

CSC349A Numerical Analysis

Lecture 14

Rich Little

University of Victoria

2018

R. Little

- 1 Approximation Theory/Curve Fitting
- 2 Polynomial interpolation
- 3 Lagrange Interpolating Polynomial
- 4 Finding the coefficients of the interpolating polynomial
- 5 Uniqueness of the Interpolating Polynomia

R. Little 2/22

Introduction

Our next topic is the study of how a given function can be approximated by another function from a specified class of functions. The given function may be discrete or continuous. Typically the approximating function exhibits some desired properties such as:

- Continuity
- Easily differentiated
- Easily integrated
- Easily evaluated

R. Little 3 / 22

Introduction II

Common classes of approximating functions:

- Polynomials
- 2 Piecewise polynomials (splines)
- 3 Trigonometric sums (fourier series)

We will also study criteria for what constitutes a "good" approximating function.

R. Little 4 / 22

- 1 Approximation Theory/Curve Fitting
- 2 Polynomial interpolation
- 3 Lagrange Interpolating Polynomial
- 4 Finding the coefficients of the interpolating polynomial
- 5 Uniqueness of the Interpolating Polynomia

R. Little 5/22

Polynomial interpolation

Recall that the general formula for an *n*th-order polynomial is

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

For n + 1 distinct data points there is one and only one order n (or less) polynomial that passes through them all. That is,

- only one line that passes through two points
- only one parabola that passes through three points, etc

Polynomial Interpolation consists of determining the unique nth-order polynomial that fits the n+1 data points in question.

Although the polynomial is unique there are different methods for finding it and different formats for expressing it.

R. Little 6 / 22

Polynomial interpolation II

Formally: Let y = f(x) be any given function. For any value of $n \ge 0$ and any given values x_0, x_1, \ldots, x_n , let $y_i = f(x_i)$. The **polynomial interpolation problem** is to determine a polynomial P(x) of degree less than or equal to n for which:

$$P(x_i) = y_i$$
 for $i = 0, 1, ..., n$

- The set of n + 1 data point (x_i, y_i) may be the only functional values known (that is, f(x) is a **discrete function**, which could occur for example with experimental data), or
- f(x) maybe be a known **continuous function**, and the n+1 data points (x_i, y_i) are a finite set of values with $y_i = f(x_i)$ (samples).

R. Little 7 / 22

Terminology

- If z is some value between 2 of the given values x_i and if P(z) is computed as an approximation to f(z), then this approximation is said to be determined by polynomial **interpolation**.
- On the other hand, if z lies outside of the interval containing all of the values x_i and if P(z) is computed as an approximation to f(z), then this approximation is said to be determined by polynomial **extrapolation**.

R. Little 8 / 22

Polynomial interpolation vs. Taylor approximation

- Note that an **interpolating polynomial** and the **Taylor polynomial** both determine polynomial approximations to f(x). However, in general they are very different approximations to f(x).
- Note that an interpolating polynomial uses the information:

$$y_0 = f(x_0), y_1 = f(x_1), \dots, y_n = f(x_n)$$

to determine the polynomial approximation.

■ Whereas, the Taylor polynomial uses the information:

$$f(x_0), f'(x_0), \ldots, f^{(n)}(x_0)$$

to determine the polynomial approximation.

R. Little 9 / 22

- 1 Approximation Theory/Curve Fitting
- 2 Polynomial interpolation
- 3 Lagrange Interpolating Polynomial
- 4 Finding the coefficients of the interpolating polynomial
- 5 Uniqueness of the Interpolating Polynomia

R. Little 10 / 22

Lagrange Interpolating Polynomial

Given $(x_i, f(x_i))$, $0 \le i \le n$, with all x_i distinct, consider the function:

$$P(x) = \sum_{i=0}^{n} L_i(x)f(x_i)$$

= $L_0(x)f(x_0) + L_1(x)f(x_1) + \dots + L_n(x)f(x_n)$

where

$$L_{i}(x) = \frac{(x - x_{0})(x - x_{1}) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x_{i} - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1}) \dots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \dots (x_{i} - x_{n})}$$

$$= \prod_{i=0}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}, \text{ for } i = 0, 1, 2, \dots, n$$

R. Little 11/2

Lagrange Interpolating Polynomial II

Since each function $L_i(x)$ is a polynomial of order n and $f(x_i)$ is a constant, P(x) is a polynomial of order $\leq n$. Also, since

$$L_i(x_i) = 1$$
 and $L_i(x_j) = 0$ if $j \neq i$,

it follows that:

$$P(x_i) = f(x_i), \text{ for } i = 0, 1, 2, ..., n$$

that is, P(x) is a an interpolating polynomial for the given data. It is called the **Lagrange interpolating polynomial**.

R. Little 12/2

Examples

Example 1 Evaluate In(2) using Lagrange polynomial interpolation, given that

$$\ln 1 = 0
\ln 4 = 1.386294
\ln 6 = 1.791760$$

Example 2 See Handout 20 - Complete elliptic integral function

$$K(k) = \int_0^{\pi/2} \frac{dz}{\sqrt{1 - k^2 \sin^2 z}}$$

where

9	$\sin^{-1} k$	<i>K</i> (<i>k</i>)
	65°	2.3088
	66°	2.3439
	67°	2 3800

- 1 Approximation Theory/Curve Fitting
- 2 Polynomial interpolation
- 3 Lagrange Interpolating Polynomial
- 4 Finding the coefficients of the interpolating polynomial
- 5 Uniqueness of the Interpolating Polynomia

R. Little 14 / 22

Finding the coefficients of the interpolating polynomial

Although the Langrange polynomial is well-suited to solving intermediate values it does not give you a polynomial in simple form

$$P(x) = a_0 + a_1 x + \cdots + a_n x^n$$

The coefficients of such an interpolating polynomial can be determined by solving a system of linear equations.

R. Little 15 / 22

Finding the coefficients of the interpolating polynomial

Given a function f(x) and distinct points $x_0, x_1, ..., x_n$, let P(x) be the polynomial of degree $\leq n$ for which $P(x_i) = f(x_i)$ for i = 0, 1, ..., n.

Then,

$$a_0 + a_1 x_0 + \dots + a_n x_0^n = f(x_0)$$

 $a_0 + a_1 x_1 + \dots + a_n x_1^n = f(x_1)$
 \vdots
 $a_0 + a_1 x_n + \dots + a_n x_n^n = f(x_n)$

R. Little 16 / 22

Finding the coefficients of the interpolating polynomial

In matrix form, solve

$$\begin{bmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

So, if n = 2, we let $P(x) = a_0 + a_1x + a_2x^2$ and solve

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \end{bmatrix}$$

Example Let $f(x) = \sin x$, $x_0 = 0.2$, $x_1 = 0.5$, and $x_2 = 1$ and find the interpolating polynomial.

Note

An interpolating polynomial can be specified in many different forms.

- I For example the form can be $a(x-x_2)^2 + b(x-x_2) + c$ or
- **2** using the Lagrange form for n = 2:

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

$$= \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}f(x_1)$$

$$+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}f(x_2)$$

or

simply as $P(x) = Ax^2 + Bx + C$.

We will show that all of these forms are identical as the interpolating polynomial is unique.

R. Little

- 1 Approximation Theory/Curve Fitting
- 2 Polynomial interpolation
- 3 Lagrange Interpolating Polynomial
- 4 Finding the coefficients of the interpolating polynomial
- 5 Uniqueness of the Interpolating Polynomial

R. Little 19 / 22

Uniqueness

Theorem: Given any n+1 distinct points x_0, x_1, \ldots, x_n and any n+1 values $f(x_0), f(x_1), \ldots, f(x_n)$, there exists a unique polynomial P(x) of degree $\leq n$ such that

$$P(x_i) = f(x_i)$$
 for $i = 0, 1, ..., n$

Proof:

Existence: by construction of the Lagrange interpolating polynomial

R. Little 20 / 22

Uniqueness proof

Uniqueness:

Suppose there exist two polynomials P(x) and Q(x) of degree $\leq n$ such that:

$$P(x_i) = Q(x_i) = f(x_i), 0 \le i \le n$$

Consider the function

$$R(x) = P(x) - Q(x)$$

which is also a polynomial of degree $\leq n$. But $R(x_i) = 0$ for $0 \leq i \leq n$. That is R(x) has n+1 distinct zeros. This implies that R(x) = 0 for all x and therefore P(x) = Q(x).

R. Little 21 / 22

Error term of polynomial interpolation

Theorem:

Let $x_0, x_1, \ldots x_n$ be any distinct points in [a, b]. Let $f(x) \in C^{n+1}[a, b]$ and let P(x) interpolate f(x) at x_i . Then for each $\hat{x} \in [a, b]$, there exists a value ξ in (a, b) such that

$$f(\hat{x}) = P(\hat{x}) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (\hat{x} - x_i)$$

for example for n = 3

$$f(\hat{x}) = P(\hat{x}) + \frac{f^{(4)}(\xi)}{24}(\hat{x} - x_0)(\hat{x} - x_1)(\hat{x} - x_2)(\hat{x} - x_3)$$

The limitation of this error bound for polynomial interpolation is the need to find an upper bound for $f^{(n+1)}(x)$ on [a, b].

Little 22 / 2