Запросы к связанным таблицам

Во всех ранее рассмотренных примерах демонстрировались разнообразные средства спецификации простых запросов. Все рассмотренные приемы построения простых запросов могут быть использованы не только в чистом виде, но и во всех возможных сочетаниях друг с другом. Рассмотренные типы запросов можно назвать простыми, поскольку все они использовали в качестве источника данных одну таблицу. В реальных информационных задачах гораздо чаще запросы адресуются не к одной, а к нескольким связанным таблицам, которые представляют все разнообразие данных конкретной предметной области.

В реальных задачах выборка данных осуществляется из нескольких связанных между собой таблиц.

В SELECT предложении выборки из связанных таблиц могут присутствовать одноименные столбцы. Во избежание неопределенности одноименные столбцы в такого рода запросах должны упоминаться с префиксом (через точку) в виде имени соответствующей таблицы: <имя таблицы>.<имя столбца>. Если нет проблемы относительно происхождения столбца, имя таблицы можно не указывать.

Декартово произведение

В декартовом произведении выводятся все возможные комбинации строк-кортежей перемножаемых таблиц, даже такие, которые не имеют смысла в моделируемой предметной области.

Пример. Вывести декартово произведение таблиц «Факультет» и «Кафедра».

SELECT Факультет.*, Кафедра.* **FROM Факультет, Кафедра**;

Здесь спецификация типа «Кафедра.*» означает «все поля таблицы Кафедра». Результат выполнения запроса из примера

аббреви- атура	Факультет.название	шифр	Кафедра.название	факуль- тет
ИТ	Информационные тех- нологии	пи	Прикладная инфор- матика	ИТ
ен	Естественные науки	пи	Прикладная информатика	ит

Естественное соединение

В запросах выборки из связанных таблиц предложение SELECT задает структуру выборки; предложение FROM — источник данных, предложение WHERE — как минимум, условие соединения.

Условие соединения может иметь следующий формат:

<имя таблицы1>.<имя столбца1> <оператор> <имя таблицы2>.<имя столбца2>

Здесь оператор — это один из операторов сравнения.

Важным частным случаем соединения является так называемое эквисоединение — соединение по условию равенства столбцов, по которым устанавливается связь между таблицами.

Пример. Вывести эквисоединение таблиц «Кафедра» и «Специальность».

SELECT Кафедра.*, Специальность.* FROM Кафедра, Специальность WHERE Кафедра.шифр=Специальность.шифр;

Кафе- дра. шифр	название	фа- куль- тет	номер	направление	Специ- альность. шифр
ис	Информацион- ные системы	ит	09.03.02	Информационные системы и техноло-гии	ис
ис	Информацион- ные системы	ит	38.03.05	Бизнес-информа- тика	ис
MM	Математиче- ское моделиро- вание	фм	01.03.04	Прикладная мате- матика	MM
пи	Прикладная информатика	ит	09.03.03	Прикладная информатика	пи
эф	Эксперимен- тальная фи- зика	фм	14.03.02	и технологии чтобы	а Фя Windows вктивировать Window "Параметры".

Важной разновидностью соединения является так называемое естественное соединение, или эквисоединение без дублей одноименных столбцов (полей).

Операция естественного (внутреннего) соединения лежит в основе большинства выборок из связанных таблиц. Если таблицы <имя таблицы1> и <имя таблицы2> связаны по столбцам <имя столбца1> и <имя столбца2>, то условие соединения может быть задано во фразе WHERE в запросе с обобщенным форматом:

SELECT <список элементов> FROM <имя таблицы1>, <имя таблицы2 WHERE <имя таблицы1>.<имя поля1>=<имя таблицы2>.<имя поля2>;

П р и м е р. Вывести данные о том, на каких кафедрах готовят специалистов по тем или иным направлениям (специальностям). Запрос выполнить на основе естественного соединения таблиц «Кафедра» и «Специальность».

SELECT факультет, Кафедра.шифр, название, номер, направление FROM Кафедра, Специальность WHERE Кафедра.шифр=Специальность.шифр;

Реализация этого запроса дает ответ на вопрос о том, по каким специальностям, на каких кафедрах и на каких факультетах обучают.

Результат выполнения запроса из примера

факультет	шифр	название	номер	направление
ИТ	ис	Информационные	09.03.02	Информационные си-
		системы	09.03.02	стемы и технологии
ИТ	ис	Информационные	38.03.05	Бизнес-информатика
		системы	00.00.00	Влопес ттформатта
фм	MM	Математическое мо-	01.03.04	Прикладная матема-
		делирование	01.03.04	тика
ит	пи	Прикладная инфор-	09.03.03	Прикладная информа-
		матика	09.03.03	тика
фм	эф	Экспериментальная	14.03.02	Ядерные физика и тех-
		физика	14.03.02	нологии

INNER JOIN

Запрос на соединение можно выполнить также при помощи специальной инструкции SQL INNER JOIN. Условие соединения содержится в предложении FROM:

SELECT <cписок элементов> FROM <имя таблицы1> INNER JOIN <имя таблицы2 ON <имя таблицы1>.<имя столбца1>=<имя таблицы2>.<имя столбца2>;

Операцию INNER JOIN можно использовать в любом предложении FROM. Это самые обычные типы связывания. Они объединяют записи двух таблиц, если связующие столбцы обеих таблиц содержат одинаковые значения. Попытка объединить данные Мето или объекта ActiveX приведет к возникновению ошибки.

Обязательным условием корректного соединения является совместимость типов столбцов, по которым осуществляется связь. Допускается объединение двух числовых полей подобных типов, например поле счетчика с полем типа «Длинное целое». Однако нельзя объединить типы полей «С плавающей точкой (4 байт)» и «С плавающей точкой (8 байт)». Операции INNER JOIN могут быть вложенными; в таком случае используйте следующий синтаксис:

SELECT <список элементов>

FROM <имя таблицы1> INNER JOIN

(<имя таблицы2> INNER JOIN [(]<имя таблицы3>

[INNER JOIN [(]<имя таблицаN> [INNER JOIN ...)]

ON < wmg таблицы3 > .< wmg столбца3 > = < wmg таблицыN > .< wmg столбцаN >)]

ON <имя таблицы2>.<имя столбца2> = <имя таблицы3>.<имя столбца3>)

ON <имя таблицы1>.<имя столбца1> = <имя таблицы2>.<имя столбца2>;

П р и м е р. Вывести данные о том, на каких кафедрах готовят специалистов по тем или иным направлениям (специальностям). Запрос выполнить на основе естественного соединения таблиц «Кафедра» и «Специальность» при помощи INNER JOIN.

SELECT факультет, Кафедра.шифр, название, номер, направление FROM Кафедра INNER JOIN Специальность ON Кафедра.шифр=Специальность.шифр;

Результат выполнения запроса из примера

факультет	шифр	название	номер	направление
ИТ	ис	Информационные системы	09.03.02	Информационные системы и технологии
ИТ	ис	Информационные системы	38.03.05	Бизнес-информатика
фм	MM	Математическое моделирование	01.03.04	Прикладная математика
ит	пи	Прикладная информатика	09.03.03	Прикладная информатика
фм	эф	Экспериментальная физика	14.03.02	Ядерные физика и технологии

Естественное соединение является средством интеграции семантически связанных данных из разных таблиц и в сочетании с условиями проекции и селекции широко используется в запросах-выборках.

П р и м е р. Вывести из таблиц «Кафедра» и «Сотрудник» данные о факультетах, кафедрах, должностях и фамилиях заведующих кафедрами

SELECT факультет, Кафедра.шифр, должность, фамилия FROM Кафедра, Сотрудник WHERE Кафедра.шифр=Сотрудник.шифр AND должность= 'зав.кафедрой';

Результат выполнения запроса из примера

факультет	шифр	должность	фамилия
ИТ	ПИ	зав.кафедрой	Прохоров П.П.
ИТ	ис	зав.кафедрой	Андреев А. А.
фм	MM	зав.кафедрой	Басов Б. Б.