Homework 3

Michael Knopf

September 18, 2014

Note: \mathbb{N} denotes the set $\{0, 1, 2, \dots\}$.

1.4.1 Exercises

Exercise 2. For $\Gamma \subseteq \mathcal{L}_0$ and $\psi \in \mathcal{L}_0$, show that $\Gamma \cup \{\varphi\}$ logically implies ψ if and only if Γ logically implies $(\varphi \to \psi)$.

Proof. This proof relies on the fact that \mathcal{L}_0 is sound and complete: because \mathcal{L}_0 is complete (in the sense of Completeness; Version II), any subset that logically implies some formula proves that formula as well; because \mathcal{L}_0 is sound, any subset that proves some formula logically implies that formula as well.

First, suppose $\Gamma \cup \{\varphi\}$ logically implies ψ . By Version II of Completeness of \mathcal{L}_0 , $\Gamma \cup \{\varphi\} \vdash \psi$. By the deduction lemma, $\Gamma \vdash (\varphi \to \psi)$. Thus, by the soundness lemma, Γ logically implies $(\varphi \to \psi)$.

Now, suppose Γ logically implies $(\varphi \to \psi)$. By Version II of Completeness of \mathcal{L}_0 , $\Gamma \vdash (\varphi \to \psi)$. Since $\Gamma \subseteq \Gamma \cup \{\varphi\}$, we know that any Γ -proof is also a $\Gamma \cup \{\varphi\}$ -proof. So, $\Gamma \cup \{\varphi\} \vdash (\varphi \to \psi)$. So, by the inference lemma, $\Gamma \cup \{\varphi\} \vdash \psi$. Thus, by the soundness lemma, $\Gamma \cup \{\varphi\}$ logically implies ψ .

Therefore, $\Gamma \cup \{\varphi\}$ logically implies ψ if and only if Γ logically implies $(\varphi \to \psi)$.

Exercise 4. For Γ_1 and Γ_2 subsets of \mathcal{L}_0 , Γ_1 is logically equivalent to Γ_2 if and only if, for all $\varphi \in \mathcal{L}_0$, Γ_1 logically implies φ if and only if Γ_2 logically implies φ . For $\Gamma \subseteq \mathcal{L}_0$, Γ is independent if it is not logically equivalent to any of its proper subsets. Prove the following.

a) If Γ is finite, then there is a Γ_0 such that $\Gamma_0 \subseteq \Gamma$, Γ and Γ_0 are logically equivalent, and Γ_0 is independent.

Proof. Suppose $\Gamma \subseteq \mathcal{L}_0$ is finite. So we may induct on the number of formulas in Γ . If Γ contains 0 formulas, then Γ is empty, and thus has no proper subsets. So Γ is independent, vacuously. Thus $\Gamma_0 = \Gamma$ satisfies the conditions of the proposition.

For the inductive step, we will need to first show that logical equivalence is transitive (this is basically obvious). Suppose that Γ_1 is logically equivalent to Γ_2 and Γ_2 is logically equivalent to Γ_3 . Then, for all $\varphi \in \mathcal{L}_0$, if Γ_1 logically implies φ then so does Γ_2 . Since Γ_2

logically implies φ , so does Γ_3 . Switching the roles of Γ_1 and Γ_3 gives that Γ_3 logically implies φ only if Γ_1 does, too. So Γ_1 and Γ_3 are logically equivalent, and thus logical equivalence is transitive.

Now, assume for some $k \in \mathbb{Z}^+ \cup \{0\}$ that the proposition holds for all subsets of \mathcal{L}_0 containing less than or equal to k formulas. Suppose Γ contains k+1 formulas. If Γ is independent, then $\Gamma_0 = \Gamma$ is a subset of Γ that satisfies the conditions of the proposition.

So assume that Γ is not independent. Then Γ has some proper subset Γ_1 that is logically equivalent to Γ . Since Γ_1 is a proper subset, it contains less formulas than Γ does. So the number of formulas in Γ_1 is less than or equal to k. By the inductive hypothesis, then, there is a subset Γ_0 of Γ_1 such that Γ_0 is independent and logically equivalent to Γ_1 (which is, in turn, logically equivalent to Γ).

So $\Gamma_0 \subseteq \Gamma_1 \subset \Gamma$ and, by the transitivity of logical equivalence, Γ_0 is logically equivalent to Γ . Thus Γ_0 satisfies the conditions of the proposition, since it is an independent subset of Γ that is logically equivalent to Γ . Therefore, we have shown inductively that the proposition holds for all finite $\Gamma \subseteq \mathcal{L}_0$.

b) There is an infinite set Γ such that Γ has no independent and logically equivalent subset.

Proof. Define a sequence of formulas $\{\varphi_n\}$ by $\varphi_n = A_0 \wedge A_1 \wedge A_2 \wedge \cdots \wedge A_n$ for each $n \in \mathbb{N}$. Notice that, for any i < j, $\{\varphi_i\}$ logically implies φ_i . Take Γ to be the set $\{\varphi_n : n \in \mathbb{N}\}$.

Assume, for a contradiction, that Γ_0 is an independent and logically equivalent subset of Γ . Clearly, Γ is not empty because the empty set only implies tautologies, yet Γ implies A_0 , for instance, which is not a tautology. Thus, the set $M = \{n : \varphi_n \in \Gamma_0\}$ is nonempty.

If this set M has no maximum, then for any $\varphi_i \in \Gamma_0$ there is some j > i such that $\varphi_j \in \Gamma_0$ as well. But by our statement in the first paragraph, φ_j logically implies φ_i . So Γ_0 is logically equivalent to its own proper subset $\Gamma_0 \setminus \{\varphi_i\}$. Therefore Γ_0 is not independent, a contradiction.

So we may assume that M has a maximum m. Thus for all k > m, $\varphi_k \notin \Gamma_0$, and it is clear that φ_k is not logically implied by Γ_0 . Thus Γ_0 is not logically equivalent to Γ , a contradiction.

Therefore, Γ is an infinite subset of \mathcal{L}_0 that has no independent and logically equivalent subset.

c) For every $\Gamma \subseteq \mathcal{L}_0$, there is a $\Delta \subseteq \mathcal{L}_0$ such that Δ is independent and logically equivalent to Γ .

Proof. For this proof, we will need to use the fact that \mathcal{L}_0 is countable. So we will begin by proving this. We have already shown that \mathcal{L}_0 can be constructed recursively as

$$\mathcal{L}_0 = \bigcup_{i=0}^{\infty} F_m$$

where

$$F_0 = \{A_n : n \in \mathbb{N}\}$$
 and $F_{m+1} = F_m \cup \{(\neg \varphi) : \varphi \in F_m\} \cup \{(\varphi \to \psi) : \varphi, \psi \in F_m\}.$

We can induct on m to show that each F_m is countable. F_0 is countable because it the set of elements of a sequence. Now, assume that F_m is countable for some $m \in \mathbb{N}$. Then $\{(\neg \varphi) : \varphi \in F_M\}$ is countable because it is clearly in bijection with F_m . Also, $\{(\varphi \to \psi) : \varphi, \psi \in F_m\}$ is countable because it is in bijection with $F_m \times F_m$. So F_{m+1} is a union of three countable sets, and is thus countable. So each F_m is countable, so \mathcal{L}_0 is a countable union of countable sets, and is therefore countable.

Now, to prove the main claim, let $\Gamma \subseteq \mathcal{L}_0$ and let Φ be the set of all consequences of Γ , i.e. $\Phi = \{\varphi \in \mathcal{L}_0 : \Gamma \models \varphi\}$. Since $\Phi \subseteq \mathcal{L}_0$, we know that Φ is countable. So there is a sequence $\{\varphi_n\}$, for $n \in \mathbb{N}$, such that $\Phi = \{\varphi_n : n \in \mathbb{N}\}$.

Define a sequence $\{\Delta_n\}$ as follows:

If $\{\varphi_0\}$ is independent, let $\Delta_0 = \{\varphi_0\}$. Otherwise, let $\Delta_0 = \emptyset$. Next, for $n \geq 0$, follow these instructions:

- 1. If $\Delta_n \cup \{\varphi_{n+1}\}$ is independent, let $\Delta_{n+1} = \Delta_n \cup \{\varphi_{n+1}\}$.
- 2. Otherwise, if Δ_n is logically equivalent to $\Delta_n \cup \{\varphi_{n+1}\}$, then let $\Delta_{n+1} = \Delta_n$.
- 3. Otherwise, let

$$\Delta_{n+1} = \Delta_n \cup \left\{ \left(\left(\bigwedge_{\psi \in \Delta_n} \psi \right) \to \varphi_{n+1} \right) \right\}.$$

Finally, let

$$\Delta = \bigcup_{i=0}^{\infty} \Delta_i.$$

We will now show that Δ and Γ are logically equivalent. Suppose that Γ logically implies some $\varphi \in \mathcal{L}_0$. Then $\varphi \in \Phi$, so $\varphi = \varphi_n$ for some $n \in \mathbb{N}$. We will induct on n to show that Δ logically implies φ_n . If n = 0, then either $\varphi_0 \in \Delta_0 \subseteq \Delta$ or $\{\varphi_0\}$ is not independent, meaning that φ_0 is a tautology. In either case, Δ logically implies φ .

Now, assume for some $k \in \mathbb{N}$ that Δ logically implies φ_n for all $n \leq k$. Then Δ_{n+1} is constructed using the set of instructions listed above. In (1) we know $\varphi_{n+1} \in \Delta_{n+1}$, and in (2) we know $\Delta_{n+1} = \Delta_n$ is logically equivalent to $\Delta_n \cup \{\varphi_{n+1}\}$. So clearly Δ_{n+1} logically implies φ_{n+1} in if either (1) or (2) are followed.

Otherwise (3) is followed, so $((\bigwedge_{\psi \in \Delta_n} \psi) \to \varphi_{n+1}) \in \Delta_{n+1}$. By the inductive hypothesis, Δ_n implies each of $\varphi_1, \varphi_2, \ldots$, and φ_n (thus so does Δ_{n+1}). So by the completeness of \mathcal{L}_0 , Δ_{n+1} proves $\varphi_1, \varphi_2, \ldots$, and φ_n . By concatenating these Δ_{n+1} -proofs with $(\bigwedge_{\psi \in \Delta_n} \psi)$, then with $((\bigwedge_{\psi \in \Delta_n} \psi) \to \varphi_{n+1})$ (we also need to include some other formulas which are needed to express conjunction in terms of \neg and \rightarrow , but all of these are present in Δ_{n+1}), we can form a Δ_{n+1} -proof for φ_{n+1} . Therefore, by the soundness of \mathcal{L}_0 , Δ_{n+1} logically implies φ_{n+1} . So Δ logically implies φ_{n+1} .

It is not hard to see that Γ logically implies every formula in Δ . We can show this simply by showing that Δ is a subset of Φ , which is the set of all formulas that Γ implies. If $\varphi \in \Delta$,

then $\varphi = \varphi_0 \in \Phi$, or $\varphi = \varphi_n \in \Phi$, or $\varphi = ((\bigwedge_{\psi \in \Delta_n} \psi) \to \varphi_{n+1})$ for some $n \in \mathbb{N}$. We know that $\varphi_1, \ldots, \varphi_{n+1} \in \Phi$ and that these formulas together logically imply $((\bigwedge_{\psi \in \Delta_n} \psi) \to \varphi_{n+1})$. Thus, by the transitivity of logical implication, $\varphi = ((\bigwedge_{\psi \in \Delta_n} \psi) \to \varphi_{n+1})$ is implied by Γ , so $\varphi \in \Phi$. Thus, in all cases, $\varphi \in \Phi$. So $\Delta \subseteq \Phi$, and therefore Γ logically implies every formula in Δ . So Γ and Δ are logically equivalent.

Finally, we wish to show that Δ is independent. We will now explain that this amounts to showing that each Δ_n is independent. Suppose there was some φ which was implied by $\Delta \setminus \{\varphi\}$. Then there would be a $(\Delta \setminus \{\varphi\})$ -proof of φ . A proof is a finite sequence of formulas, and each formula of Δ must be in some Δ_n , so let N be such that $\varphi \in \Delta_N$ and all symbols used in the $(\Delta \setminus \{\varphi\})$ -proof of φ are in Δ_N . Then Δ_N is not independent. Thus Δ is independent if each Δ_n is independent.

We can induct on n to show that each Δ_n is independent. We have clearly defined Δ_0 to be independent. Now, assume Δ_n is independent. If (1) or (2) is used, then clearly Δ_{n+1} is independent. So assume (3) is used. We know that no subset of Δ_n implies $(\bigwedge_{\psi \in \Delta_n} \psi)$ because Δ_n is independent. Also, Δ_n does not imply φ_{n+1} , or else (2) would have been used. Therefore, if any element of Δ_n is removed from Δ_{n+1} , then φ_{n+1} is no longer a consequence. So the only possibility would be to remove $((\bigwedge_{\psi \in \Delta_n} \psi) \to \varphi_{n+1})$. But without this formula, Δ_{n+1} again cannot imply φ_{n+1} , since it would be reduced to the subset Δ_n , which does not imply φ_{n+1} because (2) was not used. Thus we cannot remove any element from Δ_{n+1} and still have that Δ_{n+1} logically implies φ_{n+1} . So Δ_{n+1} is independent.

Therefore, since each Δ_n is independent, Δ is independent. So Δ is an independent set which is logically equivalent to Γ .

Extra Problems

Exercise 1. Does there exist a $\varphi \in \mathcal{L}_0$ such that the following conditions hold?

- a) φ is neither a contradiction nor a tautology.
- b) For every $\psi \in \mathcal{L}_0$ using only the propositional letters that appear in φ , if φ does not logically imply ψ then ψ logically implies φ .

No such ψ exists.

Proof. We will show that, if φ satisfies the first condition, then $\psi = (\neg \varphi)$, which uses only the propositional symbols found in φ , necessarily fails the second condition.

Assume that φ is neither a tautology nor a contradiction. Then there exist truth assignments ν_T and ν_F such that $\overline{\nu}_T(\varphi) = T$ and $\overline{\nu}_F(\varphi) = F$. By the recursive definitions of $\overline{\nu}_T$ and $\overline{\nu}_F$, we know then that

$$\overline{\nu}_T(\psi) = \overline{\nu}_T((\neg \varphi)) = F \text{ and } \overline{\nu}_F(\psi) = \overline{\nu}_F((\neg \varphi)) = T.$$

Therefore, φ does not logically imply ψ because $\overline{\nu}_T$ satisfies φ but does not satisfy ψ . Likewise, ψ does not logically imply φ because $\overline{\nu}_F$ satisfies ψ but does not satisfy φ .

Exercise 2. Given two truth assignments ν_1 and ν_2 , show that there is an infinite set Γ such that Γ is satisfied by ν_1 and ν_2 and by no other truth assignments.

Note: If $\nu_1(A_i) = \nu_2(A_i)$, say that ν_1 and ν_2 agree on A_i . Otherwise, say ν_1 and ν_2 disagree on A_i .

Proof. We construct Γ as follows:

For every $i \in \mathbb{N}$, if $\nu_1(A_i) = \nu_2(A_i) = T$, include A_i in Γ . If $\nu_1(A_i) = \nu_2(A_i) = F$, include $(\neg A_i)$ in Γ .

Next, if ν_1 and ν_2 disagree on some A_i and A_j for i < j, then include $\varphi_{i,j}$ in Γ , which we define in the table below. It is obvious that Γ is infinite (if it is not obvious, then simply add infinitely many distinct tautologies to Γ and it will still satisfy the claim).

$\nu_1(A_i)$	$\nu_1(A_j)$	$\nu_2(A_i)$	$\nu_2(A_j)$	$\varphi_{i,j}$
Т	Т	F	F	$(\neg A_i) \to (\neg A_j)$
T	F	F	Т	$(\neg A_i) \to A_j$
F	${ m T}$	Τ	F	$A_i \to (\neg A_j)$
F	F	Τ	Τ	$A_i \to A_j$

Next, we show that ν_1 and ν_2 satisfy Γ . Let $\theta \in \Gamma$. There are only six forms which θ can take: $\theta = A_i$ for some $i \in \mathbb{N}$, $\theta = (\neg A_i)$ for some $i \in \mathbb{N}$, or θ is of one of the four forms in the rightmost column of the above table. If $\theta = A_i$, then $\nu_1(A_i) = \nu_2(A_i) = T$, since this is the only situation where A_i would have been included in Γ . So ν_1 and ν_2 both satisfy θ . If $\theta = (\neg A_i)$, then $\nu_1(A_i) = \nu_2(A_i) = F$, since this is the only situation where $(\neg A_i)$ would have been included in Γ . So ν_1 and ν_2 both satisfy θ . If θ is of one of the four forms in the rightmost column of the above table, then inspection of the left four columns reveals that ν_1 and ν_2 both satisfy θ . So ν_1 and ν_2 both satisfy Γ .

Now, suppose ν_3 is a truth assignment that is not equal to ν_1 or ν_2 . Then, for some A_i and A_j , ν_3 disagrees with ν_1 on A_i and disagrees with ν_2 on A_j . If i=j, then ν_1 and ν_2 must agree on A_i , since otherwise ν_3 could not disagree with both of them. Therefore, either $\nu_1(A_i) = \nu_2(A_i) = T$ and $\nu_3(A_i) = F$, so $A_i \in \Gamma$ but ν_3 does not satisfy A_i , or $\nu_1(A_i) = \nu_2(A_i) = F$ and $\nu_3(A_i) = T$, so $(\neg A_i) \in \Gamma$ but ν_3 does not satisfy $(\neg A_i)$.

So we assume that $i \neq j$. Further, assume without loss of generality that i < j. The table below shows that ν_3 does not satisfy $\varphi_{i,j}$, which was included in Γ as a result of the disagreement of ν_1 and ν_2 on A_i and A_j .

$\nu_1(A_i)$	$\nu_1(A_j)$	$\nu_2(A_i)$	$\nu_2(A_j)$	$\nu_3(A_i)$	$\nu_3(A_j)$	$\varphi_{i,j}$	$\overline{\nu}_3(\varphi)$
Т	Т	F	F	F	Т	$(\neg A_i) \to (\neg A_j)$	F
Т	\mathbf{F}	F	Τ	\mathbf{F}	F	$(\neg A_i) \to A_j$	F
F	Τ	${ m T}$	F	${ m T}$	Т	$A_i \rightarrow (\neg A_i)$	\mathbf{F}
F	\mathbf{F}	Τ	Τ	${ m T}$	F	$A_i \rightarrow A_j$	\mathbf{F}

Since, in all cases, ν_3 does not satisfy some formula in Γ , ν_3 does not satisfy Γ . Because ν_3 was arbitrary, Γ is satisfied by ν_1 and ν_2 but by no other truth assignments.

Exercise 3. Show that the axioms in Group IV (2) are tautologies.

Proof. We wish to show that the following logical axioms are tautologies:

1)
$$((\neg \varphi_1) \rightarrow (\varphi_1 \rightarrow \varphi_2))$$

2)
$$(\varphi_1 \to ((\neg \varphi_2) \to (\neg(\varphi_1 \to \varphi_2))))$$

A formula ψ is a tautology if it is satisfied by every truth assignment. We can show this with a truth table, since there are only finitely many values a truth assignment could take for the formulas specified within ψ .

$\overline{ u}(\varphi_1)$	$\overline{ u}(\varphi_2)$	$\overline{\nu}((\neg\varphi_1))$	$\overline{\nu}((\varphi_1 \to \varphi_2))$	$\overline{\nu}(((\neg\varphi_1)\to(\varphi_1\to\varphi_2)))$
Т	Т	F	Т	T
T	F	\mathbf{F}	F	${ m T}$
F	T	Τ	T	${ m T}$
F	F	Τ	T	${ m T}$

Let
$$\psi = (\varphi_1 \to ((\neg \varphi_2) \to (\neg (\varphi_1 \to \varphi_2)))).$$

	$\overline{\nu}(\varphi_1)$	$\overline{ u}(arphi_2)$	$\overline{\nu}((\varphi_1 \to \varphi_2))$	$\overline{\nu}((\neg(\varphi_1\to\varphi_2)))$	$\overline{\nu}((\neg\varphi_2))$	$\overline{\nu}(((\neg\varphi_2)\to(\neg(\varphi_1\to\varphi_2))))$	$\overline{ u}(\psi)$
ĺ	Τ	Т	Т	F	F	Т	Т
	${ m T}$	F	F	m T	Т	m T	$\mid T \mid$
	\mathbf{F}	Τ	${ m T}$	F	F	${ m T}$	$\mid T \mid$
	\mathbf{F}	F	T	brack	Γ	F	$\mid T \mid$
	1	1	_	1	1	1	_