PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/13, 15/10, 15/62, 15/70, 1/21,

A1

(11) International Publication Number:

WO 97/08320

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

C07K 1/04, G01N 33/53

PCT/EP96/03647

(22) International Filing Date:

19 August 1996 (19.08.96)

(30) Priority Data:

95113021.0

18 August 1995 (18.08.95)

(34) Countries for which the regional or

international application was filed:

DE et al.

EP

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLÜCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of humanderived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

construction of a synthetic homan antibody library based on consensus sequences Database of human Ig gene segments Translation in amino acid sequences Alignment of protein sequences Rearranged Germline sequences sequences Computation of Assignment to germline counterpart families Assignment to Database of used families germline families Computation of Analysis of consensus sequences canonical structures Structural Analysis Design of CDRs Gene Design Synthetic combinatorial antibody library

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP ·	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	T.J	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

PCT/EP96/03647

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immunoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: V_K1 , V_K2 , V_K3 , V_K4 , V_K1 , V_K2 , V_K3 , V_K4 , V_K1

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL $H3\kappa2$ single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

WO 97/08520 . PC1/EP90/030

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

<u>Unique cleavage sites:</u>

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

C1/EP90/0364

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecukle or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

PC1/EP96/03647

Legends to Figures and Tables

Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.

- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains Cκ(A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vκ2. The signal sequence (amino acids 1 to 21) was derived from the *E. coli* phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- **Fig. 14:** Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein soft fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and β-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against β-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-ß, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a: List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b: List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- **Fig. 36:** Functional map and sequence of the β-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vκ CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

the length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

PCT/EP96/03647

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of $V\kappa$ (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 $V\kappa$, 3 $V\lambda$, and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ 4 families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 Vκ, 3 Vλ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- $V\kappa$, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: S₆₅T

Vκ1: N₃₄A,

Vκ3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V_K . In the case of V_A , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2
HuCAL-VH1A	VH1-12-1	VH1-12-1
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
		VH4-31-17,-18,-19,-20
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2
HuCAL-VH6	VH6-35-1	VH6-35-1
HuCAL-Vκ1	Vκ1-14,-15	Vĸ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
HuCAL-Vκ2	Vκ2-6	Vκ2-6
HuCAL-Vκ3	Vκ3-1,-4	Vκ3-4
HuCAL-Vκ4	Vĸ4-1	Vĸ4-1
HuCAL-Vλ1	HUMLV117,DPL5	DPL5
HuCAL-Vλ2	DPL11,DPL12	DPL12
HuCAL-Vλ3	DPL23	HUMLV318

-28-

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vk or VA genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₃Q

VH6: S₄₂G

Vκ3: E,D, I_{se}V

Vκ4: K₂₄R

Vλ3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluoresce:n bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

In order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vk2 consensus gene and the Cκ gene segment including the CDR3 - framework 4 region were assembled yielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGGS. The two oligonucleotides encoding this linker were 5'- TCAGCGGTGGCGGTTCTGGCGCGGTGGGAGCGGTGGCGGTGGTTC-TGGCGGTGGTTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid pIG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the H3κ2 scFv gene. Briefly, the EcoRI/HindIII restriction fragment in the phagemid vector pIG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

-31-

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekäs et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI)6GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI)10 (TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and (GTT/TAT) are trinucleotide mixtures encoding the amino phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7×10^7 and 3.4×10^{10} for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 μl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3κ2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3κ2 encoding the H-CDR3 was replaced by the chloramphenicol acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 μl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture.

In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a non-functional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even distribution.

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{600nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1×10^{10} cfu/well of the 10-mer and 5×10^{8} cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of $100 \ \mu g/ml$ in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

PCT/EP96/03647

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris-Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ I of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 μ l FITC-BSA (100 μ g/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at OD_{600nm} = 0.4 and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or Pl 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pI of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie PCT/EP96/03647

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3κ2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-ß), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to β -estradiol, testosterone, LeY, LT- β , ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti- β -estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, β -estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an AatlI site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with AatlI and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via Aatll/Xbal), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via Aatll/BglII), and the wild type ColE1 origin by module M14-Ext2 (via BglII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-Vκ2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal ß-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type ß-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

PC1/EP96/030

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the ß-lactamase cloning cassette via Bbsl/Mscl, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E.~coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3κ2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μ g/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 μ g/ml). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD_{600nm} of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the α-FLAG antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

PC 1/EP96/0364

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in 1E buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD $1.0 = 40 \,\mu\text{g/ml}$). 10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase (2.0 μ l) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRl digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRl, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2O . The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10^8 for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial $H3\kappa2$ H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS <u>89</u>, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. 136, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology <u>6</u>, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology <u>6</u>, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry <u>30</u>, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques <u>18</u>, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

PC1/EP96/036

Table 1A: Human kappa germline gene segments

Used Name'	Reference ²	Family ³	Germline genes
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	1	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11-
Vk1-5	2	1	A30
Vk1-6	1	1	LFVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk 1-10	1	1	L18; Va"
Vk 1-11	1	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk 1-17	2	1	L12(2)
Vk1-18	1	1	O12a (V3b)
Vk1-19	6	1	02; 012; DPK9
Vk 1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk 1-22	2	1	L22
Vk 1-23	2	1	L23
Vk2-1	1	2	A2; DPK12
Vk2-2	6	. 2	01; 011(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name	Reference ²	Family ³	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	. 3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-8	7	3	L6; Vg
Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk7-1	5	7	B1

FC1/EF90/050

Table 1B: Human lambda germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
DPL1	1	1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	
DPL5	1	1	HUMLV117D
DPL6	1	1	
DPL7	1	1	IGLV1S2
DPL8	1	1	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	
DPL12	1	2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3	Humlv418; IGLV3S1
DPL23	1	3	VI III.1
Humlv318	4	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	· 1	7	·
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigned	VLAMBDA N.2
gVLX-4.4	6	10	

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	1-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b; 7-81; YAC-10
VH1-12-7	19	1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	1	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	1-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	18	1	I-3; V1-3
VH1-13-15	19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	. 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

PCT/EP96/03647

Table 1C: (continued)

Used Name'	Reference ²	Family ³	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2 .	2	VH2S12-14
VH3-11-1	13	. 3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	3	COS 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

50

Table 1C: (continued)

Used Name'	Reference ²	Family³	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11 - 8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	H7
VH4-11-10	20	4	H8
VH4-11-11	20	4	H9
VH4-11-12	17	4	VH4.16
VH4-11-13	23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

51

7 7 1100320

Table 1C: (continued)

Used Name ¹	Reference ²	Family ³	Germline genes ⁴
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	·. 17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	. H11
VH4-31-8	23	4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8	4	V4-39
VH4-31-15	11	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2, DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	. 5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

52

Table 2A: rearranged human kappa sequences

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 15	88	1	08	2	2,3%	122
GM4672	108	1	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
ŁAY	108	1	08	12	12,6%	48
HIV-b13	106	1	08	9	9,7%	8
MAL-NaCl	108	1	08	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A2 0	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	1	02	6	6,3%	123
HK102	95	1	L12(1)	0	0,0%	9
H20C3K	108	1	L12(2)	3	3,2%	125
СНЕВ	108	i	02	7	7,4%	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	1	02	9	9,5%	73

53

WO 97/00320

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
TR1.32	103	1	02	3	3,2%	92
RF-KES1	97	1	A20	4	4,2%	121
WES	108	1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8,4%	120
HK101	95	1	L15(1)	0	0,0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	1	A30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
l-2a	108	1	L8	8	8,4%	· ·· 70
RF-KL1	97	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	41
TR1.22	108	1	02	7	7,4%	92
HIV-B35	106	1	02	2	2,2%	8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2,2%	8
HIV-B8	107	1	02	10	10,8%	8
HIV-b8	107	1	02	10	10,8%	8
RF-SJ5	95	1 .	A30	5	5,3%	113
GAL(I)	108	1	A30	6	6,3%	64
R3.5H5G	108	1	02	6	6,3%	70
HIV-b14	106	1	A20	2	2,2%	8
TNF-E1	105	1	L5	8	8,4%	41
WEA	108	1	A30	8	8,4%	37
EU	108	1	L12(2)	5	5,3%	40
F0G1-G8	108	1	L8	11	11,6%	41
1X7RG1	108	1	L1	8	8,4%	70
BLI	108	1	L8	3	3,2%	72
KUE	108	1	L12(2)	11	11,6%	32
LUNm01	108	1	L12(2)	10	10,5%	6
HIV-b1	106	1	A20	4	4,3%	8
HIV-s4	103	1	02	2	2,2%	8

54

Table 2A: (continued)

CAR 107 1 L12(2) BR 107 1 L12(2) CLL PATIENT 10 88 1 02 CLL PATIENT 12 88 1 02 KING 108 1 L12(2) V13 95 1 L24 CLL PATIENT 11 87 1 02 CLL PATIENT 13 87 1 02 CLL PATIENT 9 88 1 012 HIV-B2 106 1 A20 HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20 CLL PATIENT 1 88 1 L8		germline ⁶	
CLL PATIENT 10 88 1 O2 CLL PATIENT 12 88 1 O2 KING 108 1 L12(2) V13 95 1 L24 CLL PATIENT 11 87 1 O2 CLL PATIENT 13 87 1 O2 CLL PATIENT 9 88 1 O12 HIV-B2 106 1 A20 HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20	11	11,7%	79
CLL PATIENT 12 88 1 02 KING 108 1 L12(2) V13 95 1 L24 CLL PATIENT 11 87 1 02 CLL PATIENT 13 87 1 02 CLL PATIENT 9 88 1 012 HIV-B2 106 1 A20 HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20	11	11,6%	50
KING 108 1 L12(2) V13 95 1 L24 CLL PATIENT 11 87 1 O2 CLL PATIENT 13 87 1 O2 CLL PATIENT 9 88 1 O12 HIV-B2 106 1 A20 HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20	0	0,0%	122
V13 95 1 L24 CLL PATIENT 11 87 1 O2 CLL PATIENT 13 87 1 O2 CLL PATIENT 9 88 1 O12 HIV-B2 106 1 A20 HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20	0	0,0%	122
CLL PATIENT 11 87 1 O2 CLL PATIENT 13 87 1 O2 CLL PATIENT 9 88 1 O12 HIV-B2 106 1 A20 HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20	12	12,6%	30
CLL PATIENT 13 87 1 02 CLL PATIENT 9 88 1 012 HIV-B2 106 1 A20 HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20	0	0,0%	46
CLL PATIENT 9 88 1 O12 HIV-B2 106 1 A20 HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20	0	0,0%	122
HIV-B2 106 1 A20 HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20	0	0,0%	122
HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20	1	1,1%	122
HIV-b2 106 1 A20 CLL PATIENT 5 88 1 A20	9	9,7%	8
CLL PATIENT 5 88 1 A20	9	9,7%	8
•	1	1,1%	122
	2	2,3%	122
CLL PATIENT 2 88 1 L8	0	0,0%	122
CLL PATIENT 7 88 1 L5	0	0,0%	122
CLL PATIENT 8 88 1 L5	0	0,0%	122
HIV-b5 105 1 L5	11	12,0%	8
CLL PATIENT 3 87 1 L8	1	1,1%	122
CLL PATIENT 4 88 1 L9	0	0,0%	122
CLL PATIENT 18 85 1 L9	6	7,1%	122
CLL PATIENT 17 86 1 L12(2)	7	8,1%	122
HIV-b20 107 3 A27	11	11,7%	8
2C12 108 1 L12(2)	20	21,1%	68
1B11 108 1 L12(2)	20	21,1%	68
1H1 108 1 L12(2)	21	22,1%	68
2A12 108 1 L12(2)	21	22,1%	68
CUR 109 3 A27	0	0,0%	66
GLO 109 3 A27	0	0,0%	16
RF-TS1 96 3 A27	0	0,0%	121
GAR' 109 3 A27	0	0,0%	67
FLO 109 3 A27	0	0.0%	66
PIE 109 3 A27	0	0,0%	91
HAH 14.1 109 3 A27	1	1,0%	51
HAH 14.2 109 3 A27		-	-

C 97/00520 . PC1/EP90/05

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
HAH 16.1	109	3	A27	1	1,0%	51
NOV	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0,0%	51
SON	110	3	A27	1	1,0%	67
PAY	109	3	A27	1	1,0%	66
GOT	109	3	A27	1	1,0%	67
mAbA6H4C5	109	3	A27	1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2	2,1%	121
SIE	109	3	A27	2	2,1%	15
ESC	109	3	A27	2	2,1%	98
HEM.	110	3	A27	2	2,1%	98
YES8c	109	. 3	A27	3	3,1%	33
TI	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	0	0,0%	94
BRO	106	3	A27	0	0,0%	94
ROB	106	3 .	A27	0	0,0%	94
NG9	96	3	A2 7	4	4,2%	11
NEU	109	3	A27	4	4,2%	66
WOL	109	3	A27	4	4,2%	2
35G6	109	3	A27	4	4.2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4,2%	84
BRA	106	3	A27	1	1,1%	94
HAH	106	3	A27	1	1,1%	94
HIC	105	3	A27	0	0,0%	94
FS-2	109	3	A27	6	6,3%	87
JH.	107	3	A27	6	6,3%	38
EV1-15	109	3	A27	6.	6,3%	83
SCA	108	3	A27	6	6,3%	65
			56			

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb112	109	3	A27	6	6,3%	71
SIC .	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	3	A27	12	12,5%	7
Taykv320	9 8	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	1	1,1%	109
LS2S3-3	107	3	L6	2	2,1%	99
LS2	108	3	L6	1,	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	2	2,1%	99
LS2S3-8c	107	3	L6	2	2,1%	99
LS5	108	3	L6	1	1,1%	109
LS2S3-5	107	3	L6	3	3,2%	99
LUNm03	109	3	A27	13	13,5%	6
IARC/BL41	108	3	A27	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	111

5**天**

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L6	3	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	. 1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	9 5	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	11	12,1%	8
HIV-s7	104	3	A27	11	12,1%	8
slkv1	9 9	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	18
slkv12	101	3	A27	8	9,2%	13
RF-TS2	9 5	3	L2/L16	3	3,2%	121
II-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3 .	L6	10	10,5%	121
GER	109	3	L2/L16	7	7,4%	75 ·
GF4/1.1	109	3	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
sikv9	98	3	L 6	3	3,5%	13
bkv17	9 9	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	3	L6	4	4,7%	13
slkv15	99	3	L6	2	2,3%	13
bkv6	100	3	L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference?
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	L2/L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
slkv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
slkv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	6	7,0%	13
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
slkv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3	L6	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
GA3.4	92	3	L6	7	9,0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

⁵

107/10020

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	, o	0,0%	54
MD3.9	93	3	A27	0	0,0%	54
GA3.1	93	3	A27	6	7,6%	54
bkv32	101	3	A27	5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	9 0	3	L6	6	7,8%	54
MD3.5	92	3	A27	1	1,3%	54
M3.4N	91	3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N	92	3	A27	5	6,3%	54
В6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW	108	1	08	12	12,6%	31
REI-based CAMPATH-9	107	1	08	14	14,7%	39
RZ	107	1	08	. 14	14,7%	50
BI	108	1	08	14	14,7%	14
AND	107	1	02	13	13,7%	6 9
2A4	109	1	02	12	12,6%	23
KA	108	. 1	80	19	20,0%	107
MEV	109	1	02	14	14,7%	29
DEE	106	1	02	13	14,0%	76
0U(IOC)	108	1	02	18	18,9%	60
HuRSV19VK	111	1	08	21	21,0%	115
SP2	108	1	02	17	17,9%	93
BJ26	99	1 -	08	21	24,1%	1 .
NI	112	1	80	24	24,2%	106
BMA 0310EUCIV2	106	1	L12(1)	21	22,3%	105

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	08	16	21,9%	1
GM 607	113	2	A3	0	0.0%	58
R5A3K	114	2	A3	1	1,0%	125
R1C8K	114	2	A 3	1	1,0%	125
VK2.R149	113	2	A3	2	2,0%	118
TR1.6	109	2	A3	4	4,0%	92
TR1.37	104	2	A3	5	5,0%	92
FS-1	113	2	A3	6	6,0%	87
TR1.8	110	2	A 3	6	6,0%	92
NIM	113	2	A3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	2	A3	6	6,4%	96
CUM	114	2	01	7	6. 9 %	44
HRF1	71	2	A 3	4	5,6%	124
CLL PATIENT 19	87	2	A3	0	0,0%	122
CLL PATIENT 20	87	2	A3	0	0.0%	122
MIL	112	2	A 3	16	16,2%	26
FR	113	2	A 3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Tayky306	73	3	A27	1	1,6%	52
Taykv312	7 5	3	A27	1	1,6%	52
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	0	0,0%	119
1-187-29	110	3	A27	0	0,0%	119
Π117	110	3	A27	9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	3	A27	15	16,0%	8
HIV-LC1	107	3	A27	19	20,2%	8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22,3%	8
HIV-LC13	107	3	A27	21	22,3%	8
			61			

WC 97/06320 PC1/EF90/03

Table 2A: (continued)

		Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3 -	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
Π125	108	1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1 .	L5	7	7,4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02	20	21,1%	7
HIV-b18	106	1	02	14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	80	16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17	5	5,0%	45
FK-001	113	4	B 3	0	0,0%	81
CD5+.28	101	4	B3	1	1,0%	27
LEN	114	4	B3	1	1,0%	104
UC	114	4	B 3	1	1,0%	111
CD5+.5	101	4	В3	1	1,0%	27

Table 2A: (continued)

Name ¹	aa²	Computed	Germline	Diff. to germline ⁵	% diff. to germline ⁶	Reference ³
		family ³	gene⁴	J .		
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	2	2,0%	27
CD5+.23	101	4	В3	2	2,0%	27
CD5+.7	101	4	В3	2	2,0%	27
VJI	113	4	В3	3	3,0%	56
LOC	113	4	В3	3	3,0%	72
MAL	113	4	В3	3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	В3	3	3,0%	70
PB17IV	114	4	В3	4	4,0%	74
CD5+.27	101	4	В3	4	4,0%	27
CD5+.9	101	4	В3	4	4,0%	27
CD528	101	4	В3	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	В3	6	5,9%	27
CD5+.10	101	4	В3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	. 4	В3	8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	В3	10	9,9%	27
MD4.1	92	4	B3	0	0,0%	54
MD4.4	92	4	B 3	0	0,0%	54
MD4.5	92	4	B3	0	0,0%	54
MD4.6	92	4	В3	0	0,0%	54
MD4.7	92	4	В3	0	0,0%	54
MD4.2	92	4	В3	1	1,3%	54
MD4.3	92	4	B3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2,4%	122

Table 2B: rearranged human lambda sequences

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7 %	9
DIA	112	1	DPL2	7	7%	36
mAb67	89	1	DPL3	0	0%	29
HiH2	110	1	DPL3	12	11%	3
NIG-77	. 112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	O%	6
T2:C14	110	1	DPL5	0	O%	6
PR-TS1	110	1	DPL5	0	0%	55
4G12	111	1	DPL5	1	1%	35
KIM46L	112	1	HUMLV117	0	Ο%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	1	DPL5	3	3%	79
mAb111	110	1	DPL5	3	3%	48
PHOX15	111	1	DPL5	4	4%	49
BL2	111	1	DPL5	4	4 %	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	1	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
ZIM	112	1	HUMLV117	7	7%	18
RF-SJ1	100	1.	DPL5	9	9%	78
GLV1.1	98	1	DPL4	0	Ο%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	50
H210	111	. 2	DPL10	4	4%	45
VOV	110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8	8%	24
AL MC	110	2	DPL11	6	6%	28
MES	112	2	DPL11	8	8%	84
F0G1-A3	111	2	DPL11	9	9%	27
AL NOV	112	2	DPL11	7	7%	28
			4		- 70	20

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
HMST-1	110	2	DPL11	4	4%	82
HBW4-1	108	2	DPL12	9	9%	52
WH	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
НВр2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	89	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0 %	49
THY-29	110	3	DPL16	0 -	0%	27
PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1	1%	13
mAb63	109	3	DPL16	2	2%	29
TEL14	110	. 3	DPL16	6	6%	49
6H-3C4	108	3	DPL16	7	7 %	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	4%	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	. 56
NGD9	110	2	DPL11	7	7%	56
MUC1-1	111	2	DPL11	11	10%	27
A30c	111	2	DPL10	6	6%	56
KS6	110	2	DPL12	6	6%	56
TEL13	111	2	DPL11 65	11	10%	49

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
ВОН	112	2	DPL12	11	10%	37
TOG	111	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	14	13%	52
ВО	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15	15%	46
NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	ì	1%	29
LV1L1	98	1	DPL2	0	0%	54
HA	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	3	3%	54
RHE	112	1	DPL1	17	16%	22
K1B12L	113	1 .	DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	1	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	3
VOR	112	1	DPL2	16	15%	16
AL POL	113	1	DPL2	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40 %	66
CARR	108	3	DPL23	18	17%	19
			66			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb60	108	3	DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE	94	3	DPL23	17	17%	19
VL8	98	8	DPL21	0	0%	81
MOT	110	3	Humlv318	23	22%	38
GAR	108	3	DPL23	26	25%	33
32.B9	98	8	DPL21	5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	. 8	HUMLV801	52	50%	6
RF-TS7	96	7	DPL18	4	40/0	60
YM-1	116	8	HUMLV801	51	49%	75
K6H6	112	8	HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	8	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	- 43
SHO	108	3	DPL23	19	18%	19
HAN	108	3	DPL23	20	19%	19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY	106	3	DPL23	9	9%	19
СОТ	106	3	DPL23	13	12%	19
Pag-1	111	3	Humlv318	5	5%	31

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	. 7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humlv318	12	11%	52
DEL	108	3	Humlv318	14	13%	17
TYR	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13	12%	19
THO	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Table 2C: rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ²
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	98	1	VH1-13-12	10	10,2%	75
VHGL 1.2	98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1,0%	26
HA1L1	126	1	VH1-13-6	7	7,1%	81
UC	123	1	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	5 5
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	7 7
mAb113	126	1	VH1-13-6	10	10,2%	71
LS2S3-3	125	1	VH1-12-7	5	5.1%	98
LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	125	1	VH1-12-7	5	5,1%	98
LS2S3-12d	125	1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6.1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	. 1	VH1-12-7	7	7,1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0.0%	105
NEI	127	1	VH1-12-1	0	0.0%	55
AND	127	1	VH1-12-1	0	0.0%	55
L7	127	1	VH1-12-1	0	0,0%	54
L22	124	1	VH1-12-1	0	0.0%	54
L24	127	1	VH1-12-1	0	0,0%	54

PC1/EP96/0364/

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
L26	116	1	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	54
L36	118	1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41	120	1	VH1-12-1	0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1,0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1	VH1-12-1	1	1,0%	54
TNF-E7	116	1	VH1-12-1	2	2,0%	42
mAb 11 1	122	1	VH1-12-1	7	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7,1%	79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1 .	VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5,1%	52
EV1-15	127	1	VH1-12-8	10	10,2%	78
mAb112	122	1	VH1-12-1	11	11,2%	71
EU	117	1	VH1-12-1	11	11,2%	28
H210	127	1	VH1-12-1	12	12,2%	66
TRANSGENE	104	1	VH1-12-1	0	0,0%	111
CLL2-1	93	1	VH1-12-1	0	0,0%	30
CLL10 13-3	97	1	VH1-12-1	0	0,0%	29
LS7	9 9	1	VH1-12-7	4	4,1%	. 113
ALL7-1	87	1	VH1-12-7	0	0,0%	30
CLL3-1	91	1	VH1-12-7	1	1,0%	30
ALL56-1	85	1	VH1-13-8	0	0,0%	30
ALL1-1	87	1	VH1-13-6	1	1,0%	30
ALL4-1	94	1	VH1-13-8	0	0,0%	30

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
ALL56 15-4	85	1	VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	30
Au92.1	98	1	VH1-12-5	0	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	1	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1 .	VH1-13-15	3	3,1%	26
SP2	119	1	VH1-13-6	15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2,0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118	1	VH1-13-12	14	14.3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	1	VH1-13-6	. 2	2,0%	46
ss2	100	1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3,1%	46
s5B7	102	1	VH1-12-1	0	0,0%	46
s6A3	97	1	VH1-12-1	0	0,0%	46
ss6	99	1	VH1-12-1	0	0,0%	46
L2H7	103	1	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0,0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99	1	VH1-13-15	3	3,1%	46
PHOX15	124	1	VH1-12-7	20	20,4%	73
			<i></i> チ1			
			1			

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

Name ¹	aa²	Computed family ³	d Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	9	9,0%	4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2	VH2-31-11	8	8,1%	124
OU	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2	VH2-31-5	2	2,0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	29
MTFC3	125	3	VH3-14-4	, 21	21,0%	131
MTFC11	125	3	VH3-14-4	21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22,0%	131
MTFC8	125	3	VH3-14-4	23	23,0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107		· VH3-14-4	9	9,0%	85
N51P8	126	3	VH3-14-1	9	9,0%	77
TEI	119	3	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	104
NIE	119	3	VH3-13-7	15	15,3%	
3D6	126	3	VH3-13-26	5	5,1%	87 25
ZM 1 - 1	112	3	VH3-11-3	8	8,2%	3 5
E55 3.15	110	3	VH3-13-26	0	0,0%	5
gF9	108	3	VH3-13-8	15	15,3%	26 75
THY-32	120		VH3-13-26	3		75 43
RF-KL5	100		VH3-13-26	5	3,1%	42
OST577	122		VH3-13-28 VH3-13-13	5 6	5,1%	96
	_	-	72.	υ	6,1%	5

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
ВО	113	3	VH3-13-19	15	15,3%	10
П125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	8	8,2%	85
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-				-		
9	118	3	VH3-13-13	16	16,3%	41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	3	VH3-13-1	13	13,3%	77
П117	107	3	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	3	VH3-13-14	14	14,3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	3	VH3-13-7	0 .	0,0%	46
s6C8	100	3	VH3-13-7	0	0,0%	46
s6H12	98	3	VH3-13-7	0	0,0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	125
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0,0%	46
s6H7	100	3	VH3-13-13	0	0,0%	46
ss1	102	3	VH3-13-13	0	0,0%	46
ss8	94	3	VH3-13-13	0	0,0%	46
DOB	120	3	VH3-13-26	21	21,4%	116
THY-33	115	3	VH3-13-15	20	20,4%	42
NOV	118	3	VH3-13-19	14	14,3%	38
rsv13H	120	3	VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2,0%	46
L2E8	99	3	VH3-13-19	0	0.0%	46
L2D10	101	3	VH3-13-10	1	1,0%	46
L2E7	98	3	VH3-13-10	1	1,0%	46

Table 2C: (continued)

Name ¹	aa²	Computed family ³	d Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0.0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	3	VH3-11-3	1	1,0%	
TR1.5	114	3	VH3-11-8	21		46
s6H9	101	3	VH3-13-25	0	21,6% 0,0%	8 8
8	112	3	VH3-13-1	6	6,1%	46
23	115	3	VH3-13-1	6		118
7	115	3	VH3-13-1	4	6,1%	118
TR1.3	120	3	VH3-11-8	20	4,1%	118
18/2	125	3	VH3-13-10	0	20,6%	88
18/9	125	3	VH3-13-10	0	0,0% 0,0%	32
30P1	119	3	VH3-13-10	0	0,0%	31
HF2-1/17	125	3	VH3-13-10	0	0,0%	106
A77	109	3	VH3-13-10	0	0,0%	8
B19.7	108		VH3-13-10	0	0,0%	44
M43	119	3	VH3-13-10	0		44
1/17	125	3	VH3-13-10	0	0,0%	103
18/17	125	3	VH3-13-10	0	0,0%	31
54 3.4	109		VH3-13-10	0	0,0%	31
AMBDA-VH26	98		VH3-13-10	1	0,0%	26
54 3.8	111	_	VH3-13-10	1	1,0%	95
GL16	106		VH3-13-10	1	1,0%	26
G12	125		VH3-13-10	1	1,0%	44
173	106		VH3-13-10 VH3-13-10		1,0%	56
L1.3	111		VH3-13-10 VH3-13-10	2	2.0%	44
.A290	118		VH3-13-10 VH3-13-10	3	3,1%	117
b18	127	3	VH3-13-10 VH3-13-8	2	2,0%	108
54 3.3	105			2	2,0%	100
5G6	103		VH3-13-10	3	3,1%	26
-	141	J	VH3-13-10	3	3,1%	57

Table 2C:

(continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5.1%	100
N87	126	3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129—
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8,2%	115
9F2H	127	3	VH3-13-10	9	9,2%	127
VD	115	3	VH3-13-10	9	9,2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121	3	VH3-13-10	8	8,2%	74
63P1	120	3	VH3-11-8	0	0,0%	104
60P2	117	3	VH3-11-8	0	0,0%	104
AL3.5	90	3	VH3-13-10	· 2	2,0%	117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38Cl.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	3	VH3-13-10	1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42.
HA3D1	117	3	VH3-13-21	1	1,0%	81
E54 3.2	112	3	VH3-13-24	0	0.0%	26
mAb52	128	3	VH3-13-12	2	2.0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	51
mAb105	128	3	VH3-13-12	2	2,0%	51
mAb107	128	3	VH3-13-12	2	2,0%	51
E55 3.14	110	3	VH3-13-19	0	0.0%	26

×5

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
F13-28	106	3	VH3-13-19	1	1,0%	94
mAb55	127	3	VH3-13-18	4	4.1%	51
YSE	117	3	VH3-13-24	6	6,1%	72
E55 3.23	106	3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	VH3-13-1	3	3,1%	85
N42P5	124	3	VH3-13-2	7	7,1%	77
FOG1-H6	110	3	VH3-13-16	7	7,1%	42
0-81	115	3	VH3-13-19	11 -	11,2%	47
HIV-s8	122	3	VH3-13-12	11	11,2%	12
mAb114	125	3	VH3-13-19	12	12,2%	71
33.F12	116	3	VH3-13-2	4	4.1%	129
4B4	119	3	VH3-1X-3	0	0,0%	101
M26	123	3	VH3-1X-3	0	0,0%	103
VHGL 3.1	100	3	VH3-1X-3	0	0.0%	26
E55 3.13	113	3	VH3-1X-3	1	1,0%	26
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101	3	VH3-1X-6	3	3,0%	2
82-D V-D	106	3	VH3-1X-3	5	5,0%	112
MAL	129	3	VH3-1X-3	5	5,0%	72
LOC	123	3	VH3-1X-6	5	5.0%	72
LSF2	101	3	VH3-1X-6	11	11,0%	2
HIB RC3	100	3 .	VH3-1X-6	11	11,0%	1
56P1	119	3	VH3-13-7	0	0,0%	104
M72	122	3	VH3-13-7	0	0,0%	103
M74	121	3	VH3-13-7	0	0,0%	103
E54 3.5	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	VH3-13-7	0	0,0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	3	VH3-13-7	1	1.0%	83
PR-TS1	114	3	VH3-13-7	1	1,0%	8 5
KIM46H	127		VH3-13-13	0	0,0%	18
E55 3.6	108	3	VH3-13-7	2	2,0%	26
E55 3.10	107		VH3-13-13	1	1,0%	26
3.B6	114		VH3-13-13	1	1,0%	108
E54 3.6	110		VH3-13-13	1	1,0%	
FL2-2	114		VH3-13-13	•	1,070	26

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

Name¹	aa ²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	82
E55 3.12	109	3	VH3-13-15	0	0,0%	26
19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	119	3	VH3-13-13	6	6,1%	130
E29.1	120	3	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8,2%	42
TNF-A1	117	3	VH3-13-15	4	4,1%	42
PR-SJ2	107	3	VH3-13-14	8	8,2%	85
HN.14	124	3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	125	3	VH3-13-7	9	9,2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	3	VH3-13-7	10	10,2%	12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
333	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1811	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110	3	VH3-13-19	10	10,2%	126
K6H6	119	3	VH3-1X-6	18	18,0%	60
K4B8	119	3	VH3-1X-6	18	18,0%	60
K5B8	119	3	VH3-1X-6	18	18,0%	60

77-

Table 2C:

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	119	3	VH3-1X-6	19	19,0%	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3	VH3-13-10	3	3,1%	77
N54P6	95	3	VH3-13-16	7	7,1%	77
LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	3
HY18	121	4	VH4-11-2	0	0,0%	43
mAb63	126	4	VH4-11-2	0	0,0%	45
FS-3	105	4	VH4-11-2	0	0,0%	86
FS-5	111	4	VH4-11-2	0	0,0%	86
-S-7	107	4	VH4-11-2	0	0,0%	8 6
⁻ S-8	110	4	VH4-11-2	0	0,0%	86
PR-TS2	105	4	VH4-11-2	0	0,0%	85
RF-TMC	102	4	VH4-11-2	0	0,0%	85
nAb216	122	4	VH4-11-2	1	1,0%	15
nAb410.7.F91	122	4	VH4-11-2	1	1,0%	52
nAbA6H4C5	124	4	VH4-11-2	1	1,0%	15
\b44	127	4	VH4-11-2	2	2,1%	100
6H-3C4	124	4	VH4-11-2	3	3,1%	59
S-6	108	4	VH4-11-2	6	6,2%	35 86
S-2	114	4 .	VH4-11-2	6	6,2%	84
IIG1	126	4	VH4-11-2	7	7,2%	62
S-4	105	4	VH4-11-2	8	8,2%	86
A-4A	123	4	VH4-11-2	9	9,3%	125
ES-C	119	4	VH4-11-2	10	10,3%	99
l	78	4	VH4-11-9	16	16,5%	58
b26	126	4	VH4-31-4	8	8,1%	100
S2	124	4	VH4-31-12	15	15,2%	110
6 5-69 5	115		VH4-11-7	16	16,5%	5
/AH	129		VH4-31-13	19	19,2%	93
68-D	122		VH4-11-8	22	22,7%	93 6
8P2	118		VH4-11-8	0	0,0%	104
Ab67	128		VH4-21-4	1	1,0%	45
120					1,0 70	40
L39	115	4	VH4-11-8	2	2,1%	108

Table 2C: (continued)

33.C9 122 4 VH4-21-5 7 7,1% 129 Pag-1 124 4 VH4-11-16 5 5,2% 50 B3 123 4 VH4-21-3 8 8,2% 53 IC4 120 4 VH4-11-8 6 6,2% 70 C6B2 127 4 VH4-31-12 4 4,0% 48 N78 118 4 VH4-11-9 11 11,3% 77 B2 109 4 VH4-11-8 12 12,4% 53 WRD2 123 4 VH4-11-8 12 12,4% 53 WRD6 123 4 VH4-11-8 1 1,0% 26 WRD6 123 4 VH4-11-9 4 4,1% 52 E54 4.2 108 4 VH4-21-6 2 2,0% 90 WIL 127 4 VH4-31-13 0 0,0% 90 <td< th=""><th>Name¹</th><th>aa²</th><th>Computed family³</th><th>Germline gene⁴</th><th>Diff. to germline^s</th><th>% diff. to germline⁶</th><th>Reference²</th></td<>	Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ²
B3 123 4 VH4-21-3 8 8,2% 53 IC4 120 4 VH4-11-8 6 6,2% 70 C6B2 127 4 VH4-31-12 4 4,0% 48 N78 1118 4 VH4-11-9 11 11,3% 77 B2 109 4 VH4-11-8 12 12,4% 53 WRD2 123 4 VH4-11-12 6 6,2% 90 MAb426.4.2F20 126 4 VH4-11-8 1 1,0% 26 WRD6 123 4 VH4-11-8 1 1,0% 26 WRD6 123 4 VH4-11-12 10 10,3% 90 MAb426.12.3F1.4 122 4 VH4-11-9 4 4,1% 52 E54 4.2 108 4 VH4-21-6 2 2,0% 26 WIL 127 4 VH4-31-13 0 0,0% 90 UAR 122 4 VH4-31-13 0 0,0% 90 LAR 122 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 2 2,0% 90 MAb661 123 4 VH4-31-13 2 2,0% 90 MAD661 123 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 2 2,0% 90 MAG6 127 4 VH4-31-13 2 2,0% 90 MAG6 127 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-12 2 2,0% 85 E54 4.4 110 4 VH4-11-7 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 E54 4.23 111 4 VH4-11-7 0 0,0% 26 E54 4.23 111 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-1 0 0,0% 29 37P1 95 4 VH4-11-1 0 0,0% 29 37P1 95 4 VH4-11-1 0 0,0% 29 37P1 95 4 VH4-11-1 0 0,0% 104 ALL52 30-2 91 4 VH4-11-1 0 0,0% 104 ALL52 30-2 91 4 VH4-11-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 CLL-11 98 5 VH5-12-1 0 0,0% 13 CLL-11 98 5 VH5-12-1 0 0,0% 13 CLL-11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	33.C9	122	4	VH4-21-5	7	7,1%	129
IC4	Pag-1	124	4	VH4-11-16	5	5,2%	50
C6B2 127 4 VH4-31-12 4 4,0% 48 N78 118 4 VH4-11-9 11 11,3% 77 B2 109 4 VH4-11-8 12 12,4% 53 WRD2 123 4 VH4-11-12 6 6,2% 90 mAb426.4.2F20 126 4 VH4-11-8 1 1,0% 52 E54 4.58 115 4 VH4-11-8 1 1,0% 26 WRD6 123 4 VH4-11-9 4 4,1% 52 E54 4.2 108 4 VH4-21-6 2 2,0% 26 WIL 127 4 VH4-31-13 0 0,0% 90 COF 126 4 VH4-31-13 0 0,0% 90 WAT 125 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-13 5 5,1% 45	В3	123	4	VH4-21-3	8	8,2%	53
N78	IC4	120	4	VH4-11-8	6	6,2%	70
B2 109 4 VH4-11-8 12 12,4% 53 WRD2 123 4 VH4-11-12 6 6,2% 90 mAb426.4.2F20 126 4 VH4-11-8 1 1,0% 26 E54 4.58 115 4 VH4-11-8 1 1,0% 26 WRD6 123 4 VH4-11-9 4 4,1% 52 E54 4.2 108 4 VH4-21-6 2 2,0% 26 WIL 127 4 VH4-31-13 0 0,0% 90 COF 126 4 VH4-31-13 0 0,0% 90 LAR 122 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 4 4,0% 90 mAb61 123 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-10 0 0,0%	C6B2	127	4	VH4-31-12	4	4,0%	48
WRD2 123 4 VH4-11-12 6 6,2% 90 mAb426.4.2F20 126 4 VH4-11-8 2 2,1% 52 E54 4.58 115 4 VH4-11-8 1 1,0% 26 WRD6 123 4 VH4-11-12 10 10,3% 90 mAb426.12.3F1.4 122 4 VH4-11-9 4 4,1% 52 E54 4.2 108 4 VH4-21-6 2 2,0% 26 WIL 127 4 VH4-31-13 0 0,0% 90 COF 126 4 VH4-31-13 0 0,0% 90 LAR 122 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-17 0 0,0% 26 <td>N78</td> <td>118</td> <td>4</td> <td>VH4-11-9</td> <td>11</td> <td>11,3%</td> <td>77</td>	N78	118	4	VH4-11-9	11	11,3%	77
mAb426.4.2F20 126 4 VH4-11-8 2 2,1% 52 E54 4.58 115 4 VH4-11-8 1 1,0% 26 WRD6 123 4 VH4-11-12 10 10,3% 90 mAb426.12.3F1.4 122 4 VH4-11-9 4 4,1% 52 E54 4.2 108 4 VH4-21-6 2 2,0% 26 WIL 127 4 VH4-31-13 0 0,0% 90 COF 126 4 VH4-31-13 0 0,0% 90 LAR 122 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-10 0 0,0% 90 RF-SJ4 108 4 VH4-31-17 0 0,0% 26 <	B2	109	4	VH4-11-8	12	12,4%	53
E54 4.58 115 4 VH4-11-8 1 1,0% 26 WRD6 123 4 VH4-11-12 10 10,3% 90 mAb426.12.3F1.4 122 4 VH4-11-9 4 4,1% 52 E54 4.2 108 4 VH4-21-6 2 2,0% 26 WIL 127 4 VH4-31-13 0 0,0% 90 COF 126 4 VH4-31-13 0 0,0% 90 LAR 122 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-4 0 0,0% 90 RF-SJ4 108 4 VH4-31-17 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 E55 4.A2 111 4 VH4-11-7 1 1,0% 26 <td>WRD2</td> <td>123</td> <td>4</td> <td>VH4-11-12</td> <td>6</td> <td>6,2%</td> <td>90</td>	WRD2	123	4	VH4-11-12	6	6,2%	90
WRD6 123 4 VH4-11-12 10 10,3% 90 mAb426.12.3F1.4 122 4 VH4-11-9 4 4,1% 52 E54 4.2 108 4 VH4-21-6 2 2,0% 26 WIL 127 4 VH4-31-13 0 0,0% 90 COF 126 4 VH4-31-13 0 0,0% 90 LAR 122 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-4 0 0,0% 90 RF-SJ4 108 4 VH4-31-17 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 FS-J1 103 4 VH4-11-7 1 1,0% 26	mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
mAb426.12.3F1.4 122 4 VH4-11-9 4 4,1% 52 E54 4.2 108 4 VH4-21-6 2 2,0% 26 WIL 127 4 VH4-31-13 0 0,0% 90 COF 126 4 VH4-31-13 0 0,0% 90 LAR 122 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 3 5,1% 45 WAG 127 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-12 0 0,0% 90 RF-SJ4 108 4 VH4-31-17 0 0,0% 26 E54 4.4 110 4 VH4-11-7 1 1,0% 26	E54 4.58	115	4	VH4-11-8	1	1,0%	26
E54 4.2	WRD6	123	4	VH4-11-12	10	10,3%	90
WIL 127 4 VH4-31-13 0 0,0% 90 COF 126 4 VH4-31-13 0 0,0% 90 LAR 122 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 3 4,0% 90 mAb61 123 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-4 0 0,0% 90 RF-SJ4 108 4 VH4-31-12 2 2,0% 85 E54 4.4 110 4 VH4-11-7 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 PR-SJ1 103 4 VH4-11-7 1 1,0% 85 E54 4.23 111 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 13	mAb426.12.3F1.4	122	4	VH4-11-9	4	4,1%	52
COF 126 4 VH4-31-13 0 0,0% 90 WAT 122 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 4 4,0% 90 mAb61 123 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-4 0 0,0% 90 RF-SJ4 108 4 VH4-31-1 2 2 2,0% 85 E54 4.4 110 4 VH4-31-1 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 PR-SJ1 103 4 VH4-11-7 1 1,0% 85 E54 4.23 111 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 CLL-11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8	E54 4.2	108	4	VH4-21-6	2	2,0%	26
LAR 122 4 VH4-31-13 2 2,0% 90 WAT 125 4 VH4-31-13 4 4,0% 90 mAb61 123 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-4 0 0,0% 90 RF-SJ4 108 4 VH4-31-12 2 2,0% 85 E54 4.4 110 4 VH4-11-7 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 PR-SJ1 103 4 VH4-11-7 1 1,0% 85 E54 4.23 111 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 CLL-11 98 5 VH5-12-1 0 0,0% 13 CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	WIL	127	4	VH4-31-13	0 .	0,0%	90
WAT 125 4 VH4-31-13 4 4,0% 90 mAb61 123 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-4 0 0,0% 90 RF-SJ4 108 4 VH4-31-12 2 2,0% 85 E54 4.4 110 4 VH4-11-7 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 PR-SJ1 103 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13	COF	126	4	VH4-31-13	0	0,0%	90
mAb61 123 4 VH4-31-13 5 5,1% 45 WAG 127 4 VH4-31-4 0 0,0% 90 RF-SJ4 108 4 VH4-31-12 2 2,0% 85 E54 4.4 110 4 VH4-11-7 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 PR-SJ1 103 4 VH4-11-7 1 1,0% 85 E54 4.23 111 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 17	LAR	122	4	VH4-31-13	2	2,0%	90
WAG 127 4 VH4-31-4 0 0,0% 90 RF-SJ4 108 4 VH4-31-12 2 2,0% 85 E54 4.4 110 4 VH4-11-7 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 PR-SJ1 103 4 VH4-11-7 1 1,0% 85 E54 4.23 111 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 CLL-11 98 5 VH5-12-1 0 0,0% 13 CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	WAT	125	4	VH4-31-13	4	4,0%	90
RF-SJ4 108 4 VH4-31-12 2 2,0% 85 E54 4.4 110 4 VH4-11-7 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 PR-SJ1 103 4 VH4-11-7 1 1,0% 85 E54 4.23 111 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17	mAb61	123	4	VH4-31-13	5	5,1%	45
E54 4.4 110 4 VH4-11-7 0 0,0% 26 E55 4.A1 108 4 VH4-11-7 0 0,0% 26 PR-SJ1 103 4 VH4-11-7 1 1,0% 85 E54 4.23 111 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	WAG	127	4	VH4-31-4	0	0,0%	90
E55 4.A1 108 4 VH4-11-7 0 0,0% 26 PR-SJ1 103 4 VH4-11-7 1 1,0% 85 E54 4.23 1111 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 CLL-11 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 CCLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	RF-SJ4	108	4	VH4-31-12	2	2,0%	85
PR-SJ1 103 4 VH4-11-7 1 1,0% 85 E54 4.23 1111 4 VH4-11-7 1 1,0% 26 CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 L3-4 98 5 VH5-12-1 0 0,0% 13 CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	E54 4.4	110	4	VH4-11-7	0	0,0%	26
E54 4.23	E55 4.A1	108	4	VH4-11-7	0	0,0%	26
CLL7 7-2 97 4 VH4-11-12 0 0,0% 29 37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 L3-4 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	PR-SJ1	103	4	VH4-11-7	1	1,0%	85
37P1 95 4 VH4-11-12 0 0,0% 104 ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 L3-4 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	E54 4.23	111	4	VH4-11-7	1	1,0%	26
ALL52 30-2 91 4 VH4-31-12 4 4,0% 29 EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 L3-4 98 5 VH5-12-1 0 0,0% 13 CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
EBV-21 98 5 VH5-12-1 0 0,0% 13 CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 L3-4 98 5 VH5-12-1 0 0,0% 13 CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	37P1	95	4	VH4-11-12	0	0,0%	104
CB-4 98 5 VH5-12-1 0 0,0% 13 CLL-12 98 5 VH5-12-1 0 0,0% 13 L3-4 98 5 VH5-12-1 0 0,0% 13 CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
CLL-12 98 5 VH5-12-1 0 0,0% 13 L3-4 98 5 VH5-12-1 0 0,0% 13 CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	EBV-21	98	5	VH5-12-1	0	0.0%	13
L3-4 98 5 VH5-12-1 0 0,0% 13 CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	CB-4	98	5	VH5-12-1	0	0,0%	13
CLL11 98 5 VH5-12-1 0 0,0% 17 CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	CLL-12	98	5	VH5-12-1	0	0,0%	13
CORD3 98 5 VH5-12-1 0 0,0% 17 CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	L3-4	98	5	VH5-12-1	0	0,0%	13
CORD4 98 5 VH5-12-1 0 0,0% 17 CORD8 98 5 VH5-12-1 0 0,0% 17	CLL11	98	5	VH5-12-1	0	0,0%	17
CORD8 98 5 VH5-12-1 0 0,0% 17	CORD3	98	5	VH5-12-1	0	0,0%	17
2000	CORD4	98	5	VH5-12-1	0	0.0%	17
CORD9 98 5 VH5-12-1 0 0.006 17	CORD8	98	5	VH5-12-1	0	0.0%	17
00 0 VIII 0 0,0% 1/	CORD9	98	5	VH5-12-1	0	0,0%	17

zς

PCT/EP96/03647

Table 2C: (continued)

Name ¹	aa²	Computed family ³	l Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
CD+1	98	5	VH5-12-1	0	0,0%	17
CD+3	98	5	VH5-12-1	0	0,0%	- 17
CD+4	98	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0,0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	
PBL1	98	5	VH5-12-1	0	0,0%	17 17
PBL10	98	5	VH5-12-1	0	·	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	17
DOB'	122	5	VH5-12-1		0,0%	125
VERG5	98	5	VH5-12-1	0	0,0%	97
PBL2	98	5	VH5-12-1	0	0.0%	17
Tu16	119	5	VH5-12-1	1	1,0%	17
PBL12	98	5	VH5-12-1	1	1,0%	49
CD+2	98	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	5	VH5-12-1	1	1,0%	17
CORD2	98	5	VH5-12-1	1	1,0%	17
PBL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	2	2,0%	17
CD-2	98	5	VH5-12-1	2	2,0%	17
CORD1	98	. 5	VH5-12-1	2	2.0%	17
CD-3	98	5	VH5-12-1	2	2.0%	17
/ERG4	98	5	VH5-12-1	3	3,1%	17
BL13	98	.5	VH5-12-1	3	3,1%	17
BL7	98		VH5-12-1	3	3,1%	17
IAN	119		VH5-12-1	3	3,1%	17
ERG3	98		VH5-12-1	3	3,1%	97
BL3	98			3	3,1%	17
ERG7	98		VH5-12-1	3	3,1%	17
BL5	94		VH5-12-1	3	3,1%	17
D-4	98		VH5-12-1	0	0,0%	17
LL10	98		VH5-12-1	4	4,1%	17
BL11	98		VH5-12-1	4	4,1%	17
ORD6	98		VH5-12-1	4	4,1%	17
ERG2	98		VH5-12-1	. 4	4,1%	17
	50	5	VH5-12-1	5	5,1%	17

83

WO 97/08320 PCT/EP96/03647

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	6	6,1%	17
CLL6	98	5	VH5-12-1	6	6,1%	17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3	3,1%	100
CAV	127	5	VH5-12-4	0	0,0%	97
HOW'	120	5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9,2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9,2%	73
E55 5.237	112	5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0,0%	103
Tu0	99	5	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
P3-69	127	5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4,1%	121

PCT/EP96/03647

Table 2C: (continued)

Name¹	aa²	Computed family ³	l Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
1-185-37	125	5	VH5-12-4	0	0,0%	124
1-187-29	. 125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	5	5,1%	121
P2-56	123	5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11,2%	
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	121 5
P1-52	121	5	VH5-12-1	11	11,2%	
CLL5	98	5	VH5-12-1	13	13,3%	121
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	17
L3B6	98	5	VH5-12-1	1	1,0%	46 46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0,0%	14
F19L16	107	6 .	VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
-19ML1	107	6	VH6-35-1	0	0,0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
/H6.N1	121	6	VH6-35-1	0	0,0%	
/H6.N11	123		VH6-35-1	0	0.0%	122 122
/H6.N12	123		VH6-35-1	0	0,0%	122
/H6.N2	125		VH6-35-1	0	0,0%	122
/H6.N5	125		VH6-35-1	0	0,0%	122
/H6.N6	127		VH6-35-1	0	0,0%	122
'H6.N7	126		VH6-35-1	0	0,0%	
H6.N8	123		VH6-35-1	0	0,0%	122
H6.N9	123		VH6-35-1	0	0,0%	122 122

82

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A3	123	6	VH6-35-1	0	0,0%	122
VH6.A1	124	6	VH6-35-1	0	0,0%	122
VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.16	116	6	VH6-35-1	0	0,0%	26
E55 6.17	120	6	VH6-35-1	0	0,0%	26
E55 6.6	120	6	VH6-35-1	0	0,0%	26
VHGL 6.3	102	6	VH6-35-1	0	0,0%	26
CB-201	118	6	VH6-35-1	0	0,0%	109
VH6.N4	122	6	VH6-35-1	0	0,0%	122
E54 6.4	109	6	VH6-35-1	1	1,0%	26
VH6.A6	126	6	VH6-35-1	1	1.0%	122
E55 6.14	120	6	VH6-35-1	1	1,0%	26
E54 6.6	107	6	VH6-35-1	1	1,0%	26
E55 6.10	112	6	VH6-35-1	1	1,0%	26
E54 6.1	107	6	VH6-35-1	2	2,0%	26
E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.3	120	6	VH6-35-1	2	2,0%	26
E55 6.7	116	6	VH6-35-1	2	2,0%	26
E55 6.2	120	6	VH6-35-1	2	2,0%	26
E55 6.X	111	6	VH6-35-1	2	2,0%	26
E55 6.,11	111	6	VH6-35-1	3	3,0%	26
VH6.A11	118	6	VH6-35-1	3	3,0%	122
A10	107	6	VH6-35-1	3	3,0%	68
E55 6.1	120	6	VH6-35-1	4	4,0%	26
FK-001	124	6	VH6-35-1	4	4,0%	65
VH6.A5	121	6	VH6-35-1	4	4,0%	122
VH6.A7	123	6	VH6-35-1	4	4,0%	122
HBp2	119	6	VH6-35-1	4	4,0%	4
Au46.2	123	6	VH6-35-1	5	5,0%	49
A431	106	6	VH6-35-1	5	5,0%	68
VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6.A9	125	6	VH6-35-1	. 8	7,9%	122
VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6-FF3	118	6	VH6-35-1	2	2,0%	123
VH6.A10	126	6	VH6-35-1	12	11,9%	122

FC1/L130/03

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7,9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B41	93	6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

WO 97/08320 . PCT/EP96/03647

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	Vki-i	28	•••
I	Vk1-2	0	
1	Vk1-3	1	
1	Vk 1-4	0	
1	Vk1-5	7	
1	Vk1-6	0	
1	Vk1-7	0	
1	Vk1-8	2	
1	Vk1-9	9	•
1	Vk1-10	0	
1	Vk1-11	1	
1	Vk1-12	7	
1	Vk1-13	1	
1	Vk1-14	7	
1	Vk1-15	2	
1	Vk1-16	2	
1	Vk1-17	16	
1	Vk1-18	1	
1	Vk1-19	33	
1	Vk1-20	1	
1	Vk1-21	i	
1	Vk1-22	0	
1	Vk1-23	0	119 entries
2	Vk2-1	0	
2	Vk2-2	1	
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	-16	
2	Vk2-7	0	
2	Vk2-8	0	
2	Vk2-9	1	
2	Vk2-10	0	
2	Vk2-11	7	
2	Vk2-12	0	25 entries
3	Vk3-I	1	

25

Table 3A: (continued)

Family 1	Name	Rearranged ²	Sum
3	Vk3-3	35	
3	Vk3-4	115	
3	Vk3-5	0	
. 3	Vk3-6	0	
3	Vk3-7	1	
3	Vk3-8	40	192 entries
4	Vk4-1	33	33 entries
5	Vk5-1	1	1 entry
6	Vk6-1	0	
6	Vk6-2	0	0 entries
7	Vk7-1	0	0 entries

WO 97/08320 PCT/EP96/03647

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	
1	DPL5	13	
1	DPL6	0	
1	DPL7	. 0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	0	
2	DPL11	23	
2	DPL12	15	
2	DPL13	0	
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

PC1/EP96/03647

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	0	
1	VH1-12-4	0	
1	VH1-12-5	3	
1	VH1-12-6	0	
1	VH1-12-7	23	
1	VH1-13-1	1	
1	VH1-13-2	1	
1	VH1-13-3	0	
1	VH1-13-4	0	
1	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1	VH1-13-8	3	
1	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1	VH1-13-13	0	
1	VH1-13-14	0	
1	VH1-13-15	4	·
1	VH1-13-16	2	
1	VH1-13-17	0	
1	VH1-13-18	1	
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	
2	VH2-31-1	0	•
2	VH2-31-2	. 1	
2	VH2-31-3	1	
2	VH2-31-4	0	
2	VH2-31-5	2	
2	VH2-31-6	0	
2	VH2-31-7	0	
			8 8

88

WO 97/08320 PCT/EP96/03647

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
2.	VH2-31-14	1	
2	VH2-31-8	0	
2	VH2-31-9	0	
2	VH2-31-10	0	
2	VH2-31-11	1	
2	VH2-31-12	0	
2	VH2-31-13	. 1	7 entries
3	VH3-11-1	0	
3	VH3-11-2	0	
3	VH3-11-3	5	
3	VH3-11-4	0	
3	VH3-11-5	1	
3	VH3-11-6	1	
3 -	VH3-11-7	0	
3	VH3-11-8	5	
3	VH3-13-1	9	
3	VH3-13-2	3	
3	VH3-13-3	0	
3	VH3-13-4	0	
3	VH3-13-5	0	
3	VH3-13-6	0	
3	VH3-13-7	32	
3	VH3-13-8	4	
3	VH3-13-9	0	
3	VH3-13-10	46	
3	VH3-13-11	0	
3	VH3-13-12	11	
3	VH3-13-13	17	
3	VH3-13-14	8	
3	VH3-13-15	4	
3	VH3-13-16	3	
3	VH3-13-17	2	
3	VH3-13-18	1	
3	VH3-13-19	13	
3	VH3-13-20	1	
3	VH3-13-21	1	
3	VH3-13-22	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	
3	VH3-14-3	0	
3	VH3-1X-1	0	
3	VH3-1X-2	0	
3	VH3-1X-3	6	
3	VH3-1X-4	0	
3	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	•
4	VH4-11-5	0	
4	VH4-11-6	0	
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	0	
4	VH4-11-15	0	
4 .	VH4-11-16	1	
4	VH4-21-1	0	
4	VH4-21-2	0	
4	VH4-21-3	1	
4	VH4-21-4	1	

WO 97/08320 PCT/EP96/03647

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
4	VH4-21-5	1	
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
4	VH4-31-4	2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0	
4 .	VH4-31-16	0	
4	VH4-31-17	. 0	
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

Table 4A: Analysis of V kappa subgroup 1

1 C1/E1 90/0304

•	Framework I															
amino acid'	-	7	က	4	5	9	7	&	6	10	Ξ	12	13	14	15	16
Α		1					<u> </u>		1				102		1	
В			1	<u></u>	<u></u>	1	<u>.</u>	: : : :	<u>.</u>	<u>.</u>	<u>.</u>				<u>.</u>	<u>.</u>
С		-												1		
D	64	<u>.</u>		<u></u>	<u> </u>	<u></u>	<u>.</u>	<u>.</u>								<u>.</u>
E	8		14		<u>.</u>	<u>.</u>	<u>.</u>		<u>.</u>	<u>.</u>		<u>.</u>			1	<u>.</u>
F	<u> </u>				<u></u>			: : : :	1	6				1	: : :	
G	ļ 					<u></u>			<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u></u>	<u></u>	<u>:</u>	105
Н						• • • • •			: : : : : : :	: : : : :	<u></u>	: : :			<u> </u>	
		65								· · · · ·					4	
K			1								: : : :	: : : : : :				<u>.</u>
L		6		21							96	: : : : : :	1	: :		
M	1		: : : : : :	6 6							<u>:</u>		: : : :	<u>.</u>		<u>:</u>
N											<u>.</u>			<u>.</u>		· · · · ·
Р			•••••					103	**********	1		2	- - - - - - - - - - - - - - - - - - -		1	
Q			62			88	•••••		•••••		1					
R								***********		•••••	·	••••••				
S			•••••				89		102	8 0		103		103		
Т		1		********	88				••••••	18						
V		1	9	••••							8		2		9 8	
W										•••••			••••••			
X	1															
Y																
_			•••••													
unknown (?)					••••											•••••••
not sequenced	31	31	18	18	17	16	16	2	1							
sum of seq ²	74	74	87	87	88	89	89	103	104	105	105	105	105	105	105	105
oomcaa ³	64	65	62	6 6	88	88	89	103		80	96	103	102	103	98	105
mcaa ⁴	D	1	Q	М	Ţ	Q	S	Р	S	S	L	S	Α	S	V	G
rel. oomcaas	%98	988%	71%	9/9/	100%	%66	100%	100%	98%	76%	91%	%86	97%	98%	93%	100%
pos occupied ⁶	4	5	5	2	1	2	1	1	3	4	3	2	3	3	•	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

•		<u> </u>														
amino acid¹ .	17	18	19	20	21	22	23	24	25	26	27	ď	ω	ပ	۵	
А			1	1		1			103					·····		
В											1					
. C							105									
D	101															
Е	2							1	1		2					
F					2											
G										1						
Н											1					
1			6	4	101	1										
К								2			1					
L								1					••••			
М																
N	,									1						
Р													*******			
Q								20		*********	100		*******			
R		94						81		*****		*******				
S		5		1						102						
Т		6		99		103			1	1						
V			98		2								*******			
W																
X	1									**********						
Υ	1					,										
_										***********		105	105	105	105	
unknown (?)																
not sequenced																
sum of seq²	105	105	105	105	105	105	105	105	105	105	105	105	105	105	105	
oomcaa³	101	94	98	99	101	1.03	105	81	103	102	100	105	105	105	105	
mcaa¹	D	R	V	T	l	Ţ	С	R	Α	S	Q	-	-	-	-	
rel. oomcaa ^s	%96	%06	93%	94%	%96	%86	100%	77%	98%	92%	95%	100%	100%	100%	100%	
pos occupied ⁶	4	:						••••••	:				1	1	1	

مع

WC 97/08520 FC1/EF90/03

Table 4A: Analysis of V kappa subgroup 1

•	CDRI	·													
amino acid'	ш	ட	28	29	30	31	32	33	34	35	36	37	38	39	40
А					1	1		1	42						
В												1	1		
. C							1								
D			25		1	5	7					1		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
E							1					2			
F				1	1		7				6				
G			25		7	3			4						
Н					1	2	2		1			2			
ı				98	1	4			1						
К						7								95	
L					2	1		101							
М			•							-					
N			6		16	42			50						
Р															102
Q												98	103	2	
R					16	3	2							3	1
S			41	2	57	32	3	1	1						1
Т			7		•	4			4					1	
V			1	4	1			1							
w							21			104				·	
X									1						
Y					1		60				98				
_	105	105													
unknown (?)														3	
not sequenced				·		1	1	1	1	1	1	1	1	1	1
sum of seq ²	105	105	105	105	105	104	104	104	104	104	104	104	104	104	104
oomcaa³	105	105	41	98	57	42	60	101	50	104	98	98	103	95	102
mcaa*	-	-	S	l	S	Ν	Υ	L	N	W	Υ	Q	Q	Κ	Р
rel. oomcaa ^s	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	%66	91%	98%
pos occupied⁵	1	1													•••••

Table 4A: Analysis of V kappa subgroup 1

_	Fram	ewor	k II									C	DR II		
amino acid'	41	42	43	44	45	46	47	48	49	S	51	52	53	54	55
Α			94							50	95				
В															•••••
. C															
D			-							21	1	1	1		••••••
E	1	3			1	1				1		1			33
F						1			3			1			
G	100		1							9	2				
Н									2						
l		1				1		100					1		
Κ		95			86					16			2		
L		1				89	103							101	
M								2							,,
N					10					2		1	25		
Р				104						1					
Ω		1			1										6
R					3	3							1	1	
S					1				5	1	1	99	41	2	
T		3			1					1	4	1	31		
V			9			9					1		1		
W															
X					1								1		
Y									92	1					
-															
unknown (?)	3	,									••••		•••••		
not sequenced	1	1	1	1	1	1	2	3	3	2	1	1	1	1	
sum of seq ²	104	104	104	104	104	104	103	102	102	103	104	104	104	104	10
oomcaa³	100	95	94	104	86	89	103	100	92	50	95	99	41	101	6
mcaa*	G	Κ	Α	Р	Κ	L	L	ı	Υ	Α	Α	S	S	L	O
rel. oomcaas	%96	91%	%06	100%	83%	96%	100%	%86	%06	49%	91%	95%	39%	97%	7000
pos occupied ⁶		-			:						:		: :		:

WO 97/08320

PCT/EP96/03647

Table 4A: Analysis of V kappa subgroup 1

amino acid	26	57	28	29	9	3 5		7 29	3 7	65	99	2 6	. 89	3 8	S 8
А		3										2	1	1	1
В					1							**********		***************************************	***************************************
. C										•		***********			
D		1						***************************************							6
E										***************************************				1	3
F				1			10	3					3		<u>_</u>
G		2 10	5						10	5	4 10		10	2	
Н												••••••••		<u> </u>	
		3	4	4)		1	3						
K] 1	l					1								
L							•		1	•					
М															1
N	6														
Р	1			101	2	2			*********						
Q										1					
R	1					103		1	••••••••••••••••••••••••••••••••••••••	1	•			-	 ?
S	68			2	103			98	}	96	•••••••••••••••••••••••••••••••••••••••	100			
T	19			1		1		······		3	·			101	
V			9 9				1							101	1
W															!
Χ			1								1		1	<u></u>	2
Y					************				••••••••••••			1	: :		1
_												<u> </u>		<u> </u>	<u>'</u>
unknown (?)					•••••••••••						••••••		•		
not sequenced					***********			······	}				•••••)
sum of seq ²	105	105	105	105	105	105	105	105	105	105	105	105	105	105	105
oomcaa³	68	105	99	101	103	103	103	:	105	:		100			
mcaa'	S	G	V	Р	S	R	F	S	G	. S	G	S	G	101 T	67 D
rel. oomcaa ⁵	65%	100%	94%	%96	986%	98%	%86		100%	91%	0/096	•••••••••••••••••••••••••••••••••••••••	97%	•••••	64%
pos occupied ⁶	10	1	4	4	2	:	:	:	***************************************		•		······		
:	······································		i.			96	•••••••	J	1	<u>.</u>	4	4	4	4	7

95

Table 4A: Analysis of V kappa subgroup 1

•	Fr	amev	vork l	11											
amino acid'	71	72	73	74	75	92	77	78	79	8	8	82	83	84	82
А		3				1				2				101	1
В					1				3		2				
. C															
D						1					16	101			
E											83				
F	102	1	21										73		
G							4				1			2	
Н		,													
l					9 9	5							17		
Κ															
L			81					103	1				1		
М															1
N						7	4				•••••				1
Р										97					1
Q									97						
R						2	1		2						
S		2		1		86	94			4			1		
Т		98		102		2	1						••••		97
V	1		2		4			1					11		1
W															
X				1							1	2	••••		
Y	1														
-															
unknown (?)															
not sequenced	1	1	1	1	1	1	1	1	2	2	2	2	. 2	2	3
sum of seq ²	104	104	104	104	104	104	104	104	103	103	103	103	103	103	102
oomcaa,	102	98	81	102	99	86	94	103	97	97	83	101	73	101	97
mcaa¹	F	T	L	Τ	١	S	S	L	Ω	Р	Ε	D	F	Α	T
rel. oomcaaʻ	%86	94%	78%	%86	95%	83%	%06	%66	94%	94%	81%	%86	71%	98%	95%
pos occupied	:											2	5	2	

ንዶ

Table 4A: Analysis of V kappa subgroup 1

AA. Allalysis of				· [CDR	111					
amino acid'	98	87	88	89	90	91	92	93	94	95	⋖	മ	ں	۵	ш	4
А					1	7	1		5	1						
В		<u>.</u>		2	3											
. C			102													
D		<u> </u>					23	5	1							
E							1	1	: : : :	1	1	<u>.</u>	<u> </u>			
F		7	<u>.</u>			3			13							
G						1		1	2	1		1				
Н		1	,	4	6	7	3	1								
							4	1	2	1						
К	1				7		1	<u>.</u>			<u></u>		<u></u>			
L				7		6	2		18	2	<u>.</u>					
М													,			
N						6	31	19	1							
Р									1	82	6					
0				90	86	1	2			•••••						
R						1		2	2							
S	1					27	3	58	5	10						
T		•••••				3	1	15	25	•••••		****				·
V									5	•						
W									1							
X																
Y	101	93				42	32	1	23							
-										3	82	88	89	89	89	89
unknown (?)		1														
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
sum of seq²	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa³	101	93	102	90	86	42	32	58	25	82	82	88	89	89	89	89
mcaa⁴	Υ	Υ	С	Q	Q	Υ	Υ	S	T	Р	-	-]	-	-	-	-
rel. oomcaa ^s	0/086	91%	100%	87%	83%	40%	31%	26%	24%	81%	92%	966	100%	100%	100%	100%
pos occupied ⁶	3	3	1	4	5	:	:	10	14		••••••	••••••	1	1	1	1

			<u></u>				Fra	mev	vork	IV					
amino acid'	96	97	86	99	100	101	102	103	104	105	106	A	107	108	sum
Α	1				_										627
В					1					1					19
·C															209
D	1									15					459
Е					2					65					258
F	6		86								2				451
G				87	29	87								2	894
Н	2	1													40
l	5								1		72				606
K	1	1						77					79		480
L	18	1	1						22	4	2				793
М		1									5				77
N	1										1		2		232
Р	6				7									1	620
Q	1				48					1					865
R	6							6					2	70	413
S	2	2													1636
Т	2	82					87	3					2		1021
V	2							1	63		3				440
W	15														141
X															14
Y	16						-								564
_	4	1										85		1	1250
unknown (?)						• • • • • • • • • • • • • • • • • • • •									7
not sequenced	16	16	18	18	18	18	18	18	19	19	20	20	20	31	589
sum of seq²	89	89	87	87	87	87	87	87	86	86	85	85	85	74	
oomcaa³	18	82	86	87	48	87	87	77	63	65	72	85	79	70	
mcaa⁴	L	Т	F	G	G	G	Τ	Κ	٧	Ε	١	-	Κ	R	
rel. oomcaa³	20%	92%	%66	100%	55%	100%	100%	89%	73%	76%	85%	100%	93%	95%	
pos occupied ⁶	17	7	2	1	5	1	1	4	3	5	6	1	4	4	

PC1/EF90/0

Table 4B: Analysis of V kappa subgroup 2

100

Table 4B: Analysis of V kappa subgroup 2

						-					CDF	RI									
amino acid'	22	23	24	25	26	27	A	8	ပ	۵	ш	щ	28	29	30	31	32	33	34	35	36
Α																					
В	ļ	<u></u>	<u></u>	<u> </u>																	
· C	ļ	22	<u></u>		<u> </u>		<u></u>														
D	.	<u>.</u>								1			9		1	1			11		
E	ļ																				
F															2						7
G											1			22							
Н										16							1		1		
1														:					•••••		
K			1													1					
L						1		22	13									22			
М									1		,							•••••	••••		
N													10		7	12			9		
Р																					
Q	1					21						•						••••••			
R			21								2										
S	21			22	22		22				19		1								:
T																8		·			
V									8												
W										1										22	••••
Χ													1		1				1	•••••••	
Y										4			1		11		21				15
_												22									
unknown (?)		,																	•••••		•••••
not sequenced																					
sum of seq ²	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
oomcaa,	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	15
mcaa'	S	;	R	:	S	_		L	•	Н	:		Ν	G	Υ	•••••	Υ	L		W	
rel. oomcaa ^s	95%	100%	95%	100%	100%	95%	100%	100%	59%	73%	%98	100%	45%	100%	20%	55%	92%	100%	20%	100%	%89
pos occupied"	: :			:						:	:	:	5	•••••••••••••••••••••••••••••••••••••••	:	•••••••••••••••••••••••••••••••••••••••	•••••	•••••	••••••	÷	2

•					Fra	me	woi	rk II										C	DR I	<u>1</u>				_
amino acid'	37	38	39	40	41	- (47	43	44	45	46	47	48	49	20	7	- i	25	23	54	55	56	57	; ==
А																					14		<u></u>	
В			•••••									•				<u>.</u>							<u>.</u>	
· C								<u></u>								<u>.</u>							<u>.</u>	
D																					7		. <u></u> .	
E										1													<u>.</u>	
F				<u></u>	<u>.</u>										<u>.</u>						<u></u>	<u></u>	<u>.</u>	
G					2	2										1	2				1		2	2
Н			<u></u>																					
1				<u></u>							1		22	<u></u>							<u> </u>			
K			15								ļ		<u></u>	<u></u>		5					ļ			
L	16										14	21			1.	4	1				<u></u>			
M			<u></u>	<u>.</u>							<u> </u>			-			<u></u>							
N		<u></u>	ļ								ļ	ļ		<u>.</u>					18	<u></u>				
Р		ļ		2	2				21			ļ						•••••						
Q	6	22		<u>.</u>			22			12	<u></u>	<u></u>		<u> </u>		1				<u>.</u>				
R		<u> </u>	7	·						8	7	<u> </u>		ļ		1		•••••		22	?		<u></u>	
S		<u></u>	ļ					21						<u>.</u>			2	22	2			2	2	
T		<u> </u>			<u>.</u>							ļ		ļ					1	<u></u>				
V	ļ	<u>.</u>							<u>.</u>	<u>.</u>		1		<u> </u>			6			<u>.</u>				
W		ļ							<u></u>			<u>.</u>		ļ						<u>.</u>	-			
X	ļ	. .																		<u>.</u>				
Υ	_	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>			-	2	21	_			1		-	-	-	
-	ļ								ļ									<u></u>						
unknown (?)		<u></u>																	-					•••••
not sequenced	=3==				_					<u> </u>			-		1	==	_	: -	-					_
sum of seq ²				••••								•	2 2	•	:	:		:	:					
oomcaa,	10	3 2	2 1	5	22								1 2	•	:			•	:	:	:		•	
mcaa ⁴	L	C) k	<u> </u>	Р	G	Q	•	Р)	. !	···· ! ·····	···÷··	Υ	•••••		÷	N	•			7	
rel. oomcaa ^s	730%	1000		0/200	100%	100%	100%	100%	100%	2007	0/0/0	04-00	35%0	0600	100%	%29	57%	100%	000	7000	0,00	64%	100%	100%
pos occupied	r.	2	1	2	1	1	1		1	1	3	:	2	:	:	:		:	1	4	1	3	1	1

Table 4B: Analysis of V kappa subgroup 2

														Fra	mev	worl	k				
amino acid'	28	23	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	9/	11	28
А					_										_						
В																					••••
· C																					
D			22				1				1		22								
E																					
F					21									22							
G							21		22		21										
Н																					
1																	1	21			••••
Κ																	19				
L															.:	21	1				
M																					· · · · · · · · · · · · · · · · · · ·
N																					
Р		22																			
Q																					
R				20				1												20	
S				1		22		21		22									20	1	
T				1								22			21				1		
V	22				1																21
W																					••••
X																					••••
Υ																					
-																		•••••			•••••
unknown (?)															1						
not sequenced																1		1	-		
	22				• • • • • • • • • • • • • • • • • • • •						• • • • • • • • • • • • • • • • • • • •			•••••	•••••						• • • • • • • • • • • • • • • • • • • •
oomcaa ³	22	: :	22					•••••				22	22	22	21	21	19	21	20	20	21
mcaa'	V	······	D			S	• • • • • • • • • • • • • • • • • • • •		G			• • • • • • • • • • • • • • • • • • • •	D			L			S	R	V
rel. oomcaa ^s	100%	100%	100%	91%	95%	100%	92%	95%	100%	100%	95%	100%	100%	100%	95%	100%	%06	100%	95%	95%	100%
pos occupied ⁶	1	1	1	3	2	1	2	2	1	1	2	1	1	1	1	1	3	:		: :	1

Н						- 1				••••••			1		7						
П							1			••••••	•••••		l	•••••	7					•••••	•••••
l V							1				•			••••	••••	1					•••••
K							4			•••••	•••••			•••	•••••	•••••			••••	•••••	
L					·				•••••	••••••	····	-	••••	12		•••••	2		•••••		
M							•••••			••••••	21			••••	••••••	•••••				*****	
N P		4									•			•••••	•••••			_			
)•							••••••						•••••	16	1	••••••	•••••	
0		•••••					••••			******		20			13	•••••	*******	••••••	••••••	******	
R										•••••]	******				••••	•••••	
S					•••••					••••••						3					
						•••••				*******				8	••••	7		••••••	•••••	•••••	
V		•••••			21		19									•••••	•••••		•••••		
W				•••••	•••••	•••••	*****			•••••						6	•••••	*******	*******		
X							•••••	•••••										•••••	•••••	••••	
Y	_							21	21							-		_			
-							•••••		••••••									14	17	17	17
unknown (?)		••••			·····						••••		•••••					•••••			
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	5
sum of seq ²	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	17
oomcaa ³	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	17
mcaa¹	E	Α	Ε	D	٧	G	٧	Υ	Υ	С	М	Q	Α	L	Q	T	Р	-	•	-	-
rel. oomcaa'	%06	95%	95%	100%	100%	100%	%006	100%	100%	100%	100%	95%	67%	57%	62%	33%	%08	82%	100%	100%	100%
pos occupied ⁶	3	2	2	1	1	1	3	1	1	1	1			:	:						1

Table 4B: Analysis of V kappa subgroup 2

Tilalysis Ol V Kapj									Fra	mev	vork	(IV					
amino acid'	ш	ட	96	97	86	66	100	101	102	103	104	105	106	٧	107	108	sum
Α																	71
В												1					3
С																	43
D																	112
E												13					71
F			1		17												72
G						17	2	16				1					233
Н																	26
			3										14				94
K										12					13		66
L			2								11						219
М																	37
N																	56
Р			1														159
Q			1				14										159
R										4						12	126
5				••••••					••••								325
T				17					16								140
V											5						146
W			2														31
X																	3
Y			7														12 3
_	17	17		•••••										13			134
unknown (?)				•••••													2
not sequenced		=			5				6							10	211
sum of seq ²	17	17	17	17	17	17	16	16	16	16	16	15	14	13	13	12	
	17	17	7	17	17	17	14	16	16	12	11	13	14	13	13	12	
mcaa ⁴	-	-	Υ	T	F	G		G		K		Ε	ı	-	Κ	R	
rel. oomcaa'	100%	100%	41%	100%	100%	100%	988%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied"	1	1	7	1	1	1	2	1	1	2	2	3	1	1	1	1	

105

PC1/EP90/03

Table 4C: Analysis of V kappa subgroup 3

											Fra	mev	ork l			
amino acid'		7	က	4	5	9	^	∞	6	10	=	12	13	14	15	16
А		Ę	5				2	2	27	,					1	
В	1															
. C												2	2			
D	2	<u></u>						<u> </u>	14					<u> </u>		
E	76		27	,												••••••
F		1	<u>.</u>	<u></u>	<u> </u>									1		
G	1	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>			82						1	152
Н		<u></u>	<u> </u>		<u></u>					1						
1		75			<u></u>											
K	3		<u>.</u>		<u> </u>	<u>.</u>										
L		4	1	104			1				150		129		1	
M	5			13	<u>.</u>											
N			<u> </u>			<u></u>								5		
Р			<u></u>					124							147	
Q			<u>.</u>			123	<u></u>									
R			<u> </u>		1	<u> </u>	<u> </u>	<u> </u>								
S			<u></u>				119		3	1		150	1	141		
T		2	<u> </u>		117					147				5	1	
V		1	89	1			1	<u>.</u>			1		22		1	
W		•••••	<u></u>			<u>.</u>	<u>.</u>									
X																
ΥΥ																
-																
unknown (?)					••••••											
not sequenced																
sum of seq'	88	88	117	118	118	123	123	124	126	149	151	152	152	152	152	152
oomcaa¹	76	75	89	104	117	123	119	124	82	147	150	150	129	141	147	152
mcaa'	E	1	V	L	T	Q	S	Р	G	T	L	S	L	S	Р	G
rel. oomcaa ^s	%98	85%	76%	98%	%66	100%	97%	100%	65%	99%	99%	%66	85%	93%	97%	100%
pos occupied ⁶	6	6	3	3	2	1	4	1	4	3		2		:	6	1

Table 4C: Analysis of V kappa subgroup 3

•				, dp 0												CDRI
amino acid'	17	18	19	20	21	22	23	24	25	26	27	⋖	8	U		ш
А			178	2					166	1						
В																
. С							181			1						
D	6															
E	146	1									1					
F					7	1										
G	1	1							-1	1		1				
Н											17					
1		1		5	2											
К		1						5								
L					173						1	1				
M																
N												9				
Р																
Q											159					
R		175						176		1	1	10				
S						180			7	175		87				
Т		1		174					7	2		1		• • • • • • • • • • • • • • • • • • • •		
V		1	4	1					1			1				
W								1								
X																
Y						1					1					
-						.,						72	182	182	182	182
unknown (?)											1			••••		
not sequenced									ē							
								182					• • • • • • • • • • • • • • • • • • • •		•••••	
					• • • • • • • • • • • • • • • • • • • •			176					182	182	182	182
mcaa'	Ε	R	Α	T	L	S		R	Α	S	Q	S	-	-	-	-
rel. oomcaa ^s	95%	97%	98%	%96	95%	%66	100%	97%	91%	97%	88%	48%	100%	100%	100%	100%
pos occupied ^r	3	7	2	4	3	3	1					8	1			1

FC1/EF90/0.

Table 4C: Analysis of V kappa subgroup 3

					-										Fra	mew
amino acid'	ш.	28	29	30	31	32	33	34	35	36	37	38	39	40		
А				1	1			18			T					
В						•									·	
С						-		•								· ‡
D			1	1	2	1	· ·	<u> </u>							<u> </u>	<u> </u>
E						1	•		•		•••••••	•	1			1
F .		1				7		•		1		·••••••		<u> </u>	÷	<u></u>
G			2	7	3	1		2			· -		· 	1	184	
Н			1			2			••••••	1	•	12	1	1	<u></u>	
		24	. 4	1	1											
K		<u>:</u>		1	1								153		<u> </u>	<u> </u>
L		8	1			1	176		<u> </u>			3	<u> </u>		<u> </u>	2
М		<u> </u>	<u> </u>		<u>.</u>											
N		<u>.</u>	3	12	25	32										
Р			ļ		1	<u></u>	<u></u>	<u></u>	<u></u>					170		
Q		<u></u>		<u></u>	1	1	<u></u>	<u> </u>			183	167	1			181
R		<u>.</u>	10	3	18	16	<u> </u>	1	<u>.</u>	<u></u>	1		27	5		
S		72	86	151	118	4	<u>.</u>		<u></u>	<u></u>	<u>.</u>			5		
T		1	1	3	8	1	<u></u>		<u>.</u>	<u> </u>	<u></u>		1			
V		76	68		1		7			<u>.</u>		3		2		
W			5						185							
X		•••••														
Y				1	1	115				183						
-	182	••••						•••••								
unknown (?)									•••••		1					
not sequenced																
sum of seq ²	182	182	182	181	181	182	183	184	185	185	185	185	184	184	184	184
oomcaa¹	182	76	86	1 51	118	115	176	181	185	183	183	167	153	170	184	181
mcaa'	-	V	S	S	S	Υ	L	Α	W	Υ	Q	Q	Κ	Р	G	Q
rel. oomçaa ^s	100%	42%	47%	83%	65%	63%	%96	98%	100%	%66	%66	%06	83%	92%	100%	98%
pos occupied ⁶	1	6	11	10	:	12			:		:		6	6	1	3
· ·						•••••••	108				- ;		<u>U</u>			S

Table 4C: Analysis of V kappa subgroup 3

. +C. / ((d) y 5/5 0)	rk II										CDR	11				
amino acid'	43	44	45	46	47	48	49	50	51	52	53	54	55	26	57	28
А	176							4	147				176	1		
В																
. C									1							
D								43					2		4	
E																
F.				1		1	4									
G								125					2	10	179	
Н							9		1							
1						178								1		168
K			1								7	1				
L		1		179	174	1										
M						3					1					
N			1					1			53			2		
Р	5	184								2			2	2		
Q							1									
R			182					1			4	180				
S							3	6	4	179	74	1		5		
Т	3								11	2	44			164		2
V				3	9			3	19				3			15
w							1					1				
X																
Y							165								2	
-																
unknown (?)			1													
not sequenced																
sum of seq'	184	185	185	183	183	183	183	183	183	183	183	183	185	185	185	185
oomcaa³	176	184	182	179	174	178	165	125	147	179	74	180	176	164	179	168
mcaa*	Α	Р	R	L	L	ı	Υ	G	Α	S	S	R	Α	Τ	G	1
rel. oomcaaʻ	96%	%66	98%	%86	95%	97%	%06	%89	80%	%86	40%	98%	95%	9%68	97%	91%
pos occupied"	3	2													:	

	•												F	rame	work	: 111
amino acid'	29	9	61	62	63	64	65	99	67	89	69	70	71	72	73	74
Α		68	3					3		ŗ	3	1		3	3	
В																
. C																
D		112	?			1						152		· - ·······	<u> </u>	
E								1		1	•	30				
F		<u> </u>		183									183		2	
G		<u> </u>				184	3	178		177						
Н		1	<u>.</u>	<u>.</u>												
1		<u></u>	<u>.</u>	1	<u>.</u>	<u> </u>								1		
K		<u> </u>	1			<u> </u>		<u></u>	<u> </u>							
L		<u></u>		1	<u>.</u>	<u>.</u>			<u>.</u>						182	
. M		<u></u>	<u></u>	<u></u>			<u>.</u>	1								
N	ļ	1	<u></u>	<u></u>	<u>.</u>		<u></u>	<u>.</u>						1		
Р	177	<u></u>						.								
Q		<u>.</u>	ļ			<u>.</u>	<u> </u>	<u>:</u> : :				1				
R		<u>:</u> :	182	<u> </u>	2		1			<u> </u>	2		•			
5	7			<u>.</u>	180		179		185		3			7		
T	1		2		3		2				177		•••••	172		179
V		3	<u>:</u>					1		1						
W									•	1			••••••			
<u>X</u>																
Υ													1			
unknown (?)								1								
not sequenced						_								-		
•	185		•	:		:	:	:	:		•		********	•••••••	••••••	
oomcaa¹			:	:		:		:	:			152	183	172	182	179
mcaa'	Р	D	R	F	S	G	S	G	S	G	T	D	F	T	L	Ţ
rel. oomcaas	%96	61%	%86	%66	97%	%66	92%	%96	100%	%96	%96	83%	%66	93%	%66	97%
pos occupied ^a	3	5	3	3	3	2	4	5	1	5	:	:	:	······	:	
							11	0		•••••••	***********		·····i			

Table 4C: Analysis of V kappa subgroup 3

amino acid'	75	9/	11	78	79	80	8	82	83	84	82	98	87	88	83	06
А							3			174						
В					1											
. C									2				1	182		
D			1				3	182								
Ε					149		175									2
F		1							178		2	1	4			
G			3					1		2						
Н											1				1	7
<u> </u>	178							1	1		9					
K							1									
L				178		1			1		7		1			1
M										1	5					
N	1	5														
Р						149										
Q					34									1	181	155
R		1	111							3						1
S		169	65			34			1				2			· · · · · · · · · · · · · · · · · · ·
T		8	4							1						8
V	4			6					1	3	159					7
W																•••••
Χ																•••••
Υ	1										1	183	176		1	2
-																
unknown (?)																·· ·· ···
not sequenced						_										
sum of seq ²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa³	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	155
mcaa'	1	S	R	L	Ε	Ρ	Ε	D	F	Α	V	Υ	Υ	С	Q	Q
rel. oomcaas	97%	92%	%09	970/6	81%	81%	96%	99%	97%	95%	96%	99%	%96	%66	%66	85%
pos occupied6	: :							:	:	6			·····	:	:	

0 9 // 08320

Table 4C: Analysis of V kappa subgroup 3

4C. Allalysis of		F	- 3			DR II		··								
amino acid'	91	92	93	94	92	٧	മ	U	۵	ш	ш.	96	97	86	66	100
Α		1	8	3	3							_				1
В																
· C	2			1								2				
D		8	5										1			
Ε		2										1				
F	5		2									7		166		
G	1	104	15		1	1	2					1			166	41
Н	4	1										2				
1			1			1						4				
К			2			1						1				1
L				2	7	5						42				
·M		1			1	2										
N		28	71									1				
Р				1	139	24						7	2			9
Q	1		1		3	1						3				114
R	34	2	3		2	2						19				
S	2	3 3	58	102	15	2						1	8			
Т		2	13	1	1	2						1	154			
V					3	· 1						2				
W				69								24				
X				• • • • • • • • • • • • • • • • • • • •												
Y	134	1	1									43				
			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)														••••		
not sequenced						14		14			14					16
sum of seq ²	: :			182	182	169	169	169	169	169	169	169	166	167	167	167
oomcaa³	134	104	•	······	139	127	167	169	169	169	169	43	154	166	166	114
mcaa'	Υ	G	N	S	Р	-	-	-	-	-	-	Υ	Ţ	F	G	Q
rel. oomcaa ^s	73%	57%	39%	26%	76%	75%	%66	100%	100%	100%	100%	25%	93%	%66	990%	0/089
pos occupied ⁶	8	11	13	8	11	12	2	1	1	1	1	18	5	2	2	6

WO 97/08320 PCT/EP96/03647

Table 4C: Analysis of V kappa subgroup 3

		F	rame	work	IV]
amino acid'	101	102	103	104	105	106	A	107	108	sum
А										1345
В				¢						2
С										375
D		<u></u>		<u></u>	23		<u> </u>			564
Ε		<u></u>	3		141	••••••••••••••••••••••••••••••••••••••				759
F			••••••••••••••••••••••••••••••••••••••			6				765
G	166							<u></u>	1	1804
Н					1					64
I						143				803
K			152					157		489
L				54		1			2	1596
М						3				36
N		1						3		255
Р		1		1						1147
Q			1		1					1314
R			9			2		4	134	1326
S		2								2629
Т		162	1					1		1593
V				111		11				646
W						-				287
X										
Y			1							1014
-	1	1	1	1	1	1	166	1	1	2151
unknown (?)							••••			4
not sequenced	16	16	15	16	16	16	17	17	45	337
sum of seq'	167	167	168	167	167	167	166	166	138	
oomcaa,	166	162	152	111	141	143	166	157	134	
mcaa [,]	G	T	K	V	Ε	1	-	Κ	R	
rel. oomcaa'	99%	97%	%06	0/099	84%	%98	100%	95%	97%	
pos occupied ^a	2	5	7	4	5	7	1	5	4	

WO 7//00220

Table 4D: Analysis of V kappa subgroup 4

	L										Fra	mew	ork					
amino acid'	-	2	က	4	2	9	7	&	6	5	Ξ	12	13	14	15	16	17	18
А												24					1	
В													·········	÷		¢		[
· C										1						1		
D	25								26									
Е																	25	•••••
F												••••••						
G												1		<u></u>		24		
Н												••••						
I		26														•		
K						1						•••••				•••••		
L				1							26				26	•		
M				24								•	•••••			•		*********
N	1																	
Р				•				26				1						***************************************
Q			1			25												
R																		26
S			~				26			25				26		1		
Т					26		********											•••••
V			25	1		·							26					
W																		
X																		
Y																		
_																		
unknown (?)																		
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sum of seq ²	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oomcaa³	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa⁴	D	.	٧	М	Ţ	Q	S	Р	D	S	L	Α	٧	S	L	G	E	R
rel. oomcaa ^s	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	100%	92%	%96	100%
pos occupied ⁶	2	1	2	:		:	1	1	1	:		3	1	••••••	····· :	3	••••••	

1/4

PCT/EP96/03647

Table 4D: Analysis of V kappa subgroup 4

														CDR	I			
amino acid'	19	70	21	22	23	24	25	56	27	A	8	ပ	0	ш	ட	28	29	30
А	26						1				1							
В																		
. С					33													
D											1		1			1		
E																		
F ·																		
G																		
Н																		
l			26								1							
K						33										2		3
L											2	_31						
· M																		
N				26												30	31	
Р							1								1			
Q									32									••••
R									1								1	
S							31	33		33				32	32		1	
T		26												1				
V											28	2						
W																		
X																		
Y					-								32					
-										,								
unknown (?)																		
not sequenced	7	7	7	7														
sum of seq²	26	26	26	26	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa,	26	26	26	26	33	33	31	33	32	33	28	31	32	32	32	30	31	3
mcaa ⁴	Α	T	1	N	С	Κ	S	S	Q	S	٧	L	Υ	S	S	N	N	ķ
rel. oomcaas	100%	100%	100%	100%	100%	100%	94%	100%	97%	100%	85%	94%	97%	97%	97%	91%	94%	č
pos occupied ⁶	1	1	1	1	1													

Table 4D: Analysis of V kappa subgroup 4

				•	T													
					<u> </u>						Fran	new	ork					
amino acid'	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Α				32						2								
В		<u> </u>												į				
· C																		
D																		<u></u>
E										: :	1	······································						
F ·														:				
G						······································	<u> </u>		<u></u>		32					<u> </u>		
Н						2								<u> </u>				
1										•		••••••••••••••••••••••••••••••••••••••						32
К									33						32			
L			33							•						29	33	
· M						•••••							••••••••••••••••••••••••••••••••••••••					1
N	33				•••••											••••••		•••••
Р					*********	••••••				31	••••		31	33				*******
Q					••••••	••••••	32	33			•••••	32				••••••		
R					******	•••••	1				•	1			1	•••••		
S							••••						2					
Ţ				1	•	•••••	•									••••		•••••••
V					***********											4		
W					33	•					•••••							********
Χ					**********			•••••										·····
Y		3 3			•••••	31			•••••					••••••				
-																		
unknown (?)			,	•		•		•••••									•••••	
not sequenced			•		••••							•••••		••••••				•••••
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa³	:	33	•	32	33			:			:	:	31	•••••••••••••••••••••••••••••••••••••••	32			
mcaa•	N	Υ	L	Α	W	Υ	Q	Q	K	Р	G	Q	Р	Р	K	L	L	1
rel. oomcaa ^s	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	97%	97%	94%	100%	97%	988%	100%	92%
pos occupied ⁶	1	1	1	2	1			1	1	2	:		:		2	2	••••••	
•	·		•••••••••••••••••••••••••••••••••••••••					6					 .		<u> </u>			

Table 4D: Analysis of V kappa subgroup 4

: 40. Allalysis of V					CDR	11	· · ·											
amino acid'	49	20	51	52	53	54	55	26	57	58	59	09	61	62	63	64	65	99
Α			30															
В)		···········						
. С																		
D												33						
E							32							 				
F ·				·										33				
G									33						1	33		33
Н																		
l					1													
K																		
L	on and																	
М																		
N					2													
Р				1							33		1					
Q																		•••••
R						33							32					
S			1	31	1			33							32		33	
T			2	1	29													
V							1			33								
W		33																
X																		
Y	33																	
-																	_	
unknown (?)									,									
not sequenced																		
sum of seq ²	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa ³	33	33	30	31	29	33	32	33	33	33	33	33	32	33	32	33	33	3 3
mcaa⁴	Υ	W	Α	S	Т	R	Ε	S	G	V	Р	D	R	F	S	G	S	G
rel. oomcaa'	100%	100%	91%	94%	988%	100%	97%	100%	100%	100%	100%	100%	97%	100%	97%	100%	100%	100%
pos occupied ⁶	1	1	3	3	4	1	2	1	1	1	1	1	2	1		1	1	1

リア

Table 4D: Analysis of V kappa subgroup 4

						Fra	me	work	: 111										• 5
a	mino acid'	29	89	69	20	71	72	73	74	75	9/	77	78	79	80	81	82	83	84
	Α														33				32
	В																		
	С													: :					
	D				32								•••••				33		
	E															33			
	F.					32													
	G		3 3		1														1
	Н																		
	l									33									
	K																		
	L							33					32						
	· M												1						
	N										2	1							
	Р																		
	Q													32					
	R													1					
	S	33									30	32							
	Ţ			33			33		33		1								
	V					1												33	
	W																		
	Χ																		
	Y																		
	-																		
ur	nknown (?)																		
not	t sequenced																		
St	um of seq'	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
	oomcaa ¹	33	33	33	32	32	33	33	33	33	30	32	32	32	33	33	33	33	32
	mcaa ⁴	S	G	Ţ	D	F	T	L	T	1	S	S	L	Q	Α	Ε	D	٧	Α
re	·l. oomcaa ^s	100%	100%	100%	92%	97%	100%	100%	100%	100%	91%	97%	97%	97%	100%	100%	100%	100%	97%
po	s occupied"	1	1	1	2	2	1	1 		1	3	2	2	2	1	1	1	1	2

Table 4D: Analysis of V kappa subgroup 4

_ 40.7 mary 313 07 V			<u> </u>								С	DR I	11				·	
amino acid'	82	98	87	88	83	90	91	92	93	94	95	۷	В	ပ	0	ш	ᄔ	96
А										1								
В																		
· C				33														
D								1	1									
Е																		
F			1			<u> </u>		1										
G									2	_								
Н			1		3													
1										2								
К	,												<u> </u>					
Ĺ						1		2		1	3							1
М																		
N									4	4								
Р										1	29	1						4
Q					30	32					1							1
R									1			1						2
S							2		23	2								1
T									2	22								
V	33																	
W																		2
X																		
Υ		33	31				31	29										1
_												13	15	15	15	15	15	3
unknown (?)																		
not sequenced												18	18	18	18	18	18	18
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	15	15	15	15	15	15	15
oomcaa ³	33		31	33	30	32	31	29		22	29	13	15	15	15	15	15	4
mcaa¹	V	Υ	Υ	С	Q	Q	Υ	Υ	S	T	Р	-	-	-	~	~	-	Р
rel. oomcaas	100%	100%	94%	100%	91%	97%	94%	9/088	70%	67%	9/088	87%	100%	100%	100%	100%	100%	27%
pos occupied ⁶	1	1	3	1		: :	:				3	3	1	1	1	1	1	8

Table 4D: Analysis of V kappa subgroup 4

						Fra	ame	work	: IV					
amino acid'	97	86	66	001	101	102	103	104	105	106	A	107	108	su
A														1
В												••••••••		
С												•••••		
D										•		••••••		1
E									14					1
F		15												
G			15	4	15									2
Н														
										14				1
K		•					14					13		1
L								4						2
M	1													
N												1		1
Р						1								1
Q		••••		11				1						2
R							1		1			1	11	1
S	2									1				4
Τ .	12	•••••				14								2
V								9						1
W							-	1						
Χ											·····			
Y		_												2
-											15			1
unknown (?)														
not sequenced	1			:				18	:		:		بـــــ	5
sum of seq ²		15	•••••••••••••••••••••••••••••••••••••••	15	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	15	15	15		15	•	11	
oomcaa,	12		15	••••	15	14	14	9	14	14	15	13	11	
mcaa ⁴	T	F	G	Ω	G	T	K	٧	Ε	1	-	Κ	R	
rel. oomcaaʻ	%08	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%	
pos occupied ^a	3	1	1	2	1	2	2	4		2	1	3	1	

WO 97/08320 PCT/EP96/03647

Table 5A: Analysis of V lambda subgroup 1

											Fran	new	ork l						
amino acid'		2	3	4	2	9	7	æ	б	0	Ξ	12	13	14	15	91	17	18	19
А							<u> </u>	İ			19		18	20					
В																		••••••	••••••••••••••••••••••••••••••••••••••
· C																			
D									· · · · · · · · · · · · · · · · · · ·										
E								(••••••••••••••••••••••••••••••••••••••									1	
F .						•		 !										•••••	•
G													22			42		•••••	
Н	2					<u>.</u>												•••••••	
l			1								1				•••••			••••••	
К																		14	
L			1	41							1							•••••	
М																			
N																			
Р							41	41						1	41				
Q	22		1			41											42		
R																		25	
S		39							41			41			1			1	
Т					41						•			19				1	
V		1	38								20		1	1					42
W																			
X																			
Y																			•••••
Z	16																	_	
-										41									
unknown (?)																			
not sequenced	2	2	1	1	1	1	1	1	1	1	1	1	1	1					
sum of seq²	40	40	41	41	41	41	41	41	41	41	41	41	41	41	42	42	42	42	42
oomcaa,	22	39	38	41	41	41	41	41	41	41	20	41	22	20	41	42	42	25	42
mcaa'	Q	S	٧	L	Ţ	Q	Р	Ρ	S	-	٧	S	G	Α	Р	G	Q	R	V
rel. oomcaa ^s	55%	%86	93%	100%	100%	100%	100%	100%	0001	100%	49%	100%	54%	49%	0/086	100%	100%	%09	100%
pos occupied ⁶	:	2			1					•••••		······ ·	:	:	;	•••••••••••••••••••••••••••••••••••••••		·······	••••

•																			
									<u>-</u> -		CD								
amino acid'	20	21	22	23	24	25	26	27	۵	ш	28	29	30	3	⋖	32	33	34	35
Α	2							1				2	2			1			
В																			
С				42															
D										3			3	1		3		1	
E													1						
F					1				1						1	1			
G						42	3	1			2	39	4	2					
Н					<u></u>									2		2		2	••••
1	1	41								1	37	<u> </u>						1	
K										1			1						••••
<u> </u>		1									1								•
М											1								
N								2	1	37			13	31	2		1	9	
Р																1			
Q																1			
R							1	1					5						
S	1		42		38		34	34	38				13	1	1	3		19	
T	38				3		4	3	2			1		1		7		2	
V							•••••				1				•••••	2	40		
W							,	••••••							••••				4
X													•••••				•••••		
Υ														4	1	20		7	
Z																			_
										<u></u>	<u>.</u>	***************************************			36	: : : : :			
unknown (?)		<u></u>					*******	: : :	<u></u>	<u>.</u>	<u>.</u>		•••••						
not sequenced	<u> </u>	<u> </u>							<u> </u>						1	1	1	1	_
sum of seq ²	:	:	:·····	:		:	:··	÷····	·:	:	·•••••••		:		•	:	:	:	:
oomcaa ₃	38	41	42	42	38	42	<u> </u>	į	·}	ţ	·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	•••••••	•	:	:	:	····
mcaa*	T	1	S	С	S	G	S	S	S	N	1	G	N	N	-	Υ	٧	S	١
rel. oomcaas	%06	%86	100%	100%	%06	100%	81%	81%	%06	%88	88%	93%	31%	74%	88%	49%	98%	46%	
pos occupied ⁶	:	:		•		:	:	ŧ	•	:	:	i	i	·	:	:	:	:	:

122

Table 5A: Analysis of V lambda subgroup 1

						Fran	newo	rk II											
amino acid'	36	37	38	39	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54
Α							4	40									1		
В																			
· C																			
D						1									13	10	8		
E										2					5			1	
F	1			4										1					
G						39						<u></u>			1				
Н	1	1	6	1								<u> </u>		1				1	
1												<u></u>	40		1				
К							1			35		<u> </u>			1	1		18	
L			1	31							41	40						1	
М							1						1					1	
N										1					3	28	30	2	
Р					42	1			42										
Q		39	34									<u></u>						15	
R		2		1		1	<u> </u>			4					7			2	4
S								1							9	2	3	1	
T							36	1							1				
V			1	5							1	2	1						
W																,			
Χ																			
Y	40						<u></u>	<u> </u>						40	1	1			
Z						<u> </u>													
-																			
unknown (?)										,									
not sequenced									<u> </u>										
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	4
oomcaa¹	40	39	34	31	42	39	36	40	42	35	41	40	40	40	13	28	30	18	4
mcaa'	Υ	Ω	Q	L	Р	G	T	Α	Р	Κ	L	L	ı	Υ	D	N	Ν	Κ	F
rel. oomcaa ^s	95%	93%	81%	74%	100%	93%	36%	95%	100%	33%	38%	95%	95%	95%	31%	%29	71%	43%	2
pos occupied ⁶				······		1	:	3	:	4	3	:		3		:	<u>:</u>		•

1 C 1/L1 90/03

Table 5A: Analysis of V lambda subgroup 1

	CD	RII																	
amino acid¹	55	26	4	8	ပ	۵	ш	27	58	59	09	61	62	63	64	65	99	A	8
А	1														5				
В														••••					
· C						Ī								•••••		********			
D											38			•••••					
E							••••						•			*******			
F									••••				38	•••••					
G								41	•••		2			•••••	36			•••••	
Н		••••									1					•••••			
ı									17				3	••••					
К																	38		
Ĺ		1								1			•••••						
М													••••••		•••••				
N																			
Р	38				•					38									
Q													*********						
R												42					4		
S	2	40								2			•••••	42		42			
T													•••••		1				
V									24				1						
W													•••••						
X													**********		,				
Υ									•••••				*********	••••••					
Z																			
-			41	41	41	41	42											42	42
unknown (?)																			
not sequenced	1	1						1	1	1	1							••••	
sum of seq ²	41	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	42
oomcaa ³	38	40	41	41	41	41	42	41	24	38	38	42	38	42	36	42	38	42	42
mcaa'	Р	S	-	-	-	-	-	G	٧	Р	D	R	F	S	G	S	Κ	-	-
rel. oomcaa ^s	93%	98%	100%	100%	100%	100%	100%	100%	29%	93%	93%	100%	%06	100%	%98	00001	%06	%00I	%001
pos occupied ⁶	3			1	1	1	**********		2	:	:	1		•••••••••••••••••••••••••••••••••••••••			2		

				Fr	ame	work	: 111												
amino acid'	29	89	69	70	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	85
Α		1	3		41			24						2				38	1
В			<u></u>																
· C																• • • • • • • • • • • • • • • • • • •			
D		1													1	41			37
E				,	(•				•		1	••••••	24		42		1
F .							•												
G		40					•	17	•••••	1	42				15	••••			
н											•		1			•••••			2
· I									41										1
κ							••••												•
L							42		••••			41							
М				•							••••								
N				•												1			
P							•				••••			2					•••••
Q									•				31						
R													8			•••••		*******	
S	42		1	42		24				20	•••••			20	•••••	••••••		1	
Т			38			18				21	•••••		••••••	17	•••••••••••••••••••••••••••••••••••••••			3	
V					1			1	1		•••••	1		1				******	
W													1		2				
X																			
Y													•••••						
Z													•••••						
-																			_
unknown (?)						*********								·····		•••••••••••••••••••••••••••••••••••••••		•••••	
not sequenced														-					
sum of seq ²	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
								•••••••••••••••••••••••••••••••••••••••		21	••••••	•••••	••••••			•••••••	••••••	••••••••••	•••••
mcaa'	S	:		S	Α	S	L	Α	1	T	G	L	Q	S	Ε	D	Ε	Α	
rel. oomcaas	100%	95%	%06	100%	%86	57%	100%	57%	98%	50%	100%	%86	74%	48%	57%	%86	100%	%06	88%
pos occupied ⁶	1	•	:							:	••••••	:		•••••••		•••••			5

PC1/EP96/0304/

Table 5A: Analysis of V lambda subgroup 1

				ram	ewo	rk I\	/					
amino acid'	66	100	101	102	103	104	105	106	⋖	107	108	sum
Α												285
В									**********			
С												84
D				***********								224
E		1		***************************************								81
F												87
G	36	31	36							26		559
Н				***************************************								25
1												188
К					30							141
L						25			34			344
М												5
N					1							176
Р											1	296
Ω					3				1		18	251
R					1					2		156
S		1								2		720
Т		3		36	1		36					359
V						11		36	1			282
W										1		92
X												
Y												202
Z												16
-												524
unknown (?)	·											
not sequenced	4	6	6	6	6	6	6	6	6	10	22	141
sum of seq ²	36	36	36	36	36	36	36	36	36	31	19	
oomcaa³	36	31	36	36	30	25	36	36	34	26	18	
mcaa'	G	G	G	T	K	L	T	٧	L	G	Q	
rel. oomcaa ⁵	100%	%98	100%	100%	83%	%69	100%	100%	94%	84%	95%	
pos occupied ⁶	1	4	1	1	5		1	1	3	4		

WG 97/06320

Table 5B: Analysis of V lambda subgroup 2

											Fra	mev	ork/	l					
amino acid'	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19
А			35					30			6		1	1					
В													Ī						
C													-		<u> </u>		<u></u>		
D							· · · · · · · · · · · · · · · · · · ·						-			1	<u> </u>		
Е						-													
F											-								
G													42			42		•	
Н	2	<u></u>	<u></u>	<u></u>													1		
1			1	<u>.</u>	<u></u>	<u>.</u>													28
K	 		<u> </u>	<u>.</u>															••••
L				40											3				1
M	 																		
N			<u></u>																
Р							42	6			,				40				
Q	22		4			41											42		
R	ļ							6	1										
S		41							40			42		42				43	•••••
T					42				1			*******							•••••
V		1	2								36								14
W																			
X																			
Y																	,		
Z	16																		
-										42									•••••
unknown (?)						1													•••••
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1							
sum of seq ²			42	:	:	:						42	43	43	43	43	43	43	43
oomcaa ³			35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa*	Q	S	Α	L	T	Q	Р	Α	S	-	V	S	G	S	Р	G	0	S	1
rel. oomcaa ^s	55%	98%	83%	100%	100%	%86	100%	71%	95%	100%	%98	100%	98%	%86	93%	98%	0/086	100%	92%
pos occupied ⁶	3	2	4	:			1	3		······		1		2		2	2	1	3

Table 5B: Analysis of V lambda subgroup 2

											CD	RI							•
amino acid'	20	21	22	23	24	25	56	27	۵	ш	28	29	30	31	⋖	32	33	34	35
А					3		1						1			1			
В																			
· C				42					1			<u> </u>		1					
D										39		1	4		5				
E															1				
F		1											1			4			
G						43		1				39	26						
н								1		·					1	1			
I		41			1						6								
K															4				•••
Ĺ		1														4			
М																			
N								1	3	4		1	4	3	28				
Р								1											
Q																			
R									1				2						
S			42		3		3	35	38				5	1	2	4	1	42	
Т	43				36		39	3				1		1					
V											37						41		
w w																			43
X																			
Y		,						1				1		37		29			
Z																			
-															1				
unknown (?)															1				
not sequenced			1	1													1	1	
sum of seq ²	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	42	42	43
oomcaa ³	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	43
mcaa'	T	١	S	С	T	G	T	S	S	D	٧	G	G	Υ	Ν	Υ	V	S	W
rel. oomcaas	100%	95%	100%	100%	84%	100%	91%	81%	9/88	91%	%98	91%	%09	%98	65%	%29	%86	100%	100%
pos occupied ⁶	1		1	1	4				:									1	٠ 1

FC1/EF90/03

Table 5B: Analysis of V lambda subgroup 2

						Fran	newo	ork II	<u> </u>										
amino acid'	36	37	38	39	40	4	42	43	44	45	46	47	48	49	50	21	52	53	54
А					1	4		40											
В																		·	
С															<u></u>		<u> </u>		
D				1		2									20	1	2	1	
E		<u></u>	<u></u>												20			2	
F.	2		<u>.</u>											7		1			
G						36									2	2		1	
Н			2	34														1	
1							1				1	9	43				1		
K							40			41							1	21	
L			1	1							38	6							
M												26		-			1		
N				2					•••••						1		8	12	
Р					41				43										
Q		41	39		••••••				•••••	2									
R		1					1										2		43
S					1									2			21	3	
T							1		•••••								7		
V		•••••			••••	1		3	•••••		4	2				39			
W									•••••										•••••
X																			•••••
Υ	41			5							••••			34				2	•••••
Z																			
- (2)																			•••••
unknown (?)		1	1									<u></u>							
not sequenced	===								-										
sum of seq ⁷	: :	:	:	:		:	·	******************	•••••			-		• • • • • • • • • • • • • • • • • • • •	*********	••••••••	•••••••	•••••••	• • • • • • • • •
oomcaa³	: :	:		:		•		:	:	41	:	:	;			39		•••••	
mcaa'	Y	U	u	Н	Р	G	K	Α		K	L	M		Υ	D	V	S	K	R
rel. oomcaa ^s	95%	95%	91%	79%	95%	84%	93%	93%	100%	95%	%88	%09	100%	79%	47%	91%	49%	49%	100%
pos occupied ⁶	2	2	3	5	3	4	•		1	2	:	;	:	3	:	:	:	8	1
								-	17	30									

Table 5B: Analysis of V lambda subgroup 2

	CD	R II																	
amino acid'	55	26	A	8	၁	0	ш	57	28	59	09	61	62	63	64	65	99	⋖	α.
А									_						2				
В																			••••
· C																1	<u> </u>		
D											17								
E																			
F													42						
G								43	1				•••••		41				
Н							Ĭ				2								
1									3			Ī							••••
K							····· ·										42		
L											1	<u> </u>	1						
M				-								<u> </u>	**********						••••
N											19								••••
Р	43									15									••••
Q																			••••
R									•••••			43					1		••••
S		43								28	2	•		43		42			••••
Ţ																			
V									39										
W																			
Χ															•				
Υ	 							••••			2								
Z															• • • • • • • • • • • • • • • • • • • •				
_			43	43	43	43	43											43	4
unknown (?)	#		<u> </u>								•••••				•				
not sequenced	1																		
sum of seq ²		43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	
oomcaa¹	43	43	43	43	43	43	43	43	39	28	19	43	42	43	41	42	42	43	
mcaa'	Р	S	_	_	-		-	G	V	S	Ν	R	F	S	G	S	К	-	
rel. oomcaa'	0,001		%001	100%	00%	%001	%001	100%)1%	65%	14%	%00 l	98%	100%)5%	%86	%86	100%	
pos occupied ^o	1		:	:	:	<u>.</u>	:	:	:	2		:			<u>.</u> 2		:	•••••	

				Fr	ame	worl	c III								···				
amino acid'	29	89	69	70	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	85
А		3		1	43									36				43	
В	.	<u></u>											-						
. С											<u> </u>	<u></u>	<u> </u>		<u> </u>		<u></u>		
D		1	2								<u> </u>		:		3	42	<u> </u>		39
E											1				38		43		
F																			
G		39		<u>.</u>							42				1				
Н	.			<u></u>															2
I				<u></u>					35										
Κ			1	<u>.</u>															
L							43	<u> </u>				43							
M																			
N			38												1	1			1
Р							••••							2					
Q			•••••										41						
R													2						
S	42			1		43				42									
T			1	41				43		1				2					
V									8					3					
W																			
X														<u></u>					
Y										,									
Z																			
-												<u> </u>		<u></u>					
unknown (?)			1									<u></u>		<u> </u>	<u></u>				1
not sequenced																			
sum of seq ²	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa,	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	39
mcaa•	S	G	N	T	Α	S	L	Ţ	1	S	G	L	Q	Α	Ε	D	Ε	Α	D
rel. oomcaa⁵	100%	91%	98%	95%	100%	100%	100%	100%	81%	%86	%86	100%	95%	84%	88%	98%	100%	100%	91%
pos occupied	1	3	4	3	1	1	1	1		••••••	2	1		:	4	2	1		3

Table 5B: Analysis of V lambda subgroup 2

										CDI	R III								
amino acid'	98	87	88	83	90	91	92	93	94	95	4	ω	ပ	٥	ш	u_	96	97	86
Α				2	1		21		1								1	1	
В																			•••••
· C			43	11															
D								3	1	2							1		•••••
Е							1	1											
F .		3				3				1		1					5		42
G							1	21	3	4				•			1		••••••
Н						1													••••
l							1	1		1	2						1	7	
K										3									•••••
L												1	1				6	5	
М																	1	1	••••••
N									.5	7	5						1		
Р								1				4							
Q								`		1	2								•••••
R							2		3			1					5		••••••
S		1		30	41			12	23	14	9		*********				1		
Т							16	4	4	3	21		•••••						·••••
V							1										11	28	•••••
w																	5	•••••	•••••
X																			•••••
Y	43	39				39			1	6							4		•••••••
Z																••••••••••••		•	••••••
-										1	3	36	42	43	43	43			
unknown (?)									2										••••••
not sequenced					1						1							1	1
sum of seq ²	43	43	43	43	42	43	43	43	43	43	42	43	43	43	43	43	43	42	42
oomcaa ³	:			30	:					••••••	•••••••	••••••				•••••			•••••
mcaa'	Υ	Y	С	S	S	Υ	Α	G	S	S	T	-	-	-	-	-	٧	٧	F
rel. oomcaa ^s	100%	91%	100%	70%	%86	91%	49%	49%	53%	33%	20%	84%	%86	100%	%001	%00I	76%	9/0/9	100%
pos occupied ⁶				3					:	:				·····÷	1	1	13		•••••

	_			F	ram	ew	ork	: IV						7
amino acid	, 8	£ 5	20 5	101	102	103	20	5 6	105	90 •	¥ ,	107	108	u Sum
А			1											280
В					******	•••••	-				•••••	<u>-</u>		
С		····	*********		•	•••••			••••					99
D						•••••	-					-		188
E					•••••	•••••			····	****				107
F						•••••								113
G	4	2 3	3 4	12		•••••					1	9		567
Н						*****					••••			48
1						•••••			1	•		····÷···		184
K		<u></u>				36				···				189
L		<u> </u>				••••	28	3		4	0			264
М												··· ·		29
N			<u> </u>			1								146
P		<u>.</u>												238
Q						1						1		250
R		1	<u> </u>	<u>.</u>		2					4	4		121
S			<u>.</u>	<u> </u>				1	1		2	2		831
T		7	7	4	1			4()					398
<u>V</u>	 	<u></u>	<u>.</u>				14		42	1				327
W	ļ	ļ	<u>.</u>	<u>.</u>			•••••					7		48
X	ļ		<u>.</u>	<u>.</u>			•••••							
Y	ļ	<u></u>		<u>.</u>		1							7	285
Z														16
-			<u></u>	<u></u>				*******					۶ [555
unknown (?)			<u></u>	<u> </u>		<u>.į</u>		*******					1	8
not sequenced	1	1	1	2	2 :	2	1	1	1	2	15	28	3	80
sum of seq ²	42	42	42	41	4	1	42	42	42	41	25	14	→	
oomcaa ³	42	33	42	41	36	6	28	40	42	40	19	14	ŀ	
mcaa⁴	G	G	G	T	K	ļ	L	T	٧	L	G	Q		
rel. oomcaas	%00	,3%	%00	%00	%		%	%	%00	%	,ç	%00		
nos os - 1 l					88%		67%	95%	ŏ	%86	76%	5		
pos occupied [®]	1	4	1	1	5	<u> </u>	2	3	1	2	3	1		

PCT/EP96/03647

Table 5C: Analysis of V lambda subgroup 3

	-										Fran	new	ork l						-
amino acid'	_	2	က	4	2	9	7	8	6	10	Ξ	12	13	14	15	16	17	18	19
Α					1		1	2	7					20	1				27
В																			
. C																			
D			5				10												
E			20										1			1			
F	1	1										1			1				
G		•	1										,			37			•
Н		•																	•
ı		•				**********			•										
К																	2		•••••
L				37		••••					4		1		9				•
М														••••••				•••••	
N		•••••																•	••••
Р		•••••					26	35	1						27				1
Q	4		4			38		•••••									36		•••••
R						•••••					•••••								
S	13	14			1	•	1		28			37		18					
Т					36	*******		1							••••			38	
V		********	8	1					2		34		36						10
w						••••••												••••	•
Х						•													
Υ		23																••••	•••••
Z																			•
-	20									38									
unknown (?)						•													
not sequenced						•		_										•••••	••••
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa ³																	36		•••••
mcaa¹	-	Υ		L		Q	_		S	-				Α	• • • • • • • • • • • • • • • • • • • •	•••••			Α
rel. oomcaas	53%	61%	53%	97%	95%	100%	9/089	92%	74%	100%	%68	97%	95%	53%	71%	92%	95%	00001	71%
pos occupied ^a			5			• • • • • • • • • • • • • • • • • • • •						2							

135

PC1/EP96/03

Table 5C: Analysis of V lambda subgroup 3

											С	DRI					-	. = -	Γ
amino acid'	20	21	22	23	24	25	26	27	۵	ш	28	29	30	31	V	32	33	34	35
А			1					5					1	1			21	3	
В											Ī								
- C		<u> </u>		38									:					5	
D							30	1					10			3	:	1	<u> </u>
E			<u>.</u>				2	2				1	3	6					
F.														1		2		·	
G					9	38		1				23	4						
Н							1									2		9	
1		38									9			1					**********
K								7					2	13		<u></u>			•
L							•••••				28								
М	1													1					
N			2				4	9			1		2			1		2	
Р			1						••••••			3							
Q					10									4					
R	25							2	*******			10	1				1		
S	9		1		19			10					11	2		8		14	
T	3		33					1				1	4						
V																1	15		
W																			38
X																			
Υ							1							8		20	1	4	
Z																			
-									38	38					37				
unknown (?)																			
not sequenced															1	1			
sum of seq'	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	38
oomcaa¹	25	38	33	38	19	38	30	10	38	38	28	23	11	13	37	20	21	14	38
mcaa'	R	1	T	С	S	G	D	S	-	-	L	G	S	Κ	-	Υ	Α	S	W
rel. oomcaa ^s	%99	100%	87%	100%	20%	100%	79%	26%	100%	100%	74%	61%	29%	35%	100%	54%	55%	37%	100%
pos occupied ⁶	4	1	5	1	3	1	5	9	1	1	3	5	:	:	1	7	:	7	1

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

					F	ram	ewo	rk II									<u> </u>		
amino acid'	36	37	38	39	40	41	45	43	44	45	46	47	48	49	22	51	52	53	54
Α								23								1		1	
В					<u></u>														•••••
С												<u> </u>							•••••
D															9	22	2	8	•••••
E			1												5	3		3	•••••
F	3													2			1		
G						36									9	2			••••
Н							1							1	3			1	•••••
			<u></u>		<u> </u>		<u></u>			1			28				1		
K				32	<u></u>							<u></u>			2	6	1	13	
L			2							6	3 3	1							
M											1		1						
N ·																1	19	9	
Р					36		1		38										
Q		37	35	1			36								9			1	
R		1		4		2									1	1		1	3
S				1	2			14				<u>i</u>					10	1	
T																2	4		<u> </u>
V								1		31	4	37	9						<u></u>
W																<u></u>	<u> </u>		ļ
Χ																	<u></u>		ļ
Υ	35				•••••									35		<u></u>	<u></u>		ļ
Z																<u> </u>	<u> </u>		<u> </u>
-								<u> </u>	<u> </u>								<u></u>	<u>.</u>	
unknown (?)									<u></u>	<u> </u>							<u> </u>		<u>.</u>
not sequenced	1															<u>. </u>	<u> </u>		<u> </u>
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	
oomcaa³	35	37	35	32	36	36	36	23	38	31	33	37	28	35	9	22	19	13	
mcaa ⁴	Υ	Q	Q	Κ	Р	G	Ω	Α	Р	٧	L	٧	1	Y	D	D	N	Κ	ļ
rel. oomcaas	92%	37%	92%	34%	35%	95%	35%	31%	00001	32%	37%	97%	74%	92%	24%	58%	20%	34%	
pos occupied		2	•	:	:	:			:		3	:	;	•	-	8	:	:	····

	CI	DR II						T											
amino acid'	55	56	A	മ	ں	۵	ш	57	58	59	09	61	62	63	64	65	99	<	<u>-</u>
Α		7				T				T									
В								<u> </u>		•	<u> </u>		·					<u> </u>	-
С						•			·		· † · · · · · ·				<u> </u>			<u> </u>	
D											9)	<u> </u>			· · · · · · · · · · · · · · · · · · ·	÷	<u> </u>	
E				<u>.</u>							27						-	1	
F	. 		<u></u>	<u>.</u>									38					······	
G			<u></u>	<u>.</u>				38							38	3			***************************************
Н	.			<u></u>				ŀ											··········
1	ļ			<u> </u>		<u> </u>	<u></u>	<u>.</u>	37										
K	!		<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u></u>										
L	ļ		<u></u>	<u> </u>	<u></u>	<u>.</u>		<u> </u>		<u></u>									
M	ļ			<u> </u>	<u></u>	<u> </u>		<u> </u>											
N		<u></u>		<u>.</u>		<u></u>	<u></u>	<u></u>									21		
Р	37	1		·		·			ļ	36	,								
Q	ļ	ļ		<u></u>		ļ		<u></u>	ļ										
R	.			<u></u>		<u>.</u>						38							
S	1	36		<u></u>				<u></u>		1				38		38	12		
T	ļ													********			5		
V																			
W			••••••				<i>,</i>							•••••	•••••				
X		•••••	•••••		•••••	•	•••••								• • • • • • • • • • • • • • • • • • • •				
Υ			••••••		••••		•••••	•••••											
Z																			
			38	38	38	38	38											38	38
unknown (?)		••••••					•				1								
not sequenced									1		1								
sum of seq ²	38	38	38	38	38	38	38	38	37	37	37	38	38	38	38	38	38	38	38
oomcaa³			38	38	38	38	38	•	37	•	27	38	38	38	38	38	21	38	38
mcaa•	Р	S	-	-	-	-	-	G		Р	Ε	R	F	S	G	S	N	-	-
rel. oomcaas	97%	95%	100%	100%	100%	100%	100%	100%	100%	92%	73%	100%	100%	100%	100%	100%	55%	100%	100%
pos occupied ⁶	2	3	1	1	1	1	1	1	1	2	2	1	1	1	1	1	3	1	1

Table 5C: Analysis of V lambda subgroup 3

•				Fra	mev	vork	111												
amino acid'	29	89	69	70	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	.85
А				1	36	1		1				11	1	34				38	
В																			
· C	,																		
D																38			37
E													10		14		38		1
F																			
G		37				•					28				10				
Н			1																
1						1		1	37	1					1			<u></u>	
К			1									<u> </u>							
L							38							<u></u>	2				
М															10				
N			28							1									
Р																			
Q		1											25						
R										1	10		1						
S	37		2			11				23				1					
Т	1		6	37		25		36		12		13		2					
V					2				1			14	1	1	1				
W																			
X																			
Υ																			
Z																			
_																			
unknown (?)																			
not sequenced																			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa ³	37	37	28	37	36	25	38	36	37	23	28	14	25	34	14	38	38	38	37
mcaa'	S	G	N	Т	Α	Ţ	L	Ţ	1	S	G	٧	Q	Α	Ε	D	E	Α	D
rel. oomcaa ^s	97%	92%	74%	97%	95%	%99	100%	95%	92%	61%	74%	37%	%99	%68	37%	100%	100%	100%	97%
pos occupied ⁶		2													6	1	1	1	

PC1/EP96/03

Table 5C: Analysis of V lambda subgroup 3

		CDR III CDR															T		
amino acid'	98	87	88	89	90	91	92	93	94				ر		<u>ш</u>	ш.	96	7	
A	T				-	-						 -				_	-		T
В				•				·		·		-	<u>.</u>		<u>.</u>		7		<u> </u>
· C	· -		38	 	 	÷	<u> </u>	·	·		·		-				<u> </u>	<u> </u>	<u> </u>
D	1				 	<u> </u>	32	1	1		-		. 		<u>. i</u>		<u> </u>	<u> </u>	<u> </u>
Е	1		<u> </u>	1	·	<u> </u>							. <u></u>		<u>.</u>		2		·
F	-	2				<u> </u>		2							<u>.</u>			<u></u>	35
G			<u> </u>	·					·!·····	1.4	2					<u></u>	2	1	••••••
Н	1	<u> </u>	·····				ļ	<u></u>		17		::		!	<u> </u>		3	1	
1	 					<u> </u>	ļ	<u></u>			<u></u>	12	!		<u></u>				
K	1		<u> </u>			<u>.</u>		<u></u>		<u></u>	1		<u></u>	<u> </u>	<u> </u>		<u></u>	4	<u></u>
L	·		<u> </u>	1		<u> </u>		1	<u></u>	1	<u>.</u>	!	1		<u> </u>	<u></u>	A	2	<u></u>
М	1					!		<u></u>	1	<u>.</u>	<u> </u>	·····			<u> </u>		4 1	······	
N	1	<u> </u>		10		<u></u>	2	1	2		10	1	<u></u>		<u></u>	<u></u>		1	
Р			•••••						1				3		<u> </u>		1		
Q			•••••	25			••••••			1	1		, J				1		
R	ļ			•••••	••••••	10		1	2			2			<u></u>				
S	ļ			1	14					13		••••••			<u></u>	1			
Т	 					1		3			2	•••••			<u> </u>				
V					11	••••••						•			<u>:</u> :		18	20	
W						23									<u> </u>		1		
X									••••••										
Y	38	36				•	1		1		1	3	1				3		
Z									••••••	•••••				••••••	••••••		5		
_											10	15	31	36	37	36		1	_
unknown (?)								•••••	•••••		•••••								
not sequenced							1	1	1	1	2	1	1	1	1	1	1	1	3
sum of seq ²	38	38	38	38	38	38	37	37	37	37	36	37	37					37	:
oomcaa¹	38	36	38	25	14	23	32	28	26	14	10	15	31	36	37	36	18	28	35
mcaa⁴	Υ			:	:	W		S	S	G	N	-	-	-	-	_	······	20 V	
rel. oomcaa ^s	100%	95%	100%	%99	37%	61%	%98	26%	70%	·····	28%	41%	84%	92%	0000	97%	49%	, %92	- %00
pos occupied ⁶	1		1	5	3	5	:	:	:	6	9	8		:		2	9	6	1

Table 5C: Analysis of V lambda subgroup 3

			ſ	ram	ewo	rk IV	′					
amino acidi	66	100	101	102	103	104	105	106	۷	107	108	sum
Α												26
В												
С		•••••					********			1		82
D								·····	••••••			225
E					2							145
F		•••••										90
G	35	31	35	••••••	••••••		••••••			24		46
Н							••••••					3
1							••••••		•••••••••••••••••••••••••••••••••••••••			160
K					30							110
L						28			33			233
М												17
N							***************************************					120
Р							•••••		1			249
Q											7	27
R					2							154
S										2		50
Т		4		35			35					34
V						7		35				30
W												6
X												
Y												21
Z												
-												60
unknown (?)												
not sequenced	3	3	3	_3	4	3	3	3	4	11	28	8
sum of seq ²	35	35	35	35	34	35	35	35	34	27	7	
oomcaa ³	35	31	35	35	30	28	35	35	33	24	7	
mcaa*	G	G	G	T	Κ	L	T	٧	L	G	Q	
rel. oomcaa'	100%	89%	100%	100%	88%	80%	100%	0001	97%	%68	%001	
pos occupied ⁶	1		:	:	;	2		1		<u> </u>	1	

141

														F	rame	ewo	rk I			
amino acid'		7	က	4	2	9	7	8	6	10	Ξ	12	13	14	15	16	.17	18	19	20
Α					1	14			60							24	1			
В												:								<u> </u>
. С										:		:						:		
D		<u>.</u>									<u> </u>	<u></u>						<u></u>	<u> </u>	
E	1	<u></u>	<u> </u>		2	1		2		64								<u> </u>		
F																		<u> </u>		
G								58	1						64	·}	•••••••• • •	}		······································
Н			2													}		············		
ı		2																• • • • • • • • • • • • • • • • • • •		•••••
K		2									•••••	57	64						60	••••
L			2	59							3		••••••							••••
M		1														*******				
N												6		•••••		•••••				•••••
Р														63		••••	••••••			•••••
Q	53		56		2	45							•	********		••••	••••			••••••
R												1		********		•			3	••••••
S							60		3				•	1		40	63			••••••
Т														••••••		•	•		1	••••••
V	2	55		1	5 5						61		********	•••••••		•	******	64		64
W														•••••••	•		********		•••••	•••••
X														•						•••••
Υ														*****						•••••
Z	3													********						
_																				 -
unknown (?)																				••••••
not sequenced	11	10	10	10	10	10	10	10	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq ⁷	59	60	60	60	60	60	60	60	64	64	64	64	64	64	64	64	64	64	64	64
oomcaa³	53	55	56	59	55	45	60	58	60	64	61	57	64	63	64	40	63	64	60	64
mcaa¹	Q		_ :	L	٧	Ω	S	G	Α	E	٧	Κ	K	Р	G	S	S	٧	Κ	٧
rel. oomcaa ^s	%06	92%	93%	%86	92%	75%	0001	97%	94%	100%	95%	%68	100%	%86	100%	63%	%86	100%	94%	100%
pos occupied ⁶	4	4	3	2	4	3		2	:	•	:	3	:		1	2	2	1	3	1

Table 6A: Analysis of V heavy chain subgroup 1A

									-					CD	RI					-
amino acid¹	21	22	23	24	25	56	27	28	53	30	31	⋖	ω	32	33	34	35	36	37	38
Α				62				1							41					
В								<u> </u>	<u> </u>	<u></u>	<u></u>							<u></u>		••••
. С		63							<u> </u>											•••••
D							1													
E																				
F .									69					3		3				•••••
G				1		69	41		1		-				23					
Н										1				1			1			
1								1								61	1		1	
K			63							1	1									
L															1	2				
M																4				
N										2	5						4			
Р															1					
Q																				
R		1	1							1	1									7
S	6 3				68		1			40	60			2			60			
T	1			2				68		25	3				3		4			
V															1				6 9	
W															·			70		
Χ																				
Υ							27							64						
Z												,,,,,								
_												70	70							
unknown (?)																				
not sequence	d 6	6	6	5	2	1														
sum of seq²	64	64	64	65	68	69	70	70	70	70	70	70	70	70	70	70	70	70	70	-
oomcaa ³	63	63	63	62	68	69	41	68	69	40	60	70	70	64	41	61	60	70	69	
mcaa¹	S	С	Κ	Α	S	G	G	Т	F	S	S	-	-	Υ	Α	١	S	W	٧	
rel. oomcaa⁵	%8	%8	%81	15%	%00	%00	%6	17%	%61	.7%	96%	100%	%00	1%	%6	20%	%9	100%	%66	
pos occupied			1	:					-	-			1				<u> </u>	1		•

PCT/EP96/03647 Table 6A: Analysis of V heavy chain subgroup 1A

	_				F	ran	iew	ork	11				-										
amino acid		33	40	41	42	42	? ?	† !	45	46	47	48	49	50	3 [<u> </u>	25	<	x	ပ	53	54	
Α			70										7				T	5	-	-	-		_
В									•••••		•••••			· 				-	····		•••••	<u> </u>	···
. C		Ī	Ī	•	•••••	<u> </u>			*****			••••••	<u> </u>								•••••	<u> </u>	
D				*******	••••••				••••	1		•••••	<u> </u>							<u>-</u>	•••••	<u></u>	
E					••••••				(69	•••••	•••••	<u></u>	<u> </u>							••••		·
F					*******							••••••				2				<u>i</u>	7	39	 `
G				1	68		6	9	****	••••	1		69	39	··••••••			1			<u>.</u>		••••••
Н				1	******	 !									<u></u>							••••••	6
ı						•••••					•		•		61	5 3	Ω				34		<u> </u>
K					•••••						·										34:	••••••	<u></u>
L					1			6	8		····÷	1		1	<u></u>					<u></u>			<u> </u>
M						•••••••			••••			67.		···········	<u></u>		2				····÷	4	<u></u>
N						••••••					····			•••••		······	: } !				4	22	
Р			(68		••••••			1		···-						44	1			3	22	•••••
Q	69	9				69			-									T			1	1	1
R		1			1	******	1		•••••••			·····		4	••••••			·			1	1	!
S						1					1	1		••••		22			-	<u> </u>	<u></u>		····
T						••••••					···÷···				1	· · · · · · · · · · · · · · · · · · ·	÷		·				1
V					<u>-</u>	•••••		·······		•	<u>+</u>	1			<u>:</u> 2	·····	16	÷	<u></u>	··÷·····	1	3	
W						•••••	••••••	1		6	7			26	2		10	·	<u>.</u>	<u> </u>	1		
Χ					·····									20	•			<u></u>	-	-	<u>.</u>		•••••
Υ						•••••	•••••••	•••••		-	1				•••••	••••••		<u></u>	<u></u>	2(<u></u>		••••
Z							•				•••••					••••••	•••••		ļ		J	.	
												Ť						70	70	<u>: </u>	÷	$\stackrel{+}{=}$	=
unknown (?)						•	•••••				-	-						70	/(<u> </u>	<u>.</u>	<u>-</u>	
not sequenced							•			ļ	· -		<u>†</u>				••••••		<u></u>	<u></u>	-		
sum of seq?	70	70) 7(7	0 7	70	70	70	70	70	70	n. 7	'O 7	70	70	70	70	70	70	7.0		_	_
oomcaa¹	69	70	68	3 6	8 6	39	69	68	69	67	6	7 F	9 7	≀Q	65 65	γΩ , O	10	 	70	70	/ /	U	/0
mcaa ⁴	Q	Α	Р	G	i (2	G	L	Ε	W	M) (G	1	J0	44 P	-	/U -	34 ا	- 3 F		68 G
rel. oomcaa ⁵	%66	100%	97%	970%	2 2	33%	%66	%26	%66	%96	36%	2000	0/25.	0/000	33%	4%	63%	0001	%00I	49%	<u></u>		97%
pos occupied ^a	2	1	:			2	2	3	2	رب 4		, <u></u>	າ: ວ	4		<u>ئ</u>	<u>ဖ</u> 5						
						******	*******	••••••		144		i,	i				<u>.</u>	1		10	<u>:</u>	6	3

Table 6A: Analysis of V heavy chain subgroup 1A

	С	DR																		
amino acid	26	57	28	59	09	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75
Α	1	34			69											43				
В																				
· C																				•••••
D	15		1							2							70			
E									1									33		•••••
F				1				48				3		4						••••
G	1						3			67										
Н			1																	
l	4												1	44				1		
K	1		2	1			47		1		1							8		
L	1	1						22				2		1		3				
M														21						
N	9		59				18													
P	1	7												•••••						
Q	1	1				70			64											
R	2					••••	2		1		69			•••••				1		
S '		1	2		1		••••								5				70	••••
T	34	26	4		•		•••••		3		••••		66		65	24		27		(
V							••••••			1		65								••••
W													•••••			•				
X	-								•									••••		
Υ			1	68																
Z							•••••									•		:		
																				_
unknown (?)	1		<u> </u>				••••									•••••		••••		
not sequenced	1	<u></u>	†	<u>+</u>			•••••					••••						••••		
sum of seq ²	-	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	_
oomcaa,		:	Ť		·····		•••••••	·····		:	69								:	÷
mcaa'		÷	÷	.	÷•••••••	Q	·····	÷	·····	÷	R	V	T	1	T	A	·····	E	÷	
meaa		<u> </u>	·····	ļ						<u></u>	<u> </u>								<u></u>	<u></u>
rel. oomcaas	49%	49%	84%	97%	%66	100%	67%	%69	91%	%96	%66	93%	94%	63%	93%	61%	100%	47%	100%	
pos occupied	11	6	7	3	2	:	:	:	:	:	:	:	:	:	:	:	•	•	1	

			_			_		_	_		_		_							
				Į.	Fram	iewo	ork I	11												
amino acid'	92	77	78	79	80	81	82	∢	8	ပ	83	84	85	98	87	88	89	90	91	92
Α		<u></u>	64	<u>.</u>		1						3			1	70				
В		<u> </u>	<u> </u>	<u> </u>	<u> </u>		-													
. с		<u> </u>	<u>:</u>																	70
D	.	<u></u>	<u></u>			2							26	70						
E		<u></u>				64							44							
F		<u></u>	<u></u>			•••••											1	1	2	
G		<u></u>	<u></u>						1			:								
Н			<u>.</u>	1				1												
1		1					3	1	1								2			
K											3									
L			<u> </u>		3		63	••••		70							2			
М					67			•••••							1		1			
N	4							1	16											
Р								*******												••••
Q				1		3														
R	3							23	1		62									
S	62		1					41	49			67			1					
Т	.1	69	2					3	2		4				67					•••••
V			3				4				1						64			••••
W																				•••••
X																				
Υ				68														69	68	
Z																				
-																				
unknown (?)										<u></u>										
not sequenced												_								
sum of seq ²		:					:	••••••	····· ·	·······	••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••	••••••••••••		••••••	•	••••••	••••••
oomcaa,			64			•	••••••	•••••••	••••••	••••••••••	••••••	••••••••	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••		•••••	••••••	•••••••	•••••
mcaa'	S		Α			Е	L	S	S	L	R	S			T	Α	V	Υ	Υ	С
rel. oomcaa ^s	89%	%66	91%	97%	%96	91%	%06	29%	20%	100%	%68	%96	63%	100%	%96	100%	91%	%66	92%	100%
pos occupied ^a	4	2	4	3	2	4	3	6	6	1	4	2	2	1	4	1	5	2	2	1

Table 6A: Analysis of V heavy chain subgroup 1A

										CDF	R III									
amino acid'	93	94	95	96	97	98	66	100	۷	8	ပ	0	ш	ட	9	I	_	_	¥	101
А	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
В		<u> </u>	<u> </u>													<u></u>	<u></u>			
· c					1	1	16	2		1	1	7	2	1			<u></u>			
D		<u> </u>	16	5	3		3	5	4	3	4			1	1	14	<u> </u>			59
E			9				2			1			1			1				
F .					1	3		2		3	1	2		2	1				28	2
G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
Н										1	1	1		1		į	<u> </u>			
1				2	5	2	2		2	2	1	1			1		<u></u>			
Κ		5			2	1			1							<u> </u>	<u> </u>			
L		1	4	4	2	5	2	1	1		4	2		1		<u> </u>	1		1	
М			1		2		1		1			1	1				<u> </u>		10	
N				2	2	1	2	1	2	2	2	2			1	1	4			
Р				20	3		1	3	2	2	2	4	2	1	4	1		1		1
Q				1			1		1	1	1									
R		55	1	5	7	8	1	4		2		1		16			<u></u>			
S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
Т	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
W				1	1	3	1	1			2		3				1	5	1	
X																				
Y		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
Z																				
_				1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
unknown (?)									<u>.</u>	ļ	<u></u>	<u> </u>	1		1	1		2	3	<u> </u>
not sequenced			2	2	2	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5
sum of seq ²	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
oomcaa ³	66	55	16	20	20	20	16	21	20	15	16	23	26	26	31	34	46	39	28	59
mcaa*	Α	R	Α	Р	G	Υ	С	S	G	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	34%	79%	24%	29%	29%	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
pos occupied ⁶				:	:	:	:	:	:	•	:	:	:	:	:	•	•		Ī	

142

PC1/EF90/030

Table 6A: Analysis of V heavy chain subgroup 1A

					Fr	ame	wor	k IV]
amino acid'	102	103	104	105				109	110	111	112	113	J Sur
А													67
В							<u> </u>	Ī		:			
С								1			•		16
D		1	1							<u> </u>			30
E	1	1					<u> </u>		•	<u> </u>			29
F	2												22
G			58		59	1	1	**********					92
Н				1				<u> </u>					1.
	3								4				28
Κ		<u>.</u>		3		1							32
L	3			1			40	1					386
М	1						3		<u> </u>				189
N				1			<u> </u>		<u> </u>	<u></u>			176
Р	5			•••••				<u>.</u>			<u></u>	1	238
Q				52							ļ		494
R				1									35
<u>S</u>				•••••							53	51	972
Ţ				••••••		54	11	1	51		1		736
V	15		1				1	54		54		1	699
W		59		1									243
Χ		•••••		•••••	•••••					•••••			
Y	34		1	•••••		•••••							542
Z													3
-	1			•••••									578
unknown (?)				•••••									. 8
not sequenced		9			:			14					406
Ť	65				:		:	56	55	54	54	53	
oomcaa,		· · · · · · · · · · · · · · · · · · ·	58	••••••	•••••••••••••••••••••••••••••••••••••••	••••••	· -	•••••••	51	••••••		51	
mcaa'	Υ	W	G	Q	G	Ţ	L	٧	T	V	S	S	
rel. oomcaa ^s	52%	92%	95%	87%	100%	%96	71%	%96	93%	100%	98%	%96	
pos occupied ⁶	9	3	4	ī		3	;	:	:	;	2	3	

148

Table 6B: Analysis of V heavy chain subgroup 1B

														Fr	ame	wor	kΙ			
amino acid'		2	က	4	വ	9	7	∞	6	9	Ξ	12	13	14	15	16	17	18	19	20
Α									32							34				
В																				
. C																				
D																				
E		1			5	1				35										
F																				
G								27				••••••	••••••	•••••	35					
Н			1											1						
l						*******														
K		3	1			*********						34	33	•••••					33	
L			3	26	1															
М				1	1															
N						•••••														
Р						••••••			1					33			1			
Q	21		20			26							•••••							
R	1											1	2	•••••						
S							27							•••••		1	34			
Ţ									1				•••••	1					2	
V	3	21			20						35							35	******	3
W							•						••••••		-				•••••	
Χ													•••••							
Υ																				
Z									_										•••••	
-																				
unknown (?)		,																		
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	5	
sum of seq²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	3
oomcaa ³	21	21	20	26	20	26	27	27	32	35	35	34	33	33	35	34	34	35	33	3
mcaa⁴	Q	٧	Q	L	٧	Q	S	G	Α	Ε	٧	Κ	K	Ρ	G	Α	S	٧	K	١
rel. oomcaas	84%	34%	%08	96%	74%	%9 6	%001	0000)4%	%001	%001	97%	34%)4%	%00 ₁	37%	%2(100%	94%	è
pos occupied ⁶	:		:					:												:

149

O 9//00320 FC1/EF90/03

Table 6B: Analysis of V heavy chain subgroup 1B

														CI	DRI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	⋖	8	32	33	34	35	36	37	38
Α				30							2				6					
В			<u> </u>																	
. C		35										<u> </u>								
D			<u> </u>								1			·	5		1			1
E			3								1									
F							2		39			: :		2	2	*********		: : :		
G				1		40				1.	14		(•	1	••••	••••			1
Н								······································						3	1		34	••••••••••••••••••••••••••••••••••••••		
l					•••••••			1		1				•		9	•••••			*******
К			28		••••									•••••		•	•••••			
L					••••••			••••••••••••••••••••••••••••••••••••••	1		1			••••		5	•		2	
M.					•••••									••••		23	******			
N					•		1			1	3	•				1	3			
Р															1					•••••
Q			2				•••••		,		1			•••••	1		1			1
R			2					2						1						37
S	35				40			5		2	15	•••		2	1	••••••				
T				3				32		34				*******	1					********
V				1	••••••		1			1	1			*******	2	2			38	*******
W															•••••			40		
×					•															
Υ					•••••		36				1		••••••	32	19		1			
Z														•••••						
-					_							40	·40							
unknown (?)							***************************************			•••••			•••••	•••••	*******					
not sequenced	5	5	5	5									••••••	•••••			••••••			·•••••
sum of seq ²	35	35	35	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa ³			28	;				:		······	••••••	•••••••	••••••	•••••••		····÷	•••••••		·····÷	
mcaa*	S	С	Κ				Υ	******				-	-	•••••••	•••••••••••••••••••••••••••••••••••••••	М	••••••		••••••	R
rel. oomcaa ^s	100%	100%	90%	%98	100%	100%	%06	%08	%86	85%	38%	100%	100%	90%	48%	28%	35%	100%	95%	93%
pos occupied ⁶	1	1	4	4	1			•	:	:			:			:	:	:		<u></u> 4

Table 6B: Analysis of V heavy chain subgroup 1B

				Fra	me	work	c II													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	52	A	മ	U	23	54	55
Α		39				1					1				7			1		
В																				
. С									<u></u>											•••••
D									<u></u>				,	1					1	
E				1				39										1	1	
F .							. 2						1					1		
G				39		28					39	1			1			9	1	39
Н																		2		
l										3			34							
К					1														1	
L			1				37						1							
М										37		2	4							
N			,											35				20	12	1
Р		1	34			••••	1								31					
Q	39				39			1												
R	1					10						4						3	1	
S			1			1								2				1	20	
Т			4											1					3	
V			<u> </u>											1	1	•••••				
W			<u> </u>				······		40			33								
X			<u> </u>		<u> </u>							•			•					
Y				<u> </u>										·				2		
Z		••••••••••••••••••••••••••••••••••••••	†	((<u> </u>		•											
-																40	40			
unknown (?)			<u> </u>		<u></u>	:														
not sequenced	1																			
sum of seq ⁷	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa ³	÷	:	÷	!		·····	· :	· ! ······		.	39		:		:	:	:			·····
mcaa'	Q	Α	Р	G	Ω	G	L	Е	W	М	G	W	ı	N	Р	-	-	Ν	S	G
rel. oomcaa ^s	9,	%	Q.	<u>,</u>	%	9,	%	%	%(%	%	%	%	%	%	%(%(%	%	%
ici. UUIIICad	980	086	850	086	980	700	930	086	100	930	98%	830	820	88	780	100	100	200	200	98%
pos occupied	2	2	4	2	2	4	3	2	1	2	2	4	4	5	4	1	1	9	8	2

		CDR	П									Τ		·		·				
amino acid'	99	57	58	59	09	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75
А	1	2			27	2				1		1				2				12
В																		<u></u>		
С		<u> </u>							:	<u> </u>				·······					<u> </u>	
D	1								-	4							35	<u> </u>	<u> </u>	
Ε	2		2			1				1						1			Ī	
F .		<u></u>		4	<u></u>			39						3			••••••••••••••••••••••••••••••••••••••	•••••		
G	15		6		1					34							•	*******		
Н			1	1					····	<u></u>	 	<u></u>	 !				1			
I		1	1	-		•	******			<u></u>		1	1	13					<u></u>	22
· K	2	2	8	<u> </u>			36		1				······································			1				
L				<u> </u>		1	••••••	1						1			•			
M							********	•••••					••••••	23				1		1
N	17		18				1						•				4			
Р																			3	
Ω						36			37							,				
R			2				1		2		37			•••••	•••••	34		1		
S	1			2	11		1							••••	•	1			37	
Т		35	2		1		1						39	•••••	40	1		38		5
V	1											38		••••••						
W											3			********			••••••		•	
X																				
Y				33									•••••					•••••	••••••	
Z											••••••									
_																				_
unknown (?)	<u>_</u>	<u></u>													•••••					
not sequenced															••••••		•••••	•••••••••••••••••••••••••••••••••••••••		
sum of seq'	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa¹		•		:			:	:	:		·····			••••••	• • • • • • • • • • • • • • • • • • • •	34	******			******
mcaa'	Ν	T	Ν	Υ		Q	K	F		·····	•••••••	٧	•••••••••••••••••••••••••••••••••••••••	М	••••••••	R	•••••	·····÷	S	1
rel. oomcaa⁵	43%	88%	45%	83%	%89	%06	%06	98%	93%	85%	93%	95%	98%	58%	100%	85%	%88)2%	93%	55%
pos occupied ^a	•	········· ·	:		4		:	2	:	· · · · · · · · · · · · · · · · · · ·	:	3	•	:		:		:	<u>ნ</u> 2	:

Table 6B: Analysis of V heavy chain subgroup 1B

•				F	ram	ewo	rk II	ı	-											
amino acid'	9/	77	78	79	80	81	82	⋖	മ	ပ	83	84	85	98	87	88	83	99	91	92
А			35									1	2			40				
В																			<u></u>	
· C																				37
D	1					4							19	40			1			
E						35							19							
F			1									2							2	1
G						1		1	2											
Н																				
1		1															1			
К											1									
L					2		39			39							2			1
М					37		1							~-			2			
N	7							1	2											
Р												1							1	
Q																				
R	4							2	16		37									
S	27			1				35	20		1	36						1	1	
T	1	39						1			1				40					
V			4		1					1							33			
W																				
X																				
Υ				39														38	35	
Z																				
_																				
unknown (?)			<u> </u>																	
not sequenced																	1	1	1	1
sum of seq ²	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	39	39	39	39
oomcaa³	27	39	35	39	37	35	39	35	20	39	37	36	19	40	40	40	33	38	35	37
mcaa ⁴	S	T	Α	Υ	М	Ε	L	S	S	L	R	S	D	D	T	Α	٧	Υ	Y	С
rel. oomcaa ^s	%89	%86	88%	%86	93%	%88	%86	9/88	20%	%86	93%	%06	48%	100%	100%	100%	85%	9/0/6	%06	95%
pos occupied ⁶	:	:	:	:	3	:	:	:	:	•	;	4	:	;	1	1	5	:		3

Table 6B: Analysis of V heavy chain subgroup 1B

										CD	R III									
amino acid'	93	94	95	96	97	86	66	100	٧	89	၁	۵	ш	щ	9	I	_	_	×	101
А	37	1	6		1	1		2	3	1	3		1					5		
В											<u> </u>	: : : :					<u></u>	:	÷	
· C		1	:			3	·			2	1									
D			7		5	2	3	1	5	4		1		2	2	1	2			27
Ε			2		1			1	1		2		1		1		<u> </u>	<u></u>		
F		<u></u>	<u></u>	1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н		<u> </u>	1				2			1	1									
1		1		1	1	3	1	1	1	1	1	1							1	
K		1	<u> </u>		1				1	1		1		1			1			
Ĺ			2	4	4	4	3			1	2	1	1	2		1			2	
M			<u></u>	2		1	1								1				4	
N		<u> </u>	<u></u>		1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2	•••••			1			
Q					1							1	2	1						
R	1	31		5	1	1	3					1		1				1		
S		1	3	3	1	4	3	6	3	2	2	1		1						
Т		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1		7	1	1		1	3	1	2		1			1	2	1			1
W			1		1		2	2		1	1					1		4		
X																				
Y				5	5	4	2	3		4	3	3	2	1	2	· 5	6	2		
Z																				
-				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)		<i>:</i>							<u></u>	<u></u>	<u></u>								3	
not sequenced	1	1	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa³	•••••••	31	••••••••	······	· ··· ···•		••••••	8	10	11	14	20	23	25	25	25	23	18	15	27
· mcaa•	Α	R	D	G	D	G	G	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	26%	64%	%69	%69	%69	64%	50%	42%	75%
pos occupied ⁶									12		14									

Table 6B: Analysis of V heavy chain subgroup 1B

103	27	2 23	26	107	12 2		3	1	112	113	340 79 179 159 130 450 5 111 194 204 138
	27	2				******	3				79 179 159 130 450 5 111 190 200 144 133
	27	2				******	3				17 ⁹ 15 ¹ 13 ⁰ 45 ⁰ 5 11 ¹ 19 ⁰ 20 ⁰ 14 ¹
	27	2				******	3				175 136 456 5 111 196 206 146 133
	27	2				******	3				155 136 456 5 111 196 206 144 138
	27	2				******	3				130 450 5 111 194 204 144 138
	27	2				******	3				450 5 111 194 204 144 138
	27	2				******	3				5 11: 19: 20: 14: 13:
		1				******	3	1			11: 19: 20: 14: 13:
		1				******	3	1			194 204 144 138
		1				******		1			204 144 138
						******		1			144
					2						138
											120
		23								1	120
											253
					1						24
						<u> </u>	1		18	18	43:
				21	6		16		1		390
						21	<u> </u>	18			34:
29											15
		<u></u>									29
		<u> </u>									
	<u></u>										39
11	13	13	14	19	19	19	20	20	21	22	45
29	27	27	26	21	21	21	20	20	19	18	
29	27	23	26	21	12	21	16	18	18	18	
W	G	O	G	T	L	٧	T	٧	S	S	
	9	<i></i> %	%	%	ی.	ږ		_	۰,	%	
100%	1000	820	2	0	57%	100 100	%08	%06	95%	100%	
	29 29 W	29 27 29 27 W G	29 27 27 29 27 23 W G Q	29 27 27 26 29 27 23 26 W G Q G	29 27 27 26 21 29 27 23 26 21 W G Q G T	29 27 27 26 21 21 29 27 23 26 21 12 W G Q G T L	29 27 26 21 21 21 29 27 23 26 21 12 21 W G Q G T L V	29 27 27 26 21 21 21 20 29 27 23 26 21 12 21 16 W G Q G T L V T	29 27 27 26 21 21 21 20 20 29 27 23 26 21 12 21 16 18 W G Q G T L V T V	29 27 27 26 21 21 21 20 20 19 29 27 23 26 21 12 21 16 18 18 W G Q G T L V T V S	W G Q G T L V T V S S

Table 6C: Analysis of V heavy chain subgroup 2

								-						F	ran	iewo	ork l			
amino acid'		7	<u>س</u>	4	2	9	7	8	6	2	Ξ	12	13	14	5.	9	17	18	19	20
Α										3	3									
В															•••••		·	<u> </u>	<u> </u>	
· C											-	<u> </u>					· • • • • • • • • • • • • • • • • • • •	·÷·····	<u> </u>	<u> </u>
D										•			<u> </u>				<u> </u>	·· ·	<u> </u>	<u> </u>
E	1					E)				-					1	2	· •	·	<u> </u>
F									·			•							·	-
G								6												
Н										•								·		
		1														·	·			·····
K					3								6		1			·	<u> </u>	
L				6							6						†	6		(
M															†******	•	<u> </u>		<u></u>	<u> </u>
N							1					<u></u>			•	<u> </u>	······	<u> </u>	······	
Р							1		6			•		6		······	1	<u> </u>	 !	
Q	2								,					<u> </u>		4	••••••			
R					2										·	-		······		
S							4								<u> </u>			<u></u>	•••••	•••••
T			6		1			•	•••••••	2					5		5		6	
V		5			: : : :					1		6		•••••						••••••
W							********				•••••		•••••••	••••••						•••••
X							•						•••••				•••••			••••
Y															•••••••••••••••••••••••••••••••••••••••		********			•••••
Z	3						•							•••••						••••••
-																				
unknown (?)														•••••			•••••		••••••	
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq²	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6			6	6
oomcaa ³	3	5	6	6	3	6	4	6	6	3	6	6	6	6	•••••••	····÷	5	·····÷	6	<u>.</u> 6
mcaa'	Z	٧	Τ	L	K	Ε	S	G	Р	Α	L	٧	Κ	Р	T	Q	T	L	T	L
rel. oomcaas	20%	83%	100%	100%	20%	100%	67%	100%	100%	20%	100%	100%	100%	100%	83%	920%	83%	100%	100%	100%
pos occupied ⁶	2	2	1	1	3		3	1	1	3	1	1	1	1	2	•	•		•	1

Table 6C: Analysis of V heavy chain subgroup 2

														CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	⋖	മ	32	33	34	35	36	37	38
Α								1				1			1					
В			<u> </u>																	
C		7													2					
D												1								
E																				
F				3			6		1											
G						7							4		3		3			
Н																				
1													1						7	ļ
K										<u> </u>	<u></u>									<u> </u>
L				2			1		6											
M														5						
N											2									ļ
Р																				ļ
Q																				<u></u>
R													2		1					
S			1		6			6		6	2	4					4			
T	6		6							1	3	1							<u></u>	<u>.</u>
V				2										2		7			<u> </u>	
W																		7	<u> </u>	
Χ																				
Υ		<u> </u>		••••	1															
Z																				
-																				
unknown (?)		Ī														<u> </u>				
not sequenced	1																			_
sum of seq ²	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
oomcaa ³	6	Ť	6	3	6	7	6	6	6	6	3	4	4	5	3	7	4	7	7	
mcaa*	T	С	T	F	S	G	F	S	L	S	Τ	S	G	М	G	V	S	W	١	
rel. oomcaas	100%	100%	%98	43%	96%	100%	%98	%98	%98	%98	43%	57%	57%	71%	43%	100%	57%	100%	100%	
pos occupied	1	· † ·····	2	•	:	:	:	:		:	•	:	:		:	-	2	:	1	

Table 6C: Analysis of V heavy chain subgroup 2

	•				Fra	mev	vork	11	-				$\overline{}$	· · · · · ·						-	A-10-
amino acid	' '	39	40	41	42	43	44	45	46	47	48	49	 당	51	52	⋖	8	ပ	53	54	5.5
А							6					7			_	_				T	-
В				•			*****		•••••	<u>-</u>		•••••	·				•••••		<u> </u>	<u> </u>	<u> </u>
. С																		••••••	<u></u>	<u> </u>	<u></u>
D					••••••		•••••	****		<u>i</u>	····	····			2					<u> </u>	<u> </u>
E									7	····-									•••••	3	(
F						*****				<u>†</u>	····	••••			2						
G			1		7		1												•••••	•••••	
Н										•••••			2					į	•••••		
1														6							I
Κ				Ī		6						····		<u></u>			<u>i</u> .				
L								7			7	··· <u></u>	2	1	1			<u>i</u>	<u> </u>		••••••
M										···÷····				•			<u>i</u> -				
N										<u> </u>										3	******
Р			5	7																<u> </u>	••••
Q		6			•••••••					***								<u>-</u>			
R		1		ĺ		1							2								
S		<u> </u>	1																2		
T	.	<u>.</u>	<u></u>							<u> </u>							<u>i</u>		<u></u>		
V	ļ		<u></u>	<u> </u>						<u> </u>	-	<u> </u>	*******						<u>-</u>		
W										7	· -		··········						4	···· <u></u>	
Χ		<u>.</u>	<u>.</u>								·			1	-				1	1	
Y		<u>.</u>									·	•		***************************************	•	1					
Z										************		•	*								
_		<u>.</u>	<u>.</u>	<u>.</u>									Ì	- -	6	3	7	7	i		=
unknown (?)	•••••	<u></u>	<u>.</u>		<u>.</u>						<u> </u>				······	· · · · · ·	· · · · · · · · · · · · · · · · · · ·				
ot sequenced		_	<u> </u>									<u> </u>				·			<u></u>		
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	-	7	- 7	7	7	7
oomcaa ³	6	5	7	7	6	6	7	7	7	7	7	2	6	2	······		7	<u>. </u>	<u>′</u>	<u>′</u> ว	6
mcaa'	Q	Р	Р	G	K	Α	L	E	W	L	Α	Н	ı	D	-	-	-	V	V [) [
rel. oomcaas	%98	71%	100%	100%	%98	%98	100%	100%	100%	100%	100%	29%	%98	29%	%98	100%	100%				
os occupied ^a	2	3	1	1	•				1	1	1						· -	·· ፣ ······	•	•	2
								15			••••••	·i				i	.i	`.i`			

Table 6C: Analysis of V heavy chain subgroup 2

		DR	11														· · · ·			
amino acid	26	27	28	59	09	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75
Α																				
В																				
. C																				
D	5																6	1		
E	1								1											
F		1		1																
G																				
Н				1																•••••
l														6						*******
K	1	6							4							6				6
L								7				7								•••••
M															••••••					•••••
N																	1			•••••
· P						2									•••••					•••••
Q															•••••					*******
R			2			1			2		7					1				1
S			2		6		7			4			1		5				7	******
Т						4				3			6		2			6	*******	*******
V														1						*******
w				1																*******
Х					1															******
Y			3	4																*******
Z														*********	•••••					•••••
-																				
unknown (?)						••••••						••••		*******	*********					
not sequenced																				*******
sum of seq²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa³	5	6	3	4	6	4	7	7	4	4	7	7	6	6	5	6	6	6	7	6
mcaa¹	D	K	Υ	Y	S	T	S	L	K	S	R	L	Ţ	1	S	Κ	D	T	S	K
rel. oomcaas	71%	%98	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	%98	%98	71%	%98	%98	%98	100%	%98
pos occupied		2			2		••••••				1		2	:		:	:	:	:	

(

Table 6C: Analysis of V heavy chain subgroup 2

•	_				Fra	mev	vork	111										: ··· : · · · · ·		
amino acid'	92	77	78	79	80	81	83	\ \	<u> </u>	ے د	83	84	85	98	87	88	89	90	91	92
А														1		5				T
В												<u> </u>		*******				Ť		†
. C														••••••			<u> </u>			İ
D		<u> </u>									6	3		7	7			<u> </u>		†
E										-							<u> </u>			<u>†</u>
F					1	1									********				<u></u>	
G																2	·····		······	
Н																	·····	<u></u>		
1						2	2	1			·			·				<u></u>		!
K									<u> </u>	· 	· † ······			ļ		<u> </u>			•••••	
L				<u></u>	6	5			· 	•	<u> </u>				 -					
M							7			5	-		ļ				••••••		•••••	
N	5						-		6	÷	1	<u></u>								•••••
Р											İ	7								
Q		7							·											
R					••••••••••••••••••••••••••••••••••••••					•	·			••••••						·•••••
S	2										<u> </u>		••••••	•••••						•••••••
Ţ					·	5		5	<u> </u>				•••••	•••••	7		7	· -		*******
V			7	7						1			6	••••••			<u>:</u>			••••••
W														•••••	•••••		<u>-</u>			••••••
Χ															•••••					•••••
Υ						•••••				•••••			••••••					7	7	,,,,,
Z																••••••				
_								1	1	1				<u>-</u>			Ť	Ŧ	$\stackrel{ ext{-}}{=}$	
unknown (?)				•••••		******	••••	••••						•••••••••••••••••••••••••••••••••••••••						••••
not sequenced						*******							******		•••••••••••••••••••••••••••••••••••••••				<u>i</u> .	
sum of seq'	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa ³	5	7	7	7	6	5	7	5	6	5	6	7	6	7	7	5	7	7	7	' 7
mcaa'	Ν	Q	٧	٧	L	T	М	T	N	М	D	Р	٧	D	T	Α	T	Y	Y	Ċ
rel. oomcaas	71%	100%	100%	100%	%98	71%	100%	71%	%98	71%	96%	100%	%98	100%	100%	71%	%00I	%00I	%00 	%00
pos occupied ⁶	*	•		1	:	:		:	······ ·	:	2	1	2	1	1	2	1	1	1	1
, and a second s						*********	······································	••••••	60							i	<u>'. i</u>	<u>'.i</u>		

Table 6C: Analysis of V heavy chain subgroup 2

amino acid' A B C	5		95	96	97	æ	(C)	0												
В	5					6	<u>ŏ</u>	<u>0</u>	٧	8	ں ا	٥	w	ш.	9	王		_	~	10
ļ			<u> </u>					1	2	1										
. C		••••																		
		•••••																		
D																				6
E								2			1									
F																			3	
G						1	1		1	2	1	1	1	1						
Н		1		1																
l l			3			2									•••••					
К							1													
L								1		1		•••••							1	
M							•••••	1								•			2	
N				1	2										•		1			
Р				1	1		1		1											
Q			1										•••••							
R		6	1			1		••••••	1				•••••		•					
S				1		1	1	************	••••••											
Т				1			1		1	······	·····									
V	2		1	1	1		1	1	·····	·····	1									
w						1		•	·····	·····					1			1		
х									····· 	· أ	······	•••••••••••••••••••••••••••••••••••••••								
Y					2				•••••	·	1	2	1	1	1			2		
Z							•••••								•••••				•••••••	
-										2	2	3	4	4	4	6	5	3		
unknown (?)	•••••							••••••	•••••••		•	•••••			•••••				•	
not sequenced			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6			6	6
oomcaa ³	5	6	3	1	2	2	1	2	2	2	2	3	4	· 4	4	6	••••••	•••••••	3	••••••
mcaa ⁴	Α	R	ı	Н	Ν	ı	G	Ε	Α	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	71%	%98	20%	17%	33%	33%	17%	33%	33%	33%	33%	20%	9/0/9	%29	67%	100%	83%	20%	20%	100%
pos occupied ⁶	2	2	4	6	4	5	6	5	5 16		5	3	3	3	3	1	_ :	:		1

Table 6C: Analysis of V heavy chain subgroup 2

					Fr	ame	wor	k IV					
amino acid'	102	103	104	105	106	107	108	109	110	1	112	113	sur
Α									1				3
В							<u> </u>			-	<u> </u>		
С							······		<u> </u>				1
D			:					Ī	Ī	·			4
E									•				2
F									•				1
G			6		6		}	••••••••••••••••••••••••••••••••••••••	*				5
Н							•	 !					
ı							• · · · · · · · · · · · · · · · · · · ·		<u></u>				2
K				1			1						4
L	1			•			3						7
M													2
N													2
Р	1						1			<u> </u>			4
Q				3				•				•	2
R				2					•				4
S											6	3	8:
T						6	1		5				10
V	3							6		6			68
W		6											29
χ													
Υ	1												3!
Z								_					;
-													56
unknown (?)						<u></u>							
not sequenced	1	1	1	1	1	1	1	1	1	1	1	4	54
sum of seq ²	6	6	6	6	6	6	6	6	6	6	6	3	
oomcaa ³	3	6	6	3	6	6	3	6	5	6	6	3	
mcaa⁴	٧	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaa ^s	20%	100%	100%	20%	100%	100%	20%	100%	83%	100%	100%	100%	
pos occupied ⁶	4	1	1	3	1	1	4	1	•••••••••••••••••••••••••••••••••••••••	1	1	1	

Table 6D: Analysis of V heavy chain subgroup 3

														F	ram
amino acid'		2	ю	4	2	9	7	∞	6	10	=	12	13	14	15
Α					1		1			12		1		3	1
В			1			1							1		
· C															
D	1					1			į	16					
Е	110		9		15	166			9				8		2
F											4				
G								181	193	174		1			202
Н			5										4		
												9			
Κ		5	3			•••••	•••••••••••••••••••••••••••••••••••••••				•		26		
		1	•	176	43	•••••					140	••••••		1	*********
М		12	•••••••••••••••••••••••••••••••••••••••	1				***********	•••••••		•••••••	•••••••			
N			•••••••••••••••••••••••••••••••••••••••	•••••		•••••	•••••••			1	••••••				
Р						***********			••••••		********	•••••••••••••••••••••••••••••••••••••••	1	194	•••••
Q	41		138	1	3	12	•••••••••••••••••••••••••••••••••••••••						162	•••••••••••••••••••••••••••••••••••••••	•••••
R			6		***************************************						••••••		4	:	
S			••••••				178			2	•••••	•••••••••••••••••••••••••••••••••••••••		8	
T			•••••				1					•••••••••••••••••••••••••••••••••••••••			•••••
V	5	147	••••••	1	118						62	195			
W															
X												••••••			
Y	ļ														
Z	8					••••								•••••	
-														_	
unknown (?)															
not sequenced	47	47	45	33	32	32	32	31	10	7	6	6	6	6	
sum of seq ²									202						-
oomcaa ³					•••••••••	••••••			193	•••••				***********	
mcaa*	Ε	V V	Q	L	V	E	S	G	133 G	1/4 G	L	۱ <i>33</i> ۷	Q	134 P	G
MCaa				•••••	•••••										
rel. oomcaa ^s	67%	%68	83%	%86	%99	92%	%66	100%	%96	85%	%89	95%	79%	94%	%0
pos occupied"	5	4	7	4	5	4	3	1	2	5	3	4	7	4	

163

FCI/EF90

Table 6D: Analysis of V heavy chain subgroup 3

	work	.													
amino acid'	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
А								183	192		1				
В						<u></u>	<u></u>								
C						1	209								
D															7
E	8							8			3		1		
F		1	1	<u></u>		1		: :				201		201	
G	134								2		207				3
Н										<u></u>					1
1								2	<u></u>	<u></u>		3	17	1	
K				15					<u></u>		: : : :				4
L			205		201							6		3	
M			1										1		
N				,				- 1 1		: : :			10		10
Р								1					2		
Q			1									: : :	************		
R	62	•••••••		191				•••••	••••••						11
S		206				207		4	2	209	•		15		174
Т	4	1		2	••••••			4	4			1	163		
V					8			7	9		••••		1	6	
W		••••		•••••					•••••						**********
X		••••			•••••								**********		
Y		•••••	•••••		•••••			•••••			•••••		•••••		
Z															
-		•••••			•••••	•••••			•••••				•••••	•••••	
unknown (?)		·····			•	•••••			•••••						
not sequenced			===												
													210		
3		-	:					•••••••		209	207	201	163	201	174
mcaa'	G	S	L	R	L	S	С	Α	Α	S	G	F	T	F	S
rel. oomcaa ^s	64%	%66	%66	92%	%96	%66	100%	9/088	92%	100%	98%	95%	78%	95%	83%
pos occupied ⁶	4	3	4	3	2	3	1	7	5	1	3		8		

164

Table 6D: Analysis of V heavy chain subgroup 3

WO 97/08320

•			-	CC	PRI									F	rame
amino acid'	31	A	8	32	33	34	35	36	37	38	39	40	41	42	43
А	1			17	80		1			1		187		1	
В												,			
· C												1		1	
D	26	• • • • • •		3	7		2								
E	1				10									1	1
F				5			,	·							
G	13				31		1					2		209	•
Н				4			88								
1	1			1		15			12						
К	7										1				202
L	3					3			2	3	1	2	1		
М						193					, <u> </u>				
N	35			8	3		34						••••••		**********
Р				1			1					4	191		•••••
Q							•		•••••	•	209	•••••	1		1
R	7									207	••••••	7	***********		8
S	103			17	8		72					3	14		**********
Ţ	9				15		10					4	5		
V	2				7	1			197			2			••••••
W					30			212							
X	1													·	•••••••
Y	1			154	19		3								••••••••
Z															••••••
-		210	210												
unknown (?)															•
not sequenced	2			2	2				1	1	1		_		
sum of seq ²	210	210	210	210	210	212	212	212	211	211	211	212	212	212	212
oomcaa,	103	210	210	154	80	193	88	212	197	207	209	187	191	209	202
mcaa'	S	-	-	Υ	Α	М	Н	W	V	R	Q	Α	Р	G	K
rel. oomcaas	49%	100%	100%	73%	38%	91%	42%	100%	93%	%86	99%	980%	%06	%66	95%
pos occupied ⁶	14	1	1	9				1	_			••••••			

Table 6D: Analysis of V heavy chain subgroup 3

	wor	k II													
amino acid'	44	45	46	47	48	49	50	7.1	52	< <	·	· U	53	54	55
А		1				7	7 4	2		1	2	1	4		7
В				3			•		•••••••••••••••••••••••••••••••••••••••		1	•••••••••••			
· C													1		
D				1					***************************************		7		94	••••••••••	3
E			198	3						3	2	1	2	2	1
F								7	1	2	1			1	8
G	207	7				3	3 1	1	1	0 4	6		4	163	
H							(6			1				
		<u></u>			3	3		3 19	1		1	•••••••••••			1
K									1 3	7 2	2 30)	3	1	
L		211			5	5	12	2	1						
M							1		1		***********	·			
N	<u> </u>						13	3	7	7 9) 2	2	13	11	1
Р	_	1								1			1	•••••	
Q	ļ		7				7			10)			•••••	•••••
R	1						24		17	5	1	************	2	•••••••	16
S	3		<u>.</u>	1		102	11	ç	118	43	•	1	74	17	
Ţ	ļ	<u></u>					3		4	2		13	······	**********	
V			3		204		49	2		1		6			
W				210			1		8	6				•••••	
Χ													4	••••••	3
Υ				1			22	: : : :	5	58	•••••••••••			•••••	8
Z															
_										14	178	178	2	1	1
unknown (?)					•••••••									*********	••••
not sequenced												***********		•••••	****
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa³	207	211	198	210	204	102			118	:				•••••••	85
mcaa'	G	L	E	W	V	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	98%	100%	93%	%66	%96	48%	23%	%06	56%	27%	84%	84%	44%	77%	40%
pos occupied ⁶	4	2	5	3	3	•••••••		9		:			12	9	12

Table 6D: Analysis of V heavy chain subgroup 3

	(CDR I													
amino acid'	26	57	58	29	09	61	62	63	64	65	99	29	89	69	70
Α	9	1	2		174	33							1		
В	1	2													
. C											••••••				
D	11		17			160									********
E	8	3	2			1			2						
F	1		3	2								207			
G	5	1	5		4	5				212	1				
Н	1		4												
ı	3	37	2					8					14	208	
κ	1	61							199		8				
L	1	1	1		1							1		1	
М	8		2		1										
N	51		4			2			. 2						
Р	1	1			6	8	18		1						
Q	3	2							2		2				
R	5	4			5				6		201				
S	48		11		4		193					2	7		211
Т	42	97	5		7								189		1
V		2			10	2		204				1		3	
w			2												
X	4		1			1									
Υ	9		151	210			1					1	1		
Z															
_															
unknown (?)											****				
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa ³	51	97	151	210	174	160	193	204	199	212	201	207	189	208	211
mcaa'	N	T	Υ	Y	Α	D	S	V	K	G	R	F	T	1	S
rel. oomcaa ^s	24%	46%	71%	%66	82%	7 5%	91%	%96	94%	100%	95%	98%	89%	98%	100%
pos occupied	19		15							1			•••••		

										Fra	mew	ork II	l		
amino acid'	71	72	73	74	75	9/	77	78	79	80	81	82	. X	8	U
Α				5	7			1	8						1
В												2			
C										***************************************					
D		19	9 3	8		2	2			1			10)	
E		(6	-		4						5			
F							**********		1:	3				·	
G							***************************************						1	4	
Н							1		1	 	2)	2	·•••••••••	
	<u> </u>			I			2	2	2			3			
K					186	6	3						3		
L								188	3	209		3			21:
M	1				2		10	3	}	2	······	205	· ! ······		
N		5	170)	2	188	··:				3	:	181	10	
Р							1		······································						
Q					7						199			•••••	
R	211				1	1				•			2	8	
5				153	8	10	56		3				·····	186	
T							142		<u> </u>		1		4	***********	: :
V				1				11		1	***************************************	1			•
W								************	<u> </u>		••••••			••••••	·•••••
χ		2	2			4		••••••••••			•••••••••••	•••••••	1		••••••
Υ								***********	194	••••••	************	**********			
Z								************	······································	••••••	••••				•••••••
_															·
unknown (?)		•••••						**********	•••••		•••••	••••••		••••••	•••••
not sequenced			1	1				••••••	*****	***************************************	•••••			•••••	••••••
sum of seq²	212	212	211	211	212	212	212	212	212	212	212	212	212	212	212
oomcaa ³	211	199	170	153	186	188	142	188	194	209	199	205	181	186	212
mcaa¹	R	D	Ν	S	K	N	T	L	Υ	L	Q	М	N	S	<u></u> L
rel. oomcaas	100%	94%	81%	73%	988%	990%	67%	9/068	92%	%66	94%	97%	85%	88%	100%
pos occupied ^a	2	4		:	8	•••••	······································	5			<u>6</u>	<u>6</u> 4	<u> </u>		••••••
•	************	•••••••••••••••••••••••••••••••••••••••	······i				168	••••••		J	<u>U</u>	4	11:	7	1

Table 6D: Analysis of V heavy chain subgroup 3

amino acid'	83	84	85	98	87	88	68	06	91	92	93	94	95	96	97
Α		149	1		1	207					173	2	15	9	11
В															
· C									1	210		5	2		1
D		5	15	209								2	54	7	6
E	1		190										11	2	11
F							1		15			1		9	6
G	1	1	6			4	1		_		2	8	34	26	35
Н		1				•••••			1		*****			3	11
1		8					2						4	15	10
K	30											60	4	3	5
L							18					1	6	11	7
М					2		1							6	1
N		1		1								2	20	4	3
Р		9									1	3	4	2 9	10
Q				1					-			5	3	9	2
R	177											103	9	3 0	19
S		1			1							3	9	8	11
Т	3	28			207		1				25	15	7	6	20
V		9					187				10	1	7	7	15
W										1			3	4	3
Х				1											
Y								211	194				12	9	8
Z															
_													1	3	4
unknown (?)															
not sequenced					1	1	1	1	1	1	1	1	7	12	13
sum of seq'	212	212	212	212	211	211	211	211	211	211	211	211	205	200	19 9
oomcaa,	177	149	190	209	207	207	187	211	194	210	173	103	54	30	35
mcaa¹	R	Α	Ε	D	T	Α	V	Y	Y	С	Α	R	D	R	G
rel. oomcaa ^s	83%	70%	%06	%66	%86	98%	89%	100%	92%	100%	82%	49%	26%	15%	18%
pos occupied ^a	5	10	4	4				1			5	14	18	20	21

169

Table 6D: Analysis of V heavy chain subgroup 3

					CD	R III									
amino acid'	86	66	100	⋖	8	U	۵	ш	u.	9	I	_	_	×	101
Α	7	13	7	9	6	2	3	5	5		9		13		2
В															
· C	13	5		1	2	11	3		2					1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
E	6	3	1	13		1	1								1
F	3	5	4	5	5	6	3	5	7	2	· ·	1	1	65	1
G	34	17	35	17	14	2 3	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
<u> </u>	6	11	4	4	3	1	3	10	3	3	2		1	2	
K	2	11			3	1		•••••			•••••				
L	26	13	4	12	8	2	6	3	10	3	••••••			2	1
M		1	2					*******			1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	1				**********	1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2	3	1	1	1
T	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12		1	1	1	1		
W	6	5	6	7	2	4				1	•••••	6	10		
X				1							***************************************				1
Υ	16	14	17	5	8	18	20	13	20	25	2 8	32	28		
Z															
	12	21	35	54	73	87	102	110	126	135	134	120	91	71	21
unknown (?)							3	2	1	1	•		3	2	
not sequenced				 ÷		- :								\rightarrow	25
sum of seq'	198	:	:	197	196	192	190	189	188	188	188	186	186	185	186
oomcaa ³	34	28	•••••••••••••••••••••••••••••••••••••••	54	73	87	102	110	126	135	134	120	91	71	146
mcaa•	G	S	G	-	-	-	-	-	-	-	-	-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	28%	67%	72%	71%	65%	49%	38%	78%
pos occupied ⁶	20	20	19	20	19	20	************	14	14	12			12	••••••	•

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amew	ork l'	V					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α	1		1			2							176
В	:		:	1									13
С													470
D	2												112
E					1								83
F	2												80
G			140		130		1						274
Н	4								<u>į</u>				17
l	15						<u></u>		1	1			6 5
K				13	<u> </u>		<u></u>						93
L	10			1			91	<u></u>	<u></u>	<u></u>		2	188
M							6			<u></u>			49
N	1					1							84
Р	17					1	1						56
Q		<u></u>		111									94
R				8									141
S	7	1									118	110	300
T						123	27		122		•••	1	142
V	34		1			1		125		119			185
W		158											68
Χ											•••••		2
Y	82										••••••		159
Z													
_	9	2	2	2	2	2	2	2	2	2	1	1	202
unknown (?)				<u></u>	<u></u>								1
not sequenced	27	50	67	75	78	81	83	84	86	89	92	97	165
sum of seq ⁷	184	161	144	136	133	130	·	:		:	:		
oomcaa ₃	·····	.	.	111	÷	÷		125			÷ · · · · · · · · · · ·	·····	
mcaa*	Υ	W	G	Ω	G	T	L	V	T	V	S	S	
rel. oomcaa ⁵	45%	%86	97%	82%	%86	95%	71%	%86	%86	%86	%66	%96	
pos occupied ⁶	12	3	4	6	3	6	6	2	3	3	2	4	

Table 6E: Analysis of V heavy chain subgroup 4

														F	ram	ewo	rk I			
amino acid'		7	က	4	2	9	7	æ	6	10	=	12	13	14	15	16	17	18	19	20
А									19					1			1		1	
В												:							-	
. C							:	:		••••••		<u> </u>				-		<u> </u>		
D								<u> </u>		•••••		<u> </u>				·······				
E						32				******						44		<u> </u>		
F																				
G								54	1	53						2				
Н			4		2								•							
ı													••••	••••••		·				 !
К												1	54	•••••				<u> </u>	1	
L		7		54							53	19		1				53		50
М																				
N							· · · · · · · · · · · · · · · · · · ·			*******				********	•••••					
Р									33		*********	•••••	•••••	51	1		••••			2
Q	52		50		51	20								•••••	••••••	7	•	•	•••••	•
R	1						••••••					••••••			••••••					
S							33			•				••••••	52		••••••		52	******
Т									1		······		••••••	•••••	••••••		52			
V		47				1					•••••••••••••••••••••••••••••••••••••••	34	**********		*******		••••••			1
W							20							••••••	******	•••••	••••			••••••
Х															••••••					••••
Y						••••	•••••			•••••		•••••		•••••		••••••				••••••
Z	1					•							••••••		•••••••					•••••
_											i	i	i							
unknown (?)												••••••		••••••	•••••					••••••
not sequenced	3	3	3	3	4	4	4	3	3	4	4	3	3	4	4	4	4	4	3	4
sum of seq ²	54	54	54	54	53	53	53	54	54	53	53	54								
oomcaa¹	: :	:	50				:	:	33	:	:	:				*********		******	••••••••	
mcaa⁴	Q	٧	Q	L	Q	Ε	S			G	L	٧	••••••••••••	Р	S	E	T	L	S	L
rel. oomcaa ^s	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	0/86	83%	%86	100%	%96	94%
pos occupied ^a	3	2	2	1	2	3	2	1	•	1	1	3	1	:	:		:	•••••	3	

Table 6E: Analysis of V heavy chain subgroup 4

,														CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	A	8	32	33	34	35	36	37	38
Α			22						_					1						
В																				
. С		53													1					<u> </u>
D			1								4	1	1	1			1			
E																				
F					1				22					1	1				1	
G						53	53				21	3	4				8			
Н							1							2						
ı			1					1	32										51	
K																				
L																			1	
M																				
N										1	1		2	2			1			
Р								3												
Q											1									
R						1				3	2		1							5
S			2		35			51	1	52	25	5	9	1			44		1	
Ţ	53		29								2	1					3			
V				55		1			1										3	
W							•					1			2	56		57		
Χ																				
Υ					19		1							48	52					
Z					•															
-												45	39							
unknown (?)																				
not sequenced	4	4	2	2	2	2	2	2	1	1	1			1	1	1	<u> </u>			
sum of seq ²	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
oomcaa³	53	53	29	55	35	53	53	51	32	52	25	45	39	48	52	56	44	57	51	5
mcaa'	T	С	T	٧	S	G	G	S	1	S	S	-	-	Υ	Υ	W	S	W	١	F
rel. oomcaas	100%	%001	53%	100%	64%	%9£	%9 6	93%	57%)3%	15%	30%	0,0%	%98	33%	%001	,7%	%001	%68	300
pos occupied ⁶		:	-		:······	:	•	:	:	3	:	•	:	•	:	:	:	:	: _	Ţ

PC1/EF96/036

Table 6E: Analysis of V heavy chain subgroup 4

													Τ							
	_	_			ame ~	wor		··					<u> </u>							
amino acid'	39	40	4	42	43	44	45	46	47	48	49	20	5	52	⋖	ω	ں	53	54	55
А		<u> </u>	8	1							1			<u></u>				<u></u>		
В		<u></u>	<u>.</u>			<u></u>				<u> </u>				<u>.</u>						
· C																				
D														1				1		
Е				1			•	56				22								
F							•••					1		1						
G		<u></u>		55		5 5					56	1						1		57
Н		2					•											24		
l										54		1	54							
K					54															•••••
L		1					55			2										
. M																				•••••
N														21						•••••
Р		50	49				2													
Q	56							1				1								•••••
R					3	2						9		1						••••••
S		3										7		1					52	*****
Т	1	1																8	5	********
V										1			3							•••••
W									56											•••••
х																				•••••
Y									1			15		32	***************************************			23		******
Z																				
-															57	57	57			
unknown (?)				٠									••••••	•••••••	**********					•••••
not sequenced																				•••••
sum of seq ²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
oomcaa'			:			:	:			······	56	•••••••••••••••••••••••••••••••••••••••	••••••		••••••	•••••	····÷	••••••	·····÷	
mcaa'	0	Ρ	Ρ	G	Κ	G	L	Ε	W	١	G	Ε	1	Υ	-	-	-	Н	••••••••	G
rol	٥,	٥	٥.	.0	.0	O	o			(%	%	%			 %
rel. oomcaa ^s	980	%88	%98	%96	95%	/096	⁄ ₀ 96	%86	%86	95%	980%	39%	95%	26%	100 V	100%	100%	42%	91%	100%
pos occupied ^a	2	5		- 1	•	:	•	:		:	:	:	:	:	••••••	:	•	:	2	

Table 6E: Analysis of V heavy chain subgroup 4

•	С	DR I		_						. 7.										
amino acid	26	22	28	29	09	5	62	83	64	65	99	29	89	69	2	7.1	72	73	74	75
Α		1									1		1			1				1
В	<u> </u>		į	į																
· C																				
D			2									1					55			
Ε																	1			
F .				3														1		
G	1									1										
Н			2																	******
l	1	1										1	1	48		3			<u> </u>	
К					1				53									1		51
L						1		55				1				3				1
M														7				2		
N	2		40		53								2							1
Р						54		1												
Q																	1			
R	2								3		56									2
S	49		1		2		56			56			1		56			1	57	
Т	1	54	1			1			1				51		1			52		•••••
V	1	1										53		2		50				1
W																				
X																				•••••
Y			11	54																
Z																				
_																				
unknown (?)							<u></u>			<u>.</u>										
not sequenced					1	1	1	1				1	1							
sum of seq ²	57	57	57	57	56	56	56	56	57	57	57	56	56	57	57	57	57	57	57	57
oomcaa³	49	54	40	54	53	54	56	55	53	56	56	53	51	48	56	50	55	52	57	51
mcaa'	S	T	N	Υ	N	Р	S	L	K	S	R	٧	T	١	S	V	D	T	S	K
rel. oomcaa ^s	96%	95%	20%	95%	95%	%96	100%	%86	93%	%86	%86	95%	91%	84%	%86	98%	%96	91%	100%	%68
pos occupied ⁶		•		:		:		:	:	:	2		5					-		6

					Fram	ewo	ork l	11												
amino acid'	92	77	78	79	80	81	82	4	8	ပ	83	84	85	98	87	88	89	90	91	92
Α												55	57			57				
В																				
. С																				57
D					1									57						
E						1			<u></u>											
F .			54						1											
G								1	<u></u>											
Н							*******													-
1			1					1			3		-							
K	3					46	••••	2												
Ĺ		3	1		55		53			2							1			
M						1	1			1				••••			1			
N	54			•••••		3		3	1					••••						
Р																				
Q		54			1	1														
R				••••		2		2				1		•••••				*******		
S			1	57		2	1	44	55		1			••••	2			•••••	1	
T						1		4			53				55					
V							2			54		1					55			
W																				
X																				
Y																		57	56	
Z ·																				
_																				
unknown (?)			·····																	
not sequenced														-						
sum of seq ²	:	•		:	:	:	:	:	:							******	••••••	•••••	•••••	*****
oomcaa ³				:		••••••		••••••	55	••••••	••••••			•••••••	••••••	••••••	•••••	••••••		
mcaa ⁴	IV	Q	F	S	L	K	L	S	S	V	Τ	Α	Α		T	Α	V	Υ	Υ	С
rel. oomcaa⁵	92%	95%	95%	100%	%96	81%	93%	77%	%96	95%	93%	%96	100%	100%	%96	100%	%96	100%	%86	100%
pos occupied ⁶	2	2	4	1	3	8	4	7	3	•			•		2	1	3	1	2	1

Table 6E: Analysis of V heavy chain subgroup 4

										CDI	3 111									
amino acid'	93	94	95	96	97	86	66	100	A	80	ပ	٥	ш	ц.	9	工	_	_	×	101
Α	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12		
В																				
C					1				1											
D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
Е			6	1	1	2	1			1	3	1	2	1						
F				4	1	1		2	3	2	2		1	1					31	
G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
Н			1				1						1			1				2
l				1		2	4	1	3	2	3		1						1	
κ			2	1						2	2			1						
L			2	6	7	3	5	3	2	4	1	5	3	3	•••••	1				
М				1	4		3	1		2	1		-						9	
N				3			*******		2	1	1	5	1	1			2			
Р				4	5	3	1	1	2	1	1		•••••••••••••••••••••••••••••••••••••••	3	1	2	1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Q					1	1		1			1	1			3	•••••••••••••••••••••••••••••••••••••••				1
R		54	4	12	2	5	5	3	2	3	1	2		••••••	2	1				
S		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
Т		1	1	2	1	3	4	4	3	3			1	1	1		······			
V	1	1	4	2	2	5	4	4	7	3	1	2	1							****
W			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
X													*******		**********					
Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	8		2
Z																				
-						1	2	4	6	9	11	16	23	27	29	34	31	14	4	_
unknown (?)							••••			•				1	•			1		
not sequenced			1	1	1	1	1	2	3	3	6	7	8	9	9	10				11
sum of seq²	57	57	56	56	56	56	56	55	54	54	51	50	49	48	48	47	46	46	46	46
oomcaa,	56	54	25	12	10	8	10	11	7	9	11	16	23	27	29	34	31	14	31	41
mcaa'	:					G				-	-	-	-	-	-	-	-	-		D
			0			0			_	_	_	_	_			_				
rel. oomcaa ^s	98%	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	720/ε	%29	30%	%29	%68
pos occupied ⁶	:		:	:								:								

177

Table 6E: Analysis of V heavy chain subgroup 4

					Fra	me	worl	(IV]
amino acid¹	102	103	104	105	106	107	108	109	110	=======================================	112	113	sum
Α						1			1				332
В							<u> </u>	<u></u>		······································			
С		<u></u>								<u></u>			113
D							<u></u>		<u></u>	<u> </u>			210
Е													176
F								••••	•••••				135
G			41	••••••	40	1	•••••	•••••	••••				674
Н	1	•••••		••••••	••••••	•••••			1				45
1	9			••••		1							282
К				3	•	••••			••••				278
L	4						19				•		540
М							9		••••		•••••		43
N						1							204
Р	3			2		•			•••••		••••	2	281
Q				29									334
R	1			4			1						250
S	1			1							36	33	986
Т				1		33	8		34				532
V	12							36		36			488
W		46											267
X													
Υ	16											·	455
Z													1
-													466
unknown (?)													4
not sequenced	10	11	16	17	17	20	20	21	21	21	21	22	426
sum of seq²	47	46	41	40	40	37	37	36	36	36	36	35	
oomcaa¹	*******	••••••	•••••	29	40	33	19	36	34	36	36	33	
mcaa*	Υ	W	G	Q	G	T	L	٧	T	V	S	S	
rel. oomcaa"	34%	100%	100%	73%	100%	89%	51%	100%	94%	100%	100%	94%	
pos occupied ⁶	8	1	1				:				1	2	

														Fra	me	wor	k I			
amino acid'	-	2	က	4	2	9	7	8	တ	9	=	12	13	14	15	16	11	18	19	20
A					1			1	89		1			1						
В																				
· C			•				1													
D	•	<u> </u>	•							2										
E	88	1			2				4	93						92				
F .		•															1			
G	1	1					•••••	92							94					
Н		••••••																		
l l																			•••••	9(
К												94	94						77	
L		1		91		2												95		
М			•								3								1	
N																				
Р				1		•			1					94						
Q	3		92		1	90										3			1	
R						1		•				1	1		1				17	
S							92										94			
Ţ																				
V		90			89				1		91									
W																				
Χ																				
Υ																				
Z																				
-																				
unknown (?)				-														<u> </u>		
not sequen ce d	5	5	5	5	4	4	4	4	2	2	2	2	2	2	2	2	2	2	1	
sum of seq ²	92	92	92	92	93	93	93	93	95	95	95	95	95	95	95	95	95	95	96	9
oomcaa ³	88	90	92	91	89	90	92	92	89	93	91	94	94	94	94	92	94	.	77	9
mcaa'	Ε	٧	0	L	٧	Q	S	G	Α	E	٧	Κ	K	Р	G	Ε	S	L	K	
rel. oomcaas	%96	%86	100%	%66	%96	97%	%6(99%	34%	%86	%9£	%66	99%	%66	%66	97%	%66	100%	%08	7000
pos occupied ⁶	:	3	Ī		<u>:</u>	3	:				3			•					•	

179

											<u> </u>			C	DRI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	⋖	<u> </u>	32	33	34	35	36	37	6
Α			<u>.</u>	3	3 2					4	ŀ							3	1	
В		<u> </u>																		-
. C		96	3					1			1					·	<u> </u>	İ	<u> </u>	-
D			:					2	2	<u> </u>	2	· • ······					1			<u> </u>
E						2				<u> </u>	1	·							<u> </u>	
F.					3		6		97		<u> </u>			2	······································	<u> </u>	†	<u>.</u>	· .	-
G				92		93				<u> </u>	1		•		*******		72	·	•	-
H											1			4				<u> </u>		
		:	1						Ť	4	•					93				
K		-	89	1				1			<u> </u>	<u></u>					 	<u>+</u>	<u> </u>	
L		<u> </u>		-	<u> </u>		······································		<u> </u>	•	<u></u>				1			<u> </u>	2	<u>+</u>
М		<u></u>	1							<u> </u>		<u> </u>	-			1	<u></u>	<u> </u>	1	
N			1	<u> </u>	<u> </u>			2		4	14			2			<u></u>	<u> </u>		<u> </u>
Р		•	<u> </u>	<u> </u>	1	•••••											<u></u>	<u></u>		
Q		}	4			•••••			·}		••••••		ļ							
R			1			1		2		•	••••		······		1					ç
S	94		••••••••••••••••••••••••••••••••••••••	1	90	•••••		84		10	61		<u></u>	2	2		15			
T	2					*******		5	:		16		ļ			2	: :	·····		
V						••••	•••••									<u>-</u> 1			93	
W						•••••	•••••	•••••							93	•••••		97		••••
Χ						••••••						•••••						37		•••••
Υ						•••••	90	•••••						87	•••••			•••••		
Z						•••••	•••••	•••••			••••••	•••••								••••
-												97	97							
unknown (?)						•••••	•••••				•••••••							•••••		••••
ot sequenced	1	1	1	1	1	1	1			•••••										
sum of seq ²	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97	97	<u> </u>
oomcaa,		96						:	:	:	:			*********	••••••	*******	····-	******	93	****
mcaa'	S	С	Κ	G	S	G	Υ	S	F	Τ	S	-	-	Υ		1	G		·••••	F
rel. oomcaaʻ	%86	100%	93%	%96	94%	97%	94%	87%	100%	77%	63%	100%	100%	%06	%96	%96	74%	100%	%96	2000
os occupied"	2	1	5	:	4		:	•	:	5		1	••••••	······································			5	1	6	
,		*	•••••••	•••••••	•••••••					 15		<u>.</u> .;				7	<u></u>		** :	••••

Table 6F: Analysis of V heavy chain subgroup 5

				Fra	ame	worl	< 1I													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	52	A	8	ی	53	54	55
А			1			1									1			2	1	
В																				
· C													·	1				1		
D														14				8	93	
E					3			97											2	
F												1		2						
G				97		96					95							69	1	
Н														3	1					-
						-				1		75	92							
K		1			94															
L							94			2		2	1							
М		92								89			1							
N																				
Р			96				2							1	93					1
D	97						1													
R		1									1	14						1		
S												1			1			16		96
T		1										3	1		1					
V		2								5	1	1	2							
W							-		94											
Χ																				
Y									3					76						
Z		<u> </u>																		
-		<u>.</u>														97	97			
unknown (?)																				
not sequenced	<u> </u>							_												
sum of seq?	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa,	97	92	96	97	94	96	94	97	94	89	95	75	92	76	93	97	97	69	93	96
mcaa ⁴	Q	М	Р	G	K	G	L	Ε	W	М	G	ı	١	Y	Р	-	-	G	D	S
rel. oomcaa ^s	100%	95%	%66	100%	97%	%66	97%	100%	97%	92%	%86	77%	95%	78%	%96	100%	100%	71%	%96	%66
pos occupied ⁿ	•	•	•	•	:	:	:	: :	:	: :										2

181

Table 6F: Analysis of V heavy chain subgroup 5

		CDR	(Τ								
amino acid'	99	57	58	23	09	61	62	63	64	65	99	67	89	69	70	71	72	73	74	75
Α		6					1									88				
В										<u> </u>							<u> </u>	÷		
. С					1				-	1		<u> </u>					<u> </u>		-	<u> </u>
D	77									2	<u> </u>	<u> </u>					97			
E	3								2									2		
F.				2				91		: :		1		3						
G	1									94	••••••						······	·····		!
Н											15)	·	• !		
1		4	1					1				3		88			·			91
K			2														÷	93	<u></u>	
L						1		4				<u> </u>	••••••••••••••••••••••••••••••••••••••		2			•••		
M												<u> </u>		3				••••		1
N	2		14	2							••••••								•••••	
Р						95	1		1				••••						1	
Q						*****	•••••		91		81							1	•••••	*********
R			78			••••			3		1			1				1		
S	2	2			95	1	95	1					1		95				96	1
Т		85	2		1								96						•	4
V				1								93		2		9		•		
W																				
X																				
Υ	12			92																
Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq ²	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97
oomcaa³	77	85	78	92	95	95	95	91	91	94	81	93	96	88	95	88	97	93	96	91
mcaa'	D	T	R	Υ	S	Р	S	F	Q	G	Q	٧	Ţ	ı	S	Α	D	Κ	S	1
rel. oomcaa ^s	79%	98%	%08	95%	%86	%86	%86	94%	94%	97%	84%	%96	%66	91%	98%	91%	0001	%96	%66	94%
pos occupied [«]	:	4	:	4	3	3	:		•	3	3	:		:	1	2	1	4	:	4

Table 6F: Analysis of V heavy chain subgroup 5

•		-		F	ram	ewo	rk II	ì												
amino acid'	9/	11	78	79	80	81	82	A	മ	ပ	83.	84	82	98	87	88	83	90	91	92
А		1	91								1	96				93				
В																				••••••
. С							1													95
D				1										96						•••••
Е						1					1									••••••
F.				1														2	6	
G								3	1							4				•••••
Н						3														•••••
ı															2		9			•••••
κ											91						1			••••••
L					96					97							2			•••••
M																	84			
N	7							2	2						2					
Р			1																	••••••
Q						93														••••
R	1						1	1	3		3									,
S	87	2	1	1				90	91				96		5					•••••
Т	2	94	2					1			1	1	1	•	88		1			
V			2		1									1						
W							95							•						
X																				••••
Y				94														94	89	•••••
Z																				
_																				
unknown (?)																				
not sequenced																	<u> </u>	1	2	2
sum of seq ²	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96	95	95
oomcaa³	87	94	91	94	96	93	:		÷ • • • • • • • • •	97	91	• • • • • • • • • •	96	96	88	93	84	94	89	95
mcaa'	S	Ţ	Α	Υ	L	Q	W	S	S	L	K	Α	S	. D	T	Α	М	Υ	Υ	С
rel. oomcaa ^s	%06	92%	94%	97%	%66	%96	%86	93%	94%	100%	94%	%66	. %66	%66	91%	%96	87%	%86	94%	100%
pos occupied ⁶	:	:	5	:	:	:	3	:	•	:	5	: :		:	:	:	:	:	i	i

183

Table 6F: Analysis of V heavy chain subgroup 5

										CD	R III									
amino acid'	93	94	95	96	97	86	66	100	∢	8	ပ	۵	ш	щ	9	I		_	×	101
Α	92		1	1	2		3	4	3	2		1			1			4		2
В																	<u> </u>			
C			:			1	1	1			2		1							
D				3	3	3	3	1	2	1	1	2		2	1	1	2	<u></u>		37
Е			1	1	-		:		1					1		······································	1			
F					1		3			3	2		1				: :	••••••••••••••••••••••••••••••••••••••	26	
G			1	9	11	12	12	5	2	4	3	- 10	2	1				5		
Н			10	1		2			1	1		1								
l				3		2	2	1	1	4	1	1		1	1					
K		1	1	1		1	3	1								2				
L			11	2	3	1	1	2	5		1		1		1			,		
М					2	1	1		1	1	1	1							10	
N				1		2		1	1	2			1					2		
Р			5	1	4	3	1	2				1	1	1	1					
Ω		1	3	2		1	1	4	2	1	2									3
R		92	7	9	2	2		2	1		2									
S		1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	
T	1		1	3	2	1	2	6	3	3	6	1		1						
V	2		2	4	4		1		1	2			1							
W			1		2	1					1		2		1		1	1		
X																				
Y				1	6	3	6	9	8	7	2	1	2	6	8	9	9	10		1
Z																				
-						1	1	2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)													1			1				
not sequenced	\Rightarrow										52			===		==			==	
	:	:	:				•••••	····· ·	····· ·	········· ·	45		•••••••••••••••••••••••••••••••••••••••	••••••	••••••	····		·····÷	•••••••	•••••
	92	-	•••••••	:	_ :	:				10	16	23	30	30	31	32	30	22	26	37
mcaa⁴	Α	К	L	G	G	G	G	Υ	Υ	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	92%	97%	24%	20%	24%	27%	27%	20%	18%	22%	36%	51%	%29	67%	%69	71%	67%	49%	59%	82%
pos occupied ⁶		:	:	:	:	•						:		*			6	:		5

184

Table 6F: Analysis of V heavy chain subgroup 5

					Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
Α												1	611
В													
С								•••••					205
D	1												458
E				1				•••••	•••••	••••••			404
F	2		••••••										256
G			41		41					••••••			1065
Н													44
1	9								2				588
K				3									650
L	2						2 5	1					549
М							8						303
N													64
Р	2					1					1		414
O				34									612
R				3									351
S	2										40	39	1545
T	1					40	8		39				604
V	11							40		41			594
W		43											432
Χ													
Y	13												738
Z													
-	2												635
unknown (?)													4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq'	45	43	41	41	41	41	41	41	41	41	41	40	
oomcaa³	13	43	41	34	41	40	25	40	39	41	40	39	
mcaa'	Υ	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaas	29%	100%	100%	83%	100%	%86	61%	980%	92%	100%	%86	%86	
pos occupied ⁶	10	1	1	4	1	2	3	2	2	1	2	2	

185

Table 6G: Analysis of V heavy chain subgroup 6

											_			F	ram	ewo	rk I			
amino acid'	-	2	က	4	ა	9	7	œ	6	10	Ξ	12	13	4	15	16	17	18	19	20
Α												1								
В											-							·÷·····		<u> </u>
· C											<u> </u>						· 	<u> </u>	<u> </u>	
D										1								· 	<u> </u>	
E										1	<u> </u>						•	•		
F											<u></u>							<u> </u>		
G								52		67						.,	1			
Н																				
										<u></u>	<u> </u>								÷	·
K												<u> </u>	68							
L				52							68	1				<u></u>		67	1	68
M																		-		
N					••••															
Р									68					67				<u></u>	1	
Q	52		52		51	52		} 	·}······							68				
R					1	**********			······································	1	• • • • • • • • • • • • • • • • • • • •		••••							
S							52				•		••••••	1	68				66	
T											•••••				······································	********	68			
V		52										66		•••••				1	•••••	
W					•••••	•••••								•		••••				
Χ						•								•••••						••••
Y						•••••		••••••						********		•••••				•••••
Z						*******		•••••	,					••••••						•••••
-																				
unknown (?)								•••••••					******			*******				•••••
not sequenced	22	22	22	22	22	22	22	22	6	6	6	6	6	6	6	6	6	6	6	6
sum of seq ²	52	52	52	52	52	52	52	52	68	68	68	68	68	68	68	68	68	68	68	68
oomcaa³		52																		
mcaa'	Q		- •		Q	_ :	S	G	Р	G	L	٧	Κ	Р	S	Q	Т	L	S	L
rel. oomcaa⁵	100%	100%	100%	100%	%86	100%	100%	100%	100%	99%	100%	97%	100%	%66	100%	100%	0001	99%	97%	100%
pos occupied ⁶	1	1	1	1	2	1	1	1	:	2		3	••••••		••••••••••••	1	1	······ ː	:	

Table 6G: Analysis of V heavy chain subgroup 6

														CD	RI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	⋖	8	32	33	34	35	36	37	38
Α	1		67											66	67					
В																				
С		68																		
D							68				1						1			
E																				
F .										2				1	1				1	
G			1			69							3	1	2					
Н																	1			
				64								2					1		70	
K												3	•							
L																				••••
M													••••							
N							1				2	66					70			••••
Р					••••															•••
Q													•••••							••••
R										i	2	1								7
S	1			1	69			69		68	66		67		3		1			••••
Ţ	67										2	1	4	***********	1					
V			1	4					70					6					2	••••
W,		1														74		74		
Χ																				
Y												1				•			1	•••
Z																				
-																				Ī
unknown (?)											1									
not sequenced	5	5	5	5	5	5	5	5	4	4										
sum of seq ²	69	69	69	69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	7
oomcaa ³	67	68	67	64	69	69	68	69	70	68	66	66	67	66	67	74	70	74	70	7
mcaa ⁴	T	С	Α	I	S	G	D	S	٧	S	S	Ν	S	Α	Α	W	Ν	W	I	
rel. oomcaas	37%	%66	92%	33%	0001	%001	99%	%001	0001	97%	39%	89%	31%	39%	31%	%00 l	95%	%001	92%	
pos occupied ⁶	:	:	:	:											5		5		<u>O</u> /	·`

				E.	ama	wor	k 11						Т							
amino acid'	39	40	41	42	43	44	45 ==	46	47	48	49	20	51	52	<	8	U	53	54	55
А				1				:	:		T		1				:	1	:	
В			•														<u></u>	<u> </u>		
. С			-	:							<u> </u>						<u> </u>		<u> </u>	
D				Ī															<u> </u>	
E								74	:	Ī	<u> </u>									
F.										•	<u>:</u>			2	1			1		
G						74			······		74	1					•••••		1	[
Н														••••••	1					
l									·					••••••						
K	1				1									•••		1			6 6	
L	1						74			74					•					
М															•					
N																			1	
Р			73																	
Q	72		<u>.</u>																	•••••
R					73							73		•••••		72			1	1
S		74	1	73											•	1		72		
Т													73						5	*********
V																				*********
W		•••••							74											73
X							•••••													
Υ		·					••••							72	72					
Z																				•••••
-																	74			
unknown (?)																				
not sequenced																				
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
oomcaa ¹	72	74	73	73	73	74	74	74	74	74	74	73	73	72	72	72	74	72	66	73
mcaa'	Q	S	Р	S	R	G	L	Ε	W	L	G	R	Τ	Υ	Υ	R	-	S	K	W
rel. oomcaa ^s	92%	100%	%66	%66	%66	100%	100%	100%	100%	100%	100%	%66	%66	926	97%	97%	100%	97%	%68	%66
pos occupied ⁶	3	1	2	2	2	1	1	1	1	1	1	2		2	3	3	1	3		2
								1	88	********	••••••			•••••••		·-·····.			,i.	

•	С	DR	11																	
amino acid'	99	27	28	23	99	19	62	63	64	65	99	29	89	69	20	11	72	73	74	75
А					73	1							2			6		1		
В									<u> </u>										<u></u>	
· C				1																
D			68			1									2		73			
E	1		3			7			1											2
F .	7																			
G			1				1			8										
Н	1																1			
1	<u> </u>					1				<u> </u>		65	2	71				1		
К		1							67						1					70
L	1					5		2				4						1		
М												1								
N	2	65	1						1						6 9					
Р					1	1										6 6				
Q									2		1									
R		1							3		73									
S	2	2	1	1			73			66			1		2	1			73	
Т		4											69	1				71	1	2
V						58		72				4		2		1				
W																				
X																				
Y	60	1		72																
Z																				<u> </u>
-			<u></u>																	
unknown (?)																				
not sequenced																				
sum of seq²	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
oomcaa,	60	:	68	72	73	58	·····	72	• • • • • • • • • • • • • • • • • • • •		73	65	69	71	69	66	73		•	······
mcaa¹	Υ	N	D	Υ	Α	٧	S	V	K	S	R	١	Ţ	1	N	Р	D	T	S	K
rel. oomcaa ^s	81%	%88	92%	97%	%66	78%	%66	97%	91%	89%	%66	9/088	93%	%96	93%	%68	%66	%96	%66	95%
pos occupied ⁶	:		:	•	•	•	•	•	:	:	:	:		:	:	:	:	Ė	:	3

159

Maximino acid See										_											
A						Fran	new	ork l	11												
B	amino acid'	9/	11	78	79	80	81	82	۷	മ	ပ	83	84	85	98	87	88	89	90	91	92
CC Ja Ia	Α													1			74				
D	В																	•		<u> </u>	
E	· C											Ī									73
F	D								3		<u></u>	<u></u>			73			••••••			
H	E											<u></u>	<u> </u>	73				•••••		<u></u>	
H	F	<u> </u>		71						1								•••••	•••••	3	
N	G		<u></u>	<u></u>	<u></u>										1						
K I	Н		<u> </u>	<u></u>	<u>.</u>		2		1												
N	1		<u> </u>	1		<u></u>												2			•
M	К			<u>.</u>		<u> </u>			4										•••••		
N 74 0 0 0 0 0 0 0 0 0	L		1	<u> </u>	<u> </u>	74		72													
P	М		<u> </u>	<u>.</u>				1			1	·						2			
No comboom No	N	74	ļ						63											1	
R 1 3 1 3 1 1 1 1 1 1 1 2 1 3 1 3 1 1 1 1 1 2 1 3 1 3 1 1 1 1 1 2 1 3 1 2 1 1 1 2 1 3 1	Р							•••••					70								
S	Q		72				71								····						
T I	R		1				1		1												1
V I Z I I I T	S				74				1	73		1	3								
W I	T								1			73				74			1		
X I	V			2				1			73							70			
Y I	W																				
Z I	X																		<u></u>		
Unknown (?)																			73	70	
not sequenced Image: sum of seq' and seq' an	Z																				
not sequenced Image: sum of seq' and seq' an	-																		<u></u>		
sum of seq' 74										<u></u>											
oomcaa¹ 74 72 71 74 71 72 72 63 73 73 70 73 73 74 74 70 73 70 73 mcaa⁴ N Q F S L Q L N S V T P E D T A V Y Y C rel. oomcaa⁵ 80 80 80 80 80 86 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-							-	-											
mcaa¹ N Q F S L Q L N S V T P E D T A V Y Y C rel. oomcaa⁵ 0,000 0		:						:	:	•						••••••	• • • • • • • • • • •	*******		********	*******
rel. oomcaa, 100001						74		72	:	:		73		••••••	73	74	74	70	73	70	73
0, 0, 0, 0, 8 6 6 6 6 6 6 6 6 6	mcaa¹		u	۲	5	L	U	L	N	S	V	T	Р	E	D	T	Α	٧	Υ	Υ	С
	rel. oomcaa⁵	100%	92%	%96	100%	100%	%96	92%	85%	%66	%66	%66	%96	%66	%66	100%	100%	95%	%66	95%	%66
lan	pos occupied ⁶	1	3	3	1	1	3	3	7	2	2							·······			

	CDR III																			
amino acid'	93	94	95	96	97	86	66	100	Υ	80	ပ	۵	w	ட	9	I	_	_	×	101
А	69		11	1	3	12	4	3	2	5		8						10	1	
В																				
· C					1		1			1		1	1							
D			19	4	3	7	4	3	1	6	1	1	1							62
E			10	4	2	1	2	2	1	2				•••••			1			
F	1		1	1	1		1	2	3		2		•••••	1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
Н				1		1			1	1	1	1				1	1	1		
1				1	2		2		5	1										
K		1	1	1	1	1	1	1				1								
L			1	8	4	2	3	2	1					1	5				8	
М				1				1			5								11	
N			1	3	1	2	1	1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
S		3	5	5	5	7	6	7	3	4	2					1	1			
Т			1	1	4	3	4	4	6	3	1			1						
V	3	1	4	5	1	9			4		9	5	1	1					2	
W			1	6	8		3	2	4								4	4		
Х																				
Y				6	4	2	2	2	6	6	2	4	2	1	8	8	12	12		
Z															_					
_				2	3	7	14	23	25	33	41	47	53	54	57	56	50	28	12	4
unknown (?)														6	1	5				
not sequenced				1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
sum of seq ²	74	74	73	72	71	71	72	72	72	72	72	72	72	72	72	72	72	72	72	72
oomcaa ³	69	69	19	10	15	15	14	23	25	33	41	47	53	54	57	56	50	·28	38	62
mcaa•	Α	R	D	Р	G	G	-	-	-	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaa ^s	93%	93%	26%	14%	21%	21%	19%	32%	35%	46%	57%	65%	7 4 0/0	75%	79%	78%	%69	39%	53%	%98
pos occupied ⁶	:		:					:		: :		: :								5

19

		Γ	Framework IV												
	amino acid	102	70.	104	- C					109				711	sum
	Α							Ī	2	!					494
	В								•••••						
	С						····		•••••						147
	D							***	•••••	•••••	 				403
	E						···	···		•••••					186
	F		2							•••••				2	150
	G			49	9	5	0			******					571
	Н		2				••••								18
			9					3	••••	1	·				304
	K				Ť	1			1			•			293
	L	!	5		<u> </u>	·· ·		2	6	•••••		•			632
	М					<u> </u>			8	•••••			-		31
	N									•••••					436
	Р	4	l		•	3	<u> </u>	-		******			 -		1 387
	Q				40)				******		•	·		539
	R			********	2					••••••					495
	S	4		1	 !						•••••		43	4(
	T					·	45	5	4		45				640
	V	21						· .	· 	46		48			647
	W		65					·÷····	5		••••••				398
	X							· 		•••••	•••••			·	. 330
	Υ	19			•••••		<u> </u>	†····				••••••	•••••	······	518
	Z					••••••••••••••••••••••••••••••••••••••				•••••	••••••	•••••	•••••		∦ 3.0
	-	2													585
	unknown (?)				********						•••••	*********	•••••••		13
n	ot sequenced	5	8	23	24	23	24	25	5 2	25	28	25	28	26	. 31
;	sum of seq²	68		50											
				49											
	mcaa⁴	٧	W		Q		T	L	:	V	T	٧	S	S	•
r	el. oomcaas	31%	100%	%86	82%	100%	92%	54%	7007	36%	%00.I	%00	%96	%86	
po	os occupied ⁶	:	:	:	4	•	3		:	3	1			<u>ი</u> 2	
	·•	•••••••	••••••			••••••	 N2		<u> </u>	i			۷:		

12

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L, Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273–274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181–189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- 14 Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799-3803.
- Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

PCT/EP96/03647

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869-2873.
- 22 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401–1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98–103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989) J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991) Arthritis And Rheumatism, 34, 343–350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799–804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077-1080.
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403-1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718-1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195-205.
- Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc.Acids Res., 12, 5249–5263.
- 47 Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195-2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944–3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261–271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp. Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann. Immunol. (Inst. Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272-3277.
- Klobeck, H.G. Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903–1911.
- 60 Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- 65 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322–1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322–1325.
- 67 Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)
 J.Immunol., 131, 1322-1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)
 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543–1551.
- 81 Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805–810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- 93 Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

PCT/EP96/03647

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, L.Z., Pratt, L.F., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991) J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052-1057; Riesen, W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096-2100; Riesen, W.F. & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)
 Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- 108 Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- 114 Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- 115 Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 118 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234–2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501–1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231–2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.Immunol., 23, 391-397.
- . 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795-2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

PCT/EP96/03647

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc. Acids Res., 13, 2931-2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Linke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149-155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901-906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem.J., 256, 973-980.

200

24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.

- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848–852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871–1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301-306.
- Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

- Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-
- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.
- Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020;
 Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006-9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718-1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349–362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

202

59 Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971) Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- Sletten, K., Husby, G. & Natvig, J.B. (1974) Scand.J.Immunol., 3, 833–836.; Sletten, K., Natvig, J.B., Husby, G. & Juul, J. (1981) Biochem.J., 195, 561–572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979)

 J.Biochem., 86, 1523-1535.
- Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321-333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteras, T., Sletten, K. & Westermark, P. (1985) Biochem.J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603–1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722-1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 6 Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- 10 Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas lii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812-823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529–1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727–738.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Treia, M., Sklar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

PCT/EP96/03647

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)
 Arthritis And Rheumatism, 34, 343-350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799–804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 42 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741-3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689-1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem.J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294-1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- 64 Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69-85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

PCT/EP96/0364/

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203–213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989) J.Exp.Med., 170, 1347-1355.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581–597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.lmmol., 141, 3994-3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 80 Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990)
 J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385–4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand. J.Immunol., 36, 349-362.
- 86 Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351,
 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041-2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem.J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83–103.
- Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. & Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867-878; Matthyssens, G. & Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561-6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

PCT/EP96/03647

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793.
- 105 Schroeder, H.W., Jr., Hillson, J.L. &t Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. &t Carson, D.A. (1989) Arthritis &t Rheumatism, 32, 72-76.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen,
 P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115–1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 126 Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- 130 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481–1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.
- B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827-836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur J. Immunol., 21, 1821-1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 9 Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495–3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.-D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids.Res., 17, 3976.
- 4 Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601–1616.

212

3 Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843-1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003-2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986) J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047-1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

2/3

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur.J.Immunol., 23, 832-839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234-2240.
- Weng, N.-P., Snyder, J.G., Yu-Lee, L.-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075-1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193–203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

WO 97/08320 PCT/EP96/03647

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- (a) deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- 2. A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- 5. The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

PCT/EP96/03647

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
- 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
- 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - (i) screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
- 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

WO 97/08320 PCT/EP96/03647

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15. The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

PCT/EP96/03647

24. The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

WO 97/08320 PCT/EP96/03647

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- **40**. A kit comprising at least one of:
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- **41**. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, anddeducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- 42. A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

WO 97/08320 PCT/EP96/03647

(b) carry cleavage sites, each of which:

- (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
- (bb) are unique within each gene sequence,
- (bc) do not form compatible sites with respect to any single subsequence, and
- (bd) are common to all homologous sub-sequences.
- 45. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- **50** A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

- 51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.
- **52**. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

WO 97/08320 PCT/EP96/03647

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence,
 and
 - (d) are common to all homologous sub-sequences.

PCT/EP96/03647

Figure 1: construction of a synthetic human antibody library based on consensus sequences

Figure 2A: VL kappa consensus sequences

ł									fr	am	١e٧	framework 1	- -													CDRI	~		
ì	7	8 2 9 5 7 8 7 7	ヤ	9	9	L	8	6	01	11	12	13	bl	91	91	121	81	61	50	12	77	23	74	52	56	77	\forall	В	J
	—	VK1 DIQMTQSP	Σ	 	Q	S	٩	S	S		S	A	S	>	9		æ	>	-	—		<u>ں</u>	~	A	S	0	ı	1	'
	VK2 D 1	V M T Q S	Σ	⊢	Q.	S	Д		S		Д	>	—	Д	G	ш	Φ.	Υ	S		S	\mathcal{O}	\propto	2	S	O	S		
	VK3 D 1	>			O	S	Ф	A			S	_	S	۵.	9	ш	\propto	A			S	\mathcal{O}	\propto	\forall	2	0	2	1	1
		VK4 DIVMTQ	Σ	<u> </u>	O	S	٥	0	S	<u> </u>	V	>	S	_	9	ш	\propto	A	—		Z	C	\propto	S	2	0	S	>	—
I i																													
1				ا ا	CDRI										fr	framework 2	e W	or	k 2							0	CDR II	=	
	E	30 30 50 50 50 50 50 50 50 50 50 50 50 50 50	28	53	30	31	32	33	34	32	36	32	38	38	01	17	45	43	77	St	97	14	84	67	09	ιs	25	53	75
į							-		-	-																			

CDR II	25 25 29 20 20	AASSL	L G S N R	GASSR	WASTR
	6t 8t	>	≻ -	<u>≻</u>	<u>≻</u>
	27 97		<u> </u>		
2	5t	P X	P 0	P R	P X
framework 2	43	X A	0 S	0 A	0 P
frame	l t 0t	P G	P G	P G	P G
	38	0 K	a X	Q X	0 ×
	25 25 35	Y 0 () -	√ Q	√ 0
	32	A W	× ×	W A	A W
	33			٦ /	_
	32	S	> Z	S	>- Z
CDRI	30	<u> </u>	X 9 N	S S	× z
	F 28	<u>ا</u>	Z	>	S S
	E D	1	H	t i	VK4 YSSNNKN
	'	Vk1	VK2 H	VK3	VK4

a	,
C	2
900	-
ā	;
-	į
=	_
٠	5
à	2
v	
v	٦
=	3
j	2
Š	-
ā	;
v	Š
Č	-
ē	5
۲	5
•	•
C	3
2002	2
ē	5
ā	₹
2	;
=	J
5	•
٠.	
بز	;
7	ì
2	ď
11116	,
-	_
-	3
ت	÷
.⊆	:
ш	

Figure 2B: VL lambda consensus sequences

framework 1 CDRI	89 0 1 2 3 2 5 2 5 2 5 2 5 1 1 1 1 1 1 1 1 1 1 1 1	PS-VSGAPGQRVTISCSGSSNI	AS-VSGSPGQSITISCTGTSSDV	PS-VSVAPGQTARISCSGDAL	framework 2 CDR II	29955390444444444444444444444444444444444	SWYQQLPGTAPKLLIYDNNQRPSG	WYQQHPGKAPKLMIYDVSNRPSG	WYOOKPGOAPVIVIYDOSUBOC
		1	A S	P S		32	≻	≥	>
	2 9 5	SVLTOP	SALTOP	/ELTOP	CDRI	30 32 33 34	>	GGYNYVS	G D K - Y A S V
	l	W1 0 S V	$M_2 \mid 0 \mid S$	M3 S Y		500	M1 6 S	M2 6 0	M3 6 [

Figure 2B: VL lambda consensus sequences

	1								
	78	>	>	>					
	98	>	>	>					
	98								
	48	⋖	A	A					
	83	ш	ш	نبا					
	85			0					
	18	ш	ш	ш					
	08	S	\forall	\forall					
	64	a	O	O					
	87			-		701	9	G	٣
	LL	9	Ð	G		A			
	92	├ ─	S	S		901	>	>	>
_	97					GOL	 -	-	-
×	74	⋖	-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	101			_
<u>0</u>	73			_	\oldots	103		\checkmark	\succeq
ne L	7.5	S	S		nev	102	-	-	-
tramework 3	lΖ	A	V	\forall	framework 4	101	9	9	5
-	٥۷	S	—	÷	٦	100	9	_G	٣
	69	—	Z	Z		66	9	G	5
	89	9	9	G		86	<u>u</u>	ய	Ľ.
	۷9	S	S	S		۷6	>	>	>
	99	\prec	\checkmark	Z		96	مـ	۵	۵.
	99	S	S	S		96	م	۵	Д
	7 9	9	9	Ð		7 6	 	-	-
	63	S	S	S	CDRIII	63	-	├-	 - -
	79	ட	للـ	ட	8	65	>	>	>
	19	8	\propto	\propto		16	工	工	エ
	09		Z	ш		06	a	O	O
	69	۵.	S	۵		68	a	O	O
	89	>	>] 88	0	ر ا	<u>ں</u>
		3	W2	W3			3	W2	W.3

sanences
onsensus s
y chain co
2C: V heav
Figure 2C

											۷9	A	—	\times	<u> </u>	—	—	Z
											99	⊢	9		S	S		>-
	30	S	-	S	S	S	—	S			99	9	9		9	9	S	\geq
	58	ட	ட		ш	_	ட	>			79	ഥ	S		9	S		\checkmark
	28	 —	⊢	S	—	S	S	2		II N	23		Z	\geq	S	>	9	S
	77	9	>-	ட	ட	9	>			CD	Э	1	1	1	1	1	ı	1
	56	9	9	9	9	9	9	9			В	1	ı	ı	ı	1	1	\propto
	52	S	S	S	S	S	S	S			A	م	٩	ı	9	ı	٩	>-
	77	×	A	ட	\forall	>	9	-			25	_	Z		S	>	>	>-
	23	\succ	\checkmark	—	\forall	├—	\checkmark	A			19	-	_			_	_	-
	77	C	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	\mathcal{O}	<u>ں</u>			09	9	\geq		\forall	>	_	\propto
	12	5	S		2	\vdash	S	-	:		6t	9	9	\forall	S	9	9	9
	50	>	>	_	_	_	_	_			84	≥	\geq		>		≥	
	6l	\prec	\checkmark	\vdash	\propto	\sim	\checkmark	S			۷Þ	≥	\geq	\geq	≥	\geq	\geq	\geq
_	81	>	>	_		_	_	7		2	97	ш	ш	ш	ш	ш	ш	ய
논	11	5	S	-	S	—	S	\vdash		논	94		_	_	_		_	
framework	9١	S	\forall	0	9	ш	ш	O		mewo	77	9	9	A	9	9	9	9
ne	91	9	9	-	9	S	G	S		πe	43	Q	O	\checkmark	\checkmark	\checkmark	\checkmark	.œ
raı	τl	م	٩	۵	٩	۵.	۵.	۵		frar	77	9	9	9	9	9	9	9
	13	\leq	\checkmark	\checkmark	0	\prec	\prec	\prec		_	17	مـ	۵	٩	Δ_	۵	٥	۵_
	15	\times	\prec	>	>	>	\leq	>.			07	A	A	ط	A	ط	≥	S
	11	>	>		_		>	_			38	O	O	O	O	O	O	O
	Οl	ш				9					38	8	\propto	\propto	\propto	\propto	\propto	8
	6	×	\forall	۵	G	۵.	A	۵			37	>	>	_	>		>	_
	8	9	9	9	9	9	9	G			36	\geq	\geq	≥	≥	≥	≥	3
	L	2	S	S	S	S	2	S			35	S	工	9	S	_	9	Z
	9	O	0	ш	ш	ш	O	O			34	-	\geq	>		\leq	_	3
	S	>	>	\prec	>	O	>	O		CDRI	33	A	>	9	\forall	>	\leq	A
	セ						-			ט	32	 	>	>	>	>-	>-	A
	3	0	0	0	O	O	O	O			8	١	ŧ	9	ı	ŧ	1	S
	7	>	>	>	>	>	>	>			A	'	i	S	ı	1	1	Z
		0	0	0	ш	0	ш	0			15	2	2	<u> </u>	S	<u>S</u>	S	S
		VH1A	VH1B	VH2	VH3	VH4	SVH5	9H BSTIT	TUTE 6	SHE / 20	ET (P.L 4	FVH1A	©VH1B	VH2	VH3	VH4	VH5	9HA

sednences
y chain consensus
heavy chain
gure 2C: V h
نت

	1		_						1					<u>.</u>				
	98			>							113	Į.						S
	78	1		Д						4	115	2	S	S	S	S	S	S
	83	2	8							돗	111	>	>	>	>	>	>	>
	D .	-		\geq	لــا	>		>		WO	011	⊢		—	—	—	—	<u> </u>
	8	5	S	Z	S	S	S	S		mew	60 L	>	>	>	>	>	>	>
	A	S	S		Z	S	S	Z		frai	108	-		_				
	82			\geq	\geq	_	\geq	_			201	-	-	—	├ ─	—	-	├─
	18	ш	ш	—	O	\prec	O	0			901	9	9	9	9	9	9	9
3	08	\geq	\geq		_						901	0	O	O	O	O	O	O
or	64	>	>-	>	>	S	>	S			10t	9	9	9	9	9	9	9
framework	87	A	\forall	>		ட	\forall	ᄔ			103	\geq	\geq	\geq	\geq	\geq	\geq	≥
am	LL	—	-	0		O	—	0			105	>	>	>	>	>	>	>
fr	92	S	S	Z	Z	Z	\sim	Z			101							
	97	-		\checkmark	\prec	\checkmark		\prec		=	Э	\geq	\geq	\geq	\geq	\geq	Σ	Σ
	ħ۷	S	S	\sim	S	\sim	\sim	S		CDR	8	⋖	\forall	\forall	\forall	\forall	\forall	V
	73	ш		-	Z	—	\prec	_		ပ	\forall	>	>	>	>	>	>	>
	75										100	ш.	ட	ட	щ	ட	ட	ഥ
	۱L	A	8	\checkmark	\propto	>	A	َ ط			66	9	9	9	9	9	9	9
	٥۷	├ ─	-	S	2	S	S	Z			86							
	69		\geq		_	_	_	_			۷6	9	9	9	9	9	9	9
	89	-	⊢	—	\vdash	-	<u> </u>	—			96	9	9	9	9	9	9	9
	۷9	>	>	_	ட	>	>				96	≥	≥	\geq	\geq	≥	≥	≥
	99	ł		\propto							7 6	8	\propto	\propto	\propto	\propto	\propto	\propto
	99	9		—						3	£6.	l	\forall					l l
_	79	O	0	\prec	\prec	\prec	O	X		Ā	76	0	ں	\mathcal{O}	ر ا	ں	ں	0
CDRI	63	İ	ட		-			>		framework	16	>	>	>	>_	>	>	>
13	79	\prec		S						me	06	>	>	•		•	•	>
	19	Q	_	-						fra	68	>	>		>			1
	09	M	\forall	2	\forall	Z	S	A			88	A	\forall	\forall	\forall	\forall	\forall	4
	69	>		>		>-		>			۷8		-					-
	89			<u>></u>	<u>></u>	Z	<u> </u>				98			<u> </u>				
1		VH1A	VH1B	VH2	VH3	H4	VH5	9H				H1A	/H1B	VH2	VH3	VH4	VH5	9H/
		>	>	>	>	>	>5	_	ITUT 7	E SH / 20	EET (RU 4	LE 2	_	>	>	>	>	>

BamHI

ഗ

GCCAGCAGCT TGCAAAGCGG GGTCCCGTCC CGTTTTAGCG GCTCTGGATC

~~~~~~~

SanDI

AGCTATCTGG TCGATAGACC GCTTTGATAA TTAAATACGT GCGTGGGTGA CGCACCCACT AATTTATGCA Ø Ы G U  $\succ$ >  $\mathbf{H}$ ~~~~~ ഗ AseI G ഗ CGAAACTATT CTGAGCGCGA GGGCATTAGC CCCGTAATCG GACTCGCGCT 口 S ഗ Ø 口  $\vdash\vdash\vdash$ S لتا X  $\mathcal{O}$ Ы K Д ACTGGGTCTC GGGCAGATCG ATTACCTGCA. GAGCGAGCCA CTCGCTCGGT GGTAAAGCAC CCATTTCGTG CCCGTCTAGC Ø ഗ ഗ Ø ഗ ഗ Д × Ø Д  $\gt$ ~~~~~ G Banl SexA  $\alpha$ TAATGGACGT CGTCTTTGGT GCAGAAACCA TGACCCAGAG G ഗ PstI Д Figure 3A: V kappa 1 (Vk1) gene sequence O ഗ × E ⊱⊣ Ø Ö Σ 口 AGCACACTGG Ø CGTGGTACCA GCACCATGGT CTATAGGTCT TCGTGTGACC GATATCCAGA  $\vdash$ Ø ഗ KpnI ECORV ~~~~~ S  $\geq$  $\alpha$ K K

CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG Figure 3A: V kappa 1 (V $\kappa$ 1) gene sequence (continued)

H BbsI ~~~~~~ Eco57I 国 Д Ø Д ഗ ഗ Н Е П  $\vdash$ ᆈ ⊣ BamHI

 $\mathfrak{O}$ 

GAAGACTTTG CTTCTGAAAC GGACGTTGGA CCTGCAACCT GGTAATCGTC CCATTAGCAG TTTACCCTGA GCCGTGACTA AAATGGGACT CGGCACTGAT

~ ~ ~ ~ ~ ~

Ŋ لتا ⊱ Д Д  $\vdash$ Ø

≻⊣

二

Ø

 $\mathcal{O}$ 

MscI

CTTTGGCCAG GAAACCGGTC GGGCGGCTG CCCCGCCGAC CATTATACCA GTAATATGGT CGACCTATTA TTGCCAGCAG AACGGTCGTC GCTGGATAAT

BsiWI 又 Н 띡 > 又 Е C

TGCATGC ACGTACG TTGAAATTAA AACTTTAATT GGTACGAAAG CCATGCTTTC

~ ~ ~ ~ ~

SUBSTITUTE SHEET (RULE 26)

K

Figure 3B: V kappa 2 (Vk2) gene sequence

| 团            | GA                                    |                | ညီပုံ                         | Q            | AG                        | ĮΤι        | TT                                 |
|--------------|---------------------------------------|----------------|-------------------------------|--------------|---------------------------|------------|------------------------------------|
| Q            | CTCCGGGCGA<br>GAGGCCCGCT              | Z              | CATAGCAACG<br>GTATCGTTGC      | Ωι           | AAGCCCGCAG<br>TTCGGGGCGTC | ሺ          | ~<br>CGGATCGTTT<br>GCCTAGCAAA      |
| Д            | 900                                   | W              | 'AG(                          |              | , CC<br>1991              | Д          | BAT<br>CTA                         |
|              | CTC                                   | Ħ              | CAT                           | Ω.           | AAG<br>TTC                |            | ~<br>GGG<br>GCG                    |
| E            |                                       |                |                               | Q            |                           | P<br>OI    | }                                  |
| >            | GTG                                   | IJ             | GCT                           | ひH           | ~~<br>GTC<br>CAG          | V<br>SanDI | GGGTCC<br>CCCAGG                   |
| I.           | CTGCCAGTGA<br>GACGGTCACT              | IJ             | AAGCCTGCTG<br>TTCGGACGAC      | P G<br>SexAI | AACCAGGTCA<br>TTGGTCCAGT  | Ω<br>Ω     | AGTGGGGTCC<br>TCACCCCAGG           |
| ت            | TGC<br>ACG                            | Ŋ              | AGC                           | S<br>P       | ~~~<br>ACC<br>TGG         | S          | GTC                                |
| <b>,</b>     |                                       | •              |                               | ×            |                           |            |                                    |
| Ŋ            | ~~~<br>CCCACTGAGC<br>GGGTGACTCG       | O <sup>1</sup> | ~<br>GAAGCAGCCA<br>CTTCGTCGGT | O<br>I       | TACCTTCAAA<br>ATGGAAGTTT  | A          | CAACCGTGCC<br>GTTGGCACGG           |
| H            | TG                                    | Ŋ              | AG                            | 7            | TC.                       | K          | GGT                                |
| Д            | ~<br>CAC<br>GT©                       | Ŋ              | AGO                           | H            | ~~<br>CCJ<br>GGZ          | Z          | ACC                                |
| HTT          | × × × × × × × × × × × × × × × × × × × | ~              | , ⊂<br>GA<br>CT               | Y<br>KpnI    | 3G TACC                   |            | CA                                 |
| S<br>BanII   | 3AG CCC<br>CTC GGG                    | C R<br>PstI    | ~~~~~~<br>TGCA G<br>ACGT C    | ¥<br>Kr      | ~<br>00<br>00<br>00       | W          | AG                                 |
| Q            | TGACCCAGAG                            | C<br>Ps        | ATTAGCTGCA<br>TAATCGACGT      | Σ<br>Ω       | TCTGGATTGG<br>AGACCTAACC  | O          | ATCTGGGCAG<br>TAGACCCGTC           |
| H            | 000                                   | Ŋ              | AGC                           | I<br>I       | GG7                       | ᆸ          | TGC                                |
|              | rga<br>act                            | н .            | ATT<br>FAA                    | H            | rct<br>Aga                |            | ATC<br>TAG                         |
| $\Sigma$     |                                       | •              |                               | ≯            |                           | ≯          |                                    |
| >            | GTG                                   | ഗ              | SAG                           | Z            | ACT<br>IGA                | H          | ~~<br>ATT<br>TAA                   |
| I<br>RV      | TCC                                   | Ø              | )<br>)<br>)<br>)<br>(<br>)    |              | TA.                       | L<br>AseI  | ~~~~~~<br>ATTAAT<br>TAATTA         |
| D I<br>EcoRV | ~~~~~<br>GATATCGTGA<br>CTATAGCACT     | Д              | GCCTGCGAGC<br>CGGACGCTCG      | ≯            | GCTATAACTA<br>CGATATTGAT  | L          | ~~~~~~<br>CTATTAATTT<br>GATAATTAAA |
|              | i 0 0                                 |                | ŌΌ                            | Q            | υŪ                        |            | U 0                                |
|              |                                       |                |                               |              |                           |            |                                    |

ATTAAACGTA TAATTTGCAT

GCCAGGGTAC GAAAGTTGAA CGGTCCCATG CTTTCAACTT

CCGACCTTTG GGCTGGAAAC

Figure 3B: V kappa 2 (Vk2) gene sequence (continued)

| >                 | TGG                               | Д                 | 0005<br>1880                  |                       |
|-------------------|-----------------------------------|-------------------|-------------------------------|-----------------------|
| <sub>Σ</sub>      | GTG                               | T<br>T            | ACC                           |                       |
| S R V             | AGCCGTGTGG<br>TCGGCACACC          | E                 | TACCACCCG                     | I I                   |
| Н                 | ATT<br>PAA                        | $\succ$           | בדי<br>באר                    | I K R T<br>BsiWI      |
| S G T D F T L K I | CCTGAAAATT<br>GGACTTTTAA          | G V Y Y C Q Q H Y | AGCAGCATTA<br>TCGTCGTAAT      |                       |
| ъ                 | TGA<br>ACT                        | Q                 | CAG<br>GTC                    | X                     |
|                   | U U                               | O <sup>l</sup>    | AG                            | Н                     |
|                   | rac<br>atg                        | τ)                | 900<br>188                    | 団                     |
| ĮΤί               | TTT                               | <u> </u>          | ATTC                          | K V E                 |
| О                 | CCGATTTTAC<br>GGCTAAAAATG         | <i>γ</i> -1       | TATTATTGCC<br>ATAATAACGG      | ×                     |
| E                 | • •                               | <b>,</b> > 1      |                               | _                     |
| Ö                 | GCA<br>CGT                        | $\triangleright$  | GTG                           | Ð 0                   |
| S<br>HI           | ~ ~<br>CCG<br>GGC                 | Q                 | 999<br>888                    | G                     |
| G S<br>BamHI      | ~~~~~<br>GGATCCGGCA<br>CCTAGGCCGT | >                 | ~<br>CGTGGGCGTG<br>GCACCCGCAC | Ø ~ ~                 |
|                   |                                   | О Н               | }                             | G<br>MscI<br>~~~~~~~~ |
| W                 | CTC:                              | . ⊢ ∨ Ω           | ZZAGA C                       | [H }                  |
| U                 | 3000                              | O }<br>U }        | ∵<br>TGZ<br>BACT              | E                     |
| Q                 | TAGCGGCTCT<br>ATCGCCGAGA          | ·                 | AAGCTGAAGA<br>TTCGACTTCT      | Д                     |
|                   | HA                                | 问                 | A H                           |                       |
|                   |                                   |                   |                               |                       |

口 GAGGCCCGCT CTCCGGGCGA G Д ഗ GACTCGGACA CTGAGCCTGT Н ഗ П ACTGGGTCTC GGGCCGCTGG CCCGGCGACC ⊱ Ø Д ~~~~~ BanI TGACCCAGAG S Figure 3C: V kappa 3 (Vk3) gene sequence Ø CTATAGCACG GATATCGTGC ~~~~~ ECORV

ഗ ഗ GAGCGTGAGC ഗ > ഗ CTGAGCTGCA GAGCGAGCCA Ø ഗ Ø 召 PstI  $\mathcal{O}$ ഗ ACGIGCGACC ⊱ Q വ

AGCAGCTATC TCGTCGATAG CTCGCACTCG Ц K Д Ø GACTCGACGT CTCGCTCGGT Ø G Д X Ø Ø TGCACGCTGG  $\geq$ K  $\Box$ 

ATTAATTAT TAATTAAATA GTGGCGCAGA CACCGCGTCT CCAGGTCAAG GGTCCAGTTC GGTCGTCTTT CCAGCAGAAA ACCGCACCAT TGGCGTGGTA

~~~~~~~

SexAI

KpnI

~ ~ ~ ~ ~ ~

AseI

 $^{\circ}$ BamHI ഗ C ഗ L α Q Д SanDI G Н Ø α ഗ ഗ K Ò

GCGCGTTTTA GCGGCTCTGG

GGCGCGAGCA GCCGTGCAAC TGGGGTCCCG

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CGCCGAGACC
CGCGCAAAAT
ACCCCAGGGC
CGGCACGTTG A
CCGCGCTCGT

Ω	H		
ப	57	? ? ? ?	
വ	ECO	>	
	*		
ഠ			
H			
ഗ			
ഗ			
Н			
H			
니			
₽		,	
ᄺ			
Ω			
E			
Ŋ			

ഗ

BbsI	~ ~ ~ ~ ~ ~	AAGACT	FTCTGA	
щ	?	CCTGZ	GGAC1	
		CAGCCTGGAA	GTCGGACCTT	
		GATTTTACCC TGACCATTAG CAGCCTGGAA CCTGAAGACT	CTAAAATGGG ACTGGTAATC GTCGGACCTT GGACTTCTGA	
		GATTTTACCC	CTAAAATGGG	
BamHI	? ? ?	ATCCGGCACG	TAGGCCGTGC	

ტ	MscI	<pre></pre>	$_{ m TGGC}$	ACCG
Y C Q Q H Y T T P P T F G			GACCTTTGGC	CTGGAAACCG
Ф				
Д			CCG	GGC
E			CCACCCGCC	GGTGGGGCGG
Η				
\succ			TA	ATI
H			CAGCATTATA	GTCGTAATAT
Ø			CAG	GTC
Ø			CAG	GIC
Ö			TGC	ACG
\succ			TTATTGCCAG	AATAACGGTC
×			STA	CAT
F A V Y			TTGCGGTGTA	AACGCCACAT
A			'GCG	יכפכ
ഥ			ΤΤ	AA

R T BsiWI

X

口

 \bowtie

E-

G

MscI

TAAACGTACG ATTTGCATGC CAGGGTACGA AAGTTGAAAT GTCCCATGCT TTCAACTTTA

Figure 3D: V kappa 4 (Vk4) gene sequence	D I V M T Q S P D S L A V S L G E EcoRV	GATATCGTGA TGACCCAGAG CCCGGATAGC CTGGCGGTGA GCCTGGGCGA CTATAGCACT ACTGGGTCTC GGGCCTATCG GACCGCCACT CGGACCCGCT	RATINCRSSQSVLYSS Psti	ACGTGCGACC ATTAACTGCA GAAGCAGCCA GAGCGTGCTG TATAGCAGCA TGCACGCTGG TAATTGACGT CTTCGTCGGT CTCGCACGAC ATATCGTCGT	N O	ACAACAAAAA CTATCTGGCG TGGTACCAGC AGAAACCAGG TCAGCCGCCG	K L L'I Y W A S T R E S G V P D R Asel	AAACTATTAA TTTATTGGGC ATCCACCCGT GAAAGCGGGG TCCCGGATCG TTTGATAATT AAATAACCCG TAGGTGGGCA CTTTCGCCCC AGGGCCTAGC
--	---	--	--------------------------	--	--------	--	---	---

Figure 3D: V kappa 4 (VK4) gene sequence (continued)

Ŋ	ATTTCGTCCC TAAAGCAGGG	Y T T		TTATACCACC AATATGGTGG		
N S		[AC(L.H	့် ပုံ
н	ATTI TAAA	×		TTAT AAT?	L T BsiWI	GAAATTAAAC GTACG CTTTAATTTG CATGC
T L T	TACCCTGACC ATGGGACTGG	V Y Y С Q Q H		GCCAGCAGCA	E I K R Bsi	~~ GAAATTAAAC CTTTAATTTG
H	TG	Q		CAC	12-1	TA7 AT1
E	999 CCC	Q		CAG	 —	AAT ITA
_	TA	<i>T</i> \		900	田	GAZ
T D F	TT AA	O		TT AA	>	TT AA
Ω	3AT CTA	≯		rta vat		AAG'
₽	GCACTGATTT CGTGACTAAA	\succ		TAT ATZ	T K V	GAZ CTT
	GCA	>		GTGTATTATT CACATAATAA	E-I	TACGAAAGTT ATGCTTTCAA
r D	, <u>ტ</u>	~			Ö	
G S BamHI	TCC	7		999 999	Ø	~ AGG TCC
ന മ	GGATCC	V A		CGT GCA	G Q G MscI	TGGCCA ACCGGT
Ŋ	TCTGGATCCG AGACCTAGGC	Ω	} Η	SA AGACGTGGCG	M M	TTGGCCAGGG AACCGGTCCC
	•	E 571	~~~~ BbsI	}	Įτι	
Ŋ	9 0 0 0 0 0	A E E E E E E E E E E E E E E E E E E E	~~~~~~ Bbs	~ ?TG. 3AC′	\vdash	1007 1667
W	AGC	,	,	AGO	Д	CGA
ĮĽı	TTTTAGCGGC AAAATCGCCG	Q		TGCAAGCTGA ACGTTCGACT	Ĺ	CCGCCGACCT
	Ţ	ᅱ		T(A(\ddot{o}

又 GCTGATTTAT CGACTAAATA AGCAACTATG TCGTTGATAC GTCCAGTCGC K CAGGTCAGCG BamH] S O Z C Ö Ы SexAI ഗ ഗ CGCCGAAACT GCGGCTTTGA Д CAACATTGGC GTTGTAACCG Н AGTGGCGCAC TCACCGCGTG O ĮΉ Ø × Н α G Д Z BbeI S Ø GGCCCTGCC CCCGGGACGG GCAGCAGCAG CGTCGTCGTC ഗ GCCTTCAGTG CGGAAGTCAC Д Е Eco57I 2222 വ > 2222 ഗ XmaI Ö ഗ \mathcal{O} Д Д Bsu36I \mathcal{O} ACACTGGTAG AGCACATCGC CCAGCAGTTG GGTCGTCAAC S TCGTGTAGCG TGACCCAGCC ACTGGGTCGG Д Д Ŋ Д Ø Ø Figure 4A: V lambda 1 (VA.1) gene sequence BssSI \mathcal{O} ~~~~~~ 召 Ö ഗ Ø KpnI ACTCGACCAT 口 TGAGCTGGTA TGTGACCATC GTCTCGCACG CAGAGCGTGC Н Z 3 Е Z S ഗ > Ω

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

GCGGATCCAA CGCCTAGGTT	S E D BbsI	AGCGAAGACG TCGCTTCTGC	V F G TGTGTTTGGC ACACAAACCG		
GATCGTTTTA CTAGCAAAAT	G L S	GGGCCTGCAA CCCGGACGTT	Q H Y T T P P P CAGCATTATA CCACCCGCC GTCGTAATAT GGTGGGGGGGG		
AGGCGTGCCG TCCGCACGGC	A I T	TTGCGATTAC AACGCTAATG	Q H Y T CAGCATTATA GTCGTAATAT	L G MscI	TCTTGGC
AGCGTCCCTC TCGCAGGGAG	S A S L	AGCGCGAGCC	Y C Q TTATTGCCAG AATAACGGTC	L T V HpaI	GGCGCACGA AGTTAACCGT TCTTGGC
GATAACAACC AGCGTCCCTC CTATTGTTGG TCGCAGGGAG	S G	AAGCGGCACC AGCGCGAGCC TTCGCCGTGG TCGCGCTCGG	E A D Y Y C Q AAGCGGATTA TTATTGCCAG TTCGCCTAAT AATAACGGTC	G G T K	GGCGGCACGA AGTTAACCGT

WO 97/08320 PCT/EP96/03647

TTAGCGGATC AATCGCCTAG

AGCAACCGTT

GCAACCGTCC CTCAGGCGTG

TATGATGTGA

ATACTACACT

TCGTTGGCAA

GAGTCCGCAC

CGTTGGCAGG

S CCGATATTGA TGACTACTAA CAGGTCAGAG GTCCAGTCTC GGCTATAACT ACTGATGATT BamHI Z ග Ø \mathbf{Z} Ç S 口 SexAI G Д ſΤι AGGCGCCGAA TCGCCGAGTG GCTACACCCG TCCGCGGCTT CGATGTGGGC X AGCGGCTCAC G S α Д BbeI C Z Ø Д S ഗ × GTACTAGCAG CATGATCGTC S GTAGGGCCCT CATCCCGGGA AGCTTCAGTG TCGAAGTCAC > > 22222 G XmaI Eco57I ~ ~ ~ ~ ~ ~ ~ S C S P S Bsu36I Е K 二 G ACTGGGTCGG TCGTGTACGG AGCACATGCC GTACCAGCAG CATGGTCGTC TGACCCAGCC Д Ø Еч 召 O Figure 4B: V lambda 2 (V\2) gene sequence Ø BssSI KpnI Z E × S S 口 TACACTCGAC CATTACCATC GTAATGGTAG GTCTCGCGTG ATGTGAGCTG 3 CAGAGCGCAC \gt Ø ഗ Е Ω S Н \succ \succ

K S G BamHI	Z	H	Ø	S S	I I	ָרי -	Η.		S G F	(5)	i I	Q	A H
~ CAAAAGCGGC GTTTTCGCCG	AACAC TTGTG	ACC	CGCGA		GCCTGACCAT	GAC	CAT		TAGCGGCCTG ATCGCCGGAC	0 0 0 0 0	TG AC	CAAGCG	, DD D
D E A D Bbsi	Д . Д		K C		Q	O1	х н о	\succ	T T	H	Д	Д	Ъ
ACGAAGCGGA TGCTTCGCCT		TTATTATTGC AATAATAACG	TTG		CAGCAGCATT GTCGTCGTAA	AGO	ATT		ATACCACCCC TATGGTGGGG	ACC IGG	$\mathcal{C}_{\mathcal{C}}$	GCCTGTC	GTC
<u>ი</u>	H	スコ	L T Hpai	E	>	L G Msc	G MscI						
GGCGGCGGCA		CGAAGTTAAC GCTTCAATTG	~~~~~ GTTAAC CAATTG		CGTTCTTGGC GCAAGAACCG	CTJ	~~~~ TGGC ACCG						

SUBSTITUTE SHEET (RULE 26)

Figure 4B: V lambda 2 (VA2) gene sequence (continued)

Figure 4C: V lambda 3 (Vλ3) gene sequence

GAC CTG	Ω	GCT CGA	Q	TTATGATGAT AATACTACTA
CAC	~ -	GA(CT	Д	AT(TA(
CA CA	A	0 0 0 0		TGA
CAG	≯	TAC	≯	TTATGATGAT AATACTACTA
AC IIG	84	AA LT	\vdash	AT I'A
GC7		TA. AT	> ·	TTCTGGTGAT AAGACCACTA
TT	Ω	GA.	ŕ	G G
55	r) () ()	H	CT
AG		900	_	TT
ار ا	ü	TY	\triangleright	ညီ ည
AG7 FC2 7 I	ď	900	дП	
AG.	.7	TG(AC(A De.	
CT GA EC ~	Д	GA' CT	m	CAGGCGCCAG GTCCGCGGTC
90 00		9 0 0	Q	CA GT
ပ္ ဗ္ဗ	O	ပ္ ပ္	50 I I	<u> </u>
\d CG	W	\GC PCG	G na]	GAAACCCGGG CTTTGGGCCC
3GJ		GTZ CAI	고 것	
AC(TG(SS.	GT(CA)		AA(TT(
T A C	S Bs	TC AG		GA
ပျှစ		် ပုံ ပ	O ₄	A L
SAA CTT	Н	TAT. ATA	<u> </u>	\GQ \GQ
ATG	民	7.67 3.07		2C.Z 3G1
CT2		300	Y on:	Z~~ IPAC ATC
AG(TC(7	ĞÜ GÜ	ĭ Kj	GGTACCAGCA CCATGGTCGT
•		_	•	
	AGCTATGAAC TGACCCAGCC GCCTTCAGTG AGCGTTGCAC CAGGTCAGAC TCGATACTTG ACTGGGTCGG CGGAAGTCAC TCGCAACGTG GTCCAGTCTG Eco57I	TGACCCAGCC GCCTTCAGTG AGCGTTGCAC ACTGGGTCGG CGGAAGTCAC TCGCAACGTG Eco57I S C S G D A L G D K BssSI	TGACCCAGCC GCCTTCAGTG AGCGTTGCAC ACTGGGTCGG CGGAAGTCAC TCGCAACGTG Eco57I S C S G D A L G D K Bsssi TCGTGTAGCG GCGATGCGCT AGCACATCGC CGCTACGCGA AGCACATCGC CGCTACGCGA CCCCTACGCGA CCCCTACGCGA CCCCTACGCGA CCCTACGCGA CCCTACGCGA CCCTACGCGA CCCTACGCGA CCCTACGCGA CCCTACTGTA CCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	TGACCCAGCC GCCTTCAGTG AGCGTTGCAC ACTGGGTCGG CGGAAGTCAC TCGCAACGTG Eco57I S C S G D A L G D K Bsssi TCGTGTAGCG GCGATGCGCT GGGCGATAAA AGCACATCGC CGCTACGCGA CCCGCTATTT K P G Q A P V L V I Xmai Bbei

O

CCGTTCTTGG GGCAAGAACC

ACGAAGTTAA TGCTTCAATT

MscI

 \vdash

X

Е

Figure 4C: V lambda 3 (VA.3) gene sequence (continued)

N S G		CCAACAGCGG	Ø	.~~~ GACGAAGCGG CTGCTTCGCC	G G G TGGCGGCGGC ACCGCCGCCG
Ŋ		AG	6.3	AAG TTC	0 0 0 0 0
Z		AAC PTG	Щ	CT TO T	
	•	TTTAGCGGAT CCAACAGCGG AAATCGCCTA GGTTGTCGCC	LTISGTQAEDEA Bbsi	TCAGGCGAA GACGAAGCGG AGTCCGCCTT CTGCTTCGCC	TGC
S G I P E R F S G S	am.	TTTAGCGGAT AAATCGCCTA	E Bb.	TCAGGCGGAA AGTCCGCCTT	Y T T P P V F TATACCACCC CGCCTGTGTT ATATGGTGGG GCGGACACAA
G	Д ?	, GG , CC	4	, 50 , 50 , 50 , 50 , 50	Y T T P P V F TATACCACCC CGCCTGTGTT ATATGGTGGG GCGGACACAA
Ŋ		4GC	A.	900	OTC BAC
ĹĽ		TT/ AA:	Q	CA(300
• •		F A		F A	ДŬÖ
公		GC	Η	AC TG	22
C-3		CCCGGAACGC GGGCCTTGCG	Q	TTAGCGGCAC	T AC
Щ		3GA	7.0	900	F C C C C C C C C C C C C C C C C C C C
Д		3GC		rag atc	r ATP FAT
		_	H	T Z	TZ A
H		CCTCAGGCAT GGAGTCCGTA	_	CA GT	H AT TA
G) () ()	[- 1	ACCCTGACCA TGGGACTGGT	Q Q H CCAGCAGCAT GGTCGTCGTA
7.0	36I	ZAG 3TC	H	CTG BAC	SCA SGT
O1	Bsu	CT(E	360	CAC
Д	m ≀	ŭö		A(T(ပ်ပြ
D R P		TC AG	Ø	$\mathcal{C}_{\mathcal{C}}$	C TG AC
K		10 160	N T A	, 100	Y YAT TA
О		3AC	F	CAC	/ \TT I'AA
ß		TCTGACCGTC AGACTGGCAG	Z	CAACACCGCG GTTGTGGCGC	D Y Y C ATTATTATTG TAATAATAAC
		T(A(0 G	DAT

SUBSTITUTE SHEET (RULE 25) 21 / 204

BStEII

(continued)
1.A (VH1A) gene sequence (continued
(VH1A)
1 _A
chain
heavy
>
5A:
ıure

CACCGCGTAT ATGGAACTGA GTGGCGCATA TACCTTGACT	Y C A R W G Bsshii	ATTATTGCGC GCGTTGGGGC TAATAACGCG CGCAACCCCG	G Q G T L V T Styl	GGCCAAGGCA CCCTGGTGAC CCGGTTCCGT GGGACCACTG	
AAAGCACCAG TTTCGTGGTC	T A V Y EagI	GGCCGTGT	D Y W	GGATTATTGG CCTAATAACC	
GGTGACCATT ACCGCGGATG CCACTGGTAA TGGCGCCTAC	S S L R S E D	GCAGCCTGCG TAGCGAAGAT CGTCGGACGC ATCGCTTCTA	G D G F Y A M	GGCGATGGCT TTTATGCGAT CCGCTACCGA AAATACGCTA	V S S BlpI ~~~~~~ GGTTAGCTCA G CCAATCGAGT C

I N P N S G G ATTAACCCGA ATAGCGGCGG TAATTGGGCT TATCGCCGCC

Figure 5B: V heavy chain 1B (VH1B) gene sequence

တ	AG TC		TA AT	ß	8 C C C
V Q S G A E V K K P G A S	CGGGCGCGAG GCCCGCGCTC	T F T S Y Y	AGCTATTATA TCGATAATAT	M G W	GATGGGCTGG CTACCCGACC
<u>o</u>	360	₹	CTA	5	FGG(
0.	000	w	AG(TC(~	GA!
	AC	E	၁၁၁	ß.	TG
×	GTGAAAAAAC CACTTTTTTG	ſτι	TACCTTTACC ATGGAAATGG	R Q A P G Q G L E W BStXI XhoI	GTCTCGAGTG CAGAGCTCAC
×	SAA	F	CCT	X X Y	CTC
>	GT(CA(Ε.	TA(AT(,	GT(CA(
臼	AA	\Rightarrow	TA	O	990
Æ	CGGCGCGGAA GCCGCGCCTT	S G BSPEI	CCTCCGGATA GGAGGCCTAT	O ₁	CCTGGGCAGG GGACCCGTCC
י	9 0 0 0 0 0	S BSPE	ICC AGG	ტ	IGG ACC
J	900		255	д IX	255
ß	AG	S C K	AG	Q A P G BstXI	
O	TGGTTCAGAG ACCAAGTCTC	X	AGCTGCAAAG TCGACGTTTC	ў ў ў	CCGCCAAGCC GGCGGTTCGG
>	STT	Ö	CTG	€	2000
} }	TG(AC(AG(TC(U U U U
Q L MfeI	AT	>		>	GGT
OZ (X V	CGTGAAAGTG GCACTTTCAC	Z	TGCACTGGGT ACGTGACCCA
\triangleright	GGT	>	TGA ACT	田	CAC
Q	CAC	•	C G C	Σ	TG AC

ပ ပ

(VH1B) gene sequence (continued) TRDTSISTAYMEL	ACCCGTGATA CCAGCATTAG CACCGCGTAT ATGGAACTGA TGGGCACTAT GGTCGTAATC GTGGCGCATA TACCTTGACT	S E D T A V Y Y C A R W G EagI BSSHII	CGAAGAT ACGGCCGTGT ATTATT SCTTCTA TGCCGGCACA TAATAA	Y A M D Y W G Q G T L V T Styl	GGATTATTGG GG CCTAATAACC CC	
	ACCCGTGATA TGGGCACTAT		TAGCGAAGAT	F Y A M	TTTATGCGAT AAATACGCTA	
Figure 58: V heavy chain 18 (VH18) VTMT BSTEII	GGTGACCATG	S S L R	GCAGCCTGCG CGTCGGACGC	G D G	GGCGATGGCT CCGCTACCGA	ν ν

든	AC TG		00 00	ᆸ	TG	K T MluI	AC AG
Q	CGACCCAAAC GCTGGGTTTG	G	ACGTCTGGCG TGCAGACCGC	B	GGAAAGCCCT CGAGTGGCTG	K T MluI	TATAGCACCA GCCTGAAAAC ATATCGTGGT CGGACTTTTG
E	100(100(S	TC:		.∼ AGT(H	CTG
	CG7 GC1	⊱	ACG	L E XhoI	~~~~~~~ CT CGAG GA GCTC		000
Ж Ф	AC TG	S	99 00	L Xh	~~ CT GA	S	CA GT
	CTGGTGAAAC GACCACTTTG	Ţ	TAGCCTGTCC ATCGGACAGG	X A L	30C	[→	TATAGCACCA ATATCGTGGT
\triangleright	GT(S	3CC	\bowtie	AAA(TTT	S	AG(
Ä	CTC	01	TAG		~ GG <i>P</i> CCT	\succ	TAT AT?
A	00 00	لتر	TT AA	Ŋ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	≯	AT
Сч	9922999229	S G BspEI	TTTCCGGATT AAAGGCCTAA	P P BstXI	CAGCCGCCTG GTCGGCGGAC	×	TGATAAGTAT ACTATTCATA
G	3CC(S Bsj	Z Z Z T C C (A G G (P Bs1	.∝∝. 3000 3000	O M	ATA PAT'
))))		TTT AAA	Q	.∼~? CAC GT(Н	TG/
S	AG	듄	CT	α	$\frac{1}{2}$	Ω	GA
gene sequence K E S	GAA CTT	\vdash	TAC ATG	Н	TTC AAG	Ω	GAT CTA
	CAGGTGCAAT TGAAAGAAAG GTCCACGTTA ACTTTCTTTC	O	ACCTGTACCT TGGACATGGA		CTGGATTCGC GACCTAAGCG	M	GCTCTGATTG ATTGGGATGA CGAGACTAAC TAACCCTACT
ո 2 (VH2 L I	TGZ AC	[AC(TG(M	CT(GA(AT
y chain 2 Q L MfeΙ	~~~~~~~ CAAT TG GTTA AC	⊢⊣	TG	Ŋ	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		TG
heavy Q	GCA	⊱	CCTGACCCTG GGACTGGGAC	>	TTGGCGTGGG AACCGCACCC	H	GAT
5C: V h	GGT	ᅱ	rga act	Ω,	9 9 9 9 9	\vdash	TCT AGA
Figure SC: V heavy chain 2 (VH2) ${\sf Q}$ ${\sf V}$ ${\sf Q}$ ${\sf L}$ ${\sf MfeI}$	CA		CC 66.	>	TT	A	000

Figure 5C: V heavy chain 2 (VH2) gene sequence (continued)	LTISKDTSKNQVVLT	CTGACC ATTAGCAAAG ATACTTCGAA AAATCAGGTG GTGCTGACTAAGACTGG TAATCGTTTC TATGAAGCTT TTTAGTCCAC CACGACTGAT	N M D P V D T A T Y C A R W BSSHII	CAACAT GGACCCGGTG GATACGGCCA CCTATTATTG CGCGCGTTGG	G D G F Y A M D Y W G Q G T L V Styl	GCGATG GCTTTTATGC GATGGATTAT TGGGGCCAAG GCACCCTGGT	S S
Figure 5C: V heavy ch	ы	GCGTCTGACC		TGACCAACAT ACTGGTTGTA		GGCGGCGATG CCGCCGCTAC	S V I

Figure 5D: V heavy chain 3 (VH3) gene sequence

ß	AG		GA	K	0 0 0 0	4 0 0 0 0 0
G	CGGGCGGCAG GCCCGCCGTC	S Y	AGCTATGCGA TCGATACGCT	တ	GGTGAGCGCG CCACTCGCGC	K G R TGAAAGGCCG ACTTTCCGGC
<u>ი</u>	3 3 3 3 3 3	×	CTA	Ω	rga act	K AAA ITT
0	000	w	AG(TC(>	300	
L V Q P	AC	တ	550	M	TG	A D S V GCGGATAGCG CGCCTATCGC
Ot .	GCA	FI S	TTA	L Xhoi	CGAG	S TAG ATC
\triangleright	CTGGTGCAAC GACCACGTTG	T FI	TACCTTTAGC ATGGAAATCG	$\dashv \times$	GTCTCGAGTG	A D S GCGGATAGCG
H	CTC	-	TA(GTC	4 0 0 0
	100 100 100 100	Eq. Land	ATT	G K	AGG ICC	Y FAT ATA
_ອ ອ	ອວວອວວອວວອ	S G BSPEI	CCTCCGGATT GGAGGCCTAA	154	CCTGGGAAGG	T Y Y CACCTATTAT GTGGATAATA
to	9090	S B S	TCC	O	TGG	T CCT GGA
		Æ		XI		•
ß	AAG ITC	∆ !	000 000	A BstXI	GCC CCTG	S CAG GTC
缸	GGA	<i>r</i> \	3CG(CCAA	0 0 0 0 0 0
>	TGGTGGAAAG	S C A A	AGCTGCGCGG TCGACGCGCC	α	GCGCCAAGCC	S G G S GCGCCGCAG CGCCGCCTC
цщ				4		S 400
Q L MfeI	GAAGTGCAAT	ᆸ	CCTGCGTCTG	>	TGAGCTGGGT ACTCGACCCA	ISGSSGCGCGCAG ATTAGCGGTA GCGGCGGCAG TAATCGCCAT CGCCGCCGTC
>	TGC	K	CGI	X	CTG	S
EEL	AAG TTC	니	CTG	ഗ	GAG CTC	I TTA AAT
-	0 U		บ ับ	Σ	ΗĀ	ΑĤ

<u>ပ</u>

GGTTAGCTCA CCAATCGAGT

S S BlpI

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

L Q M	CTGCAAATGA GACGTTTACT	R W G	GCGTTGGGGC GCCAACCCCG	L V T	CCCTGGTGAC GGGACCACTG
	ATTCGAAAAA CACCCTGTAT TAAGCTTTTT GTGGGACATA	T A V Y Y C A EagI BssHII	ACGGCCGTGT ATTATTGCGC GCGTTGGGGC TGCCGGCACA TAATAACGCG CGCAACCCCG	Y A M D Y W G Q G T L V T Styl	GGATTATTGG GGCCAAGGCA CCTAATAACC CCGGTTCCGT
F T I S R D N Pmli	ACGTGATA FGCACTAT	N S L R A E D	ACAGCCTGCG TGCGGAAGAT I	G D G F Y A M	GGCGATGGCT TTTATGCGAT C CCGCTACCGA AAATACGCTA C

TTTCGGCCCA

GGCTCGGACT

GTTGATATTA

CGCCGTCGTG

TAAATAATAT

Figure 5E: V heavy chain 4 (VH4) gene sequence

GCTCGCTTTG H CGAGCGAAAC AAAGCCGGGT AGCTATTATT TCGATAATAA GATTGGCTAT CTAACCGATA BStEII \succ R 口 G \succ വ ഗ S Д X CAGAGCTCAC GACCACTTTG CCGAGCCTGA CTGGTGAAAC CAGCATTAGC GTCGTAATCG GTCTCGAGTG 3 S Ц × 11111 XhoI 团 \vdash > ഗ S 口 Д C AAAGGCCTCC ACCAGGCCCG TTTCCGGAGG GGACCCTTCC CAACTATAAT TGGTCCGGGC G CCTGGGAAGG C Z × BSPEI G Д × C ഗ G Z Д 111111 \gt BstX ACGTTCTTTC AGCGGTCGGC TGCAAGAAAG TGGACGTGGC TCGCCAGCCG GCGGCAGCAC ACCTGCACCG ഗ Д Е S 团 Õ C C Q K Н ഗ Ц MfeI GGACTCGGAC GTCCACGTTA CCTCGACCTA CAGGTGCAAT GGAGCTGGAT ATTTATTATA CCTGAGCCTG HП 3 S \succ വ Н Q \geq

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

S	AAACTGAGCA TTTGACTCGT	O	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Δ	GGT	! !
K L S	CTG2 SAC1	O	1660 1000		GAC	
×	AAA(TTT(M	TTGGGGCGGC	>	TGGTGACGGT ACCACTGCCA	
H	CTG	I I	7 C C C C C C C C C C C C C C C C C C C	i I))) ()	
F S L	AGC	C A BssHII	525252 252525	EH	CAC	
ഥ	GTTTAGCCTG CAAATCGGAC		ATTGCGCGCG TAACGCGCGC	Q G Styl	c caaggcaccc G GTTCCGTGGG	•
Ŏ	CA	, ,	TT	ტ	ł	
Z	AAC	Λ Λ	GTA CAT	დ ⊠	300 300 300	
×	GTTGATACTT CGAAAAACCA CAACTATGAA GCTTTTTGGT	Eagi	CG GCCGTGTATT SC CGCCACATAA	Y W	TTATTGGGGC AATAACCCCG	
T S T NSpV	TT	FI EI A	(Ω		
Ω.	ATAC PATC	Ω	ATA	A M D	GCGATGGA CGCTACCT	
>	GTTGATACTT CAACTATGAA	A	GGCGGATACG CCGCCTATGC		ATGCGATGGA TACGCTACCT	
S	₹60 100	A	3,GC	> 1		
HH	ATTA	E	ACG TGC	Į.	CTT GAA	ß
T I BstEII	GACCATTAGC CTGGTAATCG	>	GCGTGACGGC CGCACTGCCG	r O	GATGGCTTTT CTACCGAAAA	ഗ
ğ î	G2 C1	W	90	Ω	GA	

TCGATAACCT CGGCGAAAG GCCCCCTTTC AGCTATTGGA ഗ Н \geq 띠 \mathfrak{O} G \sum ഗ Д AAGGAAATGC TTCCTTTACG CACTTTTTG Z GTGAAAAAAC \vdash × ſτ] L \searrow ഗ > G TCGACGITIC CAAGGCCTAI ACCAAGICIC GCCGCGCCII GTTCCGGATA CGGCGCGGAA \succ 口 × BSPEI ~ ~ ~ ~ ~ ~ ~ G Ø U ഗ G G GAAGTGCAAT TGGTTCAGAG AGCTGCAAAG Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ × Ø \mathcal{O} S 口 MfeI CTTCACGTTA GGACTTTTAA CCTGAAAATT Ö \simeq 口

CAGAGCTCAC CTACCCGTAA TCTCCGAGCT TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT GATGGGCATT ഗ GTCTCGAGTG ഗ Д TACCCGTTAT CGCGGTCTAC GGACCCTTCC CCTGGGAAGG ATGGGCAATA GCGCCAGATG GCGATAGCGA TAAATAGGCC CGCTATCGCT ഗ G ATTTATCCGG TTGGCTGGGT AACCGACCCA Д

XhoI

Д

Σ

O

 α

>

 \geq

G

H

BstXI

GGTTAGCTCA G CCAATCGAGT C

S A D K S I S T A Y L Q W		AGCGCGGATA AAAGCATTAG CACCGCGTAT TCGCGCCTAT TTTCGTAATC GTGGCGCATA	A S D T A M Y Y C A BSSHI	AGCGAGCGAT ACGGCCATGT ATTATTGCGC GCGTTGGGGC TCGCTCGCTA TGCCGGTACA TAATAACGCG CGCAACCCCG	F Y A M D Y W G Q G T L V T Styl	TTTATGCGAT GGATTATTGG CAAATACGTA CCTAATAACC
V T I BstEII	<pre></pre>	GGTGACCATT CCACTGGTAA	S L K	GCAGCCTGAA CGTCGGACTT	G D G	GGCGATGGCT CCGCTACCGA
		V T I S A D K S I S T A Y L Q W BStEII	I S T A Y CATTAG CACCGCGTAT GTAATC GTGGCGCATA	CATTAG CACCGCGTAT GTAATC GTGGCGCATA A M Y Y C A BSSHI	CATTAG CACCGCGTAT GTAATC GTGGCGCATA A M Y Y C A BSSHI CCATGT ATTATTGCGC GGTACA TAATAACGCG	CATTAG CACCGCGTAT GTAATC GTGGCGCATA A M Y Y C A BSSHI CCATGT ATTATTGCGC GGTACA TAATAACGCG Y W G Q G T Styl

33 / 204

Figure 5G: V heavy chain 6 (VH6) gene sequence

 \vdash GCTCGGTTTG AGCAACAGCG CGAGCCAAAC TCGTTGTCGC GGCGTGGCCT CGAGTGGCTG CCGCACCGGA GCTCACCGAC CGGTGAGCGT TTGCTAATAC GCCACTCGCA ഗ Ø ഗ 3 \mathbf{z} ഗ 口 S XhoI Д GACCACTTTG AACGATTATG ATCGCACTCG CTGGTGAAAC TAGCGTGAGC S \leq G \gt >X ഗ Ц G GTCAGAGGAC TGGTCCGGGC ACCAGGCCCG TTTCCGGAGA AAAGGCCTCT CAGTCTCCTG CAAATGGTAT GTTTACCATA G Д ~ ~ ~ ~ ~ ~ BspEI G Д \geq ഗ ഗ G Ø \vdash ACGTTGTCAG CTGGATTCGC GACCTAAGCG TGCAACAGTC TGGACACGCT TAATAGCATC S ATTATCGTAG ACCTGTGCGA ഗ 召 Ø Ø 24 Н \mathcal{O} Ø \geq \vdash Н MfeI CAGGTGCAAT GTCCACGTTA CGGCGTGGAA GGACTCGGAC CCGGCATGGA CCTGAGCCTG GCCGCACCTT \mathbf{Z} GGCCGTACCT ⊱ \geq ഗ α Ø 口 Ø K

E O	ZATCA ACCCGGATAC TTCGAAAAAC CAGTTTAGCC STAGT TGGGCCTATG AAGCTTTTTG GTCAAATCGG	T P E D T A V Y Y C A EagI BSSHII	CCGGAAGATA CGGCCGTGTA TTATT GGCCTTCTAT GCCGGCACAT AATAA	GFYAMDYWGQGT Styl	TTATGCGATG GATTATTGGG GAATACGCTAC CTAATAACCCC	S Ipi	TCAG
nce (continu N	GAAAAGCCGG ATTACCATCA ACCCC	Ф	TGCAACTGAA CAGCGTGACC CCGGP ACGTTGACTT GTCGCACTGG GGCCT	F	CGTTGGGGCG GCGATGGCTT TTATG GCAACCCCGC CGCTACCGAA AATAC	LVTVSS BlpI	CCTGGTGACG GTTAGCTCAG GGACCACTGC CAATCGAGTC

WO 97/08320 PCT/EP96/03647

- Figure 6: oligonucleotides for gene synthesis
- **O1K1** 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
 - **O1K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGGC -3'
 - **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
 - **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTTCTGCTGGTACCACGCCAG -3'
 - **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
 - **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- O2K3 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGCCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- **O3K3** 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- O4K2 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- **O1L5** 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

WO 97/08320 PCT/EP96/03647

- Figure 6: (continued)
- **O1L6** 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **O2L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **02L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **02L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- **O3L3** 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGCCGC -3'
- O3L4 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- O3L5 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH25'- GGCTTTGCAGCTCACTTTCACGCTGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

- **O1AH3** 5 ' GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAG GGTC -3 '
- **O1AH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3 '
- **O1AH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCC TGCG -3 '
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 ' GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3'
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- **O1BH5** 5 ' GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCC TGCG -3 '
- **O2H2** 5'- GGTACAGGTCAGGGTCAGGGTTTGGGTCGGTTT-CACCAGGGCCGGCCGCTTTCTTTCAATTGCACCTGGGCTTTG-3'
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- O2H4 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

WO 97/08320 PCT/EP96/03647

Figure 6: (continued)

- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCCT-GGTGCAACCGGCGGCAG -3'
- **O3H2** 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCCCAGCTCAGACGCAGGCTGCCCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAAACACCCTGTATCTGCAAATGAACAG-3'
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **04H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GCCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- **O4H4** 5'- GATTATAGTTGGTGCTGCCGCTATAATAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

- Figure 6: (continued)
- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'.
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- O5H4 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTC-3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC-3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK1 5 ' GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3 '
 SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 6: (continued)

- OCLK25'- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5 ' GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGGTGCCTGCTG 3 '
- OCLK4 5 '- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3 '
- OCLK5 5 ' GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG 3 '
- OCLK6 5 ' GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG 3 '
- OCLK75'- GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK8 5'- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- **OCH3** 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- OCH4 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTTCCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

K H K AAACATAAAG

ACCCTGACCC TGAGCAAAGC GGATTATGAA

L S S TCTGAGCAGC AGACTCGTCG

TGGGACTGGG ACTCGTTTCG

۲ D TTTGTATTTC

CCTAATACTT

Figure 7A: sequence of the synthetic Ck gene segment

Q GCGATGAACA CGCTACTTGT TTGAAAATAG AACTTTTATC TGGAAAGTAG ACAACGCGCT GCAAAGCGGC ACCTTTCATC TGTTGCGCGA CGTTTCGCCG TCGTTTCTAT CGTGGATAAG AGCAAAGATA GCACCTATTC <u>면</u> Õ Ω ഗ വ TTTCCGCCGA AAAGGCGGCT G T A S V C L L N GGCACGGCGA GCGTGGTGTG CCTGCTGAAC CCGTGCCGCT CGCACCACAC GGACGACTTG Д Д Z ᄺ GACGAGGCTC GCACAAATAA N S Q E S V T E Q D AACAGCCAGG AAAGCGTGAC CGAACAGGAT CTGCTCCGAG CGTGTTTATT TIGICGGICC TITCGCACIG GCTIGICCIA Н ഥ GCGCACTTCG CTTTCAAGTC CGCGTGAAGC GAAAGTTCAG ഗ Д K GCATGCCACC CGTACGGTGG TGACTTTTCG L K S ACTGAAAAGC > BsiWIД

Figure 7A: sequence of the synthetic Ck gene segment (continued)

വ SphI StuI E V T CGAAGTGACC 口 G α Z ĮΨ ഗ

GACTATTCGT

GTGGCGAGGC

TCTTTTAATC AGAAAATTAG

Figure 78: sequence of the synthetic CH1 gene segment

ഗ ഗ Д A Щ Д Įμ > ഗ Д G X E Sal ഗ Ø BlpI

GGTTCGCACA AAGGCGACCG AGGCTCGTCG TICCGCTGGC ICCGAGCAGC CCAAGCGTGT CGAGTCGCAG CTGGTTTCCA GCTCAGCGTC GACCAAAGGT

CCGACGGACC AATTTCTAAT TTAAAGATTA Ω 又 > G C L O TITICGIGGI CCCCCCCTG CCGACGGGAC GGCTGCCCTG ⋖ GCGGCGGCAC [-<u>ე</u> ഗ AAAAGCACCA ഗ

GACTGGTCGC CTGACCAGCG GGTCAGTGGC ACTCGACCTT GTCGCCCGC CCAGTCACCG TGAGCTGGAA CAGCGGGCG U ഗ N M ഗ P V T V TTTCCCGGAA AAAGGGCCTT

GTGCTGCAAA GCAGCGGCCT GTATAGCCTG CATATCGGAC CACGACGTTT CGTCGCCGGA S ഗ ŏ 1 CTTTCCGGCG CGCACGTATG GAAAGGCCGC Д GCGTGCATAC ⊱ G

AATCCGTGAG TCTGGATATA TTAGGCACTC AGACCTATAT Ø G GAGCAGCAGC CTCGTCGTCG ഗ ഗ AGCAGCGTTG TGACCGTGCC TCGTCGCAAC ACTGGCACGG

Figure 7B: sequence of the synthetic CH1 gene segment (continued)

 \times z · ഗ Д E ECORI C N V TTGCAACGTG AACGTTGCAC ഗ \leq Д ഥ

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

CCCCGCCTGT	DraIII ~~~ AAAGCCGCAC TTTCGGCGTG	GGCGAACAAA CCGCTTGTTT	CCGTGACAGT	GAGACCACCA
CATTATACCA GTAATATGGT	MscI ~~~~~~ TGGCCAGCCG ACCGGTCGGC	AAGAATTGCA TTCTTAACGT	TATCCGGGAG ATAGGCCCTC	GGCGGGAGTG
TTGCCAGCAG	HpaI GCACGAAGT TAACCGTTCT CGTGCTTCA ATTGGCAAGA	CCGAGCAGCG	TAGCGACTTT ATCGCTGAAA	GCCCCGTCAA CGGGGCAGTT
CGGATTATTA GCCTAATAAT	Hp GGCACGAAGT CCGTGCTTCA	GCTGTTTCCG	TGTGCCTGAT ACACGGACTA	GCAGATAGCA CGTCTATCGT
BbsI ~~~~~ GAAGACGAAG CTTCTGCTTC	GTTTGGCGGC	DrallI ~~~~~~ CGAGTGTGAC GCTCACACTG	GCGACCCTGG CGCTGGGACC	GGCCTGGAAG G
Н	51	101	151	201

Figure 7	Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda)	uence of module 24 com	iprising the synthetic CI g	ene segment (huCL lamb	bda) (
251	CACCCTCCAA GTGGGAGGTT	ACAAAGCAAC TGTTTCGTTG	AACAAGTACG TTGTTCATGC	CGGCCAGCAG	Ü .
301	CTGACGCCTG	AGCAGTGGAA TCGTCACCTT	RleAI ~~~~~~ GTCCCACAGA CAGGGTGTCT	AGCTACAGCT TCGATGTCGA	99
351	GCATGAGGGG	AGCACCGTGG	AAAAAACCGT TTTTTGGCA	TGCGCCGACT	GF
401	SphI ~~~~~ AAGCATGC TTCGTACG				

49 / 204

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCAGTATATACCACCCCGCCTGTGTTTGGCGGCG-

GCACGAAGTTAACCGTTC

M24-B: CAATTCTTCGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAAGAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

GGATTTACCT TTAGCAGCTA TGCGATGAGC TGGGTGCGCC AAGCCCCTGG

CCTAAATGGA AATCGTCGAT ACGCTACTCG ACCCACGCGG TTCGGGGACC

Д	CC		ტ ე	ល	TCC AGG	G
2 T	ACC TGG	ט	0 0 0 0 0 0	A S BspEI	CCT(д Н
Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 M K Q S T I A L A L L P L L F SapI	TCTTCACCCC AGAAGTGGGG	Ø	GAAAGCGGCG CTTTCGCCGC	A I	CGCGGCCTCC	A P BstxI
agment \ L SapI	}	臼	GA		300	
-chain fragme L L Sa}	TGC ACG	>	GTG	Ö	CTG	Oi ~
gle-chí P	CGT	е Г	rtg(LS	SAG	Н _
Isus sin	TTACCGTTGC	Q MfeI	GCAATTGGTG CGTTAACCAC	H	GTCTGAGCTG CAGACTCGAC	W V R
conser		.		以		i s
ing the	ACT(IGA(⊳ ¤	AAG: LTCA	S L R	TGC	လ
encod A	3900	D I	ATG2 PAC5	ഗ	\GCC	A M
etic gene encoding the consensus single ${f L}$ ${f A}$ ${f L}$ ${f L}$ ${f P}$	ACTGGCACTC TGACCGTGAG	—	AAGATGAAGT TTCTACTTCA	ტ	GGCAGCCTGC CCGTCGGACG	Æ
synthet A		×		ტ		>-
p of the synth I A	GCACTATTGC CGTGATAACG	D Y K	GACTACA CTGATGT	Ъ	GCAACCGGGC CGTTGGCCCG	လ
n map	ACTZ FGA:	Ω	GGAC		AACC TGG	S
restrictio S	250	A	000	Q	GC1 CG1	r_
ce and re	AAA ITT	X	AAA PTT	>	GGT	E.
dneuce K	AACZ FTG:	E	ACC2	니	CTC	H
ure 8: sequ M K	ATGAAACAAA TACTTTGTTT	>	TGTTACCAAA GCCGACTACA ACAATGGTTT CGGCTGATGT	Ŋ	GCGCCTGGT CGCCGGACCA	G F Bspei
Figu	A7 T7		TC	Ŋ	90	B S

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) ⊱ വ G C ഗ G S Н K S > 3 团 XhoI Н C ×

GGCAGCACCT CCGTCGTGGA GCCATCGCCG CGGTAGCGGC GCGCGATTAG CGCGCTAATC GAGTGGGTGA CTCACCCACT CTTCCCAGAG GAAGGGTCTC

NspV Z Ω PmlI α വ HН 머 α G X > ഗ K \succ ×

TGATAATTCG GGTAAAGTGC ACTATTAAGC CCATITCACG CCGGCAAAAT GGCCGTTTTA ATCGCACTTT TAGCGTGAAA ATTATGCGGA TAATACGCCT

EagI 1211 Н 闰 K α П ഗ Z Σ Q 口 Н Н Z NspV×

TTCTATGCCG AAGATACGGC GACGCACGCC CTGCGTGCGG AATGAACAGC TTACTTGTCG TGTATCTGCA ACATAGACGT AAAAACACCC TTTTTGTGGG

Ω Σ K \succ ſτι G G C 3 K BSSHI K EagI

GCGATGGATT TGGCTTTTAT TGCGCGCGTT GGGGCGGCGA CGTGTATTAT

PC1/EF90/0

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) TGGCGGTTCT ACCGCCAAGA ECORV GTTCCGATAT GGCGAGCCTG CGCTACCTAA CAAGGCTATA CCGCTCGGAC Д Ω 团 വ G C CCCCGCCGCT ACCGAAATA GCTCAGGGG CGAGTCGCCC CCGCCACCAC GGCGGTGGTG TGAGCCTGCC AGTGACTCCG TCACTGAGGC Д r 1111111 Н C BlpI ഗ C ACTCGGACGG GCCACCAAGA GTGACGGTTA CACTGCCAAT CGGTGGTTCT Д ഗ Н G S G Н CCTCGCCACC GCACATAATA ACGCGCGCAA ATTGGGGCCA AGGCACCCTG CAGAGCCCAC TCCGTGGGAC GGAGCGGTGG GTCTCGGGTG G BanII r ഗ വ C O StyI G TAACCCCGGT SECECCETE CCGCCGCCAC GCACTACTGG CGTGATGACC H G Ċ $\mathbf{\Sigma}$ C ECORV > G

CAACGGCTAT GTTGCCGATA TGCTGCATAG ACGACGTATC TCGGTTTCGG AGCCAAAGCC CTGCAGAAGC GACGTCTTCG CGAGCATTAG GCTCGTAATC

G

Z

S

二

Н

口

വ

Ö

വ

ഗ

召

ပ

വ

S

K

PstI

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2 (continued) N Y L D W Y L D Q K P G Q S P Q L L KpnI AseI	ATT	10	900 000 000	A	3CT	H	SAC
.2 (con L AS	SCTA GAT	r- -	TAC	ഥ	SAAC		3000
t VH3-Vk2 (con Q L As	CGCAGCTATT GCGTCGATAA	R F S	CGTTTTAGCG GCAAAATCGC	□	TGTGGAAGCT ACACCTTCGA	<u>.</u> Д	CCCGCCGAC
ment \						£	
single-chain fragme Q S P	GGTCAAAGCC CCAGTTTCGG	Q	GGTCCCGGAT CCAGGGCCTA	rg.	AAATTAGCCG TTTAATCGGC	н у т	CATTATACCA GTAATATGGT
gle-cha Q	AAA TTT	Д	0 0 0 0	ß	TAG ATC	X	АТА ТАТ
Sus sing	GTC	G V Eco0109I	GAG	H	AAT' ITA	tr:	ATT
onsens (AI		00 ~		×		ш,	
g the conser P	TCAAAAACCA AGTTTTTGGT	GSNRASG ECC	GTGCCAGTGG CACGGTCACC	F T L K I S R	TTTACCCTGA AAATGGGACT	O ¹	TTGCCAGCAG AACGGTCGTC
encodin K	AAA	0)	CAG	E	0000	٥ ٥ ٢	CAG
gene e Q	CAA	A.	TGC	لتر	TTA	Ö	TGC
nthetic L		α				≯	
the syr Y n I	ATTGGTACCT TAACCATGGA	Z	GCAGCAACC CGTCGTTGG	Q E	GGCACCGAT CCGTGGCTA	Λ λ λ	GCGTGTATTA CGCACATAAT
map of the S W Y KpnI	GGT	S	AGC		CAC GTG	>	TGT
ction n	ATT(FAA(Ü	2000	ڻ ر	, 1000 1000	•	GCG
d restri		Н		G S BamHI	7.C 9.G 0.	Ŋ	
T T	CTC		ATC:	G Baī	SGAC	>	GTC
Σ	AACTATCTGG TTGATAGACC	э Н	AATTTATCTG TTAAATAGAC	ω ,	GCTCTGGATC CGAGACCTAG	E D BbsI	GAAGACGTGG CTTCTGCACC
gure 8 N	AAC TTG	Ase I	AAT TT?	G	GCI	田田山	GAA
ιĒ							

SUBSTITUTE SHEET (RULE 26) 56 / 204

Figure 10: Sequence analysis of initial libraries

0

3333333333 $\Sigma \Sigma \sqcap \Sigma \Sigma \sqcap \sqcap \Sigma \Sigma \Sigma \Sigma$ > - ス> で - エト > - で $\Sigma \succ R \times \Sigma S \cup D \cup \Gamma O$ T 4 > ≥ S S Z J L D ⊢ IKZLKQ S E R Z F $> \neg Q \otimes \succ \otimes \neg Q \land \vdash Q$ \bot \forall Z \forall Z \forall Z \forall Z \forall Z $\succ \Sigma \times \vdash \succ * \; \bowtie \Sigma \times \bowtie \succ$ 4 4 4 4 4 4 4 4 4 4 000000000000

PC1/EP90/030

Figure 11: Expression analysis of initial library

WO 97/08320 PCT/EP96/03647

Figure 12: Increase of specificity during the panning rounds

Figure 13: Phage ELISA of clones after the 3rd round of panning

WO 97/08320 PCT/EP96/03647

Figure 14: Competition ELISA

- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

101 000000000000000 $0001 \times \times \times \times \times \times \times - 0 \times \times$ 2001 LRIRZO4> \times OZL \times \times 40 $8001 \times \Sigma \times \times \times \times \vdash > \Sigma \Sigma \times \times \times \vdash \vdash$ A001 $\sigma \times 1 - \leq N \times N \times K \times 4 \times \sigma N +$ $86 \pm Q \times \pi -> \pm 1 \pm 0 \times \times 1 - \times \times$

WO 97/08320 PCT/EP96/03647

Figure 16: Purification of fluorescein binding scFv fragments

PCT/EP96/03647

Figure 17: Enrichment factors after three rounds of panning

Figure 18: ELISA of anti-ESL-1 and anti-eta-estradiol antibodies

Figure 20: Sequence analysis of estradiol binders

103 33333333333 105 101 100E $r \geq r r \geq \geq$ 7001 $Q \times K \Gamma \perp \Sigma$ - \times > \pm \oplus Z $\times \times \times \times \times \times \times$ J001 \cdot \times \times \times \times 100R R C E C R - > > C C K Z-OSI'LGLKZ A001 001 66 $Q \vdash S \land C \land C \vdash T \mid S \mid S \vdash S$ \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} 86 $\sigma \leq \leq 1 \leq 1 \leq r \leq 0 \leq r \leq 1$ *4*6 x Q x v r Q z x x x z z z96 $Z \times > > Z - \cong$ $\leq Z \times Z \times Z$ 96 *t*6 63 76

Frequency	4	က	2	-	_	
103	>	3	≥	≥	≥	≥
105	>	>	<u>></u>	>	>-	>
101						۵
100E	ட	ட	ட	ட	ш	ட
000 l	Ø	O	O	Σ	≥	Ö
J001	_	Σ	Σ		\checkmark	Σ
100B	\checkmark	\prec	\checkmark	\checkmark	≥	O
A001	\propto	O	Z	≥		\propto
001	\checkmark	≥	\propto	≥	∝.	S
66	A	A	⋖	Ø	8	Ø
86	O	工	>-	9		\propto
Z 6	\checkmark	\propto	\checkmark	\propto	۵	\checkmark
96	_	Z	>	\checkmark	\checkmark	\propto
96	>	>	>	>-	.∝	>-
t 6	\propto	\propto	\propto	\propto	\propto	\propto
83	⋖	A	\forall	A	A	A
<i>7</i> 6	<u>၂</u>	ပ	ر ر	O	C	\cup

```
Frequency
 103
     33333333
 105
     101
     \ \sqcap \ \ge \ \sqcap \ \ge \ \square \ \ge \ \sqcap \ \ge \ \sqcap
100E
     HGOS>SS
J001
J001
     O D H H C U X
100B
         \exists \exists \Box \vdash Z \exists
A001
     001
     \times Z Z \times \times O \vdash
  66
     86
       PHH-ADM
  Z6
     R \ge A Q - 3 Q \ge
  96
  96
         1 \ge - \times \times > 0
     KKKKKKK
  t6
     AAAAAAA
  63
  76
```

St⊞

lox' site

BgIII a lox site ompA Xbal lox site ColEI Ext2 origin module p15A Aat Jac p/o cat phoA pCAL system Nhel fl ori BsrGl gIII ss ECOR. Fsel | Pacl | Ipp-Terminator (His, myc) Tind III tails domains module assóc. Figure 25: modular pCAL vector system functions (IL2) lacI effector long SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Aatil	
AfIII	Bfrl, BspTl, Bst981
Ascl	1
Asel	Vspl, Asnl, PshBl
BamHI	Bstl
Bbel	Ehel, Kasl, Narl
Bbsl	BpuAI, BpiI
BgIII	
Blpl	Bpu11021,Celll, Blpl
BsaBl	Maml, Bsh1365l, BsrBRl
BsiWl	Pfl23II, SplI, SunI
BspEl	AccIII, BseAl, BsiMl, Kpn2l, Mrol
BsrGl	Bsp1407I, SspBI
BssHII	Paul
BstEII	BstPl, Eco91l, EcoO651
BstXI	1
Bsu36l	Aocl, Cvnl, Eco811
Dralll	/
DsmAl	
Eagl	BstZI, EclXI, Eco52I, XmallI
Eco57l	
Eco0109I	Drall
EcoRI	1
EcoRV	Eco32I
Fsel	/
HindIII	
Hpal	
Kpnl	Acc651, Asp7181
Miul	
Mscl	Ball, MluNl

WO 97/08320 PCT/EP96/03647

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

unique restriction site	Isoschizomers
Munl	Mfel
Nhel	1
Nsil	Ppu10l, EcoT22l, Mph1103l
NspV	Bsp119l, BstBl, Csp45l, Lspl, Sful
Pacl	1
Pmel	
PmII	BbrPl, Eco72l, PmaCl
Psp5II	PpuMI
Pstl	/
RsrII	(Rsril), Cpol, Cspl
SanDI	/
Sapl	1
SexAI	1
Spel	1
Sfil	
Sphl	Bbul, Pael,Nspl
Stul	Aatl, Eco147l
Styl	Eco130l, EcoT14l
Xbal	BspLU11II
Xhol	PaeR7I
Xmal	Aval, Smal, Cfr9l, PspAl

Figure 26: list of pCAL vector modules

wo:	97/08320				PC1/E1 90/0304
	reference	Skerra et al. (1991) Bio/Technology 9, 273-278	Hoess et al. (1986) Nucleic Acids Res. 2287-2300	see M2	Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266
	template	vector pASK30	(synthetic)	(synthetic)	vector plG10
4 00 4	siles to be inserted	Aatll	lox, BgIII	lox', Sphl	none
1	sites to be removed	2x Vspl (Asel)	2x Vspl (Asel)	none	Sphl, BamHl
	functional element	lac promotor/operator	Cre/lox recombination site	Cre/lox' recombination site	glllp of filamentous phage with N- terminal myctail/amber codon
module/flan-	king restriction sites	Aatil-lacp/o- Xbal	BgIII-lox- Aatli	Xbal-lox'- Sphl	EcoRI- gIllong- HindIll
riguicz	9	M	M2	M3	I-7M

SUBSTITUTE SHEET (RULE 25) 76 / 204

Figure 26: list of pCAL vector modules

			T				
	see M7-I	see M7-1	see M3	see M1	see M1	see M1	see M1
	vector plG10	vector plG10	(synthetic)	(synthetic)	pASK30	pASK30	pASK30
		·	NO	Pacl, Fsel	Pacl, Fsel, BsrGl	BsrGI, Nhel	BsrGl, Nhel
	Sphl	Sphl, Bbsl	none	none	Vspl, Eco571, BssSI	Dralll (Banll not removed)	DrallI, BanlI
	truncated glllp of filamentous phage with N-terminal Gly- Ser linker	truncated glllp of filamentous phage with N-terminal myctail/amber codon	Cre/lox recombination site	lpp-terminator	beta-lactamase/bla (ampR)	origin of single- stranded replication	origin of single- stranded replication
<u> </u>	EcoRI-gIIIss- HindIII	EcoRI-gIIIss- HindIII	SphI-lox- HindIII	HindIII-Ipp- Pacl	PacI/Fsel-bla- BsrGI	BsrGI-f1 ori- Nhel	BsrGI-f1 ori- Nhel
	M7-11	M7-III	M8	M9-11	M10-	M11-	M11-

PCT/EP96/03647

Figure 26: list of pCAL vector modules

		·			I C1/E1 90
Rose, R.E. (1988) Nucleic Acids Res. 16, 355	see M3	Yanisch-Peron, C. (1985) Gene 33,103-119	Cardoso, M. & Schwarz,S. (1992) J. Appl. Bacteriol.72, 289- 293	see M1	Knappik, A & Plückthun, A. (1994) BioTechniques 17, 27
pACYC184	(synthetic)	pUC19	pACYC184	(synthetic)	(synthetic)
Nhel, BgIII	BgIII, Iox, Xmnl	BgIII, Nhel			-
BssSI, VspI, NspV	none	Eco57I (BssSI not removed)	BspEl, Mscl, Styl/Ncol	(synthetic)	(synthetic)
origin of double- stranded replication	Cre/lox recombination site	origin of double- stranded replication	chloramphenicol- acetyltransferase/ cat (camR)	signal sequence of phosphatase A	signal sequence of phosphatase A + FLAG detection tag
Nhel-p15A- Bglll	BgIII-lox- BgIII	BgIII-CoIEI- Nhel	Aatll-cat- BgIII	Xbal-phoA- EcoRl	Xbal-phoA- FLAG-EcoRI
M12	M13	M14- Ext2	M17	M19	M20

Figure 26: list of pCAL vector modules

WO 97/083	20	
Lee et al. (1983) Infect. Immunol. 264-268	see M1	Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41-
(synthetic)	pASK30	(synthetic)
(synthetic)	BstXI, Mlul,BbsI, BanII, BstEII, Hpal, BbeI, Vspl	(synthetic)
heat-stable enterotoxin II signal (synthetic) sequence	lac-repressor	poly-histidine tail
Xbal-stll- Sapl	AfIII-laci- Nhei	EcoRI-Histail- HindIII
M21	M41	M42

SUBSTITUTE SHEET (RULE 26) 80 / 204

Figure 27: functional map and sequence of MCS module (continued

	BsrGI	CCCCCCCC TGTACACCCC GGGGGGGG ACATGTGGGG	AatII XbaI ~~~~~~~ CCCCCCGA CGTCCCCCT GGGGGGCT GCAGGGGGGA	EcoRI AatII ~~~~~~~~~ CGAATTCGAC GTC GCTTAAGCTG CAG
	PacI			
continued)	Pć	22	CCA	0000000 7
Jence of MCS module (a	III	ACATGTAAGC TTCCCCCCC TGTACATTCG AAGGGGGGG	55555555555555555555555555555555555555	Sphi CCCCCCATG CCCCCCCCC GGGGGGGGGGGGG
riguis 27. Turistional map and sequence of MCS module (continued)	HindIII	ACATGTAAGC TT TGTACATTCG AA	Nhel CCCCCGCTA GCCCCCCCC GGGGGGGAT CGGGGGGG	XbaI ~~~~~ CTAGACCCCC GATCTGGGGG
i iguic 2.		\vdash	51	101

WO 97/08320 PCT/EP96/03647

Figure 28: functional map and sequence of pMCS cloning vector

Figure 28: fu	Figure 28: functional map and sequence of pMCS cloning vector (continued)	of pMCS cloning vector (continued)	
\vdash	CAGGTGGCAC	TTTTCGGGGA	AATGTGCGCG TTACACGCGC	GAA
51	TTCTAAATAC AAGATTTATG	ATTCAAATAT TAAGTTTATA	GTATCCGCTC	ATG, TAC
101	AATGCTTCAA TTACGAAGTT	TAATATTGAA ATTATAACTT	AAAGGAAGAG TTTCCTTCTC	TATO
151	GTGTCGCCCT	TATTCCCTTT ATAAGGGAAA	TTTGCGGCAT	TTT(AAA(
201	CACCCAGAAA GTGGGTCTTT	CGCTGGTGAA GCGACCACTT	AGTAAAAGAT TCATTTTCTA	ECC ~~1 GCTC CGAC
251	ACGAGTGGGT TGCTCACCCA BSSSI	TACATCGAAC ATGTAGCTTG	TGGATCTCAA ACCTAGAGTT	CAG

Figure 28: functional map and sequence of pMCS cloning vector (continued)

XmnI

CGTTGCGCAA	ATGGCAACAA	GCCTGTAGCA	ACACCACGAT	GACGAGCGTG	651
CATACCAAAC	TGAATGAAGC	GAACCGGAGC	TGATCGTTGG	TAACTCGCCT	601
GTATGGTTTG	ACTTACTTCG	CTTGGCCTCG	ACTAGCAACC	ATTGAGCGGA	
GGGGATCATG	GCACAACATG	CCGCTTTTTT	AAGGAGCTAA	CGGAGGACCG	551
CCCCTAGTAC	CGTGTTGTAC	GGCGAAAAAA	TTCCTCGATT	GCCTCCTGGC	
TGACAACGAT	AACTTACTTC	CACTGCGGCC	TGAGTGATAA	GCCATAACCA	501
ACTGTTGCTA	TTGAATGAAG	GTGACGCCGG	ACTCACTATT	CGGTATTGGT	
ATGCAGTGCT	TAAGAGAATT	GGCATGACAG	TCTTACGGAT	CAGAAAAGCA	451
TACGTCACGA	ATTCTCTTAA	CCGTACTGTC	AGAATGCCTA	GTCTTTTCGT	
TCACCAGTCA AGTGGTCAGT	GGTTGAGTAC CCAACTCATG	AGAATGACTT TCTTACTGAA	CACTATTCTC GTGATAAGAG	TCGCCGCATA	401
AGCAACTCGG	GCCGGGCAAG	CCGTATTGAC	CGGTATTATC	CTATGTGGCG	351
TCGTTGAGCC	CGGCCCGTTC	GGCATAACTG	GCCATAATAG	GATACACCGC	
TAAAGTTCTG	TGAGCACTTT	TTTCCAATGA	CGAAGAACGT	GTTTTCGCCC	301
ATTTCAAGAC	ACTCGTGAAA	AAAGGTTACT	GCTTCTTGCA	CAAAAGCGGG	

Figure 28: functional map and sequence of pMCS cloning vector (continued)

CTGCTCGCAC TGTGGTGCTA CGGACATCGT TACCGTTGTT GCAACGCGTT

AseI	~~~~~~ CAATTAATAG GTTAATTATC	CTCGGCCCTT GAGCCGGGAA	AGCGTGGGTC TCGCACCCAG	TCCCGTATCG AGGGCATAGC	ACGAAATAGA TGCTTTATCT	AACTGTCAGA TTGACAGTCT	CATTTTTAAT
	TTCCCGGCAA	CACTTCTGCG GTGAAGACGC	GGAGCCGGTG CCTCGGCCAC	TGGTAAGCCC	CTATGGATGA GATACCTACT	AAGCATTGGT TTCGTAACCA	TTTAAAACTT
	TTACTCTAGC AATGAGATCG	GTTGCAGGAC	TGATAAATCT ACTATTTAGA	TGGGGCCAGA ACCCCGGTCT	AGTCAGGCAA TCAGTCCGTT	CTCACTGATT GAGTGACTAA	TTTAGATTGA
	GGCGAACTAC CCGCTTGATG	GGCGGATAAA CCGCCTATTT	GGTTTATTGC CCAAATAACG	ATTGCAGCAC TAACGTCGTG	CACGACGGGG GTGCTGCCCC	AGATAGGTGC TCTATCCACG	TCATATATAC
	ACTATTAACT TGATAATTGA	ACTGGATGGA TGACCTACCT	CCGGCTGGCT	TCGCGGTATC AGCGCCATAG	TAGTTATCTA ATCAATAGAT	CAGATCGCTG GTCTAGCGAC	CCAAGTTTAC GGTTCAAATG
	701	751	801	851	901	951	1001
		SI	JBSTITUTE S	SHEET (AULI	E 26)		

Figure 28: functional map and sequence of pMCS cloning vector (continued)

1051	TTAAAAGGAT	CTAGGTGAAG	ATCCTTTTTG	ATAATCTCAT	GACCAAAATC
	AATTTTCCTA	GATCCACTTC	TAGGAAAAAC	TATTAGAGTA	CTGGTTTTAG
1101	CCTTAACGTG	AGTTTTCGTT	CCACTGAGCG	TCAGACCCCG	TAGAAAAGAT
	GGAATTGCAC	TCAAAAGCAA	GGTGACTCGC	AGTCTGGGGC	ATCTTTTCTA
1151	CAAAGGATCT	TCTTGAGATC	CTTTTTTCT	GCGCGTAATC	TGCTGCTTGC
	GTTTCCTAGA	AGAACTCTAG	GAAAAAAAGA	CGCGCATTAG	ACGACGAACG
1201	AAACAAAAAA TTTGTTTTTT	ACCACCGCTA TGGTGGCGAT	CCAGCGGTGG GGTCGCCACC	TTTGTTTGCC	GGATCAAGAG CCTAGTTCTC
1251	CTACCAACTC	TTTTTCGAA AAAAAGGCTT	GGTAACTGGC CCATTGACCG EC	TTCA AAGT o57I	CGCAGATACC GCGTCTATGG
	I		<i>₹</i> }	? ? ? ?	
1301	AAATACTGTC	CTTCTAGTGT	AGCCGTAGTT	AGGCCACCAC	TTCAAGAACT
	TTTATGACAG	GAAGATCACA	TCGGCATCAA	TCCGGTGGTG	AAGTTCTTGA
1351	CTGTAGCACC	GCCTACATAC	CTCGCTCTGC	TAATCCTGTT	ACCAGTGGCT
	GACATCGTGG	CGGATGTATG	GAGCGAGACG	ATTAGGACAA	TGGTCACCGA

	Figure 28: fu	Figure 28: functional map and sequence of pMCS cloning vector (continued)	e of pMCS cloning vector	(continued)		6 6 7 6 6 6 6
	1401	GCTGCCAGTG	GCGATTAGTICAG	GIGICITIACC CACAGAATGG	CCCAACCTGA	CAAGACGATA GTTCTGCTAT
	1451	GTTACCGGAT CAATGGCCTA	AAGGCGCAGC TTCCGCGTCG	GGTCGGGCTG CCAGCCCGAC	AACGGGGGGT TTGCCCCCCA	TCGTGCACAC AGCACGTGTG
	1501	AGCCCAGCTT TCGGGTCGAA	GGAGCGAACG CCTCGCTTGC	ACCTACACCG TGGATGTGGC	AACTGAGATA TTGACTCTAT	CCTACAGCGT GGATGTCGCA
	1551	GAGCTATGAG CTCGATACTC	AAAGCGCCAC TTTCGCGGTG	GCTTCCCGAA CGAAGGGCTT	GGGAGAAAGG CCCTCTTTCC	CGGACAGGTA GCCTGTCCAT
UTE SHEET (RULE 2	1601	TCCGGTAAGC	GGCAGGGTCG CCGTCCCAGC	GAACAGGAGA CTTGTCCTCT	GCGCACGAGG CGCGTGCTCC BSSSI	GAGCTTCCAG CTCGAAGGTC
	1651	GGGGAAACGC	CTGGTATCTT GACCATAGAA	TATAGTCCTG ATATCAGGAC	TCGGGTTTCG	CCACCTCTGA GGTGGAGACT
	1701	CTTGAGCGTC GAACTCGCAG	GATTTTTGTG CTAAAAACAC	ATGCTCGTCA	GGGGGCGGA	GCCTATGGAA CGGATACCTT
	1751	AAACGCCAGC	AACGCGGCCT	TTTACGGTT	CCTGGCCTTT	TGCTGGCCTT

ed)
ntinu
ctor (continue
o vec
cloning ve
f pMCS clonii
60
d sequenc
and s
l map
functional
gure 28
Fig

	TTTGCGGTCG	TTGCGCCGGA AAATGCCAA GGACCGGAAA ACGACCGGAA	AAAATGCCAA	GGACCGGAAA PacI	ACGACCGGAA BsrGI
1801	TTGCTCACAT	G1 C7	CCCCCCCTT	CCCCCCTT AATTAACCCC GGGGGGAA TTAATTGGGG	CCCCCCTGTA
1851	BsrGI ~~ CACCCCCCC GTGGGGGGG	NheI ~~~~~~ CCGCTAGCCC GGCGATCGGG	Bglii ccccccag Arcrccccc gggggggg	Bglii ~~~~~~~ AG ATCTCCCCCC TC TAGAGGGGGG	Aatii ~~~~~ CCCCGACGTC GGGGCTGCAG
1901	XbaI CCCCCTCTAG A GGGGGAGATC I	XbaI ~~~~~~~ CCCCCTCTAG ACCCCCCC GGGGGGAGATC TGGGGGGGGGG	Sphi ~~~~~ CGCATGCCCC GCGTACGGGG	Sphi CGCATGCCCC CCCCCCGAA TTCACGT GCGTACGGGG GGGGGGCTT AAGTGCA	ECORI ~~~~~~~ GAA TTCACGT CTT AAGTGCA

Figure 29: functional map and sequence of pCAL module M1

SUBSTITUTE SHEET (RULE 26)

5
٦
$\bar{\Xi}$
ō
modul
=
7
Ö
۰
ō
ته
ည
تة
긁
يق
2
\equiv
В
βþ
I map and sequence of pCAL I
_
: functiona
ō
Ξ,
Ξ
3
<u></u> .
29
نه
gur
ಕ
Ξ

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	? ? ? ?				
\leftarrow	GACGTCTTAA	TGTGAGTTAG	TGTGAGTTAG CTCACTCATT AGGCACCCCA GGCTTTACAC	AGGCACCCCA	GGCTTTACAC
	CTGCAGAATT	ACACTCAATC	ACACTCAATC GAGTGAGTAA TCCGTGGGGT CCGAAATGTG	TCCGTGGGGT	CCGAAATGTG
51	TTTATGCTTC	CGGCTCGTAT	CGGCTCGTAT GTTGTGGGA ATTGTGAGCG GATAACAATT	ATTGTGAGCG	GATAACAATT
	AAATACGAAG	GCCGAGCATA	GCCGAGCATA CAACACCT TAACACTCGC CTATTGTTAA	TAACACTCGC	CTATTGTTAA

ACCATGATTA TGGTACTAAT AACAGCTATG I TCACACAGGA AGTGTGTCCT 101

XbaI

Figure 30: functional map and sequence of pCAL module M7-II (continued)

EC	1 GAZ	51 TGO	101	151 AAV	201	251		301 TT
EcoRI	GAATTCGAGC CTTAAGCTCG	TGGTTCCGGT	CTATGACCGA GATACTGGCT	AAACTTGATT TTTGAACTAA	TGGTGACGTT ACCACTGCAA	CTGGCTCTAA GACCGAGATT	IrmX	TA
	AGAAGCTGAT TCTTCGACTA	GATTTTGATT CTAAAACTAA	AAATGCCGAT TTTACGGCTA	CTGTCGCTAC GACAGCGATG	TCCGGCCTTG AGGCCGGAAC	TTCCCAAATG AAGGGTTTAC	; ; ;	AT
	CTCTGAGGAG GAGACTCCTC	ATGAAAAGAT TACTTTTCTA	GAAAACGCGC CTTTTGCGCG	TGATTACGGT ACTAATGCCA	CTAATGGTAA GATTACCATT	GCTCAAGTCG CGAGTTCAGC		ATATTTACCT
	GATCTGTAGG CTAGACATCC	GGCAAACGCT	TACAGTCTGA ATGTCAGACT	GCTGCTATCG CGACGATAGC	TGGTGCTACT	GTGACGGTGA CACTGCCACT		TCCCTCCCTC
	GTGGTGGCTC	AATAAGGGGG TTATTCCCCC	CGCTAAAGGC GCGATTTCCG	ATGGTTTCAT TACCAAAGTA	GGTGATTTTG CCACTAAAAC	TAATTCACCT ATTAAGTGGA		AATCGGTTGA

Figure 30: functional map and sequence of pCAL module M7-11 (continued)

TTTTCTATTG	TCTTTTATAT	TACTGCGTAA	
AAAAGATAAC	AGAAAATATA	ATGACGCATT	
ACCATATGAA TT	TCTTTGCGTT TC	TTTGCTAACA TA	
TGGTATACTT AA	AGAAACGCAA AG	AAACGATTGT AI	
GCGCTGGTAA ACC	TTCCGTGGTG TCJ	ATTTCTACG TT	
CGCGACCATT TGO	AAGGCACCAC AGA	TAAAAGATGC AA	
TTTGTCTTTG GC	AATAAACTTA TT TTATTTGAAT AA	TTATGTATGT AATACATACA	HindIII ~~~~~~ TGATAAGCTT ACTATTCGAA
ATGTCGCCCT I TACAGCGGGA A			TAAGGAGTCT
351	401	451	501

SUBSTITUTE SHEET (RULE 28)
93 / 204

(continued)
M9-11
module
fpCAL
tional map and sequence of pCAL module
map and
: functional
Figure 31:

\vdash
\vdash
Н
വ
Ĭ
-1
H

AGATTGTGCG TCTAACACGC	Fsel ~~~~~~~~ G GCGGCCTGG C CGGCCGGACC	
GCTTGACC TGTGAAGTGA AAAATGGCGC AGATTGTGCG CGAACTGG ACACTTCACT TTTTACCGCG TCTAACACGC	Paci Fsel Trantradag GGGGGGGG GCCGGCCTGG AATTAATTTC CCCCCCCCC CGGCGGGACC	
TGTGAAGTGA ACACTTCACT	PacI ~~~~~~~~ TTAATTAAAG AATTAATTTC	9 9 0 0 0 0
AAGCTTGACC TTCGAACTGG	Paci ACATTTTTT TGTCTGCCGT TTAATTAAAG TGTAAAAAAA ACAGACGGCA AATTAATTTC	BsrGI GGGGGGTGT ACAGGGGGG GGG CCCCCCACA TGTCCCCCCC CCC
GGGGGGGGGG AA(ACATTTTTT TGTAAAAAA	BsrGI ~~~~~~ GGGGGGTGT ACA CCCCCCACA TGT
-	51	101

SUBSTITUTE SHEET (RULE 26) 96 / 204

Figure 32: functional map and sequence of pCAL module M11-III (continued)

	TTTAA GCGCGGCGGG TGTGGTGGTT	CAGC GCCCTAGCGC CCGCTCCTTT	CGTT CGCCGGCTTT CCCCGTCAAG	TTCC GATTTAGTGC TTTACGGCAC	TGAT GGTTCTCGTA GTGGGCCATC	TGAC GTTGGAGTCC ACGTTCTTTA ACTG CAACCTCAGG TGCAAGAAT	ACAA CACTCAACCC TATCTCGGTC	
	CTGTAGC GGCGCATTAA GACATCG CCGCGTAATT	TGACCGCTAC ACTTGCCAGC ACTGGCGATG TGAACGGTCG	TCCTTTC TCGCCACGTT AGGAAAG AGCGGTGCAA	CATCCCT TTAGGGTTCC GTAGGGA AATCCCAAGG	AAAAACTTGA TTAGGGTGAT TTTTTGAACT AATCCCACTA	GTTTTTC GCCCTTTGAC CAAAAAG CGGGAAACTG	GTTCCAA ACTGGAACAA .caaggtt tgaccttgtt	
NheI	GCTAGCACGC GCCC CGATCGTGCG CGGG	ACGCGCAGCG TGAC TGCGCGTCGC ACTG	CGCTTTCTTC CCTT GCGAAAGAAG GGAA	CTCTAAATCG GGGC GAGATTTAGC CCCG	CTCGACCCCA AAAA GAGCTGGGGT TTTT	GCCCTGATAG ACGG CGGGACTATC TGCC	ATAGTGGACT CTTG TATCACCTGA GAAC	
1		51 A T	101	151		251	301 A	. !

SUBSTITUTE SHEET (RULE 28) 97 / 204

_
(continued
=
=
odule M11-III (c
odı
L m
of pCAL
of p
nal map and sequence of pCAL mod
ren
) Sedi
nap and seq
p ar
ma
nal
ţi
nu
2: fun
e 3,
Figur

ATAAGAAAAC TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT

AAAATATTAA	TTTATAATT
CAATTTTAAC AAAATA	CTTAAAATTG
A AATTTAACGC	TAAATTGTTT TTAAATTGCG (
ATTTAACAAA	TAAATTGTTT
AAATGAGCTG	TTTACTCGAC
401	

BsrGI

451 CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

SUBSTITUTE SHEET (NULE 26)
99 / 204

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

		GAGCGTCAG	ACTCGCAGTC
		AAATCCCTT AACGTGAGTT TTCGTTCCAC TGAGCGTCAG	TTTTAGGGAA TTGCACTCAA AAGCAAGGTG ACTCGCAGTC
		AACGTGAGTT	TTGCACTCAA
		AAAATCCCTT	TTTTAGGGAA
PG 1 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AGATCTGACC	TCTAGACTGG
		⊣	

	7	ACCCCGT'AGA TGGGGCATCT	AAAGATCAAA TTTCTAGTTT	GGATCTTCTT	AAAGATCAAA GGATCTTCTT GAGATCCTTT TTTTTGGGGC TTTCTAGTTT CCTAGAAGAA CTCTAGGAAA AAAAGACGCG	TTTTCTGCGC AAAAGACGCG	
C 1	101	GTAATCTGCT	GCTTGCAAAC	AAAAAAACCA	GCTTGCAAAC AAAAAACCA CCGCTACCAG CGGTGGTTTG	CGGTGGTTTG	

CGGTGGTTTG	GCCACCAAAC	ACTGGCTACA	TGACCGATGT
CTTGCAAAC AAAAAACCA CCGCTACCAG CGGTGGTTTG	TTTTTTGGT GGCGATGGTC GCCACCAAAC	CAACTCTTTT TCCGAAGGTA ACTGGCTACA	GTTGAGAAAA AGGCTTCCAT TGACCGATGT
AAAAAAACCA	TTTTTTGGT	CAACTCTTTT	GTTGAGAAAA
GCTTGCAAAC	CGAACGTTTG	CAAGAGCTAC	GTTCTCGATG
GTAATCTGCT	CATTAGACGA	TTTGCCGGAT	AAACGGCCTA
101		151	

GTAGTTAGGC	CATCAATCCG	
ATACCAAAT ACTGTTCTTC TAGTGTAGCC GTAGTTAGGC	. TGACAAGAAG ATCACATCGG	
ACTGTTCTTC	TGACAAGAAG	
GATACCAAAT	CTATGGTTTA	
GCAGAGCGCA	CGTCTCGCGT	
201		
(P.U	LE 2	<i>6</i>)

CTCTGCTAAT	GAGACGATTA
AGCACCGCCT ACATACCTCG CTCTGCTAAT	TCGTGGCGGA TGTATGGAGC
AGCACCGCCT	TCGTGGCGGA
AGAACTCTGT	TCTTGAGACA
CACCACTICA	GTGGTGAAGT
251	

CTTACCGGGT GAATGGCCCA	GGGCTGAACG
TGGCTGCTG CCAGTGGCGA TAAGTCGTGT CTTACCGGGT	CGATAGTTA CCGGATAAGG CGCAGCGGTC GGGCTGAACG
CCAGTGGCGA GGTCACCGCT	CCGGATAAGG
GTGGCTGCTG CACCGACGAC	ACGATAGTTA
CCTGTTACCA GGACAATGGT	TGGACTCAAG
301	351

SUBSTITUTE SHEET (PULE 26)

(continued)
t 2
Ä
1
=
2
흗
g
2
Ξ.
¥
\mathcal{C}
of pCAL mode
e 0
nctional map and sequence of pCAL module
р
a
map
a
5
Ξ
บ
Į
33: func
\ddot{c}
Figure

ATTCC GCGTCGCCAG CCCGACTTGC	TGGAG CGAACGACCT ACACCGAACT ACCTC GCTTGCTGGA TGTGGCTTGA	GAAAG CGCCACGCTT CCCGAAGGGA CTTTC GCGGTGCGAA GGGCTTCCCT	CGGCA GGGTCGGAAC AGGAGAGCGC GCCGT CCCAGCCTTG TCCTCTCGCG BSSSI	CCTGG TATCTTTATA GTCCTGTCGG GGACC ATAGAAATAT CAGGACAGCC	CGATT TTTGTGATGC TCGTCAGGGG	CAACG CGGCCTTTTT ACGGTTCCTG
GGCCTATTCC	CAGCTTGGAG GTCGAACCTC	TATGAGAAAG ATACTCTTTC	GTAAGCGGCA CATTCGCCGT	AAACGCCTGG TTTGCGGACC	AGCGTCGATT TCGCAGCTAA	GCCAGCAACG CGGTCGTTGC
TGCTATCAAT	GCACACAGCC CGTGTGTCGG	CAGCGTGAGC GTCGCACTCG	CAGGTATCCG GTCCATAGGC	TTCCAGGGGG	CTCTGACTTG GAGACTGAAC	ATGGAAAAAC TACCTTTTTG
ACCTGAGTTC TGCTATCAAT GGCCTA	GGGGGTTCGT CCCCCAAGCA	GAGATACCTA CTCTATGGAT	GAAAGGCGGA CTTTCCGCCT	ACGAGGGAGC TGCTCCCTCG BssSI	GTTTCGCCAC CAAAGCGGTG	GGCGGAGCCT
	401	451	501	551	601	651
			SUBSTITUTE	SHEET (RULE 26)		

SUBSTITUTE SHEET (RULE 26)

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGGCGAAAACGA CCGGAAAACG AGTGTACCGA TCC

701

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)
103 / 204

Figure 34: functional map and sequence of pCAL module M17. (continued)

AatII

SAAAT AAGATCACTA STTTA TTCTAGTGAT	AGCTA AGGAAGCTAA ICGAT TCCTTCGATT	ATATA TCCCAATGGC FATAT AGGGTTACCG	SCTCA ATGTACCTAT CGAGT TACATGGATA	AAAGA CCGTAAAGAA FTTCT GGCATTTCTT	PTCTT GCCCGCCTGA	SACGG TGAGCTGGTG CTGCC ACTCGACCAC	CCATG AGCAAACTGA
ATAATGAAAT	TCAGGAGCTA	CGTTGATATA	CAGTTGCTCA	TTTTAAAGA	TCACATTCTT	TGAAAGACGG	GTTTTCCATG
TATTACTTTA	AGTCCTCGAT	GCAACTATAT	GTCAACGAGT	AAAATTTCT	AGTGTAAGAA	ACTTTCTGCC	
AACTTTCACC TTGAAAGTGG	ATCGAGATTT TAGCTCTAAA	GATATACCAC CTATATGGTG	GCATTTCAGT CGTAAAGTCA	TATTACGGCC	CGGCCTTTAT GCCGGAAATA	CGTATGGCAA GCATACCGTT	TTGTTACACC
GTGAGGTTCC	TTTTTGAGTT	AAAATCACTG	ACATTTTGAG	TTCAGCTGGA	AAGTTTTATC	CCCGGAGTTC	GTGTTCACCC
CACTCCAAGG	AAAAACTCAA	TTTTAGTGAC	TGTAAAACTC	AAGTCGACCT	TTCAAAATAG	GGGCCTCAAG	
GGGACGTCGG	CCGGGCGTAT	AATGGAGAAA	ATCGTAAAGA	AACCAGACCG	AAATAAGCAC	TGAATGCTCA	ATATGGGATA
CCCTGCAGCC	GGCCCGCATA	TTACCTCTTT	TAGCATTTCT	TTGGTCTGGC	TTTATTCGTG	ACTTACGAGT	
7	51	101	151	201	251	301	351

SUBSTITUTE SHEET (RULE 26)

TACCGAAGGT GAGTGGCAGG CTCACCGTCC AAACGCCTGG GCCGTCAAAG CTGTTGAAGA CGACAAGGTG GCTGTTCCAC ATGGCTTCCA TCGTTTGACT CCTGGCCTAT GGACCGGATA CCAATCCCTG GGTTAGGGAC GACAACTTCT CGGCAGTTTC GCCGTTTGTG CATGACGCTA GGGTGCCCTT CAAAAGGTAC TGCCACTTTT AGCCAATATG TCGGTTATAC ATACGCAAGG TATGCGTTCC GTACTGCGAT GCTGCTAAAG ACGGTGAAAA TTCGTCTCAG CGGCAAACAC CGACGATTTC AAGCAGAGTC CACAAGTGGG AACAATGTGG ATTTAAACGT GTGAATACCA TAAATTTGCA GGTTCATCAT CACTTATGGT GTGGCGTGTT CACCGCACAA GAATATGTTT CTTATACAAA GGCAAATATT CCGTTTATAA CCAAGTAGTA AATTACAACA TTAATGTTGT GGCAGTTATT Figure 34: functional map and sequence of pCAL module M17 (continued) AAGCGTTCTA ATTTTTAA TCGCTCTGGA TGGCGATTCA TTCGCAAGAT AAAGTGATAC ATGCTTAATG AGCGAGACCT TACGAATTAC GGTTTATTGA ACCAGTTTTG TGGTCAAAAC TTTCACTATG ACCGCTAAGT CCAAATAACT AGCGGGGGCA TGTCGGCAGA TATACCCTAT CTGATGCCGC AACGTTTTCA TTGCAAAAGT GCGGGGCGTA CCACTCAAAG TCGCCCCCGT GACTACGGCG ACAGCCGTCT ATGTGTATAT TTCCCTAAAG AAGGGATTTC GGTGAGTTTC TACACATATA 751 401 501 551 601 651 701 451 SUBSTITUTE SHEET (RULE 26)

Figure 34: functional map and sequence of pCAL module M17 (continued)

TAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC CGCCCCGCAT

BglII

801

TGCTAGATCT TCC ACGATCTAGA AGG

SUBSTITUTE SHEET (RULE 26)

Figure 35: functional map and sequence of modular vector pCAL4

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

		TCTGAGGAGG ATCTGTAGGG TGGTGGCTCT	CTTCGACTAG AGACTCCTCC TAGACATCCC ACCACCGAGA	TTTTGATTA TGAAAGATG GCAAACGCTA ATAAGGGGGC	TAAAACTAAT ACTTTTCTAC CGTTTGCGAT TATTCCCCCG	
		TCTGAGGAGG AT	AGACTCCTCC TAG	TGAAAAGATG GCA	ACTTTTCTAC CG	
		GAAGCTGATC	CTTCGACTAG	ATTTGATTA	TAAAACTAAT	
EcoRI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AATTCGAGCA	TTAAGCTCGT	GGTTCCGGTG	CCAAGGCCAC	
		⊣		51		

AATGCCGATG AAAACGCGCT ACAGTCTGAC GCTAAAGGCA	CGATTTCCGT	GTCGCTACT GATTACGGTG CTGCTATCGA TGGTTTCATT
ACAGTCTGAC	TGTCAGACTG	CTGCTATCGA
AAAACGCGCT	TACGGCTAC TTTTGCGCGA TGTCAGACTG CGATTTCCGT	GATTACGGTG
AATGCCGATG	TTACGGCTAC	TGTCGCTACT
TATGACCGAA	ATACTGGCTT	AACTTGATTC
101		151

CCGGCCTTGC TAATGGTAAT GGTGCTACTG GTGATTTTGC	GGTGCTACTG	TAATGGTAAT	CCGGCCTTGC	GGTGACGTTT	201
ACCAAAGTAA	GACGATAGCT	ACAGCGATGA CTAATGCCAC GACGATAGCT	ACAGCGATGA	TTGAACTAAG	
TGTCGCTACT GATTACGGTG CTGCTATCGA TGGTTTCATT	CTGCTATCGA	GATTACGGTG	TGTCGCTACT	AACTTGATTC	151

CACTAAAACG

CCACGATGAC

ATTACCATTA

GGCCGGAACG

CCACTGCAAA

XmnI

ATCGGTTGAA TAGCCAACTT CCCTCCCTCA GGGAGGGAGT TATTTACCTT ATAAATGGAA TTTCCGTCAA AAAGGCAGTT TAATGAATAA ATTACTTATT 301

SUBSTITUTE SHEET (RULE 26) 108 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

A CCATATGAAT TTTCTATTGA F GGTATACTTA AAAGATAACT	T CTTTGCGTTT CTTTTATATG A GAAACGCAAA GAAAATATAC	r ttgctaacat actgcgtaat a aacgattgta tgacgcatta	FGAAAATGG CGCAGATTGT	Fsel	; TTAATATTTT GTTAAAATTC : AATTATAAAA CAATTTTAAG
CGCTGGTAAA GCGACCATTT	TCCGTGGTGT AGGCACCACA	TTTTCTACGT AAAAGATGCA	ACCTGTGAAG TGGACACTTC	PacI ~~~~~~ CGTTTAATTA GCAAATTAAT	ATTGTAAACG TAACATTTGC
TTGTCTTTGG AACAGAAACC	ATAAACTTAT TATTTGAATA	TATGTATGTA ATACATACAT	HindIII ~~~~~~ GATAAGCTTG CTATTCGAAC	TTTTGTCTGC	BsrGI ~~~~~~ TGTACATGAA ACATGTACTT
TGTCGCCCTT ACAGCGGGAA	TTGTGACAAA AACACTGTTT	TTGCCACCTT AACGGTGGAA	AAGGAGTCTT TTCCTCAGAA	GCGACATTTT CGCTGTAAAA	TGGGGGGGG
351	401	451	501	551	601
		St	JBSTITUTE SHEET (F	RULE 26)	

SUBSTITUTE SHEET (RULE 26) 109 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

AGGCCGAAAT TCCGGCTTTA	GGGTTGAGTG CCCAACTCAC	GGACTCCAAC CCTGAGGTTG	TACGAGAACC ATGCTCTTGG	GCACTAAATC CGTGATTTAG		AAAGCCGGCG	GCGCTAGGGC CGCGATCCCG
TTTAACCAAT AAATTGGTTA	GACCGAGATA (CTGGCTCTAT	TAAAGAACGT (AATTTCTTGCA	GATGGCCCAC CTACCGGGTG	GTGCCGTAAA (CTTGACGGGG Z	AAAGGAGCGG (TTTCCTCGCC (
CAGCTCATTT GTCGAGTAAA	CAAAAGAATA GTTTTCTTAT	AGTCCACTAT TCAGGTGATA	CTATCAGGGC	TGGGGTCGAG ACCCCAGCTC		CGATTTAGAG GCTAAATCTC	GAAGAAAGCG CTTCTTTCGC
ТТТСТТАААТ АААСААТТТА	CCTTATAAAT GGAATATTTA	TTGGAACAAG	GAAAAACCGT CTTTTTGGCA	TCAAGTTTTT AGTTCAAAAA	BanII	AGGGAGCCCC TCCCTCGGGG	GAAAGGAAGG CTTTCCTTCC
GCGTTAAATT CGCAATTTAA	CGGCAAAATC GCCGTTTTAG	TTGTTCCAGT	GTCAAAGGGC CAGTTTCCCG	ATCACCCTAA TAGTGGGATT		GGAACCCTAA CCTTGGGATT	AACGTGGCGA TTGCACCGCT
651	701	751	801	851		901	951

SUBSTITUTE SHEET (RULE 26)

WO 97/083	20 ,				PCT/EP	96/03647
9292992999	AAAGGCCAGC TTTCCGGTCG	TTTCCATAGG AAAGGTATCC	GTCAGAGGTG CAGTCTCCAC	CCTGGAAGCT GGACCTTCGA	ATACCTGTCC TATGGACAGG	CACGCTGTAG GTGCGACATC
AACCACCACA TTGGTGGTGT	CATGTGAGCA GTACACTCGT	TGCTGGCGTT ACGACCGCAA	CGACGCTCAA GCTGCGAGTT	GGCGTTTCCC	CGCTTACCGG	TCTCATAGCT AGAGTATCGA
-4 (continued) CGCTGCGCGT GCGACGCGCA	NheI ~~~~~~ GCGTGCTAGC CGCACGATCG	AAGGCCGCGT TTCCGGCGCA	TCACAAAAAT AGTGTTTTTA	AAAGATACCA TTTCTATGGT	CCGACCCTGC	CGTGGCGCTT GCACCGCGAA
ce of modular vector pCAL GTAGCGGTCA CATCGCCAGT	GCTACAGGGC	GAACCGTAAA CTTGGCATTT	CTGACGAGCA GACTGCTCGT	ACAGGACTAT TGTCCTGATA	CTCTCCTGTT	CTTCGGGAAG GAAGCCCTTC
Figure 35: functional map and sequence of modular vector pCAL4 (continued) 1001 GCTGGCAAGT GTAGCGGTCA CGCTGC CGACCGTTCA CATCGCCAGT GCGACC	TTAATGCGCC	AAAAGGCCAG TTTTCCGGTC	CTCCGCCCCC	GCGAAACCCG CGCTTTGGGC	BSSSI ~~~~~ CCCTCGTGCG GGGAGCACGC	GCCTTTCTCC CGGAAAGAGG
Figure 35: fi 1001	1051	1101	1151	1201	1251	1301

SUBSTITUTE SHEET (RULE 26) 111 / 204

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

TGTGTGCACG	CTATCGTCTT	CAGCCACTGG	GAGTTCTTGA	TGGTATCTGC	GCTCTTGATC	TGCAAGCAGC	GATCTTTTCT
ACACACGTGC	GATAGCAGAA	GTCGGTGACC	CTCAAGAACT	ACCATAGACG	CGAGAACTAG		CTAGAAAAGA
CAAGCTGGGC	TATCCGGTAA	CCACTGGCAG	CGGTGCTACA	GAACAGTATT	AGAGTTGGTA	TTTTTTGTT	AAGATCCTTT
GTTCGACCCG	ATAGGCCATT	GGTGACCGTC	GCCACGATGT	CTTGTCATAA	TCTCAACCAT	AAAAAAACAA	TTCTAGGAAA
TCGTTCGCTC	CGCTGCGCCT	CGACTTATCG	GGTATGTAGG	TACACTAGAA	CTTCGGAAAA	GTAGCGGTGG	GGATCTCAAG
AGCAAGCGAG	GCGACGCGGA	GCTGAATAGC	CCATACATCC	ATGTGATCTT	GAAGCCTTTT		CCTAGAGTTC
TCGGTGTAGG	TCAGCCCGAC	CGGTAAGACA GCCATTCTGT	AGCAGAGCGA TCGTCTCGCT	TAACTACGGC ATTGATGCCG	AGCCAGTTAC TCGGTCAATG	ACCACCGCTG TGGTGGCGAC	CAGAAAAAAA GTCTTTTTTT
GTATCTCAGT	AACCCCCCGT	GAGTCCAACC	TAACAGGATT	AGTGGTGGCC	GCTCTGCTGT	CGGCAAACAA	AGATTACGCG
CATAGAGTCA	TTGGGGGGCA	CTCAGGTTGG	ATTGTCCTAA	TCACCACCGG	CGAGACGACA	GCCGTTTGTT	TCTAATGCGC
1351	.1401	1451	1501	1551	1601	1651	1701

SUBSTITUTE SHEET (RULE 26) 112 / 204

PCT/EP96/03647

(continued)
r pCAL4
vector
nal map and sequence of modular vector pC
e of
ap and sequence
and
map
unctio
35: f
Figure

GGATTTTGGT	TTAAAAAAAT	CATTAAGCAT	TGAATCGCCA	CATAGTGAAA	CAAAACTGGT	TCAATAAACC
CCTAAAACCA	AATTTTTTA	GTAATTCGTA	ACTTAGCGGT	GTATCACTTT	GTTTTGACCA	AGTTATTTGG
TCACGTTAAG	AATAACTGCC	TGTTGTAATT	ATGATGAACC	AATATTTGCC	ACGTTTAAAT	AAACATATTC
AGTGCAATTC	TTATTGACGG	ACAACATTAA	TACTACTTGG	TTATAAACGG	TGCAAATTTA	TTTGTATAAG
GAACGAAAAC	TAAGGGCACC	ATCGCAGTAC	CACAAACGGC	CCTTGCGTAT	CATATTGGCT	CTGAGACGAA
CTTGCTTTTG		TAGCGTCATG	GTGTTTGCCG	GGAACGCATA	GTATAACCGA	GACTCTGCTT
ACGCTCAGTG	ACCAGGCGTT	CCTGCCACTC	TGGAAGCCAT	CACCTTGTCG	AGAAGTTGTC	CAGGGATTGG
TGCGAGTCAC	TGGTCCGCAA		ACCTTCGGTA	GTGGAACAGC	TCTTCAACAG	GTCCCTAACC
ACGGGGTCTG TGCCCCAGAC	BglII ~~~~~~ CAGATCTAGC GTCTAGATCG	TACGCCCCGC	TCTGCCGACA	GCGGCATCAG CGCCGTAGTC	ACGGGGGCGA TGCCCCCGCT	GAAACTCACC CTTTGAGTGG
1751	1801	1 8 2 1 1 8 2 1 1 1 1 2 2 1 1 1 1 1 1 1	1901 1901	1921 FULE 26)	2001	2051

(continued) TTTTCACCGT AACACGCCAC ATCTTGCGAA AAAAGTGGCA TTGTGCGGTG TAGAACGCTT	GAAATCGTCG TGGTATTCAC TCCAGAGCGA CTTTAGCAGC ACCATAAGTG AGGTCTCGCT	CATGGAAAAC GGTGTAACAA GGGTGAACAC GTACCTTTTG CCACATTGTT CCCACTTGTG	CCGTCTTTCA TTGCCATACG GAACTCCGGG GGCAGAAAGT AACGGTATGC CTTGAGGCCC	AAGAATGTGA ATAAAGGCCG GATAAAACTT TTCTTACACT TATTTCCGGC CTATTTGAA	TCTTTAAAA GGCCGTAATA TCCAGCTGAA AGAAATTTTT CCGGCATTAT AGGTCGACTT	TGAGCAACTG ACTGAAATGC CTCAAAATGT ACTCGTTGAC TGACTTTACG GAGTTTTACA	TATATCAACG GTGGTATATC CAGTGATTTT
modular vector pCAL4 PAGGCCAGG A	GAAACTGCCG GAAAT CTTTGACGGC CTTTA	TCAGTTTGCT CATGG AGTCAAACGA GTACC	CACCAGCTCA CCGTC GTGGTCGAGT GGCAC	TCAGGCGGGC AAGAAAAGGCCCG TTCTT	TTCTTTACGG TCTT1 AAGAAATGCC AGAA	ATAGGTACAT TGAGG TATCCATGTA ACTCG	GCCATTGGGA TATA
Figure 35: functional map and sequence of 2101 CTTTAGGGAA AT GAAATCCCTT TA	TATATGTGTA (ATATACACAT)	TGAAAACGTT ACTTTTGCAA	TATCCCATAT (ATAGGGTATA)	TGAGCATTCA	GTGCTTATTT CACGAATAAA	CGGTCTGGTT GCCAGACCAA	TCTTTACGAT
Figure 35: f 2 1 0 1	2151	2201	225.1	TE SHEET	2351 (32 310%)	2401	2451

(continued)	
ar vector pCAL4	
uence of modul	
ial map and segi	
gure 35: functional map and sequence of modular vecto	
ίΞ	

				AatII	
GGAACCTCAC	ATTTCATTAT GGTGAAAGTT GGAACCTCAC	ATTTCATTAT	TAGTGATCTT	ATACGCCCGG	2551
CCTTGGAGTG	TAAAGTAATA CCACTTTCAA CCTTGGAGTG	TAAAGTAATA	ATCACTAGAA	TATGCGGGCC	
AACTCAAAAA	TTAGCTTCCT TAGCTCCTGA AAATCTCGAT AACTCAAAAA	TAGCTCCTGA	TTAGCTTCCT	TTTCTCCATT	2501
TTGAGTTTTT	AATCGAAGGA ATCGAGGACT TTTAGAGCTA TTGAGTTTTT	ATCGAGGACT	AATCGAAGGA	AAAGAGGTAA	

	ATGTGAGTTA GCTCACTCAT TAGGCACCCC AGGCTTTACA	TCCGAAATGT
	TAGGCACCCC	TACACTCAAȚ CGAGTGAGTA ATCCGTGGGG TCCGAAATGT
	GCTCACTCAT	CGAGTGAGTA
	ATGTGAGTTA	TACACTCAAȚ
? . ? ? ?	CCGACGTCTA	GGCTGCAGAT
	2601	
		Subs

GGCTCGTA TGTTGTGG AATTGTGAGC GGATAACAAT	CCGAGCAT ACAACACC TTAACACTCG CCTATTGTTA
AATTGTGAGC	TTAACACTCG
TGTTGTGTGG	ACAACACACC
CCGGCTCGTA	GGCCGAGCAT
CTTTATGCTT	GAAATACGAA
2651	- 0

I SphI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AGAGCATGCG	
XbaI	? ? ?	ACAGCTAT GACCATGATT ACGAATTTCT AGAGCATGCG	GTCGATA CTGGTACTAA TGCTTAAAGA TCTCTTAAAGA
		GACCATGATT	CTGGTACTAA
		AAACAGCTAT	TTTGTCGATA
		TTCACACAGG	AAGTGTGTCC
		2701	
יוופי	=	oez	

ECORI

2751 GGGG

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26) 116 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

2 \mathbf{Z} AatII 11111

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT ACACTCAATC TGTGAGTTAG GACGTCTTAA CTGCAGAATT

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 51

XmnI

XbaI

GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT TTGTCGATAC AACAGCTATG TCACACAGGA AGTGTGTCCT

CATATTACAT GTATAATGTA

SphI

TGC AGTTATCGCA TCAATAGCGT CGCTATACGA GCGATATGCT

151

SUBSTITUTE SHEET (RULE 26) 117 / 204

101

SUBSTITUTE SHEET (RULE 26)

AatII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

 \mathcal{C} \mathbf{Z} BglII

~~~~

TGACGTC ACTGCAG TACGAAGTTA ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT TCTAGAGTAT AGATCTCATA

SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# M 7-I (long):

ECORI

|         | Н   | GAATTCGGTG<br>CTTAAGCCAC | GTGGTGGATC               | TGCGTGCGCT<br>ACGCACGCGA | GAAACGGTTG<br>CTTTGCCAAC | AAAGTTGTTT<br>TTTCAACAAA |
|---------|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|         | 51  | AGCAAAATCC<br>TCGTTTTAGG | CATACAGAAA<br>GTATGTCTTT | ATTCATTTAC<br>TAAGTAAATG | TAACGTCTGG<br>ATTGCAGACC | AAAGACGACA<br>TTTCTGCTGT |
| O. ID O | 101 | AAACTTTAGA<br>TTTGAAATCT | TCGTTACGCT<br>AGCAATGCGA | AACTATGAGG<br>TTGATACTCC | GCTGTCTGTG               | GAATGCTACA<br>CTTACGATGT |
|         | 151 | GGCGTTGTAG<br>CCGCAACATC | TTTGTACTGG<br>AAACATGACC | TGACGAAACT<br>ACTGCTTTGA | CAGTGTTACG<br>GTCACAATGC | GTACATGGGT<br>CATGTACCCA |
|         | 201 | TCCTATTGGG<br>AGGATAACCC | CTTGCTATCC<br>GAACGATAGG | CTGAAAATGA<br>GACTTTTACT | GGGTGGTGGC               | TCTGAGGGTG<br>AGACTCCCAC |
|         | 251 | GCGGTTCTGA<br>CGCCAAGACT | GGGTGGCGGT               | TCTGAGGGTG<br>AGACTCCCAC | GCGGTACTAA<br>CGCCATGATT | ACCTCCTGAG<br>TGGAGGACTC |
|         | 301 | TACGGTGATA<br>ATGCCACTAT | CACCTATTCC<br>GTGGATAAGG | GGGCTATACT<br>CCCGATATGA | TATATCAACC<br>ATATAGTTGG | CTCTCGACGG<br>GAGAGCTGCC |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| CGCTAATCCT AATCCTTCTC<br>GGGATTAGGA TTAGGAAGAG | A TGTTTCAGAA TAATAGGTTC<br>F ACAAAGTCTT ATTATCCAAG | r acggcactg tractcaagg<br>a tgcccgrgac aatgagttcc | A CACTCCTGTA TCATCAAAAG  | r rcagagacrg cgcrrrccar<br>a agrcrcrgac gcgaaaggra | r GAATATCAAG GCCAATCGT<br>A CTTATAGTTC CGGTTAGCA | S CGGCGGCTCT GGTGGTGGTT  | S AGGGTGGCGG TTCTGAGGGT  |
|------------------------------------------------|----------------------------------------------------|---------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------|--------------------------|
| AGCAAAACCC<br>TCGTTTTGGG                       | AATACTTTCA<br>TTATGAAAGT                           | AACTGTTTAT<br>TTGACAAATA                          | ATTACCAGTA<br>TAATGGTCAT | AACGGTAAAT<br>TTGCCATTTA                           | ATTTGTTTGT<br>TAAACAAACA                         | TCAATGCTGG<br>AGTTACGACC | GGTGGCTCTG               |
| CCTGGTACTG<br>GGACCATGAC                       | TCAGCCTCTT<br>AGTCGGAGAA                           | AGGGGGCATT<br>TCCCCCGTAA                          | GTTAAAACTT<br>CAATTTTGAA | CGCTTACTGG<br>GCGAATGACC                           | ATGAGGATTT<br>TACTCCTAAA                         | CAACCTCCTG<br>GTTGGAGGAC | CTCTGAGGGT<br>GAGACTCCCA |
| CACTTATCCG<br>GTGAATAGGC                       | TTGAGGAGTC<br>AACTCCTCAG                           | CGAAATAGGC<br>GCTTTATCCG                          | CACTGACCCC               | CCATGTATGA<br>GGTACATACT                           | TCTGGCTTTA<br>AGACCGAAAT                         | TGACCTGCCT<br>ACTGGACGGA | CTGGTGGCGG               |
| 351                                            | 401                                                | 451                                               | 501                      | 551                                                | 601                                              | 651                      | 701                      |
|                                                |                                                    | (                                                 | SUBSTITUTE               | SHEET (RU                                          | LE 26)                                           |                          |                          |

SUBSTITUTE SHEET (RULE 26) 122 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTT CCGGTGATTT<br>CAA GGCCACTAAA | ATG ACCGAAAATG<br>TAC TGGCTTTTAC | ACT TGATTCTGTC<br>TGA ACTAAGACAG | GTG ACGTTTCCGG<br>CAC TGCAAAGGCC        | GGC TCTAATTCCC<br>CCG AGATTAAGGG | XmnI<br>~~~~~~~~~<br>AAT GAATAATTTC<br>TTA CTTATTAAAG | GTC GCCCTTTTGT           |
|----------------------------------|----------------------------------|----------------------------------|-----------------------------------------|----------------------------------|-------------------------------------------------------|--------------------------|
| GGCTCTGGTT<br>CCGAGACCAA         | GGGGGCTATG                       | AAGGCAAACT<br>TTCCGTTTGA         | TTCATTGGTG<br>AAGTAACCAC                | TTTTGCTGGC<br>AAAACGACCG         | CACCTTTAAT<br>GTGGAAATTA                              | GTTGAATGTC               |
| TTCCGGTGGT<br>AAGGCCACCA         | ACGCTAATAA<br>TGCGATTATT         | TCTGACGCTA<br>AGACTGCGAT         | TATCGATGGT<br>ATAGCTACCA                | CTACTGGTGA<br>GATGACCACT         | GGTGATAATT<br>CCACTATTAA                              | CCCTCAATCG               |
| AGGGAGGCGG<br>TCCCTCCGCC         | AAGATGGCAA<br>TTCTACCGTT         | CGCGCTACAG<br>GCGCGATGTC         | ACGGTGCTGC<br>TGCCACGACG                | GGTAATGGTG<br>CCATTACCAC         | AGTCGGTGAA<br>TCAGCCACTT                              | TACCTTCCAT               |
| GGCGGCTCTG<br>CCGCCGAGAC         | TGATTATGAA<br>ACTAATACTT         | CCGATGAAAA<br>GGCTACTTTT         | GCTACTGATT<br>CGATGACTAA                | CCTTGCTAAT<br>GGAACGATTA         | AAATGGCTCA<br>TTTACCGAGT                              | CGTCAATATT<br>GCAGTTATAA |
| 751                              | 801                              | 851                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 951                              | 1001                                                  | 1051                     |
|                                  |                                  |                                  |                                         | E SHEET (RU<br>3 / 204           | LE 26)                                                |                          |

| $\overline{\Xi}$ |
|------------------|
| ĕ                |
| ⊇                |
| .=               |
| =                |
| ŏ                |
| رت               |
|                  |
| Ξ.               |
| ₽                |
| Ç.               |
| Š                |
|                  |
| ₹                |
| ت                |
| р                |
| O                |
| Ę                |
| 10               |
| nodules          |
| =                |
| Ð                |
| ō                |
| Ε                |
| vector n         |
| 0                |
| $\overline{c}$   |
| ف                |
| ٦.               |
| 7                |
| $\sim$           |
| ď                |
| =                |
| 23               |
| ō                |
| Ē                |
| ==               |
| ō                |
| В                |
| <del>_</del>     |
|                  |
| S                |
| ũ                |
| 2                |
| Иe               |
| Q                |
| Se               |
| ~                |
| nd seq           |
| Ö                |
| Š                |
| g.               |
| ma               |
| =                |
| æ                |
| onal             |
| .º               |
| ij               |
| •€               |
| ্⊃               |
| ш.               |
| ä                |
| 5                |
| m                |
| ىھ               |
| 5                |
| ್ತಶ              |
| üΞ               |
|                  |
|                  |

| AA<br>I'I                | IG<br>AC                 | II<br>~<br>AT<br>AT                 |                                 |
|--------------------------|--------------------------|-------------------------------------|---------------------------------|
| GACAAAATAA<br>CTGTTTTATT | CACCTTTATG<br>GTGGAAATAC | HindIII<br>AGTCTTGATA<br>TCAGAACTAT |                                 |
| GACA                     | CACC                     | H<br>AGTC<br>TCAG                   |                                 |
| TATTGATTGT<br>ATAACTAACA | TATATGTTGC<br>ATATACAACG | CGTAATAAGG<br>GCATTATTCC            |                                 |
| TATT<br>ATAA             | TATA                     | CGTA<br>GCAT                        |                                 |
| ATGAATTTTC<br>TACTTAAAAG | GCGTTTCTTT<br>CGCAAAGAAA | TAACATACTG<br>ATTGTATGAC            |                                 |
| GGTAAACCCT               | TGGTGTCTTT<br>ACCACAGAAA | CTACGTTTGC                          |                                 |
| CTTTGGCGCT               | ACTTATTCCG<br>TGAATAAGGC | TATGTATTTT<br>ATACATAAAA            | HindI<br>~~~~<br>AGCTT<br>TCGAA |
| 1101                     | 1151                     | 1201                                | 1251                            |
|                          |                          | SUB                                 | STITUTE SHEET (RULE 26)         |



SUBSTITUTE SHEET (RULE 26) 125 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## (ss-TAG) 7-II Z

ECORI

CACTAAAACT GTGATTTTGA TCTGGTTCCG AGACCAAGGC CGGTGGTGGC GCCACCACCG CTCCGCCAAG GAGGCGGTTC GCCCTTAAGC CGGGAATTCG

GAAAATGCCG CTTTTACGGC CCGATACTGG GGCTATGACC GATTATTCCC CTAATAAGGG TACCGTTTGC ATGGCAAACG TTATGAAAAG AATACTTTTC 57

GCAAACTTGA CGTTTGAACT GACGCTAAAG CTGCGATTTC GCTACAGTCT CGATGTCAGA ATGAAAACGC TACTTTGCG

AAGACAGCGA

TTTCCGGCCT AAAGGCCGGA

TTCTGTCGCT

TAACCACTGC ATTGGTGACG CGATGGTTTC GCTACCAAAG CACGACGATA GTGCTGCTAT TGACTAATGC ACTGATTACG

TTAAGGGTTT AATTCCCAAA TGCTGGCTCT ACGACCGAGA GACCACTAAA CTGGTGATTT AATGGTGCTA TTACCACGAT TGCTAATGGT ACGATTACCA 201

XmnI

ATTAAAGGCA TAATTTCCGT CTTTAATGAA GAAATTACTT GATAATTCAC CTATTAAGTG CGGTGACGGT GCCACTGCCA TGGCTCAAGT ACCGAGTTCA 51

SUBSTITUTE SHEET (RULE 26) 126 / 204

51

101



**X**8 47 bp

SUBSTITUTE SHEET (RULE 26)

HindIII

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ω Σ SphI

TAAGCTT ATTCGAA TACGAAGTTA ATGCTTCAAT ATGTACGCTA TACATGCGAT ACTTCGTATA TGAAGCATAT GCATGCCATA

SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# M 10-II:

BsrGI

| ATGAGACAAT AACCCTGATA<br>TACTCTGTTA TTGGGACTAT | TATGAGTATT CAACATTTCC<br>ATACTCATAA GTTGTAAAGG | TTTGCCTTCC TGTTTTTGCT<br>AAACGGAAGG ACAAAAACGA | GCTGAGGATC AGTTGGGTGC<br>CGACTCCTAG TCAACCCAČG | GTAAG ATCCTTGAGA<br>CATTC TAGGAACTCT |         | TT TAAAGTTCTG            |
|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------|---------|--------------------------|
| ATGA(                                          | T.                                             | TT                                             | GCT(                                           | CAGCGGTAAG                           |         | TGAGCACTTT               |
| TACT(                                          | A.                                             | AA                                             | CGA(                                           | GTCGCCATTC                           |         | ACTCGTGAAA               |
| GTATCCGCTC                                     | AAAGGAAGAG                                     | TTTGCGGCAT                                     | AGTAAAAGAT                                     | TGGATCTCAA                           | 1 1 2 1 | TTTCCAATGA               |
| CATAGGCGAG                                     | TTTCCTTCTC                                     | AAACGCCGTA                                     | TCATTTTCTA                                     | ACCTAGAGTT                           |         | AAAGGTTACT               |
| ATTCAAATAT                                     | TAATATTGAA                                     | TATTCCCTTT                                     | CGCTGGTGAA                                     | TACATCGAAC                           | XmnI    | CGAAGAACGT               |
| TAAGTTTATA                                     | ATTATAACTT                                     | ATAAGGGAAA                                     | GCGACCACTT                                     | ATGTAGCTTG                           |         | GCTTCTTGCA               |
| GGGGGTGTAC                                     | AATGCTTCAA<br>TTACGAAGTT                       | GTGTCGCCCT                                     | CACCCAGAAA<br>GTGGGTCTTT                       | GCGAGTGGGT<br>CGCTCACCCA             | ·       | GTTTTCGCCC<br>CAAAAGCGGG |
| Н                                              | 51                                             | 101                                            | 151                                            | 201                                  |         | 251                      |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|              | 301 | 301 CTATGTGGCG CGGTATAGACACCGC GCCATA | CGGTATTATC<br>GCCATAATAG | CCGTATTGAC<br>GGCATAACTG | GCCGGGCAAG               | AGCAACTCGG<br>TCGTTGAGCC |
|--------------|-----|---------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|              | 351 | 9909<br>0090                          | CACTATTCTC<br>GTGATAAGAG | AGAATGACTT<br>TCTTACTGAA | GGTTGAGTAC<br>CCAACTCATG | TCACCAGTCA<br>AGTGGTCAGT |
|              | 401 | CAGAAAAGCA<br>GTCTTTTCGT              | TCTTACGGAT<br>AGAATGCCTA | GGCATGACAG<br>CCGTACTGTC | TAAGAGAATT<br>ATTCTCTTAA | ATGCAGTGCT               |
| SUBST        | 451 | GCCATAACCA<br>CGGTATTGGT              | TGAGTGATAA<br>ACTCACTATT | CACTGCGGCC<br>GTGACGCCGG | AACTTACTTC<br>TTGAATGAAG | TGACAACGAT<br>ACTGTTGCTA |
| TITUTE SHE   | 501 | CGGAGGACCG<br>GCCTCCTGGC              | AAGGAGCTAA<br>TTCCTCGATT | CCGCTTTTTT<br>GGCGAAAAAA | GCACAACATG<br>CGTGTTGTAC | GGGGATCATG               |
| ST (MULE 28) | 551 | TAACTCGCCT<br>ATTGAGCGGA              | TGATCGTTGG<br>ACTAGCAACC | GAACCGGAGC               | TGAATGAAGC<br>ACTTACTTCG | CATACCAAAC<br>GTATGGTTTG |
| )            | 601 | GACGAGCGTG<br>CTGCTCGCAC              | ACACCACGAT<br>TGTGGTGCTA | GCCTGTAGCA               | ATGGCAACAA<br>TACCGTTGTT | CGTTGCGCAA<br>GCAACGCGTT |
|              | 651 | ACTATTAACT<br>TGATAATTGA              | GGCGAACTAC<br>CCGCTTGATG | TTACTCTAGC<br>AATGAGATCG | TTCCCGGCAA<br>AAGGGCCGTT | CAGTTAATAG<br>GTCAATTATC |

SUBSTITUTE SHEET (DULE 28)

1 C I E I 70/05

| ctional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) |
|-------------------------------------------------------------------------------------------|
| <del>=</del>                                                                              |
| ĕ                                                                                         |
| 5                                                                                         |
| Ξ                                                                                         |
| 5                                                                                         |
| ت                                                                                         |
| 7                                                                                         |
| ē                                                                                         |
| ິບ                                                                                        |
| ۶                                                                                         |
| 7                                                                                         |
| $\mathcal{C}$                                                                             |
| <u>_</u>                                                                                  |
| 5                                                                                         |
| ē                                                                                         |
| S                                                                                         |
| $\bar{\Xi}$                                                                               |
| ă                                                                                         |
| Ĕ                                                                                         |
| _                                                                                         |
| 2                                                                                         |
| ည                                                                                         |
| >                                                                                         |
| 7                                                                                         |
| 2                                                                                         |
| Ō.                                                                                        |
| æ                                                                                         |
| 5                                                                                         |
| :=                                                                                        |
| ᅙ                                                                                         |
| 90                                                                                        |
| Ę                                                                                         |
| S                                                                                         |
| زة                                                                                        |
| Ĕ                                                                                         |
| 3                                                                                         |
| Ď                                                                                         |
| S                                                                                         |
| þ                                                                                         |
| ਜ                                                                                         |
| 2                                                                                         |
| 35                                                                                        |
| Ε                                                                                         |
| 8                                                                                         |
| Ξ                                                                                         |
| Ξ                                                                                         |
| 2                                                                                         |
| Þ                                                                                         |
| Œ.                                                                                        |
| 39                                                                                        |
| 3                                                                                         |
| ىھ                                                                                        |
| ⋾                                                                                         |
| Ē                                                                                         |
|                                                                                           |
|                                                                                           |

| م<br>پ      | sa: runcuonai | e 35a: Functional maps and sequences of additional |                          |                          |                          |                          |
|-------------|---------------|----------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|             | 701           | ACTGGATGGA<br>TGACCTACCT                           | GGCGGATTAAA              | GITGCAGGAC               | GTGAAGACGC               | GAGCCGGGAA               |
|             | 751           | CCGGCTGGCT                                         | GGTTTATTGC<br>CCAAATAACG | TGATAAATCT<br>ACTATTTAGA | GGAGCCGGTG<br>CCTCGGCCAC | AGCGTGGGTC<br>TCGCACCCAG |
|             | 801           | TCGCGGTATC<br>AGCGCCATAG                           | ATTGCAGCAC<br>TAACGTCGTG | TGGGGCCAGA               | TGGTAAGCCC<br>ACCATTCGGG | TCCCGTATCG<br>AGGGCATAGC |
| SUBS"       | 851           | TAGTTATCTA<br>ATCAATAGAT                           | CACGACGGGG<br>GTGCTGCCCC | AGTCAGGCAA<br>TCAGTCCGTT | CTATGGATGA<br>GATACCTACT | ACGAAATAGA<br>TGCTTTATCT |
| TITUTE SHEE | 901           | CAGATCGCTG<br>GTCTAGCGAC                           | AGATAGGTGC<br>TCTATCCACG | CTCACTGATT<br>GAGTGACTAA | AAGCATTGGG<br>TTCGTAACCC | TAACTGTCAG<br>ATTGACAGTC |
| ET (BULE 26 | 951           | ACCAAGTTTA<br>TGGTTCAAAT                           | CTCATATATA<br>GAGTATATAT | CTTTAGATTG<br>GAAATCTAAC | ATTTAAAACT<br>TAAATTTTGA | TCATTTTTAA<br>AGTAAAAATT |
| )           | 1001          | TTTAAAAGGA<br>AAATTTTCCT                           | TCTAGGTGAA<br>AGATCCACTT | GATCCTTTTT<br>CTAGGAAAAA | GATAATCTCA<br>CTATTAGAGT | TGACCAAAAT<br>ACTGGTTTTA |
|             | 1051          | CCCTTAACGT<br>GGGAATTGCA                           | GAGTTTTCGT<br>CTCAAAAGCA | TCCACTGAGC<br>AGGTGACTCG | GTCAGACCCC<br>CAGTCTGGGG | GTAGAAAAGA<br>CATCTTTTCT |

SUBSTITUTE SHEET (RULE 26)

FseI

| 云                       |
|-------------------------|
| 2                       |
| ž                       |
| =                       |
| Ξ                       |
| Ξ                       |
| $\overline{c}$          |
| ຽ                       |
| ت                       |
| Ś                       |
| ≒                       |
| $\Xi$                   |
| $\overline{\mathbf{c}}$ |
| ت                       |
| >                       |
| _                       |
| 7                       |
| $\overline{C}$          |
| $\sim$                  |
|                         |
| D                       |
| _                       |
| ന                       |
| L vector modules and p  |
| ته                      |
| $\equiv$                |
| ಕ                       |
| ō                       |
| Ξ                       |
|                         |
| , vector                |
| 0                       |
| <del>ب</del>            |
| $\ddot{\omega}$         |
| 5                       |
| ٠,                      |
| =                       |
| $\sim$                  |
| ರ್ಷ                     |
|                         |
| $\equiv$                |
| f additional            |
| $\overline{a}$          |
| .≍.                     |
| =:                      |
| Ъ                       |
| Р                       |
| B                       |
|                         |
| 0                       |
| eduences                |
| نة                      |
| ပ                       |
| =                       |
| 릭                       |
| =                       |
| ွ                       |
|                         |
| Š                       |
| S                       |
| id S                    |
| s pue                   |
| and sequence            |
| s and so                |
| ips and sequ            |
| is pue sder             |
| maps and so             |
| I maps and s            |
| al maps and s           |
| inal maps and si        |
| onal maps and s         |
| tional maps and se      |
| ctional maps and so     |
| nctional maps           |
| nctional maps           |
| unctional maps          |
| unctional maps          |
| unctional maps          |
| unctional maps          |
| unctional maps          |
| unctional maps          |
| unctional maps          |
| unctional maps          |
| nctional maps           |

| ,<br>( |                                         |                   |              |            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
|--------|-----------------------------------------|-------------------|--------------|------------|---------------------------------------|
|        | TCAAAGGATC                              | T.L.C.I.T.GAGA:I. | CCITITITIGAL | AATGGCCGGC |                                       |
|        | AGTTTCCTAG                              | AAGAACTCTA        | GGAAAAACTA   | TTACCGGCCG | GGGGGGGAA                             |
|        |                                         |                   |              |            |                                       |
|        | PacI                                    |                   |              |            |                                       |
|        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                   |              |            |                                       |
|        | AATTAAGGGG                              | 999               |              |            |                                       |
|        | TTAATTCCCC                              | ၁၁၁               |              |            |                                       |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26)
135 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## M11-II

|                    |              | NheI                     |                          |                          |                          |                          |
|--------------------|--------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| <del>-1</del>      | ·            | CTAG<br>GATC             | GCCCTGTAGC<br>CGGGACATCG | GGCGCATTAA<br>CCGCGTAATT | 2229229292<br>9992992929 | TGTGGTGGTT<br>ACACCACCAA |
| 5.                 | $\leftarrow$ | ACGCGCAGCG<br>TGCGCGTCGC | TGACCGCTAC<br>ACTGGCGATG | ACTTGCCAGC<br>TGAACGGTCG | GCCCTAGCGC<br>CGGGATCGCG | CCGCTCCTTT<br>GGCGAGGAAA |
| 101                | <b>←</b>     | CGCTTTCTTC               | CCTTCCTTTC               | TCGCCACGTT<br>AGCGGTGCAA | CGCCGGCTTT               | CCCCGTCAAG<br>GGGCAGTTC  |
| Not the second the |              |                          | BanlI                    |                          |                          |                          |
| 151                | <del></del>  | CTCTAAATCG<br>GAGATTTAGC | GGGGCTCCCT<br>CCCCGAGGGA | TTAGGGTTCC<br>AATCCCAAGG | GATTTAGTGC<br>CTAAATCACG | TTTACGGCAC<br>AAATGCCGTG |
| 201                | <del></del>  | CTCGACCCCA<br>GAGCTGGGGT | AAAAACTTGA<br>TTTTTGAACT | TTAGGGTGAT<br>AATCCCACTA | GGTTCTCGTA<br>CCAAGAGCAT | GTGGGCCATC               |
| 251                | $\vdash$     | GCCCTGATAG<br>CGGGACTATC | ACGGTTTTTC<br>TGCCAAAAAG | GCCCTTTGAC               | GTTGGAGTCC<br>CAACCTCAGG | ACGTTCTTTA<br>TGCAAGAAAT |

SUBSTITUTE SHEET (RULE 26)

| ਰ                |   |
|------------------|---|
| ũ                |   |
| ⊇                |   |
| .⊑               |   |
| =                |   |
| ontinue          |   |
| ະ                |   |
| ت                |   |
| ~                |   |
| Ö                |   |
| -                |   |
| ĕ                |   |
| >                |   |
| پ                |   |
| S                |   |
| Õ                |   |
| ο.               |   |
| O                |   |
| les and pCAL vec |   |
| æ                |   |
| Š                |   |
| 프                |   |
| ⊒                |   |
| odule            |   |
| =                |   |
| ੁ⊏               |   |
| $\succeq$        |   |
| . vector         |   |
| ပ္စ              |   |
| 3                |   |
|                  |   |
| A                |   |
| $\mathcal{O}$    |   |
| Q                |   |
| =                |   |
| - 60             |   |
| ō                |   |
| :Ξ               |   |
| =                |   |
| 퓽                |   |
| additi           |   |
| 4                |   |
| 0                |   |
| Š                |   |
| ຶ                |   |
| Ć                |   |
| due              |   |
| 긁                |   |
| Seo              |   |
| S                |   |
| O                |   |
| ⋤                |   |
|                  |   |
| S                |   |
| ä                | • |
| Ē                |   |
|                  |   |
| 7                |   |
| Ē                |   |
| .º               |   |
| ۲,               |   |
| ĭ                |   |
| ⋾                |   |
| ш                |   |
|                  |   |
| ည်               |   |
| က်               |   |
| re 35a:          |   |
| =                |   |
| 7                |   |
| ıΞ               |   |
| _                |   |

| 301 | ATAGTGGACT | CTTGTTCCAA | TTCCAA ACTGGAACAA | CACTCAACCC            | TATCTCGGTC |
|-----|------------|------------|-------------------|-----------------------|------------|
|     | TATCACCTGA | GAACAAGGTT | AAGGTT TGACCTTGTT | GTGAGTTGGG            | ATAGAGCCAG |
| 351 | TATTCTTTTG | ATTTATAAGG | GATTTTGCCG        | ATTTCGGCCT            | ATTGGTTAAA |
|     | ATAAGAAAAC | TAAATATTCC | CTAAAACGGC        | TAAAGCCGGA            | TAACCAATTT |
| 401 | AAATGAGCTG | ATTTAACAAA | AACAAA AATTTAACGC | GAATTTTAAC AAAATATTAA | AAAATATTAA |
|     | TTTACTCGAC | TAAATTGTTT | TTGTTT TTAAATTGCG | CTTAAAATTG TTTTATAATT | TTTATAATT  |

CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|       | CGCGTAATCT<br>GCGCATTAGA       | TTCGTAGGTT<br>AAGCATCCAA       | GAGGAGCGCA<br>CTCCTCGCGT       | CATGACTTCA<br>GTACTGAAGT       | GTGGTGCTTT<br>CACCACGAAA       | GATAAGGCGC<br>CTATTCCGCG      | CTTGGAGCGA<br>GAACCTCGCT |
|-------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------|
|       | TTTTGGTCTG CG<br>AAAACCAGAC GC | AGGGCGGTTT TT<br>TCCCGCCAAA AA | AACTGGCTTG GA<br>TTGACCGAAC CT | TTAACCGGCG CA<br>AATTGGCCGC GI | GCTGCTGCCA G1<br>CGACGACGGT C1 | ATAGTTACCG GI<br>TATCAATGGC C | TACAGTCCAG               |
|       | CTTGAGATCG GAACTCTAGC          | ACCGCCTTGC                     | GAACCGAGGT<br>CTTGGCTCCA       | CAGTTTAGCC<br>GTCAAATCGG       | ATTACCAGTG<br>TAATGGTCAC       | ACTCAAGACG<br>TGAGTTCTGC      | GGTTCGTGCA               |
| •     | AGATGATCTT<br>TCTACTAGAA       | AAACGAAAAA<br>TTTGCTTTTT       | CCAACTCTTT<br>GGTTGAGAAA       | CTTGTCCTTT<br>GAACAGGAAA       | CTCTAAATCA<br>GAGATTTAGT       | TCCGGGTTGG                    | CTGAACGGGG               |
| Bglii | AATA<br>TTAT                   | CTTGCTCTGA                     | CTCTGAGCTA<br>GAGACTCGAT       | GTCACTAAAA<br>CAGTGATTTT       | AGACTAACTC<br>TCTGATTGAG       | TGCATGTCTT<br>ACGTACAGAA      | AGCGGTCGGA               |
| M 12  | П                              | 51                             | 10 T                           | TTO TE SHEE                    | T (RUL <b>E 2</b> 6            | 251                           | 301                      |

WO 97/08320 PCT/EP96/03647

TTTGCGCCGG Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) ACAGTCCGCA ACTGCCTACC TGACGGATGG

AgeI

|     |                          | •                        |                                                |                                                |                          |
|-----|--------------------------|--------------------------|------------------------------------------------|------------------------------------------------|--------------------------|
|     |                          | <b>?</b>                 | <b>?</b>                                       |                                                |                          |
| 401 | ATAACAGCGG<br>TATTGTCGCC | AATGACACCG<br>TTACTGTGGC | AATGACACCG GTAAACCGAA<br>TTACTGTGGC CATTTGGCTT | AGGCAGGAAC<br>TCCGTCCTTG                       | AGGAGAGCGC<br>TCCTCTCGCG |
| 451 | AGGAGGGAGC<br>TCCTCCCTCG | CGCCAGGGGG               | AAACGCCTGG<br>TTTGCGGACC                       | TATCTTTATA<br>ATAGAAATAT                       | GTCCTGTCGG<br>CAGGACAGCC |
| 501 | GTTTCGCCAC               | CACTGATTTG<br>GTGACTAAAC | AGCGTCAGAT<br>TCGCAGTCTA                       | TTCGTGATGC<br>AAGCACTACG                       | TTGTCAGGGG               |
| 551 | GGCGGAGCCT               | ATGGAAAAAC<br>TACCTTTTTG | GGCTTTGCCG<br>CCGAAACGGC                       | CGGCCCTCTC<br>GCCGGGAGAG                       | ACTTCCCTGT<br>TGAAGGGACA |
| 601 | TAAGTATCTT<br>ATTCATAGAA | CCTGGCATCT<br>GGACCGTAGA | TCCAGGAAAT<br>AGGTCCTTTA                       | CTCCGCCCCG                                     | TTCGTAAGCC               |
| 651 | ATTTCCGCTC<br>TAAAGGCGAG | GCCGCAGTCG<br>CGGCGTCAGC | AACGACCGAG<br>TTGCTGGCTC                       | CGTAGCGAGT CAGTGAGCGA<br>GCATCGCTCA GTCACTCGCT | CAGTGAGCGA               |

SUBSTITUTE SMEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| Agel<br>~~~~~~<br>ACCGGTGCAG<br>TGGCCACGTC                           | TCATCAGTGC                                     |                                                                                    |
|----------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                      | ACTGACACCC TCATCAGTGC<br>TGACTGTGGG AGTAGTCACG | ည<br>ည<br>လ                                                                        |
| ATCACATATT CTGCTGACGC<br>TAGTGTATAA GACGACTGCG                       | XmnI<br>~~~~~~~~<br>GAAGCACTTC<br>CTTCGTGAAG   | Nhel<br>CAACATAGTA AGCCAGTATA CACTCCGCTA GC<br>GTTGTATCAT TCGGTCATAT GTGAGGCGAT CG |
| GGAAGCGGAA TATATCCTGT ATCACATATT<br>CCTTCGCCTT ATATAGGACA TAGTGTATAA | CCTGCCACAT                                     | AGCCAGTATA<br>TCGGTCATAT                                                           |
| GGAAGCGGAA<br>CCTTCGCCTT                                             | CCTTTTTTCT<br>GGAAAAAAGA                       | CAACATAGTA<br>GTTGTATCAT                                                           |
| 701                                                                  | 751                                            | 801                                                                                |

SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

BglII

XmnI

AAGTCTAGA TTCAGATCT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

13 Σ

ATGCTTCAAT TACGAAGTTA ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT 11111 BglII

SUBSTITUTE SHEET (NULE 26)





SUBSTITUTE SHEET (AULE 26)

CTATTGCACT GATAACGTGA

ECORI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 19

|           | AAACAAAGCA<br>TTTGTTTCGT                      |        | TACCAAAGCC | ATGGTTTCGG |
|-----------|-----------------------------------------------|--------|------------|------------|
|           | AAATAAAATG<br>TTTATTTTAC                      | !<br>! | TCACCCCTGT | AGTGGGGACA |
| <b>?</b>  | GCGTAGGAGA AAATAAAATG<br>CGCATCCTCT TTTATTTAC | SapI   | CCGTTGCTCT | GGCAACGAGA |
| Xbal SphI | TCTAGAGCAT<br>AGATCTCGTA                      |        | GGCACTCTTA | CCGTGAGAAT |
|           | H                                             |        | 51         |            |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26)
146 / 204

GACTACAAAG

TACCAAAGCC ATGGTTTCGG

CTGATGTTTC

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

20 Σ SphI XbaI

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT GCGTAGGAGA AAATAAAATG TTTATTTAC CGCATCCTCT AGATCTCGTA TCTAGAGCAT

SapI

TCACCCCTGT AGTGGGGACA GGCAACGAGA CCGTTGCTCT

> GGCACTCTTA CCGTGAGAAT

51

ECORI MunI

TAACCTTAAG ATTGGAATTC ATGAAGTGCA TACTTCACGT

SUBSTITUTE SHEET (RULE 26)

101



SUBSTITUTE SHEET (RULE 26)
148 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21  $\Xi$ 

XbaI

TTCTTCCT AAGAAGAACG AATATCGCAT TTATAGCGTA TATGAAAAAG ATACTTTTTC GAGGTGATTT AGATCTCCAA TCTAGAGGTT

~~~~~~ NsiI

ECORI

1111

GAATTC TGCATACGCT TTGCTACAAA

51

CTTAAG ACGTATGCGA AACGATGTTT CAAAAAAGAT GTTTTTTTA ATCTATGTTC TAGATACAAG

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41:

| CAA AACCTTTCGC GGTATGGCAT | GAAACCAGTA
CTTTGGTCAT | AGACCGTTTC
TCTGGCAAAG | CGGGAAAAAG
GCCCTTTTTC | CGTGGCACAA
GCACCGTGTT | CCTCCAGTCT
GGAGGTCAGA | TCTCGCGCCG |
|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| STT | TGGTGAATGT
ACCACTTACA | GTCTCTTATC | TGCGAAAACG
ACGCTTTTGC | TTCCTAACCG
AAGGATTGGC | GGCGTTGCCA
CCGCAACGGT | GGCGATTAAA
CCGCTAATTT |
| AATGGCGCAA
TTACCGCGTT | CAATTCAGGG
GTTAAGTCCC | GTATGCCGGT
CATACGGCCA | GCCACGTTTC
CGGTGCAAAG | CTGAATTACA
GACTTAATGT | GTTGCTGATT
CAACGACTAA | AAATTGTCGC
TTTAACAGCG |
| NheI
CCTAGCATCG
CGATCGTAGC | GGAAGAGAGT
CCTTCTCTCA | ATGTCGCAGA
TACAGCGTCT | AACCAGGCCA
TTGGTCCGGT | GATGGCGGAG | GCAAACAGTC
CGTTTGTCAG | GCGCCGTCGC |
| г г | 51 | 101 | 151 | 201 | 251 | 301 |

SUBSTITUTE SHEET (RULE 26)

Figure 35a. Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GCGTC GAAGCCTGTA
CGCAG CTTCGGACAT | TGTCAGTGG GCTGATTATT
ACAGTCACC CGACTAATAA | CTGTGGAAG CTGCCTGCAC
GACACCTTC GACGGACGTG | GACCAGACA CCCATCAACA
CTGGTCTGT GGGTAGTTGT | GGCGT GGAGCATCTG
CCGCA CCTCGTAGAC | TGGCC CATTAAGTTC
ACCGG GTAATTCAAG | CATAAATAT CTCACTCGCA
GTATTTATA GAGTGAGCGT | CGACTGGAG TGCCATGTCC
GCTGACCTC ACGGTACAGG |
|--------------------------------------|--|--|--|--------------------------------------|--------------------------------------|--|--|
| AAGCGGCGTC
TTCGCCGCAG | GTGTC | GCTGT | TGACCAGACA
ACTGGTCTGT | GACTGGGCGT
CTGACCCGCA | TTAGCTGGCC
AATCGACCGG | GCATA | GCGAC |
| TGGTAGAACG
ACCATCTTGC | CTCGCGCAAC
GAGCGCGTTG | GGATGCTATT
CCTACGATAA | TTGATGTCTC
AACTACAGAG | GACGGTACGC | AATCGCGCTG
TTAGCGCGAC | TGGCTGGCTG | GAACGGGAAG
CTTGCCCTTC |
| GTCGTGTCGA | GCACAATCTT
CGTGTTAGAA | TGGATGACCA
ACCTACTGGT | GCGTTATTTC
CGCAATAAAG | CTCCCATGAG
GAGGGTACTC | GCCACCAGCA | CGTCTGCGTC
GCAGACGCAG | GCCGATAGCG
CGGCTATCGC |
| TGCCAGCGTG
ACGGTCGCAC | AAGCGGCGGT
TTCGCCGCCA | AACTATCCGC
TTGATAGGCG | TAATGTTCCG
ATTACAAGGC | GTATTATTTT
CATAATAAAA | GTCGCATTGG
CAGCGTAACC | TGTCTCGGCG | ATCAAATTCA
TAGTTTAAGT |
| 351 | 401 | 451 | 501 | 551 | 601 | 651 | 701 |

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | 751 | GGTTTTCAAC | AAACCATGCA
TTTGGTACGT | AA
TT | AATGCTGAAT
TTACGACTTA | TGCTGAAT GAGGGCATCG
ACGACTTA CTCCCGTAGC |
|---------------|------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| | 801 | GATGCTGGTT
CTACGACCAA | GCCAACGATC
CGGTTGCTAG | AGATGGCGCT
TCTACCGCGA | SCT | SCT GGGCGCAATG |
| | 851 | CCGAGTCCGG
GGCTCAGGCC | GCTGCGCGTT
CGACGCGCAA | GGTGCGGACA
CCACGCCTGT | CA | CA TCTCGGTAGT
GT AGAGCCATCA |
| בו ידודי בי ו | 901 | GATACCGAGG | ACAGCTCATG
TGTCGAGTAC | TTATATCCCG
AATATAGGGC | ຍ ຕ | G CCGCTGACCA |
| E SHEET (RI | 951 | GGATTTTCGC
CCTAAAAGCG | CTGCTGGGGC
GACGACCCCG | AAACCAGCGT
TTTGGTCGCA | T. A | T GGACCGCTTG |
| III = 26) | 1001 | CTCAGGGCCA
GAGTCCCGGT | GGCGGTGAAG
CCGCCACTTC | GGCAATCAGC
CCGTTAGTCG | ပု ပု | SC TGTTGCCCGT |
| | 1051 | AAAAGAAAAA
TTTTCTTTTT | CCACCCTGGC | TCCCAATACG | ်ပ္ပည္ | CAAACCGCCT |
| | 1101 | GTTGGCCGAT | TCACTGATGC
AGTGACTACG | AGCTGGCACG
TCGACCGTGC | ပ္ ပ | G ACAGGTTTCC |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GGAGGCCGTT | CCTCCGGCAA |
|---|----------------------|
| GCTACCCG ATAAAAGCGG CTTCCTGACA GGAGGCCGTT | TATTTCGCC GAAGGACTGT |
| ATAAAAGCGG | TATTTTCGCC |
| AGGCTACCCG | TCCGATGGGC |
| GCGGGCAGTG | CGCCCGTCAC |
| 1151 | |

Aflii

TTGTTTTGCA GCCCACTTAA GACAAAACGT CGGGTGAATT C

SUBSTITUTE SHEET (RULE 26) 154 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 155 / 204

CTTGCGAATA GAACGCTTAT

CACGCCACAT

AGGCCAGGTT TTCACCGTAA TCCGGTCCAA AAGTGGCATT

TTAGGGAAAT AATCCCTTTA

301

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCAL0-1:

| Bg] | 1 GA' | 51 CG
GC | 101 TG | 151 GG | 201 GG | 251 AA |
|-------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| Bglii | GATCTAGCAC
CTAGATCGTG | 999299999
22232222 | TGCCGACATG
ACGGCTGTAC | GGCATCAGCA
CCGTAGTCGT | GGGGCGAAG
CCCCCGCTTC | AACTCACCCA |
| | CAGGCGTTTA
GTCCGCAAAT | TGCCACTCAT
ACGGTGAGTA | GAAGCCATCA
CTTCGGTAGT | CCTTGTCGCC
GGAACAGCGG | AAGTTGTCCA
TTCAACAGGT | GGGATTGGCT |
| | AGGGCACCAA
TCCCGTGGTT | CGCAGTACTG
GCGTCATGAC | CAAACGGCAT
GTTTGCCGTA | TTGCGTATAA
AACGCATATT | TATTGGCTAC
ATAACCGATG | GAGACGAAAA |
| | TAACTGCCTT
ATTGACGGAA | TTGTAATTCA
AACATTAAGT | GATGAACCTG
CTACTTGGAC | TATTTGCCCA
ATAAACGGGT | GTTTAAATCA
CAAATTTAGT | ACATATTCTC |
| | AAAAAATTA
TTTTTTAAT | TTAAGCATTC
AATTCGTAAG | AATCGCCAGC
TTAGCGGTCG | TAGTGAAAAC
ATCACTTTTG | AAACTGGTGA
TTTGACCACT | AATAAACCCT |

SUBSTITUTE SHEET (RULE 26)

ATTTTGAACA CGGTATGCCT TGAGGCCCAC TAAAACTTGT GCCATACGGA ACTCCGGGTG CACTTGTGAT GTCTCGCTAC GTGAACACTA CAGAGCGATG ACATTGTTCC TTTCCGGCCT AAAGGCCGGA CATAAGTGAG TGTAACAAGG AATCGTCGTG GTATTCACTC Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) GTCTTTCATT GAATGTGAAT TITIGCAAAG ICAAACGAGI ACCITITGCC CAGAAAGTAA CTTACACTTA TTAGCAGCAC TGGAAAACGG ATACACATCT TTGACGGCCT GGTCGAGTGG AGGCGGGCAA AAAACGTTTC AGTTTGCTCA CCAGCTCACC TCCGCCCGTT TATGTGTAGA AACTGCCGGA AGCATTCATC AGGGTATAGT TCGTAAGTAG TCCCATATCA 501 451 351 401

GCTCCTGAAA ATCTCGATAA CTCAAAAAT GAGTTTTTA GTTTTACAAG GTGATTTTT CACTAAAAAA CAAAATGTTC GGTATATCCA TGAAATGCCT TAGAGCTATT CCATATAGGT ACTTTACGGA CGAGGACTTT CATTGGGATA TATCAACGGT ATAGTTGCCA TCCATGTAAC TCGTTGACTG AGCAACTGAC AGCTTCCTTA AGAGGTAAAA TCGAAGGAAT AGGTACATTG GTAACCCTAT TTTACGATGC TCTCCATTTT GTCTGGTTAT AAATGCTACG CAGACCAATA 701 601 651 SUBSTITUTE SHEET (RULE 26)

CAGCTGAACG GTCGACTTGC

GGCATTATAG

AAATTTTTCC

GAAATGCCAG

CGAATAAAA

GCTTATTTT

551

157 / 204

CCGTAATATC

CTTTACGGTC TTTAAAAAGG

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | 751 | ACGCCCGGTA | GTGATCTTAT
CACTAGAATA | TTCATTATGG | TGAAAGTTGG
ACTTTCAACC | AACCTCACCC
TTGGAGTGGG |
|------------|------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|
| | | Aatii | | | | |
| | 801 | GACGTCTAAT
CTGCAGATTA | GTGAGTTAGC
CACTCAATCG | TCACTCATTA
AGTGAGTAAT | GGCACCCCAG
CCGTGGGGGTC | GCTTTACACT
CGAAATGTGA |
| SUE | 851 | TTATGCTTCC
AATACGAAGG | GGCTCGTATG
CCGAGCATAC | TTGTGTGGAA | TTGTGAGCGG | ATAACAATTT
TATTGTTAAA |
| STITUTE | | | | | | |
| SHEET (RU! | 901 | CACACAGGAA
GTGTGTCCTT | ACAGCTATGA | CCATGATTAC
GGTACTAATG | GAATTTCTAG
CTTAAAGATC | ACCCCCCCC
TGGGGGGGG |
| LE 28) | | Sphi | | | | HindIII |
| | 951 | CGCATGCCAT | AACTTCGTAT
TTGAAGCATA | AATGTACGCT
TTACATGCGA | ATACGAAGTT
TATGCTTCAA | ATAAGCTTGA
TATTCGAACT |
| | 1001 | CCTGTGAAGT
GGACACTTCA | GAAAAATGGC
CTTTTTACCG | GCAGATTGTG
CGTCTAACAC | CGACATTTTT
GCTGTAAAAA | TTTGTCTGCC |

10 9//08320

PC I/EP96/03647

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| BsrGI | GTACATGAAA
CATGTACTTT | TTGTTAAATC
AACAATTTAG | CTTATAAATC
GAATATTTAG | TGGAACAAGA
ACCTTGTTCT | AAAAACCGTC
TTTTGGCAG | CAAGTTTTTT
GTTCAAAAAA | Banll
~~~~~
GGGAGCCCCC
CCCTCGGGGG |
|-------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| | GGGGGGGGGT | CGTTAAATTT
GCAATTTAAA | GGCAAAATCC
CCGTTTTAGG | TGTTCCAGTT
ACAAGGTCAA | TCAAAGGGCG
AGTTTCCCGC | TCACCCTAAT
AGTGGGATTA | GAACCCTAAA
CTTGGGATTT |
| FseI | | TTAAAATTCG
AATTTTAAGC | GGCCGAAATC
CCGGCTTTAG | GGTTGAGTGT
CCAACTCACA | GACTCCAACG
CTGAGGTTGC | ACGAGAACCA
TGCTCTTGGT | CACTAAATCG
GTGATTTAGC |
| | AGGGGGGGGG
TCCCCCCCC | TAATATTTTG
ATTATAAAAC | TTAACCAATA
AATTGGTTAT | ACCGAGATAG
TGGCTCTATC | AAAGAACGTG
TTTCTTGCAC | ATGGCCCACT
TACCGGGTGA | TGCCGTAAAG
ACGGCATTTC |
| PacI |) [] {] | TTGTAAACGT
AACATTTGCA | AGCTCATTTT
TCGAGTAAAA | AAAAGAATAG
TTTTCTTATC | GTCCACTATT | TATCAGGGCG
ATAGTCCCGC | GGGGTCGAGG |
| | 1051 | 1101 | 1151 | 1201 | 1251 | 1301 | 1351 |
| | | | SUBS | TITUTE SHE | • | 5) | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AAAGGAAGGG
TTTCCTTCCC | TAGCGGTCAC
ATCGCCAGTG | CTACAGGGCG
GATGTCCCGC | GATGAGGGTG | AgeI | ~~~~~
CCGGTGCGTC
GGCCACGCAG | CACTGACTCG
GTGACTGAGC | ACGAACGGGG |
|--------------------------------|--------------------------------|--------------------------------|--|---------|--------------------------------------|--------------------------|---------------|
| ACGTGGCGAG AA
TGCACCGCTC TT | CTGGCAAGTG TA
GACCGTTCAC AT | TAATGCGCCG CT
ATTACGCGGC GA | TGTTGGCACT GA
ACAACCGTGA CT | Ag | AAAGGCTGCA CC
TTTCCGACGT GG | CTTCCTCGCT CA | GAAATGGCTT AC |
| AAGCCGGCGA I | CGCTAGGGCG | CCGCCGCGCT | TGGCTTACTA | | GCAGGAGAAA | ATATATTCCG
TATATAAGGC | GCGCCGAGCG |
| TTGACGGGGA | AAGGAGCGGG
TTCCTCGCCC | ACCACCACAC
TGGTGGTGTG | GAGTGTATAC
CTCACATATG | II | GCTTCATGTG | GTGATACAGG
CACTATGTCC | TCGTTCGACT |
| GATTTAGAGC
CTAAATCTCG | AAGAAAGCGA
TTCTTTCGCT | GCTGCGCGTA | NheI
~~~~~~
CGTGCTAGCG
GCACGATCGC | XmnI | TCAGTGAAGT GCTTC
AGTCACTTCA CGAAC | AGCAGAATAT
TCGTCTTATA | CTACGCTCGG |
| 1401 | 1451 | 1501 | 1551 | | 1601 | 1651 | 1701 |
| | | 5 | BUBSTITUTE SHEET | (RULE : | 26) | | |

| | TGCTTGCCC |
|---|--|
| sections of additional pCAL vector modules and pCAL vectors (continued) | Figure 35a: Functional maps and sequences of goods and applying the sequences of the sequences of the sequences of good and good and good good and good and good and good and good and good and good and g |

| | 50 T \ | r v zh | √ ⊑ | ר ז ר ז | | υo | AH | άŢ. |
|--|--------------------------|--------------------------|--------------------------|--------------------------|------|--------------------------|--------------------------|--------------------------|
| TGCTTGCCC | GAAGTGAGAG
CTTCACTCTC | GACAAGCATC
CTGTTCGTAG | AGGACTATAA
TCCTGATATT | CTCCTGTTCC
GAGGACAAGG | | CGTTTGTCTC
GCAAACAGAG | CCAAGCTGGA
GGTTCGACCT | TTATCCGGTA
AATAGGCCAT |
| \mathtt{TGCTT} | GAAGT | GACAA
CTGTJ | AGGA(
TCCT(| CTCC. | | CGTT | CCAA | _ |
| CTTTACCGAA | ACTTAACAGG
TGAATTGTCC | CCGCCCCCCT | GAAACCCGAC
CTTTGGGCTG | CTCCTGCGCT
GAGGACGCGA | | GTTATGGCCG
CAATACCGGC | GCAGTTCGCT
CGTCAAGCGA | CCGCTGCGCC |
| CCGCTCGC | CCAGGAAGAT GGTCCTA | TCCATAGGCT
AGGTATCCGA | CAGTGGTGGC | TGGCGGCTCC
ACCGCCGAGG | | TCATTCCGCT
AGTAAGGCGA | TTCCGGGTAG | TTCAGTCCGA |
| AGCAAGCTGA (| CTGGAAGATG | AAGCCGTTTT
TTCGGCAAAA | ACGCTCAAAT
TGCGAGTTTA | CGTTTCCCCC
GCAAAGGGGG | AgeI | TTTACCGGTG
AAATGGCCAC | TGACACTCAG
ACTGTGAGTC | GAACCCCCCG |
| Figure 35a: Functional maps and sequences of additional pear vector incomes. | CGGAGATTTC (GCCTCTAAAG | GGCCGCGGCA | ACGAAATCTG
TGCTTTAGAC | AGATACCAGG
TCTATGGTCC | | TGCCTTTCGG
ACGGAAAGCC | ATTCCACGCC
TAAGGTGCGG | CTGTATGCAC
GACATACGTG |
| : Functional | 1751 | 1801 | 1851 | 1901 | | 1951 | 2001 | 2051 |
| igure 35a | | | SU | BSTITUTE S | | WLE 26) | | |
| ــن | | | | , . | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | 2101 | ACTATCGTCT
TGATAGCAGA | TGAGTCCAAC
ACTCAGGTTG | CCGGAAAGAC
GGCCTTTCTG | ATGCAAAAGC
TACGTTTTCG | ACCACTGGCA
TGGTGACCGT |
|---------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | 2151 | GCAGCCACTG
CGTCGGTGAC | GTAATTGATT
CATTAACTAA | TAGAGGAGTT
ATCTCCTCAA | AGTCTTGAAG
TCAGAACTTC | TCATGCGCCG
AGTACGCGGC |
| S | 2201 | GTTAAGGCTA
CAATTCCGAT | AACTGAAAGG
TTGACTTTCC | ACAAGTTTTA
TGTTCAAAAT | GTGACTGCGC
CACTGACGCG | TCCTCCAAGC
AGGAGGTTCG |
| | 2251 | CAGTTACCTC
GTCAATGGAG | GGTTCAAAGA
CCAAGTTTCT | GTTGGTAGCT
CAACCATCGA | CAGAGAACCT
GTCTCTTGGA | ACGAAAAACC
TGCTTTTTGG |
| SHEET (RUL
/ 204 | 2301 | GCCCTGCAAG
CGGGACGTTC | GCGGTTTTTT
CGCCAAAAAA | CGTTTTCAGA
GCAAAAGTCT | GCAAGAGATT
CGTTCTCTAA | ACGCGCAGAC
TGCGCGTCTG |
| .E 26) | | | | $\frac{\text{BglII}}{}$ | | |
| | 2351 | CAAAACGATC
GTTTTGCTAG | TCAAGAAGAT
AGTTCTTCTA | CATCTTATTA
GTAGAATAAT | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 163 / 204 Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCAL0-2:

BsrGI

GCAATTTAAA CGTTAAATTT AATTTTAAGC TTAAAATTCG TAATATTTTG ATTATAAAAC AACATTTGCA TTGTAAACGT CATGTACTTT GTACATGAAA \leftarrow

CCGTTTTAGG GGCAAAATCC CCGGCTTTAG GGCCGAAATC TTAACCAATA AATTGGTTAT TCGAGTAAAA AGCTCATTTT AACAATTTAG TTGTTAAATC 51

ACAAGGTCAA TGTTCCAGTT CCAACTCACA GGTTGAGTGT TGGCTCTATC ACCGAGATAG AAAAGAATAG TTTTCTTATC GAATATTTAG CTTATAAATC 101

GACTCCAACG CTGAGGTTGC AAAGAACGTG TTTCTTGCAC GTCCACTATT CAGGTGATAA TGGAACAAGA ACCTTGTTCT

AGTTTCCCGC

TCAAAGGGCG

TATCAGGGCG ATGGCCCACT ACGAGAACCA TCACCCTAAT AGTGGGATTA TGCTCTTGGT TACCGGGTGA ATAGTCCCGC TTTTGGCAG AAAAACCGTC 201

CTTGGGATTT GAACCCTAAA GTGATTTAGC CACTAAATCG TGCCGTAAAG ACGGCATTTC CCCCAGCTCC GGGGTCGAGG GTTCAAAAAA CAAGTTTTT 251

BanlI

GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG GGGAGCCCCC 301

SUBSTITUTE SHEET (RULE 20)

151

| 77700320 | 1 € 1/21 > 0.00 |
|----------|-----------------|
| | |
| | |

| Figure 35 | a: Functional | Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) CCCTCGGGGG CTAAATCTCG AACTGCCCCT TTC | Iditional pCAL vector modu
CTAAATCTCG | ules and pCAL vectors (con | tinued)
TTCGGCCGCT | TGCACCGCTC |
|----------------|---------------|---|---|-----------------------------------|--------------------------|--------------------------|
| | 351 | AAAGGAAGGG
TTTCCTTCCC | AAGAAAGCGA
TTCTTTCGCT | AAGGAGCGGG
TTCCTCGCCC | CGCTAGGGCG
GCGATCCCGC | CTGGCAAGTG
GACCGTTCAC |
| | 401 | TAGCGGTCAC | GCTGCGCGTA
CGACGCGCAT | ACCACCACAC
TGGTGGTGTG | CCGCCGCGCT | TAATGCGCCG
ATTACGCGGC |
| SUBSTITUTE S | 451 | CTACAGGGCG | NheI
~~~~~
CGTGCTAGCG
GCACGATCGC | GAGTGTATAC
CTCACATATG | TGGCTTACTA | TGTTGGCACT |
| SHEET
/ 204 | | | IcmX | H | | AgeI |
| (RULE 26) | 501 | GATGAGGGTG | TCAGTGAAGT
AGTCACTTCA | ~~~~~
GCTTCATGTG
CGAAGTACAC | GCAGGAGAAA
CGTCCTCTTT | $\widetilde{AAAGGCTGCA}$ |
| | 551 | Agel
~~~~~
ccgGTGCGTC
GGCCACGCAG | AGCAGAATAT
TCGTCTTATA | GTGATACAGG | ATATATTCCG
TATATAAGGC | CTTCCTCGCT |
| | 601 | CACTGACTCG | CTACGCTCGG | TCGTTCGACT | GCGGCGAGCG | GAAATGGCTT |

WO 97/08320 PCT/EP96/03647

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| | GTGACTGAGC | GATGCGAGCC | AGCAAGCTGA | CGCCGCTCGC | CTTTACCGAA |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 651 | ACGAACGGGG
TGCTTGCCCC | CGGAGATTTC
GCCTCTAAAG | CTGGAAGATG
GACCTTCTAC | CCAGGAAGAT
GGTCCTTCTA | ACTTAACAGG
TGAATTGTCC |
| 701 | GAAGTGAGAG | GGCCGCGGCA | AAGCCGTTTT
TTCGGCAAAA | TCCATAGGCT
AGGTATCCGA | CCGCCCCCCT |
| 751 | GACAAGCATC
CTGTTCGTAG | ACGAAATCTG
TGCTTTAGAC | ACGCTCAAAT
TGCGAGTTTA | CAGTGGTGGC
GTCACCACCG | GAAACCCGAC
CTTTGGGCTG |
| 801 | AGGACTATAA
TCCTGATATT | AGATACCAGG
TCTATGGTCC | CGTTTCCCCC | TGGCGGCTCC | CTCCTGCGCT |
| | | | AgeI | | |
| 851 | CTCCTGTTCC
GAGGACAAGG | TGCCTTTCGG
ACGGAAAGCC | TTTACCGGTG
AAATGGCCAC | TCATTCCGCT
AGTAAGGCGA | GTTATGGCCG
CAATACCGGC |
| 901 | CGTTTGTCTC
GCAAACAGAG | ATTCCACGCC
TAAGGTGCGG | TGACACTCAG
ACTGTGAGTC | TTCCGGGTAG
AAGGCCCATC | GCAGTTCGCT
CGTCAAGCGA |
| 951 | CCAAGCTGGA
GGTTCGACCT | CTGTATGCAC
GACATACGTG | GAACCCCCCG | TTCAGTCCGA | CCGCTGCGCC |

SUBSTITUTE SHEET (RULE 28)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ATGCAAAAGC
TACGTTTTCG | AGTCTTGAAG
TCAGAACTTC | GTGACTGCGC
CACTGACGCG | CAGAGAACCT
GTCTCTTGGA | GCAAGAGATT | Bglii | GATCTAGCAC | 5550555555 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|--------------------------|--------------------------|
| CCGGAAAGAC
GGCCTTTCTG | TAGAGGAGTT
ATCTCCTCAA | ACAAGTTTTA
TGTTCAAAAT | GTTĞGTAGCT
CAACCATCGA | CGTTTTCAGA
GCAAAAGTCT | | CATCTTATTA | AAAAAAATTA
TTTTTTAAT |
| TGAGTCCAAC
ACTCAGGTTG | GTAATTGATT
CATTAACTAA | AACTGAAAGG
TTGACTTTCC | GGTTCAAAGA
CCAAGTTTCT | GCGGTTTTTT
CGCCAAAAAA | | TCAAGAAGAT
AGTTCTTCTA | TAACTGCCTT
ATTGACGGAA |
| ACTATCGTCT
TGATAGCAGA | GCAGCCACTG | GTTAAGGCTA
CAATTCCGAT | CAGTTACCTC
GTCAATGGAG | GCCCTGCAAG
CGGGACGTTC | | CAAAACGATC
GTTTTGCTAG | AGGGCACCAA |
| TTATCCGGTA
AATAGGCCAT | ACCACTGGCA
TGGTGACCGT | TCATGCGCCG | TCCTCCAAGC | ACGAAAAACC
TGCTTTTTGG | | ACGCGCAGAC
TGCGCGTCTG | CAGGCGTTTA
GTCCGCAAAT |
| 1001 | 1051 | 1101 | 1151 | 1201 | | 1251 | 1301 |
| | | S | | SHEET (RUL
/ 204 | E 26) | | |
| | | | | | | | |

| = |
|--------------|
| ned |
| ntir |
| <u>ပ</u> |
| tor |
| . Ve |
| 3 |
| pu
bu |
| ules and |
| odules |
| E |
| cto |
| الـ
الـ و |
| රි |
| onal |
| ditic |
| f ad |
| es o |
| enc |
| sequen |
| and se |
| sde |
| Ë |
| iona |
| unct |
| ä: F |
| e 35 |
| Figure |
| 正 |

| | 1351 | TGCCACTCAT
ACGGTGAGTA | CGCAGTACTG
GCGTCATGAC | TTGTAATTCA
AACATTAAGT | TTAAGCATTC
AATTCGTAAG | TGCCGACATG
ACGGCTGTAC |
|-----------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | 1401 | GAAGCCATCA
CTTCGGTAGT | CAAACGGCAT
GTTTGCCGTA | GATGAACCTG
CTACTTGGAC | AATCGCCAGC
TTAGCGGTCG | GGCATCAGCA
CCGTAGTCGT |
| | 1451 | CCTTGTCGCC | TTGCGTATAA
AACGCATATT | TATTTGCCCA
ATAAACGGGT | TAGTGAAAAC
ATCACTTTTG | GGGGCGAAG
CCCCCGCTTC |
| SUBSTIT | 1501 | AAGTTGTCCA
TTCAACAGGT | TATTGGCTAC
ATAACCGATG | GTTTAAATCA
CAAATTTAGT | AAACTGGTGA
TTTGACCACT | AACTCACCCA
TTGAGTGGGT |
| UTE SHEET | 1551 | GGGATTGGCT
CCCTAACCGA | GAGACGAAAA
CTCTGCTTTT | ACATATTCTC
TGTATAAGAG | AATAAACCCT
TTATTTGGGA | TTAGGGAAAT
AATCCCTTTA |
| (RULE 26) | 1601 | AGGCCAGGTT
TCCGGTCCAA | TTCACCGTAA
AAGTGGCATT | CACGCCACAT
GTGCGGTGTA | CTTGCGAATA
GAACGCTTAT | TATGTGTAGA
ATACACATCT |
| | 1651 | AACTGCCGGA
TTGACGGCCT | AATCGTCGTG
TTAGCAGCAC | GTATTCACTC | CAGAGCGATG
GTCTCGCTAC | AAAACGTTTC
TTTTGCAAAG |
| | 1701 | AGTTTGCTCA
TCAAACGAGT | TGGAAAACGG
ACCTTTTGCC | TGTAACAAGG
ACATTGTTCC | GTGAACACTA
CACTTGTGAT | TCCCATATCA
AGGGTATAGT |

J 7//06320

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| SUBSTITUTE SHEET (RULE 26) 169 / 204 | | | | | | | |
|--------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---|------------|
| 1751 | 1801 | 1851 | 1901 | 1951 | 2001 | 2051 | 2101 |
| CCAGCTCACC | AGGCGGGCAA
TCCGCCCGTT | CTTTACGGTC
GAAATGCCAG | AGGTACATTG
TCCATGTAAC | CATTGGGATA
GTAACCCTAT | AGCTTCCTTA
TCGAAGGAAT | GTGATCTTAT | GTGAGTTAGC |
| GTCTTTCATT | GAATGTGAAT
CTTACACTTA | TTTAAAAAGG
AAATTTTTCC | AGCAACTGAC
TCGTTGACTG | TATCAACGGT
ATAGTTGCCA | GCTCCTGAAA
CGAGGACTTT | TTCATTATGG | TCACTCATTA |
| GCCATACGGA
CGGTATGCCT | AAAGGCCGGA
TTTCCGGCCT | CCGTAATATC
GGCATTATAG | TGAAATGCCT
ACTTTACGGA | GGTATATCCA
CCATATAGGT | ATCTCGATAA
TAGAGCTATT | TGAAAGTTGG
ACTTTCAACC | GGCACCCCAG |
| ACTCCGGGTG
TGAGGCCCAC | TAAAACTTGT
ATTTTGAACA | CAGCTGAACG
GTCGACTTGC | CAAAATGTTC
GTTTTACAAG | GTGATTTTTT
CACTAAAAAA | CTCAAAAAAT
GAGTTTTTTA | AACCTCACCC
TTGGAGTGGG | GCTTTACACT |
| AGCATTCATC
TCGTAAGTAG | GCTTATTTT
CGAATAAAAA | GTCTGGTTAT
CAGACCAATA | TTTACGATGC
AAATGCTACG | TCTCCATTTT
AGAGGTAAAA | ACGCCCGGTA
TGCGGGCCAT | Aatii
~~~~~~
GACGTCTAAT
CTGCAGATTA | TTATGCTTCC |

PC 1/EP96/0364/

| (continued) |
|-------------------|
| L vectors |
| δď |
| s and |
| modules |
| vector |
| pCAL |
| f additional |
| 20 |
| maps and sequence |
| and |
| maps |
| Functional |
| gure 35a: |
| ιĒ |

| | | CACTCAATCG | AGTGAGTAAT | CCGTGGGGTC | CGAAATGTGA | AATACGAAGG |
|---------------------|------|--------------------------|--------------------------|---|---|---|
| | 2151 | GGCTCGTATG
CCGAGCATAC | TTGTGTGGAA
AACACACCTT | TTGTGAGCGG
AACACTCGCC | ATAACAATTT
TATTGTTAAA | CACACAGGAA
GTGTGTCCTT |
| S | 2201 | ACAGCTATGA
TGTCGATACT | CCATGATTAC
GGTACTAATG | XbaI
~~~~~
GAATTTCTAG
CTTAAAGATC | ACCCCCCCC
TGGGGGGGGG | Sphi
~~~~~
cgcargccar
gcgracggra |
| BUBSTITUTE SHEET (I | 2251 | AACTTCGTAT
TTGAAGCATA | AATGTACGCT
TTACATGCGA | ATACGAAGTT
TATGCTTCAA | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT | CCTGTGAAGT
GGACACTTCA |
| RULE 26) | 2301 | GAAAAATGGC
CTTTTTACCG | GCAGATTGTG
CGTCTAACAC | CGACATTTTT
GCTGTAAAAA | TTTGTCTGCC
AAACAGACGG | PacI
~~~~~~~
GTTTAATTAA
CAAATTAATT |
| | 2351 | Fsel
CGGGGGGGG GG | Fsel | CAAAAAGGAT
GTTTTTCCTA | CTCAAGAAGA
GAGTTCTTCT | TCCTTTGATC
AGGAAACTAG |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ſ | <u>-</u> 1 € | ΤΑ | T K | ပ် ရွိ | υ υ
υ | SA | AA
TT | CT
GA |
|---|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | GTTAAGGGAT
CAATTCCCTA | CTTTTAAATT
GAAAATTTAA | AACTTGGTCT
TTGAACCAGA | GCGATCTGTC
CGCTAGACAG | GATAACTACG
CTATTGATGC | TACCGCGAGA
ATGGCGCTCT | CCAGCCGGAA
GGTCGGCCTT | CATCCAGTCT
GTAGGTCAGA |
| | GTTZ
CAA | CTT'
GAA | AAC
TTG | 929 | GAT | TAC | CCZ | |
| | GAAAACTCAC
CTTTTGAGTG | CACCTAGATC
GTGGATCTAG | TATATGAGTA
ATATACTCAT | ACCTATCTCA
TGGATAGAGT | CCGTCGTGTA
GGCAGCACAT | GCTGCAATGA
CGACGTTACT | AATAAACCAG
TTATTTGGTC | TATCCGCCTC
ATAGGCGGAG |
| | TCAGTGGAAC (AGTCACCTTG | AAAGGATCTT
TTTCCTAGAA | ATCTAAAGTA
TAGATTTCAT | TCAGTGAGGC
AGTCACTCCG | GCCTGACTCC
CGGACTGAGG | TGGCCCCAGT | ATTTATCAGC
TAAATAGTCG | CCTGCAACTT
GGACGTTGAA |
| | GGTCTGACGC 7 | AGATTATCAA
TCTAATAGTT | TTTTAAATCA
AAAATTTAGT | CAATGCTTAA
GTTACGAATT | ATCCATAGTT
TAGGTATCAA | GCTTACCATC
CGAATGGTAG | CCGGCTCCAG | CAGAAGTGGT
GTCTTCACCA |
| | TTTTCTACGG (AAAAGATGCC) | - | AAAAATGAAG
TTTTTACTTC | GACAGTTACC
CTGTCAATGG | TATTTCGTTC
ATAAAGCAAG | ATACGGGAGG
TATGCCCTCC | CCCACGCTCA | GGGCCGAGCG
CCCGGCTCGC |
| | 2401 | 2451 | 2501 | 2551 | 2601 | 2651 | 2701 | 2751 |
| | | | | | TE SHEET (R
71 / 204 | ULE 26) | | |
| | | | | | | | | |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| TTAATAGTTT
AATTATCAAA | CGCTCGTCGT | GCGAGTTACA
CGCTCAATGT | GTCCTCCGAT | GTTATGGCAG
CAATACCGTC | CTTTTCTGTG
GAAAAGACAC | TGCGGCGACC | CCACATAGCA
GGTGTATCGT |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| AGTTCGCCAG
TCAAGCGGTC | CGTGGTGTCA
GCACCACAGT | AACGATCAAG
TTGCTAGTTC | AGCTCCTTCG
TCGAGGAAGC | ATCACTCATG
TAGTGAGTAC | CCGTAAGATG
GGCATTCTAC | GAATAGTGTA
CTTATCACAT | TAATACCGCG
ATTATGGCGC |
| TAGAGTAAGT
ATCTCATTCA | CTACAGGCAT
GATGTCCGTA | TCCGGTTCCC | AAAAGCGGTT
TTTTCGCCAA | CCGCAGTGTT
GGCGTCACAA | GTCATGCCAT | GTCATTCTGA
CAGTAAGACT | CAATACGGGA
GTTATGCCCT |
| GCCGGGAAGC
CGGCCCTTCG | GTTGCCATTG
CAACGGTAAC | TTCATTCAGC
AAGTAAGTCG | TGTTGTGCAA
ACAACACGTT | AGTAAGTTGG
TCATTCAACC | TTCTCTTACT
AAGAGAATGA | ACTCAACCAA
TGAGTTGGTT | TGCCCGGCGT |
| ATTAACTGTT
TAATTGACAA | GCGCAACGTT
CGCGTTGCAA | TTGGTATGGC | TGATCCCCCA | CGTTGTCAGA
GCAACAGTCT | CACTGCATAA
GTGACGTATT | ACTGGTGAGT
TGACCACTCA | GAGTTGCTCT
CTCAACGAGA |
| 2801 | 2851 | 2901 | 2951 | 3001 | 3 3051 | 3101 | 3151 |
| | | S | UBSTITUTE | SHEET (RUL | E 20) | | |

172 / 204

BNSDOCID: <WO___9708320A1_I_>

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

XmnI

| | GCGAAAACTC
CGCTTTTGAG | CCACTCGCGC
GGTGAGCGCG | TCTGGGTGAG
AGACCCACTC | GGCGACACGG
CCGCTGTGCC | GAAGCATTTA
CTTCGTAAAT |
|---|--|------------------------------|------------------------------|------------------------------|---------------------------------|
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | GTTCTTCGGG G | TCGATGTAAC C
AGCTACATTG G | CACCAGCGTT T
GTGGTCGCAA A | AGGGAATAAG G
TCCCTTATTC C | CAATATTATT G
GTTATAATAA C |
| 1 | ATTGGAAAAC
TAACCTTTTG | GAGATCCAGT | CTTTTACTTT
GAAAATGAAA | GCCGCAAAAA | CTTCCTTTTT
GAAGGAAAAA |
| | AGTGCTCATC
TCACGAGTAG | TACCGCTGTT
ATGGCGACAA | TCCTCAGCAT
AGGAGTCGTA | AAGGCAAAAT
TTCCGTTTTA | TACTCATACT |
| | GAACTTTAAA AGTGCTCATC
CTTGAAATTT TCACGAGTAG | TCAAGGATCT
AGTTCCTAGA | ACCCAACTGA
TGGGTTGACT | CAAAAACAGG
GTTTTTGTCC | AAATGTTGAA TA(
TTTACAACTT AT |
| | 3201 | 3251 | 3301 | 3351 | 3401 |
| | | | | TE SHEET (R
73 / 204 | ULE 28) |

BsrGI

TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAAT AGTCCCAATA ACAGAGTACT CGCCTATGTA TAAACTTA 3451

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26)
174 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AatII | GACGTCTAAT | TTATGCTTCC
AATACGAAGG | CACACAGGAA
GTGTGTCCTT | Sphi
~~~~~~
CGCATGCCAT |
|-------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------------|
| 4 | ACGAAGTTAT GA
TGCTTCAATA CI | GCTTTACACT TI
CGAAATGTGA AA | ATAACAATTT CA
TATTGTTAAA GI | |
| | TGTATGCTAT A | GGCACCCCAG (CCGTGGGGTC) | TTGTGAGCGG A | XbaI
~~~~~~
GAATTTCTAG ACCCCCCC |
| | CTTCGTATAA
GAAGCATATT | TCACTCATTA | TTGTGTGGAA
AACACACCTT | CCATGATTAC |
| pCALO-3:
Bglii | ATC
PAG | GTGAGTTAGC
CACTCAATCG | GGCTCGTATG
CCGAGCATAC | ACAGCTATGA |
| pCAL | Н | 51 | 101 | 151 |
| | | SU | BSTITUTE SA | HEET (RULE 26) |

HindIII

CCTGTGAAGT GGACACTTCA ATAAGCTTGA TATTCGAACT ATACGAAGTT TATGCTTCAA AATGTACGCT TTGAAGCATA AACTTCGTAT

201

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTTAATTAA
CAAATTAATT | TCCTTTGATC
AGGAAACTAG | GTTAAGGGAT
CAATTCCCTA | CTTTTAAATT
GAAAATTTAA | AACTTGGTCT
TTGAACCAGA | GCGATCTGTC
CGCTAGACAG | GATAACTACG
CTATTGATGC |
|--------------------------|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| TTTGTCTGCC | CTCAAGAAGA
GAGTTCTTCT | GAAAACTCAC
CTTTTGAGTG | CACCTAGATC
GTGGATCTAG | TATATGAGTA
ATATACTCAT | ACCTATCTCA
TGGATAGAGT | CCGTCGTGTA |
| CGACATTTTT
GCTGTAAAAA | CAAAAAGGAT
GTTTTTCCTA | TCAGTGGAAC
AGTCACCTTG | AAAGGATCTT
TTTCCTAGAA | ATCTAAAGTA
TAGATTTCAT | TCAGTGAGGC | GCCTGACTCC
CGGACTGAGG |
| GCAGATTGTG
CGTCTAACAC | eI
~~~~~~
CGGCCATTAT
GCCGGTAATA | GGTCTGACGC
CCAGACTGCG | AGATTATCAA
TCTAATAGTT | TTTTAAATCA
AAAATTTAGT | CAATGCTTAA
GTTACGAATT | ATCCATAGTT
TAGGTATCAA |
| GAAAAATGGC
CTTTTTACCG | Fse.
CGGGGGGGGC
CCCCCCCG | TTTTCTACGG
AAAAGATGCC | TTTGGTCATG
AAACCAGTAC | AAAAATGAAG
TTTTTACTTC | GACAGTTACC | TATTTCGTTC
ATAAAGCAAG |
| 251 | 301 | 351 | 401 | 451 | 501 | 551 |
| | | | UTE SHEET
176 / 204 | (RULE 20) | | |

PCT/EP96/03647

| Ф |
|-----------------|
| ₽ |
| = |
| .= |
| = |
| Ö |
| \mathcal{Z} |
| $\overline{}$ |
| S |
| 0 |
| 7 |
| $\ddot{\omega}$ |
| > |
| _ |
| ⋖ |
| Ü |
| d |
| Т |
| Ξ |
| ਲ |
| S |
| نه |
| = |
| ō |
| 0 |
| Ξ |
| Ξ |
| ō |
| ecto |
| \sim |
| > |
| نــ |
| 4 |
| \mathcal{C} |
| ā |
| |
| <u> </u> |
| Ξ |
| dition |
| = |
| ₽ |
| õ |
| f adc |
| ð |
| |
| ces |
| ŭ |
| Ξ. |
| 2 |
| = |
| Sec |
| Š |
| ıd sednei |
| Ē |
| В |
| S |
| 2 |
| 3 |
| = |
| = |
| - 62 |
| ō |
| :Ξ |
| J |
| ⊑ |
| .⊐ |
| ц. |
| æ |
| Š |
| 35 |
| ر ۾ |
| gure |
| g |
| |
| 正 |
| |
| |

| 200 | a. r unicalona | ור ששה ושורנוטוומו ווומף מונע שראמרוורנא טו מממננטוומו מכשר אררנטו וווסממינא מונע מכאר אררנטו (רטונוווערט) | ימונוסוומו לכער אכנסו וווסמ | מוכז מוום ליכיוד אברנסום וכם | | |
|-------------|----------------|--|-----------------------------|------------------------------|--------------------------|--------------------------|
| | 601 | ATACGGGAGG | GCTTACCATC
CGAATGGTAG | TGGCCCCAGT | GCTGCAATGA
CGACGTTACT | TACCGCGAGA
ATGGCGCTCT |
| | 651 | CCCACGCTCA
GGGTGCGAGT | CCGGCTCCAG
GGCCGAGGTC | ATTTATCAGC
TAAATAGTCG | AATAAACCAG
TTATTTGGTC | CCAGCCGGAA
GGTCGGCCTT |
| | 701 | GGGCCGAGCG | CAGAAGTGGT
GTCTTCACCA | CCTGCAACTT
GGACGTTGAA | TATCCGCCTC
ATAGGCGGAG | CATCCAGTCT
GTAGGTCAGA |
| SUBSTITUT | 751 | ATTAACTGTT
TAATTGACAA | GCCGGGAAGC
CGGCCCTTCG | TAGAGTAAGT
ATCTCATTCA | AGTTCGCCAG
TCAAGCGGTC | TTAATAGTTT
AATTATCAAA |
| TE SHEET (R | 801 | GCGCAACGTT
CGCGTTGCAA | GTTGCCATTG
CAACGGTAAC | CTACAGGCAT
GATGTCCGTA | CGTGGTGTCA | CGCTCGTCGT
GCGAGCAGCA |
| ULE 26) | 851 | TTGGTATGGC
AACCATACCG | TTCATTCAGC
AAGTAAGTCG | TCCGGTTCCC | AACGATCAAG
TTGCTAGTTC | GCGAGTTACA
CGCTCAATGT |
| | 901 | TGATCCCCCA | TGTTGTGCAA
ACAACACGTT | AAAAGCGGTT
TTTTCGCCAA | AGCTCCTTCG
TCGAGGAAGC | GTCCTCCGAT |
| | 951 | CGTTGTCAGA
GCAACAGTCT | AGTAAGTTGG
TCATTCAACC | CCGCAGTGTT
GGCGTCACAA | ATCACTCATG
TAGTGAGTAC | GTTATGGCAG
CAATACCGTC |

177 / 204

| (continued) |
|--|
| L vectors |
| d pCA |
| ional pCAL vector modules and pCAL vectors (contin |
| AL vector |
| pCAL |
| nctional maps and sequences of additional |
| ences of |
| sedu |
| maps and |
| Functional |
| gure 35a: |
| ιΞ |

| | 1001 | CACTGCATAA
GTGACGTATT | TTCTCTTACT
AAGAGAATGA | GTCATGCCAT
CAGTACGGTA | CCGTAAGATG
GGCATTCTAC | CTTTTCTGTG
GAAAGACAC | |
|-------------|-------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| | 1051 | ACTGGTGAGT
TGACCACTCA | ACTCAACCAA
TGAGTTGGTT | GTCATTCTGA
CAGTAAGACT | GAATAGTGTA
CTTATCACAT | TGCGGCGACC | |
| | 11.01 | GAGTTGCTCT
CTCAACGAGA | TGCCCGGCGT
ACGGGCCGCA | CAATACGGGA
GTTATGCCCT | TAATACCGCG
ATTATGGCGC | CCACATAGCA
GGTGTATCGT | |
| SUB | | | | IcumX | | | |
| STITUTE SH | 1151 | GAACTTTAAA
CTTGAAATTT | AGTGCTCATC | ATTGGAAAAC
TAACCTTTTG | GTTCTTCGGG | GCGAAAACTC
CGCTTTTGAG | |
| EET (RULE 2 | 1201 | TCAAGGATCT
AGTTCCTAGA | TACCGCTGTT
ATGGCGACAA | GAGATCCAGT
CTCTAGGTCA | TCGATGTAAC
AGCTACATTG | CCACTCGCGC
GGTGAGCGCG | |
| 26) | 1251 | ACCCAACTGA
TGGGTTGACT | TCCTCAGCAT
AGGAGTCGTA | CTTTTACTTT
GAAAATGAAA | CACCAGCGTT
GTGGTCGCAA | TCTGGGTGAG
AGACCCACTC | |
| | 1301 | CAAAAACAGG
GTTTTTGTCC | AAGGCAAAAT
TTCCGTTTTA | GCCGCAAAAA
CGGCGTTTTT | AGGGAATAAG
TCCCTTATTC | GGCGACACGG
CCGCTGTGCC | |
| | 1351 | AAATGTTGAA | TACTCATACT | CTTCCTTTT | CAATATTATT | GAAGCATTTA | |

178 / 204

BNSDOCID: <WO___9708320A1_I_>

TTTGGCAGAT

AAACCGTCTA

AAAGGGCGAA

TTTCCCGCTT

TTTACAACTT ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

BsrGI

ATTTGAATGT ACATGAAATT GCGGATACAT TGTCTCATGA TCAGGGTTAT

TGTACTTTAA TAAACTTACA CGCCTATGTA ACAGAGTACT AGTCCCAATA 1401

GTTAAATCAG CAATTTAGTC TTAAATTTTT AATTTAAAAA TTTTAAGCGC AAAATTCGCG TATAAAACAA ATATTTTGTT GTAAACGTTA CATTTGCAAT

CAAAATCCCT

CCGAAATCGG GGCTTTAGCC TTGGTTATCC AACCAATAGG GAGTAAAAA CTCATTTTT

ATATTTAGTT

GTTTTAGGGA

TATAAATCAA

GAACAAGAGT

TTCCAGTTTG

AAGGTCAAAC

CTTGTTCTCA

TTGAGTGTTG CGAGATAGGG AAGAATAGAC

AACTCACAAC GCTCTATCCC TTCTTATCTG

1551

SUBSTITUTE SHEET (RULE 26)

179 / 204

1501

1451

CTCCAACGTC GAGGTTGCAG CCACTATTAA AGAACGTGGA TCTTGCACCT GGTGATAATT

1601

AGTTTTTGG TCAAAAACC ACCCTAATCA TGGGATTAGT GAGAACCATC CTCTTGGTAG GGCCCACTAC CCGGGTGATG TCAGGGCGAT AGTCCCGCTA 1651

BanII

~~~~~

Figure 3	5a: Functional	maps and sequences of ad	Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)	ules and pCAL vectors (cor くのかんりんかん	ntinued)	45000000000000000000000000000000000000
	1701	GGTCGAGGTG	CCGTAAAGCA GGCATTTCGT	CTAAAICGGA GATTTAGCCT	TGGGATTTCC	CTCGGGGGCT
	1751	TTTAGAGCTT AAATCTCGAA	GACGGGGAAA CTGCCCCTTT	GCCGGCGAAC CGGCCGCTTG	GTGGCGAGAA CACCGCTCTT	AGGAAGGGAA TCCTTCCCTT
	1801	GAAAGCGAAA CTTTCGCTTT	GGAGCGGGCG CCTCGCCCGC	CTAGGGCGCT GATCCCGCGA	GGCAAGTGTA CCGTTCACAT	GCGGTCACGC CGCCAGTGCG
SUBSTITU	1851	TGCGCGTAAC	CACCACACCC GTGGTGTGGG	GCCGCGCTTA	ATGCGCCGCT	ACAGGGCGCG TGTCCCGCGC
JTE SHEET (RULE 26) 180 / 204	1901	NheI ~~~~~~ TGCTAGCGGA ACGATCGCCT	GTGTATACTG	GCTTACTATG CGAATGATAC	TTGGCACTGA	TGAGGGTGTC ACTCCCACAG
)		XmnI			Age	Ц
	1951	AGTGAAGTGC T TCACTTCACG P	TTCATGTGGC AAGTACACCG	AGGAGAAAAA TCCTCTTTTT	AGGCTGCACC TCCGACGTGG	GGTGCGTCAG CCACGCAGTC
	2001	CAGAATATGT GTCTTATACA	GATACAGGAT CTATGTCCTA	ATATTCCGCT TATAAGGCGA	TCCTCGCTCA AGGAGCGAGT	CTGACTCGCT GACTGAGCGA

PC1/EP96/0

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AATGGCTTAC GAACGGGGCG TTACCGAATG CTTGCCCCGC	TTAACAGGGA AGTGAGAGGG AATTGTCCCT TCACTCTCCC	GCCCCCCTGA CAAGCATCAC CGGGGGACT GTTCGTAGTG	AACCCGACAG GACTATAAAG TTGGGCTGTC CTGATATTTC	CCTGCGCTCT CCTGTTCCTG GGACGCGAGA GGACAAGGAC		TATGGCCGCG TTTGTCTCAT ATACCGGCGC AAACAGAGTA	AGTTCGCTCC AAGCTGGACT TCAAGCGAGG TTCGACCTGA
GGCGAGCGGA A CCGCTCGCCT I	AGGAAGATAC T TCCTTCTATG A	CATAGGCTCC G GTATCCGAGG C	GTGGTGGCGA A	GCGGCTCCCT C		ATTCCGCTGT T	CCGGGTAGGC A GGCCCATCCG T
GTTCGACTGC CAAGCTGACG	GGAAGATGCC CCTTCTACGG	GCCGTTTTTC CGGCAAAAAG	GCTCAAATCA CGAGTTTAGT	TTTCCCCCTG	AgeI	TACCGGTGTC ATGGCCACAG	ACACTCAGTT TGTGAGTCAA
ACGCTCGGTC TGCGAGCCAG	GAGATTTCCT CTCTAAAGGA	CCGCGGCAAA	GAAATCTGAC CTTTAGACTG	ATACCAGGCG TATGGTCCGC		CCTTTCGGTT GGAAAGCCAA	TCCACGCCTG AGGTGCGGAC
2051	2101	2151	2201 STITUTE 181	1 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 2	E 26)	2301	2351

$\widehat{\Xi}$
يو
2
:Ξ
Ξ
ည
<u>.</u>
Ξ.
×
٦
>
AL
$\circ$
_
פ
æ
ss and
r modules
귤
ŏ
Ξ
=
\$
S
vector
Ţ
8
ď
=
Ë
.º
≝
몽
aq
Ę
S
نة
2
تة
믉
sed
2
2
В
SC
ਵ
Ξ
E
Ĕ
.으
さ
=
工
5a:
2
3
ب
igure
. <u>g</u>
ΙΞ

	2401	GTATGCACGA	ACCCCCCGTT	CAGTCCGACC	GCTGCGCCTT	ATCCGGTAAC TAGGCCATTG
	2451	TATCGTCTTG ATAGCAGAAC	AGTCCAACCC TCAGGTTGGG	GGAAAGACAT CCTTTCTGTA	GCAAAAGCAC CGTTTTCGTG	CACTGGCAGC
	2501	AGCCACTGGT TCGGTGACCA	AATTGATTTA TTAACTAAAT	GAGGAGTTAG CTCCTCAATC	TCTTGAAGTC AGAACTTCAG	ATGCGCCGGT TACGCGGCCA
	2551	TAAGGCTAAA ATTCCGATTT	CTGAAAGGAC GACTTTCCTG	AAGTTTTAGT TTCAAAATCA	GACTGCGCTC CTGACGCGAG	CTCCAAGCCA GAGGTTCGGT
JTE SHEET (i 182 / 204	2601	GTTACCTCGG CAATGGAGCC	TTCAAAGAGT AAGTTTCTCA	TGGTAGCTCA ACCATCGAGT	GAGAACCTAC CTCTTGGATG	GAAAAACCGC CTTTTTGGCG
RULE 26)	2651	CCTGCAAGGC GGACGTTCCG	GGTTTTTTCG CCAAAAAAGC	TTTTCAGAGC AAAAGTCTCG	AAGAGATTAC TTCTCTAATG	GCGCAGACCA CGCGTCTGGT
				BglII		
	2701	AAACGATCTC TTTGCTAGAG	AAGAAGATCA TTCTTCTAGT	TCTTATTA AGAATAAT		

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatII: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

**AAGTTAT** 

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

**AGATCTCA** 

M3: PCR, NoVspAatll as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-

TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-I: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

**AAACGGTTGAAAGTTG** 

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

gllsupernew-fow: GGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (AULE 26)

183 / 204

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

**TATGGCATG** 

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCCAGGCCGGCCCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 28)

101/21/0/030

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

## M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

**CAAGGCG** 

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

## M13: synthesis

BIoxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

ПСА

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

**TGAGA** 

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SMEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGTT-

AAGGGGGGGGGG

SUBSTITUTE SHEET (RULE 26)

186 / 204

TC1/E1 90/0504

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGGTGG

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of ß-lactamase-MCS module



SUBSTITUTE SMEET (RULE 28)

188 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

	H \	טט		μ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\mathcal{O}$	U U
BStXI	MSCI	AAGCCCCTGG			CGGTACCAGG	CTTTTCTACG	TTTTGGTCAT
Bsu36I	stEI! ~~~~~~	GTGAC	PmlI		CACGTGGATC GTGCACCTAG	ATCCTTTGAT TAGGAAACTA	CGTTAAGGGA
MluI Bsu	paI ~~~~	CGCGTTAACC		aBI	AGATTACCAT TCTAATGGTA	TCTCAAGAAG AGAGTTCTTC	CGAAAACTCA GCTTTTGAGT
		126			176	226	276

## SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

326	TCACCTAGAT	CCTTTTAAAT	TAAAAATGAA	GTTTTAAATC	AATCTAAAGT
	AGTGGATCTA	GGAAAATTTA	ATTTTTACTT	CAAAATTTAG	TTAGAȚTTCA
376	ATATATGAGT	AAACTTGGTC	TGACAGTTAC	CAATGCTTAA	TCAGTGAGGC
	TATATACTCA	TTTGAACCAG	ACTGTCAATG	GTTACGAATT	AGTCACTCCG
426	ACCTATCTCA	GCGATCTGTC	TATTTCGTTC	ATCCATAGTT	GCCTGACTCC
	TGGATAGAGT	CGCTAGACAG	ATAAAGCAAG	TAGGTATCAA	CGGACTGAGG
476	CCGTCGTGTA GGCAGCACAT	GATAACTACG CTATTGATGC	ATACGGGAGG TATGCCCTCC	GCTTACCATC CGAATGGTAG	TGGCCCCCAGT
526	GCTGCAATGA	TACCGCGAGA	CCCACGCTCA	CCGGCTCCAG	ATTTATCAGC
	CGACGTTACT	ATGGCGCTCT	GGGTGCGAGT	GGCCGAGGTC	TAAATAGTCG
576	AATAAACCAG TTATTTGGTC	CCAGCCGGAA GGTCGGCCTT	GGGCCGAGCG	CAGAAGTGGT GTCTTCACCA	CCTGCAACTT GGACGTTGAA
626	TATCCGCCTC	CATCCAGTCT	ATTAACTGTT	GCCGGGAAGC	TAGAGTAAGT
	ATAGGCGGAG	GTAGGTCAGA	TAATTGACAA	CGGCCCTTCG	ATCTCATTCA
919	AGTTCGCCAG	TTAATAGTTT	GCGCAACGTT	GTTGCCATTG	CTACAGGCAT
	TCAAGCGGTC	AATTATCAAA	CGCGTTGCAA	CAACGGTAAC	GATGTCCGTA

## SUBSTITUTE SHEET (RULE 26)

190 / 204

PC 1/EP96/03647

Figure 36: functional map and sequence of ß-lactamase-MCS module (continued)

726 776 826 876 926 976	9
CGTGGTGTCA GCACCACAGT AACGATCAAG TTGCTAGTTC ATCACTCATG TAGTGAGTAC CCGTAAGATG GGCATTCTAC GGCATTCTAC	ATTATGGCGC GTTCTTCGGG CAAGAAGCCC
CGCTCGTCGT GCGAGCTTACA CGCTCAATGT CAGGAGGCTA CATATGGCAG CAATACCGTC CTTTTCTGTG CAAAAGACAC CTTTTCTGTG GAAAAGACAC CTTTTCTGTG	GGTGTATCGT GCGAAAACTC CGCTTTTGAG
TTGGTATGGC AACCATACCG TGATCCCCCA ACTAGGGGGT CGTTGTCAGA GCAACAGTCT CACTGCATAA GTGACGTGAGT TGACCACTCA ACTGGTGAGT TGACCACTCA GAGTTGCTCA GAGTTGCTCA GAACTTTAAA	CTTGAAATTT TCAAGGATCT AGTTCCTAGA
TTCATTCAGC AAGTAAGTCG TGTTGTGCAA ACAACACGTT AGTAAGTTGG TCATTCAACC TCATTCAACC TGAGAATGA ACGCAGCGTT AGGGCCGCAA TGAGTTGGTT AGGGCCGCAA TGAGTTGGTT AGGGCCGCAA	TCACGAGTAG TACCGCTGTT ATGGCGACAA
TCCGGTTCCC AGGCCAAGGG AAAAGCGGTT TTTTCGCCAA CCGCAGTGTT GGCGTCACAA GTCATGCCAT CAGTACGGTA GTCATTCTGA GTCATTCTGA CAGTACGGGA GTCATTCTGGAAAAC	TAACCTTTTG GAGATCCAGT CTCTAGGTCA

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

CTTTTACTTT GAAAATGAAA	GCCGCAAAAA	CTTCCTTTTT GAAGGAAAAA	GCGGATACAT CGCCTATGTA	XhoI	BssHI	ATGGCTCGAG	
TCTTCAGCAT AGAAGTCGTA Eco57I	AAGGCAAAAT TTCCGTTTTA	TACTCATACT ATGAGTATGA	TGTCTCATGA ACAGAGTACT		.~ Bbel AseI	GGCGCCATTA A CCGCGGTAAT I	H }
ACCCAACTGA TGGGTTGACT	CAAAAACAGG GTTTTTGTCC	AAATGTTGAA TTTACAACTT	TCAGGGTTAT AGTCCCAATA	PstI		ACGAGCTGCA	BspEI BsrGI
CCACTCGTGC GGTGAGCACG BSSSI	TCTGGGTGAG AGACCCACTC	GGCGACACGG CCGCTGTGCC	GAAGCATTTA CTTCGTAAAT		EagI	ACTCGGCCGC TGAGCCGGCG	
TCGATGTAAC AGCTACATTG	CACCAGCGTT GTGGTCGCAA	AGGGAATAAG TCCCTTATTC	СААТАТТАТТ GTTATAATAA			ATTTGAATGT TAAACTTACA	BssHII
1126	1176	1226	1276			1326	
			JTE SHEET ( 192 / 204	RULE 26	6)		

TCI/EI 3

CATGAAATT GTACTTTAA CGCTTTGTCT TCCGGATGTA GCGAAACAGA AGGCCTACAT Figure 36: functional map and sequence of ß-lactamase-MCS module (continued) BbsI CGCGCTTCAG Eco57I

> SUBSTITUTE SHEET (RULE 26) 193 / 204

Figure 37: Oligo and primer design for Vκ CDR3 libraries

SUBSTITUTE SHEET (RULE 26)

PC1/EP96/03

Figure 37: Oligo and primer design for Vk CDR3 libraries

30 20 -3' Q Α TGCGACTTATTGC CA٧ G Y TGGGCGTGTA TTATTGC G CAY G G C G G T G T A T T A T T G CA G Α C D G CA K M N P CAG R S T W Y

> SUBSTITUTE SHEET (RULE 26) 195 / 204

80% Q

WO 97/08320 PCT/EP96/03647

Figure 37: Oligo and primer design for Vκ CDR3 libraries

G A C C T

G A C C T

A C C T

A C C T

															•	
G	С	T	••••••	••••••		**********			G	С	T			G	С	T
			•••••	••••••												
G	Α	Τ	G	Α	Τ	G	Α	T	G	Α	T			G	Α	T
G	Α	G		*******					G	Α	G			G	Α	G
: '	T			*********		••••			T		•			Τ	T	T
G	G	Τ	G	G	T	G	G	T	G	G	T		•••••••	G	G	T
C	Α	Τ		***********		•••••	**********	*******	С	Α	Τ	•••••••	••••••	С	Α	T
Α	T	Τ	•••••	••••••		*********		*******	Α	T	T		••••••	Α	T	T
Α	Α	G		••••••	•••••		••••••		Α	Α	G		••••••	Α	Α	G
C	T	T	•••••	•••••		••••••	***********	*******	С	T	T	•		С	T	T
Α	T	G		••••••			••••••	•••••	Α	T	G		***********	Α	T	G
Α	Α	T	Α	Α	T	Α	Α	T	Α	Α	Τ		••••••	Α	Α	Τ
	•••••••				••••••		••••••	••••••	С	С	T	С	C 1	C	С	T
C	Α	G			•••••		••••••	••••••	С	Α	G			С	Α	G
C	G	T		*******				••••••	С	G	T			С	G	T
T	С	T	T	С	T	Τ	С	T	;				C 1	T	С	T
Α	С	T		••••••	••••••				Α	С	T			Α	С	Τ
G	T	T		•••••	•••••				<u>:</u>	T				<u>:</u>	T	Τ
T	G	G		••••••					Τ	G	G			T	G	G
T	Α	T	T	Α	T		•••••		Τ	Α	T			T	Α	Τ
5	0%	Y			•••••	• • • • • • • • • • • • • • • • • • • •	••••••					80	% F	)		

SUBSTITUTE SHEET (RULE 26) 196 / 204

Figure 37: Oligo and primer design for Vκ CDR3 libraries

SUBSTITUTE SHEET (RULE 20)

WO 97/08320 PCT/EP96/03647

Figure 38: Oligo and primer design for Vλ CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 198 / 204

Figure 38: Oligo and primer design for Vλ CDR3 libraries



SUBSTITUTE SHEET (RULE 28) 199 / 204 WO 97/08320 PCT/EP96/03647

Figure 38: Oligo and primer design for Vλ CDR3 libraries



Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26)
201 / 204

202 / 204

Figure 39: functional map of expression vector series pBS13

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

% soluble	۲۰,	Ç	Ž	17.7		77	•
	_	7	> -	1	-		2
				700	000	C10%	RO0/0
V 1 1 1	G10%	58%	25°/0	4.2%	30%0	0/-10	2
<u> </u>	-	) )		700	7067	200%	760/0
013	30%	48%	0/n99	48%	4/100	23%	0/00
٥١٦	2	2	1	,	7	7000	1 E0%
<u> </u>	V 70/0	570%	46%	43º%	3/70	30%0	43%
7H	0/./+	2	) •		ò	7,0	7000
-	0 0 0	Z 70%	760%	61%	0/ <sub>0</sub> 08	0/2	83%0
· · ·	02%0	2/ /2	2			0	•
)	0	200	r 10%	70/0	450%	3.30%	4.7%
71	6,400	0/ <sub>0</sub> 7ς	2 <u>ا</u> %0	1440	2		1
<b>+</b>	)		•	7020	E 10%	750%	470%
חת	490/u	490%	46%	0/6/9	24%	2/0+	2/
CL	2	) -			-	7001	E 10%
-	000	780%	54%	4/%	45%	20%0	0/10
QL	2000	2					

compared to H3K2	к1	K2	$\mathcal{Z}$	<b>К</b> 4	Z	75	73
	- 1	940%	166%	272%	20%	150%	78%
HIA 203	20370 2190/n	122%	89%	139%	117%	158%	101%
1186		723%	•	182%	126%	%09	97%
150 100 100 100		)	•	54%		130%	47%
113	370%	55%	%09	17%	195%	107%	251%
)86 #11	80%	201%	167%	83%		128%	115%
920 H	65%	117%	89%	109%		215%	278%

SUBSTITUTE SHEET (RULE 26) 203 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

Soluble amount	,	درج	,	7.2	7	7.2	73
compared to H3K2	<del>_</del>	2	2	† 	- ~	7/5	3
H1A	191%	88%	121%	122%	26%	211%	76%
H1B	124%	95%	83%	107%	79%	142%	29%
H2	126%	204%	139%	130%	%99	20%	0/00/
H3	63%	l	81%	49%	%69	143%	61%
H4	40%	47%	49%	54%	95%	25%	125%
HS	%69	158%	116%	80%	72%	84%	84%
H6	85%	122%	87%	17%	162%	162%	212%
	McPC						
soluble	38%						
%H3k2 total	117%						
%H3k2 soluble	%69						

SUBSTITUTE SHEET (RULE 26) 204 / 204

INTERNATIONAL SLANCH REPORT onal Application No PCT/EP 96/03647 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/13 C12N15/10 C12N15/62 C12N15/70 C12N1/21 CO7K1/04 G01N33/53 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. EP 0 368 684 A (MEDICAL RES COUNCIL) 16 Α 1-55 May 1990 cited in the application see the whole document EUROPEAN J. IMMUNOLOGY. Α 1-55 vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHEIM, BRD, pages 1456-1461, XP000616572 S.C. WILLIAMS AND G. WINTER: "Cloning and sequencing of human immunoglobulin V-lambda gene segments" cited in the application see the whole document -/--

Further documents are instead in the conductation of box C.	Patent family members are fisied in annex.
* Special categories of cited documents:  'A' document defining the general state of the art which is not considered to be of particular relevance  'E' earlier document but published on or after the international filling date  'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y" document of particular relevance; the claimed invention
citation or other special reason (as specified)  O' document referring to an oral disclosure, use, exhibition or other means  P' document published prior to the international filing date but later than the priority date claimed	cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.  *&* document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
30 January 1997	.1 1. 02. 97
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Hornig, H

Form PCT/ISA/218 (second sheet) (July 1992)

C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PROC. NATL.ACAD SCI., vol. 89, May 1992, NATL. ACAD SCI.,WASHINGTON,DC,US;, pages 4457-4461, XP002024223 C. F. BARBAS III ET AL.: "Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem" cited in the application see the whole document	1-55
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 21, 1 November 1992, pages 10026-10030, XP000322464 COLLET T A ET AL: "A BINARY PLASMID SYSTEM FOR SHUFFLING COMBINATORIAL ANTIBODY LIBRARIES" see the whole document	1-55
	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 8, 15 April 1992, pages 3576-3580, XP000384398 GRAM H ET AL: "IN VITRO SELECTION AND AFFINITY MATURATION OF ANTIBODIES FROM A NAIVE COMBINATORIAL IMMUNOGLOBULIN LIBRARY" see the whole document	1-55
A	PROTEIN ENGINEERING, vol. 8, no. 1, 1 January 1995, pages 81-89, XP000500393 KNAPPIK A ET AL: "ENGINEERED TURNS OF RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO FOLDING" cited in the application see the whole document	1-55
A	ANNUAL REVIEW OF IMMUNOLOGY, vol. 12, 1 January 1994, pages 433-455, XP000564245 WINTER G ET AL: "MAKING ANTIBODIES BY PHAGE DISPLAY TECHNOLOGY" cited in the application see the whole document	1-55
A	JOURNAL OF MOLECULAR BIOLOGY, vol. 224, no. 2, 1 January 1992, pages 487-499, XP000564649 FOOTE J ET AL: "ANTIBODY FRAMEWORK RESIDUES AFFECTING THE CONFORMATION OF THE HYPERCARIABLE LOOPS" cited in the application see the whole document	1-55
	-/	

1

#### INTERNATIONAL SEARCH REPORT

int ional Application No PCT/EP 96/03647

(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP 96/03647
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document	1-55
A	WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document	1-55
A	ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4	1-55
A	CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980, 1994,	1-55

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

### INTERNATIONAL SEARCH REPORT

information on patent family members

Int onal Application No PCT/EP 96/03647

Patent document cited in search report	Publication date		t family aber(s)	Publication date
EP-A-0368684	16-05-90	AU-B-	634186	18-02-93
		AU-A-	4520189	28-05-90
		CA-A-	2002868	11-05-90
		DE-D-	68913658	14-04-94
		DE-T-	68913658	08-09-94
		ES-T-	2052027	01-07-94
•	•	WO-A-	9005144	17-05-90
		JP-T-	3502801	27-06-91
WO-A-9511998	04-05-95	AU-A-	8091694	22-05-95
		EP-A-	0725838	14-08-96

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)