Unsupervised Learning: Dimensionality Reduction

COSC 410: Applied Machine Learning

Spring 2022

Prof. Apthorpe

Outline

- Overview
- Principal Component Analysis
- t-SNE
- Autoencoders

Unsupervised Machine Learning

Data is unlabeled

- Examples with features X
- No labels y

 Goal: Identify patterns in data without "ground-truth" classes

Most data in the world is unlabeled!

Dimensionality Reduction

- Real-world datasets are often high dimensional (many features)
 - Hard to visualize & increases training times

- Goal:
 - Reduce # of features
 - Preserve patterns as much as possible

High-dimensional microarray for measuring gene expression

Principal Component Analysis (PCA)

Principal Component Analysis

- Choose dimensionality of target projection N
- Find new basis (axes) in N-dimensions s.t.
 projecting examples
 - Maximizes variance (to preserve predictive power)
 - Minimizes mean-square distance from original to projected positions
- The new basis vectors (axes) are the principal components
 - Each example has 1 feature per principal component

Limitations of PCA

- Sensitive to feature scaling
 - Remember to standardize!
- Resulting features are less interpretable
- Often produces "blobby" visualizations in 2D
- Doesn't maintain non-linear relationships between examples
 - Can use kernel PCA instead

t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE

- Compute Gaussian distribution over pairs of examples in high-dimensional space
 - Similar examples → higher probability should be chosen as neighbors

- Dissimilar examples → lower probability should be chosen as neighbors
- Find mapping from Gaussian to t-distribution in low-dimensional space
 - Minimize the divergence between the two distributions across the low-dim space
 - Use gradient descent...
- Nonlinear dimensionality reduction
 - Can preserve non-linear relationships in data

PCA vs. t-SNE

t-SNE Visualization on MNIST

t-SNE for Biological Data

Macosko et al. (2015) data set, n = 44,808 cells from the mouse retina. Bipolar cells comprise eight clusters, amacrine cells comprise 21 clusters. Non-neural clusters are abbreviated (MG: Mueller glia, A: astrocytes, F: fibroblasts, P: pericytes, E: endothelium, M: microglia).

t-SNE on Natural Language Data

Limitations of t-SNE

Computationally expensive

- Non-parametric
 - Can't apply to new examples without rerunning entire algorithm
 - Why does this matter for ML?

- Preferred for visualizations
 - Less effective for reducing features before supervised learning

Autoencoders

Autoencoders

Autoencoders

Autoencoders can be feedforward, recurrent, or convolutional

Questions?