

Schedule

Tentative Schedule

수업일	내용		
9/4	Course Introduction, Algorithm Basic, Level Test		
9/11	Order of Complexity, List		
9/18	Stack, Queue		
9/25	건학 기념일		
10/2	Tree, Binary Search Tree (BST)		
10/9	Priority Queue, Heap, Heap Sort 한글날		
10/16	Hash Table		
10/23	Graph Basic		
10/30	Midterm Exam		
11/6	Graph Algorithms		
11/13	Sorting, Searching		
11/20	Dynamic Programming (1)		
11/27	Dynamic Programming (2)		
12/4	Greedy Algorithms		
12/11	Reserved		
12/18	Final Exam		

Binary Tree

- Binary tree
 - All the nodes have 2 subtrees
 - A finite set of nodes consisting of (i) empty set or (ii) root and left subtree
 and right subtrees
 - Degree of a node <= 2
 - Easy to implement

Binary Tree

- A subtree of a binary tree is either
 - (1) empty set or
 - (2) a finite set of nodes including a root, left subtree, and right subtree
 - Defined recursively
- An order exists between subtrees
 - E.g.,

Empty left subtree

Empty right subtree

BT Types

- Skewed binary tree
 - Only have left-children left skewed BT
 - Only have right-children right skewed BT
- Complete binary tree
 - BT in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible
- Full binary tree
 - BT in which every node other than the leaves has two children
 - Full BT ⇒ Complete BT

BT Operations

- Calculate the number of nodes in a tree
- Get the number of nodes in each subtree, and then summing them up plus one

```
def get_node_count(node):
    count=0
    if node is not None:
        count = 1 + get_node_count(node.left)+
            get_node_count(node.right)
    return count
```


BT Operations

 Get the height of each subtree, and then return the maximum height plus one

BST

- A tree data structure for efficient "searching"
- key(left subtree)<key(root)<key(right subtree)
 - Key should be unique

BST

Searching a BST

Searching a binary search tree: (a) successful search for 29 and (b) unsuccessful search for 68

Insertion

Algorithm – more illustration

Inserting a new node into a binary search tree:

- (a) searching for the node's location
- (b) linking the new node into the tree

Deletion

- Algorithm: Considering the location of the node
 - Case 1: The node is a leaf
 - Case 2: The node has a single child
 - Case 3: The node has two children
- Case 1: Removing a Leaf Node

Removing a leaf node from a BST (a) finding the node and unlinking it from its parent; (b) the tree after removing 23

Deletion

Case 2: Removing an Interior Node with One Child

Removing an interior node (41) with one child

- (a) redirecting the link from the node's parent to its child subtree
- (b) the tree after removing 41

Deletion

- Case 3: Removing an Interior Node with Two Children
 - Bring the most similar node to the deleted location

The steps in removing a key from a BST

- (a) find the node, N, and its successor, S
- (b) copy the successor key from node N to S $\,$
- (c) remove the successor key from the right subtree of N
- (d) the tree after removing 12

In This Lecture

Outline

- 1. Priority Queue
- 2. Heap
- 3. Heap Sort

Priority Queue

- Priority queue
 - Queue with priority
 - Data with high priority is dequeued first, instead of FIFO order

High priority

Low priority

Priority Queue

- Priority queue
 - A general queue
 - Can implement stack or FIFO queue

Data Structure	Dequeued data
Stack	Most recent data
Queue	First added data
P-queue	Data with highest priority

- Application
 - Simulation system (priority: time)
 - Network traffic control (e.g., QoS)
 - Job scheduling in OS

ADT

- Object: a set of data with priority
- Operations:
- create() ::= create p-queue 'q'
- init(q) ::= initialize q
- is_empty(q) ::= check whether q is empty
- is_full(q) ::= check whether q is full
- insert(q, x) ::= insert x into q
- delete(q) ::= return the data with highest priority, and delete i
- find(q) ::= return the data with highest priority

Implementation

- Using an array
- Using a linked list
- Using a 'Heap'

Implementation

Data representation	Insertion	Deletion
unordered array	O(1)	O(n)
unordered linked list	O(1)	O(n)
ordered array	O(n)	O(1)
ordered linked list	O(n)	O(1)
heap	O(logn)	O(logn)

Heap

Heap

- Heap
 - A complete binary tree in which the nodes are organized based on their data entry values
- Two variants of the heap structure
 - A max-heap
 - For each non-leaf node V, the value in V is greater than the value of its two children
 - The largest value in a max-heap will always be stored in the root while the smallest values will be stored in the leaf nodes
 - A min-heap
 - For each non-leaf node V, the value in V is smaller than the value of its two children

Implementation

- Using an array
 - A number (associating with an index of the array) is assigned to each node
- Locating child node is easy
 - Left-child index: i * 2
 - Right-child index: i * 2 + 1

Insertion

- Insertion
 - When a new value is inserted into a heap, the heap order property and the heap shape property (a complete binary tree) must be maintained
 - Similar to a promotion process from low-level employees to high-level ones
- Algorithm
 - Insert a new node into the last position
 - Exchange it with its parent nodes until heap property satisfied

Insertion

- If new added node makes the tree nonheap-property, 'upheap'
- 'Upheap': from the added node to the root, compare k and its parent nodes
- If k is smaller than its parent, finish
- The height of heap is O(log n), thus upheap takes O(log n)

Insertion

Deletion

- Deletion
 - When a value is extracted and removed from the heap, it can only come from the root node
 - In a max-heap, always the largest value is extracted
 - In a min-heap, the smallest value is extracted
 - After the value in the root has been removed, the binary tree is no longer a heap since there is now a gap in the root node
 - If boss position is empty, the lowest-level employee moves to the boss position, and then downgrade it
- Algorithm
 - Remove the root
 - Move the last node to the root
 - Compare it with its child

Deletion

- Downheap takes O(log n) as the height is O(log n)

Deletion

```
delete_max_heap(A)
item \leftarrow A[1];
A[1] \leftarrow A[heap\_size];
heap_size←heap_size-1;
i ← 2;
while i ≤ heap_size do
          if i < heap_size and A[LEFT(i)] > A[RIGHT(i)]
                    then largest ← LEFT(i);
                    else largest ← RIGHT(i);
          if A[PARENT(largest)] > A[largest]
                    then break;
          A[PARENT(largest)] \leftrightarrow A[largest];
          i ← CHILD(largest);
return item;
```

Time Complexity

- Insertion
 - In the worst case, the newly added node should move to the root, thus it takes O(log n)
- Deletion
 - In the worst case, the chosen node should move from the root to the lowest level, thus it takes O(log n)

Heap Sort

03. Heap Sort

Heap Sort

- Heap Sort
 - The simplicity and efficiency of the heap structure can be applied to the sorting problem
 - The heapsort algorithm builds a heap from a sequence of unsorted values and then extracts the items from the heap to create a sorted sequence
- Algorithm
 - Insert n data to a max-heap
 - Extract data from the heap, and create a sorted sequence
- Complexity
 - Insertion or deletion of a data takes O(log n)
 - N data -> O(nlogn)

03. Heap Sort

Heap Sort

```
def simpleHeapSort( theSeq ):
# Create an array-based max-heap.
n = len(theSeq)
heap = MaxHeap(n)
# Build a max-heap from the list of values.
for item in the Seq:
  heap.add(item)
# Extract each value from the heap and store them back into the list.
for i in range( n, 0, -1 ):
 theSeq[i] = heap.extract()
```

What You Need to Know

Summary

- Priority Queue
 - Queue with priority
- Heap
 - insertion, deletion, ...
- Heap Sort
 - O(nlogn)

