

Introdução: Classificação Automática de Modulação

- Consiste na determinação automática da modulação de uma série de amostras (Clerico, V.; et. al, 2023);
- Sinais Radar com modulações complexas vêm aumentando;
- Detecções com baixo SNR se fazem mais difícil;
 - Dificultam ações de Contra Medida Eletrônica (ex: jamming);
 - Afetam o desempenho e complexidade computacional de técnicas convencionais de AMC;
- · Técnicas de Deep Learning vêm sendo escolhidas para contornar esses problemas (Wei, S.; et. al, 2021).

Objetivo

• Comparar o desempenho de uma rede Long Short Term Memory com o de uma Convolutional Neural Network na tarefa de classificação automática de modulações de sinais Radar.

Metodologia

LSTM Framework for Classification of Radar and Communications Signals

Victoria Clerico* (Student Member, IEEE), Jorge González-López*, Gady Agam[†], Jesús Grajal* (Senior Member, IEEE)

*Information Processing and Telecommunications Center, Universidad Politécnica de Madrid. E.T.S.I. Telecomunicación, Av. Complutense 30, 28040 Madrid, Spain. Corresponding author: Victoria Clerico (e-mail: mclerico@iece.org) | Department of Computer Science, ITT, Chicago, USA LSTM COM ARQUITETURA PRÓPRIA IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 1, FEBRUARY 2018

Over-the-Air Deep Learning Based Radio Signal Classification

Timothy James O'Shea , Senior Member, IEEE, Tamoghna Roy , Senior Member, IEEE, and T. Charles Clancy , Senior Member, IEEE

CNN COM ARQUITETURA PRÓPRIA

VERIFICAÇÃO DO DESEMPENHO NO DATASET SELECIONADO

COMPARAÇÃO DE DESEMPENHO NO DATASET SELECIONADO

DeepRadar2022

- Dataset de sinais (IQ) simulados de Radar com adição de ruído;
- 23 classes de modulações, todas balanceadas;
- SNR entre -12 e 20db com passos de 2db para cada modulação, sendo 1200 dados treino e 400 dados de teste e validação (totalizando 782000 dados);
- 1024 amostras de cada um dos canais;
- Particionado em 60% para treino, 20% para teste e 20% para validação;
- Modulações: [LFM; 2FSK; 4FSK; 8FSK; FM Costas Code; 2PSK; 4PSK; 8PSK; PM Barker Code; PM Huffman Code; PM Frank Code; PM P1 Code; PM P2 Code; PM P3 Code; PM P4 Code; PM PX Code; PM Zadoff-Chu Code; PM T1 Code; PM T2 Code; PM T3 Code; PM T4 Code; NM; Ruído];
- Treino: 224400, Validação e Teste: 74800.

Especificações Utilizadas - LSTM

Trabalho	Trabalho Referência				
Layer Type	Output Shape				
Input	(1024, 2)				
LSTM	(1024, 128)				
LSTM	(1024, 128)				
LSTM	(1024, 128)				
FC/Softmax	11				

Nova A	Nova Arquitetura					
Layer Type	Output Shape					
Input	(1024, 2)					
LSTM	(1024, 64)					
LSTM	(1024, 64)					
LSTM	(1024, 64)					
LSTM	(1024, 64)					
FC/Softmax	11					

- Otimizador: Adam, Ir cíclico (1e-7; 1e-3; 50 steps);
- Loss: Categorical Crossentropy;
- Métrica: Acurácia;
- Batch: 512.

Resultados LSTM - Referência

- Acurácia geral de 89%;
- Tempo de latência no teste de generalização: 2,64ms/amostra;
- 158s/época (500 épocas 22 horas)

Resultados LSTM - Referência

Resultados LSTM - Proposta

- Acurácia geral de 90%;
- Tempo de latência no teste de generalização: 2,65ms/amostra;
- 167s/época (500 épocas 23,20 horas).

Resultados LSTM - Proposta

Especificações Utilizadas - CNN

• Otimizador: Adam, Ir cíclico (1e-7; 1e-3; 50 steps);

Loss: Categorical Crossentropy;

• Métrica: Acurácia;

• Batch: 128.

Trabalho Referência				
Layer Type	Output Shape			
Input	(1024, 2)			
Conv/ReLu	(1024, 64)			
Max Pool	(512, 64)			
Conv/ReLu	(512, 64)			
Max Pool	(256, 64)			
Conv/ReLu	(256, 64)			
Max Pool	(128, 64)			
Conv/ReLu	(128, 64)			
Max Pool	(64, 64)			
Conv/ReLu	(64, 64)			
Max Pool	(32, 64)			
Conv/ReLu	(32, 64)			
Max Pool	(16, 64)			
Conv/ReLu	(16, 64)			
Max Pool	(8, 64)			
FC/Selu	128			
FC/Selu	128			
FC/Softmax	11			

Nova Arquitetura				
Layer Type	Output Shape			
Input	(1024, 2)			
Conv/ReLu	(1024, 512)			
Max Pool	(512, 512)			
Dropout	(512, 512)			
Conv/ReLu	(512, 256)			
Max Pool	(256, 256)			
Dropout	(256, 256)			
Conv/ReLu	(256, 128)			
Max Pool	(128, 128)			
Conv/ReLu	(128, 64)			
Max Pool	(64, 64)			
Conv/ReLu	(32, 64)			
Max Pool	(32, 32)			
Conv/ReLu	(16, 64)			
Max Pool	(16, 32)			
FC/Selu	256			
Dropout	256			
FC/Selu	128			
Dropout	128			
FC/Selu	64			
FC/Selu	32			
FC/Softmax	11			

Resultados CNN - Referência

- Acurácia geral de 78%;
- Tempo de latência no teste de generalização: 0,076ms/amostra;

Resultados CNN - Referência

Resultados CNN - Proposta

- Acurácia geral de 82%;
- Tempo de latência no teste de generalização: 0,254ms/amostra;

Resultados CNN - Proposta

Discussão e Conclusão

- Redes propostas apresentaram melhor desempenho frente às referências;
- LSTM obtiveram maior desempenho frente às CNNs, porém maior custo computacional (destaca-se LSTM proposta);
- A depender da aplicação, CNN pode ser mais adequada.

	Rede	Acurácia (%)	Tempo Treinamento (horas)	Épocas	Latência/Amostra (ms)	SNR Modulações (db) *	SNR Geral (db) *
	LSTM 1	89	22	500	2,64	2,5	-2
•	LSTM 2	90	23,2	500	2,65	0	-2,5
	CNN 1	78	2,22	200	0,076	11	5
	CNN 2	82	11,5	200	0,254	6	2

*Utilizando Critério de 90% de acurácia

Trabalhos Futuros

 Avaliar o desempenho do melhor modelo LSTM e do melhor modelo CNN com dados emulados;

 Avaliar o desempenho de novas arquiteturas de CNN e de arquiteturas híbridas;

• Embarcar um dos modelos em FPGA e verificar desempenho.

Referências

- S. Wei, Q. Qu, X. Zeng, J. Liang, J. Shi and X. Zhang, "Self-Attention Bi-LSTM Networks for Radar Signal Modulation Recognition," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 11, pp. 5160-5172, Nov. 2021, doi: 10.1109/TMTT.2021.3112199.
- T. J. O'Shea, T. Roy and T. C. Clancy, "Over-the-Air Deep Learning Based Radio Signal Classification," in IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-179, Feb. 2018, doi: 10.1109/JSTSP.2018.2797022.
- V. Clerico, J. González-López, G. Agam and J. Grajal, "LSTM Framework for Classification of Radar and Communications Signals," 2023 IEEE Radar Conference (RadarConf23), San Antonio, TX, USA, 2023, pp. 1-6, doi: 10.1109/RadarConf2351548.2023.10149618.