PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07K 14/00

A2

(11) International Publication Number: WO 99/64449

(43) International Publication Date: 16 December 1999 (16.12.99)

(21) International Application Number: PCT/GB99/01848

(22) International Filing Date: 10 June 1999 (10.06.99)

(30) Priority Data:

9812376.3 10 June 1998 (10.06.98) GB 9814888.5 10 July 1998 (10.07.98) GB

(71) Applicant (for all designated States except US): THE QUEEN'S UNIVERSITY OF BELFAST [GB/GB]; 8 Malone Road, Belfast BT9 5BN (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NELSON, John [GB/GB]; 59 Ashley Avenue, Belfast BT9 7BU (GB). HARRIOTT, Patrick [GB/GB]; 12 William Alex Park, Finaghy, Belfast BT10 0LW (GB). WALLACE, Andrew [GB/GB]; 49 Flat, 2 University Street, Belfast BT7 1FY (GB).

(74) Agent: MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PEPTIDE

(57) Abstract

The present invention relates to a new method of delivery of molecules into a cell through the use of a modified signal peptide to which a peptide nucleic acid is linked. The signal peptide will comprise at least one positively charged amino acid residue, or functional equivalent thereof. The addition of such positively charged residues can serve as a linker group for the attachment of peptide nucleic acids to the signal peptide thus increasing the number of peptide nucleic acid sequences delivered by the signal peptide and therefore its functional efficiency. Extension of the signal peptide at the C or N terminus through the addition of a single or multiple charged residue or analogues thereof will modify and improve signal peptide delivery function by increasing the solubility and cell permeability characteristics of the signal peptide.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

							
AL -	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IB	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		- ·
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

1 "Peptide" 2 3 The present invention relates to the delivery of 4 molecules into a cell and the use of modified signal 5 peptides. 7 Specifically, a modified analogue of the signal peptide 8 sequence from Karposi syndrome fibroblast growth factor 9 (kFGF) is used as a cell-permeant vehicle for the 10 intracellular delivery of covalently linked anti-sense 11 peptide nucleic acid sequences (PNAs). 12 13 PNAs have potential uses as antisense molecules for the 14 control of gene expression. Since they are capable of 15 binding tightly to DNA and RNA targets thus preventing 16 DNA transcription to RNA and RNA translation to 17 These molecules thus have two potential uses 18 of commercial importance: 19 20 1. As research reagents where scientists use 21 antisense strategies to ablate selected genes in 22 order to understand their function. 23 24 2. As pharmaceutical compounds for companies seeking 25 to develop nucleic acid-based therapies.

2

1 Conventional anti-sense oligonucleotide in vivo 2 delivery is highly inefficient, even if long-lasting, 3 less polar phosphorothioates are used. 4 5 This invention covers the use of cell-permeant peptide 6 delivery systems based on the hydrophobic core 7 sequences of any signal peptide sequence. A signal peptide is a short-lived N-terminal sequence found only 8 9 on nascent proteins which are synthesised in the 10 endoplasmic reticulum. Signal peptides consist of three domains: 11 12 13 (a) N-terminus of 1-5 amino acids, often positively 14 charged; 15 16 (b) A hydrophobic core or central region (7-16 amino 17 acids) which is essential for translocation across 18 the endoplasmic reticulum membrane; and 19 20 (c) A more polar C-terminal domain (3-7 amino acids) 21 which is important for specifying the cleavage 22 site. 23 24 Synthetic peptides consisting of only the hydrophobic 25 cores are typically insoluble in water. Taking the 26 signal peptide sequence of Karposi syndrome-derived FGF 27 as an example, we have modified these insoluble 28 sequences by the addition of positively charged amino 29 acids (for example lysines), which have the effect of 30 rendering them water soluble without compromising their 31 ability to translocate across cellular membranes. 32 ability to add amino groups in this way allows extra 33 cargo sequences to be conjugated to these amino groups. 34

35 It is an object of the present invention to provide a 36 cell permeable peptide delivery system based on a

signal peptide sequence for the intracellular delivery 1 2 of peptide nucleic acid sequence. 3 According to the present invention there is provided a 4 5 cell permeable peptide comprising at least the hydrophobic core of a signal peptide or an analogue 6 7 thereof wherein the peptide is modified by the addition of at least one positively charged amino acids or 8 positively charged analogues thereof. 9 10 11 The signal peptide may be a natural or synthetic signal 12 peptide or a peptide which is substantially similar 13 thereto. 14 15 A peptide which is substantially similar to a signal 16 peptide is at least 60% homologous thereto. 17 18 At least one positively charged amino acid is chosen 19 from lysine and/or arginine and/or any positively 20 charged analogues thereof. 21 22 In one particular embodiment the cell permeable peptide 23 is a modified analogue of Karposi syndrome fibroblast 24 growth factor (kFGF). 25 26 The positively charged amino acid consists of one or 27 more lysine residues. 28 29 The invention further provides the use of cell 30 permeable peptides as described herein for 31 intracellular delivery of a molecule. 32

Preferably, one or more lysine residues will be attached to the C terminal of the signal sequence peptide or signal sequence peptide analogue.

4

1 This positively charged lysine allows the linkage of a 2 peptide nucleic acid, thus facilitating in vivo 3 delivery of the said peptide nucleic acid. 4 5 6 The invention also provides a cell permeable peptide 7 which contains multiple positively charged amino acids or positively charged analogues thereof wherein a 8 9 peptide nucleic acid may be conjugated to each 10 positively charged residue and wherein the peptide nucleic acids conjugated by such a means are identical 11 or different. 12 13 14 The invention also provides a cell permeable peptide 15 which comprises at least one positively charged amino 16 acid residue or functionally equivalent positively charged analogue thereof conjugated or conjugatable to 17 a lysine tree, to which multiple peptide nucleic acids 18 may be joined for transport and presentation. 19 20 21 The linked peptide nucleic acid sequence may be 22 antisense. 23 Preferably, the peptide nucleic acid sequence will be 24 25 covalently linked. 26 The present invention thus allows the use of cell 27 28 permeable peptides as described herein to deliver 29 peptide nucleic acids to in-vivo targets. 30 31 Use of conventional oligonucleotides is being reduced due to the development of PNAs (Neilsen, et al., 1991), 32 33 which are much more stable, being resistant to enzymic 34 degradation (Jordan, et al., 1997). PNAs replace the 35 phosphodiester backbone of nucleic acid with repeating 36 N-(2-aminoethyl)glycine units to which natural

5

1 nucleobases are attached through methylenecarbonyl linkers. Although more stable, PNAs suffer from 2 3 similar accessibility problems as phosphorothicates do, 4 and passive diffusion of unmodified PNA across lipid 5 membranes is not efficient (Wittung, P., et al., 1995). 6 7 A small number of native peptide sequences can 8 translocate across membranes of living cells in an 9 energy-independent and receptor-independent manner. 10 These peptides have been used to import active cargo 11 into the cell. For example a peptide from the 12 homeodomain of Antennapedia has been successfully used 13 to import both peptidal inhibitors of protein kinase C 14 (Theodore, et al., 1995) and conventional anti-sense oligonucleotides (Allinquant, et al., 1995). 15 16 17 The present invention provides use of cell permeable peptide import (CPPI) to deliver peptide nucleic acids 18 19 (PNAs). 20 21 The present invention provides use of the signal 22 peptide sequence from Karposi syndrome fibroblast 23 growth factor (kFGF) for delivery of antisense peptide 24 nucleic acid sequences (PNAs). 25 26 The invention provides use of a peptide as defined 27 herein together with lysine residues for multiple 28 presentation of peptide nucleic acids. 29 The invention further provides use of peptides as 30 31 defined herein together with lysine residues in the 32 simultaneous presentation of different peptides nucleic 33 acids. 34 35 The present invention combines the two above 36 technologies to use CPPI to deliver PNAs to in vivo

6

targ	ets.
The	invention described herein has the following
adva	ntages:
-	The modified signal peptides described in this
	invention can be used for the delivery of any
	cell-impermeant substance into cells.
-	The signal peptides described in this invention
	can be used to improve the delivery of substances
	of low permeability into cells.
- .	The delivery of substances to particular cellular
	sub-compartments can be achieved and improved by
	incorporating appropriate targeting peptide
	sequences or other modifications to the signal
	peptides. Effects are only due to the 'cargo'
	substance that they carry. For example, addition
	of a myristoyl moiety to the peptide would ensure
	that it was preferentially retained at the plasma
	membrane.
٠.	
-	The signal peptide delivery system has commercial
	value in therapeutic drug-delivery systems
	including, but not restricted to, gene therapy,
	cancer therapy and anti-infectious agent therapy.
_	This system also has commercial value as a tool
	for biochemical and molecular biological research.
-	The modified signal peptides described in this
	invention do not, themselves, exhibit any
	biological effects nor do they affect cell
	viability. Effects are only due to the 'cargo'
	substance that they carry.
	The

7

1 This invention will be exemplified in the following 2 non-limiting examples with reference to the accompanying figures wherein:-3 4 5 6 Figure 1 illustrates carboxyfluorescein labelled kFGF 7 signal peptide-Lys.Lys.Lys - fluoresence calibration 8 curve. 9 10 Figure 2 illustrates carboxfluorescein labelled cell 11 permeant peptide incorporation by whole human 12 endothelial cells. 13 14 Figure 3 depicts incorporation of carboxyfluorescein 15 labelled signal peptide-Lys.Lys.Lys by cell. 16 17 Figure 4 illustrates subcellular distribution of 18 labelled signal peptide in cells. 19 Figure 5 depicts incorporation of labelled kFGF peptide 20 21 into human dermal endothelial cells. 22 23 Figure 6a sets out the signal peptide sequence and 24 modifications. 25 26 Figure 6b illustrates simultaneous presentation of 3 PNAs directed to different sites on a target RNA. 27 28 29 Figure 6c illustrates multiple presentation of the 30 single PNA species. 31 32 Table 1 describes carboxyfluorescein derivatised cell 33 permeant peptides. 34 35 Table 2a sets out uptake of cell permeant peptides by 36 cells.

WO 99/64449

1 Table 2b sets out cellular uptake of permeant peptides by BHK cells. 2 3 4 Table 3 sets out results of washing labelled 5 antennapedia cells. 6 7 Table 4 sets out washing results for labelted signal 8 peptide-KKK and cells. 9 10 EXAMPLE 1 11 . 12 This is an example of the intracellular delivery of a low molecular weight compound (carboxyfluorescein) 13 14 which is normally cell impermeant. 15 In order to determine the best delivery system, a 16 17 comparison of the ability of four different cell 18 permeant peptides (Table 1) to accumulate in whole 19 cells was undertaken. The four people peptides were 20 synthesised to contain carboxyfluoresein as a reporter 21 group (Table 1), allowing intracellular accumulation to 22 be monitored by fluorescence. Whole cells were exposed 23 to 50 μ M solutions of each peptide for 24 hours (37°C) 24 and accumulation was measured using a fluorometer. 25 results of this are shown in Tables 2A and 2B. 26 27 The results shown in the whole column of Table 2A were 28 provided by cell suspensions being exposed to $50\,\mu\mathrm{M}$ 29 peptide each, for 24 hours at 37°C. Incubations contained 3.28 x 106 cells in 1 ml. Subcellular fractionation 30 was then carried out. Fluorescence measured with 31 32 excitation λ = 471 nm, emission λ = 521 nm. RFU valves 33 were converted to nMoles per 106 cells. 34 The raw relative fluorescent units (RFU) values were 35 36 converted to nMoles per 106 cells using a calibration

curve constructed for each peptide. An example of a 1 2 fluorescence calibration curve of fluorescein labelled 3 kFGF is shown in Figure 1. 4 5 The kFGF-KKK sequence (see Figure 3) shows similar high 6 rates of cytosolic and nuclear incorporation compared 7 with the antennapedia peptide (Table 2A). The PKC and substance P peptides show much lower incorporation 8 9 Table 2A & 2B). Incorporation of the kFGF-KKK sequence 10 is saturable, as can be seen from the data presented on 11 Figure 2 and time-dependent as shown in Figure 3. 12 13 Table 2A shows that antennapedia is lost during 14 subcellular fractionation. Unlike the antennapedia peptide, carboxyfluorescein-kFGF signal peptide-KKK is 15 16 not loosely attached to the cell surface as shown in 17 Tables 3 and 4. Unlike the antennapedia peptide, 18 carboxyfluorescein-kFGF signal peptide-KKK does not 19 remain membrane-bound as shown by the data presented in 20 Figure 4. 21 22 It should be noted from Figure 4 that all cells treated 23 with carboxyfluorescein - labelled kFGF signal peptide 24 Lysine-Lysine have nuclear and cytoplasmic 25 incorporation. Unlike antennapedia, very little remains stuck in the cell membrane. 26 27 28 EXAMPLE 2 - Anti-sense agents for gene ablation 29 Conventional oligonucleotide sequences or those in 30 which the phosphodiester bonds are replaced with 31 32 nuclease-resistant bonds (such as the phosphothiorates 33 and the like) may be conjugated to the kFGF-derived 34 delivery system for intracellular delivery and 35 subsequent specific blocking of gene translation or 36 Rnase-targeted destruction of the mRNA in question.

PCT/GB99/01848 WO 99/64449 10

Alternatively peptide nucleic acid sequences may be 1 used, as in example 1. 2

3

Although the "cargo" to be delivered intracellularly is 4 referred to in the text and represented in the 5 6 accompanying figures as a Peptide Nucleic Acid (PNA), it should not be limited to such cargo type as the 7 various configurations of CPPI described in this Patent 8 could also be used to carry peptide sequences or 9 10

oligonucleotide sequences (either native sequences or

modified sequences, such as phosphothiorates). 11

12 13

14

15 16

It has been demonstrated that addition of a peptide nucleic acid sequence does not impede incorporation of the carboxyfluorescein-kFGF signal peptide-{PNA}-KKK. The confocal micrograph shown in Figure 5 illustrates this.

17 18 19

EXAMPLE 3

20

Nuclear localisation signal (NLS) sequences such as are 21 found on transcription factors like NF-kappaB may be 22 23 conjugated to the kFGF-derived delivery system, as in 24 Intracellular delivery of NLS peptide 25 sequences would act as 'bait' to selectively block the translocation of the selected transcription factor, 26 27 thus preventing its action. In this way, genes under 28 the control of the transcription factor could be 29 identified on the basis of down regulated expression.

30 31

EXAMPLE 4

32.

Signal transduction motifs such as phosphotyrosine-33 containing peptide sequences (pYP's) act as docking 34 35 sites for a large number of proteins. Such signalling proteins contain domains that recognise (contextually) 36

1 the phosphotyrosine residues and bind to them in a 2 specific manner. pYP's are recognised by SH-2(Srchomology-2) domains and PTB (phosphotyrosine binding 3 4 domains). Specificity is provided by short amino acid 5 sequences N-and/or C-terminal of the phosphotyrosine. Such peptide motifs could be conjugated to the kFGF 6 7 peptide-derived delivery system as in Example 1, and could be used to intracellularly deliver pYP's which 8 would act as bait, thus allowing signal pathways to be 9 10 'interrogated'.

11

12 The signal sequence of kFGF was modified to contain 13 three lysines at the C-terminal of the hydrophobic 14 signal sequence. This procedure is illustrated in 15 In this Figure 6A (I) shows the signal Figure 6A. 16 peptide with an attached reporter group. Figure 6A 17 Part II illustrates the addition of the tri-lysine 18 extension to the C-terminal of the signal peptide sequence, thus providing three positive charges which 19 20 aid solubility and cell permeability. In Figure 6A Part IIIb, the peptide nucleic acid forms part of the 21 linear primary amino acid sequence, with Part IV 22 23 illustrating a tri-lysine C-terminal extension to the 24 peptide nucleic acid sequence providing 3 positive 25 charges and aiding solubility and cell permeability.

26 27

28

29

30

31

32

33 34

35

36

Part V of Figure 6A further shows a tri-lysyl extension at the N-terminal of the signal peptide which provides 3 positive charges aiding solubility and cell permeability. The addition of the tri-lysyl extension proximal to the carboxyfluorescein reporter group enhances its fluorescence. In Vb of Figure 6A, the peptide nucleic acid sequence initially forms part of the linear primary amino acid sequence at the N-terminal of the original peptide, before a tri-lysyl extension is added to the N-terminal of the peptide

12

nucleic acid extension. 1 2 3 It should be noted that although the above examples specifically use the amino acid lysine for the addition 4 of positive charge, molecules containing similar 5 6 properties such as arginine or analogues thereof, of 7 either of these molecules could also be used. 8 This peptide, therefore, can accommodate three PNAs, 9 10 each bonded to a lysine epsilon amino group. be extended using the Multiple Antigen Presentation 11 (MAP) technology to present eight (or more) PNA's on 12 13 one kFGF signal sequence. A 'lysine tree' constructed in this way accommodates eight copies of the same PNA, 14 thus increasing the effective concentration delivered 15 16 by each CPPI. 17 An example of the addition of such a lysine tree is 18 shown in Figure 6C Parts I-IV. In Part I a single 19 lysine molecule added to the C-terminal of the kFGF 20 21 signal peptide sequence allows the multiple PNA lysine 22 tree to be added to the e-amino group of the lysine 23 side chain. 24 25 Alternatively, Part II of Figure 6C a Lysine molecule added to the N-terminal of the kFGF signal peptide 26 sequence allows the multiple PNA lysine tree to be 27 added to the e-amino group of the lysine side chain. 28 29 30 Part III of Figure 6C further shows that when a Cterminal tri-lysine extension is added to the signal 31 32 peptide with N-terminal associated multiple PNA lysine tree, the 3 positive charges aid solubility and cell 33 34 permeability of the molecule. 35

Part IV of Figure 6C add a tri-lysyl extension at the

13 1 N-terminal of the signal peptide which is attached to 2 the lysine group added to allow attachment of the multiple PNA lysine tree as originally illustrated in 3 4 Figure 6C Part II. The addition of the 3 positively charged molecules at this terminal of the molecule, 5 proximal to the carboxyfluorescein reporter group 6 7 enhances its fluorescence. 8 9 Alternatively a carrier can be constructed containing three (or more) different PNAs directed towards 10 different sites on the same target mRNA. 11 This strategy has been termed 'molecular triangulation' (Branch, 12 A.D., 1998). 13 14 15 Figure 6B illustrates this process of 'molecular' 16 triangulation'. Figure 6B Part I shows the signal 17 peptide with a C-terminal tri-lysyl extension which 18 allows three different PNA sequences to be conjugated 19 to the epsilon-amino groups of the three lysines. 20 21 Figure 6B Part III shows the addition of a further 22 three lysines to the molecule of Part I, which adds 23 three positive charges, which aid solubility and cell 24 permeability. Figure 6B Part III shows the addition of 25 the tri-lysyl extension to the N-terminal of the 26 molecule of Part I. Again the 3 positive charges aid the solubility and cell permeability of the molecule, 27 28 which their proximal location to the carboxyfluorescein 29 reporter group enhances its fluorescence. 30 31 Figure 6B, Part IV, illustrates an N-terminal tri-lysyl 32 extension added to the kFGF signal peptide sequence, 33 which subsequently allows three different PNA sequences

to be conjugated to the epsilon-amino groups of the

35 lysines.36

34

14

Further, this molecule has 3 lysines added at the C-1 terminal to add positive charge which aid solubility 2 and cell permeability. Figure 6B Part V shows the 3 signal peptide again with the three peptide nucleic 4 acid associated tri-lysine extension at the N-terminal, 5 6 but with the addition of the further 3 lysine groups also being made to the N-terminal where they will have 7 the effect of aiding solubility and cell permeability, 8 which also enhance the fluorescence of the 9 carboxyfluorescein reporter group due to their 10 11 proximity. 12 Further to the sequences illustrated in Figures 6A and 13 14 6C additional tri-lysine extensions at either end of the molecule, appears to aid solubility and cell 15 16 permeability to allow PNA sequences to be transported. 17 Therefore in addition to using lysine residues to attach to PNA sequences, additional tri-lysine 18 extension is recommended. Examples of presentation 19 peptide using the additional try-lysine is demonstrated 20 21 in Figures 6B (II-IV), Figures 6C (III-IV) and Figures 22 6A (IV, IVb, V, Vb). 23 Lysine extensions comprising more or less than three 24 lysine residues may also be useful to provide 25 additional solubility and cell permeability. 26 27 28 The lysine extension may be provided next to a 29 carboxyfluorescein reporter group to enhance its 30 fluorescence. 31

15

1 2 References 3 4 Allinquant, B., Hantraye, P., Mailleux, P., Moya, K., 5 Bouillot, C. and Prochiantz, A (1995) Downregulation of 6 amyloid precursor protein inhibits neurite outgrowth in 7 vitro J. Cell Boil., 128: 919-927. 8 9 Branch, A.D. (1998) A good antisense molecule is hard to find. TIBS, 23: 45-50. 10 11 Jordan, S., Schwemler, C., Kosch, W., Kretschner, A., 12 Schwenner, E., Stropp, U. and Mielke, B. (1997) 13 14 Synthesis of new building blocks for peptide nucleic acids containing monomers with variations in the 15 16 backbone. Bioorg. Med. Chem. Lett., 7: 681-686. 17 18 Neilsen, P.E., Egholm, M., Berg, R.H. and Buchardt, O. 19 (1991) Sequence-selective recognition of RNA by strand 20 displacement with a thymine-substituted polyamide. 21 Science, 254: 1497-1500. 22 23 Theodore, L. Derossi, D., Chassang, G., Llirbat, B., Kubes, M., Jordan, P., Chneiweiss, H., Godement, P. and 24 25 Prochiantz, A. (1995) Intraneuronal deTivery of protein 26 kinase C pseudosubstrate leads to growth cone collapse. 27 J. Neurosci., 15: 7158-7167. 28 29 Wittung, P., Kajanus, J., Edwards, K., Haaima, G., 30 Nielson, P., Norden, B. and Malmstrom, B.G. 31 Phospholipid membrane-permeability of peptide nucleicacid (1995) FEBS Lett., 375: 317-320. 32 33 34 35 36

16

WO 99/64449 PCT/GB99/01848

1	CLA	<u>IMS</u>
2		
3	1	A cell permeable peptide comprising at least the
4		hydrophobic core of a signal peptide or an
5		analogue thereof wherein the peptide is modified
6		by at least the addition of at least one
7		positively charged amino acid or positively
8		charged analogue thereof.
9		
10	2	A cell permeable peptide as claimed in claim 1
L1		wherein the signal peptide is a natural or
1.2		synthetic signal peptide or a peptide which is
L3		substantially similar thereto.
L4		
L 5	3	A cell permeable peptide as claimed in claim 1 and
16		2 wherein at least one positively charged amino
L7		acid is chosen from lysine and/or arginine and/or
18		any positively charged analogue thereof.
19		
0.0	4	A cell permeable peptide as claimed in any
21		preceding claim wherein the cell permeable peptide
22		is a modified analogue of Karposi syndrome
23		fibroblast growth factor (kFGF).
24		
25	5	A cell permeable peptide as claimed in any
26		preceding claim where in the positively charged
27		amino acid consists of one or more lysine
28		residues.
29		
30	6	A cell permeable peptide as claimed in claim 5
31		wherein one or more lysine residues are attached
32		to the C-terminal of the signal sequence peptide
33		or signal sequence peptide analogue.
34		
35	7	A cell permeable peptide as claimed in any of
36		claims 1 to 6 which contains multiple positively

charged amino acids or positively charged
analogues thereof, wherein a peptide nucleic acid
may be conjugated to each positively charged
residue and wherein the peptide nucleic acids
conjugated by such means are identical or
different.

A cell permeable peptide as claimed in any of

A cell permeable peptide as claimed in any of claims 1 to 6 which comprises at least one positively charged amino acid residue or functionally equivalent positively charged analogue thereof, conjugated or conjugatable to a lysine tree, to which multiple peptide nucleic acids may be joined for transport and presentation of multiple peptide nucleic acids.

9 Use of cell permeable peptides claimed in any of the preceding claims for intracellular delivery of a molecule.

21 10 Use of a cell permeable peptide as claimed in any 22 of claims 1 to 8 to deliver peptide nucleic acids 23 to *in-vivo* targets.

Figure 1

Figure 2

Whole cell uptake of kFGF-KKK by SK-HEP1 cells (human endothelial)

Treatment (concentration of added peptide in micromolar units)

Figure 3

15 minutes

1 hour

30 minutes

4 hours

45 minutes

24 hours

Figure 4

Figure 5

Figure 6A A.A.V.A.L.L.P.A.V.L.L.A.L.L.A.P6A(1). CarboxyFluor -A.A.V.A.L.L.P.A.V.L.L.A.L.L.A.P 6A(II) CarboxyFluor -A.A.V.A.L.L.P.A.V.L.L.A.L.L.A.P. K.K.K 6A(III) 6A(IIIb) CarboxyFluor -A.A.V.A.L.L.P.A.V.L.L.A.L.L.A.P-- PNA SEQUENCE CarboxyFluor -A.A.V.A.L.L.P.A.V.L.L.A.L.L.A.P-- PNA SEQUENCE --K.K.K 6A(IV) 6A(IVb) CarboxyFluor -A.A.V.A.L.L.P.A.V.L.L.A.L.L.A.P. K.K.K - PNA SEQUENCE CarboxyFluor -.K.K.K ---A.A.V.A.L.L.P.A.V.L.L.A.L.L.A.P--- PNA SEQUENCE 6A(V) 6A(Vb) CarboxyFluor -.K.K.K --PNA SEQUENCE --A.A.V.A.L.L.P.A.V.L.L.A.L.L.A.P

FIGURE 6C

6C(I)

CarboxyFluor-A.A.V.A.L.L.P.A.V.L.L.A.L.L.A.P.K

6C(II)

CarboxyFluor-K-A.A.V.A.L.L.P.A.V.L.L.A.L.L.A.P

6C(III)

6C(IV)

Table 1

	C	arbo	oxyf	luo	resc	ein	-de	riva	tise	d C	ell F	ern	nea	nt P	epti	des	*			
kFGF signal sequence	cFl	Α	Α	V	Α	L	L	Р	Α	٧	·L	L	Α	L	L	Α	Р	K	K	K
PKC Pseudo - substrate	cFl	R	F	Α	R	K	G	Α .	L	R	Q	K	N	٧	H	Ε	V	K	N	
Substance P	cFl	R	Р	R	Р	Q	Q	F	Ø	G	L	М								
Antennapedia	cFl	R	Q	ı	K	ī	W	F	Q	N	R	R	М	K	W	K	К			

^{*}Modifications of original sequence marked in bold (ø = ornithine, cFl = carboxyfluorescein).

Table 2A

	*WHOLE CELL	CYTOSOL	NUCLEI
	nmoles per 10 ⁶	nmoles per 10 ⁶	nmoles per 10 ⁶
	cells	cells	cells
FGF-KKK	0.79	0.37	0.35
KKK-FGF-KKK	0.24	0.046	0.15
Substance P	0.03	0.005	0.015
PKC pseudo - substrate	0.034	0.015	0.007
Antennapedia	1.22	0.34	0.35

*Cell suspensions were exposed to 50 μ M peptide each, for 24 hours, at 37°C, =471nm, emission λ = 521nm. RFU values were converted to nMoles per 10⁶ cells

Table 2B

CPPI sequence tested	Amount in nuclei (nmoles per 10 ⁶ cells)	Amount in cytosol (nmoles per 10 ⁶ cells)	Cytosolic concentration (μΜ)
kFGF signal peptide	0.035	0.0567	13.5
SubstanceP analogue	0.0005	0.0018	0.42
PKC pseudosubstrate	0.0005	0.00156	0.37

Table 3

Treatment	rfu
1st PBS wash -	114
2nd PBS	57.34
3rd	21.08
4th PBS/acid wash	15.36

Table 4

Incorporation Treatment	incorporation (nmoles per 106 cells
PBS wash (after 15min exposure)	0.64
Acid Wash (15min)	0.525
PBS wash (after 24hour exposure)	0.75
Acid wash (after 24hour exposure)	0.53

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)