

HP-71

Users' Library Solutions

Math

USERS' LIBRARY ORDER FORM

HP-71 Solutions Books are available at a cost of \$12.50 each. To order, please call toll free (800) 538-8787, contact your local dealer, or use the form provided below to order directly from the Users' Library. If ordering from the Users' Library, please include a handling charge of \$3.50 per order. REMEMBER... You can further customize your HP-71 with software available through the Users' Library. A Users' Library Membership includes 2 free Solutions Books (a \$25.00 value) plus periodic updates containing: -New Software Availability -Product Information -Third-Party Products -Contests -Discounts **Solution Books Requested** YES! I want to subscribe to the Users' Library. 1. \$20.00 U.S. and Canada (5851-1011) Part Number Title (plus state and local taxes) Part Number \$35.00 OUTSIDE the U.S. and Canada (5851-1012) Title **HP-71 Solutions Book Selection includes:** 00071-90064/Math 00071-90066/General Utilities 00071-90065/Games Please contact the Users' Library for further information regarding recorded material. **Solutions Book Request Solutions Book Title Price Part Number** 00071-900 __ _ 00071-900 _ _ 00071-900 _ _ **Users' Library Subscription** State and Local Taxes Solutions Book handling charge (\$3.50) TOTAL All payments must be in U.S. dollars and drawn on a U.S. bank. Send all orders (with payment) directly to: HEWLETT-PACKARD USERS' LIBRARY Dept. 39UL 1000 N.E. Circle Blvd. Corvallis, Oregon 97330 VISA Purchase order Master Card Payment enclosed (\$20.00 minimum) Card Number/Company Purchase Order Name Company (if applicable)

State/Country

Zip

Address

City

CONTENTS

Vector Operations	L
User Instructions	2 9
Numerical Integration	L
User Instructions	2
Solution to F(x)=0 on an Interval2	l
User Instructions	3 7
Matrix Operations30	8
User Instructions	3
Fast Fourier Transform4	3
User Instructions49 Program Listing5	5 1
Polynomial Solutions54	4
User Instructions	5 8

Vector Operations

This program provides solutions to the most common vector operations, such as addition, subtraction, dot and cross products, included angle, multiplication of a vector by a scalar, finding the length of a vector, and determining unit vectors. The program will allow vectors to be entered in either rectangular (x, y, z) or cylindrical (r, theta, z) coordinates, and will also display the result in either form. Conversion between these two formats is also an option. A useful feature of this program is the ability to chain vector operations by using the result from one operation as an operand for the next one.

V3 = vector between points defining V1 and V2

Comments Input Display I -----I 1) Run the program. INPUT R/C ? 2) The user may enter vectors in either rectangular or cylindrical form. Press [R] to enter x, y, z components of the vector or [C] to enter r, theta and z components of the vector. If [C] is chosen, user flag 1 will be set as a visual reminder of the [R] or [C] DISPLAY R/C? input format required. 3) If the result of a vector operation is a vector, the program will display the result in either rectangular or cylindrical form. Press [R] to see the x, y, and zcomponents of the result, or press [C] to see the result expressed in terms of r, theta and z. If [C] is chosen, user flag 2 will be set as a visual reminder of the display format. [R] or [C] A,S,X,I,D,N,M,U,C,F,Q? 4) The program is prompting for the vector operation to be performed. The options are described below and grouped according to their input requirements. Vl represents the first vector entered, and V2 the second (if necessary). ********** SINGLE VECTOR OPERATIONS ******** N: calculate the norm or magnitude of a vector and return the scalar result. [N] M: multiply a vector by a scalar and return the vector result in the proper format. [M]

Display

Comments Input -----I-----I-----I U: calculate the unit vector with the same direction as the input vector and with a norm of 1. Return the vector result in the proper format. [U] C: convert the input vector from rectangular to cylindrical or vice versa. This option requires that the input and display formats chosen by the user correspond to the desired conversion. If they do not, the message 'I/O INCORRECT' will appear and the program will again ask for input and display formats. [C] For these single vector operations, one of the following two sets of input prompts will appear, depending on the input mode selected. **x** = * rectangular * <x>[ENDLINE] y= * coordinates * <y>[ENDLINE] z =<z>[ENDLINE] r= * cylindrical * <r>[ENDLINE] theta= * coordinates * <theta>[ENDLN] z= <z>[ENDLINE] *********** TWO VECTOR OPERATIONS ********* A: add V1 and V2 and return

[A]

the result in the proper

format.

Comments	Input	Display
S: subtract V2 from V1 and return the result in the proper format.	[s]	-
X: calculate the cross product Vl x V2 and return the result in the proper format.	[x]	
I: calculate the included angle between VI and V2 and return the result in degrees.	[1]	
D: calculate the dot or scalar product V1.V2 and return the scalar result.	[D]	
For these two-vector operations, one of the following two sets of input prompts will appear, depending on the input mode selected.		
<pre>* rectangular * * coordinates *</pre>	<pre><x1>[ENDLINE] <y1>[ENDLINE] <z1>[ENDLINE] <x2>[ENDLINE] <y2>[ENDLINE] <z2>[ENDLINE]</z2></y2></x2></z1></y1></x1></pre>	VECTOR 1: x= VECTOR 1: y= VECTOR 1: z= VECTOR 2: x= VECTOR 2: y= VECTOR 2: z=
<pre>* cylindrical * * coordinates *</pre>	<pre><r1>[ENDLINE] <thetal>[ENDLN] <z1>[ENDLINE] <r2>[ENDLINE] <theta2>[ENDLN] <z2>[ENDLINE]</z2></theta2></r2></z1></thetal></r1></pre>	VECTOR 2: r= VECTOR 2: theta=
**************************************	*	
F: allows the user to change input and/or display formats from cylindrical to rectangular or vice versa.	(F)	<go 2="" step="" to=""></go>

Comments Input Display I ----- I ----- I ------ I ------ I Q: exit program. [Q] > 5) After an operation is chosen, the program will return the result in one of the formats listed below, depending on whether it is a vector or scalar. Pressing any key (except [ON]) will display the next component or move on to step 6. (******* VECTOR RESULTS [A],[S],[X],[M],[U],[C]: These options will return a vector result in either rectangular or cylindrical coordinates, depending on the display option chosen in step 3. **x** = * rectangular * <any key> y= * coordinates * <any key> **z**= <any key> <qo to step 6> r= * cylindrical * <any key> theta= * coordinates * <any key> z= <any key> <go to step 6> ********** SCALAR RESULTS ********* [I] INCLUDED ANGLE = <any key> <go to step 6> [D] DOT PRODUCT = <go to step 6> [N]NORM = <go to step 6>

.	Comments	-		Input		Display
6)	At this point, the user is given the option of exiting the program or running it again.	-1				AGAIN (Y/N)?
	To exit program, press 'N'.	[N]			>	
	To run again, press 'Y'.	[Y]			<go< td=""><td>to step 7></td></go<>	to step 7>
7)	If the result of the last operation was a scalar, the program will return to step 4.					
	If it was a vector, the program provides the option of using it in subsequent calculations.				USE	RESULT (Y/N)?
	To discard the result, press 'N'. To use the result, press 'Y'.	[N]	or	[Y]	<go< td=""><td>to step 4></td></go<>	to step 4>

If 'Y' is chosen and the next operation requires one vector, the program will skip the prompt for the components and display the result. If two vectors are required, the program will assume the result is the first vector and will ask only for the second vector.

REFERENCES:

Salas, S. and Hille, E.; "Calculus", Xerox.

Hudson, R.; "The Engineer's Manual", Wiley and Sons, Inc.

EXAMPLES

- A) Find the cross product of $(3,5,\emptyset)$ and $(4,\emptyset,1)$, and then calculate the angle the result vector makes with the x-axis $(1,\emptyset,\emptyset)$.
- B) Find the length (norm) of the vector (12.66, -4.5, -7).
- C) Convert $(-4,7,\emptyset)$ to cylindrical coordinates.

Comments	Input	Display
1) Run the program.	[RUN]	INPUT R/C ?
Specify input in rectang- ular coordinates.	[R]	DISPLAY R/C ?
 Specify output in rectang- ular coordinates. 	[R]	A,S,X,I,D,N,M,U,C,F,Q?
4) Select cross product option.	[X]	VECTOR 1: x=
5) Enter x, y, z for vectors.	3 [ENDLINE] 5 [ENDLINE] Ø [ENDLINE] 4 [ENDLINE] Ø [ENDLINE] 1 [ENDLINE]	VECTOR 2: z=
6) Display result.	<any key=""></any>	x=5 y=-3 z=-20
7) Run program again.	<any key=""></any>	RUN AGAIN (Y/N)?
8) Use result.	[Y]	USE RESULT (Y/N)?
9) Calculate included angle.	[Y]	A,S,X,I,D,N,M,U,C,F,Q?
10) Enter second vector.	[I] 1 [ENDLINE] Ø [ENDLINE] Ø [ENDLINE]	VECTOR 2: x= VECTOR 2: y= VECTOR 2: z=
ll) Display result.		ANGLE = 76.1130063355
12) Run program again.	<any key=""></any>	RUN AGAIN? (Y/N)
13) Calculate norm.	[Y]	A,S,X,I,D,N,M,U,C,F,Q?
14) Input vector.	[N] 12.66[ENDLINE] -4.5 [ENDLINE] -7 [ENDLINE]	x = y = z =
15) Display result.		NORM = 15.1501023099

EXAMPLES

-	Comments	Input	Display
1		-	-11
16) Ru	n program again.	<any key=""></any>	RUN AGAIN? (Y/N)
	nvert from rectangular cylindrical.	[Y]	A,S,X,I,D,N,M,U,C,F,Q?
	ange output format to tch conversion.	[C]	I/O INCORRECT INPUT R/C?
19) Sp	ecify rectangular input.	[R]	DISPLAY R/C?
20) Sp	ecify cylindrical output.	[C]	A,S,X,I,N,M,U,C,F,Q?
	oose conversion now that O format is correct.	[C]	x=
22) In	put vector.	-4[ENDLINE] 7 [ENDLINE] Ø [ENDLINE]	y= z=
23) Di	splay result.	<any key=""></any>	r= 8.0622577483 theta= 119.744881297 z= 0
24) En	d program.	<any key=""> [N]</any>	RUN AGAIN? (Y/N)

```
ØØ1Ø! VECTOR OPERATIONS
0020 ! Revision 1.0 3/28/84
0030 !
0040 DEGREES @ DELAY 0,0 @ CFLAG 1,2,3,4
0050 K0$="ASXIDNMUCFQ" @ I0$="CR" @ I1$="YN"
ØØ6Ø 'IO':
ØØ7Ø DISP "INPUT R/C ? ";
0080 'II': K1$=UPRC$(KEY$) @ IF NOT POS(I0$,K1$) THEN 'II' ELSE DISP 0090 IF K1$="C" THEN SFLAG 1 ELSE CFLAG 1
Ø1ØØ IF FLAG(1) THEN X1$="r=" @ Y1$="theta=" ELSE X1$="x=" @ Y1$="y="
ØllØ DISP "DISPLAY R/C ? ";
0120 'O1': K1$=UPRC$(KEY$) @ IF NOT POS(I0$,K1$) THEN 'O1' ELSE DISP
0130 IF K1$="C" THEN SFLAG 2 ELSE CFLAG 2
Ø14Ø IF FLAG(2) THEN X2$="r=" @ Y2$="theta=" ELSE X2$="x=" @ Y2$="y="
0150 'OP': DISP "A,S,X,I,D,N,M,U,C,F,Q"
Ø16Ø 'WAIT': K1$=UPRC$(KEY$) @ KØ=POS(KØ$,K1$) @ IF NOT KØ THEN 'WAIT'
0170 IF K0=11 THEN 'Q'
0180 IF K0=10 THEN CFLAG 1,2,3 @ GOTO 'IO'
Ø19Ø IF KØ#9 THEN 'A1'
0200 IF NOT FLAG(1) EXOR FLAG(2) THEN DISP 'I/O INCORRECT' @ WAIT 2 Al'
Ø21Ø GOTO 'IO'
0220 'A1': IF K0<6 THEN 'I2VA'
0230 'Ilv': IF FLAG(3) THEN 'SUBCALL'
0240 DISP X1$; @ INPUT "";X1
0250 IF FLAG(1) AND X1<0 THEN DISP "INVALID ENTRY" @ GOTO 'I1V'
0260 DISP Y1$; @ INPUT "";Y1
0270 INPUT "z="; Z1
Ø28Ø GOTO 'SUBCALL'
0290 'I2VA': IF FLAG(3) THEN 'I2VB'
0300 DISP "VECTOR 1:"&X1$; @ INPUT "";X1
0310 IF FLAG(1) AND X1<0 THEN DISP "INVALID ENTRY" @ GOTO '12VA'
0320 DISP "VECTOR 1:"&Y1$; @ INPUT "";Y1
0330 INPUT "VECTOR 1:z=";Z1
Ø34Ø 'I2VB':
Ø35Ø DISP "VECTOR 2:"&X1$; @ INPUT "";X2
Ø36Ø IF FLAG(1) AND X2<Ø THEN DISP "INVALID ENTRY" @ GOTO 'I2VB'
0370 DISP "VECTOR 2:"&Y1$; @ INPUT "";Y2
0380 INPUT "VECTOR 2:z="; Z2
0390 IF FLAG(1) THEN CALL C2R(X2,Y2)
Ø4ØØ 'SUBCALL':
0410 IF FLAG(1) THEN CALL C2R(X1,Y1)
Ø42Ø GOSUB K1$
Ø43Ø 'CYCLE':
Ø44Ø DISP "RUN AGAIN? (Y/N) ";
Ø45Ø 'A2': K1$=UPRC$(KEY$) @ ON POS(I1$,K1$)+1 GOTO 'A2','USEIT','Q'
\emptyset46\emptyset 'USEIT': DISP @ IF IP((KØ-1)/3)=1 OR KØ=9 THEN CFLAG 3 @ GOTO 'OP'
0470 DISP "USE RESULT? (Y/N)";
Ø48Ø 'A3': K1$=UPRC$(KEY$) @ IF NOT POS(I1$,K1$) THEN 'A3' ELSE DISP
0490 IF POS("N", K1$) THEN CFLAG 3 @ GOTO 'OP'
0500 IF NOT POS("Y", K1$) THEN 'USEIT'
Ø51Ø IF FLAG(2) THEN CALL C2R(XØ,YØ)
Ø52Ø X1=XØ @ Y1=YØ @ Z1=ZØ @ SFLAG 3 @ GOTO 'OP'
Ø53Ø 'A':
\emptyset54\emptyset X\emptyset=X1+X2 @ Y\emptyset=Y1+Y2 @ Z\emptyset=Z1+Z2
Ø55Ø GOSUB 'OV'
```

```
Ø56Ø RETURN
 Ø57Ø 'S':
 Ø58Ø XØ=X1-X2 @ YØ=Y1-Y2 @ ZØ=Z1-Z2
 Ø59Ø GOSUB 'OV'
 Ø6ØØ RETURN
 Ø61Ø 'D':
 Ø62Ø DØ=X1*X2+Y1*Y2+Z1*Z2
 0630 DISP "DOT PRODUCT ="; D0 @ GOSUB 'W'
Ø64Ø RETURN
Ø65Ø 'X':
Ø66Ø XØ=Y1*Z2-Y2*Z1 @ YØ=Z1*X2-Z2*X1 @ ZØ=X1*Y2-X2*Y1
Ø67Ø GOSUB 'OV'
Ø68Ø RETURN
0690 'M': INPUT "SCALAR =";S
0700 X0=X1*S @ Y0=Y1*S @ Z0=Z1*S
0710 GOSUB 'OV'
Ø72Ø RETURN
0730 'I':
0740 SFLAG 4 @ GOSUB 'N' @ CFLAG 4
0750 M3=SQR((X2-X1)^2+(Y2-Y1)^2+(Z2-Z1)^2)
0760 \text{ A0} = (\text{M1} + \text{M1} + \text{M2} + \text{M2} - \text{M3} + \text{M3}) / (2 + \text{M1} + \text{M2})
0770 C9 = .00000000000002
0780 IF FP(FP(ABS(A0))+C9)<.00000000000000 THEN A0=IP(A0+SGN(A0)*C9)
\emptyset79\emptyset Al=ACOS(A\emptyset)
0800 DISP "INCLUDED ANGLE ="; Al @ GOSUB 'W'
Ø81Ø RETURN
0820 'N':
0830 \text{ M1} = SQR(X1*X1+Y1*Y1+Z1*Z1)
\emptyset 840 M2 = SQR(X2*X2+Y2*Y2+Z2*Z2)
0850 IF NOT FLAG(4) THEN DISP "NORM =";M1 @ GOSUB 'W'
0860 RETURN
Ø87Ø 'U':
Ø88Ø SFLAG 4 @ GOSUB 'N' @ CFLAG 4
0890 \times 0=x1/M1 = y0=y1/M1 = z0=z1/M1
0900 GOSUB 'OV'
0910 RETURN
0920 'W': IF KEY$="" THEN 'W' ELSE RETURN
0930 'C':
0940 \times 0 = \times 1 @ \times 0 = \times 1 @ \times 0 = \times 1
0950 'OV':
0960 IF FLAG(2) THEN CALL R2C(X0,Y0)
0970 DISP X2$;X0 @ GOSUB 'W'
0980 DISP Y2$;Y0 @ GOSUB 'W'
0990 DISP "z="; Z0 @ GOSUB 'W'
1000 RETURN
1010 'Q': CFLAG 1,2,3,4 @ DISP @ PUT "#43" @ END
1020 SUB R2C(R,T)
1030 I=R @ J=T
1040 R=SQR(I*I+J*J)
1050 T=ANGLE(I,J)
1060 SUB END
1070 SUB C2R(I,J)
1080 R=I @ T=J
1090 I=R*COS(T)
1100 J=R*SIN(T)
1110 SUB END
```

This program will perform numerical integration whether a function is known explicitly or at a finite number of equally spaced points.

For the explicit case, a 16 point Gaussian quadrature is provided for a finite interval. Also, the integral may be found for the explicit case using Simpson's or the Trapezoidal methods. The quadrature is more accurate, however.

Given a finite set of points, Simpson's rule or the Trapezoidal rule may be used to find the integral.

Equations:

Gaussian Quadrature:

$$(b-a)/2$$
 $\sum_{j=1}^{N} w < j > f((a+b+x < j > (b-a))/2)$

where w < j > , x < j > are the weights and nodes, respectively. The weights and nodes are for an integral from -1 to 1.

Simpson's Rule:

$$h[f(x\emptyset) + 4f(x1) + 2f(x2) + ... + 2f(x) + 4f(x) + f(x)]/3$$

where h is the (equally spaced) interval distance. 'n' must be even for the method to work.

Trapezoidal Rule:

$$h/2[f(x\emptyset) +2 \sum_{j=1}^{n=1} (f(x) + f(x)]$$

where h = (b-a)/n for interval (a,b).

Comments II-	Input	Display	(
1) Run the program.		Gauss,Simp,Trap,Quit	
2) Choose desired method. a. Gauss b. Simpson c. Trapezoidal d. Quit Go to desired option to continue.	G S T Q	<pre>f(x) = Explicit (Y/N) Explicit (Y/N) <blinking cursor=""></blinking></pre>	
***** Gauss *****			
Gl) Key in the function with variable 'x'.	<function> [ENDLINE]</function>	Lwr,Upr bounds=	
G2) Key in the lower and upper bound separated by a comma.	<l,u></l,u>	<pre>calculating Result= <val.></val.></pre>	
G3) To continue, press any key. Go to step 1 to continue.	<any key=""></any>	Gauss,Simp,Trap,Quit	
***** Simpson *****			(
S1) If the function is known: Go to the explicit case (S5). If the function is unknown:	Y N	<pre># of Partitons=<val.> Nmbr of pnts=<val.></val.></val.></pre>	
S2) (Implicit case) Key in the number of points. For Simpson's rule, this must be an odd number.	<number></number>	<pre>Interval length=<val.></val.></pre>	
S3) Key in the interval length for the partitions. This routine requires that partitions be the same length.	<length></length>	E(Ø) = <val.></val.>	
You are now in the matrix editor. Continue at that section (E1) and return.		calculating Result= <val.></val.>	
S4) To continue, press any key. Go to step 1 to continue.	<any key=""></any>	Gauss,Simp,Trap,Quit	
S5) (Explicit Case) Key in the number of partitions desired. This must be an even value.	<number></number>	f(x)=	

т.	Comments	Input	Display
S6)	Key in the function with variable 'x'.	<function></function>	calculating Result= <val.></val.>
S7)	Key in the lower and upper bound separated by a comma.	<1b,ub>	<pre>calculating Result= <val.></val.></pre>
S8)	To continue, press any key. Go to step 1 to continue.	<any key=""></any>	Gauss, Simp, Trap, Quit
***	*** Trapezoidal *****		
Tl)	If the function is known: Go to the explicit case (T5).	Y	<pre># of Partitons=<val.></val.></pre>
	If the function is unknown:	N	Nmbr of pnts= <val.></val.>
Т2)	(Implicit case) Key in the number of points.	<number></number>	<pre>Interval length=<val.></val.></pre>
T3)	Key in the interval length for the partitions.	<length></length>	E(0) = < val. >
	You are now in the matrix editor. Continue at that section (El) and return.		calculating Result= <val.></val.>
T4)	To continue, press any key. Go to step 1 to continue.	<any key=""></any>	Gauss, Simp, Trap, Quit
Т5)	(Explicit Case) Key in the number of partitions desired.	<number></number>	f(x)=
т6)	Key in the function with variable 'x'.	<function> [ENDLINE]</function>	<pre>calculating Result= <val.></val.></pre>
т7)	Key in the lower and upper bound separated by a comma.	<1b,ub>	<pre>calculating Result= <val.></val.></pre>
т8)	To continue, press any key. Go to step 1 to continue.	<any key=""></any>	Gauss, Simp, Trap, Quit

Comments	Input	Display
***** Matrix Editor *****		- I I
The points E(0) through E(n) may be entered. The value displayed is the current value of the point. You may change the value, move to a previous value, move to the next value, or specify a point to move to. Pressing [Q] exits the matrix editor, and the program finds the value of the integral.		E(I)= <value></value>
El) To change value:	[ENDLINE] <new val.=""> [ENDLINE]</new>	E(I+1)= <value></value>
To move to next value (this is the arrow key, not the greater than char.):	[>]	E(I+1)= <value></value>
To move to previous value (this is the arrow key, not the less than char.):	[<]	E(I-1) = < value >
To move to a specific point: Key in the desired	[SPC]	Element=
element index:	<index></index>	<pre>E(<index>) =<val.></val.></index></pre>
To quit the routine:	[Q]	calculating

EXAMPLE PROBLEMS

Problem 1.

Given the approximations below for f(x), compute the approximations to the integral from the bounds $\emptyset-2$ by the trapezoidal rule and by Simpson's rule. The interval length is $\emptyset.25$.

2 1 3 5 8 6 7 f(x) 2 2.8 3.8 5.2 7 9.2 12.1 15.6 20

I-	Comments	Input	Display II
1)	Run the program.		Gauss,Simp,Trap,Quit
2)	Choose trapezoidal method:	T	Explicit (Y/N)
3)	Since the function is unknown, choose implicit case:	N	Nmbr of pnts=0
4)	Key in the number of points.	9[Enoline]	Interval length=0
5)	Key in the interval length for the partitions.	• 25[ENOLINE]	E(Ø)=Ø
6)	Enter the function values:	[ENDLINE]	value=
		[ENDLINE]	E(1) = Ø value=
	The previous value was		$E(2) = \emptyset$
	supposed to have been 2.8.		
	Edit it.	[<] [ENDLINE]	
		2.8	value =
	Continue entering the west of	[ENDLINE]	$E(2) = \emptyset$
	Continue entering the rest of of the values in the same manner	r.	
	To quit:	Q	calculating Result=16.6750
7)	To continue, press any key.	<any key=""></any>	Gauss, Simp, Trap, Quit
8)	Now use Simpson's rule.	S	Explicit (Y/N)
9)	Since the function is unknown, choose implicit case:	N	Nmbr of pnts=9

Comments	Input I	Display
10) Since this is the correct number, just press:		Interval length=.2500
ll) This value is also okay.	[ENDLINE]	E(Ø)=2
12) Since the program leaves the values the same, simply press [Q] to finish.13) To continue, press any key.	Q	calculating Result=16.5833 Gauss,Simp,Trap,Quit
Problem 2.		
Find the value of the integral $f(x) = 1/(1-\cos(x) + .25)$.	of f(x) from Ø t	o 2*pi where
Comments	Input	Display
Comments I 1) Run the program.	Input I	Display II Gauss,Simp,Trap,Quit
I	Input IG	Gauss, Simp, Trap, Quit
 Run the program. Choose Gauss's 	G 1/(1-cos(x)+.25)	<pre>Gauss,Simp,Trap,Quit f(x)=</pre>
I	G 1/(1-cos(x)+.25) [ENDLINE] Ø,2*pi [ENDLINE]	<pre>Gauss,Simp,Trap,Quit f(x)=</pre>

```
Note that some of the comments are not preceded by line numbers.
ØØ1Ø DEF FNK$(DØ$,KØ$)
                           ! Find which key was pressed function
ØØ2Ø DISP DØ$
0030 'KEY': K$=KEY$
ØØ4Ø IF NOT POS(KØ$,K$) THEN "KEY"
0050 FNK$=K$
0060 END DEF
**********
                 INITIALIZATION *********
0070 OPTION BASE 0
ØØ8Ø DESTROY A, H, P, T$, K$, K1$
0090 DIM K$[4],K1$[1],T$[1]
Ø100 INTEGER N.P
**** BEGIN ****
Ø11Ø 'START': Kl$=FNK$("Gauss,Simp,Trap,Quit","GSTQ")
Ø12Ø GOTO K1$
**** SIMPSON, TRAPEZOIDAL START ****
0130 'S': 'T': T$=FNK$("Explicit?(Y/N)","YN")
0140 IF T$="Y" THEN "PRT"
**** For implicit case, get function values
0150 'PL': INPUT "Nmbr of pnts= ",STR$(N);N
0160 IF N<=0 THEN DISP "Must be positive" @ GOTO 'PL'
Ø17Ø IF K1$="S" AND MOD(N-1,2) THEN DISP "MUST BE ODD NUMBER" @ GOTO
"PL"
Ø18Ø INPUT "Interval Length= ",STR$(H);H
\emptyset19\emptyset DIM A(N-1)
0200 CALL EDIT1(A,N-1)
Ø21Ø GOTO "CALC"
**** For explicit case, get number of partitions ****
Ø22Ø 'PRT': INPUT "# of Partitions= ",STR$(P);P
0230 IF P<=0 THEN DISP "Must be positive" @ GOTO 'PRT'
Ø24Ø IF K1$="S" AND MOD(P,2) THEN DISP "MUST BE EVEN, NONZERO" @ GOTO
"PRT"
**** For explicit case, get function ****
0250 'G': INPUT "f(x) = ",F$;F$
0260 IF K1$="G" THEN T$="N"
0270 IF F$="" THEN "G"
**** Get the bounds for the integral ****
0280 'B': INPUT "Lwr,Upr bounds= ",STR$(L)&","&STR$(U);L,U
0290 IF L=U THEN DISP "THE INTEGRAL VALUE IS 0" @ GOTO "B"
```

```
0300 'CALC': O=FLAG(-16,0) @ T=FLAG(-10,1) ! Temporarily set radians
 0310 DISP "calculating.."
 Ø32Ø GOSUB K1$&T$
 0330 O=FLAG(-16,0) @ T=FLAG(-10,T) ! Re-establish angular mode
 0340 D1$=PEEK$("2F946",4) @ DELAY INF, INF ! Save wait period
 0350 DISP "Result="; R ! Display result
 0360 POKE "2F946",D1$ ! Re-establish wait period
 Ø37Ø GOTO "START"
***** SUB PROGRAM CALL SECTION *****
 0380 'GN': CALL GAUSS(F$,L,U,R) @ RETURN
0390 'SN': CALL SIMPSON(A,N-1,H,R) @ RETURN
0400 'TN': CALL TRAP(A,N-1,H,R) @ RETURN
0410 'SY': CALL SIMPSONE(F$,L,U,(P),R) @ RETURN
0420 'TY': CALL TRAPE(F$,L,U,(P),R) @ RETURN
0430 'Q': PUT "#38" @ END ! Restore cursor and end program
0440 !
***** Trapezoidal rule, explicit case ****
0450 SUB TRAPE (F$,L,U,P,R)
0460 \text{ H} = (U-L)/P
Ø47Ø Q=Ø
0480 X=L @ R=VAL(F$)
0490 X=U @ R=R+VAL(F$)
0500 FOR I=1 TO P-1
\emptyset510 X=L+H*I ! what is A?
0520 Q=Q+VAL(F$)
0530 NEXT I
\emptyset 540 R = (R + 2*Q)*H/2
0550 END SUB
Ø56Ø !
**** Trapezoidal rule, implicit case ****
Ø57Ø SUB TRAP(A(),N,H,R)
0580 \text{ R=A}(0) + A(N)
Ø59Ø Q=Ø
\emptyset600 FOR I=1 TO N-1
\emptyset61\emptyset Q=Q+A(I)
Ø62Ø NEXT I
0630 R = (R + 2*Q)*H/2
0640 END SUB
0650 !
**** Simpson's rule, implicit case ****
Ø66Ø SUB SIMPSON(A(),N,H,R)
0670 R=A(0)+A(N)
0680 FOR I=1 TO N-3 STEP 2
\emptyset69\emptyset R=R+4*A(I)+2*A(I+1)
0700 NEXT I
0710 R = (R+4*A(N-1))*H/3
```

```
0720 END SUB
Ø73Ø !
**** Simpson's rule, explicit case ****
0740 SUB SIMPSONE(F$,L,U,P,R)
0750 H = (U - L)/P
0760 X=L @ R=VAL(F$)
0770 X=U @ R=R+VAL(FS)
Ø78Ø FOR I=1 TO P-3 STEP 2
0790 X=L+H*I @ R=R+4*VAL(F$)
\emptyset 8 \emptyset \emptyset X = X + H @ R = R + 2 * VAL(F$)
Ø81Ø NEXT I
Ø82Ø X=U-H
\emptyset 83\emptyset R = (R + 4 * VAL(F$)) * H/3
Ø84Ø END SUB
Ø85Ø !
**** 16 point Gaussian method ****
Ø86Ø SUB GAUSS (F$,L,U,R)
Ø87Ø DIM N(1,7)
Ø88Ø DATA .9894ØØ934992,.944575Ø23Ø73,.8656312Ø2388,.7554Ø44Ø8355
Ø89Ø DATA .6178762444Ø3,.458Ø16777657,.2816Ø355Ø779,.95Ø125Ø98376E-1
0900 DATA .271524594118E-1,.622535239386E-1,.951585116825E-1,.124628971256
0910 DATA .149595988817,.169156519395,.182603415045,.189450610455
0920 READ N(,)
Ø93Ø R=Ø
0940 C = (U-L)/2
0950 FOR I=0 TO 7
\emptyset 960 \text{ X=N}(\emptyset,I) *C+(L+U)/2
0970 R=N(1,I)*VAL(F$)+R
\emptyset 98\emptyset X = -N(\emptyset,I) *C + (L+U)/2
\emptyset99\emptyset R=N(1,I)*VAL(F$)+R
1000 NEXT I
1010 R=R*C
1020 END SUB
**** Matrix Editor ****
1030 SUB EDIT1(A(),N)
1040 DEF FNK$ (DØ$, KØ$)
                            ! Find which key was pressed function
1050 DISP DØ$
1060 'KEY': K$=KEY$
1070 IF NOT POS(KO$,K$) THEN "KEY"
1080 FNK$=K$
1090 END DEF
1100 DEF FNF$(Y)
                      ! Fix display function. Temporarily alters,
                      ! then returns to original setting.
1110 D$=PEEK$("2F6DC",2) @ STD
1120 FNF$=STR$(Y)
1130 POKE "2F6DC",D$
1140 END DEF
```

```
1150 I=0
1160 'LOOP': K1$=FNK$("E("&FNF$(I)&") = "&STR$(A(I)),"Q #38#47#48")
1170 IF K1$=" " THEN 'M'
1180 IF K1$="Q" THEN 'Q'
1190 IF LEN(K1$) #3 THEN 'LOOP'
1200 K1$[1,1]="K"
1210 GOSUB K1$
1220 GOTO 'LOOP'
1230 'K47': I=MOD(I-1,N+1)
                                 ! Move to previous position
1240 RETURN
1250 'K38': INPUT "Value= "; A(I) ! Change value
1260 'K48': I=MOD(I+1,N+1)
                                  ! Move forward
1270 RETURN
1280 'M': INPUT "Element= ";I ! Get desired position
1290 IF I O OR I N THEN DISP "EXCEEDS BOUNDS" @ WAIT 1 @ GOTO 'M'
1300 GOTO "LOOP"
1310 'Q': PUT "#38"
                              ! Quit routine
1320 END SUB
```

This program provides two methods to find a real root of the equation $f(x) = \emptyset$. They are Newton's Method and the Pegasus Method. In addition, the program allows the user to find the value of the function for an input x.

Input for the Newton's method consists of the function to be solved, one initial guess, and as an option, the derivative of the function. If the derivative is not input, a numerical approximation is used.

Input for the Pegasus method consists of the function to be solved and two initial guesses that must bound the root. This implies that $f(x\emptyset)*f(x1)<\emptyset$. The routine to calculate function values may be used to establish a legal interval.

When a root is found, the output will consist of the x value displayed to the setting of the computer and the value f(x), where x is the displayed root. It is possible that f(x) will not be exactly \emptyset . However, it will generally be within an acceptable range around zero based on the number of significant digits in the input. If the desired accuracy is not obtained, it may be possible to decrease the value used to check for acceptance (the variable E in both sub programs). In some instances, the function may have to be modified.

Newton's method converges to a root quickly in cases where it can find one. Its ability to locate a root depends on the function and the initial guess. It is not guaranteed to find a root. If the derivative is 0 or 50 iterations are performed, the routine exits, displaying an appropriate message to the user. The number of iterations may be changed by altering the program.

The Pegasus Method is a modified regula falsi method with an estimated order of convergence superior to a secant method. For any legal interval, the method is guaranteed to converge.

The equations:

Newton's Method:

x<n+1> = x<n>-f(x<n>)/f'(x<n>)

The exit criteria is $abs(x[n+1]-x[n]) \le epsilon$ where epsilon is a small value.

f'(x) Approximation:

When the derivative is not given, the program uses the following approximation:

 $f'(x) \le (f(x+I/2) - f(x-I/2))/I$

where I = .0001(x) or .000001 if x = 0.

```
Pegasus Method:
```

```
The Regula Falsi method used is:

x<n+l> = x<n> - f(x<n>)[(x<n>-x<n-l>)/(f(x<n>)-f(x<n-l>))]

The approximations for the next iteration are chosen by:

if f(x<n+l>)f(x<n>) < Ø then
    (x<n-l>,f(x<n-l>)) <== (x<n>, f(x<n>))

if f(x<n+l>)f(x<n>) > Ø then
    (x<n-l>,f(x<n-l>)) <== (x<n-l>, f(x<n-l>)/(f(x<n>)+f(x<n+l>)))

References:

Dowell, M. & Jarrett, P.; "The Pegasus Method for Computing the Root of an Equation", BIT 12 (1972) pp. 503-508

Atkinson, Kendall E., "An Introduction to Numerical Analysis", Wiley and Sons

Carnahan, B., Luther, H.A., and Wilkes, J.O., "Applied Numerical Methods", Wiley and Sons, Inc.
```

Comments	Input	Display -II
1) Run program.	•	f(x)=
Key in the function using the character 'x' as the variable.	<function></function>	Root,F(x),Chngf,Quit
3) Press the capital letter of the desired operation.'R' begins the solve routine.'F' finds function values for given x's.'C' allows the function to be changed.	R F C	<pre>Pegasus, Newton X= f(x) = <function></function></pre>
'Q' quits the program.	Q	Done
Go to the appropriate heading to continue.		
***** ROOT OPTION *****		Pegasus, Newton
R1) Choose desired method by pressing the appropriate capital letter.		
For Pegasus, press P. Go to step R2.	P	lower bound:
For Newton, press N. Go to step R8.	N	derivative=
R2) PEGASUS METHOD		lower bound:
R3a) Key in a lower bound.	<value></value>	
R3b) To exit, press:	[ENDLINE] [ENDLINE]	upper bound: Root,F(x),Chngf,Quit
R4a) Key in upper bound.	<value> [ENDLINE]</value>	calculating
R4b) To exit, press:	[ENDLINE]	Root,F(x),Chngf,Quit
R5a) The answer will be displayed. R5b) If the interval does not bound a root a message will be displayed and you will return to step R4.		x= <result></result>
R6) To see the function value at the root, press any key.	<any key=""></any>	f(x)= <value></value>

Comments	Input	Display
R7) To exit, press any key.		
R8) NEWTON METHOD		derivative =
R9a) If you want to use the derivative, key it in.	<pre><derivative> [ENDLINE]</derivative></pre>	initial guess=
R9b) If you do not wish to enter the derivative:	-	initial guess=
RlØ) Key in initial guess.	<pre><guess> [ENDLINE]</guess></pre>	disp convergence?
Rll) If you wish to watch the convergence, press 'Y', else press any other key.	Y or <another key=""></another>	calculating
Rl2) If a root is found, the result will be found. If a root is not found, an appropriate error message will be given.		x= <result></result>
Rl3) To see the function value at the root, press any key.	<any key=""></any>	f(x)= <value></value>
R14) To exit, press any key.	<any key=""></any>	Root,F(x),Chngf,Quit
****** FIND FUNCTION VALUES ***	***	X=
F1) Key in the value of x at which you wish the function evaluated at.		f(x) = <result></result>
F2) Press any key to continue.	<any key=""></any>	X=
F3a) Continue at step F2 for more values.		
F3b) To exit, press:	[ENDLINE]	Root,F(x),Chngf,Quit
***** CHANGE FUNCTION *****		f(x)= <crnt function=""></crnt>
C1) Key in desired function.	<function> [ENDLINE]</function>	Root,F(x),Chngf,Quit
***** QUIT PROGRAM *****		Done
Q1) To get the prompt back: press any key.	<any key=""></any>	<bli><bli>dinking prompt></bli></bli>

EXAMPLE

This example demonstrates the various options of the program. It must be started at the beginning and followed to completion for the given keystrokes to work as listed. The display should be FIX 11.

Find a root for the function $f(x) = \ln(x) + 3x - 10.8074$. Use the Pegasus method, then Newton's method. Then find a root for the function $f(x) = 3x^6 - 22x^5 + 11$.

I	Comments	Input I	Display -II
	Run program.		f(x) =
2)	Key in function. Note that it is entered in a BASIC format.		774 Root,F(x),Chngf,Quit
3)	Call the solve section.	R	Pegasus, Newton
4)	Choose Pegasus method.	P	lower bound:
5)	Guess at a bound:	5 [ENDLINE]	upper bound:
6)	Guess at an upper bound.	10 [ENDLINE]	· -
7)	The interval did not bound the root. Use F(x) to find an interval.	[ENDLINE] F	<pre>lower bound: Root,F(x),Chngf,Quit x=</pre>
8)	Find f(5).	5 [ENDLINE] [ENDLINE]	f(x) = 5.8020379124 x=
9)	Find f(10)	10 [ENDLINE] [ENDLINE]	21.495185093 x=
10)	Try f(1)	l [ENDLINE] [ENDLINE]	f(x) = -7.8074
11)	Since the function is continuous on the interval [1,5], and the values of the function at these points are of opposite sign, this interval bounds a root. Exit and move to the solve section.	[ENDLINE] R P	Root,F(x),Chngf,Quit Pegasus,Newton lower bound:
12)	Key in lower bound	1 [ENDLINE]	upper bound:

EXAMPLE

	Comments	Input	Display
I		I	II
13)	Key in upper bound.	5 [ENDLINE]	calculating x= 3.21336087018
14)	See how close $f(3.21)$ is to \emptyset .	[ENDLINE]	$f(x) = \emptyset$
15)	Continue	[ENDLINE]	Root,F(x),Chgf,Quit
16)	Solve using Newton's Method.	R N	Pegasus, Newton derivative=
17)	Let routine approximate the derivative.	[ENDLINE]	initial guess=
18)	Key in an initial guess.	1 [ENDLINE]	disp convergence?
19)	Let's not display it.	N [ENDLINE] [ENDLINE]	<pre>calculating x= 3.21336087017 f(x)= 0 Root,F(x),Chngf,Quit</pre>
20)	We must now solve the second function.	C 3*x^6-22*x^5+11 R N	<pre>f(x)=LN(X)+3*X-10.8074 Root,F(x),Chngf,Quit Pegasus,Newton derivative=</pre>
21)	Use the derivative this time. The intermediate results are displayed.	18*x^5-110*x^4 [ENDLINE] 5 [ENDLINE] Y	initial guess= disp convergence? calculating 2.25088 2.4794542177 1.93158885068
221	Quit the program.	[ENDLINE] [ENDLINE]	.89346784412 x= .893467844031 f(x)= 0 Root,F(x),Chngf,Quit
- - ,	z g	~	

```
Note that some of the comments are not preceded by a line number.
\emptyset\emptyset1\emptyset ! SOLUTION TO F(X) = \emptyset
ØØ2Ø ! REV 1.Ø -- 1/25/84
ØØ3Ø F$=""
0040 'C': INPUT "f(x)=",F$;F$ ! get function
0050 'D': DISP "Root, F(x), Chngf, Quit" ! main prompt
0060 A$=KEY$ @ IF A$="" THEN 60
0070 IF POS("RFQC", UPRC$(A$[1,1])) THEN GOTO UPRC$(A$[1,1]) ELSE GOTO 'D'
***** Find the Root ******
0080 'R': DISP "Pegasus, Newton" ! get desired method
0090 M$=KEY$ @ IF M$="" THEN 90.
0100 IF POS("PN", UPRC$(M$[1,1])) THEN GOSUB M$[1,1] ELSE GOTO 'R'
0110 IF R<>INF THEN GOTO 'DISPR'
0120 DISP "NO ROOT FOUND"
Ø13Ø GOTO 'RTN'
Ø14Ø 'DISPR': X=R ! display result
0150 DISP "x= ";X
0160 A$=KEY$ @ IF A$="" THEN 160
\emptyset17\emptyset DISP "f(x) = "; VAL(F$) ! display function value
Ø18Ø 'RTN': A$=KEY$ @ IF A$="" THEN GOTO 'RTN' ELSE GOTO 'D'
***** Find values of f(x) given x ******
Ø19Ø 'F': ON ERROR GOTO 'XIT'
0200 INPUT "X= ";X
Ø21Ø Y=VAL(F$)
\emptyset 22\emptyset DISP "f(x) = ";Y
0230 A$=KEY$ @ IF A$="" THEN 230 ELSE "F"
Ø24Ø GOTO 'F'
0250 'XIT': OFF ERROR @ GOTO 'D'
****** Set up to call Pegasus method ******
0260 'P': ON ERROR GOTO 'XIT'
0270 INPUT "lower bound:";L
0280 INPUT "upper bound: ";U
Ø29Ø X=L ! see if interval contains root
Ø3ØØ Y1=VAL(F$)
0310 X=U
0320 Y2=VAL(F$)
0330 IF Y1*Y2>0 THEN DISP "intrvl must bound root" @ GOTO 'P'
Ø34Ø CALL PEG(F$,L,U,R)
Ø35Ø RETURN
****** Set up to call Newton method ******
Ø36Ø 'N': DESTROY N$
0370 ON ERROR GOSUB 'NEWTERR' ! catches no derivative option
0380 INPUT "derivative= ";D$
0390 INPUT "initial guess= ","1";X0
0400 DISP "disp convergence?"
```

16

```
0410 A$=KEY$ @ IF A$="" THEN 410
\emptyset42\emptyset IF UPRC$(A$)="Y" THEN D=1 ELSE D=\emptyset
0430 CALL NEWT (F$, D$, X0, D, R)
Ø44Ø RETURN
Ø45Ø 'NEWTERR': OFF ERROR
Ø46Ø ON ERROR GOTO 'XIT'
****** Quit program ******
0470 'Q': DISP " DONE" @ END
***** Pegasus subprogram ******
The inputs are the function (F$), lower limit (XØ), and upper limit
(X1). The result is returned through variable 'R'. The function
string must be a legal BASIC expression in variable 'x'; the limits
must bound a root.
Ø48Ø SUB PEG(F$, XØ, X1, R)
0490 DISP "calculating.."
\emptyset500 E=.00000000001 ! error tolerance
0510 C = 2 \times X1 - X0
\emptyset52\emptyset X=X\emptyset ! init y\emptyset,y1
Ø53Ø YØ=VAL(F$)
0540 X = X1
0550 Y1=VAL(F$)
Ø56Ø !
\emptyset57\emptyset 'LP': X2=X1-Y1*((X1-X\emptyset)/(Y1-Y\emptyset))
Ø58Ø IF ABS(X2-C) <= THEN R=X2 ELSE GOTO 'CT'
Ø59Ø GOTO 'ND'
Ø6ØØ 'CT': X=X2
0610 Y2=VAL(F$)
Ø62Ø C1=Y2*Y1
Ø63Ø IF Cl<Ø THEN XØ=Xl @ YØ=Yl
\emptyset64\emptyset IF C1>\emptyset THEN Y\emptyset=Y\emptyset*Y1/(Y1+Y2)
Ø65Ø X1=X2
0660 \text{ Y1=Y2}
0670 C=X2
0680 GOTO 'LP'
Ø69Ø 'ND': SUB END
***** Newton subprogram *****
The inputs are the function (F$), optional derivative (D$), initial
guess, and the display-convergence boolean. The result is returned
through 'R'. The functions must be in variable 'x'. If no root is
found, 'R' is set to the value 'inf'.
0700 SUB NEWT (F$, D$, X0, D, R)
0710 DISP "calculating.."
0720 E=.00000000001 ! error tolerance
Ø73Ø L=Ø ! INIT LOOP COUNTER
0740 'LP': IF D$="" THEN GOSUB 'AD' ELSE X=X0 @ Y1=VAL(D$)
0750 IF Y1=0 THEN R=INF @ DISP "DERIVATIVE=0" @ GOTO 'ND'
0760 X=X0
```

0770 Y=VAL(F\$)

0780 X1=X-Y/Y1
0790 IF ABS(X1-X) <= E THEN R=X1 @ GOTO 'ND'
0800 X0=X1
0810 L=L+1
0820 IF D THEN DISP X0
0830 IF L=50 THEN DISP "50 ITERATIONS" @ R=INF @ GOTO 'ND'
0840 GOTO 'LP'
0850 'AD': IF X0=0 THEN I=.000001 ELSE I=.0001*X0 ! deriv. approx.
0860 X=X0+I/2
0870 Y1=VAL(F\$)
0880 X=X0-I/2
0890 Y1=(Y1-VAL(F\$))/I
0900 RETURN
0910 'ND': SUB END</pre>

11.

1111

page 29

Matrix Operations

This program allows the user to caculate the determinant of a real valued matrix and find the inverse or solve a system of equations for real or complex valued systems.

The method used is Gaussian elimination with partial pivoting. The matrix is decomposed into an LU form and the pivoting strategy is kept track of in a separate matrix. For a more in-depth discussion, please refer to the references.

The determinant is calculated from the decomposed matrix by multiplying the values in the main diagonal. It is found only for a real valued matrix.

The inverse is found by solving the system Ax(i) = I(i), where I(i) is the ith column of the identity matrix and x(i) is the ith column of A inverse. This is performed N times as i ranges from 1 to N.

If the inverse or solution to a system of equations is attempted that involves a singular matrix, the message "MATRIX IS SINGULAR" will be displayed.

Remarks:

The program will use the particular number display you specify before running the program.

If you pause the program during the listing of values, then exit the program, your delay will be set to inf.

References:

Johnston, R.L., "NUMERICAL METHODS, a Software Approach", John Wiley and Sons, 1982

Anton, Howard, "Elementary Linear Algebra", John Wiley and Sons, 1981

Atkinson, Kendal E., "An Introduction to Numerical Analysis", John Wiley and Sons, 1978

Comments	Input	Display
I		
1) Run the program.		Real or Complex?
<pre>2) For real values: For complex values:</pre>	R C	order?
3) Key in the number of rows: The matrix must be square.	<value></value>	A(1,1) = <value> or R(1,1) = <value></value></value>
You are now in the matrix editor. Please refer to that section, then continue with step 4.		keep a copy?
4) If you want to perform some operations and then make a few changes to the matrix, keep a copy of the original: If no copy is desired:	Y N	Newmat, Edit, Calc, Quit
5) Choose desired action. To create a new matrix: Cont. at step 1.	N	Real or Complex?
To edit the current matrix: Refer to the editor instructions, then cont.	Е	A(1,1) = <value> or R(1,1) = <value></value></value>
<pre>at step 4. To perform matrix operations: Continue at step 6.</pre>	С	Solv,Det,Inv,Main,Quit
To quit the program:	Q	 dlinking prompt>
6) Calculation options. To solve system of equations: You are now in the matrix editor. Enter the values of	S	B(1) = < value >
the B vector for Ax=B. When you are done, you will see: Continue at solve section.		calculating
To find the determinant: Continue at the determinant section.	D	calculating
To find the inverse: Cont. at the inverse secton.	I	calculating
To return to the main menu: Continue at step 5.	M	Newmat, Edit, Calc, Quit
To quit the program:	Q	<bli>king display></bli>

111

Comments	Input	Display	(
***** SOLVE *****				
S1) If a solution exists: These are the values of the result vector.	[ENDLINE] [ENDLINE]	<pre><value x(1)=""> <value x(2)=""></value></value></pre>		
Continue at step S2. If a solution does not exist, a message will be displayed:	•	SINGULAR SYSTEM Newmat,Edit,Calc,Quit		
Return to step 6.				
S2) Once the last value has been displayed, you will see:		solve for new B?		
S3) If you want to solve for a new B vector: Enter the values according to the edit instructions.	Y	B(1) = < value >		
Continue at step S1. If you are done: Return to step 6.	N	Solv,Det,Inv,Main,Quit		
***** DETERMINANT *****				
D1) The determinant will be dislayed: Press any key to continue. Go to step 6.	<any key=""></any>	<pre>det = <value> Solv,Det,Inv,Main,Quit</value></pre>		
***** INVERSE *****				
<pre>Il) If the inverse exists: Cont. at step I2.</pre>		list by Col or Row?		
If no inverse exists:		SINGULAR SYSTEM Newmat,Edit,Calc,Quit		
Return to step 6.				
12) To list result by columns:	C [ENDLINE]	<pre><value a(1,1)=""> <value a(1,2)=""></value></value></pre>		
To list result by rows:	R R [ENDLINE]	<pre> <value a(1,1)=""> <value a(1,2)=""> •</value></value></pre>		
13) Once all values have been listed, you will see: Go to step 6.	•	· Solv,Det,Inv,Main,Quit	"Strong and Market	

***** MATRIX EDITOR *****

The matrix editor allows the user to move through a matrix and change element values. For complex valued matrices, the real and complex parts of an element are edited one at a time.

Movement through a matrix is accomplished with the arrow keys (left, right, up, and down), and element indices input. The movement wraps around when the boundary of a row or column is passed.

Comments	Input	
I	1	11
<pre>El) To move from the current position:</pre>		A(I,J)
Move left:	<	$A(I,J-1) = \langle value \rangle$
Move right:		$A(I,J+1) = \langle value \rangle$
Move up:	<up arrow="" key=""></up>	$A(I-1,J) = \langle value \rangle$
Move down:		$A(I+1,J) = \langle value \rangle$
E2) To move to a desired		
element:	[SPC]	enter ROW, COLUMN
	<row>,<column></column></row>	
	[ENDLINE]	$A(\langle row \rangle, \langle col \rangle) = \langle val \rangle$
E3) To quit the editor:	Q	

Example 1.

Find the determinant and inverse of the matrix below. It is assumed that the display is fix 4.

т	Comments	Input	Display	
1			-	
1)	Run the program.		Real or Complex?	
2)	The values are real.	R	order?	
3)	Key in the number of rows:	5 [ENDLING] [#NDLING] 6	A(1,1) = 0.0000	
		[ENDLINE] [ENDLINE] 3	A(1,2) = 0.0000 ?	
	Enter the values of the matrix and use the editing features to adjust	[ENDLINE] [ENDLINE] -2	A(1,3) = 0.0000 ?	
	any incorrect values.	[ENDLINE] [ENDLINE] 2	$A(1,4) = \emptyset.0000$?	
		[ENDLINE] [ENDLINE] 3	A(1,5) = 0.0000 ?	
		•	•	
		ENDLINE] [ENDLINE] 6	$A(5,4) = \emptyset.0000$?	
		[ENDLINE] [ENDLINE] 2	A(5,5) = 0.0000 ?	
41	No conveyill be needed	[ENDLINE] Q N	A(1,1) = 6.0000 keep a copy? Newmat,Edit,Calc,Quit	
4)	No copy will be needed.	IN	Newmat, Edit, Caic, Quit	
5)	Choose calculation options.	С	Solv,Det,Inv,Man,Quit	į.

6) Calculate the determinant.	D	calculating det = -200.0000
Press any key to continue.	[ENDLINE]	Solv,Det,Inv,Main,Quit
12000 and mod		
an a challen inverse	I	calculating
7) To find the inverse:	1	list by Col. or Row?
8) Choose to list by column.	С	C(1,1) = 0.2000
o) choose to 1120 si occument	[ENDLINE]	C(2,1) = -1.7500
	[ENDLINE]	C(3,1) = 0.7000
	[ENDLINE]	C(4,1) = 1.7250
	[ENDLINE]	C(5,1) = 1.0000
	[ENDLINE]	C(1,2) = -0.1200
	[ENDLINE]	C(2,2) = -2.0000
	[ENDLINE]	C(3,2) = 1.2800
	[ENDLINE]	C(4,2) = 2.5400
	[ENDLINE]	C(5,2) = 1.4000
	[ENDLINE]	C(1,3) = -0.0400
	[ENDLINE]	$C(2,3) = \emptyset.5000$
	[ENDLINE]	C(3,3) = -0.2400
	[ENDLINE]	C(4,3) = -0.5700
	[ENDLINE]	C(5,3) = -0.2000
	[ENDLINE]	$C(1,4) = \emptyset.0000$
	[ENDLINE]	C(2,4) = 1.7500
	[ENDLINE]	C(3,4) = -0.5000
	[ENDLINE]	C(4,4) = -1.6250
	[ENDLINE]	C(5,4) = -1.0000
	[ENDLINE]	C(1,5) = -3.3333E - 12
	[ENDLINE]	C(2,5) = -1.5000
	[ENDLINE]	C(3,5) = -1.0000
	[ENDLINE]	C(4,5) = -1.7500
	[ENDLINE]	C(5,5) = -1.0000
	[ENDLINE]	Solve, Det, Inv, Main, Quit
9) Now find the determinant.	D	calculating
a) Now Lind the deferminanc.	-	det = -200.0000
	[ENDLINE]	Solve, Det, Inv, Main, Quit
10) Return to the main menu	•	Newmat, Edit, Calc, Quit
to perform the next problem.	M	Mewmat, Edit, Care, 2di

Problem 2.

Solve the following system of complex valued equations.

$$2 + 3i$$
 $.7 - 1i$ $z1$ $=$ $2 + 21i$ $=$ $4 - 1.3i$ $4 + \emptyset i$ $z2$ $1 + 3i$

Because the matrix created in problem 1 is real valued, a new matrix must be created. Therefore the example problem must start with the new matrix option.

Comments II-	Input	Display
		1
 Start by creating a new matrix. 	N	Real or Complex?
2) Choose complex.	С	order?
3) The order is 2.4) You are now in the	2 [ENDLINE]	$R(1,1) = \emptyset.0000$
editor. The 'R' indicates that the real portion of	[ENDLINE] 2	?
element (1,1) is being prompted for. 'I' indicates that the	[ENDLINE] [ENDLINE] 3	
imaginary portion is being prompted for.	[ENDLINE] [ENDLINE] .7	
		I(1,2) = 2.0000
Continue entering the values in the same manner. Refer to the editor instructions for editing	•	• • •
features.	. •	•
5) When done, press:	Q	keep a copy?
6) Keep a copy this time.	Y	Newmat, Edit, Calc, Quit
7) Move to calculation options.	С	Solv,Det,Inv,Main,Quit
8) Choose solve option.	S	BR(1)=4.0000
9) You are now in the editor. The prompt is for the real portion of element (1,1) from the		_
b vector ($Ax = b$).	[ENDLINE] 2	?
	[ENDLINE] [ENDLINE] 21	BI(1) = 0.0000 ?
	[ENDLINE]	BR(2) = 0.0000
Continue until all values are correctly entered.	•	•
10) To quit editing:	· Q	calculating X(1) = 4.3565, 1.4203 i
You may use the arrow to view the entire display.	[ENDLINE] [ENDLINE]	X(2) = -4.5681, Ø.7456 i solve for new B?

Comments	Input	Display
1	•	_
<pre>11) Let's solve for a new b vector.</pre>	Y [ENDLINE] 9	BR(1) = 1.0000 ?
	[ENDLINE] [ENDLINE] 22	BI(1) = 21.0000 ?
	[ENDLINE] [ENDLINE] -3.5	BR(2) = 1.4794 ?
	[ENDLINE]	BI(2) = 3.0000
	[ENDLINE] Q	BR(1) = 9.0000 calculating X(1) = 0.4800,-2.0302 i
•	[ENDLINE] [ENDLINE]	X(2) = -0.6952, 2.4362 i solve for new B?
12) Let's exit.	N Q	<pre>Solv,Det,Inv,Main,Quit <blinking display=""></blinking></pre>

```
0010 ! rev 1.0
                        ! Find which key was hit
ØØ2Ø DEF FNK$(DØ$,KØ$)
ØØ3Ø DISP DØ$
0040 'KEY': K$=KEY$
ØØ5Ø IF NOT POS(KØ$,K$) THEN "KEY"
0060 FNK$=K$
0070 END DEF
0080 'N': T=POS("RC",FNK$("Real or Complex?","RC"))
0090 INPUT "order?"; N ! Get the number of rows and columns.
@1@@ N=T*N @ M=N ! Set dimensions based on type.
gllg DIM A(M,N),S(M)
Ø12Ø R2=Ø @ C2=Ø
Ø13Ø 'E': IF NOT C2 THEN GOTO 'E1'
Ø14Ø FOR I=1 TO M
0150 FOR J=1 TO N
0160 A(I,J)=Al(I,J) ! Read in original matrix if copy was made
Ø17Ø NEXT J
Ø18Ø NEXT I
Ø19Ø 'E1': CALL EDIT(A(,),M,N,T)
             ! Indicate that the determinant has not been calculated.
0200 R2=0
0210 IF FNK$("keep a copy?","YN")="Y" THEN C2=1 ELSE C2=0
0220 IF NOT C2 THEN GOTO 'M'
Ø23Ø DIM Al(M,N)
0240 FOR I=1 TO M
0250 FOR J=1 TO N
0260 \text{ Al}(I,J) = A(I,J)! Save a copy if desired.
Ø27Ø NEXT J
Ø28Ø NEXT I
@29@ 'M': GOTO FNK$("Newmat, Edit, Calc, Quit", "NECQ") ! main menu
0300 'C': GOTO FNK$("Solv,Det,Inv,Main,Quit","SDIMQ")
\emptyset31\emptyset 'S': DIM B(M,T),X(M,1) ! solve invocation.
Ø32Ø 'S1': CALL EDIT(B(,),M,T,Ø)
0330 DISP "calculating.."
0340 IF NOT R2 THEN CALL DECOMP(A(,),M,N,S()) @ R2=1
0350 IF S(M) = 0 THEN DISP "SINGULAR SYSTEM" @ GOTO 'M'
\emptyset 36\emptyset CALL SOLVE(A(,),X(,),B(,),S(),N)
Ø37Ø CALL LIST(X(,),M,1,T,"X")
0380 IF FNK$("solve for new B?", "YN") = "Y" THEN "S1" ELSE "C"
0390 'I': DIM C(M,N), B(M,1), X(M,1)! Inverse calculation
0400 DISP "calculating.."
0410 IF NOT R2 THEN CALL DECOMP(A(,),M,N,S()) @ R2=1
0420 IF S(M) = 0 THEN DISP "SINGULAR SYSTEM" @ GOTO 'M'
\emptyset43\emptyset FOR J=1 TO N
Ø44Ø FOR I=1 TO M
\emptyset 450 B(I,1) = \emptyset
0460 NEXT I
```

```
0470 B(J,1)=1
\emptyset 48\emptyset CALL SOLVE(A(,),X(,),B(,),S(),N)
Ø49Ø FOR I=1 TO M
0500 \text{ C}(I,J) = X(I,1)
0510 NEXT I
Ø52Ø NEXT J
Ø53Ø CALL LIST(C(,),M,N,T,"C")
Ø54Ø GOTO 'C'
0550 'D': IF T=2 THEN DISP "NOT DONE FOR COMPLEX" @ GOTO 'C' ! det.
0560 DISP "calculating.."
0570 IF NOT R2 THEN CALL DECOMP(A(,),M,N,S()) @ R2=1
\emptyset 580 D=A(1,1)
Ø59Ø FOR I=2 TO M
0600 D=D*A(I,I)
Ø61Ø NEXT I
\emptyset62\emptyset D=S(M)*D
0630 DISP "det= ";D
0640 A$=KEY$ @ IF A$="" THEN 640 ELSE "C" ! display till key hit
0650 'Q': PUT "#38" @ END ! restore blinking prompt and end.
   MATRIX EDITOR. Allows a matrix of dimension MxN to be edited.
   The type (T) can be 1 or 2. 1 indicates real, 2 indicates complex.
   If T=0, then the routine assumes a vector has been passed. The
   value of T is then changed to the correct type indicator value.
Ø66Ø SUB EDIT(A(,),M,N,T)
0670 DEF FNK$(D0$,K0$) ! Get which key was hit
Ø68Ø DISP DØ$
Ø69Ø 'KEY': K$=KEY$
Ø7ØØ IF NOT POS(KØ$,K$) THEN "KEY"
0710 FNK$=K$
Ø72Ø END DEF
0730 DEF FNF$(Y)
                    ! temporarily change display setting for index vals.
0740 D9$=PEEK$("2F6DC",2) @ STD
0750 FNF$=STR$(Y)
0760 POKE "2F6DC", D9$
Ø77Ø END DEF
0780 DEF FND$ ! Create array elemnt prompt
0790 IF NOT (T=1 OR MOD(J,2)) THEN D$=S$ ELSE D$=R$
\emptyset 8 \emptyset \emptyset D1$=D$&"("&FNF$((I+T-1)/T)
0810 \text{ IF } D\$[1,1] <> "B" \text{ THEN } D1\$=D1\$\&", "&FNF\$(INT((J+T-1)/T))
\emptyset82\emptyset IF T=2 AND NOT MOD(J,2) THEN V=-A(I,J) ELSE V=A(I,J)
\emptyset 83\emptyset \text{ FND}\$=D1\$\&")="\&STR\$(V)
Ø84Ø END DEF
Ø85Ø I=1 @ J=1 @ R=2 @ T$="BRBI"
Ø86Ø IF T=2 THEN R$="R" @ S$="I"
Ø87Ø IF T=1 THEN R$="A"
0880 IF T=0 THEN R$=T$[1,N] @ S$=T$[3,N+2] @ T=N
```

```
Figure out which key has been hit and branch to legal choice.
Ø89Ø 'LOP': A$=FNK$(FND$,"Q #38#47#48#5Ø#51") @
                                       IF POS ("Ø134578#",A$) THEN "LOP"
Ø9ØØ IF LEN(A$)=1 THEN GOSUB UPRC$(CHR$(NUM(A$)+33)) @ GOTO "LOP"
\emptyset91\emptyset A$[1,1]="K"
Ø92Ø GOSUB A$ @ GOTO "LOP"
0930 'K38': INPUT A(I,J) @ IF T=1 THEN GOTO 'K48' ! enter a value
\emptyset 94\emptyset IF MOD(J,2) THEN A(I+1,J+1)=A(I,J) ELSE A(I+1,J-1)=A(I,J) @ A(I,
J) = -A(I,J)
Ø95Ø 'K48': J=J+1 @ IF J<=N THEN RETURN ! move right
0960 J=1 0 I=I+T 0 IF I>M-T+1 THEN I=1
0970 RETURN
0980 'K47': J=J-1 @ IF J THEN RETURN ! move left
0990 J=N @ I=I-T @ IF I<1 THEN I=M-T+1
1000 RETURN
1010 'K50': I=I-T @ IF I>0 THEN RETURN ! move up
1020 I=M-T+1 @ J=J-1 @ IF NOT J THEN J=N
1030 RETURN
1040 'K51': I=I+T @ IF I<=M-T+1 THEN RETURN ! move down
1050 I=1 @ J=J+1 @ IF J>N THEN J=1
1060 RETURN
1070 'A': ON ERROR GOTO 'A' ! user specified move
1080 INPUT "enter ROW, COLUMN"; I, J
1090 IF I<1 OR J<1 THEN I=M+1
1100 IF T-1 THEN I=2*I-1 @ J=2*J-1
1110 IF I>M OR J>N THEN DISP "OUT OF BOUNDS" @ GOTO 'A'
1120 OFF ERROR @ RETURN
1130 'R': POP @ SUB END
LIST MATRIX SUB PROGRAM. Allows a matrix to be listed by row
 or column. The array name is passed through parameter B$. The
matrix is MxN, and the type (T) is 1 for real values, and 2
 for complex values. If a vector is passed, the routine will
 list by column. A vector is implied by B$ = 'X'.
1140 SUB LIST(A(,),M,N,T,B$)
1150 DEF FNF$(Y) ! Create index integer prompts
1160 D9$=PEEK$("2F6DC",2) @ STD
1170 FNF$=STR$(Y)
1180 POKE "2F6DC", D9$
1190 END DEF
1200 DEF FND$
              ! Create element prompt
1210 IF B$="X" THEN FND$=FNF$((I+T-1)/T) ELSE
                           FND\$=FNF\$((I+T-1)/T)\&","\&FNF\$((J+T-1)/T)
1220 END DEF
```

```
1230 D1$=PEEK$("2F946",4) @ DELAY INF, INF ! Temporarily change delay
1240 IF B$="X" THEN GOTO 'C'
1250 'P': DISP "list by Col. or Row?" ! get display choice
1260 AS=KEY$
1270 IF NOT POS("CR", UPRC$(A$[1,1])) THEN 'P'
1280 GOTO UPRC$ (A$[1,1])
1290 'C': FOR J=1 TO N STEP T ! display by column
1300 FOR I=1 TO M STEP T
1310 DISP B$&"("&FND$&")=";A(I,J);
1320 IF T=2 THEN DISP ","; A(I+1,J); "i";
1330 DISP
1340 NEXT I
1350 NEXT J
1360 I=1 @ J=1 @ GOTO 'E'
1370 'R': FOR I=1 TO M STEP T! display by row
1380 FOR J=1 TO N STEP T
1390 DISP B$&"("&FND$&")=";A(I,J);
1400 IF T=2 THEN DISP ","; A(I+1,J); "i";
1410 DISP
1420 NEXT J
1430 NEXT I
1440 I=1 @ J=1
1450 'E': POKE "2F946",D1$ @ SUB END ! restore delay and exit
DECOMPOSITION OF MATRIX. Performs an LU decomposition of an MxN
matrix using partial pivoting. The pivoting strategy is recorded
in vector S.
1460 SUB DECOMP(A(,),M,N,S())
1470 S(M) = 1
1480 FOR RØ=1 TO M-1
1490 PØ=RØ
1500 \text{ Pl} = A(R0,R0)
1510 FOR I=R0+1 TO M ! choose largest absolute value for pivot
1520 IF ABS(A(I,R0))>ABS(P1) THEN P0=I @ P1=A(I,R0)
1530 NEXT I
1540 IF A(P\emptyset,R\emptyset)=\emptyset THEN S(M)=\emptyset @ GOTO 'END' ! quit if singular
1550 S(R0) = P0
1560 IF PØ=RØ THEN GOTO 'C'
1570 FOR I=R0 TO N ! row exchange
1580 T=A(R0,I)
1590 A(R0,I) = A(P0,I)
1600 A(P0,I) = T
1610 NEXT I
1620 S(M) = -S(M)
1630 'C': FOR R1=RØ+1 TO M ! row r1 <--r1-mult*rØ
                                         À
```

```
1640 Ml=A(Rl,R0)/A(R0,R0) ! form multiplier
1650 A(R1,R0)=M1! and save it.
1660 FOR E=RØ+1 TO N
1670 \text{ A}(R1,E) = A(R1,E) - M1*A(R0,E)
1680 NEXT E
1690 NEXT R1
1700 NEXT RO
1710 IF A(M,N) = \emptyset THEN S(M) = \emptyset
1720 'END': SUB END
SOLVE ROUTINE. Takes an LU form matrix, pivot strategy vector, B
vector, and calculates the X vector for the matrix equation
Ax=b.
1730 SUB SOLVE (A(,),X(,),B(,),S(),N)
1740 M=N
1750 FOR I=1 TO M-1 ! Permute B and perform reduction
1760 \text{ T=B}(S(I),1)
1770 B(S(I),1)=B(I,1)
1780 B(I,1) = T
1790 FOR J=I TO M-1
1800 B(J+1,1) = B(J+1,1) - B(I,1) *A(J+1,I)
1810 NEXT J
1820 NEXT I
1830 FOR I=N TO 1 STEP -1 ! back substitution
1840 \times (I,1) = B(I,1)
1850 FOR J=I+1 TO M
1860 X(I,1) = X(I,1) - A(I,J) * X(J,1)
1870 NEXT J
1880 \times (I,1) = X(I,1)/A(I,I)
1890 NEXT I
1900 SUB END
```

This program calculates a fast Fourier transform from a set of time domain points to a set of frequency domain points. The inverse fast Fourier transform, calculating the set of time domain points from a set of frequency domain points, may also be calculated.

The method used is a modification of the basic FFT algorithm. The modified algorithm takes advantage of the fact that series data is real, and uses the space normally reserved for the imaginary part of the complex sequence to calculate a double-length real transform. This is represented for two "N" length transforms as:

$$Z(n) = X(n) + iY(n)$$
 Ø < n < N data points

The transform is:

$$Z(m) = X(m) + iY(m)$$

where

$$X(m) = \frac{Z(m) + Z(N-m)*}{2}$$

Z* is the complex conjugate of Z.

The time series F(n) is given by:

$$F(n) = X(2n) + Y(2n+1)$$

The transformation of this is:

$$F(m) = \sum_{n=0}^{N-1} X(2n) w^m + \sum_{n=0}^{N-1} Y(2n+1) w^m$$

$$= \sum_{p=0}^{N-1} X(p) w^2mp + \sum_{p=0}^{N-1} Y(p) (w^2mp) (w^m)$$

and:

$$F(m) = X(m) + Y(m) w^{m}$$
 (1)

$$F(N-m) = X*(m) - [Y(m)w^m]*$$
 (2)

Similarly, the inverse transform may be obtained from (1) and (2):

$$Z(m) = -----+ iw^{-(-m)} - F(m) - F(n-m) + 2$$

This is simply an interchange of Z(m) and F(m) in (1) and (2), and substitution of $-w^{(-m)}$ for w^{m} .

The advantages gained from this adaptation of the general FFT algorithm for time series data are:

- (a) A transform of twice the length can be handled with no increase in storage for input data.
- (b) Since the calculation of the transform is structured as an interactive process, intermediate and final results are stored in the same locations used for input.

NOTE:

- 1. Since $F(\emptyset)$ and F(N) are real only, F(N) can be stored in the imaginary location of $F(\emptyset)$, i.e., f(1).
- 2. $w^m = c^(-2im*pi/2N)$. This is half the minimum value of rotation normally used in an N-point transfer.
- 3. * denotes the complex conjugate.

REFERENCES

Brigham, E. O., THE FAST FOURIER TRANSFORM, Prentice-Hall, Inc. 1974. FAST FOURIER TRANSFORM, HP-85 Math Pac, Hewlett-Packard, 1979.

_	Comments	Input I	Display
1)	Run the program.	-	TIME/FREQ. DATA? (T/F)
2)	If time data is to be input, press T and continue with step 3. If frequency data is to be input, go to step 11.	[T]	# OF DATA POINTS?
	TIME DOMAIN DATA		
3)	Enter number of time domain data points to be used. Must be an integer power of 2 and >2. If it is not, the message "INPUT OUT OF RANGE" will be displayed and you will be prompted to enter the number again. If available memory is insufficient for the specified # of points, the message "NOT ENOUGH MEMORY" will be displayed and the program will again prompt for the number of points.		DATA POINT(nnn)?
4)	The program will now prompt for data points 1 through N, where N is the # specified in 3).	<pre><value>[ENDLN] <value>[ENDLN] .</value></value></pre>	DATA POINT(nnn)?
	, and the second	<pre></pre>	DATA POINT(N)?
5)	If any mistakes were made in input, you now have the opportunity to correct the data. Press [Y] to make any changes, or [N] to go to		CHANGES? (Y/N)
	step 6).	[Y]	DATA POINT TO CHANGE?
	Enter point # to change.	<nnn> [ENDLINE]</nnn>	<old value=""></old>
	Original entry will be displayed for reference.	<pre><new value=""> [ENDLINE]</new></pre>	CHANGES? (Y/N)
	If no (further) changes are necessary, press [N].	[n]	TRANSFORMING

Input Comments ----I----I DC TERM = 6) Calculation of FFT has begun. 7) Calculation ends and DC term is displayed. Press any key <any key> MAX FREQ. = to continue. 8) Display maximum frequency. Press any key to resume <any key> FREQ. DOMAIN OUTPUT: output. 9) Display complex data pairs of calculated frequency domain. First the real, and then the imaginary part of the data pair will be displayed. Press 1R=<value>
<any key> 1I=<value>
<any key> 2R=<value> any key to display each value. <any key> NR=<value> <any key> NI=<value> <any key> > 10) For a new problem, go to step 1. ***FREOUENCY DOMAIN DATA*** 11) If frequency data is to be [F] # OF COEFF. PAIRS? input, press [F]. 12) Enter the number of coefficient pairs. This number must be one less than an integer power of 2 (1,3,7,...). If it is not, the message "INPUT OUT OF RANGE" will be displayed and you will be prompted to enter the number again. If available memory is insufficient for the number of pairs specified, the message "NOT ENOUGH MEMORY" will be displayed and the program will again ask for the number of coefficient <N> [ENDLINE] DC TERM= pairs. <DC term> MAX FREQ. TERM= 13) Enter the DC term.

page 46

Comments	Input I	Display
14) Enter the maximum frequency term.	_	FREQ. DOMAIN DATA -
15) Enter the real and imaginary coefficients for each data pair as prompted.	<pre><real coeff.=""> <imag coeff.=""> <real coeff.=""></real></imag></real></pre>	REAL(2)?
	<pre><real coeff.=""></real></pre>	REAL(N)? IMAG(N)? CHANGES? (Y/N)
16) If any mistakes were made in entering the coefficient pairs, they may be corrected by pressing [Y]. If no change are necessary, press [N] and go to step 17).	s [Y]	DATA PAIR TO CHANGE?
<pre>Enter # of coefficient pair to correct.</pre>	<n>[ENDLINE]</n>	REAL(n) < old entry>
Original entry is displayed for reference.	<pre><new value=""> [ENDLINE]</new></pre>	IMAG(n) <old entry=""></old>
	<pre><new value=""> [ENDLINE]</new></pre>	CHANGES? (Y/N)
If no (further) changes are necessary, press [N].	[N]	TRANSFORMING
17) Calculation of inverse FFT has begun.		TIME DOMAIN OUTPUT:
18) Calculation ends and data points are displayed. Press any key to move to next data point.		PT(1)= <value></value>
	<any key=""> <any key=""> •</any></any>	PT(2)= <value></value>
	<any key=""></any>	PT(N)= <value></value>
<pre>19) For a new problem, go to step 1).</pre>		

A) For the following set of time domain data points, calculate the Fourier transform to frequency data.

```
P(9) = -1
P(1) = 1
                                       P(10) = -1.3066
P(2) = 1.3066
                                       P(11) = -1.4142
P(3) = 1.4142
                                      P(12) = -1.3066
P(4) = 1.3066
                                       P(13) = -1
P(5) = 1
                                       P(14) = -.5412
P(6) = .5412
                                       P(15) = \emptyset
P(7) = \emptyset
                                       P(16) = .5412
P(8) = -.5412
```

Comments	Input	Display II
 Run the program. Choose time data input. 	[T]	TIME/FREQ. DATA? # OF DATA POINTS? DATA POINT(1)?
4) Enter point values.	1 [ENDLN] 1.3066 [ENDLN] 1.4142 [ENDLN] 1.3066 [ENDLN] 1 [ENDLN] .5412 [ENDLN]5412 [ENDLN] -1 [ENDLN] -1 [ENDLN] -1.3066 [ENDLN] -1.4142 [ENDLN] -1.3066 [ENDLN] -1.5412 [ENDLN] -1.5412 [ENDLN]	DATA POINT (2)? DATA POINT (3)? DATA POINT (4)? DATA POINT (5)? DATA POINT (6)? DATA POINT (7)? DATA POINT (8)? DATA POINT (9)? DATA POINT (10)? DATA POINT (11)? DATA POINT (12)? DATA POINT (13)? DATA POINT (14)? DATA POINT (15)? DATA POINT (16)?
5) FFT calculation begins.6) Frequency domain output.	<pre><any key=""> <any key=""></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></pre>	FREQ CAPTOR DOTE OF THE STREET

Comments	Input	Display
Done.	<any key=""> <any key=""></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any>	4R= 0.000000E+000 4I= 0.000000E+000 5R= 6.134477E-006 5I=-6.134477E-006 6R= 0.000000E+000 6I= 0.000000E+000 7R=-1.502234E-005 7I=-1.502234E-005

B) For the following set of frequency domain data pairs, perform the inverse Fourier transform to calculate the set of time domain data points. The DC term and the maximum frequency term are \emptyset .

REAL(1)=1	IMAG(1) = -1
$REAL(2) = \emptyset$	$IMAG(2) = \emptyset$
REAL(3) = -1.3395E - 6	IMAG(3) = -1.3395E - 6
$REAL(4) = \emptyset$	$IMAG(4) = \emptyset$
REAL(5) = 6.1345E - 6	IMAG(5) = -6.1345E - 6
$REAL(6) = \emptyset$	$IMAG(6) = \emptyset$
REAL(7) = -1.5022E - 5	IMAG(7) = -1.5022E - 5

Comments	Input	Display
	. 1	1
1) Run the program.		TIME/FREQ. DATA? (T/F)
2) Enter frequency data.	[F]	# OF COEFF. PAIRS?
3) Seven frequency data pairs.	7 [ENDLINE]	DC TERM=
4) DC term is Ø.	Ø [ENDLINE]	MAX FREQ. TERM=
5) Maximum frequency term is \emptyset .	Ø [ENDLINE]	FREQ. DOMAIN DATA -
6) Begin entry of frequency		REAL(1)?
domain data pairs.	l [ENDLINE]	IMAG(1)?
domain data parist	-1 [ENDLINE]	
	Ø [ENDLINE]	
	Ø [ENDLINE]	REAL(3)?
	-1.3395E-6	
	[ENDLINE]	IMAG(3)?
	-1.3395E-6	
	<u>-</u>	REAL(4)?
	Ø [ENDLINE]	IMAG(4)?

Comments	Input	Display
I	Ø [ENDLINE] 6.1345E-6 [ENDLINE] -6.1345E-6 [ENDLINE] Ø [ENDLINE] Ø [ENDLINE] -1.5022E-5 [ENDLINE] -1.5022E-5 [ENDLINE]	REAL(5)? IMAG(5)? REAL(6)? IMAG(6)? REAL(7)? IMAG(7)?
7) Inverse FFT calculation begins.		TRANSFORMING
8) Display time domain data points. Done.	<any key=""> <any key=""></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any>	TIME DOMAIN OUTPUT: PT(1) = 9.999898E-001 PT(2) = 1.306587E+000 PT(3) = 1.414186E+000 PT(4) = 1.306587E+000 PT(5) = 9.999898E-001 PT(6) = 5.411945E-001 PT(7) = 1.000000E-012 PT(8) =-5.411945E-001 PT(9) =-9.999898E-001 PT(10) =-1.306587E+000 PT(11) =-1.414186E+000 PT(12) =-1.306587E+000 PT(13) =-9.999898E-001 PT(14) =-5.411945E-001 PT(15) =-1.000000E-012 PT(15) =-1.000000E-012 PT(16) = 5.411945E-001

```
0010 ! FOURIER TRANSFORM
0020 ! Revision 1.0 4/16/84
ØØ3Ø !
\emptyset\emptyset4\emptyset F9=FLAG(5,FLAG(-1\emptyset))
0050 OPTION BASE 1 @ OPTION ANGLE RADIANS @ STD @ DELAY 0,0
0060 ON ERROR GOTO 'ERR'
ØØ7Ø I1$="TF" @ I2$="YN"
ØØ8Ø O1$="3D,'R=',MZ.6DE" @ O2$="3D,'I=',MZ.6DE"
\emptyset\emptyset9\emptyset O3$="'PT(',3D,')=',MZ.6DE"
Ø1ØØ DISP 'TIME/FREQ. DATA? (T/F)'
Ø110 'W1': K1$=UPRC$(KEY$) @ IF NOT POS(I1$,K1$) THEN 'W1'
0120 IF K1$='F' THEN SFLAG 1 @ F=-1 ELSE CFLAG 1 @ F=1
      Input data points for FFT, or coefficient pairs for
***
      inverse FFT. Number of data points must be a power
****
     of 2 and greater than 2. Number of coefficient
***
     pairs must be one less than a power of 2.
***
Ø13Ø 'IN':
Ø14Ø IF NOT FLAG(1) THEN INPUT '# OF DATA POINTS?';N @ GOTO 'INA'
0150 INPUT '# OF COEFF. PAIRS?'; N
Ø16Ø N=N*2+2
Ø17Ø 'INA': P=1
0180 IF N=2 THEN 'OR'
Ø19Ø FOR L=1 TO 10
0200 P = P * 2
0210 IF P=N THEN P1=L @ N2=N/2 @ GOTO 'START'
0220 NEXT L
Ø23Ø 'OR':
@24@ DISP 'INPUT OUT OF RANGE' @ WAIT 1 @ GOTO 'IN'
0250 'START':
0260 DIM R(N2), I(N2)
Ø27Ø IF FLAG(1) THEN 'IFFT'
      Input time domain data for FFT ****
***
Ø28Ø 'FFT':
Ø29Ø J=Ø
Ø3ØØ FOR L=1 TO N2
\emptyset31\emptyset J=J+1 @ DISP 'DATA POINT(';J;')'; @ INPUT R(L)
0320 J=J+1 @ DISP 'DATA POINT(';J;')'; @ INPUT I(L)
Ø33Ø NEXT L
      Changes to FFT data ****
***
Ø34Ø 'C1':
Ø35Ø DISP 'CHANGES? (Y/N)'
0360 'W2': K2$=UPRC$(KEY$) @ IF NOT POS(I2$,K2$) THEN 'W2'
0370 IF K2$="N" THEN DISP 'TRANSFORMING...' @ GOTO 'FFTC'
0380 'C2': INPUT 'DATA POINT TO CHANGE?';L
0390 IF L<=0 OR L>2*N2 THEN 'C2'
Ø4ØØ I2=L/2
0410 IF I2=INT(I2) THEN J=I2 ELSE J=INT(I2)+1
0420 DISP 'DATA POINT(';L;')';
```

```
Ø43Ø IF J=12 THEN INPUT '', STR$(I(J)); I(J) ELSE INPUT '', STR$(R(J)); R(J)
Ø44Ø GOTO 'C1'
                                                      ***
****
       Input DC term, maximum frequency and
       frequency domain data for inverse FFT.
***
Ø45Ø 'IFFT':
Ø46Ø INPUT 'DC TERM=';R(1)
Ø47Ø INPUT 'MAX FREQ. TERM=';I(1)
Ø48Ø DISP 'FREQ. DOMAIN DATA -' @ WAIT 1
Ø49Ø FOR L=2 TO N2
0500 DISP 'REAL(';L-1;')'; @ INPUT R(L)
Ø51Ø DISP 'IMAG(';L-1;')'; @ INPUT I(L)
Ø52Ø NEXT L
       Changes to inverse FFT data ****
Ø53Ø 'C3':
Ø54Ø DISP 'CHANGES? (Y/N)'
0550 'W3': K3$=UPRC$(KEY$) @ IF NOT POS(12$,K3$) THEN 'W3'
0560 IF K3$='N' THEN DISP 'TRANSFORMING...' @ GOTO 'IFFTC'
Ø57Ø 'C4': INPUT 'COEFF. PAIR TO CHANGE?';L
0580 IF L<=0 OR L>N2-1 THEN 'C4'
Ø59Ø DISP 'REAL(';L;')'; @ INPUT '',STR$(R(L+1));R(L+1)
0600 DISP 'IMAG(';L;')'; @ INPUT '',STR$(I(L+1));I(L+1)
Ø61Ø GOTO 'C3'
***
       Start FFT calculation
Ø62Ø 'FFTC':
Ø63Ø K=Ø
0640 FOR J=1 TO N2-1
Ø65Ø L=2
Ø66Ø IF K<N2/L THEN 68Ø
0670 K=K-N2/L @ L=L+L @ GOTO 660
\emptyset68\emptyset K=K+N2/L
Ø69Ø IF K<=J THEN 71Ø
0700 \text{ A} = \text{R}(J+1) \text{ @ R}(J+1) = \text{R}(K+1) \text{ @ R}(K+1) = \text{A @ A} = \text{I}(J+1) \text{ @ I}(J+1) = \text{I}(K+1)
@ I(K+1) = A
0710 NEXT J
0720 G=.5 @ P2=1
0730 FOR L=1 TO P1-1
0740 G=G+G @ C=1 @ E=0 @ Q=SQR((1-P2)/2)*F
\emptyset75\emptyset P2=(1-2*(L=1))*SQR((1+P2)/2)
0760 FOR M=1 TO G
Ø77Ø FOR J=M TO N2 STEP G+G
0780 \text{ K=J+G } @ \text{A=C*R(K)+E*I(K)} @ \text{B=E*R(K)-C*I(K)}
0790 \text{ R(K)} = \text{R(J)} - \text{A @ I(K)} = \text{I(J)} + \text{B @ R(J)} = \text{R(J)} + \text{A @ I(J)} = \text{I(J)} - \text{B}
Ø8ØØ NEXT J
Ø81Ø A=E*P2+C*Q @ C=C*P2-E*Q @ E=A
Ø82Ø NEXT M
Ø83Ø NEXT L
Ø84Ø IF FLAG(1) THEN 'IFFTO'
```

```
Start inverse FFT calculation ****
***
0850 'IFFTC':
0860 A=PI/N2 @ P2=COS(A) @ Q=F*SIN(A)
\emptyset 87\emptyset A=R(1) @ R(1)=A+I(1) @ I(1)=A-I(1)
0880 IF NOT FLAG(1) THEN R(1) = R(1)/2 @ I(1) = I(1)/2
Ø89Ø C=F @ E=Ø
\emptyset 9 \emptyset \emptyset FOR J=2 TO N2/2
0910 \text{ A}=\text{E}*\text{P}2+\text{C}*\text{Q} \text{ @ C}=\text{C}*\text{P}2-\text{E}*\text{Q} \text{ @ E}=\text{A} \text{ @ K}=\text{N}2-\text{J}+\text{2} \text{ @ A}=\text{R}(\text{J})+\text{R}(\text{K})
\emptyset 92\emptyset B = (I(J) + I(K)) *C - (R(J) - R(K)) *E @ U = I(J) - I(K)
\emptyset 93\emptyset V = (I(J) + I(K)) *E + (R(J) - R(K)) *C
0940 \text{ R}(J) = (A+B)/2 \text{ e } I(J) = (U-V)/2 \text{ e } R(K) = (A-B)/2 \text{ e } I(K) = -(U+V)/2
Ø95Ø NEXT J
\emptyset 96\emptyset I(N2/2+1) = -I(N2/2+1)
0970 IF FLAG(1) THEN 'FFTC'
0980 FOR J=1 TO N2
\emptyset 99\emptyset R(J) = R(J)/N2 @ I(J) = I(J)/N2
1000 NEXT J
**** FFT output ****
1010 'FFTO':
1020 DISP 'DC TERM =';R(1) @ GOSUB 'WAIT'
1030 DISP 'MAX FREQ. ='; I(1) @ GOSUB 'WAIT'
1040 DISP 'FREQ DOMAIN OUTPUT:' @ WAIT 1
1050 FOR L=2 TO N2
1060 DISP USING O1$;L-1,R(L) @ GOSUB 'WAIT'
1070 DISP USING 02$;L-1,I(L) @ GOSUB 'WAIT'
1080 NEXT L
1090 GOTO 'DONE'
       Inverse FFT output ****
***
1100 'IFFTO':
1110 DISP 'TIME DOMAIN OUTPUT: ' @ WAIT 1
1120 J=1
1130 FOR L=1 TO N2
1140 J=J+1
1150 DISP USING O3$; J-1, R(L) @ GOSUB 'WAIT'
 1160 DISP USING 03$; J, I(L) @ GOSUB 'WAIT'
 1170 J=J+1
 1180 NEXT L
 1190 'DONE': F9=FLAG(-10,FLAG(5)) @ PUT '#43' @ END
 1200 'WAIT': IF KEYS='' THEN 'WAIT' ELSE RETURN
 1210 'ERR': IF ERRL=260 THEN DISP 'NOT ENOUGH MEMORY' @ GOTO 'IN'
 1220 DISP ERRM$ @ GOTO 'DONE'
```

Polynomial Root Finder

This program finds all solutions, both real and complex, of $P(x) = \emptyset$, where P is a polynomial of the form:

$$P(x) = a(n) x^n + a(n-) x^{(n-1)} + ... + a(1) x + a(0) = 0$$

Inputs to the program are the degree of the polynomial, the real coeficients $a(n)...a(\emptyset)$, tolerances for the evaluation of the function and for each root, and the maximum number of iterations per root.

This program uses Laguerre's method to find the roots of the specified polynomial by computing a sequence of approximations Z(1), Z(2),..., to a root using the formula Z(k+1)=Z(k)+S(k). S(k) is called the Laguerre step, and is defined as:

where P, P', and P'' are the value of the polynomial and its first and second derivatives evaluated at the current iterate k, and n is the degree of the polynomial. The sign in the denominator is chosen to give the Laguerre step of smaller size, which in most cases insures that the roots will be found in order of increasing magnitude.

After an iterate is accepted as a root, synthetic division is used to deflate the polynomial by the factor (x-r) if the root is real, or $(x^2-2\text{Re}(r)+!!r!!^2)$ if the root is complex. This saves arithmetic operations, and prevents repetitive convergence to the same root.

For polynomials with only real roots, Laguerre's method will always converge to a root for any choice of real initial estimate. However, for roots of high multiplicity, some loss of accuracy may be observed. If complex roots are present, this method will usually converge to a valid root. If it does not, provisions are made for supplying a new initial estimate and starting the process again.

REFERENCES

Dahlquist, G. and Bjorck, A. NUMERICAL METHODS. Prentice-Hall, 1974. HP-75 MATH PAC. Hewlett-Packard, 1983

	COMMENTS	INPUT	DISPLAY
I	I-		
1)	Run the program.		POLYNOMIAL ROOT FINDER ORDER OF POLYNOMIAL?
2)	Input degree of polynomial. Must be a positive integer greater than 1. If it is not, you will be asked to enter it again.	<n></n>	A(n)=?
3)	Enter coefficients of each term, starting with the highest-ordered term.	<a(n)> [ENDLINE]</a(n)>	A(Ø) =?
4)	Input tolerance for roots. Default value of 1E-10 is displayed. If the magnitude of the Laguerre step is less that this value (and 5) is also satisfied) then the current iterate is accepted as a root.	<pre>(ENDLINE) <new value=""> [ENDLINE]</new></pre>	TOL. FOR ROOTS=1.E-10 TOL. FOR FCN=1.E-8
5)	Input tolerance for evaluation of function. default value of 1E-8 is displayed. If P(x) for the current iterate is less than this value, and step 4) has been satisfied, the current iterate is accepted as a root.	: <new value=""> [ENDLINE]</new>	MAX # OF ITERATIONS=
6)	Input maximum number of iterations for each root. If this number is exceeded before a valid root is found, the message 'NO CONVERGENCE' will be displayed and the user will be allowed to specify a new initial iterate and start the search again.	<nnn> [ENDLINE]</nnn>	LOOKING FOR ROOTS

	COMMENTS	INPUT	DISPLAY
I	I		1
7)	Calculation of roots has begun. As each root is found, the program will indicate how many roots have been found to this point.		# OF ROOTS FOUND = 1 # OF ROOTS FOUND = 2
	-		# OF ROOTS FOUND = n
			ROOT# 1: R= <value></value>
8)	The real and imaginary parts of each root are displayed. Pressing any key will continue		
	the displaying of the roots.	<any key=""></any>	ROOT# 1: I= <value></value>
		<any key=""></any>	ROOT# 2: R= <value></value>
		<any key=""></any>	•
		•	•
		•	ROOT# N: R= <value></value>
		<any key=""> <any key=""></any></any>	ROOT# N: I= <value></value>
9)	Done.		

A) Find the roots of the polynomial given below. Use default values for the tolerances and limit iterations to 10.

 $P(x) = 5x^6-45x^5+225x^4-425x^3+170x^2+370x-500$

USER INSTRUCTIONS

COMMENTS	INPUT	DISPLAY
I	I	II
1) Run the program.		POLYNOMIAL ROOT FINDER ORDER OF POLYNOMIAL?
2) Enter order of polynomial.	6 [ENDLINE]	A(6)=?
3) Enter the coefficients, starting with the highest order term.	5 [ENDLINE] -45 [ENDLINE] 385 [ENDLINE] -625 [ENDLINE] 176 [ENDLINE] 3170 [ENDLINE] -500 [ENDLINE]	A(4)=? A(3)=? A(2)=? A(1)=? A(0)=?
4) Use default value.	[ENDLINE]	TOL. FOR FCN=1.E-8
5) Use default value.	[ENDLINE]	MAX # OF ITERATIONS=
6) Limit to 10 iterations.	10 [ENDLINE]	LOOKING FOR ROOTS
7) Calculation of roots begins		# OF ROOTS FOUND = \$\precep\$ # OF ROOTS FOUND = 3 # OF ROOTS FOUND = 4 # OF ROOTS FOUND = 6 OT# 1: R= 1.0000000E+000
8) Display real and imaginary parts of each root.	<any key=""> RO <any key=""> RO</any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any></any>	OT# 1: I = 1.0000000E+000 OT# 2: R = 1.000000E+000 OT# 2: I = -1.0000000E+000 OT# 3: R = -1.0000000E+000 OT# 3: I = 2.000000E+000 OT# 4: R = 2.000000E+000 OT# 4: I = 0.000000E+000 OT# 5: R = 3.000000E+000 OT# 5: I = -4.000000E+000 OT# 6: R = 3.000000E+000

9) Done.

```
0010 DEFAULT ON
 0020 ! POLYNOMIAL ROOT FINDER
 0030 ! Revision 1.00 4/8/84
 0040 STD @ OPTION BASE 0 @ INTEGER I, J, K, N
 0050 A0$='YN' @ A7$='R' @ A8$='I'
 0060 A9$="'ROOT#',DD,': ',A,'=',MZ.6DE"
 0070 DEF FNF2(U1,V1) = SQRT(U1*U1+V1*V1)
 0080 DISP "POLYNOMIAL ROOT FINDER" @ WAIT .5
 ***
        INPUT ORDER, COEFFICIENTS, TOLERANCES
 ***
       AND MAXIMUM NUMBER OF ITERATIONS
 ØØ9Ø 'ORD':
 0100 INPUT "ORDER OF POLYNOMIAL? "; N
 0110 IF N<=1 OR N#IP(N) THEN DISP "INVALID ORDER" @ GOTO 'ORD'
 0120 ON ERROR GOTO 'MEM'
 \emptyset130 DIM A\emptyset(N), R\emptyset(N,2), L(2), C9(N)
 Ø14Ø FOR I=N TO Ø STEP -1
 0150 DISP 'A(';STR$(I);') ='; @ INPUT A0(I)
 Ø16Ø NEXT I
 Ø17Ø 'TOL':
 Ø180 E1=.0000000000 @ SCI @
 0190 INPUT 'TOL. FOR ROOTS=', STR$(E1); E1
 0200 INPUT 'TOL. FOR FCN=',STR$(E1*100);E2
Ø21Ø STD
0220 'IT': INPUT 'MAX # OF ITERATIONS=': 10
0230 IF IP(I0) #I0 OR NOT I0 THEN 'IT'
0240 DISP 'LOOKING FOR ROOTS...' @ WAIT .5
0260 'FINDR':
***
       IS ZERO A ROOT? ****
0270 IF NOT A0(0) THEN 'FAR'
****
       INPUT NEW GUESS IF ITERATION LIMIT EXCEEDED
0280 'LOOP': K=K+1
0290 IF K>10 THEN DISP 'NO CONVERGENCE' @ WAIT 1 @ GOSUB 'NUROOT'
       CALCULATE P, P', AND P'' AT Z(x,y)
0300 R = X \times X + Y \times Y @ D = X + X
Ø31Ø DØ=Ø @ D1=Ø @ CØ=Ø @ C1=Ø
\emptyset 32\emptyset B1=A\emptyset(J) @ B\emptyset=A\emptyset(J-1)+D*A\emptyset(J)
\emptyset 33\emptyset FOR I=J-2 TO \emptyset STEP -1
\emptyset34\emptyset IF I=\emptyset THEN D=X
Ø35Ø IF I>J-4 THEN 38Ø
0360 V=D1*R @ D1=D0
0370 D0=C1+D*D0-V
Ø38Ø V=C1*R @ C1=CØ
0390 C0=B1+D*C0-V
0400 V=B1*R @ B1=B0
\emptyset 410 B\emptyset = A\emptyset (I) + D*B\emptyset - V
Ø42Ø NEXT I
```

```
BEGIN CALCULATION OF LAGUERRE STEP
\emptyset 43\emptyset P(1,1) = B\emptyset @ P(1,2) = B1*Y
\emptyset 44\emptyset P(2,1) = B1 - 2*Y*Y*C1 @ P(2,2) = 2*Y*C\emptyset
\emptyset 45\emptyset P(3,1) = 2*C\emptyset - 8*Y*Y*D\emptyset P(3,2) = 2*Y*(3*C1-4*Y*Y*D1)
0460 CALL MULT(P(1,1),P(1,2),P(3,1),P(3,2),S1,S2)
\emptyset47\emptyset S1=-S1*J*(J-1) @ S2=-S2*J*(J-1)
Ø48Ø CALL MULT(P(2,1),P(2,2),P(2,1),P(2,2),S3,S4)
\emptyset49\emptyset S3=S3*(J-1)^2 @ S4=S4*(J-1)^2
Ø500 CALL ADD(S3,S4,S1,S2,S1,S2)
Ø51Ø CALL SQAROOT(S1,S2,S1,S2)
Ø52Ø CALL ADD(P(2,1),P(2,2),S1,S2,L1,L2)
Ø53Ø CALL ADD(P(2,1),P(2,2),-S1,-S2,L3,L4)
Ø54Ø CALL DIVID(P(1,1),P(1,2),L1,L2,L1,L2)
Ø55Ø CALL DIVID(P(1,1),P(1,2),L3,L4,L3,L4)
      CHOOSE SIGN OF DENOMINATOR TO
      PRODUCE SMALLER LAGUERRE STEP
***
0560 IF FNF2(L1,L2)<FNF2(L3,L4) THEN S1=L1 @ S2=L2 ELSE S1=L3 @ S2=L4
\emptyset57\emptyset L(1) = -J*S1 @ L(2) = -J*S2
      FORCE REAL ROOT ****
****
0580 IF ABS(L(2))<.0001*FNF2(L(1),L(2)) THEN L(2)=0 @ Y=0
\emptyset 590 X = X + L(1) @ Y = Y + L(2)
      CHECK FOR VALID ROOT ****
****
0600 IF FNF2(L(1),L(2))>ABS(E1) THEN 'LOOP'
0610 IF FNF2(P(1,1),P(1,2)) < ABS(E2) THEN 'FAR'
0620 DISP 'INVALID ROOT FOUND' @ WAIT 1 @ GOSUB 'NUROOT' @ GOTO 'LOOP'
      FOUND VALID ROOT(S) - IF COMPLEX
***
      ROOT ASSUME CONJUGATE IS A ROOT
                                              ***
Ø63Ø 'FAR':
\emptyset64\emptyset R\emptyset(J,1)=X @ R\emptyset(J,2)=Y @ IF Y THEN GOSUB 'ROOTI'
Ø65Ø DISP '# OF ROOTS FOUND =';N-J+1
0660 IF NOT FNF2(RØ(J,1),RØ(J,2)) THEN GOSUB 'ROOTO' ELSE GOSUB 'DEFLATE'
0670 J=J-1 @ K=0 @ IF NOT J THEN 'DR'
0680 IF J=1 THEN R0(1,1)=-A0(0)/A0(1) ELSE K=0 @ X=0 @ Y=0 @ GOTO 'FINDR'
***
      DISPLAY ROOTS
                      ***
Ø69Ø DISP '# OF ROOTS FOUND ='; N
0700 'DR':
\emptyset71\emptyset FOR I=N TO 1 STEP -1
Ø72Ø DISP USING A9$; N-I+1, A7$, RØ(I,1) @ GOSUB 'WAIT'
0730 DISP USING A9$; N-I+1, A8$, R0(I,2) @ GOSUB 'WAIT'
0740 NEXT I
0750 'DONE': PUT "#43" @ END
0760 'WAIT': IF KEY$='' THEN 'WAIT' ELSE RETURN
```

```
DEFLATION ROUTINES - IF ROOT IS REAL, DEFLATE BY
***
                                                                          ***
       LINEAR FACTOR (x-r). IF ROOT IS COMPLEX, DEFLATE
***
      BY BINOMIAL X^2-2Re(r)X+!!r!!^2.
0770 'DEFLATE':
0780 IF Y THEN 'DEFLATEI'
\emptyset 79\emptyset \ C9(J-1) = A\emptyset(J)
\emptyset8\emptyset\emptyset FOR I=J-1 TO 1 STEP -1
\emptyset 81\emptyset \ C9(I-1) = A\emptyset(I) + C9(I) * R\emptyset(J,1)
0820 NEXT I
\emptyset 83\emptyset FOR I=0 TO J-1 @ A0(I)=C9(I) @ NEXT I
Ø84Ø RETURN
Ø850 'DEFLATEI':
\emptyset 86\emptyset \ C9(J-1) = A\emptyset(J+1) \ \emptyset \ C9(J) = \emptyset \ \emptyset \ IF \ J=1 \ THEN \ RETURN
0870 FOR I=J-1 TO 1 STEP -1
\emptyset 88\emptyset \ C9(I-1) = A\emptyset(I+1) + C9(I) * R\emptyset(J,1) * 2 - (R\emptyset(J,1)^2 + R\emptyset(J,2)^2) * C9(I+1)
Ø89Ø NEXT I
\emptyset 9\emptyset\emptyset FOR I=\emptyset TO J-1 @ A\emptyset(I)=C9(I) @ NEXT I
0910 RETURN
***
       DEFLATE FOR ZERO ROOT
Ø92Ø 'ROOTØ':
\emptyset 93\emptyset FOR I=\emptyset TO J-1 @ A\emptyset(I)=A\emptyset(I+1) @ NEXT I
Ø94Ø RETURN
***
        SET NEXT ROOT TO COMPLEX CONJUGATE
                                                        ***
***
        OF COMPLEX ROOT JUST FOUND
                                                        ***
0950 'ROOTI':
\emptyset 96\emptyset \ J=J-1 \ @ \ R\emptyset(J,1)=X \ @ \ R\emptyset(J,2)=-Y
Ø97Ø RETURN
        ASK FOR NEW GUESS IF FAILURE TO CONVERGE ****
***
0980 'NUROOT':
0990 DISP 'NEW GUESS? (Y/N)'
1000 'W0': A1$=KEY$ @ IF NOT POS(A0$, UPRC$(A1$)) THEN 'W0'
1010 IF UPRC$(A1$) = 'N' THEN 'DONE'
1020 INPUT 'NEW u = ', STR$(X); X
1030 INPUT 'NEW v = ', STR$(Y); Y
1040 K=0
1050 RETURN
1060 'MEM':
1070 IF ERRN#24 THEN DISP ERRM$ @ GOTO 'DONE'
1080 DISP 'LOW MEM - REDUCE ORDER' @ WAIT 1 @ GOTO 'ORD'
***
                                              ***
        ADDITION OF COMPLEX NUMBERS
1090 SUB ADD (U1, V1, U2, V2, U, V)
1100 U=U1+U2 @ V=V1+V2
1110 END SUB
```

**** MULTIPLICATION OF COMPLEX NUMBERS **** 1120 SUB MULT(U1,V1,U2,V2,U,V) 1130 U=U1*U2-V1*V2 @ V=U1*V2+U2*V1 1140 END SUB *** *** DIVISION OF COMPLEX NUMBERS 1150 SUB DIVID(U1,V1,U2,V2,U,V) 1160 CALL MULT (U1, V1, U2, -V2, Z1, Z2) 1170 D5=U2*U2+V2*V2 @ IF NOT D5 THEN U=0 @ V=0 @ GOTO 1200 1180 U=Z1/D51190 V=Z2/D51200 END SUB SQUARE ROOT OF A COMPLEX NUMBER **** **** 1210 SUB SQAROOT (U1, V1, U, V) 1220 A2=SQR((SQR(U1*U1+V1*V0)+ABS(U1))/2)1230 IF NOT A2 THEN U=0 @ V=0 @ GOTO 1280 1240 B2=V1/(2*A2)1250 IF U1>=0 THEN U=A2 @ V=B2 @ GOTO 1280 1260 U=ABS(B2) 1270 IF B2>=0 THEN V=A2 ELSE V=-A2 1280 END SUB

NOTES

5

00071-90064 Printed in USA

ERRATA: HP-71 MATH SOLUTIONS BOOK

```
Page 57:
 3) Enter the coefficients,
     starting with the highest
    order term.
                                      5[ENDLINE] A(5)=?
                                    -45[ENDLINE] A(4)=?
                                    225[ENDLINE] A(3)=?
                                   -425[ENDLINE] A(2) = ?
                                    170[ENDLINE] A(1) =?
                                    370 [ENDLINE] A(0) = ?
                                   -500 [ENDLINE] TOL. FOR ROOTS=1.E-10
^{ackslash} 7) Calculation of roots begins.
                                                  # OF ROOTS FOUND= 2
                                                  # OF ROOTS FOUND= 3
                                                  # OF ROOTS FOUND= 4
                                                  # OF ROOTS FOUND= 6
^{>}8) Display real and imaginary
    parts of each root.
                                                  ROOT# 1: R= 1.000000E+000
                                      <any key>
                                                  ROOT# 1: I= 1.000300E+000
                                      <any key>
                                                  ROOT# 2: R= 1.0000000E+000
                                      <any key>
                                                  ROOT# 2: I=-1.000000E+000
                                      <any key>
                                                  ROOT# 3: R=-1.000000E+000
                                      <any key> ROOT# 3: I= 0.000000E+000
 Page 58:
 \emptyset 25\emptyset J=N @ K=Ø @ X=Ø @ Y=Ø
 0270 IF NOT A0(0) THEN 'FAR'
.Page 59:
 0720 DISP USING A95; N-I+1, A75, R0(I,1) @ GOSUB 'WAIT'
 0730 DISP USING A9$ N-I+1,A8$,R0(I,2) @ GOSUB 'WAIT'
 Page 61:
 1220 A2=SQR((SQR(U1*U1+V1*V1)+ABS(U1))/2)
```

ERRATA: HP-71 MATH SOLUTIONS BOOK

```
Page 9:
```

\ 0200 IF NOT FLAG(1) EXOR FLAG(2) THEN DISP 'I/O INCORRECT' @ WAIT 2 ELSE 'Al \ \ 0510 IF FLAG (2) THEN CALL C2R(X0,Y0)

Page 15:

- $^{\setminus}$ 4) Key in the number of points. 9 [ENDLINE] Interval length=0
 - Solution (a) (5) Key in the interval length for the partitions. .25[ENDLINE] E(0)=0

Page 18:

~ Ø58Ø R=A(Ø)+A(N)

Page 27:

0090 M\$=KEY\$ @ IF M\$="" THEN 90 0160 A\$=KEY\$ @ IF A\$="" THEN 160 0230 A\$=KEY\$ @ IF A\$="" THEN 230 ELSE "F"

Page 28:

√ Ø41Ø A\$=KEY\$ @ IF A\$="" THEN 41Ø

Page 34:

3) Key in the number of rows. 5 [ENDLINE] A(1,1) = 0.0000

Page 36:

 \searrow 3) The order is 2.

[ENDLINE] R(1,1) = 0.0000

 \sim 8) Choose solve option. S BR(1) = 4.0000

Page 48:

6) Frequency domain output.

C TERM=0

<any key> MAX FREQ. =0

<any key> FREQ DOMAIN OUTPUT:
1R= 1.000010E+000