

Análisis Matemático I

Trabajo Practico N° 1

Números reales. Intervalos. Inecuaciones. Valor absoluto. Cotas y extremos. Funciones: operaciones, gráficos, acotación, paridad, monotonía.

Ing. Roberto Lamas
Prof. Adjunto Análisis Matemático I

Intervalos

Un subconjunto de la recta real se llama intervalo si contiene al menos dos números y <u>contiene todos los números reales</u> que están entre dos cualesquiera de sus elementos.

Por ejemplo:

$$[-2,3]$$
 , $[6,9)$, $(6,\infty)$

Ejemplo:

Cerrado: [-2,3]

Semiabierto: [-2,3]

Abierto: (-2,3)

Infinito: $[a, \infty)$, $(-\infty, b]$ (a, ∞) , $(-\infty, b)$ $(-\infty, \infty)$

Valor absoluto

El valor absoluto de un número x, denotado por | x | , se define como :

$$|x| = \begin{cases} x & si \ x \ge 0 \\ -x & si \ x < 0 \end{cases}$$

Ejemplo:

b)
$$|-7| = ??$$

Solución:

a)
$$| 5 | = ??$$
 5 > 0, por lo tanto $| 5 | = 5$

b)
$$|-7| = ??$$
 $-7 < 0$ entonces $-(-7) = 7$

Desigualdades con valor absoluto:

La desigualdad | a | < D dice que la distancia de "a" a 0 es menor que D. Entonces "a" debe estar comprendida entre D y - D.

Entonces:

$$|a| \le D \Leftrightarrow -D \le a \le D$$

 $D \le |a| \Leftrightarrow D \le a \lor a \le -D$

Ejemplo:

a)
$$|x-5| < 9$$

Aplicamos $-9 < x-5 < 9$, por lo tanto
 $-9+5 < x < 9+5$ entonces $-4 < x < 14$ o $x \in (-4, 14)$

b)
$$| x + 3 | > 8$$

Aplicamos $x+3 > 8 \lor x+3 < -8$, a continuación $x > 5 \lor x < -11$, solución $x \in (-\infty, -11) \cup (5, \infty)$

Cotas y extremos de un conjunto

Sea $A \subset R$

Definición1: El número real c es cota superior de A

cuando $\forall x \in A : c \ge x$

Definición2: El número real d es cota inferior de A

cuando $\forall x \in A : d \leq x$

Definición3: El conjunto A esta acotado superiormente

cuando posee cota superior.

Definición4: El conjunto A esta acotado inferiormente cuando posee cota inferior.

Definición5: El conjunto A esta acotado cuando está acotado superiormente e inferiormente.

```
Ejemplo 1:
A = [-5,8) \quad \text{Cotas superiores:} \quad 9;10;10,1;
8(?); \quad 100; \quad 1000; \dots
\quad \text{Cotas inferiores:} \quad -10;-20;
-5,001; \quad -5(?); \quad -100; \dots
\text{Cotas superiores:} \quad [8,\infty)
\text{Cotas inferiores:} \quad (-\infty,-5]
\text{Ejemplo2:}
B = [7,\infty) \qquad \text{Cotas superiores;} \quad \text{NO tiene}
\text{Cotas inferiores:} \quad (-\infty,7]
```

Definición6: Se llama supremo del conjunto A a la menor de las cotas superiores.

Definición7: Se llama ínfimo del conjunto A a la mayor de las cotas inferiores.

Definición8: Cuando el supremo pertenece al conjunto, se lo llama máximo.

Definición9: Cuando el ínfimo pertenece al conjunto, se lo llama mínimo.

Para el ejemplo1:

$$A = [-5, 8)$$

Cotas superiores: $[8, \infty)$

Cotas inferiores: $(-\infty, -5]$

Sup(A) = 8 Max(A) = No tiene

 $Inf(A) = -5 \qquad min(A) = -5$

Funciones de una variable.

Definición: Una función de A en B es una ley o regla o correspondencia que asigna a <u>cada</u> elemento de A <u>un</u> <u>único elemento</u> de B.

A: dominio B: codominio

Si A y B son reales entonces se llama función real de variable real (A , B \subset R)

Notación:
$$f : A \rightarrow B$$
 $A \rightarrow B$ $y = f(x)$ $x \rightarrow f(x)$

f : nombre de la función

x : variable independiente.

y : variable dependiente.

y = f(x) regla o correspondencia que establece la vinculación entre las variables y puede estar dada en distintas formas.

Ejemplo: f: { 2; 7;
$$\pi$$
; 1/7 } \longrightarrow R y = 7x

$$f(2) = 14$$
 $f(7) = 49$ $f(\pi) = 7 \pi$ $f(1/7) = 1$

Para describir esto vamos a utilizar un diagrama de Venn, si los elementos del conjunto A corresponden a un número finito:

<u>Todo elemento</u> de A debe estar relacionado con <u>alguno de B</u> y ese elemento debe ser único.

Vemos que no todos los elementos de B es correspondiente de alguno de A, los que son correspondientes constituyen un conjunto que llamamos IMAGEN.

Imagen(f) = I(f) = Img(f) = { y / y
$$\in$$
 B \land \exists x \in A / y = f(x) } = { f(x) / x \in A}
En general Img(f) \subset B (Imagen incluida en codominio)
Ejemplo: Img(f) = { 14 ; 49 ; 7 π ; 1 } \subset B = **R**.

Ejemplo: g: R \rightarrow R / y = $x^2 + 1$

Como calculamos la imagen?

Sabemos que \forall x : $x^2 \ge 0 \Leftrightarrow x^2 + 1 \ge 1 \Leftrightarrow y \ge 1$ en consecuencia Img (g) = [1, ∞)

Distintas formas de indicar la vinculación entre x e y.

- 1.-Diagrama de Venn.
- 2.-Tabla:

х	2	7	π	1/7
f(x)	14	49	7 π	1

3.-Una o mas formulas:

Ej;
$$h(x) = x^2 + 1$$

$$z(x) = \begin{cases} 5x & si \ x < 1 \\ -x & si \ x > 1 \end{cases}$$
 Cuál será el dominio ?

4.- Mediante un gráfico en un sistema de coordenadas cartesianas.

5.- Mediante un enunciado coloquial.

Ejemplo: La función que asigna para un cuadrado de lado L, su perímetro. (P(L) = 4L)

Como reconocer funciones.

Si contamos con una formula debemos ver si las operaciones arrojan un único resultado.

$$y = x^2 + 1$$
 si es función.

$$y^2 = x + 1$$
 No es función $y = \pm \sqrt{x + 1}$

Si está dado por un gráfico no será función si para un valor de x existen dos posibles resultados.

-1 1

No es función

Si es función

Sera función cuando toda recta vertical trazada por un punto del dominio corte al gráfico en un solo punto.

<u>Elementos que se deben especificar al definir una</u> función.

- $f : A \longrightarrow B$ Dominio Codominio y ley de correspondencia y = f(x)
- 1.- Si no se especifica B, se toma el conjunto mas amplio, es decir R.
- 2.- Si no se especifica A, se toma el conjunto mas amplio para el cual el valor de f(x) y la ley de correspondencia tengan sentido.

Ej: Determinar el dominio de las siguientes funciones:

a)
$$y = 6 x^3 + 7x^2 - 8$$

b)
$$y = \frac{7}{(x-6)(x+2)}$$

c)
$$y = \sqrt{\frac{7}{(x-6)(x+2)}}$$

Igualdad de funciones:

Dos funciones son iguales cuando tienen igual dominio y toman los mismos valores.

$$f = g \iff D(f) = D(g) \land f(x) = g(x)$$
 Ejemplo:
$$f : R \longrightarrow R / y = 6x^8$$

$$g : R \longrightarrow [0, \infty) / y = 12x^8 / 2$$

$$h : [0, \infty) \longrightarrow [0, \infty) / y = 6x^8$$
 a)
$$f = g$$
 b)
$$g \neq h$$

Función acotada

Definición: Una función es acotada cuando su imagen es un conjunto acotado.

Ejemplo:

$$f: R \longrightarrow R / y = sen x$$

 $g: R \longrightarrow R / y = 6 x^2$

Clasificación de funciones:

- I) En cuanto a la expresión de su formula:
- a) Explicita: Cuando en la formula esta despejada la variable dependiente.

Ej:
$$y = 2x^3$$
 $y = sen(5x) + 8$

b) Implícita: Cuando en la formula no esta despejada la variable dependiente.

Ej:
$$x^2 + y = 9$$
 $y \ln(x) + sen(yx) = 6$

- II) En cuanto a operaciones:
- a) Algebraicas: cuando en la formula aparece un numero finito de operaciones algebraicas(suma, resta, multiplicación, división, potenciación y radicación)
 - b) Trascendentes: cuando no son algebraicas.

Ej:

y = sen(x)

 $y = \ln x + \lg x + e^x$

Paridad de una función.

Definición: La función f es impar sii $\forall x \in D(f)$:

$$f(-x) = -f(x)$$

 $P_1(x,y) \in Gf(Gráfico de f)$

 $P_2(-x,-y) \in Gf(Gráfico de f)$

∴ (en consecuencia) P₁ y P₂ son simétricos respecto al origen, por lo tanto el gráfico de una función impar es simétrico respecto al origen.

Definición: La función f es par sii $\forall x \in D(f)$: f(-x) = f(x)

 $P_1(x,y) \in Gf(Gráfico de f)$ $P_2(-x,y) \in Gf(Gráfico de f)$ \therefore (en consecuencia) $P_1 y P_2$ son simétricos respecto al eje Y, por lo tanto el gráfico de una función par es simétrico respecto al eje Y.

Ejemplo:

$$f/f(x) = 4 x^2 - 8 x^6 + \cos x$$

 $f(-x) = 4 (-x)^2 - 8 (-x)^6 + \cos (-x) = 4 x^2 - 8 x^6 + \cos x = f(x)$
 $f(-x) = f(x)$ en consecuencia f es par.

$$g/g(x) = 3 x^3 - 2 x^9 + sen x$$

 $g(-x) = 3 (-x)^3 - 2 (-x)^9 + sen (-x) = -3 x^3 + 2 x^9 - sen x =$
 $= -(3 x^3 - 2 x^9 + sen x) = -g(x)$
 $g(-x) = -g(x)$ en consecuencia g es impar.

Nota₁: Una función puede ser par o impar pero no ambas a la vez.

Nota₂: La grafica, si la función no tiene paridad, puede tener otra simetría.

Nota₃: La paridad nos sirve para hacer la tabla de valores.

Monotonía:

Definición₁: f es creciente en su dominio sii $\forall x_1, x_2 \in$

 $D(f) : x_1 < x_2 \implies f(x_1) \le f(x_2)$

Definición₂: f es decreciente en su dominio sii $\forall x_1, x_2$

 $\in D(f) : x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$

Definición₃: f es monótona en su dominio si f es creciente o decreciente en su dominio.

No es monótona en su dominio, es sectorialmente monótona o monótona a trozos.

Relación entre paridad y monotonía.

- I) Si f es par: en intervalos simétricos respecto al origen cambia la monotonía.
- II) Si f es impar: en intervalos simétricos respecto al origen mantienen la monotonía.