Paper / Subject Code: FE201 / Engineering Mathematics - II

FE201

Total No. of Printed Pages: 02

F.E. (Sem - II) (Revised Course 2016-17)

		EXAMINATION Nov/Dec 2019 Engineering Mathematics - II		
[Duration : Three Hours]		hree Hours] [Total Ma	[Total Marks : 1	
Instructions:		 Attempt any five questions, two each from part A and part B and one from part B and par	part C.	
		Part A		
Q.1	a)	Applying differentiation under the integral sign, evaluate	(7)	
		$\int_0^{\frac{\pi}{2}} \cos ec^2 \theta \log_e(1 + \alpha \tan^2 \theta) d\theta.$		
	b)	Find the perimeter of the asteroid $x^{2/3} + y^{2/3} = 4$	(6)	
	c)	Change the order of integration and evaluate $\int_0^2 \int_{2x-2}^x y + 2x dx dy$	(7)	
Q.2	a)	Evaluate $\int_0^1 (3t\overline{i} + 2\overline{j}) x(t\overline{i} + 2\overline{j} + \overline{k}) dt$	(5)	
	b)	Evaluate $\iint \int \frac{z dx dy dz}{(x^2 + y^2 + z^2)^{3/2}}$ over the region $x^2 + y^2 + z^2 \le 4$ and $0 \le z \le 1$.	(8)	
	c)	Write a single integral and evaluate $\int_0^2 \int_0^{\sqrt{y}} 2x + 1 dx dy + \int_2^4 \int_{y-2}^{\sqrt{y}} 2x + 1 dx dy$	(7)	
Q.3	a)	Define curvature of the path of a moving object. A moving object's position vector at time t is $\bar{r}(t) = Cos2t\bar{i} + Sin2t\bar{j} + t\bar{k}$. Find its curvature at time t.	(7)	
	b)	Find the area of the surface generated by the revolution of the loop of the cure curve $9y^2 = x(x-3)^2$ about the x-axis.	(7)	
	c)	Evaluate $\int_{-1}^{1} \int_{0}^{x} \int_{0}^{(x+y)} 2z + x \ dzdydx$	(6)	
		Part B		
Q.4	a)	Find the directional derivative of $f(x, y, z) = x^2y + xyz + 4$ in the direction of $\hat{i} + \hat{j} - \hat{k}$ At the point $(1,0,1)$.	(5)	
	b)	Find the work done in moving a particle in the force field $\bar{F} = (2v + 3)\hat{i} + vz\hat{i} + vz\hat{i}$	(5)	

Paper / Subject Code: FE201 / Engineering Mathematics - II

FE201

 $(yz-x)\hat{k}$ along the curve $x=2t^2$, y=t and $z=t^3$ from t=0 to t=1.

c) Solve the following

(10)

- $\frac{dy}{dx} + \frac{dy}{dx} = e^{3x-2y} + e^{-2y} \cos 2x \qquad ii) \frac{d^2y}{dx^2} + y = \cot x$
- a) Verify Green's Theorem in a plane for $\oint (xy + 4y^2)dx + (x^2 + 3)dy$ along the Q.5 (10)boundary of the region bounded by x = y and $x = y^2$.
 - b) Solve the following

(10)

- $Y(2xy+3)dx + x(1+2xy-x^2y^2)dy = 0$ ii) $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + 2y = 0$ i)
- a) Verify Stoke's theorem for $\bar{F} = xy\hat{\imath} 2yz\hat{\jmath} zx\hat{k}$ where S is the open surface of the Q.6 (10)region bounded by the planes x = 0, x = 2, y = 0, y = 1 and z = 0, z = 3 excluding the face on the XY plane.
 - b) Solve (i) $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = x\cos 2x$ ii) $(1+x^2)\frac{dy}{dx} + 2xy = 4x^2$

(10)

Part C

Q.7 a) Find the length of the curve $y = \sqrt{4 - x^2}$ from x = 0 to x = 2. (5)

b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} \frac{1}{1-x^2+y^2} dx dy$

(5)

(5)

c) Find the equation of the line, normal to the surface $2x + 3z^2 = 14$ at the point (1, -2, -2, -2)

d) Solve $(D^2 + D - 12)y = 2\sin^2 x + 3$

(5)

(5)

a) IF $\overline{r(t)} = 2 \sinh \hat{t} + 3 \cos 2t \hat{j} + 4t \hat{k}$ is the position vector of a particle in space at time 't' then find it's velocity and acceleration vectors at $t = \frac{\pi}{2}$.

(6)

b) Evaluate $\int_0^{\pi/2} \int_0^{\pi} \int_0^{1+\cos\varphi} 3\rho \sin\varphi d\rho d\theta d\varphi$

c) Prove that for a scalar field φ , Curl $(\nabla \varphi) = 0$.

(4)

d) Solve $\frac{dy}{dx} = \frac{2y - 3x + 1}{4y - 6x + 5}$

Q.8

(5)