

Inverse Design in Photonics

Tutorial 3: Adjoint Optimization

Review: Design Procedure

- Goal: optimize objective function over design parameters J(p).
- Approach (repeat until convergence):
 - a. Start with parameters.
 - b. Compute gradient using adjoint method.
 - c. Update design parameters a small amount in gradient direction.

Simple Example: Design Lens

Goal: design a device to focus light.

- Point dipole (green)
- Field monitor (orange)
- Region containing design parameters (red)

Objective function: maximize electric intensity at the field monitor compared to vacuum.

Starting point of the optimization

Optimization process

Design parameters

- Break design region into several sub wavelength "pixels".
- Relative permittivity of pixels are independent parameters.

Parameterization

- Want to constrain permittivity of each pixel to between I (vacuum) and a material.
- Define function that maps
 parameter "p" between (-∞, ∞) to
 a permittivity between (I, εmax).
- Can freely update "p" and keep permittivity in bounds.

7/

Optimization

Algorithm:

- Define starting parameters
- In each step
 - Compute J(p) and dJ/dp.
 - $\circ \quad \text{Update } p = p + \alpha \, dJ/dp$

Optimization Progress

Final Device

Design can be further improved to incorporate fabrication constraints.

