# **SPECIFICATION**

Product Type : IC

Model Number: IL0373

Prepared : AiMing Wei Checked : YongCheng Jian

Approved : Boris Ren Issue Date : 2016.04.07



No.17 Gonghua Street, Shahekou District, Dalian 116021 China Tel: +86-411-84619565 Fax: +86-411-84619585-810 Email: info@good-display.com

Website: www.good-display.com



## **Table of Content**

| INTRODUCTION               | 3  |
|----------------------------|----|
| MAIN APPLICATIONS          | 3  |
| FEATURE HIGHLIGHTS         | 3  |
| BLOCK DIAGRAM              | 4  |
| ORDERING INFORMATION       | 5  |
| PIN DESCRIPTION            | 6  |
| COMMAND TABLE              | 8  |
| COMMAND DESCRIPTION        | 11 |
| HOST INTERFACES            | 27 |
| POWER MANAGEMENT           | 28 |
| ABSOLUTE MAXIMUM RATINGS   | 33 |
| DC CHARACTERISTICS         | 34 |
| AC CHARACTERISTICS         | 36 |
| PHYSICAL DIMENSIONS        | 38 |
| ALIGNMENT MARK INFORMATION | 39 |
| PAD COORDINATES            | 40 |
| TRAY INFORMATION           | 47 |
| REVISION HISTORY           | 48 |



#### INTRODUCTION

This driver is an all-in-one driver with timing controller for ESL. Its output is of 1-bit white/black and 1-bit red resolution per pixel. The timing controller provides control signals for the source driver and gate drivers.

The DC-DC controller allows it to generate the source output voltage VDH/VDL ( $\pm 2.4 \text{V} \sim \pm 11 \text{V}$ ). The chip also includes an output buffer for the supply of the COM electrode (VCOMAC or VCOMDC). The system is configurable through a 3-wire/4-wire (SPI) serial interface.

#### MAIN APPLICATIONS

E-tag application

#### **FEATURE HIGHLIGHTS**

- System-on-chip (SOC) for ESL
- Timing controller supports several all-resolutions
- · Resolution:
  - Up to 160 source x 296 gate resolution
     + 1 border + 1 Vcom
  - 1 bit for white/black and 1 bit for red per pixel
- · Cascade: Up to 2 chip cascade mode
- Memory (Max.): 160 x 296 x 2 bits SRAM
- 3-wire/4-wire (SPI) serial interface

- Clock rate up to 20MHz
- Temperature sensor:
  - On-Chip:  $-25\sim50$  °C  $\pm 2.0$  °C / 8-bit status
  - Off-Chip: -55~125°C  $\pm 2.0$ °C /11-bit status ( $1^2$ C/LM75)
- Support LPD, Low Power Detection (VDD<2.5V)</li>
- OSC / PLL: On-chip RC oscillator (1.625MHz ± 5%)
- V/com

AC-Vcom / DC-Vcom (by LUT)
Support Vcom sensing (6-bit digital status)

• Charge Pump: On-chip booster and regulator:

VGH: +16V VGL: -16V

VDH: +2.4 ~ +11.0V (programmable, black/white) VDL: -2.4 ~ -11.0V (programmable, black/white) VDHR: +2.4 ~ +11.0V (programmable, red)

- Digital supply voltage: 2.3~ 3.6V
- OTP: 4K-byte OTP for LUT
- Package: (TBD)
- COM/SEG bump information

Bump pitch: 26 µM

Bump gap:  $14 \mu M \pm 3 \mu M$ Bump surface:  $1200 \mu M^2$ 



#### **BLOCK DIAGRAM**





## PIN DESCRIPTION

Type: I: Input, O: Output, I/O: Input/Output, PWR: Power, C: Capacitor pin

| Pin (Pad) Name | Pin Count | Туре                | Description                                                                                                                                                                                                  |
|----------------|-----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |           |                     | Power Supply Pins                                                                                                                                                                                            |
| VDD            | 7         | PWR                 | Digital power                                                                                                                                                                                                |
| AVDD (VDDA)    | 10        | PWR                 | Analog power                                                                                                                                                                                                 |
| VDDIO          | 10        | PWR                 | IO power                                                                                                                                                                                                     |
| VDDDO          | 4         | PWR                 | Digital power output (1.8V)                                                                                                                                                                                  |
| VDDD           | 4         | PWR                 | Digital power input (1.8V)                                                                                                                                                                                   |
| VPP            | 6         | PWR                 | OTP program power (7.75V)                                                                                                                                                                                    |
| VDM            | 4         | PWR                 | Analog Ground.                                                                                                                                                                                               |
| GND            | 18        | PWR                 | Digital Ground.                                                                                                                                                                                              |
| GNDA           | 17        | PWR                 | Analog Ground                                                                                                                                                                                                |
|                |           |                     | LDO Pins                                                                                                                                                                                                     |
| VDH (VSH)      | 10        | I/O                 | Positive source driver Voltage (+2.4V ~ +11V)                                                                                                                                                                |
| VDHR           | 8         | I/O                 | Positive source driver voltage for Red (+2.4V ~ +11V)                                                                                                                                                        |
| VDL (VSL)      | 10        | I/O                 | Negative source driver voltage (-2.4V ~ -11V)                                                                                                                                                                |
|                |           | Co                  | ONTROL INTERFACE PINS                                                                                                                                                                                        |
| BS             | 1         | ı                   | Bus Selection. Select 3-wire / 4-wire SPI interface                                                                                                                                                          |
| ВЗ             | ı         | ı                   | L: 4-wire interface. H: 3-wire interface. (Default)                                                                                                                                                          |
|                |           |                     | Global reset pin. Low: reset.                                                                                                                                                                                |
| RST_N          | 1         | l<br>(Pull-up)      | When RST_N become low, driver will reset. All registers will be reset to their default value, and all driver functions will be disabled. SD output and VCOM will be based on its previous condition; and may |
|                |           |                     | have two conditions: 0V or floating.                                                                                                                                                                         |
| MS             | 1         | ı                   | Cascade setting pin. L: Slave chip.                                                                                                                                                                          |
| IVIS           | '         | 1                   | H: Master chip.                                                                                                                                                                                              |
|                |           |                     | Clock input/output pin.                                                                                                                                                                                      |
| CL             | 1         | I/O                 | Master: Clock input.                                                                                                                                                                                         |
| l or           |           | 1/0                 | Slave: Clock output.                                                                                                                                                                                         |
|                |           |                     | Driver busy flag.                                                                                                                                                                                            |
| BUSY_N         | 1         | 0                   | L: Driver is Busy.                                                                                                                                                                                           |
|                |           |                     | H: Host side can send command/data to driver.                                                                                                                                                                |
|                |           | МС                  | CU INTERFACE (SPI) PINS                                                                                                                                                                                      |
| CSB            | 1         | ı                   | Serial communication chip select.                                                                                                                                                                            |
| SDA            | 1         | I/O                 | Serial communication data input/output                                                                                                                                                                       |
| SCL            | 1         | 1                   | Serial communication clock input.                                                                                                                                                                            |
| <b>F</b> 2     |           | ,                   | Command/Data input.                                                                                                                                                                                          |
| DC             | 1         | ı                   | L: command H: data                                                                                                                                                                                           |
|                |           |                     | I <sup>2</sup> C Interface                                                                                                                                                                                   |
| TSCL           | 2         | O<br>(open-drain)   | I <sup>2</sup> C clock (External pull-up resistor is necessary.)                                                                                                                                             |
| TSDA           | 2         | I/O<br>(open-drain) | I <sup>2</sup> C data (External pull-up resistor is necessary.)                                                                                                                                              |



| Pin (Pad) Name    | Pin Count | Туре | Description                                                |
|-------------------|-----------|------|------------------------------------------------------------|
|                   |           |      | OUTPUT PINS                                                |
| S0~S159           | 160       | 0    | Source driver output signals.                              |
| ( S<0>~S<159> )   | 160       | O    |                                                            |
| G[0295]           | 296       | 0    | Gate driver output signals.                                |
| ( G<0>~G<295> )   | 290       | O    |                                                            |
| VCOM              | 16        | 0    | VCOM output.                                               |
| VBD               | 0         | 0    | Border output pins.                                        |
| ( VBD<1>~VBD<2> ) | 2         | 0    |                                                            |
|                   |           |      | Booster Pins                                               |
| GDR               | 8         | 0    | N-MOS gate control                                         |
| RESE              | 2         | Р    | Current sense input for control loop.                      |
| FB                | 2         | Р    | (Keep Open.)                                               |
| VGH               | 12        | I/O  | Positive Gate voltage.                                     |
| VGL               | 16        | I/O  | Negative Gate voltage.                                     |
|                   |           |      | RESERVED PINS                                              |
| TEST1~TEST3       | 3         | I    | UltraChip reserved. Leave it floating or connected to VSS. |
| TESTVDD           | 1         | I    | UltraChip reserved. Leave it floating or connected to VSS. |
| TEST4~TEST7       | 4         | 0    | UltraChip reserved. Leave it floating.                     |
| DUMMY             | 15        | -    | UltraChip reserved. Leave it floating.                     |
| NC                | 32        |      | Not Connected.                                             |



## **COMMAND TABLE**

| #  | Command                                       | W/R | C/D | D7  | De | D5 | DΔ | D3 | חי | D1 | D0            | Registers                                | Default     |
|----|-----------------------------------------------|-----|-----|-----|----|----|----|----|----|----|---------------|------------------------------------------|-------------|
| π  | Command                                       | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0             | Negisters                                | 00h         |
| 1  | Panel Setting (PSR)                           | 0   | 1   | #   | #  | #  | #  | #  | #  | #  | #             | RES[1:0],REG,KW/R,UD,SHL,<br>SHD_N,RST_N | 0Fh         |
|    |                                               | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1             |                                          | 01h         |
|    |                                               | 0   | 1   |     |    |    |    |    |    | #  | #             | VDS_EN, VDG_EN                           | 03h         |
| _  | Dower Cotting (DMD)                           | 0   | 1   |     |    |    |    |    | #  | #  | #             | VCOM_HV,VGHL_LV[1:0]                     | 00h         |
| 2  | Power Setting (PWR)                           | 0   | 1   |     |    | #  | #  | #  | #  | #  | #             | VDH[5:0]                                 | 26h         |
|    |                                               | 0   | 1   |     |    | #  | #  | #  | #  | #  | #             | VDL[5:0]                                 | 26h         |
|    |                                               | 0   | 1   |     |    | #  | #  | #  | #  | #  | #             | VDHR[5:0]                                | 03h         |
| 3  | Power OFF (POF)                               | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 0             |                                          | <b>02</b> h |
| 4  | Power OFF Sequence Setting                    | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 1             |                                          | 03h         |
| 4  | (PFS)                                         | 0   | 1   |     |    | #  | #  |    |    |    |               | T_VDS_OF                                 | 00h         |
| 5  | Power ON (PON)                                | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 1  | 0  | 0             |                                          | 04h         |
| 6  | Power ON Measure (PMES)                       | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 1  | 0  | 1             |                                          | 05h         |
|    |                                               | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 1  | 1  | 0             |                                          | 06h         |
| 7  | Booster Soft Start (BTST)                     | 0   | 1   | #   | #  | #  | #  | #  | #  | #  | #             | BT_PHA[7:0]                              | 17h         |
| 1  | Beester con clair (B101)                      | 0   | 1   | #   | #  | #  | #  | #  | #  | #  | #             | BT_PHB[7:0]                              | 17h         |
|    |                                               | 0   | 1   |     |    | #  | #  | #  | #  | #  | #             | BT_PHC[5:0]                              | 17h         |
| 8  | Deep sleep (DSLP)                             | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 1  | 1  | 1             |                                          | 07h         |
|    | 2 cop c.cop (2 c2. )                          | 0   | 1   | 1   | 0  | 1  | 0  | 0  | 1  | 0  | 1             | Check code                               | A5h         |
|    | Display Start Transmission 1                  | 0   | 0   | 0   | 0  | 0  | 1  | 0  | 0  | 0  | 0             | B/W Pixel Data (160X296):                | 10h         |
| 9  | (DTM1, White/Black Data)                      | 0   | 1   | #   | #  | #  | #  | #  | #  | #  | #             | KPXL[1:8]                                | 00h         |
|    | (x-byte command)                              | 0   | 1   | /\( | :  | 1  | :  | :  | :  | -/ | $\overline{}$ | :                                        | :           |
|    | ,                                             | 0   | 1   | #   | #  | #  | #  | #  | #  | #  | #             | KPXL[n-1:n]                              | 00h         |
| 10 | Data Stop (DSP)                               | 0   | 0   | 0   | 0  | 0  | 1  | 0  | 0  | 0  | 1             |                                          | 11h         |
|    |                                               | 1   | 1   | #   |    |    |    |    |    |    |               |                                          | 00h         |
| 11 | Display Refresh (DRF)                         | 0   | 0   | 0   | 0  | 0  | 1  | 0  | 0  | 1  | 0             |                                          | 12h         |
|    | Display Start transmission 2                  | 0   | 0   | 0   | 0  | 0  | 1  | 0  | 0  | 1  | 1             | Red Pixel Data (160X296):                | 13h         |
| 12 | (DTM2, Red Data)                              | 0   | 1   | #   | #  | #  | #  | #  | #  | #  | #             | RPXL[1:8]                                | 00h         |
|    | (x-byte command)                              | 0   | 1   | :   | :  | :  | :  | :  | :  | :  | :             | :                                        | :           |
|    |                                               | 0   | 1   | #   | #  | #  | #  | #  | #  | #  | #             | RPXL[n-1:n]                              | 00h         |
|    | ,                                             | 0   | 0   | 0   | 0  | 1  | 0  | 0  | 0  | 0  | 0             |                                          | 20h         |
|    |                                               | 0   | 1   | #   | #  | #  | #  | #  | #  | #  | #             |                                          | 00h         |
| 1  | VOOM LUT (LUTO)                               | 0   | 1   | Ė   | :  | •  | •  | •  | •  | •  | :             |                                          | 00h         |
| 10 | VCOM LUT (LUTC)                               | 0   | 1   | Ė   | :  | •  | •  | •  | •  | •  | :             |                                          | 00h         |
| 13 | (45-byte command, bytes 2~7 repeated 7 times) | 0   | 1   | Ė   | :  | •  | •  | •  | •  | •  | :             |                                          | 00h         |
| 1  | bytes z~7 repeated 7 times)                   | 0   | 1   | :   | :  | :  | :  | ;  | :  | :  | :             |                                          | 00h         |
| 1  |                                               | 0   | 1   | #   | #  | #  | #  | #  | #  | #  | #             | OT VONES SI                              | 00h         |
| 1  |                                               | 0   | 1   |     | #  | #  | #  | #  | #  | #  | #             | ST_XON[6:0]                              | 00h         |
|    |                                               | 0   | 1   |     | #  | #  | #  | #  | #  | #  | #             | ST_CHV[6:0]                              | 00h         |



| #  | Command                                 | W/R | C/D | D7     | D6         | D5     | D4 | D3 | D2    | D1  | D0  | Registers                    | Default     |
|----|-----------------------------------------|-----|-----|--------|------------|--------|----|----|-------|-----|-----|------------------------------|-------------|
|    |                                         | 0   | 0   | 0      | 0          | 1      | 0  | 0  | 0     | 0   | 1   |                              | 21h         |
|    | 1                                       | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   |                              | 00h         |
|    | W2W LUT (LUTWW)                         | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
| 14 | (42-byte command,                       | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
|    | bytes 2~7 repeated 7 times)             | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
|    | 1                                       | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
|    |                                         | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   |                              | 00h         |
|    |                                         | 0   | 0   | 0      | 0          | 1      | 0  | 0  | 0     | 1   | 0   |                              | <b>22</b> h |
|    |                                         | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   |                              | 00h         |
|    | B2W LUT (LUTBW / LUTR)                  | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
| 15 | (42-byte command,                       | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
|    | bytes 2~7 repeated 7 times)             | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
|    |                                         | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
|    |                                         | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   |                              | 00h         |
|    | 1                                       | 0   | 0   | 0      | 0          | 1      | 0  | 0  | 0     | 1   | 1   |                              | 23h         |
|    | 1                                       | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   |                              | 00h         |
|    | W2B LUT (LUTWB / LUTW)                  | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
| 16 | (42-byte command,                       | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
|    | bytes 2~7 repeated 7 times)             | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
|    | 1                                       | 0   | 1   | :      | :          | :      | :  | :  | :     | ١:, | ) : |                              | 00h         |
|    |                                         | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   |                              | 00h         |
|    |                                         | 0   | 0   | 0      | 0          | 1      | 0  | 0  | 1     | 0   | 0   |                              | 24h         |
|    |                                         | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   |                              | 00h         |
|    | B2B LUT (LUTBB / LUTB)                  | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
| 17 | (42-byte command,                       | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
|    | bytes 2~7 repeated 7 times)             | 0   | 1   | :      | :          | :      | :  | :  | :     | :   | :   |                              | 00h         |
|    |                                         | 0   | 1   | :      | :          | :      | :  | :  | :<br> | :   | :   |                              | 00h         |
|    |                                         | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   |                              | 00h         |
| 18 | PLL control (PLL)                       | 0   | 0   | 0      | 0          | 1 "    | 1  | 0  | 0     | 0   | 0   | MIO OL NICO OL               | 30h         |
|    |                                         | 0   | 1   |        |            | #      | #  | #  | #     | #   | #   | M[2:0], N[2:0]               | 3Ch         |
| 19 | Temperature Sensor Calibration          | 0   | 0   | 0 4    | 1 4        | 0      | 0  | 0  | 0     | 0   | 0   | LM(40-21 / TCD(7-01          | 40h         |
| 19 | (TSC)                                   | 1   | 1   | #      | #          | #      | #  | #  | #     | #   | #   | LM[10:3] / TSR[7:0]          | 00h         |
|    | Tarana and tarana O a a a Calla ati'a a | 0   | 0   | #<br>0 | #<br>1     | #<br>0 | 0  | 0  | 0     | 0   | 1   | LM[2:0] / -                  | 00h<br>41h  |
| 20 | Temperature Sensor Selection (TSE)      |     | _   | #      | Ī          | *      | ľ  | •  | •     | •   |     | TSE,TO[3:0]                  | 00h         |
|    | ()                                      | 0   | 0   | 0      | 1          | 0      | 0  | #  | #     | #   | #   | 135,10[3.0]                  | 42h         |
|    |                                         | 0   | 1   | #      | #          | #      | #  | #  | #     | 1 # | #   | WATTR[7:0]                   | 00h         |
| 21 | Temperature Sensor Write (TSW)          | 0   | 1   | #      | #          | #      | #  | #  | #     | # # | #   | WMSB[7:0]                    | 00h         |
|    |                                         | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   | WLSB[7:0]                    | 00h         |
|    |                                         | 0   | 0   | 0      | 1          | 0      | 0  | 0  | 0     | 1   | 1   | WLOB[1.0]                    | 43h         |
| 22 | Temperature Sensor Read (TSR)           | 1   | 1   | #      | #          | #      | #  | #  | #     | #   | #   | RMSB[7:0]                    | 00h         |
|    | Tomporature defisor Read (TOR)          | 1   | 1   | #      | #          | #      | #  | #  | #     | #   | #   | RWSB[7:0]<br>RLSB[7:0]       | 00h         |
|    | Vcom and data interval setting          | 0   | 0   | 0      | 1          | 0      | 1  | 0  | 0     | 0   | 0   | INLOD[1.0]                   | 50h         |
| 23 | (CDI)                                   | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   | VBD[1:0], DDX[1:0], CDI[3:0] | D7h         |
|    |                                         | 0   | 0   | 0      | 1          | 0      | 1  | 0  | 0     | 0   | 1   | VDD[1.0], DDA[1.0], ODI[0.0] | 51h         |
| 24 | Lower Power Detection (LPD)             | 1   | 1   |        | <u>-</u> - |        |    |    |       |     | #   | LPD                          | 01h         |
|    |                                         | 0   | 0   | 0      | 1          | 1      | 0  | 0  | 0     | 0   | 0   | LI D                         | 60h         |
| 25 | TCON setting (TCON)                     | 0   | 1   | #      | #          | #      | #  | #  | #     | #   | #   | S2G[3:0], G2S[3:0]           | 22h         |
|    |                                         | J   |     | π      | 17         | π      | 17 | #  | π     | #   | #   | 020[0.0], 020[0.0]           | ZZII        |



| #  | Command                    | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | Registers                                                                              | Default     |
|----|----------------------------|-----|-----|----|----|----|----|----|----|----|----|----------------------------------------------------------------------------------------|-------------|
|    |                            | 0   | 0   | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 1  |                                                                                        | 61h         |
| 26 | Resolution setting (TRES)  | 0   | 1   | #  | #  | #  | #  | #  | 0  | 0  | 0  | HRES[7:3]                                                                              | 00h         |
| 20 | resolution setting (TRES)  | 0   | 1   |    |    |    |    |    |    |    | #  | VRES[8:0]                                                                              | 00h         |
|    |                            | 0   | 1   | #  | #  | #  | #  | #  | #  | #  | #  | VICES[0.0]                                                                             | 00h         |
| 27 | Revision (REV)             | 0   | 0   | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 0  |                                                                                        | <b>70</b> h |
| _, | revision (rez v)           | 0   | 1   | #  | #  | #  | #  | #  | #  | #  | #  | LUT_REV[7:0]                                                                           | 00h         |
|    |                            | 0   | 0   | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 1  |                                                                                        | <b>71</b> h |
| 28 | Get Status (FLG)           | 1   | 1   |    | #  | #  | #  | #  | #  | #  | #  | PTL_FLAG ,I <sup>2</sup> C_ERR, I <sup>2</sup> C_BUSYN,<br>DATA_FLAG, PON, POF, BUSY_N | 02h         |
| 29 | Auto Measurement Vcom      | 0   | 0   | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |                                                                                        | 80h         |
|    | . 1410000                  | 0   | 1   |    |    | #  | #  | #  | #  | #  | #  | AMVT[1:0], XON, AMVS, AMV, AMVE                                                        | 10h         |
| 30 | Read Vcom Value(VV)        | 0   | 0   | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | V                                                                                      | 81h         |
|    | 1000 100111 10100(11)      | 1   | 1   |    |    | #  | #  | #  | #  | #  | #  | VV[5:0]                                                                                | 00h         |
| 31 | VCM_DC Setting (VDCS)      | 0   | 0   | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |                                                                                        | 82h         |
|    |                            | 0   | 1   |    |    | #  | #  | #  | #  | #  | #  | VDCS[5:0]                                                                              | 00h         |
|    |                            | 0   | 0   | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |                                                                                        | 90h         |
|    |                            | 0   | 1   | #  | #  | #  | #  | #  | 0  | 0  | 0  | HRST[7:3]                                                                              | <b>00</b> h |
|    |                            | 0   | 1   | #  | #  | #  | #  | #  | 0  | 0  | 0  | HRED[7:3]                                                                              | <b>00</b> h |
| 32 | Partial Window (PTL)       | 0   | 1   |    |    |    |    |    |    |    | #  | VRST[8:0]                                                                              | <b>00</b> h |
|    | ,                          | 0   | 1   | #  | #  | #  | #  | #  | #  | #  | #  |                                                                                        | 00h         |
|    |                            | 0   | 1   |    |    |    |    |    |    | (  | #  | VRED[8:0]                                                                              | 00h         |
|    |                            | 0   | 1   | #  | #  | #  | #  | #  | #  | #  | #  | $\mathcal{O}$                                                                          | 00h         |
|    |                            | 0   | 1   |    |    |    |    |    |    |    | #  | PT_SCAN                                                                                | 01h         |
| 33 | Partial In (PTIN)          | 0   | 0   | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 1  |                                                                                        | 91h         |
| 34 | Partial Out (PTOUT)        | 0   | 0   | 1  | 0  | 0  | 1  | 0  | 0  | 1  | 0  |                                                                                        | 92h         |
| 35 | Program Mode (PGM)         | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0, , , , , , , ,                                                                       | A0h         |
|    |                            | 0   | 1   | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | Check code = A5h                                                                       | A5h         |
| 36 | Active Progrmming (APG)    | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 1  |                                                                                        | A1h         |
|    |                            | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 1  | 0  |                                                                                        | A2h         |
|    |                            | 1   | 1   |    |    |    |    |    |    |    |    | Read Dummy                                                                             | N/A         |
| 37 | Read OTP (ROTP)            | 1   | 1   | #  | #  | #  | #  | #  | #  | #  | #  | Data of Address = 000h                                                                 | N/A         |
|    |                            | 1   | 1   | :  | :  |    | :  | :  | :  |    | :  | :                                                                                      | N/A         |
|    |                            | 1   | 1   | #  | #  | #  | #  | #  | #  | #  | #  | Data of Address = n                                                                    | N/A         |
| 38 | Cascade Setting (CCSET)    | 0   | 0   | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  |                                                                                        | E0h         |
|    | <u> </u>                   | 0   | 1   |    |    |    |    |    |    | #  | #  | TSFIX, CCEN                                                                            | 00h         |
| 39 | Force Temperauture (TSSET) | 0   | 0   | 1  | 1  | 1  | 0  | 0  | 1  | 0  | 1  |                                                                                        | E5h         |
|    | , ,                        | 0   | 1   | #  | #  | #  | #  | #  | #  | #  | #  | TS_SET[7:0]                                                                            | 00h         |

Note: (1) All other register addresses are invalid or reserved by UltraChip, and should NOT be used.

- (2) Any bits shown here as 0 must be written with a 0. All unused bits should also be set to zero. Device malfunction may occur if this is not done.
- (3) Commands are processed on the 'stop' condition of the interface.
- (4) Registers marked 'W/R' can be read, but the contents are written when the SPI command completes so the contents can be read and altered. The user can subsequently write the register to restore the contents following an SPI read.



#### **COMMAND DESCRIPTION**

#### (1) PANEL SETTING (PSR) (REGISTER: R00H)

| Action             | W/R | C/D | D7   | D6   | D5     | D4  | D3 | D2  | D1    | D0    |     |
|--------------------|-----|-----|------|------|--------|-----|----|-----|-------|-------|-----|
| Setting the panel  | 0   | 0   | 0    | 0    | 0      | 0   | 0  | 0   | 0     | 0     | 00h |
| Setting the parier | 0   | 1   | RES1 | RES0 | REG_EN | BWR | UD | SHL | SHD_N | RST_N | 0Fh |

**RES[1:0]:** Display Resolution setting (source x gate)

00b: 96x230 (Default)Active source channels: S0 ~ S95. Active gate channels: G0 ~ G229.01b: 96x252Active source channels: S0 ~ S95. Active gate channels: G0 ~ G251.10b: 128x296Active source channels: S0 ~ S127. Active gate channels: G0 ~ G295.11b: 160x296Active source channels: S0 ~ S159. Active gate channels: G0 ~ G295.



(1) Minimum active GD is always G0 regardless of <UD>(R00H)

(2) Minimum active SD is always S0 regardless of <SHL>(R00H).

maximum resolution active resolution

**REG\_EN:** LUT selection

0: LUT from OTP. (Default)

1: LUT from register.

BWR: Black / White / Red

0: Pixel with B/W/Red. Run both LU1 and LU2. (Default)

1: Pixel with B/W. Run LU1 only.

**UD:** Gate Scan Direction

0: Scan down. First line to Last line:  $Gn-1 \rightarrow Gn-2 \rightarrow Gn-3 \rightarrow ... \rightarrow G0$ 1: Scan up. (Default) First line to Last line:  $G0 \rightarrow G1 \rightarrow G2 \rightarrow ... \rightarrow Gn-1$ 

SHL: Source Shift Direction

0: Shift left. First data to Last data:  $Sn-1 \rightarrow Sn-2 \rightarrow Sn-3 \rightarrow ... \rightarrow S0$ 

1: Shift right. (Default) First data to Last data:  $S0 \rightarrow S1 \rightarrow S2 \rightarrow ... \rightarrow Sn-1$ 

SHD\_N: Booster Switch

0: Booster OFF, register data are kept, and SEG/BG/VCOM are kept 0V or floating.

1: Booster ON (Default)

When SHD\_N become LOW, charge pump will be turned OFF, register and SRAM data will keep until VDD OFF, and SD output and VCOM will remain previous condition. SHD\_N may have two conditions: 0v or floating.

RST\_N: Soft Reset

1: No effect (Default). Booster OFF, Register data are set to their default values, and SEG/BG/VCOM: 0V When RST\_N become LOW, the driver will be reset, all registers will be reset to their default value. All driver functions will be disabled. SD output and VCOM will base on previous condition. It may have two conditions: 0v or floating.



## (2) POWER SETTING (PWR) (R01H)

| Action                      | W/R | C/D | D7 | D6 | D5 | D4 | D3        | D2      | D1     | D0      |     |
|-----------------------------|-----|-----|----|----|----|----|-----------|---------|--------|---------|-----|
|                             | 0   | 0   | 0  | 0  | 0  | 0  | 0         | 0       | 0      | 1       | 01h |
|                             | 0   | 1   | -  | -  | -  | -  | -         | -       | VDS_EN | VDG_EN  | 03h |
| Selecting Internal/External | 0   | 1   | -  | -  | -  | -  | -         | VCOM_HV | VGHL_  | LV[1:0] | 00h |
| Power                       | 0   | 1   | -  | -  |    |    | VDH       | l[5:0]  |        |         | 26h |
|                             | 0   | 1   | -  | -  |    |    | VDL       | [5:0]   |        |         | 26h |
|                             | 0   | 1   | -  |    |    |    | VDHR[6:0] |         |        |         | 03h |

VDS\_EN: Source power selection

0 : External source power from VDH/VDL pins
1 : Inetrnal DC/DC function for generating VDH/VDL

VDG\_EN: Gate power selection

0 : External gate power from VGH/VGL pins1 : Internal DC/DC function for generating VGH/VGL

**VCOM\_HV:** VCOM Voltage Level 0 : VCOMH=VDH+VCOMDC, VCOML=VHL+VCOMDC

1 : VCOML=VGH, VCOML=VGL

VGHL\_LV[1:0]: VGH / VGL Voltage Level selection.

| VGHL_LV      | VGHL Voltage Level |
|--------------|--------------------|
| 00 (DEFAULT) | VGH=16V, VGL= -16V |
| 01           | VGH=15V, VGL= -15V |
| 10           | VGH=14V, VGL= -14V |
| 11           | VGH=13V, VGL= -13V |

VDH[5:0]: Internal VDHpower selection for B/W LUT.(Default value: 100110b)

| VDH    | VDH_V | VDH    | VDH_V | VDH    | VDH_V | VDH      | VDH_V  |
|--------|-------|--------|-------|--------|-------|----------|--------|
| 000000 | 2.4 V | 001100 | 4.8 V | 011000 | 7.2 V | 100100   | 9.6 V  |
| 000001 | 2.6 V | 001101 | 5.0 V | 011001 | 7.4 V | 100101   | 9.8 V  |
| 000010 | 2.8 V | 001110 | 5.2 V | 011010 | 7.6 V | 100110   | 10.0V  |
| 000011 | 3.0 V | 001111 | 5.4 V | 011011 | 7.8 V | 100111   | 10.2 V |
| 000100 | 3.2 V | 010000 | 5.6 V | 011100 | 8.0 V | 101000   | 10.4 V |
| 000101 | 3.4 V | 010001 | 5.8 V | 011101 | 8.2V  | 101001   | 10.6 V |
| 000110 | 3.6 V | 010010 | 6.0 V | 011110 | 8.4 V | 101010   | 10.8 V |
| 000111 | 3.8 V | 010011 | 6.2 V | 011111 | 8.6 V | 101011   | 11.0 V |
| 001000 | 4.0 V | 010100 | 6.4 V | 100000 | 8.8 V | (others) | 11.0 V |
| 001001 | 4.2 V | 010101 | 6.6 V | 100001 | 9.0 V |          |        |
| 001010 | 4.4 V | 010110 | 6.8 V | 100010 | 9.2 V |          |        |
| 001011 | 4.6 V | 010111 | 7.0 V | 100011 | 9.4 V |          |        |

VDL[5:0]: Internal VDL power selection for B/W LUT. (Default value: 100110b)

| VDL    | VDL_V  | VDL    | VDL_V  | VDL    | VDL_V  | VDL      | VDL_V   |
|--------|--------|--------|--------|--------|--------|----------|---------|
| 000000 | -2.4 V | 001100 | -4.8 V | 011000 | -7.2 V | 100100   | -9.6 V  |
| 000001 | -2.6 V | 001101 | -5.0 V | 011001 | -7.4 V | 100101   | -9.8 V  |
| 000010 | -2.8 V | 001110 | -5.2 V | 011010 | -7.6 V | 100110   | -10.0V  |
| 000011 | -3.0 V | 001111 | -5.4 V | 011011 | -7.8 V | 100111   | -10.2 V |
| 000100 | -3.2 V | 010000 | -5.6 V | 011100 | -8.0 V | 101000   | -10.4 V |
| 000101 | -3.4 V | 010001 | -5.8 V | 011101 | -8.2V  | 101001   | -10.6 V |
| 000110 | -3.6 V | 010010 | -6.0 V | 011110 | -8.4 V | 101010   | -10.8 V |
| 000111 | -3.8 V | 010011 | -6.2 V | 011111 | -8.6 V | 101011   | -11.0 V |
| 001000 | -4.0 V | 010100 | -6.4 V | 100000 | -8.8 V | (others) | -11.0 V |
| 001001 | -4.2 V | 010101 | -6.6 V | 100001 | -9.0 V |          |         |
| 001010 | -4.4 V | 010110 | -6.8 V | 100010 | -9.2 V |          |         |
| 001011 | -4.6 V | 010111 | -7.0 V | 100011 | -9.4 V |          |         |



| VDUDIE.01. | Internal V/DI | nower coloction   | for DAMILIT   | (Default value: 000011b) |
|------------|---------------|-------------------|---------------|--------------------------|
| VDHRIS:UI: | internal VDL  | . Dower selection | TOT B/VV LUT. | (Default value: 000011b) |

| VDH    | VDH_V | VDH    | VDH_V | VDH    | VDH_V | VDH      | VDH_V  |
|--------|-------|--------|-------|--------|-------|----------|--------|
| 000000 | 2.4 V | 001100 | 4.8 V | 011000 | 7.2 V | 100100   | 9.6 V  |
| 000001 | 2.6 V | 001101 | 5.0 V | 011001 | 7.4 V | 100101   | 9.8 V  |
| 000010 | 2.8 V | 001110 | 5.2 V | 011010 | 7.6 V | 100110   | 10.0V  |
| 000011 | 3.0 V | 001111 | 5.4 V | 011011 | 7.8 V | 100111   | 10.2 V |
| 000100 | 3.2 V | 010000 | 5.6 V | 011100 | 8.0 V | 101000   | 10.4 V |
| 000101 | 3.4 V | 010001 | 5.8 V | 011101 | 8.2V  | 101001   | 10.6 V |
| 000110 | 3.6 V | 010010 | 6.0 V | 011110 | 8.4 V | 101010   | 10.8 V |
| 000111 | 3.8 V | 010011 | 6.2 V | 011111 | 8.6 V | 101011   | 11.0 V |
| 001000 | 4.0 V | 010100 | 6.4 V | 100000 | 8.8 V | (others) | 11.0 V |
| 001001 | 4.2 V | 010101 | 6.6 V | 100001 | 9.0 V |          |        |
| 001010 | 4.4 V | 010110 | 6.8 V | 100010 | 9.2 V |          |        |
| 001011 | 4.6 V | 010111 | 7.0 V | 100011 | 9.4 V |          |        |

## (3) POWER OFF (POF) (R02H)

| Action                | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |     |
|-----------------------|-----|-----|----|----|----|----|----|----|----|----|-----|
| Turning OFF the power | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 02h |

After the Power Off command, the driver will power off following the Power Off Sequence. This command will turn off charge pump, T-con, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD becomes OFF.

SD output and Vcom will remain as previous condition, which may have 2 conditions: 0V or floating.

## (4) POWER OFF SEQUENCE SETTING (PFS) (R03H)

| Action                       | W/R | C/D | D7 | D6 | D5     | D4       | D3 | D2 | D1 | D0 |     |
|------------------------------|-----|-----|----|----|--------|----------|----|----|----|----|-----|
| Setting Power OFF sequence   | 0   | 0   | 0  | 0  | 0      | 0        | 0  | 0  | 1  | 1  | 03h |
| Setting 1 Ower Of 1 Sequence | 0   | 1   | -  | -  | T_VDS_ | OFF[1:0] | -  | -  | -  | -  | 00h |

T\_VDS\_OFF[1:0]: Power OFF Sequence of VDH and VDL.

**00b: 1 frame (Default)** 01b: 2

01b: 2 frames

10b: 3 frames

11b: 4 frame

#### (5) POWER ON (PON) (REGISTER: R04H)

|                      |     | 1   |    |    |    |    |    |    |    |    | _   |
|----------------------|-----|-----|----|----|----|----|----|----|----|----|-----|
| Action               | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |     |
| Turning ON the power | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 04h |

After the Power ON command, the driver will be powered ON following the Power ON Sequence. Refer to the Power ON Sequence section.

#### (6) POWER ON MEASURE (PMES) (R05H)

| Action | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |     |
|--------|-----|-----|----|----|----|----|----|----|----|----|-----|
|        | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 05h |

This command enables the internal bandgap, which will be cleared by the next POF.



#### (7) BOOSTER SOFT START (BTST) (R06H)

| Action                     | W/R | C/D | D7      | D6      | D5      | D4      | D3      | D2      | D1      | D0      |     |
|----------------------------|-----|-----|---------|---------|---------|---------|---------|---------|---------|---------|-----|
|                            | 0   | 0   | 0       | 0       | 0       | 0       | 0       | 1       | 1       | 0       | 06h |
| Starting data transmission | 0   | 1   | BT_PHA7 | BT_PHA6 | BT_PHA5 | BT_PHA4 | BT_PHA3 | BT_PHA2 | BT_PHA1 | BT_PHA0 | 17h |
|                            | 0   | 1   | BT_PHB7 | BT_PHB6 | BT_PHB5 | BT_PHB4 | BT_PHB3 | BT_PHB2 | BT_PHB1 | BT_PHB0 | 17h |
|                            | 0   | 1   | -       | -       | BT_PHC5 | BT_PHC4 | BT_PHC3 | BT_PHC2 | BT_PHC1 | BT_PHC0 | 17h |

BTPHA[6:5]: Soft start period of phase A.

**00b: 10mS** 01b: 20mS 10b: 30mS 11b: 40mS

BTPHA[4:3]: Driving strength of phase A

000b: strength 1 001b: strength 2 **010b: strength 3** 011b: strength 4

000b: strength 5 001b: strength 6 010b: strength 7 011b: strength 8 (strongest)

BTPHA[2:0]: Minimum OFF time setting of GDR in phase B

 000b: 0.27uS
 001b: 0.34uS
 010b: 0.40uS
 011b: 0.54uS

 100b: 0.80uS
 101b: 1.54uS
 110b: 3.34uS
 111b: 6.58uS

BTPHB[6:5]: Soft start period of phase B.

**00b: 10mS** 01b: 20mS 10b: 30mS 11b: 40mS

BTPHB[4:3]: Driving strength of phase B

000b: strength 1 001b: strength 2 **010b: strength 3** 011b: strength 4

000b: strength 5 001b: strength 6 010b: strength 7 011b: strength 8 (strongest)

BTPHB[2:0]: Minimum OFF time setting of GDR in phase B

BTPHC[4:3]: Driving strength of phase C

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

000b: strength 5 001b: strength 6 010b: strength 7 011b: strength 8 (strongest)

BTPHC[2:0]: Minimum OFF time setting of GDR in phase C

000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS 100b: 0.80uS 101b: 1.54uS 110b: 3.34uS **111b: 6.58uS** 

#### (8) DEEP SLEEP (DSLP) (R07H)

| Action     | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |    |
|------------|-----|-----|----|----|----|----|----|----|----|----|----|
| Deep Sleep | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 07 |
| Беер Зіеер | 0   | 1   | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | A5 |

After this command is transmitted, the chip would enter the deep-sleep mode to save power.

The deep sleep mode would return to standby by hardware reset.

The only one parameter is a check code, the command would be excuted if check code = 0xA5.



#### (9) DATA START TRANSMISSION 1 (DTM1) (R10H)

| Action                     | W/R | C/D | D7         | D6         | D5         | D4         | D3         | D2         | D1         | D0       |     |
|----------------------------|-----|-----|------------|------------|------------|------------|------------|------------|------------|----------|-----|
|                            | 0   | 0   | 0          | 0          | 0          | 1          | 0          | 0          | 0          | 0        | 10h |
| Starting data transmission | 0   | 1   | Pixel1     | Pixel2     | Pixel3     | Pixel4     | Pixel5     | Pixel6     | Pixel7     | Pixel8   | 00h |
|                            | 0   | 1   | :          | :          | :          | :          | :          | :          | :          | :        | 00h |
|                            | 0   | 1   | Pixel(n-7) | Pixel(n-6) | Pixel(n-5) | Pixel(n-4) | Pixel(n-3) | Pixel(n-2) | Pixel(n-1) | Pixel(n) | 00h |

This command starts transmitting data and write them into SRAM. To complete data transmission, command DSP (Data transmission Stop) must be issued. Then the chip will start to send data/VCOM for panel.

In B/W mode, this command writes "OLD" data to SRAM.

In B/W/Red mode, this command writes "B/W" data to SRAM.

In Program mode, this command writes "OTP" data to SRAM for programming.

#### (10) DATA STOP (DSP) (R11H)

| Action                     | W/R | C/D | D7        | D6 | D5 | D4 | D3 | D2 | D1 | D0 |     |
|----------------------------|-----|-----|-----------|----|----|----|----|----|----|----|-----|
| Stopping data transmission | 0   | 0   | 0         | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 11h |
| Stopping data transmission | 1   | 1   | data_flag | -  | -  | -  | -  | -  | -  | -  | 00h |

To stop data transmission, this command must be issued to check the data\_flag.

Data\_flag: Data flag of receiving user data.

0: Driver didn't receive all the data.

1: Driver has already received all the one-frame data (DTM1 and DTM2).

After "Data Start" (10h) or "Data Stop" (11h) commands and when data\_flag=1, BUSY\_N signal will become "0" and the refreshing of panel starts.

#### (11) DISPLAY REFRESH (DRF) (R12H)

| Action                 | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|------------------------|-----|-----|----|----|----|----|----|----|----|----|
| Refreshing the display | 0   | 0   | 0  | 0  | 0  | 1  | 0  | 0  | 1  | 0  |

While user sent this command, driver will refresh display (data/VCOM) according to SRAM data and LUT.

After Display Refresh command, BUSY\_N signal will become "0" and the refreshing of panel starts.

#### (12) DATA START TRANSMISSION 2 (DTM2) (R13H)

| Action                     | W/R | C/D   | D7         | D6         | D5         | D4         | D3         | D2         | D1         | D0       |     |
|----------------------------|-----|-------|------------|------------|------------|------------|------------|------------|------------|----------|-----|
|                            | 0   | 0     | 0          | 0          | 0          | 1          | 0          | 0          | 0          | 0        | 13h |
| Starting data transmission | 0   | ) 1 ( | Pixel1     | Pixel2     | Pixel3     | Pixel4     | Pixel5     | Pixel6     | Pixel7     | Pixel8   | 00h |
|                            | 0~  | 1     | / :        | :          | :          | :          | :          | :          | :          | :        | 00h |
|                            | 0   | 11    | Pixel(n-7) | Pixel(n-6) | Pixel(n-5) | Pixel(n-4) | Pixel(n-3) | Pixel(n-2) | Pixel(n-1) | Pixel(n) | 00h |

This command starts transmitting data and write them into SRAM. To complete data transmission, command DSP (Data transmission Stop) must be issued. Then the chip will start to send data/VCOM for panel.

In B/W mode, this command writes "NEW" data to SRAM.

In B/W/Red mode, this command writes "RED" data to SRAM.



#### (13) VCOM LUT (LUTC) (R20H)

| Action                       | W/R | C/D | D7                 | D6      | D5      | D4       | D3       | D2      | D1      | D0      |     |
|------------------------------|-----|-----|--------------------|---------|---------|----------|----------|---------|---------|---------|-----|
|                              | 0   | 0   | 0                  | 0       | 1       | 0        | 0        | 0       | 0       | 0       | 20h |
|                              | 0   | 1   | LEVEL S            | ELECT-0 | LEVEL S | ELECT-1  | LEVEL S  | ELECT-2 | LEVEL S | ELECT-3 | 00h |
|                              | 0   | 1   |                    |         | NU      | JMBER O  | FRAMES   | 6-0     |         |         | 00h |
| Build Look-up Table for VCOM | 0   | 1   |                    |         | NU      | JMBER O  | FRAMES   | S-1     |         |         | 00h |
| (45-byte command,            | 0   | 1   | NUMBER OF FRAMES-2 |         |         |          |          |         |         |         |     |
| bytes 2~7 repeated 7 times)  | 0   | 1   |                    |         | NU      | JMBER OI | FRAMES   | 3-3     |         |         | 00h |
|                              | 0   | 1   |                    |         |         | TIMES TO | REPEAT   |         |         |         | 00h |
|                              | 0   | 1   | 1 - ST_XON[6:0]    |         |         |          |          |         |         | 00h     |     |
|                              | 0   | 1   | -                  |         |         | S        | T_CHV[6: | 0]      |         |         | 00h |

This command stores VCOM Look-Up Table with 7 groups of data. Each group contains information for one state and is stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.

#### Bytes 2, 8, 14, 20, 26, 32, 38:

Level Selection.

00b: VCM\_DC

01b: VDH+VCM\_DC (VCOMH)

10b: VDL+VCM\_DC (VCOML)

11b: Floating

#### Bytes 3~6, 9~12, 15~18, 21~24, 27~30, 33~36, 39~42:

Number of Frames

0000 0000b: 0 frame

: :

1111 1111b: 256 frames

## Bytes 7, 13, 19, 25, 31, 37, 43:

Times to Repeat

0000 0000b: 0 time

: :

1111 1111b: 256 times

#### Bytes 44:

All Gate ON (ST\_XON [6:0] one hot for each state, ST\_XON [0] for state-1, ST\_XON [1] for state-2 .....)

0000 0000b: no All Gate ON

0000 0001b: State-1 All Gate ON

0000 0011b: State-1 and State2 All Gate ON

: :

#### Bytes 45:

VCOM High Voltage (ST\_CHV [6:0] one hot for each state, ST\_CHV [0] for state-1, ST\_CHV [1] for state-2 .....)

0000 0000b: no VCOM High Voltage

0000 0001b: State-1 VCOM High Voltage

0000 0011b: State-1 and State2 VCOM High Voltage

: :



#### (14) W2W LUT (LUTWW) (R21H)

| Action                                 | W/R | C/D                | D7      | D6                 | D5      | D4      | D3      | D2      | D1      | D0      |     |  |  |
|----------------------------------------|-----|--------------------|---------|--------------------|---------|---------|---------|---------|---------|---------|-----|--|--|
|                                        | 0   | 0                  | 0       | 0                  | 1       | 0       | 0       | 0       | 0       | 1       | 21h |  |  |
| D. H.                                  | 0   | 1                  | LEVEL S | ELECT-0            | LEVEL S | ELECT-1 | LEVEL S | ELECT-2 | LEVEL S | ELECT-3 | 00h |  |  |
| Build<br>White Look-up Table for W2W   | 0   | NUMBER OF FRAMES-0 |         |                    |         |         |         |         |         |         | 00h |  |  |
| (43-byte command,                      | 0   | 1                  |         | NUMBER OF FRAMES-1 |         |         |         |         |         |         |     |  |  |
| bytes 2~7 repeated 7 times)            | 0   | 1                  |         |                    | NU      | JMBER O | FRAMES  | 5-2     |         |         | 00h |  |  |
| 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, | 0   | 1                  |         | NUMBER OF FRAMES-3 |         |         |         |         |         |         |     |  |  |
|                                        | 0   | 1                  |         | TIMES TO REPEAT    |         |         |         |         |         |         |     |  |  |

This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is stored with 6 bytes, while the sixth byte indicates how many times that phase will repeat.

#### Bytes 2, 8, 14, 20, 26, 32, 38:

Level Selection.

00b: GND 01b: VDH 10b: VDL 11b: VDHR

#### Bytes 3~6, 9~12, 15~18, 21~24, 27~30, 33~36, 39~42:

Number of Frames

0000 0000b: 0 frame

: :

1111 1111b: 256 frames

#### Bytes 7, 13, 19, 25, 31, 37, 43:

Times to Repeat

0000 0000b: 0 time

: :

1111 1111b: 256 times

#### (15) B2W LUT (LUTBW / LUTR) (R22H)

This command builds Look-up Table for Black-to-White. Please refer to W2W LUT (LUTWW) for similar definition details.

#### (16) W2B LUT (LUTWB / LUTW) (R23H)

This command builds Look-up Table for White-to-Black. Please refer to W2W LUT (LUTWW) for similar definition details.

## (17) B2B LUT (LUTBB / LUTB) (R24H)

This command builds Look-up Table for Black-to-Black. Please refer to W2W LUT (LUTWW) for similar definition details.



## (18) PLL CONTROL (PLL) (R30H)

| Action           | W/R | C/D | D7 | D6 | D5 | D4     | D3 | D2 | D1     | D0 |     |
|------------------|-----|-----|----|----|----|--------|----|----|--------|----|-----|
| Controlling PLL  | 0   | 0   | 0  | 0  | 1  | 1      | 0  | 0  | 0      | 0  | 30h |
| Controlling 1 EE | 0   | 1   | -  | -  |    | M[2:0] |    |    | N[2:0] |    | 3Ch |

The command controls the PLL clock frequency. The PLL structure must support the following frame rates:

| М | Ν | Frame rate |
|---|---|------------|
|   | 1 | 29 Hz      |
|   | 2 | 14 Hz      |
|   | 3 | 10 Hz      |
| 1 | 4 | 7 Hz       |
|   | 5 | 6 Hz       |
|   | 6 | 5 Hz       |
|   | 7 | 4 Hz       |
|   | 1 | 57 Hz      |
|   | 2 | 29 Hz      |
|   | 3 | 19 Hz      |
| 2 | 4 | 14 Hz      |
|   | 5 | 11 Hz      |
|   | 6 | 10 Hz      |
|   | 7 | 8 Hz       |

| M | Ν | Frame rate |
|---|---|------------|
|   | 1 | 86 Hz      |
|   | 2 | 43 Hz      |
|   | 3 | 29 Hz      |
| 3 | 4 | 21 Hz      |
|   | 5 | 17 Hz      |
|   | 6 | 14 Hz      |
|   | 7 | 12 Hz      |
|   | 1 | 114 Hz     |
|   | 2 | 57 Hz      |
|   | 3 | 38 Hz      |
| 4 | 4 | 29 Hz      |
|   | 5 | 23 Hz      |
|   | 6 | 19 Hz      |
|   | 7 | 16 Hz      |
|   |   |            |

| М | Ν | Frame rate |
|---|---|------------|
|   | 1 | 150 Hz     |
|   | 2 | 72 Hz      |
|   | 3 | 48Hz       |
| 5 | 4 | 36 Hz      |
|   | 5 | 29 Hz      |
|   | 6 | 24 Hz      |
|   | 7 | 20 Hz      |
|   | 1 | 171 Hz     |
|   | 2 | 86 Hz      |
|   | 3 | 57 Hz      |
| 6 | 4 | 43 Hz      |
|   | 5 | 34 Hz      |
|   | 6 | 29 Hz      |
|   | 7 | 24 Hz      |
|   |   |            |





## (19) TEMPERATURE SENSOR CALIBRATION (TSC) (R40H)

| Action              | W/R | C/D | D7      | D6     | D5     | D4     | D3       | D2       | D1       | D0       |     |
|---------------------|-----|-----|---------|--------|--------|--------|----------|----------|----------|----------|-----|
|                     | 0   | 0   | 0       | 1      | 0      | 0      | 0        | 0        | 0        | 0        | 40h |
| Sensing Temperature | 1   | 1   | D10/TS7 | D9/TS6 | D8/TS5 | D7/TS4 | D6 / TS3 | D5 / TS2 | D4 / TS1 | D3 / TS0 | 00h |
|                     | 1   | 1   | D2      | D1     | D0     | -      | -        | -        | -        | -        | 00h |

This command reads the temperature sensed by the temperature sensor.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor value.

**D[10:0]:** When TSE (R41h) is set to 1, this command reads external LM75 temperature sensor value.



#### (20) TEMPERATURE SENSOR ENABLE (TSE) (R41H)

| Action                        | W/R | C/D | D7  | D6 | D5 | D4 | D3 | D2  | D1   | D0 |     |
|-------------------------------|-----|-----|-----|----|----|----|----|-----|------|----|-----|
| Calibrate Temperature Sensor  | 0   | 0   | 0   | 1  | 0  | 0  | 0  | 0   | 0    | 1  | 41h |
| Calibrate Temperature Serisor | 0   | 1   | TSE | -  | -  | -  |    | TO[ | 3:0] |    | 00h |

This command selects Internal or External temperature sensor.

TSE: Internal temperature sensor switch

0: Enable (default)

1: Disable; using external sensor.

TO[3:0]: Temperature offset.

#### (21) TEMPERATURE SENSOR WRITE (TSW) (R42H)

| Action                       | W/R | C/D | D7 | D6 | D5 | D4   | D3     | D2 | D1 | D0 |     |
|------------------------------|-----|-----|----|----|----|------|--------|----|----|----|-----|
|                              | 0   | 0   | 0  | 1  | 0  | 0    | 0      | 0  | 1  | 0  | 42h |
| Calibrate Temperature Sensor | 0   | 1   |    |    |    | WATT | R[7:0] |    |    |    | 00h |
| Calibrate Temperature Sensor | 0   | 1   |    |    |    | WMS  | B[7:0] |    |    |    | 00h |
|                              | 0   | 1   |    |    |    | WLS  | B[7:0] |    |    |    | 00h |

This command reads the temperature sensed by the temperature sensor.

WATTR: **D[7:6]:** I<sup>2</sup>C Write Byte Number

> 00: 1 byte (head byte only) 01: 2 bytes (head byte + pointer)

10 : 3 bytes (head byte + pointer + 1st parameter)
11 : 4 bytes (head byte + pointer + 1st parameter + 2nd parameter)

D[5:3]: User-defined address bits (A2, A1, A0)

D[2:0]: Pointer setting

WMSB[7:0]: MSByte of write-data to external temperature sensor WLSB[7:0]: LSByte of write-data to external temperature sensor

#### (22) TEMPERATURE SENSOR READ (TSR) (R43H)

|                              |     |     |    |     | / / |      |        |    |    |    |     |
|------------------------------|-----|-----|----|-----|-----|------|--------|----|----|----|-----|
| Action                       | W/R | C/D | D7 | D6  | D5  | D4   | D3     | D2 | D1 | D0 |     |
|                              | 0   | 0   | 0  | ( 1 | 0   | 0    | 0      | 0  | 1  | 1  | 43h |
| Calibrate Temperature Sensor | 1   | / 1 |    |     |     | RMS  | B[7:0] |    |    |    | 00h |
|                              | 1   | 1   |    |     |     | RLSI | 3[7:0] |    |    |    | 00h |

This command reads the temperature sensed by the temperature sensor.

RMSB[7:0]: MSByte read data from external temperature sensor RLSB[7:0]: LSByte read data from external temperature sensor



#### (23) VCOM AND DATA INTERVAL SETTING (CDI) (R50H)

| Action               | W/R | C/D | D7  | D6    | D5  | D4     | D3 | D2  | D1    | D0 |     |
|----------------------|-----|-----|-----|-------|-----|--------|----|-----|-------|----|-----|
| Set Interval between | 0   | 0   | 0   | 1     | 0   | 1      | 0  | 0   | 0     | 0  | 50h |
| Vcom and Data        | 0   | 1   | VBD | [1:0] | DDX | ([1:0] |    | CDI | [3:0] |    | D7h |

This command indicates the interval of Vcom and data output. When setting the vertical back porch, the total blanking will be kept (20 Hsync).

VBD[1:0]: Border data selection

**DDX[1:0]:** Data polality.

DDX[1] for RED data, DDX[0] for BW data in the B/W/Red mode.

DDX[0] for B/W mode.

CDI[3:0]: Vcom and data interval

| CDI[3:0] | Vcom and Data Interval |
|----------|------------------------|
| 0000 b   | 17 hsync               |
| 0001     | 16                     |
| 0010     | 15                     |
| 0011     | 14                     |
| 0100     | 13                     |
| 0101     | 12                     |
| 0110     | 11                     |
| 0111     | 10 (Default)           |

| CDI[3:0] | Vcom and Data Interval |
|----------|------------------------|
| 1000     | 9                      |
| 1001     | 8                      |
| 1010     | 7                      |
| 1011     | 6                      |
| 1100     | 5                      |
| 1101     | 4                      |
| 1110     | 3                      |
| 1111     | 2                      |



## (24) Low Power Detection (LPD) (R51H)

| Action           | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|------------------|-----|-----|----|----|----|----|----|----|----|-----|
| Detect Low Power | 0   | 0   | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1   |
| Detect Low Fower | 1   | 1   | -  | -  | -  | -  | -  | -  | -  | LPD |

This command indicates the input power condition. Host can read this flag to learn the battery condition.

LPD: Internal temperature sensor switch

0: Low power input (VDD<2.5V)

1: Normal status (default)



#### (25) TCON SETTING (TCON) (R60H)

| Action              | W/R | C/D | D7 | D6  | D5    | D4 | D3 | D2  | D1    | D0 |     |
|---------------------|-----|-----|----|-----|-------|----|----|-----|-------|----|-----|
| Sensing Temperature | 0   | 0   | 0  | 1   | 1     | 0  | 0  | 0   | 0     | 0  | 60h |
| Sensing remperature | 0   | 1   |    | S2G | [3:0] |    |    | G2S | [3:0] |    | 22h |

This command defines non-overlap period of Gate and Source.

S2G[3:0] or G2S[3:0]: Source to Gate / Gate to Source Non-overlap period

| S2G[3:0] or G2S[3:0] | Period       |
|----------------------|--------------|
| 0000 b               | 4            |
| 0001                 | 8            |
| 0010                 | 12 (Default) |
| 0011                 | 16           |
| 0100                 | 20           |
| 0101                 | 24           |
| 0110                 | 28           |
| 0111                 | 32           |

| S2G[3:0] or G2S[3:0] | Period    |
|----------------------|-----------|
| 1000 b               | 36        |
| 1001                 | 40        |
| 1010                 | 44        |
| 1011                 | 48        |
| 1100                 | <u>52</u> |
| 1101                 | 56        |
| 1110                 | 60        |
| 1111                 | 64        |

Period = 660 nS.



#### (26) RESOLUTION SETTING (TRES) (R61H)

| Action                 | W/R | C/D | D7        | D6 | D5        | D4       | D3 | D2 | D1 | D0      |     |
|------------------------|-----|-----|-----------|----|-----------|----------|----|----|----|---------|-----|
|                        | 0   | 0   | 0         | 1  | 1 /       | <b>0</b> | 0  | 0  | 0  | 1       | 61h |
| Set Display Resolution | 0   | 1   |           |    | HRES[7:3] |          |    | 0  | 0  | 0       | 00h |
| Set Display Nesolution | 0   | 1   | -         | -  | -         | -        | -  | -  | -  | VRES[8] | 00h |
|                        |     |     | VRES[7:0] |    |           |          |    |    |    | 00h     |     |

This command defines alternative resolution and this setting is of higher priority than the RES[1:0] in R00H (PSR).

HRES[7:3]: Horizontal Display Resolution

VRES[8:0]: Vertical Display Resolution

Active channel calculation:

GD: First G active = G0; LAST active GD= first active +VRES[8:0] -1

SD: First active channel: =S0; LAST active SD= first active +HRES[7:3]\*8-1

EX:128x296

GD: First G active = G0, LAST active GD= 0+296-1=295; (G295) SD: First active channel = S0, LAST active SD= 0+128-1=93; (S127)

## (27) REVISION (REV) (R70H)

| Action        | W/R | C/D | D7 | D6 | D5 | D4   | D3   | D2 | D1 | D0 |     |
|---------------|-----|-----|----|----|----|------|------|----|----|----|-----|
| Chip Revision | 0   | 0   | 0  | 1  | 1  | 1    | 0    | 0  | 0  | 0  | 70h |
| Chip Revision | 1   | 1   |    |    |    | LUT_ | _REV |    |    |    | 00h |

The LUT\_REV is read from OTP address = 0x001.



#### (28) GET STATUS (FLG) (R71H)

| Action     | W/R | C/D | D7 | D6           | D5                   | D4                         | D3            | D2  | D1  | D0     |     |
|------------|-----|-----|----|--------------|----------------------|----------------------------|---------------|-----|-----|--------|-----|
|            | 0   | 0   | 0  | 1            | 1                    | 1                          | 0             | 0   | 0   | 1      | 71h |
| Read Flags | 1   | 1   | -  | PTL_<br>flag | I <sup>2</sup> C_ERR | I <sup>2</sup> C_<br>BUSYN | data_<br>flag | PON | POF | BUSY_N | 02h |

This command reads the IC status.

PTL\_FLAG Partial display status (high: partial mode)

I<sup>2</sup>C\_ERR: I<sup>2</sup>C master error status

I<sup>2</sup>C\_BUSYN: I<sup>2</sup>C master busy status (low active)

data\_flag: Driver has already received all the one frame data

PON: Power ON status
POF: Power OFF status

**BUSY\_N:** Driver busy status (low active)

#### (29) AUTO MEASURE VCOM (AMV) (R80H)

| Action                     | W/R | C/D | D7 | D6 | D5  | D4     | D3   | D2   | D1  | D0   |     |
|----------------------------|-----|-----|----|----|-----|--------|------|------|-----|------|-----|
| Automatically measure Vcom | 0   | 0   | 1  | 0  | 0   | 0      | 0    | 0    | 0   | 0    | 801 |
| Automatically measure vcom | 0   | 1   | -  | -  | AMV | T[1:0] | XON_ | AMVS | AMV | AMVE | 10h |

This command reads the IC status.

AMVT[1:0]: Auto Measure Vcom Time

00b: 3s

01b: 5s (default)

10b: 8s 11b: 10s

XON: All Gate ON of AMV

0: Gate normally scan during Auto Measure VCOM period. (default)

1: All Gate ON during Auto Measure VCOM period.

AMVS: Source output of AMV

0: Source output 0V during Auto Measure VCOM period. (default)

1: Source output VDHR during Auto Measure VCOM period.

AMV: Analog signal

0: Get Vcom value with the VV command (R81h) (default)

1: Get Vcom value in analog signal.

**AMVE:** Auto Measure Vcom Enable (/Disable)

0: No effect

1: Trigger auto Vcom sensing.



## (30) VCOM VALUE (VV) (R81H)

| Action                     | W/R | C/D | D7 | D6 | D5 | D4 | D3  | D2   | D1 | D0 |     |
|----------------------------|-----|-----|----|----|----|----|-----|------|----|----|-----|
| Automatically measure Vcom | 0   | 0   | 1  | 0  | 0  | 0  | 0   | 0    | 0  | 1  | 81h |
| Automatically measure vcom | 1   | 1   | -  | -  |    |    | VV[ | 5:0] |    |    | 00h |

This command gets the Vcom value.

**VV[5:0]:** Vcom Value Output

| VV[5:0]  | Vcom value |
|----------|------------|
| 00 0000b | -0.10 V    |
| 00 0001b | -0.15 V    |
| 00 0010b | -0.20 V    |
| :        | :          |
| 11 1010b | -3.00 V    |

## (31) VCM\_DC SETTING (VDCS) (R82H)

| Action       | W/R | C/D | D7 | D6 | D5 | D4 | D3   | D2     | D1 | D0 | l   |
|--------------|-----|-----|----|----|----|----|------|--------|----|----|-----|
| Set VCM DC   | 0   | 0   | 1  | 0  | 0  | 0  | 0    | 0      | 1  | 0  | 82h |
| Set VCIVI_BC | 0   | 1   | -  | -  |    |    | VDC: | S[5:0] |    |    | 00h |

This command sets VCOM\_DC value

VDCS[5:0]: VCOM\_DC Setting

| VDCS[5:0] | Vcom value        |
|-----------|-------------------|
| 00 0000b  | -0.10 V (default) |
| 00 0001b  | -0.15 V           |
| 00 0010b  | -0.20 V           |
| :         | :                 |
| 11 1010b  | -3.00 V           |



#### (32) PARTIAL WINDOW (PTL) (R90H)

| Action              | W/R | C/D | D7 | D6 | D5        | D4               | D3     | D2 | D1 | D0      |     |
|---------------------|-----|-----|----|----|-----------|------------------|--------|----|----|---------|-----|
|                     | 0   | 0   | 1  | 0  | 0         | 1                | 0      | 0  | 0  | 0       | 90h |
|                     | 0   | 1   |    |    | HRST[7:3] |                  |        | 0  | 0  | 0       | 00h |
|                     | 0   | 1   |    |    | HRED[7:3] |                  |        | 0  | 0  | 0       | 00h |
| Set Partial Window  | 0   | 1   | -  | -  | -         | -                | -      | -  | -  | VRST[8] | 00h |
| Set Faitial William | 0   | 1   |    |    |           | VRS <sup>-</sup> | Γ[7:0] |    |    |         | 00h |
|                     | 0   | 1   | -  | -  | -         | -                | -      | -  | -  | VRED[8] | 00h |
|                     | 0   | 1   |    |    |           | VREI             | D[7:0] |    |    |         | 00h |
|                     | 0   | 1   | -  | -  | -         | -                | -      | -  | -  | PT_SCAN | 00h |

This command sets partial window.

HRST[7:3]: Horizontal start bank. (value 00h~13h)

HRED[7:3]: Horizontal end bank. (value 00h~13h). HRED must be greater than HRST.

VRST[8:0]: Horizontal start bank. (value 000h~127h)

VRED[8:0]: Horizontal end bank. (value 000h~127h). VRED must be greater than VRST.

PT\_SCAN: 0: Gates scan only inside of the window.

1: Gates scan only outside of the window. (default)

#### (33) PARTIAL IN (PTIN) (R91H)

| Action     | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |     |
|------------|-----|-----|----|----|----|----|----|----|----|----|-----|
| Partial In | 0   | 0   | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 91h |

This command makes the display enter partial mode.

#### (34) PARTIAL OUT (PTOUT) (R92H)

| Action      | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |     |
|-------------|-----|-----|----|----|----|----|----|----|----|----|-----|
| Partial Out | 0   | 0   | 1  | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 92h |

This command makes the display exit partial mode and enter normal mode.

#### (35) PROGRAM MODE (PGM) (RA0H)

| Action             | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |     |
|--------------------|-----|-----|----|----|----|----|----|----|----|----|-----|
| Enter Program Mode | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | A0h |
| Enter Frogram Wode | 0   | 1   | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  | A5h |

After this command is issued, the chip would enter the program mode.

The mode would return to standby by hardware reset.

The only one parameter is a check code, the command would be excuted if check code = 0xA5.

## (36) ACTIVE PROGRAM (APG) (RA1H)

| Action             | W/R | C/D | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |    |
|--------------------|-----|-----|----|----|----|----|----|----|----|----|----|
| Active Program OTP | 0   | 0   | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | Α1 |

After this command is transmitted, the programming state machine would be activated.

The BUSY flag would fall to 0 until the programming is completed.



## (37) READ OTP DATA (ROTP) (RA2H)

| Action                  | W/R | C/D | D7 | D6                                                                       | D5       | D4          | D3          | D2      | D1 | D0 |     |  |  |
|-------------------------|-----|-----|----|--------------------------------------------------------------------------|----------|-------------|-------------|---------|----|----|-----|--|--|
|                         | 0   | 0   | 1  | 0                                                                        | 1        | 0           | 0           | 0       | 1  | 0  | A2h |  |  |
|                         | 1   | 1   |    |                                                                          |          | Dur         | nmy         |         |    |    |     |  |  |
|                         | 1   | 1   |    | The data of address 0x000 in the OTP                                     |          |             |             |         |    |    |     |  |  |
| Read OTP data for check | 1   | 1   |    |                                                                          | The data | of addres   | s 0x001 in  | the OTP |    |    |     |  |  |
|                         | 1   | 1   |    |                                                                          |          |             |             |         |    |    |     |  |  |
|                         | 1   | 1   |    |                                                                          | The data | a of addres | ss (n-1) in | the OTP |    |    |     |  |  |
|                         | 1   | 1   |    | The data of address (n-1) in the OTP  The data of address (n) in the OTP |          |             |             |         |    |    |     |  |  |

The command is used for reading the content of OTP for checking the data of programming.

The value of (n) is depending on the amount of programmed data, tha max address = 0xFFF.



The sequence of programming OTP.

#### (38) CASCADE SETTING (CCSET) (RE0H)

| Action             | W/R | C/D | D7         | D6 | D5 | D4 | D3 | D2 | D1    | D0   |     |
|--------------------|-----|-----|------------|----|----|----|----|----|-------|------|-----|
| Set Cascade Option | 0   | 0   | / 1        | 1  | 1  | 0  | 0  | 0  | 0     | 0    | E0h |
| Set Cascade Option | 0   | 1   | / <b>-</b> | -  | -  | -  | -  | -  | TSFIX | CCEN | 00h |

This command is used for cascade.

**CCEN:** Output clock enable/disable.

0: Output 0V at CL pin. (default)

1: Output clock at CL pin for slave chip.

**TSFIX:** Let the value of slave's temperaature is same as the masters'.

0: Temperature value is defined by internal temperature sensor / external LM75. (default)

1: Temperature value is defined by TS\_SET[7:0] registers.



## (39) FORCE TEMPERATURE (TSSET) (RE5H)

| Action                       | W/R | C/D | D7 | D6 | D5 | D4    | D3      | D2 | D1 | D0 |     |
|------------------------------|-----|-----|----|----|----|-------|---------|----|----|----|-----|
| Force Temeperature Value for | 0   | 0   | 1  | 1  | 1  | 0     | 0       | 1  | 0  | 1  | E5h |
| Cascade                      | 0   | 1   |    |    |    | TS_SE | ET[7:0] |    |    |    | 00h |

This command is used for cascade to fix the temperature value of master and slave chip.



#### **HOST INTERFACES**

#### 3-WIRE SPI



"DC" keeps a same value during the whole 8-bit cycle

Figure: 3-wire SPI Typical Waveform - BS=1

#### 4-WIRE SPI



Figure: 4-wire Serial Interface - BS=0



## **POWER MANAGEMENT**

## **Power ON Sequence**



 $T_{pwr_on} = \sim 80 ms \text{ (default)}$ 



## **Power OFF Sequence**





#### **Data Transmission Waveform**

Example 1: LUT all states (7 states) complete or phase number=0, the driver will send 2 frame VCOM and data to 0 V.



Example 2: While level selection in LUT is "11", the driver will float VCOM and data.





#### **Display Refresh Waveform**

Example 1: LUT all states (7 states) complete or phase number=0, the driver will send 2 frame VCOM and data to 0 V.



**Example2:** While level selection in LUT is "11", the driver will float VCOM and data.



## **BUSY N Signal Flow Chart**



**BUSY\_N Signal Flow Chart** 



## **ABSOLUTE MAXIMUM RATINGS**

 $VDD/AVDD = 2 - 3.6V \ (Typ. \ 3.3V), \quad GND = 0V, \quad VDH = 2.4 - 11V \ (Typ. \ 10V), \quad VDL = -2.4 - -11V \ (Typ. \ -10V), \quad Ta = 0 - 70^{\circ}C \ (Typ. \ 25^{\circ}C)$ 

| Signal              | Item                             | Min     | Max.     | Unit |
|---------------------|----------------------------------|---------|----------|------|
| Vdd, Vio, AVdd, Vpp | Logic Supply voltage             | - 0.3   | +6.0     | V    |
| Vı                  | Digital input range              | -0.3    | VDDIO+40 | V    |
| VGH-VGL             | Supply range                     | VGL-0.3 | VGH+0.3  | V    |
| Source              |                                  |         |          |      |
| VDH                 | Analog supply voltage – positive | +2      | 20       | V    |
| VDL                 | Analog supply voltage nagetive   | -2      | 20       | V    |
| VDHR                | Analog supply voltage – positive | +:      | 20       | V    |
| Gate                |                                  |         |          |      |
| VGH                 | Analog supply voltage – positive | -0.3    | VGL+40   | V    |
| VGL                 | Analog supply voltage nagetive   | VGH-40  | 0.3      | V    |
| IVGH                | Input rush current for VDH       | (TBD)   | (TBD)    | mA   |
| IVGL                | Input rush current for VDL       | (TBD)   | (TBD)    | mA   |
| Тѕтс                | Storage temperature range        | -55     | +125     | °C   |

#### Warning:

If ICs are stressed beyond those listed above "absolute maximum ratings", they may be permanently destroyed. These are stress ratings only, and functional operation of the device at these or any other condition beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.



## **DC CHARACTERISTICS**

|                   |                                                          | DIGITAL DC CHARACTERISTICS                       |          |            |         |      |
|-------------------|----------------------------------------------------------|--------------------------------------------------|----------|------------|---------|------|
| Symbol            | Parameter                                                | Conditions                                       | MIN.     | TYP.       | MAX.    | Unit |
| Vio               | IO supply voltage                                        |                                                  | 2.3      | 3.3        | 3.6     | V    |
| VDD               | Supply voltage                                           |                                                  | 2.3      | 3.3        | 3.6     | V    |
| AVdd              | DCDC driver supply voltage                               | DRVU, DRVD                                       | 2.3      | 3.3        | 3.6     | V    |
| VIL               | LOW Level input voltage                                  | Digital input pins                               | 0        |            | 0.3xVdd | V    |
| ViH               | HIGH Level input voltage                                 | Digital input pins                               | 0.7xVio  |            | Vio     | V    |
| Voн               | HIGH Level output voltage                                | Digital input pins, IoH=400∪A                    | V10-0.4  | <u>-</u>   |         | V    |
| VонD              | HIGH Level output voltage                                | Digital input pins, IoH=400∪A,<br>DRVD, DRVU     | AVDD-0.4 |            |         | V    |
| Vol               | LOW Level Output voltage                                 | Digital input pins, IoL=-400UA                   | 0        |            | 0.4     | V    |
| lin               | Input leakage current                                    | Digital input pins except pull-up, pull-down pin | -1       |            | 1       | uA   |
| RIN               | Pull-up/down impedance                                   |                                                  |          | 200        |         | ΚΩ   |
| ISTVDD            | Digital stand-by current                                 | all stopped (power off mode)                     |          | 0 *        | 0.1 *   | uV   |
| IVDD              | Digital operating current                                |                                                  |          | 0.5 *      | 2.0 *   | mV   |
| Istvio            | IO stand-by current                                      | all stopped (power off mode)                     |          | 0.4 *      | 1.0 *   | uV   |
| Ivio              | IO operating current                                     | No load                                          | -        | <i>O</i> * | 0.2 *   | mA   |
| ISTVDD1           | DCDC stand-by current                                    | all stopped (power off mode)                     |          | 0 *        | 0.01 *  | uA   |
|                   |                                                          | fdcdc=250kHz, No load                            |          | *          | 0.05 *  |      |
| IVDD1             | DCDC operating current                                   | fdcdc=250kHz,<br>External cap: 415pF,            |          | 0.5 *      | 1.0 *   | mA   |
| Ton               | Operating temperature                                    | NIVIOS=34UPF                                     | -30      |            | 95      | °C   |
|                   | · · · ·                                                  | at a : a                                         | -30      |            | 00      |      |
| Top  * TYP. and M | Operating temperature  AX. values are to be confirmed by | NMOS=340pF<br>design.                            | -30      |            | 85      |      |



|          |                                               | Analog DC Characteristics                                                        |      |       |         |      |
|----------|-----------------------------------------------|----------------------------------------------------------------------------------|------|-------|---------|------|
| Symbol   | Parameter                                     | Conditions                                                                       | MIN. | TYP.  | MAX.    | Unit |
| VDH      | Supply Voltage                                | For source driver/VCOM                                                           |      | 10    |         | V    |
| dVDH     | Supply voltage dev                            |                                                                                  | -300 | 0     | +300    | mV   |
| VDL      | Supply Voltage                                | For source driver/VCOM                                                           |      | -10   |         | V    |
| dVDL     | Supply voltage dev                            |                                                                                  | -300 | 0     | +300    | mV   |
| ldd      | Analog Operating Current                      | No load,                                                                         |      | TBD   |         | mA   |
| Vvd      | Voltage Deviation of Outputs                  |                                                                                  |      | ±20   | ±35     | mV   |
| Vdr      | Dynamic Range of Output                       |                                                                                  | 0.1  |       | VDH-0.1 | V    |
| VGH-VGL  | Voltage Range of VGH - VGL                    |                                                                                  | 12   | 0     | 40      | V    |
| VGL      | VGL voltage Range                             | For gate driver                                                                  | -16  |       | -13     | V    |
| dVGL     | VGL Supply voltage dev                        |                                                                                  | -400 | 0     | +400    | mV   |
| VGH      | VGH voltage Range                             | For gate driver                                                                  | 13   |       | VGL+40  | V    |
| dVGH     | VGH Supply voltage dev                        |                                                                                  | -400 | 0     | +400    | mV   |
| IstVGH   | Positve HV Stand-by Current (power off mode)  | Include VDH power<br>With load                                                   | -    | 0 *   | 0.01 *  | μA   |
| IVGH     | Positve HV Operating Current                  | Include VDH power With load all SD=L VCOM external resistor divider not included | -    | 0.7 * | 1.1 *   | mA   |
| IVGH     | Positve HV Operating Current                  | Include VDH power With load all SD=H VCOM external resistor divider not included | -    | 0.8 * | 1.2 *   | mA   |
| IstVGL   | Negative HV Stand-by Current (power off mode) | Include VDPNS power<br>With load                                                 | -    | 0 *   | 0.01 *  | μA   |
| IVGL     | Negative HV Operating Current                 | Include VDL power With load all SD=L                                             | -    | 0.8 * | 1.2 *   | mA   |
| IVGL     | Negative HV Operating Current                 | Include VDL power With load all SD=H                                             | -    | 0.9 * | 1.3 *   | mA   |
| IstVINT1 | VINT1 Stand-by Current (power off mode)       |                                                                                  | -    | 0 *   | 0.01 *  | μA   |
| IVINT1   | VINT1 Operating Current                       |                                                                                  | -    | *     | 0.3 *   | mA   |



## **AC CHARACTERISTICS**



3-wire Serial Interface - Write



3-wire Serial Interface - Read

| SYMBOL | SIGNAL    |                             |           | MIN. | TYP. | MAX. | UNIT |
|--------|-----------|-----------------------------|-----------|------|------|------|------|
|        |           | SERIAL COMM                 | UNICATION |      |      |      |      |
| tCSS   |           | Chip select setup time      |           | 60   |      |      | ns   |
| tCSH   | CSB       | Chip select hold time       |           | 65   |      |      | ns   |
| tSCC   | COB       | Chip select setup time      |           | 20   |      |      | ns   |
| tCHW   |           | Chip select setup time      |           | 40   |      |      | ns   |
| tSCYCW |           | Serial clock cycle (Write)  |           | 100  |      |      | ns   |
| tSHW   |           | SCL "H" pulse width (Write) |           | 35   |      |      | ns   |
| tSLW   | SCL       | SCL "L" pulse width (Write) |           | 35   |      |      | ns   |
| tSCYCR | JOL       | Serial clock cycle (Read)   |           | 150  |      |      | ns   |
| tSHR   |           | SCL "H" pulse width (Read)  |           | 60   |      |      | ns   |
| tSLR   |           | SCL "L" pulse width (Read)  |           | 60   |      |      | ns   |
| tSDS   |           | Data setup time             |           | 30   |      |      | ns   |
| tSDH   | SDA (DIN) | Data hold time              |           | 30   |      |      | ns   |
| tACC   | (DOUT)    | Access time                 |           | 10   |      |      | ns   |
| tOH    |           | Output disable time         |           | 15   |      |      | ns   |



| SYMBOL | SIGNAL |                              |                 | MIN. | TYP. | MAX. | UNIT |  |  |
|--------|--------|------------------------------|-----------------|------|------|------|------|--|--|
|        | Driver |                              |                 |      |      |      |      |  |  |
| trS    |        | Source driver rise time      | 99% final value |      | 5    |      | us   |  |  |
| tFS    |        | Source driver fall time      |                 |      | 5    |      | us   |  |  |
| trG    |        | Gate driver rise time        | 99% final value |      | 5    |      | us   |  |  |
| tFG    |        | Gate driver fall time        |                 |      | 5    |      | us   |  |  |
| trCOM  |        | VCOM rise time               | 99% final value |      | 1    |      | ms   |  |  |
| tFCOM  |        | VCOM fall time               |                 |      | 1    |      | ms   |  |  |
|        |        | RC Lo                        | DADING          |      |      |      |      |  |  |
| RL_S   |        | Source driver output loading |                 |      | TBD  |      | ΚΩ   |  |  |
| CL_S   |        |                              |                 |      | TBD  |      | pf   |  |  |
| RL_G   |        | Gate driver output loading   |                 |      | TBD  |      | ΚΩ   |  |  |
| CL_G   |        |                              |                 |      | TBD  |      | pf   |  |  |
| RL_com |        | VCOM output loading          |                 |      | TBD  |      | Ω    |  |  |
|        |        |                              |                 |      | TBD  |      | pf   |  |  |



**RC Loading** 



#### **PHYSICAL DIMENSIONS**

Die Size:  $(9531 \mu M \pm 40 \mu M) \times (981 \mu M \pm 40 \mu M)$ 

Die Thickness:  $280 \mu M \pm 20 \mu M$  (Polish)

Die TTV:  $(D_{MAX} - D_{MIN})$  within die  $\leq 2\mu M$ 

Bump Height:  $12 \mu M \pm 3 \mu M$ 

 $(H_{MAX} - H_{MIN})$  within die  $\leq 2\mu M$ 

Hardness: 65 Hv ± 15Hv

Bump Size:  $12 \mu M \times 100 \mu M \pm 2 \mu M$ 

Bump Area:  $1200 \mu M^2$ Bump Pitch:  $26 \mu M$ 

Bump Gap:  $14 \mu M \pm 3 \mu M$ 

Shear:  $\geq 5g/Mil^2$ 

Coordinate origin: Chip center
Pad reference: Pad center



## Bump Height Coplanarity within Die





## **ALIGNMENT MARK INFORMATION**

## Location:



## **Shapes and Points:**





#### **Point Coordinates:**

|        | Upper-L | eft Mark | Upper-Ri | ght Mark |
|--------|---------|----------|----------|----------|
| Point  | X       | Y        | Х        | Y        |
| Center | -4665   | 390      | 4665     | 390      |
| 1      | -4675   | 420      | 4655     | 420      |
| 2      | -4655   | 420      | 4675     | 420      |
| 3      | -4655   | 400      | 4675     | 400      |
| 4      | -4635   | 400      | 4695     | 400      |
| 5      | -4635   | 380      | 4695     | 380      |
| 6      | -4655   | 380      | 4675     | 380      |
| 7      | -4655   | 360      | 4675     | 360      |
| 8      | -4675   | 360      | 4655     | 360      |
| 9      | -4675   | 380      | 4655     | 380      |
| 10     | -4695   | 380      | 4635     | 380      |
| 11     | -4695   | 400      | 4635     | 400      |
| 12     | -4675   | 400      | 4655     | 400      |



## PAD COORDINATES

| No. | Name | Х     | Υ    | W  | Н  |
|-----|------|-------|------|----|----|
| 1   | NC   | -4646 | -398 | 28 | 70 |
| 2   | VCOM | -4600 | -398 | 28 | 70 |
| 3   | VCOM | -4554 | -398 | 28 | 70 |
| 4   | VCOM | -4508 | -398 | 28 | 70 |
| 5   | VCOM | -4462 | -398 | 28 | 70 |
| 6   | VCOM | -4416 | -398 | 28 | 70 |
| 7   | VCOM | -4370 | -398 | 28 | 70 |
| 8   | VCOM | -4324 | -398 | 28 | 70 |
| 9   | VCOM | -4278 | -398 | 28 | 70 |
| 10  | VDM  | -4232 | -398 | 28 | 70 |
| 11  | VGL  | -4232 | -398 | 28 | 70 |
| 12  | VGL  | -4140 | -398 | 28 | 70 |
| 13  | VGL  | -4140 | -398 | 28 | 70 |
| 14  | VGL  | -4048 | -398 | 28 | 70 |
| 15  | VGL  | -4002 | -398 | 28 | 70 |
|     | VGL  | -3956 | -398 |    |    |
| 16  |      |       |      | 28 | 70 |
| 17  | VGL  | -3910 | -398 | 28 | 70 |
| 18  | VGL  | -3864 | -398 | 28 | 70 |
| 19  | VGL  | -3818 | -398 | 28 | 70 |
| 20  | VGL  | -3772 | -398 | 28 | 70 |
| 21  | VGL  | -3726 | -398 | 28 | 70 |
| 22  | VGL  | -3680 | -398 | 28 | 70 |
| 23  | VGL  | -3634 | -398 | 28 | 70 |
| 24  | VGL  | -3588 | -398 | 28 | 70 |
| 25  | VGL  | -3542 | -398 | 28 | 70 |
| 26  | VGL  | -3496 | -398 | 28 | 70 |
| 27  | GNDA | -3450 | -398 | 28 | 70 |
| 28  | VSL  | -3404 | -398 | 28 | 70 |
| 29  | VSL  | -3358 | -398 | 28 | 70 |
| 30  | VSL  | -3312 | -398 | 28 | 70 |
| 31  | VSL  | -3266 | -398 | 28 | 70 |
| 32  | VSL  | -3220 | -398 | 28 | 70 |
| 33  | VSL  | -3174 | -398 | 28 | 70 |
| 34  | VSL  | -3128 | -398 | 28 | 70 |
| 35  | VSL  | -3082 | -398 | 28 | 70 |
| 36  | VSL  | -3036 | -398 | 28 | 70 |
| 37  | VSL  | -2990 | -398 | 28 | 70 |
| 38  | GNDA | -2944 | -398 | 28 | 70 |
| 39  | VGH  | -2898 | -398 | 28 | 70 |
| 40  | VGH  | -2852 | -398 | 28 | 70 |
| 41  | VGH  | -2806 | -398 | 28 | 70 |
| 42  | VGH  | -2760 | -398 | 28 | 70 |
| 43  | VGH  | -2714 | -398 | 28 | 70 |
| 44  | VGH  | -2668 | -398 | 28 | 70 |
| 45  | VGH  | -2622 | -398 | 28 | 70 |
| 46  | VGH  | -2576 | -398 | 28 | 70 |
| 47  | VGH  | -2530 | -398 | 28 | 70 |
| 48  | VGH  | -2484 | -398 | 28 | 70 |
| 49  | VGH  | -2438 | -398 | 28 | 70 |
| 50  | VGH  | -2392 | -398 | 28 | 70 |
| 51  | GNDA | -2346 | -398 | 28 | 70 |
| 52  | VSH  | -2300 | -398 | 28 | 70 |
| 53  | VSH  | -2254 | -398 | 28 | 70 |
| 54  | VSH  | -2208 | -398 | 28 | 70 |
| 55  | VSH  | -2162 | -398 | 28 | 70 |
| 56  | VSH  | -2116 | -398 | 28 | 70 |
| 57  | VSH  | -2070 | -398 | 28 | 70 |
| 58  | VSH  | -2024 | -398 | 28 | 70 |
|     |      |       |      |    |    |

| No.        | Name  | Х          | Υ     | W        | Н        |
|------------|-------|------------|-------|----------|----------|
| 59         | VSH   | -1978      | -398  | 28       | 70       |
| 60         | VSH   | -1932      | -398  | 28       | 70       |
| 61         | VSH   | -1886      | -398  | 28       | 70       |
| 62         | GNDA  | -1840      | -398  | 28       | 70       |
| 63         | VPP   | -1794      | -398  | 28       | 70       |
| 64         | VPP   | -1748      | -398  | 28       | 70       |
| 65         | VPP   | -1702      | -398  | 28       | 70       |
| 66         | VPP   | -1656      | -398  | 28       | 70       |
| 67         | VPP   | -1610      | -398  | 28       | 70       |
| 68         | VPP   | -1564      | -398  | 28       | 70       |
| 69         | VDDD  | -1518      | -398  | 28       | 70       |
| 70         | VDDD  | -1472      | 7-398 | 28       | 70       |
| 71         | VDDD  | -1426      | -398  | 28       | 70       |
| 72         | VDDD  | -1380      | -398  | 28       | 70       |
| 73         | VDDDO | -1334      | -398  | 28       | 70       |
| 74         | VDDDO | -1288      | -398  | 28       | 70       |
|            |       | -1242      |       |          |          |
| 75         | VDDDO |            | -398  | 28       | 70       |
| 76         | VDDDO | -1196      | -398  | 28       | 70       |
| 77         | VDM   | -1150      | -398  | 28       | 70       |
| 78         | VDM   | -1104      | -398  | 28       | 70       |
| 79         | GNDA  | -1058      | -398  | 28       | 70       |
| 80         | GNDA  | -1012      | -398  | 28       | 70       |
| 81         | GNDA  | -966       | -398  | 28       | 70       |
| 82         | GNDA  | -920       | -398  | 28       | 70       |
| 83         | GNDA  | -874       | -398  | 28       | 70       |
| 84         | GNDA  | -828       | -398  | 28       | 70       |
| 85         | GNDA  | -782       | -398  | 28       | 70       |
| 86         | GNDA  | -736       | -398  | 28       | 70       |
| 87         | GNDA  | -690       | -398  | 28       | 70       |
| 88         | GNDA  | -644       | -398  | 28       | 70       |
| 89         | GND   | -598       | -398  | 28       | 70       |
| 90         | GND   | -552       | -398  | 28       | 70       |
| 91         | GND   | -506       | -398  | 28       | 70       |
| 92         | GND   | -460       | -398  | 28       | 70       |
| 93         | GND   | -414       | -398  | 28       | 70       |
| 94         | GND   | -368       | -398  | 28       | 70       |
| 95         | GND   | -322       | -398  | 28       | 70       |
| 96         | GND   | -276       | -398  | 28       | 70       |
| 97         | GND   | -230       | -398  | 28       | 70       |
| 98         | GND   | -184       | -398  | 28       | 70       |
| 99         | GND   | -138       | -398  | 28       | 70       |
| 100        | GND   | -92        | -398  | 28       | 70       |
| 101        | VDDA  | -46        | -398  | 28       | 70       |
| 102        | VDDA  | 0          | -398  | 28       | 70       |
| 103        | VDDA  | 46         | -398  | 28       | 70       |
| 104        | VDDA  | 92         | -398  | 28       | 70       |
| 105        | VDDA  | 138        | -398  | 28       | 70       |
| 106        | VDDA  | 184        | -398  | 28       | 70       |
| 107        | VDDA  | 230        | -398  | 28       | 70       |
| 108        | VDDA  | 276        | -398  | 28       | 70       |
| 109        | VDDA  | 322        | -398  | 28       | 70       |
|            | VDDA  |            |       |          |          |
| 110<br>111 | VDDA  | 368<br>414 | -398  | 28<br>28 | 70<br>70 |
|            |       |            | -398  |          |          |
| 112        | VDD   | 460        | -398  | 28       | 70       |
| 113        | VDD   | 506        | -398  | 28       | 70       |
| 114        | VDD   | 552        | -398  | 28       | 70       |
| 115        | VDD   | 598        | -398  | 28       | 70       |
| 116        | VDD   | 644        | -398  | 28       | 70       |



| No.        | Name    | X    | Υ            | W        | Н        |
|------------|---------|------|--------------|----------|----------|
| 117        | VDD     | 690  | -398         | 28       | 70       |
| 118        | TEST1   | 736  | -398         | 28       | 70       |
| 119        | TEST1   | 782  |              | 28       | 70       |
| 120        | VDDIO   | 828  | -398<br>-398 | 28       | 70       |
| 121        | VDDIO   | 874  | -398         | 28       | 70       |
| 122        | VDDIO   |      | -398         | 28       |          |
|            |         | 920  |              |          | 70       |
| 123<br>124 | VDDIO   | 966  | -398         | 28       | 70       |
| 125        | TEST3   | 1012 | -398<br>-398 | 28<br>28 | 70<br>70 |
|            | DUMMY   | 1058 |              |          |          |
| 126        | DUMMY   | 1104 | -398         | 28<br>28 | 70       |
| 127        | DUMMY   | 1150 | -398         |          | 70       |
| 128        | DUMMY   | 1196 | -398         | 28       | 70       |
| 129        | DUMMY   | 1242 | -398         | 28       | 70       |
| 130        | SDA     | 1288 | -398         | 28       | 70       |
| 131        | SCL     | 1334 | -398         | 28       | 70       |
| 132        | GND     | 1380 | -398         | 28       | 70       |
| 133        | CSB     | 1426 | -398         | 28       | 70       |
| 134        | VDDIO   | 1472 | -398         | 28       | 70       |
| 135        | DUMMY   | 1518 | -398         | 28       | 70       |
| 136        | GND     | 1564 | -398         | 28       | 70       |
| 137        | DC      | 1610 | -398         | 28       | 70       |
| 138        | VDDIO   | 1656 | -398         | 28       | 70       |
| 139        | DUMMY   | 1702 | -398         | 28       | 70       |
| 140        | GND     | 1748 | -398         | 28       | 70       |
| 141        | RST_N   | 1794 | -398         | 28       | 70       |
| 142        | BUSY_N  | 1840 | -398         | 28       | 70       |
| 143        | CL      | 1886 | -398         | 28       | 70       |
| 144        | VDDIO   | 1932 | -398         | 28       | 70       |
| 145        | VSYNC   | 1978 | -398         | 28       | 70       |
| 146        | GND     | 2024 | -398         | 28       | 70       |
| 147        | DUMMY   | 2070 | -398         | 28       | 70       |
| 148        | VDDIO   | 2116 | -398         | 28       | 70       |
| 149        | BS      | 2162 | -398         | 28       | 70       |
| 150        | GND     | 2208 | -398         | 28       | 70       |
| 151        | DUMMY   | 2254 | -398         | 28       | 70       |
| 152        | VDDIO   | 2300 | -398         | 28       | 70       |
| 153        | TESTVDD | 2346 | -398         | 28       | 70       |
| 154        | GND     | 2392 | -398         | 28       | 70       |
| 155        | MS      | 2438 | -398         | 28       | 70       |
| 156        | VDDIO   | 2484 | -398         | 28       | 70       |
| 157        | TSDA    | 2530 | -398         | 28       | 70       |
| 158        | TSDA    | 2576 | -398         | 28       | 70       |
| 159        | TSCL    | 2622 | -398         | 28       | 70       |
| 160        | TSCL    | 2668 | -398         | 28       | 70       |
| 161        | TEST4   | 2714 | -398         | 28       | 70       |
| 162        | TEST5   | 2760 | -398         | 28       | 70       |
| 163        | TEST6   | 2806 | -398         | 28       | 70       |
| 164        | TEST7   | 2852 | -398         | 28       | 70       |
| 165        | VDHR    | 2898 | -398         | 28       | 70       |
| 166        | VDHR    | 2944 | -398         | 28       | 70       |
| 167        | VDHR    | 2990 | -398         | 28       | 70       |
| 168        | VDHR    | 3036 | -398         | 28       | 70       |
| 169        | VDHR    | 3082 | -398         | 28       | 70       |
| 170        | VDHR    | 3128 | -398         | 28       | 70       |
| 171        | VDHR    | 3174 | -398         | 28       | 70       |
| 172        | VDHR    | 3220 | -398         | 28       | 70       |
| 173        | DUMMY   | 3266 | -398         | 28       | 70       |
| 174        | DUMMY   | 3312 | -398         | 28       | 70       |
| 175        | DUMMY   | 3358 | -398         | 28       | 70       |
| 176        | DUMMY   | 3404 | -398         | 28       | 70       |
|            |         |      |              | •        |          |

| No.        | Name           | Х            | Υ              | W        | Н        |
|------------|----------------|--------------|----------------|----------|----------|
| 177        | DUMMY          | 3450         | -398           | 28       | 70       |
| 178        | DUMMY          | 3496         | -398           | 28       | 70       |
| 179        | GNDA           | 3542         | -398           | 28       | 70       |
| 180        | FB             | 3588         | -398           | 28       | 70       |
| 181        | FB             | 3634         | -398           | 28       | 70       |
| 182        | GNDA           | 3680         | -398           | 28       | 70       |
| 183        | RESE           | 3726         | -398           | 28       | 70       |
| 184        | RESE           | 3772         | -398           | 28       | 70       |
| 185        | GNDA           | 3818         | -398           | 28       | 70       |
| 186        | GDR            | 3864         | -398           | 28       | 70       |
| 187        | GDR            | 3910         | -398           | 28       | 70       |
| 188        | GDR            | 3956         | -398           | 28       | 70       |
| 189        | GDR            | 4002         | -398           | 28       | 70       |
| 190        | GDR            | 4048         | -398           | 28       | 70       |
| 191        | GDR            | 4094         | -398           | 28       | 70       |
| 192        | GDR            | 4140         | -398           | 28       | 70       |
| 193        | GDR            | 4186         | -398           | 28       | 70       |
| 194        | VDM            | 4232         | -398           | 28       | 70       |
| 195        | VCOM           | 4278         | -398           | 28       | 70       |
| 196        | VCOM           | 4324         | -398           | 28       | 70       |
| 197        | VCOM           | 4370         | -398           | 28       | 70       |
| 198        | VCOM           | 4416         | -398           | 28       | 70       |
| 199        | VCOM           | 4462         | -398           | 28       | 70       |
| 200        | VCOM           | 4508         | -398           | 28       | 70       |
| 201        | VCOM           | 4554         | -398           | 28       | 70       |
| 202        | VCOM           | 4600         | -398           | 28       | 70       |
| 203        | NC             | 4646         | -398           | 28       | 70       |
| 204        | NC             | 4540         | 313.5          | 18       | 75       |
| 205        | NC             | 4519         | 413.5          | 18       | 75       |
| 206        | NC             | 4498         | 313.5          | 18       | 75       |
| 207        | NC             | 4477         | 413.5          | 18       | 75       |
| 208        | NC             | 4456         | 313.5          | 18       | 75       |
| 209        | NC             | 4435         | 413.5          | 18       | 75       |
| 210        | G<0>           | 4414         | 313.5          | 18       | 75       |
| 211        | G<2>           | 4393         | 413.5          | 18       | 75       |
| 212        | G<4>           | 4372         | 313.5          | 18       | 75       |
| 213        | G<6>           | 4351         | 413.5          | 18       | 75       |
| 214        | G<8>           | 4330         | 313.5          | 18       | 75       |
| 215        | G<10>          | 4309         | 413.5          | 18       | 75       |
| 216        | G<12>          | 4288         | 313.5          | 18       | 75       |
| 217        | G<14>          | 4267         | 413.5          | 18       | 75       |
| 218        | G<16>          | 4246         | 313.5          | 18       | 75       |
| 219        | G<18>          | 4225         | 413.5          | 18       | 75       |
| 220        | G<20>          | 4204         | 313.5          | 18       | 75<br>75 |
| 221        | G<22>          | 4183         | 413.5          | 18       | 75<br>75 |
| 222        | G<24>          | 4162         | 313.5          | 18       | 75<br>75 |
| 223        | G<26>          | 4141         | 413.5          | 18       | 75<br>75 |
| 224        | G<28>          | 4120         | 313.5          | 18       | 75<br>75 |
| 225        | G<30>          | 4099         | 413.5          | 18       | 75<br>75 |
| 226<br>227 | G<32><br>G<34> | 4078<br>4057 | 313.5<br>413.5 | 18<br>18 | 75<br>75 |
| 228        | G<34>          | 4037         | 313.5          | 18       | 75<br>75 |
| 229        | G<38>          | 4036         | 413.5          | 18       | 75<br>75 |
| 230        | G<38>          | 3994         | 313.5          | 18       | 75<br>75 |
| 231        | G<40>          | 3994         | 413.5          | 18       | 75<br>75 |
| 232        | G<42>          | 3952         | 313.5          | 18       | 75<br>75 |
| 233        | G<46>          | 3932         | 413.5          | 18       | 75       |
| 234        | G<48>          | 3910         | 313.5          | 18       | 75       |
| 235        | G<50>          | 3889         | 413.5          | 18       | 75       |
| 236        | G<52>          | 3868         | 313.5          | 18       | 75       |
| 200        | 0/02/          | 5000         | 010.0          | ī        | 10       |



| No. | Name   | Х    | Υ     | W   | Н        |
|-----|--------|------|-------|-----|----------|
| 237 | G<54>  | 3847 | 413.5 | 18  | 75       |
| 238 | G<56>  | 3826 | 313.5 | 18  | 75       |
| 239 | G<58>  | 3805 | 413.5 | 18  | 75       |
| 240 | G<60>  | 3784 | 313.5 | 18  | 75       |
| 241 | G<62>  | 3763 | 413.5 | 18  | 75       |
| 242 | G<64>  | 3742 | 313.5 | 18  | 75       |
| 243 | G<66>  | 3721 | 413.5 | 18  | 75       |
| 244 | G<68>  | 3700 | 313.5 | 18  | 75       |
| 245 | G<70>  | 3679 | 413.5 | 18  | 75       |
| 246 | G<72>  | 3658 | 313.5 | 18  | 75       |
| 247 | G<74>  | 3637 | 413.5 | 18  | 75       |
| 248 | G<76>  | 3616 | 313.5 | 18  | 75       |
| 249 | G<78>  | 3595 | 413.5 | 18  | 75       |
| 250 | G<80>  | 3574 | 313.5 | 18  | 75       |
| 251 | G<82>  | 3553 | 413.5 | 18  | 75       |
| 252 | G<84>  | 3532 | 313.5 | 18  | 75       |
| 253 | G<86>  | 3511 | 413.5 | 18  | 75       |
| 254 | G<88>  | 3490 | 313.5 | 18  | 75       |
| 255 | G<90>  | 3469 | 413.5 | 18  | 75       |
| 256 | G<92>  | 3448 | 313.5 | 18  | 75       |
| 257 | G<94>  | 3427 | 413.5 | 18  | 75       |
| 258 | G<96>  | 3406 | 313.5 | 18  | 75       |
| 259 | G<98>  | 3385 | 413.5 | 18  | 75       |
| 260 | G<100> | 3364 | 313.5 | 18  | 75       |
| 261 | G<102> | 3343 | 413.5 | 18  | 75       |
| 262 | G<104> | 3322 | 313.5 | 18  | 75       |
| 263 | G<106> | 3301 | 413.5 | 18  | 75       |
| 264 | G<108> | 3280 | 313.5 | 18  | 75       |
| 265 | G<110> | 3259 | 413.5 | 18  | 75       |
| 266 | G<112> | 3238 | 313.5 | 18  | 75       |
| 267 | G<114> | 3217 | 413.5 | 18  | 75       |
| 268 | G<116> | 3196 | 313.5 | 184 | 75       |
| 269 | G<118> | 3175 | 413.5 | 18  | 75       |
| 270 | G<120> | 3154 | 313.5 | 18  | 75       |
| 271 | G<122> | 3133 | 413.5 | 18  | 75       |
| 272 | G<124> | 3112 | 313.5 | 18  | 75       |
| 273 | G<126> | 3091 | 413.5 | 18  | 75       |
| 274 | G<128> | 3070 | 313.5 | 18  | 75       |
| 275 | G<130> | 3049 | 413.5 | 18  | 75       |
| 276 | G<132> | 3028 | 313.5 | 18  | 75       |
| 277 | G<134> | 3007 | 413.5 | 18  | 75       |
| 278 | G<136> | 2986 | 313.5 | 18  | 75       |
| 279 | G<138> | 2965 | 413.5 | 18  | 75       |
| 280 | G<140> | 2944 | 313.5 | 18  | 75       |
| 281 | G<142> | 2923 | 413.5 | 18  | 75<br>75 |
| 282 | G<144> | 2902 | 313.5 | 18  | 75       |
| 283 | G<146> | 2881 | 413.5 | 18  | 75       |
| 284 | G<148> | 2860 | 313.5 | 18  | 75       |
| 285 | G<150> | 2839 | 413.5 | 18  | 75       |
| 286 | G<152> | 2818 | 313.5 | 18  | 75       |
| 287 | G<154> | 2797 | 413.5 | 18  | 75       |
| 288 | G<156> | 2776 | 313.5 | 18  | 75       |
| 289 | G<158> | 2755 | 413.5 | 18  | 75       |
| 290 | G<160> | 2734 | 313.5 | 18  | 75       |
| 291 | G<162> | 2713 | 413.5 | 18  | 75       |
| 292 | G<164> | 2692 | 313.5 | 18  | 75       |
| 293 | G<166> | 2671 | 413.5 | 18  | 75       |
| 294 | G<168> | 2650 | 313.5 | 18  | 75       |
| 295 | G<170> | 2629 | 413.5 | 18  | 75       |
| 296 | G<170> | 2608 | 313.5 | 18  | 75       |
| 200 | 011127 | 2000 | 010.0 | 10  | 7.0      |

| No. | Name             | Х    | Υ              | W  | Н        |
|-----|------------------|------|----------------|----|----------|
| 297 | G<174>           | 2587 | 413.5          | 18 | 75       |
| 298 | G<176>           | 2566 | 313.5          | 18 | 75       |
| 299 | G<178>           | 2545 | 413.5          | 18 | 75       |
| 300 | G<180>           | 2524 | 313.5          | 18 | 75       |
| 301 | G<182>           | 2503 | 413.5          | 18 | 75       |
| 302 | G<184>           | 2482 | 313.5          | 18 | 75       |
| 303 | G<186>           | 2461 | 413.5          | 18 | 75       |
| 304 | G<188>           | 2440 | 313.5          | 18 | 75       |
| 305 | G<190>           | 2419 | 413.5          | 18 | 75       |
| 306 | G<192>           | 2398 | 313.5          | 18 | 75       |
| 307 | G<194>           | 2377 | 413.5          | 18 | 75       |
| 308 | G<196>           | 2356 | 313.5          | 18 | 75       |
| 309 | G<198>           | 2335 | 413.5          | 18 | 75       |
| 310 | G<200>           | 2314 | 313.5          | 18 | 75       |
| 311 | G<202>           | 2293 | 413.5          | 18 | 75       |
| 312 | G<204>           | 2272 | 313.5          | 18 | 75       |
| 313 | G<206>           | 2251 | 413.5          | 18 | 75       |
| 314 | G<208>           | 2230 | 313.5          | 18 | 75       |
| 315 | G<210>           | 2209 | 413.5          | 18 | 75       |
| 316 | G<212>           | 2188 | 313.5          | 18 | 75       |
| 317 | G<214>           | 2167 | 413.5          | 18 | 75       |
| 318 | G<216>           | 2146 | 313.5          | 18 | 75       |
| 319 | G<218>           | 2125 | 413.5          | 18 | 75       |
| 320 | G<220>           | 2104 | 313.5          | 18 | 75       |
| 321 | G<222>           | 2083 | 413.5          | 18 | 75       |
| 322 | G<224>           | 2062 | 313.5          | 18 | 75       |
| 323 | G<226>           | 2041 | 413.5          | 18 | 75       |
| 324 | G<228>           | 2020 | 313.5          | 18 | 75       |
| 325 | G<230>           | 1999 | 413.5          | 18 | 75       |
| 326 | G<232>           | 1978 | 313.5          | 18 | 75       |
| 327 | G<234>           | 1957 | 413.5          | 18 | 75       |
| 328 | G<236>           | 1936 | 313.5          | 18 | 75       |
| 329 | G<238>           | 1915 | 413.5          | 18 | 75       |
| 330 | G<240>           | 1894 | 313.5          | 18 | 75       |
| 331 | G<242>           | 1873 | 413.5          | 18 | 75       |
| 332 | G<244>           | 1852 | 313.5          | 18 | 75       |
| 333 | G<244>           | 1831 | 413.5          | 18 | 75       |
| 334 | G<248>           | 1810 | 313.5          | 18 | 75<br>75 |
| 335 | G<246>           | 1789 | 413.5          | 18 | 75       |
| 336 | G<250><br>G<252> | 1768 | 313.5          | 18 | 75       |
|     | G<252><br>G<254> |      |                |    |          |
| 337 |                  | 1747 | 413.5<br>313.5 | 18 | 75<br>75 |
| 338 | G<256>           | 1726 | 413.5          | 18 | 75<br>75 |
| 339 | G<258>           | 1705 |                | 18 | 75       |
| 340 | G<260>           | 1684 | 313.5          | 18 | 75<br>75 |
| 341 | G<262>           | 1663 | 413.5          | 18 | 75<br>75 |
| 342 | G<264>           | 1642 | 313.5          | 18 | 75       |
| 343 | G<266>           | 1621 | 413.5          | 18 | 75       |
| 344 | G<268>           | 1600 | 313.5          | 18 | 75       |
| 345 | G<270>           | 1579 | 413.5          | 18 | 75       |
| 346 | G<272>           | 1558 | 313.5          | 18 | 75       |
| 347 | G<274>           | 1537 | 413.5          | 18 | 75       |
| 348 | G<276>           | 1516 | 313.5          | 18 | 75       |
| 349 | G<278>           | 1495 | 413.5          | 18 | 75       |
| 350 | G<280>           | 1474 | 313.5          | 18 | 75       |
| 351 | G<282>           | 1453 | 413.5          | 18 | 75       |
| 352 | G<284>           | 1432 | 313.5          | 18 | 75       |
| 353 | G<286>           | 1411 | 413.5          | 18 | 75       |
| 354 | G<288>           | 1390 | 313.5          | 18 | 75       |
| 355 | G<290>           | 1369 | 413.5          | 18 | 75       |
| 356 | G<292>           | 1348 | 313.5          | 18 | 75       |



| No. | Name           | X              | Υ          | W        | Н        |
|-----|----------------|----------------|------------|----------|----------|
| 357 | G<294>         | 1327           | 413.5      | 18       | 75       |
| 358 | NC             | 1306           |            | 18       | _        |
|     |                |                | 313.5      |          | 75<br>75 |
| 359 | NC<br>NC       | 1285           | 413.5      | 18       | 75<br>75 |
| 360 | NC<br>NC       | 1264           | 313.5      | 18       | 75<br>75 |
| 361 | NC<br>NC       | 1243           | 413.5      | 18       | 75       |
| 362 | NC             | 1222           | 313.5      | 18       | 75       |
| 363 | NC             | 1201           | 413.5      | 18       | 75       |
| 364 | NC             | 1180           | 313.5      | 18       | 75       |
| 365 | NC             | 1072.5         | 420        | 12       | 100      |
| 366 | NC             | 1059.5         | 301        | 12       | 100      |
| 367 | VBD<1>         | 1046.5         | 420        | 12       | 100      |
| 368 | S<0>           | 1033.5         | 301        | 12       | 100      |
| 369 | S<1>           | 1020.5         | 420        | 12       | 100      |
| 370 | S<2>           | 1007.5         | 301        | 12       | 100      |
| 371 | S<3>           | 994.5          | 420        | 12       | 100      |
| 372 | S<4>           | 981.5          | 301        | 12       | 100      |
| 373 | S<5>           | 968.5          | 420        | 12       | 100      |
| 374 | S<6>           | 955.5          | 301        | 12       | 100      |
| 375 | S<7>           | 942.5          | 420        | 12       | 100      |
| 376 | S<8>           | 929.5          | 301        | 12       | 100      |
| 377 | S<9>           | 916.5          | 420        | 12       | 100      |
| 378 | S<10>          | 903.5          | 301        | 12       | 100      |
| 379 | S<11>          | 890.5          | 420        | 12       | 100      |
| 380 | S<12>          | 877.5          | 301        | 12       | 100      |
| 381 | S<13>          | 864.5          | 420        | 12       | 100      |
| 382 | S<13>          | 851.5          | 301        | 12       | 100      |
|     | S<14>          |                | 420        | 12       | 1        |
| 383 |                | 838.5          |            | 12       | 100      |
| 384 | S<16>          | 825.5          | 301        |          | 100      |
| 385 | S<17>          | 812.5          | 420        | 12       | 100      |
| 386 | S<18>          | 799.5          | 301        | 12       | 100      |
| 387 | S<19>          | 786.5          | 420        | 12       | 100      |
| 388 | S<20>          | 773.5          | 301        | 12       | 100      |
| 389 | S<21>          | 760.5          | 420        | 12       | 100      |
| 390 | S<22>          | 747.5          | 301        | 12       | 100      |
| 391 | S<23>          | 734.5          | 420        | 12       | 100      |
| 392 | S<24>          | 721.5          | 301        | 12       | 100      |
| 393 | S<25>          | 708.5          | 420        | 12       | 100      |
| 394 | S<26>          | 695.5          | 301        | 12       | 100      |
| 395 | S<27>          | 682.5          | 420        | 12       | 100      |
| 396 | S<28>          | 669.5          | 301        | 12       | 100      |
| 397 | S<29>          | 656.5          | 420        | 12       | 100      |
| 398 | S<30>          | 643.5          | 301        | 12       | 100      |
| 399 | S<31>          | 630.5          | 420        | 12       | 100      |
| 400 | S<32>          | 617.5          | 301        | 12       | 100      |
| 401 | S<33>          | 604.5          | 420        | 12       | 100      |
| 402 | S<34>          | 591.5          | 301        | 12       | 100      |
| 403 | S<35>          | 578.5          | 420        | 12       | 100      |
| 404 | S<36>          | 565.5          | 301        | 12       | 100      |
| 405 | S<37>          | 552.5          | 420        | 12       | 100      |
| 406 | S<38>          | 539.5          | 301        | 12       | 100      |
| 407 | S<39>          | 526.5          | 420        | 12       | 100      |
| 408 | S<40>          | 513.5          | 301        | 12       | 100      |
| 409 | S<41>          | 500.5          | 420        | 12       | 100      |
| 410 | S<42>          | 487.5          | 301        | 12       | 100      |
| 411 | S<43>          | 474.5          | 420        | 12       | 100      |
| 412 | S<44>          | 461.5          | 301        | 12       | 100      |
| 413 | S<45>          | 448.5          | 420        | 12       | 100      |
| 414 | -              |                |            | 12       |          |
|     | S<46>          | 435.5          | 301        |          | 100      |
| 415 | S<47><br>S<48> | 422.5<br>409.5 | 420<br>301 | 12<br>12 | 100      |
| 416 |                |                |            |          | 100      |

| 417         S         49         396.5         420         12         100           418         S         50>         383.5         301         12         100           419         S         51>         370.5         420         12         100           420         S         55>         301.5         301         12         100           421         S         53>         344.5         420         12         100           421         S         55>         318.5         301         12         100           422         S         56>         305.5         301         12         100           422         S         56>         305.5         301         12         100           424         S         56>         292.5         420         12         100           425         S         57>         292.5         420         12         100           427         S         50>         266.5         420         12         100           428         S<60>         253.5         301         12         100           433         S         65> <th< th=""><th>No.</th><th>Name</th><th>Х</th><th>Υ</th><th>W</th><th>Н</th></th<>           | No. | Name | Х | Υ | W  | Н |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|---|---|----|---|
| 418         S<50>         383.5         301         12         100           419         S<51>         370.5         420         12         100           420         S<52>         357.5         301         12         100           421         S<53>         344.5         420         12         100           422         S<54>         331.5         301         12         100           423         S<55>         318.5         420         12         100           425         S<55>         305.5         301         12         100           425         S<56>         305.5         301         12         100           426         S<58>         279.5         301         12         100           427         S<59>         266.5         420         12         100           428         S<60>         253.5         301         12         100           429         S<61>         240.5         420         12         100           431         S<66>         227.5         301         12         100           433         S<65>         18.5         420         12                                                                            |     | _    |   |   |    |   |
| 419         S<51>         370.5         420         12         100           420         S<52>         357.5         301         12         100           421         S<53>         344.5         420         12         100           422         S<54>         331.5         301         12         100           423         S<55>         318.5         420         12         100           424         S<56>         305.5         301         12         100           426         S<56>         305.5         301         12         100           426         S<56>         279.5         301         12         100           427         S<59>         266.5         420         12         100           429         S<61>         240.5         420         12         100           430         S<62>         227.5         301         12         100           431         S<63>         214.5         420         12         100           433         S<65                                                                                                                                                                                              |     |      |   |   |    |   |
| 420         S<52>         357.5         301         12         100           421         S<53>         344.5         420         12         100           422         S<54>         331.5         301         12         100           424         S<56>         305.5         301         12         100           425         S<57>         292.5         420         12         100           426         S<58>         279.5         301         12         100           426         S<58>         279.5         301         12         100           428         S<60>         253.5         301         12         100           428         S<60>         253.5         301         12         100           430         S<62>         227.5         301         12         100           431         S<63                                                                                                                                                                                                                                                                                                                                                        |     |      |   |   |    |   |
| 421         S<53>         344.5         420         12         100           422         S<54>         331.5         301         12         100           423         S<55>         318.5         420         12         100           424         S<56>         305.5         301         12         100           425         S<57>         292.5         420         12         100           426         S<58>         279.5         301         12         100           427         S<59>         266.5         420         12         100           428         S<60>         253.5         301         12         100           429         S<61>         240.5         420         12         100           430         S<62>         227.5         301         12         100           431         S<63                                                                                                                                                                                                                                                                                                                                                        |     |      |   |   |    |   |
| 422         S<54>         331.5         301         12         100           423         S<55>         318.5         420         12         100           424         S<56>         305.5         301         12         100           425         S<57>         292.5         420         12         100           426         S<58>         279.5         301         12         100           427         S<59>         266.5         420         12         100           428         S<60>         253.5         301         12         100           430         S<62>         227.5         301         12         100           431         S<63>         214.5         420         12         100           432         S<64>         201.5         301         12         100           433         S<66>         188.5         420         12         100           434         S<66>         175.5         301         12         100           435         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12                                                                           |     |      |   |   |    |   |
| 423         S<55>         318.5         420         12         100           424         S<56>         305.5         301         12         100           425         S<57>         292.5         420         12         100           426         S<58>         279.5         301         12         100           427         S<59>         266.5         420         12         100           428         S<60>         253.5         301         12         100           429         S<61>         240.5         420         12         100           430         S<62>         227.5         301         12         100           431         S<63>         214.5         420         12         100           432         S<64>         201.5         301         12         100           433         S<65>         188.5         420         12         100           434         S<66>         175.5         301         12         100           434         S<66>         149.5         301         12         100           437         S<69                                                                                                                 |     |      |   |   | 12 |   |
| 424         S<56>         305.5         301         12         100           425         S<57>         292.5         420         12         100           426         S<58>         279.5         301         12         100           427         S<59>         266.5         420         12         100           428         S<60>         253.5         301         12         100           430         S<62>         227.5         301         12         100           430         S<62>         227.5         301         12         100           431         S<63>         201.5         301         12         100           433         S<66>         188.5         420         12         100           433         S<66>         175.5         301         12         100           434         S<66>         175.5         301         12         100           433         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12         100           437         S<69>         136.5         420         12                                                                           |     |      |   |   |    |   |
| 425         S<57>         292.5         420         12         100           426         S<58>         279.5         301         12         100           427         S<59>         266.5         420         12         100           428         S<60>         253.5         301         12         100           429         S<61>         240.5         420         12         100           430         S<62>         227.5         301         12         100           431         S<63>         214.5         420         12         100           432         S<64>         201.5         301         12         100           433         S<66>         188.5         420         12         100           434         S<66>         175.5         301         12         100           435         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12         100           437         S<69                                                                                                                                                                                              |     |      |   |   | 12 |   |
| 426         S<58>         279.5         301         12         100           427         S<59>         266.5         420         12         100           428         S<60>         253.5         301         12         100           429         S<61>         240.5         420         12         100           430         S<62>         227.5         301         12         100           431         S<63>         214.5         420         12         100           432         S<664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |   |   |    |   |
| 427         S<59>         266.5         420         12         100           428         S<60>         253.5         301         12         100           429         S<61>         240.5         420         12         100           430         S<62>         227.5         301         12         100           431         S<63>         214.5         420         12         100           432         S<64>         201.5         301         12         100           433         S<65>         188.5         420         12         100           434         S<66>         175.5         301         12         100           435         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12         100           437         S<69>         136.5         420         12         100           438         S<70>         123.5         301         12         100           439         S<71>         110.5         420         12         100           441         S<73>         84.5         420         12                                                                            |     |      |   |   |    |   |
| 428         S<60>         253.5         301         12         100           429         S<61>         240.5         420         12         100           430         S<62>         227.5         301         12         100           431         S<63>         214.5         420         12         100           432         S<64>         201.5         301         12         100           433         S<65>         188.5         420         12         100           434         S<66>         175.5         301         12         100           435         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12         100           437         S<69>         136.5         420         12         100           438         S<70>         123.5         301         12         100           439         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           4441         S<73>         84.5         420         12                                                                            |     |      |   |   |    |   |
| 429         S<61>         240.5         420         12         100           430         S<62>         227.5         301         12         100           431         S<63>         214.5         420         12         100           432         S<64>         201.5         301         12         100           433         S<65>         188.5         420         12         100           434         S<66>         175.5         301         12         100           435         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12         100           437         S<69>         136.5         420         12         100           437         S<69>         136.5         420         12         100           437         S<69>         136.5         420         12         100           437         S<69>         140.5         301         12         100           437         S         48.5         301         12         100           440         S<73                                                                                                                      |     |      |   |   |    |   |
| 430         S<62>         227.5         301         12         100           431         S<63>         214.5         420         12         100           432         S<64>         201.5         301         12         100           433         S<65>         188.5         420         12         100           434         S<66>         175.5         301         12         100           435         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12         100           437         S<69>         136.5         420         12         100           438         S<70>         123.5         301         12         100           439         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12                                                                               |     |      |   |   |    |   |
| 431         S<63>         214.5         420         12         100           432         S<64>         201.5         301         12         100           433         S<65>         188.5         420         12         100           434         S<66>         175.5         301         12         100           435         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12         100           437         S<69>         136.5         420         12         100           438         S<70>         123.5         301         12         100           439         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           441         S<73>         84.5         420         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         420         12                                                                                |     |      |   |   |    |   |
| 432         S<64>         201.5         301         12         100           433         S<65>         188.5         420         12         100           434         S<66>         175.5         301         12         100           435         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12         100           437         S<69>         136.5         420         12         100           438         S<70>         123.5         301         12         100           439         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           441         S<73>         84.5         420         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         <                                                                       |     |      |   |   |    |   |
| 433         S<65>         188.5         420         12         100           434         S<66>         175.5         301         12         100           435         S<67>         162.5         420         12         100           437         S<68>         149.5         301         12         100           437         S<68>         149.5         301         12         100           438         S<70>         123.5         301         12         100           439         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           442         S<74>         71.5         301         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           447         S<79                                                                                                                       |     |      |   |   |    |   |
| 434         S<66>         175.5         301         12         100           435         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12         100           437         S<69>         136.5         420         12         100           438         S<70>         123.5         301         12         100           443         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           441         S<73>         84.5         420         12         100           443         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           447         S<79>         6.5         420         12                                                                                    |     |      |   |   |    |   |
| 435         S<67>         162.5         420         12         100           436         S<68>         149.5         301         12         100           437         S<69>         136.5         420         12         100           438         S<70>         123.5         301         12         100           439         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           442         S<74>         71.5         301         12         100           442         S<74>         71.5         301         12         100           443         S<75>         58.5         420         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           444         S<78                                                                                                                         |     |      |   |   |    |   |
| 436         S<68>         149.5         301         12         100           437         S<69>         136.5         420         12         100           438         S<70>         123.5         301         12         100           439         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           442         S<74>         71.5         301         12         100           443         S<75>         58.5         420         12         100           443         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           444         S<78>         19.5         301         12         100           444         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         10                                                                           |     |      |   |   |    |   |
| 437         S<69>         136.5         420         12         100           438         S<70>         123.5         301         12         100           439         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           442         S<74>         71.5         301         12         100           443         S<75>         58.5         420         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           445         S<77>         32.5         420         12         100           446         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           450         S<82>         -32.5         301         12         10                                                                           |     |      |   |   |    |   |
| 438         S<70>         123.5         301         12         100           439         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           442         S<74>         71.5         301         12         100           443         S<75>         58.5         420         12         100           444         S<76>         45.5         301         12         100           444         S<76>         45.5         301         12         100           445         S<77>         32.5         420         12         100           446         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           450         S<82>         -32.5         301         12         100           451         S<88>         -45.5         420         12         10                                                                           |     |      |   |   |    |   |
| 439         S<71>         110.5         420         12         100           440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           442         S<74>         71.5         301         12         100           443         S<75>         58.5         420         12         100           444         S<76>         45.5         301         12         100           445         S<77>         32.5         420         12         100           446         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           449         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           451         S<83>         -45.5         420         12         100                                                                           |     |      |   |   |    |   |
| 440         S<72>         97.5         301         12         100           441         S<73>         84.5         420         12         100           442         S<74>         71.5         301         12         100           443         S<75>         58.5         420         12         100           444         S<76>         45.5         301         12         100           445         S<77>         32.5         420         12         100           446         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           448         S<80>         -6.5         301         12         100           449         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           451         S<83                                                                                                                                                                                                         |     |      |   |   |    |   |
| 441         S<73>         84.5         420         12         100           442         S<74>         71.5         301         12         100           443         S<75>         58.5         420         12         100           444         S<76>         45.5         301         12         100           445         S<77>         32.5         420         12         100           446         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           448         S<80>         -6.5         301         12         100           450         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           451         S<88>         -45.5         420         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         1                                                                           |     |      |   |   |    |   |
| 442         S<74>         71.5         301         12         100           443         S<75>         58.5         420         12         100           444         S<76>         45.5         301         12         100           445         S<77>         32.5         420         12         100           446         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           448         S<80>         -6.5         301         12         100           449         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           451         S<83>         -45.5         420         12         100           451         S<83>         -45.5         301         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12                                                                                    |     |      |   |   |    |   |
| 443         S<75>         58.5         420         12         100           444         S<76>         45.5         301         12         100           445         S<77>         32.5         420         12         100           446         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           448         S<80>         -6.5         301         12         100           449         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           450         S<82>         -32.5         301         12         100           451         S<83>         -45.5         420         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         100           454         S<86>         -84.5         301         12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>           |     |      |   |   |    |   |
| 444         S<76>         45.5         301         12         100           445         S<77>         32.5         420         12         100           446         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           448         S<80>         -6.5         301         12         100           449         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           450         S<82>         -32.5         301         12         100           451         S<83>         -45.5         420         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         100           454         S<86>         -84.5         301         12         100           455         S<87>         -97.5         420         12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>            |     |      |   |   |    |   |
| 445         S<77>         32.5         420         12         100           446         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           449         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           450         S<82>         -32.5         301         12         100           451         S<83>         -45.5         420         12         100           451         S<88>         -45.5         420         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         100           453         S<86>         -84.5         301         12         100           454         S<86>         -84.5         301         12         100           455         S<87                                                                                                                      |     |      |   |   |    |   |
| 446         S<78>         19.5         301         12         100           447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           449         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           451         S<83>         -45.5         420         12         100           451         S<83>         -45.5         420         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         100           454         S<86>         -84.5         301         12         100           455         S<87>         -97.5         420         12         100           455         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12                                                                            |     |      |   |   |    |   |
| 447         S<79>         6.5         420         12         100           448         S<80>         -6.5         301         12         100           449         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           451         S<83>         -45.5         420         12         100           451         S<83>         -45.5         420         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         100           453         S<85>         -71.5         420         12         100           454         S<86>         -84.5         301         12         100           455         S<87>         -97.5         420         12         100           456         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12                                                                           |     |      |   |   |    |   |
| 448         S<80>         -6.5         301         12         100           449         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           451         S<83>         -45.5         420         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         100           453         S<85>         -71.5         420         12         100           454         S<86>         -84.5         301         12         100           455         S<87>         -97.5         420         12         100           456         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12                                                                       |     |      |   |   |    |   |
| 449         S<81>         -19.5         420         12         100           450         S<82>         -32.5         301         12         100           451         S<83>         -45.5         420         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         100           454         S<86>         -84.5         301         12         100           455         S<87>         -97.5         420         12         100           456         S<88>         -110.5         301         12         100           456         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12 </td <td></td> <td></td> <td></td> <td></td> <td>12</td> <td></td> |     |      |   |   | 12 |   |
| 450         S<82>         -32.5         301         12         100           451         S<83>         -45.5         420         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         100           454         S<86>         -84.5         301         12         100           455         S<87>         -97.5         420         12         100           456         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12         100           458         S<90>         -136.5         301         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12<                                                                  |     |      |   |   |    |   |
| 451         S<83>         -45.5         420         12         100           452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         100           454         S<86>         -84.5         301         12         100           455         S<87>         -97.5         420         12         100           456         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12                                                                  |     |      |   |   |    |   |
| 452         S<84>         -58.5         301         12         100           453         S<85>         -71.5         420         12         100           454         S<86>         -84.5         301         12         100           455         S<87>         -97.5         420         12         100           456         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12         100           458         S<90>         -136.5         301         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         1                                                                  |     |      |   |   |    |   |
| 453         S<85>         -71.5         420         12         100           454         S<86>         -84.5         301         12         100           455         S<87>         -97.5         420         12         100           456         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12         100           458         S<90>         -136.5         301         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420                                                                           |     |      |   |   |    |   |
| 454         S<86>         -84.5         301         12         100           455         S<87>         -97.5         420         12         100           456         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12         100           458         S<90>         -136.5         301         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12         100           461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>  |     |      |   |   |    |   |
| 455         S<87>         -97.5         420         12         100           456         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12         100           458         S<90>         -149.5         420         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12         100           461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420         12         100           467         S<99>         -253.5         420 <t< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>  | _   |      |   |   |    |   |
| 456         S<88>         -110.5         301         12         100           457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420         12         100           466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301                                                                       |     |      |   |   |    |   |
| 457         S<89>         -123.5         420         12         100           458         S<90>         -136.5         301         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420         12         100           466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301                                                                     |     |      |   |   |    |   |
| 458         S<90>         -136.5         301         12         100           459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420         12         100           466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420                                                                    |     |      |   |   |    |   |
| 459         S<91>         -149.5         420         12         100           460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420         12         100           466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301                                                                   |     |      |   |   |    |   |
| 460         S<92>         -162.5         301         12         100           461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420         12         100           466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301         12         100           473         S<105>         -331.5         420                                                                  |     |      |   |   |    |   |
| 461         S<93>         -175.5         420         12         100           462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420         12         100           466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301         12         100           473         S<105>         -331.5         420         12         100           474         S<106>         -344.5         301                                                                 |     |      |   |   |    |   |
| 462         S<94>         -188.5         301         12         100           463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420         12         100           466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301         12         100           473         S<105>         -331.5         420         12         100           474         S<106>         -344.5         301         12         100           475         S<107>         -357.5         420                                                                |     |      |   |   |    |   |
| 463         S<95>         -201.5         420         12         100           464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420         12         100           466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301         12         100           473         S<105>         -331.5         420         12         100           474         S<106>         -344.5         301         12         100           475         S<107>         -357.5         420         12         100                                                                                                                       |     |      |   |   |    |   |
| 464         S<96>         -214.5         301         12         100           465         S<97>         -227.5         420         12         100           466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301         12         100           473         S<105>         -331.5         420         12         100           474         S<106>         -344.5         301         12         100           475         S<107>         -357.5         420         12         100                                                                                                                                                                                                     |     |      |   |   |    |   |
| 465         S<97>         -227.5         420         12         100           466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301         12         100           473         S<105>         -331.5         420         12         100           474         S<106>         -344.5         301         12         100           475         S<107>         -357.5         420         12         100                                                                                                                                                                                                                                                                                   |     |      |   |   |    |   |
| 466         S<98>         -240.5         301         12         100           467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301         12         100           473         S<105>         -331.5         420         12         100           474         S<106>         -344.5         301         12         100           475         S<107>         -357.5         420         12         100                                                                                                                                                                                                                                                                                                                                                                 |     |      |   |   |    |   |
| 467         S<99>         -253.5         420         12         100           468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301         12         100           473         S<105>         -331.5         420         12         100           474         S<106>         -344.5         301         12         100           475         S<107>         -357.5         420         12         100                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | _    |   |   |    |   |
| 468         S<100>         -266.5         301         12         100           469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301         12         100           473         S<105>         -331.5         420         12         100           474         S<106>         -344.5         301         12         100           475         S<107>         -357.5         420         12         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |      |   |   |    |   |
| 469         S<101>         -279.5         420         12         100           470         S<102>         -292.5         301         12         100           471         S<103>         -305.5         420         12         100           472         S<104>         -318.5         301         12         100           473         S<105>         -331.5         420         12         100           474         S<106>         -344.5         301         12         100           475         S<107>         -357.5         420         12         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |      |   |   |    |   |
| 470       S<102>       -292.5       301       12       100         471       S<103>       -305.5       420       12       100         472       S<104>       -318.5       301       12       100         473       S<105>       -331.5       420       12       100         474       S<106>       -344.5       301       12       100         475       S<107>       -357.5       420       12       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |   |   |    |   |
| 471       S<103>       -305.5       420       12       100         472       S<104>       -318.5       301       12       100         473       S<105>       -331.5       420       12       100         474       S<106>       -344.5       301       12       100         475       S<107>       -357.5       420       12       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |   |   |    |   |
| 472       S<104>       -318.5       301       12       100         473       S<105>       -331.5       420       12       100         474       S<106>       -344.5       301       12       100         475       S<107>       -357.5       420       12       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |   |   |    |   |
| 473       S<105>       -331.5       420       12       100         474       S<106>       -344.5       301       12       100         475       S<107>       -357.5       420       12       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |      |   |   |    |   |
| 474         S<106>         -344.5         301         12         100           475         S<107>         -357.5         420         12         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |      |   |   |    |   |
| 475 S<107> -357.5 420 12 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |   |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |   |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |   |   |    |   |



| No.        | Name             | Х                | Υ          | W        | Н   |
|------------|------------------|------------------|------------|----------|-----|
| 477        | S<109>           | -383.5           | 420        | 12       | 100 |
| 478        | S<110>           | -396.5           | 301        | 12       | 100 |
| 479        | S<111>           | -409.5           | 420        | 12       | 100 |
| 480        | S<112>           | -422.5           | 301        | 12       | 100 |
| 481        | S<113>           | -435.5           | 420        | 12       | 100 |
| 482        | S<114>           | -448.5           | 301        | 12       | 100 |
| 483        | S<115>           | -461.5           | 420        | 12       | 100 |
| 484        | S<116>           | -474.5           | 301        | 12       | 100 |
| 485        | S<117>           | -487.5           | 420        | 12       | 100 |
| 486        | S<118>           | -500.5           | 301        | 12       | 100 |
| 487        | S<119>           | -513.5           | 420        | 12       | 100 |
| 488        | S<120>           | -526.5           | 301        | 12       | 100 |
| 489        | S<121>           | -539.5           | 420        | 12       | 100 |
| 490        | S<122>           | -552.5           | 301        | 12       | 100 |
| 491        | S<123>           | -565.5           | 420        | 12       | 100 |
| 492        | S<124>           | <i>-</i> 578.5   | 301        | 12       | 100 |
| 493        | S<125>           | -591.5           | 420        | 12       | 100 |
| 494        | S<126>           | -604.5           | 301        | 12       | 100 |
| 495        | S<127>           | -617.5           | 420        | 12       | 100 |
| 496        | S<128>           | -630.5           | 301        | 12       | 100 |
| 497        | S<129>           | -643.5           | 420        | 12       | 100 |
| 498        | S<130>           | -656.5           | 301        | 12       | 100 |
| 499        | S<131>           | -669.5           | 420        | 12       | 100 |
| 500        | S<132>           | -682.5           | 301        | 12       | 100 |
| 501        | S<133>           | -695.5           | 420        | 12       | 100 |
| 502        | S<134>           | -708.5           | 301        | 12       | 100 |
| 503        | S<135>           | -721.5           | 420        | 12       | 100 |
| 504        | S<136>           | -734.5           | 301        | 12       | 100 |
| 505        | S<137>           | -747.5           | 420        | 12       | 100 |
| 506        | S<138>           | -760.5           | 301        | 12       | 100 |
| 507        | S<139>           | -773.5           | 420        | 12       | 100 |
| 508        | S<140><br>S<141> | -786.5           | 301<br>420 | 12<br>12 | 100 |
| 509<br>510 | S<141>           | -799.5<br>-812.5 | 301        | 12       | 100 |
| 511        | S<142>           | -825.5           | 420        | 12       | 100 |
| 512        | S<144>           | -838.5           | 301        | 12       | 100 |
| 513        | S<145>           | -851.5           | 420        | 12       | 100 |
| 514        | S<146>           | -864.5           | 301        | 12       | 100 |
| 515        | S<147>           | -877.5           | 420        | 12       | 100 |
| 516        | S<148>           | -890.5           | 301        | 12       | 100 |
| 517        | S<149>           | -903.5           | 420        | 12       | 100 |
| 518        | S<150>           | -916.5           | 301        | 12       | 100 |
| 519        | S<151>           | -929.5           | 420        | 12       | 100 |
| 520        | S<152>           | -942.5           | 301        | 12       | 100 |
| 521        | S<153>           | -955.5           | 420        | 12       | 100 |
| 522        | S<154>           | -968.5           | 301        | 12       | 100 |
| 523        | S<155>           | -981.5           | 420        | 12       | 100 |
| 524        | S<156>           | -994.5           | 301        | 12       | 100 |
| 525        | S<157>           | -1007.5          | 420        | 12       | 100 |
| 526        | S<158>           | -1020.5          | 301        | 12       | 100 |
| 527        | S<159>           | -1033.5          | 420        | 12       | 100 |
| 528        | VBD<2>           | -1046.5          | 301        | 12       | 100 |
| 529        | NC               | -1059.5          | 420        | 12       | 100 |
| 530        | NC               | -1072.5          | 301        | 12       | 100 |
| 531        | NC               | -1180            | 413.5      | 18       | 75  |
| 532        | NC               | -1201            | 313.5      | 18       | 75  |
| 533        | NC               | -1222            | 413.5      | 18       | 75  |
| 534        | NC               | -1243            | 313.5      | 18       | 75  |
| 535        | NC               | -1264            | 413.5      | 18       | 75  |
| 536        | NC               | -1285            | 313.5      | 18       | 75  |

| NI.        | NI               | V              | V              | 14/      |          |
|------------|------------------|----------------|----------------|----------|----------|
| No.        | Name             | X              | Y              | W        | H 75     |
| 537        | NC<br>0.005      | -1306          | 413.5          | 18       | 75       |
| 538        | G<295>           | -1327          | 313.5          | 18       | 75       |
| 539        | G<293>           | -1348          | 413.5          | 18       | 75       |
| 540        | G<291>           | -1369          | 313.5          | 18       | 75<br>75 |
| 541        | G<289>           | -1390          | 413.5          | 18       | 75       |
| 542        | G<287>           | -1411          | 313.5          | 18       | 75       |
| 543        | G<285>           | -1432          | 413.5          | 18       | 75       |
| 544<br>545 | G<283>           | -1453<br>-1474 | 313.5<br>413.5 | 18<br>18 | 75<br>75 |
| 546        | G<281><br>G<279> | -1474          | 313.5          | 18       | 75<br>75 |
| 547        |                  |                | 413.5          | 18       | 75<br>75 |
| 548        | G<277><br>G<275> | -1516<br>-1537 | 313.5          | 18       | 75<br>75 |
| 549        | G<273>           | -1558          | 413.5          | 18       | 75       |
| 550        | G<271>           | -1579          | 313.5          | 18       | 75<br>75 |
| 551        | G<269>           | -1600          | 413.5          | 18       | 75       |
| 552        | G<267>           | -1621          | 313.5          | 18       | 75       |
| 553        | G<265>           | -1642          | 413.5          | 18       | 75       |
| 554        | G<263>           | -1663          | 313.5          | 18       | 75       |
| 555        | G<261>           | -1684          | 413.5          | 18       | 75       |
| 556        | G<259>           | -1705          | 313.5          | 18       | 75       |
| 557        | G<257>           | -1705          | 413.5          | 18       | 75       |
| 558        | G<255>           | -1720          | 313.5          | 18       | 75       |
| 559        | G<253>           | -1768          | 413.5          | 18       | 75       |
| 560        | G<251>           | -1789          | 313.5          | 18       | 75       |
| 561        | G<249>           | -1810          | 413.5          | 18       | 75       |
| 562        | G<247>           | -1831          | 313.5          | 18       | 75       |
| 563        | G<245>           | -1852          | 413.5          | 18       | 75       |
| 564        | G<243>           | -1873          | 313.5          | 18       | 75       |
| 565        | G<241>           | -1894          | 413.5          | 18       | 75       |
| 566        | G<239>           | -1915          | 313.5          | 18       | 75       |
| 567        | G<237>           | -1936          | 413.5          | 18       | 75       |
| 568        | G<235>           | -1957          | 313.5          | 18       | 75       |
| 569        | G<233>           | -1978          | 413.5          | 18       | 75       |
| 570        | G<231>           | -1999          | 313.5          | 18       | 75       |
| 571        | G<229>           | -2020          | 413.5          | 18       | 75       |
| 572        | G<227>           | -2041          | 313.5          | 18       | 75       |
| 573        | G<225>           | -2062          | 413.5          | 18       | 75       |
| 574        | G<223>           | -2083          | 313.5          | 18       | 75       |
| 575        | G<221>           | -2104          | 413.5          | 18       | 75       |
| 576        | G<219>           | -2125          | 313.5          | 18       | 75       |
| 577        | G<217>           | -2146          | 413.5          | 18       | 75       |
| 578        | G<215>           | -2167          | 313.5          | 18       | 75       |
| 579        | G<213>           | -2188          | 413.5          | 18       | 75       |
| 580        | G<211>           | -2209          | 313.5          | 18       | 75       |
| 581        | G<209>           | -2230          | 413.5          | 18       | 75       |
| 582        | G<207>           | -2251          | 313.5          | 18       | 75       |
| 583        | G<205>           | -2272          | 413.5          | 18       | 75       |
| 584        | G<203>           | -2293          | 313.5          | 18       | 75       |
| 585        | G<201>           | -2314          | 413.5          | 18       | 75       |
| 586        | G<199>           | -2335          | 313.5          | 18       | 75       |
| 587        | G<197>           | -2356          | 413.5          | 18       | 75       |
| 588        | G<195>           | -2377          | 313.5          | 18       | 75       |
| 589        | G<193>           | -2398          | 413.5          | 18       | 75       |
| 590        | G<191>           | -2419          | 313.5          | 18       | 75       |
| 591        | G<189>           | -2440          | 413.5          | 18       | 75       |
| 592        | G<187>           | -2461          | 313.5          | 18       | 75       |
| 593        | G<185>           | -2482          | 413.5          | 18       | 75       |
| 594        | G<183>           | -2503          | 313.5          | 18       | 75       |
| 595        | G<181>           | -2524          | 413.5          | 18       | 75       |
| 596        | G<179>           | -2545          | 313.5          | 18       | 75       |



| No. | Name   | Х     | Υ     | W  | Н  |
|-----|--------|-------|-------|----|----|
| 597 | G<177> | -2566 | 413.5 | 18 | 75 |
| 598 | G<175> | -2587 | 313.5 | 18 | 75 |
| 599 | G<173> | -2608 | 413.5 | 18 | 75 |
| 600 | G<171> | -2629 | 313.5 | 18 | 75 |
| 601 | G<169> | -2650 | 413.5 | 18 | 75 |
| 602 | G<167> | -2671 | 313.5 | 18 | 75 |
| 603 | G<165> | -2692 | 413.5 | 18 | 75 |
| 604 | G<163> | -2713 | 313.5 | 18 | 75 |
| 605 | G<161> | -2734 | 413.5 | 18 | 75 |
| 606 | G<159> | -2755 | 313.5 | 18 | 75 |
| 607 | G<157> | -2776 | 413.5 | 18 | 75 |
| 608 | G<155> | -2797 | 313.5 | 18 | 75 |
| 609 | G<153> | -2818 | 413.5 | 18 | 75 |
| 610 | G<151> | -2839 | 313.5 | 18 | 75 |
| 611 | G<149> | -2860 | 413.5 | 18 | 75 |
| 612 | G<147> | -2881 | 313.5 | 18 | 75 |
| 613 | G<145> | -2902 | 413.5 | 18 | 75 |
| 614 | G<143> | -2923 | 313.5 | 18 | 75 |
| 615 | G<141> | -2944 | 413.5 | 18 | 75 |
| 616 | G<139> | -2965 | 313.5 | 18 | 75 |
| 617 | G<137> | -2986 | 413.5 | 18 | 75 |
| 618 | G<135> | -3007 | 313.5 | 18 | 75 |
| 619 | G<133> | -3028 | 413.5 | 18 | 75 |
| 620 | G<131> | -3049 | 313.5 | 18 | 75 |
| 621 | G<129> | -3070 | 413.5 | 18 | 75 |
| 622 | G<127> | -3091 | 313.5 | 18 | 75 |
| 623 | G<125> | -3112 | 413.5 | 18 | 75 |
| 624 | G<123> | -3133 | 313.5 | 18 | 75 |
| 625 | G<121> | -3154 | 413.5 | 18 | 75 |
| 626 | G<119> | -3175 | 313.5 | 18 | 75 |
| 627 | G<117> | -3196 | 413.5 | 18 | 75 |
| 628 | G<115> | -3217 | 313.5 | 18 | 75 |
| 629 | G<113> | -3238 | 413.5 | 18 | 75 |
| 630 | G<111> | -3259 | 313.5 | 18 | 75 |
| 631 | G<109> | -3280 | 413.5 | 18 | 75 |
| 632 | G<107> | -3301 | 313.5 | 18 | 75 |
| 633 | G<105> | -3322 | 413.5 | 18 | 75 |
| 634 | G<103> | -3343 | 313.5 | 18 | 75 |
| 635 | G<101> | -3364 | 413.5 | 18 | 75 |
| 636 | G<99>  | -3385 | 313.5 | 18 | 75 |
| 637 | G<97>  | -3406 | 413.5 | 18 | 75 |
| 638 | G<95>  | -3427 | 313.5 | 18 | 75 |
| 639 | G<93>  | -3448 | 413.5 | 18 | 75 |
| 640 | G<91>  | -3469 | 313.5 | 18 | 75 |
| 641 | G<89>  | -3490 | 413.5 | 18 | 75 |
| 642 | G<87>  | -3511 | 313.5 | 18 | 75 |
| 643 | G<85>  | -3532 | 413.5 | 18 | 75 |
| 644 | G<83>  | -3553 | 313.5 | 18 | 75 |
| 645 | G<81>  | -3574 | 413.5 | 18 | 75 |

| No. | Name           | Х              | Υ              | W  | Н        |
|-----|----------------|----------------|----------------|----|----------|
| 646 | G<79>          | -3595          | 313.5          | 18 | 75       |
| 647 | G<77>          | -3616          | 413.5          | 18 | 75       |
| 648 | G<75>          | -3637          | 313.5          | 18 | 75       |
| 649 | G<73>          | -3658          | 413.5          | 18 | 75       |
| 650 | G<71>          | -3679          | 313.5          | 18 | 75       |
| 651 | G<69>          | -3700          | 413.5          | 18 | 75       |
| 652 | G<67>          | -3721          | 313.5          | 18 | 75       |
| 653 | G<67>          | -3742          | 413.5          | 18 | 75<br>75 |
| 654 | G<63>          | -3742          | 313.5          | 18 | 75       |
| 655 | G<61>          | -3784          | 413.5          | 18 | 75       |
| 656 | G<59>          | -3805          | 313.5          | 18 | 75       |
| 657 | G<57>          | -3826          | 413.5          | 18 | 75       |
|     |                | -3847          | 313.5          | 18 |          |
| 658 | G<55>          |                | -              | 18 | 75<br>75 |
| 659 | G<53>          | -3868          | 413.5          |    | 75<br>75 |
| 660 | G<51><br>G<49> | -3889<br>-3910 | 313.5<br>413.5 | 18 | 75<br>75 |
| 661 | G<49>          |                | /              | 18 |          |
| 662 | G<47>          | -3931          | 313.5          | 18 | 75<br>75 |
| 663 |                | -3952          | 413.5          | 18 | 75       |
| 664 | G<43>          | -3973          | 313.5          | 18 | 75       |
| 665 | G<41>          | -3994          | 413.5          | 18 | 75       |
| 666 | G<39>          | -4015          | 313.5          | 18 | 75       |
| 667 | G<37>          | -4036          | 413.5          | 18 | 75       |
| 668 | G<35>          | -4057          | 313.5          | 18 | 75       |
| 669 | G<33>          | -4078          | 413.5          | 18 | 75       |
| 670 | G<31>          | -4099          | 313.5          | 18 | 75       |
| 671 | G<29>          | -4120          | 413.5          | 18 | 75       |
| 672 | G<27>          | -4141          | 313.5          | 18 | 75       |
| 673 | G<25>          | -4162          | 413.5          | 18 | 75       |
| 674 | G<23>          | -4183          | 313.5          | 18 | 75       |
| 675 | G<21>          | -4204          | 413.5          | 18 | 75       |
| 676 | G<19>          | -4225          | 313.5          | 18 | 75       |
| 677 | G<17>          | -4246          | 413.5          | 18 | 75       |
| 678 | G<15>          | -4267          | 313.5          | 18 | 75       |
| 679 | G<13>          | -4288          | 413.5          | 18 | 75       |
| 680 | G<11>          | -4309          | 313.5          | 18 | 75       |
| 681 | G<9>           | -4330          | 413.5          | 18 | 75       |
| 682 | G<7>           | -4351          | 313.5          | 18 | 75       |
| 683 | G<5>           | -4372          | 413.5          | 18 | 75       |
| 684 | G<3>           | -4393          | 313.5          | 18 | 75       |
| 685 | G<1>           | -4414          | 413.5          | 18 | 75       |
| 686 | NC             | -4435          | 313.5          | 18 | 75       |
| 687 | NC             | -4456          | 413.5          | 18 | 75       |
| 688 | NC             | -4477          | 313.5          | 18 | 75       |
| 689 | NC             | -4498          | 413.5          | 18 | 75       |
| 690 | NC             | -4519          | 313.5          | 18 | 75       |
| 691 | NC             | -4540          | 413.5          | 18 | 75       |







## **TRAY INFORMATION**

