Solutions to EE5137 Exam (Semester 1 2018/9)

December 3, 2018

1 Problem 1

(a) (i) By the question, we know that

$$\mathbb{E}[X|Y=1] = 3, \qquad \mathbb{E}[X|Y=2] = \mathbb{E}[X] + 5, \qquad \mathbb{E}[X|Y=3] = \mathbb{E}[X] + 7,$$

Hence, $a_1 = 0, b_1 = 3, a_2 = 1, b_2 = 5, a_3 = 1, b_3 = 7.$

(ii) By the law of iterated expectations,

$$\begin{split} \mathbb{E}[X] &= \mathbb{E}[\mathbb{E}[X|Y]] \\ &= \frac{1}{3}(3) + \frac{1}{3}(\mathbb{E}[X] + 5) + \frac{1}{3}(\mathbb{E}[X] + 7) \end{split}$$

This yields after solving the equation

$$\frac{1}{3}\mathbb{E}[X] = 1 + \frac{5}{3} + \frac{7}{3} = 5, \quad \Longrightarrow \quad \mathbb{E}[X] = 15.$$

(a) (i) We claim that b = 0. Let's prove it. For fixed $\epsilon > 0$

$$\mathbb{P}(|X_n - 0| > \epsilon) = \mathbb{P}(X_n = n^2) = \frac{1}{n} \to 0$$

Hence, X_n converges to 0 in probability and so b = 0.

(ii) We claim that $c = \infty$. Let's prove it. Consider

$$\mathbb{E}[X_n] = \Pr(X_n = n^2) \cdot n^2 + \Pr(X_n = 0) \cdot 0 = \frac{1}{n} \cdot n^2 = n$$

Clearly, $\mathbb{E}[X_n]$ diverges to ∞ and so $c = \infty$.

2 Problem 2

(a) Consider the likelihood ratio test

$$\frac{f_{X|H_0}(x)}{f_{X|H_1}(x)} \stackrel{\text{decide H}_0}{\geqslant} \frac{p_1}{p_0} =: \eta,$$

where p_1 and p_0 are the prior probabilities of H_0 and H_1 resp. Then we have

$$\frac{f_{X|H_0}(x)}{f_{X|H_1}(x)} = \frac{\frac{1}{\sqrt{2\pi\sigma_0^2}} \exp(-\frac{x^2}{2\sigma_0^2})}{\frac{1}{\sqrt{2\pi\sigma_1^2}} \exp(-\frac{x^2}{2\sigma_1^2})} = \frac{\sigma_1}{\sigma_0} \exp\left(-\frac{x^2}{2}(\sigma_0^{-2} - \sigma_1^{-2})\right).$$

Comparing this to the threshold η , we obtain

$$-\frac{x^2}{2}(\sigma_0^{-2}-\sigma_1^{-2}) \stackrel{\text{decide H}_0}{\gtrless} \ln\left(\eta \frac{\sigma_0}{\sigma_1}\right)$$

Hence, by using the fact that $\sigma_0 < \sigma_1$

$$x^2 \overset{\text{decide } \mathsf{H}_1}{\geqslant} 2 \frac{1}{\sigma_1^{-2} - \sigma_0^{-2}} \ln \left(\eta \frac{\sigma_0}{\sigma_1} \right) =: \gamma^2$$

So we decide in favor of H_1 iff

$$|x| > \gamma$$
.

(b) (i) We have

$$L(X_1, X_2, X_3) = \frac{P_0(X_1)P_0(X_2)P_0(X_3)}{P_1(X_1)P_1(X_2)P_1(X_3)} = \frac{\prod_{i=1}^3 (\frac{1}{2})^{X_i} (\frac{1}{2})^{1-X_i}}{\prod_{i=1}^3 p^{X_i} (1-p)^{1-X_i}} = \frac{1/8}{(2/3)^T (1/3)^{3-T}}$$

Since $L(X_1, X_2, X_3)$ depends only on T, T is a sufficient statistic.

(ii) Note that $T \in \{0, 1, 2, 3\}$. Evaluating the likelihood ratio,

$$L(X_1, X_2, X_3) = \begin{cases} 27/8 & T = 0\\ 27/16 & T = 1\\ 27/32 & T = 2\\ 27/64 & T = 3 \end{cases}$$

- (iii) For probability of false alarm to be 1/8, we need to put the threshold at (27/64, 27/32) and declare that if T > 2, then H_1 is declared. This is because $P_0(T > 2) = P_0(T = 3) = 1/8$. Hence, the best probability of detection is $P_1(T > 2) = P_1(T = 3) = (2/3)^3 = 8/27$.
- (iv) For probability of false alarm to be 1/4, we consider that $P_0(T>1)=1/2$ and the corresponding probability of detection is $P_1(T>1)=(2/3)^3+3(2/3)^2(1/3)=20/27$. Hence, we need to randomize between the strategy that places the threshold at T>2 and T>1. Now we find $\alpha \in [0,1]$ such that

$$\alpha \frac{1}{8} + (1 - \alpha) \frac{1}{2} = \frac{1}{4}, \qquad \Longrightarrow \qquad \alpha = \frac{2}{3}$$

Thus, the best probability of detection is

$$\alpha \frac{8}{27} + (1 - \alpha) \frac{20}{27} = \frac{12}{27}.$$

The best test in terms of T would be to randomize between T > 2 and T > 1 where the former has probability 2/3.

2

3 Problem 3

- (a) States 1 and 4 are transient. States 2 and 3 constitute a class of recurrent states and state 5 constitutes another class (a singleton class) of recurrent states.
- (b) Let $\pi^{(1)}$ be the steady-state vector for class $\{2,3\}$ and let $\pi^{(2)}$ be the steady state vector for class $\{5\}$. For the class $\{5\}$, $\pi^{(2)} = (0,0,0,0,1)$. For the class $\{2,3\}$, the steady-state equations (written just for the recurrent class) are

$$\pi_3^{(1)} P_{32} = \pi_2^{(1)}; \quad \pi_2^{(1)} P_{23} + \pi_3^{(1)} P_{33} = \pi_3^{(1)}; \quad \pi_2^{(1)} + \pi_3^{(1)} = 1$$

Solving these, we obtain

$$\pi_3^{(1)} = \frac{1}{P_{32} + 1}, \qquad \pi_2^{(1)} = \frac{P_{32}}{P_{32} + 1}.$$

- (c) (i) $P_{44}^n = (1/3)^n$ since n successive self-loop transitions, each of probability 1/3, are required.
 - (ii) $P_{45}^n = (1/3)^1 + (1/3)^2 + \ldots + (1/3)^n = \frac{1}{2}(1-3^{-n})$. The reason for this is that there are n walks going from 4 to 5 in n steps; each such walk contains the 4 to 5 transition at a different time. If it occurs at time i then there are i-1 self-transitions from 4 to 4, so the probability of that walk is $(1/3)^i$.
 - (iii) $P_{41}^n = n(1/3)^n$ since there are n walks that go from 4 to 1 in n steps, one for each step in which the $4 \to 1$ transition can be made. Each walk has probability $(1/3)^n$.
 - (iv) $P_{43}^n + P_{42}^n = 1 P_{44}^n P_{45}^n P_{41}^n = \frac{1}{2} \frac{2n+1}{2}3^{-n}$ since $\sum_j P_{4j}^n = 1$.
 - (v) $\lim_{n\to\infty} P_{43}^n$: From (iv) note that $\lim_{n\to\infty} P_{43}^n + P_{42}^n = 1/2$. Given that $X_n \in \{2,3\}$,

$$\lim_{m \to \infty} \Pr(X_m = 3 | X_n \in \{2, 3\}) = \pi_3^{(1)} = \frac{1}{P_{32} + 1}$$

Since $\lim_{n\to\infty} \Pr(X_n \in \{2,3\} | X_0 = 4) = 1/2$, we see that

$$\lim_{m \to \infty} P_{43}^m = \frac{1}{2(P_{32} + 1)}.$$

(d) We only have the find the eigenvalue with the second largest magnitude. For this purpose, consider

$$\det(P - \lambda I) = 0 \qquad \Rightarrow \qquad \det\left(\begin{bmatrix} 0.2 - \lambda & 0.8 \\ 0.5 & 0.5 - \lambda \end{bmatrix}\right) = 0.$$

Multiplying out, we see that

$$(0.2 - \lambda)(0.5 - \lambda) - 0.4 = 0.$$

This quadratic equation has two roots, $\lambda_1 = 1$ and $\lambda_2 = -0.3$. Hence, $\phi = -0.3$.

4 Problem 4

- (a) (i) Independent increments property of the Poisson process.
 - (ii) This distribution is exponential with rate λ .
 - (iii) k = 0.
 - (iv) We need to evaluate

$$\Pr(\text{no arrivals in interval } [t^* - x, t^*]) = \Pr(N(x) = 0) = e^{-\lambda x}.$$

We have shown that

$$\Pr(t^* - U > x) = e^{-\lambda x}, \qquad \Pr(t^* - U \le x) = 1 - e^{-\lambda x}$$

so $t^* - U$ is also exponential with rate λ .

- (v) Since $t^* U$ and $V t^*$ are independent exponentials with rate λ , their sum L is Erlang of order 2 with rate λ .
- (vi) The interarrival time of a Poisson process is an exponential with rate λ . It is more likely that t^* , being observed, is in a longer interarrival interval.
- (b) We have

$$\Pr(S_n \le t) = \Pr((X_1 - \mu) + \dots + (X_n - \mu) \le t - n\mu) = \Pr\left(\frac{1}{n}((X_1 - \mu) + \dots + (X_n - \mu)) \le \frac{t}{n} - \mu\right)$$

For n large enough $\frac{t}{n} - \mu \le -\frac{\mu}{2}$. Hence,

$$\Pr(S_n \le t) \le \Pr\left(\frac{1}{n}((X_1 - \mu) + \ldots + (X_n - \mu)) \le -\frac{\mu}{2}\right)$$

Since each of the summands on the right-hand-side have zero mean, by Chebyshev's inequality or the weak law of large numbers, the right-hand-side probability converges to zero so $\Pr(S_n \leq t) \to 0$.