# Power Analysis (SOC 412)

Week 5 Lecture 10

**Sherrerd Hall 306** 



J. Nathan Matias
@natematias
civilservant.io
jmatias@princeton.edu



Conducting & Analyzing Experiments

Research Ethics Statistics of Experiment Design

P-Hacking & Multiple Comparison

PreAnalysis
Plans &
Power
Analysis

Analyzing & Sharing Results

Graceful Recovery from Problems

Deploying & Monitoring your Experiment

Adjustment
Strata
Clusters

Designing Experiments with Partners

#### Why Are Experiments So Rare?

It's hard/expensive to deliver interventions
It's hard/expensive to collect reliable measurements
They're hard to design well

|                     | Category/<br>Phase                         | Crawl                                                                                                                                                                                      | Walk<br>∱                                                                                                                                                                                                                                 | Run<br>_3°                                                                                                                                                                      | Fly                                                                                                                                                                                             |
|---------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Technical Evolution | Technical focus of product dev. Activities | (1) Logging of signals (2) Work on data quality issues (3) Manual analysis of experiments  Transitioning from the debugging logs to a format that can be used for data-driven development. | (1) Setting-up a reliable pipeline (2) Creation of simple metrics  Combining signals with analysis units.  Four types of metrics are created: debug metrics (largest group), success metrics, guardrail metrics and data quality metrics. | (1) Learning experiments (2) Comprehensive metrics  Creation of comprehensive set of metrics using the knowledge from the learning experiments.                                 | (1) Standardized process for metric design and evaluation, and OEC improvement                                                                                                                  |
|                     | Experimentation platform complexity        | No experimentation platform  An initial experiment can be coded manually (ad-hoc).                                                                                                         | Platform is required  3rd party platform can be used or internally developed. The following two features are required:  • Power Analysis  • Pre-Experiment A/A testing                                                                    | New platform features  The experimentation platform should be extended with the following features:  • Alerting  • Control of carry-over effect  • Experiment iteration support | Advanced platform features  The following features are needed:  Interaction control and detection  Near real-time detection and automatic shutdown of harmful experiments  Institutional memory |
|                     | Experimentation pervasiveness              | Experimenting with e.g. design options for which it's not a priori clear which one is better. To generate management support to move to the next stage.                                    | Experiment on individual feature level  Broadening the types of experiments run on a limited set of features (design to performance, from performance to infrastructure experiments)                                                      | Expanding to (1) more features and (2) other products  Experiment on most new features and most products.                                                                       | Experiment with every minor change to portfolio  Experiment with any change on all products in the portfolio. Even to e.g. small bug fixes on feature level.                                    |

Fabijan, A., Dmitriev, P., Olsson, H. H., & Bosch, J. (2017, May). The evolution of continuous experimentation in software product development: from data to a data-driven organization at scale. In *Proceedings of the 39th International Conference on Software Engineering* (pp. 770-780). IEEE Press.

#### Week 5: Power Analysis and Pre-Analysis Plans

|                       | Category/                               | Crawl                                                                                                                                                                 | Walk                                                                                                                                                              | Run                                                                                                                                   | Fly                                                                                                            |
|-----------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                       | Phase                                   |                                                                                                                                                                       | ₹                                                                                                                                                                 | -3~                                                                                                                                   | <b>**</b>                                                                                                      |
|                       | Engineering                             | Limited understanding                                                                                                                                                 | Creation and set-up of experiments                                                                                                                                | Creation and execution of experiments                                                                                                 | Creation, execution and analyses of experiments                                                                |
|                       | team self-                              |                                                                                                                                                                       | Creating the experiment                                                                                                                                           | Includes monitoring for bad experiments,                                                                                              |                                                                                                                |
|                       | sufficiency                             | External Data Scientist knowledge                                                                                                                                     | (instrumentation, A/A testing, assigning                                                                                                                          | making ramp-up and shut-down decisions,                                                                                               | Scorecards showing the experiment results are                                                                  |
| Ę.                    | Q <sub>Q</sub>                          | is needed in order to set-up,                                                                                                                                         | traffic) is managed by the local                                                                                                                                  | designing and deploying experiment-                                                                                                   | intuitive for interpretation and conclusion                                                                    |
| je                    |                                         | execute and analyse a controlled                                                                                                                                      | Experiment Owners. Data scientists                                                                                                                                | specific metrics.                                                                                                                     | making.                                                                                                        |
| Evolution             | _                                       | experiment.                                                                                                                                                           | responsible for the platform supervise                                                                                                                            |                                                                                                                                       |                                                                                                                |
|                       |                                         | Cton dolono                                                                                                                                                           | Experiment Owners and correct errors.                                                                                                                             | Doute on him                                                                                                                          | Doube on the                                                                                                   |
| l e                   | Experimentation                         | Standalone                                                                                                                                                            | Embedded                                                                                                                                                          | Partnership                                                                                                                           | Partnership                                                                                                    |
| Organizational        | team<br>organization                    | Fully centralized data science team. In product teams, however,                                                                                                       | Data science team that implemented the platform supports different product                                                                                        | Product teams hire their own data scientists that create a strong unity with                                                          |                                                                                                                |
|                       |                                         | no or very little data science skills. The standalone team needs to train the local product teams on experimentation. We introduce the role of Experiment Owner (EO). | teams and their Experiment Owners.  Product teams do not have their own data scientists that would analyse experiments independently.                             | business. Learning between the teams is limited to their communication.                                                               | Learnings from experiments are shared automatically across organization via the institutional memory features. |
| Business<br>Evolution | Overall<br>Evaluation<br>Criteria (OEC) | OEC is <b>defined</b> for the first set of experiments with a few key signals that will help ground expectations and evaluation of the experiment results.            | OEC evolves from a few key signals to a structured set of metrics consisting of Success, Guardrail and Data Quality metrics. Debug metrics are not a part of OEC. | OEC is <b>tailored</b> with the findings from the learning experiments. Single metric as a weighted combination of others is desired. | 1 per year). It is also used for setting the                                                                   |

Figure 5. The "Experimentation Evolution Model".

Fabijan, A., Dmitriev, P., Olsson, H. H., & Bosch, J. (2017, May). The evolution of continuous experimentation in software product development: from data to a data-driven organization at scale. In *Proceedings of the 39th International Conference on Software Engineering* (pp. 770-780). IEEE Press.

#### Week 5: Power Analysis and Pre-Analysis Plans

#### What we will cover today

Power Analysis

Pre-Registration

Population: the group you're sampling from

Intervention (treatment): the thing you plan to test

Unit of observation: the units you will be observing

Treatment unit: the units you will be treating

Arm: each condition that people will be assigned to

Potential outcomes: the value of the outcome variable under each arm

Estimand: the "true effect" in the population of your experiment.

**Assignment:** the process (random) of assigning units to conditions

Reveal: the process of observing the outcomes

Estimator: the method for estimating the estimand

# Potential Outcomes (ATE = 2.15)

| ID (Units) | CONTROL | TREATMENT | Effect |
|------------|---------|-----------|--------|
| 1          | 0       | 1         | 1.592  |
| 2          | 6       | 8         | 2.486  |
| 3          | 3       | 4         | 1.599  |
| 4          | 0       | 2         | 2.179  |
| 5          | 1       | 2         | 1.531  |
| 6          | 1       | 3         | 2.507  |
| 7          | 3       | 5         | 2.282  |
| 8          | 6       | 8         | 2.283  |
| 9          | 9       | 11        | 2.992  |
| 10         | 9       | 11        | 2.088  |
| 11         | 0       | 1         | 1.041  |
| 12         | 0       | 3         | 3.261  |



Potential outcomes: the value of the outcome variable under *each* arm

Estimand: the "true effect" in the population of your experiment.

**Assignment:** the process (random) of assigning units to conditions

Reveal: assigning and observing outcomes

Estimator: the method for estimating the estimand

- Power Analysis: estimating the sample size needed to conduct an experiment
- Example: https://egap.shinyapps.io/power-app/
- **Experiment Diagnosis:** simulating and diagnosing all aspects of the study design
- Example: http://declaredesign.org/

### Declaring & Diagnosing a Design in R

#### Example code at:

https://github.com/natematias/SOC412/blob/master/lecture-code/Lecture%2010%20-%20Power%20Analysis.ipynb

#### Longer example at:

https://github.com/natematias/poweranalysisonlinebehavior/blob/master/Choosing-Sample-and-Estimators.ipynb