Paper Review

PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation CVPR, 2020

Point Cloud

: Sparse and imbalanced spatial distribution

What constitutes a good input representation of one LiDAR point cloud scan?

- Perception field
 - : How much context a neural network can "perceive" before it classifies a pixel to semantic class
- 2D : dilated convolution, feature pyramid
- **3D**: Not only the size but also the **shape** of the perception field

Bird eye view

- : Top-down projection with Cartesian Coordinate
 - without losing any scale and range information
 - Points are organized in rings of various radii
 - Points into the grid cells in a **nonuniform manner**
 - Cells close to the sensor : condense points
 - blurring out fine-details of the points
 - Cells far away from the sensor : sparse points
 - limited information & Computational waste

(a) Cartesian BEV

Polar Coordinate

- : Calculate each point's azimuth and radius on the XY plane
- 1. Evenly distributes the points
- 2. More balanced point distribution lessens the burden on predictors
- minor points' predictions will be suppressed by the majority in the output
- Cartesian: 98.75%, Polar: 99.3% of points in every grid cell share the same label

Figure 4. Grid cell distance from the sensor vs. logarithmically spaced mean number of points per grid cell. The traditional BEV representation allocates most of its grid cells to the further end with few points in them.

Points per Grid 10⁻¹

10-3

Segmentation

- : Learned representation represents the entire vertical column of a grid
 - output: each spatial location encoding the class prediction for each voxel along the z-axis of that location

PointPillars: Fast Encoders for Object Detection from Point Clouds, CVPR 2019

Simplified PointNet

: Capture the distribution of points in each grid

Ring CNN

: Ring conv kernel will convolve the matrix assuming the matrix is connected on both ends of the radius axis.

r18	r11	r12	r13	r14	r15	r16	r17	r18	r11
r28	r21	r 22	r23	r24	r25	r26	r27	r28	r21
r38	r31	r32	r33	r34	r35	r36	r37	r38	r31
r48	r41	r42	r43	r44	r45	r46	r47	r48	r41

→ Extend receptive fields

```
class double_conv_circular(nn.Module):
 '''(conv => BN => ReLU) * 2'''
def __init__(self, in_ch, out_ch,group_conv,dilation=1):
     super(double_conv_circular, self).__init__()
    if group_conv:
         self.conv1 = nn.Sequential(
             nn.Conv2d(in_ch, out_ch, 3, padding=(1,0), groups = min(out_ch,in_ch)),
             nn.BatchNorm2d(out_ch),
             nn.LeakyReLU(inplace=True)
         self.conv2 = nn.Sequential(
             nn.Conv2d(out_ch, out_ch, 3, padding=(1,0),groups = out_ch),
             nn.BatchNorm2d(out ch),
             nn.LeakyReLU(inplace=True)
     else:
         self.conv1 = nn.Sequential(
             nn.Conv2d(in_ch, out_ch, 3, padding=(1,0)),
             nn.BatchNorm2d(out_ch),
             nn.LeakyReLU(inplace=True)
         self.conv2 = nn.Sequential(
             nn.Conv2d(out_ch, out_ch, 3, padding=(1,0)),
             nn.BatchNorm2d(out ch),
             nn.LeakyReLU(inplace=True)
def forward(self, x):
    #add circular padding
    x = F.pad(x, (1,1,0,0), mode = 'circular')
    x = self.conv1(x)
    x = F.pad(x, (1,1,0,0), mode = 'circular')
     x = self.conv2(x)
     return x
```

Ring CNN

It is applicable to various backbone models.

- Unet stand out from those backbone segmentation networks

Table 3. How projection methods impact models' segmentation performance on val split of SemanticKITTI.

				1 3		-								1		-		1			174771100100000000000000000000000000000		~ ^ _		
Model	Projection	FPS	Latency	MACs	Params	mIoU									F	er class I	oU								
Model	Trojection	113	Luciey	Miles	Turums	inioc	car	bicycle	motorcycle	truck	other-vehicle	person	bicyclist	motorcyclist	road	parking	sidewalk	other-ground	building	fence	vegetation	trunk	terrain	pole	traffic-sign
	Spherical	83.6	0.012s	14B	0.9M	31.8%	79.4%	0.0%	0.0%	3.2%	1.3%	0.0%	0.0%	0.0%	90.9%	19.8%	74.7%	0.0%	75.3%	31.6%	80.6%	37.3%	71.1%	13.2%	26.3%
Squeezeseg	Cartesian BEV	19.5	0.051s	101B	1.5M	42.6%	90.4%	15.2%	16.6%	13.5%	16.8%	39.0%	45.8%	0.0%	85.7%	25.3%	65.2%	0.0%	86.1%	32.1%	79.7%	54.4%	60.1%	50.9%	33.2%
	Polar BEV	17.8	0.056s	105B	1.5M	42.2%	89.8%	22.1%	19.8%	14.2%	9.2%	37.0%	14.3%	0.4%	83.7%	15.8%	65.6%	0.0%	85.9%	40.2%	85.6%	54.2%	72.1%	54.9%	36.7%
	Spherical	38.6	0.048s	92B	117M	41.6%	82.3%	1.5%	13.7%	65.8%	15.5%	20.3%	31.2%	0.0%	92.1%	32.4%	75.6.2%	0.1%	77.3%	31.6%	78.1%	43.9%	66.8%	36.6%	25.2%
Resnet-FCN	Cartesian BEV	11.7	0.088s	197B	117M	49.2%	89.9%	28.2%	15.6%	56.5%	30.5%	41.0%	66.1%	0.0%	88.6%	38.3%	71.5%	6.1%	86.5%	30.4%	81.5%	52.2%	65.7%	46.7%	39.3%
	Polar BEV	11.5	0.091s	200B	117M	52.5%	92.1%	22.8%	36.2%	57.5%	24.6%	42.5%	63.9%	0.0%	92.1%	43.6%	77.5%	1.7%	90.0%	46.9%	84.4%	56.0%	73.1%	53.3%	40.2%
	Spherical	39.1	0.038s	94B	41M	43.4%	82.6%	3.1%	24.5%	51.1%	18.3%	27.3%	23.9%	0.0%	93.0%	37.2%	77.4%	0.2%	76.8%	42.1%	79.7%	46.2%	68.7%	39.2%	32.9%
DRN-DL	Cartesian BEV	10.0	0.100s	171B	41M	46.7%	90.4%	14.1%	20.3%	51.4%	37.3%	39.3%	42.3%	0.0%	87.6%	30.6%	68.0%	1.5%	86.5%	33.0%	83.2%	49.2%	69.8%	44.3%	39.0%
	Polar BEV	9.9	0.101s	173B	41M	51.2%	91.6%	19.4%	35.0%	34.6%	20.8%	50.8%	55.1%	0.0%	92.5%	38.6%	77.5%	1.1%	88.5%	44.4%	84.8%	59.7%	70.6%	56.7%	40.2%
	Spherical	89.5	0.031s	45B	59M	41.6%	81.0%	0.6%	17.1%	58.9%	12.1%	21.3%	24.7%	0.0%	92.5%	33.5%	76.4%	0.0%	76.0%	40.4%	78.6%	45.7%	68.3%	35.1%	28.6%
Resnet-DL	Cartesian BEV	11.8	0.090s	107B	60M	50.4%	92.6%	17.8%	41.9%	62.0%	24.2%	42.0%	66.3%	0.0%	87.1%	27.2%	69.6%	0.4%	87.4%	41.5%	84.7%	54.8%	71.0%	48.7%	39.1%
	Polar BEV	11.7	0.094s	109B	60M	53.6%	91.5%	30.7%	38.8%	46.4%	24.0%	54.1%	62.2%	0.0%	92.4%	47.1%	78.0%	1.8%	89.1%	45.5%	85.4%	59.6%	72.3%	58.1%	42.2%

Spherical Projection

$$\phi = \arcsin \frac{y}{\sqrt{x^2 + y^2}}, \ \tilde{\phi} = \lfloor \phi / \triangle \phi \rfloor$$

$$\theta = \arcsin \frac{z}{\sqrt{x^2 + y^2 + z^2}}, \ \tilde{\theta} = \lfloor \theta / \triangle \theta \rfloor$$

 $\triangle \theta$ and $\triangle \phi$ are resolutions for discretization

- 1. The front-view projection essentially has an occlusion.
- 2. Distance information is lost during projection, which enables points distant in space to locate in neighboring 2D grids and easily get misclassified as the same label.

Table 3. How projection methods impact models' se	egmentation performance o	n val split of SemanticKITTI.
---	---------------------------	-------------------------------

Model	Projection	FPS	Latency	MACs	Params	mIoU		Per class IoU																	
Model	Trojection	113	Latency	MACS	Taranis	inioc	car	bicycle	motorcycle	truck	other-vehicle	person	bicyclist	motorcyclist	road	parking	sidewalk	other-ground	building	fence	vegetation	trunk	terrain	pole	traffic-sign
	Spherical	83.6	0.012s	14B	0.9M	31.8%	79.4%	0.0%	0.0%	3.2%	1.3%	0.0%	0.0%	0.0%	90.9%	19.8%	74.7%	0.0%	75.3%	31.6%	80.6%	37.3%	71.1%	13.2%	26.3%
Squeezeseg	Cartesian BEV	19.5	0.051s	101B	1.5M	42.6%	90.4%	15.2%	16.6%	13.5%	16.8%	39.0%	45.8%	0.0%	85.7%	25.3%	65.2%	0.0%	86.1%	32.1%	79.7%	54.4%	60.1%	50.9%	33.2%
	Polar BEV	17.8	0.056s	105B	1.5M	42.2%	89.8%	22.1%	19.8%	14.2%	9.2%	37.0%	14.3%	0.4%	83.7%	15.8%	65.6%	0.0%	85.9%	40.2%	85.6%	54.2%	72.1%	54.9%	36.7%
	Spherical	38.6	0.048s	92B	117M	41.6%	82.3%	1.5%	13.7%	65.8%	15.5%	20.3%	31.2%	0.0%	92.1%	32.4%	75.6.2%	0.1%	77.3%	31.6%	78.1%	43.9%	66.8%	36.6%	25.2%
Resnet-FCN	Cartesian BEV	11.7	0.088s	197B	117M	49.2%	89.9%	28.2%	15.6%	56.5%	30.5%	41.0%	66.1%	0.0%	88.6%	38.3%	71.5%	6.1%	86.5%	30.4%	81.5%	52.2%	65.7%	46.7%	39.3%
	Polar BEV	11.5	0.091s	200B	117M	52.5%	92.1%	22.8%	36.2%	57.5%	24.6%	42.5%	63.9%	0.0%	92.1%	43.6%	77.5%	1.7%	90.0%	46.9%	84.4%	56.0%	73.1%	53.3%	40.2%
	Spherical	39.1	0.038s	94B	41M	43.4%	82.6%	3.1%	24.5%	51.1%	18.3%	27.3%	23.9%	0.0%	93.0%	37.2%	77.4%	0.2%	76.8%	42.1%	79.7%	46.2%	68.7%	39.2%	32.9%
DRN-DL	Cartesian BEV	10.0	0.100s	171B	41M	46.7%	90.4%	14.1%	20.3%	51.4%	37.3%	39.3%	42.3%	0.0%	87.6%	30.6%	68.0%	1.5%	86.5%	33.0%	83.2%	49.2%	69.8%	44.3%	39.0%
	Polar BEV	9.9	0.101s	173B	41M	51.2%	91.6%	19.4%	35.0%	34.6%	20.8%	50.8%	55.1%	0.0%	92.5%	38.6%	77.5%	1.1%	88.5%	44.4%	84.8%	59.7%	70.6%	56.7%	40.2%
	Spherical	89.5	0.031s	45B	59M	41.6%	81.0%	0.6%	17.1%	58.9%	12.1%	21.3%	24.7%	0.0%	92.5%	33.5%	76.4%	0.0%	76.0%	40.4%	78.6%	45.7%	68.3%	35.1%	28.6%
Resnet-DL	Cartesian BEV	11.8	0.090s	107B	60M	50.4%	92.6%	17.8%	41.9%	62.0%	24.2%	42.0%		0.0%		27.2%	69.6%	0.4%	87.4%	41.5%	84.7%	54.8%	71.0%	48.7%	39.1%
	Polar BEV	11.7	0.094s	109B	60M	53.6%	91.5%	30.7%	38.8%	46.4%	24.0%	54.1%	62.2%	0.0%	92.4%	47.1%	78.0%	1.8%	89.1%	45.5%	85.4%	59.6%	72.3%	58.1%	42.2%

Result

Table 1. Segmentation results on **test** split of SemanticKITTI.

Model	FPS	Latency	MACs	Params	Acc	mIoU									I	Per class Io	υ								
Model	rrs	Latency	MACS	raranis	Acc	mioc	car	bicycle	motorcycle	truck	other-vehicle	person	bicyclist	motorcyclist	road	parking	sidewalk	other-ground	building	fence	vegetation	trunk	terrain	pole	traffic-sign
PointNet [22]	11.5	0.087s	141B	3.5M	-	14.6%	46.3%	1.3%	0.3%	0.1%	0.8%	0.2%	0.2%	0.0%	61.6%	15.8%	35.7%	1.4%	41.4%	12.9%	31.0%	4.6%	17.6%	2.4%	3.7%
PointNet++ [23]	-	-	-	6M	-	20.1%	53.7%	1.9%	0.2%	0.9%	0.2%	0.9%	1.0%	0.0%	72.0%	18.7%	41.8%	5.6%	62.3%	16.9%	46.5%	13.8%	30.0%	6.0%	8.9%
Squeezeseg [35]	49.2	0.031s	13B	0.9M	-	29.5%	68.8%	16.0%	4.1%	3.3%	3.6%	12.9%	13.1%	0.9%	85.4%	26.9%	54.3%	4.5%	57.4%	29.0%	60.0%	24.3%	53.7%	17.5%	24.5%
TangentConv [30]	-	-	-	0.4M	-	35.9%	86.8%	1.3%	12.7%	11.6%	10.2%	17.1%	20.2%	0.5%	82.9%	15.2%	61.7%	9.0%	82.8%	44.2%	75.5%	42.5%	55.5%	30.2%	22.2%
Squeezesegv2 [36]	36.7	0.036s	14B	0.9M	-	39.7%	81.8%	18.5%	17.9%	13.4%	14.0%	20.1%	25.1%	3.9%	88.6%	45.8%	67.6%	17.7%	73.7%	41.1%	71.8%	35.8%	60.2%	20.2%	36.3%
DarkNet53 [1]	12.7	0.087s	378B	50M	87.8%	49.9%	86.4%	24.5%	32.7%	25.5%	22.6%	36.2%	33.6%	4.7%	91.8%	64.8%	74.6%	27.9%	84.1%	55.0%	78.3%	50.1%	64.0%	38.9%	52.2%
RangeNet++ [19]	-	1.5	378B	50M	89.0%	52.2%	91.4%	25.7%	34.4%	25.7%	23.0%	38.3%	38.8%	4.8%	91.8%	65.0%	75.2%	27.8%	87.4%	58.6%	80.5%	55.1%	64.6%	47.9%	55.9%
RandLA [12]	-	-	-	1.2M	-	53.9%	94.2%	26.0%	25.8%	40.1%	38.9%	49.2%	48.2%	7.2%	90.7%	60.3%	73.7%	20.4%	86.9%	56.3%	81.4%	66.8%	49.2%	47.7%	38.1%
Unet w/ Cartesian BEV	19.7	0.051s	134B	14M	87.6%	50.7%	92.7%	26.8%	23.1%	26.7%	24.2%	48.1%	41.0%	4.4%	86.7%	52.3%	67.2%	12.9%	89.5%	57.7%	80.8%	62.5%	62.5%	50.3%	53.5%
PolarNet	16.2	0.062s	135B	14M	90.0%	54.3%	93.8%	40.3%	30.1%	22.9%	28.5%	43.2%	40.2%	5.6%	90.8%	61.7%	74.4%	21.7%	90.0%	61.3%	84.0%	65.5%	67.8%	51.8%	57.5%

Table 2. Segmentation results on **test** split of A2D2.

M-1-1	EDC	T -4	MAG	D	A			- 6						F	er class I	οU							
Model	FPS	Latency	MACs	Params	Acc	mIoU	car	bicycle	pedestrian	truck	small vehicles	traffic signal	traffic sign	utility vehicle	sidebars	speed	curbstone	solid line	irrelevant signs	road blocks	tractor	non- drivable street	zebra
Squeezeseg [35]	87.5	0.009s	15B	0.9M	-	8.9%	9.7%	0.0%	0.0%	15.8%	0.0%	0.7%	64.4%	0.0%	0.4%	0.0%	2.2%	15.6%	0.5%	15.9%	0.0%	0.0%	0.0%
Squeezesegv2 [36]	67.1	0.015s	15B	0.9M	81.0%	16.4%	15.4%	0.2%	8.6%	63.8%	0.0%	16.8%	61.7%	0.6%	0.1%	0.0%	14.8%	24.7%	12.7%	33.2%	0.0%	5.8%	0.0%
DarkNet53 [1]	16.1	0.063s	378B	50M	82.0%	17.2%	15.2%	0.8%	6.1%	68.5%	0.0%	15.5%	63.8%	0.4%	0.3%	0.0%	17.3%	23.8%	13.3%	35.6%	0.0%	6.3%	0.0%
Unet w/ Cartesian BEV	49.5	0.028s	60B	14M	83.5%	20.3%	27.0%	7.3%	20.3%	66.0%	1.9%	25.2%	54.7%	6.5%	12.7%	0.0%	20.3%	26.8%	21.4%	42.5%	0.0%	9.5%	0.0%
PolarNet	38.4	0.031s	60B	14M	85.4%	23.9%	23.8%	10.1%	18.2%	69.7%	9.6%	49.1%	58.5%	0.0%	11.3%	0.0%	28.3%	37.6%	24.8%	42.8%	0.0%	14.8%	0.0%

Table 4. Segmentation results on **test** split of Paris-Lille-3D.

Model	A	mIoU				F	er class Io	υŪ			
Model	Acc	miou	ground	building	pole	bollard	trash can	barrier	pedestrian	car	vegetation
Squeezesegv2 [36]	87.3%	36.9%	95.9%	82.7%	18.7%	9.9%	3.8%	15.2%	3.4%	49.9%	52.8%
DarkNet53 [1]	88.9%	40.0%	96.7%	84.9%	19.5%	16.7%	4.8%	17.6%	3.4%	58.2%	57.9%
Unet w/ Cartesian BEV	80.9%	40.3%	96.0%	44.0%	38.4%	42.8%	12.7%	12.4%	12.1%	70.4%	33.60%
PolarNet	87.5%	43.7%	96.8%	69.1%	32.2%	27.6%	2.4%	27.5%	12.1%	74.0%	51.60%

3D Segmentation Result on SemanticKITTI

