How we do GBS...

And what's next?

Kevin Murray @kdmurray91 kevin@kdmurray.id.au

Borevitz Lab, ANU

MapNet GBS workshop 23 Oct 2014

About Me

- Bioinformatics RA
 - TraitCapture Project Developer
 - Genomics (Low level sequence analysis)
 - Phenomics (Image analysis)
 - Sample tracking, data standards, HPC
- Starting PhD in Bioinformatics of Evolutionary Genomics next year
- "Data Intensive Biologist"

About Me

- Bioinformatics RA
 - TraitCapture Project Developer
 - Genomics (Low level sequence analysis)
 - Phenomics (Image analysis)
 - Sample tracking, data standards, HPC
- Starting PhD in Bioinformatics of Evolutionary Genomics next year
- "Data Intensive Biologist"
- A very lapsed kiwi (from Napier)

What do we use GBS for?

- Population and Landscape Genomics
- Population re-sampling
- Genotype verification
- Epigenomics -Hpall/Mspl

What do we use GBS for?

- Population and Landscape Genomics
- Population re-sampling
- Genotype verification
- Epigenomics -Hpall/Mspl

What do we use GBS for?

- Population and Landscape Genomics
- Population re-sampling
- Genotype verification
- Epigenomics -Hpall/Mspl

Library preparation

- We do all our library prep. in house
- ► Cost \approx \$10/sample including extraction
- ▶ Done in lots of 96
- Semi-automated wet-lab protocol

Library preparation

- We do all our library prep. in house
- ► Cost \approx \$10/sample including extraction
- ▶ Done in lots of 96
- Semi-automated wet-lab protocol

Library preparation

- We do all our library prep. in house
- ► Cost \approx \$10/sample including extraction
- ▶ Done in lots of 96
- Semi-automated wet-lab protocol

Library preparation protocol

- ► Modified protocol from Elshire et al. (2011)
- ▶ PE 101bp HiSeq 2500 reads
- ▶ We use in read barcodes

- ➤ Sequence 576-1152 samples/lane
- Need "combinatorial" barcoding (next slide)

Library preparation protocol

- ► Modified protocol from Elshire et al. (2011)
- ▶ PE 101bp HiSeq 2500 reads
- ▶ We use in read barcodes

- ➤ Sequence 576-1152 samples/lane
- Need "combinatorial" barcoding (next slide)

Combinatorial Barcoding

- We use dual in read barcodes
- Independent barcodes for R1 & R2
- Set of 96x12 = 1152/lane

Must be balanced & staggered

► Hamming distance >2

TGCG TGCG AGGAT AGGAT TTCAGA TTCAGA CGCGGT CGCGGT GAATTCA GAATTCA CTACGGA CTACGGA CCGGATAT CCGGATAT TTCCTGGA TTCCTGGA CTCG ATGAAAG 1_A1
TGCA ATGAAAG 1_A2
ACTA ATGAAAG 1_A3
AACT ATGAAAG 1_A5

GCTGTGGA CTTGCTT 12_H8
GTGAGGGT CTTGCTT 12_H10
TATCGGGA CTTGCTT 12_H11
TTCCTGGA CTTGCTT 12_H12

1152 pairs

96 R1

12 R2

De-multiplex with AXE

- Barcoding scheme requires advanced de-multiplexing
- ▶ Trie-based lookup algorithm
- ► Fast (PE lane in 5-10 mins)
- ► Highly accurate (99.6%TPR, 100%TNR)
- ▶ Open source at http://git.io/kIhEZA
- Benchmarking IPython notebook at http://bit.ly/1sXrx4E

Sample Management

- Sample-tracking system manages FASTQs after demux:
 - QC reads (scythe, sickle, seqqs)
 - ▶ After QC, 16-mer globally unique ID re-added to reads
 - Auto-creates TASSEL KeyFile & working dir for new analysis
 - Auto-remove 16-mer unique ID from reads if not using TASSEL.

Sample Management

- Sample-tracking system manages FASTQs after demux:
 - QC reads (scythe, sickle, seqqs)
 - ▶ After QC, 16-mer globally unique ID re-added to reads
 - Auto-creates TASSEL KeyFile & working dir for new analysis
 - Auto-remove 16-mer unique ID from reads if not using TASSEL.
- DB links FASTQs to real world
 - ► Integrate w/ ALA
 - Provide user-friendly names to downstream analysis

Downstream Analysis

- Variant calling:
 - TASSEL!!
 - We use UNEAK mostly
 - Ref-based pipeline w/ BWA-MEM

Downstream Analysis

- Variant calling:
 - ► TASSEL!!
 - We use UNEAK mostly
 - Ref-based pipeline w/ BWA-MEM
- ▶ Post analysis in R
 - Custom filtering for missing data/paralogy
 - ► H-Clust

Downstream Analysis

- Variant calling:
 - ► TASSEL!!
 - We use UNEAK mostly
 - Ref-based pipeline w/ BWA-MEM
- ▶ Post analysis in R
 - Custom filtering for missing data/paralogy
 - ► H-Clust
- Downstream:
 - Structure
 - BayENV
 - QTLRel

The Future!

Better adaptors

The Future!

- Better adaptors
- ▶ Home-brew NexTera
 - NextRAD
 - Low coverage WGS
 - ► Long Pseudo-reads

The Future!

- Better adaptors
- Home-brew NexTera
 - NextRAD
 - Low coverage WGS
 - Long Pseudo-reads

- ► Informatics:
 - Imputation?
 - Paralog/Ploidy detection
 - Streaming Variant Calling (my PhD)

Thanks

- ▶ Justin Borevitz
- Comrades in Informatics
 - Aaron Chuah
 - Riyan Chen
 - ▶ Jared Streich

- ► Wet-lab Wizardry
 - Niccy Aitken
 - Norman Warthmann
- Rob for the invitation
- You all for listening!!

git.io/TYrIFw