MAT1120

Oskar Idland

4.1 Vector spaces and subspaces

Theory

Vector Space

Definition 1 A vector space is a nonempty set V of objects, called vectors, on which are fefined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms listed below. The axioms must hold for all vectors \mathbf{u}, \mathbf{v} and \mathbf{W} in V and for all scalars c and d.

- 1. The sum of u and v, denoted by $\mathbf{u} + \mathbf{v}$, is in V
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 4. There is a zero vector $\vec{0}$ in V such that $\mathbf{u} + \mathbf{0} = u$
- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = 0$
- 6. The scalar multiple of u by c denoted by $c\mathbf{u}$ is in V
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1**u**=**u**

Definition 2 A subspace of a vector space V is a subset H of V that has three properties:

- The zero vector of V is in H
- H is closed under vector addition. That is, for each ${\bf u}$ and ${\bf v}$ in H, the sum ${\bf u}$ C ${\bf v}$ is in H
- H is closed under multiplication by scalars. That is, for each ${\bf u}$ in H and each scalar c, the vector $c{\bf u}$ is in H

Theorem 1 If $\vec{v_1}, \dots, \vec{v_n} \in V$ then $span\{\vec{v_1}, \dots, \vec{v_n}\}$ is a subspace of V

Exercises

12

Let W be the set of all vectors of the form $\begin{pmatrix} s+3t\\ s-t\\ 2s-t\\ 4t \end{pmatrix}$. Show that W is a subspace of \mathbb{R}^4 .

Solution

We can split W up into a sum of other vectors.

$$\begin{pmatrix} s+3t \\ s-t \\ 2s-t \\ 4t \end{pmatrix} = s \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ -1 \\ -1 \\ 4 \end{pmatrix}$$

$$W = span \left\{ \begin{pmatrix} 1\\1\\2\\0 \end{pmatrix}, \begin{pmatrix} 3\\-1\\-1\\4 \end{pmatrix} \right\}$$

theorem 1 says W is a subspace of \mathbb{R}^4

40

Let H and K be subspaces of a vector space V. The intersection of H and K, written $H \cap K$ is a subspace of V. Give an example in \mathbb{R}^2 to show that the union of two subspaces is not, in general, a subspace

Figur 1

Solution

The intersection of the two planes creates a line going across the x-axis which we already know is a subspace of both \mathbb{R}^3 and \mathbb{R}^2 . Same goes for all straight lines going trough origin.

The union of two subspaces, (lets use the x and y-axis) will often create vectors outside the subspace, thus not being closed by addition. If we take a vector from the x-axis and a vector from the y-axis and add them together, they will create a vector outside both axis.

Solution

44

Determine if y is in the subspace of \mathbb{R}^4 spanned by the collumns of A, where

$$\mathbf{y} = \begin{pmatrix} -4 \\ -8 \\ 6 \\ -5 \end{pmatrix}, \quad A = \begin{pmatrix} 3 & -5 & -9 \\ 8 & 7 & -6 \\ -5 & -8 & 3 \\ 2 & -2 & -9 \end{pmatrix}$$

Solution

We can divide A into three vectors where each one is a column in A. If these three vectors can form a linear combination which can create y (in other words, y is in the span of these vectors), then y will be in the subspace of \mathbb{R}^4 spanned by the columns of A. To test this we append the vector y to the end of A and then reduce it to row echelon form. As seen above the equation has a solution

Figur 2: Results using matlab

which means y is in the subspace of \mathbb{R}^4 spanned by the columns of A.

4.2 Null Spaces, Column Spaces, Row Spaces, and Linear Transformations

Theory

The Null Space of a Matrix

Definition 3 The null space of an $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogenous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

$$\operatorname{Nul} A = \{ \mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}$$

Theorem 2 The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Figur 3: Visualization of the subspace (in this case a line) formed by the null space of A

The Column Space of a Matrix

Definition 4 The Column space of an $m \times n$ matrix A, written as Col A, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \dots \mathbf{a}_n]$, then

$$Col\ A = Span = \{\mathbf{a}_1 \dots \mathbf{a}_n\}$$

Theorem 3 The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .

Exercises

4

Find the explicit definition of Nul A by listing vectors that span the null space.

$$A = \begin{bmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

Solution

We start by reducing it to echelon form multiplying by x and set as equal to the zero vector.

$$A\mathbf{x} = \mathbf{0}$$

$$rref(A) = \begin{bmatrix} 1 & -6 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$Nul \ A = span \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

Let $H = Span\{\mathbf{v}_1, \mathbf{v}_2\}$ and $K = Span\{\mathbf{v}_3, \mathbf{v}_4\}$, where

$$\mathbf{v}_1 = \begin{pmatrix} 5 \\ 3 \\ 8 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}, \mathbf{v}_4 = \begin{pmatrix} 0 \\ -12 \\ -28 \end{pmatrix}$$

Then H and K are subspaces of \mathbb{R}^3 . In fact, H and K are planes in \mathbb{R}^3 through origin, and they intersect in a line through 0. Find a nonzero vector \mathbf{w} that generates that line. [Hint: \mathbf{w} can be written as $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$ and also as $c_3\mathbf{v}_3 + c_4\mathbf{v}_4$. To build \mathbf{w} , solve the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = c_3\mathbf{v}_3 + c_4\mathbf{v}_4$ for the unknown c_j 's]

Solution

4.3 Linearly Independent Sets; Bases

Theorem 4 And indexed set $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_j with $j \not\in \mathbf{1}$ is a linear combination of the preceding vectors $\mathbf{v}_1 \cdots \mathbf{v}_{j-1}$.

Definition 5 Let H be a subspace of a vector space V. A set of vectors \mathcal{B} in V is a basis for H if

- \mathcal{B} is a linearly independent set, and
- the subspace spanned by B_c coincides with H; that is,

$$H = Span \mathcal{B}$$

Exercises

12

Find a basis for the set of vectors in \mathbb{R}^2 on the line y = 5x.

Solution

$$x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x \begin{pmatrix} 0 \\ 5 \end{pmatrix} = \begin{pmatrix} x \\ 5x \end{pmatrix}$$

13

Find bases for Nul A, Col A and Row A.

$$A = \begin{bmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 6 & 5 \\ 0 & 2 & 5 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution

Get matrix A in echelon form and you will se the rows of A and B are equivalent. This means the space spanned by the vectors making the rows of A and B (Row A) is equal. We find Col A by looking at the linearly independent columns of B. We find $\operatorname{Nul} A$ by solving the equation $A\mathbf{x} = \mathbf{0}$.

$$\operatorname{Nul} A = \left\{ \begin{pmatrix} -6 \\ -\frac{5}{2} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -5 \\ -\frac{3}{2} \\ 0 \\ 1 \end{pmatrix} \right\}, \quad \operatorname{Col} A = \left\{ \begin{pmatrix} -2 \\ 2 \\ -3 \end{pmatrix}, \begin{pmatrix} 4 \\ -6 \\ 8 \end{pmatrix} \right\}, \quad \operatorname{Row} A = \left\{ \begin{pmatrix} 1 & 0 & 6 & 5 \end{pmatrix}, \begin{pmatrix} 0 & 2 & 5 & 3 \end{pmatrix} \right\}$$

36

In the vector space of all real-valued functions, find a basis for the subspace spanned by $\{\sin t, \sin 2t, \sin t, \cos t\}$.

4.4 Coordinate Systems

Theory

We can use a basis in a given dimension as a tool to create a new coordinate system.

Theorem 5 (The Uniqe Representation Theorem) Let $\mathcal{B} = \{b_1, b_2, \cdots, b_n\}$ be a basis for a vector space V. Then for each x in V, there exist a unique set of scalars c_1, c_2, \cdots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$$

Exercises

3

Find the vector c determined by the given coordinate vector $[x]_{\mathcal{B}}$, and the given basis \mathcal{B}

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ -8 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \\ -4 \end{pmatrix} \right\} [\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}$$

Solution

We put the vectors forming the basis \mathcal{B} in a matrix and reduce it to echelon form

$$\begin{bmatrix} 1 & 2 & 3 \\ -8 & -5 & 9 \\ 6 & 7 & -4 \end{bmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{73}{22} \\ 0 & 1 & 0 & \frac{-5}{2} \\ 0 & 0 & 1 & \frac{27}{22} \end{pmatrix}$$