

Implementing ML Techniques to discover drivers behind the price of Bitcoin

Team Members: Sean Simmons, Siegfried Vieluf, Santiago Pedemonte, Rawnak Mahjabib

Motivation & Summary

Our objectives:

- utilizing machine learning techniques to identify what the drivers behind the price of Bitcoin are, AND
- potentially attempt to build a trading model using insights gained from our model's performance.

Data Collection, Cleanup, & Model Training

- We sourced our dataset using Bloomberg Export. Our dataset cleaning process was quite tedious. The dataset contained unmatched indexes & available dates.
- Some of our data was reported on a quarterly, monthly, weekly, basis and the vast majority was collected daily.

Inflation

Control Book

	Balance Sheet Size	GRDI	Commodity Index	Gold	Bitcoin	Bloomberg Dollar Index	Citi Dollar Positioning	Story Count	Story Count	VIX Index	MOVE Index	CVIX	US 2 Year	US 2s10s	Sector Rotation
2021- 04-01	35745.1094	119.426	83.8339	1729.31	58859.78	1148.66	-42.05	4119.0	2033.0	18.60	64.9900	6.56	0.1585	150.550	1.0654
2021- 03-31	35703.9688	119.463	83.4445	1707.71	58960.20	1152.19	-42.24	4194.0	2858.0	19.80	71.2700	6.72	0.1603	157.624	1.0480
2021- 03-30	35746.0195	119.242	82.7525	1685.20	58673.67	1154.39	-36.19	4892.0	2434.0	20.76	67.4400	6.79	0.1465	155.246	1.0434
2021- 03-29	35814.6563	121.056	83.9328	1712.20	57234.35	1150.33	-33.09	4253.0	1829.0	20.40	65.9600	6.83	0.1407	156.351	1.0344
2021- 03-26	35846.5664	120.157	84.1319	1732.52	54002.49	1148.11	-32.90	3730.0	2225.0	19.32	61.4900	6.86	0.1387	153.338	1.0463
2021- 03-25	35450.7383	120.114	82.9932	1726.93	52001.01	1150.69	-36.79	4837.0	3467.0	20.80	59.5400	6.93	0.1367	149.057	1.0430
0004															

WTF?! What('re) The Feature(s)?:

- **Central Bank Balance Sheet:** summarizes its financial position, and is made up of assets, liabilities and equity.
- ➤ US Budget Balance
- ➤ <u>US Consumer Price Index (CPI)</u>: a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services.
- **Conference Board Inflation Expectations:** contains consumer expectations for inflation, stock prices, and interest rates.
- > Global Risk Demand Index: gauges the change in risk demand from the price performance of risky assets relative to safe ones.
- **Dollar Index:** a measure of the value of the U.S. dollar relative to a basket of foreign currencies, often referred to as a basket of U.S. trade partner's currencies. The index goes up when the US dollar gains strength (value) compared to other currencies.
- **CITI Dollar Positioning**: this is a measure of dollar positioning, the thinking being as people get more short USD they buy more Bitcoin.
- **Volatility Index (VIX):** looks at expectations of future volatility, also known as implied volatility.
- > Currency Volatility Index (CVIX): created by computing a decentralized volatility index from cryptocurrency option prices.
- Merrill Lynch Option Volatility Estimate (MOVE): indicator of U.S. interest rate volatility. It measures the implied yield volatility of a basket of one-month over-the-counter options on 2-year, 5-year, 10-year, and 30-year Treasuries.
- **Sector Rotation Index:** designed to rotate sector allocations based on favorable characteristics regardless of the economic environments.
- **Bloomberg Commodity Index (BCOM)**: is calculated on an excess return basis and reflects commodity futures price movements.
- **Bitcoin Story Count:** global search volume for Bitcoin

Data Cleanup & Model Training (Challenges)

- Monthly Reported Data & Daily Reported Data: We needed to decide if we could mathematically
 transform a monthly reading into a daily reading by resampling it into the more frequently reported daily readings.
 - i.e. if we had a monthly CPI reading of 1% could we run the ML algorithms assuming that 1% is reported daily across that time frame?
 - We discovered that we potentially can. This strategy however created additional problems. For example, if we used a % change on the daily data frame, or a first differencing, it would output many 0's.

Down-Sampling Our Data:

- Our models didn't appear to tell us much on a daily time frame as to what bitcoins price would be. Therefore, we thought maybe trying to look at drivers that were longer term and less 'noise driven' might make a difference.
 - We uncovered that did not appear to be the case as the models we tested using less frequent data also performed poorly.

Our Core Hypothesis

Our core hypothesis was that bitcoin should respond to the following drivers:

- Monetary & Fiscal Stimulus Central Bank Balance sheet, US Budget Balance, US Consumer Price Index (CPI), Inflation Expectations
- Risk Seeking Behavior Global Risk Demand Index, Dollar Index, Dollar Positioning, Volatility Index (VIX), Crypto Volatility Index (CVIX), Merrill Lynch Option Volatility Estimate (MOVE), Sector Rotation Index
- Inflation Bloomberg Commodity Index, Gold, US 2
 Year, US 10-2 Year Treasury Yield Spread
- Social Media Herding Biases & Hive driven thinking -Bitcoin Story Count

Model Summaries:

Models we used to try and determine a continuous variable & predict price of Bitcoin:

 Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net Regression, Principal Component Analysis (PCA and Regression), Backward Elimination, Ordinary Least Square (OLS), Random Forest, Neural Network - Keras

We have concluded that it might be better to try a classification path.

Neural Network Predictive Model:

Predictive Model Using Least Absolute Shrinkage and Selection Operator (LASSO)

```
R^2 score of Lasso Regression 88.18
Mean Absolute Error on test data for Lasso Regression: 2341.2619155809684
Mean Squared Error on test data for Lasso Regression: 8576689.860151675
Root Mean Squared Error on test data for Lasso Regression: 2928.5986171122313
results frame = pd.DataFrame({'Actual': y test, 'Predicted': lasso y pred,
                               'Variance': y test - lasso y pred})
results frame.plot(kind = 'line')
<matplotlib.axes._subplots.AxesSubplot at 0x1dc30556108>
 50000
            Predicted
            Variance
 40000
 30000
 20000
 10000
-10000
```

Training score for Lasso Regression: 89.93

R² of lasso regression: 88.18% which reveals that 88.18% of the data fits the model.

PCA Model Evaluation:

- We discovered that in the PCA factoring in 5 principal components that captured 80% of the data provided the same amount of accuracy of 11 components that had 91% of the data.
- This meant that with 80% of the data we were able to get the same accuracy in predictions.

```
# Classification
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(max_depth = 4 ,random_state=0)
classifier.fit(X_train,y_train)
# Predicting the Test set results
v pred = classifier.predict(X test)
# Confusion matrix & accuracy score
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score
cm = confusion_matrix(y_test, y_pred)
print(cm)
print( accuracy_score(y_test, y_pred))
[[20 64]
 [20 98]]
```

0.5841584158415841

Next Steps:

Using our model accuracy that hit 58% we aim to create and test a trading model by identifying which factor(s) can become a signal to indicate profitable buy and sell positions.

