Luftwiderstand

Einleitung

Wenn ein Körper fallen gelassen wird, nimmt die Fallgeschwindigkeit so lange zu, bis die Kraft des Luftwiderstandes gleich gross ist wie die Gewichtskraft. Danach fällt er mit konstanter Geschwindigkeit.

1.	2.				
Die Gewichtskraft istdie Kraft des Luftwiderstandes.	Die Gewichtskraft istdie Kraft des Luftwiderstandes.				
F _{res} = Die Fallgeschwindigkeit des Körpers	F _{res} = Die Fallgeschwindigkeit des Körpers				
Je grösser die Geschwindigkeit, desto	die Kraft des Luftwiderstandes.				
Fragestellung					
Wie hängt die Kraft des Luftwiderstandes von der Fallgeschwindigkeit ab?					

Versuchsaufbau

Messungen

s =

	<i>m</i> [kg]	$F_{L} = F_{G} = m \cdot g$	<i>t</i> [s]	$V = \frac{s}{t} \left[\frac{m}{s} \right]$
1 Hütchen				
2 Hütchen				
3 Hütchen				
4 Hütchen				

4 Hütchen							
				·			
Vervollständigen Sie:							
Bei doppelter Geschwindigkeit ist die Kraft des Luftwiderstandesso gross.							
Bei dreifacher Geschwindigkeit ist die Kraft des Luftwiderstandes							
Bei vierfacher Geschwindigkeit ist die Kraft des Luftwiderstandesso gross.							
Formel zur Berechnung des Luftwiderstandes							
F _L : Luftwiderst	and in N						
c _W : Widerstandsbeiwert (für die Form des Körpers), aus Tabelle							
A: Querschnittsfläche in m²							
ρ : Dichte der Luft in $\frac{kg}{m^3}$							
v : Geschwindigkeit in $\frac{m}{s}$							
Der Luftwiderstand hängt ab von							