Ju atmosphere

Thet = 5g, - 5g = ma.

Fig mg

Simplist case -> assume g is constant -> assume p, T et atm- constant

Drag equation: Fa = Cap N2A Fa=kv2

+

 $\therefore mq - kv^2 = ma \qquad \alpha = \frac{2v}{st}$ mg-kvz=mdv

dy = 9-ky2

differential equation:

dv = 9 - Ca DA v2

1 Differentiation

E Numerical integration:

at t = St $z_1 = z_0 + V_0 \Delta t$ $V_1 = V_0 + \left[g - \frac{CapA}{2m} V_0^2 \right] \Delta t$ $loop until z = z_{atmosphere}$

Meleorite s	busing throc	gh He at	wosplere.	
Start -> ac	Heroid velocit	y perpend	licular to fe	erthis
<i>→</i> co	nstant densi	ty atmosp	shere of a	given
→ QS	sume acceler	ation due and	to gravity, i	3
-> 01 -> 01	some acceler protant pouve astero pouve dag coe	id size, is	constant	
12	975	t=0 _ impact ve		
7 2=0x			tep, st	
Zatm			ate position of opedat ea time.	ind
Z=Ztm.			time.	en rea
Forces: grav:	fg = mg L	· tve.		
જા ૧૧૦	tunce: $F_a = C_d pA$	- N2 A:-V4	2.	
Fnet:	= mg- CapA ,	ار_		
N's 2 rd : mo	~=mg-Cap	A~2		
a= SV DA	St=mg-G	12 NZ		
	on = (8 - 25	of r Ad		
D .1.	درصو ومص	de la la	~ ~ \ ~ .	r

Position \Rightarrow assume, constant acceleration within Δt and al. eq: $S = ut + \frac{1}{2}at^2$ $\Delta z = V \Delta t + \frac{1}{2}(g - G_1 P A_1^2) \Delta t^2$

Base simulation:

Initial cond: V=V

Z=0 +=0

end when 272atm.

己、ころ。ナムで

Z1 = 20 + VOAt + 2(9 - G184 V2) St.

V, = V, + &V

V1 = V0 + (9 - G. PA v2) DZ

output = final v.

Possible variations: -initial speed

>P (or p(z))
> G (or g(z))

> m] -> think about ablation -> how asteroid "burns up" -> through atmosphere,

Concerns > error analysis needed *

Aflec research: Find initial values to use:

asteroid: Vo, m, A

atmospher: Zatm, D = constant density model.

g=9.81 ms-2

drag coefficient ??

Things to explore: atmosphere models - const. den, isothermal,

- adiabatic, real....
 of as a function of position e is it usorth it?
 asteroid impacts -s initial velocateroid proporties.