

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2011/2012 FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELLOR OF SCIENCE (TELECOMMUNICATION AND INFORMATION TECHNOLOGY)

SPH 405: COMMUNICATION SYSTEM

DATE: Thursday 24th November 2011

TIME: 2.00p.m - 4.00p.m

INSTRUCTIONS

Attempt Question ONE and any other TWO questions

Question ONE carries 30 marks ;each of the questions carry 20 marks

Apply the following constants ,whenver required:

K=1.38X10⁻²³ J/K -Boltzmann's constant

h=.6.62X10⁻³⁴J-S Planck's constant

e=.1.6X10⁻¹⁹C —electric charge

- Q1. (a) State Five primary benefits and Five secondary benefits of optical fibre Cables (3 marks)
 - (b) An optic fibre is made of glass with refractive index of the core equal to 1.48 and that of the cladding 1.46 lauded in the air.Determine:
 - The numerical aperture of the fibre
 - II. The acceptance angle

(3 marks)

(c) Write a general expression for basic power budget in the design of an Optical link; hence state three parameters which determine the design link

(3 marks)

- (d) Define the following terms with respect to fibre optical cables:
 - I. Intermodal dispersion
 - II. Null wavelength
 - III. Normalized frequency or V-number

10-----

	(e)	Calculate the duty cycle for a pulse repetition time of 1250µs and a			
		pulsewidth of 8µs		(3 marks)	
	(f)	Describe and derive how you would evaluate the time period of a			
		circular satellite o	rbit	(3 marks)	
	(g)	Define multiple ac	cess, hence explain briefly any three r	nultiple access	
		techniques used u	sed in satellite communication	(3 marks)	
	(h)	With the aid of a b	asic block diagram ,describe fibre optic	al	
	communication systems (i) Calculate the responsivity if the efficiency is 0.015			(6 marks) wavelength	
		of 0.85mm at which the fibre is operating		(3 marks)	
Q2	a)	Derive an equation to show that the maximum entropy is			
		M			
		$H_{\text{max}} = \sum P_k \log 1/P_k$			
K=1					
		Where P _k is any probability of messages (8 mark		(8 marks)	
	b)	A multimode step	ultimode step –index optic fibre has η1 =1.72 for the core and		
		$\eta 2 = 1.6$ for the cla	adding. Calculate :		
		I.	The critical angle		
		II.	The numerical aperture		
		III.	The acceptance angle		
				(6 marks)	
	(c)	Outline the principles of operation of the following modes of fibre			
		waveguides :			
		I.	Graded index multimode fibre		
		II.	Stepped index monomode fibre		
				(6 marks)	

Page 2 of 4

- Q3. (a) Explain briefly two types of sources for optical transmitters (4 marks)
 - (b) A communication satellite system carries 120 channels of telephony in a baseband extending from 0.01 to 0.5MHz. The baseband frequency modulates a carrier with a total mean square frequency deviation of 2.56 MHz. Calculate the RF spectrum. (8 marks)
 - c) Derive to show that in the beacon range the expression for the maximum range of interrogation link is:

$$r_{max} = \left[A_{PI} P_{IT} A_{OB} / 4\pi P_{min} B\right]^{\frac{1}{2}}$$

Where:

A_{PI} = Transmitting antenna aperture

P_{IT} = power transmitted

A_{OB}= the capture area of antenna

(8 marks)

- Q4. (a) Derive an expression for the minimum free space radar range (8 marks)
 - (b) Distinguish between peak power (P_{max}) and the average power (P_{av}) for a radar (4 marks)
 - (c) Using a suitable block diagram ,explain the principle of plan position indicator (PPI) used in the air –control and marine radars (8 marks)
- Q5. (a) Explain and deduce that

Where T_s = Systems noise temperature

 L_s = free space loss

L_m = miscellaneous losses

M = Margin for multiple access (8 marks)

Page 3 of 4

- (b) calculate (C/No) at the earth receiving station from a satellite transmitting an EIRP of 49.5dBW on a frequency of 12GHz. The earth station antenna has an angle of elevation of 70 and the receiving figure of merit of 40.7dB. (7 marks)
- (c) Outline the azimuth and elevation angles in locating the position of a

 Satellite (5 marks)