NAME: Andrew Caide

CSCI S-89c Deep Reinforcement Learning

Part I of Assignment 9

Please consider a Markov Decision Process (MDP) with $S = \{s^A, s^B, s^C\}$.

Given a particular state $s \in \mathcal{S}$, the agent is allowed to either try staying there or switching to any of the other states. Let's denote an intention to move to state s^A by a^A , to state s^B by a^B , and to state s^C by a^C . The agent does not know transition probabilities, including the distributions of rewards. There is, however, some evidence that the agent gets rewards only at the entrance to s^C ; and transition MDP probabilities to/from s^A appear to be same (or nearly same) as to/from s^B .

Suppose the agent chooses policy $\pi(a^A|s) = 0.05$, $\pi(a^B|s) = 0.05$, $\pi(a^C|s) = 0.90$ for all $s \in \{s^A, s^B, s^C\}$. Because of the apparent symmetry between s^A and s^B , it makes sense to assume that $v_{\pi}(s^A) \approx v_{\pi}(s^B)$ and approximate the state-values as follows:

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}) = w_1 \cdot \mathbb{1}_{(s=s_A)} + w_1 \cdot \mathbb{1}_{(s=s_B)} + w_2 \cdot \mathbb{1}_{(s=s_C)}$$

Please notice that $\hat{v}(s^A, \mathbf{w}) = \hat{v}(s^B, \mathbf{w})$ for any choice of weights.

Assume that the agent runs the following algorithm with $\alpha = 0.1$ and m = 2 for estimating v_{π} :

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha \sum_{t=mk}^{m(k+1)-1} [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_k) - \hat{v}(S_t, \mathbf{w}_k)] \nabla \hat{v}(S_t, \mathbf{w}_k), \ k = 0, 1, 2, \dots$$

This algorithm is a modification of the Semi-gradient 1-step Temporal-Difference (TD) with the model now being trained in mini-batches of size m. Please use $\gamma = 0.9$ and zero weights for k = 0.

If the agent observes the following sequence of states, actions, and rewards:

$$S_0 = s^A, A_0 = a^C, R_1 = 20,$$

 $S_1 = s^C, A_1 = a^B, R_2 = 0,$
 $S_2 = s^B, A_2 = a^C, R_3 = 20,$
 $S_3 = s^C, A_3 = a^C, R_4 = 20,$
 $S_4 = s^C, A_4 = a^B, R_5 = 20,$
 $S_5 = s^C, A_5 = a^C, R_6 = 0,$
 $S_6 = s^B.$

find (a) weights \mathbf{w}_k and (b) corresponding approximations $\hat{v}(s, \mathbf{w}_k)$ for iteration step k = 1, 2, 3. Specifically, please fill the tables in below:

SOLUTION:

(a) weights
$$\mathbf{w}_k = (w_{1,k}, w_{2,k})^T$$
:

	k = 0	k = 1	k = 2	k = 3
$w_{1,k}$	0	2	3.8	3.8
$w_{2,k}$	0	0	7	4.122

(b) approximations $\hat{v}(s, \mathbf{w}_k)$:

	k = 0	k = 1	k = 2	k = 3
$\hat{v}(s^A, \mathbf{w}_k)$	0	2	3.8	3.8
$\hat{v}(s^B,\mathbf{w}_k)$	0	2	3.8	>. ম
$\hat{v}(s^C, \mathbf{w}_k)$	0	0	2	4.122

$$W_{K+1} = W_{IL} + A \sum_{k=1}^{m(U+1)-1} \left[R_{k+1} + Y \hat{v} \left(s_{k+1}, \omega_{ik} \right) - \hat{v} \left(s_{k}, \omega_{ik} \right) \right] \nabla \hat{v} \left(s_{k}, \omega_{ik} \right)$$

$$m=2, K=1, S^{0} = S^{1}, S^{1} = S^{1}, S^{2} = S^{8}$$

$$W_{1} = W_{0} + \lambda \sum_{k=1}^{m-1} \left[\sum_{k=1}^{m} R_{1} + Y \hat{v} \left(s_{1}, \omega_{ik} \right) - \hat{v} \left(s_{0}, \omega_{ik} \right) \right] \nabla \hat{v} \left(s_{0}, \omega_{ik} \right) + \int_{k=1}^{m-1} \left[\sum_{k=1}^{m} R_{1} + Y \hat{v} \left(s_{1}, \omega_{ik} \right) - \hat{v} \left(s_{1}, \omega_{ik} \right) \right] \nabla \hat{v} \left(s_{1}, \omega_{ik} \right)$$

$$= \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} (20 + 0 - 0) \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \\ (0 + 0 - 0) \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = 0.1 \begin{bmatrix} 20 + 0 \\ 0 + 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$V_{T}(A) = V_{T}(B) = 2$$

$$V_{T}(C) = 0$$

$$V_{T}(C) = 0$$

$$V_{T}(C) = 0$$

$$\begin{aligned}
\omega_{2} &= W_{1} + d \sum_{t=1}^{3} \left[\left[R_{3} + 7 \hat{v} \left(S_{3}, \omega_{u} \right) - \hat{v} \left(S_{2}, \omega_{u} \right) \right] \nabla \hat{v} \left(S_{2}, \omega_{u} \right) + 1 \\
\left[R_{4} + 7 \hat{v} \left(S_{4}, \omega_{u} \right) - \hat{v} \left(S_{3}, \omega_{u} \right) \right] \nabla \hat{v} \left(S_{3}, \omega_{u} \right) \\
&= \left[\frac{2}{0} \right] + d \left[\frac{(20 + 0 - 2) \left[\frac{1}{0} \right] + 0}{(20 + 0 - 0) \left[\frac{1}{1} \right]} \right] = \left[\frac{2}{0} \right] + 0 \cdot 1 \left[\frac{18}{20} \right] = \left[\frac{3.8}{2} \right] \\
\sqrt{(A)} &= \sqrt{(B)} = \sqrt{(B)} = 3.8
\end{aligned}$$

$$V_{\pi}(A) = V_{\pi}(B) = 3.8$$

$$V_{\pi}(C) = 2$$

Andrew Caide Problem Set 9

$$\begin{aligned} & \omega_{3} = \omega_{2} + \lambda \sum_{t=4}^{5} \left[\left[R_{5} + 8 \hat{v} \left(S_{5}, \omega_{t} \right) - \hat{v} \left(S_{4}, \omega_{t} \right) \right] \nabla \hat{v} \left(S_{4}, \omega_{t} \right) + 1 \\ & \left[\left[R_{6} + 8 \hat{v} \left(S_{6}, \omega_{t} \right) - \hat{v} \left(S_{5}, \omega_{t} \right) \right] \nabla \hat{v} \left(S_{5}, \omega_{t} \right) \right] \\ & = \left[\frac{3.8}{2} \right] + \lambda \left[\left[\frac{20}{6} + 0.9 \left(2 \right) - 2 \right] \left[\frac{9}{1} \right] + \left[\frac{3.8}{2} \right] + 0.1 \left[\frac{19.8}{9} \left[\frac{9}{1} \right] + 1.42 \left[\frac{9}{1} \right] \right] \end{aligned}$$

$$= \begin{bmatrix} 3.8 + 0 + 0 \\ 2 + 1.98 + .142 \end{bmatrix} = \begin{bmatrix} 3.8 \\ 4.122 \end{bmatrix}$$

$$V_{\pi}(A) = V_{\pi}(B) = 3.8$$
 $V_{\pi}(C) = 4.122$