Algorithm Efficiency

Natasha Dejdumrong

CPE 212 Algorithm Design (1/61)

Topics

- Growth function
- Asymptotic notations
- Comparing growth order
- Algorithm complexity
- Running time analysis of recursive algorithms

Measuring Efficiency

Time efficiency

Memory (space) efficiency

- Use "running time" f(n) or f(n, m, ...) of algorithm
 - Almost all algorithms run longer on larger input size n.
 - Can also be some parameters n, m specific to the input.
 - Logical to measure algorithm efficiency using running time

RAM Model of Computation

- Each "basic operation" (+, -, *, /, comparison) takes 1 step (time unit).
- Loops and subroutine calls composed of many singlestep operations.
- Each memory access takes exactly 1 step.

Why RAM Model?

- Multiplication should take more time than addition.
- Access time for data on disk and on cache definitely different.

- But RAM model captures essential behaviour of how algorithm performs.
 - Flat-earth model useful and make sense in certain context.
 - Why not measuring real time?

Running Time Analysis of Non-Recursive Algorithms

- Count # basic operations taken on a given problem instance.
 - Usually most time-consuming operations occur in inner-loops
 - Independent of machine and language.
- Operation count reflects naturally to actual run time.

Ex: MaxElement()

Determine the running time of the algorithm that finds the maximum element in a finite sequence.

Algorithm MaxElement

- 1: Input: A sequence of numbers a_1, a_2, \dots, a_n
- 2: Output: The largest element in the input sequence
- 3:
- $4: maxval \leftarrow a_1$
- 5: **for** i = 2 to n **do**
- 6: if $maxval < a_i$ then
- 7: $maxval \leftarrow a_i$
- 8: Return maxval

 $\triangleright maxval$ is the largest element

Ex: UniqueElement()

Algorithm UniqueElement

```
1: Input: A sequence of numbers a_1, a_2, \dots, a_n
```

- 2: Output: Return "true" if all elements are distinct and "false" otherwise.
- 3:

4: **for**
$$i = 1$$
 to $n - 1$ **do**

5: **for**
$$j = i + 1$$
 to n **do**

6: if
$$a_i == a_j$$
 then

- 7: Return false
- 8: Return *true*

Best case C(n) = ?Worst case C(n) = ?

Best-/ Average-/ Worst-case

- Actual running time can depend on both input and algorithm.
- Must know how an algorithm works over all instances

$$C_{worst}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i)$$

$$= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i = (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2}$$

$$= (n-1)^2 - \frac{(n-2)(n-1)}{2} = \frac{(n-1)n}{2} \approx \frac{1}{2}n^2$$

We also could have computed the sum $\sum_{i=0}^{n-2} (n-1-i)$ faster as follows:

$$\sum_{i=0}^{n-2} (n-1-i) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2},$$

1.
$$\sum_{i=l}^{u} 1 = \underbrace{1 + 1 + \dots + 1}_{u-l+1 \text{ times}} = u - l + 1 \ (l, u \text{ are integer limits}, l \le u); \quad \sum_{i=1}^{n} 1 = n$$

2.
$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2$$

3.
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \approx \frac{1}{3}n^3$$

4.
$$\sum_{i=1}^{n} i^{k} = 1^{k} + 2^{k} + \dots + n^{k} \approx \frac{1}{k+1} n^{k+1}$$

5.
$$\sum_{i=0}^{n} a^{i} = 1 + a + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1} \ (a \neq 1); \quad \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

6.
$$\sum_{i=1}^{n} i2^{i} = 1 \cdot 2 + 2 \cdot 2^{2} + \dots + n2^{n} = (n-1)2^{n+1} + 2$$

7.
$$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n + \gamma$$
, where $\gamma \approx 0.5772 \dots$ (Euler's constant)

$$8. \quad \sum_{i=1}^n \lg i \approx n \lg n$$

Ex: Linear (Sequential) Search

Algorithm LinearSearch

- 1: Input: A sequence of numbers a_1, a_2, \dots, a_n ; An element x
- 2: Output: Return the index of element if x is in the sequence, and 0 otherwise.

3:

 $4: loc \leftarrow 0$

5: **for** i = 1 to n **do**

6: if $x = a_i$ then

7: $loc \leftarrow i$

8: break

9: Return *loc*

General Plan for Analyzing Non-Recursive Algorithms

Step	Ex: UniqueElement()
Decide on parameters indicating an input's size.	
Identify algorithm's basic operations	
Check if basic operations depend on additional properties other than the input size.	
Set up the sum expressing # executions of basic operations.	
Evaluate the sum to closed-form (or establish growth order)	

Efficient vs. Inefficient Algorithms

for
$$i = 1$$
 to n do $x_1 \leftarrow x_1 + 1$ $x_2 \leftarrow x_2 + 1$ $x_3 \leftarrow x_3 + 1$ \vdots $x_{100} \leftarrow x_{100} + 1$

for
$$i=1$$
 to n do
$$for \ j=1 \ to \ n \ do$$

$$x_1 \leftarrow x_1 + 1$$

$$x_2 \leftarrow x_2 + 1$$

- What is the efficiency of each algorithm above?
- Which one run faster?

How long to wait on average?

No. of records	Waiting times (10 msec per search)		
(n)	Linear search (n)	Binary search (log ₂ n)	
n = 1000	10 s	0.1 s	
n = 10000	100 s	0.1329 s	
n = 30000	300	0.1487 s	

No. of records	Waiting times (1 msec per search)		
(n)	Linear search (n)	Binary search (log ₂ n)	
n = 1000	1 s	0.01 s	
n = 10000	10 s	0.01329 s	
n = 30000	30 s	0.01487 s	

Lessons Learned

- Running time on small inputs typically does not matter.
- Only when large input n can we distinguish between efficient and inefficient algorithms.

Growth Order and Algorithm

- Consider an algorithm with $f(n) = n^2/4 + n/2 3$.
 - What are f(n) at n = 4, 40, 400, and 4,000?
 - f(n) behaves like n² for large n (within a constant multiple)
 - f(n) has the growth order of n²
- Growth order is an indicator of algorithm efficiency
 - Used to rank and compare algorithms.
 - Determine if it is practical to use a particular algorithm as the input grows.

Common Growth Order

Functions	Name
f(n) = 1	Constant function
$f(n) = \log n$	Logarithmic function
f(n) = n	Linear function
$f(n) = n \log n$	Linearithmic/Superlinear function
$f(n) = n^b$	Polynomial function
$f(n) = b^n$	Exponential function
f(n) = n!	Factorial function

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu \mathrm{s}$	$0.01~\mu \mathrm{s}$	$0.033~\mu\mathrm{s}$	$0.1~\mu \mathrm{s}$	$1 \mu s$	3.63 ms
20	$0.004~\mu \mathrm{s}$	$0.02~\mu \mathrm{s}$	$0.086~\mu \mathrm{s}$	$0.4~\mu \mathrm{s}$	1 ms	77.1 years
30	$0.005~\mu \mathrm{s}$	$0.03~\mu s$	$0.147~\mu \mathrm{s}$	$0.9~\mu s$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005~\mu \mathrm{s}$	$0.04~\mu s$	$0.213~\mu \mathrm{s}$	$1.6~\mu s$	18.3 min	
50	$0.006~\mu \mathrm{s}$	$0.05~\mu \mathrm{s}$	$0.282~\mu \mathrm{s}$	$2.5~\mu \mathrm{s}$	13 days	
100	$0.007~\mu \mathrm{s}$	$0.1~\mu \mathrm{s}$	$0.644~\mu \mathrm{s}$	$10~\mu s$	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010~\mu s$	$1.00~\mu s$	$9.966~\mu s$	1 ms		
10,000	$0.013~\mu \mathrm{s}$	$10 \ \mu s$	$130~\mu s$	100 ms		
100,000	$0.017~\mu s$	0.10 ms	1.67 ms	10 sec		
1,000,000	$0.020~\mu \mathrm{s}$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023~\mu \mathrm{s}$	0.01 sec	$0.23 \sec$	1.16 days		
100,000,000	$0.027~\mu \mathrm{s}$	$0.10 \mathrm{sec}$	$2.66 \mathrm{sec}$	115.7 days		
1,000,000,000	$0.030~\mu s$	1 sec	29.90 sec	31.7 years		

Asymptotic Efficiency Class

- Provide *asymptotic bounds* (upper, lower, exact) on the running time of algorithms
 - Big-Oh notation
 - Big-Omega notation
 - Big-Theta notation
- Allow for comparing and ranking growth orders of algorithms solving the same problem.

Big-Oh Notation: Upperbound

- above by g(n)"
 - "O(g(n)) is a big-Oh estimate of f(n)"

- Let f and g be functions from the set of integers or real numbers to the set of real numbers.
- We say that f(n) is O(g(n)) or $f(n) \in O(g(n))$ if f(n) is bounded above by some constant multiple of g(n) for all large n.

$$f(n) \le c \cdot g(n), \ \forall n \ge n_0$$

- Many g(n) possible for the same f(n)
- g(n) preferably selected as small as possible.

- Ex: Show that $7x^2$ is $O(x^3)$.
 - When x > 7, $7x^2 < x^3$.
 - Take c = 1 and $x_0 = 7$ as witnesses to establish that $7x^2$ is $O(x^3)$.
 - Would c = 7 and $x_0 = 1$ work?
- Ex: Show that n^2 is not O(n).
 - Suppose there are constants C and n_0 for which $n^2 \le C_n$, whenever n > k.
 - Then (by dividing both sides of $n^2 \le C_n$) by n, then $n \le C$ must hold for all $n > n_0$. A contradiction!

Big-Ω Notation: Lowerbound

by g(n)"

• " $\Omega(g(n))$ is a big-Omega estimate of f(n)"

- Let f and g be functions from the set of integers or real numbers to the set of real numbers.
- Say that f(n) is $\Omega(g(n))$ or $f(n) \in \Omega(g(n))$ if f(n) is bounded below by some constant multiple of g(n) for all large n.

$$f(n) \ge c \cdot g(n), \ \forall n \ge n_0$$

Ex: Show that n^3 is $\Omega(n^2)$

Big-Θ Notation: Exact bound

- Let f and g be functions from the set of integers or real numbers to the set of real numbers.
- We say that f(x) is $\Theta(g(n))$ or $f(n) \in \Theta(g(n))$ if f(n) is bounded both above and below by some constant multiple of g(n) for all large n.

$$c_2g(n) \leq f(n) \leq c_1g(n), \ \forall n \geq n_0$$

Most preferred expression for algorithm efficiency.

- Ex: Show that $f(x) = 3x^2 + 8x \log x$ is $\Theta(x^2)$.
 - $3x^2 + 8x \log x \le 11x^2$ for x > 1, since $0 \le 8x \log x \le 8x^2$.
 - Hence, $3x^2 + 8x \log x$ is $O(x^2)$.
 - x^2 is clearly $O(3x^2 + 8x \log x)$
 - Hence, $3x^2 + 8x \log x$ is $\Theta(x^2)$.

Big-Theta is the most preferred expression for algorithm efficiency. Why?

- Note: f(n) is $\Theta(g(n))$ if one of the following is true:
 - f(n) = O(g(n)) and g(n) = O(f(n))
 - f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Algorithm Complexity

If the running time f(n) is $\Theta(g(n))$, the algorithm is said to have the complexity /asymptotic efficiency of $\Theta(g(n))$.

- What is the complexity of
 - MaxElement() algorithm ?
 - Linear search algorithm ?

Is $\Theta(n)$ algorithm always faster than $\Theta(n^2)$ algorithm?

Basic Asymptotic Efficiency Classes

Class g(n)	Name
1	Constant
log n	Logarithmic
n	Linear
n log n	Linearithmic / Superlinear
√n	Sublinear polynomial
n ^b	Polynomial
b ⁿ	Exponential
n!	Factorial

Comparing Growth Orders

- Given two efficiency classes $g_1(n)$ and $g_2(n)$, how do we know which one grows faster?
- Given running time f(n) and class g(n), how do we check if f(n) is Big-? of g(n).

Two growth orders can be compared by the following ratio of limits:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0, & f(n) \text{ has a smaller order of growth than } g(n) \\ c, & f(n) \text{ has the same order of growth than } g(n) \\ \infty, & f(n) \text{ has a larger order of growth than } g(n) \end{cases}$$

- Ex: Compare the orders of growth of
 - (1/2)n(n-1) and n²
 - $log_2n and \sqrt{n}$
 - n! and 2ⁿ

Dominance Relations

- Faster-growing function is said to dominate a slower-growing one
- Suppose f and g belong to different classes, e.,g., $f(n) \notin \Theta(g(n))$
- We say that g dominates f if $f(n) \in O(g(n))$, or $g \gg f$
 - So, g dominates f if it has a larger order of growth.

$$n! \gg c^n \gg n^3 \gg n^2 \gg n^{1+\epsilon} \gg n \log n \gg n \gg \sqrt{n} \gg \log^2 n \gg \log n \gg \log n / \log \log n \gg \log \log n \gg \alpha(n) \gg 1$$

Running Time Analysis of Recursive Algorithms

Algorithm Factorial(n)

- 1: Input: A non-negative integer n
- 2: Output: The value of n!
- 3:
- 4: **if** n = 0 **then**
- return 1
- 6: else
- return Factorial(n-1)*n

$$F(n) = \begin{cases} F(n-1) \cdot n & \text{for } n > 0 \\ 1 & \text{for } n = 0 \end{cases}$$

M(n), # basic operations (multiplication), has the

$$M(n) = egin{cases} M(n-1) + 1 & \mbox{for } n > 0 \ 0 & \mbox{for } n = 0 \end{cases}$$

Method of Backward Substitutions

$$M(n) = M(n-1) + 1$$
 substitute $M(n-1) = M(n-2) + 1$
= $[M(n-2) + 1] + 1 = M(n-2) + 2$ substitute $M(n-2) = M(n-3) + 1$
= $[M(n-3) + 1] + 2 = M(n-3) + 3$.

Therefore,

$$M(n) = M(n-1) + 1 = \cdots = M(n-i) + i = \cdots = M(n-n) + n = n.$$

Ex: Tower of Hanoi Puzzle

- Move all disks from left peg to right peg one-by-one
 - Middle peg used as auxilliary
 - Forbidden to to place a larger disk on a smaller one.

- Basic operation = One disk movement
- So, M(n) = M(n-1) + 1 + M(n-1), for n > 1

$$M(n) = \begin{cases} 2M(n-1)+1 & \text{for } n>1\\ 1 & \text{for } n=1 \end{cases}$$

Applying the method of backward substitutions:

$$M(n) = 2M(n-1) + 1$$
 sub. $M(n-1) = 2M(n-2) + 1$
= $2[2M(n-2) + 1] + 1 = 2^2M(n-2) + 2 + 1$ sub. $M(n-2) = 2M(n-3) + 1$
= $2^2[2M(n-3) + 1] + 2 + 1 = 2^3M(n-3) + 2^2 + 2 + 1$.

The pattern of the first three sums suggests that

$$\begin{split} M(n) &= 2^i M(n-i) + 2^{i-1} + 2^{i-2} + \dots + 2 + 1 \\ &= 2^i M(n-i) + 2^i - 1 \end{split}$$

Since the initial condition is specified for n = 1, which is achieved for i = n-1,

$$M(n) = 2^{n-1}M(n - (n-1)) + 2^{n-1} - 1$$

$$= 2^{n-1}M(1) + 2^{n-1}$$

$$= 2^{n-1} + 2^{n-1} - 1 = 2^n - 1$$

General Plan for Analyzing Recursive Algorithms

- Decide on parameters indicating an input's size.
- Identify algorithm's basic operations
- Check if basic operations depend on additional properties other than the input size. If so, worst-case, average-case, best-case efficiencies have to be derived separately.
- Set up a recurrence relation with appropriate initial condition expressing # basic operations executed.
- Solve the recurrence to closed-form (or establish growth order)

Summary

- Algorithm efficiency measured by (worst-case) running time, which counts the basic operations
- Running time on large inputs distinguishes efficient algorithms from inefficient ones.
- Growth order of running time indicates the asymptotic efficiency of the algorithm
- Big-O and friends allow for classifying algorithms into efficiency classes.