Nom:	Groupe : 5
	 310apc : 5

Chapitre 2

Durée: 60 min.

Géométrie - Figures équivalentes

Examen formatif - Corrigé

1. Volume du cube = $(\sqrt{54 \div 6})^3 = 27 \text{ cm}^3$

Pyramide :
$$V = \frac{A_b \cdot h}{3}$$
 donc $27 = \frac{A_b \cdot 9}{3} \iff A_b = 9 \text{ cm}^2$

Côté de l'hexagone :
$$\frac{x^2 \cdot \sin 60^\circ}{2} = 9 \div 6 \iff x \approx 1,86 \text{ cm}$$

Périmètre de la base : $1,86 \times 6 \approx$ **11,17 cm**

2. Aire du trapèze (et de l'heptagone) \approx 102,36 cm²

Périmètre de l'heptagone ≈ 37,15 cm

- 3. a) La **figure C**, car parmi plusieurs polygones convexes équivalents, c'est celui qui a le plus de côtés qui a le plus petit périmètre.
 - b) La **figure B**, car les triangles équivalents au quadrilatère ont nécessairement un plus grand périmètre. De plus, un triangle équilatéral possède un plus petit périmètre qu'un triangle scalène, donc le triangle B possède un plus grand périmètre que le triangle A.
 - c) Le périmètre de la **figure A** est de **15** cm.

Le périmètre de la **figure B** est de **16,61** cm.

Le périmètre de la **figure C** est de **14,13** cm.

4. Le volume de chacun des comprimés est d'environ 452,39 mm³.

L'aire totale du comprimé A est d'environ 339,29 mm².

L'aire totale du comprimé B est d'environ 335,48 mm².

L'entreprise devrait donc produire le comprimé B.

5. Question bonus!

On fera des flotteurs **sphériques** afin d'obtenir un volume maximal pour une « surface » minimale. (La « surface » correspond au volume des parois.)

Rayon d'un flotteur ≈ 2,03 dm

Rayon de la sphère vide à l'intérieur d'un flotteur $\approx 1,98$ dm (donc V $\approx 32,48$ dm³)

Quantité de plastique requise pour un flotteur $\approx 35 - 32,48 \approx 2,52 \text{ dm}^3 \approx 2,52 \text{ L}$

Nombre maximal de flotteurs $\approx 1000 \div 2,52 \approx 396$ flotteurs