Suites de Fonctions

1. Convergence simple.

- Dans tout ce paragraphe, X et Y sont des parties de \mathbf{C} , $X \subset Y$.
- Pour tout entier n, f_n est une fonction définie sur Y à valeurs dans $\mathbf{C}, f_n : Y \longrightarrow \mathbf{C}$.
- On s'intéresse à la limite de la suite $(f_n)_{n\geq 0}$ lorsque $n\to\infty$.
 - * Quel est le comportement de $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$ si $n \to \infty$?

Définition. La suite de fonctions $(f_n)_{n\geq 0}$ converge simplement vers f sur X si, pour tout $x\in X$, $\lim_{n\to+\infty} f_n(x)=f(x)$ ce qui signifie que

$$\forall x \in X, \quad \forall \varepsilon > 0, \quad \exists N(x, \varepsilon), \qquad n \ge N(x, \varepsilon) \Longrightarrow |f_n(x) - f(x)| < \varepsilon.$$

• Le plus grand ensemble X pour l'inclusion sur lequel $(f_n)_{n\geq 0}$ converge simplement s'appelle le domaine de convergence simple de la suite $(f_n)_{n\geq 0}$.

Exemple. $Y = \mathbf{R}$, $f_n(x) = x^n$. $(f_n)_{n\geq 0}$ converge simplement vers $f(x) = \mathbf{1}_{\{1\}}(x)$ sur l'intervalle X = [-1, 1].

• Les propriétés de convergence des suites numériques se transfèrent aisément à la convergence simple des suites de fonctions $(f_n)_{n\geq 0}$.

Insuffisance de la convergence simple.

- $f_n(x) = x^n$ sont continues sur [-1,1] mais la limite elle est discontinue au point x=1!
- $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$ converge simplement sur **R** vers la fonction nulle! Pourtant,

$$f'_n(x) = \sqrt{n}\cos(nx)$$
 ne converge pas vers $f'(x) = 0$.

• On introduit une notion plus forte de convergence

2. Convergence uniforme.

Définition. La suite de fonctions $(f_n)_{n\geq 0}$ converge uniformément vers f sur X si,

$$\lim_{n \to +\infty} \sup_{x \in X} |f_n(x) - f(x)| = 0,$$

ce qui signifie que

$$\forall \varepsilon > 0, \quad \exists N(\varepsilon), \qquad n \ge N(\varepsilon) \Longrightarrow \sup_{x \in X} |f_n(x) - f(x)| < \varepsilon,$$

$$n \ge N(\varepsilon) \Longrightarrow \forall x \in X, \quad |f_n(x) - f(x)| < \varepsilon$$

• La convergence uniforme entraîne la convergence simple

Exemple. $f_n(x) = \sin(nx)/\sqrt{n}$ converge uniformément vers 0 sur **R**.

- Pour démontrer la convergence uniforme, on peut étudier les variations de $|f_n f|$
 - * Dans la plupart des cas, on ne peut pas calculer $\sup_{x \in X} |f_n(x) f(x)|$.
 - * Par contre, on cherche à majorer cette quantité!

Proposition. La suite $(f_n)_{n\geq 0}$ converge uniformément vers f sur X si et seulement si il existe une suite $(\alpha_n)_{n\geq 0}$ positive telle que

- 1. $\lim_{n\to\infty} \alpha_n = 0$;
- 2. pour tout $n \ge 0$, pour tout $x \in X$, $|f_n(x) f(x)| \le \alpha_n$.
- Dans l'exemple $f_n(x) = \sin(nx)/\sqrt{n}$, $\alpha_n = 1/\sqrt{n}$.

Proposition. $(f_n)_{n\geq 0}$ converge uniformément vers f sur X si et seulement si, pour toute suite $(x_n)_{n\geq 0}$ de points de X, on a

$$\lim_{n \to +\infty} |f_n(x_n) - f(x_n)| = 0.$$

- La condition nécessaire est évidente : $|f_n(x_n) f(x_n)| \le \sup_{x \in X} |f_n(x) f(x)|$.
- Cette proposition est surtout utilisée pour montrer qu'une suite de fonctions ne converge pas uniformément
 - * $f_n(x) = nx^n(1-x)$ converge simplement vers 0 sur [0,1] mais ne converge pas uniformément $x_n = 1 1/n$.

Remarque. En pratique, on détermine d'abord la fonction f en étudiant la limite simple de $(f_n)_{n\geq 0}$ puis on étudie la convergence uniforme.

3. Convergence uniforme et permutation de symboles.

Nous allons voir que la convergence uniforme permet beaucoup d'opérations

Théorème (Interversion des limites). Soient $(f_n)_{n\geq 0}$ une suite de fonctions définies sur Y et f une fonction définie sur $X \subset Y$. Soit a un point adhérent à X. On suppose que :

- 1. $(f_n)_{n\geq 0}$ converge uniformément sur X vers f;
- 2. pour tout n, $\lim_{x\to a} f_n(x) = l_n$.

Alors, la suite $(l_n)_{n>0}$ est convergente de limite l et $\lim_{x\to a} f(x) = l$ c'est à dire

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{n \to \infty} \left(\lim_{x \to a} f_n(x) \right) = \lim_{n \to \infty} l_n = l.$$

• Le résultat est encore valable si $a = +\infty$ dans le cas réel.

Corollaire. Soit $(f_n)_{n\geq 0}$ une suite de fonctions continues sur X qui converge uniformément sur X vers f. Alors f est continue sur X.

Preuve directe. • Par définition, il existe $(\alpha_n)_{n>0}$ telle que $\lim_{n\to\infty}\alpha_n=0$ et

$$\forall n \ge 0, \quad \forall x \in X, \quad |f_n(x) - f(x)| \le \alpha_n.$$

• Soient x_0 et x deux points de X. Pour tout $n \ge 0$,

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)| \le 2\alpha_n + |f_n(x) - f_n(x_0)|.$$

- Soit $\varepsilon > 0$; puisque $\lim_{n \to \infty} \alpha_n = 0$, il existe $N \in \mathbb{N}$ t.q. pour tout $p \ge N$, $0 \le \alpha_p < \varepsilon/3$.
- Fixons $p \geq N$; puisque f_p est continue au point x_0 , il existe $\eta > 0$ tel que

$$|x - x_0| < \varepsilon \implies |f_p(x) - f_p(x_0)| < \varepsilon/3.$$

• Par suite, si $|x - x_0| < \eta$,

$$|f(x) - f(x_0)| \le 2\alpha_p + |f_p(x) - f_p(x_0)| < \varepsilon.$$

Remarque. Plus élégant

$$\lim_{x \to x_0} \sup |f(x) - f(x_0)| \le 2\alpha_n + \lim_{x \to x_0} \sup |f_n(x) - f_n(x_0)| \le 2\alpha_n.$$

Exemple. • $f_n(x) = \sqrt{x^2 + 2^{-n}}$ converge uniformément vers |x| qui est continue

• $f_n(x) = x^n$ converge simplement vers $\mathbf{1}_1(x)$ sur [0,1] mais pas uniformément puisque la limite est discontinue.

Théorème (Permutation limite et intégrale). On suppose que $(f_n)_{n\geq 0}$ converge uniformément vers f sur [a,b] $(f_n, f$ continues par morceaux). Alors

$$\lim_{n \to \infty} \int_a^b f_n(t) dt = \int_a^b \lim_{n \to +\infty} f_n(t) dt = \int_a^b f(t) dt.$$

Plus généralement, si $\lim_{n\to+\infty} y_n = y$, on a convergence uniforme sur [a,b] de

$$F_n(x) = y_n + \int_a^x f_n(t) dt$$
 vers $F(x) = y + \int_a^x f(t) dt$.

Démonstration. Pour tout $x \in [a, b]$,

$$|F_n(x) - F(x)| \le |y_n - y| + \int_a^b \sup_{t \in [a,b]} |f_n(t) - f(t)| dt \le |y_n - y| + (b-a) \sup_{t \in [a,b]} |f_n(t) - f(t)|$$

Exemple. Puisque $\sqrt{x^2 + 2^{-n}}$ converge uniformément sur **R** vers |x|,

$$\lim_{n \to +\infty} \int_{-1}^{1} \sqrt{t^2 + 2^{-n}} \, dt = \int_{-1}^{1} |t| \, dt = 2.$$

Théorème (Permutation limite et dérivée). Soient I un intervalle de \mathbf{R} et $(f_n)_{n\geq 0}$ une suite de fonctions dérivables sur I. On suppose que

- 1. $(f_n)_{n\geq 0}$ converge simplement vers f sur I;
- 2. $(f'_n)_{n\geq 0}$ converge uniformément vers g sur tout intervalle borné $J\subset I$.

Alors $(f_n)_{n\geq 0}$ converge uniformément vers f sur tout intervalle borné $J\subset I$, f est dérivable sur I et, pour tout $x\in I$, f'(x)=g(x) soit

$$\forall x \in I, \qquad \lim_{n \to +\infty} f'_n(x) = \left(\lim_{n \to +\infty} f_n\right)'(x) = f'(x)$$

En outre, si les fonctions f_n sont C^1 , f est également C^1 .

2011/2012 : fin du cours 6

- Attention, il faut la convergence uniforme des dérivées!! pas celle des fonctions!!
 - * $f_n(x) = \sqrt{x^2 + 2^{-n}}$ est \mathcal{C}^1 sur \mathbf{R} et converge uniformément vers |x| sur \mathbf{R} qui n'est pas dérivable en 0.
 - $\star f'_n(x) = \frac{x}{\sqrt{x^2 + 2^{-n}}}$ converge simplement mais pas uniformément sur **R** vers sgn(x).

Remarque. Plus généralement, soient I un intervalle de \mathbf{R} , x_0 un point de I et $(f_n)_{n\geq 0}$ une suite de fonctions dérivables sur I. On suppose que

1. $(f_n(x_0))_{n\geq 0}$ converge vers y_0 ;

2. $(f'_n)_{n\geq 0}$ converge uniformément vers g sur tout intervalle borné $J\subset I$.

Alors, il existe une fonction f définie sur I telle que $f(x_0) = y_0$, $(f_n)_{n\geq 0}$ converge uniformément vers f sur tout intervalle borné $J \subset I$, f est dérivable sur I et, pour tout $x \in I$, f'(x) = g(x).

 $D\acute{e}monstration$. • On fait la preuve dans le cas où f_n est de classe \mathcal{C}^1 pour tout n.

• On a, pour tout $x \in I$ et tout $n \in \mathbb{N}$, notant S le segment d'extrémité x et x_0 ,

$$\left| f_n(x) - f(x_0) - \int_{x_0}^x g(t) \, dt \right| = \left| f_n(x_0) + \int_{x_0}^x f'_n(t) \, dt - f(x_0) - \int_{x_0}^x g(t) \, dt \right|$$

$$\leq |f_n(x_0) - f(x_0)| + |x - x_0| \sup_{t \in S} |f'_n(t) - g(t)|.$$

• En passant à la limite, on obtient

$$f(x) = f(x_0) + \int_{x_0}^{x} g(t) dt$$

• g étant continue, f est dérivable sur I et f'(x) = g(x).

Pas fait

Pas Iai

4. Complément : théorèmes de Dini.

• Deux théorèmes qui permettent d'obtenir la convergence uniforme si on a la convergence simple.

Théorème (Premier théorème de Dini). Soient I = [a, b] un segment et $(f_n)_{n \geq 0}$ une suite de fonctions réelles convergeant simplement vers f sur I. On suppose que

- 1. pour tout n, f_n est continue sur I;
- 2. f est continue sur I;
- 3. pour tout $x \in [a, b]$ et tout $n \ge 0$, $f_n(x) \le f_{n+1}(x)$.

Alors, $(f_n)_{n\geq 0}$ converge uniformément vers f sur I.

Exemple. $f_n(x) = (1 + x/n)^n$ converge uniformément vers e^x sur tout intervalle [-a, a].

Théorème (Deuxième théorème de Dini). Soient I = [a, b] un segment et $(f_n)_{n \ge 0}$ une suite de fonctions réelles convergeant simplement vers f sur I. On suppose que

- 1. pour tout n, f_n est croissante sur I;
- 2. f est continue sur I.

Alors, $(f_n)_{n\geq 0}$ converge uniformément vers f sur I.

Exemple. $f_n(x) = n \sin(x/n)$ converge uniformément vers x sur tout segment.