

How to migrate to AWS without a mental breakdown

Michal Artazov

Outline

- About signageOS
- How we migrated to AWS
- What went wrong
- How much did it cost
- What did we learn from it
- Some interesting ways we use AWS

signageOS

Out-of-box solution for device management, monitoring and content delivery designed for **digital signage**

What is digital signage

What is digital signage

What is signageOS

Native apps for SoC Platforms

What is signageOS

- SDK + Cloud platform
- Install signageOS software on a device
- Write HTML/JS application using signageOS SDK
- Push your application to the cloud
- Application runs on the device in an embedded web browser
 - Show content
 - Control device
- Device can be controlled from the cloud
- Device constantly sends monitoring data to the cloud

What is signageOS

- Right now about 5000 devices in production and growing
- Customers all over the world (USA, Europe, Asia, Australia)

Before AWS

Before AWS

Pros

Easy to understand

Cons

- Manual
- Not flexible
- Unable to scale

Why AWS

- Flexible
- Automation
- Better cost control
- More reliable

Migration - main objectives

- 1. Replicate databases
- 2. Setup clone of the entire stack on AWS
- 3. Switch DNS to AWS
- 4. Cut off old database replicas
- 5. Profit

Database replication

Private datacenter

Why not give an Elastic IP to every EC2 instance?

Too many instances

Kubernetes

- **EKS** (1.11)
- Already had Docker images for all services
- Used Helm to easier deploy to k8s
- Expose endpoints to the internet → nginx ingress
 - o Creates ELB
 - Runs 1 or more instances of Nginx in k8s
 - Can run as DaemonSet → one instance per node

Helm

- In CI (Gitlab) build a Helm chart
- Publish chart to private repository
 - S3 <u>Helm S3 plugin</u>
- Stack repo that combines all charts into one big chart signageOS prod
 - Defines all specific versions of services
 - Contains complete production configuration, encrypted with <u>git-secret</u>
 - Deploy changes to the production → push changes to Stack repo and deploy new chart

Switch databases primaries to AWS

Switch databases primaries to AWS

- Can't switch until all data is replicated
- Replication over the internet isn't great
- New data coming in faster than replicating
- EC2 instances running out of resources
 - Adding more resources → higher cost
- Result
 - Never ending cycle of death
 - Databases dropping connections
 - Core services fail
 - Pretty much whole system down

Solution

Sometimes the smart way isn't the best way

- 1. Only replicate the low volume collections
- 2. Temporarily stop all services that generate high volumes of data
 - Mostly read-only device monitoring and logs
 - New data not lost, just enqueued in RabbitMQ (millions of messages)
- 3. Rename high volume collections
- 4. Create new empty collections
- 5. Database finally replicated → switch primary to AWS
- 6. Manually copy the old data later

Final AWS structure

Costs

- \$3,000/month before AWS
- \$15,500 3 months of migration
- \$5,000 first month on AWS
- \$3,000/month now

Other interesting facts about our

infrastructure

Kubernetes nodes autoscaling

- Generic auto-scaling group
- RabbitMQ "dedicated" nodes
 - Run RabbitMQ instances (16 instances total)
 - Most of the time underutilized so kill other nodes and run as many services as possible here
 - When heavy traffic, start more generic nodes and move services there so these become dedicated to RabbitMQ
- Scale with CloudWatch
 - Collect metrics from nodes with <u>CloudWatch agent</u>
 - If both average CPU and memory consumption < 40% → less generic nodes
 - If average CPU or memory > 70% → more generic nodes

Serverless

- Lambda for user defined automatic tests.
- Our custom simple testing framework that allows users to write automatic tests that run on device and validate the content
- Javascript code, interacts with the device through signageOS REST API to test the application that's running on the device
- Every test is converted into a lambda
 - Invoked from our services
 - Returns JSON with test results → save into our database
 - Test results available via REST API or management console (UI)

Sources

- https://www.signageos.io
- https://github.com/nginxinc/kubernetes-ingress
- https://github.com/hypnoglow/helm-s3
- https://git-secret.io/
- https://docs.aws.amazon.com

Contact

- Michal Artazov
- michal@signageos.io
- https://www.signageos.io

Questions