INFO251 - Applied Machine Learning

Lab 10 Emily Aiken

Announcements

- PS5 solutions posted tomorrow
- PS6 due Monday April 18
- PS7 released Monday April 11, due Monday May 2
- Quiz 2 on Thursday, April 28

Remaining Labs

Today: Deep learning

April 13: Unsupervised learning

April 20: Quiz review

April 27: Applied machine learning start-to-finish

Topics

- Regularization for neural networks
- Convolutional neural networks (CNNs)
- Recurrent neural networks (RNNs)

Regularization in Neural Networks

- Option 1: L1 or L2 regularization
 - Cost function modified with penalization for size of weights
- Option 2: Dropout
 - In training, drop a random set of nodes from a layer at each optimization batch
 - Hyperparameter: Which layers to add dropout to
 - Hyperparameter: Share of nodes to drop (between 0 and 1)
 - In prediction, use all nodes
 - For more: Srivastava et al. (2014). "Dropout: A simple way to prevent neural networks from overfitting." JMLR. [Link]

Convolutional Layers

- Goal: Capture the spatial dependencies in parts of an image
- Multiply a kernel matrix ("filter") k by subsets of the input image
 - Hyperparameter: Size of k (often 3x3, 5x5, or 7x7)
 - Learn: The weights of k
- Stride: How to shift the kernel matrix
 - Hyperparameter: Stride value (integer)

1,	1 _{×0}	1 _{×1}	0	0
0,0	1 _{×1}	1,0	1	0
0,,1	O _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	
8 2	

Image

Convolved Feature

Convolutional Layers

- Channels: Number of "layers" in the input image
 - Grayscale: 1 channel
 - RGB: 3 channels
 - RGBA: 4 channels
- Same filter size and stride length, but each channel has different weights
- Outputs of channels are summed up

Pooling Layers

- Goal: Reduce size of convolved layer to decrease compute cost
- Again, operates kernel matrix k over the convolved matrix
 - Hyperparameter: Size of k (usually 2x2)
 - Hyperparameter: Stride width (usually 2)
- Max pooling: Return maximum value in area covered by kernel
- Average pooling: Return average value in area covered by kernel

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Convolutional Neural Network Structure

- Convolutional layer
- Pooling layer
- Convolutional layer
- Pooling layer
- Flatten
- Fully connected layer(s) (activation: sigmoid/tanh/relu)

Output layer (activation: determined by problem type)

Repeat convolution followed by pooling any number of times.

Option to add dropout after pooling.

Add any number of fully connected layers. Option to add dropout.

Recurrent Neural Networks (RNNs)

- Used for timeseries-related problems
- Input can be of arbitrary length
- Challenge: Long-term dependencies
 - Long short-term memory networks (LSTMs) address this issue

Recurrent Neural Networks (RNNs)

Many-to-one e.g. sentiment classification

