Consider we are using PCA to compress face images using top K eigenvectors and then we do the reconstruction. Then

- (A) [Ans] Compression (for face images) is lossy
- (B) Compression (for face images) is lossless
- (C) [Ans] Reconstruction will be bad for non-face images (say buildings)
- (D) Reconstruction will be good for non-face images (say buildings)
- (E) None of these

Consider we are dong PCA to go from R^2 data to R^1 . Consider each point is denoted by (X_i, Y_i) . Then in which of these situations will PCA work reasonably well:

(A) **[Ans]**
$$Y_i = X_i + 10$$

(B) [Ans]
$$Y_i = X_i + 10 + \epsilon_i$$
 where $\epsilon_i \sim N(0, 1)$

(C)
$$X_i^2 + Y_i^2 = 10$$

(D)
$$X_i^2 + Y_i^2 <= 10$$

Consider we have data in $\ensuremath{\mathbb{R}}^2.$ Then the linear regression line and the PCA line

- (A) will always be the same
- (B) will never be the same
- (C) [Ans] can sometimes be the same
- (D) None of these

We want to do PCA using gradient descent. Assume that Σ is the covariance matrix, η is the learning rate. Then the update rule is

(B) **[Ans]**
$$u_{k+1} = (I + \eta \Sigma) u_k$$

(b) [Alia]
$$u_{k+1} = (r + \eta z)u_k$$

(C)
$$u_{k+1} = (I - \eta \Sigma)u_k$$

(A) $u_{k+1} = \eta \Sigma u_k$

PCA solves this problem:

$$\max_{u} u^{T} \Sigma u - \lambda (u^{T} u - 1)$$

where Σ is the covariance matrix. Which of the following are true regarding PCA

- (A) [Ans] λ is the variance captured by the eigen vector u
- (B) [Ans] Sum of variances captured by all eigenvectors is $tr(\Sigma)$
- (C) If all data points are on a line then at least one of the eigenvalues is ${\bf 1}$
- (D) [Ans] If all data points are on a line then at least one of the eigenvalues is 0