Department of Biochemical Engineering & Biotechnology

BBL433: Enzyme Science & Engineering

60 minutes

Minor - I (20 Marks)

A crude extract of glucose isomerase (EC 5.3.1.5) has been obtained after cultivation of Streptomyces flavogriseus and cell disruption in a homogenizer. The enzyme catalyzes the reversible isomerization of glucose into fructose. A 1mL sample of this extract, diluted as indicated in the following table, was put in contact with 4mL of 0.1M glucose (C₆H₁₂O₆, Mol. Wt: 180) in the following table, was put in contact with 4mL of 0.1M glucose (C₆H₁₂O₆, Mol. Wt: 180) in the following table, was monitored during the reaction and the following results were obtained:

Reaction Time (minutes)	Glucose Concentration (g · L - 1)	
	1:50 dilution	1:100 dilution
0	14.40	14.4()
2	13.91	14.15
4	13.58	13.91
6	13.27	13.64
8	13.04	13.46
10	13.03	13.34

Calculate the activity of glucose isomerase in the crude extract, expressing it in IU/mL, and discuss the result. (4)

A certain enzyme has no preformed active site and the binding of a modulator molecule is required to build it up so that the substrate can be bound to it and acted upon by it. Develop a rate equation for such a mechanism and describe the experimental procedure used to determine the corresponding kinetic parameters.

(3)

Phenylalanine ammonia lyase (EC 4.3.1.5) from Rhodotorula glutinis catalyzes the conversion of phenylalanine (X) into trans-cinnamic acid (Y) and ammonia (Z), where Y is a competitive inhibitor and Z a partial uncompetitive inhibitor. Develop a parametric kinetic expression. (3)

Write short notes on (any four)

(4x2)

- Transition state analog
- Enzyme use in pharma industry
- Enzyme use in biofuels
- d- Near attack conformations
- e. What is meta-genomics? How it is useful for Enzyme engineering?

5. If the rate of an enzyme catalyzed reaction modeled by the Michaelis-Menton mechanism levels substrate concentration is very high, and if v = 50 M/s when the substrate concentration If the rate of an enzyme catalyzed reaction model. If the rate of an enzyme catalyzed reaction is very high, and if v = 50 M/s when [S] = off at $V_{max} = 100$ M/s when the substrate constant)? 1×10^4 M, what is the K_m (the Michaelis constant)?

a. 10 3 M

b 104 M

- 6 for an enzyme that follows Michaelis-Menten kinetics, by what factor does the substrate concentration have to increase to change the rate of the reaction from 20% to 80% V_{max}?
 - a. A factor of 2
 - b A factor of 4
 - c. A factor of 8
 - d. A factor of 16
- A. Based upon the definition for a competitive inhibitor, which observed kinetic parameter would you anticipate is most affected by the presence of inhibitor?
 - a. Vmax
 - Km and Vmax

c. Km

- The following pH dependence was found for the activity of a certain enzyme catalyzed reaction. d. Kcat If it is known that the only two ionizable residues in the active site are both glutamates, which conclusion can be drawn?
 - The glutamates have different microenvironments which cause their pKa's to differ.
 - b. One of the glutamates must be amidated.
 - Both glutamates have a pKa equal to 5.0.
 - Both glutamates are deprotonated during the reaction