Supplementary Document of "Phage Host Prediction Using Deep Neural Network with Multi-source Protein Language Models and Squeeze-and-Excitation Attention Mechanism"

Peng Gao, Long Xu, Yuan Bai, Qiuzhen Lin, Member, IEEE, Junkai Ji, and Lijia Ma, Member, IEEE

This is the supplementary document to the paper entitled "Phage Host Prediction Using Deep Neural Network with Multi-source Protein Language Models and Squeeze-and-Excitation Attention Mechanism" and submitted to IEEE Journal of Biomedical and Health Informatics. The supplementary document includes performance comparisons, statistical analyses, impact of parameter settings, and additional results that further validate the robustness and effectiveness of the proposed PHPRBP model.

I. COMPARISON OF PREDICTION PERFORMANCE AND CLASS DISTRIBUTIONS

In this part, we first present the performance comparison of PHPRBP and baseline methods on 5-fold cross-validation (see Table S1). Next, the class distributions for Datasets 2 and 3 are shown (see Fig. S1). We then compare the performance of PHPRBP and baseline methods at different taxonomic level across three datasets (see Table S2). Following this, we introduce various pre-trained PLMs and present their performance along with PHPRBP on 5-fold cross-validation (see Table S3 and Table S4). We also examine the performance of PHPRBP with different class imbalance mitigation strategies (see Table S5), followed by a comparison of the model's performance before and after ADASYN data augmentation for specific minority classes (see Table S6). Finally, we present an ablation study of PHPRBP and its variants based on 5-fold cross-validation (see Table S7).

II. STATISTICAL ANALYSIS OF PREDICTION PERFORMANCE COMPARISONS

We conduct paired sample t-tests of PHPRBP with the baseline methods on five evaluation metrics across the three datasets, and the results are shown in Tables S8, S9, and S10. All statistical analyses are based on the results of 5-fold cross-validation with 10 replications, and the validity of the t-tests is ensured by verifying that the data meets the normality assumption using the Shapiro-Wilk test. These test results reveal the statistical significance of the performance improvement and confirm the robustness of the PHPRBP model. In all comparisons, PHPPRBP shows significant performance improvement on most metrics, demonstrating the superiority of its model. For example, PHPRBP achieves statistically significant advantages over all the baseline methods on all

metrics in the experiments on Dataset 1 (p-values are all much less than 0.05). However, in some cases, such as the MSRF and MSXGB models in Dataset 2, PHPRBP's performance on ACC, Precision, and Sensitivity fails to reach statistical significance. This may be due to the lower diversity in Dataset 2, which affects the model's adaptability and stability. Notably, PHPRBP remains statistically significance on two comprehensive metrics, MCC and F1.

III. IMPACT OF HYPERPARAMETER SETTINGS ON MODEL PERFORMANCE

In this part, we analyze the impacts of key parameters on the host prediction performance of PHPRBP, focusing on hyperparameters such as batch size n_b and reduction factor r. We first test various batch sizes n_b (16, 32, 64, and 128). After identifying the optimal n_b , we then explore different reduction factors r (4, 8, 16, and 32).

The batch size n_b affects the stability of the PHPRBP model during training. As shown in Table S11, PHPRBP performs best in the host prediction task with $n_b=32$. This optimal batch size likely strikes a balance between stability and learning flexibility, thereby enhancing the effectiveness of batch normalization. Additionally, the results further show that higher batch sizes (i.e., $n_b=32$, 64, and 128) generally yield better performance than the lower batch size (i.e., $n_b=16$). This can be attributed to the instability caused by smaller batch sizes, which negatively impacts batch normalization and leads to poorer prediction performance. In this case, a batch size setting of 32 is deemed appropriate for PHPRBP.

In the SE attention mechanism, the reduction factor r is crucial for learning the attention coefficients. Table S12 illustrates the variation in the prediction performance of PH-PRBP with different values of r. The results indicate that the prediction performance initially increases and then decreases as r increases, reaching optimal performance at r=16. This may be because smaller r values (i.e., r=2, 4, and 8) do not sufficiently suppress unimportant features, limiting the effectiveness of the attention mechanism. Conversely, a larger r value (i.e., r=32) may place too much emphasis on important features while neglecting the contribution of other potential features, leading to a decline in performance. Thus, setting r to 16 in PHPRBP is an appropriate choice.

1

REFERENCES

- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is all you need," in *Proceedings* of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 5998–6008.
- [2] B. E. Suzek, H. Huang, P. McGarvey, R. Mazumder, and C. H. Wu, "Uniref: comprehensive and non-redundant uniprot reference clusters," *Bioinformatics*, vol. 23, no. 10, pp. 1282–1288, 2007.
- [3] M. Steinegger, M. Mirdita, and J. Söding, "Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold," *Nature methods*, vol. 16, no. 7, pp. 603–606, 2019.
 [4] M. Steinegger and J. Söding, "Clustering huge protein sequence sets in
- [4] M. Steinegger and J. Söding, "Clustering huge protein sequence sets in linear time," *Nature communications*, vol. 9, no. 1, 2018, Art. no. 2542.
- [5] M. E. Peters, M. Neumann, L. Zettlemoyer, and W. Yih, "Dissecting contextual word embeddings: Architecture and representation," in *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, 2018, pp. 1499–1509.

TABLE S1: The performance comparison of PHPRBP and baseline methods on Datasets 1, 2, and 3.The best performance are highlighted in boldface.

Dataset	Model	ACC	F1	MCC	Precision	Recall
Dataset 1	PHPRBP	$0.8804{\pm}0.0027$	$0.8764 {\pm} 0.0025$	0.8693 ± 0.0030	$0.8788 {\pm} 0.0035$	$0.8804{\pm}0.0027$
	HFRF	0.8085 ± 0.0077	0.8008 ± 0.0075	0.7895 ± 0.00817	0.8178 ± 0.0067	0.8085 ± 0.0077
	ESMMLP	0.8132 ± 0.0060	0.8044 ± 0.0065	0.7924 ± 0.0070	0.8070 ± 0.006	0.8132 ± 0.0060
	PHIEmbed	0.8097 ± 0.0045	0.8047 ± 0.0041	0.7910 ± 0.0047	0.8159 ± 0.0045	0.8097 ± 0.0045
Dataset 1	DeepHost	0.7618 ± 0.0123	0.7559 ± 0.0116	0.7409 ± 0.0125	0.7683 ± 0.0091	0.7618 ± 0.0123
	MSKNN	0.8158 ± 0.0018	0.8117 ± 0.0022	0.8031 ± 0.0024	0.8172 ± 0.0029	0.8158 ± 0.0018
	MSRF	0.8634 ± 0.0039	0.8614 ± 0.0036	0.8525 ± 0.0042	0.8648 ± 0.0039	0.8634 ± 0.0039
	MSXGB	0.8646 ± 0.0025	0.8622 ± 0.0027	0.8540 ± 0.0027	0.8667 ± 0.0020	0.8646 ± 0.0025
	PHPRBP	$0.9294{\pm}0.0187$	$0.9293 {\pm} 0.0184$	0.9135 ± 0.0226	$0.9325 {\pm} 0.0162$	$0.9294{\pm}0.0187$
	HFRF	0.8850 ± 0.0152	0.8841 ± 0.0151	0.8480 ± 0.0211	0.8893 ± 0.0162	0.8850 ± 0.0152
	ESMMLP	0.9064 ± 0.0141	0.9063 ± 0.0143	0.8795 ± 0.0179	0.9094 ± 0.0134	0.9064 ± 0.0141
Dataset 2	PHIEmbed	0.8862 ± 0.0171	0.8846 ± 0.0171	0.8537 ± 0.0207	0.8928 ± 0.0181	0.8862 ± 0.0171
Dataset 2	DeepHost	0.8738 ± 0.0334	0.8732 ± 0.0323	0.8385 ± 0.0427	0.8806 ± 0.0307	0.8738 ± 0.0334
	MSKNN	0.8741 ± 0.0240	0.8732 ± 0.0234	0.8465 ± 0.0292	0.8784 ± 0.0237	0.8741 ± 0.0240
	MSRF	0.9203 ± 0.0039	0.9195 ± 0.0041	0.8933 ± 0.0054	0.9218 ± 0.0037	0.9203 ± 0.0039
	MSXGB	0.9218 ± 0.0155	0.9219 ± 0.0154	0.9037 ± 0.0179	0.9249 ± 0.0145	0.9218 ± 0.0155
	PHPRBP	0.9370 ± 0.0111	$0.9368 {\pm} 0.0112$	0.9221 ± 0.0150	0.9391 ± 0.0112	0.9370 ± 0.0111
	HFRF	0.8935 ± 0.0057	0.8876 ± 0.0058	0.8453 ± 0.0082	0.8948 ± 0.0059	0.8935 ± 0.0057
	ESMMLP	0.9096 ± 0.0050	0.9038 ± 0.0046	0.8710 ± 0.0062	0.9035 ± 0.0051	0.9096 ± 0.0050
Dataset 3	PHIEmbed	0.8886 ± 0.0031	0.8857 ± 0.0029	0.8389 ± 0.0040	0.8900 ± 0.0031	0.8886 ± 0.0031
Dataset 3	DeepHost	0.8759 ± 0.0051	0.8715 ± 0.0053	0.8219 ± 0.0070	0.8742 ± 0.0047	0.8759 ± 0.0051
	MSKNN	0.8833 ± 0.0042	0.8849 ± 0.0035	0.8508 ± 0.0042	0.8893 ± 0.0025	0.8833 ± 0.0042
	MSRF	0.9275 ± 0.0214	0.9273 ± 0.0211	0.9098 ± 0.0262	0.9303 ± 0.0203	0.9275 ± 0.0214
	MSXGB	0.9279 ± 0.0037	0.9270 ± 0.0040	0.9037 ± 0.0051	0.9280 ± 0.0042	0.9279 ± 0.0037

TABLE S2: The performance comparison of PHPRBP and baseline methods at different taxonomic level on Datasets 1, 2, and 3. The best performance are highlighted in boldface.

Level	Dataset	Model	ACC	F1	MCC	Precision	Recall
		PHPRBP	$0.9447{\pm}0.0035$	$0.9446 {\pm} 0.0036$	0.9391 ± 0.0039	0.9449 ± 0.0036	0.9447 ± 0.0035
		HFRF	0.8977 ± 0.0036	0.8960 ± 0.0034	0.8864 ± 0.0040	0.9011 ± 0.0039	0.8977 ± 0.0036
		ESMMLP	0.9066 ± 0.0066	0.9056 ± 0.0066	0.8963 ± 0.0074	0.9058 ± 0.0068	0.9066 ± 0.0066
Comile	Dataset 1	PHIEmbed	0.9035 ± 0.0085	0.9035 ± 0.0083	0.8949 ± 0.0091	0.9110 ± 0.0074	0.9035 ± 0.0085
Family	Dataset 1	DeepHost	0.8465 ± 0.0056	0.8448 ± 0.0049	0.8291 ± 0.0054	0.8500 ± 0.0047	0.8465 ± 0.0056
		MSKNN	0.8844 ± 0.0038	0.8825 ± 0.0043	0.8751 ± 0.0044	0.8909 ± 0.0048	0.8844 ± 0.0038
		MSRF	0.9293 ± 0.0027	0.9300 ± 0.0025	0.9229 ± 0.0027	0.9323 ± 0.0021	0.9293 ± 0.0027
		MSXGB	0.9315 ± 0.0049	0.9316 ± 0.0048	0.9248 ± 0.0053	0.9325 ± 0.0048	0.9315 ± 0.0049
		PHPRBP	$0.9877 {\pm} 0.0007$	0.9876 ± 0.0007	0.9850 ± 0.0006	0.9878 ± 0.0007	0.9877 ± 0.0007
		HFRF	0.9650 ± 0.0024	0.9640 ± 0.0025	0.9576 ± 0.0027	0.9656 ± 0.0024	0.9650 ± 0.0024
		ESMMLP	0.9647 ± 0.0039	0.9645 ± 0.0039	0.9578 ± 0.0049	0.9652 ± 0.0038	0.9647 ± 0.0039
Comile	Dataset 2	PHIEmbed	0.9549 ± 0.0052	0.9537 ± 0.0057	0.9450 ± 0.0063	0.9573 ± 0.0053	0.9549 ± 0.0052
Family	Dataset 2	DeepHost	0.9445 ± 0.0060	0.9435 ± 0.0065	0.9319 ± 0.0074	0.9463 ± 0.0052	0.9445 ± 0.0060
		MSKNN	0.9594 ± 0.0027	0.9598 ± 0.0026	0.9538 ± 0.0032	0.9629 ± 0.0022	0.9594 ± 0.0027
		MSRF	0.9822 ± 0.0016	0.9822 ± 0.0016	0.9785 ± 0.0019	0.9826 ± 0.0016	0.9822 ± 0.0016
		MSXGB	0.9828 ± 0.0041	0.9828 ± 0.0042	0.9794 ± 0.0049	0.9830 ± 0.0041	0.9828 ± 0.0041
		PHPRBP	0.9370 ± 0.0111	$0.9368 {\pm} 0.0112$	0.9221 ± 0.0150	0.9391 ± 0.0112	0.9370 ± 0.0111
		HFRF	0.8935 ± 0.0057	0.8876 ± 0.0058	0.8453 ± 0.0082	0.8948 ± 0.0059	0.8935 ± 0.0057
		ESMMLP	0.9096 ± 0.0050	0.9038 ± 0.0046	0.8710 ± 0.0062	0.9035 ± 0.0051	0.9096 ± 0.0050
Genus	Dataset 3	PHIEmbed	0.8886 ± 0.0031	0.8857 ± 0.0029	0.8389 ± 0.0040	0.8900 ± 0.0031	0.8886 ± 0.0031
Genus	Dataset 3	DeepHost	0.8759 ± 0.0051	0.8715 ± 0.0053	0.8219 ± 0.0070	0.8742 ± 0.0047	0.8759 ± 0.0051
		MSKNN	0.8833 ± 0.0042	0.8849 ± 0.0035	0.8508 ± 0.0042	0.8893 ± 0.0025	0.8833 ± 0.0042
		MSRF	0.9203 ± 0.0039	0.9195 ± 0.0041	0.8933 ± 0.0054	0.9218 ± 0.0037	0.9203 ± 0.0039
		MSXGB	0.9218 ± 0.0155	0.9219 ± 0.0154	0.9037 ± 0.0179	0.9249 ± 0.0145	0.9218 ± 0.0155
		PHPRBP	0.9801 ± 0.0113	$0.9802 {\pm} 0.0112$	$0.9652 {\pm} 0.0192$	0.9811 ± 0.0104	0.9801 ± 0.0113
		HFRF	0.9480 ± 0.0131	0.9403 ± 0.0159	0.8798 ± 0.0331	0.9514 ± 0.0116	0.9480 ± 0.0131
		ESMMLP	0.9492 ± 0.0124	0.9475 ± 0.0123	0.8860 ± 0.0275	0.9495 ± 0.0120	0.9492 ± 0.0124
Family	Dataset 3	PHIEmbed	0.9319 ± 0.0161	0.9228 ± 0.0196	0.8420 ± 0.0371	0.9376 ± 0.0136	0.9319 ± 0.0161
ганшу	Dataset 3	DeepHost	0.9400 ± 0.0130	0.9347 ± 0.0130	0.8676 ± 0.0304	0.9400 ± 0.0138	0.9400 ± 0.0130
		MSKNN	0.9353 ± 0.0108	0.9344 ± 0.0115	0.8900 ± 0.0129	0.9387 ± 0.0081	0.9353 ± 0.0108
		MSRF	0.9621 ± 0.0060	0.9613 ± 0.0063	0.9300 ± 0.0112	0.9643 ± 0.0053	0.9621 ± 0.0060
		MSXGB	0.9671 ± 0.0081	0.9668 ± 0.0080	0.9415 ± 0.0149	0.9686 ± 0.0077	0.9671 ± 0.0081

Fig. S1: The class distributions for Dataset 2 (a) and Dataset 3 (b) .

TABLE S3: Pre-trained PLMs for generating phage RBP sequence embeddings. "-" represents that the model does not use a Transformer-based architecture.

Pre-trained PLM	Architecture	Layers of Transformer Encoder	Protein Database	Amino acid embedding size
ESM1	Transformer [1]	34	UniRef50 [2]	1280
ESM1b	Transformer [1]	33	UniRef50 [2]	1280
ESM2	Transformer [1]	33	UniRef50 [2]	1280
ProtBert	Transformer [1]	30	UniRef100 [2], BFD100 [3], [4]	1024
ProtXLNet	Transformer [1]	30	UniRef100 [2]	1024
ProtAlbert	Transformer [1]	12	UniRef100 [2]	4096
ProtT5	Transformer [1]	24	UniRef50 [2], BFD100 [3], [4]	1024
SeqVec	ELMo [5]	-	UniRef50 [2]	1024

TABLE S4: The performance comparison of PHPRBP and various pre-trained PLMs on Datasets 1, 2, and 3. The best performance are highlighted in boldface.

Dataset	Model	ACC	F1	MCC	Precision	Recall
Dataset 1	PHPRBP	$0.8804{\pm}0.0027$	0.8764 ± 0.0025	0.8693 ± 0.0030	$0.8788 {\pm} 0.0035$	0.8804 ± 0.0027
	ESM1	0.8658 ± 0.0028	0.8617 ± 0.0022	0.8542 ± 0.0028	0.8670 ± 0.0036	0.8658 ± 0.0028
	ESM1b	0.8736 ± 0.0015	0.8681 ± 0.0019	0.8612 ± 0.0020	0.8721 ± 0.0021	0.8736 ± 0.0015
	ESM2	0.8765 ± 0.0017	0.8714 ± 0.0023	0.8648 ± 0.0022	0.8764 ± 0.0016	0.8765 ± 0.0017
	ProtAlbert	0.8698 ± 0.0029	0.8658 ± 0.0023	0.8583 ± 0.0027	0.8694 ± 0.0031	0.8698 ± 0.0029
Dataset 1	ProtBert	0.8550 ± 0.0019	0.8490 ± 0.0020	0.8420 ± 0.0022	0.8566 ± 0.0019	0.8550 ± 0.0019
	ProtT5	0.8754 ± 0.0024	0.8706 ± 0.0030	0.8636 ± 0.0032	0.8745 ± 0.0036	0.8754 ± 0.0024
	ProtXLNet	0.8230 ± 0.0019	0.8160 ± 0.0021	0.8083 ± 0.0017	0.8274 ± 0.0033	0.8230 ± 0.0019
	SeqVec	0.8406 ± 0.0053	0.8360 ± 0.0057	0.8275 ± 0.0057	0.8411 ± 0.0055	0.8406 ± 0.0053
	ESM1b_ProtT5	0.8784 ± 0.0034	0.8746 ± 0.0030	0.8672 ± 0.0034	0.8763 ± 0.0031	0.8784 ± 0.0034
	PHPRBP	$0.9294{\pm}0.0187$	$0.9293 {\pm} 0.0184$	0.9135 ± 0.0226	0.9325 ± 0.0162	$0.9294{\pm}0.0187$
	ESM1	0.9080 ± 0.0044	0.9050 ± 0.0044	0.8763 ± 0.0053	0.9070 ± 0.0046	0.9080 ± 0.0044
	ESM1b	0.9180 ± 0.0052	0.9138 ± 0.0058	0.8890 ± 0.0072	0.9159 ± 0.0058	0.9180 ± 0.0052
	ESM2	0.9101 ± 0.0032	0.9052 ± 0.0036	0.8779 ± 0.0047	0.9074 ± 0.0039	0.9101 ± 0.0032
Dataset 2	ProtAlbert	0.9146 ± 0.0044	0.9123 ± 0.0040	0.8852 ± 0.0057	0.9137 ± 0.0046	0.9146 ± 0.0044
Dataset 2	ProtBert	0.8940 ± 0.0058	0.8872 ± 0.0081	0.8563 ± 0.0086	0.8928 ± 0.0043	0.8940 ± 0.0058
	ProtT5	0.9181 ± 0.0044	0.9153 ± 0.0049	0.8894 ± 0.0061	0.9168 ± 0.0047	0.9181 ± 0.0044
	ProtXLNet	0.8945 ± 0.0034	0.8908 ± 0.0035	0.8587 ± 0.0045	0.8931 ± 0.0036	0.8945 ± 0.0034
	SeqVec	0.9012 ± 0.0034	0.8985 ± 0.0031	0.8676 ± 0.0040	0.9012 ± 0.0026	0.9012 ± 0.0034
	ESM1b_ProtT5	0.9234 ± 0.0031	0.9225 ± 0.0022	0.8980 ± 0.0035	0.9231 ± 0.0021	0.9234 ± 0.0031
	PHPRBP	0.9370 ± 0.0111	$0.9368 {\pm} 0.0112$	0.9221 ± 0.0150	0.9391 ± 0.0112	0.9370 ± 0.0111
	ESM1	0.9329 ± 0.0078	0.9330 ± 0.0076	0.9168 ± 0.0087	0.9366 ± 0.0079	0.9329 ± 0.0078
	ESM1b	0.9282 ± 0.0216	0.9279 ± 0.0222	0.9116 ± 0.0278	0.9307 ± 0.0222	0.9282 ± 0.0216
	ESM2	0.9336 ± 0.0116	0.9334 ± 0.0116	0.9170 ± 0.0147	0.9355 ± 0.0111	0.9336 ± 0.0116
Dataset 3	ProtAlbert	0.9237 ± 0.0112	0.9231 ± 0.0109	0.9047 ± 0.0140	0.9250 ± 0.0108	0.9237 ± 0.0112
Dataset 3	ProtBert	0.9212 ± 0.0192	0.9213 ± 0.0194	0.9026 ± 0.0234	0.9262 ± 0.0174	0.9212 ± 0.0192
	ProtT5	0.9308 ± 0.0181	0.9308 ± 0.0181	0.9142 ± 0.0224	0.9324 ± 0.0175	0.9308 ± 0.0181
	ProtXLNet	0.9157 ± 0.0236	0.9155 ± 0.0240	0.8957 ± 0.0291	0.9174 ± 0.0238	0.9157 ± 0.0236
	SeqVec	0.9039 ± 0.0215	0.9028 ± 0.0223	0.8793 ± 0.0268	0.9064 ± 0.0202	0.9039 ± 0.0215
	ESM1b_ProtT5	0.9325 ± 0.0177	0.9326 ± 0.0175	0.9166 ± 0.0216	0.9342 ± 0.0162	0.9325 ± 0.0177

TABLE S5: The performance comparison of PHPRBP and various class imbalance mitigation strategies on Datasets 1, 2, and 3. The best performances are highlighted in boldface.

Dataset	Model	ACC	F1	MCC	Precision	Recall
	PHPRBP	$0.8804{\pm}0.0027$	$0.8764 {\pm} 0.0025$	0.8693 ± 0.0030	$0.8788 {\pm} 0.0035$	$0.8804{\pm}0.0027$
	RUS	0.7714 ± 0.0062	0.7677 ± 0.0060	0.7634 ± 0.0063	0.7721 ± 0.0064	0.7714 ± 0.0062
Dataset 1	GAN	0.6743 ± 0.0029	0.6650 ± 0.0034	0.6552 ± 0.0034	0.6642 ± 0.0034	0.6743 ± 0.0029
Dataset 1	SMOTE	0.8703 ± 0.0049	0.8671 ± 0.0046	0.8594 ± 0.0050	0.8692 ± 0.0046	0.8703 ± 0.0049
	SVMSMOTE	0.8641 ± 0.0032	0.8611 ± 0.0031	0.8530 ± 0.0033	0.8626 ± 0.0037	0.8641 ± 0.0032
	BorderlineSMOTE	0.8683 ± 0.0033	0.8643 ± 0.0031	0.8568 ± 0.0034	0.8664 ± 0.0032	0.8683 ± 0.0033
	PHPRBP	$0.9294{\pm}0.0187$	$0.9293{\pm}0.0184$	$0.9135 {\pm} 0.0226$	$0.9325{\pm}0.0162$	$0.9294{\pm}0.0187$
	RUS	0.8450 ± 0.0219	0.8382 ± 0.0265	0.8101 ± 0.0279	0.8393 ± 0.0238	0.8450 ± 0.0219
Dataset 2	GAN	0.8166 ± 0.0039	0.8074 ± 0.0035	0.7746 ± 0.0040	0.8036 ± 0.0034	0.8166 ± 0.0039
Dataset 2	SMOTE	0.9216 ± 0.0028	0.9199 ± 0.0027	0.8956 ± 0.0035	0.9204 ± 0.0026	0.9216 ± 0.0028
	SVMSMOTE	0.9242 ± 0.0038	0.9234 ± 0.0033	0.8995 ± 0.0041	0.9236 ± 0.0034	0.9242 ± 0.0038
	BorderlineSMOTE	0.9193 ± 0.0027	0.9174 ± 0.0026	0.8922 ± 0.0036	0.9177 ± 0.0032	0.9193 ± 0.0027
	PHPRBP	0.9370 ± 0.0111	$0.9368 {\pm} 0.0112$	0.9221 ± 0.0150	0.9391 ± 0.0112	0.9370 ± 0.0111
	RUS	0.8908 ± 0.0394	0.8907 ± 0.0385	0.8707 ± 0.0459	0.8960 ± 0.0361	0.8908 ± 0.0394
Dataset 3	GAN	0.8090 ± 0.0130	0.8082 ± 0.0132	0.7764 ± 0.0156	0.8128 ± 0.0131	0.8090 ± 0.0130
Dataset 3	SMOTE	0.9251 ± 0.0179	0.9254 ± 0.0178	0.9089 ± 0.0213	0.9303 ± 0.0146	0.9251 ± 0.0179
	SVMSMOTE	0.9136 ± 0.0184	0.9140 ± 0.0182	0.8944 ± 0.0231	0.9182 ± 0.0180	0.9136 ± 0.0184
	BorderlineSMOTE	0.9203 ± 0.0090	0.9201 ± 0.0092	0.9023 ± 0.0108	0.9237 ± 0.0079	0.9203 ± 0.0090

TABLE S6: The performance comparison of PHPRBP before and after ADASYN-based data enhancement for specific minority classes. The best performances are highlighted in boldface.

Dataset	Host Category	AC	CC	M	CC
Dataset	Host Category	AF	BE	AF	BE
	Helicobacter	1.0000 ± 0.0000	0.9800 ± 0.0400	1.0000 ± 0.0000	0.9897 ± 0.0206
	Providencia	$0.8795 {\pm} 0.0976$	0.5200 ± 0.1406	0.9213 ± 0.0519	0.6198 ± 0.1108
	Pantoea	$0.7484{\pm}0.0193$	0.4694 ± 0.0839	0.7215 ± 0.0260	0.5518±0.0769
	Pseudoalteromonas	$0.8385{\pm}0.0654$	0.3182 ± 0.1076	0.8316 ± 0.0661	0.4743 ± 0.1183
Dataset 1	Achromobacter	$0.9656 {\pm} 0.0324$	0.6894 ± 0.0857	0.9573 ± 0.0239	0.6916 ± 0.0723
Dataset 1	Prevotella	1.0000 ± 0.0000	0.9667 ± 0.0408	1.0000 ± 0.0000	0.9678 ± 0.0163
	Lactobacillus	$0.9451 {\pm} 0.0561$	0.7792 ± 0.0900	0.9613 ± 0.0288	0.8077 ± 0.0361
	Clostridium	0.9000 ± 0.0789	0.7100 ± 0.0599	$0.9106{\pm}0.0547$	0.7491 ± 0.0528
	Caulobacter	0.9879 ± 0.0242	0.8000 ± 0.0471	0.9852 ± 0.0133	0.8049 ± 0.0489
	Arthrobacter	0.9943 ± 0.0114	0.7438 ± 0.1291	$0.9834{\pm}0.0132$	0.7751 ± 0.0781
	Enterococcus	$0.9895 {\pm} 0.0001$	0.9191 ± 0.0030	0.8610 ± 0.0006	0.8582 ± 0.0064
Dataset 2	Acinetobacter	0.9749 ± 0.0000	0.8374 ± 0.0009	0.9667 ± 0.0070	0.8732 ± 0.0276
	Enterobacter	$0.6223 {\pm} 0.0010$	0.3464 ± 0.0026	0.6694 ± 0.0047	0.4628 ± 0.0048
Dataset 3	Clostridium difficile	$0.9926 {\pm} 0.0002$	0.8897 ± 0.0064	0.9445±0.0176	0.8993 ± 0.0494

[&]quot;AF" represents after data augmentation, while "BE" indicates before data augmentation.

TABLE S7: The performance comparison of PHPRBP and the variant models on Datasets 1, 2, and 3. The best performances are highlighted in boldface.

Dataset	Model	Accuracy	F1-score	MCC	Precision	Recall
	PHPRBP	$0.8804{\pm}0.0027$	$0.8764 {\pm} 0.0025$	0.8693 ± 0.0030	$0.8788 {\pm} 0.0035$	$0.8804{\pm}0.0027$
D-44 1	PHPRBP-E	0.8778 ± 0.0025	0.8734 ± 0.0027	0.8665 ± 0.0026	0.8765 ± 0.0022	0.8778 ± 0.0025
	PHPRBP-P	0.8766 ± 0.0039	0.8722 ± 0.0038	0.8650 ± 0.0040	0.8744 ± 0.0040	0.8766 ± 0.0039
Dataset 1	PHPRBP-C	0.8764 ± 0.0034	0.8712 ± 0.0034	0.8648 ± 0.0035	0.8763 ± 0.0032	0.8764 ± 0.0034
	PHPRBP-S	0.8780 ± 0.0023	0.8743 ± 0.0023	0.8668 ± 0.0023	0.8759 ± 0.0022	0.8780 ± 0.0023
	PHPRBP-A	$0.8288 {\pm} 0.0057$	0.8223 ± 0.0055	0.8107 ± 0.0065	0.8248 ± 0.0068	$0.8288 {\pm} 0.0057$
	PHPRBP	$0.9294{\pm}0.0187$	$0.9293 {\pm} 0.0184$	0.9135 ± 0.0226	$0.9325 {\pm} 0.0162$	$0.9294{\pm}0.0187$
	PHPRBP-E	0.9243 ± 0.0032	0.9224 ± 0.0032	0.8981 ± 0.0044	0.9230 ± 0.0029	0.9243 ± 0.0032
Dataset 2	PHPRBP-P	0.9212 ± 0.0048	0.9200 ± 0.0051	0.8943 ± 0.0067	0.9199 ± 0.0051	0.9212 ± 0.0048
Dataset 2	PHPRBP-C	0.9164 ± 0.0025	0.9130 ± 0.0034	0.8867 ± 0.0032	0.9141 ± 0.0024	0.9164 ± 0.0025
	PHPRBP-S	0.9232 ± 0.0034	0.9214 ± 0.0042	0.8971 ± 0.0044	0.9218 ± 0.0036	0.9232 ± 0.0034
	PHPRBP-A	0.9163 ± 0.0047	0.9116 ± 0.0046	0.8795 ± 0.0064	0.9112 ± 0.0052	0.9163 ± 0.0047
	PHPRBP	0.9370 ± 0.0111	$0.9368 {\pm} 0.0112$	0.9221 ± 0.0150	0.9391 ± 0.0112	0.9370 ± 0.0111
	PHPRBP-E	0.9336 ± 0.0254	0.9331 ± 0.0255	0.9169 ± 0.0316	0.9349 ± 0.0242	0.9336 ± 0.0254
Dataset 2	PHPRBP-P	0.9213 ± 0.0142	0.9212 ± 0.0133	0.9028 ± 0.0160	0.9242 ± 0.0113	0.9213 ± 0.0142
Dataset 3	PHPRBP-C	0.9141 ± 0.0273	0.9135 ± 0.0270	0.8929 ± 0.0330	0.9173 ± 0.0253	0.9141 ± 0.0273
	PHPRBP-S	0.9284 ± 0.0161	0.9282 ± 0.0161	0.9108 ± 0.0202	0.9301 ± 0.0157	0.9284 ± 0.0161
	PHPRBP-A	0.9098 ± 0.0198	0.9098 ± 0.0198	0.8838 ± 0.0247	0.9126 ± 0.0191	0.9098 ± 0.0198

TABLE S8: Paired t-test results comparing PHPRBP with baseline methods on Dataset 1.

Methods	Metrics	t-Stat	p-value	Significance (Y/N)
	ACC	57.4781	5.49e-07	Y
	F1	52.4932	7.88e-07	Y
PHPRBP & HFRF	MCC	45.7041	1.37e-06	Y
	Precision	32.6802	5.23e-06	Y
	Sensitivity	57.4781	5.49e-07	Y
	ACC	64.8814	3.38e-07	Y
	F1	68.0543	2.79e-07	Y
PHPRBP & ESMMLP	MCC	65.4058	3.27e-07	Y
	Precision	39.4048	2.48e-06	Y
	Sensitivity	64.8814	3.38e-07	Y
	ACC	42.5686	1.82e-06	Y
	F1	43.8896	1.61e-06	Y
PHPRBP & PHIEmbed	MCC	46.7230	1.26e-06	Y
	Precision	39.8922	2.36e-06	Y
	Sensitivity	42.5686	1.82e-06	Y
	ACC	18.3502	5.19e-05	Y
	F1	19.6776	3.93e-05	Y
PHPRBP & DeepHost	MCC	21.8411	2.60e-05	Y
•	Precision	21.6950	2.67e-05	Y
	Sensitivity	18.3502	5.19e-05	Y
	ACC	57.4781	5.49e-07	Y
	F1	52.4932	7.88e-07	Y
PHPRBP & MSKNN	MCC	45.7041	1.37e-06	Y
	Precision	32.6802	5.23e-06	Y
	Sensitivity	57.4781	5.49e-07	Y
	ACC	11.2793	3.52e-04	Y
	F1	10.0318	5.55e-04	Y
PHPRBP & MSRF	MCC	10.7750	4.21e-04	Y
	Precision	9.71820	6.28e-04	Y
	Sensitivity	11.2793	3.52e-04	Y
	ACC	11.6893	3.06e-04	Y
	F1	11.5022	3.26e-04	Y
PHPRBP & MSXGB	MCC	11.1043	3.74e-04	Y
	Precision	8.45510	1.07e-03	Y
	Sensitivity	11.6893	3.06e-04	Y

TABLE S9: Paired t-test results comparing PHPRBP with baseline methods on Dataset 2.

Methods	Metrics	t-Stat	p-value	Significance (Y/N)
	ACC	8.3362	1.13e-03	Y
	F1	4.1686	1.40e-02	Y
PHPRBP & HFRF	MCC	12.7294	2.19e-04	Y
	Precision	3.0280	3.89e-02	Y
	Sensitivity	8.3362	1.13e-03	Y
	ACC	5.0067	7.45e-03	Y
	F1	5.2762	6.19e-03	Y
PHPRBP & ESMMLP	MCC	16.0825	8.74e-05	Y
	Precision	5.0440	7.26e-03	Y
	Sensitivity	5.0067	7.45e-03	Y
	ACC	6.0899	3.68e-03	Y
	F1	5.5447	5.17e-03	Y
PHPRBP & PHIEmbed	MCC	40.3353	2.26e-06	Y
	Precision	3.1439	3.47e-02	Y
	Sensitivity	6.0899	3.68e-03	Y
	ACC	6.6947	2.59e-03	Y
	F1	7.3160	1.86e-03	Y
PHPRBP & DeepHost	MCC	26.5424	1.20e-05	Y
•	Precision	5.9821	3.93e-03	Y
	Sensitivity	6.6947	2.59e-03	Y
	ACC	8.7542	9.38e-04	Y
	F1	6.7049	2.58e-03	Y
PHPRBP & MSKNN	MCC	29.3393	8.04e-06	Y
	Precision	4.2474	1.32e-02	Y
	Sensitivity	8.7542	9.38e-04	Y
	ACC	1.9876	1.18e-01	N
	F1	2.8275	4.75e-02	Y
PHPRBP & MSRF	MCC	2.8582	4.60e-02	Y
	Precision	2.4054	7.39e-02	N
	Sensitivity	1.9876	1.18e-01	N
	ACC	0.9801	3.83e-01	N
	F1	2.2657	4.53e-02	Y
PHPRBP & MSXGB	MCC	2.8727	3.09e-02	Y
	Precision	1.0619	3.48e-01	N
	Sensitivity	0.9801	3.83e-01	N

TABLE S10: Paired t-test results comparing PHPRBP with baseline methods on Dataset 3.

Methods	Metrics	t-Stat	p-value	Significance (Y/N)
	ACC	7.0291	2.16e-03	Y
	F1	7.4822	1.71e-03	Y
PHPRBP & HFRF	MCC	7.3811	1.80e-03	Y
	Precision	6.9044	2.31e-03	Y
	Sensitivity	7.0291	2.16e-03	Y
	ACC	5.3446	5.91e-03	Y
	F1	2.8234	4.77e-02	Y
PHPRBP & ESMMLP	MCC	4.5377	1.05e-02	Y
	Precision	7.4693	1.72e-03	Y
	Sensitivity	5.3446	5.91e-03	Y
	ACC	6.0824	3.69e-03	Y
	F1	6.1415	3.56e-03	Y
PHPRBP & PHIEmbed	MCC	6.7734	2.48e-03	Y
	Precision	4.9896	7.55e-03	Y
	Sensitivity	6.0824	3.69e-03	Y
	ACC	6.4535	2.97e-03	Y
	F1	6.4208	3.02e-03	Y
PHPRBP & DeepHost	MCC	6.3295	3.19e-03	Y
_	Precision	6.2492	3.34e-03	Y
	Sensitivity	6.4535	2.97e-03	Y
	ACC	8.1659	1.22e-03	Y
	F1	8.5876	1.01e-03	Y
PHPRBP & MSKNN	MCC	8.1570	1.23e-03	Y
	Precision	8.0200	1.31e-03	Y
	Sensitivity	8.1659	1.22e-03	Y
	ACC	2.9827	4.06e-02	Y
	F1	3.2082	3.26e-02	Y
PHPRBP & MSRF	MCC	3.2463	3.15e-02	Y
	Precision	2.5924	6.05e-02	N
	Sensitivity	2.9827	4.06e-02	Y
	ACC	1.1557	3.12e-01	N
	F1	2.7983	4.89e-02	Y
PHPRBP & MSXGB	MCC	2.9672	4.13e-02	Y
	Precision	2.2445	8.82e-02	N
	Sensitivity	1.1557	3.12e-01	N
	*			

TABLE S11: The performance comparison of PHPRBP with different batch sizes n_b on Datasets 1, 2, and 3. The best performances are highlighted in boldface.

Dataset	Parameter	ACC	F1	MCC	Precision	Recall
	$n_b = 16$	0.8756 ± 0.0033	0.8713 ± 0.0027	0.8640 ± 0.0032	0.8738 ± 0.0032	0.8756 ± 0.0033
Dataset 1	$n_b=32$	0.8804 ± 0.0027	0.8764 ± 0.0025	0.8693 ± 0.0030	$0.8788 {\pm} 0.0035$	$0.8804 {\pm} 0.0027$
Dataset 1	$n_b = 64$	0.8799 ± 0.0032	0.8766 ± 0.0034	0.8692 ± 0.0037	0.8780 ± 0.0036	0.8799 ± 0.0032
	$n_b = 128$	0.8802 ± 0.0027	0.8771 ± 0.0024	$0.8694 {\pm} 0.0028$	0.8776 ± 0.0028	0.8802 ± 0.0027
	$n_b = 16$	0.9247 ± 0.0018	0.9225 ± 0.0020	0.8987 ± 0.0022	0.9234 ± 0.0020	0.9247 ± 0.0018
Dataset 2	$n_b=32$	$0.9294 {\pm} 0.0187$	$0.9293 {\pm} 0.0184$	$0.9135{\pm}0.0226$	$0.9325{\pm}0.0162$	$0.9294 {\pm} 0.0187$
Dataset 2	$n_b = 64$	0.9242 ± 0.0015	0.9225 ± 0.0021	0.8984 ± 0.0024	0.9228 ± 0.0020	0.9242 ± 0.0015
	$n_b = 128$	0.9243 ± 0.0030	0.9234 ± 0.0032	0.8991 ± 0.0037	0.9238 ± 0.0030	0.9243 ± 0.0030
	$n_b = 16$	0.9275 ± 0.0134	0.9270 ± 0.0138	0.9095 ± 0.0176	0.9283 ± 0.0133	0.9275±0.0134
Dataset 3	$n_b=32$	0.9370 ± 0.0111	$0.9368 {\pm} 0.0112$	0.9221 ± 0.0150	0.9391 ± 0.0112	0.9370 ± 0.0111
Dataset 3	$n_b = 64$	0.9303 ± 0.0173	0.9305 ± 0.0170	0.9152 ± 0.0211	0.9343 ± 0.0157	0.9303 ± 0.0173
	$n_b = 128$	0.9351 ± 0.0153	0.9349 ± 0.0154	0.9201 ± 0.0194	0.9384 ± 0.013	0.9351 ± 0.0153

TABLE S12: The performance comparison of PHPRBP with different reduction factors r on Datasets 1, 2, and 3. The best performances are highlighted in boldface.

Dataset	Parameter	ACC	F1	MCC	Precision	Recall
	r=4	0.8779 ± 0.0046	0.8744 ± 0.0048	0.8669 ± 0.0052	0.8763 ± 0.0052	0.8779 ± 0.0046
Dataset 1	r = 8	0.8782 ± 0.0038	0.8742 ± 0.0035	0.8670 ± 0.0038	0.8760 ± 0.0035	0.8782 ± 0.0038
Dataset 1	r=16	$0.8804 {\pm} 0.0027$	$0.8764 {\pm} 0.0025$	0.8693 ± 0.0030	$0.8788 {\pm} 0.0035$	$0.8804 {\pm} 0.0027$
	r = 32	0.8785 ± 0.0033	0.8744 ± 0.0030	0.8671 ± 0.0034	0.8763 ± 0.0035	0.8785 ± 0.0033
	r = 4	0.9235 ± 0.0027	0.9219 ± 0.0021	0.8972 ± 0.0028	0.9224 ± 0.0025	0.9235 ± 0.0027
Dataset 2	r = 8	0.9238 ± 0.0016	0.9222 ± 0.0015	0.8977 ± 0.0026	0.9224 ± 0.0016	0.9238 ± 0.0016
Dataset 2	r=16	$0.9294{\pm}0.0187$	$0.9293 {\pm} 0.0184$	$0.9135 {\pm} 0.0226$	$0.9325{\pm}0.0162$	$0.9294{\pm}0.0187$
	r = 32	0.9223 ± 0.0014	0.9201 ± 0.0016	0.8953 ± 0.0018	0.9206 ± 0.0018	0.9223 ± 0.0014
	r = 4	0.9265 ± 0.0140	0.9261 ± 0.0138	0.9085 ± 0.0170	0.9289 ± 0.0141	0.9265 ± 0.0140
Datasat 2	r = 8	0.9361 ± 0.0185	0.9356 ± 0.0189	0.9197 ± 0.0239	0.9380 ± 0.0186	0.9361 ± 0.0185
Dataset 3	r=16	0.9370 ± 0.0111	$0.9368 {\pm} 0.0112$	$0.9221 {\pm} 0.0150$	$0.9391 {\pm} 0.0112$	0.9370 ± 0.0111
	r = 32	0.9322 ± 0.0166	0.9323 ± 0.0164	0.9162 ± 0.0197	0.9350 ± 0.0142	0.9322 ± 0.0166