Sammanfattning av SF1681 Linjär algebra, fortsättningskurs

Yashar Honarmandi yasharh@kth.se

29 oktober 2018

Sammanfattning

Detta är en sammanfattning av SF1681 Linjär algebra, fortsättningskurs. Den innehåller förklaringar av centrala begrepp, definitioner och satser som täcks i kursen.

Innehåll

1	Vektorrum														1	L															
	1.1	Definitioner]	l

1 Vektorrum

1.1 Definitioner

Kroppar En kropp är något som har definierat multiplikation och addition, och som fungerar som (är isomorft med) \mathbb{R} , \mathbb{C} osv.

Vektorrum Ett vektorrum är en mängd med en operation som gör V till en abelsk grupp och för vilken det finns en kropp k med skalärer och en operation med skalären som uppfyller

- $c(x+y) = cx + cy, c \in \mathbb{R}, x, y \in V.$
- (c+d)x = cx + dx, $c, d \in \mathbb{R}$.
- c(dx) = (cd)x.
- $\bullet \ 1x = x.$

 \mathbf{Delrum} En delmängd V av ett vektorrum är ett delrum om

- $0 \in V$, där 0 är nollelementet.
- $x, y \in V \implies x + y \in V$.
- $cx \in V$ för alla $c \in \mathbb{R}$.

Direktsumma Vi definierar direktsumman

$$\bigoplus_{i=0}^{\infty} V_i = \left\{ \sum_{i=0}^{\infty} a_i, a_i \in V_i \right\}.$$

Kvotrum Om $W \subseteq V$ är delrum, kan vi bilda

$$\frac{V}{W} = \left\{ x + W, x \in V \right\},\,$$

där vi har användt summan

$$x+W = \{x+y, y \in W\}.$$