Detección de noticias falsas usando Procesado de Lenguaje Natural

Miguel Ricardo Claramunt Argote

Escola Tècnica Superior d'Enginyeria – Universitat de València

11 de julio de 2023

Esquema de la presentación

1.1. Introducción

Las *fake news* son piezas de texto con estilo pseudoperiodístico que tienen como objetivo desinformar a los lectores.

Motivos principales que incentivan la difusión de fake news:

- Económico: publicidad en la página web.
- <u>Ideológico:</u> apoyo de una agenda política.¹

¹(AlcottGentzkow2017; Sydell2016)

1.2. Motivación

Fact checking:

- Exhaustivo, laborioso.
- Mayoritariamente manual.
- Grandes beneficios si se automatiza: LLMs.

Otros beneficios: reducción de prejuicios en colectivos minorizados, mejora de la imagen del periodismo/periodista, etc.

1.3. Objetivos

Objetivo principal:

- Desarrollar una solución que permita detectar noticias falsas.
 - Clasificación a partir de características estilísticas.
 - Estudio comparativo: cantidad/calidad de información, arquitectura/tamaño de los modelos.

Objetivos transversales:

- Definición del término de fake news y discutir las implicaciones en nuestro trabajo.
- Conocer en profundidad cómo funcionan los modelos y los sesgos implícitos.
- Aplicación de técnicas de Explanable AI (XAI) para intentar entender el 'razonamiento' de los modelos.

2. Definiciones y área de estudio

<u>Disinformation (Desinformación).</u> Contenido proposicional de signos que tergiversa el estado del mundo con la intención de engañar. — (Khan2021)

Problema complejo, límite del area de aplicación a noticias:

- Recopilables: gran disponibilidad de BBDD.
- <u>Categorizables:</u> aprendizaje supervisado.

3. Antecedentes y tecnologías

Se han desarrollado dos enfoques para abordar este problema:

- <u>Basado en patrones:</u> estilo o sintaxis, métricas de RRSS, minería de datos enfocada a emociones.
- Basado en evidencias. similaridad semántica entre claim y evidencia.

Trabajos relevantes:

- DeClarE (Popat2018)
- HAN (Ma2019)
- GET (Xu2022)

4.1. Claim y evidencia

- Claim: equivalente al titular de una noticia, pieza de información a verificar.
- Evidencia: hecho, dato o información que apoya o refuta la claim.

4.2. Dataset: Politifact² y Snopes³

Un claim y varias evidencias por noticia.

Creación de dos datasets, P-S_{One} y P-S_{AII}:

- P-S_{One}: una *claim*, una evidencia elegida aleatoriamente.
- P-S_{AII}: una *claim*, todas las evidencias.

Dataset	Etiqueta		
Dataset	Etiqueta	#	#
PolitiFact	True	186	356
	False	170	
Snopes	True	116	433
	False	317	

Estadístico	Valor
μ	7,43
σ	6,34
Mín.	1
Q_1	2
Q_2	5
Q_3	11
Máx.	27

Cuadro: Conteo de muestras y estadísticos de longitud de noticias.

²(Popat2017)

³(Vlachos2014)

4.3. Dataset: News⁴

- Artículos periodísticos completos de diversas fuentes.
- Limpieza adicional para las noticias verdaderas: autor, aclaraciones.

Etiqueta	#
True	21417
False	23481

Cuadro: Conteo de muestras.

⁴(Ahmed2017)

4.4. Modelos y clasificadores utilizados

Modelos estadísticos (scikit-learn):

- Bag of Words y TF-IDF:
 - Regresión logística (LR)
 - Naïve Bayes (NB)
 - Support Vector Machine (SVM)
 - Stochastic Gradient Descent (SGD)
 - Random Forest (RF)

Modelos⁵ basados en *transformers* (transformers + pytorch):

- BERT
- DistilBERT
- RoBERTa
- DeBERTa

 $^{^{5} (} Devlin2018; \ Sanh2019; \ Liu2019; \ He2020)$

5.1. Resultados obtenidos: precisión (+)

Métricas utilizadas: precisión (+, -); specificity (-); F1-score (-).

- Mejores modelos:
 - P-S_{One}: BoW + SGD
 - P-S_{AII}: BoW + NB
 - News: TF-IDF + SGD
- BoW > TF-IDF > LARGE > BASE
- CASED, ML > UNCASED
- $P-S_{One} \approx P-S_{All} > News$

5.2. Resultados obtenidos: precisión (-)

- Mejores modelos:
 - P-S_{One}: BoW + SGD
 - P-S_{AII}: BoW + NB
 - News: TF-IDF + NB
- BoW > TF-IDF > LARGE > BASE
- Pocas diferencias entre variantes
- \bullet P-S_{One} > P-S_{AII} > News

5.3. Resultados obtenidos: *specificity* (–)

- Mejores modelos:
 - LARGE [1,00]
 - DistilBERT_{B, C & ML} y BERT_{B, C} obtienen resultados similares.
- $P-S_{One} \approx P-S_{All} \approx News$
- Otros [0,49,0,71]
 - $P-S_{One} \approx P-S_{All} > News$

5.4. Resultados obtenidos: *F1-Score* (–)

- Mejores modelos:
 - P-S_{One}: BERT_{B. C}, DeBERTa_B, M_L
 - P-S_{AII}: TF-IDF + RF, M_I obtienen resultados similares
 - News: TF-IDF + SGD
- LARGE > BASE
- CASED, ML > UNCASED
- $P-S_{One} \approx P-S_{All} > News$

5.5. Resultados generales

- LARGE > BASE
- CASED, ML > UNCASED
- $P-S_{One} > P-S_{All} > News$
- No hay indicios de sobreajuste.

5.6. Interpretabilidad de los modelos: SHAP

Figura: Valores Shapley de DistilBERT_{B, C, ML} para los tres datasets.

- LARGE, CASED, ML vs. otros⁶.
- Rendimiento general: $P-S_{All} > P-S_{One} > News$.

⁶Existen algunas excepciones según *dataset* y modelo

5.7. Evaluación

- LARGE ofrece resultados más consistentes.
- Alto valor de *specificity*: gran capacidad de detectar noticias verdaderas.
- Análisis cuantitativo vs. cualitativo: resultados generalmente poco concluyentes; distinto a lo esperado (datasets, modelos...).

6. Discusión

- SHAP: limitaciones en la interpretación (alta variabilidad, escasa justificación matemática, etc.).
- Limitaciones de los modelos BERT: conocimiento sintáctico, semántico, sentido común, etc.
- Posibles sesgos:
 - Word Embeddings: sesgos implícitos, diferencia de criterios estático vs. contextuales.
 - Tokenización: cased vs. uncased.
 - Destilado de modelos: ↑ sesgos, no relacionado con tamaño del modelo.
 - Modelos aumentados: mayor capacidad de adquirir sesgos.

7. Conclusiones

Objetivos propuestos y grado de cumplimiento:

- Definir fake news, delimitar área de estudio.
- Desarrollar un clasificador de fake news.
- Estudio comparativo de rendimiento: datasets, modelos.
- Estudio del rendimiento con XAI.
- Estudiar los sesgos involucrados en el estudio.

Referencias I