SISTEM IDENTIFIKASI KENDARAAN PADA PEMARKIRAN DENGAN PENGENALAN CITRA PLAT DAN PEMBACAAN RFID

Oleh MUH FIKRI SATRIA AMDANI H131 16 501

Pembimbing Utama : Dr. Eng. Armin Lawi, S.Si., M.Eng. Pembimbing Pertama : Musfira Putri Lukman, S.T., M.T. Penguji : 1. Dr. Hendra, S.Si., M.Kom. 2. Nur Hilal A Syahrir, S.Si., M.Si.

PROGRAM STUDI SISTEM INFORMASI
DEPARTEMEN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS HASANUDDIN
MAKASSAR

2021

DAFTAR ISI

DAFTA	R ISI	ii
DAFTA	R TABEL	iii
DAFTA	R GAMBAR	iv
BAB I	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Batasan Masalah	3
1.4	Tujuan Penelitian	3
1.5	Manfaat Penelitian	3
BAB II	TINJAUAN PUSTAKA	4
2.1	Internet of Things (IOT)	4
2.2	Automatic License Plate Recognition (ALPR)	5
2.3	Raspberry Pi	6
2.4	Module Sensor	7
	2.4.1 RFID MFRC522	7
	2.4.2 HC-SR04	9
	2.4.3 SG90	10
	2.4.4 Kamera Raspberry Pi v2	11
	2.4.5 API, REST API, dan RESTful API	11
BAB III	METODE PENENILITIAN	13
BAB IV	HASIL DAN PEMBAHASAN	14
BAB V	KESIMPULAN DAN SARAN	15
5.1	Kesimpulan	15
5.2	Coron	15

DAFTAR PUSTAKA																1	6	

DAFTAR TABEL

5.1 ARM Average Blur Percobaan 1	1	7
----------------------------------	---	---

DAFTAR GAMBAR

2.1	Internet of Things
2.2	Raspberry Pi model 3B
2.3	RFID Tag
2.4	Cara Kerja Sensor Ultrasonik
2.5	Sensor Ultrasonik
2.6	Servo SG90
2.7	Kamera Raspberry Pi

BAB I

PENDAHULUAN

1.1 Latar Belakang

Revolusi Industri merupakan periode di mana terjadinya perubahan secara besar-besaran di bidang pertanian, manufaktur, tekstil dan logam, pertambangan, transportasi, teknologi, dan sosial ekonomi (Azli Yahya, 2017). Pada abad ke-18, mesin uap pertama ditemukan di Inggris. Mesin uap tersebut digunakan sebagai alat tenun mekanis pertama yang dapat meningkatkan produktivitas industri tekstil. Saat itu mesin uap mulai menggantikan peralatan kerja yang awalnya bergantung pada tenaga manusia dan hewan sekaligus memulai era revolusi industri pertama yang dikenal dengan Revolusi Industri 1.0. Revolusi industri kedua ditandai dengan penemuan tenaga listrik pada awal abad ke-20. Revolusi industri ketiga ditandai oleh mesin yang dapat bergerak dan berpikir secara otomatis, yaitu komputer dan robot (Rahayu, 2019).

Di abad ke-21 revolusi industry telah masuk ke era baru. Yakni telah berada pada revolusi industri keempat atau lebih dikenal dengan Revolusi Industri 4.0. Era ini telah mengubah banyak bidang kehidupan manusia, termasuk ekonomi, dunia kerja, bahkan gaya hidup. Revolusi industri 4.0 menawarkan teknologi cerdas yang dapat terhubung dengan berbagai bidang kehidupan manusia. Revolusi industri 4.0 menerapkan *Internet of Things (IoT)* dan teknologi pada kegiatan analisis, manufaktur, robotik, komputasi canggih, *artificial intellegence*, teknologi, kognitif, *advance materials* dan *augmented reality* dalam melaksanakan siklus operasi bisnis (Suharman and Murti, 2019). Saat ini negara-negara di dunia mulai berkopetisi dalam pemanfaatan teknologi pada setiap sektor industrinya. Lalu bagaimana dengan indonesia? Mempelajari konsep industri 4.0 untuk penerapannya di Indonesia menjadi suatu keharusan, sebab jika tidak maka industry dan manufaktur di Indonesia tidak akan dapat bersaing dengan industry dan manufaktur di negara-negara lain di dunia.

Revolusi industri 4.0 mencakup beragam teknologi canggih, seperti kecerdasan buatan (AI), *wearables*, robotika canggih, *3D printing*, dan *Internet of Things (IoT)*. *Internet of Things (IoT)* adalah sekenario dari suatu objek yang dapat melakukan

pengiriman data/informasi melalui jaringan tanpa campur tangan manusia (Limantara, Purnomo, and Mudjanarko, 2017). *Konsep Internet of Things* sudah banyak digunakan dalam kehidupan sehari-hari di berbagai bidang, seperti bidang pertanian, bidang kesehatan, bidang industri, bidang keamanan, serta bidang transportasi.

Salah satu permasalahan yang banyak dijumpai diera sekarang adalah sistem parkir yang masih menggunakan metode konvensional untuk mencatat nomor pelat kendaraan yang akan parkir dan pembayaran yang masih menggunakan uang cash. Hal ini dapat memicu kemacetan, polusi udara dan suara, dan menambah tingkat stress pengendara. Untuk mengatasi masalah tersebut, dibuatlah suatu sistem dengan memanfaatkana konsep *Internet of Things* di bidang transportasi dan keamanan. Sistem yang dimaksud adalah sistem parkir otomatis yang diletakkan di tempat khusus seperti di apartemen atau di perkantoran.

Salah satu aspek dalam sistem parkir otomatis adalah identifikasi citra pelat kendaraan untuk mendapatkan data nomor pelat tanpa campur tangan manusia. Identifikasi pelat kendaraan pada sistem parkir otomatis dapat dilakukan dengan kartu RFID dan pengolahan citra pelat kendaraan. Kemampuan RFID sebagai media pengenal secara nirkabel membuat RFID sering digunakan sebagai otorisasi untuk akses ruangan dan tempat, akan tetapi penggunaan RFID masih rentan terhadap keamanan akses. Penelitian ini menggabungkan identifikasi kartu RFID dan pembacaan citra pelat kendaraan sehingga dapat meningkatkan keamanan parkir dan dapat mempersingkat waktu pencatatan nomor pelat kendaraan yang masih bersifat konvensional.

1.2 Rumusan Masalah

Berdasarkan uraian pada latar belakang masalah diatas, dapat dikemukakan pertanyaan penelitian sebagai berikut:

- 1. Bagaimana cara merancang dan membangun sistem identifikasi kendaraan dengan pengenalan citra pelat dan pembacaan RFID ?
- 2. Bagaimana cara membuat aplikasi web untuk memantau situasi lahan parkir?

1.3 Batasan Masalah

Batasan masalah pada penelitian ini adalah :

- 1. Alat yang dibuat bersifat prototype.
- 2. Sistem parkir yang dibuat ditujukan untuk diterapkan di lingkungan berpenghuni tetap seperti apartemen atau perkantoran.
- 3. Karakter pada pelat nomor harus sesuai dengan yang digunakan Samsat.
- 4. Tidak melakukan analisis lebih lanjut pada deteksi nomor pelat kendaraan.

1.4 Tujuan Penelitian

Berdasarkan rumusan masalah, maka tujuan penelitian ini adalah:

- 1. Merancang sistem identifikasi kendaraan dengan pengenalan citra pelat dan pembacaan RFID.
- 2. Membuat aplikasi web untuk memantau situasi lahan parkir.
- 3. Menghubungkan sistem parkir dengan web yang dibuat sebagai user interface.

1.5 Manfaat Penelitian

Hasil penelitian ini diharapkan dapat bermanfaat :

- 1. Menghemat waktu dan bahan bakar.
- 2. Terciptanya alat yang dapat menopang kemajuan industri.
- 3. Mengurangi antrian Panjang yang disebabkan oleh pencatatan nomor pelat dan pembayaran parkir yang masih konvensional.
- 4. Mempermudah pengelolah parkir untuk memantau sisa kapasitas lahan parkir yang tersedia.
- 5. Membantu upaya pemerintah dalam pembangunan *smart city* di Indonesia.

BAB II TINJAUAN PUSTAKA

2.1 Internet of Things (IOT)

Gambar 2.1: Internet of Things

Internet of Things adalah skenario dari suatu objek yang dapat melakukan suatu pengiriman data/informasi melalui jaringan tanpa campur tangan manusia. IoT sangat erat hubungannya dengan komunikasi mesin ke mesin (M2M) tanpa campur tangan manusia ataupun komputer yang lebih dikenal dengan istilah cerdas (smart) (Limantara, Purnomo, and Mudjanarko, 2017).

Cara Kerja *Internet of Things* yaitu dengan memanfaatkan sebuah argumentasi pemrograman yang dimana tiap-tiap perintah argumennya itu menghasilkan sebuah interaksi antara sesama mesin yang terhubung secara otomatis tanpa campur tangan manusia dan dalam jarak berapa pun. Internetlah yang menjadi penghubung di antara kedua interaksi mesin tersebut, sementara manusia hanya bertugas sebagai pengatur dan pengawas bekerjanya alat tersebut secara langsung. Tantangan terbesar dalam mengkonfigurasi *Internet of Things* ialah menyusun jaringan komunikasinya sendiri, yang dimana jaringan tersebut sangatlah kompleks, dan memerlukan sistem keamanan yang ketat. Selain itu biaya yang mahal sering menjadi penyebab kegagalan yang berujung pada gagalnya produksi.

Metode yang digunakan oleh *Internet of Things* adalah nirkabel atau pengendalian secara otomatis tanpa mengenal jarak. Pengimplementasian *Internet of Things* sendiri biasanya selalu mengikuti keinginan si developer dalam mengembangkan sebuah aplikasi yang ia ciptakan, apabila aplikasinya itu diciptakan guna membantu monitoring sebuah ruangan maka pengimplementasian *Internet of Things* itu sendiri harus mengikuti alur diagram pemrograman mengenai sensor dalam sebuah rumah, berapa jauh jarak agar ruangan dapat dikontrol, dan kecepatan jaringan internet yang digunakan

Banyak manfaat yang didapatkan dari *Internet of Things*. Pekerjaan yang kita lakukan menjadi cepat, mudah, dan efisien. Kemunculan *Internet Of Things* (*IoT*) memungkinkan perangkat komputer secara otomatis dapat melakukan kontrol terhadap suatu sistem dan memungkinkan pula untuk memberi aksi ke sistem terhadap kejadian yang terjadi pada sistem yang dikontrol secara realtime (Ichwana et al., 2018).

2.2 Automatic License Plate Recognition (ALPR)

Automatic License Plate Recognition adalah teknologi yang menggunakan pengenalan karakter pada gambar untuk membaca plat registrasi kendaraan. ALPR digunakan oleh polisi di beberapa negara di dunia untuk tujuan penegakan hukum, termasuk untuk memeriksa apakah kendaraan terdaftar atau tidak.

Pengenalan plat nomor otomatis dapat digunakan untuk menyimpan gambar yang diambil oleh kamera serta teks dari plat nomor. Umumnya sistem menggunakan pencahayaan inframerah untuk memungkinkan kamera mengambil gambar kapan saja, siang atau malam hari. Selain itu, teknologi ALPR juga harus memperhitungkan variasi nomor plat dari suatu negara karena bentuk dan ukuran nomor plat di satu negara dengan negara lainnya kemungkinan sangat berbeda.

ALPR menjadi tren baru dalam otomatisasi sistem transportasi. Pencatatan pelat nomor kendaraan bisa dilakukan tanpa campur tangan manusia. Meskipun teknologi tersebut telah ditetapkan di negara-negara maju, negara-negara berkembang seperti Indonesia belum menerapkan teknologi tersebut karena berbagai alasan (Budianto, 2018).

2.3 Raspberry Pi

Raspberry Pi adalah komputer mini yang dirancang dan diproduksi di Inggris dengan tujuan awal untuk menyediakan perangkat komputasi yang murah untuk pendidikan. Raspberry Pi ditemukan pertama kali di University of Cambridge laboratory pada tahun 2006. Raspberry Pi dirilis secara komersial pada februari 2012. Sejak saat itu *board* Raspberry Pi telah melalui sejumlah revisi dan tersedia dalam 2 model yaitu model A dan model B (Wicaksono, 2018).

Secara kasar ditengah semua model Raspberry Pi terdapat sebuah semikonduktor persegi atau yang dikenal sebagai *integrated circuit* atau *chip*. *Integrated Circuit* adalah *sistem-on-chip* modul yang menyediakan kemampuan untuk pemrosesan umum (*general purpose*), render grafis, dan *input/output* (Wicaksono, 2018).

Gambar 2.2: Raspberry Pi model 3B

Raspberry pi 3 adalah model terbaru Raspberry Pi. Raspberry Pi 3 menggunakan *processor* terbaru yaitu Broadcom BCM283764 bit. BCM283764 lebih cepat dari pada BCM2836. Raspberry Pi 3 juga merupakan model pertama yang memiliki *built-in wireless* (mampu terhubung ke jaringan WIFI dan juga memiliki perangkat *Bluetooth*). Raspberry Pi model 3B bisa dilihat pada gambar 2.2. Berikut

merupakan spesifikasi dari Raspberry Pi 3:

- SoC: Broadcom BCM2837
- CPU: 4x ARM Cortex-A53, 1.2GHz
- GPU: Broadcom VideoCore IV
- RAM: 1GB LPDDR2 (900 MHz)
- Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless
- Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy
- Storage: microSD
- GPIO: 40-pin header
- Ports: HDMI, 3.5mm analogue audio-video jack, 4x USB 2.0, Ethernet,
 CameraSerial Interface (CSI), Display Serial Interface (DSI)

2.4 Module Sensor

Sensor adalah sesuatu yang digunakan untuk mendeteksi adanya perubahan lingkungan fisik atau kimia.

2.4.1 RFID MFRC522

Radio Frequency Identification (RFID) adalah teknologi untuk mengidentifkasi dan mengendalikan data dari jarak jauh menggunakan transmisi gelombang radio. RFID menggunakan sarana transponder atau RFID tag untuk menyimpan dan mengambil data dari jarak jauh. RFID tag mirip denganp penggunaan barcode yang melekat pada sebuah objek yang menyimpan identifikasi data obyek (Singgeta, Manembu, and Rembet, 2018).

RFID mempunyai 2 bagian komponen utama yang tak dapat dipisahkan, yaitu:

1. RFID Tag

Merupakan sebuah perangkat yang akan diidentifikasi oleh RFID *reader* yang dapat berupa perangkat pasif maupun aktif yang berisi suatu data atau informasi. Tag RFID, dapat berupa stiker, kertas atau plastik dengan beragam ukuran . Di dalam setiap tag ini terdapat chip yang mampu menyimpan sejumlah informasi tertentu. RFID Tag berfungsi sebagai transponder (transmitter dan responder) yang berisikan data dengan menggunakan frekuensi 125 KHz. RFID tag bisa

dilihat pada gambar 2.3

Gambar 2.3: RFID Tag

Pada RFID tag terdapat 2 jenis yaitu *Read-Write* dan *Only Read*. Selain itu RFID tag mempunyai 2 komponen utama yang penting, antara lain:

- IC (*Integrated Circuit*): berfungsi sebagai pemproses informasi, modulasi serta demodulasi sinyal RF, yang beroperasi dengan catudaya DC.
- ANTENNA: mempunyai fungsi untuk mengirim maupun menerima sinyal RF.

2. RFID Reader

Berfungsi untuk membaca data dari RFID Tag. RFID *Reader* dibedakan menjadi 2 macam, antara lain :

- Pasif: hanya bisa membaca data dari RFID tag aktif
- Aktif: dapat membaca data RFID tag pasif

2.4.2 HC-SR04

Sensor ultrasonik adalah sebuah sensor yang mengubah besaran fisis berupa bunyi menjadi besaran listrik dan sebaliknya. Cara kerja sensor ini didasarkan pada prinsip dari pantulan suatu gelombang suara sehingga dapat dipakai untuk menafsirkan jarak suatu benda dengan frekuensi tertentu. Disebut sebagai sensor ultrasonik karena sensor ini menggunakan gelombang ultrasonik (bunyi ultrasonik). Bunyi ultrasonik bisa merambat melalui zat padat, cair dan gas. Reflektivitas bunyi ultrasonik di permukaan zat padat hampir sama dengan reflektivitas bunyi ultrasonik di permukaan zat cair. Akan tetapi, gelombang bunyi ultrasonik akan diserap oleh tekstil dan busa.

Gambar 2.4: Cara Kerja Sensor Ultrasonik

Secara umum, alat ini akan menembakkan gelombang ultrasonik menuju suatu area atau suatu target. Setelah gelombang menyentuh permukaan target, maka target akan memantulkan kembali gelombang tersebut. Gelombang pantulan dari target akan ditangkap oleh sensor, kemudian sensor menghitung selisih antara waktu pengiriman gelombang dan waktu gelombang pantul diterima (Limantara, Purnomo, and Mudjanarko, 2017). Ilustrasinya bisa dilihat pada gambar 2.4.

Gambar 2.5: Sensor Ultrasonik

HC-SR04 merupakan sensor ultrasonik yang berfungsi sebagai pengirim, penerima, dan pengontrol gelombang ultrasonik. Alat ini bisa digunakan untuk mengukur jarak benda dari 2cm-4m dengan akurasi 3mm. Alat ini memiliki 4 pin, pin Vcc, Gnd, Trigger, dan Echo. Pin Vcc untuk listrik positif dan Gnd untuk ground-nya. Pin Trigger untuk trigger keluarnya sinyal dari sensor dan pin Echo untuk menangkap sinyal pantul dari benda. Sensor ultrasonik HC-SR04 bisa dilihat pada gambar 2.5

2.4.3 SG90

SG90 adalah sebuah servo kecil dengan output power yang tinggi. Motor ini dapat berotasi sekitar 180 derajat dan bisa bekerja seperti servo lainnya hanya saja ukurannya lebih kecil (Wicaksono, 2018).

Gambar 2.6: Servo SG90

Gambar 2.6 merupakan gambar dari servo SG90.

2.4.4 Kamera Raspberry Pi v2

Modul Kamera v2 memiliki sensor Sony IMX219 8-megapiksel. Modul Kamera dapat digunakan untuk mengambil video definisi tinggi, dan juga foto. Gambar 2.7 merupakan gambar dari kamera Raspberry Pi.

Gambar 2.7: Kamera Raspberry Pi

2.4.5 API, REST API, dan RESTful API

BAB III METODE PENENILITIAN

BAB IV HASIL DAN PEMBAHASAN

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

5.2 Saran

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

LAMPIRAN

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Tabel 5.1: ARM Average Blur Percobaan 1

PID	VIRT	RES	SHR	Status	CPU(%)	MEM(%)	Time(s)
3629	389184	127288	55152	S	0.0	25.0	0:24.78
3629	389184	127288	55152	S	0.0	25.0	0:24.78
3629	389184	127288	55152	S	0.0	25.0	0:24.78
3629	390084	128256	56028	R	15.0	25.2	0:24.87
3629	393684	128712	56484	R	98.3	25.3	0:25.46
3629	394584	128712	56484	R	100.0	25.3	0:26.06
3629	394584	128712	56484	R	98.3	25.3	0:26.65
3629	394584	128712	56484	R	100.0	25.3	0:27.26
3629	394584	128712	56484	R	100.0	25.3	0:27.86
3629	394584	128712	56484	R	98.3	25.3	0:28.45
3629	394584	128712	56484	R	100.0	25.3	0:29.05
3629	394584	128712	56484	R	98.4	25.3	0:29.65
3629	394584	128712	56484	R	100.0	25.3	0:30.25
3629	394584	128712	56484	R	100.0	25.3	0:30.85
3629	394584	128712	56484	R	100.0	25.3	0:31.45
3629	394584	128712	56484	R	100.0	25.3	0:32.05
3629	394584	128712	56484	R	100.0	25.3	0:32.66
3629	394584	128712	56484	R	100.0	25.3	0:33.26
3629	394584	128712	56484	R	100.0	25.3	0:33.86
3629	394584	128712	56484	R	100.0	25.3	0:34.46
3629	394584	128712	56484	R	100.0	25.3	0:35.06
3629	394584	128712	56484	R	100.0	25.3	0:35.67
3629	394584	128712	56484	S	73.3	25.3	0:36.11
3629	394584	128712	56484	S	0.0	25.3	0:36.11

DAFTAR PUSTAKA

- Azli Yahya, P.C. (2017). "4th Industrial Revolution: The Future of Machining". en. In: 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE. Semarang: Institute of Electrical and Electronics Engineers, p. 3.
- Budianto, A. (2018). "Automatic License Plate Recognition: A Review with Indonesian Case Study". en. In: *Scientific Journal of Informatics* 5.2, pp. 258–270.
- Ichwana, D. et al. (2018). "Sistem Cerdas Reservasi dan Pemantauan Parkir pada Lokasi Kampus Berbasis Konsep Internet of Things". en. In: *Jurnal Teknologi dan Sistem Komputer* 6.ue 2, pp. 57–63.
- Limantara, A.D., Y.C. Purnomo, and S.W. Mudjanarko (2017). "Pemodelan Sistem Pelacakan Lot Parkir Kosong Berbasis Sensor Ultrasonic dan Internet of Things (Iot) Pada Lahan Parkir Diluar Jalan". pt. In: *Seminar Nasional Sains dan Teknologi*, p. 1.
- Rahayu, N. (2019). *Mei 7*). *Mengenal Revolusi Industri dari 1.0 hingga 4.0*. io. Retrieved from Warta Ekonomi: url: https://www.wartaekonomi.co.id/read226785/mengenal-revolusi-industri-dari-10-hingga-40.html.
- Singgeta, R.L., P.D. Manembu, and M.D. Rembet (2018). *Sistem Pengamanan Pintu Rumah Dengan RFID Berbasis Wireless ESP8266*. en. Seminar Nasional Riset dan Teknologi Terapan, pp. 87–97.
- Suharman and W. Murti (2019). "Kajian Industri 4.0 Untuk Penerapannya di Indonesia". no. In: *Jurnal Manajemen Industri dan Logistik* 03.1, p. 1.
- Wicaksono, M.F. (2018). *Mudah Belajar Raspberry Pi*. id. Bandung: INFORMATIKA.