	$\tau_{1}^{#2} + \alpha$	$ au_{1^{-}}^{#1} + ^{lpha}$	$\sigma_{1}^{#2} + \alpha$	$\sigma_{1^{-}}^{\sharp 1} \dagger^{lpha}$	$ au_{1+}^{#1} + ^{lphaeta}$	$\sigma_{1^+}^{*2} \dagger^{\alpha\beta}$	$\sigma_{1+}^{*1} \dagger^{lphaeta}$	
	0	0	0	0	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$		$\sigma_{1}^{\#1}{}_{lphaeta}$
	0	0	0	0	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\sigma_{1^{+}lphaeta}^{\#2}$
	0	0	0	0	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$ au_{1}^{\#1}{}_{lphaeta}$
	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{2}{k^2(r_3+2r_5)}$	0	0	0	$\sigma_{1^-\alpha}^{\#1}$
	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	0	0	$\sigma_{1^-lpha}^{\#2}$
ĺ	0	0	0	0	0	0	0	$ au_{1^{-}}^{\#1}{}_{lpha}$
	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	0	0	0	$ au_{1^{-}}^{#2}lpha$

Total #:	$\tau_{2+}^{\#1}\alpha\beta==0$	$\sigma_{2}^{\#1\alpha\beta\chi} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{1}^{#1}\alpha == 0$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
21	5	5	3	3	3	1	1	#	

_	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

$\omega_{0^{-}}^{\#1}$ †	$f_{0+}^{#2}$ †	f_{0+}^{*1} †	$\omega_{0^{+}}^{*1}$ †	
0	0	$i\sqrt{2}\;kt_3$	t_3	$\omega_{0}^{\#1}$
0	0	$2 k^2 t_3$	$-\bar{i}\sqrt{2}kt_3$	$f_{0+}^{#1}$
0	0	0	0	$f_{0+}^{#2}$
$k^2 r_2 + t_2$	0	0	0	$\omega_{0}^{\#1}$

$\nu_{2^{-}}^{#1} \dagger^{\alpha\beta\chi}$	$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\omega_{2}^{#1} \dagger^{\alpha\beta}$	
0	0	$-\frac{3k^2r_3}{2}$	$\omega_{2}^{\#1}{}_{lphaeta}$
0	0	0	$f_2^{\#1}{}_{lphaeta}$
0	0	0	$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$
	$v_{2}^{\#1} \uparrow^{\alpha\beta\chi} 0 0 0$	$f_{2+}^{#1} + \alpha \beta$ 0 0 0 0 $\omega_{2-}^{#1} + \alpha \beta \chi$ 0 0 0	i i i i i i i i i i i i i i i i i i i

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt_2</u> 3	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt_2$	$-\frac{1}{3}\bar{l}kt_2$	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<i>t</i> 3 3	0	$\frac{1}{3}i\sqrt{2}kt_3$
$f_1^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	<u>2ikt3</u> 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

_	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	0

Unitarity conditions

 $r_2 < 0 \& x_3 < 0 \& x_5 < -\frac{r_3}{2} \& x_2 > 0 \| r_2 < 0 \& x_3 < 0 \& x_5 > -2 x_3 \& x_2 > 0 \|$ $r_2 < 0 \& x_3 > 0 \& x_3 > 0 & -2 x_3 < x_5 < -\frac{r_3}{2} \& x_2 > 0$

	Massive particl	е
?	Pole residue:	$-\frac{1}{r_2} > 0$
	Polarisations:	1
	Square mass:	$-\frac{t_2}{r_2} > 0$
	Spin:	0
	Parity:	Odd