Department of Mathematics

Indian Institute of Technology Guwahati

MA 101: Mathematics I Tutorial Sheet-4

July-December 2019

1. Examine whether the following series are convergent.

$$\text{(a)} \sum_{n=1}^{\infty} \frac{n^n}{2^{n^2}}$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n+1}$$

2. Examine whether the series $\sum_{n=2}^{\infty} \frac{1}{(\log n)^{\log n}}$ is convergent.

3. Examine whether the following series are conditionally convergent.

(a)
$$\sum_{n=1}^{\infty} (-1)^n (\sqrt{n^2+1} - n)$$

(b)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + (-1)^n}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{a^2+n}{n^2}$$
, where $a \in \mathbb{R}$

- 4. Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{(-1)^n (x-1)^n}{2^n n^2}$ converges.
- 5. Show that the series $\sum_{n=1}^{\infty} \frac{a^n}{a^n+n}$ is convergent if 0 < a < 1 and is not convergent if a > 1.
- 6. If $\alpha \neq 0 \in \mathbb{R}$, then show that the series $\sum_{n=1}^{\infty} (-1)^n \sin(\frac{\alpha}{n})$ is conditionally convergent.
- 7. For $p \in \mathbb{R}$, the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^p}$ is convergent iff p > 0.
- 8. (Rearrangement of series). If $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \frac{1}{6} + \cdots = s$, then prove that $1 + \frac{1}{3} \frac{1}{2} + \frac{1}{5} + \frac{1}{7} \frac{1}{4} + \frac{1}{9} + \cdots = \frac{3}{2}s$.