CALCULO BASICO DE SUBESTACIÓN ELECTRICA

- Diagrama Unifilar
- 2. Selección de componentes de una SE

[HEE 21177-SISTISMAEN (ASCENIÉOS RICOS

IndgRauLDEL Rosario Q

Datos generales

- La planta concentradora de Sociedad Minera Carolina procesa minerales de cobre y plata con una capacidad de 1200 TM/día, el procesamiento es mediante un proceso continuo por sectores y se inicia con la entrada de bloques de mineral en la tolva de gruesos.
- La planta esta ubicada en Cajamarca a 4000 msnm.
- El suministro eléctrico es trifásico, 10 kV, 60 Hz y es suministrado por Hidrandina.
- La SE debe poseer al menos 2 transformadores para aumentar su confiabilidad.

IEE 217 – SISTEMAS ELÉCTRICOS

Carga eléctrica de la planta

Sección de planta	Potencia instalada (kW)	Tensión (V)	Factor de demanda (FD)	Factor de potencia (cos φ)			
Chancado	138	440	0,6	0,81			
Molienda	220	440	0,7	0,84			
Flotación	180	440	0,7	0,85			
Secado y filtrado	65	440	0,7	0,81			
Servicios generales	100	440	0,5	0,80			
Alumbrado	50	220	1,0	0,90			

IEE 217 – SISTEMAS ELÉCTRICOS

Cálculo de la máxima demanda (MD)

 La máxima demanda es definida por la siguiente expresión:

$$MD = \sum PI \ x \ FD$$

MD= (138 kW x 0,6) + (220 kW x 0.7)+ (180 kW x 0.7) + (65 kW x 0.7)+ (100 kW x 0.5) + (50 kW x 1,0)= 508,3 kW

IEE 217 – SISTEMAS ELÉCTRICOS

Ing. Raúl Del Rosario Q.

Selección del transformador

- Potencia (trabajo continuo), kVA
- Tensión Primario, kV
- Tensión secundario, kV
- Frecuencia, Hz
- Grupo de conexión
- Tensión de corto circuito, en V o %Un
- Altitud de trabajo, m.s.n.m.

IEE 217 – SISTEMAS ELÉCTRICOS

Cálculo de la potencia de diseño de transformadores

 La potencia de diseño de los transformadores es definida por la siguiente expresión:

$$Potencia_{Transformadores} = 1,25 \times MD$$

$$Potencia_{Transformadores} = 508,3 \ kW \ x \ 1,25$$

$$Potencia_{Transformadores} = 635,4 \, kW$$

IEE 217 – SISTEMAS ELÉCTRICOS

Ing. Raúl Del Rosario O.

Selección del transformador normalizado

 La potencia nominal de los transformadores se expresa como potencia aparente (kVA), supondremos un factor de potencia promedio de la planta es 0,83.

$$Potencia_{Transformadores} = \frac{635,4 \text{ kW}}{0.83} = 765,5 \text{ kVA}$$

 La potencia normalizada de los transformadores de potencia más cercana al valor calculado es 800 kVA, por lo tanto se elegirán 2 transformadores de 400 kVA, 10000 V/ 440 V, 60 Hz.

IEE 217 – SISTEMAS ELÉCTRICOS

Selección de los seccionadores

- Los seccionadores son dispositivos que permiten separar el circuito. Y también son conocidos como seccionadores de cuchilla
- Especificaciones
 - Tensión Nominal, 12 o 24 kV
 - Corriente nominal, 400 A o 630 A

IEE 217 – SISTEMAS ELÉCTRICOS

Ing. Raúl Del Rosario O.

Selección del Interruptor o Seccionador de potencia de MT

 Se requiere la potencia de cortocircuito de la instalación, la cual debe ser solicitada a la distribuidora entre <u>250 MVA</u> y 300 MVA, redes de 10 kV.

$$I_{CC} = \frac{P_{CC}}{\sqrt{3}U_n} = \frac{250 \text{ MVA}}{\sqrt{3} \text{ x } 10 \text{ kV}} = 14,43 \text{ kA}$$

 $I_{cc} \le 16 \text{ kA}, 12 \text{ kV}$

IEE 217 – SISTEMAS ELÉCTRICOS

Selección del Interruptor de media tensión

 La potencia nominal se considera para determinar la corriente nominal (operación) del interruptor:

$$I_n = \frac{P_n}{\sqrt{3}U_n} = \frac{800 \text{ kVA}}{\sqrt{3} \text{ x } 10 \text{ kV}} = 46.2 \text{ A}$$

 La corriente de diseño del interruptor se define por la siguiente expresión:

$$I_{dise\tilde{n}o} = 1,25 \ x \ I_n = 1,25 \ x \ 46,2 \ A = 57,8 \ A$$

 $I_{dise\tilde{n}o} \leq I_{n \; interruptor}$

630 A, 16 kA, 12 kV

IEE 217 - SISTEMAS ELÉCTRICOS

Ing. Raúl Del Rosario Q

Selección de los fusibles CEF de MT

Tension nominal		Capacidad nominal del transformador (kVA)															Tanalan				
del transformador (kV)	25	50	75	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3000	3500	Tension nominal del fusible (kV)
` ′									Cartucho fusible CEF (A)												
3	16	25	25	40	40	50	63	80	100	125	160	200	250*	315*	2x250*	2x315*					3/7.2
5	10	16	25	25	25	40	40	50	63	80	100	125	160	200	250*	315*	2x250*	2x315*			
6	6	16	16	25	25	25	40	40	50	63	80	100	125	160	200	250*	315*	2x250*	2x315*		
10	6	10	16	16	16	20	20	25	31.5	40	50	63	80	100	125	160	200	2x160	2x200	2x200	
12	6	6	10	16	16	16	20	20	25	40	40	50	63	80	100	125	160	200	2x160	2x200	6/12
15	6	6	10	10	16	16	16	20	20	25	40	40	50	63	80	100	125	2x100	2x125		10/17.5
20	6	6	6	10	10	16	16	16	20	20	25	31.5	40	50	63	80	100	125	2x100	2x100	10/24
24	6	6	6	6	10	10	16	16	16	20	20	25	40	40	50	63	80	100		2x100	
30	6	6	6	6	6	10	10	16	16	16	25	25	25	40	40	2x25	2x40				
36	6	6	6	6	6	10	10	10	16	16	25	25	25	40	40	2x25					20/36

* Fusibles tipo CMF

IEE 217 – SISTEMAS ELÉCTRICOS

Selección del Interruptor de baja tensión

 Definición de la corriente nominal del transformador I_{NT} y la corriente de diseño ld:

$$I_{nt} = \frac{P_{nt}}{\sqrt{3}U_n} = \frac{400 \text{ kVA}}{\sqrt{3} \text{ x 0,44 kV}} = 524,9 \text{ A}$$

$$I_{dise\~no} = 1,25 \ x \ I_{nt} = 1,25 \ x \ 524,9 \ A = 656,1 \ A$$

 $I_{dise\tilde{n}o} \leq I_{n interruptor}$ 800 A, 440 V (hasta 690 V)

IEE 217 – SISTEMAS ELÉCTRICOS

Ing. Raúl Del Rosario O.

Selección del Interruptor de baja tensión

 Verificación de la corriente de cortocircuito nominal del interruptor, se calcula en base a la tensión de cortocircuito del transformador y la potencia nominal del transformador:

$$I_{CC} = \frac{P_{nt}}{\sqrt{3} x U_{cc}} = \frac{P_{nt}}{\sqrt{3} x 4.5 \% x U_n} = \frac{400 \text{ kVA}}{\sqrt{3} x 4.5 \% x 440 \text{ V}} = 11.66 \text{ kA}$$

 $I_{CC} \leq I_{CC interruptor}$

15 kA

IEE 217 – SISTEMAS ELÉCTRICOS

Agradecimientos

- El texto fue elaborado originalmente por el Ing.
 Marco Banda, a quien se agradece el haberlo cedido para su uso en los cursos de "Instalaciones de Baja Tensión y Sistemas eléctricos
- Agradecimientos a ABB, FELMEC, TICINO por datos las gráficas y los datos de sus productos.

IEE 217 – SISTEMAS ELÉCTRICOS