Data Offloading in Vehicular Networks

Yarlagadda Srihas - 18CS10057

Under the supervision of Prof. Arobinda Gupta

Data Offloading

- Connected vehicle safety systems +
 data-intensive infotainment ⇒ more
 demand on cellular infrastructure
- Vehicular Network components-
 - Vehicles with on-board units (OBUs)
 - Road-side units (RSUs)
 - Cell towers
- Data offloading: Utilizing V2V and V2I communication to decrease the data transfer demand on cellular networks

(a) DSRC Vehicular Network.

Problem Formulation

- Inputs: Vehicles, RSUs, Data items, Requests
 - For each time instant from 1...T
- Outputs: A schedule of V2V transfers, RSU transfers and cellular transfers
- Optimization problem: Maximize requests satisfied, minimize access to cellular
- Mixed integer linear programming problem NP hard
- Heuristic algorithm for caching (considering V2V contact patterns, network quality)?

Period-based Scheduling

- Assign 'periods' of time at each RSU to vehicles
- Calculate a score for each (in-range) < vehicle, item > pair
 - Estimate of potential transfer higher weight if a request can be completed
- Select highest scoring vehicle and update transfers of contacted vehicles
 - Check for contacted vehicle acting as a cache itself (transfers may be affected)
- Prioritize vehicles that can
 - Help complete most requests in the future
 - Transfer the most data to other vehicles
- Process all other RSUs in increasing order of congestion
 - Estimated by number of requesting vehicles in range

Setup

- Tool used for simulation SUMO
- Traffic map
 - Dublin city centre (3.5x5 km, 435 intersections)
- RSU positions
 - SCATS sensors grouped by k-means: 25, 50 and
 75 RSUs
- Traffic loads
 - o 150 second sample
 - Scaled using SUMO option --scale: ~ 250, 500 and 750 vehicles
- Request pattern
 - Two data items random 50/50 split of requests
 - 20 percent of vehicles request both items

FIGURE 1: RSU positions in the road network.

Source of SUMO configuration, network map and traffic flows: Maxime Gueriau and Ivana Dusparic. Quantifying the impact of connected and autonomous vehicles on traffic efficiency and safety in mixed traffic. In 23rd IEEE International Conference on Intelligent Transportation Systems, 2020.

Results

295

442

295

442

250

500

750

- Three values of $|\mathcal{V}|$ 250, 500 and 750
- Two data items 300Mb and 500Mb
- No seed vehicles ($\mathcal{V}_{read} = \phi$)

		1 0	cca	1	,

590

884

TABLE 3: Nui Number of vehicles d_1

3: N	3: Number of requests and total data demand						
Num	Number of requests Data demand (Mb)						
d_1	d_2	Total	d_1	d_2	Total		
148	147	295	44,400	73,500	117,900		

88,500

132,600

147,500

221,000

236,000

353,600

Quantity	Value

Table 2: Values of constants used

	*	
	RSU range	$300 \mathrm{m}$
	eta^r	10 Mbps
	Vehicle-to-vehicle range	$300 \mathrm{m}$
	w_{sat}	1.5
-	w_{nsat}	1
_	δ^r	0.4
	l_1^d	$300 \mathrm{Mb}$

500Mb

Number of RSUs

- Default values -
 - $\circ \alpha^v$ = 5 Mbps
 - $\circ \gamma^r = 2$
 - \circ p = 10 seconds
- Increasing the number of RSUs leads to less remaining data
- Diminishing returns

FIGURE 3: Data transferred v/s vehicle rate α^v

V2V transfer rate α^v

- 50 RSUs
- V2V rate increased to 10Mbps (equal to RSU rate)
- More V2V transfer, less data left
- % improvement higher with more vehicles -
 - 1.06% 250 vehicles
 - 4.84% 500 vehicles
 - 7.82% 750 vehicles

- Number of satisfied requests dropped ⇒ Data distributed more uniformly
- Total requests satisfied within 10% increased or had a smaller drop

Table 5: Number of requests satisfied (varying V2V transfer rate α^v)

Test case	Requests satisfied		satisfied	Total requests satisfied	
2 000 00000	$\overline{d_1}$	d_2	Total	(within 10%)	
250 vehicles, 5 Mbps	109	109	218	229	
250 vehicles, 10 Mbps	92	109	201	232	
500 vehicles, 5 Mbps	182	175	357	383	
500 vehicles, 10 Mbps	74	175	249	357	
750 vehicles, 5 Mbps	221	147	368	432	
750 vehicles, 10 Mbps	52	153	205	449	

FIGURE 4: Data transferred v/s RSU capacity γ^r

RSU capacity γ^r

- RSU capacity doubled
- More RSU transfers, less V2V transfers
- Less data left overall
- % improvement highest for more vehicles (more contention for RSUs)

- Number of satisfied requests increased
- Supports result that RSU transfers more specific

Table 6: Number of requests satisfied (varying RSU capacity γ^r)

Test case	Requests satisfied		satisfied	Total requests satisfied	
2000 0000	$\overline{d_1}$	d_2	Total	(within 10%)	
250 vehicles, $\gamma^r = 2$	109	109	218	229	
250 vehicles, $\gamma^r = 4$	111	110	221	231	
500 vehicles, $\gamma^r = 2$	182	175	357	383	
500 vehicles, $\gamma^r = 4$	217	222	439	464	
750 vehicles, $\gamma^r = 2$	221	147	368	432	
750 vehicles, $\gamma^r = 4$	300	306	606	655	

Future Scope of Work

- Incorporate cellular downloads during a vehicle's journey+coverage quality
- Implement data fairness/priority
- Network level congestion for simultaneous transfers
- Testing more request patterns

Thank You

Special thanks to Prof. Arobinda Gupta for his mentorship and supervision