

Lecture 22: Markov Chain Monte Carlo + More

Making MC Better

- In this simulation part of this class
 - We have learned that simulations are not accurate
 - There are a few things we can do to make it better
 - Key is to have a notion of when we are going wrong

Correcting

- In this simulation part of this class
 - We have learned that simulations are not accurate.
 - There are a few things we can do to make it better
 - Key is to have a notion of when we are going wrong

Correct Our Simulation Through a Probabilistic Rescaling

Markov Chain MC

Correct Our Simulation Through a Probabilistic Rescaling

Markov Chain MC

Quantum Numbers

Correct Our Simulation Through a Probabilistic Rescaling

System

Metropolis-Hastings

- Step 0: Randomly sample a parameter x₁
- Step 1: Sample a new parameter x₂
 - Use a chosen "Proposal Function" for sampling
 - Compute the probability of stepping x₂ to stepping x₁
- Step 2: Sample a flat distribution from 0 to 1 (s₂)

• Accept
$$\mathbf{x_2}$$
 if $s_2 < \frac{p(x_2)}{p(x_1)}$

Step 3 : Go back to step 1

- We can consider having many walkers probe our space
 - Many walkers at the same time speed up convergence

- We can consider having many walkers probe our space
 - Many walkers at the same time speed up convergence

- We can consider having many walkers probe our space
 - Many walkers at the same time speed up convergence

Walkers

Example Fit

Example Fit

Example Fit

- We randomly choose a pair of points
 - Move one of the points along the line between them

- We randomly choose a pair of points
 - Move one of the points along the line between them

- We randomly choose a pair of points
 - Move one of the points along the line between them

- We randomly choose a pair of points
 - Move one of the points along the line between them

- We randomly choose a pair of points
 - Move one of the points along the line between them

Walkers ine of Mi θ_1

Visualizing in Bayes

The Likelihood reweights the Prior to the Posterior

Quantum Monte Carlo

- Can use the same MCMC to populate a wave function
 - We can then scan paramaters to solve Shroedinger's Eq

$$\psi(\vec{r} \mid \vec{\theta}) = Ae^{-r/\theta_0}$$

Guess a Form for the wavefunction

$$p(\vec{r} \mid \vec{\theta}) = \frac{\psi^*(\vec{r} \mid \vec{\theta})\psi(\vec{r} \mid \vec{\theta})}{\langle \psi \mid \psi \rangle}$$

We can define probability from wavefunction

$$w_{i+1} = \frac{p(\overrightarrow{r_{i+1}} | \overrightarrow{\theta})}{p(\overrightarrow{r_i} | \overrightarrow{\theta})} = \frac{\psi^*(\overrightarrow{r}_{i+1})\psi(\overrightarrow{r}_{i+1})}{\psi^*(\overrightarrow{r}_i)\psi(\overrightarrow{r}_i)} \begin{array}{c} \text{Our proposal} \\ \text{Doesn't need integral} \\ \text{Aka } \langle \psi | \psi \rangle \end{array}$$

Aka $\langle \psi | \psi \rangle$

Multiple Walkers Populate

- The key is to MCMC evolve the wave function many times
 - We can use the aggregate Particles solve QM stuff

$$\sum_{j} \psi_{j}(\vec{r} \,|\, \vec{\theta}) = Ae^{-r/\theta_{0}}$$

Guess a Form for the wavefunction

$$\sum_{j} p_{j}(\vec{r} \mid \vec{\theta}) = \frac{\psi_{j}^{*}(\vec{r} \mid \vec{\theta})\psi_{j}(\vec{r} \mid \vec{\theta})}{\langle \psi \mid \psi \rangle}$$

We can define probability from wavefunction

$$\sum_{j} w_{i+1}^{j} = \frac{p_{j}(\overrightarrow{r_{i+1}} \mid \theta)}{p_{j}(\overrightarrow{r_{i}} \mid \overrightarrow{\theta})}$$

Our proposal Doesn't need $\langle \psi | \psi \rangle$

Solving Schroedinger

Solving Schroedinger

- Once we have the evolved wave funciton
 - We can compute expectations
 - No need to integrate (Really this is MC integration)

$$\langle E \rangle = \sum_{j} p_{j}(\vec{r} \,|\, \vec{\theta}) E_{j}(\vec{r} \,|\, \vec{\theta}) = \sum_{j} \psi_{j}^{*}(\vec{r} \,|\, \vec{\theta}) \psi_{j}(\vec{r} \,|\, \vec{\theta}) E_{j}(\vec{r} \,|\, \vec{\theta})$$

Solving Schroedinger

Our goal is to minimize the Energy given a wave functional form

50

Full Blow MCMC

- Ultimately the big gain from this are complex fits
 - Cases where normal gradient descent breaks down
 - What better case than to go back to LIGO

Full Waveform not differentiable (cannot fit it)

- There is some elegance to the MCMC approach
 - Builds directly to Bayesian fitting
 - MC allows us to explore parameters and correlations

Image credit:

- However, it is really slow
 - Migration towards differentiable loss is becoming popular
 - Training an NN to replace part of sampling helps with this
 - Project 3 starts to illustrate modern approach to this all

Visualizing in Bayes

The Likelihood reweights the Prior to the Posterior

Simulation Based Inference

Simulation-based inference (SBI)

Inference:

- Likelihood $p(x | \theta) = \int dz p(x, z | \theta)$ is intractable
- Inference is challenging

Poisson Fluctuation

Normalizing Flow

$$z \sim p_{ heta}(z) = N(z;0,1) \ x = f_{ heta}(z) = f_K \circ \ldots f_2 \circ f_1(z) \ each \ f_i \ is \ invertible$$

How Does it Work?

$$egin{aligned} f:Z
ightarrow X, \ f \ is \ invertible \ p_{ heta}(z) \ defined \ over \ z \ \epsilon \ Z \ p_{ heta}(x)
eq p_{ heta}(f_{ heta}^{-1}(x))) \end{aligned}$$

Change of variable formula:

$$egin{aligned} p_{ heta}(x) &= p_{ heta}(f_{ heta}^{-1}(x))) \left| det(rac{\partial f^{-1}(x))}{\partial x})
ight| \ p_{ heta}(x) &= p_{ heta}(z)) \left| det(rac{\partial z}{\partial x})
ight| \end{aligned}$$

$$\log\left(p_{ heta}(x)
ight) = \log\left(p_{ heta}(z)
ight) \,+\, \sum_{i=1}^K \log\left|det(rac{\partial f_i^{-1}}{\partial z_i})
ight|$$

exact likelihood evalutation

Poisson flucutate a func

"Traditional" SBI: Approximate Bayesian Computation

[Rubin 1984]

