#### 第八章 新型数字带通调制技术

正交振幅调制(QAM) 最小频移键控(MSK) 正交频分复用(了解)

作业

# 第八章 新型数字带通调制技术

## 正交振幅调制(QAM)

• 向量表示

$$A_k \angle \theta_k \quad \to A_k \cdot cos(w_c t + \theta_k)$$
 (1)

• 矢量图表示、星座图表示, QAM又称星座调制

• 典型代表: 16QAM

。 正交调幅:由两个正交的4ASK组成,等效于2个4PSK



。 复合相移: 两路独立的QPSK信号叠加



。 16QAM比16PSK信号噪声容限大,信号质量比16PSK要好

## 最小频移键控(MSK)

• 包络恒定、相位连续、带宽最小并且严格正交的2FSK信号



• 相干正交需要满足的频率

$$egin{cases} egin{pmatrix} 0 & 
ightarrow & w_1 \ 1 & 
ightarrow & w_2 \end{pmatrix} & 
ightarrow & egin{bmatrix} f_1 = f_c - rac{R_B}{4} \ f_2 = f_c + rac{R_B}{4} \end{cases}$$

• MSK信号表达式

$$\left\{egin{aligned} Acos(w_ct+rac{a_k}{2T_k}\pi t+arphi_k)\ a_k\left\{egin{aligned} 1 & 
ightarrow "1" \ -1 & 
ightarrow "0" \end{aligned}
ight.$$

$$\theta_k(t) = \frac{a_k}{2T_s}\pi t + \varphi_k \tag{2}$$

在 $t\in(0,T_S)$ 范围内时, $heta_k(t)\sim t$  图的画法

$$\begin{cases} 0 & \to & \theta_k \downarrow \frac{\pi}{2} \\ 1 & \to & \theta_k \uparrow \frac{\pi}{2} \end{cases}$$

图中给出的曲线所对应的输入数据序列是:  $a_k = +1, +1, +1, +1, -1, -1, -1, +1, +1, +1, -1, -1, -1$ 



# 附加相位的全部可能路径图:



#### • MSK图

$$\left\{egin{array}{ll} f_1=f_c-rac{R_B}{4} \ f_2=f_c+rac{R_B}{4} \end{array}
ight. 
ight. 
ight. 
ight. 
ight. \left\{egin{array}{ll} "0" oxedown rac{f_1}{R_B} \wedge oxint \ "1" oxedown rac{f_2}{R_B} \wedge oxint \end{array}
ight.$$

# ◆ MSK信号举例

### □取值表

| k           | 0           | 1          | 2             | 3              | 4              | 5              | 6              | 7              | 8              | 9              |
|-------------|-------------|------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| t           | $(-T_s, 0)$ | $(0, T_s)$ | $(T_s, 2T_s)$ | $(2T_s, 3T_s)$ | $(3T_s, 4T_s)$ | $(4T_s, 5T_s)$ | $(5T_s, 6T_s)$ | $(6T_s, 7T_s)$ | $(7T_s, 8T_s)$ | $(8T_s, 9T_s)$ |
| $a_k$       | +1          | +1         | -1            | +1             | -1             | -1             | +1             | +1             | -1             | +1             |
| $b_k$       | +1          | +1         | -1            | -1             | +1             | -1             | -1             | -1             | +1             | +1             |
| $\varphi_k$ | 0           | 0          | 0             | π              | π              | π              | π              | π              | π              | 0              |
| $p_k$       | +1          | +1         | +1            | -1             | -1             | -1             | -1             | -1             | -1             | +1             |
| $q_k$       | +1          | +1         | -1            | -1             | +1             | +1             | -1             | -1             | +1             | +1             |

设k = 0时为初始状态,输入序列 $a_k$ 是: +1, -1, +1, -1, +1, -1, +1, -1, +1。 由此例可以看出, $p_k$ 和 $q_k$ 不可能同时改变符号。



• 带宽关系

$$B_{MSK} = 1.5R_B \tag{3}$$

• 调频指数

$$h = \frac{\triangle f}{R_B} = \frac{1}{2} \tag{4}$$

• 考试题型: 画图题。小题: 带宽

### 正交频分复用 (了解)

• 多载波并行调制称为正交频分复用 (OFDM)

### 作业

例 8-2 设发送数据序列为 0010110101, 采用 MSK 方式传输, 码元速率为 1200B, 载波频率 为 2400Hz。

- (1) 试求"0"符号和"1"符号对应的频率;
- (2) 画出 MSK 信号时间波形;
- (3) 画出 MSK 信号附加相位路径图(初始相位为零)。

解 (1) 设"0"符号对应频率 $f_0$ ,"1"符号对应频率 $f_1$ ,则有

$$f_0 = f_c - \frac{1}{4T_s} = 2400 - \frac{1200}{4} = 2100 \,(\text{Hz})$$
  
 $f_1 = f_c + \frac{1}{4T_s} = 2400 + \frac{1200}{4} = 2700 \,(\text{Hz})$ 

(2) 由于 
$$f_0 = 2100$$
Hz =  $\frac{7}{4}R_B$  (一个码元周期  $T_s$  内画  $1\frac{3}{4}$  周载波) 
$$f_1 = 2700$$
Hz =  $\frac{9}{4}R_B$  (一个码元周期  $T_s$  内画  $2\frac{1}{4}$  周载波)

所以 MSK 信号时间波形如图 8-14 所示。

(3) MSK 信号附加相位路径图如图 8-15 所示。



图 8-14 MSK 信号时间波形



图 8-15 MSK 信号附加相位路径图

#### • 8.1

**8-1** 设发送数字序列为 +1 -1 -1 -1 -1 -1 +1, 试画出用其调制后的 MSK 信号相位变化图。若码元速率为 1000Baud, 载频为 3000Hz, 试画出此 MSK 信号的波形。

解 (1) MSK 信号波形如图 8-16 所示。



图 8-16 MSK 信号波形

(2) MSK 信号的两个频率为 
$$f_1 = f_c + \frac{1}{4T_s} = 3000 + \frac{1000}{4} = 3250 (\,\mathrm{Hz})$$

$$f_0 = f_c - \frac{1}{4T_s} = 3000 - \frac{1000}{4} = 2750 \,(\text{Hz})$$

若设"1"对应频率 $f_1$ ,则在一个码元周期  $T_a$  内画 3  $\frac{1}{4}$  周载波;"0"对应频率 $f_0$ ,则在一个码元周期  $T_a$  内画 2  $\frac{3}{4}$  周载波,故发送数字序列 1000001 对应的 MSK 信号时间波形如图 8 – 17 所示。

**8-2** 设有一个 MSK 信号,其码元速率为 1000Baud,分别用频率  $f_1$  和  $f_0$  表示码元"1"和"0"。若  $f_1$  = 1250Hz,试求其  $f_0$  应等于多少,并画出三个码元"101"的波形。

解 (1) 由于码元周期  $T_* = 1/R_{\rm B} = 1/1000$ , 所以由式  $f_1 = f_{\rm c} + \frac{1}{4T_{\rm c}}$ 

161



图 8-17 MSK 信号时间波形

得到

$$f_c = f_1 - \frac{1}{4T_s} = 1250 - \frac{1000}{4} = 1250 - 250 = 1000( \text{Hz})$$

故

$$f_0 = f_c - \frac{1}{4T_c} = 1000 - \frac{1000}{4} = 1000 - 250 = 750 (\text{Hz})$$

(2) 设"1"对应 $f_1$  = 1250Hz,则在一个码元周期  $T_4$  内画 1  $\frac{1}{4}$  周载波;"0"对应 $f_0$  = 750Hz,则在一个码元周期  $T_4$  内画  $\frac{3}{4}$  周载波,所以对应码元"101"的 MSK 信号时间波形如图 8 – 18 所示。



图 8-18 MSK 信号时间波形