אמינות רשתות פרויקט חלק ג'

בעבודה זו יש לכתוב תוכנה שמאפשרת לקבל אלמנטים החשובים ביותר של רשת, על ידי שימוש ב- BIM-Spectrum.

הרשת מוגדרת על ידי תנאים הבאים.

- .1 הרשת לא מכוונת.
- 2. הצלעות לא אמינות, הקודקודים אמינים.
- .Terminal Connectivity הוא UP הקריטריון של 3
 - 4. מבנה של הרשת נתונה חלק א של הפקרויקט.

התוכנה צריכה לבצע את הסעיפים הבאים.

- עם מספר האיטרציות, עם מספר Destruction Spectra 2 עבור לחשב, עבור רשת עבור עבור עבור $M=1000,\,10000$
 - עבור האיטרציות, עם מספר BIM-Spectrum עבור לחשב, עבור רשת עבור (2) איטרציות (2) אוווא $M=1000,\,10000$
 - (3) על ידי שימוש ב- CB-S) Cumulative BIM-Spectrum), לחלק את כל הצלעות לכמה קבוצות (3-4), לפי חשיבותם (ולהדפיס את הקבוצות). להציג בטבלה CB-S של 2 צלעות החשובות ביותר ו-2 צלעות הכי לא חשובות (טבלה 2).
 - שלהם BIMs-את (3 לחשב אלו (סעיף 4 צלעות אלו (סעיף 5) לחשב את ה-Bims עבור 4 צלעות אלו (טבלה 5) אלו סמך אמינות של הרשת. (טבלה 3) אונס אמינות לאמינות כתוצאה מהחלפת אלע בצלע אמין עם (.p=1)
 - עבור אותם 4 צלעות (שבסעיף 3) לחשב את הרווח באמינות (5) (4) עבור חישוב ב- Crude Monte Carlo. (טבלה 4)
 - (6) לצייר את הרשת, לסמן את הטרמינלים ואת הצלעות מקבוצות דירוג שונות. לתת הסבר אינטואיטיבי לדירוג צלעות לפי הקבוצות.

Table 1
Cumulative Destruction Spectra

_	amu	anve Desir	uction Speci
	i	M=1000	M=10000
		F_{i}	F_{i}
	1		
	2		
	3		
	n		

Table 2 Cumulative BIM Spectra

Cumulative Bhvi Spectia								
i	edge a		edge b		edge c		edge d M M	
	M	M	M	M	M	M	M	M
	1000	10000	1000	10000	1000	10000		10000
1								
2								
n								

Table 3
BIMs and Gain in Reliability

p	BIM_a	$BIM_a \cdot \delta p$	BIM_b	$BIM_b \cdot \delta p$	BIM_c	$BIM_c \cdot \delta p$	BIM_d	$BIM_d \cdot \delta p$
0.4								
0.5								
0.6								
0.7								
0.8								
0.9								

Table 4
Gain in Reliability by means of CMC

Gain in Renaulity by means of civic								
p	node a	node b	node c	node d				
0.4								
0.5								
0.6								
0.7								
0.8								
0.9								

Figure 4.2: The dodecahedron network