NATIONAL UNIVERSITY OF SINGAPORE

CS5340 - Uncertainty Modeling in AI

(Quiz 2, Semester 2 AY2021/22)

SOLUTIONS

Time Allowed: 1 hour

Instructions

- This is an open-book quiz. You may refer to any of the lecture slides and tutorials.
- You may not refer to any external online material or use any software to help you answer the questions.
- Please do not cheat; your answers must be your own. Do not collaborate with anyone else.
- Please put all your answers in Luminus.
- Read each question *carefully*. Don't get stuck on any one problem. The questions are *not* in any particular order of difficulty.
- Don't panic. The problems often look more difficult than they really are.
- Good luck!

Student Number.:	

Common Probability Distributions

Distribution (Parameters)	PDF/PMF
	-
Normal (μ, σ^2)	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$
Bernoulli (r)	$r^x(1-r)^{(1-x)}$
Categorical (π)	$\prod_{k=1}^K \pi_k^{x_k}$
Binomial (μ, N)	$\binom{N}{x}\mu^x(1-\mu)^{N-x}$
Poisson (λ)	$\frac{\lambda^x \exp[-\lambda]}{x!}$
Beta (α, β)	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$
Gamma (a, b)	$\frac{1}{\Gamma(a)}b^ax^{a-1}\exp[-bx]$
Dirichlet (α)	$\frac{\Gamma(\sum_{k}^{K} \alpha_{k})}{\Gamma(\alpha_{1})\Gamma(\alpha_{K})} \prod_{k=1}^{K} x_{k}^{\alpha_{k}-1}$
Multivariate Normal (μ, Σ)	$\left[\frac{1}{(2\pi)^{D/2} \Sigma ^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) \right] \right]$
Uniform (a, b)	$\frac{1}{b-a}$
Cauchy (x_0, γ)	$\frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}$
Gamma (a, b) Dirichlet (α) Multivariate Normal (μ, Σ) Uniform (a, b)	$\frac{\frac{1}{\Gamma(a)}b^{a}x^{a-1}\exp[-bx]}{\frac{\Gamma(\sum_{k}^{K}\alpha_{k})}{\Gamma(\alpha_{1})\Gamma(\alpha_{K})}\prod_{k=1}^{K}x_{k}^{\alpha_{k}-1}}$ $\frac{\frac{1}{(2\pi)^{D/2} \Sigma ^{1/2}}\exp\left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]}{\frac{1}{b-a}}$

Note: $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$ is the Gamma function.

1 True or False?

For the following questions, please answer True or False.

Problem 1. [1 points] Let Z = aX + bY where $X \sim \text{Bernoulli}(0.2)$ and $Y \sim \mathcal{N}(2,1)$. Then

$$\mathbb{E}[Z] = \frac{a}{5} + 2b$$

Solution: True.

Problem 2. [1 points] Let the function $f(X) = -(X^2)$ and $x \sim p(X)$. Define a new distribution q(X) with the same support as p(X). Then,

$$\mathbb{E}_p[f(X)] = \mathbb{E}_q[f(X)p(X)/q(X)]$$

Solution: True

Problem 3. [1 points] Consider $x \sim \text{Beta}(\alpha, \beta)$. Binomial prior distributions over α and β are conjugate to a Beta likelihood and would lead to tractable and closed-form Bayesian inference. In particular, the new parameters are computed as $\alpha' = \alpha + s$ and $\beta' = \beta + (n-s)$ where s is the number of 1's observed and n is the number of samples.

Solution: False. α and β should be continuous, but Binomial prior only support discrete values.

Problem 4. [1 points] The Markov blanket for a node in a Markov Random Field is the set containing its neighbors.

Solution: True.

Problem 5. [2 points] For any independent variables X and Y,

$$\mathbb{E}[X^{2} + Y^{2}] = \mathbb{V}[X] + \mathbb{V}[Y] + (\mathbb{E}[X] + \mathbb{E}[Y])^{2} - 2\mathbb{E}[X]\mathbb{E}[Y]$$

Solution: True.

Problem 6. [1 points] The Poisson distribution is in Exponential Family.

Solution: True.

Problem 7. [1 points] An Exponential Family distribution always has a conjugate prior.

Solution: True.

Problem 8. [2 points] True or False:

$$(X \perp Y|Z, W) \Rightarrow (X \perp Y|Z) \land (X \perp Y|W)$$

In other words, $(X \perp Y|Z, W)$ implies $(X \perp Y|Z)$ and $(X \perp Y|W)$.

Solution: False.

Problem 9. [2 points] True or False:

$$(X \perp Y|Z, W) \land (X \perp Y|W) \Rightarrow (X \perp Y|Z)$$

In other words, if $(X \perp Y|Z, W)$ and $(X \perp Y|W)$ then $(X \perp Y|Z)$.

Solution: False.

Problem 10. [2 points] Consider a Bayesian Network with four nodes W, X, Y, and Z and the following facts:

- $W \sim \text{Normal}(2, \sigma^2)$
- $X \sim \text{Normal}(0, v^2)$
- Y = aW + bX where a and b are scalars.
- Z = cW + dX + eY where c, d and e are scalars.

Solution: True. Then, the conditional p(Y|W,X,Z) is Gaussian, since this is a linear Gaussian model that we have covered in the tutorial.

Problem 11. [2 points] Consider a Bayesian Network with three nodes W, X, Y, and Z and the following facts:

- $W \sim \text{Normal}(2, \sigma^2)$
- $X = (\mathbf{u}^{\top} f_{\theta}(\mathbf{k})) + W$ where f_{θ} is a neural network. \mathbf{u} and \mathbf{k} are real vectors $\mathbf{u}, \mathbf{k} \in \mathbb{R}^d$.
- Y = aW + bX where a and b are scalars.
- $\bullet \ \ Z = W + X + Y$

Solution: True. Then, the conditional p(Y|W,X,Z) is Gaussian, since this is a linear Gaussian model that we have covered in the tutorial.

2 Valid Transitions

For each of the matrices below, select True if the matrix is ergodic. Select False otherwise.

Problem 12. [1 points]

$$T = \begin{bmatrix} 0.1 & 0.2 & 0.7 \\ 0.9 & 0.1 & 0.0 \\ 0.2 & 0.4 & 0.4 \end{bmatrix}$$

Solution: Yes, this transition matrix is aperiodic and irreducible.

Problem 13. [1 points]

$$T = \begin{bmatrix} 0.0 & 0.7 & 0.3 \\ 0.1 & 0.7 & 0.2 \\ 0.2 & 0.6 & 0.2 \end{bmatrix}$$

Solution: Yes, the transition matrix is aperiodic and irreducible.

Problem 14. [1 points]

$$T = \begin{bmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.5 \\ 0.0 & 0.3 & 0.7 \end{bmatrix}$$

Solution: No, the matrix is not irreducible.

Problem 15. [1 points]

$$T = \begin{bmatrix} 0.0 & 0.3 & 0.7 \\ 1.0 & 0.0 & 0.0 \\ 1.0 & 0.0 & 0.0 \end{bmatrix}$$

Solution: No, the matrix is not aperiodic.

Problem 16. [1 points]

$$T = \begin{bmatrix} 0.0 & 1.0 & 0.0 \\ 0.5 & 0.0 & 0.5 \\ 0.0 & 1.0 & 0.0 \end{bmatrix}$$

Solution: No, the matrix is not aperiodic.

3 More MCMC

Instead of specifying the proposal distribution, we can specify a "proposal transition function" for a MCMC sampler. In other words, we transform x to a new candidate sample x' via some function.

Problem 17. [3 points] Which of the following functions will lead to sampling from the stationary distribution given properly set hyperparameters? The hyperparameters are assumed *constant* throughout the chain. Assume the target distribution to be a **continuous** univariate distribution. Select all that apply.

```
A. x' = x + \epsilon where \epsilon \sim \text{Normal}(0, \sigma^2)

B. x' = x + (-1)^s \epsilon where \epsilon \sim \text{Beta}(a, b) and s \sim \text{Bernoulli}(0.5)

C. x' = x + \epsilon where \epsilon \sim \text{Poisson}(a)

D. x' = x + (-1)^s \epsilon where \epsilon \sim \text{Bernoulli}(r) and s \sim \text{Bernoulli}(0.5)

E. x' = x + (-1)^s \epsilon where \epsilon \sim \text{Gamma}(a, b) and s \sim \text{Bernoulli}(0.5)
```

Solution: A, B and E are valid proposal transition functions. C is not irreducible, since $\epsilon \sim \text{Poisson}(a)$ will always be larger than 0, therefore, it can not reach the value that is smaller than the x. D is also not irreducible, since Bernoulli is discrete, therefore if we start at a state x, we will never be able to reach the all the real numbers in the future, for example x + 0.1.

Problem 18. [3 points] Which of the following functions will lead to sampling from the stationary distribution given properly set hyperparameters? The hyperparameters are assumed *constant* throughout the chain. Assume the target distribution to be a **continuous** univariate distribution with strictly **positive support**, i.e., $p(x \le 0) = 0$. Select all that apply.

```
A. x' = x + \epsilon where \epsilon \sim \text{Normal}(0, \sigma^2)
B. x' = x + (-1)^s \epsilon where \epsilon \sim \text{Beta}(a, b) and s \sim \text{Bernoulli}(0.5)
C. x' = x + \epsilon where \epsilon \sim \text{Poisson}(a)
D. x' = x + (-1)^s \epsilon where \epsilon \sim \text{Bernoulli}(r) and s \sim \text{Bernoulli}(0.5)
E. x' = x + \epsilon where \epsilon \sim \text{Gamma}(a, b)
```

Solution: A, B. C and D is not irreducible. E is not irreducible, since $\epsilon \sim \text{Gamma}(a, b)$ will always be larger than 0, therefore, we will never be able to reach the number that is smaller than x.

4 Gibbs Sampling

You want to run Gibbs sampling on the following graphical model. For each of the random variables below, what is the correct conditional to sample from? **Note:** If there are multiple correct answers, select the one that conditions upon the fewest number of random variables.

Problem 19. [1 points] Sample A.

A. p(A) (sample from the prior)

B. p(A|B,C)

C. p(A|B,C,D)

D. p(A|B,C,D,E)

E. p(A|B)

F. None of the other answers is correct.

Solution: p(A|B,C)

Problem 20. [1 points] Sample D.

- A. p(D|C, G, E, F)
- B. p(D|A, C, G, E, F, H)
- C. p(D|A,C,D)
- D. p(D)
- E. p(D|E,F)
- F. None of the other answers is correct.

Solution: p(D|C, E, F, G)

Problem 21. [1 points] Sample E.

- A. p(E)
- B. p(E|D)
- C. p(E|C, D, F, G)
- D. p(E|D,F)
- E. p(E|A, B, C, D)
- F. None of the other answers is correct.

Solution: p(E|D)

Problem 22. [1 points] Sample H.

- A. p(H)
- B. p(H|D,G)
- C. p(H|G, I, J, K)
- D. p(H|G)
- E. p(H|I, J, K)
- F. None of the other answers is correct.

Solution: p(H|G, I, J, K)

Problem 23. [1 points] Sample K.

- A. p(K)
- B. p(K|H,I,J)
- C. p(K|H)
- D. p(K|G, H, I, J, K)
- E. p(K|A, C, D, F, H)
- F. None of the other answers is correct.

Solution: p(K|H,I,J)

5 A Regression Model

Consider the following DGM,

along with the following distributions and relationships between variables:

- $A_n \sim \text{Normal}(0,1)$
- $\epsilon_{n,k} \sim \text{Normal}(0, \sigma_{\epsilon}^2)$
- $v_n \sim \text{Normal}(0, \sigma_v^2)$
- $B_{n,k} = wA_n + \epsilon_{n,k}$ where w is a scalar.
- $C_n = rA_n + \mu$ where r, μ are scalars.
- $\bullet \ D_n = C_n + v_n$

For convenience, let us define the following:

- The parameters of this model is the set $\theta = \{w, r, \mu, \sigma_{\epsilon}^2, \sigma_v^2\}$.
- Let $B_n = \{B_{n,k}\}_{k=1}^K$, i.e., for a given $n, B_n = \{B_{n,1}, B_{n,2}, \dots B_{n,K}\}$
- Likewise, let $\epsilon_n = \{\epsilon_{n,k}\}_{k=1}^K$
- \mathcal{X} is the set of the random variables $\mathcal{X} = \{A_n, B_n, \epsilon_n, C_n, v_n, D_n\}_{n=1}^N$

This is a linear regression model extended such that we may not observe A_n but instead only noisy observations B_n of it. Likewise, the targets D_n are corrupted by noise.

For the questions in this section, assume that θ are deterministic parameters (not random variables) and θ is known.

Problem 24. [2 points] Which of the following joint distributions corresponds to the given model?

A.
$$p(\mathcal{X}) = \prod_{n=1}^{N} p(D_n | C_n, v_n) p(C_n | A_n) p(A_n) p(v_n) \prod_{k=1}^{K} p(B_{n,k} | A_n, \epsilon_{n,k}) p(\epsilon_{n,k})$$

B.
$$p(\mathcal{X}) = \prod_{n=1}^{N} p(A_n, C_n | D_n, v_n) p(D_n) p(v_n) \prod_{k=1}^{K} p(B_{n,k} | D_n, C_n, \epsilon_{n,k}) p(\epsilon_{n,k})$$

C.
$$p(X) = \prod_{n=1}^{N} p(D_n, C_n | A_n, v_n) p(A_n) p(v_n) \prod_{k=1}^{K} p(A_n | B_{n,k}, \epsilon_{n,k}) p(\epsilon_{n,k})$$

D.
$$p(\mathcal{X}) = \prod_{n=1}^{N} p(D_n|A_n, v_n)p(A_n)p(v_n)$$

E.
$$p(\mathcal{X}) = p(D_n|A_n, v_n)p(A_n)p(v_n)p(B_{n,k}|A_n, \epsilon_{n,k})p(\epsilon_{n,k})$$

F. None of the other answers is correct.

Solution: A. $p(\mathcal{X}) = \prod_{n=1}^{N} p(D_n|C_n, v_n) p(C_n|A_n) p(A_n) p(v_n) \prod_{k=1}^{K} p(B_{n,k}|A_n, \epsilon_{n,k}) p(\epsilon_{n,k})$

Problem 25. [2 points] What is the covariance of A_i and $B_{j,k}$ where $i \neq j$?

A. 0

B. 1

C. w

D. r

E. wr

F. w^2r^2

G. None of the other answers is correct.

Solution: 0. From the graph, A_i and $B_{j,k}$ are independent if $i \neq j$. Therefore, $Cov(A_i, B_{j,k}) = 0$.

Problem 26. [2 points] What is the covariance of A_n and $B_{n,k}$ for a given n and k?

A. 0

B. 1

C. w

D. r

E. wr

F. w^2r^2

G. None of the other answers is correct.

Solution: $Cov(A_n, B_{n,k}) = w$

$$Cov(A_n, B_{n,k}) = \mathbb{E}[A_n - \mathbb{E}[A_n]][B_{n,k} - \mathbb{E}[B_{n,k}]]$$
(1)

$$= \mathbb{E}[A_n \cdot [wA_n + \epsilon_{n,k} - \mathbb{E}[wA_n + \epsilon_{n,k}]] \tag{2}$$

$$= \mathbb{E}[wA_n^2 + A_n\epsilon_{n,k}] \tag{3}$$

$$= w\mathbb{E}[A_n^2] + \mathbb{E}[A_n \epsilon_{n,k}] \tag{4}$$

$$= w\mathbb{E}[A_n^2] \tag{5}$$

Since $\operatorname{Var}[A_n] = -\mathbb{E}[A_n]^2 + \mathbb{E}[A_n^2] = 1$, so $\mathbb{E}[A_n^2] = 1$, and $\operatorname{Cov}(A_n, B_{n,k}) = w$.

Problem 27. [3 points] What is the variance of $B_{n,k}$?

A. 0

B. 1

C.
$$\sigma_{\epsilon}^2 + w^2$$

$$D. \ \sigma_v^2 + r^2$$

E.
$$\sigma_{\epsilon}^2 + r^2$$

$$F. \ \sigma_v^2 + w^2$$

G. None of the other answers is correct.

Solution: $\sigma_{\epsilon}^2 + w^2$

$$Var[B_{n,k}] = \mathbb{E}[B_{n,k}^2] - \mathbb{E}[B_{n,k}]^2$$

$$\mathbb{E}[B_{n,k}]^2 = \mathbb{E}[wA_n + \epsilon_{n,k}]^2 = 0$$

$$\mathbb{E}[B_{n,k}^2] = \mathbb{E}[w^2 A_n^2 + 2w A_n \epsilon_{n,k} + \epsilon_{n,k}^2] \tag{6}$$

$$= w^2 \mathbb{E}[A_n^2] + 2w \mathbb{E}[A_n \epsilon_{n,k}] + \mathbb{E}[\epsilon_{n,k}^2]$$

$$(7)$$

$$= w^2 + \sigma_{\epsilon}^2 \tag{8}$$

Since $\operatorname{Var}[\epsilon_{n,k}] = \mathbb{E}[\epsilon_{n,k}^2] - \mathbb{E}[\epsilon_{n,k}]^2 = \sigma_{\epsilon}^2$, $\mathbb{E}[\epsilon_{n,k}^2] = \sigma_{\epsilon}^2$.

Problem 28. [3 points] What is the covariance of $B_{n,k}$ and D_n ?

A. 0

B. 1

C. wr

D.
$$w^2r^2$$

E.
$$\sigma_{\epsilon}^2 + \sigma_v^2$$

F.
$$w\sigma_{\epsilon}^2 + r\sigma_v^2$$

G. None of the other answers is correct.

Solution: wr

Since $D_n = rA_n + \mu + v_n$ and $B_{n,k} = wA_n + \epsilon_{n,k}$,

$$Cov(B_{n,k}, D_n) = \mathbb{E}[B_{n,k} - \mathbb{E}[B_{n,k}]][D_n - \mathbb{E}[D_n]]$$
(9)

$$= \mathbb{E}[wA_n + \epsilon_{n,k}][rA_n + \mu + v_n - \mu] \tag{10}$$

$$= wr\mathbb{E}[A_n^2] + w\mathbb{E}[A_n v_n] + r\mathbb{E}[\epsilon_{n,k} A_n] + \mathbb{E}[\epsilon_{n,k} v_n]$$
(11)

Since A_n and v_n are independent, $\mathbb{E}[A_n v_n] = \mathbb{E}[A_n] \mathbb{E}[v_n] = 0$, Since A_n and $\epsilon_{n,k}$ are independent, $\mathbb{E}[\epsilon_{n,k} v_n] = \mathbb{E}[\epsilon_{n,k}] \mathbb{E}[A_n] = 0$, Since $\epsilon_{n,k}$ and v_n are independent, $\mathbb{E}[\epsilon_{n,k} v_n] = \mathbb{E}[\epsilon_{n,k}] \mathbb{E}[v_n] = 0$. As a result, $\text{Var}(B_{n,k}, D_n) = wr \mathbb{E}[A_n^2] = wr$.

6 Learning Parameters

We will reuse the same model as in Section 5.

Consider the following DGM,

along with the following distributions and relationships between variables:

- $A_n \sim \text{Normal}(0,1)$
- $\epsilon_{n,k} \sim \text{Normal}(0, \sigma_{\epsilon}^2)$
- $v_n \sim \text{Normal}(0, \sigma_v^2)$
- $B_{n,k} = wA_n + \epsilon_{n,k}$ where w is a scalar.
- $C_n = rA_n + \mu$ where r, μ are scalars.
- $\bullet \ D_n = C_n + v_n$

For convenience, let us define the following:

- The parameters of this model is the set $\theta = \{w, r, \mu, \sigma_{\epsilon}^2, \sigma_v^2\}$.
- Let $B_n = \{B_{n,k}\}_{k=1}^K$, i.e., for a given $n, B_n = \{B_{n,1}, B_{n,2}, \dots B_{n,K}\}$
- Likewise, let $\epsilon_n = \{\epsilon_{n,k}\}_{k=1}^K$
- \mathcal{X} is the set of the random variables $\mathcal{X} = \{A_n, B_n, \epsilon_n, C_n, v_n, D_n\}_{n=1}^N$

This is a linear regression model extended such that we may not observe A_n but instead only noisy observations B_n of it. Likewise, the targets D_n are corrupted by noise.

NOTE: For the questions in this section, θ is **unknown** and we wish to learn it from data. Assume that θ are deterministic parameters (not random variables).

Problem 29. [2 points] Suppose we observe A_n, C_n, D_n and we only want to learn the parameter r via MLE. Which of the following should we compute? If multiple solutions are similarly desirable, pick the set with the smallest number of random variables.

- A. $\arg \max_r \sum_n \log p(C_n|A_n, r)$
- B. $\arg \max_r \sum_n \log p(C_n, D_n | A_n, r)$
- C. $\arg \max_r \sum_n \log p(A_n|r)$
- D. $\arg \max_r \sum_n \log p(A_n, C_n, D_n | r)$
- E. $\arg \max_r \sum_n \log p(C_n|r)$
- F. None of the other answers is correct.

Solution: A. $\arg \max_r \sum_n \log p(C_n|A_n, r)$

Problem 30. [2 points] Suppose we only want to learn the parameter w via MLE. Which among the following random variables would we prefer to observe? If multiple solutions are similarly desirable, pick the set with the smallest number of random variables.

- A. $\{A_n, B_n, C_n, D_n\}_{n=1}^N$
- B. $\{B_n, C_n\}_{n=1}^N$
- C. $\{A_n, B_n, \epsilon_n\}_{n=1}^N$
- D. $\{B_n, C_n, \epsilon_n\}_{n=1}^{N}$
- E. $\{B_n, C_n, D_n, \epsilon_n\}_{n=1}^{N}$
- F. $\{A_n, B_n, C_n, D_n, \epsilon_n, v_n\}_{n=1}^{N}$
- G. None of the other answers is correct.

Solution: C. $\{A_n, B_n, \epsilon_n\}_{n=1}^N$

Problem 31. [2 points] Suppose we only observe $\mathcal{O} = \{B_n, D_n\}_{n=1}^N$ and want to learn the parameters θ via MLE. Which of the following statements is correct?

- A. The likelihood is tractable and we can directly optimize it using an off-the-shelf optimizer.
- B. The likelihood is intractable due to the latent variables. We can learn the parameters via EM.
- C. The likelihood is intractable due to the latent variables. Also, the posterior over the latent variables is intractable. We can learn the parameters via Monte-Carlo EM or variational inference.
- D. None of the other statements is correct.

Solution: A. This is a variant of the linear Gaussian model. The likelihood is tractable and we can directly optimize it using an off-the-shelf optimizer.

Problem 32. [2 points] Suppose we only observe $\mathcal{O} = \{B_n, D_n\}_{n=1}^N$ and want to learn the parameters θ via Expectation Maximization. Consider that we first simplify the model by analytically marginalizing out ϵ_n, v_n , and C_n . Which of the following posteriors is needed to form the $Q(\theta, \theta^{old})$ function? Pick the best answer among the following.

- A. $\prod_{n=1}^{N} p(A_n|B_n, D_n, \theta^{old})$
- B. $\prod_{n=1}^{N} p(A_n, B_n, D_n, \theta^{old})$
- C. $\prod_{n=1}^{N} p(C_n, \epsilon_n, v_n | B_n, D_n, \theta^{old})$
- D. $\prod_{n=1}^{N} p(B_n, \epsilon_n, v_n | A_n, D_n, \theta^{old})$
- E. $\prod_{n=1}^{N} p(B_n, D_n | A_n, D_n, \epsilon_n, v_n, \theta^{old})$
- F. $\prod_{n=1}^{N} p(B_n, D_n | A_n, D_n, \theta^{old})$
- G. None of the other answers is correct.

Solution: $\prod_{n=1}^{N} p(A_n|B_n, D_n, \theta^{old})$. Since B_n, D_n are observed, ϵ_n, v_n , and C_n are safely marginalized out, the only unobserved (latent) variable is A_n . Then, the posterior should be $p(A_{1:N}|B_{1:N}, D_{1:N}, \theta^{old}) = \prod_{n=1}^{N} p(A_n|B_n, D_n, \theta^{old})$.

Problem 33. [3 points] Given observations $\mathcal{O} = \{B_n, D_n\}_{n=1}^N$ and parameters θ . What is the variance of the conditional $p(A_n|\mathcal{O})$?

A.
$$[1 + \sigma_v^{-2}r^2 + \sigma_\epsilon^{-2} \sum_{k=1}^K w^2]^{-1}$$

B.
$$1 + \sigma_v^{-2} r^2 + \sigma_{\epsilon}^{-2} \sum_{k=1}^K w^2$$

C.
$$\left[\sigma_v^{-2}r^2 + \sigma_\epsilon^{-2} \sum_{k=1}^K w^2\right]^{-1}$$

D.
$$1 + \sigma_{\epsilon}^{-2} r^2 + \sigma_v^{-2} \sum_{k=1}^{K} w^2$$

E.
$$\left[\sigma_{\epsilon}^{-2} + \sigma_{v}^{-2} \sum_{k=1}^{K} w^{2}\right]^{-1}$$

F. None of the other answers is correct.

Solution: $[1 + \sigma_v^{-2} r^2 + \sigma_\epsilon^{-2} \sum_{k=1}^K w^2]^{-1}$. Refer to Tutorial 6 question 1.c hint.

Problem 34. [2 points] Given observations $\mathcal{O} = \{B_n, D_n\}_{n=1}^N$, suppose we wish to learn θ (still deterministic parameters) by maximizing a variational lower-bound. As before, we first simplify the model by analytically marginalizing out ϵ_n, v_n , and C_n . The variational distribution q should be over which of the following sets of random variables? If multiple answers are correct, pick the one with the smallest number of random variables.

A.
$$\{A_n, B_n, C_n, D_n\}_{n=1}^N$$

B.
$$\{A_n, B_n, C_n\}_{n=1}^N$$

C.
$$\{A_n\}_{n=1}^N$$

D.
$$\{A_n, D_n\}_{n=1}^N$$

$$E. \{C_n\}_{n=1}^N$$

F.
$$\{B_n, C_n\}_{n=1}^N$$

G. None of the other answers is correct.

Solution: C. $\{A_n\}_{n=1}^N$. Since B_n, D_n are observed, ϵ_n, v_n , and C_n are safely marginalized out, the only unobserved (latent) variable is A_n . Then, the variational distribution should be over $\{A_n\}_{n=1}^N$

Problem 35. [3 points] Given observations $\mathcal{O} = \{B_n, D_n\}_{n=1}^N$, suppose we wish to learn θ by optimizing a variational lower-bound. As before, we first simplify the model by analytically marginalizing out ϵ_n, v_n , and C_n and introduce a variational distribution q. Which of the following lower-bounds should we maximize given the model? The expectations are taken with respect to q

A.
$$\sum_{n=1}^{N} \left[\mathbb{E}[\log \mathcal{N}(D_n, C_n | rA_n + \mu, \sigma_v^2)] - \mathbb{D}_{\mathrm{KL}}[q(A_n) \| p(A_n)] + \sum_{k=1}^{K} \mathbb{E}[\log \mathcal{N}(B_{n,k} | wA_k, \sigma_\epsilon^2)] \right]$$

B.
$$\sum_{n=1}^{N} \left[\mathbb{E}[\log \mathcal{N}(D_n | rA_n + \mu, \sigma_v^2)] - \mathbb{D}_{\mathrm{KL}}[q(A_n) | | p(A_n)] + \sum_{k=1}^{K} \mathbb{E}[\log \mathcal{N}(B_{n,k} | wA_k, \sigma_\epsilon^2)] \right]$$

C.
$$\sum_{n=1}^{N} \left[\mathbb{E}[\log \mathcal{N}(D_n | rA_n + \mu, \sigma_v^2)] + \sum_{k=1}^{K} \mathbb{E}[\log \mathcal{N}(B_{n,k} | wA_k, \sigma_\epsilon^2)] \right]$$

D.
$$\sum_{n=1}^{N} \left[\mathbb{E}[\log \mathcal{N}(D_n | wA_n + \mu, \sigma_v^2)] - \mathbb{D}_{\mathrm{KL}}[q(A_n) || p(A_n)] + \sum_{k=1}^{K} \mathbb{E}[\log \mathcal{N}(B_{n,k} | rA_k, \sigma_\epsilon^2)] \right]$$

$$\text{E. } \sum_{n=1}^{N} \left[\mathbb{E}[\log \mathcal{N}(D_n | rA_n + \mu, \sigma_v^2)] - \mathbb{D}_{\text{KL}}[q(A_n) \| p(A_n)] - \mathbb{D}_{\text{KL}}[q(C_n) \| p(C_n)] + \sum_{k=1}^{K} \mathbb{E}[\log \mathcal{N}(B_{n,k} | wA_k, \sigma_\epsilon^2)] \right]$$

F. None of the other answers is correct.

Solution: B. $\sum_{n=1}^{N} \left[\mathbb{E}[\log \mathcal{N}(D_n | rA_n + \mu, \sigma_v^2)] - \mathbb{D}_{\mathrm{KL}}[q(A_n) || p(A_n)] + \sum_{k=1}^{K} \mathbb{E}[\log \mathcal{N}(B_{n,k} | wA_k, \sigma_\epsilon^2)] \right]$

$$ELBO = \sum_{n=1}^{N} \left[\mathbb{E}_{q(A_n)} \left[\log \frac{p(A_n, B_n, D_n)}{q(A_n)} \right] \right]$$

$$(12)$$

$$= \sum_{n=1}^{N} \left[\mathbb{E}_{q(A_n)} [\log p(D_n | A_n) \prod_{k=1}^{K} p(B_{n,k} | A_n) - \log q(A_n)] \right]$$
(13)

$$= \sum_{n=1}^{N} \left[\mathbb{E}_{q(A_n)}[\log p(D_n|A_n)] + \sum_{k=1}^{K} \mathbb{E}_{q(A_n)}[\log p(B_{n,k}|A_n)] - \mathbb{E}_{q(A_n)}[\log \frac{q(A_n)}{p(A_n)}] \right]$$
(14)

$$= \sum_{n=1}^{N} \left[\mathbb{E}_{q(A_n)} [\log p(D_n | A_n)] + \sum_{k=1}^{K} \mathbb{E}_{q(A_n)} [\log p(B_{n,k} | A_n)] - \mathbb{D}_{KL}(q(A_n) | | p(A_n)) \right]$$
(15)

$$= \sum_{n=1}^{N} \left[\mathbb{E}[\log \mathcal{N}(D_n | rA_n + \mu, \sigma_v^2)] - \mathbb{D}_{\mathrm{KL}}[q(A_n) || p(A_n)] + \sum_{k=1}^{K} \mathbb{E}[\log \mathcal{N}(B_{n,k} | wA_k, \sigma_\epsilon^2)] \right]$$
(16)

End of Paper