Introduction to Deep Learning

Alvaro Soto

Computer Science Department, PUC

Ingredient 1: Feature learning

Feature space

Handcrafted Features

deeper neural networks enable us to approximate functions of certain classes with fewer parameters (

d1 : Mary loves Movies, Cinema and Art d2 : John went to the Football game Class 1 : Arts Class 2 : Sports

d3 : Robert went for the Movie Delicatessen

Class : Art

	Mary	Loves	Movies	Cinema	Art	John	Went	to	the	Delicatessen	Robert	Football	Game	and	for
d1	1	1	1	1	1									1	
d2						1	1	1	1			1	1		
d3			1				1		1		1				1

DCC

Feature Learning

Discriminative vs semantic feats

• Traditional pattern recognition approach since the 50's

Feature learning approach

Ingredient 2: A hierarchical compositional representation

- Hierarchical representations organized from low to high levels of abstraction are common in nature.
- Compositionality is key. Language is compositional, vision is compositional, etc.
- Examples:
 - Sounds \rightarrow phonemes \rightarrow syllables \rightarrow words.
 - $\bullet \ \mathsf{Pixels} \to \mathsf{edges} \to \mathsf{parts} \to \mathsf{objects}$
 - $\bullet \ \, \text{Characters} \rightarrow \text{words} \rightarrow \text{word groups} \rightarrow \text{clauses} \rightarrow \text{sentences}. \\$
 - Nucleotides \rightarrow genes \rightarrow proteins \rightarrow cells \rightarrow organs.

3rd layer "Objects"

2nd layer "Object parts"

> 1st layer "edges"

> > Input

DCC

Now our honor guest: **Deep Learning**

- Deep learning: Neural network (NN) models that learn hierarchical compositional representations.
- In general, NNs with several hidden layers.
- Today, the most successful learning framework. They hold records for best recognition performance on several difficult tasks, such as, voice, handwritting, and object recognition.
- What is the secret?

The magic is learning suitable hierarchical and composable feature representations

DL in Action

Innut	con	ton	~

李克強此行將啟動中加 總理年度對話機制,與 加拿大總理杜魯多舉行 兩國總理首次年度對 話。

Translation (PBMT):

Li Keqiang premier added this line to start the annual dialogue mechanism with the Canadian Prime Minister Trudeau two prime ministers held its first annual session.

Translation (GNMT):

Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.

Translation (human):

Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.

DL records

Deep Learning (DL)

• What is the secret?

The magic is learning suitable hierarchical and composable feature representations

Why Deep?

Theoretician's dilemma:

We can approximate any function as close as we want using a shallow architecture. Why do we need deep ones ?.

$$y = F(\langle W^1, F(\langle W^0, X \rangle) \rangle)$$
 (1)

$$y = F(\langle W^K, F(W^{K-1} \dots F(\langle W^1, F(\langle W^0, X \rangle) \rangle)))$$
 (2)

Solution: Learning Efficiency

A hierachical compositional architecture provides an efficient learning framework, where lower level layers are shared by higher level layers.

A Shared Low Level Representation

Consider the following two configurations of a NN.

- Suppose to want to learn function to map $X \in \Re^n$ to $Y \in \Re^L$.
- Can we use the previous configurations?,
- What is the main difference?

Main Challenges

- How to adjust so many parameters without overfitting.
- We require lot of training data, even worse: labeled data (supervised learning).
- Tons of labeled data, How?
 - Use a creative, cheap, and/or fast way to label data.
 - In some cases it is possible to use unlabeled data (unsupervised learning/ autoencoders/Gans).
 - Transfer learning.
 - Apply training tricks (add noise, synthetic data, whitening, drop-out, etc.).
- Difficult optimization and scalability: High performance computing (GPUs).