南方冶金学院考试试题

考试科目			考试日期	
班级	学号	姓名	成绩	

一、解答下列各题(每题6分,共计60分)

1、图示电路中,设 $U_i=10Sin \omega t$ 伏,D是理想二极管,Dz的稳定电压是5伏,试画出 U_0 的大致波形。

2、已知固定偏置放大器中 U_{cc} =12V, R_c =2.7k Ω ,晶体管的 β =50,要使 U_{CE} =6.6V,偏流电阻 R_B 应取多大?此时 I_C 为多大?(取 U_{BE} =0.6V)

(2)已知某小功率管的基极电流 I_B =20 μ A,则共输入电阻 r_{be} =____。

4、如果减小负载电阻 R_L ,则固定偏置单级放大器直流负载线的料率_____,交流负载线的斜率

_____,电压放大倍数_______放大器输入电阻______,输出电阻_____。

5、某射极输出器如图所示,已知 U_{cc} =12V, R_B =220K, R_E =2.7K,晶体管的 β=80, r_{be} =1.5k,(1)画微变压器等效电路图。(2) 求 R_L =∞时,输入电阻 r_i

6、图示电路,指出交流反馈元件,判定交流反馈类型。

7、(选择填空)图示电路,用自激振荡的两个条件来衡量,图a()图b() (1)两个条件都可能满足;(2)相位条件不满足;(3)振幅条件不满足;(4)两个条件都不满足。

当差动放大器两边输入电压分别为Ui1=3mv,Ui2=-5mv时,输入信号中的差模分量为,共模分量为

10、逻辑电路如图所示,(1)写出逻辑函数表达式;(2)将逻辑式变换为"与非"逻辑式。

二、(10分)图示电路,已知 β =80, r_{be} =1.1千欧, R_{B1} =150千欧, R_{B2} =47千欧, R_{C} =3.3千欧, R_{E} =1.3千欧, U_{CC} =20伏, R_{F} =200欧, R_{L} =5.1千欧

- (1)画微变等效电路图
- (2)求输入电阻 r_i 加输出电阻 r_o
- (3)求电压放大倍数AU

三、(10分)图示为电流一电流变换器电路试证明: $I_0=-I_i$ R+R_F

R

四、(10分)图示逻辑电路及相应的CP、 $\overline{R_D}$ 、 $\overline{S_D}$ 和D的波形,试画出 Q_1 和 Q_2 的波形。设初始状态 Q_1 = Q_2 =0

五、(10分)图示电中,试写出出在CP作用下, Q_2 、 Q_1 、 Q_0 状态转换真值表,设初始状态 Q_2 = Q_1 = Q_0 =0

答案

一、基本题(6×10=60分) 1、 V₀(伏)

$$R_{a} = \frac{U_{CC} - U_{CE}}{I_{B}} = \frac{12 - 6.6}{2.7}$$

$$R_{C} = \frac{I_{CC}}{I_{CE}} = \frac{12 - 6.6}{2.7}$$

$$R_{a} = \frac{I_{a}}{\beta} = \frac{\frac{T}{2}}{\frac{2}{\beta}} = \frac{1}{2} = \frac{1}{2}$$

$$R_{a} = \frac{U_{CC}}{I_{B}} = \frac{12}{0.04} = 300K$$

- 3、(1)右下; 截止。 (2)1.6KΩ
- 4、不变,增大,减小,不变,不变。
- 5、(1)差

(2)
$$r_i = R_e / [(\beta + 1)R_E + r_{be}]$$

=220//[(80+1)×2.7+1.5]
=110K Ω

- 6、R2单级串联电流负反馈 R4单级串联电流负反馈 R₃R₄两级并联电流负反馈
- 7、图(②) 图b (③)
- 8、差,弱,小。 ± 4 mv, -1mv $_{\circ}$
- 9. $U_L \uparrow \rightarrow U_{BE2} \uparrow \rightarrow I_{B2} \uparrow \rightarrow I_{C2} \uparrow \rightarrow U_{CE2} \downarrow$ $U_L \downarrow \leftarrow U_{CE1} \downarrow \leftarrow I_{C1} \downarrow \leftarrow I_{B1} \downarrow \leftarrow U_{BE1} \downarrow$ 10, (1)Y = AB + AB

$$(2)Y = AB + A\overline{B} = AB \cdot A\overline{B}$$

(1)差

(2)
$$r_i$$
= R_{B1} // R_{B2} //[r_{be} +(β+1) R_F]
=150//47//[1.1+(80+1)0.2]
≈11.7千欧
 r_0 = R_c =3.3千欧

$$\begin{split} \mathbf{I_0} &= \mathbf{I} + \mathbf{I_1} = \frac{\mathbf{U_0}}{\mathbf{R}} + \frac{\mathbf{U_0}}{\mathbf{R_F}} = \mathbf{U_0} (\frac{1}{\mathbf{R}} + \frac{1}{\mathbf{R_F}}) \\ \mathbf{U_0} \mathbf{I_1} \cdot \mathbf{R_F} &= -\mathbf{I_i} \mathbf{R_F} \\ \mathbf{I_0} &= -\mathbf{I_i} = \frac{\mathbf{R} + \mathbf{R_F}}{\mathbf{R}} \end{split}$$

(3)

三、
$$(10分)$$

$$I_0 = I + I_F = \frac{V_0}{R} + \frac{V_0}{R_F} = V_0(\frac{1}{R} + \frac{1}{R_F})$$

$$V_0 = I_F \cdot R_F = -I_i R_F$$
 四、 $I_0 = \frac{R + R_F}{R}$

五、(10分)

CP	Q_2	Q_1	Q_0
0	0	0	0
1	0	0	1
2	0	1	1
3	1	1	1
4	1	1	0
5	1	0	0
6	0	0	0