® BUNDESREPUBLIK
DEUTSCHLAND

[®] Off nl gungsschrift [®] DE 3616168 A1

(5) Int. Cl. 4: C 07 F 9/30

> C 09 K 21/00 B 22 C 1/16

DEUTSCHES PATENTAMT 2) Aktenzeichen: 22) Anmeldetag:

P 36 16 168.3 14. 5.86

(43) Offenlegungstag: 19.11.87

(7) Anmelder:

Chemische Fabrik Budenheim Rudolf A. Oetker, 6501 Budenheim, DE

② Erfinder:

Sommer, Klaus, Prof. Dr., 6702 Bad Dürkheim, DE; Dorn, Karlheinz, Dipl.-Chem. Dr., 6501 Budenheim, DE; Scheuer, Gerhard F., Dipl.-Chem. Dr., 6500 Mainz, DE; Götzmann, Karl, 6501 Budenheim, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE-PS 24 18 348 BE 8 75 530

DE-Buch: Verlag Chemie, GmbH, Weinehim/Bergstr. und Berlin: Gmelins Handbuch der anorganischen Chemie: System Nr. 27, 1939, S.394; System Nr. 28, 1961, S.1119-1121;

(A) Magnesium- und Calcium-phosphinate und damit gebundene basische Feuerfestrohstoffe

Es werden Magnesium- und Calcium-Salze von Phosphinsäuren der allgemeinen Formel

in der R¹ und R² verschiedene oder gleiche funktionelle Gruppen bedeuten, und deren Herstellung beschrieben. Diese Phosphinate eignen sich in hervorragender Weise als Binder in basischen Feuerfestrohstoffen wie Magnesiumoxid, Calciumoxid, Dolomit, Olivin, Forsterit und deren Mischungen.

Patentansprüche

1) Magnesium- und Calciumsalze von Phosphinsäuren der allgemeinen Formel

5

10

15

in der R¹ und R² die Bedeutung H, CH₃, C₂H₅, HOCH₂, HOC₂H₄, HOC₃H₆, CH₂COOH und CH(OH)COOH haben.

R¹ und R² können sowohl übereinstimmen, als auch unterschiedliche Bedeutung aufweisen.

2) Basische Feuerfestrohstoffe, bestehend aus Magnesiumoxid, Calciumoxid, Dolomit, Olivin, Forsterit oder deren Mischungen, dadurch gekennzeichnet, daß sie als Binder Magnesium- und Calciumphosphinate nach Anspruch 1) in Mengen von 0,3 bis 5% enthalten.

Beschreibung

- Für die chemische Bindung inerter, kieselsäure- und aluminiumoxidhaltiger Rohstoffe können saure Phosphatbindemittel wie Phosphorsäure, Monoaluminiumphosphat usw. eingesetzt werden.
 - Wegen der spontanen Reaktion solcher sauren Bindemittel mit den Rohstoffen ist dies bei basischen Feuerfestmaterialien nicht möglich. Ideal geeignete chemische Bindemittel für basische Feuerfestrohstoffe wie Magnesiumoxid, Olivin usw. sind bis heute nicht bekannt. Man verwendet zur Herstellung chemisch gebundener
 feuerfester Steine und Massen aus basischen Rohstoffen überwiegend Bindemittel wie Wassergläser und Alkalipolyphosphate.
 - Mit diesen Bindemitteln lassen sich die Schwierigkeiten einigermaßen überwinden, jedoch sind solche verarbeitungsgerecht hergestellte Mischungen nur kurze Zeit lagerfähig, bzw. die Festigkeiten der damit hergestellten Steine verringern sich mit zunehmender Lagerzeit beträchtlich.
 - Ein weiterer, nicht zu vernachlässigender Nachteil dieser Bindemittel liegt in deren Gehalt an Alkalioxid. Dieser Alkaligehalt wirkt in diesen feuerfesten Baustoffen als Flußmittel und setzt die Feuerfestigkeit dieser Baustoffe herab. Durch das frühzeitige Auftreten von Glasphasen bei relativ niedrigen Anwendungstemperaturen wird auch die Temperaturwechselbeständigkeit solcher Baustoffe vermindert.
 - Es hat deshalb nicht an Versuchen gefehlt, chemische Bindemittel für basische Rohstoffe zu beschaffen, die diese Nachteile nicht aufweisen. Bisher ist ein solches Bindemittel jedoch nicht bekannt geworden.
 - Die vorliegende Erfindung beschreibt nun solche chemische Bindemittel, d. h. alkalifreie Produkte, welche bei normalen Umgebungstemperaturen nur langsam mit basischen Feuerfestrohstoffen reagieren und ausreichende Bindeergebnisse aufweisen.
 - Bei der Entwicklung dieses Produktes sind wir von der Überlegung ausgegangen, daß ein solches Bindemittel wasserlöslich sein muß, in alkalischem Medium beständig ist und filmbildende Eigenschaften aufweist, damit genügend hohe Grünfestigkeiten erzielt werden. Das Bindemittel sollte darüberhinaus bei Temperaturerhöhung mit den basischen Rohstoffen in Reaktion treten und bei Temperaturbeanspruchung weder giftige noch sonstwie schädliche Zersetzungsprodukte bilden.
 - Es wurde nun gefunden, daß neutrale und basische Magnesium- und Calciumsalze von Phosphinsäuren ausgezeichnete Bindungseigenschaften für basische Feuerfestrohstoffe besitzen.
 - Die vorliegende Erfindung beschreibt Magnesium- und Calciumsalze von Phosphinsäure der allgemeinen Formel

- in der R₁ und R² die Bedeutung H, CH₃, C₂H₅, HOCH₂, HOC₂H₄, HOC₃H₆, CH₂COOH und CH(OH)COOH haben.
 - R¹ und R² können sowohl übereinstimmen, als auch unterschiedliche Bedeutung aufweisen.
- Die Magnesium- und Calcium-phosphinate erhält man durch Neutralisieren von Lösungen der entsprechenden Phosphinsäuren mit wäßrigen Aufschlämmungen von Magnesium- oder Calciumhydroxid bzw. Magnesium- oder Calciumoxid und Konzentrieren durch Verdampfung des Wassers bei Normal- oder Unterdruck. Zur Neutralisation ist es zweckmäßig, Reaktionstemperaturen um 50°C einzuhalten, um die Umsetzung hinreichend schnell durchführen zu können.
- Ein weiteres Ziel dieser Erfindung sind unter Zusatz dieser Magnesium- und Calcium-Phosphinate hergestellte Feuerfestmaterialien. Solche Feuerfestmaterialien sind: Magnesiumoxid, Calciumoxid, Dolomit, Olivin und Forsterit oder deren Mischungen.

36 16 168

Beispiel 1:

88 g 75%ige hypophosphorige Säure und 170 g 37%iges Formaldehyd werden unter Rühren 30 min auf 50°C erwärmt. Dann steigert man allmählich die Temperatur auf 80° und hält 2 h bei dieser Temperatur. Im Vakuum wird auf die Hälfte eingeengt, wobei auch überschüssiges Formaldehyd entfernt wird. Anschließend neutralisiert man unter Kühlen und kräftigem Rühren durch Zugabe von rund 20 g Magnesiumoxid. Die Lösung wird, falls erforderlich, mit Aktivkohle entfärbt, filtriert und im Vakuum eingeengt, wobei sich das Magnesium-hydroxymethylphosphinat als weißes Pulver abscheidet. Nach Trocknen im Vakuum zeigt es folgende Analysenwerte:

Mg: 8,9%, C: 17,7%, P: 22.9% 10

Beispiel 2:

Verfährt man analog Beispiel 1, neutralisiert jedoch mit 29 g Calciumhydroxid, so erhält man das Calciumsalz, der Bis-(hydroxymethyl)-phospinsäure, das folgende Analyse zeigt:

15

Ca: 14,0%, P: 21,2% C: 16,2%,

Beispiel 3:

20

81 g Methylphosphonigsäure werden in 50 ml Wasser gelöst und mit 165 g 37% igem Formalin unter Rühren und Kühlen versetzt. Man steigert die Temperatur allmählich auf 75°C und hält 3 h bei dieser Temperatur. Anschließend wird wie in Beispiel 1 weiterverfahren.

C: 19,6%, Mg: 10,3%, Analyse:

Mg: 11,2%,

25

Beispiel 4:

93 g Dimethylphosphinsäure werden in 80 ml Wasser gelöst und vorsichtig durch Zugabe von 29 g Magnesiumhydroxid neutralisiert. Nach Aufarbeiten nach Beispiel 1 erhält man ein weißes Pulver folgender Zusammensetzung:

P: 29,7%

35

Aus Dimethylphosphinsäure und Kalkmilch erhält man in analoger Verfahrensweise zu Beispiel 4 Calciumdimethylphosphinat.

Beispiel 5:

Beispiel 6:

40

123 g Hydroxyethyl-methyl-phosphinsäure ergeben bei Neutralisation mit 29 g Magnesiumhydroxid nach Trocknen das Magnesiumphosphinat folgender Zusammensetzung:

C: 27,6%, Mg: 9,2%, P: 23,6%

23,0%,

Beispiel 7:

88 g 75%ige hypophosphonige Säure werden mit 85 g 37%iger Formalinlösung 2 h bei 50°C gehalten und anschließend 20 min auf 75°C erwärmt. Man läßt abkühlen, versetzt mit 150 g Glyoxylsäure (50%) und hält nochmals 2 h bei 75°C. Nach Neutralisation mit Magnesiumoxid wird mit Aktivkohle entfärbt und eingeengt. Das trockene Reaktionsprodukt zeigt folgende Zusammensetzung:

C: 18,3%, Mg: 12,3%, P: 15,8%

55

Beispiel 8: (Vergleichsbeispiel)

Aus einer handelsüblichen China-Sintermagnesia wird nachfolgende Versatzmischung für eine Stampfmasse hergestellt und gemischt:

65 Gew.% Körnung 1-3 mm;

10 Gew.% Körnung 0-1 mm;

23 Gew.% Mehl DIN 70 und

2 Gew.% feuerfester Ton DIN 70.

Zu der trocken vorgemischten Rohstoffmischung werden 2 Gew.% pulverförmiges Na-polyphosphat gegeben und nach Homogenisierung der Mischung soviel Wasser, daß die Gesamtfeuchte 5% beträgt. Aus dieser Stampfmasse werden auf der Fischer-Ramme Probekörper von Ø 50 mm x 50 mm hergestellt. Die Verdichtung erfolgt durch je 10 Schläge beidseitig. Das Ergebnis der Prüfungen dieser Probekörper ist in den nachfolgenden Tabellen 1-3 dargestellt.

Beispiel 9:

Die gleiche Versatzmischung aus China-Sintermagnesia wie in Beispiel 1 beschrieben, wird anstelle von Na-polyphosphat mit 2,5% Magnesiumsalz der Dimethylolphosphinsäure (nach Beispiel 1) versetzt, mit Wasser auf eine Gesamtfeuchte von 5% gebracht und wie bei Beispiel 1 beschrieben zu Probekörpern verarbeitet. Auch hier sind die Prüfungsergebnisse in den nachfolgenden Tabellen 1—3 enthalten.

Beispiel 10:

Bei diesem Beispiel werden nach der unter 1 und 2 beschriebenen Arbeitsweise aus China-Magnesiasinter Probekörper hergestellt, jedoch unter Verwendung von 3,5% Magnesiumsalz der Dimethylolphosphinsäure (nach Beispiel 1).

Beispiel 11:

Aus den gleichen Rohstoffen und nach gleicher Arbeitsweise wie in Beispiel 8 beschrieben, wird eine Preßmasse mit einer Gesamtfeuchte von 3% hergestellt. Aus dieser Masse werden die Probekörper (Ø 50 mm × h 50 mm) auf einer Laborpresse mit einem Preßdruck von 50 N/mm² hergestellt. Die Tabellen 1—3 enthalten das Ergebnis der durchgeführten Prüfungen.

Beispiel 12:

Auch bei diesem Beispiel wird die Preßmasse mit den Rohstoffen und nach der Arbeitsweise von Beispiel 9 mit einer Gesamtfeuchte von 3% hergestellt und auf der Laborpresse mit einem Preßdruck von 50 N/mm² zu Probekörpern verarbeitet. Die Prüfungsergebnisse sind ebenfalls in den Tab. 1—3 enthalten.

Tabelle 1

Kaltdruckfestigkeiten von Stampfmassen und Steinen aus China-Sintermagnesia N/mm²

Beispiel	Raum- gewicht	120°C	200°C	400°C	600°C	800°C	1000℃	1200°C	1400°C
8	2,65	19,5	19,5	20,5	18,5	14,0	11,0	14,5	14,5
9	2,51	28,0	26,5	26.5	23,0	19,0	14,5	12,0	12,5
10	2,58	30,0	29,0	26,5	27,5	20,5	17,0	15,5	13,5
11	2,76	31,0	32,5	34,5	34,0	28,5	24,0	27,0	45,0
12	2,78	39,5	45,0	51,0	48.5	39,5	27,5	27,5	40,0

Tabelle 2 Druckerweichung von Stampfmassen aus China-Sintermagnesia Belastung 0,05 N/mm² – nicht vorgebrannt

45		Detailed of the 14 miles of the 14 miles									
	<u> </u>	<i>t</i> 0.	<i>t</i> 0,5	<i>t</i> 1.0	<i>t</i> 2,0	<i>t</i> 3,0	Dehnung bei 10				
50	Beispiel 8 Beispiel 9 Beispiel 10	960°C 1010°C 1010°C	1175°C 1300°C 1285°C	1250°C 1440°C 1365°C	1400°C 1515°C 1490°C	_ 1550℃ 1530℃	1,15% 1,08% 0,92%				
55	China-Sinter ohne Bindemittel	1120°C	1240°C	1295℃	1410℃	1495℃	0,96%				
	Ι				iina-Sinterma rannt bei 150						
60.	Beispiel 11 Beispiel 12	1230°C 1280°C	1355°C 1420°C	1480°C 1485°C	_ 1520°C	_ 1525℃	1,43 % 1,39 %				
	China-Sinter ohne Bindemittel	1280°C	1400°C	1435°C	1470°C	1480°C	1,57%				

5

20

30

Tabelle 3

Festigkeiten von Probekörpern aus Sintermagnesia
nach Lagerung der fertigen Masse vor der Probekörperherstellung

		sofort verpre		2 h gelag	gert	4 h gela	gert	6 h gel	agert		
Beispiel 8		100%)	55%)	609	6	67	%		
Beispiel 9		100%		94%	,	91 9	· ·	73	%	•	
		В	eispiel	13 (Vergl	eichsbei	spiel)	•		• • • • • •		- :
inem Laborzwa	ngsmischer	wurden	nachfol	lgende K	ornfrakt	ionen ei	ner hand	elsüblich	en Kore	a-Sinte	rma-
vorgemischt: w.% Körnung 1	—3 mm.									7	
w.% Mehl DIN : w.% Körnung 0-	70 und —1 mm,	1 6									
w.% feuerfester diesem trockene	Ton. en Gemisch	ı wurden	2 Gew	v.% pulve	erförmig	es Na-p	olyphosi	hat geg	eben, ho	mogen	isiert
ann durch Zugab r durch Verdicht lieser Probekörp	e von 7% ' ung auf dei	Wasser e r Fischer-	ine Sta Ramm	mpfmass e mit 2 ×	e herges 10 Schl	tellt. Au	s dieser S	Stampfn	asse wu	rden Pr	obe-
ueser Prodekorp	er sind in d	en laber						· 			
				Beispiel	14:		٠.				
körper hergeste nethyl-phosphin	săure als Bi	indemitte	l verwe	endet.				Ruesian	Sair Gei	Memy	I-Hy-
u diesem Beispie	ei fingen sic	in die Pru	rungse			abeuen	4-6.				
		•		Beispiel	15:			•• •			··· ·-
ses Reisniel ents	nricht in al	llen Einze	lheiter	•		len Beis	niel 14. id	edoch w	urden di	esmal 3	3.596
ses Beispiel ents esiumsalz der Me gebnisse der Prü	thyl-hydro	xymethy	lphospl	n dem vo hinsäure	rstehend als Binde				urden di	esmal 3	3,5%
siumsalz der Me	thyl-hydro	xymethy	lphospl	n dem vo hinsäure	rstehend als Binde —6.				urden di	esmal 3	3,5%
esiumsalz der Me gebnisse der Prü	thyl-hydro	xymethyl den sich ir	lphospl n den T	n dem vo hinsäure abellen 4 Tabelle	rstehend als Binde —6.	emittel v	erwende	t.	. ساستان	esmal 3	3,5%
esiumsalz der Me gebnisse der Prü	thyl-hydro fungen find	xymethyl den sich ir	lphospl n den T	n dem vo hinsäure abellen 4 Tabelle	rstehend als Binde —6.	emittel v	erwende rmagnesi	t. a N/mm²	. ساستان	esmal 3	3,5%
esiumsalz der Me gebnisse der Prü	thyl-hydro fungen find ltdruckfestig Raum-	exymethylden sich in gkeiten von 120°C	lphospl n den T	n dem vo hinsäure a abellen 4 Tabelle	rstehend als Binde —6. 4 aus Kor	emittel v	erwende rmagnesi	t. a N/mm²		esmal 3	3,5%
esiumsalz der Megebnisse der Prü Kal	thyl-hydro fungen find ltdruckfesti Raum- gewicht	gkeiten vo	on Stan	n dem vo hinsäure : labellen 4 Tabelle apfmassen 400°C	rstehende als Binde —6. 4 a aus Kor	rea-Sinte	rmagnesi	t. a N/mm² 1200°C	1400°C	esmal S	3,5%
esiumsalz der Megebnisse der Prü Kal	thyl-hydro fungen find ltdruckfesti Raum- gewicht 2,32	gkeiten von 120°C 15,0 20,5	lphospl n den T on Stam 200°C	radem von hinsäure : labellen 4 Tabelle apfmassen 400°C	rstehende —6. 4 a aus Kor 600°C	rea-Sinte	rmagnesi 1000°C	t. a N/mm² 1200°C 8,5	1400°C	esmal S	3,5%
esiumsalz der Megebnisse der Prü Kal Beispiel 13 Beispiel 14	thyl-hydro fungen find ltdruckfestig Raum- gewicht 2,32 2,36	gkeiten von 120°C 15,0 20,5	lphospl i den T on Stam 200°C 13,0	radem von hinsäure : rabellen 4 Tabellen 4 Tabellen 4 400°C	rstehende —6. 4 a aus Kor 600°C 11.5 16,0 21,0	rea-Sinte 800°C 9,0 12,5	rmagnesi 1000°C 6,0 9,5	a N/mm² 1200°C 8,5 9,5	1400°C 9,0 9,5	esmal S	3,5%
esiumsalz der Megebnisse der Prü Kal Beispiel 13 Beispiel 14	thyl-hydro fungen find Itdruckfestin Raum- gewicht 2,32 2,36 2,46	gkeiten von 120°C 15,0 20,5 22,5 weichung	200°C 13,0 19,5 23,5 von Sta	Tabelle 190°C 13,5 18,5 22,5	rstehende als Binde —6. 4 a aus Kor 600°C 11.5 16,0 21,0 5 en aus Ko	rea-Sinte 800°C 9,0 12,5 16,5 orea-Sin	rmagnesi 1000°C 6,0 9,5 12,5	a N/mm ² 1200°C 8,5 9,5 12,0	1400°C 9,0 9,5	esmal S	3,5%
esiumsalz der Megebnisse der Prü Kal Beispiel 13 Beispiel 14	thyl-hydro fungen find Itdruckfestin Raum- gewicht 2,32 2,36 2,46	gkeiten von 120°C 15,0 20,5 22,5 weichung	200°C 13,0 19,5 23,5 von Sta	rabellen 4 Tabellen 4 Tabellen 4 Tabellen 4 Tabellen 4 Tabellen 5 Tabelle 7 Tabelle 7 Tabelle 7 Tabelle 7	rstehende als Binde —6. 4 a aus Kor 600°C 11.5 16,0 21,0 5 en aus Ko	rea-Sinte 800°C 9,0 12,5 16,5 orea-Sin	rmagnesi 1000°C 6,0 9,5 12,5	a N/mm ² 1200°C 8,5 9,5 12,0 sia	1400°C 9,0 9,5	esmal 3	3,5%
esiumsalz der Megebnisse der Prü Kal Beispiel 13 Beispiel 14	Raum- gewicht 2,32 2,36 2,46 Druckery	gkeiten von 120°C 15,0 20,5 22,5 weichung Belastur	200°C 13,0 19,5 23,5 von Stang 0,05	Tabelle 13,5 18,5 22,5 Tabelle 18,5 18,5 22,5 Tabelle 18,5 18,5 22,5	rstehende als Binde —6. 4 a aus Kor 600°C 11.5 16,0 21,0 5 en aus Konicht voi	emittel verea-Sinte 800°C 9,0 12,5 16,5 orea-Sinrgebrann	rmagnesii 1000°C 6,0 9,5 12,5	a N/mm ² 1200°C 8,5 9,5 12,0 sia	9,0 9,5 10,0	esmal s	3,5%
Beispiel 15 Beispiel 15	Raum- gewicht 2,32 2,36 2,46 Druckerv	gkeiten von 120°C 15,0 20,5 22,5 weichung Belastur	200°C 13,0 19,5 23,5 von Stang 0,05	a dem von hinsäure a abellen 4 Tabelle appfmassen 400°C 13,5 18,5 22,5 Tabelle ampfmassen N/mm² -	rstehendels Binder-6. 4 a aus Kor 600°C 11.5 16,0 21,0 5 en aus Knicht von	rea-Sinte 800°C 9,0 12,5 16,5 orea-Sinregebrance	rmagnesii 1000°C 6,0 9,5 12,5 termagne it	a N/mm ² 1200°C 8,5 9,5 12,0 Sia Deh	9,0 9,5 10,0	esmal 3	3,5%
Beispiel 15 Beispiel 15 Beispiel 15	Raum- gewicht 2,32 2,36 2,46 Druckerv 0 940' 1010'	gkeiten von 120°C 15,0 20,5 22,5 weichung Belastun (0,0)°C 10°C 12	200°C 13,0 19,5 23,5 von Starr 80°C 270°C	a dem von hinsäure a abellen 4 Tabelle appfmassen 400°C 13,5 18,5 22,5 Tabelle ampfmassen N/mm² -	rstehende als Binde —6. 4 a aus Kon 600°C 11.5 16,0 21,0 5 en aus Kanicht von	emittel verea-Sinte 800°C 9,0 12,5 16,5 orea-Sinregebrane 90°C 85°C	rmagnesi 1000°C 6,0 9,5 12,5 termagne tt ,,0 1430°C 1525°C	a N/mm ² 1200°C 8,5 9,5 12,0 Sia Deh t0 1,14 0,96	9,0 9,5 10,0 nung bei	esmal S	3,5%
Beispiel 15 Beispiel 15	thyl-hydro fungen find Raum- gewicht 2,32 2,36 2,46 Druckerv 1 0 940 1010 1010	gkeiten von 120°C 15,0 20,5 22,5 weichung Belastun (0,0)°C 10°C 12	200°C 13,0 19,5 23,5 von Stang 0,05	a dem von hinsäure a abellen 4 Tabelle appfmassen 400°C 13,5 18,5 22,5 Tabelle ampfmassen N/mm² -	rstehende als Binde —6. 4 a aus Kon 600°C 11.5 16,0 21,0 5 en aus Kanicht von	rea-Sinte 800°C 9,0 12,5 16,5 orea-Sinregebrance	rmagnesii 1000°C 6,0 9,5 12,5 termagne it	a N/mm ² 1200°C 8,5 9,5 12,0 Sia Deh	9,0 9,5 10,0 nung bei	esmal s	3,5%

Tabelle 6

Festigkeiten von Probekörpern aus Korea-Sintermagnesia
nach Lagerung der fertigen Masse vor der Probekörperherstellung

.		sofort verpreßt	nach 2 h	4 h gelagert	6 h gelagert
	Beispiel 13	100%	22 %	22 %	35 %
	Beispiel 14	100%	92,5%	82,5%	77,5%

Beispiel 16 (Vergleichsbeispiel)

Aus einer reinen, hochwertigen Sintermagnesia (Seewasser) wurde ein Stampfmassenversatz aus folgenden Kornfraktionen gemischt:

60 Gew.% Körnung 1-6 mm, 15 Gew.% Körnung 0-1 mm,

25 Gew.% Mehl DIN 70.

Dieser trockenen Rohstoffmischung wurden 2 Gew.% pulverförmiges Na-polyphosphat zugesetzt und homo-

gen untergemischt. Durch Zugabe von 4% Wasser wurde eine Stampfmasse hergestellt, aus der auf der Fischer-Ramme Probekörper geformt wurden. Die Verdichtung wurde durch je 10 Schläge, beidseitig, vorgenommen.

Beispiel 17:

Auf die gleiche Weise und mit dem gleichen Rohstoff wie unter Beispiel 16 beschrieben, wurde eine Stampfmasse hergestellt und zu Probekörpern verarnbeitet. Als Bindemittel wurde lediglich 2,5% Magnesiumsalz einer Mischung aus Dimethylolphosphinsäure, Dimethylphosphinsäure und Hydroxethyl-methyl-phosphinsäure anstelle von Alkalipolyphosphat verwendet.

Beispiel 18:

Entspricht in allen Einzelheiten Beispiel 17, bis auf die Bindemittelmenge, die in diesem Beispiel 3,5% betrug.

Beispiel 19:

Dieses Beispiel entspricht Beispiel 16 mit dem Unterschied, daß die Gesamtfeuchte nur 3% betrug und die Probekörper auf einer Laborpresse mit einer Verdichtung von 50 N/mm² geformt wurden.

Beispiel 20:

Dieses Beispiel entspricht in allem dem Beispiel 17, jedoch wurde auch hierbei nur mit 3% Gesamtfeuchte gearbeitet und die Probekörper auf einer Laborpresse mit einem Druck von 50 N/mm² hergestellt. Die Prüfungsergebnisse zu diesen Beispielen finden sich in den Tabellen 7 und 8.

Tabelle 7

Kaltdruckfestigkeiten von Stampfmassen und Steinen aus Magnesiasinter N/mm²

50		Raum- gewicht	120°C	200°C	400°C	600°C	`800°C	1000°C	1200°C	1400°C
	Beispiel 16	2,89	42,0	45,5	49.0	44,5	28,0	37,0	43,5	32,5
	Beispiel 17	2,94	47,5	47,5	49,5	52,5	38,5	36,5	36,0	36,0
55 ["]	Beispiel 18	3,01	40,0	38,0	36,5	42,0	28,5	28,5	27,5	28,0
	Beispiel 19	2,98	46,0	48,5	56,5	60,0	56,5	49,5	47,0	46,0
	Beispiel 20	3,10	68,0	75,0	77,0	68,5	63,0	54,0	47,5	48,5

60

30

35

40

45

36 16 168

Tabelle 8

Druckerweichung von Stampfmassen aus Magnesiasinter
Belastung 0,05 N/mm² – nicht vorgebrannt

		0	<i>t</i> 0,5	5	t 1,0	<i>t</i> 2,0	<i>t</i> 3,0		Dehnung bei 10		
	Beispiel 16 Beispiel 17 Beispiel 18	1010°C 1060°C 1060°C	C 13:	30°C 25°C 70°C	1500°C 1490°C 1430°C	1590°(1595°(1560°(C 168	30°C 80°C 40°C	1,42% 1,19% 1,17%		
	Magnesiasin		~ 12i	00°C	1285°C	. 1390°	~ _		1,32%	٠.	
	onne Binden				Steinen au	•			1,52 76		
		Bela	stung 0,2	N/mm ²	- vorgebra	nnt bei 15	00°C				
	Beispiel 19 Beispiel 20	1370°C		75°C 25°C	1495°C 1555°C	1500°0 1570°0			1,56% 1,53%		
	Magnesiasint ohne Bindeπ		2 139	95℃	1455°C	1515°C	C 154	15°C	1,55%		
		ř	Beisni	el 21 (V	ergleichsb	eisniel)			•, •	•	
iesem Hal	ll aus folgender		und Köri	nungen	gemischt:		,	٠.			
30 Gew.% 90 Gew.% Die Misc	Magnesiasinte chung wurde n körper wurden	er (Korea) 0— pit 2 Gew.% N	Va-polyp	hospha me mit 2							
0 Gew.% 0 Gew.% Die Misc Die Probel Entsprict 5% Ca-sa Die Prüff In analog	Magnesiasinte chung wurde m	er (Korea) 0— nit 2 Gew. % N n auf der Fisch Zusatz von 1 nydroxymethy e zu diesen be nnen die Mag	Na-polyp ler-Ramr Na-polyp ylphosph siden Bei gnesium-	hospha me mit 2 Beis phospha insäure spielen bzw. C	2 × 10 Sch piel 22: at dem Bei eingesetzt finden sich talcium-Sal	lägen, bei spiel 21. A L in den Ta	dseitig, vo Anstelle v	erdichter von Na- und 10.	t. polyphosi		e
80 Gew.% 80 Gew.% Die Misc Die Probel Entsprich 5% Ca-sa Die Prüfi In analog	Magnesiasinte chung wurde m körper wurden ht bis auf den alz der Methylh ungsergebniss ger Weiswe kö	er (Korea) 0— nit 2 Gew. % N n auf der Fisch Zusatz von 1 nydroxymethy e zu diesen be nnen die Mag	Na-polyp ler-Ramr Na-polyp ylphosph siden Bei gnesium-	hospha me mit 2 Beis phospha insäure spielen bzw. C erzielt w	2 × 10 Sch piel 22: at dem Bei eingesetzt finden sich talcium-Sal	lägen, bei spiel 21. A L in den Ta	dseitig, vo Anstelle v	erdichter von Na- und 10.	t. polyphosi		e 3
0 Gew.% 0 Gew.% Die Misc Die Probel Entsprict 5% Ca-sa Die Prüff In analog	Magnesiasinte chung wurde m körper wurden ht bis auf den der Methylh ungsergebniss ger Weiswe kö werden, wobei	er (Korea) 0— nit 2 Gew. % N n auf der Fisch Zusatz von 1 nydroxymethy e zu diesen be nnen die Mag	Na-polyp ner-Ramr Na-polyp ylphosph eiden Bei gnesium- ebnisse (hospha me mit 2 Beis bhospha iinsäure spielen bzw. C erzielt w	2 × 10 Sch piel 22: at dem Bei eingesetzt finden sich alcium-Sal verden.	lägen, bei spiel 21. A L in den Ta lze der üb	dseitig, vo Anstelle v abellen 9 origen ber	erdichte von Na- und 10. anspruch	t. polyphosi		e 3
0 Gew.% 0 Gew.% Die Misc Die Probel Entsprict 5% Ca-sa Die Prüff In analog	Magnesiasinte chung wurde m körper wurden ht bis auf den der Methylh ungsergebniss ger Weiswe kö werden, wobei	er (Korea) 0— nit 2 Gew.% N n auf der Fisch Zusatz von 1 nydroxymethy e zu diesen be nnen die Mag i ähnliche Erg	Na-polyp Na-polyp ylphosph eiden Bei gnesium- gebnisse o	hospha me mit 2 Beis bhospha iinsäure spielen bzw. C erzielt w	2 × 10 Sch piel 22: at dem Bei eingesetzt finden sich alcium-Sal verden.	lägen, bei spiel 21. A L in den Ta lze der üb	dseitig, vo Anstelle v abellen 9 origen ber	erdichte von Na- und 10. anspruch	t. polyphosi		e 3
0 Gew.% 0 Gew.% Die Misc bie Probel Entsprict 5% Ca-sa Die Prüft In analog	Magnesiasinte chung wurde m körper wurden ht bis auf den der Methylh ungsergebniss ger Weiswe kö werden, wobei	er (Korea) 0— nit 2 Gew.% N auf der Fisch Zusatz von 1 nydroxymethy e zu diesen be nnen die Mag i ähnliche Erg altdruckfestigl	Na-polyp Na-polyp ylphosph eiden Bei gnesium- gebnisse o	hosphame mit 2 Beis bhospha insäure spielen bzw. Cerzielt w Tal	2 × 10 Sch spiel 22: at dem Bei eingesetzt finden sich alcium-Sal verden. belle 9	spiel 21. A	Anstelle valuellen 9 prigen ber	erdichte von Na- und 10: anspruch	t. polyphosi nten Phos		e 3
0 Gew.% 0 Gew.% Die Misc Die Probel Entsprict 5% Ca-sa Die Prüff In analog	Magnesiasinte chung wurde m körper wurden ht bis auf den hiz der Methylhungsergebnisseger Weiswe kö werden, wobei	er (Korea) 0— nit 2 Gew.% N auf der Fisch Zusatz von 1 nydroxymethy e zu diesen be nnen die Mag i ähnliche Erg altdruckfestig! Raumgewicht	Na-polypher-Ramm Na-polypylphospheiden Bei gnesium- gebnisse of keiten vo	hosphame mit 2 Beis bhospha insäure spielen bzw. Cerzielt w Tal n Stamp	2 × 10 Sch spiel 22: at dem Bei eingesetzt finden sich alcium-Sal verden. belle 9 ofmassen au	spiel 21. A in den Ta lze der üb	Anstelle value len 9 prigen bea	erdichte von Na- und 10. anspruch 1/mm²	polyphosi nten Phos		e :
60 Gew.% 60 Gew.% Die Misc Die Probel Entsprict 5% Ca-sa Die Prüff In analog	Magnesiasinte chung wurde m körper wurden ht bis auf den nlz der Methylh ungsergebnisse ger Weiswe kö werden, wobei	Zusatz von laydroxymethy e zu diesen beinnen die Magi ähnliche Ergaltdruckfestigt Raumgewicht 2,55	Na-polypher-Rami Na-polypyphospheiden Bei gnesium- gebnisse of the control of the	hosphame mit 2 Beis bhospha insäure spielen bzw. C erzielt w Tal n Stamp 200°C 21,0 37,0	2 × 10 Sch spiel 22: at dem Bei eingesetzt finden sich alcium-Sal verden. belle 9 ofmassen au	spiel 21. At a min den Ta lze der üb	Anstelle value le	won Na-jund 10. anspruch //mm² 1000°C 11,0	polyphosi nten Phos 1200°C 7,5		
80 Gew.% 80 Gew.% Die Misc Die Probel Entsprich 5% Ca-sa Die Prüfi In analog	Magnesiasinte chung wurde m körper wurden ht bis auf den nlz der Methylh ungsergebnisse ger Weiswe kö werden, wobei	Zusatz von laydroxymethy e zu diesen be onnen die Magi ähnliche Ergaltdruckfestigl Raumgewicht 2,55 2,66 Druckerweiter in die Magi in die	Na-polypher-Rami Na-polypylphospheiden Bei gnesium- gebnisse of the control of th	hosphame mit 2 Beis bhospha insäure spielen bzw. C erzielt w Tal n Stamp 200°C 21,0 37,0 Tab con Stam	2 × 10 Sch spiel 22: at dem Bei eingesetzt finden sich salcium-Sal verden. belle 9 ofmassen au 400°C 19,0 37,5	spiel 21. A in den Ta ize der üb is norweg. 600°C 12,5 30,5	Anstelle valuellen 9 arigen ber Olivin N 800°C 12,0 19,0 g. Olivin	won Na-jund 10. anspruch //mm² 1000°C 11,0	polyphosi nten Phos 1200°C 7,5		4
0 Gew.% 0 Gew.% Die Misc Die Probel Entsprict 5% Ca-sa Die Prüff In analog	Magnesiasinte chung wurde m körper wurden ht bis auf den nlz der Methylh ungsergebnisse ger Weiswe kö werden, wobei	Zusatz von laydroxymethy e zu diesen be onnen die Magi ähnliche Ergaltdruckfestigl Raumgewicht 2,55 2,66 Druckerweiter in die Magi in die	Na-polypher-Rami Na-polypylphospheiden Bei gnesium- gebnisse of the control of th	hosphame mit 2 Beis bhospha insäure spielen bzw. Cerzielt w Tal m Stamp 200°C 21,0 37,0 Tabron Stam 05 N/mr	2 × 10 Sch spiel 22: at dem Bei eingesetzt finden sich alcium-Sal verden. belle 9 ofmassen at 400°C 19,0 37,5 elle 10 apfmassen: n²- nicht v	spiel 21. A in den Ta ize der üb is norweg. 600°C 12,5 30,5	Anstelle valuellen 9 arigen ber Olivin N 800°C 12,0 19,0 g. Olivin	won Na-jund 10: anspruch 1000°C 11,0 16,5	polyphosi nten Phos 1200°C 7,5		

- Leerseite -

MicroPatent® Family Lookup

Stage 1 Patent 1 "Complex"	Family -	Priorities and Applications				
CC DocNum	KD PubDate	CC AppNum	KD AppDate			
☐ DE 3616168	A1 19871119	DE 3616168	A 19860514			
☐ DE 3616168	C2 19920312	DE 3616168	A 19860514			
2 Publications	found.					
Add Selected Doo	cuments to Order	Display the Ex	tended Patent Family			