BUCK-BOOST CONVERTER

<u>**Definition**</u>: Buck-Boost converter is a converter which can step up and down the output voltage compared to input source voltage.

Circuit Diagram:

Designed Circuit Parameters:

Parameters	Values
Vs	100 V
D	0.33
L	1.04 mH
С	6.67 mF
R	12.5 Ω
Vo	50 V
f	40 KHz

Simulated Circuit:

Simulated Output Results:

Calculations:

ullet KVL

$$-V_{in} + V_L = 0$$

(17)

$$V_L + V_o = 0$$

$$V_o = 0 \tag{19}$$

$$L * \frac{\triangle I}{DT} = V_{in}$$

$$L * \frac{\Delta I}{(1-D)T} = -V_o \tag{20}$$

Assumed $\triangle I = 0.8A$

Assumed $\triangle I = 0.8A$

$$L * \frac{0.8 * 40k}{0.333} = 100 \tag{18}$$

$$L * \frac{0.8 * 40K}{1 - 0.333} = -50 \tag{21}$$

L = 1.041 mH

 $L=1.041\;\mathrm{mH}$

• For C

$$I_o * D * T = Q = c * (\triangle V) \tag{22}$$

Assumed $\triangle V = 0.005V$

$$C = \frac{4 * 0.333}{40K * 0.005} \tag{23}$$

$$C = 6.67 \text{ mF}$$