Final Paper Presentation

Gianluca Crescenzo

Applied Econometrics, April 24th, 2025

- Primary Research Hypothesis
- 2 Data Gathered
- 3 Population Regression Function
- 4 Results

- Primary Research Hypothesis
- 2 Data Gathered
- Population Regression Function
- 4 Results

Gianluca Crescenzo Final Paper Presentation April 2025 4

Hypothesis

How do temperature and precipitation anomalies affect housing prices?

Hypothesis

How do temperature and precipitation anomalies affect housing prices?

Definition

Let $\overline{\text{Temp}}_{ct}$ denote the average temperature of county c during year t and $\overline{\text{Temp}}_{c}$ denote county c's historical average temperature. The temperature z-score is given by:

$$zTemp_{ct} = \frac{\mathsf{Temp}_{ct} - \mathsf{Temp}_{c}}{\sigma_{\mathsf{Temp},c}},$$

where $\sigma_{\mathsf{Temp},c}$ are the county-specific standard deviations.

Hypothesis

How do temperature and precipitation anomalies affect housing prices?

Definition

Let $\overline{\text{Temp}}_{ct}$ denote the average temperature of county c during year t and $\overline{\text{Temp}}_{c}$ denote county c's historical average temperature. The temperature z-score is given by:

$$zTemp_{ct} = \frac{\mathsf{Temp}_{ct} - \overline{\mathsf{Temp}_{c}}}{\sigma_{\mathsf{Temp},c}},$$

where $\sigma_{\mathsf{Temp},c}$ are the county-specific standard deviations.

The precipitation z-scores are similarly defined. For example, $zTemp_{ct} = 0$ means the temperature was exactly the average for that county, whereas $zTemp_{ct} = 1$ means the temperature was one standard-deviation above the average (an unusually warm year).

- Primary Research Hypothesis
- Data Gathered
- Population Regression Function
- 4 Results

Gianluca Crescenzo Final Paper Presentation April 2025

Population of Interest: California Counties between 2010-2019.

Sample Size: 391.

Population of Interest: California Counties between 2010-2019.

Sample Size: 391.

Temperature and precipitation averages through January-December of a given year:

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/mapping

Population of Interest: California Counties between 2010-2019.

Sample Size: 391.

Temperature and precipitation averages through January-December of a given year:

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/mapping

Median housing prices in July of a given year:

https://data.census.gov/table/ACSDT1Y2019.B25077?g=median+value&g=040XX00US06\$0500000&moe=false&tp=true

***Only counties with population > 65000

Population of Interest: California Counties between 2010-2019.

Sample Size: 391.

Temperature and precipitation averages through January-December of a given year:

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/mapping

Median housing prices in July of a given year:

https://data.census.gov/table/ACSDT1Y2019.B25077?g=median+value&g=040XX00US06\$0500000&moe=false&tp=true

***Only counties with population > 65000

County Population by year:

https://dof.ca.gov/forecasting/demographics/estimates/

e-4-population-estimates-for-cities-counties-and-the-state-2011-2020-with-2010-census-benchmark-new/

Population of Interest: California Counties between 2010-2019.

Sample Size: 391.

Temperature and precipitation averages through January-December of a given year:

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/mapping

Median housing prices in July of a given year:

 $\verb|https://data.census.gov/table/ACSDT1Y2019.B25077?q=median+value&g=040XX00US06\$0500000\&moe=false&tp=true|linearized for the constraint of the constraint$

***Only counties with population > 65000

County Population by year:

https://dof.ca.gov/forecasting/demographics/estimates/

 $\verb|e-4-population-estimates-for-cities-counties-and-the-state-2011-2020-with-2010-census-benchmark-new/|$

California Counties Land Area:

https://onlinecalifornia.us/countyarea.shtml

- Primary Research Hypothesis
- 2 Data Gathered
- 3 Population Regression Function
- 4 Results

Gianluca Crescenzo Final Paper Presentation April 2025

Population Regression Function

Gianluca Crescenzo Final Paper Presentation April 2025 8 / 13

Population Regression Function

Population Regression Function

 $ln(\mathsf{HousePrice}_{ct}) = \beta_0 + \beta_1 \mathsf{zTemp}_{ct} + \beta_2 \mathsf{zPrecip}_{ct} + \beta_3 \mathsf{CountyPop}_{ct} + \beta_4 \mathsf{CountyDensity}_{ct}$

Gianluca Crescenzo Final Paper Presentation April 2025 8 / 13

Population Regression Function

Population Regression Function

 $\mathsf{In}(\mathsf{HousePrice}_{ct}) = \beta_0 + \beta_1 \mathsf{zTemp}_{ct} + \beta_2 \mathsf{zPrecip}_{ct} + \beta_3 \mathsf{CountyPop}_{ct} + \beta_4 \mathsf{CountyDensity}_{ct}$

Potential Omitted Variables: County Crime Levels, County Public Services, County Education Level, Federal Interest Rates, **County Quality of Education**.

- Primary Research Hypothesis
- 2 Data Gathered
- Oppulation Regression Function
- 4 Results

Results: Summary Statistics

. summarize

Variable	Obs	Mean	Std. dev.	Min	Max
year id county	391 0 0	2014.512	2.881283	2010	2019
temp	391	60.44552	4.506983	50.7	76.5
temp_hist	391	58.33478	4.127856	51.7	72.2
precip	391	24.49714	17.73149	2.06	82.59
precip_hist	391	24.9302	14.13778	3.38	63.39
county_pop	391	973216.7	1672957	65084	1.01e+07
median_house	391	415511.5	228933.4	130800	1233600
sq_mi	391	2721.832	3387.598	46.69	20052.5
sd_temp	390	1.335813	.0912748	1.186779	1.521001
temp_dev	390	1.581177	.9970067	7024201	3.511163
sd_precip	390	9.357683	4.940643	1.295387	19.86239
precip_dev	390	0875689	.9638408	-2.207122	2.308191
county_den~y	391	1023.308	2912.476	22.05497	18880.89
ln_median_~e	391	12.80006	.5204693	11.78142	14.02545

Results: OLS Estimates

. reg In_median_house temp_dev precip_dev county_pop county_density

Source	SS	df	MS
Model Residual	25.0446496 80.443615	4 385	6.26116239 .208944454
Total	105.488265	389	.271178058

Number of obs	=	390
F(4, 385)	=	29.97
Prob > F	=	0.0000
R-squared	=	0.2374
Adj R-squared	=	0.2295
Root MSE	=	.4571

In_median_ho~e	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
temp_dev precip_dev county_pop county_density _cons	.1065086 .0905436 4.14e-08 .0000683 12.5302	.0244269 .0251663 1.41e-08 8.06e-06	4.36 3.60 2.93 8.47 273.77	0.000 0.000 0.004 0.000 0.000	.0584817 .0410631 1.36e-08 .0000524 12.44021	.1545355 .1400241 6.92e-08 .0000841 12.62019

Results: Fixed Effects

. areg In_median_house temp_dev precip_dev county_pop county_density i.year, absorb(county) cluster(county)

Linear regression, absorbing indicators

Absorbed variable: county

Number of obs = 390
No. of categories = 39
F(13, 38) = 105.81
Prob > F = 0.0000
R-squared = 0.9885
Adj R-squared = 0.9880
Root MSE = 0.0572

(Std. err. adjusted for 39 clusters in county)

In_median_ho~e	 Coefficient	Robust std.err.	t	P> t	[95% conf.	interval]
temp_dev	.0229511	.0138943	1.65	0.107	0051764	.0510786
precip_dev	.0162229	.0067624	2.40	0.021	.0025332	.0299126
county_pop	5.15e-07	2.38e-07	2.16	0.037	3.21e-08	9.97e-07
county_density	.0000434	.0000235	1.85	0.072	-4.09e-06	.0000909
year	l I					
2011	—.0447335	.0166063	-2.69	0.010	0783512	0111159
2012	1094107	.0157365	-6.95	0.000	1412676	0775538
2013	0221942	.0184837	-1.20	0.237	0596126	.0152242
2014	.0099602	.0343066	0.29	0.773	0594898	.0794102
2015	.1229077	.0289061	4.25	0.000	.0643903	.181425
2016	.1763045	.0302735	5.82	0.000	.115019	.2375899
2017	.2400476	.0312436	7.68	0.000	.1767981	.303297
2018	.3256774	.0304895	10.68	0.000	.2639546	.3874002
2019	.365822	.0261581	13.99	0.000	.3128677	.4187764
_cons	 12.11328	.2249491	53.85	0.000	11-65789	12.56866

Thank You!