Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 3143 CALIBRATION DATE: 02-Dec-14 SBE 4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

g =	-1.03095861e+001	CPcor =	-9.5700e-008	(nominal)
h =	1.24234870e+000	CTcor =	3.2500e-006	(nominal)

i = -3.32524927e-005j = 6.21234120e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (kHz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
0.0000	0.0000	0.00000	2.88022	0.00000	0.00000
-1.0000	34.2382	2.76230	5.52186	2.76231	0.00000
1.0000	34.2384	2.93123	5.64330	2.93123	-0.00000
15.0000	34.2378	4.20808	6.48775	4.20809	0.00001
18.5000	34.2379	4.54984	6.69559	4.54981	-0.00002
29.0001	34.2359	5.61786	7.30688	5.61788	0.00002
32.5001	34.2288	5.98502	7.50541	5.98501	-0.00001

f = INST FREQ / 1000.0

Conductivity = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$ Siemens / meter

 $t = temperatur e[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

