FHO | UNIARAS

Bacharelado em Sistemas de Informação

Algoritmos - Aula 10

Prof. Dr. Sérgio Luis Antonello

Prof. Me. Antero Sewaybricker Todesco

Bibliografia básica desta aula

Medina & Fertig (2006). Capítulo 05 Forbellone & Eberspacher (2000). Capítulo 06

Ascencio & Campos (2002). Capítulo 10

Plano de Ensino: agenda

14	12/05/2020	Sub-rotinas: passagem de parâmetros por referência. Práticas com sub-rotinas.	
15	19/05/2020	Variáveis indexadas: declaração e manipulação de vetor.	
16	26/05/2020	Variáveis indexadas: declaração e manipulação de matriz.	
17	02/06/2020	Semana Científica do Curso.	
18	09/06/2020	AVALIAÇÃO: Prova 2.	
19	16/06/2020	Devolutiva da Prova 2. TRABALHO: Entrega do trabalho A2.	
20	23/06/2020	AVALIAÇÃO: SUB	
21	30/06/2020	Devolutiva da SUB.	

Plano de Ensino: conteúdo

- 1. Unidade I Introdução a algoritmos (objetivos a, b, c)
 - 1.1. Conceitos de abstração de dados
 - 1.2. Lógica de programação
 - 1.3. Algoritmos
 - Formas de representação de algoritmos: pseudocódigo e fluxograma.
 - 1.5. Teste de mesa
 - 1.6. Tipos de dados
 - 1.7. Constantes e variáveis
 - 1.8. Atribuição
 - 1.9. Operadores e precedência
 - 1.10. Expressões aritméticas, relacionais e lógicas.
- Unidade II Estruturas básicas de controle (objetivos c, d, e).
 - 2.1.Blocos de comando
 - 2.2.Estruturas de decisão
 - 2.3.Estruturas de repetição
 - 2.4. Aninhamento
- Unidade III Modularização (objetivos c, d, e)
 - 3.1.Dividir para conquistar
 - 3.2.Procedimentos e funções
 - 3.3. Escopo de variáveis
 - 3.4.Parâmetros e argumentos
 - 3.5.Passagem de parâmetros por valor e por referência
- Unidade IV Estruturas de dados homogêneas (objetivos d, e).
 - 4.1.Vetor
 - 4.2.Matriz

Sumário

Primeiro momento: revisão

- √ Sub-rotinas
 - ✓ Funções
- ✓ Passagem de parâmetros por valor

Segundo momento

✓ Passagem de parâmetros por referência

Terceiro momento: síntese

1. Primeiro momento: revisão

- Sub-rotina
 - Procedimento x Função
- Escopo de variáveis
- Parâmetro e Argumento

1. Revisão

```
Procedimento EXIBESOMA (x, y: inteiro)
Var
   Soma: inteiro
Inicio
   Soma <-x+y
   escreval ("Resultado da soma de x e y é: ", Soma)
   escreval ("Oba, também consigo ver variáveis globais: ", A, B, C)
FimProcedimento
Algoritmo "Aula"
Var
  A, B, C: inteiro
Inicio
  leia (A, B, C)
  EXIBESOMA (A, B)
  EXIBESOMA (A, C)
  EXIBESOMA (B, C)
FimAlgoritmo
```

1. Revisão: passagem de parâmetros por valor

Funcao SeraQueMudaValor(A, B: inteiro): inteiro Var valorcalculado: inteiro Inicio Escreval("A subrotina está sendo executada nesse momento") Escreval("Valores recebidos") Escreval("Valor de A: ", A) Escreval("Valor de B: ", B) A < -10B <- 20 valorcalculado <- A + B Escreval("Novo valor de A: ", A) Escreval("Novo valor de B: ", B) Escreval("A subrotina está sendo finalizada") Escreval() Retorne valorcalculado

FimFuncao

Passagem de dois parâmetros por valor

Algoritmo "Exemplo"
Var
V1, V2: inteiro
Inicio
Leia(V1)
Leia(V2)
Escreval("Valores digitados: "

V1, V2)

R <- SeraQueMudaValor(V1, V2)

Escreval("Valores após a execução da subrotina")

Escreval("Valor de V1: ", V1) Escreval("Valor de V2: ", V2) Escreval("Valor de R: ", R)

FimAlgoritmo

Programa principa

1. Revisão: passagem de parâmetros por valor Endereços de

Variáveis da função Chamadora

V1 V2

O valor de V1 será passado como argumento para o parâmetro A

O valor de V2 será passado como argumento para o parâmetro B

Variáveis da função Chamada Memória

<u>A</u> _	
8	
В	
7	

)	RAM
0x35AC5B V1	8
0x35AC5F V2	7
0x35AC63	
0x35AC67	
0x35AC6B	8
0x35AC6F B	7

1. Revisão

Correção dos exercícios

2. Segundo momento

Passagem de Parâmetros por Referência

Funcao SeraQueMudaValor(A: inteiro; Var B: inteiro): inteiro

Var

valorcalculado: inteiro

Inicio

Escreval("A subrotina está sendo executada nesse momento")

Escreval("Valores recebidos")

Escreval("Valor de A: ", A)

Escreval("Valor de B: ", B)

A <- 10

B <- 20

valorcalculado <- A + B

Escreval("Novo valor de A: ", A)

Escreval("Novo valor de B: ", B)

Escreval("A subrotina está sendo finalizada")

Escreval()

Retorne valorcalculado

FimFuncao

Um parâmetro por

referência

600

ALGORITMO "Exemplo"

Var

V1, V2, R: inteiro

Inicio

Leia(V1)

Leia(V2)

Escreval("Valores digitados: ", ¥1

R <- SeraQueMudaValor(V1, V2)

Escreval("Valores após a execução da subrotina")

Escreval("Valor de V1: ", V1)

Escreval("Valor de V2: ", V2)

Escreval("Valor de R: ", R)

FimAlgoritmo

Programa principal

2. Passagem de Parâmetros por Referência

Vamos Programar!

3. Exercícios

1) Além de contar seus carros de luxo, um conhecido professor de matemática tem como hobby acompanhar corridas de lesmas.

A corrida de lesmas é um esporte que cresceu muito nos últimos anos, fazendo com que várias pessoas dediquem suas vidas tentando capturar lesmas velozes, e treiná-las para faturar milhões em corridas pelo mundo. Porém a tarefa de capturar lesmas velozes não é uma tarefa muito fácil, pois praticamente todas as lesmas são muito lentas. Cada lesma é classificada em um nível dependendo de sua velocidade:

- a) Nível 1: Se a velocidade é menor que 10 cm/h.
- b) Nível 2: Se a velocidade é maior ou igual a 10 cm/h e menor que 20 cm/h .
- c) Nível 3: Se a velocidade é maior ou igual a 20 cm/h.

Sua tarefa é desenvolver um programa, que use sub-rotina, para ajudar o digníssimo professor a identificar qual nível de velocidade da lesma mais veloz de um grupo de lesmas.

Entrada: A entrada ocorre no programa principal e consiste de 5 número inteiros que representam a velocidade de cada uma das lesmas do grupo.

Saída: A saída de dados deve ser exibida no programa principal e deve ser composta por três números: A velocidade da lesma vendedora; o nível da lesma vencedora; velocidade média das 5 lesmas do grupo.

3. Exercícios

2) Fonte: baseado em URI Online Judge | 1214

No início da graduação sabe-se que 90% dos calouros tem sempre a expectativa de irem bem no curso e alguns deles querem estar acima da média da turma. Baseado em uma série de notas de calouros do ano passado, o professor de matemática pede para você fazer um programa que ajude a entender se a expectativa dos alunos condiz com a realidade. Use função ou procedimento para verificar a porcentagem de alunos acima da média.

Entrada

Ocorrendo no código principal, a primeira linha da entrada de dados corresponde ao número (N) de turmas a serem analisadas. Outras N linhas representam N turmas de 5 alunos. Assim, cada linha contém as notas médias de 5 alunos.

Saída

A saída de dados deve ocorrer no programa principal e para cada turma analisada imprima uma linha dando o percentual de estudantes que estão igual ou acima da média da turma, com o valor arredondado e com 1 casa decimal.

Entrada					Saída
4					
7	8	8	4	7	80.0%
2,5	3,5	3,3	4	8	20.0%
9,5	10	10	10	9,4	60.0%
5	5	5	5	5	100.0%

3. Exercícios

3) Usando sub-rotina, a partir de quatro valores correspondentes aos eixos x e y de dois pontos quaisquer no plano, p1(x1,y1) e p2(x2,y2), calcule a distância entre eles, segundo a fórmula:

Distancia =
$$\sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$

Entrada

A entrada de dados ocorre no código principal e contém duas linhas de dados. A primeira linha possui dois valores de ponto flutuante: x1 y1 e a segunda linha dois valores de ponto flutuante x2 y2.

Saída

A saída também ocorre no código principal e consiste na distância calculada entre os dois pontos, com 4 casas após o ponto decimal.

Exemplo de Entrada	Exemplo de Saída
1.0 7.0	4.4721
5.0 9.0	
-2.5 0.4	16.1484
12.1 7.3	
2.5 -0.4	16.4575
-12.2 7.0	