题号	l	П	Ш	四	五	六	七	八	九	+	总分
得分											
签字											

注意事项: 所有的答案都必须写在答题纸(答题卡)上,答在试卷上一律无效。

-、单项选择题(本题共 5 小题,每小题 4 分,满分 20 分)

1.
$$\[\mathcal{G} f(x) = \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}, \] \[\mathcal{G} x = 0 \not\in f(x) \] \] \]$$
 $\[\text{in} (x) = \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}, \] \]$

(A) 可去间断点

(B) 跳跃间断点

(C) 第二类间断点

(D) 连续点

2. 设
$$f(x) = \begin{cases} \frac{2}{3}x^3, & x \le 1 \\ x^2, & x > 1 \end{cases}$$
 , 则 $f(x)$ 在 $x = 1$ 处的().

- (A) 左,右导数都存在
- (B) 左导数存在,右导数不存在
- (C) 左导数不存在,右导数存在 (D) 左,右导数都不存

3. 设
$$f'(x_0) = f''(x_0) = 0$$
, $f'''(x_0) > 0$, 则 ().

- $(A) f(x_0)$ 是 f(x) 的极大值 $(B) f(x_0)$ 是 f(x) 的极大值
- (C) $f(x_0)$ 是 f(x) 的极小值 (D) $(x_0, f(x_0))$ 是曲线 f(x) 的拐点
- 4. 下列等式中,正确的结果是().

$$(A) \int f'(x) dx = f(x)$$

(B)
$$\int df(x)dx = f(x)$$

(C)
$$\frac{d}{dx} \int f(x) dx = f(x)$$

(D)
$$d \int f(x) dx = f(x)$$

$$5. \quad \lim_{x\to\infty}\frac{\sin x}{x}=(\qquad).$$

(C) ∞ (D) 不存在

二、填空题(本题共5小题,每小题4分,满分20分)

1. 设函数
$$f(x) = \begin{cases} ax^2, x \le 1 \\ 2x + 1, x > 1 \end{cases}$$
 且 $\lim_{x \to 1} f(x)$ 存在,则 $a = \underline{\qquad}$.

$$\lim_{n\to\infty} (1-\frac{i}{n})^n = \underline{\hspace{1cm}}$$

$$3. \int \tan^2 x \ dx = \underline{\qquad}.$$

4. 曲线
$$\begin{cases} x = 2e^t \\ y = e^{-t} \end{cases}$$
 在 $t = 0$ 处的切线方程及法线方程为______.

5. 设
$$y = e^{2x}$$
, 则 $y^{(n)}(0) = \underline{\hspace{1cm}}$

三、解答题(本题共7小题,每小题5分,满分35分)

$$1. \quad \not \exists \lim_{x\to 0} \left(\frac{1+x}{1-x}\right)^{\cot x}.$$

2. 设
$$f(x) = \frac{e^x - b}{(x - a)(x - 1)}$$
 有无穷间断点 $x = 0$ 及可去间断 $x = 1$,求 a, b

3.
$$\Re \lim_{x\to 0} \frac{\tan x - \sin x}{\sin^3 x}$$
.

5. 试从
$$\frac{dx}{dy} = \frac{1}{y}$$
 导出 $\frac{d^3x}{dy^3} = \frac{3(y'')^2 - y'y'''}{(y')^5}$.

- 6. 设 $\lambda > 0$ 求 $\lim_{n \to +\infty} \frac{x^n}{\rho^{\lambda x}}$, 当 n 分别为正整数和非正整数时.
- 7. 求 $\int \sec x \, dx$.

四、应用题(本题满分7分)

一个房地产公司有 50 套公寓要出租,当月租金定位 1000 元时,公寓会全部 出租出去。当月租金每增加 50 元时,就会多一套公寓租不出去。而租出去 的公寓每月需花费 100 元的维修费。问房租定为多少时可获得最大收入?

五、证明题(本题共2小题,每小题9分,满分18分)

1.证明:数列 $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$,+ $\sqrt{2+\sqrt{2+\sqrt{2}}}$...的极限存在,且极限为 2.

2.设 f(x)在[0,a]上连续,在(0,a)内可导,且 f(a)=0,证明:在开区间(0,a)内至少存在一点 ξ ,使得

$$f(\xi) + \xi f'(\xi) = 0.$$