Discrete Structures

IIIT Hyderabad

Monsoon 2020

Tutorial 20

November 30, 2020

1/5

Introduction

- Questions
 - Question 1
 - Question 2
 - Question 3

Question 1

1.1: Construct an addition and multiplication table for the following. Subsequently conclude whether they are rings, fields or integral domains -

$$0 < Z_4, +_4, \cdot_4 >$$

1.2 : Let

$$R = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, a, b \in Z_7 \right\}$$

Prove that R is a commutative ring under $+_7$ and \cdot_7 . How many elements are in R? Is R a field? What happens when Z_7 is replaced by Z_5 ?

3/5

Question 2

- **2.1**: Show that a ring is commutative if it has the property that ab = ca implies b = c when $a \neq 0$.
- **2.2**: Show that if m, n are integers and a, b are elements in a ring. Then (ma)(nb) = (mn)(ab), here if m is an integer and a is an element, then ma means $a + a + \ldots + a$ (m times).
- **2.2**: Show that a ring that is cyclic under addition is commutative.

4/5

Question 3

- **3.1**: Which of the following are irreducible -
 - **1** $x^4 + x^2 + 4$ over G.F(11).
 - 2 $x^3 + 6$ over G.F(7).
 - **3** $x^3 + x^2 + x + 1$ over GF(2).
- $\bf 3.2$: Find multiplicative inverse of 343 in $\it Z_{\rm 821}$ using Extended Euclidean Algorithm.