Course Name — Cours

т	т .	
Ivan	Lejeu	$n\epsilon$

octobre 2025

Chapitre 1 —	Calculabilité.												2

Chapitre 1 — Calculabilité

On s'intéresse dans ce cours au système de boite noire.

On attend une entrée, des calculs sont effectués, et on a une sortie.

Nos entrées et sorties correspondent à des suites de bits, on est dans le cadre discret. On utilisera les symboles suivants :

- L'alphabet : $\Sigma = \{0, 1\},\$
- L'ensemble des mots : Σ^* ,

On utilisera notamment les entiers à la place des mots. Pour ce faire, on veut une bijection entre Σ^* et \mathbb{N} . Problème? La fonction classique

$$x_1 x_2 \dots x_n \mapsto \sum_{i=1}^n x_i 2^{i-1}$$

n'est pas une bijection car le mot 00101 et le mot 101 donnent le même entier.

On utilisera donc la méthode suivante :

Soit x_1, \ldots, x_n notre suite de bits. Pour la convertir en entier, on commence par ajouter un 1 au début. Donc la chaîne de bits $x_1 \ldots x_n$ devient $1x_1 \ldots x_n$ mais problème, on ne peut pas coder le mot vide. Pour régler ce problème, on fait moins 1. Donc la chaîne de bits $x_1 \ldots x_n$ devient $1x_1 \ldots x_n$ et on fait moins 1, et voilà on a une bijection entre Σ^* et \mathbb{N} .

Elle ressemble à ceci :

$$x_1 x_2 \dots x_n \in \Sigma^* \mapsto \sum_{i=1}^n x_i 2^i - 1 \in \mathbb{N}$$

Pour appliquer un programme à une entrée on utilisera la notation non conventionnelle suivante :

$$[a \mid x]$$

qui représente l'exécution du programme a sur l'entrée x.

On a alors deux possibilités :

- Soit le programme s'arrête, et on note alors $[a \mid x] \downarrow$ si le programme a sur l'entrée x s'arrête. On dit que ça converge.
- Soit le programme ne s'arrête pas, et on note alors $[a \mid x] \uparrow$ si le programme a sur l'entrée x ne s'arrête pas. On dit que ça diverge.
- On note alors $[a \mid x] = y$ si le programme a sur l'entrée x s'arrête et donne la sortie y.

Il existe deux autres notations conventionnelles :

- $\varphi_a(x) = y$ si $[a \mid x] = y$ (standard historique américain),
- U(a, x) = y si $[a \mid x] = y$ (standard historique russe).

On pourra aussi utiliser $[a \mid \cdot]$ pour désigner la fonction partielle suivante :

$$\begin{split} [a \mid \cdot] : \mathbb{N} \to \mathbb{N} \\ x \mapsto \begin{cases} [a \mid x] & \text{si } [a \mid x] \downarrow, \\ \text{non défini} & \text{si } [a \mid x] \uparrow. \end{cases} \end{aligned}$$

Définition 1.1. Une fonction est **calculable** (ou récursive) si il existe un programme qui la calcule.

On travaillera dans l'intégralité de ce cours (ou du moins ce chapitre) sur les entiers. On pourra donc dire $\exists a$ sans préciser que a est un entier.

Définition 1.2. La fonction caractéristique d'un ensemble $A \subseteq \mathbb{N}$ est la fonction

$$\chi_A : \mathbb{N} \to \{0, 1\}, \quad x \mapsto \begin{cases} 1 & \text{si } x \in A, \\ 0 & \text{sinon.} \end{cases}$$

Définition 1.3. Un ensemble $A \subseteq \mathbb{N}$ est décidable (ou récursif) si sa fonction caractéristique χ_A est calculable.

Définition 1.4. Un ensemble $A \subseteq \mathbb{N}$ est énumérable (ou récursivement énumérable) si il est le domaine d'une fonction calculable.

D'autres mots pour dire la même chose :

- récursivement énumérable,
- calculatoirement énumérable,
- semi-décidable (à ne pas utiliser).

Définition 1.5. Le **domaine** d'une fonction a est l'ensemble

$$dom(a) = \{x \in \mathbb{N} \mid [a \mid x] \downarrow \}$$

Théorème de Post. Soit $E \subseteq \mathbb{N}$. Si E et \overline{E} sont énumérables, alors E est décidable (où $\overline{E} = \mathbb{N} \setminus E$ est le complémentaire de E dans \mathbb{N})

 $D\acute{e}monstration$. Soit $E \subseteq \mathbb{N}$ tel que E et \overline{E} sont énumérables. Donc il existe des programmes a et b tels que $dom[a \mid \cdot] = E$ et $dom[b \mid \cdot] = \overline{E}$. On veut construire un programme c qui décide E. On utilise la fonction Step de la manière suivante :

$$\operatorname{Step}\langle a,x,t\rangle = \begin{cases} 0 & \text{si } a \text{ n'a pas termin\'e après } t \text{ \'etapes sur l'entr\'ee } x, \\ 1+\left\lfloor a\mid x\right\rfloor & \text{sinon.} \end{cases}$$

Ensuite, on utilise la fonction Step pour construire le programme c qui décide E:

$$c: x \mapsto t \leftarrow 0$$
 tant que Step $\langle a, x, t \rangle = 0$ et Step $\langle b, x, t \rangle = 0$
$$t \leftarrow t + 1$$
 si Step $\langle a, x, t \rangle \neq 0$ alors return 1 sinon return 0

Donc E est décidable.