Лабораторная работа 14

Модели обработки заказов

Оширова Юлия Николаевна

Содержание

1	Цел	ь работы	4
2	Зада	ание	5
3	Вып	олнение лабораторной работы	6
	3.1	Модель оформления заказов клиентов одним оператором	6
	3.2	Построение гистограммы распределения заявок в очереди	12
	3.3	Модель обслуживания двух типов заказов от клиентов в интернет-	
		магазине	17
	3.4	Модель оформления заказов несколькими операторами	24
4	Выв	оды	31

Список иллюстраций

3.1	Модель оформления заказов клиентов одним оператором	7
3.2	Отчёт по модели оформления заказов в интернет-магазине	8
3.3	Модель оформления заказов клиентов одним оператором с изме-	
	ненными интервалами заказов и времени оформления клиентов	10
3.4	Отчёт по модели оформления заказов в интернет-магазине с из-	
	мененными интервалами заказов и времени оформления клиентов	11
3.5	Построение гистограммы распределения заявок в очереди	13
3.6	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	14
3.7	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	15
3.8	Гистограмма распределения заявок в очереди	17
3.9	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	18
3.10	Отчёт по модели оформления заказов двух типов	19
3.11	Модель обслуживания двух типов заказов с условием, что число	
	заказов с дополнительным пакетом услуг составляет 30% от общего	
	числа заказов	21
3.12	Отчёт по модели оформления заказов двух типов заказов	22
3.13	Модель оформления заказов несколькими операторами	25
3.14	Отчет по модели оформления заказов несколькими операторами	26
3.15	Модель оформления заказов несколькими операторами с учетом	
	отказов клиентов	28
3.16	Отчет по модели оформления заказов несколькими операторами с	
	учетом отказов клиентов	29

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

3 Выполнение лабораторной работы

3.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы

начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. 3.1).

```
; operator
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. 3.2).

		STAD	T TIME		END	TIME	BIOCKS	E.	ACTITUTE		TODA	ere.	
			0.000	END TI			000 9		0	3E.3			
			0.000		480	.000	9	1		U			
		N	AME			,	VALUE						
		OPERA	TOR			100	01.000						
		OPERA	TOR_Q	10000.000									
LAB	EL		LOC	BLOCE	TYPE	E	NTRY CO	UNT	CURRENT	COL	JNT RI	ETRY	
					RATE								
			2	QUEUE	2		32			0		0	
			3	SEIZE	2		32			0		0	
			4	DEPAR	RT		32			0		0	
			5	ADVA	ICE		32			1		0	
			6	RELEASE			31			0		0	
			7	TERMI	NATE		31			0		0	
			8	GENER	RATE		1			0		0	
			9	TERMI	NATE		1			0		0	
FACI	LITY		ENTRIES	UTII		E. TI	ME AVAI	L. (OWNER PE	ID I	INTER	RETRY	DELAY
	RATO								33				
OUEU	E		MAX CC	NT. F	NTRY F	NTRY	O) AVE.	CON.	T. AVE.T	ME	AV	E. (-0)	RETRY
	RATO		1	0	32	31	0.	001	0.0	21		0.671	0
				N. F. IV	10 0								3 (35.2
			BDT						PARAMETI	ER	VA	LUE	
		0	489.7										
		0					1 8						

Рис. 3.2: Отчёт по модели оформления заказов в интернет-магазине

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования. Затем идёт информация об одноканальном устройстве FACILITY (оператор,

оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Изменим интервалы поступления заказов и время оформления клиентов (рис. 3.3).

Рис. 3.3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт (рис. 3.4).

```
operator STORAGE 4
GENERATE 5,2
TEST LE Q$operator_q,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 30,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля OWNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=82 в очереди находилось 82 ожидающих заявок от клиента;
- CONT=82 на момент завершения моделирования в очереди было 82 заявки;
- ENTRIES=82 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=39,096 заявок от клиентов в среднем были в очереди;
- AVE. TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=123,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гисто-

граммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A, B, C, D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. 3.5).

Рис. 3.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Сиstnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции и проанализируем его (рис. 3.6, 3.7).

TABLE WAITTIME	MEAN 10.709	STD.DEV. 2.702	RAI	IGE	RETRY	FREQUENCY	CUM.%
MALITIME	10.703	2.702	<u>_</u> 4	0.0		1	1.89
		0	.000 -	2.0		0	1.89
		2	.000 -	4.0	00	1	3.77
		4	.000 -	6.0	00	0	3.77
		6	.000 -	8.0	00	4	11.32
		8	.000 -	10.0	00	12	33.96
		10	.000 -	12.0	00	17	66.04
		12	.000 -	14.0	00	14	92.45
		14	.000 -	16.0	00	4	100.00
CUSTNUM			VALUE 55.000				
CUSTNUM				NEXT PA	RAMETER	VALUE	
CUSTNUM		0 ASSEM	55.000	NEXT PA	RAMETER	VALUE	
CEC XN PRI	Ml	0 ASSEM	55.000 CURRENT	7	RAMETER STNUM	VALUE 54.000	
CUSTNUM CEC XN PRI	Ml	0 ASSEM	55.000 CURRENT	7 CU			

Рис. 3.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

		TIME 0.000				FACILITI			
	NA OPERAT				VALUE				
	OPERAT				01.000				
LABEL		LOC	BLOCK TYP	E E	NTRY CO	UNT CURREN	T COUNT	RETRY	
		1	GENERATE		93		0	0	
		2	QUEUE		93		0	0	
		3	ENTER		93		0	0	
		4	DEPART		93		0	0	
		5	ADVANCE		93		2	0	
		6	LEAVE		91		0	0	
		7	TERMINATE		91		0	0	
		8	GENERATE		1		0	0	
		9	TERMINATE		1		0	0	
OUFUE		MAY CO	NT FNTDV	FNTDV	O AVE	CONT. AVE.	TIME	AVE (-0)	DFTDV
ODEDAT	OR Q					000 (
OFERAL	0K_0	-	0 93	3.				0.000	U
STORAGE		CAP. R	EM. MIN.	MAX. E	NTRIES	AVL. AVE	C. UTII	. RETRY	DELAY
OPERAT	OR	4	2 0	4	93	1 1.92	0.48	32 0	0
FEC XN	PRI	BDT	ASSE	M CURF	RENT NE	XT PARAME	TER	VALUE	
95	0	480.4	57 95	C) 1				
93	0	482.8	05 93	5	6				

Рис. 3.7: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE. TIME=10.628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок(17) обрабатывалось в диапазоне 10-12 минут.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму (рис. 3.8).

```
Model 3.gps
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.8: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

3.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных зака-

зов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. 3.9, 3.10).

	START TIME 0.000		ME BLOCKS F 95 10	ACILITIES 1	STORAGES 0	
	NAME		VALUE			
	CUSTNUM		10002.000			
	FIN		10.000			
	OPERATOR		10003.000			
	OPERATOR Q		10001.000			
	WAITTIME		10000.000			
LABEL	LOC	BLOCK TYPE	ENTRY COUNT	CURRENT CO	UNT RETRY	
	1	GENERATE	102	0	0	
	2	TEST	102	0	0	
		SAVEVALUE	55	0	0	
	4	ASSIGN	55	0	0	
	5	QUEUE	55	1	0	
	6	SEIZE	54	1	0	
	7	DEPART	53	0	0	
	8	ADVANCE	53	0	0	
	9	RELEASE	53	0	0	
FIN	10	TERMINATE	100	0	0	
FACILITY	FNTRIFS	UTIL. AVE.	TIME AVAIL	OWNER PEND	THIFR RETRY	DFI.AY
OPERATOR			6.470 1			1
QUEUE	MAY C	ONT. ENTRY ENT	PV(A) AVE CON	T AVE TIME	AVF (-0)	DFTDV
OPERATOR_		2 55		10.628		0

Рис. 3.9: Модель обслуживания двух типов заказов от клиентов в интернетмагазине

		STAR	T TIME 0.000	ENI 48	TIME BI	OCKS F	ACILITIE	S STO	RAGES 0	
			AME		***					
		EXTRA			VAI					
					7.000 8.000					
			RA							
			TOR Q		10001.					
		OPERA	.TOR_Q		10000.	.000				
LAE	BEL		LOC	BLOCK TYPE	E ENTE	RY COUNT	CURRENT	COUNT	RETRY	
			1	GENERATE		33		0	0	
			2	QUEUE SEIZE		33		0	0	
						33		0	0	
				DEPART		33		0		
			5	ADVANCE		33		0		
				TRANSFER						
EXT	RA		7	ADVANCE RELEASE		8		1		
NOE	KTRA		8	RELEASE		32		0		
			9	TERMINATE		32				
			10	GENERATE		1		0	0	
			11	TERMINATE		1		0	0	
FACI	LITY		ENTRIES	UTIL. A	AVE. TIME	AVAIL.	OWNER PE	ND INT	ER RETRY	DELAY
OPE	ERATO	DR	33	0.766	11.146	5 1	34	0	0 0	0
OUEU	JE		MAX C	ONT. ENTRY	ENTRY(0)	AVE.CON	T. AVE.T	IME .	AVE.(-0)	RETRY
OPE	ERATO	OR O	1	ONT. ENTRY 0 33	25	0.054	0.	781	3.220	0
	XN	PRI	BDT	ASSE	1 CURRENT	NEXT	PARAMET	ER	VALUE	
FEC				24	7	9				
FEC	34	0	482.	925 34		0				
FEC	34 35	0	482.9 487.7 960.0	726 35	0	1				

Рис. 3.10: Отчёт по модели оформления заказов двух типов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок первого типа заказов с начала процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27 = 39;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=8 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;
- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- 'ENTRIES(0)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE. TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra Release operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты

(переход к блоку extra ADVANCE 5,2) и только после этого является обработанным (рис. 3.11).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 3.11: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. 3.12).

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,noextra,extra
extra ADVANCE 5,2
noextra RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.12: Отчёт по модели оформления заказов двух типов заказов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33, при этом из них второго типа (с дополнительными услугами) ENTRY COUNT = 8; обработано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator, 1, сегмент моделирования времени остается без изменений (рис. 3.13).

```
operator STORAGE 4
GENERATE 5,2
QUEUE operator_q
ENTER operator_1
DEPART operator_q
ADVANCE 10,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.13: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет (рис. 3.14).

c	NAME DPERATOR OPERATOR_Q LOC 1 2	480	0.000 VI 1000: 10000	17 ALUE 1.000 0.000				
C	NAME DPERATOR OPERATOR_Q LOC 1 2	BLOCK TYPE	V/ 1000: 10000	ALUE 1.000 0.000	1	0		
C	DPERATOR_Q LOC 1 2	BLOCK TYPE	10000	0.000				
C	DPERATOR_Q LOC 1 2	BLOCK TYPE	10000	0.000				
C	DPERATOR_Q LOC 1 2	BLOCK TYPE	10000	0.000				
C	DPERATOR_Q LOC 1 2	BLOCK TYPE						
LABEL	1 2		EN					
	1 2			TRY COUN	T CURRENT	COUNT	RETRY	
	2			32		0		
		QUEUE		32		4		
				28		0	0	
	4	SEIZE DEPART		28		0	0	
		ADVANCE		28		1	0	
		RELEASE		27		0	0	
		TERMINATE		27		0	0	
		GENERATE		15		0	0	
		QUEUE		15		3	0	
	10	SEIZE		12		0	0	
	11	DEPART		12		0	0	
		ADVANCE		12		0	0	
	13	ADVANCE		12		0	0	
	14	RELEASE		12		0	0	
	15	TERMINATE		12		0	0	
	16	GENERATE		1		0	0	
	17	TERMINATE		1		0	0	
FACILITY	PNTDIFC	UTIL. AV	TE TIME	2 3373 77	OWNED DEX	ID INTE	ים ספידפע	DELYA
OPERATOR		0.947						
OPERATOR	40	0.517	11.3		74	0		1
QUEUE	MAX C	ONT. ENTRY E	ENTRY (0)	AVE.CO	NT. AVE.TI	ME A	VE. (-0)	RETRY
OPERATOR_C	2 8	7 47	2	3.35	5 34.2	61	35.784	0
	RI BDT	ASSEM	CURREI		PARAMETE	R V	ALUE	

Рис. 3.14: Отчет по модели оформления заказов несколькими операторами

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов, но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило 1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других

заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q, 2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели (рис. 3.15).

	02022 2.	24		72122				020203223
							FACILITIES	
	0.0	000		480	0.000	10	0	1
NAME OPERATOR					V	ALUE		
					1000	0.000		
	OPERATOR_	_Q			1000			
LABEL		T.OC	BLOC	K TYPE	FN	TRY COU	NT CURRENT C	OUNT RETRY
		1	GENE	RATE		94	27	
						67	0	0
		3	QUEU	JE		67	3	0
		4	ENTE	R		64	0	0
		5	DEPA	ART		64	0	0
		6	ADVA	ANCE		64		
		7	LEAV	Æ.		60	0	0
		8	TERM	TERMINATE		60	0	0
			GENERATE			1	0	-
		10	TERM	MINATE		1	0	0
OUEUE		MAX C	ONT.	ENTRY E	ENTRY (O	AVE.C	ONT. AVE.TIM	E AVE.(-0) RET
OPERATOR_	Q	3	3	67	4	2.7	01 19.34	7 20.576 27
STORAGE		CAP.	REM.	MTN. MZ	X. FN	TRIES A	VI. AVE.C.	UTIL. RETRY DELA
OPERATOR								0.971 0 3
	RI	BDT		ASSEM	CURRE	NT NEX	T PARAMETER	VALUE
EC XN P		100	736	96	0	1		
96	0	400.						
96	0	491.	784	62	6	/		
96	0	480. 491. 491.	784 929	62 63	6	7		
FEC XN P 96 62 63 64 65	0	495.	070	62 63 64 65	6	7		

Рис. 3.15: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем полученный отчет (рис. ~ 3.16).

	1 - REPORT							
						FACILITIES	STORAGES	
	0.	000	48	0.000	9	1	0	
				7				
	OPERATOR			1000				
	OPERATOR	_0		1000	00.000			
ABEL		LOC	BLOCK TYPE	E	NTRY COU	NT CURRENT C	OUNT RETRY	
		1	GENERATE		152	0	0	
		2	QUEUE		152	82	0	
		3	SEIZE		70 70	0	0	
		4	DEPART		70	0	0	
		5	ADVANCE		70	1	. 0	
		6	RELEASE		69	0	0	
		7	TERMINATE		69	0	0	
		8	GENERATE		1	0	0	
		9	TERMINATE		1	0	0	
CTITTY		MTDIFE	HTTI A	יים דו	WE AUATI	OWNED DENI	INTER RETRY	DELAV
							0 0	
פוום		MAY C	NT PNTDV	PMTDV/	n ave c	ONT AVE TIM	F N/F (-0)	DETDV
PERATOR	R_Q	82	82 152	1	39.0	96 123.46	ME AVE. (-0)	0
C XN	PRI	BDT	ASSEM	CURRE	ENT NEX	T PARAMETER	VALUE	
71	0	480.4	05 71	5	6			
	0	483.3	330 154	0	1			
154	0							

Рис. 3.16: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 94; обработано 60 заказа; 27 человек отказались оставлять заявки, поскольку очередь была более 2ух заявок.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT=3 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=67 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=4 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=2,701 заявок от клиентов в среднем были в очереди;
- AVE. TIME=19,347 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=20,576 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 64 заказов от клиентов. Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

4 Выводы

В результате была реализована с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.