2016-2017 学年第 1 学期考试试题 (A) 卷

课程名称 《大学物理》光学、热学与近代物理

任课教师签名

考试时间

(120)分钟

出题教师签名 题库抽题 审题教师答名

考试方式 (闭)卷 适用专业

2015 级理工各专业

题	号	_	П	Ξ	四	五	六	总	分
得	分								

选择题(每题3分,共30分)

1. 如图所示, 平行单色光垂直照射到透明介质薄膜 上,经上下两表面反射的两束光发生干涉,若薄膜 的厚度为 e,介质折射率分布为 $n_1 > n_2 > n_3$, λ 为入 射光在折射率为 n_1 的媒质中的波长,则两束反射光 在相遇点的位相差为

- (A) $2\pi n_2 e/(n_1 \lambda_1)$ (B) $4\pi n_1 e/(n_2 \lambda_1) + \pi$ (C) $4\pi n_2 e/(n_1 \lambda_1) + \pi$ (D) $4\pi n_2 e/(n_1 \lambda_1)$
- 2. 如图所示,两个直径有微小差异的互相平行的滚柱 之间的距离为L,夹在两块平晶的中间,形成空气劈 尖, 当单色光垂直入射时, 产生等厚干涉条纹。如果 增大两滚柱之间的距离 L,则在 L 范围内干涉条纹的

- (A) 数目不变, 间距变大。
- (B) 数目不变, 间距变小。
- (C) 数目增加,间距变小。
- (D) 数目不变, 间距不变。
- 3. 如果远处有两个等强度的光源点发出的光波波长为 550 nm, 按照瑞利判 据它们对一直径为 3 cm, 焦距为 20 cm 的会聚透镜中心的张角可以分辨,则 它们在透镜焦平面上形成的两个爱里斑的中心之间的距离应不小于「
 - (A) $4.47 \, \mu m$
- (B) $8.94 \mu m$
- (C) $3.01 \, \mu m$
- (D) 3.67 um
- **4.** 三个偏振片 P_1 , P_2 和 P_3 堆叠在一起, P_1 与 P_3 的偏振化方向相互垂直, P_2 与 P_1 的偏振化方向的夹角为 30° , 强度为 I_0 的自然光垂直入射于偏振片 P_1 并依次透过偏振片 P₁, P₂和 P₃,则通过三个偏振片后的光强为:[

- (A) $I_0/4$
- (B) $I_0/8$
- (C) $3I_0/32$
- (D) $3I_0/16$
- 5. 已知 f(v)为麦克斯韦速率分布函数,N 为总分子数,则速率 $v > 100 \text{ m} \cdot \text{s}^{-1}$ 的分子数的表达式为「
 - $(A)\int_{100}^{\infty} f(v) dv$

- (B) $N \int_{100}^{\infty} f(v) dv$
- $(C) N \int_0^{100} f(v) dv$
- (D) $\int_{100}^{\infty} v f(v) dv / \int_{100}^{\infty} f(v) dv$
- 6. 在相同的温度和压强下, 若 CO。 气体(视为刚性多原子分子的理想气体) 和 N_2 气(视为刚性双原子分子的理想气体)的体积比 $V_1/V_2=1/2$,则其热力 学能之比 E_1/E_2 为: [
 - (A) 3/10

(B) 1/2

(C) 5/6

- (D) 3/5
- 7. K 系与 K' 系是坐标轴相互平行的两个惯性系,K' 系相对于 K 系沿 Ox轴正方向匀速运动。一根刚性尺静止在 K' 系中,与 O'x' 轴成 30° 角。今 在 K 系中观测得该尺与 Ox 轴成 60° 角,则 K' 系相对于 K 系的速度是:
- (A) $2\sqrt{2} c/3$
- (B) c/3 (C) $\sqrt{2/3} c$
- (D) $\sqrt{1/3} c$
- 8. 设电子静止质量为 m_e ,将一个电子从静止加速到速率为0.6c(c表示真空中 光速), 需做功[
 - (A) $0.25m_ec^2$ (B) $0.18m_ec^2$ (C) $0.5m_ec^2$ (D) $1.25m_ec^2$

- **9.** 若令 $\lambda_c = h/(m_e c)$ (称为电子的康普顿波长,其中 m_e 为电子静止质量, c 为光速,h 为普朗克恒量), 当电子的相对论动能等于它的静止能量时,其德 布罗意波长 λ 为 [
- (A) $(\sqrt{3}/3)\lambda_c$ (B) $(\sqrt{3}/2)\lambda_c$
- (C) $(1/2)\lambda_c$
- (D) $(3/4)\lambda_c$
- **10.** 如图所示,一束动量为 p 的电子,通过缝

宽为 a 的狭缝, 在距离狭缝为 R 处放置一荧光

屏,屏上衍射图样中央最大的宽度d等于[

- (A) $2a^2/R$
- (B) 2ha/p
- (C) 2ha/(Rp)
- (D) 2Rh/(ap)

二、填空题(每题3分,共30分)

1. 在迈克尔逊干涉仪的某一支光路中,放入一片折射率为n 的透明介质薄膜后,测出波长为 λ 的两束光的相位差的改变量为 π ,则该薄膜的厚度

2. 用可见单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环。若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触到两者距离为 *d* 的移动过程中,若移过视场中某固定观察点的条纹数目等于 *N*,则入射单色光波长 λ=

3.汽车两盏前灯相距 l,与观察者相距 $S=11~{\rm km}$ 。夜间人眼瞳孔直径 $d=5.2~{\rm mm}$ 。人眼敏感波长为 $\lambda=550nm~(1nm=10^{-9}m)$,若只考虑人眼的圆孔衍射,则人眼可分辨出汽车两前灯的最小间距 $l=___m$ 。(结果保留 3 位有效数字)。

5. 现有两条气体分子速率分布曲线(1)和(2),如图所示。若两条曲线分别表示同一种气体处于不同的温度下的速率分布,则曲线_____表示的温度较高。若两条曲线分别表示同一温度下的氢气和氧气的速率分布,则氧气的最概然速率为 m/s。

8. 一匀质矩形薄板,在它静止时测得其面积密度为 ρ 。假定该薄板沿长度方向以接近光速的速度 ν 作匀速直线运动,此时再测算该矩形薄板的面积密度则为_____。(c 为真空中光速)

9. 当波长为 200 nm(1 nm= 10^{-9} m)的光照射在某金属表面时,光电子的动能范围为 $0\sim4.8\times10^{-19}$ J。此金属的遏止电压为 $|U_a|=$ V;红限频率 $v_0=$ Hz。(普朗克常量 $h=6.63\times10^{-34}$ J•s,基本电荷 $e=1.6\times10^{-19}$ C,光速 $c=3\times10^8$ m/s,结果保留 3 位有效数字)

10. 设大量氢原子处于 n=4 的激发态,它们跃迁时发射出一簇光谱线. 这簇光谱线最多可能有_____条,其中最短波长光的频率是_____Hz(结果保留 3 位有效数字)。

三、判断题(每题2分,共10分)(在要判断正误的说法后面括号中填√或×)

1. 一束自然光以布儒斯特角自空气射向一块平板玻璃,如图所示,则对在界面 2 的反射光和透射光有下述三种说法,请判断正误。

- (1)在界面2 的反射光是自然光。
- (2)在界面 2 的透射光是部分偏振光。 (
- (3)在界面2的反射光是线偏振光。 (
- 2. 下面四种说法,请判断正误
- (1)从微观上看,理想气体的温度表示每个气体分子的冷热程度。(
- (2) 可以设计一台可逆卡诺热机,每循环一次可从 400 K 的高温热源吸热 1800 J,向 300 K 的低温热源放热 800 J,同时对外做功 1000 J。 (

四、计算题 1(10分)

在杨氏双缝干涉实验中,如图所示,若用薄玻璃片(折射率 n_1 =1.7)覆盖缝 S_1 ,用同样厚度的玻璃片(折射率 n_2 =1.4)覆盖缝 S_2 ,将使屏上原来未放玻璃片时的中央明纹所在处 O 变为第五级明纹。设垂直入射双缝的平行单色光波长 λ =480 nm,求

- (1) 薄玻璃片的厚度 h 为多少?
- (可认为光线垂直穿过玻璃片)
- (2)如双缝与屏间的距离 D=120 cm,双缝间距 d=0.50 mm,则新的零级明纹 O'的坐标 x=?(坐标系如图所示)

五、计算题 2(10分)

波长 λ =450 nm 的单色平行光垂直入射到一光栅上,测得第 2 级主极大的衍射角 θ 3 的正弦值满足 $\sin\theta_2 = 1/3$,且第 3 级是缺级。求:

- (1) 光栅常数 d 等于多少? 透光缝 a 的最小宽度等于多少?
- (2) 在选定了上述 d 和 a 之后,在屏幕上可能呈现的全部主极大的级次?
- (3) 若置于光栅后的会聚透镜焦距 f=15 cm,求单缝衍射中央明纹的线宽度 Δx_0 为多少?

六、计算题 3(10分)

某种理想气体的摩尔比热容比 $\gamma = 1.40$,该气体系统进行如图所示的循环过程。已知状态 A 的温度为 $T_A = 300$ K。求:

(1) 状态 B、C 的温度 T_B 与 T_C ?

(2) A-B, B-C 和 C-A 过程中气体所吸收的净热量 Q_{A-B} , Q_{B-C} 和 Q_{C-A} ?

参考公式

最小分辨角: $\theta = 1.22 \frac{\lambda}{D}$

马吕斯定律: $I' = I \cos^2 \alpha$

理想气体状态方程: $PV = \nu RT$

普适气体常数: R=8.31 J/mol K

最概然速率: $V_p = \sqrt{\frac{2k_BT}{m}}$

光栅方程: $d \sin \theta = k\lambda$

布儒斯特定律: $\tan i_0 = \frac{n_2}{n_1}$

玻尔兹曼常数: K_B=1.38×10⁻²³ J/K

阿伏伽德罗常数: $N_{\rm A}=6.02\times10^{23}~{\rm mol}^{-1}$

洛仑兹变换:
$$x' = \frac{x - ut}{\sqrt{1 - (\frac{u}{c})^2}}$$
, $y' = y$, $z' = z$, $t' = \frac{t - \frac{u}{c^2}x}{\sqrt{1 - (\frac{u}{c})^2}}$

相对论动能: $E_k = mc^2 - m_o c^2$; 光电效应方程: $hv = \frac{1}{2}m_0 v^2 + A$

康普顿公式: $\Delta \lambda = \lambda_c (1 - \cos \varphi)$; 氢原子能级: $E_n = -\frac{13.6eV}{n^2}$

考完后,请监考老师和班长将答题纸和试卷分开装袋,并将答题纸按学号从小到大顺号。谢谢!

2016-2017 学年第 1 学期《大学物理》(A) 答题纸

题	号	П	Ш	四	五	六	总	分
得	分							
评卷人								

五、(10分)

****** 以下为学生答题区域(其它区域答题无效)******

一、选择题: (共30分,每题3分)

1. [] 2. [] 3. [] 4. [] 5. [

5. [] 7. [] 8. [] 9. [] 10. [

二、填空题: (共30分,每题3分)

1		6	
2		7	
3		8	
4		9	
5		10	

六、(10分)

三、判断题: (共10分,每小题2分)

1 (1)	1 (2)	1 (3)	2 (1)	2 (2)

四、(10分)