

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 196 26 287 A 1

⑯ Int. Cl. 8:

G 05 D 13/64

G 08 C 15/08

H 04 L 12/40

// B41F 33/16, 33/08,

H02P 5/46

DE 196 26 287 A 1

- ⑯ Aktenzeichen: 196 26 287.9
⑯ Anmeldetag: 1. 7. 98
⑯ Offenlegungstag: 13. 2. 97

Mit Einverständnis des Anmelders offengelegte Anmeldung gemäß § 31 Abs. 2 Ziffer 1 PatG

- ⑯ Anmelder:
ABB Management AG, Baden, Aargau, CH
⑯ Vertreter:
Rupprecht, K., Dipl.-Ing., Pat.-Anw., 61476 Kronberg

- ⑯ Erfinder:
Flamm, Heinz, Villmergen, CH; Furrer, Franz,
Fislisbach, CH; GÜTH, Reinhold, Oberrohrdorf, CH

Rechercheantrag gem. § 43 Abs. 1 Satz 1 PatG ist gestellt

⑯ Verfahren zum Betrieb eines Antriebssystems und Vorrichtung zur Durchführung des Verfahrens

- ⑯ Es wird ein Antriebssystem bzw. ein Verfahren zum Betrieb eines solchen angegeben. Das Antriebssystem umfaßt mindestens zwei Antriebsgruppen mit einer Anzahl von Antriebsreglern geregelten Antrieben. Die Antriebsregler einer Antriebsgruppe werden über einen Antriebsbus mittels eines lokalen Synchronisationstaktes synchronisiert und die lokalen Synchronisationstakte werden über ein die Antriebsteuerungen verbindendes Antriebsdatennetz an einen globalen Synchronisationstakt angeglichen. Die anlagenweite Synchronisation der Antriebe über ein globales Signal erlaubt es, ein Antriebssystem mit einer nahezu beliebigen Anzahl von Antrieben auszurüsten. Dadurch, daß die Sollwerte vorzugsweise nach Maßgabe des globalen Synchronisationstaktes ebenfalls synchron zwischen den Antriebsteuerungen über das Antriebsdatennetz übertragen werden, treten auch keine zeitlichen Fehler bei der Sollwertübertragung auf. Die Erfindung wird vorzugsweise für Rotationsdruckmaschinen verwendet.

DE 196 26 287 A 1

Beschreibung

Technisches Gebiet

Die Erfindung betrifft die elektrische Antriebstechnik. Sie geht aus von einem Verfahren zum Betrieb eines Antriebssystems nach dem Oberbegriff des ersten Anspruchs. Die Erfindung betrifft im weiteren eine Vorrichtung zur Durchführung des Verfahrens.

Anwendungsbereiche der Erfindung sind beispielsweise Werkzeugmaschinen und Rotationsdruckmaschinen. Eine bevorzugte Anwendung sind Rotationsdruckmaschinen für den Zeitungsdruck mit einer Vielzahl von einzeln angetriebenen Druckzylindern und mit flexiblen Produktionsmöglichkeiten.

Stand der Technik

Ein gattungsgemäßes Verfahren bzw. Vorrichtung ist aus dem Skriptum des Vortrages gehalten an dem "Ifra"-Seminar, 21. und 22. Mai 1996 von Juha Kankainen, Honeywell Oy, Varkaus, Finnland bekannt. Es wird dort ein wellenloses Antriebssystem vorgestellt, bei dem mehrere Antriebsgruppen vorgesehen sind, wobei jede Antriebsgruppe eine Antriebssteuerung und mindestens einen Antrieb umfaßt. Der Antrieb seinerseits umfaßt einen Antriebsregler und mindestens einen Motor. Die Antriebsregler sind über einen Antriebsbus (im erwähnten Dokument als "vertikaler SERCOS-Ring" bezeichnet) untereinander verbunden. Die Antriebssteuerungen (als "Prozeßstation" bezeichnet) sind über ein eigenes Antriebsdatennetz in Form eines Ringes verbunden. Die Antriebssteuerungen sind mit übergeordneten Steuereinheiten verbunden. Nach dem SERCOS-Standard werden die Antriebe über einen lokalen Synchronisationstakt synchronisiert.

Ein weiteres Konzept für ein wellenloses Antriebssystem in Form einer Rotationsdruckmaschine ist aus der Deutschen Offenlegungsschrift DE 42 14 394 A1 bekannt. Die in dieser Schrift offenbare Rotationsdruckmaschine stellt ein Antriebssystem dar, das mindestens zwei Antriebsgruppen, in der Form von einzeln angetriebenen Druckstellengruppen umfaßt. Die Antriebsgruppen weisen eine Antriebssteuerung und mindestens einen Antrieb, bestehend aus einem Motor und einem Antriebsregler, auf. Die Antriebsgruppen erhalten ihre Positionsreferenz (Leitachse) direkt von dem Falzapparat. Die Antriebsregler der Antriebsgruppen sind ebenfalls über einen Antriebsbus verbunden. Die Antriebssteuerungen sind über einen Datenbus untereinander und mit einer Bedienungs- und Datenverarbeitungseinheit verbunden. Über diesen Datenbus erfolgt die Vorgabe von Sollwerten und die Verwaltung der Druckstellengruppen.

Die Antriebsregler eines derartigen Antriebssystems ermöglichen eine Drehmomentenregelung, Geschwindigkeitsregelung (Drehzahlregelung) oder Positionsregelung (Winkellageregelung) der angetriebenen Achse. Bei hohen Anforderungen nach winkelsynchronem Gleichlauf, wie sie beispielsweise bei Antriebssystemen in Werkzeugmaschinen und in Druckmaschinen bestehen, werden bevorzugt Positionsregelungen (Winkellageregelungen) verwendet.

Die digitalen Antriebsregler sind bevorzugt mit schnellen digitalen Signalprozessoren ausgestattet. Solche schnellen digitalen Antriebsregler können einen Regelungszyklus bei Positionsregelung in sehr kurzer Re-

chenzeit ausführen, bevorzugt in 250 µs oder in kürzerer Zykluszeit.

In solchen Antriebssystemen werden bevorzugt Drehstrommotoren eingesetzt. Die elektrische Antriebsenergie wird dem einzelnen Motor über eine Leistungselektronikschaltung, bevorzugt mit Frequenzumrichterfunktion zugeführt. Die Leistungselektronikschaltung wird vom digitalen Antriebsregler angesteuert.

- 10 Die einzelnen Antriebe sind mit hochgenauen Istwertgebern ausgestattet, bevorzugt optoelektronischen Positionsgebern. Die Signalauflösungen solcher bekannten, hochgenauen Istwertgeber liegen im Bereich von über 1'000'000 Punkten pro Umdrehung (360°). Die praktisch nutzbaren Meßgenauigkeiten der bekannten Istwertgeber liegen im Bereich von mehr als 100'000 Punkten pro Umdrehung (360°).

Der Istwertgeber für den einzelnen Antrieb ist oft auf der Motorachse angebracht. Es sind aber auch Anordnungen bekannt, bei denen ein Istwertgeber an der vom Motor angetriebenen Last angebracht ist. Zum Beispiel ist es bei Druckmaschinen vorteilhaft, einen hochauflösenden Positionsgeber am drehmomentfreien Ende des angetriebenen Druckzylinders anzubringen.

25 Entscheidend für den hochgenauen Gleichlauf mehrerer positionsgeregelter Einzelantriebe ist die genaue Synchronisation der Antriebe über einen gemeinsamen Takt und die zyklische Belieferung mit Positionssollwerten im vorgegebenen Taktrahmen.

30 Der gemeinsame Takt stellt sicher, daß die einzelnen Antriebsregler ihre Positionsreglungsfunktionen zeitlich exakt synchron (zeitgleich) ausführen und dabei die vorgegebenen Positionssollwerte zeitlich konsistent (zeitgleich) auswerten.

35 Es sind Antriebssysteme bekannt, bei denen eine Anzahl von Einzelantrieben von einer zentralen Antriebssteuerung über einen schnellen Antriebsbus mit einem gemeinsamen Synchronisationstakt und mit Sollwertdaten beliefert werden.

40 Die Datenübertragung erfolgt bevorzugt nach den Vorgaben des SERCOS-Standard. Der SERCOS-Standard ist eine von mehreren Antriebsherstellern vereinbarte Datenschnittstelle, welche die Synchronisation und die Sollwertübertragung für die Antriebe einer Antriebsgruppe unterstützt.

Zu SERCOS-Standard siehe: "Kurzübersicht der Produkte mit SERCOS-Interface", 2. Auflage, Oktober 1995, Fördergemeinschaft SERCOS interface e.V., Im Mühlefeld 28, D-53123 Bonn; oder "SERCOS interface, Digitale Schnittstelle zur Kommunikation zwischen Steuerungen und Antrieben in numerisch gesteuerten Maschinen", Update 9/91, Fördergemeinschaft SERCOS interface e.V., Pelzstraße 5, D-5305 Alfter/Bonn.

Der Antriebsbus ist dabei bevorzugt als ringförmige Glasfaserverbindung realisiert. Die Datenübertragung wird dabei von einer zentralen Hauptstation (Busmaster) gesteuert und koordiniert. Die an die ringförmige Datenleitung angeschlossenen einzelnen Antriebe sind Unterstationen, d. h. Slaves, bei der Datenübermittlung. 55 Die einzelnen Antriebe erhalten einen gemeinsamen Synchronisationstakt und ihre Sollwertdaten von der zentralen Antriebssteuerung über den Antriebsbus. Die zentrale Antriebssteuerung erzeugt den gemeinsamen Synchronisationstakt und berechnet die Sollwerte für die einzelnen Antriebe der Antriebsgruppe. Die Antriebssteuerung liefert dabei in kurzen Zykluszeiten jeweils neue Sollwerte für die einzelnen Antriebsregler. Bevorzugte Zykluszeiten für die Übertragung des ge-

meinsamen Synchronisationstaktes und für die Berechnung und die Übertragung der Sollwerte der einzelnen Antriebe einer Antriebsgruppe sind beim SERCOS-Standard 62 µs, 125 µs, 250 µs, 500 µs, 1 ms, 2 ms, 3 ms, ... 63 ms, 64 ms oder 65 ms.

Mit derartigen Antriebssystemen sind recht hohe Gleichlaufgenauigkeiten zwischen den Antrieben einer Antriebsgruppe realisierbar. Es lassen sich mechanische Synchronwellen und mechanische Getriebe durch elektronisch synchronisierte Gruppen von Einzelantrieben ersetzen. Derartige Antriebssysteme mit elektronischer Synchronisation der Einzelantriebe ermöglichen somit elektronische Synchronwellen und elektronische Getriebefunktionen.

Mit derartigen Antriebssystemen können beispielsweise Rotationsdruckmaschinen mit einzeln angetriebenen Druckzylindern — ohne mechanische Synchronwellen — realisiert werden (siehe z. B. die eingangs genannte Offenlegungsschrift und das Vortragsskriptum).

Rotationsdruckmaschinen für den Mehrfarbendruck mit einzeln angetriebenen Druckzylindern stellen besonders hohe Anforderungen an den winkelsynchronen Gleichtlauf der einzelnen Antriebe. Beim Vierfarbendruck sind oft Gleichlaufgenauigkeiten der einzelnen Druckzylinder in der Größenordnung von 10 µm gefordert. Bei einem Druckzylinderumfang von z. B. 1 m bedeutet dies, daß eine Positionsmessung und Positionsregelung mit einer Genauigkeit von besser als 100'000 Punkten pro Zylinderumdrehung (360°) erfolgen muß. Bei Druckgeschwindigkeiten (Papierbahngeschwindigkeiten) von mehr als 10 m/s bedeutet dies weiterhin, daß der zeitliche Synchronisationsfehler zwischen den einzelnen Antrieben der auf eine Papierbahn druckenden Zylinder (nach der Formel Zeit = Weg / Geschwindigkeit = $10 \mu\text{m} / 10 \text{ m/s} = 1 \mu\text{s}$) kleiner als 1 µs sein muß.

Das bedeutet, daß die einzelnen Antriebsregler bei ihren Positionsregelungen mit einer zeitlichen Genauigkeit von besser als 1 µs über den Antriebsbus synchronisiert werden müssen.

Mit den genannten Antriebssystemen und der Synchronisation und der Sollwertbelieferung der Einzelantriebe über eine ringförmige Glasfaserverbindung nach den Vereinbarungen des SERCOS-Interface lassen sich diese Anforderungen lediglich für Antriebsgruppen mit einer begrenzten Anzahl von Einzelantrieben erreichen.

Durch die zentralen, gemeinsamen Einrichtungen, Antriebssteuerung und Antriebsbus, ergeben sich aber bestimmte Engpässe und Nachteile, die sich mit wachsender Anzahl von Antrieben in der Antriebsgruppe zunehmend negativ auswirken. Die wichtigsten Begrenzungen und Nachteile sind die folgenden:

Mit steigender Anzahl von Antrieben wächst generell der Synchronisationsfehler der Datenleitung. Bei einer ringförmigen Glasfaserverbindung mit Datenübertragungsfunktionen, beispielsweise nach den Vereinbarungen des SERCOS Interface, gilt folgendes für das Anwachsen des Synchronisationsfehlers: Bei jedem an den Glasfaserring angeschlossenen Antriebsregler erfolgt eine zeitdiskrete Signalabtastung mit einer bestimmten Abtastperiode, zum Beispiel 30 ns. Das durch zeitdiskrete Abtastung beim Empfänger reproduzierte binäre Signal kann somit maximal um die Abtastperiode, z. B. 30 ns, zeitlich zittern (auf der Zeitachse gegenüber dem Originalsignal beim Sender). Somit kommt es bei jedem Teilnehmer, d. h. Antrieb, zu einem zeitlichen Abtastfehler der sich als Jitter (zeitliches Zittern) bemerkbar macht. Dieser Abtastfehler (Jitter) betrifft auch den gemeinsamen Synchronisationstakt. Der Abtastfehler

macht sich deshalb als Synchronisationsfehler bemerkbar. Das abgetastete Signal wird im einzelnen Antrieb verwendet und — nach entsprechender Regeneration des Signals — auch an den jeweils nächsten Antriebsregler im Glasfaserring weitergegeben. Entsprechend der Anzahl von Antrieben am Glasfaserring summieren sich die Synchronisationsfehler (Jitter) der einzelnen Teilnehmer zu einem Gesamtfehler. Zum Beispiel bei 33 Antrieben am Glasfaserring mit je 30 ns Abtastfehler ergibt sich ein Gesamtsynchronisationsfehler von ca. 1 µs.

Mit steigender Anzahl Antriebe im Ring nimmt auch die benötigte Zykluszeit für die Datenübertragung zu. Wenn zum Beispiel pro Antrieb eine Datenübertragungszeit von 250 µs benötigt wird, so bedeutet das bei Anschluß von 32 Antrieben an einen Ring, daß die Zykluszeit für die Datenübertragung mindestens 8 ms betragen muß. Ein Ansteigen der Zykluszeit für die Übertragungszyklen bedeutet auch längere Zeitabstände zwischen den einzelnen Synchronisationstakten — im genannten Beispiel sind das 8 ms. Zwischen aufeinanderfolgenden Synchronisationstakten des Ringes laufen die lokalen Taktgeneratoren der einzelnen Antriebe frei — und wandern (driften) dabei entsprechend der Ungenauigkeit der verwendeten Quarze mehr oder weniger auseinander.

Wenn der lokale Taktgenerator eines Antriebes zum Beispiel mit einem Quarz der Qualität 100 ppm (parts per million) ausgestattet ist, so kann dieser Taktgenerator auf Grund seiner Ungenauigkeit nach 8 ms eine zeitliche Abweichung von (plus oder minus) 0,8 µs aufweisen. Die zeitliche Abweichung zwischen zwei beliebigen Antrieben, die durch die Ungenauigkeit der beiden lokalen Taktgeneratoren verursacht wird, ist die Summe der Ungenauigkeiten der beiden Taktgeneratoren, zum Beispiel $(2 \cdot 0,8 \mu\text{s}) = 1,6 \mu\text{s}$.

Das Wegwandern (Driften) der lokalen Taktgeneratoren der einzelnen Antriebe zwischen 2 aufeinanderfolgenden Synchronisationstakten des Ringes macht sich als zusätzlicher Synchronisationsfehler bemerkbar, da die einzelnen Antriebsregler während eines Datenübertragungszyklus, von beispielsweise 8 ms, mehrere Regelungszyklen durchführen.

Bei einem Regelungszyklus im Antrieb von z. B. 250 µs und einem Datenübertragungszyklus von z. B. 8 ms auf dem Ring führt der Antrieb während eines Datenübertragungszyklusses 32 Regelungsvorgänge durch. Nur der erste Regelungsvorgang ist dabei streng mit dem Synchronisationstakt des Ringes synchronisiert. Bei den folgenden 31 interpolierenden Regelungsvorgängen erfolgt die zeitliche Steuerung über den lokalen Taktgenerator des Antriebes. Die Ungenauigkeit der lokalen Taktgeneratoren der einzelnen Antriebe macht sich bei den interpolierenden Regelungsvorgängen als zusätzlicher Synchronisationsfehler bemerkbar.

Mit ansteigender Anzahl von Antrieben am Ring nimmt also die Zykluszeit der Datenübertragung zu und damit der zeitliche Abstand aufeinanderfolgender Synchronisationstakte, und mit ansteigendem zeitlichen Abstand aufeinanderfolgender Synchronisationstakte vergrößert sich das Auseinanderwandern (Driften) der lokalen Taktgeneratoren (Quarze) der einzelnen Antriebe. Damit wächst der Synchronisationsfehler und die Präzision der Positionsregelung erreicht die geforderten Werte nicht mehr.

Die an einen schnellen Antriebsbus angeschlossenen Antriebsregler erhalten von der zentralen Antriebssteuerung, welche auch Master bei der Datenübertra-

gung ist, nicht nur den gemeinsamen Synchronisations-
takt, sondern auch die Sollwertdaten. Mit steigender Anzahl von Antrieben wächst die benötigte Zeit für die Sollwertberechnungen und Sollwertübertragungen. Mit steigender Anzahl von Antrieben wächst die Belastung der zentralen Antriebssteuerung durch die zyklischen Sollwertberechnungen. Die zentrale Antriebssteuerung beliefert die angeschlossenen Antriebe zyklisch mit neuen, individuellen Sollwerten und mit einem gemeinsamen Synchronisationstakt. Die Zykluszeiten für die Sollwertberechnungen und den gemeinsamen Synchronisationstakt liegen bevorzugt in der Größenordnung von 1 ms.

Mit ansteigender Anzahl von angeschlossenen Antrieben wächst der Zeitaufwand für die Sollwertberechnungen in der zentralen Antriebssteuerung. Zum Beispiel bei einer Rechenzeit von 250 µs für die Sollwerte eines Antriebs und bei 32 angeschlossenen Antrieben muß die Zykluszeit der Sollwertberechnungen in der Antriebssteuerung mindestens 8 ms betragen. Dies stellt eine enorme Rechenbelastung der zentralen Antriebssteuerung dar, die ihrerseits wieder die Anzahl angeschlossener Antriebe limitiert.

Mit steigender Anzahl von Antrieben wachsen die Auswirkungen eines einzelnen Fehlers in der zentralen Antriebssteuerung oder im Antriebsbus.

Die ringförmige Glasfaserverbindung nach dem SERCOS-Standard ist nicht redundant aufgebaut und auch die Antriebssteuerung, welche gleichzeitig Master bei der Datenübertragung ist, ist nicht redundant aufgebaut. Bei einem Fehler in der zentralen Antriebssteuerung oder bei einem Fehler im Antriebsbus fallen somit alle angeschlossenen Antriebe aus.

In industriellen Produktionsanlagen ist es oft gefordert, die Auswirkungen einzelner Fehler auf eine eng begrenzte Umgebung einzuschränken. Ein einzelner Fehler in der Elektronik darf zum Ausfall einer bestimmten Funktionseinheit führen, aber keinesfalls zum Ausfall einer ganzen Produktionsanlage.

Im Druckmaschinenbau wird es zum Beispiel weitgehend toleriert, daß ein einzelner Fehler in der Antriebselektronik zum Ausfall einer Funktionseinheit, z. B. einer Druckeinheit mit 8 Druckzylindern, führt. Nicht tolerierbar ist, daß ein Fehler in der Antriebssteuerung oder im Antriebsbus zum Ausfall einer ganzen Produktionsanlage, z. B. einer ganzen Zeitungsdruckanlage, führt.

Die Anzahl der an eine Antriebssteuerung und einen Antriebsbus anzuschließenden Antriebe sollte deshalb aus Verfügbarkeitsgründen bevorzugt auf eine bestimmte Anzahl begrenzt sein, so daß ein Ausfall des Antriebsbusses oder der Antriebssteuerung nur Auswirkungen auf eine einzelne Funktionseinheit einer industriellen Anlage hat, z. B. auf eine Druckeinheit einer Zeitungsdruckanlage.

Ein zentralisiertes Antriebssystem mit einer zentralen Antriebssteuerung und einem Antriebsbus, an die alle im genauen Gleichlauf zu betreibenden Antriebe angeschlossen sind, entspricht oft nicht der natürlichen Struktur, Funktionsverteilung und Modulbildung in großen technischen Anlagen.

Industrielle Anlagen bestehen oft aus mehreren abgeschlossenen Funktionseinheiten, die jeweils alle zugehörigen mechanischen und elektrischen Funktionen beinhalten.

Steuerungssysteme und Antriebssysteme werden deshalb bevorzugt nach den Funktionseinheiten der industriellen Anlage strukturiert, zugeordnet und verteilt. So

ergeben sich abgeschlossene Funktionseinheiten, die einfach und unabhängig voneinander getestet und in Betrieb genommen werden können. Die Schnittstellen zwischen so abgegrenzten Funktionseinheiten sind einfach und überschaubar.

Die Vorteile einer dezentralen, verteilten — an die technische Anlage anpaßbaren — Struktur des Steuerungs- und des Antriebssystems ergeben sich besonders aus der klareren Systemstruktur, einfacheren Verständlichkeit, besseren Testbarkeit, eng abgegrenzten Fehlerauswirkungen. Diese Vorteile führen oft zu geringeren Herstellkosten, Betriebskosten und Wartungskosten.

Bei Zeitungsdruckereien, zum Beispiel, werden die Druckeinheiten, Falzapparate und Rollenträger bevorzugt als abgeschlossene Funktionseinheiten gebaut und jeweils mit eigenen, lokalen Steuerungen und eigenen, lokalen Antriebssystemen ausgerüstet.

Ein zentralisiertes Antriebssystem mit einer zentralen Antriebssteuerung ist ein großes Hindernis zur Realisierung von technischen Anlagen mit abgeschlossenen Funktionseinheiten und einfachen, klaren Schnittstellen.

Der wesentliche Nachteil einer zentralen Antriebssteuerung besteht darin, daß alle Sollwertdaten an die einzelnen Antriebe über die zentrale Antriebssteuerung geleitet werden. Es ist nicht möglich, daß die lokale Steuerung einer Funktionseinheit direkt mit der lokalen Antriebssteuerung der Funktionseinheit kommuniziert, da es dezentrale, lokale Antriebssteuerungen von Funktionseinheiten nicht gibt.

Darstellung der Erfindung

Aufgabe der Erfindung ist es deshalb, ein Verfahren zum Betrieb eines Antriebssystems anzugeben, durch welches keine Beschränkungen bezüglich Anzahl Antriebe bzw. Antriebsgruppen in Kauf genommen werden müssen. Außerdem sollen die insbesondere für eine Rotationsdruckmaschine geforderten hohen Genauigkeitsanforderungen erfüllt werden können, und aus den Antriebsgruppen und Antrieben sollen flexible Funktionseinheiten gebildet werden können.

Diese Aufgabe wird bei einem Verfahren zum Betrieb eines Antriebssystems der eingangs genannten Art durch die Merkmale des ersten Anspruchs gelöst.

Kern der Erfindung ist es, daß die Antriebsregler einer Antriebsgruppe über den Antriebsbus mittels eines lokalen Synchronisationstaktes synchronisiert werden und daß die lokalen Synchronisationstakte über ein die Antriebssteuerungen verbindendes Antriebsdatennetz periodisch an einen globalen Synchronisationstakt angeglichen werden. Die anlagenweite Synchronisation der Antriebe über ein globales Signal erlaubt es, ein Antriebssystem mit einer nahezu beliebigen Anzahl von Antrieben auszurüsten.

Dadurch daß die Sollwerte vorzugsweise nach Massgabe des globalen Synchronisationstaktes ebenfalls synchron zwischen den Antriebssteuerungen über das Antriebsdatennetz übertragen werden, treten auch keine zeitlichen Fehler bei der Sollwert-Übertragung auf.

Sehr einfach wird die Sollwert-Berechnung, insbesondere die Berechnung der Positionssollwerte der Antriebe, wenn diese nach Massgabe eines Positionssollwerts einer virtuellen Leitachse in den Antriebsteuerungen erfolgt. Der Positionssollwert der virtuellen Leitachse wird über das Antriebsdatennetz übertragen, und die Antriebssteuerungen berechnen daraus die Positions- sollwerte der zugehörigen Antriebe.

Eine besonders hohe Verfügbarkeit des Aufbaus des

Antriebssystems erreicht man dadurch, daß jede Antriebssteuerung zur Bildung des globalen Synchronisationstaktes ausgerüstet ist und mittels einem Vorrangsliste bestimmt wird, welche Antriebssteuerung das globale Synchronisationstakt vorgeben darf. Diese Vorrangsliste kann außerdem zyklisch durchlaufen werden, so daß das globale Synchronisationstakt nacheinander für eine bestimmte Zeitspanne von allen Antriebssteuerungen erzeugt wird.

Um ein zeitliches Auseinanderdriften der einzelnen Antriebsteuerungen aufgrund der Ungenauigkeiten der lokalen Taktgeneratoren während der Datenübertragungszyklen zu vermeiden, ist es allenfalls sinnvoll, das globale Synchronisationstakt durch zusätzliche Nebentakte zu unterteilen.

Die Sollwerte werden mit Vorzug in einem der entsprechenden Antriebssteuerung zugeordneten Zeitfenster übermittelt.

Die Antriebssteuerungen sind zur Durchführung des erfindungsgemäßen Verfahrens mit einem Synchronisationstaktgenerator für das globale Synchronisationstakt ausgerüstet. Das Antriebsdatennetz kann außerdem ein erstes und ein zweites Teilnetz umfassen, wobei über das erste Teilnetz das globale Synchronisationstakt und über das zweite Teilnetz die Sollwerte übertragen werden.

Für den Aufbau des Antriebsdatennetzes gibt es die Möglichkeiten einer ringförmigen Struktur oder einer Busstruktur. Außerdem kann ein Synchronisationstaktgeber vorgesehen sein, von dem sternförmig Datenleitungen zu den Antriebsteuerungen ausgehen.

Der Vorteil der Erfindung besteht darin, daß durch die übergreifende Synchronisation der lokalen Synchronisationstakte der Antriebsgruppen mittels einem globalen Synchronisationstakt und einer synchronen Sollwertdatenübertragung ein äußerst präziser Gleichlauf der Antriebsgruppen erreicht wird.

Ein weiterer Vorteil besteht in der hohen Verfügbarkeit und Flexibilität der dezentralen Struktur.

Das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung wird vorzugsweise für Rotationsdruckmaschinen eingesetzt.

Kurze Beschreibung der Zeichnungen

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert.

Es zeigen:

Fig. 1 Ein Blockschema eines erfindungsgemäßen Antriebssystems;

Fig. 2a–2b Verschiedene Übertragungsarten des Synchronisationstaktes und der Sollwertdaten;

Fig. 3–9 Verschiedene Topologien des Antriebsnetzes;

Fig. 10 Die Aufteilung des Synchronisationstaktes in einen Haupt- und mehrere Nebentakte;

Fig. 11 Ein Diagramm mit der zeitlichen Abfolge der Bearbeitung von Datensätzen bei einer einstufigen Leitachsenhierarchie;

Fig. 12 Ein Diagramm mit der zeitlichen Abfolge der Bearbeitung von Datensätzen bei einer zweistufigen Leitachsenhierarchie.

Die in den Zeichnungen verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefaßt aufgelistet. Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen.

Wege zur Ausführung der Erfindung

Fig. 1 zeigt ein Blockschema eines erfindungsgemäßen Antriebssystems 1. Mit 2 sind Antriebsgruppen bezeichnet. Diese umfassen eine Antriebssteuerung 3 und mindestens einen Antrieb 4. Die Antriebe 4 ihrerseits umfassen mindestens einen Motor 5, der von einem Antriebsregler 6 einer Antriebsgruppe 2 sind untereinander und mit der Antriebssteuerung 3 über einen Antriebsbus 8 verbunden. Die Antriebssteuerungen 15 können zusätzlich mit übergeordneten Steuereinheiten 9 verbunden sein. Im Rahmen der Erfindung sind die Antriebssteuerungen 3 über ein eigenes Antriebsdatennetz 10 verbunden.

Das Antriebsdatennetz bildet das Rückgrat der Synchronisation und der Datenkommunikation des Antriebssystems. Es ermöglicht einen genauen Gleichlauf von Antrieben, die zu verschiedenen Antriebsgruppen gehören, indem es eine übergreifende Synchronisation und eine synchrone Sollwertdatenübertragung zwischen den Antriebsgruppen sicherstellt. Dies wird durch die genaue Synchronisation der Antriebsgruppen durch Übertragung eines globalen Synchronisationstaktes über das Antriebsdatennetz erreicht. Die Antriebssteuerungen der einzelnen Antriebsgruppen gleichen ihre lokalen Synchronisationstakte der einzelnen Antriebsgruppen – mit hoher Genauigkeit – an den globalen Synchronisationstakt an. Die lokalen Synchronisationsstakte auf den einzelnen Antriebsbussen sind somit – mit hoher Genauigkeit – synchron zum übergeordneten, globalen Synchronisationstakt auf dem Antriebsdatennetz.

Auf diese Weise wird ein systemweiter Synchronisationstakt für das gesamte Antriebssystem bereitgestellt, der in allen Antriebsgruppen über die lokalen Antriebsbusse zu allen einzelnen Antrieben übermittelt wird. Damit werden alle einzelnen Antriebe im gesamten Antriebssystem genau synchronisiert.

Um alle Antriebe im synchronen Gleichlauf zu betreiben, müssen die einzelnen Antriebe auch synchron (zeitgleich) mit Sollwertdaten beliefert werden. Dies gilt besonders im bevorzugten Fall von Positionssollwerten. Hohe Anforderungen an den synchronen Gleichlauf der Antriebe stellen entsprechend hohe Anforderungen an die Synchronität der Datenübertragung von Sollwerten. Es genügt nicht, daß die Antriebe über einen gemeinsamen Takt untereinander synchronisiert werden, die Belieferung mit Sollwertdaten, d. h. besonders mit Positionssollwerten jedoch unkoordiniert zum Takt erfolgt, da durch unterschiedliche Übertragungszeiten oder Lieferzeiten der Sollwertdaten die Konsistenz der Information nicht mehr gegeben wäre.

Bei der Übertragung von Positionssollwerten ist eine exakte zeitliche Konsistenz (Gleichzeitigkeit) der Datenlieferung unverzichtbar (siehe auch Fig. 2a, b1, b2).

Die Gültigkeit von Positionssollwerten bezieht sich stets auf ganz bestimmte Zeitpunkte. Zum Beispiel: Zum Zeitpunkt t1 soll sich Antrieb A auf Position a1 und Antrieb B auf Position b1 befinden. Zum nächsten Zeitpunkt t2, d. h. beim nächsten Takt, soll sich Antrieb A auf der Position a2 und Antrieb B auf der Position b2 befinden.

Ein Beispiel:

Zwei Antriebe A und B einer Rotationsdruckmaschine treiben 2 Druckzylinder mit unterschiedlicher Farbe an, welche eine Papierbahn mit einer Geschwindigkeit von 10 m/s bedrucken. Damit ein guter Mehrfarbendruck entsteht, müssen die 2 verschiedenfarbigen Druckbilder stets exakt zueinander positioniert sein. Die beiden Antriebe A und B sind mit Positionsreglern ausgestattet, die über einen gemeinsamen Takt exakt synchron (d. h. gleichzeitig, mit einem maximalen Synchronisierungsfehler von 1 μ s) ihre Positionsregelung mit Zykluszeiten von 250 μ s ausführen. Von einem Regelzyklus zum nächsten, d. h. in 250 μ s, hat sich das Papier um 2500 μ m = 2,5 mm bewegt. Wenn der Antrieb B einen Positions-
sollwert b1 fehlerhaft um einen Regelzyklus ver-
spätet, zum Zeitpunkt t2, erhielte, so würde sich dies in
einer fehlerhaften Druckbildabweichung von 2,5 mm
bemerkbar machen.

Die Übertragung der Positionssollwerte muß sich also stets im Gleichschritt mit den Synchronisationstakten befinden.

Die Sollwertdatenübertragung muß deshalb in das zeitsynchron arbeitende Antriebsdatennetz eingebunden werden. Die Übertragung von Sollwertdaten zwischen den Antriebssteuerungen über das Antriebsdatennetz wird deshalb mit der Übertragung des globalen Synchronisationstaktes koordiniert.

Die im Antriebsdatennetz übertragenen Sollwertdaten sind bevorzugt Positionssollwerte übergeordneter Leitachsen. Diese Leitachsen existieren nicht unbedingt körperlich, sondern nur rechnerisch. Man spricht dann von virtuellen Leitachsen.

Die Positionswerte von Leitachsen bilden die Basis für Sollwertberechnungen in den Antriebssteuerungen für die einzelnen Antriebe in den verschiedenen Antriebsgruppen. Die Antriebssteuerungen leiten aus der Position von Leitachsen die Sollpositionen von Folgeachsen (d. h. einzelner Antriebe) ab, deren Position sich an bestimmten Leitachsen orientieren soll. Beliebige Antriebe in verschiedenen Antriebsgruppen können sich so an einer vorgegebenen Leitachse orientieren – und im genauen, synchronen Gleichlauf mit der Leitachse betrieben werden.

Die Fig. 3 bis 9 zeigen verschiedene Konzepte für das Antriebsdatennetz 10.

Das Antriebsdatennetz soll eine fehlerfreie Übertragung des globalen Synchronisationstaktes an die Antriebssteuerungen bereitstellen. Fehlerfrei bedeutet dabei, daß der Synchronisationstakt ein möglichst geringes zeitliches Zittern (Jitter) aufweist, wie es durch zeitdiskrete Signalabtastung oder variable Signallaufzeiten entsteht.

Das Antriebsdatennetz soll eine synchrone Sollwertdatenübertragung zwischen den Antriebssteuerungen ermöglichen. Jede Antriebssteuerung muß Sollwertdaten an alle anderen Antriebssteuerungen im Antriebssystem senden können. Es wird also eine synchrone Datenkommunikation benötigt, die den Datenaustausch zwischen beliebigen Teilnehmern ermöglicht und das Senden von Datentelegrammen an mehrere Teilnehmer (Multicast) oder an alle Teilnehmer erlaubt (Broadcast).

Da das Antriebsdatennetz das Rückgrad der Kommunikation im Antriebssystem darstellt, sind hohe Anforderungen an seine Zuverlässigkeit und Verfügbarkeit gestellt. Besonders in großen Antriebssystemen mit einer Vielzahl von Antrieben sind redundante Ausführungen des Antriebsdatennetzes gefordert.

Folgende Konzepte sind realisierbar:

A) Gemeinsame oder getrennte Übertragung von Takt und Daten:

(A1) Übertragung von Synchronisationstakt und Sollwertdaten über dieselben Leitungen, (Fig. 3 u. 4)

(A2) Übertragung von Synchronisationstakt und Sollwertdaten über getrennte Leitungen (Fig. 5 u. 6).

B) Optoelektronische oder elektronische Datenübertragung:

(B1) Optoelektronische Signalübertragung, bevorzugt über Glasfaser,

(B2) Elektronische Signalübertragung, bevorzugt über Koaxialkabel.

C) Topologie der Verbindungsleitungen:

(C1) Ringförmige Verbindungsleitungen, bevorzugt für Glasfaser, (Fig. 3, 5, 7, 8, 9)

(C2) Busförmige Verbindungsleitungen, bevorzugt für Koaxialkabel (Fig. 4, 6),

(C3) Sternförmige Verbindungsleitungen, bevorzugt für Glasfaser (Fig. 7 und 9),

D) Redundanz der Verbindungen:

(D1) Einfache Verbindungen, ohne strukturelle Redundanz,

(D2) Redundante Verbindungen.

Fig. 3 zeigt ein Antriebsdatennetz 10 mit ringförmiger Verbindung der Antriebssteuerungen 3, über die sowohl das globale Synchronisationstakt als auch die Sollwertdaten übertragen werden (siehe auch Fig. 2(a)). Diese Lösung eignet sich besonders zur optischen Signalübertragung über Glasfaser. Ein besonderer Vorteil dieser Lösung liegt in der Unempfindlichkeit der Glasfaserverbindung gegenüber elektromagnetischen Störungen.

Fig. 4 zeigt eine Variante mit einem einfachen, busförmigen Antriebsdatennetz 10. Auch hier werden Sollwertdaten und das Synchronisationstakt über dieselbe Leitung übertragen. Diese Lösung eignet sich besonders zur elektronischen Signalübertragung über Koaxialkabel. Ein besonderer Vorteil dieser Lösung liegt in der hohen Synchronisationsgenauigkeit durch geringen Abtastfehler (einmalige Signalabtastung zwischen Sender und Empfänger).

Fig. 5 zeigt eine Variante, bei der das Antriebsdatennetz aus einem ersten Teilnetz 12 und einem zweiten Teilnetz 13 besteht. Über beide Teilnetze werden dieselben Daten, d. h. Sollwertdaten und Synchronisationstakte übertragen. Aufgrund ihrer ringförmigen Struktur eignet sich diese Lösung ebenfalls besonders zur optischen Signalübertragung über Glasfaser. Ein besonderer Vorteil dieser Lösung liegt in der hohen Verfügbarkeit durch große Unempfindlichkeit gegenüber elektromagnetischen Störungen und gegenüber Beschädigungen der Glasfaserkabel. Die Übertragungsrichtung auf den beiden redundanten Teilnetzen oder Ringen 12 und 13 ist vorzugsweise gegenläufig.

Jeder Teilnehmer (Antriebssteuerung 3) sendet seine Daten stets auf beiden gegenläufigen Ringen und wählt beim Empfang eine der beiden Leitungen aus. Wenn ein Teilnehmer auf einer Ringleitung während einer bestimmten, kurzen Zeitspanne keine Daten erhält, so gibt er eine Störmeldung ab und schaltet zum Empfang auf die zweite Ringleitung um. Auf dem einen Ring erfolgt die Datenübertragung im Uhrzeigersinn auf dem zweiten Ring entgegen dem Uhrzeigersinn. Auch bei Durchschneiden beider Glasfaserringe zwischen zwei Teilnehmern (Antriebssteuerungen) ist weiterhin eine Daten-

kommunikation zwischen allen Teilnehmern möglich.

Fig. 6 zeigt eine weitere Variante, bei der zwei busförmige Teilnetze 12 und 13 vorgesehen sind. Über beide Teilnetze werden wiederum sowohl Sollwertdaten als auch Synchronisationstakte übermittelt. Aufgrund der redundanten Busstruktur eignet sich diese Lösung besonders zur elektronischen Signalübertragung über Koaxialkabel. Ein besonderer Vorteil dieser Lösung liegt in der hohen Synchronisationsgenauigkeit durch geringen Abtastfehler (einmalige Signalabtastung zwischen Sender und Empfänger) und in der hohen Verfügbarkeit durch Tolerieren des Ausfalls einer Busleitung.

Jeder Teilnehmer (Antriebssteuerung) sendet seine Daten stets auf beiden Busleitungen und wählt beim Empfang eine der beiden Busleitungen aus. Wenn ein Teilnehmer auf einer Busleitung während einer bestimmten, kurzen Zeitspanne keine Daten erhält, so gibt er eine Störmeldung ab und schaltet zum Empfang auf die zweite Busleitung um. Bei Beschädigung der einen Busleitung kann die Datenübertragung weiterhin ungestört über die zweite Busleitung erfolgen.

Die doppelt geführten Leitungen in Form der Teilnetze 12 und 13 nach den Fig. 5 und 6 kann auch zur getrennten Übertragung von Sollwertdaten und des Synchronisationstaktes verwendet werden (siehe auch Fig. 2(b) und 2(c)). Ein besonderer Vorteil der getrennten Leitungen für die Übertragung von Synchronisationstakt und Sollwertdaten liegt in der Spezialisierungsmöglichkeit des Übertragungssystems für den globalen Synchronisationstakt (Signalformen, Abtasten, Sende- und Empfangsschaltungen), so daß ein sehr kleiner Synchronisationsfehler entsteht.

Eine weitere Variante ist in Fig. 7 dargestellt. Hier ist ein Teilnetz 13 zur Übertragung von Sollwertdaten ringförmig ausgebildet, während eine sternförmige Verbindung 12 zur Übertragung des Synchronisationstaktes zu einem globalen Synchronisationstaktgeber 11 vorgesehen ist (siehe auch Fig. 2(b1) und 2(b2)). Ein besonderer Vorteil der sternförmigen Übertragung des Synchronisationstaktes liegt in der hohen Synchronisationsgenauigkeit durch geringen Abtastfehler (einmalige Signalabtastung zwischen Sender und Empfänger).

Nach Fig. 8 können schließlich auch die für Sollwertdaten und Synchronisationstakte geeigneten Teilnetze redundant ausgeführt werden. Diese Lösung vereinigt die Vorteile der hohen Verfügbarkeit durch Redundanz mit denen der guten Synchronisationsgenauigkeit durch getrennte Übertragung von Synchronisationstakt und Sollwertdaten.

Dasselbe läßt sich auch für eine sternförmige Übertragung des Synchronisationstaktes realisieren. Zu diesem Zwecke müssen auch die Synchronisationstaktgeber 11 redundant ausgeführt werden (Fig. 9). Diese Lösung vereinigt die Vorteile der hohen Verfügbarkeit durch Redundanz mit denen der guten Synchronisationsgenauigkeit durch getrennte Übertragung von Synchronisationstakt und Sollwertdaten.

Jede Antriebssteuerung ist bevorzugt mit einem Taktgenerator zur Erzeugung des globalen Synchronisationstaktes ausgerüstet. Durch eine bestimmte Logik wird definiert, welche Antriebssteuerung den Vortritt beim Senden des globalen Synchronisationstaktes hat. Bei allen nachrangigen Teilnehmern am Antriebsdatennetz wird dann auf den gesendeten Synchronisationstakt gehört und die dortigen Taktgeneratoren senden keinen Synchronisationstakt.

Die Vortrittsregelung erfolgt bevorzugt so, daß ein bestimmter Teilnehmer im Normalfall stets den globalen

Synchronisationstakt sendet. Bei Ausfall (Schweigen) des erstrangigen Teilnehmers springt ein bestimmter anderer Teilnehmer ein, der auf Rang 2 in der Vortrittsliste programmiert ist. Bei Ausfall (Schweigen) des zweitrangigen Teilnehmers übernimmt ein 3. Teilnehmer das Senden des globalen Synchronisationstakts, usw.

Eine andere bevorzugte Lösung basiert auf dem regelmäßigen Durchlaufen der Vorrangliste, so daß jeder Teilnehmer jeweils für eine bestimmte, feste Zeitdauer den globalen Synchronisationstakt sendet und dann an den nächsten Teilnehmer ab gibt, der seinerseits für eine bestimmte, feste Zeitdauer den Synchronisationstakt sendet, usw. Nachdem der letzte Teilnehmer der Vorrangliste eine bestimmte, feste Zeit den globalen Synchronisationstakt gesendet hat, übernimmt wieder der erstrangige Teilnehmer das Senden des Takts, usw.

Die Taktgeneratoren für den globalen Synchronisationstakt können im Sonderfall auch außerhalb der Antriebssteuerungen in besonderen Stationen angeordnet sein. Dies ist besonders bei kostengünstigen Lösungen sinnvoll, die sich auf einen oder zwei Taktgeneratoren beschränken. In diesem Fall brauchen die Antriebssteuerungen nicht mit eigenen Taktgeneratoren für den globalen Takt ausgerüstet zu werden.

Der globale Synchronisationstakt T_G erfolgt vorzugsweise nach dem SERCOS-Standard (Fig. 2a). Die Taktperiode beträgt bevorzugt $62 \mu s$, $125 \mu s$, $250 \mu s$, $500 \mu s$, $1 ms$, $2 ms$, $3 ms$, ..., $63 ms$, $64 ms$ oder $65 ms$. Zykluszeiten von mehreren ms sind — gemessen an den schnellen Verarbeitungszeiten und Datenübertragungszeiten eines digitalen Antriebssystems — ein relativ langer zeitlicher Abstand.

Um ein zeitliches Auseinanderdriften der einzelnen Antriebssteuerungen (auf Grund der Ungenauigkeiten der lokalen Taktgeneratoren/Quarze) während der Datenübertragungszyklen zu verringern, ist es sinnvoll, die globale Synchronisation im Antriebsdatennetz durch zusätzliche Nebentakte in kleineren Zeitabständen zu verbessern.

Der globale Synchronisationstakt T_G wird deshalb bevorzugt durch eine Takthierarchie realisiert, die aus einem Haupttakt T_{GH} und untergeordneten Nebentakten T_{GN} besteht (siehe Fig. 10).

Eine zweistufige Takthierarchie besteht beispielsweise aus einem Haupttakt T_{GH} , der im festen Abstand von $4 ms$ gesendet wird und 15 Nebentakten T_{GN} , die jeweils zwischen 2 Haupttakten im festen Zeitabstand von $250 \mu s$ gesendet werden. Es sind aber auch mehrstufige Takthierarchien anwendbar (3-stufige, 4-stufige, ...).

Die Übertragung der Sollwertdaten ($S_1 \dots S_N$) über das Antriebsdatennetz erfolgt bevorzugt zeitgesteuert und zyklisch mit festen Sendezeitfenstern für jeden Teilnehmer (Time-Division Multiple-Access) (siehe Fig. 2 und 10).

Die zeitliche Steuerung wird durch den globalen Synchronisationstakt T_G gegeben. Der Datenübertragungszyklus, in dem alle Antriebssteuerungen im Antriebsdatennetz Gelegenheit zum Senden erhalten, orientiert sich an der Zykluszeit z. B. des SERCOS-Standard und liegt bevorzugt in der Größenordnung von $1 ms$. Jede Antriebssteuerung (jeder Teilnehmer) hat ein oder mehrere Zeitfenster in jedem Übertragungszyklus, in denen sie ihre Telegramme und die darin enthaltenen Sollwertdaten senden kann.

Die zeitgesteuerte Datenübertragung ist der Forderung angemessen, daß ein kontinuierlicher Datenstrom von Sollwertdaten zu übertragen ist, der sich stets im Gleichschritt mit dem globalen Synchronisationstakt

befinden muß. Die zeitgesteuerte, zyklische Datenübertragung im Time-Division Multiple-Access wird demzufolge bevorzugt kombiniert mit der Verwendung einer Takthierarchie für den globalen Synchronisationstakt, bestehend aus Haupttakt T_{GH} und Nebentakten T_{GN} .

Die Sollwertdatenübertragungen über das Antriebsdatennetz, die Sollwertberechnungen in den Antriebssteuerungen, die Sollwertdatenübertragungen in den Antriebsbussen und die Regelungen in den Antrieben erfolgen bevorzugt synchron und zyklisch (im Pipelining).

Das gesamte Antriebssystem arbeitet zyklisch und synchron. Dies gilt für die übergeordnete Datenübertragung über das Antriebsdatennetz, die Sollwertberechnungen in den Antriebssteuerungen der einzelnen Antriebsgruppen, die Datenübertragungen in den Antriebsbussen der einzelnen Antriebsgruppen und die Regelungsvorgänge in den Antriebsreglern der einzelnen Antriebe. Die Schritte in der Sollwertberechnung und Sollwertdatenübertragung werden im Pipelining ausgeführt — und dabei über den globalen Takt synchronisiert (siehe Fig. 11 und 12).

Jede einzelne Funktionseinheit führt ihre Funktion zyklisch aus. Die Datenübertragungen im Antriebsdatennetz, die Sollwertberechnungen in den einzelnen Antriebssteuerungen, die Datenübertragungen in den einzelnen Antriebsbussen und die Positionsregelungen in den einzelnen Antrieben erfolgen jeweils zyklisch und sind — über den systemweiten Synchronisationstakt — miteinander synchronisiert (im Gleichschritt).

Im folgenden sind die Schritte der Sollwertberechnung und Sollwertdatenübertragung für eine einstufige Leitachsenhierarchie angegeben (Fig. 11):

- (a) Berechnung von Leitachsensollwerten in Antriebssteuerungen
 - (b) Datenübertragung der Leitachsensollwerte über das Antriebsdatennetz
 - (c) Berechnung von Folgeachsensollwerten in den Antriebssteuerungen
 - (d) Datenübertragung von Folgeachsensollwerten über die Antriebsbusse
 - (e) Durchführung von Positionsregelungen in den einzelnen Antrieben
- Die Schritte (d) und (e) entsprechen dabei dem bekannten Vorgehen in Antriebssystemen mit einem Antriebsbus nach dem eingangs erwähnten SERCOS-Standard.

Bei einer zweistufigen Leitachsenhierarchie wird der Ablauf entsprechend erweitert. Im folgenden sind die Schritte der Sollwertberechnung und Datenübertragung für eine zweistufige Leitachsenhierarchie angegeben (Fig. 12):

- (a) Berechnung von Hauptleitachsensollwerten in Antriebssteuerungen
- (b) Datenübertragung der Hauptleitachsensollwerte über das Antriebsdatennetz
- (c) Berechnung von Leitachsensollwerten in den Antriebssteuerungen
- (d) Datenübertragung von Leitachsensollwerten über das Antriebsdatennetz
- (e) Berechnung von Folgeachsensollwerten in den Antriebssteuerungen
- (f) Datenübertragung von Folgeachsensollwerten über die Antriebsbusse
- (g) Durchführung von Positionsregelungen in den

einzelnen Antrieben

Die Schritte (f) und (g) entsprechen wiederum dem bekannten Vorgehen in Antriebssystemen mit einem Antriebsbus nach dem SERCOS-Standard.

- 5 Im bevorzugten Fall sind die Zykluszeiten der Datenübertragung im Antriebsdatennetz, der Sollwertberechnung in den Antriebssteuerungen und der Datenübertragung in den Antriebsbussen gleich.
- 10 10 Die Zykluszeiten für die einzelnen Verarbeitungs- und Datenübertragungsschritte in den Antriebssteuerungen und im Antriebsdatennetz sind vorzugsweise an die Zykluszeiten des SERCOS-Standard angepaßt — und liegen deshalb vorzugsweise in der Größenordnung von 1 ms (ca. 100 µs bis ca. 10 ms).

15 Es ist bekannt, daß die Zykluszeiten der Antriebsregler vorzugsweise kürzer sind als die Zykluszeiten der Datenübertragung auf dem Antriebsbus. Durch die kürzeren Zykluszeiten haben die Antriebsregler eine bessere Regeldynamik und eine bessere dynamische Regelgenauigkeit. Die Verarbeitungszyklen in den einzelnen Antriebsreglern liegen typisch im Bereich von 250 µs.

20 20 Die Antriebsregler führen deshalb — bekanntermaßen — eine Interpolation der von der Antriebssteuerung vorgegebenen Sollwerte durch, so daß Zwischenwerte für die Regelung vorliegen. Zum Beispiel bei einer Zykluszeit der Sollwertübertragung von 1 ms und einer Zykluszeit für die Lageregelung im Antriebsregler von 250 µs werden jeweils 3 Zwischenwerte des Positions-

30 sollwertes durch Interpolation im Antriebsregler ermittelt.

Bei der Funktionsausführung im Antriebssystem arbeiten die einzelnen Funktionseinheiten — Antriebssteuerungen, Antriebsdatennetz, Antriebsbusse und Antriebsregler — jeweils nacheinander an den Daten eines bestimmten Datensatzes. Die Daten eines Datensatzes werden so schrittweise nach dem vorgegebenen Synchronisationstakt durch die Pipeline geschoben.

Beispiel mit einstufiger Leitachsenhierarchie (Fig. 11):

40 40 Im Taktzyklus 1 (Fig. 11(a)) berechnet die Antriebssteuerung A die Leitachsensollwerte für den Datensatz D 1. Im Taktzyklus 2 (Fig. 1) werden die Leitachsensollwerte des Datensatz D1 über das Antriebsdatennetz übertragen. Im Taktzyklus 3 (Fig. 11(c)) berechnen die Antriebssteuerungen A, B, C aus den gelieferten Leitachsensollwerten die entsprechenden Folgeachsensollwerte für den Datensatz D 1. Im Taktzyklus 4 (Fig. 11(d)) werden die Folgeachsensollwerte des Datensatzes D1 über die Antriebsbusse übertragen.

45 45 Die Durchlaufzeit durch die Pipeline — bis zur Anlieferung der Sollwerte an die Antriebsregler — beträgt, zum Beispiel, bei einer einstufigen Leitachsenhierarchie 4 Zykluszeiten (Fig. 11) und bei der zweistufigen Leitachsenhierarchie 6 Zykluszeiten (Fig. 12).

50 50 Von Taktzyklus zu Taktzyklus bearbeitet eine Funktionseinheit aufeinanderfolgende Datensätze. Zum Beispiel (Fig. 11) überträgt das Antriebsdatennetz im Zyklus 2 die Leitachsensollwerte des Datensatzes D1 und im folgenden Zyklus 3 die Leitachsensollwerte des Datensatzes D2.

Zu einem Zeitpunkt, d. h. in einem Takt, arbeiten die verschiedenen Funktionseinheiten der Pipeline an verschiedenen Datensätzen.

55 55 Zum Beispiel (Fig. 11): Im Taktzyklus 4 (Fig. 11(d)) berechnet die Antriebssteuerung A die Leitachsensollwerte des Datensatzes D4, das Antriebsdatennetz überträgt die Leitachsensollwerte des Datensatzes D3, die

Antriebssteuerungen A, B und C berechnen die Folgeachsensollwerte des Datensatzes D2 und über die Antriebsbusse werden die Folgeachsensollwerte des Datensatzes D1 übertragen.

Aus dem Beispiel wird deutlich, daß Antriebssteuerungen in einem Zyklus Aufgaben von verschiedenen Stufen der Pipeline ausführen können, nämlich die Berechnung von Leitachsensollwerten und von Folgeachsensollwerten.

Zum Beispiel (Fig. 11): Die Antriebssteuerung A berechnet im Zyklus 4 (Fig. 11(d)) die Leitachsensollwerte des Datensatzes D4 und die Folgeachsensollwerte des Datensatzes D2.

Es kann unter Umständen sinnvoll sein, die angegebene Schrittfolge der Sollwertberechnung und Sollwertdatenübertragung im Pipelining durch Zusammenfassung mehrerer Schritte zu jeweils einem Bearbeitungsschritt zu vereinfachen und zu verkürzen.

So kann es vorteilhaft sein, jeweils die Sollwertberechnung und -übertragung (einer Hierarchieebene) zu einem Bearbeitungsschritt in der Pipeline zu verschmelzen. Beispielsweise bei einer zweistufigen Leitachsenhierarchie (Fig. 12) können so die Schritte (a) und (b) zu einem Schritt I, die Schritte (c) und (d) zu einem Schritt II und die Schritte (e) und (f) zu einem Schritt III zusammengefaßt werden.

Auf diese Weise werden einzelne Bearbeitungsschritte in der Pipeline umfangreicher, aber die Anzahl der Bearbeitungsschritte in der Pipeline wird verringert.

Bei der Berechnung der Leitachsenpositionen und der Folgeachsenpositionen in den Antriebssteuerungen und bei der Datenübertragung über das Antriebsdatennetz und über die Antriebsbusse wird die zeitliche Konsistenz (Gleichzeitigkeit) der Sollwertdaten für die Einzelantriebe sichergestellt (siehe Fig. 11).

Es ist entscheidend für die korrekte Funktion des Antriebssystems, daß alle Antriebe, deren Position sich an einer gemeinsamen Leitachse (oder Hauptleitachse) orientiert, ihre Sollwertdaten synchron (gleichzeitig, im Gleichschritt, im gleichen Zyklus) erhalten.

Die zeitliche Konsistenz der Lieferung von Sollwertdaten an die im Gleichlauf betriebenen Antriebe muß stets eingehalten werden. Zeitliche Konsistenz bedeutet, daß alle im Gleichlauf betriebenen Antriebe die Daten eines bestimmten Datensatzes gleichzeitig, d. h. im gleichen Zyklus, erhalten.

Im Beispiel der Fig. 11 erhalten die einzelnen Antriebsregler im Zyklus 5 die Folgeachsensollwerte des Datensatzes D1, im Zyklus 6 die Folgeachsensollwerte des Datensatzes D2, usw.

Aus der Forderung nach strenger Zeitkonsistenz folgt, daß der feste Rhythmus des Pipelining immer konsequent einzuhalten ist.

Zeitliche Konsistenz der Lieferung von Sollwertdaten bedeutet beispielsweise, daß die Sollwertdaten für einen einzelnen Antrieb, der sich direkt an der (virtuellen) Leitachse orientiert, gleichzeitig, d. h. im gleichen Zyklus, mit den Sollwertdaten für alle anderen Antriebe (Folgeachsen), welche sich an der gleichen Leitachse orientieren, an den Antrieb zu liefern sind.

Obwohl bei dem Antrieb, der sich die direkt an der (virtuellen) Leitachse orientiert, eine Berechnung von Folgeachsensollwerten nicht erforderlich ist, ist es nicht sinnvoll die Sollwertdaten bereits früher (sofort) an diesen Antrieb zu liefern, da dies zu einer zeitlichen Inkonsistenz führen würde.

Bei einer einstufigen Leitachsenhierarchie sind also die Sollwertdaten des Datensatzes D1 für einen Antrieb,

der sich direkt an der (virtuellen) Leitachse orientiert, im Gleichschritt mit den Sollwertdaten der anderen Antriebe (Folgeachsen), die sich an der gleichen Leitachse orientieren, erst im Zyklus 4 über den Antriebsbus zu liefern. Eine frühere Lieferung der Sollwertdaten des Datensatzes D1 an den Antrieb, der sich direkt an der (virtuellen) Leitachse orientiert, z. B. im Zyklus 2, wäre fehlerhaft.

Entsprechendes gilt bei einer mehrstufigen Leitachsenhierarchie für einzelne Antriebe, die sich direkt an einer (virtuellen) Hauptleitachse orientieren (Fig. 12). Obwohl eine Berechnung von Leitachsensollwerten und Folgeachsensollwerten für einen Antrieb, der sich direkt an der Hauptleitachse orientiert, nicht erforderlich ist, ist eine frühere Lieferung der Sollwertdaten über den Antriebsbus an diesen Antrieb nicht sinnvoll.

Bei einer zweistufigen Leitachsenhierarchie (Fig. 12) sind die Sollwerte des Datensatzes D1 für einen Antrieb, der sich direkt an der (virtuellen) Hauptleitachse orientiert, im Gleichschritt mit den Sollwerten für alle anderen Antriebe (Folgeachsen), welche sich an der gleichen Hauptleitachse orientieren, d. h. im Zyklus 6, über den Antriebsbus an den Antrieb zu liefern.

Die Forderung nach zeitlicher Konsistenz der Lieferung der Sollwertdaten an die einzelnen Antriebe ist auch bezüglich der Sollwertdatenübertragungen stets einzuhalten. Zum Beispiel (Fig. 11) berechnen die Antriebssteuerungen A, B und C im Zyklus 3 die Folgeachsensollwerte des Datensatzes D1. Die Folgeachsensollwerte D1 werden aus den Leitachsensollwerten D1 berechnet.

Da die Leitachsensollwerte in der Antriebssteuerung A errechnet werden, könnte die Antriebssteuerung A bereits im Zyklus 2 die Folgeachsensollwerte D1 berechnen. Eine Datenübertragung der Leitachsensollwerte von A nach A über das Antriebsdatennetz ist ja nicht notwendig.

Die frühere Berechnung der Folgeachsensollwerte zum Datensatz D1 in der Antriebssteuerung A würde jedoch zu einer zeitlichen Inkonsistenz mit der Berechnung der Folgeachsensollwerte des Datensatzes D1 in den Antriebssteuerungen B und C führen, die erst im Zyklus 3 erfolgen kann.

Aus Gründen der zeitlichen Konsistenz der Daten, ist es deshalb sinnvoll, die Berechnung der Folgeachsensollwerte in der Antriebssteuerung A im Gleichschritt, d. h. im genau gleichen Zyklus, wie in den Antriebssteuerungen B und C durchzuführen — obwohl die Leitachsensollwerte in der Antriebssteuerung A bereits einen Zyklus früher vorliegen, da eine Datenübertragung über das Antriebsdatennetz (von A nach A) nicht notwendig ist.

Vorzugsweise berechnen die Antriebssteuerungen die Positionssollwerte für (virtuelle) Hauptleitachsen und (virtuelle) Leitachsen und berechnen aus Leitachsenpositionen die Position von Folgeachsen.

Die Berechnung der Positionssollwerte für die Leitachse erfolgt vorzugsweise durch Integration von Geschwindigkeitssollwerten, die von der übergeordneten Steuerung der Funktionseinheit geliefert werden (Leitachsenposition = Integral über Leitachsengeschwindigkeit).

Auf diese Weise wird die Position einer virtuellen (in der Realität nicht körperlich existierenden) Leitachse berechnet. Eine derartige virtuelle Leitachse hat den Vorteil, daß mechanische Ungenauigkeiten und Meßfehler des Positionsgebers sowie Rauschprobleme des Signals vermieden werden.

Der Vorteil der Berechnung der Leitachsenposition durch die Antriebssteuerung liegt darin, daß die Vorgaben, typisch die gewünschte Leitachsengeschwindigkeit, von der übergeordneten Steuerung der Funktionseinheit bereitgestellt wird.

Die Position der Leitachse kann (in Sonderfällen) auch von einem Positiongeber geliefert werden, der auf einer mechanischen Achse angebracht ist und die Position dieser Achse übermittelt.

Ein Beispiel für eine mechanische Leitachse in der Drucktechnik ist in der eingangs genannten Schrift DE 42 14 394 A1 angegeben. Dort orientiert sich die Position der einzeln angetriebenen Druckzylinder (Folgeachsen) direkt an der Position der Achse des Falzapparates (Leitachse).

Die Ableitung der Position der Folgeachse aus der Position einer (virtuellen) Leitachse besteht vorzugsweise aus der Berücksichtigung von Positions korrekturwerten oder Geschwindigkeitskorrekturwerten.

Die Berechnung des Folgeachsensollwertes für einen einzelnen Antrieb besteht im einfachsten Fall aus der Addition des Leitachsensollwertes und eines für den einzelnen Antrieb spezifischen Positions korrekturwertes (Folgeachsenposition = Leitachsenposition + Positions korrektur).

Die gewünschte Positions korrektur für den einzelnen Antrieb wird dabei von der übergeordneten Steuerung an die Antriebssteuerung übergeben. Die Position der Folgeachse wird dann um die vorgegebene Positions korrektur von der Position der (virtuellen) Leitachse abweichen.

Der Positions korrekturwert kann auch durch Integration eines Geschwindigkeitswertes (Geschwindigkeits korrektur) gebildet werden. In diesem Fall wird die Geschwindigkeit der Folgeachse um die vorgegebene Geschwindigkeitskorrektur von der Geschwindigkeit der (virtuellen) Leitachse abweichen (Folgeachsengeschwindigkeit = Leitachsengeschwindigkeit + Geschwindigkeitskorrektur).

Die Geschwindigkeitskorrektur wird bevorzugt so gewählt, daß die Geschwindigkeitskorrektur für die Folgeachse proportional zur Geschwindigkeit der Leitachse ist. Der Geschwindigkeitskorrekturwert für die Folgeachse wird dabei durch Multiplikation der Leitachsengeschwindigkeit mit einem Übersetzungsverhältnis (Getriebefaktor) berechnet (Geschwindigkeitskorrektur = Leitachsengeschwindigkeit • Getriebefaktor).

Ein Getriebefaktor ist eine rationale Zahl, die durch Division zweier ganzer Zahlen (Zahnverhältnis zweier Zahnräder) gebildet wird, und das Übersetzungsverhältnis eines Getriebes beschreibt. Auf diese Weise wird die Funktion eines mechanischen Getriebes (Differentialgetriebes) nachgebildet.

Es kann Hierarchien von Leitachsen geben, so daß sich die Position einer oder mehrerer (virtueller) Leitachsen an einer (virtuellen) Hauptleitachse orientiert. Es können zu einem Zeitpunkt mehrere (virtuelle) Leitachsen und mehrere (virtuelle) Hauptleitachsen gleichzeitig existieren.

Falls in einem Antriebssystem zu einem Zeitpunkt mehrere (virtuelle) Leitachsen vorhanden sind, liefert eine Leitachse die Positionsreferenz für eine Anzahl von einzelnen Antrieben, die zu verschiedenen Antriebsgruppen gehören können.

In einem Antriebssystem kann es eine Hierarchie von (virtuellen) Leitachsen geben. Zum Beispiel kann es (virtuelle) Hauptleitachsen und (virtuelle) Leitachsen geben, so daß die Position mehrerer Leitachsen von der

Position einer Hauptleitachse abgeleitet wird. Es kann zu einem Zeitpunkt mehrere Hauptleitachsen geben. Je de Hauptleitachse liefert dabei die Positionsreferenz für eine Anzahl Leitachsen.

5 Es sind auch mehrstufige Leitachsenhierarchien anwendbar (3-stufige, 4-stufige, ...).

Die Vorgabe von Leitachsen (und Hauptleitachsen) und die Orientierung von Einzelantrieben an Leitachsen kann dynamisch erfolgen — nach den wechselnden Anforderungen flexibler Produktion in industriellen Produktionsanlagen.

10 Es können auf flexible Weise Produktionsgruppen gebildet werden, die mehrere Antriebe aus einer oder mehreren Antriebsgruppen umfassen, welche im genau en Gleichlauf betrieben werden können und sich dabei an der Position einer (virtuellen) Leitachse orientieren.

15 Es kann Hierarchien von Produktionsgruppen geben, so daß mehrere Produktionsgruppen zu einer Produktions hauptgruppe gehören und sich die Position der (virtuellen) Leitachsen an der Position einer (virtuellen) Hauptleitachse orientiert.

20 Es kann zu einem Zeitpunkt im Antriebssystem gleichzeitig mehrere Produktionsgruppen und mehrere Produktionshauptgruppen geben.

25 Eine Anzahl von Einzelantrieben kann für die Dauer eines Produktionslaufs, zu einer Produktionsgruppe zusammengeschaltet werden, indem sich die Einzelantriebe für die Dauer des Produktionslaufs an einer vorgegebenen (virtuellen) Leitachse orientieren. Nach Abschluß des Produktionslaufs können die Einzelantriebe in neu und anders konfigurierte Produktionsgruppen eingebunden werden.

30 Zu einem Zeitpunkt können im Antriebssystem mehrere Produktionsgruppen bestehen. Jede Produktionsgruppe besteht aus einer Anzahl von Antrieben, deren Position sich an einer bestimmten (virtuellen) Leitachse orientiert.

35 Mehrere Produktionsgruppen können für die Dauer eines Produktionslaufs zu einer Produktionshauptgruppe zusammengeschaltet werden, indem sich die Leitachsen der Produktionsgruppen für die Dauer des Produktionslaufs an einer vorgegebenen (virtuellen) Hauptleitachse orientieren. Nach Ablauf des Produktionslaufs können die Leitachsen und die Einzelantriebe in neu und unterschiedlich konfigurierte Produktionshauptgruppen und Produktionsgruppen eingebunden werden.

40 Zu einem Zeitpunkt können im Antriebssystem mehrere Produktionshauptgruppen bestehen. Jede Produktionshauptgruppe enthält eine Menge von (virtuellen) Leitachsen, deren Position sich an einer bestimmten (virtuellen) Hauptleitachse orientiert.

45 Es sind auch mehrstufige Hierarchien von Produktionsgruppen anwendbar (3-stufige, 4-stufige, ...).

50 Die Bildung von Produktionsgruppen und Produktionshauptgruppen ist variabel und erfolgt jeweils für eine bestimmte Zeitdauer, z. B. für die Dauer eines bestimmten Produktionslaufs.

55 Ein Beispiel:
In Zeitungsdruckereien wird in einem Produktionslauf eine bestimmte Produktionsmenge (Auflage) von gleichartigen Zeitungsprodukten (Zeitungsausgabe) hergestellt. Zeitungsausgaben haben einen bestimmten Umfang (Seitenzahl) und eine bestimmte Farbigkeit der einzelnen Seiten. Unterschiedliche Zeitungsausgaben können verschiedene Umfänge und verschiedenen Farbigkeiten der einzelnen Seiten haben.

60 Zeitungen werden durch Bedrucken mehrerer Papierbahnen hergestellt. Die Anzahl der Papierbahnen ist

abhängig vom Umfang (Seitenzahl) der jeweiligen Zeitungsausgabe.

Jede Papierbahn wird durch mehrere Druckzylinder bedruckt. Die Anzahl der Druckzylinder, die verwendeten Druckzylinder und ihre Reihenfolge sind abhängig von der Farbigkeit der Zeitungsseiten, die sich auf der Vorderseite und der Rückseite der jeweiligen Papierbahn befinden.

Nach dem Bedrucken werden die Papierbahnen zusammengeführt und dann in einem Falzapparat zu fertigen Zeitungen gefaltet und geschnitten.

Im vorliegenden Beispiel wird jeder einzelne Druckzylinder durch einen einzelnen Antrieb bewegt. Eine Druckeinheit enthält 6 Druckzylinder mit jeweils eigenen Antrieb. Die Antriebe einer Druckeinheit bilden eine Antriebsgruppe (mit gemeinsamem Antriebsbus und gemeinsamer Antriebssteuerung). Der Falzapparat enthält 2 Falzzylinder. Die Antriebe des Falzapparats bilden eine eigene Antriebsgruppe (mit gemeinsamem Antriebsbus und gemeinsamer Antriebssteuerung).

In einem Produktionslauf P1 wird eine Produktionsmenge von 100'000 Exemplaren der Zeitungsausgabe Z1 hergestellt. Die Zeitungsausgabe Z1 wird durch Bedrucken von 2 Papierbahnen hergestellt. Die Papierbahn B1 wird von 8 Druckzylindern bedruckt, je 4 Druckzylinder mit unterschiedlichen Farben auf jeder Seite des Papiers (4/4). Die Papierbahn B2 wird von 4 Druckzylindern bedruckt, 2 auf der Vorderseite der Bahn, 2 auf der Rückseite (2/2). Nach dem Bedrucken werden die Papierbahnen deckungsgleich übereinander geführt und in einem Falzapparat gefaltet und geschnitten. Der Falzapparat enthält 2 Falzzylinder.

Für die Dauer des Produktionslaufes P1 gehören alle 14 an der Produktion beteiligten Antriebe zu einer Produktionshauptgruppe. Die Produktionshauptgruppe beinhaltet 2 Produktionsgruppen. Die auf die Bahn B1 wirkenden 8 Antriebe bilden eine Produktionsgruppe. Die auf die Bahn B2 wirkenden 4 Antriebe bilden eine zweite Produktionsgruppe. Die 2 Antriebe des Falzapparats gehören direkt zur Produktionshauptgruppe.

Die Position der (virtuellen) Hauptleitachse wird aus der gewünschten Produktionsgeschwindigkeit durch Integration errechnet. Aus der Position der Hauptleitachse wird die Position der (virtuellen) Leitachsen für die einzelnen Bahnen abgeleitet. Aus der Position der Leitachse für eine Bahn wird die Position der Folgeachsen, d. h. der Antriebe der einzelnen auf die Bahn wirkenden Druckzylinder, abgeleitet.

Um während des Produktionslaufs die Lage einer Papierbahn (in Transportrichtung) mit Bezug auf die andere Papierbahn zu verschieben, damit die Papierbahnen deckungsgleich übereinander liegen, muß nur der Positions korrekturwert für die Leitachse der entsprechenden Produktionsgruppe geändert werden.

Um während des Produktionslaufs die Lage des Druckbildes eines Druckzylinders (in Transportrichtung) mit Bezug auf andere Druckzylinder, welche auf die gleiche Bahn wirken, zu verändern, wird der Positions korrekturwert des entsprechenden Antriebs (Folgeachse) entsprechend geändert.

Gleichzeitig zum Produktionslauf P1 kann in der Zeitungldruckerei eine andere Zeitungsausgabe Z2 mit unterschiedlichem Umfang und unterschiedlicher Farbigkeit und verschiedener Auflagenhöhe in einem Produktionslauf P2 gedruckt werden – unter Verwendung der von P1 nicht benötigten Druckzylinder. Nach Abschluß des Produktionslaufs P1 wird eine andere Zeitungsausgabe Z3 in einem weiteren Produktionslauf P3 gedruckt.

Auch für Einrichtearbeiten in der Produktionsanlage, z. B. zum Einziehen einer Papierbahn durch Druckeinheiten, können im Antriebssystem temporär entsprechende Produktionsgruppen gebildet werden. Die Bildung von Produktionsgruppen ist dynamisch in dem Sinne, daß während des Betriebs die Zuordnung von Folgeachsen zu Leitachsen geändert werden kann.

Bezugszeichenliste

- 1 Antriebssystem
- 2 Antriebsgruppe
- 3 Antriebssteuerung
- 4 Antrieb
- 5 Motor
- 6 Antriebsregler
- 7 Leistungselektronikschaltung
- 8 Antriebsbus
- 9 Steuereinheit
- 10 Antriebsdatennetz
- 11 Synchronisationstaktgeber
- 12 Teilnetz 1
- 13 Teilnetz 2
- S₁...S_N Sollwertdaten
- T_G globaler Synchronisationstakt
- T_L lokaler Synchronisationstakt
- T_{GH} globaler Synchronisationshaupttakt
- T_{GN} globaler Synchronisationsnebentakt
- D₁...D₇ Datensätze

Patentansprüche

1. Verfahren zum Betrieb eines Antriebssystems (1), das mindestens zwei Antriebsgruppen (2) umfaßt, wobei jede Antriebsgruppe (2) eine Antriebssteuerung (3) und mindestens einen Antrieb (4) umfaßt, wobei ein Antrieb mindestens einen Motor (5) und einen Antriebsregler (6) umfaßt und die Antriebsregler einer Antriebsgruppe über einen Antriebsbus (8) untereinander und die Antriebssteuerungen (3) mit übergeordneten Steuereinheiten (9) verbunden sind, und wobei die Antriebssteuerungen (3) der Antriebsgruppen (2) über ein eigenes Antriebsdatennetz (10) untereinander verbunden sind und die Antriebsregler (6) einer Antriebsgruppe (2) mittels eines lokalen, insbesondere in der Antriebssteuerung (3) erzeugten, über den Antriebsbus (8) übertragenen Synchronisationstaktes (T_L) synchronisiert werden; dadurch gekennzeichnet, daß
 - (a) die lokalen Synchronisationstakte (T_L) über das Antriebsdatennetz (10) an einen globalen Synchronisationstakt (T_G) angeglichen werden;
 - (b) für die Antriebsgruppen bestimmte Sollwertdaten (S₁...S_N) nach Massgabe des globalen Synchronisationstaktes (T_G) zwischen den Antriebssteuerungen (3) der Antriebsgruppen (2) übertragen werden;
 - (c) die über das Antriebsdatennetz (10) übertragenen Sollwertdaten (S₁...S_N) Sollwerte von Leitachsen und/oder Folgeachsen enthalten;
 - (d) die Sollwerte von Leitachsen und/oder Folgeachsen zeitlich konsistent berechnet und/oder über das Antriebsdatennetz (10) übertragen werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die über das Antriebsdatennetz (10)

- übertragenen Sollwertdaten ($S_1 \dots S_N$) Positionsangaben von Leitachsen, insbesondere von virtuellen Leitachsen, enthalten.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Sollwerte ($S_1 \dots S_N$) der Antriebsgruppen (2) nach Massgabe eines Positionswertes einer oder mehrerer virtueller Leitachsen in den Antriebssteuerungen (3) berechnet werden. 5
 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mehrere Antriebssteuerungen (3) zur Bildung des globalen Synchronisationstaktes (T_G) ausgerüstet sind und daß mittels einer Vorrangsliste bestimmt wird, welche Antriebssteuerung zur Vorgabe des globalen Synchronisationstaktes (T_G) berechtigt ist. 10
 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Vorrangsliste zyklisch durchlaufen wird, so daß der globale Synchronisationstakt (T_G) nacheinander für eine bestimmte Zeitspanne von verschiedenen Antriebssteuerungen (3) erzeugt wird. 15
 6. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein Synchronisationsstaktgeber (11) in das Antriebsdatennetz eingebunden wird, der für die Erzeugung des globalen Synchronisationstaktes (T_G) geeignet ist. 20
 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der globale Synchronisationstakt (T_G) in einen Haupttakt (T_{GH}) und mindestens einen Nebentakt (T_{GN}) unterteilt wird. 25
 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Sollwertdaten ($S_1 \dots S_N$) in festen Zeitfenstern übertragen werden. 30
 9. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Positionswerte der virtuellen Leitachsen durch Integration von vorgegebenen Geschwindigkeitssollwerten berechnet werden. 35
 10. Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß die Sollwertdaten ($S_1 \dots S_N$) synchron und zyklisch über das Antriebsdatennetz (10) bzw. 40 den Antriebsbus (8) übertragen werden, daß die Sollwerte synchron und zyklisch in den Antriebssteuerungen (3) berechnet werden und daß die Antriebe (4) synchron und zyklisch geregelt werden.
 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Hierarchien von Hauptleitachsen und Leitachsen gebildet werden, so daß die Sollwertdaten einer oder mehrerer Leitachsen aus den Sollwertdaten einer oder mehrerer Hauptleitachsen berechnet werden. 45
 12. Verfahren nach Anspruch 1 und 11, dadurch gekennzeichnet, daß zu einem Zeitpunkt mehrere Leitachsen und/oder Hauptleitachsen gebildet werden. 50
 13. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß durch eine variable Zuordnung von Antrieben (4) zu Leitachsen flexible Produktionsgruppen gebildet werden. 55
 14. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, daß mindestens eine Antriebssteuerung (3) einen Synchronisationstaktgeber (11) zur Bildung des globalen Synchronisationstaktes (T_G) umfaßt. 60
 15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß das Antriebsdatennetz (10) eine ring- oder busförmige Struktur aufweist. 65
 16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß das Antriebsdatennetz (10) ein

- erstes und ein zweites Teilnetz (12 bzw. 13) umfaßt, wobei über das erste Teilnetz (12) der globale Synchronisationstakt (T_G) und über das zweite Teilnetz (13) die Sollwertdaten ($S_1 \dots S_N$) übertragen werden.
17. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß das Antriebsdatennetz ein erstes und ein zweites Teilnetz (12 bzw. 13) umfaßt, wobei in das erste Teilnetz (12) ein globaler Synchronisationstaktgeber (11) eingebunden ist, von welchem sternförmig Datenleitungen zu den Antriebssteuerungen der Antriebsgruppen führen, und das zweite Teilnetz (13) alle Antriebssteuerungen (3) verbindet und eine ring- oder busförmige Form aufweist.
 18. Vorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß das Antriebsdatennetz redundant ausgeführt ist.
 19. Antriebssystem (1), das mindestens zwei Antriebsgruppen (2) umfaßt, wobei jede Antriebsgruppe (2) eine Antriebssteuerung (3) und mindestens einen Antrieb (4) umfaßt, wobei ein Antrieb mindestens einen Motor (5) und einen Antriebsregler (6) umfaßt und die Antriebsregler einer Antriebsgruppe über einen Antriebsbus (8) untereinander und die Antriebssteuerungen (3) mit übergeordneten Steuereinheiten (9) verbunden sind, und wobei die Antriebssteuerungen (3) der Antriebsgruppen (2) über ein eigenes Antriebsdatennetz (10) untereinander verbunden sind und die Antriebsregler (6) einer Antriebsgruppe (2) mittels eines lokalen, insbesondere in der Antriebssteuerung (3) erzeugten, über den Antriebsbus (8) übertragenen Synchronisationstaktes (T_L) synchronisiert werden; dadurch gekennzeichnet, daß
 - (a) die lokalen Synchronisationstakte (T_L) über das Antriebsdatennetz (10) an einen globalen Synchronisationstakt (T_G) angeglichen werden;
 - (b) für die Antriebsgruppen bestimmte Sollwertdaten ($S_1 \dots S_N$) nach Massgabe des globalen Synchronisationstaktes (T_G) zwischen den Antriebssteuerungen (3) der Antriebsgruppen (2) übertragen werden;
 - (c) die über das Antriebsdatennetz (10) übertragenen Sollwertdaten ($S_1 \dots S_N$) Sollwerte von Leitachsen und/oder Folgeachsen enthalten;
 - (d) die Sollwerte von Leitachsen und/oder Folgeachsen zeitlich konsistent berechnet und/oder über das Antriebsdatennetz (10) übertragen werden.
 20. Antriebssystem nach Anspruch 19, dadurch gekennzeichnet, daß die über das Antriebsdatennetz (10) übertragenen Sollwertdaten ($S_1 \dots S_N$) Positionsangaben von Leitachsen, insbesondere von virtuellen Leitachsen, enthalten.
 21. Antriebssystem nach Anspruch 19, dadurch gekennzeichnet, daß die Sollwerte ($S_1 \dots S_N$) der Antriebsgruppen (2) nach Massgabe eines Positionswertes einer oder mehrerer virtueller Leitachsen in den Antriebssteuerungen (3) berechnet werden.
 22. Antriebssystem nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, daß mehrere Antriebssteuerungen (3) zur Bildung des globalen Synchronisationstaktes (T_G) ausgerüstet sind und daß mittels einer Vorrangsliste bestimmt wird, welche Antriebssteuerung zur Vorgabe des globalen Synchronisationstaktes (T_G) berechtigt ist.
 23. Antriebssystem nach Anspruch 22, dadurch ge-

kennzeichnet, daß die Vorrangsliste zyklisch durchlaufen wird, so daß der globale Synchronisationsakt (T_G) nacheinander für eine bestimmte Zeitspanne von verschiedenen Antriebssteuerungen (3) erzeugt wird.

5

24. Antriebssystem nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, daß ein Synchronisationstaktgeber (11) in das Antriebsdatennetz eingebunden ist, der für die Erzeugung des globalen Synchronisationstaktes (T_G) geeignet ist.

10

25. Antriebssystem nach einem der Ansprüche 19 bis 24, dadurch gekennzeichnet, daß der globale Synchronisationstakt (T_G) in einen Hauptakt (T_{GH}) und mindestens einen Nebentakt (T_{GN}) unterteilt ist.

15

26. Antriebssystem nach einem der Ansprüche 19 bis 25, dadurch gekennzeichnet, daß die Sollwertdaten ($S_1 \dots S_N$) in festen Zeitfenstern übertragen werden.

27. Antriebssystem nach Anspruch 21, dadurch gekennzeichnet, daß die Positionswerte der virtuellen Leitachsen durch Integration von vorgegebenen Geschwindigkeitssollwerten berechnet werden.

28. Antriebssystem nach Anspruch 19 dadurch gekennzeichnet, daß die Sollwertdaten ($S_1 \dots S_N$) synchron und zyklisch über das Antriebsdatennetz (10) bzw. den Antriebsbus (8) übertragen werden, daß die Sollwerte synchron und zyklisch in den Antriebssteuerungen (3) berechnet werden und daß die Antriebe (4) synchron und zyklisch geregelt werden.

30

29. Antriebssystem nach Anspruch 19, dadurch gekennzeichnet, daß Hierarchien von Haupteitächsen und Leitachsen gebildet werden, so daß die Sollwertdaten einer oder mehrerer Leitachsen aus den Sollwertdaten einer oder mehrerer Haupteitächsen berechnet werden.

35

30. Antriebssystem nach Anspruch 19 und 29, dadurch gekennzeichnet, daß zu einem Zeitpunkt mehrere Leitachsen und/oder Haupteitächsen gebildet werden.

40

31. Antriebssystem nach Anspruch 19, dadurch gekennzeichnet, daß durch eine variable Zuordnung von Antrieben (4) zu Leitachsen flexible Produktionsgruppen gebildet werden.

45

32. Rotationsdruckmaschine mit einem Antriebssystem umfassend eine Vielzahl von Zylindern, dadurch gekennzeichnet, daß das Antriebssystem nach einem der Ansprüche 1 bis 18 betrieben wird.

33. Rotationsdruckmaschine mit einem Antriebssystem umfassend eine Vielzahl von Zylindern, dadurch gekennzeichnet, daß das Antriebssystem nach einem der Ansprüche 19 bis 31 ausgebildet ist.

- Leerseite -

Fig. 1

Fig. 2

Fig.7

Fig.8

Fig.9

*Fig. 10**Fig. 11**Fig. 12*