Logische Schaltungen & PLAs

Benjamin Tröster

Hochschule für Technik und Wirtschaft Berlin

26. Januar 2022

Fahrplan

Recap: Darstellung Logikgatter

Logische Bausteine

Recap Normalformdarstellungen

Programmable Logic Array (PLA)

Recap: Darstellung Logikgatter

Abbildung: Übernommen aus: [Hof20]

Decoder

- ▶ Decoder hat *n* Eingänge und 2^n Ausgänge (bzw. $< 2^n$ Ausgänge)
- ► Für jede Eingabekombination genau einen Ausgang der 1 ergibt
- ► Alle anderen Ausgänge sind 0
 - Wir codieren "Pattern" von Eingangsbits auf Ausgabebits
- ▶ Beispiel: 3 to 8-Decoder
 - ightharpoonup Ausgang y_i auf 1, alle anderen Ausgänge 0
 - Welcher Ausgang y_i auf 1 gesetzt wird, entscheiden die Eingänge a, b, c
 - Eingänge a, b und c stellen entsprechende Dualzahl dar
- Nutzung z.B. ROMs

Eingänge				Ausgänge						
a	b	С	y0	y1	y2	уЗ	y4	y5	y6	y7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Abbildung: 3-to-8 Decoder Schaltung & Wahrheitstabelle.

3-to-8-Decoder Beispiel in C

```
int main(void) {
     int a. b. c:
2
     printf("Enter encoded binary number: ");
     a = getchar() - '0':
     b = getchar() - '0';
     c = getchar() - '0':
     if (!a && !b && !c) printf("---> y0\n");
     if (!a && !b && c) printf("---> y1\n");
     if (!a && b && !c) printf("---> y2\n");
9
     if (!a && b && c) printf("---> v3\n");
10
     if (a && !b && !c) printf("---> y4\n");
11
     if (a && !b && c) printf("---> v5\n");
12
     if ( a && b && !c) printf("---> y6\n");
13
     if ( a && b && c) printf("---> y7\n");
14
     return 0:
15
16 }
```

Encoder

- Analog: Encoder inverse Funktion zum Decoder
- ► Encoder hat 2ⁿ Eingänge, von denen genau einer wahr sein sollte
- ► Ausgabe von *n* Bits
- ▶ Beispiel: 8 to 3-Encoder
 - Eingänge $x_0, x_1, \dots x_7$ auf Codierung in Dual an den Ausägangen d_2, d_1, d_0

Eingänge							Au	sgän	ige	
x0	x1	x2	x3	x4	x5	x6	x7	d2	d1	d0
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Abbildung: 8-to-3 Enocer Schaltung & Wahrheitstabelle.

8-to-3-Encoder Beispiel in C

```
int main(void) {
     int x0, x1, x2, x3, x4, x5, x6, x7, d0=0, d1=0, d2=0;
2
     printf("Enter8 Bit Binary Number: ");
     x0 = getchar() - '0':
     \times 1 = getchar() - '0';
     x2 = getchar() - '0':
     x3 = getchar() - '0':
     x4 = getchar() - '0';
     x5 = getchar() - '0':
     \times 6 = getchar() - '0';
10
     x7 = getchar() - '0';
11
     d0 = x1 || x3 || x5 || x7;
12
     d1 = x2 || x3 || x6 || x7;
13
     d2 = x4 || x5 || x6 || x7:
14
     printf("---> \frac{d}{d} (d2, d1, d0)\n", d2, d1, d0);
15
     return 0:
16
```

Multiplexer (Selektor)

- Multiplexer werden oft auch als Selektoren bezeichnet, da sie unter den Eingangssignalen eines auswählen
- ► Mulitplexer führt Datenpfade zusammen
- Multiplexer: Mehrere Eingänge und einen Ausgang
 - Wobei dieser einem der Eingänge entspricht, der durch eine Steuerung ausgewählt wird

Abbildung: Multiplexer mit zugehöriger Schaltung und ein 2-Multiplexer.

1-Multiplexers

- ▶ 1-Multiplexers als boolesche Funktion: $z = \overline{s}x \lor sy$
- ► Was folgender Tabelle entspricht
- ► Multiplexer: Mehrere Eingänge und einen Ausgang

S	<u></u> S X	sy
0	X	0
1	0	У

- ▶ Bei s = 0 wird also x weitergeleitet
- ▶ Bei s = 1 wird y zum Ausgang weitergeleitet.

2-Multiplexers

- ► Beim 2-Multiplexer sind zwei Steuereingänge vorhanden, also vier Wahlmöglichkeiten
- Es ergeben sich folgenden Auswahlmöglichkeiten:

s :0	s_1	z Ausgang
0	0	x ₀
0	1	x_1
1	0	x_2
1	1	<i>x</i> ₃

Aus dieser Tabelle lässt sich dann die folgende Schaltfunktion herleiten:

$$z = s_0 s_1 x_0 \lor s_0 s_1 x_1 \lor s_0 s_1 x_2 \lor s_0 s_1 x_3$$

Abbildung: Multiplexer mit zugehöriger Schaltung und ein 2-Multiplexer.

2-Multiplexer-Realisierung: Buttom-Up

Schaltfunktion:

$$z=s_0s_1x_0\vee s_0s_1x_1\vee s_0s_1x_2\vee s_0s_1x_3$$
 bezeichnet als Buttom-Up

Abbildung: Realisierung eines Buttom-U 2-Multiplexer.

2-Multiplexer-Realisierung: Top-Down

- ► Top-Down-Ansatz mithilfe von 1-Multiplexern
- Folgendes gilt:
 - 1. Ausgang von $1 MUX_z$: $z = s_0a + s_0b$
 - 2. Ausgang von $1 MUX_a$: $a = s_1x_0 + s_1x_1$
 - 3. Ausgang von $1 MUX_b : b = s_1x^2 + s_1x^3$
- ► Einsetzen von 2,3 in 1 ergibt:

$$z = s_0 s_1 x_0 \lor s_0 s_1 x_1 \lor s_0 s_1 x_2 \lor s_0 s_1 x_3$$

 Anmerkung: Top-Down braucht mehr Gatter (Preis), mehr Platz und langsamer also Button-Up

Abbildung: Realisierung eines Top-Down 2-Multiplexer.

n-Multiplexer

- Multiplexer mit beliebigen Anzahl von Eingaben realisierbar
- n Eingabesignalen werden log2n
 Selektoreingabe benötigt
- Dreiteiliger Aufbau:
 - 1. Decoder: aus log2n Selektoreingaben n Signale erzeugt, die jeweils einen anderen Eingabewert auswählen,
 - 2. *n* AND-Gattern: Kombination jeweils eines Signals des Decoder mit einem Eingabesignal
 - 3. OR-Gatter: n Eingängen (bzw. n-1 hintereinander geschaltete OR- Gatter zwei Eingängen), das die Ausgaben der AND-Gatter verknüpft.

Abbildung: Beispiel für einen *n*-Multiplexer.

Demultiplexer

- Während für einen Multiplexer Folgendes gilt:
 - $ightharpoonup 2^d$ Eingänge $(x_0, x_1, ..., x_{2^d} 1)$
 - ▶ d Steuersignale $(s_0, s_1, ..., s_{d-1})$ und
 - ein Ausgang z mit $z = \sum_{i=0}^{2^d-1} x_i \cdot s_0 s_1 \dots d_{d-1}$
- ▶ gilt für einen Demultiplexer Folgendes:
 - \triangleright ein Dateneingang x,
 - ightharpoonup d Steuersignale $(s_0, s_1, ..., s_{d-1})$ und
 - ▶ 2^d Ausgänge $(z_0, z_1, ..., z_{2^d} 1)$ mit $z_i = x \cdot s_0 s_1 ... s_{d-1}$
- Demultiplexer: Steuersignale legen fest auf welchen Ausgang das Eingangssignal gelegt wird

Demultiplexer

- Während für einen Multiplexer Folgendes gilt:
 - $ightharpoonup 2^d$ Eingänge $(x_0, x_1, ..., x_{2^d} 1)$
 - ▶ d Steuersignale $(s_0, s_1, ..., s_{d-1})$ und
 - ein Ausgang z mit $z = \sum_{i=0}^{2^d-1} x_i \cdot s_0 s_1 \dots d_{d-1}$
- ▶ gilt für einen Demultiplexer Folgendes:
 - \triangleright ein Dateneingang x,
 - ightharpoonup d Steuersignale $(s_0, s_1, ..., s_{d-1})$ und
 - ▶ 2^d Ausgänge $(z_0, z_1, ..., z_{2^d} 1)$ mit $z_i = x \cdot s_0 s_1 ... s_{d-1}$
- Demultiplexer: Steuersignale legen fest auf welchen Ausgang das Eingangssignal gelegt wird

Abbildung: 1-Demultiplexer mit zugehöriger Schaltung und ein 2-Demultiplexer

1-Demultiplexer

- x steht dabei für den Eingabewert und s für einen Selektor – d.h. einen Steuerwert (control value)
- Steuerwert bestimmt, zu welchem der Ausgabewerte der Eingabewert weitergeleitet wird
- ▶ Booleschen Funktionen: $z_0 = xs$ und $z_1 = xs$
- ► Entspricht folgender Wahrheitstabelle:

S	X	Auswahl	Schaltfunktion
0	Х	z ₀	$z_0 = x\overline{s}$
1	Х	z ₁	$z_1 = xs$

2-Demultiplexer

- ▶ 2-Demultiplexer sind zwei Steuereingänge vorhanden → vier der Ausgabesignale auszuwählen
- ► Es ergeben sich
- Entspricht folgender Wahrheitstabelle:

s ₀	s_1	Auswahl	Schaltfunktion
0	0	z ₀	$z_0 = x \overline{s_0 s_1}$
0	1	z ₁	$z_1 = x\overline{s_0}s_1$
1	0	z_2	$z_2 = x s_0 \overline{s_1}$
1	1	z_2	$z_2 = x s_0 s_1$

2-Demultiplexer-Realisierung: Buttom-Up

► Direkte Realisierung als Schaltung z_0, z_1, z_2, z_3 in parallel

2-Demultiplexer-Realisierung: Top-Down

- Realisierung in Top-Down unter Verwendung von 1-Demultiplexern
- ► Folgende Gleichungen gelten:

$$z_0 = a\overline{s_1}$$
 $\rightarrow z_0 = x\overline{s_0}\overline{s_1}$
 $z_1 = as_1$ $\rightarrow z_1 = x\overline{s_0}\overline{s_1}$
 $z_2 = b\overline{s_1}$ $\rightarrow z_2 = xs_0\overline{s_1}$
 $z_3 = bs_1$ $\rightarrow z_3 = xs_0s_1$

 Anmerkung: Top-Down braucht mehr Gatter (Preis), mehr Platz und langsamer also Button-Up

Recap Normalformdarstellungen

- Normalform beschreibt eine eindeutige Darstellung
- ▶ Vollform: Ausdruck, in dem jede Variable genau einmal vorkommt
- Literal: Teilausdruck, der entweder negierte oder unnegierte Variable darstellt
- Wahrheitstafeldarstellung ist eine Art der Normalformdarstellungen
- Bool'sche Ausdrücke hingegen sind keine Normalformdarstellung
 - ▶ Jede bool'sche Funktion durch unendlich viele Ausdrücke beschrieben werden

Normalformdarstellungen

- Vollform: Ausdruck, in dem jede Variable genau einmal vorkommt
- ► Vollkonjunktion (**Minterm**): Ausdruck, in dem sämtliche vereinbarten Variablen (bzw. deren Negate) konjunktiv verbunden sind
 - ▶ Beispiel: $A, B, C : A \land \neg B \land C$
- ► Volldisjunktion (Maxterm): Ausdruck, in dem sämtliche vereinbarten Variablen (bzw. deren Negate) disjunktiv verbunden sind
 - ▶ Beispiel: $A, B, C : A \lor \neg B \lor \neg C$
- Negationen nur in atomarer Form
 - $ightharpoonup \neg (A \land B)$: nicht atomar
 - $ightharpoonup (\neg A \lor \neg B)$: atomar

Formale Definition

Definition (Minterm, Maxterm, Literal)

Sei $f(x_1, \ldots, x_n)$ eine beliebige n-stellige boolesche Funktion. Jeder Ausdruck der Form

$$\hat{x_1} \wedge \ldots \wedge \hat{x_n} \quad \text{mit } \hat{x_i} \in \{\overline{x_i}, x_i\}$$

heißt Minterm, jeder Ausdruck der Form

$$\hat{x_1} \lor \ldots \lor \hat{x_n} \quad \text{mit } \hat{x_i} \in \{\overline{x_i}, x_i\}$$

wird Maxterm genannt.

Der Teilausdruck $\hat{x_i}$, der entweder aus einer negierten oder einer unnegierten Variablen besteht, heißt **Literal**.

Disjunktive Normalform

- ▶ Die disjunktive Normalform (DNF) ist jene Darstellungsart, bei der eine Reihe von Vollkonjunktionen disjunktiv verknüpft wird. Negationen treten nur in atomarer Form auf.
 - $(A \land \neg B \land C) \lor (A \land B \land C) \lor (\neg A \land \neg B \land C)$
- ► Andere Bezeichnungen:
 - Kanonische disjunktive/konjunktive Normalform (KDNF/KKNF)
 - Vollständige disjunktive/konjunktive Normalform

Beispiel: Disjunktive Normalform

$$f(x_1, x_2, x_3) = (x_1 \Rightarrow x_2) \land (\neg x_1 \Leftrightarrow x_3)$$

	X 1	x_2	X 3	$x_1 \Rightarrow x_2$	$\neg x_1 \Leftrightarrow x_3$	$(x_1 \Rightarrow x_2) \land (\neg x_1 \Leftrightarrow x_3)$
1	0	0	0	1	0	0
2	0	0	1	1	1	1
3	0	1	0	1	0	0
4	0	1	1	1	1	1
5	1	0	0	0	1	0
6	1	0	1	0	0	0
7	1	1	0	1	1	1
8	1	1	1	1	0	0

Vollkonjunktion/Minterm: 2: $(\neg x_1 \land \neg x_2 \land x_3)$, 4: $(\neg x_1 \land x_2 \land x_3)$, 7: $(x_1 \land x_2 \land \neg x_3)$ DNF: $(\neg x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land x_2 \land \neg x_3)$

Konjunktive Normalform

- ▶ Die konjunktive Normalform (KNF) ist jene Darstellungsart, bei der eine Reihe von Volldisjunktionen konjunktiv verknüpft wird. Negationen treten nur in atomarer Form auf.
 - $(\neg A \lor \neg B \lor \neg C) \land (A \lor B \lor C) \land (A \lor \neg B \lor \neg C)$
- ► Andere Bezeichnungen:
 - Kanonische disjunktive/konjunktive Normalform (KDNF/KKNF)
 - Vollständige disjunktive/konjunktive Normalform

Beispiel: Konjunktive Normalform

$$f(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee x_3$$

	x ₁	x_2	X 3	$x_1 \wedge x_2$	$(x_1 \wedge x_2) \vee x_3$
1	0	0	0	0	0
2	0	0	1	0	1
3	0	1	0	0	0
4	0	1	1	1	1
5	1	0	0	0	0
6	1	0	1	0	1
7	1	1	0	1	1
8	1	1	1	1	1

Vollkonjunktion/Minterm: 1: $\neg(\neg x_1 \land \neg x_2 \land \neg x_3)$, 3: $\neg(\neg x_1 \land x_2 \land \neg x_3)$, 5: $\neg(x_1 \land \neg x_2 \land \neg x_3)$

Volldisjunktion/Maxterm: 1: $(x_1 \lor x_2 \lor x_3)$, 3: $(x_1 \lor \neg x_2 \lor x_3)$, 5: $(\neg x_1 \lor x_2 \lor x_3)$

 $\mathsf{KNF} \colon (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee x_3)$

Allgemeines Verfahren beim Erstellen einer Schaltung

- ► Zusammengefasst gilt folgendes Verfahren beim Erstellen einer Schaltung:
 - 1. Aufstellen der Wahrheitstabelle zur gesuchten Schaltung
 - 2. Beim Herleiten einer Normalform zwei Möglichkeiten:
 - Disjunktive Normalform: Vollkonjunktion bilden alle Zeilen denen 1 zugeordnet ist, mit 0 belegte Variablen negieren. Disjunktive Verknüpfung der Vollkonjunktionen.
 - Konjunktive Normalform: Bilden der Volldisjunktion, Wahrheitstabelle dessen Zeilen 0 zugeordnet ist, Variablen mit 1 belegt werden negiert. Diese Volldisjunktionen werden dann konjunktiv verknüpft.
 - 3. Minimierungversuch mittels Äquivalenzumformungen via booleschen Algebra.

Programmable Logic Array (PLA)

- Form der programmierbaren logischen Schaltung
 - "Logisches Programmieren in Hardware"
- ▶ PLA hat eine Menge von Inputs als Eingabe und zwei Stufen von Logiken
 - ein Feld von ANDs
 - Generiert eine Menge von Produkten (Konjunktionen)
 - Auswahl der Konjunktionsterme durch Entfernen von Schaltgliedern (aus der UND-Matrix)
 - Ein Feld von ORs
 - Disjunktive Verknüpfung der Konjunktionsterme erfolgt mittels der ODER-Matrix
- Da jede Schaltfunktion kann als DNF (sum of products form) oder KNF (product of sums form) dargestellt werden kann
 - ▶ Ist eine Realisierung von Schaltungen mithilfe von DNF/KNF möglich
- ▶ PLAs verwenden üblicherweise DNFs verwendet

- Üblicherweise wird die DNF verwendet
- Ausgangsbasis Wahrheitswertetabelle, Eingabekombinationen als Produkte mit Ausgabe 1
- Diese Herangehensweise führt zu einer Zwei-Level-Repräsentation
- PLA: Halbleiterschaltkreis, bestehend aus hintereinander geschalteten AND- und OR-Matrizen, um Schaltwerke für logische Funktionen in DNF zu erstellen

Abbildung: Programmable Logic Array (PLA)

- ▶ Die AND-Matrix repräsentiert dabei die Konjunktionsterme
 - ► Termauswahl erfolgt bei der Programmierung mittels eines speziellen Geräts durch das Entfernen von Schaltgliedern aus der AND-Matrix
- Disjunktive Verknüpfung der Konjunktionsterme erfolgt mit der OR-Matrix

- ▶ Zuordnung numerischer Wert zu Schaltungstyp: Giterpunkt via $s, t \rightarrow$ Bausteintyp (eigentliche Programmierung)
- ▶ Überführung der Logik-Gitter in Matrix der Form: $(n+m) \times k$
 - n die Anzahl der Variablen,
 - m die Anzahl der verschiedenen booleschen Funktionen und
 - k die Anzahl der Teilterme ist
- ► Ersten *n* Zeilen dieser Matrix kommen dabei nur die Werte 0,2 und 3
- ▶ Letzten *m* Zeilen nur die beiden Werte 0 und 1

	/2	3	0	3
	3	0	2	2
	2	2	3	3
I	1	1	1	0
١	$\backslash 1$	0	1	0/

Bausteintyp	Nummer	s	t	u	\mathbf{v}
Identer	0	0	0	X	y
Addierer	1	0	1	x + y	y
Multiplizierer	2	1	0	X	XV
Negat-Multiplizierer	3	1	1	X	$\overline{X}y$

Abbildung: Über zwei Zuleitungen s und t programmierbarer Gitterbaustein

- Horizontal sind die Eingangssignale in die AND-Matrix
- Produkt-Term-Lines sind die vertikalen Eingangsignale
- ightharpoonup Ausgaben sind u, v
- ► Folgenden Schaltfunktionen können hergeleitet werden:

$$u = x + \overline{s}ty,$$
 $v = \overline{s}y + sy(t \oplus x)$

Bausteintyp	Nummer	s	t	u	\mathbf{v}
Identer	0	0	0	X	y
Addierer	1	0	1	x + y	y
Multiplizierer	2	1	0	X	Xy
Negat-Multiplizierer	3	1	1	X	$\overline{x}y$

Abbildung: Über zwei Zuleitungen s und t programmierbarer Gitterbaustein.

- Ursprünglich wurde eine Matrix aus Sicherungen (Fuse Network) verwendet
 - ▶ Programmierung: Zu realisierenden logischen Funktion, einzelne Sicherungen mittels hohen Strom durchgebrannt
 - ► Problem: Über größere Zeiträume werden einzelne Sicherungen auf Grund von Kristallisierung wieder leitend
- ► Anti-Fuse-Technologie: Besteht PLA aus einer Diodenmatrix, jede Diode ein Bit repräsentiert
- Dioden so verschalten, dass sie den Strom sperren
 - Programmierung: Gezieltes zerstören bestimmter Dioden mittels eines sehr hohen Stroms
 - ► Hierdurch wird leitende Verbindung realisiert
 - ▶ Nach dem "Brennen" werden die geschriebenen Daten durch Bitmuster defekter/funktionierender Dioden repräsentiert
- ➤ Daten beliebig oft auslesbar, einmal programmierbar keine Änderungen

Nutzung PLAs

- ► Lösung: GAL (Generic Array Logic)
- ▶ PLAs nur für kleine Logikbausteine, größere Probleme mit ASIC, FPGA und CPLD etc.
- Programmable Array Logic (PAL, nur AND-Matrix programmierbar) und Programmable Read-Only Memory (PROM, nur OR-Matrix programmierbar)
- ► PLA für Kontrolle von Datenpfade Definiert Zustände im Instruction-Set und gibt zulässige Folgezustänge vor
- PLAs als Zählfunktion
- PLA als Decoder
- ► PLA als BUS-Schnittstelle für IO-Programmierung

Plakatives Beispiel

- ► Eingangssignal 1: Anschaltknopf (an/aus)
- ► Eingangssignal 2: Sicherheitsschalter (an/aus)
- Ausgangssignal: Motor (an/aus)
- Mögliche Programmierung:
 - ightharpoonup Wenn Anschaltknopf = an UND Sicherheitsschalter = an, dann Motor = an.
 - ▶ Wenn Anschaltknopf = an UND Sicherheitsschalter = aus ODER
 - wenn Anschaltknopf = aus UND Sicherheitsschalter = an ODER
 - wenn Anschaltknopf = aus UND Sicherheitsschalter = aus, dann Motor = aus.

[Wik21]

Quellen I

- Hoffmann, Dirk W (2020). *Grundlagen der technischen Informatik*. Carl Hanser Verlag GmbH Co KG.
- Wikipedia (2021). Programmierbare logische Anordnung. https://de.wikipedia.org/wiki/Programmierbare_logische_Anordnung. Accessed: 2021-02-12.