

REGRESIÓN LOGÍSTICA

ALAN REYES-FIGUEROA
ELEMENTS OF MACHINE LEARNING

(AULA 18) 28.MARZO.2023

Queremos estudiar otra familia de clasificadores sencillos: aquellos que dependen de una ecuación lineal (2 clases).

Queremos estudiar otra familia de clasificadores sencillos: aquellos que dependen de una ecuación lineal (2 clases).

Queremos estudiar otra familia de clasificadores sencillos: aquellos que dependen de una ecuación lineal (2 clases).

En este caso, buscamos una frontera de clasificación en la forma de un hiperplano en \mathbb{R}^d , dada por

$$W_0 + \mathbf{W}^T \mathbf{X} = W_0 + W_1 X_1 + W_2 X_2 + \ldots + W_d X_d = 0,$$
 (1)

donde $\mathbf{w} = (w_1, \dots, w_d) \in \mathbb{R}^d$ y $w_0 \in \mathbb{R}$.

En este caso, buscamos una frontera de clasificación en la forma de un hiperplano en \mathbb{R}^d , dada por

$$W_0 + \mathbf{W}^T \mathbf{X} = W_0 + W_1 X_1 + W_2 X_2 + \ldots + W_d X_d = 0,$$
 (1)

donde $\mathbf{w} = (w_1, \dots, w_d) \in \mathbb{R}^d$ y $w_0 \in \mathbb{R}$.

Por simplicidad, haremos una identificación del conjunto de datos \mathbb{X} en \mathbb{R}^{d+1} mediante el mapa biyectivo $i:\mathbb{R}^d\to\mathbb{R}^{d+1}$ dado por

$$i(\mathbf{x}) = (1, \mathbf{x}).$$

En este caso, buscamos una frontera de clasificación en la forma de un hiperplano en \mathbb{R}^d , dada por

$$W_0 + \mathbf{W}^T \mathbf{X} = W_0 + W_1 X_1 + W_2 X_2 + \ldots + W_d X_d = 0,$$
 (1)

donde $\mathbf{w} = (w_1, \dots, w_d) \in \mathbb{R}^d$ y $w_0 \in \mathbb{R}$.

Por simplicidad, haremos una identificación del conjunto de datos \mathbb{X} en \mathbb{R}^{d+1} mediante el mapa biyectivo $i:\mathbb{R}^d\to\mathbb{R}^{d+1}$ dado por

$$i(x) = (1, x).$$

Similarmente, denotaremos al vector $(w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$ simplemente por **w**.

En este caso, buscamos una frontera de clasificación en la forma de un hiperplano en \mathbb{R}^d , dada por

$$W_0 + \mathbf{W}^T \mathbf{X} = W_0 + W_1 X_1 + W_2 X_2 + \ldots + W_d X_d = 0,$$
 (1)

donde $\mathbf{w} = (w_1, \dots, w_d) \in \mathbb{R}^d$ y $w_0 \in \mathbb{R}$.

Por simplicidad, haremos una identificación del conjunto de datos \mathbb{X} en \mathbb{R}^{d+1} mediante el mapa biyectivo $i:\mathbb{R}^d\to\mathbb{R}^{d+1}$ dado por

$$i(x) = (1, x).$$

Similarmente, denotaremos al vector $(w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$ simplemente por **w**. Así, la ecuación lineal (1) se escribe como $\mathbf{w}^T \mathbf{x} = 0$:

$$\mathbf{W}^{\mathsf{T}}\mathbf{X} = W_{\mathsf{O}} + W_{\mathsf{1}}X_{\mathsf{1}} + W_{\mathsf{2}}X_{\mathsf{2}} + \ldots + W_{\mathsf{d}}X_{\mathsf{d}} = \mathsf{O}. \tag{2}$$

En general, separar un conjunto de datos (consistente de dos clases) mediante un hiperplano no siempre es posible.

En general, separar un conjunto de datos (consistente de dos clases) mediante un hiperplano no siempre es posible. Distinguimos dos casos de conjuntos:

Definición

Un conjunto de datos $\mathbb{X} \in \mathbb{R}^{n \times (d+1)}$ que consiste de dos clases $y_i \in \{0,1\}$ se llama **linealmente separable**, si existe un vector $\mathbf{w} = (w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$ tal que la ecuación lineal $\mathbf{w}^T \mathbf{x} = 0$ es una frontera de clasificación del conjunto \mathbb{X} . Esto es

$$y_i = 1(\mathbf{w}^T \mathbf{x}_i > 0), \text{ para todo } i = 1, 2, ..., n.$$

En general, separar un conjunto de datos (consistente de dos clases) mediante un hiperplano no siempre es posible. Distinguimos dos casos de conjuntos:

Definición

Un conjunto de datos $\mathbb{X} \in \mathbb{R}^{n \times (d+1)}$ que consiste de dos clases $y_i \in \{0,1\}$ se llama **linealmente separable**, si existe un vector $\mathbf{w} = (w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$ tal que la ecuación lineal $\mathbf{w}^T \mathbf{x} = 0$ es una frontera de clasificación del conjunto \mathbb{X} . Esto es

$$y_i = 1(\mathbf{w}^T \mathbf{x}_i > 0), \text{ para todo } i = 1, 2, ..., n.$$

Caso contrario, diremos que $\mathbb X$ no es linealmente separable.

Separabilidad lineal: (a) un conjunto no linealmente separable; (b) un conjunto linealmente separable.

Típicamente los clasificadores lineales se trabajan de dos formas

Típicamente los clasificadores lineales se trabajan de dos formas

Etiquetas o y 1:
 En este caso, la clasificación de obtiene mediante el criterio

$$y(\mathbf{X}) = \mathbf{1}(\mathbf{W}^T \mathbf{X} > 0).$$

Típicamente los clasificadores lineales se trabajan de dos formas

Etiquetas o y 1:
 En este caso, la clasificación de obtiene mediante el criterio

$$y(\mathbf{X}) = \mathbf{1}(\mathbf{W}^\mathsf{T}\mathbf{X} > 0).$$

• Etiquetas -1 y 1: En este caso, la clasificación de obtiene mediante el criterio

$$y(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}).$$

Típicamente los clasificadores lineales se trabajan de dos formas

Etiquetas o y 1:
 En este caso, la clasificación de obtiene mediante el criterio

$$y(\mathbf{x}) = \mathbf{1}(\mathbf{w}^\mathsf{T}\mathbf{x} > 0).$$

Etiquetas -1 y 1:
 En este caso, la clasificación de obtiene mediante el criterio

$$y(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}).$$

En ambos casos, si queremos hallar el hiperplano separante óptimo $\mathbf{w} \in \mathbb{R}^{d+1}$, ambos criterios usan una función no-diferenciable.

Consideramos el caso del clasificador logístico

Consideramos el caso del clasificador logístico Aquí consideramos etiquetas $\{0,1\}$, $\mathbf{x} \in \mathbb{R}$ y usamos el criterio de clasificación $\mathbf{1}(\mathbf{x} > 0)$.

Consideramos el caso del clasificador logístico Aquí consideramos etiquetas $\{0,1\}$, $\mathbf{x} \in \mathbb{R}$ y usamos el criterio de clasificación $\mathbf{1}(\mathbf{x} > 0)$.

El clasificador logístico utiliza la función sigmoide estándar

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x}}}$$

como una aproximación suave de la función $\mathbf{1}(\mathbf{x} > 0)$.

Observaciones:

• $\sigma: \mathbb{R} \to (0,1)$ es una función de clase C^{∞} que transforma números reales en valores que pueden interpretarse como probabilidades.

- $\sigma : \mathbb{R} \to (0,1)$ es una función de clase C^{∞} que transforma números reales en valores que pueden interpretarse como probabilidades.
- En general, $\sigma(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$ es una aproximación suave de $\mathbf{1}(\mathbf{w}^T\mathbf{x} > \mathbf{0})$.

- $\sigma : \mathbb{R} \to (0,1)$ es una función de clase C^{∞} que transforma números reales en valores que pueden interpretarse como probabilidades.
- En general, $\sigma(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$ es una aproximación suave de $\mathbf{1}(\mathbf{w}^T\mathbf{x} > \mathbf{0})$.
- σ tiene la siguiente propiedad: $\frac{d}{d\mathbf{x}}\sigma(\mathbf{x}) = \sigma(\mathbf{x})(1 \sigma(\mathbf{x}))$.

- $\sigma: \mathbb{R} \to (0,1)$ es una función de clase C^{∞} que transforma números reales en valores que pueden interpretarse como probabilidades.
- En general, $\sigma(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$ es una aproximación suave de $\mathbf{1}(\mathbf{w}^T\mathbf{x} > \mathbf{0})$.
- σ tiene la siguiente propiedad: $\frac{d}{d\mathbf{x}}\sigma(\mathbf{x}) = \sigma(\mathbf{x})(1 \sigma(\mathbf{x}))$. Prueba:

- $\sigma : \mathbb{R} \to (0,1)$ es una función de clase C^{∞} que transforma números reales en valores que pueden interpretarse como probabilidades.
- En general, $\sigma(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$ es una aproximación suave de $\mathbf{1}(\mathbf{w}^T\mathbf{x} > \mathbf{0})$.
- σ tiene la siguiente propiedad: $\frac{d}{d\mathbf{x}}\sigma(\mathbf{x}) = \sigma(\mathbf{x})(1 \sigma(\mathbf{x}))$. Prueba:

$$\frac{d}{d\mathbf{x}}\sigma(\mathbf{x}) = \frac{e^{-\mathbf{x}}}{(1+e^{-\mathbf{x}})^2}$$

- $\sigma: \mathbb{R} \to (0,1)$ es una función de clase C^{∞} que transforma números reales en valores que pueden interpretarse como probabilidades.
- En general, $\sigma(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$ es una aproximación suave de $\mathbf{1}(\mathbf{w}^T\mathbf{x} > \mathbf{0})$.
- σ tiene la siguiente propiedad: $\frac{d}{d\mathbf{x}}\sigma(\mathbf{x}) = \sigma(\mathbf{x})(1 \sigma(\mathbf{x}))$. Prueba:

$$\frac{d}{d\mathbf{x}}\sigma(\mathbf{x}) = \frac{e^{-\mathbf{x}}}{(1+e^{-\mathbf{x}})^2} = \left(\frac{1}{1+e^{-\mathbf{x}}}\right)\left(\frac{e^{-\mathbf{x}}}{1+e^{-\mathbf{x}}}\right)$$

- $\sigma: \mathbb{R} \to (0,1)$ es una función de clase C^{∞} que transforma números reales en valores que pueden interpretarse como probabilidades.
- En general, $\sigma(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T\mathbf{x})}$ es una aproximación suave de $\mathbf{1}(\mathbf{w}^T\mathbf{x} > \mathbf{0})$.
- σ tiene la siguiente propiedad: $\frac{d}{d\mathbf{x}}\sigma(\mathbf{x}) = \sigma(\mathbf{x})(1 \sigma(\mathbf{x}))$. Prueba:

$$\frac{d}{d\mathbf{x}}\sigma(\mathbf{x}) = \frac{e^{-\mathbf{x}}}{(1+e^{-\mathbf{x}})^2} = \left(\frac{1}{1+e^{-\mathbf{x}}}\right) \left(\frac{e^{-\mathbf{x}}}{1+e^{-\mathbf{x}}}\right) \\
= \sigma(\mathbf{x})(1-\sigma(\mathbf{x})).$$

Dado un conjunto de datos $\mathbb{X} \in \mathbb{R}^{n \times (d+1)}$ con etiquetas binarias, nuestro interés es hallar el vector óptimo de separación $\mathbf{w} \in \mathbb{R}^{d+1}$ tal que $y(\mathbf{x})$ sea lo más próximo al clasificador logístico

$$\widehat{\mathbf{y}}(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}.$$

Dado un conjunto de datos $\mathbb{X} \in \mathbb{R}^{n \times (d+1)}$ con etiquetas binarias, nuestro interés es hallar el vector óptimo de separación $\mathbf{w} \in \mathbb{R}^{d+1}$ tal que $y(\mathbf{x})$ sea lo más próximo al clasificador logístico

$$\widehat{y}(\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}}\mathbf{x}}}.$$

Recordatorio: Regresión lineal.

Recordatorio: Regresión lineal.

Recordemos la función de pérdida en el caso de regresión. Tenemos

$$L = \mathbb{E} L(\mathbf{y}_i, \widehat{\mathbf{y}}_i) = \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i)^2.$$

Recordatorio: Regresión lineal.

Recordemos la función de pérdida en el caso de regresión. Tenemos

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i)^2.$$

En este caso podemos resolver de forma directa los coeficientes óptimos w.

Recordatorio: Regresión lineal.

Recordemos la función de pérdida en el caso de regresión. Tenemos

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i)^2.$$

En este caso podemos resolver de forma directa los coeficientes óptimos **w**. Para ello, basta diferenciar con respecto de **w**:

$$\nabla_{\mathbf{w}} L = \nabla_{\mathbf{w}} \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \nabla_{\mathbf{w}} \frac{1}{n} \langle \mathbf{y} - \mathbb{X}\mathbf{w}, \mathbf{y} - \mathbb{X}\mathbf{w} \rangle$$

Recordatorio: Regresión lineal.

Recordemos la función de pérdida en el caso de regresión. Tenemos

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i)^2.$$

En este caso podemos resolver de forma directa los coeficientes óptimos **w**. Para ello, basta diferenciar con respecto de **w**:

$$\nabla_{\mathbf{w}} L = \nabla_{\mathbf{w}} \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \nabla_{\mathbf{w}} \frac{1}{n} \langle \mathbf{y} - \mathbb{X}\mathbf{w}, \mathbf{y} - \mathbb{X}\mathbf{w} \rangle$$
$$= -\frac{2}{n} \langle \mathbb{X}, \mathbf{y} - \mathbb{X}\mathbf{w} \rangle$$

Recordatorio: Regresión lineal.

Recordemos la función de pérdida en el caso de regresión. Tenemos

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i)^2.$$

En este caso podemos resolver de forma directa los coeficientes óptimos **w**. Para ello, basta diferenciar con respecto de **w**:

$$\nabla_{\mathbf{w}} L = \nabla_{\mathbf{w}} \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \nabla_{\mathbf{w}} \frac{1}{n} \langle \mathbf{y} - \mathbb{X}\mathbf{w}, \mathbf{y} - \mathbb{X}\mathbf{w} \rangle$$
$$= -\frac{2}{n} \langle \mathbb{X}, \mathbf{y} - \mathbb{X}\mathbf{w} \rangle = -\frac{2}{n} (\mathbb{X}^T \mathbf{y} - \mathbb{X}^T \mathbb{X}\mathbf{w}) = 0.$$

Recordatorio: Regresión lineal.

Recordemos la función de pérdida en el caso de regresión. Tenemos

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{w}^\mathsf{T} \mathbf{x}_i)^2.$$

En este caso podemos resolver de forma directa los coeficientes óptimos **w**. Para ello, basta diferenciar con respecto de **w**:

$$\begin{array}{lcl} \nabla_{\mathbf{w}} L & = & \nabla_{\mathbf{w}} \frac{1}{n} ||\mathbf{y} - \mathbb{X}\mathbf{w}||^2 = \nabla_{\mathbf{w}} \frac{1}{n} \langle \mathbf{y} - \mathbb{X}\mathbf{w}, \mathbf{y} - \mathbb{X}\mathbf{w} \rangle \\ & = & -\frac{2}{n} \langle \mathbb{X}, \mathbf{y} - \mathbb{X}\mathbf{w} \rangle = -\frac{2}{n} (\mathbb{X}^T \mathbf{y} - \mathbb{X}^T \mathbb{X}\mathbf{w}) = \mathbf{0}. \end{array}$$

 $\Rightarrow \mathbb{X}^T \mathbb{X} \mathbf{w} = \mathbb{X}^T \mathbf{y}$, lo que conduce a la solución óptima $\mathbf{w}^* = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{y}$.

En el caso de la clasificación logística, tenemos la función de pérdida

$$L = \mathbb{E} L(\mathbf{y}_i, \widehat{\mathbf{y}}_i) = \frac{1}{n} ||\mathbf{y} - \sigma(\mathbb{X}\mathbf{w})||^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \sigma(\mathbf{w}^\mathsf{T}\mathbf{x}_i))^2.$$

En el caso de la clasificación logística, tenemos la función de pérdida

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \sigma(\mathbb{X}\mathbf{w})||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2.$$

Al replicar la estrategia anterior, resulta:

$$\nabla_{\mathbf{w}} L = \nabla_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2$$

En el caso de la clasificación logística, tenemos la función de pérdida

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \sigma(\mathbb{X}\mathbf{w})||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2.$$

Al replicar la estrategia anterior, resulta:

$$\nabla_{\mathbf{w}} L = \nabla_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2 = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \sigma(\mathbf{w}^T \mathbf{x}_i) (1 - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i.$$

En el caso de la clasificación logística, tenemos la función de pérdida

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \sigma(\mathbb{X}\mathbf{w})||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2.$$

Al replicar la estrategia anterior, resulta:

$$\nabla_{\mathbf{w}} L = \nabla_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2 = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \sigma(\mathbf{w}^T \mathbf{x}_i) (1 - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i.$$

Esta ecuación ya no produce una solución directa para w.

En el caso de la clasificación logística, tenemos la función de pérdida

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \sigma(\mathbb{X}\mathbf{w})||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2.$$

Al replicar la estrategia anterior, resulta:

$$\nabla_{\mathbf{w}} L = \nabla_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2 = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \sigma(\mathbf{w}^T \mathbf{x}_i) (1 - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i.$$

Esta ecuación ya no produce una solución directa para **w**. Sin embargo, es posible utilizar métodos iterativos para hallar el óptimo.

En el caso de la clasificación logística, tenemos la función de pérdida

$$L = \mathbb{E} L(y_i, \widehat{y}_i) = \frac{1}{n} ||\mathbf{y} - \sigma(\mathbb{X}\mathbf{w})||^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2.$$

Al replicar la estrategia anterior, resulta:

$$\nabla_{\mathbf{w}} L = \nabla_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i))^2 = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \sigma(\mathbf{w}^T \mathbf{x}_i) (1 - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i.$$

Esta ecuación ya no produce una solución directa para **w**. Sin embargo, es posible utilizar métodos iterativos para hallar el óptimo. Por ejemplo, podemos usar métodos de descenso gradiente

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \alpha \nabla_{\mathbf{w}} L(\mathbf{w}^{(k)}).$$

Sea Z una v.a. con distribución Ber(p), o .

Sea Z una v.a. con distribución Ber(p), o 1. Tenemos las probabilidades condicionales

$$\mathbb{P}(Z = 1; p) = \mathbb{P}(Z = 1; \mu = p) = p,$$

 $\mathbb{P}(Z = 0; p) = \mathbb{P}(Z = 0; \mu = p) = 1 - p.$

Sea Z una v.a. con distribución Ber(p), o 1. Tenemos las probabilidades condicionales

$$\mathbb{P}(Z = 1; p) = \mathbb{P}(Z = 1; \mu = p) = p,$$

 $\mathbb{P}(Z = 0; p) = \mathbb{P}(Z = 0; \mu = p) = 1 - p.$

Dado un conjunto de datos (\mathbf{x}_i, y_i) donde los $y_i \in \{0, 1\}$, podemos modelar el comportamiento de las y_i como una v.a. $Y \sim Ber(p)$, donde $\widehat{p} = \mathbb{E}(y_i = 1) = \frac{m}{n}$, con m el número de datos en la clase y = 1.

Sea Z una v.a. con distribución Ber(p), o 1. Tenemos las probabilidades condicionales

$$\mathbb{P}(Z = 1; p) = \mathbb{P}(Z = 1; \mu = p) = p,$$

 $\mathbb{P}(Z = 0; p) = \mathbb{P}(Z = 0; \mu = p) = 1 - p.$

Dado un conjunto de datos (\mathbf{x}_i, y_i) donde los $y_i \in \{0, 1\}$, podemos modelar el comportamiento de las y_i como una v.a. $Y \sim Ber(p)$, donde $\widehat{p} = \mathbb{E}(y_i = 1) = \frac{m}{n}$, con m el número de datos en la clase y = 1.

Tenemos

$$\mathbb{P}(y_i = 1 \mid \mathbf{x}_i; p) = p,$$

$$\mathbb{P}(y_i = 0 \mid \mathbf{x}_i; p) = 1 - p.$$

Sin embargo, queremos que nuestro modelo represente p en términos del parámetro lineal $\mathbf{w} \in \mathbb{R}^{d+1}$. Hacemos

$$\mathbb{P}(y_i = 1 \mid \mathbf{x}_i; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x}_i),$$

$$\mathbb{P}(y_i = 0 \mid \mathbf{x}_i; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x}_i).$$

Sin embargo, queremos que nuestro modelo represente p en términos del parámetro lineal $\mathbf{w} \in \mathbb{R}^{d+1}$. Hacemos

$$\mathbb{P}(y_i = 1 \mid \mathbf{x}_i; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x}_i),$$

$$\mathbb{P}(y_i = 0 \mid \mathbf{x}_i; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x}_i).$$

Como Y es Bernoulli, podemos escribir la distribución condicional por

$$\mathbb{P}(y_i \mid \mathbf{x}_i; \mathbf{w}) = \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i)^{y_i} (1 - \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i))^{1 - y_i}.$$

Sin embargo, queremos que nuestro modelo represente p en términos del parámetro lineal $\mathbf{w} \in \mathbb{R}^{d+1}$. Hacemos

$$\mathbb{P}(y_i = 1 \mid \mathbf{x}_i; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x}_i),$$

$$\mathbb{P}(y_i = 0 \mid \mathbf{x}_i; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T \mathbf{x}_i).$$

Como Y es Bernoulli, podemos escribir la distribución condicional por

$$\mathbb{P}(y_i \mid \mathbf{x}_i; \mathbf{w}) = \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i)^{y_i} (1 - \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_i))^{1 - y_i}.$$

Asumiendo independencia de las y_i , la verosimilitud de \mathbf{w} dados los datos es

$$\mathcal{L}(\mathbf{w}) = \mathbb{P}(\mathbf{y} \mid \mathbb{X}; \ \mathbf{w}) = \prod_{i=1}^{n} \mathbb{P}(y_i \mid \mathbf{x}_i; \ \mathbf{w}) = \prod_{i=1}^{n} \sigma(\mathbf{w}^T \mathbf{x}_i)^{y_i} (1 - \sigma(\mathbf{w}^T \mathbf{x}_i))^{1-y_i}.$$

Para hallar el w óptimo, maximizamos la log-verosimilitud

$$\ell(\mathbf{w}) = \log \mathcal{L}(\mathbf{w}) = \log \prod_{i=1}^{n} \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i})^{y_{i}} (1 - \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i}))^{1-y_{i}}$$

Para hallar el w óptimo, maximizamos la log-verosimilitud

$$\ell(\mathbf{w}) = \log \mathcal{L}(\mathbf{w}) = \log \prod_{i=1}^{n} \sigma(\mathbf{w}^{T} \mathbf{x}_{i})^{y_{i}} (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}))^{1-y_{i}}$$
$$= \sum_{i=1}^{n} [y_{i} \log \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) + (1 - y_{i}) \log (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}))].$$

Para hallar el w óptimo, maximizamos la log-verosimilitud

$$\ell(\mathbf{w}) = \log \mathcal{L}(\mathbf{w}) = \log \prod_{i=1}^{n} \sigma(\mathbf{w}^{T} \mathbf{x}_{i})^{y_{i}} (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}))^{1-y_{i}}$$
$$= \sum_{i=1}^{n} \left[y_{i} \log \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) + (1 - y_{i}) \log (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i})) \right].$$

Diferenciando en w, resulta

$$\nabla_{\mathbf{w}} \ell(\mathbf{w}) = \nabla_{\mathbf{w}} \sum_{i=1}^{n} \left[y_i \log \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i) + (1 - y_i) \log \left(1 - \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i) \right) \right]$$

Para hallar el w óptimo, maximizamos la log-verosimilitud

$$\ell(\mathbf{w}) = \log \mathcal{L}(\mathbf{w}) = \log \prod_{i=1}^{n} \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i})^{y_{i}} (1 - \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i}))^{1 - y_{i}}$$
$$= \sum_{i=1}^{n} \left[y_{i} \log \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i}) + (1 - y_{i}) \log (1 - \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i})) \right].$$

Diferenciando en w, resulta

$$\nabla_{\mathbf{w}} \ell(\mathbf{w}) = \nabla_{\mathbf{w}} \sum_{i=1}^{n} \left[y_{i} \log \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) + (1 - y_{i}) \log \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \right]$$

$$= \sum_{i=1}^{n} \left[\frac{y_{i}}{\sigma(\mathbf{w}^{T} \mathbf{x}_{i})} \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \mathbf{x}_{i} - \frac{1 - y_{i}}{1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i})} \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \mathbf{x}_{i} \right]$$

Para hallar el w óptimo, maximizamos la log-verosimilitud

$$\ell(\mathbf{w}) = \log \mathcal{L}(\mathbf{w}) = \log \prod_{i=1}^{n} \sigma(\mathbf{w}^{T} \mathbf{x}_{i})^{y_{i}} (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}))^{1-y_{i}}$$
$$= \sum_{i=1}^{n} \left[y_{i} \log \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) + (1 - y_{i}) \log (1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i})) \right].$$

Diferenciando en w, resulta

$$\nabla_{\mathbf{w}}\ell(\mathbf{w}) = \nabla_{\mathbf{w}} \sum_{i=1}^{n} \left[y_{i} \log \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) + (1 - y_{i}) \log \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \right]$$

$$= \sum_{i=1}^{n} \left[\frac{y_{i}}{\sigma(\mathbf{w}^{T} \mathbf{x}_{i})} \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \mathbf{x}_{i} - \frac{1 - y_{i}}{1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i})} \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \mathbf{x}_{i} \right]$$

$$= \sum_{i=1}^{n} \left(y_{i} \left(1 - \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) - (1 - y_{i}) \sigma(\mathbf{w}^{T} \mathbf{x}_{i}) \right) \mathbf{x}_{i}.$$

Así,

$$\nabla_{\mathbf{w}}\ell(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i.$$
 (3)

Así,

$$\nabla_{\mathbf{w}}\ell(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i.$$
 (3)

Finalmente, usamos (3) en el método de descenso gradiente

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \alpha \nabla_{\mathbf{w}} \ell(\mathbf{w}^{(k)}).$$

Así,

$$\nabla_{\mathbf{w}}\ell(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i.$$
 (3)

Finalmente, usamos (3) en el método de descenso gradiente

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \alpha \nabla_{\mathbf{w}} \ell(\mathbf{w}^{(k)}).$$

Tenemos el siguiente

Algoritmo:

1.) Inicio: Elegir $\alpha > 0$, $\mathbf{w}^{(0)} \in \mathbb{R}^{d+1}$ arbitrario.

Así,

$$\nabla_{\mathbf{w}}\ell(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i.$$
 (3)

Finalmente, usamos (3) en el método de descenso gradiente

$$\mathbf{W}^{(k+1)} = \mathbf{W}^{(k)} + \alpha \nabla_{\mathbf{W}} \ell(\mathbf{W}^{(k)}).$$

Tenemos el siguiente

Algoritmo:

- **1.)** Inicio: Elegir $\alpha > 0$, $\mathbf{w}^{(0)} \in \mathbb{R}^{d+1}$ arbitrario.
- **2.)** Repetir para k = 0, 1, 2, ... (hasta cierto criterio de paro):
 - Calcular $\nabla_{\mathbf{w}} \ell(\mathbf{w}^{(k)})$ como en (3).
 - Recalcular $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \alpha \nabla_{\mathbf{w}} \ell(\mathbf{w}^{(k)})$.

Observaciones:

• El método de descenso "mueve" $\mathbf{w}^{(k)}$ según la contribución de los datos mal clasificados (proporcional a la diferencia $y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)$).

- El método de descenso "mueve" $\mathbf{w}^{(k)}$ según la contribución de los datos mal clasificados (proporcional a la diferencia $y_i \sigma(\mathbf{w}^T \mathbf{x}_i)$).
- La convergencia de este método depende del conjunto de datos:

- El método de descenso "mueve" $\mathbf{w}^{(k)}$ según la contribución de los datos mal clasificados (proporcional a la diferencia $y_i \sigma(\mathbf{w}^T \mathbf{x}_i)$).
- La convergencia de este método depende del conjunto de datos:
 - El método de descenso gradiente siempre converge (a un mínimo local) para el caso de un conjunto linealmente separable.

- El método de descenso "mueve" $\mathbf{w}^{(k)}$ según la contribución de los datos mal clasificados (proporcional a la diferencia $y_i \sigma(\mathbf{w}^T \mathbf{x}_i)$).
- La convergencia de este método depende del conjunto de datos:
 - El método de descenso gradiente siempre converge (a un mínimo local) para el caso de un conjunto linealmente separable.
 - La convergencia puede verse afectada en el caso no separable.

- El método de descenso "mueve" $\mathbf{w}^{(k)}$ según la contribución de los datos mal clasificados (proporcional a la diferencia $y_i \sigma(\mathbf{w}^T \mathbf{x}_i)$).
- La convergencia de este método depende del conjunto de datos:
 - El método de descenso gradiente siempre converge (a un mínimo local) para el caso de un conjunto linealmente separable.
 - La convergencia puede verse afectada en el caso no separable. Esto peude resolverse modificando o usando un método de descenso más elaborado (curso de Optimización).

- El método de descenso "mueve" $\mathbf{w}^{(k)}$ según la contribución de los datos mal clasificados (proporcional a la diferencia $y_i \sigma(\mathbf{w}^T \mathbf{x}_i)$).
- La convergencia de este método depende del conjunto de datos:
 - El método de descenso gradiente siempre converge (a un mínimo local) para el caso de un conjunto linealmente separable.
 - La convergencia puede verse afectada en el caso no separable.
 Esto peude resolverse modificando o usando un método de descenso más elaborado (curso de Optimización).
- Las ideas aquí descritas dan origen a modelos lineales de transferencia de información (modelos neuronales). Por ejemplo, el perceptrón.

El perceptrón

El modelo perceptrón.

La salida esde la forma $y = \varphi(\mathbf{w}^T \mathbf{x})$, donde $\varphi : \mathbb{R} \to \mathbb{R}$ es una función de transferencia o función de activación.

El perceptrón

El perceptrón

