

Solar Irradiance Prediction using Deep Learning

IFT6759 – February 2020 - Project 1 – Team 13 Sabi, Raghav, Bhavya, Yassir

Agenda

- Project Description
- Solutions Adopted
- Results
- Findings, Obstacles and Recommendations
- Q&A

Project Description

Problem Statement

- Given geostationary satellite images up to time T₀, predict Solar Irradiance (GHI, in W/m²) up to 6 hours ahead
- Not a GHI time series problem

Project Motivations

- Climate Change
 - Global warming (fossil fuels)
- Large Scale integration of renewal energy in the electricity grid
 - Focus on Solar Power
- Why is Solar Power forecasting so important?
 - Intermittent, weather dependent, seasonal
 - Supply-demand electricity market
 - Cost of Forecast Error

Solar Power forecasting methods

Machine learning methods for solar radiation forecasting: A review

Irradiance forecast using Cloud Motion Vectors

Dr Elke Lorenz, Fraunhofer institute for Solar Energy Systems, Germany

Clear Sky Model

Satellite and GHI Data

GOES-13 (Geostationary Operational Environmental Satellite)

- GOES-13 measures atmospheric properties.
 It is a geostationary satellite.
- 5 channels
- From 2010 to 2015, every 15 min
- 3 formats (netcdf, hdf_8bit, hdf_16bit)

Channel	Wavelength	Description
1	550 to 750 nm	Red (visible spectrum)
2	3800 to 4000 nm	Infrared: Smaller wavelengths
3	5800 to 7300 nm	Infrared: Water vapor
4	10,2 to 11,2 μm	Infrared: Bigger wavelengths
5	Not Available	-
6	13,0 to 13,7 μm	Infrared: CO ₂

SURFRAD

https://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html

 GHI measurements at 7 ground stations, from 2010 to 2015 (every 15 min)

Code	Name	Latitude	Longitude	Elevation	Time Zone
BND*	Bondville, Illinois	40.05192° N	88.37309° W	230 m	6 hours from UTC
TBL	Table Mountain, Boulder, Colorado	40.12498° N	105.23680° W	1689 m	7 hours from UTC
DRA	Desert Rock, Nevada	36.62373° N	116.01947° W	1007 m	8 hours from UTC
FPK	Fort Peck, Montana	48.30783° N	105.10170° W	634 m	7 hours from UTC
GWN	Goodwin Creek, Mississippi	34.2547° N	89.8729° W	98 m	6 hours from UTC
PSU	Penn. State Univ., Pennsylvania	40.72012° N	77.93085° W	376 m	5 hours from UTC
SXF	Sioux Falls, South Dakota	43.73403° N	96.62328° W	473 m	6 hours from UTC

Project Goal

Solutions Adopted

Clearsky and ground truth GHIs are also missing. GHI nans (but the nans do not overlap) - Total 6,085

2010	2011	2012	2013	2014	2015
37.21%	12.69%	17.75%	15.81%	10.50%	10.49%

BND	TBL	DRA	FPK	GWN	PSU	SXF
180	514	1258	567	2575	228	763

	Α	В	C	D
0	12.0	NaN	20.0	14.0
1	4.0	2.0	16.0	3.0
2	5.0	54.0	NaN	NaN
3	NaN	3.0	3.0	NaN
4	1.0	NaN	8.0	6.0

A	В	C	D
12.0	NaN	20.0	14.0
4.0	2.0	16.0	3.0
5.0	54.0	9.5	4.0
3.0	3.0	3.0	5.0
1.0	3.0	8.0	6.0
	12.0 4.0 5.0 3.0	12.0 NaN 4.0 2.0 5.0 54.0 3.0 3.0	12.0 NaN 20.0 4.0 2.0 16.0 5.0 54.0 9.5 3.0 3.0 3.0

We do a train valid test split of 79%-20%-1% on the catalog dataframe, stratified by station, which amounts to 1605 days, 416 days, 26 days in total respectively.

Valid set mostly 2015

We shuffle the rows of the training set as this would enable different seasons and weather conditions in the same batch, hence discouraging the model from learning on just one season or weather condition.

Dataset	MSE Error	RMSE Error
Train	41300.81	203.23
Valid	44895.35	211.88

Baseline 1: Clearsky on T0 predictions

For 4 GHI predictions at T0, T1, T3, T6 Baseline 2 set by clearsky: 190 RMSE

2013.09.21.0800.h5 - 91 - 1

2013.09.21.0800.h5 - 91 - 3

2013.09.21.0800.h5 - 91 - 6

2013.09.21.0800.h5 - 91 - 2

2013.09.21.0800.h5 - 91 - 4

- Noisy Channel 1
- Histogram based methods

- 70x70 crop = 280 km2
- 30 minute interval
 - 3 time sequences

Dataloader

- Accumulated images of all the offsets in an hdf5 file and stored it to a 4-D numpy array of size [offsets,channels,height,width].
- Handled missing channels by copying channel from the previous time offset.
- Took a crop of 70x70 around all stations:
- Stored station-wise crops into a npz array with stations as the dictionary key
- Iterated through the catalog and yielded individual examples

Models

Models - 2D CNN

```
Architecture:
```

```
Input = 70x70x5
```

Convolution(16x3x3)

BatchNorm + ReLU + MaxPool(2)

Convolution(32x3x3)

BatchNorm()

Convolution(64x3x3)

BatchNorm()

Convolution(128x3x3)

BatchNorm()

Convolution(128x5x5)

BatchNorm()

Output = Dense(4)

Models - 3D CNN

```
Architecture:
```

Input = 3x70x70x5

Convolution(16,1x3x3)

BatchNorm + ReLU + MaxPool(2x2)

Convolution(32,1x3x3)

BatchNorm()

Convolution(64,1x3x3)

BatchNorm()

Convolution(128,1x3x3)

BatchNorm()

Convolution(256,1x5x5)

BatchNorm()

Output = Dense(4)

Results

Model	Train RMSE	Validation RMSE
2D CNN	100	119
3D CNN	114	168
3D CNN with metadata	116	120

Forecast skill of 2D CNN = 1 - (119/154) = 0.23 (persistence RMSE: 154)

Models: Using Meta-data

Bhavya

Yassir