Zespołowy Projekt Studencki: Gra edukacyjna sterowana potencjałami z mięśni na Piknik Naukowy

Ada Kochlewska, Cezary Paziewski, Martyna Poziomska

Sierpień 2020

Spis treści

1	Cel	projek	xtu	2
2	Wst	tęp		2
	2.1	Elektr	omiogram	2
3	Gra	ı		3
	3.1	Motyv	v	3
	3.2	Wyma	gania	3
		3.2.1	Sprzęt	3
		3.2.2	Oprogramowanie i uruchomienie	4
	3.3	Imple	nentacja	4
		3.3.1	Interfejs	5
		3.3.2	Logika	5
		3.3.3	Optymalizacja	8
4	Pod	lsumov	vanie	8
5	Pod	lział ol	powiązków w zespole	9

1 Cel projektu

W ramach projektu stworzono prostą grę edukacyjną, którą można pokazywać na wydarzeniach popularno-naukowych. Gra sterowana jest za pomocą sygnałów z mięśni i polega na przyporządkowaniu spadającego obiektu do odpowiedniej klasy. Gra przeznaczona jest dla osób w wieku 3+, a główną grupą docelową są osoby na etapie edukacji przedszkolnej i wczesnoszkolnej.

2 Wstęp

2.1 Elektromiogram

Elektromiogram (EMG) jest sygnałem elektro-fizjologicznym pochodzącym z mięśni szkieletowych [1]. Jego amplituda wynosi od kilkudziesięciu μV do 10 mV, a zakres częstości mieści się od 2 do 5000 Hz. Największą energię osiąga dla pasma w zakresie od 50 do 150 Hz [2].

Mięśnie poprzecznie prążkowane (szkieletowe) zbudowane są z włókien mięśniowych (miocytów). Cechą charakterystyczną tych komórek jest posiadanie wielu jąder komórkowych oraz naprzemienne ułożenie jasnych i ciemnych prążków. Cienkie prążki zbudowane są z aktyny a grube z miozyny. Włókno mięśniowe zbudowane jest z wielu miofibrylów, podzielonych na sarkomery. W skład jednego sarkomeru wchodzi połowa prążka I, prążek A oraz połowa następnego prążka I. Końce sarkomeru wyznaczają dyski Z. Po środku prążka A, w czasie rozluźnienia mięśnia znajduje się prążek H. Obejmuje on miejsce, w którym są filamenty miozynowe, a nie ma aktynowych [3]. Budowę mięśnia przedstawiono na Rysunku 1.

Rysunek 1: Budowa włókna mięśniowego z zaznaczonymi podziałami na prążki [4].

Impuls elektryczny wysyłany przez neurony do mięśnia rozchodzi się radialnie do środka komórki [5]. Dzieje się tak, ponieważ sygnał podróżując wzdłuż błony włókna mięśniowego wpada do kanalików T, które otaczają włókno mięśniowe. Pojawienie się w nich sygnału powoduje uwolnienie jonów Ca²⁺ z siateczki sarkoplazmatycznej i w rezultacie wywołanie skurczu mięśnia [6]. Tak długo jak długo wapń utrzymuje się w środku komórki, mięsień będzie się kurczył i rozkurczał [7]. W czasie skurczu filamenty miozynowe i aktynowe coraz bardziej się na siebie nakładają, co powoduje zanikanie prążka I oraz H. Schemat skurczu i rozluźnienia mięśnia przedstawiono na Rysunku 2.

Podczas silnego skurczu mięśnia pobudzona jest większa ilość jednostek motorycznych (neuronu wraz z unerwianymi włóknami mięśniowymi), co powoduje wyraźne wzmocnienie sygnału [7]. Różnica w

Rysunek 2: Schemat skurczu i rozkurczu mięśnia. Na górze przedstawiono ułożenie filamentów miozyny i aktyny, gdy mięsień jest rozluźniony. Na dole natomiast ułożenie filamentów w czasie skurczu mięśnia. Wyraźnie widać skracanie się prążka I oraz H podczas napięcia mięśnia [8].

amplitudzie sygnału zmierzonego podczas rozluźnienia mięśnia a jego skurczu jest wyraźnie widoczna. Oba sygnały pokazano na Rysunku 3. Sygnał zbierany był za pomocą elektrody bipolarnej z mięśnia dwugłowego ramienia.

3 Gra

Stworzono prostą grę edukacyjną, którą można pokazywać na wydarzeniach popularno-naukowych. Gra sterowana jest za pomocą sygnałów z mięśni. Polega ona na przyporządkowaniu spadającego obiektu do odpowiedniej klasy. Gra przeznaczona jest dla osób w wieku 3+, ale główną grupą docelową są osoby na etapie edukacji przedszkolnej i wczesnoszkolnej. Implementacja gry pozwala na łatwą zmianę tematyki gry i dostosowanie jej do innych wydarzeń promujących naukę. Osiąga się to, zmieniając grafikę, a logika oraz interfejs użytkownika pozostają bez zmian.

3.1 Motyw

Grę początkowo tworzono na Piknik Naukowy 2020 o temacie "Klimat i My", dlatego jej tematyką jest segregacja śmieci, która jak wiadomo jest obecnie ważnym elementem w dbaniu o przyszłość Ziemi. Gra polega na trafieniem spadającym śmieciem do odpowiedniego kolorystycznie kosza na śmieci. Klasyfikację śmieci sporządzono na podstawie wytycznych dla Warszawy [9]. Śmieci przyporządkowano do pięciu głównych kategorii: papieru (niebieski), metali i tworzyw sztucznych (żółty), szkło (zielony), bio (brązowy) oraz odpadów zmieszanych (czarny).

3.2 Wymagania

3.2.1 Sprzęt

Pomiar sygnału odbywa się za pomocą wzmacniacza TMSI Porti. Dwie elektrody należy umieścić na początku i końcu wybranego mięśnia np. przedramienia. Mięsień ten zostanie wykorzystany do sterowania grą. Trzecią elektrodę uziemiającą GND umieszcza się w dowolnym innym nieprzeszkadzającym

Rysunek 3: Sygnał zmierzony za pomocą elektrody bipolarnej z mięśnia dwugłowego ramienia. Na górnym wykresie pokazano sygnał podczas rozluźnienia mięśnia, a na dolnym - w czasie skurczu. Wyraźnie widać różnice w amplitudach obu sygnałów.

miejscu. Skórę w miejscach przyklejenia elektrod należy najpierw oczyścić za pomocą alkoholu izopropylowego w celu usunięcia martwego naskórka. Wykorzystuje się dwie elektrody pomiarowe, które za pomocą montażu łączy się w elektrodę bipolarną, dzięki czemu usuwana jest znaczna część artefaktów, w tym 50 Hz z sieci elektrycznej.

3.2.2 Oprogramowanie i uruchomienie

Do uruchomienia gry potrzebny jest komputer z system Ubuntu w wersji 16 z zainstalowanym pythonem w wersji 3.6+ oraz sterownikami do wzmacniacza TMSI. Grę należy pobrać za pomocą githuba używając komendy git clone https://github.com/PaziewskiCezary/EMGgame.git. Następnie należy przejść do folderu z grą i zainstalować potrzebne moduły. Można to wykonać za pomocą komendy pip3 install -r requirements.txt. Sterownik do wzmacniacza należy zainstalować zgodnie z instrukcją w pliku sterownik_tmsi/readme.txt. Jeśli moduły zostały zainstalowane oraz system rozpoznaje wzmacniacz to grę można uruchomić komendą python3 game.py.

Istnieje również możliwość zagrania w grę, używając do sterowania strzałek z klawiatury zamiast siły mięśnia. Wersja ta nie wymaga podłączenia wzmacniacza. Gra posiada szereg opcji konfiguracyjnych, które można podać przy uruchomieniu:

- --keyboard → sterowanie za pomocą klawiatury
- --lifes int → zmiana liczby żyć
- --name str → domyślna nazwa gracza
- --not-full → tryb niepełnoekranowy

3.3 Implementacja

Gra napisania w języku Python z wykorzystaniem biblioteki pygame, otwarto-źródłowej biblioteki pozwalającej na tworzenie multimedialnych aplikacji takich jak gry [10]. Skorzystano również z modułu

pygame_textinput stworzonej przez Silasa Gyger'a jako dodatkowego rozszerzenia wyżej wymienionej biblioteki [11].

3.3.1 Interfejs

Stworzono interfejs użytkownika, dzięki któremu użytkownik ma dostęp do czytelnego menu, w którym może przejść do gry, sprawdzić jak wypada się na tle innych graczy oraz zakończyć działanie gry. Wygląd menu przedstawiono na Rysunku 4. Wejście w "Wyniki" powoduje wyświetlenie 10 najlepszych wyników (Rysunek 5). Jeżeli nie podano imienia w trakcie wywołania gry, po uruchomieniu pojawia się okno dialogowe, w którym użytkownik proszony jest o podanie imienia (Rys. 6). Wywołanie gry bez funkcji --keyboard przeniesie użytkownika do okna z kalibracją, w której użytkownik proszony jest o rozluźnienie, a następnie zaciśnięcie ręki. Jeden z komunikatów dotyczących tego procesu przedstawiono na Rysunku 7. Jeżeli kalibracja się nie powiedzie, gracz zostanie o tym poinformowany i automatycznie rozpocznie się ponowna próba kalibracji. Po tym procesie zostaje uruchomiona gra. Na górze ekranu użytkownik widzi liczbę punktów oraz żyć. W obecnej wersji gry w zależności od liczby żyć zmienia się tło (Rys. 8). Po zakończeniu rozgrywki pokazuje się wynik gracza oraz przycisk uruchamiający grę ponownie bez konieczności ponownej kalibracji. Wygląd okna z wynikiem pokazano na Rysunku 9.

Rysunek 4: Menu gry.

3.3.2 Logika

Działanie kodu podzielono na trzy procesy. Jeden proces obsługuje grę, a drugi wzmacniacz. Oba procesy są kontrolowane przez główny proces, który zapewnia im komunikację oraz synchroniczne zakończenie w przypadku wyłączenia gry.

Sterowanie za pomocą sygnału mięśniowego wymaga kalibracji. Proces kalibracji odbywa się w dwóch częściach, dla ręki rozluźnionej oraz dla ręki zaciśniętej. Dla obu stanów proces zbierania i obróbki danych wygląda tak samo. W ciągu 5 sekund co 0,5 sekundy pobierana jest tablica z próbkami ze wzmacniacza. Od próbek odejmowana jest ich średnia a następnie brana wartość bezwzględna. Następnie liczona jest średnia ze wszystkich próbek, która jest progiem kalibracyjnym: dla rozluźnionej ręki minimalnym, dla zaciśniętej maksymalnym. Podczas gry processing sygnału przebiega podobnie jak podczas kalibracji, z tą różnicą, że teraz średnia liczona jest tylko z ostatnich 0,5 sekundy sygnału. Wartość ta następnie trafia do funkcji klasyfikującej (Rys. 10), która decyduje, w którą stronę i z jaką szybkością przesuwać się będzie obiekt. Ściśnięcie mięśnia odpowiada przesuwaniu w prawo, a poluzowanie w lewo. Dodatkowo można regulować prędkość przesuwania za pomocą stopnia

Wróć	WYNIKI		
1.	Mateusz	1070	
2.	Ada	910	
3.	asia	640	
4.	Robert	590	
5.	Julcia	580	
6.	Maciej	570	
7.	karola	480	
8.	Kuba	460	
9.	karola	460	
10.	Jacek	380	

Rysunek 5: 10 najlepszych wyników uzyskanych przez graczy.

Rysunek 6: Okno dialogowe proszące o podanie nicku użytkownika.

Rysunek 7: Jedno z okien dialogowych dotyczących kalibracji.

Rysunek 8: Wygląd okna z grą. Na górze widać pasek z liczbą punktów oraz żyć. Zadaniem użytkownika jest trafienie do odpowiedniego śmietnika zgodnie z zasadami warszawskiej segregacji śmieci.

Rysunek 9: Okno z wynikiem użytkownika po zakończeniu rozgrywki.

skurczu/rozkurczu.

Rysunek 10: Funkcja klasyfikująca ruch. Na osi x pokazano średnią wartość z zebranych próbek. Wartości ujemne to ruch w lewo, wartości dodatnie to ruch w prawo, 0 oznacza brak ruchu. Wartości poza progiem są przycinane do -1 lub 1 w zależności, z której strony przedziału się znajdują.

Gra polega na trafieniu obiektem w odpowiednie pole. Jeżeli cały obiekt nie zmieści się w polu, gracz traci jedno życie. Za trafienie w nieodpowiednie pole traci się 10 punktów, a za prawidłowe trafienie zyskuje się 100 punktów.

3.3.3 Optymalizacja

Początkowo gra była napisana w jednym wątku i wszystkie procedury wykonywały się w sposób sekwencyjny. Próbki sygnału były pobierane na bieżąco co 0,5 s, co powodowało blokowanie gry. Wzmacniacz otrzymywał komendę i zbierał próbki. W tym czasie żaden inny proces nie był uruchomiony i gra się zatrzymywała. Zmniejszenie ilości pobieranych próbek nie pomogło w przyśpieszeniu gry, dlatego postanowiono zmienić architekturę. Grę przepisano na wątki. Główny wątek steruje pozostałymi dwoma. Jeden odpowiada za grę, wyświetlanie i logikę, drugi zaś obsługuje wzmacniacz. Proces odpowiedzialny za wzmacniacz włącza go, a następnie cały czas pobiera próbki i zapisuje je do tablicy, którą dzieli z pozostałymi procesami. Dzięki temu proces z grą może pobrać próbki praktycznie w zerowym czasie, przez co wzrasta płynność gry. Niestety próbki w pamięci są opóźnione w czasie ale nie wpływa to na jakość gry. Dodatkowo taki zabieg powoduje, że powstaje efekt przyśpieszenia/opóźnienia ruchu na boki, co ułatwia grę, sprawiając, że jest ona bardziej płynna. Przepisanie gry na osobne wątki poprawiło znacząco płynność gry, z 2 klatek na sekundę do płynnych 60 (limit ustawiony ręcznie).

4 Podsumowanie

W ramach projektu napisano grę w języku Python sterowaną za pomocą sygnału mięśniowego. W tym celu skorzystano głównie z biblioteki pygame. Skupiono się głównie na logice gry oraz jej interfejsie graficznym. W celu przyspieszenia działania gry, podzielono ją na trzy procesy: jeden główny sterujący pozostałymi dwoma, drugi zbierający próbki za pomocą wzmacniacza oraz trzeci obsługujący grafikę i logikę. Gra jest uniwersalna, zmiana motywu gry sprowadza się do podmiany plików graficznych. Obecnie gra skupia się na problemie segregacji śmieci.

5 Podział obowiązków w zespole

- 1. Martyna Poziomska:
 - * Menu
 - * Kalibracja
 - * Wyniki
 - * Wzmacniacz
- 2. Ada Kochlewska:
 - * Wyświetlanie grafiki
 - * Menu
 - * Kalibracja
 - * Wyniki
 - * Guziki
- 3. Cezary Paziewski:
 - \ast Wielowątkowość
 - * Logika gry
 - $\ast\,$ Wyświetlanie grafiki
 - * Wyniki

Literatura

- [1] Raez, M. B., Hussain, M. S., & Mohd-Yasin, F. Techniques of emg signal analysis: detection, processing, classification and applications. *Biological procedures online*, 8, 11–35, 2006.
- [2] Brain-wiki. Pracownia sygnałów biologicznych/zajecia 5 6 brain-wiki,, 2020. Dostęp: 20-09-2020.
- [3] http://nedo.gumed.edu.pl/wszpziu/skrypty/My%9Cliwski%20skrypt/Tkanka%20mi%EA%9Cniowa.pdf. Dostęp: 20-09-2020.
- [4] OpenStax. "https://commons.wikimedia.org/wiki/File:1022_Muscle_Fibers_(small).jpg". Dostęp: 20-09-2020.
- [5] Jaakko Malmivuo & Robert Plonsey. Bioelectromagnetism Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York, 1995.
- [6] Kay E Davies, Kristen J Nowak. Molecular mechanisms of muscular dystrophies: old and new players. *Nature Reviews Molecular Cell Biology*, 7, 762–773, 2006.
- [7] Gary Ritchison. Bio 301 human physiology: Muscle. http://people.eku.edu/ritchisong/301notes3.htm?fbclid=IwAR2rDbX96ETHyS1Xi0LzDiwQca7GTME_OsQQcCR6bM7Gc5SN1_RIGalfCNI. Dostęp: 27-09-2020.
- [8] Open Learning Initiative. https://courses.lumenlearning.com/cuny-csi-ap-1/chapter/muscular-levels-of-organization/. Dostep: 21-09-2020.
- [9] https://warszawa19115.pl/-/zasady-segregacji. Dostęp: 27-09-2020.
- [10] https://www.pygame.org. Dostęp: 20-09-2020.
- [11] https://github.com/Nearoo/pygame-text-input. Dostep: 27-09-2020.