Московский Государственный Университет имени М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики

Дополнительные главы дискретной математики

(Конспект лекций (часть I))

Лектор – доц. Селезнева С.Н. Составитель – Коноводов В.А. (vkon16@mail.ru)

Глава 1

Функции к-значной логики

§1 Основные понятия

Рассмотрим множество $E_k = \{0, \dots, k-1\}, k \ge 3.$

Определение. Функция вида

$$f: E_k^n \to E_k$$

называется функцией *к-значной логики* или *к-значной функцией*.

Множество всех k-значных функций обозначается P_k .

Так как множество E_k конечно, то любую такую функцию можно задать конечной структурой — таблицей или вектором-столбцом. При этом должен быть фиксирован порядок следования наборов из E_k^n . Здесь и далее — лексико-графический порядок.

Пусть P_k^n – множество всех k-значных функций, зависящих от n переменных.

Теорема 1.

$$|P_k^n| = k^{k^n}, (1.1)$$

где P^n_k – множество всех k-значныя функций, зависящих от n переменных.

Доказательство. Рассмотрим произвольную функцию $f(x_1, ..., x_n) \in P_k^n$. Она взаимно-однозначно определяется своим вектором-столбцом, длина которого k^n , потому число различных таких функций равно числу различных слов длины k^n в алфавите из k символов, то есть k^{k^n} .

Определение. Переменная x_i называется cywecmbenhoù для функции $f(x_1, \ldots, x_n) \in P_k$, если $\exists a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in E_k$ такие, что

$$\varphi(x_i) = f(a_1, \dots, a_{i-1}, x_i, a_{i+1}, \dots, a_n) \not\equiv const.$$

В противном случае переменная x_i называется несущественной или фиктивной.

Аналогично булеву случаю (k=2) можно ввести операции изъятия и добавления фиктивных переменных.

Определение. Функции f и $g \in P_k$ называюся pавными, если при помощи конечного числа операций добавления и/или изъятия фиктивных переменных их можно привести к одинаковым, т.е. совпадающим по вектору-столбцу значений.

Элементарные функции к-значной логики

Рассмотрим основные элементарые функции от n переменных в сравнении с булевым случаем.

n = 0:

В P_2 были рассмотрены две функции-константы – 0 и 1. В P_k аналогично k функций-констант – $0, 1, \ldots, k-1$.

n = 1:

В P_2 существует 2 функции, существенно зависящие от 1 переменной – тождественная функция f(x)=x и отрицание $f(x)=\overline{x}$. Рассмотрим функции из P_k :

$$f_1(x) = x$$

– является такой же тождественной функцией,

$$f_2(x) = \overline{x} = x + 1 \mod k$$

- отрицание Поста и

$$f_3(x) = \sim x = (k-1) - x \mod k$$

- ompuцание Лукасевича - "продолжение" булева отрицания на P_k . Кроме них, введем специальные характеристические функции:

$$J_i(x) = egin{cases} k-1, & ext{ если } x=i; \ 0, & ext{ если } x
eq i. \end{cases}, orall i = 0, \ldots, k-1,$$

$$j_i(x) = egin{cases} 1, & ext{если } x = i; \\ 0, & ext{если } x
eq i. \end{cases}, orall i = 0, \dots, k-1,$$

а также функцию

$$-x = \begin{cases} 0, & \text{если } x = 0; \\ k - x, & \text{если } x \neq 0. \end{cases}$$

1. ОСНОВНЫЕ ПОНЯТИЯ

5

\Box			1		
Таолины	значении	этих	функции	имеют	следующий вид:
	OTTO TOTTITE	- 	90,/	111110101	0010/0,/10/11/11 21/0

x	\overline{x}	$\sim x$	-x	$J_i(x)$	$j_i(x)$
0	1	k-1	0	0	0
1	2	k-2	k-1	0	0
:	:	:	:	:	:
i-1	i	k-i-1	k-i	0	0
i	i+1	k-i-2	k-i-1	k-1	1
i+1	i+2	k-i-3	k-i-2	0	0
:	:	:	:	:	:
k-2	k-1	1	2	0	0
k-1	0	0	1	0	0

n = 2:

Функция xy из P_2 имеет два "продолжения" в P_k с разных смыслов:

$$f_1(x,y) = min(x,y)$$

- функция минимума и

$$f_2(x,y) = x \cdot y \mod k$$

- умножение по модулю k.

Функцию $x \vee y$ из P_2 можно продолжить в P_k как

$$f_3(x,y) = max(x,y)$$

– функция максимума.

Функция x+y из P_2 продолжается в P_k как

$$f_4(x,y) = x + y \mod k$$

- сложение по модулю k.

Функция $x \to y$ из P_2 продолжается P_k как

$$f_5(x,y) = x \supset y = \begin{cases} k-1, & \text{если } x < y \\ (k-1) - (x-y), & \text{если } x \ge y \end{cases}$$

– импликация.

Кроме них, введем функции:

$$f_6(x,y) = x \div y = \begin{cases} 0, & \text{если } x < y \\ x - y, & \text{если } x \ge y \end{cases},$$

- усеченная разность, и

$$f_7(x,y) = x - y \mod k$$

– разность по модулю k.

Понятие формулы

Пусть $\mathcal{F} = \{f_1, f_2, \ldots\}$ – множество элементарных функций из P_k . Введем понятие формулы над \mathcal{F} :

- 1. Символ любой булевой переменной x_i формула над \mathcal{F} .
- 2. Если $f \in \mathcal{F}$ и зависит от n переменных, а F_1, \ldots, F_n формулы над \mathcal{F} , то запись $f(F_1, \ldots, F_n)$ формула над \mathcal{F} .
- 3. Ничего другого.

Заметим, что формула — это не функция. Функция реализуется формулой, а формула реализует функцию. По определению формулы дадим определение функции, реализуемой формулой:

- 1. Формула x_i реализует функцию x_i .
- 2. Если формулы F_1, \ldots, F_n реализуют функции f_1, \ldots, f_n соответственно, то формула $f(F_1, \ldots, F_n)$ реализует функцию $f(f_1, \ldots, f_n)$.

Теорема 2 (о первой форме записи функции из P_k). Любая функция $f(x_1, \ldots, x_n) \in P_k$, $k \geq 3$, может быть представлена в виде:

$$f(x_1, \dots, x_n) = \max_{(\sigma_1, \dots, \sigma_n) \in E_k^n} \{ \min\{J_{\sigma_1}(x_1), \dots, J_{\sigma_n}(x_n), f(\sigma_1, \dots, \sigma_n)\} \}$$
 (1.2)

Доказательство. Рассмотрим произвольный набор $\alpha = (\alpha_1, \dots, \alpha_n) \in E_k^n$. Покажем, что левая и правая части (1.2) принимают на нем одно и то же значение:

$$f(\alpha_1, \dots, \alpha_n) = \max_{(\sigma_1, \dots, \sigma_n) \in E_k^n} \{ \min\{J_{\sigma_1}(\alpha_1), \dots, J_{\sigma_n}(\alpha_n), f(\sigma_1, \dots, \sigma_n)\} \}$$
(1.3)

Рассмотрим два случая в выражении под тах:

- 1. $(\sigma_1, \ldots, \sigma_n) \neq (\alpha_1, \ldots, \alpha_n)$. Это означает, что $\exists i : \sigma_i \neq \alpha_i$, и потому $J_{\sigma_i}(\alpha_i) = 0$, и, следовательно, минимум равен 0.
- 2. $(\sigma_1, \ldots, \sigma_n) = (\alpha_1, \ldots, \alpha_n)$. В этом случае $\forall i : \sigma_i = \alpha_i$, и $J_{\sigma_i}(\alpha_i) = k 1$, и, следовательно, минимум равен $f(\alpha_1, \ldots, \alpha_n)$.

Таким образом, правая часть (1.3) обращается в

$$\max\{0,\ldots,0,f(\alpha_1,\ldots,\alpha_n),0,\ldots,0\} = f(\alpha_1,\ldots,\alpha_n),$$

то есть совпадает с левой частью. В силу произвольного выбора набора α , равенство (1.2) доказано.

2. ПОЛНОТА В P_K

Замечание. Данная теорема является обобщением на случай k-значной логики теоремы о совершенной дизъюнктивной нормальной форме в булевом случае, которая утверждает, что любая функция $f(x_1, \ldots, x_n)$ из P_2 может быть представлена в следующей форме:

$$f(x_1, \dots, x_n) = \bigvee_{(\sigma_1, \dots, \sigma_n) \in E_2^n} x_1^{\sigma_1} \cdot \dots \cdot x_n^{\sigma_n} \cdot f(\sigma_1, \dots, \sigma_n)$$

Теорема 3 (о второй форме записи функции из P_k). Любая функция $f(x_1, \ldots, x_n) \in P_k$, $k \geq 3$, может быть представлена в виде:

$$f(x_1, \dots, x_n) = \sum_{(\sigma_1, \dots, \sigma_n) \in E_k^n} j_{\sigma_1}(x_1) \cdot \dots \cdot j_{\sigma_n}(x_n) \cdot f(\sigma_1, \dots, \sigma_n)$$
(1.4)

Доказательство этой теоремы аналогично доказательству предыдущей.

Следствие. Произвольная функция $f(x_1,...,x_n) \in P_k$ может быть реализована формулой над системой функций:

$$\{0, 1, \dots, k - 1, J_0(x), \dots, J_{k-1}(x), \min(x, y), \max(x, y)\},\$$
 (1.5)

которая называется системой Россера-Туркетта.

Следствие. Произвольная функция $f(x_1, ..., x_n) \in P_k$ может быть реализована формулой над системой функций:

$$\{0, 1, \dots, k - 1, j_0(x), \dots, j_{k-1}(x), x + y \mod k, x \cdot y \mod k\}.$$
 (1.6)

$\S 2$ Полнота в P_k

Определение. Пусть система $A \in P_k$. A - nonha, если произвольная функция $f(x_1, \ldots, x_n) \in P_k$ может быть реализована формулой через функции из A.

Из теорем о первой и второй формы следует

Утверждение. В P_k существуют конечные полные системы.

Определение. Назовем системой Поста систему $\{\overline{x}, \max(x,y)\}$ в $P_k, k \geq 3$.

Теорема 4. Система Поста полна в P_k , $k \ge 3$.

Доказательство. Сведем систему Поста к полной системе Россера-Туркетта (1.5).

1. **Построение константы.** С помощью отрицания Поста построим все функции вида $x+i, i=1,\ldots,k$ следующим образом.

$$\overline{x} = x + 1$$

$$x + 2 = (x + 1) + 1$$

 $x + 3 = ((x + 1) + 1) + 1$
...
 $x + k = x$

Все данные функции при любом фиксированном x принимают различные значения, поэтому

$$\max\{x+1,\ldots,x+(k-1),x\}=k-1$$

Тем самым, получена константа k-1, с помощью которой и отрицания Поста получим остальные константы:

$$k-1+1=0$$

 $0+1=1$
...
 $k-3+1=k-2$

2. Построение $J_i(x)$. Покажем, что

$$J_i(x) = \max_{j \neq (k-1)-i} \{x+j\} + 1. \tag{1.7}$$

Действительно: если x = i, то (1.7) имеет вид:

$$J_i(i) = \max_{j \neq (k-1)-i} \{i+j\} + 1 = k-2 + 1 = k-1.$$

Если же $x \neq i$, то тогда (1.7):

$$J_i(x) = \max_{j \neq (k-1)-i} \{i+j\} + 1 = k-1+1 = 0.$$

3. Построение функции одной переменной. Пусть

$$f_{s,i}(x) = \begin{cases} s, & \text{если } x = i \\ 0, & \text{если } x \neq i \end{cases}$$

Заметим, что справедливо следующее представление этой функции:

$$f_{s,i}(x) = (s+1) + \max(J_i(x), (k-1) - s)$$

Рассмотрим произвольную функцию одной переменной $g(x) \in P_k^1$. Для нее верно:

$$g(x) = \max\{f_{g(0),0}(x), f_{g(1),1}(x), \dots, f_{g(k-1),k-1}(x)\}\$$

Действительно, пусть $x=a\in E_k$, тогда $f_{g(i),i}(a)=0, \forall i\neq a,$ а $f_{g(a),a}(a)=g(a),$ тем самым максимум даст g(a).

Таким образом, произвольную функцию одной переменной можно построить, а значит, можно построить и $\sim x$.

9

4. Построение min. Нетрудно убедиться в том, что

$$\min(x, y) = \sim \max(\sim x, \sim y).$$

Таким образом, система Поста сведена к полной системе Россера-Туркетта (1.5), и, следовательно, полна в P_k .

Определение. Назовем функцией Вебба функцию

$$V_k(x, y) = \max(x, y) + 1.$$

Следствие (1). Система $\{V_k(x,y)\}$ полна в $P_k, k \geq 3$.

Доказательство. Сведем данную систему к системе Поста, которая заведомо полна (теорема 4).

$$\overline{x} = V_k(x, x) = \max(x, x) + 1 = x + 1$$

Далее при помощи отрицания Поста получаем x+k-1 и

$$\max(x, y) = V_k(x, y) + k - 1.$$

Рассмотрим случай k=2. Тогда $V_2(x,y)=\overline{x\vee y}=x\downarrow y$ и утверждение выше верно.

Следствие (2). В P_k , $k \ge 3$ существует аналог шефферовой функции.

Следствие (3). $B P_k$, $k \ge 3$, из любой бесконечной полной системы можно выделить конечную подсистему, которая полна.

Доказательство. Пусть $A \subseteq P_k$ – бесконечная полная система. Тогда функция Вебба $V_k(x,y)$ реализуется некоторой формулой $F(g_1,\ldots,g_s),\,g_1,\ldots,g_s\in A$. Отсюда следует, что система $\{g_1,\ldots,g_s\}$ – полна в P_k , а она конечна по построению.

Рассмотрим следующую задачу: дана конечная система $A = \{f_1, \ldots, f_s\} \subseteq P_k$, требуется определить, полна ли она. Возникает вопрос, а разрешима ли такая задача алгоритмически, т.е. существует ли алгоритм, который за конечное число шагов определит, полна ли произвольная система или нет?

Ответ на него дает следующая теорема.

Теорема 5. Существует детерминированный алгоритм для распознавания полноты конечных систем функций в P_k .

Доказательство. Пусть $A = \{f_1, \dots, f_s\} \subseteq P_k$ – система функций, которую необходимо исследовать на полноту.

По индукции построим множества $\mathcal{N}_i \subseteq P_k^2(x_1, x_2)$.

- 1. Базис индукции. $\mathcal{N}_0 = \varnothing$.
- 2. Индуктивный переход. Пусть

$$\mathcal{N}_m = \{h_1(x_1, x_2), \dots, h_{t_m}(x_1, x_2)\} \subseteq P_k^2.$$

Обратим внимание, что так как P_k^2 конечно, то и \mathcal{N}_m конечно.

Рассмотрим произвольную функцию $f_j(y_1,\ldots,y_n)\in A$, считая, что все функции из A зависят от одного набора переменных, чего можно добиться за счет введения несущественных переменных. Построим функцию

$$f_j(g_1(x_1,x_2),\ldots,g_n(x_1,x_2)),$$

где $g_i(x_1,x_2)$ $(i=1,\ldots,n)$ есть либо x_1 , либо x_2 , либо функция из \mathcal{N}_m . Перебирая все j и всевозможные $g_i(x_1,x_2)$, получим новые функции. Из них те, которые отличны от функций из \mathcal{N}_m обозначим за $h_{t_m+1}(x_1,x_2),\ldots,h_{t_{m+1}}(x_1,x_2)$. Тогда

$$\mathcal{N}_{m+1} = \mathcal{N}_m \cup \{h_{t_m+1}(x_1, x_2), \dots, h_{t_{m+1}}(x_1, x_2)\}.$$

По построению

$$\mathcal{N}_0 \subseteq \mathcal{N}_1 \subseteq \mathcal{N}_2 \subseteq \dots$$

При этом $\forall \mathcal{N}_i \subseteq P_k^2$. Так как все множества конечны и содержатся в конечном множестве, то существует такое число r^* , что

$$\mathcal{N}_0 \subset \mathcal{N}_1 \subset \mathcal{N}_2 \subset \ldots \subset \mathcal{N}_{r^*} = \mathcal{N}_{r^*+1} = \ldots$$

Тогда если $\mathcal{N}_{r^*} = P_k^2$, что можно проверить за конечное число шагов, то функция Вебба $V_k(x_1, x_2) \in \mathcal{N}_{r^*}$, то есть может быть построена формулой над A, и потому система A полна. Если же $\mathcal{N}_{r^*} \neq P_k^2$, то A не полна, поскольку из нее нельзя получить даже все функции от двух переменных.

Процедура построена и корректна.

Определение. Пусть $A \subseteq P_k$. Замыкание A – множество всех функций, которые реализуются формулами над функциями из A. Обозначение – [A].

Свойства замыкания:

- 1. $[\emptyset] = \emptyset$
- 2. $[P_k] = P_k$
- 3. Если $A \subseteq B$, то $[A] \subseteq [B]$, $\forall A, B \subseteq P_k$
- 4. $[[A]] = [A], \forall A \subseteq P_k$

Определение. $A \subseteq P_k$ – замкнутый класс, если [A] = A.

Теорема 6 (Кузнецова, о функциональной полноте). Можно построить замкнутые классы M_1, \ldots, M_t , не содержащиеся друг в друге, и такие, что $\forall A \subseteq P_k$ справедливо: A – полна тогда и только тогда, когда A не лежит ни в одном из этих классов.

Доказательство. 1. Построение. Рассмотрим все множества \mathcal{N}_i такие, что:

- 1) $\mathcal{N}_i \subset P_k^2(x_1, x_2), \, \mathcal{N}_i \neq P_k^2$.
- 2) $q_1(x_1, x_2) = x_1 \in \mathcal{N}_i, q_2(x_1, x_2) = x_2 \in \mathcal{N}_i.$
- 3) $[\mathcal{N}_i]_{x_1,x_2} = \mathcal{N}_i$, где $[N]_{x_1,x_2}$ замыкание множества N по переменным x_1,x_2 , то есть в нем функции только от этих переменных.

Множества \mathcal{N}_i можно построить конструктивно, так как их конечное число. По этим множествам построим множества $\mathcal{K}_i \subseteq P_k$, такие, что функция $f(y_1,\ldots,y_n) \in \mathcal{K}_i, n \geq 0$, если $\forall h_1,\ldots,h_n \in \mathcal{N}_i$ $f(h_1(x_1,x_2),\ldots,h_n(x_1,x_2)) \in \mathcal{N}_i$. Иными словами \mathcal{K}_i — множество функций, сохраняющих множество \mathcal{N}_i . Заметим, что \mathcal{K}_i — замкнутый класс. Действительно, $x \in \mathcal{K}_i$. Пусть $f_0(y_1,\ldots,y_m) \in \mathcal{K}_i, \ f_j(x_1,\ldots,x_n) \in \mathcal{K}_i, \ j=1,\ldots,m$. Докажем, что $f(x_1,\ldots,x_n)=f_0(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)) \in \mathcal{K}_i$. Это верно в силу того, что для произвольных $h_1,\ldots,h_n \in \mathcal{N}_i$: $f(h_1,\ldots,h_n)=f_0(f_1(h_1,\ldots,h_n),\ldots,f_m(h_1,\ldots,h_n))\in \mathcal{N}_i$. так как $f_1(h_1,\ldots,h_n),\ldots,f_m(h_1,\ldots,h_n)\in \mathcal{N}_i$.

Теперь покажем, что $\forall i \ \mathcal{K}_i \neq P_k$. Так как $\mathcal{N}_i \neq P_k$, то существует функция $H(x_1, x_2) \notin \mathcal{N}_i$, а так как $g_1(x_1, x_2), g_2(x_1, x_2) \in \mathcal{N}_i$, и $H(g_1(x_1, x_2), g_2(x_1, x_2)) \notin \mathcal{N}_i$, то $H(x_1, x_2) \notin \mathcal{K}_i$.

Рассмотрим все построенные множества $\{\mathcal{K}_i\}$ и исключим из них такие \mathcal{K}_j , для которых $\exists i$, такое, что $\mathcal{K}_j \subset \mathcal{K}_i$. Оставшиеся множества – замкнутые классы – обозначим M_1, \ldots, M_t – те из $\{\mathcal{K}_i\}$, которые не лежат друг в друге.

2. Докажем, что $\forall A \subseteq P_k$ справедливо: A – полна тогда и только тогда, когда A не лежит ни в одном из построенных классов M_1, \ldots, M_t .

Пусть система A полна и содержится в некотором классе M_i . Тогда $[A] \subseteq [M_i] \neq P_k$, что противоречит полноте системы.

Обратно, пусть система A не лежит ни в одном из M_1, \ldots, M_t . Тогда пусть $\mathcal{N} = [A \cup \{x_1, x_2\}]_{x_1, x_2} \subseteq P_k$. Возможны два случая.

(а) $\mathcal{N} \neq P_k^2$. Так как $[\mathcal{N}] = \mathcal{N}$, то $\exists j$ такое, что $\mathcal{N} = \mathcal{N}_j$ (по построению множеств \mathcal{N}_j). Рассмотрим произвольную функцию $f(x_1,\ldots,x_n)\in A$. Она сохраняет множество \mathcal{N} . Действительно, $\forall h_1,\ldots,h_n\in \mathcal{N}=[A\cup\{x_1,x_2\}]_{x_1,x_2}$ функция $f(h_1(x_1,x_2),\ldots,h_n(x_1,x_2))\in [A]$, а так как она зависит только от x_1 и x_2 , то $f(h_1(x_1,x_2),\ldots,h_n(x_1,x_2))\in \mathcal{N}$, то есть $f\in \mathcal{K}_j$. Таким образом, $A\subseteq \mathcal{K}_j$, но $\exists i:\mathcal{K}_j\subseteq M_i$, потому $A\subseteq M_i$ – противоречие, следовательно этот случай невозможен.

(b) $\mathcal{N} = P_k^2$. В этом случае функция Вебба $V_k(x_1, x_2) \in \mathcal{N}$, то есть $V_k(x_1, x_2) \in [A \cup \{x_1, x_2\}]_{x_1, x_2}$, что означает полноту системы A.

Определение. Пусть $A \subseteq P_k$. Система A – $npednonhuй класс, если <math>A = [A] \neq P_k$ и $\forall f \in P_k \setminus A$ выполнено: $[A \cup \{f\}] = P_k$.

Следствие. Построенные в теореме классы M_1, \ldots, M_t – все предполные классы в P_k

Доказательство. $\forall f \in P_k \setminus M_i$ система $\{\{f\} \cup M_i\}$ не содержится ни в одном из классов M_i , а, следовательно, полна.

Число предполных классов можно оценить сверху числом всех подмножеств множества функций от двух переменных, т.е. 2^{k^2} .

§3 Критерий полноты

Определение. Функция $f(x_1, ..., x_n)$ – существенная, если она существенно зависит не менее, чем от двух переменных.

Лемма 1 (О трех наборах). Пусть $f(x_1, ..., x_n)$ – существенная функция (с существенной переменной x_1), принимающая l ($l \ge 3$) различных значений. Тогда существуют наборы вида

$$(\alpha, \alpha_2, \alpha_3, \dots, \alpha_n) \in E_k^n,$$

$$(\beta, \alpha_2, \alpha_3, \dots, \alpha_n) \in E_k^n,$$

$$(\alpha, \gamma_2, \gamma_3, \dots, \gamma_n) \in E_k^n,$$

на которых функция принимает три различных значения.

Доказательство. Так как x_1 – существенная переменная, то существует набор $\alpha_2, \alpha_3, \ldots, \alpha_n \in E_k$ такой, что $f(x_1, \alpha_2, \alpha_3, \ldots, \alpha_n) \neq const.$ Рассмотрим значения

$$f(0,\alpha_2,\alpha_3,\ldots,\alpha_n), f(1,\alpha_2,\alpha_3,\ldots,\alpha_n),\ldots,f(k-1,\alpha_2,\alpha_3,\ldots,\alpha_n).$$
 (1.8)

Возможны 2 случая:

1. Среди этих значений не все значения функции. В силу существенной зависимости от x_1 , $\exists \alpha, \beta$ такие, что $f(\alpha, \alpha_2, \alpha_3, \dots, \alpha_n) = a \neq f(\beta, \alpha_2, \alpha_3, \dots, \alpha_n) = b$. Тогда существует набор $(\alpha, \gamma_2, \gamma_3, \dots, \gamma_n)$ такой, что значение $f(\alpha, \gamma_2, \gamma_3, \dots, \gamma_n) = c$ отлично от всех значений (1.8), то есть $c \neq a$ и $c \neq b$.

2. В ряду (1.8) есть все $l \geq 3$ различных значений функции f. Так как f — существенная функция, то $\exists \alpha \in E_k$ такое, что $f(\alpha, x_2, \ldots, x_n) \neq const$. Тогда существуют наборы $\alpha_2, \ldots, \alpha_n$ и $\gamma_2, \ldots, \gamma_n$ для которых $f(\alpha, \alpha_2, \ldots, \alpha_n) = a \neq f(\alpha, \gamma_2, \ldots, \gamma_n) = c$. При этом a и c есть в ряду (1.8), но так как в нем все $l \geq 3$ различные значения функции, то $\exists \beta$ такое, что $f(\beta, \alpha_2, \alpha_3, \ldots, \alpha_n)$ отлично от a и c.

Лемма 2 (Основная). Пусть $f(x_1, ..., x_n)$ – существенная функция, принимающая l $(l \ge 3)$ различных значений. Тогда существуют множества $G_1, ..., G_n \subseteq E_k$ такие, что на $G_1 \times ... \times G_n \subseteq E_k^n$ функция f принимает все l значений, $u |G_i| \le l-1$ для всех i = 1, ..., n.

Доказательство. Пусть, не ограничивая общности, x_1 – существенная переменная функции $f(x_1,\ldots,x_n)$. Тогда, согласно лемме 1 о трех наборах существуют наборы $(\alpha,\alpha_2,\alpha_3,\ldots,\alpha_n),\ (\beta,\alpha_2,\alpha_3,\ldots,\alpha_n),\ (\alpha,\gamma_2,\gamma_3,\ldots,\gamma_n)\in E_k^n$, на которых функция принимает три различных значения $c_1,\ c_2,\ c_3$ соответственно. Пусть остальные l-3 значения c_4,\ldots,c_l принимаются на наборах $(\delta_1^1,\delta_2^1,\ldots,\delta_n^1),\ldots,(\delta_1^{l-3},\delta_2^{l-3},\ldots,\delta_n^{l-3})$. Таким образом:

$$f(\alpha , \alpha_2, \dots, \alpha_n) = c_1$$

$$f(\beta , \alpha_2, \dots, \alpha_n) = c_2$$

$$f(\alpha , \gamma_2, \dots, \gamma_n) = c_3$$

$$f(\delta_1^1, \delta_2^1, \dots, \delta_n^1) = c_4$$

$$\vdots \qquad \vdots$$

$$f(\underbrace{\delta_1^{l-3}, \delta_2^{l-3}, \dots, \delta_n^{l-3}}_{G_2}) = c_{l-3}$$

Тогда множества

$$G_1 = \{\alpha, \beta, \delta_1^1, \dots, \delta_1^{l-3}\},\$$

$$G_2 = \{\alpha_2, \gamma_2, \delta_2^1, \dots, \delta_2^{l-3}\},\$$

$$\dots$$

$$G_n = \{\alpha_n, \gamma_n, \delta_n^1, \dots, \delta_n^{l-3}\},\$$

такие что $|G_i| \le l - 1$ (i = 1, ..., n), искомые.

Определение. Квадратом назовем четверку наборов вида:

$$(\alpha_1, \dots, \alpha_{i-1}, \alpha_i, \alpha_{i+1}, \dots, \alpha_{j-1}, \alpha_j, \alpha_{j+1}, \dots, \alpha_n)$$

$$(\alpha_1, \dots, \alpha_{i-1}, \alpha_i, \alpha_{i+1}, \dots, \alpha_{j-1}, \beta_j, \alpha_{j+1}, \dots, \alpha_n)$$

$$(\alpha_1, \dots, \alpha_{i-1}, \beta_i, \alpha_{i+1}, \dots, \alpha_{j-1}, \alpha_j, \alpha_{j+1}, \dots, \alpha_n)$$

$$(\alpha_1, \dots, \alpha_{i-1}, \beta_i, \alpha_{i+1}, \dots, \alpha_{j-1}, \beta_i, \alpha_{j+1}, \dots, \alpha_n)$$

Лемма 3 (О квадрате). Пусть $f(x_1, ..., x_n)$ – существенная функция, принимающая l ($l \ge 3$) различных значений. Тогда существует квадрат, на котором функция f принимает

- 1. либо не менее трех различных значений,
- 2. либо два различных значения, но одно из них только в одной точке квадрата

Доказательство. Пусть, не ограничивая общности, x_1 — существенная переменная функции $f(x_1,\ldots,x_n)$. Тогда, согласно лемме 1 о трех наборах существуют наборы $(\alpha,\alpha_2,\alpha_3,\ldots,\alpha_n),\ (\beta,\alpha_2,\alpha_3,\ldots,\alpha_n),\ (\alpha,\gamma_2,\gamma_3,\ldots,\gamma_n)\in E_k^n$, на которых функция принимает три различных значения $a,\ b,\ c$ соответственно. В E_k^n рассмотрим две гиперплоскости (E_k^{n-1}) : $x_1=\alpha$ и $x_1=\beta$.

В них будем переходить от

набора $(\alpha_2,\ldots,\alpha_n)$ к набору $(\gamma_2,\ldots,\gamma_n)$, изменяя по одной координате на каждом шаге. Рассмотрим первый квадрат. Если он искомый, то все доказано, иначе на нем функция принимает 2 значения a и b, каждое в двух точках квадрата. Тогда в точках 1 и 2 - значения a и b. Таким образом, получили такую же ситуацию. Далее перейдем ко второму квадрату, и так далее. В конце концов, если искомого квадрата на промежуточных шагах не найдется, то мы будем иметь два значения функции a и b в точках a и a, но так как на наборе a0, a1, функция принимает третье значение a2, то последний квадрат будет являться искомым.

Теорема 7 (критерий полноты С.В.Яблонского). Пусть $A \subseteq P_k$, A содержит все функции одной переменной, принимающие не более k-1 значений. Тогда система A полна тогда и только тогда, когда в ней содержится существенная функция, принимающая все k значений.

Доказательство.

Необходимость. Если в системе A нет существенной функции, то из этой системы невозможно получить функции от более, чем одной переменной. Если же существенная функция в системе A есть, но она принимает не все k значений, то из этой системы нельзя получить любую функцию, принимающую k различных

значений. Таким образом, если ситема A полна, то в ней содержится существенная функция, принимающая все k значений.

Достаточность. Пусть $f(x_1,\ldots,x_n)\in A$ – существенная функция, принимающая все k значений. Докажем, что любую функцию $g(y_1,\ldots,y_n\in P_k)$, принимающую l различных значений, можно получить из системы A. Проведем индукцию по l.

Базис индукции l=2. Пусть функция g принимает два различных значения – a и b. Пусть, для определенности, a < b. По лемме о квадрате, существует квадрат

$$(\alpha_1, \dots, \alpha_{i-1}, \alpha_i, \alpha_{i+1}, \dots, \alpha_{j-1}, \alpha_j, \alpha_{j+1}, \dots, \alpha_n)$$

$$(\alpha_1, \dots, \alpha_{i-1}, \alpha_i, \alpha_{i+1}, \dots, \alpha_{j-1}, \beta_j, \alpha_{j+1}, \dots, \alpha_n)$$

$$(\alpha_1, \dots, \alpha_{i-1}, \beta_i, \alpha_{i+1}, \dots, \alpha_{j-1}, \alpha_j, \alpha_{j+1}, \dots, \alpha_n)$$

$$(\alpha_1, \dots, \alpha_{i-1}, \beta_i, \alpha_{i+1}, \dots, \alpha_{j-1}, \beta_j, \alpha_{j+1}, \dots, \alpha_n)$$

такой, что некоторое значение c функция f принимает на нем только в одной его точке. Тогда пусть $\psi(x,y) = f(\alpha_1,\ldots,\alpha_{i-1},x,\alpha_{i+1},\ldots,\alpha_{j-1},y,\alpha_{j+1},\ldots,\alpha_n)$ – формула над A, так как константы в системе A есть. Пусть, далее,

$$\chi_1(x) = \begin{cases} \alpha_i, & \text{если } x = a; \\ \beta_i, & \text{если } x = b. \end{cases}, \quad \chi_2(x) = \begin{cases} \alpha_j, & \text{если } x = a; \\ \beta_j, & \text{если } x = b. \end{cases}, \quad \chi_3(x) = \begin{cases} a, & \text{если } x = c; \\ b, & \text{если } x \neq c. \end{cases}$$

Функции $\chi_1(x), \chi_2(x), \chi_3(x) \in A$. Функция $\varphi(x,y) = \chi_3(\psi(\chi_1(x),\chi_2(y))) = \max_{a,b}(x,y)$ может быть реализована формулой над A, и реализует максимум на множестве $\{a,b\}\subseteq E_k$. Введем функции

$$\chi_4(x) = \begin{cases} a, & \text{если } x = b; \\ b, & \text{если } x \neq b. \end{cases}, \quad \chi_5(x) = \begin{cases} b, & \text{если } x = a; \\ a, & \text{если } x \neq a. \end{cases} \in A.$$

Функция $\min_{a,b}(x,y) = \chi_5(\max_{a,b}(\chi_4(x),\chi_4(y))) \in [A]$ и реализует минимум на множестве $\{a,b\}$. Функция $j_{\sigma,a,b}(x) = \begin{cases} b, & \text{если } x = \sigma; \\ a, & \text{если } x \neq \sigma. \end{cases}$ $\in A$. Тогда, аналогично первой форме, функцию можно представить в виде:

$$g(y_1, \dots, y_m) = \max_{(\sigma_1, \dots, \sigma_m) \in E_k^m} a_{,b}(\min_{a,b} \{j_{\sigma_1, a, b}(y_1), \dots, j_{\sigma_m, a, b}(y_m), g(\sigma_1, \dots, \sigma_m)\})$$

Таким образом, функция, принимающая только 2 различных значения, построена формулой через функции из системы A.

 $extit{Шаг индукции.}$ Пусть все функции из P_k , принимающие $l-1 \leq k-1$ значений, построены.

По основной лемме, для существенной функции $f(x_1, \ldots, x_n)$ существуют l наборов, на которых она принимает l различных значений:

$$f(\alpha_1^1, \alpha_2^1, \dots, \alpha_n^1) = c_1$$

$$f(\alpha_1^2, \alpha_2^2, \dots, \alpha_n^2) = c_2$$

$$\dots$$

$$f(\alpha_1^l, \alpha_2^l, \dots, \alpha_n^l) = c_l,$$

при этом для $G_i = \{\alpha_i^1, \dots, \alpha_i^l\}$: $|G_i| \leq l-1, i=1,\dots,n$. Рассмотрим произвольную функцию $g(y_1,\dots,y_m) \in P_k$, принимающую l различных значений c_1,\dots,c_l .

Определим $i(\sigma_1,\ldots,\sigma_m)\in\{1,\ldots,l\}$ так, что $g(\sigma_1,\ldots,\sigma_m)=c_{i(\sigma_1,\ldots,\sigma_m)}$ для всех $(\sigma_1,\ldots,\sigma_m)\in E_k^m$. Пусть $\varphi_j(x_1,\ldots,x_m),\ j=1,\ldots,n$ — такие функции, что $\forall (\sigma_1,\ldots,\sigma_m)\in E_k^m,\ \varphi_j(\sigma_1,\ldots,\sigma_m)=\alpha_j^{i(\sigma_1,\ldots,\sigma_m)}$. Функции $\varphi_j,\ j=1,\ldots,n$ принимают не более l-1 различных значений, а потому уже построены. Тогда справедливо:

$$g(y_1,\ldots,y_m)=f(\varphi(y_1,\ldots,y_m),\ldots,\varphi(y_1,\ldots,y_m))$$

Действительно, $g(\sigma_1,\ldots,\sigma_m)=f(\varphi(\sigma_1,\ldots,\sigma_m),\ldots,\varphi(\sigma_1,\ldots,\sigma_m))=f(\alpha_1^{i(\sigma_1,\ldots,\sigma_m)},\ldots,\alpha_n^{i(\sigma_1,\ldots,\sigma_m)})=c_{i(\sigma_1,\ldots,\sigma_m)},\ \forall (\sigma_1,\ldots,\sigma_m)\in E_k^m.$ Тем самым функция g построена формулой через функции из A.

Покажем, что из системы A можно получить все функции одной переменной, принимающие k значений. Согласно основной лемме, для существенной функции f, принимающей k различных значений, найдутся такие множества $G'_1, \ldots, G'_n : |G'_i| \le k-1, \forall i=1,\ldots,n$, на которых она принимает все k различных значений. Это означает, что найдутся такие $\alpha'_1,\ldots,\alpha'_n\in E_k$, что на наборах вида $(\beta_1,\ldots,\beta_n)\in E_k^n: \forall i=1,\ldots,n$ $\beta_i\neq\alpha'_i$, функция принимает все k значений. Пусть $h(x)\in P_k^1$ – произвольная функция одного переменного. Для всех $s\in E_k$ пусть $\tilde{\beta}^{h(s)}=(\beta_1^{h(s)},\ldots,\beta_n^{h(s)}): \beta_i^{h(s)}\neq\alpha'_i$ ($\forall i=1,\ldots,n$) – набор, на котором $f(\tilde{\beta}^{h(s)})=h(s)$. Пусть $g_i(x)=\beta_i^{h(x)}$ ($\forall i=1,\ldots,n$). При этом $g_i(x)\neq\alpha'_i$ ($\forall i=1,\ldots,n$, $\forall x\in E_k$), а потому функции $g_i(x)$ есть в системе как функции одного переменного, принимающие не более k-1 различных значений. Тогда $h(x)=f(g_1(x),\ldots,g_n(x))$.

Итак, получены функции все функции одной переменной, принимающие k значений и функция $g(y_1, \ldots, y_m) \in P_k$, принимающая l различных значений c_1, \ldots, c_l , а потому и все функции, принимающие любые l различных значений.

Следствие (Критерий Слупецкого). Пусть $A \subseteq P_k$, $P_k^1 \subseteq A$. Тогда система A полна тогда и только тогда, когда в ней содержится существенная функция, принимающая все k значений.

Можно доказать следующую теорему:

Теорема 8 (С.Пикар). Все функции из P_k^1 можно получить из систем:

1.

$$f(x) = x - 1,$$

$$g(x) = \begin{cases} x, & ecnu \ 0 \le x \le k - 3; \\ k - 1, & ecnu \ x = k - 2; \\ k - 2, & ecnu \ x = k - 1. \end{cases}$$

$$h(x) = \begin{cases} 1, & ecnu \ x = 0; \\ x, & ecnu \ x \ne 0. \end{cases}$$

2.

$$f_i(x) = \begin{cases} x, & ecnu \ x \neq 0, x \neq i; \\ i, & ecnu \ x = 0; \\ 0, & ecnu \ x = i. \end{cases}, i = 1, \dots, k - 1,$$
$$h(x) = \begin{cases} 1, & ecnu \ x = 0; \\ x, & ecnu \ x \neq 0. \end{cases}$$

Рассмотрим случай k=2. В P_2 леммы 1-3 не имеют смысла. Критерий Яблонского не выполняется, так как, например, система $\{0,1,x\oplus y\}$ не полна, но содержит все функции одного переменного, принимающие одно значение, и существенную функцию. Так же не выполняется критерий Слупецкого, достаточно рассмотреть систему $\{0,1,x,\overline{x},x\oplus y\}$, которая не полна в P_2

Определение. Функция $f \in P_k$ — $me\phi\phi eposa$, если система $\{f\}$ из одной этой функции полна в P_k .

Теорема 9. Пусть $f \in P_k$, $k \ge 3$. Тогда f – щефферова тогда и только тогда, когда из нее можно получить все функции одной переменной, принимающие не более k-1 значений.

Покажем, что функция f принимает все k значений. Действительно, пусть это не так, и функция не принимает значение $a \in E_k$. Тогда из нее нельзя, в частности, получить константу a как функцию, принимающую одно значение, что противоречит условию.

Пусть функция f не является существенной. Тогда, в силу того, что она принимает все k значений, f = f(x) является перестановкой, а потому из нее можно получить

только перестановки, но не все функции одной переменной, принимающие не более k-1 значений, противоречие.

Таким образом, функция f – существенная функция, принимающая все k значений. В силу критерия Яблонского, система $\{f\}$ полна в P_k .

§4 Особенности *k*-значных логик

В P_2 любую функцию можно было представить в виде ДНФ, КНФ и полиномом по модулю 2. В §1 показано, что в P_k ($k \ge 3$) любую можно представить в виде первой и второй формы. Покажем, что представление полиномом по модулю k возможно только при определенных условиях.

Теорема 10. *Система*

$$\{0, 1, \dots, k - 1, x + y, x \cdot y\} \tag{1.9}$$

полна в P_k $(k \ge 3)$ тогда и только тогда, когда k – простое число.

Доказательство. Рассмотрим произвольную функцию $f(x_1, ..., x_n) \in P_k$. По теореме 3, ее можно представить в виде:

$$f(x_1,\ldots,x_n) = \sum_{(\sigma_1,\ldots,\sigma_n)\in E_k^n} j_{\sigma_1}(x_1)\cdot\ldots\cdot j_{\sigma_n}(x_n)\cdot f(\sigma_1,\ldots,\sigma_n).$$

А так как $\forall \sigma \in E_k : j_{\sigma}(x) = j_0(x + (k - \sigma))$, то функция f будет представима полиномом в том и только том случае, когда полиномом представима функция $j_0(x)$. Рассмотрим 2 случая:

1. k-простое число

Справедлива следующая теорема:

Малая теорема Ферма. $Ecnu\ k$ — простое число, то $\forall m \in \{1,\ldots,k-1\}$ справедливо: $m^{k-1}=1 \mod k$

Доказательство. Рассмотрим числа $m \cdot 1, m \cdot 2, \ldots, m \cdot (k-1)$. Они дают разные остатки при делении на k (действительно, пусть $\exists i, j \in \{1, \ldots, k-1\}, i > j$: $m \cdot i = m \cdot j \mod k$, тогда $m \cdot (i-j) = 0 \mod k$, чего не может быть). Тогда их произведение по $\mod k$ – это произведение этих остатков, то есть $m \cdot 1 \cdot m \cdot 2 \cdot \ldots \cdot m \cdot (k-1) = m^{k-1} \cdot (k-1)! = (k-1)! \mod k$, отсюда $m^{k-1} = 1 \mod k$.

Таким образом, если k – простое число, то $j_0(x)$ можно представить в виде: $j_0(x) = 1 - x^{k-1}$, а функция f в этом случае задается полиномом

$$f(x_1, \dots, x_n) = \sum_{(\sigma_1, \dots, \sigma_n) \in E_k^n} (1 - (x_1 - \sigma_1)^{k-1}) \cdot \dots \cdot (1 - (x_n - \sigma_n)^{k-1}) \cdot f(\sigma_1, \dots, \sigma_n).$$

$2. \ k$ - составное число

Тогда $k = k_1 \cdot k_2$, где $k_1 \ge k_2 > 1$. Покажем что функция $j_0(x)$ не может быть задана полиномом. Предположим противное:

$$j_0(x) = c_m x^m + c_{m-1} x^{m-1} + \ldots + c_1 x + c_0,$$
(1.10)

где $c_m, \ldots, c_1, c_0 \in E_k$, $c_m \neq 0$. Подставив в (1.10) x = 0, получим $1 = c_0$. Используя это, подставим в (1.10) $x = k_1$:

$$0 = c_m k_1^m + \ldots + c_1 k_1 + 1 \mod k,$$

откуда

$$k-1 = k_1(c_m k_1^{m-1} + \ldots + c_1) \mod k,$$

это означает, что k-1 делится на k_1 . Но k тоже делится на k_1 , потому $k_1=1$, противоречие. То есть $j_0(x)$ не задается полиномом по $\mod k$, и система (1.9) не полна.

Из доказанной теоремы следует, что если число k – простое, то любая функция из P_k задается полиномом по mod k. Если же число k – составное, то существуют функции из P_k , которые задаются полиномами (например, $x^2, x + 2$), но обязательно существуют функции, которые не задаются полиномами (например, $j_0(x)$).

Рассмотрим теперь замкнутые классы в P_k . В 1921-1941 гг. Пост описал все замкнутые классы в P_2 в виде решетки по включениям. Это было возможно сделать, так как таковых классов счетное число.

Определение. Пусть A — замкнутый класс в P_k , $k \ge 2$. Множество $B \subseteq A$ — базис замкнутого класса A, если

- 1. [B] = A, то есть B полна в A.
- 2. $\forall f \in B : [B \setminus \{f\}] \neq A$, то есть B не избыточно в A.

Пост доказал, что базис любого замкнутого класса в P_2 содержит конечное число функций.

Теорема 11 (Я́нова). При $k \geq 3$ в P_k существует замкнутый класс, не имеющий базиса.

Доказательство. Рассмотрим следующие функции:

$$f_i(x_1,\ldots,x_i) = \begin{cases} 1, & \text{если } x_1 = \ldots = x_i = 2; \\ 0, & \text{иначе.} \end{cases}, i = 0, 1, 2, \ldots$$

Пусть $A = [\{f_0, f_1, \ldots\}]$ — замкнутый класс. Докажем, что в A нет базиса. Предположим, что базис есть, т.е. пусть $B \subseteq A$ — базис A.

Заметим, что если в функцию f_i подставить вместо некоторой переменной функцию f_j , то получим 0. Действительно, $f_i(x_1,\ldots,f_j(\ldots),\ldots)\equiv 0$, так как область значений функции f_j есть $\{0,1\}$. Таким образом, в B есть только функции f_i . Обозначим n_0 – минимальный номер из всех функций f_i в B.

Если в B кроме функции f_{n_0} есть еще некоторая другая функция f_{n_1} , где $n_1 > n_0$, то система B избыточна в A, так как

$$f_{n_0}(x_1,\ldots,x_{n_0})=f_{n_1}(x_1,\ldots,x_{n_0},\underbrace{x_{n_0},\ldots,x_{n_0}}_{n_1-n_0}),$$

что противоречит определению базиса.

Если же в B только одна функция f_{n_0} , то система B не полна в A, так как из нее нельзя получить, например, функцию f_{n_0+1} , что тоже противоречит определению базиса. Следовательно, в классе A нет базиса.

Теорема 12 (**Мучника́**). При $k \ge 3$ в P_k существует замкнутый класс со счетным базисом.

Доказательство. Рассмотрим следующие функции (i = 0, 1, 2, ...):

$$f_i(x_1,\ldots,x_i)= egin{cases} 1, & \text{если } x_1=\ldots=x_{j-1}=x_{j+1}=\ldots=x_i=2,\, x_j=1,\, j=1,\ldots,i; \ 0, & \text{иначе.} \end{cases}$$

Пусть $A = [\{f_2, f_3, \ldots\}]$ – замкнутый класс. Докажем, что $B = \{f_2, f_3, \ldots\}$ – базис класса A. Предположим, что это не так, тогда существует номер $n_0 \ge 2$ такой, что функцию f_{n_0} можно удалить из B, но при этом система B останется полной в A. Тогда $f_{n_0}(x_1, \ldots, x_{n_0}) = f_{n_1}(g_1, \ldots, g_{n_1})$, где $n_1 > n_0$. Возможны 3 случая:

- 1. Среди всех g_1, \ldots, g_{n_1} не менее двух функций. Тогда, так как область значений функций f_i есть $\{0,1\}$, то $f_{n_0}(x_1,\ldots,x_{n_0})=f_{n_1}(\ldots,f_{n_i},\ldots,f_{n_j},\ldots)\equiv 0$, противоречие.
- 2. Среди всех g_1, \ldots, g_{n_1} ровно одна функция f_{n_1} , остальные переменные. Так как $n_0 \geq 2$, то хотя бы одна переменная x_j найдется. Тогда

$$f_{n_0}(x_1,\ldots,x_{n_0}) = f_{n_1}(\ldots,x_j,\ldots,f_{n_i},\ldots) \equiv 0.$$

Положив в этом равенстве $x_j = 1$, и $\forall s \neq j : x_s = 2$, получим 1 = 0-противоречие.

3. Все g_1, \ldots, g_{n_1} – символы переменных. Тогда, так как $n_1 > n_0$, существует переменная x_i , встречающаяся не менее одного раза, то есть:

$$f_{n_0}(x_1,\ldots,x_{n_0}) = f_{n_1}(\ldots,x_j,\ldots,x_j,\ldots).$$

Положив в этом равенстве $x_j = 1$, и $\forall s \neq j : x_s = 2$, получим 1 = 0-противоречие.

21

Тем самым предположение неверно и B – базис A.

Следствие. В P_k $(k \ge 3)$ мощность множества всех замкнутых классов равна континууму.

Доказательство. Число различных замкнутых классов в P_k не может превышать число всех подмножеств счетного множества P_k , а потому не более, чем континуум.

Рассмотрим систему $B = \{f_2, f_3, \ldots\}$ из доказательства теоремы 12. Пусть i_n – последовательность индексов, а B_{i_n} – подмножество функций из B с индексами из i_n . Рассматривая различные последовательности индексов, будем получать различные замкнутые классы $[B_{i_n}]$. Так как различных последовательностей континуальное число, то и различных замкнутых классов не менее, чем континуум.

Доказанное следствие говорит о том, что конструктивно описать все замкнутые классы в P_k ($k \ge 3$) невозможно.

Оглавление

1	$oldsymbol{\Phi}_{oldsymbol{y}}$ нкции k -значной логики							
	1	Основные понятия	3					
	2	Полнота в P_k	7					
	3	Критерий полноты	12					
	4	Особенности k -значных логик	18					