EXAMEN PARCIAL COMPUTACIÓN VISUAL

GRUPO	APELLIDOS Y NOMBRES			
	Bellido Suica Joseph Joey			

INDICACIONES:

- Desarrolle los problemas siguiendo las indicaciones y los métodos sugeridos.
- Plantee la solución en su hoja plantilla, de forma clara y ordenada.
- Puede utilizar el octave como herramienta de cálculo.
- Si ha usado un programa cópielo en su evaluación incluyendo los resultados que arroja.
- Sea ordenado en la solución de los problemas. Se calificará el procedimiento.
- No está permitido la copia de imágenes, todo debe de estar escrito en Word.
- Luego de terminar el examen póngale el siguiente nombre: EPCV_nombre_completo_alumno.pdf,

Problema 01. (4ptos) Se quiere discretizar una recta cuyos puntos inicial y final es (8, 10) y (15, 15). Si usamos el algoritmo de Bresenham, Calcular las coordenadas intermedias de la recta. **SOLUCIÓN:**

tjeracio Nº 1							
C feram 14							
dx = 7							
49 = 5							
d = 2x5 - 7 = 3							
de = 2x5 = 10							
CINE = 2x(5-7) = -4							
		1 1 1					
	x = 8	y=10	d=3				
	X=9	y = 11	d=3-4=1				
	V = 10	y = 12	d=-1+10=-9				
	X=11	y = 12	a=9-4=5				
	X = 12	y = 13	d = 5-4=1				
	× = 13	y=14	d=1-4=-3				
	X=14	7=14	d=-3+10=7				
	x = 15	y =15	d=7-4=3				
1							
$\sum (cordenedous = -1+9+5+1-3+7 = 18)$							
intermedius							
Wax Ball	THE STREET WAY		The Real Property lies	A DEPTH STREET			

Problema 02. (3 pto.) Si yo realizó 100 transformaciones de traslación a objeto que se ubica en (10, -10, -5): T1(1,2,1), T2(3, 4, 4), T3(5, 6, 9), ..., T100. Cuál es su equivalente de transformación de traslación T(dx, dy, dz). Dar como respuesta la suma de dx, dy, y dz . **SOLUCIÓN:**

Problema 03. (3ptos) A una circunferencia cuyo centro se encuentra en las coordenadas C(n, m), se le aplica una transformación de traslación en la dirección del vector cuya dimensión es 100u y un ángulo de -30° con respecto a la horizontal. La coordenada del centro de la circunferencia al final es C(2m, n).

SOLUCIÓN:

Problema 04. (3 ptos) Suponga un sistema de barrido RGB que debe ser diseñado empleando una pantalla de 8 pulgadas por 10 pulgadas con una resolución de 100 píxeles por pulgada en cada dirección. Si queremos almacenar 6 bits por píxel en el búfer de imagen, ¿Qué capacidad de almacenamiento (en bytes) necesitaremos para el búfer de imagen? **SOLUCIÓN:**

Problema 05. Transformar el objeto azul cuadrado de lado 1, en el objeto amarillo cuadrado de lado 0.5.

SOLUCIÓN:

Hadriz de tron sponmución pinal:

$$M = \frac{1}{2} \times R_{1} \times S_{1} \times t_{1}$$

$$M = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & +1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 57/2 & -57/2 & 0 \\ 57/2 & 57/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.5 & 0.5 & 0.7 \\ 0.5 & 0.7 & 0.7 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \sqrt{2} & -\sqrt{2} & -1 \\ 4 & 4 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \sqrt{2} & -\sqrt{2} & -1 \\ 4 & 4 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Fecha: 1/04/2022 21:06:28