a)
$$T = \frac{2}{2}(G,G,E), (GG,Y)$$
 $O = \frac{2}{2}(G,B,E), (G,G,E)$
 $E(G,G,E), (G,G,E), (B,G,Y), (G,G,Y)$
 $E(G,G,E), (G,G,E), (B,G,Y), (G,G,Y)$
 $E(G,G,E), (G,G,E), (G,G,E)$
 $E(G,G,E), (G,G,E), (G,G,E)$
 $E(G,G,E), (G,G,E)$
 $E(G,G,E), (G,G,E), (G,G,E)$
 $E(G,G,E), (G,G,E)$
 $E(G,G,E), (G,G,E), (G,G,E)$
 $E(G,G,G,G)$
 $E(G,G,G)$
 $E(G,G)$
 $E($

1) Sample Space: (elder sex, younger sex, age open)

Probability that m has all different brithdays =
$$(N \cdot (N-1)(N-2)...(N-10+10) - N^m$$

Probability that w has all diff bologs as N-m has no same bolog = $\frac{N!}{m!N^m}$. $(1-\frac{m}{N})^m$

= $e^{-\frac{m^2}{2N}} \cdot (e^{-\frac{m}{N}})^m$

$$= e^{-\frac{m^2}{2N} + \frac{2m^2 - 2mk}{2N}} = e^{\frac{1}{2N}(m^2 - 2mk)} = e^{\frac{m(m-2k)}{2N}}$$

$$\frac{m (m-2k)}{2N} = \frac{1}{2}$$

$$m(m-2k) = 2Nh(\frac{1}{2})$$

 $m^2-2km-2Nh(\frac{1}{2})=0$
 $m^2-2km+2Nh2=0$

$$M = \frac{2k \pm \sqrt{4k^2 - 4(2Nh2)}}{2}$$

$$= k \pm \sqrt{k^2 - 2Nh2}$$

$$\frac{m}{2} = 1 - \sqrt{1 - \frac{240}{n}}$$

$$\frac{K}{M} = \frac{K_2}{N l u S} \implies M = \frac{K}{N l u S}$$

- 1. Flip the coin twice.
- 2. Based on the results:
 - TH ⇒ you win [W], and the game terminates.
 - $HT \Rightarrow$ Professor Leighton wins [L], and the game terminates.
 - If T → I rolessor Leighton wins [L], and the game terminates
 (HH ∨ TT) ⇒ discard the result and flip again.
- 3. If at the end of N rounds nobody has won, declare a tie.

As an example, for N=3, an outcome of HT would mean the game ends early and you lose, HHTH would mean the game ends early and you win, and HHTTTT would mean you play the full N rounds and result in a tie.

- (a) [5 pts] Assume the flips are mutually independent. Show that $Pr\{W\} = Pr\{L\}$.
- (b) [5 pts] Show that, if p < 1, the probability of a tie goes to 0 as N goes to infinity.

E (TH), (Tie, TH), (Tie, Tie, TIM),

=
$$p(1-p)+(2p^2-2p+1)p(1-p)+(2p^2-2p+1)^2p(1-p)+...+(2p^2-2p+1)^{N-1}$$

= $p(1-p)[1+2p^2-2p+1+(2p^2-2p+1)^2+...+(2p^2-2p+1)^{N-1}]$

$$= b(1-b) \left[\frac{1-(3b_3-3b+1)_{10}}{1-(3b_3-3b+1)_{10}} \right] = b(1-b) \left[\frac{3b-5b_3}{1-(3b_3-3b+1)_{10}} \right]$$

$$= \frac{1-2p(1-p)}{1-(2p^2-2p+1)^{N}}$$

=
$$(2\sqrt{p^2} - 2p + 1)^{1/2}$$

At $p=1$, $2p^2 - 2p + 1 = 1$.

(20)

Problem 5. [20 points]											
(a) [5 pts] Suppose A and B are $disjoint$ events. Prove that A and B are not independent, unless $\Pr(A)$ or $\Pr(B)$ is zero.											
(b) [5 pts] If A and B are independent, prove that A and \bar{B} are also independent. Hint: $\Pr(A \cap \bar{B}) = \Pr(A) - \Pr(A \cap B)$.											
(c) [5 pts] Give an example of events A,B,C such that A is independent of B , A is independent of C , but A is not independent of $B \cup C$.											
(d) [5 pts] Prove that if C is independent of A , and C is independent of B , and C is independent of $A\cap B$, then C is independent of $A\cup B$. Hint: Calculate $\Pr(A\cup B\mid C)$.											
a) Disjoint > ANB = EOZ. Independence (>) Pr[ANB] = Pr[A] Pr > Pr[BIA] = Pr[B].	[2]	• •									
Since they are disjoint, Pr [ANB]=0											
\Rightarrow doesn't eathorfy the equiviPr DAZ PrEBJ \neq 0.	odence	Con.	Rither	, (pr	- Ind	cper	tera	. 2(0	Q.		
Alternatively, Pr[BIA] = 0 = Pr[B] =	Det	ia	dequ	der	1	.∑					
6) Suppose A and B are independent; from Bor	A a	d:	B to	be.	, de		eit,				
Pr[AnB]=Pr[A]Pr[B] Pr[A]-Pr[Pr[A]-Pr[Pr[A]-Pr[Pr[A]-Pr[Pr[A]-Pr[Pr[A]-Pr[Pr[A]-Pr[And Bore inde	ZAN CAJF I- Pr CBJ	CB.	B] ([2]								
c) A independent of B. A independent of C. A not independent of BUC \iff Ar			ert.	g 1	 						
Let A be the presence of Nach in a solution. Let B be the presence of HCI in the solution. Let C be the presence of NaCH in the solution.	ton.	 									
Pr(AUB)(C) = Pr(A)(C) + Pr(B)(C) = Pr(A) + Pr(B) - Pr(A) = Pr(AUB)			U. 6	<i>y</i> C) (וטכנה	iska r	exch	nlo.	. N	re)
→ AUB is indepodent of C.		•									

·a

6 0	л) •)	77	e airi	DN wese	1 A.	mor nde	-lee	rs de	ore NC	- m	υ γ υ ⇒	9.) c (A.) A.)	1C	۶\ ۱۱.	ر) 3)) .7 <i>4</i>	£ ! ₽	لاد د ((A () A () A ()	7.0	(T	٠.			A=		ß:	3,000	, C	= 1	<u></u>	
	(8-	(A	O (30	Ċ)	<	F	ر د (B	· ()	ے)																				
															=	(5	00	00	00	00														
									١		\	2	m:1	lior	٠ ١.٠		ىي	-)										
		1	ار د د د	ر م	. J.																		_											
			4.0	, Y	,	e e	۷. (Peri	wee	ا ن	IMON	rve	ΛΪ	<i>ب</i>		, v		ΑÜ	117	1)(<u> </u>	. ~		·	ပ	۱. ۱.	./							
				٠																	٠		٠	٠										
																					٠													
	٠			٠					٠				٠			٠		٠	٠	٠	٠		٠	٠	٠									
																					٠			٠										
																					٠			٠										