Text Embedding Efficiency

Text Embedding Efficiency

Compared to last week, efficiency metrics on Apple M2, M3 Pro, and M4 chips have been added.

- M3 Pro and M4 were tested on both CPU and MPS (Apple's GPU-like accelerator).
- MPS is slightly faster than CPU.
- M3 Pro and M4 are significantly faster than M2, though still slower than discrete GPUs
 like the A6000.
- Embedding times on M-series chips vary significantly due to interference from other running applications. All benchmarking was done with all other apps closed.

Baseline Embedding Model Selection

Remote Embedding

Model: inf-retriever-v1 (7B)

MRR: 0.7738 Hit@5: 0.9167

• **GPU (A6000):** 26.22s

• CPU (AMD EPYC 9654): 167.84s

Local Embedding

Model: inf-retriever-v1-1.5b (1.5B)

MRR: 0.7417 Hit@5: 0.8800

• **GPU (A6000):** 6.52s

• CPU (AMD EPYC 9654): 32.08s

• **Apple M2:** 116.42s

• Apple M3 Pro: 33.05s

Apple M4: 21.49s

Intel: Not yet tested

Model: gte-multilingual-base (305M)

MRR: 0.6134 Hit@5: 0.76

• **GPU (A6000):** 1.22s

• CPU (AMD EPYC 9654): 8.26s

• **Apple M2:** 14.63s

• **Apple M3 Pro:** 8.52s

• **Apple M4:** 4.90s

Embedding Configuration

Metric	Description
Embedding Model	Transformer / Sentence Transformer
Embedding Dimensions	e.g. 3584, 1536, etc.
Max Token Limit	Typically 32768
Model Parameters	From 305M to 7B
Test Dataset	Custom-built 50k character texts, 10 chunks each
Token Count	~32580 tokens
Disk Usage Metrics	Raw embedding vs. original .txt/.pd f
Milvus DB Usage	Vector + original text chunks
Hardware	GPU: A6000, CPU: AMD EPYC 9654, Apple Silicon (M2/M3)

Disk Usage & Compression Example (inf-retriever-v1)

Metric	Value	
Raw Embedding Size	0.1367 MB	
Compression vstxt	0.956	
Compression vspdf	0.523	
Milvus DB File Size	0.2969 MB	
DB Compression vstxt		
DB Compression vspdf	1.134	
	08	

Sure! Below is the complete English translation of the remaining sections, combined into a structured and comprehensive format:

PDF OCR Evaluation

OCR was performed using GPT APIs and compared with MinerU.

Model/Tool	Evaluation Dataset	Score	Time per Page	
MinerU	Custom dataset with 50 PDFs	8.5	1.47s	
GPT-4o	Same dataset	9.2	43.5s	
GPT o4mini	Same dataset	9.18	55.4s	

GPT models offer superior OCR accuracy but much slower processing than traditional tools.

Image Embedding

Embedding Performance Overview

Model	Parameters	Dataset (500 images + 500 queries)	MRR	Hit@5	GPU	CPU
BGE-VL-base	150M	MS-COCO	0.781	0.932	4090	AMD EPYC 965
BGE-VL-large	428M	_	0.808	0.938	4090	AMD EPYC 965
nomic-embed- multimodal-3B	3B _{朱承承3676 2025年0}	_{月30} 日 09:09	0.775	0.916	4090	AMD EPYC 965
nomic-embed- multimodal-7B	7B	朱玑承36	0.785	0.924	4090	AMD EPYC 965
jina-clip-v1	223M	_	0.753	0.918	4090	AMD EPYC 965
clip-vit-base- patch16	150M	H30E 09:09	0.242	0.46	4090	AMD EPYC 965
VisRAG-Ret	3.43B	- 柴城鄉 5	0.784	0.938	4090	AMD EPYC 965

Image Embedding Efficiency & Compression

- Embedding time and compression were evaluated on M2, M3 Pro, M4, and server GPUs (4090).
- Embedding size vs. original image size was used to calculate **compression ratio**.

Example (BGE-VL-large, 1024x1024 images):

Hardware	Time per Image	Embedding Size	Compression Ratio	
GPU (4090)	0.039s	0.0586 MB	0.015	
M2 (CPU/MPS)	0.116s / 0.065s	0.0898 MB	0.023	
M3 Pro (CPU/ MPS)	0.065s / 0.024s	0.0898 MB	0.023	
M4 (CPU/MPS)	0.041s / 0.021s	0.0898 MB	0.023	

Model Performance

Model	Params	Dataset	Score	GPU	CPU	Notes
Qwen2.5- Omni-7B	7B	VQAv2	7.36	4090	AMD EPYC 9654	
Qwen2.5-VL-7B	7B		8.67	4090	AMD EPYC 9654	Fast, supports large batch sizes
InternVL3-14B	14B		8.69	4090	AMD EPYC 9654	朱
InternVL3-8B	8B		8.63	4090	AMD EPYC 9654	04月30日 09:09
Ovis2-8B	8B	年IX本 36 6 2 年IX本 36 6 2	9.45	4090	完IN部 36T6 2025年 0-	Best performance but CPU unsupported
Ovis2-4B	4B		8.98	4090	_	=30E 09:09

Ovis2-8B achieves **highest score**, but doesn't support CPU inference.

Qwen2.5-VL-7B is well-balanced in **accuracy and inference efficiency**.

VQA Efficiency (Inference Time & Max Batch)

Inference Speed (Image Size 1024x1024):

Model	Max Batch Size (GPU)	Time per Image (1/5/10/50)	GPU Memory Use	Notes
Qwen2.5- Omni-7B	5-10	4.62s / 9.44s / 9.83s	Up to OOM	First 1–2 batches have high overhead
Qwen2.5-VL-7B	25+	1.82s / 5.85s / 15.05s	Efficient use	Best throughput balance
InternVL3-14B	5–10	29.29s – 50s+	High memory	Large model, high overhead
InternVL3-8B	10-15	1.44s – 3.16s	Efficient	Good performance scaling
Ovis2-8B	_{朱明} 承 3619.25 9	2.77s – 4.02s	Not on CPU	Best accuracy, no CPU support

- 1. Initial batches incur extra overhead (model loading, cache warming).
- 2. Small batch sizes underutilize GPU:
 - GPU works best when **parallel threads (SMs)** are saturated.
 - For 7B models + 1024^2 images, batch size $\approx 4-8$ is optimal for Tensor Core usage.
- 3. Once fully saturated, inference time increases linearly with batch size.

✓ Summary of Default Model Choices

Use Case	Model	Params	Score	Notes
Remote	Ovis2-8B	8B	9.45	Best accuracy, GPU only
Local	Qwen2.5-VL-7B	7B ************************************	8.67	Balanced, efficient on CPU/GPU
Embedding	BGE-VL-large	428M	0.808 MRR / 0.938 Hit@5	Fast + high precision

