SDER32_EL2, AArch32 Secure Debug Enable Register

The SDER32 EL2 characteristics are:

Purpose

Allows access to the AArch32 register <u>SDER</u> from Secure EL2 and EL3 only.

Configuration

AArch64 System register SDER32_EL2 bits [63:0] are architecturally mapped to AArch64 System register SDER32_EL3[63:0] when EL3 is implemented.

AArch64 System register SDER32_EL2 bits [31:0] are architecturally mapped to AArch32 System register SDER[31:0].

This register is present only when EL2 is implemented, FEAT_SEL2 is implemented and EL1 is capable of using AArch32. Otherwise, direct accesses to SDER32 EL2 are undefined.

This register is ignored by the PE when one or more of the following are true:

- The PE is in Non-secure state.
- EL1 is using AArch64.

Attributes

SDER32 EL2 is a 64-bit register.

Field descriptions

636261605958575655545352515049484746454443424140393837363534	33	32
RES0		
RES0	SUNIDEN	SUIDEN
31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2	1	0

Bits [63:2]

Reserved, res0.

SUNIDEN, bit [1]

Secure User Non-Invasive Debug Enable.

SUNIDEN	Meaning
0b0	This bit has no effect on
	non-invasive debug.
0b1	Non-invasive debug is
	allowed in Secure EL0 using
	AArch32.

When Secure EL1 is using AArch32, the forms of non-invasive debug affected by this control are:

- The PC Sample-based Profiling Extension. See About the PC Sample-based Profiling Extension.
- When SelfHostedTraceEnabled() == FALSE, processor trace.
- When EL3 is implemented, Performance Monitors.

When Secure EL1 is using AArch64, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SUIDEN, bit [0] When EL3 is implemented:

Secure User Invasive Debug Enable.

SUIDEN	Meaning	
0b0	This bit does not affect the	
	generation of debug	
	exceptions at Secure EL0.	
0b1	If EL1 is using AArch32,	
	debug exceptions from	
	Secure EL0 are enabled.	

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Accessing SDER32_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SDER32_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0011	0b001

```
if !HaveEL(EL2) | !IsFeatureImplemented(FEAT_SEL2)
| !HaveAArch32EL(EL1) then
   UNDEFINED;
elsif PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
   if !IsCurrentSecurityState(SS_Secure) then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
       AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if !IsCurrentSecurityState(SS_Secure) then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = SDER32\_EL2;
elsif PSTATE.EL == EL3 then
    if SCR_EL3.EEL2 == '0' then
        UNDEFINED;
    else
       X[t, 64] = SDER32\_EL2;
```

MSR SDER32_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0001	0b0011	0b001

```
if !IsCurrentSecurityState(SS_Secure) then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if !IsCurrentSecurityState(SS_Secure) then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR EL3.TDA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        SDER32 EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    if SCR_EL3.EEL2 == '0' then
        UNDEFINED;
    else
        SDER32_EL2 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions

Index by Encoding External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.