VSY - Pokročilý tester reakce (B) - dokumentace

Vojtěch Michal

18. listopadu 2021

Cílem úlohy je realizovat tester rychlosti reakce uživatele. Mačkáním tlačítek uživatel reaguje na rozsvěcení indikátorových LED. Zařízení během testu snímá jeho přesnost a rychlost reakcí. Po testu dostane uživatel komplexní statistiku o svém výkonu – průměrnou rychlost reakce, počet správných stisků atd. Zařízení je rovněž plně řiditelné skrz počítač přes rozhraní USART, kterým lze konfigurovat parametry aplikace.

1 Chování

Po inicializaci čeká aplikace na začátek testu a obě LED blikají v protifázi s konfigurovatelnou frekvencí. Test lze zahájit buďto přes terminálové rozhraní, nebo současným stiskem obou tlačítek. Během testu se náhodně rozsvěcí jedna z diod, na což má uživatel co nejrychleji reagovat stiskem příslušného tlačítka. Pakliže je stisk správný, LED zhasne a čeká se na další rozvícení. Pakliže uživatel stiskne nesprávné tlačítko, nebo jej stiskne předčasně, obě diody jsou na okamžik rozsvíceny, než se pokračuje v testu. Test lze ukončit souběžným stiskem obou ovládacích tlačítek, nebo z terminálu. Průběh testu je možno kdykoli pozastavit. Délka testu (časový interval mezi zakončením i-1-tého testu a rozsvícením LED v i-tém testu) je volen náhodně z konfigurovatelného intervalu **TEST_LENGTH_MIN** až **TEST_LENGTH_MAX**. Konfigurovatelná je i maximální přípustná doba reakce uživatele. V průběhu testu je do terminálu vypisováno mnoho informativních zpráv kvantifikujících schopnosti uživatele. Aplikace není vhodná pro děti do 12 let.

2 Komunikační rozhraní a ovládání

Aplikace komunikuje obousměrně po seriové lince UART s nastavením baudrate 115200, osm datových bitů, jeden stop bit, bez parity. Použitá periferie je UART2 (piny PA2 pro TX a PA3 pro RX), ST-LINK převádí komunikaci na USB.

Terminálová aplikace přijímá vstup po celou dobu běhu aplikace, zařízení je tak plně ovladatelné přes terminálové rozhraní. Mapování znaků na příkazy pro aplikaci je uvedeno v tabulce 1. Příkazy nejsou citlivé na velikost písmen, malá i velká písmena fungují ekvivalentně. S výjimkou konfiguračního příkazu jsou všechny příkazy jednobajtové bez dalších parametrů.

znak(y)	funkce
q	Ukončení probíhající serie testu
\mathbf{r}	Výspi průběžných výsledků
s, t	Zahájení nové serie testů
p, 5	Pozastavení běhu aplikace
4	Reakce na levou stranu
6	Reakce na pravou stranu
c	Zahájení konfiguračního módu

Tabulka 1: Příkazy přijímané aplikací

3 Konfigurace

Uživatel může pomocí rozhraní USART konfigurovat parametry probíhajících a nadcházejících testů. Parametry udržují svou hodnotu až do přepsání dalším konfiuračním příkazem, nebo do resetu zařízení. Pro zahájení konfigurace je nezbytné, aby byla aplikace pozastavena (stisk klávesy \mathbf{p} nebo prostředního tlačítka). Vysláním příkazu \mathbf{c} vstoupí zařízení do konfiguračního módu. Následující přijaté bajty nejsou interpretovány jako příkazy,

nýbrž jako "key-value pair" ve formátu cname; valuec, kde přítomnost tučných znaků c a ; je součástí syntaxe příkazu. Tabulka 2 shrnuje možné parametry k nastavení. Hodnoty se připouští pouze numerické. Pakliže nejsou data konzistentní (například max je menší než min), je chování nedefinované. V konfiguračního módu není mezerník (ASCII kód 0x20) validním znakem. Proto je možné jej použít jako backspace pro mazání již vyslaných znaků. Pro snadnou kontrolu a opravení chyb je po celou dobu zadávání v konfiguračním módu zadaný řetězec vykreslen (a dynamicky aktualizován) v terminálu.

jméno parametru	význam	jednotky
${f TEST_LENGTH_MIN}$	Minimální délka testu	ms
${f TEST_LENGTH_MAX}$	Maximální délka testu	ms
PRESS_TIMEOUT	Maximální doba povolená pro stisk tlačítka	ms
IDLE_BLINK_PERIOD	Perioda blikání LED v době, kdy není aktivní žádný test	ms

Tabulka 2: Konfigurovatelné parametry

Například pro nastavení tolerované prodlevy reakce na jednu sekundu je potřeba provést následující úhozy na klávesnici:

```
pcpress_timeout;1000cp
```

První **p** pozastaví aplikaci, **c** vstoupí do konfiguračního módu, **press_timeout**;**1000** nastaví hodnotu parametru **PRESS_TIMEOUT** na 1000 (jednotky jsou milisekundy dle **2**). Následující **c** uloží konfiguraci do paměti a **p** opět spustí aplikaci.

4 Pinout

Úloha počítá s přiřazením pinů mikrokontroleru uvedeným v tabulce 3. Je nezbyté připojit dvě tlačítka na uvedené piny proti zemi, prostřední tlačítko (PA1) je volitelné. Diody je potřeba připojit externě přes ochraný rezistor (např 470 ohmů).

signál	pin MCU	pin Nuclea
pravé tlačítko	PA4	A2
pause tlačítko	PA1	A1
levé tlačítko	PA0	A0
pravá LED	PC0	A5
levá LED	PC1	A4

Tabulka 3: Pinout aplikace

5 Výpis výsledků testu

Výsledky testu jsou vypsány po ukončení testu, nebo na vyžádání pomocí klávesy \mathbf{r} . Formát je patrný z následujícího příkladu:

```
Test statistics: Duration 2 minutes and 54.297 seconds (paused 8.94 % of time).
Left side hit 65 out of 78, accuracy 83.33 %. Reaction time: 322 ms average, 186 ms best.
Right side hit 82 out of 95, accuracy 86.31 %. Reaction time: 305 ms average, 117 ms best
```

Pro každou stranu jsou samostatně zaznamenávány počty úspěsných a neúspěšných kol, průměrný a nejlepší reakční čas a přesnost.