CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

PROTEIN FOLDING: PLANAR CONFIGURATION SPACES OF DISC ARRANGEMENTS AND HINGED POLYGONS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Applied Mathematics

by

Clinton Bowen

The thesis of Clinton Bowen is approved:	
Dr. Silvia Fernandez	Date
	_
Dr. John Dye	Date
Dr. Csaba Tóth, Chair	Date

California State University, Northridge

Table of Contents

Signat	ure page	 	•	•	•	•	•	•	•	ii
Abstra	act	 • •	•	•	•	•	•	•	•	iv
Chapte	er 1 ability Problems for Weighted Trees									1
	Hausdorff Distance									
1.2	Weight Trees T_k									
	1.2.1 Perturbed Weighted Trees T_{ε}	 								4

ABSTRACT

PROTEIN FOLDING: PLANAR CONFIGURATION SPACES OF DISC ARRANGEMENTS AND

HINGED POLYGONS

By

Clinton Bowen

Master of Science in Applied Mathematics

Chapter 1

Realizability Problems for Weighted Trees

In this chapter our goal is to prove Theorem ??: It is NP-Hard to decide whether a given tree with positive vertex weights is the contact graph of a disk arrangements with specified radii. This chapter's approach to proving Theorem ?? introduces an ordered weighted tree T and perturbed ordered weight tree T_{ε} , the Hausdorff distance, and then prove the following lemma:

1.1 Hausdorff Distance

Let A and B be sets in the plane. The *directed Hausdorff distance* is:

$$d(A,B) = \sup_{a \in A} \inf_{b \in B} ||a - b|| \tag{1.1}$$

d(A,B) finds the furthest point $a \in A$ from any point in B. Hausdorff distance is

$$D(A,B) = \max\{d(A,B), d(B,A)\}$$
(1.2)

In Figure 1.1, we have two sets X and Y and illustrate d(X,Y) and d(Y,X). From this, it is possible to calculate the Hausdorff distance between X and Y.

Figure 1.1: An illustrative example of d(X,Y) and d(Y,X) where X is the inner curve, and Y is the outer curve.

 ε -approximation The weighted graph, G, is an ε -approximation of a polygon P if the Hausdorff distance between every realization of G as a contact graph of disks and a congruent copy of P is at most epsilon. A weighted graph G is said to be a O(f(x))-approximation of a polygon P if there is a positive constant M such that for all sufficiently large values of x the Hausdorff distance between every realization such realization of G as a contact graph of disks and a congruent copy of P is at $M \cdot |f(x)|$. A weighted graph G is said to be a *stable* if it has the property that for every two such realizations of G, the distance between the centers of the corresponding disks is at most ε after a suitable rigid transformation.

Suppose we have a unit disk U and we have a grid overlayed on the disk with side length δ . Let $S_1(\delta)$ be the the union of squares formed by the grid found completely in the interior of the disk U. Let $S_2(\delta)$ be the union of squares formed by the grid with some point of the boundary of the square contained in the interior of disk U. The Hausdorff distance of U and $S_1(\delta)$ is at most $H(S_1(\delta), U) = \sqrt{2}\delta$. Similarly, the Hausdorff distance of U and $S_2(\delta)$ is at most $H(S_2(\delta), U) = \sqrt{2}\delta$. Thus for any $\varepsilon > 0$ choose a δ such that $\sqrt{2}\delta \le \varepsilon$. Similarly, the Hausdorff distance of U and $S_2(\delta)$ is at most $H(S_2(\delta), U) = \sqrt{2}\delta$.

Problem 1 (Appoximating Polygonal Shapes with Contact Graphs). For every $\varepsilon > 0$ and polygon P, there exists a contact graph G = (V, E) such that the Hausdorff distance $d(P, G) < \varepsilon$

Lemma 1. for ever $\varepsilon > 0$, there exists an ordered weighted tree T_{ε} such that every realization of T_{ε} as an

ordered disk contact graph where the radii of the disks equal the vertex weights.

Using Lemma 1, we prove Theorem ?? by extending the modified auxiliary construction in Chapter ??.

We first cover the preliminary concepts of Hausdorff distance and the ordered weighted tree families of T and T_{ε} . We then continue with the proof of Lemma 1 and Theorem ??.

1.2 Weight Trees T_k

In this section we describe a particular family of unit weight trees and corresponding contact graphs disk arrangements called *snowflakes*. Note that we regard snowflakes with unit weight as a weight of $\frac{1}{2}$. For $i \in \mathbb{N}$, the construction of the snowflake tree, T_i , is as follows:

- Let v_0 be a dvertex that has six paths attached to it: p_1, p_2, \ldots, p_6 . Each path has i vertices.
- For every other path p_1 , p_3 , and p_5 :
 - Each vertex on that path has two paths attached, one path on each side of p_k .
 - The number of vertices that lie on a path attached to the j^{th} vertex of p_k is i-j.

Figure 1.2: The same contact graph as in figure ?? overlayed with the a perfectly weighted snowflake tree.

A perfectly weighted snowflake tree is a snowflake tree with all vertices having weight $\frac{1}{2}$. A perturbed snowflake tree is a snowflake tree with all vertices having weight of 1 with the exception of v_0 ; in a perturbed snowflake tree, v_0 will have a weight of $\frac{1}{2} + \gamma$. For our analysis, all realizations of any snowflake, perfect or perturbed, shall have v_0 fixed at origin.

Perfectly Weighted Snowflake Tree. Consider the graph of the triangular lattice with unit distant edges:

$$V = \left\{ a \cdot (1,0) + b \cdot \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) : a, b \in \mathbb{Z} \right\}$$

$$E = \left\{ \{u, v\} : ||u - v|| = 1 \text{ and } u, v \in V \right\}$$

The following graph, G = (V, E) is said to be the *unit distance graph* of the triangular lattice. We can show that no two distinct edges of this graph are non-crossing. First suppose that there were two distinct edges that crossed, $\{u_1, v_1\}$ and $\{u_2, v_2\}$. With respect to u_1 , there are 6 possible edges corresponding to it, with each

edge $\frac{\pi}{3}$ radians away from the next. Neither edge crosses another; and so we have a contradiction that there are no edge crossings with $\{u_1, v_1\}$.

The perfectly weighted snowflake tree that is a subgraph over the *unit distance graph*, G = (V, E), of the triangular lattice. To show this, for any S_i , fix $v_0 = 0 \cdot \cdot (1,0) + 0 \cdot \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = (0,0) \in V$ at origin. Next consider the six paths attached from origin. Fix each consecutive path $\frac{\pi}{3}$ radians away from the next such that the following points like on the corresponding paths: $(1,0) \in p_1$, $\left(\frac{1}{2}, \frac{\sqrt{2}}{3}\right) \in p_2$, $\left(-\frac{1}{2}p_4, \frac{\sqrt{3}}{2}\right) \in p_3$, $(-1,0) \in p_4$, $\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) \in p_5$, $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) \in p_6$. For S_i , there are i vertices on each path.

We define the six paths from origin as follows:

$$p_{1} = \left\{ a \cdot (1,0) = \vec{v} \, | \, a \in \mathbb{R}^{+} \, \right\}$$

$$p_{2} = \left\{ a \cdot \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) = \vec{v} \, | \, a \in \mathbb{R}^{+} \, \right\}$$

$$p_{3} = \left\{ -a \cdot (1,0) + a \cdot \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) = a \left(-\frac{1}{2}, \frac{\sqrt{3}}{2} \right) = \vec{v} \, | \, a \in \mathbb{R}^{+} \, \right\}$$

$$p_{4} = \left\{ a \cdot (-1,0) = \vec{v} \, | \, a \in \mathbb{R}^{+} \, \right\}$$

$$p_{5} = \left\{ a \cdot \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2} \right) = \vec{v} \, | \, a \in \mathbb{R}^{+} \, \right\}$$

$$p_{6} = \left\{ a \cdot (1,0) - a \cdot \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) = a \cdot \left(\frac{1}{2}, -\frac{\sqrt{3}}{2} \right) \, | \, a \in \mathbb{R}^{+} \, \right\}$$

For S_i there exists i vertices on each path. We shall denote the i^{th} vertex on the j^{th} path as $v_{j,i}$. For each path defined above, the paths are defined as a set of vectors, $\vec{v} = a \cdot \vec{p}$ for some $a \in \mathbb{R}^+$ and $\vec{p} \in \mathbb{R}^2$. By setting $a = 1, 2, \ldots, i$, we obtain points that are contained in V. For j = 1, 3, 5 and $l = 3b \le i$ where $b \in \mathbb{N}$, there exists two paths attached to each vertex $v_{j,l}$. We borrow the term *petiole* from botany to describe the two paths attached to $v_{j,l}$. In botany, the stalk that attaches to a stem of a plant is called a petiole; petioles usually have leaves attached to their ends. For S_i , each petiole attached to the k^{th} vertex of p_j , there are i-k vertices. For each vertex v on a petiole, which is not in the paths p_1, p_3 , or p_5 , there are two *leafs* on either side of the vertex; each leaf is a vertex that has an edge with v. The one exception to the two leafs rule is on the first vertex of the petiole off of p_1, p_3 , or p_5 . In this exception, attach one leaf to the side of the vertex that is closest to center vertex v_0 .

The triangular lattice is symmetric under rotation about v_0 by $\frac{\pi}{3}$ radians. For each vertex $v_{1,l}$ and $l=3b\leq i$ where $b\in\mathbb{N}$, we place two petioles from it; the first petiole $\frac{\pi}{3}$ above p_1 at $v_{1,l}$ and $\frac{-\pi}{3}$ below p_1 at $v_{1,l}$ and call these petioles $p_{1,l}^+$ and $p_{1,l}^-$ respectively. With respect to $v_{1,l}$, one unit along $p_{1,l}^+$ is a point on the triangular lattice and similarly so on $p_{1,l}^-$. Continuing the walk along these paths, unit distance-by-unit distance, we obtain the next point corresponding point on the triangular lattice up to i-k distance away from $v_{1,l}$. Without loss of generality, for each each vertex v of the petiole which are not in p_1 have two associated leaf nodes v^+ and v^- ; v^+ is placed $\frac{\pi}{3}$ and one unit above v and v^- is placed $\frac{-\pi}{3}$ and one unit below v. Thus all leaf nodes are in the triangular lattics. This shows that each of the i-k vertices on $p_{1,l}^-$, $p_{1,l}^+$, and leafs are in v. By rotating all of the paths along v by v and v we obtain the the paths along v and v respectively, completing the construction.

In Figure 1.3, we have a set of unit radii disks arranged in a manner that outlines the perfectly weighted snowflake description above.

Figure 1.3: A contact graph that resembles the shape of concentric hexagons.

1.2.1 Perturbed Weighted Trees T_{ε}

A perturbed weighted tree T_{ε} is a weighted unit tree with unit weight on every vertex with the exception of the root vertex having weight $r + \varepsilon$ where $\varepsilon > 0$ can be realized as a disk touching graph (a disk arrangement) and r is the unit length.

The perturbed snowflake follows the construction of the perfect snowflake with the exception of v_0 having weight $r + \varepsilon$ where $\varepsilon > 0$. A perturbed snowflake realization has some distinct qualities from perfect snowflake realizations. The angular relationships between adjacent vertices may vary; the distance between adjacent and neighboring vertices may vary as well.

In general, the perturbation ε can modify the realization of a perfect snowflake S_i in the following ways:

Modification of S_1 .

Given a instance of a perturbed snowflake with v_0 having weight $\frac{1}{2} + \varepsilon$ where $\varepsilon > 0$, vertices neighboring v_0 each have a range of placement on the plane when realizated as a disk arrangement. Figure ?? shows a realization of S_1 and illustrates one such example of possible gaps, ε , that could be created between adjacent disks of S_1 in a perfect snowflake.

Note that (1) the adjacent disks in a perfect snowflake may or may not be adjacent in a given perturbed snowflake of S_1 and (2) $S_1 \subseteq S_i$ for any $i \in \mathbb{N}$. Given a snowflake in arbitrary position with n unit segments per arm, the arms of the snowflake has a maximal length of n, end to end, if in canonical position; otherwise, the arm will have an end to end length less than n (See Figure 1.4). The arm of a snowflake in arbitrary position

corresponds to a compression and shift of vertices.

Figure 1.4: The polyline at the bottom represents a snowflake arm in canonical position. The polyline above represents a snowflake arm in non-canonical position.

We will show for any $\varepsilon > 0$ and arbitrary position of vertices, the placement of vertices is close to canonical position. In order to show this, we show the components of a perturbed snowflake in arbitrary position are close to canonical position. The argument comprises of three parts: (1) Showing that the pertubation of S_1 is small, (2) show that the displacement along the arms for all S_i for $i \ge 1$ is small, and (3) show that the displacement along the petioles is small.

Displacement on S_1 **is small.** Suppose we are given an ordered weighted tree T_{ε} such that the corresponding disk arrangement is a perturbed S_1 . In a perfect snowflake of S_1 the six disks around the central disk kiss each other. The angle formed from the center of the central disk to the centers of any two adjacent disks is $\frac{\pi}{3}$. The side lengths of the equalateral triangle formed by the centers of three adjacent disks, one of which is the central disk, is 2r. For a perturbed S_1 the the central disk is weighted $r + \varepsilon$. This can yield a change of angular displacement from $\frac{\pi}{3}$ to $\frac{\pi}{3} + 2\chi$. To find the bounds of how large or small χ can be, we show the trigonometric relation of the half angle of the triangle corresponding to three adjacent disks (See Figure 1.5):

$$\sin\left(\frac{\pi}{6} - \chi\right) = \frac{1}{2r + \varepsilon}$$

$$\sin\frac{\pi}{6}\cos\chi = \frac{1}{2r + \varepsilon} + \cos\frac{\pi}{6}\sin\chi$$

$$\stackrel{!}{\rightleftharpoons} \geq \frac{1}{2}\cos\chi$$

$$= \frac{1}{2r + \varepsilon} + \frac{\sqrt{3}}{2}\sin\chi$$

$$\geq \frac{1}{2r + \varepsilon} + \frac{\sqrt{3}}{2}\left(\chi - \frac{\chi^3}{6}\right)$$

$$\stackrel{!}{\rightleftharpoons} \frac{1}{2r + \varepsilon} \geq \frac{\sqrt{3}}{2}\left(\chi - \frac{\chi^3}{6}\right) \quad \text{if } \chi < 1$$

$$\frac{2r + \varepsilon - 2}{2(2 + \varepsilon)} \geq \frac{5\sqrt{3}}{12}\chi$$

$$\text{for } r = 1$$

$$\frac{3\varepsilon}{5\sqrt{3}} = \frac{12}{5\sqrt{3}}\frac{\varepsilon}{4} \geq \chi$$

Figure 1.5: This figure depicts a triangle corresponding to the center of the central disk and two adjacent disks.

For any $\varepsilon > 0$, the bounds for angular displacement formed at the center of the central disk and two adjacent disks is:

$$\frac{\pi}{3} - \frac{6\varepsilon}{5\sqrt{3}} \le \frac{\pi}{3} - 2\chi = \lambda_{\min} \le \lambda \le \lambda_{\max} = \frac{\pi}{3} + 2\chi \le \frac{\pi}{3} + \frac{6\varepsilon}{5\sqrt{3}}$$

Displacement on the arms is small. To show that the angluar displacement along the arm is small, we extend the angular argument on the perturbed S_1 and by induction, show that it is small for all i.

Figure 1.6: An arm depicted at the i^{th} and $(i+1)^{st}$ vertex.

Denote the angles on the concave side of the i^{th} vertex as α_i and β_i and the convex side of the $(i+1)^{st}$ vertex as γ_i and δ_i respectively (see Figure 1.6 for reference).

For any vertex, the sum of angles about the vertex is 2π , e.g.:

$$\gamma_i + \delta_i + \alpha_{i+1} + \beta_{i+1} = 2\pi$$

Suppose we numbered the disks about the central disk 1 through 6. Without loss of generality, the angles α_0 and β_0 correspond to the angles formed between the central angle, disks i and i+1 and disks i+1 and i+2 respectively, for i=1,2,3. The bounds for α_0 and β_0 are the same as λ in the earlier argument, i.e.:

$$\begin{array}{ccccc} \frac{\pi}{3} - \frac{6\varepsilon}{5\sqrt{3}} & \leq & \alpha_0 & \leq & \frac{\pi}{3} + \frac{6\varepsilon}{5\sqrt{3}} \\ \frac{\pi}{3} - \frac{6\varepsilon}{5\sqrt{3}} & \leq & \beta_0 & \leq & \frac{\pi}{3} + \frac{6\varepsilon}{5\sqrt{3}} \end{array}$$

We know that $\alpha_0 + \beta_0 \le \frac{2\pi}{3} + \frac{12\varepsilon}{5\sqrt{3}}$. We also know that in canonical position:

$$\pi = \alpha_0 + \gamma_0$$

$$\pi = \beta_0 + \delta_0$$

Together, we have the following result:

$$rcl2\pi = \alpha_0 + \gamma_0 + \beta_0 + \delta_0$$

$$2\pi = \alpha_0 + \gamma_0 + (2\pi - \alpha_1 - \beta_1)$$

$$\alpha_1 + \beta_1 = \alpha_0 + \gamma_0$$

$$\leq \frac{2\pi}{3} + \frac{12\varepsilon}{5\sqrt{3}}$$

Displacement on the petioles is small.

Bibliography