|               | Name: Vidhi Shah Reg. No.: 21BCE1297 Batch: E2+ TE2                                                                                                                                |  |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|               | (Page No.                                                                                                                                                                          |  |  |  |  |
|               | BPHYIOIL DA1(a)                                                                                                                                                                    |  |  |  |  |
|               | ("Bash") shar and install                                                                                                                                                          |  |  |  |  |
| 由             | WAVE PACKETS                                                                                                                                                                       |  |  |  |  |
|               |                                                                                                                                                                                    |  |  |  |  |
| <b>→</b>      | A wave packet refers to the case where two (or more) waves                                                                                                                         |  |  |  |  |
|               | exist simultaneously.  It is also referred to as a "wave group" or "envelope" of localised wave action that travels as a unit.                                                     |  |  |  |  |
| ->            | It is also referred to as a "wave group" or "envelope" of                                                                                                                          |  |  |  |  |
|               | localised wave action that travels as a unit.                                                                                                                                      |  |  |  |  |
|               |                                                                                                                                                                                    |  |  |  |  |
| •             | Principle of Superposition: It any two waves are a solution                                                                                                                        |  |  |  |  |
|               | to the wave equation, then the sum of the waves is also                                                                                                                            |  |  |  |  |
|               | Principle of superposition: If any two waves are a solution to the wave equation, then the sum of the waves is also a solution. This principle holds true only for linear systems. |  |  |  |  |
|               | Coherent and Incoherent Sources:                                                                                                                                                   |  |  |  |  |
|               |                                                                                                                                                                                    |  |  |  |  |
| -             | Wave packets can be formed by the superposition of                                                                                                                                 |  |  |  |  |
| 210           | two (or more) different waves of slightly different frequencies                                                                                                                    |  |  |  |  |
|               | Wave packets can be formed by the superposition of two (or more) different waves of slightly different frequencies and wavelength which means waves having phase differences.      |  |  |  |  |
| is mes        | - As the mapper of managers, the water prises of                                                                                                                                   |  |  |  |  |
|               | Coherent Source: emit waves having the same frequency.                                                                                                                             |  |  |  |  |
|               | Wavelength and have the same phase or a                                                                                                                                            |  |  |  |  |
|               | constant phase difference.                                                                                                                                                         |  |  |  |  |
|               | Incoherent Source: emit waves that have random frequencies                                                                                                                         |  |  |  |  |
|               | and phase differences.                                                                                                                                                             |  |  |  |  |
|               |                                                                                                                                                                                    |  |  |  |  |
| $\rightarrow$ | Therefore, wave packets cannot be formed in wherent                                                                                                                                |  |  |  |  |
|               | sources of light.                                                                                                                                                                  |  |  |  |  |
|               |                                                                                                                                                                                    |  |  |  |  |
|               | Sunlight LED (Light Emiffing Diode) Laser Diode                                                                                                                                    |  |  |  |  |
|               | → Incoherent → Incoherent → Coherent                                                                                                                                               |  |  |  |  |
|               | → Wave packets exist → Wave packets exist → Wave packets do not exist                                                                                                              |  |  |  |  |
|               | -> Polychromatic -> Monochromatic -> Monochromatic                                                                                                                                 |  |  |  |  |
|               |                                                                                                                                                                                    |  |  |  |  |





## PHASE VELOCITY (VP) AND GIROUP VELOCITY (VG).

· Phase Velouby (Vp):

The phase velocity of a wave is the rate at which the wave propagates in any medium.

This is the velocity at which the phase of any one frequency

component of the wave travels.

 $\Rightarrow V_{p} = \frac{\omega}{k}, V_{p} = \lambda \lambda, V_{p} = \underline{\zeta}^{2}$ 

· Group Velousty (Va):

> The group volocity of a wave is the velocity with which the overall wave packet Cenvelope propagates through space.

> Each envelope contains a group of internal waves.

$$\rightarrow V_g = \Delta \omega \Delta K$$

-> In a given medium, the frequency is some function, w(k), of the wave number. Therefore, phase velocity and group velocity depend on the frequency and the medium.



## · Relation between Phase Velocity and Group Velocity:

We know that, 
$$V_p = \frac{\omega}{k} \Rightarrow \omega = kV_p$$

Therefore, 
$$V_g = \Delta \omega$$
;  $V_g = d_c(kV_p)$ 

Therefore, if the phase velocity does not depend on the wavelength of the propagating wave, then Vg = Vp.

Eg:-Non-dispersive media



## Wave Patterns:

The wave patterns for various values of  $\Delta \omega$  and  $\Delta \kappa$  will not be same even if  $V_g$  is same for the different waves. The resultant wave formed by the superposition of two waves is dependent on the values of  $\Delta \omega$  and  $\Delta \kappa$  independently.

| S. No | Δω   | Δk   | Wave pattern of the resultant waves | $\mathbf{V}_{\mathbf{g}}$ |
|-------|------|------|-------------------------------------|---------------------------|
| 1     | 0.02 | 0.02 | v <sub>g</sub> = 1.                 | 1                         |
| 2     | 0.06 | 0.06 | v <sub>g</sub> = 1.                 | 1                         |
| 3     | 0.2  | 0.2  | v <sub>g</sub> = 1.                 | 1                         |
| 4     | 0.5  | 0.5  | V <sub>g</sub> = 1.                 | 1                         |