Discrete vs. Continuous: Distributions Explained

Discrete Distributions

Binomial Distribution

The **binomial distribution** is a **discrete probability distribution** that models the number of **successes** in a fixed number of independent trials, where each trial has only two possible outcomes: **success or failure**.

Conditions for Binomial Distribution

A random variable X follows a binomial distribution if:

- 1. There are **n independent trials**.
- 2. Each trial has only two possible outcomes:
 - Success (denoted as 1)
 - Failure (denoted as 0)
- 3. The probability of success is **fixed** and denoted by p, while the probability of failure is 1-p.
- 4. The trials are **independent**, meaning the outcome of one trial does not affect another.

Probability Mass Function (PMF)

The probability of getting exactly k successes in n trials is given by the binomial formula:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Where:

- P(X=k) = Probability of exactly k successes
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ = Number of ways to choose k successes in n trials
- p^k = Probability of getting k successes

• $k(1-p)^{n-k}$ = Probability of getting (n-k) failures

***** Example:

A fair coin is tossed

10 times. What is the probability of getting exactly 4 heads?

- n=10 (trials)
- k=4 (successes = heads)
- p=0.5 (probability of heads)

Using the binomial formula:

$$egin{aligned} P(X=4) &= {10 \choose 4} (0.5)^4 (0.5)^6 \ &= {10! \over 4!(6!)} (0.5)^{10} \ &= 210 \times 0.000976 = 0.205 \end{aligned}$$

So, the probability of exactly 4 heads in 10 tosses is 20.5%.

Binomial Mean and Variance

For $X \sim Binomial(n, p)$:

• Expected Value (Mean):

$$E[X] = np$$

Variance:

$$Var(X) = np(1-p)$$

• Standard Deviation:

$$\sigma_X = \sqrt{np(1-p)}$$

Example: If a basketball player makes 70% of free throws and takes **10** shots:

• Expected successful shots:

$$E[X] = 10 \times 0.7 = 7$$

Variance:

$$Var(X) = 10 \times 0.7 \times 0.3 = 2.1$$

· Standard Deviation:

$$\sigma_X = \sqrt{2.1} pprox 1.45$$

So, on average, the player will make **7 shots**, but there is some variation.

Bernoulli Random Variable

A **Bernoulli random variable** is a special type of **discrete random variable** that represents a single trial with only **two possible outcomes**:

- Success (usually denoted as 1) with probability p.
- Failure (denoted as 0) with probability 1-p.

If X is a Bernoulli random variable, we write:

 $X \sim Bernoulli(p)$

1. Probability Mass Function (PMF)

Since X can take only two values (0 or 1), its **PMF** is:

$$P(X=x) = \left\{ egin{array}{ll} p, & ext{if } x=1 ext{ (success)} \ 1-p, & ext{if } x=0 ext{ (failure)} \end{array}
ight.$$

This can be written in compact form using exponents:

$$P(X=x)=p^x(1-p)^{1-x}, \quad x\in\{0,1\}$$

2. Mean (Expected Value)

The expected value (mean) of a Bernoulli random variable is:

$$E[X] = p$$

This makes sense because if the probability of success is p, we expect X to take value 1 about pp fraction of the time.

***** Example:

If a fair coin is flipped, with **success = heads** (p = 0.5), the expected value is:

E[X] = 0.5

which means we expect heads 50% of the time.

3. Variance

The variance of a Bernoulli random variable is:

$$Var(X) = p(1-p)$$

This shows that **as pp gets closer to 0 or 1**, variance decreases (less uncertainty).

***** Example:

For a fair coin flip (p = 0.5):

$$Var(X) = 0.5(1 - 0.5) = 0.25$$

4. Relationship to Binomial Distribution

The **Bernoulli distribution** is a **special case of the binomial distribution** with **n** = 1:

$$X \sim Binomial(n=1,p)$$

So, a single coin flip (Bernoulli) is just a binomial experiment with one trial.

5. Examples of Bernoulli Random Variables

- ▼ Flipping a coin: Heads (X = 1), Tails (X = 0).
- **V** Passing an exam: Pass (X = 1), Fail (X = 0).
- **Website Clicks**: User clicks (X = 1), No click (X = 0).
- **V** Product Defects: Defective (X = 1), Not defective (X = 0).

6. Summary Table

Feature	Bernoulli Distribution
Definition	A single trial with success (1) or failure (0)
Probability of Success	P(X = 1) = p
Probability of Failure	P(X = 0) = 1 - p
Mean (Expectation)	E[X] = p
Variance	Var(X) = p(1 - p)
Special Case Of	Binomial Distribution (n = 1)

Poisson Random Variable

A **Poisson random variable** represents the number of times an event occurs in a fixed interval of time or space, given that:

- 1. Events occur independently of each other.
- 2. The average rate (λ) of occurrence is **constant** over time/space.
- Two events cannot occur at the exact same instant (for very small intervals).

A Poisson-distributed random variable X is written as:

$$X \sim Poisson(\lambda)$$

Where λ (lambda) is the **mean number of occurrences** in the given interval.

Probability Mass Function (PMF)

The probability that a Poisson random variable X takes the value k (i.e., exactly k events occur) is given by:

$$P(X=k)=rac{e^{-\lambda}\lambda^k}{k!}, \quad k=0,1,2,3,\ldots$$

Where:

- $e \approx 2.718$ (Euler's number)
- λ = expected number of events per interval
- $k! = k \text{ factorial (e.g., } 3!=3\times2\times1)$

Example:

Suppose calls arrive at a customer service center at an average rate of **3 calls per hour**. What is the probability of receiving **5 calls in an hour**?

Here, $\lambda=3$ and k=5:

$$P(X = 5) = \frac{e^{-3}3^5}{5!}$$
 $= \frac{0.0498 \times 243}{120}$
= 0.1008

So, there is a 10.08% probability of receiving exactly 5 calls in an hour.

Mean and Variance

For a Poisson random variable $X \sim Poisson(\lambda)$:

- Mean (Expectation): $E[X] = \lambda$
- Variance: $Var(X) = \lambda$
- Standard Deviation: $\sigma = \lambda$

Example:

If a store gets an average of 10 customers per hour, then:

- Expected customers per hour: E[X]=10
- Variance: Var(X)=10
- Standard deviation: $\sigma = \sqrt{10} \approx 3.16$

When to Use a Poisson Random Variable?

- Counting the number of arrivals or events over a fixed time or space.
- Examples:
 - Number of emails received per hour.
 - Number of **customers** entering a shop in a day.
 - Number of machine failures in a factory per week.
 - Number of earthquakes in a region per year.

Continuous Distributions

Uniform Distribution

A uniform distribution is a probability distribution where all outcomes are equally likely within a given range. This means that every value in the range has the same probability of occurring.

Probability Density Function (PDF)

Since there are infinitely many possible values, the probability of any **specific** value is **zero**. Instead, we compute probabilities over an interval.

The PDF is:

$$f(x) = \left\{ egin{array}{ll} rac{1}{b-a}, & ext{if } a \leq x \leq b \ 0, & ext{otherwise} \end{array}
ight.$$

📌 Example: Random Number Between 2 and 8

Let $X \sim U(2,8)$, meaning X follows a uniform distribution between 2 and 8.

• PDF:

$$f(x)=rac{1}{8-2}=rac{1}{6}$$
 for $2\leq x\leq 8$

• Mean:

$$E[X] = \frac{a+b}{2} = \frac{2+8}{2} = 5$$

Variance:

$$Var(X) = rac{(b-a)^2}{12} = rac{(8-2)^2}{12} = rac{36}{12} = 3$$

• Probability of X being between 4 and 6:

$$P(4 \le X \le 6) = \int_4^6 \frac{1}{6} dx = \frac{6-4}{6} = \frac{2}{6} = 0.333$$

So, the probability that X is between 4 and 6 is 33.3%.

When to Use a Uniform Distribution?

- When all outcomes are equally likely.
- When modeling random numbers in a fixed range.
- Common in random sampling, simulation, and cryptography.

Normal Distribution (Gaussian Distribution)

The **normal distribution**, also called the **Gaussian distribution**, is the most commonly used probability distribution in statistics. It describes **many real-world phenomena**, such as heights, IQ scores, measurement errors, and exam scores.

Properties of a Normal Distribution

- **▼ Bell-shaped curve** (Symmetric around the mean).
- ✓ Mean = Median = Mode (all in the center).
- Characterized by two parameters:
 - μ (mean) \rightarrow **Center** of the distribution.
 - σ^2 (variance) \rightarrow **Spread** of the data.
- ▼ Follows the Empirical Rule (68-95-99.7 Rule) (explained below).

Probability Density Function (PDF)

For a normal distribution with **mean** μ and **standard deviation** σ , the probability density function (PDF) is:

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Where:

- $e \approx 2.718$ (Euler's number).
- $\pi \approx 3.1416$.
- σ^2 is the **variance** (square of standard deviation).

This function describes the likelihood of X taking a particular value. The **total** area under the curve is 1, meaning it represents a valid probability distribution.

Standard Normal Distribution (Z-Distribution)

A **special case** of the normal distribution is the **standard normal distribution**, which has:

- Mean: $\mu = 0$.
- Standard deviation: $\sigma=1$

Any normal distribution $N(\mu,\sigma^2)$ can be converted into a **standard normal** distribution using the **Z-score transformation**:

$$Z = rac{X - \mu}{\sigma}$$

where Z tells us how many standard deviations X is away from the mean.

Empirical Rule (68-95-99.7 Rule)

For a normal distribution:

- $igcolor{igcup}{igcolor}$ 68% of data lies within 1 standard deviation of the mean ($\mu \pm \sigma$).
- igspace 95% of data lies within 2 standard deviations ($\mu\pm2\sigma$).
- **99.7%** of data lies within **3 standard deviations** ($\mu \pm 3\sigma$).