NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Solar-Geophysical Data Number 499, March 1986 Part 1 (Prompt Reports). Data for February 1986, January 1986 and Late Data

(U.S.) National Geophysical Data Center Boulder, CO

Prepared for

National Aeronautics and Space Administration Washington, DC

Mar 86

U.S. Department of Commerce Mattered Technical Information Service MARCH 1986 NUMBER 499 -- Part I

Solar-Geophysical Data prompt reports

Data for February, January 1986, & Late Data

Explanation of Data Reports Issued as Number 499 (Supplement) March 1986

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

U.S. DEPARTMENT OF COMMERCE

Malcolm Baldrige, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
Anthony J. Calio, Administrator

NATIONAL ENVIRONMENTAL SATELLITE, DATA, AND INFORMATION SERVICE William P. Bishop, Acting Assistant Administrator

Solar - Geophysical Data

NO. 499 MARCH 1986

Part I (Prompt Reports)

DATA FOR FEBRUARY 1986 JANUARY 1986

Michael A. Chinnery, Director NATIONAL GEOPHYSICAL DATA CENTER BOULDER, COLORADO

International Standard Serial Number: 0038-0911

Library of Congress Catalog Number: 79-640375 //r81

For sale through the National Geophysical Data Center, NOAA/NESDIS, E/GC2, 325 Broadway, Boulder, Colorado 80303. 1986 Subscription Price for the U.S.: \$70.00 annually for both Part I (Prompt Reports) and Part II (Comprehensive Reports) or \$35.00 annually for either part. Annual supplement containing explanation is included. Foreign subscriptions: For 1986 issues -- \$106.00 for both parts or \$53.00 for either part. We require prepayment for all orders. Please include with your request a check or money order payable in U.S. currency to the Department of Commerce, NOAA/NGDC. Any bank charges should be paid by the subscriber. Payment may be made through an American Express, Mastercard or VISA credit cards. Please Include the correct name of credit card holder, card number and expiration date. Prices are subject to change. NGDC phone number: (303)497-6135 (FTS 320-6135).

For obtaining bulletins on a data exchange basis, send request to: World Data Center A for Solar-Terrestrial Physics, NOAA/NESDIS/NGDC, E/GC2, 325 Broadway, Boulder, Colorado 80303 U.S.A.

BACK ISSUES OF "SOLAR-GEOPHYSICAL DATA"

Reel	#	Co	ver	rage		Medium	Reel	#	Cov	/ei	rage		Medium	Reel	#	Cov	/er	age		Medium
1				Dec		Microfilm	9		-		Dec	_	Microfilm	17				Dec		Microfilm
2				Dec		Microfilm Microfilm	10 11		-		Dec		Microfilm	18				Jun		Microfilm
4				Dec		Microfilm	12				Dec		Microfilm Microfilm	19 20	-	-		Dec	-	Microfilm Microfilm
5				Dec		Microfilm	13				Dec		Microfilm	21				Dec		Microfilm
6				Dec	-	Microfilm	14				Jun		Microfilm	22		-		Jun	_	Microfilm
8				Dec		Microfilm Microfilm	15 16				Dec		Microfilm Microfilm	23		72 73	-	Dec 198		Microfilm Microfiche
0	Jan	0)	_	Dec	05	MICI OT TIM	10	Jan	09	_	Jun	0,9	MICIOTIM		19	13	_	190) 4	MICIOIICHE

Microfilm are available at \$30.00 per reel; microfiche at \$40.00 per year; \$1,000.00 for above set. Back issues in booklet form are available, as long as the stocks exist, at \$4.00 for either part plus a \$3.00 handling charge per order. Any entire year of back issues in booklet form is available at the current annual subscription rate, as long as the stocks exist. Please add a ten dollar (\$10.00) handling fee for non-U.S.A. orders. Prices are subject to change.

BIBLIOGRAPHIC INFORMATION

PB86-196086

Solar-Geophysical Data Number 499, March 1986. Part 1 (Prompt Reports). Data for February 1986, January 1986 and Late Data,

Mar 86

by H. E. Coffey.

PERFORMER: National Geophysical Data Center, Boulder, CO.

SGD-499-PT-1

Contract NASA-W-15519, Grant NSF-ATM83-18491

SPONSOR: National Aeronautics and Space Administration,

Washington, DC.

See also PB86-168630 and PB86-196094. Sponsored by National Aeronautics and Space Administration, Washington, DC., and National Science Foundation, Washington, DC.

Contents: Detailed index for 1985-86; Data for February 1986-- (IUWDS alert periods (Advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Vostok inferred interplanetary magnetic field polarity, Stanford mean solar magnetic field); Data for January 1986-- (Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices, Radio propagation indices); Late data-(Solar active regions, Solar radio spectral observations Culgoora, Cosmic ray measurements by neutron monitor, Calcium plage data).

KEYWORDS: *Solar activity.

Available from the National Technical Information Service, SPRINGFIELD, VA. 22161

PRICE CODE: PC A08/MF A01

SOLAR-GEOPHYSICAL DATA

NUMBER 499

(Issued in Two Parts)

Editor: Helen E. Coffey

Chief: Joe H. Allen Solar-Terrestrial Physics Division

Staff:

John A. McKinnon Daniel C. Wilkinson Viola W. Miller Carol Weathers Charles T. Shanks

CONTENTS

PART I (PROMPT REPORTS)	
DETAILED INDEX FOR 1985-86	Page
DATA FOR FEBRUARY 1986	3- 30
DATA FOR JANUARY 1986	31- 78
Kitt Peak Solar Magnetic Field Synoptic Charts May 85 - Jan Radio Spectral Observations Culgoora Jun 85 - Dec Neutron Monitor Charts Alert and Deep River May 85 - Dec Kiel and Tokyo Nov 85 - Jan Neutron Monitor Counts Alert and Deep River May 85 - Dec Calcium Plage Regions Sep 83 Calcium Plage Maps Aug 84 - Jun	86 85 85 86 85
PART II (COMPREHENSIVE REPORTS) DETAILED INDEX FOR 1985-86	Page
DATA FOR SEPTEMBER 1985	3- 20
MISCELLANEOUS DATA	21- 32

Published with partial support from NASA (W-15,519) and NSF (ATM-8318491).

DETAILED INDEX OF OBSERVATIONS PUBLISHED IN "SOLAR-GEOPHYSICAL DATA"

CODE	KIND OF OBSERVATION	JUL 8	35	AUG		SEP		OCT		NOV		DEC		JAN 8	36	FEB	
١.	SOLAR AND INTERPLANETARY PHENOMENA																
1.1	Sunspot Drawings			494A		495A	-	496A		497A	26 7	498A 497A	30 7	499A 498A	7	499A	9
1.2aa 1.2c	Internat, Provisional Sunspot Numbers American Sunspot Numbers	492A 492A		493A 493A	7	494A 494A		495A 495A	7	496A 496A		497A	7	498A		499A	
. 3a	Mt. Wilson Magnetograms	493A		494A		495A		496A		497A		498A		499A			
1.3b	Mt. Wilson Sunspot Magnetic Class	493A	55	494A	57	495A	56	496A	59	497A	57	498A	61	499A			
1.3c	Kitt Peak Magnetograms	493A		494A		495A		496A		497A		498A		499A		4004	**
1.3d	Mean Solar Magnetic Field (Stanford)			493A				495A		496A				498A		499A	30
1.3e	Stanford Magnetograms H-alpha Filtergrams					495A 495A		496A		497A 497A		498A		499A 499A			
A.4 A.5	Calcium Plage Photographs/Drawings					499A1		4900	20	4310	20	4301	50	4990	54		
4.5a	Calcium Plage and Sunspot Regions			n 499/													
.5b	Daily Calcium Plage Indices	Sep 8	i	n 499/	4129												
4.6	H-alpha Synoptic Charts							496A	26	497	24	498A	26	499A	32		
.6b	Active Region Carte Synoptique (Paris)					499B		4064	26	497	25	40.04	27	4004	7.7		
.6c	Stanford Solar Mag Field Synoptic Maps Kitt Peak Solar Mag Field Synoptic Maps					499A		496A	20	49 //	1 25	4900	21	4991	23		
, 6e	Mass Ejections from the Sun					499B											
. 6f	Active Prominences and Filaments			498B		499B											
.7g	Kitt Peak Helium Synoptic Maps																
1.7h	Coronal Line Emission (Sacramento Peak)	493A		494A		495A		496A		497A		498A		499A	-		
. 8aa	2800 MHz - Solar Flux (Ottawa)	492A		493A		494A		495A	7	496A		497A	7	498A	7	499A	
. 8ac	2800 MHz - Adj. Solar Flux (Ottawa)	492A 492A				494A		495A	7	496A 496A		497A 497A	7	498A 498A		499A 499A	
N. 8g N. 10a	Adjusted Daily Solar Fluxes (Sagamore) Interferometric Chart -169 MHz- Nancay	492A		493A 494A		494A 494A		495A 495A	15	496A		497A		498A		4990	9
1.10c	East-West Scans - 21 cm - Fleurs	492A				494A		495A		496A		497A		498A			
. 10d	East-West Scans - 43 cm - Fleurs			493A		494A		495A	-	496A				498A			
10e	East-West Scans - 10 cm - Ottawa	492A	20	493A	15	494A	16	495A		496A		497A		498A	16	499A	19
. 10f	East-West Scans - 3 cm - Toyokawa					494A		495A	16	496A	15	497A	14	498A	15	499A	18
1 1g	Solar X-ray GOES (graphs/event table)					499B	12										
1.12e	Solar Particles (IMP H & J) Solar Wind from IP Scintillations			83 in n 486/													
1.13d	Solar Plasma (IMP H & J)					49481	58										
1.13f	Solar Wind (Ploneer 12)					487A											
A. 16a	SMM Solar Irradiance	Dec 8	34 i	n 4908	B 18												
A. 16b	NIMBUS Solar Irradiance					499B	26										
A. 17	Interplanetary Mag Field (Pioneer 12)			n 488/			77	4044		4064	21	4074	10	4004	21	4004	27
A. 17c	Inferred Interplanetary Magnetic Field IONOSPHERIC RADIO PROPAGATION PHENOMENA	494A	11	4948	11	494A	11	4948	//	496A	21	497A	19	498A	21	499A	21
3. 3.52	Field Strength Graphs - North Atlantic	493A	74	494A	72	495A	68	496A	76	4974	70	498A	74	499A	76		
3.53	Quality Indices on Paths to Germany	493A		494A		495A		496A				498A		499A			
С.	SOLAR FLARE-ASSOCIATED EVENTS																
C.la	H-alpha Flares	492A		493A		494A		495A	12	496A	12	497A	12	498A	12	499A	14
C. 1ba	H-alpha Flare Groups	4978		498B		499B		4054	1.4	4064	1 2	40.74	17	40.04	17	4004	17
C.1d C.1d	Flare Patrol Observations Flare Patrol Observations	492A 497B		493A 498B	-			49 JA	14	496A	13	49/1	13	490A	13	4991	17
C.3	Radio Bursts Fixed Freq.	497B		498B		499E											
C.3	Radio Bursts Fixed Freq. Selected	492A		493A		494A		495A	20	496A	19	497A	18	498A	19	499A	20
0.4d	Radio Bursts Spectral (Culgoora)	499A	90	449A	90	499A	90	499A	90	499A		499A	90	499A	67		
C.4e	Radio Bursts Spectral (Weissenau)	493A				495A		496A		497A	200			499A			
C.4f	Radio Bursts Spectral (Sagamore Hill)	493A				495A	58	496A	64	497A	61	498A	65	499A	67		
C.4i C.4k	Radio Bursts Spectral (Bleien) Radio Bursts Spectral (Learmonth)	493A 493A				495A	58	496A	64	497A	61	498A	65	AQQA	67		
2.41	Radio Bursts Spectral (Palehua)								-	497A							
0.6	Sudden Ionospheric Disturbances									497A							
D.	GEOMAGNETIC & MAGNETOSPHERIC PHENOMENA																
), la	Geomagnetic Indices	493A				495A					-		-	499A			
), 1ba	27-day Chart of Kp Indices	493A				495A								499A	74		
0. 1c	27-day Chart of Cg	498A 493A				498A 495A				498A 497A		498A		499A	75		
0.1d 0.1f	Principal Magnetic Storms Sudden Commencement/Solar Flare Effects					496A				498A		4900	12	4331	1)		
) 1g	Equatorial Indices Dst	494A				497A				.,,	0.0						
	COSMIC RAYS																
. 1a	Cosmic Ray Neutron Counts (Deep River)	499A				499A	120	499A	121	499A	122	499A	123				
F. 1b	Cosmic Ray Neutron Counts (Climax)		-	494A				400		4001	100	4000					
. le	Cosmic Ray Neutron Counts (Alert)	499A								499A				4004	71		
F.1h	Cosmic Ray Neutron Counts (Thule) Cosmic Ray Neutron Counts (Kiel)							496A 496A				498A		499A 499A	-		
F.1i F.1j	Cosmic Ray Neutron Counts (Tokyo)	493A	69	494A	67	495A				497A							
F. 11	Cosmic Ray Neutron Counts (Huancayo)	Mar	85 1	n 491	A 8	5											
F.1m	Cosmic Ray Neutron Counts (Predigtstuhl)	493A	69	494A	67	495A	63	496A	67	497A	65	498A	67	499A	71		
н.	MISCELLANEOUS															400	_
H. 60	IUWDS Alert Periods	4074	5	4034		ADAA		4Q 5A		4964	4	AQ 7A	4	AGGA	4	499A	5

The entry "493A 24" under Jul 1985, for example, means that the sunspot drawings for Jul 1985 appear in SOLAR-GEOPHYSI-CAL DATA No. 493, Part I, and that they begin on page 24. "A" denotes Part I and "B", Part II. Blanks indicate data not yet received and dashes mark unavailable data.

CONTENTS

Prompt Reports	DATA FOR FEBRUARY	1986	Number 499	Part I
IUWDS ALERT PERIODS (Advan	ce and Worldwide),			age - 7
SOLAR ACTIVITY INDICES Da Sunspot Numbers a Da Solar Indices (Su	nd 2800 MHz Solar F nspot Numbers and S	lux (12 Months) solar Flux)	8	
Observed and Predicted Smoothed Observed and P Graph of Observed and P Graph and Table of Suns	redicted Sunspot Nu redicted Sunspot Nu	mbers	11	
SOLAR FLARES H-alpha Solar Flares Intervals of No Flare P	atrol	:::::::::::::::::::::::::::::::::::::::	14	-16
SOLAR RADIO EMISSION Solar Interferometric C	hart - 169 MHz - Na	ncay (Not received)	
East-West Solar Scans a East-West Solar Scans a East-West Solar Scans a East-West Solar Scans a	t 10 cm - Ottawa . t 21 cm - Fleurs (Not received)	18	
Selected Fixed Frequenc Selected Graphs of Sola				
INTERPLANETARY SCINTILLATI (Not available at time		SOLAR WIND		
VOSTOK INFERRED INTERPLANE	TARY MAGNETIC FIELD		27	
STANFORD MEAN SOLAR MAGNET			29	

ALERT PERIODS INTERNATIONAL URSIGRAM AND WORLD DAYS SERVICE

										EBRUARY 1986				
032	01	31	014	079	011	S07E65	3	0	0	OUTSTANDING EVENTS				SOLQUIET MAGQUIET
033	02	01	021	084	007	S07E51	2	0	0		02	S07E51	Ε	SOLQUIET MAGQUIET
34	03	02	052	090	006	S07E38 S05W46		0	0		03	S07E38 S05W46		SOLQUIET MAGQUIET
35	04	03	070	099	006	S08E24 S02W58 S02E70	7 1 2	1 0 0	0	PRESTO TENFLARE 210 FLUX UNITS 02/2040 UT IN PROGRESS	04	S08E24 S02W58 S02E70		SOLALERT 04/06 MAGQUIET
036	05	04	073	101	005	S07E10 S04W73 S02E54	0	0 0 1	^	PRESTO XRAY EVENT X3/3B S03E21 04/0735 UT DURATION 12 MINUTES TENFLARE 820 FLUX UNITS 04/0734 UT DURATION 23 MINUTES TENFLARE 1200 FLUX UNITS 04/0734 UT DURATION 20 MINUTES TENFLARE 250 FLUX UNITS 04/1023 UT DURATION 13 MINUTES TENFLARE 100 FLUX UNITS 04/0640 UT DURATION 20 MINUTES		COALIZZ	^	SOLALERT 05/07 MAJOR FLAR ALERT 05/0 21007 PROTON FLARE ALER 05/07 2100 MAGALERT 06/07 FLAR
37	06	05	073	103	800	S07W02 S05W90 S02E43	0	1 0 0	0 0	PRESTO TENFLARE 260 FLUX UNITS 05/0040 UT DURATION 25 MINUTES	06	S07W02 S05W90 S02E43	Q	SOLALERT 06/XX MAGALERT 06/07 FLAR
)38	07	96	056	102	012	S08W16 S02E29		0 0	0	PRESTO SOFLARE X1/3B S04W06 06/0618 UT DURATION 49 MINUTES TENFLARE 1300 FLUX UNITS 06/0618 UT DURATION 45 MINUTES TENFLARE 1990 FLUX UNITS 06/0615 UT DURATION 70 MINUTES PROTON EVENT 06/0900 UT >10 MEV STRONG MAGSTORM IN PROGRESS 06/0112 UT		S02F29		
39	80	07	058	099	038	S08W29 S02E15		0		PRESTO TENFLARE 4100 FLUX UNITS 07/1012 UT DURATION 39 MINUTES TENFLARE 1100 FLUX UNITS 07/1013UTIN PROGRESS			Q	
40	09	08	061			S08W42 S01E01		0	0	PRESTO MAGSTORM BEGINS 06/1312 UT STRONG MAGSTORM IN PROGRESS 08/0600 UT	09	S08W42 S01E01	E	SOLALERT 09/09 MAGALERT 09/10
1 1	10	09	059	095	070	S09W57 S01W13		0	0		10	S09W57 S01W13		SOLNIL MAGALERT 10/10
42	11	10	044	099	007	S08W70 S01W28		0		PRESTO TENFLARE 740 FLUX UNITS 10/2020 UT DURATION 27 MINUTES	11	S08W70 S01W28		SOLALERT 11/13 MAGNIL
143	12	11	049	098	019	S09W84 S01W45		0 2	0		12	S09W84 S01W45		SOLALERT 12/13 MAGQUIET
44	13	12	027	091	015	S01W60	2	0	0		13	S01W60	Ε	SOLALERT MAGQUIET
)45	14	13	023	089	015	S02W73	10	1	0	PRESTO TENFLARE 110 FLUX UNITS 13/2315 UT DURATION 2 MINUTES	14	S02W73	Ε	SOLNIL MAGQUIET

ALERT PERIODS INTERNATIONAL URSIGRAM AND WORLD DAYS SERVICE

SUMM						SAGES				EBRUARY 1986				
NO	DI	DO	WOLF	10CM	Α	1.00	TOT	м	X	OUTSTANDING EVENTS	DA	LŒ	DE	ALERTS
046	15	14	018	090	025	S01W88	6	1	0	PRESTO TENFLARE 2400 FLUX UNITS 14/0906 UT DURATION 84 MINUTES PROTON EVENT BEGAN 14/1030 UT 10 P/CM2/SEC/STER>10 MEV AT 14/2000 UT IN PROGRESS				SOLALERT 15/16 MAGQUIET
047	16	15	000	082	010	SPOTNIL				PRESTO TENFLARE 2300 FLUX UNITS 15/1109 UT DURATION 51 MINUTES TENFLARE 290 FLUX UNITS 15/1204 UT DURATION 63 MINUTES	16	SPOTNIL		SOLNIL MAGALERT 16/XX
048	17	16	000	073	005	SPOTNIL				PRESTO TENFLARE 140 FLUX UNITS 16/2231 UT DURATION 20 MINUTES	17	SPOTNIL		SOLQUIET MAGALERT 17/XX
049	18	17	000	070	800	SPCTNIL					18	SPOTNIL		SOLQUIET MAGALERT 18/XX FLARE
050	19	18	000	070	012	SPOTNIL					19	SPOTNIL		SOLQUIET
051	20	19	000	070	010	SPOTNIL					20	SPOTNIL		SOLQUIET MAGALERT 20/22 RECURRENCE/ FLARE
052	21	20	011	070	018	S02E67	0	0	0		21	S02E67	Q	SOLQUIET MAGALERT 21/22 RECURRENCE
053	22	21	011	067	015	S02E53	0	0	0		22	S02E53	Q	SOLQUIET MAGALERT MINOR 22/23 RECURRENCE
054	23	22	011	069	025	S00E38	0	0	0		23	S00F38	Q	SOLQUIET MAGALERT MINOR 23/XX RECURRENCE
055	24	23	011	069	025	S01E26	0	0	C		24	S01E26	Q	SOLQUIET MAGALERT 24/XX RECURRENCE
056	25	24	000	070	013	SPOTNIL					25	SPOTNIL		SOLQUIET MAGNIL
057	26	25	000	072	014	SPOTNIL					26	SPOTNIL		SOLQUIET MAGQUIET
058	27	26	011	074	021	S02W16	0	0	0		27	S02W16	Q	SOLQUIET MAGALERT 26/27 RECURRENCE
059	28	27	016	077	020	N02W18	0	0	0		28	N02W18	Q	SOLQUIET MAGNIL

ALERT PERIODS INTERNATIONAL URSIGRAM AND WORLD DAYS SERVICE

			HE GEO							EBRUARY 1986				
	DI		WOLF							OUTSTANDING EVENTS	DA	LOC	DE	ALERTS
060	01	28	023	079	015	N02W33 S00E85	0	0	0			N02W33 S00E85	Q E	SOLQUIET MAGALERT 01/02 DISAPPEARING FILAMENT

NO=MESSAGE SERIAL NUMBER, DI=DATE OF ISSUE, DO=DATE OF OBSERVATION, WOLF=WOLF NUMBER, 10CM=10CM SOLAR FLUX, A=A INDEX, LOC=LOCATION LATITUDE AND LONGITUDE, TOT=TOTAL NUMBER OF FLARES, M=NUMBER OF M FLARES, X=NUMBER OF X FLARES, DA=DATE OF FORECAST, DE=DESCRIPTION, Q=QUIET, E=ERUPTIVE, A=ACTIVE, P=PROTON.

PRESTO MESSAGES (THE RAPID REPORT OF MAJOR EVENTS) FEBRUARY 1986

```
PRESTO BOULDER 02/2105 UT TENFLARE 210 FLUX UNITS 02/2040 UT IN PROGRESS
PRESTO TOYOKAWA 04/0840 UT TENFLARE 100 FLUX UNITS 04/0640 UT DURATION 20 MINUTES
PRESTO TOYOKAWA 04/0840 UT TENFLARE 1200 FLUX UNITS 04/0734 UT DURATION 20 MINUTES
PRESTO BOULDER 04/0943 UT X-RAY EVENT X3/3B S03E21 04/0735 UT DURATION 12 MINUTES
PRESTO BOULDER 04/1300 UT TENFLARE 820 FLUX UNITS 04/0734 UT DURATION 23 MINUTES
PRESTO BOULDER 04/1320 UT TENFLARE 250 FLUY UNITS 04/1023 UT DURATION 13 MINUTES
PRESTO TOYOKAWA 05/0140 UT TENFLARE 260 FLUX UNITS 05/0040 UT DURATION 25 MINUTES
PRESTO BOULDER 06/0154 UT STRONG MAGSTORM IN PROGRESS 06/0112 UT
PRESTO SYDNEY 06/0645 UT SOFLARE CULGOORA 2B FLARE MAX TIME 06/0629 UT IN PROGRESS
PRESTO TOYOKAWA 06/0742 UT TENFLARE 1990 FLUX UNITS 06/0615 UT DURATION 70 MINUTES
PRESTO BOULDER 06/0801 UT TENFLARE 1300 FLUX UNITS 06/0618 UT DURATION 45 MINUTES
PRESTO BOULDER 06/0801 UT X-RAY EVENT X1/3B S04W06 06/0618 UT DURATION 49 MINUTES
PRESTO BOULDER 06/1048 UT PROTON EVENT 11 P/CM2/SEC/STER>10 MEV BEGAN 06/0910 UT IN PROGRESS
PRESTO MOSCOW 07/1120 UT TENFLARE 1100 FLUX UNITS 07/1013 UT IN PROGRESS
PRESTO BOULDER 07/1215 UT TENFLARE 4100 FLUX UNITS 07/1012 UT DURATION 39 MINUTES
PRESTO KAKIOKA 08/0000 UT MAGSTORM BEGINS 06/1312 UT
PRESTO BOULDER 08/0554 UT STRONG MAGSTORM IN PROGRESS 08/0600 UT
PRESTO BOULDER 10/2310 UT TENFLARE 740 FLUX UNITS 10/2020 UT DURATION 27 MINUTES
PRESTO BOULDER 13/2333 UT TENFLARE 110 FLUX UNITS 13/2315 UT DURATION 2 MINUTES
PRESTO TOYOKAWA 14/0005 UT TENFLARE 130 FLUX UNITS 13/2315 UT DURATION 4 MINUTES
PRESTO BOULDER 14/1004 UT TENFLARE 2400 FLUX UNITS 14/0906 UT IN PROGRESS
PRESTO BOULDER 14/1335 UT PROTON EVENT 10 P/CM2/SEC/STER>10 MEV BEGAN 14/1200 UT IN PROGRESS
PRESTO BOULDER 15/1215 UT TENFLARE 2300 FLUX UNITS 15/1109 UT IN PROGRESS
PRESTO BOULDER 15/1355 UT TENFLARE 290 FLUX UNITS 15/1204 UT DURATION 63 MINUTES
PRESTO BOULDER 16/2230 UT TENFLARE 140 FLUX UNITS 16/2231 UT DURATION 20 MINUTES
```

STRATWARM MESSAGES FOR FEBRUARY 1986

STRATWARM ALERT /THURSDAY/ STRONG WARMING AT 10 HPA OVER THE USSR FROM THE URAL REGION TO CENTRAL SIBERIA AROUND AND NORTH OF 60 NORTH WITH TEMPERATURE INCREASE MORE THAN 40 DEGREES THE LAST WEEK.
STRATWARM ALERT /FRIDAY/ WARMING OVER CENTRAL SIBERIA INTENSIFYING. POLAR VORTEX MOVING TOWARDS GREENLAND IN UPPER STRATOSPHERE.
STRATWARM ALERT /SUNDAY/ INTENSE WARMING OVER SIBERIA CONNECTED WITH TEMPERATURE INCREASE OVER THE POLAR REGION AND SPLIT OF THE POLAR VORTEX IN THE LOWER STRATOSPHERE. MEAN ZONAL FLOW THROUGHOUT THE WHOLE

STATOSPHERE AT 60 NORTH STILL FROM THE WEST.
STRATWARM ALERT /MONDAY/ INTENSE WARMING OVER SIBERIA CONNECTED WITH TEMPERATURE INCREASE OVER THE POLAR

REGION CONTINUES. TEMPERATURE GRADIENT REVERSED BETWEEN 60 NORTH AND THE POLE AT 10 MB TODAY. STRATWARM ALERT /TUESDAY/ INTENSE WARMING OVER SIBERIA AND THE POLAR REGION CONTINUES. TEMPERATURE GRADIENT REVERSED BETWEEN THE POLE AND 60 NORTH IN THE UPPER AND MIDDLE STRATOPSHERE DOWNWARDS TO 30 MB. AT THE 1 MB LEVEL, MEAN ZONAL WIND AT 60 NORTH STRONGLY WEAKENED DURING THE LAST DAYS.

STRATWARM ALERT /WEDNESDAY/ THE POLAR REGION, ALASKA, AND NORTHWEST, AND NORTH CANADA SLOWLY WEAKENING, TEMPERATURE GRADIENT REVERSED BETWEEN THE POLE AND 60 NORTH IN THE UPPER AND MIDDLE STRATOSPHERE DOWNWARDS TO 30 HPA. AT THE 1 MB LEVEL, MEAN ZONAL WIND ALSO BETWEEN THE POLE AND 60 NORTH.

STRATWARM ALERT /THURSDAY/ WARMING OVER SIBERIA, ALASKA, CANADA, AND THE POLAR REGION CONTINUOUSLY WEAKENING. COOLING OVER EUROPE INTENSIFYING. TEMPERATURE GRADIENT REVERSED BETWEEN THE POLE AND 60 NORTH IN THE UPPER AND MIDDLE STRATOPSHERE. AT THE 1 MB LEVEL, THE MEAN ZONAL WIND AT 60 NORTH IS FROM THE EAST.

STRATWARM ALERT /FRIDAY/ WARM EVENT OVER POLAR LATITUDES TERMINATED. SLOW RETURN TO NORMAL MERIDIONAL TEMPERATURE GRADIENT BETWEEN THE POLE AND 60 NORTH EXPECTED DURING THE NEXT DAYS.

	1985 F	inal									1986 P	rov
Day	Mar	Apr	May	Jun	Ju I	Aug	Sep	0c†	Nov	Dec	Jan	Feb
01	13	25	19	10	21	35	7	0	0	0	0	18
02	13	21	15	0	27	25	0	0	0	16	0	31
03	9	23	14	11	30	27	0	0	0	13	0	57
04	0	17	18	26	32	27	0	0	0	0	0	58
05	0	23	16	35	38	20	3	0	16	18	0	53
06	0	19	14	37	43	14	0	0	19	26	0	47
07	0	11	32	38	71	12	0	0	19	15	0	52
08	14	9	44	42	67	12	0	0	18	12	0	54
09	15	9	56	42	82	17	0	0	25	16	0	47
10	13	0	49	58	82	12	0	0	15	15	0	37
11	16	0	49	66	61	12	7	0	17	18	0	37
12	18	0	33	54	45	12	0	0	19	19	0	25
13	14	0	32	45	25	0	9	11	.30	18	13	22
14	10	10	32	36	9	0	9	13	44	30	14	16
15	0	0	32	37	8	0	9	15	48	47	12	11
16	11	0	31	27	9	14	9	25	39	66	8	0
17	20	0	38	23	11	12	8	19	43	63	0	0
18	35	10	41	18	11	11	10	20	37	52	0	0
19	27	9	40	10	11	12	10	31	30	40	0	0
20	19	11	37	9	11	10	9	44	28	24	0	10
21	9	17	36	9	10	9	8	50	18	17	0	10
22	15	31	34	9	10	0	7	72	12	11	0	10
23	22	28	32	12	18	0	0	67	10	0	0	11
24	36	30	25	. 3	12	0	0	63	0	0	0	8
25	30	37	19	12	10	0	0	55	0	0	0	11
26	33	37	13	10	13	8	0	40	0	0	7	11
27	27	31	12	8	12	8	0	27	0	0	0	15
28	36	27	12	8	36	10	0	14	0	0	0	10
29	25	26	10	9	51	9	7	11	0	0	0	
30	29	26	8	11	46	8	7	0	0	0	8	
31	23		8		40	9		0		0	8	
Mean	17	16	28	24	31	11	4	19	16	17	2	24

The yearly mean sunspot number equaled 17.9 in 1985.

DAILY SOLAR FLUX AT 2800 MHz (10.7 CM) ADJUSTED TO 1 AU

ALGONQUIN RADIO OBSERVATORY, OTTAWA

Day	Mar 85	Apr	May	Jun	Ju I	Aug	Sep	0c†	Nov	Dec	Jan 86	Feb
01	69.3	72.2	80.6*	69.5	76.9	80.5	73.0	68.3	69.0	67.8	67.0	81.8
02	69.1	72.6	76.5	72.4	79.1*	80.4	72.8	67.5	68.8	68.4	67.6	86.4*
03	69.0	72.5A	72.6	74.6	81.3	79.2	73.1	68.7	68.0	68.5	68.4	96.0
04	68.6	71.9	70.8	77.5	80.4	79.3	73.5	68.3	67.6	68.3	69.5	97.8*
05	67.5	71.2	71.4	84.3	83.3	78.5	72.2	67.0	68.5	69.7	70.7	99.8
06	68.1	70.5	75.0	87.4	87.5	77.9	72.5	66.0	70.0	71.1	72.2	99.0
07	68.0	79.3	79.1	88.4	97.7	79.5	70.8	65.9	71.8	71.9	71.6	96.7
08	68.7	61.9	83.7	88.9	96.7*	78.5	70.3	65.8	73.7	73.0	71.2	94.3*
09	68.7	.4	89.6	89.8	100.9*	74.9	70.6	66.0	72.9	75.2	72.7	92.5
10	68.0	63.7	91.7	91.7	104.6*	72.8	70.3	66.7	72.5	75.6	72.2	93.4*
11	69.5	69.0	89.9	91.2	97.3	68.4	69.2	67.7	74.7	76.6	71.9	95.1
12	69.3	69.6	92.1	89.8	92.9	69.7	68.5	66.9	74.7	77.3	71.2	88.4
13	69.5	69.8	91.9	89.2	85.5	68.9	70.7	66.7	74.3	75.6	74.3	86.4
14	69.5	70.6	90.7*	85.3	76.4	69.3	70.4	69.8	76.9	76.4	76.4	86.2*
15	69.6	70.0	92.0*	83.8	73.0	69.0	71.1	71.7	82.2*	80.2	75.1	79.6
16	70.1	69.4	95.5	80.9	71.9	68.2	70.3	73.2	78.8	83.7	75.5*	71.2
17	72.1	70.2	92.3	77.3	71.9	67.9	70.0	75.5	77.4	80.2	74.4	68.3
18	74.6	71.7	92.7	73.8	71.8	68.6	70.4	75.5	77.3	78.4	73.1	68.7
19	74.2	71.7	89.6	72.2	71.7	69.1	70.7	77.7	75.6	77.5	70.2	68.1
0	74.2	72.3	86.7	71.9	71.7	70.6	69.8	79.4	75.7	75.4*	69.2	68.1
21	76.1*	77.9	84.4*	71.5	71.2	70.4	69.6	84.7	73.7	75.1	67.9	66.0
22	75.9	89.8	82.7*	71.6	71.0	72.7	69.8	94.3	73.1	73.5	67.3	67.7
23	77.3	93.3*	80.0	71.8	71.1	72.9	69.2	93.2*	72.8	71.2	67.0	67.7
24	79.6	89.0*	78.3	70.8	71.0	72.1	69.0	92.5	71.9	69.9	66.9	68.6
25	78.5	95.2	77.2	71.0	75.6	72.5	68.7	88.5*	70.3	67.3	68.0	70.1
26	79.7 [†]	88.3*	75.5	70.0	77.4	72.3	68.4	83.0	69.5	66.3	67.7	72.0
27	77.4	80.6	74.6	70.2	79.2	73.1	67.7	78.5*	69.8	66.2	67.2	75.2
28	77.7	78.1	72.7	71.0	81.2	73.1	67.8	76.7	69.0	66.2	70.0	77.0
29	76.7 [†]	83.2	72.5	72.3	83.5	73.1	68.3	73.6	69.1	66.0	71.2	
30	75.8 [†]	80.8	71.4	74.8	83.8	73.9	68.3	70.5	68.8	66.3	73.7	
31	76.4 [†]		69.6		82.4	74.1		69.5		66.6	76.6	
Mean	72.5	75.7	82.0	78.5	81.3	73.3	70.2	74.2	72.6	72.4	70.9	81.5

A = interpolated value; --- = no observation. *Adjusted for burst in progress at time of measurement; †corrected for antenna drift. The yearly mean 2800 MHz flux adjusted to 1 astronomical unit equaled 74.7 in 1985.

February 1986

		Bartels	Sun	spot	Obs Flux		Solar	Flux A	iusted	to 1 As	stronom	ical Ur	nit	
J	ulian	Cycle		bers	Ottawa	SGMR	SGMR	SGMR	Ottawa	SGMR	SGMR	SGMR	SGMR	SGMR
-	Day	Day	int	Amer	(2800)	(15400)				(2695)	(1415)	(610)	(410)	(245)
01	32	1	18	18	84.2	568	290	108	81.8	77	68	50	26	1
02	33	2	31	33	89.0*	552	318	111	86.4*		74	52	25	í
03	34	3	57	56	98.9				96.0					
04	35	4	53	59	100.6*	556	334	136	97.8*		72	59	39	32
05	36	5	53	52	102.7	443	296	129	99.8	89	74	58	41	47
-														
06	37	6	47	48	101.9	568	329	120	99.0	95	76	58	33	79
07	38	7	52	50	99.4	568	3.28	124	96.7	90	73	60	26	61
08	39	8	54	53	96.9*	564	313	106	94.3*	91	75	60	24	11
09	40	9	47	49	95.1				92.5					
10	41	10	37	38	95.9*	566	330	109	93.4*	91	71	65	37	56
11	42	11	37	36	97.6	558	321	128	95.1	89	70	56	23	21
12	43	12	25	26	90.8	573	314	118	88.4	85	70	59	31	41
13	44	13	22	22	88.6	567	326	118	86.4	83	67	54	23	29
14	45	14	16	17	88.4*	573	316	119	86.2*	84	68	59	25	18
15	46	15	11	10	81.6	569	306	98	79.6	78	61	51	21	14
16	47	16	0	1	72.9	488	297	98	71.2	68	55	49	20	8
17	48	17	0	ó	70.0	510	291	100	68.3	64	53	45	20	12
18	49	18	0	0	70.3	492	281	90	68.7	63	52	44	20	11
19	50	19	0	ő	69.7	532	297	97	68.1	64	51	41	20	12
20	51	20	10	10	69.6	550	292	91	68.1	64	53	46	19	12
21	=2	21	10	11	67.5	469	282	98	66.0	64	52	46	19	12
21	52 53	22	10	10	69.2	409		90	67.7					
	54	23	11	11	69.2	552	275	94	67.7	66	51	27	12	7
23	-		8	9	70.1	556	298	100	68.6	64	52	36	14	8
24	55 56	24 25	11	10	71.5	564	301	95	70.1	67	55	41	16	7
25	20	25	11	10	/1.5	204	301	95	70.1	67	23	41	10	,
26	57	26	11	12	73.5	565	313	108	72.0	72	56	44	20	13
27	58	27	15	15	76.7	564	309	106	75.2	75	59	51	20	12
28	59	1	10	11	78.5	551	305	105	77.0	74	60	51	22	12
Mean			24	24	83.6	545	306	108	81.5	78	63	50	23	33

^{*}Adjusted for burst in progress at time of measurement.

The observed and the adjusted Ottawa fluxes tabulated above are the "Series C" daily values reported by the Algonquin Radio Observatory, Ottawa, Ontario, Canada. The letter "A" following an entry designates an interpolated flux. Numbers in parentheses in the column headings denote frequencies in MHz.

Equipment problems produced the gaps shown here in the Air Weather Service's Sagamore Hill (SGMR) observations.

The International and American sunspot numbers shown above are preliminary values.

FEBRUARY 1986

	Internat	.ional	TIVE SUNSP	OT NUMBERS	Der	ived	2800 MHz Adjuste	RADIO FLUX d to 1 AU
Date		ncothed	(R Monthly Mean	a) Smoothed	Monthly Mean	Smoothed	Monthly	Sa) Smoothed
Apr 82 May Jun Jul Aug Sep Oct Nov Dec	122.0 82.2 110.4 106.1 107.6 118.8 94.7 98.1	124 120 117 115 109 101 96 95 95	82.6 113.5 113.3 110.5 117.8	124 120 118 117 111 103 97 95 95	113.9 97.7 129.6 116.0 123.9 118.5 111.8 114.8 146.7	134 129 127 125 120 112 106 103 101	162.9 147.9 177.4 164.8 172.1 167.1 160.9 163.7 193.2	182 177 175 174 168 161 155 153
Jan 83 Feb Mar May Jun Jul Aug Sep Oct Nov Dec	84.3 51.0 66.5 80.7 99.2 91.1 82.2 71.8 50.3 55.8 33.3	93 90 86 82 77 70 66 66 68 68 59 64	82.8 53.4 60.5 74.5 97.7 93.1 82.2 69.2 47.4 52.3 30.2 32.3	93 90 85 81 77 69 63 63 66 66 65 62	86.7 67.2 64.7 67.5 86.1 92.4 77.4 75.7 57.0 58.6 35.6 35.7	98 94 90 85 80 72 66 66 67 67 67	137.7 119.6 117.3 119.9 137.1 143.0 129.1 127.5 110.2 111.7 90.4 90.5	148 145 141 136 131 124 118 118 119 120 120
Jan 84 Feb Mar Apr Jun Jul Aug Sep Oct	57.0 85.4 83.5 69.7 76.4 46.1 37.4 25.5 15.7 12.0 22.8 18.7	60 56 53 50 48 46 44 40 34 29 25 22	54.4 81.5 83.0 66.5 72.1 45.2 36.2 24.5 13.6 9.8 19.4 17.0	58 54 51 48 45 44 42 38 32* 27* 23* 20*	59.4 86.2 68.5 78.1 79.6 49.8 37.6 30.7 23.2 16.9 18.6 17.4	61 58 55 52 49 48 39 41 35 31 26 23	112.4 137.2 120.8 129.7 131.1 103.5 92.2 85.8 78.9 73.1 74.6 73.5	115 101 108 105 103 102 99 95 90 86 72 79
Jan 85 Feb Mar Apr Jun Jul Aug Sep Oct Nov Dec	27.5 24.2	20 20 19 18 18 18 17* 17* 16(2)* 15(4)* 14(5)* 13(5)*	14.5 16.3 11.8* 17.1* 24.0* 22.2* 30.8* 10.7* 3.4* 16.5* 16.4*	19* 18* 16* 17* 16* 16* 15* 14 13 12 11	15.9 15.7 16.3 19.8 26.6 22.8 25.8 17.2 13.8 18.1 16.4 16.2	21 20 19 19 19 19 19 19 18 17 16 15	72.1 71.9 72.5 75.7 82.0 78.5 81.3 73.3 70.2 74.2 72.6 72.4	77 76 75 75 75 75 75 75
Jan 86 Feb Mar Apr May Jun Jul Aug	2.3† 23.6†	13(6)* 13(7)* 12(8)* 11(8)* 10(9)* 10(9)* 9(9)*	2.3*	11 10 10 9 	14.6	15 14 14 13 12 11 11 10	70.9	

^{*}An asterisk marks either a value of the observed 12-month running mean or of a predicted 12-month average that is based ir part on preliminary observations.

Underlined entries indicate predicted values and parentheses enclose the absolute value of the 90% confidence limits. The two columns headed "Derived" represent a sunspot number computed from a linear regression equation between the 2800 MHz solar flux (adjusted to 1 astronomical unit) and the Zurich sunspot number.

FEBRUARY 1986

Month	Jan	Feb	Mar	Apr	May	Jun	Ju l	Aug	Sep	0c†	Nov	Dec
1976	15	13	12	13	13	12*	13	14	14	13	14	15
1977	17	18	20	22	24	26	29	33	39	46	52	57
1978	61	65	70	77	83	89	97	104	108	111	113	118
1979	124	131	137	141	147	153	155	155	156	158	162	165*
1980	164	163	161	159	156	155	153	150	150	150	148	143
1981	140	142	143	143	143	142	140	141	143	142	139	138
1982	137	133	129	124	120	117	115	109	101	96	95	95
1983	93	90	86	82	71	71	66	66	68	68	67	64
1984	60	56	53	50	48	47	44	40	34	29	25	22
1985	21	20	19	18	18	18	17	17	16 (2)	15	14	13
1986	13 (6)	13 (7)	12 (8)	11	10 (9)	10 (9)	9 (9)	9 (9)	8 (8)	8 (8)	8 (8)	8 (8)

An asterisk marks the minimum and the maximum of Sunspot Cycle 21.

For the current solar cycle, this table gives observed smoothed sunspot numbers up to the one calculated from the most recently measured monthly mean. These smoothed observed values are based on final monthly mean Zurich numbers through 1980, on final international numbers through 1985, and on provisional international numbers thereafter.

The entries with numbers in parentheses below them denote predictions by the McNish-Lincomethod. (See page 9 in the May 1985 edition of the "Solar-Geophysical Data" supplement.) Adding the number in parentheses to the predicted value generates the upper limit of the 90% confidence interval; subtracting the number in parentheses from the predicted value generates the lower limit. Consider, for example, the August 1986 prediction tabulated above. There exists a 90% chance that in August 1986 the actual smoothed sunspot number will fall somewhere between 0 and 18.

THE MCNISH-LINCOLN PREDICTION METHOD GENERATES USEFUL ESTIMATES OF SMOOTHED SUNSPOT NUMBERS FOR NO MORE THAN 12 MONTHS AHEAD. Beyond a year the predictions regress rapidly toward the mean of all 13 cycles of data used in the computation. Furthermore, the method is very sensitive to the date defined as the beginning of the current sunspot cycle, that is, to the date of the most recent sunspot minimum. In "Solar-Geophysical Data," Issues 390-401, we based the current cycle predictions on March 1976 as the end of cycle 20 and the onset of the new cycle 21. Later studies, including one published by M. Waldmeier, showed that June 1976 was more appropriately the minimum epoch. We therefore generated this table using the June 1976 date.

1944 1946 1948 1960 1962 1964 1966 1968 1960 1962 1964 1966 1968 1960 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 MONTHLY MEAN SUNSPOT NUMBERS

				MON	IITLI MEA	IN SUNSPU	I NUMBER	(3				
Year	Jan	Feb	Mar	Apr	May	Jun	Ju I	Aug	Sep	0c†	Nov	Dec
1944	3.7	0.5	11.0	0.3	2.5	5.0	5.0	16.7	14.3	16.9	10.8	28.4
1945	18.5	12.7	21.5	32.0	30.6	36.2	42.6	25.9	34.9	68.8	46.0	27.4
1946	47.6	86.2	76.6	75.7	84.9	73.5	116.2	107.2	94.4	102.3	123.8	121.7
1947	115.7	133.4	129.8	149.8	201.3	163.9	157.9	188.8	169.4	163.6	128.0	116.5
1948	108.5	86.1	94.8	189.7	174.0	167.8	142.2	157.9	143.3	136.3	95.8	138.0
1949	119.1	182.3	157.5	147.0	106.2	121.7	125.8	123.8	145.3	131.6	143.5	117.6
1950	101.6	94.8	109.7	113.4	106.2	83.6	91.0	85.2	51.3	61.4	54.8	54.1
1951	59.9	59.9	55,9	92.9	108.5	100.6	61.5	61.0	83.1	51.6	52.4	45.8
1952	40.7	22.7	22.0	29.1	23.4	36.4	39.3	54.9	28.2	23.8	22.1	34.3
1953	26.5	3.9	10.0	27.8	12.5	21.8	8.6 4.8	23.5	19.3	8.2	1.6	2.5
1954	0.2		10.9	1.8	0.8	0.2		8.4	1.5	7.0	7.2	2.5 7.6
1955	23.1	20.8	4.9	11.3	28.9	31.7	26.7	40.7	42.7	58.5	89.2	76.9
1956	73.6	124.0	118.4	110.7	136.6	116.6	129.1	169.6	173.2	155.3	201.3	192.1
1957	165.0	130.2	157.4	175.2	164.6	200.7	187.2	158.0	235.8	253.8	210.9	239.4
1958	202.5	164.9	190.7	196.0	175.3	171.5	191.4	200.2	201.2	181.5	152.3	187.6
1959	217.4	143.1	185.7	163.3	172.0	168.7	149.6	199.6	145.2	111.4	124.0	125.0
1960	146.3	106.0	102.2	122.0	119.6	110.2	121.7	134.1	127.2	82.8	89.6	85.6
1961	57.9	46.1	53.0	61.4	51.0	77.4	70.2	55.8	63.6	37.7	32.6	39.9
1962	38.7	50.3	45.6	46.4	43.7	42.0	21.8	21.8	51.3	39.5	26.9	23.2
1963	19.8	24.4	17.1	29.3	43.0	35.9	19.6	33.2	38.8	35.3	23.4	14.9
1964	15.3	17.7	16.5	8.6 6.8	9.5	9.1	3.1	9.3	4.7	6.1	7.4	15.1
1965	17.5	14.2	11.7	6.8	24.1	15.9	11.9	8.9	16.8	20.1	15.8	17.0
1966	28.2	24.4	25.3	48.7	45.3	47.7	56.7	51.2	50.2	57.2	57.2	70.4
1967	110.9	93.6	111.8	69.5	86.5	67.3	91.5	107.2	76.8	88.2	94.3	126.4
1968	121.8		92.2	81.2	127.2	110.3	96.1	109.3	117.2	107.7	86.0	109.8
1969	104.4		135.8	106.8	120.0	106.0	96.8	98.0	91.3	95.7	93.5	97.9
1970	111.5	127.8	102.9	109.5	127.5	106.8	112.5	93.0	99.5	86.6	95.2	83.5
1971	91.3	79.0	60.7	71.8	57.5	49.8	81.0	61.4	50.2	51.7	63.2	82.2
1972	61.5	88.4	80.1	63.2	80.5	88.0	76.5	76.8	64.0	61.3	41.6	45.3
1973	43.4	42.9	46.0	57.7	42.4	39.5	23.1	25.6	59.3	30.7	23.9	23.3
1974	27.6	26.0	21.3	40.3	39.5	36.0	55.8	33.6	40.2 13.9	47.1 9.1	25.0 19.4	20.5 7.8
1975	18.9	11.5	11.5	5.1	9.0	11.4	28.2	39.7	13.9	9.1	19.4	7.0
1976	8.1	4.3	21.9	18.8	12.4	12.2	1.9	16.4	13.5	20.6	5.2	15.3 43.2
1977	16.4	23.1	8.7	12.9	18.6	38.5	21.4	30.1	44.0	43.8 125.1	29.1 97.9	122.7
1978	51.9	93.6	76.5	99.7	82.7	95.1	70.4	58.1	138.2		183.3	176.3
1979	166.6	137.5	138.0	101.5	134.4	149.5 157.3	159.4 136.3	142.2 135.4	188.4 155.0	186.2 164.7	147.9	174.4
1980	159.6	155.0	126.2	164.1	179.9	15/.5	130.3	133.4	199.0	104.7	14/.7	174.4
1981	114.0	141.3	135.5	156.4	127.5	90.9	143.8	158.7	167.3	162.4	137.5	150.1
1982	111.2	163.6	153.8	122.0	82.2	110.4	106.1	107.6	118.8	94.7	98.1	127.0
1983	84.3	51.0	66.5	80.7	99.2	91.1	82.2	71.8	50.3	55.8	33.3	33.4
1984	57.0	85.4	83.5	69.7	76.4	46.1	37.4	25.5	15.7	12.0	22.8	18.7
1985	16.5	15.9	17.2	16.2	27.5	24.2	30.7	11.1	3.9	18.6	16.2	17.3
1986	2.3*	23.6*										

^{*}Provisional

FEBRUARY 1986

						NOAA/								rea Measurem		
Sta Day	Start (UT)		End (UT)	Lat	CMD	USAF		P Day	Dur (Min)	Imp Opt Xray	See	Obs Type	Time	Apparent '10 ⁻⁶ Disk)	Corr	Remarks
PALE 01 13TA 01 RAMY 01 PALE 01 GOES 01	1010E 1953 2004		0038 1028 2035D	\$09 \$07 \$11	E62 E56 E53	4711	02 02 02	05.7 05.6 05.8	16 18D	1F SB SB SN C 1.3	3 3 3	C C		229 39 24		F D
PEKG 02 PALE 02 PURP 02 PEKG 02 GOES 02 GOES 02	0314 0349 0623 1118	0020 0314 0351 0630 1122 1655	0359 0755 1125 1703	\$09 \$09 \$08	E48 E53 E48		02 02 02	05.7	10 92 7 14	SN 1N C 2.2 C 1.7	3	C	0020 0351 0630	42 46 32 210	.7 .6 2.9	D E D E
PALE 02		1946				4711		06.5		SF C 3.0	3	С		20		F
PALE 03 HOLL 03	0430 0430 0828 1400 1804 1304 1304 1344 2037 2037 2039	0434 0431 0434 0844 1404 1804 1805 1844 2040 2117 2040 2127 2116	1409 1811 1848 1836 1856	N02 S01 S05 S06 S06 S09 S09 S09 S09 S09 S09	E31 E29 E31 E28 W55 E26 E26 E26 E26	4711 4711	02 02 02 02 02 02 01 02 02 02 02		7 7 22 9 7 44 32 12 123 123 145 145	SN SN 1B SF SN SF C 1.0 SN C 1.0 SF C 1.0 SF C 1.0 SF D 1	3 3 3 3	00000000000000	0434	84 23 42 59 43 26 36 51 30 365 606 278 461 487	2.9	D D F E F UFK K FSK K
LEAR 04 PURP 04	0517 0520 0523 0649 0732 0735 0756 0919 1004 1025	0304 0518 0529U 0528 0650 0747 0740 0756 0923 1009 1029	0536 0713 0835 0837 0813 0931 1014	\$09 \$07 \$03 \$07 \$03 \$03 \$03	E24 E22 E23 E22 E22	4711 4711 4711	02 02 02 02 02 02 02	05.9 06.0 05.9	3 25 10 24 63 62 17 12 10 63	SF SN SN SF SF C 1.9 4B X 3.0 3B X 3.0 2N C 1.8 C 1.0 1B M 6.4 3B	3		0518 0529 0747	43 86 56 28 35 2484 1589	1.0 .6 27.9	F D D F F I FH BE
- MITK 05 - PALE 05 - LEAR	0051 0100E 0118E 0607 0726 954 559 559 2143E 2254	0107 0127 0611 0728 0944 442 1003 1022 1929	0119 0141D 0623 0746 0952 0964 10040 1027 1932	\$06 \$04 \$07 N01 N02 \$03 \$04 \$03 \$10 \$08 \$01	E12 E13 E58 E53 E53 E06 E05 E04 W03 E48	4713 4713 4711	02 02 02 02 02 02 02 02 02	05.8 05.9 06.0	22 190 230 16 20 18 15 60 10 3	SN	3 3	00000 00 0000	0052	32 87 200 26 24 47 64 25 101 32 61	2.1	E FS FS F F F F F F F F F F F F F F F F
PALE 05 LEAR 05 LEAR 05 MITK 05	2318 2331 2333	2319 2334 2334	2322 2339 2342 2359	S03 S07 S03	W03 W06	4711 4711 4711	02 02 02	05.7 05.5 05.6 05.5	4 8 9	SF SF SF SN	3 3 3	0000	2344	35 48 23		F F E
LEAR 06 LFAR 06 PALE 06 PURP 06 LEAR 06 PEKG 06 MITK 06 PALE 06 MITK 06 PURP 06 LEAR 06 PURP 06	0117 0117 0119 0211 0212 0215 0225E 0335 0354 0356 0531	0058 0117 0118 0121 0220 0218 0340 0402 0409 0533 0622	0103 0134 0130 0132 0243 0246 0300 0229D 0355 0422 0439 0541	N00 S02 S03 S07 S04 S06 S05 S08 S05 S07	E41 E41 W04 W05 W06 W06 W08 W05	4713 4713 4713 4711 4711 4711	02 02 02 02 02 02 02 02 02 02	09.2 09.1 09.1 09.1 05.8 05.7 05.6 05.7 05.6 06.1	17 13 13 32 34 45 40 20 28 43	SF SF SB SN C 1.8 SN C 1.8 1N SF C 1.9 SN SN C 1.7 38	2	00000000000000	0121 0220 0218 0227 0402 04	23 65 42 90 148 105 168 250 25	1.2 1.5 1.7 2.6	F F I E F E

FEBRUARY 1986

NOAA/												
Start			NOAA/ USAF	CMP	Dur	Imp	(0bs	Time	rea Measureme Apparent	Corr	
	(UT) (UT)			Mo Day		Opt Xray		Туре	(UT)	(10 ⁻⁶ Disk) (Sq Deg)	Remarks
PEKG 06 0618 (LEAR 06 0814 CEAR 06 0814 CEAR 06 1357 RAMY 06 1357 RAMY 06 1431 GOES 06 1724 PALE 06 1835 RAMY 06 1835 PALE 06 1919 RAMY 06 1920E HOLL 06 2016E 201	0628 0736 0815 0828 1501 1548 1528 1548 1434 1436 1742 1749 1836 1841 1921 1934 1920 1942D 2016U 2028	\$07 W06 \$06 W01 \$10 W12 \$10 W12 \$04 W90 \$03 E35 \$01 E31 \$11 W11 \$06 W15 \$11 W10	4711 2 4711 2 4711 4712 4713 4713 4711 4711	02 05.8 02 06.3 02 05.7 02 05.7 01 31.0 02 09.4 02 09.1 02 06.0 02 05.8 02 05.7 02 06.1	78 14 111 111 5 25 8 6 15 22D 120 10 22	3B X 1.7 SF SN SB SF C 1.1 SF SF C 1.6 SN C 1.6 SF SF C 1.2 C 1.1	3 3 3 3 3	00000 000000	0628	2061 92 37 103 27 29 60 145 39 50	21.3	HIJU F K F K
LEAR 07 0133 GOES 07 0208 LEAR 07 0326 PALE 07 0326 LEAR 07 0523 LEAR 07 0729 LEAR 07 0729 LEAR 07 1014 RAMY 07 1208E GOES 07 2033 PALE 07 2124 GOES 07 2206 HOLL 07 2256	0137 0151 0221 0230 0331 0342 0332 0345 0525 0533 0731 0758	\$09 W16 \$08 W15 \$11 W17 \$09 W16 \$08 W18 \$08 W18 \$09 W20 \$11 W21 \$01 E16 NO0 E09 \$08 W27 \$08 W27	4711 4711 4711 4711 4711 4711 4711 4711	02 05.9 02 06.0 02 05.9 02 05.9 02 06.0 02 06.0 02 05.9 02 09.1 02 08.6 02 05.9 02 05.9	18 22 16 19 10 29 29 21D 138D 14 6 5	SF C 1.5 SN C 2.2 SN C 2.2 SN C 2.2 SN C 2.2 SN C 1.2 SF C 1.7 SF C 1.7 SF C 1.1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 00000000 0 000		107 140 114 87 95 55 859 36 32 74		F F F K K
PALE 08 0241 PPURP 08 0415 PEKG 08 0415 LEAR 08 0417 LEAR 08 0557 LEAR 08 0609 LEAR 08 0609 MITK 08 0611 PURP 08 0620E RAMY 08 1630 RAMY 08 1917 RAMY 08 1926 RAMY 08 1935 RAMY 08 2012 RAMY 08 2028 RAMY 08 2030	0241 0245 0421 0437 0425 0500 0421 0437 0559 0611 0618 0652 0629 0652 0616 0627	S08 W29 S07 W39 S05 W39 S04 W36 S00 E12 S03 E12 S02 E17 S10 W38 S10 W38 S10 W38 S10 W38 S10 W38 S10 W38 S12 W40 S02 E02 S03 E04 S05 W40	4711 3 4711 4713 4713 4713 4711 3 4711 3 4711 3 4711 4713 4713 4713 4713	02 05.9 02 05.5 02 05.5 02 05.7 02 05.5 02 09.1 02 09.1 02 09.2 02 05.9 02 05.9 02 05.9 02 09.1 02 09.0 02 05.8 02 06.0	4 22 45 20 14 43 43 16 31D 45 7 5 8	SF SN SN SF SF SF C 1.7 SN 1N SF SF SF SF SF SF SF SF SF SF SF SF SF	3 3 3 3	0000000000000000000	0421 0425 0616 0627	27 94 125 41 28 284 76 255 26 18 22 50 27 25 19	1.2	D F K K E E
PURP 09 0122 LEAR 09 0929 GOES 09 2100	0125 0128 0125 0128 0931 0943 2107 2111 2322 2329	S01 W00 S07 W44 S04 W46	1	02 09.0 02 05.8 02 05.9	6	SN SN SF C 1.8 C 1.0	3	CCC	0125 0125	26 20 44	.3	E E
LEAR 10 0058 PURP 10 0231E LEAR 10 0511 LEAR 10 0533 LEAR 10 0708 LEAR 10 0708 LEAR 10 0947 LEAR 10 1003 RAMY 10 1147 GOES 10 1602 RAMY 10 1603 HOLL 10 2025	0513 0514 0533 0540 0720 0821 0743 0821 0948 0954 1007 1008D 1155 1235 1634 1643 1606 1615 2048U 2100D 2055 2100D	NO1 W20 NO1 W15 NO1 W16 SO6 W60 NO1 W20 SO6 W60 SO9 W66	2 4713 2 4713 3 4713 3 4713 3 4713 5 4711 5 4711 4 4711 2 4713 2 4713	02 09.0 02 09.1 02 09.9 02 08.7 02 09.1 02 08.9 02 08.9 02 08.7 02 05.5 02 05.5 02 08.5 02 08.5	8 8D 3 7 73 7 50 48 41 12 350 350	SN SF SN SF SN C 5.2 SF SF SB C 3.4 SN C 9.5 1B SB	3 3 2	000000000000000000000000000000000000000	0043 0231	160 28 102 22 31 195 115 17 29 111 58 60 314	1.7	G F K F K
PURP 11 0114E PURP 11 0330	0109 0112 0116 0130 0337 0427 0345 0450	S04 W56 N00 W26 S01 W36 S01 W36	3	02 05.9 02 09.0 02 08.9 02 08.9	16D 57	SF 1N 1N 3B	3	0000	01 03 03			

FEBRUARY 1986

Star Max End USAF OMP Our Ou															
STEADY (UT) (UT) (UT) LST DOR Region No. By (No. 1) Opt. Xery See Ype (UT) (1076 Disk) (SG Deg) Members	Start	Max End		NOAA/ USAF	OMP	D	ur	Im	1p		0bs	Time	Apparent	Corr	
LEAR II 10 352 0350 4040 NOB 950 4713 02 08.9 68 18 M 1.1 3 C 294 FK C 150 10 10 10 10 10 10 10 10 10 10 10 10 10	Sta Day (UT)	(UT) (UT)	Lat CMD	Region	Mo D	ay (M	lin)	Opt	Xray	See	Туре	(UT)	(10 ⁻⁶ Disk)	(Sq Deg)	Remarks
LEAR 11 0352 0460 0450 0460 0471 02 0471 02 0471 02 0471 0	LEAR 11 0332	0338 0440					68	1B M	1 1.1	3	С		294		FK
LEAR II 0450 0452 0599 500 W22 4713 02 09, 0 19 5 C 2,1 C 0635 210 2,7 E 0625 11 1050 1050 0725 0725 0725 0725 0725 0725 0725 0	LEAR 11 0332	0406 0440				8.9	68	SN		3	C		189		K
PERS 11 0612			S00 W29	4713	02 0			CE		*	С		24		F
Care 11 1884 1884 1894 1894 1894 1894 1894 1894 1894 1894 1894 1895 18						•	62		2.1						
GOES 11 1199 1139 1139 1139 5 0 0 C 1, 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			NO1 W37	4713	02 0	8.5		IN CE C		2		0635		2.7	Ε
GOES 11 1150 1153 1155 5			NU2 W37	4/13	02 0			(1.2	,	C		23		
DOES 11 1946 1555 1605	GOES 11 1150														
HOLL 11 2194E 2199 2231 506 880 4711 02 02.05,9 370 SF															
PALE 2 0027 0027 0025 0035 003	HOLL 11 2154E	2159 2231				5.9	370	SF			_				
	LEAR 11 2303	2321 2405	NOO W43	4713	02 0	8.7	62	SN M	1 1.0	3	С		110		ZF
Full 12 0249 0251 0309 0301 W51 02 08,5 19 58 C 0.6 3 C 0.251 90 1.5										3					
LEAR 12 0251 0259 0303 NOS M99 4715 02 08,4 12 5F C 1.6 3 C 28 LEAR 12 0304 0308 0310 NOS M99 4715 02 08,5 6 5F C 1.6 3 C 0409 23 .4 D PURP 12 0407 0409 0411 NOI W52 02 08,3 4 SN C 1.9 C 0409 23 .4 D LEAR 12 0450 0309 0514 NOI W52 07 08,5 5 SF C 1.6 3 C 0509 39 .7 E LEAR 12 0451 0345 0359 NOI W54 14713 02 08,4 1 7 SF C 1.9 C 0409 23 .4 D LEAR 12 0913 0913 0918 NOS W52 4713 02 08,5 5 SF SF C 1.6 3 C 0509 39 .7 E LEAR 12 0913 0913 0918 NOS W52 4713 02 08,5 5 SF SF C 1.6 3 C 0509 39 .7 E WEND 12 1034 1104 1207 NOS W52 4713 02 08,5 5 SF SF SF C 1.6 3 C 26 W540 12 1034 1104 1207 NOS W52 4713 02 08,5 5 SF										3		0251		1.5	
PURP 12 0407 0409 0411 NOI W52 02 08.3 4 SN C 0409 23 .4 D PURP 12 0507 0509 0514 PURP 12 0507 0509 0514 LEAR 12 0501 0540 0550 0514 LEAR 12 0501 0541 0543 0552 N05 W11 4713 02 08.4 11 SF 3 C 25 LEAR 12 0704 0706 0709 N05 W11 4713 02 08.5 5 SF 3 C 25 LEAR 12 0705 0596 1001 N05 W52 4713 02 08.5 5 SF 3 C 25 ROSE 12 0501 1013 1103 1207 N05 W52 1103 W11 4713 02 08.5 5 SF 3 C 25 ROSE 12 103 1103 1103 1207 N05 W52 110 W53 W52 110 W53 W52 W11 W53 W52 W53							12	SF (1.6	3	C	0271			
Color Colo									1.6	3		0400		4	D
LEAR 12 (094) 0509 0509 0514 NOI M92 02 08.5 7 SF C 05099 39 .7 E LEAR 12 (074) 0706 0709 NOI M91 4715 02 08.4 11 SF 3 C 25 LEAR 12 (074) 0706 0709 NOI M91 4715 02 08.5 15 SF 3 C 25 LEAR 12 (0915) 0915 0916 1001 NOI M92 4715 02 08.5 15 SF 3 C 43 LEAR 12 (0915) 0915 0916 1001 NOI M92 4715 02 08.5 15 SF 3 C 43 LEAR 12 (1904) 1034 1104 127 NOI M93 130 02 08.5 15 SF 3 C 43 LEAR 12 (1904) 1034 1104 127 NOI M93 130 02 08.5 15 SF 3 C 43 LEAR 13 (1904) 1034 1104 127 NOI M93 130 02 08.5 15 SF 3 C 1104 156 2.7 GOES 12 1208 2135 1357 SOI M93 4115 02 08.6 15 SF 3 C 1104 156 2.7 LEAR 13 (1904) 1042 1208 2139 NOI M64 4715 02 08.6 15 SF 3 C 1104 156 2.7 LEAR 13 (1904) 1042 1042 1042 1042 1042 1042 1042 1042			NOT #32		02 0				1.9		C	0409	23	••	U
GOES 12 1034 1104 1207 N03 W553 02 08.5 3 1F C 1.7 C 1.9 C 1104 156 2.7 GOES 12 1350 1353 1357 1357 1353 1357 14713 02 08.5 34 S8 C 2.1 3 C 62 FE GOES 12 1298 2133 2159 N02 W62 4713 02 08.5 100 SF 2.7 C 1.0 C 114 FE GOES 12 2221 2252 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 0246 0248 0254 N04 W65 4713 02 08.5 6 SF N 1.0 3 C 0.0 4 5	L-PURP 12 0507					8.3	. 7	SF			С	0509		.7	Ε
GOES 12 1034 1104 1207 N03 W553 02 08.5 3 1F C 1.7 C 1.9 C 1104 156 2.7 GOES 12 1350 1353 1357 1357 1353 1357 14713 02 08.5 34 S8 C 2.1 3 C 62 FE GOES 12 1298 2133 2159 N02 W62 4713 02 08.5 100 SF 2.7 C 1.0 C 114 FE GOES 12 2221 2252 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 0246 0248 0254 N04 W65 4713 02 08.5 6 SF N 1.0 3 C 0.0 4 5						8.4	11	SF		3	C				
GOES 12 1034 1104 1207 N03 W553 02 08.5 3 1F C 1.7 C 1.9 C 1104 156 2.7 GOES 12 1350 1353 1357 1357 1353 1357 14713 02 08.5 34 S8 C 2.1 3 C 62 FE GOES 12 1298 2133 2159 N02 W62 4713 02 08.5 100 SF 2.7 C 1.0 C 114 FE GOES 12 2221 2252 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 2222 2325 2355 150 C 2.7 C 1.0 C 114 FE GOES 12 0246 0248 0254 N04 W65 4713 02 08.5 6 SF N 1.0 3 C 0.0 4 5			NO3 W52	4713	02 0	8.5	5	SF		3	C		43		
GOES 12 1350 1353 1357 1358 1357 7 C 1.9 RAWY 12 1351 1403 1425 SO1 W53 4713 02 08.6 3 4 SB C 2.1 3 C 62 ROLL 12 2129E 2133 2159 NO2 W62 4713 02 08.6 3 100 SF 2.7 GOES 12 2201 2209 2211 GOES 12 2201 2209 2211 GOES 12 2322 2325 2355						8.5	6	SF	1 7	3	C	1104		2 7	
RAMY 12 1351 1403 1425 501 M55 4713 02 08.6 34 S8 C 2.1 3 C 62 FE HOLL 12 2129E 2135 2159 NO2 W62 4713 02 08.5 100 SF 3 C 114 F GOES 12 2201 2208 2211 10 C 2.7 13 C 1.0 F GOES 12 2202 2205 2355 SF 10 C 1.0 F GOES 12 2202 2325 2355 SF 10 C 1.0 F GOES 12 2202 2325 2355 SF 10 C 1.0 F GOES 12 2202 2325 2355 SF 10 C 1.0 F GOES 12 2202 2325 2355 SF 10 C 1.0 F GOES 12 2202 2325 2355 SF 10 C 1.0 F GOES 12 2202 2325 2355 SF 10 C 1.0 F GOES 12 2202 2325 2355 SF 10 C 1.0 F GOES 12 2202 2325 2355 SF 10 C 1.0 F GOES 13 0246 0248 0252 NO5 W64 02 08.5 6 SF 1.0 C 0.248 210 5.2 E LEAR 13 0246 0248 0252 NO5 W64 02 08.5 6 SF 1.0 C 0.248 210 5.2 E LEAR 13 0256 0256 0302 NO2 W61 4713 02 08.6 6 SF 1.0 C 0.248 210 5.2 E LEAR 13 0354 0354 0359 NO2 W61 4713 02 08.6 6 SF 1.0 C 0.25 F LEAR 13 0545 0354 0359 NO2 W61 4713 02 08.4 F 5 SF 3 C 0.24 5 SF 2 C 25 F GOES 13 0451 0454 0501											C	1104	136	2.1	
GUES 12 2201 2208 2215 2355	RAMY 12 1351	1403 1425					34	SB C	2.1		C				
GOES 12 2322 2325 2355			NO2 W62	4/13	02 0	18.5		SF (2.7	3	C		114		F
CEAR 15 0246 0224 0255 0256 0302 0302 0302 0304 04713 02 08.6 6 SF 3 C 20 F CEAR 13 0356 0357 032 032 0354 03															
C LEAR 13 0246 0248 0254 0359 030 050 654 02 08,4 8 SF M 1,0 3 C 0248 210 5,2 E E EAR 13 0256 0256 0302 002 w61 4715 02 08,6 6 SF 3 C 20 F EAR 13 0356 0357 0352 0302 0302 0302 0304 61 4715 02 08,6 6 SF 3 C 20 F EAR 13 0354 0359 0359 0302 036 4713 02 08,6 6 SF 3 C 23 SF C C C C C C C C C	LEAR 13 0234	0235 0240	S01 W54	4713	02 0	9.1	6	SF		3	С		55		
LEAR 13 0356 0256 0302 N02 w61 4713 02 08.6 6 6 SF 3 C 20 F LEAR 13 03516 0327 0332 N02 w61 4713 02 08.4 15 SF 3 C 23 F LEAR 13 0354 0354 0359 N02 w63 4713 02 08.4 15 SF 3 C 23 F LEAR 13 0354 0458 0501 0501 0501 0501 0501 0501 0501 05	- LEAR 13 0246	0246 0254	NO4 W63	4713	02 0	8.4	8			3	C				
GOES 13 0451 0454 0501 050 NC4 02 08.4 10 C 6.9 C 0458 168 3.9 E LEAR 13 0710 0716 0721 N03 W55 4713 02 08.4 11 SF 3 C 24 F GOES 13 1250 1258 1306 16 C 1.0 GOES 13 1250 1258 1306 16 C 1.0 GOES 13 1351 1358 1406 15 C 1.0 GOES 14 13 1933 1933 1935 NOI W70 4713 02 08.9 4 SB C 2.0 3 C 50 GOES 14 14 13 1933 1933 1935 NOI W70 4713 02 08.9 4 SB C 2.0 3 C 50 GOES 14 14 13 1933 1933 1935 NOI W70 4713 02 08.9 4 SB C 2.0 5 C 60 GOES 14 14 14 1545 1546 1540 NOI W70 4713 02 08.9 4 SB C 2.0 5 C 60 GOES 14 14 0 0002 0003 0009 S03 W68 4713 02 08.9 4 SB C 2.0 5 C 50 GOES 15 0543 0611 0627 GOES 15 0543 0611 0627 GOES 15 0642 0733 0824 102 GOES 15 1016 1203 1300 GOES 15 1304 1309 1316 GOES 16 1246 2357 2550 GOES 15 1066 12246 2357 2550 GOES 15 1066 122						18.3	6	2N N	1 1.0	3		0248		5.2	
GOES 13 0451 0454 0501 050 NC4 02 08.4 10 C 6.9 C 0458 168 3.9 E LEAR 13 0710 0716 0721 N03 W55 4713 02 08.4 11 SF 3 C 24 F GOES 13 1250 1258 1306 16 C 1.0 GOES 13 1250 1258 1306 16 C 1.0 GOES 13 1351 1358 1406 15 C 1.0 GOES 14 13 1933 1933 1935 NOI W70 4713 02 08.9 4 SB C 2.0 3 C 50 GOES 14 14 13 1933 1933 1935 NOI W70 4713 02 08.9 4 SB C 2.0 3 C 50 GOES 14 14 13 1933 1933 1935 NOI W70 4713 02 08.9 4 SB C 2.0 5 C 60 GOES 14 14 14 1545 1546 1540 NOI W70 4713 02 08.9 4 SB C 2.0 5 C 60 GOES 14 14 0 0002 0003 0009 S03 W68 4713 02 08.9 4 SB C 2.0 5 C 50 GOES 15 0543 0611 0627 GOES 15 0543 0611 0627 GOES 15 0642 0733 0824 102 GOES 15 1016 1203 1300 GOES 15 1304 1309 1316 GOES 16 1246 2357 2550 GOES 15 1066 12246 2357 2550 GOES 15 1066 122						8.6	16	SF		3	C				F
LEAR 13 0710 0716 0721 N03 W59 4715 02 08.4 8 1N			NO2 W63	4713	02 0	8.4	-	31		-	С		23		F
GOES 13 1250 1258 1306 GOES 13 1351 1358 1406 [HOLL 13 1717 1720 1742 S03 W65 4713 02 08.9 25 SB C 2.0 3 C 76 FH PALE 13 1935 1935 1935 NO1 W70 4713 02 08.9 4 SB C 2.0 3 C 50 PALE 13 1935 1935 NO1 W70 4713 02 08.9 4 SN C 5.1 2 C 166 PALE 13 2315 2316 2318 2320 S01 W66 4713 02 08.9 7 SF 2 C 60 PALE 14 0002 0003 0009 S03 W68 4713 02 08.9 7 SF 3 C 34 PALE 14 0045 0047 0049 S03 W68 4713 02 08.9 7 SF 3 C 23 LEAR 14 0301 0304 0306 NO4 W76 4713 02 08.4 5 SF 3 C 25 LEAR 14 0910 0926 1000 S02 W80 02 08.4 5 SF 3 C 114 WHEND 14 0910 0926 1000 S02 W80 02 08.4 5 SF 3 C 114 FAMY 14 1545 1545 1546 15490 S03 W78 4713 02 08.7 15 SB C 5.8 3 C 79 HOLL 14 12038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 GOES 15 0407 0412 0414 GOES 15 0642 0733 0824 LEAR 15 0842 0846 0849 S01 W83 4713 02 08.4 14 SB C 3.5 3 C 27 GOES 15 1304 1309 1316 GOES 16 1134 1151 1156 GOES 16 1134 1151 1156 GOES 16 1134 1151 1156 GOES 16 1246 2357 2550 GOES 28 1456 1506 1510			NOS WEA		02 0	08.4	8	1N	0.9		С	0458	168	3.9	Ε
GOES 13 1250 1258 1306 GOES 13 1351 1358 1406 HOLL 13 1717 1720 1742 S03 W65 4713 02 08.9 25 SB C 2.0 3 C 76 FH PALE 13 1935 1935 1935 NO1 W70 4713 02 08.6 2 SF 2 C 1.0 PALE 13 2315 2316 2318 2320 S01 W66 4713 02 08.9 4 SN C 5.1 2 C 60 PALE 14 0002 0003 0009 S03 W68 4713 02 09.0 4 SN C 5.1 3 C 60 PALE 14 0045 0047 0049 S03 W68 4713 02 09.0 4 SN C 5.1 3 C 60 PALE 14 0045 0047 0049 S03 W68 4713 02 08.9 7 SF 3 C 23 LEAR 14 0301 0304 0306 N04 W76 4713 02 08.4 5 SF 3 C 15 LEAR 14 0910 0926 1000 S02 W80 02 08.4 5 SF 3 C 114 WEND 14 0910 0926 1000 S02 W80 02 08.4 5 SF 3 C 114 FAMY 14 1545 1545 1546 15490 S03 W78 4713 02 08.7 15 SB C 5.8 3 C 79 HOLL 14 12038 2038 2052 N00 W86 4713 02 08.4 14 SB C 3.5 3 C 40 GOES 15 0407 0412 0414 GOES 15 0642 0733 0824 LEAR 15 0950 0951 0955 S02 W83 4713 02 09.2 7 SN C 5.7 3 C 50 GOES 15 1134 1151 1156 GOES 16 1134 1151 1156 GOES 28 1456 1506 1510 14 C 1.0	LEAR 13 0710						11	SF		3					_
GOES 13 1351 1358 1406 HOLL 13 1717 1720 1742 S03 W65 4713 02 08.9 25 S8 C 2.0 3 C 76 RAMY 13 1719 1720 1723 S03 W65 4713 02 08.9 4 SB C 2.0 3 C 50 PALE 13 1933 1933 1933 1935 N01 W70 4713 02 08.6 2 SF 2 C 16 PALE 13 2315 2316 2318 2320 S01 W66 4713 02 08.9 4 SN C 5.1 2 C 60 PALE 14 0002 0003 0009 S03 W68 4713 02 08.9 4 SN C 5.1 3 C 60 PALE 14 0045 0047 0049 S03 W68 4713 02 08.9 7 SF 3 C 23 LEAR 14 0909 0922 1034D S01 W76 4713 02 08.4 5 SF 3 C 23 LEAR 14 0909 0922 1034D S01 W76 4713 02 08.4 5 SF 3 C 23 LEAR 14 0909 0922 1034D S01 W76 4713 02 08.4 5 SF 3 C 15 LEAR 14 1545 1545 1600 N01 W80 4713 02 08.7 850 1N M 6.4 3 C 114 FF AMY 14 1545 1545 1546 15490 S03 W78 4713 02 08.7 850 1N M 6.4 C 0926 90 A 14 SMY 14 1545 1546 15490 S03 W78 4713 02 08.8 40 SR C 5.8 3 C 79 HOLL 14 2038 2038 2052 N00 W86 4713 02 08.8 40 SR C 5.8 3 C 79 HOLL 14 2038 2038 2052 N00 W86 4713 02 08.4 14 SR C 3.5 3 C 40 GOES 15 0642 0733 0824 14			NO4 W67	4/13	02 0			SF (2 1.0	3	C		24		r
RAMY 13 1719 1720 1723 S03 W65 4713 O2 08.9 4 S8 C 2.0 3 C 50		1358 1406					15	(0 1.0						
PALE 13 1933 1935 1935 1935 NO1 W70 4713 02 08.6 2 SF 2 C 16 Heat 13 2316 2318 2310 S03 W68 4713 02 08.9 4 SN C 5.1 2 C 60 Heat 13 2316 2318 2320 S01 W66 4713 02 09.0 4 SN C 5.1 3 C 60 Heat 14 0045 0047 0049 S03 W68 4713 02 09.0 4 SF 3 C 23 LEAR 14 0301 0304 0306 NO4 W76 4713 02 08.4 5 SF 3 C 23 LEAR 14 0301 0304 0306 NO4 W76 4713 02 08.4 5 SF 3 C 15 LEAR 14 0910 0922 10340 S01 W76 4713 02 08.4 5 SF 3 C 15 LEAR 14 0910 0926 1000 S02 W80 02 08.4 50 IN M 6.4 C 0926 90 A Heat 14 1545 1545 1540 S03 W78 4713 02 08.7 15 SB C 5.8 3 C 89 F AND 14 1545 1546 15490 S03 W78 4713 02 08.7 15 SB C 5.8 3 C 79 HOLL 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 Holl 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 Holl 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 Holl 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 Holl 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 Holl 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 Holl 14 2038 2038 2052 NO0 W86 4713 02 09.2 10 SN C 5.7 3 C 50 Y C 1.0 GOES 15 1016 1203 1300 156 1204 1309 1316 1205 1300 156 1205 1304 1309 1316 15 C 2.3 Holl 150 150 150 150 150 150 150 150 150 150							25	SB (2.0	3					FH
PALE 14 0002 0003 0009 S03 W68 4713 02 09.0 4 SN C 5.1 3 C 60 PALE 14 00045 0047 0049 S03 W68 4713 02 08.9 7 SF 3 C 23 LEAR 14 0301 0304 0306 N04 W76 4713 02 08.4 5 SF 3 C 15 LEAR 14 0909 0922 1034D S01 W76 4713 02 08.7 85D 1N M 6.4 3 C 15 WEND 14 0910 0926 1000 S02 W80 02 08.4 50 IN M 6.4 C 0926 90 A HOLL 14 1545 1545 1600 N01 W80 4713 02 08.7 85D 1N M 6.4 C 0926 90 A HOLL 14 1545 1546 15490 S03 W78 4713 02 08.8 4D S8 C 5.8 3 C 79 HOLL 14 2038 2038 2052 N00 W86 4713 02 08.4 14 S8 C 3.5 3 C 40 GOES 15 0642 0733 0824 LEAR 15 0842 0846 0849 S01 W83 4713 02 09.2 7 SN C 7.4 3 C 27 GOES 15 1016 1203 1300 GOES 15 1746 1749 1801 156 22 GOES 16 1134 1151 1156 GOES 16 2246 2357 2550 184 C 1.0 GOES 28 1456 1506 1510 14 C 1.0	PALE 13 1933	1933 1935	NO1 W70	4713					, 2.0	2					Н
PALE 14 0002 0003 0009 S03 W68 4713 02 08.9 7 SF 3 C 23 LEAR 14 0301 0304 0306 N04 W76 4713 02 08.4 5 SF 3 C 23 LEAR 14 0301 0304 0306 N04 W76 4713 02 08.4 5 SF 3 C 15 LEAR 14 0909 0922 1034D S01 W76 4713 02 08.4 5 SF 3 C 15 WEND 14 0910 0926 1000 S02 W80 02 08.4 50 IN M 6.4 C 0926 90 A HOLL 14 1545 1545 1600 N01 W80 4713 02 08.7 15 SB C 5.8 3 C 89 FAMY 14 1545 1546 15490 S03 W78 4713 02 08.8 40 SB C 5.8 3 C 79 HOLL 14 2038 2038 2052 N00 W86 4713 02 08.4 14 SB C 3.5 3 C 40 GOES 15 0407 0412 0414			S03 W68	4713											
PALE 14 0045 0047 0049 S03 W68 4713 02 09.0 4 SF 3 C 23 LEAR 14 0301 0304 0306 N04 W76 4713 02 08.4 5 SF 3 C 15 LEAR 14 0909 0922 1034D S01 W76 4713 02 08.7 85D 1N M 6.4 3 C 114 F 14	- LEAR 13 2316	2516 2520	301 400	4/13	02 0	19.0	4	314 (J. 1	,	C		00		
LEAR 14 0301 0304 0306 N04 W76 4713 02 08.4 5 SF 3 C 15 LEAR 14 0909 0922 1034D S01 W76 4713 02 08.7 850 1N M 6.4 3 C 114 F WEND 14 0910 0926 1000 S02 W80 02 08.4 50 1N M 6.4 C 0926 90 A CHOLL 14 1545 1545 1600 N01 W80 4713 02 08.7 15 SB C 5.8 3 C 89 F RAMY 14 1545 1546 1549D S03 W78 4713 02 08.8 4D SB C 5.8 3 C 79 HOLL 14 2038 2038 2052 N00 W86 4713 02 08.4 14 SB C 3.5 3 C 40 GOES 15 0407 0412 0414 GOES 15 0642 0733 0824 LEAR 15 0842 0846 0849 S01 W83 4713 02 09.2 7 SN C 5.7 3 C 50 Y GOES 15 1016 1203 1300 GOES 15 1016 1203 1300 GOES 15 1746 1749 1801 156 GOES 16 1134 1151 1156 GOES 16 2246 2357 2550 184 C 7.0 GOES 28 1456 1506 1510 14 C 1.0						-									
LEAR 14 0909 0922 1034D S01 W76 4713 02 08.7 85D 1N M 6.4 3 C 0926 90 A WEND 14 0910 0926 1000 S02 W80 02 08.4 50 1N M 6.4 C 0926 90 A HOLL 14 1545 1545 1600 N01 W80 4713 02 08.7 15 SB C 5.8 3 C 89 F RAMY 14 1545 1546 1549D S03 W78 4713 02 08.8 4D SB C 5.8 3 C 79 HOLL 14 2038 2038 2052 N00 W86 4713 02 08.4 14 SB C 3.5 3 C 40 GOES 15 0407 0412 0414								-							
HOLL 14 1545 1545 1600 NO1 W80 4713 02 08.7 15 SB C 5.8 3 C 89 F RAMY 14 1545 1546 1549D SO3 W78 4713 02 08.8 4D SB C 5.8 3 C 79 HOLL 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 SB C 5.8 3 C 79 HOLL 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 SB C 5.8 3 C 79 HOLL 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 SB C 5.8 3 C 79 HOLL 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 SB C 5.8 3 C 79 HOLL 14 2038 2038 2052 NO0 W86 4713 02 08.4 14 SB C 3.5 3 C 40 SB C 5.8 3 C 79 HOLL 14 SB C 3.5 5 SB C 5.8 3 C 79 HOLL 14 SB C 3.5 3 C 70 HOLL 14 SB C 3.5 3 C 79	- LEAR 14 0909	0922 10340				-						0026			
RAMY 14 1545 1546 1549D S03 W78 4713 02 08.8												0926			
GOES 15 0407 0412 0414 GOES 15 0543 0611 0627 GOES 15 0642 0733 0824 LEAR 15 0842 0846 0849 S01 W83 4713 02 09.2 7 SN C 5.7 3 C LEAR 15 0950 0951 0955 S02 W83 4713 02 09.2 5 SN C 7.4 3 C GOES 15 1016 1203 1300 GOES 15 1304 1309 1316 GOES 15 1746 1749 1801 GOES 16 1134 1151 1156 GOES 16 2246 2357 2550 GOES 28 1456 1506 1510 7	RAMY 14 1545	1546 1549	SO3 W78	4713	02 0	8.8	4D	SB (0 5.8	3	C		79		
GOES 15 0543 0611 0627 GOES 15 0642 0733 0824 LEAR 15 0842 0846 0849 S01 W83 4713 02 09.2 7 SN C 5.7 3 C 50 Y LEAR 15 0950 0951 0955 S02 W83 4713 02 09.2 5 SN C 7.4 3 C 27 Y GOES 15 1016 1203 1300 164 M 2.2 GOES 15 1304 1309 1316 12 M 1.6 GOES 15 1746 1749 1801 15 C 2.3 GOES 16 1134 1151 1156 22 C 1.0 GOES 16 2246 2357 2550 184 C 7.0 GOES 28 1456 1506 1510 14 C 1.0	HOLL 14 2038	2038 2052	N00 W86	4713	02 0	08.4	14	SB (3.5	3	C		40		
GOES 15 0642 0733 0824 LEAR 15 0842 0846 0849 S01 W83 4713 02 09.2 7 SN C 5.7 3 C LEAR 15 0950 0951 0955 S02 W83 4713 02 09.2 5 SN C 7.4 3 C GOES 15 1016 1203 1300 164 M 2.2 GOES 15 1304 1309 1316 12 M 1.6 GOES 15 1746 1749 1801 15 C 2.3 GOES 16 1134 1151 1156 22 C 1.0 GOES 28 1456 1506 1510 14 C 1.0															
LEAR 15 0842 0846 0849 S01 W83 4713 02 09.2 7 SN C 5.7 3 C 50 Y LEAR 15 0950 0951 0955 S02 W83 4713 02 09.2 5 SN C 7.4 3 C 27 GOES 15 1016 1203 1300 164 M 2.2 GOES 15 1304 1309 1316 12 M 1.6 GOES 15 1746 1749 1801 15 C 2.3 GOES 16 1134 1151 1156 22 C 1.0 GOES 16 2246 2357 2550 184 C 7.0 GOES 28 1456 1506 1510 14 C 1.0						1									
GOES 15 1016 1203 1300 164 M 2.2 GOES 15 1304 1309 1316 12 M 1.6 GOES 15 1746 1749 1801 15 C 2.3 GOES 16 1134 1151 1156 22 C 1.0 GOES 16 2246 2357 2550 184 C 7.0 GOES 28 1456 1506 1510 14 C 1.0		0846 0849				9.2	7	SN (C 5.7	3					
GOES 15 1304 1309 1316 GOES 15 1746 1749 1801 15 C 2.3 GOES 16 1134 1151 1156 22 C 1.0 GOES 16 2246 2357 2550 184 C 7.0 GOES 28 1456 1506 1510 14 C 1.0			S02 W83	4713	02 (C		27		Υ
GOES 16 1134 1151 1156 22 C 1.0 GOES 16 2246 2357 2550 184 C 7.0 GOES 28 1456 1506 1510 14 C 1.0															
GOES 16 2246 2357 2550 184 C 7.0 GOES 28 1456 1506 1510 14 C 1.0	GOES 15 1746	1749 1801					15	(C 2.3						
GOES 16 2246 2357 2550 184 C 7.0 GOES 28 1456 1506 1510 14 C 1.0	GOES 16 1134	1151 1156					22	(0 1.0						
0000 10 1170 1770 1770						1	184	(C 7.0						

INTERVALS OF NO FLARE PATROL OBSERVATION FOR PRECEDING SOLAR FLARE TABLE

FEBRUARY 1986

HOUR-UT
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Times of no flare patrol, shown here as shaded areas, combine reports from the observatories listed below. Portions of a panel completely shaded mark dates and times of no patrol of any kind, that is, of neither visual nor cirematographic; portions of a panel with only the bottom half shaded mark times of strictly visual patrol.

Holloman Hurbanovo Istanbul Learmonth Mitaka Palehau Peking Purple Mt. Ramey Wendelstein

EAST-WEST SOLAR SCANS FEBRUARY 1986

TOYOKAWA.JAPAN

FAN BEAM WITH 1.1 MINUTES OF ARC

EAST-WEST SOLAR SCANS

FEBRUARY 1986

ALGONQUIN RADIO OBSERVATORY

CANADA

10.7 cm
Fan Beam with 1.5 minutes of arc
E-W Resolution

SOLAR RADIO EMISSION SELECTED FIXED FREQUENCY EVENTS

FEBRUARY 1986

			Start	May Imum	Duration	Poak	Density		
Day	Freq Sta	Туре	(UT)	(UT)	(Min)	(10 -22	W/m 2 Hz)	Int	Remarks
01	2800 OTTA	240 R	1653.0	1700.0	7.0	1.2	0.6		
	2800 OTTA	20 GRF	1830.0	1847.0	40.0	1.4	0.5		
	2695 PENT	20 GRF	2120.0	1700.0 1847.0 2125.0	20.0	1.6	0.8		
0.0					-				
02	2800 OTTA	8 S 4 S/F	1543.2	1543.3	**7	6.4	2.1		
		29 PBI	1654 0	1654 0	20.0	25.0	1.3		
	2800 OTTA		1935.0	2057.0	205.00	12.6	1.0		
	2800 OTTA	1 S	2028.0	2030.0	4.0	2.0	1.4		
	2695 PENT	1 5	2202.0	1543,3 1652,1 1654,0 2057,0 2030,0 2204,0	8.0	2.4	1.2		
03	2800 OTTA	46F C	1538.0	1539.5	17.0	23.2	10.0		
	2800 OTTA	30 PBI	1555.0	1555.0	35.0	4.0	2.4		
	2800 OTTA	21 GRF	1600.0	1604.0	12.0	2.0	1.0		
	2800 OTTA	28 PRF	1723.8	1726.0	7.2	4.6	1.2		
	2800 OTTA	4 S/F	1731.0	1733.0	7. 0	28.4	14.0		
	2800 OTTA	30 PBI	1738.0	1738.0	18.0	4.0	2.0		
	2800 OTTA	1 S	1740.7	1741.0	2.0	2.0	1.0		
	2800 OTTA	1 S	1909.0	1909.7	5.0	3.4	1.1		
	2800 OTTA	2 S/F	1958.0	2000.0	8.0	2.0	0.8		
	2800 011A	40F C	2036.7	2042.5	86.5	500.0	65.0		QL=6 ST=3 TYP=6
	2695 SGMR	47 GB	2040. 1	2042.6		210.0			QL=6 ST=3 TYP=5
	2695 SGMR	47 GB	2115.1	2115.6	1. OD	61.0			QL=6 ST=2 TYP=5
	2800 OTTA	29 PBI	2203.0	1539.5 1555.0 1604.0 1606.5 1726.0 1733.0 1738.0 1741.0 1909.7 2000.0 2042.5 2042.6 2115.6 2203.0	90.0D	25.7			
04	8800 LEAR	47 GB	0445.3	0445.6	1.8	110.0			QL=6 ST=2 TYP=5
		47 GB	0516.1	0516.1	• 5	51.0			QL=6 ST=2 TYP=5
		8 S	0521.6	0521.8	4	13.0			QL=6 ST=2 TYP=3
		8 S 47 GB	0527.1	0528.1	10.4	59.0			QL=6 ST=2 TYP=3 QL=6 ST=2 TYP=5
		47 GB	0648.3	0649.1	3.5	189.0			QL=6 ST=2 TYP=5
		49 GB	0734.1	0737.1	28.0	6700.0			QL=6 ST=3 TYP=7
		49 GB	0734.3	0737.1	23.0	820.0			QL=6 ST=3 TYP=7
		47 GB	1023.4	1027.1	25.0U	1560.0			
	2800 OTTA	20 GRF	1355.0	1530.0	130.0	2.0	1.7		
		8 S 4 S/F	1610.5	1610.9	• 7	9.0	4.5		
		4 3/F 47 GB	1649.1	1649.7	6.0	61.0	10.0		OL=6 ST=3 TYP=5
		30 PBI	1654.0	1654.0	70.0	4.2	1.8		QL-0 31-3 111-3
		22 GRF	1720.0	1723.0	20.0	2.4	1.4		
		20 GRF	1930,0	1940.0	70.0	2.0	1.0		
	2695 PENT	4 S/F	2215.5	0445.6 0516.1 0521.8 0528.1 0649.3 0649.1 0737.1 1027.1 1530.0 1610.9 1649.7 1649.3 1654.0 1723.0 1940.0 2216.9	5.5	32.0	8.4		
05	8800 LEAR		0051.8	0052.1 0052.1 1244.0	3.5	78.0			OL=6 ST=2 TYP=5
		4 S/F 49 GB	0051.8 1234.0	1244 0	5.0	2600.0			QL=6 ST=2 TYP=3 QL=3 ST=2 TYP=6
	8400 BERN	47 GB	1234.0	1244.0	60. OU	2300.0			QL=3 31=2 11F=0
	2695 ATHN	49 GB	1234.0	1247.0	40.0	1199.0			QL=3 ST=2 TYP=6
	8800 SGMR	49 GB	1246.1	1246.3	6.4	1600.0			QL=6 ST=2 TYP=6
	2695 SGMR	49 GB	1246.1	1246.8	8.5	810.0			QL=6 ST=2 TYP=6
	2800 OTTA	00 001	1254.0	1710 0	16.0D	87.0			
	2800 OTTA 2800 OTTA	29 PBI 1 S	1310.0 1441.7	1310.0 1443.0	90.0 7.0	10.2	4.7 0.8		
	2800 OTTA	20 GRF	1515.0	1517.5	15.0	1.8	0.9		
	2800 OTTA	20 GRF	1840.0	1910.0	80.0	1.6	0.9		
	2695 PENT	20 GRF	2135.0	2205.0	70.0	2.8	1.0		
06	8800 LEAR	49 GB	0617.5	0621.8	57.6	8800.0			QL=6 ST=2 TYP=7
	2695 LEAR	49 GB	0618.1	0622.6	45.2	1300.0	2.2		QL=6 ST=2 TYP=7
	2800 OTTA	21 GRF	1400.0	1435.0	100.0	4.2	2.2		
	2800 OTTA 2800 OTTA	240AR 1 S	1400.0 1527.7	1545.0 1527.7	105.0 1.5	2.0 2.0	1.0 1.0		
	2800 OTTA	3 S	1725.0	1726.1	3.0	10.8	5. 2		
	2800 OTTA	30 PB1	1728.0	1728.0	140.0	3.0	1.5		
	2800 OTTA	20 GRF	1733.0	1743.0	30.0	3.4	1.2		
	2800 OTTA	20 GRF	1822.0	1825.5	20.0	2.8	1.0		
	2800 OTTA	21 GRF	1905.0	1925.0	30.0	4.2	2.1		
	2800 OTTA	1 \$	1916.0	1917.0	7.0	5.6	1.9		
07	2695 LEAR	8 S	0953, 1	0953.8	•7	11.0			QL=6 ST=2 TYP=3

SOLAR RADIO EMISSION SELECTED FIXED FREQUENCY EVENTS

FEBRUARY 1986

Time of Cut										
Day Free Ste Type (UT)					Time of		Flux	Density		
2895 ATHAN 49 GB 1015,0 1024,0 39.0 3199,0 0 0L-6 ST-3 TYP-6 8400 BERN 47 GB 1015,0 1024,0 39.0 3199,0 0 0L-6 ST-2 TYP-6 2800 OTTA 20 GBF 1720,0 1815,0 110,0 1.6 0.9 0.9 2800 OTTA 22 GBF 1720,0 1815,0 110,0 1.6 0.9 0.6 8 8800 LEAR 8 \$ \$ C239,6 0239,8 5.5 28,0 1.2 0.6 09 2800 OTTA 22 GBF 1740,0 1655,0 150,0 12,4 1,0 0.5 10 8800 ATHAN 4 \$ \$ 1645,0 1720,0 25,0 1.0 0.5 10 8800 ATHAN 4 \$ \$ 1645,0 1720,0 25,0 1,0 0.5 10 8800 ATHAN 4 \$ \$ 1645,0 1720,0 25,0 1,0 0.5 10 8800 ATHAN 4 \$ \$ 187,0 1655,0 123,0 34,0 1,8 22,0 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 22,0 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 22,0 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 22,0 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 2800 OTTA 20 GBF 1955,0 2016,5 43,0 23,0 4,0 1,8 2800 OTTA 20 GBF 1955,0 2016,5 43,0 23,0 4,0 1,8 2800 OTTA 20 GBF 1955,0 2016,5 43,0 23,0 4,0 1,8 2800 OTTA 20 GBF 1955,0 2016,5 43,0 23,0 4,0 1,8 2800 OTTA 20 GBF 1955,0 2016,5 47,0 850,0 209,0 0 0.4-6 ST=1 TYP-6 2695 GBB 20	0	F C4	T			Duration	Peak	Mean	1-1	
2895 ATHAN 49 GB 1015,0 1024,0 39.0 3199,0 0 0L-6 ST-3 TYP-6 8400 BERN 47 GB 1015,0 1024,0 39.0 3199,0 0 0L-6 ST-2 TYP-6 2800 OTTA 20 GBF 1720,0 1815,0 110,0 1.6 0.9 0.9 2800 OTTA 22 GBF 1720,0 1815,0 110,0 1.6 0.9 0.6 8 8800 LEAR 8 \$ \$ C239,6 0239,8 5.5 28,0 1.2 0.6 09 2800 OTTA 22 GBF 1740,0 1655,0 150,0 12,4 1,0 0.5 10 8800 ATHAN 4 \$ \$ 1645,0 1720,0 25,0 1.0 0.5 10 8800 ATHAN 4 \$ \$ 1645,0 1720,0 25,0 1,0 0.5 10 8800 ATHAN 4 \$ \$ 1645,0 1720,0 25,0 1,0 0.5 10 8800 ATHAN 4 \$ \$ 187,0 1655,0 123,0 34,0 1,8 22,0 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 22,0 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 22,0 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 22,0 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 2800 OTTA 20 GBF 1745,0 1655,0 123,0 34,0 1,8 2800 OTTA 20 GBF 1955,0 2016,5 43,0 23,0 4,0 1,8 2800 OTTA 20 GBF 1955,0 2016,5 43,0 23,0 4,0 1,8 2800 OTTA 20 GBF 1955,0 2016,5 43,0 23,0 4,0 1,8 2800 OTTA 20 GBF 1955,0 2016,5 43,0 23,0 4,0 1,8 2800 OTTA 20 GBF 1955,0 2016,5 47,0 850,0 209,0 0 0.4-6 ST=1 TYP-6 2695 GBB 20						(Min)	(10 -22	$W/m^2 Hz$	Int	Remarks
08 8800 LEAR 8 S 0259.6 0239.8 1.5 28.0				1012.0	1026.0	39.0	3199.0			01 =6 ST=3 TYP=6
08 8800 LEAR 8 S 0259.6 0239.8 1.5 28.0	0,			1013.0	1024.1	75. OU	2450.0			QL-0 31-3 111-0
08 8800 LEAR 8 S 0259.6 0239.8 1.5 28.0				1013.0	1027.0	43.0	3600.0			OL=6 ST=2 TYP=6
08 8800 LEAR 8 S 0259.6 0239.8 1.5 28.0		2800 OTTA	20 GRF	1720.0	1815.0	110.0	1.6	0.9		
08 8800 LEAR 8 S 0259.6 0239.8 1.5 28.0		2800 OTTA	20 GRF	2030.0	2038.0	25.0	1.2	0.6		
2800 OTTA 22 GRF 1617.0 1635.0 150.0 2.4 1.0 2800 OTTA 22 GRF 1647.0 1720.0 35.0 2.0 1.0 2800 OTTA 20 GRF 1745.0 1720.0 35.0 2.0 1.0 2800 OTTA 20 GRF 1745.0 1635.0 1505.0 2.0 2800 OTTA 20 GRF 1547.0 1635.0 1525.0 34.0 1.8 2800 OTTA 28 PRE 1935.0 2016.5 43.0 25.0 1.8 2800 OTTA 28 PRE 1935.0 2016.5 43.0 25.0 1.8 2800 OTTA 47 GR 2018.0 2023.5 47.0 859.0 209.0 0.0 2695 SOMR 49 GR 2020.3 2023.3 740.0 209.0 0.0 2695 SOMR 49 GR 2020.8 2022.6 790.0 0.0 8800 SOMR 49 GR 2020.8 2022.6 790.0 0.0 2800 OTTA 27 PRI 2020.8 2023.5 1.7 2800 OTTA 29 PRI 2105.0 1655.0 21.0 0.0 2800 OTTA 29 PRI 2105.0 165.0 21.0 0.0 2800 OTTA 29 PRI 2105.0 1355.0 165.0 21.0 0.0 2800 OTTA 29 PRI 2105.0 1355.0 165.0 2.1 0.0 2800 OTTA 29 PRI 2105.0 1355.0 155.0 0.0 2800 OTTA 29 PRI 2105.0 1755.0 155.0 0.0 2800 OTTA 29 PRI 2105.0 1755.0 155.0 10.2 -5.2 2800 OTTA 29 PRI 21 GRF 2255.0 2350.0 60.00 10.6 0.0 2800 OTTA 29 PRI 21 GRF 2255.0 2350.0 60.00 10.6 0.0 2800 OTTA 29 GRF 1310.0 1044.0 9.0 36.0 3.0 2800 OTTA 29 GRF 1310.0 1355.0 165.0 2.2 1.0 2800 OTTA 29 GRF 1310.0 1355.0 165.0 2.2 1.0 2800 OTTA 20 GRF 1310.0 1355.0 165.0 2.2 1.0 2800 OTTA 20 GRF 1310.0 1355.0 165.0 2.2 1.0 2800 OTTA 20 GRF 1310.0 1355.0 165.0 2.2 1.0 2800 OTTA 20 GRF 1310.0 1355.0 165.0 2.2 1.0 2800 OTTA 20 GRF 1315.0 1355.0 165.0 2.2 1.0 2800 OTTA 20 GRF 1315.0 1355.0 165.0 2.2 1.0 2800 OTTA 20 GRF 1935.0 1355.0 165.0 2.0 1.0 2800 OTTA 20 GRF 1935.0 1355.0 165.0 2.0 1.0 2800 OTTA 20 GRF 1935.0 1355.0 165.0 2.0 1.0 2800 OTTA 20 GRF 1935.0 1355.0 165.0 2.0 1.0 2800 OTTA 20 GRF 1935.0 1355.0 165.0 2.0 1.0 2800 OTTA 20 GRF 1935.0 1355.0 165.0 2.0 1.0 2800 OTTA 20 GRF 1935.0 2120.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.										
09	08				0239.8	150.0	28.0	1.0		QL=6 ST=2 TYP=3
10		2000 011A	22 GRF	1017.0	1039,0	150.0	2.4	1.0		
10	09	2800 OTTA	240 R	1645.0	1720.0	35.0	2.0	1.0		
10		2800 OTTA	20 GRF		1750.0	25.0	1.0	0.5		
2995 SOMR 49 08 2202., 8 2023., 3 730.0										
2995 SOMR 49 08 2202., 8 2023., 3 730.0	10				0720.0	23.0	34.0			QL=6 ST=2 TYP=3
2995 SOMR 49 08 2202., 8 2023., 3 730.0					2016.5	43.0	23.0	1.8		
2995 SOMR 49 08 2202., 8 2023., 3 730.0					2023.5	47.0	850.0	209 0		
2695 SGMR					2023.3	47.0	740.0	203.0		OL =6 ST=1 TYP=6
8800 SGMR 49 68 2020, 8 2021, 5 2021, 5 2010, 0 105, 0 21, 0 9, 4										
11 8800 LEAR 47 68 205,0 2105,0 165,0 21,0 9,4			49 GB							
2695 LEAR 8 S 0355,6 0356,0 . 5 15,0 0,-5 2 2800 OTTA 260 FAL 1520,0 1755,0 155,0 10,2 -5,2 2 2695 PENT 240 R 2120,0 2150,0 30,0 3,4 1,7 2 2695 PENT 1 S 2811,5 2311,5 5,0 10,6 6,0 10,6 6 2695 PENT 1 S 2311,5 2311,5 5,0 10,6 6,0 3,0 5,2 7 12 8800 ATHN 47 GB 1044,0 1044,0 1,0 85,0 5,2 7 12 8800 ATHN 4 5/F 1059,0 1104,0 9,0 36,0 0 0L=1 ST=2 TYP=3 2800 OTTA 240 R 1700,0 1710,0 10,0 2,8 1,0 2800 OTTA 240 R 1700,0 1710,0 10,0 2,8 1,0 2800 OTTA 240 R 1700,0 1710,0 10,0 1,6 0,8 2800 OTTA 240 R 1700,0 1710,0 10,0 1,6 0,8 2800 OTTA 20 GRF 1350,0 1855,0 185,0 10,0 1,6 0,8 2800 OTTA 20 GRF 1350,0 1855,0 10,0 1,6 0,8 2800 OTTA 20 GRF 1350,0 1855,0 10,0 1,6 0,8 2800 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2205 SORR 49 08 1604,0 1605,1 1500,0 0,0 0,5 2800 OTTA 20 GRF 1715,0 1721,0 25,0 2,0 1,0 0,0 1,6 0,5 2800 OTTA 20 GRF 1715,0 1721,0 25,0 2,0 1,0 0,0 2,4 1,4 2200 OTTA 20 GRF 1715,0 1721,0 25,0 2,0 1,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1815,0 1522,0 10,0 10,0 1,5 2800 OTTA 27 GRF 1715,0 1721,0 1815,0 1522,0 10,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1815,0 1522,0 10,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1815,0 1522,0 10,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1915,0 152,0 10,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1915,0 152,0 10,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1915,0 152,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 1		2800 OTTA	29 PB I	2105.0	2105.0	165.0	21.0	9.4		
2695 LEAR 8 S 0355,6 0356,0 . 5 15,0 0,-5 2 2800 OTTA 260 FAL 1520,0 1755,0 155,0 10,2 -5,2 2 2695 PENT 240 R 2120,0 2150,0 30,0 3,4 1,7 2 2695 PENT 1 S 2811,5 2311,5 5,0 10,6 6,0 10,6 6 2695 PENT 1 S 2311,5 2311,5 5,0 10,6 6,0 3,0 5,2 7 12 8800 ATHN 47 GB 1044,0 1044,0 1,0 85,0 5,2 7 12 8800 ATHN 4 5/F 1059,0 1104,0 9,0 36,0 0 0L=1 ST=2 TYP=3 2800 OTTA 240 R 1700,0 1710,0 10,0 2,8 1,0 2800 OTTA 240 R 1700,0 1710,0 10,0 2,8 1,0 2800 OTTA 240 R 1700,0 1710,0 10,0 1,6 0,8 2800 OTTA 240 R 1700,0 1710,0 10,0 1,6 0,8 2800 OTTA 20 GRF 1350,0 1855,0 185,0 10,0 1,6 0,8 2800 OTTA 20 GRF 1350,0 1855,0 10,0 1,6 0,8 2800 OTTA 20 GRF 1350,0 1855,0 10,0 1,6 0,8 2800 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2200 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,4 2205 SORR 49 08 1604,0 1605,1 1500,0 0,0 0,5 2800 OTTA 20 GRF 1715,0 1721,0 25,0 2,0 1,0 0,0 1,6 0,5 2800 OTTA 20 GRF 1715,0 1721,0 25,0 2,0 1,0 0,0 2,4 1,4 2200 OTTA 20 GRF 1715,0 1721,0 25,0 2,0 1,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1815,0 1522,0 10,0 10,0 1,5 2800 OTTA 27 GRF 1715,0 1721,0 1815,0 1522,0 10,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1815,0 1522,0 10,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1815,0 1522,0 10,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1915,0 152,0 10,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1915,0 152,0 10,0 0,5 2800 OTTA 27 GRF 1715,0 1721,0 1915,0 152,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 1		2022 1515	47 00			05.0				
2695 PENT 240 R 210,0 210,0 30,0 3,4 1,7 2695 PENT 1 S 2511,5 2513,0 5,0 66,00 10,6 2695 PENT 40 F 2520,0 2530,0 56,0 66,00 3,0 2695 PENT 40 F 2520,0 2524,5 8,0 5,2 12 8800 ATHN 47 GB 1044,0 1044,0 1,0 85,0 0 0L=1 ST=2 TYP=5 2800 OTTA 22 GRF 1310,0 1555,0 185,0 4,2 2,1 2800 OTTA 240 R 1700,0 1710,0 10,0 2,8 1,0 2800 OTTA 240 R 1700,0 1710,0 10,0 2,8 1,0 2800 OTTA 240 R 1700,0 1710,0 10,0 1,6 0,8 2800 OTTA 240 R 125,0 1855,0 185,0 4,2 1,4 2800 OTTA 240 R 125,0 1855,0 10,0 1,6 0,8 2800 OTTA 20 GRF 1355,0 1220,0 220,00 6,2 13 2695 LEAR 8 S 0234,0 0234,1 5 13,0 0 0,6 0,8 2800 OTTA 20 GRF 1550,0 1555,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1550,0 1555,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1550,0 1555,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1550,0 1555,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1550,0 1555,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1590,0 1595,0 30,0 2,4 1,2 2800 OTTA 21 GRF 1715,0 1721,0 25,0 0,0 1,0 2800 OTTA 21 GRF 1715,0 1721,0 25,0 1,0 0,5 2800 OTTA 22 GRF 1590,0 1815,0 1606,1 1600,0 QL=6 ST=1 TYP=7 2800 OTTA 20 GRF 1790,0 1815,0 15,0 1721,0 1,5 1,8 2800 OTTA 21 GRF 1715,0 1721,0 25,0 2,0 1,0 2800 OTTA 22 GRF 1590,0 1815,0 1600,0 QL=6 ST=1 TYP=7 2800 OTTA 27 GRF 1990,0 5,0 1600,0 1,0 5 2800 OTTA 24 R 1990,0 5,0 1615,0 65,0 2,0 1,0 5 2800 OTTA 24 R 1990,0 5,0 25,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 210,0 1615,0 -2,0 1,5 2800 OTTA 24 R 1990,0 5,0 25,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 25 RF 1950,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 26 RF 170,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 26 RF 170,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 26 RF 170,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 26 RF 14 12,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14	11					25.0	55.0			
2695 PENT 240 R 210,0 210,0 30,0 3,4 1,7 2695 PENT 1 S 2511,5 2513,0 5,0 66,00 10,6 2695 PENT 40 F 2520,0 2530,0 56,0 66,00 3,0 2695 PENT 40 F 2520,0 2524,5 8,0 5,2 12 8800 ATHN 47 GB 1044,0 1044,0 1,0 85,0 0 0L=1 ST=2 TYP=5 2800 OTTA 22 GRF 1310,0 1555,0 185,0 4,2 2,1 2800 OTTA 240 R 1700,0 1710,0 10,0 2,8 1,0 2800 OTTA 240 R 1700,0 1710,0 10,0 2,8 1,0 2800 OTTA 240 R 1700,0 1710,0 10,0 1,6 0,8 2800 OTTA 240 R 125,0 1855,0 185,0 4,2 1,4 2800 OTTA 240 R 125,0 1855,0 10,0 1,6 0,8 2800 OTTA 20 GRF 1355,0 1220,0 220,00 6,2 13 2695 LEAR 8 S 0234,0 0234,1 5 13,0 0 0,6 0,8 2800 OTTA 20 GRF 1550,0 1555,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1550,0 1555,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1550,0 1555,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1550,0 1555,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1550,0 1555,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1590,0 1595,0 30,0 2,4 1,2 2800 OTTA 21 GRF 1715,0 1721,0 25,0 0,0 1,0 2800 OTTA 21 GRF 1715,0 1721,0 25,0 1,0 0,5 2800 OTTA 22 GRF 1590,0 1815,0 1606,1 1600,0 QL=6 ST=1 TYP=7 2800 OTTA 20 GRF 1790,0 1815,0 15,0 1721,0 1,5 1,8 2800 OTTA 21 GRF 1715,0 1721,0 25,0 2,0 1,0 2800 OTTA 22 GRF 1590,0 1815,0 1600,0 QL=6 ST=1 TYP=7 2800 OTTA 27 GRF 1990,0 5,0 1600,0 1,0 5 2800 OTTA 24 R 1990,0 5,0 1615,0 65,0 2,0 1,0 5 2800 OTTA 24 R 1990,0 5,0 25,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 210,0 1615,0 -2,0 1,5 2800 OTTA 24 R 1990,0 5,0 25,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 24 R 1990,0 5,0 25,0 2,0 1,0 0,5 2800 OTTA 25 RF 1950,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 26 RF 170,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 26 RF 170,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 26 RF 170,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 26 RF 14 12,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14					1755 0	155.0	10.0	-5 2		QL=6 51=2 11P=3
2699 PENN 1 S 2210,0 2224,5 8,0 5,2 12 8800 ATHN 47 GB 1044,0 1044,0 1,0 85,0 0 0L=1 ST=2 TYP=5 8800 ATHN 4 S/F 1059,0 1104,0 9,0 36,0 0 0L=1 ST=2 TYP=5 2800 OTTA 22 GRF 1310,0 1355,0 185,0 4,2 2,1 2800 OTTA 240 R 1700,0 1710,0 10,0 2,8 1,0 2800 OTTA 1 GRF 1715,0 1725,0 50,0 3,2 1,0 2800 OTTA 240 R 1825,0 1835,0 10,0 1,6 0,8 2800 OTTA 21 GRF 1935,0 2120,0 220,00 6,2 13 2695 LEAR 8 S 0234,0 0234,1 3 13,0 0 0L=6 ST=2 TYP=3 2800 OTTA 21 GRF 1315,0 1328,0 20,0 4,0 2,0 2800 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,2 2800 OTTA 21 GRF 1350,0 1355,0 30,0 2,4 1,2 2800 OTTA 22 GRF 1350,0 1355,0 30,0 2,4 1,2 2800 OTTA 22 GRF 1350,0 1355,0 10,0 1,4 1,2 2800 OTTA 22 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 21 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 22 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 21 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 22 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 22 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 22 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 21 GRF 1715,0 1721,0 25,0 1600,0 0,7 2800 OTTA 27 GRF 1950,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 27 GRF 1950,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 28 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 28 R 290,0 12,0 1,5 2800 OTTA 28 R 290,0 12,0 1,5 2800 OTTA 28 R 290,0 0 12,0 1,0 0,5 2800 OTTA 28 R 290,0 0 12,0 1,0 0,5 2800 OTTA 28 R 290,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					2150.0	30.0	3.4	1.7		
2699 PENN 1 S 2210,0 2224,5 8,0 5,2 12 8800 ATHN 47 GB 1044,0 1044,0 1,0 85,0 0 0L=1 ST=2 TYP=5 8800 ATHN 4 S/F 1059,0 1104,0 9,0 36,0 0 0L=1 ST=2 TYP=5 2800 OTTA 22 GRF 1310,0 1355,0 185,0 4,2 2,1 2800 OTTA 240 R 1700,0 1710,0 10,0 2,8 1,0 2800 OTTA 1 GRF 1715,0 1725,0 50,0 3,2 1,0 2800 OTTA 240 R 1825,0 1835,0 10,0 1,6 0,8 2800 OTTA 21 GRF 1935,0 2120,0 220,00 6,2 13 2695 LEAR 8 S 0234,0 0234,1 3 13,0 0 0L=6 ST=2 TYP=3 2800 OTTA 21 GRF 1315,0 1328,0 20,0 4,0 2,0 2800 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,2 2800 OTTA 21 GRF 1350,0 1355,0 30,0 2,4 1,2 2800 OTTA 22 GRF 1350,0 1355,0 30,0 2,4 1,2 2800 OTTA 22 GRF 1350,0 1355,0 10,0 1,4 1,2 2800 OTTA 22 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 21 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 22 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 21 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 22 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 22 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 22 GRF 1350,0 1355,0 10,0 0,4 1,0 2,0 2800 OTTA 21 GRF 1715,0 1721,0 25,0 1600,0 0,7 2800 OTTA 27 GRF 1950,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 27 GRF 1950,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 28 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 28 R 290,0 12,0 1,5 2800 OTTA 28 R 290,0 12,0 1,5 2800 OTTA 28 R 290,0 0 12,0 1,0 0,5 2800 OTTA 28 R 290,0 0 12,0 1,0 0,5 2800 OTTA 28 R 290,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				2255.0	2330.0	60. OD	10.6			
12				2311.5	2313.0	5.0		3.0		
12			40 F	2320.0	2324.5	8.0				
2800 0TTA 240 R 1825,0 1825,0 1835,0 10,0 1,6 0,8 2800 0TTA 240 R 1825,0 1835,0 10,0 1,6 0,8 2800 0TTA 20 GRF 1935,0 2120,0 220,00 6,2 13 2695 LEAR 8 S 0234,0 0234,1 ,3 13,0 Q QL=6 ST=2 TYP=3 2800 0TTA 21 GRF 1315,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,4 1,2 2800 0TTA 20 GRF 1440,0 1445,0 30,0 2,4 1,4 2695 SGMR 49 G8 1604,6 1605,3 189,0 QL=6 ST=1 TYP=7 8800 SGMR 49 G8 1604,6 1606,1 1600,0 QL=6 ST=1 TYP=7 2800 0TTA 2 GRF 1715,0 1721,0 25,0 0,0 7 2800 0TTA 2 GRF 1715,0 1721,0 25,0 1,0 1,0 1,5 1,8 2800 0TTA 2 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 0TTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 27 RF 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 28 R 2010,0 55,0 2,0 1,5 2800 0TTA 29 R 2010,0 55,0 2,0 1,5 2800 0TTA 26 FAL 2105,0 2120,0 15,0 -2,0 -1,5 2695 PENT 3 S 2315,0 2315,5 47,0 107,0 17,8 2695 LEAR 47 G8 2315,1 2315,5 1,9 110,0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 5,5 67,0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 5,5 67,0 QL=6 ST=2 TYP=5 2800 0TTA 26 FAL 1315,0 0991,0 120,00 3600,0 QL=6 ST=2 TYP=5 2800 0TTA 27 RF 1630,0 1700,0 80,0 1,8 1,2 2800 0TTA 28 GRF 1630,0 1700,0 120,00 3600,0 QL=6 ST=2 TYP=5 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 180,0 -12,6 -6,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 180,0 -1,8 1,2 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 120,00 3600,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 120,00 3600,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 120,00 3600,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0950,0 2,0 68,0 QL=6 ST=1 TYP=5 2800 0TTA 26 FAL 1315,0 1600,0 0950,0 2,0 68,0 QL=6 ST=1 TYP=5 2800 0TTA 4 S/F 1544,2 1545,2 5,0 20,4 5,0 2 2800 0TTA 4 S/F 1630,0 1700,0 80,0 1,8 1,2 2 2800 0TTA 4 S/F 1630,0 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 2800 0TTA 4 S/F 1630,0 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 2800 0TTA 4 S/F 1630,0 0950,0 0950,0 2,0		0000 ATIM	47 00	1011 0	1011.0		05.0			
2800 0TTA 240 R 1825,0 1825,0 1835,0 10,0 1,6 0,8 2800 0TTA 240 R 1825,0 1835,0 10,0 1,6 0,8 2800 0TTA 20 GRF 1935,0 2120,0 220,00 6,2 13 2695 LEAR 8 S 0234,0 0234,1 ,3 13,0 Q QL=6 ST=2 TYP=3 2800 0TTA 21 GRF 1315,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,4 1,2 2800 0TTA 20 GRF 1440,0 1445,0 30,0 2,4 1,4 2695 SGMR 49 G8 1604,6 1605,3 189,0 QL=6 ST=1 TYP=7 8800 SGMR 49 G8 1604,6 1606,1 1600,0 QL=6 ST=1 TYP=7 2800 0TTA 2 GRF 1715,0 1721,0 25,0 0,0 7 2800 0TTA 2 GRF 1715,0 1721,0 25,0 1,0 1,0 1,5 1,8 2800 0TTA 2 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 0TTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 27 RF 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 28 R 2010,0 55,0 2,0 1,5 2800 0TTA 29 R 2010,0 55,0 2,0 1,5 2800 0TTA 26 FAL 2105,0 2120,0 15,0 -2,0 -1,5 2695 PENT 3 S 2315,0 2315,5 47,0 107,0 17,8 2695 LEAR 47 G8 2315,1 2315,5 1,9 110,0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 5,5 67,0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 5,5 67,0 QL=6 ST=2 TYP=5 2800 0TTA 26 FAL 1315,0 0991,0 120,00 3600,0 QL=6 ST=2 TYP=5 2800 0TTA 27 RF 1630,0 1700,0 80,0 1,8 1,2 2800 0TTA 28 GRF 1630,0 1700,0 120,00 3600,0 QL=6 ST=2 TYP=5 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 180,0 -12,6 -6,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 180,0 -1,8 1,2 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 120,00 3600,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 120,00 3600,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 120,00 3600,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0950,0 2,0 68,0 QL=6 ST=1 TYP=5 2800 0TTA 26 FAL 1315,0 1600,0 0950,0 2,0 68,0 QL=6 ST=1 TYP=5 2800 0TTA 4 S/F 1544,2 1545,2 5,0 20,4 5,0 2 2800 0TTA 4 S/F 1630,0 1700,0 80,0 1,8 1,2 2 2800 0TTA 4 S/F 1630,0 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 2800 0TTA 4 S/F 1630,0 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 2800 0TTA 4 S/F 1630,0 0950,0 0950,0 2,0	12				1044.0	1.0				
2800 0TTA 240 R 1825,0 1825,0 1835,0 10,0 1,6 0,8 2800 0TTA 240 R 1825,0 1835,0 10,0 1,6 0,8 2800 0TTA 20 GRF 1935,0 2120,0 220,00 6,2 13 2695 LEAR 8 S 0234,0 0234,1 ,3 13,0 Q QL=6 ST=2 TYP=3 2800 0TTA 21 GRF 1315,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,4 1,2 2800 0TTA 20 GRF 1440,0 1445,0 30,0 2,4 1,4 2695 SGMR 49 G8 1604,6 1605,3 189,0 QL=6 ST=1 TYP=7 8800 SGMR 49 G8 1604,6 1606,1 1600,0 QL=6 ST=1 TYP=7 2800 0TTA 2 GRF 1715,0 1721,0 25,0 0,0 7 2800 0TTA 2 GRF 1715,0 1721,0 25,0 1,0 1,0 1,5 1,8 2800 0TTA 2 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 0TTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 27 RF 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 28 R 2010,0 55,0 2,0 1,5 2800 0TTA 29 R 2010,0 55,0 2,0 1,5 2800 0TTA 26 FAL 2105,0 2120,0 15,0 -2,0 -1,5 2695 PENT 3 S 2315,0 2315,5 47,0 107,0 17,8 2695 LEAR 47 G8 2315,1 2315,5 1,9 110,0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 5,5 67,0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 5,5 67,0 QL=6 ST=2 TYP=5 2800 0TTA 26 FAL 1315,0 0991,0 120,00 3600,0 QL=6 ST=2 TYP=5 2800 0TTA 27 RF 1630,0 1700,0 80,0 1,8 1,2 2800 0TTA 28 GRF 1630,0 1700,0 120,00 3600,0 QL=6 ST=2 TYP=5 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 180,0 -12,6 -6,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 180,0 -1,8 1,2 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 120,00 3600,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 120,00 3600,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0921,0 120,00 3600,0 QL=6 ST=3 TYP=6 2800 0TTA 26 FAL 1315,0 1600,0 0950,0 2,0 68,0 QL=6 ST=1 TYP=5 2800 0TTA 26 FAL 1315,0 1600,0 0950,0 2,0 68,0 QL=6 ST=1 TYP=5 2800 0TTA 4 S/F 1544,2 1545,2 5,0 20,4 5,0 2 2800 0TTA 4 S/F 1630,0 1700,0 80,0 1,8 1,2 2 2800 0TTA 4 S/F 1630,0 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 2800 0TTA 4 S/F 1630,0 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 2800 0TTA 4 S/F 1630,0 0950,0 0950,0 2,0					1355.0	195.0		2.1		QL=1 51=2 11P=5
2800 0TTA 240 R 1825,0 1825,0 1835,0 10,0 1,6 0,8 2800 0TTA 240 R 1825,0 1835,0 10,0 1,6 0,8 2800 0TTA 20 GRF 1935,0 2120,0 220,000 6,2 130 0TTA 20 GRF 1935,0 2120,0 220,000 6,2 130 0TTA 20 GRF 1315,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1315,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,4 1,2 2800 0TTA 20 GRF 1440,0 1445,0 30,0 2,4 1,4 1,4 2695 SGMR 49 GB 1604,6 1605,3 189,0 0 0146 ST=1 TYP=7 2800 0TTA 21 GRF 1715,0 1721,0 25,0 0,7 2800 0TTA 22 S/F 1718,7 1719,0 1,5 1,8 2800 0TTA 22 GRF 1715,0 1721,0 25,0 2,0 0,7 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 2800 0TTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 26 FAL 2105,0 2120,0 15,0 -2,0 -1,5 2695 PENT 3 S 2315,0 2315,5 47,0 107,0 17,8 2695 LEAR 47 GB 2315,3 2315,3 2315,3 5 67,0 0 0,=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 2315,5 7 98,0 0 0,=6 ST=2 TYP=5 2800 0TTA 4 S/F 1544,2 1355,0 501,8 800 EAR 47 GB 2315,3 2315,3 2315,5 7 98,0 0 0,=6 ST=2 TYP=5 2800 0TTA 4 S/F 1544,2 1355,0 60,0 120,0 3500,0 8800 0TTA 4 S/F 1544,2 1355,0 60,0 120,0 3500,0 0 0,=6 ST=2 TYP=5 2800 0TTA 4 S/F 1544,2 1355,0 501,8 800 EAR 47 GB 2315,3 0845,6 10,0 0 45,0 800 0TTA 4 S/F 1544,2 1355,0 501,8 800 EAR 8 S 0501,6 0501,8 800 0TTA 4 GB 80 0BERN 3 S 0949,3 0950,0 0950,0 2,0 52,0 0 0,=6 ST=2 TYP=5 800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,					1710.0	10.0	2 8			
2800 0TTA 240 R 1825,0 1825,0 1835,0 10,0 1,6 0,8 2800 0TTA 240 R 1825,0 1835,0 10,0 1,6 0,8 2800 0TTA 20 GRF 1935,0 2120,0 220,000 6,2 130 0TTA 20 GRF 1935,0 2120,0 220,000 6,2 130 0TTA 20 GRF 1315,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1315,0 1328,0 205,0 4,0 2,0 2800 0TTA 20 GRF 1350,0 1328,0 205,0 4,0 2,4 1,2 2800 0TTA 20 GRF 1440,0 1445,0 30,0 2,4 1,4 1,4 2695 SGMR 49 GB 1604,6 1605,3 189,0 0 0146 ST=1 TYP=7 2800 0TTA 21 GRF 1715,0 1721,0 25,0 0,7 2800 0TTA 22 S/F 1718,7 1719,0 1,5 1,8 2800 0TTA 22 GRF 1715,0 1721,0 25,0 2,0 0,7 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 2800 0TTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 26 FAL 2105,0 2120,0 15,0 -2,0 -1,5 2695 PENT 3 S 2315,0 2315,5 47,0 107,0 17,8 2695 LEAR 47 GB 2315,3 2315,3 2315,3 5 67,0 0 0,=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 2315,5 7 98,0 0 0,=6 ST=2 TYP=5 2800 0TTA 4 S/F 1544,2 1355,0 501,8 800 EAR 47 GB 2315,3 2315,3 2315,5 7 98,0 0 0,=6 ST=2 TYP=5 2800 0TTA 4 S/F 1544,2 1355,0 60,0 120,0 3500,0 8800 0TTA 4 S/F 1544,2 1355,0 60,0 120,0 3500,0 0 0,=6 ST=2 TYP=5 2800 0TTA 4 S/F 1544,2 1355,0 501,8 800 EAR 47 GB 2315,3 0845,6 10,0 0 45,0 800 0TTA 4 S/F 1544,2 1355,0 501,8 800 EAR 8 S 0501,6 0501,8 800 0TTA 4 GB 80 0BERN 3 S 0949,3 0950,0 0950,0 2,0 52,0 0 0,=6 ST=2 TYP=5 800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,8 1,2 2800 0TTA 4 S/F 1630,0 1700,0 350,0 1,					1725.0	50.0	3. 2			
2800 OTTA 240 R 1825.0 1835.0 10.0 1.6 0.8 2800 OTTA 20 GRF 1935.0 2120.0 220.00 6.2 15 2695 LEAR 8 S 0234.0 0234.1 .3 13.0										
2800 OTTA 20 GRF 1935,0 2120,0 220,00 6,2 13			240 R		1835.0	10.0				
2800 OTTA 21 GRF 1315.0 1328.0 205.0 4.0 2.0 2800 OTTA 20 GRF 1350.0 1355.0 30.0 2.4 1.2 2800 OTTA 20 GRF 1440.0 1445.0 30.0 2.4 1.4 2695 SGMR 49 GB 1604.6 1605.3 189.0 QL=6 ST=1 TYP=7 2800 OTTA 21 GRF 1715.0 1721.0 25.0 2.0 0.7 2800 OTTA 21 GRF 1715.0 1721.0 25.0 2.0 1.0 2800 OTTA 22 GRF 1710.0 1815.0 65.0 2.0 1.0 2800 OTTA 20 GRF 1920.0 1815.0 65.0 2.0 1.0 2800 OTTA 20 GRF 1920.0 1935.0 25.0 1.0 0.5 2800 OTTA 27 RF 1950.0 2010.0 20.0 2.0 1.6 2800 OTTA 24 R 1950.0 2010.0 20.0 2.0 1.5 2800 OTTA 24 R 2010.0 55.0 2.0 1.5 2800 OTTA 26 FAL 2105.0 2120.0 15.0 2.0 17.5 2695 PENT 3 S 2315.0 2315.5 1.9 110.0 0.17.0 17.8 2695 LEAR 47 GB 2315.3 2315.5 1.9 110.0 0.1 17.8 2695 PALE 47 GB 2315.3 2315.5 1.9 110.0 0.1 17.8 2695 PALE 47 GB 2315.3 2315.5 1.9 110.0 0.1 17.8 2695 PALE 47 GB 2315.3 2315.5 1.9 110.0 0.1 17.8 2695 PALE 47 GB 2315.3 2315.5 5 7 98.0 0 0TTA 26 FAL 1315.0 1200.0 1200.0 3600.0 00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		2800 OTTA	20 GRF	1935.0	2120.0	220.0D	6, 2			
2800 OTTA 21 GRF 1315.0 1328.0 205.0 4.0 2.0 2800 OTTA 20 GRF 1350.0 1355.0 30.0 2.4 1.2 2800 OTTA 20 GRF 1440.0 1445.0 30.0 2.4 1.4 2695 SGMR 49 GB 1604.6 1605.3 189.0 QL=6 ST=1 TYP=7 2800 OTTA 21 GRF 1715.0 1721.0 25.0 2.0 0.7 2800 OTTA 21 GRF 1715.0 1721.0 25.0 2.0 1.0 2800 OTTA 22 GRF 1710.0 1815.0 65.0 2.0 1.0 2800 OTTA 20 GRF 1920.0 1815.0 65.0 2.0 1.0 2800 OTTA 20 GRF 1920.0 1935.0 25.0 1.0 0.5 2800 OTTA 27 RF 1950.0 2010.0 20.0 2.0 1.6 2800 OTTA 24 R 1950.0 2010.0 20.0 2.0 1.5 2800 OTTA 24 R 2010.0 55.0 2.0 1.5 2800 OTTA 26 FAL 2105.0 2120.0 15.0 2.0 17.5 2695 PENT 3 S 2315.0 2315.5 1.9 110.0 0.17.0 17.8 2695 LEAR 47 GB 2315.3 2315.5 1.9 110.0 0.1 17.8 2695 PALE 47 GB 2315.3 2315.5 1.9 110.0 0.1 17.8 2695 PALE 47 GB 2315.3 2315.5 1.9 110.0 0.1 17.8 2695 PALE 47 GB 2315.3 2315.5 1.9 110.0 0.1 17.8 2695 PALE 47 GB 2315.3 2315.5 5 7 98.0 0 0TTA 26 FAL 1315.0 1200.0 1200.0 3600.0 00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		2605 1540	0 0	0074 0	0074 4		17.0			01 6 67 0 740 7
2800 OTTA 20 GRF 1350,0 1355,0 30,0 2,4 1,2 2800 OTTA 20 GRF 1440,0 1445,0 30,0 2,4 1,4 2695 SGMR 49 GB 1604,6 1605,3 189,0 QL=6 ST=1 TYP=7 8800 SGMR 49 GB 1604,6 1606,1 1600,0 QL=6 ST=1 TYP=7 2800 OTTA 21 GRF 1715,0 1721,0 25,0 2,0 0,7 2800 OTTA 22 GRF 1718,7 1719,0 1,3 1,8 1,8 2800 OTTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 20 GRF 1920,0 1835,0 25,0 1,0 0,5 2800 OTTA 27 RF 1950,0 90,0 2,0 1,6 2800 OTTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 OTTA 24 R 1950,0 2100,0 55,0 2,0 2800 OTTA 26 FAL 2105,0 2120,0 15,0 -2,0 -1,5 2695 PENT 3 S 2315,0 2315,5 47,0 107,0 17,8 2695 LEAR 47 GB 2315,1 2315,5 1,9 110,0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 5 67,0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 QL=6 ST=2 TYP=5 2695 OTTA 26 FAL 1315,0 1600,0 165,0 -12,6 -6,0 2800 OTTA 26 FAL 1315,0 1600,0 165,0 -12,6 -6,0 2800 OTTA 26 FAL 1845,0 1940,0 55,0 -3,8 -2,5 15 2695 LEAR 47 GB 0501,5 0501,8 61,0 QL 45,0 2800 OTTA 26 FAL 1845,0 1940,0 55,0 -3,8 -2,5 15 2695 LEAR 47 GB 0501,5 0501,8 61,0 QL 45,0 2800 OTTA 26 FAL 1845,0 1940,0 55,0 -3,8 -2,5 16 2695 ATHN 49 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 LEAR 8 S 0501,6 0501,8 62,0 QL=6 ST=1 TYP=3 8800 LEAR 8 S 0501,6 0501,8 62,0 QL=6 ST=1 TYP=3 8800 LEAR 8 S 0501,6 0501,8 62,0 QL=6 ST=1 TYP=5 8800 LEAR 8 S 0501,6 0501,8 62,0 QL=6 ST=1 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=6 ST=2 TYP=5	13						13.0	2.0		QL=6 51=2 11P=3
2800 OTTA 20 GRF 1440,0 1445,0 30.0 2,4 1,4 2695 SGMR 49 GB 1604,6 1605,3 189,0 QL=6 ST=1 TYP=7 2800 SGMR 49 GB 1604,6 1606,1 1600,0 QL=6 ST=1 TYP=7 2800 OTTA 21 GRF 1715,0 1721,0 25.0 2.0 0,7 2800 OTTA 22 GRF 1715,0 1815,0 65.0 2.0 1.0 QL=6 ST=1 TYP=7 2800 OTTA 20 GRF 1920,0 1935,0 25.0 1.0 Q.5 2800 OTTA 20 GRF 1920,0 1935,0 25.0 1.0 Q.5 2800 OTTA 24 R 1950,0 90.0 2.0 1.6 2800 OTTA 24 R 1950,0 2100,0 55.0 2.0 1.5 2800 OTTA 26 FAL 2105,0 215,5 47.0 107.0 17.8 2695 PENT 3 S 2515,0 2515,5 47.0 107.0 17.8 2695 PENT 3 S 2515,0 2515,5 1.9 110.0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98.0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 9906,0 0921,0 84.0 2100,0 QL=6 ST=2 TYP=5 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=2 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=3 TYP=6 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=1 TYP=5 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=1 TYP=5 2800 OTTA 49 GB 0906,0 0921,0 84.0 4300,0 QL=6 ST=1 TYP=5 2800 OTTA 49 GB 0906,0 0906,0 0906,0 0906,0 0906,0 QL=6 ST=1 TYP=5 2800 OTTA 40 GB 0906,0 0906,0 0906,0 0906,0 QL=6 ST=1 TYP=5 2800 OTTA 40 GB 0906,0 0906,0 0906,0 QL=6 ST=1 TYP=5 2800 OTTA 49 GB 0906,0 0906,0 0906,0 QL=6 ST=1 TYP=5 2800 OTTA 40 GB 0							2.4			
2695 SGMR 49 GB 1604,6 1605,3 189,0 QL=6 ST=1 TYP=7 8800 SGMR 49 GB 1604,6 1606,1 1600,0 QL=6 ST=1 TYP=7 2800 OTTA 21 GRF 1715,0 1721,0 25,0 2,0 0,7 2800 OTTA 22 SJF 1718,7 1719,0 1,3 1,8 2800 OTTA 20 GRF 1790,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 20 GRF 1790,0 1815,0 65,0 2,0 1,0 0,5 2800 OTTA 27 RF 1950,0 90,0 2,0 1,6 2800 OTTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 OTTA 24 R 2010,0 55,0 2,0 1,5 2695 PENT 3 S 2315,1 2315,5 1,9 110,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,1 2315,5 1,9 110,0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 5 67,0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 5 7 98,0 QL=2 ST=2 TYP=5 2800 OTTA 26 FAL 1315,0 0921,0 84,0 2100,0 QL=2 ST=2 TYP=5 2800 OTTA 26 FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 OTTA 26 FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 OTTA 26 FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 OTTA 26 FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 OTTA 26 FAL 1845,0 1940,0 55,0 -3,8 -2,5 15 17P=6 260 OTTA 26 FAL 1845,0 1940,0 55,0 -3,8 -2,5 15 17P=5 2695 PALE 47 GB 0501,5 0501,8 4,0 4300,0 QL=6 ST=1 TYP=5 8800 LEAR 8 S 0501,6 0501,8 45,0 45,0 8800 BERN 3 S 0949,3 0950,3 64,0 45,0 2695 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 68,0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950,0 0950,0 2,0 65,0 QL=1 ST=2 TYP=5 950,0 QL=6 ST=1 TYP=5 950,0 QL=6 ST=2 TYP=5 950,										
2800 0TTA 21 GRF 1713.0 1721.0 25.0 2.0 0.7 2800 0TTA 22 S/F 1718.7 1719.0 1.3 1.8 2800 0TTA 20 GRF 1750.0 1815.0 65.0 2.0 1.0 2800 0TTA 20 GRF 1750.0 1935.0 25.0 1.0 0.5 2800 0TTA 20 GRF 1920.0 1935.0 25.0 1.0 0.5 2800 0TTA 24 R 1950.0 90.0 2.0 1.6 2800 0TTA 24 R 1950.0 2010.0 20.0 1.5 2800 0TTA 24 R 1950.0 2120.0 15.0 -2.0 1.5 2800 0TTA 26 FAL 2105.0 2120.0 15.0 -2.0 -1.5 2695 PENT 3 S 2315.1 2315.5 1.9 110.0 0.6 ST=2 TYP=5 8800 LEAR 47 GB 2315.1 2315.5 1.9 110.0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.3 5.5 67.0 0.6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.5 7 98.0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 0906.0 0921.0 84.0 2100.0 8400 2100.0 0 0L=6 ST=2 TYP=6 8400 BERN 47 GB 0906.0 0921.0 84.0 4300.0 0 0L=6 ST=2 TYP=6 2800 0TTA 26 FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 0TTA 26 FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 0TTA 26 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 8 G 0501.5 0501.8 61.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 61.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 61.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 60.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 06.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 8 S 0501.5 0501.8 06.0 45.0 0 0.6 ST=1 TYP=5 8800 LEAR 47 GB 0950.0 0950.0 0950.0 2.0 68.0 0 0.6 ST=1 TYP=5							189.0			OL=6 ST=1 TYP=7
2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 2800 0TTA 20 GRF 1750,0 1935,0 25,0 1,0 0,5 2800 0TTA 27 RF 1950,0 90,0 2,0 1,6 2800 0TTA 27 RF 1950,0 90,0 2,0 1,6 2800 0TTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 24P R 2010,0 55,0 2,0 2800 0TTA 24P R 2010,0 150,0 20,0 2,0 1,5 2695 PENT 3 S 2315,0 2315,5 47,0 107,0 17.8 2695 LEAR 47 GB 2315,1 2315,5 1,9 110,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 5 67,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=2 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=6 ST=3 TYP=6 2800 0TTA 26A FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 0TTA 26A FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 0TTA 26A FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 0TTA 26A FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 0TTA 26A FAL 1345,0 1940,0 55,0 -3,8 -2.5			49 GB	1604.6	1606.1		1000			QL=6 ST=1 TYP=7
2800 0TTA 20 GRF 1750,0 1815,0 65,0 2,0 1,0 2800 0TTA 20 GRF 1750,0 1935,0 25,0 1,0 0,5 2800 0TTA 27 RF 1950,0 90,0 2,0 1,6 2800 0TTA 27 RF 1950,0 90,0 2,0 1,6 2800 0TTA 24 R 1950,0 2010,0 20,0 2,0 1,5 2800 0TTA 24P R 2010,0 55,0 2,0 2800 0TTA 24P R 2010,0 150,0 20,0 2,0 1,5 2695 PENT 3 S 2315,0 2315,5 47,0 107,0 17.8 2695 LEAR 47 GB 2315,1 2315,5 1,9 110,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,3 5 67,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=2 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315,3 2315,5 7 98,0 0 0L=6 ST=3 TYP=6 2800 0TTA 26A FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 0TTA 26A FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 0TTA 26A FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 0TTA 26A FAL 1315,0 1600,0 165,0 -12,6 -6.0 2800 0TTA 26A FAL 1345,0 1940,0 55,0 -3,8 -2.5						25.0	2.0	0.7		
2800 0TTA 27 RF 1950.0 90.0 2.0 1.6 2800 0TTA 24 R 1950.0 2010.0 20.0 2.0 1.6 2800 0TTA 24 R 29 R 2010.0 55.0 2.0 2.0 2800 0TTA 24 R 2010.0 55.0 2.0 2800 0TTA 26 FAL 2105.0 2120.0 15.0 -2.0 -1.5 2695 PENT 3 S 2315.0 215.5 47.0 107.0 17.8 2695 LEAR 47 GB 2315.1 2315.5 1.9 110.0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.3 5 67.0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.5 .7 98.0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.5 .7 98.0 0 0L=6 ST=2 TYP=5 2695 PALE 47 GB 0906.0 0921.0 84.0 2100.0 0L=6 ST=3 TYP=6 8400 BERN 47 GB 0906.0 0921.0 84.0 4300.0 0L=6 ST=3 TYP=6 2800 0TTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 0TTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 0TTA 26A FAL 1344.2 1545.2 5.0 20.4 5.2 2800 0TTA 26A FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2800 0TTA 26A FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 47 GB 0501.5 0501.8 45.0 0L=6 ST=1 TYP=5 8800 LEAR 8 S 0501.6 0501.8 45.0 0L=6 ST=1 TYP=5 8800 BERN 47 GB 0996.0 0990.3 600.0 45.0 8400 BERN 41 F 0838.3 0845.6 10.0U 45.0 8400 BERN 3 S 0940.3 0950.3 6.0 45.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 0L=6 ST=2 TYP=5 88						1.5	1.8			
2800 OTTA 27 RF 1950.0 2010.0 90.0 2.0 1.66 2800 OTTA 24 R 1950.0 2010.0 55.0 2.0 1.5 2800 OTTA 24P R 2010.0 55.0 2.0 2.0 2.0 1.5 2800 OTTA 26 FAL 2105.0 2120.0 15.0 -2.0 -1.5 2695 PENT 3 S 2315.0 2315.5 47.0 107.0 17.8 2695 LEAR 47 GB 2315.1 2215.5 1.9 110.0 OL=6 ST=2 TYP=5 8800 LEAR 47 GB 2315.3 2315.5 .5 67.0 OL=6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.5 .7 98.0 OL=6 ST=2 TYP=5 8400 BERN 47 GB 0906.0 0921.0 84.0 2100.0 OL=6 ST=2 TYP=5 8400 BERN 47 GB 0906.0 0921.0 120.00 3600.0 OL=6 ST=3 TYP=6 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 20 GRF 1630.0 1700.0 80.0 1.8 1.2 2800 OTTA 26 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 47 GB 0501.5 0501.8 61.0 OL=6 ST=1 TYP=5 8800 LEAR 8 S 0501.6 0501.8 45.0 OL=6 ST=1 TYP=3 8400 BERN 3 S 0949.3 0950.0 2.0 68.0 OL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 OL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 OL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 OL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 OL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 OL=6 ST=2 TYP=5						65.0	2.0			
2800 OTTA					1955.0					
2800 OTTA 24P R 2010.0					2010.0					
2800 OTTA 26 FAL 2105.0 2120.0 15.0 -2.0 -1.5 2695 PENT 3 S 2315.0 2315.5 47.0 107.0 17.8 2695 PENT 3 S 2315.1 2315.5 1.9 110.0 QL=6 ST=2 TYP=5 8800 LEAR 47 GB 2315.3 2315.3 .5 67.0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.5 .7 98.0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.5 .7 98.0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 0906.0 0921.0 84.0 2100.0 GL=6 ST=2 TYP=5 2695 PALE 47 GB 0906.0 0921.0 84.0 2100.0 GL=6 ST=3 TYP=6 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 20 GRF 1630.0 1700.0 80.0 1.8 1.2 2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 47 GB 0501.5 0501.8 61.0 QL=6 ST=1 TYP=5 8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=3 8400 BERN 41 F 0838.5 0845.6 10.0U 45.0 8400 BERN 41 F 0838.5 0845.6 10.0U 45.0 8400 BERN 41 F 0838.5 0949.3 0950.0 2.0 68.0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5					2010.0			1		
2695 PENT 3 S 2315.0 2315.5 47.0 107.0 17.8 2695 LEAR 47 GB 2315.1 2315.5 1.9 110.0 QL=6 ST=2 TYP=5 8800 LEAR 47 GB 2315.3 2315.3 5.5 67.0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.5 .7 98.0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.5 .7 98.0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 0906.0 0921.0 120.0D 3600.0 8800 ATHN 49 GB 0906.0 0921.0 120.0D 3600.0 QL=6 ST=3 TYP=6 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 4 S/F 1544.2 1545.2 5.0 20.4 5.2 2800 OTTA 20 GRF 1630.0 1700.0 80.0 1.8 1.2 2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 47 GB 0501.5 0501.8 61.0 QL=6 ST=1 TYP=5 8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=3 8400 BERN 41 F 0838.3 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=6 ST=2 TYP=5 QL=6 ST=2 TYP=5					2120.0			-1.5		
8800 LEAR 47 GB 2315.3 2315.3 .5 67.0 QL=6 ST=2 TYP=5 2695 PALE 47 GB 2315.3 2315.5 .7 98.0 QL=6 ST=2 TYP=5 14 2695 ATHN 49 GB 0906.0 0921.0 120.00 3600.0 84.0 47 GB 0906.0 0921.0 120.00 3600.0 8800 ATHN 49 GB 0906.0 0921.0 84.0 4300.0 QL=6 ST=3 TYP=6 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 20 GRF 1630.0 1700.0 80.0 1.8 1.2 2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=5 8800 BERN 41 F 0838.5 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.3 6.0 45.0 2695 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0			3 S	2315.0	2315.5	47.0		17.8		
2695 PALE 47 GB 2315.3 2315.5 .7 98.0 QL=2 ST=2 TYP=5 14 2695 ATHN 49 GB 0906.0 0921.0 84.0 2100.0 QL=6 ST=3 TYP=6 8400 BERN 47 GB 0906.0 0921.0 120.0D 3600.0 8800 ATHN 49 GB 0906.0 0921.0 84.0 4300.0 QL=6 ST=3 TYP=6 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 4 S/F 1544.2 1545.2 5.0 20.4 5.2 2800 OTTA 20 GRF 1630.0 1700.0 80.0 1.8 1.2 2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 47 GB 0501.5 0501.8 61.0 QL=6 ST=1 TYP=5 8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=3 8400 BERN 41 F 0838.3 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.0 3050.0 45.0 2695 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5						1.9	110.0			
14										
8400 BERN 47 GB 0906.0 0921.0 120.00 3600.0 QL=6 ST=3 TYP=6 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 4 S/F 1544.2 1545.2 5.0 20.4 5.2 2800 OTTA 20 GRF 1630.0 1700.0 80.0 1.8 1.2 2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 47 GB 0501.5 0501.8 61.0 QL=6 ST=1 TYP=5 8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=3 8400 BERN 41 F 0838.3 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.3 6.0 45.0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5		2695 PALE	47 GB	2315.3	2315.5	• /	98.0			QL=2 51=2 11P=5
8400 BERN 47 GB 0906.0 0921.0 120.00 3600.0 QL=6 ST=3 TYP=6 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 4 S/F 1544.2 1545.2 5.0 20.4 5.2 2800 OTTA 20 GRF 1630.0 1700.0 80.0 1.8 1.2 2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 47 GB 0501.5 0501.8 61.0 QL=6 ST=1 TYP=5 8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=3 8400 BERN 41 F 0838.3 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.3 6.0 45.0 QL=6 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5	14	2695 ATHN	49 GB	0906-0	0921.0	84.0	2100.0			OL=6 ST=3 TYP=6
8800 ATHN 49 GB 0906.0 0921.0 84.0 4300.0 QL=6 ST=3 TYP=6 2800 OTTA 26A FAL 1315.0 1600.0 165.0 -12.6 -6.0 2800 OTTA 4 S/F 1544.2 1545.2 5.0 20.4 5.2 2800 OTTA 20 GRF 1630.0 1700.0 80.0 1.8 1.2 2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 47 GB 0501.5 0501.8 61.0 QL=6 ST=1 TYP=5 8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=3 8400 BERN 41 F 0838.5 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.3 6.0 45.0 2695 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5										
2800 OTTA							4300.0			QL=6 ST=3 TYP=6
2800 OTTA 20 GRF 1630.0 1700.0 80.0 1.8 1.2 2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 47 GB 0501.5 0501.8 61.0 QL=6 ST=1 TYP=5 8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=3 8400 BERN 41 F 0838.3 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.3 6.0 45.0 2695 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5										
2800 OTTA 260 FAL 1845.0 1940.0 55.0 -3.8 -2.5 15 2695 LEAR 47 GB 0501.5 0501.8 61.0 QL=6 ST=1 TYP=5 8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=3 8400 BERN 41 F 0838.3 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.3 6.0 45.0 2695 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5										
15								1.2		
8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=3 8400 BERN 41 F 0838.3 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.3 6.0 45.0 2695 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5		2800 011A	200 FAL	1847.0	1940.0	99. U	-5.8	-2.5		
8800 LEAR 8 S 0501.6 0501.8 45.0 QL=6 ST=1 TYP=3 8400 BERN 41 F 0838.3 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.3 6.0 45.0 2695 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5	15	2695 LEAR	47 GB	0501.5	0501_8		61.0			QL=6 ST=1 TYP=5
8400 BERN 41 F 0838.3 0845.6 10.0U 45.0 8400 BERN 3 S 0949.3 0950.3 6.0 45.0 2695 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5										
2695 ATHN 47 GB 0950.0 0950.0 2.0 68.0 QL=1 ST=2 TYP=5 8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5			-				45.0			
8800 ATHN 47 GB 0950.0 0950.0 2.0 52.0 QL=6 ST=2 TYP=5			-							
					200 C 200 W 120					

SOLAR RADIO EMISSION SELECTED FIXED FREQUENCY EVENTS

FEBRUARY 1986

					Time of		Flux	Density		
Day	Freq Sta	Ту	ре	Start (UT)	Maximum (UT)	Duration (Min)	Peak	Mean W/m ² Hz)	Int	Remarks
15	8800 LEAR	8	S	0950.1	0950.3	.5	31.0			QL=6 ST=2 TYP=
	8400 BERN	47	GB.	1112.0	1117.0	130.0U	2000.0			
	2695 SGMR	47	GB	1204.3E	1204.6	63.0D	290.0			QL=6 ST=2 TYP=
	8800 SGMR	47	GB.	1215.3E	1215.8	52.0D	169.0			QL=6 ST=2 TYP=
	2800 OTTA			1250.0		23.0	18.4			
	2800 OTTA	30	PB I	1313.0	1313.0	180.0	7.8	3.9		
	2800 OTTA	20	GRF	1345.0		40.0	2.8			
	2800 OTTA	20	GRF	1427.0	1505.0	65.0	3.0	1.5		
16	2800 OTTA	1	S	1438.0	1439.0	4.0	2.0	1.0		
	2695 PENT	3	S	2228.0	2247.0	60.0	135.0	41.0		
	2695 PALE	47	GB	2228. 1E	2251.1	42.20	98.0			QL=2 ST=2 TYP=
	2695 LEAR	20	GRF	2230.8	2245.8	20.5	139.0			QL=6 ST=2 TYP=
	2695 LEAR	20	GRF	2230.8	2245.8	38.5	139.0			QL=6 ST=2 TYP=
21	2800 OTTA	21	GRF	1715.0	1805.0	130.0	2.0	1.0		
28	2800 OTTA	8	S	1502,5	1502.7	.6	1.2	0.6		

Reports are received routinely from the following observatories:

ATHN =	Athens	HUAN =	Huancayo	NAGO	=	Nagoya	POTS	= Potsdam
BERN =	Berne	IRKU =	Irkutsk	NOBE	=	No beyama	SAOP	= Sao Paulo
BORD =	Bordeaux	IZMI =	IZMIRAN	ONDR	=	Ondrejov	SGMR	= Sagamore Hill
CRIM =	Crimea	KISV =	Kislovodsk	OTTA	=	Ottawa	TORN	= Torun
DWIN =	Dwingeloo	KRAK =	Krakow	PALE	=	Palehua	TYKW	= Toyokawa
GORK =	Gorky	LEAR =	Learmonth	PEKG	=	Peking	TRST	= Trieste
HIRA =	Hiraiso	MANI =	Manila	PENT	=	Penticton	UPIC	= Upice

Explanation of Type Code:

2 3 4 5	Simple Simple Simple Simple Simple Minor	1F 2 2F	8 20 21 22	Simple	3 3 3 4 3 5 5	24 Rise 25 Rise 26 Fall 27 Rise 28 Prec 29 Post	and Foursor		31 33 40 41	Post Burst Increase A Post Burst Decrease Absorption Fluctuation Group of Bursts Series of Bursts	44 45 46 47	Onset of Noise Noise Storm in Complex Complex F Great Burst Major	
2	1A Simpl 3A Simpl 1A Simpl 2A Simpl	e 2A e 3A	GRF	240 240F	Rise Rise	le 2AF only only F Rise	16A 260	Post Rise Fall A Fall Only Fall F		27F Rise and Fall I 27AF Rise and Fall I 31A Post Burst Dec 32A Absorption A	AF	ө А	

Remarks:

QL = Quality (1=poor to 6=excellent)
ST = Status (1=real time; 2=final; 3=correction; 4=deletion)
TYP= Type (1=noise storm; 2=rise in base level; 3=minor; 4=group; 5=major; 6=major plus; 7=Castelli U-type burst)

VOSTOK INFERRED INTERPLANETARY MAGNETIC FIELD PRELIMINARY DATA

March 1985 - February 1986

Day	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	Jan	Feb 86
1 2 3 4 5	А А Т А	A A A A	AT A AT TA TA	T T A A	T T A T T	T AT T T	TA T T T T	TA T A A	A AT A AT A	A A A A	AT AT AT T A	- T TA TA T
6 7 8 9	A AT T T	A A T T	TA T T A T	T TA T TA T	T TA T T	T T AT T A	A AT A A	A A T AT	A A A T T	A T T T	A T T T	T T T AT T
11 12 13 14 15	T T T T A	A AT AT T A	A T T T	TA T TA AT T	A A A A	A TA A	AT AT A A T	AT T T T AT	TA TA TA T	T TA T AT	A TA AT A	T T T T
16 17 18 19 20	T T A T TA	A A T T	T TA T A	A A A A	A A A A	A T T T	TA T T A A	AT T T T	TA TA T T	A AT A A T	A AT T T A	T T A TA A
21 22 23 24 25	T T T T	T T A AT A	A A A A	A AT AT A T	A TA T T	T TA T T	T TA T AT	T T T T	T AT T TA	AT T T T A	T A AT A	A A A
26 27 28 29 30	T T A	A TA TA AT A	A A A A	T T T T	TA T T T	T T T T	AT T T T	T T - -	AT A - -	T A A	A	A AT A
31	-		T		Т	T		-		-	-	

FIELD MAGNETIC INTERPLANETARY INFERRED VOSTOK

	27 EES 1220
	量量口色
	5 % o
i di	NOV 1
Rot D	
, , , , , , , , , , , , , , , , , , , ,	5

Inferred Interplanetary Magnetic Field Polarity:

= definitely away from the Sun The chart shows the daily inferences of the polarity of the interplanetary magnetic field based principally on the magnetograms produced by the magnetometer at the Vostok Antarctic Station of the USSR. 🚻 = definitely towards the Sun No box = no data available

0 _ ш I 4 ပ I ш z 9 ¥ Σ α ¥ _ 0 S Z V ш Σ 0 × 0 4 Z Ø \vdash

Rotation numbers given are the Bartels series, but the dates are not; these of occurrence of phenomena on the Sun that affect the Earth during the given Bartels Rotation. Observations are taken at 2000 UT. dates mark times

No box = no data available

= field <-2 microT;

Day	Mar 8	5 Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan 8	6 Feb
1 2 3	31 27 16	2 -10 -14	-5 -8 -9	-10 -7 -11	-16 -14 -5	-5 1 2	· · 7	13 15 6	-7 -10 -8		:	:
4 5	13	-13 -17	-5 -5	-12 -11	2	8	3 5	-6 -13	-15 -16	-16 -20	-3	15 15
6 7 8 9 10	-8 -17 -13	-20 -7 -13 -6 -13	-5 -8 -8 -5	-3 4 6 -1 -4	17 31 24 22	6 10 8 8	3 -26 -24	-20 -23 -26 -27	-25 -26 -17	-25 : -14 1	1 14 3 11 12	-8 -27 -14 4
11 12 13 14 15	-4 -1 -3 -15 -12	-29 -19 -21 -13 -12	2 8 1	3 12 22 21 19	12 7 5 8 6	-9 -16 -24 -28 -22	-24 -22 -25 -24 -21	-21 -23 -16 -26 -20	-6 -5 5 11 6	13 8 3	0 -19 -14	; 9 :
16 17 18 19 20	-6 10 -7 -6	3 -7 -10	11 22 33 48 39	17 13 15 7 -10	-10 -27 -27 -24	-23 -22 -20 -20 -17	-21 -25 -29 -28 -22	-27 -21 -25	-3 -2 -11	-18 -20 -21 3 11	-12 21	9
21 22 23 24 25	-12 -12 -5 1	5 6 18 23 18	27 25 0 -9 -21	-21 -16 -13 -13 -16	-19 -19 -10 -14	-19 -22 -18 -22 -28	-21 -23 -16 -10 -6	-17 -17 -12 -8	-5 :	15 22 28 15 21	16 11 12 15 10	18 10 9 1
26 27 28 29 30	37 24 16	1 -12 -27 -32 -47	-18 -8 -8	-12 -12 -9 -13 -9	-19 -27 -26 -27 -25	-25 -15 -9 -4 -2	-5 11 12 -6	4 19 17 14	15 : :	8	-3	0 -4 -4
31	12		-5		-22	1		5				

Dot symbol indicates no data available for the day.

CONTENTS

r	ompt Reports	DATA FOR	JANUARY	1986	~9E(80	rjacios		Number	499	Part	I
	SOLAR ACTIVE REGIONS Solar Synoptic Chart Daily Activity Solar Calcium Plage Region	r Maps					:		Page 32-33 34-64		
	Sunspot Groups										
	SUDDEN IONOSPHERIC DIST	TURBANCES				• • •	•		66		
	PIONEER XII INTERPLANET (Unavailable at time			NITUDE	S						
	SOLAR RADIO SPECTRAL OF	BSERVATIONS							67-69		
	COSMIC RAY MEASUREMENTS Chart of Variations Daily Counting Rates										
	GEOMAGNETIC INDICES Geomagnetic Activity Daily Average Ap Chart of Kp by 27-da Provisional Values of of publication.)	ay Rotation						. <i></i> 	73		
	Principal Magnetic S Sudden Commencements publication.)	Storms s/Solar Flare	Effects (Not av	 ailabl	e at	tim	e of	75		
	RADIO PROPAGATION INDIC Field Strength Diag Quality Indices on N	ram - North At									

× • I ပ ပ ۵ H - ALPHA S O L A R S Y N O CARRINGTON ROTATION NUMBER 1771 (January 14 to February 10, 1986) × ¥ z Σ ш × ۵

œ ¥ I 0 N (January 14 to February 10, 1986) GNETIC SOLAR

Stanford Solar Observatory

100-0, +100, 500, 1000, 2000 microTesla -100-60N-30S-**-**809 1986 360 330 11111019181716151413121113012912812712612512412312212112011911811711 300 270 240 210 180 150 120 90 09 Heliographic Longitude 30 **60N** -308 **608**

J

S U N S P O T G R O U P S (ORDERED BY CENTRAL MERIDIAN PASSAGE DATE)

JANUARY 1986

NOAA/ USAF	Mt Wilson		Observ	ation Time		CMP	Max	Mag	Spot	Corrected Area	Spot	Long. Extent	
Group	Group	Sta	Mo Day	(UT)	Lat CMD	Mo Day	Н		Class	(10-6 Hemi)	Count	(Deg)	Qual
4710		LEAR	01 13	0225	S12 W42	01 9.9		Α	AXX	10	1	1	3
4710		ATHN	01 13	0740	S12 W38	01 10.4		В	CRO	40	4	3	2
4710		ATHN	01 13	0740	S12 W42	01 10.2		В	CRO	40	4	3	2 2 3
4710		RAMY	01 13	1335	S12 W47	01 10.0		В	DAO	120	12	4	
4710	04007	BOUL	01 13	1525	S11 W47	01 10.1		В	DSO	60	3	4	1
4710	24287	MWIL	01 13	1600	S11 W48	01 10.1	4	(B)	000	100		-	
4710		HOLL	01 13	1707	S11 W48	01 10.1		В	DSO	120	12	5	4
4710		PALE	01 13	1834	S12 W48	01 10.2		В	DSO	120	8	4	2 2 3 3 2 2 4
4710		LEAR	01 14 01 14	0049 1150	S12 W52 S13 W60	01 10.1		В	DSO	80 90	12 7	5	2
4710 4710		RAMY	01 14	1301	S12 W60	01 10.0		В	BXO DAO	150	19	5	3
4710		BOUL	01 14	1535	S11 W62	01 10.0		В	CSI	110	9	9	2
4710		HOLL	01 14	183C	S13 W64	01 9.9		В	DAO	110	15	8	2
4710		PALE	01 14	1924	S13 W65	01 9.9		В	CSI	110	11	7	4
4710		MANI	01 15	0015	S12 W65	01 10.1		U	DAO	120	15	6	
4710		LEAR	01 15	0118	S12 W66	01 10.1		В	CSO	100	12	6	2
4710		ATHN	01 15	0830	S12 W73	01 9.9			CSO	80	7	8	1
4710		RAMY	01 15	1615	S11 W78	01 9.8		В	DRO	10	4	7	3
4710		BOUL	01 15	1655	S11 W81	01 9.6		В	BXO	90	2	6	1
4710		HOLL	01 15	1725	S10 W/6	01 10.0		В	DAO	70	6	9	3
4710		PALE	01 15	2030	S12 W81	01 9.8		В	CSO	80	6	5	2
4710		LEAR	01 16	0027	S12 W77	01 10.2		В	CSO	60	7	14	3
4710A		LEAR	01 26	0001	S09 W02	01 25.9		Α	AXO	10	2	1	3
4710B	24288	MWIL	01 21	1730	N29 E69	01 27.1	3	AP					
4710B		LEAR	01 22	0004	N29 E67	01 27.3		Α	AXX	10	1	1	3
4710B	04000	ATHN	01 22	1100	N32 E62	01 27.4		A	AXX	10	1		3
4710B	24288	MWIL	01 22	1600	N29 E58	01 27.2	2	(AP)	A V V				2
4710B	24200	RAMY	01 23 01 23	1454 1545	N29 E43 N29 E44	01 27.0 01 27.1	2	A	AXX		1		3
4710B	24288	MWIL	01 23	1605	N29 E44 N28 E44		2	(AF)	A V V		1		4
4710B		HOLL				01 27.1			AXX		1		4
4710C	24289	MWIL	01 26	1930	S29 E14	01 27.9	3	(B)					
4712		RAMY	02 02	1445	S05 W40	01 30.6		В	CAO	30	5	4	3
4712	24291	MWIL	02 02	1600	S04 W39	01 30.8	4	(B)					
4712		PALE	02 02	1907	S05 W43	01 30.6		В	CSO	40	10	5	4
4712		HOLL	02 02	2350	S04 W45	01 30.6		В	CSO	80	8	6	2
4712		LEAR	02 03	0033	S04 W45	01 30.7		8	CSO	60	11	6	3
4712		ATHN	02 03	0638	S04 W49	01 30.6			CSO	50	8	4	4
4712		RAMY	02 03	1425	S03 W54	01 30.6		В	DAO	140	8	6	3
4712	24201	BOUL	02 03	1550	S04 W54	01 30.6	4	B	BXI	70	7	8	3
4712	24291	MWIL	02 03	1600	S03 W54	01 30.6	4	(B)	001	10	-	7	2
4712		HOLL	02 03	1800 1940	S03 W55 S04 W56	01 30.6		ВВ	DR I DA I	10	5 9	7	3
4712		PALE	02 03	0012	S05 W59	01 30.6				120 80			
4712 4712		LEAR	02 04	0940	S04 W65	01 30.6 01 30.5		В	DSO CSO	50	9	8	3
4712		RAMY	02 04	1339	S03 W68	01 30.5		В	CAO	170	9	7	3
4712		BOUL	02 04	1542	S03 W70	01 30.5		В	DSO	90	5	10	3
4712	24291	MWIL	02 04	1630	S03 W70	01 30.4	3	(B)	030	30	5	10	3
4712	24531	LEAR	02 05	0013	S04 W77	01 30.3	3	В	BXO	60	6	6	2
4712	24291	MWIL	02 05	1545	S02 W88	01 30.1	2	X	DAO	00	V	U	۷
4712	2 . 2 . 2 . 2	RAMY	02 05	1609	504 W87	01 30.2	-	A	AXX		1		3

JANUARY 1986

Day	Start (UT)	Max (UT)	End (UT)	Imp	Wide- spread Index	Number SW F	of Sta	tion F	Reports LF- SPA	by Type SES	Known Flare	X-ray Class	NOAA/SESC Region
01	1204	1211	1225	1	1		1		1		No Flare		
04	0905	0910	09300	1	1		1				No Flare		
05	1104	1129	1157	1	3		2				*		
05	1222	1238	1300	1	3		2				No Flare		
09	0832	0845	0930	1	1		1				No Flare		
10	0943	1000	1021	1	1		1				No Flare		
14	1457	1500	1516	1-	3					2	1507 UT	C3.1	4710
15	0653	0713	0944	2+	3	1		1		1	0654 UT	M1.1	4710
15	2117	2119	2145	1-	3			1		1	2057 UT	C6.0	
15	2124	2129	2150	1+	1					1	No Flare		
16	1206	1214	1310	1-	5		4	1		4	1200 UT	C4.3	
16	1608	1617	1745	2	3					6	1609 UT	M6.6	4710
16	1829	1832	1920	2+	3		4			4	1837 UT	M1.3	4710
17	0033	0039	0113	1-	1			1			0030 UT	C2.0	4710
17	0116	0142	0246	2	1			1			0114 UT	C3.6	4710
17	0352	0406	0516	1-	1			1			0350 UT	C1.7	
17	1106	1114U	1124	1-	1		1				No Flare		
17	1131	1148U	1219	1-	1		1				No Flare		
31	0319	0324	0349	1-	3		1	1			No Flare		

^{*} No flare patrol

SIDs by NOAA/SESC REGION

JANUARY 1986

ау	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
agion 710														1	1	2	2														
-Ray														1	2	3	3														
lo Tare	1			1	1				1	1					1		2														1
lo Flai	re				i																										
vent Totals	1			1	2				1	1				1	3	3	5														1

OBSERVATORIES REPORTING FOR JANUARY 1986

Ayrshire, Scotland (AY)	SES	Maui, Hawaii, USA	SWF		
Durban, South Africa (A58)	SES	Panska Ves, Czechoslovakia (PU)	SEA,	SWF,	SES
Edenvale, South Africa (A52)	SES	Paterson, New Jersey, USA (A46)	SES		
Farsta, Sweden (FA)	SES	Sao Paulo, Brasil (UM)	SPA,	SES	
Hiraiso, Japan (HI)	SWF	St. Cloud, Minnesota, USA (SC)	SES		
Houston, Texas, USA (A50)	SES	Tavares, Florida, USA (A49)	SES		
Inubo, Japan (IN)	SPA	Tucson, Arlzona, USA (A01)	SES		
Kuhlungsborn, GDR (KU)	SPA, SEA	Upice, Czechoslovakia (UI)	SEA		
Latrobe, Pennsylvania, USA (A19)	SES	Valley Cottage, New York, USA (A01)	SES		
Losov, Czechoslovakia (LO)	SEA	Vsetin, Czechoslovakia (VS)	SEA		
Louisville, Kentucky, USA (A26)	SES				

^{*}Observations are not necessarily continuous for each reporting station.

SOLAR RADIO EMISSION SPECTRAL OBSERVATIONS

JANUARY 1986

C	bserv	ation		Decime Start (UT)	tric Ban	d	Metr	ic Band		Dekame	tric B	land		
	Start	End	C+-	Start	End	Int	Start	End	Int	Start	End	Int	C	
Day	(01)	(01)	5та 	(01)	(01) (1-3)	(01)	(01) (1-3)	(11)	(01)	(1-3)	Spectr	al Type
01	0811	1514	WEIS											
02	0758	1515	WEIS											
0.3	0218	0735	CULG											
0,5		1215												
		1515												
		2400												
^4	0000	0470	0111.0											
04		0432 1517												
		2400												
05		0643												
	^758 2037		WEIS											
	2031	2400	COLG											
06		0738	CULG											
			WEIS											
		1518												
	2037	2400	CULG											
07	0000	0739	CULG											
0,		1521												
		2400												
80		0345												
		1522 2400												
	2041	2400	COLO											
09	0000	0739	CULG											
		1522	WEIS											
	2039	2400	CULG											
10	0000	0739	CULG											
	0757		WEIS											
		1524												
	2039		CULG											
	0000	0740	0111.0											
11		0740	WEIS											
		1526 2400												
	2010	2100	0020											
		0740												
		1349												
		1527												
	2040	2400	CULG											
13	0000	0740	CULG											
	0756		WEIS											
	1501		WEIS											
	2040	2400	CULG											
14			LEAR				0350.6	0351.1	1				- 11	
1 **	0000	0740	CULG				0351.0	0352.0	2				ii	
	0000	0,40	CULG				0359.5	0404.0					1	
	0753	1435	WEIS						_					
	1451		WEIS											
	2045	2400	CULG											
1 5	0000	0741	CIII C	0654 5	0656 0	2								10
15	0000	0/41	CULG	0654.5 0658.5	0656.0 0700.0	2							11	IM,CON
			CULG	00,000	0,00.0	-	0701.0	0719.0	3				11	11-1,0014
			CULG	0701.0	0703.0	1			-				İV	
			LEAR				0706.0	0000.0	3				11	
			CULG				0716.5	0720.0	1				IS	
	0752		WEIS											
	0932		WEIS											
	1346		WEIS											
	2041	2400	CULG											

68 Jan 86

SOLAR RADIO EMISSION SPECTRAL OBSERVATIONS

JANUARY 1986

(bserv	ation		Decime	tric Band End Int (UT) (1-3)	Metr	ic Band	1=+	Dekame	tric B	and		
)av	CUITY	(UT)	Sta	Start	End Inf	Start	End	In†	Start	End	Inf (1-3)	Spectral	Typ
												Speciral	
6		1533											
	2042	2400	CULG										
7	0000	0742	CILLC										
1 /		1535	CULG										
	0750	1222	PALE			1850.0	1850. 1	1				111	
	2042	2400				10,000	1030.1						
		2100	0020										
18	0000	0742	CULG										
			WEIS										
		1535											
	2042	2400	CULG										
0	0000	0603	CULG										
,		1538	WEIS										
		2400	CULG										
	2000	2400	0000										
0	0000	0743	CULG										
		1512	WEIS										
			WEIS										
	2043	2400	CULG										
21		0743											
		1541	WEIS										
	2043	2400	CULG										
2	0000	0743	CULG										
~		0946	WEIS										
	1031		WEIS										
		1542	WEIS										
		2400	CULG										
			PALE			2107.5	2108.8	2				V	
_			0										
3		0744											
			WEIS										
		1143	WEIS										
	2044		WEIS										
	2044	2400	COLG										
4	0000	0744	CULG										
		1544	WEIS										
	2055	2400	CULG										
5		0745	CULG										
	0744	1547	WEIS										
	0047	0745	0111.0										
0		0745											
	0014	1549	SGMR			1337.8	1338.5	1				٧	
			SGMR			1822.3	1823.1					v	
	2047	2400	CULG			.022.5	.025.						
7			PALE			0225.8	0226.6	1				٧	
	0000	0745	CULG			0226.0	0227.0	2	0226.0	0227.	0 1	IIIG	
			LEAR			0226.8	0228.5	1				٧	
			CULG			0424.0		!				IIIB	
	0770	1540	CULG			0427.0		1				IIIB	
	0739 2237		WEIS			2250.5	2253.0	1				IIIG	
	2231	2400	COLG			2230.5	2255.0	'				1116	'
8	0000	0804	CULG			0728.5	0731.0	1				IIIG	
_	5.00	3304	CULG			0735.0	0738.5					IIIG	
	0739	1209	WEIS					-					
			CULG			0742.0	0754.0	3				11	
	1420	1552	WEIS										
			PALE			2156.6	2156.8	1				111	
	0374	1651	WELC										
9	0736		WEIS			2270 =		•					
	2048	2400	CULG			2238.5		1				111B 111B	
			CULG			2359.5						1116	
			CULG			0032.0	0033.0					IIIG	

SOLAR RADIO EMISSION SPECTRAL OBSERVATIONS

JANUARY 1986

(Observ	ation		Decime	tric E	Band	Metr	ic Band		kame	tric B	and	
	Start	End		Start	End	Int	Start	End	Int	Star:	End	Int	
Day	(UT)	(UT)	Sta	(UT)	(UT)	(1-3)	(TU)	(UT) (1-3)		(UT)	(1-3)	Spectral Type
30			CULG				0053.0	0055.0					IIIG,W
			CULG				0056.0	0057.5	2	0057.0	0057.	5 1	IIIG, V
			LEAR				3056.1	0057.0	2				٧
			PALE				0056.3	0057.1	1				٧
			CULG				0127.0	0127.5	1				IIIG
			CULG				0157.0	0158.5	1				IIIG
			CULG				0319.5	0320.0	i				IIIG
			CULG				0402.0	0520.0	1				IIIB
			CULG				0517.0		i				IIIB
	0735	1555	WEIS				1233.0	1233.1	2				IIIG
	2045		CULG				1233.0	1233.	-				1110
	2042	2400	0000										
31	0000	0745	CULG										
٠,	0947		WEIS										
	0735		WEIS				1301.8	1302.1	2				IIIG
	1401		WEIS				1301.0	1302.1	-				1110
	2046		CULG										
	2040												

The symbols used under the column heading SPECTRAL TYPE have the following definitions:

B = Single burst

G = Small group (< 10) of bursts GG = Large group (> 10) of burst

GG = Large group (> 10) of burst
C = Underlying continuum (particularly with Type I)
S = Storm in the sense of intermittent but

apparently connected activity

N = Intermittent activity in this period

U = U-shaped burst of Type !!!

RS = Reverse slope burst

DP = Drifting pairs DC = Drifting Chains

H = Herringbone
W = Weak
P = Pulsations

CONT = Continuum

UNCLF = Unclassified activity DCIM = Fast drift

Stations Reporting:

C O S M I C R A Y I N D I C E S (Neutron Monitor)

JANUARY 1986

Day	THULE Average (cts/h)/100	ALERT Average (cts/h)/100	DEEP RIVER Average (cts/h)/300	KIEL Average (cts/h)/100	CLIMAX Average (cts/h)/100	PREDIGTSTUHL Average (cts/h)/100	TOKYO Average (cts/h)/256	HUANCAYO Average (cts/h)/100
1	4455			6227.5			3640.8	
2	4458			6237.4			3657.2	
3	4473			6226.4			3654.7	
4	4482			6232.7			3648.9	
5	4492			6242.6			3661.7	
6	4494			6230.3			3652.6	
7	4471			6193.1			3644.7	
8	4482			6196.4			3650.9	
9	4479			6188.8			3654.3	
10	4484			6191.3			3657.7	
11	4485			6243.9			3662.0	
12	4494			6266.7			3666.4	
13	4506			6266.3			3667.2	
14	4506			6295.2			3662.0	
15	4482			6285.3			3658,5	
16	4479			6264.9			3660.3	
17	4479			6245.7			3644.4	
18	4477			6216.7			3652.2	
19	4469			6224.6			3657.9	
20	4428			6191.4			3639.9	
21	4424			6195.2			3653.5	
22	4436			6197.9			3662.7	
23	4453			6216.8			3653.8	
24	4464			6230.7			3661.2	
25	4461			6180.3			3648.5	
26	4481			6215.0			3656.7	
27	4485			6225.8			3662.0	
28	4477			6234.2			3653.4	
29	4488			6246.8			3658, 1	
30	4487			6243.3			3655.4	
31	4496			6237.0			3659.8	
Mean	4475			6228.7			3655.5	

For less than 24-hour coverage, parentheses enclose the number of hours for which data are available. For Climax and Huancayo, parentheses enclose the number of section hours whenever the sum of both sections falls below 40 hours.

													nuar			986													
Day		1	2	(p '	Three	-Ho	our 5	Iу б	Ind 7	lces 8	Sum	Ap	Φ		1	Km 2	Thr 3	4	Hour !	- I y 5	1 no	dic 7	es 8	Am	aa N	Provi	siona	M	
1 2 3	D5 Q8	3+ 4- 2- 2+	4- 4 2- 2- 1-	4- 3 1+ 1-	3+ 3+ 0+	4	5 1 5+ 1+	4 4- 3- 1+	3+ 3- 1+ 1	4 2 2- 1+	30+ 26 17 10 9-	25 18 10 5 4	1.0	2	3- 3- 1 2- 1+	3 1 1+	3 3- 1 0+	3+ 2+ 3 0+	4	4+ 4 3 1+	3+ 3+ 2 2- 1-	3 2+ 1+ 1-	3 1+ 1+ 1+	36 27 14 7 5	50 31 17 7	29 23 13 8 8	30 24 13	50 30 17 9	
6 7 8 9	D2	6- 4+ 2+	0+ 6- 2+ 2	1+	4- 2+ 1+	2	5+ 2- 1+	3+ 2+ 3	5- 3- 2+ 5- 1	4- 2- 4+	18 32 18+ 20 16+	20 32 11 14 11	1. 0. 0. 0.	5	1- 5 4- 2- 3+	5- 2 1+	4- 2- 1	3+		2- 1+	2 3 3- 3	2- 4	3+ 1+ 4-	29 46 17 23 15	34 44 19 35 18	34 47 13 15 18	7 61 20 8 27	29 13 43	
11 12 13 14 15	Q7 Q2	1	2- 1 0 1- 1-	1	1 1+	1	1- 1-	1	1+	1+ 1- 1-	8- 10 6+ 7+ 10	4 5 3 4 5	0. 0. 0. 0.	2	1+ 2- 1- 1	1-1	2- 1+ 1	1-1		1- 1- 1-	1+ 1- 1 1 3-	1+ 1+ 1-	2- 0+ 1-	7 8 6 6 13	7 10 6 5	6 6 6 14	7 9 6 6	8	CC CC CC
16 17 18 19 20	Q1 Q10K Q5	0 3- 2-	1- 2 1+ 3+	1 2 1-	1+ 3 1-	1	+ + -	2- 1- 1-	1- 2+ 1 1 2+	3 1+ 2-	5- 114 1/ 8+ 23-	3 6 7 4 15	0.0	5 1	1 0 2+ 1+ 2	1 2- 1+	1 2+	3		1-1	1+ 2- 1- 1- 2-	3- 1 1	3- 1+ 1+	6 12 13 7 26	3 14 15 9 30	3 11 14 10 21	3 4 22 9 25	21	CK
21 22 23 24 25	D4	3+ 3- 3	2- 3- 2- 3- 4-	2+ 3 3+	3- 3 3+	3	2 5+ 5-	4	5 3- 4- 2+ 5+	4- 3-	26+ 21- 25 21 30	27 11 17 12 26	0.	7	5- 3 2+ 2+ 2+	2+ 2 2+	2 3- 3-	3- 3+		3- 3- 3	4 2+ 4- 1 4-	3- 3+ 2+	3+ 2+	38 21 29 21 42	57 28 29 25 52	28 16 26 19 41	27		
26 27 28 29 30		2+ 4+ 3+	3- 5+ 5- 4- 4-	5 4 2	4- 4- 2+	4	5+ !	4+ 5- 4-	1+ 4+ 4 3+ 3-	5- 4 4+	20- 35 33+ 27- 23	12 37 30 19 14	0. 1. 1. 1.	5	3 2 4- 3- 3+	4 4- 3	4+ 3+ 2-	3+ 4- 2		5 4 4	2+ 4+ 4+ 3+ 3-	4 4 3	4+ 4- 3	19 56 49 30 25	22 68 56 37 24	15 44 44 23 27	41	67 59 41	
31 Mean					2							8																	
																									25.3			22.4	
					our I y							Ks 1	hre	-HO	url	yі	naı	ces						F	Prov				
	1	2	3	4		5 6	5	7	8		An	1 2	3	4		5 	6	7	8						RI				
	3 3- 1+ 2-	2	3+ 3- 1+ 0+	4- 2+ 3 0+	 5 4 3		5+ 5+ 2+ 2-	7 3+ 2+ 1+ 1-	4- 1+ 1+ 1		42 30 15	1 2	3 3- + 1 + 1-	3+ 2 3- 0+		5 4- 4 3- 2-	6 3 3 2-	7 3 2+ 1+ 1	8 3- 1+ 2-					0 6 4	RI	0 0 0			:
1 2 3 4	3 3- 1+ 2- 1+ 1- 5- 4- 2-	3 3+ 1 0+ 1- 5-	3+ 3- 1+ 0+ 1+ 0+ 1+ 1	4- 2+ 3- 0+ 1- 3+ 2+ 1+	3 4 2 2 1	5 6 5- 3 4+ 3 3+ 2 1+ 2 1 1 3- 2 4- 3	55+ 5+ 2+ 2- 1- 2- 5+	7 3+ 2+ 1+ 1- 0+ 5- 3 2+	8 1+ 1+ 1 1- 5 3+ 1		42 30 15 7 6 28 47	2+ 3- 3 3 0+ 1- 2 1-	3 3- + 1 + 1- + 1+ - 3+ + 2- + 1	3+ 2 3- 0+ 1 1- 3+ 2 1+		5 4- 4 3- 2- 1 3- 3- 1	6 3 2- 2- 0+ 2 3- 2+ 3	7 3 2+ 1+ 1 0 5 3-	8 3- 1+ 2- 2- 1 5 3 2- 4-		30 25 13 9 5		67. 67. 68. 69. 70.	0 6 4 5 7 2 6 2	0 0 0 0	0 0 0 0 0 0 0 0	10 11 12 13 14 16 15	AT AT T A	
1 2 3 4 5 6 7 8 9	3 3- 1+ 2- 1+ 1- 5- 4- 2- 3	3 3+ 1 0+ 1- 5- 2 1+	3 3+ 3- 1+ 0+ 1+ 1+ 1 1- 1-	4- 2+ 3 0+ 1 1- 3+ 2+ 1+ 2	3 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 6 5 3 4 4 3 3 4 2 1 1 1 1 3 3 - 2 3 1 4 3 3 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	55+ 5+ 2+ 2- 1- 2 ++ 3- 1+ 1- 11	7 3+ 2+ 1+ 0+ 5- 3 2 4+ 1 1- 1	8 1+ 1+ 1- 5 3+ 1 4 0 1- 1+ 0+ 0+		42 30 15 7 6 28 47 18 26	1 2 2+ 3- 3 3 0+ 1- 2 1- 1+ 0- 1 5- 5- 4- 2- 2 1- 3+ 3 2- 1- 1 1- 1 1- 1 1-	3 3- + 1 + 1- + 1+ - 3+ + 2- + 1 1- + 0+	4 3+ 2 3- 0+ 1 1- 3+ 2+ 1+ 0+ 1+ 1		5 4 3- 2- 1 3- 3- 1 0+ 1	6 3 3 2- 0+ 2 3- 2+ 3 1- 1- 1	7 2+ 1+ 1 0 5 3- 2- 4-	8 1+ 2- 2- 1 5 3 2- 4- 1 1+ 2 0+ 1		30 25 13 9 5 30 45 17 20		67. 67. 68. 69. 70. 71. 71.	2 6 7 2 6 2 7 2 9 2 3	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	10 11 12 13 14 16 15 15	AT AT T A	:
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 	3 3+1 1 0+1-5-2 1+3 1+1-0	3 3- 1+ 0+ 1+ 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	4-2+3-0+1 1-3+2+1+2 1-1-3-1-1-3-1-1-1-3-1-1-1-1-1-1-1-1-1-1		5 6 6 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6	5	7 3+ 2+ 1- 0+ 5- 3 2 4+ 1 1- 1- 1- 2- 1- 0+	8 4- 1+ 1- 5 3+ 1- 1- 0+ 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-		42 30 15 7 6 28 47 18 26 15	1 2 2+ 3- 3 3 0+ 1- 2 1- 1+ 0- 1 5- 5- 4- 2- 2 1- 3+ 3 2- 1- 1 1- 1 1- 1 1-	3 -3 +1 +1 +1 -3 +1 -3 +1 +1 -3 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	4 3+ 2 3- 0+ 1 1- 3+ 2 1+ 2+ 1+ 0+ 1- 1 2- 3- 1		5 4- 4 3- 2- 1 3- 3- 1 0+ 1- 2 0+ 1+ 0+ 1	6 -3 3 2-2-0+ 2 3-2+ 3 1- 1 2+ 1 2+ 0+ 0+	7 3 2+ 1+ 1 0 5 3- 2- 4- 0+ 1 1+ 1+ 1	8 3- 1+ 2- 2- 1 5 3 2- 4- 1 1+ 2 0+ 0+ 3 1+ 1+		30 25 13 9 5 30 45 17 20 15 8 9 7		67. 67. 68. 69. 70. 72. 71. 72. 71. 74. 76.		R ₁ 0 0 0 0 0 0 0 0 0 0 0 0 13 14	0 0 0 0 0 0 0 0 0 0	10 11 12 13 14 16 15 15 17 16 16 15 18 21	AT AT A ATTTT A A TAT	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1 3- 1+ 2- 1+ 1- 5- 4- 2- 3 1- 2- 1- 1- 0+ 0+ 0 2 1 2+ 5- 3- 3- 4- 1- 1- 1- 2- 1- 1- 1- 1- 1- 1- 1- 1- 1- 2- 1- 1- 1- 2- 1- 1- 2- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	2 3 3+1 1 0+1-5-2 1+3 1+1-0 1-1 1-1 2-1 3-1+	3 3+3-1+0+1+1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	4-2+30+1-3+2+1+2 1 1 1 1 3-1 1 1+3-3 3+		5 6 3 5	55+ 5+ 2+ 2- 1- 2- 3+ 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	7 3+ 1+ 0+ 5-324+ 1-111-2- 13-0+13- 43+	8 4- 1+ 1- 5 3+ 1 4 0 1- 1+ 0+ 1- 1+ 4- 4- 3- 1+ 4- 4- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3		An 42 30 15 7 6 28 47 18 26 15 5 5 12 5 11 13 6	1 2 2+ 3-3 3 3 0+ 1- 2 1- 1+ 0- 1 5 5- 4- 2- 2 1- 3+ 3 2- 1- 1 1 1- 1 1 2 1+ 1- 1 2+ 2- 2 2- 1- 1 2+ 2- 2 1- 1 2- 1 1- 1 2- 1 1- 1 2- 1 1- 2 1- 1 1- 2 1- 1 1- 2 1- 1 1- 2 1- 1 1- 2 1- 2	3 -3 -3 -1 -1 -1 -3 +1 -1 -3 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	4 -3+ 3+ 23- 0+ 1 1- 3+ 2+ 1+ 0+ 1+ 1 3- 1 2- 3+ 1 4- 1+ 23- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3- 3		5 4 4 3 2 1 3 3 1 0 1 1 2 0 1 1 1 3	6 3 3 2 - 2 - 0 + 2 3 - 1 - 1 2 + 1 2 0 + 0 + 2 3 0 +	7 3 2+ 1+ 1 0 5 3- 2- 4- 0+ 1 1+ 1+ 1 2+ 1 3 1+ 1+	8 3-1+ 2- 2- 1 5 3 2- 4- 1 1+ 2 0+ 3 1+ 3+ 4 2+ 3+ 2+		30 25 13 9 5 30 45 17 20 15 8 9 7 7 7 14 6 14 14 8		67. 67. 68. 68. 69. 70. 71. 71. 72. 71. 74. 76. 75.		R ₁ 0 0 0 0 0 0 0 0 0 0 0 13 14 12 8 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 11 12 13 14 16 15 17 16 16 15 18 21 19 20 18 17 14	AT AT T A A T T T T A A A T A T T T	
1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 2 4	1 	2 3 3+ 1 1 0+ 1- 5- 2 1+ 1- 0 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	3-3+3-1+0+1+1+1-1-2-1+2-3-3-4-2+3-2-	4		5 6 3 5	5-5+5+225+-3-113-1-2-4+1-253-1	7 3++11-0+ 5-324+1 1-111-2- 13-0+13- 433+-5 1+4+4+3+	8 4- 1+ 1+ 1- 53+ 40 1- 1+ 0+ 0+ 1- 1+ 4- 3- 3- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4		An 42 30 15 7 6 28 47 18 26 15 5 12 5 11 13 6 27 40 22 31 24	1 2 2+ 3 3 0+ 1- 2 1+ 0- 1 5- 4- 2 1- 3+ 3 2- 1 1- 1 1- 1 1- 1 2 1- 1 1- 2 1- 1 1- 2 1- 1 1- 2 1- 1 1- 2 1- 2 1- 1 1- 2 1- 2 1- 3 1- 1 1- 2 1- 3 1- 1 1- 2 1- 3 1-	3 3 3 3 1 1 3 1	4		5 4 - 4 3 - 2 - 1 3 3 2 - 1 3 1 0 1 1 - 2 0 1 + 0 1 3 3 3 3 3 3 4 3 4 3 4 3 4 -	6 3 3 2 - 2 - 0 + 2 - 2 - 3 1 - 2 - 1 1 2 + 1 2 0 + 0 + 2 3 0 + 3 + 2 + 4 4 3 -	7 3 1+ 10 5 3- 4- 0+ 1 1+ 1+ 12+ 4 2+ 4 2+ 4- 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+	8		30 25 13 9 5 30 45 17 20 15 8 9 7 7 7 14 6 14 14 8 26 28 18		67. 68. 69. 70. 71. 71. 71. 72. 71. 75. 74. 75. 75. 76. 69.		R ₁ 0 0 0 0 0 0 0 0 0 0 0 13 14 12 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 11 12 13 14 16 15 15 17 16 16 15 18 21 19 20 18 17 14 13	ATTATA ATTTT AATATA AATTTA TAATA	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	1 3-3-1+2-1+1-5-4-2-3 1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	2 3+1 1 0+ 1-5-2 1+ 1-0 1-1 0+ 1-2- 1-3- 1+ 2 2 3- 3+ 2 4+ 4 3+ 3 3- 3- 3- 3- 3- 3- 3- 3- 3- 3-	3 3+3-1+0+1 0+4-1+1 1 2 1+1-2-1 1 1+2 1-3 1-2+3-3 2 4+3+2-3-2	4		5 3 3 5 5 5 4 + 3 2 5 5 3 3 5 5 5 4 + 3 5 5 5 6 4 + 4 5 5 6 6 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7	5 2	7 3++1-0+ 5-324+ 1-11-2- 1-0+3-433+-5 1+4+4+3+-1+	8 -4-1+1-1 - 5 -3+1 4 0 1-1+0+0+1 - 4+3-3-3-4 2-5-4-2 1-		An 42 430 15 7 6 28 47 18 26 15 5 12 5 11 13 6 27 40 22 31 24 50 19 65 56 36 26 14	1 2 2 3 3 0 4 1 1 2 1 1 5 5 4 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 3 3 3 3	3 -3-3-3-1-1-1-1-3-1-1-1-1-1-1-1-1-1-1-1	4 - 3 + 2 3 - 0 + 1 - 3 + 2 + 2 + 1 + 0 + 1 + 1 3 - 1 - 3 + 1 + 1 + 2 + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		5 4 - 4 - 3 - 2 - 1 3 - 1 0 + 1 - 2 0 + 1 + 0 + 1 3 3 - 3 - 3 - 4 - 3 4 - 4 - 3 - 2 -	6 - 3 3 2 - 2 - 0 + 2 3 - 4 - 1 2 + 1 2 0 + 0 + 2 - 4 2 3 0 + 3 + 2 + 4 4 3 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7 - 3 - 2 + 1 + 1 0 5 - 2 - 4 - 0 + 1 + 1 + 1 + 2 + 4 + 2 + 4 + 3 - 2 + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1	8 1 5 3 2 1 1 + 2 0 + 1 0 + 0 + 3 1 + 1 3 + 4 2 3 + 2 4 4 - 3 - 2 + 1		30 25 13 9 5 30 45 17 20 15 8 9 7 7 14 6 14 14 8 26 26 28 18 35 20 46 41 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28		67. 68. 69. 70. 71. 71. 71. 72. 71. 74. 75. 75. 74. 75. 67. 66. 68. 67. 67. 67. 67.		R ₁ 0 0 0 0 0 0 0 0 0 0 0 13 14 12 8 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 11 12 13 14 16 15 15 17 16 16 15 18 21 19 20 18 17 14 13 11 11 11 11 11 11 11 11 11 11 11 11	ATTA ATTTT AAAAA AATTA TAAAA A	

DAILY AVERAGE INDICES AP

D	1985	Man						•	•			1986
Day	Feb	Mar	Apr	May	Jun 	Ju I	Aug	Sep	0c†	Nov	Dec	Jan
1	15	16	23	10	18	14	18	6	3	15	15	25
2	11	22	16	38	6	3	11	4	5	32	14	18
3	8	14	20	6	4	6	6	4	11	28	9	10
4	3	10	17	10	5	33	6	2	12	16	12	5
5	21	42	7	7	5	16	4	3	66	10	8	4
6	46	24	5	10	25	21	3	9	41	13	7	20
7	20	22	7	8	30	19	4	9	27	7	5	32
8	24	27	15	8	16	16	6	10	16	6	3	11
9	19	4	38	8	22	8	5 7	12	6	14	5	14
10	24	10	11	4	30	8	7	12	6	19	17	11
11	13	6	11	5	11	10	5	9	16	10	11	4
12	11	7	5	12	10	48	27	5	12	4	7	5
13	11	4	6	11	4	20	41	5	20	24	30	3
14	16	7	10	8	4	16	11	29	8	17	11	4
15	9	14	4	15	5	7	12	18	18	16	10	5
16	7	11	8	11	3	5	9	33	17	10	6	3
17	12	8	5	8	7	20	9	13	15	14	8	6
18	4	11	4	9	4	13	12	5	22	15	12	7
19	7	9	21		3	8	12	35	14	14	41	4
20	10	5	53	5	13	8	12	29	6	3	11	15
21	8	5	103	8	7	5	10	23	16	5	5	27
22	7	4	11	5	6	4	28	13	17	8	6	11
23	7	5	12	4	7	13	17	9	13	4	4	17
24	18	6	17	5 8	5	12	7	17	8	4	10	12
25	12	5	21	8	12	12	18	18	9	6	6	26
26	5	8	30	9	21	16	14	19	4	6	8	12
27	19	10	33	5 5	13	15	15	17	4	20	12	37
28	60	14	61		18	13	13	6	4	8	35	30
29		6	17	4	13	5	17	4	11	37	7	19
30		7	42	3	10	11	10	5	3	52	46	14
31		10		7		36	32		6		22	8
Mean	15	11	21	9	11	14	13	13	14	15	13	14

PLANETARY 3-HOUR-RANGE INDICES (Kp) BY 27-DAY SOLAR ROTATION INTERVAL

PRINCIPAL MAGNETIC STORMS

JANUARY 1986

		Comm	nencem	nen†		Amplitud	es	Marriage & Name & Andrew			Ranges	7	Er	nd
Sta	Geomag Lat	Day	Time (UT)	Туре	D (Min)	H (Gamma)	Z (Gamma)	Maximum 3-Hour K Index Day(3-Hour Periods)		D (Min)	H (Gamma)	Z (Gamma)	Day	Hou (UT
	64.6N	06	19					07(4)	6	87	1060	480	08	04
	54.2N	06	1931	sc*	'i *	- 39	••	06(8)	6	36	117	37	08	
	49.6N	06	17				••	06(8) 07(1,2)	5	28	158	76	08	
		06	17	••	••	••	••	06(7)	5	8	106	16	07	
	28.5N		1433	sc	••	ii	*3	06(8)	5	10	1443	38	07	
	21.1N	06		SC		19	- 3	00(0)	,	4	125	20	07	
	17.3N	06	1430		- 0.5	26		06/7 9)	6	4	148	51	10	
	16.4N	06	1429	SC	- 1		10	06(7,8)	0	3	129	19	07	
	13.5N	06	1430	SC	- 0.3	21	- 4	06/7)	6	3	129	22	07	
11 11 11 11 11	09.5N	06	1430	SC	- 0.5	18	- 4	06(7)	6	3		14	07	
	07.6N	06	1432	SC	- 0.3	19	- 1	06(7,8)	5		131		-	
	04. ON	06	1433	**	** .	::	••	06(7)	2		110	30	07	
	01.15	06	1430	SC	- 0.1	18	22		_	3		99	07	
	33.7 S	06	14	• •	• •	• •	••	06(7,8) 07(2)	5	22		138	07	
CNB	43.95	06	17	• •	••	• •	••	06(7,8) 07(1)	5	11	121	47	07	
GL	56.5S	06	14	• •	••	••	••	06(8)	8	79	543	336	80	0:
IIT	54.2N	09	1700	••	••	••	••	09(7)	6	24	200	35	10	0
HYB	07.6N	20	0100			••	••	20(4,5) 21(1)	4	3	46	9	21	
IER	33.78	20	20	••	••	••	••	21(1)	5	18	54	78	21	0
VIT	54.2N	21	1300		••	••	••	21(6,7,8)	5	28	135	95	22	
	17.3N	21	1000		••	••	••			6	128	20	23	2
	16.4N	21	08	••	••	••	••	21(5,7)	5	5	114	40	25	0
	13.5N	21	1000		••	••	••			4	123	14	23	2
	09.5N	21	1000		••	••	••	21(5,7) 23(6)	5	5	132	24	23	2
	07.6N	21	09.					21(6)	6	4	119	9	22	
	01.15	21		. •	••	::	::	21107	•	3		79	23	
	33.75	21	1	••	::	::	::	21(6)	5	21	99	122	22	
201	64.6N	25	08					25(5)	6	95	920	370	26	1
	54.2N	25	1400	••	••	••		25(7)	6	30		40	26	
		25	0236	sc	0.1	ii	••	25(3)	5	9		14	26	100
	28.5N						••	25(5)		4		19	26	
	17.3N	25	0200		• • •	17	10	25(7)	6	6		57	01	-
	16.4N	25	0241	SC	- 1	17		25(7)	0	3		13	26	
	13.5N	25	0200	• •	••	• •	••	05/3)	6	5		23	26	
	09.5N	25	0200	• •	** -	::	• • •	25(7)	6	4				
	07.6N	25	0235	SC	- 0.5	14	- 1	25(7)			-	9	26	
	04. ON	25	0235		• •	06	• •	25(3)	5			30	26	
	01.15	25	0200		• •	• •	• •		_	4		88	26	
HER	33.75	25	0235	SC	1	13	8	25(3,7)	5	33	95	95	25	2
	64.6N	27	03	••	••	::	••	27(3,5)	7	327		870	30	
WIT	54.2N	27	0747		3	- 20	• •	27(7)	6	23		55	29	
	49.6N		02		• •	• •	• •	27(2,3,5,8) 28(1,2,6)	5	23		29	30	
	17.3N	27	0700	• •	••	• •	••			8		21		2
	13.5N	27	0700		••	• •	••			6	68	21	29	
	09.5N	27	0700	c •	••	••	••	27(7) 28(6)	5	6		27	29	
	07.6N	27	0200		••	• •	••	27(5,6,7) 28(5,6)	5	5	94	19	28	
	04. ON	27	0252		••	••		27(5)	5		130	20	27	
	01.15	27	0700		••	••	••			4	133	71	29	2
	33.75	27	02		•••			27(5)	5	29	92	72	28	3 (
	43.95	27	03		•••			27(5)	5	17		41	28	
	56.5S	27	0631		2	- 4	- 0	06(3,4,5,6,7,8)	4	27		105	29	
	70. 73	41	000	30	-	-		07(1,2,5,6,7,8)						

Stations 1	Report	ing:
------------	--------	------

ABG = ALIBAG	COL = COLLEGE	HER = HERMANUS	JA1 = JAIPUR	TRD = TRIVANDRUM
BJI = BEIJING	FRD = FREDERICKSBURG	HON = HONOLULU	KRC = KARACHI	UJJ = UJJVIN
CNB = CANBERRA	GUA = GUAM	HYB = HYDERABAD	KGL = KERGUELEN	WIT = WITTEVEEN

JANUARY 1986

JANUARY 1986

Field strengths from four frequencies, 6.4, 8.6, 13.0, and 17.0 MHz, observed on a Nord-deich-New York circuit are represented above. Heavy solid lines represent field strengths \geq -12 dB above 1 μ V/m (transmitter power reduced to 1 kW). Observed field strengths between -12 dB and -40 dB above 1 μ V/m are represented by the fine line.

RADIO PROPAGATION QUALITY INDICES

JANUARY 1986

Day	Bracknell	Teheran	New York	Tokyo	Johannesburg	Canberra
1	4.7	4.5	3.5	6.5	4.3	4.6
2	4.3	1.3	3.5	6.3	4.3	3.7
2 3 4	4.7	4.5	3.0	6.6	4.6	3.9
4	4.7	6.2	5.1	5.5	5.1	3.9
5 6	4.4	3.4	5.6	7.2	6.0	3.8
6	4.4	5.2	6.1	6.5	3.7	4.6
7	4.5	7.6	4.3	6.6	4.6	4.9
8	4.5	7.2	4.4	6.1	6.5	5.0
9	4.6	4.8	5.6	8.7	3.1	5.7
10	4.3	6.1	5.7	7.7	4.4	5.7
11	4.3	4.6	6.0	7.4	5.1	4.2
12	5.5	9.1	5.2	6.1	5.1	2.2
13	5.5	5.1	6.4	6.8	5.4	5.1
14	4.9	6.7	5.5	4.1	4.9	5.4
15	6.2	5.5	7.9	7.0	5.8	6.9
16	6.6	3.1	7.2	5.3	4.2	6.6
17	6.6	1.6	7.9	6.0	4.6	6.1
18	5.4	6.7	7.4	6.0	6.1	7.4
19	5.7	1.7	7.5	4.9	5.7	5.8
20	6.8	5.7	8.6	5.1	5.7	7.1
21	8.1	7.1	7.9	7.6	6.4	6.4
22	8.0	7.6	6.4	5.3	7.7	5.7
23	5.8	5.5	5.1	5.3	7.0	6.7
24	7.8	6.0	6.4	4.9	5.8	7.2
25	7.2	2.2	6.4	4.3	7.3	7.1
26	5.5	5.6	5.0	3.5	6.9	6.2
27	6.8	7.6	4.7	2.4	7.3	6.3
28	6.5	3.8	5.0	0.9	6.8	5.4
29	5.4	2.6	4.6	1.3	5.4	5.6
30	5.1	2.9	4.6	1.3	7.4	5.7
31	5.0	4.3	4.2	8.0	5.8	4.7
Mean	5.6	5.0	5.7	5.3	5.6	5.5

CALCULATION OF QUALITY INDICES (Q)

From all 24 hourly field strength values and from all frequencies of the same circuit a median field strength value is calculated (FD). This daily value is compared with the average value (FA) of the preceeding 27 days (1 sun rotation).

 $Q = 6.0 + 20 \log(FD/FA)/3.0$

The quality indices vary from 0.0 to 9.9 where 6.0 is normal. Conditions are "normal" (index = 6.0), if they correspond to the average of the preceding 27 days.

SCALE FOR QUALITY INDICES

0.0 - 1.0 = very poor

1.1 - 3.0 = poor

3.1 - 5.0 = fair

5.1 - 7.0 - normal

7.1 - 9.0 = good

9.1 - 9.9 = very good

I

CONTENTS

Pr	ompt Reports LATE DATA	Nu	ımb	er	499 Part
	SOLAR ACTIVE REGIONS Kitt Peak Solar Magnetic Field Synoptic Charts May 85 - Jan 8	6.			Page . 80- 89
	SOLAR RADIO SPECTRAL OBSERVATIONS Culgoora Jun - Dec 85				. 90-102
	COSMIC RAY MEASUREMENTS BY NEUTRON MONITOR Chart of Variations Alert and Deep River May 85 - Dec 85 Kiel and Tokyo Nov 85 - Jan 86 Daily Counting Rates Alert and Deep River May 85 - Dec 85				. 113-115
	CALCIUM PLAGE DATA Calcium Plage Regions Sep 83				. 129
	Daily Maps Aug 84 - Jun 85				. 131-173

CHAR SYNOPTIC FIELD MAGNETIC SOLAR

CARRINGTON ROTATION NUMBER 1762 (May 13 to June 10, 1985)

CHAR SYNOPTIC FIELD MAGNETIC SOLAR

Dates of Observations CARRINGTON ROTATION NUMBER 1763 (June 10 to July 7, 1985) Kitt Peak National Observatory

CHART SYNOPTIC FIELD MAGNETIC SOLAR

CARRINGTON ROTATION NUMBER 1764 (July 7 to August 3, 1985)

CHART SYNOPTIC CARRINGTON ROTATION NUMBER 1765 (August 3 to August 30, 1985) FIELD MAGNETIC SOLAR

Dates of Observations Kitt Peak National Observatory

~ H ပ SYNOPTIC FIELD MAGNETIC SOLAR

CARRINGTON ROTATION NUMBER 1766 (August 30 to September 26, 1985)

HAR ပ SVNOPTIC MAGNETIC SOLAR

(September 26 to October 24, 1985)

Dates of Observations Kitt Peak National Observatory

CHAR SYNOPTI MAGNETIC SOLAR

CARRINGTON ROTATION NUMBER 1768 (October 24 to November 20, 1985)

HART ပ SYNOPTIC AGNETIC

SOLAR

CARRINGTON ROTATION NUMBER 1769 (November 20 to December 17, 1985)

CHAR SYNOPTIC FIELD MAGNETIC SOLAR

(December 17, 1985, to January 14, 1986)

CHART SYNOPTIC FIELD MAGNETIC SOLAR

(January 14 to February 10, 1986)

Dates of Observations Kitt Peak National Observatory

JUNE 1985
 Observation
 Decimetric Band
 Metric Band
 Dekametric Band

 Start End
 Start End Int
 Start End Int
 Start End Int

 Day (UT) (UT) Sta
 (UT) (UT) (1-3) (UT) (UT) (1-3) (UT) (UT) (1-3)
 (UT) (UT) (UT) (1-3) Spectral Type
 02 2250 2400 CHI C

02	2250	2400	CULG											
03	0000 2240	0207 2311	CULG											
05	2244	2400	CULG											
06		0730 2400	CULG											
07		07i3 2400	CULG											
08	0000	0730	CULG				0021.5	0025.5 0058.0	1	0034.0	0040.5	1	11	IIIG,V
	2031	2400	CULG				0319.0	0319.5	2	0034.0	0040.7			IIIG,U
09		0730 2400	CULG	0119.0		1	0119.0 2228.5		2			,		111B 111B
10	0000	0731	CULG				0208.0		2					IIIG
	2031	2400	CULG				0608.0 2147.0	0608.5	1					IIIG,U
			CULG				2329.0 2355.5	2330.0 2356.0	1					IIIG,U IIIG
11	0000	0720	CULG	0302.0	0304.5		0051.5 0259.0	0306.0	1					IIIB
	2032	2400	CULG		•		0546.5	0547.5	1 2					IIIG
12		0700 2400	CULG				0000.5	0007.0	2				11	
13		0705 2400	CULG				0046.0	0046.5	2					IIIG
14		0732 2400	CULG											
15	0000	0732	CULG	0159.5 0246.0	0201.5 0246.5	1	0158.5	0202.0	1					IIIS IIIG
	2032	2400	CULG CULG	0321.5	0322.0	1	2114.0 2226.5	2119.5	1					IIIG IIIS IIIB
16	0000 2033	0730 2400	CULG							,				
17	0000	0730	CULG				0014.0 0017.0	0017.0 0033.0	2				П	IIIG
	2034	2400					0017.0	0033.0	-				7	
18		0730 2400												
19		0730 2400												
20		0733 2400												
21		0709 2400												
22	0000 2034	0734 2400	CULG											
	2034	0734 2400	CULG											

JUNE 1985

	Observation			Decime	tric B	and	Metr	ic Band		Dekame	tric Band	
	Start	End		Start	End	Int	Start	End	Int	Start	End Int	
												Spectral Type
		0734										
	2034	2400	CULG									
25	0000	0734	CULG									
	2035	2400	CULG									
26	0000	0627	CULG									
	2036	2400	CULG				2211.0		1			IIIB
			CULG				2246.5		1			1118
			CULG				2248.0	2248.5	1	2248.5	1	IIIG
			CULG				2332.0		1			IIIB
27	0000	0735	CULG				0022.0					IIIB,W
			CULG				0027.0					IIIB,W
			CULG				0331.5					IIIB,W
			CULG				0434.5	0435.0				IIIB,W
			CULG				0605.5					IIIB,W
	2035	2400	CULG				2113.0	2114.0				IIIG
		*	CULG				2119.0	2124.5				IIIS
			CULG				2121.5	2129.5	2			IIIN
			CULG				2248.0		1			IIIG
			CULG				2310.5	2312.0	3			IIIG,V
			CULG				2313.0		1			IIIB
28	0000	0735	CULG				0215.5		1			IIIB
	2035	2400	CULG				2106.5	2235,5				IIIN
			CULG				2138.5	2139.0	2			IIIB,U
29		0735										
	2035	2400	CULG									
30		0735					2127.2					18601.5
		2400					2107.0	-				UNCLF

The symbols used under the column heading SPECTRAL TYPE have the following definitions:

B = Single burst

G = Small group (< 10) of bursts

GG = Large group (> 10) of burst

GG = Large group (> 10) of burst
C = Underlying continuum (particularly with Type I)
S = Storm in the sense of intermittent but
apparently connected activity
N = Intermittent activity in this period

U = U-shaped burst of Type III

RS = Reverse slope burst

DP = Drifting pairs
DC = Drifting Chains

H = Herringbone
W = Weak
P = Pulsations

CONT = Continuum
UNCLF = Unclassified activity
DCIM = Fast drift

JUIL Y 1985 Decimetric Band Observation Metric Band Dekametric Band Start End Start End Int Start End Int Start End Int Day (UT) (UT) Sta (UT) (UT) (1-3) (UT) (UT) (1-3) (UT) (1-3) Spectral Type (UT) ---------------------CULG 0000 0734 0132.5 2 LLIB CULG 0310.0 0310.5 IIIB 2039 2400 CULG 02 0000 0736 CULG 2036 2400 CULG 2118.0 2118,5 1 2116.0 2119.0 2 111G 2119.5 CULG 2122.5 3 2119.5 2122.5 3 IIIG, V 2119.5 2130.0 1 CULG CONT , H CULG 2120.0 2150,5 3 2126.0 2137.0 2 11 CULG 2120.0 2217.0 2 17 SWF, W CULG 2122.0 2150.0 2128.5 2200.0 2 CULG CULG 2223.5 2224.0 IIIG CULG 2337.0 2337.5 1 IIIG 0000 0736 CULG 2036 2400 CULG 0000 0736 CULG 2036 2400 CULG 0000 0736 CULG 2035 2400 CULG 0352.0 0000 0659 CILLG 0652.0 1 LLIG 06 CULG 0426.0 IIIG 0038 2400 2351.0 IIIG CULG 0002.5 0658,5 1 0045.5 0244.0 1 CULG IN 0000 0736 0222.0 LIIG CULG 0222.5 1 0222.5 2037 2400 CULG 2119.5 IIIB CULG 2234.0 CULG 2249.0 1 0028.0 CULG 0058.0 1 IN 0000 0736 CULG 0412.0 0608.0 IN 0608.0 0708.5 1 IS CULG 2037 2400 CULG 2228.0 2326.0 1 IN 0000 0737 CULG 0031.0 0032. 0129.5 0130.0 2 IIIB,U CULG 0139.5 0200.0 1 CONT CULG 0146.0 IIIG CULG CULG 0149.0 0217.0 2 CONT 0150.0 0220.0 1 SWF CULG 0154.0 0152.5 0154.5 2 0154.5 1 IIIG,Z CULG 0222.5 3 CULG 0154.5 0221.0 3 0157.5 11 ,н 0200.0 CULG 0705.0 2 0200.0 0656.0 2 0212.5 CULG 0342.0 DC IM, N UNCLF 0310.5 0311.0 2 CULG 0351.5 0457.0 2 1115 CULG 0705.0 0425.5 0631.5 1 0344.0 IS,C,DC CULG CULG 0457.0 0542.0 IIIN 0457.0 0646.0 CULG IIIS 0516.0 0515.0 CULG IIIG 0517.0 0517.5 1 0517.5 1 CULG 0517.0 IIIG CULG 0624.0 0625.0 1 DCIM 2400.0 1 IN 0037 2400 CULG 2136.0 2314.5 1 IIIB CULG 0458.0 1 10 0000 0737 CULG 0000.0 IN 0458.0 0705.0 1 0155.5 0552.0 IS,C CULG 0516.0 IIIB CULG 0549.0 0653.0 HIIN CULG CULG 0552.0 0708,5 2 IS,C,SCINT 0557.0 0539.5 1 DCIM CULG DC IM, CONT CULG 0604.5 0607.5 2 0637.0 0646.0 2 IIIN CULG 2141.0 2307.0 1 2037 2400 CULG 15 2307.0 2400.0 1 IN CULG 2357.0 2335,7 2 IIIG CULG 0628.0 1 0000.0 IN 11 0000 0655 CULG LLIB CULG 0004.0 1 0019.5

JULY 1985

;)bc	**!or		Decleo	tele De-		JULY	1985		Dakasa	tele D				
				Decime Start	End Bar	In†	Start	End	Int	Start					
Day	(UT)	(UT)	Sta		(UT)	(1-3)	(TU)	(UT)	(1-3)	(UT)	(UT)	(1-3)			
11	2040	2400	CULG CULG CULG	0613.0 2112.0	2400.0	1	0354.5 0442.0	0355.0	1				٠.	 ! B G	
12		0737	CULG	0000.0	0010.5 0700.0	1								IS IN	
	2037	2400	CULG				0528.5 2152.0		1					IIIB	
13		0737 2400					0515.5	0516.5	1					IIIG	
14		0737 2400					0028.5	0027.0	1					IIIB	
15		0738 2400	CULG				2343.0	2343,5	1					IIIG	
16		0725 2400													
17		0738 0738 2400	CULG	0325,5	0326.0	1	0325,5	0405,5	2	0328.0	0338.0) 1	П	ıs	
18		0738 2400					0238.5	0239.0	1					IIIG	
19	2038	2400	CULG				2351.5	2400.0	2				11		
20		0738 2400					0000.0	0026.0	1				11		
21		0658 2400	CULG												
22		0738 2400													
23		0738 2400													
24		0738 2400													
25	0000 2038		CULG												
26	0000 2038	0707 2400	CULG CULG CULG				2234.0 2236.5		1					IIIB	
27		0738 2400	CULG												
28	0000 0038		CULG												
29	0000	0738	CULG	0103.5	0707.5	1	^34 . 5	0235.0	1					IN IIIB	
			CULG	0606.5	0607.5	2	U606.5	0607.0	3	0607.0	0607.	5 2		IIIG	, V
	2038	2400	CULG CULG CULG	2103.5	2350.0	1	0628.0 2152.0 2153.5		1 1 1					IN IIIB IIIB	
30		0738 2400	CULG	0021.0	0715.5	1								IN	
31	_ ,_,		CULG	0536.0	0537.5	2	0536.0	0537.5		0536.5	0537.	0 1		IIIG	, v
		0633 2400	CULG CULG	0833.5	0336,5	1	0542.0	0543.0	1				11	IIIG	

20 0000 0735 CULG

SOLAR RADIC EMISSION SPECTRAL OBSERVATIONS

AUGUST 1985 Observation Decimetric Band Metric Band Dekametric Band | Decimetric Band | Metr | Start | End | Int | Start | (UT) | (UT) | (1-3) | (UT) | | Dekametric Band | End | Int | Start | End | Int | (UT) | (UT) | (UT) | (UT) | (1-3) | Start End (UT) (UT) (1-3) Spectral Type Day (UT) (UT) Sta ------01 0000 0738 CULG 0426.0 1 2038 2400 CULG 02 0000 0738 CULG 0414.5 0424.0 1 IN 2209.5 1 2038 2400 CULG 2059.5 IN CULG 2140.0 2206.0 1 IIIN 03 0000 0738 CULG 0153.0 2038 2400 CULG 2052.5 2217.0 1 15 2119.5 2328.0 1 CULG 2400.0 1 2217.0 IN 04 0000 0738 CULG 0002.5 0015.5 1 IN CULG 0216.0 CULG 0342.0 0613.0 0620,5 1 15 CULG 05 0000 0625 CULG 2038 2400 CULG 2040 2400 CULG 06 0000 0737 CULG 2038 2400 CULG 2058,5 2117.5 1 2103.5 2108.6 IIIN 2229.0 2229.5 2 2229.0 2229.5 2 CULG IIIG 07 0000 0737 CULG 0236.5 0137.0 1 DCIM 0309.0 0312.0 1 DCIM CULG 0309.5 0310.0 1 IIIB CULG 0310.5 CULG LIIB 0348.5 1 CULG 0348.0 DCIM CULG 0535.0 0535,5 1 IIIG 2037 2400 CULG 08 0000 0737 CULG 2125.0 2037 2400 CULG 2126.0 1 DCIM CULG 2330.5 2333.0 1 1115 09 0000 0737 CULG 0132.0 0132.0 0407.0 0407.5 CULG 0407.0 1 IIIB. V 0635,5 0636,5 1 CULG IIIG 2036 2400 CULG 10 0000 0655 CULG 2110 2400 CULG 11 0000 0736 CULG 2036 2400 CULG 12 0000 0736 CULG 2037 2400 CULG 0000 0736 CULG 2036 2400 CULG 14 0000 0736 CULG 2036 2400 CULG 0000 0736 CULG 2036 2400 CULG 0000 0730 CULG 2038 2400 CULG 17 0000 0736 CULG 2036 2400 CULG 18 0000 0736 CULG 2035 2400 CULG 19 0000 0735 CULG 2035 2400 CULG

AUGUST 1985

	Observation Start End			Decime	tric B	and	Metr	Ic Ban	d	Dekame	etric B		
	(UT)	(UT)	Sta	Start (UT)	(UT)	(1-3)	(UT)	(UT)	(1-3)	(UT)	(UT)		
		2400										 	
21		0650 2400											
22		0735 2400											
23		0735 2400											
24		0734 2400											
25		0734 2400											
26		0720 2400											
27		0733 2400											
28		0733 2400											
29		0732 2400											
30		0732 2400											
31		0705 2400										 	

The symbols used under the column heading SPECTRAL TYPE have the following definitions:

B = Single burst

G = Small group (< 10) of bursts GG = Large group (> 10) of burst

C = Undo: lying continuum (particularly with T,pe I)
S = Storm in the sense of intermittent but
apparently connected activity
N = Intermittent activity in this period
U = U-shaped burst of Type III

RS = Reverse slope burst

DP = Drifting pairs DC = Drifting Chains

H = Herringbone W = Weak P = Pulsations

CONT = Continuum
UNCLF = Unclassified activity
DCIM = Fast drift

SEPTEMBER 1985

(bserv	ation		Decimetric Band Start End Int (UT) (UT) (1-3)		Metr	ic Band		Dekame	tric Band	1			
Day	Start (UT)	(UT)	Sta	Start (UT)	End (UT)	Int (1-3)	Start (UT)	End (UT)	Int (1-3)	Start (UT)	End (UT) (1	n† -3)	Spectral	Туре
	0000	0731 2400	CULG											
02		0731 2400												
03	0000	0731 2400	CULG											
04	0000	0731	CULG											
05		2400 0657												
06		2400 0730												
	2030	2400	CULG											
07		0730 2400												
80		0730 2400												
09		0730 2400												
10		0730 2400												
11		0730 2400												
		0730 2258												
		2400												
	0000 0603	0315 0730 0727 2400	CULG											
		0730 2400												
	0643	0510 0730 2400	CULG											
17		0730 2400												
18		0730 2400					0309.0 2211.0	0309.5 2211.5		2211.0	2211.5	1	IIIG IIIG	
19	2030	2400	CULG				2139.0	2142.5	3				IIIG	
20		0730 2400												
		0730 2400												
22	0000	0058	CULG											
23		0730 2400												
24		0730 2400												

SEPTEMBER 1985

(Observ	ation		Decim	etric B	and	Met	ric Ban	d	Dekam	etric B	and		
Day	Star:	End (UT)	Sta	Start (UT)	End (UT)	Int (1-3)	Start (UT)	End (UT)	Int (1-3)	Start (UT)	End (UT)	Int (1-3)	Spectral	Туре
25		0720 2400	CULG						••••••					
26		0730 2400	CULG CULG								,			
27		0730 2400	CULG											
28		0730 2400	CULG											
29		0730 2430	CULG											
30	0000 2030	0730 2400	CULG											

B = Single burst G = Small group (< 10) of bursts

G = Small group (< 10) of bursts
GG = Large group (> 10) of burst
C = Underlying continuum (particularly with Type I)
S = Storm in the sense of intermittent but
apparently connected activity
N = Intermittent activity in this period
U = U-shaped burst of Type III

RS = Reverse slope burst DP = Drifting pairs DC = Drifting Chains

H = Herringbone W = Weak P = Pulsations

CONT = Continuum
UNCLF = Unclassified activity
DCIM = Fast drift

98 Late Oct 85

S O L A R R A D I O E M I S S I O N S P E C T R A L O B S E R Y A T I O N S

OCTOBER 1985

Day	Observ Start (UT)	end (UT)	Sta	Decime Start (UT)	tric Ba End (UT)	int (1-3)	Metr Start (UT)	ic Band End (UT)	Int (1-3)	Dekame Start (UT)	tric Ba End (UT)	int (1-3)	Spectral	Туре
	0000	0730 2400	CULG											
02		0730 2400												
03		0730 2400												
04		0730 2400												
05		0730 2400												
06		0720 2400												
07		0720 2400												
08		0720 2400												
09		0720 2400												
10	0000	0720	CULG											
11		0720 2400												
12		0600 2400												
13		0720 2400												
14		0720 2400					0607.0		2				IIIB	
15		0720 2400												
16	2020	0720 2400 2400	CULG				2031.0 2103.0		1				111B 111B	
17		0720 2400	CULG											
18	0000 2020		CULG				0607.0 2230.0	2257.0	1				IIIB IS	
19	0000	0720	CULG CULG CULG				0437.0 0459.0 0528.0	0438.0 0459.5 0529.0					G G G	
	2020	2400	CULG				0928.0	0929.0	2				1116	
20	0020 2020	0720 2400	CULG CULG CULG CULG CULG				2105.0 2157.5 2231.0 2244.0 2257.0	2116.0 2158.0 2232.0 2329.0 2258.0	2					9
21	0000	0720	CULG CULG CULG				0004.5 0133.5 0353.0 0450.0	0605.5 0135.0 0355.5 0452.5	2				N G G G	

OCTOBER 1985

(bserv	ation		Decime	tric Ban	d	Metr	ic Band		Dekame	tric Ba	nd		
Day	Start (UT)	End (UT)	Sta	Start (UT)	End (UT) (1-3)	Start (UT)	End (UT)	In† (1-3)	Dekame Start (UT)	End (UT)	In† (1-3)	Spectral	
21		2400	CULG CULG		0522.0	1	0510.0 0535.5 0538.5 2018.0 2044.0 2113.5 2232.0 2236.0 2240.0 2309.0		2 3 3 1 1 2 2 3 3				1118 1118, 1118, 1118 11116 1115 1118	, v
22	2020		CULG CULG CULG CULG CULG CULG CULG CULG				0229.0 0315.0 0349.0 0502.0 0535.5 0635.0 2054.0 2102.5 2255.5 2259.0 2305.5 2306.5	0229.5 0720.0 0504.0 0536.0 0635.5 2057.0 2103.0 2256.0 2300.0	1 1 2 3 1 2 2 1	2054.5	2056, 5	2		, U
23	0000 2016		CULG				2210.5	2212.0	2	2211.0	2213.0	2	IIIG,	, v
24		0716 2400	CULG CULG CULG CULG CULG CULG CULG	0609.5	0610.0	1	0043.5 0609.5 2139.5 2153.5 2210.5 2219.0	0610.0 2140.5 2154.0 2214.5 2226.0	2 2 2	0043.5 0249.0 0253.0 2153.5 2211.5 2219.0	2154.0	2 2		G
25			CULG CULG CULG CULG CULG CULG	2203.0	2205.0	1	0043.0 0115.0 0131.5 0141.5 2023.0 2203.0	0043.5 0133.5 0142.0 2023.5	1 1 3	0131.5 0141.5			IIIB IIIB IIIG IIIB DCIM	, v
26			CULG CULG CULG				0449.5 0501.0 2265.0	0458.0 0506.5					IN N B	
27		0705 2400					2327.5	2328.0	2	2328.0		1	IIIB	
28		0716 2400	CULG											
29			CULG											
30			CULG											
31	0000	0443	CULG											

NOVEMBER 1985

(Decimetric Band								
Day				Start (UT)			Start ('UT)	int (1-3)				Spectral	Туре
18	0514 2017						2328.0	 2	2328.0		2	IIIB	
19	0000 2017		CULG CULG										
20	0000 2017												
21	0000 2017												
22	0000	0717	CULG										
29	2047	2400	CULG										
30	0000 2024						0213.5	1				HIB	

The symbols used under the column heading SPECTRAL TYPE have the following definitions:

B = Single burst

G = Small group (< 10) of bursts

GG = Large group (> 10) of burst

C = Underlying continuum (particularly with Type I)

S = Storm in the sense of intermittent but

apparently connected activity
N = intermittent activity in this period

U = U-shaped burst of Type iii

RS = Reverse slope burst

DP = Drifting pairs

DC = Drifting Chains

H = Herringbone
W = Weak
P = Pulsations

CONT = Continuum UNCLF = Unclassified activity

DCIM = Fast drift

DECEMBER 1985

0	bserv	ation		Decime	tric Bar	nd	Metr	ic Band		Dekame	tric B	and		
Day	Start (UT)	End (UT)	Sta	Decime Start (UT)	End (UT)	Int (1-3)	Start (UT)	End ('UT')	Int (1-3)	Start (UT)	End (UT)	Int (1-3)	Spectral	Туре
	0000	0721	CULG											
02	0000	2400 0721	CULG											
0 =		2400 0722												
	022	2400	CULG											
C		0249 2400												
05		0722 2400												
06		072 <i>3</i> 2400					0013.0						IIIB	, W
07		0724 2400												
08		0724 2400												
09		0722												
10	2025	0725 2400 2400	CULG	0501.5		1	0502.0		1				IIIB	
11		0725 2400												
12		0726 2400		0023.5 0031.0 2301.0			0033.0 0031.0 2253.0	2253,5	1					, U
13		0726 2400												
14		0132 2400												
15	0000	0727	CULG	0605.5 0607.5	0606.5	2	0607.5		1				111S	
	2027	2400	CULG	2142.0		1	2156.5		1				111G	
			CULG CULG	2201.0 2204.5 2215.5	2201.5 2205.0 2217.5	1	2204.5 2216.0	2205.0 2217.0					DC 1M 111G 111G	
16	0000	0728	CULG	0225.0 0228.0	0226.0	1							DC IM	
			CULG CULG CULG	0258.0 0349.5	0300.0 0352.0		0351.0		1				DC IM DC IM I I I B	
	2028	2400	CULG	0418.0	0419.0	1	2243.5		2				IIIG	
17	0000 2027		CULG											
18	0000 2029		CULG											
19	0000		CULG											
20		0729 2400												

S O L A R R A D I O E M I S S I O N S P E C T R A L O B S E R Y A T I O N S

DECEMBER 1985

	Observ	ation		Decime	atric B	and	Metr	ic Ban		Dekame	tric B	and		
	Start	End		Start (UT)	End (UT)	Int (1-3)	Start (UT)	End (UT)	Int (1-3)	Start	End (UT)	Int (1-3)	Spectral	Туре
21	0000 2031	0730 2400												
22	0000 2032	0731 2400												
23	0000 2031	0732 2400												
24	0000 2031	0732 2227												
26	2303	2400	CULG											
27	0000 2033	0733 2400					*							
28		0733 2400												
29	0000 2035	0734 2400												
30	0000	0520	CULG											

The symbols used under the column heading SPECTRAL TYPE have the following definitions:

B = Single burst

G = Small group (< 10) of bursts GG = Large group (> 10) of burst

C = Underlying continuum (particularly with Type I)
S = Storm in the sense of intermittent but

apparently connected activity

N = Intermittent activity in this period

U = U-shaped burst of Type |||

RS = Reverse slope burst

DP = Drifting pairs
DC = Drifting Chains

H = Herringbone

W = Weak

P = Pulsations

CONT = Continuum

UNCLF = Unclassified activity
DCIM = Fast drift

105%

100%

95%

COSMIC RAY INDICES (Neutron Monitor)

105%

100%

95%

Late May-Jun 85 Bartels Rotation 2074 (May 1985-June 1985) COSMIC RAY INDICES (Neutron Monitor) = σ œ RIVER = ALERT DEEP М Ø

105%

100%

95%

105%

100%

95%

MAY

Late Jun-Jul 85 Bartels Rotation 2076 (June 1985-July 1985) COSMIC RAY INDICES (Neutron Monitor) = = œ ∞ DEEP RIVER ALERT 30 1 JUN JUL

105%

100%

95%

105%

100%

95%

Late Aug-Sep 85 Bartels Rotation 2076 (August 1985-September 1985) = œ COSMIC RAY INDICES (Neutron Monitor) F SEP ∞ RIVER あるないのとしのからないというというというないというという ALERT DEEP

100%

95%

105%

100%

95%

105%

AUG

(Neutron Monitor)

Late Oct-Nov 85 = ø Bartels Rotation 2080 (October 1985-November 1985) NOV COSMIC RAY INDICES (Neutron Monitor) ∞ RIVER ALERT DEEP M 0CT

100%

95%

105%

100%

95%

105%

Late Nov-Dec 85 Ø (November 1985-December 1985) DEC (Neutron Monitor) Bartels Rotation Ξ ∞ RIVER ALERT DEEP NOV 105% 100% 105% 100% 95% 95%

COSMIC RAY INDICES

Late Dec-Jan 86 (December 1935-January 1986) COSMIC RAY INDICES (Neutron Monitor) Bartels Rotation 2082 $\overline{\omega}$ RIVER DEEP DEC 100% 85%

Late Dec-Jan 86 Bartels Rotation 2082 (December 1985-January 1986) COSMIC RAY INDICES (Neutron Monitor) ø TOKYO KIEL = 105% 100% 105% 100% 95% 95%

May 1985

	THULE	ALERT	DEEP RIVER		CL IMAX Average			
	Average	Average	Average	Average	Average	Average	Average	Average
	(cts/h)/100	(cts/h)/100	(cts/h)/300	(cts/h)/100	(cts/h)/100	(cts/h)/100	(cts/h)/256	(cts/h)/1
1					3819.9			
2	4235	6940.2	6579.0	5932.4	3861.7	1106	3619.1	
3	4268	6984.4	6655.5	5942 1	3861.7 3886.7 3917.5	1117	3619.5	
4	4285	7020.9	6673.7	5979.3	3917.5	1137	3629.2	
5	4305	7053.8	6674.7	5987.1	3926.0	1153	3618.2	
6	4304	7079.6	6683.4	5985.4	3938.7	1174	3612.4	
7	4301	7100.8	6717.2	5998.5	3948.5	1194	3616.8	
8	4313	7100.8 7123.3 7142.4	6717.2 6730.1 6726.2	6008.6	3948.5 3947.2	1198	3628.7	
9	4338	7142 4	6726.2	6031.1	3954.2	1199	3632.1	
10	4321	7130.1	6710.5	6011.8	3962.3	1201		
11	4330	7132.9	6742.1	6016.9	3983.9	1204	3652.5	
12	4343	7165.2	6748.1	6044.9	3990.5	1212	3651.3	
13	4365	7228.9	6748.1 6776.7 6780.8	6056.8	3990.5 4022.3 4011.8	1213	3647.1	
14	4348	7218.5	6780.8	6062.9	4011.8	1214	3640.5	
15	4349	7206.4	6777.6	6057.3	3997.2	1217		
16	4359	7240.1	6777.7	6062.5	3998.2	1216	3659.7	
17	4336	7196.0	6763.7	6039.7	3971.2	1212	3643.2	
18	4330	7196.0 7252.1 7140.7	6771.4	6045.3	3971.2 3972.7(36)	1209	3635.7	
19	4359	7140.7	6812.6	6084.8		1216	3643.0	
20	4365	7123.1	6804.8	6119.2		1218	3638.4	
21	4371	7116.2	6826.2		4021.0		3640.1	
22	4381	7144.1	6833.0	6129.6	4024.0 4018.9	1214	3639.1	
23	4380	7157.7	6844.3	6121.8	4018.9	1214	3644.5	
24	4368	7130.0	6833.0 6844.3 6837.5	6096.7	4009.0	1218	3630.0	
25	4362	7093.8		6062.3	3963,9(38)	1211	2619.0	
26	4372	7092.9	6815.1	6077.1	3984.8(34)		3636.4	
27	4393	7127.0	6832.0	6109.3	4015.2 4022.8	1223	3642.7	
28	4389	7103.4	6855.4	6102.2	4022.8	1220	3641.9	
29	4386		6853.3	6101.7	4019.3	1219		
30	4406	7136.3	6870.4	6126.9	4041.3	1221	3645.1	
31	4409	7146.8	6848.2	6123.8	4035.3	1220	3646.2	
Mean		7116.2	6762.6	6048.5	3975.7	1197	3635.7	

C O S M I C R A Y I N D I C E S (Neutron Monitor)

June 1985

Day	THULE Average (cts/h)/100	ALERT Average (cts/h)/100	DEEP RIVER Average (cts/h)/300	KIEL Average (cts/h)/100	CLIMAX Average (cts/h)/100	PREDIGTSTUHL Average (cts/h)/100	TOKYO Average (cts/h)/256	HUANCAYO Average (cts/h)/100
1	4410	7156.5	6858.4 6855.5 6863.2	6134.6	4052,2(38) 4045,0		3651.5	
2	4404	7131.1	6855.5	6137.5	4045.0	1224	3648.5	
3		7141.7	6863.2	6147.0	4041.8	1223	3645.2	
4	4409	7138.5	6866.8	6160,2	4037.5	1221	3655.5	
5	4410	7127.8	6867.1	6158.8	4039.3	1222	3665.4	
6	4394	7113.7	6844.7	6139.3	4020.6	1219	3663.2	
7	4378	7105.5	6815.5	6128.3	4007.1	1215	3649.6	
8	4374	7103.9	6819.7	6121.3	4017.2	1214	3649.2	
9	4370	7103.9 7095.8 7070.0	6819.7 6786.5 6786.8	6134.8	4017.2 4007.4 4028.6	1208	3638.7	
10	4372	7070.0	6786.8	6120.0	4028.6	1216	3649.8	
11	4377	7101.3 7124.3 (21	6811.4	6154.9	4021.9	1215	3649.0	
12	4393	7124.3 (21	6830.2	6146.4	4021.9	1217	3647.7	
13	4390	7150.3 (23	6850.4	6132.4	4037.3	1215	3645.1	
14	4409	7146.2	6863.0		4045.7		3650.7	
15	4404	7148.2	6852.4	6138.4	4033.8	1216	3655.8	
16	4417	7168.1	6875.3	6076.5	4052.5	1221	3660.5	
17	4426	7178.3	6868.0 6874.4 6894.2	6137.6	4049.0	1222	3655.5	
18	4429	7199.6	6874.4	6046.3	4045.5 4059.3	1220	3640.8	
19	4443	7214.8	6894.2	6:71.9	4059.3	1223	3633.8	
20	4434	7211.2	6891.1	6349.7	4059.6	1223	3645.6	
21	4406	7168.7	6862.7 6825.4	6235.8	4047.0	1215	3629.2	
22	4389	7156.2	6825.4	6385.1	4047.0 4029.3	1211	3627.9	
23	4409	7211.7	6831.3		4046.9	1215	3632.4	
24	4415	7231.4	6850.0	6266,2	4054.5	1214	3627.0	
25	4392	7180.0	6823.9	6096.6	4062.7	1208	3622.4	
26	4391	7176.2	6831.1	6056.1	4069.0	1210	3638.1	
27	4408	7225.6	6838.9	6170.4	4064.1	1215	3636.1	
28	4409	7222.0	6858.7	6229.5	4068.8	1220	3639.2	
29	4420	7260.3	6838.9 6858.7 6855.8	6128.3	4064.1 4068.8 4062.3	1221	3636.5	
30	4423	7265.1	6863.0	6056.9	4066.3	1224	3638.8	
Mean		7164.2	6847.2	6162.6	4043.3	1218	3644.3	

July 1985

				0017 13	0,5			
Day	THULE Average (cts/h)/100	ALERT Average (cts/h)/100	DEEP RIVER Average (cts/h)/300	KIEL Average (cts/h)/100	CLIMAX Average (cts/h)/100	PREDIGTSTUHL Average (cts/h)/100	TOKYO Average (cts/h)/256	HUANCAYO Average (cts/h)/100
1	4431	7276.0	6864.9	6164.3	4065.6	1224	3647.0	
2	4434	7253.5	6874.1	6147.6	4069.8	1227	3639.1	
3	4443	7252.9	6902.2	6154.4	4078.3	1229	3636.4	
4	4414	7229.3	6843.7 6791.4	61 16.3	4044.8	1222	3629.5	
5	4388	7191.4	6791.4	6094.6	4044.8 4026.8	1219	3623.0	
6	4378	7186.0	6781.3	6102.7	4022.5	1218	3621.8	
7	4371	7174.6	6781.5 6772.3	6093.8	4012-7	1212	3625.6	
8	4372	7119.3	6772.3	6096.2	3999.6	1210	3621.2	
9	4384	7141.4 (5)	6807.7	6118.9	4022.7	1216	3635.6	
10	4392		6819.7	6119.9	4024.7	1217	3631.6	
11	4372		6852.7	6110.6	4035.2	1216	3636.1	
12	4305		6735.6	6006.9	3991,4(36)	1201	3625.9	
13	4296		6690.5	5974.4	3940.1	1196	3594.5	
14	4326	7056.1 (19	6714.2	6057.0	3977.3		3627.4	
15	4368	7124.5	6754.1	6087.6	4000.5	1214	3638.3	
16	4372	7148.4	6788.7	6097.1	4005.5		3632.1	
17	4369	7125.3	6789.5	6091.3		1214	3628.9	
18	4365	7130.5 7129.5	6785.5 6784.1	6108.9	4000.0 4016.8	1213	3624.2	
19	4382		6784。1	6136.1	4016.8	1217	3619.4	
20	4372	7120.8	6793.2	6118.1	4023,5	1214	3615.9	
21	4379	7139.6	6800.7	6112.7	4031.0	1213	3619.7	
22	4391	7148.2	6825.0	6119.3	4022,8(28)	1212	3627.8	
23	4390	7150.5	6827.3	6118.4	4026, 1(20)	1217	3629.5	
24	4398	7187.7	6841.0	6114.8	4017,1(18)		3630.0	
25	4402	7226.9	6822.6	6134.0	4029.4	1221	3630.3	
26	4412	7232.6	6830.4	6162.7	3992.9	1223	3630.1	
27	4423	7226.3	6864.3	6164.9	3996.2	1226	3630.6	
28	4419	7225.8	6865.2		3984.0(32)		3632.9	
29	4416	7216.6	6833.5	6176.8		1225	3632.6	
30	4420	7187.8	6833.5 6841.4 6822.2	6155.9		1220	3632.1	
31	4409	7203.5				1217	3625.6	
Mean		7178.0			4016.8		3628,2	

C O S M ! C R A Y I N D I C E S (Neutron Monitor)

August 1985

	THULE	ALERT	DEEP RIVER Average	KIEL	CL IMAX	PREDIGTSTUHL	TOKYO	HUANCAYO
	Average	Average	Average	Average	Average	Average	Average	Average
			(cts/h)/300					
1	4700	7104 E	6706 0	6004 0		1212		
2	4387	7192.3	6800.7	6106.6	4027,7(6)	1212		
3	4390	7186.3	6796.8	6115.9	3996.8	1209	3615.2	
4	4385	7156.4	6795.3	6126.9	4006.1	1208	3620.6	
5	4398	7149.5	6800.7 6796.8 6795.3 6812.8	6133.8	4012.0	1209	3619.0	
6	4398	7144.3	6817.0	6137.8	4010.0	1209	3618.5	
7	4393	7144.7	6817.0 6816.3	6122.5	4013.4	1211	3612.0	
8	4399	7161.3	6814.3	6112.2	4006,0(34)	1208		
9	4390	7149.3	6819.6	6108.4	4033,7(6)	1210	3619.1	
10	4385	7139.8	6819.6 6807.7	6115.0	4011.3	1213	3616.5	
11	4400	7173.3	6823.6 6844.2 6795.6 6791.0	6128.7	4017.7	1214	3612.5	
12	4394	7166.5	6844.2	6123.0	4033.6	1220	3613.3	
13	4371	7126.4	6795.6	6089.9	4025.8	1215	3617.7	
14	4390	7170.4	6791.0	6116.3	4017.1	1201		
15	4389	7151.9	6812.6	6131.4	4031.1	1201	3621.1	
16	4396	7166.5	6839.8	6156.8	4041.0	1205	3623,5	
17	4407	7158.8	6846.2	6174.6	4044.3	1225	3628, 1	
18	4418	7189.0	6846.2 6879.5 6855.6 (23)	6193.3	4045.6	1221 1222	3633.8	
19	4414	7184.0	6855.6 (23)	6188.6	4051.1	1222	3631.4	
20	4395	7163.4	6855.2	6148.2	4036.3	1219	3627.4	
21	4414	7189.0	6863.5	6145.9	4039.8	1221	3628.3	
22	4414	7193.2	6874.0	6165.5	4044.2	1215	3633.5	
23	4417	7181.8	6879.9	6167.9	4047.8	1217	3638.5	
24	4421	7177.3	6880.2	6173.7	4048.4	1203	3634.6	
25	4415	7171.7	6874.0 6879.9 6880.2 6859.4	6168.0	4049.3	1221	3635,5	
26	4394	7139.9	6819.8 6805.3	6147.1	4023.6	1222	3627.0	
27	4390	7131.9	6805.3	6116.9	4016.2	1217	3619.6	
28	4387	7146.0	6809.3	6113.1	4011.2	1218	3612.1	
29	4369	71 33. 1	6840.0	6101.3	4015.9	1218	3612.5	
30	4378	7148.8	6840.9	6100.1	4020.3	1217	3602.3	
31	4409	7180.4	6809.3 6840.0 6840.9 6832.7	6160,2	4002,7(34)	1225	3603,2	
Mean			6829.9					

C O S M I C R A Y I N D I C E S (Neutron Monitor)

SEPTEMBER 1985

				JET I EMILEN				
Day	THULE Average (cts/h)/100	ALERT Average (cts/h)/100	DEEP RIVER Average (cts/h)/300	KIEL Average (cts/h)/100	CLIMAX Average (cts/h)/100	PREDIGTSTUHL Average (cts/h)/100	TOKYO Average (cts/h)/256	HUANCAYO Average (cts/h)/10
1	4378	7155.2	6822.9	6148.5		1218	3603.2	
2	4398	7177.2	6841.9 6862.6	6164.5		1219	3607.1	
3	4422	7216.1	6862.6	6187.4		1214	3613.4	
4	4430		6855.3			1220	3616.2	
5	4433	7228.0	6878.8	6192.9		1221	3620.6	
6	4434	7244.8	6876.9	6213.0		1229	3627.9	
7	4449	7258.4	6884.0	6205.1		1231	3630.0	
8	4450	7274.9	6899.8 6902.7	6210.1		1232	3633.9	
9	4447	7259.2	6902.7	6195.2		1231	3633.6	
10	4452	7271.3	6911.9	6182.5		1236	3628.3	
1 1	4464	7306.5	6959.3	6197.4		1241	3633.1	
12	4476	7320.6	6982.1	6213.0		1244	3637.9	
13	4486	7309.4	6995.8	6235.6		1244	3646.7	
14	4475	7299.1	6971.1	6227.9		1245	3644.2	
15	4472	7297.8	6939.3	6237.7		1242	3629.7	
16	4454	7273.9	6925.2	6222.8		1240	3624.4	
17	4448	7220.5	6912.7	6194.5		1233	3627.5	
18	4434	7200.1	6890 6	6173.6		1230	3617.9	
19	4426	7207.9	6854.9	6172.3		1229	3613.2	
20	4411	7218.5	6852.1	6172.4		1229	3615.5	
21	4438	7238.7	6874.9	6179.7		1232	3620.5	
22	4437	7245.5	6888.8	6184.2		1230	3621.2	
23	4436	7243.5	6886.8	6180.4		1234	3618.1	
24	4424	7236.5	6885.3	6178.6		1233	3608.0	
25	4426	7238.8	6894.5	6172.9		1233	3616.3	
26	4433	7247.9	6894.3	6167.0		1237	3618.8	
27	4450	7289.6	6894.0	6187.3		1238	3628.7	
28	4448	7272.6	6908.3	6199.8		1239	3622.6	
29	4462		6901.2	6196.7		1240	3617.1	
30	4465	7280.0				1239	3625.7	
Mean		7252.2		6192.4		1232.8		

October 1985

				October				
Day	THULE Average (cts/h)/100	ALERT Avarage (cts/h)/100	DEEP RIVER Average (cts/h)/300	KIEL Average (cts/h)/100	CLIMAX Average (cts/h)/100	Average (cts/h)/100	TOKYO Average (cts/h)/256	HUANCAYO Average (cts/h)/100
1	4475	7300.0	6900.9	6192.6		1241	3631.7	
2	4486	7343.5	6951.6	6223.8		1243	3643.2	
3	4423	7230.3	6890.3	6162.5		1236	3632.0	
4	4436	7255.6	6890.7	6184.8		1240	3628.7	
5	4419	7217.5	6864.3	6165.4		1241	3632.1	
6	4420	7210.8	6869.5	6149.8		1239	3624.4	
7	4439	7232.9	6882.3	6162.2		1239	3634.7	
8	4463	7278,7	6884.4	6219.3		1237	3642.2	
9	4476	73 .9	6889.2	6234.4		1234	3640.3	
10	4481	7308.7	6911.0	6213.3		1238	3640.4	
11	4479	7308.6	6924.6	6190.7		1236	3631.2	
12	4447	7251.1	6887.8	6170.2		1230	3632.9	
13	4440	7239.0	6862.5	6162.1		1232	3633.4	
14	4414	7190.8	6852.8	6136.5		1229	3635.4	
15	4421	7210.7	6870.3	6156.1		1228	3641.2	
16	4437	7251.2	6910.5	6182.0		1232	3632.6	
17	4441	7230.9	6885.6	6188.4		1229	3630.1	
18	4436	7224.5	6869.4	6178.1		1229	3633.9	
19	4442	7241.5	6871.4	6169.6		1228	3629.2	
20	4445	7249.5	6902.7	6169.3		1229	3625.5	
21	4437	7231.9	6882.5	6156.4		1226	3628.0	
22	4439	7228.4	6879.8	6153.4		1230	3636.8	
23	4444	7257.5	6883.5	6179.4		1233	3644.0	
24	4451	7261.0	6910.5	6197.6		1236	3645.9	
25	4462	7296.1	6935.9	6212.8		1238	3649.6	
26	4445	7268.2	6937.6	6228.2		1241	3650.0	
27	4443	7243.3	6941.8	6242.3		1242	3651.0	
28	4445	7229.5	6947.3	6228.8		1239	3652.9	
29	4447	7246.4	6942.5	6230.2		1244	3646.3	
30	4446	7257.3	6927.2	6243.3		1225	3637.8	
31	4442	7249.9	6932.4	6254.9		1238	3635.6	
Mean		7253.3	6900.1	6191.5		1235	3637.2	

NOVEMBER 1985

Day	(cts/h)/100	Average	DEEP RIVER Average (cts/h)/300	Average	Average	PREDIGTSTUHL Average (cts/h)/100	Average	HUANCAYO Average (cts/h)/100
1	4438	7261.1	6940.5	6266.4		1235	3640.7	
2	4456	7269.3	6938.0	6285.4		1232	3663.2	
3	4463	7285.0		6271.7		1237	3655.5	
4	4482	7294.8	6947.7	6275.4		1240	3656.4	
5	4489	7325.3	6956.1	6309.9		1241	3655,6	
6	4484	7300.2	6966.2	6295.4		1241	3650.7	
7	4493	7320.5	6966.3	6277.4		1241	3653.8	
8	4498	7331.3	7001.0	6272.8		1241	3662.4	
9	4478	7315.7	6960.3	6256.9		1233	3651.7	
10	4468	7297.8	6923,2	62685,2		1234	3653.7	
11	4491	7305, 1	6950.3	6286.9		1227	3665.5	
12	4498	7315.0	6965.9	6270.0		1226	3659.5	
13	4488	7315.3	6935.4	6237.4		1217	3656.0	
14	4476	7290.3	6919.5	6222.3		1211	3656.5	
15	4475	7293.2	6923.8	6218.2		1213	3651.2	
16	4485	7306.8	6935,2	6219.8		1217	3646.5	
17	4480	7293.9	6920.2	6210.4		1216	3643.4	
18	4463	7270.7	6898.0	6205.0		1218	3653.0	
19	4484	7301.2	6894.1	6230.6		1222	3656.9	
20	4477	7293.5	6914.8	6226.7		1219	3648.8	
21	4472	7277.3	6945.0	6233.0		1217	3644.2	
22	4492	7319, 1	6963.7	6268.4		1210	3648.6	
23	4491		6955.0	6267.0		1223	3646.6	
24	4492	7340.3	6985.9	6278.6		1222	3647.9	
25	4479	7321.4	6987.2	6291.1		1221	3662.2	
26	4467	7276.8	6982.5	6308.6		1221	3661.5	
27	4470	7294.1	6947.1	6304.7		1221	3666.3	
28	4489	7313.1	6973.7	6295.3		1220	3652.6	
29	4464	7261.4	6936.6	6231.8		1213	3654.8	
30	4439	7214.7	6888.5	6196.2		1202	3655.1	
Mean	4477	7297.5	6945.0	6259.4		1224	3654.0	

C O S M I C R A Y I N D I C E S (Neutron Monitor)

DECEMBER 1985

	THULE	ALERT	DEEP RIVER	KIEL	CL IMAX	PRED IGT STUHL	TOKYO	HUANCAYO
	Average	Average	Average	Average	Average	Average	Average	Average
Day	(cts/h)/100	(cts/h)/100	(cts/h)/300	(cts/h)/100	(cts/h)/100	(cts/h)/100	(cts/h)/256	(cts/h)/100
1	4457	7241	6397	6186.9		1200	3645.5	
2	4464	7263	6967	6213.8		1213	3652.6	
3	4467	7258	6961	6215.3		1226	3656.9	
4	4468	7268	6957	6225.1		1234	3647.7	
5	4470	7297	6956	6256.2		1240	3652.7	
6	4485	7324	6986	6282.7		1248	3652.5	
7	4488	7331	6975	6273.2		1245	3652.4	
8	4494	7339	6975	6265.1		1244	3652.9	
9	4506	7347	6993	6283.4		1247	3667.9	
10	4486	7317	6954	6260.6		1239	3663.3	
	4476	7206	6004	6227 0		1220	7656.0	
11 12	4476	7296	6904	6227.9		1229	3656.8	
13	4485 4448	73 15 72 4 3	6956 6907	6226.2 6199.3		1224	3664.0	
14	4446	7245	6932			1219	3542.4	
15	4452	7259	6941	6193.6		1222	3641.1	
15	4432	1239	0941	6196.1		1220	3649.8	
16	4465	7267	6951	6203.9		1215	3649.8	
17	4466	7274	6951	6206.0		1221	3650.0	
18	4426	7204	6901	6180.1		1212	3629.2	
19	4399	7176	6854	6153.2		1194	3616.4	
20	4410	7172	6866	6165.1		1196	3625.5	
21	4431	7207	6905	6164.0		1180	3630.4	
22	4449	7234	6920	6192.3		1186	3626.8	
23	4454	7235	6924	6199.4		1201	3631.3	
24	4454	7240	6917	6228.9		1209	3639.5	
25	4467	7253	6953	6238.3		1209	3642.5	
26	4460	7275	6077	6250 7		1211	7657 1	
26 27	4468 4474	7275 7293	6973 6967	6259.3		1211 1209	3653.1	
28	4474	7295 7215	6917	6260.9 6227.4		1209	3550.0	
29	4452	7241	6932	6237.0		1193	3649.1 3644.1	
30	4452	7188	6902	6189.7		1178		
30	4417	/100	0902	0109.7		11/8	3633,3	
31	4437	7217	6896	6209.6		1179	3637.0	
Mean	4458	7259	6935	6220.0		1214	3645.4	

C A L C I U M P L A G E R E G I O N S (ORDURED BY CENTRAL MERIDIAN PASSAGE DATE)

Calcium Plage Region	Sta	Obs Mo	erva Day	ation Time (UT)	Lat	CMD	CM Mo	IP Day	Intensity	Corrected Area (10-6 Hemi)	NOAA/USAF #1	Sunspot #2	Groups #3
19042 19042 19042 19042	BIGB BIGB BIGB BIGB	08 08 08 09	29 30 31	2059 1445 1500 1505	N04 N04 N04 N06	E67 E54 E39 E26	09 09 09	3.9 3.6 3.5 3.6	1.0 1.0 1.5 1.0	0200 0200 0100 0100	4304C 4304C 4304C 4304C		
19050 19050 19050 19050 19050 19050 19050 19050	BIGB BIGB BIGB BIGB BIGB BIGB BIGB	09 (09 (09 (09 (01 02 03 04 05 06	1505 1515 1843 1701 1855 2142 2205 2302	N10 N10 N10 N10 N10 N10 N10	E39 E26 E10 W04 W19 W33 W46 W60	09 09 09 09 09 09	4.5 4.6 4.5 4.4 4.4 4.5 4.4	2.5 2.5 3.0 3.0 3.0 3.0 3.5	0200 0900 1000 1500 1800 1800 1950 1600	4304 4304 4304 4304 4304 4304 4304 4304		
19043 19043 19043 19043 19043 19043 19043 19043 19043	BIGB BIGB BIGB BIGB BIGB BIGB BIGB BIGB	09 (09 (09 (09 (09 (31 01 02 03 04 05 06	1445 1500 1505 1515 1843 1701 1855 2142 2205 2302	N12 N15 N14 N14 N14 N14 N14	E80 E65 E55 E41 E26 E14 W03 W15 W27 W39	09 09 09 09 09 09 09	5.6 5.5 5.8 5.7 5.7 5.8 5.6 5.8 5.9	2.5 2.5 2.5 3.0 2.5 2.5 2.0 2.0 2.0	0500 0500 1000 1000 1000 0900 0600 0700 0650	4301 4301 4301 4301 4301 4301 4301 4301		
19044 19044 19044 19044 19044 19044 19044 19044 19044	BIGB BIGB BIGB BIGB BIGB BIGB BIGB BIGB	09 (09 (09 (01 02 03 04 05 06		S08 S09 S09 S09 S08 S09	E 65 E 54 E 39 E 26 E 10 W 04 W 17 W 31	09 09 09 09 09 09	6.1 6.5 6.7 6.7 6.5 6.6 6.6	3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.5	0600 1200 1500 1700 1000 0900 0900	4303 4303 4303 4303 4303 4303 4303 4303		
19047 19047 19047 19047 19047 19047 19047 19047 19047	BIGB BIGB BIGB BIGB BIGB BIGB BIGB BIGB	09 (0 09 (0 09 (0 09 (0 09 (1 09 1	03 04 05 06 07 08 12	1855 2142 2205 2302 1751 1520	\$11 \$10 \$10 \$10 \$09 \$10	E73 E61 E45 E29 E16 E02 W12 W63 W78	09 09 09 09 09 09 09	8.1 8.4 8.1 8.0 8.1 8.0 8.0 7.8	2.5 3.0 3.0 2.5 2.5 2.5 3.5 3.5 3.0	1000 1700 1500 1200 1200 1100 1300 1300 1450 0850	4305 4305 4305 4305 4305 4305 4305 4305		
19053 19053 19053 19053	BIGB BIGB BIGB BIGB	09 0 09 1 09 1	12	2302 1751 1520 1653	N06 N08 N08 N08	W04 W54 W69	09	8.7	2.5 2.5 2.0 1.0	0150 0450 0450 0300	4311 4311 4311 4311		
19049 19049 19049 19049 19049 19049 19049 19049 19049 19049	BIGB BIGB BIGB BIGB BIGB BIGB BIGB BIGB	09 0 09 0 09 0 09 0 09 0 09 1 09 1	04 05 06 07 08 12	1843 1701 1855 2142 2205 2302 1751 1520 1653 1500	\$15 \$14 \$14 \$13 \$13 \$12 \$12 \$13 \$13 \$13	E59 E45 E31 E17 E03 W46 W60 W62	09 09 09 09 09	9.8 9.2 9.2 9.2 9.2 9.3 9.1	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 1.5	0800 1500 1500 1700 1700 1800 1650 1300 1300	4312A 4312A 4312A 4312A 4312A 4312A 4312A 4312A 4312A 4312A		
19054	BIGB	09 0	8	2302	N07	E07	09	9.5	1.5	0075			
19048 19048 19048 19048 19048 19048 19048	BIGB BIGB BIGB BIGB BIGB BIGB	09 0 09 0 09 0 09 0 09 0 09 0	13 14 15 16 17	1515 1843 1701 1855 2142 2205 2302	S04 S05 S05 S03 S03 S02 S03	E73 E65 E47 E37 E25	09 09 09 09	8.4 9.2 9.6 9.3 9.7 9.8 9.9	1.5 2.5 2.0 2.0 2.0 2.0 2.5	0700 1300 1200 1000 1000 1000	4306 4306 4306 4306 4306 4306 4306		

C A L C I U M P L A G E R E G I O N S (ORDERED BY CENTRAL MERIDIAN PASSAGE DATE)

Calcium Plage Region	Sta	Observ Mo Day	ration Time (UT)	Lat CM	CMP Mo Day	Intensity	Corrected Area (10-6 Hemi)	NOAA/USAF #1	Sunspot #2	Groups #3
19048 19048 19048 19048	BIGB	09 12	1520 1653	S02 W3 S01 W4 S02 W5 S03 W7	09 10.0 09 10.4 09 10.1	1.5 1.5 1.5	0850 0850 0700 0750	4306 4306 4306		
19051 19051 19051 19051 19051 19051 19051 19051 19051 19051	BIGB BIGB BIGB BIGB BIGB BIGB	09 05 09 06 09 07 09 08 09 12 09 13 09 14 09 15	2142 2205 2302 1751 1520 1653	S15 E7/ S13 E5 S13 E4 S13 E3 S13 E1/ S12 W3/ S12 W4/ S12 W6/ S06 W7/	0 09 10.0 0 09 10.2 0 09 10.4 0 09 10.4 0 09 10.5 0 09 10.5 1 09 10.5 0 09 10.5 0 09 10.5	3.0 3.0 3.0 3.0 2.5 3.0 2.5 1.5	1200 2700 2500 2600 2400 2400 2500 2350 2400 0400	4307 4307 4307 4307 4307 4307 4307 4307		
19052 19052 19052 19052 19052 19052 19052 19052 19052	BIGB BIGB BIGB BIGB BIGB	09 05 09 06 09 07 09 08 09 12 09 13	2142 2205 2302 1751 1520 1653	N17 E7 N17 E7 N18 E5 N19 E4 N19 E2 N19 W2 N18 W3 N19 W5 N20 W6	9 09 10.7 10 09 11.1 13 09 11.3 14 09 11.0 15 09 11.0 16 09 11.0 17 09 10.7 18 09 10.8	2.0 2.5 2.5 2.5 2.0 1.0 1.5 1.5	0400 0600 0600 0850 0800 0600 0600 0350 0300	4308 4308 4308 4308 4308 4308 4308 4308		
19055 19055 19055 19055 19055 19055 19055 19055	BIGB BIGB BIGB BIGB BIGB	09 06 09 07 09 08 09 12 09 13 09 14 09 15 09 16	2205 2302	\$24 E56 \$23 E4 \$23 E25 \$23 W25 \$23 W35 \$22 W45 \$21 W55 \$20 W75	09 11.2 09 11.2 09 11.2 09 11.1 2 09 11.1 09 11.1 09 11.1	3.0 2.5 3.5 3.0 3.5 2.5 2.5	0250 0525 0500 0525 0500 0500 0500	4310 4310 4310 4310 4310 4310 4310 4310		
19071 19071		09 12 09 13	1751 1520	S02 W06 S03 W18	09 12.3		0175 0100			
19056	BIGB BIGB BIGB BIGB BIGB BIGB BIGB	09 06 09 07 09 08 09 12 09 13 09 14 09 15	2205 2302 1751 1520 1653 1500 1923	NO6 E78 NO7 E75 NO7 E66 NO7 E46 NO6 WO9 NO7 W11 NO7 W30 NO8 W4. NO9 W58 NO9 W73	09 11.6 09 12.4 09 12.5 09 12.4 09 12.4 09 12.4 09 12.4 09 12.4 09 12.4 09 12.4	2.0 3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.5	0700 1700 2000 1850 1900 1900 1800 1750 1700	4313 4313 4313 4313 4313 4313 4313 4313	4314 4314 4314 4314 4314 4314 4314 4314	
19057 19057 19057 19057 19057 19057 19057 19057 19057 19057	BIGB BIGB BIGB BIGB BIGB BIGB BIGB BIGB	09 05 09 06 09 07 09 08 09 12 09 13 09 14 09 15 09 16 09 17 09 18	1855 2142 2205 2302 1751 1520 1653 1500 1923 2312 1645	\$05 E86 \$05 E77 \$05 E66 \$05 E49 \$05 W06 \$05 W26 \$05 W26 \$04 W46 \$02 W56 \$04 W66 \$07 W73	09 12.2 09 12.5 09 12.6 09 12.4 09 12.4 09 12.7 09 12.7 09 12.6 09 12.9	1.0 2.5 2.5 2.5 2.0 2.0 1.5 2.0 2.0 2.1	0500 1250 2000 1900 1300 1400 1400 1100 1300 0500	4315 4315 4315 4315 4315 4315 4315 4315		
19058 19058 19058 19058 19058 19058 19058 19058 19058	BIGB BIGB BIGB BIGB BIGB BIGB BIGB	09 07 09 08 09 12 09 13 09 14 09 15 09 16 09 17 09 18	2205 2302 1751 1520 1653 1500 1923 2312 1645	\$20 E70 \$20 E58 \$18 E06 \$17 W05 \$16 W21 \$15 W33 \$14 W48 \$15 W65 \$16 W72	09 13.4 09 13.2 09 13.2 09 13.1 09 13.1 09 13.2 09 13.0	2.0 1.0 1.5 1.5 1.5 1.5 1.5	0825 0850 0700 0750 0700 0575 0575 0600			
19061	BIGB	09 13	1520	N15 W06	09 13.2	1.0	0100			

C A L C I U M P L A G E R E G I O N S (ORDERED BY CENTRAL MERIDIAN PASSAGE DAIE)

Calcium Plage Region	Sta	Observ Mo Day	ation Time (UT)	Lat CMD	CMP Mo Day	Intensity	Corrected Area (10-6 Hemi)	NOAA/USAF #1	Sunspot Groups #2 #3
19061 19061 19061 19061	BIGB BIGB BIGB	09 14 09 15 09 16 09 17	1653 1500 1923	N15 W19 N16 W32 N16 W46 N16 W64 N15 W78	09 13.3 09 13.2 09 13.3 09 13.1 09 12.8	1.0 1.0 2.5 3.0 3.5	0125 0125 0150 0350 0700		
19069 19069		09 15 09 16		S03 W27 S03 W42	09 13.6 09 13.7	2.0	0375 0450	4315D 4315D	
19070	BIGB	09 15	1500	N13 W22	09 14.0		0125		
19063 19063 19063 19063 19063	BIGB BIGB BIGB BIGB	09 16 09 17	1653 1500	S03 E15 S03 E01 S02 W12 S03 W27 S04 W40 S05 W51	09 14.7 09 14.8 09 14.7 09 14.8 09 15.0 09 14.9	1.5 1.0 1.0 1.0 3.0 3.0	0125 0100 0100 0100 0275 0600	4318 4318 4318 4318 4318 4318	4320 4320 4320 4320 4320 4320 4320
19062	BIGB	09 13	1520	NO8 E19	09 15.1	1.5	0175		
19059 19059 19059 19059 19059 19059 19059 19059 19059 19059	BIGB BIGB BIGB BIGB BIGB BIGB BIGB BIGB	09 16	2302 1751 1520 1653 1500 1923 2312 1645	N16 E80 N17 E75 N18 E30 N20 E16 N20 E06 N22 W06 N20 W22 N21 W36 N19 W48 N20 W80	09 14.0 09 14.6 09 15.0 09 14.9 09 15.2 09 15.2 09 15.1 09 15.2 09 15.0 09 15.8	1.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	0400 1300 1300 1400 1400 1400 1300 1400 14		
19064 19064 19064 19064 19064 19064	BIGB BIGB BIGB BIGB	09 14 09 15 09 16 09 17	1520 1653 1500 1923	S21 E35 S19 E23 S17 E09 S18 W04 S19 W19 S17 W33 S19 W40	09 15.4 09 15.4 09 15.4 09 15.3 09 15.3 09 15.4 09 15.6	1.5 2.0 2.0 2.0 2.0 2.0	0600 0800 1100 1000 0800 0850 0850		
19060 19060 19060 19060			1520	N12 E40 N13 E27 N13 E13 N13 W02	09 15.7 09 15.7		0200 0250 0200 0250	4320A 4320A 4320A 4320A	
19065 19065	BIGB BIGB BIGB BIGB BIGB BIGB	09 14 09 15		S13 E27		3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5	0225 0800 0800 1000 0900 1200 1300 1200 1000	4317 4317 4317 4317 4317 4317 4317 4317	
19076 19076 19076 19076	BIGB BIGB	09 21 09 22 09 23 09 24	2203 1910 1630 1715	N14 W47 N15 W58 N15 W71 N13 W85	09 18.4 09 18.4 09 18.3 09 18.3	2.0 2.0 2.0 2.0	0525 0650 0650 0600	4322 4322 4322 4322	
19066 19066		09 13 09 14	1520 1653	NO3 E69 NO4 E56	09 18.8 09 18.9	1.5 1.5	0200 0200		
19068 19068 19068 19068 19068 19068 19068 19068	BIGB BIGB BIGB BIGB BIGB BIGB	09 14 09 15 09 16 09 17 09 18 09 21 09 22 09 23 09 24	1653 1500 1923 2312 1645 2203 1910 1630 1715	\$14 E70 \$14 E57 \$16 E52 \$15 E37 \$14 E28 \$14 W12 \$14 W25 \$14 W36 \$14 W48	09 20.0 09 19.9 09 20.7 09 20.8 09 20.8 09 21.0 09 20.9 09 21.0	3.0 2.5 2.5 2.0 1.5 1.5 1.0	1300 0750 0800 1300 1350 1300 1000 0900	4321 4321 4321 4321 4321 4321 4321 4321	

C A L C I U M P L A G E R E G I O N S (ORDERED BY CENTRAL MERIDIAN PASSAGE DATE)

1906	Calcium Plage Region	Obse Sta Mo D	ervation Time Day (UT)	Lat CMD	CMP Mo Day	Intensity	Corrected Area (10-6 Hemi)	NOAA/USAF Sunspot Groups #1 #2 #3
1906								
19073	19067 19067 19067 19067 19067 19067 19067 19067 19067	BIGB 09 1 BIGB 09 1 BIGB 09 1 BIGB 09 1 BIGB 09 1 BIGB 09 2 BIGB 09 2 BIGB 09 2	14 1653 15 1500 16 1923 17 2312 18 1645 21 2203 22 1910 23 1630 24 1715	N14 E71 N13 E61 N13 E47 N14 E31 N15 E21 N16 W19 N15 W25 N15 W41 N15 W58			1400 1300 1500 1600 1600 1400 1500 1500	
19072 8168	19073 19073 19073 19073 19073	BIGB 09 1 BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2	17 2312 18 1645 21 2203 22 1910 23 1630 24 1715	S15 E60 S15 E52 S14 E08 S14 W03 S14 W14 S14 W28	09 22.5 09 22.6 09 22.6 09 22.6 09 22.6 09 22.6 09 22.6	1.0 1.5 2.0 1.0 1.5 1.0	0525 0850 0700 0550 0550 0450	
19080				S14 W79	09 22.8 09 22.9	3.5 3.0	1000	
19080	19072 19072 19072 19072 19072 19072 19072 19072	BIGB 09 1 BIGB 09 1 BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2	2312 8 1645 21 2203 22 1910 23 1630 24 1715 25 1755 27 1804	\$12 E79 \$10 E69 \$06 E60 \$07 E18 \$07 E06 \$07 W06 \$06 W20 \$07 W33 \$06 W60 \$06 W71	09 22.7 09 23.1 09 23.2 09 23.3 09 23.2 09 23.2 09 23.2 09 23.3 09 23.3	1.0 3.0 3.5 3.0 2.5 2.5 2.0 2.0	0300 1750 1900 1900 1850 1850 1650 1500 1500	4319 4319 4319 4319 4319 4319 4319
19080	19074	BIGB 09 1	8 1645	S08 E78	09 24.5	2.0	0200	
19075 B1GB 09 25 1755 S09 W07 09 25.2 2.5 1850 19075 B1GB 09 27 1804 S10 W35 09 25.1 2.0 1850 19075 B1GB 09 28 2041 S11 W47 09 25.3 2.5 1850 19078 B1GB 09 25 1755 N07 W04 09 25.4 1.5 0300 4325 19078 B1GB 09 21 2203 S17 E56 09 26.0 3.0 0900 4323A 19078 B1GB 09 22 1910 S16 E43 09 26.1 3.5 0850 4323A 19078 B1GB 09 24 1715 S16 E17 09 26.0 3.0 0850 4323A 19078 B1GB 09 27 1804 S16 W23 09 26.1 3.0 0850 4323A 19078 B1GB 09 22 </td <td>19080</td> <td>BIGB 09 2</td> <td>1715</td> <td>S17 E12 S17 W00</td> <td>09 24.6 09 24.7</td> <td>1.5 1.5</td> <td>0150 0200</td> <td></td>	19080	BIGB 09 2	1715	S17 E12 S17 W00	09 24.6 09 24.7	1.5 1.5	0150 0200	
19078 BIGB 09 21 2203 S17 E56 09 26.2 3.0 0825 4323A 19078 BIGB 09 22 1910 S16 E43 09 26.0 3.0 0900 4323A 19078 BIGB 09 23 1630 S16 E32 09 26.1 3.5 0850 4323A 19078 BIGB 09 24 1715 S16 E17 09 26.0 3.0 0850 4323A 19078 BIGB 09 25 1755 S17 E05 09 26.1 3.0 0850 4323A 19078 BIGB 09 27 1804 S16 W23 09 26.0 3.0 0600 4323A 19078 BIGB 09 27 1804 S16 W35 09 26.2 2.5 0650 4323A 19078 BIGB 09 22 1910 S11 E50 09 26.2 2.5 0650 4323A <td< td=""><td>19075 19075 19075 19075 19075</td><td>BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2</td><td>1910 1630 14 1715 1755 17 1804</td><td>S11 E27 S08 E17 S08 E03 S09 W07 S10 W35</td><td>09 25.2 09 25.1</td><td>2.5</td><td>1900 2000 1850 1850 1850</td><td></td></td<>	19075 19075 19075 19075 19075	BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2	1910 1630 14 1715 1755 17 1804	S11 E27 S08 E17 S08 E03 S09 W07 S10 W35	09 25.2 09 25.1	2.5	1900 2000 1850 1850 1850	
19078 BIGB 09 22 1910 S16 E43 09 26.0 3.0 0900 4323A 19078 BIGB 09 23 1630 S16 E32 09 26.1 3.5 0850 4323A 19078 BIGB 09 24 1715 S16 E17 09 26.0 3.0 0850 4323A 19078 BIGB 09 25 1755 S17 E05 09 26.1 3.0 0850 4323A 19078 BIGB 09 27 1804 S16 W23 09 26.0 3.0 0600 4323A 19078 BIGB 09 28 2041 S16 W35 09 26.2 2.5 0650 4323A 19077 BIGB 09 21 2203 S11 E60 09 26.2 2.5 0650 4323A 19077 BIGB 09 22 1910 S11 E50 09 26.6 2.0 2000 19077 BIGB 09 23 1630 S11 E40 09 26.7 3.0 3000 19077 BIGB 09 24 1715 S11 E30 09 27.0 3.0 3000 19077 BIGB 09 25 1755 S14 E17 09 27.0 3.0 3000 19077 BIGB 09 27 1804 S14 W09 09 27.1 2.5 3000 19077 BIGB 09 28 2041 S14 W23 09 27.1 2.5 3000 19077 BIGB 09 28 2041 S14 W23 09 27.1 2.5 3000 19077 BIGB 09 28 2041 S14 W23 09 27.1 2.5 3000 19077 BIGB 09 28 2041 S14 W23 09 27.1 2.5 3000 19077 BIGB 10 02 1751 S16 W74 09 27.2 1.6 2490	19083	BIGB 09 2	25 1755	NO7 WO4	09 25.4	1.5	0300	4325
19077 BIGB 09 22 1910 S11 E50 09 26.6 2.0 2000 19077 BIGB 09 23 1630 S11 E40 09 26.7 3.0 3000 19077 BIGB 09 24 1715 S11 E30 09 27.0 3.0 3000 19077 BIGB 09 25 1755 S14 E17 09 27.0 3.0 3000 19077 BIGB 09 27 1804 S14 W09 09 27.1 2.5 3000 19077 BIGB 09 28 2041 S14 W23 09 27.1 2.5 3000 19077 BIGB 10 02 1751 S16 W74 09 27.2 1.6 2490	19078 19078 19078 19078 19078	BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2	1910 3 1630 4 1715 5 1755 7 1804	S16 E43 S16 E32 S16 E17 S17 E05 S16 W23	09 26.0 09 26.1 09 26.0 09 26.1 09 26.0	3.0 3.5 3.0 3.0 3.0	0900 0850 0850 0850 0600	4323A 4323A 4323A 4323A 4323A
19079 BIGB 09 21 2203 S20 E83 09 28.3 2.5 2000 4324	19077 19077 19077 19077 19077 19077	BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2 BIGB 09 2	2 1910 3 1630 4 1715 5 1755 7 1804 8 2041	S11 E50 S11 E40 S11 E30 S14 E17 S14 W09 S14 W23	09 26.6 09 26.7 09 27.0 09 27.0 09 27.1 09 27.1	2.0 3.0 3.0 3.0 2.5 2.5	2000 3000 3000 3000 3000 3000	
	19079	BIGB 09 2	1 2203	S20 E83		2.5		4324

C A L C I U M P L A G E R E G I O N S (ORDERED BY CENTRAL MERIDIAN PASSAGE DATE)

Calcium Plage Region	Sta	Ob:	serv. Day	ation Time (UT)	Lat	CMD	CI Mo	1P Day	Intensity	Corrected Area (10-6 Hemi)	NOAA/USAF #1	Sunspot #2	Groups #3
19079 19079 19079 19079 19079 19079 19079	BIGB BIGB BIGB BIGB BIGB BIGB BIGB	09 09 09 09	27 28 02	1910 1630 1715 1755 1804 2041 1751 1924	S17 S20 S20 S20 S20 S22	E68 E57 E48 E35 E08 W04 W55 W71	09 09 09 09 09	28.0 28.4 28.4 23.4 28.5 28.6 28.4	3.5 3.5 3.2	3100 3400 3300	4324 4324 4324 4324 4324 4324		
19081 19081 19081 19081 19081 19081 19081	BIGB BIGB BIGB BIGB BIGB BIGB	10	25 27 28 02	1715 1755 1804 2041 1751 1924 1710	N08 N08 N10 N10 N10	E78 E70 E44 E30 W26 W40 W68	10 10 10 09 09	30.6 1.0 1.1 30.8 30.8 30.6	2.0 2.5 2.5 2.5 .7 1.0 1.2	1200 1800 1800 1700 0730 0679 0679	4324C 4324C 4324C 4324C 4324C		
19082 19082 19082 19082 19082 19082 19082	BIGB BIGB BIGB BIGB BIGB BIGB	09 09	25 27 28 02 03	1715 1755 1804 2041 1751 1924 1710	S15 S16 S14 S16 S16	E74 E65 E42 E27 W25 W40 W71	09 09 09 09	3C.3 30.7 30.9 30.9 30.8 30.8	2.5 2.5 3.0 3.0 .8 1.2 1.5	1100 1800 1600 1600 1193 0938 0718	4326 4326 4326 4326 4326		

DAILY PLAGE SUMMARIES

Day	Sta	Index	Count	Smallest Plage (Millionths	Plage of Solar	Area Hemisphere)	Smallest Intensity	Largest Intensity
01 02 03 04 05	BIGB BIGB BIGB BIGB BIGB	14.4 16.1 18.3 20.8 20.9	12 11 11 12 13	100 500 500 400 500	2000 2000 1800 1900 2700	10150 11400 13900 13500 13800	1.0 1.5 1.0 2.0	3.0 3.0 3.0 3.0 3.0
06 07 08 09 10	.,,	24.6 30.9 33.5 servati servati	OHO III.	o Duy	2500 2600 2400	14550 16600 17075	1.0 1.0 1.0	3.0 3.5 3.5
11 12 13 14 15	BIGB	servati 26.6 26.5 23.8 20.6	1.5	175 100 100 100	2400 2500 2350 2400	14175 16350 16875 14800	1.0 1.0 1.0	3.5 3.5 3.5 3.5
16 17 18 19 20	BIGB No Ob	15.7 18.0 18.1 servati servati	ons Thi	200 s Day	1700 1750 1900	12650	1.0 1.5 1.0	3.0 3.5 3.5
21 22 23 24 25	BIGB BIGB BIGB BIGB	18.6 21.1 26.3 29.5 33.1	11 10 10 12 12	525 550 150 200 200	2000 2500 3100 3400 3300	13650 13850 14550 16800 17550	1.0 1.0 1.0 1.0	3.5 3.5 3.5 4.0 4.0
26 27 28 29 30	BIGB BIGB No Ob No Ob	31.8 servati servati	9 10 ons Thi ons Thi	150 300 s Day s Day	3500	14600 16400	2.0	3.5 3.5

BIG BEAR SOLAR OBSERVATORY ACTIVE REGION SUMMARY SEPTEMBER 1983

REGION	IDENTIFICATION	AGE	FIRST SEEN	DURATION
19042 050 043 044	19007 New New New	2 1 1	830829 830901 830830 830901	03 days >09 >10 >09
047	New	<u>i</u>	830902	13
053	New	1	830908	07
048	19015	2	830902	14
049	19014	2	830903	13
054	New	1	830908	>01
051	19016	2	830904	>12
052	New	1	830904	>12
055	New	1	830906	>10
056	New (vic. of 19017)	1	830905	>13
057	19019	3	830905	>13
071	New	1	830912	>02
058	19018	2	830907	>11
061	New	1	830913	07
069	New	1	830915	02
070	New	1	830915	01
059	19023	2	830907	15
062 063 060 064 065	New New New 19025 New	1 1 1 3	830913 830913 830912 830912 830912	01 >06 >04 >07 >11
076	New	1	830921	>05
066	New	1	830913	02
067	19030	2	830913	>13
068	19031	7	830914	>12
073	19032	2	830916	>10
084	New	1	830927	>02
072	19046	2	830916	>13
074	New	1	830918	>01
080	New	1	830923	>03
075	19034	3	830921	>08
083 078 077 079	New 19045 19036/19041 New	1 2 5 1	830925 830921 830921 030921	>01 >08 >08 >08 >08

No CaK Observations at BBSO on Sept. 1, 2, 9-11, 13, 15, 19, 20, 22-26, 29, 30.

^{2.} No CaK Prints on Sept. 9-11, 19, 20, 26, 29, 30.

No KPNO Magnetograms on Sept. 2, 4, 6, 7, 10-12, 16, 18, 29, 30.

^{4.} Contiguous Plages: 19034/19036/19039/19041/19045, 19048/19049, 19057/19058, 19068/19073, 19075/19077/19080.

^{5.} Mt. Wilson CaK Prints were used on Sept. 1, 2, 13, 15, 2-25.

