Niveau: Première année de PCSI

COLLE 22-23 = RATTRAPAGE

Colle 22:

Exercice 1.

Soit X une variable aléatoire prenant ses valeurs dans $\{0, 1, ..., N\}$. Démontrer que

$$E(X) = \sum_{n=0}^{N-1} P(X > n)$$

Exercice 2.

Pour $(x, y) \in \mathbb{R}^2$, on pose

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}.$$

Montrer que f est de classe C^1 (au moins) sur \mathbb{R}^2 .

Exercice 3.

Une entreprise souhaite recrute un cadre. n personnes se présentent pour le poste. Chacun d'entre eux passe à tour de rôle un test, et le premier qui réussit le test est est engagé. La probabilité de réussir le test est $p \in]0,1[$. On pose également q=1-p. On définit la variable aléatoire X par X=k si le k-ième candidat qui réussit le test est engagé, et X=n+1 si personne n'est engagé.

- 1. Déterminer la loi de X.
- 2. En dérivant la fonction $x \mapsto \sum_{k=0}^{n} x^{k}$. En déduire l'espérance de X.
- 3. Quelle est la valeur minimale de *p* pour avoir plus d'une chance sur deux de recruter l'un des candidats?

Colle 23:

Exercice 4.

On pose $Q_0=(X-1)(X-2)^2,\,Q_1=X(X-2)^2$ et $Q_2=X(X-1)$. À l'aide de la décomposition en éléments simples de $\frac{1}{X(X-1)(X-2)^2}$, trouver des polynômes $A_0,\,A_1,\,A_2$ tels que $A_0Q_0+A_1Q_1+A_2Q_2=1$.

Exercice 5.

On désire fabriquer une boite ayant la forme d'un parallélépipè de rectangle, sans couvercle sur le dessus. Le volume de cette boite doit être égal à $0,5m^3$ et pour optimiser la quantité de mâtière utilisée, on désire que la somme des aires des faces soit aussi petite que possible. Quelles dimensions doit-on choisir pour fabriquer la boite?

Exercice 6.

Soit $T_n(x) = \cos(n \arccos(x))$ pour $x \in [-1, 1]$.

- 1. (a) Montrer que pour tout $\theta \in [0, \pi]$, $T_n(\cos \theta) = \cos(n\theta)$.
 - (b) Calculer T_0 et T_1 .
 - (c) Montrer la relation de récurrence $T_{n+2}(x)=2xT_{n+1}(x)-T_n(x), \ \text{pour tout} \\ n>0.$
 - (d) En déduire que T_n une fonction polynomiale de degré n.
- 2. Soit $P(X) = \lambda(X a_1) \cdots (X a_n)$ un polynôme, où les a_k sont deux à deux distincts et $\lambda \neq 0$. Montrer que

$$\frac{1}{P(X)} = \sum_{k=1}^{n} \frac{\frac{1}{P'(a_k)}}{X - a_k}$$

3. Décomposer $\frac{1}{T_n}$ en éléments simples.