JUSTIFIQUEU TOTES LES RESPOSTES

- 1. (a) [0.5 punts] Doneu la definició de la matriu d'incidències d'un graf.
 - (b) [1.5 punts] Enuncieu i proveu el Lema de les encaixades.
- 2. Sigui G un graf amb dos components connexos G_1 i G_2 . G_1 és d'ordre $r \geq 3$ i mida $m_1 = [r(r-1)/2] 1$, i G_2 és un arbre d'ordre r.
 - (a) [1 punt] Calculeu la mida del graf complementari G^c en funció de r.
 - (b) [1 punt] Calculeu el radi i el diàmetre de G^c .
 - (c) [2 punts] Proveu que G^c és hamiltonià però no eulerià.
- 3. Direm que un graf G té la propietat SBG ("subgraf bipartit gran") si té un subgraf generador H que és bipartit i tal que $\operatorname{mida}(H) \geq \frac{\operatorname{mida}(G)}{2}$.
 - (a) [1 punt] Comproveu que tots els grafs d'ordre 2 i 3 tenen la propietat SBG.
 - (b) [2 punts] Sigui v un vèrtex de G. Proveu que si G v té la propietat SBG, aleshores G també la té.
 - (*Indicació*: Si V_1 és una de les parts estables d'un subgraf generador bipartit de G-v, distingiu dos casos, segons que v sigui adjacent a menys de g(v)/2 vèrtexs de G o a g(v)/2 o més.)
 - (c) [1 punt] Proveu que el graf complet K_n té la propietat SBG per a tot $n \geq 2$.

Informacions:

- La durada de l'examen és de 2h.
- Entregueu cadascuna de les tres preguntes en un full diferent i escriviu amb tinta negra o blava.
- Si us cal, podeu utilitzar un apartat per tal de respondre'n un altre encara que el primer no l'hàgiu fet.
- Les notes es publicaran al Racó de la FIB el dia ?? de gener i la revisió serà el dia ?? de gener a les ?? (el lloc s'anunciarà amb antel·lació al Racó).

Model de solució

- 1. (a) [0.5 punts] Doneu la definició de la matriu d'incidències d'un graf.
 - (b) [1.5 punts] Enuncieu i proveu el Lema de les encaixades.

Sigui
$$G = (V, A)$$
 un graf amb $V = \{v_1, \dots, v_n\}$ i $A = \{a_1, \dots, a_m\}$.

(a) La matriu d'incidència de G és la matriu $M_I(G)$ de tipus $n \times m$ tal que l'element que hi ha a la fila i, columna j, és

$$\begin{cases} 1 & si \ v_i \ i \ a_j \ s\'{o}n \ incidents; \\ 0 & altrament. \end{cases}$$

(b) El lema de les encaixades afirma que

$$\sum_{v \in V} g(v) = 2m.$$

Demostració. Sigui X el nombre d'uns que hi ha a la matriu $M_I(G)$. Provarem el lema trobant dues expressions per a X i igualant-les.

Observem primer que a cada columna de $M_I(G)$ hi ha exactament dos uns; més concretament, si els extrems de l'aresta a_j són v_{i_1} i v_{i_2} , aleshores a les files i_1 i i_2 de la columna j hi ha un 1, i a les altres files, un zero. Per tant, $X = \sum_{i=1}^m 2 = 2m$.

D'altra banda, a la fila i de $M_I(G)$ hi ha un 1 per cada aresta incident amb v_i ; per tant, hi ha tants uns com el grau de v_i . Aleshores, $X = \sum_{i=1}^n g(v_i) = \sum_{v \in V} g(v)$.

Igualant les dues expressions trobades per a X arribem a la igualtat de l'enunciat.

- 2. Sigui G un graf amb dos components connexos G_1 i G_2 . G_1 és d'ordre $r \geq 3$ i mida $m_1 = [r(r-1)/2] 1$, i G_2 és un arbre d'ordre r.
 - (a) Calculeu la mida del graf complementari G^c en funció de r.
 - (b) Calculeu el radi i el diàmetre de G^c .
 - (c) Proveu que G^c és hamiltonià però no eulerià.
 - (a) L'ordre de G és n=2r. Per altra banda, com que G_2 és arbre, la seva mida és $m_2=r-1$, així que la mida de G és

$$m(G) = m(G_1) + m(G_2) = \frac{r(r-1)}{2} - 1 + r - 1 = \frac{r^2 - r - 2 + 2r - 2}{2} = \frac{r^2 + r - 4}{2}.$$

La mida de G^c és doncs

$$m(G^c) = \frac{2r(2r-1)}{2} - m(G)$$

$$= \frac{4r^2 - 2r}{2} - \frac{r^2 + r - 4}{2}$$

$$= \frac{3r^2 - 3r + 4}{2}$$

(b) Denotem per x_1, \ldots, x_r i y_1, \ldots, y_r els vèrtexs de G_1 i G_2 respectivament. Calculem-ne les excentricitats a G^c .

- Excentricitats dels x_i (i = 1,...,r).
 Com que G₁ és el complet K_r menys una aresta, que podem suposar (si convé reindexant els vèrtexs) que és l'aresta x₁x₂, a G^c tindrem aquesta aresta x₁x₂ i cap altra aresta del tipus x_ix_{i'}. Per altra banda, a G^c tindrem totes les arestes del tipus x_iy_j, amb i, j ∈ {1,...,r}, ja que no hi són a G. Deduïm que les excentricitats dels x_i a G^c són totes 2 perquè r ≥ 3 i, per tant, calen 2 arestes per anar des de x₁ o x₂ a qualsevol x_i per i ≥ 3, i perquè de qualsevol x_i a qualsevol y_j només cal una aresta.
- Excentricitats dels y_i (i = 1,...,r).
 Són totes també 2. En efecte, a G^c cada y_j és adjacent a tots els x_i però no pot ser-ho a tots els y_{j'}, ja que si ho fos voldria dir que a G₂ el vèrtex y_j no és adjacent a cap altre y_{j'}, cosa que no pot ser perquè en aquest cas G₂ no seria connex i, per tant, un arbre.

Per tant, el radi i el diàmetre són $r(G^c) = D(G^c) = 2$.

(c) Calculem els graus dels vèrtexs i comprovem que es compleix la condició de Dirac. Com abans, suposem que x_1x_2 és l'única aresta del tipus $x_ix_{i'}$ present a G^c . Tenim que

$$g_{G^c}(x_i) = \begin{cases} 1 + r, & si \ i \in \{1, 2\} \\ r, & si \ i \in \{3, \dots, r\} \end{cases}$$

ja que x_1 és adjacent a x_2 i a tots els y_j i anàlogament x_2 , mentre que els x_i , $i \geq 3$, només ho són als y_j . Per altra banda, del grau de y_j , $j \in \{1, ..., r\}$ només podem dir que és

$$g_{G^c}(y_j) \ge r + 1$$
,

ja que és adjacent a tots els x_i , $i \in \{1, ..., r\}$ i almenys a un $y_{j'}$ per l'argument anterior. En tots els casos es té doncs que

$$g_{G^c}(v) \ge r,$$

v vèrtex qualsevol de G^c . Com que r és la meitat de l'ordre de G^c , es compleix Diraci queda provat que G^c és hamiltonià. Alternativament, es tracta d'observar que el subgraf generat per les arestes entre els vèrtexs de G_1 i G_2 és un bipartit complet $K_{r,r}$, el qual sabem que és hamiltonià. Com que aquest subgraf és a més generador, deduïm que el propi graf G^c també és hamiltonià.

Per altra banda, no pot ser eulerià ja que tant si r és parell com si és senar, a G^c hi ha vèrtexs de grau senar perquè hi ha tant vèrtexs de grau r (per exemple, els vèrtexs x_3, \ldots, x_r) com vèrtexs de grau r + 1 (els vèrtexs x_1, x_2).

- 3. Direm que un graf G té la propietat SBG ("subgraf bipartit gran") si té un subgraf generador H que és bipartit i tal que $\operatorname{mida}(H) \geq \frac{\operatorname{mida}(G)}{2}$.
 - (a) [1 punt] Comproveu que tots els grafs d'ordre 2 i 3 tenen la propietat SBG.
 - (b) [2 punts] Sigui v un vèrtex de G. Proveu que si G v té la propietat SBG, aleshores G també la té
 - (c) [1 punt] Proveu que el graf complet K_n té la propietat SBG per a tot $n \geq 1$.

Recordem que un subgraf de G és generador si conté tots els vèrtexs de G.

(a) Tots els grafs d'ordre 2 i 3 són bipartits, excepte el graf complet K_3 , que és l'únic que té un cicle de longitud senar. Per tant, si $G \ncong K_3$, podem prendre H = G i clarament és generador $i \operatorname{mida}(H) = \operatorname{mida}(G) \ge \frac{\operatorname{mida}(G)}{2}$. Si $G \cong K_3$, prenem $H = K_3 - a$, on a és una aresta qualsevol de K_3 . Tenim que H és bipartit, generador (ja que no hem eliminat cap vèrtex) $i \operatorname{mida}(H) = 2 > \frac{3}{2} = \frac{\operatorname{mida}(G)}{2}$.

Una altra manera de resoldre aquest apartat seria dibuixant els 6 grafs no isomorfs d'ordres 2 i 3, i comprovant un per un que tenen un subgraf bipartit que conté tots els vèrtexs i almenys la meitat de les arestes.

(b) La hipòtesi ens diu que el graf G-v conté un subgraf generador bipartit H tal que $\operatorname{mida}(H) \geq \frac{\operatorname{mida}(G-v)}{2}$. Anomenem V_1 i V_2 les parts estables del subgraf H; per ser H generador, tenim que $V_1 \cup V_2$ conté tots els vèrtexs de G excepte v. Sabem també que $\operatorname{mida}(G-v) = \operatorname{mida}(G) - g(v)$ (on g(v) és el grau de v en el graf G).

Hem de veure que G té un subgraf generador bipartit H' tal que $\operatorname{mida}(H') \geq \frac{\operatorname{mida}(G)}{2}$.

El vèrtex v és adjacent a g(v) vèrtexs de G; aquests g(v) vèrtexs estan repartits entre V_1 i V_2 . (Vegeu la figura.)

Figure 1: Representació esquemàtica del graf de l'exercici 3(b).

Distingim 2 casos:

v és adjacent a ≥ g(v)/2 vèrtexs de V₁:
prenem H' com el graf amb parts estables V₁ i V₂ ∪ {v}, amb totes les arestes de H més totes les arestes de la forma vx amb x ∈ V₁. La seva mida és

$$\operatorname{mida}(H') \geq \operatorname{mida}(H) + \frac{g(v)}{2} \geq \frac{\operatorname{mida}(G-v)}{2} + \frac{g(v)}{2} = \frac{\operatorname{mida}(G) - g(v)}{2} + \frac{g(v)}{2} = \frac{\operatorname{mida}(G)}{2}.$$

- v és adjacent a < g(v)/2 vèrtexs de V_1 : en aquest cas v ha de ser adjacent a > g(v)/2 vèrtexs de V_2 , per tant podem raonar igual que en el primer cas, canviant els rols de V_1 i V_2 .
- (c) Una manera de provar-ho és fent inducció sobre $n \geq 2$. El cas base és n = 2, però ja hem vist a l'apartat (a) que K_2 té la propietat SBG. Per fer el pas inductiu, suposem que per algun $n \geq 3$ fixat el graf K_{n-1} té la propietat SBG (hipòtesi d'inducció) i demostrem

que K_n també la té. Sigui v un vèrtex qualsevol de K_n . Tenim que $K_n - v = K_{n-1}$, que té la propietat SBG per hipòtesi d'inducció. Aleshores l'apartat (b) garanteix que K_n també té la propietat SBG.

Una altra manera de provar-ho és fent un raonament directe. Si n és parell, K_n conté un subgraf generador isomorf a $K_{\frac{n}{2},\frac{n}{2}}$. Tenim

$$\operatorname{mida}(K_{\frac{n}{2},\frac{n}{2}}) = \frac{n^2}{4} \ge \frac{1}{2} \frac{n(n-1)}{2} = \frac{\operatorname{mida}(K_n)}{2}.$$

Si n és senar, K_n conté un subgraf generador isomorf a $K_{\frac{n+1}{2},\frac{n-1}{2}}$. Tenim

$$\operatorname{mida}(K_{\frac{n+1}{2},\frac{n-1}{2}}) = \frac{(n+1)(n-1)}{4} = \frac{n^2-1}{4} \ge \frac{n^2-n}{4} = \frac{1}{2}\frac{n(n-1)}{2} = \frac{\operatorname{mida}(K_n)}{2}.$$