

CS5647: Sound and Music Computing

Singing Voice Synthesis with Avatar Generation

Team 6

Singing Face Generation

Audio

1. Voice Synthesis

- 1. Baseline DiffSinger
- 2. Better Vocoder (BigVGAN)
- 3. Faster Inference using PNDM

2. Face Synthesis

- 1. Baseline Wave2Lip
- Fine-tune for singing
- 3. DeepFace augmentation

Lyrics + Notes

3. Dataset

- 1. OpenCPop
- 2. URSing (Audio-Visual Solo Singing)
- 3. Own dataset (me singing!)

Voice Synthesis

DiffSinger

BigVGAN

Pseudo Normal Differential Methods

Noise ratio

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(x_t, t)}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \epsilon_{\theta}(x_t, t) + \sigma_t \epsilon_t.$$
 Input

$$\frac{dx}{dt} = -\bar{\alpha}'(t) \left(\frac{x(t)}{2\bar{\alpha}(t)} - \frac{\epsilon_{\theta}(x(t), t)}{2\bar{\alpha}(t)\sqrt{1 - \bar{\alpha}(t)}} \right).$$

Differential Equation

Face Synthesis

Wav2Lip

Fine-Tuned Wav2Lip

- URSing (Audio-Visual Solo Singing)
 - 10 audio-video songs (total length ~ 3mins each)
 - $\circ \Rightarrow 60 \text{ clips (30s each)}$
- Freeze all but last layer of Expert Discriminator.
- Fine-tune Wav2Lip
 - Freeze Expert Discriminator
 - Freeze all but last layer of Wav2Lip
 - Encoders + Visual QualityDiscriminator

DeepFace

Goals:

 Improve Wav2Lip by introducing demographic information to the pipeline such as age, ethnicity and gender

Model:

- Nine layer neural network to achieve near human levels of accuracy
- Capable of Face Detection, Analysis and Verification

DeepFace Examples

{'age': 24, 'dominant_gender': 'Man', 'dominant_race': 'asian'}

{'age': 35, 'dominant_gender': 'Woman', 'dominant_race': 'white'}

{'age': 28, 'dominant_gender': 'Woman', 'dominant_race': 'black'}

DeepFace Augmentation

Results

Results - DiffSinger

- Signal to Noise Ratio for Vocoder
 - HifiGAN: -0.00022

BigVGAN: -0.00044

- PNDM inference speedup
 - 40x in 25 steps vs 1000 steps

Results - Wav2Lip Fine-tuning

Trained on three RTX3090

Results - Wav2Lip DeepFace Augmentation

Demo

References

- [1] K R Prajwal, Rudrabha Mukhopadhyay, Vinay Namboodiri, C V Jawahar. (2020). A Lip Sync Expert Is All You Need for Speech to Lip Generation In The Wild.
- [2] Wenxuan Zhang, Xiaodong Cun, Xuan Wang, Yong Zhang, Xi Shen, Yu Guo, Ying Shan, Fei Wang. (2022). **SadTalker: Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation**
- [3] Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, & Zhou Zhao. (2022). **DiffSinger:** Singing Voice Synthesis via Shallow Diffusion Mechanism.
- [4] Luping Liu, Yi Ren, Zhijie Lin, & Zhou Zhao. (2022). **Pseudo Numerical Methods for Diffusion Models on Manifolds.**
- [5] Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, & Sungroh Yoon. (2023). **BigVGAN: A Universal Neural Vocoder with Large-Scale Training.**

Thank You!

Future Work

Possible Improvements

 Improving the DeepFace augmentation to seamlessly integrate the information into the input face data, allowing us to further improve the system and remove the artifacts.