Einführung in die Geometrie und Topologie - SS 2021 Blatt 1-Lösung

Aufgabe 1. Es sei (X,d) ein metrischer Raum und $x \in X$ ein Punkt. Dann ist die Abbildung

$$d_x \colon X \to \mathbb{R}$$

 $y \mapsto d(x, y)$

stetig.

Beweis. Beweis über ε - δ Stetigkeit:

$$d_x$$
 ist stetig $\iff \forall a \in X$ gilt : $\forall \varepsilon > 0 : \exists \delta > 0 : \forall y \in X : d(y,a) < \delta \implies d(d_x(y),d_x(a)) < \varepsilon$

Seien nun $\varepsilon > 0$ und $a \in X$. Wir wählen $\delta = \varepsilon$ und $y \in X$ beliebig so dass $d(y, a) < \varepsilon$. Nun gilt nach der Dreiecksungleichung

$$d(y,x) - d(a,x) \le d(y,a) < \varepsilon \quad \text{und} \quad d(a,x) - d(y,x) \le d(y,a) < \varepsilon \,,$$

und somit insgesamt

$$|d_x(y) - d_x(a)| = |d(x,y) - d(x,a)| < \varepsilon.$$

Somit ist d_x stetig.

Aufgabe 2. Wir betrachten die Menge $\mathbb{N}_{>0}$ mit der euklidischen Metrik d_1 , d.h. $d_1(n,m) := |n-m|$, der diskreten Metrik d_2 und der Metrik d_3 gegeben durch $d_3(n,m) := |\frac{1}{n} - \frac{1}{m}|$.

- i) Die Metriken d_1, d_2 und d_3 sind paarweise nicht äquivalent.
- ii) Die Metriken d_1, d_2 und d_3 induzieren dieselbe Topologie auf $\mathbb{N}_{>0}$.

Beweis. i) Die Metriken d_1 , d_2 und d_3 sind paarweise nicht äqualent.

(a) d_1 und d_2 sind nicht äquivalent.

Sei c > 0 und $n \in \mathbb{N}_{>0}$. Es gilt:

$$c \cdot d_1(n, n+1+\lceil \frac{1}{c} \rceil) = c \cdot |n - (n+1+\lceil \frac{1}{c} \rceil)|$$
$$= c + c \cdot \lceil \frac{1}{c} \rceil$$
$$> 1 = d_2(n, n+1+\lceil \frac{1}{c} \rceil).$$

(b) d_i und d_3 sind nicht äquivalent für i = 1, 2.

Sei c > 0. Es gilt:

$$d_1(\lceil c \rceil, \lceil c \rceil + 1) = d_2(\lceil c \rceil, \lceil c \rceil + 1) = 1$$

$$> \frac{1}{\lceil c \rceil + 1}$$

$$\ge \frac{c}{\lceil c \rceil} \cdot \frac{1}{\lceil c \rceil + 1}$$

$$= c \cdot d_3(\lceil c \rceil, \lceil c \rceil + 1).$$

ii) Die Metriken d_1 , d_2 und d_3 induzieren dieselbe Topologie auf $\mathbb{N}_{>0}$.

Es reicht zu zeigen, dass d_1 und d_3 die diskrete Topologie (die von der diskreten Metrik induziert wird) induzieren. Nach den Axiomen einer Topologie reicht es also zu zeigen, dass für jedes $n \in \mathbb{N}_{>0}$ die Menge $\{n\}$ offen ist. Sei nun $n \in \mathbb{N}_{>0}$.

Betrachten wir zuerst d_1 :

$$\min\{|n-m||n\neq m\in\mathbb{N}_{>0}\}=1.$$

Daher gilt:

$$U_{d_1}(n,1) = \{n\}.$$

Nun betrachten wir d_3 :

$$\min\{|\tfrac{1}{n}-\tfrac{1}{m}||n\neq m\in\mathbb{N}_{>0}\}=\frac{1}{n(n+1)}.$$

Daher gilt:

$$U_{d_3}(n, \frac{1}{n(n+1)}) = \{n\}.$$

Aufgabe 3. Auf \mathbb{N} betrachten wir die Menge von Teilmengen $\mathcal{O}_{ko-endl}$ für die gilt: $U \in \mathcal{O}_{ko-endl}$ genau dann wenn U leer oder $\mathbb{N} \setminus U$ endlich ist.

- i) $\mathcal{O}_{ko-endl}$ ist eine Topologie auf \mathbb{N} (die ko-endliche Topologie).
- ii) Es seien $U_1, U_2 \in \mathcal{O}_{ko-endl}$ nicht leer. Dann ist auch $U_1 \cap U_2$ nicht leer.
- iii) Sei (X, d) ein metrischer Raum. Dann ist jede stetige Abbildung $f: (\mathbb{N}, \mathcal{O}_{ko-endl}) \to (X, d)$ konstant.
- iv) $(\mathbb{N}, \mathcal{O}_{ko-endl})$ ist nicht metrisierbar.
- Beweis. i) Man muss zunächst überprüfen, dass mit $U_i \in \mathcal{O}_{ko-endl}$ für $i \in$, wobei I eine beliebige Menge ist, auch die Vereinigung $\bigcup_i U_i$ in $\mathcal{O}_{ko-endl}$ liegt. Da $U_i \in \mathcal{O}_{ko-endl}$, ist U_i entweder leer oder $\mathbb{N} \setminus U_i$ ist endlich für alle i. Also ist auch $\bigcup_i U_i$ leer (falls alle U_i leer sind) oder $\mathbb{N} \setminus \bigcup_i U_i = \bigcap_i \mathbb{N} \setminus U_i$ ist endlich (falls es ein $U_i \neq \emptyset$ gibt). Folglich ist $\bigcup_i U_i \in \mathcal{O}_{ko-endl}$.

Weiter muss man überprüfen, dass mit $U_i \in \mathcal{O}_{ko-endl}$ für $i \in$, wobei I eine endliche Menge ist, auch der Durchschnitt $\bigcap_i U_i$ in $\mathcal{O}_{ko-endl}$ liegt. Da $U_i \in \mathcal{O}_{ko-endl}$, ist U_i entweder leer oder $\mathbb{N} \setminus U_i$ ist endlich für alle i. Also ist auch $\bigcap_i U_i$ leer (falls ein U_i leer ist) oder $\mathbb{N} \setminus \bigcap_i U_i = \bigcup_i \mathbb{N} \setminus U_i$ ist endlich (falls stets $U_i \neq \emptyset$ gilt). Im zweiten Fall wurde verwendet, dass I endlich ist. Folglich ist $\bigcap_i U_i \in \mathcal{O}_{ko-endl}$.

Nicht zu vergessen ist, dann noch einmal festzustellen, dass \emptyset und \mathbb{N} offen sind.

- ii) Es seien $U_1, U_2 \in \mathcal{O}_{ko-endl}$ nicht leer. Dann müssen $\mathbb{N} \setminus U_1, \mathbb{N} \setminus U_2$ endlich sein. Wären U_1 und U_2 nun disjunkt, so wäre $\mathbb{N} \setminus U_1 \cup \mathbb{N} \setminus U_2 = N \setminus (U_1 \cap U_2) = \mathbb{N}$.
- iii) Sei (X,d) ein metrischer Raum und $f: (\mathbb{N}, \mathcal{O}_{ko-endl}) \to (X,d)$ eine stetige Abbildung. Seien $x \neq y$ zwei Punkte im Bild von f. Verschiedene Punkte in einem metrischen Raum besitzen disjunkte offene Umgbungen, wie z. B. $U_1 = U(x, d(x,y)/2)$ und $U_2 = U(y, d(x,y)/2)$ und dann sind auch $f^{-1}(U_1)$ und $f^{-1}(U_1)$ offen und auch disjunkt. Da x und y aber im Bild von f liegen, sind sie auch nichtleer, im Widerspruch zu ii). Also gilt x = y und f ist konstant.
- iv) Wäre $(\mathbb{N}, \mathcal{O}_{ko-endl})$ metrisierbar mit einer Metrik d, so wäre die Abbildung $d_x \colon \mathbb{N} \to \mathbb{R}$ aus Aufgabe 1 für einen beliebigen Punkt $x \in \mathbb{N}$ stetig (nach ebendieser Aufgabe) und nichtkonstant (da \mathbb{N} mehr als einen Punkt hat). Dies stände aber im Widerspruch zu iii), weil \mathbb{R} ein metrischer Raum ist.

Aufgabe 4. Es sei $Y = \{a, b\}$, mit der Topologie $\mathcal{T} = \{\emptyset, \{a\}, Y\}$. Zudem sei X ein topologischer Raum.

- i) Eine Abbildung $f: X \to Y$ ist stetig genau dann, wenn $f^{-1}(a) \subset X$ offen ist.
- ii) Die Zuordnung

{stetige Abbildungen
$$X \to Y$$
} \to {offene Teilmengen in X }
$$f \mapsto f^{-1}(a)$$

ist bijektiv.

- Beweis. i) Eine Abbildung ist per Definition stetig, falls Urbilder offener Mengen offen sind. Offene Mengen in Y sind genau \emptyset , $\{a\}$ und Y. Es gilt stets $f^{-1}(\emptyset) = \emptyset$ sowie $f^{-1}(Y) = X$ und in jeder Topologie auf X sind \emptyset , $X \subset X$ offen. Das bedeutet aber, dass f stetig ist genau dann, wenn $f^{-1}(a) \subset X$ offen ist.
- ii) Wir benennen die gegebene Zuordnung Φ : {stetige Abbildungen $X \to Y$ } \to {offene Teilmengen in X}. Nach dem vorigen Teil ist Φ wohldefiniert. Seien $f,g\colon X\to Y$ stetige Abbildungen, sodass $\Phi(f)=\Phi(g)$, also $f^{-1}(a)=g^{-1}(a)$. Da Y als Menge nur aus zwei Punkten besteht, gilt f(x)=b für alle $x\notin f^{-1}(a)$ und ebenso g(x)=b für alle $x\notin g^{-1}(a)$. Da aber $f^{-1}(a)=g^{-1}(a)$, gilt f(x)=b=g(x) für alle $x\notin f^{-1}(a)$ und ebenso f(x)=a=g(x) für alle $x\in f^{-1}(a)$, insgesamt also f(x)=g(x) für alle $x\in X$, d.h. f=g. Damit ist Φ injektiv. Sei $U\subset X$ offen. Definiere

$$f \colon X \to Y$$

$$x \mapsto \begin{cases} a & \text{falls } x \in U \\ b & \text{sonst.} \end{cases}$$

Nach dem ersten Teil der Aufgabe ist f stetig, denn $f^{-1}(a) = U \subset X$ ist offen und es gilt $\Phi(f) = U$. Damit ist Φ surjektiv.