October 27, 2016

Rob Romijnders

Benchmai

Recurren Neural

Network

Results
Classification

Discussion

Questions

Classification of fractionated electrograms in epicardial mappings using a recurrent neural network

Rob Romijnders

Eindhoven, University of Technology RomijndersRob@gmail.com

October 27, 2016

Abstract

October 27, 2016

Rob Romijnders

. .

Benchmar

Recurren Neural

Results Classificatio

Discussion

Overview

October 27, 2016

Rob Romijnders

2 Benchmark

Data

3 Recurrent Neural Network

4 Results

Classification

Annotation

5 Discussion

6 Questions

6 Qu

Pipeline

October 27, 2016

> Rob Romijnder

Data

Benchmar

Recurren Neural

Network

Classification Annotation

Discussion

Figure: Data pipeline

Data

October 27, 2016

Rob Romijnder:

Data

Benchman

Neural Network

Results
Classificatio

Discussion

Figure: Examples of simple electrograms

Notation

October 27, 2016

> Rob omijnders

Data

Benchmai

Recurren Neural Network

Results
Classification
Annotation

Discussior

$$\{(x^{(i)}, y^{(i)})\}_{i=0}^{N-1} \tag{1}$$

- $x^{(i)} \in R^{120}$
 - t indexes time with t = 0, 1, ..., T 1
- $y^{(i)} \in \{l_1, l_2, ..., l_{K^i}\}.$
 - \blacksquare I_k denotes the location of the k-th annotation
 - lacksquare K denotes the total number of annotations at sample i
 - For example, $y^i = \{35, 75, 95\}$ is a triple with deflections at 35 ms, 75 ms and 95 ms.

CI and FI

October 27, 2016

> Rob omijnders

Data

Benchmark

Recurrent Neural Network

Results
Classification
Annotation

Discussion

Questic

Complexity Index

$$CI(x^{(i)}) = \frac{1}{T} \sum_{t=1}^{T-1} \mathbb{1}(\mathbb{1}(x_{t-1}^{(i)} \ge 0)) = \mathbb{1}(x_t^{(i)} < 0))$$
 (2)

Fractionation Index

$$FI(x^{(i)}) = \frac{1}{T} \sum_{t=2}^{T-1} \mathbb{1}(\mathbb{1}(x_{t-1}^{(i)} \ge x_{t-2}^{(i)}) = \mathbb{1}(x_t^{(i)} < x_{t-1}^{(i)})))$$
(3)

with $\mathbb{1}()$ denoting the indicator function

■ Sample entropy (Cirugeda-Roldan, 2015)

Design choices

October 27, 2016

Romijnders

Julu

Benchmar

Recurrent Neural

Network

Classification

Discussion

Question

Figure: Flow graph for design choices

Model

October 27, 2016

Rob Romijnders

Benchmar

Recurrent Neural Network

Networl

Classification Annotation

Discussion

Figure: Network architecture

Long Short-term memory

October 27, 2016

Rob Romijnders

Renchmar

Recurrent

Neural Network

Results
Classification

Discussior

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)$$
 (4)

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)$$
 (5)

$$o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + W_{co}c_{t-1} + b_o)$$
 (6)

$$c_t = f_t c_{t-1} + \tanh(W_{xc} x_t + W_{hc} h_{t-1} + b_c) \tag{7}$$

$$h_t = o_t \, \tanh(c_t) \tag{8}$$

Classification and annotation

October 27, 2016

Rob Romijnders

Data

Benchma

Recurrent

Neural Network

Classification

Discussion

Questions

$$m_t = W_{hm}h_t + b_m$$
 $p(C_k|h_t) = \frac{e^{m_{t,k}}}{\sum_{\kappa=1}^4 e^{m_{t,\kappa}}}$ (9)

$$K = \operatorname*{argmax}_{k} C_{k} \tag{10}$$

$$p_t(annotation) = \sigma(W_{ha}h_t + b_a)$$
 (11)

Next, $I_k = t$ joins y if

$$p_t(annotation) > threshold$$
 (12)

Binary classification

October 27, 2016

Rob Romijnders

. .

Benchmar

Recurren Neural

Results Classification

Discussion

Figure: CI: 0.58 - FI: 0.68 - SampEn: 0.75 - BiLSTM: 0.98 (in AUC)

Refined classification

October 27, 2016

Rob Romijnders

D I

Benchmar

Recurrer Neural

Results Classification

Discussion

Misclassifications

October 27, 2016

> Rob Romijnders

Dat:

Benchmar

Recurren Neural

Network

Classification Annotation

Discussion

Questio

		Model			
		Single	Double	Triple	Quad
Expert	Single	3565	821	134	36
	Double	76	1292	123	20
	Triple	2	58	262	68
	Quad	1	4	9	57

Table: **Confusion matrix** row, i, column, j, indicates how many complexes the expert classifies i and the model classifies j

Annotation

October 27, 2016

Rob Romijnders

D. . . . l.

Benchmar

Recurren Neural

Results
Classification
Annotation

Discussion

Figure: Probability for annotation per time

Annotation accuracy

October 27, 2016

Rob Romijnder

Renchmar

Benchmar

Recurrent Neural Network

Results
Classification
Annotation

Discussion

Question

 \blacksquare The model annotates 91% of the annotations within 3 ms of the expert annotation

Discussion

October 27, 2016

Rob Romijnders

Renchmar

Denchmar

Recurren Neural Network

Results
Classification
Annotation

Discussion

- Misclassifications
 - Unbalanced confusion matrix
- Limitations
 - Pipeline
 - Modelling of annotations
 - Early stopping
- Future perspectives
 - Output capability metric

October 27, 2016

> Rob Romijnder

Data

Benchmar

Recurren Neural

Neural Network

Classificat

Ciassification Annotation

Discussion

Questions

Anomaly detection

October 27, 2016

Rob Romijnders

. .

Benchmar

Recurrer Neural

Results
Classification

Discussion

Figure: Noise sampled from 120D Gaussian fit to the data

Accuracy of annotations

October 27, 2016

> Rob omijnders

Data

Benchma

Delicillia

Neural Network

Results Classification

Discussion

Questions

		Range				
		3	4	5		
Th	0.3	0.912 (0.892)	0.917 (0.901)	0.919 (0.906)		
	0.5	0.767 (0.796)	0.772 (0.801)	0.778 (0.805)		

Table: **Accuracy of annotations** Range is the maximum allowed distance between annotations by model and expert. Threshold (th) binarizes the probability of an annotation

Pipeline

October 27, 2016

Romijnders

Data

Benchmar

Recurren Neural

Neural Network

Classificati

Discussion

Questions

Figure: Data pipeline with improved pipeline

Resampling

October 27, 2016

> Rob omijnders

Data

Benchma

Recurren Neural

Network Results

Classificatio Annotation

Discussion

Questions

Set	Non-frac	tionated	Fractionated		
Set	Singles	Doubles	Triples	Quad.	
Train.	36414	12263	3235	516	
	(12263)	(12263)	(12263)	(12263)	
Val.	4589	1493	411	61	
	(1493)	(1493)	(1493)	(1493)	
Test	4618	1485	376	75	
	(1485)	(1485)	(1485)	(1485)	

Table: Sizes of training, validation and test set The first line denotes size before resampling and the second line (in parentheses) denotes size after resampling

LSTM block

October 27, 2016

> Rob mijnders

)ata

Benchmai

Recurrer Neural

Network

Classification Annotation

Discussior

Questions

Figure: Diagram depicting LSTM block

Author: Shi Yan. Source: medium.com/@shiyan/

Low confidence samples

October 27, 2016

Rob Romijnders

Benchmar

Recurrer Neural

Results
Classification

Discussio

Figure: Samples of low confidence. Ordered per column