# How to Do Part-Of-Speech (POS) Tagging

### Why is Part-Of-Speech Tagging Hard?

- Words may be ambiguous in different ways:
  - A word may have multiple meanings as the same partof-speech
    - file **noun**, a folder for storing papers
    - file **noun**, instrument for smoothing rough edges
  - A word may function as multiple parts-of-speech
    - a round table: adjective
    - a round of applause: **noun**
    - to round out your interests: verb
    - to work the year round: adverb

### Why is Part-Of-Speech Tagging Needed?

- May be useful to know what function the word plays, instead of depending on the word itself.
- Internally, next higher levels of NL Processing:
  - Phrase Bracketing
    - Can write regexps like (Det) Adj\* N+ over the output for phrases, etc.
  - Parsing
    - As input to or to speed up a full parser
    - If you know the tag, you can back off to it in other tasks
  - Semantics
- Applications that use POS tagging:
  - Speech synthesis Text-to-speech (how do we pronounce "lead"?)
  - Information retrieval selection of high-content words
  - Word-sense disambiguation
  - Sentiment detection selection of high-opinion or emotion words

## Overview of Approaches

- Rule-based Approach
  - Simple and doesn't require a tagged corpus, but not as accurate as other approaches
- Stochastic Approach
  - Refers to any approach which incorporates frequencies or probabilities
  - Requires a tagged corpus to learn frequencies
  - N-gram taggers taggers
  - Hidden Markov Model (HMM) taggers
- Other Issues: unknown words and evaluation

## Word Class Ambiguity (in the Brown Corpus)

- Recall that words often have more than one word class: another example is the word *this* 
  - This is a nice day = PRP
  - This day is nice = DT
  - You can go *this* far = RB
- Degree of ambiguity in English
  - 40% of word tokens are ambiguous.
  - 11.5% of word types are ambiguous.
    - Unambiguous (1 tag): 35,340
    - Ambiguous (2-7 tags): 4,100

| 2 tags | 3,760 |
|--------|-------|
| 3 tags | 264   |
| 4 tags | 61    |
| 5 tags | 12    |
| 6 tags | 2     |
| 7 tags | 1     |

• the word "still" has 7 tags

(Derose, 1988)

## N-gram Approach

- N-gram approach to probabilistic POS tagging:
  - calculates the probability of a given sequence of tags occurring for a sequence of words
  - the best tag for a given word is determined by the (already calculated) probability that it occurs with the n previous tags
  - may be bi-gram, tri-gram, etc

```
word_{n-1} ... word_{-2} word_{-1} word tag_{n-1} ... tag_{-2} tag_{-1} ??
```

- Presented here as an introduction to HMM tagging
  - And given in more detail in the NLTK
  - In practice, bigram and trigram probabilities have the problem that the combinations of words are sparse in the corpus
  - Combine the taggers with a backoff approach

## N-gram Tagging

 Initialize a tagger by learning probabilities from a tagged corpus

- Probability that the sequence ... tag<sub>-2</sub> tag<sub>-1</sub> word gives tag XX
- Note that initial sequences will include a start marker as part of the sequence
- Use the tagger to tag word sequences (usually of length 2-3) with unknown tags
  - Sequence through the words:
    - To determine the POS tag for the next word, use the previous n-1 tags and the word to look up probabilities and use the highest probability tag

## Need Longer Sequence Classification

- A more comprehensive approach to tagging considers the entire sequence of words
  - Secretariat is expected to race tomorrow
- What is the best sequence of tags which corresponds to this sequence of observations?
- Probabilistic view:
  - Consider all possible sequences of tags
  - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w1...wn.

#### Road to HMMs

- We want, out of all sequences of n tags  $t_1...t_n$  the single tag sequence such that  $P(t_1...t_n|w_1...w_n)$  is highest.
  - i.e. the probability of the tag sequence  $t_1...t_n$  given the word sequence  $w_1...w_n$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

- Hat ^ means "our estimate of the best one"
- Argmax<sub>x</sub> f(x) means "the x such that f(x) is maximized"
  - i.e. find the tag sequence that maximizes the probability

#### Road to HMMs

• This equation is guaranteed to give us the best tag sequence

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
  - Use Bayes rule to transform into a set of other probabilities that are easier to compute

## Using Bayes Rule

Bayes rule:

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

• Apply Bayes Rule:

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

- Note that this is using the conditional probability, given a tag sequence, what is the most likely word sequence with those tags.
  - Eliminate denominator as it is the same for every sequence

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

#### Likelihood and Prior

• Further simplify  $\hat{t}_1^n = \underset{\cdot}{\operatorname{argmax}} \ \overbrace{P(w_1^n|t_1^n)}^{\text{likelihood}} \ \overbrace{P(t_1^n)}^{\text{prior}}$ 

• Likelihood: assume that the probability of the word depends only on its tag  $\frac{n}{n} = \frac{n}{n} \left( \frac{n}{n} \right) + \frac{n}{n} \left( \frac{n}{n} \right) + \frac{n}{n} = \frac{n}{n} \left( \frac{n}{n} \right) + \frac{n}{n} \left($ 

 $P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$ 

• Prior: use the bigram assumption that the tag only depends on the previous tag

n

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

## Two Sets of Probabilities (1)

- Tag transition probabilities  $p(t_i|t_{i-1})$  (priors)
  - Determiners likely to precede adjs and nouns
    - That/DT flight/NN
    - The/DT yellow/JJ hat/NN
    - So we expect P(NN|DT) and P(JJ|DT) to be high
  - Compute P(NN|DT) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$
Count of DT NN sequence
$$P(NN|DT) = \frac{C(DT, NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

### Two Sets of Probabilities (2)

- Word likelihood probabilities p(w<sub>i</sub>|t<sub>i</sub>)
  - VBZ (3sg Pres verb) likely to be "is"
  - Compute P(is|VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

Count of "is" tagged with VBZ

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

## An Example: the word "race"

- The word "race" can occur as a verb or as a noun:
  - Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
  - People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

# Disambiguating "race"

Which tag sequence is most likely?





## Example

- The equations only differ in "to race tomorrow"
- P(NN|TO) = .00047
- P(VB|TO) = .83
- P(race|NN) = .00057
- P(race|VB) = .00012
- P(NR|VB) = .0027
- P(NR|NN) = .0012

The tag transition probabilities P(NN|TO) and P(VB|TO)

Lexical likelihoods from the Brown corpus for 'race' given a POS tag NN or VB.

Tag sequence probability for the likelihood of an adverb occurring given the previous tag verb or noun

- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race|NN)=.00000000032
- So we (correctly) choose the verb tag.