Ekstrema funkcji wielu zmiennych

Anna Bahyrycz

Ekstrema funkcji dwóch zmiennych

Definicja 1

Mówimy, że funkcja f ma w punkcie (x_0,y_0) minimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0,y_0)$ takie, że dla dowolnego punktu $(x,y) \in S(x_0,y_0)$ zachodzi nierówność

$$f(x,y) > f(x_0,y_0).$$

Mówimy, że funkcja f ma w punkcie (x_0,y_0) maksimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0,y_0)$ takie, że dla dowolnego punktu $(x,y) \in S(x_0,y_0)$ zachodzi nierówność

$$f(x,y) < f(x_0,y_0).$$

Ekstrema funkcji dwóch zmiennych

Definicja 1

Mówimy, że funkcja f ma w punkcie (x_0,y_0) minimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0,y_0)$ takie, że dla dowolnego punktu $(x,y) \in S(x_0,y_0)$ zachodzi nierówność

$$f(x,y) > f(x_0,y_0).$$

Mówimy, że funkcja f ma w punkcie (x_0,y_0) maksimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0,y_0)$ takie, że dla dowolnego punktu $(x,y) \in S(x_0,y_0)$ zachodzi nierówność

$$f(x,y) < f(x_0,y_0).$$

Uwaga 1

• Jeżeli w powyższej definicji zastąpimy ostre nierówności przez słabe (tzn. $f(x,y) \ge f(x_0,y_0)$ lub $f(x,y) \le f(x_0,y_0)$), to mówimy, że funkcja f ma w punkcie (x_0,y_0) minimum lokalne lub maksimum lokalne.

Ekstrema funkcji dwóch zmiennych

Definicja 1

Mówimy, że funkcja f ma w punkcie (x_0,y_0) minimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0,y_0)$ takie, że dla dowolnego punktu $(x,y) \in S(x_0,y_0)$ zachodzi nierówność

$$f(x,y) > f(x_0,y_0).$$

Mówimy, że funkcja f ma w punkcie (x_0,y_0) maksimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0,y_0)$ takie, że dla dowolnego punktu $(x,y) \in S(x_0,y_0)$ zachodzi nierówność

$$f(x,y) < f(x_0,y_0).$$

Uwaga 1

- **1** Jeżeli w powyższej definicji zastąpimy ostre nierówności przez słabe (tzn. $f(x,y) \ge f(x_0,y_0)$ lub $f(x,y) \le f(x_0,y_0)$), to mówimy, że funkcja f ma w punkcie (x_0,y_0) minimum lokalne lub maksimum lokalne.
- Maksima i minima lokalne funkcji (właściwe lub niewłaściwe) nazywamy ekstremami lokalnymi.

Twierdzenie 1 (warunek konieczny istnienia ekstremum)

Jeżeli funkcja f ma w punkcie (x_0,y_0) ekstremum lokalne i istnieją pochodne cząstkowe

$$\frac{\partial f}{\partial x}(x_0, y_0), \quad \frac{\partial f}{\partial y}(x_0, y_0)$$

to

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 i $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.

Uwaga 2

• Punkty, w których obie pochodne cząstkowe pierwszego rzędu się zerują nazywamy stacjonarnymi.

Twierdzenie 1 (warunek konieczny istnienia ekstremum)

Jeżeli funkcja f ma w punkcie (x_0,y_0) ekstremum lokalne i istnieją pochodne cząstkowe

$$\frac{\partial f}{\partial x}(x_0, y_0), \quad \frac{\partial f}{\partial y}(x_0, y_0)$$

to

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 i $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.

Uwaga 2

- Punkty, w których obie pochodne cząstkowe pierwszego rzędu się zerują nazywamy stacjonarnymi.
- W powyższym twierdzeniu implikacja odwrotna nie jest prawdziwa.

Twierdzenie 1 (warunek konieczny istnienia ekstremum)

Jeżeli funkcja f ma w punkcie (x_0,y_0) ekstremum lokalne i istnieją pochodne cząstkowe

$$\frac{\partial f}{\partial x}(x_0, y_0), \quad \frac{\partial f}{\partial y}(x_0, y_0)$$

to

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 i $\frac{\partial f}{\partial y}(x_0, y_0) = 0$.

Uwaga 2

- Punkty, w których obie pochodne cząstkowe pierwszego rzędu się zerują nazywamy stacjonarnymi.
- W powyższym twierdzeniu implikacja odwrotna nie jest prawdziwa.
- Funkcja może mieć ekstremum lokalne tylko w punkcie stacjonarnym lub w punkcie, w którym przynajmniej jedna pochodna nie istnieje. Punkty te nazywamy krytycznymi.

Wyznaczyć punkty stacjonarne funkcji $f(x,y) = x^3$. Zbadać, czy funkcja f ma ekstrema lokalne. Wyznaczyć punkty stacjonarne funkcji $f(x,y) = x^3$. Zbadać, czy funkcja f ma ekstrema lokalne.

 $D_f = \mathbb{R}^2$.

Zbadać, czy funkcja f ma ekstrema lokalne. $D_f = \mathbb{R}^2$. Wyznaczamy pochodne cząstkowe pierwszego rzędu funkcji f

$$\frac{\partial f}{\partial x}(x,y) = 3x^2, \qquad \frac{\partial f}{\partial y}(x,y) = 0 \quad - \ \, \text{funkcje ciągłe}.$$

Zbadać, czy funkcja f ma ekstrema lokalne.

 $D_f = \mathbb{R}^2$. Wyznaczamy pochodne cząstkowe pierwszego rzędu funkcji f

$$\frac{\partial f}{\partial x}(x,y) = 3x^2, \qquad \frac{\partial f}{\partial y}(x,y) = 0 \quad - \ \, \text{funkcje ciągłe}.$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow 3x^2 = 0 \Leftrightarrow x = 0.$$

Punkty stacjonarne funkcji f mają postać (0,y), gdzie $y \in \mathbb{R}$.

Zbadać, czy funkcja f ma ekstrema lokalne.

 D_f = \mathbb{R}^2 . Wyznaczamy pochodne cząstkowe pierwszego rzędu funkcji f

$$\frac{\partial f}{\partial x}(x,y) = 3x^2, \qquad \frac{\partial f}{\partial y}(x,y) = 0 \quad - \ \, \text{funkcje ciągłe}.$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ & \Leftrightarrow 3x^2 = 0 \Leftrightarrow x = 0. \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases}$$

Punkty stacjonarne funkcji f mają postać (0,y), gdzie $y \in \mathbb{R}$. Pokażemy, korzystając z definicji, że funkcja f nie ma ekstremum lokalnego. Niech y_0 będzie dowolną liczbą rzeczywistą. Wówczas

$$f(0, y_0) = 0$$
, $f(\frac{1}{n}, y_0) = \frac{1}{n^3} > 0$, $f(-\frac{1}{n}, y_0) = -\frac{1}{n^3} < 0$,

Zbadać, czy funkcja f ma ekstrema lokalne. $D_f = \mathbb{R}^2$. Wyznaczamy pochodne cząstkowe pierwszego rzędu funkcji f

$$\frac{\partial f}{\partial x}(x,y) = 3x^2, \qquad \frac{\partial f}{\partial y}(x,y) = 0 \quad - \ \, \text{funkcje ciągłe}.$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow 3x^2 = 0 \Leftrightarrow x = 0.$$

Punkty stacjonarne funkcji f mają postać (0,y), gdzie $y \in \mathbb{R}$. Pokażemy, korzystając z definicji, że funkcja f nie ma ekstremum lokalnego. Niech y_0 będzie dowolną liczbą rzeczywistą. Wówczas

$$f(0, y_0) = 0$$
, $f(\frac{1}{n}, y_0) = \frac{1}{n^3} > 0$, $f(-\frac{1}{n}, y_0) = -\frac{1}{n^3} < 0$,

co oznacza, że funkcja f nie ma ekstremum w punkcie $(0,y_0)$.

Frzykład I (iliplikacja odwiotna w i wierdzeliu 4 lie jest prawdziwa)

Wyznaczyć punkty stacjonarne funkcji $f(x,y) = x^3$.

Zbadać, czy funkcja f ma ekstrema lokalne.

 D_f = \mathbb{R}^2 . Wyznaczamy pochodne cząstkowe pierwszego rzędu funkcji f

$$\frac{\partial f}{\partial x}(x,y) = 3x^2, \qquad \frac{\partial f}{\partial y}(x,y) = 0 \quad - \ \, \text{funkcje ciągłe}.$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow 3x^2 = 0 \Leftrightarrow x = 0.$$

Punkty stacjonarne funkcji f mają postać (0,y), gdzie $y \in \mathbb{R}$. Pokażemy, korzystając z definicji, że funkcja f nie ma ekstremum lokalnego. Niech y_0 będzie dowolną liczbą rzeczywistą. Wówczas

$$f(0,y_0) = 0$$
, $f(\frac{1}{n},y_0) = \frac{1}{n^3} > 0$, $f(-\frac{1}{n},y_0) = -\frac{1}{n^3} < 0$,

co oznacza, że funkcja f nie ma ekstremum w punkcie $(0, y_0)$. Zerowanie się w punkcie obu pochodnych cząstkowych funkcji nie gwarantuje istnienia ekstremum lokalnego funkcji w tym punkcie.

Zbadać ekstrema lokalne funkcji $f(x,y) = \sqrt{x^2 + y^2}$.

Zbadać ekstrema lokalne funkcji $f(x,y) = \sqrt{x^2 + y^2}$.

Pochodne cząstkowe funkcji $\,f\,$ w punkcie $\,(0,0)\,$ nie istnieją, zatem w tym punkcie funkcja $\,f\,$ może mieć ekstremum.

Zbadać ekstrema lokalne funkcji $f(x,y) = \sqrt{x^2 + y^2}$.

Pochodne cząstkowe funkcji f w punkcie (0,0) nie istnieją, zatem w tym

punkcie funkcja f może mieć ekstremum. Ponieważ $\frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2+y^2}}$ i $\frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2+y^2}}$ dla $(x,y) \neq (0,0)$, więc funkcja f nie ma punktów stacjonarnych.

Zbadać ekstrema lokalne funkcji $f(x,y) = \sqrt{x^2 + y^2}$.

Pochodne cząstkowe funkcji f w punkcie (0,0) nie istnieją, zatem w tym punkcie funkcja f może mieć ekstremum.

Ponieważ
$$\frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2+y^2}}$$
 i $\frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2+y^2}}$ dla $(x,y) \neq (0,0)$, więc funkcja f nie ma punktów stacjonarnych.

Funkcja f ma w punkcie (0,0) minimum lokalne właściwe, bo

$$f(x,y) = \sqrt{x^2 + y^2} \ge 0$$
 i $f(x,y) = 0$ wheely i tylko wheely gdy $x = y = 0$.

Niech funkcja f ma ciągłe pochodne cząstkowe drugiego rzędu na pewnym otoczeniu punktu (x_0,y_0) oraz niech

•
$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 i $\frac{\partial f}{\partial y}(x_0, y_0) = 0$,

Niech funkcja f ma ciągłe pochodne cząstkowe drugiego rzędu na pewnym otoczeniu punktu (x_0,y_0) oraz niech

- $\frac{\partial f}{\partial x}(x_0, y_0) = 0$ i $\frac{\partial f}{\partial y}(x_0, y_0) = 0$,
- wyznacznik, zwany hesjanem

$$H(x_0, y_0) = det \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{bmatrix} > 0$$

to funkcja f ma w punkcie (x_0,y_0) ekstremum lokalne właściwe i jest to: minimum lokalne właściwe, gdy $\frac{\partial^2 f}{\partial x^2}(x_0,y_0) > 0$ albo maksimum lokalne właściwe, gdy $\frac{\partial^2 f}{\partial x^2}(x_0,y_0) < 0$.

Niech funkcja f ma ciągłe pochodne cząstkowe drugiego rzędu na pewnym otoczeniu punktu (x_0,y_0) oraz niech

- $\bullet \ \ \frac{\partial f}{\partial x}(x_0,y_0) = 0 \quad i \quad \frac{\partial f}{\partial y}(x_0,y_0) = 0,$
- wyznacznik, zwany hesjanem

$$H(x_0, y_0) = det \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{bmatrix} > 0$$

to funkcja f ma w punkcie (x_0,y_0) ekstremum lokalne właściwe i jest to: minimum lokalne właściwe, gdy $\frac{\partial^2 f}{\partial x^2}(x_0,y_0) > 0$ albo maksimum lokalne właściwe, gdy $\frac{\partial^2 f}{\partial x^2}(x_0,y_0) < 0$.

Uwaga 3

• Jeżeli hesjan $H(x_0, y_0) < 0$, to funkcja f nie ma ekstremum lokalnego w punkcie (x_0, y_0) .

Niech funkcja f ma ciągłe pochodne cząstkowe drugiego rzędu na pewnym otoczeniu punktu (x_0,y_0) oraz niech

- $\frac{\partial f}{\partial x}(x_0, y_0) = 0$ i $\frac{\partial f}{\partial y}(x_0, y_0) = 0$,
- wyznacznik, zwany hesjanem

$$H(x_0, y_0) = det \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{bmatrix} > 0$$

to funkcja f ma w punkcie (x_0,y_0) ekstremum lokalne właściwe i jest to: minimum lokalne właściwe, gdy $\frac{\partial^2 f}{\partial x^2}(x_0,y_0) > 0$ albo maksimum lokalne właściwe, gdy $\frac{\partial^2 f}{\partial x^2}(x_0,y_0) < 0$.

Uwaga 3

- Jeżeli hesjan $H(x_0, y_0) < 0$, to funkcja f nie ma ekstremum lokalnego w punkcie (x_0, y_0) .
- ② Jeżeli hesjan $H(x_0, y_0) = 0$, to twierdzenie nie rozstrzyga.

i izykiau 3

Wyznaczyć ekstrema lokalne funkcji $f(x,y) = x^3 + 3xy^2 + 12xy$.

i izykiau 3

Wyznaczyć ekstrema lokalne funkcji $f(x,y) = x^3 + 3xy^2 + 12xy$.

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y^2 + 12y, \quad \frac{\partial f}{\partial y}(x,y) = 6xy + 12x - \text{funkcje ciągte.}$$

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y^2 + 12y, \qquad \frac{\partial f}{\partial y}(x,y) = 6xy + 12x \quad - \ \, \text{funkcje ciągłe}.$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 3(x^2 + y^2 + 4y) = 0\\ 6x(y+2) = 0 \end{cases}$$

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y^2 + 12y, \quad \frac{\partial f}{\partial y}(x,y) = 6xy + 12x - \text{funkcje ciągłe.}$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 3(x^2 + y^2 + 4y) = 0\\ 6x(y+2) = 0 \end{cases} \Leftrightarrow (x = 0 \land y(y+4) = 0) \lor (y = -2 \land x^2 = 4).$$

Punkty stacjonarne $f: P_1 = (0,0), P_2 = (0,-4), P_3 = (2,-2), P_4 = (-2,-2).$

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y^2 + 12y, \quad \frac{\partial f}{\partial y}(x,y) = 6xy + 12x - \text{funkcje ciągłe.}$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 3(x^2 + y^2 + 4y) = 0\\ 6x(y+2) = 0 \end{cases} \Leftrightarrow (x = 0 \land y(y+4) = 0) \lor (y = -2 \land x^2 = 4).$$

Punkty stacjonarne $f: P_1 = (0,0), P_2 = (0,-4), P_3 = (2,-2), P_4 = (-2,-2).$

$$H(x,y) = \det \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{bmatrix} = \det \begin{bmatrix} 6x & 6y + 12 \\ 6y + 12 & 6x \end{bmatrix}$$
$$= 36x^2 - 36(y+2)^2 = 36(x^2 - (y+2)^2)$$

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y^2 + 12y, \qquad \frac{\partial f}{\partial y}(x,y) = 6xy + 12x \quad - \text{ funkcje ciągte.}$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 3(x^2 + y^2 + 4y) = 0\\ 6x(y+2) = 0 \end{cases} \Leftrightarrow (x = 0 \land y(y+4) = 0) \lor (y = -2 \land x^2 = 4).$$

Punkty stacjonarne $f: P_1 = (0,0), P_2 = (0,-4), P_3 = (2,-2), P_4 = (-2,-2).$

$$H(x,y) = \det \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{bmatrix} = \det \begin{bmatrix} 6x & 6y + 12 \\ 6y + 12 & 6x \end{bmatrix}$$

$$=36x^2-36(y+2)^2=36\big(x^2-(y+2)^2\big)\\H(P_1)=36\cdot(-4)<0,\ H(P_2)=36\cdot(-4)<0\ \text{-brak ekstremum w}\ P_1\text{ i w }P_2$$

Anna Bahvrvcz

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y^2 + 12y, \qquad \frac{\partial f}{\partial y}(x,y) = 6xy + 12x \quad - \text{ funkcje ciągte.}$$

Wyznaczamy punkty stacjonarne funkcji $\,f\,$

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 3(x^2 + y^2 + 4y) = 0\\ 6x(y+2) = 0 \end{cases} \Leftrightarrow (x = 0 \land y(y+4) = 0) \lor (y = -2 \land x^2 = 4).$$

Punkty stacjonarne $f: P_1 = (0,0), P_2 = (0,-4), P_3 = (2,-2), P_4 = (-2,-2).$

$$H(x,y) = \det \left[\begin{array}{cc} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{array} \right] = \det \left[\begin{array}{cc} 6x & 6y+12 \\ 6y+12 & 6x \end{array} \right]$$

$$=36x^2 - 36(y+2)^2 = 36(x^2 - (y+2)^2)$$

 $H(P_1)$ = $36\cdot(-4)$ < $0,\ H(P_2)$ = $36\cdot(-4)$ < 0 - brak ekstremum w P_1 i w P_2 H(P_3) = H(P_4) = $36\cdot4$ > 0 - funkcja f ma ekstrema w P_3 i P_4 i są to

i izykiau 3

Wyznaczyć ekstrema lokalne funkcji $f(x,y) = x^3 + 3xy^2 + 12xy$.

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 + 3y^2 + 12y, \qquad \frac{\partial f}{\partial y}(x,y) = 6xy + 12x - \text{funkcje ciągłe.}$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 3(x^2 + y^2 + 4y) = 0\\ 6x(y+2) = 0 \end{cases} \Leftrightarrow (x = 0 \land y(y+4) = 0) \lor (y = -2 \land x^2 = 4).$$

Punkty stacjonarne $f: P_1 = (0,0), P_2 = (0,-4), P_3 = (2,-2), P_4 = (-2,-2).$

$$H(x,y) = \det \left[\begin{array}{cc} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{array} \right] = \det \left[\begin{array}{cc} 6x & 6y+12 \\ 6y+12 & 6x \end{array} \right]$$

$$=36x^2-36(y+2)^2=36(x^2-(y+2)^2)$$

 $H(P_1) = 36 \cdot (-4) < 0, \ H(P_2) = 36 \cdot (-4) < 0$ - brak ekstremum w P_1 i w P_2 $H(P_3) = H(P_4) = 36 \cdot 4 > 0$ - funkcja f ma ekstrema w P_3 i P_4 i są to minimum lokalne w P_3 , bo $\frac{\partial^2 f}{\partial x^2}(P_3) = 12 > 0$, - $f_{min}(P_3) = -16$ i maksimum lokalne w P_4 bo $\frac{\partial^2 f}{\partial x^2}(P_4) = -12 < 0$ - $f_{max}(P_4) = 16$.

Definicja 2 (ekstrema warunkowe)

Mówimy, że funkcja f ma w punkcie (x_0,y_0) minimum lokalne właściwe z warunkiem g(x,y)=0, gdy $g(x_0,y_0)=0$ oraz istnieje sąsiedztwo $S(x_0,y_0)$ takie, że dla dowolnego punktu $(x,y)\in S(x_0,y_0)$ spełniającego warunek g(x,y)=0 zachodzi nierówność $f(x,y)>f(x_0,y_0)$.

Analogicznie, funkcja f ma maksimum warunkowe, gdy zachodzi odwrotna nierówność, tzn. $f(x,y) < f(x_0,y_0)$.

Algorytm szukania ekstremów warunkowych

Ekstremów lokalnych funkcji f dwóch zmiennych z warunkiem g(x,y) = 0 szukamy następująco:

• Krzywą $\Gamma: g(x,y) = 0$ dzielimy na łuki, które są wykresami funkcji postaci y = h(x), gdzie $x \in I$ lub postaci x = p(y), gdzie $y \in J$.

Algorytm szukania ekstremów warunkowych

Ekstremów lokalnych funkcji f dwóch zmiennych z warunkiem g(x,y) = 0 szukamy następująco:

- **9** Krzywą $\Gamma: g(x,y) = 0$ dzielimy na łuki, które są wykresami funkcji postaci y = h(x), gdzie $x \in I$ lub postaci x = p(y), gdzie $y \in J$.
- ② Szukamy ekstremów funkcji jednej zmiennej f(x,h(x)) na przedziale I lub funkcji f(p(y),y) na przedziale J.

Algorytm szukania ekstremów warunkowych

Ekstremów lokalnych funkcji f dwóch zmiennych z warunkiem g(x,y) = 0 szukamy następująco:

- Krzywą $\Gamma: g(x,y)=0$ dzielimy na łuki, które są wykresami funkcji postaci y=h(x), gdzie $x\in I$ lub postaci x=p(y), gdzie $y\in J$.
- 3 Szukamy ekstremów funkcji jednej zmiennej f(x,h(x)) na przedziale I lub funkcji f(p(y),y) na przedziale J.
- Porównujemy wartości otrzymanych ekstremów na krzywej Γ i ustalamy ekstrema warunkowe.

Niech A będzie niepustym podzbiorem dziedziny funkcji f.

Mówimy, że liczba m jest najmniejszą wartością funkcji f na zbiorze A, gdy istnieje punkt $(x_0,y_0)\in A$ taki, że $f(x_0,y_0)=m$ oraz dla każdego $(x,y)\in A$ zachodzi nierówność $f(x,y)\geq m$. Piszemy wtedy $f_{min}=m$.

Mówimy, że liczba M jest największą wartością funkcji f na zbiorze A, gdy istnieje punkt $(x_0,y_0)\in A$ taki, że $f(x_0,y_0)=M$ oraz dla każdego $(x,y)\in A$ zachodzi nierówność $f(x,y)\leq M$. Piszemy wtedy $f_{max}=M$.

Niech A będzie niepustym podzbiorem dziedziny funkcji f.

Mówimy, że liczba m jest najmniejszą wartością funkcji f na zbiorze A, gdy istnieje punkt $(x_0,y_0)\in A$ taki, że $f(x_0,y_0)=m$ oraz dla każdego $(x,y)\in A$ zachodzi nierówność $f(x,y)\geq m$. Piszemy wtedy $f_{min}=m$.

Mówimy, że liczba M jest największą wartością funkcji f na zbiorze A, gdy istnieje punkt $(x_0,y_0)\in A$ taki, że $f(x_0,y_0)=M$ oraz dla każdego $(x,y)\in A$ zachodzi nierówność $f(x,y)\leq M$. Piszemy wtedy $f_{max}=M$.

Twierdzenie 3 (Weiestrassa)

Niech $D \subset \mathbb{R}^2$ będzie obszarem domkniętym i ograniczonym. Wówczas jeżeli funkcja $f:D \to \mathbb{R}$ jest ciągła w D to:

Niech A będzie niepustym podzbiorem dziedziny funkcji f.

Mówimy, że liczba m jest najmniejszą wartością funkcji f na zbiorze A, gdy istnieje punkt $(x_0,y_0)\in A$ taki, że $f(x_0,y_0)=m$ oraz dla każdego $(x,y)\in A$ zachodzi nierówność $f(x,y)\geq m$. Piszemy wtedy $f_{min}=m$.

Mówimy, że liczba M jest największą wartością funkcji f na zbiorze A, gdy istnieje punkt $(x_0,y_0)\in A$ taki, że $f(x_0,y_0)=M$ oraz dla każdego $(x,y)\in A$ zachodzi nierówność $f(x,y)\leq M$. Piszemy wtedy $f_{max}=M$.

Twierdzenie 3 (Weiestrassa)

Niech $D \subset \mathbb{R}^2$ będzie obszarem domkniętym i ograniczonym. Wówczas jeżeli funkcja $f:D \to \mathbb{R}$ jest ciągła w D to:

jest ograniczona,

Niech A będzie niepustym podzbiorem dziedziny funkcji f.

Mówimy, że liczba m jest najmniejszą wartością funkcji f na zbiorze A, gdy istnieje punkt $(x_0,y_0)\in A$ taki, że $f(x_0,y_0)=m$ oraz dla każdego $(x,y)\in A$ zachodzi nierówność $f(x,y)\geq m$. Piszemy wtedy $f_{min}=m$.

Mówimy, że liczba M jest największą wartością funkcji f na zbiorze A, gdy istnieje punkt $(x_0,y_0)\in A$ taki, że $f(x_0,y_0)=M$ oraz dla każdego $(x,y)\in A$ zachodzi nierówność $f(x,y)\leq M$. Piszemy wtedy $f_{max}=M$.

Twierdzenie 3 (Weiestrassa)

Niech $D \subset \mathbb{R}^2$ będzie obszarem domkniętym i ograniczonym. Wówczas jeżeli funkcja $f: D \to \mathbb{R}$ jest ciągła w D to:

- jest ograniczona,
- przyjmuje co najmniej raz w zbiorze D wartość najmniejszą i wartość największą.

Algorytm szukania ekstremów globalnych na obszarze domkniętym

Wartość najmniejszą i największą funkcji f dwóch zmiennych na ograniczonym i domkniętym obszarze D znajdujemy następująco:

ullet Na obszarze otwartym (wnętrzu obszaru D) szukamy punktów, w których funkcja f może mieć ekstremum lokalne.

Algorytm szukania ekstremów globalnych na obszarze domkniętym

Wartość najmniejszą i największą funkcji f dwóch zmiennych na ograniczonym i domkniętym obszarze D znajdujemy następująco:

- ullet Na obszarze otwartym (wnętrzu obszaru D) szukamy punktów, w których funkcja f może mieć ekstremum lokalne.
- f 2 Na brzegu obszaru D szukamy punktów, w których funkcja f może mieć ekstremum warunkowe.

Algorytm szukania ekstremów globalnych na obszarze domkniętym

Wartość najmniejszą i największą funkcji f dwóch zmiennych na ograniczonym i domkniętym obszarze D znajdujemy następująco:

- ullet Na obszarze otwartym (wnętrzu obszaru D) szukamy punktów, w których funkcja f może mieć ekstremum lokalne.
- f 2 Na brzegu obszaru D szukamy punktów, w których funkcja f może mieć ekstremum warunkowe.
- ullet Porównujemy wartości funkcji f w otrzymanych punktach i na tej podstawie ustalamy najmniejszą i największą wartość funkcji f na obszarze D.

Przykład 4

Znaleźć wartość najmniejszą i największą funkcji

$$f(x,y) = x^2 + y^2 - xy + x + y$$

w trójkącie domkniętym $\,T\,$ ograniczonym przez proste o równaniach

$$x = 0$$
, $y = 0$, $x + y + 3 = 0$.

Przykład 4

Znaleźć wartość najmniejszą i największą funkcji

$$f(x,y) = x^2 + y^2 - xy + x + y$$

w trójkącie domkniętym $\,T\,$ ograniczonym przez proste o równaniach

$$x = 0$$
, $y = 0$, $x + y + 3 = 0$.

1. Wyznaczamy punkty, w których funkcja $\,f\,$ może mieć ekstrema lokalne we wnętrzu trójkąta $\,T.\,$

1. Wyznaczamy punkty, w których funkcja f może mieć ekstrema lokalne we wnętrzu trójkąta T.

$$f(x,y) = x^2 + y^2 - xy + x + y$$

Znajdujemy pochodne cząstkowe pierwszego rzędu funkcji f:

$$\frac{\partial f}{\partial x}(x,y) = 2x - y + 1, \qquad \frac{\partial f}{\partial y}(x,y) = 2y - x + 1 - \text{funkcje ciągłe.}$$

1. Wyznaczamy punkty, w których funkcja f może mieć ekstrema lokalne we wnętrzu trójkąta T.

$$f(x,y) = x^2 + y^2 - xy + x + y$$

Znajdujemy pochodne cząstkowe pierwszego rzędu funkcji f:

$$\frac{\partial f}{\partial x}(x,y) = 2x - y + 1, \qquad \frac{\partial f}{\partial y}(x,y) = 2y - x + 1 \quad - \text{ funkcje ciągłe.}$$

Wyznaczamy punkty stacjonarne funkcji f

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} 2x - y + 1 = 0 \\ 2y - x + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} y = 2x + 1 \\ 2(2x + 1) - x + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -1 \\ y = -1 \end{cases}$$

Punkt stacjonarny funkcji $f: P_0 = (-1, -1)$ – należy do wnętrza trójkąta T.

2. Wyznaczamy punkty, w których funkcja f może mieć ekstrema lokalne na każdym z boków trójkąta.

 Wyznaczamy punkty, w których funkcja f może mieć ekstrema lokalne na każdym z boków trójkąta.
 Boki trójkata to:

- **1** Γ_1 : x = 0, gdzie -3 < y < 0;
- **2** Γ_2 : y = 0, gdzie -3 < x < 0;
- **3** Γ_3 : y = -x 3, gdzie -3 < x < 0.

Mamy zatem:

$$\begin{split} f_1(y) &= f(0,y) = y^2 + y, & \text{gdzie } -3 < y < 0; \\ f_2(x) &= f(x,0) = x^2 + x, & \text{gdzie } -3 < x < 0; \\ f_3(x) &= f(x,-x-3) = x^2 + \left(-(x+3)\right)^2 + x(x+3) + x - x - 3 = \\ &= x^2 + x^2 + 6x + 9 + x^2 + 3x - 3 = 3x^2 + 9x + 6, & \text{gdzie } -3 < y < 0. \end{split}$$

2. Wyznaczamy punkty, w których funkcja $\,f\,$ może mieć ekstrema lokalne na każdym z boków trójkąta.

Boki trójkąta to:

- **1** Γ_1 : x = 0, gdzie -3 < y < 0;
- ② Γ_2 : y = 0, gdzie -3 < x < 0;
- **3** Γ_3 : y = -x 3, gdzie -3 < x < 0.

Mamy zatem:

$$f_1(y) = f(0,y) = y^2 + y, \text{ gdzie } -3 < y < 0;$$

$$f_2(x) = f(x,0) = x^2 + x, \text{ gdzie } -3 < x < 0;$$

$$f_3(x) = f(x,-x-3) = x^2 + \left(-(x+3)\right)^2 + x(x+3) + x - x - 3 =$$

$$= x^2 + x^2 + 6x + 9 + x^2 + 3x - 3 = 3x^2 + 9x + 6, \text{ gdzie } -3 < y < 0.$$

Wyznaczamy punkty, w których funkcje $f_1, f_2, f_3 \mod \text{mieć}$ ekstrema lokalne:

$$f_1'(y) = 2y + 1; \ f_1'(y) = 0 \Leftrightarrow 2y + 1 = 0 \Leftrightarrow y = -\frac{1}{2} \in (-3,0); \ P_1 = (0, -\frac{1}{2}) \in \Gamma_1;$$

$$f_2'(x) = 2x + 1; \ f_2'(x) = 0 \Leftrightarrow 2x + 1 = 0 \Leftrightarrow x = -\frac{1}{2} \in (-3,0); \ P_2 = (-\frac{1}{2},0) \in \Gamma_2;$$

$$f_3'(x) = 6x + 9; \ f_3'(x) = 0 \Leftrightarrow 6x + 9 = 0 \Leftrightarrow x = -\frac{3}{2} \in (-3,0); \ P_3 = (-\frac{3}{2}, -\frac{3}{2}) \in \Gamma_3.$$

3. Wyznaczamy wartości funkcji w punktach wyznaczonych z warunków 1. i 2. oraz w wierzchołkach trójkąta T. Porównujemy otrzymane wartości funkcji f i na tej podstawie ustalamy najmniejszą i największą wartość funkcji f na trójkącie T.

3. Wyznaczamy wartości funkcji w punktach wyznaczonych z warunków 1. i 2. oraz w wierzchołkach trójkąta T. Porównujemy otrzymane wartości funkcji f i na tej podstawie ustalamy najmniejszą i największą wartość funkcji f na trójkącie T.

Wyznaczamy wartości funkcji w punktach P_0, P_1, P_2, P_3

3. Wyznaczamy wartości funkcji w punktach wyznaczonych z warunków 1. i 2. oraz w wierzchołkach trójkąta T. Porównujemy otrzymane wartości funkcji f i na tej podstawie ustalamy najmniejszą i największą wartość funkcji f na trójkącie T.

Wyznaczamy wartości funkcji w punktach P_0, P_1, P_2, P_3

$$\begin{split} f(-1,-1) &= -1; \\ f(0,-\frac{1}{2}) &= -\frac{1}{4}; \\ f(-\frac{1}{2},0) &= -\frac{1}{4}; \\ f(-\frac{3}{2},-\frac{3}{2}) &= -\frac{3}{4}; \\ \text{oraz w wierzchołkach trójkąta } T \\ f(0,0) &= 0; \\ f(-3,0) &= 6; \\ f(0,-3) &= 6. \end{split}$$

Najmniejsza wartość funkcji $\,f\,$ na trójkącie domkniętym $\,T\,$ to $\,-1,$ największa wartość funkcji $\,f\,$ na domkniętym trójkącie $\,T\,$ to $\,6.$

$$f(x,y) = x^2 + y^2 - xy + x + y$$

T trójkąt domknięty ograniczony przez proste: x = 0, y = 0, x + y + 3 = 0.

Ekstrema funkcji wielu zmiennych

Definicja 4

Mówimy, że funkcja $f: D \to \mathbb{R}, \ D \subset \mathbb{R}^n$ ma w punkcie $x_0 \in D$ minimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0)$ takie, że dla dowolnego punktu $x \in S(x_0)$ zachodzi nierówność

$$f(x) > f(x_0).$$

Mówimy, że funkcja f ma w punkcie x_0 , maksimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0)$ takie, że dla dowolnego punktu $x \in S(x_0)$ zachodzi nierówność

$$f(x) < f(x_0).$$

Ekstrema funkcji wielu zmiennych

Definicja 4

Mówimy, że funkcja $f: D \to \mathbb{R}, \ D \subset \mathbb{R}^n$ ma w punkcie $x_0 \in D$ minimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0)$ takie, że dla dowolnego punktu $x \in S(x_0)$ zachodzi nierówność

$$f(x) > f(x_0).$$

Mówimy, że funkcja f ma w punkcie x_0 , maksimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0)$ takie, że dla dowolnego punktu $x \in S(x_0)$ zachodzi nierówność

$$f(x) < f(x_0).$$

Uwaga 4

① Jeżeli w powyższej definicji zastąpimy ostre nierówności przez słabe (tzn. $f(x) \ge f(x_0)$ lub $f(x) \le f(x_0)$), to mówimy, że funkcja f ma w punkcie x_0 minimum lokalne lub maksimum lokalne.

Ekstrema funkcji wielu zmiennych

Definicja 4

Mówimy, że funkcja $f: D \to \mathbb{R}, \ D \subset \mathbb{R}^n$ ma w punkcie $x_0 \in D$ minimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0)$ takie, że dla dowolnego punktu $x \in S(x_0)$ zachodzi nierówność

$$f(x) > f(x_0).$$

Mówimy, że funkcja f ma w punkcie x_0 , maksimum lokalne właściwe, gdy istnieje sąsiedztwo $S(x_0)$ takie, że dla dowolnego punktu $x \in S(x_0)$ zachodzi nierówność

$$f(x) < f(x_0).$$

Uwaga 4

- **1** Jeżeli w powyższej definicji zastąpimy ostre nierówności przez słabe (tzn. $f(x) \ge f(x_0)$ lub $f(x) \le f(x_0)$), to mówimy, że funkcja f ma w punkcie x_0 minimum lokalne lub maksimum lokalne.
- Maksima i minima lokalne funkcji (właściwe lub niewłaściwe) nazywamy ekstremami lokalnymi.

Twierdzenie 4 (warunek konieczny istnienia ekstremum)

Jeżeli funkcja $f: D \to \mathbb{R}, \ D \subset \mathbb{R}^n$ ma w punkcie $x_0 \in D$ ekstremum lokalne i wszystkie pochodne cząstkowe pierwszego rzędu istnieją w x_0 , to są one równe zero.

Uwaga 5

• Punkty, w których wszystkie pochodne cząstkowe pierwszego rzędu się zerują nazywamy stacjonarnymi.

Twierdzenie 4 (warunek konieczny istnienia ekstremum)

Jeżeli funkcja $f: D \to \mathbb{R}, \ D \subset \mathbb{R}^n$ ma w punkcie $x_0 \in D$ ekstremum lokalne i wszystkie pochodne cząstkowe pierwszego rzędu istnieją w x_0 , to są one równe zero.

Uwaga 5

- Punkty, w których wszystkie pochodne cząstkowe pierwszego rzędu się zerują nazywamy stacjonarnymi.
- ② W powyższym twierdzeniu implikacja odwrotna nie jest prawdziwa.

Twierdzenie 4 (warunek konieczny istnienia ekstremum)

Jeżeli funkcja $f: D \to \mathbb{R}, \ D \subset \mathbb{R}^n$ ma w punkcie $x_0 \in D$ ekstremum lokalne i wszystkie pochodne cząstkowe pierwszego rzędu istnieją w x_0 , to są one równe zero.

Uwaga 5

- Punkty, w których wszystkie pochodne cząstkowe pierwszego rzędu się zerują nazywamy stacjonarnymi.
- W powyższym twierdzeniu implikacja odwrotna nie jest prawdziwa.
- Funkcja może mieć ekstremum lokalne tylko w punkcie stacjonarnym lub w punkcie, w którym przynajmniej jedna pochodna cząstkowa pierwszego rzędu nie istnieje.

Macierz Hessego

Niech funkcja $f:D\to\mathbb{R},\ D\subset\mathbb{R}^n$ ma wszystkie pochodne cząstkowe drugiego rzędu. Macierz

$$Hf(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(x) \end{bmatrix}$$

nazywamy macierzą Hessego funkcji f.

Niech funkcja $f: D \to \mathbb{R}, D \subset \mathbb{R}^n$ ma wszystkie pochodne cząstkowe drugiego rzędu. Macierz

$$Hf(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(x) \end{bmatrix}$$

nazywamy macierzą Hessego funkcji f. Definiujemy funkcje

$$\Delta_{i}(x) \coloneqq \begin{vmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{i}}(x) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{i}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{i} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{i} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{i} \partial x_{i}}(x) \end{vmatrix}$$
 dla $i = 1, \dots, n$.

Niech funkcja $f: D \to \mathbb{R}, D \subset \mathbb{R}^n$ ma wszystkie pochodne cząstkowe drugiego rzędu. Macierz

$$Hf(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(x) \end{bmatrix}$$

nazywamy macierzą Hessego funkcji f. Definiujemy funkcje

$$\Delta_{i}(x) \coloneqq \begin{vmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{i}}(x) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{i}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{i} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{i} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{i} \partial x_{i}}(x) \end{vmatrix}$$
 dla $i = 1, \dots, n$.

Uwaga 6

Zauważmy, że
$$\Delta_1(x) = \frac{\partial^2 f}{\partial x_1^2}(x)$$
 i $\Delta_n(x) = \det Hf(x)$.

Twierdzenie 5 (warunek wystarczający istnienia ekstremum)

Niech $D \subset \mathbb{R}^n$ i funkcja $f: D \to \mathbb{R}$ spełnia warunki:

- f ma ciągłe pochodne cząstkowe drugiego rzędu na pewnym otoczeniu punktu $x_0 \in D$,
- $\frac{\partial f}{\partial x_i}(x_0) = 0$ dla $i = 1, \dots, n$.

Uwaga 6

Zauważmy, że
$$\Delta_1(x) = \frac{\partial^2 f}{\partial x_1^2}(x)$$
 i $\Delta_n(x) = \det Hf(x)$.

Twierdzenie 5 (warunek wystarczający istnienia ekstremum)

Niech $D \subset \mathbb{R}^n$ i funkcja $f: D \to \mathbb{R}$ spełnia warunki:

- f ma ciągłe pochodne cząstkowe drugiego rzędu na pewnym otoczeniu punktu $x_0 \in D$,
- $\frac{\partial f}{\partial x_i}(x_0) = 0$ dla $i = 1, \dots, n$.

Wówczas:

- 1. Jeżeli $\Delta_i(x_0) > 0$ dla i = 1, ..., n, to w punkcie x_0 funkcja f ma minimum lokalne właściwe.
- 2. Jeżeli $(-1)^i \Delta_i(x_0) > 0$ dla i = 1, ..., n, to w punkcie x_0 funkcja f ma maksimum lokalne właściwe.