

CDS503: Machine Learning

Topic 1Machine Learning Basic

Assoc. Prof. DR UMI KALSOM YUSOF SCHOOL OF COMPUTER SCIENCES UNIVERSITI SAINS MALAYSIA (USM)

Contents

- Data Mining
- What is Machine Learning
- Supervised Learning
- Unsupervised Learning
- Learning Associations
- Reinforcement Learning
- Machine Learning Applications

Machine Learning Introduction

What is Data Mining?

Data mining is considered the process of extracting useful information from a vast amount of data.

Dealing with large data, perhaps Gigabytes, perhaps in Terabytes.

To discover new, accurate, and useful patterns in data

Discover past patterns to predict future behaviour.

Bigger data = Higher confidence

the discovered pattern

Data mining in small data is still possible

Enterprise's Memory

Data Mining

Enterprise's Intelligence

Why Data Mining Now?

Evolution of Technology

- Improved database
- Faster & cheaper data collection
- Ability to analyze & synthesize information

Machine Learning Introduction

Affordable Computing Power

- Data mining is computationally
 & resource extensive
- Reduction in the price of computer systems

Statistical & Learning Algorithm

Enable development of new algorithm

Large Amount of Data

- Accumulated data (30+ years)
- Collect information for analysis
- Example: loyalty cards

Strong Business Competition

- Growth in service economies
- Service economies are information rich and very competitive.
- **Example:** *Mobile market*

What is Machine Learning?

- Machine learning is the process of discovering algorithms that have improved courtesy of experience derived from data.
- It's the design, study, and development of algorithms that permit machines to learn without human intervention.
- It's a tool to make machines smarter, eliminating the human element (but not eliminating humans themselves; that would be wrong).

What is Machine Learning?

Machine Learning Introduction

Learning

- Learning general model from data
- Data is cheap & abundant
- Knowledge is expensive & scarce
- Example: Consumer behavior from buying transactions

Machine Learning

Algorithms that improves its performance at some tasks with experience

Optimizes performance using example data or past experience

Represent and evaluate the model for inference

Machine Learning Works By

- Pattern discovery
- Weighting important input
- **Dismiss non-influential** factors

- Data exploration
- Clearly defined business goals
- Model train/refine/validate
- Reliant on domain/data expertise
- Model deployment ——

- Model export in common formats (.xml, .pmml)
- Automated update

Machine Learning Categories & Classes

Supervised Learning: Profile and Predict

Build **predictive profile** of historical outcome

Utilize collection of potential inputs

Supervise the process as the algorithm attempts to model the outcome using provided inputs

Explore all possible combinations, interactions & contingencies

Use that profile to predict future cases

Supervised Learning:

Decision Trees and Rule Induction

Excellent in modeling complex relationships

Very easy to understand and describe to others

Summary

Handle nonlinearity and interactions with ease

Time to **insight** in **minutes**

Very accurate on small data set to inform decision making

Supervised Learning:

Uses

Predict future cases

Use rules to predict based on **future** input

Knowledge Extraction

The rule is easy to understand

Compression

The rule is **simpler** than the data it explains

Outlier Detection

Exceptions not covered by the rule (i.e. fraud)

10 -15 Test data 150 200 250 300

Regression

Example: "Learn" the pattern of housing prices in order to predict future house prices

Training Sets

Test Sets

College admissions

Classification

Example: Classifying college admission of student based on their admission tests

Face Recognition

Example: "Learn" different features of a person faces

What is

Unsupervised Learning?

Machine learning is useful when we don't know the output

Finding 'useful' patterns above & beyond noise

"Fishing" for unknown yet may be insightful information

Clustering

- **Exploratory** data analysis techniques
- Reveal natural groups within a dataset
- No prior knowledge about groups or characteristics.

Association

- Find things that occurs together
- Example: events in a crime incident
- Association can exist between any of the attributes (no single outcome like Decision Tree)

Association

- Discover association rules in time-oriented data
- Find the **sequence** or order of the events

Machine Learning Learning Association

What one customer purchased at one time?

What merchandise customers are buying and when?

How to uncover associations of items that are frequently bought together?

Market Basket Analysis

- If X and Y are products/services
- P(Y|X) is the probability that somebody who
 buys X also buys Y
- Example: P(beer | apple) = 0.7
- Apriori algorithm & association rules can be used to mine frequent item sets to discover association among items.
- Three **measures**: *Support, Confidence, Lift*

Transaction 1	(4) (9) (9) (5)
Transaction 2	
Transaction 3	(b)
Transaction 4	()
Transaction 5	Ø 🗓 🖯 🔪
Transaction 6	∅ 🕑 ⊝
Transaction 7	/
Transaction 8	>

Support
$$\{ \bigcirc \} = \frac{4}{8}$$

Confidence
$$\{ \bigcirc \rightarrow \bigcirc \} = \frac{\text{Support } \{ \bigcirc, \bigcirc \}}{\text{Support } \{ \bigcirc, \bigcirc \}}$$

Lift $\{ \bigcirc \rightarrow \bigcirc \} = \frac{\text{Support } \{ \bigcirc, \bigcirc \}}{\text{Support } \{ \bigcirc, \bigcirc \}}$

Support $\{ \bigcirc, \bigcirc \}$

Learning Associations Example Application

Amazon.com uses associations to recommend customers based on their past purchases and what other customers are purchasing.

A store in USA "Just for Feet" has about 200 stores, each carrying up to 6000 shoe styles, each style in several sizes.

Data mining is used to find the right shoes to stock in the right store.

What is

Reinforcement Learning?

- A reward-based learning
- Input/state-driven
- Learns to react to its environment
- Example: teaching a child to memorize a word or a dog to fetch

Policy (Core)

How to behave in a state; stimulusresponse rules or action

Reward Signal

Short term reward, defines positive and negative ones

Value Function

Long term reward, a refined & farsighted judgement; desired goal

Model (optional)

Allow inference on how the environment will behave

Automate Ideal Behaviors

Learn by Experience

Generalized Learning

Robustness

Stochastically explore and exploit to maximize rewards

Interacts and learn from its own experience

Considers the "whole" problem (big picture)

Robust to react against uncertainties

Source: Sutton, Richard S., and Andrew G. Barto. "Reinforcement learning: An introduction." (2011).

<u>Elements</u>

- Sophisticated applications of modern enterprises include:
 - Sales forecasting and analysis
 - Marketing and promotion planning
 - Business modeling

OLTP is **not designed** for such applications

Large enterprises operate a **number** of database **systems**.

It is necessary to integrate information for decision making applications.

Question: Why OLTP cannot be used for sales forecasting and analysis?

Machine Learning Applications in Finance, Retails, Telecom, Insurance, etc.

Loan & Credit Card Approval

Trend Analysis

Market Segmentation

Market Basket
Analysis

Fraud Detection

Customer Churn

Better Marketing

Website Design & Promotion

Loan & Credit Card Approval

- Bank does not know its customers
- Only have their information
- Collect customers' behavioural data
- Collect from many sources
- To predict the chances of a customer paying back a loan

Fraud Detection

- Difficult to define characteristics of fraud
- Often detected based on change in norm
- In statistics, common to throw out outliers
- In machine learning, useful to identify them due to errors or fraud

Market Segmentation

- Large amount of data about customers
- May contain valuable information
- Segments them by subgroups
- Use variables that are good discriminators
- **Difficult** to find these variables

Better Marketing

- Customer buy a new products, suggest other products when they ready
- Will the customer respond?
- Will the customer purchase and how much?
- Will the customer return purchase?
- Will the customer pay for the purchase?

Trend Analysis

- In a large company, not all trends are visible
- Useful to use data mining to identify trends
- Trends may be long term trends, cyclic trends or seasonal trends

Market Basket Analysis

- What customer buy & buy together
- Useful in designing store layouts or in deciding which items to put on sale
- Can also be used for other applications

Website Design & Promotion

- Web design that are dynamic and adaptive to changing contents & platforms
- Perceptive of emotion and highly
 personalized to the individual customer

Customer Churn

- Keep good customers and persuade good customers of their competitors to switch
- Find those customers, why they switch and what makes customers loyal.
- Cheaper to develop a retention plan (retain old customers) than to bring in new customers.
- Get to know the customers better (keep them longer)
- Remove customers that cost more (than their worth)

Machine Learning Applications

Classification

Pattern Recognition

Classify important **feature**

Character Recognition Different hand writing styles

Face Recognition

- Lighting
- **Occlusions**
- Makeup
- Hair Styles

Medical Diagnosis

From symptoms to illnesses

Web Advertising Predict user clicking an ads

Speech Recognition: Temporal Dependency

- Utilizes language syntax/ dictionary
- Combine multiple modalities
- **Example: visual** of lip images & acoustic of speech

Machine Learning Applications

(Reinforcement Learning)

Game Theory & Multi-**Agent Interaction**

Robotics

Personalized Web Services

Vehicular Navigation

Optimize Memory Control

Thank you