Анализ временных рядов часть 1

Олег Дешеулин

ниу вшэ

9 ноября, 2018

Что такое временной ряд?

Временной ряд: $y_1, \dots, y_T, \dots, y_t \in \mathbb{R}$ - значения признака, измеренные через постоянные временные интервалы. Задача прогнозирования: найти функцию

$$y_{T+d} \approx f_T(y_T, \dots, y_1, d) \equiv \hat{y}_{T+d|T},$$

где $d \in {1, \ldots, D}$ - отсрочка прогноза, D - горизонт прогнозирования

Компоненты временных рядов

Тренд – плавное долгосрочное изменение уровня ряда. **Сезонность** – циклические изменения уровня ряда с постоянным периодом.

Цикл – изменение уровня ряда с переменным периодом (цикл жизни товара, экономические волны, периоды солнечной активности).

Ошибка – непрогнозируемая случайная компонента ряда.

Что это значит?

Авторегрессия

Авторегрессионная (АR-(р)) модель -

$$\hat{y}_t = C + \sum_{i=1}^p w_i y_{t-i} + \epsilon_t$$

Например (AR-(1)):

$$\hat{y}_t = C + w_{t-1} y_{t-i} + \epsilon_t$$

Хотим найти w_i - параметры модели, ϵ_i - шум

Простейшие методы прогнозирования

средним:

$$\hat{y}_{T+d} = \frac{1}{T} \sum_{t=1}^{I} y_t;$$

ightharpoonup средним за последние k отсчётов (скользящее среднее):

$$\hat{y}_{T+d} = \frac{1}{k} \sum_{t=T-k}^{T} y_t;$$

наивный:

$$\hat{y}_{T+d} = y_T;$$

▶ наивный сезонный (s - период сезонности):

$$\hat{y}_{T+d} = y_{T+d-ks},$$

 $k = \lfloor \frac{d-1}{s} \rfloor + 1;$

экстраполяции тренда

$$\hat{y}_{T+d} = y_T + d\frac{y_t - y_1}{T - 1}$$

Неужели это работает?

Да, скользящее среднее показывает дневной тренд

Взвешенное среднее

 Хотим учитывать разные элементы ряда с разными весами в прогнозе, как и было в авторегрессии:

$$\hat{y}_{T+d} = \frac{1}{k} \sum_{t=T-k}^{T} w_t y_t;$$

 Логично, например, большие веса отдавать наиболее свежим значениям - так приходит идея экспоненциального сглаживания

Простое экспоненциальное сглаживание

 Метод подходит для прогнозирования рядов без тренда и сезонности:

$$\hat{y}_{t+1|t} = I_t$$
 $I_t = lpha y_t + (1-lpha)I_{t-1} = \hat{y}_{t|t-1} + lpha \cdot e_t$ $e_t = y_t - \hat{y}_{t|t-1}$ - ошибка прогноза отсчёта времени t

▶ Прогноз зависит от *l*₀:

$$\hat{y}_{T+1|T} = \sum_{j=1}^{T-1} \alpha (1-\alpha)^j y_{T-1} + (1-\alpha)^T I_0$$

▶ Прогноз получается плоский, т.е. $\hat{y}_{t+d|t} = \hat{y}_{t+1|t}$

Простое экспоненциальное сглаживание

Методы, учитывающие тренд

Аддитивный линейный тренд (метод Хольта):

$$\hat{y}_{t+d|t} = l_t + db_t,$$

$$l_t = \alpha y_t + (1 - \alpha)(l_{t-1} + b_{t-1}),$$

$$b_t = \beta(l_t - l_{t-1}) + (1 - \beta)b_{t-1},$$

Мультипликативный линейный (экспоненциальный) тренд:

$$\hat{y}_{t+d|t} = I_t b_t^d,$$

$$I_t = \alpha y_t + (1 - \alpha) I_{t-1} b_{t-1},$$

$$b_t = \beta \frac{I_t}{I_{t-1}} + (1 - \beta) b_{t-1},$$

 $\alpha, \beta \in [0, 1].$

Методы, учитывающие тренд

Методы, учитывающие сезонность

Мультипликативная сезонность (Хольта-Винтерса):

$$\begin{split} \hat{y}_{t+d|t} &= (l_t + db_t) s_{t-m+(d \mod m)}, \\ l_t &= \alpha \frac{y_t}{s_{t-m}} + (1 - \alpha) (l_{t-1} + b_{t-1}), \\ b_t &= \beta (l_t - l_{t-1}) + (1 - \beta) b_{t-1}, \\ s_t &= \gamma \frac{y_t}{l_{t-1} + bt - 1} + (1 - \gamma) s_{t-m}. \end{split}$$

Методы, учитывающие сезонность

Аномалии

Кросс-валидация на временном ряду

Меры качества точечного прогноза

Mean Squared Error

$$MSE = \frac{1}{T - R + 1} \sum_{t=R}^{T} (\hat{y}_t - y_t)^2.$$

Mean Absolute Error

$$MAE = \frac{1}{T - R + 1} \sum_{t=R}^{T} |\hat{y}_t - y_t|.$$

То есть ровно такие же как для обычной регресии. На самом деле, всех этих метрик недостаточно, необходимо так же проверять остатки прогноза.

Ряд y_1,\dots,y_T стационарен, если $\forall s$ распределение y_t,\dots,y_{t+s} не зависит от t, т.е. его свойства не зависят от времени.

Стационарный ряд не меняет со временем свои характеристики, такие как матожидание, дисперсия и ковариации.

Ряды с трендом или сезонностью нестационарны.

Ряды с непериодическими циклами стационарны, поскольку нельзя предсказать заранее, где будут находиться минимумы и максимумы.

Растет матожидание со временем:

Дисперсия зависит от периода:

Stationary series

Non-Stationary series

Непостоянство ковариаций:

Non-Stationary series

Остатки

Остатки – разность между фактом и прогнозом:

$$\hat{\epsilon}_t = y_t - \hat{y}_t.$$

Прогнозы \hat{y}_t могут быть построены с фиксированной отсрочкой:

$$\hat{y}_{R+d|R}, \dots, \hat{y}_{T|T-d},$$

или с фиксированным концом истории при разных отсрочках:

$$\hat{y}_{T-D+1|T-D}, \dots, \hat{y}_{T|T-d},$$

Необходимые свойства остатков прогноза

- Несмещённость равенство среднего значения нулю: графички
- ▶ Неавтокореллированность отсутствие неучтённной зависимости от предыдущих наблюдений:
- ▶ Стационарность отсутствие зависимости от времени
- Нормальность

Проверка на стационарность

Тест Дики-Фуллера (DF-тест):

Нулевая гипотеза H_0 : g=0 (существует единичный корень, ряд нестационарный)

Альтернативная гипотеза H_1 : g < 0 (единичного корня нет, ряд стационарный)

Единичный корень:

Характеристическое уравнение (или характеристический полином) авторегрессионной модели временного ряда имеет корни, равные по модулю единице:

$$a(z) = 1 - \sum_{i=1}^{p} w_i z^i$$

Вообще говоря, если процесс стационарен корни находятся внутри единичного круга.

Что значит тест Дики-Фуллера?

Генерируем стандарный нормальный шум. И порожаем им процесс, зависящий от ρ :

$$x_t = \rho x_{t-1} + e_t$$

Что значит тест Дики-Фуллера?

Что значит тест Дики-Фуллера?

Если из нестационарного ряда первыми разностями удаётся получить стационарный, то он называется интегрированным первого порядка.

 H_{O} отвергалась на первых трех графиках, и принялась на последнем.

Процесс может быть интегрированным с более высоким порядком тогда используют расширенный тест Дики-Фуллера.

Ссылки

```
[1]. http://www.machinelearning.ru/wiki/images/2/2d/Psad<sub>t</sub>s<sub>e</sub>ts<sub>2</sub>017.pdf [2]. https://habr.com/company/ods/blog/327242/ [3]. https://ru.wikipedia.org
```