

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

1.CONJUNTOS DOS NÚMEROS NATURAIS (N)

Como já vimos em estudo realizado em curso de primeiro grau, para o estudo da Matemática, fazemos uso de alguns conjuntos numéricos, entre eles, destacamos o <u>"conjunto dos números naturais"</u>. Começando pelo <u>"zero"</u> e acrescentando sempre uma unidade, teremos os chamados números naturais e seu conjunto é indicado por:

$$1N = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 21, ...\}$$

Convém notar que quando excluímos o <u>"Zero"</u> deste conjunto, temos o conjunto dos números naturais não nulos, que é indicado por:

$$1N^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 21, ...\}$$

Se considerarmos a sucessão dos números naturais, veremos que: o <u>"zero"</u> é o menor dos números naturais e todo número natural tem um <u>sucessivo</u> ou <u>sucessor</u>.

Exemplos: 1 é o sucessivo de 0

2 é o sucessivo de 1 3 é o sucessivo de 2

. .

.

n + 1 é o sucessivo de n

Sendo assim, como consequência de que todo número natural tem um sucessivo, <u>"não existe um último número natural</u>". Dizemos, então, que tanto o conjunto **IN** como o conjunto **IN*** "<u>são infinitos"</u>. Todo número natural, com exceção do <u>"zero"</u> tem um antecessor.

Exemplos: 0 é o antecessor de 1

1 é o antecessor de 2

n - 1 é o antecessor de n

Dois ou mais números que se seguem na secessão dos números naturais são denominados "consecutivos".

Exemplos: 21 e 22 são números naturais consecutivos.

76, 77 e 78 são números naturais consecutivos.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Observe as seguintes notações:

- 1°) Quando queremos especificar que a letra \mathbf{n} representa um número natural, escrevemos $\mathbf{n} \in \mathbf{IN}$;
- 2°) Quando escrevemos $n \in IN$ e n < 5, queremos dizer que n representa um número natural menor que 5, ou seja, n pode ser 0, ou 1, ou 1,
- 3°) Quando escrevemos $\mathbf{n} \in \mathbf{IN}$ e 2 < \mathbf{n} < 6, queremos dizer que \mathbf{n} representa um número natural que está compreendido entre 2 e 6, ou seja, \mathbf{n} pode ser 3, 4 ou 5. Sejam, então, os seguintes conjuntos (que são subconjuntos de \mathbf{lN}):

 $A = \{ n \in IN / n < 5 \}$ (Lê-se: n pertence a IN tal que n é menor que 5)

Escrevendo os elementos desse conjunto, um a um, temos:

$$A = \{ 0, 1, 2, 3, 4 \}$$

B = { $\mathbf{n} \in \mathbf{IN} / 2 < \mathbf{n} < 6$ } (Lê-se: \mathbf{n} pertence a \mathbf{IN} tal que \mathbf{n} está contido entre dois e seis)

Escrevendo, um a um, os elementos desse conjunto, temos:

$$B = \{3, 4, 5\}$$

DA RETA NUMÉRICA NATURAL

Consideremos o conjunto dos números naturais $IN = \{0, 1, 2, 3, 4, 5,\}$ e façamos corresponder ao número $\mathbf{0}$ (zero) o ponto origem (O), ao número 1 o ponto A, ao número 2 o ponto B, e assim sucessivamente:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Assim, estabelecemos uma correspondência biunívoca entre o conjunto dos números naturais $IN = \{0, 1, 2, 3, 4,\}$ e o conjunto $P = \{O, A, B, C,\}$ dos pontos assinalados na reta \mathbf{r} .

Dizemos que: O conjunto P dos pontos assinalados sobre a reta **r** constitui uma representação geométrica do conjunto **IN** e cada ponto assinalado sobre a reta é denominado imagem geométrica do número correspondente.

Desta forma: o ponto O é a imagem geométrica do número 0

o ponto A é a imagem geométrica do número 1

o ponto B é a imagem geométrica do número 2

o ponto C é a $\operatorname{\underline{imagem geom\'etrica}}$ do número 3

o ponto D é a imagem geométrica do número 4

o ponto E é a imagem geométrica do número 5

Obs: O conjunto P é denominado <u>reta numérica natural.</u>

<u>OPERAÇÕES COM NÚMEROS NATURAIS</u>

O objetivo desta unidade é rever e aprofundar o estudo das operações <u>fundamentais com</u> <u>números naturais</u>, já que adicionar, subtrair, multiplicar e dividir são fatos constantes em nossos afazeres diários.

DA ADIÇÃO DE NÚMEROS NATURAIS

Adição consiste na operação que faz corresponder a um par ordenado de números dados um único número, que é a soma do primeiro com o segundo. Sendo assim, atente-se para as seguintes propriedades:

Propriedade do Fechamento:

Observe: 8 + 6 = 14 Então $8 \in IN$, $6 \in IN$, $(8 + 6) \in IN$

Logo: a soma de dois números naturais é sempre um número natural.

Propriedade Comutativa:

Observe: a soma dos números 7 e 5, nessa ordem, é 12, ou seja, 7 + 5 = 12. Trocando a ordem dos números, obtemos o mesmo resultado: 5 + 7 = 12.

$$\begin{array}{c}
 7 + 5 = 12 \\
 5 + 7 = 12
 \end{array}$$
Então: $7 + 5 = 5 + 7$

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Daí:

Logo: <u>a ordem das parcelas não altera a soma.</u>

Propriedade do Elemento Neutro:

Observe as adições:

$$\left. \begin{array}{l}
 0 + 2 = 2 \\
 2 + 0 = 2
 \end{array} \right\}$$
 Então: $0 + 2 = 2 + 0$

Verifica-se que, adicionando o número 0 (zero) a um número natural, o resultado é sempre o próprio número natural, ou seja, o 0 (zero) não influi ao resultado da adição. Então: o número zero é chamado de <u>elemento neutro</u> da adição.

Propriedade Associativa:

Observe:
$$(6+4)+8=10+8=18$$

 $6+(4+8)=6+12=18$

Então:
$$(6+4)+8=6+4+8$$

Logo: a adição de três parcelas pode ser feita, associando-se as duas primeiras ou as duas últimas parcelas, indiferentemente.

Propriedade do Cancelamento:

Exemplos: Se
$$a + 10 = b + 10$$
, então $a = b$
Se $x + 4 = 5 + 4$, então $x = 5$

Propriedade Aditiva:

Exemplos: Se
$$a = b$$
, então: $a + 10 = b + 10$
Se $a = 10$ e $b = 5$, então: $a + b = 10 + 5$

Soma de Três ou Mais Números:

A soma de três ou mais números naturais é o número que se obtém, adicionando-se o terceiro à soma do primeiro com o segundo; e assim por diante.

Exemplo:
$$36 + 12 + 54 = 48 + 54 = 102$$

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

DA SUBTRAÇÃO DE NÚMEROS NATURAIS

Observe a seguintes operação:

$$171.000 - 57.000 = 114.000$$
 ou $171.000 - 57.000$

$$- 114.000$$

$$- 114.000$$

- ❖ A operação que realizamos denomina-se <u>subtração</u>.
- O número 171.000 denomina-se minuendo.
- O número 57.000 denomina-se <u>subtraendo</u>.
- ❖ O número 114.000 denomina-se diferença.

Relação Fundamental da Subtração:

Observe:

7 - 4 = 3 pois 4 + 3 = 7; logo: 3 é a diferença entre 7 e 4.

32 - 20 = 12 pois 20 + 12 = 32; logo: 12 é a diferença entre 32 e 20.

15 - 15 = 0 pois 15 + 0 = 15; logo: zero é a diferença entre 15 e 15.

6-9=? neste caso, a diferença entre 6 e 9 é impossível de calcular, pois não há número natural que adicionado a 9 dê 6.

Logo: a diferença entre dois números naturais só existe quando o primeiro é maior ou igual ao segundo.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

EXPRESSÕES NUMÉRICAS SIMPLES

1º exemplo: Calcular o valor da expressão numérica: 10 - 6 + 4 - 7

$$\frac{10-6+4-7=4+4-7=8-7=1}{4}$$

Observe: neste caso, por convenção, realizamos as operações obedecendo à ordem em que elas aparecem na expressão.

2° exemplo: Calcular o valor da expressão numérica 20 - (15 - 10 + 6)

$$20 - (15 - 10 + 6) = 20 - (5 + 6) = 20 - 11 = 9$$

DA MULTIPLICAÇÃO DE NÚMEROS NATURAIS

Quanto à multiplicação podemos afirmar que:

- Produto é uma soma de parcelas iguais.
- Multiplicar é adicionar parcelas iguais.

Na multiplicação, devemos observar que:

❖ Multiplicando qualquer número por 1 dá o próprio número.
 Exemplo: 1 x 6 = 6

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

❖ Multiplicando qualquer número por 0 (zero) dá zero.

Exemplo: $0 \times 6 = 0$

Propriedade de Fechamento:

Observe: $5 \times 2 = 10$ Se $5 \in IN$ e $2 \in IN$, então $(5 \times 2) \in IN$.

Logo: o produto de dois números naturais é sempre um número natural.

Propriedade Comutativa:

Observe:
$$5 \times 2 = 10$$

 $2 \times 5 = 10$

Então: $5 \times 2 = 2 \times 5$

Logo: a ordem dos fatores não altera o produto.

Propriedade do Elemento Neutro:

Observe: $8 \times 1 = 1 \times 8$

Logo: multiplicando-se o número 1 por um número natural, em qualquer ordem, o resultado é sempre o próprio número natural. O número 1 é chamado elemento neutro de multiplicação.

Propriedade Associativa:

Observe os seguintes cálculos:

$$(5 \times 2) \times 3 = 10 \times 3 = 30$$

$$5 \times (2 \times 3) = 5 \times 6 = 30$$

Então: $(5 \times 2) \times 3 = 5 \times (2 \times 3)$

Logo: numa multiplicação de três fatores, podem-se associar os dois primeiros ou os dois últimos, indiferentemente.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Propriedade Distributiva Em Relação Á Adição ou À Subtração:

Observe os seguintes cálculos:

$$5 \quad x (6 + 2) = (5 \times 6) + (5 \times 2)$$

$$4 \quad x (7-3) = (4 \times 7) - (4 \times 3)$$

Logo: o produto de um número por uma soma (ou diferença) pode ser obtido multiplicando-se o número por cada um dos termos da soma (ou diferença) e adicionando-se (ou subtraindo os produtos parciais).

DA DIVISÃO DE NÚMEROS NATURAIS

Observe abaixo, o cálculo a seguir:

Então, temos:

- o primeiro número dado (23) denomina-se dividendo.
- o segundo número dado (5) denomina-se divisor.
- O resultado da divisão (4) denomina-se quociente.
- o que sobra (3) denomina-se resto.

Observações:

O dividendo = divisor x quociente + resto

0 não existe.

5:0 não existe.

8 : 3 não pertence ao conjunto dos números naturais.

EXPRESSÕES NUMÉRICAS

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Observe os exemplos:

1°) Calcular o valor da expressão: 20 + 6 : 2

$$\frac{20+6:2=20+3=23}{4}$$

2°) Calcular o valor da expressão: 40 : 10 x 5

$$\frac{40:10 \times 5 = 4 \times 5 = 20}{4}$$

3°) Calcular o valor da expressão: 12 : 6 + 3 x 8

$$12: 6 + 3 \times 8 = 2 + 24 = 26$$

Regras: devemos efetuar, em primeiro lugar, as divisões ou as multiplicações, obedecendo à ordem em que aparecem, em seguida, as adições ou as subtrações, obedecendo também à ordem em que aparecem. Caso haja parênteses, calcular, inicialmente, o valor da expressão situada no interior dos parênteses.

Exemplo:
$$40 : (16 - 3 \times 4) = 40 : (16 - 12) = 40 : 4 = 10$$

Note: em se tratando de parênteses, primeiro efetuamos as divisões e as multiplicações, para depois efetuarmos as subtrações e as adições.

POTENCIAÇÃO COM NÚMEROS NATURAIS

Já dissemos anteriormente que multiplicar é somar parcelas iguais. Veja:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Agora, você deverá considerar o seguinte produto de fatores iguais:

$$3 \quad x \quad 3 \quad x \quad 3 \quad x \quad 3 \quad x \quad 3 = 243$$

Cinco fatores

Observe que: a operação realizada denomina-se "potenciação", sendo que o produto: 3 x 3 x 3 x 3 x 3 pode ser indicado por 3⁵ e o seu resultado: 243 chama-se "quinta potência de três". Dessa forma, temos: $3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$.

O fator que se repete denomina-se "base" da potência (no caso, o número 3). O número que indica quantas vezes o fator se repete denomina-se "expoente" (no caso, o número 5).

Então: $3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243$ potência Observação: A expressão 3^5 lê-se : três elevado à quinta potência.

Logo: dados dois números naturais, a e n (com n > 1), a expressão a^n é igual ao produto de **n** fatores iguais ao número a. Quando o expoente é 2, lê-se quadrado.

Exemplo: 6^2 lê-se: seis elevado ao quadrado ou quadrado de seis. Quando o expoente é 3, lê-se : "cubo". Exemplo: 2³ lê-se: dois elevado ao cubo ou cubo de dois.

Observações importantes:

- ❖ Toda potência de expoente 1 é igual à base: $5^1 = 5$.
- Toda potência de expoente $\mathbf{0}$ é igual a $\mathbf{1}$: $\mathbf{5}^0 = 1$.
- ❖ Toda potência de base **0** é igual a **0** : $0^4 = 0 \times 0 \times 0 \times 0 = 0$.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- ❖ Toda potência de base 1 é igual a 1 : 1^4 = 1 x 1 x 1 x 1 = 1.
- ❖ Toda potência de 10 é igual ao algarismo 1 seguido de tantos zeros quantos forem as unidades do expoente: $10^4 = 10 \times 10 \times 10 \times 10 = 10.000$.

EXPRESSÕES NUMÉRICAS

- 1^a) Calcular o valor da expressão : $3^3 + 1 = 27 + 1 = 28$
- 2^a) Calcular o valor da expressão numérica: $20 4^2$: 2 = 20 16: 2 = 20 8 = 12.
- 3^{a}) Calcular o valor da expressão numérica: 3^{4} : $9 \times 2^{3} = 81$: $9 \times 8 = 9 \times 8 = 72$.

Não esqueça: efetuamos, em 1º lugar, as potenciações, em 2º lugar, as divisões ou multiplicações, na ordem em que aparecem, em 3º lugar as adições ou subtrações, na ordem em que aparecem.

Caso, haja parênteses, calculamos inicialmente o valor da expressão situada no seu

interior:
$$2^5 + (4^2 + 2^3 \times 3) =$$

 $2^5 + (16 + 8 \times 3) =$
 $2^5 + (16 + 24) =$
 $32 + 40 = 72$.

NÚMEROS INTEIROS

O conjunto dos números inteiros nada mais é do que uma ampliação do conjunto dos números naturais. Sendo assim, atente-se para as seguintes subtrações:

5 - 8

12 - 20

0 - 3

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Você observou que não pôde efetuar as subtrações, porque nelas, o minuendo é menor que o subtraendo. Então a operação $\mathbf{a} - \mathbf{b}$, quando $\mathbf{a} < \mathbf{b}$, é impossível de ser efetuada no conjunto dos números naturais **IN**. Para que esse tipo de operação seja sempre possível, foi necessária a ampliação do conjunto **IN**, com a criação de uma nova categoria de números denominada de "números inteiros positivos e negativos".

NÚMEROS INTEIROS POSITIVOS E NEGATIVOS

A fim de se obter um conjunto em que a operação subtração entre seus elementos seja sempre possível, foi necessário ampliar o conceito de número. Com esse objetivo criou-se para cada número natural $\bf n$ (com $\bf n$ diferente de zero) um número + $\bf n$ (lê-se mais $\bf n$) e um número - $\bf n$ (lê-se: menos $\bf n$). Veja:

Exemplos:

- ❖ Para o número 1 criou-se: (+ 1) e (− 1)
- Arr Para o número 2 criou-se: (+2) e (-2)
- Para o número 3 criou-se: (+3) e (-3)
- \bullet Para o número 9 criou-se: (+9) e (-9)

Os números +1, +2, +3 e +9 são denominados "números inteiros positivos" e os números -1, -2, -3 e -9 são denominados "números inteiros negativos".

Então, podemos afirmar: o conjunto constituído pelos números inteiros positivos, pelo número zero e pelos números inteiros negativos e denominado "conjunto dos números inteiros", que é representado pela letra **Z**, e escrito:

$$Z = \{ \dots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \dots \}$$

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Observando o diagrama acima, podemos afirmar que:

IN ⊂ Z, então: IN é subconjunto de Z.

Além do conjunto **IN**, podemos identificar outros subconjuntos de **Z**:

- Conjunto dos números inteiros diferentes de zero : Z*
- ***** $\mathbf{Z}^* = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$
- Conjunto dos números inteiros não negativos = Z +
- **\star Z**₊ = { 0, 1, 2, 3, 4,}
- Conjunto dos números inteiros não positivos = \mathbf{Z} _
- *** Z**₋ { 0, -1, -2, -3, -4, ...}
- Conjunto dos números inteiros positivos = \mathbf{Z}_{+}^{*}
- **\star** \mathbf{Z}^* + = { 1, 2, 3, 4, 5, ...}

REPRESENTAÇÃO GEOMÉTRICA DOS NÚMEROS INTEIROS

Tomamos uma reta \mathbf{r} e sobre ela, tomamos um ponto \mathbf{O} que vai dividi-la em duas semi-retas. A seguir, procedemos da seguinte forma:

- à direita do ponto **O**, com certa unidade de medida assinalamos pontos consecutivos e, para cada ponto, fazemos corresponder um número inteiro positivo.
- À esquerda do ponto **O**, com a mesma unidade, assinalamos pontos consecutivos e, para cada ponto, fazemos corresponder um número inteiro negativo.
- Ao ponto **O**, denominado "**origem**", fazemos corresponder o número "zero". Veja:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Assim, estabelecemos uma correspondência biunívoca, isto é, a cada número positivo corresponde um número negativo, entre um subconjunto de pontos da reta **r** e o conjunto **Z**. O conjunto dos pontos assinalados sobre a reta **r** constitui a representação geométrica do conjunto **Z**. O conjunto dos pontos assinalados sobre a reta **r** constitui a representação geométrica do conjunto **Z**, e cada um dos pontos da reta é a "imagem" de um número inteiro.

Assim: o ponto **A** é a imagem geométrica do número +1. o ponto **E**' é a imagem geométrica do número -5.

O número inteiro é denominado "abscissa" do ponto correspondente.

Assim: o número + 2 é a abscissa do ponto B'. o número - 3 é a abscissa do ponto C'.

MÓDULO OU VALOR ABSOLUTO DE UM NÚMERO INTEIRO

Como já vimos, para cada número natural (\mathbf{n} diferente de zero) foi criado um número + \mathbf{n} e um número - \mathbf{n} .

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

O número natural denomina-se módulo ou valor absoluto do número inteiro:

- O módulo do número + 5 é 5. Indica-se : /+5/=5
- O módulo do número -5 é 5. Indica-se: /-5 /=5
- O módulo de zero é zero mesmo. Indica-se: $\frac{1}{0} = 0$
- O módulo do número + 10 é 10. Indica-se : / + 10 / = 10
- O módulo do número -10 é 10. Indica-se: /-10 /=10

NÚMEROS INTEIROS OPOSTOS OU SIMÉTRICOS

Observe novamente a reta numérica:

- ❖ A distância do ponto A ao ponto S é igual à distância do ponto B ao ponto S.
- ❖ Os números que expressam as posições dos pontos **A** e **B** têm módulos iguais, isto é, /+5/=/-5 / = 5.
- ❖ Os números que expressam as posições dos pontos A e B têm sinais diferentes.
- ❖ Os pontos A e B são simétricos em relação ao ponto S.
- ❖ Dois números opostos têm sinais diferentes e o mesmo módulo.
- O oposto de zero é zero.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Daí: dois números inteiros são <u>opostos</u> ou <u>simétricos</u> quando têm módulos iguais e sinais diferentes.

COMPARAÇÃO DE NÚMEROS INTEIROS

Para tanto, vamos considerar também a reta numérica:

- * Assim, podemos concluir que:
- ❖ 5 > 1, pois 5 está a direita de + 1 na reta numérica.
- 2 > 3, pois 2 está a direita de -3 na reta numérica.
- -1 > -4, pois -1 está a direita de -4 na reta numérica.

Assim: dados dois números inteiros, o maior é aquele que estiver mais à direita na reta numérica.

DETERMINAÇÃO DE UM SUBCONJUNTO DE Z

Vamos escrever o conjunto do números inteiros maiores que – 3:

- \bullet Pela nomeação dos elementos: $\{-2, -1, 0, 1, 2, 3, ...\}$
- \clubsuit Simbolicamente: $\{ x \in \mathbb{Z} / x > -3 \}$
- ❖ Então: $\{x \in \mathbb{Z} / x > -3\} = \{-2, -1, 0, 1, 2, 3, ...\}$

Vamos escrever o conjunto do números inteiros menores ou iguais a -5:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- Pela nomeação dos elementos: $\{-5, -6, -7, -8, -9, ...\}$
- \clubsuit Simbolicamente : $\{ x \in \mathbb{Z} / x \le -5 \}$
- ❖ Então: $\{x \in \mathbb{Z} / x \le -5\} = \{-5, -6, -7, -8, -9, ...\}$

Vamos escrever o conjunto dos números inteiros maiores ou iguais a-4 e menores que +2:

- Pela nomeação dos elementos : $\{-4, -3, -2, -1, 0, 1\}$
- \clubsuit Simbolicamente : $\{x \in \mathbb{Z}/-4 \le x < 2\}$
- **Então:** $\{ x \in \mathbb{Z}/-4 \le x < 2 \} = \{-4, -3, -2, -1, 0, 1 \}$

SOMA DE DOIS NÚMEROS INTEIROS DE MESMO SINAL

Para somar dois números inteiros de mesmo sinal, é importante ter conhecimento das seguintes recomendações:

- Quando ambos os números são positivos, a soma é um número positivo.
- Quando ambos os números são negativos, a soma é um número negativo.
- ❖ O módulo do resultado é sempre igual à soma dos módulos das parcelas.

Exemplos:
$$(+6) + (+8) = +14$$

 $(+3) + (+7) = +10$
 $(-2) + (-4) = -6$
 $(-5) + (-3) = -8$
 $(+2) + (+3) = +5$
 $(-4) + (-2) = -8$

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Regra: a soma de dois números inteiros (diferentes de zero) de mesmo sinal é obtida conservando-se o sinal comum às parcelas e adicionando-se os módulos.

SOMA DE DOIS NÚMEROS INTEIROS DE SINAIS DIFERENTES

Observe que, quando um número é positivo e o outro negativo, o número mais distante da origem é que determina se a soma é um número positivo ou um número negativo, e que o módulo do resultado é sempre igual à diferença entre os módulos da parcelas. Atente-se para as operações seguintes:

$$(+18) + (-8) = +10$$

 $(+15) + (-10) = +5$
 $(+11) + (-14) = -3$
 $(+9) + (-19) = -10$
 $(-6) + (+4) = -2$
 $(+7) + (-3) = +4$

Regra: a soma de dois números inteiros (diferentes de zero) de sinais diferentes é obtida dandose o sinal da parcela que tem maior módulo e calculando-se a diferença entre os módulos.

SOMA DE DOIS NÚMEROS INTEIROS ONDE UM DELES É ZERO

Atente-se para as seguintes operações:

$$(+6) + 0 = +6$$
 $(-5) + 0 = -5$ $0 + (+3) = +3$ $0 + (-2) = -2$

Regra: a soma de dois números inteiros, um dos quais é zero, é igual ao outro número.

SOMA DE DOIS NÚMEROS OPOSTOS OU SIMÉTRICOS

Atente-se para as seguintes operações:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

$$(+5) + (-5) = 0$$

 $(+9) + (-9) = 0$

Pelo que se observa, nos cálculos acima, números opostos ou simétricos são números inteiros que têm o mesmo módulo e sinais diferentes.

Regra: a soma de dois números inteiros opostos ou simétricos é igual a zero.

SOMA DE TRÊS OU MAIS NÚMEROS INTEIROS

Atente-se para os seguintes cálculos:

$$(+9)+(-7)+(+5)+(-10)=$$

 $(+14)+(-17)=-3$

Pelo que se observa, a soma de três ou mais números inteiros resume-se na soma de dois números inteiros (diferentes de zero), onde o resultado é obtido somando-se o total das parcerias positivas com o total das parcelas negativas.

Regra: obtemos a soma calculando:

- A soma de todas as parcelas positivas;
- A soma de todas as parcelas negativas;
- A soma dos resultados obtidos.

SUBTRAÇÃO DE NÚMEROS INTEIROS

Subtrair dois números inteiros é o mesmo que adicionar o minuendo ao oposto do subtraendo, isto é, obtemos o mesmo resultado. Sendo assim, observe os seguintes cálculos:

$$(+7)-(+5)=(+7)+(-5)=+2$$

 $(+3)-(-2)=(+3)+(+2)=+5$

Regra: Para se determinar a diferença entre dois números inteiros, basta calcular a soma do minuendo com o oposto do subtraendo.

<u>ADIÇÃO ALGÉBRICA</u>

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

A <u>adição</u> e a <u>subtração</u> no conjunto **Z** podem ser considerados como uma única operação denominada <u>adição algébrica</u>, cujo resultado chama-se **"soma algébrica"**. Observe os seguintes cálculos:

a)
$$(+7)+(-5)=+7-5=+2$$

b)
$$(-2)-(+3)=(-2)+(-3)=2-3=-5$$

c)
$$(+3)+(10)-(+8)=(+3)+(+10)+(-8)=+3+10-8=+5$$

ELIMINAÇÃO DE PARÊNTESES

Atente-se para os cálculos da seguinte soma algébrica:

$$-5 + (2 - 8 + 6) = -5 + 2 - 8 + 6 = -13 + 8 = -5$$

Regra: numa soma algébrica, os parênteses, que contém uma soma de números inteiros e que são precedidos pelo sinal (+), podem ser eliminados juntamente com o sinal (+) que os precede, escrevendo-se os números contidos no seu interior, cada qual com o próprio sinal.

Seja a soma algébrica:
$$3 - (-2 + 10 - 7) =$$

 $3 + 2 - 10 + 7 =$
 $+ 12 - 10 = + 2$

Regra: numa soma algébrica, os parênteses que contém uma soma de números inteiros e que são precedidos pelo sinal (–) , podem ser eliminados juntamente com o sinal (–) que os precede, escrevendo-se os números contidos no seu interior, com sinais trocados.

Observação: Quando existem <u>colchetes</u> e <u>chaves</u>, valem as mesmas regras práticas de eliminação. Note que, quando um desses sinais de associação contém outro, a eliminação se faz a partir do mais interno.

MULTIPLICAÇÃO DE NÚMEROS INTEIROS

Na multiplicação de dois números inteiros, devemos ficar atentos para os seguintes casos:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM OUANDO OS DOIS FATORES TÊM SINAIS IGUAIS :

1° Exemplo:
$$(+5).(+3) =$$

$$5 \times 3 = 15 \text{ ou} + 15$$

$$2^{\circ}$$
 Exemplo: $(-5).(-3) =$

Calcula-se o produto dos módulos dos fatores.

Logo:
$$(+5) \cdot (+3) = +15$$

 $(-5) \cdot (-3) = +15$

Regra: para determinar o produto de dois números inteiros (diferentes de zero), com fatores de sinais iguais, calcula-se o produto dos módulos dos fatores, dando-lhe sinal positivo.

QUANDO OS FATORES TÊM SINAIS DIFERENTES

1° Exemplo:
$$(+5) \cdot (-3) = 5 \cdot (-3) = (-3) + (-3) + (-3) + (-3) + (-3) = -15$$

o módulo de $+5 = 5$

produto é uma soma de parcelas iguais

2° Exemplo:
$$(-5) \cdot (+3) = (-5) \cdot 3 = (-5) + (-5) + (-5) = -15$$

Logo: $(+5) \cdot (-3) = -15$
 $(-5) \cdot (+3) = -15$

Regra: para determinar o produto de dois números inteiros (diferentes de zero), com fatores de sinais diferentes, calcula-se o produto dos módulos dos fatores, dando-lhe sinal negativo.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

PRODUTO DE TRÊS OU MAIS NÚMEROS INTEIROS

Regra: para se obter o produto de três ou mais fatores, multiplica-se o primeiro pelo segundo, o resultado obtido, pelo terceiro, e assim por diante.

DIVISÃO DE NÚMEROS INTEIROS

Quanto à divisão de números inteiros, convocamos a atenção do estudante para os seguintes casos:

QUANDO O DIVIDENDO E O DIVISOR TÊM O MESMO SINAL

1° Exemplo: (+18): (+6) = +3 2° Exemplo: (-18): (-6) = +3

Regra: o quociente de dois números inteiros de sinais iguais, com o segundo diferente de zero, é obtido dividindo-se o módulo do dividendo pelo módulo do divisor e dando ao quociente o sinal positivo.

QUANDO O DIVIDENDO E O DIVISOR TÊM SINAIS DIFERENTES

1° Exemplo: (+18): (-6) = -32° Exemplo: (-18): (+6) = -3

Regra: o quociente de dois números inteiros de sinais diferentes, com o segundo diferente de zero, é obtido dividindo-se o módulo do dividendo pelo módulo do divisor e dando ao quociente o sinal negativo.

POTENCIAÇÃO DE NÚMEROS INTEIROS

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Vamos estudar as regras para as potências de números inteiros com base diferente de zero. Atente-se para os seguintes casos:

QUANDO O EXPOENTE É UM NÚMERO PAR

$$(+2)^2 = (+2) \times (+2) = +4$$
 a potência é um número positivo.

$$(-2)^2 = (-2) \times (-2) = +4$$
 a potência é um número positivo.

$$(+2)^4 = +16$$
 \longrightarrow a potência é um número positivo.

$$(-2)^4 = +16$$
 a potência é um número positivo.

Regra: quando o expoente é par, a potência é sempre um número positivo.

QUANDO O EXPOENTE É UM NÚMERO ÍMPAR

$$(+2)^3 = (+2) \times (+2) \times (+2) = +8$$
 leva o mesmo sinal da base.

$$(-2)^3 = (-2) \times (-2) \times (-2) = -8$$
 leva o mesmo sinal da base.

$$(+2)^5 = +32$$
 leva o mesmo sinal da base.

$$(-2)^5 = -32$$
 leva o mesmo sinal da base.

Regra: quando o expoente é ímpar, a potência tem sempre o mesmo sinal da base.

POTÊNCIA DE EXPOENTE 1 (UM)

$$(+3)^1 = +3$$

 $(-3)^1 = -3$

Regra: a potência com expoente 1 (um) é igual ao próprio número da base.

POTÊNCIA DE EXPOENTE 0 (ZERO)

$$(+2)^0 = +1$$

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

$$(-2)^0 = + 1$$

Regra: toda potência com expoente zero é igual a + 1

Observações:

$$(-2)^2$$
 é diferente de -2^2 , pois $(-2)^2 = +4$ e $-2^2 = -4$.

 $(-2)^2$ representa o quadrado do número -2.

 -2^2 representa menos o quadrado do número 2.

PRODUTO DE POTÊNCIA DE MESMA BASE

1° Exemplo:
$$(+5)^3$$
 x $(+5)^6 = (+5)^{3+6} = (+5)^9$

2° Exemplo:
$$(-2)^4 \times (-2) \times (-2)^5 = (-2)^{4+1+5} = (-2)^{10}$$

Regra: num produto de potências de mesma base, somam-se os expoentes e conserva-se a base.

QUOCIENTE DE POTÊNCIA DE MESMA BASE

1° Exemplo:
$$(-6)^5$$
: $(+6)^2 = (+6)^{5-2} = (+6)^3$

2° Exemplo:
$$(-10)^8$$
: $(-10)^3 = (-10)^{8-3} = (-10)^5$

Regra: num quociente de potências de mesma base, conserva-se a base e subtrai-se os expoentes.

POTÊNCIA DE POTÊNCIA

1° Exemplo:
$$[(+10)^2]^5 = (+10)^2 x^5 = (+10)^{10}$$

2 ° Exemplo:
$$[(-8)^3]^2 = (-8)^{3x^2} = (-8)^6$$

Regra: num produto de potência de potência de mesma base, conserva-se a base e multiplica-se os expoentes.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM POTÊNCIA DE UM PRODUTO OU DE UM QUOCIENTE

$$[(+6) x (-5)]^{2} = (+6)^{2} x (-5)^{2}$$
$$[(-10) : (+2)]^{3} = (-10)^{3} : (+2)^{3}$$

Regra: para se obter a potência de um produto ou de um quociente, eleva-se cada termo do produto ou do quociente a este expoente.

2. NÚMEROS PRIMOS

NÚMEROS PRIMOS

Os números que admitem apenas dois divisores (ele próprio e 1) são chamados **números primos**.

Exemplos:

- a) 2 'e um número primo, pois $D_2 = \{1, 2\}$
- b) 3 'e um número primo, pois $D_3 = \{1, 3\}$
- c) 5 é um número primo, pois $D_5 = \{1, 5\}$
- d) 7 'e um número primo, pois $D_7 = \{1, 7\}$
- e) 11 é um número primo, pois $D_{11} = \{1, 11\}$

O conjunto dos números primos é infinito.

$$P = \{ 2, 3, 5, 7, 11, 13, 17, 19, ... \}$$

NÚMEROS COMPOSTOS

Os números que têm mais de dois divisores são chamados <u>números compostos</u>.

Exemplos:

- a) 4 é um número composto, pois $D_4 = \{1, 2, 4\}$
- b) 6 é um número composto, pois $D_6 = \{ 1, 2, 3, 6 \}$
- c) 8 é um número composto, pois $D_8 = \{1, 2, 4, 8\}$
- d) 9 é um número composto, pois $D_9 = \{1, 3, 9\}$

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

CONCLUSÕES

- O número 2 é o único número par que é primo.
- O número 1 não é primo nem composto (tem apenas 1 divisor)

RECONHECIMENTO DE UM NÚMERO PRIMO

Para reconhecer se um número é primo, dividimos o número dado, sucessivamente, pelos números primos 2, 3, 5, 7, 11, 13,.. até que o quociente seja menor ou igual ao divisor. Se isso acontecer e a divisão não for exata, dizemos que o número é primo.

DECOMPOSIÇÃO DE UM NÚMERO EM FATORES PRIMOS (FATORAÇÃO)

Um número composto pode ser indicado como um produto de fatores primos. Ou melhor, um número pode ser **fatorado**.

Exemplo:

Vamos decompor o número 140 em fatores primos.

Na prática você fará assim:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

PROCEDIMENTOS

- Escrevemos o número dado à esquerda de uma barra vertical.
- Dividimos o número (140) pelo menor número primo possível. Neste caso, é o 2.
- Voltamos a dividir o quociente, que é 70, pelo número primo possível. Aqui novamente é o 2.
- O processo é repetido, até que o quociente seja 1.

TESTES

- 1) Dadas as afirmações:
- O número 1 é primo.
- O número 0 é primo.
- O número 1 é composto.

Temos:

- a) só uma verdadeira.
- b) só duas verdadeiras.
- c) todas verdadeiras.
- d) todas falsas.
- 2) Um número primo tem:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

b) c)	só dois divisores. nenhum divisor. apenas um divisor. mais do que dois divisores.						
3)	Dos conjuntos ab	aixo, o único que poss	ui como elementos so	mente números primos é:			
a)	{ 13, 17, 27 }	b) { 13, 17, 19 }	c){ 19, 21, 23 }	d) { 21, 23, 29 }			
4)	O conjunto dos di	ivisores de 30 que são	primos é:				
a)	{ 1, 2, 3 }	b) { 1, 2, 5 }	c) { 2, 3, 5 }	d) { 1, 3, 5 }			
5)	5) Se A é o conjunto dos divisores de 15 e se B é o conjunto dos números primos menores do que 15, então A ∩ B é o conjunto:						
a)	{ 3, 5 }	b) { 2, 5 }	c) { 3, 5, 15 }	d) { 2, 3, 5, 15 }			
6)	6) Qual o número representado como um produto de fatores primos ?						
a) 2	2 x 5 x 10	b) 2 x 3 x 7	c) $2 \times 5^2 \times 7^2$	d) $2^2 \times 5^2 \times 7^2$			
7)	7) A Fatoração completa de 4. 900 é:						
a) 2	$2^2 \times 5^2 \times 7$	b) $2^2 \times 5 \times 7^2$	c) $2 \times 5^2 \times 7^2$	d) $2^2 \times 5^2 \times 7^2$			
8)	8) O produto de 2 x 3 x 7^2 é a fatoração completa de:						
a) 8	84	b) 184	c) 194	d) 294			
9)	O algarismo que o	deve ser colocado à di	reita de 12 para se obto	er um número primo é:			
a) !	1	b) 3	c) 5	d) 7			

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

10) Qual dos numeros abaixo e primo ?							
a) 123	b) 143	c) 153	d) 163				
11) Qual dos números abaixo é primo ?							
a) 121	b) 401	c) 362	d) 201				
12) Das sequências a seguir, aquela que não contém números primos é:							
a) 13, 427, 1029	b) 189, 300, 529	c) 2, 111, 169	d) 11, 429, 729				

GABARITO

- 1) D
- 2) A
- 3) B
- 4) C
- 5) A
- 6) B
- 7) D
- 8) D
- 9) D 10) D
- 11)B
- 11) B
- 3. MÁXIMO DIVISOR COMUM (M.D.C.) E MÍNIMO MÚLTIPLO COMUM (M.M.C.)

3.1. MÁXIMO DIVISOR COMUM (M.D.C.)

Consideremos os conjuntos dos divisores dos números 20 e 30.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

$$D(20) = \{1, 2, 4, 5, 10, 20\}$$

$$D(30) = \{1, 2, 3, 5, 6, 10, 15, 30\}$$

Observe:

- a) $D(20) \cap D(30) = \{1, 2, 5, 10\}$
- b) Os divisores comuns de 20 e 30 são: 1, 2, 5, 10.
- c) O maior divisor comum de 20 e 30 é 10.

Então, o número 10 é denominado máximo divisor comum de 20 e 30, o qual representamos por:

$$M.D.C.(20, 30) = 10$$

Daí podemos dizer : dados dois ou mais números, não simultaneamente nulos, denomina-se *máximo divisor comum* (m.d.c.) desses números o maior dos seus divisores comuns.

TÉCNICAS PARA O CÁLCULO DO M.D.C.

Vamos determinar o m.d.c. dos números 24 e 60.

Pela teoria dos conjuntos, já sabemos que:

$$D(24) = \{1, 2, 3, 4, 6, 8, 12, 24\}$$

$$D(60) = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$$

 $D(60) \cap D(24) = \{1, 2, 3, 4, 6, 12\} = \text{divisores comuns de } 24 \text{ e } 60 \iff \text{m.d.c. } (24, 60) = 12$

TÉCNICA DE DECOMPOSIÇÃO EM FATORES PRIMOS

- 1°) Decompõe-se cada número em seus fatores primos.
- 2°) Calcula-se o produto dos fatores comuns, cada um deles com o menor expoente. O produto assim obtido será o m.d.c. procurado.

EXEMPLO:

60	2	24	2	$60 = 2^2 \times 3 \times 5$
30	2	12	2	$24 = 2^3 \times 3$
15	3	6	2	Então, o M.D.C. de $(60 \text{ e } 24) = 2^2 \text{ x } 3 = 4 \text{ x } 3 = 12.$
5	5	3	3	Regra: O M.D.C. de dois ou mais números é igual ao resultado
1		1		do produto dos fatores comuns de menor expoente.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM <u>TESTES</u>

Aplicando a decomposição em fatores primos, determine:

- a) o m.d.c. de (24 e 30)
- b) o m.d.c. de (24 e 40)
- c) o m.d.c de (60 e 100)
- d) o m.d.c. de (48 e 80)
- e) o m.d.c de (72, 63 e 54).

Respostas: a = 6, b = 8, c = 20, d = 16, e = 9

3.2. MÍNIMO MÚLTIPLO COMUM (M.M.C.)

Vamos considerar os conjuntos múltiplos de 4 e 6 :

$$M(4) = \{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, \dots\}$$

$$M(6) = \{0, 6, 12, 18, 24, 30, 36, 42,\}$$

Agora, observe:

- a) $M(4) \cap M(6) = \{0, 12, 24, 36,...\}$
- b) Os múltiplos comuns de 4 e 6 são : 0, 12, 24, 36,.....
- c) O menor múltiplo comum de 4 e 6, diferente de zero é 12.

Sendo assim, o número 12 é denominado mínimo múltiplo comum de 4 e 6, que representamos por: m.m.c. (4, 6) = 12.

Daí podemos dizer: dados dois ou mais números diferentes de zero, denomina-se mínimo múltiplo comum (m.m.c) desses números o menor de seus múltiplos comuns, diferente de zero.

TÉCNICAS PARA O CÁLCULO DO M.M.C.:

Vamos determinar o M.M.C de 60 e 24. Pela teoria dos conjuntos, já sabemos que:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

$$M(60) = \{ 0, 60, 120, 180, 240, 300, ... \}$$

$$M(24) = \{ 0, 24, 48, 72, 96, 120, 144, ... \}$$

$$M(60) \cap M(24) = \{ 0, 120, \dots \}$$

Então: M.M.C. de $\{60 \text{ e } 24\} = 120.$

Porém, podemos determinar o M.M.C de dois ou mais números diferentes de zero de uma maneira mais simples, por meio de decomposição em fatores primos.

Regra: decompõe-se cada número em seus fatores primos. Calcula-se o produto dos fatores comuns e não comuns, cada um deles elevado ao maior expoente. O produto assim obtido será o M.M.C. procurado.

Exemplo: Calcular o M.M.C de (60 e 24).

60	2	24	2
		12	2
30	2	6	2
15	3	3	3
5	5	1	
1			

Então: $60 = 2^2 \times 3 \times 5 = 24 = 2^3 \times 3$. Logo, o M.M.C de $(60 = 24) = 2^3 \times 3 \times 5 = 120$.

De maneira mais prática, as decomposições podem ser realizadas ao mesmo tempo, pois desta forma já se obtém os fatores comuns e os fatores não comuns com o maior expoente:

Vamos calcular o M.M.C. de (8 e 10).

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

8, 10

4, 5

2, 5

1, 5

Então: o M.M.C de (8 e 10) = 2^3 x 5 = 8 x 5 = 40

1, 1

PROPRIEDADES

1ª) Calculamos o M.M.C de (4, 6 e 12). Observa-se que 12 é múltiplo de

4,	ο,	12	4	2	
					Prop
2	2	6	,	1	zero,

oriedade: dados dois ou mais números diferentes de se um deles for múltiplo de todos os outros, então esse número será o M.M.C. dos números dados.

1, 1, 1

2ª) Calculamos o M.M.C de (4 e 9). Observa-se que 4 e 9 são números primos entre si.

O M.M.C. de
$$(4 e 9) = 2^2 \times 3^2 = 4 \times 9 = 36$$
.

www.escol

Propriedade: dados dois ou mais números que são primos entre si, o M.M.C. entre eles será o produto dos números dados.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

RELAÇÃO ENTRE O M.M.C E O M.D.C DOS MESMOS NÚMEROS

Vamos trabalhar com os números 60 e 24 dos quais já sabemos que:

- M.M.C. de (60 e 24) = 120 e
- M.M.C de (60 e 24) = 12

Então: a) o produto dos números dados : $60 \times 24 = 1.440$

b) M.D.C. de (60 e 24) x M.M.C. de (60 e 24) = 12 x 120 = 1.440

Propriedade: o produto de dois números, diferentes de zero, é igual ao produto do M.D.C. pelo M.M.C. dos mesmos números.

TESTES

- 1) Aplicando a decomposição em fatores primos, calcule:
- a) M.M.C. de (120 e 50)
- b) M.M.C. de (12 e 16)
- c) M.M.C. de (6 e 9)
- d) M.M.C. de (14 e 35)
- e) M.M.C. de (16 e 20)
- f) M.M.C. de (12, 20 e 24)
- g) M.M.C de (10, 20 e 40)
- h) M.M.C. de (21, 28 e 42)
- i) M.M.C. de ((50, 80 e 100).
- 2) Aplicando a decomposição simultânea em fatores primos, determine:
- a) M.M.C. de (6 e 10)

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- b) M.M.C. de (18 e 12)
- c) M.M.C. de (9 e 30)
- d) M.M.C. de (14, 21 e 35)
- e) M.M.C. de (6, 10 e 12)
- f) M.M.C. de (8, 12 e 16)
- g) M.M.C de (20, 15 e 25)
- h) M.M.C. de (90 e 120)
- i) M.M.C. de (100 e 150)
- j) M.M.C. de (20, 36, 40 e 48)
- k) M.M.C. de (80, 120 e 150)
- 1) M.M.C de (10, 14, 28 e 35).
- 3) Sabe-se que M.M.C de (50 e 60) = 300. Calcule os múltiplos comuns de 60 e 50 menores que 2.000. (Sugestão: você conhece o menor múltiplo comum; para determinar os outros, calcule os múltiplos desse número).
- 4) Um conjunto A é formado pelos múltiplos comuns de 10 e 12, menores que 500. Quantos elementos tem esse conjunto A?

GABARITO

1)			
a)	100	2)	
b)	48		
c)	18	a)	30
d)	70	b)	36
e)	80	c)	90
f)	120	d)	210
g)	40	e)	60
	84	f)	48
i)	400	g)	150
			360

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- i) 300
- j) 720
- k) 1.200
- 1) 140

3) 300, 600, 900, 1.500 e 1.800

4) (oito) elementos

4. NÚMEROS RACIONAIS

Agora, as divisões cujos resultados não são números inteiros e que, portanto, não podem ser realizadas no conjunto \mathbf{Z} e para que a operação \mathbf{a} : \mathbf{b} (com \mathbf{a} e \mathbf{b} pertencendo ao conjunto dos números inteiros e \mathbf{b} diferentes de zero), seja sempre possível, será necessária a ampliação do conjunto \mathbf{Z} com a criação de uma nova categoria de números: números racionais positivos e números racionais negativos – (conjunto \mathbf{Q}). Então, do mesmo modo como vimos no conjunto \mathbf{Z} , para cada número racional foi criado um número + \mathbf{a} (lê-se: mais a) e um número - \mathbf{a} (lê-se: menos a):

$$\begin{array}{c|c}
 & +1,66 \\
\hline
0,5 & 1,66
\end{array}$$

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

O conjunto constituído pelos números racionais negativos, pelo número zero e pelos números racionais positivos é denominado "conjunto dos números racionais relativos, representado pela letra \mathbf{Q} , e escrito:

$$Q = \{ ..., -2, ..., -5/3, ..., -1, ..., 1/2, ..., 0, ..., +2/3, ..., +1, ..., +2, ... \}$$

Observamos que: IN \subset Z e Z \subset Q \longrightarrow IN \subset Z \subset Q

Além dos conjuntos IN e Z, podemos identificar os seguintes subconjuntos de Q:

$$\mathbf{Q} * = \mathbf{Q} - \{ 0 \}$$

$$\mathbf{Q}_{+} = \{ \text{ números racionais não negativos } \} = \{ \text{ números racionais absolutos } \}$$

$$\mathbf{Q}_{-} = \{ \text{ números racionais não positivos } \}$$

$$\mathbf{Q}_{+}^{+} = \{ \text{ números racionais positivos } \} = \mathbf{Q}_{+} - \{ \mathbf{0} \}$$

$$\mathbf{Q^*}_- = \{ \text{ números racionais negativos } \} = \mathbf{Q}_- - \{ \mathbf{0} \}$$

Observações:
$$+2 e - 2$$

 $+ 1/4 e - 1/4/$
 $+ 1,2 e - 1,2$

Todos os números acima são números racionais opostos ou simétricos.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM A RETA NUMÉRICA DECIMAL

Assim: o ponto \mathbf{A} é a imagem geométrica do número racional + 1/3. o número racional -7/2 é a abscissa do ponto \mathbf{D} .

ADIÇÃO DE NÚMEROS RACIONAIS - ADIÇÃO ALGÉBRICA

1° exemplo:
$$(+3/5) + (-2/3) = +3/5 - 2/3 = (+9 - 10) : 15 = -1/15$$

2° exemplo: $-1/2 - [1/4 - (1/6 - 1/8) - 1/3] =$

$$-1/2 - [1/4 - 1/6 + 1/8) - 1/3] = \text{eliminando os parênteses}$$

$$-1/2 - 1/4 + 1/6 - 1/8 + 1/3 = \text{eliminando os colchetes}$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

$$-12 - 6 + 4 - 3 + 8$$

3º exemplo: determine o valor da expressão:

$$x + y$$
, para $x = -5/8$ e para $y = +1/2$
 $x + y = (-5/8) + (+1/2) =$ (substituindo os valores de x e y)
 $(-5/8) + (+1/2) =$ (eliminando os parênteses)

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

$$-5/8 + 1/2 = -5 + 4$$

$$= -1/8 \text{ (obtendo o mínimo múltiplo comum e realizando os cálculos)}$$

Regra: quando o sinal imediatamente anterior aos parênteses, colchetes ou chaves é positivo, conserva-se os sinais do interior dos parênteses, chaves e colchetes; se negativo, troca-se o sinal do interior deles.

Na adição ou subtração de frações, podem ocorrer os seguintes casos:

AS FRAÇÕES TÊM O MESMO DENOMINADOR

2/6 + 3/6 = 5/6

Desse exemplo, concluímos que:

Regra: a soma de frações que têm denominadores iguais é obtida somando-se os numeradores e conservando-se o denominador.

$$5/6 - 3/6 = 2/6$$

A partir desse exemplo, podemos dizer que:

Regra: a diferença entre frações que têm denominadores iguais é obtida subtraindo-se os numeradores e conservando-se o denominador.

MULTIPLICAÇÃO DE NÚMEROS RACIONAIS

Observe o seguinte exemplo:

$$2/5 \times 3/4 = 6/20$$

O exemplo nos mostra que:

Regra: o produto de dois números fracionários é obtido pela multiplicação dos numeradores entre si e dos denominadores entre si.

Há casos em que a determinação do produto de números fracionários pode ser facilitada:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

EXISTEM FATORES COMUNS NO NUMERADOR E NO DENOMINADOR

 $3/4 \times 5/3 = 5/4$ (cancela-se o fator 3 do numerador e o fator 3 do denominador)

 $5/3 \times 2/5 \times 7/2 = 7/3$ (cancela-se os fatores 2 e os fatores 5)

EXISTEM FATORES NO NUMERADOR E NO DENOMINADOR QUE PODEM SER SIMPLIFICADOS

 $4/15 \times 10/9 = 8/27$ (dividem-se os fatores 10 e 15 por 5)

 $2/9 \times 3/15 \times 10/2 = 2/9$ (dividem-se 10 e 15 por 5, e 3 e 9 por 3 cancelam-se os fatores 2)

DIVISÃO DE NÚMEROS RACIONAIS

Observe o seguinte exemplo:

2/3: 5/4 = 2/3 x 4/5 = 8/15, o que nos permite concluir a seguinte regra:

Regra: o quociente de um número racional por outro é obtido multiplicando-se o primeiro pelo inverso do segundo.

Veja mais este exemplo:

Calcular o valor da expressão : 2/15 + 2/3 : 5/9

Solução:

$$2/15 + 2/3 : 5/9 = 2/15 + 2/3 \times 9/5 = 2/15 + 2/3 \times 9/5 = 2/15 + 6/5 = 2 + 18 = ----$$

15

 \rightarrow 20/15 = 4/3

POTENCIAÇÃO DE NÚMEROS RACIONAIS

Vamos calcular a potência: (2/3)⁴

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

$$(2/3)^4 = 2/3 \times 2/3 \times 2/3 \times 2/3 = 2^4 : 3^4 = 16/81$$

4 fatores

Regra: a potência de um número fracionário é obtida elevando-se o numerador e o denominador ao expoente indicado.

Vamos considerar as seguintes expressões:

$$(-1/7)^2 = +1/49$$
 (quando o expoente é par, a potência é sempre positiva).

$$(+2/3)^4 = +16/81$$
 (quando o expoente é par, a potência é sempre positiva).

$$(+1/5)^3 = +1/125$$
 (quando o expoente é ímpar, a potência tem o mesmo sinal da base).

$$(-3/2)^5 = -243/32$$
 (quando o expoente é ímpar, a potência tem o mesmo sinal da base).

$$(+3/7)^1 = +3/7$$
 (potência de expoente 1 é igual a base).

$$(-5/6)^0 = +1$$
 (potência de expoente zero é igual $a + 1$).

$$(+3/4)^{-1} = +4/3$$
 (a potência de um número racional com expoente -1 é igual ao inverso do número dado).

EQUIVALÊNCIA DE FRAÇÕES

Observando a figura abaixo, notamos que 1/2, 2/4, 3/6, 4/8, 5/10 representam a mesma parte da unidade tomada.

Verificamos que existem frações diferentes **DECIMA** que representam a mesma parte do todo.

Daí a definição: duas ou mais frações que representam a mesma parte do todo são equivalentes.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Toda fração com denominador 10, ou 100, ou 1.000, ou denomina-se fração decimal.

Exemplos: 3/10, 5/100, 8/1000

Para lermos uma fração decimal, lemos, inicialmente, o numerador da fração seguido:

- da palavra décimo quando o denominador for 10.
- da palavra centésimos quando o denominador for 100.
- da palavra milésimos quando o denominador for 1000.

2/10 lê-se: três décimos;

3/100 lê-se: três centésimos;

3/1000 lê-se três milésimos.

Representação decimal de cada parte:

1/10 = 0,1 são representações diferentes do mesmo número racional.

1/100 = 0.01 são representações diferentes do mesmo número racional.

1/1000 = 0,001 são representações diferentes do mesmo número racional.

0,1; 0,01; 0,001; 0,3; 0,04 são chamados, simplesmente, números decimais.

São, também, números decimais, por exemplo. 2,5 ; 1,48 ; 12,624.

- A vírgula separa as unidades inteiras das unidades decimais.
- As unidades inteiras formam a parte inteira do número decimal.
- As unidades decimais formam a parte decimal do número decimal.

1	2,	6	2	4		
- 1						
						— parte decimal
					parte inteira	

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

5. PORCENTAGEM

Frequentemente, ouvimos frases como estas:

- "Sete por cento de desconto."
- "Cinco por cento de comissão".
- "Prejuízo de quinze por cento."

RAZÃO CENTESIMAL

As razões cujos consequentes são iguais a 100 são chamadas razões centesimais.

Exemplos: a) 7/100 b) 5/100 c) 15/100

PORCENTAGEM

Porcentagem é uma razão centesimal representada pelo símbolo % (por cento).

Exemplos: a) 7/100 = 7% (que se lê: "7 por cento")

b) 5/100 = 5% (que se lê: "5 por cento")

c) 15/100 = 15% (que se lê: "15 por cento")

Essa forma de representação (7%, 5%, 15%, etc.) chama-se taxa percentual.

EXERCÍCIOS

- 1) Escreva as razões na forma de taxa percentual:
- a) 1/100 b) 9/100 c) 35/100 d) 100/100 e) 143/100 f) 387/100
- 2) Represente na forma de razões centesimais:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- a) 3%
- b) 8%
- c) 34%
- d) 52%
- e) 89%
- f) 130%

3) Escreva as razões na forma de taxa percentual

Resolvido. 1/2 = 50/100 = 50%

- a) 1/4
- b) 3/5
- c) 7/10
- d) 1/50
- e) 9/25
- f) 17/10

- g) 7/2
- h) 5/4
- i) 3/8

GABARITO

- 1)
- a) 1%
- b) 9%
- c) 35%
- d) 100%
- e) 143%
- f) 387%

2)

- a) 3/100
- b) 8/100
- c) 34/100
- d) 52/100
- e) 89/100
- f) 130/100

3)

- a) 25%
- b) 60%

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- c) 70%
- d) 2%
- e) 36%
- f) 170%
- g) 350%
- h) 125%
- i) 37,5%

PROBLEMAS DE PORCENTAGEM

São resolvidos através de regra de três simples.

EXEMPLO 1

Calcular 20% de R\$ 700,00.

$$100/700 = 20/x = 100 . x = 20 . 700 \longrightarrow 100 x = 14.000 \longrightarrow x = 14.000 : 100 \longrightarrow x = 140$$

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Resposta: R\$ 140,00

Método Prático

Calcular 20% de R\$ 700,00.

Solução: 20/100 . 700 = 20.700 = 14.000 = 140

Resposta: R\$ 140,00.

EXERCÍCIOS

1) Calcule as porcentagens:

a) 8% de R\$ 700,00

b) 5% de R\$ 4.000,00

c) 12% de R\$ 5.000,00

d) 15% de R\$ 2.600,00

e) 100% de R\$ 4.520,00

f) 125% de R\$ 8.000,00

g) 0,4% de R\$ 50.000,00

h) 1,2% de R\$ 40.000,00

2) Calcule as porcentagens:

a) 3% de 400

b) 18% de 8.600

c) 35% de 42.000

d) 0,5% de 150.000

e) 1% de 3.000

f) 120% de 6.200

g) 3,2% de 6.000

h) 12,5% de 18.000

- 3) Numa escola de 900 alunos, 42% são rapazes. Calcule o número de rapazes.
- 4) Sobre um ordenado de R\$ 380,00 são descontados 8% para o INSS. De quanto é total de desconto ?
- 5) Comprei uma bicicleta por R\$ 500,00. Revendi com um lucro de 15%. Quanto ganhei ?
- 6) Uma caneta que custava R\$ 0,60 sofreu um desconto de 5%. Quanto você pagará por essa caneta ?

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- 7) Por quanto deverei vender um objeto que me custou R\$ 72,00 para lucrar 30%?
- 8) Seu pai comprou um rádio por R\$ 85,00 e obteve um desconto de 12%. Quanto pagou pelo rádio ?
- 9) Um comerciante comprou uma mercadoria por R\$ 9.500,00. Querendo obter um lucro de 12%, por que preço deverá vender a mesma ?
- 10) Ao se pagar com atraso, uma prestação de R\$ 1.300,00 sofreu um acréscimo de 4%. Qual o novo valor dessa prestação

GABARITO

1)

a) R\$ 56,00

b) R\$ 200.00

c) R\$ 600,00

d) R\$ 390,00

e) R\$ 4.520,00

f) R\$ 10.000,00

g) R\$ 200,00

h) R\$ 480,00

2)

a) 12

b) 1548

c) 14700

d) 750

e) 30

f) 7440

g) 192

h) 2250

3) 378 rapazes

EXEMPLO 2

4) R\$ 30,40

5) R\$ 75,00

6) R\$ 0.57

7) R\$ 93,60

8) R\$ 74,80

9) R\$ 10.640,00

10) R\$ 1.352,00

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Numa classe de 40 alunos, 36 foram aprovados. Qual foi a taxa de porcentagem dos aprovados ?

Solução:

Proporção:
$$\underline{40} = \underline{36} \longrightarrow 40 \text{ x} = 3600 \longrightarrow \text{x} = 3600 : 40 \longrightarrow \text{x} = 90$$

Resposta: A aprovação foi de 90%.

EXEMPLO 3

Comprei uma camisa e obtive um desconto de R\$ 1,20, que corresponde à taxa de 5%. Qual era o preço da camisa ?

Solução:

Proporção:
$$\frac{100}{x} = \frac{5}{1,20} = 5 x = 120 \longrightarrow x = 120 : 5 \longrightarrow x = 24$$

Resposta: A camisa custava R\$ 24,00.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM EXERCÍCIOS

- 1) Numa escola de 40 alunos, 6 foram reprovados. Qual a taxa de porcentagem dos alunos reprovados ?
- 2) Um feirante observou que, em cada 75 laranjas, 6 estavam estragadas. Qual a taxa de porcentagem das frutas estragadas ?
- 3) Comprei um carro por R\$ 23.000,00 e revendi com um lucro de R\$ 1.610,00. Qual foi a taxa de lucro ?
- 4) Um comerciante recebeu um desconto de R\$ 1.312,00 numa compra cujo valor era de R\$82.000,00. Calcule a taxa de desconto.
- 5) Um produto custa R\$ 40,00 e é vendido por R\$ 52,00. Qual é a taxa de lucro?
- 6) Numa turma de 30 operários faltaram 12. Qual a taxa de operários presentes ?
- 7) As tarifas de ônibus foram majoradas, passando a R\$ 1,60 para R\$ 2,16. Qual foi a taxa de aumento?
- 8) Oito (8) por cento dos vencimentos de um operário equivalem a R\$ 33,60. Calcule o total de seus vencimentos.
- 9) Numa classe foram reprovados 15% dos alunos, isto é, 9 alunos. Quantos alunos havia na classe?
- 10) Um corretor de imóveis recebeu R\$ 1.700,00 correspondentes a 5% de sua comissão. Qual o valor da venda ?

GABARITO

- 1) 15%
- 2) 8%
- 3) 7%
- 4) 1,6%
- 5) 30%
- 6) 60%
- 7) 35%

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- 8) R\$ 420,00
- 9) 60 alunos
- 10) R\$ 34.000,00

TESTES

a) 12,8 b) 16 c) 24 e) 96 2) Calculando 7,4% de 6.000, obtemos: a) 444 b) 454 c) 4440 e) 4540 3) Calculando 160% de 450, obtemos: b) 270 a) 72 c) 620 e) 720 4) Somando-se 30% de 12 com 0,5% de 60, obtemos: a) 3,6 b) 3,9 c) 6,6 d) 6,9 5) $(10\%)^2$ é igual a:

1) Calculando 16% de 80, obtemos:

a) 1%

b) 10%

c) 20%

GOVERNO DO ESTADO DE RONDÔNIA SECRETARIA DE ESTADO DA EDUCAÇÃO ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO JOHN KENNEDY

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

d) 100%

o) 1 m	nta por cento	da quarta	i parte de 6400	e igual a :	
a) 480	b) 640)	c) 240	d) 160	
7) Se	5% de x é igu	al a 12, e	ntão x é igual	a:	
a) 240	b) 280)	c) 200	d) 320	
*	lluguel de um será de:	apartam	ento é de R\$ 7	720,00. Se houver um	reajuste de 52% sobre esse valor
a) R\$ 1	.084,40	b) R\$ 1	.094,40	c) R\$ 1.095,40	d) R\$1.094,50
9) Um	salário de R	\$ 245,00	aumentado em	47% passa a ser de:	
a) R\$ 3	30,15	b) R\$ 3	50,35	c) R\$ 360,15	d) R\$ 380,15
				e 20 m² é ocupada por s ilustrações em azul é	r ilustrações e 50% das ilustrações igual a:
a) 3 m ²	b) 6 m	n^2	c) 9 m ²	d) 12 m ²	
	a indústria te al de emprega		dos seus emp	regados brasileiros e	60 estrangeiros. Então, o número
a) 540	b) 280)	c) 320	d) 400	
12) Um é:	objeto custa	R\$ 185,0	00 a prazo; à v	vista tem 12% de desc	conto. O preço desse objeto à vista
a) R\$ 1	52,80	b) R\$ 1	62,80	c) R\$ 160,20	d) R\$ 170,20
13) O p	oreço de uma l	lancha de	e R\$ 15.000,00	a ser vendida numa li	quidação com 9% de desconto é:
a) R\$ 1	2.650,00	b) R\$ 1	3.650,00	c) R\$ 13.350,00	d) R\$ 16.350,00

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

			timo ano, rende nesse ano, para o		correção monetári	ia 21,5%. A
a) RS	\$ 3.235,00	b) R\$ 3.522,00	c) R\$ 3.1	50,00 d) I	R\$ 3.225,00	
	Jm molho de pi ue esse molho c		850 g contém 6	5% desse peso e	em alho. A quantic	lade de alho
a) 50	g b) 51 g	g c) 52 g	d) 53 g			
16) N	Numa prova de 4	0 questões, que	n errou 6 questõ	es acertou:		
a) 69	6 b) 14%	60% c) 60%	d) 85%			
	Jma duplicata d esconto foi de:	e R\$ 14.400,00	foi paga, antes	do vencimento,	por R\$ 13.824,00). A taxa de
a) 3%	6 b) 4%	c) 5%	d) 6%			
18) U	Jm brinquedo cu	ıstava R\$ 70,00	e passou a custar	R\$ 75,60. O au	mento representa:	
a) 6	% do preço anti	go.				
b) 7	% do preço anti	go.				
c) 8	% do preço anti	go.				
d) 1	2% do preço ant	tigo.				

- 19) Uma verba de R\$ 360.000,00 foi assim distribuída: para o setor A 36 mil reais; para o setor B 108 mil reais e para o setor C 216 mil reais. Expressando estas parcelas em percentuais, nesta ordem, temos:
- a) 15%, 25% e 60% b) 10%, 32% e 58% c) 10%, 30% e 60% d) 10%, 28% e 62%

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

20) Para a	a venda de	uma	geladeira,	o	cartaz	anuncia:
,			<i>6</i>	-		

4 x R\$ 367, 20 ou R\$ 1.080,00 à vista

Quem comprar a prazo, pagará a mais:

- a) 25% do preco à vista.
- b) 28% do preço à vista.
- c) 32% do preço à vista.
- d) 36% do preço à vista.
- 21) Se o passe de um jogador for vendido por R\$ 10.000.000,00 com quanto ficaria o clube, sabendo-se que o jogador deve receber 15% do valor do seu passe?
- a) R\$ 8.500.000,00 b) R\$ 1.500.000,00 c) R\$ 850.000,00
- d) R\$ 150.000,00
- 22) No dia 1º de dezembro um lojista aumenta em 20% o preço de um artigo que custava R\$300,00. Na liquidação após o Natal o mesmo artigo sofre um desconto de 20%. Seu preço na liquidação é:
- a) R\$ 240.00
- b) R\$ 250,00
- c) R\$ 278.00
- d) R\$ 288.00
- 23) Numa turma, 80% dos alunos forma aprovados, 15% reprovados e os 6 alunos restantes desistiram do curso. Na turma havia:
- a) 65 alunos
- b) 95 alunos
- c) 80 alunos
- d) 120 alunos
- 24) Após um aumento de vinte por cento um livro passa a custar R\$ 18,00. O preço antes do aumento era de:
- a) R\$ 15,00
- b) R\$ 14,40
- c) R\$ 14,00
- d) R\$ 16,00

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

25) Um trabalhador recebe R\$ 2.800,00 de salário bruto do qual é descontado 8% de INSS e 3% de imposto de renda. O desconto total é de:

a) R\$ 84,00

b) R\$ 224,00

c) R\$ 298,00

d) R\$ 308,00

26) Seja

$$x = \sqrt{9} - \frac{6}{5} + 25 - 4.8$$
. Então, o valor de 0,3% de x é:

a) 0,66

b) 0,066

c) 2,2

d) 6,6

GABARITO

- 1) A
- 2) A
- 3) D
- 4) B
- 5) A
- 6) A
- 7) A
- 8) B
- 9) C
- 10) A
- 11) D
- 12)B
- 13)B
- 14) D
- 15)B
- 16) D
- 17)B
- 18) C
- 19) C
- 20) D
- 21) A

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

22) D

23) D

24) A

25) D

26) B

6. REGRA DE TRÊS

Vejamos o seguinte problema: se 4 bolas custam R\$ 800,00, quanto custarão 8 bolas ? As duas grandezas são **número de bolas** e **custo**. No problema dado, aumentamos o valor de uma grandeza (número de bolas) e desejamos saber qual o valor correspondente da outra (custo), na mesma proporção.

Os problemas dessa natureza são conhecidos pelo nome de **regra de três** e consistem em calcular um valor desconhecido (incógnita) que designamos por **x**, através de outros valores conhecidos, todos eles guardando entre si perfeita proporcionalidade.

Se no problema aparecem somente duas grandezas proporcionais, como no exemplo apresentado (número de bolas e custo), diz-se que a regra de três é **simples**. Se, por exemplo, compreende mais de duas grandezas (número de operários, comprimento de um muro e tempo gasto para construí-lo), a regra de três é composta.

REGRA DE TRÊS SIMPLES

A regra de três simples pode ser **direta** ou **inversa**. Ela é **direta**, quando as grandezas são diretamente proporcionais, isto é, variam no mesmo sentido.

A regra de três é **inversa** quando as grandezas são inversamente proporcionais, isto é, variam em sentido contrário : enquanto uma aumenta a outra diminui; (por exemplo, número de operário e tempo para fazer certa obra).

Doravante, **apenas para facilitar a compreensão**, indicaremos por convenção, se a regra de três é **direta** ou **inversa** através de uma seta colocada ao lado da grandeza. Assim, quando a regra de três for direta, a seta ficará voltada para baixo (\downarrow); quando for inversa, a seta ficará voltada

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

para cima (\uparrow). Ainda para facilitar a resolução dos problemas, por convenção onde estiver a incógnita (\mathbf{x}), a seta ficará sempre voltada para baixo.

Tomando-se os dados do problema enunciado, poderemos dispô-los da seguinte forma:

- 8 bolas.....R\$ x

OBSERVAÇÃO:

- a) na primeira linha horizontal, escrevemos os valores conhecidos (4 bolas e R\$ 800,00);
- b) na segunda linha horizontal, escrevemos o outro valor conhecido e o valor desconhecido (incógnita), a saber : 8 bolas e x;
- c) os valores respectivos de cada grandeza devem ficar em perfeita correspondência vertical, como se observa no problema acima: **bolas** embaixo de **bolas** e **reais** embaixo de **reais**.
- d) conforme estabelecido por convenção, marcamos em seguida com seta para baixo a grandeza onde se encontra a incógnita (x). Resta agora apurar se a regra de três é **direta** ou **inversa**.

4	bolasR\$	800,00	l
8	bolasR\$	X	L

Analisemos o problema dado. Quando aumentamos o número de bolas, é claro que o preço que deveremos pagar (custo) será também maior. Assim, se aumentando o valor da grandeza **número de bolas**, o valor correspondente da grandeza **custo** tende a aumentar, concluímos que estas duas grandezas são **diretamente proporcionais**, isto é, **variam no mesmo sentido.** Logo, a regra de três é **direta.** Marquemo-la, pois, com a seta voltada para baixo. Assim,

4 bolas......R\$ 800,00 8 bolas......R\$ x

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Calculemos agora o valor de x. Como já sabemos que a regra de três é direta, podemos armar a seguinte proporção entre os 3 elementos conhecidos e a incógnita, bastando seguir o sentido das setas : 4 : 8 :: R\$ 800,00 : x

Lê-se: 4 está para 8 assim como 800 está para x. Os números 8 e 800,00 são os **meios** e 4 e x são os **extremos** da proporção. Para calcular o valor de x, estando ele na extremidade da proporção, multiplicam-se os meios e divide-se o produto pelo outro extremo conhecido; quando o x estiver no meio da proporção, multiplicam-se os extremos e divide-se o produto pelo meio conhecido. Assim, na proporção acima, teremos:

$$x = 8 \times 800,00 = 6.400,00 = 1.600,00$$

MODO PRÁTICO DE RESOLVER A REGRA DE TRÊS DIRETA

Um modo prático de resolver a **regra de três direta**, a ser adotado pelo candidato sempre que possível, consiste em após armar a **regra de três** conforme já ensinado, traçar uma diagonal entre os valores opostos de cada grandeza, como abaixo demonstramos.

Feito isso, calcula-se o valor da incógnita por meio de uma fração que tem para **numerador** o produto dos valores conhecidos que estão ligados pela diagonal (8 bolas e R\$ 800,00) e para o **denominador** o outro valor conhecido (4 bolas), que se acha unido à incógnita (x) como segue:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Chamamos a atenção do candidato agora para o seguinte problema, em que as grandezas não estão enunciadas na mesma unidade: um carro percorre 120 quilômetros em 2 horas. Quantos quilômetros percorrerá em 40 minutos ?

No problema aparecem duas grandezas: percurso em quilômetros e tempo em minutos. Entretanto, a grandeza tempo vem expressa em duas unidades de medida tempo (hora e minutos). Desse modo, antes de armar a regra de três, temos que reduzir a grandeza a uma só unidade. Assim, duas horas reduzidas a minutos nos dão 120 minutos. Agora sim, podemos armar a regra de três e resolver o problema.

REGRA DE TRÊS INVERSA

Examinemos o seguinte problema: se 6 homens executam um trabalho em 24 dias, em quanto tempo 9 homens, nas mesmas condições, o executarão ?

Armando a regra de três dentro do modelo já estabelecido, teremos:

Vejamos, em seguida, se a regra de três é **direta** ou **inversa**. Assim, se 6 homens levaram 24 dias para fazer determinado trabalho, é lógico que, aumentando número de homens para 9, estes precisarão de **menos tempo** para executá-lo. Verificamos, então, que as duas grandezas variam em sentidos opostos, pois aumenta uma (número de homens) e a outra (tempo gasto em dias) diminui.

Logo, a regra de três é **inversa**, que indicaremos com a seta voltada para cima.

1	6 homens24	dias
	9 homensx	dias

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Para armar a proporção, basta seguir o mesmo sentido das setas. Assim na grandeza homens a seta está voltada para cima (no sentido de 9 para 6) na grandeza dias a seta está voltada para baixo (no sentido de 24 para x). Logo:

$$9:6::24:x$$
 $x = 6 \times 24 = 16$

MODO PRÁTICO DE RESOLVER A REGRA DE TRÊS INVERSA

A regra de três inversa também pode ser resolvida de forma prática, que consiste em, após armar a regra de três conforme já ensinado, calcular o valor da incógnita através de uma fração que tem para **denominador** o valor conhecido que se liga **horizontalmente** ao x e para **numerador** o produto dos demais valores conhecidos. Assim, no caso já apresentado, teríamos :

6 homens
$$x = \frac{6 \times 24}{9} = 16 \text{ dias}$$

PROBLEMAS RESOLVIDOS

1) Um operário ganha R\$ 720,00 por 20 dias de trabalho. Quanto ganharia se tivesse trabalhado 12 dias ?

Solução:

$$x = \frac{12 \times 720}{20} = 432,00$$

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

2) Um operário faz em 3 dias certa tarefa, cujo coeficiente de dificuldade é de 1,2. Quantos dias levará para fazer outra, se o coeficiente for de 0,8 ?

Solução: Diminuindo a dificuldade, diminui o tempo gasto, logo, regra de três direta.

3) A habilidade de dois operários está na razão de 3 para 4. O primeiro fez 6 metros de um muro. Quantos metros faria o segundo, no mesmo espaço de tempo ?

Solução:

$$\begin{bmatrix} 3 & ... & ... & 6 \text{ metros} \\ 4 & ... & x \text{ metros} \end{bmatrix}$$
 $\begin{bmatrix} 3 : 4 :: 6 : x \\ x = \frac{4 \times 6}{3} \end{bmatrix} = 8 \text{ metros}$

4) Se 8 operários construíram um muro em 20 dias, 10 operários em quantos dias o farão ?

Solução: Aumentando o número de operários, diminui o número de dias. Logo, regra de três inversa.

5) Vinte operários fazem 1/3 de uma obra em 12 dias. Quanto tempo será necessário para fazer a obra toda, se despedirmos 8 operários ?

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Solução: 3 x 12 = 36 dias (fariam a obra toda) 20 operários - 8 operários = 12 operários.

6) Uma roda com 40 dentes engrena com outra de 30 dentes. Sabendo que a primeira deu 450 voltas, calcular o número de voltas da segunda.

Solução:

30:40 :: 450 : x

7) Um fazendeiro tem 25 porcos e alimento suficiente para sustentá-los durante 16 dias. Tendo recebido mais 15 porcos, durante quantos dias poderá alimentá-los sem diminuir a ração ?

Solução: 25 + 15 = 40 porcos

40: 25 :: 16 : x

8) Para percorrer a distância entre duas cidades, um avião gasta 3 horas, desenvolvendo 400 km/hora. Se quiser reduzir o tempo gasto para 2/3, qual deverá ser a sua velocidade ?

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Solução: 2/3 de 3 horas = 2/3 x 3/1 = 6/3 = 2 horas

x:400 :: 3:2

9) Trinta operários trabalhavam numa obra. Após 25 dias, quando a metade estava pronta, foram despedidos 20 operários. Em quantos dias os demais terminarão a obra ?

Solução: 30 - 20 = 10 operários (restante)

10:30 **::** 25: x

7. JUROS SIMPLES

Denomina-se **juro** a quantia que se recebe como compensação, quando se empresta ou aplica, por um período determinado, uma certa importância. O dinheiro depositado ou emprestado chama-se **capital**. O juro, é portanto, a remuneração do capital.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Para resolver os problemas de juros, pode-se adotar o tradicional processo de fórmulas, cuja regra básica é a seguinte: o juro é igual ao produto do **capital** pela **taxa anual** e pelo **tempo**, dividido por **100**, a saber:

$$j = \frac{c.i.t}{100}$$

Dessa fórmula geral, são deduzidas todas as demais fórmulas que permitem encontrar os outros elementos que ali figuram, a saber:

Cálculo da Taxa

$$i = \frac{j \times 100}{c \cdot t}$$

Cálculo do Tempo

$$t = \frac{j \times 100}{c \cdot t}$$

Cálculo do Capital

$$c = \frac{j \times 100}{i \cdot t}$$

No estudo deste ponto, entretanto, ao invés de fórmulas, resolveremos os problemas através da regra de três simples, eis que o problema nada mais é do que um problema de porcentagem acrescido de mais um valor : **o tempo.**

Para facilitar o entendimento deste método, relembramos que, nos problemas de porcentagem, são 4 os valores que participam, a saber: **capital, taxa** (parte de 100%), **porcentagem e 100%** (ou 100 partes proporcionais e que corresponde ao capital).

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

O **capital** (que é o todo, a quantia principal) é sempre igual a 100% (número total de partes em que este é dividido), enquanto a **porcentagem** é sempre igual a **taxa.** Logo,

Capital = 100% Porcentagem = taxa (i%)

As igualdades acima servem de base para armar a regra de três simples, através da qual solucionamos todos os problemas de porcentagem. Para calcular a porcentagem, basta multiplicar a taxa (i%) pelo capital e dividir por 100. Assim, para calcular 5% de 200, faremos:

$$5 \quad x \quad 200 = 1.000$$
$$1.000 \quad : \quad 100 = \quad 10$$

Se quiséssemos calcular quantos porcentos 10 representa de 200, armaríamos a seguinte regra de três:

200......x
$$100\%$$
 $x = \frac{10 \times 100}{200} = 5\%$

Se aumentarmos a **taxa**, a **porcentagem** (resultado) também aumentará. Por exemplo, 20% de R\$ 500,00 são iguais a R\$ 100,00, que é a quinta parte do capital considerado (R\$ 500,00), isto porque a taxa de 20% é também igual a quinta parte de 100% (que representa o capital). Do mesmo modo, 50% de R\$ 500,00 são iguais a R\$ 250,00 (metade do capital), porque a taxa 50% é a metade de 100%.

Nos problemas de porcentagem, conforme vimos, a taxa incide diretamente sobre o capital sem qualquer outra limitação (5% de R\$ 200,00 = R\$ 10,00). Já nos problemas de juros a taxa está vinculada ao <u>tempo</u> durante o qual o capital esteve empregado (5% a.a x 1 ano x R\$ 200,00 = R\$10,00), tomando-se como base o período de 1 ano (12 meses ou 360 dias).

Convém observar, portanto, que, nos problemas de juros, trabalhando sempre com a taxa <u>ao ano</u>, se o **tempo** dado no problema for expresso somente em **anos**, o capital será igual a **100** (100 x 1 ano); se em **meses** (ou anos e meses), o capital será igual a **1.200** (100 x 12 meses); se em **dias** (ou anos, meses e dias ou meses e dias), o capital será igual a **36.000** (100 x 360 dias).

O juro é o rendimento gerado pelo capital. Assim, se o capital é igual a 100 (tempo em anos), 1.200 (tempo em meses) ou 36.000 (tempo em dias), concluímos que o juro é igual ao

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

resultado da multiplicação da **taxa** (parte dos 100%) pelo **tempo** (ano, mês ou dia) durante o qual o capital esteve empregado. Exemplificando:

```
a) capital = 100 (tempo em anos)

i = 5% a.a.

t = 3 anos

i.t = 5 x 3 = 15 (representativo dos juros)
```

b) capital = 1.200 (tempo em meses)
 i = 3% a.m. ou 3 x 12 = 36 a.a.
 t = 4 meses
 i.t = 36 x 4 = 144 (representativo dos juros)

```
c) capital = 36.000 (tempo em dias)

i = 0,2 a.d. ou 0,2 x 360 = 72% a.a.

t = 20 dias

i.t = 72 x 20 = 1.440 (representativo dos juros)
```

Obs.: Trabalhando com os valores representativos do capital acima indicados (100, 1.200 ou 3.600), sempre que precisarmos determinar a <u>taxa</u>, o resultado será sempre <u>taxa ao ano</u>

Armando a proporção, encontramos:

```
Capital = 100, 1.200 ou 36.000
Juro = taxa x tempo
```

Com base nas igualdades acima, de onde também são extraídas as fórmulas já conhecidas, resolveremos qualquer problema de **juros simples**, através apenas da regra de três simples.

TAXAS

I – TAXA UNITÁRIA E TAXA PERCENTUAL

Duas são as taxas habitualmente usadas: taxa unitária e taxa percentual.

Taxa Unitária – representa o juro da unidade de capital num determinado período considerado para unidade de tempo. Exemplo: se o juro do capital R\$ 1.000.000,00 em 1 ano é

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

R\$40.000,00, diz-se que a **taxa unitária anual** é igual a 0,04 (4/100). Taxa normalmente utilizada nos problemas de juros compostos.

 R 1.000.000,00 \times 0,04 \times 1 = R$ 40.000,00$

Taxa percentual – representa o juro do capital **100** no período tomado para unidade de **tempo**. Exemplo: se o capital R\$ 1.000.000,00 rende R\$ 40.000,00 em um ano, diz-se que a **taxa anual** é igual a 4% (quatro em cada 100).

Confrontando os exemplos acima, concluímos que a **taxa percentual** é igual a 100 vezes a **taxa unitária** correspondente.

II. TAXAS PROPORCIONAIS E EQUIVALENTES

Taxas Proporcionais – são duas ou mais taxas que guardam entre si as mesmas proporções que os períodos de tempo a que se referem, como segue:

- 6% ao semestre e 12% a.a.
- 6% ao trimestre e 2% ao mês.

No regime de capitalização simples, os juros de um capital à taxa de 6% ao semestre durante o período de 12 meses são iguais aos juros do mesmo capital à taxa de 12% ao ano durante 1 ano.

Conclui-se, portanto, que, nesse caso, as taxas proporcionais são também equivalentes.

DUAS PROVIDÊNCIAS IMPORTANTES

Como nem sempre o **tempo** dado nos problemas **refere-se a um período completo** ou há coincidência entre o **tempo dado** e a **taxa aplicada**, devemos adotar preliminarmente duas providências importantes, antes de resolver **qualquer** problema de juros:

a) verificar se a **taxa** vem referida **ao ano** (a.a.), **ao mês** (a.m.) ou **ao dia** (a.d.), pois trabalharemos preferencialmente com a **taxa ao ano**, para facilitar a resolução. Assim, quando a encontrarmos

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

referida **ao mês**, devemos imediatamente multiplicá-la por 12 (1ano = 12 meses), a fim de transformá-la **ao ano**; se referida **ao dia**, devemos igualmente multiplicá-la por 360 (o ano comercial tem 360 dias) para transformá-la **ao ano**. Exemplos:

$$1/3$$
 % a.m. = $1/3$ x 12 = 4 % a.a. $1/40$ % a.d. = $1/40$ x 360 = 9% a.a.

b) verificar se o **tempo** dado no problema vem expresso em **anos**, **meses** ou **dias** para determinar se o capital corresponderá a **100** (tempo em anos), **1.200** (tempo em meses), ou **36.000** (tempo em dias). Não esquecer também que, se o tempo vier expresso em número complexo (anos, meses e dias, anos e meses, meses e dias), devemos imediatamente reduzi-lo a incomplexo, como nos exemplos baixo:

```
2 a 6 m = 24 + 6 = 30 meses (usaremos o capital = 1.200)

1 a 5 m 10 d = 360 + 150 + 10 = 520 dias (usaremos o capital = 36.000)

5 m 20 d = 150 + 20 = 170 dias (usaremos o capital = 36.000)
```

OBSERVAÇÃO IMPORTANTE — As providências preliminares acima devem ser adotadas para resolver **qualquer** tipo de problema de juros. Contudo, quando houver coincidência de **taxa** e **tempo** (por exemplo: 5% **a.a.** em 3 **anos**, ou 5% **a.m.** em 8 **meses** ou 5% **a.m.** em 1 a 4 m = 16 **meses**), o problema pode Ter uma solução simplificada, como veremos a seguir: Calcular os juros produzidos pelo capital de R\$ 5.000,00 à taxa de 5% a.a., em 5 anos ?

i=5% a.a. (significa que, a cada período de 1 (um) ano, haverá um ganho (juros) de 5% ou o equivalente a 5/100 ou 1/20 do capital.

t = 5 anos (significa que o capital ficará aplicado durante 5 anos completos).

c = R\$ 5.000,00 (capital, quantia principal aplicada e sobre a qual vai incidir a taxa; é representada por 100).

Solução: (Tempo em anos e a taxa também ao ano)

5% x 5 a.a. = 25% (juros totais)
25 x 5.000,00 =
$$\frac{25 \times 5.000,00}{}$$
 = R\$ 1.250,00 (juros)

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

100

Se o mesmo capital fosse aplicado à taxa de ¼% a.m., durante 8 meses, assim calcularíamos os juros.

Solução: (Tempo em meses e taxa ao mês)

$$1/4 \% \times 8 \text{ m} = 8/4 = 2\% \text{ (juros totais)}$$

2% de R\$ 5.000,00 =
$$\frac{2 \times 5.000,00}{100}$$
 = R\$ 100,00 (juros)

PROBLEMAS

- 1) Qual o juro produzido por R\$ 2.000.000,00 em 5 meses à taxa de $\frac{1}{2}$ % a.m.? Dica: Como a taxa vem referida ao mês, devemos de imediato transformá-la ao ano. Assim, $\frac{1}{2} \times 12 = 6\%$ a.a.
- 2) Calcular os juros de R\$ 18.000.000,00 à taxa de 4% a.a., em 1 ano, 2 meses e 20 dias. **Dica:** 1 ano + 2 meses + 20 dias = 360 + 60 + 20 = 440 dias
- 3) Calcular o capital que, em 1 ano 2 meses e 20 dias, à taxa de 1/3% a.m., renda R\$ 3.520.000,00 de juros.

Dica: 1 a 2 m 20 d = 440 dias
$$1/3 \times 12 = 4\%$$
 a.a.

4) A que taxa esteve colocado o capital de R\$ 12.000.000,00 para, em 1 ano e 4 meses, render R\$800.000,00 de juros ?

Dica: 1 a 4m = 12 + 4 = 16 meses

5) A que taxa se deve aplicar certo capital, para, no fim de 5anos, produzir juros iguais a 8/16 de si mesmo?

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- 6) Um capital de R\$ 20.000.000,00 à taxa de 5% a.a., rendeu R\$ 800.000,00 de juros. Qual o tempo?
- 7) Durante quanto tempo uma quantia deve ser emprestada a 5% a.a., para que os juros produzidos sejam iguais a 3/5 do capital ?
- 8) Um capital está para os seus juros como 8 está para 1. Determine o tempo a que esteve emprestado, sabendo que a taxa é de 6% a.a.

GABARITO

- 1) R\$ 50.000,00 de juros
- 2) R\$ 880.000,00
- 3) R\$ 72.000.000,00
- 4) 80:16 = 5 % a.a.
- 5) 10% a.a.
- 6) 288 dias = 9 meses + 18 dias
- 7) 4320 ou 12 anos (4320: 360)
- 8) 750 dias = 2 anos + 1 mês

8. ÁREA DE FIGURAS PLANAS

A área de uma **região quadrada** cujo lado mede ℓ unidades de comprimento é dada por $S = \ell x \ell = \ell^2$

Exemplo: Calculemos a área de uma região quadrada que tem 6 cm de lado.

Obs.: Os lados de uma região quadrada são sempre iguais.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Como a medida do lado = 6 cm

Então,
$$S = \ell^2 = (6 \text{ cm})^2 = 6 \text{ cm } \times 6 \text{ cm} = 36 \text{ cm}^2$$

A área de uma **região retangular** de comprimento **b** e de largura **h** é dada por:

$$S = b x h$$
.

Exemplo: Calculemos a área de uma região retangular que tem 6 cm de base (b) e 2 cm de altura (h).

 $S = b \times h$, substituindo temos $S = 6 \times 2 = 12 \text{ cm}^2$.

A área de uma região limitada por um **paralelogramo** é obtida multiplicando-se o seu comprimento (ou base) pela sua largura (ou altura), isto é, S = b x h.

Exemplo: Um paralelogramo tem 22 cm de comprimento e 12,5 cm de largura.

Calculemos a área da região limitada por esse paralelogramo.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Já sabemos que a fórmula : S = b x h, substituindo, temos:

$$S = 22 \text{ cm } \text{ x } 12.5 \text{ cm} = 275 \text{ cm}^2.$$

A área de uma região triangular cuja base mede b e cuja altura mede h é dada por:

$$S = \frac{b x h}{2}$$
 ou $S = (b x h) : 2$

Exemplo: A base de uma região triangular mede 80 cm. A medida da altura corresponde a 3/10 da medida da base. Qual é a área dessa região ?

Já sabemos que

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM 2

Substituindo, temos

$$S = \frac{80 \text{ cm } \times 24 \text{ cm}}{2} = \frac{1.920 \text{ cm}}{2} = 960 \text{ cm}^2$$

A área de uma região circular de raio r é dada por :

$$S = \pi x r^2$$

Exemplo: Quantos m^2 de carpete serão usados para forrar um piso circular de 8 m de diâmetro?

Obs.: o diâmetro = duas vezes o raio.

Já sabemos que
$$S = \pi x r^2$$
 e que o diâmetro
 $= 4 m e \pi = 3, 14.$

Substituindo, temos : S = 3, $14 \times 4^2 = 3$, $14 \times 16 = 50$, 24 m^2 .

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

TESTE GABARITADO

A figura abaixo nos mostra a planta de um apartamento. Baseado em seus dados calcule:

- a) quantos m² de carpete são necessários para cobrir o piso da sala, do corredor, dos dois dormitórios, da cozinha, da área de serviço e do banheiro.
- b) quantos m² de carpete são necessários para cobrir o piso da sala, do corredor e dos dois dormitórios.
- c) quantos m² de cerâmica são suficientes para cobrir o piso do banheiro, da cozinha e da área de serviço.

Resposta:

Área do Piso da Sala = 18.9 m^2 Área do Piso do Corredor = 3.75 m^2

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Área do Piso 1º Dormitório = 16 m² Área do Piso2º Dormitório = 13,5 m² Área da Piso Cozinha = 16 m² Área do Piso da Área de Serviço = 6,8 m² Área do Piso do Banheiro = 7,5 m²

a)
$$82, 45 \text{ m}^2 = 18.9 + 3.75 + 16 + 13.5 + 16 + 6.8 + 7.5 = 82.45 \text{ m}^2$$

b)
$$52,15 \text{ m}^2 = 18,9 + 3,75 + 16 + 13,5 = 52,15 \text{ m}^2$$

c)
$$30,30 \text{ m}^2 = 7,5 + 16 + 6,8 = 30,30 \text{ m}^2$$

DAS MEDIDAS DE VOLUME

Temos como unidade fundamental para o cálculo de volumes um **cubo**, cuja a aresta mede **1 m** denominado **metro cúbico**, que se abrevia **m**³. Sendo elas :

- o **decâmetro cúbico**, que se abrevia "dam³" e vale 1.000 m³.
- o **hectômetro cúbico**, que se abrevia "hm³" e vale 1.000.000 m³.
- o **quilômetro cúbico**, que se abrevia "km³" e vale 1.000.000.000 m³.

Estas unidades são os múltiplos do metro cúbico.

As unidades menores que o m³ são:

- o **decímetro cúbico**, que se abrevia "dm³" e vale 0,001 do m³.
- o **centímetro cúbico**, que se abrevia "cm³" e vale 0,000001 do m³.
- o milímetro cúbico, que se abrevia "mm³" e vale 0,000000001 do m³.

Estas unidades são os submúltiplos do m³.

O metro cúbico é um cubo de 1 metro de aresta.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM DA TRANSAFORMAÇÃO DE UNIDADES

Note que cada unidade de volume é 1.000 vezes maior que a unidade imediatamente inferior, isto é, as sucessivas unidades variam de 1.000 em 1.000.

1° exemplo: Transformar 5 m³ na unidade imediatamente inferior.

$$5 \text{ m}^3 = (5 \text{ x } 1.000) \text{ dm}^3 = 5.000 \text{ dm}^3$$

Regra: Como estamos tratando de m³ e a unidade de transformação pedida está apenas uma casa a esquerda da unidade original, basta multiplicar por 1.000 ou simplesmente colocar três zeros à direita do número dado.

 2° exemplo: Transformar $1.200.000 \text{ cm}^3 \text{ em m}^3$.

1.200.0
$$\text{cm}^3 = (1.200.000 : 1.000.000) \text{ m}^3 = 1.2 \text{ m}^3$$

Regra: Como a unidade de transformação pedida está situada duas casas à esquerda da unidade original, basta dividir o número dado por 1.000.000 ou simplesmente cortar os zeros da unidade original.

TESTES GABARITADOS

1° grupo: Transformar na unidade imediatamente inferior:

- a) 13 m³
- b) 1,5 dm³
- c) 0.03 cm^3
- d) 0,12 dam³

 $2\ensuremath{^{\circ}}$ grupo: Transformar na unidade imediatamente superior:

- a) 1.500 cm^3
- b) 45 m³
- c) 150.000 mm³
- d) 485.200 dm³

Respostas: 1° grupo: a) 13.000 dm³ b) 1.500 cm³ c) 300 mm³ d) 1.200 m³

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

2° grupo: a) 1,5 dm³

b) 0,045 dam³

c) 150 cm^3

d) 485.2 m^3

CÁLCULO DO VOLUME DE UM SÓLIDO

Regra fundamental: Dado um cubo cuja a aresta mede **a** unidades de comprimento, o volume do cubo pode ser calculado por $V = \mathbf{a} \times \mathbf{a} \times \mathbf{a} = \mathbf{a}^3$.

Exemplo: Vamos determinar o volume de um cubo, cuja aresta mede 8 cm. Substituindo, temos: $V = (8 \text{ cm})^3 = 8 \text{ cm} \times 8 \text{ cm} = 512 \text{ cm}^3$.

A figura abaixo nos mostra um paralelepípedo retangular que tem 8 cm de comprimento, 2 cm de largura e 4 cm de altura. Calcule o volume do paralelepípedo.

Regra: Dado um paralelepípedo retangular que tem **a** unidades de comprimento, **b** unidades de largura e **c** unidades de altura, o volume do paralelepípedo pode ser calculado por:

Então: $V = 8 \times 2 \times 4 = 64 \text{ cm}^3$.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

9. <u>SISTEMA LEGAL DE MEDIDAS</u>

DAS MEDIDAS DE COMPRIMENTO

A unidade fundamental e legal para medir comprimentos é o "metro", usado, na maioria dos casos, para medir distâncias médias, como por exemplo, as dimensões da nossa casa, do nosso lote residencial, do nosso quintal, etc. Sua abreviatura é "m".

Existem também as unidades maiores que o metro, designadas para medir distâncias maiores ou de grandes comprimentos, como as dimensões de uma fazenda, a distância entre duas cidades, ou até mesmo, o diâmetro da Terra. Essa unidades são os múltiplos do metro. Sendo elas:

- o <u>decâmetro</u>, que se abrevia "dam" e vale 10 m.
- o <u>hectômetro</u>, que se abrevia "hm" e vale 100 m.
- o quilômetro, que se abrevia "km" e vale 1000 m.

Há, ainda, as unidades menores que o metro, para medir pequenas dimensões como: o comprimento de um prego, a largura da folha de um livro, etc. Essas unidades são os submúltiplos do metro. Sendo elas:

- o <u>decímetro</u>, que se abrevia "dm" e vale 0,1 do m.
- o centímetro, que se abrevia "cm" e vale 0,01 do m.
- o milímetro, que se abrevia "mm" e vale 0,001 do m.

Múltiplos quilômetro	km	1.000 m
Múltiplos hectômetro	hm	100 m
Múltiplos decâmetro	dam	10 m
Unidade Fundamental → metro	m	1 m

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Submúltiplos decímetro	dm	0,1 m
Submúltiplos centímetro	cm	0,01 m
Submúltiplos milímetro	mm	0,001 m

Observação: o <u>metro padrão</u> encontra-se assinalado sobre uma barra de metal nobre no Museu Internacional de Pesos e Medidas, na França. No Brasil, podemos encontrar uma cópia no Museu Nacional.

Não podemos deixar de notificar que existem outras medidas de comprimento também usadas, apesar de não pertencerem ao sistema de medidas. Sendo elas:

lê-se: 1 vírgula 46 quilômetros ou 1 quilômetro e 46 decâmetros.

- a <u>polegada</u>, que vale aproximadamente 25 milímetros.
- a milha, que vale aproximadamente 1.609 metros.
- a <u>légua</u>, que vale aproximadamente 5.555 metros.

LEITURA E TRANSFORMAÇÕES DAS UNIDADES DE COMPRIMENTO

										_ dam
										hm
										km
Vamo	os si	ntetizar c	quadro	o das ı	unidad	es de	con	nprim	ento	da seguinte forma:
	10	10		10	10		10		10	
Km -		hm	dam ⁻	— n	n	dm		cm ⁻		mm

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Observando a sintetização acima, vemos que cada unidade de comprimento é 10 vezes maior que a unidade imediatamente inferior e 10 vezes menor que a unidade imediatamente superior, ou seja, as sucessivas unidades variam de 10 em 10.

Para exemplos, vamos considerar as seguintes transformações:

1) Seja transformar 8 m na unidade imediatamente inferior.

Como a unidade imediatamente inferior do "metro" é o "decímetro" e este está contido 10 vezes no "metro", então: 8 m = (8 x 10) dm = 80 dm.

Regra: como "dm" está situado apenas uma casa abaixo do "m", para transformar, basta completar com um zero para direita.

2) Seja transformar 24 mm na unidade imediatamente superior.

Como a unidade imediatamente superior do "mm" é o "centímetro" e este contém 10 vezes o "mm", então: 24 mm = (24 : 10) cm = 2,4 cm.

<u>Regra:</u> transformar unidade "inferior" em outra "superior" significa dividir porque a unidade menor está contida 10 vezes na maior, bastando, para tanto, contar, da direita para a esquerda do número dado, uma casa para esquerda.

3) Seja transformar 3,5 km em m.

Como a unidade do "m" está situada três casas abaixo do "km", então : 3.5 km = (3.5 x 1000) m = 3.500 m.

<u>Regra</u>: como "m" está localizado três casas abaixo de "km", basta contar, da esquerda para direita, três casas a partir da vírgula ou da parte fracionária, e, não da parte inteira, porque esta marca a unidade antes da transformação.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

TESTES COM RESPOSTAS

Expresse:

- a) 2,5 km em m
- b) 0,4 m em cm
- c) 520 m em hm
- d) 63 mm em cm
- e) 85 cm em m
- f) 13,58 km em m
- g) 1,65 m em cm
- h) 750 m em km
- i) 45 mm em m
- j) 2,9 hm em m
- k) 48.600 m em km
- 1) 0,225 km em m
- m) 8 cm em m
- n) 0,362 hm em m.

Respostas:

- a) 2.500 m
- b) 40 cm
- c) 5,20 hm
- d) 6,3 cm
- e) 0,85 m
- f) 13.580 m
- g) 165 cm
- h) 0,750 km
- i) 0,045 m
- j) 290 m
- k) 48,600 km
- 1) 225 m
- m) 0,08 m
- n) 36,2 m.

MEDIDA DO PERÍMETRO DE UM POLÍGONO

Observe a seguinte figura:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Esta figura representa um campo de futebol que tem a forma retangular e seus lados medem 110 m e 40 m.

Para cercar totalmente o campo de futebol, devemos construir:

$$110 \text{ m} + 49 \text{ m} + 110 \text{ m} + 49 \text{ m} = 318 \text{ m}.$$

<u>Regra:</u> a medida do perímetro, ou simplesmente perímetro de um polígono, é a soma das medidas dos lados desse polígono.

Do exemplo do campo de futebol que tem a forma retangular, podemos definir a seguinte fórmula: $P = 2 \times b + 2 \times h$.

Um terreno tem a forma e as medidas da figura abaixo. Para murar o terreno em todo seu contorno, quantos m de muro devem ser construídos ?

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Observa-se facilmente que, para murar o terreno em todo seu contorno será preciso construir 60 m + 50 m + 40 m + 20 m + 10 m = 200 metros do muro.

DAS MEDIDAS DE CAPACIDADE

A quantidade de líquido existente no interior de um recipiente chama-se capacidade do recipiente, numa determinada unidade de referência. A unidade fundamental para medir a quantidade de líquidos que um recipiente pode contar no seu interior é o <u>litro</u>, que se abrevia com "\ell".

Observação: O <u>litro</u> corresponde à capacidade de um cubo cuja aresta mede 1 dm, ou seja, corresponde ao volume de um <u>decímetro</u> cúbico. Simbolicamente, escreve-se: $1 \ell = 1 \text{ dm}^3$.

Para medir grandes quantidades de líquidos, temos as seguintes unidades como múltiplos do litro:

- o decalitro, que se abrevia dal e vale 10 litros.
- o <u>hectolitro</u>, que se abrevia *hl* e vale 100 litros.
- o <u>quilolitro</u>, que se abrevia kle vale 1000 litros.

Para medir pequenas quantidades de líquidos, temos:

- o <u>decilitro</u>, que se abrevia de vale 0,1 do litro.
- o <u>centilitro</u>, que se abrevia *el* e vale 0,01 do litro.
- o mililitro, que se abrevia me e vale 0,001 do litro.

Estas unidades são os submúltiplos do litro.

Observe o quadro das unidades de capacidade:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Múltiplos quilolitro	kl	1.000 ℓ
Múltiplos hectolitro	h	100 ℓ
Múltiplos decalitro	dal	10 ℓ
Unidade Fundamental → litro	l	1 &
Submúltiplosdecilitro	dl	0,1 ℓ 0,01 ℓ
Submúltiplos centilitro	cl	0,01 &
Submúltiplos mililitro	ml	0,001 &

TRANSFORMAÇÃO DE UNIDADES

Sintetizando o quadro das unidades de capacidade, temos:

$$\frac{10}{\text{kl}} \frac{10}{\text{hl}} \frac{10}{\text{dal}} \frac{10}{\text{l}} \frac{10}{\text{dl}} \frac{10}{\text{cl}} \frac{10}{\text{ml}}$$

Observação: Cada unidade de capacidade é 10 vezes maior que a unidade imediatamente inferior, isto é, as sucessivas unidades variam de 10 em 10.

1) Vamos expressar 2 litros em mililitro.

$$2\ell = (2 \times 100 \text{ m}\ell) = 2.000 \text{ m}\ell$$

<u>Regra:</u> Observe que a unidade de transformação pedida é menor que a padrão três casas, por isso, temos que multiplicar o número dado por mil ou simplesmente acrescentar três zeros para direita.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

2) Já sabemos que 1 dm $^3 = 1 \ell$, então expresse 250 m ℓ em cm 3 .

 $250 \text{ m/} = (250 : 1000 \text{ l}) = 0.25 \text{ l} = 0.25 \text{ dm}^3$ $0.25 \text{ dm}^3 = 250 \text{ cm}^3$.

TESTES COM RESPOSTAS

Expresse em litros:

a) 2,5 hectolitros b) 650 centilitros c) 1.800 mililitros d) 6 m³

Respostas:

a) 250 litros b) 6,50 litros c) 1,8 litros d) 6000 litros.

DAS MEDIDAS DE MASSA

Quando medimos a massa de um corpo no chão (ao nível do mar) encontramos um número que é, também, a medida do <u>peso do corpo</u>. Sendo assim, podemos medir a massa de um corpo na superfície da Terra usando uma balança. Assim, as unidades usadas para medir a massa de um corpo são as mesmas usadas para medir o peso do corpo.

Observação: A massa de um decímetro cúbico de água a uma temperatura de 4º C constitui a unidade padrão de massa, chamado quilograma, que se abrevia "kg".

Contudo, por ser mais prático, usamos como unidade principal o "grama", que se abrevia "g" e se constitui numa massa igual à milésima parte do quilograma, isto é:

$$1 \text{ kg} = 1.000 \text{ g} = 0,001 \text{ kg}.$$

Existe outras unidades, conforme nos mostra o quadro a seguir

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Múltiplos kilograma	kg	1.000 g
Múltiplos hectograma	hg	100 g
Múltiplos decagrama	dag	10 g
Unidade Fundamental	g	1 g
Submúltiplos decigrama	dg	0,1 g
Submúltiplos centigrama	cg	0,01 g
Submúltiplos miligrama	mg	0,001 g

Além dessas unidades, existe outras especiais : a tonelada (t) = 1.000 kg; o megaton, que corresponde a 1.000 toneladas; o quilate = 0,2 grama.

TRANSFORMAÇÃO DE UNIDADES:

Sintetizando o quadro das unidades de massa, temos

	-					
Kg	hg	dag	g	dg	cg	mg

Observação : Cada unidade de massa é 10 vezes maior que a unidade imediatamente inferior, isto é, as sucessivas unidades variam de 10 em 10.

1) Transformar 5 kg em gramas

Logo:
$$5 \text{ kg} = (5 \text{ x } 1000 \text{ g}) = 5000 \text{ g}.$$

Regra: como a unidade pedida na transformação está à direita da unidade padrão três casas, devemos multiplicar por mil ou simplesmente acrescentar três zeros.

2) Transformar 130 cg em g.

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

130 cg = (130:100) = 1,30 g

DAS MEDIDAS DE TEMPO

Como se sabe, o relógio indica $\underline{\text{segundo}}$, $\underline{\text{minuto}}$ e $\underline{\text{hora}}$. O segundo é a unidade fundamental das medidas de tempo. O símbolo do segundo é o ($\underline{\text{s}}$).

UNIDADES MAIORES OUE O SEGUNDO

 \underline{Minuto} (min) = 60 segundos

<u>Hora</u> (h) = 60 minutos ou 3.600 segundos.

 $\underline{\text{Dia}}$ (d) = 24 horas.

As medidas de tempo não são decimais. Por isso, não use a vírgula para representá-las.

Exemplos: 6 horas e 30 minutos = 6 h 30 min

4 horas, 35 minutos e 15 segundo = 4 h 35 min 15 s

Observa-se que para reduzir medidas de tempo, multiplicamos ou dividimos por 60.

Exemplos : Se 1 hora tem 60 minutos, quantas minutos há em 2 horas ?

R: 2 horas = 60 x 2 = 120 minutos.

Quantos minutos há em 240 segundos ?

R: 240:60 = 4 minutos.

as:

GOVERNO DO ESTADO DE RONDÔNIA SECRETARIA DE ESTADO DA EDUCAÇÃO ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO JOHN KENNEDY

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Registramos o tempo não só em horas, minutos e segundos. Existem outras medidas. Veja-

Dia = 24 horas

Semana = 7 dias

Quinzena = 15 dias

 $M\hat{e}s = 30 \text{ ou } 31 \text{ dias}$

Bimestre = 2 meses

Trimestre = 3 meses

Semestre = 6 meses

Ano = 12 meses

 $Bi\hat{e}nio = 2 anos$

Triênio = 3 anos

Ouadriênio = 4anos

Qüinqüênio ou lustro = 5 anos

Decênio ou Década = 10 anos

Meio Século = 50 anos

Século = 100 anos

 $Mil\hat{e}nio = 1.000 \text{ anos.}$

Em matemática, fazemos as operações com o mês comercial de 30 dias e o ano comercial com 360 dias. Quando o ano tem mais um dia (fevereiro) é chamado de <u>ano bissexto</u> (366 dias). No ano bissexto, o mês de fevereiro tem 29 dias. Os anos são bissextos quando são divisíveis por 4 e dão divisões exatas.

Exemplo: 1992: 4 = 498 'e bissexto.

1982:4 = 495, não e bissexto, pois deixa o resto = 2.

Os meses de abril, junho, setembro e novembro têm 30 dias. Os meses de janeiro, março, maio, julho, agosto, outubro e dezembro têm 31 dias. O mês de fevereiro tem 28 dias e no ano bissexto, tem 29 dias.

DAS MEDIDAS DE SUPERFÍCIE

A unidade fundamental para medir superfície corresponde a uma região quadrada de 1 metro de lado denominada <u>metro quadrado</u> e que se abrevia com \mathbf{m}^2 . Há também unidades maiores que o metro quadrado e que são usadas para medir grandes superfícies. Sendo elas:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- o <u>decâmetro quadrado</u>, que se abrevia "dam²" e vale 100 m².
- o hectômetro quadrado, que se abrevia "hm²" e vale 10.000 m².
- o quilômetro quadrado, que se abrevia "dm²" e vale 1.000.000 m².

Há também unidades menores que o metro quadrado e que são usadas para medir pequenas superfícies. Sendo elas:

- o <u>decímetro quadrado</u>, que se abrevia "dm²" e vale 0,01 m².
- o centímetro quadrado, que se abrevia "cm²" e vale 0,0001 m².
- o milímetro quadrado, que se abrevia "mm²" e vale 0,000001 m².

Desta forma, observe o quadro das unidades para medir superfície :

Múltiplos quilômetro quadrado	km²	1.000.000 m ²
Múltiplos hectômetro quadrado	hm²	100.000 m ²
Múltiplos decâmetro quadrado	dam ²	100 m^2
Unidade Fundamentalmetro quadrado	m ²	1 m ²

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Submúltiplos decímetro quadrado	dm ²	0,01 m ²
Submúltiplos centímetro quadrado	cm ²	0,0001 m ²
Submúltiplos milímetro quadrado	mm ²	0,000001 m ²

É muito importante notar que cada unidade de superfície é 100 vezes maior que a unidade imediatamente inferior, isto é, as sucessivas unidades variam de 100 em 100.

DA TRANSFORMAÇÃO DE UNIDADES:

1° exemplo: Transformar 2 m² na unidade imediatamente inferior.

$$2m^2 = (2 \times 100) dm^2 = 200 dm^2$$

Regra: Como estamos tratando de **metro quadrado** e a unidade imediatamente inferior a m^2 é dm^2 , para transformar, basta completar, para direita, com dois zeros.

2° exemplo: Transformar 1.600 hm² na unidade imediatamente superior.

$$1.600 \text{ hm}^2 = (1.600 : 100) \text{ km}^2 = 16 \text{ km}^2$$

Regra: o nosso estudo é sobre quadrado, então, como a unidade imediatamente superior a **hm²** é o **km²** que está à esquerda apenas uma casa, basta eliminar, da direita para a esquerda, dois algarismos do número dado.

3° exemplo: Transformar 3,5 hm² em m²

$$3.5 \text{ hm}^2 = (3.5 \text{ x } 10.000) \text{ m}^2 = 35.000 \text{ m}^2$$

Regra: Lembre-se de que estamos estudando **metro quadrado**, então, como a unidade de transformação **m**² está abaixo da unidade original duas casas, basta completar, a partir da parte fracionária, com dois zeros para cada casa, da esquerda para direita.

DAS MEDIDAS AGRÁRIAS

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Para medir grandes porções de terras (como sítios, fazendas), usamos as unidades agrárias. Sendo elas :

- o centiare, que se abrevia "ca" e vale 1 m².
- o <u>are</u>, que se abrevia "a" e vale $100 \text{ m}^2 = \text{ao dam}^2$.
- o <u>hectare</u>, que se abrevia "ha" e vale $10.000 \text{ m}^2 = \text{ao hm}^2$

DA TRANSFORMAÇÃO DAS UNIDADES AGRÁRIAS

1° exemplo: Transformar 30.000 m² em ha.

 $30.000 \text{ m}^2 = (30.000 : 10.000) \text{ hm}^2 = 3 \text{ hm}^2 = 3 \text{ ha}$

Regra: Note que o hectare corresponde ao hm² = 10.000 m², então, estamos transformando uma unidade menor em outra maior. Portanto, basta dividirmos o valor da unidade fornecida pelo valor correspondente da unidade pedida na transformação.

2° exemplo: Transformar 4,2 ha em m².

4,2 ha = 4,2 hm² = (4,2 x 10.000) m² = 42.000 m²

Regra: Como estamos transformando uma unidade maior para outra menor, é claro que a primeira contém várias vezes a segunda, então, basta multiplicarmos a unidade dada pelo valor correspondente da unidade pedida ($10.000 = 100 \times 100$) por que a unidade pedida na transformação está duas unidades à direita da unidade fornecida.

TESTES GABARITADOS

Expresse as seguintes unidades nas unidades pedidas.

- a) $600 \text{ hm}^2 \text{ em km}^2$
- b) 3,2 km² em m²
- c) $840.000 \text{ m}^2 \text{ em ha}$
- d) $3.650 \text{ cm}^2 \text{ em m}^2$
- e) $0.036 \text{ km}^2 \text{ em dam}^2$
- f) 48 ha em km^2
- g) $13,6 \text{ ha em m}^2$
- h) $0.063 \text{ m}^2 \text{ em cm}^2$
- i) $0.0003 \text{ km}^2 \text{ em m}^2$

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

- j) 8.510.000 m² em km²
- k) 325.600 m² em ha 1) 5 ha em km²

RESPOSTAS

- a) $6 \,\mathrm{km}^2$
- b) 3.200.000 m²
- c) 84 ha d) 0.365 m^2 e) 360 dam^2

- f) 0.48 km^2
- g) 136.000 m^2
- h) 630 cm^2 i) 3.000 m^2
- $j) 8,51^2$

- 1) 32,56 ha
- m) 5.000 km^2

FUNÇÕES

DEFINIÇÃO

Consideremos uma relação de um conjunto A em um conjunto B. Esta relação será chamada de função ou aplicação quando associar a todo elemento de A um único elemento de B.

Exemplos:

Consideremos algumas relações, esquematizadas com diagramas de Euler-Venn, e vejamos quais são funções:

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

Esta relação não é uma função de A em B, pois associa a x_1 ε A dois elementos do conjunto B : y_1 e y_2 .

Esta relação é uma função de A em B, pois associa todo elemento de A um único elemento de B.

Esta relação não é uma função de A em B, pois não associa a $x_2 \in A$ nenhum elemento de B.

Esta relação é uma função de A em B, pois associa à todo elemento de A um único elemento de R

Esta relação é uma função de A em B, pois associa à todo elemento de A um único elemento de B

APOSTILA SINOPSE – PROF° CARLOS ANDRÉ CENTRO EDUCACIONAL MOJUCA - CEM

