Задача машинного обучения.

Сформулируем задачу ML следующим образом: имеются 2 множества:

- множество X объектов,
- множество Y ответов.

Предполагается, что существует функциональная зависимость $f: X \to Y$ между объектами и ответами, но она неизвестна. Известна лишь совокупность S пар вида (объект, ответ), называемая обучающей выборкой (training sample):

$$S=\{(x_i,y_{x_i}=f(x_i))\in X imes Y|i=1,\ldots,D\}$$

Задача ML - найти приближенный функции f путем построения аппроксимирующей функции $a_s:X o Y$, такой что $\forall x_i\in X\quad \exists a_s(x_i)pprox f(x_i)$

Способ описания объектов. Признаковое описание

Зададим множество F признаков объектов (features). Каждому признаку сопоставляется множество D_i значений этого признака:

$$f_j:X o D_j, j=1,\ldots,n$$

Каждый признак f_i имеет определенный тип. Приведем примеры некоторых из таких типов и соответствующие им множества значений D_i

- бинарный: $D_i = \{-1, 1\}$ или $\{0, 1\}$,
- номинальный: D_i конечное множество,
- порядковый: D_i конечное линейно упорядоченное множество,
- количественный: $D_i = \mathbb{R}$ (множество действительных чисел).

Вектор $(f_1(x), \ldots, f_n(x))$ представляет собой признаковое описание объекта x. В общем случае для множества объектов X мы получим матрицу признаков объектов:

$$F = \|f_i(x_j)\|_{n imes D} = egin{pmatrix} f_1(x_1) & \cdots & f_n(x_1) \ dots & \ddots & dots \ f_1(x_D) & \cdots & f_n(x_D) \end{pmatrix}$$

Как задаются ответы. Типы задач.

Способ того каким образом задается множество ответов позволяет нам провести классификацию задач.

Задачи обучения с учителем (supervised learning): заданы "ответы учителя" $y_i = y(x_i)$ на обучающих x_i , т.е. существует обучающая выборка:

задача классификации(classication, Y class labels):

- $Y = \{-1, +1\}$ 2 класса (binary classification)
- $Y = \{1, \dots, M\}$ много классов (multiclass .)
- $Y = \{0,1\}^M$ пересекающиеся классы (multilabel .)
- ullet задача регрессии (regression): $Y=\mathbb{R}$ или $Y=\mathbb{R}^m$
- задача ранжирования (ranking, learning to rank): Y конечное упорядоченное множество

Задачи обучения без учителя (unsupervised learning): (unsupervised learning): ответов нет, необходимо что-то делать с самими объектами

Минимизация эмпирического риска

Алгоритм обучения (learning algorithm) представляет собой алгоритм нахождения по обучающей выборке S такой аппроксимирующей функции a_s , которая обладает свойствами оптимальности: a_s должно как можно лучше приближать исходную неизвестную функцию $f: X \to Y$ на всем X.

Для точного описания свойств оптимальности алгоритмов обучения используется понятие функции потерь (loss function), которая сопоставляет паре (a_s, x) , где $x \in X$ функцию $L(a_s, x)$, выражающее величину ошибки аппроксимации a_s на объекте $x \in X$.

Определим понятие эмпирического риска, как функционал качества, характеризующий среднюю ошибку алгоритма на a_s выборке S.

$$Q(a,S) = rac{1}{D} \sum_{i=1}^D L(a_s,x)$$

Метод минимизация эмпирического риска заключается в том, чтобы найти алгоритм, доставляющий минимальное значение функционалу эмпирического риска.

$$a = \arg\min Q(a, S)$$

Основное достоинство рассмотренного метода заключается в том, что это конструктивный и универсальный подход, позволяющий сводить задачу обучения к задачам численной оптимизации.

Предсказательная модель

Как правило, для решения задачи построения функции $a_S: X \to Y$ по обучающей выборке S выбирается некоторая модель обучения, состоящая из двух компонентов:

1. Первой компонентой модели обучения является функция, которая выбирается из параметрического семейства функций

$$a: X \times W \to Y$$

где W – множество, элементы которого называются параметрами. Искомая

функция a_S ищется в виде

$$a_S(x) = a(x,w),$$

где w – фиксированный параметр. Функцию a_S иногда называют предсказательной моделью (predictive model).

2. Другой компонентой модели обучения является алгоритм обучения, который представляет собой алгоритм поиска такого значения w, для которого функция a_S , обладает некоторыми свойствами оптимальности.

Пример:

Рассмотрим линейную предсказательную модель В линейной модели множество W параметров имеет вид \mathbb{R}^n , где n – число признаков объектов, т.е. каждый параметр w представляет собой вектор действительных чисел $w=(w_1,\ldots,w_n)$, и

ullet в задачах регрессии и ранжирования $Y=\mathbb{R}$, и

$$a(x,w) = \langle x,w
angle = \sum_{i=1}^n x^i w_i$$

• в задачах классификации $Y = \{-1, 1\}$, и

$$a(x,w) = sign(\langle x,w \rangle)$$

где sign – функция знака, она сопоставляет неотрицательным числам значение 1, а отрицательным – значение -1.