Homework 7

MATH 301 October 15, 2020

- 1. **Proposition.** Suppose $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.
 - (a) *Proof.* Suppose for the sake of contradiction, there is a $n \in \mathbb{Z}$ where n^2 is odd and n is even. As n^2 is odd, then

$$n^2 = 1 \pmod{2}$$

Kevin Evans

ID: 11571810

However, if n is even, then we can write this as 2m for some $m \in \mathbb{Z}$. Squaring this expression of n,

$$(2m)^2 = 2(2m^2)$$
$$= 0 \pmod{2}$$

This is a contradiction, as n^2 is both even and odd.

(b) *Proof.* For the contrapositive, we will show if n is even, then n^2 is even. Suppose n is even, then it is expressed as twice an integer m,

$$n = 2m$$
$$n^2 = 2(2m^2)$$
$$\in \mathbb{Z}$$

Squaring this, it is still twice another integer. Therefore n^2 is also even and we have shown the contrapositive to be true.

(c) *Proof.* Suppose n^2 is odd, where $n \in \mathbb{Z}$. As it is odd, it can be expressed as

$$n^{2} = 2m + 1$$
$$n^{2} - 1 = 2m$$
$$(n - 1)(n + 1) = 2m$$

On the LHS, both groups must have the same parity and each group with $n \pm 1$ must have even parity. Therefore, n must be odd as n-1 and n+1, and their product will be even.

2. **Proposition.** If $x, y \in \mathbb{Z}$, then $x^2 - 4y - 2 \neq 0$.

Proof. For the sake of contradiction, suppose $x, y \in \mathbb{Z}$ and $x^2 - 4y - 2 = 0$. Then solving for x^2 ,

$$x^2 = 4y - 2 = 2(y+1)$$

As x^2 is even, it follows that x is also even. We can express x=2z for some integer z. Using this expression for x in the original equation,

$$0 = x^{2} - 4y - 2$$
$$= 4z^{2} - 4y - 2$$
$$2 = 4z^{2} - 4y$$
$$1 = 2(2z^{2} - 2)$$

As 1 cannot be twice another integer, the original assumptions must be incorrect and the proposition must be true.

3. (a) **Proposition.** There exists a prime number p such that p + 4 and p + 6 are also prime numbers.

Proof. There exists a prime number p=7 where both p+4=11 and p+6=13 are primes.

(b) **Proposition.** There exists prime numbers p and q such that p + q = 128.

Proof. There exists prime numbers p = 109 and q = 19 such that p + q = 128.

4. **Proposition.** For integers a and b > 0, there exists unique integers q and r such that a = bq + r, where 0 < r < b.

Proof. Suppose there exists two sets of integers q_i and r_i such that

$$a = bq_1 + r_1$$
$$a = bq_2 + r_2$$

and $0 \le r_i < b$. Then, if we subtract the two expressions,

$$0 = b (q_1 - q_2) + (r_1 - r_2)$$
$$\frac{r_1 - r_2}{b} = q_1 - q_2$$

Because of the original conditions on r_i , it must hold true $|r_1 - r_2|/b < 1$. As $q_1 - q_2$ must be an integer as well, it can only be 0. Therefore $q_1 = q_2$ (and $r_1 = r_2$ as well).

5. **Proposition.** Suppose $a, b, p \in \mathbb{Z}$ and p is a prime number. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof. Suppose $a, b, p \in \mathbb{Z}$ and p is a prime number and $p \mid ab$.

Case 1: $p \mid a$.

Case 2: $p \nmid a$. Then gcd(p, a) = 1 and by Bezout's theorem,

$$1 = n_1 p + n_2 a \qquad \qquad n_1, n_2 \in \mathbb{Z}$$

Multiplying by b and since $p \mid ba$, we can replace n_2ba as some integer n_3 multiple of p,

$$b = n_1 bp + n_2 ba = n_1 bp + n_3 p$$

= $(n_1 b + n_3) p$

Therefore, $p \mid b$.