Лекція №7

Тема: Ланцюги Маркова з дискретним часом.

- 1. Дискретні ланцюги Маркова. Рекурентні формули.
- 2. Класифікація станів ланцюга Маркова. Рекурентність. Теорема солідарності.
- 3. Тереми про існування ергодичного розподілу.
 - 1. Дискретні ланцюги Маркова.

Нехай задана послідовність випадкових величин $\xi_0, \xi_1, \xi_2, ...,$ які визначені на одному й тому ж ймовірносному просторі $\{\Omega, \Re, P\}$ і які набувають значень з множини $X = \{x_0, x_1, ...\}$.

Говорять, що послідовність $\xi_0, \xi_1, \xi_2, \dots$ утворює ланцюг Маркова, якщо для будь-якого натурального n та довільних $i_0, i_1, i_2, \dots, i_n$ таких, що

$$P\{\xi_{n-1}=x_{i_{n-1}},\xi_{n-2}=x_{i_{n-2}},...,\xi_1=x_{i_1},\xi_0=x_{i_0}\}>0$$

виконується рівність

$$P\{\xi_{n} = x_{i_{n}} | \xi_{n-1} = x_{i_{n-1}}, \xi_{n-2} = x_{i_{n-2}}, \dots, \xi_{1} = x_{i_{1}}, \xi_{0} = x_{i_{0}}\} = P\{\xi_{n} = x_{i_{n}} | \xi_{n-1} = x_{i_{n-1}}\}$$
 (1)

Властивість (1) називається властивістю Маркова.

Якщо ймовірність $p_{ij}(n) = P\{\xi_n = x_j / \xi_{n-1} = x_i\}$ не залежить від n, то ланцюг Маркова називається **однорідним.**

Матриця $P = \parallel p_{ij} \parallel$, де $p_{ij} = P\{\xi_n = j \, | \, \xi_{n-1} = i\}$ називається матрицею перехідних ймовірностей за один крок або просто перехідною матрицею ланцюга Маркова ξ_n .

Якщо перехідні імовірності дискретного однорідного ланцюга Маркова $\xi_n \ , \ n \geq 0 \ \mbox{ задовольняють наступним умовам:}$

- 1) $0 \le p_{ij} \le 1$;
- $2) \sum_{j \in X} p_{ij} = 1$

то матриці перехідних ймовірностей, що мають такі властивості 1) та 2), називаються стохастичними.

Ймовірності $P\{\xi_0 = x_i\} = p_i^0$ називаються **початковим розподілом** ланцюга Маркова ξ_n . У цілочисельні моменти часу система змінює свої стани. При цьому ймовірність у момент часу n попасти в стан j, якщо відома вся передісторія системи, залежить від того, в якому стані знаходилась система в момент n-1. Коротко властивість марковості можна сформулювати так: при фіксованому теперішньому майбутнє не залежить від минулого.

Оскільки $P\{\xi_0=x_i,\xi_1=x_{i_1},...,\xi_n=x_{i_n}\}=p_i^0p_{ii_1}p_{i_1i_2}...p_{i_{n-1}i_n}$, то початковий розподіл $\{p_i\}_{i=0}^\infty$ та матриця $P=\parallel p_{ij}\parallel$ перехідних ймовірностей визначають скінченновимірні розподіли ланцюга Маркова ξ_n .

Отже, можна зазначити, що ланцюг Маркова визначається початковим розподілом $\{p_i^0, i \ge 1\}$ та перехідними ймовірностями.

Імовірності $p_{ij}^{(n)}$, які визначаються як $p_{ij}^{(n)} = P\{\xi_n = x_j \, / \, \xi_0 = x_i \}$, i,j>0, називаються перехідними ймовірностями ланцюга Маркова ξ_n , $n\geq 0$ за n кроків.

Перехідні ймовірності ланцюга Маркова за n кроків $p_{ij}^{(n)} = P\{\xi_n = x_j \, / \, \xi_0 = x_i\} \,, \; i,j > 0 \; \text{мають наступні властивості:}$

1)
$$p_{ii}^{(n)} \ge 0$$
;

2)
$$\sum_{j=0}^{\infty} p_{ij}^{(n)} = 1;$$

3) для дов. натуральних n>0, m>0, $p_{ij}^{(m+n)}=\sum_{k=0}^{\infty}p_{ik}^{(m)}p_{kj}^{(n)}$ — рівняння Чепмена-Колмогорова.

$$P^{(n)} = || p_{ij}^{(n)} ||, P^{(n)} = P^n$$

Для довільних натуральних n, m дане рівняння можна записати у вигляді рівності $P^{(n+m)} = P^n P^m$, що називається рівнянням Чепмена-Колмогорова.

2. Класифікація станів ланцюга Маркова. Рекурентність. Теорема солідарності.

За матрицею переходів за n кроків введемо наступні типи станів ланцюга Маркова.

Стан x_i називається **неістотним**, якщо для нього знайдеться стан x_{j_0} та n_0 такі, що $p_{ij_0}^{(n_0)}>0$, але для всіх n>1 $p_{j_0i}^{(n)}=0$. У протилежному випадку стан x_i будемо називати істотним.

Стан x_j досягається зі стану x_i , якщо $p_{ij}^{(n)} > 0$ для деякого n > 1 . В цьому випадку будемо писати $x_i \to x_j$.

Якщо $x_i \to x_j$ і $x_j \to x_i$, то говорять, що стани x_i , x_j сполучаються. В цьому випадку будемо писати $x_i \leftrightarrow x_j$. За визначенням \leftrightarrow рефлексивне, симетричне і транзитивне, тобто ϵ відношенням еквівалентності. А отже, за відношенням еквівалентності \leftrightarrow множина станів $X = \{x_0, x_1, ...\}$ розбивається на класи, що не перетинаються $X_1, X_2, ...$ сполучних між собою станів. Стани об'єднуються в один клас, якщо вони сполучаються один з одним. Існує можливість того, що відправляючись із стану, що відноситься до одного класу еквівалентності, з додатньою ймовірністю попасти в інший клас. Хоча тоді повернення до початкового стану не можливе, бо тоді б згадані два класи входили до одного класу еквівалентності. Якщо всі стани ланцюга істотні, то виконується наступна умова: для будь-якого $j \in E_\beta$ не знайдеться $i \in E_\alpha$ такого, що $i \to j$. Якщо клас складається з одного стану i, то цей стан називається поглинаючим.

Теорема 1. Множина станів X ланцюга Маркова ξ_n може бути подана у вигляді $X = X_0 \cup X_1 \cup X_2 \cup ...$, де X_0 клас усіх неістотних станів, а X_i , $i \ge 1$ класи істотних станів, що сполучаються, причому $X_i \cap X_j = \emptyset$ для $i \ne j$.

Ланцюг Маркова, всі стани якого сполучаються (утворюють один клас еквівалентності), називається **незвідним.**

Позначимо

$$f_{ii}^{(n)} = P\{\xi_n = x_i, \xi_{n-1} \neq x_i, ..., \xi_1 \neq x_i \mid \xi_0 = x_i\},$$

$$F_i = \sum_{n=1}^{\infty} f_{ii}^{(n)},$$

 $f_{ii}^{(n)}$ — ймовірність того, що ланцюг Маркова, який вийшов із i-того стану, вперше повернеться в нього на n-му кроці. Імовірність того, що ланцюг ξ_n , $n \ge 0$, що вийшов із i-того стану, знову коли-небудь повернеться до нього, дорівнює F_i .

Стан x_i , називають **рекурентним,** якщо $F_i=1$, і **нерекурентним.** якщо $F_i<1$.

Якщо $\xi_0 = x_i$, то випадкову величину $\tau_i = \inf\{n > 0 : \xi_n = x_i\}$ називають часом першого повернення в стан x_i .

Стан x_i називаеться **рекурентним додатнім,** якщо він ϵ рекурентним і $M\tau_i = \sum_{n=1}^\infty n f_i^{(n)} < \infty$. Якщо $M\tau_i = \sum_{n=1}^\infty n f_i^{(n)} = \infty$, то такий стан називається **рекурентним нульовим.**

Теорема 2. Стан x_i є рекурентним тоді і лише тоді, коли

$$P_i = \sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty.$$

Якщо стан x_i не ϵ рекурентним, то $F_i = \frac{P_i}{1 + P_i}$. Стан x_i називають періодичним з періодом d > 1, якщо

$$HCД\{n: p_{ij}^{(n)} > 0\} = d.$$

Теорема3. (про солідарність). В класі станів, що сполучаються:

- а) якщо один стан ϵ рекурентним, тоді всі стани будуть рекурентними;
- б) якщо один стан ϵ рекурентно нульовим, тоді всі стани будуть рекурентно нульовими;
- в) якщо один стан ϵ рекурентно додатнім, тоді всі стани будуть рекурентно додатними;
- Γ) якщо один стан ϵ періодичним з періодом d, тоді всі стани будуть періодичні з тим самим періодом.

Таким чином, якщо ланцюг ϵ незвідним і хоча б один із його станів має період, то всі його стани мають цей же період, який називають **періодом** ланцюга.

3. Тереми про існування ергодичного розподілу.

Розподіл $\left\{q_i\right\}_{i=0}^{\infty}$ називають **стаціонарним розподілом** ланцюга ξ_n , $n \geq 0$, якщо

$$\begin{cases} q_j = \sum_{k \in X} q_k p_{kj}, j \in X, \\ \sum_{j \in X} q_j = 1. \end{cases},$$

або в матричній формі q=qP , де $q=(q_0,q_1,...)$ позначає вектор-рядок з координатами q_i .

Якщо для марковського ланцюга існують границі $\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j > 0$, то $\{\pi_j\}_{j=1}^\infty$ називають **ергодичним розподілом.**

Наступні три теореми дають умови для існування ергодичного розподілу для скінченних ланцюгів Маркова.

Теорема 4. Нехай ланцюг Маркова ξ_n , $n \ge 0$, скінченний. Умова: $\min_{i,j} p_{ij}^{(n)} > 0$, для деякого n, ϵ необхідною і достатньою для існування ергодичного розподілу $\pi = (\pi_1, ..., \pi_N)$, причому цей ергодичний розподіл буде і єдиним стаціонарним розподілом.

Теорема 5. Якщо ланцюг Маркова ξ_n , $n \ge 0$, незвідний, скінченний та неперіодичний, то для нього існує ергодичний розподіл $\pi = (\pi_1, ..., \pi_N)$, який буде і єдиним стацюнарним розподілом, і $\forall j = \overline{1,N}$ $\pi_j = \frac{1}{M\tau_j}$.

Наступні дві теореми дають умови для існування ергодичних розподілів для нескінченних ланцюгів Маркова.

Теорема 6. Для того, щоб ланцюг Маркова ξ_n , $n \ge 0$, був ергодичним, необхідно і достатньо, щоб цей ланцюг був незвідним, неперіодичним, та щоб існував стан i_0 такий, що $M\tau_{i_0} < \infty$. При цьому єдиний стаціонарний розподіл буде співпадати з ергодичним.

Теорема 7. Якщо ланцюг Маркова ξ_n , $n \ge 0$, незвідний та неперіодичний і такий, що для деякого j_0 та $\varepsilon > 0$ виконується умова $\inf_i p_{ij_0} \ge \varepsilon$, тоді існує ергодичний розподіл $\pi = (\pi_1, ..., \pi_N, ...)$ який буде єдиним стаціонарним розподілом, і $\pi_j = \frac{1}{M\tau_j}$.