

Real-time 3D Reconstruction for Autonomous Driving via Semi-Global Matching

D. Hernandez-Juarez¹, A. Chacon¹, A. Espinosa¹, D. Vazquez², J. C. Moure¹, A. M. Lopez²
Universitat Autònoma de Barcelona

¹Computer Architecture & Operating Systems Dpt. — ²Computer Vision Center

Abstract

Robust and dense computation of depth information from stereo-camera systems is a computationally demanding requirement for real-time autonomous driving. Semi-Global Matching (SGM) [1] approximates heavy-computation global algorithms results but with lower computational complexity, therefore it is a good candidate for a real-time implementation. SGM minimizes energy along several 1D paths across the image. The aim of this work is to provide a real-time system producing reliable results on energy-efficient hardware. Our design runs on a NVIDIA Titan X GPU at 104.62 FPS and on a NVIDIA Drive PX at 6.7 FPS, promising for real-time platforms.

Matching Cost: Hamming Distance

$$Cost_{x,y,d} = \text{Hamming Distance}(\textit{Census}(\textit{I}_L(x,y)), \textit{Census}(\textit{I}_R(x-d,y)))$$
 # of different bits
$$\text{Hamming}(\boxed{1\ 0\ 1\ 0\ 0\ 1\ \dots\ 0}, \boxed{1\ 0\ 0\ 0\ 0\ \dots\ 0}) = 2$$

$$\text{Implementation: Hamming}(a, b) = \text{bitcount}(a \textit{xor} b)$$

Cost Computation

Results

					IDIA TI
CPU ¹ SIMD	2.3	1	0.02	GPU: NVI Drive PX: NV	IDIA Titan X IDIA Tegra X1
GPU Naive	25.4	10.98	0.10	Image Size:	1280x480
GPU Optimized	104.62	45.49	0.42	Disparity:	128
NVIDIA Drive PX	(² 6.7	2.90	0.67	¹ single-thread	² single-sock
2/ Time	Census Transform I_L Census Transform I_R	Matching Cost	Cost Computation	GPU:	NVIDIA Titan X
% Time	3.15 %	3.67 %	68.38 %	22.60 %	2.20 %
% Instructions	4.37 %	3.34 %	68.62 %	21.77 %	1.90 %

Speed Up FPS / Watt

CPU:

Intel Core i7-5930K

Conclusions:

- Semi-global matching can be used for real-time 3D reconstruction.

FPS

- Need new strategies to get real-time performance for NVIDIA Drive PX.
- NVIDIA Drive PX has 1.57x better energetic efficiency than high-end GPUs.

References:

[1] H. Hirschmüller, "Stereo Processing by Semiglobal Matching and Mutual Information," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328–341, 2008.

Acknowledgements:

This work is supported by the Spanish MICINN projects TRA2014-57088-C2-1-R, TIN2014-53234-C2-1-R and by the Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat de Catalunya (2014-SGR-1506) and DGT project SPIP2014-01352. Our research is also kindly supported by NVIDIA Corporation in the form of different GPU hardware.