Лабораторная работа №4

Команды передачи управления

Цель работы: изучение команд перехода для организации циклов и ветвлений, получение навыков создания процедур с аргументами.

Теоретические сведения

JMP <метка>, **JMP <адрес>**. Команда безусловного перехода (аналог **goto** в языках высокого уровня). В следующем примере после команды **JMP j1** выполняется команда **моv ECX**, 5:

```
MOV AX, CX JMP EBX; Переход по адресу, JMP j1 saписанному в EBX XOR ECX, ECX j1: MOV ECX, 5
```

В системе команд процессора есть набор команд условного перехода, которые передают управление на выполнение команды по заданному адресу или метки в зависимости от установленных флагов. В противном случае выполняется следующая за командой перехода команда. К примеру, если **EDI=0**, то происходит переход на команду **MOV AX, 4**:

```
DEC EDI

JZ j1

XOR EDI, EDI

j1: MOV AX, 4
```

Очень часто команды безусловного перехода применяются сразу после команды сравнения **СМР <onepahg_1>**, **<onepahg_2>**. Данная команда выполняет вычитание также, как и команда **SUB**, но она только устанавливает флаги и не изменяет значения операндов. В следующей таблице представлен список команд условного перехода, используемых после команды **СМР**, и соответствующие условия перехода.

Тип операндов	Мнемокод	Критерий условного перехода	Значения флагов для перехода
Любые	JE	операнд_1 = операнд_2	ZF = 1
Любые	JNE	операнд_1 ≠ операнд_2	ZF = 0
Знаковые	JL/JNGE	операнд_1 < операнд_2	sf ≠ of
Знаковые	JLE/JNG	операнд_1 ≤ операнд_2	SF \neq OF или ZF = 1
Знаковые	JG/JNLE	операнд_1 > операнд_2	$SF = OF \varkappa ZF = 0$
Знаковые	JGE/JNL	операнд 1 ≥ операнд 2	SF = OF
Беззнаковые	JB/JNAE	операнд 1 < операнд 2	CF = 1
Беззнаковые	JBE/JNA	операнд 1 ≤ операнд 2	CF = 1 или ZF = 1
Беззнаковые	JA/JNBE	операнд_1 > операнд_2	$CF = 0 \mathbf{z}F = 0$
Беззнаковые	JAE/JNB	операнд_1 ≥ операнд_2	CF = 0

В общем случае, действие команд условного перехода зависит от состояния флагов, которое устанавливает предшествующая команда. Следующие команды действуют в зависимости от состояния конкретного флага:

Название флага	Команда условного перехода	Состояние флага
Переноса СБ	JC	CF=1
Чётности PF	JP	PF=1
Нуля ZF	JZ	zF=1
Знака SF	JS	SF=1
Переполнения ОБ	JO	OF=1
Переноса СБ	JNC	CF=0
Чётности PF	JNP	PF=0
Нуля ZF	JNZ	ZF=0
Знака SF	JNS	SF=0
Переполнения ОБ	JNO	OF=0

Команды **JCXZ/JECXZ** передают управление по метке в случае, если значение регистра **CX/ECX=0**. Данные команды удобно использовать для организации циклов, если регистр **ECX** используется как счётчик. Команды перехода изменяют последовательность выполнения команд за счёт изменения содержимого регистра **EIP**.

Подобно циклам for на языках высокого уровня на ассемблере можно создавать циклы с помощью следующих команд:

LOOP <merka>

Данная команда сначала выполняет уменьшение на единицу содержимого регистра **СХ/ЕСХ**. Затем она производит сравнение: если **СХ/ЕСХ>0**, то управление передаётся на метку. Если **СХ/ЕСХ=0**, то управление передаётся следующей за **LOOP** команде.

LOOPE/LOOPZ <merka>

Команда уменьшает значение **CX/ECX** на единицу. Если **CX/ECX>0** и **ZF=1**, то управление передаётся на метку перехода. Если **CX/ECX=0** или **ZF=0**, то выполняется следующая за **LOOP** команда.

LOOPNE/LOOPNZ <merka>

Действие команды аналогично предыдущей, но выход из цикла происходит, если **CX/ECX=0** или **ZF=1**. Последние две команды удобно использовать, если необходимо организовать досрочный выход из цикла. Недостатком данных команд **LOOPcc** является невозможность делать большие переходы, т.е. смещение метки относительно текущего значения **EIP** не может быть больше 128 байт.

Команды для работы со стеком

PUSH <операнд>. Команда сначала уменьшает значение **ESP** на 2/4, в зависимости от размера помещаемых данных, а затем записывает в вершину стека по адресу **ESP** значение операнда размером 2/4 байта.

РОР <операнд>. Команда сначала выталкивает 2/4 байта, начинающиеся с адреса **ESP**, из стека в регистр или ячейку памяти, а затем увеличивает значение регистра **ESP** на 2/4, в зависимости от размера пересылаемых данных.

PUSHA/PUSHAD. Данная команда не имеет операндов. Она сначала уменьшает значение **SP/ESP** на 16/32, а затем помещает в стек содержимое регистров общего назначения в следующем порядке: **AX/EAX**, **CX/ECX**, **DX/EDX**, **BX/EBX**, **SP/ESP**, **BP/EBP**, **SI/ESI**, **DI/EDI**.

POPA/POPAD. Команда выталкивает из стека значения регистров общего назначения в следующем порядке: **DI/EDI**, **SI/ESI**, **BP/EBP**, **SP/ESP**, **BX/EBX**, **DX/EDX**, **CX/ECX**, **AX/EAX**. Содержимое **SP/ESP** при этом не восстанавливается. Затем значение **ESP** увеличивается на 16/32.

CALL <имя_подпрограммы>. Команда предназначена для вызова подпрограммы. Она помещает адрес следующей после **CALL** команды в стек и передаёт управление по адресу подпрограммы.

RET <операнд>. Осуществляет возврат в вызывающую подпрограмму по адресу, хранящему на вершине стека. Команда извлекает из стека адрес возврата, помещает его в **EIP**, и увеличивает содержимое **ESP** на значение, которое имеет непосредственный операнд, выталкивая тем самым из стека данные.

Существуют определённые правила организации подпрограмм и передачи им аргументов. В операционной системе Windows принято вызывать подпрограммы, предварительно передавая их аргументы в стек.

Пример вызова функции с тремя аргументами	PUSH EAX PUSH DX PUSH 100
	CALL f

Допустим изначально **ESP=0002FFFC**. Тогда после выполнения данного фрагмента кода после входа в подпрограмму, стек будет содержать следующую информацию:

	Адреса ячеек ОП	Содержимое
ESP=0002FFEE	0002FFEE-0002FFF1	Адрес возврата (ЕІР)
	0002FFF2-0002FFF5	100
	0002FFF6-0002FFF7	DX
	0002FFF8-0002FFFB	EAX
	0002FFFC-0002FFFF	

После выполнения подпрограммы стек должен быть возвращён в то состояние, которое он имел перед выполнением первой команды **PUSH EAX**. Очистить стек от аргументов обязана вызываемая подпрограмма путём выполнения команды **RET 10**. 10 байт — суммарный размер аргументов. Если подпрограмма использует для вычислений какие-либо регистры, то необходимо сохранить их содержимое в начале подпрограммы в стеке, а в конце подпрограммы восстановить из стека. Таким образом, для вызывающей подпрограммы значения регистров не изменятся. Для удобства можно задать региструуказателю кадры стека **EBP** такое значение, чтобы он указывал на последний помещённый в стек аргумент.

Если подпрограмма является функцией и возвращает какие-либо значения, то их необходимо поместить в регистр **AL/AX/EAX/EDX:EAX**, если возвращаемое значение имеет размер соответственно 1/2/4/8 байт. Если функция возвращает, к примеру, число типа **long** либо **double** размером 8 байт, то старшую половину результата нужно поместить в **EDX**, младшую – в **EAX**. Остальные регистры, которые не используются для возврата значений из подпрограммы, требуется восстанавливать до исходного состояния, которое они имели в начале подпрограммы.

```
Пример функции с тремя
                               PUSH EBX ; EBX сохранить в стеке
аргументами
                               PUSH EBP ; EBP сохранить в стеке
int f(int x, int_16 y, int z),
                              MOV EBP, ESP; B EBP скопировать ESP
вычисляющей значение
                               ADD EBP, 12; Сместить ЕВР ближе к аргументам
выражения xy + z.
                               MOV AX, [EBP+4] ; В AX поместить второй
x, z — знаковые 4-байтовые
                              аргумент у
аргументы,
                               CWDE
у – знаковый 2-байтовый.
                              MOV EBX, [EBP] ; В EBX поместить первый
Аргументы при этом передаются в аргумент х
                              IMUL EBX
стек в обратном порядке:
                              ADD EAX, [EBP+6] ; К EAX прибавить третий
                              аргумент z
PUSH EAX ; z (4 байта)
                              POP EBP ; Восстановить EBP
PUSH DX ; у (2 байта)
                              POP EBX ; Восстановить EBX
PUSH 100 ; х (4 байта)
                              RET 10 ; Очистка стека от аргументов
                                                                            И
CALL f
                              возврат в вызывающую подпрограмму
                              f endp ; Результат - в EAX
```

Задания для выполнения к работе

- 1. Написать программу для вычисления значения арифметического выражения, используя команды условного и безусловного перехода согласно варианту задания. Подобрать набор тестовых данных (не менее 3). При выполнении операций с числами, преобразовывать их к 4-байтовым числам со знаком. Результат вывести на экран.
- 2. Написать программу для вычисления значения арифметического выражения, содержащего функцию. Вычисление функции организовать в виде отдельной подпрограммы по всем правилам, описанным выше. Для обработки массивов использовать команды для работы с циклами и команды условного перехода. Подобрать набор тестовых данных (не менее 3). Результат вывести на экран.

Пример выполнения первого задания:

```
# a = \begin{cases} x+y, & x \le 5 \\ 5xy, & x \in (5,10) \\ z^2+y, & x \ge 10 \end{cases} x- знаковое однобайтовое, y- беззнаковое двухбайтовое, z- знаковое 4-байтовое
```

Программа на ассемблере, вычисляющая данное выражение, имеет вид:

```
.386
 .model flat, stdcall
option casemap: none
 include d:\masm32\include\kernel32.inc
 include d:\masm32\include\msvcrt.inc
 includelib d:\masm32\lib\kernel32.lib
 includelib d:\masm32\lib\msvcrt.lib
 .data
  x db -10
  y dw 40
  z dd -100
  format db "a = %d", 0
 .code
start:
 XOR ECX, ECX ; Обнулить ECX
 MOV CX, у ; Поместить у в младшую половину ЕСХ. у - беззнаковое,
поэтому расширять его не нужно. Достаточно обнулить старшие байты.
В ЕСХ - 4-байтовое
 MOV AL, x ; B AL поместить x
 CMP AL, 10
               ; Если AL >= 10, то переход на j2
 JGE j2
 CBW
                ; Расширение х до 2 байт
 CWDE
                ; Расширение х до 4 байт
 CMP AL, 5
               ; Если AL <= 5, то переход на j1
 JLE j1
                ; EDX:EAX = x*y
 IMUL ECX
                ; EAX = 5*x*y
 IMUL EAX, 5
 JMP j out
 ADD EAX, ECX
                ; EAX = x + y
 JMP j_out
j2:
 MOV EAX, z ; EAX = z
                ; EDX:EAX = z^2
 IMUL z
                ; EAX = z^2 + y
 ADD EAX, ECX
j out:
 push EAX
 push offset format
 call crt printf
                     ; Вывод результата на экран
 call crt getch
                      ; Задержка ввода
 push 0
 call ExitProcess
                     ; Выход из программы
 end start
```

Набор тестовых данных

X	У	Z	a
-10	40	10	30
7	50	100	30
100	100	-100	10100

Пример выполнения второго задания:

```
# a = \sum_{i=0}^{n} x_i^2 + \frac{f(y_i)}{h}, f(y) = y^2 + 50 x - \text{массив 2-байтовых }  знаковых чисел y - \text{массив однобайтовых }  знаковых чисел h - \text{двубайтовое знаковое }  n - \text{беззнаковая }  переменная размером 2 байта
```

Ниже приведён текст программы для вычисления данного выражения:

```
.model flat, stdcall
     option casemap: none
     include d:\masm32\include\kernel32.inc
     include d:\masm32\include\msvcrt.inc
     includelib d:\masm32\lib\kernel32.lib
     includelib d:\masm32\lib\msvcrt.lib
      .data
       x dw -10, -2000, 12, 15, 5, -50, 170, 8, 45, 10
       y db 100, -100, 7, -15, 30, 20, 35, 40, 10, 10
       h dw -50
       n dw 3
       format db "a = %d", 0
      .code
      ; Функция от одного аргумента
      MOV AL, [ESP+4] ; Аргумент смещён относительно вершины стека на 4 байта
                       ; Расширение аргумента до 2 байт
      CWDE
                       ; До 4 байт
      IMUL EAX
                       ; Вычисление квадрата EAX = y^2
      ADD EAX, 50 ; EAX = y^2 + 50
      ret 2 ; Выталкивание из стека 2 байт и возврат в основную программу
      f endp
     start:
      XOR EBX, EBX; В EBX будет накапливаться сумма
      XOR ESI, ESI ; ESI - индекс і элементов в массивах
      XOR ECX, ECX ; ECX - счётчик итераций
      MOV CX, n
                   ; CX = n
    j1:
      MOV AX, x[ESI*2]; AX = x_i
                       ; Т.к. х - беззнаковое, нужно расширить его до 4 байт
      CWDE
                       ; EAX = x_i^2
      IMUL EAX
      ADD EBX, EAX
                       ; EBX = EBX + x_i^2
      MOV AX, h
                       ; Расширение h до размерности двойного слова
      CWDE
      MOV EDI, EAX ; Переместить делитель h в EDI
      PUSH word ptr y[ESI] ; Поместить в стек y_i. Поскольку команда PUSH не
может поместить в стек 1 байт, то помещаем 2 байта, т.е. y_i и y_{i+1}. Но в
процедуре используем только уі
      call f ; Вызов функции. Результат: EAX = x_i^2 + 50
                ; Расширение делимого до 8 байт перед операцией деления
      IDIV EDI \, ; EAX = f(y<sub>i</sub>) / h. В EDX - остаток от деления
      ADD EBX, EAX ; EBX = EBX + f(y_i) / h
      INC ESI ; i = i + 1
```

```
LOOP j1 ; ECX = ECX - 1. Переход в начало цикла, если ECX ≠ 0 MOV EAX, EBX ; Поместить результат в EAX

push EAX
push offset format
call crt_printf ; Вывод результата на экран

call crt_getch ; Задержка ввода
push 0
call ExitProcess ; Выход из программы
end start
```

Набор тестовых данных

$x = \{-10\}$	y = {100}	h = -50	n = 1	a = -101
$x = \{-10, 3\}$	$y = \{10, 3\}$	h = 100	n = 2	a = 110
$x = \{20, 1, 1000\}$	$y = \{10, 5, 100\}$	h = -10	n = 3	a = 1001428

Варианты заданий задачи №1

	Dr. movrauus	Резмериости и тип перемении и
Вариант	Выражение	Размерность и тип переменных
	$a = \begin{cases} xy + 4, & x < 10 \text{ и } y < 2\\ \frac{x}{z} - 6, & x < 10 \text{ и } y \ge 2 \end{cases}$	x, y, z — знаковые числа размером 2 байта
1	$a = \begin{cases} z - 6, & x < 10 \text{ и } y \ge 2 \end{cases}$	2 Ganta
	$(xy)^2, x \ge 10$	
	$\left(\frac{x+y}{x}, x < 10 \text{ M/V} < 2\right)$	<i>x</i> – беззнаковое число размером один байт
2	$b = \begin{cases} z - y, & \text{if } z = 0, \\ 0, & \text{if } z = 0,$	y, z — знаковые числа размером 2
	$b = \begin{cases} \frac{x+y}{z-y}, & x < 10 \text{ if } y < 2\\ xy - 6, & x < 10 \text{ if } y \ge 2\\ (x+y)^2, & x \ge 10 \end{cases}$	байта
	$(x + y)$, $x \ge 10$	<i>x</i> – знаковое 4-байтовое
2	$e = \begin{cases} \frac{x+y}{z-y}, & x > 10\\ xy-6, & x \le 10 \text{ if } x > 2\\ (x+z)^2, & x \le 10 \text{ if } x \le 2 \end{cases}$ $\begin{cases} x^2+y^2, & x \in [5,15]\\ x = 10 \text{ if } x = 1$	у – беззнаковое 2-байтовое
3	$\begin{vmatrix} e = \\ xy - 6, & x \le 10 \text{ и } z > 2 \end{vmatrix}$	z – знаковое однобайтовое
	$(x+z)^2, \qquad x \le 10 \text{ if } z \le 2$	
	$\begin{cases} x^2 + y^2, & x \in [5,15] \\ x^2 & x \notin [5,15] \end{cases}$	x — беззнаковое однобайтовое y , z — знаковое 2-байтовое
4	$q = \begin{cases} x^2 - z^2, & x \notin [5,15] \text{ if } z > 0 \\ x^2 + y^2 \end{cases}$	y, 2. Shakoboe 2-oamoboe
	$q = \begin{cases} x^2 - z^2, & x \notin [5,15] \text{ if } z > 0\\ 500 \frac{x^2 + y^2}{x^2 - z^2}, x \notin [5,15] \text{ if } z \le 0 \end{cases}$	
	$a = \begin{cases} \frac{y}{z} + 100, & z \le 10 \text{ или } x \in [0;3] \\ xyz - 1, & z > 10 \text{ и } x \notin [0;3] \text{ и } y > 0 \\ z^3, & z > 10 \text{ и } x \notin [0;3] \text{ и } y \le 0 \end{cases}$ $b = \begin{cases} \frac{x}{y} + 10\frac{x}{z}, & z \le 0 \text{ и } 1 \le x < 3, \\ -x + y^2, & z > 0, \\ 23 - xyz, & z \le 0 \text{ и } x \notin [1,3) \end{cases}$ $t = \begin{cases} \frac{x}{y} + 10\frac{x}{z}, & x < 1 \text{ и } t < 0, \\ \frac{x + y}{t + 3}, & t > 0, \\ \frac{x^2 + 23}{t} - y, & x \ge 1 \text{ и } t < 0 \end{cases}$	х – беззнаковое 2-байтовое
5	$a = \begin{cases} z \\ xvz - 1, & z > 10 \text{ M } x \notin [0:3] \text{ M } v > 0 \end{cases}$	у – знаковое 4-байтовое z – знаковое однобайтовое
	z^3 , $z > 10 \text{ M } x \notin [0; 3] \text{ M } y \le 0$	Z Shakoboe oghodan roboe
	$\binom{x}{-} + 10^{-}, z \le 0$ и $1 \le x < 3$,	х – знаковое однобайтовое
6	$b = \begin{cases} y & z \\ y & z \end{cases}$	y, z — беззнаковое однобайтовое
	$\begin{bmatrix} -x + y^{-}, & z > 0, \\ 23 - xvz, & z < 0 \text{ M } x \notin [1, 3) \end{bmatrix}$	
	$\int_{-\infty}^{\infty} \frac{x}{x} = 0 \text{ in } x = 1 \text{ in } t < 0$	<i>x</i> – знаковое однобайтовое
	y = z	y, t — беззнаковое 2-байтовое
7		
	$x^2 + 23$	
	$\left(\frac{}{t} - y, x \ge 1 \text{ if } t < 0 \right)$	
	$(x^2 + 32 - xz, x + y + z > 0,$	<i>x</i> – знаковое однобайтовое <i>y</i> – знаковое 4-байтовое
8	$ a = \begin{cases} z + y, & x + y + z \le 0 \text{ и } x > 0, \end{cases} $	у – знаковое 4-оайтовое z – беззнаковое 2-байтовое
	$a = \begin{cases} x^2 + 32 - xz, & x + y + z > 0, \\ z + y, & x + y + z \le 0 \text{ if } x > 0, \\ x + y \frac{z}{2}, & x + y + z \le 0 \text{ if } x \le 0 \end{cases}$	
	$(x^2y^3z^4, z \notin [-1; 1] \text{ if } y < 0$	<i>x</i> – знаковое 2-байтовое
9	$d = \begin{cases} z + 1 + xy, & y \ge 0 \end{cases}$	y, z — беззнаковое однобайтовое
	$(4x - 2z, z \in [-1; 1] \text{ if } y < 0$	y averence 2 Sexwance
	$\begin{bmatrix} 12z - 3xy, & x > 3 & y > 0, \\ y & z & & & & & & & & & & & & & & & & &$	<i>x</i> – знаковое 2-байтовое <i>y</i> – беззнаковое однобайтовое
10	$ r = {2 + \frac{\pi}{5}}, x > 5 \text{ if } y \le 8,$	z – беззнаковое 2-байтовое
	$\left \frac{(z+1)^2}{ x } \right \le 5$	
	$constraints = \begin{cases} x + y + z \le 0 & \text{if } x \le 0 \\ d = \begin{cases} x^2 y^3 z^4, & z \notin [-1;1] & \text{if } y < 0 \\ z + 1 + xy, & y \ge 0 \\ 4x - 2z, & z \in [-1;1] & \text{if } y < 0 \end{cases}$ $r = \begin{cases} 12z - 3xy, & x > 5 & \text{if } y > 8, \\ \frac{y}{2} + \frac{z}{5}, & x > 5 & \text{if } y \le 8, \\ \frac{(z+1)^2}{y}, & x \le 5 \end{cases}$ $s = \begin{cases} \frac{42x}{3}y^3, & x < -15 & \text{if } y \notin [-10;20], \\ z + \frac{1}{y} + x, & x < -15 & \text{if } y \notin [-10;20], \\ 3x + z^3, & x \ge -15 \end{cases}$	<i>x</i> – знаковое 4-байтовое
	$\left(\frac{12x}{3}y^3, x < -15 \text{ и } y \in [-10; 20], \right)$	<i>у</i> – знаковое 4-оаитовое <i>у</i> – знаковое 2-байтовое
11	$s = \begin{cases} 1 \\ 2 + 1 + r \end{cases}$ $r < -15 \mu y \notin [-10.20]$	z – беззнаковое однобайтовое
	$\begin{bmatrix} 2 + - + \lambda, & \lambda < -13 \text{ n y } \notin [-10, 20], \\ y & 2 \end{bmatrix}$	
	$3x + z^3, x \ge -15$	

12	$d = \begin{cases} \frac{1}{x + y^2} + z^3, & x \ge 0, \\ z + 1 + xy, & z \in [2,8] \text{ if } x < 0, \\ 7x - 2z, & z \notin [2,8] \text{ if } x < 0 \end{cases}$	x, z – знаковое однобайтовое y – знаковое 4-байтовое
13	$e = \begin{cases} 2 + 1 + xy, & 2 \in [2,8] \text{ if } x < 0, \\ 7x - 2z, & z \notin [2,8] \text{ if } x < 0 \end{cases}$ $e = \begin{cases} \frac{(x+y+1)^2}{y^3 - 2} z^4, & y > 10 \text{ if } z > 5, \\ -z^2 + \frac{1}{x} + \frac{x}{y+10}, & z \in [-5;5] \text{ if } y > 10, \\ -5x^2 - 2(z+1)y, & y < 10 \end{cases}$	x – беззнаковое 2-байтовоеy – знаковое однобайтовоеz – беззнаковое однобайтовое
14	$p = \begin{cases} x & y + 10 \\ -5x^2 - 2(z+1)y, & y \le 10 \end{cases}$ $p = \begin{cases} x^2 + 1 + z, & x > 3, \\ \frac{x}{(4-z^2)}, & x \in [-3;3] \text{ и } z \notin [-2;2], \\ x - y - 2z, & x \in [-3;3] \text{ и } z \in [-2;2] \end{cases}$	х – знаковое однобайтовоеу – знаковое 2-байтовоеz – беззнаковое 2-байтовое
15	$a = \begin{cases} \frac{(x+2)^2}{(y-2)^3}, & y \in [4;50], \\ \frac{x+y+z}{y}, & (y > 50 \text{ или } y < 4) \text{ и } z > 10, \\ 19x-21y, & (y > 50 \text{ или } y < 4) \text{ и } z \leq 10 \end{cases}$	x, z — знаковое 4-байтовое y — знаковое 2-байтовое
16	$d = \begin{cases} \frac{x^4 - z}{y - x} + 12\frac{x}{z + x}, & x \in [0, 15], \\ \frac{x}{t + z^2}, & x < 0, \\ \frac{x^2 + 23}{t} - y, & x > 15 \end{cases}$	x — беззнаковое однобайтовое y , z , t — знаковые 2-байтовые числа.
	$a = \begin{cases} \frac{x^2 + y^2}{x^3 - z^2 +}, x \in [-1,9], \\ x^2, x \notin [-1,9] \text{ и } z > 0 \text{ и } k < 10, \\ 7\frac{y^4}{x^2}, x \notin [-1,9] \text{ и } (z \le 0 \text{ или } k \ge 10) \end{cases}$	x, y, z — знаковые числа размером 2 байта k — беззнаковое однобайтовое число
18	$p = \begin{cases} \frac{4-x}{z} + y^4 \\ \frac{x^3 - z^2 - y}{z^3 - z^2}, & x < 5 \text{ if } y < 10, \\ \frac{x - 23}{-z^2} y^4, & y \ge 10, \end{cases}$	x, y, z — знаковые числа размером 2 байта
19	$h = \begin{cases} \frac{7 - x \frac{4 - (xz)^2}{z}}{z} + 23, & k \in (2,10), \\ \frac{z}{z} + \frac{1}{z} + \frac{1}{z}$	x, y, z — знаковые числа размером один байт k — беззнаковое 2-байтовое число
20	$b = \begin{cases} xyz - 1, & k \ge 10 \text{ if } k \le 2 \text{ if } 2 > 10, \\ x^3 - z^3, & k \ge 10 \text{ if } k \le 2 \text{ if } z \le 10 \end{cases}$ $b = \begin{cases} \frac{y + x^3}{xyz - 1 - y}, & x + y \in [5,15], \\ z^3y - 15, & x + y > 15, \\ \frac{x - 23}{z^4}, & x + y < 5 \end{cases}$	x, y, z – знаковые числа размером 2 байта

21	$a = \begin{cases} \left(\frac{x}{z}\right)^2 + 100yz , & x + z < y \\ 500\frac{x^4}{y}, & x + z \ge y \text{ if } x > 0 \\ x^2 - y^2 + 4, & x + z \ge y \text{ if } x \le 0 \end{cases}$	x — знаковое 2-байтовое y — знаковое 4-байтовое z — беззнаковое однобайтовое
22	$b = \begin{cases} \frac{x^2 - z^2}{y}, & x > 10 \text{ и } y > 0, \\ -xyz, & x > 10 \text{ и } y \le 0 \text{ и } z > 0, \\ \frac{ x + y }{35}, & x > 10 \text{ и } y \le 0 \text{ и } z \le 0 \text{ или } x \le 10 \end{cases}$	x — знаковое 2-байтовое y — знаковое 4-байтовое z — беззнаковое 2-байтовое
23	$t = \begin{cases} x^2 + 3y^3, & y < 5 \text{ или } y > 40, \\ -\frac{z - 4x}{5 - 6y}, & y \in [5,20], \\ xy + 6xz , & y \in (20,40] \end{cases}$	x — беззнаковое 2-байтовое y , z — знаковое 4-байтовое
	$r = \begin{cases} \left(\frac{x}{y-z}\right)^2, & x > 5 \text{ и } z > 15, \\ \frac{x+yz}{45}, & x \le 5 \text{ или } z \le 10, \\ xy^2 + zx^2 - xyz , & x \le 5 \text{ или } z \in (10,15] \end{cases}$	 x – беззнаковое однобайтовое y – знаковое 2-байтовое z – беззнаковое 2-байтовое
25	$s = \begin{cases} \left(\frac{x - y^2}{5}\right)^3, & x - y > 0, \\ \frac{x + y}{5y + z'}, & x - y \le 0 \text{ и } z > 10, \\ x^2 + y^2 + z^2, & x - y \le 0 \text{ и } z \le 10 \end{cases}$	 x – знаковое 2-байтовое y – беззнаковое однобайтовое z – знаковое однобайтовое

Варианты заданий задачи №2

1	$a = \sum_{i=0}^{n} i^{2} + \frac{x_{i}^{2}}{y_{i}^{2}} - y_{i}^{k} + f^{3}(x_{i}, y_{i}),$ $f(x, y) = \begin{cases} x + y , & x > 0, \\ x - y , & x \le 0 \end{cases}$	x — массив 2-байтовых беззнаковых чисел y — массив 4-байтовых знаковых чисел $k \in [0,10]$ n — беззнаковая переменная размером 4 байта
2	$s = \sum_{i=0}^{n} 100 \frac{i}{h} + \frac{y_i}{x_i} + g(x_i, y_i),$ $g(x, y) = \begin{cases} x^2 - y^x, & x \in (1; 7), \\ x^2 + y^2 + xy , & x \notin (1; 7) \end{cases}$	h — знаковая переменная размером один байт x — массив 1-байтовых беззнаковых чисел y — массив 2-байтовых беззнаковых чисел n — беззнаковая переменная размером 2 байта

	n	h — беззнаковая переменная
	$a = \sum_{i=0}^{n} ih + 7 - x_i \frac{y_i + h}{i} + g(x_i, y_i),$ $g(x, y) = \begin{cases} y^x, & x > y \text{ и } x \in (1; 5) \\ \frac{x^2}{4} + x y, & x \le y \text{ или } x \notin (1; 5) \end{cases}$	размером 2 байта
	$a = \sum_{i} ih + 7 - x_i \frac{y_i}{i} + g(x_i, y_i),$	<i>x</i> – массив беззнаковых
3	$\overline{i=0}$	1-байтовых чисел
3	$(y^x, x > y$ и $x \in (1;5)$	у – массив знаковых
	$g(x,y) = \left\{ x^2 \right\}$	2-байтовых чисел
	$\left(\frac{1}{4} + x y, x \le y \text{ или } x \notin (1;5)\right)$	n — беззнаковая переменная
		размером 4 байта
		h – знаковая переменная
	n .	размером 4 байта
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{200} i^4 h + p(x_i, y_i)$	x — массив знаковых
	$a = \sum_{i=1}^{n} x_i + 200 \frac{1}{v_i} \frac{1}{x_i} + \frac{1}{50}$	4-байтовых чисел
4	$a = \sum_{i=0}^{n} x_i + 200 \frac{i^4}{y_i} \frac{h}{x_i} + \frac{p(x_i, y_i)}{50},$ $p(x, y) = \begin{cases} 5000 x + 2^{(x+y)}, & (x+y) \in [0,20]\\ 2500 y - y^2, & (x+y) \notin [0,20] \end{cases}$	у – массив беззнаковых
	$p(x,y) = \begin{cases} 5000 x + 2^{(x+y)}, & (x+y) \in [0,20] \end{cases}$	2-байтовых чисел
	$(2500 y - y^2, (x+y) \notin [0,20]$	<i>n</i> – беззнаковая переменная
		размером 1 байт
	(, y _i	h — беззнаковая переменная
	$a = \sum_{i=0}^{n} \begin{cases} hx_i - \frac{y_i}{4} + f(x_i + 5, y_i), & i - \text{чётно,} \\ \frac{x_i}{y_i} - h \frac{y_i x_i}{x_i + y_i} + g(y_i), & i - \text{нечётно,} \end{cases}$ $f(x, y) = \begin{cases} \frac{x^y}{ y } & x \in [2, 4] \text{ и } y \in [0, 10], \\ x + y & x \notin [2, 4] \text{ или } y \notin [0, 10], \end{cases}$	размером 2 байта
	$ a=\rangle \langle x_i, y_i x_i \rangle$	размером 2 байта x — массив 4-байтовых
	$i=0$ $\left(\frac{1}{v_i}-h\frac{1}{x_i+v_i}+g(y_i), i-\text{нечётно},\right)$	знаковых чисел
5	$\left(\begin{array}{c} x^{y} \end{array} \right)$	у – массив 2-байтовых
	$\int \frac{x}{ y } = \int \frac{x}{ y }$ $x \in [2,4]$ и $y \in [0,10]$,	у – массив 2-оантовых беззнаковых чисел
	f(x,y) - f(y)	n — беззнаковая переменная
	$(x + y x \notin [2,4]$ или $y \notin [0,10]$,	размером 2 байта
	$g(y) = 5y^2 + 10y + 1$	
	(i	h – знаковая переменная
	$n h_{x_i} + x_i + g(x_i, y_i), i - \text{нечетно},$	размером 2 байта
	$a = \sum_{i=1}^{n} \begin{cases} y_i \\ y_i \end{cases}$	<i>х</i> – массив беззнаковых
6	$\sum_{i=0}^{\infty} \left \frac{x_i^3}{h} - \left(\frac{y_i x_i}{h} \right)^3 \right = \text{UATHO}$	1-байтовых чисел
	$a = \sum_{i=0}^{n} \begin{cases} h \frac{i}{y_i} + x_i + g(x_i, y_i), & i - \text{нечетно,} \\ \frac{x_i^3}{y_i} h - \left(\frac{y_i x_i}{x_i - y_i}\right)^3, & i - \text{четно,} \end{cases}$ $g(x, y) = \frac{ x + y + 50 }{5}$	у – массив знаковых
	x+y+50	2-байтовых чисел
	$g(x,y) = {5}$	<i>n</i> – беззнаковая переменная
		размером 4 байта
	i=m n	h – знаковая переменная
	$a = \sum_{i=0}^{i=m} \sum_{j=1}^{n} \frac{3}{x_i} - \frac{y_j}{x_i - h} + t(x_i, y_j),$	размером 2 байта
	$a = \sum \sum \frac{1}{x_i} - \frac{1}{x_i - h} + \iota(x_i, y_j),$	<i>x</i> – массив беззнаковых
7	i=0 $j=1$	1-байтовых чисел
	2 1 5	у – массив 2-байтовых
	$t(x,y) = \begin{cases} x^2 + 5, & y > (x+1), \\ x^2 - 1 , & y \le (x+1) \end{cases}$	знаковых чисел
	$(x^2 - 1 , y \le (x + 1))$	<i>т,п</i> – беззнаковые
		переменные размером 1 байт
	m n	h – беззнаковая переменная
	$\int_{a} -\sum \sum x_{i} - y_{i}^{3}x_{i}i + 6$	размером 2 байта
	$a = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{x_i}{k(i,j)} - \frac{y_i^3 x_i i + 6}{x_i^2} ,$	х – массив знаковых
0		2-байтовых чисел
8	$k(i,j) = \begin{cases} \frac{i}{3}, & i \text{ кратно 3,} \\ 5\frac{i+j}{1i-i!}, & i \text{ не кратно 3} \end{cases}$	у – массив знаковых
	$k(i,j) = \begin{cases} 3 \\ i \end{cases}$	4-байтовых чисел
	$5\frac{i+j}{i+j}$, i не кратно 3	<i>т</i> , <i>n</i> – беззнаковые
	i-j '	переменные размером 2
		байта
	m m	h – знаковая переменная
	$a = \sum \sum_{i=1}^{n} x_i^5 = ih + v_i(h + 17i) f(x, y_i)$	размером 1 байт
	$\left[\begin{array}{c} u - \sum_{i=1}^{n} \lambda_i - m + y_i (n + 1/i) \right] (\lambda_i, y_j), $	<i>x</i> – массив 1-байтовых
9	l=0 j=0 $(x +y, x>10)$	знаковых чисел
	$a = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} x_i^5 - ih + y_i(h+17i) f(x_i, y_j),$ $f(x, y) = \begin{cases} x + y, & x > 10, \\ \frac{1000}{x - y}, & x \le 10 \end{cases}$	у – массив беззнаковых
	$\int f(x,y) = \int \frac{1000}{100}, x < 10$	2-байтовых чисел
	(x-y')	<i>m</i> – беззнаковая переменная
		размером 2 байта

		1
10	$b = \sum_{i=0}^{n} (x_i + y_i)^k + 5k - g(x_i, y_j),$ $g(x, y) = \begin{cases} x(x + y), & x > 3 \text{ и } y > 3, \\ 200 x , & x \le 3 \text{ или } y \le 3 \end{cases}$	x — массив 1-байтовых знаковых чисел; y — массив 2-байтовых беззнаковых чисел; $k \in [0,10]$ m — беззнаковая переменная
11	$r = \sum_{i=0}^{n} x_i + 2x_i y_i^2 + 8y_i^3 + t(x_i, k),$ $t(x, k) = \begin{cases} x^k, & k > 5, \\ (x+1)^k, & k \le 5 \end{cases}$	размером 4 байта x, y — массивы 2-байтовых знаковых чисел $k \in [0,10]$ n — беззнаковая переменная размером 1 байт
12	$r = \sum_{i=0}^{n} \begin{cases} 5x_i^3 + 10 + f_1(x_i, i), & i < \frac{n}{2}, \\ 8y_i^2 + x_i + f_2(y_i, i), & i \ge \frac{n}{2}, \end{cases}$ $f_1(x, k) = \sum_{j=0}^{k} jx, \qquad f_2(y, k) = \sum_{j=0}^{k} \frac{y}{j}$	x — массив 2-байтовых знаковых чисел y — массив 2-байтовых беззнаковых чисел n — беззнаковая переменная размером 4 байта
13	$r = \sum_{i=0}^{n} k(y_i + x_i) + k^3 - y_i^2 + \frac{f(x_i, y_i)}{k},$ $f(x, y) = \sum_{j=0}^{x} y_j - 1 $	x — массив 1-байтовых беззнаковых чисел y — массив 2-байтовых знаковых чисел k — беззнаковая переменная размером 2 байта n — беззнаковая переменная размером 1 байт
14	$r = \sum_{i=0}^{n} x_i + \sum_{i=0}^{n} \begin{cases} \frac{x_i}{y_i} + f(x_i, y_i), & i - \text{чётно,} \\ x_i + y_i^2 + f(x_i^2, y_i^2), & i - \text{нечётно,} \end{cases}$ $f(x, y) = \begin{cases} \frac{ x + y }{200}, & x > 7, \\ (x - y)^3, & x \le 7 \end{cases}$	x — массив 4-байтовых знаковых чисел y — массив 2-байтовых беззнаковых чисел n — беззнаковая переменная размером 2 байта
15	$w = \sum_{i=1}^{n} x_i h + \frac{y_i}{x_i} - \frac{h}{y_i} x_i + f(x_i, y_i),$ $f(x, y) = \begin{cases} (x - 5)^y, & y \in [0, 10], \\ (x + y)^2, & y \notin [0, 10] \end{cases}$	h — двухбайтовое беззнаковое x — массив однобайтовых беззнаковых чисел y — массив двухбайтовых знаковых чисел n — беззнаковая переменная размером 4 байта
16	$w = \sum_{i=1}^{n} x^k + \frac{x_i h}{y_i} - \frac{k}{h} (x_i + y_i) + t^2 (x_i, y_i),$ $t(x, y) = \begin{cases} x - y^2 , & x > y \text{ и } y > 10, \\ (x + y)^2, & x \le y \text{ или } y \le 10 \end{cases}$	h — однобайтовое знаковое x — массив двухбайтовых знаковых чисел y — массив однобайтовых беззнаковых чисел $k \in [0,10]$ n — беззнаковая переменная размером 1 байт
17	$s = \sum_{i=0}^{n} h \frac{x_i}{y_i} - h y_i + f(x_i, y_i) ,$	h — двухбайтовое беззнаковое x — массив двухбайтовых знаковых чисел y — массив однобайтовых

	$(xy^2 - 15, x < y/2,$	беззнаковых чисел
	$f(x,y) = \begin{cases} xy^2 - 15, & x < y/2, \\ x + \frac{15^4}{ y }, & x \ge \frac{y}{2} \end{cases}$	<i>n</i> – беззнаковая переменная
	$\left(x + \frac{1}{ y }, x \ge \frac{1}{2}\right)$	размером 2 байта
18	$v = \sum_{i=1}^{n} (k+h) \frac{y_i}{hx_i} + (x_i h)^k + \frac{f(x_i)}{f(y_i)},$ $f(x) = \begin{cases} x^2 - 2, & x \in [-5,5], \\ x^3 + 1, & x \notin [-5,5] \end{cases}$	h — двухбайтовое знаковое x — массив двухбайтовых беззнаковых чисел y — массив однобайтовых знаковых чисел $k \in [0,10]$ n — беззнаковая переменная размером 4 байта
19	$s = \sum_{i=1}^{m} y_i (x_i h)^2 - \left(\frac{h}{y_i} x_i\right) + f(x_i) + f(y_i) ,$ $f(x) = \begin{cases} (x+1)^3, & x \in (3,5), \\ \frac{x-1}{x^2+3}, & x \notin (3,5) \end{cases}$	h — двухбайтовое знаковое x — массив 4-байтовых знаковых чисел y — массив однобайтовых беззнаковых чисел m — беззнаковая переменная размером 1 байт
20	$v = \sum_{i=1}^{n} h^{k} + \frac{x_{i}}{k + y_{i}} - \frac{x_{i}^{k+1}}{h} - \frac{y_{i} + x_{i}}{hk} + f(x_{i}, y_{i}, k),$ $f(x, y, k) = k \frac{ x + y }{x - y}$	h — двухбайтовое знаковое x — массив двухбайтовых беззнаковых чисел y — массив однобайтовых знаковых чисел $k \in [0,10]$ n — беззнаковая переменная размером 2 байта
21	$d = \sum_{i=0}^{n} (at_i)^2 + \left r_i^k \right - 20 \frac{f(t_i)}{g(r_i)},$ $f(t) = egin{cases} \frac{5t^2}{t-2}, & t ext{ кратно 3,} \ \frac{t-4}{10}, & t ext{ не кратно 3,} \end{cases}$	t — массив однобайтовых беззнаковых чисел r — массив двухбайтовых знаковых чисел $k \in [0,7]$ n — беззнаковая переменная размером 4 байта
	$a = \sum_{i=0}^{n} 2^{k} \frac{(x_{i} + 5)^{2}}{100} + (y_{i}^{2} - 1)^{2} + f(x_{i}, y_{i}) ,$ $f(x, y) = \begin{cases} \frac{500}{x}, & x > y \text{ и } x < 10\\ 500y , & x \le y \text{ или } x \ge 10 \end{cases}$	x — массив двухбайтовых знаковых чисел y — массив 4-байтовых знаковых чисел $k \in [0,15]$ n — беззнаковая переменная размером 1 байт
23	$a = \sum_{i=1}^{m} \sum_{j=1}^{n} h\left(\frac{x_i + 3y_i}{f(x_i, y_i)}\right)^2 + \left(\frac{x_i - 3y_i}{f(y_i, x_i)}\right)^2,$ $f(x, y) = \begin{cases} x + y , & x \in [-50, 50], \\ \frac{x + 40y}{x}, & x \notin [-50, 50] \end{cases}$	h — двухбайтовое знаковое x — массив 2-байтовых знаковых чисел y — массив однобайтовых знаковых чисел m,n — беззнаковые переменные размером 2 байт
24	$b = \sum_{i=0}^{n} h \frac{ f(2,t) }{x_i} + 100 \frac{ f(3,t) }{y_i} - x_i y_i,$ $f(r,t) = \begin{cases} r^t, & t \in [0,10], \\ rt, & t \notin [0,10] \end{cases}$	h — однобайтовое беззнаковое x — массив однобайтовых знаковых чисел y — массив 2-байтовых беззнаковых чисел n , t — беззнаковые переменные размером 4 байт

$a = \sum_{i=0}^{m} \frac{h^k}{x_i^2} + \frac{f(k, x_i)(h+1)^k}{y_i^2},$ $f(k, x) = \begin{cases} kx + 100, & \frac{x}{10} > k, \\ \frac{x}{k} - 100, & k \ge \frac{x}{10} \end{cases}$	h-4-байтовое знаковое
	x – массив 2-байтовых
	знаковых чисел
	у – массив однобайтовых
	беззнаковых чисел
	$k \in [0,15]$
	m — беззнаковая переменная
(k 10	размером 1 байт