Creating a machine learning analysis plan

Instructions

If you haven't already, download forestfires.tsv data and documentation. Use the caret package to prepare the forest fire data for a machine learning analysis. When you finish preparing the data, save your script and upload it to Canvas.

```
library(caret)
library(dplyr)
library(ggplot2)

### Load the forest fires datasets on your machine by setting the working directory
### or specify the directory of your data

### This code is commented out and will NOT run
### ff = read.delim("forestfires.tsv", sep = '\t', header = TRUE)
```

1. Make at least one new feature and plot it against the burn area. From visual inspection does there appear to be a relationship between the new feature and the burn area?

```
ff$is_weekend = ifelse(ff$day %in% c("sat", "sun"), 1, 0)
ff$is_weekend = factor(ff$is_weekend)

ff$log_area = log(ff$area + 1)

ggplot(ff, aes(x = is_weekend, y = area)) +
    geom_boxplot()
```



```
ggplot(ff, aes(x = is_weekend, y = log_area)) +
  geom_boxplot()
```


Since the area variable is so skewed, it is easier to see relationships on the log scale (second plot). The relationship between is_weekend and burn area is not overwhelming but the median is lower on weekend. There is also a gapairs plot of the is_weekend variable in the tutorial.

2. Use createDataPartition to split 80% of the forest fire data into a training set.

```
in_train = createDataPartition(y = ff$log_area, p = 0.8, list = FALSE)
ff_train = ff[in_train, ]
ff_test = ff[-in_train, ]
```

3. Use preProcess to prepare your data for analysis. What, if any, variables were removed for near zero variance?

One variable (rain) is removed. Following the tutorial, using the model.matrix method helps find other near zero variance categories in the factor variables.

```
##
               freqRatio percentUnique zeroVar
## X
                1.088235
                              2.1634615
                                          FALSE FALSE
## Y
                1.729167
                              1.4423077
                                          FALSE FALSE
## month
                1.041958
                              2.8846154
                                          FALSE FALSE
## day
                1.013699
                              1.6826923
                                          FALSE FALSE
## FFMC
                1.047619
                             23.0769231
                                          FALSE FALSE
## DMC
                1.000000
                             46.3942308
                                          FALSE FALSE
## DC
                1.000000
                             46.6346154
                                          FALSE FALSE
## ISI
                1.058824
                             27.1634615
                                          FALSE FALSE
                1.166667
                             42.7884615
                                          FALSE FALSE
## temp
## RH
                1.473684
                             16.3461538
                                          FALSE FALSE
                              5.0480769
                                          FALSE FALSE
## wind
                1.047619
## rain
              204.000000
                              1.6826923
                                          FALSE TRUE
                                          FALSE FALSE
## area
               66.333333
                             49.2788462
## is weekend
                1.909091
                              0.4807692
                                          FALSE FALSE
## log_area
               66.333333
                             49.2788462
                                          FALSE FALSE
```