Université de Picardie Jules Verne

UFR Sciences. Année 2024-2025

Master de Mathématiques : M1-Analyse Fonctionnelle

TD5

Exercice 0

Soit E un espace vectoriel normé sur \mathbb{R} . Pour tout $x \in E$, on considÃ"re l'application $J_x : E' \to \mathbb{R}$ définie par :

$$f \rightarrow \langle J_x, f \rangle := \langle f, x \rangle$$
.

- 1. Démontrer que $J_x \in E''$ et calculer sa norme.
- 2. Démontrer que l'application $J: E \to E''$ définie $J(x) := J_x$ est linéaire et isométrique (J est appelée l'injection canonique de E dans E'').
- 3. Démontrer qu'il existe un \mathbb{R} -espace de Banach F tel que E est isomorphe et isométrique à un sous-espace vectoriel dense de F (F est appelé le complété de E).

Exercice 1

Soit $p \in]1, +\infty(.$ Soit L l'application de $l^p_{\mathbb{R}}$ dans lui-même définie par :

$$L: l_{\mathbb{R}}^p \to l_{\mathbb{R}}^p (x_n) \mapsto (0, x_1, x_2, \cdots).$$

- 1. Montrer que L est une application linéaire et continue sur $l_{I\!\!R}^p.$
- 2. Soit $k \geq 1$. Calculer $||L^k||_{\mathcal{L}(l_{\mathbb{R}}^p)}$.
- 3. Soit $x \in l_{\mathbb{R}}^p$. Démontrer que la suite $(L^k(x))$ converge faiblement vers 0 dans $l_{\mathbb{R}}^p$.
- 4. Déterminer les éléments de $l_{\mathbb{R}}^p$ tels que la suite $(L^k(x))$ converge dans $l_{\mathbb{R}}^p$.
- 5. Démontrer que (L^k) ne converge pas dans $\mathcal{L}(l_{\mathbb{R}}^p)$.
- 6. Reprendre les questions précédentes avec

$$L: l_{\mathbb{R}}^p \to l_{\mathbb{R}}^p (x_n) \mapsto (0, \alpha x_1, \alpha x_2, \cdots),$$

où $\alpha > 0$.

Exercice 2

Pour $p \ge 1$, on considère le \mathbb{R} -espace de Banach l^p introduit dans le TD 1. On considère C défini par

$$C = \{ x \in l^p : x_{k+1} \le x_k \ \forall k \ge 1 \}.$$

- 1. Montrer que C est une partie de l^p .
- 2. Démontrer que C est une partie fermée pour la topologie faible de l^p .

Exercice 3

Pour tout $n \in \mathbb{N}$, on considère dans $(c_0, \|.\|_{\infty})$

$$e^{n} = (e_{k}^{n})_{k \in \mathbb{N}} := \begin{cases} 1 & \text{si } k = n \\ 0 & \text{si } k \neq n. \end{cases}$$

- 1. Démontrer que la suite $(e^k)_{k \in \mathbb{N}}$ converge faiblement vers 0 dans c_0 . 2. Pour tout $n \in \mathbb{N}$, on pose $u^n = \frac{1}{n+1} \sum_{k=0}^n e^k$. Démontrer que (u^n) confidit u^n confidit u^n confide u^n confide verge faiblement vers 0 dans c_0 .

Pour tout $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}$, on pose $v^n = (n+1)^{\alpha} u^n$.

- 3.1 Déterminer les valeurs de α telles que la suite (v^n) est bornée dans c_0 .
- 3.2 Déterminer les valeurs de α telles que la suite (v^n) converge faiblement vers 0 dans c_0 .