Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introduction

Theoretical Framework

Method

Discussion

References

# Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup> Walter Leite Katerina Marcoulides

Research and Evaluation Methodology Department

University of Florida

1: anthony.w.raborn@gmail.com

November 14, 2018

# Applications of Psychometric Scales

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>I</sup>, Walter Leite Katerina Marcoulides

#### Introduction

Theoretical Framework

Method

Discussio

References

Applied researchers are often faced with a dilemma, both with drawbacks:

- Use a well-established but lengthy scale
  - Potentially longer administration time for less information
- Use a few items from a scale
  - Potentially greater information but weaker validity evidence

In the literature, researchers attempt to use Option B with some effort spent on collecting validity evidence

# Examples of Item Selection Methods for Short Forms

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

#### Introduction

Theoretical Framework

Metho

Discussio

- Hand-Selecting Items
  - Using theoretical or practical justifications per item (e.g., Noble, Jensen, Naylor, Bhullar, & Akeroyd, 2013)
  - Retaining one of many (qualitatively) redundant items (e.g., Dennis, 2003)
- Statistical Criteria
- Retaining items with high factor loadings or item correlations (e.g., Byrne & Pachana, 2011; Wester, Vogel, O'neil, & Danforth, 2012)
- Selecting items that improve measures of reliability and/or dimensionality (e.g., Lim & Chapman, 2013; Veale, 2014)

### **Problem**

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

#### Introduction

Theoretica Framework

....

Discussio

References

Creating short forms with (1) good internal structure and (2) good predictive, convergent, and/or divergent validity is difficult by hand using *any* criteria.

One potential solution would be to use metaheuristic optimization algorithms (Dréo, Pétrowski, Siarry, & Taillard, 2006).

## Goals of this Study

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

#### Introduction

Theoretical Framework

Method

- Compare different automatic scale reduction strategies
  - Model fit of final scales (better fit is better)
  - Removal of specific problematic items (fewer problematic items is better)
  - 3 Reliability of final scales (higher reliability is better)
  - Time to converge (faster is better)
- Determine which factors affect these comparisons
  - Population model type (one factor, three factor)
  - Severity of problematic items (none, minor, major)
  - Strength of relationship to external criterion (none, moderate)

## Previous Attempts

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introductio

Theoretical Framework

Method

2.

References

Some "common" algorithms in the literature:

- "Maximize Main Loadings" (not investigated)
- Ant Colony Optimization (ACO)
- Tabu Search (TS)
- Genetic Algorithm (GA)

An additional method investigated in this study:

Simulated Annealing (SA)

# Factors Manipulated

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introductio

Theoretica Framework

Method

Discussio

- The dimensionality of the full form
  - One Factor
- Three Factor
- 2 Full-scale model misspecification
  - No misspecification
  - Minor misspecification (six items loading on a nuisance parameter with  $\lambda = .3$ )
  - Major misspecification (six items loading on a nuisance parameter with  $\lambda=.6$ )
- 3 Relationship to External Criterion Variable
  - No relationship
  - Moderate relationship ( $\gamma = .6$ )

### One Factor Model

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

ntroductio

Theoretica Framework

Method

Discussio



Figure 1: 20-item Self-Deceptive Enhancement Scale (Leite & Beretvas, 2005)

### Three Factor Model

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introduction

Framewor

Method

Result

Discussio



Figure 2: 24-item Teacher Efficacy Scale (Tschannen-Moran & Hoy, 2001)

### Simulation

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introductio

Theoretica Framework

Method

Discussio

Reference

Program: R (R Core Team, 2018)

Packages:

MASS (Venables & Ripley, 2002) (data simulation)

3 ShortForm (Raborn & Leite, 2018) (ACO, SA, TS)

3 GAabbreviate (Sahdra et al., 2016) (GA; modified)

Sample Size: n = 500

Iterations: 100

## Analysis of Results

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introductio

Theoretica Framework

Method

Result

Discussion

References

- OFI, TLI, RMSEA
- Proportion of iterations including each problematic item (excluding no error condition)
- Omposite reliability of each factor:

$$\textit{CR}_{\textit{factor}} = \frac{(\sum_{i=1}^{\textit{I}} \textit{Loading}_i)^2}{(\sum_{i=1}^{\textit{I}} \textit{Loading}_i)^2 + \sum_{i=1}^{\textit{I}} (\textit{Residual}_i^2)}$$

Run time of algorithms

## One Factor Model Fit: No External Variable

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introduction

Framewor

Method

Discussio

| Error<br>Condition | Method | CFI          | TLI          | RMSEA        |
|--------------------|--------|--------------|--------------|--------------|
| None               | ACO    | 0.975        | 0.967        | 0.045        |
|                    | SA     | 0.992        | 0.990        | 0.020        |
|                    | TS     | 0.985        | 0.981        | 0.027        |
|                    | GA     | 0.975        | 0.968        | 0.043        |
| Minor              | ACO    | 0.966        | 0.956        | 0.052        |
|                    | SA     | 0.989        | 0.987        | <b>0.022</b> |
|                    | TS     | 0.978        | 0.972        | <b>0.035</b> |
|                    | GA     | 0.968        | 0.959        | <b>0.048</b> |
| Major              | ACO    | 0.944        | 0.928        | 0.062        |
|                    | SA     | <b>0.983</b> | <b>0.979</b> | <b>0.028</b> |
|                    | TS     | 0.944        | 0.928        | 0.057        |
|                    | GA     | 0.846        | 0.802        | 0.113        |

### One Factor Model Fit: External Variable

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introduction

Frameworl

Metho

Results

Discussion

| Error Condition | External<br>Relationship | Method | CFI   | TLI   | RMSEA |
|-----------------|--------------------------|--------|-------|-------|-------|
| None            |                          |        |       |       |       |
|                 | None                     | ACO    | 0.975 | 0.967 | 0.045 |
|                 | None                     | SA     | 0.992 | 0.990 | 0.020 |
|                 | None                     | TS     | 0.985 | 0.981 | 0.027 |
|                 | None                     | GA     | 0.975 | 0.968 | 0.043 |
|                 | Moderate                 | ACO    | 0.979 | 0.973 | 0.040 |
|                 | Moderate                 | SA     | 0.991 | 0.989 | 0.021 |
|                 | Moderate                 | TS     | 0.985 | 0.981 | 0.027 |
|                 | Moderate                 | GA     | 0.975 | 0.968 | 0.044 |
| Major           |                          |        |       |       |       |
| •               | None                     | ACO    | 0.944 | 0.928 | 0.062 |
|                 | None                     | SA     | 0.983 | 0.979 | 0.028 |
|                 | None                     | TS     | 0.944 | 0.928 | 0.057 |
|                 | None                     | GA     | 0.846 | 0.802 | 0.113 |
|                 | Moderate                 | ACO    | 0.945 | 0.931 | 0.058 |
|                 | Moderate                 | SA     | 0.981 | 0.977 | 0.029 |
|                 | Moderate                 | TS     | 0.930 | 0.912 | 0.063 |
|                 | Moderate                 | GA     | 0.858 | 0.822 | 0.107 |

# One Factor Item Selection Proportions: No External Variable

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introduction

Theoretica Framewor

Metho

Results

Discussion

| Error Condition                 | Item | Factor Loading | ACO   | SA    | TS    | GA    |
|---------------------------------|------|----------------|-------|-------|-------|-------|
|                                 | у3   | 0.580          | 0.84  | 0.39  | 0.48  | 0.66  |
|                                 | y5   | 0.534          | 0.81  | 0.36  | 0.43  | 0.35  |
| Minor                           | y4   | 0.448          | 0.70  | 0.59  | 0.53  | 0.61  |
| Minor                           | y2   | 0.408          | 0.66  | 0.36  | 0.37  | 0.41  |
|                                 | у6   | 0.393          | 0.51  | 0.38  | 0.39  | 0.93  |
|                                 | y1   | 0.382          | 0.34  | 0.39  | 0.48  | 0.48  |
|                                 | уЗ   | 0.580          | 0.49  | 0.12  | 0.46  | 0.61  |
|                                 | y5   | 0.534          | 0.35  | 0.32  | 0.48  | 0.44  |
| Maian                           | y4   | 0.448          | 0.33  | 0.17  | 0.48  | 0.70  |
| Major                           | y2   | 0.408          | 0.19  | 0.19  | 0.37  | 0.48  |
|                                 | у6   | 0.393          | 0.21  | 0.21  | 0.36  | 0.96  |
|                                 | y1   | 0.382          | 0.21  | 0.21  | 0.48  | 0.44  |
| Minor Error Average Proportion: |      |                | 0.643 | 0.412 | 0.447 | 0.573 |
| Major Error Average Proportion: |      |                | 0.297 | 0.203 | 0.438 | 0.605 |

# One Factor Item Selection Proportions: External Variable

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introductio

Frameworl

Metho

Results

Discussion

Poforoncoc

| Error Condition | External Condition                   | Item | Factor Loading | ACO   | SA    | TS    | GA    |
|-----------------|--------------------------------------|------|----------------|-------|-------|-------|-------|
|                 | None                                 | у3   | 0.580          | 0.78  | 0.48  | 0.46  | 0.82  |
|                 | None                                 | y5   | 0.534          | 0.75  | 0.39  | 0.47  | 0.98  |
|                 | None                                 | y4   | 0.448          | 0.65  | 0.45  | 0.50  | 0.21  |
| Major           | None                                 | y2   | 0.408          | 0.34  | 0.34  | 0.41  | 0.29  |
|                 | None                                 | у6   | 0.393          | 0.29  | 0.55  | 0.55  | 0.29  |
|                 | None                                 | y1   | 0.382          | 0.16  | 0.48  | 0.51  | 0.18  |
|                 | Moderate                             | у3   | 0.580          | 0.49  | 0.10  | 0.44  | 0.80  |
|                 | Moderate                             | y5   | 0.534          | 0.17  | 0.13  | 0.42  | 0.98  |
|                 | Moderate                             | y4   | 0.448          | 0.16  | 0.13  | 0.38  | 0.26  |
| Major           | Moderate                             | y2   | 0.408          | 0.12  | 0.14  | 0.47  | 0.43  |
|                 | Moderate                             | у6   | 0.393          | 0.16  | 0.20  | 0.40  | 0.43  |
|                 | Moderate                             | y1   | 0.382          | 0.15  | 0.24  | 0.53  | 0.46  |
|                 | No External Average Proportion:      |      |                | 0.495 | 0.448 | 0.483 | 0.46  |
|                 | Moderate External Average Proportion | n:   |                | 0.208 | 0.157 | 0.440 | 0.560 |

## Three Factor Model Fit: No External Variable

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

IIItioductioi

Framewor

Results

Discussio

| Error<br>Condition | Method | CFI   | TLI          | RMSEA        |
|--------------------|--------|-------|--------------|--------------|
| None               | ACO    | 0.980 | 0.974        | 0.042        |
|                    | SA     | 0.992 | 0.990        | 0.023        |
|                    | TS     | 0.989 | 0.986        | 0.027        |
|                    | GA     | 0.979 | 0.973        | 0.042        |
| Minor              | ACO    | 0.972 | 0.964        | 0.050        |
|                    | SA     | 0.990 | 0.987        | 0.026        |
|                    | TS     | 0.984 | 0.979        | 0.035        |
|                    | GA     | 0.970 | 0.961        | 0.050        |
| Major              | ACO    | 0.953 | 0.939        | 0.062        |
|                    | SA     | 0.989 | <b>0.986</b> | <b>0.027</b> |
|                    | TS     | 0.961 | <b>0.950</b> | 0.053        |
|                    | GA     | 0.909 | 0.882        | 0.089        |

### Three Factor Model Fit: External Variable

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introduction

Frameworl

Metho

Results

Discussion

| Error Condition | External<br>Relationship | Method | CFI   | TLI   | RMSEA |
|-----------------|--------------------------|--------|-------|-------|-------|
| None            |                          |        |       |       |       |
|                 | None                     | ACO    | 0.980 | 0.974 | 0.042 |
|                 | None                     | SA     | 0.992 | 0.990 | 0.023 |
|                 | None                     | TS     | 0.989 | 0.986 | 0.027 |
|                 | None                     | GA     | 0.979 | 0.973 | 0.042 |
|                 | Moderate                 | ACO    | 0.977 | 0.970 | 0.047 |
|                 | Moderate                 | SA     | 0.988 | 0.984 | 0.032 |
|                 | Moderate                 | TS     | 0.983 | 0.978 | 0.037 |
|                 | Moderate                 | GA     | 0.977 | 0.970 | 0.046 |
| Major           |                          |        |       |       |       |
| •               | None                     | ACO    | 0.953 | 0.939 | 0.062 |
|                 | None                     | SA     | 0.989 | 0.986 | 0.027 |
|                 | None                     | TS     | 0.961 | 0.950 | 0.053 |
|                 | None                     | GA     | 0.909 | 0.882 | 0.089 |
|                 | Moderate                 | ACO    | 0.964 | 0.953 | 0.057 |
|                 | Moderate                 | SA     | 0.984 | 0.979 | 0.036 |
|                 | Moderate                 | TS     | 0.953 | 0.939 | 0.061 |
|                 | Moderate                 | GA     | 0.907 | 0.880 | 0.091 |

# Three Factor Item Selection Proportions: No External Variable

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introduction

Theoretic: Framewor

Metho

Results

Discussion

| Error Condition                 | Item | Factor Loading | ACO   | SA    | TS    | GA    |
|---------------------------------|------|----------------|-------|-------|-------|-------|
|                                 | y1   | 0.9            | 0.83  | 0.36  | 0.49  | 0.94  |
|                                 | y5   | 0.7            | 0.13  | 0.58  | 0.50  | 0.24  |
| Minor                           | y9   | 0.9            | 0.52  | 0.34  | 0.41  | 0.87  |
| WITHOR                          | y13  | 0.7            | 0.20  | 0.42  | 0.48  | 0.08  |
|                                 | y17  | 0.9            | 0.85  | 0.25  | 0.28  | 0.65  |
|                                 | y21  | 0.7            | 0.45  | 0.36  | 0.44  | 0.39  |
|                                 | y1   | 0.9            | 0.60  | 0.32  | 0.44  | 0.90  |
|                                 | y5   | 0.7            | 0.22  | 0.22  | 0.41  | 0.12  |
| Maior                           | y9   | 0.9            | 0.20  | 0.12  | 0.24  | 0.97  |
| Major                           | y13  | 0.7            | 0.10  | 0.11  | 0.32  | 0.03  |
|                                 | y17  | 0.9            | 0.61  | 0.10  | 0.30  | 0.60  |
|                                 | y21  | 0.7            | 0.30  | 0.10  | 0.27  | 0.41  |
| Minor Error Average Proportion: |      |                | 0.497 | 0.385 | 0.433 | 0.528 |
| Major Error Average Proportion: |      |                | 0.338 | 0.162 | 0.330 | 0.505 |

# Three Factor Item Selection Proportions: External Variable

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introductio

Theoretica Framework

Metho

Results

Discussion

oforonco.

| Error Condition | External Condition                    | Item | Factor Loading | ACO   | SA    | TS    | GA   |
|-----------------|---------------------------------------|------|----------------|-------|-------|-------|------|
|                 | None                                  | y1   | 0.9            | 0.60  | 0.32  | 0.44  | 0.90 |
|                 | None                                  | y5   | 0.7            | 0.22  | 0.22  | 0.41  | 0.12 |
| M-:             | None                                  | y9   | 0.9            | 0.20  | 0.12  | 0.24  | 0.97 |
| Major           | None                                  | y13  | 0.7            | 0.10  | 0.11  | 0.32  | 0.03 |
|                 | None                                  | y17  | 0.9            | 0.61  | 0.10  | 0.30  | 0.60 |
|                 | None                                  | y21  | 0.7            | 0.30  | 0.10  | 0.27  | 0.41 |
|                 | Moderate                              | y1   | 0.9            | 0.37  | 0.25  | 0.51  | 0.84 |
|                 | Moderate                              | y5   | 0.7            | 0.15  | 0.12  | 0.37  | 0.16 |
| M-:             | Moderate                              | y9   | 0.9            | 0.32  | 0.16  | 0.30  | 0.97 |
| Major           | Moderate                              | y13  | 0.7            | 0.06  | 0.16  | 0.20  | 0.03 |
|                 | Moderate                              | y17  | 0.9            | 0.29  | 0.10  | 0.37  | 0.96 |
|                 | Moderate                              | y21  | 0.7            | 0.04  | 0.09  | 0.37  | 0.04 |
|                 | No External Average Proportion:       |      |                | 0.338 | 0.162 | 0.330 | 0.50 |
|                 | Moderate External Average Proportion: |      |                | 0.205 | 0.147 | 0.353 | 0.50 |

# Best Performing Methods

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite, Katerina Marcoulides

Introduction

Theoretical Framework

Method

Discussion

Reference

- Removal of specific problematic items: SA
- Model fit of final scales: SA
- Reliability of final scales: About equivalent (ACO somewhat higher)
- ullet Time to converge: About equivalent (TS one factor longer)

Overall: SA consistently had good<sup>1</sup> fit; ACO & TS consistently had at least adequate<sup>2</sup> fit; GA produced poor fit in the presence of major error

<sup>&</sup>lt;sup>1</sup>CFI > .95. TLI > .95. RMSEA < .05

 $<sup>^{2}</sup>CFI > .90$ , TLI > .90, RMSEA < .08

# Factors Affecting Comparisons

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulide

Introductio

Theoretica Framework

Metho

Discussion

- Population model type
  - model fit: one factor < three factor
  - Minimal effect on time to converge
- Severity of problematic items
  - Decreased model fit, SA excluded
- 3 Strength of relationship to external criterion
  - Somewhat attenuates effect of error only for ACO

### For the Future

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introduction

Theoretica Framework

Metho

Discussion

D.50055.0.

References

#### Suggestions for Applied Researchers

- Apply each algorithm to your sample—grab some coffee or tea while they each run!
- Compare the resulting short forms against one another ("face validity" comparisons).
- When possible, test against a second sample (cross-validation).

#### Future Research Questions

- How well do the short forms created by each algorithm generalize to new samples?
- We have do additional manipulations (e.g., population models, types of errors) affect the algorithms?

# Corresponding Author

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

ntroductio

Theoretica Framework

Metho

Doculto

Discussion

References

anthony.w.raborn@gmail.com

### References I

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introduction

Theoretica Framework

Metho

Discussio

References

Byrne, G. J., & Pachana, N. A. (2011). Development and validation of a short form of the geriatric anxiety inventory—the gai-sf. *International Psychogeriatrics*, 23(1), 125–131.

Dennis, C.-L. (2003). The breastfeeding self-efficacy scale: Psychometric assessment of the short form. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 32(6), 734–744.

Dréo, J., Pétrowski, A., Siarry, P., & Taillard, E. (2006). *Metaheuristics for hard optimization: Methods and case studies.* Springer Science & Business Media.

Leite, W. L., & Beretvas, S. N. (2005). Validation of scores on the marlowe-crowne social desirability scale and the balanced inventory of desirable responding. *Educational and Psychological Measurement*, 65(1), 140–154.

Lim, S. Y., & Chapman, E. (2013). Development of a short form of the attitudes toward mathematics inventory. *Educational Studies in Mathematics*, 82(1), 145–164.

Noble, W., Jensen, N. S., Naylor, G., Bhullar, N., & Akeroyd, M. A. (2013). A short form of the speech, spatial and qualities of hearing scale suitable for clinical use: The ssq12. *International Journal of Audiology*, 52(6), 409–412.

Raborn, A., & Leite, W. (2018). ShortForm: Automatic short form creation. Retrieved from https://github.com/AnthonyRaborn/ShortForm

R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

### References II

Comparison of Automated Short Form Selection Strategies

Anthony Raborn<sup>1</sup>, Walter Leite Katerina Marcoulides

Introductio

Theoretica Framework

IVICEIIO.

Diamonia

References

Sahdra, K., B., Ciarrochi, J., Parker, P., . . . L. (2016). Using genetic algorithms in a large nationally representative american sample to abbreviate the Multidimensional Experiential Avoidance Questionnaire. Frontiers in Psychology, 7(189), 1–14. Retrieved from http:

 $// www.frontiers in.org/quantitative\_psychology\_and\_measurement/10.3389/fpsyg.2016.00189/abstract$ 

Tschannen-Moran, M., & Hoy, A. W. (2001). Teacher efficacy: Capturing an elusive construct. *Teaching and Teacher Education*, 17(7), 783–805.

Veale, J. F. (2014). Edinburgh handedness inventory–short form: A revised version based on confirmatory factor analysis. Laterality: Asymmetries of Body, Brain and Cognition, 19(2), 164–177.

Venables, W. N., & Ripley, B. D. (2002). *Modern applied statistics with s* (Fourth). New York: Springer. Retrieved from http://www.stats.ox.ac.uk/pub/MASS4

Wester, S. R., Vogel, D. L., O'neil, J. M., & Danforth, L. (2012). Development and evaluation of the gender role conflict scale short form (grcs-sf). *Psychology of Men & Masculinity*, 13(2), 199.