Master I d'informatique INFO0705 : info. théorique Pascal Mignot

Devoir sur table 18 novembre 2015

Note : seul l'aide-mémoire fourni est autorisié. L'utilisation de propriétés autres que celles de l'aide-mémoire devront être démontrées. Les ellipses (...) pourront être utilisées pour signifier qu'une construction se répète, y compris dans les constructions d'automates ou de grammaires.

EXERCICE 1: Soit le langage suivant : $L_1 = \{w \in \{0, 1\}^* \mid \text{ toutes les positions impaires de } w$ contiennent un 1} (mot vide non compris).

- ① Donner un automate déterministe fini qui reconnaît ce langage.
- 2 Donner l'automate non-déterministe fini à deux états qui reconnaît ce langage.
- 3 Donner l'expression régulière qui reconnaît ce langage.
- 4 Combien y-a-t-il de L_1 -classes d'équivalence ? On les énumèrera.
- ⑤ Donner la grammaire libre du contexte qui génère ce langage avec le minimum de règles.

Exercice 2: Soit le langage suivant : $L_2 = \{a^i b^j c^k \mid j = i + k\}$.

- ① Montrer que ce langage n'est pas régulier.
- 2 Donner la grammaire libre du contexte qui génère ce langage.
- 3 Donner l'automate à pile qui génère ce langage.
- ④ Donner le graphe de la machine de Turing qui reconnaît ce langage.

EXERCICE 3: Soit E l'ensemble des langages de $\{0,1\}^*$, tel qu'un langage $L \in E$ ssi $\forall w \in L$, $\#_1 w = 2$ et $\#_1 w > 0$ (= il y a exactement deux 1 et au moins un 0 dans tout mot de L).

- ① Choisir un langage $L_R \in E$, tel que L_R soit un langage régulier et son cardinal de taille non finie.
- ② Donner l'automate déterministe fini associé au langage L_R ,
- ③ Donner ses L_R -classes d'équivalence.
- ④ Choisir un langage $L_G ∈ E$, tel que L_G soit un langage libre de contexte mais pas régulier.
- ⑤ Démontrer que ce langage L_G n'est pas régulier.
- © Donner la grammaire libre de contexte qui reconnaît L_G .
- ® Choisir un langage L_{MT} ∈ E, tel que L_{MT} soit récursivement énumérable mais par libre de contexte.
- 9 Démontrer que ce langage $L_{\rm MT}$ n'est pas libre de contexte.
- **10** Donner la machine de Turing qui reconnaît $L_{\rm MT}$.

EXERCICE 4: Pour une chaine $w \in \{0, 1\}^*$, on note \overline{w} est la chaîne w dans laquelle les 1s ont été remplacés par des 0s et les 0s par des 1s (par exemple, si w = 01101, $\overline{w} = 10010$). On note w^R la chaîne w écrite dans l'ordre inverse (par exemple, si w = 01101, $w^R = 10110$). Soit $L = \{w\overline{w}^R \mid w \in \{0, 1\}^*\}$.

- ① Montrer que L n'est pas régulier.
- ② Donner une grammaire libre de contexte qui reconnait *L*.
- ③ Donner un automate à pile qui reconnait L.
- ① Donner le code de la machine de Turing qui reconnait L.

Exercice 5: On considère la propriété P "reconnait le mot 1" (= mot constitué d'un seul symbole et ce symbole est 1). Dans les réponses aux questions qui suivent, chaque code proposé devra être spécifiquement adapté à la propriété P à reconnaitre.

- ① Soit le langage $L^1_{ADF} = \{ \langle M \rangle \mid M \text{ est un ADF et le mot 1 appartient au langage reconnu par } M \}$.
 - (a) Montrer que L^1_{ADF} est récursivement énumérable.
 - (b) Peut-on déduire de la question précédente que L_{ADE}^1 est décidable ?
- ② Soit le langage $L^1_{GLC} = \{ \langle M \rangle \mid M \text{ est une GLC sous forme normale de Chomsky et le mot 1 appartient au langage reconnu par <math>M \}$.
 - (a) Montrer que L^1_{GLC} est récursivement énumérable.
 - (b) Peut-on déduire de la question précédente que $L^1_{\rm GLC}$ est décidable ?
- ③ Soit le langage $L_{\text{MT}}^1 = \{\langle M \rangle \mid M \text{ est une machine de Turing et le mot 1 appartient au langage reconnu par } M \}$.
 - (a) Montrer que L_{MT}^1 est récursivement énumérable.
 - (b) L_{MT}^1 est-il décidable?
- A quelles questions précédentes auraient-on pu répondre directement en utilisant des résultats vus en cours ?

Exercice 6: Soit M_u la machine de Turing universelle. Soit M_r la machine de Turing universelle modifiée de la manière suivante : si la machine simulée accepte, alors rejeter; si la machine simulée rejette, alors accepter.

- ① Quel est le langage L_r reconnu par M_r ?
- ② L_r est-il décidable?
- ③ Soit $M_{ur}(w) = M_u(M_r(w))$. Quel est le langage reconnu par M_{ur} ?

Exercice 7:

- ① \mathcal{R} est-il fermé par complémentation?
- 2 Est-il alors possible de trouver un exemple de langage décidable dont le complémentaire n'est pas décidable ? Si oui, on donnera un exemple ; si non, expliquera pourquoi.
- ③ RE est fermé par complémentation?
- Est-il alors possible de trouver un exemple de langage récursivement énumérable mais pas décidable dont le complémentaire n'est pas décidable? Si oui, on donnera un exemple; si non, justifiera pourquoi.
- ⑤ Est-il alors possible de trouver un exemple de langage décidable dont le complémentaire n'est pas récursivement énumérable? Si oui, on donnera un exemple; si non, justifiera pourquoi.

EXERCICE 8:

- ① Est-il possible de construire un langage récursivement énumérable mais pas décidable à partir de l'union de deux langages décidables ? On justifiera.
- ② Donner l'exemple de deux langages récursivement énumérables mais pas décidables dont l'union est un langage décidable.
- ③ Donner l'exemple de deux langages récursivement énumérables mais pas décidables dont l'intersection est un langage décidable non trivial.
- 4 Que peut-on déduire des deux questions précédentes?