Datum		Třída
23.10.2019	SPŠ Chomutov	A4
Číslo úlohy		Jméno
4	Měření operačního zesilovače I	PAIKRT

Zadání

Zapojte a změřte základní zapojení operačního zesilovače.

Schéma zapojení

Zesilovač s vlastností zdroje proudu neinvertující

Neinvertující zesilovač

Zesilovač s vlastností zdroje proudu invertující

Tabulka použitých přístrojů

Zařízení	Značka	Údaje	Evidenční číslo
Miliampérmetr	mA	0-6A, 🗖 🗓 <u>0,5</u> 🟃	LE2 2244/12
Osciloskop	OSC	RIGOL DS2072A	LE 5082
Odporová dekáda	R_z , R_2	0 - 111111Ω, 🔯	LE1 1829
Odporová dekáda	R ₁	0 - 111111Ω, 🕸	LE1 1828
Generátor	G	SIGLENT SDG1020	LE 5077
Stejnosměrný zdroj	Uz	AUL 310	LE4 4061
Operační zesilovač	OZ	MAA741	LE 2379

Teorie

Ideální operační zesilovač má nekonečně velké zesílení Au, nekonečně velké vstupní odpory (nulovén vstupní proudy), nulový výstupní odpor (zesílení nezáleží na zátěži)

Mezní parametry operačního zesilovače MAA741

Napájecí napětí: ±3V až ±18V
Vstupní napětí rozdílové: ±30V

Vstupní napětí: ±15VZtrátový výkon: 500mW

Vytvoření symetrického napájení operačního zesilovače ze dvou stejných zdrojů utvoříme zapojením záporné svorky jednoho zdroje s kladnou svorkou druhého zdroje.

Návrh napájecího napětí a zpětnovazebních odporů pro invertující a neinvertující zesilovač. Viz. výpočty.

Výhoda neinvertujícího operačního zesilovače proti invertujícímu z hlediska vstupního odporu je taková, že vstupní odpor není ovlivněn odporem R_1 jako v zapojení invertujícího.

Naměřené hodnoty

Kladné saturační napětí U_{sat+} = 14,29V Záporné saturační napětí U_{sat-} = -12,93V

Naměřené zesílení $A_U=rac{U_2}{U_1}=rac{25,7}{2,56}=10$ Fázový posun je 180°

Neinvertující zesilovač U / U

Kladné saturační napětí U_{sat+}= 14,41V Záporné saturační napětí U_{sat-}= -12,76V

Naměřené zesílení $A_U=\frac{U_2}{U_1}=\frac{25,17}{2,26}=11$ Fázový posun je 0°

Výpočty

Invertující zesilovač U/U

- Napájecí napětí ±15V symetricky
- Pro $A_U = 10 \text{ a } R_2 = 100 \text{k}\Omega$

$$\circ \quad A_U = \frac{R_2}{R_1} = > R_1 = \frac{R_2}{A_U} = \frac{100 \cdot 10^3}{10} = 10k\Omega$$

Výpočet odporu R₃

$$\circ R_3 = \frac{R_2 \cdot R_1}{R_2 + R_1} = \frac{100 \cdot 10^3 \cdot 10 \cdot 10^3}{100 \cdot 10^3 \cdot 10 \cdot 10^3} \doteq 9090,9\Omega = > 10k\Omega$$

• Pro stejnosměrný signál $R_{vst} = R_1$, jakou hodnotu bude mít odpor R_2 , jestliže chceme vyrvořit invertor jehož $R_{vst} = 10k\Omega$.

$$\circ \quad A_u=1=>\ R_2=R_1=10k\Omega$$

Neinvertující zesilovač U/U

- Napájecí napětí ±15V symetricky
- Pro $A_U = 11$ a odpor $R_2 = 100k\Omega$ navrhni odpor R_1

$$0 \quad A_U = 1 + \frac{R_2}{R_1} = R_1 = \frac{R_2}{A_{u-1}} = \frac{100 \cdot 10^3}{10} = 10k\Omega$$

Invertující zesilovač U/I

- Napájecí napětí ±15V symetricky
- Urči velikost odporu R₁, jestliže při vstupním napětí 5V chceme vytvořit z operačního zesilovače zroj proudu o velikosti 5mA

$$O I_2 = \frac{U_1}{R_1} = R_1 = \frac{U_1}{I_1} = \frac{5}{5 \cdot 10^{-3}} = 1k\Omega$$

• Ověř, že velikost I₂ nezávisí na hodnotě odporu R_Z. Vypočítej R_{Zmax} a porovnej.

$$R_{Zmax} = \frac{U_{sat}}{I_2} = \frac{12 \div 14}{5 \cdot 10^{-3}} = 2400 \div 2800\Omega$$

o $R_{ZmaxRe\'aln\'i}=2520\Omega=>Je~v~rozshau~vypo\'c\'itan\'e~z\'ate\'že$

Neinvertující zesilovač U/I

- Napájecí napětí ±15V symetricky

Urči odpor R₁ pro vstupní napětí 5V a proud o velikosti 5mA o
$$I_2=\frac{U_1}{R_1}=>R_1=\frac{5}{5\cdot 10^{-3}}=1k\Omega$$

- Vypočítej R_{Zmax} a porovnej
 - o $R_{Zmax} = \frac{U_{sat}}{I_2} R_1 = \frac{12 \div 14}{5 \cdot 10^{-3}} 1000 = 1400 \div 1800\Omega$ o $R_{ZmaxRe\'aln\'i} = 1750\Omega => Je \ v \ rozsahu \ vypo\'c\'itan\'e z\'atěže$

Závěr

