## КИСЛОТЫ ТИПЫ РЕАКЦИЙ

| окислитель + восстановитель                                                                                                                                                  | основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:  1) Na <sub>2</sub> O + CO <sub>2</sub> = Na <sub>2</sub> CO <sub>3</sub> 2) NaOH + HCl = NaCl + H <sub>2</sub> O |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| более сильный ВЫТЕСНЯЕТ<br>более слабого - вытеснение<br>ПРИМЕРЫ:<br>1) Fe + 2HCl = FeCl <sub>2</sub> + H <sub>2</sub><br>2) Fe + CuSO <sub>4</sub> = FeSO <sub>4</sub> + Cu | электролит + электролит (p-p) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:  1) NaOH + HCl = NaCl + H <sub>2</sub> O 2) KCl + AgNO <sub>3</sub> = KNO <sub>3</sub> + AgI                      |

## КЛАССИФИКАЦИЯ КИСЛОТ

H\* + KA\*\* (анион кислотного остатка)

По агрегатному состоянию большая часть кислот являются жидкостями, однако некоторые - твёрдыми веществами (H<sub>3</sub>PO<sub>4</sub>, HIO<sub>4</sub>, H<sub>3</sub>BO<sub>3</sub>), а другие - растворами газов в воде (HCl, H<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>SO<sub>3</sub>, H<sub>2</sub>S). По устойчивости раличают устойчивые и неустойчивые кислоты, разлагающиеся при нагревании или на свету (H<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>SO<sub>3</sub>, HNO<sub>3</sub>, H<sub>2</sub>SiO<sub>3</sub>). По летучести: летучие (HCl, H<sub>2</sub>S, HNO<sub>3</sub>) и нелетучие.

## по растворимости

растворимые в ЕГЭ: все, кроме кремниевой НЕрастворимые в ЕГЭ: только кремниевая

#### по основности

однокислотные HCl, HNO,, CH,COOH MHOГОКИСЛОТНЫЕ H<sub>2</sub>SO<sub>4</sub>, H<sub>3</sub>PO<sub>4</sub>, H<sub>4</sub>P<sub>2</sub>O<sub>7</sub>

#### по силе

сильные

см. лайфхак

слабые см. лайфхак

HI - HBr - HClO, - HCl - H,SO, - HNO, - H,SO, - H,PO, - HF - HNO, - CH,COOH - H,CO, - H,S - H,BO, - HCN - H,SiO,

сила кислот убывает...

### по окислительной способности

#### окислители

H<sub>2</sub>SO<sub>4</sub>(конц) HNO<sub>3</sub>(конц/разб)

- + вступают в ОВР с восстановителями!
- + реагируют с неМе
- + по-другому реагируют с металлами

#### **НЕокислители**

все остальные кислоты

- НЕ вступают в ОВР с восстановителями!
- + НЕ реагируют с неМе
- + по-другому реагируют
- с Ме, как простые смертные

Fe + 
$$H_2 \rightarrow 0$$
 =  $FeSO_4 + H_2$ 

окислитель - водород

Fe + 
$$H_2SO_4(\kappa) = Fe_2(SO_4)_3 + H_2O + SO_2$$

окислитель - сера

# **ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТ ОКРАШИВАНИЕ ИНДИКАТОРОВ**

Растворимые кислоты диссоциируют в растворах на H<sup>+</sup> и анион кислотного остатка (даже слабые растворимые в воде кислоты хотя бы немного, но диссоциируют) -> имеют кислую среду, а значит, окрашивают индикаторы. НЕрастворимые кислоты (H<sub>2</sub>SiO<sub>3</sub>) - не окрашивают.



HCl + фф = бесцветный
HCl + лакмус = красный
HCl + мо = розовый
H<sub>2</sub>SO<sub>4</sub> + лакмус = красный
HClO<sub>4</sub> + мо = розовый
H<sub>2</sub>O + CO<sub>2</sub> + фф = бесцветный
H<sub>3</sub>SiO<sub>4</sub> + лакмус = фиолетовый

ОСНОВНО-КИСЛОТНЫЕ ВЗАИМОДЕЙСТВИЯ



Не забывайте НИКОГДА о том, что любую реакцию мы сначала ВСЕГДА рассматриваем на возможность протекания ОВР: если в ней есть вор (окислитель) и жертва (восстановитель), то происходит ОВР! Типичные жертвы: Fe<sup>+2</sup>, Cu<sup>+1</sup>, P<sup>+3</sup>, S<sup>+4</sup>, N<sup>+3</sup>

Типичные грабители:  $HNO_3$ (конц/разб),  $H_2SO_4$ (конц)

HClO + NaOH = NaClO + H<sub>2</sub>O KOH + H<sub>2</sub>S(u36) = KHS + H<sub>2</sub>O KOH + HBr(u36) = KBr + H<sub>2</sub>O CO<sub>2</sub> + H<sub>2</sub>O + NaOH = NaHCO<sub>3</sub> + H<sub>2</sub>O HCl + BaO = BaCl<sub>2</sub> + H<sub>2</sub>O FeO + HNO<sub>3</sub>(p) = Fe(NO<sub>3</sub>)<sub>3</sub> + NO + H<sub>2</sub>O H<sub>2</sub>SO<sub>3</sub> + MgO = MgSO<sub>3</sub> + H<sub>2</sub>O HBr + Zn(OH)<sub>2</sub> = ZnBr<sub>2</sub> + H<sub>2</sub>O BeO + H<sub>3</sub>PO<sub>4</sub>(u36) = Be(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub> + H<sub>2</sub>O H<sub>2</sub>SO<sub>4</sub>(u36) + Sn(OH)<sub>2</sub> = Sn(HSO<sub>4</sub>)<sub>2</sub> + H<sub>2</sub>O HCl(u36) + Al(OH)<sub>3</sub> = AlCl<sub>3</sub> + H<sub>2</sub>O

Помним: кислотное в избытке кислая соль, основное средняя либо основная!

Cr<sub>2</sub>O<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub>(p) = Cr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> + H<sub>2</sub>O FeO + HCl = FeCl<sub>2</sub> + H<sub>2</sub>O Fe<sub>2</sub>O<sub>3</sub> + HCl = FeCl<sub>3</sub> + H<sub>2</sub>O Fe<sub>3</sub>O<sub>4</sub> + HCl = FeCl<sub>2</sub> + FeCl<sub>3</sub> + H<sub>2</sub>O ZnO + HNO<sub>3</sub> = Zn(NO<sub>3</sub>)<sub>2</sub> + H<sub>2</sub>O HClO<sub>4</sub> + Al<sub>2</sub>O<sub>3</sub> = Al(ClO<sub>4</sub>)<sub>3</sub> + H<sub>2</sub>O

## РЕАКЦИИ ИОННОГО ОБМЕНА

РАСТВОРИМАЯ КИСЛОТА РАСТВ/НЕРАСТВ ОСНОВАНИЕ

РАСТВОРИМАЯ КИСЛОТА РАСТВ/НЕРАСТВ АМФ ГИДРОКСИД

РАСТВОРИМАЯ КИСЛОТА + PACTB/HEP СОЛЬ СО<sub>3</sub><sup>2-</sup>, SO<sub>3</sub><sup>2-</sup>, S<sup>2-</sup> ГАЗ ОСАДОК СЛ. ЭЛЕКТРОЛИТ (ВОДА)

#### ВНИМАНИЕ!

- 1) смотрим на возможность протекания ОВР;
  - смотрим на избыток/ недостаток.

HgS, PbS, CuS, Ag,S НЕ РАСТВОРЯЮТСЯ В КИСЛОТАХ!

CH<sub>3</sub>COONH<sub>4</sub> + HBr = NH<sub>4</sub>Br + CH<sub>3</sub>COOH Na<sub>2</sub>SO<sub>3</sub> + H<sub>2</sub>SO<sub>4</sub>(p) = Na<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O + SO<sub>2</sub> H<sub>3</sub>PO<sub>4</sub> + AgNO<sub>3</sub> = Ag<sub>3</sub>PO<sub>4</sub> + HNO<sub>3</sub> Na<sub>2</sub>CO<sub>3</sub> + CO<sub>2</sub> + H<sub>2</sub>O = NaHCO<sub>3</sub> FeCl<sub>2</sub> + H<sub>2</sub>S = FeS + HCl

MnS + HCl = MnCl<sub>2</sub> + H<sub>2</sub>S Ca(OH)<sub>2</sub> + HCl = CaCl<sub>2</sub> + H<sub>2</sub>O Al(OH)<sub>3</sub> + HCl = AlCl<sub>3</sub> + H<sub>2</sub>O AgCl + H<sub>2</sub>SO<sub>4</sub>(p) = реакция не идёт CaCO<sub>3</sub> + HCl = CaCl<sub>2</sub> + CO<sub>2</sub> + H<sub>2</sub>O

OH

FeCl<sub>3</sub> + H<sub>2</sub>S = FeCl<sub>2</sub> + S + HCl HCl + AlPO<sub>2</sub> = реакция не идёт

BaSO<sub>3</sub> + HCl = BaCl<sub>2</sub> + SO<sub>2</sub> + H<sub>2</sub>O HCl + NaHS = NaCl + H<sub>2</sub>S

#### ОБРАТИТЕ ВНИМАНИЕ!

## средняя/кислая соль + кислота = кислая/"более кислая" соль

 $CaCO_3 + CO_2 + H_2O = Ca(HCO_3)_2$  $Ca_3(PO_4)_2 + H_3PO_4 = CaHPO_4$ 

 $CaHPO_4 + H_3PO_4 = Ca(H_2PO_4)_2$  $Na_2SO_3 + H_2O + SO_2 = NaHSO_3$ 

#### основная соль + кислота = средняя соль

MgOHCl + HCl = MgCl<sub>2</sub> + H<sub>2</sub>O AlOHCl<sub>2</sub> + HCl = AlCl<sub>3</sub> + H<sub>2</sub>O CaOHBr + HBr =  $CaBr_2 + H_2O$  $(CuOH)_2CO_3 + HNO_3 = Cu(NO_3)_2 + CO_2 + H_2O$ 

средняя/комплексная соль с амф Ме в анионе + кислота = избыток кислоты: средняя соль + средняя соль + H<sub>2</sub>O недостаток кислоты: средняя соль + амф гидроксид (+ H<sub>2</sub>O)

 $Na_{2}ZnO_{2} + HCl(изб) = NaCl + ZnCl_{2} + H_{2}O \ Na_{2}ZnO_{2} + HCl(нед) = NaCl + Zn(OH)_{2}$   $Na_{2}[Zn(OH)_{4}] + HCl(изб) = NaCl + ZnCl_{2} \ Na_{2}[Zn(OH)_{4}] + HCl(нед) = NaCl + Zn(OH)_{2} \ + H_{2}O$ 

## РЕАКЦИИ ВЫТЕСНЕНИЯ

Н, SO, (конц)

безводная соль летучей кислоты (H: HCl, HNO<sub>3</sub>, H<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>SO<sub>3</sub>)

кислая/средняя соль + летучая кислота

 $H_2SO_2(\kappa) + NaCl(TB) = NaHSO_2 + HCl$  $H_2SO_2(\kappa) + CaCO_3(TB) = CaSO_2 + H_2O + CO_2$ 

 $H_2SO_4(\kappa) + KNO_3(тв) = KHSO_4 + HNO_3$  $H_2SO_4(p) + KCl(тв) = реакция не идёт$ 

H,S

соль Ag, Cu, Pb, Cd, Hg

сульфид↓+ кислота

 $H_2S + CuSO_4 = CuS + H_2SO_4$  $H_2S + Pb(NO_3)_2 = PbS + HNO_3$  H<sub>2</sub>S + Hg(NO<sub>3</sub>)<sub>2</sub> = HgS + HNO<sub>3</sub> H<sub>2</sub>S + AgNO<sub>3</sub> = Ag<sub>2</sub>S + HNO<sub>3</sub>

кислота

соль более слабой кислоты

новая соль + слабая кислота

см. пункт "РЕАКЦИИ ИОННОГО ОБМЕНА"

## ОВР С КИСЛОТАМИ

Типичные окислители: КМпО<sub>4</sub>, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, K<sub>2</sub>CrO<sub>4</sub>, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>(конц), Fe<sup>+3</sup>, H<sub>2</sub>O<sub>2</sub>, Hal<sub>2</sub>, O<sub>3</sub>, O<sub>2</sub>, NaNO<sub>3</sub>, HClO<sub>4</sub>, HClO<sub>3</sub>, HClO + соли Типичные восстановители: Me, Fe<sup>+2</sup>, Cu<sup>+1</sup>, Mn<sup>+2</sup>, Cr<sup>+2</sup>, C, CO, H<sub>2</sub>, NH<sub>3</sub>, H<sub>2</sub>S, S, SO<sub>3</sub><sup>2-</sup>, NO<sub>2</sub><sup>-</sup>, HHal, H<sub>2</sub>O<sub>2</sub>, P, PCl<sub>3</sub>, P<sub>2</sub>O<sub>3</sub>, PH<sub>3</sub>

$$S + H_2SO_4(p) = peakция не идёт$$
  
 $S + H_2SO_4(k) = SO_2 + H_2O$   
 $S + HNO_3(p) = H_2SO_4 + NO + H_2O$   
 $S + HNO_3(k) = H_2SO_4 + NO_2 + H_2O$   
 $P_2O_3 + HNO_3(p) + H_2O = H_3PO_4 + NO$   
 $P + H_2SO_4(k) = H_3PO_4 + SO_2 + H_2O$   
 $H_2SO_3 + Cl_2 + H_2O = HCl + H_2SO_4$ 

$$H_2S + Cl_2 = HCl + S$$
 $HCl + Br_2 = реакция не идёт$ 
 $HI + Br_2 = HBr + I_2$ 
 $H_2S + O_2(нед) = S + H_2O$ 
 $H_2S + O_2(изб) = SO_2 + H_2O$ 
 $C + H_2SO_4(\kappa) = H_2O + CO_2 + SO_2$ 
 $C + HNO_3(p) = H_2O + CO_2 + NO$ 

#### ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ

Кислородсодержащие кислоты, как и все остальные гидроксиды, разлагаются при нагревании с образованием соответствующего оксида и воды. Если при этом протекает OBP - см. специфические реакции.

# СПЕЦИФИЧЕСКИЕ РЕАКЦИИ

CO<sub>2</sub> + 2K[Al(OH)<sub>4</sub>] = K<sub>2</sub>CO<sub>3</sub> + 2Al(OH)<sub>3</sub> + H<sub>2</sub>O CO<sub>2</sub>(изб) + K[Al(OH)<sub>4</sub>] = KHCO<sub>3</sub> + Al(OH)<sub>3</sub>

$$2H_{3}PO_{4}(t) = H_{4}P_{2}O_{7} + H_{2}O_{7}$$
  
 $H_{4}P_{2}O_{7}(t) = 2HPO_{3} + H_{2}O_{7}$   
 $2H_{3}PO_{3}(t) = 3H_{3}PO_{4} + PH_{3}$ 

3HClO (t) = 2HCl + HClO<sub>3</sub>



## КИСЛОТЫ-ОКИСЛИТЕЛИ

К кислотам-окислителям относят:

- серную концентрированную H,SO, (конц)
- азотную ЛЮБОЙ концентрации НОО, (конц/разб)
- \* Эти кислоты относят к кислотам-ОКИСЛИТЕЛЯМ, т.к. при их взаимодействии с металлами выделяется НЕ водород, а нечто другое:)

КИСЛОТА + МЕ = СОЛЬ МЕ В МАХ С.О. + 
$$H_2O$$
 + «Х» «Х» = продукт восстановления серы или азота

Рассмотрим взаимодействие этих кислот с металами.

- 1) СЕРНАЯ КОНЦЕНТРИРОВАННАЯ КИСЛОТА Н, 50, (конц)
- ! Обратите внимание, что кислота должна быть именно концентрированной; разбавленная серка простой смертный, самая обыкновенная кислота-НЕокислитель.

Логично, что чем АКТИВНЕЕ металл, реагирующий с кислотой, тем БОЛЕЕ КРУТОЙ скачок происходит в изменении степени окисления серы, поэтому получаем следующее:

щелочные металлы, Al, Mg, Zn

- ! При этом Cr, Fe, Al, Ni ПАССИВИРУЮТСЯ холодной концентрированной серной кислотой, т.е. не реагируют с ней в обычных условиях, а вступают в реакцию ТОЛЬКО при нагревании.
- ! Au, Pt, Pd ни при каких условиях не соглашаются реагировать с концетрированной серкой :(
- 2) АЗОТНАЯ КИСЛОТА НОО (конц/разб)

Общая схема взаимодействия с металлами аналогична:

$$HNO_3(\kappa/p) + Me = Me^{max+}NO_3 + H_2O + X$$

! Запомните одну небольшую закономерность: чем РАЗБАВЛЕННЕЕ азотка, тем СИЛЬНЕЕ ВОССТАНАВЛИВА-ЕТСЯ азот, это можно отразить следующей схмой:



**Теперь рассмотрим отдельно взаимодействие разбавленной и концентрированной азотки с металлами.** 

- ! Также стоит помнить о том, что Au, Pt, Pd ни при каких условиях не будут с азоткой вступать в реакцию.
- ! A Al, Fe, Cr, Co, Ni ПАССИВИРУЮТСЯ холодной <u>КОНЦЕН-ТРИРОВАННОЙ азоткой</u>, т.е. эти металлы вступают с ней в реакцию ТОЛЬКО при нагревании.

Итак, схема взаимодействия с металлами КОНЦЕНТРИ-РОВАННОЙ азотной кислоты:



## РАЗБАВЛЕННОЙ азотной кислоты:



! Обратите внимание, что здесь действует, как и в случае с концентрированной серкой, одно и то же правило: чем АКТИВНЕЕ металл, тем СИЛЬНЕЕ ВОССТАНАВЛИВА-

ЕТСЯ азот.

ПОДВОДНЫЙ КАМЕШЕК: не забывайте о том, что перечисленные немного ранее металлы пассивируются именно холодной КОНЦЕНТРИРОВАННОЙ азоткой, т.е. с разбавленной они будут вступать в реакцию и без всякого нагревания.

3) ВЗАИМОДЕЙСТВИЕ С НЕМЕТАЛЛАМИ

С неметаллами ситуация ещё проще. В реакциях с ними (как и со сложными веществами) происходит следующее:

 $H_2SO_4$ (конц) превращается в  $SO_2$   $HNO_3$ (конц) - в  $NO_2$   $HNO_3$ (разб) - в NO



## А ТЕПЕРЬ НАСТАЛО ВРЕМЯ ДЛЯ ПРАКТИКИ!

$$C + H_2SO_4(\kappa) = H_2O + CO_2 + SO_2$$
  
 $S + H_2SO_4(\kappa) = SO_2 + H_2O$ 

$$P + H_2SO_4(K) = H_3PO_4 + SO_2 + H_2O_3$$

$$C + HNO_3(\kappa) = CO_2 + H_2O + NO_3$$

$$H_2S + HNO_3(\kappa) = S + NO_2 + H_2O$$

$$Na_2S + HNO_3(\kappa) = Na_2SO_4 + NO_2 + H_2O$$

$$CuS + HNO_3(K) = S + NO_2 + Cu(NO_3)_2 + H_2O$$

$$HI + HNO_3(K, KИП) = HIO_3 + NO_2 + H_2O$$

$$Fe(OH)_{2} + HNO_{3}(\kappa) = Fe(NO_{3})_{3} + NO_{2} + H_{2}O$$

$$HCl + HNO_3(\kappa) = Cl_3 + NO + H_3O$$
 (специфическая)

$$H_2S + H_2SO_4(\kappa) = S + SO_2 + H_2O$$