

OpEx Shared Practice & Applied Practice

ชื่อโครงการ: Corrosion under Insulation (CUI) Mitigation and Management System

บริษัท: PTTEP

คณะทำงาน

- 1. Petch Janbanjong
- 2. Kamonwan Ruangpattanatawee
- 3. Supaluck Watanapanich
- 4. Krittiyawan Wisutthisaen
- 5. Sith Kumseranee
- 6. Chatchai Laemkhowthon
- 7. GBS Production Engineer
- 8. Urissa Thunmasarnrit
- 9. Winyou Rinnanont
- 10. Matina Thammachart
- 11. Ekkalak Somroop
- 12. Suthorn Domhom
- 13. Sitthipong Seesad

1. Project Details

No	Title	Details
1	Project Name*	(English*) Corrosion under Insulation (CUI) Mitigation and Management System (Thai) การติดตั้งเครื่องวัดอัตราการไหลแบบหลายเฟสสำหรับการวัดอัตราการไหล ของหลุมผลิตผลิตที่แหล่งบงกชเหนือและบงกชใต้
2	Objective*	Corrosion Under Insulation (CUI) is a serious corrosion threat experienced in piping and pressure vessel equipment installed insulation, leading to piping and pressure vessel failure, loss of containment and unexpected plant shutdown. The proper mitigation and complete solutions for CUI problem should be reviewed and developed under current operating conditions of PTTEP asset to provide holistic management system to prevent CUI threats and its drastic consequences.
	Project Type	Operation Operation-support
3	Executive Summary*	 CUI Management system tackles CUI issues for both pressure vessel and piping systems from root causes – water ingress from insulation and coating defects. The study establishes risk matrix and susceptibility evaluation for insulated piping and equipment for assessment in order to remove insulations which manageable operating conditions to completely prevent water ingress problem. It includes inspection technique verification and inspection strategy set-up to suit current operation conditions and provide proactive and preventive inspection program to system for unremovable insulations. This management system will be applied at GBS first for evaluation and then further applied to other assets. The study and re-assessment provides the list and priority for insulation removal for piping and equipment systems. The list is

Title	Details
	developed by using CUI risk assessment matrix which
	combined susceptibility and consequences of CUI issue for
	each piping system referred from corporate susceptibility
	questionnaires and corporate SSHE standard. The assessment
	results in 3 categories of CUI issue: Extreme, High and Medium.
	Extreme category is mainly heating medium system which
	consists of more than 70 piping lines and set to be the first group
	to remove insulation. The process performance monitoring after
	insulation removed is required to confirm the insulated necessity
	and result will be updated once the plan is executed
	completely.
	Apart from insulation removal criteria set-up, inspection
	strategy and technique have also been re-evaluated and
	developed. Advanced inspection technique called "Pulsed-
	Eddy Current" has been verified and applied for CUI inspection
	and scanning which will reduce workload and cost of insulation
	removal and reinstallation. Inspection interval has also been
	reset to comply with the management system and new
	inspection technique.
	 The system helps reduced leakage problem and plant
	shutdown from CUI issue to zero. Inspection cost is reduced for
	50 percent and improves plant integrity significantly.
	1) Statement of Theory and Definitions
	Corrosion Under Insulation (CUI) is common in process that
	operates with specific temperature; carbon steel (-5 to 175°C)
Detail	and stainless steel (50 to 175°C). The corrosion happens when
	water is absorbed by or collected in the insulation. CUI is
	difficult to find because the insulation covers the problem until
	it's too late and causes catastrophic effect (oil/gas leakage, fire
	& explosion, downtime and repairs). Several equipment &

No	Title	Details
		 piping in GBS field have been insulated for heat conservation, explosive atmosphere and human protection. Equipment is corroded due to being in contact with aerated water. On 15th June 2019, GBS found hot oil leak at 6"-HM-243065-D01X-H line of WHRU train 1 and severe corrosion under insulation (CUI) at the same location of WHRU train 2 (see figure
		The survey of potential to have corrosion under insulation at a heating medium system was conducted and completed for 66 locations. However, the removed insulation cannot reusable. The results found the severe corrosion under insulation at some locations.
		6-HM-243078-D01X (Train 2) 4-HM-243033-D01XH. Figure 1 Heating Medium Failure from CUI
		 The Failure Reporting, Analysis and Corrective Action System (FRACAS) was conducted. The potential root cause of CUI is the insulation system including sealant failure or damage. Then, the moisture or water can present in the insulation and promote CUI of the piping system. The detail of FRACAS is shown in attachment. Detecting corrosion under insulation (CUI) is very difficult
		resulting in serious damage or failure to the processing system. To minimize the number of CUI in GBS field, insulation should be removed for the equipment/piping that are not necessary to be insulated. Moreover, the proper material of insulation or insulation upgrade must be considered as the lesson learnt from GBS.

Title	Details
	2) Description and Application of Equipment and Processes 2.1 CUI Information The major factor in preventing CUI is to keep liquid from intruding into the insulation. Water decreases the effectiveness of the insulation and leads to corrosion of pipe or equipment. Poor conditions caused by wet insulation can be aggravated by weathering, vibration or abuse from people. The degradation rate for CUI varies significantly depending on numerous factors. These factors include temperature, time, insulation type, coating, equipment configuration and the presence of water. These factors are described in the sections below. a. Water b. Corrosion Rate c. Insulation Type d. Temperature e. Coating Based on FRACAS, temperature is the main factor of water vaporization and also CUI. Figure 2 shows the risk of corrosion at any temperature for 3 standards. In this work, PTTEP corrosion guideline is used as the reference for CUI risk assessment.
	110 °C 50 °C 50 °C -5 °C -4 °C 12 °C Boiling temperature of water Highest corrosion rate lopen systems! NACE Risk Key Low Risk Medium Risk High Risk
	Figure 1 CUI Risk Profile as a Function of Temperature
	There are five factors in preventing CUI:
	(1) Insulation selection
	(2) Equipment design
	Title

No	Title	Details
		(3) Protective paints and coatings;
		(4) Weather barriers
		(5) Maintenance practices
		If an area is subject to spills or high humidity, special
		consideration must be given to selecting the insulation. Some
		insulation leaves the system less sensitive to defects in
		weatherproofing or paint films because the insulations are
		nonabsorbent and chemically nonreactive. To understand the life
		cycle of CUI, a typical progression is as table 1 (see in secion 2
		support information).
		2.2 CUI Management Strategy Determination
		Steps of CUI Inspection Strategy determination can
		describe in figure 3 below;
		Step 1: SUSCEPTIBILITY Susceptibility Questions Step 2: CONSEQUENCE SSHE-106-STD-400 Step 3: CUI CRITICALITY & INSPECTION STRATEGY CUI Management Strategies
		Step 4: INSPECTION INTERVAL
		Figure 3 CUI Management Strategy
		Step 1: Determine the Susceptibility score
		The Susceptibility to CUI is determined with questions in the
		figure 4 (Susceptibility to CUI failure for Carbon/Low alloy steels)
		and figure 5 (Susceptibility to CUI failure for Stainless steels) –
		see in section 2 Support Information. The cumulative score is
		ranged in Probability class (CUI Criticality Matrix).

No	Title	Details
		Material: classified into 2 groups; carbon steel, stainless
		steel and alloy
		Temperature: temperature is the key parameter of CUI. The
		specific temperature affects to the corrosion rate. Point represent
		potential to occur CUI in any range.
		Coating life: In this work, platform life is over that 7 years
		which is assuming to be the as insulation life. CUI can occur if the
		coating life is longer.
		Cladding/Insulation Condition: insulation condition can be
		known by inspection. Almost of insulation in GBS is in average
		condition. Only in hot oil section, the insulation condition is in poor
		condition. Background is already showing the damage of CUI in
		hot oil section.
		Insulation type: Type of insulation affects to corrosion rate.
		Rockwool is used for all GBS insulation. Therefore, GBS insulation
		material is proper for corrosion representing in high point.
		Heat tracing: For electric insulation, CUI can be occurred
		easier than normal. Heat tracing is almost in fuel gas section to
		prevent condensation.
		External Environment: High wetting rate is the most suitable
		for offshore location.
		For all results, the probability for CUI is high so that
		consequence the then the key parameter to determine that which
		line is in high or low risk for CUI.
		Step 2: Determine the Consequence of failure
		The Consequence of failure is identified as per the SSHE-
		106-STD-400: SSHE Risk Management Standard. The
		Consequence of failure information can be obtained from safety
		study. The detail of consequence scoring is shown in figure 6 (see

No	Title	Details
		in section 2 Support Information). Operation team attends the CUI
		workshop to provide the score for this section.
		Step 3: Determine CUI Criticality and select Inspection Strategy
		The Inspection Strategy is selected base on Susceptibility
		score and Consequence of failure from the CUI Strategy matrix
		as shown in figure 7 and 8 (see in section 2 Support Information).
		The CUI Inspection Strategy is classified into 6 levels (Negligible,
		Low, Medium, Medium High, High and Extreme).
		Step 4: Determine the CUI Inspection Interval
		Document 10008-GDL-5-COR-007-R00 Guideline for Corrosion under Insulation Management shown the recommended inspection interval and the following action after inspection in case CUI is present or not present. After that initial inspection, the inspection interval should be reassessed by the method in CUI guideline. For carbon and low alloy steels, the inspection interval can be determined from Expected Coating Life and Interval based on Inspection Strategy (IS). The inspection interval then becomes. Inspection Interval = Expected Coating Life + Interval in table 2.
		Inspection Strategy Interval based
		(IS) on IS
		IS-1 (E) 1 year
		IS-2 (H) 2 years
		IS-3 (MH) 3 years

No	Title	Details
		IS-4 (M/L/N) 4 years
		Expected Coating Life = Recommended Expected Coating
		Life for organic coating is 5 years in dry condition, 3 years in wet
		condition and 1 year for poor coating condition. However, users
		shall consult with coating expert for appropriate expected coating
		life.
		For stainless steels, external chloride stress corrosion
		cracking is the only feasible degradation mechanism and it is
		non-trend able. Therefore, the next CUI inspection is followed to
		time-based strategy.
		For Example, or more information, it can be seen in "10008-
		GDL-5-COR-007-R00" or Guideline for Corrosion under Insulation
		Management.
		2.3 CUI Potential
		Potential can be classified by 2 categories. First, results of
		CUI workshop can identify the risk and consequence. Second is
		the experience of operation to located that which area they can
		found CUI in the previous situation. Both of that are combined and
		then to be the removal plan of GBS insulation.
		3) Presentation of Data and Results
		3.1 CUI Workshop Results
		For all insulation line of GBS, the workshop has been
		conducted with GBS operation team, engineering, inspection and
		reviewed by safety. Results of work shop will be used to
		categorize the insulation line in to the several CUI critically level
		based on consequence and probability. The one of the key

No	Title	Details
		parameters is the shut down time. The results are mostly high or
		extreme in case that the maintenance for that section required
		shutdown or long-time activity. Moreover, As shown in CUI
		guideline, temperature of that section is also the one of the key
		parameters. The CUI level represents the level of consequence
		and probability as shown in below figure 9 (see in section 2
		Support Information).
		For less than medium, 129 lines is recommended to neglect
		for insulation removal. The extrema and high level need to be
		considered which can affects high and extreme either probability
		or consequence. The plan will be focused on total 300 lines. The
		strategy of insulation removal is depending on types of insulation.
		For expected life, all of heating medium line are in poor
		condition. The expected life base of CUI guideline is 1 year. The
		expected life of other line is assuming to be 3 years for the other
		system because offshore is in wet conditions. For all extreme line
		the additional inspection interval will be 1. For extreme heating
		medium line, inspection interval will be within 2 years. For high
		heating medium line, inspection interval will be within 3 years. For
		the other system, the inspection period will be 4 years for extreme
		and 5 years for high criticality. For the other stream or more
		information please see the CUI guideline for estimate the
		inspection interval.
		3.2 CUI Priority
		There are many root causes for CUI or corrosion in piping.
		The other parameter such as specific environment, area, or
		operation activity also can affect to piping damage. From

No	Title	Details
		operation experience and historical, the CUI in the system can be
		categorized in to 4 main priority as shown in figure 10.
		 Heating Medium High risk Hydrocarbon Booster comp, export comp Fuel gas, Memguard Condensate stabilizer Membrane Receiving facilities, separator Flare Non-Hydrocarbon
		Figure 10 CUI Risk Priority Based on Historical Failure and
		Operation Experience
		The highest risk is heating medium system. The damage
		was found in heating medium line and almost of that line are
		inspected. This section is very critical and need to be concerned
		for all hot insulation. The second risks are high risk hydrocarbon.
		From this section, compressor, fuel gas system, Memguard has
		high probability. In case the insulation removal cannot cover all
		selected line, this priority can be used to select which insulation
		line need to be removed. The removal plan can be following this
		priority to remove the critical line before to make sure that the CUI
		will be minimized. In this work, all insulation can be removed in 1
		campaign so, no need to follow this section. Figure 11 is the
		mapping from the workshop results and operation priority. Almost
		of savior insulation line is in heating medium and high-risk
		hydrocarbon that recommended to be removed.

No	Title	Details
•		Insulation Removal Strategy
		Thermal Insulation (Hot, Cold)
		Temperature insulation is used to maintain the temperature
		in process. Hot insulation is used in high temperature area. It is
		almost at the heating medium system, Memguard and other area
		which the temperature stable is required. Cold insulation is at
		mem guard system before Memguard unit at the around JT valve
		area. In design phase, the temperature insulation is required
		because heat loss will affect process such as separation of
		operating temperature. In current operation, it may have some
		heat duty to handle that heat loss so, insulation can be tried to
		remove and then monitor the process condition within the trial
		period. The overall step for temperature insulation is shown in
	.	following points.
	Best Practice	
4	Process /	Remove insulation which is Extreme and High results from
	Procedures	CUI workshop. As explain in workshop results, less than medium
	*	high represent medium consequence or probability that can be
		neglect. In this step is mainly focused on heating medium and
		Memguard system.
		Monitor process condition at least 1 week to make sure that
		the process is not disturb by loss of energy in insulated line.
		Following parameter need to be close monitored.
		Temperature of that insulated line; can represent process
		condition
		Temperature of downstream unit; can represent process
		condition

No	Title	Details
		Duty of upstream and downstream unit; can represent
		limitation of energy equipment
		In case the insulation can be removed, personal protection
		should be provided for the hot line which has temperature more
		than 70°C.
		For line that insulation cannot remove, insulation upgrade
		and PM plan should be considered.
		Hot oil system is one of the main key systems which
		contains a lot of hot insulation. WHRU is the main unit for heating
		medium. Outlet of WHRU is high temperature stream which go to
		heat exchanger in process. The highest operating temperature is
		at Memguard and mem brane (membrane inlet heater, regen gas
		heater) for adsorbent regeneration about 300°C. Its shown that
		the section from inlet WHRU to those 2 heaters is the critical
		section that the insulation is still required. Therefore, this section
		is recommended to use the insulation upgrade and PM plan. The
		permanenting remove insulation of this section may leads to the
		production effect so, it need to be very close monitoring. See
		figure 13 in section 2 Support Information for further process
		diagram.
		2) Acoustic Insulation
		Acoustic insulation is used to prevent noise in process that
		is mainly for engine and rotating equipment. The main focused of
		this insulation is at compressor. For noise, it can be mitigated by
		using alternative options. In this work, 3 options are provided for
		acoustic insulation.

No	Title	Details					
		Option 1: Remove that insulation. The noise can be protected by noise protection equipment such as ear plug or ear muff. The level of noise is needed to be confirmed and make sure that PPE is enough for protection.					
		Option 2: Not remove insulation. CUI can be mitigated by inspection and maintenance plan. Only 9 lines of acoustic insulation can be managed by PM to avoid CUI.					
		Option 3: Insulation upgrade. Please see the next section for the detail of insulation upgrade.					
		Phase Change Insulation (Condensation, Electric or Heat Tracing)					
		Heat tracing and condensation insulation is used to prevent condensation in process that is mainly for fuel gas system. Heat tracing is still required inside the fuel gas package so, this section is not recommended to remove. Insulation upgrade and not replace heat tracing. The mitigation of this section is inspection plan and maintenance plan. See figure 14 in section 2 Support Information for further process diagram.					
		Exclude condensation and heat tracing, it is remaining 233 pipings to be removed including acoustic insulation. After trial insulation removal, personal protection, inspection plan and also insulation upgrade are the important issues to handle CUI in case insulation removal strategy is not works.					
		Exclude the phase change condensation, all remaining insulation are shown in table 3 – section 2 Support Information					

No	Title	Details					
		which needed to be removed. In case contractor work, about 10					
		lines of insulating can be removed in one day. Below table shows					
		that 25 working days is required for this insulation removal job. 28					
		days is the maximum for on campaign so, this job can be					
		completed in 1 campaign.					
		Because the 1-week monitoring is required, the sequence					
		of insulation removal between the system need to be plan. GBS					
		heating medium will be the first loop to do removal plan and trial					
		test for GBS.					
		4) Insulation Design Upgrade					
		There are five factors in preventing CUI;					
		(1) insulation selection					
		(2) equipment design					
		(3) protective paints and coatings;					
		(4) weather barriers					
		(5) maintenance practices					
		In case that insulation is still required, after trial period from					
		the insulation removal strategy, it is recommended to consider					
		upgrading of the insulation system at the specific portions those					
		found to be under severe CUI. Due to the fact that corrosion under					
		insulation is caused from wet insulation with coating that may be					
		damaged or degraded over time, so the recommended insulation					
		upgrade as listed below should be considered when re-instate					
		the insulation back on to the equipment or piping in those portions					
		with CUI problem.					
		Insulation Coating					

No	Title	Details
		In addition to proper installation of insulation system that
		can prevent water or moisture ingress, a coating system to create
		seamless water and weatherproofing of insulation and cladding
		material, e.g. Lagseal from Belzona should be considered for
		insulation upgrading.
		Coating with Thermal Spray Alluminium (TSA)
		Per API RP 583, TSA coatings are generally reported to
		have a useful service lifetime in excess of 35 years. Within the
		past few years there have been a few reports of TSA coatings
		failure in offshore applications after less than 10 years' service.
		Norsok M501 specify TSA coating for all insulated surfaces of
		carbon steel T>120°C. TOTAL GS EP COR 355 for "External
		protection of piping and equipment by thermal spray coating"
		also specify this system for high durability protection of new built
		offshore or coastal piping and equipment - more than 15 years.
		So, this coating system is also recommended for the retrofit of the
		corroded portions. However, more detailed study in term of
		constructability either in fabrication shop or at site is required to
		confirm its applicability.
		High Temperature Painting for CUI Prevention
		This Management system includes study and
		demonstration on High Temperature Painting system for CUI
		anomaly repair and CUI long-term prevention. This study
		demonstrated the applicability of high temperature painting
		system on elevated temperature steel surface up to 300°C. It is
		common knowledge that the higher grade of surface preparation
		will ensure higher results/ performance of properly applied

No	Title	Details
		painting system. However, our situation is limited to apply during
		equipment online which blasting is not permitted. Therefore, the
		surface to be coated shall be mechanically pretreated to St 2 or
		3 ISO 8501-02 by brass or no sparking hand tools/ power tools.
		Demonstration of the application techniques including
		spray, brush, and roller have been done. Spray application is the
		preferred method and should be used whenever possible since it
		provides a more uniform coat with more consistent dry film
		thickness and provide a superior aesthetic appearance
		compared to brush or roller application. Spray application is also
		the safest technique to paint applicator. Roller and brush made
		from natural hair can be used when necessary to prevent burning.
		Another observation is solvent fume extraction which is a
		very distinct process that removes fumes created from the
		evaporation of solvents after applicable use. Solvents evaporate
		very quickly, forming chemical fumes or vapors, which can easily
		be inhaled causing harmful side effects. To prevent this hazard,
		habitat shall be installed at working area and ventilate to safe
		location.
		With limited of surface preparation and application
		mentioned previously, adhesion property testing with X cut, cross
		cut, and pull off test demonstrated that this kind of high-build
		heat-resistance multipolymeric matrix or inorganic ceramic
		copolymer can achieve good to better adhesion to substrate
		when apply on elevated temperature steel surface compares to
		ambient surface. This because higher temperature makes closer
		and longer of polymer cross linking.

No	Title	Details				
		The last important thing is CUI prevention efficiency. From				
		simulation test, it shows satisfactory results of CUI prevention				
		even in the accelerated severe condition.				
		In conclusion, though this is not the way we normally try to solve the CUI problems from the root cause, this high temperature painting system can be a possible solution for equipment that requires shutdown to repair since it can be used for either online or offline equipment. In addition, this is also another CUI mitigation when we apply together with other mitigations such as ensuring the integrity of insulation (no water ingress). It helps enhancing and improving CUI prevention efficiency of our process equipment operated at CUI susceptible temperature or even at elevated temperature above 200°C. Finally, it helps preventing significantly lost revenue from downtime, saving life cycle cost of maintenance and replacement of corroded parts,				
		preventing LOPC, and catastrophic failure.				
		Refers API 583 Corrosion Under Insulation and Fireproofing, typically CUI susceptibility at operating temperature range from - 12°C to 175°C. However, even at surface metal temperatures up to 316°C CUI still has been reported. This because it could occur during operation if water reaches the metal surface during a shutdown period and flashes off during start-up.				
		This study help addressing the additional of high temperature painting system which can be used for CUI prevention at temperature above 200°C in our PTTEP PEGS 10008-STD-6-COR-010-R00 Painting of Offshore Coastal Structures and Facilities.				

No	Title	Details
		5) Insulation System Upgrade
		Due to the fact that the existing insulation system are based on old TOTAL specification at the time they were built. Some new insulation materials found to be more suitable than those specified in the past may be updated in the new revision. It is suggested that we may follow the latest TOTAL specification for insulation system of the retrofit portion.
		6) Inspection Tools and Method
		There are both direct and indirect inspection methods for
		detecting surface corrosion damage (CUI or CUF) on equipment
		or structural supports. Direct inspection methods are inspection
		methods conducted without the presence of a protective barrier
		(i.e. insulation or fireproofing system). Indirect inspection
		methods are inspection methods conducted with the protective barrier (i.e. the insulation or fireproofing system) still in place. For
		cost optimization and integrity assessment purposes, both
		indirect and direct inspection methods will be applied to PTTEP
		asset. By using indirect inspection method (Pulsed Eddy Current
		Method) as a screening tool to find damaged and CUI potential
		areas, which will be inspected further via direct inspection
		method.
		Indirect Method CUI potential and Damaged Areas Direct Inspection Method for Damaged Areas Repair Plan and Insulation Removal/Reinstat e
		Figure 15 Inspection Methodology and Strategy Pulsed Eddy Current Method (PEC)

No	Title	Details
		Pulsed Eddy Current (PEC) is a nondestructive examination
		technique used for detecting flaws or corrosion in ferrous
		materials or measuring the thickness of objects. PEC has been
		used in recent years to detect areas of wall thinning on insulated
		piping through aluminum or stainless-steel jacketing. It is also
		used to inspect fireproofed legs on storage spheres. It is a
		noncontact, electromagnetic examination method used to detect
		the average wall loss of carbon and low alloy steel materials.
		Figure 16 Pulsed Eddy Current Inspection Tools
		PEC works using the principle of electromagnetic induction.
		It applies the step function of voltage to a conductor. A magnetic
		field will be developed around it. This field changes in intensity as
		the current alternates. If brought close to the first field, another
		conductor will have a current induced in it as well. If there are any
		flaws in this material, then the eddy current will distort. In the case
		of PEC, the first conductor is an eddy current probe. The second
		is the test material.
		PEC can be used on carbon and low alloy steel equipment
		and piping through up to 8 in. (200 mm) of insulation and
		jacketing. The advantages and disadvantages for pulsed eddy
		current inspection are shown below.
		PEC Advantages

No	Title	Details				
		 Noninvasive, noncontact method that does not require surface preparation; Can be used between -150°F and 930°F (-100°C and 550°C). 				
		PEC Disadvantages				
		 Averages corrosion over 4 in. (100 mm) diameter area so that isolated pitting may be difficult to detect Affected by ferromagnetic appurtenances such as insulation rings, vents, and drains that can obscure surface damage Technique is operator dependent Cannot be used on insulated systems with galvanized or aluminized steel jacketing 				
5	Operation Duration*	start date: August 2019 end date: January 2021				
6	Application	The proposed CUI risk matrix can be applied for any asset with various operating condition. It can be utilized to reduce cost of insulation installation and maintenance. The inspection technique proposed in the system helps providing set of data for piping and pressure vessel equipment for further assessment to avoid CUI problem in the future.				
7	Investment (Mil.Baht)*	7.13 Mil.Baht				
9	Benefit*	 The new proposed management system offers holistic management of CUI issue and problem systematically. The system helps reduced leakage problem and plant shutdown from CUI issue to zero. Inspection cost is reduced for 50 percent. 				

No	Title	Details						
		 Improves plant integrity. Advanced inspection technique called "Pulsed-Eddy Current" has been verified and applied for CUI inspection and scanning which will reduce workload and cost of insulation removal and reinstallation. 						
10	Benefit Value (Mil.Baht/ Yr)*	9.26 Mil.Baht/ Yr						
11	Benefit Value	Description Conventional Method: Project Cost & Investment	Equation	Value	Unit			
	Calculation	(ART, GBN, GBS) Overall cost	(1)	16.38	MMTHB/year			
		PEC Method: Project Cost & Investment (ART, GBN, GBS)						
		Overall cost	(2)	7.13	MMTHB/year			
		Benefit Value						
		Ramaining Lifetime	(3)	15	year			
		Net Benefit Value	(1)-(2)=(4)	9.26	MMTHB/year			
			(3)x(4)=(5)	138.83	ММТНВ			
12	Apply From	None						
13	_	PTTEP						
	Company	PTTEP						
	Company	PTTEP 1. Petch Janbanjong						
	Company		ıttanatawee					
	Company	Petch Janbanjong						
		Petch Janbanjong Kamonwan Ruangpa	nich					
14	Team	 Petch Janbanjong Kamonwan Ruangpa Supaluck Watanapar 	nich					
14		 Petch Janbanjong Kamonwan Ruangpa Supaluck Watanapar Krittiyawan Wisutthisa 	nich aen					
14	Team	 Petch Janbanjong Kamonwan Ruangpa Supaluck Watanapar Krittiyawan Wisutthisa Sith Kumseranee 	nich aen thon					
14	Team	 Petch Janbanjong Kamonwan Ruangpa Supaluck Watanapar Krittiyawan Wisutthisa Sith Kumseranee Chatchai Laemkhowt 	nich aen thon ineer					

No	Title	Details			
		10. Matina Thammachart			
		11. Ekkalak Somroop			
		12. Suthorn Domhom			
		13. Sitthipong Seesad			
		Name: Krittiyawan Wisutthisaen			
		Phone: 02-537-7745			
15	Contact	Email: krittiyawanw@pttep.com			
15	Person*	Name: Petch Janbanjong			
		Phone: 02-537-2682			
		Email: petchj@pttep.com			
16	Year	2021			
16	Contest	2021			

2. Support Information

Table 1 Typical Progression & Coating Lifetime

Year	Typical Progression & Coating Lifetime					
0	New equipment properly coated, insulated and installed and operates					
	continuously at 80°C.					
0-3	No maintenance has been performed on the insulation system.					
	The caulking has failed, the insulation is wet, and water has accumulated in					
	water traps and low areas.					
3-5	The coating system begins to fail, especially in water traps and low areas.					
5-7	The coating system has failed nearly completely, and CUI is underway.					
7	Significant corrosion has occurred with corrosion rates averaging 0.125 -					
	0.250 mm/yr and as high as 0.50 mm/yr in severe cases. Leaks begin to					
	appear.					
7+	Through-wall failures not uncommon at this point and susceptible					
	equipment will have experienced significant degradation.					

Constantly Operating Temperature	Coating Life*1	Cladding/ Insulation Condition	Insulation Type	Heat Tracing	External Environment	Point
< -5°C or > 175°C	Life ≤ 3 yr	Good to Engineering Standards (undamaged), Regular inspection/ Maintenance every 5 yr	Regular inspection and maintenance (every 5 yr)	Not present	Inside building, not sweating	0
151 to 175°C	3 < Life ≤ 5 yr	Average condition, but with special precautions taken at susceptible areas	Expanded Perlite, Foamglass, Closed Cell Foam	High integrity design (steam) or electrical	Arid or in-land Low wetting rate (< 20% of time)	1
-5 to 50°C or 121 to 150°C	5 < Life ≤ 7 yr	Average condition, no special precautions taken at susceptible areas	Fiberglass, Asbestos, Regular Perlite, Mineral/Rock Wool (< 10 ppm Cl)	Medium integrity design (steam)	Moderate climate Meium wetting rate (20-50% of time)	3
51 to 120°C	Life > 7 yr	Poor condition, damaged/wet/broken seals/ unknow	Cal Sil, Rockwool (no spec), Unknown	Low integrity design (steam)	Coastal & marine High wetting rate (> 50% of time)	5

Remark: *In case coating is not applied, point is 5.

Figure 4 Susceptibility to CUI Failure for Carbon/Low Alloy Steels

Constantly Operating Temperature	Service Life of Coating*1	Cladding/ Insulation Condition	Insulation Type	Heat Tracing	External Environment	Point
< 50°C or > 175°C	Standards (Undamaded)		Regular inspection and maintenance (every 5 yr)	Not present	Inside building, not sweating	0
-	3 < Life ≤ 5 yr	Average condition, but with special precautions taken at susceptible areas	Expanded Perlite, Foamglass, Closed Cell Foam	High integrity design (steam) or electrical	Arid or in-land Low wetting rate (< 20% of time)	1
- 5 < Life ≤ 7 yr special precautions to		Average condition, no special precautions taken at susceptible areas	Fiberglass, Asbestos, Regular Perlite, Mineral/Rock Wool (< 10 ppm Cl)	Medium integrity design (steam)	Moderate climate Meium wetting rate (20-50% of time)	3
50 to 175°C	Life > 7 yr	Poor condition, damaged/wet/broken seals/ unknow	Cal Sil, Rockwool (no spec), Unknown	Low integrity design (steam)	Coastal & marine High wetting rate (> 50% of time)	5

Remark: *In case coating is not applied, point is 5.

Figure 5 Susceptibility to CUI Failure for Stainless Steels

(*) Effect to people (Workforce and Public¹)

alth e.g. non-toxic dusts
alth e.g. non-toxic dusts
ork Day Case (RWDC).
Irreversible health damage
ndrome, chemicals causing
om an accident/illness.
burns, known human
fects (Hydrogen
on)

Note 1: Effect to public shall be considered with the severity at least equal to the workforce. Depending on societal risk perception in the region, public risk may have to be considered one order of magnitude more severe than that of the workforce

(**) Property damage & repair / replacement

No.	Description
1	Minor Effect – Minimal damage. Negligible down time or asset loss. Losses less than \$10K.
2	Moderate Effect – Some asset loss, damage and/or downtime. Losses between to \$10K - \$100K.
3	Significant Effect – Serious asset loss, damage to facility and/or down time. Losses between \$0.1 - \$1 M.
4	Serious Effect – Major asset loss, damage to facility and/or down time. Losses between \$1M - \$10 M.
5	Major Effect – Massive asset loss, significant damage to facility and/or down time. Losses more than \$10 M.

Note: Only monetary term is specified and has been calibrated in the same order of magnitude with PTTEP Corporate's risk perception and made more stringent to be able to apply at Asset level. However, at asset/site management discretion, the decision for implementation of safeguard and mitigation may be more stringent commensurate with the asset/site perception of acceptable property damage. In no case it can be less stringent.

(***) Effect to Environment

No.	Description
1	Minor Effect - Minor environmental damage, within the fence and within systems or vicinity of the
L '	installation. No or negligible financial consequences
2	Minor Effect - Sufficiently large contamination or discharge to damage the environment, but no lasting
	effect. Single breach of statutory or prescribed limit, or single complaint.
3	Localized Effect - Limited discharges affecting the neighborhood and damaging the environment. Repeated
	breaches of statutory or prescribed limit, or many complaints.
4	Serious Effect - Severe environmental damage. The company is required to take extensive measures to
	restore the damaged environment. Extended breaches of statutory or prescribed limits, or widespread
	Major Effect - Persistent severe environmental damage or severe nuisance extending over a large
5	area. Loss of commercial, recreational use or nature conservancy, resulting in major financial
	consequences for the Company. Ongoing breaches well above statutory or prescribed limits.

Figure 6 Consequence Criteria

S	SUSCEF	TIBILITY TO CUI FAILURE	CUI Critica	CUI Criticality and Inspection Strategy Matrix for CS/Low alloy steel					
CLAS	Н	Total Score > 20	IS-4 (L)	IS-3 (MH)	IS-2 (H)	IS-1 (E)	IS-1 (E)		
ll IT≺	М	Total Score 17 to 20	IS-4 (L)	IS-4 (M)	IS-3 (MH)	IS-2 (H)	IS-1 (E)		
PROBABILITY CLASS	L	Total Score 11 to 16	IS-4 (N)	IS-4 (L)	IS-4 (M)	IS-3 (MH)	IS-2 (H)		
PR	N	Total Score 1 to 10	IS-4 (N)	IS-4 (N)	IS-4 (L)	IS-4 (M)	IS-3 (MH)		
CATEGORY	HEALTH & SAFETY*		Minor Effect	Moderate Effect	Significant Effect	Serious Effect	Major Effect		
	PROPERTY DAMAGE & REPAIR / REPLACEMENT (USD)**		Minor Effect (<10K)	Moderate Effect (10K - 100K)	Significant Effect (0.1 - 1M)	Serious Effect (1 - 10M)	Major Effect (> 10M)		
CONSEQUENCE	ENVIRONMENT***		Minor Effect	Minor Effect	Localized Effect	Serious Effect	Major Effect		
	CONSEQUENCE CLASS			Low	Medium	High	Extreme		

Figure 7 CUI Criticality and Inspection Strategy Matrix for Carbon/Low Alloy Steels

Ø	SUSCEPTIBILITY TO CUI FAILURE		CU	CUI Criticality and Inspection Strategy Matrix for SS					
CLAS	Н	Total Score > 19	IS-5 (L)	IS-4 (MH)	IS-3 (H)	IS-2 (E2)	IS-2 (E1)		
ILITY	М	Total Score 15 to 19	IS-5 (L)	IS-5 (M)	IS-4 (MH)	IS-3 (H)	IS-2 (E2)		
PROBABILITY CLASS	L	Total Score 10 to 14	IS-5 (N)	IS-5 (L)	IS-5 (M)	IS-4 (MH)	IS-3 (H)		
PR	N	Total Score 0 to 9	IS-5 (N)	IS-5 (N)	IS-5 (L)	IS-5 (M)	IS-4 (MH)		
TEGORY	HEALTH & SAFETY*		Minor Effect	Moderate Effect	Significant Effect	Serious Effect	Major Effect		
CONSEQUENCE CATEGORY	PROPERTY DAMAGE & REPAIR / REPLACEMENT (USD)**		Minor Effect (<10K)	Moderate Effect (10K - 100K)	Significant Effect (0.1 - 1M)	Serious Effect (1 - 10M)	Major Effect (> 10M)		
ENVIRONMENT***		Minor Effect	Minor Effect	Localized Effect	Serious Effect	Major Effect			
	CONSEQUENCE CLASS			Low	Medium	High	Extreme		

Figure 8 CUI Criticality and Inspection Strategy Matrix for Stainless Steels

	Susceptibility to CUI Failure	CUI Criticality and Inspection Strategy Matrix					
lity	High	L	MH	Н	Е	Е	
ability	Medium	L	M	MH	Н	Е	
qo.	Low	N	L	M	MH	Н	
Pr	Negligible	N	N	L	M	MH	
	Consequence Class	Negligible	Low	Medium	High	Extreme	

Category	Definition	
Extreme Probability	 Very high consequence or probability High for both consequence and probability Recommend to remove 	70
High Probability	High consequence or high probability Recommend to remove	232
< Med	Medium or low consequence and probability No concerns	129

Figure 9 CUI Workshop Results

Figure 13 Heating medium system

Figure 14 Other Production System

Table 3 Execution Plan for Insulation Trial Removal

Priority	Piping (Loops)	Size	Working Period (Day)	Insulation Type
1	75	2"-12"	7	Н
2.1	9	1"-18"	1	А
2.2	54	3/4" - 20"	6	C, H
2.3	34	2"-10"	4	Н
2.4	43	3"-24"	5	Н
2.5	18	2"-12"	2	Н
3	0	2"	0	
Total	233		25	