Minimax Iterative Dynamic Game

Ogunmolu

Overview

Annroach

Problem Setup

Results

Minimax Iterative Dynamic Game

Olalekan Ogunmolu

Smilow Center for Translational Research,
The University of Pennsylvania, Philadelphia, PA

Sept. 11, 2019

The robustness conundrum

Minimax Iterative Dynamic Game

Olalekan Ogunmolu

Research Overview

Approach

Problem Setu

■ How to know a priori a policy's robustness limits?

How to inculcate robustness into multistage decision policies?

Problem Setup

Minimax Iterative Dynamic Game

Olalekan Ogunmolu

Research Overview

Approach
Problem Setup

Results

■ To quantify the brittleness, we optimize the stage cost

$$\max_{\mathbf{v}_t \sim \psi \in \Psi} \left[\sum_{t=0}^T \underbrace{c(\mathbf{x}_t, \mathbf{u}_t)}_{\text{nominal}} - \gamma \underbrace{g(\mathbf{v}_t)}_{\text{adversarial}} \right]$$

■ To mitigate lack of robustness, we optimize the *cost-to-go*

$$\mathcal{J}_t(\mathbf{x}_t, \pi, \psi) = \min_{\mathbf{u}_t \sim \pi} \max_{\mathbf{v}_t \sim \psi} \left(\sum_{t=0}^{T-1} \ell_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{v}_t) + L_T(\mathbf{x}_T) \right),$$

and seek a saddle point equilibrium policy that satisfies

$$\mathcal{J}_t(\mathbf{x}_t, \pi^*, \psi) \leq \mathcal{J}_t(\mathbf{x}_t, \pi^*, \psi^*) \leq \mathcal{J}_t(\mathbf{x}_t, \pi, \psi^*),$$

Results: Brittleness Quantification

Minimax Iterative Dynamic Game

Olalekan Ogunmolu

Overview

Approach

Results

ILQG Algorithm Example

Minimax Iterative Dynamic Game

Olalekan Ogunmolu

Research Overview

Problem Setup

Results

Results: Iterative Dynamic Game

Minimax Iterative Dynamic Game

Olalekan Ogunmolu

Research Overview

Approach
Problem Setup

Results

Table: *

End pose of the KUKA platform with our iDG formulation given different goal states and γ -values

