Problem Statement:

Banks wants to know, whether credit facility will extend to the customer based on the customer data, for this analysis bank is using individual customer geography details, gender, income, industry employement and experience.

Using Chi2_square_test and ANNOVA test and different ML algo, we are trying to suggest the bank

In [34]:

```
#import the required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import chi2_contingency
import stat
from scipy.stats import iqr
```

In [35]:

```
#read the data sets with display the data
df=pd.read_csv(r"D:\clean_dataset.csv")
df
```

Out[35]:

	Gender	Age	Debt	Married	BankCustomer	Industry	Ethnicity	YearsEmployed
0	1	30.83	0.000	1	1	Industrials	White	1.25
1	0	58.67	4.460	1	1	Materials	Black	3.04
2	0	24.50	0.500	1	1	Materials	Black	1.50
3	1	27.83	1.540	1	1	Industrials	White	3.75
4	1	20.17	5.625	1	1	Industrials	White	1.71
685	1	21.08	10.085	0	0	Education	Black	1.25
686	0	22.67	0.750	1	1	Energy	White	2.00
687	0	25.25	13.500	0	0	Healthcare	Latino	2.00
688	1	17.92	0.205	1	1	ConsumerStaples	White	0.04
689	1	35.00	3.375	1	1	Energy	Black	8.29

690 rows × 16 columns

In [36]:

#check the datasets information df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 690 entries, 0 to 689
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	Gender	690 non-null	int64
1	Age	690 non-null	float64
2	Debt	690 non-null	float64
3	Married	690 non-null	int64
4	BankCustomer	690 non-null	int64
5	Industry	690 non-null	object
6	Ethnicity	690 non-null	object
7	YearsEmployed	690 non-null	float64
8	PriorDefault	690 non-null	int64
9	Employed	690 non-null	int64
10	CreditScore	690 non-null	int64
11	DriversLicense	690 non-null	int64
12	Citizen	690 non-null	object
13	ZipCode	690 non-null	int64
14	Income	690 non-null	int64
15	Approved	690 non-null	int64
dtyp	es: float64(3),	int64(10), objec	t(3)

memory usage: 86.4+ KB

In [37]:

```
#check the any null values in the datasets
df.isnull().sum()
```

Out[37]:

Gender 0 0 Age Debt 0 Married 0 BankCustomer 0 Industry 0 Ethnicity 0 0 YearsEmployed PriorDefault 0 0 **Employed** 0 CreditScore DriversLicense 0 0 Citizen ZipCode 0 Income 0 Approved 0 dtype: int64

In [38]:

```
#check the mean, mode details
df.describe()
```

Out[38]:

	Gender	Age	Debt	Married	BankCustomer	YearsEmployed	PriorDe
count	690.000000	690.000000	690.000000	690.000000	690.000000	690.000000	690.00
mean	0.695652	31.514116	4.758725	0.760870	0.763768	2.223406	0.52
std	0.460464	11.860245	4.978163	0.426862	0.425074	3.346513	0.49
min	0.000000	13.750000	0.000000	0.000000	0.000000	0.000000	0.00
25%	0.000000	22.670000	1.000000	1.000000	1.000000	0.165000	0.00
50%	1.000000	28.460000	2.750000	1.000000	1.000000	1.000000	1.00
75%	1.000000	37.707500	7.207500	1.000000	1.000000	2.625000	1.00
max	1.000000	80.250000	28.000000	1.000000	1.000000	28.500000	1.00
4							•

In [39]:

```
#check the value counts for each parameters
for i in df:
    print(df[i].value_counts())
CommunicationServices
                           38
Utilities
                           38
Real Estate
                           30
                           25
Education
Research
                           10
Transport
                            3
Name: Industry, dtype: int64
White
          408
Black
          138
           59
Asian
Latino
           57
0ther
           28
Name: Ethnicity, dtype: int64
0.000
         70
         35
0.250
0.040
         33
1.000
         31
0.125
         30
4.165
          1
```

First will select the categorical type data for chi2_suare_test,here categorical type means "object type", "yes/no" lets check the categorical data and create the seperate list.

In [40]:

In [41]:

df.loc[:,category]

Out[41]:

	Gender	Married	BankCustomer	Industry	Ethnicity	PriorDefault	Employed	Driv€
0	1	1	1	Industrials	White	1	1	
1	0	1	1	Materials	Black	1	1	
2	0	1	1	Materials	Black	1	0	
3	1	1	1	Industrials	White	1	1	
4	1	1	1	Industrials	White	1	0	
685	1	0	0	Education	Black	0	0	
686	0	1	1	Energy	White	0	1	
687	0	0	0	Healthcare	Latino	0	1	
688	1	1	1	ConsumerStaples	White	0	0	
689	1	1	1	Energy	Black	0	0	
690 r	ows × 11	columns						
4								•

Statistical Testing using Chisquare:

In [42]:

import colorama
from colorama import Fore

In [43]:

```
for i in category:
    print(i+":")
    plt.figure(figsize=(10,5))
    sns.countplot(x=i,data=df,hue="Approved")
    plt.show()
    a=np.array(pd.crosstab(df.Approved,df[i]))
    (stats,p,dof,_)=chi2_contingency(a,correction=False)
    if p>0.05:
        print(Fore.RED + "'{}'is a 'bad Predictor'".format(i))
        print('p_val={}\n'.format(p))
    else:
        print(Fore.GREEN + "'{}' is a Good Predictor".format(i))
        print('p_val={}\n'.format(p))
```

Gender:

'Gender'is a 'bad Predictor' p_val=0.44723087514133186

Married:

BankCustomer:

'BankCustomer' is a Good Predictor p_val=6.91661320541803e-07

Industry:

'Industry' is a Good Predictor p_val=3.502987066102042e-15

Ethnicity:

'Ethnicity' is a Good Predictor p_val=1.823665654934685e-08

PriorDefault:

'PriorDefault' is a Good Predictor p_val=7.298530125411298e-80

Employed:

'Employed' is a Good Predictor p_val=2.227269345312281e-33

DriversLicense:

'DriversLicense'is a 'bad Predictor' p_val=0.4061341323141693

Citizen:

'Citizen' is a Good Predictor p_val=0.010094291370456362

ZipCode:

'ZipCode' is a Good Predictor p_val=0.006354824252183887

Approved:

'Approved' is a Good Predictor p_val=4.469841378183071e-152

Gender:

"we see that majority of credit card holders are males " "since Gender is a bad predictor towards Approval we drop the attribute"

In [44]:

```
df.drop(['Gender'],1,inplace=True)
```

C:\Users\SMFL-20531\AppData\Local\Temp\ipykernel_14400\2126209942.py:1: Futu
reWarning: In a future version of pandas all arguments of DataFrame.drop exc
ept for the argument 'labels' will be keyword-only.
 df.drop(['Gender'],1,inplace=True)

Married:

"we see that majority of credit card holders are Married"

BankCustomer:

"we see that majority of credit card holders are BankCustomers only " "we see that BankCustomers have equal probability of getting approval to not getting approval of credit card " "If the Applicant is not BankCustomers then he/she has higher probability of getting approval of credit card "

Industry:

"we see that majority of credit card holders are people working in Energy sector " "There is Heigh Probability of credit card approval if he/she working in HealthCare sector"

Ethnicity:

"we see that people belonging to White ethnicity use credit card majorly "

PriorDefault:

"we see that people with no defaults have high probability of creditcard approval " "we see that people with payment defaults have less probability of creditcard approval "

DriversLicense:

"we see that majority of credit card holders have DrivingLicense" "since DriversLicense is a bad predictor towards Approval we drop the attribute"

```
In [45]:
```

```
df.drop(['DriversLicense'],1,inplace=True)
```

```
C:\Users\SMFL-20531\AppData\Local\Temp\ipykernel_14400\2114335881.py:1: Futu
reWarning: In a future version of pandas all arguments of DataFrame.drop exc
ept for the argument 'labels' will be keyword-only.
    df.drop(['DriversLicense'],1,inplace=True)
```

Citizen:

"we see that majority of credit card holders have Citizenship bybirth"

Continious type of variable:

In [46]:

```
column_names=df.columns.tolist()
continious=list(set(column_names)-set(category))
```

In [47]:

continious

Out[47]:

['Income', 'Age', 'YearsEmployed', 'CreditScore', 'Debt']

In [48]:

df.loc[:,continious]

Out[48]:

	Income	Age	YearsEmployed	CreditScore	Debt
0	0	30.83	1.25	1	0.000
1	560	58.67	3.04	6	4.460
2	824	24.50	1.50	0	0.500
3	3	27.83	3.75	5	1.540
4	0	20.17	1.71	0	5.625
685	0	21.08	1.25	0	10.085
686	394	22.67	2.00	2	0.750
687	1	25.25	2.00	1	13.500
688	750	17.92	0.04	0	0.205
689	0	35.00	8.29	0	3.375

690 rows × 5 columns

In [49]:

```
for i in continious:
    print(i+':')
    plt.figure(figsize=(10,5))
    sns.histplot(df[i])
    plt.xlabel(i)
    plt.ylabel('counts')
    plt.title('histogram of ' + i)
    plt.show()
    df[i].plot.box(vert=False,patch_artist=True)
    plt.xlabel(i)
    plt.show()
```

Income:

Age:

YearsEmployed:

CreditScore:

Debt:

Treating Outliers:

In [50]:

iqr=iqr

In [51]:

```
for i in continious:
    print(i+":")
    plt.figure(figsize=(20,10))
    df[i].plot.box(vert=False,patch_artist=True)
    plt.xlabel(i)
    plt.show()
    iqr=df[i].describe()['75%']-df[i].describe()['25%']
    right_lim=df[i].quantile(0.75)+1.5*iqr
    left_lim=df[i].quantile(0.25)-1.5*iqr
    print('Left Limit:{}'.format(left_lim))
    print('Right Limit:{}'.format(right_lim))
    print('iqr:{}'.format(iqr))
    a=input("if left outlier type 'left' else 'right' else 'both' if no outliers then type
    a=a.lower()
    if a=='left':
        lo=float(input('by what number do you want to replace'))
        df[i]=[lo if val<left_lim else val for val in df[i]]</pre>
    elif a=='right':
        ro=float(input('by what number do you want to replace'))
        df[i]=[ro if val>right_lim else val for val in df[i]]
    elif a=='both':
        lo=float(input('by what number do you want to replace'))
        ro=float(input('by what number do you want to replace'))
        df[i]=[ro if val>right_lim else val for val in df[i]]
        df[i]=[lo if val<left_lim else val for val in df[i]]</pre>
    elif a=='no':
        pass
    plt.figure(figsize=(20,10))
    df[i].plot.box(vert=False,patch_artist=True)
    plt.xlabel(i)
    plt.show()
```

Income:

Left Limit:-593.25 Right Limit:988.75

iqr:395.5

if left outlier type 'left' else 'right' else 'both' if no outliers then typ

e 'no'right

by what number do you want to replace395.5

Age:

iqr:15.03749999999999

if left outlier type 'left' else 'right' else 'both' if no outliers then typ

e 'no'right

by what number do you want to replace15.03

YearsEmployed:

Left Limit:-3.525

Right Limit:6.314999999999995

iqr:2.46

if left outlier type 'left' else 'right' else 'both' if no outliers then typ

e 'no'right

by what number do you want to replace2.46

CreditScore:

Left Limit:-4.5 Right Limit:7.5

iqr:3.0

if left outlier type 'left' else 'right' else 'both' if no outliers then type 'no'right

by what number do you want to replace3.0

Debt:

Left Limit:-8.31125

Right Limit:16.518749999999997

iqr:6.2075

if left outlier type 'left' else 'right' else 'both' if no outliers then typ

e 'no'right

by what number do you want to replace6.2075

In [53]:

```
for i in continious:
    print(i+":")
    plt.figure(figsize=(10,5))
    sns.histplot(df[i])
    plt.xlabel(i)
    plt.ylabel('counts')
    plt.title('histogram of '+i)
    plt.show()
    df[i].plot.box(vert=False,patch_artist=True)
    plt.xlabel(i)
    plt.show()
```

Income:

Age:

YearsEmployed:

CreditScore:

Debt:

In [54]:

```
for i in continious:
    print(i+":")
    sns.histplot(x=df[i],hue=df.Approved)
    plt.xlabel(i)
    plt.ylabel('counts')
    plt.title('histogram of '+ i)
    plt.show()
    sns.boxplot(y=df[i],x=df.Approved)
    plt.show()
```

Income:

Age:

YearsEmployed:

Debt:

Statistical Testing using Anova:

In [57]:

from statsmodels.stats.multicomp import pairwise_tukeyhsd
from statsmodels.formula.api import ols
import statsmodels.api as smf

```
In [58]:
```

```
for i in continious:
   print("-----
   print(i+":\n")
   print('ANOVA:\n')
   mod=ols(i+'~Approved',data=df).fit()
   aov_table=smf.stats.anova_lm(mod,type = 2)
   print(aov_table,'\n')
   print('Pvalue={}\n'.format(aov_table['PR(>F)'][0]))
   p=aov_table['PR(>F)'][0]
   if p>0.05:
       print(Fore.RED +"'{}' is a 'bad Predictor'\n".format(i))
       print('Avg of this feature is same for both card approved group and not approved gr
       print("p_val = {}\n".format(p))
   else:
       print('TUKEY:\n')
       print(Fore.RED +"'{}' is a 'good Predictor'\n".format(i))
       print('Avg of this feature is not same for both card approved group and not approve
       print('we need to perform Tuckey as atleast one category is different\n')
       print(Fore.GREEN +"'{}' is a 'good Predictor'\n".format(i))
       tukey=pairwise_tukeyhsd(df[i],df.Approved,alpha=0.05)
       print(tukey,'\n')
Income:
ANOVA:
                     sum_sq
            df
                                  mean_sq
                                                            PR(>F)
           1.0 4.161531e+06 4.161531e+06 104.814081 5.417547e-23
Approved
Residual 688.0 2.731631e+07 3.970393e+04
                                                 NaN
                                                               NaN
Pvalue=5.4175472814508e-23
TUKEY:
'Income' is a 'good Predictor'
Avg of this feature is not same for both card approved group and not approve
d group
we need to perform Tuckey as atleast one category is different
'Income' is a 'good Predictor'
Multiple Comparison of Means - Tukey HSD, FWER=0.05
______
group1 group2 meandiff p-adj lower
                                    upper reject
          1 156.2725 -0.0 126.3026 186.2424 True
Age:
```

ANOVA:

```
df
                    sum_sq
                             mean_sq
                                            F
                                                  PR(>F)
              1565.625577 1565.625577 14.427262 0.000159
          1.0
Approved
                          108.518550
Residual 688.0 74660.762713
                                          NaN
                                                     NaN
Pvalue=0.00015856086530408587
TUKEY:
'Age' is a 'good Predictor'
Avg of this feature is not same for both card approved group and not approve
d group
we need to perform Tuckey as atleast one category is different
'Age' is a 'good Predictor'
Multiple Comparison of Means - Tukey HSD, FWER=0.05
_____
group1 group2 meandiff p-adj lower upper reject
       1 3.0311 0.0002 1.4643 4.5979 True
YearsEmployed:
ANOVA:
                                     F
           df
                  sum_sq mean_sq
               200.03432 200.034320 100.012285 4.467613e-22
          1.0
Approved
Residual 688.0 1376.06708 2.000098 NaN
                                                       NaN
Pvalue=4.467613399885831e-22
TUKEY:
'YearsEmployed' is a 'good Predictor'
Avg of this feature is not same for both card approved group and not approve
d group
we need to perform Tuckey as atleast one category is different
'YearsEmployed' is a 'good Predictor'
Multiple Comparison of Means - Tukey HSD, FWER=0.05
_____
group1 group2 meandiff p-adj lower upper reject
    0 1 1.0834 -0.0 0.8707 1.2962 True
CreditScore:
```

ANOVA:

```
df
                                            F
                                                    PR(>F)
                 sum_sq mean_sq
Approved
          1.0
              562.393969 562.393969 211.877834 4.856202e-42
Residual 688.0 1826.179944
                         2.654331
                                           NaN
                                                       NaN
Pvalue=4.856202409405879e-42
TUKEY:
'CreditScore' is a 'good Predictor'
Avg of this feature is not same for both card approved group and not approve
d group
we need to perform Tuckey as atleast one category is different
'CreditScore' is a 'good Predictor'
Multiple Comparison of Means - Tukey HSD, FWER=0.05
_____
group1 group2 meandiff p-adj lower upper reject
         1 1.8167 -0.0 1.5716 2.0617 True
Debt:
ANOVA:
           df
                 sum_sq
                            mean_sq
                                      F
          1.0 469.578045 469.578045 28.0154 1.620321e-07
Approved
Residual 688.0 11531.860794
                          16.761426
                                     NaN
Pvalue=1.6203209859251425e-07
TUKEY:
'Debt' is a 'good Predictor'
Avg of this feature is not same for both card approved group and not approve
d group
we need to perform Tuckey as atleast one category is different
'Debt' is a 'good Predictor'
Multiple Comparison of Means - Tukey HSD, FWER=0.05
______
group1 group2 meandiff p-adj lower upper reject
    0 1 1.66 0.0 1.0442 2.2758 True
```

In [59]:

```
df_industry = pd.get_dummies(df['Industry'], drop_first=True, prefix = "Industry")
```

```
In [61]:
df=pd.concat([df,df_industry],axis=1)
In [63]:
del df['Industry']
In [65]:
df_ethnicity = pd.get_dummies(df['Ethnicity'], drop_first=True, prefix = "Ethnicity")
In [67]:
df=pd.concat([df,df_ethnicity],axis=1)
In [68]:
del df['Ethnicity']
In [69]:
df_citizen = pd.get_dummies(df['Citizen'], drop_first=True, prefix = "Citizen")
In [71]:
df=pd.concat([df,df_citizen],axis=1)
In [74]:
del df['Citizen']
In [75]:
df.head()
Out[75]:
         Debt Married BankCustomer YearsEmployed PriorDefault Employed CreditScore
0 30.83 0.000
                     1
                                              1.25
                                                            1
                                                                      1
                                                                                1.0
                                  1
1 58.67 4.460
                                              3.04
                     1
                                  1
                                                            1
                                                                      1
                                                                                6.0
2 24.50 0.500
                                              1.50
                                                            1
                                                                      0
                                                                                0.0
                     1
                                  1
3 27.83 1.540
                                                            1
                                              3.75
                                                                      1
                                                                                5.0
                     1
                                  1
4 20.17 5.625
                                              1.71
                                                            1
                                                                      0
                                                                                0.0
5 rows × 30 columns
```

VIF Calculation

In [76]:

from statsmodels.stats.outliers_influence import variance_inflation_factor

In [77]:

```
x = df[['Age','Debt','YearsEmployed','CreditScore','Income']]
```

In [78]:

Х

Out[78]:

	Age	Debt	YearsEmployed	CreditScore	Income
0	30.83	0.000	1.25	1.0	0.0
1	58.67	4.460	3.04	6.0	560.0
2	24.50	0.500	1.50	0.0	824.0
3	27.83	1.540	3.75	5.0	3.0
4	20.17	5.625	1.71	0.0	0.0
685	21.08	10.085	1.25	0.0	0.0
686	22.67	0.750	2.00	2.0	394.0
687	25.25	13.500	2.00	1.0	1.0
688	17.92	0.205	0.04	0.0	750.0
689	35.00	3.375	2.46	0.0	0.0

690 rows × 5 columns

In [79]:

```
vif_data=pd.DataFrame()
```

In [81]:

```
vif_data['features']=x.columns
```

In [84]:

```
vif_data['VIF']=[variance_inflation_factor(x.values,i) for i in range (len(x.columns))]
```

```
In [85]:
```

```
vif_data
```

Out[85]:

	features	VIF
0	Age	2.828930
1	Debt	2.054744
2	YearsEmployed	2.298794
3	CreditScore	1.817621
4	Income	1.680393

Creating model

```
In [86]:
x=df.iloc[:,df.columns != 'Approved']
```

```
In [88]:

y=df.iloc[:,df.columns == 'Approved']
```

In [90]:

```
from sklearn.model_selection import train_test_split
```

In [91]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=123)
```

In [92]:

```
from sklearn.linear_model import LogisticRegression
```

In [93]:

```
model=LogisticRegression(solver='liblinear', random_state=123)
```

In [94]:

```
clf=model.fit(x_train,y_train)
```

```
C:\Conda dist\lib\site-packages\sklearn\utils\validation.py:993: DataConvers
ionWarning: A column-vector y was passed when a 1d array was expected. Pleas
e change the shape of y to (n_samples, ), for example using ravel().
    y = column_or_1d(y, warn=True)
```

```
In [95]:
y_pred=clf.predict(x_test)
In [96]:
clf.score(x_test,y_test)
Out[96]:
0.8599033816425121
In [97]:
clf.intercept_
Out[97]:
array([-2.08619225])
In [98]:
clf.coef_
Out[98]:
array([[-0.01793299, -0.02983195, 0.01303626, 0.58230414, 0.27553144,
         2.93605989, 0.28787561, 0.19055028, -0.00326723, 0.00294504,
        -1.30864209, -0.51328852, 0.38796879, -0.13284517, -0.64602139,
        -0.99670274, 0.05582364, 1.29475446, -0.05681709, -0.69727162,
        -0.25373214, 0.06279072, 0.89018486, 0.08004152, -0.22185161,
        -0.14085112, -0.37031655, 0.56010133, 1.01904202]])
Creating confusion matrix
In [99]:
from sklearn import metrics
In [103]:
cm=metrics.confusion_matrix(y_test,y_pred)
```

print(cm)

[[98 11] [18 80]]

In [104]:

```
cr=metrics.classification_report(y_test,y_pred)
print(cr)
```

	precision	recall	f1-score	support
0	0.84	0.90	0.87	109
1	0.88	0.82	0.85	98
266419264			0.86	207
accuracy macro avg	0.86	0.86	0.86	207 207
weighted avg	0.86	0.86	0.86	207

ROC curve

In [107]:

```
from sklearn.metrics import roc_curve, roc_auc_score
```

In [110]:

```
y_pred_prob=clf.predict_proba(x_test)
print(y_pred_prob)
```

```
[0.98187248 0.01812752]
[0.21990199 0.78009801]
[0.83120417 0.16879583]
[0.59049407 0.40950593]
[0.27374389 0.72625611]
[0.13169043 0.86830957]
[0.23676165 0.76323835]
[0.05772132 0.94227868]
[0.06839222 0.93160778]
[0.91463342 0.08536658]
[0.05748357 0.94251643]
[0.14994097 0.85005903]
[0.2397884 0.7602116 ]
[0.82759593 0.17240407]
[0.44878724 0.55121276]
[0.06514231 0.93485769]
[0.23688485 0.76311515]
[0.49059855 0.50940145]
[0.15915356 0.84084644]
[0.62689163 0.37310837]
```

In [117]:

```
fpr,tpr,threshold = roc_curve(y_test,y_pred_prob[:,1])
```

In [112]:

```
roc_auc=roc_auc_score(y_test,y_pred_prob[:,1])
```

In [113]:

```
from sklearn.metrics import log_loss
```

In [114]:

```
log_loss(y_test,y_pred)
```

Out[114]:

4.838808265817111

In [119]:

```
plt.title('ROC curve for logloss:liblinear')
plt.xlabel('fpr')
plt.ylabel('tpr')
plt.plot([0,1],[0,1],"r--")
plt.xlim([0,1])
plt.ylim([0,1])
plt.plot(fpr,tpr,label='AUC ='+str(roc_auc))
plt.legend(loc='best')
plt.show()
```

