6.2: Volumes

In addition to calculating *areas*, integration is used to calculate *volumes*. Recall that we used a number of *rectangles* to approximate the *area* of a two-dimensional region. Similarly, we use a number of *cylinders* to approximate the *volume* of a three-dimensional region.

A **cylinder** is bounded by a plane region B_1 , called the base, and a congruent region B_2 in a parallel plane. The cylinder consists of all points on line segments that are perpendicular to the base and that join B_1 and B_2 . If the area of the base is A, and the height (perpendicular distance from the plane containing B_1 to the plane containing B_2) is h, then the volume of the cylinder is

To calculate the volume V of a solid S that is not a cylinder, we "cut" S into pieces and approximate each piece by a cylinder. We estimate V by adding the volumes of the cylinders. We find the exact value of V by a limiting process in which the number of pieces becomes large.

First notice that by intersecting a solid S with a plane P_x perpendicular to the x-axis, we obtain a region called a *cross-section* of S. Let A(x) denote the area of this cross-section for $a \le x \le b$, and notice that A(x) varies as x varies between a and b.

To approximate the volume V of S, divide the interval [a,b] into n subintervals $[x_0,x_1]$, $[x_1,x_2],\ldots,[x_{n-1},x_n]$ each of width $\Delta x = \frac{b-a}{n}$ for $x_k = a + k\Delta x$ and $k = 0,\ldots,n$. Now approximate the volume on each subinterval $[x_{k-1},x_k]$ for $k=1,\ldots,n$ with the volume of the cylinder with "height" Δx and base area $A(x_k^*)$ where x_k^* is a sample point in the subinterval $[x_{k-1},x_k]$.

The sum volume of these cylinders is approximately the volume of S:

$$V \approx \sum_{k=1}^{n} A(x_k) \Delta x.$$

The exact volume of S is calculated by increasing the number of subintervals to infinity:

$$V = \lim_{n \to \infty} \sum_{k=1}^{n} A(x_k^*) \Delta x = \int_a^b A(x) \ dx.$$

Example 1. Show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.

Example 2. Find the volume of the solid obtained by rotating the region under the curve $y = \sqrt{x}$ from x = 0 to 1 about the x-axis.

Example 3. Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8, and x = 0 about the y-axis.

Example 4. Find the volume of the solid obtained by rotating the region enclosed by the curves y = x and $y = x^2$ about the x-axis.

Example 5. Find the volume of the solid obtained by rotating the region enclosed by the curves y = x and $y = x^2$ about the line y = 2.

Example 6. Find the volume of the solid obtained by rotating the region enclosed by the curves y = x and $y = x^2$ about the line x = -1.

Example 7. Find the volume of a pyramid whose base is a square with side length L and whose height is h.

