7.23 简单数论和相关

Quanzhou No.7 Middle School

July 23, 2017

- ■"数学是科学的皇后,数论是数学的皇后"
- 虽然标题是数论,但显然不够讲一节课,所以会有别的 东西
- 再次强调: code 只是参考用,不要直接抄到代码里

关于下午的考试

- 会有一个送分题, 不会有反 AK 题。
- 做完后请认真检查,不要错失 AK。

前言

Lecture on Number Theory

5一部分 數论知识 內題 5二部分 進推和矩阵 反演理论

- NOIP 中的数论有很多重要算法。
- 以下出现示例代码的算法都属于需要熟练掌握的范围。

基础概念

Lecture on Number Theory

数论知识 例题 第二部分 通推和矩阵 反演理论

- 对于正整数 x, y, 如果存在整数 $a \in x = ay$, 则记 $y \mid x$, $y \neq x$ 的一个约数。
- 对于大于1的正整数 x,如果 x 只有1和自身两个约数,则 x 是一个素数。
- 否则 x 是一个合数。
- 一般约定1即不是素数也不是合数。
- *x* mod *k* 表示 *x* 对 *k* 做带余除法的余数。
- $\mathbf{x} \equiv y \pmod{k}$, 读作 \mathbf{x} 和 \mathbf{y} 模 \mathbf{k} 同余, 当且仅当 $\mathbf{k}|(\mathbf{x}-\mathbf{y})$ 。
 - 有时候偷懒会写作 x=y (mod k)。

- - or is it?
- 对减法和乘法也成立
- 除法呢?
 - P 不是质数时,除法不一定有意义
 - $1/6 \mod 6 = ???$
 - 这是类似整数除法中 1/0 的情形
 - 4/2 mod 6 是什么鬼? 它等于 2 还是等于 5?

素数的判定

Lecture on Number Theory

わ一部分 数论知识 例題 第二部分 通推和矩阵 反演理论 ■ 必须掌握至少 $O(\sqrt{N})$ 的判定法 (直接从 2 开始枚举因子)。

素数密度定理

- 前 N 个正整数中大约有 N/In N 个素数。
- 从另外一个角度来说, 第 P 个素数大小大约是 Pln P。
- 允许预处理出小范围素数,只枚举素数因子,优化到 $O(\sqrt{N}/\ln N)$ 。

Miller-Rabin

Lecture on Number Theory

和一部分 数论知识 例题 第二部分 选推和矩阵 反演理论

- 输入整数 N, 输入长度是 $\log N$, 因此 $O(\sqrt{N})$ 的算法并不是多项式 ("有效") 算法。
- 素数判定问题存在有效算法,原版 Miller-Rabin 一轮测 试在 O(log³ N)。
- 听说有人想学……?

质因子分解

Lecture on Number Theory

第一部分 數论知识 例題 第二部分 道推和矩阵 反演理论

- 对素数判定算法进行小修改可以得到质因素分解算法, 复杂度类似。
- 目前没有已知的有效分解算法。
- Pollard's Rho 算法
 - 估计复杂度为 O(n^{1/4}) 级别, 但没有精确估计
 - NOIP 级别不需要掌握……

欧拉函数

Lecture on Number Theory

第一部分 數论知识 例題 第二部分 ^{递推和矩阵} 反演理论

- φ(N) 表示 1~N 中和 N 互质的数字个数。
- $\phi(16) = ?$
- $\phi(37) = ?$
- $\phi(12) = ?$
- 计算一个数的欧拉函数:
 - $\phi(N) = N \times (1 1/p_1)(1 1/p_2) \cdots$
 - pi 是 N 的素因子, 重复不计
 - 复杂度同质因子分解
- 对于素数 p, $\phi(p) = p 1$

欧拉定理

若 a 和 p 互质,则 $a^{\phi(p)} = 1 \pmod{p}$ 。 特别地,若 p 是质数, $a^{p-1} = 1 \pmod{p}$ (费马小定理)。 可以用群论知识证明。

GCD & LCM

Lecture on Number Theory

书一部分 数论知识 例题 第二部分 选推和矩阵 反演理论

- 对于两个数 x 和 y, 如果 d|x, d|y, 称 d 是 x 和 y 的公 约数。
- 1 是所有数的公约数。
- x 和 y 的最大公约数记为 gcd(x, y)。
- \times 和 y 互质 \leftrightarrow gcd(x, y) = 1。
- 类似的,如果 x|d, y|d, 称 d 是 x 和 y 的公倍数。
- x 和 y 的最小公倍数记为 lcm(x, y)。

唯一分解定理

Lecture on Number Theory

- 大家都知道一个数可以写成若干个素数幂次的乘积。
- $gcd(A, B) = p_i^{k_i}$, $\sharp + k_i = min(kA_i, kB_i)$
- $lcm(A, B) = p_i^{l_i}$, 其中 $l_i = max(kA_i, kB_i)$
- 计算一个数的欧拉函数: $\phi(N) = N \times (1 1/p_1)(1 1/p_2) \cdots$
 - 嘴炮: 每出现一个质因子, 1/p 的数被筛除, 且过程互相独立
 - 严格证明需要等到 CRT

辗转相除

Lecture on Number Theory

界一部分 教论知识 例题 第二部分 遂推和矩阵 及演理论

- $gcd(x, y) = gcd(x \mod y, y),$ 仅当 $x \mod y$ 不为 0 时
- 利用这个公式可以不断缩小问题,直至 $x \mod y = 0$ 停止
- 务必保证可以默写算法
- 求 lcm: 利用 gcd(x,y)lcm(x,y) = xy
 - 证明?

```
■ 代码只是参考,不保证可以直接塞到题目里用
```

```
int gcd(int x, int y) {
  if ((x \% y) == 0)
    return y;
  else
    return gcd(y, x % y);
}
int NR_gcd(int x, int y) {
  while (y != 0) {
    int r = y;
    y = x \% y;
    x = r;
  return x;
```

Extended GCD

Lecture on Number Theory

- 给定 a, b, 求一组整数 x, y, 使得 ax + by = gcd(a, b)。
 - 可以证明这样的整数存在。
 - 例如当 a=3,b=5 时,一组解为 x=2,v=-1。
- 假设已知 a'x' + b'y' = gcd(a,b) 的一组解 (x',y'), 其中 a' = b, $b' = a \mod b = a - kb$
 - 这是原来 gcd 算法的一步: gcd(a,b) = gcd(a',b')
 - 也就是说 x = ky + x' 是 x 对 y 的带余除法, k = x/y。
- 那么 bx' + (a kb)y' = ay' + b(x' ky')、故 $x = \sqrt{v}, v = x - k\sqrt{2}$ 是原问题的一组解。
- 执行算法时,实际上先算出了 gcd(a,b),然后套上述公 式套回去。

```
书一部分
数论知识
例题
第二部分
通推和矩阵
反演理论
```

```
注意×和v的存储方式。
int exgcd(int a, int b, int &x, int &y) {
 if ((a % b) == 0) {
   x = 1; y = 0;
   return b;
 } else {
    int ret = exgcd(b, a % b);
    int t = x;
   x = y;
   y = t - (a/b)*y;
   return ret;
}
```

几个小问题

Lecture on Number Theory

第一部分 数论知识 例题 第二部分 遥推和矩阵 反演理论

以下不加说明则均为整数解。

- 1 求 ax + by = c 的一个解。
- 2 求 ax + by = gcd(a, b) 的所有解。
- 3 求 $ax \equiv 1 \pmod{b}$ 的一个解。
 这个就是所谓的乘法逆元。
- 4 求 ax + by + cz = d 的一个解。

Solution

Lecture on Number Theory

中 教 教 か 知 识 例 題 第 二 部 分 逆 推 和 矩 阵 反 演 理 论

- **1** 假设 $c = k \times gcd(a, b)$, 则将 exgcd 的结果乘上 k 即可。
- ② 用 exgcd 得到一组解 x_0, y_0 之后,所有解形式为 $x = x_0 + k(b/gcd(a,b)), y = y_0 k(a/gcd(a,b))$
- **3** 用 exgcd 解 ax + by = 1。
 - 也可以使用欧拉定理,算 $a^{\phi(b)-1}$ 。如果 b 是质数,就是 a^{b-2} 。
- 4 先解出 ax + by = gcd(a, b) 的一组解,然后解 $gcd(a, b) \times x + cy = d$,最后反向带入。

素数筛

Lecture on Number Theory

- 求 1~N 中哪些数是素数。
- 可以对每个数单独判断,时间复杂度是 $O(N\sqrt{N})$ 的(假 设你不会 Miller-Rabin)。
- 换一个角度、只要排除出 2 以外 2 的倍数、3 以外 3 的 倍数,……, 直到 \sqrt{N} 以上为止。
- 这样复杂度比较不好估计,但是上限是 O(Nlog N)。
- 务必熟练掌握的算法 +1。

■ 实际上会内嵌在别的函数里,不会把一个整型数组传来 传去。

```
void work(int n, int primes[]) {
  int m;
  bool check[maxN]; // Assume starts all false
  for (int i = 2; i < N; i++)
    if (!check[i]) {
      primes[++m] = i;
      for (int k = i * i; k < N; k += i) check[k]
      = true;
  }
}</pre>
```

- CRT 是中国剩余定理的简称,不是那个显示器.....
- 给定 n 个同余方程 $x = r_i \pmod{a_i}$,求 x 的一个解。
- 固定 ai, 给定很多组 ri, 每个询问处理时间 O(n)。
- 求一组 x_i,每个 x_i 满足 x_i mod a_j = 1(i = j)
 解方程 A_ix = 1(mod a_i)即可, A_i 是 a_{i≠j} 乘起来的值。
- 每组 r_i 的一个可行解就是 $\sum r_i x_i$ 。
- 常见应用: 题目要求模的数不是素数, 但是一些素数之积, 那么先用各个素数取模, 最后用 CRT 合并。

CRT

Lecture on Number Theory

气一部分 数论知识 ^{测题}

第二部分 ^{道推和矩阵} 反演理论 ■ 事实上, CRT 讲的是这么一件事情:

真·中国剩余定理

- 若 a; 两两互质, A = ∏ a;。
- 那么对于任意 $0 \le d < A$, $x = d \pmod{A}$ 等价于 $x = (d \mod a_i) \pmod{a_i}$ 对所有 i 成立。
- 另外,对任意 d,这一公式都有解。
- 于是我们回头可以证明欧拉函数了。
- 取 N 的不重复质因数分解。
- 由 CRT,每个小于 N 的非负整数 k 都可以一一对应到 $\{k \mod p_i^{d_i}\}$ 上,所以我们考虑有多少个这样的集合。
- $k \rightarrow N$ 互质,当且仅当 $p \nmid k \mod p_i^{d_i}$,有 $(p-1)p_i^{d_i-1}$ 种取法。
- 最后用一次乘法原理就结束了。《□》《團》《臺》《臺》 臺 匆匆令

Code

Lecture on Number Theory

教论知识 例题 第二部分 遊推和矩阵 反演理论

- 事实上理解了并不需要默写……
- 另外实际实现时需要注意溢出问题(包括上下溢出)
- 代码只是参考,不保证可以直接塞到题目里用

```
//Note: x will be filled with correct values
int work(int N, int a[], int r[], int x[]) {
  int M = 1, tmp, ans = 0;
  for (int i = 0; i < N; i++) M *= a[i];
  for (int i = 0; i < N; i++)
      exgcd(M / a[i], a[i], x[i], tmp);
  for (int i = 0; i < N; i++)
      ans = (ans + M / a[i] * x[i] * r[i]) % M;
  return ans;
}</pre>
```

CRT 不适用的情形

Lecture on Number Theory

和一部分 教论知识 例題 第二部分 通推和矩阵 反演理论

- 在 a; 不互质时怎么做?
- 对于 n=2 的情形: $x=r_0 \pmod{a_0}, x=r_1 \pmod{a_1}$
- 此时 $x = r_0 + k_0 a_0 = r_1 + k_1 a_1$, $p a_0 k_0 a_1 k_1 = r_1 r_0$
- 解出 x, 合并方程 $x = x_0 \pmod{lcm(a_0, a_1)}$
- 两两合并即可
- 复杂度怎么算? O(n log a_i)? O(n² log a_i)?

模P逆元的快速预处理

Lecture on Number Theory

等一部分 數论知识 例題 第二部分 選推和矩阵 反演理论

- 这是一个偶尔可以用到的 trick
- 核心思想:

 - $[inv[P \mod i]) * (i * (-P/i)) = 1$
 - $inv[i] = (P P/i) * inv[P \mod i]$
 - 具体推导略,前面多出一项 P 是为了防止负数取模出事
- 代码只是参考,不保证可以直接塞到题目里用

```
int[] work(int P, int inv[]) {
  inv[1] = 1;
  for (int i = 2; i < P; i++)
    inv[i] = (P - P / i) * inv[P % i] % P;
}</pre>
```

线性素数筛

Lecture on Number Theory

数论知识 例題 第二部分 逆推和矩阵 反演理论

- 另外一个有用的 trick
- 在使用一般素数筛时,一个合数会被筛除多次
 - 比如 6 在 2 确定为素数和 3 确定为素数时,都会被筛一次
- 保证每个合数只被自己最小的质因子筛除就可以了
- 脑筋急转弯时间: 给定一个数 M', 和一个质数 p。如何 判断 p 是 M = pM' 的最小质因子?

Code

Lecture on Number Theory

からかれ 教论知识 例題 第二部分 通推和矩阵 反演理论

```
■ 显然如果 M' 没有小于 p 的因子就可以停下了。
```

- 我们修改一下原有的筛法,主循环枚举 M'。 ■ 在次循环枚举 p,如果 p|M',直接退出。
- 代码只是参考,不保证可以直接塞到题目里用

```
int[] work(int n, int prime[]) {
 int m:
 bool check[maxN]; // Assume starts all false
 for (int i = 2: i < N: i++) {</pre>
    if (!check[i]) primes[++m] = i;
    for (int k = 0; i * prime[k] < N; k++) {
      check[i * prime[k]] = true;
      if ((i % prime[k]) == 0) break;
```

适用于大数的辗转相除法

Lecture on Number Theory

第一部分 数论知识 例题 第二部分 ^{通推和矩阵} 反演理论

- 辗转相除法很好写。但如果输入的数很大(高精度或者 类似),怎么保证不写炸?
 - 注意这时候取模操作非常麻烦
 - 另一方面,在计算机内部,除以2这个操作等价于右移 1位
 - 只用右移和加减法完成辗转相除?
 - 使用 gcd(x,y) = gcd(x,y-x) 是可能退化到 O(n) 的

Code(Stein 算法)

Lecture on Number Theory

另一部分 被论知识 門題 第二部分 造推和矩阵 ■ 代码只是参考,不保证可以直接塞到题目里用

```
bigint gcd(bigint x, bigint y) {
    // Make sure x > y
    if (x <= y) swap(x, y);
    if (y == 0) return x;
    if ((x % 2 == 0) && (y % 2 == 0))
        return gcd(x >> 1, y >> 1) << 1;
    if (x % 2 == 0) return gcd(x >> 1, y);
    if (y % 2 == 0) return gcd(x, y >> 1);
    return gcd(y, x - y); // !
}
```

- 为什么这个算法不退化?
 - 每两步至少有一步不会执行到最后一句

前言

Lecture on Number Theory

```
予一部分

数论知识例題第二部分通推和矩阵反演理论
```

- NOIP 级别的数论应用不多,简单看几个题目
- 比较神奇的东西最后有时间会讲一些

Problem 5

Lecture on Number Theory

第一部分 教论知识 例題 第二部分 遂推和矩阵 反演理论

- 给定 a_0, a_1, b_0, b_1 , 求满足 $gcd(a_0, x) = a_1, lcm(b_0x) = b_1$ 的 x 个数
- 多组数据,输入范围在 32 位整型内

Solution

Lecture on Number Theory

```
书一部分
教论知识
例題
第二部分
透推和矩阵
反演理论
```

- 每个质因子是独立计算的
- 每个质因子的子问题相当于 $min(k_{a0}, k_x) = k_{a1}, max(k_{b0}, k_x) = k_{b1}, 求 k_x$ 的取法种数
- 分几种情况分别讨论即可

Problem 6

Lecture on Number Theory

第一部分 教论知识 例題 第二部分 逆推和矩阵 反演理论

- 给定 N, 求 $x^2 = 1 \pmod{N}$ 的解个数
- $N \le 10^{10}$

Solution

Lecture on Number Theory

中 可分數论知识 例題 第二部分 选推和矩阵 反演理论

- N(x-1)(x+1)
- \blacksquare N|gcd(x-1,N)gcd(x+1,N)
- gcd(x-1, N) 和 gcd(x+1, N) 至少有一个超过 \sqrt{N}
- 暴力枚举这个数的所有倍数算即可

Problem 7

Lecture on Number Theory

第一部分 教论知识 例題 第二部分 遂推和矩阵 反演理论

- 定义 f(i) 为 i 的约数个数
- 输出 $f(1) + f(2) + \cdots + f(N)$
- \blacksquare Easy: $N\sim 10^5$
- \blacksquare Hard: $\mathit{N} \sim 10^{10}$

Solution

Lecture on Number Theory

- 转化为计数问题: $\sum_{i=1}^{N} \sum_{i=1}^{i} 1(j|i)$
- 常见 trick: 调换求和顺序
- $\sum_{i=1}^{N} \sum_{i=1}^{i} f(i,j) = \sum_{i=1}^{N} \sum_{i=i}^{N} f(i,j)$
- 到本题中,我们发现问题变成了求 $N + (N/2) + (N/3) + \cdots + (N/N)$, 除法为整除
- Easy: 直接上
- Hard: $i < \sqrt{N}$ 时直接算, $i > \sqrt{N}$ 时取值只有 \sqrt{N} 种, 分段统计

Problem 8

Lecture on Number Theory

第一部分 數论知识 例題 第二部分 遊推和矩阵 反演理论 ■ 输入 N, 问满足 $1 \le x, y \le N, (x, y) = 1$ 有多少对。

• Easy: $O(N\sqrt{N})$. Medium: $O(N \log N)$.

Solution

Lecture on Number Theory

数论知识 例題 第二部分 通推和矩阵 反演理论

- 我们注意到 x, y 对称, 所以可以只考虑 x < y 的情况。
- 这一半的答案就是 $\sum_{y=1}^{N} \phi(y)$ 。
- 总的答案是 2 * Ans' 1 (考虑 (1, 1))。
- Easy: 直接算。
- Medium: 筛法期间对每个合数是可以(顺便)得到它的 一个因子的。所以可以 O(log N) 分解质因数。

- 这一部分包括一些组合数学的内容:组合数,递推式等等。
 - 重点是带大家理解矩阵乘法到底是怎么来的。
 - 如果你已经了解这些内容,也请不要私下讨论影响课堂 秩序。
- 之后有时间会讲一些最基础的反演。

组合数

- 數论知识 例题 第二部分 遊推和矩阵 反演理论
- $n! = 1 \times 2 \times 3 \times 4 \cdots \times n_{\circ}$
 - 冷知识: 阶乘是可以扩充到实数上的, 比如 $0.5! = \sqrt{\pi}/2$ 。
 - C(n, m) = n!/(m!(n − m)!), 称为组合数。
 - 其意义是在 n 个元素中不计顺序选取 m 个的方案数。

几个小定理

Lecture on Number Theory

递推和矩阵

- 杨辉三角: C(n,i) = C(n-1,i) + C(n-1,i-1)
- 二项式定理: $(a+b)^n = \sum C(n,i)a^ib^{n-i}$
 - $C(n,0) + C(n,1) + \cdots + C(n,n) = 2^n$

•
$$C(n,0) - C(n,1) + C(n,2) - \cdots + (-1)^n C(n,n) = 0$$

- 隔板法
 - $N = n_1 + n_2 + \cdots + n_m$ 有 C(n + m 1, n) 个非负整数解。
 - 有多少个正整数解?

著名问题

Lecture on Number Theory

知 数论知识 例题 第二部分 递推和矩阵 反演理论

- 假设 $C(n,m) = p^a \cdot b$, 且 $p \nmid b$, 要求 $a \neq a \neq b \mod p$ 的 值。
 - $p \le 10^5$ 。

Solution(?)

Lecture on Number Theory

数论知识 例题 第二部分 遂推和矩阵 反演理论

威尔逊定理

- 若 P 是素数, $(P-1)! = -1 \pmod{P}$ 。
- 我们发现完全可以把问题放到阶乘上,于是考虑 n!。
- 把 $1 \sim n$ 每 p 位拆一段。先提出 p 的倍数,中间类似 $(kp+1)(kp+2)\cdots(kp+p-1)$ 的连乘积由威尔逊定理 模 p 为-1。
 - 剩下最后 n mod p 位无法用威尔逊定理解决,但 p 不大可以暴力。
 - p 的倍数连乘为 p^{n/p}(n/p)!, 故递归处理即可。
- 进一步扩展这个思路可以得到 Lucas 定理 (证明略去)。
 - 若 A 的 p 进制位表示为 $a_k a_{k-1} \cdots a_0$, B 的表示为 $b_k b_{k-1} \cdots b_0$
 - 那么 C(A, B)mod $P = C(a_k, b_k) C(a_{k-1}, b_{k-1}) \cdots C(a_0, b_0)$

线性递推式

Lecture on Number Theory

另一部分 _{數论知识} _{例題} 第二部分

邪 ──叩勿 邁推和矩阵 反演理论

论外

■ Fibonacci 数列

$$F_0 = 1, F_1 = 1, F_n = F_{n-1} + F_{n-2}$$

- $Rightarrow F_N \mod (10^9 + 7)$
- $N \le 10^{100}$

■
$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
 是一个向量,长度为 4,元素为 1,2,3,4,第

i 个元素用 x; 表示。

- 对两个长度相等的向量,定义它们的内积为对应元素乘 起来之和。
 - $\text{MeV}, \ \mathbf{x}^{\mathsf{T}}\mathbf{x} = 1^2 + 2^2 + 3^2 + 4^2 = 30$
- A = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 是一个矩阵,大小为 2x2,第 i 行第 j 个元素用 A_{ij} 表示。
- 在 NOIP 范畴内,矩阵是用来表示向量变换的工具。

- 结果的第 i 个元素是矩阵的第 i 行和向量的内积。
 - recall:对两个长度相等的向量、定义它们的内积为对应 元素乘起来之和。
- 试着理解一下下面的等式。

- 如果 a = F_{i+1}, b = F_i,以上等式可以这么理解:
- $\bullet \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{i+1} \\ F_i \end{pmatrix} = \begin{pmatrix} F_{i+2} \\ F_{i+1} \end{pmatrix}$
- 于是我们重新发明了求 F_{i+2} 的方法。

- 我们用 A 表示上面那个矩阵,用 f_i 表示向量 (F_{i+1}, F_i)^T。
- 现在我们想让右边成为 $\begin{pmatrix} F_{i+3} \\ F_{i+2} \end{pmatrix}$, 也就是 f_{i+2} 。
- 事实上, $Af_i = f_{i+1}$, $Af_{i+1} = f_{i+2}$, 所以自然地应该有 $A^2 f_i = f_{i+2}$
- 现在来定义矩阵乘法:
 - 两个矩阵 A 和 B 相乘之后得到的矩阵作用在一个向量 上,应当和先作用 B,再作用 A 得到完全相同的效果。
 - 为什么是先 B 后 A 是因为接近向量的矩阵先作用。
 - 写成数学化的形式就是 (AB)f = A(Bf)。

- 两个矩阵 A 和 B 相乘之后得到的矩阵作用在一个向量 上,应当和先作用 B, 再作用 A 得到完全相同的效果。
- 假设矩阵 A 的元素是 Aii, 矩阵 B 的元素是 Bii。
- 那么 $(Bf)_i = \sum_i B_{ij} f_{j\circ}$
- 于是 $A(Bf)_i = \sum_i A_{ij} (\sum_k B_{jk} f_k) = (AB) f_{i\circ}$
- 另一方面, $(AB)f_i = \sum_{\iota} (AB)_{ik} f_k$ 。因为所有 f_i 都是变量, 所以两式恒等,只有当每一项系数相等。
- 考虑 $A(Bf)_i$ 中 f_k 的系数,可以化简一下得到 $\sum_i A_{ij} B_{jk}$, 根据前面的推导,这就是矩阵乘法的公式:
 - $\blacksquare (AB)_{i,i} = \sum_{k} A_{ik} B_{ki}$
 - 复杂度 O(n³), 假设 A 和 B 都是方阵

矩阵快速幂

- 循指和矩阵

- ABC = (AB)C = A(BC), 即矩阵乘法有结合律。
 - 根据我们对矩阵乘法的定义不难理解。
- 现在可以正式解决一开始提到的问题了。
- 定义 $f_1 = (1,0)^T = (F_1, F_0)^T$ 。
- 我们知道 $A^n f_1 = (F_{n+1}, F_n)^T$,于是问题变成求 A^n 。
- 因为矩阵乘法有结合律,可以用快速幂思想求解。
 - $A^{2n} = A^n A^n$, $A^{2n+1} = A^{2n} A^n$
- 最后、向量可以看成有一维长度为1的矩阵、因此你也 可以从矩阵开始推倒这套东西。

Code

Lecture on Number Theory

```
知一即刀
敷论知识
例题
第二部分
递推和矩阵
反演理论
```

```
■ 需要特别小心指针重合的情况。
```

■ *matrixMultiply*(*a*[0], *a*[1], *a*[2])?

```
void matrix_multiply(int n, int a[][], int b[][],
  int c[][]) {
  for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++) {
      c[i][j] = 0;
    for (int k = 0; k < n; k++)
      c[i][j] += a[i][k] * b[k][j];
  }
}</pre>
```

- 对以下每个问题、尝试用矩阵转移的思路写出对应的矩 阵和转移向量。
- 初始值无所谓、但不能让问题变得 trivial (比如第一问不 能假设初始值都是 0)。

2
$$f_i = f_{i-1} + g_{i-2}, g_i = f_{i-1} + g_{i-2}$$

③ 求
$$\sum_{i=1}^{n} f_i$$
, f_i 是一个矩阵递推能搞定的递推式

4
$$\cancel{x} \sum_{i=1}^n f_{2i}$$

$$f_i = f_{i-1} + f_{i-2} + i$$

6
$$f_i = f_{i-1} + i^2$$

Solution

- 1 转移向量 $V_i = (f_i, f_{i-1}, f_{i-2}, 1)$,最后一维恒定不变
- 2 转移向量 $(f_i, f_{i-1}, g_i, g_{i-1})$
- 3 转移向量 $(f_i, \dots, \sum f_i)$
- 4 求一个转移两步的矩阵再套3
- 5 转移向量 $(f_i, f_{i-1}, 1, i)$
- 6 转移向量 $(f_i, f_{i-1}, 1, i, i^2)$
 - $(i+1)^2 = i^2 + 2i + 1$

几个相关问题

Lecture on Number Theory

第一部分 數论知识 例題 第二部分 遂推和矩阵

- 矩阵乘法本身就是一个算法, 所以单独考没什么好考的。
- 旋转平移这些操作都可以看作是对坐标的线性变换。给 定 M 个平面上的这种操作,给 N 个点,问每个点经过同样操作后的坐标。
 - 转移向量是 (x, y, 1)。复杂度 O(M + N)
- 给定图 G, 节点数很少 (~50), 问从 A 到 B 走恰好 k 步的方案数。需要 O(log K·poly(N))。
 - 向量 $\frac{1}{\sqrt{2}}$ 表示从 A 走 i 步的方案数,可以发现转移矩阵就 是图的邻接矩阵
- 用 1×2 的多米诺骨牌覆盖 n×m 的棋盘,求方案数,n 很小但 m 很大
 - 状态压缩 dp, 然后写成向量形式, 转移就是一列到下一 列的系数

相关问题 2

Lecture on Number Theory

第一部分 教治知识 例題 第二部分 連推和矩阵 及演理论 込品

- 字符串相关
- 给定一个长度 20 的串,问所有长度 10²⁰ 的串里有多 少不包含给定串
 - 建 kmp 数组,模拟从前往后匹配的过程,转移向量 f;表示当前走到状态 i 有多少种可能
- 把上面换成一堆串,但总长度不会太长
 - 改成在 AC 自动机上跑
- 还有一些不好分类的脑洞题,比如下一页这个

Problem X

Lecture on Number Theory

数论知识 例题 第二部分 **递推和矩阵** 反演理论

- 给你一个 n 位的数字, 可以保持顺序的前提下随便切割
- 每种切割的分数是 Fib[切割各部分之和]
- 求所有切割分数之和
- 啥玩意啊.jpg
- 咋回事啊.png

Solution

Lecture on Number Theory

道推和矩阵

- 你要求的是类似 $F^{1+2+3} + F^{12+3} + F^{1+23} + \cdots$ 的玩意
- 用 dp[i] 表示前 i 位这些矩阵之和
- 枚举最后一段长度,从 / 开始,则这一部分贡献是 $F^{j+1..i}dp[i]$
- O(n²) (大概)

- 这东西几年前是严格限定在省选以上的。
- 但几年前网络流也是省选以上的,然而你们后天就要学习了。
- 而且 dalao 们可能很喜欢 (?)。
- 我们先大概从字面意义上理解一下反演这个词的意思, 然后看几个经典反演。
- 例题都是省选级别, 所以 tan90 了。

- 假如我想搞事情、给了你右边的向量、怎么求左边的?
- $F_{i+2} = F_i + F_{i+1}$, 则 $F_i = F_{i+2} F_{i+1}$, 事实上这可以引 出下面的矩阵递推式

- 这样、你就完成了一次反演。
- 从线性变换的角度来说,这两个矩阵协同作用的效果是 nothing.

■"反演就是求矩阵逆"

其他反演

Lecture on Number Theory

數论知识 例題 第二部分 進推和矩阵 反演理论

- 作为一个更一般的 idea, 反演不仅仅用于数论中。
 - 计算几何的反演变换可以把直线变成圆,把圆变成直线。
 - 物理中反演是研究对称性的一种手段。
 - 在一些工程科学里也有这个名词。
 - (dota 里你也可以反演)
- 我们接下来看两个反演。
 - 二项式反演
 - Mobius 反演

二项式反演

- 这类反演的一般形式:
- 已知 $f(n) = \sum A_{n,m}g(m)$, 求 $B_{m,n}$ 使得 $g(m) = \sum B_{m,n} f(n)$
- 在这个问题里, A_{n,m} = C(n, m)。
- 事实上, 计算一下可以发现 $B_{n,m} = (-1)^{n+m} C(n,m)$ 。
- 证明反演成立相当于证明 AB = I_n
 - 主对角线上. n = m 以外地区 Ann 或者 Bmn 为 0
 - 其他地方、要证明 $0 = \sum_{k} (-1)^{k} C(n, k) C(k, m)$
 - 组合数的肮脏 trick: C(n, k) C(k, m) = C(n, m) C(n - m, k - m)
 - 然后加回去提出 C(n, m), 变成了 $\sum_{k} (-1)^{k} C(n-m, k-m) = (1-1)^{n-m} = 0$

Mobius 反演

Lecture on Number Theory

数论知识 例题 第二部分 逆推和矩阵 反演理论

- 假设有 $F(n) = \sum_{d|n} f(d)$, 我们想知道如何用 F(n) 表示 f(d)。
- 试着推倒一下前几项?

```
F(1) = f(1)
F(2) = f(1) + f(2)
F(3) = f(1) + f(3)
F(4) = f(1) + f(2) + f(4)
F(5) = f(1) + f(5)
F(6) = f(1) + f(2) + f(3) + f(6)
F(7) = f(1) + f(7)
F(8) = f(1) + f(2) + f(4) + f(8)
F(1) = F(1) + F(2) + F(3) + f(6)
F(2) = F(3) - F(1) + F(1)
F(3) = F(4) + F(5) + F(6) +
```

- 若 x 有一个平方因子,则 $\mu(x) = 0$ 。否则 $\mu(x) = (-1)^d$, $d \neq x$ 的素因子个数。
- 定理: $\sum_{d|n} \mu(n) = 1(n=1)$ 。
 - 取 n 的最大无平方因子,在该因子上计算即可。
 - 思考:如何在筛法基础上在 O(n) 时间内求 μ(n)?

Mobius 反演

- 若 $F(n) = \sum_{d \mid n} f(d)$, 那么有 $f(n) = \sum_{d \mid n} \mu(n/d) F(d)$ 。
- 证明需要注意到 (AB);; 满足上述定理形式, 只有 i=j 时为0。

Problem 8

Lecture on Number Theory

數论知识 例題 第二部分 遂推和矩阵 反演理论

- 输入 N, 问满足 $1 \le x, y \le N, (x, y) = 1$ 有多少对。
- Easy: $O(N\sqrt{N})$ o Medium: $O(N \log N)$ o
- Hard: *O*(*N*)。

Solution

Lecture on Number Theory

教论知识 例題 第二部分 通推和矩阵 及演理论 ■ 我们来尝试用 Mobius 反演解决这个问题。

Mobius 反演

- 若 $F(n) = \sum_{d|n} f(d)$, 那么有 $f(n) = \sum_{d|n} \mu(n/d) F(d)$ 。
- 若 $F(n) = \sum_{n|d} f(d)$, 那么有 $f(n) = \sum_{n|d} \mu(d/n) F(d)$ 。
 - 从矩阵逆的角度来说,我们就是把 i 和 j 的位置换了一下.....
- 用 f(d) 表示满足 (x, y) = d 的对数。
- 利用第二个反演公式, 我们构造 $F(d) = \sum_{n|d} f(d) = (N/d)^2$ 。
 - gcd 是 d 的倍数等价于两个是都是 d 的倍数。
- 反演就得到了 $f(1) = \sum_{n} \mu(n) (N/d)^2$,这个式子可以 O(n) 算出来了。

Extension

Lecture on Number Theory

界一部分 數论知识 第二部分 道推和矩阵 及演理论

- 这个题显然是可以接着扩张的。。
- 比如把 gcd 改成 lcm。。
 - 然后再多搞搞, 你就会得到神题 JZPKIL
- Mobius 函数本身也有特别的性质: 若 (p,q) = 1, $\mu(pq) = \mu(p)\mu(q)$ 。满足这类性质的函数成为积性函数。
 - 然后就问在台下的 dalao 吧,我啥都不懂。

高斯消元

- 解方程 Ax = y。
- $\mathbf{x} = \mathbf{y}/A$?
- A 是一个矩阵, x 和 y 是对应长度的向量, 我们先假设 这是个方阵
- 常规解读: 给定 n 个未知元的 m 个线性方程, 求一组解
- 类似的,可以用向量内积的形式写: $A_i^T x = b_i$
- 所以各行可以随意调换
 - 换 A 的列会发生什么?

■ 如果右边是 (0,1)^T?

■ 如果
$$A_i^T x = b_i, \ A_j^T x = b_j$$

- 那么:
 - \bullet (1) $kA_i^Tx = kb_i$
 - $(2) (A_i + A_i)^T x = (b_i + b_i)$
- 结合以上两条:
 - $(A_i + kA_i)^T x = (b_i + kb_i)$

三角形式

Lecture on Number Theory

數论知识 例題 第二部分 选推和矩阵 反演理论

- 如果方阵 A 满足 $\forall i, j, i > j \rightarrow A_{ij} = 0$,称 A 是上三角阵
- 这时候 *Ax* = *b* 很好解
- 高斯消元: Ax = b 等价于 A'x = b', 且 A' 是上三角阵

- 由于我们在做行变换、先试着保证 A 的最后一列为 0。
- 找到一组 $A_i^T x = b_i$,使得 $A_{in} \neq 0$
- 对其他的 $A_j^T x = b$: $(A_j + kA_i)^T x = (b_j + kb_i)$
 - $k = -A_{jn}/A_{in}$
- 回代: $A_{ii}x_i = b_i \sum_{j>i} A_{ij}x_j$

嘴炮 Code(?)

```
Lecture on
Number
Theory
```

```
吊一部分
教论知识
例題
第二部分
遊推和矩阵
反演理论
```

```
■ 注意: 这个 code 几乎一定不 work
void gaussian(int n, double A[], double x[],
   double y[]) {
 for (int d = n - 1; d > 0; d--) {
   // Assume A[d][d] != 0
   for (int i = d + 1; i < n; i++)
      A[i] = A[i] - (A[i][d]/A[d][d]) * A[d],
     b[i] = b[i] - (A[i][d]/A[d][d]) * b[d]
 for (int d = n - 1; d > 0; d--) {
   double t = b[d]:
    for (int i = d + 1; i < n; i++)
     t -= A[d][i] * x[i];
   x[d] = t / A[d][d]:
```

高斯消元

- 还没有解决的问题:
 - Add = 0 怎么办? 找一组换上
 - 所有 A_{nd} = 0 怎么办?
 - 浮点数误差问题?
 - 根据数值分析原理, 取绝对值大的做除数
 - 针对模 P 剩余类的高斯消元
- 一般情况的高斯消元解取决于 A 的 rank 和 [A, b] 的 rank
 - rank(A) < rank([A, b]): 无解</p>
 - 否则有 n rank(A) 个自由元、固定这些自由元后有唯一 解
 - 讲讲线性代数??

- ……好像还有一些时间?
- 我们接下来讲抽象代数。
- 这些东西应该不会让你写出更多算法,但是能帮助你理 解一些东西。
- 有人想学 Miller-Rabin 和 Pho-Rollard?
- 自己 google……

- -个群 G 是一个集合 S,以及定义在 S 上的二元运算 + 组成的结构。
 - + 运算满足: 封闭、结合、有幺元 (0元), 有逆元
- 比如, G 是模 p 同余群, 那么 (G,+) 是一个群, 但是 (G,*) 就不是。
 - 有的元素没有逆元,但我们可以不包含模 p 同余的每个 元素,这样可以得到一个群。
- 事实上,所有同样大小的矩阵,定义在矩阵加法上也是 一个群(比较显然)。
- 不太显然的事情:所有可逆方阵,定义在矩阵乘法上, 是一个群。
- 另外,模 P 群都是交换群 (阿贝尔群)。模 P 加法群是 最简单的群,记为 Z\Zp, 它的性质也很简单。

- 但是模 P 的乘法群就比较麻烦了。
- 首先, 我们必须指定模 P 乘法群的元素为和 P 互质的剩余类, 否则它们将没有逆元。
 - 这样,乘法群的大小恰好是欧拉函数 $\phi(P)$ 。这是欧拉定理证明的开始。
- 我们再引入一个概念:直积。两个群的直积结果是一个群,元素是两个群的笛卡尔积,运算是对两部分分别运算。
 - C₃ 和 C₅ 的直积是 C₁₅ (中国剩余定理)。
 - 但 C_2 和 C_2 的直积就不知道是什么了(Klein 四元群,四元数群)。
 - C₂ 和 C₄ 的直积是什么?

- 给定一个 P, 你可以造出模 P 的乘法群。但是和加法群不同, 乘法群不一定是循环的。
- 首先,如果 P 是素数,那么 (Z/p)*循环(这有很简单的证明)。
- 其次,如果 $P = p^k$,p 是一个素数,那么这个群也循环。(我忘记怎么证了。)
- 最后,你会发现,除了以上提到的,以及 $2p^k$ 和 n=1,2,4 以外,其他的模 P 乘法群居然都不是循环的。
- 那他们可以是什么样的呢?
- 注意到这个群必须是交换的,而且有限,因此体现为若干循环群的直积。
- 小测验: 算一下 (Z/12)* 的形态。

From Wikipedia

Lecture on Number Theory

1	C ₁	1	1	0	32	C ₂ ×C ₈	16	8	31, 3	63	C ₆ ×C ₆	36	6	2, 5
2	C ₁	1	1	1	33	C ₂ ×C ₁₀	20	10	10, 2	64	C ₂ ×C ₁₆	32	16	3, 63
3	C ₂	2	2	2	34	C ₁₆	16	16	3	65	C ₄ ×C ₁₂	48	12	2, 12
4	C ₂	2	2	3	35	C ₂ ×C ₁₂	24	12	6, 2	66	C ₂ ×C ₁₀	20	10	5, 7
5	C ₄	4	4	2	36	C ₂ ×C ₆	12	6	19, 5	67	C66	66	66	2
6	C ₂	2	2	5	37	C ₃₆	36	36	2	68	C ₂ ×C ₁₆	32	16	3, 67
7	C ₆	6	6	3	38	C ₁₈	18	18	3	69	C ₂ ×C ₂₂	44	22	2, 68
8	$C_2 \times C_2$	4	2	7, 3	38	C ₂ ×C ₁₂	24	12	38, 2	70	C ₂ ×C ₁₂	24	12	3, 11
9	C ₆	6	6	2	40	C ₂ ×C ₂ ×C ₄	16	4	39, 11, 3	71	C ₇₀	70	70	7
10	C ₄	4	4	3	41	C ₄₀	40	40	6	72	C ₂ ×C ₂ ×C ₆	24	12	5, 7, 11
11	C ₁₀	10	10	2	42	C ₂ ×C ₆	12	6	13, 5	73	C72	72	72	5
12	C ₂ ×C ₂	4	2	5, 7	43	C ₄₂	42	42	3	74	C ₃₆	36	36	5
13	C ₁₂	12	12	2	44	C ₂ ×C ₁₀	20	10	43, 3	75	C ₂ ×C ₂₀	40	20	2, 74
14	C ₆	6	6	3	45	C ₂ ×C ₁₂	24	12	44, 2	76	C ₂ ×C ₁₈	36	18	3, 75
15	C ₂ ×C ₄	8	4	14, 2	46	C ₂₂	22	22	5	77	C ₂ ×C ₃₀	60	30	2, 76
16	C ₂ ×C ₄	8	4	15, 3	47	C ₄₈	46	46	5	78	C ₂ ×C ₁₂	24	12	5, 7
17	C ₁₆	16	16	3	48	C ₂ ×C ₂ ×C ₄	16	4	47, 7, 5	79	C78	78	78	3

n $(\mathbb{Z}/n\mathbb{Z})^{\times}$ $\varphi(n)$ $\lambda(n)$ 生成元 n $(\mathbb{Z}/n\mathbb{Z})^{\times}$ $\varphi(n)$ $\lambda(n)$ 生成元 n $(\mathbb{Z}/n\mathbb{Z})^{\times}$ $\varphi(n)$ $\lambda(n)$ 生成元

原根和 DFT

Lecture on Number Theory

数论知识 例题 第二部分 迷推和矩阵 反演理论

- 你们可能听说过原根的概念。
- 对于素数 *P*,存在一个数 *a*,使得 *a*⁰, *a*¹, · · · , *a*^{*P*-2} 遍历 模 P 剩余类除 0 以外的每一类。*a* 称为 *P* 的原根,这一步是 DFT 的基础。
- 事实上,这里 a 就是模 P 乘法群的一个生成元。
 - 注意! 不是每个元素都是生成元。比如 3 就不是 (Z/6Z) 的生成元; 你需要手动算元素周期。
- 但是,也像我们刚才看到的,如果 P 不是素数,乘法群不是循环群,原根就不一定存在。
- FFT 的核心思想是将多项式在 ω¹,ω²···,ω^N 上插值。
 DFT 中, ω 被替换为 a。
 - 通过简单类比可以发现 a 也有 ω 的性质: $a^{P-1} = 1$, 且 小于 P-1 时互不相同。
 - DFT 的优势在于避免了 FFT 大量三角函数的计算, 也完全躲开了计算误差, 但使用范围有限, 且受 P 大小的限制。

CRT

- 我们(顺便)来 fancy 地讲讲中国剩余定理
- 如果 $n = p_1 p_2 \cdots p_n$, 那么 (Z/n)* 同构于 (Z/p_i) 这 n 个 群的直积。

欧拉公式的证明

Lecture on Number Theory

论外

- 考虑模 P 乘法群。幺元是 1, 大小是 ø(N)。
- 群上元素 x 的周期定义为最小正整数 k. 使得 $x + x + \cdots + x = 0, 0$ 是群幺元。
- 有一个经典定理:有限群每个元素的周期是群大小的约 数。
- ・ 说人话,对每个 x 使得 (x, N) = 1,存在 d|φ(N) 使得 $x^d = 1 \pmod{N}$, 那么显然 $x^{\phi(N)} = 1 \pmod{N}$.