Navy Experimental Diving Unit 321 Bullfinch Road Panama City, FL 32407-7015

TA 10-12 NEDU TR 12-01 MAR 2012

VVal-79 Maximum Permissible Tissue Tension Table for Thalmann Algorithm Support of Air Diving

Authors: WAYNE A. GERTH, PH.D. DAVID J. DOOLETTE, PH.D. Distribution Statement A: Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
06-03-2012	1 July 2010 – 29 February 2012	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER	
	ue Tension Table for Thalmann Algorithm	
Support of Air Diving		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
WAYNE A. GERTH, PH.D. and DAY	/ID J. DOOLETTE, PH.D.	TR 12-01
		5e. TASK NUMBER
		TA 10-12
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S Navy Experimental Diving Unit (NEI 321 Bullfinch Rd Panama City, FL 32407-7015		8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING / MONITORING AGENCY Naval Sea Systems Command 1333 Isaac Hull Avenue, SE	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Washington Navy Yard, DC 20376	11. SPONSOR/MONITOR'S REPORT NUMBER(S)	

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution Statement A:

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Thalmann Algorithm parameterized with VVal-18 or VVal-18M underlies U.S. Navy air and nitrox decompression procedures. VVal-18 and VVal-18M air no-stop limits at many depths are longer than the corresponding no-stop limits in the 1957 Standard Air Decompression Table that appeared in the *U.S. Navy Diving Manual* from 1959 until it was replaced in Revision 6 (2008). However, the severity of DCS observed in man-trials of the longer no-stop limits was unacceptable, and consequently, in the Revision 6 Air Decompression Tables, the 1957 air no-stop limits were arbitrarily retained in place of any longer VVal-18M-prescribed limits. This report describes VVal-79, a modification of the VVal-18M parameter set, that enables use of the Thalmann Algorithm to prescribe air diving no-stop limits and decompression obligations that can be used as is, with no need for arbitrary edits to individual schedules. Crucially, the VVal-79 parameter set will also provide air no-stop limits of appropriate duration when it is used in a Thalmann Algorithm Navy Dive Computer or Thalmann Algorithm Topside Decompression Monitor. A complete set of air decompression tables computed with the VVal-79 parameters is included.

15. SUBJECT TERMS

Thalmann Algorithm, air diving, no-stop limits, decompression schedules, decompression tables, Navy Dive Computers

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
		_			NEDU Librarian
a. REPORT	b. ABSTRACT	c. THIS PAGE		77	19b. TELEPHONE NUMBER (include
Unclassified	Unclassified	Unclassified			area code) 850.230.3170

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

ACKNOWLEDGMENTS

The authors are grateful to Dr. Denis W. Thomas for editorial assistance in the preparation of this manuscript.

CONTENTS

<u>Section</u>		<u>Page No</u> .
Report Docu	mentation Page	i
Acknowledgr	nents	ii
Contents		iii
1. INTRODU	CTION	1
2. METHOD	S	3
3.1. VV 3.2. VV 3.3. VV	Val-76Val-76Val-77Val-79val-79	9
4. DISCUSS	ION	24
MK 16 N	I ₂ -O ₂ Diving	29
5. CONCLUS	SIONS AND RECOMMENDATIONS	33
6. REFEREN	ICES	34
Appendix B. Appendix C. Appendix D.	Summary of VVal-18M Modifications Considered and Associated No-Stop Limit Prescriptions	A-1 - A-2 B-1 - B-3 C-1 D-1 - D-18 E-1 - E-14
the three Table 2. Table three	arget no-stop limits for VVal-76 with governing gas tensions (fse fastest compartmentsarget no-stop limits for VVal-79 with governing gas tensions (fsee fastest compartments	5 w) [*] in 12
	tercept and Slope Values for VVal-79 Maximum Permissible Ti	

List of Figures

Figure 1. The air diving no-stop limit problem	1
Figure 2. A comparison of air no-stop limits prescribed by the NSW III NDC and	
the no-stop limits prescribed by the Thalmann Algorithm with VVal-18, the	
USN57 no-stop limits, and the 0.2% P _{CNS-DCS} isopleth	2
Figure 3. Governing gas tensions in the 5-minute half-time compartment after	
completion of the VVal-76 target no-stop limit times and the VVal-76 target	_
no-stop limit times plus one minute in Table 1	6
Figure 4. Governing gas tensions in the 10-minute half-time compartment after	
completion of the VVal-76 target no-stop limit times and the VVal-76 target	7
no-stop limit times plus one minute in Table 1	/
Figure 5. Governing gas tensions in the 20-minute half-time compartment after	
completion of the VVal-76 target no-stop limit times and the VVal-76 target	0
no-stop limit times plus one minute in Table 1	8
Figure 6. Air no-stop limits prescribed by the Thalmann Algorithm with VVal-76 in	
comparison to those on the 0.2% P _{CNS-DCS} isopleth and the USN57 limits.	
The 10-minute no-stop limit at 150 fsw prescribed with VVal-76 is only two minutes shorter than the bottom time at which a severe DCS incident	
occurred, although the limit is equal to the corresponding point on the 0.2%	
P _{CNS-DCS} isopleth	9
Figure 7. Air no-stop limits prescribed by the Thalmann Algorithm with VVal-77 in	
comparison with the USN57 limits and the 0.2% P _{CNS-DCS} isopleth limits	
	10
Figure 8. USN57 no-stop limits smoothed with Equation (1) and the USN57 limits	
that were explicitly fitted with the smoothing polynomial	11
Figure 9. Governing gas tensions in the 5-minute half-time compartment after	
completion of the VVal-79 target no-stop limit times and the VVal-79 target	
no-stop limit times plus one minute in Table 2	13
Figure 10. Governing gas tensions in the 10-minute half-time compartment after	
completion of the VVal-79 target no-stop limit times and the VVal-79 target	
no-stop limit times plus one minute in Table 2	14
Figure 11. Governing gas tensions in the 20-minute half-time compartment after	
completion of the VVal-79 target no-stop limit times and the VVal-79 target	
·	15
Figure 12. Air no-stop limits prescribed by the Thalmann Algorithm with VVal-79	
compared with smoothed USN57 limits given by Equation (1)	16
Figure 13. Total decompression stop times in air-only decompression schedules	
prescribed by the Thalmann Algorithm with VVal-77 and VVal-79 compared	
with the total decompression stop times in the corresponding USN-Rev6	
schedules	18
Figure 14. Comparison of total air-only decompression stop times as in Figure	
13, but including only schedules for the nonexceptional exposure dives in	4.0
USN-Rev6	19
Figure 15. Comparison of the P _{DCS} for the air-only dives in Figure 13 with the	
P _{DCS} for the corresponding USN-Rev6 schedules, as the NMRI98	00
probabilistic model estimates these risks	20

Figure 16. Comparison of the P _{DCS} for the air-only dives in Figure 13 with the	
P _{DCS} for the corresponding USN-Rev6 schedules, as the BVM(3)	
probabilistic model estimates these risks	. 21
Figure 17. Total decompression stop times (not including air-breathing breaks) in	
air with in-water O ₂ decompression (Air/O ₂) schedules prescribed by the	
Thalmann Algorithm with VVal-77 and VVal-79, compared with the total	
decompression stop times in the corresponding USN-Rev6 schedules	. 22
Figure 18. Total decompression stop times (in-water and chamber) in air SurDO ₂	
schedules prescribed by the Thalmann Algorithm with VVal-77 and VVal-79,	
in comparison to the total decompression stop times in the corresponding	
USN-Rev6 schedules for 100–190 fsw dives (including exceptional exposure	
dives)	. 23
Figure 19. Total decompression stop times (in-water and chamber) in air SurDO ₂	
schedules prescribed by the Thalmann Algorithm with VVal-77 and VVal-79,	
in comparison with the total decompression stop times in the corresponding	
USN-Rev6 schedules for 200–300 fsw dives	. 24
Figure 20. P _{DCS} (from Appendix E) of nonexceptional exposure air-only	
schedules in the Thalmann Algorithm VVal-79 Air Decompression Table as	
estimated with the NMRI98 and BVM(3) models	. 26
Figure 21. Total decompression stop times in air-only decompression schedules	
prescribed by the Thalmann Algorithm with VVal-82, compared with the total	
decompression stop times in the corresponding schedules prescribed by the	20
Thalmann Algorithm with VVal-79	. 28
Figure 22. Data as illustrated in Figure 21, but showing P _{DCS} values as estimated with the BVM(3) model	. 29
Figure 23. No-stop limits for MK 16 MOD 0 N ₂ -O ₂ diving to depths >90 fsw	. 29
prescribed by the Thalmann Algorithm with VVal-77 and VVal-79, in	
comparison to the existing limits prescribed by the Thalmann Algorithm with	
VVal-18.	. 31
Figure 24. No-stop limits for MK 16 MOD 1 N ₂ -O ₂ diving to depths >110 fsw	. 0 1
prescribed by the Thalmann Algorithm with VVal-77 and VVal-79, in	
comparison to the existing limits prescribed by the Thalmann Algorithm with	
VVal-18.	. 32

1. INTRODUCTION

Both the Thalmann Algorithm (parameterized with the VVal-18 or VVal-18M parameter sets) and probabilistic models of the incidence and time of onset of decompression sickness (DCS) prescribe no-stop limits for air dives to depths ≥90 feet of sea water (fsw) that are substantially longer than the corresponding limits in the 1957 des Granges U.S. Navy Standard Air Decompression Table (USN57) that appeared in the *U.S. Navy Diving Manual* from 1959 until it was replaced in 2008.^{1,2,3} The severity of DCS observed in mantrials of the longer no-stop limits at 130, 150, and 190 fsw, however, was unacceptable (see Figure 1), which motivated rejection of the longer limits.¹

Figure 1. The air diving no-stop limit problem. Serious central nervous system (CNS) DCS (indicated with crosses) occurred at the longer limits tested at 130, 150, and 190 fsw.

The new integrated Air Decompression Table that first appeared in Revision 6 of the *U.S. Navy Diving Manual*,⁴ a table here designated as USN-Rev6, was computed with the Thalmann VVal-18M Algorithm, which prescribes air diving no-stop limits equal to those prescribed by the Thalmann Algorithm with VVal-18.^{5,6} USN57 no-stop limits were arbitrarily retained in place of any longer algorithm-prescribed limits.⁶ U.S. Navy Dive Computers (NDCs) and the Topside Decompression Monitor (TDM) also operate with the Thalmann Algorithm and the VVal-18 or VVal-18M parameter sets. These devices provide real-time decompression guidance computed on the basis of a diver's evolving dive history, a context in which it is not possible to interpret the arbitrary edits of individual algorithmic prescriptions in USN-Rev6. These devices consequently still prescribe the unacceptably long no-stop limits that were rejected for USN-Rev6. An interim solution that required no changes to any extant NDC in supporting air diving was

proposed: Use the NSW III NDC.¹ That device prescribes the acceptable no-stop limits of the Thalmann Algorithm with VVal-18 parameters for air dives to depths of 78 fsw or less.¹ At depths deeper than 78 fsw, the NSW III assumes that the diver is breathing from MK 16 MOD 0, and it prescribes no-stop limits close to those on an isopleth of 0.2% risk of CNS DCS (P_{CNS-DCS}) as estimated with a logistic model fitted to an extensive data set of CNS DCS incidences in no-stop air dives (Model 2 in NEDU TR 09-03,² see Figure 2).¹ Accordingly, though not as short as the limits in USN-Rev6, these limits were considered to be of acceptable durations for air diving. On the other hand, the decompression schedules prescribed by the NSW III are substantially longer than their counterparts in USN-Rev6.¹ A comprehensive solution that minimally affects the decompression times for deep air dives requires changes to the Thalmann Algorithm parameters. This report describes VVal-18M parameter set modifications that have been considered to achieve such a solution.

Figure 2. A comparison of air no-stop limits prescribed by the NSW III NDC and the no-stop limits prescribed by the Thalmann Algorithm with VVal-18, the USN57 no-stop limits, and the 0.2% P_{CNS-DCS} isopleth.

 $^{\mathrm{a}} \quad P_{\mathrm{CNS-DCS}} = \frac{1}{1 + \exp(-g(D,BT))} \,, \label{eq:Pcns-dcs}$

where $g(D,BT)=\beta_0+\beta_1\ln D+\beta_2\ln BT$, and with depth D in fsw and bottom time BT in minutes, $\beta_0=-55.955319$, $\beta_1=8.162347$, and $\beta_2=3.813201$.

2. METHODS

Modifications to the VVal-18M parameters were considered to make the Thalmann Algorithm prescribe acceptable air diving no-stop limits while keeping its prescriptions for air decompression dives as close as possible to those provided by the algorithm with VVal-18M. The different modifications were based on different sets of "acceptable" no-stop limits. The Thalmann Algorithm allows no-stop ascent to surface after bottom time at a given depth is increased up to the time when a "governing compartmental gas tension" first exceeds the corresponding compartmental maximum permissible tissue tension (MPTT) at surface. A given set of target no-stop limits is thus attained by assigning appropriate compartmental MPTT values at surface.

By the convention adopted to produce USN-Rev6, the governing compartmental gas tensions are those that prevail in the modeled gas exchange compartments at the depth of the last allowed decompression stop; i.e., all allowed ascents effectively end with instantaneous ascent to surface from the last allowed decompression stop depth. The governing compartmental gas tensions — and, hence, the no-stop limits — are consequently functions not only of dive depth and bottom time but also of the Thalmann Algorithm parameters that affect compartmental gas exchange [PBOVP^a and compartmental gas exchange half-times and saturation/desaturation rate ratios (SDR values)], the dive descent and ascent rates, and the depth of the last allowed decompression stop. With the last allowed stop depth of 20 fsw in USN-Rev6, MPTTs required to effect desired no-stop limits were determined from the computed compartmental gas tensions at 20 fsw during no-stop ascent to surface after the desired bottom time is completed at each depth of interest.

Governing gas tensions were computed with DMDB7 software, an implementation of the EL-DCM Thalmann Algorithm⁸ similar to that used to generate the air (USN-Rev6), MK16 MOD 0, and MK 16 MOD 1 decompression tables in Revision 6 of the *U.S. Navy Diving Manual.*⁹ The DMDB7 software features node-by-node output of computed compartmental gas tensions for each processed dive profile, including output for a node at the last-allowed decompression stop depth during no-stop ascents. A descent rate of 75 fsw/min and an ascent rate of 30 fsw/min were assumed for each air dive considered.

3. RESULTS

The various VVal-18M modifications considered, along with the corresponding air diving no-stop limit prescriptions, are summarized in Appendix A.

-

^a The threshold compartmental inert gas tension overpressure with respect to saturation at the prevailing ambient hydrostatic pressure for transition from exponential to linear gas exchange kinetics.

3.1. VVal-76

The first set of modified parameters considered, designated VVal-76, was presented in NEDU TR 09-03 as one with which the Thalmann Algorithm would produce no-stop limits along the 0.2% P_{CNS-DCS} isopleth.¹ The VVal-76 target no-stop limits along the 0.2% P_{CNS-DCS} isopleth are given in Table 1. The modifications entailed changes to only the surfacing MPTTs of the 5-, 10-, and 20-minute half-time compartments of VVal-18M, with retention of all other VVal-18M parameter values. However, the means by which those revised surfacing MPTTs were determined was not described.

In any given gas exchange compartment, the governing gas tensions during no-stop ascents from a given dive depth increase with dive bottom time. Also, after dives of given bottom time, the governing gas tensions in any compartment during no-stop ascents increase with dive depth. Thus, as target no-stop bottom times decrease with increasing dive depth, the governing gas tensions in a given compartment pass through a maximum. For the dive depth at which this maximum occurs, the no-stop limit is fixed at the target value by assigning the surfacing MPTT for the compartment a value between the governing gas tension attained after a dive to the target no-stop limit and the governing gas tension attained after a dive to the target limit plus one minute (see Table 1). A single surfacing MPTT for a given compartment may fulfill this requirement for a range of dive depths surrounding the depth of the maximum governing gas tension, and hence cause the no-stop limits for dives to those depths to equal the respective target values. Since maxima in governing gas tensions occur at different depths in different compartments, different compartments control the no-stop limits over different ranges of dive depth. Figures 3 through 5 illustrate how the governing gas tension maxima in the 5-, 10-, and 20-minute half-time compartments were used to determine the respective compartmental surfacing MPTTs for VVal-76.

Table 1. Target no-stop limits for VVal-76 with governing gas tensions (fsw)* in the three fastest compartments.

		5-min T _{1/2}		10-min T	½	20-min T _½		
Depth	Target No ₋	Target	Target+1min	Target	Target+1min	Target	Target+1min	
	stop Limit [‡]							
(fsw)	(min)	(fsw)	(fsw)	(fsw)	(fsw)	(fsw)	(fsw)	
70	52	76.375	76.380	76.675	76.771	70.077	70.379	
80	39	82.976	83.010	81.420	81.691	70.702	71.239	
90	30	88.966	89.099	84.326	84.888	69.893	70.711	
100	24	94.068	94.403	85.917	86.850	68.710	69.816	
110	20	98.332	98.964	86.935	88.269	67.775	69.160	
120	16	100.543	101.717	85.511	87.391	65.124	66.838	
130	14	103.186	104.827	85.914	88.215	64.614	66.585	
140	12	104.366	106.633	85.036	87.826	63.282	65.532	
150	10	103.667	106.753	82.701	86.056	61.068	63.623	
160	9	104.730	108.401	82.725	86.492	60.797	63.591	
170	8	104.899	109.232	82.106	86.314	60.134	63.178	
180	7	104.094	109.163	80.816	85.492	59.070	62.372	
190	6	102.235	108.115	78.825	83.997	57.596	61.166	

^{*} Compartmental gas tensions at 20 fsw during no-stop ascent at 30 fsw/min after descent at 75 fsw/min to the indicated depth and completion of the indicated bottom times (target time and target time + 1 minute).

Governing gas tensions in the 5-minute half-time compartment in Table 1 are graphically illustrated versus dive depth in Figure 3. These gas tensions are maximal over the 150 to 190 fsw range of dive depths. Within this range, a gas tension of 106.7 fsw falls between the governing tensions for dives to the target bottom times and those for dives to the target bottom times plus one minute. Thus, a surfacing MPTT of 106.7 fsw in this compartment causes the no-stop limits for dives to depths of 150 to 190 fsw to equal the corresponding VVal-76 target no-stop limits in Table 1.

[‡] A dive to each target incurs an estimated 0.2% risk of CNS DCS.

Figure 3. Governing gas tensions in the 5-minute half-time compartment after completion of the VVal-76 target no-stop limit times and the VVal-76 target no-stop limit times plus one minute in Table 1.

Figure 4 shows how a surfacing MPTT of 86.7 fsw in the 10-minute half-time compartment causes the no-stop limits for dives to 100 fsw and to 120 to 140 fsw to equal the corresponding VVal-76 target no-stop limits in Table 1. However, this MPTT is of value slightly less than the governing gas tension in this compartment for the target no-stop limit of dives to 110 fsw, while it is greater than the governing gas tension (not shown) in this compartment for a no-stop limit one minute shorter than the target. Thus, a 86.7 fsw surfacing MPTT in the 10-minute half-time compartment causes the no-stop limit for 110 fsw dives to be one minute less than the target value.

Figure 4. Governing gas tensions in the 10-minute half-time compartment after completion of the VVal-76 target no-stop limit times and the VVal-76 target no-stop limit times plus one minute in Table 1.

Figure 5 shows how a surfacing MPTT of 70.3 fsw in the 20-minute half-time compartment causes the no-stop limits for dives to depths of 70 and 90 fsw to equal the corresponding VVal-76 target no-stop limits in Table 1. However, this MPTT is of value slightly less than the governing gas tension in this compartment for the target no-stop limit of dives to 80 fsw, while it is greater than the governing gas tension (not shown) in this compartment for a no-stop limit one minute less than the target. Thus, a 70.3 fsw surfacing MPTT in the 20-minute half-time compartment causes the no-stop limit for 80 fsw dives to be one minute less than the target value.

Figure 5. Governing gas tensions in the 20-minute half-time compartment after completion of the VVal-76 target no-stop limit times and the VVal-76 target no-stop limit times plus one minute in Table 1.

Figure 6 illustrates that the air-diving no-stop limits prescribed by the Thalmann Algorithm with VVal-76 conform closely with the target no-stop limits on the 0.2% CNS DCS risk isopleth for dives to depths >80 fsw. The prescribed limits for dives to shallower depths fall comfortably below this isopleth.

Figure 6. Air no-stop limits prescribed by the Thalmann Algorithm with VVal-76 in comparison to those on the 0.2% $P_{CNS-DCS}$ isopleth and the USN57 limits. The 10-minute no-stop limit at 150 fsw prescribed with VVal-76 is only two minutes shorter than the bottom time at which a severe DCS incident occurred, although the limit is equal to the corresponding point on the 0.2% $P_{CNS-DCS}$ isopleth.

While the Thalmann Algorithm with the VVal-76 parameters prescribes acceptable air diving no-stop limits, these parameters cannot be implemented in NDCs. The software implementation of the Thalmann Algorithm in these computers requires MPTTs at depth that are linearly projected from their surface values. This requirement is violated in VVal-76, because only compartmental surfacing MPTTs were modified and the original VVal-18M compartmental MPTTs at depth were retained.

3.2. VVal-77

E. T. Flynn observed that equating the 5-minute half-time compartmental MPTTs to the 10-minute half-time compartmental MPTTs at all depths while retaining all other VVal-18M parameters unchanged produces an MPTT table with which the Thalmann Algorithm

prescribes air diving no-stop limits close to the original USN57 limits (see Figure 7). With this modification (designated VVal-77) the no-stop limits for dives to 110, 120, and 140 fsw are each one minute shorter than the USN57 limits. Additionally, the limits for dives to depths of 90 and 100 fsw are three and four minutes longer, respectively, than the corresponding points on the 0.2% $P_{\text{CNS-DCS}}$ isopleth given by the Thalmann Algorithm with the VVal-76 parameters.

Figure 7. Air no-stop limits prescribed by the Thalmann Algorithm with VVal-77 in comparison with the USN57 limits and the 0.2% P_{CNS-DCS} isopleth limits prescribed by the Thalmann Algorithm with VVal-76.

3.3. VVal-79

A better match of algorithm-prescribed no-stop limits to the original USN57 limits was sought with the rigorous approach used to compute the VVal-76 surfacing MPTTs. However, the published USN57 no-stop limits were calculated only to the nearest lower 5-or 10-minute increment. As a result, the no-stop limits for 130 and 140 fsw dives are given as 10 minutes, while the no-stop limits for dives to 150 through 190 fsw are all given as 5 minutes. Because the Thalmann Algorithm calculates no-stop limits to the nearest

lower minute, USN57 no-stop limit values more precise than the nearest lower 5-minute increment values were required as targets for calculating modified Thalmann Algorithm surfacing MPTTs. Target values that are consistent with the published USN57 no-stop limits and that decrease monotonically and continuously between 60 and 190 fsw were obtained from the following third-order polynomial fitted to selected published USN57 limits:

$$y = -0.0000253499 \cdot D^{3} + 0.0140171536 \cdot D^{2} - 2.6373380837 \cdot D + 173.7433352041$$
 (1)
 (R² = 0.9987721828)

where y is the no-stop limit (min) at depth D (fsw). The function, with the selected USN57 limits explicitly fitted by the function, is illustrated in Figure 8. The smoothed no-stop limit for a 130 fsw dive is between 10 and 15 minutes, consistent with what the USN57 limit for this dive would have been if calculated to the nearest minute. Similarly, the smoothed no-stop limits for dives to 150 through 190 fsw have values between 5 and 10 minutes — values that decrease with increasing dive depth and are consistent with what the USN57 limits for these dives would have been if calculated to the nearest minute.

Figure 8. USN57 no-stop limits smoothed with Equation (1). Also shown are the USN57 limits (unfilled squares) that were explicitly fitted with the smoothing polynomial.

Table 2 gives both the smoothed USN57 no-stop limit targets for the VVal-79 parameter set developed in this exercise and the governing gas tensions during no-stop ascent in the three fastest gas exchange compartments in the Thalmann Algorithm with VVal-18M parameters, after the indicated target bottom times and the indicated target bottom times plus one minute are completed at the indicated depths. Values for each compartment are illustrated versus dive depth in Figures 9, 10, and 11.

Table 2. Target no-stop limits for VVal-79 with governing gas tensions (fsw)* in the three fastest compartments.

		5-min T _½		10-min T	- ½	20-min T _{1/2}		
Depth	Target No-	Target	Target+1min	Target	Target+1min	Target	Target+1min	
	stop Limit							
(fsw)	(min)	(fsw)	(fsw)	(fsw)	(fsw)	(fsw)	(fsw)	
60	60	69.502	69.503	70.013	70.061	65.542	65.739	
70	50	76.363	76.369	76.460	76.571	69.441	69.764	
80	40	83.010	83.040	81.691	81.944	71.239	71.759	
90	30	88.966	89.099	84.326	84.888	69.893	70.711	
100	25	94.403	94.695	86.850	87.723	69.816	70.887	
110	20	98.332	98.964	86.935	88.269	67.775	69.160	
120	15	99.205	100.543	83.505	85.511	63.353	65.124	
130	12	99.193	101.317	80.851	83.462	60.477	62.579	
140	10	98.884	101.795	78.908	82.066	58.560	60.958	
150	8	96.262	100.185	75.349	79.136	55.706	58.432	
160	7	95.964	100.599	74.481	78.725	54.931	57.913	
170	6	94.616	100.044	72.914	77.644	53.742	56.993	
180	5	92.140	98.436	70.619	75.862	52.129	55.660	
190	5	95.701	102.235	73.353	78.825	53.903	57.596	

^{*} Compartmental gas tensions at 20 fsw during no-stop ascent at 30 fsw/min after descent at 75 fsw/min to the indicated depth and completion of the indicated bottom times (target time and target time + 1 minute).

Figure 9 shows that the target no-stop limits for dives to depths of 120 to 170 fsw, and the target no-stop limit for dives to 190 fsw, are governed by the 5-minute half-time compartment with a surfacing MPTT of 99.3 fsw. This surfacing MPTT exceeds the governing gas tension in this compartment for 180 fsw dives to the target limit plus one minute, but it is less than the governing gas tension (not shown) for 180 fsw dives to the target limit plus two minutes. The 99.3 fsw MPTT consequently causes the no-stop limit for such dives to be one minute longer than the target value.

Figure 9. Governing gas tensions in the 5-minute half-time compartment after completion of the VVal-79 target no-stop limit times and the VVal-79 target no-stop limit times plus one minute in Table 2.

Figure 10 shows that the target no-stop limits for dives to depths of 100 and 110 fsw are governed by the 10-minute half-time compartment with a surfacing MPTT of 87.7 fsw.

Figure 10. Governing gas tensions in the 10-minute half-time compartment after completion of the VVal-79 target no-stop limit times and the VVal-79 target no-stop limit times plus one minute in Table 2.

One would naturally turn to the surfacing MPTT assignment for the next slower, 20-minute half-time compartment to fix the target 30-minute no-stop limit for 90 fsw dives. However, the required MPTT of about 70 fsw is less than the target governing gas tension for 80 fsw (Figure 11) and would cause an unacceptably large reduction in the no-stop limit for 80 fsw dives. The original 78 fsw surfacing MPTT in the 20-minute half-time compartment is consequently retained, but no no-stop limits are controlled by this compartment. In VVal-79, the 87.7 fsw surfacing MPTT in the 10-minute half-time compartment controls the 90 fsw no-stop limit and allows it to be 33 minutes, not the target 30 minutes. A lower surfacing MPTT in the 10-minute half-time compartment required to fix the 90 fsw/30-minute no-stop limit would cause the no-stop limits for 100 fsw and 110 fsw dives to be shorter than the targets. The inability to assign surfacing MPTTs that cause the no-stop limits to equal the targets for all dive depths is a limitation of the number and half-time assignments of the discreet gas exchange compartments in the Thalmann Algorithm.

Figure 11. Governing gas tensions in the 20-minute half-time compartment after completion of the VVal-79 target no-stop limit times and the VVal-79 target no-stop limit times plus one minute in Table 2. The solid line at 78 fsw is the compartmental MPTT at surface in VVal-18, VVal-18M, and VVal-77. With this compartmental surfacing MPTT that was retained in VVal-79, no no-stop limit is controlled by this compartment.

The VVal-79 MPTT table is completed by projecting the surfacing MPTTs to depth. The surfacing MPTT value for each compartment, i, is linearly projected to the jth decompression stop depth, Dj, in accord with a convention used by Workman:¹⁴

$$MPTT_{i,j} = MPTT_{i,0} + a_i D_j, \quad j = 0, 1, ...$$
 (2)

where j = 0 at surface, $MPTT_{i,0}$ is the surfacing MPTT, a_i is a slope parameter, and $D_j = j$ *SDI, where SDI is the stop depth increment. The $MPTT_{i,j}$ given by Equation (2) are then offset by SDI to produce the final Thalmann Algorithm MPTT table. The offset values, designated with a prime, are given by

$$MPTT'_{i,j+1} = MPTT_{i,j}, \quad j = 0, 1, ...$$
 (3)

The $MPTT_{i,0}$ and a_i values required to compute the VVal-79 MPTT matrix with Equations (2) and (3) are given in Table 3, with depths and gas tensions in units of fsw.

Table 3. Intercept and Slope Values for VVal-79 Maximum Permissible Tissue Tensions

Half-time (min)	5	10	20	40	80	120	160	200	240
$MPTT_{i,0}$ (fsw)	99.3	87.7	78	56	48.5	45.5	44.5	44	43.5
a_i	1	1	1	1	1	1	1	1	1

The full set of VVal-79 Thalmann Algorithm parameters, which is identical to the VVal-18M parameter set with the exception of the *MPTT*_{i,0} values for the 5- and 10-minute half-time compartments, is given in Appendix B.

Figure 12 illustrates that the air-diving no-stop limits prescribed by the Thalmann Algorithm with VVal-79 conform closely to the VVal-79 target smoothed USN57 no-stop limits in Table 2. In particular, the no-stop limit for 100 fsw dives is the target 25 minutes, not the high 29-minute value prescribed with VVal-77. The limits for 110-, 120-, 130-, and 140-fsw dives also equal the smoothed USN57 limits and are each one minute longer than the corresponding limits prescribed with VVal-77.

Figure 12. Air no-stop limits prescribed by the Thalmann Algorithm with VVal-79 compared with smoothed USN57 limits given by Equation (1).

A table of "No Decompression Limits and Repetitive Group Designators for No-Decompression Air Dives" (sub-no-D table) and an integrated "Air Decompression Table" for air, Air/O₂, and Air SurDO₂ diving — both computed with the VVal-79 Thalmann Algorithm — are given in Appendices C and D, respectively. The "No Decompression Limits and Repetitive Group Designators for Shallow Water No-Decompression Air Dives" table computed with VVal-79 is unchanged from that given with USN-Rev6 and is not reproduced in this report. Similarly, the surface interval credit and residual nitrogen time tables for repetitive air and N₂-O₂ diving as published with USN-Rev6 in the *U.S. Navy Diving Manual, Revision 6*, remain applicable because no changes were made to the 120-minute half-time compartment MPTTs on which these tables are based. As estimated with the BVM(3)^{15,16} and NMRI98¹⁷ probabilistic models, risks of DCS for each of the single-dive schedules in Appendix D are given in Appendix E.

3.4. Decompression Schedules

Modifications of compartmental MPTTs to shorten Thalmann Algorithm no-stop limits also lengthen decompression times for some schedules. In Figures 13 and 14, total decompression stop times in air-only decompression schedules prescribed by the Thalmann Algorithm with VVal-77 and VVal-79 are compared with the total decompression stop times in the corresponding schedules of USN-Rev6. Figure 13 includes only decompression times in schedules for nonexceptional exposure dives in USN-Rev6 — some of which are not recommended for use, except with in-water O₂ decompression (Air/O₂) or surface decompression with O₂ (SurDO₂). Decompression schedules prescribed with VVal-77 may be up to six minutes longer than their counterparts in USN-Rev6, while schedules prescribed with VVal-79 may be up to 10 minutes longer than their counterparts in USN-Rev6. Figure 14 is similar to Figure 13 but excludes schedules for dives for which Air/O₂ decompressions or SurDO₂ are recommended. Differences between the prescriptions of the Thalmann Algorithm with VVal-77 and VVal-79 for these shorter dives in each dive depth group are somewhat smaller than for longer dives.

Figure 13. Total decompression stop times in air-only decompression schedules prescribed by the Thalmann Algorithm with VVal-77 and VVal-79 compared with the total decompression stop times in the corresponding USN-Rev6 schedules. Points that each represent the difference in total stop time between a modified schedule and its counterpart in USN-Rev6 appear for schedules in order of increasing bottom time within dive depth groups in order of increasing dive depth. The negative value arises at 110 fsw for 25 minutes because this USN-Rev6 schedule is a short USN57 decompression schedule inserted in place of the algorithm-prescribed no-stop limit.

Figure 14. Comparison of total air-only decompression stop times as in Figure 13, but including only schedules for the nonexceptional exposure dives in USN-Rev6, dives for which Air/O₂ decompressions or SurDO₂ are not recommended.

Figure 15 shows the risks of DCS (PDCS) for the modified air-only schedules in Figure 13 in comparison to those for the corresponding schedules in USN-Rev6 and estimated with the NMRI98 probabilistic model. Because the first point in each dive depth group is obtained from comparison of dives to the no-stop limits, dive depth and bottom time were equal in each compared pair of schedules — except for the first in dive depth groups where the no-stop limits differed. Most positive changes in value for risk of DCS (ΔP_{DCS}) — values indicating that the P_{DCs} are greater for schedules prescribed by the Thalmann Algorithm with VVal-77 or VVal-79 than for the corresponding USN-Rev6 schedule occur in such first pairs in dive depth groups, and are caused by increases in the no-stop limits from those in USN-Rev6. For example, the 0.32% increase in P_{DCS} shown for the first schedule prescribed with VVal-77 in the 100 fsw dive depth group is associated with the increase in the no-stop limit from 25 to 29 minutes, while the 0.28% increase in P_{DCS} for the first schedule prescribed with VVal-77 or VVal-79 in the 150 fsw dive depth group is associated with a no-stop limit increase from five minutes to eight minutes. Schedules prescribed with VVal-77 or VVal-79 incur decreased P_{DCS} for the overwhelming majority of remaining cases. The changes in PDCS, however, remain within the errors of the estimates. Similar results are obtained with the BVM(3) probabilistic model (Figure 16).

Figure 15. Comparison of the P_{DCS} for the air-only dives in Figure 13 and the P_{DCS} for the corresponding USN-Rev6 schedules, as the NMRI98 probabilistic model estimates these risks.

Figure 16. Comparison of the P_{DCS} for the air-only dives in Figure 13 with the P_{DCS} for the corresponding USN-Rev6 schedules, as the BVM(3) probabilistic model estimates these risks.

Figure 17 compares total decompression stop times in air with in-water O_2 (Air/ O_2) decompression schedules prescribed by the Thalmann Algorithm with VVal-77 and VVal-79 with the total decompression stop times in the corresponding USN-Rev6 schedules. Stop times do not include times for air-breathing breaks inserted after start of in-water O_2 breathing. The figure shows decompression time changes only for nonexceptional exposure dives to depths of 100 fsw or deeper in USN-Rev6. The decompression times increase with increasing dive depth group in patterns that are both qualitatively and quantitatively similar to those evident in the decompression time increases for the air-only decompressions in Figure 13. The similarities are not coincidental. The times at stop depths \geq 40 fsw in each modified Air/ O_2 schedule are the same as those at the same depths in the corresponding modified air-only schedule. Small differences in the total stop time changes between the air-only and the Air/ O_2 schedules arise from differences in time changes at stop depths \leq 30 fsw that occur in the two types of decompression to compensate for the changes at the deeper stop depths.

Figure 17. Total decompression stop times (not including air-breathing breaks) in air with in-water O₂ decompression (Air/O₂) schedules prescribed by the Thalmann Algorithm with VVal-77 and VVal-79 compared with the total decompression stop times in the corresponding USN-Rev6 schedules. Points appear for schedules in order of increasing bottom time within dive depth groups in order of increasing dive depth. Only decompression times in Air/O₂ schedules for nonexceptional exposure dives to depths of 100 fsw or deeper in USN-Rev6, are included.

Total decompression stop times (including both in-water and chamber stops) in air with surface decompression using oxygen (SurDO₂) schedules prescribed by the Thalmann Algorithm with VVal-77 and VVal-79 are compared in Figures 18 and 19 with the corresponding total decompression stop times in the USN-Rev6 schedules. The total stop time for each schedule compared included all in-water and chamber O₂ stop time in the schedule. Figure 18 includes only schedules for 100–190 fsw dives for which SurDO₂ is recommended or required in USN-Rev6, including exceptional exposure dives. Figure 19 includes only schedules for 200–300 fsw dives, all of which are exceptional exposure dives.

Figure 18. Total decompression stop times (in-water and chamber) in air SurDO₂ schedules prescribed by the Thalmann Algorithm with VVal-77 and VVal-79, in comparison to the total decompression stop times in the corresponding USN-Rev6 schedules. Points appear for schedules in order of increasing bottom time within dive depth groups in order of increasing dive depth. Only schedules for 100–190 fsw dives (including exceptional exposure dives) for which SurDO₂ is recommended or required in USN-Rev6 are included.

The increased decompression times with increasing dive depth group in Figure 18 show a pattern that is both qualitatively and quantitatively similar to that evident in the decompression time increases for the Air/O₂ schedules in Figure 17. As with the Air/O₂ schedules, the times at stop depths \geq 40 fsw in each modified SurDO₂ schedule are the same as those at the same depths in the corresponding modified air-only and Air/O₂ schedules. In the SurDO₂ schedules, however, the compensatory changes in the Air/O₂ times at stop depths \leq 30 fsw, times on which the SurDO₂ chamber times are based, ^{5,6} are too small to affect the SurDO₂ time — except in the few cases where the total stop times in the modified schedules are changed by one-half chamber O₂ period (15 minutes) or more. Except for those cases, the illustrated changes in total stop time arise wholly from changes in stop times at depths \geq 40 fsw.

Figure 19. Total decompression stop times (in-water and chamber) in air SurDO₂ schedules prescribed by the Thalmann Algorithm with VVal-77 and VVal-79, in comparison to the total decompression stop times in the corresponding USN-Rev6 schedules. Points appear for schedules in order of increasing bottom time within dive depth groups in order of increasing dive depth. Only schedules for 200–300 fsw dives are included, all of which are exceptional exposure dives.

4. DISCUSSION

The Thalmann Algorithm with either VVal-77 or VVal-79 prescribes air diving no-stop limits that are near or consistent with those in the *U.S. Navy Diving Manual, Revision 6*. Air diving no-stop limits and decompression obligations prescribed with either parameter set can thus be taken as is, with no need for arbitrary edits to individual prescriptions. Of particular importance is that VVal-77 or VVal-79 will provide acceptable no-stop limits if implemented in current Navy Dive Planner, TDM, and NDC platforms. The Navy Dive Planner and TDM can already operate with these parameter sets. Changes to NDCs required to run VVal-77 or VVal-79 are of equal complexity; neither VVal-77 nor VVal-79 is implemented more readily than the other. Implementation of either parameter set in current NDCs for support of air-only diving only requires substitution of the modified surfacing MPTTs in the algorithmic application of Equation (2), redefinition of the PBOVP parameter to 10 fsw, and addition of provisions to use a PBOVP of 0 fsw when divers are at surface.

However, differences in the behavior of the Thalmann Algorithm with VVal-77 and VVal-79 confer distinct advantages to the VVal-79 parameters. In behavior that is arguably superior to that of the Thalmann Algorithm with VVal-77, the Thalmann Algorithm with VVal-79 prescribes 110-, 120-, 130-, and 140-fsw air dive no-stop limits that are equal to the smoothed USN57 target limits and are each one minute longer than the corresponding limit prescribed with VVal-77. Moreover, the no-stop limits prescribed with VVal-79 remain satisfactorily near or below those at the 0.2% P_{CNS-DCS} isopleth at air diving depths deeper than 30 fsw. Over this range, only the limits for 90 and 100 fsw dives exceed the 0.2% P_{CNS-DCS} isopleth — by three minutes and one minute, respectively. In contrast, the no-stop limits prescribed with VVal-77 near 100 fsw exceed limits at the 0.2% P_{CNS-DCS} isopleth by as much as five minutes. Notably, all observed CNS DCS in the NEDU man-trial of longer air diving no-stop limits occurred after exposures that exceeded the 0.2% P_{CNS-DCS} isopleth by two minutes or more.¹

Some no-stop air dives under the Thalmann Algorithm with VVal-18M require decompression stops with the decreased air diving no-stop limits under either of the modified VVal-18M parameter sets. This is also the case in USN-Rev6, where USN57 decompression schedules were substituted for these VVal-18M no-stop dives. Many decompression schedules prescribed by the Thalmann Algorithm with either VVal-77 or VVal-79 for longer air dives are also longer than their counterparts in USN-Rev6. With VVal-77, schedules for nonexceptional exposure air-only dives are up to six minutes longer than those tabulated in USN-Rev6. In comparison, decompression schedules prescribed with VVal-79 for the same dives exceed those tabulated in USN-Rev6 by amounts that are similar, or up to 10 minutes longer in only a few cases. Given the relatively high risks of DCS associated with such dives, ^{5,6} the slightly longer decompressions incurred with VVal-79 could be considered advantageous. Corresponding increases in the lengths of Air/O₂ and SurDO₂ schedules are also relatively small, at the order of minutes.

The estimated P_{DCS} for no-stop air dives to the limits allowed by the Thalmann Algorithm with VVal-18 and its modifications increases with decreasing dive depths <50 fsw. The trend is illustrated in Figure 20 for no-stop limits prescribed by the Thalmann Algorithm with VVal-79, but is the same for no-stop limits prescribed with VVal-18, VVal-18M, VVal-76, or VVal-77: The changes to VVal-18M surfacing MPTTs made to produce the other parameter sets in this report do not affect Thalmann Algorithm no-stop limit prescriptions for dives to depths <90 fsw. The trend culminates with the 1102-minute no-stop limit for 25 fsw dives (Appendix C), dives that incur a 7.4% PDCS under the BVM(3) model and a 9.5% PDCS under the NMRI98 model (Appendix E). Notably, evidence indicates that NMRI98 and BVM(3) overestimate the P_{DCS} incurred by long, shallow dives and that the actual P_{DCS} in 25 fsw dives with 1102-minute bottom times may be only about 4.1%. 18 This 1102-minute no-stop limit at 25 fsw has not been man-tested. DCS has been described following no-stop dives from depths near 25 fsw, but only following much longer, saturation bottom times. And this DCS manifests as Type I symptoms, ¹⁹ not the serious DCS that has motivated rejecting extended no-stop limits for deep dives. Nevertheless, the algorithm-prescribed limit of 1102 minutes was replaced in USN-Rev6

with the 595-minute limit ⁶ that first appeared in the *U.S. Navy Diving Manual, Revision 4* (1999).^a

Figure 20. P_{DCS} (from Appendix E) of nonexceptional exposure air-only schedules in the Thalmann Algorithm VVal-79 Air Decompression Table as estimated with the NMRI98 and BVM(3) models. Points appear for schedules in order of increasing bottom time within dive depth groups in order of increasing dive depth. The leftmost points in each dive depth group are the estimates for dives to the no-stop limit for the depth. Estimated P_{DCS} values in the 25 fsw dive depth group are shown only for a dive to the no-stop limit of 1102 minutes.

-

^a In the originally published USN57 tables³, dives to ≤35 fsw had unlimited no-stop time, but finite no-stop limits at these shallow depths have since been promulgated in the *U.S. Navy Diving Manual*. The 310-minute no-stop limit at 35 fsw appeared when USN57 was first promulgated in the 1959 *U.S. Navy Diving Manual*. However, this value appeared in the original USN57 report only as the time required in a 35 fsw dive to reach the top of the highest repetitive group (O) in the No-Decompression Limits and Repetitive Group Designators for No-Decompression Air Dives (sub-no-D) table. The 405-minute no-stop limit at 30 fsw and the 595-minute no-stop limit at 25 fsw first appeared in the *U.S. Navy Diving Manual, Revision 4*, in 1999. These two no-stop limits are unrelated to the original USN57, but are identical to those prescribed by the Thalmann Algorithm parameterized with VVal-18-1. VVal-18-1 is a modification of VVal-18 designed to produce no-stop limits equal to those in USN57 at 50 and 40 fsw and the 310-minute limit at 35 fsw. A complete set of air decompression tables generated by the Thalmann Algorithm with VVal-18-1 was first forwarded to NEDU before *Revision 4* was published. *Revision 4* also contains entries in the sub-no-D table for the K and L repetitive groups at 25 fsw and the M group at 30 fsw that do not appear previously. These entries present values that are identical to those calculated in an earlier review of the development of this table.

The algorithm-prescribed no-stop limit for 25 fsw dives can be made equal to the 595minute limit by decreasing the surfacing MPTT for the 240-minute half-time compartment from 43.5 fsw to 40.78 fsw. To make the change conform to requirements for implementation in Navy Dive Computers, the modified surfacing MPTT is then linearly projected to depth. Unit slope is used to be consistent with all other VVal sets developed for use with the EL-DCM Thalmann Algorithm. This unit slope convention follows from a requirement to decompress the 240-minute half-time compartment in air saturation dives at an appropriate rate. ²⁴ These changes were made to VVal-79 to produce VVal-82, with impacts on decompression times and estimated P_{DCS} of schedules for depths ≤90 fsw shown in Figures 21 and 22. The no-stop limits for dives to depths >25 fsw are not affected, but decompression schedules for dives with long bottom times in each dive depth group are substantially lengthened. These decompression time increases are limited largely to exceptional exposure dives. The lengthened schedules have mixed effects on the estimated P_{DCS}. P_{DCS} tends to increase with the initial increases in decompression stop time in shallow dive depth groups. With further increases in the stop times for dives with longer bottom times in each group, P_{DCS} tends to decrease, but the decreases are disproportionately small in comparison to the increases in decompression time. The theoretical benefit of the longer schedules prescribed with VVal-82 remains to be empirically established.

Figure 21. Total decompression stop times in air-only decompression schedules prescribed by the Thalmann Algorithm with VVal-82 compared with the total decompression stop times in the corresponding schedules prescribed by the Thalmann Algorithm with VVal-79. Corresponding changes in P_{DCS} as estimated with the NMRI98 model are shown to the scale on the right. Points appear for schedules in order of increasing bottom time within dive depth groups in order of increasing dive depth.

Figure 22. Data as illustrated in Figure 21, but showing P_{DCS} values as estimated with the BVM(3) model.

The VVal-18M parameter set was modified from the original VVal-18 parameters to avoid onerous increases in decompression times from USN57's times and to allow exceptional exposure air-only schedules to remain operationally feasible for emergency situations — albeit with higher P_{DCS}. Adopting VVal-82 would compromise the operational feasibility of many exceptional exposure prescriptions and require modifications to USN-Rev6 much more extensive than those required to adopt VVal-79.

MK 16 N₂-O₂ Diving

As noted in NEDU TR 07-09, 5 the Thalmann Algorithm used in these applications (EL-DCM) was designed for MK 16 diving in which the diver inspired gas O_2 partial pressure (PO₂) is constant and, accordingly, diver venous PO₂ is assumed to be constant. The increase in PBOVP from 0 fsw to 10 fsw and the adoption of compartmental SDR values of 0.7 when breathing gases with fixed O_2 fraction (FO₂) >0.8 were changes to the VVal-18 parameters made in VVal-18M to accommodate air diving and air diving with in-water O_2 decompression, where venous PO₂ decreases during ascents. While these changes

are consequently inappropriate for application to MK 16 diving,^a the reduced compartmental MPTT values in either VVal-77 or VVal-79 are not related to accommodation of varying venous PO₂. With adoption of one or the other of these modified parameter sets for air diving, the reduced MPTT values might therefore be considered applicable to MK 16 diving in order to maintain consistency.

However, as Figures 23 and 24 show, the Thalmann Algorithm with either VVal-77 or VVal-79 prescribes no-stop limits for MK 16 MOD 0 N_2 - O_2 or MK 16 MOD 1 N_2 - O_2 diving that are substantially shorter than those currently accepted. These shorter no-stop limits result mainly from the reduced compartmental MPTT values in either VVal-77 or VVal-79, not from the other changes to the VVal-18 parameters that were imposed to accommodate varying venous PO_2 . With no evidence that current no-stop limits for MK 16 MOD 0 or MK 16 MOD 1 N_2 - O_2 diving should be so shortened, adoption of the reduced MPTT values in either VVal-77 or VVal-79 to support such diving is unwarranted.

_

^a The Thalmann Algorithm with VVal-18M or either of its VVal-77 or VVal-79 derivatives prescribes inappropriately long decompression times for MK 16 MOD 0 and MK 16 MOD 1 N_2 - O_2 dives because of the compartmental SDR = 0.7 assignments in these parameter sets. During dives in which constant FO_2 gases are breathed, compartmental SDR values in the parameterization file are overridden with values of 1 when the inspired gas FO_2 is less than the CONSDR_FO2 setting. With the VVal-18M CNDSDR_FO2 setting of 0.8, compartmental SDR = 1 values are used throughout all dives in which only air (FO_2 = 0.21) is breathed, while compartmental SDR values as specified in the parameterization file are used throughout all constant FO_2 dives. Thus, the SDR = 0.7 assignments in VVal-18M, VVal-77, and VVal-79 are used throughout all MK 16 N_2 - O_2 dives and considerably lengthen total decompression times beyond those obtained with the original compartmental SDR = 1 assignments in VVal-18.

MK 16 MOD 0 N₂-O₂

Figure 23. No-stop limits for MK 16 MOD 0 N_2 - O_2 diving prescribed by the Thalmann Algorithm with VVal-77 and VVal-79, in comparison to the existing limits prescribed by the Thalmann Algorithm with VVal-18. The large reductions of the limits for dives to depths >90 fsw with either VVal-77 or VVal-79 make the algorithm with these parameters unsuitable for support of MK 16 MOD 0 N_2 - O_2 diving.

MK 16 MOD 1 N₂-O₂

Figure 24. No-stop limits for MK 16 MOD 1 N_2 - O_2 diving prescribed by the Thalmann Algorithm with VVal-77 and VVal-79, in comparison to the existing limits prescribed by the Thalmann Algorithm with VVal-18. The large reductions of the limits for dives to depths >110 fsw with either VVal-77 or VVal-79 make the algorithm with these parameters unsuitable for support of MK 16 MOD 1 N_2 - O_2 diving.

5. CONCLUSIONS AND RECOMMENDATIONS

The Thalmann Algorithm with VVal-79 is superior to the Thalmann Algorithm with any of VVal-18M, VVal-76, or VVal-77 for support of air diving. The Thalmann Algorithm with VVal-79 prescribes air diving no-stop limits that are more faithful to the well-accepted USN57 air diving no-stop limits than are those prescribed by the Algorithm with the other parameter sets, it does so at the cost of only relatively small increases in decompression time in dives that exceed the no-stop limits, and it is suitable for implementation in current NDCs.

Changes required to reduce the Thalmann Algorithm-prescribed no-stop limit at 25 fsw to 595 minutes also increase decompression times for exceptional exposure dives at all depths by hours (VVal-82). These changes are not recommended: No man-testing exists to support the 595-minute no-stop limit or the increased decompression times, and all such dives exceed the limits of normal air diving operations.

- 1. Real-time decompression guidance provided by devices that operate with the Thalmann Algorithm with VVal-79 will remain within acceptable limits under normal air diving conditions and be suitable for use in emergency situations. The Thalmann Algorithm with VVal-79 is consequently recommended for use in the TDM.
- 2. If it is decided to modify the current AIR III NDCs, which are now functionally equivalent to the NSW III NDCs, it is recommended that the AIR IIIs be changed to use VVal-79.
- 3. To ensure that printed tables and real-time devices provide consistent guidance, VVal-79 is recommended for use to generate any forthcoming Thalmann Algorithm-based revision of the Air Decompression Table in the *U.S. Navy Diving Manual*.
- 4. The VVal-76, VVal-77, and VVal-79 Thalmann Algorithm parameter sets are based on the VVal-18M parameter set, which incorporates modifications to the VVal-18 parameters to accommodate the depth-dependent, diver venous O₂ tension changes that occur during air diving. Application of any of these modified parameter sets to MK 16 MOD 0 and MK 16 MOD 1 nitrox diving, in which the diver venous O₂ tension is practically constant, unacceptably decreases the no-stop limits and inappropriately increases total decompression times for these types of diving. All current VVal-18—based tables and NDCs for MK 16 MOD 0 and MK 16 MOD 1 nitrox diving should consequently be retained unchanged.

6. REFERENCES

- 1. D. J. Doolette, W. A. Gerth, and K. A. Gault, *Risk of Central Nervous System Decompression Sickness in Air Diving to No-Stop Limits*, NEDU TR 09-03, Navy Experimental Diving Unit, Panama City, FL, January 2009.
- 2. M. des Granges, *Standard Air Decompression Table*, NEDU Research Report 5-57, Navy Experimental Diving Unit, Washington Navy Yard, Washington, DC, December 1956.
- 3. M. des Granges, *Repetitive Diving Decompression Tables*, NEDU Research Report 6-57, Navy Experimental Diving Unit, Washington Navy Yard, Washington, DC, January 1957.
- 4. Commander, Naval Sea Systems Command, *U.S. Navy Diving Manual, Revision 6*, Publication SS521-AG-PRO-010 (Arlington, VA: NAVSEA, 2008).
- 5. W. A. Gerth and D. J. Doolette, *VVal-18 and VVal-18M Air Decompression Tables and Procedures*, NEDU TR 07-09, Navy Experimental Diving Unit, Panama City, FL, May 2007.
- 6. W. A. Gerth and D. J. Doolette, Schedules in the Integrated Air Decompression Table of U.S. Navy Diving Manual, Revision 6: Computation and Estimated Risks of Decompression Sickness. NEDU TR 09-05, Navy Experimental Diving Unit, Panama City, FL, June 2009.
- 7. F. K. Butler and D. G. Southerland, "The U.S. Navy Decompression Computer." *Undersea and Hyperbaric Medicine*, Vol. 28, No. 4 (2001), pp. 213–228.
- 8. E. D. Thalmann, Computer Algorithms Used in Computing the MK 15/16 Constant 0.7 ATA Oxygen Partial Pressure Decompression Tables, NEDU TR 1-83, Navy Experimental Diving Unit, Panama City, FL, January 1983.
- 9. W. A. Gerth, *Thalmann Algorithm Decompression Table Generation Software Design Document*, NEDU TR 10-09, Navy Experimental Diving Unit, Panama City, FL, September 2010.
- 10. E. T. Flynn (NAVSEA), "Air NDC Way Ahead," E-mail to K. A. Gault (NEDU) et al, 8 June 2007.
- 11. E. T. Flynn (NAVSEA), "RE: Air NDC Way Ahead," E-mail to K. A. Gault (NEDU) et al, 13 June 2007.
- 12. E. T. Flynn (NAVSEA), "RE: Air NDC Way Ahead," E-mail to K. A. Gault (NEDU) et al, 14 June 2007.

- 13. J. V. Dwyer, *Calculation of Repetitive Diving Decompression Tables*, NEDU Research Report 1-57, Navy Experimental Diving Unit, Washington Navy Yard, Washington, DC, August 1956.
- 14. R. D. Workman, Calculation of Decompression Schedules for Nitrogen-Oxygen and Helium-Oxygen Dives, NEDU Research Report 6-65, Navy Experimental Diving Unit, Washington Navy Yard, Washington, DC, 1965.
- 15.W. A. Gerth and R. D. Vann, Development of Iso-DCS Risk Air and Nitrox Decompression Tables Using Statistical Bubble Dynamics Models, Bethesda, MD: National Oceanic and Atmospheric Administration, Office of Undersea Research, 1996.
- 16. W. A. Gerth and R. D. Vann, "Probabilistic Gas and Bubble Ddynamics Models of DCS Occurrence in Air and N₂O₂ Diving," *Undersea and Hyperbaric Medicine*, Vol. 24, No. 4 (1997), pp. 275–292.
- 17. E. Parker, S. S. Survanshi, P. B. Massell, and P. K. Weathersby, "Probabilistic Models of the Role of Oxygen in Human Decompression Sickness," *Journal of Applied Physiology*, Vol. 84 (1998), pp. 1096–1102.
- 18. H. D. Van Liew and E. T. Flynn, *Probability of Decompression Sickness in No-Stop Air Diving*, NEDU TR 04-42, Navy Experimental Diving Unit, Panama City, FL, December 2004.
- 19. D. J. Temple, R. Ball, P. K. Weathersby, E. C. Parker, and S. S. Survanshi, *The Dive Profiles and Manifestations of Decompression Sickness Cases After Air and Nitrogen-Oxygen Dives*, Technical Report 99-02, Naval Medical Research Center, Bethesda, MD, May 1999.
- 20. Navy Department, *U.S. Navy Diving Manual,* NAVSHIPS 250-538 (Washington, DC: Navy Department, Bureau of Ships, 1959).
- 21. Commander, Naval Sea Systems Command, *U.S. Navy Diving Manual, Revision 4*, NAVSEA 0910-LP-708-8000 / SS521-AG-PRO-010 (Arlington, VA: NAVSEA, 1999).
- 22. E. D. Thalmann, Suitability of the USN MK 15 (VVAL18) Decompression Algorithm for Air Diving, NEDU TR 03-11, Navy Experimental Diving Unit, Panama City, FL, August 2003. First submitted as Final Report for Contract No.: N0463A-96-M-7036, March 1997.
- 23. E. D. Thalmann and F. K. Butler, Jr, *A Procedure for Doing Multilevel Dives on Air Using Repetitive Groups*, NEDU TR 13-84, Navy Experimental Diving Unit, Panama City, FL, September 1983.

24. E. D. Thalmann, *Phase II Testing of Decompression Algorithms for Use in the U.S. Navy Underwater Decompression Computer,* NEDU TR 1-84, Navy Experimental Diving Unit, Panama City, FL, January 1984.

Appendix A.

Summary of VVal-18M Modifications Considered and Associated No-Stop Limit Prescriptions

Table A.1. VVal-18M Modifications

Name	Target Air Diving No-Stop Limits	Description
VVal-76	Air diving bottom times from which no- stop ascents to surface incur 0.2% risk of CNS DCS as estimated with Model 2 in NEDU TR 09-03.	VVal-18M surfacing MPTTs for 5-, 10-, and 20-minute half-time compartments are reduced from 120 fsw to 106.7 fsw, from 98 fsw to 86.7 fsw, and from 78.0 fsw to 70.3 fsw, respectively. All other VVal-18M MPTTs are retained.
VVal-77	None explicitly specified.	All MPTTs for the 5-minute half-time compartment, including those at all allowed decompression stop depths, are set equal to those for the 10 minute half-time compartment in VVal-18M. All other VVal-18M MPTTs are retained.
VVal-79	Smoothed USN-57 air no-stop limits for dives to depths of 60 fsw and deeper with 75 fsw/min descent rate, 30 fsw/min ascent rate, and instantaneous ascent to surface from the last allowed decompression stop depth at 20 fsw.	VVal-18M surfacing MPTTs for both the 5- and 10-minute half-time compartments are reduced to 99.3 and 88.7 fsw, respectively, with projections of these to depth at unit slope (1fsw/1fsw). All other VVal-18M MPTTs are retained.
VVal-82	Smoothed USN-57 air no-stop limits for dives to depths of 60 fsw and deeper and USN 57 air no-stop limit for 25 fsw dives, all with 75 fsw/min descent rate, 30 fsw/min ascent rate, and instantaneous ascent to surface from the last allowed decompression stop depth at 20 fsw.	Equivalent to VVal-79 except the surfacing MPTT in the 240-minute compartment is reduced from 43.5 to 40.78 fsw and projected to depth at unit slope (1fsw/1fsw).

Table A.2. No-stop Limits Prescribed by the Thalmann Algorithm with Various Parameter Sets* Compared with Limits from Other Sources

No-stop Limit (min) Depth (fsw) USN57 VVal-18M VVal-76 VVal-77 VVal-79 0.2% CNS DCS

^{*} As computed for dives with 75 fsw/min descent rates and 30 fsw/min ascent rates to a last allowed stop depth of 20 fsw, followed by instantaneous ascent to surface.

APPENDIX B

Thalmann Algorithm VVal-79 Parameters

(Shaded values are modified from VVal-18M parameters in NEDU TR 07-09.)

Table B.1.
Table of Maximum Permissible Tissue Tensions (VVal-79 Nitrogen)^a

STOP				TISSI	JE HALF-T	IMES			
DEPTH	5 MIN	10 MIN	20 MIN	40 MIN	80 MIN	120 MIN	160 MIN	200 MIN	240 MIN
FSW	0.70 SDR	0.70 SDR	0.70 SDR	0.70 SDR	0.70 SDR				
10	99.3	87.7	78.0	56.0	48.5	45.5	44.5	44.0	43.5
20	109.3	97.7	88.0	66.0	58.5	55.5	54.5	54.0	53.5
30	119.3	107.7	98.0	76.0	68.5	65.5	64.5	64.0	63.5
40	129.3	117.7	108.0	86.0	78.5	75.5	74.5	74.0	73.5
50	139.3	127.7	118.0	96.0	88.5	85.5	84.5	84.0	83.5
60	149.3	137.7	128.0	106.0	98.5	95.5	94.5	94.0	93.5
70	159.3	147.7	138.0	116.0	108.5	105.5	104.5	104.0	103.5
80	169.3	157.7	148.0	126.0	118.5	115.5	114.5	114.0	113.5
90	179.3	167.7	158.0	136.0	128.5	125.5	124.5	124.0	123.5
100	189.3	177.7	168.0	146.0	138.5	135.5	134.5	134.0	133.5
110	199.3	187.7	178.0	156.0	148.5	145.5	144.5	144.0	143.5
120	209.3	197.7	188.0	166.0	158.5	155.5	154.5	154.0	153.5
130	219.3	207.7	198.0	176.0	168.5	165.5	164.5	164.0	163.5
140	229.3	217.7	208.0	186.0	178.5	175.5	174.5	174.0	173.5
150	239.3	227.7	218.0	196.0	188.5	185.5	184.5	184.0	183.5
160	249.3	237.7	228.0	206.0	198.5	195.5	194.5	194.0	193.5
170	259.3	247.7	238.0	216.0	208.5	205.5	204.5	204.0	203.5
180	269.3	257.7	248.0	226.0	218.5	215.5	214.5	214.0	213.5
190	279.3	267.7	258.0	236.0	228.5	225.5	224.5	224.0	223.5
200	289.3	277.7	268.0	246.0	238.5	235.5	234.5	234.0	233.5
210	299.3	287.7	278.0	256.0	248.5	245.5	244.5	244.0	243.5
220	309.3	297.7	288.0	266.0	258.5	255.5	254.5	254.0	253.5
230	319.3	307.7	298.0	276.0	268.5	265.5	264.5	264.0	263.5
240	329.3	317.7	308.0	286.0	278.5	275.5	274.5	274.0	273.5
250	339.3	327.7	318.0	296.0	288.5	285.5	284.5	284.0	283.5
260	349.3	337.7	328.0	306.0	298.5	295.5	294.5	294.0	293.5
270	359.3	347.7	338.0	316.0	308.5	305.5	304.5	304.0	303.5
280	369.3	357.7	348.0	326.0	318.5	315.5	314.5	314.0	313.5
290	379.3	367.7	358.0	336.0	328.5	325.5	324.5	324.0	323.5
300	389.3	377.7	368.0	346.0	338.5	335.5	334.5	334.0	333.5

^a MPTT values in each row are used in the Thalmann EL-DCM to assess the time at the corresponding stop depth required before ascent to the next shallower stop

depth. Thus, tabulated MPTT values for the 10 fsw stop depth are the "surfacing values" that express the MPTTs at surface.

A 20 fsw last allowed decompression stop is implemented by replacing the tabulated MPTT values for the 20 fsw stop depth with those for the 10 fsw stop depth.

Table B.2.
Table of VVal-79 Global Parameters

PARAMETER	VALUE	UNITS
PACO2	1.50	FSW
PH2O	0.00	FSW
PVCO2	2.30	FSW
PVO2	2.00	FSW
AMBAO2	0.00	FSW
PBOVP	10.00	FSW
sPBOVP	0.00	FSW
O2CEIL	30.0	FSW
O2TIME	30.0	MIN
AIRTIME	5.0	MIN
CNDSDR_FO2	0.80	*
O2TIME_FO2	0.80	*
GSWLAT	0.00	MIN
GSW_DEAD	TRUE	
AB_DEAD	TRUE	
OMIT_TRVL	TRUE	
SRF_CNTRLT_MODE	1	*
LST_DOMode	1	*
RGD_SPRSS	2	*
TTIS	TRUE	
STIME	0.2	MIN
RNTMODE	0	*

^{*} dimensionless

Table B.3. Table of SurDO₂ Parameters

PARAMETER	VALUE	UNITS
DrpOut_DEPTH	40.0	FSW
DrpOut_ARATE	40.0	FSW/MIN
CDRATE	100.0	FSW/MIN
CARATE	30.0	FSW/MIN
SurDTimFctr	1.1	*
O2TIME	30.0	MIN
AIRTIME	5.0	MIN
O2TIME_FO2	85.0	*

^{*}dimensionless

Appendix C

Thalmann Algorithm VVal-79 No-Decompression Limits and Repetitive Group Designators for No-Decompression Air Dives

RATES: DESCENT 75 FPM; ASCENT 30 FPM LAST ALLOWED DECOMPRESSION STOP: 20 FSW

REPETITIVE GROUP DESIGNATORS BOTTOM TIME (MIN)

								2011			(,					
DEPTH	NO-STOP	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	Z
(FSW)	LIMIT	27	28	30	31	32	33	35	36	37	38	40	41	42	43	45	46
1.0	21 1. 2		101	1 = 0	0.45	405											
10	unlimited			158			*										
15	unlimited	36	60				217			*							
20	unlimited	26	43	61	82		133						*				
25	1102	20	33	47	62	78	97	117	140	166	198	236	285	354	469	992	1102
30	371	17	27	38	50	62	76	91	107	125	145	167	193	223	260	307	371
35	232	14	23	32	42	52	63	74	87	100	115	131	148	168	190	215	232
40	163	12	20	27	36	44	53	63	73	84	95	108	121	135	151	163	
45	125	11	17	24	31	39	46	55	63	72	82	92	102	114	125		
50	92	9	15	21	28	34	41	48	56	63	71	80	89	92			
55	74	8	14	19	25	31	37	43	50	56	63	71	74				
60	63	7	12	17	22	28	33	39	45	51	57	63					
70	48	6	10	14	19	23	28	32	37	42	47	48					
80	39	5	9	12	16	20	24	28	32	36	39						
90	33	4	7	11	14	17	21	24	28	31	33						
100	25	4	6	9	12	15	18	21	25								
110	20	3	6	8	11	14	16	19	20								
120	15	3	5	7	10	12	15										
130	12	2	4	6	9	11	12										
140	10	2	4	6	8	10											
150	8		3	5	7	8											
160	7		3	5	6	7											
170	6			4	6												
180	6			4	5	6											
190	5			3	5												

^{*}Highest repetitive group that can be achieved at this depth regardless of bottom time.

Appendix D

VVal-79 Air Decompression Table

(O_2							
	DEPTH	BTM	TM TO	GAS	DECOMPRESSION STOPS (FSW)	TOTAL	CHAMBER	RPT
	(FSW)	TIM	FIRST	MIX	Stop times (min) include travel time,	ASCNT	O_2	GRP
	, ,	(M)	STOP		except first air and first O ₂ stop	TIME	PERIODS	DES
		()	(M:S)		130 120 110 100 90 80 70 60 50 40 30 20	(M:S)		
-			, ,			, ,		
	20		1:00	AIR	0	1:00	0	Z
	30	371		AIR/O ₂	0	1:00		
			0:20	AIR	5	6:00	0.5	Z
	30	380		AIR/O ₂	1	2:00		_
			0:20	AIR	22	23:00	0.5	Z
	30	420		AIR/O ₂	5	6:00		_
			0:20	AIR	42	43:00	0.5	
	30	480		AIR/O ₂	9	10:00		
			0:20	AIR	71	72:00	1	
	30	540		AIR/O ₂	14	15:00	·	
			0:20	AIR	92	93:00	1	
	30	600		AIR/O ₂	19	20:00		
			0:20	AIR	120	121:00	1	
	30	660		AIR/O ₂	22	23:00		
		700	0:20	AIR	158	159:00	1	
	30	720		AIR/O ₂	27	28:00		
				7 u u u u	- -	_0.00		
	٥٢		1:10	AIR	0	1:10	0	Z
	35	232		AIR/O ₂	0	1:10		_
			0:30	AIR	4	5:10	0.5	Z
	35	240	0.00	AIR/ O ₂	2	3:10	0.0	_
			0:30	AIR	28	29:10	0.5	Z
	35	270		AIR/O ₂	7	8:10		_
			0:30	AIR	53	54:10	0.5	Z
	35	300		AIR/O ₂	13	14:10		_
			0:30	AIR	71	72:10	1	Z
	35	330		AIR/O ₂	18	19:10		
	0.5	222	0:30	AIR	88	89:10	1	
	35	360		AIR/O ₂	22	23:10		
	05	400	0:30	AIR	134	135:10	1.5	
	35	420		AIR/O ₂	29	30:10		
	05	400	0:30	AIR	173	174:10	1.5	
	35	480		AIR/O ₂	38	44:10		
	05	540	0:30	AIR	228	229:10	2	
	35	540		AIR/O ₂	45	51:10		
	05	000	0:30	AIR	277	278:10	2	
	35	600		AIR/O ₂	53	59:10		
	05	000	0:30	AIR	314	315:10	2.5	
	35	660		AIR/O ₂	63	69:10		
	25	700	0:30	AIR	342	343:10	3	
	35	720		AIR/O ₂	71	82:10		

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O ₂ stop 130 120 110 100 90 80 70 60 50 40	30 20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
40	163	1:20	AIR AIR/ O 2		0 0	1:20 1:20	0	0
40	170	0:40	AIR AIR/ O ₂		6 2	7:20 3:20	0.5	0
40	180	0:40	AIR AIR/ O ₂		14 5	15:20 6:20	0.5	Z
40	190	0:40	AIR AIR/ O ₂		21 7	22:20 8:20	0.5	Z
40	200	0:40	AIR AIR/ O ₂		27 9	28:20 10:20	0.5	Z
40	210	0:40	AIR AIR/ O ₂		39 11	40:20 12:20	0.5	Z
40	220	0:40	AIR AIR/ O ₂		52 12	53:20 13:20	0.5	Z
40	230	0:40	AIR AIR/ O ₂		64 16	65:20 17:20	1	Z
40	240	0:40	AIR AIR/ O 2		75 19	76:20 20:20	1	Z
40	270	0:40	AIR AIR/ O 2		101 26	102:20 27:20	1	Z
40	300	0:40	AIR AIR/ O 2		128 33	129:20 34:20	1.5	
40	330	0:40	AIR AIR/ O 2		160 38	161:20 44:20	1.5	
40	360	0:40	AIR AIR/ O 2		184 44	185:20 50:20	2	
40	420	0:40	AIR AIR/ O 2		248 56	249:20 62:20	2.5	
40	480	0:40	AIR AIR/ O ₂		321 68	322:20 79:20	2.5	
40	540	0:40	AIR AIR/ O 2		372 80	373:20 91:20	3	
40	600	0:40	AIR AIR/ O ₂		410 93	411:20 104:20	3.5	
40	660	0:40	AIR AIR/ O 2		439 103	440:20 119:20	4	
40	720	0:40	AIR AIR/ O ₂		461 112	462:20 128:20	4.5	
4.5		1:30	AIR		0	1:30	0	N
45	125		AIR/O ₂		0	1:30		
45	130	0:50	AIR AIR/ O ₂		2 1	3:30 2:30	0.5	0
45	140	0:50	AIR		14	15:30	0.5	0

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O_2 stop 130 120 110 100 90 80 70 60 50 40 30 20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
			AIR/ O ₂	5	6:30		
45	150	0:50	AIR AIR/ O ₂	25 8	26:30 9:30	0.5	Z
45	160	0:50	AIR AIR/ O 2	34 11	35:30 12:30	0.5	Z
45	170	0:50	AIR AIR/ O 2	41 14	42:30 15:30	1	Z
45	180	0:50	AIR AIR/ O 2	59 17	60:30 18:30	1	Z
45	190	0:50	AIR AIR/ O 2	75 19	76:30 20:30	1	Z
45	200	0:50	AIR AIR/ O 2	89 23	90:30 24:30	1	Z
45	210	0:50	AIR AIR/ O 2	101 27	102:30 28:30	1	Z
45	220	0:50	AIR AIR/ O 2	112 30	113:30 31:30	1.5	Z
45	230	0:50	AIR AIR/ O 2	121 33	122:30 34:30	1.5	Z
45	240	0:50	AIR AIR/ O ₂	130 37	131:30 43:30	1.5	Z
45	270	0:50	AIR AIR/ O 2	173 45	174:30 51:30	2	
45	300	0:50	AIR AIR/ O ₂	206 51	207:30 57:30	2	
45	330	0:50	AIR AIR/ O ₂	243 61	244:30 67:30	2.5	
45	360	0:50	AIR AIR/ O ₂	288 69	289:30 80:30	3	
45	420	0:50	AIR AIR/ O ₂	373 84	374:30 95:30	3.5	
45	480	0:50	AIR AIR/ O ₂	431 101	432:30 117:30	4	
45	540	0:50	AIR AIR/ O ₂	473 117	474:30 133:30	4.5	
50	92	1:40	AIR AIR/ O 2	0 0	1:40 1:40	0	М
50	95	1:00	AIR AIR/ O ₂	2	3:40 2:40	0.5	М
50	100	1:00	AIR AIR/O ₂	4 2	5:40 3:40	0.5	N
50	110	1:00	AIR AIR/ O ₂	8 4	9:40 5:40	0.5	0
50	120	1:00	AIR	21	22:40	0.5	0

DEPTH	BTM	TM TO	GAS	DECOMPRESSION STOPS (FSW)	TOTAL	CHAMBER	RPT
(FSW)	TIM	FIRST	MIX	Stop times (min) include travel time,	ASCNT	O_2	GRP
	(M)	STOP		except first air and first O ₂ stop	TIME	PERIODS	DES
		(M:S)		130 120 110 100 90 80 70 60 50 40 30 20	(M:S)		
			AIR/ O ₂	7	8:40		
		1:00	AIR	34	35:40	0.5	Z
50	130		AIR/ O ₂	12	13:40	0.0	_
50	140	1:00	AIR	45	46:40	1	Z
50	140	_	AIR/O ₂	16	17:40		
50	150	1:00	AIR	56	57:40	1	Z
			AIR/O ₂		20:40		
50	160	1:00	AIR	78	79:40	1	Z
		1.00	AIR/O ₂	23	24:40	4	7
50	170	1:00	AIR AIR/ O ₂	96 26	97:40 27:40	1	Z
		1:00	AIR	111	112:40	1.5	Z
50	180	1.00	AIR/O ₂	30	31:40	1.0	_
F 0	100	1:00	AIR	125	126:40	1.5	Z
50	190		AIR/O ₂	35	36:40		
50	200	1:00	AIR	136	137:40	1.5	Z
00	200		AIR/O ₂	39	45:40		
50	210	1:00	AIR	147	148:40	2	
		4.00	AIR/O ₂	43	49:40		
50	220	1:00	AIR	166 47	167:40	2	
		1:00	AIR/ O₂ AIR	183	53:40 184:40	2	
50	230	1.00	AIR/ O ₂	50	56:40	_	
50	240	1:00	AIR	198	199:40	2	
50	240		AIR/O ₂	53	59:40		
50	270	1:00	AIR	236	237:40	2.5	
	270		AIR/O ₂	62	68:40		
50	300	1:00	AIR	285	286:40	3	
		4.00	AIR/O ₂	74	85:40	2.5	
50	330	1:00	AIR AIR/ O ₂	345 83	346:40 94:40	3.5	
		1:00	AIR	393	394:40	3.5	
50	360	1.00	AIR/O ₂	92	103:40	0.0	
50	420	1:00	AIR	464	465:40	4.5	
50	420		AIR/O ₂	113	129:40		
55	74	1:50	AIR	0	1:50	0	L
			AIR/O ₂	0	1:50		
55	75	1:10	AIR	1	2:50	0.5	L
		1:10	AIR/ O ₂	1 4	2:50 5:50	0.5	М
55	80	1.10	AIR/O ₂	2	3:50	0.0	IVI
	00	1:10	AIR	10	11:50	0.5	N
55	90		AIR/O ₂	5	6:50		
55	100	1:10	AIR	17	18:50	0.5	0

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O_2 stop 130 120 110 100 90 80 70 60 50 40 30 20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
			AIR/ O ₂	8	9:50		
55	110	1:10	AIR AIR/O ₂	34 12	35:50 13:50	0.5	0
55	120	1:10	AIR AIR/ O 2	48 17	49:50 18:50	1	Z
55	130	1:10	AIR AIR/ O ₂	59 22	60:50 23:50	1	Z
55	140	1:10	AIR AIR/ O 2	84 26	85:50 27:50	1	Z
55	150	1:10	AIR AIR/ O 2	105 30	106:50 31:50	1.5	Z
55	160	1:10	AIR AIR/ O 2	123 34	124:50 35:50	1.5	Z
55	170	1:10	AIR AIR/ O ₂	138 40	139:50 46:50	1.5	Z
55	180	1:10	AIR AIR/ O ₂	151 45	152:50 51:50	2	Z
55	190	1:10	AIR AIR/ O ₂	169 50	170:50 56:50	2	
55	200	1:10	AIR AIR/ O ₂	190 54	191:50 60:50	2	
55	210	1:10	AIR AIR/ O 2	208 58	209:50 64:50	2.5	
55	220	1:10	AIR AIR/ O ₂	224 62	225:50 68:50	2.5	
55	230	1:10	AIR AIR/ O 2	239 66	240:50 77:50	2.5	
55	240	1:10	AIR AIR/ O 2	254 69	255:50 80:50	3	
55	270	1:10	AIR AIR/ O 2	313 83	314:50 94:50	3.5	
55	300	1:10	AIR AIR/ O ₂	380 94	381:50 105:50	3.5	
55	330	1:10	AIR AIR/ O ₂	432 106	433:50 122:50	4	
55	360	1:10	AIR AIR/ O 2	474 118	475:50 134:50	4.5	
60	63	2:00	AIR	0	2:00	0	K
60	65	1:20	AIR/O ₂ AIR	2	2:00 4:00	0.5	L
60	70	1:20	AIR/ O ₂ AIR AIR/ O ₂	1 7 4	3:00 9:00 6:00	0.5	L
60	80	1:20	AIR/ U ₂	14	16:00	0.5	N

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O ₂ stop 130 120 110 100 90 80 70 60 50 40 3	30 20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
			AIR/ O 2		7	9:00		
60	90	1:20	AIR AIR/ O ₂		23 10	25:00 12:00	0.5	0
60	100	1:20	AIR AIR/ O 2		42 15	44:00 17:00	1	Z
60	110	1:20	AIR AIR/ O 2		57 21	59:00 23:00	1	Z
60	120	1:20	AIR AIR/ O 2		75 26	77:00 28:00	1	Z
60	130	1:20	AIR AIR/ O 2		102 31	104:00 33:00	1.5	Z
60	140	1:20	AIR AIR/ O ₂		124 35	126:00 37:00	1.5	Z
60	150	1:20	AIR AIR/ O 2		143 41	145:00 48:00	2	Z
60	160	1:20	AIR AIR/ O 2		158 48	160:00 55:00	2	Z
60	170	1:20	AIR AIR/ O 2		178 53	180:00 60:00	2	
60	180	1:20	AIR AIR/ O 2		201 59	203:00 66:00	2.5	
60	190	1:20	AIR AIR/ O 2		222 64	224:00 71:00	2.5	
60	200	1:20	AIR AIR/ O 2		240 68	242:00 80:00	2.5	
60	210	1:20	AIR AIR/ O 2		256 73	258:00 85:00	3	
60	220	1:20	AIR AIR/ O 2		278 77	280:00 89:00	3	
60	230	1:20	AIR AIR/ O ₂		300 82	302:00 94:00	3.5	
60	240	1:20	AIR AIR/ O ₂		321 88	323:00 100:00	3.5	
60	270	1:20	AIR AIR/ O ₂		398 102	400:00 119:00	4	
60	300	1:20	AIR AIR/ O ₂		456 115	458:00 132:00	4.5	
70	48	2:20	AIR AIR/ O 2		0 0	2:20 2:20	0	K
70	50	1:40	AIR		2	4:20	0.5	K
70	55	1:40	AIR/O ₂		9	3:20 11:20	0.5	L
70	60	1:40	AIR/ O ₂ AIR		5 14	7:20 16:20	0.5	M

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O ₂ stop 130 120 110 100 90 80 70 60 50 40 30	0 20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
			AIR/ O ₂		8	10:20		
70	70	1:40	AIR AIR/ O ₂		24 13	26:20 15:20	0.5	N
70	80	1:40	AIR AIR/ O 2		44 17	46:20 19:20	1	0
70	90	1:40	AIR AIR/ O 2		64 24	66:20 26:20	1	Z
70	100	1:40	AIR AIR/ O ₂		88 31	90:20 33:20	1.5	Z
70	110	1:40	AIR AIR/ O ₂		120 38	122:20 45:20	1.5	Z
70	120	1:40	AIR AIR/ O ₂		145 44	147:20 51:20	2	Z
70	130	1:40	AIR AIR/ O ₂		167 51	169:20 58:20	2	Z
70	140	1:40	AIR AIR/ O ₂		189 59	191:20 66:20	2.5	
70	150	1:40	AIR AIR/ O ₂		219 66	221:20 78:20	2.5	
70	160	1:20	AIR AIR/ O ₂		1 244 1 72	247:00 85:00	3	
70	170	1:20	AIR AIR/ O ₂		2 265 1 78	269:00 91:00	3	
70	180	1:20	AIR AIR/ O ₂		4 289 2 83	295:00 97:00	3.5	
70	190	1:20	AIR AIR/ O 2		5 316 3 88	323:00 103:00	3.5	
70	200	1:20	AIR AIR/ O ₂		9 345 5 93	356:00 115:00	4	
70	210	1:20	AIR AIR/ O ₂		3 378 7 98	393:00 122:00	4	
70	240	1:20	AIR AIR/ O ₂		5 454 3 110	481:00 140:00	5	
80	39	2:40	AIR		0	2:40	0	J
80	40	2:00	AIR/O ₂		1	2:40 3:40	0.5	J
80	45	2:00	AIR/O ₂		10	3:40 12:40	0.5	K
80	50	2:00	AIR/O ₂		5 17	7:40 19:40	0.5	M
80	55	2:00	AIR/ O ₂ AIR		9 24	11:40 26:40	0.5	M
80	60	2:00	AIR/ O ₂		13 30	15:40 32:40	1	N

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O_2 stop 130 120 110 100 90 80 70 60 50 40 30 20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
			AIR/ O ₂	16	18:40		
80	70	2:00	AIR AIR/O ₂	54 22	56:40 24:40	1	0
80	80	2:00	AIR AIR/ O 2	77 30	79:40 32:40	1.5	Z
80	90	2:00	AIR AIR/ O ₂	114 39	116:40 46:40	1.5	Z
80	100	1:40	AIR AIR/ O ₂	1 147 1 46	150:20 54:20	2	Z
80	110	1:40	AIR AIR/ O ₂	6 171 3 51	179:20 61:20	2	Z
80	120	1:40	AIR AIR/ O ₂	10 200 5 59	212:20 71:20	2.5	
80	130	1:40	AIR AIR/ O ₂	14 232 7 67	248:20 86:20	3	
80	140	1:40	AIR AIR/ O ₂	17 258 9 73	277:20 94:20	3.5	
80	150	1:40	AIR AIR/ O 2	19 285 10 80	306:20 102:20	3.5	
80	160	1:40	AIR AIR/ O 2	21 318 11 86	341:20 114:20	4	
80	170	1:40	AIR AIR/ O 2	27 354 14 90	383:20 121:20	4	
80	180	1:40	AIR AIR/ O 2	33 391 17 96	426:20 130:20	4.5	
80	210	1:40	AIR AIR/ O 2	51 473 26 110	526:20 158:20	5	
		0.00	AID		0.00	0	
90	33	3:00	AIR AIR/ O 2	0 0	3:00 3:00	0	J
00	25	2:20	AIR	4	7:00	0.5	J
90	35		AIR/O ₂	2	5:00		
90	40	2:20	AIR	14	17:00	0.5	L
		2:20	AIR/ O₂ AIR	7 23	10:00 26:00	0.5	M
90	45	2.20	AIR/ O ₂	25 12	15:00	0.5	IVI
00	50	2:20	AIR	31	34:00	1	N
90	50		AIR/O ₂	17	20:00		
90	55	2:20	AIR	39	42:00	1	Ο
		2:20	AIR/ O ₂	21 56	24:00 59:00	1	0
90	60	2.20	AIR/O ₂	24	27:00		
90	70	2:20	AIR	83	86:00	1.5	Z
		6.05	AIR/O ₂	32	35:00		-
90	80	2:00	AIR	5 125	132:40	2	Z

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O ₂ stop 130 120 110 100 90 80 70 60 50 40 30	0 20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
			AIR/ O ₂		3 40	50:40		
90	90	2:00	AIR AIR/ O ₂	1;	3 158 7 46	173:40 60:40	2	Z
90	100	2:00	AIR AIR/ O 2		9 185 0 53	206:40 70:40	2.5	
90	110	2:00	AIR AIR/ O 2		5 224 3 61	251:40 86:40	3	
90	120	1:40	AIR AIR/ O 2		8 256 4 70	288:20 98:40	3.5	
90	130	1:40	AIR AIR/ O 2		8 291 4 79	326:20 110:40	3.5	
90	140	1:40	AIR AIR/ O ₂		8 330 4 87	368:20 126:40	4	
90	150	1:40	AIR AIR/ O ₂		4 378 7 94	425:20 139:40	4.5	
90	160	1:40	AIR AIR/ O ₂	13 4 13 2 0		473:20 151:40	4.5	
90	170	1:40	AIR AIR/ O ₂	15 49 15 2 0		513:20 166:40	5	
90	180	1:40	AIR AIR/ O 2	16 5 16 2 0		548:20 176:40	5.5	
90	240	1:40	AIR AIR/ 0 2	42 66 42 3 6		704:20 267:40	7.5	
100	25	3:20	AIR AIR/ O 2		0 0	3:20 3:20	0	Н
100	30	2:40	AIR AIR/ O 2		3 2	6:20 5:20	0.5	J
100	35	2:40	AIR AIR/ O 2		15 8	18:20 11:20	0.5	L
100	40	2:40	AIR AIR/ O 2		26 14	29:20 17:20	1	М
100	45	2:40	AIR AIR/ O 2		36 19	39:20 22:20	1	N
100	50	2:40	AIR AIR/ O 2		47 24	50:20 27:20	1	0
100	55	2:40	AIR AIR/ O 2		65 28	68:20 31:20	1.5	Z
100	60	2:40	AIR AIR/ O ₂		81 33	84:20 36:20	1.5	Z
100	70	2:20	AIR AIR/ O ₂		1 124 6 39	138:00 53:00	2	Z
100	80	2:20	AIR AIR/ O 2		1 160 1 45	184:00 64:00	2.5	Z
100	90	2:00	AIR		8 196	228:40	2.5	

DEPTH	BTM	TM TO	GAS	DECOMPRESSION STOPS (FSW)	TOTAL	CHAMBER	RPT
(FSW)	TIM	FIRST	MIX	Stop times (min) include travel time,	ASCNT	O_2	GRP
	(M)	STOP		except first air and first O ₂ stop	TIME	PERIODS	DES
		(M:S)		130 120 110 100 90 80 70 60 50 40 30 20	(M:S)		
			AIR/O ₂	2 14 53	82:00		
400	400	2:00	AIR	9 28 241	280:40	3	
100	100		AIR/O ₂	9 14 66	102:00		
100	110	2:00	AIR	14 28 278	322:40	3.5	
100	1.0		AIR/O ₂	14 14 76	117:00		
100	120	2:00	AIR	19 28 324	373:40	4	
		1.40	AIR/ O ₂	19 14 85	136:00	F	
100	150	1:40	AIR/O ₂	3 26 46 461 3 26 23 109	538:20 183:40	5	
			All (/O2	3 20 23 109	103.40		
110	20	3:40	AIR	0	3:40	0	Н
110	20		AIR/O ₂	0	3:40		
110	25	3:00	AIR	5	8:40	0.5	1
110			AIR/O ₂	3	6:40		
110	30	3:00	AIR	14	17:40	0.5	K
		0.00	AIR/O ₂	7	10:40	4	
110	35	3:00	AIR AIR/ O ₂	27 14	30:40 17:40	1	М
		3:00	AIR/O ₂	39	42:40	1	N
110	40	0.00	AIR/O ₂	20	23:40	·	••
110	45	3:00	AIR	50	53:40	1	0
110	45		AIR/O ₂	26	29:40		
110	50	3:00	AIR	71	74:40	1.5	Z
			AIR/O ₂	32	35:40		
110	55	2:40	AIR	5 85	93:20	1.5	Z
		2:40	AIR/ O ₂	3 33 13 111	44:20 127:20	2	Z
110	60	2.40	AIR/O ₂	7 36	51:20	2	۷
440		2:40	AIR	26 155	184:20	2.5	Z
110	70		AIR/O ₂	14 42	64:20		
110	80	2:20	AIR	9 28 200	240:00	2.5	
110	00		AIR/O ₂	9 14 54	90:20		
110	90	2:20	AIR	18 28 249	298:00	3.5	
		2,20	AIR/O ₂	18 14 68	113:20	2.5	
110	100	2:20	AIR AIR/ O 2	25 28 295 25 14 79	351:00 131:20	3.5	
		2:00	AIR	5 26 28 353	414:40	4	
110	110		AIR/ O ₂	5 26 14 91	154:00	•	
110	120	2:00	AIR	10 26 35 413	486:40	4.5	
110	120		AIR/O ₂	10 26 18 101	173:00		
110	180	1:40	AIR	3 23 47 68 593	736:20	7.5	
-			AIR/O ₂	3 23 47 34 159	298:40		
		4.00	AID		4.00	0	Е
120	15	4:00	AIR AIR/ O ₂	0 0	4:00 4:00	0	F
			A11\/ U 2		4.00		

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O ₂ stop 130 120 110 100 90 80 70 60 50 40	30 20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
120	20	3:20	AIR AIR/ O 2		4 2		0.5	Н
120	25	3:20	AIR AIR/ O 2		9 5	13:00 9:00	0.5	J
120	30	3:20	AIR AIR/ O ₂		24 13	28:00	0.5	L
120	35	3:20	AIR AIR/ O ₂		38 20	42:00	1	N
120	40	3:00	AIR AIR/ O ₂		2 49 1 26	54:40	1	0
120	45	3:00	AIR AIR/ O ₂		3 71 2 31	77:40 36:40	1.5	Z
120	50	3:00	AIR AIR/ O ₂		10 85 5 33	98:40	1.5	Z
120	55	3:00	AIR AIR/O ₂		19 116 10 35	138:40	2	Z
120	60	3:00	AIR AIR/ O ₂		27 142 14 39	172:40	2	Z
120	70	2:40	AIR AIR/O ₂		28 190 14 51	234:20 86:40	2.5	
120	80	2:40	AIR AIR/ O ₂	24	28 246 14 67	301:20	3	
120	90	2:20	AIR AIR/O ₂	7 26	28 303 14 80	367:00	3.5	
120	100	2:20	AIR AIR/ O ₂	15 25	28 372 14 95	443:00	4	
120	110	2:20	AIR AIR/O ₂	21 25	38 433 19 105	520:00	5	
120	120	2:00	AIR AIR/ O ₂	3 23 25 3 23 25	47 480	580:40	5.5	
130	12	4:20	AIR		0	4:20	0	F
130	15	3:40	AIR/ O ₂ AIR		0		0.5	G
		3:40	AIR/ O ₂		2 8	6:20 12:20	0.5	ı
130	20	3:40	AIR/ O ₂		5 17	9:20	0.5	K
130	25	3:20	AIR/ O ₂		9 2 32	13:20	1	М
130	30	3:20	AIR/ O ₂ AIR		1 17 5 44	22:00	1	0
130	35	3:20	AIR/ O ₂		3 23 6 66	30:00	1.5	Z
130	40	3.20	AIR/O ₂		3 30		1.5	

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRESSION STOPS (FSW) TOTAL Stop times (min) include travel time, ASCN except first air and first O2 stop TIMI 130 120 110 100 90 80 70 60 50 40 30 20 (M:ST)	NT O ₂ E PERIODS	RPT GRP DES
130	45	3:00	AIR AIR/ O 2	1 11 84 99:4 1 6 33 49:0		Z
130	50	3:00	AIR AIR/ O 2	2 20 118 143:4 2 10 36 57:0		Z
130	55	3:00	AIR AIR/ O ₂	4 28 146 181:4 4 14 40 67:0	10 2	Z
130	60	3:00	AIR AIR/ O ₂	12 28 170 213:4 12 14 46 81:0	10 2.5	Z
130	70	2:40	AIR AIR/ O ₂	1 26 28 235 293:2 1 26 14 63 117:4	20 3	
130	80	2:40	AIR AIR/ O ₂	12 26 28 297 366:2 12 26 14 79 144:4	20 3.5	
130	90	2:40	AIR AIR/ O ₂	22 25 28 375 453:2 22 25 14 95 174:4	20 4	
130	100	2:20	AIR AIR/ O ₂	6 23 26 38 444 540:0 6 23 26 20 106 204:2	00 5	
130	120	2:20	AIR AIR/ O ₂	17 24 27 57 534 662:0 17 24 27 29 130 255:2	00 6	
130	180	2:00	AIR AIR/ O 2	13 21 45 57 94 658 890:4 13 21 45 57 46 198 418:0		
140	10	4:40	AIR AIR/ O 2	0 4:40 0 4:40		E
140	15	4:00	AIR AIR/ O 2	5 9:40 3 7:40	0.5	Н
140	20	4:00	AIR AIR/ O 2	13 17:4 7 11:4	0 0.5	J
140	25	3:40	AIR AIR/ O 2	3 24 31:2 2 12 18:2	0 1	L
140	30	3:40	AIR AIR/ O 2	7 37 48:2 4 19 27:2	0 1	N
140	35	3:20	AIR AIR/ O 2	2 7 58 71:0 2 4 26 36:2		0
140	40	3:20	AIR AIR/ O 2	4 7 82 97:0 4 4 33 50:2	0 1.5	Z
140	45	3:20	AIR AIR/ O 2	5 18 114 141:0 5 9 36 59:2	00 2	Z
140	50	3:20	AIR AIR/ O 2	8 27 145 184:0 8 14 39 70:2		Z
140	55	3:00	AIR AIR/ O ₂	1 15 29 171 219:4 1 15 15 45 85:0	0 2.5	Z
140	60	3:00	AIR AIR/ O ₂	2 23 28 209 265:4 2 23 14 56 109:0		
140	70	3:00	AIR AIR/ O 2	14 25 29 276 347:4 14 25 15 74 142:0		

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRESSION STOPS (FSW) TOTAL CHAMBER Stop times (min) include travel time, except first air and first O_2 stop TIME PERIODS 130 120 110 100 90 80 70 60 50 40 30 20 (M:S)	RPT GRP DES
140	80	2:40	AIR AIR/ O ₂	2 24 25 29 362 445:20 4 2 24 25 15 91 175:40	
140	90	2:40	AIR AIR/ O ₂	12 23 26 38 443 545:20 5 12 23 26 19 107 210:40	
150	8	5:00	AIR AIR/ O 2	0 5:00 0 0 5:00	E
150	10	4:20	AIR AIR/ O ₂	2 7:00 0.5 1 6:00	F
150	15	4:20	AIR AIR/ O 2	8 13:00 0.5 5 10:00	Н
150	20	4:00	AIR AIR/ O 2	2 15 21:40 0.5 1 8 13:40	K
150	25	4:00	AIR AIR/ O 2	7 29 40:40 1 4 14 22:40	М
150	30	3:40	AIR AIR/ O ₂	4 7 45 60:20 1 4 4 22 34:40	0
150	35	3:40	AIR AIR/ O ₂	6 7 74 91:20 1.5 6 4 30 44:40	Z
150	40	3:20	AIR AIR/ O ₂	2 6 14 106 132:00 2 2 6 7 35 59:20	Z
150	45	3:20	AIR AIR/ O ₂	3 8 24 142 181:00 2 3 8 12 40 72:20	Z
150	50	3:20	AIR AIR/ O ₂	4 14 28 170 220:00 2.5 4 14 14 46 87:20	Z
150	55	3:20	AIR AIR/ O 2	7 21 28 212 272:00 3 7 21 14 57 113:20	
150	60	3:20	AIR AIR/ O 2	11 26 28 248 317:00 3 11 26 14 67 132:20	
150	70	3:00	AIR AIR/ O 2	3 24 25 28 330 413:40 4 3 24 25 14 85 170:00	
150	80	3:00	AIR AIR/ O 2	15 23 26 35 430 532:40 4.5 15 23 26 18 104 205:00	
150	90	2:40	AIR AIR/ O 2	3 22 23 26 47 496 620:20 5.5 3 22 23 26 24 118 239:40	
150	120	2:20	AIR AIR/ O 2	3 20 22 23 50 75 608 804:00 8 3 20 22 23 50 37 168 356:20	
150	180	2:00	AIR AIR/ O 2	2 19 20 42 48 79 121 694 1027:40 10.5 2 19 20 42 48 79 58 222 538:00	
160	7	5:20	AIR	0 5:20 0	E
160	10	4:40	AIR/O ₂	0 5:20 4 9:20 0.5	F
160	15	4:20	AIR/ O ₂	2 7:20 2 10 17:00 0.5	I

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPRI Stop times (except firs 130 120 110 100 9	min) in st air a	clude nd firs	trav st O ₂	vel ti 2 sto	me, p	30	20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
			AIR/ O ₂							1	6	12:00		
160	20	4:00	AIR AIR/ O ₂						1		19	28:40 18:00	0.5	L
160	25	4:00	AIR AIR/ O 2						4 4	7 4		50:40 30:00	1	N
160	30	3:40	AIR AIR/ O 2					2	6 6	7 4		81:20 42:40	1.5	Z
160	35	3:40	AIR AIR/ O 2					4	6 6	8 4		111:20 57:40	1.5	Z
160	40	3:40	AIR AIR/ O ₂					6 6	6 6	21 1 11		171:20 70:40	2	Z
160	45	3:20	AIR AIR/ O ₂				2	5 5	11 11	28 1 14		216:00 86:20	2.5	Z
160	50	3:20	AIR AIR/ O ₂				2 2	8 8	19 19	28 2 15		268:00 113:20	3	
160	55	3:20	AIR AIR/ O ₂				3	11 11		28 2 14		320:00 135:20	3	
160	60	3:20	AIR AIR/ O ₂				6 6	17 17		29 2 15		372:00 154:20	3.5	
160	70	3:20	AIR AIR/ O 2				15 15	2323		29 3 15		496:00 197:20	4.5	
160	80	3:00	AIR AIR/ 0 2				21 21	24 24		44 4 23 1		605:40 237:00	5.5	
170	6	5:40	AIR AIR/ O 2								0 0	5:40 5:40	0	D
170	10	5:00	AIR AIR/ O 2								6 3	11:40 8:40	0.5	G
170	15	4:40	AIR AIR/ O 2							3 2	13 6	21:20 13:20	0.5	J
170	20	4:20	AIR AIR/ O 2						3 3	6 3	24 12	38:00 23:20	1	M
170	25	4:00	AIR AIR/ O ₂					1 1	7 7	7 4		60:40 37:00	1	0
170	30	4:00	AIR AIR/ 0 2					5 5	7 7	7 3		100:40 50:00	1.5	Z
170	35	3:40	AIR AIR/ O 2				2	6 6	6 6	15 1 8		153:20 68:40	2	Z
170	40	3:40	AIR AIR/ O 2				4 4	6 6	9 9	25 1 12		206:20 84:40	2.5	Z
170	45	3:40	AIR AIR/ O ₂				5 5	7 7		28 1 14		257:20 109:40	2.5	Z
170	50	3:20	AIR AIR/ O ₂			1 1	5 5	11 11		28 2 14		316:00 134:20	3	
170	55	3:20	AIR			2	7	16		28 2		372:00	3.5	

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	DECOMPR Stop times (except fir 130 120 110 100 S	(min) i rst air a	nclud and fi	e tra rst O	vel ti 2 sto	me, p	30 20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
-		(101.5)		130 120 110 100 3	30 00	10	00	30	70	30 20	(101.0)		
			AIR/O ₂			2	7	16	26	14 77	156:20		
170	60	3:20	AIR AIR/ O 2			2 2	11 11	21 21	26 26	28 344 14 88	436:00 181:20	4	
170	70	3:20	AIR AIR/ O 2			7 7	19 19	24 24		39 454 20 109	572:00 228:20	5	
170	80	3:20	AIR AIR/ O 2			17 17	22 22	23 23		53 525 27 128	670:00 267:20	6	
170	90	3:00	AIR AIR/ O 2		8			23 23	37 37	66 574 33 148	752:40 319:00	7	
170	120	2:40	AIR AIR/ O 2		9 19	20	22	42	60		928:20 454:40	9	
170	180	2:20	AIR AIR/ O ₂		18 19	40	43	70	97	156 703 74 229	1159:00 648:20	11.5	
			_										
180	6	6:00	AIR AIR/ O 2							0 0	6:00 6:00	0	Е
180	10	5:20	AIR AIR/ O 2							8 4	14:00 10:00	0.5	G
180	15	4:40	AIR AIR/ O ₂						2	3 14 2 7	24:20 16:40	0.5	K
180	20	4:20	AIR AIR/ O 2					1 1	5 5	7 29 3 15	47:00 29:20	1	М
180	25	4:20	AIR AIR/ O ₂					5 5	6	7 57 4 24	80:00 44:20	1.5	0
180	30	4:00	AIR AIR/ O ₂				3	6	6	7 95 4 34	121:40 63:00	1.5	Z
180	35	3:40	AIR AIR/ O ₂			1	5 5	6	6	22 144 11 41	188:20 79:40	2	Z
180	40	3:40	AIR AIR/ O ₂			2	6	5	13	28 178 14 48	236:20 97:40	2.5	
180	45	3:40	AIR AIR/ O ₂			4	5		20	28 235 14 63	306:20 130:40	3	
180	50	3:40	AIR AIR/ O ₂			4	8	13	25	29 277 15 75	360:20 154:40	3.5	
180	55	3:40	AIR AIR/ O ₂			5 5	11 11	19	26	28 336 14 87	429:20 181:40	4	
180	60	3:20	AIR AIR/ O ₂		1	8	13	23	25	31 406 16 100	511:00 205:20	4.5	
180	70	3:20	AIR/O ₂		4	12	21	24	25	48 499 24 119	637:00 253:20	5.5	
			7 (11 (7 🔾 2			12	1		20	<u> </u>	200.20		
190	5	6:20	AIR AIR/ O 2							0 0	6:20 6:20	0	D
190	10	5:20	AIR AIR/ O 2							2 8 1 4	16:00 11:00	0.5	Н

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP	GAS MIX	DECOMP Stop times except f	(mi	in) in	clude	e tra	vel ti	me,			TOTAL ASCNT TIME	CHAMBER O ₂ PERIODS	RPT GRP DES
	. ,	(M:S)		130 120 110 100						-	30	20	(M:S)		
190	15	4:40	AIR						1	3	3	16	28:20	0.5	K
			AIR/O ₂						1	3	2	8	19:40		
190	20	4:20	AIR					1	2	6	7		55:00	1	N
			AIR/O ₂					1	2	6		17	35:20		_
190	25	4:20	AIR					2	6	7		72	99:00	1.5	Z
		4.00	AIR/ O ₂				4	2	6	7		28	51:20	2	7
190	30	4:00	AIR/O ₂				1 1	6 6	5 5	7 7		122 38	158:40 74:00	2	Z
		4:00	AIR/O ₂				4	5	6	8		165	218:40	2.5	Z
190	35	4.00	AIR/O ₂				4	5	6	8		45	91:00	2.0	_
		3:40	AIR			1	5	5	8	17		217	285:20	3	
190	40		AIR/O ₂			1	5	5	8	17		58	123:40	_	
400	45	3:40	AIR			2	5	6	12			264	346:20	3.5	
190	45		AIR/O ₂			2	5	6	12	24	15	71	149:40		
190	50	3:40	AIR			3	5	10	17	26	28	324	417:20	4	
190	50		AIR/O ₂			3	5	10	17	26	14	85	179:40		
190	55	3:40	AIR			4	8	10	24	25	30	397	502:20	4.5	
130	00		AIR/O ₂			4	8	10	24	25	15	99	204:40		
190	60	3:40	AIR			5	10	16	24	25		454	578:20	5	
			AIR/O ₂			5	10	16	24	25		109	233:40		
190	90	3:20	AIR		11	19	20	21	28			626	863:00	8.5	
			AIR/O ₂		11	19	20	21	28			178	408:20		
190	120	3:00	AIR	15	17	19	20	37			113		1040:40	10.5	
			AIR/O ₂	15	17	19	20	37	46	79	55	219	551:00		
		6:40	AIR									0	6:40	0	Е
200	5	0.40	AIR/O ₂									0	6:40	U	
		5:40	AIR								3	8	17:20	0.5	Н
200	10	0.10	AIR/ O ₂								2	4	12:20	0.0	• •
222	4-	5:00	AIR						2	3	5	19	34:40	0.5	L
200	15		AIR/O ₂						2	3	3	9	23:00		
200	20	4:40	AIR					2	4	6	7	43	67:20	1	0
200	20		AIR/O ₂					2	4	6	4	20	41:40		
200	25	4:20	AIR				1	5	6	6	7	85	115:00	1.5	Z
200	20		AIR/O ₂				1	5	6	6	4	32	64:20		
200	30	4:20	AIR				4	6	5			145	191:00	2	Z
			AIR/O ₂				4	6	5			42	84:20		
200	35	4:00	AIR			2	5	5	6			188	251:40	2.5	
			AIR/O ₂			2	5	5	6		14		106:00		
200	40	4:00	AIR			4	5	5	11	21		249	327:40	3.5	
		0.40	AIR/O ₂			4	5	5	11			68	143:00	2.5	
200	45	3:40	AIR		1	4	5		14			306	397:20	3.5	
		3:40	AIR/ O₂ AIR		1 2	4	5 8		14 21			382	168:40 485:20	4.5	
200	50	3.40	AIR/O ₂		2	4	8		21				201:40	4.0	

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP (M:S)	GAS MIX	Stop	COMPF times cept fi	(mir	n) in air ar	clude nd fir	e tra	vel ti 2 sto	me, p	30	20	TOTAL ASCNT TIME (M:S)	CHAMBER O ₂ PERIODS	RPT GRP DES
210	4	7:00	AIR AIR/ O ₂										0 0	7:00 7:00	0	D
210	5	6:20	AIR AIR/ O ₂										2 1	9:00 8:00	0.5	Е
210	10	5:40	AIR AIR/ O ₂								2	3 2	9 4	20:20 14:40	0.5	I
210	15	5:00	AIR AIR/ O 2						1	3	3	6 3	24 12	42:40 28:00	1	М
210	20	4:40	AIR AIR/ O 2					1	3	5 5	6	7	57 23	84:20 47:40	1	0
210	25	4:40	AIR AIR/ O 2					3	6	5 5	7 7		110 38	144:20 73:40	2	Z
210	30	4:20	AIR AIR/ O 2				2	5 5	6	6	6 6	26	163 45	219:00 93:20	2.5	Z
210	35	4:00	AIR AIR/ O 2			1	4	5 5	6	7	18 18	28	223 60	296:40 130:00	3	
210	40	4:00	AIR AIR/ O 2			2	5 5	5 5	7	11 11	26		278	366:40 161:00	3.5	
210	45	4:00	AIR AIR/ O 2			4	4	6	11	18 18	26	28 14	355	456:40 194:00	4	
210	50	3:40	AIR AIR/ O ₂		1	4	5	10 10	12	23 23	26		432	553:20 223:40	5	
			71111702		•	•		10	12	20	20		100	220.10		
220	4	7:20	AIR AIR/ O ₂										0 0	7:20 7:20	0	Е
220	5	6:40	AIR AIR/ O ₂										3 2	10:20 9:20	0.5	Е
220	10	6:00	AIR AIR/ O ₂								3	4 2	10 5	23:40 17:00	0.5	J
220	15	5:20	AIR AIR/ O 2						3	2	4		28 14	50:00 33:20	1	N
220	20	5:00	AIR AIR/ O 2					2	4	6 6	6 6	7	70 26	100:40 54:00	1.5	Z
220	25	4:40	AIR AIR/ O 2				1	5 5	6 6	6 6	6 6	14	133 41	176:20 82:40	2	Z
220	30	4:20	AIR AIR/ O ₂			1	4	5 5	6	6	10		183	248:00 106:20	2.5	
220	35	4:20	AIR AIR/ O ₂			3	5 5	5 5	5 5	10 10	22	28 14	251	334:00 147:20	3.5	
220	40	4:00	AIR AIR/O ₂		1 1	4	5	5 5	9	15	26	28 14	319	416:40 183:00	4	
250	4	7:40	AIR AIR/ O 2										4 2	12:20 10:20	0.5	F

DEPTH (FSW)	BTM TIM (M)	TM TO FIRST STOP	GAS MIX	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O ₂ stop 130 120 110 100 90 80 70 60 50 40 30												TOTAL ASCNT TIME	CHAMBER O ₂ PERIODS	RPT GRP DES
		(M:S)		130 1	20 1	10 1	00	90	80	70	60	50	40	30	20	(M:S)		
250	5	7:40	AIR AIR/ O 2												7 4	15:20 12:20	0.5	G
250	10	6:20	AIR AIR/ O 2								2	2	4	3 2	15 7	33:00 24:20	0.5	L
250	15	5:40	AIR AIR/ O 2						2	2	3 3	4 4	6 6	7 4	53 22	83:20 49:40	1	0
250	20	5:20	AIR AIR/ O 2					2	2	4	6 6	6 6	6 6		125 39	168:00 82:20	2	Z
250	25	5:00	AIR AIR/ O 2				1 1	4 4	4 4	5 5	6 6	6 6	10 10		189 51	258:40 112:00	2.5	
250	30	4:40	AIR AIR/ O 2			1	4	4 4	4	5 5	6 6	9	25 25		267 72	358:20 160:40	3.5	
250	35	4:40	AIR AIR/ O ₂			3	4 4	4 4	5 5	5 5	10 10	19 19	26 26		363 93	472:20 203:40	4	
300	4	9:00	AIR AIR/ O 2											3 2	7 4	19:40 15:40	0.5	G
300	5	8:40	AIR AIR/ O 2										3 3	3 2	8 4	23:20 18:40	0.5	I
300	10	7:20	AIR AIR/ O 2						2	3	2	3	4 4	7 4		64:00 44:20	1	N
300	15	6:20	AIR AIR/ O ₂			1 1	2	2	3	3	5 5	6 6	7 7	11 6	125 39	172:00 86:20	2	Z
300	20	6:00	AIR AIR/ O 2		2	2	2	4 4	5 5	5 5	5 5	6 6	16 16		219 59	300:40 137:00	3	
300	25	5:40	AIR AIR/ O ₂	1 1	3	4 4	4 4	4 4	5 5	5 5	5 5	18 18	26 26		324 85	433:20 195:40	4	

Appendix E Estimated Risks of DCS for Schedules in the VVal-79 Air Decompression Table^a

	VVal-7	9 AIR; 20	fsw Last Allowed	d In-Water	Stop	VVal-79	9 AIR/In-	Water O	₂ , 20 fsw	Last Allo	wed Stop	VVal-79 SurDO₂				
Depth (fsw)	TOTAL	_				TOTAL	=									
/BT(min)	STOP		P(I	DCS)		STOP		P(DC	S) ^b ; IWC	2_FO2=9	9.5%		P(D	CS)		
	TIME	BVM(3)		NMRI98		TIME ^c	BVM(3)			NMRI98		BVM(3)		NMRI98		
	(min)	(%)	low - high	(%)	low - high	(min)	(%)	low -	high	(%)	low - high	(%)	low - high	(%)	low - high	
25/1102	0	7.414	6.152 - 8.824	9.528	8.117 - 11.070	0	7.414	6.152	8.824	9.528	8.117 11.070	7.414	6.152 - 8.824	9.528	8.117 - 11.070	
30/ 371	0	4.153	3.525 - 4.855	4.963	4.139 - 5.889	0	4.153	3.525 -	4.855	4.963	4.139 - 5.889	4.153	3.525 - 4.855	4.963	4.139 - 5.889	
30/ 380	5	4.233	3.601 - 4.936	5.039	4.195 - 5.990	1	4.095	3.478 -	4.783	4.802	3.976 - 5.738	3.500	2.929 - 4.144	4.690	3.906 - 5.574	
30/ 420	22	4.759	4.015 - 5.590	5.714	4.766 - 6.778	5	4.293	3.603 -	5.068	5.170	4.283 - 6.170	4.056	3.406 - 4.787	5.392	4.540 - 6.344	
30/ 480	42	5.498	4.604 - 6.499	6.670	5.578 - 7.889	9	4.823	4.031 -	5.713	5.823	4.838 - 6.931	4.828	4.056 - 5.694	6.394	5.435 - 7.454	
30/ 540	71	6.116	5.094 - 7.261	7.483	6.261 - 8.843	14	5.222	4.358 -	6.194	6.282	5.215 - 7.478	4.852	4.076 - 5.722	6.283	5.268 - 7.414	
30/600	92	6.623	5.496 - 7.886	8.191	6.865 - 9.660	19	5.529	4.606 -	6.564	6.646	5.512 - 7.916	5.442	4.563 - 6.425	7.086	5.986 - 8.305	
30/ 660	120	7.010	5.802 - 8.364	8.755	7.348 - 10.310	22	5.879	4.888 -	6.990	7.113	5.911 - 8.458	5.967	4.992 - 7.057	7.818	6.636 - 9.120	
30/ 720	158	7.263	6.001 - 8.678	9.166	7.704 - 10.778	27	6.031	5.011 -	7.176	7.313	6.071 - 8.701	6.433	5.369 - 7.623	8.480	7.222 - 9.860	
35/ 232	0	2.974	2.543 - 3.455	3.628	2.921 - 4.447	0	2.974	2.543 -	3.455	3.628	2.921 - 4.447	2.974	2.543 - 3.455	3.628	2.921 - 4.447	
35/ 240	4	3.042	2.555 - 3.593	3.715	3.002 - 4.538	2	2.792	2.365 -	3.272	3.388	2.698 - 4.194	2.263	1.837 - 2.757	3.459	2.710 - 4.343	
35/ 270	28	3.581	0.177 - 17.374	4.356	3.573 - 5.249	7	2.949	2.463 -	3.500	3.711	2.986 - 4.551	2.875	2.398 - 3.417	4.178	3.376 - 5.101	
35/ 300	53	4.202	3.540 - 4.945	5.038	4.160 - 6.031	13	3.212	2.679 -	3.816	3.916	3.154 - 4.796	3.478	2.911 - 4.118	4.907	4.051 - 5.876	
35/ 330	71	4.778	4.012 - 5.638	5.722	4.745 - 6.821	18	3.526	2.948 -	4.179	4.180	3.371 - 5.113	3.474	2.908 - 4.114	4.627	3.705 - 5.693	
35/ 360	_ 88	5.296	4.432 - 6.266	_6.368_	_5.2947.573_	22	3.853	3.225 -	4.562	4.505	3.645 - 5.494	4.004	3.365 - 4.722	5.290	4.317 - 6.397	
35/ 420	134	6.158	5.124 - 7.317	7.498	6.247 - 8.892	29	4.456	3.728 -	5.274	5.166	4.201 - 6.266	4.488	3.774 - 5.289	5.716	4.618 - 6.971	
35/ 480	173	6.798	5.633 - 8.104	8.411	7.031 - 9.941	38	4.809	4.019 -	5.696	5.528	4.484 - 6.720	5.337	4.480 - 6.296	6.843	5.640 - 8.195	
35/ 540	228	7.207	5.957 - 8.608	9.062	7.601 - 10.675	45	5.144	4.294 -	6.099	5.972	4.856 - 7.241	5.410	4.540 - 6.383	6.869	5.641 - 8.254	
35/600	277	7.476	6.169 - 8.941	9.533	8.023 - 11.195	53	5.313	4.431 -	6.303	6.227	5.070 - 7.541	6.058	5.069 - 7.162	7.771	6.449 - 9.246	
35/660	314	7.680	6.329 - 9.193	9.904	8.356 - 11.603	63	5.266	4.393 -	6.246	6.226	5.072 - 7.535	6.031	3.054 - 10.430	7.726	6.398 - 9.210	
35/720	342	7.845	6.459 - 9.398	10.209	8.629 - 11.939	71	5.260	4.388 -	6.239	6.292	5.137 - 7.599	5.807	4.866 - 6.859	7.464	6.191 - 8.886	
40/ 163	0	2.332	1.942 - 2.776	2.955	2.294 - 3.743	0	2.332	1.942 -	2.776	2.955	2.294 - 3.743	2.332	1.942 - 2.776	2.955	2.294 - 3.743	

 $^{^{\}rm a}$ Dives below the dashed line in each dive depth group are exceptional exposure dives. $^{\rm b}$ Including effects of air-breathing breaks inserted as per rule after starting in-water ${\rm O_2}$ breathing $^{\rm c}$ Not including air-breathing break time

	VVal-79	9 AIR; 20	fsw Last Allowed	In-Water	Stop	VVal-79) AIR/In-	Water O ₂ , 20 fsw	/ Last Allo	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)	TOTAL					TOTAL								
/BT(min)	STOP		P(D	CS)		STOP		P(DCS) ^b ; IWC)2_FO2=	99.5%		P(D	CS)	
	TIME	BVM(3)		NMRI98		TIME ^c	BVM(3)		NMRI98	}	BVM(3)		NMRI98	3
	(min)	(%)	low - high	(%)	low - high	(min)	(%)	low - high	(%)	low - high	(%)	low - high	(%)	low - high
40/ 170	6	2.316	1.935 - 2.749	3.008	2.348 - 3.791	2	2.116	1.752 - 2.532	2.711	2.067 - 3.488	1.493	1.144 - 1.919	2.841	2.084 - 3.778
40/ 180	14	2.493	2.101 - 2.935	3.274	2.594 - 4.071	5	2.017	1.663 - 2.425	2.774	2.121 - 3.561	1.738	1.364 - 2.184	3.116	2.329 - 4.077
40/ 190	21	2.716	2.297 - 3.189	3.554	2.849 - 4.373	7	2.083	1.713 - 2.511	2.915	2.241 - 3.722	1.987	1.589 - 2.455	3.402	2.585 - 4.385
40/ 200	27	2.957	2.504 - 3.466	3.843	3.110 - 4.687	9	2.178	1.785 - 2.632	3.052	2.360 - 3.879	2.239	1.816 - 2.731	3.695	2.851 - 4.698
40/ 210	39	3.214	2.716 - 3.774	4.093	3.338 - 4.959	11	2.304	1.887 - 2.784	3.187	2.475 - 4.033	2.493	2.044 - 3.010	3.994	3.125 - 5.017
40/ 220	52	3.488	2.942 - 4.101	4.347	3.559 - 5.245	12	2.506	2.065 - 3.013	3.405	2.668 - 4.276	2.748	2.271 - 3.293	4.298	3.404 - 5.339
40/ 230	64	3.760	3.167 - 4.427	4.618	3.798 - 5.551	16	2.568	2.119 - 3.082	3.359	2.617 - 4.237	2.488	2.039 - 3.004	3.620	2.675 - 4.777
40/ 240	_ <u>7</u> 5	4.031	3.392 - 4.748 _	_4.899_	_4.042 - 5.870	19	2.669	2.208 - 3.197	3.396	2.643 - 4.288	2.724	2.250 - 3.266	3.898	2.933 - 5.063
40/ 270	101	4.759	3.991 - 5.620	5.740	4.767 - 6.834	26	3.036	2.527 - 3.614	3.656	2.857 - 4.598	3.429	2.871 - 4.060	4.748	3.726 - 5.943
40/ 300	128	5.401	4.514 - 6.395	6.530	5.437 - 7.752	33	3.349	2.797 - 3.974	3.885	3.045 - 4.873	3.664	3.075 - 4.329	4.741	3.650 - 6.034
40/ 330	160	5.946	4.953 - 7.058	7.241	6.038 - 8.583	38	3.734	3.124 - 4.422	4.235	3.366 - 5.246	4.290	3.609 - 5.053	5.530	4.380 - 6.861
40/ 360	184	6.407	5.322 - 7.622	7.876	6.582 - 9.315	44	3.996	3.345 - 4.730	4.502	3.595 - 5.552	4.266	3.589 - 5.025	5.341	4.199 - 6.671
40/ 420	248	7.070	5.849 - 8.438	8.867	7.441 - 10.443	56	4.387	3.671 - 5.192	4.950	3.968 - 6.083	4.802	4.040 - 5.655	5.952	4.763 - 7.317
40/ 480	321	7.434	5.195 - 10.185	9.506	8.013 - 11.146	_68_	4.622	3.866 - 5.472	5.278	4.239 - 6.471	5.710	4.790 - 6.738	7.180	5.867 - 8.661
40/ 540	372	7.698	5.428 - 10.470	9.983	8.443 - 11.671	80	4.704	3.933 - 5.570	5.467	4.413 - 6.673	5.817	4.878 - 6.866	7.338	6.035 - 8.801
40/ 600	410	7.901	5.606 - 10.690	10.359	8.780 - 12.086	93	4.612	3.858 - 5.460	5.453	4.424 - 6.626	5.916	4.959 - 6.986	7.520	6.212 - 8.983
40/ 660	439	8.064	5.748 - 10.868	10.666	9.053 - 12.428	103	4.604	3.851 - 5.450	5.546	4.528 - 6.703	5.794	_4.859 - 6.838	7.435	6.174 - 8.843
40/ 720	461	8.202	5.869 - 11.019	10.929	9.285 - 12.722	112	4.565	3.819 - 5.404	5.600	4.598 - 6.734	5.609	4.709 - 6.615	7.193	5.989 - 8.537
45/ 125	0	2.079	1.672 - 2.556	2.668	2.050 - 3.409	0	2.079	1.672 - 2.556	2.668	2.050 - 3.409	2.079	1.672 - 2.556	2.668	2.050 - 3.409
45/ 130	2	2.127	1.720 - 2.602	2.726	2.099 - 3.479	1	2.019	1.609 - 2.502	2.448	1.842 - 3.190	1.074	0.768 - 1.469	2.592	1.840 - 3.544
45/ 140	14	2.451	2.029 - 2.934	2.971	2.329 - 3.730	5	2.103	1.694 - 2.581	2.500	1.880 - 3.257	1.345	1.007 - 1.763	2.896	2.097 - 3.894
45/ 150	25	2.793	2.351 - 3.291	3.284	2.615 - 4.065	8	2.239	1.836 - 2.703	2.621	1.973 - 3.411	1.626	1.259 - 2.070	3.223	2.377 - 4.263
45/ 160	34	3.120	2.650 - 3.646	3.619	2.915 - 4.434	11	2.365	1.940 - 2.855	2.736	2.059 - 3.561	1.916	1.458 - 2.473	3.567	2.677 - 4.646
45/ 170	41	3.439	2.942 - 3.992	3.970	3.227 - 4.823	14	2.489	2.062 - 2.976	2.846	2.141 - 3.704	1.762	1.380 - 2.219	2.974	2.005 - 4.241
45/ 180	59	3.247	2.736 - 3.822	4.247	3.478 - 5.125	17	2.616	2.176 - 3.117	2.951	2.219 - 3.841	2.039	1.629 - 2.520	3.289	2.285 - 4.571
45/ 190	_ 75	3.587	3.021 - 4.223 _	_4.545_	_3.7395.460_	19	2.790	2.340 - 3.299	3.135	2.372 - 4.057	2.320	1.883 - 2.826	3.615	2.579 - 4.911
45/ 200	89	3.915	3.296 - 4.611	4.866	4.023 - 5.820	23	2.842	2.376 - 3.370	3.144	2.366 - 4.089	2.604	1.246 - 4.808	3.949	2.885 - 5.258
45/ 210	101	4.225	3.554 - 4.977	5.196	4.313 - 6.192	27	2.404	1.976 - 2.896	3.149	2.357 - 4.113	2.890	2.393 - 3.456	4.290	3.199 - 5.612
45/ 220	112	4.515	3.794 - 5.324	5.525	4.599 - 6.566	30	2.542	2.098 - 3.050	3.233	2.424 - 4.217	2.790	2.305 - 3.344	3.785	2.675 - 5.181
45/ 230	121	4.789	4.019 - 5.652	5.850	4.881 - 6.936	33	2.672	2.212 - 3.197	3.314	2.489 - 4.314	3.056	2.541 - 3.641	4.104	2.969 - 5.505

	VVal-79	9 AIR; 20	fsw Last Allowed	In-Water	Stop	VVal-79	9 AIR/In-	Water O ₂ , 20 fsw	Last Allo	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)	TOTAL					TOTAL								
/BT(min)	STOP		P(E	OCS)		STOP		P(DCS) ^b ; IWO	2_FO2=	99.5%		P(D	CS)	
	TIME	BVM(3)		NMRI98		TIMEc	BVM(3)		NMRI98	;	BVM(3)		NMRI98	;
	(min)	(%)	low - high	(%)	low - high	(min)	(%)	low - high	(%)	low - high	(%)	low - high	(%)	low - high
45/ 240	130	5.052	4.235 - 5.968	6.167	5.155 - 7.299	37	2.771	2.299 - 3.309	3.277	2.462 - 4.266	3.321	2.774 - 3.940	4.425	3.269 - 5.833
45/ 270	173	5.759	4.807 - 6.826	7.048	5.900 - 8.325	45	3.137	2.617 - 3.727	3.571	2.734 - 4.572	3.534	2.960 - 4.181	4.463	3.320 - 5.847
45/ 300	206	6.333	5.267 - 7.526	7.825	6.564 - 9.223	51	3.550	2.971 - 4.205	4.000	3.132 - 5.022	4.255	3.581 - 5.012	5.368	4.158 - 6.790
45/ 330	243	6.789	5.630 - 8.086	8.482	7.131 - 9.975	61	3.692	3.091 - 4.370	4.095	3.231 - 5.105	4.452	3.747 - 5.241	5.479	4.289 - 6.867
45/ 360	288	7.118	5.891 - 8.493	9.001	7.586 - 10.559	69	3.897	3.264 - 4.610	4.325	3.430 - 5.366	4.451	3.746 - 5.240	5.424	4.286 - 6.745
45/ 420	373	7.531	6.217 - 9.003	9.725	8.237 - 11.356	84	_4.174_	3.496 - 4.937	4.730	3.781 - 5.828	5.029	4.039 - 6.168	6.186	4.997 - 7.541
45/ 480	431	7.819	6.443 - 9.361	10.250	8.709 - 11.934	101	4.172	3.495 - 4.935	4.835	3.892 - 5.919	5.304	4.460 - 6.246	6.607	5.412 - 7.956
45/ 540	473	8.039	6.615 - 9.633	10.659	9.073 - 12.388	117	4.065	3.406 - 4.808	4.827	3.922 - 5.862	5.452	4.583 - 6.422	6.801	5.615 - 8.134
50/ 92	0	1.722	1.300 - 2.239	2.203	1.677 - 2.842	0	1.722	1.300 - 2.239	2.203	1.677 - 2.842	1.722	1.300 - 2.239	2.203	1.677 - 2.842
50/95	2	1.685	1.156 - 2.381	2.175	1.655 - 2.807	1	1.576	1.163 - 2.091	1.911	1.410 - 2.534	0.586	0.364 - 0.905	2.203	1.528 - 3.076
50/ 100	4	1.831	1.405 - 2.346	2.311	1.770 - 2.964	2	1.688	1.273 - 2.198	2.028	1.508 - 2.671	0.709	0.455 - 1.066	2.336	1.634 - 3.237
50/ 110	8	2.178	1.741 - 2.690	2.680	2.085 - 3.389	4	1.914	1.487 - 2.428	2.276	1.711 - 2.968	0.979	0.710 - 1.321	2.645	1.883 - 3.609
50/ 120	21	2.566	2.116 - 3.081	3.025	2.402 - 3.756	7	2.091	1.654 - 2.609	2.461	1.855 - 3.200	1.281	0.604 - 2.433	2.999	2.173 - 4.029
50/ 130	34	2.963	2.491 - 3.497	3.399	2.739 - 4.164	12	2.163	1.734 - 2.666	2.489	1.853 - 3.270	1.604	1.235 - 2.051	3.387	2.497 - 4.479
50/ 140	45	3.346	2.842 - 3.910	3.797	3.091 - 4.609	16	2.277	1.836 - 2.791	2.582	1.905 - 3.420	1.489	1.125 - 1.937	2.836	1.834 - 4.182
50/ 150	56	3.722	3.177 - 4.329	4.195	3.442 - 5.055	19	2.444	1.991 - 2.967	2.747	2.023 - 3.642	1.801	1.428 - 2.243	3.192	2.139 - 4.570
50/ 160	_ 78	4.087	3.474 - 4.771	4.513	_3.7265.405_	23	2.544	2.079 - 3.079	2.824	2.063 - 3.770	2.123	1.698 - 2.622	3.568	2.467 - 4.974
50/ 170	96	4.431	3.755 - 5.185	4.857	4.028 - 5.793	26	2.704	2.223 - 3.255	2.977	2.176 - 3.969	2.452	1.995 - 2.981	3.960	2.815 - 5.391
50/ 180	111	4.188	3.536 - 4.917	5.226	4.354 - 6.208	30	2.793	2.022 - 3.755	3.039	2.210 - 4.070	2.431	1.995 - 2.932	3.478	2.316 - 4.999
50/ 190	125	4.532	3.822 - 5.325	5.598	4.681 - 6.625	35	2.818	2.242 - 3.493	3.013	2.167 - 4.072	2.742	2.256 - 3.300	3.846	2.650 - 5.372
50/ 200	136	4.849	4.084 - 5.704	5.969	5.006 - 7.044	39	2.906	2.329 - 3.580	3.031	2.189 - 4.082	3.056	2.535 - 3.650	4.222	2.997 - 5.751
50/ 210	147	5.149	4.329 - 6.066	6.330	5.321 - 7.454	43	2.973	2.397 - 3.642	3.078	2.223 - 4.146	2.846	2.348 - 3.415	3.698	2.545 - 5.173
50/ 220	166	5.440	4.374 - 6.664	6.670	5.611 - 7.847	47	2.633	2.185 - 3.144	3.122	2.259 - 4.197	3.139	2.608 - 3.742	4.050	2.871 - 5.526
50/ 230	183	5.703	4.778 - 6.736	7.000	5.892 - 8.230	50	2.779	2.313 - 3.310	3.242	2.365 - 4.327	3.432	2.866 - 4.072	4.407	3.201 - 5.889
50/ 240	198	5.948	3.772 - 8.804	7.317	6.163 - 8.596	53	2.920	1.870 - 4.337	3.357	2.471 - 4.448	3.724	3.121 - 4.404	4.767	3.536 - 6.257
50/ 270	236	6.577	5.480 - 7.804	8.179	6.904 - 9.586	62	3.292	2.758 - 3.895	3.688	2.825 - 4.720	4.113	3.456 - 4.851	5.064	3.871 - 6.480
50/ 300	285	7.042	5.849 - 8.376	8.870	7.504 - 10.372	_74_	3.451	2.894 - 4.079	3.787	2.971 - 4.748	4.282	3.600 - 5.046	5.196	4.052 - 6.534
50/ 330	345	7.338	6.083 - 8.741	9.371	7.951 - 10.928	83	3.679	3.088 - 4.344	4.073	3.224 - 5.064	4.494	3.180 - 6.134	5.441	4.315 - 6.744
50/ 360	393	7.564	6.261 - 9.021	9.771	8.312 - 11.367	92	3.846	3.230 - 4.540	4.312	3.435 - 5.331	5.145	3.633 - 7.027	6.301	5.083 - 7.690
50/ 420	464	7.901	6.526 - 9.439	10.386	8.864 - 12.043	113	3.857	3.239 - 4.553	4.443	3.575 - 5.444	5.031	4.232 - 5.923	6.122	5.004 - 7.390

			fsw Last Allowed	In-Water	Stop		VVal-79	9 AIR/In-	Water O ₂ , 20 fs	w Last All	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)	TOTAL						TOTAL								
/BT(min)	STOP		P(D	CS)			STOP		P(DCS) ^b ; IW	02_F02=	99.5%	ļ	P(D0	CS)	
	TIME	BVM(3)		NMRI98			TIMEc	BVM(3)		NMRI98	3	BVM(3)		NMRI98	;
	(min)	(%)	low - high	(%)	low	- high	(min)	(%)	low - high	(%)	low - high	(%)	low - high	(%)	low - high
55/ 74	0	1.666	0.042 - 11.540	2.069	1.564	- 2.686	0	1.666	0.042 - 11.54	0 2.069	1.564 - 2.686	1.666	0.042 - 11.540	2.069	1.564 - 2.686
55/75	1	1.636	1.185 - 2.206	2.020	1.527	- 2.622	1	1.427	0.993 - 1.995	1.704	1.238 - 2.291	0.404	0.210 - 0.725	2.108	1.471 - 2.929
55/80	4	1.687	1.241 - 2.244	2.083	1.589	- 2.683	2	1.554	1.122 - 2.101	1.826	1.348 - 2.421	0.509	0.288 - 0.853	2.220	1.554 - 3.077
55/90	10	2.069	1.605 - 2.625	2.458	1.919	- 3.099	5	1.768	1.318 - 2.324	2.044	1.536 - 2.666	0.775	0.501 - 1.155	2.521	1.795 - 3.441
55/ 100	17	2.492	2.011 - 3.053	2.906	2.310	- 3.604	8	1.991	1.528 - 2.551	2.279	1.724 - 2.956	1.092	0.785 - 1.484	2.899	2.098 - 3.901
55/ 110	34	2.949	2.449 - 3.518	3.317	2.689	- 4.043	12	2.156	1.703 - 2.693	2.450	1.844 - 3.190	1.439	1.079 - 1.884	3.334	2.451 - 4.420
55/ 120	48	3.392	2.872 - 3.975	3.774	3.094	- 4.552	17	2.261	1.794 - 2.811	2.535	1.876 - 3.348	1.342	0.982 - 1.795	2.820	1.791 - 4.219
55/ 130	59	3.823	3.274 - 4.434	4.255	3.513	- 5.097	22	2.362	1.886 - 2.922	2.606	1.893 - 3.498	1.688	1.293 - 2.168	3.223	2.125 - 4.674
55/ 140	84	4.250	3.618 - 4.954	4.626_	_3.846_	5.507_	26	2.507	2.017 - 3.077	2.744	1.972 - 3.714	2.051	1.622 - 2.559	3.657	2.499 - 5.145
55/ 150	105	4.640	3.929 - 5.432	5.010	4.180	- 5.945	30	2.647	2.143 - 3.232	2.874	2.049 - 3.914	2.100	1.667 - 2.612	3.206	2.022 - 4.813
55/ 160	123	4.988	4.213 - 5.854	5.414	4.535	- 6.399	34	2.774	2.023 - 3.709	2.994	2.123 - 4.095	2.453	1.986 - 2.994	3.619	2.389 - 5.234
55/ 170	138	5.321	4.464 - 6.281	5.829	4.902	- 6.863	40	2.802	2.155 - 3.579	2.904	2.031 - 4.017	2.811	2.308 - 3.388	4.046	2.774 - 5.672
55/ 180	151	5.624	4.693 - 6.669	6.240	5.265	- 7.325	45	2.855	2.241 - 3.582	2.928	2.034 - 4.074	2.665	2.177 - 3.227	3.561	2.366 - 5.126
55/ 190	169	5.384	4.544 - 6.321	6.628	5.604	- 7.762	50	2.900	2.287 - 3.623	2.946	2.039 - 4.111	3.003	1.762 - 4.770	3.965	2.745 - 5.517
55/ 200	190	5.700	4.801 - 6.702	6.999	5.924	- 8.188	54	3.003	2.380 - 3.734	3.038	2.117 - 4.215	3.340	2.423 - 4.479	4.378	3.134 - 5.923
55/ 210	208	5.983	5.030 - 7.045	7.359	6.234	- 8.600	58	3.091	2.450 - 3.844	3.125	2.196 - 4.304	3.268	2.715 - 3.897	4.054	2.918 - 5.463
55/ 220	224	6.241	5.237 - 7.361	7.702	6.530	- 8.994	62	3.172	2.506 - 3.955	3.208	2.278 - 4.379	3.586	2.994 - 4.255	4.444	3.279 - 5.862
55/ 230	239	6.479	5.427 - 7.652	8.027	6.811	- 9.366	66	2.919	2.445 - 3.456	3.270	2.416 - 4.320	3.903	3.269 - 4.616	4.839	3.646 - 6.269
55/ 240	254	6.697	5.601 - 7.919	8.332	7.075	- 9.714	_69 _	_3.073_	2.579 - 3.632	_ 3.428	_ 2.580 - 4.456	3.641	3.042 - 4.317	4.397	3.313 - 5.700
55/ 270	313	7.200	5.010 - 9.903	9.089	7.735	- 10.571	83	3.227	2.712 - 3.808	3.532	2.745 - 4.466	4.048	3.395 - 4.783	4.848	3.778 - 6.104
55/ 300	380	7.507	5.282 - 10.231	9.623	8.214	- 11.161	94	3.456	2.908 - 4.072	3.814	3.012 - 4.754	4.848	4.076 - 5.713	5.885	4.709 - 7.237
55/ 330	432	7.743	5.490 - 10.484	10.046	8.596	- 11.624	106	3.572	3.008 - 4.207	3.995	3.182 - 4.940	4.963	3.486 - 6.807	6.042	4.891 - 7.355
55/ 360	474	7.930	5.655 - 10.687	10.391	8.906	- 12.005	118	3.602	3.033 - 4.241	4.095	3.286 - 5.032	5.033	4.231 - 5.930	6.071	4.951 - 7.342
60/ 63	0	1.723	1.245 - 2.329	2.062	1.548	- 2.693	О	1.723	1.245 - 2.329	2.062	1.548 - 2.693	1.723	1.245 - 2.329	2.062	1.548 - 2.693
60/ 65	2	1.669	1.194 - 2.274	1.979	1.487	- 2.583	1	1.495	1.038 - 2.091	1.724		0.398	0.195 - 0.749	2.153	1.545 - 2.923
60/70	7	1.777	1.296 - 2.380	2.070	1.585	- 2.657	4	1.564	1.097 - 2.167	1.765	1.302 - 2.342	0.506	0.275 - 0.874	2.283	1.617 - 3.132
60/ 80	14	2.224	1.722 - 2.827	2.512	1.982	- 3.138	7	1.819	1.334 - 2.425	2.020	1.529 - 2.620	0.787	0.522 - 1.151	2.618	1.887 - 3.534
60/ 90	23	2.712	2.210 - 3.291	3.030	2.442	- 3.713	10	2.086	1.596 - 2.678	2.312	1.766 - 2.973	1.139	0.801 - 1.579	3.056	2.238 - 4.067
60/ 100	42	3.226	2.701 - 3.821	3.517	2.889	- 4.235	15	2.239	1.747 - 2.826	2.474	1.870 - 3.209	1.060	0.721 - 1.513	2.624	1.622 - 4.013
60/ 110	57	3.734	3.175 - 4.359	4.057	3.367	- 4.840	21	2.341	1.833 - 2.946	2.547	1.878 - 3.376	1.423	1.042 - 1.904	3.052	1.969 - 4.506

	VVal-79	9 AIR; 20	fsw Last Allow	ed In-Wate	r Stop		VVal-7	9 AIR/In-	Water O ₂ , 20 fsw	Last Alle	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)	TOTAL						TOTAL	-							
/BT(min)	STOP		F	(DCS)			STOP		P(DCS) ^b ; IWC	2_FO2=	99.5%		P(D0	CS)	
	TIME	BVM(3)		NMRI98			TIME	BVM(3)		NMRI98	3	BVM(3)		NMRI98	3
	(min)	(%)	low - high	(%)	low -	high	(min)	(%)	low - high	(%)	low - high	(%)	low - high	(%)	low - high
60/ 120	_ 75	4.218	3.617 - 4.88	4.571	_3.819	5.418_	26	2.476	1.962 - 3.082	2.679	1.935 - 3.611	1.815	1.396 - 2.323	3.529	2.364 - 5.047
60/ 130	102	4.685	3.978 - 5.472	4.999	4.194 -	5.901	31	2.608	2.089 - 3.214	2.797	1.981 - 3.831	1.921	1.492 - 2.436	3.102	1.900 - 4.767
60/ 140	124	5.097	4.327 - 5.954	5.437	4.571 -	6.403	35	2.781	1.837 - 4.034	2.982	2.097 - 4.108	2.313	1.848 - 2.858	3.565	2.339 - 5.183
60/ 150	143	5.475	4.621 - 6.420	5.883	4.965 -	6.905	41	2.851	2.091 - 3.793	2.951	2.042 - 4.119	2.244	1.786 - 2.784	3.150	1.996 - 4.714
60/ 160	158	5.826	4.894 - 6.86	6.340	5.369 -	7.415	48	2.837	2.158 - 3.657	2.871	1.934 - 4.097	2.621	2.127 - 3.194	3.596	2.407 - 5.144
60/ 170	178	6.127	5.099 - 7.280	6.763	5.746 -	7.886	53	2.920	2.269 - 3.697	2.943	1.976 - 4.209	3.005	2.472 - 3.616	4.059	2.838 - 5.599
60/ 180	201	5.841	4.943 - 6.839	7.167	6.101 -	8.342	59	2.945	2.286 - 3.731	2.928	1.953 - 4.211	2.999	2.466 - 3.609	3.781	2.660 - 5.195
60/ 190	222	6.153	5.196 - 7.210	7.560	6.442 -	8.789	64	3.012	2.341 - 3.809	2.987	2.005 - 4.273	3.361	2.788 - 4.013	4.223	3.066 - 5.648
60/ 200	240	6.435	5.422 - 7.562	7.936	6.769 -	9.217	68	3.141	2.423 - 3.998	3.090	2.127 - 4.329	3.725	1.858 - 6.615	4.673	3.480 - 6.115
60/ 210	256	6.694	5.629 - 7.879	8.292	7.079 -	9.622	73	3.186	2.468 - 4.042	3.143	2.224 - 4.305	3.521	2.929 - 4.192	4.280	3.193 - 5.596
60/ 220	278	6.918	5.348 - 8.749	8.610	7.355 -	9.984	_ 77	_2.920_	2.231 - 3.749	3.270	2.374 - 4.381	3.861	3.227 - 4.578	4.705	3.581 - 6.043
60/ 230	300	7.119	5.968 - 8.40	8.902	7.610 -	10.315	82	3.002	2.527 - 3.538	3.324	2.474 - 4.361	3.753	3.133 - 4.455	4.484	3.443 - 5.719
60/ 240	321	7.294	6.106 - 8.61	9.170	7.845 -	10.616	88	3.022	2.544 - 3.560	3.311	2.512 - 4.274	4.069	3.406 - 4.815	4.883	3.804 - 6.150
60/ 270	398	7.642	6.381 - 9.04	9.771	8.385 -	11.279	102	3.236	2.731 - 3.805	3.548	2.788 - 4.444	4.382	_3.6765.176_	5.265	4.198 - 6.497
60/ 300	456	7.900	6.584 - 9.36	10.238	8.807 -	11.792	115	3.388	2.862 - 3.980	3.779	3.008 - 4.679	4.633	3.890 - 5.467	5.506	4.457 - 6.705
70/ 48	0	1.870	0.031 - 14.10	3 2.050	1.556 -	2.652	0	1.870	0.031 - 14.103	2.050	1.556 - 2.652	1.870	0.031 - 14.103	2.050	1.556 - 2.652
70/ 50	2	1.834	0.032 - 13.72	20 1.980	1.485 -	2.589	1	1.591	0.780 - 2.921	1.713	1.252 - 2.293	0.420	0.186 - 0.852	2.179	1.621 - 2.867
70/ 55	9	1.923	0.542 - 5.019	2.059	1.563 -	2.664	5	1.678	0.855 - 2.994	1.770	1.308 - 2.346	0.516	0.259 - 0.949	2.363	1.736 - 3.142
70/60	14	2.213	0.751 - 5.13	2.301	1.791 -	2.910	8	1.804	0.963 - 3.103	1.859	1.388 - 2.440	0.655	0.367 - 1.101	2.549	1.856 - 3.412
70/70	24	2.817	1.232 - 5.51	2.931	2.363 -	3.591	13	2.068	1.201 - 3.332	2.113	1.618 - 2.712	1.029	0.679 - 1.506	3.037	2.255 - 3.995
70/80	44	3.480	1.802 - 6.03	3.580	2.967 -	4.278	17	2.384	1.489 - 3.620	2.464	1.898 - 3.144	0.948	0.597 - 1.442	2.696	1.689 - 4.079
70/90	64	4.121	0.891 - 11.59	7 4.276	3.597 -	5.037	24	2.527	0.249 - 10.466	2.610	1.959 - 3.406	1.369	0.965 - 1.890	3.230	2.154 - 4.640
70/ 100	_ 88	4.744	2.950 - 7.150	4.932	_4.184	5.764_	31	2.659	1.739 - 3.889	2.730	1.976 - 3.673	1.572	1.149 - 2.105	2.886	1.775 - 4.424
70/ 110	120	5.315	3.465 - 7.722	5.489	4.673 -	6.393	38	2.785	1.255 - 5.347	2.776	1.946 - 3.834	2.032	1.566 - 2.593	3.456	2.303 - 4.965
70/ 120	145	5.814	3.913 - 8.232	6.050	5.153 -	7.042	44	2.930	1.716 - 4.663	2.928	1.999 - 4.131	2.066	1.598 - 2.629	3.118	1.958 - 4.699
70/ 130	167	6.256	4.301 - 8.70	6.584	5.609 -	7.659	51	3.000	1.896 - 4.503	2.977	1.969 - 4.310	2.524	2.016 - 3.121	3.676	2.448 - 5.281
70/ 140	189	6.653	4.655 - 9.12	7.086	6.060 -	8.215	59	3.003	1.941 - 4.428	2.927	1.868 - 4.360	2.636	2.117 - 3.241	3.475	2.341 - 4.948
70/ 150	219	6.967	4.911 - 9.490	7.531	6.468 -	8.696	66	3.063	1.998 - 4.483	2.905	1.842 - 4.350	3.083	2.520 - 3.729	4.021	2.842 - 5.501
70/ 160	245	7.219	5.965 - 8.62	7.958	6.846 -	9.172	_73 _	_3.056_	2.278 - 4.006	2.871	1.793 - 4.352	3.009	2.455 - 3.649	3.749	2.677 - 5.087
70/ 170	267	7.455	6.127 - 8.94	8.377	7.213 -	9.646	79	3.127	2.327 - 4.105	2.947	1.856 - 4.434	3.436	2.836 - 4.121	4.275	3.162 - 5.630

	VVal-79	9 AIR; 20	fsw Last Allowed	In-Water	Stop		VVal-79	AIR/In-	Water O ₂ , 20 fsw	Last Allo	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)	TOTAL						TOTAL								
/BT(min)	STOP		P(D	CS)			STOP		P(DCS) ^b ; IWO	2_FO2=	99.5%		P(D	CS)	
	TIME	BVM(3)		NMRI98			TIME	BVM(3)		NMRI98	}	BVM(3)		NMRI98	
	(min)	(%)	low - high	(%)	low - I	high	(min)	(%)	low - high	(%)	low - high	(%)	low - high	(%)	low - high
70/ 180	293	7.146	6.049 - 8.360	8.768	7.553 -	10.090	85	3.175	2.349 - 4.189	3.014	1.929 - 4.478	3.445	2.843 - 4.130	4.158	3.142 - 5.378
70/ 190	321	7.395	6.248 - 8.664	9.123	7.865 -	10.492	91	3.221	2.393 - 4.234	3.075	2.021 - 4.473	3.848	3.198 - 4.583	4.662	3.600 - 5.917
70/ 200	354	7.598	6.407 - 8.916	9.437	8.139 -	10.848	98	3.200	2.348 - 4.251	3.067	2.185 - 4.178	3.678	3.050 - 4.392	4.397	3.425 - 5.542
70/ 210	391	7.749	6.523 - 9.106	9.696	8.368 -	11.138	105	2.825	2.385 - 3.321	3.077	2.257 - 4.088	4.056	_3.3804.820_	_ 4.877	_3.8556.064_
70/ 240	479	8.091	6.789 - 9.533	10.322	8.926 -	11.832	123	2.977	2.517 - 3.494	3.274	2.516 - 4.181	3.960	3.297 - 4.710	4.618	3.730 - 5.638
80/ 39	0	2.049	1.492 - 2.748	2.057	1.556 - 2	2.670	0	2.049	1.492 - 2.748	2.057	1.556 - 2.670	2.049	1.492 - 2.748	2.057	1.556 - 2.670
80/ 40	1	2.043	0.327 - 7.095	2.022	1.522 - 2	2.634	1	1.745	0.194 - 7.250	1.666	1.213 - 2.238	0.486	0.209 - 1.009	2.171	1.651 - 2.803
80/ 45	10	2.070	1.514 - 2.766	2.062	1.541 - 2	2.704	5	1.830	1.287 - 2.528	1.796	1.331 - 2.374	0.559	0.265 - 1.074	2.410	1.811 - 3.144
80/ 50	17	2.423	1.842 - 3.128	2.331	1.798 - 2	2.971	9	1.970	1.408 - 2.684	1.909	1.426 - 2.504	0.709	0.382 - 1.229	2.652	1.967 - 3.496
80/ 55	24	2.814	2.208 - 3.532	2.687	2.125 - 3	3.348	13	2.114	1.531 - 2.847	2.008	1.519 - 2.607	0.911	0.548 - 1.443	2.921	2.187 - 3.818
80/60	30	3.203	2.573 - 3.936	3.111	2.510 - 3	3.807	16	2.281	1.694 - 3.006	2.168	1.663 - 2.778	0.634	0.313 - 1.179	2.448	1.519 - 3.738
80/70	54	4.035	3.372 - 4.783	3.944	3.293 - 4	4.679	22	2.615	1.997 - 3.361	2.521	1.945 - 3.212	1.044	0.651 - 1.604	2.984	1.997 - 4.280
80/80	_ 77	4.826	4.124 - 5.604 _	_4.832_	_4.111	5.634_	30	2.819	2.176 - 3.588	2.737	2.052 - 3.573	1.319	0.891 - 1.889	2.736	1.700 - 4.165
80/ 90	114	5.576	4.809 - 6.418	5.566	4.782 - (6.430	39	2.954	0.978 - 6.851	2.787	2.000 - 3.777	1.833	1.356 - 2.427	3.409	2.291 - 4.865
80/ 100	148	6.203	5.320 - 7.173	6.231	5.362 - 1	7.184	47	3.060	1.777 - 4.898	2.891	1.968 - 4.091	1.960	1.471 - 2.560	3.159	2.015 - 4.704
70/ 110	177	6.733	5.768 - 7.793	6.855	5.893 -	7.910	54	3.208	2.119 - 4.645	3.083	2.029 - 4.480	2.496	1.962 - 3.129	3.854	2.649 - 5.393
80/ 120	210	7.217	1.163 - 21.190	7.406	6.372 - 8	8.538	64	3.179	0.056 - 20.390	3.002	1.856 - 4.581	2.696	2.145 - 3.343	3.701	2.556 - 5.163
80/ 130	246	7.590	6.359 - 8.958	7.924	6.846 - 9	9.099	_ 74 _	_3.134_	2.247 - 4.246	2.856	1.691 - 4.509	2.730	2.176 - 3.380	3.536	2.526 - 4.798
80/ 140	275	7.916	6.601 - 9.380	8.457	7.320 - 9	9.693	82	3.165	2.280 - 4.269	2.892	1.682 - 4.629	2.865	2.298 - 3.525	3.542	2.615 - 4.679
80/ 150	304	8.170	6.748 - 9.758	8.944	7.752 -	10.238	90	3.178	2.292 - 4.284	2.914	1.686 - 4.682	3.346	2.732 - 4.051	4.147	3.159 - 5.329
80/ 160	339	8.334	6.812 - 10.043	9.365	8.123 -	10.709	97	3.255	2.323 - 4.425	2.971	1.775 - 4.656	3.291	2.683 - 3.991	4.003	3.080 - 5.102
80/ 170	381	7.974	3.235 - 15.506	9.726	8.441 -	11.117	104	3.287	0.154 - 16.503	3.048	1.878 - 4.663	3.751	_3.0924.501_	_ 4.586	_3.6025.738_
80/ 180	424	8.144	6.908 - 9.504	10.028	8.708 -	11.453	113	3.185	2.221 - 4.414	2.991	1.962 - 4.357	3.683	3.033 - 4.425	4.337	3.459 - 5.356
80/ 210	524	8.519	6.277 - 11.178	10.736	9.339 -	12.242	136	2.828	2.389 - 3.321	3.126	2.306 - 4.135	4.334	3.603 - 5.160	5.147	4.207 - 6.217
90/ 33	0	2.239	1.642 - 2.981	2.082	1.563 - 2	2.718	0	2.239	1.642 - 2.981	2.082	1.563 - 2.718	2.239	1.642 - 2.981	2.082	1.563 - 2.718
90/ 35	4	2.122	1.477 - 2.954	1.968	1.460 - 2	2.599	2	1.849	1.289 - 2.575	1.720	1.251 - 2.312	0.576	0.251 - 1.181	2.268	1.740 - 2.907
90/40	14	2.367	1.771 - 3.099	2.180	1.630 - 2	2.857	7	2.030	1.440 - 2.783	1.873	1.391 - 2.469	0.675	0.327 - 1.272	2.565	1.946 - 3.317
90/ 45	23	2.827	2.189 - 3.589	2.535	1.958 - 3	3.227	12	2.206	1.590 - 2.983	2.004	1.504 - 2.618	0.870	0.483 - 1.469	2.869	2.155 - 3.738
90/ 50	31	3.321	2.644 - 4.111	3.007	2.385 - 3	3.737	17	2.378	1.745 - 3.164	2.117	1.602 - 2.746	0.584	0.250 - 1.210	2.471	1.558 - 3.726
90/ 55	39	3.815	3.105 - 4.631	3.543	2.874 - 4	4.313	21	2.570	1.904 - 3.393	2.286	1.751 - 2.934	0.778	0.400 - 1.397	2.733	1.760 - 4.046

	VVal-79	9 AIR; 20	fsw Last Allowed	In-Wate	r Stop		VVal-79	AIR/In-	Water O ₂ , 20 fsw	Last Allo	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)	TOTAL						TOTAL								
/BT(min)	STOP		P(D	CS)			STOP		P(DCS) ^b ; IWO	2_FO2=	99.5%		P(D	CS)	
	TIME	BVM(3)		NMRI98			TIME	BVM(3)		NMRI98	}	BVM(3)		NMRI98	
	(min)	(%)	low - high	(%)	low	- high	(min)	(%)	low - high	(%)	low - high	(%)	low - high	(%)	low - high
90/60	56	4.334	1.780 - 8.668	4.031	3.343	- 4.812	24	2.800	0.730 - 7.436	2.529	1.953 - 3.221	1.017	0.598 - 1.637	3.080	2.193 - 4.198
90/70	_ 83	5.295	4.511 - 6.163	5.115	4.358	5 <u>.</u> 9 <u>5</u> 4_	32	3.127	2.403 - 3.993	2.904	2.210 - 3.743	1.360	0.897 - 1.986	2.920	1.898 - 4.287
90/80	130	6.151	3.314 - 10.205	5.905	5.099	- 6.788	43	3.226	0.756 - 8.943	2.912	2.088 - 3.947	3.185	1.543 - 5.798	2.808	1.743 - 4.275
90/ 90	171	6.924	5.976 - 7.961	6.729	5.832	- 7.709	53	3.327	1.889 - 5.405	3.054	2.056 - 4.357	3.871	2.067 - 6.551	3.607	2.481 - 5.048
90/ 100	204	7.577	6.512 - 8.743	7.508	6.501	- 8.606	63	3.408	2.193 - 5.034	3.142	1.988 - 4.707	2.532	1.977 - 3.193	3.572	2.601 - 4.772
90/ 110	249	8.065	6.875 - 9.372	8.070	7.003	- 9.229	_ 74 _	_3.408_	2.324 - 4.806	3.055	1.820 - 4.795	2.669	2.104 - 3.337	3.521	2.529 - 4.757
90/ 120	286	8.429	7.104 - 9.892	8.636	7.508	- 9.857	86	3.420	2.423 - 4.674	3.042	1.739 - 4.928	2.783	2.307 - 3.326	3.466	2.539 - 4.607
90/ 130	324	8.730	7.284 - 10.333	9.188	7.998	- 10.475	98	3.488	2.530 - 4.676	3.092	1.755 - 5.034	3.313	2.797 - 3.893	4.179	3.181 - 5.372
90/ 140	366	8.917	7.360 - 10.651	9.672	8.424	- 11.019	109	3.601	2.614 - 4.824	3.173	1.863 - 5.033	3.370	_2.8503.954_	_ 4.142	_3.2095.244_
90/ 150	423	8.414	7.194 - 9.748	10.051	8.757	- 11.447	122	3.532	2.534 - 4.777	3.131	1.873 - 4.898	3.433	2.906 - 4.023	4.028	3.203 - 4.988
90/ 160	471	8.593	7.328 - 9.978	10.381	9.051	- 11.815	134	3.439	2.403 - 4.755	3.098	2.004 - 4.563	3.960	3.366 - 4.623	4.704	3.802 - 5.739
90/ 170	511	8.744	7.349 - 10.284	10.670	9.308	- 12.136	144	3.460	2.406 - 4.803	3.217	2.277 - 4.404	3.869	3.288 - 4.517	4.547	3.704 - 5.511
90/ 180	546	8.864	6.628 - 11.491	10.920	9.529	- 12.416	154	3.377	2.300 - 4.769	3.261	2.370 - 4.366	3.812	3.240 - 4.452	4.484	3.666 - 5.417
90/ 240	702	9.939	7.636 - 12.591	11.964	10.404	- 13.639	235	2.826	2.378 - 3.332	3.280	2.543 - 4.156	3.968	2.742 - 5.529	4.941	4.163 - 5.810
100/ 25	0	2.119	1.539 - 2.848	1.795	1.328	- 2.377	0	2.119	1.539 - 2.848	1.795	1.328 - 2.377	2.119	1.539 - 2.848	1.795	1.328 - 2.377
100/30	3	2.322	1.674 - 3.136	1.996	1.470	- 2.650	2	1.938	1.353 - 2.695	1.708	1.232 - 2.310	0.635	0.270 - 1.320	2.277	1.758 - 2.901
100/ 35	15	2.540	0.023 - 19.930	2.226	1.647	- 2.942	8	2.159	0.007 - 21.297	1.887	1.396 - 2.497	0.751	0.360 - 1.425	2.631	2.015 - 3.374
100/40	26	3.102	2.418 - 3.913	2.638	2.020	- 3.383	14	2.376	1.722 - 3.197	2.043	1.531 - 2.672	0.498	0.168 - 1.229	2.361	1.535 - 3.475
100/ 45	36	3.702	2.959 - 4.565	3.201	2.525	- 3.996	19	2.621	1.924 - 3.484	2.222	1.675 - 2.891	0.649	0.275 - 1.352	2.618	1.690 - 3.870
100/ 50	47	4.301	3.506 - 5.210	3.833	3.104	- 4.673	24	2.841	2.104 - 3.747	2.407	1.836 - 3.098	0.877	0.454 - 1.565	2.957	2.090 - 4.054
100/ 55	65	4.907	4.073 - 5.849	4.441	3.682	- 5.299	28	3.086	2.309 - 4.035	2.664	2.047 - 3.406	2.922	1.928 - 4.238	2.500	1.548 - 3.821
100/60	_ <u>8</u> 1	5.499	4.619 - 6.481 _	_5.083_	_4.291_	5.967_	33	3.284	2.466 - 4.277	2.863	2.184 - 3.681	3.346	2.334 - 4.635	2.894	1.912 - 4.194
100/70	135	6.553	5.611 - 7.588	6.058	5.230	- 6.965	45	3.431	1.269 - 7.398	2.966	2.141 - 3.998	3.524	1.516 - 6.912	2.896	1.889 - 4.241
100/80	181	7.486	6.466 - 8.600	7.056	6.141	- 8.052	56	3.602	1.892 - 6.177	3.200	2.170 - 4.537	3.734	1.943 - 6.441	3.000	2.139 - 4.083
100/90	226	8.202	7.056 - 9.453	7.857	6.835	- 8.966	69	_3.771_	2.272 - 5.850	3.278	2.107 - 4.847	4.434	2.553 - 7.086	3.815	2.855 - 4.977
100/ 100	278	8.753	7.472 - 10.155	8.505	7.418	- 9.681	89	3.793	2.581 - 5.353	3.177	1.915 - 4.940	4.332	2.754 - 6.435	3.834	2.846 - 5.038
100/ 110	320	9.186	7.777 - 10.734	9.193	8.031	- 10.447	104	3.923	2.816 - 5.300	3.301	1.954 - 5.199	3.240	2.748 - 3.792	4.047	3.090 - 5.191
100/ 120	371	9.437	7.890 - 11.145	9.764	8.535	- 11.089	118	4.081	2.986 - 5.426	3.431	2.074 - 5.316	3.424	_2.9133.994_	_ 4.152	_3.2365.233_
100/ 150	536	9.162	7.835 - 10.611	10.907	9.542	- 12.373	161	3.839	2.701 - 5.273	3.379	2.366 - 4.665	4.160	3.562 - 4.823	4.842	3.981 - 5.821
110/ 20	0	2.050	1.471 - 2.783	1.629	1.187	- 2.187	0	2.050	1.471 - 2.783	1.629	1.187 - 2.187	2.050	1.471 - 2.783	1.629	1.187 - 2.187

	VVal-79	9 AIR; 20	fsw Last Allowed	In-Wate	r Stop	VVal-79	AIR/In-	Water O ₂ , 20 fsw	Last Allo	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)	TOTAL					TOTAL								
/BT(min)	STOP		P(D	CS)		STOP		P(DCS) ^b ; IWO	2_FO2=	99.5%		P(D0	CS)	
	TIME	BVM(3)		NMRI98		TIME ^c	BVM(3)		NMRI98	3	BVM(3)		NMRI98	
	(min)	(%)	low - high	(%)	low - high	(min)	(%)	low - high	(%)	low - high	(%)	low - high	(%)	low - high
110/ 25	5	2.219	1.541 - 3.096	1.815	1.336 - 2.412	3	1.880	1.317 - 2.605	1.544	1.103 - 2.108	0.666	0.270 - 1.431	2.192	1.711 - 2.767
110/30	14	2.575	1.922 - 3.376	2.186	1.628 - 2.874	7	2.238	1.599 - 3.048	1.877	1.361 - 2.527	0.785	0.360 - 1.537	2.600	2.036 - 3.270
110/35	27	3.227	2.503 - 4.087	2.616	2.002 - 3.356	14	2.504	1.817 - 3.362	2.065	1.498 - 2.778	0.524	0.166 - 1.345	2.390	1.594 - 3.445
110/40	39	3.925	3.128 - 4.852	3.249	2.562 - 4.057	20	2.782	2.031 - 3.715	2.274	1.641 - 3.070	0.673	0.271 - 1.454	2.694	1.785 - 3.898
110/45	50	4.627	3.751 - 5.630	4.000	3.249 - 4.862	26	3.038	2.226 - 4.042	2.473	1.777 - 3.349	3.308	2.359 - 4.499	3.099	2.330 - 4.034
110/50	_ 71	5.348	4.408 - 6.412 _	_4.705_	_3.9225.586_	32	3.274	2.403 - 4.349	2.680	1.908 - 3.656	3.293	2.263 - 4.618	2.667	1.734 - 3.919
110/55	90	5.950	4.953 - 7.068	5.372	4.565 - 6.268	36	3.533	2.607 - 4.669	2.896	2.064 - 3.945	3.805	2.733 - 5.140	3.156	2.241 - 4.309
110/60	124	6.663	5.635 - 7.802	5.963	5.138 - 6.869	43	3.644	0.737 - 10.712	3.033	2.093 - 4.241	3.636	1.332 - 7.857	2.776	1.810 - 4.067
110/70	181	7.830	6.728 - 9.035	7.127	6.232 - 8.098	56	3.858	1.801 - 7.151	3.312	2.143 - 4.872	3.994	1.927 - 7.237	3.008	2.122 - 4.132
110/80	237	8.688	7.478 - 10.006	8.046	7.043 - 9.131	_77	_4.172_	2.428 - 6.623	3.416	2.130 - 5.169	4.727	2.600 - 7.791	3.943	2.927 - 5.181
110/90	295	9.348	8.029 - 10.785	8.812	7.712 - 9.998	100	4.264	2.844 - 6.104	3.392	1.998 - 5.360	4.266	2.509 - 6.720	3.435	2.520 - 4.561
110/ 100	348	9.809	8.365 - 11.385	9.551	8.358 - 10.838	118	4.437	3.174 - 6.004	3.573	2.085 - 5.682	5.124	3.305 - 7.507	4.498	3.461 - 5.728
110/ 110	412	10.008	8.423 - 11.748	10.119	8.842 - 11.493	136	4.481	3.286 - 5.940	3.566	2.091 - 5.647	3.910	3.357 - 4.523	4.681	3.670 - 5.866
110/ 120	484	10.038	8.275 - 11.995	10.597	9.263 - 12.032	155	4.330	3.185 - 5.727	3.466	2.050 - 5.460	4.153	3.572 - 4.797	4.774	3.838 - 5.851
110/ 180	734	10.679	8.397 - 13.267	12.282	10.712 - 13.964	266	3.256	2.745 - 3.830	3.512	2.647 - 4.558	4.261	3.674 - 4.908	5.097	4.294 - 5.994
120/ 15	0	1.818	1.271 - 2.525	1.411	1.000 - 1.940	0	1.818	1.271 - 2.525	1.411	1.000 - 1.940	1.818	1.271 - 2.525	1.411	1.000 - 1.940
120/20	4	2.155	1.517 - 2.973	1.656	1.205 - 2.225	2	1.758	0.000 - 27.607	1.401	0.993 - 1.927	0.655	0.241 - 1.508	2.046	1.587 - 2.597
120/25	9	2.461	1.812 - 3.267	2.152	1.589 - 2.851	5	2.201	1.567 - 3.007	1.854	1.337 - 2.507	0.796	0.347 - 1.618	2.508	1.965 - 3.153
120/30	24	3.163	2.434 - 4.035	2.576	1.938 - 3.354	13	2.520	1.823 - 3.394	2.090	1.517 - 2.810	0.996	0.502 - 1.807	2.999	2.349 - 3.769
120/35	38	3.972	3.137 - 4.948	3.253	2.524 - 4.120	20	2.854	2.072 - 3.830	2.345	1.701 - 3.152	2.872	1.944 - 4.082	2.728	1.811 - 3.941
120/40	51	4.751	3.809 - 5.838	4.035	3.224 - 4.977	27	3.105	2.238 - 4.189	2.516	1.796 - 3.427	3.472	2.471 - 4.727	3.192	2.455 - 4.072
120/45	_ 74	5.578	4.538 - 6.762 _	_4.840_	_3.9865.810_	33	3.413	2.454 - 4.609	2.807	2.005 - 3.817	3.539	2.448 - 4.932	2.785	1.869 - 3.986
120/50	95	6.344	5.230 - 7.599	5.705	4.820 - 6.689	38	3.744	2.705 - 5.031	3.102	2.232 - 4.189	4.142	3.001 - 5.549	3.384	2.510 - 4.453
120/55	135	7.163	6.015 - 8.437	6.362	5.469 - 7.343	45	3.926	0.947 - 10.544	3.337	2.351 - 4.584	4.055	1.279 - 9.472	3.070	2.209 - 4.146
120/60	169	7.866	6.678 - 9.174	7.029	6.113 - 8.026	53	4.038	1.578 - 8.354	3.470	2.356 - 4.910	4.607	1.451 - 10.671	3.821	2.702 - 5.227
120/70	231	8.984	2.371 - 21.186	8.187	7.186 - 9.268	78	4.544	0.387 - 17.896	3.794	2.516 - 5.464	4.939	0.483 - 18.327	3.925	2.922 - 5.145
120/80	298	9.802	8.424 - 11.300	9.054	7.951 - 10.241	105	4.707	3.012 - 6.949	3.710	2.317 - 5.601	5.302	3.351 - 7.883	4.310	3.235 - 5.607
120/90	364	10.309	8.804 - 11.947	9.796	8.595 - 11.086	127	4.879	3.397 - 6.742	3.854	2.348 - 5.926	5.626	3.665 - 8.171	4.760	3.688 - 6.024
120/ 100	440	10.540	8.910 - 12.324	10.443	9.152 - 11.830	149	4.881	3.552 - 6.506	3.790	2.286 - 5.871	5.754	3.873 - 8.146	5.119	4.047 - 6.365
120/ 110	517	10.598	8.809 - 12.572	10.966	9.615 - 12.415	170	4.748	3.508 - 6.253	3.729	2.256 - 5.766	5.017	3.084 - 7.624	4.451	3.598 - 5.431

	VVal-79	9 AIR; 20	fsw Last Allowed	In-Wate	r Stop	VVal-7	9 AIR/In-	Water O ₂ , 20 fsw	Last Alle	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)	TOTAL	-				TOTAL	=							
/BT(min)	STOP		P(D	CS)		STOP	-	P(DCS) ^b ; IWO	2_FO2=	99.5%		P(DC	CS)	
	TIME	BVM(3)		NMRI98	}	TIME	BVM(3)		NMRI98	}	BVM(3)		NMRI98	
	(min)	(%)	low - high	(%)	low - high	(min)	(%)	low - high	(%)	low - high	(%)	low - high	(%)	low - high
120/ 120	578	10.607	8.686 - 12.742	11.379	9.984 - 12.87	3 188	4.675	3.432 - 6.190	3.762	2.514 - 5.386	4.280	3.662 - 4.965	4.724	3.865 - 5.703
130/ 12	0	1.710	1.163 - 2.432	1.306	0.905 - 1.833	0	1.710	1.163 - 2.432	1.306	0.905 - 1.833	1.710	1.163 - 2.432	1.306	0.905 - 1.833
130/ 15	3	1.920	1.342 - 2.665	1.394	1.013 - 1.878	2	1.432	0.807 - 2.374	1.106	0.796 - 1.502	0.618	0.196 - 1.579	1.804	1.374 - 2.327
130/ 20	8	2.260	1.638 - 3.040	1.903	1.389 - 2.547	5	1.970	1.386 - 2.720	1.598	1.139 - 2.186	0.762	0.301 - 1.665	2.300	1.795 - 2.904
130/ 25	17	2.932	2.222 - 3.792	2.463	1.818 - 3.26	9	2.489	1.798 - 3.356	2.097	1.520 - 2.822	0.939	0.436 - 1.817	2.847	2.231 - 3.578
130/30	34	3.777	2.946 - 4.759	3.022	2.282 - 3.919	18	2.795	2.014 - 3.773	2.300	1.655 - 3.113	0.628	0.202 - 1.587	2.669	1.777 - 3.849
130/35	49	4.660	3.685 - 5.796	3.908	3.057 - 4.91	26	3.128	2.237 - 4.247	2.581	1.849 - 3.503	3.476	2.451 - 4.770	3.158	2.425 - 4.037
130/40	_ 72	5.614	4.511 - 6.879 _	_4.859_	_3.9365.917	33	3.508	2.488 - 4.791	2.898	2.079 - 3.926	3.643	2.511 - 5.089	2.799	1.913 - 3.947
130/45	96	6.545	5.323 - 7.931	5.818	4.854 - 6.899	40	3.907	2.770 - 5.332	3.197	2.314 - 4.296	4.321	3.155 - 5.752	3.366	2.518 - 4.398
130/50	140	7.459	6.191 - 8.874	6.551	5.583 - 7.619	48	4.186	1.093 - 10.754	3.510	2.514 - 4.756	4.287	1.265 - 10.329	3.094	2.152 - 4.300
130/55	178	8.243	1.912 - 20.716	7.302	6.315 - 8.379	58	4.395	0.314 - 18.381	3.715	2.597 - 5.131	4.844	0.406 - 18.928	3.919	2.831 - 5.267
130/60	210	8.963	7.588 - 10.474	8.054	7.037 - 9.15	72	_4.746_	2.249 - 8.646	3.977	2.775 - 5.496	4.827	2.256 - 8.868	3.583	2.629 - 4.756
130/70	290	10.026	7.035 - 13.628	9.070	7.962 - 10.26	104	5.059	2.056 - 10.102	3.962	2.616 - 5.725	5.397	2.328 - 10.366	4.134	3.086 - 5.404
130/80	363	10.725	8.360 - 13.421	9.927	8.731 - 11.2	0 131	5.253	2.865 - 8.684	4.065	2.575 - 6.062	5.928	3.274 - 9.683	4.790	3.713 - 6.059
130/90	450	11.048	3.522 - 23.449	10.636	9.338 - 12.02	8 156	5.346	0.640 - 18.305	4.072	2.539 - 6.145	6.213	0.935 - 19.159	5.307	4.208 - 6.581
130/ 100	537	11.110	9.307 - 13.089	11.191	9.824 - 12.65	5 181	5.207	3.793 - 6.933	3.934	2.471 - 5.907	5.567	3.615 - 8.104	4.724	3.840 - 5.737
130/ 120	659	10.722	9.298 - 12.258	12.077	10.610 - 13.64	6 227	4.763	3.429 - 6.408	3.899	2.857 - 5.177	4.915	4.229 - 5.671	5.440	4.524 - 6.470
130/ 180	888	13.306	11.511 - 15.233	14.212	12.346 - 16.20	6 380	3.567	2.948 - 4.271	3.661	2.690 - 4.854	4.946	4.258 - 5.706	5.974	5.158 - 6.868
140/ 10	0	1.662	1.103 - 2.413	1.251	0.850 - 1.786	0	1.662	1.103 - 2.413	1.251	0.850 - 1.786	1.662	1.103 - 2.413	1.251	0.850 - 1.786
140/ 15	5	2.095	1.435 - 2.958	1.560	1.123 - 2.116	3	1.593	1.088 - 2.259	1.291	0.912 - 1.783	0.699	0.236 - 1.703	1.989	1.529 - 2.546
140/20	13	2.558	1.890 - 3.382	2.172	1.584 - 2.908	7	2.244	1.604 - 3.055	1.847	1.324 - 2.513	0.879	0.369 - 1.829	2.570	2.009 - 3.236
140/ 25	27	3.398	0.022 - 25.700	2.707	1.993 - 3.59	14	2.667	0.440 - 8.885	2.242	1.609 - 3.041	0.629	0.187 - 1.674	2.514	1.670 - 3.633
140/30	44	4.398	0.396 - 17.128	3.606	2.750 - 4.632	23	3.098	0.674 - 8.942	2.584	1.858 - 3.496	3.330	2.299 - 4.651	3.017	2.260 - 3.940
140/35	_ <u>6</u> 7	5.460	4.329 - 6.768 _	_4.610_	_3.6445.73	32	3.604	2.556 - 4.921	2.937	2.129 - 3.944	3.550	2.474 - 4.918	2.495	1.622 - 3.670
140/40	93	6.506	5.208 - 7.991	5.713	4.676 - 6.888	41	4.087	2.881 - 5.601	3.254	2.388 - 4.321	4.269	3.113 - 5.689	3.149	2.371 - 4.093
140/45	137	7.566	6.196 - 9.108	6.626	5.577 - 7.79°	50	4.401	1.053 - 11.738	3.633	2.650 - 4.845	4.279	1.226 - 10.471	3.060	2.115 - 4.274
140/50	180	8.526	7.082 - 10.132	7.483	6.420 - 8.647	61	4.718	1.768 - 9.913	3.953	2.850 - 5.320	4.999	1.587 - 11.459	4.049	2.970 - 5.371
140/55	216	9.335	7.826 - 10.999	8.303	7.216 - 9.482	76	5.084	2.321 - 9.459	4.232	3.035 - 5.717	5.169	2.352 - 9.629	3.785	2.770 - 5.033
140/60	262	9.988	8.442 - 11.682	8.893	7.774 - 10.10	2 95	5.285	2.765 - 8.987	4.153	2.893 - 5.746	5.184	2.906 - 8.412	3.640	2.664 - 4.841
140/70	344	10.989	9.345 - 12.780	9.922	8.722 - 11.2	1 128	5.545	3.426 - 8.380	4.224	2.779 - 6.113	5.959	3.666 - 9.017	4.503	3.457 - 5.745

	VVal-79 AIR; 20 fsw Last Allowed In-Water Stop									Water O ₂	, 20 fsw	Last Allo	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)	TOTAL	-						TOTAL									
/BT(min)	STOP			P(D	CS)			STOP		P(DCS	S) ^b ; IWO2	2_FO2=	99.5%		P(D	CS)	
	TIME	BVM(3)			NMRI98			TIME°	BVM(3)			NMRI98	1	BVM(3)		NMRI98	
	(min)	(%)	low	- high	(%)	low	- high	(min)	(%)	low -	high	(%)	low - high	(%)	low - high	(%)	low - high
140/80	442	11.447	9.726	- 13.321	10.660	9.364	- 12.051	157	5.739	3.888 -	8.085	4.295	2.761 - 6.328	6.406	4.296 - 9.080	5.184	_4.0856.465_
140/90	542	11.596	9.768	- 13.593	11.328	9.947	- 12.806	187	5.609	3.994 -	7.600	4.107	2.625 - 6.081	5.951	3.961 - 8.493	4.802	3.905 - 5.829
150/ 8	0	1.564	1.000	- 2.343	1.162	0.765	- 1.704	0	1.564	1.000 -	2.343	1.162	0.765 - 1.704	1.564	1.000 - 2.343	1.162	0.765 - 1.704
150/ 10	2	1.754	1.180	- 2.517	1.221	0.836	- 1.730	1	1.418	0.832 -	2.277	0.902	0.642 - 1.238	0.634	0.177 - 1.758	1.610	1.190 - 2.133
150/ 15	8	2.202	1.492	- 3.134	1.759	1.269	- 2.378	5	1.808	1.259 -	2.520	1.459	1.033 - 2.006	0.781	0.280 - 1.821	2.185	1.690 - 2.781
150/ 20	17	2.911	2.188	- 3.791	2.403	1.735	- 3.242	9	2.472	1.779 -	3.344	2.051	1.460 - 2.805	1.001	0.446 - 1.989	2.855	2.232 - 3.595
150/ 25	36	3.911	3.030	- 4.956	3.142	2.329	- 4.140	18	2.954	2.023 -	4.158	2.506	1.803 - 3.392	3.037	2.025 - 4.367	2.783	1.936 - 3.869
150/30	56	5.071	3.967	- 6.362	4.215	3.240	- 5.373	30	3.553	0.000 -	53.065	2.850	2.067 - 3.828	3.772	2.760 - 5.018	3.143	2.447 - 3.969
150/35	_ 87	6.300	4.990	- 7.811 _	5.404	_4.327_	6.645_	40	4.094	2.863 -	5.646	3.302	2.427 - 4.379	4.018	2.874 - 5.443	2.902	2.161 - 3.809
150/40	128	7.488	6.030	- 9.146	6.471	5.349	- 7.733	50	4.559	3.139 -	6.359	3.657	2.703 - 4.825	4.193	1.180 - 10.376	2.853	2.013 - 3.919
150/45	177	8.588	4.144	- 15.063	7.430	6.291	- 8.688	63	4.857	1.028 -	13.549	3.951	2.879 - 5.273	5.061	0.968 - 14.669	3.949	2.891 - 5.248
150/50	216	9.525	7.886	- 11.346	8.396	7.235	- 9.662	78	5.266	2.289 -	10.080	4.317	3.137 - 5.769	5.339	2.310 - 10.241	3.833	2.777 - 5.139
150/55	268	10.311	8.624	- 12.169	9.071	7.884	- 10.356	99	5.535	2.790 -	9.631	4.273	3.023 - 5.837	5.487	2.996 - 9.051	3.791	2.788 - 5.020
150/60	313	10.951	9.209	- 12.860	9.699	8.478	- 11.016	118	5.762	3.230 -	9.322	4.372	3.018 - 6.090	6.347	3.708 - 9.952	4.812	3.628 - 6.232
150/70	410	11.765	9.941	- 13.752	10.599	9.319	- 11.971	151	6.160	3.873 -	9.170	4.583	3.084 - 6.511	6.356	4.034 - 9.390	4.792	_3.7386.028_
150/80	529	12.017	10.140	- 14.064	11.332	9.946	- 12.816	186	6.011	4.133 -	8.367	4.357	2.806 - 6.407	6.945	4.752 - 9.680	5.494	4.449 - 6.687
150/90	617	12.152	10.177	- 14.313	11.964	10.518	- 13.510	216	5.873	4.188 -	7.943	4.269	2.804 - 6.184	6.481	4.369 - 9.149	5.331	4.399 - 6.383
150/ 120	801	12.736	11.121	- 14.464	13.324	11.662	- 15.098	323	4.658	3.232 -	6.458	3.990	3.050 - 5.113	4.988	4.289 - 5.759	5.383	4.606 - 6.241
150/ 180	1025	16.356	14.162	- 18.690	16.130	13.943	- 18.460	490	4.561	3.782 -	5.442	4.243	3.067 - 5.697	5.341	4.581 - 6.181	6.319	5.371 - 7.367
160/ 7	0	1.583	0.998	- 2.398	1.156	0.752	- 1.709	0	1.583	0.998 -	2.398	1.156	0.752 - 1.709	1.583	0.998 - 2.398	1.156	0.752 - 1.709
160/ 10	4	1.854	1.236	- 2.679	1.281	0.919	- 1.745	2	1.370	0.706 -	2.433	1.021	0.736 - 1.387	0.682	0.000 - 31.524	1.736	1.296 - 2.278
160/ 15	12	2.334	1.694	- 3.134	1.900	1.383	- 2.550	7	1.973	1.265 -	2.943	1.576	1.120 - 2.161	0.871	0.331 - 1.946	2.393	1.858 - 3.034
160/20	24	3.278	2.474	- 4.250	2.622	1.905	- 3.517	13	2.715	1.964 -	3.655	2.273	1.646 - 3.059	1.096	0.545 - 2.009	3.028	2.351 - 3.833
160/25	46	4.481	3.475	- 5.667	3.588	2.668	- 4.710	25	3.348	2.409 -	4.520	2.697	1.945 - 3.641	3.369	2.410 - 4.569	2.772	2.089 - 3.604
160/30	_ 77	5.833	4.576	- 7.295	4.824	3.813	6.001_	38	3.941	2.763 -	5.426	3.078	2.288 - 4.046	3.643	2.542 - 5.039	2.510	1.691 - 3.585
160/35	107	7.138	5.497	- 9.053	6.208	5.019	- 7.564	48	4.564	2.999 -	6.605	3.589	2.668 - 4.711	4.642	0.052 - 28.718	3.541	2.638 - 4.640
160/40	167	8.466	6.764	- 10.401	7.232	6.028	- 8.575	61	4.942	1.522 -	11.520	3.971	2.929 - 5.244	4.968	1.429 - 11.985	3.698	2.672 - 4.970
160/45	212	9.549	7.802	- 11.502	8.274	7.040	- 9.629	77	5.334	2.139 -	10.704	4.285	3.126 - 5.708	5.338	2.163 - 10.648	3.681	2.639 - 4.979
160/ 50	264	10.478	8.649	- 12.505	9.115	7.861	- 10.479	99	5.718	2.717 -		4.357	3.126 - 5.882	5.608	2.940 - 9.502	3.740	2.733 - 4.981
160/ 55	316	11.202	9.322	- 13.272	9.798	8.513	- 11.186	121	5.987	3.211 -	9.972	4.468	3.135 - 6.141	6.569	3.717 - 10.522	4.883	3.664 - 6.348

	VVal-79	9 AIR; 20) fsw Last Allo		VVal-79	9 AIR/In-	Water O ₂ , 2	20 fsw L	Last Allo	owed Stop	VVal-79	SurDO ₂				
Depth (fsw)	TOTAL	=					TOTAL									
/BT(min)	STOP			P(DCS)			STOP		P(DCS) ^b	; IWO2	_FO2=9	99.5%		P(DC	CS)	
	TIME	BVM(3)		NMR	98		TIME ^c	BVM(3)		1	NMRI98	i	BVM(3)		NMRI98	
	(min)	(%)	low - hiç	gh (%)	low	- high	(min)	(%)	low - hi	igh	(%)	low - high	(%)	low - high	(%)	low - high
160/60	368	11.776	9.845 - 13	3.892 10.33	8 9.031	- 11.743	140	6.196	3.596 - 9.	.767	4.570	3.130 - 6.401	6.793	_3.63211.288_	4.984	3.872 - 6.290
160/70	492	12.359	10.379 - 14	.520 11.19	5 9.818	- 12.671	178	6.438	4.170 - 9.	.366	4.597	3.055 - 6.593	6.829	4.529 - 9.752	4.991	3.998 - 6.135
160/80	602	12.571	10.519 - 14	.813 11.9	0 10.483	- 13.498	213	6.310	4.334 - 8.	.782	4.446	2.940 - 6.405	6.586	4.441 - 9.293	5.065	4.154 - 6.101
170/ 6	0	1.560	0.963 - 2.4	404 1.12	3 0.724	- 1.689	0	1.560	0.963 - 2.	.404	1.128	0.724 - 1.689	1.560	0.963 - 2.404	1.128	0.724 - 1.689
170/10	6	1.952	1.265 - 2.8	886 1.39	3 1.027	- 1.851	3	1.386	0.919 - 2.	.016	1.142	0.833 - 1.531	0.735	0.105 - 2.960	1.866	1.405 - 2.433
170/ 15	16	2.572	1.883 - 3.4	429 2.08	1.529	- 2.789	8	2.183	1.549 - 2.	.991	1.802	1.301 - 2.434	0.967	0.388 - 2.075	2.611	2.030 - 3.306
170/20	33	3.670	2.808 - 4.7	701 2.88	2.142	- 3.798	18	2.985	2.164 - 4.	.009	2.446	1.811 - 3.230	2.890	1.965 - 4.091	2.421	1.538 - 3.628
170/ 25	_ <u>5</u> 6	5.101	0.459 - 19	.302_4.16	03.158	5.362_	32	3.700	0.119 - 19	9.924	2.897	2.120 - 3.861	3.668	0.119 - 19.739	3.056	2.379 - 3.860
170/30	96	6.620	5.194 - 8.2	272 5.53	1 4.348	- 6.906	45	4.407	3.041 - 6.	.138	3.444	2.543 - 4.548	4.237	1.320 - 9.935	2.966	2.265 - 3.809
170/35	149	8.093	6.461 - 9.9	951 6.79	7 5.620	- 8.119	59	4.894	1.219 - 12	2.674	3.777	2.834 - 4.919	4.685	1.344 - 11.374	3.187	2.267 - 4.345
170/40	202	9.396	7.599 - 11	.418 7.98	7 6.690	- 9.425	75	5.376	2.011 - 1	1.219	4.207	3.093 - 5.568	5.196	2.019 - 10.637	3.361	2.434 - 4.512
170/ 45	253	10.487	8.557 - 12	2.636 9.03	4 7.712	- 10.480	95	5.863	2.576 - 1	1.092	4.459	3.257 - 5.932	6.335	2.744 - 12.038	4.702	3.490 - 6.170
170/50	312	11.340	8.801 - 14	.230 9.77	8.428	- 11.233	120	6.135	2.841 - 1	1.216	4.490	3.181 - 6.123	6.643	3.316 - 11.550	4.777	3.546 - 6.267
170/55	368	12.026	9.724 - 14	.587 10.39	9 9.020	- 11.889	142	6.469	3.450 - 10	0.786	4.685	3.274 - 6.457	6.995	3.911 - 11.271	4.974	3.859 - 6.286
170/60	432	12.471	10.133 - 15	5.061 10.8	4 9.518	- 12.330	162	6.730	3.830 - 10	0.728	4.795	3.316 - 6.662	7.110	4.343 - 10.772	5.134	4.029 - 6.423
170/70	568	12.887	10.513 - 15	5.509 11.7	8 10.297	- 13.321	204	6.673	4.128 - 10	0.034	4.551	3.038 - 6.506	7.184	4.716 - 10.328	5.225	4.244 - 6.344
170/80	666	13.109	5.500 - 24	.089 12.5°	5 10.991	- 14.142	243	6.376	1.257 - 1	7.709	4.385	3.014 - 6.128	6.969	1.682 - 17.608	5.457	4.515 - 6.520
170/90	749	13.512	11.233 - 16	5.001 13.03	6 11.436	- 14.743	290	5.988	4.175 - 8.	.245	4.302	3.323 - 5.461	6.568	4.401 - 9.311	5.615	4.728 - 6.604
170/ 120	925	15.079	13.120 - 17	.166 14.92	5 12.986	- 16.991	416	4.741	3.862 - 5.	.746	4.231	3.228 - 5.428	5.985	5.164 - 6.886	6.408	5.573 - 7.318
170/ 180	1156	19.122	16.458 - 21	.942 18.08	5 15.635	- 20.682	600	5.840	4.875 - 6.	.921	5.014	3.567 - 6.807	5.982	5.097 - 6.961	6.750	5.475 - 8.197
180/ 6	0	1.717	1.079 - 2.6	605 1.21	0.797	- 1.796	0	1.717	1.079 - 2.	.605	1.219	0.797 - 1.796	1.717	1.079 - 2.605	1.219	0.797 - 1.796
180/ 10	8	2.062	1.291 - 3.1	131 1.53	1.087	- 2.099	4	1.564	0.967 - 2.	.405	1.275	0.899 - 1.761	0.794	0.250 - 2.018	2.004	1.520 - 2.593
180/ 15	19	2.811	2.059 - 3.7	742 2.28	1.642	- 3.093	11	2.459	1.775 - 3.	.319	2.013	1.453 - 2.720	0.995	0.475 - 1.884	2.626	2.029 - 3.341
180/20	42	4.137	3.181 - 5.2	273 3.24	1 2.431	- 4.225	24	3.246	2.340 - 4.	.377	2.583	1.919 - 3.400	3.092	2.148 - 4.301	2.559	1.768 - 3.581
180/ 25	_ 75	5.782	4.495 - 7.2	288 _ 4.69	53.718	5.832_	39	4.018	2.806 - 5.	.549	3.088	2.357 - 3.967	3.614	2.500 - 5.034	2.426	1.554 - 3.611
180/30	117	7.410	2.030 - 17	.591 6.25	5.083	- 7.586	53	4.798	0.519 - 1	7.317	3.643	2.785 - 4.671	4.885	0.558 - 17.263	3.609	2.775 - 4.603
180/35	184	8.985	7.191 - 11	.018 7.48	6.186	- 8.934	70	5.240	1.734 - 1	1.709	3.992	2.951 - 5.263	5.438	1.594 - 12.894	3.990	2.954 - 5.254
180/40	232	10.287	2.983 - 22	2.933 8.77	3 7.406	- 10.289	88	5.877	0.724 - 19	9.596	4.563	3.380 - 5.997	6.067	0.729 - 20.280	4.235	3.072 - 5.667
180/ 45	302	11.339	9.224 - 13	3.691 9.60	8.198	- 11.144	116	6.247	2.991 - 1	1.180	4.499	3.230 - 6.068	6.560	3.402 - 11.137	4.492	3.323 - 5.912
180/50	356	12.169	9.933 - 14	.645 10.43	5 9.000	- 11.989	140	6.559	3.469 - 10	0.990	4.656	3.270 - 6.392	7.015	3.878 - 11.389	4.806	3.711 - 6.098

) fsw Last Allowed	In-Wate	r Stop			Water O ₂ , 20 fsw	Last Allo	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)			D/E	٠٠٠)		TOTAL		D(DOO)b IIMO	. 500	00.50/		D/D/	20)	
/BT(min)	STOP	-		NADIO		STOP	D) ///(2)	P(DCS) ^b ; IWO2			D) /M/(2)	P(DC		<u> </u>
	1	BVM(3)		NMRI98			BVM(3)		NMRI98		BVM(3)		NMRI98	
100/55	(min)	(%)	low - high	(%)	low - high	(min)	(%)	low - high	(%)	low - high	(%)	low - high	(%)	low - high
180/ 55	425		10.439 - 15.267		9.537 - 12.440			3.933 - 11.141	4.879	3.419 - 6.705	7.271		5.080	_3.9746.372_
180/60	507	13.021	1.177 - 39.237		9.922 - 12.916	186	6.966	0.014 - 44.822	4.744	3.222 - 6.687	7.479	0.030 - 43.688	5.171	4.126 - 6.379
180/70	633	13.399			10.762 - 13.926	229	6.919	4.303 - 10.355	4.645	3.144 - 6.565	7.569	5.028 - 10.774	5.579	4.583 - 6.707
190/ 5	0	1.640	1.007 - 2.537	1.163	0.746 - 1.742	0	1.640	1.007 - 2.537	1.163	0.746 - 1.742	1.640	1.007 - 2.537	1.163	0.746 - 1.742
190/ 10	10	2.110	0.007 - 21.151	1.628	1.162 - 2.224	5	1.678	1.141 - 2.386	1.358	0.960 - 1.871	0.851	0.280 - 2.098	2.149	1.639 - 2.768
190/ 15	23	3.032	2.208 - 4.056	2.501	1.813 - 3.361	14	2.657	1.924 - 3.573	2.210	1.620 - 2.944	0.995	0.549 - 1.685	2.769	2.121 - 3.548
190/20	50	4.589	3.533 - 5.839	3.695	2.759 - 4.832	30	3.439	2.444 - 4.689	2.730	2.001 - 3.634	3.273	2.306 - 4.498	2.756	2.086 - 3.570
190/ 25	94	6.497		_5.273_	4.118 - 6.624	46	4.423	3.041 - 6.180	3.354	2.511 - 4.379	4.154	2.935 - 5.681	2.771	2.053 - 3.655
190/30	154	8.289	6.547 - 10.282		5.627 - 8.121	64	5.087	1.317 - 12.888	3.755	2.871 - 4.812	4.874	1.438 - 11.628	3.179	2.315 - 4.250
190/ 35	214	9.842	7.852 - 12.092		6.938 - 9.623	81		2.097 - 11.882			5.610	2.121 - 11.608	3.603	2.635 - 4.797
190/40	281	11.118	8.958 - 13.534		7.888 - 10.844	109		2.747 - 11.558	4.370	3.170 - 5.847	6.232	3.085 - 10.922	3.982	2.924 - 5.279
190/ 45	342	12.140	7.266 - 18.344		8.743 - 11.862	135		2.467 - 13.781	4.651	3.312 - 6.314			4.437	3.385 - 5.690
190/50	413		10.430 - 15.549		9.397 - 12.425	160	7.081	3.827 - 11.666	4.828	3.410 - 6.596	7.254	_4.338 11.150 _		_3.7626.106_
190/ 55	498		10.798 - 15.979		9.891 - 12.941	185	7.211	4.150 - 11.382	4.838	3.337 - 6.737	7.584	4.699 - 11.356	5.058	4.016 - 6.265
190/60	574	13.541	11.035 - 16.304	11.895	10.372 - 13.530	209	7.249	4.351 - 11.112	4.754	3.244 - 6.676	7.750	5.170 - 10.992	5.315	4.289 - 6.490
190/ 90	859	15.440	12.732 - 18.389	14.278	12.477 - 16.197	369	6.001	4.029 - 8.506	4.380	3.459 - 5.455	5.974	5.114 - 6.922	5.822	5.014 - 6.709
190/ 120	1037	17.730	<u> 15.371 - 20.229</u>	16.482	14.257 - 18.850	507_	5.702	<u>4.617 - 6.941 _</u>	4.702	3.549 - 6.085	6.242	_5.320 - 7.260 _	6.383	_5.474 - 7.384
200/ 5	0	1.776	0.000 - 41.845	1.246	0.812 - 1.842	0	1.776	0.000 - 41.845	1.246	0.812 - 1.842	1.776	0.000 - 41.845	1.246	0.812 - 1.842
200/ 10	11	2.266	1.598 - 3.122	1.786	1.295 - 2.406	6	1.826	1.259 - 2.566	1.513	1.087 - 2.055	0.916	0.317 - 2.178	2.300	1.761 - 2.952
200/ 15	29	3.272	2.457 - 4.261	2.705	1.983 - 3.601	17	2.793	2.023 - 3.756	2.382	1.765 - 3.144	1.042	0.594 - 1.718	2.971	2.252 - 3.840
200/ 20	62	5.200	1.371 - 13.033	4.186	3.235 - 5.313	36	3.767	0.527 - 12.880	2.905	2.204 - 3.753	3.716	0.492 - 13.000	3.052	2.324 - 3.929
200/ 25	110	7.215	5.600 - 9.091	5.968	4.830 - 7.266	54	4.761	3.211 - 6.748	3.486	2.703 - 4.417	4.738	3.372 - 6.434	3.294	2.550 - 4.179
200/ 30	186	9.106	7.210 - 11.264	7.439	6.171 - 8.856	74	5.375	1.758 - 12.063	3.927	2.968 - 5.081	5.569	1.658 - 13.075	3.934	2.976 - 5.086
200/ 35	247	10.673	8.490 - 13.134	8.872	7.446 - 10.447	96	6.089	2.454 - 12.092	4.474	3.320 - 5.874	6.459	2.560 - 12.901	4.437	3.287 - 5.832
200/ 40	323	11.914	9.549 - 14.558	9.852	8.393 - 11.447	128	6.574	3.104 - 11.839	4.445	3.193 - 5.993	6.511	3.332 - 11.151	3.917	2.938 - 5.102
200/ 45	393	12.830	10.299 - 15.647	10.664	9.147 - 12.310	154	7.100	3.668 - 12.044	4.819	3.428 - 6.544	7.881	3.794 - 13.906	5.419	4.247 - 6.786
200/50	_481_	13.403	5.575 - 24.685	11.234	9.74012.844	_ 182_	_7.363_	1.774 - 18.492	4.802	3.343 - 6.637	7.535	_1.725 19.270 _	4.769	_3.7575.950_
210/ 4	0	1.643	0.999 - 2.563	1.160	0.741 - 1.742	0	1.643	0.999 - 2.563	1.160	0.741 - 1.742	1.643	0.999 - 2.563	1.160	0.741 - 1.742
210/ 5	2	1.740	1.093 - 2.640	1.161	0.757 - 1.716	1	1.340	0.713 - 2.324	0.837	0.594 - 1.152	0.735	0.198 - 2.071	1.555	1.116 - 2.113
210/ 10	14	2.288	0.003 - 25.966	1.897	1.377 - 2.551	8	1.990	0.001 - 27.874	1.693	1.229 - 2.277	0.935	0.385 - 1.971	2.252	1.724 - 2.891

	VVal-79	9 AIR; 20) fsw Last Al	llowed	In-Wate	Stop		VVal-79	AIR/In-	Water O ₂ , 20	fsw Las	t Allo	owed Stop	VVal-79	SurDO ₂		
Depth (fsw)	TOTAL							TOTAL									
/BT(min)	STOP			P(D	CS)			STOP		P(DCS) ^b ; I	NO2_F	O2=9	99.5%		P(DC	CS)	
	TIME	BVM(3)			NMRI98			TIME ^c	BVM(3)		NM	RI98		BVM(3)		NMRI98	
	(min)	(%)	low - h	igh	(%)	low	- high	(min)	(%)	low - high	(9	%)	low - high	(%)	low - high	(%)	low - high
210/ 15	37	3.678	0.121 - 1	9.700	2.964	2.204	- 3.897	22	3.010	0.052 - 19.6	90 2.4	498	1.871 - 3.264	2.766	0.037 - 19.589	2.391	1.515 - 3.589
210/20	79	5.746	1.069 - 1	6.559	4.662	3.690	- 5.793	42	4.018	0.288 - 17.1	05 3.	107	2.406 - 3.943	4.124	0.318 - 17.065	3.416	2.596 - 4.403
210/ 25	139	7.962	4.947 - 1	1.885	6.515	5.388	- 7.781	63	5.026	0.780 - 15.8	42 3.6	629	2.832 - 4.572	4.640	1.024 - 12.776	2.844	2.128 - 3.719
210/30	214	9.897	7.285 - 1	2.972	8.092	6.817	- 9.501	83	5.724	1.878 - 12.7	'66 4.	174	3.164 - 5.386	5.656	1.884 - 12.523	3.485	2.578 - 4.595
210/35	292	11.445	9.035 - 1	4.164	9.352	7.944	- 10.895	115	6.452	2.787 - 12.2	69 4.3	392	3.241 - 5.795	6.569	3.147 - 11.725	4.107	3.061 - 5.375
210/40	362	12.649	10.003 - 1	5.616	10.404	8.858	- 12.091	146	7.008	3.401 - 12.3	73 4.6	626	3.314 - 6.251	7.452	3.853 - 12.610	4.778	3.694 - 6.057
210/45	452	13.430	10.655 - 1	6.528	11.039	9.514	- 12.689	174	7.505	3.923 - 12.6	607 4.8	845	3.425 - 6.613	8.067	4.696 - 12.593	5.372	4.218 - 6.717
210/50	_549_	13.887	11.101 - 1	6.980_	11.661_	10.104	1 <u>3.3</u> 3 <u>7</u>	204_	_7.612_	4.232 - 12.2	78_ 4.7	785 _	3.308 - 6.649	7.734	_4.92111.358 _	4.815	_3.8395.944_
220/ 4	0	1.762	1.089 - 2	.708	1.238	0.805	- 1.832	0	1.762	1.089 - 2.70	8 1.2	238	0.805 - 1.832	1.762	1.089 - 2.708	1.238	0.805 - 1.832
220/ 5	3	1.781	1.119 - 2	.702	1.200	0.807	- 1.728	2	1.084	0.431 - 2.33	1 0.9	907	0.651 - 1.235	0.753	0.202 - 2.119	1.634	1.183 - 2.205
220/10	17	2.357	0.847 - 5	.266	2.045	1.507	- 2.714	10	2.127	1.504 - 2.92	4 1.8	837	1.354 - 2.439	0.966	0.441 - 1.888	2.366	1.819 - 3.025
220/ 15	44	3.983	3.048 - 5	.100	3.310	2.445	- 4.371	27	3.084	2.198 - 4.19	9 2.6	622	1.942 - 3.460	2.821	1.908 - 4.012	2.558	1.797 - 3.529
220/ 20	95	6.451	4.995 - 8	.153	5.192	4.102	- 6.457	48	4.430	3.032 - 6.2	2 3.3	342	2.583 - 4.245	4.120	2.889 - 5.671	2.702	1.923 - 3.686
220/ 25	171	8.746	6.866 - 1	0.899	7.028	5.801	- 8.404	72	5.319	1.566 - 12.6	10 3.7	767	2.900 - 4.801	5.272	1.554 - 12.498	3.442	2.586 - 4.479
220/30	243	10.674	7.836 - 1	4.006	8.720	7.343	- 10.238	96	6.134	2.160 - 13.1	14 4.3	375	3.300 - 5.665	6.436	2.244 - 13.781	4.239	3.174 - 5.527
220/35	329	12.179	9.527 - 1	5.174	9.882	8.418	- 11.480	132	6.838	3.094 - 12.6	12 4.4	497	3.287 - 5.977	6.776	3.335 - 11.874	3.974	2.986 - 5.167
220/40	_412_	13.269	10.500 - 1	6.366	10.758	_9.257_	12.385	_ 163_	_7.466_	3.738 - 12.8	90_ 4.7	754	3.417 - 6.405	7.565	_4.28612.051 _	4.685	_3.6205.943_
250/ 4	4	1.884	1.192 - 2	.841	1.231	0.854	- 1.725	2	1.345	0.621 - 2.59	0.9	969	0.695 - 1.320	0.773	0.209 - 2.168	1.685	1.225 - 2.264
250/ 5	7	2.041	1.266 - 3	.124	1.421	1.010	- 1.948	4	1.366	0.818 - 2.16	0 1.	154	0.810 - 1.602	0.830	0.238 - 2.238	1.895	1.405 - 2.504
250/ 10	26	2.905	0.250 - 1	2.376	2.567	1.867	- 3.440	17	2.602	0.155 - 12.7	68 2.3	304	1.711 - 3.035	0.769	0.000 - 48.732	2.765	2.067 - 3.619
250/ 15	77	5.424	4.229 - 6	.821	4.524	3.537	- 5.683	43	3.789	2.660 - 5.2	3 3.0	055	2.365 - 3.879	3.843	2.765 - 5.181	3.294	2.473 - 4.291
250/ 20	162	8.315	6.546 - 1	0.342	6.759	5.588	- 8.074	71	5.117	1.347 - 12.8	57 3.7	706	2.900 - 4.657	4.903	1.472 - 11.587	3.142	2.373 - 4.074
250/ 25	253	10.811	8.524 - 1	3.402	8.759	7.382	- 10.278	101	6.219	2.424 - 12.5	66 4.3	375	3.331 - 5.622	6.586	2.520 - 13.393	4.345	3.316 - 5.573
250/30	353	12.647	9.938 - 1	5.695	10.181	8.661	- 11.840	145	7.090	3.309 - 12.8	11 4.5	531	3.287 - 6.060	7.345	3.710 - 12.619	4.428	3.378 - 5.679
250/35	_467_	13.946	10.850 - 1	7.423_	11.048	_9.526_	12.695	_ 183_	_7.925_	3.949 - 13.6	87_ 4.7	753 _	3.365 - 6.482	8.614	_4.82913.757_	5.474	_4.2836.864_
300/ 4	10	2.031	1.236 - 3	.155	1.599	1.141	- 2.184	6	1.282	0.818 - 1.92	6 1.3	319	0.946 - 1.796	2.031	1.236 - 3.155	1.599	1.141 - 2.184
300/ 5	14	2.174	1.467 - 3	.105	1.865	1.354	- 2.509	9	1.895	1.300 - 2.67	3 1.6	655	1.207 - 2.220	0.953	0.395 - 2.001	2.174	1.653 - 2.807
300/10	56	4.427	2.335 - 7	.527	3.900	2.942	- 5.055	36	3.208	1.289 - 6.59	3 2.8	826	2.136 - 3.664	3.070	1.161 - 6.567	2.851	2.092 - 3.790
300/ 15	165	8.055	6.440 - 9	.894	6.770	5.560	- 8.134	74	4.870	1.360 - 11.9	44 3.7	713	2.896 - 4.679	4.661	1.474 - 10.762	3.146	2.369 - 4.089
300/ 20	294	11.242	8.984 - 1	3.778	9.187	7.774	- 10.740	120	6.297	2.743 - 11.9	31 4.2	283	3.165 - 5.645	6.350	3.073 - 11.280	3.914	2.889 - 5.167

	VVal-79 AIR; 20 fsw Last Allowed In-Water Stop					VVal-79 AIR/In-Water O ₂ , 20 fsw Last Allowed Stop					VVal-79 SurDO₂			
Depth (fsw)	TOTAL					TOTAL								
/BT(min)	STOP	TOP P(DCS)			STOP		P(DCS) ^b ; IWO2_FO2=99.5%			P(DCS)				
	TIME	BVM(3)		NMRI98		TIME	BVM(3)		NMRI98		BVM(3)		NMRI98	i e
	(min)	(%)	low - high	(%)	low - high	(min)	(%)	low - high	(%)	low - high	(%)	low - high	(%)	low - high
300/ 25	427	13.463	10.581 - 16.693	10.742	9.235 - 12.376	174	7.632	3.771 - 13.273	4.706	3.333 - 6.416	7.795	4.379 - 12.478	4.756	3.620 - 6.109