The Heat Equation: Theory and Implementation

Graduate Numerical Methods

November 25, 2024

Genetic Algorithms: Core Concepts

Evolutionary Optimization:

- Inspired by natural selection and evolution
- Population-based optimization method
- Combines exploration and exploitation

Key Components:

- Population: Set of potential solutions
- Genes: Parameters to be optimized
- Fitness Function: Measures solution quality
- Selection: Choose best individuals
- Crossover: Combine good solutions
- Mutation: Introduce random variations

Population and Encoding

Solution Representation:

- Binary encoding: [1, 0, 1, 1, 0, ...]
- Real-valued encoding: [3.14, 2.71, ...]
- Permutation encoding: [3, 1, 4, 2, ...]

• Population Structure:

- Size: Typically 50-200 individuals
- Diversity: Key for exploration
- Generation: Complete set of solutions

Genetic Operators

Selection Methods:

- Roulette Wheel Selection
- Tournament Selection
- Rank-based Selection

Crossover Operations:

- Single-point: $[1, 1, |1, 0] + [0, 0, |0, 1] \rightarrow [1, 1, 0, 1]$
- $\bullet \ \, \mathsf{Two\text{-}point:} \,\, [1,|1,1|,0] + [0,|0,0|,1] \to [1,0,0,0]$
- Uniform: Random mixing of parents

Mutation:

- Bit flip (binary): $[1, 1, 0, 1] \rightarrow [1, 0, 0, 1]$
- Gaussian (real): $x' = x + \mathcal{N}(0, \sigma)$

Л

Algorithm Implementation

[H] Population size N, Generation limit G, Problem parameters Best solution found and its fitness

Initialize population P with N random solutions Evaluate fitness f(x) for each solution $x \in P$

for generation = 1 G **do** $P_{new} \leftarrow \emptyset$

while $|P_{new}| < N$ **do** Select parents p_1, p_2 from P based on fitness $(c_1, c_2) \leftarrow \text{Crossover}(p_1, p_2)$ $c_1 \leftarrow \text{Mutation}(c_1)$ $c_2 \leftarrow \text{Mutation}(c_2)$ Add c_1, c_2 to P_{new}

Evaluate fitness for all $x \in P_{new}$ $P \leftarrow Best N$ solutions from $P \cup P_{new}$

 ${f if}$ convergence criterion met ${f then}$ break ${f return}$ Best solution in ${\cal P}$ and its fitness

Implementation Details

Key Parameters:

- Population size: Balance between diversity and speed
- Crossover rate: Typically 0.7-0.9
- Mutation rate: Usually 0.001-0.05
- Selection pressure: Tournament size or scaling factor

Practical Considerations:

- Constraint handling
- Elitism: Preserve best solutions
- Premature convergence prevention
- Termination criteria

Example Application: Function Optimization

Problem Setup:

- Objective: Minimize $f(x, y) = x^2 + y^2 \cos(18x) \cos(18y)$
- Constraints: $-1 \le x, y \le 1$
- Encoding: Real-valued chromosomes

GA Configuration:

- Population size: 100
- Tournament selection: size 3
- Arithmetic crossover
- Gaussian mutation: $\sigma = 0.1$
- Elitism: Preserve top 2 solutions