Package 'gamreg'

October 13, 2022

Type Package	
Title Robust and Sparse Regression via Gamma-Divergence	
Version 0.3	
Date 2017-11-17	
Author Takayuki Kawashima	
Maintainer Takayuki Kawashima <t-kawa@ism.ac.jp></t-kawa@ism.ac.jp>	
Description Robust regression via gamma-divergence with L1, elastic net and ridge.	
License GPL (>= 2)	
LazyData TRUE	
Suggests mytnorm	
Imports glmnet, robustHD,foreach,doParallel	
LinkingTo Rcpp, RcppArmadillo	
RoxygenNote 5.0.1	
NeedsCompilation yes	
Repository CRAN	
Date/Publication 2017-11-17 08:35:34 UTC	
R topics documented:	
cv.gam	2
Index	4

2 cv.gam

ov com	Robust Cross-Validation
cv.gam	Robust Cross-variation

Description

Compute Robust Cross-Validation for selecting best model.

Usage

```
cv.gam(X, Y, init.mode = c("sLTS", "RLARS", "RANSAC"),
    lambda.mode = "lambda0", lmax = 1, lmin = 0.05, nlambda = 50,
    fold = 10, ncores = 1, gam = 0.1, gam0 = 0.5, intercept = "TRUE",
    alpha = 1, ini.subsamp = 0.2, ini.cand = 1000, alpha.LTS = 0.75,
    nlambda.LTS = 40)
```

Arguments

1 8	iguments			
	Χ	Predictor variables Matrix.		
	Υ	Response variables Matrix.		
	init.mode	"sLTS": a initial point is the estimate of sparse least trimmed squares. "RLARS": a initial point is the estimate of Robust LARS. "RANSAC": a initial point is the estimate of RANSAC algorithm.		
	lambda.mode	"lambda0": Robust Cross-Validation uses grids on range [0.05lambda0,lambda0] with log scale, where lambda0 is an estimator of sparse tuning parameter which would shrink regression coefficients to zero.		
	lmax	When lambda. mode is not lambda0, upper bound of range of grids is lmax.		
	lmin	When lambda. mode is not lambda0, lower bound of range of grids is lmin.		
	nlambda	The number of grids for Robust Cross-Validation.		
	fold	the number of folds for K-fold Robust Cross-Validation. If fold equals to sample size, Robust Cross-Validation is leave-one-out method.		
	ncores	positive integer giving the number of processor cores to be used for parallel computing (the default is 1 for no parallelization).		
	gam	Robust tuning parameter of gamma-divergence for regression.		
	gam0	tuning parameter of Robust Cross-Validation.		
	intercept	Should intercept be fitted TRUE or set to zero FALSE		
	alpha	The elasticnet mixing parameter, with $0 \le \alpha \le 1$. alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.		
	ini.subsamp	The fraction of subsamples in "RANSAC".		
	ini.cand	The number of candidates for estimating itnial points in "RANSAC".		
	alpha.LTS	The fraction of subsamples for trimmed squares in "sLTS".		
	nlambda.LTS	The number of grids for sparse tuning parameter in "sLTS".		

cv.gam 3

Details

If the "RANSAC" is used as the initial point, the parameter ini. subsamp and ini. cand can be determined carefully. The smaller ini. subsamp is, the more robust initial point is. However, less efficiency.

Value

lambda A numeric vector giving the values of the penalty parameter.

fit All results at each lambda.

Rocv The result of best model by Robust Cross-Validation.

Author(s)

Takayuki Kawashima

References

Kawashima, T. and Fujisawa, H. (2017). Robust and Sparse Regression via gamma-divergence, Entropy, 19(11).

Fujisawa, H. and Eguchi, S. (2008). Robust parameter estimation with a small bias against heavy contamination, Journal of Multivariate Analysis, 99(9), 2053-2081.

Examples

```
## generate data
library(mvtnorm)
n <- 30
                               # number of observations
p < -10
                               # number of expalanatory variables
epsilon <- 0.1
                               # contamination ratio
beta0 <- 0.0
                               # intercept
beta <- c(numeric(p))</pre>
                               # regression coefficients
beta[1] <- 1
beta[2] <- 2
beta[3] <- 3
beta[4] <- 4
Sigma <-0.2^{t}(sapply(1:p, function(i, j) abs(i-j), 1:p))
X <- rmvnorm(n, sigma=Sigma) # explanatory variables</pre>
e <- rnorm(n) # error terms</pre>
                               # index of outliers
i <- 1:ceiling(epsilon*n)</pre>
e[i] \leftarrow e[i] + 20
                               # vertical outliers
Y <- beta0*(numeric(n)+1) + X%*%beta
res <- cv.gam(X,Y,nlambda = 5, nlambda.LTS=20 ,init.mode="sLTS")</pre>
```

Index

cv.gam, 2