

OAK RIDGE NATIONAL LABORATORY operated by

UNION CARBIDE CORPORATION NUCLEAR DIVISION

for the U.S. ATOMIC ENERGY COMMISSION

ORNL - TM - 2285

A COMPARISON OF THE BUILDING PROTECTION FACTOR CODES CAPS-2 AND PF-COMP

(Final Report)

OCD Contract No. DAYC20-67-W-0138 OCD Work Unit 1115D

This document has been approved for public release and saie; its distribution is unlimited.

EQUIES This document contains information of a preliminary nature and was prepared primarily for internal use as the Oak Hidge-Hattonal Legaratory. It is subject to revision or correction and therefore does not report.

Best Available Copy

Neutron Physics Division

A COMPARISON OF THE BUI-DING PROTECTION FACTOR CODES CAPS-2 AND PF-COMP

(Final Report)

bу

M. L. Gritzner+ and P. N. Stevens+

for

Office of Civil Defense
Office of the Secretary of the Arm;
Washington, D. C. 20310

OCD Contract No. DAHC20-67-W-0138
OCD Work Unit 1115D

SEPTEMBER 1968

OCD Review Notice
This report has been reviewed in the
Office of Civil Defense and approved
for publication. Approval does not
signify that the contents necessarily
reflect the views and policies of the
Office of Civil Defense.

This document has been approved for public release and sale; its distribution is unlimited.

*University of Tennessee, Knoxville, Tennessee.

Performing Agency:

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U. S. ATOMIC ENERGY COMMISSION

Table of Contents

										Pg. No.
	Abstr	act	•	•		•	•	•	•	ı
ı.	Intro	duction	•	•		•	•	•	•	2
ıı.	The E	ngineering Manual Method		•		•	•	•		3
ııı.	CAPS-	2 and PF-COMP Computer Codes	•	•		•	•		•	5
	CAPS-	2	•	•	•	•	•	•	•	5
	PF-CO	MP	•	•	•	•	•		•	6
IV.	Build	ing Designs	•	•	•	•	•	•	•	7
	Build	ing No. 1	•	•	•	•	•	•		7
	Build	ing No. 2	•	•	•	•	•	•	•	10
	Build	ing No. 3	•	٠	•	•	٠	•	•	10
	Build	ing No. 4	•	•	•	•	•	•	•	10
	Build	ing No. 5	•	•	•	•	•	•	•	10
٧.	Calcu	lational Procedures and Comparison of R	les [·]	uli	ts	•	•	•	•	19
VI.	Concl	usions and Recommendations		•	•	•	•	•	•	31
	Ackno	wledgements	•	•	•	•	•	•	•	34
	Refer	ences	•	•	•	•	•	•	•	35
APPE	NDIX.	Sample Calculation for Building No. 5	Fi	rs	t]	Flo	00:	r		
		Detector - Engineering Manual Method .	•	•	•	•	•	•	•	36
		Ground Contribution Through North Wall	٠.	•	•	•	•	•	•	39
		Ground Contribution Through East Wall.	•	•	•	•	•	•	•	42
		Ground Contribution Through South Wall		•	•	•	•	•	•	45
		Ground Contribution Through West Wall.	•	•	•	•	•	•	•	49
		Overhead Contribution	•	•	•	•	•	•	•	51
		Total Protection Factor for the First	Fl	003	r.	•	•	•	•	55

Abstract

The purpose of the study was to determine the relative merits of the computer codes PF-COMP and CAPS-2 for calculating radiation fallout protection factors for shelter areas. These codes were produced for the Office of Civilian Defense (OCD) by the Research Triangle Institute (RTI) and the Architect-Engineering firm of Praeger, Kavanaugh, and Waterbury, respectively.

Protection factors for various detector positions within five building designs of varying complexity were hand calculated using the Engineering Manual method as outlined in the most recent revision. These results were then compared with machine-calculated protection factors using the PF-COMP and CAPS-2 programs. As a result of the comparisons, some program errors were found in PF-COMP. These errors were corrected by the authors of the code and the cases were recalculated.

The PF-COMP code was found to calculate protection factors in the 1-100 range for the five building designs to within +15% of the hand-calculated values. The protection factors calculated with the CAPS-2 code tended to be high and were within -44 to +90% of the hand-calculated values.

For protection factors above 100, the PF-COMP code gave results that were within -41 to +36% of the hand-calculated values and tended to be conservative. In contrast, CAPS-2 results were generally not conservative, with the percentage error ranging from -10 to +58%. Based on these calculations, along with the relative ease with which the PF-COMP code may be used for multiple-story calculations, the PF-COMP code is deemed the better code and the use of CAPS-2 should be restricted to calculating

structures with low protection factors (about 20 or less) and/or of only limited complexity.

I. Introduction

The Engineering Manual method for calculating building protection factors involves a large number and variety of design-type equations for which much of the shelter configuration-dependent data are available in the form of charts and graphs of limited resolution. The synthesis of a solution to a problem of average complexity is a tedius and oftentimes confusing exercise, and a single calculation for a given problem is of uncertain reliability without some kind of corroboration (which is usually unavailable).

In order to reduce the effort required to analyze structures for shielding effectiveness against fallout radiation and the possibility of error, two computer codes which have the Engineering Manual method as a basis were produced for use by the Office of Civil Defense (OCD). These codes are PF-COMP, produced by the Research Triangle Institute (RTI), and CAPS-2, produced by the Architect-Engineer firm of Praeger, Kavanaugh, and Waterbury. These two computer programs perform the numerical equivalent of the reading of charts and graphs and do the many calculation sequences which would be involved in a hand calculation. The only input required is the configuration data for the shelter.

Use of such computer programs permits detailed evaluations of many structures for a small cost and avoids many of the human errors that would be prevalent in tedious hand calculation. However, the usefulness and reliability of the computer-calculated protection factor depends largely

on now accurately the computer code represents the data, equations, and the many matters of judgement which comprise the Engineering Manual method. The purpose of this investigation is to establish how well the computer-calculated protection factors compare with hand-calculated values using the Engineering Manual method for a wide variety of steller configurations and, on the basis of these comparisons, to achieve an evaluation of the PF-COMP and CAPS-2 programs.

The procedure followed was to specify a set of hypothetical building designs which are representative of the structures that would be encountered in practice, to calculate the protection factors at various locations with both PF-COMP and CAPS-2, and then to compare the results with the hand-calculated values obtained by direct application of the latest version of the Engineering Manual method.³

In the following sections the Engineering Manual method and the two computer codes are briefly discussed. The results of the calculations, both by hand and by machine, are compared in graphical and tabular form and conclusions are drawn from these comparisons. In the appendix a sample calculation for one detector is shown in order to demonstrate the tediousness of the calculation and how the Engineering Manual method was applied.

II. The Engineering Manual Method

The equations and basic data which comprise what is commonly referred to as the Engineering Manual method were developed by Eisenhauer with the help of L. N. FitzSimons of the Office of Civil Defense from the basic

work by Spencer.⁵ The details of the method are given in a number of publications.³⁻⁶

The fundamental approach to the calculation of a protection factor (the reciprocal of the reduction factor) is to determine the reduction factor associated with the floors above and below the detector as well as the detector floor. To these are added a reduction factor due to the roof and mass thickness between detector and roof, known as the "overhead contribution" to the reduction factor. The floor below analysis considers the ground direct and scattered radiation. The detector floor includes ground direct, scattered, and skyshine, while the floor above takes into account scattered and skyshine contributions.

Equation 1 is a typical equation for calculating the detector floor reduction factor for ground direct, scatter, and skyshine contributions for the case of interior partitions and no mutual shielding:

$$C_{g} = \left\{ [G_{d}(\omega, H_{d}) + G_{a}(\omega_{u}) - P_{a} G_{a} (\omega_{a})][1 - S_{\omega}(X_{e})] B_{e}(X_{e}, H) + P_{a} G_{a}(\omega_{a}) \right\}$$

$$B_{e}(0, H) + [G_{s}(\omega_{L}) + G_{s}(\omega_{u}) - P_{a} G_{a}(\omega_{a})] S_{\omega}(X_{e}) E(e) B_{e}(X_{e}, H)$$

$$B_{f}(X_{f}), \qquad (1)$$

where

 $G_{\tilde{d}}(w_1,H_{\tilde{d}})$ = directional response for ground direct contribution to reduction factor based on solid angle, w_1 , and heigh., $H_{\tilde{d}}$, above contaminated plane,

 $G_s(w_i)$ = directional response for wall-scattered ground contribution to reduction factor based on solid angle w_i ,

- $G_s(w_i)$ = directional response for skyshine ground contribution to reduction factor based on solid angle w_i ,
- $S_{\omega}(X_e)$ = fraction of emergent radiation scattered in exterior wall of mass thickness X_e ,
 - E(e) = shape factor for wall-scattered radiation based on structure eccentricity e,
- $B_{\mu}(X_{\mu},H) = \text{exterior wall barrier reduction factor},$
 - P_s = perimeter ratio of apertures,
 - $B_i(X_i)$ = interior wall barrier reduction factor for ground contribution based on interior wall mass thickness X_i .

The overhead contribution considers skyshine through the roof, as well as scattered and direct. Methods for handling apertures, limited fields of contamination, effects of interior partitions, and the use of fictitious buildings to determine protection factors for non-rectangular buildings are then developed to complete the basic framework of the method.

III. CAPS-2 and PF-COMP Computer Codes

The computer codes CAPS-2 and PF-COMP were written to facilitate the use of the Engineering Manual method by eliminating the tedious hand calculations.

CAPS-2

The CAPS-2 program was originally developed by the Architectural and Engineering firm of Praeger, Kavanaugh, and Waterbury. Extensive modifications were made by Dirst of the OCD to increase the flexibility of the computations and the input-output routines. 2

CAPS-2 is written in FORTRAN computer language and is based on the Engineering Manual method with one important exception -- skyshine contribution for the detector floor and the floor above is considered to be affected by mutual shielding buildings. The Engineering Manual method treats this contribution as the same with or without mutual shielding.

The code will handle up to ten detector positions per floor or shelter area. In the analysis of a building, the program logic follows that of a typical engineering manual hand calculation and includes the effects of the roof, exterior walls, apertures, interior partitions, floors, mutual shielding, height above contaminated planes and building geometry.

Certain restrictions are contained in the program, the more important ones being: (a) window sills are at detector level (except for basement), which is 3 ft above detector floor, 'h' only two contaminated planes may be considered for each side of a structure, and (c) the exterior wall mass thickness is restricted to only one change between detector floor and adjacent floors. Preparation of the input data is relatively simple but a new set must be prepared for each detector floor. The program allows for a total of four output options depending on the desires of the user. The output is printed in a manner which permits an analysis of those areas in which the effect due to shielding modifications will be most significant.

PF-COMP

The PF-COMP code^{1,8} is written in FORTRAN computer language and its use is restricted to the large computers such as the CDC 3600. The program is also based on the Engineering Manual method but it is more comprehensive than CAPS-2. Roof setbacks are included and allowances are made

for three contaminated planes, basement areaways, and partial basements. The program allows for different interior and exterior wall mass thicknesses for each floor. In addition, sill levels are not restricted to detector level (3 ft from floor), but only one change is permitted above the second story. Preparation of the input data is more detailed than CAPS-2, but it need be done only once for a building since PF-COMP will calculate a protection factor for the center detector position of each floor in addition to eight other locations for each floor (pre-set by code). The cutput is essentially the same as CAPS-2.

IV. Building Designs

The descriptions of the five hypothetical buildings (designated as building no.1, building no.2,etc.) and their surroundings are presented only in the detail required for the Engineering Manual hand calculation. Plane and elevation views, dimensional details, construction characteristics, and detector locations are given for each building. In each case considered, the detector was located at the midpoint and 3 ft above the floor.

Building No. 1

Building No. 1 comprises a set of 13 similar buildings (these buildings are designated as 1A, 1B, 1C, ..., 1M) for which only minor design differences exist. The data generated for this case allowed more detailed comparisons to be effected wherein the influence of one portion of the overall calculation could be determined. The plan and elevation views are shown in Fig. 1, and the design specifications are given in Table 1. A protection factor was computed for the center position of the detector in the basement and in the second floor.

andergos a la comención persona en como a masona de la como dela como del la como dela como dela

ORNL-DWG 68-7119

Fig. 1. Building No. 1 Plan and Elevation Views.

CAN DESCRIPTION OF THE PROPERTY OF THE PROPERT

Builaing		Width of Apertures per Wall.	Percentage Apertures per Wall.	Perimeter	Width of Contsminated Strip.	Width of Height of Contaminated Contamina sed Strip. Infinite Plane		Mass Thicknesses,	psf
No.	$ft(x \cdot y)^6$	- i	ft	Ratio	$ft(z)^{6}$	ft (h)b	Ext.Wall	Ext.Wall Int.Part.	Floor
4	100 × 100	9	25	9.0	150	84	09	0	25
9	100 × 100	9	25	9.0	50	84	9	0	25
10	100 × 100	9	25	9.0	150	200	9	0	25
Я	100 x 100	9	25	9.0	150	84	04	0	25
E	100 x 100	9	25	9.0	150	84	9	10	25
सा	100 × 100	9	25	9.0	150	84	9	0†	25
16	1.00 x 100	9	25	9.0	150	12	09	0	25
Ħ	100 x 100	9	25	9.0	150	748	09	0	10
11	100 x 100	%	0†	96.0	150	84	9	0	25
1.7	150 x 50	90,30	25	9.0	150	48	09	0	25
Ħ	150 × 50	90,30	25	9.0	150	84	09	10	25
11	150 × 50	90,30	25	9.0	50	871	90	0	25
М	150 × 50	90,30	25	9.0	150	841	09	710	25

9

Number of stories, 4 plus basement; height of building, 48 ft; height of basement, 8 ft; sill height, 3 ft; height of aperture, 5 ft; mass thickness of roof, 50 psf. **.**

in the distribution of the second states of the second states of the second states of the second sec

بالمايكية والافاقيات بما يستميدون والماها المايكية المايكية المايك فليما والمايكية المايكية ويستران الماركية الماركية

b. x, y, z, and h are shown in Fig. 1

Building No. 2

The plan and elevation views of building no. 2 are shown in Fig. 2.

The shading in the plan view indicates different roof elevations and the numbers in the center of a roof designate the total height of that section above ground level. Design specifications are presented in Table 2.

A protection factor was computed for the first and fifth floors with the detectors centrally located.

Building No. 3

Building no. 3 is typical of many commercial buildings such as small factories or hospitals. The plan, east-wall elevation, and south-wall elevation views are shown in Fig. 3. Partition layouts for all four floors are shown in Fig. 4. Design specifications are presented in Table 3. Protection factors were computed for the first and fourth floors with the detectors centrally located.

Building No. 4

Building no. 4, together with its surroundings, is typical for a large apartment or office building in a metropolitan area. The plan and elevation views are shown in Fig. 5, and the partition layout for all floors is shown in Fig. 6. The design specifications are given in Table 4. Protection factors are computed for the first and third floors only.

Building No. 5

Building no. 5 could be a part of a hospital or school complex in a suburban area. The structure is not symmetric as was the case for

[†]This comment applies to all plan views.

ORNL-DWG 58-7120

Fig. 2. Building No. 2 Plan and Elevation Views.

Table 2. Specifications for Building No. 2

Dimensional Data:

Total height, 60 ft

Basement height, 12 ft

First floor height, 10 ft

Upper floor height, 10 ft

Aperture heights, 4 ft (bottom to top of aperture)

Sill height, 3 ft

Construction Specifications:

Basement wall mass thickness, 50 pst
First floor wall mass thickness, 50 psf
Upper floor wall mass thickness, 50 psf
Basement floor mass thickness, 35 psf
First floor mass thickness, 40 psf
Upper floor mass thickness, 35 psf
Roof mass thickness, 45 psf

No interior partitions

Apertures:

Basement, 0% First floor, 30% Upper floor, 30% H=20 ft

H=40 ft

H= 20 ft

PLAN VIEW

10011

125 ft

ORNL-DWG 68-7121

Fig. 3. Building No. 3 Plan and Elevation Views.

Fig. 4. Partition Layouts c^ Floors 1 to 4 in Building No. 3.

Table 3. Specifications for Building No. 3

Dimensional Data:

Total height, 60 ft
First floor height, 10 ft
Upper floor height, 10 ft
Aperture height, 5 ft (bottom to top of aperture)
Sill height, 3 ft

Construction Specifications:

First floor wall mass thickness, 60 psf
Upper floor wall mass thickness, 60 psf
First floor mass thickness, 30 psf
Upper floor mass thickness, 30 psf
Main roof mass thickness, 40 psf
Setback roof mass thickness, 40 psf
Interior partition mass thickness, 25 psf

No interior partitions on 4th and 5th floors

Apertures:

First floor and second floor: North and south walls, 35%

East and west walls, 25%

Third and fourth floors:

North and south walls, 35% East and west walls, 42%

Fifth and sixth floors:

North and south walls, 35% East and west walls, 35%

Fig. 5. Building No. 4 Plan and Elevation Views.

Fig. 6. Partition Layout of All Floors in Building No. 4.

Table 4. Specifications for Building No. 4

Dimensional Data:

Total height of building, 484 ft

Number of stories, 40 with basement

Basement height, 14 ft

First floor height, 16 ft

Upper floor height, 12 ft

Aperture height, 1st floor, 12 ft (bottom to top of aperture)

Upper floor aperture height, 8 ft

Sill height, all floors, 3 ft

Construction Specifications:

Basement wall mass thickness, 75 psf
First floor wall mass thickness, 75 psf
Upper floor wall mass thickness, 75 psf
All interior partition mass thickness, 25 psf
Basement floor mass thickness, 80 psf
First floor mass thickness, 80 psf
Upper floor mass thickness, 35 psf
Roof mass thickness, 70 psf

Apertures:

Basement, 0% First floor, 60% Upper floors, 25% buildings no. 1 through no. 4, and its surroundings include a small lake and two adjacent buildings of comparable size. The plan view of the building and its surroundings is shown in Fig. 7. The north-wall, east-wall, south-wall, and west-wall elevations are shown in Fig. 8. along with the details of an areaway adjacent to building no. 5. Partition layouts for all five floors are shown in Fig. 9. The plan view of the basement is shown in Fig. 10. Design specifications are given in Table 5. Protection factors were calculated for the partial basement, first, and fifth floors.

V. Caiculational Frocedures and Comparison of Results

Protection factors for the five hypothetical buildings described in the previous section were calculated by hand using equations and data found in TR-20. These calculations were performed with great care and the results should represent the application of the Engineering Manual method to an accuracy within the limitations imposed by reading the charts and the use of good judgement in the areas of uncertainty in application of the method. The aim was to compare computer-calculated protection factors with these "standard" values. In the interpretation of the results, the basic assumption was that any disparities were due to an imperfect representation of the Engineering Manual method by the computer codes.

As an example of the tedious calculations required in applying the Engineering Manual method, the very extensive and complex details of the hand calculation of a protection factor for one detector position in a multiple-story building (building no. 5) with complicated geometry and mutual shielding are given in an appendix to this report.

Fig. 7. Building No. 5 Plan View.

Fig. 8. Building No. 5 Elevation Views and Areaway Detail.

Fig. 9. Partition Layouts of Floors 1 to 5 in Building No. 5.

ORNL-DWG 68-7128

Fig. 10. Basement Plan of Building No. 5.

Table 5. Specifications for Building No. 5

Dimensional Data:

Basement height, 12 ft

First floor height, 10 ft

Upper floor height, 10 ft

Sill heights in basement areaway, 6 ft

Aperture height in basement areaway, 4 ft (bottom to top of aperture)

Upper floor aperture height, 5 ft

Upper floor sill height, 3 ft

Note: On the south wall, the first contaminated plane is 4 ft lower than the other three walls over the entire azimuthal sector seen by the south wall.

Construction Specifications:

Basement wall mass thickness, 60 psf

First floor wall mass thickness:

North wall, 50 psf East wall, 50 psf South wall, 50 psf West wall, 60 psf

Upper floor wall mass thickness (2nd and 3rd floors):

North wall, 50 psf East wall, 50 psf South wall, 50 psf West wall, 60 psf

Upper floor wall mass thickness (4th and 5th floors):

North wall, 45 psf East wall, 45 psf South wall, 45 psf West wall, 45 psf

All interior partition mass thickness, 25 psf

Dasement floor mass thickness, 50 psf

First floor mass thickness, 40 psf

Upper floor mass thickness, 35 psf

Upper floor mass thickness (if change), 30 psf

Story of change, 4th

Setback roof mass thickness, 50 psf

Main roof mass thickness, 50 psf

Table 5. (cont.)

Apertures:

Percentage apertures in basement areaway, 20%
Total aperture width of 30 ft in wall of length, 50 ft
Apertures on first floor:

North wall, 25%
East wall, 35%
South wall, 30%
West wall, 40%

Apertures on upper floors (no change):

North wall, 25% East wall, 35% South wall, 30% West wall, 40%

Apertures on upper floors (if change):

North wall, 25% East wall, 20% (story of change, 4th) South wall, 15% West wall, 20%

The PF-COMP and CAPS-2 computer codes were used to calculate protection factors for the same five buildings (as described in the previous section) using exactly the same input data whenever possible. The CAFS-2 computer calculations were run on the IRI 1604 at the Oak Ridge National Laboratory and the PF-COMP calculations were run at the National Civil Defense Computer Facility, Washington, D. C. The operation of both codes seemed routine; however, a detailed comparison of the PF-COMP results with the standard (hand calculated) protection factors suggested that the PF-COMP code was in error. The authors of the code were informed of the discrepancies and they were able to locate and correct the errors, which were in floor-above and floor-below contributions. The complete set of

problems was recalculated with the corrected code and better agreement was obtained.

Comparisons of the calculated protection factors are presented in graphical form in Figs. 11 and 12. Fig. 11 is a plot of the protection factors calculated with the PF-COMP code versus the corresponding hand-calculated values. A computer-calculated protection factor would exactly equal the hand-calculated value if the plotted point would lie on the line drawn through the origin at 45°. A point located below the line indicates an underestimate of the protection factor by the computer code with respect to the hand-calculated alue; a point above the line indicates an overestimate. Note that the PF-COMP values generally are in good agreement with the hand calculations for buildings having protection factors up to about 100 and generally lie well below the 45° line for larger protection factors.

Fig. 12 is a plot of the protection factors calculated with CAPS-2 versus hand-calculated values. The CAPS-2 data points in general lie above the 45° line, indicating that CAPS-2 generally overestimates the protection factor in comparison with the hand calculations. Note that the CAPS-2 data points form a rather scattered pattern as compared with the PF-COMP calculations shown in Fig. 11.

The protection factors for all detector locations are also presented in Table 6. No attempt was made to estimate error or confidence limits for the individual protection factors because of the nature of the calculations; the percentage deviation shown is relative to the hand calculations.

Fig. 11. Comparison of Protection Factors Calculated with the ${\tt PF-COMP}$ Code and with the Engineering Manual Method.

Fig. 12. Comparison of Protection Factors Calculated with the CAPS-2 Code and with the Engineering Manual Method.

Table 5. Protection Factors for Each Detector Location in the Five Building Designs

PP-COMP CAPS-2 Hand PP-COMP CAPS 105 96 -9.14 +3.2 +1.2 102 139 97 +5.2 +1.2 113 125	1		Calculated	Drotection	Factors	Douge ton from	מניטן עניטן
PF-COMP CAPS-2 Hand PF-COMP 87 105 96 - 9.4 14 17 15 - 6.7 102 139 97 + 5.2 18 26 17 + 5.2 18 26 17 + 5.2 14 18 15 - 6.7 14 18 15 - 6.7 101 135 117 - 14 19 22 19 - 6.7 101 135 117 - 14 141 22 19 - 6.7 141 22 19 - 6.7 141 243 33 - 9.4 141 243 33 - 9.4 15 10 10 - 9.4 16 13 - 9.4 17 9 10 - 9.4 18 11 - 9.1 19 19 - 9.4 103 <	100+00						nama care.,
87 105 96 - 9.4 102 139 97 + 5.2 18 26 17 19 26 17 101 135 117 103 122 196 10 243 33 + 9.1 10 243 33 + 9.1 10 36 108 121 - 9.1 10 122 135 - 9.1 10 122 135 - 9.1 10 122 135 - 9.1 10 122 135 - 9.1 10 122 135 - 9.1 11 12 12 - 9.1 12 148 313 - 6.1 14 15 17 - 10 15 17 1 17 17 2 8 - 12 10 101 164 171 - 41 17 9 16 + 6.2	Location		PF-COMP	CAPS-2	Hand	PF-COMP	CAPS-2
14 17 15 - 6.7 102 139 97 + 5.8 18 26 17	Basement		87	105	8		4.6+
102 139 97 + 5.2 18	2nd floo	'n	77	17	15	- 6.7	+13
18	Basemen ⁴	נע	102	139	97	+ 5.2	1 † †
87 - 96 - 9.4 14 18 15 - 6.7 16 19 135 117 - 14 19 22 19 - 7.6 19 22 19 - 19 10 135 117 - 14 11 - 19 12 12 16 13 - 9.1 13 17 13 - 9.1 14 122 135 - 9.1 15 113 92 - 8.3 16 121 - 19 17 12 13 18 17 13 - 6.1 19 101 164 171 - 41 10 1 164 171 - 41 10 1 164 171 - 41	2nd flo	or	18	58	17	+ 5.9	+53
14 18 15 - 6.7 19 22 14 13 101 135 117 - 1.3 19 22 19 0 141 243 196 -28 36 43 33 + 9.1 11 - 100 100 100 - 9.4 12 13 13 - 9.1 13 17 13 92 - 8.3 101 122 135 - 9.1 13 17 13 - 9.1 101 122 135 - 25 11 104 128 135 - 25 11 104 128 135 - 25 11 104 128 135 - 25 11 104 128 135 - 25 11 104 128 135 - 6.1 11 164 171 - 41 11 164 171 - 41 11 164 171 - 41	Basemen	ι L	87	•	8	4.6 -	
74 91 75 - 1.3 101 135 117 - 1.4 19 22 19 0 141 243 196 -28 36 4.3 33 +9.1 30 36 33 +9.1 30 36 33 -9.4 11 - 9.1 30 10 10 10 -10 30 108 121 -19 12 12 13 - 9.1 101 122 135 -25 13 13 - 6.1 294 428 313 - 6.1 294 428 313 - 6.1 21 164 171 -41 17 9 164 171 -41 17 9 16 164	2nd flo	or	† ì	18	15	- 6.7	+20
12 14 13 -7.6 19 22 19 0 141 243 196 -28 36 43 33 +9.1 37 113 92 -9.1 38 113 92 -9.1 39 108 121 -9.1 30 108 121 -9.1 31 17 13 -9.1 32 294 428 313 -6.1 33 21 27 17 -4.1 34 17 19 164 171 -4.1	Basemen	īt.	4 L	91	75	- 1.3	+21
101 135 117 -14 -14 -18 196 -28 196 -28 196 -28 196 -28 196 -9.4 111 -9.1 196 -9.4 19.1 19.1 19.1 19.1 19.1 19.1 19.1 1	2nd flo	ōr.	12	14	13	9.2 -	6.7.6
19	Basemen	ţ.	101	135	117	-14	+15
141 243 196 -28 36 43 33 +9.1 11 - 12 12 -9.1 30 36 33 -9.4 11 - 9.1 30 100 100 -10 12 15 13 -9.1 13 17 13 -9.1 101 122 135 -25 13 17 13 0 101 164 171 -41 17 9 16 171 -41	2nd flc	or	19	55	19	0	+16
36	Basemer	تِ	141	243	18	&୍-	1 54
87 87 - 96 - 9.4 11 - 12 12 - 8.3 30 36 33 - 9.1 93 103 92 - 8.3 12 16 13 - 9.1 12 15 13 - 9.1 13 17 13 - 8.3 14 12 13 - 6.1 15 38 21 0 101 164 171 -41 17 9 16 + 6.2	2nd fl	or	36	43	33	+ 9.1	+30
11 - 12 - 8.3 30 36 33 - 9.1 90 10 100 -10 12 16 13 - 9.1 12 15 11 - 19 13 17 13 - 8.3 14 121 - 8.3 15 11 - 8.3 17 13 - 6.1 18 21 - 6.1 19 164 171 -41 10 1 164 171 -41 10 1 164 171 -41 10 1 164 171 -41	Basemen	nt.	87	87	8	4.6 -	4.6 -
30 36 33 - 9.1 9 10 10 -10 85 113 92 - 8.3 12 16 13 - 9.1 12 15 11 - 8.3 13 17 13 - 8.3 14 428 313 - 6.1 101 164 171 -41 17 9 16 16	3rd fl	oor	11	•	12	- 8.3	
9 10 10 -10 -10 -10 92 92 93 92 93 93 93 93	Baseme	nt	30	36	33	- 9.1	+ 9.1
85 113 92 - 8.3 12 16 13 - 9.1 93 108 121 -19 12 15 11 - 8.3 13 17 13 - 25 13 18 21 0 101 164 171 -41 17 9 16 + 6.2	2nd fl	oor	6	10	10	-10	0
12 16 13 - 9.1 93 108 121 - 19 12 15 11 - 8.3 101 122 135 -25 13 17 13 0 294 428 313 - 6.1 21 38 21 0 101 164 171 -41 17 9 16 + 6.2	Bas eme	ot:	85	113	95	- 8.3	+19
93 108 121 -19 12 15 11 -8.3 101 122 135 -25 13 17 13 0 294 428 313 -6.1 21 38 21 0 101 164 171 -41 17 9 16 +6.2	2nd flk	oor	12	91	E1	- 9.1	+23
12 15 11 - 8.3 101 122 135 -25 13 17 13 0 294 428 313 - 6.1 21 38 21 0 101 164 171 -41 17 9 16 +6.2 7 - 8 -12	Bas eme	nt nt	8	108	121	-19	6.6 :
101 122 135 -25 13 17 13 294 428 313 -6.1 21 38 21 0 101 164 171 -41 17 9 16 +6.2	2nd fi	oor	12	15	11	- 8.3	-36
13 17 13 0 294 428 313 - 6.1 21 38 21 0 101 164 171 -41 17 9 16 + 6.2 7 - 8 -12	Basemen	jt	101	122	135	-25	- 9.7
294 428 313 - 6.1 21 38 21 0 101 164 171 -41 17 9 16 + 6.2 7 - 8 - 12	2nd fl	oor	13	17	13	.0	+31
21 38 21 0 101 164 171 -41 17 9 16 +6.2 7 ~ 8 ~ 12	Basemen	nt T	29t	428	313	- 6.1	+38
101 164 171 -41 17 9 16 +6.2 7 - 8 -12 10 11 11	2nd flo	oor	21	38	รู้เร	0	431
17 9 i6 + 6.2 7 - 8 - 12	Las emer	ıt	101	164	171	-41	- 4.1
7 . 7 . 7 . 10 7	2nd flc	or	17	6	16	+ 6.2	77-
רים בינו נו נו	lat flo	or	_	ŧ	ω	-12	
		700	0,	11	, r	[6 -	c

cont
Table 6.

		Calculated	calculated Frotection Factors	Factors	Deviation from	Deviation from Hand Calc., \$
Building No.	Detector Location	PF-COMP	CAPS-2	Hand	PF-COMP	CAPS-2
m	lst floor	な	21	25	0.4 -	٦١,
က	4th floor	25	,	22	+174	0
. ‡	1st floor	7	80	717	ć	. 6
4	3rd floor	047	16.2 16.2	103	1.7°+ +3°+	604 834
u	4.0000	0	•		<u>}</u> .	2
^ :	Das ement	103 1	•	115	‡	•
ν	lst floor	22	35	83	+17	450
2	5th floor	6	, ,	9.5	۳ - د ا	ı
		•		``	0.7	•

Figs. 13 and 14 are plots of the "floor-above" and "floor-below" contributions as calculated with the original and corrected versions of PF-COMP, respectively, versus the corresponding values calculated by hand. These plots reveal the nature of the errors contained in the original PF-COMP code; the original version of PF-COMP seriously overestimated the reduction factors in most cases for the "floor-above" and "floor-below" contributions. The excellent correlation of the modified PF-COMP results with the hand-calculated ones generally confirms that the errors in the original PF-COMP code have been resolved.

VI. Conclusions and Recommendations

An inspection of Fig. 11 and Table 6 shows that the protection factors < 100 calculated with the PF-COMP code are in good agreement (-12 to +17%) with the hand-calculated values and generally tend to be a little conservative, a desirable characteristic for a calculation of this kind. In contrast, the protection factors calculated with CAPS-2 code tend to be high and do not agree as well with the hand-calculated values (-44 to +90%). The deviations from the hand-calculated values became larger (-41 to +36% for PF-COMP and -10 to +58% for CAPS-2) for protection factors > 100. For this range only PF-COMP should be used since it tends to give conservative values in contrast to CAPS-2.

As a result of this study, along with the relative ease with which PF-COMP may be used for multiple-story calculations, the PF-COMP code is deemed to be the better code and the use of CAPS-2 should be restricted to calculating structures with low protection factors (about 20 or less), and/or of only limited complexity.

Fig. 13. Comparison of the "Floor-Below" Contributions Calculated with PF-COMP Codes (Original and Revised) and with the Engineering Manual Method.

The second secon

THE PROPERTY OF THE PROPERTY O

Fig. 14. Comparison of the "Floor-Above" Contributions Calculated with PF-COMP Codes (Original and Revised) and with the Engineering Manual Method.

Acknowledgements

The authors acknowledge the help of Mr. Russ Lyday of the Research Triangle Institute in using PF-COMP and to Mr. John Dirst of the Office of Civil Defense for his assistance in using CAPS-2. Thanks are also extended to H. C. Claiborne of ORNL for his guidance and helpful criticisms and to Mrs. Bett; F. Maskewitz and Mrs. Henrietta R. Hendrickson of the Radiation Shielding Information Center for securing the necessary materials and assistance in performing the machine calculations.

References

- E. L. Hill, T. Johnson, and R. O. Lyday, Jr., "Computer Program for Analysis of Building Protection Factors," Research Triangle Institute Research Memorandum RM-205-1, Parts I and II (July 6, 1965).
- 2. J. L. Dirst, "CAPS-2, A Computerized Method of Analyzing Structures for Radiation Shielding," Technical Services Directorate (January 1966), Office of Civil Defense.
- 3. "Shelter Design and Analysis Fallout Radiation Shielding," TR-20-Vol. 1 (July 1967, Supersedes TR-20-Vol. 1 dated June 1965), File of Civil Defense.
- 4. C. Eisenhauer, "An Engineering Method for Calculating the Protection Afforded by Structures Against Fallout Radiation," NBS Monograph 76 (July 1964); see also "Design and Review of Structures for Protection From Fallout Gamma Radiation," FM-100-1 (February 1965), Office of Civil Defense.
- 5. L. V. Spencer, "Structure Shielding Against Fallout Radiation from Nuclear Weapons," NBS Monograph 42 (June 1, 1962).
- 6. W. R. Kimel, Editor-in-Chief, "Radiation Shielding: Analysis and Design Principles as Applied to Nuclear Defense Planning," Office of Civil Defense and Kansas State University, TR-40 (November 1966).
- 7. "Electronic Analysis of Structures for Fallout Gamma Radiation Shielding," PG 80-16 (June 1965), Office of Civil Defense.
- 8. R. O. Lyday, M. D. Wright, and E. L. Hill, "PF-COMP Computer Program for Fallout Protection Factor Analyses of Buildings," Parts I and II, Research Triangle Institute (1968).

APPENDIX

Sample Calculation for

Building No. 5 First Floor

Detector - Engineering

Manual Method

Table Al. Equations for Calculating Various Contributions to Reduction Factor by Engineering Manual Method+

Egn. No.	Expressions	Description and Comments
-	$[G_d(w_L',H_d) - G_d(w_L',H_d)][1 - S_w(x_e) B_e(x_e,H) (1 - A_p) B_f(x_f) B_1(x_1)$	Solid wall ground direct component; floor below; no mutual shielding.
23	$[G_d(w_L^i, H_d) - G_d(w_L, H_d)] B_e(O, H)(A_p) B_f(X_f) B_1(X_1)$	Aperture ground direct component; floor below; no mutual shielding
m	$[g_{\mathbf{d}}(\mathbf{w}_{\mathbf{L}}',\mathbf{H}_{\mathbf{d}}) - g_{\mathbf{d}}(\mathbf{w}_{\mathbf{L}}',\mathbf{H}_{\mathbf{d}})][1 - g_{\mathbf{w}}(\mathbf{x}_{\mathbf{e}})] B_{\mathbf{e}}(\mathbf{x}_{\mathbf{e}}',\mathbf{H})(1 - \Lambda_{\mathbf{p}}') B_{\mathbf{f}}(\mathbf{x}_{\mathbf{f}}) B_{1}(\mathbf{x}_{1})$	Solid wall ground direct component; floor below; mutual shielding; A' is % apertures between w'' and w'.
#	$[G_{d}(w_{L}^{i},H_{d}) - G_{d}(w_{L}^{i},H_{d})] B_{e}(0,H)(A_{p}^{i}) B_{f}(X_{f}) B_{1}(X_{1})$	Aperture ground direct component; floor below; mutual shielding.
5	$[g_{g}(w_{L}^{i}) - g_{g}(w_{L})] S_{w}(x_{e}) E(e) B_{e}(x_{e}, H)(1 - A_{p}) B_{f}(x_{f}) B_{i}(x_{i})$	Scatter component for floor below; no mutual shielding
9	$[G_{s}(w_{L}^{i}) - G_{s}(w_{L})] S_{w}(x_{e}) E(e) B_{ws}(w_{g}, x_{e})(1 - A_{p}) B_{f}(x_{f}) B_{1}(x_{1})$	Scatter component for floor below; mutual shielding.
7	$G_{d}(w_{L}, H_{d})$ [1 - $S_{u}(x_{e})$] $B_{e}(x_{e}) B_{1}(x_{1})$	Ground direct component; detector floor; no mutual shielding.
8	$[G_{\mathbf{d}}(\mathbf{w_{L}}, H_{\mathbf{d}}) - G_{\mathbf{d}}(\mathbf{w_{L}}, H_{\mathbf{d}})][1 - S_{\mathbf{u}}(\mathbf{x_{e}})] B_{\mathbf{e}}(\mathbf{x_{e}}) B_{1}(\mathbf{x_{1}})$	Ground direct component; detector floor; mutual shield-ing; use only if $\omega_L' > \omega_L$; if $\omega_L' < \omega$, expression = 0.
6	9 $[g_s(w_L) + g_s(w_u) - P_g g_s(w_g)] s_w(x_e) E(e) B_e(x_e, H) B_1(x_1)$	Scatter component for detector floor; no mutual shielding.

Table Al. (cont.)

Egn. No.	Express ions	Description and Comments
10	10 $[G_{S}(w_{L}) + G_{S}(w_{u}) - P_{R}G_{S}(w_{R})] S_{W}(X_{e}) E(e) B_{WS}(w_{S}, X_{e}) B_{1}(X_{1})$	Scatter component for detector floor; mutual shielding.
11	11 [$G_{a}(w_{u}) - P_{a} G_{a}(w_{a})$][1 - $S_{u}(x_{e})$] $B_{e}(x_{e}, H) B_{i}(x_{i})$	Solid wall skyshine component for detector floor.
12	12 $P_{a} G_{a}(w_{a}) B_{e}(0,H) B_{1}(X_{1})$	Aperture skyshine component for detector floor.
13	13 [$G_s(w_1) - G_s(w_u)$] $S_w(x_e)$ E(e)(l - A _p) $B_e(x_e, H)$ $B_o'(x_o)$ $B_1(x_1)$	Scatter component for floor above; no mutual shielding.
7,7	1^{l_1} [$G_s(w_u') - G_s(w_u)$] $S_w(x_e)$ E(e)(1 - A_p) $B_{ws}(w_s, x_e)$ $B_o'(x_o')$ $B_1(x_1)$	Scatter component for floor above; mutual shielding.
15	15 $[G_a(w_u') - G_a(w_u)][1 - S_u(x_e)] B_e(x_e, H)(1 - A_p) B_o'(x_o') B_1(x_1)$	Solid wall skyshine component for floor above.
16	16 [$G_{a}(w'_{u}) - G_{a}(w_{u})$] $B_{e}(0,H)(A_{p}) B'_{o}(X'_{o}) B_{1}(X_{1})$	Skyshine aperture component for floor above.

*Since many of the equations used in the engineering method are used repeatedly in the solution to this problem, this table was prepared for ready reference. When these equations are used in the solutions, they are referred to by the number in the table.

F des e

Ground Contribution Through North Wall (see Fig. Al)+

Parameters and functions:

	W	L	Z	e	n	ω G _d (ω,3') ^a	G _s (ω) ^b	$G_{\mathbf{a}}(\mathbf{w})^{\mathbf{b}}$
w'u	75	100	17	0.75	0.34	0.66	0.31	c.074
w _u	75	100	7	0.75	0.14	0.85	0.167	0.045
wa	75	100	5	0.75	0.10	0.895	0.122	0.033
$\omega_{\mathbf{L}}$	75	100	3	0.75	0.06	0.936 0.30	0.076	
$\omega_{\mathbf{L}}^{"}$	75	100	1.5	0.75	0.03	0.968 0.175		
$2_{\mathbf{w_s}}$	100	175	3	0.572	0.034	$w_s = 0.956/2 = 0.$	478	

a. Chart 6.

$$B_e(50,3') = 0.304$$
 (Chart 2)
 $B_e(0,3') = 1.0$ (Chart 2)
 $S_w(50) = 0.58$ (Chart 7)
 $B_o'(35) = 0.126$ (Chart 1)
 $B_{ws}(0.478,50) = 0.15$ (Chart 9)
 $E(0.75) = 1.4$
 $A_p = 0.25$
 $P_a = 0.506$
 $B_i(25) = 0.54$

- 1. Contribution through shielded sector, $A_{z_1} = 0.147$ (North Wall)
 - (a) Detector floor (Eqs. 8 + 10 + 11 + 12, Table A1).

b. Chart 5.

The charts referred to throughout this calculation are the standard charts used in the Engineering Manual Method.

Fig. Al. Geometry for Calculating Ground Contribution Through North Wall.

$$c_{g} = \{(0.30-0.175)(0.415)(0.304) + [0.076+0.167-0.506(0.122)]$$

$$\times (0.58)(1.4)(0.15) + [0.045-0.506(0.033)](0.415)(0.304)$$

$$+ 0.506(0.033)(1.0)\} (0.54)(0.145) = 0.004+3$$

(b) Floor above (Fqs. 14 + 15 + 16, Table A1)

$$C_{g} = \left\{ (0.074-0.045)(0.415)(0.304)(0.75) + (0.074-0.045)(0.25)(1.0) + (0.31-0.167)(0.58)(1.4)(0.15)(0.75) \right\} (0.54)(0.125)(0.1475)$$

$$= 0.00023$$

- 2. Contribution through unshielded sector, $A_{z_2} A_{z_1} = 0.0573$
 - (a) Detector floor (Eqs. 7 + 9 + 11 + 12, Table A1) $c_{g} = \left\{ [0.3+0.945-0.506(0.033)] (0.415)(0.304) + 0.506(0.033)(1.0) + [0.076+0.167-0.506(0.122)](0.58)(1.4)(0.304) \right\} (0.54)(0.0573)$
 - (b) Floor above (Eqs. 13 + 15 + 16, Table Al) $C_g = \left\{ (0.074-0.045)(0.415)(0.304)(0.75) + (0.074-0.045)(1.0)(0.25) + (0.31-0.167)(0.585)(1.4)(0.304)(0.75) \right\} (0.54)(0.125)(0.0588)$ = 0.00014

Total contribution through north wall: 0.00463 + 0.00023 + 0.00318 + 0.00014 = 0.00818.

= 0.00313

Ground Contribution Through East Wall (see Fig. A2)

	W	L	Z	e	n	ω G _d (ω,3') ^a	G _s (س) ^b	G _a (ω) ^b
ω' _u	75	100	17	0.75	0.34	ა.66	0.31	0.074
w _u	75	100	7	0.75	0.14	0.85	0.167	0.045
ω _a	75	100	5	0.75	0.10	0.895	0.122	0.033
ωL	75	100	3	0.75	0.06	0.936 0.30	0.076	
$\omega_{\mathbf{L}}^{"}$	75	100	.818	0.75	0.016	0.983 0.11.		
2w _s	200	300	3	0.667	0.02	$w_s = 0.977/2 =$	0.489	

a. Chart 6.

$$B_e(50,3') = 0.304$$
 (Chart 2)
 $B_e(0,3') = 1.0$ (Chart 2)
 $S_w(50) = 0.585$ (Chart 7)
 $B_o'(35) = 0.125$ (Chart 1)
 $B_{ws}(.489,50) = 0.199$ (Chart 9)
 $E(.75) = 1.4$ (Chart 8)
 $A_p = 0.35$
 $P_a = 0.7$
 $B_i(25) = 0.54$ (Chart 1)

1. Contribution through shielded sector, A₂₁ = 0.135

(a) Detector floor (Eqs. 8 + 10 + 11 + 12, Table A1)
$$C_{g} = \{(0.3-0.11)(0.415)(0.304) + [0.076+0.167-0.7(0.122)] (0.58)$$

$$\times (1.4)(0.199) + [0.045-0.7(0.033)] (0.415)(0.304) + 0.7(0.033)$$

$$\times (1.0) \} (0.54)(0.135) = 0.00328$$

b. Chart 5.

Fig. A2. Geometry for Calculating Ground Contribution Through East Wall.

(b) Floor above (Eqs.
$$1^{l_1} + 15 + 16$$
, Table A1)

$$c_g = \{(0.074-0.045)(0.415)(0.304)(0.65) + (0.074-0.045)(1.0)(0.35) + (0.31-0.167)(0.585)(1.4)(0.199)(0.65)\} (0.125)(0.54)(0.135) = 0.00025$$

- 2. Contribution through unshielded sector, $A_{z_2} A_{z_1} = 0.16$
 - (a) Detector floor (Eqs. 7 + 9 + 11 + 12, Table Al)

$$C_{g} = \{ [0.3+0.045-0.7(0.033)] (0.415)(0.304) + 0.7(0.033)(1.0) + [0.076+0.167-0.7(0.122)] (0.58)(1.4)(0.304) \} (0.54)(0.16)$$

$$= 0.00887$$

(b) Floor above (Eqs. 13 + 15 + 16, Table A1)

$$C_g = \{(0.074-0.045)(0.415)(0.304)(0.65) + (0.074-0.045)(1.0)(0.35) + (0.125)(0.58)(1.4)(0.304)(0.65)\}$$

$$= 0.00038$$

Total contribution through east wall:

$$0.00548 + 0.00025 + 0.00817 = 0.01498$$

Ground Contribution Through South Wall (see Fig. A3)

Parameters and functions:

	W	L	Z	е	n	w G _d ((w,7') ^b	G _s (ω) ^ε	_ع (س) ^ع	G _d (ω,11') ^b
w'i	75	100	17	0.75	0.34	0.66	-	0.31	0.074	
ω _u	75	100	7	0.75	0.14	0.85	-	0.167	0.045	
wa	75	100	5	0.75	0.10	০.৪৩়	-	0.122	0.033	
$\omega_{\mathbf{L}}$	75	100	3	0.75	0.06	0.936	0.20	0.076	-	
ωĽ	75	100	11	0.75	0.22	0.77		0.245		0.47
$\omega_{\mathbf{L}}^{\mathbf{L}}$	75	100	7	J.75	0.14	0.85				0.35
ω _b	75	100	10	0.75	0.20	0.80	0.43	0.215		
2w _s	10	60	11	0.1667	0.366	w _s = 0	.26/2 =	0.13		
۶ عسع	10	60	7	0.1667	0.233	$w_s^i = 0$.40/2 =	0.20		

$$B_{e}(60',7') = 0.20 \qquad (Chart 2)$$

$$B_{e}(50,7') = 0.26 \qquad (Chart 2)$$

$$B_{e}(0.7') = 0.88 \qquad (Chart 2)$$

$$B_{e}(60,11') = 0.18 \qquad (Chart 2)$$

$$B_{e}(0,11') = 0.8 \qquad (Chart 2)$$

$$S_{w}(50) = 0.58 \qquad (Chart 7)$$

$$S_{w}(60) = 0.63 \qquad (Chart 7)$$

$$B'_{0}(35) = 0.125 \qquad (Chart 1)$$

$$E(.75) = 1.4 \qquad (Chart 8)$$

$$A_{p} = 0.30$$

$$P_{e} = 0.6$$

$$\frac{1}{2}$$

Chart 5. Chart 6.

Fig. A3. Geometry for Calculating Ground Corribution Through South Wall.

$$A_p = 0.20$$
, basement

$$B_{us}(0.13,50) = 0.005$$
 (Chart 9)

$$B_{GS}^{*}(0.20,50) = 0.0128$$
 (Chart 9)

$$B_{i}(25) = 0.546$$
 (Chart 1)

$$B_{r}(40) = 0.11$$
 (Chart 1)

- 1. Contribution through $A_{z_1} = 0.204$
 - (a) Detector floor (Eqs. 7 + 11 + 9 + 12, Table A1)

$$c_{g} = \{[0.2+0.045-0.6(0.033)] (0.415)(0.26) + 0.6(0.033)(0.88) + [0.076+0.167-0.6(0.122)] (0.58)(1.4)(0.26)\} (0.546)(0.204) = 0.00854$$

(b) Floor above (Eqs. 13 + 15 + 16, Table Al)

$$c_g = \{(0.074-0.045)(0.415)(0.26)(0.7) + (0.074-0.045)(0.88)(0.3) + (0.31-0.167)(0.585)(1.4)(0.26)(0.7)\} (0.546)(0.126)(0.204) = 0.00043$$

- 2. Contribution through Az = 0.140
 - (a) Areaway sources
 - (1) Direct

$$c_{g} = [G_{d}(w'_{L},11') - G_{d}(w''_{L},11')][1 - S_{w}(X_{e})] B_{e}(60,11')$$

$$\times B_{f}(X_{f})A_{z_{2}} = (0.47-0.35)(0.37)(0.18)(0.11)(0.140)$$

$$= 0.00012$$

(2) Scatter

$$C_{g} = [G_{s}(\omega_{L}') - G_{s}(\omega_{L})] S_{\omega}(X_{e}) E(e) B_{\omega s}(\omega_{s}, X_{e}) B_{f}(X_{f}) A_{z_{2}}$$

$$= [0.245 - 0.076](0.63)(1.4)(0.005)(0.11)(0.140)$$

$$= 0.000012$$

- (b) For infinite field sources
 - (1) Direct

$$C_{g} = \left\{ [G_{d}(\omega_{b}, 7') - G_{d}(\omega_{L}, 7')][1 - S_{\omega}(X_{e})] B_{e}(60, 7') B_{f}(X_{f}) \right.$$

$$\times (1 - A_{p}) + [G_{d}(\omega_{b}, 7') - G_{d}(\omega_{L}, 7')] B_{e}(0, 7') A_{p} \right\}$$

$$\times B_{f}(X_{f}) A_{z_{2}}$$

$$C_{g} = \left\{ (0.43-0.20)(0.37)(0.2)(0.7) + (0.43-0.20)(0.88)(0.3) \right\}$$

$$\times (0.126)(0.140) = 0.00112$$

(2) Scatter

$$C_{g} = [G_{s}(\omega_{b}) - G_{s}(\omega_{L})] S_{\omega}(X_{e}) E(e) B_{\omega s}(\omega_{s}', X_{e}) B_{f}(X_{f}') A_{2}$$

$$= (0.215-0.076)(0.63)(1.4)(0.0128)(0.11)(0.140)$$

$$= 0.000024$$

Total contribution through south wall:

0.00854 + 0.00043 + 0.00012 + 0.000012 + 0.00112 + 0.000024 = 0.01024

Ground Contribution Through West Wall (see Fig. A4)

Parameters and functions:

	W	L	Z	е	n	w G _d	(w,3') ^a	G _s (w) ^b ($\mathbf{g}_{\mathbf{a}}(\mathbf{w})^{\mathbf{b}}$
w'u	75	100	17	0.75	0.34	0.66		0.31	0.074
ω _u	75	100	7	0.75	0.14	0.85		0.167	0.045
ω _a	75	100	5	0.75	0.10	0.895		0.122	0.033
$\omega_{\mathbf{L}}$	75	100	3	0.75	0.06	0.936	0.30	0.076	
$\omega_{\rm L}^{"}$	75	100	1.8	0.75	0.036	0.962	0.195		
2w _s	50	150	3	0.333	0.04	$w_s = 0.9$	92/2 = 0	.46	

a. Chart 6.

$$B_e(60,3') = 0.238$$
 (Chart 2)
 $B_e(0,3') = 1.0$ (Chart 2)
 $S_w(60) = 0.63$ (Chart 7)
 $B_0'(35) = 0.125$ (Chart 1)
 $B_{ws}(0.46,60) = 0.109$ (Chart 9)
 $E(0.75) = 1.4$ (Chart 8)
 $A_p = 0.40$
 $P_a = 0.8$
 $B_1(25) = 0.54$ (Chart 1)
 $A_{21} = 0.295$

1. Detector floor (Eqs. 8 + 10 + 11 + 12, Table A1)

b. Chart 5.

ORNL-DWG 68-7132

Fig. A^4 . Geometry for Calculating Ground Contribution Through West Wall.

$$c_{g} = \{(0.3-0.195)(0.37)(0.238) + [0.076+0.167-0.8(0.122)] (0.63)$$

$$\times (1.4)(0.109) + [0.045-0.8(0.033)] (0.37)(0.238)$$

$$+ 0.8(0.033)(1.0)\} (0.5\%)(0.295) = 0.00816$$

2. Floor above (Eqs. 14 + 15 + 16, Table Al)

$$c_{g} = \{(0.074-0.045)(0.37)(0.238)(0.6) + (0.074-0.045)(1.0)(0.4) + (0.31-0.167)(0.63)(1.4)(0.109)(0.6)\} (0.54)(0.295)(0.125)$$

$$= 0.00043$$

Total contribution through west wall:

$$0.00816 + 0.00043 = 0.00859$$

Overhead Contribution (see Fig. A5a)

The overhead contribution consists of that from the 30-ft high setback and the 50-ft high main roof. These contributions may be found to using the fictitious building concept.

The setback contribution, which is the contribution from the shaded area C_{Ol} (see Figs. A5b and c) in the actual building, is obtained by subtracting out the contribution of the unshaded area from that obtained for the entire roof of the fictitious building.

$$X_{o} = 120 \text{ psf}$$
 $B_{i}(X_{i}) = B_{i}(25) = 0.43$ (Chart 1)

 $w_{o} = w(\frac{75}{100}, \frac{2(27)}{100}) = 0.50$ (Chart 3)

 $w_{o}' = w(\frac{25}{50}, \frac{2(27)}{50}) = 0.19$ (Chart 3)

ORNL-DWG 68-7133

Fig. A5. Geometry for Calculating Overhead Contribution (Setback).

$$C_o(w_o, 120) = 0.0106$$
 (Chart 4)
 $C_o'(w_o', 120) = 0.0058$ (Chart 4)
 $C_{o1} = (0.6) [C_o(w_o, 120) - C_o(w_o', 120)] B_i'(X_i')$
 $= (0.6) [0.0106-0.0058] (0.43) = 0.00124$

The contribution from the main roof is more difficult to calculate. Referring to Fig. A5a, partition A lies over the detector and extends from the fourth floor to the roof; hence, it may be neglected. Partition B extends from the first floor to the fourth floor and has a little more effect, but it still is too small to warrant the added complexity of including it. The only partition which affects the main roof contribution significantly is partition C, which shields the contribution from the shaded area C_{O2} (see Figs. A6a and b). This contribution is obtained by subtracting the unshaded area from the total for the fictitious the contribution and proportioning on an area basis:

$$\lambda_o = 180 \text{ psf}$$
 $B_1'(25) = 0.43$ (Chart 1)

 $\omega_o = \omega \left(\frac{75}{100}, \frac{2(41)}{100}\right) = 0.30$ (Chart 5)

 $\omega_o' = \omega \left(\frac{50}{75}, \frac{2(47)}{75}\right) = 0.19$ (Chart 3)

 $C_o(0.30,180) = 0.0021$ (Chart 4)

 $C_o'(0.19,180) = 0.0016$ (Chart 4)

 $C_{o2} = (0.0021-0.0016)(0.43) \frac{(25)(50)}{(75)(25)} = 0.00014$

The remaining portion from the main roof (see Figs. A6c and d) is straightforward:

Fig. A6. Geometry for Calculating Overhead Contribution (Main Roof).

(c)

$$X_{o} = 180$$
 $B_{i}(X_{i}) = B_{i}(25) = 0.43$ (Chart 1)

 $w_{o} = w \left(\frac{50}{75}, \frac{2(47)}{75}\right) = 0.19$ (Chart 3)

 $C_{o}(0.19,180) = 0.0016$ (Chart 4)

 $C_{o3} = C_{o}(0.19,180) \frac{(50)(50)}{(75)(50)} = (0.0016)(0.667) = 0.00106$

The total overhead contribution to the reduction factor from both the main roof and the setback is:

$$c_0 = c_{01} + c_{02} + c_{03} = 0.00124 + 0.00014 + 0.00106 = 0.00244$$

Total Protection Factor for the First Floor

R.F. = North Wall Contribution + East Wall Contribution + South Wall

Contribution + West Wall Contribution + Overhead Contribution

= 0.00818 + 0.01498 + 0.01024 + 0.00859 + 0.00244 = 0.0444

or

P.F. = 23

Security Classification							
DOCUMENT CONT							
(Security closellication of title, body of abottoct and indexing a 1. ORIGINATING ACTIVITY (Corporate author)	mnototien aust be e		everall report to closelfied) CURITY CLASSIFICATION				
The state of the s							
Oak Ridge National Laboratory		ab. shoup	assified				
3. REPORT VITLE		<u>.</u>	·····				
A Comparison of the Building Protection 1	Factor Codes	CAPS-2 and	d PF-COMP				
4. DESCRIPTIVE NOTES (Type of report and Instrumentation) Final	l Report						
8- AUTHORRIS (Piret rame, middle initiel, last near)	·····						
M. L. Gritzner and P. N. Stevens							
July, 1968	74. TOTAL NO. 0	PARES	TE NO. OF REFS				
DE CONTRACT OR SEANT NO.	SO. ORIFINATOR'S	REPORT MUM	ER(S)				
OCD order no. DAHC20-67-W-0138	ORNL-TM	-2285					
	Shie report)	RT HO(S) (Asy of	her resident that may be dealighted				
4							
This document has been approved for public unlimited.	lic release	and sale;	its distribution				
II. SUPPLEMENTARY NOTES	12. SPONSORING 1	PLITARY ACTIV	ntr				
	Office of	Civil Def	ense				
II. JISTRACT		n, D. C.	tary of the Army 20310				
	m cam	0470 0 0-					
The relative merits of two computer codes, if allout protection factors for shelter area results with those from hand calculations be building types were considered. For protect PF-COMP code was found to yield values that values, while the CAPS-2 code gave results calculated values. For protection factors were within -41 to +364 and the CAPS-2 code calculated values. Base on these calculational PF-COMP code may be used for multiple-st the better code and it is recommended that with low protection factors (about 20 cm legislations).	s were investased on the tion factors were within that were wigreater than results were ions, along tory buildinthe CAPS-2 c	tigated by Engineering the rate 115% of the 1100, the 11	comparing the code g Manual method. Five nge of 1 to 100, the he hand-calculated o +90% of the hand-PF-COMP code results 10 to +58% of the handelative ease with which compare the code is deemed tricted to structures				
DD FOR 1473 REPLACES DO FORM 1475, 1 JAM OL, W	RINCH 10		····				

Society Classification						
14. KEY BORDS	1,100			K 0	LIM	
	ROLE	97	ROLE	WT	ROLE	WT
Engineering Manual Method						
Fallout Shelter Design						
Shielding Code ?F-COMP						
Shielding Code CAPS-2						
-						
				! !		
•	•					
						•
i						
·						

Sameter Canadanata