2. gaia: Boole aljebraren oinarriak eta ate logikoak

Aljebra boolearra

- 1938an, Shannon-ek proposatu zuen zirkuitu digital diseinuari metodo matematiko bat aplikatzea, funtzio digitalak sortzeko
- Metodo hori, George Boole-k proposatu zuen XIX. mendean, Egia/Gezurra moduko proposaketa logikoak ikertzeko: Boole aljebra

Funtzio logikoen adierazpena

- Metodo honen oinarriak bi balioko aldagai eta aldagai horren arteko hiru eragiketak dira
- Erlazioak, aldagai eta funtzioen arteko balio guztiak jasotzen dituzten taulen bidez definitzen dira → Egiataulak

AND				OR			NOT		
Χ	Υ	$Z = X \cdot Y$	Х	Υ	Z = X + Y	Х	$Z = \overline{X}$		
0	0 1	0	0	0 1	0 1	0 1	1 0		
1 1	0 1	0 1	1 1	0 1	1 1		ı		

Boole aljebraren postulatuak

- Abiapuntua da egiaztatu beharrik ez dagoen zenbait baieztapen
 → Postulatuak
- Baieztapen hori (aljebra honetako zenbaki eta eragiketaren definizioak direla) erabiliz, erlazio eta baieztapen berriak sortu ditzakegu

$$X \neq 1$$
 denean $X = 0$

$$X\neq 0$$
 denean $X=1$

$$0 + 0 = 0$$
 $1 + 1 = 1$
 $0 + 1 = 1$
 $1 + 0 = 1$

$$1 \cdot 1 = 1$$
$$0 \cdot 0 = 0$$
$$1 \cdot 0 = 0$$
$$0 \cdot 1 = 0$$

$$X = 1$$
 denean $\overline{X} = 0$

$$X = 0$$
 denean $\overline{X} = 1$

1.
$$X+0 = X$$

3.
$$X+1=1$$

$$5. X + X = X$$

$$7. \quad X + \overline{X} = 1$$

9.
$$\overline{\overline{X}} = X$$

$$2. \qquad X \cdot 1 = X$$

$$4. \qquad X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

$$10. \qquad X + Y = Y + X$$

12.
$$X + (Y + Z) = (X + Y) + Z$$

$$14. X(Y+Z) = XY+XZ$$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$X(YZ) = (XY)Z$$

15.
$$X + YZ = (X + Y)(X + Z)$$

17.
$$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$$

$$(X+Y)\cdot \left(X+\overline{Y}\right)=X$$
 Konbinazioa $X\cdot Y+X\cdot \overline{Y}=X$

Erlazio hauek egiazkoak dira, postulatuak betetzen badituzte

- •Identitateak frogatzeko, berdintasuneko bi aldeko funtzioaren egia taulak osatuko ditugu, eta berdinak direla egiaztatu
- •Banatze (biderketa batuketan) propietatearen froga hemen daukazue:

X	Y	Z	Y+Z	X·(Y+Z)	X·Y	X·Z	X·Y+X·Z
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

• Oinarrizko eragiketa bat ez bada ere, badago definituta beste eragiketa bat: batuketa esklusiboa (XOR)

X	Y	$X \oplus Y$
0	0	0
0	1	1
1	0	1
1	1	0

• Emaitza 1 da, eragigaiak ezberdinak badira

- •Batuketa esklusiboak ere bai elkartze propietatea dauka
- •Horrela, hiru edo aldagai gehiago daukan funtzioa da, non irteera 1 da bere sarreran 1eko kopurua bakoitia denean→Funtzio bakoitia

	X	Υ	Z	$Y \oplus Z$	$X \oplus (Y \oplus Z)$	$X \oplus Y$	$(X \oplus Y) \oplus Z$
-	0	0	0	0	0	0	0
-	0	0	1	1	1	0	1
-	0	1	0	1	1	1	1
-	0	1	1	0	0	1	0
-	1	0	0	0	1	1	1
-	1	0	1	1	0	1	0
-	1	1	0	1	0	0	0
-	1	1	1	0	1	0	1

- Identitate eta postulatuen bidez, aldagai logikoen arteko erlazio berriak asmatu ditzakegu
- Funtzio logiko baten egia tauletik atera dezakegu adierazpen aljebraikoa→ Adierazpen kanonikoa
- Adierazpen kanonikoak funtzioaren aldagai guztiak ditu bere gai guztietan
- Adierazpen kanonikoaren gaiak, bidergaiak (minterminoak) edo batugaiak (maxterminoak) izan daitezke

x	Υ	z	Biderkadura gaia	Ikurra	\mathbf{m}_{o}	m₁	m ₂	m ₃	m₄	m₅	m _s	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	O	O	0	0	O	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	O	0	0	O	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	O	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	O	O	1	0	O	0
1	0	1	$X\overline{Y}Z$	m_5	0	0	O	O	0	1	O	0
1	1	0	$XY\overline{Z}$	m_6	0	0	O	O	0	0	1	0
1	1	1	XYZ	m_7	0	0	0	0	0	0	0	1

- Minterm-a biderketa bat da, emaitza 1 balio duena aldagaiko konbinazio bakar baterako eta besterako 0 ematen duena
- Minterm-ko adierazpenean, 1 ematen duen aldagaia 1 balioa badauka, ezeztatu gabe agertuko da, eta 0 baliokoa bada, ezeztatua

Х	Υ	Z	Batuketa gaia	Ikurra	Μo	Μ₁	M_2	M_3	M₄	M_5	M ₆	M ₇
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	O	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	O	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	O	1	1	1
1	O	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	O	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0

- Maxterm-a batuketa bat da, emaitza 0 balio duena aldagaiko konbinazio bakar baterako eta besterako 1 ematen duena
- Maxterm-eko adierazpenan, 0 ematen duen aldagaia 1 balioa badauka, ezeztatua agertuko da, eta 0 baliokoa bada, ezeztatu gabe
- Maxterm-ak, bere minterm-eko ezeztapenak dira $\rightarrow M_i = m'_i$

- Funtzioaren balioa 1 egiten dituzten aldagai balioen konbinazioei dagozkien **minterm-eko batuketa** da adierazpen kanonikoa
- Funtzioaren balioa 0 egiten dituzten aldagai balioen konbinazioei dagozkien **maxterm-eko biderketa** ere bai da adierazpen kanonikoa
- Funtzio bakoitzari bi adierazpen kanoniko dagokio Minterm-eko batuketa/Maxterm-eko biderketa
- Bi adierazpen kanonikotik edozein funtzio betetzen dituzten zirkuitu digitalak atera daitezke, behin bere egia-taula ezagututa (baina oso luzeak izan daitezke...)

Х	Υ	Z	F	F
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

De Morgan teoremaren bidez ikus daiteke bi adierazpenak berdinak direla

$$F = \overline{X} \overline{Y} \overline{Z} + \overline{X} Y \overline{Z} + X \overline{Y} Z + X Y Z$$

$$= m_0 + m_2 + m_5 + m_7$$

$$\overline{F} = \overline{X} \overline{Y} Z + \overline{X} Y Z + X \overline{Y} \overline{Z} + X Y \overline{Z}$$

$$= m_1 + m_3 + m_4 + m_6$$

$$F = \overline{m_1} + \overline{m_3} + \overline{m_4} + \overline{m_6} = \overline{m_1} \cdot \overline{m_3} \cdot \overline{m_4} \cdot \overline{m_6}$$

$$M_i = \overline{m_i}$$

$$F = M_1 \cdot M_3 \cdot M_4 \cdot M_6$$

Funtzio logikoen sinplifikazioa

- Adierazpen kanonikoen bidez edozein funtzio logikoen adierazpen aljebraikoa lortu dezakegu
- Adierazpen hauek oso luzeak izan daitezke
- Aljebra boolearraren bidez, gai gutxiago daukan eta, beraz, gauzatzeko errezagoa den, adierazpen baten bihur daiteke adierazpen kanonikoa→ Sinplifikazioa
- Karnaugh mapen metodoaren bidez, funtzioaren sinplifikazioa sistematiko bihurtuko dugu

- Karnaugh mapa, sarrera bikoitzeko taula bat gisa egiataularen adierazpen bat da
- Errenkada eta zutaberen gurutzagune (mapen laukia) bakoitza, funtzioaren balio bat da
- Lauki bakoitzari, minterm bat dagokio, funtzioaren mintermeko laukietan, 1 idazten da

m_0	m_1
m_2	m_3

- Funtzioaren aldagai kopuruaren arabera, Karnaugh mapek 4 lauki (bi aldagai), 8 lauki (hiru aldagai), 16 lauki (lau aldagai),... daukate
- Lauki auzokideei dagozkien minterm-ak, gai bakarren bildu daitezke (konbinazioa)
- Gai (inplikatzailea) horren adierazpenean bakarrik agertzen dira lauki guztientzat balio amankomuneko aldagaiak

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

	. 1	'Z		<u>y</u>			
	$x \setminus$	0.0	01	11	10		
	0	x'y'z'	x'y'z	x'yz	x'yz'		
x ·	$\begin{cases} 1 \end{cases}$	xy'z'	xy'z	xyz	xyz'		

- m_1, m_3, m_5 eta m_7 implikatzaile bakarrean biltzen dira: C
- m_3 eta m_2 $A' \cdot B$ implikatzailean biltzen dira
- Bi implikatzaile honen batuketa, funtzioko minterm guztiak ditu barne, beraz adierazpen kanonikoaren baliokidea $da \rightarrow F = C + A' \cdot B$

- Gai gutxien eta gai bakoitzean aldagai kopuru txikien, baina funtzio baten minterm guztiak barne dauzkan batuketa, **funtzio** baten batuketa minimoa da
- Lauki kopuru (2ko berredurak) handien daukan inplikatzailea, guztiak funtzioaren mintermak direnak, **inplikatzaile lehena** da

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	m_9	m_{11}	m_{10}

		yz		3	7		
1	vx	0.0	01	11	10		
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'		
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'		
141	11	wxy'z'	wxy'z	wxyz	wxyz'	X	
W ·	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'		
7							

- Inplikatzaile lehen bakar bati dagozkion laukiak, lauki bereziak dira
- Lauki bereziak dauzkaten inplikatzaile lehenak, funtsezko lehen inplikatzaileak dira
- Funtzio baten **batuketa minimoa**, funtzioaren inplikatzaile leheneko batuketa bat da, eta barnean beti **funtsezko inplikatzaile lehen guztiak**

Funtsezko lehen inplikatzaileak: BD v B'D'

Funtsezko lehen inplikatzaileak: CD, B'C, AD y AB'

Karnaugh mapen bidezko sinplifikazioa: zeroak erabiliz

- Hutsik diren laukiak (funtzioaren zeroak), maxterm-ak irudikatzen dituzte
- Zero lauki auzokideei dagozkien maxterm-ak, gai bakarren bildu daitezke (konbinazioa), inplikatzaile hori batuketa da
- Inplikatzaile horren adierazpenean bakarrik agertzen dira lauki guztientzat balio amankomuneko aldagaiak
- Zero inplikatzaileren biderketa, funtzioaren maxterm guztiak daukana, adierazpen kanonikoaren baliokidea da
- Gai gutxien eta gai bakoitzean aldagai kopuru txikien, baina funtzio baten maxterm guztiak barne dauzkan biderketa, funtzio baten biderketa minimoa da

Karnaugh mapen bidezko sinplifikazioa: zeroak erabiliz

- M_4 , M_6 . M_{12} y M_{14} biltzen dira inplikatzaile bakar baten: B'+D
- Beste biak A'+B' eta C'+D' dira
- Inplikatzaile guztiak funtsezkoak direnez, biderketa minimoa da: $F=(B'+D)\cdot (A'+B')\cdot (C'+D')$

F funtzioaren mapa: $F(A, B, C, D)=\Sigma (0, 1, 2, 5, 8, 9, 10)$

- Adierazpen kanonikoaren lekuan, adierazpen minimoa (batuketa edo biderketa, bien arteko sinpleena) erabiliz, sinplifikazioa lortzen da
- Funtzioaren aldagai kopurua lau baino handiagoa denean, sinplifikazioa egiteko ez dira erabiltzen Karnaugh mapak, konputagailuren bidezko metodo iteratiboak baizik

Zehazpen osagabeko funtzioaren sinplifikazioa

- Sarrerako aldagai konbinazio guztietarako, funtzioaren balioa definituta ez denean, zehazpen osagabeko funtzioak dira
- Sarrerako aldagaien zenbait konbinazio ezinezkoak direnean, ez da definitzen horretarako funtzio balioa, **X-ren bidez** aipatzen da hori
- Gai honi "berdin zaigu" deitzen da eta horrela adierazten da: d eta funtzio zehaztuta ez den sarrera konbinazio zenbakiaren azpiindizea
- Kasu honetan, sinplifikazioa egiteko aukeratuko dugu inplikatzaile handien lortzen den balioa: 0 edo 1

Zehazpen osagabeko funtzioaren sinplifikazioa

$$F = \sum m(1, 3, 7, 11, 15) + \sum d(0, 2, 5)$$

a) $F=y\cdot z+w'\cdot x'$

- 0, 2 eta 5 funtzioaren zeroak badira, inplikatzaile lehenaren barruan bakarrik daude 1 eta 3: w'·x'·z
- 0 eta 2 hartu dezakegu 1 bezala, inplikatzaile lehen berria osatzeko: w'·x'
- 5 bada 0, a) batuketa minimoa da

Zehazpen osagabeko funtzioaren sinplifikazioa

$$F = \sum m(1, 3, 7, 11, 15) + \sum d(0, 2, 5)$$

- 0 eta 2 zero eta 5 bat hartuta, inplikatzaile lehena da: w'·z
- b) batuketa minimoa da orain
- Funtzio hau eta a) ezberdinak dira, baina F osagabeko definizioarekin bat datoz biak

b)
$$F=y\cdot z+w'\cdot z$$

- Aljebra boolearraren bidez, funtzioak diseinatu ditzakegu
- Diseinu digitalean funtzio horiek erabiltzeko, eragiketa boolearrak betetzen dituzten zirkuituak behar ditugu
- Ate logikoak dira zirkuitu horiek

• Oinarrizko ate logikoei, aljebra boolearraren hiru eragiketak dagozkie

Funtzio logikoa ETA (AND)

Funtzio logikoa EDO (OR)

Funtzio logikoa EZ (NOT)

AND					
Х	Υ	$Z = X \cdot Y$			
0 0 1 1	0 1 0 1	0 0 0 1			

AND

Χ	Υ	Z = X + Y		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

OR

NOI				
X	$Z = \overline{X}$			
0 1	1 0			

- Aldagai
 boolearraren
 lekuan, tentsio
 seinaleak
 jarriko ditugu
- 0-ri tentsio
 baxua (L)
 dagokio, eta
 tentsio altua
 (H) 1-i

Zirkuitu digitalen sarrera eta irteerako seinaleak

Izena	Ikurra	Adierazpen aljebraikoa	Egia-taula		
AND	$x \longrightarrow F$	F = xy	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$		
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$		
Inbertsorea (NOT)	$x \longrightarrow F$	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$		
Buffer	$x \longrightarrow F$	F = x	$egin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \\ \hline \end{array}$		

Tentsio eta korronte balioak mantentzeko erabiltzen da buffer-a

	Izena	Ikurra	Adierazpen aljebraikoa	Egia-taula		
				х	у	F
	NAND	<i>x</i> —		0	0	1
		$y \longrightarrow F$	F = (xy)'	0	1	1
		<i>y</i> —		1	0	1
				1	1	0
				х	у	F
		$x \longrightarrow$		0	0	1
	NOR	$V \longrightarrow F$	F = (x + y)'	0	1	0
	NOR			1	0	0
				1	1	0
				х	у	F
	OR esklusiboa	$x \longrightarrow$	E = vv' + v'v	0	0	0
	(XOR)	F	$F = xy' + x'y \\ = x \oplus y$	0	1	1
	()	y ————————————————————————————————————	$-x \oplus y$	1	0	1
				1	1	0
				х	у	F
N 10	D 11 11 (17)	$x \longrightarrow$	F = xy + x'y'	0	0	1
NO	R esklusiboa (XNOR)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F = xy + x'y' = $(x \oplus y)'$	0	1	0
				1	0	0
				1	1	1

Erabilgarritasunagatik edo ekoizpen erraztasunagatik, beste ate logikoak diseinatu dituzte, nahiz eta ez dira Boole aljebrako eragiketak

Zirkuitu logikoen sintesia

- Boole aljebrako adierazpen guztiak zirkuituan bihurtu daitezke, eragiketa bakoitzaren lekuan dagokion ate logikoa kokatuz
- Gero eta adierazpen sinpleago, zirkuituaren osagarrien kopurua txikiago → Zirkuitua azkarragoa eta ekonomikoagoa

2 mailetako zirkuituak

- Adierazpen aljebraikoa biderketako batuketa edo batuketako biderketa bada, zirkuituaren sarrera eta irteeraren artean bi ate logiko baino ez dago→2 mailetako zirkuituak
- Kasu honetan, zirkuitu osoa gauzatu daiteke bakarrik NAND ate edo bakarrik NOR ate erabiliz

2 mailetako zirkuituak

- Aurrekoa ere bai aplikatu daiteke batuketako biderketa batera, NOR funtzioak sortzeko
- NAND eta NOR-en bidez, Boole aljebrako eragiketa guztiak gauzatu daitezke

Atzerapen denbora

- Benetako zirkuituetan, sarrera aldatzen denetik denbora-tarte bat pasatuko da irteera aldatu arte
- Sarrera aldatu denetik irteera aldatu arte pasatutako denbora, atzerapen denbora t_p deitzen da

Atzerapen denbora: Arriskuak

- Zirkutu baten irteera, besteen sarrera denean, bi zirkuituen atzerapen denborak batutzen dira
- Zenbait zirkuituko irteeretan balio okerrak agertu daitezke denbora-tarte txikien bitartean
- Halako balio iragankorrak arriskuak deitzen dira, eta sarreretarik irteera heltzeko ate kopuru ezberdineko bideak daudelako gertatzen dira→bide ezberdina denean, atzerapen denbora ezberdina izango da

Atzerapen denbora: Arriskuak

$$Y = x_1 \cdot x_2 + x'_2 \cdot x_3$$

 $x_1 x_2 x_3 = 111 \Rightarrow Y = 1$
 $x_1 x_2 x_3 = 101 \Rightarrow Y = 1$

- x₂ 1-tik 0-era
 aldatzen denean,
 OR ateko bi
 sarrerak atzerapen
 ezberdinak dituzte
- Denbora-tarte baten bitartean bi seinaleak dira $0 \rightarrow$ Y = 0

Atzerapen denbora: Arriskuak

- Arazoa konpontzeko batuketan beste gai bat sartzen da
- Gai berriaren balioa 1 da x_2 aldatzen den bitartean $\rightarrow Y = 1$ denbora-tarte osoan

Hardware adierazpeneko lengoaia: VHDL

- Badago beste metodo bat zirkuitu digitalak irudikatzeko: hardware adierazpeneko lengoaia
- Testu bat da, non zenbait funtzio logikoak definitzen direla
- Testu fitxategia definitutako funtzioak betetzen dituen zirkuitu integratu baten programazio edo ekoizpenerako erabiltzen da
- Egun, hardware adierazpeneko lengoai erabiliena VHDL da (Verilog Hardware Description Language)

Hardware adierazpeneko lengoaia: VHDL

- VHDL testuko egitura bi atal du: entitatea eta arkitektura
- Entitatean bakarrik definitzen dira erabiliko ditugun aldagaiak, bere mota eta sarrera edo irteerakoak badira
- Arkitekturan entitatean definitutako aldagaien arteko funtzioak aipatzen dira

```
ENTITY example1 IS

PORT ( x1, x2, x3 : IN BIT;

f : OUT BIT );

END example1;

ARCHITECTURE LogicFunc OF example1 IS

BEGIN

f <= (x1 AND x2) OR (NOT x2 AND x3);

END LogicFunc;
```

