作業機制御装置において、

バケット制御指令値を連続的又はパルス的に出力させるモードを設定するモード選択釦を付設して、モード選択釦から出力されるモード選択信号をコントローラに入力し、

コントローラは、手動による指令又は車両が掘削中であるか否かを判断する負荷判断部の判断に基づいて各制御弁への自動掘削指令値を設定して出力する自動掘削制御手段を有し、前記自動掘削制御手段は、モード選択信号に基づいて出力モードを切り換える

ことを特徴とする掘削積込機械の作業機制御装置。

【請求項7】 請求項1，2，5又は6記載の掘削積込機械の作業機制御装置において、

バケットシリンダがストロークエンドのときにオンのストロークエンド信号を出力するストロークエンド検出器を付設してストロークエンド信号をコントローラに入力し、

自動掘削制御手段は、ストロークエンド信号がオンのときに自動掘削制御を完了する

ことを特徴とする掘削積込機械の作業機制御装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、車両前部に作業機を有する掘削積込機械の作業機制御装置に関する

【0002】

【従来の技術】

掘削積込を行う建設機械として、車体の前部にバケットを有して、主として破碎された岩石や土砂等の積載物をバケットにより掘削してダンプトラック等に積み込む作業を行なうホイールローダがある。図9にホイールローダの側面図を示す。

図9において、ホイールローダ1は、走行自在な車体2の前部に昇降自在に取着したブーム3と、ブーム3の先端部に上下方向に回動自在に枢着されたバケット4とを有する作業機5を備えている。ブーム3及びバケット4の操作は、車体2上に搭載された運転室7内に設けられた、それぞれの操作レバー（図示せず）によって行なわれる。積載物6を掘削してバケット4に積み込む際には、積載物6の山に車両を前進させながら、ブーム操作とバケット操作とを交互に行なっている。なお、バケット操作において、バケット4をピン8を中心にして図9において時計回り方向に回転させることをチルトさせるという。

【0003】

このような掘削作業の際に、ブーム3のブーム角度の変化に応じてバケット4のバケット角度を半自動的に制御し、作業能率を向上させる技術があり、この技術は、本願の出願人と同一出願人が出願した特願平10-288859号に示さ

れている。

同号によれば、掘削時のブーム角度に対するバケット角度の関係を予め記憶しておき、オペレータから制御開始信号が入力されたときから、オペレータの操作するブーム角度に対してバケット角度を記憶した関係になるように制御している。即ち、バケット角度検出器の検出量が記憶した目標とするバケット角度になるようにバケット角度を制御している。

【0004】

【発明が解決しようとする課題】

しかしながら、前記従来技術には、次のような問題がある。

従来技術では、ブーム角度が所定角度になったときにバケット角度を制御するバケットシリンダを所定時間だけ伸張させてバケットをチルトする制御方法が提案されている。この制御方法では、バケットシリンダの油圧回路のリリーフ等によりブーム角度に対応したバケット角度にならない場合があり、この場合には、ブーム角度が所定の角度に達して掘削制御が終了したときに、バケットシリンダがストロークエンドまで伸張しきっていないことがある。この場合には、バケットのチルトが不十分で荷こぼれが起きるという問題がある。また、掘削制御が終了する前にバケットシリンダがストロークエンドまで伸張していて、バケットシリンダの油圧回路が無駄にリリーフするという問題がある。これにより、オペレータの意志に合わず、作業効率も向上しないという問題がある。

【0005】

本発明は、上記の問題に着目してなされたものであり、制御中は、オペレータの意志に沿った制御が可能な掘削積込機械の作業機制御装置を提供することを目的としている。

【0006】

【課題を解決するための手段、作用及び効果】

上記の目的を達成するために、第1発明はブームのリフトを制御するブームシリンダと、ブームシリンダの伸縮を制御するブーム制御弁と、ブームシリンダの伸縮速度を指令するブームレバーと、ブームレバーの操作量を検出するブームレバー操作量検出器と、バケットのチルトを制御するバケットシリンダと、バケッ

トシリンダの伸縮を制御するバケット制御弁と、バケットシリンダの伸縮速度を指令するバケットレバーと、バケットレバーの操作量を検出するバケットレバー操作量検出器と、ブームレバー操作量検出器から入力されるブームレバー操作量に基づきブーム制御指令値をブーム制御弁に出力し、バケットレバー操作量検出器から入力されるバケットレバー操作量に基づきバケット制御指令値をバケット制御弁に出力するコントローラとを備えた掘削積込機械の作業機制御装置において、エンジン回転速度を検出するエンジン回転速度検出器を付設し、コントローラは、手動による指令又は車両が掘削中であるか否かを判断する負荷判断部の判断に基づいて各制御弁への自動掘削指令値を設定し、出力する自動掘削制御手段を有し、前記自動掘削制御手段は、ブームレバー操作時にはエンジン回転速度が大きくなるに従って小さくなるブーム制御指令値をブーム制御弁に出力する構成としている。

【0007】

第1発明によれば、ブームレバーが操作されているときには、ブームレバー操作量をそのままブーム制御弁に出力しないでエンジン回転速度に基づくブーム制御指令値を出力する。エンジン回転速度が小さくなったときには、車両への負荷が大きくなっていると判断し、バケットを早くリフトさせて軽減させ、エンジン回転速度が大きくなったときには、負荷が小さいと判断し、バケットのリフト速度を抑えて負荷を逃さないようにする。これにより、常に負荷が適切に保持できるので掘削能率を向上できる。

【0008】

第2発明は、ブームのリフトを制御するブームシリンダと、ブームシリンダの伸縮を制御するブーム制御弁と、ブームシリンダの伸縮速度を指令するブームレバーと、ブームレバーの操作量を検出するブームレバー操作量検出器と、バケットのチルトを制御するバケットシリンダと、バケットシリンダの伸縮を制御するバケット制御弁と、バケットシリンダの伸縮速度を指令するバケットレバーと、バケットレバーの操作量を検出するバケットレバー操作量検出器と、ブームレバー操作量検出器から入力されるブームレバー操作量に基づきブーム制御指令値をブーム制御弁に出力し、バケットレバー操作量検出器から入力されるバケットレ

バー操作量に基づきバケット制御指令値をバケット制御弁に出力するコントローラとを備えた掘削積込機械の作業機制御装置において、エンジン回転速度を検出するエンジン回転速度検出器を付設し、コントローラは、手動による指令又は車両が掘削中であるか否かを判断する負荷判断部の判断に基づいて各制御弁への自動掘削指令値を設定し出力する自動掘削制御手段を有し、前記自動掘削制御手段は、エンジン回転速度又はブームレバー操作量に基づく制御指令値をバケット制御弁に出力する構成としている。

【0009】

第2発明によれば、掘削制御時において、エンジン回転速度又はブームレバー操作量に基づいてバケット制御弁への指令値を設定し出力する。車体にかかる負荷の大きさ及びオペレータのブームレバー操作状況を常にバケットの操作に反映している。これにより、常に負荷が適切に保持できるので掘削能率を向上できる。

【0010】

第3発明は、第2発明の掘削積込機械の作業機制御装置に基づいて、自動掘削制御手段は、ブームレバー操作時には、ブームレバー操作量に応じたバケット制御指令値をバケット制御弁に出力する構成としている。

【0011】

第3発明によれば、オペレータがブームレバーを大きく操作しているときには、バケットを早くリフトして負荷を軽減しようとしているので、これに伴ってブームレバー操作量に応じてバケット制御指令値も大きく設定する。これにより、オペレータの意志に沿ったバランスのよいリフト及びチルト速度が得られ掘削能率が向上する。

【0012】

第4発明は、第2発明の掘削積込機械の作業機制御装置に基づいて、自動掘削制御手段は、エンジン回転速度が大きくなるに従って小さくなるバケット制御指令値をバケット制御弁に出力する構成としている。

【0013】

第4発明によれば、エンジン回転速度が小さくなったときには、車両への負荷

が大きくなっていると判断し、バケットを早くチルトさせて負荷を軽減させ、エンジン回転速度が大きくなったときには、負荷が小さいと判断し、バケットのチルト速度を抑えて負荷を逃さないようにする。これにより、常に負荷が適切に保持できるので掘削能率を向上できる。

【0014】

第5発明は、ブームのリフトを制御するブームシリンダと、ブームシリンダの伸縮を制御するブーム制御弁と、ブームシリンダの伸縮速度を指令するブームレバーと、ブームレバーの操作量を検出するブームレバー操作量検出器と、バケットのチルトを制御するバケットシリンダと、バケットシリンダの伸縮を制御するバケット制御弁と、バケットシリンダの伸縮速度を指令するバケットレバーと、バケットレバーの操作量を検出するバケットレバー操作量検出器と、ブームレバー操作量検出器から入力されるブームレバー操作量に基づきブーム制御指令値をブーム制御弁に出力し、バケットレバー操作量検出器から入力されるバケットレバー操作量に基づきバケット制御指令値をバケット制御弁に出力するコントローラとを備えた掘削積込機械の作業機制御装置において、コントローラは、手動による指令又は車両が掘削中であるか否かを判断する負荷判断部の判断に基づいて各制御弁への自動掘削指令値を設定して出力する自動掘削制御手段を有し、前記自動掘削制御手段は、ブームシリンダの作動・停止に拘らずバケット制御指令値をバケット制御弁に出力する構成としている。

【0015】

第5発明によれば、ブーム制御弁の回路がリリーフしてブームシリンダが伸縮していないときにでも、バケット制御指令値を出力してバケットをチルトさせて車両への負荷を適切に保持できるので掘削能率を向上できる。

【0016】

第6発明は、ブームのリフトを制御するブームシリンダと、ブームシリンダの伸縮を制御するブーム制御弁と、ブームシリンダの伸縮速度を指令するブームレバーと、ブームレバーの操作量を検出するブームレバー操作量検出器と、バケットのチルトを制御するバケットシリンダと、バケットシリンダの伸縮を制御するバケット制御弁と、バケットシリンダの伸縮速度を指令するバケットレバーと、

バケットレバーの操作量を検出するバケットレバー操作量検出器と、ブームレバー操作量検出器から入力されるブームレバー操作量に基づきブーム制御指令値をブーム制御弁に出力し、バケットレバー操作量検出器から入力されるバケットレバー操作量に基づきバケット制御指令値をバケット制御弁に出力するコントローラとを備えた掘削積込機械の作業機制御装置において、バケット制御指令値を連続的又はパルス的に出力させるモードを設定するモード選択釦を付設して、モード選択釦から出力されるモード選択信号をコントローラに入力し、コントローラは、手動による指令又は車両が掘削中であるか否かを判断する負荷判断部の判断に基づいて各制御弁への自動掘削指令値を設定して出力する自動掘削制御手段を有し、前記自動掘削制御手段は、モード選択信号に基づいて出力モードを切り換える構成としている。

【0017】

第6発明によれば、掘削する積載物が硬くて掘削抵抗力が大きいときには、バケット制御指令値をパルス的に出力してバケットを振動的にチルトさせバケットへの積載物の大きな積込み速度を得る。また、積載物が柔らかくて掘削抵抗力が小さいときにバケット制御指令値を連続的に出力して早くチルトさせる。これにより、オペレータの意志に沿った自動掘削制御ができ、また車両への負荷を常に適切に保持できるので掘削能率を向上できる。

【0018】

第7発明は、第1，2，5又は6発明の掘削積込機械の作業機制御装置に基づいて、バケットシリンダがストロークエンドのときにオンのストロークエンド信号を出力するストロークエンド検出器を付設してストロークエンド信号をコントローラに入力し、自動掘削制御手段は、ストロークエンド信号がオンのときに自動掘削制御を完了する構成としている。

【0019】

第7発明によれば、バケットシリンダのストロークエンドをストロークエンド検出器が検出したときに自動掘削制御を完了させるようにしている。これにより、バケットシリンダのストロークを十分使い切ることができ、オペレータの意志に沿った自動掘削制御ができ、作業能率を向上できる。

【0020】

【発明の実施の形態】

以下、図を参照しながら、本発明に係る実施形態を詳細に説明する。

まず、図1、2、3により第1実施形態を説明する。

図1にホイールローダ1の作業機5の側面図を示す。

ブーム3の基端部は車体2にピン7により回動自在に取着され、車体2とブーム3はブームシリンダ10により連結されている。ブームシリンダ10を伸長するとブーム3はピン7を中心として回動して上昇し、縮小すると下降する。また、ブーム3の先端部にはバケット4がピン8により回動自在に取着され、バケット4とブーム3はリンク9を介してバケットシリンダ11により連結されている。バケットシリンダ11を伸長するとバケット4はチルトし、縮小するとダンプする。

【0021】

上記のような作業機5において、ブーム角度 θ_m は、ピン7とピン8とを結ぶ線A-Aと、ピン7を通る鉛直線B-Bとの成す角度 θ_m で表される。ブーム3の基端部のピン7部にブーム角度 θ_m を検出するブーム角度検出器40が取着されている。ブーム角度 θ_m は、鉛直線B-Bをゼロ度としてピン7を中心にして図1の時計回り方向を正の角度として検出する。また、バケットシリンダ11には、バケットシリンダ11のストロークエンドを検出するストロークエンド検出器46が取着されている。

図2に、本実施形態の自動掘削制御装置の制御系統図を示す。

作業機油圧ポンプ12の吐出回路16上に介装された油圧パイロット式のブーム制御弁13とバケット制御弁14とは、それぞれブームシリンダ10とバケットシリンダ11とに接続され、タンデム回路を構成している。

ブーム制御弁13はA(ブーム上昇)位置、B(中立)位置、C(ブーム下降)位置、D(浮き)位置を有する4位置切換弁であり、バケット制御弁14はE(チルト)位置、F(中立)位置、G(ダンプ)位置を有する3位置切換弁である。

【0022】

ブーム制御弁13及びバケット制御弁14のパイロット受圧部は、それぞれ電磁比例指令弁20を介してパイロットポンプ15と接続されている。電磁比例指令弁20は、ブーム下げ指令弁21、ブーム上げ指令弁22、バケットダンプ指令弁23及びバケットチルト指令弁24により構成されている。

ブーム下げ指令弁21及びブーム上げ指令弁22は、ブーム制御弁13の各パイロット受圧部に接続され、バケットダンプ指令弁23及びバケットチルト指令弁24は、バケット制御弁14の各パイロット受圧部に接続されている。また、各指令弁21, 22, 23, 24のソレノイド指令部には、コントローラ25からそれぞれの指令信号が入力されている。

【0023】

ブームレバー30には、ブームレバー操作量 E_m を検出するブームレバー操作量検出器31が取着され、またバケットレバー32には、バケットレバー操作量 E_t を検出するバケットレバー操作量検出器33が取着されており、それぞれの検出信号はコントローラ25に入力されている。

また、コントローラ25には、ブーム角度検出器40からのブーム角度 θ_m 、エンジン回転速度検出器43からエンジン回転速度 N_e 及び車速検出器44からの車速 V がそれぞれ入力されている。なお、エンジン回転速度検出器43及び車速検出器44は、車両の掘削状態を検出する手段である。

【0024】

運転室側部の図示しない操作パネルには、オペレータが操作する自動掘削制御を行なうか否かを設定するオートチルト設定スイッチ36が設けられており、オートチルト設定スイッチ36から出力されるオートチルト信号 C_a は、コントローラ25に入力されている。なお、オートチルト信号 C_a は、オペレータがオン操作したときにオン信号「1」を出力する。なお、オン操作しないときには、オフ信号「0」を出力する。

バケットレバー32には、変速レバー（図示せず）を操作することなく前進2速から前進1速に変速可能なキックダウンスイッチ35が設けられている。オペレータがオン操作したときにキックダウン信号 C_k はオン信号「1」をコントローラ25に出力すると共に、図示しない変速制御装置に指令して前進1速に変速

する。なお、オン操作しないときには、キックダウン信号C_kはオフ信号「0」を出力する。

ストロークエンド検出器4 6から、ストロークエンド信号C_eがコントローラ2 5に入力されていて、バケットシリンダ1 1のストロークがストロークエンドまでの所定距離（例えば5 mm）に達したときに、ストロークエンド信号C_eはオン信号の「1」を出力する。所定距離に達しないときにはオフ信号「0」を出力する。

【0025】

また、オペレータが前後進を指令する前後進レバー（図示せず）の近傍に前後進検出器4 7が取着され、前後進検出器4 7から前進信号C_fが、コントローラ2 5に入力されている。前進信号C_fは、前進時にオン信号「1」を出力する。なお、ニュートラル時及び後進時には、オフ信号「0」を出力する。

さらに、オペレータが操作し、土質、作業条件等から最適の掘削モードを選択するモード選択鉗4 2が、運転室側部の図示しない操作パネルに配設されている。オペレータは、積載物6が柔らかくて掘削抵抗が小さいときにオフ信号「0」、硬くて掘削抵抗が大きいときにオン信号「1」の選択信号C_cをモード選択鉗4 2から入力し、選択信号C_cは、コントローラ2 5に入力されている。

【0026】

次に、図2に基づいてオートチルト設定スイッチ3 6をオン操作しないで通常運転する場合の作動を説明する。

オペレータがブームレバー3 0又はバケットレバー3 2を操作すると、コントローラ2 5には、ブームレバー操作量検出器3 1及びバケットレバー操作量検出器3 3からブームレバー操作量E_m及びバケットレバー操作量E_tが入力され、コントローラ2 5は、この操作量信号に応じた作業機速度制御指令を各指令弁2 1, 2 2, 2 3, 2 4に出力する。

各指令弁2 1, 2 2, 2 3, 2 4は、この作業機速度制御指令の大きさに応じた圧力の各パイロット油圧を、対応するブーム制御弁1 3又はバケット制御弁1 4のパイロット受圧部に出力する。これによって、ブームシリンダ1 0又はバケットシリンダ1 1は、それぞれのパイロット油圧に応じた速度で対応する方向に

作動する。

【0027】

次に、コントローラ25の図3、5に示す制御フローチャート及び図4に示す掘削領域説明図により、本実施形態に係る自動掘削制御装置の作動を説明する。なお、制御フローチャートの各処理のステップ番号をSを付して表わし、S1～S6を図3に、S7～S15を図5にそれぞれ示す。

S1にて、

- (1) オートチルト信号C_aがオン信号「1」、
- (2) 前進信号C_fがオン信号「1」、
- (3) ブーム角度θ_mが所定のブーム角度下限値θ_{m1}よりも小さい、
- (4) キックダウン信号C_kがオン信号「1」、
- (5) ブームレバー操作量E_mが所定のブームレバー操作量下限値E_{m1}よりも大きい、

の5項目を全て満足するときはS2の処理に移る。5項目の内1項目でも満足しないときには、S1の処理を繰り返す。

なお、ブームレバー操作量E_mがブームレバー操作量下限値E_{m1}以下のときには制御弁への指令値はゼロ値であり、ブームレバー操作量下限値E_{m1}より大きく所定のブームレバー操作量上限値E_{m2}よりも小さいときには、操作量に応じてブーム指令弁21、22への制御指令値は大きくなり、ブームレバー操作量上限値E_{m2}以上のときには、ブーム指令弁21、22への制御指令値はブームレバー操作量上限値E_{m2}のときの制御指令値を保持する。

【0028】

S2にて、車速Vが所定のエンジン係数kにエンジン回転速度N_eとの積よりも小さいか否かを判断する。エンジン係数kは、図4に示すように、車速Vが前記積よりも小さいときには掘削中であり、車速Vが前記積以上のときには掘削中ではないことを区別する直線の勾配である。なお、エンジン係数kは、熟練オペレータによる掘削時に掘削中の車速データを収集して設定した値である。

車速Vが前記積よりも小さいときにはS3の処理に移り、前記積以上のときはS2の繰り返す。なお、S2を負荷第1判断部48と呼ぶ。

S3にて、ブームレバー操作量E_mがブームレバー操作量上限値E_{m2}よりも大きいか否かを判断する。大きいときにはS4の処理に移り、ブームレバー操作量上限値E_{m2}以下のときにはS7の処理に移る。

S4にて、ブーム角速度θ_{md}がゼロ値か否かを判断し、ゼロ値のときにはS7の処理に移り、ゼロ値でないならばS6の処理に移る。

【0029】

S6にて、ブームレバー操作量E_mの値をもつブーム制御指令値V_mと、バケットレバー操作量E_tの値をもつバケット制御指令値V_tとを電磁比例指令弁20にそれぞれ出力し、S2の処理に戻る。

S7にて、ブームレバー操作量E_mがブームレバー操作量下限値E_{m1}よりも小さいか否かを判断する。小さいときにはS8の処理に移り、ブームレバー操作量下限値E_{m1}以上のときには、S11の処理に移る。なお、S7以降S15までを自動掘削制御手段51と呼ぶ。

S8にて、ゼロ値のブーム制御指令値V_mを電磁比例指令弁20に出力し、S9の処理に移る。

S9にて、エンジンのハイアイドル回転速度N_{e m}をエンジン回転速度N_eで除した値と所定のバケット流量係数α_tとの積をバケット流量加算値Q_tとする。バケット流量係数α_tは、%で示す値とするので、バケット流量加算値Q_tも%で示す値となる。そして、バケットレバー操作量E_tにバケット流量加算値Q_tを加算した値をバケット制御指令値V_tと設定し、S10の処理に移る。

【0030】

S10にて、エンジンのハイアイドル回転速度N_{e m}をエンジン回転速度N_eで除した値と所定のブーム流量係数α_mとの積をブーム流量変更値Q_mとする。ブーム流量係数α_mは、%で示す値とするので、ブーム流量変更値Q_mも%で示す値となる。そして、ブーム流量変更値Q_mの値をもつバケット制御指令値V_tを電磁比例指令弁20に出力してS11の処理に移る。

S11にて、ブームレバー操作量E_mに応じて変化するバケット流量変数α_{t v}を演算する。次に、エンジンのハイアイドル回転速度N_{e m}をエンジン回転速度N_eで除した値と演算したバケット流量変数α_{t v}との積をバケット流量加算

値 Q_t とする。そして、バケットレバー操作量 E_t にバケット流量加算値 Q_t を加算した値をバケット制御指令値 V_t に設定し、S12の処理に移る。

【0031】

S12にて、モード選択信号 C_c がオフ信号「0」か否かを判断する。オフ信号「0」であればS13の処理に移る。オフ信号「0」でなければ、S14の処理に移る。

S13にて、S9又はS11で設定したバケット制御指令値 V_t を、所定の時間 T_1 （例えば5秒）だけ電磁比例指令弁20に出力し、S15の処理に移る。

S14にて、S9又はS11で設定したバケット制御指令値 V_t と、所定のチルトオン時間 ΔT とを有するパルスをチルト周期 T_2 で2回だけ電磁比例指令弁20に出力してS15の処理に移る。

S15にて、

- (1) 前進信号 C_f がオフ信号「0」、
- (2) ストロークエンド信号 C_e がオン信号「1」、
- (3) ブーム角度 θ_m が所定のブーム角度上限値 θ_{m2} よりも大きい、
- (4) チルト回数 N_t が所定のチルト回数閾値 N_{tm} 以上、

の4項目の内、1項目でも満足した場合に自動掘削制御の完了となる。4項目共に満足しないときには、S7の処理に戻る。なお、チルト回数 N_t は、S7の処理を実行した回数とする。

【0032】

ここで、熟練オペレータによる掘削開始時の操作パターンを説明する。

オペレータが、車両1のバケット4の刃先を積載物6に食い込ませると、刃先から車体にかかる水平抵抗力が大きくなつて車速 V が低下してくる。車速 V が、図4の斜線部に示す掘削領域になると、熟練したオペレータは、まず最初にブームレバー30を操作してブーム3を上昇させて水平抵抗力を小さくしようとする。

【0033】

次に、本実施形態の作用及び効果を説明する。

制御フローチャートにおいて、オートチルト設定スイッチ36がオン操作され

ていて、前後進レバーが前進位置にあり、ブーム角度 θ_m がブーム角度下限値 θ_{m1} 以下であり、キックダウンスイッチ35がオン操作されていて、かつブームレバー操作量 E_m がブームレバー操作量下限値 E_{m1} よりも大きいときに車速 V が図4の斜線部に示す掘削領域に入ったか否かを判断する（S1, S2）

コントローラ25は、車速 V が掘削領域に入ったときに、オペレータがブームレバー30をブームレバー操作量上限値 E_{m2} よりも大きく操作して、ブーム3を早く上昇させようとしているか否かを判断する（S3）。掘削領域は、熟練オペレータによる掘削時に得られた実車データに基づいて設定されている。ブームレバー30がブームレバー操作量上限値 E_{m2} よりも大きく操作している場合に、コントローラ25は、ブーム角速度 θ_{md} がゼロ値か否かによってブーム3の油圧回路がリリーフしているか否かを判断する（S4）。ブームレバー30を大きく操作してブーム3を上昇させようとしたにも拘らず油圧回路がリリーフしていると、もはやブーム3が上昇していないので水平抵抗力を低減できない。そして、バケット4のチルトによって水平抵抗力を低減するために自動掘削制御の開始のステップに移る。

【0034】

ブーム3の油圧回路がリリーフしていないときには、ブームレバー操作量 E_m の値をもつブーム制御指令値 V_m 及びバケットレバー操作量 E_t の値をもつバケット制御指令値 V_t を電磁比例指令弁20に出力し、オペレータのレバー操作量通りにブーム及びバケットを操作する。そして、車速 V がまだ掘削領域にあるか否かを判断する。

【0035】

水平抵抗力が大きくなって、車速 V が掘削領域に入ったときに、ブームレバー操作量 E_m がブームレバー操作量上限値 E_{m2} 以上も操作されているのにバケット4が上昇しないときには、バケット4の刃先が硬い地面に食い込んだような状態であると判断し、自動掘削制御を開始させる。また、車速 V が掘削領域に入っていてオペレータが大きくブーム3を上昇させようとする意志のない、ブームレバー操作量 E_m がブームレバー操作量上限値 E_{m2} 以下の場合に、自動掘削制御を開始させる。

【0036】

自動掘削制御の開始が決定されると、ブームレバー操作量E_mがブームレバー操作量下限値E_{m1}以下のとき（S7）には、オペレータはブーム3を上昇させる意志はないと判断し、ゼロ値のブーム制御指令値V_mを指令弁21, 22に出力してブーム3を上昇させない（S8）。

バケット制御指令値V_tについては、バケットレバー操作量E_tにバケット流量加算値Q_tを加算した値とし、エンジン回転速度N_eが小さくなるに従って大きな%になるようなバケット流量加算値Q_tを演算する。そして、演算したバケット流量加算値Q_tをバケットレバー操作量E_tに加算したバケット制御指令値V_tをバケット4を作動させる指令弁23, 24への指令値と設定する。なお、演算されたバケット制御指令値V_tが100%以上の値になるときは100%に設定する（S9）。

【0037】

このように、水平抵抗力及び垂直抵抗力が大きくなるに従ってエンジン回転速度N_eが小さくなるが、エンジン回転速度N_eが小さくなるに従って指令弁23, 24に出力する大きな指令値を設定できるので、バケット4のチルト速度を大きくして掘削速度を向上できる。

【0038】

ブームレバー操作量E_mがブームレバー操作量下限値E_{m1}よりも大きいときは、ブームレバー操作量E_mの替わりに、ブーム流量変更値Q_mをブーム制御指令値V_mとして指令弁21, 22に出力してブーム3を上昇させる。ブーム流量変更値Q_mは、エンジン回転速度N_eが小さくなるに従って大きな%になるよう演算される。なお、演算されたブーム流量変更値Q_mが100%以上の値になるときは100%とする。そして、演算したブーム流量変更値Q_mをブーム制御指令値V_mに設定する（S10）。

一方、ブームレバー操作量E_mに応じて変化するバケット流量変数α_{t v}を求め、エンジンのハイアイドル回転速度N_{e m}を現在のエンジン回転速度N_eで除した値とバケット流量変数α_{t v}との積をバケット流量加算値Q_tとする。そして、バケットレバー操作量E_tにバケット流量加算値Q_tを加算した値をバケッ

ト制御指令値 V_t に設定する (S11)。

【0039】

これにより、オペレータが入力したブームレバー操作量 E_m が大きくて、早くブーム3を上昇させたいという意志のときには、付随してバケット4も早くチルトできるバケット制御指令値 V_t を予め設定できる。

また、ブーム制御指令値 V_m 及びバケット制御指令値 V_t 共に、エンジン回転速度 N_e が小さくなるに従って大きな値にして、ブーム3及びバケット4の作動速度を早くして掘削能率が向上できる。

さらに、ブーム制御弁の回路がリリーフしてブームシリンダが伸縮していないときにも、バケット制御指令値を出力してバケットをチルトさせて車両への負荷を適切に保持できるので掘削能率を向上できる。

【0040】

次に、オペレータの操作するモード選択鉗42から入力されるモード選択信号 C_c を判断する (S12)。積載物6の掘削抵抗力が小さいときにはオフ信号「0」、硬くて掘削抵抗の大きいときにはオン信号「1」がコントローラ25に入力されている。モード選択信号 C_c がオフ信号「0」のとき、予め設定されたバケット制御指令値 V_t を所定の時間 T_1 (例えば5秒) だけ指令弁23, 24に出力して、バケット4をバケット制御指令値 V_t に対応した速度及び時間 T_1 に応じた角度チルトさせる (S13)。また、オン信号「1」のときには、予め設定されたバケット制御指令値 V_t を所定の ΔT だけ2回、パルス的に指令弁23, 24に出力して、バケット4を振動させながらチルトさせる (S14)。なお、ブーム制御指令値 V_m 及びバケット制御指令値 V_t を自動掘削指令値と呼ぶ。ストロークエンド信号 C_e がオン信号「1」のときに自動掘削制御は完了する (S15)。

【0041】

これにより、積載物6の掘削抵抗力の大きさに応じたバケット4のチルト方法を選択できるので、掘削速度が向上でき、かつオペレータの意志に沿った制御が可能となる。そして、バケットシリンダがストロークエンドまで達したときにストロークエンドを検出し自動的に自動掘削が完了するので、オペレータの意志に沿

った自動掘削制御ができ、またバケットシリンダのストロークを余すことなく利用できるので、作業能率を向上できる。

【0042】

なお、本実施形態では、掘削制御の開始時期を制御フローのS1, S2, S3, S4, S6により判断しているが、オペレータが操作する鉗等から手動の指令により開始するようにしてもよい。

また、本実施形態では、掘削中か否かを図4に示すようなエンジン回転速度に関する直線により判断しているが、直線ではなく曲線であっても何ら差し支えない。

【0043】

次に、図6, 7, 8により第2実施形態を説明する。

図6に示す制御系統図において、第1実施形態で説明した図2の制御系統図の車速検出器44の替わりにアクセルペダル操作量Aを検出するアクセルペダル操作量検出器45が設けてあり、検出されたアクセルペダル操作量Aはコントローラ25に入力されている。アクセルペダル操作量検出器45の他は図2と同一の構成要素であるので、ここでは説明を省略する。なお、アクセルペダル操作量検出器45は、車両の掘削状態を検出する掘削状態検出手段である。

本実施形態の制御フローチャートは、第1実施形態で説明した図3の負荷第1判断部48を図7に示す負荷第2判断部49に変更したのみで、残りのフローは図3と同一である。負荷第2判断部49は、処理ステップS16を有していて、
 (1) アクセルペダル操作量Aがアクセルペダル操作量閾値Ajよりも大きく、
 (2) エンジン回転速度Neがエンジン回転速度閾値Nejよりも小さい、
 の2項目を共に満足すれば図3のS3の処理に移る。1項目でも満足しないときにはS16の処理を繰り返す。

アクセルペダル操作量閾値Aj、エンジン回転速度閾値Nejは、熟練オペレータによる掘削中のアクセルペダル操作量データ及びエンジン回転速度データを収集して設定した値であり、予めコントローラ25に記憶されている。また、各値の関係を図8に示す。アクセルペダルをアクセルペダル操作量閾値Ajまで踏み込んでいるにも拘らず、エンジン回転速度Neが大きくならないときに掘削中

であると判断している。

【0044】

本実施形態の作用及び効果を説明する。

アクセルペダル操作量A及びエンジン回転速度N_eが掘削領域に入ったとき、かつブームレバー操作量E_mがブームレバー操作量下限値E_{m1}以上にあるときが掘削開始の意思表示であるとする熟練オペレータの操作手順を取り込んでいるので常に適切なタイミングで掘削の制御を開始できる。

なお、自動掘削制御に入った後の処理方法における作用及び効果は、第1実施形態と同一であるので説明を省略する。

【0045】

以上、本発明によれば、自動掘削制御中にエンジン回転速度が小さくなったりには、車両への負荷が大きくなっていると判断し、バケットを早く上昇させて車両への負荷を軽減させ、エンジン回転速度が大きくなったりには、負荷が小さいと判断し、バケットの上昇速度を抑えて負荷を逃さないようにする。さらに、オペレータがブームレバーを大きく操作しているときは、バケットを早く上昇して負荷を軽減しようとしているので、これに伴ってブームレバー操作量に応じてバケット制御指令値も大きく設定しチルト速度を大きくする。これらにより、常に負荷が適切に保持できるので掘削能率を向上でき、またオペレータの意志に沿った制御が可能となる。

また、ストロークエンド検出器によりバケットシリンダがストロークエンドに達したときに自動掘削制御を完了させるようにしているので、ストロークエンドまで十分にストロークを使い切ることができ、オペレータの意志に沿い、かつ優れた掘削効率を有する掘削積込機械の作業機制御装置が得られる。

さらに、従来技術で必要としたバケット角度検出器が不要となるので、故障頻度が減少し、かつ安価な掘削積込機械の作業機制御装置が得られる。

【図面の簡単な説明】

【図1】

第1実施形態に係る作業機の構成図である。

【図2】

第1実施形態に係る制御系統図である。

【図3】

第1実施形態に係る制御フローチャートの掘削開始判断部である。

【図4】

車速及びエンジン回転速度で示す掘削領域の説明図である。

【図5】

第1実施形態に係る制御フローチャートの自動掘削制御部である。

【図6】

第2実施形態に係る制御系統図である。

【図7】

第2実施形態に係る掘削中の判断回路である。

【図8】

アクセルペダル操作量及びエンジン回転速度で示す掘削領域の説明図である。

【図9】

ホイールローダの側面図である。

【符号の説明】

- 1 …ホイールローダ、 3 …ブーム、 4 …バケット、 5 …作業機、 6 …積載物、
10 …ブームシリンダ、 11 …バケットシリンダ、 12 …作業機油圧ポンプ、 13 …ブーム制御弁、 14 …バケット制御弁、 20 …電磁比例指令弁、 21 …ブームリフト指令弁、 22 …ブームダウン指令弁、 23 …バケットダンプ指令弁、 24 …バケットチルト指令弁、 25 …コントローラ、 30 …ブームレバー、 31 …ブームレバー操作量検出器、 32 …バケットレバー、 33 …バケットレバー操作量検出器、 35 …キックダウンスイッチ、 36 …オートチルト設定スイッチ、 40 …ブーム角度検出器、 41 …バケット角度検出器、 42 …モード選択釦、 43 …エンジン回転速度検出器、 44 …車速検出器、 45 …アクセルペダル操作量検出器、 46 …ストロークエンド検出器、 47 …前後進検出器、 48 …負荷第1判断部、 49 …負荷第2判断部、 51 …自動掘削制御手段、 V …車速、 Ne …エンジン回転速度、 θm …ブーム角度、 θt …バケット角度、 θmd …ブーム角速度、 Em …ブームレバー操作量、 Et …バケットレバー操作量、 Qm …ブーム流量

変更値、 Q_t …バケット流量加算値、 V_m …ブーム制御指令値、 V_t …バケット制御指令値、 C_f …前進信号、 C_a …オートチルト信号、 C_e …ストロークエンジン信号、 C_k …キックダウン信号、 C_s …セミオート掘削信号、 C_c …モード選択信号、 k …エンジン係数、 A …アクセルペダル操作量、 A_j …アクセルペダル操作量閾値、 N_t …チルト回数、 α_m …ブーム流量係数、 α_t …バケット流量係数、 α_{tv} …バケット流量変数、 N_{ej} …エンジン回転速度閾値。

【書類名】 図面

【図1】第1実施形態に係る作業機の構成図

【図2】第1実施形態に係る制御系統図

【図3】第1実施形態に係る制御フローチャートの掘削開始判断部

【図4】車速及びエンジン回転速度で示す掘削領域の説明図

【図5】第1実施形態に係る制御フローチャートの自動掘削制御部

【図6】第2実施形態に係る制御系統図

【図7】第2実施形態に係る掘削中の判断回路

【図8】アクセルペダル操作量及びエンジン回転速度で示す掘削領域の説明図

特2000-085448

【図9】ホイールローダの側面図

【書類名】 要約書

【要約】

【課題】 オペレータの意志に沿った制御が可能な掘削積込機械の作業機制御装置を提供する。

【解決手段】 エンジン回転速度を検出するエンジン回転速度検出器を付設し、コントローラは、手動による指令又は車両が掘削中であるか否かを判断する負荷判断部の判断に基づいて各制御弁への自動掘削指令値を設定し出力する自動掘削制御手段を有し、前記自動掘削制御手段は、ブームレバー操作時にはエンジン回転速度が大きくなるに従って小さくなるブーム制御指令値をブーム制御弁に出力し、ブームレバー操作時には、ブームレバー操作量に応じたバケット制御指令値をバケット制御弁に出力し、エンジン回転速度が大きくなるに従って小さくなるバケット制御指令値をバケット制御弁に出力する構成とする。

【選択図】 図2

出願人履歴情報

識別番号 [000001236]

1. 変更年月日 1990年 8月29日

[変更理由] 新規登録

住 所 東京都港区赤坂二丁目3番6号

氏 名 株式会社小松製作所