

Visualization of Multidimensional Data Using Interactive 2D Scatterplot

Yitong Zhao, Jieqiong Zhao, Dr. Morteza Karimzadeh, Dr. David S. Ebert

INTRODUCTION

- Multidimensional visualization is critical to facilitate users understanding of the relationship among data items.
- The two dimensional scatter plot is a popular technique that renders data items in two dimensions.
- Interactive exploration of data items helps users better understand clusters and outliers in high dimensional data that are transformed into two dimensions.

OBJECTIVES

- Identify clusters and outliers in multidimensional data.
- Support interactive selection of data points.
- Display the selected data entries in detail.

Fig. 1: A Demonstration for a cluster and an outlier.

TECHNIQUES & METHOD

- To visualize multidimensional data in two dimensional space, PCA (principal components analysis) is adopted as a dimension reduction algorithm.
- The two principal components PCA1 and PCA2 that have the largest variances are selected for the 2D scatterplot (Fig. 2).
- The clusters and outliers are visualized based on distance in the 2D space.
- An interactive Lasso selection method is applied to support the dynamic selection of data entries.
- The selected data entries are highlighted in a table that lists the details of every dimension for all data entries.
- A web application was implemented using the JavaScript library D3.

Fig. 2: 2D Display of Employee Performance, showing the main two PCA components

Fig. 4 : Display of 2D Employee Performance After Applying Lasso

PCA1	▼ PCA2	▼ PCA3	▼ PCA	Nun	nber 🔽
	4.9	3	1.4	3.5	1
	4.9	3	1.4	5.2	2
	4.7	3.2	1.3	3.2	3
	4.6	3.1	1.5	1.2	4
	5	3.6	1.4	2.4	5
	5.4	3.9	1.7	5.4	6
	4.6	3.4	1.4	3.3	7
	5	3.4	1.5	2.2	8
	4.4	2.9	1.4	3.2	9
	4.9	3.1	1.5	1.1	10
	5.4	3.7	1.5	3.2	11
	4.8	3.4	1.6	4.2	12
	4.8	3	1.4	1.9	13
	4.3	3	1.1	3.1	14
	5.8	4	1.2	2.8	15
	5.7	4.4	1.5	3.4	16
	5.4	3.9	1.3	2.3	17
	5.1	3.5	1.4	1.3	18
	5.7	3.8	1.7	3.3	19
	5.1	3.8	1.5	2.1	20
	5.4	3.4	1.7	3.2	21
	5.1	3.7	1.5	1.4	22
	4.6	3.6	1	1.2	23
	5.1	3.3	1.7	1.5	24
	4.8	3.4	1.9	3.2	25
	5	3	1.6	1.2	26
	5	3.4	1.6	2.4	27
	5.2	3.5	1.5	2	28
	5.2	3.4	1.4	1.2	29
	4.7	3.2	1.6	2.6	30

Fig. 3 : Corresponding Data (including full dimensions) of Employee Performance

SUMMARY

- Clusters and outliers of high-dimensional data can be visually observed in 2D scatterplots.
- Enabling comparison among clusters.
- Lasso selection enables the interactive analysis of relationships among data points.

FUTURE WORK

- Integrate visualizations of multiple features on the scatterplot instead of a simple table.
- Visualize the boundary of clusters.
- Adopt other dimension reduction algorithms such as TSNE.

REFERENCES

[1] Trouble in understanding outliers' influence on K-means. (n.d.). Retrieved from

https://stats.stackexchange.com/questions/214 362/trouble-in-understanding-outliersinfluence-on-k-means

[2] L. (2018, August 28). Lasso-js/lasso. Retrieved from https://github.com/lasso-

js/lasso

[3] Smith, L. I. (n.d.). A tutorial on Principal Components Analysis. Retrieved from

http://www.cs.otago.ac.nz/cosc453/student_tut
orials/principal_components.pdf