EE203 - Electrical Circuits Laboratory

Experiment - 8

Operational Amplifier Applications

Objectives

1. Observe operational amplifier circuits working as comparators, integrators and differentiators.

Background

Comparator

A comparator generates an output that switches between two voltage levels according to the relative voltage between its inputs.

If
$$v_P > v_N$$
 then $v_O = V_H$ otherwise $v_O = V_L$ $v_P \circ V_O \circ V_O$

$$v_{\mathsf{P}} \circ + v_{\mathsf{O}}$$

An operational amplifier works like a comparator when it is used without any feedback circuit. The operational amplifier output saturates either at V_H near the positive supply or at V_L near the negative supply voltage, because the differential input $v_P - v_N$ is amplified with a very high voltage gain.

Comparators can be used to make decisions in digital circuits according to the voltage level of an analog input. The output voltages, V_L and V_H , should correspond to either "0" or "1" digital signal levels, but in practice this may not be achieved by using ordinary opamps. There are specifically designed comparator ICs, and usage of ordinary opamps to replace these ICs is not suggested because of the following reasons.

- Supply requirements and output voltage range of ordinary opamps are not compatible with the common digital circuits.
- Saturation of opamp output causes additional time delays and limits the operation frequency.

The comparator circuit shown on the right has resistors to limit input currents of the opamp. These resistors prevent accidental damage to the opamp, in case there are unpredictable voltage changes at v_{i1} and $v_{i2} \circ v_{i2} \circ v_{i3} \circ v_{i4} \circ v_{i4} \circ v_{i5} \circ v_{i4} \circ v_{i5} \circ v_{i5} \circ v_{i5} \circ v_{i6} \circ v_{i$ v_{i2} inputs.

Integrator

An operational amplifier functions as an integrator when a capacitor is used in the feedback path as shown below. The output voltage v_0 is proportional to the time integral of v_{in} , and this relation can be established by considering idealized opamp characteristics as follows.

$$\frac{v_{\text{in}}}{R_{\text{i}}} = i_{\text{in}} = i_{\text{C}}$$
 (because $v_{\text{P}} - v_{\text{N}} \approx 0$ and $i_{\text{N}} \approx 0$)
 $v_{\text{O}} = -v_{\text{C}}$ (because $v_{\text{P}} - v_{\text{N}} \approx 0$)

If these equations are combined assuming that initially $v_{\rm O}(0) = -v_{\rm C}(0) = 0$ V then:

$$v_{O}(t) = -\frac{1}{C_{f}} \int_{t=0}^{t} i_{C}(t') dt' = -\frac{1}{C_{f}} \int_{t=0}^{t} i_{in}(t') dt'$$

$$v_{O}(t) = -\frac{1}{R_{i}C_{f}} \int_{t=0}^{t} v_{in}(t') dt'$$

If we look at the steady state response when v_{in} is a constant DC signal, then we see that the circuit has a nearly infinite gain. If we assume that the capacitor voltage v_{c} is constant, then i_{c} is zero, which means there is no feedback in the circuit. Consequently, the opamp output saturates near the positive or negative supply voltage as a result of any DC offset at the input, no matter how small the offset is. In practice, a feedback resistor R_{f} is added to avoid this problem.

Integrator with feedback resistor:

DC response: $V_0 = -\frac{R_f}{R_i} V_{os}$

The components of an integrator can be selected following these steps.

- 1. Choose R_i big enough (i.e. >1 $k\Omega$ and <100 $k\Omega$), so that the ν_{in} source can easily drive R_i , and opamp output can easily drive the feedback circuit. Remember that every source has a finite output resistance R_o , and an ordinary opamp can only support output currents in the order of a few mA. On the other hand, if R_i is too big (i.e. 1 $M\Omega$), then you will face problems due to opamp bias or offset currents as small as 1 μA .
- 2. Choose C_f to obtain the required v_O output range depending on the amplitude and frequency of v_{in} . R_i and C_f determine the gain factor, $1/R_iC_f$, that relate v_O to time integral of v_{in} .
- 3. Choose R_f big enough to obtain a feedback time constant $\tau_{fb} = R_f C_f$ longer than period T_{prd} of the ν_{in} input signal. A better integration accuracy is obtained when $R_f C_f \gg T_{prd}$. Also remember that R_f determines the DC offset at ν_O . For example, if $R_f/R_i = 10$, and input offset is 0.1 V, then DC offset at ν_O will be 1.0 V.

Differentiator

A differentiator implements the reverse of integration function, where the output is proportional to the time derivative of the input signal. An operational amplifier functions as an differentiator when a capacitor is used in the input path as shown below. v_0 is related to the time derivative of v_{in} as follows.

$$v_{\rm in} = v_{\rm C}$$
 (because $v_{\rm P} - v_{\rm N} \approx 0$)
 $i_{\rm C} = C_{\rm i} \frac{dv_{\rm C}}{dt} = -i_{\rm f} = -\frac{v_{\rm O}}{R_{\rm f}}$ (because $i_{\rm N} \approx 0$)

If these equations are combined then:

$$v_{\rm O}(t) = -R_{\rm f}C_{\rm i}\frac{dv_{\rm C}}{dt} = -R_{\rm f}C_{\rm i}\frac{dv_{\rm in}}{dt}$$

The differentiator does not have an offset problem, since DC feedback is established through R_f . DC component of ν_{in} is filtered out by C_i , and the DC voltage at the opamp input is always $0\ V$. In other words, the opamp behaves like a unity gain buffer with $0\ V$ input.

High frequency instability is the main problem in differentiators. The input capacitor $\mathbf{C_i}$ behaves as a short circuit at high frequencies that results in a very high closed loop gain. This high gain causes high frequency oscillations and additional noise at the opamp output. As a solution, a series input resistance $\mathbf{R_i}$ is included to limit the AC closed loop gain as shown in the following circuit. Furthermore, a compensation capacitor $\mathbf{C_f}$ may be added in parallel to the feedback resistor to decrease the maximum operating frequency of the opamp.

Differentiator with input resistor and compensation capacitor:

 v_{in} v_{in}

High frequency AC response with a small C_f : $v_0 = -\frac{R_f}{r}v$

Constraints for selection of differentiator components are similar to those described for design of integrators:

- **1. Choose R_f** big enough, considering the same loading conditions specified for the integrator.
- 2. Choose C_i to obtain the required ν_0 output range depending on the amplitude and maximum rate of change of ν_{in} . R_f and C_i determine the gain factor, R_fC_i , that relate ν_0 to time derivative of ν_{in} .
- 3. Choose R_i small enough to obtain an input time constant $\tau_{in} = R_i C_i \ll T_{prd}$, where, T_{prd} is the period of ν_{in} input signal.
- **4.** Theoretically, C_f should be small enough to obtain a feedback time constant $\tau_{fb} = R_f C_f \ll \tau_{prd}$, where, τ_{prd} is the period of ν_{in} input signal. In practice, selection of C_f depends on the maximum operating frequency or *bandwidth* of the opamp. C_f is not necessary for a low-frequency opamp in ordinary applications. Usually a small capacitor between **10 pF** and **100 pF** is sufficient to stabilize a high-frequency opamp.

Preliminary Work

1.a) Draw v_{in} and the expected v_{0} waveforms when v_{in} is a **1 kHz**, **4 V**p-p triangular signal in the following comparator circuit. Indicate v_{in} voltage levels and relative timing data corresponding to every change at v_{0} .

- **1.b)** Simulate the circuit in LTspice and verify your calculations. Use a pulse voltage source as v_{in} with the timing parameters, Trise = 500u, Tfall = 500u, Ton = 0, and Tperiod = 1m to obtain a triangular waveform. Use LT1001 as the operational amplifier in simulated circuits.
- **2.a)** Draw the expected v_0 waveform when v_{in} is a **1 kHz**, **4 V**p-p square wave signal in the following integrator circuit assuming that $R_fC_f \gg 1$ ms.

- **2.b)** Simulate the circuit in LTspice and verify your calculations. Use a pulse voltage source as v_{in} with the timing parameters, Trise = 1u, Tfall = 1u, Ton = 499u, and Tperiod = 1m to obtain a square waveform. Note that you should increase the simulation time to see the output waveform with final offset value, and zoom into the steady state response.
- **3.a)** Draw the expected v_0 waveform when v_{in} is a **1 kHz**, **10 V**p-p triangular signal in the following differentiator circuit assuming that $R_iC_i \ll 1$ ms.

3.b) Simulate the circuit in LTspice and verify your calculations.

Procedure

Build the circuit given on the right. Set the DC supply output voltages using the multimeter to obtain +12 V and -12 V required for the opamp. Adjust the signal generator to obtain 1 kHz triangular wave with 4 Vp-p amplitude. Measure and record the voltage V_{thr} at the inverting input of the opamp.

 $V_{thr} =$

1.1 Observe ν_{in} and ν_{o} on the oscilloscope. Record the ν_{in} voltage levels and relative timing data corresponding to every change at ν_{o} . Determine ν_{o} switching times relative to the zero-cross point on rising edge of ν_{in} .

Change in v_0 (V to V)	$v_{ m in}$ (V) at the time of $v_{ m O}$ change	relative time (μs) of v_0 change

- **1.2** Calculate the ν_{in} voltage levels and relative timing data according to the V_{thr} measured at the beginning. Compare your calculations and the measurements.
- **2.** Build the integrator circuit given on the right, and adjust the signal generator to obtain **500 Hz square** wave with **4 V**p-p amplitude.

2.1 Observe v_{in} and v_{o} on the oscilloscope. Measure the peak-to-peak output voltage for the following v_{in} frequency settings.

ν _{in} square wave frequency	v₀ amplitude (V p-p)
500 Hz	
1 kHz	
2 kHz	

2.2 Set v_{in} frequency to **1 kHz**, and adjust the signal generator offset to obtain the following DC offset values at v_{in} by using the oscilloscope. Measure and record the corresponding DC offset values at v_{o} .

ν _{in} offset (v)	v_{0} offset (\mathbf{v})
0.0	
-0.5	
+0.5	

2.3 Adjust the signal generator to obtain **1 kHz** sine wave with **4 V**p-p amplitude. Monitor v_{in} and v_{o} on the oscilloscope and plot the waveforms.

Measure the peak-to-peak output voltage for the following v_{in} frequency settings.

ν _{in} sine wave frequency	ν _O amplitude (V p-p)
500 Hz	
1 kHz	
2 kHz	

 Build the differentiator circuit given on the right, and adjust the signal generator to obtain 500 Hz triangular wave with 10 V peak-to-peak amplitude.

3.1 Observe v_{in} and v_{0} on the oscilloscope. Measure the peak-to-peak voltage of the square wave output for the following v_{in} frequency settings.

Note: Ignore short overshoots and undershoots after the rising and falling edges when you measure peak-to-peak voltage of square wave output.

v _{in} triangular wave frequency	v₀ amplitude (V p-p)
500 Hz	
1 kHz	
2 kHz	

3.2 Adjust the signal generator to obtain **1 kHz sine** wave with **1 V** peak-to-peak amplitude. Monitor ν_{in} and ν_{o} on the oscilloscope and plot the waveforms.

Measure the peak-to-peak output voltage for the following $v_{ ext{in}}$ frequency settings.

ν _{in} sine wave frequency	ν _O amplitude (V p-p)
500 Hz	
1 kHz	
2 kHz	

3.3 Adjust the signal generator to obtain **1 kHz square** wave with **2 V** peak-to-peak amplitude. Monitor v_{in} and v_{o} on the oscilloscope and plot the waveforms.

Questions

- Q1.a) Explain the function of $R_f = 10 \text{ k}\Omega$ resistor used in procedure step 2.
- b) Explain the function of $R_i = 1 k\Omega$ resistor used in procedure step 3.
- **Q2.a)** Derive an expression that gives peak-to-peak output voltage of the integrator in step **2** as a function of square wave amplitude and frequency at the input.
- **b)** Derive an expression that gives DC output voltage of the integrator as a function of the input offset.
- **c)** Derive an expression that gives peak-to-peak output voltage of the integrator as a function of sine wave amplitude and frequency at the input.
- d) Compare the results of your calculations in (a), (b), and (c) with the experimental results obtained in procedure steps 2.1, 2.2, and 2.3.
- Q3.a) Derive an expression that gives peak-to-peak output voltage of the differentiator in step 3 as a function of triangular wave amplitude and frequency at the input.
- **b)** Derive an expression that gives peak-to-peak output voltage of the differentiator as a function of triangular wave amplitude and frequency at the input.
- c) Compare the results of your calculations in (a) and (b), (c) with the experimental results obtained in procedure steps 3.1 and 3.2.
- **Q4.** List all factors that can affect the peak output voltage in procedure step **3.3** (differentiator with square wave input). Describe the effect of each factor that can be one of the input waveform parameters, circuit components, or opamp supply voltages.

Example: Peak voltage at v_0 increases (or decreases) when rise time of the square wave input increases, because time derivative of v_{in} is