Übungsblatt 24 zur Homologischen Algebra II

– Festblatt zum 68-jährigen Bestehen von Spektralsequenzen –

Aufgabe 1. Spektralsequenzen als Verallgemeinerungen langer exakter Sequenzen

Sei eine Spektralsequenz $E_1^{pq} \Rightarrow E_{\infty}^n$ gegeben (ausführlich: $E_1^{pq} \Rightarrow F^p E_{\infty}^{p+q} / F^{p+1} E_{\infty}^{p+q}$), deren erste Seite in den Spalten p=0 und p=1 konzentriert ist. Seien die Filtrierungen $F^{\bullet}E_{\infty}^n$ separiert und erschöpfend (exhaustive).

- a) Zeige, dass die Spektralsequenz auf Seite 2 degeneriert.
- b) Zeige: $F^{2}E_{\infty}^{n} = F^{3}E_{\infty}^{n} = \dots = 0 \text{ und } F^{0}E_{\infty}^{n} = F^{-1}E_{\infty}^{n} = \dots = E_{\infty}^{n}$.
- c) Drücke die äußeren Objekte in der folgenden Sequenz über die zweite Seite aus.

$$0 \longrightarrow F^1 E_{\infty}^n \longrightarrow E_{\infty}^n \longrightarrow E_{\infty}^n / F^1 E_{\infty}^n \longrightarrow 0$$

d) Konstruiere eine lange exakte Sequenz der Form

$$\cdots \longrightarrow E_1^{1,n-1} \longrightarrow E_\infty^n \longrightarrow E_1^{0n} \stackrel{\partial}{\longrightarrow} E_1^{1n} \longrightarrow \cdots.$$

Aufgabe 2. Mayer-Vietoris als Spezialfall einer Spektralsequenz

Sei X ein topologischer Raum. Die Komposition der Funktoren

$$AbSh(X) \xrightarrow{\text{vergessen}} AbPSh(X) \xrightarrow{\check{H}^0} Ab$$

ist der globale-Schnitte-Funktor $\Gamma: \operatorname{Sh}(X) \to \operatorname{Ab}$. Sei $X = A \cup B$ eine Überdeckung durch zwei offene Mengen. Leite aus der Grothendieck-Spektralsequenz zu dieser Funktorkomposition die Mayer-Vietoris-Sequenz für Garbenkohomologie her:

$$\cdots \longrightarrow H^n(X;\mathcal{E}) \longrightarrow H^n(A;\mathcal{E}) \oplus H^n(B;\mathcal{E}) \longrightarrow H^n(A \cap B;\mathcal{E}) \xrightarrow{\partial} H^{n+1}(X;\mathcal{E}) \longrightarrow \cdots$$

Hinweis: Für eine beliebige offene Überdeckung $X=\cup_i U_i$ ist $\check{H}^0(\mathcal{E}):=\{(s_i)_i\,|\,s_i\in\mathcal{E}(U_i),s_i=s_j\text{ auf }U_{ij}\}$. Verwende ohne Beweis, dass $R^n\check{H}^0(\mathcal{E})$ die n-te Čech-Kohomologie $\check{H}^n(\mathcal{E})$ von X mit Werten in \mathcal{E} bezüglich der Überdeckung $(U_i)_i$ ist. Vereinfache die Definitionen für den Fall, dass die Überdeckung aus nur zwei offenen Mengen besteht (zur Kontrolle: $\check{H}^0(\mathcal{E})$ und $\check{H}^1(\mathcal{E})$ sind Kern bzw. Kokern von $\mathcal{E}(A)\oplus\mathcal{E}(B)\to\mathcal{E}(A\cap B)$ und die höheren Gruppen verschwinden). Verwende ohne Beweis, dass die n-te Rechtsableitung des Vergissfunktors bei \mathcal{E} die Prägarbe $(U\mapsto H^n(U;\mathcal{E}))$ ist. Verwende Aufgabe 1.

Aufgabe 3. Euler-Charakteristik des Grenzwerts

Sei $E_r^{pq} \Rightarrow E_\infty^n$ eine konvergente Spektralsequenz, deren r-te Seite in einem endlichen Bereich konzentriert ist. Seien die Filtrierungen $F^{\bullet}E_\infty^n$ separiert und erschöpfend. Zeige, dass die Euler-Charakteristik des Bikomplexes E_∞^{\bullet} mit der des Komplexes E_∞^{\bullet} übereinstimmt, dass also in der K-Theorie folgende Identität gilt.

$$\sum_{p,q} (-1)^{p+q} \left[E_r^{pq} \right] = \sum_n (-1)^n \left[E_\infty^n \right]$$

 $\textit{Tipp: Ist } K^{\bullet} \ \text{ein Komplex, so gilt } \sum\nolimits_{n} (-1)^{n} \left[K^{n}\right] = \sum\nolimits_{n} (-1)^{n} \left[H^{n}(K^{\bullet})\right] \ \text{(siehe Aufgabe 3 von Blatt 18)}. \ \text{Außerdem gilt } \left[E_{\infty}^{n}\right] = \sum\nolimits_{p} \left[F^{p} E_{\infty}^{n} / F^{p+1} E_{\infty}^{n}\right], \ \text{wieso?}$

Aufgabe 4. Die Leray-Spektralsequenz, rückwärts

Sei $\pi: S^1 \times S^1 \to S^1$ die Projektion auf einen der beiden Faktoren. Bestimme mit der Leray-Spektralsequenz $R^n \pi_* \mathbb{R}$ für alle $n \geq 0$.

Hinweis: Sei $f:X\to Y$ eine beliebige stetige Abbildung. Dann verbindet die Leray-Spektralsequenz die Kohomologie von X, die von Y und die der Fasern von f miteinander. Genauer gibt es für jede Garbe $\mathcal E$ abelscher Gruppen auf X eine Spektralsequenz mit

$$E_2^{pq} = H^p(Y; R^q f_* \mathcal{E}) \Longrightarrow H^{p+q}(X; \mathcal{E}).$$

Auch, wenn \mathcal{E} eine konstante Garbe ist, sind die höheren direkten Bilder $R^q f_* \mathcal{E}$ das im Allgemeinen nicht. Daher benötigt man allein zur Formulierung dieses Zusammenhangs Garbenkohomologie. Die Leray-Spektralsequenz war der Ausgangspunkt für die Entwicklung von Garbenkohomologie und Spektralsequenzen.

Verwende: Garbenkohomologie mit Werten in einer konstante Garbe – also $H^n(X;\underline{A}):=R^n\Gamma_X(\underline{A})$ – stimmt für lokal zusammenziehbare Räume (etwa Mannigfaltigkeiten und CW-Komplexe) mit der üblichen singulären Kohomologie $H^n(X;A)$ überein; für eigentliche Abbildungen (wie π) gilt unter gewissen topologischen Voraussetzungen (die hier erfüllt sind), dass $(R^nf_*\mathcal{E})_y\cong H^n(f^{-1}[y],\mathcal{E}|_{f^{-1}[y]})$; die Kohomologie von $S^1\times S^1$ mit Werten in $\mathbb R$ ist in den Graden 0, 1 und 2: $\mathbb R$, $\mathbb R\oplus \mathbb R$ und $\mathbb R$.

Aufgabe 5. Balancierung von Tor

Seien M und N R-Moduln. Dann sind sowohl $M \otimes_R$ als auch $Q \otimes_R N$ rechtsexakt und können daher linksabgeleitet werden. Zeige:

$$L_n(M \otimes_R _)(N) \cong L_n(_ \otimes_R N)(M).$$

Tipp: Wähle projektive Auflösungen $P^{\bullet} \to M$ und $Q^{\bullet} \to N$ und betrachte zwei verschiedene Spektralsequenzen, die beide zur Kohomologie des Totalkomplexes von $P^{\bullet} \otimes_R Q^{\bullet}$ konvergieren. Auf diese Weise erhältst du zwei verschiedene Ausdrücke für dasselbe Objekt.

Aufgabe 6. Auflösungen durch beliebige Objekte

Sei $0 \to A \to X^{\bullet}$ ein Komplex. Sei F ein linksexakter Funktor. Was sagt die Hyperkohomologiespektralsequenz $E_2^{pq} = H^p((R^qFX^p)_p) \Rightarrow R^{p+q}F(X^{\bullet})$ über $R^nF(A)$ aus, wenn

- a) die Objekte X^i alle F-azyklisch sind oder
- b) die Objekte X^i beliebig sind?