Exame de Qualificação do Mestrado Topologia Geral

06/12/2013

RANome	
--------	--

Ao resolver cada questão, enuncie cuidadosamente os resultados utilizados.

- 1. Seja X um espaço T_3 , ou seja um espaço T_1 regular. Dados $a,b\in X$, com $a\neq b$, prove que existem abertos U e V em X tais que $a\in U,\,b\in V$ e $\overline{U}\cap \overline{V}=\emptyset$.
- 2. Seja X um espaço topológico. Seja $\{A_i:i\in I\}$ uma família de subconjuntos fechados de X tal que $\bigcap_{i\in I}A_i\neq\emptyset$. Seja U um subconjunto aberto de X tal que

$$\bigcap_{i\in I} A_i \subset U.$$

Dado um subconjunto compacto K de X, prove que existem $i_1,...,i_n\in I$ tais que

$$K \cap A_{i_1} \cap \cdots \cap A_{i_n} \subset U$$
.

3. Seja X um espaço topológico. Seja $\{S_i: i \in I\}$ uma família de subconjuntos conexos de X. Seja S um subconjunto conexo de X tal que $S \cap S_i \neq \emptyset$ para cada $i \in I$. Prove que o conjunto

$$S \cup \left(\bigcup_{i \in I} S_i\right)$$

é conexo.

- 4. Prove que os espaços X e Y não são homeomorfos entre si nos seguintes casos:
 - (a) $X = [0, 1], Y = \mathbb{S}^1$.
 - (b) $X = [0, \infty), Y = (0, \infty).$
 - (c) $X = \mathbb{R}, Y = \mathbb{R}^2$.
 - 5. Um conjunto $X \subset \mathbb{R}^n$ é dito x_0 -estrelado $(x_0 \in \mathbb{R}^n)$ se

$$(1-t)x_0 + tx \in X$$
 para todo $x \in X$, $t \in [0,1]$.

Prove que cada função $f \in C(X;Y)$ é homotópica a uma função constante nos seguintes casos:

- (a) X é um subconjunto x_0 -estrelado de \mathbb{R}^n $(x_0 \in \mathbb{R}^n)$ e Y é um espaço topológico.
- (b) X é um espaço topológico e Y é um subconjunto y_0 -estrelado de \mathbb{R}^n $(y_0 \in \mathbb{R}^n)$.

Departamento de Matemática - IMECC - Unicamp Exame de Análise no \mathbb{R}^n – 09 de dezembro de 2013.

Nome:		
DA.		

- **1. Questão.** (2.0) Sejam f e g duas funções diferenciáveis em uma vizinhança de $0 \in \mathbb{R}^n$. Suponha que f(0) = g(0) e que $(\nabla_x f)(0) = (\nabla_x g)(0)$. Seja h uma função definida em uma vizinhança Ω de 0, tal que, $f(x) \le h(x) \le g(x)$ em Ω . Mostre que h é diferenciável em x = 0.
- **2. Questão.** (1.5) Seja \mathbb{R}^{n^2} o conjunto das matrizes reais $(x_{ij})_{n \times n}$. Seja $f : \mathbb{R}^{n^2} \to \mathbb{R}$ definida por $f(x) = \det(x)$. Mostre que os valores máximo e mínimo de f na esfera

$$\sum_{i,j} x_{i,j}^2 = n$$

são 1 e - 1, respectivamente, os quais são atingidos em matrizes ortogonais.

3. Questão.

- (a) (1.5) Demonstre o teorema da aplicação implícita usando o teorema do posto.
- **(b)** (1.0) Mostre que se $f: \mathbb{R}^2 \to \mathbb{R}$ é de classe C^1 , então f não pode ser injetora.
- **4. Questão.** (2.0) Seja $f:[a,b]\to\mathbb{R}$ uma função contínua. Mostre que o gráfico de f, definido por

$$G_f = \{(x, f(x)) \in \mathbb{R}^2; x \in [a, b]\},\$$

é um conjunto de medida nula em \mathbb{R}^2 .

5. Questão.

a) Seja $\Omega \subset \mathbb{R}^3$ um aberto conexo e limitado tal que $\partial \Omega$ é uma superfície de classe C^{∞} . Mostre que se $u : \mathbb{R}^3 \to \mathbb{R}$ é de classe C^2 então

$$\int_{\Omega} \Delta u dx = \int_{\partial \Omega} \nabla u \cdot \mathbf{n} dS,$$

onde

$$\Delta u = \sum_{i=1}^{3} \frac{\partial^2 u}{\partial x_i^2}$$

e **n** denota a normal exterior a $\partial\Omega$. (Sugestão: escreva Δu como o divergente de um campo).

b) Represente por $\mathbf{E}(t,x)$ um campo elétrico e por $\mathbf{B}(t,x)$ um campo magnético, ambos suaves e aplicados em um ponto $(t,x) \in \mathbb{R}_+ \times \mathbb{R}^3$. Um princípio básico de eletromagnetismo nos diz que

$$\nabla_x \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},$$

onde $\nabla_x \times \mathbf{E}$ é o rotacional de \mathbf{E} calculado somente na variável $x \in \mathbb{R}^3$. Suponha que C seja uma curva simples, fechada, suave por partes e orientada no sentido anti-horário. Demonstre que se S for qualquer superfície com $\partial S = C$ e orientada com normal \mathbf{n} compatível com a orientação da curva (S está, assim, orientada no sentido positivo), então

$$\oint_C \mathbf{E} \cdot d\mathbf{r} = -\frac{\partial}{\partial t} \int_S \mathbf{B} \cdot \mathbf{n} dS.$$

Observação: a integral da esquerda representa integral de linha sobre C.

Exame Qualificação - Álgebra Linear - 15/012/2013

Nesta prova \mathbb{Q}, \mathbb{R} e \mathbb{C} denotarão respectivamente os números racionais, reais e complexos. Também denotaremos por $\mathbb{M}_n(K)$ o conjunto das matrizes $n \times n$ com entradas no corpo K e por $GL_n(K) \subset \mathbb{M}_n(K)$ o subconjunto das matrizes invertíveis.

Escolher questões cujo total de pontos possíveis seja 100. Respostas sem justificativas serão desconsideradas.

- 1. Responda cada uma das questões abaixo justificando suas respostas com detalhes.
- a) Responda falso ou verdadeiro a cada uma das afirmações abaixo:
- \mathbf{a}_1)(5pts) Seja $A \in \mathbb{M}_n(\mathbb{R})$. Existe $P \in GL_n(\mathbb{R})$ tal que $P^{-1}AP$ é diagonal se e somente se existe $\tilde{P} \in GL_n(\mathbb{Q})$ tal que $\tilde{P}^{-1}A\tilde{P}$ é diagonal.
- \mathbf{a}_2)(5pts) Seja $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ uma forma bilinear e alternada. Se $A \in \mathbb{M}_n(\mathbb{R})$ é a matriz de f numa base β de \mathbb{R}^n e n é impar então det(A) = 0.
- **b)(10pts)** Verifique se $A, B \in M_3(\mathbb{R})$ são semelhantes ou não, onde $A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 3 \end{pmatrix}$ e $B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$
- c)(10pts) Sejam K um corpo, V um K-espaço vetorial , $T:V\to V$ um operador linear injetor e $W\subseteq V$ um subespaço vetorial T-invariante. Mostre que : $\overline{T}:\frac{V}{W}\to\frac{V}{W}$ definido por $\overline{T}(v+W)=T(v)+W$ é um operador linear bem definido e, mais ainda, se a dimensão de W é finita então \overline{T} também é injetor.
- d) (10pts) Sejam $V = \mathbb{C}^n$ e $T: V \to V$ um operador linear injetor. Sabendo que dados $0 \neq z \in \mathbb{C}$ e um número natural $k \geq 1$, o polinômio $X^k z \in \mathbb{C}[X]$ tem k raízes distintas duas a duas, mostre que: Se existe um número natural $m \geq 1$ tal que T^m é diagonalizável então T é diagonalizável. Mais ainda exiba um exemplo de um operador $T: \mathbb{R}^2 \to \mathbb{R}^2$ para o qual o resultado não é verdadeiro (ie, existe m > 1 com T^m diagonálizavel ,mas T não).
- e)(10pts) Sejam $V = \mathbb{C}^n$ com produto interno [,] e $T: V \to V$ um operador linear normal em relação ao produto interno dado. Mostre que: Se todo auto valor de T é real e estritamente positivo então T é operador positivo (ie, para todo $0 \neq v \in V$ tem-se que 0 < [v, T(v)]).
- 2. Sejam K um corpo, V e W dois K-espaços vetoriais de dimensão finita n e m respectivamente.
- a)10pts Enuncie a propriedade universal que define o espaço vetorial $V \otimes W$ e mostre que: Se $S: V \to V$ é um operador linear então existe uma único operador linear $S \otimes I: V \otimes W \to V \otimes W$ que satisfaz: para quaisquer $v \in V$ e $w \in W$, $S \otimes I(v \otimes w) = S(v) \otimes w$.
- c)10pts Seja $T: V \to V$ um operador linear. Mostre que:
- \mathbf{c}_1) Se $g(X) \in K[X]$ então $g(T \otimes I) = g(T) \otimes I$.
- $\mathbf{c_2}$) Se $f(X) \in K[X]$ então f(T) = 0 se e somente se $f(T \otimes I) = 0$. Conclua que T é diagonalizável se e somente se $T \otimes I$ é diagonalizável.
- **3. a)7pts** Seja $T: \mathbb{R}^6 \to \mathbb{R}^6$ um operador linear com polinômio característico $f_T(X) = (X-1)^3(X-2)^3$. Afirmamos que se o polinômio mínimo de T é $p_T(X) = (X-1)^2(X-2)$ então a dimensão do espaço dos auto-vetores de T é igual a 5. Pergunta-se: Tal afirmação é falsa ou verdadeira?
- **b)13pts** Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ definido por T(x, y, z, w) = (x + y 2z, 2x + y + 2w, x + z + w, -y + 2z + w). Sabendo que o polinômio característico de T é $f_T(X) = (X 1)^4$ encontre a forma de Jordan de T e uma base de Jordan.
- **4.a)**8pts Sejam K um corpo , $f: K^n \times K^n \to K$ uma forma bilinear, $A, B \in \mathbb{M}_n(K)$ duas matrizes simétricas. A afirmação A e B representam f (ie, existem bases α e β de K^n com $[f]_{\alpha} = A$ e $[f]_{\beta} = B$) se e somente se A e B são semelhantes é falsa ou verdadeira?
- **b)12pts** Seja $f(x,y,z) = 3x^2 + 3y^2 + 3z^2 + 2\sqrt{2}xy + 2\sqrt{2}xz$ uma forma quadrática definida sobre \mathbb{R}^3 . Encontre uma matriz ortogonal U de forma que a troca de variáveis $\binom{x}{y} = U\binom{x_1}{x_2}$ sstisfaça $f(x_1,x_2,x_3) = ax_1^2 + bx_2^2 + cx_3^2$, para convenientes $a, b, c \in \mathbb{R}$.