ВОДОПОДГОТОВКА

Особенности применения антинакипинов в системах теплоснабжения

Д.т.н. Ю.В. Балабан-Ирменин, главный научный сотрудник.

П.С. Суслов, младший научный сотрудник, Лаборатория водного режима и коррозии оборудования ТЭС,

OAO «Всероссийский теплотехнический институт» (ВТИ), Москва

(Доклад на IV конференции «Современные технологии водоподготовки и защиты оборудования от коррозии и накипеобразования», 25-26 октября 2011 г., Москва)

Условия накипеобразования

Одно из главных требований к процессу нагрева воды в системах теплоснабжения – отсутствие кипения. В то же время при применении в этих системах природной воды ее нагрев почти всегда приводит к образованию накипи.

Основным условием накипеобразования является выполнение уравнения:

 $[Kt]^n \cdot [An]^m \cdot f_{Kt}^n \cdot f_{An}^m > \Pi P(Kt_n An_m),$

где [Kt] и [An] – концентрации катиона и аниона данной соли; f – коэффициенты активности этих ионов; ΠP – произведение растворимости соли.

В настоящее время системы теплоснабжения обычно рассчитываются на температуры 95, 115 и 150 °С. В этих условиях (табл. 1) [1] основными накипеобразователями являются $CaCO_3$, $MgCO_3$ и $Mg(OH)_2$ (при высоком значении pH).

Наименьшую величину ПР имеет $Mg(OH)_2$, но при рН близком к значению 7 величина $[^-OH]^2$ настолько мала (10^{-14}) , что твердая фаза $Mg(OH)_2$ не образуется. Величина рН влияет также на накипеобразование $CaCO_3$, т.к. при увеличении рН происходит переход HCO^{3-} в CO_3^{-2} и вероятность образования накипи $CaCO_3$ увеличивается.

Из табл. 1 видно, что в первую очередь при прочих равных условиях образуется накипь из $CaCO_3$, а образование накипи из сульфата кальция возможно лишь при высоких концентрациях сульфатов или при температуре значительно выше нормативной для системы.

Таблица 1. Произведение растворимости соли.

Показатели	Температура, ^о С				
Показатели	25	100	150	200	
ПР(CaCO ₃), 10 ⁻⁹	4,4	0,47	0,053	0,0043	
ПР(MgCO ₃), 10 ⁻⁹	7900	98	5,2	3	
ПР(Mg(OH) ₂), 10 ⁻⁹	0,0066	0,0041	0,0013	0,00032	
ПР(CaCO ₄ ·2H ₂ O), 10 ⁻⁹	37000	19000	270	1,4	

Фосфонаты и Na-катионирование

Относительно слабые антинакипины были известны достаточно давно (фосфаты). Они обычно применялись в системах с низкой температурой нагрева.

В середине XX в. были синтезированы органофосфонаты – органические кислоты (и их соли), имеющие группу –PH₂O₃. Фосфонаты начали применять для предупреждения образования накипи при добыче нефти. В мае 1974 г. специалисты Уральского отделения ВТИ впервые применили фосфонаты в качестве антинакипина в оборотной системе охлаждения Уфимской ТЭЦ-4. В 1981 г. ими же была создана отраслевая инструкция по применению оксиэтилидендифосфоновой кислоты в оборотных системах охлаждения электростанций.

Внедрение фосфонатов в тепловых сетях было начато небольшими фирмами впервые в 1987 г.

Механизм антинакипного действия фосфонатов – адсорбция реагента на активных центрах роста кристаллов. В результате рост кристаллов прекращается и, если их размер не превышает 10^{-8} м, то образуется стабильная коллоидная система. При этом накипь отсутствует.

В настоящее время для предотвращения накипеобразования (в отсутствие антинакипина) вода в системах теплоснабжения обрабатывается в большинстве случаев с помощью Na-катионирования. Стоимость такой обработки природной воды для средней полосы России составляет от 3 до 9 руб./м³.

Сравнение затрат при использовании этих двух способов предотвращения накипеобразования рассмотрим на примере системы с водоподготовительной установкой производительностью 100 м³/ч. Принимаем, что для обработки воды фосфонатами необходима концентрация реагента около 6 мг/дм³ (6 г/м³). Стоимость фосфоната около 200 тыс. руб./т (0,2 руб./г). Следовательно, стоимость фосфонатной обработки воды составит 1,2 руб./м³ или около 1,05 млн руб./год. Также примем, что усред-

ненная стоимость Na-катионирования равна 5 руб./м³. В этом случае годовая стоимость водоподготовки составит 4,38 млн руб./год. Годовой экономический эффект от применения фосфонатов составит около 3,33 млн руб., при том, что капитальные затраты на установку дозирования реагента в воду теплосети не превысят 150-250 тыс. руб.

Данный пример в значительной степени условен, но даже он показывает потенциал экономической эффективности применения антинакипинов.

Факторы, влияющие на необходимую концентрацию фосфонатов

Исходя из адсорбционного механизма работы фосфонатов необходимая концентрация (доза) реагента должна зависеть от количества образующейся накипи, т.е. от температуры нагрева и концентрации ионов Са и СО₃. Количество СаСО₃ может быть оценено с помощью величины карбонатного индекса (Ик) равного произведению общей щелочности (Щ) на кальциевую жесткость [Са] воды. Таким образом, основными параметрами, определяющими дозу антинакипина, должны являться Ик и температура [2, 3].

Специалистами ВТИ было собрано большое количество информации о внедрении фосфоната ИОМС (подробнее см. статью Ю.В. Балабана-Ирменина «О влиянии органических веществ, содержащихся в воде, на ингибирование накипеобразования с помощью органофосфонатов», журнал HT, № 12, 2009, с. 42-46 – прим. ред.). В результате проведенных исследований было предположено, что должен существовать еще какой-то важный фактор, влияющий на дозу фосфоната. Этим фактором оказалось влияние органических веществ, находящихся в природной воде, используемой в теплосети [4]. Органика, присутствующая в воде каждого теплоисточника, различна: природная (соединения гуминовых, фульвокислот и т.п.); антропогенная, связанная с жизнедеятельностью человека; техногенная (сбросы от промышленных предприятий). Поэтому необходимо экспериментально определять дозу фосфоната для каждого объекта индивидуально.

Экспериментальные исследования

Исходя из имеющегося опыта, можно сформулировать требования к экспериментам по определению дозы фосфоната:

- испытания должны проводиться с использованием реальной воды конкретного теплоисточника (с характерными для этой воды органическими веществами);
- величина рН должна соответствовать действительным значениям рН сетевой воды;

Рисунок. Автоклав ВТИ с системой предотвращения кипения при повышенных температурах с помощью высокого давления газа:

- 1 автоклав; 2 электроплитка; 3 термометр ртутный электроконтактный; 4 электромагнитное реле;
 5 баллон с газообразным азотом;
 - 6 регулятор давления (редуктор); 7 манометр; 8 – предохранительный клапан; 9, 10 – вентили; 11 – трубки стальные; 12 – электрические провода.
- температура испытаний должна соответствовать реальной температуре сетевой воды в различное время года (зима, осень, лето).

Даже при температуре воды 95 °C сложно осуществлять эксперименты в открытом объеме без кипения. При более высоких температурах необходим автоклав. В автоклаве ВТИ, где создается температура до 250 °C (см. рисунок), искусственно поддерживается избыточное давление азота и применяется кристаллооптический метод с осмотром образцов через микроскоп [5]. В автоклавах некоторых других фирм поддув газом не производится, а эффективность антинакипина определяется по изменению общей жесткости воды (Ж) после 2-3-часовой выдержки при определенной температуре. Эффект ингибирования накипеобразования (Z) здесь определяется по формуле: $Z=(X_{KOH}/X_{Hat})\cdot 100\%$. Желательная величина Z - не менее 95%.

Методические вопросы, связанные с автоклавными испытаниями, детально описаны в [4].

Рекомендации

Для крупных водогрейных котлов мощностью 30 МВт и более работами теплотехников ОРГРЭС и ВТИ было показано наличие температурных разверок в трубах котлов (нештатное увеличение температуры в отдельных трубах). Было рекомендовано в этом случае проводить водоподготовку из расчета максимальной температуры воды не 150, а 170 °С [6, 7]. Следовательно, температура испытаний использования фосфонатов для таких котлов должна увеличиваться на 20 °С по сравнению с температурой сетевой воды.

Таблица 2. Результаты определения концентрации реагента Гилуфер-422 для ТЭЦ в Сибири.

Температура сетевой воды на выходе теплообменника, °С	80	90	100	110	130	150
Концентрация Гилуфер-422, мг/л	0,2	0,5	1	2	4	6

Таблица 3. Зависимость необходимой концентрации фосфонатов в воде теплосети от температуры нагрева сетевой воды.

Температура экспериментов, ^о С	Концентрация реагента по основному веществу, мг/л			
,	Аква-М38Ц	ИОМС		
150	>5	>4		
130	>5	>4		
120	>5	4		
110	3	2		
100	2,5	2		
90	1	1		

Еще более значительные разверки могут встречаться в жаротрубных котлах, где возможны застойные зоны около жаровой трубы и в паровых котлах, реконструированных в водогрейные. Вода в них может практически кипеть. Поэтому внедрять антинакипины в данных случаях надо с особой осторожностью. Ситуация несколько улучшается, если жаротрубный котел снабжен специальным насосом для обеспечения циркуляции воды в объеме котла.

Иногда фирмы, внедряющие антинакипины, ориентируются на среднегодовую температуру сетевой воды. Это неправильно, т.к. в данном случае не учитывается наиболее холодное время года, когда необходима высокая концентрация фосфоната. В качестве примера в табл. 2 представлены результаты определения концентрации реагента в зависимости от температуры сетевой воды, полученные при использовании на ТЭЦ воды из реки Иртыш $(Ик=2,7 (мг-экв/дм³)^2 и$ рН=9,5). Таким образом, изменение температуры воздуха и температуры воды теплосети может требовать значительных изменений концентрации фосфоната. Следовательно, ориентация на среднегодовую температуру может приводить к интенсивному накипеобразованию и забиванию труб котла или сетевого подогревателя.

Следует отметить, что в соответствии с первоначальным заданием для данной ТЭЦ режим водоподготовки разрабатывался из расчета рН=8,8-8,9. В этом случае доза реагента Гилуфер-422 была меньше, причем с увеличением температуры разница увеличивалась: при 110 °C доза была 1,5 мг/л, при 130 °C – 3 мг/л, при 150 °C – 4 мг/л. По ряду обстоятельств величина рН воды в теплосети незадолго до внедрения антинакипина была увеличена до 9,4. В

результате при использовании антинакипина с этими концентрациями при pH=9,4 и температурах до 147 °С начались отложения накипи. Это связано с увеличением пересыщения по солям при увеличении температуры и влиянием pH на интенсивность накипеобразования. В табл. 2 показаны данные уже повторных экспериментов при повышенном значении pH. В новом уточненном режиме ТЭЦ работает уже более четырех лет.

Неверный выбор реагента и его концентрации может быть также проиллюстрирован на примере теплосети с открытым водоразбором в городе Протвино (Московская обл.). В результате происходило интенсивное накипеобразование в котлах ПТВМ.

Качество воды было следующим: \mathcal{K}_{o6} =5 мг-экв/л; \mathcal{K}_{Ca} =3,2 мг-экв/л; \mathcal{H}_{o6} =4,5 мг-экв/л; рH=7,3. Температура сетевой воды: зимой – до 130 °С, летом – 90 °С. Испытания ВТИ показали, что при концентрации Аква-М38Ц, допустимой для открытой теплосети, реагент не предотвращает накипеобразование уже при 120 °С (табл. 3). В данном случае использовались концентрации реагентов, разрешенные в питьевой воде: для Аква-М38Ц – не более 5 мг/л, для ИОМС – не более 4 мг/л.

Случаи неправильных рекомендаций далеко не единичны, поэтому необходимо, чтобы фирмы, рекомендующие и внедряющие антинакипины в системах теплоснабжения, выполняли основные требования к экспериментам по определению дозы реагента и использовали при этом специальное оборудование (автоклавы).

Литература

- Балабан-Ирменин Ю.В., Богловский А.В., Васина А.Г. и др. Закономерности накипеобразования в водогрейном оборудовании систем теплоснабжения // Энергосбережение и водоподготовка. 2004. № 3. С. 10-16.
- 2. Чаусов Ф.Ф., Раевская Г.А. Комплексонный водно-химический режим теплоэнергетических систем низких параметров. М-Ижевск: НИЦ «Регулярная и хаотическая термодинамика», 2003. 280 с.
- 3. Дискуссия о книге Чаусова Ф.Ф. и Раевской Г. А. // Энергосбережение и водоподготовка. 2003. № 4. С. 83-91.
- 4. Балабан-Ирменин Ю.В., Рудакова Г.Я., Маркович Л.М. Применение антинакипинов в энергетике низких параметров. М.: Новости теплоснабжения, 2011. 208 с.
- Методические указания по определению марки и оптимальной концентрации антинакипина для обработки подпиточной и сетевой воды систем теплоснабжения. CO 34.37.533-2001. M.: OAO «ВТИ», 2003.
- 6. Гипшман И.М., Домбровский Л.М. Испытания поверхностей нагрева водогрейного котла КВГМ-100 // Энергетик. 1985. № 3. С. 11-13.
- 7. Лисейкин И.Э., Кокорева Л.Р., Ковчегина Т.В. Температурные и тепловые неравномерности в элементах поверхностей нагрева водогрейных котлов // Электрические станции. 1986. № 2. С. 16-20.