

Universidad Privada de Tacna

Escuela Profesional de Ingeniería de Sistemas

MysqL Query Browser

Resumen

¿Qué es una Base de Datos?

- Conjunto de datos de la empresa memorizado en un ordenador, que es utilizado por numerosas personas y cuya organización está regida por un modelo de datos (Flory, 1982).
- De manera mas técnica, una base de datos es un conjunto de varios tipos de datos organizados e interrelacionados (Elmarsi, R, Navathe S.B.1989).
- A manera de teoría de conjuntos, es un conjunto de datos de diferentes ámbitos, organizados sistemáticamente, es decir, siguen ciertas reglas.
- Colección no redundante de datos que son compartidos por diferentes programas de aplicación (Howe, 1983).

Definición de Manejador de Bases de Datos

Un manejador de base de datos, conocido con las siglas SGBD – Sistema Gestor de Base de Datos o en ingles DBMS – Database Manager System, es un software que actúa como interfaz entre los datos almacenados en forma binaria en una base de datos y el usuario que desea manejar tales datos.

Definición de Manejador de Bases de Datos

Los Sistemas Gestores de Bases de Datos son un tipo de software muy específico, dedicado a servir de interfaz entre la Base de datos y el usuario, las aplicaciones que la utilizan. Se compone de un lenguaje SQL.

Cliente

Aplicación Cliente

Resultados-Datos

Petición SQL

Sistema Administrador de Base de Datos

Componentes de una Base de Datos

Bases de Datos Comerciales

Base de Datos Comerciales

Bases de Datos Libres

Herramientas

Servidores

SQL – Lenguaje de Base de Datos

SQL. Es el lenguaje estándar para el manejo de base de datos. **SQL - Structured Query Language.**

SQL se divide en dos Sub-lenguajes.

<u>DDL (Data Definition Language).</u> Lenguaje para la definición de objetos de la base de datos. Agrupa a las operaciones **CREATE DATABASE**, **CREATE TABLE**, **CREATE INDEX** ETC...

<u>DML (Data Manipulation Language).</u> Lenguaje para la manipulación de datos agrupa a las operaciones **SELECT**, **INSERT**, **UPDATE** y **DELETE**.

Objetos de una Base de Datos

Las bases de datos están compuestas básicamente por 6 objetos: Tablas, Vistas, Funciones, Índices, Procedimientos almacenados y Trigger

Base de datos

Objeto: Tabla

Las **tablas** son los objetos principales de una base de datos, pues **son la estructura Física donde se almacenan los datos.** Las tablas contienen **registros** los cuales contienen **campos**.

TABLA

Objeto: Vistas

Las **vistas** son tablas derivadas de otras tablas (básicas o virtuales),Las vistas contienen **registros** los cuales contienen **campos**.

Introducción a SQL

Definiendo Objetos de una base de datos (DDL)

Introducción a SQL

Sintaxis

CREATE DATABASE NOMBRE_BASE

Ejemplos: crear una base llamada "BasePrueba":

CREATE DATABASE BasePrueba

Crear una base de datos llamada "Base_Tres"

CREATE DATABASE BaseTres

Importante.

Los nombres de las base de datos y así como también los nombre de las tablas de la base de datos no deben contener espacios en blanco.

Introducción a SQL

Sentencia CREATE TABLE. Construye una tabla

```
CREATE TABLE nombreDeTabla (
                                         Campo1 tipo de dato,
                                         Campo2 Tipo de dato,
                                         Campo2 Tipo de dato,...
Ejemplo:
          CREATE TABLE TABLA1 (
                                        Campo1 int,
                                        Campo2 int,
                                        Campo3 char(3)
          CREATE TABLE Proveedores (
                                          ClaveProveedor int,
                                          Nombre char(40)
```

Sintaxis

Modelado

Al hacer el análisis se elabora un diagrama que describa la tabla.

Modelado

Tabla Alumnos Modelo Lógico

Alumnos

Matricula

Nombre
Apellidos
Fecha_Nac
Telefono
Direccion

Pasamos del modelo lógico al modelo Físico

Tabla Alumnos Modelo Físico

Alumnos

Matricula: int

Nombre: char(20)

Apellidos: varchar(50)

Fecha_Nac: datetime

Telefono: char(18)

Direccion: text

Implementación del Modelo

Tipos de datos

Tipos de datos para los

campos de una Tabla

Tipos de datos. CADENA DE CARACTERES

CHAR. Cadena de caracteres de longitud fija.

Sintaxis.

Nombre_Campo CHAR (Numero de caracteres)

Ejemplos.

```
ClaveEmp CHAR(4) => '55JR', 'FFF1', '0001'
Telefono CHAR(10) => '5510174536', '5556581213'
```

ClaveEmp CHAR(4) => '5JR', '00F', '01' - - datos aceptados

ClaveEmp CHAR(4) => '550JR' -- El dato es truncado a '550J' -- pero es insertado.

Tipos de datos. CADENA DE CARACTERES

Nom CHAR (10)

Nom VARCHAR (10)

Nom CHAR (10) => 'Eva'

Nom VARCHAR (10) => 'Eva'

Nota:

El limite, para CHAR Y VARCHAR es de 8 000 caracteres

Tipos de datos. CADENA DE CARACTERES

TEXT. Cadenas de caracteres de "longitud ilimitada". A diferencia de los tipos **CHAR** y **VARCHAR**, este tipo de dato no se puede descomponer en caracteres individuales para su análisis.

Sintaxis.

Nombre_campo TEXT

Ejemplo.

Descripcion TEXT => 'Mesa color caoba oscura, para 8 personas'

Direccion TEXT => 'San Rafael Atlixco, numero 186 Col Vicentina C.P. 09340 México D.F. '

Nota.

El tamaño limite de este tipo de dato es de 2,147,483,647 caracteres.

Tipos de datos. NUMERICOS

Tipo	Rango	Espacio para alamcenamiento
BIGINT	de 0 a 18.446.744.073.709.551.615 UNSIGNED	8 bytes
INT	-2.147.483.648 a 2.147.483.647 (SIGNED) ; de 0 a 4.294.967.295 (UNSIGNED) ;	4 bytes
SMALLINT	de 32.768 a 32.767 (SIGNED) ; de 0 a 65,535 (UNSIGNED) ;	2 bytes
TINYINT	de -128 a 127 (SIGNED), de 0 a 255 (UNSIGNED)	1 byte
BIT	de -128 a 127 (SIGNED) , de 0 a 255 (UNSIGNED)	1 byte

Tipos de datos. NUMERICOS REALES

Tipo	Rango	Espacio para almacenamiento	
Double,	-1.797 E+308 y -2.225E-308	4 bytes	
Real	2.225 E-308 y 1.797E+308		
Float	-3.402E+38 y -1.175E-38,	8 bytes	
	1.175E-38 y 3.402E+38		
Decimal	-1,79769313486231 57E+308 a -2,22507385072014E-308	Un numero decimal almacenado como una cadena, con un byte de espacio para cada Caracter.	
DEC	0	Similar a decimal	
NUMERIC FIXED	2,2250738585072014E-308 a 1,79769313486231 57E+308		

Tipos de datos. NUMERICOS REALES

Ejemplo 1.

- -- Creacion de la tabla de registro de produccion de
- -- liquisos de limpieza de la fabrica "X".

```
CREATE TABLE liquidosLimp

(
CveProd INTEGER, -- Denota el identifiocador unico para cada producto
Con_Neto_Lab FLOAT, -- Denota el contenido neto el producto en el Laboratorio
Con_Neto_Dist DECIMAL (8,2) -- Denota el contenido neto el producto para el cliente
):
```

Tipos de datos. DECIMAL

Permite definir cuantas cifra decimales aparecen después del punto en datos fraccionales.

Sintaxis:

Nombre_Campo **DECIMAL** (N, d)

donde:

N es el total de dígitos del dato.

d es el numero de cifras decimales que aparecerán en el campo

Ejemplo

896.25 = DECIMAL(5,2)

2003.2569 => DECIMAL (8,4)

Nota:

Si el numero de cifra totales insertadas es mayor que el numero de cifras totales declaradas, el manejador trunca el dato en cuestion.

Tipos de datos. FECHA Y HORA

Tipo	Descripción	Rango	Formato almacenamiento
Date	almacena una fecha	1 de enero del 1001 al 31 de diciembre de 9999	AAAA-DD-MM
DateTime	Almacena fecha y hora	de enero 1001 a las 0 horas, 0 minutos y 0 segundos a 31 de diciembre del 9999 a las 23 horas, 59 minutos y 59 segundos	AAAA-DD-MM HH:MI:SS
Time	almacena un datos de hora	-838 horas, 59 minutos y 59 segundos a 838, 59 minutos y 59 segundos	HH:MM:SS

INSERT INTO

Sintaxis 1: Esta sintaxis se utiliza cuando se van a escribir datos en **TODOS** los campos de una tabla.

```
INSERT INTO Nom_Tabla VALUES (dato1, dato2, dato3,...);
```

Nota.

Debe haber tantos datos como campos en la tabla y los datos deben ser proporcionados en el orden en el que aparecen los campos en la tabla

Ejemplo 1:

```
-- Suponiendo que tenemos la declaración de una tabla como la siguiente:
```

```
CREATE TABLE Ventas (
IDPedido INT,
ClaveEmpleado INT NOT NULL,
Cliente VARCHAR (40) NOT NULL
);
```

INSERT INTO Ventas VALUES (2025, 30, 'Saenz');

INSERT INTO valores en todos los campos

Sintaxis 1:

INSERT INTO Nom_Tabla (Campo1, Campo2, Campo3,...) VALUES (dato1, dato2, dato3,...)

Ejemplo 1:

Suponiendo que tenemos la declaración de una tabla como la siguiente:

CREATE TABLE Aspirantes (IdAspirante INT NOT NULL,
Nombre VARCHAR (35) NOT NULL,
Experiencia TEXT NULL);

INSERT INTO Aspirantes (IDAspirante, Nombre, Experiencia) VALUES (2025, Karla, 'Ibope Administador de proyectos');

INSERT INTO valores en algunos campos

Sintaxis 2: Esta sintaxis se utiliza cuando **NO** se va a escribir datos en **TODOS** los campos de una tabla.

INSERT INTO Nom_Tabla (Campo1, Campo2, Campo3,...) VALUES (dato1, dato2, dato3,...)

Ejemplo 1:

-- Suponiendo que tenemos la declaración de una tabla como la siguiente:

```
CREATE TABLE Ventas (IDPedido INT PRIMARY KEY,
ClaveEmpleado INT NOT NULL,
Cliente VARCHAR (40) NOT NULL,
```

FechaVenta DATE NULL);

INSERT INTO Ventas (IDPedido, ClaveEmpleado, Cliente) VALUES (2025, 30, 'Saenz');

Constraint "PRIMARY KEY" o Clave primaria

Una clave primaria son uno o mas campos que identifican de manera única a cada una de las filas de una tabla.

Si la clave primaria es un solo campo este debe cumplir con las siguientes condiciones: su valor es único y no vacíos para cada fila o registro.

```
Sintaxis 1. Clave Primaria simple - Un solo campo como clave primaria -
```

```
create table Nom_Tabla (Campo1 TIPO,
```

Campo2 TIPO, Campo3 TIPO, PRIMARY KEY (Campo1))

```
Sintaxis 2. Clave primaria Compuesta - Dos o mas campos -
```

```
create table Nom_Tabla (Campo1 TIPO,
```

Campo2 TIPO,
Campo3 TIPO,
PRIMARY KEY (Campo1, Campo2))

Definición foreign key

Una Restricción **FOREIGN KEY** o también conocida como **Ilave externa**, es una columna o combinación de columnas que se utiliza para establecer y exigir un vínculo entre los datos de dos tablas.

La restricción **Foreign key** genera un vinculo entre dos tablas, de las cuales a una de ellas se le denomina **Tabla Padre** y a la otra **Tabla Hijo**.

Constraint Foreign key

Genera una restricción a partir de la relación de dos tablas.

En la figura siguiente se muestra un caso de aplicación de una restricción FOREIGN KEY, en la cual una venta registrada en la tabla "Ventas" Contiene la clave de un producto que obligadamente debe aparecer en la tabla de productos, con esto nos aseguramos que se realicen ventas de los productos que se ofrecen.

Productos

ClaveProducto	NombreProducto	PrecioUnitario
2021	Producto 1	10.22
2022	Producto 2	100.25
2023	Producto 3	10.50
2024	Producto 4	11.00
2025	Producto 5	15.00
2026	Producto 6	89.45
2027	Producto 7	80.00
2028	Producto 8	12.00
2029	Producto 9	25.00

Ventas

ClaveVenta	Cliente	ClaveProducto	Cantidad
10025	Cliente 1	2021	5
10025	Cliente 1	2022	6
10025	Cliente 1	2029	78
10026	Cliente 2	2027	45
10027	Cliente 3	2023	1
10028	Cliente 4	2021	2
10029	Cliente 5	2028	3
10029	Cliente 5	2021	45
10029	Cliente 5	2029	71

Verifica que la cive de producto este en la tabla productos

Definición Foreign key

Sintaxis:

CREATE TABLA Tabla_Padre (Campo1 tipoX PRIMARY KEY,
Campo2 tipoY,
Campo3 tipoZ)

Sintaxis

CREATE TABLA Tabla_Hijo (Campo11 tipoA,

Campo1 tipoX,

Campo12 tipoB,

FOREIGN KEY (Campo1) REFRERENCES T1 (Campo1))

Reglas para generar una FOREIGN KEY:

- La tabla a la que se hace referencia debe existir antes de crear la tabla que contiene la FOREIGN KEY. Además debe tener un campo definido como PRIMARY KEY
- Los campo PRIMARY KEY en la primera tabla y FOREIGN KEY en la segunda tabla, deben ser del mismo tipo, pero no necesariamente el mismo nombre.

Comsultas - Querys

Consultas - Querys

La sentencia SELECT

Sentencia SELECT

La sentencia **SELECT** permite consultar la información contenida en una o varias tablas.

Sintaxis 1.

SELECT * **FROM** Tabla

Donde:

SELECT. Indica que se muestra información

FROM. Indica de donde provienen esa Información.

Esta sintaxis Muestra Todo el contenido de la tabla mencionada después de la cláusula FROM.

Muestra todas las Columnas y todos los registros contenidos en la tabla

Sentencia SELECT - Columnas seleccionadas

Si se desea realizar una consulta que muestre determinadas columnas, se debe de seguir la siguiente sintaxis.

Sintaxis 2.

SELECT Columna1, Columna3, Columna 25,...

FROM Tabla

Donde:

Columna1, Columna3 y Columna25. Son Columna de la tabla mencionada después de la cláusula FROM.

Las Columnas no necesariamente son adyacentes.

Pueden listarse solo algunas o todas la columna de la tabla, lo cual seria equivalente a colocar un asterisco (*)

Sentencia SELECT - Columnas seleccionadas

SELECT * FROM Alumnos

Matricula	Nom	App	Tel	Direc	Status	Sexo	FecNac
993248	GABRIEL	CERVANTES JIMENEZ	56564714	Via Ludovico il Moro 22	1	M	1982-09-30
993251	FELIPE	RODRIGUEA ACOSTA	15475926	Rue Joseph-Bens 532	1	M	1981-02-02
993254	LORENA	SANCHES VARGAS	14253689	43 rue St. Laurent	1	F	1985-05-23
993257	JUAN CARLOS	CRUZ CRUZ	55663322	Heerstr. 22	1	M	1982-05-29
993260	CARLOS	MORA RAMIRO	55887415	South House 300 Queensbridge	1	M	1982-08-16
993263	IGNACIO	RAMIREZ ALTAMIRANO	59784512	Ing. Gustavo Moncada 8585 P	1	M	1981-10-10

SELECT Matricula, Nom, App FROM Alumnos

Matricula	Nom	App
993248	GABRIEL	CERVANTES JIMENEZ
993251	FELIPE	RODRIGUEA ACOSTA
993254	LORENA	SANCHES VARGAS
993257	JUAN CARLOS	CRUZ CRUZ
993260	CARLOS	MORA RAMIRO
993263	IGNACIO	RAMIREZ ALTAMIRANO
993266	JUAN JOSE	ALFARO RODRIGUEZ
993269	MARIA	GOMEZ CEDEĐO
993272	SARA	CUMBERAS AGULAR
993275	CARMEN	RAMIREZ DIAZ

Generando ALIAS para las Columnas

En ocasiones cuando se realiza una consulta hacia una tabla, el encabezado de las columnas no son muy descriptivas, o por el contrario el nombre del encabezado es bastante largo, etc. Cuando se presentan caso como estos, se puede asignar un ALIAS a las columnas de las consulta.

Sintaxis

SELECT ColumnaX AS AliasColumnaX,
ColumnaY AS AliasColumnaY

FROM Tabla

Si el alias contiene espacios en blanco se debe de agrupar entre Comillas (" ").

Sintaxis

SELECT ColumnaX AS "Alias ColumnaX",

ColumnaY AS "Alias ColumnaY"

FROM Tabla

ALIAS para las Columnas - Ejemplo

SELECT Nom, app, Sexo **FROM** Alumnos

Nom	арр	Sexo
GABRIEL	CERVANTES JIMENEZ	M
FELIPE	RODRIGUEA ACOSTA	M
LORENA	SANCHES VARGAS	F
JUAN CARLOS	CRUZ CRUZ	M
CARLOS	MORA RAMIRO	M
IGNACIO	RAMIREZ ALTAMIRANO	M
JUAN JOSE	ALFARO RODRIGUEZ	M

SELECT Nom AS Nombre, app AS "Apellidos", Sexo AS "Sexo del paciente" FROM Alumnos

Nombre	Apellidos	Sexo del paciente
KARINA	CRUZ CRUZ	F
GABRIEL	CERVANTES JIMENEZ	M
FELIPE	RODRIGUEA ACOSTA	M
LORENA	SANCHES VARGAS	F
JUAN CARLOS	CRUZ CRUZ	M
CARLOS	MORA RAMIRO	M
IGNACIO	RAMIREZ ALTAMIRANO	M

Clausula DISTINC

Esta sentencia es usada en una consulta para eliminar valores duplicados en una columna.

Sintaxis

SELECT DISTINCT Columna

FROM Nom tabla

Ejemplo. Consulta que muestra únicamente los puestos laborales que puede ocupar un empleado.

SELECT DISTINCT title **SELECT** title

FROM Employees FROM Employees

resultado:

title

title

Sales Representative Inside SalesCoordinator

Vice President, Sales Sales Manager

Sales Representative Sales Representative

Sales Representative

Sales Manager Vice President, Sales

Sales Representative

Sales Representative

