第一章 Homework

1.1 Homework 1

1.1.1 Hermitian operators

- 1. Prove theorem 1: If A is Hermitian operator, then all its eigenvalues are real numbers, and the eigenvectors corresponding to different eigenvalues are orthogonal.
 - (a) Since A is Hermitian, we have $A^{\dagger} = A$. Let λ be an eigenvalue of A and v the corresponding eigenvector, so

$$Av = \lambda v.$$

Consider the inner product

$$\langle v, Av \rangle = \langle v, \lambda v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2.$$

 $\langle Av, v \rangle = \langle \lambda v, v \rangle = \lambda^* \langle v, v \rangle = \lambda^* ||v||^2$

So we have $\lambda ||v||^2 = \lambda^* ||v||^2$, which implies $\lambda = \lambda^*$, so λ is real(since $||v||^2$ is not zero, as $v \neq 0$).

(b) Let λ_1 and λ_2 be two different eigenvalues of A, and v_1 and v_2 the corresponding eigenvectors, so we have

$$Av_1 = \lambda_1 v_1, \quad Av_2 = \lambda_2 v_2.$$

Consider the inner product

$$\langle v_1, Av_2 \rangle = \langle v_1, \lambda_2 v_2 \rangle = \lambda_2 \langle v_1, v_2 \rangle,$$

$$\langle Av_1, v_2 \rangle = \langle \lambda_1 v_1, v_2 \rangle = \lambda_1 \langle v_1, v_2 \rangle.$$

Since A is Hermitian, we have $\langle v_1, Av_2 \rangle = \langle Av_1, v_2 \rangle$, so we have $(\lambda_1 - \lambda_2)\langle v_1, v_2 \rangle = 0$, which implies $\langle v_1, v_2 \rangle = 0$ (since $\lambda_1 \neq \lambda_2$).

2. Prove theorem 2: If A is Hermitian operator, then it can be always diagonalized by unitary transformation.

Let $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$ be the eigenvalues of A, and $\{v_1, v_2, \cdots, v_n\}$ the corresponding eigenvectors.

By theorem 1, we have $\langle v_1, v_2 \rangle = \delta_{ij}$.

We define the unitary matrix as $U = [v_1, v_2, \dots, v_n]$, so we have $U^{\dagger}U = \mathbb{I}$. Now we compute $U^{\dagger}AU$. Since $Av_i = \lambda_i v_i$, we have

$$U^{\dagger}AU = \begin{pmatrix} v_1^{\dagger} \\ v_2^{\dagger} \\ \vdots \\ v_n^{\dagger} \end{pmatrix} A \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix} = \begin{pmatrix} v_1^{\dagger}Av_1 & v_1^{\dagger}Av_2 & \cdots & v_1^{\dagger}Av_n \\ v_2^{\dagger}Av_1 & v_2^{\dagger}Av_2 & \cdots & v_2^{\dagger}Av_n \\ \vdots & \vdots & \ddots & \vdots \\ v_n^{\dagger}Av_1 & v_n^{\dagger}Av_2 & \cdots & v_n^{\dagger}Av_n \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \Lambda.\Box$$

- 3. Prove theorem 3: Two diagonalizable operators A and B can be simultaneously diagonalized if, and only if, [A,B]=0.
 - (a) Let's say

$$A|v\rangle = \lambda |v\rangle, \quad B|v\rangle = \mu |v\rangle.$$

where $|v\rangle$ is the eigenvector of A and B, λ and μ are the corresponding eigenvalues. So

$$[A, B]|v\rangle = (AB - BA)|v\rangle = (AB|v\rangle - BA|v\rangle) = (\lambda\mu - \mu\lambda)|v\rangle = 0.$$

for all $|v\rangle$, which means [A, B] = 0.

(b) Let's say [A, B] = 0. And we have

$$A|v\rangle = \lambda|v\rangle,$$

 $AB|v\rangle = BA|v\rangle = B\lambda|v\rangle = \lambda (B|v\rangle),$

which means $B|v\rangle$ is also the eigenvector of A with eigenvalue λ . And apply the same method to all $|v\rangle$ of A, we can find a common set of eigenvectors of A and B within the degenerate subspace. \Box

1.1.2 Matrix diagonalization and unitary transformation

1. Diagonalizing a matrix L corresponds to finding a unitary transformation V such that $L = V\Lambda V^{\dagger}$, where Λ is a diagonal matrix whose diagonal elements are eigenvalues, V is an unitary matrix whose column vectors are the corresponding eigenstates. Find a unitary matrix V that can diagonalize the Pauli matrix $\sigma^x_{(z)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and find the eigenvalues of $\sigma^x_{(z)}$.

Find the eigenvalues of $\sigma_{(z)}^x$ by solving the characteristic equation

$$\det(\sigma_{(z)}^x - \lambda I) = \det\begin{pmatrix} -\lambda & 1\\ 1 & -\lambda \end{pmatrix} = \lambda^2 - 1 = 0,$$

So we have $\lambda = \pm 1$. For $\lambda_+ = 1$, we have

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = v_2.$$

So the eigenvector corresponding to λ_+ is $|+\rangle_{(z)}^x=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$. For $\lambda_-=-1$, we have

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = -1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = -v_2.$$

So the eigenvector corresponding to λ_- is $|-\rangle_{(z)}^x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. The eigenvectors have been normalized, so the unitary matrix V is $[|+\rangle_{(z)}^x, |-\rangle_{(z)}^x] = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. The diagonal matrix Λ contains the eigenvalues on the diagonal, which means

$$\Lambda = \operatorname{diag}\{\lambda_+, \lambda_-\} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \sigma^z_{(z)}$$

Thus we diagonalized the Pauli matrix $\sigma^x_{(z)}$ by the unitary transformation V:

$$\sigma^x_{(z)} = V^\dagger \Lambda V = V^\dagger \sigma^z_{(z)} V$$

We notice that the diagnosed matrix Λ is just the Pauli matrix $\sigma_{(z)}^z$, which means we can transform the representation of the Pauli matrix σ^z to the σ^x representation by the unitary transformation V:

$$\sigma_{(z)}^x = V^{\dagger} \sigma_{(z)}^z V = V^{\dagger} \sigma_{(x)}^x V \Rightarrow \sigma_{(x)}^x = \left(V^{\dagger}\right)^{-1} \sigma_{(z)}^x (V)^{-1}$$

 $\sigma^x_{(z)}$ is the matrix of σ^x in the σ^z representation. Noticed that $V=V^\dagger=V^{-1}$, so

$$\sigma_{(x)}^x = V \sigma_{(z)}^x V$$

2. The three components of the spin angular momentum operator \vec{S} for spin-1/2 are S^x , S^y , and S^z . If we use the S^z representation, their matrix representations are given by $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, where the three components of $\vec{\sigma}$ are the Pauli matrices σ^x , σ^y , and σ^z .

Now consider using the S^x representation. Please list the order of basis vectors you have chosen in the S^x representation, and calculate the matrix representations of the three components of the operator \vec{S} in this representation.

Within S^z representation, we have

$$S_{(z)}^x = \frac{\hbar}{2}\sigma_{(z)}^x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

From the previous question, we have found the eigenvalues and corresponding eigenvectors:

$$|+\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad |-\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$

The matrix V that transforms the S^z representation to the S^x representation is

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

In the S^z representation, we have

$$S_{(z)}^{x} = \frac{\hbar}{2}\sigma^{x} = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad S_{(z)}^{y} = \frac{\hbar}{2}\sigma^{y} = \frac{\hbar}{2}\begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \quad S_{(z)}^{z} = \frac{\hbar}{2}\sigma^{z} = \frac{\hbar}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$

So

$$\begin{split} S_{(x)}^x &= V S_{(z)}^x V = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ S_{(x)}^y &= V S_{(z)}^y V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\ S_{(x)}^z &= V S_{(z)}^z V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \end{split}$$

So the basis vectors in the S^x representation are

$$|+\rangle_{(x)}^x = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |-\rangle_{(x)}^x = \begin{pmatrix} 0\\1 \end{pmatrix}.$$

1.2 Homework 2

1.2.1 Angular momentum for 4-dimensional space

Consider a 4-dimensional space with coordinates (x, y, z, w).

- 1. Show that the operators $L_i = \epsilon_{ijk} x_j p_k$ and $K_i = w p_i x_i p_w$ generate rotations in this space by showing that the transformations generated by these operators leave the four dimensional radius, defined by $R^2 = x^2 + y^2 + z^2 + w^2$, invariant.
 - (a) Since the operator $L_i = \sum_{jk} \epsilon_{ijk} x_j p_k$ is defined in the usual 3-dimension subspace, so we still have

$$[L_{i}, x_{j}] = \left[\sum_{kl} \epsilon_{ikl} x_{k} p_{l}, x_{j}\right] = \sum_{kl} \epsilon_{ikl} [x_{k} p_{l}, x_{j}]$$

$$= \sum_{kl} \epsilon_{ikl} (x_{k} [p_{l}, x_{j}] + [x_{k}, x_{j}] p_{l}) = \sum_{kl} \epsilon_{ikl} x_{k} (-i\hbar \delta_{lj})$$

$$= \sum_{k} \epsilon_{ikj} x_{k} (-i\hbar) = \left[i\hbar \sum_{k} \epsilon_{ijk} x_{k}\right].$$

So we have

$$\begin{split} [L_i,R^2] &= [L_i,x^2 + y^2 + z^2 + w^2] = [L_i,x^2] + [L_i,y^2] + [L_i,z^2] + [L_i,w^2], \\ [L_i,x_j^2] &= [L_i,x_jx_j] = x_j[L_i,x_j] + [L_i,x_j]x_j = x_j \left[i\hbar \sum_k \epsilon_{ijk}x_k\right] + \left[i\hbar \sum_k \epsilon_{ijk}x_k\right] x_j \\ &= 2i\hbar \sum_k \epsilon_{ijk}x_jx_k \\ \left[L_i,\sum_j^3 x_j^2\right] &= \sum_j^3 [L_i,x_j^2] = 2i\hbar \sum_{jk} \epsilon_{ijk}x_jx_k = 0, \quad \text{since } j \leftrightarrow k \text{ symmetry} \\ [L_i,w^2] &= [L_i,ww] = w[L_i,w] + [L_i,w]w = 0. \end{split}$$

So we have $[L_i, R^2] = 0$, which means the operator L_i leaves the 4-dimension radius invariant.

(b) $K_i = wp_i - x_i p_w$.

Now we consider the commutator. Due to the definition of K_i , only the terms with w will be affected. So we have:

$$[K_i, R^2] = [K_i, x^2 + y^2 + z^2 + w^2] = \sum_{j=1}^{3} [K_i, x_j^2] + [K_i, w^2]$$
$$[K_i, w^2] = [K_i, w]w + w[K_i, w]$$
$$[K_i, w] = [wp_i - x_i p_w, w] = \left[w\left(-i\hbar \frac{\partial}{\partial x_i}\right) - x_i\left(-i\hbar \frac{\partial}{\partial w}\right), w\right]$$

Assume a sample function f(x, y, z, w), wo we have

$$\begin{split} & \left[w \left(-i\hbar \frac{\partial}{\partial x_i} \right) - x_i \left(-i\hbar \frac{\partial}{\partial w} \right), w \right] f = (-i\hbar) \left[w \frac{\partial}{\partial x_i} - x_i \frac{\partial}{\partial w}, w \right] f \\ & = (-i\hbar) \left\{ \left(w \frac{\partial}{\partial x_i} - x_i \frac{\partial}{\partial w} \right) (wf) - w \left(w \frac{\partial f}{\partial x_i} - x_i \frac{\partial f}{\partial w} \right) \right\} \\ & = (-i\hbar) (-x_i) f \\ & \Rightarrow \boxed{[K_i, w] = i\hbar x_i} \end{split}$$

So we have

$$[K_i, w^2] = [K_i, w]w + w[K_i, w] = i\hbar x_i w + w(i\hbar x_i) = 2i\hbar x_i w$$

For the other term, we have

$$[K_i, x_j] = w[p_i, x_j] = (-i\hbar)w\delta_{ij}$$

$$[K_i, x_j^2] = [K_i, x_j x_j] = x_j[K_i, x_j] + [K_i, x_j]x_j = -2i\hbar x_j w\delta_{ij}$$

Thus we have

$$[K_i, R^2] = [K_i, x^2 + y^2 + z^2 + w^2] = \sum_{j=1}^{3} [2i\hbar x_j w \delta_{ij}] - 2i\hbar x_i w = 2i\hbar x_i w - 2i\hbar x_i w = 0.$$

2. Compute the commutators $[L_i, K_j]$ and $[K_i, K_i]$.

(a) $[L_i, K_j]$

$$[L_i, K_j] = [L_i, wp_j - x_jp_w] = [L_i, wp_j] - [L_i, x_jp_w] = w[L_i, p_j] - [L_i, x_jp_w]$$

We have known that $[p_k, p_j] = 0$ and $[x_l, p_j] = i\hbar \delta_{lj}$, so we have

$$[L_i, p_j] = \left[\sum_{lk} \epsilon_{ilk} x_l p_k, p_j\right] = \sum_{lk} \epsilon_{ilk} (\underline{x_l}[p_k, p_j] + [x_l, p_j] p_k) = \sum_{lk} \epsilon_{ilk} i\hbar \delta_{lj} p_k = i\hbar \sum_k \epsilon_{ijk} p_k$$

$$\Rightarrow \left[w[L_i, p_j] = i\hbar \sum_k \epsilon_{ijk} w p_k\right]$$

For the other term, we have

$$\begin{split} [L_i,x_jp_w] &= x_j[L_i,p_w] + [L_i,x_j]p_w \\ [L_i,x_j] &= \left[\sum_{kl} \epsilon_{ikl}x_kp_l,x_j\right] = \sum_{kl} \epsilon_{ikl}[x_kp_l,x_j] \\ &= \sum_{kl} \epsilon_{ikl}(x_k[p_l,x_j] + [x_k,x_j]p_l) = \sum_{kl} \epsilon_{ikl}x_k(-i\hbar\delta_{lj}) \\ &= \sum_{k} \epsilon_{ikj}x_k(-i\hbar) = i\hbar\sum_{k} \epsilon_{ijk}x_k, \\ [L_i,p_w] &= \sum_{jk} \epsilon_{ijk}[x_jp_k,p_w] = \sum_{jk} \epsilon_{ijk}(x_j[p_k,p_w] + [x_j,p_w]p_k) = \epsilon_{ijk}(x_j \cdot 0 + 0 \cdot p_k) = 0 \\ &\Rightarrow [L_i,x_jp_w] = x_j \cdot 0 + i\hbar\sum_{k} \epsilon_{ijk}x_k \cdot p_w = \left[i\hbar\sum_{k} \epsilon_{ijk}x_kp_w\right] \end{split}$$

Combining the terms we derived, we have

$$[L_i, K_j] = i\hbar \sum_k \epsilon_{ijk} w p_k - i\hbar \sum_k \epsilon_{ijk} x_k p_w = i\hbar \sum_k \epsilon_{ijk} K_k$$

(b) $[K_i, K_j]$.

$$\begin{split} [K_{i},K_{j}] &= [wp_{i}-x_{i}p_{w},wp_{j}-x_{j}p_{w}] = [wp_{i},wp_{j}] - [wp_{i},x_{j}p_{w}] - [x_{i}p_{w},wp_{j}] + [x_{i}p_{w},x_{j}p_{w}] \\ [wp_{i},wp_{j}] &= w^{2}[p_{i},p_{j}] = 0; \\ [wp_{i},x_{j}p_{w}] &= x_{j}(\underline{w}[p_{i},p_{w}] + [w,p_{w}]p_{i}) + (w[p_{i},x_{j}] + \underline{[w,x_{j}]p_{i}})p_{w} = x_{j}i\hbar p_{i} + w(-i\hbar)\delta_{ij}p_{w} \\ &= i\hbar(x_{j}p_{i}-\delta_{ij}wp_{w}) \\ [x_{i}p_{w},wp_{j}] &= w(\underline{x_{i}}[p_{w},p_{j}] + [x_{i},p_{j}]p_{w}) + (x_{i}[p_{w},w] + \underline{[x_{i},w]p_{w}})p_{j} = wi\hbar\delta_{ij}p_{w} + x_{i}(-i\hbar)p_{j} \\ &= i\hbar(wp_{w}\delta_{ij}-x_{i}p_{j}) \\ [x_{i}p_{w},x_{j}p_{w}] &= 0 \end{split}$$

So combine the terms we derived, we have

$$[K_i, K_j] = 0 - i\hbar(x_j p_i - \delta_{ij} w p_w) - i\hbar(w p_w \delta_{ij} - x_i p_j) + 0 = i\hbar(x_i p_j - x_j p_i) = i\hbar \sum_k \epsilon_{ijk} L_k$$

1.2.2 Harmonic oscillator

1. Find the energy eigenvalues E_n and the corresponding wave functions $\psi_n(x)$ for a one-dimensional quantum harmonic oscillator system.

We have known that the Hamitonian of a quantum harmonic oscillator is given by

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2$$

And the energy eigenvalues E_n are given by

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \quad n = 0, 1, 2, \cdots$$

The corresponding wave functions $\psi_n(x)$ are given by

$$\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega x^2}{2\hbar}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right)$$

where $H_n(x)$ are the Hermite polynomials.

2. Calculate $\langle m|x|n\rangle$, $\langle m|p|n\rangle$, $\langle m|x^2|n\rangle$, and $\langle m|p^2|n\rangle$.

We have known that the position operator x and the momentum operator p could be expressed by the creation a^{\dagger} and annihilation a operators:

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(a + a^{\dagger} \right), \quad \hat{p} = i\sqrt{\frac{\hbar m\omega}{2}} \left(a^{\dagger} - a \right)$$

$$\hat{x}^2 = \frac{\hbar}{2m\omega} (a + a^{\dagger})^2 = \frac{\hbar}{2m\omega} (a^2 + a^{\dagger 2} + a^{\dagger} a + a a^{\dagger})$$

$$\hat{p}^2 = -\frac{\hbar m\omega}{2} (a^{\dagger} - a)^2 = -\frac{\hbar m\omega}{2} (a^{\dagger 2} - a^{\dagger} a - a a^{\dagger} + a^2)$$

which is governed by

$$a|n\rangle = \sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$

Apply the calculating formula to the matrix elements, and we have

$$\begin{split} \langle m|\hat{x}|n\rangle &= \sqrt{\frac{\hbar}{2m\omega}} \left(\langle m|a|n\rangle + \langle m|a^\dagger|n\rangle \right) = \sqrt{\frac{\hbar}{2m\omega}} \left(\langle m|\sqrt{n}|n-1\rangle + \langle m|\sqrt{n+1}|n+1\rangle \right) \\ &= \sqrt{\frac{\hbar}{2m\omega}} (\sqrt{n}\delta_{m,n-1} + \sqrt{n+1}\delta_{m,n+1}) \\ \langle m|\hat{p}|n\rangle &= i\sqrt{\frac{\hbar m\omega}{2}} (\langle m|a^\dagger|n\rangle - \langle m|a|n\rangle) = i\sqrt{\frac{\hbar m\omega}{2}} (\langle m|\sqrt{n+1}|n+1\rangle - \langle m|\sqrt{n}|n-1\rangle) \\ &= i\sqrt{\frac{\hbar m\omega}{2}} (\sqrt{n+1}\delta_{m,n+1} - \sqrt{n}\delta_{m,n-1}) \\ \langle m|\hat{x}^2|n\rangle &= \frac{\hbar}{2m\omega} (\langle m|a^2|n\rangle + \langle m|a^{\dagger 2}|n\rangle + \langle m|a^\dagger a|n\rangle + \langle m|aa^\dagger|n\rangle) \\ &= \frac{\hbar}{2m\omega} (\langle m|\sqrt{n(n-1)}|n-2\rangle + \langle m|\sqrt{(n+1)(n+2)}|n+2\rangle + \langle m|n|n\rangle + \langle m|n+1|n\rangle) \\ &= \frac{\hbar}{2m\omega} (\sqrt{n(n-1)}\delta_{m,n-2} + \sqrt{(n+1)(n+2)}\delta_{m,n+2} + n\delta_{m,n} + (2n+1)\delta_{m,n}) \\ \langle m|\hat{p}^2|n\rangle &= -\frac{\hbar m\omega}{2} \left(\langle m|a^{\dagger 2}|n\rangle - \langle m|2a^\dagger a|n\rangle + \langle m|a^2|n\rangle - \langle m|1|n\rangle \right) \\ &= -\frac{\hbar m\omega}{2} (\sqrt{(n+1)(n+2)}\delta_{m,n+2} - (2n+1)2n\delta_{m,n} + \sqrt{n(n-1)}\delta_{m,n-2}) \end{split}$$

3. Assume the quantum harmonic oscillator is in a thermal bath at temperature T; find the partition function Z and the average energy $\langle E \rangle$ of the system.

Note $\frac{1}{k_BT}$ as β for simplicity. Since the energy eigenvalues are given by $E_n=\left(n+\frac{1}{2}\right)\hbar\omega$, the partition function Z is given by

$$Z = \sum_{n=0}^{\infty} e^{-\beta E_n} = \sum_{n=0}^{\infty} e^{-\beta \left(n + \frac{1}{2}\right)\hbar\omega} = e^{-\frac{1}{2}\beta\hbar\omega} \sum_{n=0}^{\infty} e^{-\beta\hbar\omega n}$$

For the series $\sum_{n=0}^{\infty} x^n$, we have the limit value $\frac{1}{1-x}$ when |x|<1. So we have

$$Z = e^{-\frac{1}{2}\beta\hbar\omega} \frac{1}{1 - e^{-\beta\hbar\omega}} = \boxed{\frac{e^{-\frac{1}{2}\beta\hbar\omega}}{1 - e^{-\beta\hbar\omega}}}$$

The average energy $\langle E \rangle$ is given by

$$\begin{split} \langle E \rangle &= -\frac{\partial \ln Z}{\partial \beta} = -\frac{\partial}{\partial \beta} \left(-\frac{1}{2} \beta \hbar \omega - \ln(1 - e^{-\beta \hbar \omega}) \right) \\ &= -\left(-\frac{1}{2} \hbar \omega - \frac{1}{1 - e^{-\beta \hbar \omega}} (-e^{-\beta \hbar \omega}) (-\hbar \omega) \right) \\ &= \boxed{\frac{1}{2} \hbar \omega + \frac{\hbar \omega}{e^{\beta \hbar \omega} - 1}} \end{split}$$

4. Prove that the inner product of coherent states is given by:

$$\langle \alpha | \beta \rangle = e^{-\frac{1}{2}(|\alpha|^2 + |\beta|^2) + \alpha^* \beta}$$

The coherent states are given by

$$|\alpha\rangle = e^{-\frac{1}{2}|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

$$|\beta\rangle = e^{-\frac{1}{2}|\beta|^2} \sum_{m=0}^{\infty} \frac{\beta^m}{\sqrt{m!}} |m\rangle$$

So the inner product could be derived as

$$\begin{split} \langle \alpha | \beta \rangle &= \left(e^{-\frac{1}{2} |\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^{*n}}{\sqrt{n!}} \langle n| \right) \left(e^{-\frac{1}{2} |\beta|^2} \sum_{m=0}^{\infty} \frac{\beta^m}{\sqrt{m!}} |m\rangle \right) \\ &= e^{-\frac{1}{2} |\alpha|^2} e^{-\frac{1}{2} |\beta|^2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(\alpha^*)^n \beta^m}{\sqrt{n!m!}} \langle n|m\rangle \end{split}$$

where $\langle n|m\rangle=\delta_{n,m}$ due to the orthogonality of the energy eigenstates. So we have

$$\langle \alpha | \beta \rangle = e^{-\frac{|\alpha|^2}{2}} e^{-\frac{|\beta|^2}{2}} \sum_{n=0}^{\infty} \frac{\alpha^{*n} \beta^n}{n!} = e^{-\frac{|\alpha|^2 + |\beta|^2}{2}} \sum_{n=0}^{\infty} \frac{(\alpha^* \beta)^n}{n!} = e^{-\frac{|\alpha|^2 + |\beta|^2}{2}} e^{\alpha^* \beta}. \quad \Box$$

1.3 Homework 3

1.3.1 Schwinger boson representation

A two-dimensional quantum harmonic oscillator contains two decoupled free bosons, whose annihilation operators can be represented as a and b respectively. $a=\frac{1}{\sqrt{2}}(x+ip_x)$, $b=\frac{1}{\sqrt{2}}(y+ip_y)$. They satisfy the commutation relations

 $[a,a^\dagger]=[b,b^\dagger]=1$ and $[a,b]=[a,b^\dagger]=0$. This system has U(2) symmetry, which includes an SU(2) subgroup. Let's explore how to construct the SU(2) representation using bosonic operators. Define $S^x=rac{1}{2}(a^\dagger b+b^\dagger a)$, $S^z=rac{1}{2}(a^\dagger a-b^\dagger b)$.

1. Express S^y in terms of a and b. [Hint: Make $\vec{S} \times \vec{S} = i\vec{S}$]

To satisfy the commutation relation $\vec{S} \times \vec{S} = i\vec{S}$, we have

$$[S^x, S^y] = iS^z, \quad [S^y, S^z] = iS^x, \quad [S^z, S^x] = iS^y$$

So we have

$$\begin{split} S^y &= \frac{1}{i}[S^z, S^x] = \frac{1}{i} \left[\frac{1}{2} \left(a^\dagger a - b^\dagger b \right), \frac{1}{2} \left(a^\dagger b + b^\dagger a \right) \right] \\ &= \frac{1}{4i} [a^\dagger a - b^\dagger b, a^\dagger b + b^\dagger a] \end{split}$$

We have commutation formula that

$$\begin{split} [\hat{A}, \hat{B} + \hat{C}] &= [\hat{A}, \hat{B}] + [\hat{A}, \hat{C}] \\ [\hat{A} + \hat{B}, \hat{C}] &= [\hat{A}, \hat{C}] + [\hat{B}, \hat{C}] \\ [\hat{A}, \hat{B}\hat{C}] &= \hat{B}[\hat{A}, \hat{C}] + [\hat{A}, \hat{B}]\hat{C} \\ [\hat{A}\hat{B}, \hat{C}] &= \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B} \\ \Rightarrow [\hat{A}\hat{B}, \hat{C}\hat{D}] &= \hat{A}\hat{C}[\hat{B}, \hat{D}] + \hat{A}[\hat{B}, \hat{C}]\hat{D} + \hat{C}[\hat{A}, \hat{D}]\hat{B} + [\hat{A}, \hat{C}]\hat{D}\hat{B} \end{split}$$

So we have

$$S^y = \frac{1}{4i} \left[a^\dagger a, a^\dagger b \right] + \frac{1}{4i} \left[a^\dagger a, b^\dagger a \right] - \frac{1}{4i} \left[b^\dagger b, a^\dagger b \right] - \frac{1}{4i} \left[b^\dagger b, b^\dagger a \right]$$

$$\left[a^\dagger a, a^\dagger b \right] = \underline{a}^\dagger \underline{a}^\dagger \left[a, b \right] + \underline{a}^\dagger \left[a, a^\dagger \right] b + \underline{a}^\dagger \left[\underline{a}^\dagger, b \right] \overline{a} + \left[\underline{a}^\dagger, a^\dagger \right] \overline{b} \overline{a} = a^\dagger b$$

$$\left[a^\dagger a, b^\dagger a \right] = \underline{a}^\dagger \underline{b}^\dagger \left[\overline{a}, \overline{a} \right] + \underline{a}^\dagger \left[\overline{a}, \overline{b}^\dagger \right] \overline{a} + b^\dagger \left[\overline{a}^\dagger, a \right] \overline{a} + \left[\underline{a}^\dagger, b^\dagger \right] \overline{a} \overline{a} = -b^\dagger a$$

$$\left[b^\dagger b, a^\dagger b \right] = \underline{b}^\dagger \underline{a}^\dagger \left[b, \overline{b} \right] + \underline{b}^\dagger \left[b, \overline{a}^\dagger \right] \overline{b} + a^\dagger \left[b^\dagger, b \right] b + \left[\underline{b}^\dagger, a^\dagger \right] \overline{b} \overline{b} = -a^\dagger b$$

$$\left[b^\dagger b, b^\dagger a \right] = \underline{b}^\dagger \underline{b}^\dagger \left[b, \overline{a} \right] + b^\dagger \left[b, b^\dagger \right] \overline{a} + \underline{b}^\dagger \left[b^\dagger, \overline{a} \right] \overline{b} + \left[\underline{b}^\dagger, b^\dagger \right] \overline{a} \overline{b} = b^\dagger a$$

$$\Rightarrow S^y = \frac{1}{4i} \left(a^\dagger b - b^\dagger a + a^\dagger b - b^\dagger a \right) = \boxed{\frac{1}{2i} \left(a^\dagger b - b^\dagger a \right)}$$

2. Prove that S^y is actually related to the angular momentum operator of the harmonic oscillator $L=xp_y-yp_x$, namely $S^y=\frac{L}{2}$.

Define

$$x = \frac{a + a^{\dagger}}{\sqrt{2}}, \quad p_x = \frac{i(a^{\dagger} - a)}{\sqrt{2}}$$
$$y = \frac{b + b^{\dagger}}{\sqrt{2}}, \quad p_y = \frac{i(b^{\dagger} - b)}{\sqrt{2}}$$

So the angular momentum operator is

$$\begin{split} L &= \left(\frac{a+a^\dagger}{\sqrt{2}}\right) \left(\frac{i(b^\dagger-b)}{\sqrt{2}}\right) - \left(\frac{b+b^\dagger}{\sqrt{2}}\right) \left(\frac{i(a^\dagger-a)}{\sqrt{2}}\right) \\ &= \frac{i}{2} \left[\left(a+a^\dagger\right) \left(b^\dagger-b\right) - \left(b+b^\dagger\right) \left(a^\dagger-a\right)\right] \\ &= \frac{i}{2} \left(ab^\dagger-ab+a^\dagger b^\dagger-a^\dagger b-ba^\dagger+ba-b^\dagger a^\dagger+b^\dagger a\right) \end{split}$$

Because $[a, b] = [a, b^{\dagger}] = 0$, we have $ab^{\dagger} = b^{\dagger}a$ and $a^{\dagger}b = ba^{\dagger}$, so

$$L = \frac{i}{2} \left(ab^{\dagger} - a^{\dagger}b - a^{\dagger}b + ab^{\dagger} \right) = i(ab^{\dagger} - a^{\dagger}b)$$

While
$$S^y = \frac{1}{2i}(a^{\dagger}b - ab^{\dagger}) = \frac{i}{2}(ab^{\dagger} - a^{\dagger}b)$$
, so $S^y = \frac{L}{2}$.

3. Define the following set of states, where $s=0,1/2,1,\cdots$, and $m=-s,-s+1,\cdots,s-1,s$ (they are called the Schwinger boson representation),

$$|s,m\rangle = \frac{(a^{\dagger})^{s+m}}{\sqrt{(s+m)!}} \frac{(b^{\dagger})^{s-m}}{\sqrt{(s-m)!}} |\Omega\rangle$$

where $|\Omega\rangle$ is the state annihilated by a and b, i.e., $a|\Omega\rangle=b|\Omega\rangle=0$. Prove that the state $|s,m\rangle$ is indeed a simultaneous eigenstate of $\vec{S}^2=(S^x)^2+(S^y)^2+(S^z)^2$ and S^z , with eigenvalues s(s+1) and m respectively. [Hint: Use the particle number basis.]

We have known that

$$S^{z} = \frac{1}{2} (a^{\dagger} a - b^{\dagger} b)$$
$$\vec{S}^{2} = (S^{x})^{2} + (S^{y})^{2} + (S^{z})^{2}$$

where $a^{\dagger}a$ counts the number of particles in the a mode, and $b^{\dagger}b$ counts the number of particles in the b mode. So we have

$$a^{\dagger}a|s,m\rangle = (s+m)|s,m\rangle, \quad b^{\dagger}b|s,m\rangle = (s-m)|s,m\rangle$$

$$\Rightarrow S^{z}|s,m\rangle = \frac{1}{2}\left((s+m) - (s-m)\right)|s,m\rangle = \boxed{m|s,m\rangle}$$

So $|s,m\rangle$ is an eigenstate of S^z with eigenvalue m.

Define ladder operators $S^{\pm} = S^x \pm iS^y$:

$$S^{+} = a^{\dagger}b, \quad S^{-} = b^{\dagger}a$$

 $\Rightarrow S^{2} = S^{z}S^{z} + \frac{1}{2}\left(S^{+}S^{-} + S^{-}S^{+}\right)$

So we have

$$S^{+}|s,m\rangle = a^{\dagger}b|s,m\rangle = \sqrt{(s+m+1)(s-m)}|s,m+1\rangle$$

$$S^{-}|s,m\rangle = b^{\dagger}a|s,m\rangle = \sqrt{(s+m)(s-m+1)}|s,m-1\rangle$$

$$\Rightarrow S^{+}S^{-}|s,m\rangle = S^{+}\sqrt{(s+m)(s-m+1)}|s,m-1\rangle = (s+m)(s-m+1)|s,m\rangle$$

$$S^{-}S^{+}|s,m\rangle = S^{-}\sqrt{(s+m+1)(s-m)}|s,m+1\rangle = (s+m+1)(s-m)|s,m\rangle$$

$$S^{z}S^{z}|s,m\rangle = m^{2}|s,m\rangle$$

Combine the above results, and we have

$$S^{2}|s,m\rangle = S^{z}S^{z}|s,m\rangle + \frac{1}{2}\left(S^{+}S^{-} + S^{-}S^{+}\right)|s,m\rangle$$

$$= m^{2}|s,m\rangle + \frac{1}{2}\left((s+m)(s-m+1) + (s+m+1)(s-m)\right)|s,m\rangle$$

$$= s(s+1)|s,m\rangle$$

1.3.2 1D tight-binding model

The Hamiltonian of a periodic tight-binding chain of length L is given by the following expression:

$$H_{\mathrm{chain}} = -t \sum_{n=1}^L \left(\hat{a}_n^\dagger \hat{a}_{n+1} + \hat{a}_{n+1}^\dagger \hat{a} \right)$$

where t is the hopping matrix element between adjacent sites n and n+1, \hat{a}_n^{\dagger} creates a fermion at site n, and the set of operators $\{a_n^{\dagger}, a_n; n=1, \cdots, L\}$ satisfies the standard anticommutation relations:

$$\{a_n, a_{n'}^{\dagger}\} = \delta_{nn'}, \quad \{a_n, a_{n'}\} = 0, \quad \{a_n^{\dagger}, a_{n'}^{\dagger}\} = 0$$

We assume periodic boundary conditions, i.e., we consider $a_{L+n}^{\dagger}=a_n^{\dagger}$. The purpose of this problem is to prove that this Hamiltonian can be diagonalized by a linear transformation of the discrete Fourier transform form:

$$b_k^\dagger = \frac{1}{\sqrt{L}} \sum_{n=1}^L e^{ikn} a_n^\dagger$$

1. Let's require that b_k^{\dagger} remains invariant under any shift of the summation index $n \to n + n'$ ("translation invariance"). Prove that this implies that the index k is quantized and determine the set of allowed k values. How many independent b_k^{\dagger} operators are there?

Apply a shift of the summation index $n \to n + n'$, and

$$b_{k}^{\dagger} = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{ik(n+n')} a_{n}^{\dagger} = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{ikn} e^{ikn'} a_{n}^{\dagger}$$

Since b_k' remain invariant, so $e^{ikn'}=1$ for any shift $n'\in\mathbb{Z}$, which means

$$k = \frac{2\pi}{L}m, \quad m \in \{0, 1, 2, \dots, L-1\}$$

So there are L independent b_k^{\dagger} operators.

2. Verify that the set of b_k and b_k^{\dagger} operators also satisfies the above standard anticommutation relations. That is:

$$\{b_k, b_{k'}^{\dagger}\} = \delta_{kk'}, \quad \{b_k, b_{k'}\} = 0, \quad \{b_k^{\dagger}, b_{k'}^{\dagger}\} = 0$$

Hint: Use the identity $\sum_{m=1}^{L}e^{i\frac{2\pi}{L}m}=0$.

We have

$$b_k^{\dagger} = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{ikn} a_n^{\dagger}, \quad b_k = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{-ikn} a_n$$

So

$$\begin{aligned} \{b_k, b_{k'}^{\dagger}\} &= \frac{1}{L} \sum_{n,n'} e^{-ikn} e^{ik'n'} \{a_n, a_{n'}^{\dagger}\} = \frac{1}{L} \sum_{n,n'} e^{-ikn} e^{ik'n'} \delta_{nn'} \\ &= \frac{1}{L} \sum_{n=1}^{L} e^{-ikn} e^{ik'n} = \frac{1}{L} \sum_{n=1}^{L} e^{i(k'-k)n} = \boxed{\delta_{kk'}} \\ \{b_k, b_{k'}\} &= \frac{1}{L} \sum_{n,n'} e^{-ikn} e^{-ik'n'} \{a_n, a_{n'}\} = \boxed{0} \\ \{b_k^{\dagger}, b_{k'}^{\dagger}\} &= \frac{1}{L} \sum_{n=1}^{L} e^{ikn} e^{ik'n'} \{a_n^{\dagger}, a_{n'}^{\dagger}\} = \boxed{0} \end{aligned}$$

3. Prove that the inverse transformation of the above has the form:

$$a_n^\dagger = \frac{1}{\sqrt{L}} \sum_k e^{-ikn} b_k^\dagger$$

where the sum is over the set of allowed k values determined in (a).

We have the definition

$$b_k^{\dagger} = \frac{1}{\sqrt{L}} \sum_{n=1}^{L} e^{ikn} a_n^{\dagger}$$

So

$$\frac{1}{\sqrt{L}} \sum_{k} e^{-ikn} b_{k}^{\dagger} = \frac{1}{\sqrt{L}} \sum_{k} e^{-ikn} \left(\frac{1}{\sqrt{L}} \sum_{n'} e^{ikn'} a_{n'}^{\dagger} \right)$$

$$= \frac{1}{L} \sum_{n'} \sum_{k} e^{ik(n'-n)} a_{n'}^{\dagger} = \sum_{n'} \left(\frac{1}{L} \sum_{k} e^{ik(n'-n)} \right) a_{n'}^{\dagger}$$

$$= \sum_{n'} (\delta_{nn'}) a_{n'}^{\dagger} = a_{n}^{\dagger}. \quad \Box$$

4. Show that b_k^{\dagger} is indeed a creation operator of a single-particle eigenstate of $H_{\rm chain}$ by proving that its commutator with the Hamiltonian has the form $[H_{\rm chain}, b_k^{\dagger}] = \varepsilon_k b_k^{\dagger}$. Give the explicit expression for the corresponding eigenvalue ε_k .

We have known that

$$\begin{split} H_{\mathrm{chain}} &= -t \sum_{n=1}^L \left(\hat{a}_n^\dagger \hat{a}_{n+1} + \hat{a}_{n+1}^\dagger \hat{a} \right), \quad \hat{a}_{L+1} = \hat{a}_1 \\ b_k^\dagger &= \frac{1}{\sqrt{L}} \sum_{n=1}^L e^{ikn} a_n^\dagger \end{split}$$

So the commutator

$$\begin{split} [H_{\mathrm{chain}},b_k^\dagger] &= -t \sum_{n=1}^L \left(\left[a_n^\dagger a_{n+1},b_k^\dagger \right] + \left[a_{n+1}^\dagger a_n,b_k^\dagger \right] \right) \\ \left[a_n^\dagger a_{n+1},b_k^\dagger \right] &= a_n^\dagger \left[a_{n+1},b_k^\dagger \right] = a_n^\dagger \frac{1}{\sqrt{L}} \sum_{m=1}^L e^{ikm} \left[a_{n+1},a_m^\dagger \right] \\ &= a_n^\dagger \frac{1}{\sqrt{L}} \sum_{m=1}^L e^{ikm} \delta_{n+1,m} = a_n^\dagger \frac{1}{\sqrt{L}} e^{ik(n+1)} \\ \left[a_{n+1}^\dagger a_n,b_k^\dagger \right] &= a_{n+1}^\dagger \left[a_n,b_k^\dagger \right] = a_{n+1}^\dagger \frac{1}{\sqrt{L}} \sum_{m=1}^L e^{ikm} \left[a_n,a_m^\dagger \right] \\ &= a_{n+1}^\dagger \frac{1}{\sqrt{L}} \sum_{m=1}^L e^{ikm} \delta_{n,m} = a_{n+1}^\dagger \frac{1}{\sqrt{L}} e^{ikn} \\ \Rightarrow [H_{\mathrm{chain}},b_k^\dagger] &= -t \sum_{n=1}^L \left(a_n^\dagger \frac{1}{\sqrt{L}} e^{ik(n+1)} + a_{n+1}^\dagger \frac{1}{\sqrt{L}} e^{ikn} \right) \\ &= -t \left(e^{ik} \frac{1}{\sqrt{L}} \sum_{n=1}^L e^{ikn} a_n^\dagger + e^{-ik} \frac{1}{\sqrt{L}} \sum_{n=1}^L e^{ik(n+1)} a_{n+1}^\dagger \right) \\ &= -t \left(e^{ik} b_k^\dagger + e^{-ik} b_k^\dagger \right) = \boxed{-2t \cos k} b_k^\dagger \end{split}$$

So the corresponding eigenvalue $\varepsilon_k = -2t \cos k$.

1.4 Homework 4

1.4.1 Mean-field Solutions for Extended Hubbard Model

The Hamiltonian of the extended Hubbard model can be written as:

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \left(c^\dagger_{i\sigma} c_{j\sigma} + \text{h.c.} \right) + U \sum_i n_{i\uparrow} n_{i\downarrow} + V \sum_{\langle i,j \rangle} n_i n_j$$

where:

- $c_{i\sigma}^{\dagger}$ and $c_{i\sigma}$ are the fermionic creation and annihilation operators for an eletron with spin σ at site i.
- $n_{i\sigma}=c_{i\sigma}^{\dagger}c_{i\sigma}$ is the number operator for electrons with spin σ at site i.
- $n_i = \sum_{\sigma} c^{\dagger}_{i\sigma} c_{i\sigma}$ is the number operator for total electrons at site i.
- $\,U>0$ is the strength of the on-site interaction between electrons.
- ${\cal V}>0$ is the strength of the interaction between electrons at neighboring sites.
- t > 0 is the hopping strength of the electrons.

We consider the case of half-filling for two lattice sites ($\langle N \rangle = \langle n_{1\uparrow} + n_{1\downarrow} + n_{2\uparrow} + n_{2\downarrow} \rangle$). In the mean-field approximation, calculate the ground state energy $E_{\rm MF}$. Please consider initial mean-field values with following four cases.

In the mean-field approximation, the Hamiltonian can be written as

$$\begin{split} \hat{H} &= -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + V \sum_{\langle i,j \rangle} n_{i} n_{j} \\ &= -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.} \right) + U \sum_{i} \left(n_{i\uparrow} \langle n_{i\downarrow} \rangle + ni \downarrow \langle n_{i\uparrow} \langle n_{i\uparrow} \rangle - \langle n_{i\uparrow} \rangle \langle n_{i\downarrow} \rangle \right) \\ &+ V \sum_{\langle i,j \rangle} \left(n_{i} \langle n_{j} \rangle + n_{j} \langle n_{i} \rangle - \langle n_{i} \rangle \langle n_{j} \rangle \right) \\ &= c^{\dagger} \begin{bmatrix} U \langle n_{1\downarrow} \rangle + V \langle n_{2} \rangle & -t \\ -t & U \langle n_{1\uparrow} \rangle + V \langle n_{2} \rangle & -t \\ -t & U \langle n_{2\downarrow} \rangle + V \langle n_{1} \rangle \end{bmatrix} c \end{split}$$

1. Case 1: Paramagnetic(PM). Initial mean-field value $\langle n_{i\sigma} \rangle = \frac{1}{2}$.

For this case, the interactions are weak, so we expect that the hopping term is dominant. Thus we have

$$\langle n_{i\uparrow} \rangle = \langle n_{i\downarrow} \rangle = \frac{1}{2}, \quad \text{for all } i.$$

$$\begin{bmatrix} U^{\frac{1}{2}} + V & -t \\ U^{\frac{1}{2}} + V & -t \\ -t & U^{\frac{1}{2}} + V \\ -t & U^{\frac{1}{2}} + V \end{bmatrix} = UDU^{-1}$$

Except for the different diagnoal elements, this matrix is very similar to the case in the lecture. We can get

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & & -1 \\ 1 & & -1 \\ & 1 & & 1 \\ 1 & & 1 & \end{bmatrix}, \quad D = \begin{bmatrix} -t + \frac{U}{2} + V & & \\ & & -t + \frac{U}{2} + V \\ & & & t + \frac{U}{2} + V \end{bmatrix}$$

$$E_{\rm MF} = -2t + \frac{U}{2} + V$$

2. Case 2: Ferromagnetic(FM). Initial mean-field value $\langle n_{i\uparrow} \rangle = 1$ and $\langle n_{i\downarrow} \rangle = 0$.

When U is large, we expect no double occupancy. For this case, the mean-field values are chosen as

$$\langle n_{1\uparrow} \rangle = \langle n_{2\uparrow} \rangle = 1, \quad \langle n_{1\downarrow} \rangle = \langle n_{2\downarrow} \rangle = 0.$$

$$\begin{bmatrix} V & & -t & & \\ & U + V & & -t \\ -t & & V & \\ & -t & & U + V \end{bmatrix} = \begin{bmatrix} & & -t & \\ & U & & -t \\ -t & & & \end{bmatrix} + V\mathbb{I} = UDU^{-1}$$

The effect of V is still just shifting the energy, and we get

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 & & & \\ & & 1 & -1 \\ 1 & 1 & & & \\ & & 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} -t+V & & & & \\ & & t+V & & \\ & & & -t+U+V & \\ & & & & t+U+V \end{bmatrix}$$

(a) When $-t + U + V < t + V \iff U < 2t$,

$$\langle n_{1\uparrow} \rangle = \sum_{ij} V_{1i}^* V_{1j} \langle \gamma_i^{\dagger} \gamma_j \rangle = V_{11}^* V_{11} + V_{13}^* V_{13} = \frac{1}{2}$$
$$\langle n_{1\uparrow} \rangle = \langle n_{2\uparrow} \rangle = \langle n_{1\downarrow} \rangle = \langle n_{2\downarrow} \rangle = \frac{1}{2}$$

which implies the system is still in PM phase and $E_{\rm MF} = -2t + \frac{U}{2} + V$.

(b) When U > 2t,

$$\langle n_{1\uparrow} \rangle = \sum_{ij} V_{1i}^* V_{1j} \langle \gamma_i^{\dagger} \gamma_j \rangle = V_{11}^* V_{11} + V_{12}^* V_{12} = 1$$
$$\langle n_{1\uparrow} \rangle = \langle n_{2\uparrow} \rangle = 1, \quad \langle n_{1\downarrow} \rangle = \langle n_{2\downarrow} \rangle = 0$$

Now the system is in FM phase and $E_{\rm FM}=V$.

3. Case 3: Anti-ferromagnetic(AFM). Initial mean-field value $\langle n_{1\uparrow} \rangle = \langle n_{2\downarrow} \rangle = 1 - \alpha$ and $\langle n_{1\downarrow} \rangle = \langle n_{2\uparrow} \rangle = \alpha$.

Another choice when U is large is to give

$$\langle n_{1\uparrow} \rangle = \langle n_{2\downarrow} \rangle = 1 - \alpha, \quad \langle n_{1\downarrow} \rangle = \langle n_{2\uparrow} \rangle = \alpha.$$

$$\begin{bmatrix} \alpha U + V & -t \\ (1-\alpha)U + V & -t \\ -t & (1-\alpha)U + V \\ -t & \alpha U + V \end{bmatrix}$$

$$= \begin{bmatrix} -t \\ (1-2\alpha)U & -t \\ -t & (1-2\alpha)U \end{bmatrix} + (\alpha U + V)\mathbb{I} = UDU^{-1}$$

The effect of $\bar{V} = \alpha U + V$ is still just shifting the energy. Similar to the contents in the lecture note, mark $\bar{U} = (1 - 2\alpha)U$ and shift each eigenenergy with \bar{V} , we get

$$E_{\rm MF} = \bar{U} - \sqrt{4t^2 + \bar{U}^2} + 2\alpha U + 2V + 2\alpha (1 - \alpha)U - V$$
$$= (1 + 2\alpha - 2\alpha^2)U - \sqrt{4t^2 + \bar{U}^2} + V$$

and the self-consistent equation is

$$\alpha = \frac{4t^2}{4t^2 + [\sqrt{4t^2 + (1 - 2\alpha)U^2} + (1 - 2\alpha)U]^2}$$

- (a) When $U\gg t$, we get $\alpha\approx 0$ and $E_{\rm MF}\approx -\frac{4t^2}{U}+V$. This corresponds to an AFM solution, which is lower than FM.
- (b) When $U \ll t$, we get $\alpha \approx \frac{1}{2}$ and back to the PM solution.
- 4. Case 4: Charge density wave(CDW). Initial mean-field value $\langle n_{1\uparrow} \rangle = \langle n_{1\downarrow} \rangle = 1 \alpha$ and $\langle n_{2\uparrow} \rangle = \langle n_{2\downarrow} \rangle = \alpha$.

When V is much stronger, we expect a double occupancy will occur. Thus the mean-field values are chosen as

$$\langle n_{1\uparrow} \rangle = \langle n_{1\downarrow} \rangle = 1 - \alpha, \quad \langle n_{2\uparrow} \rangle = \langle n_{2\downarrow} \rangle = \alpha.$$

$$\begin{bmatrix} (1-\alpha)U + 2\alpha V & -t \\ -t & (1-\alpha)U + 2\alpha V & -t \\ -t & \alpha U + 2(1-\alpha)V & \\ -t & \alpha U + 2(1-\alpha)V \end{bmatrix} = UDU^{-1}$$

The result is a little complicated and one can solve the matrix by Mathematica easily. Note $\beta = (1 - 2\alpha)(U - 2V)$ and $\gamma = 2t$, we have

$$D = \frac{1}{2} \left((U + 2V)\mathbb{I} + \sqrt{\beta^2 + \gamma^2} \begin{bmatrix} -1 & & & \\ & -1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix} \right)$$

The self-consistent equation is

$$1 - \alpha = \frac{2\beta^2 + \gamma^2 - 2\beta\sqrt{\beta^2 + \gamma^2}}{2\beta^2 + 2\gamma^2 - 2\beta\sqrt{\beta^2 + \gamma^2}}$$

(a) When $\beta^2 \gg \gamma^2 \iff V \gg \frac{U}{2}$ and $V \gg t$, we have

$$\alpha \approx 0$$
, $\langle n_{1\sigma} \rangle = 1$, $\langle n_{2\sigma} \rangle = 0$;
 $H_{\text{ME}} \approx U$.

(b) When $\beta^2 \ll \gamma^2 \iff V \ll t$ and $U \ll t$, we have $\langle n_{i\sigma} \rangle = \frac{1}{2}$ which corresponds to the PM solution.

1.5 Homework 5

1.5.1 Quantum Rotor Model

The angular coordinate of a quatum rotor is $\theta \in [0,2\pi)$, note that $\theta \pm 2\pi$ and θ are equivalent. The eigenstate of the operator $\hat{\theta}$ is represented by $|\theta\rangle$, and $\theta \pm 2\pi\rangle$ represents the same state as $|\theta\rangle$. Define the rotation operator for the quantum rotator as $\hat{R}(\alpha)$,

$$\hat{R}(\alpha) = \int_0^{2\pi} d\theta |\theta - \alpha\rangle\langle\theta|$$

Thus $\hat{R}(\alpha)|\theta\rangle=|\theta-\alpha\rangle$, and $\hat{R}(2\pi)$ is the identity operator.

The rotation operator $\hat{R}(\alpha)$ is a unitary operator, its generator is the Hermitian operator \hat{N} , which is related to the angular momentum operator of the quantum rotator \hat{L} by $\hat{L}=\hbar\hat{N}$, so $\hat{R}(\alpha)=e^{i\hat{N}\alpha}$, and in the $\hat{\theta}$ representation, we have $\hat{N}=-i\frac{\partial}{\partial\theta}$.

Consider a specific quantum rotor model, its Hamiltonian is

$$\hat{H} = \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 - g \cos 2\hat{\theta}$$

where $g\cos 2\hat{\theta}$ is a small external potential, which can be treated as a perturbation. Assuming $|N\rangle$ is the eigenstate of the operator \hat{N} with eigenvalue N, i.e., $\hat{N}|N\rangle = N|N\rangle$. It can be calculated that $|N\rangle$ is expanded in terms of $|\theta\rangle$ as

$$|N\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle$$

1. Use the fact that $\hat{R}(2\pi)$ is the identity operator to prove that N must be an integer.

Since $\hat{R}(2\pi) = \mathbb{I}$, so we have $|\theta - 2\pi\rangle = |\theta\rangle$. For eigenstate $|N\rangle$ of operator \hat{N} , we have

$$\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta - 2\pi\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN\theta} |\theta\rangle$$

$$\iff \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\theta e^{iN(\theta - 2\pi)} |\theta\rangle$$

$$\iff e^{iN\theta} = e^{iN(\theta - 2\pi)} = e^{iN\theta} e^{-i2\pi N}$$

So N should be an integer to keep the invariance of the shift of θ by 2π .

2. Consider the unperturbed Hamiltonian $\hat{H}_0 = \frac{1}{2} \left(\frac{1}{2} \hat{N} - \frac{1}{2} \right)^2$, prove that $|N\rangle$ is also an eigenstate of \hat{H}_0 , and find its eigenenergy, demonstrating that each energy level is doubly degenerate.

$$\begin{split} \hat{H}_0|N\rangle &= \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 |N\rangle = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 |N\rangle \Rightarrow E_N^{(0)} = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 \\ \Rightarrow N_\pm - \frac{1}{2} = \pm \sqrt{2 E_N^{(0)}} \Rightarrow N_\pm = \frac{1}{2} \pm \sqrt{2 E_N^{(0)}} \end{split}$$

which means for any N, there exists N' = 1 - N to make the energy level degenerate.

3. Using the basis set $\{|N\rangle\}$, write down the representation matrix for the perturbation term $\hat{V}=-g\cos2\hat{\theta}$, and prove that the perturbation does not connect degenerate levels (i.e., if $|N\rangle$ and $|N'\rangle$ are degenerate, then $\langle N|\hat{V}|N'\rangle=0$). Therefore, although the energy levels of \hat{H}_0 are degenerate, we can still use non-degenerate perturbation theory.

$$\begin{split} \cos 2\hat{\theta} &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) \\ e^{i2\hat{\theta}} |N\rangle &= e^{i2\hat{\theta}} \left(\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle \right) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} e^{i2\hat{\theta}} |\theta\rangle \\ &= \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{i(N+2)\theta} |\theta\rangle = |N+2\rangle \\ \Rightarrow \cos 2\hat{\theta} |N\rangle &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) |N\rangle = \frac{1}{2} \left(|N+2\rangle + |N-2\rangle \right) \\ \Rightarrow \langle N|\hat{V}|N'\rangle &= -g\langle N|\cos 2\hat{\theta}|N'\rangle = -\frac{g}{2} \left(\langle N|N'+2\rangle + \langle N|N'-2\rangle \right) \\ &= -\frac{g}{2} (\delta_{N,N'+2} + \delta_{N,N'-2}) \end{split}$$

As the discussion before, if $|N\rangle$ and $|N'\rangle$ are degenerate, then N+N'=1, which means the delta note equals to 0 when $N\in\mathbb{Z}$, so the perturbation does not connect degenerate levels.

4. Calculate the perturbation correction to each energy level E_N up to second order in g, and prove that all degeneracies of the energy levels remain unlifted.

$$\begin{split} E_N^{(1)} &= \langle N | \hat{V} | N \rangle = -\frac{g}{2} \left(\langle N | N+2 \rangle + \langle N | N-2 \rangle \right) = 0 \\ E_N^{(2)} &= \sum_{N' \neq N} \frac{|\langle N | \hat{V} | N' \rangle|^2}{E_N^{(0)} - E_{N'}^{(0)}} = \sum_{N' \neq N} \frac{\left(-\frac{g}{2} (\delta_{N,N'+2} + \delta_{N,N'-2}) \right)^2}{\frac{1}{2} \left(N - \frac{1}{2} \right)^2 - \frac{1}{2} \left(N' - \frac{1}{2} \right)^2} \\ &= \boxed{\frac{g^2}{(2N-3)(2N+1)}} \end{split}$$

So the corrected energy level is

$$E_N \approx \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N-3)(2N+1)}$$

Apply N' = 1 - N to check if the degeneracy is lifted, we have

$$E_{N'} = \frac{1}{2} \left(1 - N - \frac{1}{2} \right)^2 + \frac{g^2}{[2(1-N)-3][2(1-N)+1]}$$
$$= \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N+1)(2N-3)} = E_N$$

so the degeneracy of the energy levels remains unlifted.