

Enrollment No.:

ELZESE VLUSA

Name:

Sanyar

Department/School:

Brech

End-Semester Examination, Even Semester 2022-23

Course Code: EMAT102L

Maximum Time Duration: 2 hours

Course Name: Linear Algebra and ODEs

Maximum Marks: 35

GENERAL INSTRUCTIONS:

 Do not write anything on the question paper except name, enrollment number and department/school.

Carrying mobile phone, smart watch and any other non-permissible materials in the examination hall is an act of UFM.

3. Each question of SECTION-A carries 2 marks. Do any ten questions from SECTION-A.

4. Each question of SECTION-B carries 5 marks. Do any three questions from SECTION-B.

SECTION-A

1. Find all the eigenvalues of the matrix $\begin{pmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{pmatrix}$.

2. If the trace of a 2×2 singular matrix A is 10. Then find the value of trace $(A^2 - 10A + 2I)$. Justify your answer.

3. Find the eigenspace corresponding to the eigenvalue $\lambda = 0$ for the matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

7. Find the orthogonal projection vector of v = (1, 2, 3) onto the vector u = (1, -1, 1).

5. Let $C[0, \frac{\pi}{2}]$ be the inner product space of all continuous functions defined on an interval $[0, \frac{\pi}{2}]$ and with the inner product of functions defined as $\langle f, g \rangle = \int_0^{\frac{\pi}{2}} f(x) \cdot g(x) \ dx$. Then find $\langle \sin x, \cos x \rangle$.

33(1)

2J = Silo Sin

6. Solve
$$2xydx + x^2dy = 0$$

7. Solve
$$\frac{dy}{dx} + y = e^{-t}$$
. $\Rightarrow I^{\dagger}$

 Find the value of a for which the following differential equation is exact and then find its general solution

$$\cos x \cdot \cos y \, dx + c \cdot \sin x \cdot \sin y \, dy = 0$$

9. Solve the initial value problem
$$(2x+1)dx + (3y^2+2)dy = 0$$
, $y(0) = 1$.

Find the general solution of diffrential equation

$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0.$$

11. Find the Laplace transform of
$$t^2 + 2t + 3$$
.

$$\frac{1}{5}$$
 $\frac{2!}{5^3}$ + $\frac{2}{5^2}$ + $\frac{3}{5}$

12. Consider the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$. Find an eigenvector of A corresponding to eigenvalue $\lambda = 4$.

SECTION-B

13 Solve the boundary value problem

$$2\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0, \quad y(0) = 1, \ y'(0) = 1, \ y''(0) = 0.$$

14. Solve
$$(4xy^2 + 6y)dx + (5x^2y + 8x)dy = 0$$
 by assuming an integrating factor of the form $x^{\alpha}y^{\beta}$.

15. Given
$$B = \{v_1, v_2, v_3\}$$
 where $v_1 = (1, 1, 1)$, $v_2 = (1, 2, 1)$ and $v_3 = (2, -1, -1)$, use the Gram-Schmidt procedure to find the corresponding orthonormal basis.

16. Consider the matrix
$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$
. Check whether the matrix is diagonalizable if so, $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$. Check whether the matrix is diagonalizable if so, $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$.

Good Luck.

[&]quot;Learn from yesterday, live for today, hope for tomorrow." —Albert Einstein