mean -	38	44	51	53 5	4 56	57	58	60	60	61	61	61 6	62 6	63	63 63	63	63	64	64 6	63 6	64 64	4 64	63	63	63	63 6	63 6	63 6	3 6	62	62	62	61 6	1 61	61	60	60	60 4	59 !	59 5	9 5	8 5	8 5	8				
symbolic-	49	57	60	61 6	2 63	3 64	65	65	65	65	67	67	67 6	67	68	67	68	68	68 6	88	69 69	9 68	68	67	67	67 6	67 6	66 6	6 6	66	66	66	66 68	5 65	65	64	64	64	64 (63 6	3 6	3 6	3 6	2				
enactive-	27	32	43	51 5	1 56	5 59	58	62	59	61	58	61 6	63 6	65 (67	67	66	68	67 6	67 6	67 68	8 68	68	69	68	68 6	67 6	67 6	7 6	66	64	65 (64 64	4 63	63	63	62	61	61 (61 6	50 5	9 5	9 5	8		ctivenes 100	SS	
embodied -	40	51	46	48 5	3 5	5 55	56	58	57	59	60	59 !	58 6	51 !	58 57	58	57	59	58 5	58 5	59 58	3 59	58	57	57	57 5	56 5	57 5	7 5	6 57	56	56	55 50	55	55	55	55	54	54 !	54 5	3 5	3 5	3 5	3		75		
ecological-	31	36	58	60 6	2 62	2 63	63	65	65	67	67	66	66 6	66	69 69	69	71	71	71 7	71 7	71 7	1 70	71	70	71	71 7	70 7	70 7	0 6	69	69	68	68 68	3 68	67	67	67	67	66	66 6	5 6	5 6	4 6	64		50		
dynamical-	35	30	49	49 4	7 46	6 48	52	53	52	51	50	51 4	49 4	46	46 45	43	44	45	45	14 4	15 44	44	43	43	43	43 4	42 4	42 4	2 4	2 43	43	42	43 43	3 42	42	41	41	41	41 4	41 4	0 4	0 4	0 4	0		25		
distributed -	43	50	55	55 6	1 59	9 60	62	66	66	65	65	65 6	66 6	67	66 67	68	70	69	69 6	69 6	69 69	9 69	68	67	69	67 6	67 6	68 6	7 6	67	67	66	66 60	66	65	65	64	65	64 (64 6	3 6	3 6	3 6	1		0		
connectionism -	41	51	50	51 5	3 58	58	60	61	63	65	65	65 (67 6	68	68 67	68	68	67	67 6	67 6	68 88	8 68	68	67	67	67 6	67 6	67 6	7 6	68	67	67	66 6 ⁻	7 66	66	66	66	65	66	65 6	5 6	5 6	5 6	55	`	J		
bayesian -	39	45	47	45 4	5 46	5 51	52	50	53	52	57	57 (61 6	63	62 61	60	61	63	62 6	62 6	63	3 63	64	64	64	64 6	64 6	64 6	4 6	63	63	62 (62 62	2 62	62	60	60	60	60 !	59 5	9 5	9 5	9 5	9				
	2	3	4	5 6	7	8	9	10	11	12	13	14	15 1	6	17 18	3 19	20	21	22 2	23 2	4 2	5 26	27	28	29	30 3	31 3	32 3	3 3	4 35	36	37 3	38 3	9 40	41	42	43	44	15 4	46 4	7 4	8 4	9 5	0				