Trabajo Práctico 1 - Teoría de Juegos

Juani Elosegui

Diciembre 2024

1 ¿Verdadero o falso? Discuta las siguientes afirmaciones.

- Falso. Pueden sobrevivir las estrategias débilmente dominadas, las cuales pueden ser un equilibrio de Nash también. Por lo tanto, no es único.
- Falso. Sí pueden ser todas racionalizables, como puede ser el caso en el que no hay estrategias estrictamente dominadas.

2 Subastas

Inciso (a)

	Alto	Medio	Bajo
Alto	5, 5	10, 0	10, 0
Medio	0, 10	15, 15	30, 0
Bajo	0, 10	0, 30	20, 20

Inciso (b)

Los equilibrios de Nash son: EN = {(Alto, Alto); (Medio, Medio)}

	Alto	Medio	Bajo
Alto	5, 5	10, 0	10, 0
Medio	0, 10	15, 15	30, 0
Bajo	0, 10	0, 30	<u>20</u> , 20

Inciso (c)

En caso de empate, gana Luis siempre.

	Alto	Medio	Bajo
Alto	10, 0	10, 0	10, 0
Medio	0, 10	30, 0	30, 0
Bajo	0, 10	0, 30	40, 0

Inciso (d)

El equilibrio de Nash es $EN = \{(Alto, Alto)\}.$

	Alto	Medio	Bajo
Alto	10, 0	10, <u>0</u>	10, 0
Medio	0, 10	$30, \overline{0}$	$30, \overline{0}$
Bajo	$0, \overline{10}$	0, 30	<u>40</u> , 0

Inciso (e)

Usaría el formato del inciso (b), porque van a jugar el equilibrio de Nash. Y el equilibrio de Nash en ese formato (15, 15) hacen que se subaste por más plata que en el segundo formato de la moneda (10, 0).

3 Estrategias continuas

Inciso (a)

Expando y simplifico las funciones de utilidad:

$$u_1(s_1, s_2) = (s_1 + s_2) + (8 - s_1) + (8 - s_1)(s_1 + s_2)$$

$$\implies u_1(s_1, s_2) = (s_1 + s_2) + 8 - s_1 + 8s_1 + 8s_2 - s_1^2 - s_1s_2$$

$$\implies u_1(s_1, s_2) = s_2 + 8 + 8s_1 + 8s_2 - s_1^2 - s_1s_2$$

$$\begin{array}{l} u_2(s_1,s_2) = (s_1+s_2) + (8-s_2) + (8-s_2)(s_1+s_2) \\ \Longrightarrow u_2(s_1,s_2) = s_1 + s_2 + 8 - s_2 + (8-s_2)(s_1+s_2) \\ \Longrightarrow u_2(s_1,s_2) = s_1 + s_2 + 8 - s_2 + 8s_1 + 8s_2 - s_1s_2 - s_2^2 \\ \Longrightarrow u_2(s_1,s_2) = s_1 + 8 + 8s_1 + 8s_2 - s_2^2 - s_1s_2 \end{array}$$

Derivo una respecto de s_1 y la otra respecto de s_2 :

$$\frac{\partial}{\partial s_1} u_1(s_1, s_2) = 0 + 0 + 8 + 0 - 2s_1 - s_2$$

$$\therefore \frac{\partial}{\partial s_1} u_1(s_1, s_2) = 8 - 2s_1 - s_2$$

$$\frac{\partial}{\partial s_2} u_2(s_1, s_2) = 0 + 0 + 0 + 8 - 2s_2 - s_1$$

$$\therefore \frac{\partial}{\partial s_2} u_2(s_1, s_2) = 8 - 2s_2 - s_1$$

Si igualo las dos expresiones a cero:

$$\frac{\partial}{\partial s_1} u_1(s_1, s_2) = 0$$

$$\frac{\partial}{\partial s_2} u_2(s_1, s_2) = 0$$

$$\frac{\partial}{\partial s_1} u_1(s_1, s_2) = 0$$

$$\implies 8 - 2s_1 - s_2 = 0$$

$$\implies 8 - 2s_1 = s_2$$

$$\implies s_2 = -8 + 2s_1$$

$$\therefore s_2 = 8 - 2s_1 (1)$$

$$\frac{\partial}{\partial s_2} u_1(s_1, s_2) = 0$$

$$\implies 8 - 2s_2 - s_1 = 0$$

$$\implies 8 - 2s_2 = s_1$$

$$\therefore s_1 = 8 - 2s_2 (2)$$

Entonces, reemplazo en las ecuaciones a las variables $s_1 \wedge s_2$ en las funciones (1) y (2):

$$s_2 = 8 - 2s_1$$

$$\Rightarrow s_2 = 8 - 2(8 - 2s_2)$$

$$\Rightarrow s_2 = 8 - 16 + 4s_2$$

$$\Rightarrow s_2 = -8 + 4s_2$$

$$\Rightarrow 8 = 3s_2$$

$$\implies \frac{8}{3} = s_2$$

$$\implies s_2^* = \frac{8}{3}$$

$$s_1 = 8 - 2(8 - 2s_1)$$

$$\Rightarrow s_1 = 8 - 16 + 4s_1$$

$$\Rightarrow s_1 = -8 + 4s_1$$

$$\Rightarrow 8 = 4s_1 - s_1$$

$$\Rightarrow 8 = 3s_1$$

$$\Rightarrow \begin{array}{l} 3 = 3s \\ \Rightarrow \begin{array}{l} \frac{8}{3} = s_1 \\ \vdots \\ s_1^* = \frac{8}{3} \end{array}$$

$$\therefore s_1^* = \frac{8}{3}$$

El equilibrio de Nash es = $\{(8/3, 8/3)\}$.

Lo que hice fue lo siguiente:

- 1. Simplificar las fórmulas de utilidad (opcional)
- 2. Derivarlas respecto de s_1 y s_2 .
- 3. Igualar las derivadas a cero (por el teorema de Lagrange).

4. Despejar s_1^* y s_2^* reemplazándolas una dentro de otra.

Este será el equilibrio de Nash porque será donde ambos jugadores maximizan su utilidad.

Inciso (b)

Acá tengo que comparar cuál es mayor: $(u_1(s_1^*, s_2^*), u_2(s_1^*, s_2^*))$ o $(u_1(4, 4), u_2(4, 4))$.

$$u_{1}(s_{1}^{*}, s_{2}^{*}) = (s_{1}^{*} + s_{2}^{*}) + (8 - s_{1}^{*}) + (8 - s_{1}^{*})(s_{1}^{*} + s_{2}^{*})$$

$$\Rightarrow u_{1}(s_{1}^{*}, s_{2}^{*}) = (\frac{8}{3} + \frac{8}{3}) + (8 - \frac{8}{3}) + (8 - \frac{8}{3})(\frac{8}{3} + \frac{8}{3})$$

$$\Rightarrow u_{1}(s_{1}^{*}, s_{2}^{*}) = \frac{16}{3} + (\frac{24}{3} - \frac{8}{3}) + (\frac{24}{3} - \frac{8}{3})(\frac{16}{3})$$

$$\Rightarrow u_{1}(s_{1}^{*}, s_{2}^{*}) = \frac{16}{3} + \frac{16}{3} + (\frac{16}{3})(\frac{16}{3})$$

$$\Rightarrow u_{1}(s_{1}^{*}, s_{2}^{*}) = \frac{32}{3} + (\frac{16}{3} \cdot \frac{16}{3})$$

$$\Rightarrow u_{1}(s_{1}^{*}, s_{2}^{*}) = \frac{32}{3} + (\frac{16}{3} \cdot \frac{16}{3})$$

$$\Rightarrow u_{1}(s_{1}^{*}, s_{2}^{*}) = \frac{32}{3} + \frac{256}{3}$$

$$\Rightarrow u_{1}(s_{1}^{*}, s_{2}^{*}) = \frac{288}{3}$$

$$\therefore u_{1}(s_{1}^{*}, s_{2}^{*}) = 96$$

$$u_{2}(s_{1}^{*}, s_{2}^{*}) = (\frac{16}{3}) + (\frac{16}{3}) + (\frac{16}{3})(\frac{16}{3})$$

$$\therefore u_{2}(s_{1}^{*}, s_{2}^{*}) = 96$$

$$\Rightarrow (u_{1}(s_{1}^{*}, s_{2}^{*}), u_{2}(s_{1}^{*}, s_{2}^{*})) = (96, 96)$$

$$u_{1}(4, 4) = (4 + 4) + (8 - 4) + (8 - 4)(4 + 4)$$

$$\Rightarrow u_{1}(4, 4) = (8) + (4) + (4)(8)$$

$$\Rightarrow u_{1}(4, 4) = 12 + 32$$

$$\therefore u_{1}(4, 4) = 14$$

$$u_{2}(4, 4) = 44$$

$$u_{2}(4, 4) = (4 + 4) + (8 - 4) + (8 - 4)(4 + 4)$$

$$\therefore u_{2}(4, 4) = 44$$

$$\Rightarrow (u_{1}(4, 4), u_{2}(4, 4)) = (44, 44)$$

$$\Rightarrow (u_{1}(4, 4), u_{2}(4, 4)) = (44, 44)$$

∴ Sí, estarían peor que en el equilibrio de Nash, porque les genera menor utilidad que en ese equilibrio.

4 Búsqueda de equilibrios

Inciso (a)

El jugador 1 tiene una estrategia estrictamente dominante (que es C), pero no es el caso del jugador 2, este no tiene estrategias estrictamente dominantes. Si bien, para el jugador 2, a domina estrictamente a c, no se cumple que a domine estrictamente a b.

	a	b	c
A	1, 1	0, 0	-1, 0
В	$0, \overline{0}$	0, 6	10, -1
С	2, 0	10, -1	11, -1

∴ No hay equilibrio en estrategias estrictamente dominadas.

Inciso (b)

Sí, para el jugador 1 puedo descartar las estrategias A y B:

	A	В	С
С	2, 0	10, -1	11, -1

Como el jugador 2 sabe que el jugador 1 va a eliminar A y B, decidirá jugar el equilibrio de Nash, que es el mismo equilibrio bajo el concepto de eliminación iterativa de estrategias estrictamente dominadas. Este es