

Héctor Dilán cuidadosamente preparó este libro y entiende que está correcto. El libro y la disciplina de *Moldeo Universal*TM son una guía general sin garantía alguna. Héctor Dilán no da garantías y no se hace responsable por daños, perdidas y accidentes como consecuencia del uso de esta disciplina y el contenido del libro.

La reproducción de cualquier parte de este libro sin la autorización del autor está prohibida.

Héctor Dilán carefully prepared this book, and it is believed to be correct. The book and the Universal MoldingTM discipline provide general guidance with no warranties of any kind. Hector Dilan makes no warranties and disclaims any responsibility or liability of

any kind for any loss or damage as a consequence of the use of or reliance upon such

Any reproduction of any part of this book without the written permission of Héctor Dilán

Edición 5 Copyright Héctor Dilán, 2024

information.

is prohibited.

2

Dedicatoria

Le dedico este libro a mi esposa, Susan, por ser el pilar que fortalece cada día de mi vida, por ayudarme con la edición y por prestarme nuestro tiempo familiar para la escritura del mismo.

Agradecimiento

Este libro fue escrito gracias a la motivación de amigos de la industria del plástico. Algunos de estos amigos y colaboradores son: Luis de Jesús, Carlos López, Iván Baigés, Gregorio Vélez, Runny Hernández, William Torres, Wally Cruz y Félix Colón. Amigos, gracias por la colaboración y por compartir sus conocimientos conmigo.

Tabla de Contenido

Figuras	8
Prefacio	12
Prólogo	13
I. Introducción	1.4
¿Qué es Moldeo Universal TM ?	
Fundamentos del Proceso de Inyección	17
-	
II. Parámetros del Proceso de Inyección	26
Parámetros de Máquina y Universales	
Parámetros de Inyección	
Parámetros de Transferencia.	
Parámetros de Empaque ("Hold")	
Endurecimiento de Bebederos	
Parámetros de Enfriamiento	
Parámetros de Plastificación	
Movimientos de la Prensa	
Preguntas	39
III. Gráficas del Proceso	42
Moldeo con Gráficas	
Diagramas PVT	
Preguntas	
_	
IV. Morfología de Plásticos	
Tipos de Plásticos	
Propiedades Mecánicas	
Materiales Comunes y Sus Características	
Encogimiento	
Algunos Experimentos	
Preguntas	69
V. Equipos Auxiliares	71
Secado de Materiales	72
Aire extremadamente seco	73
Temperatura de secado	73
Flujo de secado	74
Tiempo de secado	75
Componentes del equipo de secado	75
Tolva secadora	76
Tamaño de la tolva secadora	77
Tiempo de secado	78
Densidad granel	78
Cargador de resina	
Secadora	80
El filtro	
Bomba ("blower")	
Recámara secante	82

Resistencia de calor	83
Regeneración	84
Configuración de sistemas de secado	86
Preguntas	95
Dosificación y Manejo de Materiales	99
Centro de mezclado	
Preguntas	
Control de Temperatura de Agua al Molde	
Consumo de Material	
Calor removido	
Flujo de agua	
Tiempo de Enfriamiento Estimado	
Control de Temperaturas (TCU)	
TCU con enfriamiento directo.	
TCU con enfriamiento y calentamiento directo	
Preguntas	
-	
VI. Moldeo Desde el Escritorio	
Cálculos de la Prensa	
Fundamentos de la fuerza de cierre	
Área Proyectada	
Cálculo de Pared Fina.	
Fuerzas resultantes de mecanismos que accionan lateralmente	
Moldes de tres platos.	
Molde doble ("stack mold")	
Espacio de la prensa en máquinas con barras ("tie bars")	
Espacio de la prensa en máquinas sin barras ("tiebarless")	
Apertura máxima y mínima	
Patrón de expulsores	
Preguntas	
Cálculos de la Unidad de Inyección	
Tamaño de la unidad de inyección	
Punta de la boquilla ("nozzle tip") y el casquillo ("sprue bushing")	
Densidad y densidad específica	
Velocidad de inyección y flujo de inyección	
Utilización del barril	
Posición de plastificación	
Densidad de descarga	
Velocidad de plastificación	
Tiempo de residencia	
Posición de transferencia.	
Resumen	
Perfiles de temperatura.	
Procedimiento para medir la temperatura del fundido	172
La contrapresión ("back pressure")	173
Razón de intensificación (R _i)	
Rotulación de maquinaria	175
Preguntas	176

VII. Reología en Máquina	180
Flujo de Plástico Fundido	181
Esfuerzo Cortante, Viscosidad y Velocidad Cambiante	181
Reología en Máquina por Potencia	185
Reología en Máquina por Viscosidad	187
Reología Aproximada	
Ecuación de Predicción del Tiempo de Inyección	198
Preguntas.	202
VIII. Determinación de la Velocidad de Inyección	204
Laboratorio I – Entienda el Llenado y sus Limitaciones, Determine el Tiempo de	•
Inyección Mínimo y la Presión Límite de Inyección	
Procedimiento para Determinar el Tiempo de Inyección Mínimo y la Presión	
Límite de Inyección	
Laboratorio II – Determinación del Tiempo de Inyección y la Velocidad de Inyección y 14	ción.
Laboratorio III – Gráfica de Reología y Determinación del Tiempo y Velocidad	
Inyección Ideal	
Laboratorio IV – Gráfica Aproximada	
Laboratorio V – Predicción del Tiempo de Inyección	
Preguntas	
IX. Verificación del Balance del Llenado	
Efecto del Tiempo de Inyección en el Balance del Llenado	
Laboratorio - Balanceo del Llenado	
Desbalance Termal	
Desbalance en Moldes con Coladas Frías	
Preguntas	239
X. Determinación de Parámetros en la Etapa de Empaque	
Laboratorio I - Determinación de la Presión de Empaque	243
Verificación del % volumétrico inyectado basado en las posiciones del tornillo	o:247
Laboratorio II - Determinación del Tiempo de Empaque	
Empaque de Moldes con Colada Caliente y Válvulas en los Bebederos	
Preguntas	255
XI. Determinación de Parámetros en la Etapa de Enfriamiento	259
Entienda su Producto	260
Tiempo de Enfriamiento	
Optimización con la Temperatura del Molde	
Procedimiento para medir la temperatura del fundido:	
Otros Parámetros que Afectan el Enfriamiento	269
¿Cómo se Organiza un Experimento de Enfriamiento?	
Preguntas	273
XII. Límites del Proceso	
¿Qué causaría que se alcanzara el límite de presión máxima de inyección y cuále	
podrían ser sus consecuencias?	277

	¿Qué causaría que se alcanzara el límite bajo del colchón y cuáles podrían ser sus	
	consecuencias?	.277
	¿Qué causaría que se alcanzara el Límite Alto del Colchón y cuáles podrían ser sus	
	consecuencias?	.278
	¿Qué causaría que se alcanzara el tiempo límite de plastificación y cuáles podrían	ser
	sus consecuencias?	278
	¿Cuál es un límite superior e inferior adecuado para la contra presión?	.278
	Preguntas	.281
۸ -	- (mdiana	202
AJ	péndices	
	I - Causas y Efectos	. 284
	II - Datos Universales del Molde	.291
	III - Ecuaciones de <i>Moldeo Universal</i> TM	.292
	IV - Procedimiento General para Moldeo Universal TM	.302
	V - Términos en Inglés al Español	306
	VI - Términos en Español al Ingles	. 308
	VII - Costos Operacionales	.310
	Bibliografía	.312
	Contestaciones	.313
	Índice	
	Opiniones de Expertos	.321

Figuras

I-1. Gráfica de reología en máquina inyectora	16
I-2. Gráfica de reología completa y aproximada	17
I-3. Etapa de inyección	20
I-4. Los espacios que el plástico ocupa en un molde	21
I-5. La anilla ("check ring")	22
I-6. La posición de la anilla durante la plastificación	23
I-7. La etapa de plastificación	25
II-1. Posiciones y etapas de inyección	28
II-2. Pared con moldes fríos y tiempos de enfriamiento extendidos	34
II-2a. Pared con moldes calientes y tiempos de enfriamiento cortos	34
II-3. La contrapresión ("back pressure")	35
II-4. La descompresión	36
III-1. Gráfica de inyección ideal	43
III-2. Gráfica de zona de control de velocidad o flujo de inyección	45
III-3. Gráfica de zona de empaque o control de presión	47
III-4. Gráfica de zona de plastificación	49
III-5. Gráfica de presión limitada	50
III-6. Gráfica de transferencia prematura	51
III-7. Gráfica de proceso defectuoso con cojín igual a cero	52
III-8. Gráfica de velocidad programada no fue alcanzada	52
III-9. Diagrama de PVT (Presión, Volumen y Temperatura)	53
III-10. Diagrama de PVT con etapas de moldeo	54
IV-1. Ilustración representando organización de moléculas amorfas y semi-cr	istalinas 58
IV-2. Gráfica ilustrativa de rigidez contra temperatura en materiales amorfos	59
IV-3. Gráfica ilustrativa de rigidez contra temperatura en materiales semi-cri	
IV-4. Gráficas sobrepuestas de rigidez contra temperatura de materiales	
semi-cristalinos y amorfos	61
IV-5. Materiales amorfos y semi-cristalinos comunes	61
IV-6. Listado con características mecánicas de materiales amorfos y semi-cri	stalinos. 63
IV-7. Listado de características del proceso con materiales amorfos y semi-cr	istalinos 64
IV-8. El encogimiento de materiales amorfos	64
IV-9. El encogimiento de materiales semi-cristalinos	65
IV-10. Efecto del tiempo de endurecimiento de los bebederos en materiales an	norfos y
semi-cristalinos	66
IV-11. Efecto del empaque en el peso de las piezas en materiales amorfos y	
semi-cristalinos	67
IV-12. Efecto de la presión de inyección en el tiempo de inyección en materia	les amorfos
y semi-cristalinos	68
V-1. Mecánica del secado de termoplástico	74
V-2. Tolva de secado y secadora	76
V-3. Tolva secadora	77
V-4. Volumen/tiempo de residencia	78
V-5. Circuito de secado	81
V-6. Circuito de regeneración	84
V-7. Unidad portátil	86

V-8. Tolva sobre la extrusora	87
V-9. Unidad integrada	88
V-10. Secadora central	88
V-11. Tabla de materiales y sus parámetros de secado	90
V-12. Tabla de materiales y sus densidades granel	92
V-12a. Tabla de materiales y sus densidades granel (cont.)	93
V-13. Flujo de aire seco requerido por cada lb/h de consumo de material	94
V-14. Dosificador	100
V-15. Gráfica de ajuste vs. dosificación	101
V-16. Montura de dos dosificadores en un mismo sistema	102
V-17. Sistema gravimétrico	103
V-18. Válvula proporcional neumática	104
V-19. Centro de mezclado	105
V-20. Tabla de energía requerida por algunos materiales	108
V-21. Tabla termal para algunos materiales	109
V-22. Flujo de agua por los pasajes del molde y Delta T	111
V-23. Conexión de las mangueras de agua al molde en serie y en paralelo	111
V-24. Temperatura entre las cavidades	112
V-25. Tabla de constantes para ecuación de tiempos de enfriamiento	117
V-26. Temperatura y presión del agua entrando y saliendo	118
V-27. Diagrama de los componentes de enfriamiento directo	119
V-28. Diagrama de los componentes de enfriamiento y calentamiento directo	120
V-29. Tres máquinas compartiendo un chiller	122
V-30. Tres máquinas compartiendo un chiller, con una máquina detenida	123
VI-1. Tabla de factores de presión para algunos materiales	127
VI-2. Área proyectada de una esfera	128
VI-3. Área proyectada de un cubo	128
VI-4. Área proyectada de un vaso	129
VI-5. Rodillos de nilón y coladas con y sin partes	130
VI-6. Área proyectada de uno de los 12 rodillos y su colada	131
VI-7. Área de la colada	131
VI-8. Ejemplo de una pieza en forma de L	133
VI-9. Trayecto del flujo de un rodillo	134
VI-10. El grosor (G)	135
VI-11. Tabla de criterio de pared fina	136
VI-12. Interpolación lineal del factor de presión	136
VI-13. Actuadores accionados por la fuerza de cierre	137
VI-14. Medidas para calcular el área proyectada	138
VI-15. Fuerza lateral por actuador	138
VI-16. Fuerza resultante	139
VI-17. Molde de tres platos	140
VI-18. Molde doble ("stack")	141
VI-19. Vectores de fuerza del molde doble	142
VI-20. Espacios en platina con barras	142
VI-21. Espacios en platina sin barras	143
VI-22. Apertura mínima de la prensa	144
VI-23. Apertura máxima de la prensa	144
VI-24. Patrón de expulsores	145
0	

VI-25. Plastificación máxima	147
VI-26. La punta de la boquilla ("nozzle tip") y el casquillo ("sprue bushing")	150
VI-27. Diámetros y radios de la punta de la boquilla y del casquillo	151
VI-28. Defecto causado por concentración de esfuerzo en los filos de la boquilla	a152
VI-29. Defecto causado por un palo atascado en la boquilla	152
VI-30. Otro defecto causado por un palo atascado en la boquilla	153
VI-31. El flujo de fundido termoplástico en un molde	154
VI-32. El efecto fuente	154
VI-33. Ejemplo de efecto fuente utilizando un pedazo de servilleta	155
VI-34. Posiciones del llenado	158
VI-35. Volumen de residencia	163
VI -36. Tabla de residencia T_r (ejemplo)	165
VI-37. Tabla de tiempo de residencia de acuerdo con el % de utilización	165
VI-38. Tabla de % de utilización de acuerdo con el tipo de industria	166
VI-39. Posición de transferencia	167
VI-40. Tablas con criterio para la posición de transferencia	168
VI-41. Posiciones del tornillo	169
VI-42. Las zonas de calor del barril	170
VI-42. Perfil de temperaturas	171
VI-43. Razón de intensificación	174
VII-1. Orientación de moléculas en un flujo de fundido	181
VII-2. Esfuerzo cortante	182
VII-3. La mitad del flujo de fundido	182
VII-4. Vectores de velocidad en un flujo de fundido	183
VII-5. Flujo de fundido Newtoniano y seudoplástico	184
VII-6. Gráfica de reología en máquina por potencia	186
VII-7. Gráfica de tiempo de inyección contra potencia pico	186
VII-8. Zona en donde el cambio en tiempo de inyección es mínimo o la potencia	
contribuir	187
VII-9. Zona en donde el cambio en viscosidad relativa es mínimo	190
VII-10. Lecturas de presión de transferencia y tiempo de inyección	191
VII-11. Gráfica de comportamiento lineal entre flujo de inyección y potencia pio	co192
VII-12. Gráfica de comportamiento lineal entre viscosidad relativa y tiempo de	
inyección	192
VII-13. Ejemplo de tiempos de inyección y presiones de transferencia	193
VII-14. Ejemplos de valores de reología	194
VII-15. Gráfica del efecto lineal entre flujo promedio y potencia pico de inyecci	
VII-16. Gráfica del efecto lineal entre viscosidad relativa y tiempo de inyección	
VII-17. Tabla incluyendo 8 tiempos de inyección equidistantes	196
VII-18. Gráfica aproximada entre tiempo de inyección y potencia pico de inyecc	
VII-19. Gráfica aproximada entre viscosidad relativa y velocidad cambiante rel	
VII-20. Gráficas de reología sobrepuestas, completa y aproximada	197
VII-21. Gráfica de reología normalizada en %	198
VII-22. Tiempo de inyección para industrias de moldeo convencional	199
VII-23. Tiempo de inyección para industrias que moldean materiales sensitivos	
fricción	200
VII-24. Tiempo de inyección para industrias de alto volumen de inyección	200
VIII-1. Flujo de eventos de Moldeo Universal ™	205

VIII-2. Tablas para seleccionar la posición de transferencia de inyección a en	
VIII-3. Determinación del tiempo mínimo y la presión máxima de inyección (e	vjemplo)
211	
VIII-5. Encabezado de la tabla de reología	216
VIII-6. Tabla de reología aproximada por potencia	217
VIII-7. Tabla de reología completa por potencia	217
VIII-9. Ejemplo de tabla de reología aproximada por potencia	220
VIII-10. Gráfica con ecuación lineal entre potencia pico y flujo promedio de i	nyección
221	
VIII-11. Tabla y gráfica de reología completa y aproximada por potencia	222
VIII-12. Tabla de reología por potencia aproximada	223
VIII-13. Gráfica de reología indicando tiempos de inyección por industria	224
IX-1. Molde de múltiples cavidades con llenado desbalanceado	230
IX-2. Gráfica del efecto de la velocidad de inyección en el llenado de piezas i	ncompletas
	231
IX-3. Llenado rápido y lento	231
IX-4. Ejemplo de secuencia del llenado de coladas	232
IX-5. Éjemplo de llenado lento	233
IX-6. Ejemplo de llenado rápido	233
IX-7. Ejemplo de llenado incompleto	234
IX-8. Piezas separadas de la colada	235
IX-9. Tabla con pesos de cavidades incompletas y sus correspondientes desvic	
llenado	236
X-1. Gráfica del efecto de la presión de empaque en el peso de las partes	242
X-2. Tiempo de enfriamiento extendido	243
X-3. Tabla del efecto de la presión de empaque en el peso de las partes	245
X-4. Gráfica del efecto de la presión de empaque en el peso de las partes	245
X-5. Gráfica indicando el rango de presión de empaque	246
X-6. Determinación de la presión de empaque con la posición del colchón	247
X-7. Gráfica indicando presión de empaque excesiva	249
X-8. Corrección cuando el colchón es cero	250
	250 251
X-9. Tiempo de enfriamiento extendido	
X-10. Tabla de peso de partes y sus respectivos tiempos de empaque y de enfr	iamienio
252	252
X-11. Gráfica del efecto del tiempo de empaque en el peso de las partes	253
X-12. Características mecánicas de los materiales que deben considerar dura	
empaque VIII Till III III III III III III III III III	254
XI-1. Tabla de experimento de optimización de la temperatura del molde	263
XI-2. Ejemplo de piezas de un molde de dos cavidades	265
XI-3. Tabla con resultados de temperatura del molde en medida crítica	266
XI-4. Gráfica del efecto de la temperatura de molde en medidas críticas	267
XI-5. Gráfica de ecuaciones lineales de temperaturas de molde en medida crí	tica de dos
piezas	268
XI-6. Tabla con límites de temperaturas de molde en medida crítica de dos pie	ezas268
XI-7. Tabla de parámetros (temperatura y tiempo de enfriamiento), con sus	
combinaciones v sus repeticiones	271

Prefacio

Moldear por inyección fue por muchos años un espacio ocupado por los experimentados maestros de la industria del plástico. Afortunadamente hoy existen varias técnicas que aceleran el aprendizaje y el dominio de moldeo por inyección.

Nosotros hemos experimentado con numerosos moldeadores de todo calibre. Entre todos nunca hemos encontrado dos que utilicen técnicas de moldeo idénticas. No solo las técnicas de moldeo son distintas, sino que tampoco es igual el lenguaje, el orden de ejecución, las definiciones, el uso de parámetros, la identificación de equipos, los procedimientos y la comunicación. Son esas las razones que motivan la escritura de este libro

*Moldeo Universal*TM (abreviado MU^{TM}) tiene como objetivo unificar estilos de moldeo, utilizar definiciones válidas del proceso, utilizar un lenguaje Universal y estandarizar procedimientos claros y representativos de todas las etapas del moldeo por inyección.

Este libro no se limita únicamente a los novatos de la industria; también se recomienda a los moldeadores experimentados que deseen estandarizar y aumentar la cantidad de moldeadores competentes en su sector. *Moldeo* UniversalTM: Método Sistemático de Optimización de Moldeo por *Invección* (MU^{TM}) es para cualquier persona que desee aprender sistemáticamente y de manera efectiva sobre el moldeo por invección. MUTM guía al moldeador para determinar los parámetros Universales característicos del molde, independientemente de la máquina de invección utilizada. Existe una preocupación que afecta a una minoría en la industria del plástico, la inteligencia artificial. Nosotros lo vemos como una herramienta que ayudará a resolver la falta de estandarización y las aproximaciones empíricas en la optimización de parámetros del proceso. La integración de la inteligencia artificial (IA) en MU^{TM} considera los principios fundamentales de estandarización, aprendizaje rápido, procesos eficientes y beneficios significativos. Todos debemos esforzarnos por mejorar, aceptar y aprender nuevas metodologías y tecnologías que fortalezcan el crecimiento continuo en MU^{TM} .

Prólogo

¿Cuál es la definición de un proceso de moldeo de polímeros por inyección 'óptimo'? En la realidad, no establecemos un proceso óptimo, sino que definimos una ventana operacional óptima alrededor de los valores de ciertos parámetros de moldeo que un laboratorio de optimización nos lleva a establecer y definir como 'nominal'. Utilizando las herramientas que provee la internet podemos encontrar un sinnúmero de definiciones y/o métodos sobre lo que es un proceso óptimo, cómo establecerlo, e incluso cómo monitorearle. Esas definiciones, en síntesis, establecen que un proceso de moldeo de polímeros óptimo es "el resultado de una combinación particular de valores de parámetros de moldeo... dentro de una ventana operacional... capaz de consistentemente producir una pieza plástica que cumpla con todos los requisitos cosméticos, dimensionales y funcionales de diseño... en el menor tiempo de máquina posible". Esto, para cualquier combinación de material prima, diseño de molde y celda de moldeo (i.e. máquina de inyección, secadora, controles de temperatura, etc.). De igual manera, ese proceso óptimo no puede serlo si el mismo atenta contra la habilidad del molde o, incluso de la máquina de moldeo, para repetir el mismo ciclo de comportamiento de manera infinita.

El autor del libro ha dedicado gran parte de su vida profesional a identificar, de manera sistemática, dos cosas. Primero, en cómo alcanzar a establecer esa ventana operacional óptima en un proceso de moldeo; y segundo, en cómo lograr que esa ventana óptima de proceso para cualquier combinación materia prima, molde y equipo de moldeo sea la misma independientemente de quién ejecute o dónde se lleve a cabo el laboratorio de optimización. Por eso lo de "Universal" en el título que lleva este ejemplar. Es la intención del autor, con las herramientas presentadas en este, su libro, lograr que el Ingeniero de Proceso sea capaz de identificar los requisitos mínimos con los que debe cumplir cada uno de los equipos y utilidades que componen la celda de moldeo. Una vez seleccionado correctamente el equipo, provee las herramientas para que los equipos seleccionados se conviertan en los cimientos sobre los cuales, de manera cabal, el ingeniero procesador pueda desarrollar el laboratorio y establecer los experimentos de diseño que darán forma a esa combinación de parámetros 'nominal' alrededor de la cual definirá los límites de esa ventana óptima de operación a validar. Esto... en el menor tiempo de máquina posible.

Felix Colón Ortiz
Injection Molding Process & Tooling Engineering Professional

I. Introducción

- ¿Qué es Moldeo UniversalTM (MUTM)?
 Fundamentos del Proceso de Inyección

En esta primera parte, el objetivo es familiarizar al lector con la terminología, haciendo hincapié en los parámetros significativos del proceso y estableciendo el lenguaje que se utilizará en el libro. Para evitar confusiones con términos regionales, el Apéndice III traduce algunos términos al inglés.

¿Qué es Moldeo UniversalTM?

Moldeo UniversalTM (MU^{TM}) es una disciplina de optimización de procesos de moldeo por inyección. Esta se desarrolló con la colaboración de la industria plástica caribeña y la academia (UPR Mayagüez, Puerto Rico).

MUTM es una *disciplina* que enfatiza la maximización de recursos y se enfoca en la calidad del producto, utilizando metodologías de optimización de procesos comprobadas mediante técnicas de moldeo organizadas y científicamente respaldadas. Con ese trasfondo técnico-científico se aumenta las eficiencias, se disminuyen los costos de los productos y se reducen los ciclos de manufactura.

 MU^{TM} es un *lenguaje común* para los moldeadores que elimina la confusión de términos. Los equipos son rotulados con un lenguaje que representa sus capacidades. Es un lenguaje de parámetros *Universales* de proceso que simplifica la transferencia de procesos entre máquinas. Es un lenguaje que define el producto y su utilización.

MUTM es un *comité organizador* (o comité *Universal*). Es un grupo escogido que promueve la disciplina. Es un comité Universal representado por todos los departamentos de la fábrica Universal. Representa los departamentos de Producción, Control de Calidad, Mantenimiento de Equipos, Mantenimiento de Moldes, Ingeniería y Ventas

 MU^{TM} es una *disciplina interminable* que nunca deja de crecer ni de mejorar. El comité *Universal* tiene la responsabilidad de evaluar y unánimemente adoptar procedimientos que mejoren los existentes.

MUTM se basa en procedimientos precisos y representativos del proceso. En cada etapa, se sigue un procedimiento para determinar los parámetros, ya sea mediante ecuaciones lineales y en muchos casos con un componente no lineal que será generado por la inteligencia artificial (IA).

 MU^{TM} es *maximizar la utilización de maquinaria*. Es el determinar la maquinaria apropiada y de sus parámetros óptimos de proceso.

Algunas de las técnicas trabajadas son:

1- Reología en máquina inyectora. Esta técnica es efectiva y comprobada en la determinación del tiempo de inyección. Por medio de una gráfica se muestra el efecto del tiempo de inyección en la potencia por unidad de volumen.

En la gráfica el área bajo la curva representa el porcentaje de energía consumido por cada decremento en el tiempo de inyección.

I-1. Gráfica de reología en máquina inyectora

Note que la potencia aumenta cuando se disminuye el tiempo de inyección. Esta gráfica revela que la potencia requerida a altos flujos de inyección es considerablemente alta o la energía consumida por la unidad inyección es más significante a bajos tiempos de inyección. La idea es seleccionar un tiempo de inyección en la zona donde el tiempo deja de contribuir con aumento en potencia.

Más adelante se explicará cómo desarrollar y utilizar esta gráfica de reología en máquina de inyección.

2- Reología aproximada. El desarrollo de un laboratorio de reología en una máquina de inyección consume tiempo y recursos. Con la reología aproximada, una técnica matemática de predicción, el laboratorio se efectúa en menos de una 3ra parte del tiempo.

Las gráficas del tiempo de inyección contra potencia por unidad de volumen comparan los dos métodos; reología en máquina completa y el método aproximado.

I-2. Gráfica de reología completa y aproximada

Ahora ambos métodos, completo o aproximado, funcionan conceptualmente igual. La diferencia está en que el aproximado consume menos tiempo y recursos.

Una vez más, el desarrollo y uso de estas gráficas serán explicadas más adelante.

Fundamentos del Proceso de Inyección

Las etapas del proceso de inyección son los siguientes:

- inyección
- transferencia
- empaque
- endurecimiento de bebederos
- enfriamiento
- plastificación

Cada etapa tiene una función y un resultado determinado. Entienda a cabalidad cada una de estas etapas ya que se hará referencia continua a estas definiciones

Inyección - En esta etapa se llena el molde (cavidades y colada) cerca de un 95%, y el tornillo trabaja como un pistón que transfiere el fundido desde la unidad de inyección al molde. Aquí se programa una velocidad o un flujo de invección que garantice las mejores propiedades del llenado. Estas propiedades podrían ser sin quemaduras, no líneas de flujo, no degradación, mínima concentración de esfuerzos, etc. Cuando el fundido caliente entra al molde se encuentra con las paredes frías y rápidamente se densifica hasta solidificarse. El llenado lento aumenta la densificación o la viscosidad y, consecuentemente, podría dificultar el llenado y hasta solidificar el fundido prematuramente antes de que se complete el llenado. En esta etapa el tiempo de invección, al igual que la presión de inyección, son resultados y no parámetros de control. No los confunda con la presión límite de invección ni con el tiempo límite de invección. estos son límites que se programan para proteger el herramental y la máquina. Esta etapa se conoce como la etapa de control de velocidad de inyección.

Transferencia – Esta es quien termina la etapa de inyección. Una vez la unidad de inyección llena cerca del 95%, termina la etapa de llenado por inyección e inicia la próxima etapa, empaque. La unidad de inyección viene provista con un medidor de posición que mide el desplazamiento del tornillo, y es así como la unidad de inyección sabe que llenó cerca de un 95% del molde. Evite tratar de llenar el 100% del molde en la etapa de inyección. Veamos algunas razones:

- Podría crear rebaba en las piezas moldeadas. Quien frena al tornillo es el fundido en frente de la unidad de inyección y tratar de frenarlo exactamente al 100% sin abrir el molde sería difícil.
- A alta velocidad tratar de llenar el 100% podría crear el efecto rebote del tornillo. El plástico fundido es compresible y durante la inyección es comprimido. Este fluido comprimido querrá crecer, como un resorte comprimido, empujando la unidad de inyección hacia atrás ocasionando que parte del fundido que entró se regrese, efecto rechupe.
- Otra razón por el cual no podría es por el encogimiento del material. El material fundido ocupa más espacio que el material solidificado. Una vez que el fundido entra al molde se enfría, encogiendo gradualmente y dejando espacios para más material.

Nota: Algunos moldes presentan una extrema dificultad de llenado; por ejemplo, las amarras de nilón ("*tie wraps*") que son largas y delgadas, o las aplicaciones de micromoldeo con espacios estrechos e incómodos para el llenado. En estos casos, es posible que se requiera un porcentaje de llenado superior al 95%.

fundido retorne al tornillo. El desplazamiento del tornillo comienza desde la posición Durante la etapa de inyección el tornillo se comporta como un pistón inyectando un fluido. El fundido se mantiene al frente del tornillo y la válvula impide que el de plastificación y continua hasta la posición donde transfiere a empaque.

I-3. Etapa de inyección

Empaque ("hold") - En esta etapa el tornillo continúa actuando como un pistón, comprimiendo las cavidades hasta llenar el remanente que no pudo llenar en la etapa de inyección. Sin abrir el molde la unidad de inyección comprime el fundido, entrando más material al molde hasta 20

completar el llenado de las cavidades. Aquí el moldeador manipula la presión de compactación.

Durante el empaque se consigue el peso adecuado de las piezas moldeas o lo que los moldeadores *Universales* llamamos "dimensiones de masa". Las dimensiones de masa son aquellas que son únicamente función de la cantidad de material y no se deben confundir con las dimensiones que son efecto del encogimiento. El encogimiento se controla durante la etapa de enfriamiento. Como se indicó anteriormente, durante el empaque controlamos únicamente las dimensiones de masa, las dimensiones que son función de la cantidad de material

Endurecimiento de bebederos - Durante el empaque las piezas son presurizadas hasta que el material en los bebederos se solidifica, creando un sello que retiene el fundido dentro de las cavidades. Veamos los espacios que el plástico ocupa en el molde.

I-4. Los espacios que el plástico ocupa en un molde

Un bebedero ("gate") es el agujero por donde entra el fundido a las cavidades. El fundido entra por un bebedero (palo o "sprue") y viaja por la colada ("runner") hasta llegar a los bebederos en las cavidades. Lo normal es que los bebederos sean considerablemente más pequeños que la colada. El fundido es forzado a colarse por el estrecho espacio de los bebederos hasta llenar las cavidades. El plástico es sostenido dentro las

cavidades hasta que los bebederos se solidifiquen. Es importante entender:

- Si se remueve la presión de empaque prematuramente, el fundido retornará a la colada y posiblemente a la unidad de inyección.
- Si se empaca por un tiempo mucho mayor de lo requerido, el moldeador estará "moldeando coladas".

En algunos moldes con coladas calientes ("hot runners"), el fundido nunca se solidifica y se integra como parte del llenado de las próximas piezas. El objetivo de este tipo de molde es reducir el desperdicio de material de la colada. Sin embargo, incluso en este caso, los puntos de inyección hacia las cavidades deben solidificarse antes de liberar la presión de empaque.

En otros moldes, además de ser de colada caliente, se integran válvulas en los bebederos ("gate valves"). Estas válvulas permanecen abiertas durante el llenado y se cierran cuando se completa el empaque.

El tornillo se comporta como un pistón gracias a la anilla ("*check ring*") que flota entre la punta del tornillo y el tornillo. Durante la inyección, la anilla se mueve contra el tornillo sellando y evitando que el fundido se regrese al tornillo.

I-5. La anilla ("check ring")

Durante la inyección la presión en frente de la anilla es mayor que en el lado del tornillo obligando la anilla a moverse contra el tornillo, creando el sello.

Existen tornillos que no tienen la anilla de sellado. El compuesto de PVC rígido es muy sensitivo a la fricción del fundido contra la anilla, y es común ver que no utilicen la anilla. Ahora, el tornillo viene provisto con un mecanismo de antirrotación para que no rote a consecuencia de la excesiva presión del fundido.

Enfriamiento - En esta etapa removemos calor de las partes, hasta obtener piezas que sean desmoldables con unas dimensiones térmicas aceptables. Dimensiones térmicas son dimensiones que son función del encogimiento y no de la cantidad de masa empacada. Las moléculas de un fundido termoplástico están en continuo movimiento; cuando se enfrían buscan conformidad y se acomodan, ocupando menos espacio. La idea es paralizar la actividad molecular y manipular el encogimiento a nuestra conveniencia.

Veamos:

- Moldes fríos y tiempos de enfriamiento extendidos dan paredes anchas.
- Moldes calientes y tiempos de enfriamiento cortos dan paredes delgadas.

Las dimensiones térmicas y también algunas propiedades mecánicas son una función de la rapidez con que se remueve el calor. Estas propiedades mecánicas podrían ser rigidez, translucencia, cristalinidad, etc. Más adelante explicaremos como estas dimensiones térmicas son función del tiempo de enfriamiento y la temperatura del molde.

Plastificación - En esta etapa, el tornillo carga material para el próximo tiro. El mayor objetivo es consistentemente producir un fundido homogéneo. Durante la plastificación la anilla se retira del tornillo, permitiendo el paso del fundido hacia el frente del tornillo en rotación.

I-6. La posición de la anilla durante la plastificación

El material fundido que se acumula en frente del tornillo es el que empuja el tornillo hacia atrás.

La plastificación sucede al mismo tiempo que la etapa de enfriamiento. Bajo condiciones normales la plastificación termina antes que el enfriamiento termine y, si el enfriamiento termina antes, el permiso para abrir el molde será denegado por el control. Bajo este evento, donde el permiso de abrir el molde sea denegado y además no existan alarmas que detengan el proceso, se extendería el tiempo de enfriamiento, alterando las dimensiones térmicas.

Imagínese qué sucedería si el molde abre durante la plastificación. El fundido se vaciaría por el molde. Durante la plastificación, el plástico está presurizado y quien retine el fundido en la unidad de inyección es el molde lleno. Como regla general, la plastificación debe terminar cerca de un segundo antes que el enfriamiento. Permiso de abrir el molde durante la plastificación puede únicamente suceder cuando la unidad de inyección está provista con una válvula en la boquilla ("nozzle").

Es importante saber que la unidad de inyección utiliza dos fuentes de calor para fundir el plástico, las bandas de calor y la fricción. Una regla general es que un 50% del calor proviene de las bandas de calor y un 50% del calor proviene de la fricción.

Más adelante se hablará de los parámetros que gobiernan la plastificación. Estos son velocidad de plastificación, posición de plastificación, contrapresión, descompresión y temperatura del fundido.

Movimientos del molde - Durante esta etapa se consigue el desmolde de partes. Una vez concluida la etapa enfriamiento, la secuencia es: el molde abre, si existieran los noyos ("cores") salen librando las partes, las partes son expulsadas, los noyos entran, el molde inicia el cierre, la protección del molde se activa, y si la protección del molde no detecta inconvenientes, la prensa alcanza la fuerza de cierre y comienza un nuevo ciclo.

La válvula se mueve, permitiendo el flujo del material y el mismo fundido que se acumula al frente empuja el tornillo hacia atrás. La contrapresión crea una carga que se opone al movimiento libre del tornillo. Esta contra presión se refleja como esfuerzo o fricción en En la etapa de plastificación el tornillo gira, llevando el fundido hacia el frente del barril. el material, lo que genera calor y contribuye al proceso de fundido.

I-7. La etapa de plastificación