分赌本问题(产生背景)

甲、乙两人赌技相同,各出赌金100元,并约定先胜三局者为胜,取得全部200元.由于出现意外情况,在甲胜2局乙胜1局时,不得不终止赌博,如果要分赌金,该如何分配才算公平?

随机试验

- 一、随机现象
- 二、随机试验

一、随机现象

自然界所观察到的现象:确定性现象、随机现象

1. 确定性现象

在一定条件下必然发生的现象称为确定性现象.

实例 "太阳不会从西边升起",

"水从高处流向低处",

"同性电荷必然互斥",

"函数在间断点处不存在导数"等.

确定性现象的特征:条件完全决定结果.

2. 随机现象

在一定条件下可能出现也可能不出现的现象称为随机现象.

实例1 在相同条件下掷一枚均匀的硬币,观察正反两面出现的情况.

结果:有可能出现正面也可能出现反面.

实例2 用同一门炮向同一目标发射同一种炮弹多发, 观察弹落点的情况.

结果: 弹落点会各不相同.

实例3 抛掷一枚骰子,观察出现的点数.

结果有可能为: 1, 2, 3, 4, 5 或 6.

实例4 从一批含有正品和次品的产品中任意抽取一个产品.

其结果可能为: 正品、次品.

实例5 过马路交叉口时,可能遇上各种颜色的交通 指挥灯.

实例6 出生的婴儿可能是男,也可能是女.

实例7 明天的天气可能是晴, 也可能是多云或雨.

随机现象的特征:条件不能完全决定结果.

概率论就是研究随机现象规律性的一门数学学科.

说明

- 1. 随机现象揭示了条件和结果之间的非确定性联系, 其数量关系无法用函数加以描述.
- 2. 随机现象在一次观察中出现什么结果具有偶然性,但在大量试验或观察中,这种结果的出现具有一定的统计规律性,概率论就是研究随机现象这种本质规律的一门数学学科.

二、随机试验

定义 在概率论中, 把具有以下三个特征的试验称为随机试验.

- 1. 可以在相同的条件下重复地进行;
- 2. 每次试验的可能结果不止一个,并且能事先明确 试验的所有可能结果;
- 3. 进行一次试验之前不能确定哪一个结果会出现.

说明

- 1. 随机试验简称为试验,是一个广泛的术语. 它包括各种各样的科学实验,也包括对客观事物进行的"调查"、"观察"或"测量"等.
 - 2. 随机试验通常用E 来表示.

实例 "抛掷一枚硬币,观察字面,花面出现的情况". 分析

- (1) 试验可以在相同的条件下重复地进行;
- (2) 试验的所有可能结果: 字面、花面;

(3) 进行一次试验之前不能确定哪一个结果会出现. 故为随机试验.

同理可知下列试验都为随机试验.

- 1. 抛掷一枚骰子, 观察出现的点数;
- 2. 从一批产品中, 依次任选三件, 记录出现正品与次品的件数;
- 3. 记录某公共汽车站某日上午某时刻的等车人数;
- 4. 考察某地区 10 月份的平均气温;
- 5. 从一批灯泡中任取一只,测试其寿命.

样本空间、样本点

问题 随机试验的结果?

定义 随机试验E 的所有可能结果组成的集合称为 E的样本空间,记为S .

样本空间的元素,即试验E的每一个结果,称为样本点.

实例1 抛掷一枚硬币,观察字面,花面出现的情况.

 $H \rightarrow$ 字面朝上

$$S_1 = \{H, T\}.$$

 $T \rightarrow 花面朝上$

实例2 抛掷一枚骰子,观察出现的点数.

 $S_2 = \{1, 2, 3, 4, 5, 6\}.$

实例3 从一批产品中, 依次任选三件, 记录出现 正品与次品的情况.

记 $N \rightarrow \text{正品}$, $D \rightarrow$ 次品.

实例4 记录某公共汽车站某日 上午某时刻的等车人数.

$$S_4 = \{0, 1, 2, \cdots\}.$$

实例5 考察某地区12月份的平均气温.

$$S_5 = \{t \mid T_1 < t < T_2\},\,$$

其中 t 为平均温度.

实例6 从一批灯泡中任取一只,测试其寿命.

$$S_6 = \{t \mid t \geq 0\}.$$

其中 t 为灯泡的寿命.

实例7 记录某城市120急救 电话台一昼夜接到的呼唤 次数.

$$S_7 = \{0, 1, 2, \cdots\}.$$

写出下列随机试验的样本空间.

- 1. 同时掷三颗骰子, 记录三颗骰子之和.
- 2. 生产产品直到得到10件正品,记录生产产品的总件数.

解

1.
$$S = \{3, 4, 5, \dots, 18\}.$$

2.
$$S = \{10, 11, 12, \dots\}.$$

- 说明 1. 试验不同,对应的样本空间也不同.
 - 2. 同一试验, 若试验目的不同,则对应的样本空间也不同.

例如,对于同一试验: "将一枚硬币抛掷三次". 若观察正面H 反面T 出现的情况,则样本空间为

 $S = \{HHH, HHT, HTH, THH, HTT, TTH, TTT, TTH, TTT, TTT,$

若观察出现正面的次数,则样本空间为

$$S = \{0, 1, 2, 3\}.$$

说明 3. 建立样本空间, 事实上就是建立随机现象的数学模型. 因此, 一个样本空间可以概括许多内容大不相同的实际问题.

例如,只包含两个样本点的样本空间

$$S = \{H, T\},$$

它既可以作为抛掷硬币出现正面或出现反面的模型,也可以作为产品检验中合格与不合格的模型,又能用于排队现象中有人排队与无人排队的模型等.

所以在具体问题的研究中,描述随机现象的第 一步就是建立样本空间.

随机事件

1. 基本概念

随机事件 随机试验 E 的样本空间 S 的子集称为 E 的随机事件,简称事件.

实例 抛掷一枚骰子,观察出现的点数.

试验中,

骰子"出现1点","出现2点", ……,"出现6点",

"点数不大于4", "点数为偶数" 等都为随机事件.

基本事件 由一个样本点组成的单点集.

实例 "出现1点","出现2点",……,"出现6点".

必然事件 随机试验中必然会出现的结果.

实例 上述试验中 "点数不大于6" 就是必然事件.

不可能事件 随机试验中不可能出现的结果.

实例 上述试验中 "点数大于6" 就是不可能事件.

必然事件的对立面是不可能事件,不可能事件的 对立面是必然事件,它们互称为对立事件.

2. 几点说明

(1) 随机事件可简称为事件,并以大写英文字母 A, B, C, \dots 来表示事件

例如 抛掷一枚骰子,观察出现的点数.

可设 A = "点数不大于4",

B = "点数为奇数" 等等.

(2) 随机试验、样本空间与随机事件的关系

每一个随机试验相应地有一个样本空间,样本空间的子集就是随机事件.

随机试验——样本空间———随机事件

基本事件 复合事件 必然事件 不可能事件 互为对立事件

随机事件间的关系及运算

设试验 E 的样 本空间为 S, 而 A, B, A_k ($k = 1,2,\cdots$)是 S 的子集.

1. 包含关系 若事件 A 出现,必然导致 B 出现,则称事件 B 包含事件 A,记作 $B \supset A$ 或 $A \subset B$.

实例 "长度不合格"必然导致"产品不合格" 所以"产品不合格"包含"长度不合格".

图示 B 包含 A.

- 2. A等于B 若事件 A包含事件 B,而且事件B包含事件 A,则称事件 A 与事件 B 相等,记作 A=B.
- 3. 事件 A = B 的并(和事件) 事件 $A \cup B = \{x | x \in A \text{ 或 } x \in B\}$ 称为事件 A = B 事件 B 的和事件.

实例 某种产品的合格与否是由该产品的长度与直径是否合格所决定,因此 "产品不合格"是"长度不合格"与"直径不合格" $A \cup B$ 图示事件 $A \cup B$ 的并.

推广 称 $\bigcup_{k=1}^{n} A_k$ 为n 个事件 A_1, A_2, \dots, A_n 的和事件;

称 $\bigcup_{k=1}^{\infty} A_k$ 为可列个事件 A_1, A_2, \cdots 的和事件.

4. 事件 A 与 B 的交 (积事件)

事件 $A \cap B = \{x \mid x \in A \perp \exists x \in B\}$ 称为事件 A 与事件 B 的积事件.

积事件也可记作 $A \cdot B$ 或 AB.

实例 某种产品的合格与否是由该产品的长度与直径是否合格所决定,因此"产品合格"是"长度合格"与"直径合格"的交或积事件.

图示事件A与B 的积事件.

推广 称 $\bigcap_{k=1}^{n} A_k$ 为n个事件 A_1, A_2, \dots, A_n 的积事件;

称 $\bigcap_{k=1}^{\infty} A_k$ 为可列个事件 A_1, A_2, \cdots 的积事件.

和事件与积事件的运算性质

$$A \cup A = A$$
, $A \cup S = S$, $A \cup \emptyset = A$,

$$A \cap A = A$$
, $A \cap S = A$, $A \cap \emptyset = \emptyset$.

5. 事件 A 与 B 互不相容 (互斥)

若事件 A 的出现必然导致事件 B 不出现,B 出现也必然导致 A不出现,则称事件 A与B互不相容,即

$$A \cap B = AB = \emptyset$$
.

实例 抛掷一枚硬币,"出现花面" 与 "出现字面" 是互不相容的两个事件.

实例 抛掷一枚骰子,观察出现的点数.

"骰子出现1点"→互斥 "骰子出现2点"

图示 A 与 B 互斥.

6. 事件 A 与 B 的差

由事件 A 出现而事件 B 不出现所组成的事件称为事件 A 与 B 的差. 记作 A-B.

实例 "长度合格但直径不合格" 是 "长度合格" 与 "直径合格" 的差.

图示 A 与 B 的差. $B \not\subset A$

7. 事件 A 的对立事件

设 A 表示"事件 A 出现",则"事件 A 不出现"称为事件 A 的对立事件或逆事件。记作 \overline{A}

实例 "骰子出现1点"对立 "骰子不出现0点"

图示 A与 B 的对立 A $B=\overline{A}$ S

若 A 与 B 互逆,则有 $A \cup B = S$ 且 $AB = \emptyset$.

对立事件与互斥事件的区别

事件间的运算规律 设A,B,C为事件,则有

- (1) 交換律 $A \cup B = B \cup A$, AB = BA.
- $(2) 结合律 \quad (A \cup B) \cup C = A \cup (B \cup C),$ (AB)C = A(BC).
- (3) 分配律

 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C) = AC \cup BC,$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C) = (A \cup C)(B \cup C).$

(4)德·摩根律: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

- 例1 设A, B, C 表示三个随机事件, 试将下列事件用A, B, C 表示出来.
- (1) A出现, B,C不出现;
- (2) A,B都出现,C不出现;
- (3) 三个事件都出现;
- (4) 三个事件至少有一个出现;
- (5) 三个事件都不出现;
- (6) 不多于一个事件出现;

- (7) 不多于两个事件出现;
- (8) 三个事件至少有两个出现;
- (9) A,B 至少有一个出现,C 不出现;
- (10) A, B, C 中恰好有两个出现.
- 解 (1) $A\overline{B}\overline{C}$; (2) $AB\overline{C}$; (3) ABC;
 - (4) $A \cup B \cup C$;
 - (5) ABC;

(6)
$$\overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C$$
;

(7)
$$\overline{ABC} + A\overline{BC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + AB\overline{C} + AB\overline{C} + AB\overline{C} + AB\overline{C}$$

或 \overline{ABC} ;

(8)
$$ABC + AB\overline{C} + A\overline{B}C + \overline{A}BC$$
;

(9)
$$(A \cup B)\overline{C}$$
;

(10)
$$AB\overline{C} + A\overline{B}C + \overline{A}BC$$
.

例2 设一个工人生产了四个零件, A_i 表示他生产 的第i个零件是正品 (i = 1,2,3,4), 试用 A_i 表示下列 各事件:

- (1)没有一个是次品;
- (2) 至少有一个是次品;

- (3) 只有一个是次品;
- (4) 至少有三个不是次品;
- (5)恰好有三个是次品; (6)至多有一个是次品.

解 (1) $A_1A_2A_3A_4$;

(2)
$$\overline{A_1}A_2A_3A_4 + A_1\overline{A_2}A_3A_4 + A_1A_2\overline{A_3}A_4 + A_1A_2A_3\overline{A_4}$$

+ $\overline{A_1}$ $\overline{A_2}A_3A_4 + A_1\overline{A_2}$ $\overline{A_3}A_4 + A_1A_2\overline{A_3}$ $\overline{A_4}$ + $\overline{A_1}A_2A_3\overline{A_4}$
+ $\overline{A_1}A_2\overline{A_3}A_4 + A_1\overline{A_2}A_3\overline{A_4} + \overline{A_1}\overline{A_2}\overline{A_3}A_4 + \overline{A_1}\overline{A_2}A_3\overline{A_4}$
+ $\overline{A_1}A_2\overline{A_3}$ $\overline{A_4}$ + $A_1\overline{A_2}$ $\overline{A_3}$ $\overline{A_4}$ + $\overline{A_1}$ $\overline{A_2}$ $\overline{A_3}$ $\overline{A_4}$,

(3)
$$\overline{A_1}A_2A_3A_4 + A_1\overline{A_2}A_3A_4 + A_1A_2\overline{A_3}A_4 + A_1A_2\overline{A_3}A_4 + A_1A_2A_3\overline{A_4}$$
;

(4)
$$\overline{A_1}A_2A_3A_4 + A_1\overline{A_2}A_3A_4 + A_1A_2\overline{A_3}A_4 + A_1A_2\overline{A_3}A_4 + A_1A_2A_3\overline{A_4} + A_1A_2A_3A_4$$
;

(5)
$$\overline{A_1} \overline{A_2} \overline{A_3} \overline{A_4} + \overline{A_1} \overline{A_2} \overline{A_3} \overline{A_4} + \overline{A_1} \overline{A_2} \overline{A_3} \overline{A_4} + \overline{A_1} \overline{A_2} \overline{A_3} \overline{A_4}$$

 $+ A_1 \overline{A_2} \overline{A_3} \overline{A_4}$;

(6)
$$\overline{A_1}A_2A_3A_4 + A_1\overline{A_2}A_3A_4 + A_1A_2\overline{A_3}A_4 + A_1A_2\overline{A_3}A_4 + A_1A_2A_3\overline{A_4} + A_1A_2A_3A_4$$
.

频率

- 一、频率的定义
- 二、频率的性质

一、频率的定义

定义 在相同的条件下,进行了n次试验,在这n次试验中,事件 A 发生的次数 n_A 称为事件 A 发生的频数.

比值 $\frac{n_A}{n}$ 称为事件 A 发生的**频率**, 并记成 $f_n(A)$.

二、频率的性质

设 A 是随机试验 E 的任一事件,则

$$(1) 0 \leq f_n(A) \leq 1;$$

(2)
$$f(S) = 1$$
, $f(\emptyset) = 0$;

(3) 若 A_1, A_2, \dots, A_k 是两两互不相容的事件,则 $f(A_1 \cup A_2 \cup \dots \cup A_k) = f_n(A_1) + f_n(A_2) + \dots + f_n(A_k)$.

实例 将一枚硬币抛掷 5 次、50 次、500 次, 各做7 遍,观察正面出现的次数及频率.

试验	n=5		n = 50		n = 500	
序号	n_H	f	n_H	f	n_H	f
1	2	0.4	22	0.44	251	0.502
2	2	0.6		人。此三十七分-	240	0.498
3	随n	的增大,	频率 f	呈现出和	急定性	
	1	U•2	41	0.42	250	0.512
4	5	1.1		0.50	247	0.494
5	1	在之	处波动车	交入 1.48	251	0.502
6	2	0.4	18	0.36	2 波克	功最小
7	4	0.8	27	0.54	258	0.516

从上述数据可得

- (1) 频率有随机波动性,即对于同样的n,所得的f不一定相同;
- (2) 拋硬币次数n 较小时,频率f 的随机波动幅度较大,但随n 的增大 ,频率f 呈现出稳定性.即当n 逐渐增大时频率f 总是在 0.5 附近摆动,且逐渐稳定于0.5.

实验者	n	$n_{_H}$	f
徳・摩根	2048	1061	0.5181
蒲 丰	4040	2048	0.5069
$K \cdot$ 皮尔逊	12000	6019	0.5016
$K \cdot$ 皮尔逊	24000	12012	0.5005

$$f(H) \xrightarrow{n$$
逐渐增大 $\frac{1}{2}$.

我们再来看一个验证频率稳定性的著名实验

高尔顿(Galton)板试验.

试验模型如下所示:

自上端放入一小球,任其自由下落,在下落过程中当小球碰到钉子时,从左边落下与从右边落下的机会相等.碰到下一排钉子时又是如此.最后落入底板中的某一格子.因此,任意放入一球,

则此球落入哪一个格子, 预先难以确定. 但是如果放入大量小球, 则其最后所呈现的曲线, 几乎总是一样的.

重要结论

频率当n 较小时波动幅度比较大,当n 逐渐增大时,频率趋于稳定值,这个稳定值从本质上反映了事件在试验中出现可能性的大小.它就是事件的概率.

概率的定义

设 E 是随机试验,S 是它的样本空间.对于 E 的每一事件 A 赋予一个实数,记为 P(A),称为事件 A 的概率,如果集合函数 $P(\cdot)$ 满足下列条件:

- (1) 非负性: 对于每一个事件 A, 有 $P(A) \ge 0$;
- (2) 规范性: 对于必然事件 S,有 P(S) = 1;
- (3) **可列可加性**:设 A_1, A_2, \cdots 是两两互不相容的事件,即对于 $i \neq j, A_i A_j = \emptyset, i, j = 1, 2, \cdots$,则有 $P(A_i \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$.

概率的性质

(1)
$$P(\emptyset) = 0$$
.

由概率的可列可加性得

$$P(\varnothing) = P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

$$= \sum_{n=1}^{\infty} P(\varnothing)$$

$$P(\varnothing) \ge 0$$

$$\Rightarrow P(\varnothing) = 0.$$

(2) 若 A_1, A_2, \dots, A_n 是两两互不相容的事件,则有

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$$
. 概率的有限可加性

由概率的可列可加性得

$$P(A_{1} \cup A_{2} \cup \dots \cup A_{n}) = P(\bigcup_{k=1}^{\infty} A_{k}) = \sum_{k=1}^{\infty} P(A_{k}) = \sum_{k=1}^{n} P(A_{k}) + 0$$
$$= P(A_{1}) + P(A_{2}) + \dots + P(A_{n}).$$

(3) 设 A, B 为两个事件, 且 $A \subset B$,则 $P(A) \leq P(B), P(B-A) = P(B) - P(A).$

证明 因为 $A \subset B$,

所以 $B = A \cup (B - A)$.

$$\nabla (B-A) \cap A = \emptyset,$$

得 P(B) = P(A) + P(B - A).

于是
$$P(B-A) = P(B) - P(A)$$
.

又因 $P(B-A) \ge 0$, 故 $P(A) \le P(B)$.

(4) 对于任一事件 $A, P(A) \leq 1$.

证明
$$A \subset S \Rightarrow P(A) \leq P(S) = 1$$
, 故 $P(A) \leq 1$.

(5) 设 \overline{A} 是A的对立事件,则 $P(\overline{A}) = 1 - P(A)$.

证明 因为
$$A \cup \overline{A} = S, A \cap \overline{A} = \emptyset, P(S) = 1,$$
 所以 $1 = P(S) = P(A \cup \overline{A})$

$$= P(A) + P(\overline{A}).$$

$$\Rightarrow P(\overline{A}) = 1 - P(A)$$
.

(6) (加法公式) 对于任意两事件 A, B 有 $P(A \cup B) = P(A) + P(B) - P(AB)$.

证明 由图可得

$$A \cup B = A + (B - AB),$$

 $\perp A \cap (B - AB) = \varnothing$

故
$$P(A \cup B) = P(A) + P(B - AB)$$
.

又由性质3 得

$$P(B-AB)=P(B)-P(AB),$$

因此得
$$P(A \cup B) = P(A) + P(B) - P(AB)$$
.

推广 三个事件和的情况

$$P(A_1 \cup A_2 \cup A_3)$$

$$= P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_2A_3)$$
$$- P(A_1A_3) + P(A_1A_2A_3).$$

n 个事件和的情况

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j)$$

$$+ \sum_{1 \leq i < j < k \leq n} P(A_i A_j A_k) + \cdots + (-1)^{n-1} P(A_1 A_2 \cdots A_n).$$

例1 设事件 A,B 的概率分别为 $\frac{1}{3}$ 和 $\frac{1}{2}$, 求在下列

三种情况下 $P(B\overline{A})$ 的值.

(1)
$$A$$
与 B 互斥; (2) $A \subset B$; (3) $P(AB) = \frac{1}{8}$.

解 (1) 由图示得 $P(B\overline{A}) = P(B)$,

故
$$P(B\overline{A}) = P(B) = \frac{1}{2}$$
.

(2) 由图示得

$$P(BA) = P(B) - P(A)$$

= $\frac{1}{2} - \frac{1}{3} = \frac{1}{6}$.

(3) 由图示得 $A \cup B = A \cup A\overline{B}$, 且 $A \cap B\overline{A} = \emptyset$,

$$\nabla P(A \cup B) = P(A) + P(B) - P(AB),$$

$$P(A \cup A\overline{B}) = P(A) + P(B\overline{A}),$$

因而
$$P(B\overline{A}) = P(B) - P(AB) = \frac{1}{2} - \frac{1}{8} = \frac{3}{8}$$
.

等可能概型(古典概型)

- 一、等可能概型
- 二、典型例题

一、等可能概型(古典概型)

1. 定义

- (1) 试验的样本空间只包含有限个元素;
- (2) 试验中每个基本事件发生的可能性相同;

具有以上两个特点的试验称为等可能概型或古典概型.

2. 古典概型中事件概率的计算公式

设试验 E 的样本空间由n 个样本点构成, A 为 E 的任意一个事件,且包含 m 个样本点, 则事件 A 出现的概率记为:

$$P(A) = \frac{m}{n} = \frac{A \text{ 所包含样本点的个数}}{\text{样本点总数}}.$$

称此为概率的古典定义.

3. 古典概型的基本模型:摸球模型

(1) 无放回地摸球

问题1 设袋中有4 个白球和2个黑球,现从袋中无放回地依次摸出2个球,求这2个球都是白球的概率.

解 设
$$A = \{ 摸得 2 \land 球都是白球 \},$$
 基本事件总数为 $\binom{6}{2}$, A 所包含基本事件的个数为 $\binom{4}{2}$, 故 $P(A) = \binom{4}{2} / \binom{6}{2} = \frac{2}{5}$.

(2) 有放回地摸球

问题2 设袋中有4个红球和6个黑球,现从袋中有放回地摸球3次,求前2次摸到黑球、第3次摸到红球的概率.

解 设 $A = \{$ 前2次摸到黑球,第3次摸到红球 $\}$

基本事件总数为10×10×10=103,

A所包含基本事件的个数为 6×6×4,

故
$$P(A) = \frac{6 \times 6 \times 4}{10^3}$$

$$= 0.144.$$

4.古典概型的基本模型:球放入杯子模型

(1)杯子容量无限

问题1 把 4 个球放到 3个杯子中去, 求第1、2个杯子中各有两个球的概率, 其中假设每个杯子可放任意多个球.

4个球放到3个杯子的所有放法 3×3×3×3=3⁴种,

因此第1、2个杯子中各有两个球的概率为

$$p = {4 \choose 2} {2 \choose 2} / 3^4 = \frac{2}{27}.$$

(2) 每个杯子只能放一个球

问题2 把4个球放到10个杯子中去,每个杯子只能放一个球,求第1 至第4个杯子各放一个球的概率.

解 第1至第4个杯子各放一个球的概率为

$$p = \frac{\mathbf{p}_{4}^{4}}{\mathbf{p}_{10}^{4}} = \frac{4 \times 3 \times 2 \times 1}{10 \times 9 \times 8 \times 7}$$

$$=\frac{1}{210}.$$

二、典型例题

例1 将一枚硬币抛掷三次.(1) 设事件 A_1 为"恰有一次出现正面",求 $P(A_1)$. (2) 设事件 A_2 为"至少有一次出现正面",求 $P(A_2)$.

解 (1) 设 H 为出现正面, T 为出现反面.

则 $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$.

而 $A_1 = \{HTT, THT, TTH\}$. 得 $P(A_1) = 3/8$.

(2) $A_2 = \{HHH, HHT, HTH, THH, HTT, THT, TTH\}.$

因此 $P(A_2) = 7/8$.

例2 设有 N 件产品,其中有 D 件次品,今从中任取 n 件,问其中恰有 $k(k \le D)$ 件次品的概率是多少?

解 在N件产品中抽取n件的所有可能取法共有

$$\binom{N}{n}$$
 m ,

在 N 件产品中抽取n件, 其中恰有k 件次品的取法 共有 $\binom{D}{k}\binom{N-D}{n-k}$ 种,

于是所求的概率为
$$p = \binom{D}{k} \binom{N-D}{n-k} / \binom{N}{n}$$
.

例3 在1~2000的整数中随机地取一个数,问取到的整数既不能被6整除,又不能被8整除的概率是多少?解 设 A 为事件"取到的数能被6整除",B 为事件"取到的数能被8整除",则所求概率为 \overline{AB} .

$$P(\overline{AB}) = P(\overline{A \cup B}) = 1 - P(A \cup B)$$
 $= 1 - \{P(A) + P(B) - P(AB)\}.$
因为 333 $< \frac{2000}{6} < 334,$
所以 $P(A) = \frac{333}{2000},$

由于
$$\frac{2000}{8} = 250$$
,故得 $P(B) = \frac{250}{2000}$.

由于
$$83 < \frac{2000}{24} < 84$$
, 得 $P(AB) = \frac{83}{2000}$.

于是所求概率为

$$P(\overline{AB}) = 1 - \{P(A) + P(B) - P(AB)\}\$$

$$=1-\left(\frac{333}{2000}+\frac{250}{2000}-\frac{83}{2000}\right)=\frac{3}{4}.$$

例4 将15 名新生随机地平均分配到三个班级中去,这15名新生中有3名是优秀生.问(1)每一个班级各分配到一名优秀生的概率是多少?(2)3 名优秀生分配在同一个班级的概率是多少?

解 15名新生平均分配到三个班级中的分法总数:

$$\binom{15}{5}\binom{10}{5}\binom{5}{5} = \frac{15!}{5! \, 5! \, 5!}.$$

(1) 每一个班级各分配到一名优秀生的分法共有 (3!×12!)/(4! 4! 4!)种. 因此所求概率为

$$p_1 = \frac{3! \times 12!}{4! \ 4! \ 4!} / \frac{15!}{5! \ 5! \ 5!} = \frac{25}{91}.$$

(2)将3名优秀生分配在同一个班级的分法共有3种,

对于每一种分法, 其余12名新生的分法有 $\frac{12!}{2! \, 5! \, 5!}$ 种.

因此3名优秀生分配在同一个班级的分法共有

(3×12!)/(2! 5! 5!)种,因此所求概率为

$$p_2 = \frac{3 \times 12!}{2! \, 5! \, 5!} / \frac{15!}{5! \, 5! \, 5!} = \frac{6}{91}.$$

例5 某接待站在某一周曾接待过 12次来访,已知所有这 12 次接待都是在周二和周四进行的,问是否可以推断接待时间是有规定的.

解 假设接待站的接待时间没有规定,且各来访者在一周的任一天中去接待站是等可能的.

故一周内接待 12 次来访共有 712种.

- 12 次接待都是在周二和周四进行的共有 212种.
- 故12次接待都是在周二和周四进行的概率为

$$p = \frac{2^{12}}{7^{12}} = 0.000 \ 000 \ 3.$$

小概率事件在实际中几乎是不可能发生的,从而可知接待时间是有规定的.

例6 假设每人的生日在一年 365 天中的任一天是等可能的,即都等于 1/365,求 64 个人中至少有2人生日相同的概率.

解 64 个人生日各不相同的概率为

$$p_1 = \frac{365 \cdot 364 \cdot \cdots \cdot (365 - 64 + 1)}{365^{64}}.$$

故64 个人中至少有2人生日相同的概率为

$$p = 1 - \frac{365 \cdot 364 \cdot \cdots \cdot (365 - 64 + 1)}{365^{64}} = 0.997.$$

说明

随机选取 n (\leq 365)个人,他们的生日各不相同的 概率为

$$p = \frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^{n}}.$$

而n个人中至少有两个人生日相同的概率为

$$p=1-\frac{365\times 364\times \cdots \times (365-n+1)}{365^n}$$
.

几何概率

定义 当随机试验的样本空间是某个区域,并且任意一点落在度量(长度、面积、体积)相同的子区域是等可能的,则事件 A 的概率可定义为

$$P(A) = \frac{S_A}{S}.$$

(其中S 是样本空间的度量, S_A 是构成事件A的子区域的度量。)这样借助于几何上的度量来合理规定的概率称为几何概型。

说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概型.

会面问题

例1 甲、乙两人相约在 0 到 T 这段时间内,在预定地点会面. 先到的人等候另一个人,经过时间 t(t<T) 后离去. 设每人在0 到 T 这段时间内各时刻到达该地是等可能的,且两人到达的时刻互不牵连. 求甲、乙两人能会面的概率.

解 设x, y分别为甲、乙两人到达的时刻,

那么 $0 \le x \le T$, $0 \le y \le T$.

两人会面的充要条件为 $|x-y| \leq t$,

若以 x,y 表示平面 上点的坐标,则有 故所求的概率为

$$p = \frac{\Pi \mathbb{R} \times \Pi}{\mathbb{E} \times \Pi}$$

$$=\frac{T^2-(T-t)^2}{T^2}=1-\left(1-\frac{t}{T}\right)^2.$$

例2 甲、乙两人约定在下午1 时到2 时之间到某站乘公共汽车,又这段时间内有四班公共汽车,它们的开车时刻分别为 1:15、1:30、1:45、2:00.如果甲、乙约定 (1) 见车就乘; (2) 最多等一辆车. 求甲、乙同乘一车的概率. 假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在1时到2 时的任何时刻到达车站是等可能的.

解 设 x, y 分别为甲、乙两人到达的时刻,

则有 $1 \le x \le 2$, $1 \le y \le 2$.

见车就乘的概率为

$$p = \frac{阴影部分面积}{正方形面积} = \frac{4 \times (1/4)^2}{(2-1)^2} = \frac{1}{4}.$$

最多等一辆车,甲、乙同乘一车的概率为

$$p=\frac{1}{4}+\frac{3\times(1/16)}{1}\times 2=\frac{5}{8}.$$

蒲丰投针试验

例3 1777年, 法国科学家蒲丰(Buffon)提出了投针试验问题. 平面上画有等距离为a(a>0) 的一些平行直线, 现向此平面任意投掷一根长为b(b<a) 的针, 试求针与某一平行直线相交的概率.

解 以x表示针投到平面上时,针的中点M到最近的一条平行直线的距离,

 φ 表示针与该平行直线的夹角.

那么针落在平面上的位置可由 (x,φ) 完全确定.

投针试验的所有可能结果与 矩形区域

$$S = \{(x,\varphi) \mid 0 \le x \le \frac{a}{2}, 0 \le \varphi \le \pi\}$$

中的所有点一一对应.

由投掷的任意性可知, 这是一个几何概型问题. 所关心的事件

 $A = \{ \text{针与某一平行直线相交} \}$ 发生的充分必要条件为 S 中的点满足

$$0 \le x \le \frac{b}{2}\sin \varphi, \quad 0 \le \varphi \le \pi.$$

$$P(A) = \frac{\mu(G)}{\mu(S)} = \frac{G$$
的面积
S的面积

$$=\frac{\int_0^\pi \frac{b}{2} \sin \varphi d\varphi}{\frac{a}{2} \times \pi}$$

$$=\frac{b}{\frac{a}{2}\times\pi}=\frac{2b}{a\pi}.$$

蒲丰投针试验的应用及意义

$$P(A) = \frac{2b}{a\pi}$$

根据频率的稳定性,当投针试验次数n很大时,测出针与平行直线相交的次数m,则频率值 $\frac{m}{n}$ 即可作为P(A)的近似值代入上式,那么

$$\frac{m}{n} \approx \frac{2b}{a\pi} \implies \pi \approx \frac{2bn}{am}.$$

利用上式可计算圆周率 π 的近似值.

历史上一些学者的计算结果(直线距离a=1)

试验者	时间	针长	投掷次数	相交次数	π的近似值
Wolf	1850	0.8	5000	2532	3.1596
Smith	1855	0.6	3204	1218	3.1554
De Morgan	1860	1.0	600	382	3.137
Fox	1884	0.75	1030	489	3.1595
Lazzerini	1901	0.83	3408	1808	3.1415929
Reina	1925	0.5419	2520	859	3.1795

利用蒙特卡罗(Monte Carlo)法进行计算机模拟.

取 a=1, b=0.85.

条件概率

1. 引例 将一枚硬币抛掷两次,观察其出现正反两面的情况,设事件 A为 "至少有一次为正面",事件 B为 "两次掷出同一面". 现在来求已知事件 A已经发生的条件下事件 B发生的概率.

分析 设 H 为正面, T 为反面. $S = \{HH, HT, TH, TT\}$.

$$A = \{HH, HT, TH\}, B = \{HH, TT\}, P(B) = \frac{2}{4} = \frac{1}{2}.$$

事件A已经发生的条件下事件B发生的概率,记为

$$P(B|A)$$
, $\mathbb{M} P(B|A) = \frac{1}{3} = \frac{1/4}{3/4} = \frac{P(AB)}{P(A)} \neq P(B)$.

2. 定义

设A,B是两个事件,且P(A) > 0,称

$$P(B|A) = \frac{P(AB)}{P(A)}$$

为在事件 A 发生的条件下事件 B 发生的条件概率.

同理可得

$$P(A|B) = \frac{P(AB)}{P(B)}$$

为事件 B 发生的条件下事件 A 发生的条件概率.

3. 性质

- (1) 非负性: $P(B|A) \ge 0$;
- (2) 规范性: P(S|B) = 1, $P(\emptyset|B) = 0$;
- (3) $P(A_1 \cup A_2 | B) = P(A_1 | B) + P(A_2 | B) P(A_1 A_2 | B);$
- (4) $P(A|B) = 1 P(\overline{A}|B)$;
- (5) 可列可加性:设 B_1, B_2, \dots 是两两不相容的事件,则有

$$P\left(\bigcup_{i=1}^{\infty} B_i \middle| A\right) = \sum_{i=1}^{\infty} P(B_i \middle| A).$$

三个重要公式

- 一、乘法公式
- 二、全概率公式
- 三、贝叶斯公式

一、乘法公式

设 P(A) > 0, 则有 P(AB) = P(B|A)P(A).

设 A,B,C 为事件,且 P(AB) > 0,则有

P(ABC) = P(C|AB)P(B|A)P(A).

推广 设 A_1, A_2, \dots, A_n 为 n 个事件, $n \ge 2$,

且 $P(A_1A_2\cdots A_{n-1}) > 0$, 则有

$$P(A_{1}A_{2}\cdots A_{n}) = P(A_{n}|A_{1}A_{2}\cdots A_{n-1}) \times P(A_{n-1}|A_{1}A_{2}\cdots A_{n-2}) \times \cdots \times P(A_{2}|A_{1})P(A_{1}).$$

例1 一盒子装有4 只产品,其中有3 只一等品、1 只二等品. 从中取产品两次,每次任取一只,作不放回抽样. 设事件A为"第一次取到的是一等品"事件B为"第二次取到的是一等品". 试求条件 P(B|A). 解 将产品编号,1,2,3为一等品; 4号为二等品.

以(i,j)表示第一次、第二次分别取到第i号、第j号产品,则试验的样本空间为

 $S = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), \dots, (4,1), (4,2), (4,3)\},$

$$A = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4)\},$$

$$AB = \{(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)\},\$$

由条件概率的公式得

$$P(B|A) = \frac{P(AB)}{P(A)}$$

$$=\frac{6/12}{9/12}=\frac{2}{3}.$$

例2 某种动物由出生算起活20岁以上的概率为0.8, 活到25岁以上的概率为0.4,如果现在有一个20岁 的这种动物,问它能活到25岁以上的概率是多少?

 $m{B}$ 设 $m{A}$ 表示"能活 20 岁以上"的事件, $m{B}$ 表示"能活 25 岁以上"的事件,

则有
$$P(B|A) = \frac{P(AB)}{P(A)}$$
.

因为P(A) = 0.8, P(B) = 0.4, P(AB) = P(B),

所以
$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{0.4}{0.8} = \frac{1}{2}$$
.

抓阄是否与次序有关?

例3 五个阄,其中两个阄内写着"有"字,三个 阄内不写字,五人依次抓取,问各人抓到"有"字 阄的概率是否相同?

解 设 A_i 表示"第i人抓到有字阄"的事件,

$$i=1,2,3,4,5.$$
 则有 $P(A_1)=\frac{2}{5}$

$$P(A_2) = P(A_2S) = P(A_2 \cap (A_1 \cup \overline{A_1}))$$

$$= P(A_1A_2 \cup \overline{A_1}A_2) = P(A_1A_2) + P(\overline{A_1}A_2)$$

$$= P(A_1)P(A_2|A_1) + P(\overline{A_1})P(A_2|\overline{A_1})$$

$$=\frac{2}{5}\times\frac{1}{4}+\frac{3}{5}\times\frac{2}{4}=\frac{2}{5},$$

$$P(A_3) = P(A_3S) = P(A_3(A_1\overline{A_2} \cup \overline{A_1}A_2 \cup \overline{A_1}\overline{A_2}))$$

$$= P(A_1\overline{A_2}A_3) + P(\overline{A_1}A_2A_3) + P(\overline{A_1}\overline{A_2}A_3)$$

$$= P(A_1)P(\overline{A_2}|A_1)P(A_3|A_1\overline{A_2}) + P(\overline{A_1})P(A_2|\overline{A_1})P(A_3|\overline{A_1}A_2)$$

$$+P(\overline{A_1})P(\overline{A_2}|\overline{A_1})P(A_3|\overline{A_1}|\overline{A_2})$$

$$= \frac{2}{5} \times \frac{3}{4} \times \frac{1}{3} + \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} + \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} = \frac{2}{5},$$

依此类推
$$P(A_4) = P(A_5) = \frac{2}{5}$$
.

故抓阄与次序无关.

摸球试验

例4 设袋中装有 r 只红球、t 只白球、每次自袋中任取一只球,观察其颜色然后放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球四次,试求第一、二次取到红球且第三、四次取到白球的概率.

解 设 A_i (i = 1,2,3,4) 为事件"第i 次取到红球"

则 $\overline{A_3}$ $\overline{A_4}$ 为事件第三、四次取到白球.

因此所求概率为

$$P(A_1A_2\overline{A_3}\overline{A_4})$$

$$= P(\overline{A_4}|A_1A_2\overline{A_3})P(\overline{A_3}|A_1A_2)P(A_2|A_1)P(A_1)$$

$$=\frac{t+a}{r+t+3a}\cdot\frac{t}{r+t+2a}\cdot\frac{r+a}{r+t+a}\cdot\frac{r}{r+t}.$$

此模型被波利亚用来作为描述传染病的数学模型.

例5 设某光学仪器厂制造的透镜,第一次落下时打破的概率为1/2,若第一次落下未打破,第二次落下打破的概率为7/10,若前两次落下未打破,第三次落下打破的概率为9/10.试求透镜落下三次而未打破的概率.

解以 $A_i(i=1,2,3)$ 表示事件"透镜第i次落下打破",以B表示事件"透镜落下三次而未打破".

因为 $B = A_1 A_2 A_3$, 所以 $P(B) = P(\overline{A_1} \overline{A_2} \overline{A_3}) = P(\overline{A_3} \overline{A_1} \overline{A_2}) P(\overline{A_2} \overline{A_1}) P(\overline{A_1})$ $= (1 - \frac{9}{10})(1 - \frac{7}{10})(1 - \frac{1}{2}) = \frac{3}{200}$.

二、全概率公式

1. 样本空间的划分

定义 设 S 为试验E的样本空间, B_1, B_2, \dots, B_n 为 E 的一组事件, 若

(i)
$$B_iB_j = \emptyset, i \neq j, i, j = 1,2,\dots,n;$$

(ii)
$$B_1 \cup B_2 \cup \cdots \cup B_n = S$$
.

则称 B_1, B_2, \dots, B_n 为样本空间 S 的一个划分.

2. 全概率公式

定理 设试验 E 的样本空间为 S,A 为 E 的事件, B_1,B_2,\cdots,B_n 为 S 的一个划分,且 $P(B_i)>0$ ($i=1,2,\cdots,n$),则

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + \cdots + P(A|B_n)P(B_n)$$

证明
$$A = AS = A \cap (B_1 \cup B_2 \cup \dots \cup B_n)$$

 $= AB_1 \cup AB_2 \cup \dots \cup AB_n.$
由 $B_iB_j = \emptyset \Rightarrow (AB_i)(AB_j) = \emptyset$

$$\boxplus B_i B_j = \varnothing \Rightarrow (AB_i)(AB_j) = \varnothing$$

$$\Rightarrow P(A) = P(AB_1) + P(AB_2) + \cdots + P(AB_n)$$

$$=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+\cdots+P(A|B_n)P(B_n).$$

 $\boldsymbol{B}_{\scriptscriptstyle 1}$ \boldsymbol{B}_2 化整为零 图示 \boldsymbol{B}_n \boldsymbol{B}_{\cdot}

说明 全概率公式的主要用处在于它可以将一个复杂事件的概率计算问题,分解为若干个简单事件的概率计算问题,最后应用概率的可加性求出最终结果.

例6 有一批同一型号的产品,已知其中由一厂生产的占30%,二厂生产的占50%,三厂生产的占20%,又知这三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件是次品的概率是多少?

解 设事件A为"任取一件为次品",

事件 B_i 为"任取一件为i厂的产品", i = 1,2,3.

$$B_1 \cup B_2 \cup B_3 = S,$$

$$B_i B_j = \emptyset, i, j = 1, 2, 3.$$

由全概率公式得

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3).$$
 $P(B_1) = 0.3, \ P(B_2) = 0.5, \ P(B_3) = 0.2,$
 $P(A|B_1) = 0.02, P(A|B_2) = 0.01, P(A|B_3) = 0.01,$
故 $P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)$
 $= 0.02 \times 0.3 + 0.01 \times 0.5 + 0.01 \times 0.2 = 0.013.$

三、贝叶斯公式

定理 设试验 E 的样本空间为 S.A为E的事件, B_1 B_2, \dots, B_n 为 S 的一个划分,且 P(A) > 0, $P(B_i) > 0$, $(i = 1, 2, \dots, n)$,则

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}, i = 1,2,\dots,n.$$

称此为贝叶斯公式.

证明

$$P(B_i|A) = \frac{P(B_iA)}{P(A)}$$

$$= \frac{P(A|B_i)P(B_i)}{\sum_{i=1}^{n} P(A|B_j)P(B_j)}, \quad i = 1, 2, \dots, n.$$

例7 某电子设备制造厂所用的元件是由三家元件制造厂提供的.根据以往的记录有以下的数据:

元件制造厂	次品率	提供元件的份额
1	0.02	0.15
2	0.01	0.80
3	0.03	0.05

设这三家工厂的产品在仓库中是均匀混合的,且无区别的标志.(1) 在仓库中随机地取一只元件,求它是次品的概率;(2) 在仓库中随机地取一只元件,若已知取到的是次品,为分析此次品出自何厂,需求出此次品由三家工厂生产的概率分别是多少.试求这些概率.

解 设 A 表示"取到的是一只次品", B_i (i = 1,2,3) 表示"所取到的产品是由第 i 家工厂提供的".

则 B_1, B_2, B_3 是样本空间 S 的一个划分,

$$\mathbb{H}$$
 $P(B_1) = 0.15$, $P(B_2) = 0.80$, $P(B_3) = 0.05$,

$$P(A|B_1) = 0.02$$
, $P(A|B_2) = 0.01$, $P(A|B_3) = 0.03$.

(1) 由全概率公式得

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)$$

$$= 0.012 5.$$

(2) 由贝叶斯公式得

$$P(B_1|A) = \frac{P(A|B_1)P(B_1)}{P(A)} = \frac{0.02 \times 0.15}{0.0125} = 0.24.$$

$$P(B_2|A) = \frac{P(A|B_2)P(B_2)}{P(A)} = 0.64,$$

$$P(B_3|A) = \frac{P(A|B_3)P(B_3)}{P(A)} = 0.12.$$

故这只次品来自第 2家工厂的可能性最大.

例8 对以往数据分析结果表 明,当机器调整得良好时,产品的合格率为 98%,而当机器发生某种故障 时,其合格率为 55%.每天早上机器开动时,机器调整良好的概率为 95%.试求已知某日早上第一 件产品是合格品时,机器调整得良好的概率 是多少?

解 设A为事件"产品合格",

B 为事件"机器调整良好".

则有

$$P(A|B) = 0.98, \quad P(A|\overline{B}) = 0.55,$$

$$P(B) = 0.95, \quad P(\overline{B}) = 0.05,$$

由贝叶斯公式得所求概率为

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|\overline{B})P(\overline{B})}$$

$$=\frac{0.98\times0.95}{0.98\times0.95+0.55\times0.05}=0.97.$$

即当生产出第一件产品是合格品时,此时机器调整良好的概率为0.97.

先验概率与后验概率

上题中概率 0.95 是由以往的数据分析得到的,叫做先验概率.

而在得到信息之后再重新加以修正的概率 **0.97** 叫做后验概率.

例9 根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以 A 表示事件"试验反应为阳性",以 C 表示事件"被诊断者患有癌症",则有P(A|C)=0.95, $P(\overline{A}|\overline{C})=0.95$. 现在对自然人群进行普查,设被试验的人患有癌症的概率为 0.005,即 P(C)=0.005,试求 P(C|A).

解 因为 P(A|C) = 0.95,

$$P(A|\overline{C}) = 1 - P(\overline{A}|\overline{C}) = 0.05,$$

$$P(C) = 0.005, P(\overline{C}) = 0.995,$$

由贝叶斯公式得所求概率为

$$P(C|A) = \frac{P(A|C)P(C)}{P(A|C)P(C) + P(A|\overline{C})P(\overline{C})}$$
$$= 0.087.$$

即平均 1000 个具有阳性反应的人中大约只有87 人患有癌症.

独立性

- 一、事件的相互独立性
- 二、几个重要定理
- 三、例题讲解

一、事件的相互独立性

1.引例

盒中有5个球(3绿2红),每次取出一个,有放回地取两次.记

A = 第一次抽取,取到绿球,

B = 第二次抽取,取到绿球,

则有 P(B|A) = P(B),

它表示 A 的发生并不影响 B 发生的可能性大小.

$$P(B|A) = P(B) \Leftrightarrow P(AB) = P(A)P(B)$$

2.定义

设 A, B 是两事件,如果满足等式 P(AB) = P(A) P(B)

则称事件 A, B 相互独立,简称 A, B 独立.

说明 事件A 与事件B 相互独立,是指事件A 的发生与事件B 发生的概率无关.

两事件相互独立与两事件互斥的关系.

两事件相互独立
$$P(AB) = P(A)P(B)$$
 二者之间没
 两事件互斥 $AB = \emptyset$ 有必然联系

例如

若
$$P(A) = \frac{1}{2}, P(B) = \frac{1}{2},$$

则
$$P(AB) = P(A)P(B)$$
.

由此可见两事件相互独立,但两事件不互斥.

若
$$P(A) = \frac{1}{2}, P(B) = \frac{1}{2}$$

则
$$P(AB) = 0$$
,

$$P(A)P(B) = \frac{1}{4},$$

故 $P(AB) \neq P(A)P(B)$.

由此可见两事件互斥但不独立.

3.三事件两两相互独立的概念

定义 设A,B,C是三个事件,如果满足等式

$$\begin{cases} P(AB) = P(A)P(B), \\ P(BC) = P(B)P(C), \\ P(AC) = P(A)P(C), \end{cases}$$

则称事件 A, B, C 两两相互独立.

4.三事件相互独立的概念

定义 设A,B,C是三个事件,如果满足等式

$$\begin{cases} P(AB) = P(A)P(B), \\ P(BC) = P(B)P(C), \\ P(AC) = P(A)P(C), \\ P(ABC) = P(A)P(B)P(C), \end{cases}$$

则称事件 A, B, C 相互独立.

注意

三个事件相互独立 三个事件两两相互独立

推广 设 A_1, A_2, \dots, A_n 是 n 个事件, 如果对于任意 $k(1 < k \le n)$, 任意 $1 \le i_1 < i_2 < \dots < i_k \le n$, 具有等式 $P(A_{i_1}A_{i_2}\cdots A_{i_k}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_k}),$

则称 A_1, A_2, \dots, A_n 为相互独立的事件.

n个事件相互独立 n个事件两两相互独立

二、几个重要定理

定理一 设 A, B 是两事件,且 P(A) > 0. 若 A, B 相互独立,则 P(B|A) = P(B). 反之亦然.

证明
$$P(B|A) = \frac{P(AB)}{P(A)}$$
$$= \frac{P(A)P(B)}{P(A)} = P(B)$$
$$\Leftrightarrow P(B|A) = P(B).$$

定理二 若 A, B 相互独立,则下列各对事件, \overline{A} 与 B, \overline{A} 与 \overline{B} 也相互独立.

证明 先证 $A 与 \overline{B}$ 独立.

因为 $A = AB \cup A\overline{B}$ 且 $(AB)(A\overline{B}) = \emptyset$,

所以 $P(A) = P(AB) + P(A\overline{B})$,

 $\mathbb{P}(AB) = P(A) - P(AB).$

又因为 $A \times B$ 相互独立,所以有

$$P(AB) = P(A)P(B),$$

因而 $P(A\overline{B}) = P(A) - P(A)P(B)$

$$= P(A)(1 - P(B))$$

$$= P(A)P(\overline{B}).$$

从而 $A 与 \overline{B}$ 相互独立.

两个结论

- 1. 若事件 A_1, A_2, \dots, A_n $(n \ge 2)$ 相互独立,则其中任意 k $(2 \le k \le n)$ 个事件也是相互独立.
- 2. 若 n 个事件 A_1, A_2, \dots, A_n ($n \ge 2$)相互独立,则将 A_1, A_2, \dots, A_n 中任意多个事件换成它们的对立事件,所得的 n 个事件仍相互独立.

三、例题讲解

射击问题

例1 设每一名机枪射击手击落飞机的概率都是0.2, 若10名机枪射击手同时向一架飞机射击,问击落飞 机的概率是多少?

解 设事件 A_i 为 "第i 名射手击落飞机",

事件 B 为"击落飞机", $i = 1, 2, \dots, 10$.

则 $B = A_1 \cup A_2 \cup \cdots \cup A_{10}$,

$$P(B) = P(A_1 \cup A_2 \cup \cdots \cup A_{10})$$

$$=1-P(\overline{A_1 \cup A_2 \cup \cdots \cup A_{10}})$$

$$=1-P(\overline{A_1}\overline{A_2}\cdots\overline{A_{10}})$$

$$= 1 - P(\overline{A_1})P(\overline{A_2})\cdots P(\overline{A_{10}})$$

$$=1-(0.8)^{10}=0.893.$$

例2 甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为 0.4, 0.5, 0.7, 飞机被一人击中而被击落的概率为0.2,被两人击中而被击落的概率为 0.6,若三人都击中飞机必定被击落,求飞机被击落的概率.

解 设 A_i 表示有 i 个人击中飞机 ,

A, B, C 分别表示甲、乙、丙击中飞机,

则 P(A) = 0.4, P(B) = 0.5, P(C) = 0.7,

由于 $A_1 = A\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C$,

故得

$$P(A_1) = P(A)P(\overline{B})P(\overline{C}) + P(\overline{A})P(B)P(\overline{C}) + P(\overline{A})P(\overline{B})P(C)$$

$$= 0.4 \times 0.5 \times 0.3 + 0.6 \times 0.5 \times 0.3 + 0.6 \times 0.5 \times 0.7$$

$$= 0.36.$$
因为 $A_2 = AB\overline{C} + A\overline{B}C + \overline{A}BC$,
$$P(A_2) = P(AB\overline{C} + A\overline{B}C + \overline{A}BC)$$

$$= P(A)P(B)P(\overline{C}) + P(A)P(\overline{B})P(C) + P(\overline{A})P(B)P(C)$$

$$= 0.41.$$

$$\pm A_3 = ABC,$$

得
$$P(A_3) = P(ABC) = P(A)P(B)P(C)$$

= $0.4 \times 0.5 \times 0.7 = 0.14$.

因而,由全概率公式得飞机被击落的概率为

$$p = 0.2 \times 0.36 + 0.6 \times 0.41 + 1 \times 0.14$$
$$= 0.458.$$

伯恩斯坦反例

例3 一个均匀的正四面体, 其第一面染成红色, 第二面染成白色 , 第三面染成黑色,而第四面同时染上红、白、黑三种颜色. 现以 *A* , *B* , *C* 分别记投一次四面体出现红、白、黑颜色朝下的事件,问 *A* , *B* , *C*是否相互独立?

解 由于在四面体中红、 白、黑分别出现两面,

因此
$$P(A) = P(B) = P(C) = \frac{1}{2}$$
,
又由题意知 $P(AB) = P(BC) = P(AC) = \frac{1}{4}$,

故有
$$\begin{cases} P(AB) = P(A)P(B) = \frac{1}{4}, \\ P(BC) = P(B)P(C) = \frac{1}{4}, \\ P(AC) = P(A)P(C) = \frac{1}{4}, \end{cases}$$

则三事件 A,B,C 两两独立.

由于
$$P(ABC) = \frac{1}{4} \neq \frac{1}{8} = P(A)P(B)P(C),$$

因此 A, B, C 不相互独立.

例4 同时抛掷一对骰子, 共抛两次, 求两次所得点数分别为7与11的概率.

解 设事件 A_i 为"第i次得7点"i=1,2.

设事件 B_i 为 "第 i 次得 11 点" i = 1, 2.

事件A为两次所得点数分别为7与 11.

则有
$$P(A) = P(A_1B_2 \cup B_1A_2) = P(A_1B_2) + P(B_1A_2)$$

= $P(A_1)P(B_2) + P(B_1)P(A_2)$

$$=\frac{6}{36}\times\frac{2}{36}+\frac{2}{36}\times\frac{6}{36}=\frac{1}{54}.$$

例5 一个元件(或系统)能正常工作的概率称为元件(或系统)的可靠性.如图所示,设有 4 个独立工作的元件 1,2,3,4 按先串联再并联的方式联结(称为串并联系统),设第i 个元件的可靠性为 p_i (i = 1,2,3,4). 试求系统的可靠性.

以 A_i (i = 1,2,3,4) 表示事件第 i 个元件正常工作,

以 A 表示系统正常工作.

则有 $A = A_1 A_2 \cup A_3 A_4$.

由事件的独立性,得系统的可靠性:

$$P(A) = P(A_1A_2) + P(A_3A_4) - P(A_1A_2A_3A_4)$$

$$= P(A_1)P(A_2) + P(A_3)P(A_4) - P(A_1)P(A_2)P(A_3)P(A_4)$$

$$= p_1 p_2 + p_3 p_4 - p_1 p_2 p_3 p_4.$$

例6 要验收一批(100件) 乐器. 验收方案如下:自该 批乐器中随机地取3件测试(设3件乐器的测试是相 互独立的),如果3件中至少有一件在测试中被认为 音色不纯,则这批乐器就被拒绝接收,设一件音色不 纯的乐器经测试查出其为音色不纯的概率为0.95:而 一件音色纯的乐器经测试被误认为不纯的概率为 0.01.如果已知这100件乐器中恰有4件是音色不纯的. 试问这批乐器被接收的概率是多少?

解 设以 H_i (i = 0, 1, 2, 3) 表示事件"随机地取出3件乐器,其中恰有i件音色不纯",

 H_0, H_1, H_2, H_3 是 S 的一个划分,

以A表示事件"这批乐器被接收".已知一件音色纯的乐器,经测试被认为音色纯的概率为0.99,而一件音色不纯的乐器,经测试被认为音色纯的概率为0.05,并且三件乐器的测试是相互独立的,于是有

$$P(A|H_0) = (0.99)^3, P(A|H_1) = (0.99)^2 \times 0.05,$$

$$P(A|H_2)=0.99\times(0.05)^2$$
, $P(A|H_3)=(0.05)^3$,

$$\overrightarrow{\text{m}} P(H_0) = \binom{96}{3} / \binom{100}{3},$$

$$P(H_1) = {4 \choose 1} {96 \choose 2} / {100 \choose 3},$$

$$P(H_2) = {4 \choose 2} {96 \choose 1} / {100 \choose 3}, \quad P(H_3) = {4 \choose 3} / {100 \choose 3}.$$

故
$$P(A) = \sum_{i=0}^{3} P(A|H_i)P(H_i)$$

$$= 0.8574 + 0.0055 + 0 + 0 = 0.8629.$$

例7 甲、乙两人进行乒乓球 比赛,每局甲胜的概率为 $p(p \ge 1/2)$,问对甲而言,采用三局二胜制有利,还是采用五局三胜制有利.设各局胜负相互独立.

解 采用三局二胜制,甲最终获胜, 胜局情况可能是:

"甲甲"、"乙甲甲"、"甲乙甲";

由于这三种情况互不相容,

于是由独立性得甲最终 获胜的概率为:

$$p_1 = p^2 + 2p^2(1-p).$$

采用五局三胜制,甲最终获胜,至少需比赛 3 局, 且最后一局必需是甲胜,而前面甲需胜二局. 例如,比赛四局,则甲的胜局情况可能是:

"甲乙甲甲","乙甲甲甲","甲甲乙甲";由于这三种情况互不相容,于是由独立性得:在五局三胜制下,甲最终获胜的概率为:

$$p_2 = p^3 + {3 \choose 2} p^3 (1-p) + {4 \choose 2} p^3 (1-p)^2.$$

曲于
$$p_2 - p_1 = p^2 (6p^3 - 15p^2 + 12p - 3)$$

= $3p^2 (p-1)^2 (2p-1)$.

当
$$p > \frac{1}{2}$$
时, $p_2 > p_1$; 当 $p = \frac{1}{2}$ 时, $p_2 = p_1 = \frac{1}{2}$.

故当 $p > \frac{1}{2}$ 时,对甲来说采用五局三胜制有利.

当 $p = \frac{1}{2}$ 时,两种赛制甲最终获胜的概率是相同的,

都是 $\frac{1}{2}$.