Generative Modeling by Estimating Gradients of the Data Distribution

Based on

https://yang-song.net/blog/2021/score/

Song et al., 2019 (NeurIPS)

Overview

- Blog-post inspired (quite analogous to the paper)
 - Includes some 'generativre modeling' recap
- I'll go fast through the overall idea to get a full picture
 - We can the clarify details
- Triple-check me

Objective of generative modeling

dataset
$$\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\}$$
, underlying data distribution $p(\mathbf{x})$.

Objective: Learn $p_{ heta}(\mathbf{x})$ (with option to sample)

$$p_{ heta}(\mathbf{x}) = rac{e^{-f_{ heta}(\mathbf{x})}}{Z_{ heta}},$$

Objective: maximum log likelihood

$$\max_{ heta} \sum_{i=1}^N \log p_{ heta}(\mathbf{x}_i)$$

 $f_{ heta}(\mathbf{x})$ is often called an unnormalized probabilistic model, or energy-based model [7] .

Neural net predicts energy of a given state (sample).

Good: We have a formulation to train a model of our data distribution based on maximum log likelihood **Complications:**

- 1. Z_{θ} intractable
- 2. How to sample from $f_{ heta}$?

One solution

$$p_{ heta}(\mathbf{x}) = rac{e^{-f_{ heta}(\mathbf{x})}}{Z_{ heta}},$$
intractable

- Invertible models (last week)
 - z = f_theta(x)
 - p(z) = N(0, 1; z)
 - $p_{t} = p(z) * |det df(x)/dx|$

New way (today)

$$p_{ heta}(\mathbf{x}) = rac{e^{-f_{ heta}(\mathbf{x})}}{Z_{ heta}},$$
intractable

 $abla_{\mathbf{x}} \log p(\mathbf{x})$ is called: (Stein) score function

$$abla_{\mathbf{x}} \log p_{ heta}(\mathbf{x}) = -
abla_{\mathbf{x}} f_{ heta}(\mathbf{x}) - \underbrace{
abla_{\mathbf{x}} \log Z_{ heta}}_{= -
abla_{\mathbf{x}} f_{ heta}(\mathbf{x})$$

Remaining challenges:

- How to train this (no more log likelihood maximization)
- How to sample from it

How to learn the score function?

Minimize Fisher divergence:

$$\mathbb{E}_{p(\mathbf{x})}[\|
abla_{\mathbf{x}} \log p(\mathbf{x}) - \mathbf{s}_{ heta}(\mathbf{x})\|_2^2]$$

there exists a family of methods called **score matching** ³ [16, 17, 31] that minimize the Fisher divergence without knowledge of the ground-truth data score. Score matching objectives can

"Score matching objectives": Objective that leads to a match between scores of two distributions (p(x), p_theta(x))

Postponed: Appendix 1

How to sample?

x1 x2 We just trained this

$$egin{aligned} \mathbf{x}_0 &\sim \pi(\mathbf{x}), \ & \mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon
abla_{\mathbf{x}_i} \mathrm{log}\, p(\mathbf{x}) + \sqrt{2\epsilon} \; \mathbf{z}_i, \quad i = 0, 1, \cdots, K, \end{aligned}$$

Provably converges to a sample from p(x) (if eps -> 0 and K -> inf)

Langevin (Monte Carlo) sampling

Challenge: Low density regions -> poor score estimates

Noise to the rescue: Intuition

Data density

Data scores

Simply add noise to samples and model

How to add noise?

Estimated scores

- Too much: no signal
- Too little: poor space coverage

Noise Conditional Score-Based Model

$$p_{\sigma_i}(\mathbf{x}) = \int p(\mathbf{y}) \mathcal{N}(\mathbf{x}; \mathbf{y}, \sigma_i^2 I) \mathrm{d}\mathbf{y}.$$

Note that we can easily draw samples from $p_{\sigma_i}(\mathbf{x})$ by sampling $\mathbf{x} \sim p(\mathbf{x})$ and computing $\mathbf{x} + \sigma_i \mathbf{z}$, with $\mathbf{z} \sim \mathcal{N}(0, I)$.

$$\mathbf{s}_{ heta}(\mathbf{x},i) pprox
abla_{\mathbf{x}} \log p_{\sigma_i}(\mathbf{x})$$
 for all $i=1,2,\cdots,L$.

$$\min \quad \sum_{i=1}^L \lambda(i) \mathbb{E}_{p_{\sigma_i}(\mathbf{x})}[\|
abla_{\mathbf{x}} \log p_{\sigma_i}(\mathbf{x}) - \mathbf{s}_{ heta}(\mathbf{x},i) \|_2^2],$$

(sum of weighted Fishers) => compatible with score matching

Sampling from Noise Conditional Score-Based Model

Recap

- Model score instead of p(x)
- Training: "score matching objective" $\mathbb{E}_{p(\mathbf{x})}[\|\nabla_{\mathbf{x}} \log p(\mathbf{x}) \mathbf{s}_{\theta}(\mathbf{x})\|_2^2]$
- Sampling: Langevin $\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \sqrt{2\epsilon} \ \mathbf{z}_i, \quad i = 0, 1, \cdots, K,$
- Circumvent low density: Add noise

Appendix: Score matching objectives

Minimize Fisher divergence:

$$\mathbb{E}_{p(\mathbf{x})}[\|
abla_{\mathbf{x}}\log p(\mathbf{x}) - \mathbf{s}_{ heta}(\mathbf{x})\|_2^2]$$

Equivalent (up to a constant):

$$\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\operatorname{tr}(\nabla_{\mathbf{x}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})) + \frac{1}{2} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \right\|_{2}^{2} \right]$$

Equivalent to "Denoising score matching":

$$\frac{1}{2} \mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})p_{\text{data}}(\mathbf{x})} [\|\mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})\|_{2}^{2}]$$

Connection to other types of models

Diffusion models

Same model family. Unifiying framework: Song 2021 ICLR, Ho 2020

	Score-based model	Diffusion probabilistic model
Perturbation	Multiple scales of noise	Multiple scales of noise
Training objective	Score matching	ELBO
Sampling	Langevin (MCMC)	Learned decoder
Unique ability	Calculate log-likelihoods exactly	Can be made faster?

Generative stochastic networks

MCMC sampling, Denoising model