Datum: 16.5.2018	SPŠ CHOMUTOV	Třída: A3/3
Číslo úlohy: 21	MĚŘENÍ NA LOGICKÝCH OBVODECH TTL 1	Příjmení: Siřiště

Zadání:

Změřte převodní charakteristiku, výstupní charakteristiku v log. 1 a log. 0.

Schéma:

1.) Převodní charakteristika $U_{v\acute{y}s}$ =f(U_{vst}):

2.) Výstupní charakteristika ve stavu log. 1:

3.) Výstupní charakteristika ve stavu log. 0:

Tabulka přístrojů:

Název nástroje:	Označení:	Údaje:	Ev. Číslo:
TTL		TESLA Bx0/MH7400S	
Zdroj	U	AUL 310 0-15V/0-2A	LE2 1030
V-metr	V ₁	600V=1% — ☐ <u>05</u> 🏠	LE1 2315/30
V-metr	V ₂	600V=1% — ☐ <u>05</u> 🏚	LE1 2286/26
Miliampérmetr	mA	600mA┌ 🚨 <u>05</u> 🏠	LE1 2283/8
Zátež	Rz	105Ω/2,5A	LE1 344
Zátež	Rz	1900Ω/0,5A	LE1 380

Mezní parametry:

- Výstupní napětí úroveň úroveň H: U_{OH}=2,4V min
- Výstupní napětí úroveň úroveň L: U_{OL}=0,4V max
- Vstupní napětí úroveň H, které je nutno přivést na všechny vstupy, aby byla na výstupu úroveň L: U_{IH}=2V min
- Vstupní napětí úroveň L, které je nutno přivést na všechny vstupy, aby byla na výstupu úroveň H: U_{IH}=0,8V max
- Výstupní proud zkratový l_k=18-55 mA
- Vstupní proud úrovně L Izv=1,6mA

Postupy:

- 1.) Převodní charakteristika U_{výs}=f(U_{vst}):
 - Zapojíme dle schématu.
 - Potenciometrem P nastavujeme vstupní napětí od 0 do 5V.
 - Odečítáme výstupní napětí.
 - Důležité je zachytit bod zlomu.
 - Sestrojíme charakteristiku a vyznačíme zakázaná pásma.
 - Vyhodnotíme správnost funkce hradla.
- 2.) Výstupní charakteristika ve stavu log. 1:
 - Zapojíme dle schématu.
 - Určíme dle výpočtu, jaký R_z bude potřeba.
 - Při odpojeném odporu R_Z změříme výstupní napětí naprázdno.
 - Zařadíme odpor R_Z a jeho postupným vyřazováním nastavujeme $I_{výst}$ a odečítáme $U_{výst}$.
 - Takto postupujeme až do úplného vyřazení R_z.
 - Sestrojíme charakteristiku.
 - Proud I_K nelze zjistit i při vyřazení, jelikož na mA bude nějaký úbytek napětí.

- 3.) Výstupní charakteristika ve stavu log. 0:
 - Zapojíme dle schématu.
 - Určíme dle výpočtu, jaký R_z bude potřeba.
 - Při odpojeném R_z si změříme výstupní napětí naprázdno.
 - Zařadíme odpor R_Z a jeho postupným vyřazováním nastavujeme $I_{v\acute{y}st}$ a odečítáme $U_{v\acute{y}st}$.
 - Měříme do dosažení výstupního napětí 0,4V.
 - R_z nesmíme zcela vyřadit.
 - Sestrojíme charakteristiku.
 - Stanovíme logický zisk.

Tabulky:

1.) Převodní charakteristika U_{výs}=f(U_{vst}):

U ₁ [V]	U ₂ [V]
0,0	3,70
0,1	3,70
0,2	3,70
0,3	3,70
0,4	3,70
0,5	3,70
0,6	3,50
0,7	3,30
0,8	3,20
0,9	3,00
1,0	2,90
1,1	2,70
1,2	2,50
1,3	0,60
1,4	0,50
1,5	0,05
1,6	0,05
1,7	0,05
1,8	0,05
1,9	0,05
2,0	0,05
2,1	0,05
2,2	0,05
2,3	0,05
2,4	0,05
2,5	0,05
5,0	0,05

2.) Výstupní charakteristika ve stavu log. 1:

I _{výs} [mA]	$U_{v\acute{y}s}[V]$
0,0	3,7
2,0	3,3
4,0	3,1
6,0	3,0
8,0	2,8
10,0	2,5
12,0	2,3
14,0	2,0
16,0	1,8
18,0	1,5
20,0	1,2
22,0	1,0
24,0	0,7
26,0	0,4
28,0	0,2

3.) Výstupní charakteristika ve stavu log. 0:

I _{výs} [mA]	$U_{v\acute{y}s}[V]$
0,0	0,04
5,0	0,11
10,0	0,16
15,0	0,22
20,0	0,26
25,0	0,31
30,0	0,38
32,5	0,40

Výpočty:

Výstupní charakteristika ve stavu log. 1:

Zářež:

$$R_Z = \frac{U_{y \circ MAX}}{U \circ S} = \frac{3.7}{2 \times 10} = 1850\Omega$$

(z převodní charakteristiky jsme zjistili, že U_{výsMAX} je 3,7V)

Zátěž:

$$R_{z} = \frac{U - U}{\frac{cc}{Iv\acute{y}s}} = \frac{5 - 0.4}{2 \times 10^{-3}} = 2300\Omega$$

Logický zisk:

$$N = \frac{I_{zo}}{I_{zv}} = \frac{32,5}{1,6} = 20,31 = 20 vstupů$$

Grafy:

1.) Převodní charakteristika U_{výs}=f(U_{vst}):

Poznámka: hodnoty jsou až do U_{vs} =5 dále rovny 0,05V

2.) Výstupní charakteristika ve stavu log. 1:

3.) Výstupní charakteristika ve stavu log. 0:

Závěr:

Měření převodních charakteristik částečné odpovídá předpokladu, žádná hodnota nezasahuje do zakázaného pásma. Během měření výstupní charakteristiky ve stavu logické 1 jsem určil výstupní proud, který může ještě být na výstupu, aby hodnoty stále odpovídaly hodnotě logické 1. Proud je přibližně mA (při 2,4V). Dále jsem určil zkratový proud, který je 30mA, což odpovídá katalogové hodnotě. Poslední částí bylo stanovení logického zisku při výstupní charakteristice ve stavu logické 0. Logický zisk jsem stanovil na 20 vstupů na jeden výstup, tudíž se jedná o hradlo výkonové.